Homework 8 solution

Exercise 8.21

- (a) 31 bits
- (b) $2^{50}/2^{12} = 2^{38}$ virtual pages
- (c) 2 GB / 4 KB = $2^{31}/2^{12} = 2^{19}$ physical pages
- (d) virtual page number: 38 bits; physical page number = 19 bits
- (e) 2³⁸ page table entries (one for each virtual page).
- (f) Each entry uses 19 bits of physical page number and 2 bits of status information. Thus, **3** bytes are needed for each entry (rounding 21 bits up to thevnearest number of bytes).
- (h)The total table size is 3×2^{38} bytes.

Exercise 8.23

(a) 1 valid bit + 19 data bits (PPN) + 38 tag bits (VPN) x 128 entries = 58 × 128 bits = **7424 bits**

(b)

	Way 127		Way 126			Way 125			٧	Way 124				Way 1				Way 0	
	V Tag	Data	V	Tag	Data	V	Tag	Data	٧	Tag	Data			V	Tag	Data	V	Tag	Data
	VPN	PPN											•••						
1	bit 58 bits	19 bits																	

(c) 128 × 58-bit SRAM

Exercise 8.25

(a) Each entry in the page table has 2 status bits (V and D), and a physical page number (22-16 = 6 bits). The page table has $2^{25-16} = 2^9$ entries.

Thus, the total page table size is $2^9 \times 8$ bits = **4096 bits**

(b) This would increase the virtual page number to 25 - 14 = 11 bits, and the physical page number to 22 - 14 = 8 bits. This would increase the page table size to:

$$2^{11} \times 10$$
 bits = **20480** bits

This increases the page table by 5 times, wasted valuable hardware to store the extra page table bits.

- (c) Yes, this is possible. In order for concurrent access to take place, the number of set + block offset + byte offset bits must be less than the page offset bits.
- (d) It is impossible to perform the tag comparison in the on-chip cache concurrently with the page table access because the upper (most significant) bits of the physical address are unknown until after the page table lookup (address translation) completes.