Цель занятия – освоить вычисление оптимальных *L*-оценок по выборочным квантилям, проследить, как влияет на точность оценок выбор числа интервалов.

Этапы исследования

- 1. Смоделировать выборку в соответствии с нормальным законом объемом n=1000 . Внести её в таблицу **Excel**, отсортировать по возрастанию. Далее опираться на рекомендации
- 2. Предполагая, что выборка принадлежит нормальному закону, найти оптимальные L-оценки (обоих) параметров закона. Для этого выбрать из соответствующей таблицы **АОГ** оптимальные вероятности при необходимом числе интервалов k. В соответствии с этими вероятностями найти оценки выборочных квантилей, разбивающие выборку на части, пропорциональные данным вероятностям. Выбрать из соответствующей таблицы коэффициенты, необходимые для вычисления оптимальных L-оценок. Вычислить оптимальные L-оценки как соответствующие линейные комбинации.
 - 1. Найти оценки при k = 4, 5, 8, 10.
 - 2. Сравнить полученные оценки с ОМП (при вычислении в ISW).
 - 3. Предполагая, что Вы нашли оценки по некоторой другой выборке, проверьте простую гипотезу о согласии с нормальным законом со значениями параметров, полученными при $\ k=10.$
- 3. Предполагая, что выборка принадлежит логистическому закону $^{[1]}$, выполнить ту же последовательность действий при вычислении оптимальных L-оценок параметров этого закона, ограничившись k=10.
- 4. Смоделировать выборку в соответствии с распределением Коши объемом n=1000. Вычислить оптимальные L-оценки параметров этого закона при k=10. Сравнить с ОМП. Проверить "**простую**" гипотезу о согласии с данным распределением *Коши*.
- 5. Предполагая, что выборка принадлежит нормальному закону, выполнить ту же последовательность действий при вычислении оптимальных L-оценок параметров нормального закона, так же ограничившись k=10.
- 6. Кратко сформулируйте для себя выводы, вытекающие из ваших результатов.

Выполненные исследования

Моделирование выборки нормального распределения

Эмпирическая функция распределения *(см. график 1)* выборки $model_1$, смоделированная в соответствии $N(\sigma=4,\mu=0)$ со с объёмом n=1000

График 1 Эмпирическая функция распределения выборки *model_1*

Функция плотности распределения *(см. график 2)* выборки $model_1$, смоделированная в соответствии $N(\sigma=4,\mu=0)$ со с объёмом n=1000

Получение L-оценки для нормального закона

Получение оптимальных вероятностей для k = 4, 5, 8, 10

Для получения оптимальных интервалов, получим оптимальные вероятности при необходимом числе интервалов k при оценивании двух параметров. Необходимые вероятности можно получить из <u>таблицы A.29</u>.

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
4	0.0833	0.4167	0.4167	0.0833	-	-	-	-	-	-
5	0.0449	0.2004	0.5094	0.2004	0.0449	-	-	-	-	-
8	0.0141	0.0587	0.1431	0.2841	0.2841	0.1431	0.0587	0.0141	-	-
10	0.0077	0.0317	0.0748	0.1438	0.2420	0.2420	0.1438	0.0748	0.0317	0.0077

Получим выборочные квантили выборки **model_1**, сформированного в прошлом пункте по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	i
4	-11.3023	-5.3176	0.0005	5.6716	12.9968	-	-	-	
5	-11.3023	-6.2126	-2.7955	2.5971	6.7996	12.9968	-	-	
8	-11.3023	-8.0621	-5.4886	-3.2206	0.0005	2.9323	5.9502	8.4333	12.9
10	-11.3023	-8.7633	-6.5387	-4.5537	-2.6720	0.0005	2.4607	4.8169	6.9

Сравнение полученных результатов с ISW

Получим значения границ интервалов используя средства ISW.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	j
4	-11.3023	-5.5336	0.0000	5.5336	12.9968	-	-	-	
5	-11.3023	-6.7844	-2.7576	2.7576	6.7844	12.9968	-	-	
8	-11.3023	-8.7816	-5.8208	-3.1452	0.0000	3.1452	5.8208	8.7816	12.9
10	-11.3023	-9.6900	-7.0312	-4.8184	-2.5988	0.0000	2.5988	4.8184	7.0

Из полученных результатов можно сделать вывод, что значения похожи, но отличны друг от друга. Дело в том, что в ISW квантили находятся по плотности модели $N(\sigma=4,\mu=0)$, а в нашем случае квантили выборочные т.е. получены из выборки $model_1$. Если же получить значения границ интервалов по квантилям модели, то можно заметить схожесть.

Убедится в том, что ISW использует квантили модели можно исходя из значений. Как видно при чётном количестве интервалов можно увидеть математическое ожидание, равное во всех случаях 0, что нельзя сказать к значениям полученным по выборочным квантилям.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* для параметрической модели $N(\sigma=4,\mu=0)$, на группированной выборке k=10, граничные точки которой были получены ранее.

Критерий	Значение S	Значение Р
χ^2 Пирсона	8.4459	0.4899

Получение L-оценки для логистичекого закона

$$k = 10$$

Получим оценки для Логистического распределения с параметрами $\sigma=4/\sqrt{3}\approx 2.309491, \mu=0.$ Для этого воспользуемся соответствующей <u>таблицей A45</u> для получение оптимальных вероятностей при k=10.

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
10	0.0153	0.0510	0.0946	0.1441	0.1950	0.1950	0.1441	0.0946	0.0510	0.0153

Получим выборочные квантили выборки **model_1**, сформированного в пункте №1 по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9
10	-11.3023	-8.0327	-5.7182	-3.8195	-2.0748	0.0005	1.8819	3.9081	6.106

Сравнение полученных результатов с ISW

Получим значения границ интервалов используя средства ISW.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9
10	-11.3023	-9.6225	-6.1068	-3.8134	-1.9019	0.0000	1.9019	3.8134	6.10(

Аналогично прошлому пункту, можем наблюдать различия между полученными значениями границ интервалов.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* для параметрической модели $Logist(\sigma\approx 2.309491, \mu=0)$, на группированной выборке k=10, граничные точки которой были получены ранее.

Критерий	Значение S	Значение Р
χ^2 Пирсона	19.1281	0.02412

Из результата, видно, что значение p-value критерия χ^2 Пирсона при проверке простой гипотезы H_1 значительно ниже значения p-value полученного при проверке гипотезы H_0

Моделирование выборки Коши

Эмпирическая функция распределения (см. график 2) выборки _model_2, смоделированная в соответствии $C(x_0=0,\gamma=3)$ со с объёмом n=1000

График 3 Эмпирическая функция распределения выборки *model_2*

Функция плотности распределения *(см. график 4)* выборки _model_2, смоделированная в соответствии $C(x_0 = 0, \gamma = 3)$ со с объёмом n = 1000

График 4 Функция плотности распределения выборки *model_2*

Вычисление L-оценок для закона Коши

Получение оптимальных вероятностей для k=10

Получим оценки для распределения Коши с параметрами $x_0=0.0, \gamma=3$. Исходя из <u>источника</u> для получения L-оценки требуется использовать равновероятный способ группирования. Для этого воспользуемся ISW. Сформируем таблицу значений границ интервалов.

1	k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	$I_{!}$
1	0	-404.6613	-9.2331	-4.1291	-2.1796	-0.9747	0.0000	0.9747	2.1796	4.12

Сравнение полученных результатов с ISW

Получим значения границ интервалов используя средства ISW.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	$I_{!}$
10	-404.6613	-9.2334	-4.1292	-2.1798	-0.9747	0.0000	0.9747	2.1798	4.12

При сравнении можно заметить, что значения крайне похожи друг на друга. Разница заметна в 4 знаке после запятой.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* для параметрической модели $C(x_0=0,\gamma=3)$, на группированной выборке k=10, граничные точки которой были получены ранее.

Критерий	$\mathbf 3$ начение S	Значение Р
χ^2 Пирсона	5.9200	0.7478

Получение L-оценки для нормального закона

Получение оптимальных вероятностей для k=10

Получим оценки для нормального закона распределения с параметрами $\mu=0.0, \sigma=5.53445.$ Используем уже ранее показанную таблицу для получение оптимальных вероятностей при k=10

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
10	0.0077	0.0317	0.0748	0.1438	0.2420	0.2420	0.1438	0.0748	0.0317	0.0077

Получим выборочные квантили выборки **model_2**, сформированного в прошлом пункте по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	
10	-404.6613	-67.1396	-18.5429	-7.0866	-2.9612	0.0005	2.6579	7.9962	2

Сравнение полученных результатов с ISW

Получим значения границ интервалов используя средства ISW.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	
10	-404.6613	-13.4072	-9.7285	-6.6668	-3.5957	0.0000	3.5957	6.6668	9.7

Можно заметить существенное отличие, пояснение было ранее. Здесь аналогично.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* для параметрической модели $Logist(\sigma\approx 2.309491, \mu=0)$, на группированной выборке k=10, граничные точки которой были получены ранее.

Критерий	Значение S	Значение Р
χ^2 Пирсона	64633.501	0

Вполне ожидаемый результат. Нормальный закон распределения не похож на закон Коши. И в данном случае это показывается.

Вывод

По итогу работы удалось освоить вычисление оптимальных L-оценок по выборочным квантилям. По итогу работы удалось показать, что при данном способе, критерий χ^2 Пирсона способен отличать близкие конкурирующие гипотезы. Удалось показать, отличие L-оценок и ОМП.

1. Указание: Логистический закон в **ISW** представлен несколько в другом виде, чем рассматриваемый при построении L-оценок этого закона. Поэтому полученную L-оценку параметра масштаба необходимо разделить на $\sqrt{3}$ \hookrightarrow