

基于前馈神经网络的时间序列预测问题研究

· 答辩人: 郝鸿延 MF1833023

• 导 师: 申富饶 教授

宋方敏 教授

- 1 研究背景
- 2 研究内容
 - ・ 前馈序列网络 FSN
 - ・ 多尺度 DTW 损失函数 MS-DTWI
- 3 研究成果
 - 商品管理和销量预测系统
 - · 硕士研究生期间成果总结
- 4 工作总结

第一部分

Research Background

研究背景

研究背景

- 时间序列:一组按照时间发生先后顺序排列而成的数据点序列
- 时间序列预测任务:用历史**序列值**和**协变**量,预测**多个**未来**序列值**

研究背景

■ 应用场景

销量预测

量化交易

时间序列预测无处不在

困难与挑战

困难与挑战

第二部分

Research Contents

研究内容

- 口前馈序列网络 FSN
- 口 多尺度 DTW 损失函数 MS-DTWI

基于神经网络方法的时间序列预测流程

特征编码

输入

协变量:

 $C_{1:t}^{G_back}$

 $C_{t+1:t+T}^{G_fore}$

 $C_{1:t}^{back}$

时序值:

 $X_{1:t}$

真实值:

 $X_{t+1:t+T}$

$E_{1:t}^{back} = \text{Encoder}_{back} \left(C_{1:t}^{back} \right)$

$$E_{1:t}^{G_back} = \text{Encoder}_{G_back} \left(C_{1:t}^{G_back} \right)$$

$$E_{t+1:t+T}^{G_f ore} = \text{Encoder}_{G_f ore} \left(C_{t+1:t+T}^{G_f ore} \right)$$

$$X_t^{back} = X_{1:t} \mid E_{1:t}^{back} \mid E_{1:t}^{G_back}$$

前馈序列网络 FSN

$$H_t^{
m back} = {
m FSN}ig(X_t^{
m back}ig)$$

解码 (输出)

多尺度DTW损失函数 MS-DTWI

$$\hat{X}_{t+1:t+T} = \operatorname{Decoder}ig(H_t^{back}ig)$$

前馈序列网络 – FSN

- 时序卷积
- 时序注意力
- 强化残差

$$H_t^{
m back} \, = {
m FSN}ig(X_t^{
m back}ig)$$

时序卷积

- 卷积网络避免递归计算
- ■扩展卷积增大感受野
- 因果卷积建模序列相对位置关系

图 3-6: 前馈序列网络结构

时序注意力

■ 为防止序列信息泄露,取权重矩阵的 下三角部分:

$$Wl_{i,j} = \begin{cases} (W)_{i,j}, & \text{if } i \ge j \\ 0, & \text{if } i < j, \end{cases}$$

$$Wa_{i,j} = \frac{e^{-\frac{Wl_{i,j}}{\sqrt{p}}}}{\sum_{j=1}^{t} e^{-\frac{Wl_{i,j}}{\sqrt{p}}}} \text{ for } j = 1, 2, \dots, t$$

■ 权重矩阵与序列特征相乘得到包含 历史序列点信息的新特征:

$$Sa_i = \sum_{j=1}^t Wa_{i,j} \cdot V_j$$

强化残差

■ 利用时序注意力层的下三角权重矩阵, 在第二个维度上求和得到权重向量:

$$w_i = \sum_{j=1}^t Wa_{i,j}$$

■ 将权重向量和序列特征相乘:

$$Sr_i = S_i \times w_i$$

实验验证

表 3-2: FSN 网络和其他方法对比结果

Share Bike				TSA2016						
Model	MAE	ND	NRMSE	SMAPE	Model	MAE	E ND NRMSE SMAP			
SVR	0.140	0.725	0.974	0.855	SVR	0.111	0.212	0.266	0.216	
LSTM	0.065	0.542	0.901	0.997	LSTM	0.099	0.206	0.261	0.194	
TCN	0.066	0.596	0.837	0.743	TCN	0.083	0.172	0.211	0.171	
FSN	0.050	0.449	0.677	0.738	FSN	0.049	0.103	0.132	0.102	
Traffic Bits				PRSA						
Model	MAE	ND	NRMSE	SMAPE	Model	MAE	ND	NRMSE	SMAPE	
SVR	0.211	0.494	0.671	0.513	SVR	0.070	0.828	1.054	0.821	
LSTM	0.048	0.116	0.157	0.152	LSTM	0.052	0.551	0.778	0.634	
TCN	0.100	0.242	0.288	0.359	TCN	0.050	0.529	0.780	0.745	
1011										

图 3-13: 不同输入长度模型耗时比较

实验验证

表 3-3: 消融实验结果

Models	ND	NRMSE	MAE	
FSN_woTA	0.5959	0.8373	0.0660	
FSN_woER	0.5586	0.7783	0.0618	
FSN	0.4485	0.6765	0.0496	

图 3-12: 消融实验结果序列图

多尺度 DTW 损失函数 - MS-DTWI

MSE(A,B) = 0.23 > MSE(A,C) = 0.21

DTW(A,B) = 1.40 < DTW(A,C) = 1.83

MSE 未反映形态相似度,但 DTW 可以

MSE(D,E) = MSE(D,F) = MSE(D,G) = 0.67

DTW(D,E) = DTW(D,F) = DTW(D,G) = 5.5

MSE 和 DTW 都无法反映序列的延时情况

MS-DTW

(Multi-Scale Dynamic Time Warping)

- DTW 本身能够表征序列形态相似度;
- DTW 的规整窗口表示序列点最大对应 距离,多个窗口大小可以表征不同程 度的延时性:

$$MS-DTW^{n} = \frac{1}{n} \sum_{i=1}^{n} DTW^{u_{i}}, u_{i} \in \mathbb{U}$$

TDI

(Temporal Distortion Index)

■ TDI 指标为序列点距离矩阵中**最短路 径与对角线包围的区域占路径空间**的 比例:

$$\begin{split} S_{l} &= \int_{i_{l}}^{i_{l+1}} \left(x - \frac{\left(x - i_{l} \right) \left(j_{l+1} - j_{l} \right)}{\left(i_{l+1} - i_{l} \right)} + j_{l} \right) dx \\ TDI &= \frac{2 \sum_{l=1}^{k-1} |S_{l}|}{N^{2}} \end{split}$$

■ 此指标也可以表征两条序列的延时性 大小

多尺度 DTW 损失函数 - MS-DTWI

$$MS-DTWI = \alpha \cdot MS-DTW + (1 - \alpha) \cdot TDI$$

度量指标	D与E	D与F	D与G
MSE	0.67	0.67	0.67
DTW	5.50	5.50	5.50
TDI	0.10	0.37	1.67
MS-DTW(3)	0.99	1.08	1.25
MS-DTW(6)	1.03	1.10	1.25

实验验证

对比实验

表 4-2: 不同损失函数实验对比结果

损失函数	验证集			测试集				
坝八四奴	MAE	ND	NRMSE	MAE	ND	NRMSE	MS-DTW	
MSELoss	0.063	0.334	0.473	0.051	0.461	0.632	0.060	
HuberLoss	0.060	0.315	0.440	0.055	0.496	0.701	0.078	
DILATE	0.066	0.350	0.500	0.058	0.523	0.772	0.086	
MS-DTWI	0.055	0.291	0.412	0.042	0.379	0.544	0.044	

实验验证

敏感性分析: n 和 α 对 MS-DTWI 的影响

图 4-10: 不同尺度系数 n 时效果对比

图 4-11: 不同 α 时效果对比

实验验证

敏感性分析: γ 对 MS-DTWI 的影响

图 4-8: 不同 γ 时平滑最小化函数计算结果

平滑最小化函数:

$$\min^{\gamma} \{a_1, \dots, a_n\} := \begin{cases} \min_{i \le n} a_i, & \gamma = 0 \\ -\gamma \log \sum_{i=1}^n e^{-a_i/\gamma}, & \gamma > 0 \end{cases}$$

第三部分

Achievements

研究成果

- 口 商品管理和销量预测系统
- 口 研究生期间成果总结

商品管理和销量预测系统

- 基于 B/S 的系统结构
- 商品管理
 - > 库存管理
 - ▶ 商店管理
 - > 交易管理
- 分析和预测
 - > 关联分析
 - > 销量预测

图 5-1: 整体系统架构图

研究成果

实际界面展示

图 5-3: 库存管理

图 5-5: 销量预测

研究生期间成果总结

学术论文

- > **Hongyan Hao**, Yan Wang, Jian Zhao, Furao Shen, "Temporal Convolutional Attentionbased Network For Sequence Modeling" in arXiv preprint arXiv:2002.12530, 2020.
- Yuanjie Yan, **Hongyan Hao**, Baile Xu, Jian Zhao, Furao Shen, "Image clustering via deep embedded dimensionality reduction and probability-based triplet loss" in IEEE Transactions on Image Processing 2020, 29: 5652-5661. (CCF, A)
- > Siqiao Xue, Xiaoming Shi, **Hongyan Hao**, et al, "A Graph Regularized Point Process Model For Event Propagation Sequence" in 2021 International Joint Conference on Neural Networks (IJCNN, CCF C)

专利

▶ 申富饶,郝鸿延,张旭. ''一种基于多生物特征的身份验证系统'' (201910933448)

项目

- > 声纹验证与识别
- RINC 多生物特征身份验证系统

第三部分

Summary

工作总结

工作总结

前馈序列网络

- **时序卷积**建模序列相对位置 属性,增大感受野
- **时序注意力**增加输入序列点 特征间差异化程度
- 强化残差防止梯度消失,为 序列点特征加权

多尺度DTW损失函数

- · 多尺度 DTW 结合不同大小规整窗口的 DTW
- TDI 利用最短路径占路径 空间面积比表征延时大小
- MS-DTWI 为两者加权结 合后的损失函数

商品管理和销量预测系统

- **商品管理**包含库存管理、商店管理和交易管理
- 销量预测包含商品关联分析和销售量预测

谢谢!

