

SEQUENCE LISTING

<110> Stomp, Anne-Marie
Dickey, Lynn
Gasdaska, John

<120> Expression of Biologically Active
Polypeptides in Duckweed

<130> 40989/237225

<150> US 60/293,330

<151> 2001-05-23

<150> US 60/221,705

<151> 2000-07-31

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 554

<212> DNA

<213> Zea mays

<400> 1

gatcaagtgc aaaggccgc cttgtttctc ctctgtctct ttagtctgact aatctgggtt 60
tatgattcgt tgagtaattt tggggaaagc ttccgtccaca gttttttttt ccatgaacag 120
tgcccgactg gcgctgatct tggatgctat cctgcatacg tggtaactt atgtctttta 180
taccccttcac taccatgaaa agactagtaa tctttctcgta tgtaacatcg tccagcactg 240
ctattaccgt gtggccatc cgacagtctg gctgaacaca tcatacgata ttgagcaaag 300
atctatcttc cctgttcttt aatgaaagac gtcatttca tcaatgtatgt ctaagaatgt 360
tgcacttgc aaggaggcgt ttctttcttt gaatttaact aactcggtga gtggccctgt 420
ttctcgacg taaggccctt gctgctccac acatgtccat tcgaattttt ccgtgtttag 480
caagggcgaa aagtttgcattt tttgtatgatt tagctgtact atgcgattgc tttctggac 540
ccgtgcagct gccc 554

<210> 2

<211> 498

<212> DNA

<213> Artificial Sequence

<220>

<223> Duckweed codon optimized nucleotide sequence
encoding human alpha-2B interferon

<221> CDS

<222> (1)...(498)

<400> 2

tgc gac ctc ccc cag acc cac agc ctc ggg tcc cgc cgc acc ctc atg 48
Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met
1 5 10 15

ctg ctg gcg cag atg cgc cgc atc tcg ctc ttc agc tgc ctg aag gac	96		
Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp			
20	25	30	
cgc cac gac ttc ggc ttc ccg cag gag gag ttc ggc aac cag ttc cag	144		
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln			
35	40	45	
aag gcc gag acg atc ccc gtg ctc cac gag atg atc cag cag atc ttc	192		
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe			
50	55	60	
aac ctg ttc agc acc aag gac agc tcg gcc gcc tgg gac gag acc ctg	240		
Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu			
65	70	75	80
ctc gac aag ttc tac acc gag ctg tac cag cag ctc aac gac ctg gag	288		
Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu			
85	90	95	
gcg tgc gtg atc cag ggg gtt ggg gtt acg gag acg ccg ctg atg aag	336		
Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys			
100	105	110	
gag gac agc atc ctc gcc gtg cgc aag tac ttc cag cgc atc acg ctc	384		
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu			
115	120	125	
tac ctc aag gag aag aag tac agc ccg tgc gcc tgg gag gtc gtt cgc	432		
Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg			
130	135	140	
gcc gag atc atg cgc tcc ttc agc ctg agc acc aac ctc cag gag agc	480		
Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser			
145	150	155	160
ctc cgc tcc aag gag taa	498		
Leu Arg Ser Lys Glu *			
165			

<210> 3
<211> 96
<212> DNA
<213> Oryza sativa

<400> 3
accatgcagg tcctgaacac gatggtaaac aagcacttcc tctccctgtc cgtcctcata 60
gtcctcctcg ggctgagcag caacctcacc gccggc 96

<210> 4
<211> 188
<212> PRT
<213> *Homo sapiens*

<400> 4
Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys

1	5	10	15
Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu			
20	25	30	
Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser			
35	40	45	
Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu			
50	55	60	
Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His			
65	70	75	80
Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser			
85	90	95	
Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr			
100	105	110	
Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val			
115	120	125	
Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys			
130	135	140	
Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro			
145	150	155	160
Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu			
165	170	175	
Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu			
180	185		

<210> 5
<211> 165
<212> PRT
<213> Homo sapiens

<400> 5			
Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met			
1	5	10	15
Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp			
20	25	30	
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln			
35	40	45	
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe			
50	55	60	
Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu			
65	70	75	80
Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu			
85	90	95	
Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys			
100	105	110	
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu			
115	120	125	
Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg			
130	135	140	
Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser			
145	150	155	160
Leu Arg Ser Lys Glu			
165			

<210> 6
<211> 31

<212> PRT

<213> Oryza sativa

<400> 6

Met	Gln	Val	Leu	Asn	Thr	Met	Val	Asn	Lys	His	Phe	Leu	Ser	Leu	Ser
1									10						15
Val	Leu	Ile	Val	Leu	Leu	Gly	Leu	Ser	Ser	Asn	Leu	Thr	Ala	Gly	
			20					25						30	

<210> 7

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Modified rice alpha-amylase signal peptide

<400> 7

Met	Gln	Val	Leu	Asn	Thr	Met	Val	Asn	Lys	His	Phe	Leu	Ser	Leu	Ser
1									10						15
Val	Leu	Ile	Val	Leu	Thr	Val	Leu	Ser	Ser	Asn	Leu	Thr	Ala	Gly	
			20					25						30	

<210> 8

<211> 21

<212> PRT

<213> Arabidopsis thaliana

<400> 8

Met	Lys	Thr	Asn	Leu	Phe	Leu	Phe	Leu	Ile	Phe	Ser	Leu	Leu	Leu	Ser
1									10						15
Leu	Ser	Ser	Ala	Glu											
			20												