MATRIUS I VECTORS

Segon examen parcial

13 de gener de 2011

Exercici 1. Considereu els subespais de \mathbb{R}^4

$$F = \langle (1, 2, 0, 1), (0, 1, -1, 0) \rangle, \quad H = \langle (1, 0, 0, 4), (1, 0, 2, 1), (0, 1, 1, -3) \rangle,$$
$$G_a = \{ (x, y, z, t) \in \mathbb{R}^4 \mid x + az - y = 0, (a - 2)y + az + t = 0 \}$$

- (i) (2,5 punts) Trobeu bases, equacions i dimensions de F i de G_a .
- (ii) (2,5 punts) Trobeu $F \cap G_a$ per a tots els paràmetres a.
- (iii) (2,5 punts) Per a quins valors de $a \in \mathbb{R}$ es té $H = F + G_a$? Es té aleshores $H = F \oplus G_a$?
- (iv) (2,5 punts) Trobeu un subespai K tal que $H = F \oplus K$.

Exercici 2. Considereu els vectors $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 1)$ i $u_3 = (0, 1, 1)$ de \mathbb{R}^3 i els vectors $w_1 = (1, 1, 1, 0)$, $w_2 = (1, 1, 0, 1)$, $w_3 = (1, 0, 1, 1)$ i $w_4 = (0, 1, 1, 1)$ de \mathbb{R}^4 . Sigui $f : \mathbb{R}^3 \to \mathbb{R}^4$ l'aplicació definida per

$$f(u_1) = w_1 + w_3 - w_4, f(u_2) = w_2 - w_3 + w_4, 2u_1 + 2u_2 - u_3 \in \text{Nuc } f$$

- (i) (4 punts) Trobeu la matriu de f en les bases canòniques de \mathbb{R}^3 i \mathbb{R}^4 respectivament.
- (ii) (3 punts) Calculeu les dimensions i bases de Nuc f i de Im f.
- (iii) (3 punts) Sigui v = (1, 1, 1). Calculeu f(v) i $f^{-1}(f(v))$.

TEORIA

Tema. Definició de coordenades d'un vector. Canvi de les coordenades d'un vector al canviar la base. (7 punts)

Qüestió 1. Comproveu que

$$S = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 2z^2 - 2xy - 2yz + 2xz = 0 \}$$

és un subespai vectorial de \mathbb{R}^3 . (1 punts)

Qüestió 2. Definició de nucli d'una aplicació lineal i demostració de que és un subespai. $(1 \ punts)$

Qüestió 3. (1 punts) Esbrineu quines de les següents afirmacions són certes i quines no. Demostreu les certes i doneu un contraexemple a les que no ho siguin:

- (a) Tota aplicació lineal de \mathbb{R}^4 en \mathbb{R}^5 és injectiva.
- (b) Existeix una aplicació lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ i una aplicació lineal $g: \mathbb{R}^2 \to \mathbb{R}^3$ tal que gf és isomorfisme.