Math 4310 Assignment #8 University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 24, 2014

Due date: Friday, October 31st, by 5 pm.

Please submit solutions to the following problems (except where indicated). As usual, all the textbook exercises are recommended as practice problems if they don't appear as an assigned problem below.

- 1. Prove that any finite subset of a topological space is compact.
- 2. Let X be a set and let $\mathcal{T}_1, \mathcal{T}_2$ be two topologies on X, such that $\mathcal{T}_1 \subseteq \mathcal{T}_2$.
 - (a) Prove that if (X, \mathcal{T}_2) is compact, then (X, \mathcal{T}_1) is compact.
 - (b) Prove that if (X, \mathcal{T}_1) is Hausdorff and (X, \mathcal{T}_2) is compact, then $\mathcal{T}_1 = \mathcal{T}_2$.
- 3. Prove that if $\{A_{\alpha}\}$ is any collection of compact subsets of a Hausdorff space X, then $\bigcap_{\alpha} A_{\alpha}$ is compact.
- 4. Prove that if Y is compact, then the projection $\pi_X: X \times Y \to X$ is a closed map.
- 5. Prove the following theorem: Let Y be a compact Hausdorff space, and let $f: X \to Y$ be a map. Then f is continuous if and only if the graph of f, $\Gamma_f = \{(x, f(x)) : x \in X\}$ is closed in $X \times Y$.

Hint: If Γ_f is closed and V is a neighbourhood of $f(x_0)$ in Y, then the intersection of Γ_f and $X \times (Y \setminus V)$ is closed. Now apply the previous problem.