الصف: علوم حياة/ علوم عامة المدة: 45 دقيقة التاريخ: 8 \11\2023

مسابقة في الكيمياء

وزارة التربية والتعليم العالي ثانوية حسين مسعود الرسمية المختلطة العام الدراسي 2024/2023

Answer the Following Exercise:

Study of a Slow Reaction

Hydrogen peroxide (H_2O_2) oxidizes iodide ions (I^-) in acidic medium in a slow reaction which takes place according to the following equation:

$$2 I^{-}(aq) + H_2O_2(aq) + 2 H^{+}(aq) \longrightarrow I_2(aq) + 2 H_2O(1)$$

The aim of this exercise is to study the kinetic of this reaction.

1. Preparation of a Hydrogen Peroxide (H₂O₂) Solution (S₁)

Available is a hydrogen peroxide solution (S_0) of concentration $C_0 = 2.7$ mol. L^{-1} . It is required to prepare a hydrogen peroxide solution (S_1) of concentration $C_1 = 0.1$ mol. L^{-1} .

Choose, from the **document-1**, the most suitable set of glassware to realize this dilution. Justify.

Set A	Set B	Set C				
Volumetric flask of 100 mL	Volumetric flask of 100 mL	Volumetric flask of 100 mL				
Volumetric pipet of 10 mL	Graduated pipet of 10 mL	Graduated cylinder of 10 mL				
Beaker of 50 mL	Beaker of 50 mL	Beaker of 50 mL				
Document-1						

2. Preliminary Study

In a beaker, one mixes:

- A volume $V_1 = 18$ mL of potassium iodide solution (K⁺+ I⁻) of concentration $C_1 = 0.1$ mol.L⁻¹
- A volume $V_2 = 9$ mL of sulfuric acid solution H_2SO_4 of concentration $C_2 = 1$ mol.L⁻¹.

At instant t = 0 s, a volume $V_3 = 3$ mL of hydrogen peroxide solution H_2O_2 of concentration $C_3 = 0.1$ mol.L⁻¹ is added to the beaker.

In this mixture, sulfuric acid is in excess.

- **2.1.** Calculate the initial concentrations of iodide ions [I⁻]₀ and hydrogen peroxide [H₂O₂]₀ in the reaction mixture.
- **2.2.** Show that hydrogen peroxide H₂O₂ is the limiting reactant.
- **2.3**. Calculate $[I_2]$ at the end of experiment.

3. Kinetic Study

By an appropriate method, the concentration of iodine [I 2] at different instants is determined. The results are grouped in the table of **document-2**.

t (s)	100	200	300	400	500	600	650
$[I_2] (10^{-3} \text{ mol.L}^{-1})$	3.85	5.9	7.5	8.6	9.4	9.85	10
Document-2							

3.1. Plot the curve representing the variation of the concentration of iodine as a function of time $[I_2] = f(t)$ in the interval of time [0 - 650 s].

Take the scales: In abscissa: 1 cm for 50 s;

In ordinates: 1 cm for 1×10^{-3} mol.L⁻¹.

- **3.2.** Deduce, graphically, the variation in the rate of formation of I_2 as a function of time.
- **3.3.** Show that the molar concentration of I_2 and that of I^- ions, at instant t, are related by the following relation:

$$[I_2]_t = 3x10^{-2} - \frac{[I^-]_t}{2}$$

- **3.4.** Verify if t= 650s represents the end time of reaction.
- **3.5.** Determine the average rate of formation of I_2 in the interval of time [200 500s].
- **3.6.** Deduce the average rate of disappearance of Γ in the same interval.
- **3.7.** Justify the following statements:
 - **3.7.1.** The initial rate of formation of I_2 is greater than its rate of formation at t = 300 s.
 - **3.7.2.** The concentration of iodide ions at t = 300s is $[I^-]_{t=300} = 45 \times 10^{-3}$ mol.L⁻¹.
- **3.8.** From the curves of **document-3**, specify the one that corresponds to the variation of the concentration of iodide ions as a function of time $[I^-] = g(t)$.

Exercise	e 1 (10 points) Study of a Slow Reaction	1	
Part of Q	Answer		
1	During dilution, the number of moles of solute is conserved $C_0V_0 = C_f Vf,$ For $V_f = 100$ mL, $V_o = \frac{C_f \times V_f}{C_o} = 0.1 \times 100 = 3.7 \times 10^{-3} \text{L} = 3.7 \text{mL}$, therefore a graduated pipet must be used. So we choose Set B		
2.1	For I^- : $n_1 = C_1 \times V_1 = 0.1 \times 18 \times 10^{-3} = 1.8 \times 10^{-3} \text{ mol}$ For H_2O_2 : $n_2 = C_2 \times V_2 = 0.1 \times 3 \times 10^{-3} = 0.3 \times 10^{-3} \text{ mol}$ • $[I^-]_o = \frac{n_1}{Vtotal} = \frac{1.8 \times 10^{-3}}{30 \times 10^{-3}} = 0.06 \text{ mol.L}^{-1}$. • $[H_2O_2]_o = \frac{n_1}{Vtotal} = \frac{0.3 \times 10^{-3}}{30 \times 10^{-3}} = 0.01 \text{ mol.L}^{-1}$.		
2.2	$R(I^{-}) = n_{1} = 1.8 \times 10^{-3} = 0.9 \times 10^{-3}$ $R(H_{2}O_{2}) = n_{2} = 0.3 \times 10^{-3}$ $R(I^{-}) > R(H_{2}O_{2}) \text{ hence } H_{2}O_{2} \text{ is the limiting reactant.}$	0.75	
2.3	Calculate the concentration of iodine at the end of the reaction: According to the stoichiometric ratios: $\frac{n_o~(H_2O_2)}{1} = \frac{n(I_2)_\infty}{1} \qquad , \text{ so } n(I_2) \infty = 0.3 \times 10^{-3} \text{ mol} $ $[I_2]_\infty = \frac{n(I_2)_\infty}{V_{total}} = \frac{0.3 \times 10^{-3}}{30 \times 10^{-3}} = 0.01 \text{mol.L}^{-1}$	0.75	
3.1	12 T ₀ T ₀ T ₁ T ₀ 8 6 4 2 0 100 200 300 400 500 600 700	1	
3.2	The instantaneous rate of formation of I ₂ is equal to the slope of the tangent drawn to the curve at time of abscissa t Slope of tangent T ₀ > slope of tangent T ₁ As time increases, the slope of tangent decreases thus the rate of reaction decreases.	1	
3.3	According to the stoichiometric ratios: $: \frac{n(I-) reacted}{2} = \frac{n(I2) formed}{1} $ $ n(I^-) remaining = no(I^-) - n(I^-) remaining = no(I^-) - 2n(I2) formed \ divide \ by \ total \ volume $	1	

	$[I^{-}]_{t} = [I^{-}]_{o} - 2 [I_{2}]_{formed} \qquad 2[I_{2}]_{t} = [I^{-}]_{o} - [I^{-}]_{t}$ Then $[I_{2}]_{t} = \frac{[I^{-}]_{o}}{2} - \frac{[I^{-}]_{t}}{2} \qquad [I_{2}]_{t} = \frac{0.06}{2} - \frac{[I^{-}]_{t}}{2}$ then $[I_{2}]_{t} = 3x10^{-2} - \frac{[I^{-}]_{t}}{2}$	
3.4	$[I_2]\infty = 0.01 \text{ mol.} L^{-1} = 10 \times 10^{-3} = [I_2]$ at $t = 650 \text{s}$ So, $t = 650 \text{s}$ represents the end of the reaction	0.5
3.5	Average rate of formation of I ₂ is equal to the positive slope of secant drawn to the curve between t=200s and t=500s $r_{t200\to 500} = \frac{\Delta[I_2]}{\Delta t} = \frac{(9.4 - 5.9)x10^{-3}}{500 - 200} = 1.16x10^{-5} mol. L^{-1}s^{-1}$	1
3.6.	According to stoichiometry: $\frac{rI_2}{1} = \frac{rI^-}{2} \text{ at same time } t \qquad rI^- = 2x1.16x10^{-5} = 2.32x10^{-5} \text{mol.} L^{-1}s^{-1}$	0.5
3.7.1	The rate of formation of iodine decreases with time due to the decrease in the concentration of reactants.	0.5
3.7.2	Refer to the table: $[I_2]_{t=300} = 7.5 \times 10^{-3} \text{ mol.L}^{-1}$. Substitute in the relation: $[I_2]_t = 3x10^{-2} - \frac{[I^-]_t}{2}$ $[I^-]_{t=300} = 2x3x10^{-2} - 2x7.5x10^{-3} = 45x10^{-3} \text{ mol.L}^{-1}$	0.5
3.8	Curve a Since $[I^-]_0 = 60 \times 10^{-3} \text{ mol.L}^{-1}$ $[I^-]_{\text{at } t = 650 \text{ s}}$ is not zero because I^- is an excess reactant.	0.5