DSC PJATK Car Price Prediction — Prezentacja końcowa

Cyprian Szewczak i Jakub Graliński

• Grupa 7

1. Wprowadzenie

Witamy w naszej prezentacji rozwiązania konkursowego organizowanego przez **DSC PJATK**. Naszym zadaniem było przygotowanie **modelu predykcyjnego** do przewidywania cen pojazdów na podstawie danych z ofert sprzedaży.

Kluczowe etapy pracy:

- 1. Eksploracyjna analiza danych (EDA)
- 2. Czyszczenie i inżynieria cech (feature engineering)
- 3. Budowa i ocena modelu
- 4. Wnioski i rekomendacje

A. Analiza i Wizualizacje (EDA + Wnioski)

2. Eksploracyjna Analiza Danych

W tej części koncentrujemy się na:

- Wczytaniu danych
- Podstawowych statystykach opisowych
- Identyfikacji braków w danych i wartości odstających
- Prostej wizualizacji rozkładów i zależności

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor

sns.set(style="whitegrid")

# Wczytanie danych
df_train = pd.read_csv("Cleaned_train.csv", index_col="ID")  # przykładowa nazwa
df_test = pd.read_csv("Cleaned_test.csv", index_col="ID")  # przykładowa nazwa
print("Rozmiary zbioru treningowego:", df_train.shape)
df_train.head()
```

```
Rozmiary zbioru treningowego: (135397, 116)
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

	Cena	Waluta	Marka_pojazdu	Model_pojazdu	Wersja_pojazdu	Rok_produkcji	Przebieg_km	Moc_KM	Pojemnosc_cm3	Kraj_p
ID										
1	13900.0	1	Renault	Grand Espace	Gr 2.0T 16V Expression	2005.0	213000.0	170.0	1998.0	NaN
2	25900.0	1	Renault	Megane	1.6 16V 110	2010.0	117089.0	110.0	1598.0	NaN
3	35900.0	1	Opel	Zafira	Tourer 1.6 CDTI ecoFLEX Start/Stop	2015.0	115600.0	136.0	1598.0	Denma

	Cena	Waluta	Marka_pojazdu	Model_pojazdu	Wersja_pojazdu	Rok_produkcji	Przebieg_km	Moc_KM	Pojemnosc_cm3	Kraj_p
ID										
4	5999.0	1	Ford	Focus	1.6 TDCi FX Silver / Silver X	2007.0	218000.0	90.0	1560.0	NaN
5	44800.0	1	Toyota	Avensis	1.8	2013.0	NaN	NaN	1798.0	Poland

5 rows × 116 columns

2.1 Statystyki opisowe

```
# Podstawowe statystyki opisowe
df_train.describe(include="all")

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

	Cena	Waluta	Marka_pojazdu	Model_pojazdu	Wersja_pojazdu	Rok_produkcji	Przebieg_km	Moc_KM
count	1.353970e+05	135397.000000	132046	132088	87336	125572.000000	1.313940e+05	131664.000000
unique	NaN	NaN	102	1139	16014	NaN	NaN	NaN
top	NaN	NaN	Volkswagen	Astra	2.0 TDI	NaN	NaN	NaN
freq	NaN	NaN	11692	3331	596	NaN	NaN	NaN
mean	6.306938e+04	0.948913	NaN	NaN	NaN	2012.090251	1.531563e+05	151.716696
std	8.807748e+04	0.313601	NaN	NaN	NaN	6.996779	3.421378e+06	77.386471
min	5.850000e+02	-1.000000	NaN	NaN	NaN	1923.000000	1.000000e+00	1.000000
25%	1.780000e+04	1.000000	NaN	NaN	NaN	2008.000000	5.300000e+04	105.000000
50%	3.580000e+04	1.000000	NaN	NaN	NaN	2013.000000	1.448635e+05	136.000000
75%	7.599000e+04	1.000000	NaN	NaN	NaN	2017.000000	2.060000e+05	173.000000
max	6.999000e+06	1.000000	NaN	NaN	NaN	2021.000000	1.111111e+09	1398.000000

11 rows × 116 columns

2.2 Rozkład wybranych zmiennych

Poniżej przykład prostych wykresów przedstawiających rozkład rocznika produkcji i zależność między przebiegiem a ceną.

```
# Rozkład roku produkcji
plt.figure(figsize=(6,4))
df_train["Rok_produkcji"].hist(bins=20, color='skyblue')
plt.title("Rozkład Roku Produkcji")
plt.xlabel("Rok Produkcji")
plt.ylabel("Liczba ofert")
plt.show()
```


Interpretacja:

- Większość pojazdów pochodzi z lat 2000–2020.
- Możliwe, że dane dotyczą nowszych aut.

```
# Cena vs. Przebieg
plt.figure(figsize=(6,4))
sns.scatterplot(data=df_train, x="Przebieg_km", y="Cena", alpha=0.4)
plt.title("Cena vs. Przebieg")
plt.xlabel("Przebieg (km)")
plt.ylabel("Cena (PLN)")
plt.show()
```


Interpretacja:

- Widzimy dość ujemną korelację między przebiegiem a ceną.
- Wyższy przebieg zwykle oznacza niższą cenę.

2.3 Braki w Danych i Wartości Odstające

- Sprawdzaliśmy uzupełnianie braków (np. średnia, mediana, tryb).
- Ewentualne wartości odstające (np. bardzo wysokie ceny) były rozważane pod kątem obcięcia (1–99 percentile).

3. Wnioski z EDA

- 1. Marka ma duże znaczenie marki premium (np. Audi, BMW) osiągają wyższe ceny.
- 2. Rok produkcji dodatnio koreluje z ceną (nowsze auta są droższe).
- 3. Przebieg jest jedną z kluczowych cech obniżających wartość.

Z tymi wnioskami przechodzimy do części dotyczącej modelowania.

B. Modelowanie + Wnioski

4. Przygotowanie Zbioru Treningowego

- Zakładamy, że plik Cleaned_train.csv zawiera już dane po wstępnym czyszczeniu i inżynierii cech.
- Dzielimy dane na cechy (X) i etykietę (Cena).

```
Rozmiar zbioru treningowego: (108317, 115)
Rozmiar zbioru walidacyjnego: (27080, 115)
```

5. Budowa i Ocena Modelu

Testowaliśmy kilka algorytmów, m.in. Random Forest, XGBoost. Poniżej przykład z **XGBoost**

```
# Parametry specyficzne dla GPU
param_grid_restricted = {
    # 21 min
    "n_estimators": [200], # Zamiast [50, 100, 200, 300]
    "max_depth": [7], # Zamiast [3, 5, 7, 9]
    "learning_rate": [0.05], # Zamiast [0.01, 0.05, 0.1, 0.2]
    "subsample": [1], # Zamiast [0.6, 0.8, 1.0]
"colsample_bytree": [0.8], # Zamiast [0.6, 0.8, 1.0]
    "gamma": [0], # Zamiast [0, 0.1, 0.2]
    "reg_alpha": [0.1],  # Zamiast [0, 0.1, 1]
"reg_lambda": [0.1],  # Zamiast [0, 0.1, 1]
}
params = {
    "tree_method": "hist", # Użyj GPU do budowy drzew
    "objective": "reg:squarederror", # Zadanie regresji
    "eval_metric": "rmse", # Metryka RMSE
    "gpu_id": 0, # Użyj GPU o indeksie 0
"predictor": "gpu_predictor", # Użyj GPU do predykcji
}
# Inicjalizacja modelu XGBRegressor z parametrami GPU
xgb = XGBRegressor(**params, enable_categorical=True, random_state=42)
# Konfiguracja Grid Search
grid_search = GridSearchCV(
    estimator=xgb,
    param_grid=param_grid_restricted,
    scoring="neg_mean_squared_error", # Metryka do optymalizacji (RMSE)
    cv=5, # 5-krotna walidacja krzyżowa
    n_jobs=1, # Użyj wszystkich dostępnych rdzeni CPU
    verbose=2, # Wyświetl postęp
# random_search = RandomizedSearchCV(
    estimator=xgb,
#
     param_distributions=param_grid,
      n_iter=50, # Przetestuj tylko 50 losowych kombinacji
      scoring="neg_mean_squared_error",
#
      cv=5,
      n_{jobs=-1}
#
      verbose=2,
      random_state=42,
# )
# Trenowanie modelu z Grid Search
```

```
grid_search.fit(X_train, y_train)

# Najlepsze parametry i wynik
print("Najlepsze parametry:", grid_search.best_params_)
print("Najlepszy wynik (Negative MSE):", grid_search.best_score_)

# Ocena modelu na zbiorze testowym
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)

from sklearn.metrics import mean_squared_error, r2_score

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test, y_pred)

print(f"RMSE na zbiorze testowym: {rmse}")
print(f"R^2 na zbiorze testowym: {rr2}")
```

Uwaqi:

- Dodatkowe strojenie hiperparametrów (GridSearchCV, RandomizedSearchCV, Optuna) pozwoliłoby zredukować błąd.
- Uzyskane ~19k RMSE (np. 19107.78) jest naszym punktem odniesienia.

5.1 Zapis Ostatecznych Wyników

Po wybraniu najlepszego modelu używamy go do przewidzenia cen w zbiorze testowym.

```
# Przygotowanie zbioru testowego (analogiczne preprocessing)
df_test_cleaned = df_test.copy()

X_test_final = df_test_cleaned.drop(columns=["Cena"], errors='ignore')

# Predykcja
y_pred_test = xgb_model.predict(X_test_final)

# Tworzenie pliku submission
submission = pd.DataFrame({
    "ID": df_test_cleaned.index,
    "Cena": y_pred_test
})
submission.to_csv("submission.csv", index=False)
print("Zapisano plik submission.csv")
```

6. Największe Wyzwania i Jak Sobie z Nimi Poradziliśmy

- 1. **Braki w danych** Imputacja (średnia/mediana/najczestsza kategoria).
- 2. Różne waluty Konwersja na PLN (jeśli występowało EUR, itp.).
- 3. Wartości odstające Rozważenie usunięcia lub obcięcia (1–99 percentyl).
- 4. Wybór cech Marka, rok produkcji i przebieg okazały się kluczowe.

7. Podsumowanie i Wnioski

- Model: Użyliśmy algorytmu gradient boosting (XGBoost) z parametrami dopasowanymi do danych.
- RMSE: Wartość na walidacji ~19k PLN. Możliwe dalsze usprawnienia przez bardziej rozbudowaną inżynierię cech.
- Przydatność: Tego typu model może pomagać dealerom w szybszym i bardziej trafnym szacowaniu cen.

Możliwe dalsze kroki

• Łączenie modeli w stacking/ensemble.

Dziękujemy za uwagę!