

표현(Representation)

실무형 인공지능 자연어 처리

TF-IDF (단어빈도-역문서빈도)

Term Frequency-Inverse Document Frequency

3

TF-IDF (Term Frequency-Inverse Document Frequency)

- 단어 빈도 역문서 빈도
- TDM 내 각 단어의 중요성을 가중치로 표현
- TDM을 사용하는 것보다 더 정확하게 문서비교가 가능

$$\mathsf{tfidf}(t,d,D) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D)$$

tf(d,t)	특정 문서 d에서의 특정 단어 t의 등장 횟수
df(t)	특정 단어 t가 등장한 문서의 수
idf(d, t)	df(t)의 역수

TF-IDF

$$\mathsf{tfidf}(t,d,D) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D)$$

tf(d,t)	특정 문서 d에서의 특정 단어 t의 등장 횟수
df(t)	특정 단어 t가 등장한 문서의 수
idf(d, t)	df(t)의 역수

TF	IDF	TF-IDF	설명
높	높	높	특정 문서에 많이 등장하고 타 문서에 많이 등장하지 않는 단어 (중요 키워드)
높	낮	-	특정 문서에도 많이 등장하고 타 문서에도 많이 등장하는 단어
낮	높	-	특정 문서에는 많이 등장하지 않고 타 문서에만 많이 등장하는 단어
낮	낮	낮	특정 문서에 많이 등장하지 않고 타 문서에만 많이 등장하는 단어

TF-IDF 가중치 계산

Variants of term frequency (tf) weight

weighting scheme	tf weight
binary	0,1
raw count	$f_{t,d}$
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $
log normalization	$\log(1+f_{t,d})$
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D: t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

출처: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF-IDF 계산절차

예제 1 : 토큰 Index 생성

문서1 : d1 = "The cat sat on my face I hate a cat" 문서2 : d2 = "The dog sat on my bed I love a dog"

	Index
The	0
cat	1
sat	2
on	3
my	4
face	5
I	6
hate	7
a	8
dog	9
bed	10
lov	11

예제: TF 계산

문서1 : d1 = "The cat sat on my face I hate a cat" 문서2 : d2 = "The dog sat on my bed I love a dog"

문서1

	문서내 토큰 빈도	문서내 전체 토큰빈도	TF
The	1	10	0.1
cat	2	10	0.2
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	1	10	0.1
I	1	10	0.1
hate	1	10	0.1
а	1	10	0.1
dog	0	10	0
bed	0	10	0
lov	0	10	0

문서2

	문서내 토큰 빈도	문서내 전체 토큰빈도	TF
The	1	10	0.1
cat	0	10	0
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	0	10	0
I	1	10	0.1
hate	0	10	0
а	1	10	0.1
dog	2	10	0.2
bed	1	10	0.1
love	1	10	0.1

 $\left| f_{t,d} \middle/ \sum_{t' \in d} f_{t',d}
ight|$

 $f_{t,d}$ = 문서내 토큰 빈도 $SUM(f_{t,d})$ = 문서내 전체 토큰빈도

예제: IDF 계산

문서1: d1 = "The cat sat on my face I hate a cat" 문서2: d2 = "The dog sat on my bed I love a dog"

$$\log rac{N}{n_t} = -\log rac{n_t}{N}$$

N = 문서수 $n_t = 토큰이 등장한 문서수$

	문서수	토큰이 등장한 문서수	IDF
The	2	2	0
cat	2	1	0.301
sat	2	2	0
on	2	2	0
my	2	2	0
face	2	1	0.301
I	2	2	0
hate	2	1	0.301
a	2	2	0
dog	2	1	0.301
bed	2	1	0.301
love	2	1	0.301

예제:TF-IDF 계산

문서1: d1 = "The cat sat on my face I hate a cat" 문서2: d2 = "The dog sat on my bed I love a dog"

문서1

	TF	IDF	TF-IDF
The	0.1	0	0
cat	0.2	0.301	0.060
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0.1	0.301	0.301
I	0.1	0	0
hate	0.1	0.301	0.301
а	0.1	0	0
dog	0	0.301	0.301
bed	0	0.301	0.301
lov	0	0.301	0.301

문서2

	TF	IDF	TF-IDF
The	0.1	0	0
cat	0	0.301	0
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0	0.301	0.301
I	0.1	0	0
hate	0	0.301	0.301
a	0.1	0	0
dog	0.2	0.301	0.601
bed	0.1	0.301	0.301
love	0.1	0.301	0.301

4

그 외 문서의 표현

단어-동시빈도 행렬 (Term-Cooccurrence Matrix)

• 단어간의 동시등장(co-occurrence) 행렬

		I	like	enjoy	deep	learning	NLP	flying	•
	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
X =	deep	0	1	0	0	1	0	0	0
Λ —	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	٠	0	0	0	0	1	1	1	0]

단어-문맥 행렬 (Term-Context Matrix)

- 단어-문맥 간의 동시등장(co-occurrence) 행렬
- 문맥은 사용자가 설정한 window의 크기로 결정
- 문맥 내 등장하는 단어의 빈도를 표기

감사합니다.

Insight campus Sesac

