MATH 104: WORKSHEET 17

1. Concepts

Theorem 1.1 (Lagrange multiplier). To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k (assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k):

(1) Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

and

$$g(x, y, z) = k$$

(2) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

2. Discussion

Question 1. A rectangular box without a lid is to be made fro $12m^2$ of cardboard. Find the maximum volume of such a box.

Date: April 14, 2025.

Question 2. Find the extreme values of $f(x,y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.

Question 3. Find the extreme values of f subject to two constraints $f(x,y,z)=x+y+z,\,x^2+z^2=2$ and x+y=1.