Gadgetless Lifting Beats Round Elimination: Improved Lower Bounds for Pointer Chasing

Xinyu Mao

Guangxu Yang

Jiapeng Zhang

The pointer chasing problem

The pointer chasing problem

Pointer chasing is a natural problem where many rounds of communication is useful.

- ▶ Alice holds $f_A \in [n]^n$, Bob hold $f_B \in [n]^n$.
- ▶ The k step pointer chasing function PC_k : $[n]^n \times [n]^n \to \{0,1\}$
 - $ightharpoonup pt_0 \coloneqq 1$
 - \blacktriangleright for odd r's, $pt_r := f_A(pt_{r-1})$
 - \blacktriangleright for even r's, $pt_r \coloneqq f_B(pt_{r-1})$
 - $ightharpoonup PC_k(f_A, f_B) := pt_k \mod 2.$

There is a k-round protocol for PC_k with $O(k \log n)$ communication bits.

The pointer chasing problem

Theorem (Yehudayoff 2016). Any randomized (k-1)-round protocol for PC_k that is correct with probability 0.9 requires $\Omega\left(\frac{n}{k}-k\log n\right)$ bits of communication.

The $(k \log n)$ loss is associated with many round elimination- based analysis [NW91, Kla00, KNTSZ07, FKM+09, Yeh20]. In this paper, we avoid the $k \log n$ loss via the gadgetless lifting.

This work $\Omega\left(\frac{n}{k}+k\right)$ lower bound via a completely different proof

Pointer chasing has wide applications in circuit lower bounds [NW91, KPPY84], distributed computation [NDSP11] streaming algorithms [FKM+09, GO16, ACK19] property testing [CG18] differential privacy [JMR20] learning [CPP22] transformer architecture [PNP24].

Gadgetless Lifting

Query to communication lifting theorems

- ▶ Let $g: \{0,1\}^q \times \{0,1\}^q \to \{0,1\}$ be a **gadget** function with low discrepancy
- ► Consider functions of the form $f \circ g^n$ for some outer function $f: \{0,1\}^n \to \{0,1\}$, $(f \circ g^n) \big((x_1, y_1), \dots, (x_n y_n) \big) \coloneqq f \big(g(x_1, y_1), \dots, g(x_n, y_n) \big).$

 $CC(f \circ g^n) = \Omega(Q(f) \cdot q)$, where Q(f) denotes the query complexity of f.

Lifting theorems show that the query type protocols are optimal for $f \circ g^n$!

- Not all functions can be written as $f \circ g^n$. Pointer chasing is not a composed function
- ▶ Often need $q = \Omega(n)$: Proving lift theorems for constant gadget size q is very hard and has many implications [RM97, WYY17, CKLM19, GPW18, CFK+19, LMM+20]

A simple class of k-1 rounds protocols for pointer chasing

- ▶ Alice choose a subset $I \subseteq [n]$ of size $S \coloneqq 10 \frac{n}{k}$ uniformly at random, and then send $f_A(I)$ to Bob.
- Alice and Bob run the naïve (k rounds) protocol, but they can skip one round if the pointer falls into I.
- ▶ If the skip round never happens, Alice and Bob simply abort at the last round.
- ► The skip round event happen with high probability.

This is a (k-1) -rounds randomized protocol for PC_k with $\widetilde{\Theta}\left(\frac{n}{k}+k\right)$ communication bits.

This protocol is not a query type protocol but Alice and Bob only send values of some coordinate to each other! How to prove this protocol is optimal?

Gadgetless lifting

- ▶ Identify a simple class of protocols \mathcal{K} .
- ▶ Prove lower bound for these simple protocols.
- ▶ Prove that every protocol can be "simulated" by a combination of simple protocols.

$$CC(f) := \min_{\Pi:\Pi \text{ computes } f} CC(\Pi) \approx \min_{\Pi \in \mathcal{K}} CC(\Pi) =: CC_{\mathcal{K}}(\Pi).$$

For pointer chasing, \mathcal{K} is the set of protocols where Alice and Bob only send values of some coordinate to each other.

Decomposition and Sampling Process

Density restoring partition

Def. For a random variable X, its min-entropy is defined as $H_{\infty}(X) := \log \frac{1}{\max_{x} \Pr[X=x]}$.

Def. We say a random variable X over $[n]^J$ is γ -dense if $\mathbf{H}_{\infty}(X(I)) \ge \gamma \log n \ |I|$ for all $I \subseteq J$.

For a set X, X := uniform distribution over X.

Lemma I ([GPW17]). For any $X \subseteq [n]^J$, there is a partition $X = X^1 \cup \cdots \cup X^r$ and each X^i is associated with a set I_i with the following properties.

- X^i is fixed on I_i : there exists some $\alpha_i \in [n]^{I_i}$ such that $x(I_i) = \alpha_i$ for all $x \in X^i$.
- $X^i(J \setminus I_i)$ is γ -dense.
- $\mathbf{D}_{\infty}\left(\mathbf{X}^{i}(J\setminus I_{i})\right) \leq \mathbf{D}_{\infty}(X) (1-\gamma)\log n |I_{i}| + \delta_{i} \text{ where } \delta_{i} = \log \frac{|X|}{|\bigcup_{j\geq i} X^{j}|}$.
- ▶ $\mathbf{D}_{\infty}(X) \coloneqq |J| \log n \mathbf{H}_{\infty}(X)$ if X is supported on $[n]^J$. γ -dense I_i

Decomposition and sampling process $DS(\Pi)$

Input: A protocol tree Π under uniform input distribution Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, J_A , $J_B \subseteq [n]$. Initialization: $X := Y := [n]^n$, $J_A := J_B := [n]$, skip := false, r := 0, v := root.

- I. Partition X into $X = X^0 \cup X^1$ according to node v in the protocol tree
- 2. Sample $\boldsymbol{b} \in \{0,1\}$ such that $\Pr[\boldsymbol{b} = b] = \frac{|X^B|}{|X|}$.
- 3. Update $X := X^b$, $v := u_b$.
- 4. If u_b is owned by Bob:
 - ▶ Further partition X into $X = X^0 \cup X^1$ where $X^b := \{f_A \in X : f_A(z_{r-1}) \bmod 2 = b\}$.
 - ► Sample $\boldsymbol{b} \in \{0,1\}$ such that $\Pr[\boldsymbol{b} = b] = \frac{|X^b|}{|X|}$.
 - ▶ Update $X := X^b$, r := r + 1.
- 5. Let $X = X^1 \cup \cdots \cup X^m$ be density restoring partition of X with associated I_1, \ldots, I_m .
- 6. Sample a random element $j \in [m]$ such that $\Pr[j = j] = \frac{|X^j|}{|X|}$ for $j \in [m]$.
- 7. Update $X := X^j$, $I_A := I_A \setminus I_i$.
- 8. If u_h is owned by Bob $z_{r-1} \notin I_R$, skip := true.

1|1|4|5|1|4|1|

γ-dense

Suppose Alice owns node v and u_0, u_1 be the children of v in the protocol tree.

> As a new round begins, we do an extra partition to fix the parity of pt_r .

> > X_{I_i} is fixed; X_{I_A} is dense.

Loop invariant

Input: A protocol Π

Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, J_A , $J_B \subseteq [n]$.

Initialization: $X := Y := [n]^n$, $J_A := J_B := [n]$, skip := false, r := 0, v := root.

Lemma 2. Set $\gamma := 1 - \frac{0.1}{\log n}$. Then in the running of $DS(\Pi)$, we have the following loop invariants: After each iteration,

- $\blacktriangleright X \times Y \subseteq \Pi_v$.
- \blacktriangleright $X(I_A), Y(I_B)$ are γ -dense.
- ▶ There exists some $\alpha_A \in [n]^{\overline{J_A}}$, $\alpha_B \in [n]^{\overline{J_B}}$ such that $x(\overline{J_A}) = \alpha_A$, $y(\overline{J_B}) = \alpha_B$ for all $x \in X$, $y \in Y$.
- ▶ There exists some $z_r \in [n]$ such that $pt_r(f_A, f_B) = z_r$ for all $f_A \in X$, $f_B \in Y$.

In the round elimination method, it should fix pt_r in each round,

but we only fix the parity of pt_r and use the density restoring partition helps to fix pt_r .

This is why we save the $k \log n$ factor

Relating accuracy and average fixed size

Lemma. If
$$DS(\Pi)$$
 outputs $(R = X \times Y, J_A, J_B)$ then
$$\Pr_{(f_A, f_B)} [\Pi(f_A, f_B) = PC_k(f_A, f_B)] \leq \frac{2^{0.1}}{2} + \frac{2^{0.1}}{n} \cdot k \cdot \mathbf{E}[|\overline{J_A}| + |\overline{J_B}|]$$

$$\mathbf{E}[|\bar{J}_A| + |\bar{J}_B|] \ge \Omega(n/k)$$

Based on the loop invariant, the proof is similar to the analysis of simple protocols. We omitted the proof in this talk.

Average fixed size is bounded by communication: A density increment argument

▶ In the running of $DS(\Pi)$, our density function is :

$$D_{\infty}(R) := D_{\infty}(X(J_A)) + D_{\infty}(Y(J_B)).$$

$$\mathbf{D}_{\infty}(\mathbf{X}) \coloneqq |J| \log n - \mathbf{H}_{\infty}(\mathbf{X})$$

- ▶ In the beginning, $D_{\infty}([n]^n \times [n]^n) = 0$.
- In expectation (over the choice of b), each communication bit/new round (assume Alice speaks) increase $D_{\infty}(R)$ by at most 1:

$$\frac{|X^0|}{|X|}\log\frac{|X^0|}{|X|} + \frac{|X^1|}{|X|}\log\frac{|X^1|}{|X|} \le 1.$$

- ▶ In expectation (over the choice of j), $D_{\infty}(R)$ decreases by at least $0.1 \, \mathbf{E}_{j}[|I_{j}|] 1$.
 - ▶ $\mathbf{D}_{\infty}\left(X^{i}(J\setminus I_{i})\right) \leq \mathbf{D}_{\infty}(X) 0.1 \frac{|I_{i}|}{|I_{i}|} + \delta_{i} \text{ where } \delta_{i} = \log \frac{|X|}{|U_{j\geq i}X^{j}|}$.
 - ▶ $\mathbf{E}_{j}[\delta_{j}] = \sum_{j} p_{j} \delta_{j} = \sum_{j} p_{j} \log \frac{1}{\sum_{t \geq j} p_{t}} \leq \int_{0}^{1} \frac{1}{1-x} dx \leq 1$. where $p_{j} \coloneqq \frac{|X^{j}|}{|X|}$
- ▶ $D_{\infty}(R) \ge 0 \rightarrow \mathbf{E}[|\bar{J}_A| + |\bar{J}_B|] = \mathbf{E}[|I_1| + |I_2| + \dots +] \le O(C).$

Proof outline

► The decomposition and sampling process:

Use **density restoring partition** to decompose the behavior of Π into the combination of simple protocols (i.e., fixing some coordinates).

- ► Relating accuracy and average fixed size . $\mathbf{E}[|I|] \ge \Omega(n/k)$. By the analysis of simple protocols.
- ▶ Average fixed size is bounded by communication . $CC \ge E[|I|]$. By a density increment argument.

Thank you for listening ©