

Model Development Phase Template

Date	15 th July 2024	
Team ID	739740	
Project Title	Predictive Modeling For Fleet Fuel Management Using ML.	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.inear model import train_test_split
from sklearn.linear model import LinearRegression
l=LinearRegression()

# Assuming 'df' is your original pandas DataFrame
x = df.drop(['consume','gas_type'], axis=1)
x = x.replace(',', '.', regex=True) # Apply replace on the DataFrame
# Now you can proceed to convert 'x' to a NumPy array if needed
x_array = x.to_numpy()

y=df['consume']

x=x.values
y=y.values

x_array = x
```


Model Validation and Evaluation Report:

			Confusion Matrix
Model	Classification Report	Accuracy	
Linear Regressor	<pre>l = LinearRegression() l.fit(x_train, y_train)</pre>	99%	
	x_train.shape		
	y_pred=l.predict(x_test)		
	print(l.coef_,l.intercept_) [0.00523674 -0.02371772 -0.14711979 -0.03724498		