

To SQL or NoSQL

A tale of two paradigms #devFestBerlin

HELLO!

My name is Victoria Perez Mola

I am here because I love talking about databases.

1. Databases

Let's start with the basics

A database is a collection of persistent data that is used by the application system of some given enterprise.

- C.J. Date

Classification

One way to classify databases involve banking, manufacturing, or insurance

- An in-memory database is a datat time is critical, such as in telecomi
- An active database includes an ev provide active database features i
- A cloud database relies on cloud t browser and Open APIs.
- Data warehouses archive data fro access to operational data. For ex
- data warehousing include extraction A deductive database combines lo
- A distributed database is one in w
- · A document-oriented database is · An embedded database system is
- maintenance.[21]
- End-user databases consist of dat them are much simpler than full-fle
- A federated database system com DBMSs, possibly of different types
- Sometimes the term multi-databas application. In this case, typically I
- A graph database is a kind of NoS databases such as triplestores an
- · An array DBMS is a kind of NoSQ
- . In a hypertext or hypermedia data large amounts of disparate inform
- A knowledge base (abbreviated K representing problems with their s
- A mobile database can be carried
- Operational databases store detail demographic information about a parts inventory, and financial data

A parallal database sooks to impre

Depending upon the usage requirements,

1. Centralised database.

Distributed database.

3. Personal database.

4. End-user database.

6. NoSQL database.

Commercial database.

Operational database.

10. Object-oriented database.

8. Relational database.

9. Cloud database.

Types of **DATA**

- **Distributed Database** 01 It comprises of at least two documents situate destinations either on a similar system or on u
- 02
- Personal Database 03

Information is gathered and stored on PCs, wh quantity and can easily manageable.

A centralized database framework is a framew information in one single database at one sing

11. Graph database. **Relational Database**

It is described by a set of tables from where data can be accessed. Relational database can store a large amount of information in a set of tables, which are linked to each other.

ctions of documen

Different types of Database

Ope

An ope

amount

04

05

Suse

B4004A L1

tota building indo

Again, Types of Databases

Relational

SQL

RDBMS

Non Relational

2. Relational Databases

(and SQL)

Relational Databases

- Created in the 60's
- Structured data
- Set of tables: columns and rows
- Relations among tables

Name	City	Age	
Maria	Seattle	20	
Luis	Toronto	25	
Martin	Berlin	22	

Name	Date	Payment
Maria	11/01/2019	Card
Maria	11/02/2019	Card
Luis	12/02/2019	Paypal
Maria	11/03/2019	Card

Structured Query Language

- Appears in the 70's
- Standardized by ANSI
- Variations according vendors

3. NoSQL

- Appears in the 90's
- Explodes in 2010
- Depends mostly on the vendor
- Different subtypes

4. RDBMS vs NoSQL

Top open source Databases

Source: dzone.com/

Top commercial databases. Oracle represents 2/3 of the Market.

Source: dzone.com/

Relational
Databases are
dominating the
market.

Source: dzone.com/

RDBMS vs NoSQL

RDBMS

- Requires a defined and structured schema
- Huge community supporting it
- Needs more managed scalability.
- ▶ SQL, transferable skills
- Many fantastic reporting tools
- Can offer performance problems for big data
- Support ACID

- Allows the persistence of any data in the "document"
- Small community
- Easy scalability
- No structured query language
- Few reporting tools that are difficult to standardize.
- Excellent performance on big data.
- Limited support for joins
- Data is denormalized, requiring mass updates

Selection requirements

Relational

- Medium-to-large-scale databases
- Fairly low concurrency
- ACID is a must
- Data highly correlated
- Wide assortment of data

- Large scale db
- High concurrency
- ACID can be relegated
- Narrow set of data

Common uses

Relational

- Accounting, finance
- Banking systems
- Transaction management systems

- Mobile apps
- Real-time analytics
- Content management
- Personalization
- ▶ IoT apps

5. Use case #1

Ebay: from Oracle to

Couchbase

RDBMS goes wrong

- Oracle licensing, hardware, and support costs made scaling overly expensive
- Oracle's ACID features impacted performance of a key e-commerce application
- Oracle lacked native sharding and replication features

Couchbase to the rescue

Ebay implemented Couchbase server in 2014.

Outcames

- Linear scalability and high read/write throughput keep applications highly responsive even as users increase
- Location-aware low latency querying boosts performance for 110B Couchbase calls per day
- Auto-sharding distributes data evenly across nodes, while cross datacenter replication keeps sites highly available
- Flexible schema increases developer agility

Key features

- N1QL: the power of SQL and the flexibility of JSON
- In-memory database
- Cross datacenter replication

5. Use case #2

Flexcoin and Poloniex: from MongoDB to nothing

Flexcoin: NoSQL goes wrong

- Bitcoin exchange shut down in March 2014
- Flaw in the code which allows transfers between flexcoin users.
- Sent thousands of simultaneous requests until the sending account was overdrawn, before balances were updated.

Poloniex:NoSQL goes wrong

- ▶ Bitcoin exchange attacked in March 2014
- Vulnerability in the code that takes withdrawals.
- Placed several simultaneous withdrawals which resulted successful even though there was no real funds to cover.

6. Conclusion

Understand your data and business needs

Number of Database Types used

Number of Database Types used

Source: DZone

Sometimes your business needs are not "data" compatible.
Try Polyglot Persistence.

THANK YOU!

```
1 SELECT 'Goodbye', 'Thank you'
```

- 2 FROM devfest
- 3 WHERE location = 'Berlin'
- 4 AND year = 2019
- 5