Lecture 1 Demo: Introduction to MATLAB

Problem 1. Maniulating audio signals

Task 1. Load the sound file NeuralNet.(To do this, load the MATLAB file NeuralNet.mat.)

```
load('NeuralNet.mat')
```

Task 2. Determine the size of the array NeuralNet. Is it a row vector or a column vector?

It is a column vector.

Task 3. Play it, specifying the playback rate to be 22050. Plot it. Label the x-axis 'time', and the y-axis 'amplitude'. Using the title command, write the message contents over the plot.

```
sound(NeuralNet,22050)
n=1:74162;
plot(n/22050,NeuralNet);
xlabel('time (sec)');
ylabel('amplitude');
title('My CPU is a Neural Net processor, a learning computer.');
```


Alternatively, read the file and sample rate directly from a .wav (or .mp3) file using audioread. The filename is: t2 learning computer x.wav. This time, plot the signal as a stem plot.

```
[NeuralNet,fs]=audioread('t2_learning_computer_x.wav');
sound(NeuralNet,fs);
n=1:74162;
stem(n/22050,NeuralNet);
xlabel('time');
ylabel('amplitude');
title('My CPU is a Neural Net processor, a learning computer.');
```


Task 4. Play it again, with a playback rate of 11025. How has the character of the sound changed?

```
sound(NeuralNet,11025);
```

Task 5. Play it once more, now with a playback rate of 44100. What does this do to the character of the sound?

```
sound(NeuralNet,44100);
```

Task 6. Finally, play the sound in reverse, by "flipping" the array. Which command should you use to "flip" it: flipIr or flipud?

Task 7. Plot the flipped sound file.

```
plot(NN_flip);
xlabel('time');
ylabel('amplitude');
```


Problem 2. Complex arithmetic and complex signals

Task 1. Compute ((4 + j2)(1 - j)) / ((2 + j3)(3 - 2j)) using MATLAB and express your answer in both rectangular and polar coordinates.

```
a = ((4 + 2j)*(1 - j)) / ((2 + 3j)*(3 - 2j));
%a = re + i*im
re = real(a)

re = 0.3669

im = imag(a)
im = -0.3195
%
a == re + j*im

ans = logical
1
%
%a = abs(a) exp(j*angle(a)
```

```
rad = abs(a)
  rad = 0.4865
  th = angle(a)
  th = -0.7165
  a==rad*exp(j*th)
  ans = logical
Task 2.Then compute the real and imaginary parts by hand, expressing them as rational numbers. Finally,
compute the magnitude by hand, expressing it as the square root of a rational number, and express the angle
as the arctangent of a rational number. Compare your hand calculations to the MATLAB output.
\frac{(4+2j)(1-j)}{(2+3j)(3-2j)} = \frac{6-2j}{12+5j}
=\frac{(6-2j)(12-5j)}{(12+5j)(12-5j)}=\frac{62-54j}{169}.
Real part: \frac{62}{169} Imaginary part: -\frac{54}{169}
  62/169
  ans = 0.3669
  -54/169
```

Magnitude $\sqrt{(62^2 + (-54)^2)/169^2}$ $sqrt((62^2+(-54)^2)/(169^2))$

arctan(-54/62)

ans = 0.4865

ans = -0.3195

atan(-54/62)
ans = -0.7165

Task 3. Construct and plot the complex vector v corresponding to 8-th roots of unity. Then plot the elements of the vector in the complex plane.

```
figure;
v= [1.0 exp(j*pi/4) exp(j*pi/2) exp(3*j*pi/4) exp(j*pi) exp(5*j*pi/4) exp(3*j*pi/2)
exp(7*j*pi/4) ];
v
```

```
v = 1×8 complex
1.0000 + 0.0000i 0.7071 + 0.7071i 0.0000 + 1.0000i -0.7071 + 0.7071i · · ·
```

```
rev=real(v);
imv=imag(v);
plot3(1:8, rev,imv,'ok-')
grid on
xlabel('n')
ylabel('Re(v)')
zlabel('Im(v)')
```



```
plot(v,'ok')
```


Problem 3. Complex functions

Task 1. Set n = 0:199, then multiply n by $(2\pi/200)$ to get a vector θ containing 200 values from 0 to 2π . Define the complex function $z(\theta) = r(\theta) \exp(j\theta)$ where $r(\theta)$ is the function $\sin(5\theta)$.

```
n = 0:199;
theta = n*2*pi/200;
size(theta)
ans = 1 \times 2
         200
     1
r = sin(5*theta);
z = r .* exp(j*theta);
real(z)
ans = 1 \times 200
              0.1564
                        0.3084
                                   0.4520
                                             0.5832
                                                        0.6984
                                                                  0.7947
                                                                             0.8695 ...
imag(z)
ans = 1 \times 200
         0
              0.0049
                        0.0194
                                   0.0427
                                             0.0737
                                                        0.1106
                                                                  0.1516
                                                                             0.1944 · · ·
```

Task 2. Plot the complex function z in the complex plane. Then plot an animation plotting the points successively, to see how the curve is parametrized by θ .

```
figure;
plot(z);
title('Complex plane');
grid on;
```



```
figure;
plot(z)
hold on
for n=1:100
    plot(z(n),'ok')
    pause(0.02);
end
for n=101:200
    plot(z(n),'+r')
    pause(0.02);
end
hold off
grid on;
```


Task 3. Plot the real and imaginary parts of z versus θ . Use subplot to stack them in a single figure.

```
figure;
subplot(2,1,1)
plot(theta,real(z));
title('Real');
grid on;
subplot(2,1,2)
plot(theta,imag(z));
title('Imaginary');
grid on;
hold off;
```



```
real(z)
ans = 1 \times 200
                                                                                   0.8695 · · ·
         0
               0.1564
                           0.3084
                                      0.4520
                                                 0.5832
                                                             0.6984
                                                                        0.7947
imag(z)
ans = 1 \times 200
               0.0049
                           0.0194
                                      0.0427
                                                 0.0737
                                                             0.1106
                                                                        0.1516
                                                                                   0.1944 ...
          0
```

Plot the phase and magnitude of z versus θ . Use subplot to stack them in a single figure.

```
figure;
subplot(2,1,1)
plot(theta,angle(z));
title('Phase');
grid on;
subplot(2,1,2)
plot(theta,abs(z));
title('Magnitude');
grid on;
hold off;
```


Note: Note: The resolution of your plots depends on how many values of θ you pick between zero and 2π . With 15,000 values, the curves look continuous.

Task 4. Determine mathematically the formulas for the real and imaginary parts, expressing them as sums of sines and cosines, and convince yourself that these plots are correct.

$$Re(z) = r(\theta)\cos(\theta) = \sin(5\theta)\cos(\theta) = \frac{1}{2}(\sin(6\theta) + \sin(4\theta))$$

$$Im(z) = r(\theta)\sin(\theta) = \sin(5\theta)\sin(\theta) = \frac{1}{2}(-\cos(6\theta) + \cos(4\theta))$$