Relation

Lecture 17-18

Cartesian product (review)

Let
$$A=\{a_1, a_2, ...a_k\}$$
 and $B=\{b_1, b_2, ...b_m\}$.

The Cartesian product A x B is defined by a set of ordered pairs

$$\{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$$

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.
- We use the notation a R b to denote (a,b) ∈ R and a R b to denote (a,b) ∈ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

Is R={(a,1),(b,2),(c,2)} a relation from A to B?

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.
- We use the notation a R b to denote (a,b) ∈ R and a R b to denote (a,b) ∈ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes.
- Is Q={(1,a),(2,b)} a relation from A to B?

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.
- We use the notation a R b to denote (a,b) ∈ R and a R b to denote (a,b) ∈ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes.
- Is Q={(1,a),(2,b)} a relation from A to B? No.
- Is P={(a,a),(b,c),(b,a)} a relation from A to A?

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.
- We use the notation a R b to denote (a,b) ∈ R and a R b to denote (a,b) ∈ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes.
- Is Q={(1,a),(2,b)} a relation from A to B? No.
- Is P={(a,a),(b,c),(b,a)} a relation from A to A? Yes

Representing Binary relation

We can graphically represent a binary relation R as follows:

• if a R b then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

• Let $A = \{0, 1, 2\}, B = \{u,v\}$ and

$$R = \{ (0,u), (0,v), (1,v), (2,u) \}$$

- Note: $R \subset A \times B$
- Graph:

	u	V
0	X	X
1		X
2	X	

Definition (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

• Assume relation $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Is R_{div} reflexive?

Definition (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

• Assume relation $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

- Is R_{div} reflexive?
- Answer: Yes. (1,1), (2,2), (3,3), and (4,4) ∈ A.

Definition (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?

Definition (reflexive relation) : A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?
- No. It is not reflexive since (1,1) ,(4,4) ∉R_{fun}.

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A(a,b) \in R \rightarrow (b,a) \in R$$

Example 1:

- R_{div} ={(a b), if a |b} on A = {1,2,3,4} R_{div} = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}
- Is R_{div} symmetric?

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$(a,b) \in R \rightarrow (b,a) \in R$$

Example 1:

- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div}^{art} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} symmetric?
- Answer: No. It is not symmetric since (1,2) ∈ R but (2,1) ∉R.

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$(a,b) \in R \to (b,a) \in R$$

Example 2:

• R_{\neq} on A={1,2,3,4}, such that a R_{\neq} b if and only if a \neq b.

$$R_{\neq}$$
={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

Is R_≠ symmetric ?

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A(a, b) \in R \rightarrow (b, a) \in R$$

Example 2:

• R_{\neq} on A={1,2,3,4}, such that a R_{\neq} b if and only if a \neq b.

$$R_{\neq}$$
={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

Is R_≠ symmetric ?

Answer: Yes.

Definition (transitive relation): A relation R on a set A is called transitive if

$$[(a,b) \in R \ and \ (b,c) \in R] \rightarrow (a,c) \in R \ \forall a,b,c \in A$$

Example 1:

- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?

Definition (transitive relation): A relation R on a set A is called transitive if

$$[(a,b) \in R \ and \ (b,c) \in R] \rightarrow (a,c) \in R \ \forall a,b,c \in A$$

Example 1:

- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

Definition (transitive relation): A relation R on a set A is called transitive if

$$[(a,b) \in R \ and \ (b,c) \in R] \rightarrow (a,c) \in R \ \forall a,b,c \in A$$

- Example 2:
- R_{\neq} on A={1,2,3,4}, such that a R \neq b if and only if a \neq b.

$$R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$$

Is R_≠ transitive ?

Definition (transitive relation): A relation R on a set A is calledtransitive if

$$[(a,b) \in R \ and \ (b,c) \in R] \rightarrow (a,c) \in R \ \forall a,b,c \in A$$

- Example 2:
- R_{\neq} on A={1,2,3,4}, such that a R \neq b if and only if a \neq b.
- • R_{\neq} ={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}
 - Is R_≠ transitive ? YES

Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B.

• Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.

Combining Relations

- Relations are sets → combinations via set operations
- Set operations of: union, intersection, difference and symmetric difference.

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$

What is:

• R1 U R2 = ?

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$

- R1 \bigcup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- R1 \cap R2 = ?

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$

- R1 \bigcup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- R1 \cap R2 = {(3,u)}
- R1 R2 = ?

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$

- R1 \bigcup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- R1 \cap R2 = {(3,u)}
- R1 R2 = (1,u),(2,u),(2,v)
- R2 R1 = ?

Example:

- Let $A = \{1,2,3\}$ and $B = \{u,v\}$ and
- R1 = $\{(1,u), (2,u), (2,v), (3,u)\}$
- R2 = $\{(1,v),(3,u),(3,v)\}$

- R1 \bigcup R2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
- R1 \cap R2 = {(3,u)}
- R1 R2 = (1,u),(2,u),(2,v)
- R2 R1 = $\{(1,v),(3,v)\}$

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where at A and $c \in C$, and for which there is a b ϵ B such that (a,b) ϵ R and (b,c) ϵ S. We denote the composite of R and S by R o S.

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- RoS = ?

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of the ordered pairs (a,c) where a ϵ A and c ϵ C, and for which there is a b ϵ B such that (a,b) ϵ R and (b,c) ϵ S. We denote the composite of R and S by R o S.

- Let $A = \{1,2,3\}$, $B = \{0,1,2\}$ and $C = \{a,b\}$.
- $R = \{(1,0), (1,2), (3,1), (3,2)\}$
- $S = \{(0,b),(1,a),(2,b)\}$
- RoS = $\{(1,b),(3,a),(3,b)\}$

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = ?$

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = \{(1,2),(2,3),(2,4),(3,3)\}$
- $R^2 = ?$

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = \{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathbb{R}^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $R^3 = ?$

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = \{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathbb{R}^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $\mathbb{R}^3 = \{(1,3), (2,3), (3,3)\}$
- $R^4 =$

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = \{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathbb{R}^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $\mathbb{R}^3 = \{(1,3), (2,3), (3,3)\}$
- $\mathbb{R}^4 = \{(1,3), (2,3), (3,3)\}$
- $R^k = ?$ when k>3

Definition: Let R be a relation on a set A. The powers Rⁿ, n = 1,2,3,... is defined inductively by

• $R^1 = R$ and $R^{n+1} = R^n O R$.

- R = $\{(1,2),(2,3),(2,4),(3,3)\}$ is a relation on A = $\{1,2,3,4\}$.
- $R^1 = \{(1,2),(2,3),(2,4),(3,3)\}$
- $\mathbb{R}^2 = \{(1,3), (1,4), (2,3), (3,3)\}$
- $\mathbb{R}^3 = \{(1,3), (2,3), (3,3)\}$
- $\mathbb{R}^4 = \{(1,3), (2,3), (3,3)\}$
- $R^k = \{(1,3), (2,3), (3,3)\}$

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

Closure of a Relation

Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on $A=\{1,2,3\}$.

- Is this relation reflexive?
- Answer: ?

Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on $A=\{1,2,3\}$.

- Is this relation reflexive?
- Answer: No (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

- How to make R reflexive with minimum number of additions?
- Answer: ?

Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on $A=\{1,2,3\}$.

- Is this relation reflexive?
- Answer: No (2,2) and (3,3) is not in R.

The question is what is the minimal relation $S \supseteq R$ that is reflexive?

- How to make R reflexive with minimum number of additions?
- Answer: ? Add (2,2) and (3,3)
- Then $S = \{(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)\}$
- $R \subset S$
- The minimal set $S \supset R$ is called the reflexive closure of R

Relations can have different properties:

- reflexive,
- symmetric
- transitive
- Because of that we define:
- reflexive,
- symmetric and
- transitive

closures.

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathfrak{Q}_{\underline{-}}(Q)$) with property P that contains R ($R \subset Q$).

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathfrak{Q}_{\underline{-}}(Q)$) with property P that contains R ($R \subset Q$).

Example (symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- S=?

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathfrak{Q}_{\underline{\mathcal{A}}}(Q)$) with property P that contains R ($R \subseteq Q$).

Example (symmetric closure):

- Assume $R=\{(1,2),(1,3),(2,2)\}$ on $A=\{1,2,3\}$.
- What is the symmetric closure S of R?
- S = $\{(1,2),(1,3),(2,2)\}$ \bigcup $\{(2,1),(3,1)\}$ = $\{(1,2),(1,3),(2,2),(2,1),(3,1)\}$

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathfrak{Q}_{\underline{-}}(Q)$) with property P that contains R ($R \subset Q$).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive?

Definition: Let R be a relation on a set A. A relation S on A with property P is called the closure of R with respect to P if S is a subset of every relation $\mathfrak{D}(Q)$) with property P that contains R ($R \subseteq Q$).

Example (transitive closure):

- Assume $R=\{(1,2), (2,2), (2,3)\}$ on $A=\{1,2,3\}$.
- Is R transitive? No.
- How to make it transitive?
- S = $\{(1,2), (2,2), (2,3)\} \cup \{(1,3)\}$ = $\{(1,2), (2,2), (2,3), (1,3)\}$
- S is the transitive closure of R

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Proof (math induction):

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Proof (math induction):

P(1): There is a path of length 1 from a to b if and only if (a,b)
∈ R¹, by the definition of R.

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Proof (math induction):

P(1): There is a path of length 1 from a to b if and only if (a,b)
 ∈ R¹, by the definition of R.

Show: $P(n) \rightarrow P(n+1)$: Assume there is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n \rightarrow$ there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$.

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Proof (math induction):

P(1): There is a path of length 1 from a to b if and only if (a,b)
 ∈ R¹, by the definition of R.

Show: $P(n) \rightarrow P(n+1)$: Assume there is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n \rightarrow$ there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$.

There is a path of length n+1 from a to b if and only if there exists an $x \in A$, such that $(a,x) \in R$ (a path of length 1) and $(x,b) \in R^n$ is a path of length n from x to b.

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Proof (math induction):

• P(1): There is a path of length 1 from a to b if and only if $(a,b) \in \mathbb{R}^1$, by the definition of R.

Show: $P(n) \rightarrow P(n+1)$: Assume there is a path of length n from a to b if and only if $(a,b) \in \mathbb{R}^n \rightarrow$ there is a path of length n+1 from a to b if and only if $(a,b) \in \mathbb{R}^{n+1}$.

There is a path of length n+1 from a to b if and only if there exists an $x \in A$, such that $(a,x) \in R$ (a path of length 1) and $(x,b) \in R^n$ is a path of length n from x to b.

 $(x,b) \in \mathbb{R}^n$ holds due to P(n). Therefore, there is a path of length n + 1 from a to b. This also implies that $(a,b) \in \mathbb{R}^{n+1}$.

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = ?$

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $R^3 = ?$

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $\mathbb{R}^3 = \{(1,4)\}$
- $\cdot R^4 = ?$

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $\mathbb{R}^3 = \{(1,4)\}$
- $\cdot R^4 = \emptyset$
- $R^* = ?$

Definition: Let R be a relation on a set A. The connectivity relation R* consists of all pairs (a,b) such that there is a path (of any length, ie. 1 or 2 or 3 or ...) between a and b in R.

$$R^* = \prod_{k=1}^{\infty} R^k$$

- $A = \{1,2,3,4\}$
- $R = \{(1,2),(1,4),(2,3),(3,4)\}$
- $R^2 = \{(1,3),(2,4)\}$
- $\mathbb{R}^3 = \{(1,4)\}$
- $\cdot R^4 = \emptyset$
- $\mathbb{R}^* = \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

Thank You