O risco visto a posteriori e o risco imputado a priori nos contratos de um banco de desenvolvimento

Denise Benetti Ramirez
Banco Regional de Desenvolvimento do Extremo Sul
denise.ramirez@brde.com.br

Francis Carlo Petterini Universidade Federal de Santa Catarina f.petterini@ufsc.br

Resumo

O artigo trata de dois assuntos raramente interseccionados na literatura: risco de inadimplência e bancos de desenvolvimento. Como a gestão de risco é fundamental para a maximização de lucro em bancos comerciais, há muitas análises deste tipo. Mas possivelmente porque os bancos de desenvolvimento têm papel indireto no sistema financeiro, são escassos os trabalhos com esta especificidade. Porém, uma gestão displicente de risco em tais bancos pode comprometer o financiamento estratégico de regiões e setores inteiros. Neste sentido, a pesquisa obteve acesso inédito aos microdados dos contratos de um banco de desenvolvimento brasileiro. Com técnicas de análise de sobrevivência para estudar os riscos de inadimplência e tempos de revelação entre perfis de mutuários, contrastaram-se as classificações de risco imputadas a priori. Observaram-se indicativos de distorções nas classificações de alguns perfis empresarias, e um consequente dilema: para corrigir isto seriam necessários contratos mais exíguos, contrários ao propósito do banco.

Palavras-chave: risco de inadimplência; banco de desenvolvimento; análise de sobrevivência.

Abstract

The article deals with two subjects rarely intersecting in the literature: risk of default and development banks. As risk management is critical to maximizing profit in commercial banks, there are many analyzes of this type. But perhaps because the development banks have indirect role in the financial system, there are few studies with this specificity. But a careless risk management in such banks may compromise the strategic financing of entire regions and sectors. In this sense, the research obtained unprecedented access to microdata of contracts of a Brazilian development bank. With survival analysis techniques to study the risks of default among borrowers profiles, the study contrasts the risk ratings attributed a priori. It is observed indications of distortions in the ratings of some entrepreneurial profiles, and a consequent dilemma: to correct this the institution would take more exiguous contracts, contrary to the purpose of the bank.

Keywords: risk of default; development banks; survival analysis.

JEL: D81, G24, G32.

Área 8 - Microeconomia, Métodos Quantitativos e Finanças.

1 Introdução

Um banco de desenvolvimento é uma instituição que financia projetos e setores considerados estratégicos ao melhoramento socioeconômico de uma região, normalmente com juros inferiores e prazos superiores aos de mercado¹. Este tipo de banco costuma se sustentar inicialmente com fundos públicos, e posteriormente com os resultados de suas operações. Embora não seja uma regra, é incomum a captação de depósitos à vista. Mesmo assim, ou mesmo sendo apenas repassador de recursos para outros bancos, um banco de desenvolvimento pode ser fonte de risco sistêmico se uma acentuada inadimplência de seus mutuários implicar em endividamento público, na medida em que é entrelaçado com o governo². Além disto, uma gestão de risco inadequada também pode acarretar em problemas no financiamento de setores inteiros, desencadeando efeitos aos empreendimentos que se localizam à montante e à jusante das cadeias de negócio porventura apoiadas.³

Todavia, embora exista uma gama de literatura de análise de risco de inadimplência bancária⁴, há pouca literatura concernente à análise em bancos de desenvolvimento – que, devido ao seu propósito de existência, tendem a aceitar riscos maiores que os outros bancos⁵. Acredita-se que estes estudos são relativamente escassos em parte pela implicação indireta que tais instituições exercem no sistema financeiro, e em parte pelo acesso restrito à suas bases de dados.

Nesse sentido, a pesquisa aqui relatada obteve acesso inédito aos microdados da carteira de crédito de um banco de desenvolvimento que atua nos três estados da Região Sul do Brasil, compreendendo 7.461 contratos observados, sendo 6,4% inadimplentes. Por questões de confidencialidade de informações, a instituição solicitou que seu nome não fosse explicitamente citado, e disponibilizou apenas um recorde dos dados⁶. Não obstante, mesmo com esta restrição, o banco forneceu os escores de classificações de risco a priori imputados no processo de contratação dos empréstimos, permitindo um estudo comparativo com o comportamento revelado a posteriori pelos mutuários.

Na perspectiva administrativa, a motivação em se fazer comparações do tipo "antes e depois" são de pelo menos três naturezas. Primeiro, para se tentar reduzir os problemas de seleção adversa, na medida em que se identificam perfis de mutuários que mais frequentemente omitem informação sobre a capacidade de honrar os contratos. Segundo, para se ajustar o sistema de escores de forma selecionar mais adequadamente os parâmetros dos contratos. Terceiro, para identificar como condições macroeconômicas adversas podem afetar a adimplência, e assim ajustar mais adequadamente os provisionamentos financeiros.

Para se fazer essas comparações, é comum se modelar o comportamento dos mutuários a partir de um conjunto de suas características observáveis, dos parâmetros do contratos e das condições macroeconômicas. O que normalmente é feito com o uso de modelos multinomiais, de cadeias de Markov ou de redes neurais, contrastando as expectâncias condicionadas das probabilidades de inadimplência com os sistemas de classificação de risco utilizados pelo banco. Assim, é possível identificar e corrigir possíveis distorções.

Narain (1992) se tornou uma referência ao observar que boa parte desses exercícios eram feitos a partir de informações de contratos em andamento – que é o caso na pesquisa aqui relatada, como será detalhado adiante. Desta forma, se observam mutuários que já se revelaram inadimplentes e mutuários que *ainda* não se revelaram inadimplentes. Assim, como não se sabe se de fato estes últimos se revelarão ou não inadimplentes até o fim dos contratos, a abordagem estatística mais adequada

¹Ver McKinnon (1973), Bruck (1998), Panizza et al (2004) e ONU (2005) para diferentes definições de "banco de desenvolvimento".

² Ver Diamond e Rajan (2005) para uma discussão abrangente, e Oliveira et al (1989) para uma análise de caso.

³Ver Cáceres (1994) ou Townsend e Yaron (2001) para exemplos nesse sentido.

⁴Ver Thomas et al (2004) para uma abrangente revisão da literatura.

⁵Aqui está se tratando do "risco de inadimplência", também denominado de "risco de crédito" – uma discussão abrangente sobre estes conceitos pode ser vista em Righi e Caretta (2014).

⁶Hand e Henley (1997) indicam este tipo de restrição é frequentemente relatada na literatura internacional.

para estudos desta natureza seria a "análise de sobrevivência" da adimplência, desde que houvesse o registro adequado das datas das faturas em aberto.

A análise de sobrevivência é um conjunto de técnicas que vem sendo aprimoradas desde o Século XIX, que inicialmente foram utilizadas em estudos médicos sobre a mortalidade humana. Posteriormente foram adaptadas para estudos de engenharia sobre a resistência de materiais, e de economia sobre a duração do desemprego – entre outras áreas. Além de ser um procedimento relativamente simples de ser operacionalizado, a análise tem a vantagem de ser mais coerente com o possível processo gerador dos dados, cujo tempo de revelação (da inadimplência, da morte da pessoa, da quebra do material, da saída do desemprego etc.) é latente e cuja observação é limitada da perspectiva do pesquisador.

Além dessa introdução, o artigo possui mais seis seções. A Seção 2 apresenta uma breve revisão de literatura sobre análise de risco de inadimplência bancária, especificamente a que usa análise de sobrevivência da adimplência. A Seção 3 discute os conceitos fundamentais desta técnica. A Seção 4 descreve a base de dados. A Seção 5 apresenta e discute os resultados estimados para o risco de inadimplência e a tábua de sobrevivência da adimplência por perfil de cliente, contrastando-os com o sistema de classificação de risco do banco. Conclusões são apresentadas em sequência.

2 A literatura de análise de sobrevivência da adimplência

Hand e Henley (1997), Thomas (2000) e Thomas et al (2004) registram uma série de técnicas para identificar padrões de risco de inadimplência de mutuários, cuja motivação é subsidiar os vários conceitos de classificação de risco (*credit scorings*) que vêm sendo discutidos e aprimorados desde a década de 1960⁷. Neste sentido, se tornaram populares os modelos de variável dependente binária ou multinomial (para estudar a *presença* na situação inadimplente) e as análises de cadeias de Markov e de redes neurais (para estudar a probabilidade de *mudança* de adimplente para inadimplente). Uma vez que o pesquisador tem acesso à base de microdados de uma carteira de crédito, contendo características específicas do mutuário e do contrato, como por exemplo a indicação se o cliente se tornou ou não inadimplente, em que parcela do contrato houve incorrência de saldo vencido, ou qualquer outra forma de categorização, é possível estimar probabilidades condicionadas dele revelar um determinado tipo de comportamento. Assim, o pesquisador pode produzir uma tabela de risco de inadimplência para diferentes perfis de clientes, com o propósito de contribuir para uma melhor administração dos contratos.

Narain (1992) observou que a maioria das bases de dados analisadas tratavam de contratos em andamento, onde o mutuário já havia revelado a inadimplência através de um ou mais saldos vencidos, ou não havia revelado até certo momento. Sendo que este último caso se desdobra em outros dois: o cliente estaria por revelar, ou nunca revelaria uma quebra de contrato. Por conta disto, modelos binários (e.g., Probit ou Logit) poderiam tratar inadimplência vis-à-vis adimplência momentaneamente observada, assim como modelos multinomiais poderiam modelar diferentes tipos de inadimplência (e.g., de 30 ou 90 dias) vis-à-vis adimplência momentaneamente observada. Mas ambos tratavam de forma limitada a adimplência de contratos em andamento, e os estes problemas de definição de "estado" se estenderiam para as análises de cadeias de Markov e de redes neurais.

Narain (1992) então propôs a modelagem concomitante da probabilidade de inadimplência e do tempo de incorrência de saldo vencido com técnicas de análise de sobrevivência bem estabelecidas na

⁷O propósito desta seção é essencialmente documentar a análise de risco de inadimplência bancária estudada através de modelos de sobrevivência. Para o leitor interessado em maiores especificidades relacionadas aos bancos de desenvolvimento, recomenda-se: Castro (2011), que trata do gerenciamento de risco e intersecções com outros temas na perspectivas da teoria econômica do desenvolvimento; Panizza et al (2004), que trata do papel destas instituições e dos níveis de risco que podem ser considerados aceitáveis para elas; e, Viganò (1993), que trata das adaptações de sistemas de classificação de riscos nos contratos destas instituições.

literatura estatística. Neste caso, se o pesquisador consegue observar a data de falha dos pagamentos contratuais, é possível tratar o tempo de adimplência de forma mais adequada, considerando-o como uma variável latente com limite superior móvel – definido pelo tamanho do contrato. Além disso, como detalhado em Thomas et al (2001), a vantagem prática dessa abordagem, à guisa de ferramenta administrativa para a classificação de riscos, é que ela é uma técnica relativamente simples de se aplicar para balizar contratos para diferentes perfis de clientes – em termos de valor emprestado, horizonte de pagamento, taxa de juros etc.

Banasik et al (1999), Stepanova e Thomas (2002), Baesens et al (2005), Andreeva (2006) e Bonini e Caivano (2013) deram continuidade a proposta de Narain (1992) em pelo menos dois sentidos. Primeiro, desenvolvendo observações teóricas sobre o uso da técnica, principalmente porque na análise de sobrevivência stricto sensu existem duas situações (vivo ou morto), e é apenas um questão de tempo para ocorrer uma transição. Mas no contexto da análise do risco de inadimplência existem censuras na observação da transição, i.e., apenas uma parte dos mutuários irá mudar de adimplente para inadimplente até o final dos contratos ou até o momento em que são observados. Além disso, podem existir várias situações, i.e., o cliente pode: se tornar e continuar inadimplente, se tornar inadimplente e quitar o saldo vencido, nunca ter se revelado inadimplente etc.

Em um segundo sentido, Banasik et al (1999) compararam a capacidade de previsão de risco dos modelos de análise de sobrevivência em relação as outras técnicas comumente empregadas. Para tanto, eles modelaram mais de 15 mil contratos de um banco inglês (3% inadimplentes, pelo critério adotado), registrando que a análise tende a gerar resultados preditivos pelo menos tão bons quanto as outras metodologias. Andreeva (2006) repetiu o exercício com cerca de 76 mil observações de contratos de bancos da Alemanha, Bélgica e Holanda (de 4 a 6% inadimplentes, dependendo do critério), chegando a conclusões semelhantes.

Outras análises de risco usando modelos de sobrevivência da adimplência foram feitas por Roszbach (2004) (com dados da Suécia), Glennon e Nigro (2005) (Estados Unidos), Allen e Rose (2006) (Nova Zelândia), Bellotti e Crook (2009) (Inglaterra) e Bhimania et al (2010) (Portugal). Embora nenhuma destas aplicações tenha utilizado dados de uma carteira de crédito de bancos de desenvolvimento, cujos contratos são, em média, mais longos e, possivelmente, mais arriscados que os dos outros bancos.

No Brasil, o único trabalho publicado encontrado nessa linha foi Bressan et al (2004), usando a técnica para modelar 107 empréstimos (14% inadimplentes, segundo o critério de saldo vencido por mais de 30 dias) junto ao Sistema de Cooperativas de Crédito do Brasil (Sicoob), para pessoas jurídicas, em Minas Gerais, entre 1998 e 2001. A conclusão de destaque foi que, dentre os fatores possíveis de serem avaliados ex-ante a tomada de crédito, um maior percentual de despesas com pessoal sobre o faturamento é fator determinante tanto para o aumento da probabilidade de inadimplência quanto para a redução do tempo de revelação.

3 Metodologia

Esta seção apresentará a configuração metodológica que se mostrou mais adequada para a base de dados ora analisada – diferentes configurações podem ser consultadas no trabalhos citados na seção anterior. Desta forma, uma vez que o crédito foi concedido, a duração da adimplência é considerada uma variável aleatória contínua não negativa T^* . No instante t, a probabilidade do mutuário estar inadimplente é $P(T^* \le t) = F(t)$, onde $F(\cdot)$ é uma função de distribuição acumulada. Logo, a probabilidade de sobrevivência da adimplência é S(t) = 1 - F(t), e consequentemente f(t) = -S'(t), onde $f(\cdot)$ é a densidade de probabilidade. Analogamente, o risco instantâneo de inadimplência é

 $h(t) = \lim_{\xi \to 0} P(t < T^* \le t + \xi \mid T^* > t)/\xi = -S'(t)/S(t)$. Ou seja, as funções de risco e sobrevivência são inversamente proporcionais em um ponto fixo de $f(\cdot)$.

Com essas definições, a modelagem começa com alguma conjectura acerca do processo gerador do tempo de adimplência, através da suposição de uma forma funcional para $f(\cdot)$ ou $h(\cdot)$. Ao se modelar $f(\cdot)$, costumam ser usadas as distribuições Weibull e Gompertz. A primeira tende a se ajustar melhor aos dados quando é mais frequente observar a inadimplência nas primeiras parcelas dos contratos, e no caso contrário a segunda tende a se ajustar melhor – detalhes em Andreeva (2006).

A Tabela 1 apresenta as funções densidade, sobrevivência e risco para essas duas distribuições. Considerando n mutuários indexados por i=1,...,n, o risco condicionado é fundamentalmente determinado por $\gamma_i = \exp(\sum_{k=1}^K \beta_k x_{ik})$, onde β_k é um parâmetro e $x_{ik} \in X_i$ é uma covariada de um conjunto contendo características do cliente (e.g., setor de atividade), do contrato (e.g., taxa de juros) ou da situação macroeconômica (e.g., desemprego). Se ocorre $\beta_k > 0$, $k \neq 0$, significa que aumentos em x_{ik} aumentam o risco de inadimplência. Complementarmente, β_0 é o parâmetro que regula a relação do risco com o tempo – e.g., no caso da Weibull, se $\beta_0 = 1$ a probabilidade de sobrevivência diminui com o tempo, embora o risco dependa exclusivamente do perfil representado por X_i . Ambas as distribuições geram análises denominadas de "risco relativo", já que para todo perfil $i \neq j$, a razão de risco é $\frac{\gamma_i}{\gamma_j}$, que independe do tempo – detalhes em Cameron e Trivedi (2005).

Tabela 1: Funções das distribuições Weibull e Gompertz.

Função	Weibull	Gompertz
Densidade, $f(t \beta, X_i)$:	$\gamma_i \beta_0 t^{\beta_0 - 1} \exp(-\gamma_i t^{\beta_0})$	$\gamma_i \exp\left(\beta_0 t - \frac{\gamma_i}{\beta_0} [\exp(\beta_0 t) - 1]\right)$
Sobrevivência, $S(t \beta, X_i)$:	$\exp(-\gamma_i t^{eta_0})$	$\exp\left(-\frac{\gamma_i}{\beta_0}[\exp(\beta_0 t) - 1]\right)$
Risco, $h(t \mid \boldsymbol{\beta}, X_i)$:	$\gamma_i\beta_0t^{\beta_0-1}$	$\gamma_i \exp(\beta_0 t)$

 $\beta_0 > 0$; $\gamma_i = \exp(\sum_{k=1}^K \beta_k x_{ik})$; no caso da Weibull, se $\beta_0 = 1$ ela é a Exponencial, se $\beta_0 > 1$ o risco é acelerativo e se $\beta_0 < 1$ risco é não acelerativo; a Gompertz é risco acelerativo $\forall \beta_0$.

Para a estimação do vetor de parâmetros β , primeiro deve-se notar que a duração da adimplência é uma variável latente. Isto é, ela é observável apenas no caso do cliente indicar saldo vencido de alguma fatura, e poderá ainda ser observada caso o contrato não tenha findado. Assim, se o sistema do banco registra a data de início do contrato, d_i , e os dias de atraso de pagamento, A_i , em um determinado dia D da coleta dos dados, o pesquisador pode computar a seguinte variável – cujo menor valor é zero, e o limite superior é móvel:

$$T_{i} = \begin{cases} \frac{D - d_{i} - A_{i}}{30} := T_{i}^{*}, & \text{se } A_{i} > 0\\ \frac{D - d_{i}}{30}, & \text{se } A_{i} = 0 \end{cases}$$
 (1)

$$\frac{8 \lim_{\xi \to 0} \frac{P(t < T^* \le t + \xi \mid T^* > t)}{\xi} = \lim_{\xi \to 0} \frac{P(t < T^* \le t + \xi)}{\xi} \frac{1}{P(T^* > t)} = \lim_{\xi \to 0} \frac{F(t + \xi) - F(t)}{\xi} \frac{1}{1 - F(t)} = \frac{f(t)}{S(t)}.$$

A equação (1) define uma fração de tempo de 30 dias que indica o ponto de revelação da inadimplência caso ocorra saldo vencido, ou o ponto onde se encontra o contrato do mutuário ainda adimplente. Por exemplo, suponha um contrato assinado em 1° de outubro de 2013, se a data de coleta das informações foi 15 de abril 2015, então $T_i = \frac{D-d_i}{30} = \frac{561}{30} = 18,7$. Se há saldo vencido desde 1° de outubro de 2014, então $A_i = 196$, logo $T_i^* = \frac{561-196}{30} = 12,2$. Neste caso a adimplência falhou 12,2 meses após a assinatura do contrato que perdura a 18,7 meses. Por consequência, sendo $I(\cdot)$ uma dummy de censura de observação da inadimplência, a densidade de probabilidade condicionada de T_i será:

$$\tilde{f}(T_i | \beta, X_i) = \begin{cases}
f(T_i | \beta, X_i), & \text{se } A_i > 0 \\
1 - F(T_i | \beta, X_i) := S(T_i | \beta, X_i), & \text{se } A_i = 0
\end{cases}$$

$$= [f(T_i | \beta, X_i)]^{1 - I(A_i = 0)} [S(T_i | \beta, X_i)]^{I(A_i = 0)}$$
(2)

Logo, na hipótese de T_i ser independente e identicamente distribuída, a função de log-verosimilhança será:

$$\ln L(\beta) = \sum_{i=1}^{n} \left[\left[1 - I(A_i = 0) \right] \ln f(T_i \mid \beta, X_i) + I(A_i = 0) \ln S(T_i \mid \beta, X_i) \right]$$
(3)

Caso o pesquisador defina uma forma funcional para $h(\cdot)$ ao invés de $f(\cdot)$, a mais comum é $h_i(t) = \tilde{h}(t)\gamma_i$, denominada de "abordagem semi-paramétrica de Cox". Fazendo uma comparação com os casos das distribuições Weibull e Gompertz, as funções de risco seriam semelhantes na abordagem de Cox se $\tilde{h}(t) = \beta_0 t^{\beta_0 - 1}$ e $\tilde{h}(t) = \exp(\beta_0 t)$, respectivamente.

Para ilustração, considere apenas três observações não censuradas tais que $T_1^* < T_2^* < T_3^*$, e a definição do conjunto dos clientes sob o risco de indadimplência a partir do ponto t, $C_t = \{$ todo mutuário j: $T_j^* \ge t \}$. No caso, $C_{T_1} = \{1,2,3\}$, $C_{T_2} = \{2,3\}$ e $C_{T_3} = \{3\}$. Assim, as probabilidades dos mutuários se tornarem inadimplentes dados os pontos de mudança observados são: $P(T_1^* = T_1 \mid C_{T_1}) = \frac{P(T_1^* = T_1)}{P(T_1^* = T_1 \text{ ou } T_1^* = T_2 \text{ ou } T_1^* = T_3)} \simeq \frac{h_1(T_1^*)}{h_1(T_1^*) + h_2(T_1^*) + h_3(T_1^*)}; P(T_2^* = T_2 \mid C_{T_2}) \simeq \frac{h_2(T_2^*)}{h_2(T_2^*) + h_3(T_2^*)};$ e, $P(T_3^* = T_3 \mid C_{T_3}) = 1$. Substituindo $h_i(t)$, ocorre que o termo $\tilde{h}(t)$ opera no numerador e no denominador das probabilidades, que podem então ser reescritas como $\frac{\gamma_i}{\sum_{j \in C_{T_i}} \gamma_j}$ 9. Estendendo este resultado para considerar as observações censuradas, com alguma álgebra [detalhada em Cameron e Trivedi (2005), p. 592 em diante] chega-se a seguinte a função de log-verosimilhança-parcial: $\frac{10}{T_1^*}$

$$\ln \tilde{L}(\beta) = \sum_{i=1}^{n} [1 - I(A_i = 0)] \left[\sum_{k=1}^{K} \beta_k x_{ik} - \ln \left(\sum_{j \in C_{T_i}} \exp \left(\sum_{k=1}^{K} \beta_k x_{jk} \right) \right) \right]$$
(4)

⁹Note que $\sum_{k=1}^{K} \beta_k x_{jk}$ não pode ter um termo constante nesta abordagem, pois, assim como $\tilde{h}(t)$, tal termo operaria no numerador e no denominador das probabilidades e seria redundante. Além disso, pelo fato de $\tilde{h}(t)$ não ser modelado diretamente, a aborgagem de Cox costuma ser denominada de semi-paramétrica.

 $^{^{10}}$ A literatura consultada costuma apresentar os resultados estimados para o vetor β modelando uma distribuição de probabilidade e o método de Cox. Todavia, como explicado em Thomas e Reyes (2014), frequentemente o pesquisador precisa restringir o número de variáveis em X_i nesta última abordagem, caso contrário pode não verificar a convergência na otimização da equação (4).

Ao estimar a parametrização de risco, γ_i , independentemente da abordagem usada, o pesquisador pode categorizar perfis de mutuários usando o vetor X_i e computar as funções de risco e sobrevivência para eles. Além disto, é comum os bancos usarem *credit scorings* com informações tomadas ex-ante (número de garantias dadas pelo mutuário, setor de atividade, faturamento etc.) para tipificar os clientes com letras como "AA", "A+", "B-" etc., sendo estas letras fundamentais para a sistematização do montante emprestado, dos prazos de pagamento, da taxas de juros etc. (Thomas et al, 2004). Assim, como será detalhado adiante, é possível contrastar γ com as classificações pré-estabelecidas pelo banco, de forma a verificar sua adequação a posteriori ou identificar possibilidades de aprimoramento – além de construir tábuas de expectativa de sobrevivência da adimplência usando $S(\cdot)$.

4 Base de dados e estatísticas descritivas

A base de dados foi construída a partir da carteira de crédito de um banco de desenvolvimento que atua nos três estados da Região Sul do Brasil, tabulando-se os contratos iniciados entre outubro de 2013 e março de 2015, assinados por empresas ou por agropecuaristas como pessoas físicas, tendo obrigações de pagamentos de qualquer natureza mesmo estando em prazo de carência, totalizando 7.461 observações. Devido a política de confidencialidade de informações do banco, seu nome não pode ser explicitamente citado, e só foi autorizada a apresentação de um recorte restrito das características dos contratos.

Em 15 de abril de 2015, data da coleta dos dados, 88 mutuários (1,2% do total observado) apresentavam saldo vencido há mais de 30 dias. Segundo os relatórios do Banco Central do Brasil (BCB) que tratam da inadimplência bancária no período em tela (BCB, 2015a,b), dentre os bancos públicos, sendo ou não de desenvolvimento, os atrasos acima de 30 dias ocorreram em cerca de 1,5% dos empréstimos – o que indica que o nível de inadimplência da instituição aqui analisada estava próximo da média. Complementarmente, 391 mutuários apresentavam saldo vencido em até 30 dias, totalizando 479 contratos com pagamentos atrasados (6,4% do total observado). A Figura 1 apresenta o histograma de T^* em frações de 30 dias arredondadas para o número inteiro positivo mais próximo, sobrepondo ilustrativamente as estimativas não condicionadas e não censuradas das densidades Weibull e Gompertz.

Figura 1: Histograma do tempo de duração da adimplência em frações de 30 dias arredondadas para o número inteiro positivo mais próximo, e estimativa das densidades Weibull e Gompertz sobre T^* .

Dividindo os mutuários entre inadimplentes e adimplentes, a Tabela 2 apresenta o mínimo, a média, o máximo e o desvio padrão para: T, conforme a equação (1); o tamanho do contrato, dado pela diferença de dias entre as datas de término e assinatura, dividindo por 30; o saldo vincendo em 15 de abril de 2015; e, a taxa de juros ao ano. Ali, em consonância com a Figura 1, note que a adimplência mais rapidamente falhada foi em 0,23 mês¹¹, a média de T^* foi de 7,86 meses e o máximo foi de 18,23 meses. Quanto aos clientes adimplentes, observe que o contrato mais próximo da data de coleta dos dados havia sido assinado a dois meses, e a maior duração de adimplência observada era de 18,70 meses.

Tabela 2: Estatísticas descritivas das características dos contratos observados.

Situação	Variável	Mínimo	Média	Máximo	Desvio
	T* (duração da adimplência)	0,23	7,86	18,23	5,15
Inadimplentes:	Tamanho do contrato (meses)	36,80	134,52	244,07	38,26
479 observações	9 observações Saldo vincendo (R\$ 1.000)		2.504,67	46.296,00	4.356,60
	Taxa de Juros (% ao ano)	1,00	4,97	14,90	2,29
	T	2,03	13,69	18,70	4,20
Adimplentes:	Tamanho do contrato	11,13	101,74	244,43	28,728
6.982 observações	Saldo vincendo	1,11	203,44	19.630,60	783,54
	Taxa de Juros	1,00	4,17	14,30	2,98

Ainda na Tabela 2, note que o mínimo e a média de tamanho dos contratos inadimplentes era de 36,80 e 134,52 meses, e o mínimo e a média dos adimplentes era de 11,13 e 101,74 meses, respectivamente. O saldo vincendo médio dos contratos inadimplentes era próximo de R\$ 2,5 milhões, e dos contratos adimplentes era próximo de R\$ 203 mil. Além disso, as taxas de juros médias dos contratos inadimplentes e adimplentes eram em torno de 5 e 4% ao ano, respectivamente. Em conjunto, isto indica que a inadimplência neste banco está relacionada aos contratos que, em média, são mais longos e de maior monta e taxa de juros.

Pela questão da confidencialidade comentada anteriormente, a pesquisa não obteve acesso aos valores emprestados, mas apenas aos saldos vincendo e vencido. De toda forma, considerando que os saldos vincendos de todos os contratos observados somavam R\$ 2,62 bilhões, e que os saldos vencidos dos 479 contratos inadimplentes somavam R\$ 1,1 milhão, o nível de inadimplência dado pela razão destas magnitudes era de 0,05%. Segundo BCB (2015a,b), dentre os bancos públicos brasileiros, a razão entre os saldos vencidos e emprestados para o setor produtivo estava próxima de 1%. Isto pode corroborar com a indicação de que o nível de inadimplência da instituição aqui analisada estava abaixo da média nacional.

A Tabela 3 mostra o número de contratos e o saldo vincendo total por mutuários inadimplentes e adimplentes, subdividindo-os, dentro de cada estado, por empresas e agropecuaristas segundo o porte classificado pelo próprio banco. Pela classificação, empresas pequenas têm faturamento anual menor que R\$ 16 milhões, empresas médias têm faturamento entre este ponto e R\$ 90 milhões, e empresas grandes têm faturamento acima deste último ponto. Quanto aos agropecuaristas, se o faturamento anual é acima [abaixo] de R\$ 110 mil o cliente é considerado pequeno [grande].

¹¹Trata-se de um contrato assinado em março de 2015, onde o mutuário deveria ter feito um pagamento obrigatório em abril, e até o dia 15 não havia feito.

Tabela 3: Número de contratos e total do saldo vincendo total por situação dos mutuários.

		Número de contratos		Saldo vincendo (R\$ milhões)		
Estado	Perfil	Inadimplentes	Adimplentes	Inadimplentes	Adimplentes	
	Empresa Pequena	23	264	24,7	116,5	
	Empresa Média	20	103	49,4	84,0	
RS	Empresa Grande	27	54	190,5	122,3	
	Agropecuarista Pequeno	22	780	15,6	33,5	
	Agropecuarista Grande	127	733	103,4	180,3	
	Empresa Pequena	21	547	46,3	120,6	
	Empresa Média	18	171	44,1	117,0	
SC	Empresa Grande	33	66	226,3	111,6	
	Agropecuarista Pequeno		968		18,8	
	Agropecuarista Grande	25	905	48,4	102,7	
	Empresa Pequena	38	228	32,3	129,3	
	Empresa Média	11	79	39,4	79,3	
PR	Empresa Grande	53	98	317,2	51,2	
	Agropecuarista Pequeno		711		16,7	
	Agropecuarista Grande	61	1.275	62,1	136,7	
Total		479	6.982	1.199,7	1.420,4	

Nas colunas que tratam do número de contratos, note que o perfil mais frequente entre os inadimplentes é o do grande agropecuarista gaúcho, com 127 mutuários, representando 26,5% dos 479 clientes com saldo vencido. Em seguida, o outro perfil mais frequente é o do grande agropecuarista paranaense, com 61 inadimplentes – estes dois perfis representam quase 40% dos contratos com saldo vencido. Por outro lado, ao comparar o número de inadimplentes com o total de contratos do mesmo perfil de cliente, observa-se que 1/3 das empresas grandes são inadimplentes – sendo 27 em 81 (=27+54) no Rio Grande do Sul, 33 em 99 (=33+66) em Santa Catarina, e 53 em 151 (=53+98) no Paraná.

Além disso, nas colunas que tratam do total de saldo vincendo, note que o perfil mais relevante entre os inadimplentes é a grande empresa paranaense, com R\$ 317,2 milhões a vencer, representando 26,4% do montante vincendo de quase R\$ 1,2 bilhão. Em seguida estão as grandes empresas catarinenses e gaúchas, de forma que o perfil "grande empresa" representa cerca de 2/3 do montante do saldo vincendo dos contratos inadimplentes. Em suma, os números indicam que o perfil que mais incorre em inadimplência é o grande produtor agropecuarista, mas o perfil de maior risco em termos de monta seria o das grandes empresas.

O banco ora analisado usa um sistema próprio de *credit scorings* baseado na documentação apresentada pelo cliente na abertura do processo de solicitação de empréstimo. Com base nestas informações, a priori o mutuário é classificado com os símbolos *AA*, *A*, *B*, *C*,..., *H*, em que *AA* e *H* representam as expectativas de menor e maior risco, respectivamente. A Tabela 4 mostra o número de inadimplentes e adimplentes em 15 de abril de 2015 contrastando seus escores de risco a priori, bem como algumas relações de proporção.

Tabela 4: Escores a priori (credit scorings) e número de mutuários inadimplentes e adimplentes.

Escore a priori	Inadimplentes (i)	(i)/(Total)%	Adimplentes (a)	(i)/(i+a)%
\overline{AA}	180	37,6	1.322	12,0
A	264	55,1	5.486	4,6
В	23	4,8	156	12,8
de C até H	12	2,5	18	40,0
Total	479	100,0	6.982	6,4

Note que 92,7% dos mutuários inadimplentes foram classificados como baixo risco (AA ou A) na data de concessão do crédito – dos que foram classificados como AA, 12,0% se revelaram inadimplentes a posteriori. Estas proporções de discordância entre a expectativa inicial e o que de fato aconteceu podem ter duas origens: uma margem de erro natural do sistema em identificar a priori um mutuário que se revelará um mau pagador, sem ter uma justificativa razoável; ou, a ocorrência de problemas financeiros a posteriori de um cliente que a priori seria um bom pagador.

Para tentar vislumbrar justificativas nos erros de classificação de risco, é relevante se analisar indicadores de conjuntura econômica. Neste sentido, foi possível computar quatro variáveis do contexto consideradas potencialmente importantes para explicar a inadimplência – ver Lima et al (2011). A primeira é a taxa de câmbio real do Real com o Dólar americano, calculada com as séries históricas do BCB, e registrada na data de assinatura do contrato e na data de incorrência de saldo vencido ou em 15 de abril de 2015, caso não ocorra atraso de pagamentos. Esta variável é potencialmente relevante porque ao mesmo tempo em que os preços dos insumos agropecuários são sensíveis ao câmbio, boa parte destes mutuários (e das das empresas também) vendem para o exterior. Então, a priori não é possível saber o efeito líquido de mudanças no câmbio sobre o risco de inadimplência.

A segunda variável de conjuntura é o nível de emprego formal no estado do mutuário, verificado no Cadastro Geral de Empregados e Desempregados (CAGED) no mês de assinatura do contrato e no mês de incorrência de saldo vencido ou em abril de 2015, caso não ocorra atraso de pagamentos. A terceira variável é o consumo de energia elétrica no estado do mutuário, verificado nas companhias de energia e computado como no caso anterior. Em conjunto, estas duas variáveis podem indicar se o contexto econômico melhorou ou não para o cliente, i.e., se há mais emprego e maior consumo de energia, isto indicaria que a economia como um todo estaria melhor desde a contratação do empréstimo.

A quarta variável é a expectativa de inflação verificada no relatório Focus do BCB entre a semana de assinatura do contrato e a semana de incorrência de saldo vencido ou a segunda semana de abril de 2015, caso não ocorra atraso de pagamentos. A ideia é que se a expectativa de inflação se mantém estável, isso favorece a contratação racional de crédito e reduz o risco de inadimplência.

Dessa forma, a Tabela 5 apresenta a variação média e o desvio padrão dos indicadores de conjuntura econômica entre a assinatura do contrato e a observação da inadimplência, ou abril de 2015 no caso dos mutuários adimplentes. Note que entre os mutuários inadimplentes a variação média percebida no câmbio real foi de 0,42%, e entre os adimplentes foi de 0,48%. Quanto aos níveis de emprego e de consumo de energia, os dois grupos perceberam um melhora próxima de 1,5% na média do primeiro, e uma certa estabilidade no segundo. Por fim, ambos os grupos também perceberam uma leve redução de expectativa inflacionária, perto de 0,3 pontos percentuais na média.

Tabela 5: Variação dos indicadores de conjuntura econômica entre a assinatura do contrato e a observação da inadimplência, ou abril de 2015 no caso dos mutuários adimplentes.

	Inadimplentes		Adimplentes	
Indicador	Média	Desvio	Média	Desvio
Taxa de câmbio real (%)	0,42	0,21	0,48	0,14
Emprego formal no estado (%)	1,51	0,49	1,57	0,35
Consumo de energia no estado (%)	0,03	0,04	0,03	0,05
Expectativa de inflação (pontos percentuais)	-0,29	0,19	-0,27	0,18

5 Resultados estimados

A Tabela 6 mostra os resultados estimados para o vetor de parâmetros β usando as distribuições Weibull e Gompertz e a abordagem de Cox. Os valores devem ser lidos na forma $\gamma = \exp(\sum_{k=1}^K \beta_k x_k)$, tal que β_k positivo, $k \neq 0$, significa que um aumento na covariada x_k aumenta o risco de inadimplência – vide Tabela 1. Como as duas primeiras covariadas apresentadas na tabela são computadas em logaritmo natural (para o tamanho do contrato e o saldo vincendo) os valores podem ser interpretados em termos de elasticidades em relação a γ . Analogamente, como as demais covariadas são computadas como taxa, variações ou dummies, os valores podem ser lidos em termos de semi-elasticidades em relação a γ .

Assim, note que as primeiras três covariadas apresentadas na Tabela 6 dizem respeito aos termos dos contratos, sendo que há indicativos estatisticamente significativos de que, ceteris paribus, maiores saldos vincendos estão relacionados com maiores riscos de inadimplência, e menores taxas de juros estão relacionadas com maiores riscos de inadimplência. O primeiro resultado é natural, na medida que quando o mutuário se depara com uma dificuldade de pagamento de um valor maior, é mais difícil deste ser coberto. Quanto ao segundo resultado, se por um lado o raciocínio anterior pode ser estendido para a taxa de juros, uma vez que ela aumenta o valor das prestações, por outro lado menores taxas de juros estão relacionadas aos contratos de menor monta para os segmentos apoiados pelo banco ora analisado – possivelmente mais arriscados. Portanto, o valor negativo e estatisticamente significativo para a taxa de juros reflete um efeito líquido entre estes dois fatos. Além disso, cabe observar que o tamanho do contrato não se mostrou estatisticamente significativo no modelo.

Já as quatro covariadas da sequência tratam de mudanças de conjuntura entre a assinatura do contrato e o momento de inadimplência ou de censura da observação. Os resultados indicam que quando o Dólar fica mais caro se reduz o risco de inadimplência – como boa parte dos agropecuaristas e empresas apoiadas pelo banco atuam no comércio exterior, comprando insumos e vendendo seus produtos, isto indica um efeito líquido médio favorável aos mutuários com a depreciação do Real. Os resultados também indicam que melhoras no nível de emprego formal e no consumo de energia, que refletem uma melhora da economia local, reduzem o risco de inadimplência. Por fim, neste bloco de covariadas conjunturais, os valores estimados apontam que aumentos da expectativa de inflação tendem a aumentar o risco de inadimplência – possivelmente devido a uma distorção causada no planejamento do cliente, como foi posto antes.

Para a interpretação dos resultados estimados para os parâmetros da dummies, note primeiramente que o perfil de referência é o grande agropecuarista gaúcho. Assim, para contratos equivalentes em tamanho, saldo vincendo e taxa de juros, e sob as mesmas condições conjunturais, os valores estimados para os mutuários catarinense e paranaense indicam que grandes agropecuaristas destes estados estão menos propensos a inadimplência que os gaúchos. Para interpretar os valores das demais dummies

é preciso fazer composições – por exemplo, uma pequena empresa catariense, ceteris paribus, possui menor risco de inadimplência que um grande agropecuarista gaúcho porque, com as estimativas da Weibull, verifica-se -0,443-0,709+0,362 = -0,790, que é a soma dos valores dos parâmetros quando as dummies representam o perfil em tela.

Tabela 6: Resultados estimados para o vetor de parâmetros β segundo o tipo de abordagem.

Covariada	Weibull	Gompertz	Cox
ln do tamanho do contrato	0,272	0,255	0,488
	(0,213)	(0,205)	(0,400)
ln do saldo vincendo	0,902***	0,877***	0,926***
	(0,045)	(0,046)	(0,040)
taxa de juros	-0,068***	-0,046**	-0,107***
	(0,024)	(0,024)	(0,024)
variação do câmbio real	-0,101***	-0,067***	-0,109***
	(0,051)	(0,049)	(0,049)
variação do emprego formal	-0,107***	-0,065***	-0,125***
	(0,010)	(0,009)	(0,010)
variação no consumo de energia	-0,038***	-0,015*	-0,039***
	(0,009)	(0,009)	(0,012)
variação na expectativa de inflação	0,053***	0,040***	0,045***
	(0,005)	(0,005)	(0,004)
dummy mutuário catarinense	-0,443***	-0,429***	-0,509***
	(0,123)	(0,118)	(0,126)
dummy mutuário paranaense	-0,286**	-0,275**	-0,284**
	(0,120)	(0,116)	(0,118)
dummy empresa	-0,709***	-0,696***	-0,726***
	(0,195)	(0,193)	(0,159)
dummy empresa pequena	0,362**	0,334*	0,399**
	(0,183)	(0,183)	(0,166)
dummy empresa média	-0,036	-0,011	-0,051
	(0,216)	(0,208)	(0,182)
dummy agropecuarista pequeno	-0,589***	-0,642***	-0,475**
	(0,224)	(0,223)	(0,234)
constante	-9,010***	-8,315***	
	(0,969)	(0,951)	
β_0	2,349***	0,133***	
	(0,042)	(0,010)	
ln da máxima-verossimilhança	-1.101,03	-1.195,24	-3.021,31

Desvio padrão robusto entre parênteses; *** p<0,.01, ** p<0,05, * p<0,1.

Nas três abordagens utilizadas a função de risco tem a forma $h(t) = \tilde{h}(t)\gamma$, onde γ reflete a parametrização do efeito relativo das covariadas. Além disso, as dummies permitem uma clara avaliação de γ estimado entre os perfis de mutuários. Assim, a Tabela 7 expõe suas média e desvio padrão por perfil, ordenados do maior para o menor risco de inadimplência – para apresentação os valores foram multiplicados por mil.

Tabela 7: Média e desvio padrão (entre parênteses) de $\gamma \times 1.000$ estimado por perfil e metodologia de estimação – perfis ordenados do maior para o menor risco de inadimplência.

Perfil	Weibull	Gompertz	Cox
Grande empresa do PR	198,62	158,74	3.855,80
	(2.212,65)	(1.074,46)	(44.498,68)
Grande empresa do RS	187,13	151,95	3.821,99
	(1.325,07)	(917,11)	(35.793,07)
Média empresa do PR	171,51	93,31	3.475,19
	(1.579,1)	(742,76)	(25.191,45)
Grande agropecuarista do RS	23,38	22,78	433,28
	(372,59)	(201,86)	(9.227,06)
Pequeno agropecuarista do RS	18,18	8,73	431,03
	(382,83)	(167,05)	(7.532,7)
Grande agropecuarista do PR	9,06	8,43	169,92
	(260,74)	(130,98)	(5.115,05)
Grande empresa de SC	6,50	8,37	85,49
	(56,16)	(35,57)	(1.028,82)
Pequena empresa de SC	6,14	8,24	81,72
	(102,08)	(89,98)	(745,53)
Pequena empresa do PR	5,39	8,20	79,60
	(52,69)	(72,69)	(1.399,98)
Pequena empresa do RS	4,44	7,83	44,18
	(42,11)	(85,55)	(471,4)
Média empresa do RS	3,12	7,34	26,63
	(14,52)	(42,87)	(129,3)
Grande agropecuarista de SC	0,88	5,71	9,02
	(15,86)	(30,2)	(177,38)
Média empresa de SC	0,83	4,95	6,29
	(2,29)	(11,7)	(17,04)
Pequeno agropecuarista de SC	0,02	0,14	0,13
	(0,12)	(0,58)	(0,85)
Pequeno agropecuarista do PR	0,01	0,13	0,11
	(0,02)	(0,22)	(0,21)
Total	15,49	12,52	302,19
	(439,72)	(226,73)	(9.112,27)

Observe que embora a cardinalidade da média de γ estimado mude entre as metodologias, a ordem de risco entre os perfis não muda. Note também que a dispersão do risco em cada perfil, checado pela comparação da razão de dispersão (desvio padrão por média), pode mudar bastante – e.g., no caso dos valores da Weibull, para o perfil "Grande empresa do PR" a razão é de 11,1, e para o pefil "Pequeno agropecuarista do RS" a razão é de 21,1. Isto ilustra que dentro da classificação dos perfis ora mostrados, ainda existiriam outros sub-perfis com substanciais diferenças de risco. De toda forma, para a análise que será descrita em sequência, é imprescindível que o pesquisador eleja um conjunto de tipos de mutuários para focar. Além disso, como a abordagem que melhor se ajustou aos dados, pelo critério de máxima verossimilhança, foi a Weibull (vide Tabela 6), doravante também se focará nestes resultados.

A Tabela 8 apresenta a média de γ estimado e o número de observações por perfil entre os *credit scorings* da data de assinatura do contrato – desta forma, é possível contrastar os níveis de risco estimados a posteriori e a priori. Se o sistema de *credit scorings* mede bem o risco a priori, é de se esperar que valores de γ estimado entre os mutuários classificados como AA ou A estejam abaixo da média. Assim, na última linha da tabela, note que estes mutuários apresentaram a média de γ menor que média geral, e os 179 classificados com escore B apresentaram um γ médio de 205,18 (número 37 vezes maior que a média geral de 15,49)¹². Em conjunto, isto sugere um bom funcionamento do sistema de classificação de risco utilizado pelo banco.

Entretanto, algumas observações podem ser feitas para os perfis que apresentaram γ acima da média – separados pela linha pontilhada na Tabela 8. Note que o perfil de mutuário com maior risco médio de inadimplência a posteriori é o da "Grande empresa do PR". Em 151 casos com este perfil, 116 foram classificados como A e de fato demonstraram baixo risco (com γ médio de 1,29), mas 24 casos foram classificados como AA e demonstraram alto risco (com γ médio de 112,60). De forma análoga, há uma distorção de análises para os perfis "Grande empresa do RS" e "Média empresa do PR", onde cerca de metade dos mutuários de cada perfil foram classificados como A, e revelaram altos níveis de risco a posteriori (359,45 e 264,51, respectivamente).

No âmbito de ferramenta administrativa, isso sugere que a equipe de gerenciamento de risco do banco deveria estudar, e porventura ajustar, a classificação de risco nesses três perfis. Ademais, ao consultar a base de dados, verificou-se que este subconjunto de clientes em dissonância de classificação de risco representam 122 mutuários (apenas 1,6% dos contratos observados), mas somam R\$ 547,1 milhões em saldos vincendos (cerca de 21% do total na carteira de crédito observada). O que ilustra como a metodologia da "análise de sobrevivência" da adimplência pode ser útil como ferramenta administrativa para as instituições financeiras, à guisa de contrastar e identificar pontualmente onde seu sistema de *credit scorings* pode estar falhando, e assim promover potenciais correções.

Ainda na Tabela 8, observe que os outros três perfis com γ acima da média são de agropecuaristas. Todavia, note que os contrastes entre os níveis de risco medidos a priori e a posteriori nestes perfis estão mais bem sintonizados que nos três discutidos anteriormente. Por exemplo, no perfil "Grande agropecuarista do RS", com 860 observações (11,5% do total da carteira analisada), os 500 mutuários de escore AA apresentaram um γ médio de 1,12, os 345 de escore A apresentaram 29,46 e os 15 de escore B apresentaram 625,51 – seguindo a lógica AA < A < B em nível de risco. Neste sub-conjunto de agropecuaristas, o perfil que destoa é o do Paraná, com $\gamma = 55,21$ na média, mas ainda assim é um valor menor que um terço da média dos três perfis mais arriscados – o que reforça o raciocínio anterior, de que o foco de ajustes na análise de risco deste banco deve ser as empresas de maior porte no Paraná e no Rio Grande do Sul.

¹²Apenas 30 mutuários (0,4% dos observados) foram classificados com escores *C* ou menores, o que torna esse segmento menos representativo para a análise.

Tabela 8: Média de $\gamma \times 1.000$ estimado com a distribuição Weibull e número de observações [entre colchetes] por perfil, entre os *credit scorings* da data de assinatura do contrato – perfis ordenados do maior para o menor risco de inadimplência condicionado estimado a posteriori.

		credit scorings			
Perfil	AA	A	В	de C até H	Total
Grande empresa do PR	112,60	1,29	5.426,57	1,05	198,62
	[24]	[116]	[5]	[6]	[151]
Grande empresa do RS	10,90	359,45	0,63	25,98	187,13
	[36]	[41]	[3]	[1]	[81]
Média empresa do PR	11,96	264,51	0,03	0,16	171,51
	[30]	[57]	[2]	[1]	[90]
Grande agropecuarista do RS	1,12	29,46	625,51		23,38
	[500]	[345]	[15]		[860]
Pequeno agropecuarista do RS	0,60	18,63	0,02		18,18
	[17]	[782]	[3]		[802]
Grande agropecuarista do PR	55,21	0,97	0,03	0,39	9,06
	[200]	[1.089]	[42]	[5]	[1.336]
Grande empresa de SC	12,49	0,90		0,19	6,50
	[48]	[48]		[3]	[99]
Pequena empresa de SC	0,94	7,95	4,98		6,14
	[139]	[410]	[19]		[568]
Pequena empresa do PR	9,09	1,21	5,63	1,10	5,39
	[131]	[113]	[18]	[4]	[266]
Pequena empresa do RS	1,04	8,76	3,88	0,23	4,44
	[158]	[126]	[2]	[1]	[287]
Média empresa do RS	6,88	0,70	0,21	3,26	3,12
	[49]	[59]	[14]	[1]	[123]
Grande agropecuarista de SC	9,46	0,12	0,07	10,13	0,88
	[72]	[848]	[6]	[4]	[930]
Média empresa de SC	0,91	1,19	0,04	0,31	0,83
	[81]	[68]	[38]	[2]	[189]
Pequeno agropecuarista de SC	0,02	0,02	0,01	0,11	0,02
	[6]	[958]	[2]	[2]	[968]
Pequeno agropecuarista do PR	0,07	0,01	0,01		0,01
	[11]	[690]	[10]		[711]
Total	12,14	10,53	205,18	2,81	15,49
	[1.502]	[5.750]	[179]	[30]	[7.461]

Complementando a análise, a Tabela 9 apresenta as probabilidades de sobrevivência da adimplência por perfil e meses de contrato. Em linha com o observado até aqui, note as empresas de maior porte no Paraná e no Rio Grande do Sul apresentam uma chance entre 39,96 e 45,29% de estarem adimplentes no sexto mês de contrato, que se reduzem praticamente a zero depois de 36 meses. No outro extremo, os resultados indicam que é bastante improvável que pequenos agropecuaristas catarinenses e paranaenses se tornem inadimplentes no decurso de seus contratos.

Tabela 9: Estimativas das probabilidades de sobrevivência da adimplência por perfil e meses de contrato.

	Mês					
Perfil	6	12	24	36	72	144
Grande empresa do PR	39,96	19,05	4,99	1,44	0,05	0,01
Grande empresa do RS	42,13	20,97	5,94	1,85	0,07	0,01
Média empresa do PR	45,29	23,89	7,52	2,58	0,13	0,02
Grande agropecuarista do RS	89,76	82,27	70,27	60,73	40,59	19,60
Pequeno agropecuarista do RS	91,95	85,92	76,01	67,85	49,61	28,16
Grande agropecuarista do PR	95,90	92,72	87,22	82,42	70,51	53,18
Grande empresa de SC	97,04	94,72	90,66	87,05	77,83	63,57
Pequena empresa de SC	97,20	95,00	91,15	87,72	78,92	65,18
Pequena empresa do PR	97,54	95,60	92,19	89,14	81,23	68,68
Pequena empresa de RS	97,97	96,36	93,52	90,96	84,26	73,38
Média empresa do RS	98,57	97,43	95,40	93,56	88,66	80,46
Grande agropecuarista de SC	99,59	99,27	98,68	98,14	96,66	94,05
Média empresa do SC	99,62	99,31	98,76	98,24	96,85	94,38
Pequeno agropecuarista de SC	99,99	99,98	99,97	99,96	99,92	99,86
Pequeno agropecuarista do PR	99,99	99,99	99,98	99,98	99,96	99,93
Média	93,10	87,87	79,16	71,86	55,03	33,97

Assim, se por um lado os clientes de grande porte (grandes empresas e grandes agropecuaristas) representam pouco menos de 1/3 dos clientes desse banco de desenvolvimento, por outro, esse conjunto de clientes apresentam uma alta probabilidade de ocorrência de inadimplência, associada ao fato de que o seu impacto financeiro, conforme mencionado, é muito superior dos demais perfis de clientes, atingindo cerca do 80% do saldo vincendo entre os inadimplentes – Tabela 4. Por isso, o uso das estatísticas descritivas e das estimativas de risco em conjunto podem oferecer mais subsídios em pelo menos três direções: uma atribuição de escores de risco mais fidedigna, sobretudo a partir da incorporação de variáveis do ambiente econômico; a partir disto, um melhor gerenciamento de risco e da carteira de crédito; e por último, um provisionamento de perdas de crédito tanto mais ajustado.

6 Conclusões

A contribuição que esse trabalho pretende deixar repousa sobre o ineditismo do estudo do risco de crédito em um banco de desenvolvimento, a partir de seus microdados e através de uma técnica

relativamente recente na literatura bancária para o diagnóstico ora proposto. O banco de desenvolvimento em questão é o principal financiador de créditos de longo-prazo da Região Sul e um dos mais importantes em âmbito nacional. Muito embora instituições como essa não contribuam diretamente para o risco bancário sistêmico, a imprudência de sua atuação pode implicar em risco fiscal e crise de crédito afetando cadeias e setores por completo.

Consoante a este fato, o aprimoramento das ferramentas de gerenciamento de risco é uma premissa da atuação de instituições creditícias, sobretudo aquelas que emprestam recursos para projetos de longa maturação e portanto, maior risco. Nesse sentido, a ferramenta utilizada nesse trabalho – análise de sobrevivência – pode contribuir incorporando duas informações: a probabilidade de falha e o tempo que leva para as falhas se revelarem.

Nesse sentido, o uso da técnica seguiu os mesmos preceitos do estudo pioneiro de Narain (1992). Dentre as características que contribuíram para o aumento do risco de falha e redução do tempo de adimplência estão: o saldo vincendo, que quanto maior, mais chances de risco representa, o que também está ligado à duração do contrato, que geralmente é maior quanto maior o montante emprestado. A variação positiva das expectativas de inflação aumenta o risco de falha e está associada aos contratos de maior duração e valor, isso significa que seu aumento afeta o horizonte de planejamento do grande tomador de crédito incidindo sobre esses clientes mais do que sobre contratos que não duram mais do que 12 meses, por exemplo.

Por último a dummy para empresa de pequeno porte indicou um risco maior ceteris paribus às de outros portes, fato que pode estar relacionado não só à menor capacidade financeira dessas empresas, como também à constante dependência de créditos para capital de giro, cujos encargos são maiores e não chegam a representar aumento de produtividade para essas empresas.

Contribuindo para o retardamento do tempo de adimplência e portanto, redução do risco estão as seguintes características: taxa de juros do contrato, variação positiva do câmbio real, variação positiva do emprego formal; variação positiva do consumo de energia; ser um cliente de SC; ser um cliente do PR; ser uma Pessoa Jurídica; ou um pequeno agropecuarista.

Dessas características vale destaque o sinal negativo da taxa de juros do contrato. Conforme mencionado, além do resultado líquido entre seu efeito sobre o valor das prestações e sobre o fato de que contratos menores contam com taxas menores, soma-se a ideia de que taxas de juros mais altas podem inibir um comportamento supostamente propenso à exposição financeira dos clientes, favorecendo com isso a adimplência dos contratos firmados. As variáveis do ambiente econômico comportaram-se como previsto e de acordo com outros estudos observados na revisão da literatura, isto é, em geral, um câmbio mais desvalorizado, bem como um aumento da atividade econômica e do emprego favorecem a economia das regiões atendidas por esse banco de desenvolvimento, reduzindo assim, a probabilidade de inadimplência.

Quando confrontados os resultados das estimativas de risco com a classificação de risco a priori que esse banco de desenvolvimento faz desses clientes, nota-se que em 55% dos casos avaliados a priori como AA, A ou B, apresentaram um valor médio de γ estimado abaixo da média, o que significa que a classificação a priori está coerente com a classificação a partir da análise de sobrevivência, a posteriori. Já a classificação A a priori para as grandes empresas do RS e médias empresas do PR e AA para as grandes empresas do PR, não foram aderentes ao nível de risco superior à média desses clientes, o que sugere que a classificação de risco desses três perfis pelo banco poderia sofrer ajustes, na medida em que o montante do saldo vincendo por eles representado soma cerca de 21% da carteira de crédito observada. Outros perfis que também tiveram divergências entre a análise a posteriori e a análise a priori foram os grandes e pequenos agropecuaristas do RS, a priori classificados como A, mas com risco γ superior à média e os grandes agropecuaristas do PR classificados com AA e com risco γ igualmente superior à média.

Outra maneira de demonstrar o risco desses clientes é através de suas estimativas de probabilidade de sobrevivência ao longo dos meses de contrato. Nota-se que as grandes empresas do PR e do RS apresentam não mais que 45% de chances de seguirem adimplentes após 6 meses do início de seus

contratos e essas chances se aproximam de zero a partir de 36 meses de contrato. Já os pequenos agropecuaristas do PR e de SC apresentam probabilidades de sobrevivência até o final do contrato de quase 100%.

Sobre os clientes que apresentaram maior risco, quais sejam as grandes empresas do PR e do RS e os grandes agropecuaristas do RS e PR concorrem características comuns às condições contratuais. Como o banco de desenvolvimento em questão estabelece contratos de crédito bancário com garantias reais por parte de seus tomadores, significa dizer que somente tomadores possuidores de bens a serem dados em garantia podem se tornar clientes desse banco. Dessa maneira, grandes empreendimentos e empresários, em geral, possuem mais condições de deixar como garantias outros bens que não aqueles que sirvam para seus negócios ou mesmo residência pessoal, o que lhes confere alguma margem de manobra em situações de dificuldade junto a esse banco. Em vista de que as taxas de juros praticadas por esse banco serem em geral inferiores às do mercado de crédito, pode levá-los a um comportamento mais displicente junto a esse banco do que a outros bancos com encargos maiores e que não detêm garantias reais.

Os pequenos empresários e agropecuaristas, por outro lado, normalmente usam seus bens pessoais ou que sediam seus negócios como garantia de seus contratos, o que lhes imprime uma pressão maior para sua manutenção em estado de adimplência. Além disso, há pelo menos 3 anos esse banco de desenvolvimento vem estabelecendo convênios operacionais com cooperativas de crédito, que atuam repassando recursos em geral inferiores a R\$ 300 mil. Essas cooperativas atuam em diversos municípios da região, por isso estão mais próximas dos tomadores de crédito de pequeno porte e por meio da intermediação financeira com recursos conveniados desse banco, elas auferem um pequeno spread e em troca atuam como avalistas ou garantidores dos contratos de crédito de pequena monta em caso de inadimplência por parte do titular do crédito.

Como forma de aprimorar a análise de risco praticada pelo banco de desenvolvimento em questão, sugere-se a aplicação da metodologia ora utilizada, a análise de sobrevivência, incorporando sobretudo informações do ambiente econômico e do porte do cliente, que conforme mencionado, auxiliam na revelação dos perfis de risco. No que diz respeito à evolução dessa metodologia em estudos de crédito em bancos de desenvolvimento, sugere-se testar uma base de dados que abranja um percentual de inadimplentes maior expandindo-se o intervalo de tempo da análise a fim de confirmar se os perfis de risco e parâmetros ora encontrados se mantêm. E ainda, a inclusão de variáveis contábeis e financeiras dos clientes, como no estudo de Bressan et al (2004), assim como características das linhas de crédito financiadas e variáveis do ambiente econômico específicas das regiões atendidas por esse banco.

Referências

- Andreeva, G. (2006). "European Generic Scoring Models Using Survival Analysis". The Journal of the Operational Research Society, 57(10):1180-1187.
- Allen, L. N.; Rose, L. C. (2006). "Financial Survival Analysis of Defaulted Debtors". The Journal of the Operational Research Society, 57(6):630-636.
- Banasik, J.; Crook, J.; Thomas, L. (1999). "Not if but When will Borrowers Default". The Journal of the Operational Research Society, 50(12):1185-1190.
- Baesens, B.; Van Gestel, T.; Stepanova, M.; Van den Poel, D.; Vanthienen, J. (2005). "Neural Network Survival Analysis for Personal Loan Data". The Journal of the Operational Research Society, 56(9):1089-1098.
- BCB, Banco Central do Brasil (2015a). "Relatório de Economia Bancária e Crédito de 2014", https://www.bcb.gov.br/pec/depep/spread/rebc_2014.pdf.

- BCB, Banco Central do Brasil (2015b). "Relatório de Estabilidade Financeira de Março de 2015", http://www.bcb.gov.br/htms/estabilidade/2015_03/refP.pdf.
- Bellotti, T.; Crook, J. (2009). "Credit Scoring with Macroeconomic Variables Using Survival Analysis". The Journal of the Operational Research Society, 60(12):1699-1707.
- Bhimania, Alnoor; Gulamhussenb, Mohamed Azzim; Lopes, Samuel da Rocha (2010). "Accounting and non-accounting determinants of default: An analysis of privately-held firms". Journal of Accounting and Public Policy, 29(6):517–532.
- Bonini, S.; Caivano, G. (2013). "The survival analysis approach in Basel II credit risk management: modeling danger rates in the loss given default parameter". Journal of Credit Risk, 9(1):101-118.
- Bressan, Valéria Gama Fully; Braga, Marcelo José; Bressan, Aureliano Angel (2004). "Análise do risco de insolvência pelo modelo de Cox: uma aplicação prática". Revista de Administração de Empresas, 44:83-96.
- Bruck, Nicholas (1998). "Role of Development Banks in the Twenty-First Century". Journal of Emerging Markets, 3:39-68.
- Cáceres, Luis René (1994). "Strategic planning in development banks". Savings and Development, 18(2):155-167.
- Cameron, A. Colin; Trivedi, Pravin K. (2005). "Microeconometrics: methods and applications". Cambridge University Press, 2005.
- Castro, Lavinia Barros de (2011). "Gestão de riscos e regulação em bancos de desenvolvimento". Revista do BNDES, 36:89-134.
- Diamond, Douglas W.; Rajan, Raghuram G. (2005). "Liquidity Shortages and Banking Crises". The Journal of Finance, 60(2):615–647.
- Glennon, Dennis; Nigro, Peter (2005). "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach". Journal of Money, Credit and Banking, 37(5):923-947.
- Hand, D. J.; Henley, W. E. (1997). "Statistical Classification Methods in Consumer Credit Scoring: A Review". Journal of the Royal Statistical Society, 160(3):523-541.
- Lima, Jorge Cláudio; Costa, Ricardo Cunha; Guimarães, André Luiz (2011). "Uma aplicação da abordagem da análise conjunta de inadimplência em financiamentos". Revista do BNDES, 36:135-175.
- McKinnon, Ronald I (1973). "Money and capital in economic development". Brookings Institution Press.
- Narain, B. (1992). "Survival analysis and the credit granting decision: Credit Scoring and Credit Control". In: Thomas, L. C.; Crook, J. N.; Edelman, D. B. (eds). Credit Scoring and Credit Control, pp 109-121, Oxford University Press.
- Oliveira, Argus R. G.; Martini, Delson L.; Silva, Paulo R. F. (1989). "O desenvolvimento em crise: a liquidação do BRDE". Ensaios FEE, 10(1):3-11.
- ONU, Organização da Nações Unidas (2005). "Rethinking the Role of National Development Banks". Department of Economic and Social Affairs, http://www.un.org/esa/ffd/msc/ndb/NDBs-DOCUMENT-REV-E-020606.pdf.
- Panizza, Ugo; Levy-Yeyati, Eduardo; Micco, Alejandro (2004). "Should the Government be in the Banking Business? The Role of State-Owned and Development Banks". Working Paper 1.014, Inter-American Development Bank, Research Department.
- Righi, Marcelo Brutti; Paulo Sérgio, Caretta (2014). "Teoria de Medidas de Risco: Uma Revisão Abrangente". Revista Brasileira de Finanças, 12(3):411–464.
- Roszbach, Kasper (2004). "Bank Lending Policy, Credit Scoring, and the Survival of Loans". The Review of Economics and Statistics, 86(4):946-958.
- Stepanova, Maria; Thomas, Lyn (2002). "Survival Analysis Methods for Personal Loan Data". Operations Research, 50(2):277-289.

- Thomas, L. C. (2000). "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers". International Journal of Forecasting, 16:149–172.
- Thomas, L. C.; Ho, J.; Scherer, W. T. (2001). "Time will tell: behavioural scoring and the dynamics of consumer credit assessment". Journal of Management Mathematics, 12:89-103.
- Thomas, L. C.; Edelman, David B.; Crook, Jonathan N. (2004). "Readings in credit scoring: foundations, developments, and aims". Oxford University Press.
- Thomas, L.; Reyes, E. (2014). "Survival Estimation for Cox Regression Models with Time-Varying Coeficients Using SAS and R". Journal of Statistical Software, 61, Code Snippet 1.
- Townsend, Robert M.; Yaron, Jacob (2001). "The credit risk-contingency system of an Asian development bank". Economic Perspectives, Federal Reserve Bank of Chicago, 25(3):31-48.
- Viganò, Laura (1993). "A credit scoring model for development banks: an African case study". Savings and Development, 17(4):441-482.