Lab 1 - Advanced Machine Learning

Linear Regression

Pierre HOUDOUIN

CentraleSupélec

29 Septembre 2023

General information

- Assignment: Alone or in pairs, you will code the algorithms you learnt in Scikit-learn formalism'
- Due: Each assignment has to be sent at most 7 days after the lab session at pierre.houdouin@centralesupelec.fr
- **Grading**: There are 5 lab sessions, each lab session is worth 4 points, the average will count for half of your final grade
- **Questions**: If you have questions, comments or feedbacks about the lab session, feel free to contact me by email

Lesson recap

Linear regression

• We suppose that the relation between the input variables $x_1,...x_d$ and the output variable y is a linear relation : $y = \beta_0 1 + \beta_1 x_1 + ... + \beta_d x_d$

Lesson recap

Linear regression

• We suppose that the relation between the input variables $x_1,...x_d$ and the output variable y is a linear relation : $y = \beta_0 1 + \beta_1 x_1 + ... + \beta_d x_d$

Training

- Using a train set of n examples \mathbf{X} with target prediction \mathbf{Y} , we look to find the best coefficients $\beta_0,...,\beta_d$
- What does best means?

Lesson recap

Linear regression

• We suppose that the relation between the input variables $x_1,...x_d$ and the output variable y is a linear relation : $y = \beta_0 1 + \beta_1 x_1 + ... + \beta_d x_d$

Training

- Using a train set of n examples \mathbf{X} with target prediction \mathbf{Y} , we look to find the best coefficients $\beta_0,...,\beta_d$
- What does best means?

Optimization criterion

 \bullet We look to minimize an **objective function** involving X and Y using a well-suited algorithm

Least square objective function

Objective

$$\min_{\boldsymbol{\beta}} ||\mathbf{X}\boldsymbol{\beta} - \mathbf{Y}||_2^2$$

Closed-form solution

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

Algorithm

The well suited algorithm is gradient descent

Effect

Vanilla

Ridge

Objective

$$\min_{oldsymbol{eta}} ||\mathbf{X}oldsymbol{eta} - \mathbf{Y}||_2^2 + \lambda ||oldsymbol{eta}||_2^2$$

Closed-form solution

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

Algorithm

The well suited algorithm is gradient descent

Effect

Shrinkage

LASSO

Objective

$$\min_{oldsymbol{eta}} ||\mathbf{X}oldsymbol{eta} - \mathbf{Y}||_2^2 + \lambda ||oldsymbol{eta}||_1^1$$

Closed-form solution

Unavailable

Algorithm

The well suited algorithm is **proximal gradient such as Iterative Shrinkage-Thresholding Algorithm**

Effect

Sparsity

Robust

Objective

$$min_{\beta}\rho\left(\mathbf{X}\boldsymbol{\beta}-\mathbf{Y}\right)$$

Closed-form solution

Unavailable

Algorithm

The well suited algorithm is Iteratively Reweighted Least Square

Effect

Robustness

Example of potential functions

• Huber potential:

$$\rho(e) = \begin{cases} \frac{e^2}{2} & \text{if } |e| \le \delta \\ \delta |e| - \frac{\delta^2}{2} & \text{if } |e| > \delta \end{cases}$$

Bisquare potential:

$$\rho(\mathbf{e}) = \left\{ \begin{array}{ll} \frac{\delta^2}{6} \left(1 - (1 - \frac{\mathbf{e}^2}{\delta^2})^3\right) & \text{if} |\mathbf{e}| \leq \delta \\ \frac{\delta^2}{6} & \text{if} |\mathbf{e}| > \delta \end{array} \right.$$