Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil B: Kontextfreie Sprachen

7: Kontextfreie Grammatiken

Inhalt

- > 7.1 Kontextfreie Grammatiken: Beispiele und Definition
 - 7.2 Ableitungen und Ableitungsbäume
 - 7.3 Mehrdeutigkeit
 - 7.4 Konstruktion von Grammatiken
 - 7.5 Die Chomsky-Hierarchie
 - 7.6 Erweiterte kontextfreie Grammatiken

Motivation

- Ziel: Beschreibungsform für Syntax von Programmiersprachen
- Wir wissen bereits, dass sich Bezeichner in Programmtexten durch reguläre Sprachen beschreiben lassen
- Wie ist es mit anderen Programmkonstrukten?

Beispiel

- ullet In Programmen kommen häufig arithmetische Ausdrücke wie z.B. $((m{a}+m{b}) imes(m{a}+m{a})) imes m{b}$ vor
- Die Menge M der wohlgeformten arithmetischen Ausdrücke über einem Alphabet wie $\{a,b,+,\times,\mbox{,}\mbox{,}(\mbox{``},\mbox{"})\mbox{``}\}$ sollte von einer Methode zur Spezifikation der Syntax einer Programmiersprache beschreibbar sein

"Proposition"

• Die Menge M der wohlgeformten arithmetischen Ausdrücke über $\{a,b,+, imes, "(",")"\}$ ist nicht regulär

Beweisidee

- ullet Dazu genügt es, die "Zukunftssprachen" M/v_n der folgenden Strings v_n , für $n\geqslant 1$ zu betrachten:
 - $v_{m{n}}\stackrel{ ext{ iny def}}{=} (^{m{n}}a$
- ullet Für jedes $m{n}$ enthält $m{M}/m{v_n}$ den String $[+m{a})]^{m{n}}$, aber keinen String der Art $[+m{a})]^{m{m}}$ für $m{m} \,
 otan$
 - Hier sind "(" und ")" Symbole des Alphabets und "[" und "]" sind Meta-Symbole
- ullet Also hat M unendlich viele Nerode-Klassen...
- ullet Wie können wir Sprachen wie M beschreiben?

Nicht-reguläre Sprachen

• Die folgenden Sprachen sind nicht regulär:

- (a) $m{L}_{\mathsf{pali}} = \{m{w} \in \{m{a}, m{b}\}^* \mid m{w}^{m{R}} = m{w}\}$ $-m{w}^{m{R}} \stackrel{\mathsf{def}}{\Leftrightarrow} \mathsf{Umkehrung} \ \mathsf{von} \ m{w}, \ \mathsf{also}$ $(m{a}m{b}m{d}m{c})^{m{R}} = m{c}m{d}m{b}m{a}$
- (b) $L_{ab}=\{a^nb^n\mid n\geqslant 0\}$
- (c) $oldsymbol{L}_{\mathsf{doppel}} = \{oldsymbol{w} \mid oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^*\}$
- (d) $oldsymbol{L}_{\mathsf{quad}} = \{oldsymbol{a^{n^2}} \mid n>0\}$
- (e) $L_{\mathsf{prim}} = \{ a^p \mid p \text{ ist Primzahl } \}$
- (f) $oldsymbol{L}_{()}=$ Menge aller wohlgeformten Klammerausdrücke
- Für einige dieser Sprachen bieten kontextfreie Grammatiken eine "einfache" Beschreibungsmöglichkeit

- Palindrome über $\{a, b\}$ lassen sich leicht induktiv definieren:
 - $-\epsilon, a, b$ sind Palindrome
 - Ist w ein Palindrom, so auch awa
 - Ist $oldsymbol{w}$ ein Palindrom, so auch $oldsymbol{bwb}$
- Lässt sich das kompakter aufschreiben?
 - Idee: Schreibe P o w statt "w ist Palindrom"
- Dann lassen sich die genannten Regeln wie folgt zusammenfassen:

$$P \to \epsilon$$
 (1)

$$P \rightarrow a$$
 (2)

$$P \rightarrow b$$
 (3)

$$P \rightarrow aPa$$
 (4)

$$P \rightarrow bPb$$
 (5)

Palindrome erzeugen

• Die Regeln für Palindrome,

$$P \rightarrow \epsilon$$
 (1)

$$P o a$$
 (2)

$$P \rightarrow b$$
 (3)

$$P \rightarrow aPa$$
 (4)

$$P \rightarrow bPb$$
 (5)

lassen sich auf verschiedene Weisen interpretieren:

 Wir können Regeln der Art P
ightarrow w als Rezepte zum Erzeugen von Palindromen "bottom-up" auffassen:

b ist Palindrom (3)

- $\Rightarrow aba$ ist Palindrom (4)
- $\Rightarrow babab$ ist Palindrom (5)
- $\Rightarrow bbababb$ ist Palindrom (5)

 Wir können Regeln der Art P
ightarrow w auch als Anleitung zum Erzeugen von Palindromen "top-down" auffassen:

$$egin{array}{cccc} P & \stackrel{(5)}{\Rightarrow} & bPb \ \stackrel{(5)}{\Rightarrow} & bbPbb \ \stackrel{(4)}{\Rightarrow} & bbaPabb \ \stackrel{(3)}{\Rightarrow} & bbababb \end{array}$$

Ein weiteres Beispiel

- Operationssymbole: +, ×
- Ein **Bezeichner** sei ein String der Form $(a+b)(a+b+0+1)^*$
 - Zum Beispiel: bb1
- Dazu kommen noch Klammern
- Das Alphabet für unsere arithmetischen Ausdrücke ist also:

$$\Sigma = \{a, b, 0, 1, (,), +, \times\}$$

Ein Beispiel-Ausdruck:

$$(a+b0) \times bb1 + a0$$

- Induktive "Definition" arithmetischer Ausdrücke:
 - Bezeichner, oder
 - Ausdruck + Ausdruck, oder
 - Ausdruck × Ausdruck, oder
 - (Ausdruck)

$$egin{aligned} ullet & \operatorname{In}\ {}_{ ext{Regel-}} & B
ightarrow a \ & Schreibweise ": & B
ightarrow b \ & A
ightarrow B \ & A
ightarrow A + A \ & A
ightarrow A
ightarrow A
ightarrow A \ & B
ightarrow B
ightarrow B
ightarrow B 1 \end{aligned}$$

Den Beispiel-Ausdruck erhalten wir dann

so:
$$\overrightarrow{A} \Rightarrow A + A$$

 $\Rightarrow A \times A + A$
 $\Rightarrow (A) \times A + A$
 $\Rightarrow (A + A) \times A + A$
 $\Rightarrow (B + A) \times A + A$
 $\Rightarrow (a + A) \times A + A$
 $\Rightarrow (a + B) \times A + A$

Kontextfreie Grammatiken: Definition

Definition

- ullet Eine $egin{array}{c} {\sf kontextfreie\ Grammatik} \ G = (V, \Sigma, S, P) \ {\sf besteht\ aus} \ \end{array}$
 - einer endlichen Menge $oldsymbol{V}$ von Variablen
 - einem Alphabet Σ
 - einem Startsymbol $S \in oldsymbol{V}$
 - $oldsymbol{\mathsf{-}}$ einer endlichen Menge $oldsymbol{P}$ von $oldsymbol{\mathsf{Regeln}}$:

$$oldsymbol{P} \subseteq oldsymbol{V} imes (oldsymbol{V} \cup oldsymbol{\Sigma})^*$$

ullet Dabei muss gelten: $oldsymbol{\Sigma} \cap oldsymbol{V} = arnothing$

riangle Statt $(A,BC)\in P$ schreiben $\operatorname{wir} A o BC$

Beispiel

- Die Regeln für arithmetische Ausdrücke sind also Regeln eine kontextfreien Grammatik
- Formal lässt sich diese Grammatik wie folgt aufschreiben:

$$(\{m{A},m{B}\},\{m{a},m{b},m{0},m{1},(,),+, imes\},m{A},\ \{(m{B},m{a}),(m{B},m{b}),(m{B},m{B}m{a}),\dots,(m{A},(m{A}))\})$$

- Übliche Bezeichnungen:
 - Elemente von $oldsymbol{V}\cup oldsymbol{\Sigma}$: Symbole
 - Elemente von Σ : **Terminalsymbole**
 - Elemente von V: Variablen oder Nicht-Terminale
 - Regeln aus P: Produktionen
- ullet Mit |G| bezeichnen wir die Größe einer Grammatik:

$$|\underline{G}| \stackrel{ ext{def}}{=} |V| + |\Sigma| + \sum_{(X, lpha) \in P} (|lpha| + 1)$$

 Die Grammatik für arithmetische Ausdrücke hat die Größe 40

Kontextfreie Grammatiken: Kompakte Schreibweise

- Alle Regeln mit derselben linken Seite werden üblicherweise zusammengefasst:
 - Statt

$$*X \rightarrow \alpha_1$$

$$*X \rightarrow \alpha_2$$

* ...

$$*X \rightarrow \alpha_k$$

schreiben wir also:

$$X \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$$

$$egin{aligned} A
ightarrow B & | A + A | A imes A | (A) \ B
ightarrow a & | b | Ba | Bb | B0 | B1 \end{aligned}$$

- Meistens werden Grammatiken einfach durch die Angabe ihrer zusammengefassten Regeln beschrieben
- Dabei gelten folgende Konventionen:
 - Alle Symbole, die links in einer Regel vorkommen, sind Variablen
 - Das Startsymbol ist die Variable der linken Seite der ersten Regel

Kontextfreie Grammatiken: Semantik

- ullet Informell: in einem Ableitungsschritt wird eine Variable X durch eine rechte Seite γ einer Regel $X o \gamma$ ersetzt, z.B.:
 - -bPb $⇒_G baPab$

Definition

- ullet Sei $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ eine kontextfreie Grammatik
- ullet Eine **Satzform** ist ein String aus $(oldsymbol{V} \cup oldsymbol{\Sigma})^*$
- ullet Eine Satzform $oldsymbol{v}$ geht aus einer Satzform $oldsymbol{u}$ in einem Ableitungsschritt hervor, wenn es
 - Satzformen α, β, γ ,
 - eine Variable $oldsymbol{X}$ und
 - eine Regel $X
 ightarrow \gamma$ in P gibt, so dass
 - u=lpha Xeta und
 - $-v = \alpha \gamma \beta$
- ullet Schreibweise: $u\Rightarrow_G v$

 Informell: eine Ableitung ist eine Folge von Ableitungsschritten

Definition

- ullet Sei $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ eine kontextfreie Grammatik
- ullet Eine Folge u_0,u_1,\ldots,u_n heißt $ar{ extstyle\Delta b-}$ $ar{ extstyle extsty$
- ullet Schreibweise: $u_0 \Rightarrow_G^n u_n$
 - oder $u_0 \Rightarrow_G^* u_n$, wenn es auf die Zahl der Schritte nicht ankommt
- ullet Wir sagen auch: u_n ist aus u_0 (in n Schritten) ableitbar
- $ullet \ egin{array}{c} L(G) \stackrel{ ext{def}}{=} \{ oldsymbol{w} \in oldsymbol{\Sigma}^* \mid S \Rightarrow_{oldsymbol{G}}^* oldsymbol{w} \} \ & ext{ist die von } G ext{ erzeugte Sprache} \ \end{array}$
- ullet Eine Sprache L heißt $\underline{ ext{kontextfrei}}$, falls L=L(G) für eine kontextfreie Grammatik G

Ableitung: Beispiel

$$A \Rightarrow A + A$$

 $\Rightarrow A \times A + A$
 $\Rightarrow (A) \times A + A$
 $\Rightarrow (A + A) \times A + A$
 $\Rightarrow (B + A) \times A + A$
 $\Rightarrow (a + A) \times A + A$
 $\Rightarrow (a + B) \times B + A$

Inhalt

- 7.1 Kontextfreie Grammatiken: Beispiele und Definition
- > 7.2 Ableitungen und Ableitungsbäume
 - 7.3 Mehrdeutigkeit
 - 7.4 Konstruktion von Grammatiken
 - 7.5 Die Chomsky-Hierarchie
 - 7.6 Erweiterte kontextfreie Grammatiken

Ableitungsbäume

• Ableitungen lassen sich durch Ableitungsbäume visualisieren

$$egin{aligned} A
ightarrow B \mid A + A \mid A imes A \mid (A) \ B
ightarrow a \mid b \mid Ba \mid Bb \mid B0 \mid B1 \end{aligned}$$

- ullet Dieser Ableitungsbaum hat den Blattstring (a0+b1) imes a+b
- $ullet S \Rightarrow_G^* w \Longleftrightarrow$ es gibt einen Ableitungsbaum mit Wurzel S und Blattstring w

Ableitungsbäume und Ableitungen: Definitionen (1/2)

Definition

- ullet Ein Ableitungsbaum zu einer kontextfreien Grammatik $G=(V,\Sigma,S,P)$ ist ein geordneter Baum T mit Wurzel, der die folgenden Eigenschaften hat
- ullet Die **Blätter** sind mit Terminalsymbolen oder mit ϵ markiert
- ullet Die **inneren Knoten** sind mit Variablen aus V markiert
- Die Wurzel ist mit S markiert
- ullet Für jeden inneren Knoten v gibt es eine Regel X o lpha aus P, so dass
 - -v mit X markiert ist und
 - die Kinder von v von links nach rechts mit den Zeichen aus α markiert sind
- ullet Der **Blattstring** eines Ableitungsbaumes besteht aus den Symbolen der Blätter, die nicht mit ϵ markiert sind, von links nach rechts gelesen
- ullet Ist T ein Ableitungsbaum mit Blattstring w, so nennen wir T Ableitungsbaum für w

Ableitungsbäume und Ableitungen: Definitionen (2/2)

Definition

- Zwei spezielle Arten von Ableitungen:
 - Linksableitung: Ableitung, in der in jedem
 Schritt die am weitesten links stehende Variable ersetzt wird
 - st Schreibweise: $S\Rightarrow_l^st w$ bzw. $S\Rightarrow_{G,l}^st w$
 - Rechtsableitung: analog
 - st Schreibweise: $S\Rightarrow_{m{r}}^{st} w$ bzw. $S\Rightarrow_{m{G},m{r}}^{st} w$
- Zu jedem Ableitungsbaum gibt es je eine Linksund eine Rechtsableitung

Eine Linksableitung

Beispiel

$$egin{aligned} A &\Rightarrow_l A imes A \ \Rightarrow_l (A) imes A \ \Rightarrow_l (A+A) imes A \ \Rightarrow_l (B+A) imes A \ \Rightarrow_l (B0+A) imes A \ \Rightarrow_l (a0+A) imes A \ \Rightarrow_l (a0+B) imes A \ \Rightarrow_l (a0+B1) imes A \ \Rightarrow_l (a0+b1) imes A \ \Rightarrow_l (a0+b1) imes A + A \ \Rightarrow_l (a0+b1) imes B+A \ \Rightarrow_l (a0+b1) imes a+A \ \Rightarrow_l (a0+b1) imes a+B \ \Rightarrow_l (a0+b1) imes a+B \ \Rightarrow_l (a0+b1) imes a+b \end{aligned}$$

Eine Rechtsableitung

Beispiel

$$A \Rightarrow_{r} A \times A$$
 $\Rightarrow_{r} A \times A + A$
 $\Rightarrow_{r} A \times A + B$
 $\Rightarrow_{r} A \times A + b$
 $\Rightarrow_{r} A \times B + b$
 $\Rightarrow_{r} A \times a + b$
 $\Rightarrow_{r} (A) \times a + b$
 $\Rightarrow_{r} (A + A) \times a + b$
 $\Rightarrow_{r} (A + B) \times a + b$
 $\Rightarrow_{r} (A + B1) \times a + b$
 $\Rightarrow_{r} (A + b1) \times a + b$
 $\Rightarrow_{r} (B + b1) \times a + b$
 $\Rightarrow_{r} (B0 + b1) \times a + b$
 $\Rightarrow_{r} (a0 + b1) \times a + b$

Inhalt

- 7.1 Kontextfreie Grammatiken: Beispiele und Definition
- 7.2 Ableitungen und Ableitungsbäume
- > 7.3 Mehrdeutigkeit
 - 7.4 Konstruktion von Grammatiken
 - 7.5 Die Chomsky-Hierarchie
 - 7.6 Erweiterte kontextfreie Grammatiken

Eindeutige vs. mehrdeutige Grammatiken (1/2)

- Wir haben gesehen: im Allgemeinen kann es zu einem Ableitungsbaum verschiedene Ableitungen geben
- Also kann es zu einem String mehrere Ableitungen geben
- Kann derselbe String verschiedene Ableitungsbäume haben?

- Für Compiler ist es ungünstig, wenn der Ableitungsbaum nicht eindeutig ist:
 - Denn der Ableitungsbaum soll die Auswertungsreihenfolge eines Ausdrucks festlegen

Beispiel

Der linke Baum entspricht der Auswertung

$$a + (a \times a)$$

Der rechte Baum entspricht der Auswertung

$$(\boldsymbol{a} + \boldsymbol{a}) \times \boldsymbol{a}$$

Eindeutige vs. mehrdeutige Grammatiken (2/2)

Definition

- ullet Eine kontextfreie Grammatik G heißt **mehrdeutig**, falls es einen String w gibt, der zwei verschiedene Ableitungsbäume bezüglich G hat
 - Andernfalls heißt G eindeutig

- Die Grammatik für arithmetische Ausdrücke ist mehrdeutig
- Wir sehen gleich: die Sprache der arithmetischen Ausdrücke hat auch eine eindeutige Grammatik

- Wie schwierig ist es zu testen, ob eine Grammatik eindeutig ist?
 - Mehr als schwierig:
 es gibt kein allgemeines Verfahren dafür
 - → Teil C der Vorlesung

Arithmetische Ausdrücke

$$egin{aligned} A
ightarrow B & | A + A & | A imes A & | (A) \ B
ightarrow a & | b & | Ba & | Bb & | B0 & | B1 \end{aligned}$$

• Die obige Grammatik ist auf zweifache Weise mehrdeutig:

- Die Mehrdeutigkeit (a) lässt sich auf einfache Weise beheben:
 - Da die Operation + assoziativ ist, genügt es, immer die rechte Struktur zu erzeugen: $A o A + B \mid B$
- Die Mehrdeutigkeit (b) hängt mit der Bindungsstärke der Operatoren zusammen ("Punkt vor Strich")
 - Aber sie lässt sich ebenfalls beheben...

Eine eindeutige Grammatik für arithmetische Ausdrücke

- Ziel: eindeutige Grammatik für arithmetische Ausdrücke
- Idee: Operatoren mit geringer Bindung werden später ausgewertet und sollten im Baum deshalb weit oben sein
 - Die Regeln für + müssen in der Grammatik in "einer höheren Ebene" vorkommen als die Regeln für ×
- Modifizierte Grammatik:

$$egin{aligned} A
ightarrow A + T & | \ T \ T
ightarrow T imes F & | \ F \ F
ightarrow (A) & | \ B \ B
ightarrow a & | \ b & | \ Ba & | \ Bb & | \ B0 & | \ B1 \end{aligned}$$

ullet Bezüglich dieser Grammatik hat $oldsymbol{a}+oldsymbol{a} imesoldsymbol{a}$ eine eindeutige Ableitung

Beispiel

Fakt

 Die modifizierte Grammatik für arithmetische Ausdrücke ist eindeutig

Beweisidee

- Zeige für alle Variablen der Grammatik, dass jede aus ihr ableitbare Satzform einen eindeutigen Ableitungsbaum hat
- Dies lässt sich durch Induktion nach der Höhe des minimalen Ableitungsbaums beweisen

Inhärent mehrdeutige kontextfreie Sprachen

Definition

- ullet Eine kontextfreie Sprache L heißt **eindeutig**, falls sie eine eindeutige Grammatik hat
 - Andernfalls heißt $m{L}$ inhärent mehrdeutig

Beispiel

$$S o AX_{bc}\mid X_{ab}C\mid \epsilon$$
 $C o Cc\mid \epsilon$
 $A o Aa\mid \epsilon$
 $X_{ab} o aX_{ab}b\mid \epsilon$
 $X_{bc} o bX_{bc}c\mid \epsilon$

ist eine mehrdeutige kontextfreie Grammatik für die Sprache $L_{abc} \stackrel{ ext{def}}{=} \{a^i b^j c^k \mid i=j ext{ oder } j=k\}$

- ullet L_{abc} ist inhärent mehrdeutig
- ullet Intuitiver Grund: Strings der Form $a^nb^nc^n$ erfüllen beide Bedingungen "i=j" und "j=k" und haben deshalb zwei Ableitungsbäume
 - Aber: der Beweis dafür ist ziemlich kompliziert
- Es gibt kein allgemeines Verfahren, das entscheidet, ob die Sprache einer gegebenen kontextfreien Grammatik eindeutig ist

Inhalt

- 7.1 Kontextfreie Grammatiken: Beispiele und Definition
- 7.2 Ableitungen und Ableitungsbäume
- 7.3 Mehrdeutigkeit
- > 7.4 Konstruktion von Grammatiken
 - 7.5 Die Chomsky-Hierarchie
 - 7.6 Erweiterte kontextfreie Grammatiken

Konstruktion einer kontextfreien Grammatik

- ullet Wir konstruieren eine kontextfreie Grammatik für $L_{ab} = \{a^nb^n \mid n\geqslant 0\}$
- ullet Immer, wenn sie vorne ein a erzeugt, soll sie hinten ein b erzeugen: S
 ightarrow aSb
- ullet Irgendwann soll sie damit aufhören: $S
 ightarrow \epsilon$
- ullet Insgesamt also: $S
 ightarrow aSb \mid \epsilon$
- Beispielableitung:

$$S \Rightarrow aSb \ \Rightarrow aaSbb \ \Rightarrow aaaSbbb \ \Rightarrow aaabbb$$

Eine etwas kompliziertere kontextfreie Grammatik (1/2)

- Wir betrachten jetzt ein komplizierteres Beispiel einer kontextfreien Grammatik
- Es illustriert, dass eine rekursive Herangehensweise bei der Konstruktion kontextfreier Grammatiken helfen kann

Beispiel

ullet Sei $L_{a=b}\stackrel{ ext{def}}{=}$

$$\{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$$

- Zur Erinnerung: $\#_a(w)$ ist die Anzahl der Positionen in w, an denen a steht
- Wie lassen sich die Strings dieser Sprache erzeugen?

- ullet Idee: Strings aus $L_{a=b}$ lassen sich schreiben
 - in der Form aubv oder
 - in der Form buav, wobei sowohl in u als auch in v gleich viele a's wie b's vorkommen
 - u ist dabei der kürzeste String hinter a (bzw. b), für den aub (bzw. bua) gleich viele a's wie b's hat
- ullet Eine Grammatik für $L_{a=b}$ könnte also die Regeln S o aSbS und S o bSaS verwenden
- ullet Der Leerstring ist natürlich auch noch in $L_{a=b}$
- Insgesamt ergibt sich also die folgende Grammatik $G_{a=b}$:

$$S o aSbS \mid bSaS \mid \epsilon$$

Eine etwas kompliziertere kontextfreie Grammatik (2/2)

Beispiel

- ullet Wir betrachten einen Ableitungsbaum für den String aabbbaab
- ullet Zur Erinnerung: $G_{a=b}$ ist $S o aSbS\mid bSaS\mid \epsilon$

ullet Dass $G_{a=b}$ wirklich genau die Strings der Sprache $L_{a=b}$ erzeugt, zeigen wir in Kapitel 9

Inhalt

- 7.1 Kontextfreie Grammatiken: Beispiele und Definition
- 7.2 Ableitungen und Ableitungsbäume
- 7.3 Mehrdeutigkeit
- 7.4 Konstruktion von Grammatiken
- > 7.5 Die Chomsky-Hierarchie
 - 7.6 Erweiterte kontextfreie Grammatiken

Chomsky-Grammatiken: Definition

- Kontextfreie Grammatiken sind der (mit Abstand bedeutendste) Spezialfall eines allgemeineren Konzeptes
- Chomsky-Grammatiken wurden in den 50er Jahren von dem Linguisten Noam Chomsky im Zusammenhang mit der Analyse natürlicher Sprachen eingeführt
- Sie erlauben auf der linken Seite einer Regel nicht nur Variablen sondern Satzformen, z.B.:
 - $aBC \rightarrow De$

Definition

ullet Eine **Chomsky-Grammatik** lässt sich als 4-Tupel (V,Σ,P,S) beschreiben mit V,Σ,S wie zuvor und

$$oldsymbol{P} \subseteq (oldsymbol{V} \cup oldsymbol{\Sigma})^*oldsymbol{V} (oldsymbol{V} \cup oldsymbol{\Sigma})^* imes (oldsymbol{V} \cup oldsymbol{\Sigma})^*$$

- ullet Auf der linken Seite jeder Regel ist also immer ein String über $V \cup \Sigma$ mit mindestens einer Variablen
- ullet Ableitungsschritt: $lphaeta\gamma \Rightarrow lpha\delta\gamma,$ falls $eta o\delta$ Regel von $m{P}$ ist

Chomsky-Grammatiken: Beispiel

Beispiel-Grammatik

Beispiel-Ableitung

$$egin{array}{lll} S &\Rightarrow SABC \ &\Rightarrow SABCABC \ &\Rightarrow ABCABC \ &\Rightarrow BACABC \ &\Rightarrow BAACBC \ &\Rightarrow bAACBC \ &\vdots &\vdots \ &\Rightarrow baacbc \end{array}$$

Diese Grammatik erzeugt die Sprache

-
$$L_{abc}\stackrel{ ext{def}}{=}\{m{w}\mid \#_{m{a}}(m{w})=\#_{m{b}}(m{w})=\#_{m{c}}(m{w})\}$$
 aller Strings über $\{m{a},m{b},m{c}\}$, bei denen die Anzahl der a, b und c gleich ist

Die Chomsky-Hierarchie

• Die Chomsky-Hierarchie umfasst 4 Klassen von Sprachen

	Тур	Name	Regel-Einschränkung
			lpha o eta
_	0	Тур 0	keine
	1	kontextsensitiv	$ oldsymbol{lpha} \leqslant oldsymbol{eta} $
	2	kontextfrei	X oeta
	3	regulär	$X o\sigma$ oder $X o\sigma Y$

ullet Bei den Typen 1 und 3 ist jeweils auch die Regel $S o \epsilon$ erlaubt, falls S auf keiner rechten Seite vorkommt

riangle Bei den Typen 0 und 2 sind ϵ -Regeln sowieso erlaubt

- ullet Grammatiken, die nur Regeln der Formen $X o\sigma$ und $X o\sigma Y$ haben, heißen **rechtslinear**
 - Auch die (analog definierten) linkslinearen Grammatiken erzeugen genau die regulären Sprachen

Inhalt

- 7.1 Kontextfreie Grammatiken: Beispiele und Definition
- 7.2 Ableitungen und Ableitungsbäume
- 7.3 Mehrdeutigkeit
- 7.4 Konstruktion von Grammatiken
- 7.5 Die Chomsky-Hierarchie
- > 7.6 Erweiterte kontextfreie Grammatiken

Erweiterte kontextfreie Grammatiken

- ullet Rechte Seiten der kompakten Notation für kontextfreie Grammatiken erinnern an reguläre Ausdrücke: $lpha_1 \mid \cdots \mid lpha_k$ entspricht $lpha_1 + \cdots + lpha_k$
- Warum nicht reguläre Ausdrücke erlauben?

Definition

- ullet Eine erweiterte kontextfreie Grammatik $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ besteht aus
 - $oldsymbol{\mathsf{-}}$ einer Menge $oldsymbol{V}$ von Variablen
 - einem Alphabet Σ
 - einem Startsymbol $S \in V$,
 - einer Menge P, die für jede Variable $X\in V$ genau eine **Regel** $X\to lpha_X$ enthält, wobei $lpha_X$ ein regulärer Ausdruck über $V\cup \Sigma$ ist
- ullet In einem Ableitungsschritt kann dann immer eine Variable X durch einen String $eta \in L(lpha_X)$ ersetzt werden
- → der Knotengrad in Ableitungsbäumen kann beliebig groß werden

Beispiel

Zur Erinnerung: Grammatik für arithmetische Ausdrücke:

$$egin{aligned} A
ightarrow A + T \mid T \ T
ightarrow T imes F \mid F \ F
ightarrow (A) \mid B \ B
ightarrow a \mid b \mid Ba \mid Bb \mid B0 \mid B1 \end{aligned}$$

 Erweiterte kontextfreie Grammatik für die selbe Sprache:

$$egin{aligned} A &
ightarrow T[+T]^* \ T &
ightarrow F[imes F]^* \ F &
ightarrow (A) \mid B \ B &
ightarrow [a \mid b][a \mid b \mid 0 \mid 1]^* \end{aligned}$$

Dabei sind [und] Meta-Symbole zum Klammern und | ist ein Meta-Symbol für die Vereinigung

(anstelle des üblichen "+")

Erweiterte kontextfreie Grammatiken: Ableitungsbaum

Beispiel: Erweiterte Grammatik

$$A o T [+T]^*$$

$$T o F[imes F]^*$$

$$F \rightarrow (A) \mid B$$

$$B
ightarrow \lceil a \mid b \rceil \lceil a \mid b \mid 0 \mid 1 \rceil^*$$

Beispiel: Ableitungsbaum

Ausdrucksstärke erweiterter kontextfreier Grammatiken

Satz 7.1

- Sei L eine Sprache
- Dann sind äquivalent:
 - (a) $oldsymbol{L} = oldsymbol{L}(oldsymbol{G})$ für eine kontextfreie Grammatik $oldsymbol{G}$
 - (b) $oldsymbol{L} = oldsymbol{L}(oldsymbol{G}')$ für eine erweiterte kontextfreie Grammatik $oldsymbol{G}'$
- Hier ohne Beweis

BNF: Backus-Naur Form

• Die Backus-Naur-Form ist eine alternative Notation für kontextfreie Grammatiken:

- Also:
 - statt → wird ::= verwendet
 - Variablen in Klammern <...>
- Außerdem können optionale Elemente in Klammern [...] gesetzt werden (entsprechend (...)? in RAs)

EBNF: Erweiterte Backus-Naur Form

- BNF entspricht kontextfreien Grammatiken
- EBNF entspricht erweiterten kontextfreien Grammatiken
- Zusätzliche Möglichkeiten:
 - Konkatenation: durch Komma angedeutet
 - Wiederholung: durch geschweifte Klammern { und }
 - Terminalzeichen werden in Anführungszeichen gesetzt, deshalb für Variablen keine spitzen Klammern mehr nötig
 - ; als Zeilenendesymbol

```
• Beispiel:
```

```
Programm
               = "PROGRAM" Bezeichner "BEGIN" { Zuweisung [";"] } "END" ".";
Bezeichner
                    Buchstabe { ( Buchstabe | Ziffer ) };
Zahl
               = ["-"] Ziffer { Ziffer };
               = "" { AlleZeichen - ""} "";
String
Zuweisung
                    Bezeichner ":=" (Zahl | Bezeichner | String );
               = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N"
Buchstabe
                         | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;
               = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
Ziffer
AlleZeichen
               = ? alle sichtbaren Zeichen ?;
                                                                       (aus: Wikipedia)
```

Syntaxdiagramme

- **Syntaxdiagramme** sind eine weitere, sehr intuitive Notation für erweiterte kontextfreie Grammatiken
- Grammatiken lassen sich wie folgt übersetzen:

Regel	Diagramm
A o BC	$A: \rightarrow B \longrightarrow C \rightarrow$
$A o B\mid C$ $A o B^*$	$A: \begin{array}{c} B \\ C \\ B \\ \end{array}$

Beispiel

 Das folgende Beispiel eines Syntaxdiagramms ist dem TikZ/PGF-Handbuch entnommen

Zusammenfassung

- Mit Hilfe kontextfreier Grammatiken lassen sich einige nicht reguläre Sprachen wie die Menge aller Palindrome und die Menge (gewisser) arithmetischer Ausdrücke beschreiben
- Ableitungen kontextfreier Grammatiken lassen sich anschaulich durch Ableitungsbäume darstellen
- Für viele Zwecke ist es wünschenswert, dass jeder String der Sprache einen eindeutigen Ableitungsbaum hat, das ist jedoch nicht immer möglich
- Erweiterte kontextfreie Grammatiken sind genauso ausdrucksstark wie kontextfreie Grammatiken
- Syntaxdiagramme und EBNF bieten eine alternative Syntax
- Kontextfreie Grammatiken sind eine eingeschränkte Form von Chomsky-Grammatiken