

Powering Innovation That Drives Human Advancement

Getting started with Mechanical scripting

What we are going to learn today: complete model setup automation

Python 101

Python in one slide

Easy to learn/write/read

- No variable declaration
- No variable initialization
- Indentation defines where loops/functions end

Syntax

- Case sensitive
- # 1-line comment
- """ Multi line comment """

Operators

- +,-,=,/
- Logical operators: and, or, not
- Relational operators: > , <, == , !=
- Membership: in, not in
- Identity: is, is not

Flow control

- if , if...else , elif
- while loop
- for loop

Functions

• Begin with keyword: def

```
# Function definition is here
def printinfo( name, age ):
    "This prints a passed info into this function"
    print "Name: ", name
    print "Age ", age
    return

# Now you can call printinfo function
printinfo( age=50, name="miki" );
printinfo( "Raj", 30 );
```

Data types

Numbers, strings, lists, dictionaries, tuples

```
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"];

print "list1[0]: ", list1[0]  # list1[0]: physics
print "list2[1:5]: ", list2[1:5]  # list2[1:5]: [2, 3, 4, 5]
dict0 = ('Alice': '2341', 'Beth': '9102', 'Cecil': '3258')
dict1 = ('abc': 456 );
dict2 = ('abc': 123, 98.6: 37 );

Ndict = ('Name': 'Zara', 'Age': 7, 'Class': 'First');
print "dict['Name']: ", dict['Name']: # dict['Name']: Zara print "dict['Age']: ", dict['Age']: # dict['Age']: 7
```

Learning Python

- Many resources available online (LinkedIn Learning, W3Schools, GeekforGeeks, ...)
- One training offered by Ansys on the <u>Ansys Innovation Space</u>

Using the Mechanical scripting console

Mechanical scripting console

Access Mechanical scripting console

Script editor and Shell command prompt

Recording capabilities

More advanced usage

Save script to button (Script executed when clicked on)

Execute code automatically during simulation

Understanding Mechanical automation API

Mechanical Automation API

```
# Reference model
model = ExtAPI.DataModel.Project.Model
```


Let's dive into the script: define material assignment

```
# Change material assignement for body named "Connector"
import materials
matAssignment = model.Materials.AddMaterialAssignment()
body = ExtAPI.DataModel.GetObjectsByName("Connector")[0] GetGeoBody()
tempSel = ExtAPI.SelectionManager.CreateSelectionInfo(SelectionTypeEnum.GeometryEntities)
tempSel.Ids = [body.Id]
matAssignment.Location = tempSel
matAssignment.Material = "Gray Cast Iron"
ExtAPI.DataModel.Tree.Refresh()
                                                                   ····ノ 🎎 Coordinate Systems
                                                                  ⊕ Connections
                                                                    Named Selections
                                                                      Static Structural (B5)

√ III Analysis Settings

                                                                      --√9 Fixed Support
                                                                      Pressure
                                                                    ⊡ Solution (B6)
                                                                         under Tolution Information
                                                               letails of "Gray Cast Iron Assignment"
                                                                General
                                                                Scoping Method
                                                                             Geometry Selection
                                                                Geometry
                                                                             1 Body
                                                                Definition
                                                                 Material Name
                                                                             Gray Cast Iron
                                                                Nonlinear Effects
                                                                Thermal Strain Effects
                                                                Reference Temperature
                                                                             By Environment
                                                                Suppressed
                                                                Common Material Properties
                                                                Density
                                                                             7.2e-09 tonne/mm3
                                                                Young's Modulus
                                                                             1.1e+05 MPa
                                                                             0.052 W/mm·°C
                                                                Specific Heat
                                                                             4.47e+05.1/toppe.°C
```


Let's dive into the script: define mesh settings

Let's dive into the script: define boundary conditions

Let's dive into the script: solve and postprocess

Navigating the tree and selecting objects

Navigating the Mechanical tree

- All objects that exist only once in the tree have a direct access point through ExtAPI.DataModel.Project.Model
- For objects that can exist more than once, there can be two methods :
 - Analyses are stored in a list:

```
ExtAPI.DataModel.Project.Model.Analyses[0].Name = 'My new analysis name'
```

Other objects: Children objects

```
ExtAPI.DataModel.Project.Model.Geometry.Children[1].Children[0].Name -> subpart
ExtAPI.DataModel.Project.Model.Connections.Children[0]
ns = [i for i in ExtAPI.DataModel.Project.Model.NamedSelections.Children if i.Name=="Selection"][0]
Connections.GetChildren(DataModelObjectCategory.ContactRegion, True)[0]
```


Selecting entities

Get IDs of entities currently selected in the UI:

ExtAPI.SelectionManager.CurrentSelection

Create a new selection and use it:

>>> ExtAPI.SelectionManager.CurrentSelection

```
# create a new empty selection

tempSel = ExtAPI.SelectionManager.CreateSelectionInfo(SelectionTypeEnum.GeometryEntities)

# provide list of Ids of entities to select

tempSel.Ids = [34]

# create pressure condition

pressure = ExtAPI.DataModel.Project.Model.Analyses[0].AddPressure()

# assign location

pressure.Location=tempSel
```


©2024 ANSYS, Inc.

Automate Preprocessing

Geometry and geodata

ExtAPI.DataModel.Project.Model.Geometry


```
>>> geom = ExtAPI.DataModel.Project.Model.Geometry
>>> body = geom.Children[0].Children[0]
>>> body.Name
'Connector'
>>> body.StiffnessBehavior
Flexible
>>> |
```

ExtAPI.DataModel.Geodata

Model

13/04/2021 15:37


```
>>> geodata = ExtAPI.DataModel.GeoData
>>> geobody = geodata.Assemblies[0].Parts[0].Bodies[0]
>>> geobody.Name
'Connector'
>>> geobody.Volume
0.0127583884848715
>>> geobody.Faces.Count
61
```


Connections

Create a new contact region and define its type:

```
connections = ExtAPI.DataModel.Project.Model.Connections
contact = connections.AddContactRegion()
contact.ContactType=ContactType.NoSeparation
```



```
contact.SourceLocation = ExtAPI.SelectionManager.CurrentSelection
contact.TargetLocation = ExtAPI.SelectionManager.CurrentSelection
```


Details of "No Separation - Le	ft elbow To Connector" 🕶 🔻 🗖 🗙
Scope	
Scoping Method	Geometry Selection
Contact	1 Face
Target	1 Face
Contact Bodies	Left elbow
Target Bodies	Connector
Protected	No
Definition	
Type	No Separation
Scope Mode	Manual
Behavior	Program Controlled
Trim Contact	Program Controlled
Suppressed	No
Advanced	

Mesh and mesh data

ExtAPI.DataModel.Project.Model.Mesh

ExtAPI.DataModel.Project.Model.Analyses[0].MeshData


```
>>> meshData = ExtAPI.DataModel.Project.Model.Analyses[0].MeshData
>>> meshData.ElementCount
21833
>>> meshData.NodeCount
36615
>>> meshData.Elements[0].Centroid
[-0.16265137107062, -0.208395264572271, -0.342956119942903]
>>> meshData.Elements[0].CornerNodeIds
[51, 815, 933, 604]
```


'0 [mm]

>>> sizing.ElementSize = Quantity('20 [mm]')

>>> sizing = mesh.AddSizing()

>>> tempSel.Ids = [body.Id]

>>> sizing.Location = tempSel

>>> sizing.ElementSize

Boundary conditions

etails of "ACT Force	"
Scope	
Scoping Method	Named Selection
Named Selection	NSInsideFaces
Definition	
ID (Beta)	119
Туре	Force
Define By	Components
Applied By	Surface Effect
Coordinate System	Global Coordinate System
X Component	0. N (ramped)
Y Component	-5555. N (ramped)
Z Component	0. N (ramped)
Suppressed	No

Scope	
Scoping Metho	d Named Selection
Named Selectio	n NSFixedSupportFaces
Definition	
ID (Beta)	121
Type	Fixed Support
Suppressed	No

```
FY = -5555
analysis = ExtAPI.DataModel.Project.Model.Analyses[0]
F = analysis.AddForce()
F.DefineBy = LoadDefineBy.Components
F.YComponent.Output.SetDiscreteValue(0, Quantity(FY, "N"))
F.Location = ExtAPI.DataModel.GetObjectsByName("NSInsideFaces")[0]
F.Name = "ACT Force"
G = analysis.AddFixedSupport()
G.Location = ExtAPI.DataModel.GetObjectsByName("NSFixedSupportFaces")[0]
G.Name = "ACT FIX"
```


Automate postprocessing

Inserting results

Create standard results:

Inserting results

• Create user-defined results:

- >>> UDR = solution.AddUserDefinedResult()
 >>> UDR.Expression="UX"
- >>> solution.EvaluateAllResults()

Accessing plot data

>>> UDR.PlotData				
	Node	Values		
	44426	2 24455 05		
0	11136	-2.3445E-05		
1	11137	6.6036E-06		
2	11138	4.6504E-05		
26170	11133	0.0077966		
26171	11134	0.0077826		
26172	11135	0.0081679		
>>>				

Access data from the result file

Retrieve all components of stress tensor on one element:

model=ExtAPI.DataModel.Project.Model # refer to model

reader = model.Analyses[0].GetResultsData() # get results data of first analysis in the tree

StressResults = reader.GetResult('S') # obtain stress results
StressElement1 = StressResults.GetElementValues(1) # retrieve results on element n°1

☐ Retrieve stress values in one direction:

```
>>> model=ExtAPI.DataModel.Project.Model # refer to model
>>> reader = model.Analyses[0].GetResultsData() # get results data of first analysis in the tree
>>> StressResults = reader.GetResult('S') # obtain stress results
>>> StressResults.SelectComponents(["X"]) # select direction
>>> StressXElement1=StressResults.GetElementValues(1)
>>> StressXElement1
[-0.292112916707993, 27.8284664154053, -19.3488845825195, 49.6434173583984]
```


More more advanced and efficient postprocessing

Consider using DPF (Data Processing Framework)

MAPDL

Useful resources

Training material

On the Ansys Learning Hub

Ansys Mechanical Scripting

- I want to access the Mechanical API to create my own buttons on the Mechanical user interface, how can I do that?
- Is there a way to modify the solver settings via the Mechanical console?
- How can I create new loads and results objects using the Mechanical API scripting?
- · Can I explore the mesh and the geometry programmatically?
- I want to create automatically a Mechanical model from the preprocessing until the postprocessing stages, how can I do that?

Download complete course, Watch previous recordings, Enroll in an upcoming class

Documentation

• In the **Ansys Help**

Mechanical Application Release Notes

Mechanical User's Guide (PDF ★)

Mechanical Acoustic Analysis Guide (PDF ★)

Structural Optimization in Mechanical (PDF ★)

Explicit Dynamics Analysis Guide (PDF ★)

Scripting in Mechanical Guide (PDF ★)

Mechanical Object Reference (PDF ★)

What's New in Mechanical

Mechanical Add-ons Guide (PDF ★)

BETA: Mechanical Beta Features (PDF ★)

Scripting Quick Start
 Mechanical APIs
 Scripting Examples

Ansys Developer Portal

https://developer.ansys.com

Ansys Developer Forum

https://discuss.ansys.com/

Automation cheat slides

Yes, we'll share this slide deck

Automation challenge

Automation challenge: Tensile pull test on cylinder

Challenge: The model must be entirely set up, run and post processed without using Mechanical's GUI. Only the scripting console may be used

To get started import a cylinder shape into Mechanical

Using the console:

- Apply a pull force of 1N on one of the cylinder face
- Apply a fixed support to the opposite face
- Solve the model
- Extract the maximum displacement in the pull test direction
- From this result calculate the young's modulus and compare it with the material's young's modulus

Reminder

Young's Modulus
$$=\frac{\sigma}{\varepsilon}$$
; $\sigma=\frac{F}{A}$; $\varepsilon=\frac{\Delta L}{L}$

Ansys

Ansys

