

Evaluación de Recuperación: Análisis Termodinámico de un Motor Automotriz

Asignatura: Termodinámica Automotriz

Unidad 4: Procesos Termodinámicos y de Transferencia de Calor

Objetivo de la Actividad

Al completar esta actividad, el estudiante será capaz de analizar datos experimentales (o simulados) de un motor de combustión interna, aplicar los principios de ciclos termodinámicos y transferencia de calor para calcular parámetros clave, e interpretar los resultados en un formato conciso y estructurado.

Instrucciones Generales

- 1. Esta actividad se realizará de forma individual en el laboratorio o aula de cómputo, con una duración máxima de **3 horas**.
- 2. Los datos necesarios para la resolución de los problemas serán proporcionados al inicio de la sesión, ya sea a través de una práctica de laboratorio o de una simulación interactiva.
- 3. Presente todos los cálculos de manera clara y ordenada. Utilice la notación LaTeX para todas las ecuaciones y variables.
- 4. Las respuestas deben ser concisas y directas, enfocándose en los resultados numéricos y una breve interpretación.
- 5. El entregable será un documento (físico o digital, según se indique) con las soluciones a los problemas planteados.

Metodología para el Desarrollo del Estudio de Caso

Para completar este estudio de caso de manera efectiva, siga los siguientes pasos:

1. **Comprensión del Escenario:** Lea detenidamente la descripción del caso de estudio y los datos proporcionados. Identifique el objetivo principal de la evaluación del motor.

2. Análisis del Ciclo Otto:

- Revise los conceptos de ciclos termodinámicos, especialmente el Ciclo Otto, en sus materiales de AD y AR.
- Realice los cálculos de eficiencia térmica, trabajo neto y calor rechazado, mostrando claramente cada paso y las fórmulas utilizadas.
- Asegúrese de usar las unidades correctas y la notación LaTeX para las ecuaciones.

3. Análisis de Transferencia de Calor:

Repase los mecanismos de conducción, convección y radiación en sus materiales de AD y AR.

- Realice los cálculos de las tasas de transferencia de calor por convección y radiación, prestando especial atención a las unidades y a la conversión de temperaturas a Kelvin para la radiación.
- Muestre todos los pasos de cálculo.

4. Interpretación y Conclusión:

- Compare los resultados obtenidos en los cálculos de convección y radiación. Determine cuál mecanismo es más relevante para la disipación de calor en este caso y justifique su respuesta basándose en los valores calculados.
- Formule conclusiones claras y concisas sobre el desempeño termodinámico y térmico general del motor, basándose en sus análisis.
- Proponga recomendaciones prácticas y justificadas para mejorar la eficiencia del motor o su sistema de enfriamiento. Piense en soluciones que podrían implementarse en un contexto automotriz real.

5. Elaboración del Informe:

- Estructure su informe de manera lógica, siguiendo las secciones indicadas en los 'Requerimientos del Informe Técnico'.
- Asegúrese de que el informe sea claro, conciso y profesional. Utilice un lenguaje técnico adecuado.
- Revise la ortografía, gramática y el formato general. La presentación es parte de la evaluación.

Escenario y Problemas a Resolver

Se ha realizado una prueba de rendimiento y gestión térmica en un motor de gasolina de 4 cilindros en un banco de pruebas. A continuación, se presentan los datos obtenidos en puntos clave del ciclo de operación y del sistema de enfriamiento. Su tarea es analizar estos datos para evaluar el desempeño termodinámico y térmico del motor.

Datos Proporcionados (Ejemplo - los datos reales se entregarán en la sesión):

- Datos del Ciclo de Operación (Motor de Gasolina Ciclo Otto Idealizado):
 - Relación de Compresión (r): 9.5:1
 - Relación de calores específicos (k): 1.4
 - Calor suministrado por ciclo (Q_{in}) : $1500 \, kJ/kg$
 - Masa de mezcla aire-combustible por ciclo: $0,004 \, kg$

Datos del Sistema de Enfriamiento (Bloque del Motor):

- Temperatura superficial exterior del bloque ($T_{superficie}$): $105^{\circ}C$
- Temperatura del aire ambiente ($T_{ambiente}$): $28^{\circ}C$
- Área superficial expuesta del bloque (A_{bloque}): $0.55 \, m^2$
- Coeficiente de transferencia de calor por convección (h_{aire}): $18\,W/m^2\cdot K$
- Emisividad del bloque del motor (ϵ): 0.8

Problemas a Resolver:

1. Análisis del Ciclo Otto:

 Calcule la eficiencia térmica ideal del motor (eta_{th,Otto}). (20

item Determine el trabajo neto producido por ciclo (W_{neto}) y el calor rechazado por ciclo $(Q_{rechazado})$. (20

2. Análisis de Transferencia de Calor:

- Calcule la tasa de transferencia de calor por convección desde la superficie exterior del bloque del motor al aire ambiente. (20%)
- Calcule la tasa de transferencia de calor por radiación desde la superficie exterior del bloque del motor a los alrededores. (20%)

3. Interpretación y Conclusión:

- Basado en sus cálculos, ¿cuál de los dos mecanismos (convección o radiación) es más significativo para la disipación de calor en este escenario? Justifique brevemente. (10 %)
- Proponga una breve recomendación para mejorar la disipación de calor del motor. (10%)

Rúbrica de Evaluación

Criterio de Eva- luación	10 Es- tratégico (90- 100%)	9 Autóno- mo (80- 89%)	8 Básico (70-79%)	7 Receptivo (60-69 %)	6 Pre- formal (50-59 %)	0 No entrega (0%)	Puntaje
1. Análisis del Ciclo Otto	Cálculos precisos y com- pletos de eficiencia, trabajo neto y calor re- chazado.	Cálculos correc- tos con errores menores o alguna omisión.	Cálcu- los con errores signifi- cativos en una sección.	Cálculos incomple- tos o con errores concep- tuales.	Cálculos incorrec- tos o ausentes.	No entrega.	/20%
2. Trans- ferencia de Calor (Convec- ción)	Cálculo preciso y bien presentado de Q_{conv} .	Cálculo correcto con error menor.	Cálculo con error significati- vo.	Cálculo incomple-to o con error conceptual.	Cálculo incorrecto o ausente.	No entre- ga.	/20%
3. Trans- ferencia de Calor (Radia- ción)	Cálculo preciso y bien presentado de Q_{rad} .	Cálculo correcto con error menor.	Cálculo con error significati- vo.	Cálculo incomple- to o con error con- ceptual.	Cálculo incorrecto o ausente.	No entre- ga.	/20%
4. Interpretación y Conclusión	Análisis profundo y justi- ficado, con- clusión clara y recomen- dación pertinen- te.	Análisis adecuado, con- clusión clara y recomen- dación relevante.	Análisis básico, con- clusión aceptable, recomen- dación genérica.	Análisis super- ficial, conclu- sión vaga, recomen- dación poco clara.	Análisis incorrecto o ausente, sin conclusión ni recomendación.	No entrega.	/20%
5. Aspectos Formales y Presentación	Presentació impeca-ble, uso correcto de LaTeX, claridad y orden.	nPresentació muy bue- na, pocos errores de formato o LaTeX.	nPresentació aceptable, algunos errores de formato o LaTeX.	nPresentació con defi- ciencias, errores frecuen- tes de formato o LaTeX.	nPresentació desorga- nizada, muchos errores o ilegible.	nNo entre- ga.	/20%
Puntaje Total							/100%