PROBLEMAS DE PROCESOS ESTOCÁSTICOS I POSGRADO EN CIENCIAS MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO TAREA 6

ANTONIO SORIANO FLORES

Problema 1. Un proceso estocástico $B = (B_t, t \ge 0)$ es un movimiento browniano en ley si y sólo si es un proceso gaussiano centrado y $\mathbb{E}(B_s B_t) = s \wedge t$.

Proof. \Rightarrow :) Supongamos que $B=(B_t,t\geq 0)$ es un movimiento browniano en ley por demostrar que $(B_t,t\geq 0)$ es un proceso gaussiano centrado y que ademas $\mathbb{E}(B_sB_t)=s\wedge t$.

Primero, para demostrar que $(B_t, t \ge 0)$ es un proceso gaussiano tenemos que ver que el vector $(B_{t_1}, B_{t_2}, \dots, B_{t_n})$ donde $(t_1 < t_2, \dots, < t_n)$ es un vector gaussiano lo que equivale a probar que cualquier combinación lineal sigue una distribución normal. Pero dado que cualquier combinación lineal la podemos escribir como:

$$\sum_{i=1}^{n} \lambda_i B_{t_i} = \sum_{i=1}^{n} \alpha_i \left(B_{t_i} - B_{t_{i-1}} \right) \sim Normal$$

Notemos que esto último es cierto debido a que por hipótesis $(B_t, t \geq 0)$ es un movimiento browniano en ley y por tanto $(B_{t_i} - B_{t_{i-1}})$ son Normales independientes (definiendo $B_{t_0} = 0$) y como combinación lineal finita de Normales independientes es Normal se sigue que $(B_{t_1}, B_{t_2}, \ldots, B_{t_n})$ es un vector gaussiano que además es centrado porque cada B_{t_i} tiene esperanza igual a cero, lo que demuestra que $(B_t, t \geq 0)$ es un proceso gaussiano centrado

Finalmente para probar que $\mathbb{E}(B_s B_t) = s \wedge t$ lo haremos por casos:

• Supongamos s = t, entonces:

$$\mathbb{E}(B_s B_t) = \mathbb{E}(B_s^2) = \operatorname{Var}(B_s^2) = s = t = s \wedge t$$

• Supongamos s < t, entonces

$$\mathbb{E}(B_s B_t) = \mathbb{E}(B_s B_t - B_s^2 + B_s^2) = \mathbb{E}(B_s (B_t - B_s) + B_s^2) = \mathbb{E}(B_s (B_t - B_s)) + s$$

$$= \mathbb{E}((B_s - B_0)(B_t - B_s)) + s = \mathbb{E}(B_s - B_0) \mathbb{E}(B_t - B_s) + s = s = s \wedge t$$

• De forma muy similar a lo anterior, ahora supongamos t < s, entonces:

$$\mathbb{E}(B_s B_t) = \mathbb{E}(B_s B_t - B_t^2 + B_t^2) = \mathbb{E}(B_t (B_s - B_t) + B_t^2) = \mathbb{E}(B_t (B_s - B_t)) + t$$

$$= \mathbb{E}((B_t - B_0)(B_s - B_t)) + t = \mathbb{E}(B_t - B_0) \mathbb{E}(B_s - B_t) + t = t = s \wedge t$$

En todos los casos se tiene que $\mathbb{E}(B_sB_t)=s\wedge t$ lo que termina la primer parte de la prueba.

- \Leftarrow :) Ahora supongamos que $(B_t, t \ge 0)$ es un proceso gaussiano centrado tal que $\mathbb{E}(B_s B_t) = s \land t$, por demostrar que $B = (B_t, t \ge 0)$ es un movimiento browniano en ley. Tenemos entonces que probar las siguientes propiedades:
 - $B_0 = 0$. Esto es consecuencia del hecho de que $\mathbb{E}(B_0^2) = \mathbb{E}(B_0 B_0) = 0 \land 0 = 0$, esto implica directamente que B_0 es una variable degenerada que toma el valor cero pues se tiene que $\mathbb{E}(B_0) = 0$ y $\text{Var}(B_0) = 0$.
 - B tiene incrementos independientes. Sea $0 \le t_1 < t_2, \ldots, < t_n$ queremos demostrar que $(B_{t_i} B_{t_{i-1}})$ son variables aleatorias independientes. Primero, como B es un proceso gaussiano tenemos que el vector $(B_{t_1}, B_{t_2}, \ldots, B_{t_n})$ es un vector gaussiano centrado y por lo tanto B_{t_i} son v.a. gaussians de donde se sigue que el vector $(B_{t_1} B_0, B_{t_2} B_{t_1}, \ldots, B_{t_n} B_{t_{n-1}})$ es también un vector gaussiano ya que nuevamente al hacer el producto punto y expresarlo como combinación lineal de las B_{t_i} 's:

$$\sum_{i=1}^{n} \lambda_i \left(B_{t_i} - B_{t_{i-1}} \right) = \sum_{i=1}^{n} \alpha_i B_{t_i} \sim Normal$$

Obtenemos entonces una combinación lineal de las B_{t_i} 's que por hipótesis es Normal pues (B_t) es un proceso Gaussiano, por lo anterior para verificar la independencia solo tenemos que probar que la correlación entre las entradas de este vector son cero. En efecto, tomemos la entrada i y la entrada j ($i \neq j$) de este vector y verifiquemos su correlación (Recordemos que tenemos un vector gaussiano centrado y por tanto el calculo de la correlación se reduce a calcular la esperanza del producto de las variables aleatorias), sin pérdida de generalidad supondremos que i < j:

$$\mathbb{E}(\left(B_{t_i} - B_{t_{i-1}}\right)(B_{t_j} - B_{t_{j-1}})) = \mathbb{E}\left(B_{t_i}B_{t_j} - B_{t_i}B_{t_{j-1}} - B_{t_{i-1}}B_{t_j} + B_{t_{i-1}}B_{t_{j-1}}\right)$$

$$= \mathbb{E}\left(B_{t_i}B_{t_j}\right) - \mathbb{E}\left(B_{t_i}B_{t_{j-1}}\right) - \mathbb{E}\left(B_{t_{i-1}}B_{t_j}\right) + \mathbb{E}\left(B_{t_{i-1}}B_{t_{j-1}}\right) = t_i - t_i - (t_{i-1}) + (t_{i-1}) = 0$$
Por lo tanto se concluye que $(B_{t_i} - B_{t_{i-1}})$ son variables aleatorias normales e independientes por tener correlación cero.

• $B_t \sim Normal(0, t)$. En efecto, pues tenemos por hipótesis que B_t es v.a. normal centrada por lo tanto $\mathbb{E}(B_t) = 0$ luego como por hipótesis $\mathbb{E}(B_s B_t) = s \wedge t$ entonces $Var(B_t) = \mathbb{E}(B_t^2) = \mathbb{E}(B_t B_t) = t$ por lo tanto $B_t \sim Normal(0, t)$.

• B tiene incrementos estacionarios. Tenemos que probar que $B_{t+s} - B_t \stackrel{d}{=} B_s$. Ya sabemos por el inciso anterior que $B_t \sim N(0,t)$, por otro lado notemos que $B_{t+s} - B_t$ al ser combinación de de un proceso Gaussiano se concluye que $B_{t+s} - B_t$ es normal, solo calculemos sus parámetros para verificar la igualdad en distribución:

$$\mathbb{E}(B_{t+s} - B_t) = \mathbb{E}(B_{t+s}) - \mathbb{E}(B_t) = 0$$

$$\operatorname{Var}(B_{t+s} - B_t) = \mathbb{E}((B_{t+s} - B_t)^2) = \mathbb{E}(B_{t+s}^2) - 2\mathbb{E}(B_{t+s}B_t) + \mathbb{E}(B_t^2)$$

$$= (t+s) - 2t \wedge (t+s) + t = t+s - 2t + t = s$$

Por lo tanto concluimos que $B_{t+s} - B_t \sim N(0, s)$. Por otro lado por el inciso anterior sabemos que $B_s \sim N(0, s)$ por lo tanto tenemos que:

$$B_{t+s} - B_t \stackrel{d}{=} B_s$$

De donde concluimos que el proceso tiene incrementos estacionarios.

Finalmente por los puntos anteriores se concluye que $B=(B_t,t\geq 0)$ es un movimiento browniano en ley.

Problema 2. El objetivo de este problema es construir, a partir de movimientos brownianos en [0,1], al movimiento browniano en $[0,\infty)$.

(1) Pruebe que existe un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ en el que existe una sucesión B^1, B^2, \ldots de movimientos brownianos en [0, 1] independientes. (Sugerencia: utilice la construcción del movimiento browniano de Lévy para que la solución sea corta.)

Proof. En la construcción de del movimiento browniano de Lévy utilizamos el espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ donde estuvieran definidas las variables aleatorias:

$$\xi_{i,n}$$
 $0 \le i \le 2^n$ $n \ge 1$

Tal que estas variables fueran distribuidas de forma Normal de parámetros (0,1) y que fueran independientes. Dicho espacio sabemos que existe por lo visto en el capitulo 2 de las notas donde se construyó la sucesión de variables aleatorias independientes a partir de una sucesión de variables aleatorias Bernulli, luego se extendió este resultado a variables uniformes(0,1) para que finalmente y ,a partir de la función de cuántiles, se obtuviera una sucesión de variables con distribución arbitrarias e independientes.

Para generalizar este resultado, ahora consideremos el espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$ donde estén definidas las variables aleatorias:

$$\xi_{i,n}^m$$
 $0 \le i \le 2^n$ $n \ge 1$ $m \ge 1$

De tal forma que todas tengan distribución Normal Estándar con media 0 y varianza 1 y que sean independientes. Luego entonces para cada $m \in \mathbb{N}$ podemos construir el proceso browniano B^m en [0,1], es decir con esto estaremos construyendo una infinidad numerable de movimientos Brownianos que serán independientes por la forma en que se construyeron a partir de las variables $\xi^m_{i,n}$ que sabemos, por como se tomaron, que son independientes.

(2) Defina a $B_t = B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}$ para $t \geq 0$. Pruebe que B es un movimiento browniano.

Proof. Para probar que B_t es un movimiento browniano necesitamos verificar las siguientes propiedades.

- (a) $B_0 = 0$. En efecto pues por definición y construcción de B^1 obtenemos que: $B_0 = B_0^1 = 0$
- (b) $B_t \sim N(0,t)$. En efecto, como $B_t = B_1^1 + \cdots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}$ entonces notemos que al ser B^m movimientos brownianos independientes, entonces se sigue que B_t es una combinación lineal de normales independientes y por tanto B_t es normal. Veamos los parámetros:

$$\mathbb{E}(B_t) = \mathbb{E}\left(B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}\right) = 0$$

Lo anterior es valido porque cada B^m es movimiento browniano y por tanto tienen media 0. Por otro lado para obtener la varianza del proceso al tiempo t se tiene que por la independencia de B^m :

$$\operatorname{Var}(B_t) = \operatorname{Var}\left(B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}\right) = \sum_{i=1}^{\lfloor t \rfloor} \operatorname{Var}\left(B_1^i\right) + \operatorname{Var}\left(B_{t-\lfloor t \rfloor}^{\lceil t \rceil}\right)$$

Luego como cada $B_1^i \sim N(0,1)$ y como $B_{t-\lfloor t \rfloor}^{\lceil t \rceil} \sim N(0,t-\lfloor t \rfloor)$. Se sigue entonces que:

$$Var(B_t) = |t| + t - |t| = t$$

De donde concluimos que en efecto B_t tiene distribución Normal de parámetros (0,t).

Con estos dos puntos hemos demostrado que el proceso B_t es centrado, para verificar que B_t es proceso Gaussiano tenemos que verificar que para cualquier combinación lineal de B_t tiene una distribución normal:

$$\sum_{i=1}^{n} \lambda_i B_{t_i} \sim Normal$$

Sin embargo notemos que esto último es cierto por el hecho de que cada B_{t_i} es combinacin lineal de movimientos brownianos en [0,1] que por construcción

son independientes y con distrubución Gaussiana. Aquí solo hay que tener cuidado cuando indices $(t_{i_k})_{k=1}^{n_1}$ estén contenidos en un mismo intervalo de la forma [m,m+1] para algún $m\in\mathbb{N}$, en cuyo caso sólo tenemos que recordar que $(B^m_{t-\lfloor t_1\rfloor},B^m_{t-\lfloor t_2\rfloor},\ldots,B^m_{t-\lfloor t_{n_1}\rfloor})$ Es un vector gaussiano pues B^m es un movimiento browniano en [0,1] que además es independiente de los movimientos brownianos $(B^n)_{n\neq m}$

Con todo lo anterior hemos probado que (B_t) es un proceso Gaussiano centrado, ahora probaremos que además se cumple la propiedad de que $\mathbb{E}(B_tB_s)=s\wedge t$. La prueba de esto último se obtendrá por casos, si s=t entonces, $\mathbb{E}(B_tB_s)=\mathbb{E}(B_t^2)=t=t\wedge s$ por lo tanto se cumple la propiedad, ahora sin perdida de generalidad supongamos que t< s.

• Caso 1: Supongamos que $\lfloor t \rfloor \leq t < s \leq \lceil t \rceil.$ En este caso tenemos que:

$$B_t = B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}$$

$$B_s = B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{s-\lfloor t \rfloor}^{\lceil t \rceil}$$

Entonces al multiplicar B_tB_s y recordando que los procesos B^m son independientes tenemos que:

$$\mathbb{E}(B_t B_s) = \mathbb{E}\left((B_1^1)^2\right) + \dots + \mathbb{E}\left((B_1^{\lfloor t \rfloor})^2\right) + \mathbb{E}\left(B_{t-\lfloor t \rfloor}^{\lceil t \rceil} B_{s-\lfloor t \rfloor}^{\lceil t \rceil}\right)$$

Luego como cada $B_1^i \sim N(0,1)$ y como $B^{\lceil t \rceil}$ es un movimiento browniano en [0,1] se tiene que $\mathbb{E}\left(B_{t-\lfloor t \rfloor}^{\lceil t \rceil}B_{s-\lfloor t \rfloor}^{\lceil t \rceil}\right) = t-\lfloor t \rfloor \wedge s-\lfloor t \rfloor = t-\lfloor t \rfloor$. Por lo tanto:

$$\mathbb{E}(B_t B_s) = \sum_{i=1}^{\lfloor t \rfloor} \mathbb{E}((B_1^i)^2) + t - \lfloor t \rfloor = \lfloor t \rfloor + t - \lfloor t \rfloor = t = t \wedge s$$

• Caso 2: Supongamos que $\lfloor t \rfloor \leq t \leq \lceil t \rceil < s$. En este caso tenemos que:

$$B_t = B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_{t-\lfloor t \rfloor}^{\lceil t \rceil}$$

$$B_s = B_1^1 + \dots + B_1^{\lfloor t \rfloor} + B_1^{\lceil t \rceil} + B_1^{\lceil t \rceil + 1} + \dots + B_1^{\lfloor s \rfloor} + B_{s-\lfloor s \rfloor}^{\lceil s \rceil}$$

Entonces al multiplicar B_tB_s y recordando que los procesos B^m son independientes tenemos que:

$$\mathbb{E}(B_t B_s) = \mathbb{E}\left((B_1^1)^2\right) + \dots + \mathbb{E}\left((B_1^{\lfloor t \rfloor})^2\right) + \mathbb{E}\left(B_{t-\lfloor t \rfloor}^{\lceil t \rceil} B_1^{\lceil t \rceil}\right)$$

Luego como cada $B_1^i \sim N(0,1)$ y como $B^{\lceil t \rceil}$ es un movimiento browniano en [0,1] se tiene que $\mathbb{E}\left(B_{t-\lfloor t \rfloor}^{\lceil t \rceil}B_1^{\lceil t \rceil}\right) = t-\lfloor t \rfloor \wedge 1 = t-\lfloor t \rfloor$. Por lo tanto:

$$\mathbb{E}(B_t B_s) = \sum_{i=1}^{\lfloor t \rfloor} \mathbb{E}((B_1^i)^2) + t - \lfloor t \rfloor = \lfloor t \rfloor + t - \lfloor t \rfloor = t = t \wedge s$$

Los puntos anteriores prueban que entonces $\mathbb{E}(B_tB_s)=t \wedge s$. Luego recapitulando tenemos que el proceso definido $(B_t,t\geq 0)$ es un proceso gaussiano centrado que además cumple con la propiedad de que $\mathbb{E}(B_tB_s)=t \wedge s$, por lo que usando el problema 1 de la tarea 6 concluimos que $(B_t,t\geq 0)$ es un movimiento browniano en ley, por lo que solo faltaría probar que tiene trayectorias continuas, sin embargo la continuidad de las trayectorias del proceso $(B_t,t\geq 0)$ se obtiene por construcción el proceso, ya que recordemos que cada B^m es continuo en [0,1] y que ademas $B_0^m=0$ para a toda $m\in\mathbb{N}$

Problema 3. Pruebe que si \tilde{X} es una modificación de X entonces ambos procesos tienen las mismas distribuciones finito-dimensionales. Concluya que si B es un movimiento browniano en ley y \tilde{B} es una modificación de B con trayectorias continuas entonces \tilde{B} es un movimiento browniano.

Proof. Como \tilde{X} es una modificación de X entonces sabemos que $\mathbb{P}(X_t = \tilde{X}_t) = 1$ para toda $t \geq 0$. Queremos probar que ambos procesos tienen las mismas distribuciones finito-dimensionales, es decir tenemos que probar que para $0 \leq t_1, < t_2, \ldots, < t_n$ se tiene que:

$$(X_{t_1}, X_{t_2}, \dots, X_{t_n}) \stackrel{d}{=} \left(\tilde{X}_{t_1}, \tilde{X}_{t_2}, \dots, \tilde{X}_{t_n} \right)$$

Verificamos entonces la igualdad de distribuciones, para ello definamos al evento A_n como:

$$A_n := \left\{ X_{t_1} = \tilde{X}_{t_1}, X_{t_2} = \tilde{X}_{t_2}, \dots, X_{t_n} = \tilde{X}_{t_n} \right\}$$

Por la condición de que \tilde{X} es una modificación de X se tiene que $P(A_n)=1$ para toda n. En efecto, para verificar esto utilizarémos inducción sobre n:

- Para n=1 se tiene la igualdad por definición pues $P(X_{t_1}=\tilde{X}_{t_1})=1$
- Supongamos valido que $\mathbb{P}(A_n)=1$ por demostrar que $\mathbb{P}(A_{n+1})=1$. Como:

$$\begin{split} \mathbb{P}(A_{n+1}) &= \mathbb{P}\left(\left\{X_{t_1} = \tilde{X}_{t_1}, X_{t_2} = \tilde{X}_{t_2}, \dots, X_{t_n} = \tilde{X}_{t_n}\right\}, \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) \\ &= \mathbb{P}\left(\left\{A_n\right\} \cap \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) \end{split}$$

Pero notemos que por hipótesis de inducción $\mathbb{P}(A_n) = 1$ y como \tilde{X} es una modificación de X se tiene ademas que: $\mathbb{P}(X_{t_{n+1}} = \tilde{X}_{t_{n+1}}) = 1$, se sigue entonces que la intesección de estos eventos tiene probabilidad 1, pues:

$$1 = \mathbb{P}(A_n) \le \mathbb{P}\left(\left\{A_n\right\} \cup \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) \le 1$$

Entonces $\mathbb{P}\left(\left\{A_n\right\} \cup \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) = 1$ pero como:

$$\mathbb{P}\left(\left\{A_{n}\right\} \cup \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) = \mathbb{P}(A_{n}) + \mathbb{P}\left(\left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right) - \mathbb{P}\left(\left\{A_{n}\right\} \cap \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right)$$

Se sigue entonces que:

$$1 = 1 + 1 - \mathbb{P}\left(\{A_n\} \cap \left\{X_{t_{n+1}} = \tilde{X}_{t_{n+1}}\right\}\right)$$

De donde se concluye que en efecto $\mathbb{P}(A_{n+1}) = 1$, lo que termina la prueba por inducción.

Por otro lado, continuando con la prueba para mostrar la igualdad en distribución:

$$\mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n) = \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n, \{A_n \cup A_n^c\})$$

$$= \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n, A_n) + \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n, A_n^c)$$

Pero notemos que: $\mathbb{P}(X_{t_1} \leq x_1, X_{t_2} \leq x_2, \dots, X_{t_n} \leq x_n, A^c) = 0$ ya que como vimos $\mathbb{P}(A_n) = 1$ entonces $\mathbb{P}(A_n^c) = 0$, por lo tanto de la ecuación (1) tenemos que:

$$\mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n) = \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n, A_n)$$
$$= \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n | A_n) \mathbb{P}(A_n)$$

Luego, como $\mathbb{P}(A_n) = 1$ tenemos entonces que:

$$\mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n) = \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n | A_n)
= \mathbb{P}(X_{t_1} \le x_1, X_{t_2} \le x_2, \dots, X_{t_n} \le x_n | X_{t_1} = \tilde{X}_{t_1}, X_{t_2} = \tilde{X}_{t_2}, \dots, X_{t_n} = \tilde{X}_{t_n})
= \mathbb{P}(\tilde{X}_{t_1} \le x_1, \tilde{X}_{t_2} \le x_2, \dots, \tilde{X}_{t_n} \le x_n)$$

Lo que muestra que en efecto:

$$(X_{t_1}, X_{t_2}, \dots, X_{t_n}) \stackrel{d}{=} \left(\tilde{X}_{t_1}, \tilde{X}_{t_2}, \dots, \tilde{X}_{t_n}\right)$$

Por lo tanto ambos procesos tienen las mismas distribuciones finito-dimensionales. Ahora con este resultado podemos afirmar que si B es un movimiento browniano en ley y \tilde{B} es una modificación de B con trayectorias continuas entonces \tilde{B} es un movimiento browniano. En efecto, al ser \tilde{B} es una modificación de B tenemos que ambos procesos tienen las mismas distribuciones finito-dimensionales y por tanto \tilde{B} será un proceso gaussiano centrado ademas se cumple que $\mathbb{E}\left(\tilde{B}_t\tilde{B}_s\right) = \mathbb{E}(B_tB_s) = t \wedge s$ y por lo tanto usando el problema 1 de esta tarea se afirmara que \tilde{B} es un movimiento browniano en ley, pero como además \tilde{B} tiene trayectorias continuas entonces se afirma que \tilde{B} es un movimiento browniano.

Problema 4. Sea

$$M_t^{\lambda} = e^{\lambda B_t - \lambda^2 t/2}.$$

(1) Explique y pruebe formalmente por qué, para toda $n \geq 1$, $\partial^n M_t^{\lambda}/\partial \lambda^n$ es una martingala.

Proof. Primero notemos que M_t^{λ} es martingala. En efecto, primero porque M_t^{λ} es adaptado debido a que suponemos se está utilizando la filtración canónica además dado que:

$$M_t^{\lambda} = e^{\lambda B_t - \lambda^2 t/2} \le e^{\lambda B_t}$$

Entonces:

$$\mathbb{E}(|M_t^{\lambda}|) = \mathbb{E}(M_t^{\lambda}) \le \mathbb{E}(e^{\lambda B_t}) = e^{\frac{t\lambda^2}{2}}$$

La última igualdad se debe a que estámos calculando la generadora de momentos para B_t que sabemos sigue una distribución Normal(0,t). Lo anterior concluye entonces que M_t^{λ} es integrable finalmente para probar la propiedad de martingala para M_t^{λ} sea s < t, entonces:

$$\begin{split} \mathbb{E}\left(M_t^{\lambda} \mid \mathscr{F}_s\right) &= \mathbb{E}\left(e^{\lambda B_t - \lambda^2 t/2} \mid \mathscr{F}_s\right) = e^{-\lambda^2 t/2} \mathbb{E}\left(e^{\lambda B_t} \mid \mathscr{F}_s\right) \\ &= e^{-\lambda^2 t/2} \mathbb{E}\left(e^{\lambda (B_t - B_s + B_s)} \mid \mathscr{F}_s\right) = e^{-\lambda^2 t/2 + \lambda B_s} \mathbb{E}\left(e^{\lambda (B_{t-s})}\right) \\ &= e^{-\lambda^2 t/2 + \lambda B_s} e^{(t-s)\lambda^2/2} = e^{\lambda B_s - s\lambda^2/2} = M_s^{\lambda} \end{split}$$

Lo que implica entonces que M_t^{λ} así definida es una \mathscr{F}_t -martingala. Ahora veamos que las derivadas respecto a λ son también martingalas. Para la demostración ocupáremos el siguiente teorema que nos permite intercambiar límite con esperanza condicional:

Theorem 1. $Sea(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad $y \ f : \Omega \times [a,b] \to \mathbb{R}$ una función tal que para toda $\lambda \in [a,b]$ la función $\omega \to f(\omega,\lambda)$ es medible e integrable y que además para cada $\omega \in \Omega$ la función $\lambda \to f(\omega,\lambda)$ es derivable. Suponga que existe una función $g : \Omega \to \mathbb{R}$ integrable tal que domina a la derivada para todo $\omega \in \Omega$ es decir:

$$\left| \frac{\partial}{\partial \lambda} f(\omega, \lambda) \right| \le g(\omega) \quad \forall \omega$$

Entonces:

$$\mathbb{E}\bigg(\frac{\partial}{\partial\lambda}f(\omega,\lambda)\ \bigg| \mathcal{G}\bigg) = \frac{\partial}{\partial\lambda}\mathbb{E}(f(\omega,\lambda)\ | \mathcal{G})$$

Proof. La demostración se basa en utlizar el T.C.D. Primero fijamos $\lambda \in [a, b]$ y definimos en $(\Omega, \mathscr{F}, \mathbb{P})$ la función:

$$X_n = n\left(f\left(\omega, \lambda + \frac{1}{n}\right) - f\left(\omega, \lambda\right)\right)$$

Como por hipótesis la función $\lambda \to f(\omega, \lambda)$ es derivable se sigue que $X_n \to X$ donde $X = \frac{\partial}{\partial \lambda} f(\omega, \lambda)$. Luego tenemos como:

$$|X_n| = n \left| f\left(\omega, \lambda + \frac{1}{n}\right) - f\left(\omega, \lambda\right) \right| = n \left| \int_{\lambda}^{\lambda + \frac{1}{n}} \frac{\partial}{\partial u} f(\omega, u) du \right|$$

$$\leq n \int_{\lambda}^{\lambda + \frac{1}{n}} \left| \frac{\partial}{\partial u} f(\omega, u) \right| du \leq n \int_{\lambda}^{\lambda + \frac{1}{n}} g(\omega) du = g(\omega) n \left(\lambda + \frac{1}{n} - \lambda\right) = g(\omega)$$

Luego entonces tendríamos que:

$$|X_n| \le g \in L_1$$

Por lo tanto la sucesión es dominada por una función integrable por lo que usando el T.C.D. se tiene que:

$$\mathbb{E}\left(\frac{\partial}{\partial \lambda}f(\omega,\lambda) \mid \mathscr{G}\right) = \mathbb{E}\left(\lim_{n \to \infty} X_n \mid \mathscr{G}\right) = \lim_{n \to \infty} \mathbb{E}(X_n \mid \mathscr{G})$$

Pero

$$\lim_{n \to \infty} \mathbb{E}(X_n \mid \mathscr{G}) = \lim_{n \to \infty} \mathbb{E}\left(n\left(f(\omega, \lambda + \frac{1}{n}) - f(\omega, \lambda)\right) \mid \mathscr{G}\right)$$
$$= \lim_{n \to \infty} n\left(\mathbb{E}\left(f(\omega, \lambda + \frac{1}{n}) \mid \mathscr{G}\right) - \mathbb{E}(f(\omega, \lambda) \mid \mathscr{G})\right) = \frac{\partial}{\partial \lambda} \mathbb{E}(f(\omega, \lambda) \mid \mathscr{G})$$

De donde concluimos que en efecto, se puede intercambiar la derivada con la esperanza condicional.

$$\mathbb{E}\bigg(\frac{\partial}{\partial\lambda}f(\omega,\lambda)\ \bigg|\ \mathcal{G}\bigg) = \frac{\partial}{\partial\lambda}\mathbb{E}(f(\omega,\lambda)\ |\ \mathcal{G})$$

Con este teorema procedemos a mostrar que para toda $n \geq 1$, $\partial^n M_t^{\lambda}/\partial \lambda^n$ es una martingala. La demostración se hará por inducción sobre n.

• Caso n=1. Es claro que $\partial M_t^{\lambda}/\partial \lambda$ es \mathscr{F}_t -medible pues la derivada es un limite de funciónes que son \mathscr{F}_t -medibles. Por otro lado para mostrar que $\partial M_t^{\lambda}/\partial \lambda$ es integrable notamos que:

$$\left| \partial M_t^{\lambda} / \partial \lambda \right| = e^{\lambda B_t - \lambda^2 t / 2} \left| (B_t - \lambda t) \right| \le e^{\lambda B_t - \lambda^2 t / 2} \left| B_t \right| + e^{\lambda B_t - \lambda^2 t / 2} \left| \lambda t \right|$$

$$< e^{\lambda B_t} \left| B_t \right| + e^{\lambda B_t} \left| \lambda t \right|$$

Como ya vimos $\mathbb{E}(e^{\lambda B_t} | \lambda t|) = |\lambda t| \mathbb{E}(e^{\lambda B_t}) = |\lambda t| e^{t\lambda^2/2} \le \infty$ Por otro lado verificaremos que $e^{\lambda B_t} | B_t|$ es integrable, pues:

$$\mathbb{E}\left(e^{\lambda B_t} |B_t|\right) = \int_{-\infty}^{\infty} |u| e^{\lambda u} \frac{1}{\sqrt{2\pi t}} e^{-\frac{u^2}{2t}} du$$

$$=e^{t\lambda^2/2}\int_{-\infty}^{\infty}|u|\,\frac{1}{\sqrt{2\pi t}}e^{-\frac{(u-t\lambda)^2}{2t}}du$$

La última integral sabemos que es finita pues se trata de $\mathbb{E}(|U|)$ donde $U \sim Normal(\lambda t, t)$. Luego de este resultado concluimos 2 cosas, primero que $|\partial M_t^{\lambda}/\partial \lambda|$ esta dominada por $e^{\lambda B_t} |B_t| + e^{\lambda B_t} |\lambda t| \in L_1$ y segundo, que la primer derivada de M_t^{λ} esta en L_1 .

Finalmente para terminar con la demostración del caso n=1 necesitamos verificar que se cumple la propiedad martingala, sea entonces s < t, entonces, dado que ya vimos que $\partial M_t^{\lambda}/\partial \lambda$ es dominada entonces podemos llevar a cabo el intercambio de esperanza con derivada:

$$\mathbb{E}\bigg(\left.\frac{\partial}{\partial\lambda}M_t^\lambda\ \bigg|\ \mathscr{F}_s\bigg)=\frac{\partial}{\partial\lambda}\mathbb{E}\big(M_t^\lambda\ \big|\ \mathscr{F}_s\big)=\frac{\partial}{\partial\lambda}M_s^\lambda$$

Lo que concluye que en efecto $\frac{\partial}{\partial \lambda} M_t^{\lambda}$ es martingala

• Supongamos que $\frac{\partial^n}{\partial \lambda^n} M_t^{\lambda}$ es martingala, por demostrar que $\frac{\partial^{n+1}}{\partial \lambda^{n+1}} M_t^{\lambda}$. Dada la hipotesis de inducción tenemos entonces que:

$$\begin{split} \mathbb{E}\bigg(\frac{\partial^{n+1}}{\partial \lambda^{n+1}}M_t^{\lambda} \ \bigg| \mathscr{F}_s \bigg) &= \mathbb{E}\bigg(\frac{\partial}{\partial \lambda}\frac{\partial^n}{\partial \lambda^n}M_t^{\lambda} \ \bigg| \mathscr{F}_s \bigg) =^* \frac{\partial}{\partial \lambda}\mathbb{E}\bigg(\frac{\partial^n}{\partial \lambda^n}M_t^{\lambda} \ \bigg| \mathscr{F}_s \bigg) \\ & \frac{\partial}{\partial \lambda}\frac{\partial^n}{\partial \lambda^n}M_s^{\lambda} = \frac{\partial^{n+1}}{\partial \lambda^{n+1}}M_s^{\lambda} \end{split}$$

Lo que demostraría que $\frac{\partial^{n+1}}{\partial \lambda^{n+1}} M_t^{\lambda}$ tiene la propiedad de martingala (*) Faltaria probar que $\frac{\partial^n}{\partial \lambda^n} M_t^{\lambda}$ es dominada por una función integrable

- para poder sacar el operador derivada de la esperanza condicional
- (2) Sea $H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$. A H_n se le conoce como enésimo polinomio de Hermite. Calcúlelo para $n \leq 5$. Pruebe que H_n es un polinomio para toda $n \in \mathbb{N}$ y que $\partial^n M_t^{\lambda}/\partial \lambda^n = t^{n/2} H_n(B_t/\sqrt{t}) M_t^{\lambda}$.

Proof. Los primeros 6 polinomios de Hermite son:

$$H_0(x) = 1$$

$$H_1(x) = x$$

$$H_2(x) = x^2 - 1$$

$$H_3(x) = x^3 - 3x$$

$$H_4(x) = x^4 - 6x^2 + 3$$

$$H_5 = x^5 - 10x^3 + 15x$$

Ahora probaremos que H_n es polinomio de grado n para toda n. La prueba será por inducción sobre n

- Caso n=1 ya sabemos que $H_1(x)=x$ y por tanto es polinomio de grado 1
- Supongamos ahora que H_n es polinomio de grado n por demostrar que H_{n+1} es un polinomio. Por hipótesis de inducción tenemos que:

$$(-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2} = H_n(x) = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)$$

Entonces:

$$\frac{d^n}{dx^n}e^{-x^2/2} = (-1)^n e^{-x^2/2}(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)$$

Derivando la expresión anterior obtenemos:

$$\frac{d^{n+1}}{dx^{n+1}}e^{-x^2/2} = (-1)^n e^{-x^2/2} (a_n n x^{n-1} + a_{n-1}(n-1)x^{n-2} + \dots + a_1)$$
$$+ (-1)^n (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)e^{-x^2/2} (-1x)$$

$$n+1$$
 $2/9$

Por lo tanto, factorizando $(-1)^{n+1} e^{-x^2/2}$:

$$H_{n+1}(x) = (-1)^n e^{x^2/2} \frac{d^{n+1}}{dx^{n+1}} e^{-x^2/2}$$

$$= (a_n x^{n+1} + a_{n-1} x^n + \dots + a_0 x - a_n n x^{n-1} - a_{n-1} (n-1) x^{n-2} - \dots - a_1)$$

De donde concluimos que $H_{n+1}(x)$ es en efecto un polinomio de grado n+1Finalmente para terminar este inciso tenemos que ver que

$$\left. \frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \right|_{\lambda=0} = t^{n/2} H_n \Big(B_t / \sqrt{t} \Big) M_t^{\lambda} \Big|_{\lambda=0} = t^{n/2} H_n \Big(B_t / \sqrt{t} \Big)$$

Para su demostración consideremos a la función $f(\lambda)=M_t^{\lambda}$ y desarrollemos el polinomio de taylor alrededor de 0

(2)
$$f(\lambda) = M_t^{\lambda} = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} \left. \frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \right|_{\lambda=0}$$

Por otro lado por la definición de M_t^{λ} tenemos:

$$M_t^{\lambda} = e^{\lambda B_t - \lambda^2 t/2} = e^{-\frac{1}{2} \left(-2\lambda B_t + \lambda^2 t\right)}$$

Completamos un trinomio cuadrado en el exponente.

$$= e^{\frac{B_t^2}{2t} - \frac{1}{2} \left(\frac{B_t^2}{t} - 2\lambda B_t + \lambda^2 t \right)} = e^{\frac{B_t^2}{2t} - \frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2}$$

entonces expresando esto último como serie de taylor al rededor de $\lambda=0$ obtenemos:

$$(3) f(\lambda) = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} \left. \frac{\partial^n}{\partial \lambda^n} e^{\frac{B_t^2}{2t} - \frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} \right|_{\lambda=0} = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} e^{\frac{B_t^2}{2t}} \left. \frac{\partial^n}{\partial \lambda^n} e^{-\frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} \right|_{\lambda=0}$$

Nos concentraremos en encontrar una expresión para

$$\frac{\partial^n}{\partial \lambda^n} e^{-\frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} \bigg|_{\lambda=0}$$

Para resolver este problema definamos las siguientes funciones:

$$f(u) := e^{-\frac{u^2}{2}} \quad g(\lambda) := \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t}\right)$$

Entonces bajo esta definición:

$$\frac{\partial^n}{\partial \lambda^n} e^{-\frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} = \frac{\partial^n}{\partial \lambda^n} f(g(\lambda))$$

Afirmación: bajo las condiciones de este problema se tiene que:

$$\frac{\partial^n}{\partial \lambda^n} f(g(\lambda)) = \left(g^{(1)}(\lambda)\right)^n f^{(n)}(g(\lambda))$$

Demostración por inducción:

• Caso n=1. Usando regla de la cadena se tiene el resultado:

$$\frac{\partial}{\partial \lambda} f(g(\lambda)) = f^{(1)}(g(\lambda))g^{(1)}(\lambda)$$

 \bullet Supongamos que la formula es válida para n por demostrar que es válida para n+1

$$\begin{split} \frac{\partial^{n+1}}{\partial \lambda^{n+1}} f(g(\lambda)) &= \frac{\partial}{\partial \lambda} \frac{\partial^n}{\partial \lambda^n} f(g(\lambda)) = \frac{\partial}{\partial \lambda} \left(g^{(1)}(\lambda) \right)^n f^{(n)}(g(\lambda)) \\ &= \left(g^{(1)}(\lambda) \right)^n \frac{\partial}{\partial \lambda} f^{(n)}(g(\lambda)) + f^{(n)}(g(\lambda)) \frac{\partial}{\partial \lambda} \left(g^{(1)}(\lambda) \right)^n \end{split}$$

Sin embargo por la definición de la función g mostraremos que $\frac{\partial}{\partial \lambda} \left(g^{(1)}(\lambda) \right)^n = 0$, en efecto pues:

$$\frac{\partial}{\partial \lambda} \left(g^{(1)}(\lambda) \right)^n = n \left(g^{(1)}(\lambda) \right)^{n-1} g^{(2)}(\lambda)$$

y como $g^{(2)}(\lambda) = \frac{\partial^2}{\partial \lambda^2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right) = 0$ de donde se sigue que:

$$\frac{\partial^{n+1}}{\partial \lambda^{n+1}} f(g(\lambda)) = \left(g^{(1)}(\lambda)\right)^n \frac{\partial}{\partial \lambda} f^{(n)}(g(\lambda)) = \left(g^{(1)}(\lambda)\right)^{n+1} f^{(n+1)}(g(\lambda))$$

Por lo tanto prueba que la fórmula es válida para toda n

Por lo anterior hemos probado que:

$$\frac{\partial^n}{\partial \lambda^n} e^{-\frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} = \left(g^{(1)}(\lambda) \right)^n f^{(n)}(g(\lambda)) = \left(-\sqrt{t} \right)^n f^{(n)}(g(\lambda))$$

Pero notemos que por la definición de H_n

$$f^{(n)}(u) = \frac{\partial^n}{\partial \lambda^n} e^{-u^2/2} = (-1)^n H_n(u) e^{-u^2/2}$$

Por lo tanto:

$$\frac{\partial^n}{\partial \lambda^n} e^{-\frac{1}{2} \left(\frac{B_t}{\sqrt{t}} - \lambda \sqrt{t} \right)^2} = \left(-\sqrt{t} \right)^n (-1)^n H_n(g(\lambda)) e^{-g(\lambda)^2/2}$$

Sustituyendo este resultado en la ecuación (3) obtenemos:

$$f(\lambda) = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} e^{\frac{B_t^2}{2i}} (t)^{n/2} H_n(g(\lambda)) e^{-g(\lambda)^2/2} \Big|_{\lambda=0}$$

Pero como $g(0) = B_t/\sqrt{t}$ entonces:

(4)
$$f(\lambda) = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} (t)^{n/2} H_n(B_t/\sqrt{t})$$

Finalmente por la ecuación (2) y (4) y la unicidad del polinomio de taylor obtenemos que:

$$\sum_{i=0}^{\infty} \frac{\lambda^n}{n!} (t)^{n/2} H_n(B_t/\sqrt{t}) = f(\lambda) = \sum_{i=0}^{\infty} \frac{\lambda^n}{n!} \left. \frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \right|_{\lambda=0}$$

De donde obtemos el resultado que queríamos probar:

$$\left. \frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \right|_{\lambda=0} = (t)^{n/2} H_n(B_t/\sqrt{t})$$

(3) Pruebe que $t^{n/2}H_n\big(B_t/\sqrt{t}\big)$ es una martingala para toda n y calcúlela para $n\leq 5.$

Proof. Por el inciso anterior sabemos que $\frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \big|_{\lambda=0}$ es martingala, se sigue entonces que $(t)^{n/2} H_n(B_t/\sqrt{t})$ es martingala. Las primeras cinco martingalas son:

$$B_t \\ B_t^2 - t \\ B_t^3 - 3B_t t \\ B_t^4 - 6B_t^2 t + 3t^2 \\ B_t^5 - 10B_t^3 t + 15B_t t^2$$

(4) Aplique muestreo opcional a las martingalas anteriores al tiempo aleatorio $T_{a,b} = \min\{t \geq 0 : B_t \in \{-a,b\}\}\$ (para a,b>0) con n=1,2 para calcular $\mathbb{P}(B_{T_{a,b}}=b)$ y $\mathbb{E}(T_{a,b})$, ?Qué concluye cuando n=3,4? ¿ Cree que $T_{a,b}$ tenga momentos finitos de cualquier orden? Justifique su respuesta.

Proof. Primero, sabemos que B_t es martingala y $T_{a,b} \wedge s$ es tiempo de paro acotado, luego entonces $B_{T_{a,b} \wedge s}$ es martingala acotada. Usando el muestro opcional tenemos que:

$$\mathbb{E}(B_{T_{a,b}\wedge s}) = \mathbb{E}(B_0) = 0$$

Sin embargo al ser $B_{T_{a,b} \wedge s}$ martingala acotada y como $B_{T_{a,b} \wedge s} \to B_{T_{a,b}}$ c.s, entonces usando teorema de la convergencia acotada se tiene que:

$$\mathbb{E}(B_{T_{a,b} \wedge s}) \to \mathbb{E}(B_{T_{a,b}}) \quad \Rightarrow \mathbb{E}(B_{T_{a,b}}) = \mathbb{E}(B_0) = 0$$

Pero $B_{T_{a,b}}$ es una variable aleatoria que solo toma dos valores $\{-a,b\}$. Entonces:

$$\mathbb{E}(B_{T_{a,b}}) = -a\mathbb{P}(B_{T_{a,b}} = -a) + b\mathbb{P}(B_{T_{a,b}} = b) = 0$$

De donde usando el hecho de que $\mathbb{P}(B_{T_{a,b}}=-a)=1-\mathbb{P}(B_{T_{a,b}}=b)$ se concluye que:

$$\mathbb{P}(B_{T_{a,b}} = -a) = \frac{b}{a+b} \quad \mathbb{P}(B_{T_{a,b}} = b) = \frac{a}{a+b}$$

Ahora utilizando la segunda martingala $B_t^2 - t$ y bajo un argumento similar al anterior concluimos que:

$$0 = \mathbb{E}\left(B_{T_{a,b}}^2 - T_{a,b}\right) = a^2 \mathbb{P}(B_{T_{a,b}} = -a) + b^2 \mathbb{P}(B_{T_{a,b}} = b) - \mathbb{E}(T_{a,b})$$

Por lo tanto, sustituyendo el valor de la probabilidades que obtuvimos arriba concluimos que:

$$\mathbb{E}(T_{a,b}) = \frac{a^2b}{a+b} + \frac{b^2a}{a+b} = ab$$

Ahora trabajaremos con n = 3, la martingala que obtenemos es $B_t^3 - 3B_t t$ de donde nuevamente aplicando el muestreo opcional obtenemos que:

$$0 = \mathbb{E}\left(B_{T_{a,b}}^3 - 3B_{T_{a,b}}T_{a,b}\right) = \frac{b^3a - a^3b}{a+b} - 3\mathbb{E}\left(B_{T_{a,b}}T_{a,b}\right)$$

De donde concluimos que:

$$\mathbb{E}(B_{T_{a,b}}T_{a,b}) = \frac{b^3 a - a^3 b}{3(a+b)}$$

De esta última expresión recordemos que $B_{T_{a,b}} = -a\mathbb{1}_{\left\{B_{T_{a,b}}=-a\right\}} + b\mathbb{1}_{\left\{B_{T_{a,b}}=b\right\}}$ entonces:

(5)
$$\frac{b^3 a - a^3 b}{3(a+b)} = \mathbb{E}(B_{T_{a,b}} T_{a,b}) = -a \mathbb{E}(T_{a,b} \mathbb{1}_{\{B_{T_{a,b}} = -a\}}) + b \mathbb{E}(T_{a,b} \mathbb{1}_{\{B_{T_{a,b}} = b\}})$$

Por otro lado $T_{a,b} = T_{a,b} \mathbb{1}_{\{B_{T_{a,b}} = -a\}} + T_{a,b} \mathbb{1}_{\{B_{T_{a,b}} = b\}}$ entonces:

(6)
$$ab = \mathbb{E}(T_{a,b}) = \mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}} = -a\right\}}\right) + \mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}} = b\right\}}\right)$$

De las ecuaciones (4) y (5) obtenemos un sistema de ecuaciones de donde al resolverlo obtenemos:

$$\mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}}=b\right\}}\right) = \frac{b^3a - a^3b}{3(a+b)} + \frac{a^2b}{a+b}$$

$$\mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}}=-a\right\}}\right) = ab - \frac{b^3a - a^3b}{3(a+b)} - \frac{a^2b}{a+b}$$

Caso n=4 tenemos la siguiente martingala $B_t^4-6B_t^2t+3t^2$ de donde nuevamente aplicando el muestro opcional obtenemos:

$$0 = \mathbb{E}\left(B_{T_{a,b}}^4 - 6B_{T_{a,b}}^2 T_{a,b} + 3T_{a,b}^2\right)$$

De donde despejando:

$$\mathbb{E}(T_{a,b}^2) = \frac{1}{3} \left(\mathbb{E}\left(6B_{T_{a,b}}^2 T_{a,b}\right) - \mathbb{E}\left(B_{T_{a,b}}^4\right) \right) = 2\mathbb{E}\left(B_{T_{a,b}}^2 T_{a,b}\right) - \frac{a^4b + b^4a}{3(a+b)}$$

De esta última expresión trabajarémos $\mathbb{E}(B_{T_{a,b}}^2 T_{a,b})$. Como:

$$B_{T_{a,b}}^2 = a^2 \mathbb{1}_{\left\{B_{T_{a,b}} = -a\right\}} + b^2 \mathbb{1}_{\left\{B_{T_{a,b}} = b\right\}}$$

Entonces:

$$\mathbb{E}\left(B_{T_{a,b}}^{2}T_{a,b}\right) = a^{2}\mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}}=-a\right\}}\right) + b^{2}\mathbb{E}\left(T_{a,b}\mathbb{1}_{\left\{B_{T_{a,b}}=b\right\}}\right)$$

$$a^{2}\left(ab - \frac{b^{3}a - a^{3}b}{3(a+b)} - \frac{a^{2}b}{a+b}\right) + b^{2}\left(\frac{b^{3}a - a^{3}b}{3(a+b)} + \frac{a^{2}b}{a+b}\right)$$

Por lo tanto:

$$\mathbb{E} \left(T_{a,b}^2 \right) = 2 \left(a^2 \left(ab - \frac{b^3 a - a^3 b}{3(a+b)} - \frac{a^2 b}{a+b} \right) + b^2 \left(\frac{b^3 a - a^3 b}{3(a+b)} + \frac{a^2 b}{a+b} \right) \right) - \frac{a^4 b + b^4 a}{3(a+b)}$$

Lo que muestra que tiene segundo momento finito. Ahora bien, notemos que para calcular el n-ésimo momento de $T_{a,b}$ requeriremos de la martingala que se obtiene de derivar 2n veces a la función M_t^{λ} y evaluarla en $\lambda=0$, luego como ya probamos que evaluando $\lambda=0$ se tiene la igualdad $\partial^n M_t^{\lambda}/\partial \lambda^n=t^{n/2}H_n\big(B_t/\sqrt{t}\big)$, entonces obtendríamos que la martingala para calcular $\mathbb{E}\big(T_{a,b}^n\big)$ es de la forma:

$$t^n H_{2n} \left(B_t / \sqrt{t} \right) = t^n \left(a_{2n} \left(\frac{B_t}{\sqrt{t}} \right)^{2n} + a_{2n-2} \left(\frac{B_t}{\sqrt{t}} \right)^{2n-2} + \dots + a_0 \right)$$

De donde al aplicar el muestro opcional para martingalas obtendramos que $\mathbb{E}\left(T_{a,b}^n\right)$ queda en función de:

$$\mathbb{E}\left(B_{T_{a,b}}^{2n}\right), \mathbb{E}\left(B_{T_{a,b}}^{2n-2}T_{a,b}\right), \mathbb{E}\left(B_{T_{a,b}}^{2n-4}T_{a,b}^{2}\right), \dots, \mathbb{E}\left(B_{T_{a,b}}^{2}T_{a,b}^{n-1}\right)$$

Luego cada una de estas esperanzas es finita pues depende básicamente de esperanzas que fueron calculadas de martingalas anteriores. Por lo que concluimos que $T_{a,b}$ tiene todos sus momentos finitos.

(5) Aplique el teorema de muestreo opcional a la martingala M^{λ} al tiempo aleatorio $T_a = \inf\{t \geq 0 : B_t \geq a\}$ si $\lambda > 0$. Diga por qué es necesaria la última hipótesis y calcule la transformada de Laplace de T_a .

Proof. Primero, ya probamos que M_t^{λ} es martingala, luego $T_a \wedge s$ es tiempo de paro acotado y además $M_{T_a \wedge s}^{\lambda}$ es martingala, usando el muestreo opcional obtenemos:

$$\mathbb{E}(M_{T_a \wedge s}^{\lambda}) = \mathbb{E}(M_0^{\lambda}) = 1$$

Pero como $M_{T_a \wedge s}^{\lambda}$ es positiva solo tenémos que encontrar una cota superior al proceso para asegurar que tenémos una martingala acotada, sin embargo notando que si $s \leq T_a$ entonces $M_{T_a \wedge s}^{\lambda} = M_s^{\lambda} = e^{\lambda B_s - \lambda^2 s/2} \leq e^{\lambda a}$ y si $s > T_a$ entonces $M_{T_a \wedge s}^{\lambda} = M_{T_a}^{\lambda} = e^{\lambda a - \lambda^2 s/2} \leq e^{\lambda a}$ (aquí hacemos uso de la continuidad del proceso B_t asi como del hecho de que $\lambda > 0$). Luego entonces hemos probado que $M_{T_a \wedge s}^{\lambda}$ es una martingala acotada, por lo tanto dado que $M_{T_a \wedge s}^{\lambda} \to M_{T_a}^{\lambda}$ y usando el teorema de convergencia acotada:

$$1 = \mathbb{E}(M_{T_a \wedge s}^{\lambda}) \to \mathbb{E}(M_{T_a}^{\lambda})$$

Por lo tanto:

$$\mathbb{E}\Big(e^{\lambda a - \lambda^2 T_a/2}\Big) = 1$$

Entonces despejando:

$$\mathbb{E}\Big(e^{-\lambda^2 T_a/2}\Big) = e^{-\lambda a}$$

Para obtener la función generadora de momentos hacemos el cambio $u = \lambda^2/2$ de donde $\lambda = \sqrt{2u}$ entonces:

$$\mathbb{E}(e^{-uT_a}) = e^{-a\sqrt{2u}}$$

- (6) Opcional (para subir calificación en esta u otra tarea):
 - (a) Modifique el ejercicio para que aplique al proceso Poisson.
 - (b) Resuélva el ejercicio modificado.

Proof. Primero denotaremos N_t como un proceso Poisson de Tasa γ lo que implica que N_t sigue una distribucón Poisson (γt) . Luego dado que la función generadora de momentos de una variable poisson de tasa γt es:

$$\mathbb{E}(e^{\lambda N_t}) = e^{\gamma t \left(e^{\lambda} - 1\right)}$$

Entonces definiremos a M_t^{λ} como sigue:

$$M_t^{\lambda} := e^{\lambda N_t - \gamma t \left(e^{\lambda} - 1\right)}$$

Probaremos entonces que as definida M_t^{λ} es martingala respecto a la filtración canónica $\mathscr{F}_t = \sigma(N_s : s \leq t)$. Sea entonces s < t;

$$\mathbb{E}(M_t^{\lambda} \mid \mathscr{F}_s) = \mathbb{E}(e^{\lambda N_t - \gamma t(e^{\lambda} - 1)} \mid \mathscr{F}_t) = e^{-\gamma t(e^{\lambda} - 1)} \mathbb{E}(e^{\lambda N_t} \mid \mathscr{F}_s)$$

Pero al ser N_t un proceso poisson entonces tenemos incrementos independientes y estacionarios por lo tanto:

$$\mathbb{E} \big(M_t^{\lambda} \mid \mathscr{F}_s \big) = e^{-\gamma t \left(e^{\lambda} - 1 \right)} \mathbb{E} \Big(e^{\lambda (N_t - N_s + N_s)} \mid \mathscr{F}_s \Big) = e^{-\gamma t \left(e^{\lambda} - 1 \right) + \lambda N_s} \mathbb{E} \Big(e^{\lambda (N_t - N_s)} \Big)$$

Entonces, como $N_t - N_s \stackrel{d}{=} N_{t-s} \sim Poisson(\gamma(t-s))$ por lo tanto, dada la expresión para la generadora de momentos de una Poisson se tiene:

$$\mathbb{E}\left(e^{\lambda(N_t - N_s)}\right) = e^{\gamma(t-s)\left(e^{\lambda} - 1\right)}$$

Sustiyendo se tiene que:

$$\mathbb{E}(M_t^{\lambda} \mid \mathscr{F}_s) = e^{-\gamma t (e^{\lambda} - 1) + \lambda N_s} e^{\gamma (t - s) (e^{\lambda} - 1)} = e^{\lambda N_s - \gamma s (e^{\lambda} - 1)} = M_s^{\lambda}$$

Por lo tanto M_t^{λ} es martingala. Luego para probar que la n-ésima derivada respecto de λ es martingala procederemos nuevamente por inducción y por tanto necesitaremos dominar a $\frac{\partial}{\partial \lambda} M_t^{\lambda}$ para poder llevar a cabo el intercambio de derivada con la esperanza condicional. Derivando tenemos:

$$\left| \frac{\partial}{\partial \lambda} M_t^{\lambda} \right| = \left| M_t^{\lambda} \left(N_t - \gamma t e^{\lambda} \right) \right| \le M_t^{\lambda} \left| N_t - \gamma t e^{\lambda} \right| \le M_t^{\lambda} N_t + M_t^{\lambda} \gamma t e^{\lambda}$$

Claramente al ser M_t^{λ} martingala se sigue que $M_t^{\lambda} \gamma t e^{\lambda} \in L_1$ por lo que solo hay que verificar que $M_t^{\lambda} N_t \in L_1$, veamos:

$$\mathbb{E}(M_t^{\lambda} N_t) = \mathbb{E}(e^{\lambda N_t - \gamma t(e^{\lambda} - 1)} N_t) = e^{-\gamma t(e^{\lambda} - 1)} \mathbb{E}(e^{\lambda N_t} N_t)$$

Por tanto hay que verificar que $\mathbb{E}(e^{\lambda N_t}N_t)$ es finita, recordando que $N_t \sim Poisson(\gamma t)$ tenemos:

$$\mathbb{E}(e^{\lambda N_t} N_t) = \sum_{x=0}^{\infty} e^{\lambda x} x \frac{(\gamma t)^x}{x!} e^{-\gamma t} = e^{-\gamma t + \gamma t e^{\lambda}} \sum_{x=0}^{\infty} x \frac{(\gamma t e^{\lambda})^x}{x!} e^{\gamma t e^{\lambda}}$$

Definiendo a $Y \sim Poisson(\gamma t e^{\lambda})$ entonces:

$$\mathbb{E}(e^{\lambda N_t} N_t) = e^{-\gamma t + \gamma t e^{\lambda}} \mathbb{E}(Y) = e^{-\gamma t + \gamma t e^{\lambda}} \gamma t e^{\lambda} < \infty$$

Por lo tanto hemos verificado que $e^{\lambda N_t} N_t \in L_1$, por lo tanto:

$$\left| \frac{\partial}{\partial \lambda} M_t^{\lambda} \right| \le M_t^{\lambda} N_t + M_t^{\lambda} \gamma t e^{\lambda} \in L_1$$

Lo anterior nos garantiza que podemos llevar a cabo el intercambio entre derivada y esperanza condicional por lo que nuevamente al usar el argumento inductivo se prueba que en efecto: $\frac{\partial^n}{\partial \lambda^n} M_t^{\lambda}$ es una martingala (Faltaría argumentar porque la n-ésima derivada es dominada por una función integrable)

Ahora definamos la relación de las martingalas que se generan a partir de la derivación haciendo $\lambda=0$ con los polinomios de Hermite. Demostraremos que en este caso:

$$\left. \frac{\partial^n}{\partial \lambda^n} M_t^{\lambda} \right|_{\lambda=0} = (\gamma t)^{n/2} H_n \left(\frac{Nt - \gamma t}{\sqrt{\gamma t}} \right) M_t^{\lambda} \bigg|_{\lambda=0}$$

(Falta la prueba y al parecer solo funciona con n=1 y 2)

Las martingalas que obtenemos de derivar directamente a M_t^{λ} (no usé polinómio de Hermite sino que derivé directamente M_t^{λ} usando un software para derivar) :

$$N_t - \gamma t$$

$$(N_t - \gamma t)^2 - \gamma t$$

$$(N_t - \gamma t)^3 - 3(N_t - \gamma t)\gamma t - \gamma t$$

Luego al definir el tiempo aleatorio $T_b = \min\{t \geq 0 : N_t \in \{b\}\}$ (para $b \in \mathbb{N}$) y al aplicar el muestreo opcional de Doob a la primer martingala obtenemos:

$$\mathbb{E}(N_{T_b}) - \gamma \mathbb{E}(T_b) = 0$$

De donde concluimos que:

$$\mathbb{E}(T_b) = \frac{b}{\gamma}$$

Observación: Dado que N_t es proceso Poisson entonces sabemos que los tiempos entre cambio de estados es Exponencial de parámetro (γ) luego entonces al ser el proceso creciente, se tiene que el tiempo de paro T_b coincide con tiempo que tarda el proceso Poisson en tener b cambios de estados, es decir T_b sigue la misma distribución que de la suma de b exponenciales independientes, es decir, T_b en este caso sigue una distribucón Gamma (b, γ)

de donde concluimos que nuestro resultado obtenido vía martingalas coincide con el hecho de que $\mathbb{E}(T_b) = b/\gamma$.

Tomando ahora la martingala generada a partir de la segunda derivada y tras aplicar el muestro opcional de Doob tenemos los siguiente:

$$\mathbb{E}\Big((N_{T_b} - \gamma T_b)^2 - \gamma T_b\Big) = 0$$

De donde despejando el segundo momento de T_b

$$\mathbb{E}(T_b^2) = \frac{((2b+1)\gamma)\mathbb{E}(T_b) - b^2}{\gamma^2} = \frac{b(b+1)}{\gamma^2}$$

Lo cual coincide con el segundo momento de una distribución $Gamma(b, \gamma)$. Finalmente utilizando la tercer martingala y tras aplicar el muestro opcional de Doob tenemos los siguiente:

$$\mathbb{E}((N_{T_b} - \gamma T_b)^3) - \mathbb{E}(3(N_{T_b} - \gamma T_b)\gamma T_b) - \mathbb{E}(\gamma T_b) = 0$$

De donde despejando el tercer momento obtenemos:

$$\mathbb{E}(T_b^3) = \frac{b^3 + 3\gamma^2(b+1)\mathbb{E}(T_b^2) - \gamma(3b^2 + 3b + 1)\mathbb{E}(T_b)}{\gamma^3}$$

Al sustituir el segundo y primero obtenemos

$$\mathbb{E}(T_b^3) = \frac{b(b+1)(b+2)}{\gamma^3}$$

El cual coincide con el tercer momento de la distribución $\operatorname{Gamma}(b,\gamma)$. En general vemos que el momento n depende de los primeros n-1 momentos y por tanto tiene todos sus momento finitos.

Para terminar con el ejercido ejercicio calcularémos la función generadora de momentos del tiempo de paro T_b . Para ello ocuparemos la martingala M_t^{λ} . Nuevamente haciendo uso del muestro opcional de doob (Me parece que en este caso no necesitamos que $\lambda > 0$ ya que el proceso N_t es creciente)

$$\mathbb{E}(M_{T_b}^{\lambda}) = \mathbb{E}(M_0^{\lambda}) = 1$$

Lo anterior es cierto porque la martingala $M^\lambda_{T_a \wedge s}$ es acotada por $e^{b\lambda}$ Obtenemos entonces:

$$\mathbb{E}\Big(e^{b\lambda - \gamma T_b(e^{\lambda} - 1}\Big) = 1$$

De donde despejando:

$$\mathbb{E}\left(e^{-\gamma T_b(e^{\lambda}-1)}\right) = e^{-b\lambda} = \left(e^{\lambda}\right)^{-b}$$

Haciendo el cambio de variable $u = -\gamma \left(e^{\lambda - 1}\right)$ de donde $e^{\lambda} = \left(1 - \frac{u}{\gamma}\right)$. Entonces obtenemos:

$$\mathbb{E}(e^{uT_b}) = \left(1 - \frac{u}{\gamma}\right)^{-b}$$

Es decir T_b fine la misma función generadora de momento que una variable aleatoria con distirbución $Gamma(b, \gamma)$ lo cual era de esperarse.

Problema 5.

(1) Al aplicar la desigualdad maximal de Doob sobre los racionales de orden n y pasar al límite conforme $n \to \infty$, pruebe que $\sup_{t \in [0,1]} |B_t|$ es cuadrado integrable.

Proof. Consideremos a la partición diádica del [0,1], es decir:

$$D_n = \left\{ \frac{k}{2n} : k = 0, 1, \dots n \right\}$$

Consideremos ahora para cada n a la martingala a tiempo discreto $(B_k^n : k \in D_n)$. Luego al ser la función valor absoluto convexa se sigue tras aplicar la desigualdad de Jensen que $(|B_k^n| : k \in D_n)$ es sub-martingala, luego entonces al aplicar la desigualdad maximal de Doob para p=2 obtenemos (Proposición 1.5 de las notas) :

$$\| \max_{k \in D_n} |B_k^n| \|_2 \le \frac{2}{2-1} \| |B_1^n| \|_2$$

Entonces:

$$\mathbb{E}\left((\max_{k \in D_n} |B_k^n|)^2\right) \le 4\mathbb{E}(|B_1^n|^2) = 4(\text{Var}(B_1)) = 4$$

Notemos que la desigualdad es válida para toda n, luego dado de que la partición D_n se va refinando y que B_t tiene trayectorias continuas, tenemos que al hacer $n \to \infty$:

$$\max_{k \in D_n} |B_k^n| \uparrow \sup_{t \in [0,1]} |B_t| \quad (c.s)$$

Luego entonces al usar Teorema de la convergencia monótona:

$$\mathbb{E}\left(\left(\sup_{t\in[0,1]}|B_t|\right)^2\right) = \lim_{n\to\infty}\mathbb{E}\left(\left(\max_{k\in D_n}|B_k|\right)^2\right) \le 4$$

Lo que muestra que es cuadrado integrable.

(2) Pruebe que la sucesión de variables aleatorias

$$\left(\sup_{t\in[0,1]}\left|B_{n+t}-B_{n}\right|,n\in\mathbb{N}\right)$$

son independientes, idénticamente distribuidas y de media finita. (Utilice la propiedad de Markov.)

Proof. Como B_t es movimiento browniano entonces:

$$B_{n+t} - B_n \stackrel{d}{=} B_t \Rightarrow |B_{n+t} - B_n| \stackrel{d}{=} |B_t|$$

Luego considerando a la función medible $F:C[0,1]\to\mathbb{R}$ dada por:

$$F(f) = \max_{t \in [0,1]} f(t) = \sup_{t \in [0,1]} f(t)$$

Se sigue que:

$$\sup_{t \in [0,1]} |B_{n+t} - B_n| \stackrel{d}{=} \sup_{t \in [0,1]} |B_t| \quad n \in \mathbb{N}$$

Por lo tanto se tiene que $\sup_{t \in [0,1]} |B_{n+t} - B_n|$ tiene la misma distirbución que $\sup_{t \in [0,1]} |B_t|$ para toda n y por tanto son identicamentes distribuidas. Luego, pare verificar que tienen media finita recordemos que por el inciso anterior $\mathbb{E}\left(\left(\sup_{t \in [0,1]} |B_t|\right)^2\right) < \infty$ por lo tanto

$$\sup_{t\in[0,1]}|B_t|\in L_2$$

de donde se sigue que $\mathbb{E}\left(\sup_{t\in[0,1]}|B_t|\right)<\infty$ luego por lo anterior:

$$\mathbb{E}\left(\sup_{t\in[0,1]}|B_{n+t}-B_n|\right) = \mathbb{E}\left(\sup_{t\in[0,1]}|B_t|\right) < \infty$$

De donde se concluye que tiene media finita. Finalmente para demostrar que son independientes recordemos que al ser B_t movimiento browniano entonces

$$(B_{n+t} - B_n, n \in \mathbb{N})$$

Son variables aleatorias independientes y además por la propiedad de markov:

$$B_{n+t} - B_n \perp \sigma(B_s : s \leq n)$$

Entonces los proceso brownianos restringido a [0,1) dado por:

$$(B_t^n = B_{n+t} - B_n, t \in [0, 1])$$

Tiene trayectorias independientes para cada n, de donde tomando supremos conciuímos que en efecto:

$$\left(\sup_{t\in[0,1]}\left|B_{n+t}-B_{n}\right|,n\in\mathbb{N}\right)$$

Son v.a. independientes.

(3) Al utilizar Borel-Cantelli, pruebe que, para cualquier C>0 fija

$$\limsup_{n \to \infty} \sup_{t \in [0,1]} |B_{n+t} - B_n| / n \le C$$

casi seguramente.

Proof. El lema de Borel Cantelli nos dice que si $\{A_n\}$ es una sucesión de eventos independientes entonces si:

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \quad \Rightarrow \mathbb{P}(\limsup A_n) = 1$$

Definamos entonces a la sucesión eventos como:

$$A_n = \left\{ \sup_{t \in [0,1]} \left| B_{n+t} - B_n \right| / n \le C \right\}$$

Por el inciso anterior del ejercicio sabemos que los A_n 's son independientes, entonces si probamos que $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ el lema de Borel Cantelli nos indicaría que

$$\mathbb{P}\left(\limsup\sup_{t\in[0,1]}\left|B_{n+t} - B_n\right|/n \le C\right) = 1$$

Lo que terminaría la prueba, nos concentraremos entonces en probar que

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$

Para demostrar esto recordemos la desigualdad de Markov para la cual nos dice que :

$$\mathbb{P}(|X| > x) \le \frac{\mathbb{E}(|X|^r)}{x^r}$$

Dado que $\sup_{t \in [0,1]} |B_{n+t} - B_n| \stackrel{d}{=} \sup_{t \in [0,1]} |B_t|$ entonces utilizando la desiguladad de Markov con r = 2

$$\mathbb{P}(A_n^c) = \mathbb{P}\left(\sup_{t \in [0,1]} |B_{n+t} - B_n| > nC\right) = \mathbb{P}\left(\sup_{t \in [0,1]} |B_t| > nC\right)$$

$$\leq \frac{\mathbb{E}\left(\left(\sup_{t \in [0,1]} |B_t|\right)^2\right)}{(nC)^2}$$

Luego entonces:

$$\mathbb{P}(A_n) = 1 - \mathbb{P}(A_n^c) > 1 - \frac{\mathbb{E}\left(\left(\sup_{t \in [0,1]} |B_t|\right)^2\right)}{(nC)^2}$$

Si tomamos limite cuando $n \to \infty$ y recordando que $\mathbb{E}\left(\left(\sup_{t \in [0,1]} |B_t|\right)^2\right) < \infty$ concluimos que:

$$\lim_{n \to \infty} \mathbb{P}(A_n) = 1 \quad \Rightarrow \sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$

Lo que termina la prueba.

(4) Pruebe que $(B_n/n, n \ge 1)$ converge casi seguramente a 0 y deduzca que

$$\lim_{t \to \infty} B_t/t = 0.$$

Proof. Primero notemos que:

$$B_n = B_n - B_{n-1} + B_{n-1} - B_{n-2} + \dots + B_2 - B_1 + B_1 - B_0$$
$$B_n = \sum_{k=1}^n B_k - B_{k-1}$$

Dado que B_t tiene incrementos estacionarios se sigue que $B_k - B_{k-1} \sim N(0,1)$ y por tonto usando la ley fuertes de los grandes números obtenemos que:

$$\lim_{n \to \infty} \frac{B_n}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^n B_k - B_{k-1}}{n} = 0$$

Ahora probaremos que $\lim_{t\to\infty} B_t/t = 0$ para ello tomemos $t\in\mathbb{R}^+$ entonces sabemos existe $n\in\mathbb{N}$ tal que $n\leq t< n+1$ y por tanto existe $s\in[0,1]$ tal que: t=n+s. Entonces:

$$\frac{|B_t|}{t} = \frac{|B_n + s|}{n + s} \le \frac{|B_{n+s}|}{n} = \frac{|B_{n+s} - B_n + B_n|}{n} \le \frac{|B_{n+s} - B_n|}{n} + \frac{|B_n|}{n}$$

$$\leq \frac{\sup_{s \in [0,1]} |B_{n+s} - B_n|}{n} + \frac{|B_n|}{n}$$

Luego si tomamos límite $t \to \infty$ entonces $n \to \infty$ pues recordemos que $n \le t < n+1,$ entonces:

$$\limsup_{t \to \infty} \frac{|B_t|}{t} \le \limsup_{n \to \infty} \left(\frac{\sup_{s \in [0,1]} |B_{n+s} - B_n|}{n} + \frac{|B_n|}{n} \right)$$

$$= \limsup_{n \to \infty} \left(\frac{\sup_{s \in [0,1]} |B_{n+s} - B_n|}{n} \right) + \limsup_{n \to \infty} \frac{|B_n|}{n}$$

$$= \limsup_{n \to \infty} \left(\frac{\sup_{s \in [0,1]} |B_{n+s} - B_n|}{n} \right) < C \quad (c.s)$$

Entonces para toda C > 0 se tiene que:

$$0 \le \limsup_{t \to \infty} \frac{|B_t|}{t} \le C$$

De dondo se concluye que $\lim_{t\to\infty} \frac{|B_t|}{t} = 0$