Energy Monitoring And Control System Feasibility Study

Executive Summary Volume 1 of 5

for

Fort Riley, Kansas Contract No. DACA 45-78-C-0106

Prepared for

U.S. Army Engineer District, Omaha Corps of Engineers Omaha, Nebraska

19971022 091

1982

78-808-4

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLYTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld,

Librarian Engineering

Energy Monitoring And Control System Feasibility Study

Executive Summary Volume 1 of 5

for

Fort Riley, Kansas Contract No. DACA 45-78-C-0106

Prepared for

U.S. Army Engineer District, Omaha Corps of Engineers Omaha, Nebraska

1982

78-808-4

THE CUALIFIE DELICORD 3

Burns & MCDonnell ENGINEERS - ARCHITECTS - CONSULTANTS

Burns & MCDonnell Engineers - Architects - Consultants

November 12, 1982

U. S. Army Engineer District, Omaha Corps of Engineers 6014 U. S. Post Office and Courthouse Omaha NE 68102

> Fort Riley Kansas Energy Monitoring and Control System Contract No. DACA 45-78-C-0106

Gentlemen:

We present herewith our feasibility report for the <u>Energy Management</u> and <u>Control System for Fort Riley</u>, in accordance with our agreement dated April 9, 1981.

The report reviews the expected costs and energy savings attributable to the proposed EMCS.

Respectfully submitted.

Kenneth M. Clark, P.E.

Warren A. Roberts, P.E.

Stephen A. Robusto, P.E.

KMC/WAR/SAR/nlc

Enclosure

TABLE OF CONTENTS

LETTER	OF	TRA	NSM	TUT	A T	,

TABLE OF CONTENTS

LISTS OF TABLES, FIGURES AND EXHIBITS

	Page
SUMMARY AND CONCLUSIONS	S-1
INTRODUCTION A. Purpose B. Scope C. Computer Program	IN-1 IN-1 IN-3
PART I - DESCRIPTION OF EMCS A. Ft. Riley EMCS B. Management Support C. Staffing D. Impact on Maintenance Management E. Choice of EMCS Capabilities F. Structure G. Energy Conservation Programs	I-1 I-3 I-4 I-6 I-7 I-10 I-16
PART II - COST-BENEFIT ANALYSIS A. Method of Analysis	II-1 II-2 II-127 II-128 II-133 II-137 II-137 II-138 II-140
APPENDICES Appendix A - Exhibit 1 Appendix B - Energy Points Appendix C - References Appendix D - Abbreviations and Glossary Appendix E - Method of Analysis	

LIST OF TABLES, FIGURES AND EXHIBITS

Tables	Title	Page
SC-1	EMCS Project-Important Facts	S-1
SC-2	Cost Summary for EMCS Project	S-7
SC-3	Economic Analysis Summary	S-8 & 9
I-1	Costs for Central Computer Equipment for Tri- Services Large EMCS	I - 2
I - 2	Estimated Unit Prices for Field Hardware	I-3
I - 3	Comparison of Three EMC Systems	I - 9
II-1	Benefit/Cost Summary	II-3 thru 11
II-2	Buildings not Recommended for EMCS	II - 12
II-3	Buildings Ranked by E/C Ratio	II-13 thru 17
II-4	Point List	II-18 thru 126
II - 5	Chiller Plant 7210 Cost Summary	II-130
II-6	Boiler-Chiller Plant 8073 Cost Summary	II-132 & 133
II-7	Costs for Master Control Room	II-137
II - 8	Costs for Remote Monitoring Station	II - 138
II - 9	Modifications and Corrections to Existing Controls	II-141 & 142
B-1	Energy Points - Important Facts	B - 3
B-2	Cost Summary for Energy Points	B - 4
B-3	Economic Analysis Summary for Energy Points	B-5 & 6
B-4	Central Computer Equipment for Tri-Services Medium EMCS	B - 7

TC-2

B-5	Estimated Unit Prices for Field Hardware	B-7
B-6	Energy Points Benefit/Cost Summary	B-8 thru 16
Figure 1	Title Energy Monitoring and Control System Block Diagram	Page I-30
Exhibit 1	Title Energy Monitoring and Control System Site Map	Page Appendix A

VOLUMES 2 THRU 5

TABLE OF CONTENTS

VOLUME 2 - REPORT ANALYSIS

General Information	1-1 to 1-189
Demand Limiting	2-1 to 2-113
Central Plants	3-1 to 3-12
Master Control Room	4-1 to 4-17
Cost Data	5-1 to 5-23
Data Transmission Media	6-1 to $6-7$
Operations and Maintenance Costs	7-1 to $7-3$
Office Buildings	8-1 to 8-70
Barracks	9-1 to 9-20
Motor Repair Shops	10-1 to 10-17
Mess Halls	11-1 to 11-13
Gyms	12-1 to 12-7
Day Rooms	13-1 to 13-2
Theaters	14-1 to 14-5
Administration and Storage Buildings	15-1 to 15-7
Chapels	16-1 to 16-9
Miscellaneous Buildings	17-1 to 17-26

VOLUME 3 - BUILDING SUMMARY FORMS

Includes check sheets, summaries for costs and energy savings, calculation of building E/C ratios, I/O point summaries. Pages are not numbered since, in general, buildings are listed in numerical order.

VOLUME 4 - BUILDING SUMMARY FORMS

Contains field survey notes for Buildings 3 thru 7520. Pages are not numbered, but are indexed by building number.

VOLUME 5 - BUILDING SUMMARY FORMS

Contains field survey notes for Buildings 7602 thru 8360. Pages are not numbered but are indexed by building number.

SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS

The proposed EMCS exceeds all minimum requirements for energy-related military construction. Table SC-1 lists the important facts related to the project.

TABLE SC-1 EMCS PROJECT - IMPORTANT FACTS

Project Cost	\$4,566,470 (Feb 82)
Project B/C ratio	2.1
Project E/C ratio	41
Payback Period	6.2 years
Number of Points	2318 (large)
Number of Buildings	
Controlled	179

Table SC-2 (page S-7) is a cost breakdown for the EMCS project and Table SC-3 (page S-8) summarizes the economic analysis.

EXPECTED BENEFITS OF EMCS

Experience has shown that an EMCS system can:

- Increase work force productivity. Automated surveillance of utility plants will permit reductions in staffing levels for the plants.
- 2. Reduce operating costs, by increasing work force productivity and by improving control over utility expenditures.

- 3. Improve service to users. The EMCS will provide the ability to identify and fix problems often before a building occupant realizes that a problem exists.
- 4. Allow systematized maintenance of utilities. The EMCS will show computerized scheduling and record keeping of preventive maintenance and cyclic maintenance tests.
- 5. Improve record keeping. Large amounts of operating data will be readily available to the facilities engineer. Good records will simplify budgeting and planning.
- 6. Allow automatic reading of utilities meters.
- 7. Reduce basewide energy consumption and electrical demand.
- 8. Reduce tampering and vandalism of manual controls.
- 9. Avoid damage due to power outages and freeze-ups.
- 10. Assist in fire detection and monitoring of intrusion alarms.

Future Buildings

Future developments are not included in this study but the impact of planned projects must be recognized.

Over 70 new buildings and additions are proposed for FY84 and 85. These projects will increase the EMCS responsibility by at least 500 points.

Maintenance Points

This project includes maintenance points as well as energy points. An understanding of the two classes of points is important; see Appendix B for a full explanation.

The cost attributable to energy points is about \$2.8 million. A life-cycle analysis of the energy points resulted in an E/C ratio of 41 and a payback of 2.9 years.

We are not recommending a project consisting of energy points alone, because energy points cannot reduce the ever-increasing burden on maintenance forces at Ft. Riley. This burden is a prime concern, and the maintenance points make the EMCS a very effective support tool.

Choice of EMCS

The Corps of Engineers has the option to save nearly \$260,000 by deviating from the Tri-Services Specification (Reference 11), and sacrificing some capabilities and reliability.

Master Control Room

The Master Control Room will be located in the basement of the Facilities Engineer's Building, No. 187. Architectural, electrical and

mechanical modifications for the Master Control Room will cost approximately \$28,100.

Remote Monitoring Station

A remote monitoring station will be located in Hospital Boiler Plant 486. It will reduce staffing requirements. The remote station will cost approximately \$19,300.

Data Transmission

All data transmission will be via voice-grade telephone lines. Sixteen pairs of phone lines will be leased from United Telephone. A large number of new government-owned phone lines will be needed. The availability of spare phone lines may change; subsequent improvements may reduce the need for additional lines provided as part of this project.

Demand Limiting

We have estimated demand limiting will save \$100,000 (February 82 dollars) each year. The actual savings will depend on Ft. Riley's commitment to keep an adequate number of low priority consumers.

Existing Controls

In general, the existing control systems were in satisfactory condition. We recommend a sum of \$50,000 for rehabilitation of old controls which either don't work properly or are incompatible with the EMCS.

The EMCS will enhance the old controls. We foresee no instances where the effectiveness of existing controls will be sacrificed to accommodate the EMCS.

Staffing

Only one new man (WG11) will be needed to staff the Ft. Riley EMCS. All other positions can be filled by reassignment of existing personnel.

Other Future Capabilities

The cost to monitor sewage lift stations would be \$9,000. This is not included in this study.

Demand limiting for family housing is not recommended now, but may be practical in the future. Such demand limiting would probably be accomplished via FM radio, and interfaced with the EMCS.

Motor burnouts could be prevented by monitoring the three phases of electricity at vulnerable locations.

* * * * *

Table SC-2

COST SUMMARY FOR EMCS PROJECT (February 1982 dollars)

b.	Central Computer Equipment ¹ FID's ²	\$494,300 181,500	
	MCR ³	28,100	
d.	Remote Monitor ⁴	$_{-19,300}$	
	Subtotal 1	\$723,200	\$723,200
2a.	Field Hardware ⁵	\$2,729,740	
	Modifications to existing controls ⁵	20,600	
c.	DTM ⁶	259,890	
	Subtotal 2	\$3,010,230	\$3,010,230
	Training ⁷	14,600	
b.	Documentation ⁸	$_{172,650}$	
	Subtotal 3	\$187,250	\$187,250
4.	Allowance for control work		\$50,000
5.	Contingencies ⁹		\$378,340
6	Supervision and Administration 10		\$217,450
		Total Project Cost	\$4,566,470

Notes:

ITEMS 1,2,3,4 INCLUDE CONTRACTOR'S OVERHEAD AND PROFIT

¹ See Table I-1 (page I-2). ² 11 FID's x \$16,500 each.

³ See Table II-7 (page II-137).

⁴ See Table II-8 (page II-138).

⁵ See Table II-1 (page II-3 through II-11).

 $^{^6}$ See Table II-1 (page II-3 through II-11) and pages II-33 & 34.

⁷ Based on manufacturer's estimate.

 $^{85\% \}times [1+2a]$.

 $^{9 10\% \}times [1+2+4].$

 $^{10\}frac{10}{5\%} \times (1+2+3+4+5).$

Table SC-3

ECONOMIC ANALYSIS SUMMARY (July 1986 Dollars)

Economic Life: 15 Years

Cost		
1. Nonrecurring Initial Capital Costs		
a. CWE	\$5,880,200	
b. Design (5% of 1a)	294,010	
c. Salvage Value of Existing System	Negligible	•
d. Total	regugiore	\$6,174,210
		40,171,210
Benefits		
2. Recurring Benefit/Cost Differential Other than Energy		
a. Annual Labor Decrease $(+)/Increase (-)^2$	\$-34,820	
b. Annual Maintenance Decrease $(+)/Increase (-)^3$	\$-447,730	
c. DTM Rental $(+)$ /Increase $(-)^4$	\$-4,821	
d. Total Costs	\$-487,371	
e. 10% Discount Factor	7.980	
f. Discounted Recurring Cost (dxe) (Note 1)		\$-3,889,221
3. Recurring Energy Benefit/Costs		
a. Electricity		
(1) Annual Energy Decrease	53,861/N	Mega Btu
(2) Cost per Mega Btu	\$8.17/1	Mega Btu
(3) Annual Dollar Decrease	\$440,044/y	vr
(4) Differential Escalation Rate (7%) Factor	10.57	
(5) Discounted Dollar Decrease	\$4,651,269	
b. Natural Gas		
(1) Annual Energy Decrease		Mega Btu
(2) Cost per Mega Btu		Mega Btu
(3) Annual Dollar Decrease	\$460,639/y	r
(4) Differential Escalation Rate (8%) Factor	13.55	
(5) Discounted Dollar Decrease	\$6,241,664	
c. No. 2 Fuel Oil	04 545 (3	
(1) Annual Energy Decrease	24,717/N	
(2) Cost per Mega Btu	\$14.91/N	•
(3) Annual Dollar Decrease (4) Differential Escalation Rate (20%) Easter	\$368,530/y	r
(4) Differential Escalation Rate (8%) Factor(5) Discounted Dollar Decrease	11.41	
d. Electrical Demand Reduction	\$4,204,933	
(1) Reduction in summer peak	3,750kV	*7
(2) Annual Dollar Decrease	\$162,676/y	
(3) Differential Escalation Rate (7%) Factor	\$102,070/y 10.57	1
(4) Discounted Dollar Decrease	\$1,719,485	
e. Discounted Energy Benefits $[3a(5)+3b(5)+3c(5)+3d(4)]$	φ1,713,400	\$16,817,351
4. Total Benefits (sum $2f + 3e$)		\$12,928,130
5. Discounted Benefit/Cost Ratio (Line 4 ÷ Line 1d)		2.1
6. Total Annual Energy Savings $[3a(1)+3b(1)+3c(1)]$		147,536 Mega Btu
7. E/C Ratio		41*
8. Annual \$ Savings $[2d + 3a(3) + 3b(3) + 3c(3) + 3d(2)]$		\$944,518
9. Pay-back Period [(Line 1a-Salvage) ÷ Line 8]		6.2 yrs
		J-5

Table SC-3 ECONOMIC ANALYSIS SUMMARY (July 1986 Dollars) (Continued)

* E/C ratio does not include maintenance points. See Appendix B.

Notes:

 ${^{1}}Escalation = \begin{array}{ccc} \underline{July\ 86} & = & \underline{1580} & = 1.288 \\ \hline Feb\ 82 & & 1227 \end{array}$

 $4,566,470 \times 1.288 = 5,880,200$

2 \$27,040 x escalation = \$34,820.

³\$150/pt x 2318 pts x escalation = \$447,730

 4 \$19.50/mo-pr x 16 pr x 12 mo/yr x escalation = \$4821/yr.

INTRODUCTION

INTRODUCTION

A. PURPOSE

One objective of this study is to determine whether the proposed EMCS meets the minimum requirements for military construction related to energy conservation. These minimum requirements are expressed in References 2 and 3. The EMCS is to be justified on the basis of dollar savings over its 15-year life.

Another objective of this study is to establish the magnitude of the project, in terms of project cost, energy saved, and number of buildings effected.

B. SCOPE OF THIS FEASIBILITY STUDY

The approach to this study is described in Appendix E of this report. Briefly it involves these steps:

1. BUILDING LIST

Prepare a list of candidate buildings.

2. FIELD SURVEY

Conduct a field survey of all candidate buildings. Check such points as occupancy schedules, equipment types and condition.

USI.EMC

3. PRELIMINARY ANALYSIS

Review each candidate building and evaluate energy conservation programs. Quantify expected energy savings and associated costs. Delete candidate buildings which do not prove to be viable targets for EMCS control.

4. FINAL ANALYSIS

Review and check all parts of the Preliminary Analysis. Amend as required. Prepare building summary tables for each building recommended for EMCS control. Prepare I/O Summary Table which lists all points on the proposed EMCS on a per-building basis. Prepare estimates of savings and costs. Perform economic analysis on overall system.

5. REPORT THE RESULTS

Prepare report, backup notes, and submittal forms for military appropriations.

C. COMPUTER PROGRAM

Burns & McDonnell uses the computer program DOE 1.4 (formerly called CAL-ERDA) to simulate Ft. Riley buildings. This program was developed jointly by the State of California and the United States Energy Research and Development Administration.

The program is divided into three major sections: LOADS, SYSTEMS and PLANTS.

The LOADS portion takes the physical makeup of the building and weather tape data (a 1968 Ft. Riley weather tape was used for this study). LOADS calculates the hourly heating and cooling load for each zone.

The SYSTEMS portion uses the LOADS output and integrates it with an HVAC system. The energy required for heating and cooling with the HVAC system is calculated. In this manner, SYSTEMS accounts for fans, HVAC controls, duct networks, unit heaters and the like.

The PLANTS portion uses the SYSTEMS output and incorporates it with energy plant equipment. PLANTS simulates chillers, boilers and pumps by accounting for equipment inefficiencies.

USI.EMC

The end product of DOE 1.4 is an energy use estimate derived from the hour-by-hour performance of the total building.

* * * * *

LEPHONE LINES (PROVIDED IN EMCS CONTRACT)

PART I – DESCRIPTION OF EMCS

PART I

DESCRIPTION OF EMCS

A. FT. RILEY EMCS

The building analysis (described in Part II of this report) resulted in a large-sized EMCS. Figure I-1 (page I-29) is a block diagram of the proposed system.

The MCR will be located in Building 187.

There are eleven FID panels, each centrally located in its own zone of responsibility. This layout is based on FIDs which can accommodate approximately 60 MUX connections; different manufacturers may require an alternative arrangement. Ample allowance has been made for adding more buildings later.

Some buildings will have more than one MUX; some buildings will have no MUXs of their own, but will be served by MUX panels in nearby buildings. The actual number will depend again on the manufacturer.

Availability of phone lines changes from day to day, but at present, we anticipate only 16 pairs of phone lines will be leased from

United Telephone. All other phone lines will be either government-furnished, or installed new.

Table I-1 lists projected costs for the components of the central computer.

TABLE I-1
COSTS FOR CENTRAL COMPUTER EQUIPMENT
FOR TRI-SERVICES LARGE EMCS
(February 1982 dollars)

Item	Cost
CPU	\$ 70,900
CCC	25,000
Color CRT	10,100
B&W CRT	9,600
Alarm Printer	4,700
Disk Drive	32 , 200
Magnetic Tape	32 , 600
Floppy Disk	8,600
Calendar Clock	3 , 800
Software	121,000
Communication Link Controller	9,800
Test Equipment	32,000
Contractors OH&P	134,000
Total	\$494,300 (Feb 82)

Table I-2 lists costs for field hardware.

TABLE I-2
ESTIMATED UNIT PRICES FOR FIELD HARDWARE
(February 1982 dollars)

Item	Cost
FID	\$16,500
MUX	1,890
Air temperature point	800
Water temperature point (Note 2)	850
Pressure or humidity point	1,350
Damper position indicator point	1,200
Alarm contact point	650
Binary temperature point	650
Start/stop point w/status	1,150
Start/stop point w/o status	1,000
Status only	650
Control point adjustment (CPA)	1,360
Accumulator (kW input)	2,450
Accumulator (demand meter contact)	780
Analog flow (Note 2)	2,700

Notes

- 1. Estimates above include labor, material, on-post travel time allowance, wiring allowance (100 feet per point).
- 2. Estimate includes allowance for installation of sensor well in piping.

B. MANAGEMENT SUPPORT

Management support is the key to success of an EMCS system. The facilities engineer staff must want the system and give emphasis to its use as a management tool. The Commander must also support the use of EMCS for management of utilities and for energy control, and particularly for demand limiting.

C. STAFFING¹

Staffing of EMCS has been a problem area for the following reasons:

- 1. Commanders are restricted by fixed or dwindling manpower allocations while mission requirements continue to increase.
- Utility divisions are currently staffed at only 70 percent of recognized strength

As a result, facilities engineering staffs, particularly the utilities division, currently function under crisis management conditions (in general). The facilities engineer has been forced to contract increasing portions of the work load in order to carry out mission responsibilities.

Experience has shown that automation of utility plants (such as boiler houses) is the best method to obtain staff spaces for the EMCS. Experience has also shown that it is better to staff the operation with in-house personnel rather than contract for such services. There is a need for close coordination between EMCS operators and other components within the facilities engineers

This is based on References 23 and 24.

group, and outside contractors have been unsuccessful in achieving this.

The EMCS should be staffed during the construction phase so that the operators may see the controls and equipment as they are installed and observe the calibration of controls and instrumentation. Early staffing will also permit time for school and going to job training.

In-house controls technicians can be trained to take over the responsibilities of maintenance and calibration of almost all EMCS field equipment and instrumentation if proper training is provided.

The operator positions should be wage grade (WG) to minimize hiring difficulties.

It is expected that seven positions will be needed to man the EMCS. These positions will consist of:

Position	Strength	Grade Type
Chief, Energy Branch	1	GS
Chief, EMCS, Operations & Maintenance	1	GS
Energy Conservation Officer	1	GS
Utilities Sales Officer	1	GS
Utilities Systems Controllers	3	WG

The four GS positions described here can be assumed by existing personnel. Establishing this upper part of the organization should

be fairly easy, since the Facilities Engineer group at Ft. Riley already has a similar layout.

Two of the three controller positions will be filled by retrained HVAC mechanics. These two positions will be reassigned from round-the-clock duty at Building 8073.

Only one new position will need to be created to staff the EMCS. This new position is expected to be a WG level 11.

The three controller/mechanics will provide only 40-hour-per-week coverage of the EMCS. For other hours, boiler operators in Building 486 will monitor the system.

Boiler operators in Building 486 presently provide round-the-clock surveillance. As part of their routine duties, they care for the hospital EMCS.

D. IMPACT ON MAINTENANCE MANAGEMENT

Experience has shown that preventive maintenance and cyclic maintenance management capabilities can be added to the EMCS software for little additional cost. By using the real time clock of the computer, run times can be tracked for all equipment that has

the start/stop capability with EMCS. Using this feature, the computer can help set up a calendar day based maintenance schedule and can help provide records on maintenance activities.

As mentioned earlier, control technicians can be trained to take over the responsibility of maintaining and calibrating the EMCS field equipment and instruments. However, a maintenance contract with the EMCS manufacturer will probably be required to take care of central computer equipment.

E. CHOICE OF EMCS CAPABILITIES

Many factors affect the decision for an EMCS for Ft. Riley. The important features to be considered in the choice are programmability, FID capabilities, compatibility with the existing Hospital EMCS, and costs.

The Tri-Services Spec (Reference 11) calls for specific features in a large-sized EMCS. The Spec requires the EMCS to be reprogrammable by the operator. It also calls for stand-alone FIDs. Such requirements make the Tri-Service EMCS unlike those planned for the private sector. Such requirements may make the Tri-Service EMCS a special system, which only the military will own. Consequently, costs to purchase, operate and maintain may be higher.

US1.EMC

The reprogramming feature may be of questionable value; the computer may never need reprogramming. At worst, changes in programming will be infrequent (as we see it). It will probably be cheaper to have the manufacturer modify the program than to train and keep operators who are capable of reprogramming.

The stand-alone FID is capable of taking over most EMCS functions in the event of a CPU failure. This requirement, too, may be unnecessary, since powerful MUX panels are being developed with nearly stand-alone capability.

In addition to these other considerations, it has been suggested that the proposed EMCS be linked to, and control, the existing JC80/35 which serves Irwin Army Hospital. A reduction in operating expenses would result from the link, but the Hospital EMCS cannot be tied easily to any Tri-Service Spec EMCS--the respective structures are too different.

The EMCS cost can vary substantially with differences in features.

Table I-3 is presented for illustrative purposes only. It is based on features and costs available from one manufacturer.

TABLE I-3
COMPARISON OF THREE EMC SYSTEMS

Features	EMCS A	EMCS B	EMCS C
Meets Tri-Service Spec	Yes	No	No
Easily Linked to Hospital EMCS (Note 1)	No	Yes	No
Reprogrammable by Operator	Yes	No	No
Stand-alone FIDs	Yes	No	No
CPU Cost (See Notes 2,3)	\$494,000	\$307,000	\$219,000
Cost Differences vs. EMCS-A (Note 3)	_	\$187,000	\$275,000

Notes:

EMCS-A conforms to the Tri-Services Spec for large systems. It includes a backup computer (the CCC). It has the full distributed processing hierarchy: computer over FIDs and MUXs.

EMCS-B is the same EMCS model as the one in use at Irwin Army Hospital. This EMCS has no backup computer. It has no FIDs, but has IMUXs instead of MUXs.

EMCS-C is similar to EMCS-B. EMCS-C can only handle 2,000 points.

- 1. Cost to link EMCS-A to Hospital EMCS is approximately \$213,000. Cost to link EMCS-C to Hospital EMCS is \$234,000.
- 2. Costs include computer equipment, plus training and SIOH.
- 3. Costs are expressed in February 1982 dollars.

F. STRUCTURE²

1. The modern EMCS consists of a central processing unit (CPU). memory, storage devices, input/output (I/O) devices, a data communications processor, data transmission media (DTM), field interface device (FID) panels, multiplexer (MUX) panels, instrumentation, and controls. The primary task of the CPU with its memory and storage devices is to automatically perform control and monitoring functions. The control functions require the execution of complex optimization algorithms used to predict environmental conditions and rate of power consumption, equipment operating points, and produce control signals to operate equipment in the real-time environment. central computer also provides the operator-machine interface required for the EMCS operation. The function of the FID is to collect data and issue control commands to the local equipment, the FIDs data environment (DE). FIDs have a microcomputer that local control, monitoring, and communications functions. Data from the FID is transferred via DTM to the central computer where it is utilized to perform control and

The following section is borrowed largely from Reference 1.

monitoring functions, optimization calculations, and alarm reporting.

2. EMCS can be classified into four categories in accordance with the total number of points connected to the system, system function and operational requirements: (1) large EMCS in excess of 2000 points; (2) medium EMCS with 500 to 2500 points; (3) small EMCS with 50 to 600 points; and, (4) micro EMCS with less than 125 points.

This study has concluded that a large EMCS is appropriate for Ft. Riley.

3. Special terminology is used for subsystem components. Major components of the large EMCS consist of the following:

a. Central Control Unit (CCU)

A minicomputer or microcomputer, with memory for the operating system software and implementation of energy conservation program. Arithmetic computations and logical decision functions necessary to perform control and monitoring are performed in the CCU. Data and programs are stored or retrieved from the memory or mass storage devices.

US1 . EMC

The CCU has programmed I/O ports for specific equipment, such as printers, cathrode ray tube (CRT) consoles, and magnetic tape systems. The CCU has direct memory access (DMA) controllers for high-speed data transfer between the CCU and mass storage devices, such as disk systems. The CCU is the highest priority device and may override or direct the operation of all other EMCS components, except safety interlocks.

b. Central Communication Controller (CCC)

A minicomputer or a microcomputer with sufficient memory to execute the software required to reformat, transfer, and perform error checks on data between the CCU and FIDs, and to provide limited backup in the event of CCU failure. The CCC is used only in a large EMCS.

c. Operator's Console

A color CRT terminal with graphics display. It accepts operator commands, displays data and graphically displays systems controlled or monitored by the EMCS.

d. Command Line Mnemonic Interpreter (CLMI)

A prompting routine that allows the operator to perform control and monitoring operations by simple English-like keyboard commands from the operator's console.

e. System Terminal

A black and white (B/W) CRT terminal used to devlop programs, run diagnostics and support background processing.

f. Alarm and Logging Printers

Printers to provide a permanent copy of system operations and historical data.

g. Cartridge Disk System

A high-density random access mass storage device, with removable storage media.

h. Winchester Disk System

A high-density random access mass storage device, with a nonremovable, hermetically sealed storage media.

Note: Disk type and capacity is dependent upon the number of points controlled or monitored, and number and type of

energy conservation programs being implemented, and the amount of operator interaction required.

A large EMCS requires a disk system which has 100 percent spare space after the system is configured, plus a duplicate disk system. Also, a bulk loader is required; normally, floppy disks are used for this.

i. Floppy Disk Storage System

A medium-density random access storage device, with removable storage media.

j. External Uninterruptible Real Time Clock

A clock that is external to the CCU and CCC used to synchronize system clocks at regular intervals, with battery backup. A real time clock is required for all EMCS.

k. Failover Control Board

Switches CCU, CCC, and printers in the event of CCU or CCC failure into the backup mode of operation. The failover control board is required only when the CCC is used.

1. Nine-Track Magnetic Tape System

A high-density serial mass storage device, with removable storage media.

m. Field Interface Device (FID)

A microcomputer based device with memory, I/O, communications, and power supply. The FID provides an interface to the controlled equipment and environment, performs calculations and logical operations, accepts and processes CU commands, and is capable of stand-alone operation in the event of CCU, CCC, or communications link failure.

n. Multiplexer (MUX) Panel

A device which combines data from a number of points in the DE and communicates on a single channel. It also performs demultiplexing of commands received on a single channel. The MUX panel is functionally part of the FID that can be in the same enclosure or remotely located. It can be a hardwired device or a microprocessor based device.

I-15

G. ENERGY CONSERVATION PROGRAMS

1. GENERAL

The following is a description of software programs available for EMCS. It is borrowed largely from Reference 1.

Not all the programs listed here are recommended for the Ft. Riley installation. All were considered in the analysis, however.

2. SCHEDULED START/STOP

The scheduled start/stop program consists of starting and stopping equipment based on the time of day and day of week. Day of week refers to weekdays, Saturdays, Sundays, holidays, or any day which may have a different schedule of operation. Scheduled start/stop is the simplest of all EMCS functions to implement. This program provides the greatest potential for energy conservation by turning off equipment or systems during unoccupied hours. In addition to sending a start/stop command, it is important, although not mandatory to have a feedback signal indicating the status (on-off) of the controlled equipment. The feedback signal verifies that the command has

been carried out and provides the EMCS operator with an alarm when the equipment is locally started or stopped.

3. OPTIMUM START/STOP

The scheduled start/stop program described earlier can be refined by automatically adjusting the equipment operating schedule in accordance with space temperature and outside air (OA) temperature and humidity. HVAC systems are normally restarted prior to occupancy to cool down or heat up the space on a fixed schedule independent of OA and space conditions. optimum start/stop program automatically starts and stops the on a sliding schedule. The program automatically evaluates the thermal inertia of the structure, the capacity of the HVAC system to either increase or reduce space temperatures, and OA conditions. This accurately determines the minimum time operation needed to satisfy the space HVAC of system environmental requirements at the start of the occupied cycle.

4. DUTY CYCLING

Duty cycling program consists of shutting down mechanical/electrical equipment for predetermined short periods of time during normal operating hours. This function is normally only applicable to HVAC systems. Duty cycling

US1.EMC I-17

operation is based on the theory that HVAC systems seldom operate at peak design conditions. If the system is shut off for a short period of time, it has enough capacity to overcome the slight temperature drift which occurs during the shutdown period. Although the interruption does not reduce the energy required for space heating or cooling, it does reduce energy input to constant auxiliary loads such as fans and pumps. function also reduces OA heating and cooling loads since the OA intake damper is closed (under local loop control) while an air handling unit is off. Systems are generally cycled off for some fixed period of time, typically 15 minutes, out of each hour of operation. The off period time and its frequency is program adjustable. The off time period is automatically increased or decreased in accordance with space conditions. When the duty cycle program is used in conjunction with the demand limiting program it is necessary to interlock the off time period for each piece of equipment to prevent starting and stopping of motors in excess of what is recommended by the NEMA Standard MG-1 for each motor size classification.

5. DEMAND LIMITING

Demand limiting consists of stopping electrical loads to prevent exceeding an electrical demand peak value (target). This

prevents an increase in electrical rates where demand oriented apply. Peak demand contact values are schedules established by the utility company using fixed demand intervals, sliding window intervals, and time of day schedule. Many complex schemes exist for reducing peak demand billings. however; all schemes continuously monitor current power demand and calculate the rate of change of the demand value in predicting future peak demand. When the predicted demand peak exceeds preset limits, predetermined scheduled electrical loads are shut off on a priority basis to reduce the connected load before the peak is exceeded. The demand limiting program is interlocked with the duty cycling program to prevent any one load from being cycled off or on during the wrong interval of time or an excessive number of times. The most commonly shed loads are HVAC systems. The reasoning used in the duty cycling program applies here; i.e., allow a temperature drift in the space by shutting off the HVAC equipment. Within a particular priority group, the order in which a load is shed is changed by the program so that after a load has been the first to be shed in a group, it is moved to last in the group and another load becomes first.

I-19

US1.EMC

6. DAY/NIGHT SETBACK

The energy required for heating or cooling (where required for special types of occupancy) during unoccupied hours can be reduced by lowering the heating space temperature setpoint or raising the cooling space temperature setpoint. This applies only to facilities that do not operate 24 hours a day. Normally the space temperature can be reduced from the normal 65 degrees F winter inside design temperature to a 50 degrees F or 55 degrees F space temperature during the unoccupied hours. In spaces that require air conditioning during unoccupied hours the normal temperature setting can be reset upwards to a temperature that is compatible with the space special requirements. OA dampers for the HVAC system are closed when the equipment operates during the unoccupied periods in order to avoid imposing additional OA thermal loads.

7. DRY BULB ECONOMIZER

The utilization of an OA dry-bulb economizer cycle in air conditioning systems can be a cost effective conservation measure, depending on climatic conditions and the type of mechanical system. The dry-bulb economizer cycle utilizes OA to reduce the building's cooling system energy requirements. When

the OA dry-bulb temperature is above the changeover temperature, the local loop controls the operation of the outside air dampers, return air dampers, and relief air dampers. When the OA dry-bulb temperature is below the changeover temperature, the OA and return air dampers are positioned by EMCS in lieu of normal recirculation of space air to admit excess OA for free cooling. This program cannot be used where humidity control is required.

8. ENTHALPY ECONOMIZER

The utilization of an OA enthalpy program can be a cost effective energy conservation measure, depending on climatic conditions and the type of mechanical system. The enthalpy cycle utilizes OA to reduce the building's cooling requirements when the enthalpy (total heat content) of the OA is less than that of the return air. When the OA enthalpy is below the return air enthalpy, the OA and return air damper are positioned to admit up to 100 percent OA for free cooling. When the OA enthalpy is above the return air enthalpy, the dampers are repositioned to allow minimum OA.

I-21

US1.EMC

9. VENTILATION AND RECIRCULATION

The ventilation and recirculation program controls the operation of the OA dampers when the introduction of OA would impose an additional thermal load during warm-up or cool-down cycles prior to occupancy of the building. This program can also be used in those facilities which maintain environmental conditions for electronic equipment or other humidity-sensitive devices during the building unoccupied periods. During the unoccupied periods, the OA dampers remain closed. During the building occupied cycle, the OA, return and relief dampers are under local loop control. This program operates in conjunction with the scheduled start/stop and optimum start/stop programs prior to building occupancy.

10. HOT DECK/COLD DECK TEMPERATURE RESET

The hot deck/cold deck temperature reset program can be applied to dual duct systems and multizone HVAC systems. These systems utilize a parallel arrangement of heating and cooling surfaces, commonly referred to as hot and cold decks, for providing heating and cooling capabilities simultaneously. The hot and cold air streams are combined in mixing boxes or plenums to satisfy the individual space temperature requirements. In the absence of optimization controls, these systems mix the two air

streams to produce the desired temperature. While the space temperature may be acceptable, a greater difference between the temperatures of the hot and cold decks, will result in more inefficent system operation. This program selects the areas with the greatest heating and cooling requirements, and hot and cold deck temperature establishes the minimum differentials which will meet the requirements, thus maximizing system efficiency. Space temperature sensors and mixing box or plenum damper positions are used to determine the minimum and maximum cold deck temperatures necessary to satisfy the space temperature requirements during the building occupied period.

11. STEAM BOILER OPTIMIZATION

This program is for multiple boiler installations only. The steam boiler optimization program can be implemented in heating plants with multiple boilers. Optimization of boiler plants can be accomplished through the selection of the most efficient boiler(s) to satisfy the heating load. Boiler operating data must be obtained from the manufacturer, or developed by monitoring fuel input as a function of the steam output. Determination of boiler efficiency also takes into account the heat content of the condensate return and makeup water. Based on the efficiency curves, fuel input vs. steam output, the

US1.EMC I-23

boilers with the highest efficiency can be selected to satisfy the heating load. Burner operating efficiency can be monitored by measuring the O_2 in each boiler flue.

12. HOT WATER BOILER OPTIMIZATION

This program is for multiple boiler installations only. Hot water boiler optimization can be implemented in heating plants with multiple boilers. The techniques and considerations are the same as discussed in (paragraph 11).

13. HOT WATER OA RESET

Hot water heating systems, whether the hot water is supplied by a boiler or a converter, are generally designed to supply hot water at a fixed temperature. Depending on the system design, the hot water supply temperature can be reduced, as the heating requirements for the facility decrease, because of increased OA temperatures. A reduction in hot water supply temperature results in reduction of heat loss from equipment and piping. To implement this program, the temperature controller for the hot water supply is reset as a function of OA temperature.

14. CHILLER OPTIMIZATION

This program is for multiple chiller installations only. The chiller optimization program can be implemented in chilled water plants with multiple chillers. Based on chiller operating data and the energy input requirements obtained from the manufacturer for each chiller, the program will select the chiller or chillers required to meet the load with the minimum energy consumption. When a chiller or chillers are started, chiller capacity must be limited (prevented from going to full load) for a predetermined period to allow the system to stabilize in order to determine the actual cooling load. Comparison of equipment characteristics vs. the actual operating chiller characteristics make it possible to determine when heat transfer surfaces need cleaning to maintain the highest efficiency. The program must follow the manufacturer's start-up and shutdown sequence requirements. Interlocks between chilled water pumps, condenser water pumps and chiller must be in accordance with the chiller manufacturer's requirements.

15. CHILLED WATER TEMPERATURE RESET

This program is for reciprocating and centrifugal chillers only.

The energy required to produce chilled water in a reciprocating or centrifugal refrigeration machine is directly related to

US1.EMC I-25

leaving chilled water temperature. The refrigerant suction temperature is also related to the leaving water temperature; the higher the temperature, the lower the energy input per ton of refrigeration. Chiller discharge temperature is selected for peak design times; therefore, chilled water temperatures can be elevated during nonpeak design hours to the maximum which will still satisfy space cooling requirments. The program resets chilled water temperature until the required space temperature can no longer be maintained. This determination is made by monitoring positions of the chilled water valves on various cooling systems or by monitoring space temperatures.

16. CONDENSER WATER TEMPERATURE RESET

The energy required to operate systems is directly related to the temperature of the condenser water temperature entering the machine. Conventionally, heat rejection systems are designed to produce a specified condenser water temperature such as 85 degrees F at peak wet-bulb temperatures. In many instances, automatic controls are provided to maintain a specified temperature at conditions other than peak wet-bulb temperatures. In order to optimize the performance of refrigeration systems, condenser water temperature can be reset downward when OA wet-

bulb temperature will produce lower condenser water temperature.

The program must incorporate manufacturer requirements governing
the acceptable condenser water temperature range.

17. CHILLER DEMAND LIMIT

This program is for centrifugal chillers only. Centrifugal water chillers are normally factory equipped with an adjustable control system which limits the maximum available cooling capacity; thus, the power the machine can use. An interface between the FID and the chiller controls allows EMCS to reduce the maximum available cooling capacity in several fixed steps in a demand limiting situation, thereby reducing the electric demand without completely shutting down the chiller. The method of accomplishing this function varies with the manufacturer of the chiller. The chiller percent capacity can be obtained by monitoring the chiller current input. When a chiller is limiting, a single-step signal is selected for demand transmitted, reducing the chiller limit adjustment by a fixed amount. The chiller demand limit adjustment can be performed by adding or deleting resistance to the control circuit, shunting out taps of auto transformers in the control circuit or by resetting the control air pressure to the chiller vane operator. further need arises, additional stop signals can be As

US1.EMC I-27

transmitted until the demand limiting situation is corrected. Extreme caution must be exercised when applying this program, since incorrect control can cause the refrigeration machine to condition, operate in а surge potentially causing it considerable damage. The chiller manufacturer's recommended minimum cooling capacity limit must be incorporated into the program logic. In general, surges occur in chillers at loads less than 20 percent of the rated capacity. This program is used in conjunction with the demand limiting program and, therefore, each chiller demand control step must be assigned an equipment priority level.

18. LIGHTING CONTROL

Time scheduled operation of lighting consists of turning on and off lights, based on the time of day and the day of week. Additional off commands should be generated once an hour to assure that lights are off in the event that personnel turn lights on without authorization after hours. An alternative to this program is to initiate only the off function and require that the lights be turned on manually. Breakers connected to emergency lights must not be disconnected.

19. OUTDOOR AIR START/STOP

The outdoor air start/stop program calls for switching of equipment based on outdoor air temperature or humidity. Just as with the scheduled start/stop program, an equipment status signal can be important in verifying that the switch command has been properly executed.

* * * * *

PART II — COST-BENEFIT ANALYSIS

PART II

COST-BENEFIT ANALYSIS

A. METHOD OF ANALYSIS

The approach to this EMCS feasibility study is a four-step procedure described in References 1 and 2.

Step one is a tentative listing of buildings which are most likely to benefit from the proposed EMCS. The Facilities Engineer and Burns & McDonnell prepared a list of 194 such buildings.

Step 2 is an information search and field survey. The information embodies review of utility records, search а drawings; specifications and equipment manuals. information pool as a guide, each of the 194 buildings was visited by a Burns & McDonnell survey team. The team checked such factors as motor horsepowers, equipment condition and occupancy schedules. In this manner, the information pool was verified and supplemented to the best possible extent.

Step 3 is a preliminary analysis. Each building is scrutinized and ways to save energy are identified. Costs are estimated too. The

II-1

preliminary analysis gives a rough idea of the EMCS--costs, benefits, system size; number of buildings, and so on.

Step 4 is a reevaluation of the EMCS. Each building is examined again, and the initial estimates are refined.

B. SUMMARY

Table II-1 summarizes our results. Energy savings were estimated with the aid of Burns & McDonnell computer models, and the methods recommended in References 4, 5, 6 and 10. Costs for points were based on manufacturers' estimates presented earlier in Table I-2, page I-23. The "Existing Controls" listings are costs to modify or correct local controls. The "DTM" costs are for new phone lines which are expected to be installed as part of the EMCS project. The E/C ratios were computed in accordance with Reference 1, Chapter 7.

Table II-2 indicates buildings not recommended for the EMCS.

Table II-3 is another listing of the same buildings entered in Table II-1; the buildings are ranked by E/C ratio.

(Continued on Page II-127)

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	19	29	73	20	75	ļ	67	45	21	20	53	55	53	34	53	74	75	52	19	31	74	7	51	40	118	73	39
NO.	PTS	3	6	7	30	15		6 1	2	7	7	19	14	19	2	19	20	12	4	9	19	9	,	13	10	ഹ	4	37
	TOTAL	168	1708	1123	1518	1462	!	737	552	155	149	519	547	519	266	519	1877	1073	684	168	595	1168	i i	595	621	3397	854	1204
SAVED STU/YR	OIL	-	1	1	ı	I		i	ı	ı	1	ı	1	1	1	1	80	1	١	ı	1	١		1	i	1	1	l
ENERGY SAVED MEGA BTU/YR	GAS	103	1670	1064	950	599		272	541	155	139	113	26	113	266	113	l	1073	545	103	169	303	,	169	366	3397	854	374
	ELECTRIC	65	38	59	268	863		465	11	1	10	406	491	406	1	406	1797	1	139	65	426	865	,	426	255	l	l	830
	TOTAL	6640	12,210	9110	33,950	17,510		10,910	7810	4710	4710	21,500	15,260	21,500	4560	21,500	23,200	15.290	6660	0606	24,050	8260	(24,050	13,810	7310	0929	43,300
COSTS (FEB. 82)	DTM	2000	870	870	870	870		870	870	870	870	870	870	870	870	870	870	2000	870	2000	870	870	i i	870	870	870	870	3530
CO (FEI	EXIST CONTROLS	1	ı	l	١	ı		1	ı	ı	I	İ	l	l	1	i	1	1	١		2000	ı	4	2000	-	ı	l	ı
	PTS	4640	11,340	8240	33,080	16,640		10,040	6940	3840	3840	20,630	14,390	20,630	3690	20,630	22,330	13 290	5790	2090	21.180	7390		21,180	12,940	6440	5890	39,770
BLDG.	FUNCTION	Chapel	Field House	Admin.	Admin.	Barracks		Child Care	Finance	Band Training	Red Cross	Barracks	Barracks	Barracks	НО	Barracks	Barracks w/Mess	Post HO	Warehouse	Chanel	Barracks	Theater	,	Barracks	Rec. Ctr.	Admin.	Motor Rep. Shop	Officer's Club
BLDG.	NO.	3	32	34	37	40		46	70	72	75	68	06	91	92	93	94	108	126	128	149	163		165	184	201	205	255

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	26	38	19	41	NA	74	32	94	94	25	42	42	31	35	28	39	n C	3.5	35	35	35	15	101	21
NO.	PTS	4	12	3	14	11	14	3	9	∞	10	9	7	3	10	24	18	0	0 4	14	14	14	4	14	9
	TOTAL	319	408	139	450	NA	1292	265	1678	1678	377	836	1059	202	855	883	1257	072	260 430	430	430	430	110	1592	191
ENERGY SAVED MEGA BTU/YR	OIL	ı	1	l	1	NA	1	ŀ	ı	ŀ	377	762	1	ı	I	1	I	27.7	//0	1	1	ı	ı	ı	ſ
ENERGY SAVE	GAS	319	48	139	1	NA	920	156	1646	1646	1	ı	1052	271	392	285	I		84	84	84	84	110	1381	144
	ELECTRIC	ł	360	ı	450	NA	372	109	32	32	-	74		236	463	598	1257	103	346	346	346	346	ı	211	47
	TOTAL	9510	14,640	5860	16,460	13,260	16,110	5860	8760	10,410	15,140	11.890	13,490	9740	16,440	28,800	20,460	710	10,710 15.510	15,510	15.510	15,510	6710	18,410	8710
COSTS (FEB. 82)	DTM	3620	2000	870	870	870	870	870	870	870	4100	4100	4100	4900	4900	870	870	010	0/0 870	870	870	870	870	870	870
CC FE	EXIST CONTROLS	1	ı	ı	ı	ı	I	ŀ	1		ı	l	ı	1	I	2000	1	002	000	I	1	ı	ı	2000	ı
	PTS	5890	12,640	4990	15,590	12,390	15,240	4990	7890	9540	11,040	7790	9390	4840	11,540	25,930	19,590	0770	14.640	14,640	14,640	14,640	5840	15,540	7840
BLDG.	FUNCTION	Marksmanship	Barracks w/Mess	НQ	BOQ	Dental Clinic	Admin.	Flight Training	Hangar	Hangar	Army Reserves	Salvage	Field House	Post Office	Chapel	NCO Club	Run-in Chef	Main Px $\frac{D_{2,2}}{D_{2,2}}$	Barracks w/Mess	Barracks w/Mess	Barracks w/Mess	Barracks w/Mess	НО	Gym	EM Club
BLDG.	NO.	296	315	355	487	495	801	860	864	998	1470	1950	1980	5302	5315	6620	6910	6914	7004	7007	7010	7013	7017	7024	7028

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	32	50	34	77	33		32	21	24	35	35	15	36	37	15	41	33	41	41	72	27	,	20	37	63	70	40
NO.		4	∞	5	5	29	•	4 .	4	4	14	14	4	10	41	4	29	29	29	29	4	19	•	×	19	7	11	2
	TOTAL	157	275	275	529	469	1	157	157	110	430	430	110	435	3969	110	469	469	9/9	929	476	367	, ,	1320	200	787	1653	532
ENERGY SAVED MEGA BTU/YR	OIL	1	l	l	ı	ı	-	I	I	1	1	ı	1	1	ı	1	ı	ı	!	1	1	1		1	1	İ	!	l
ENERGY SAVEI MEGA BTU/YR	GAS	157	162	162	418	110	, ,	157	157	110	84	84	110	259	1	110	110	110	207	207	470	142		1314	268	430	428	418
	ELECTRIC	1	113	113	111	359		I	ı	I	346	346		176	3969	1	359	359	469	469	9	225	ò	36	432	357	1225	114
	TOTAL	4820	10,610	7460	5970	33,900	0007	4820	6710	4820	15,510	15,510	6710	12,910	60,610	6710	33,900	33,900	33,900	33,900	4820	22,600	0	12,/10	23,000	9460	13,710	9330
COSTS (FEB. 82)	DTM	870	870	870	890	870	1	870	820	870	870	870	870	870	870	870	870	870	820	870	870	870	1	0/8	870	870	870	2340
CO (FE	EXIST CONTROLS	1	1	ı	1	2000			1	1	1	1	ı	1	ı	1	2000	2000	2000	2000	ı	1		7000	ı	1	ı	ı
	PTS	3950	9740	6590	5100	31,030		3950	5840	3950	14,640	14,640	5840	12,040	59,740	5840	31,030	31,030	31,030	31,030	3950	21,730	9	7840	22,130	8590	12,840	0669
BLDG.	FUNCTION	Classroom	Dispensary	Dispensary	HQ	Barracks w/Mess	7	Classroom	Classroom	НО	Barracks w/Mess	Barracks w/Mess	НО	Chapel	Chiller Plant	НО	Barracks w/Mess	Barracks w/Mess	Barracks w/Mess	Barracks w/Mess	Five Co. Admin. & Stor.	Mess Hall	(:	Adj. General	Rec. Ctr.	HQ & Classroom	Theater	Spec. Weap. Clrm.
BLDG.	NO.	7031	7033	7034	7036	7044	1	7046	7047	7048	7050	7053	7055	7086	7210	7215	7224	7227	7230	7233	7243	7245	t C	/255	7264	7270	7285	7305

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	53	84	84	51	77		53	46	38	27	27		38	16	16	16	16	71	70	67	× ×	81	37	,	04	122	51	64	43
NO.	PTS	16	11	11	∞	10		16	16	21	16	16		21	11	11	11	11	,	17 0	o ,	0, -	_	7	t	\	16	∞	7	9
	TOTAL	1678	1464	1464	269	873		1678	1366	809	367	367		809	158	158	158	158	1 60	707	/0/	1/5/	816	257	,	918	1592	269	816	258
SAVED STU/YR	OIL	l	ı	1	1	ı		1	!	ı	!	ı		1	ı	l	1	ı		l	1	l	1	ı		1	1	1	1	1
ENERGY SAVED MEGA BTU/YR	GAS	1646	ı	1	418	167		1646	1334	470	142	142		470	1	1	1	ı		130	430	888	430	151	00	430	1381	418	430	152
	ELECTRIC	32	1464	1464	279	902		32	32	138	225	225		138	158	158	158	158	1 50	130	237	849	386	106	700	380	211	279	386	106
	TOTAL	24,670	13,760	13,760	10,460	11,710		24,670	24,670	24,200	19,850	19,850		24,200	13,210	13,210	13,210	13,210	12 210	10,710	10,110	17,610	7570	9460	0770	9460	17,710	10,460	9460	6720
COSTS (FEB. 82)	DTM	2340	870	870	870	870		2340	2340	870	870	870		870	870	870	870	870	070	870	0/0	8/0	0/8	870	1	9/0	870	870	870	870
) (F	EXIST CONTROLS	1	ı	ŀ	1	I		ı	ı		1	1		1	1	1	ļ	1		l	1	1	ı	ı		l	1	ı	1	ı
	PTS	22,330	12,890	12,890	9590	10,840	,	22,330	22,330	23,330	18,980	18,980		23,330	12,340	12,340	12,340	12,340	12 340	0240	77.1	16,/40	00/9	8590	0000	0,600	16,840	9590	8590	5850
BLDG.	FUNCTION	Motor Rep. Shop	Barracks	Barracks	ЭН	Bowling Ctr.		Motor Rep. Shop	Motor Rep. Shop	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	•	Five Co. Admin. & Stor.	Barracks	Barracks	Barracks	Barracks	Rattacks	HO & Cheeroom	A 1	Admin.	Admin.	Dispensary	Admin 8.	Admini. & Classroom	Gym	HQ	Admin. & Classroom	Branch Px
BLDG.	SO.	7350	7404	7424	7450	7485	1	7500	7520	7602	7604	9092		8092	7610	7612	7614	7616	7618	0767	0107	7077	1024	7626	7630	7030	/032	7636	7638	7640

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	16	16	16	16	16	Ç	38	27	27	38	108		130	53	34	53	46	46	30	9 6	/7	27	38	16	1	16	16	16	16
NO.	PTS	11	11	11	11	11	7	21	16	16	21	9		6	16	6	16	16	16	210	77	16	16	21	7	CT.	13	13	13	13
	TOTAL	158	158	158	158	158	0	809	367	367	809	1744		3553	1678	290	1678	1366	1366	808	000	367	367	809	۲. ۲.	OCT	158	158	158	158
SAVED STU/YR	OIL	-	1	1	1	1		1	1	٠	ı	1		1072	l	1	1	I			1	ì	ı	1		1	ı	1	ı	1
ENERGY SAVED MEGA BTU/YR	GAS	ı	1	1	ı	1	į.	470	142	142	470	880		1	1646	171	1646	1334	1224	1707	0/1	142	142	470		I	1	l	I	1
	ELECTRIC	158	158	158	158	158		138	225	225	138	864		2481	32	119	32	32	33	120	100	225	225	138	ر م	100	158	158	158	158
	TOTAL	13,210	13,210	13,210	13,210	13,210		24,200	19,850	19,850	24,200	8110		11,360	24,670	10,690	24,670	24,670	073 670	0/0,42	24,200	19,850	19,850	24,200	15 160	10,100	15,160	15,160	15,160	15,160
COSTS (FEB. 82)	DTM	870	870	870	870	870	i i	870	870	870	870	870		870	2340	100	2340	2340	2340	070	0/0	0/8	870	870	870	0/0	820	870	870	870
CO (FEI	EXIST CONTROLS	-	I	ı	1	1		l	ı	1	ı	1		1	ı	1	ı	1			l	I	ı	ı	١		1	ı	ı	ı
	PTS	12,340	12,340	12,340	12,340	12,340		23,330	18,980	18,980	23,330	7240		10,490	22,330	10,590	22,330	22,330	22 230	22,230	40,000	18,980	18,980	23,330	14 290	0/2,1	14,290	14,290	14,290	14,290
BLDG.	FUNCTION	Barracks	Barracks	Barracks	Barracks	Barracks		Five Co. Admin. & Stor.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Dental Clinic	,	Dental Clinic	Motor Rep. Shop	Redeye	Motor Rep. Shop	Motor Rep. Shop	Motor Ren Chon	Fire Co Admin & Ctor	Tive Co. Admini. & Stol.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Rarracke	Dallachs	Barracks	Barracks	Barracks	Barracks
BLDG.	NO.	7642	7644	7646	7648	7650	i L	7652	7654	7656	7658	7665		0/9/	7720	7739	7740	0922	7780	7903	7007	/804	7806	7808	7810	OTO/	7812	7814	7816	7818

Table II-1
COST/BENEFIT SUMMARY

E/C	RATIO	6 <u>7</u>	87	39	122	48		87	43	16	16	16		16	16	38	27	27	(38	49	46	74	46		53	18	18	21	27
NO.	PTS	∞ !	17	_	14	5		17	11	13	13	13		13	13	21	16	16		21	14	16	09	16		16	7	7	7	S.
	TOTAL	787	1688	275	1592	529		1688	258	158	158	158		158	158	809	367	367		809	934	1366	12,012	1366		1678	199	199	100	143
SAVED STU/YR	OIL	_	1	1		1		ı	ı	1	ı	I		i	ı	1	1	1		1	1	!	ı	ı		ı	ı	1	l	52
ENERGY SAVED MEGA BTU/YR	GAS	430	888	162	1381	418		888	152	1	ı	ı		1	1	470	142	142	,	470	242	1334	9719	1334		1646	ı	1	1	1
	ELECTRIC	357	800	113	211	111	,	800	106	158	158	158		158	158	138	225	225		138	692	32	2293	32		32	199	199	100	91
	TOTAL	8220	20,450	7570	14,520	9250	,	18,560	13,260	15,160	15,160	15,160		15,160	15,160	24,200	19,850	19,850		24,200	16,310	24,670	90,730	24,670		24,670	9460	9460	7570	5620
COSTS FEB. 82)	DTM	870	870	870	870	870		870	870	870	870	870		870	870	870	870	870	1	8/0	870	2340	2340	2340		2340	870	870	870	870
CC (FE	EXIST CONTROLS	ı	1	I	1	1		1	ı	ı	1	ı		ı	ı	ı	ı	ı			1	1	1	ł			1	1	1	1
	PTS	7350	19,580	0029	13,650	8380		17,690	12,390	14,290	14,290	14,290	,	14,290	14,290	23,330	18,980	18,980		23,330	15,440	22,330	88,390	22,330		22,330	8590	8590	0029	4750
BLDG.	FUNCTION	HQ & Classroom). ::	Dispensary	Gym	НО	(HQ .	Branch Px	Barracks	Barracks	Barracks		Barracks	Barracks	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	· · · · · · · · · · · · · · · · · · ·	Five Co. Admin, & Stor.	Ineater	Motor Repair Shop	Motor Repair Shop	Motor Repair Shop		Motor Repair Shop	Type B Barracks	Type B Barracks	Type A Barracks	Day Room
BLDG.	NO.	7820	7824	7826	7832	7834	1	7836	/840	7842	7844	7846	0	7848	7850	7852	7854	7856	1000	1000	008/	2006	7920	7940	0	0967	8002	9008	8008	8010

Table II-1 COST/BENEFIT SUMMARY

E/C	SATIO	18	21	21	18	39	39	81	81	18	21	ŏ	27	7 6	77	21	18	21	18	39	39	104	(84	48	70	78	45
NO.		7	7		2	15	7.	13	13	7	7	1	. u	1 0	<u> </u>	7	7	7	'n	15	15	∞	(∞	9	29	9	78
	TOTAL	199	100	100	143	742	742	1479	1479	199	100	100	173	143	001	100	199	100	143	742	742	2292	1	257	258	1891	668	8036
SAVED TU/YR	OIL	1	1	1	52	470	470	894	894	ı	ı		ני	70	1	l	1	I	52	470	470	1035	1	151	152	1327	382	7686
ENERGY SAVED MEGA BTU/YR	GAS	1	I	I	1	1	ı	ı	1	ı	I		1	1	ı	l	1	ı	1	1	ı	ı		ı	1	ı	ı	1
	ELECTRIC	199	100	100	91	272	272	585	585	199	100	100	01	71	001	100	199	100	91	272	272	1257	,	106	106	564	517	350
	TOTAL	9460	7570	7570	9400	16,910	16 910	15,010	15,010	9460	7570	0460	5400	2020	/2/0	7570	9460	7570	9400	16,910	16,910	11,800		8420	6420	32,800	8310	97,280
COSTS (FEB. 82)	DTM	870	870	870	870	870	870	870	870	870	870	070	0/0	0/0	0/8	870	870	870	870	870	870	870		820	870	870	870	870
CO (FEE	EXIST CONTROLS	1	ı	ı		ı	I	ı	1	1	1		l	l	ı	-	1	ı	1	١	ı	l		1	ı	l	1	1
	PTS	8590	6700	00/9	8530	16,040	16.040	14,140	14,140	8590	0029	0000	4750	4/50	00/9	0029	8590	0029	8530	16,040	16,040	10,930	1	7550	5550	31,930	7440	96,410
BLDG.	FUNCTION	Type B Barracks	Type A Barracks	Type A Barracks	Day Room	Five Co Admin & Supply	Five Co Admin & Supply	HO & Classroom	HQ & Classroom	Type B Barracks	Type A Barracks	Trees B Boundle	Der Desidens	Day Koom	I ype A Barracks	Type A Barracks	Type B Barracks	Type A Barracks	Day Room	Five Co Admin & Supply	Five Co Admin & Supply	Mess Hall		Dispensary	Branch Px	Gym	НО	Central Plant
BLDG.	NO.	8012	8014	8018	8020	8021	8023	8025	8037	8038	8040	0042	0042	8040	8048	8050	8052	8054	8056	8057	8059	8063	1	8065	8067	6908	8071	8073

Table II-1 COST/BENEFIT SUMMARY

E/C	RATIO	53 24 24
NO.	PTS	16 16 47
	TOTAL	1678 1678 1678 2551
ENERGY SAVED MEGA BTU/YR	OIL	1646 1646 1646 2502
ENERGY MEGA	GAS	
	ELECTRIC	32 32 49
	TOTAL	24,670 24,670 24,670 70,450
COSTS (FEB. 82)	DTM	2340 2340 2340 2340
00 3F)	EXIST CONTROLS	1
	PTS	22,330 22,330 22,330 68,110
BLDG.	FUNCTION	Motor Repair Shop Motor Repair Shop Motor Repair Shop Motor Repair Shop
BLDG.	O	8300 8320 8340 8360

Table II-1 COST/BENEFIT SUMMARY TOTALS

Building Count

Number of buildings recommended for EMCS	179
Number of buildings not recommended	<u>15</u>
Total buildings examined	194

Point Count

Buildings	2299
OA points at FID's	18
Anzio Substation	1
Total	2318

Costs (Feb. 82 dollars)

Pts	Exist. Controls	DTM_	Total
\$2,729,740	\$20,600	\$209,890	\$2,960,230
	or field hardware, rols, and DTM	modifications to	\$2,960,230

Energy Savings (Mega BTU/Yr)

Electricity	Gas	Oil	Total
53,861	68,958	24,717	147,536

Total energy saved -145,600 Mega BTU/Yr

Table II-2
BUILDINGS NOT RECOMMENDED FOR EMCS

No.	Function
71	Youth Ctr.
127	Commissary
144	Barracks
145	Carr Hall
146	Barracks
440	BOQ
441	BOQ
442	BOQ
480	Nurses BOQ
481	Nurses BOQ
839	Aviation Operations
863	Aviation Operations
5309	Will Hall
5322	Shoppette
6420	Telephone Exchange

Total 15 Buildings

Table II-3
BUILDINGS RANKED BY E/C RATIO

E/C Ratio	Building Number	Building Function
130	7670	Dental Clinic
122	7632	Gymnasium
	7832	Gymnasium
118	201	Administration
108	7665	Dental Clinic
104	8063	Mess Hall
101	7024	Gymnasium
94	864	Hangar
	866	Hangar
88	7622	Administration
87	7824	Headquarters
	7836	Headquarters
84	7404	Barracks
	7424	Barracks
81	7624	Administration & Classroom
	8025	Headquarters & Classroom
	8037	Headquarters & Classroom
79	7620	Headquarters & Classroom
	7820	Headquarters & Classroom
78	8071	Headquarters
77	7036	Headquarters
	7485	Bowling Center
75	40	Barracks
	108	Post Headquarters
74	94	Barracks w/Mess
	163	$\mathtt{Theate} \boldsymbol{r}$
	801	Administration
	7920	Motor Repair Shop
73	34	Administration
	205	Motor Repair Shop
72	7243	Five Co. Administration & Storage
70	7285	Theater
	8069	Gymnasium
68	7253	Adj General
67	32	Field House
	46	Child Care
64	7630	Administration & Classroom
	7638	Administration & Classroom
63	7270	Headquarters & Classroom
55	90	Barracks
53	89	Barracks

E/C Ratio	Building Number	Building Function
	91	Barracks
	93	Barracks
	6940	Pool
	7350	Motor Repair Shop
	7500	Motor Repair Shop
	7720	Motor Repair Shop
	7740 ·	Motor Repair Shop
	7960	Motor Repair Shop
	8300	Motor Repair Shop
	8320	Motor Repair Shop
	8340	Motor Repair Shop
52	126	Warehouse
51	7450	Headquarters
	7636	Headquarters
50	37	Administration
	7033	Dispensary
49	7866	Headquarters
48	7834	Headquarters
	8065	Dispensary
	8067	Branch PX
46	7520	Motor Repair Shop
	7760	Motor Repair Shop
	7780	Motor Repair Shop
	7900	Motor Repair Shop
	7940	Motor Repair Shop
45	8073	Central Plant
	70	Finance
43	7640	Branch PX
	7840	Branch PX
42	1950	Salvage
	1980	Field House
41	487	BOQ
	7224	Barracks w/Mess
	7230	Barracks w/Mess
	7233	Barracks w/Mess
40	184	Recreation Center
	7305	Special Weapons Classroom
39	255	Officer's Club
	6910	Run-in Chef
	6914	Main PX
	7826	Dispensary

E/C Ratio	Building Number	Building Function
	8021	Five Co. Administration & Storage
	8023	Five Co. Administration & Storage
	8057	Five Co. Administration & Storage
	8059	Five Co. Administration & Storage
38	315	Barracks w/Mess
,-	7602	Five Co. Administration & Storage
•	7608	Five Co. Administration & Storage
	7652	Five Co. Administration & Storage
	7658	Five Co. Administration & Storage
	7802	Five Co. Administration & Storage
	7808	Five Co. Administration & Storage
	7852	Five Co. Administration & Storage
	7858	Five Co. Administration & Storage
37	7210	Chiller Plant
	7264	Recreation Center
	7626	Dispensary
36	7086	Chapel
35	5315	Chapel
	7004	Barracks w/Mess
	7007	Barracks w/Mess
	7010	Barracks w/Mess
	7013	Barracks w/Mess
	7050	Barracks w/Mess
	7053	Barracks w/Mess
34	92	Headquarters
	7034	Dispensary
34	7739	Redeye
33	7044	Barracks w/Mess
	7227	Barracks w/Mess
32	860	Barracks w/Mess
	7031	Classroom
	7046	Classroom
31	149	Barracks
	165	Barracks
	5302	Post Office
27	7245	Mess Hall
	7604	Mess Hall
	7606	Mess Hall
	7654	Mess Hall
	7656	Mess Hall
	7804	Mess Hall

E/C Ratio	Building Number	Building Function
	7806	Mess Hall
	7859	Mess Hall
	7856	Mess Hall
	8010	Day Room
	8046	Day Room
26	296	Marksmanship
25	1470	Army Reserves
24	7048	Headquarters
	8360	Motor Repair Shop
21	72	Band Training
	7028	EM Club
	7047	Classroom
	8008	Type A Barracks
	8014	Type A Barracks
	8018	Type A Barracks
	8040	Type A Barracks
	8048	Type A Barracks
	8050	Type A Barracks
	8054	Type A Barracks
20	75	Red Cross
19	3	Chapel
	128	Chapel
	355	Headquarters
18	8002	Type B Barracks
	8006	Type B Barracks
	8012	Type B Barracks
	8020	Day Room
	8038	Type B Barracks
	8042	Type B Barracks
	8052	Type B Barracks
	8056	Day Room
16	7610	Barracks
	7612	Barracks
	7614	Barracks
	7616	Barracks
	7618	Barracks
	7642	Barracks
	7644	Barracks
	7646	Barracks
	7648	Barracks
	7650	Barracks

E/C Ratio	Building Number	Building Function
	7810	Barracks
	7812	Barracks
	7814	Barracks
	7816	Barracks
	7818	Barracks
	7842	Barracks
	7844	Barracks
	7846	Barracks
	7848	Barracks
	7850	Barracks
15	7017	Headquarters
	7055	Headquarters
	7215	Headquarters
	178 Bldgs	

TABLE II-4 POINT LIST

LEGEND:

TEMP = temperature sensor (analog)
PRESS = pressure sensor (analog)

AL/C = alarm contactor (binary)
CPA = control point adjustment
(analog)

FLOW = flow sensor (analog)

S/S = start/stop switch (binary)

STAT = start/stop switch (binary)
STAT = status indicator (binary)

KWH = kW-hr readout (analog)
TL = tank level sensor (analog)

CHAPEL 3

 ITEM
 TEMP
 PRESS
 FLOW
 S/S
 STAT
 AL/C

 AHU (Stm, DX)
 1
 1
 1

 Discharge Air
 1
 1
 1

 Space
 1
 1
 1

Total of 3 Points and 1 MUX

KING FIELD HOUSE 32

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Self Contnd. AC-2, AC-3 UH-1 (Stm only) UH-3 (Stm only) UH-2, 4, 5, 6 (Stm only)				1 1 1	1 1	
Space	4					

Total of 8 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

GENERAL INSTRUCTION BUILDING 34

ITEM	TEMP	PRESS	$\underline{\mathtt{FLOW}}$	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HV-1 (Stm)				1	1	
Space	2					

Total of 7 Points and 1 MUX

ADMIN. & PX 37

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
CHW Pump				1	1	
AHU-1 (CHW only)				1	1	
AHU-2 (CHW only)				1	1	
AHU-3 (CHW only)				1	1	
AHU-4 (CHW only)				1	1	
AHU-5 (CHW only)				1	1	
AHU-6 (CHW only)				1	1	
AHU-7 (CHW only)				1	1	
AHU-8 (DX only)				1	1	
Self Contnd. AC-1				1	1	
Self Contnd. AC-2				1	1	
Self Contnd. AC-3				1	1	
Self Contnd. AC-4				1	1	
Self Contnd. AC-5				1	1	
Space	12					

Total of 30 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 40

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2				1	1	1
AHU-1 (Stm CHW, 4 Zones)			1	1	'
Hot/Cold Deck AHU-2 (Stm CHW, 4 Zones)			1	1	
Hot/Cold Deck ASU-1 (Stm, CHW)	2			1	1	
ASU-2 (Stm, CHW)				1	1	
ASU-3 (Stm, CHW)				1	1	
ASU-9 (Stm, only) CHW	1			1	1	

Total of 15 Points and 1 MUX

CHILD CARE CENTER 46

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
AHU-1 (HW, CHW)				1	1	
Discharge Air	1					
AHU-2 (HW, CHW)				1	1	
Discharge Air	1					
CHW/HW	1					
Space	2					

Total of 9 Points and 1 MUX

FINANCE 70

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler HW Pump (1/6 hp) Space	2			1 1 1	1 1 1	

Total of 5 Points and 1 MUX

BAND TRAINING 72

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
HW Pump (1/6 hp) Space	1			1	1	

Total of 2 Points and 1 MUX

RED CROSS 75

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Furnace				1	1	
Space	1					

Total of 2 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS 89

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW AHU-1 (2 Zone, Stm,	1 CHW)			1	1	
Hot/Cold Deck	2					
AHU-2 (2 Zone, Stm, Hot/Cold Deck	CHW)			1	1	
AHU-3 (4 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck AHU-4 (8 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck	2				'	
Space	4					

Total of 19 Points and 2 MUX's

BARRACKS 90

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler CHW	1			1	1	1
AHU-1 (5 Zone, Stm, Hot/Cold Deck	CHW)			1	1	
AHU-2 (5 Zone, Stm, Hot/Cold Deck	CHW)			1	1	
AHU-3 (Stm, CHW) Discharge Air	1			1	1	
Space	3					

Total of 14 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS 91

SIMILAR BUILDING 93

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW AHU-1 (2 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck	2					
AHU-2 (2 Zone, Stm, Hot/Cold Deck	CHW) 2			1	1	
AHU-3 (8 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck AHU-4 (4 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck	2					
Space	4		*			

Total of 19 Points and 2 MUX's

RGT. BDE HQ 92

ITEM	TEMP	PRESS	$\underline{\mathtt{FLOW}}$	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler				1	1	
Space	1					

Total of 2 Points and 1 MUX

BARRACKS 93

SIMILAR BUILDING 91

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler CHW	1			1	1	1
AHU-1 (2 Zone, Stm,	CHW)			1 .	1	
Hot/Cold Deck AHU-2 (2 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck AHU-3 (8 Zone, Stm,	2 CHW)			1	1	
Hot/Cold Deck	2					
AHU-4 (4 Zone, Stm, Hot/Cold Deck	CHW) 2			1	1	
Space	4					

Total of 19 Points and 2 MUX's

BARRACKS 94

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Oil Stm Blr (Kit.) Gas Steam Boiler CHW	1			1	1	1
AHU-1 (5 Zone, Stm, Hot/Cold Deck	CHW)			1	1	
AHU-2 (5 Zone, Stm, Hot/Cold Deck	CHW)			1	1	
AHU-3 (Stm, CHW)				1	1	
AHU-8 (Stm)				1	1	
ASU-1 (Stm, CHW)				1	1	
ASU-2 (Stm, CHW)				1	1	
Space	5					

Total of 20 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

HQ 108

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 Self-Contained AC-1				1 1 1	1 1	1
Self-Contained AC-2 Self-Contained AC-3				1	1	
Self-Contained AC-4 Space	4			1	1	

Total of 12 Points and 1 MUX

COMMISSARY WAREHOUSE 126

ITEM	TEMP	PRESS	FLOW	s/s	STAT	$\frac{AL/C}{}$
Gas HW Boiler AHU (Stm, DX) Discharge Air Space	1			1	1	

Total of 4 Points and 1 MUX

CHAPEL 128

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Self-Contained AC-1, 2 AHU-1, 2 (HW only)				1		
Space	4					

Total of 6 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS 149

	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Steam Boiler-1				1	1	1
Steam Boiler-2	1			1	1	1
(Stm, CHW)				1	1	
				1	1	
				1	1	
				1	1	
	2					
				1	1	
:/Cold Deck	2					
)	5					
(Stm, CHW) (Stm, CHW) (5 Zone, Stm) (Cold Deck (5 Zone, Stm) (Cold Deck	2			1 1 1	1 1 1	

Total of 19 Points and 2 MUX's

THEATER 163

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
AHU-1 (DX, Steam)				1	1	
Discharge Air	1					
AHU-2 (DX only)				1	1	
Discharge Air	1					
Space	2					

Total of 6 Points and 1 MUX

BARRACKS 165

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	$\frac{AL/C}{}$
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
CHW	1					
AHU-1 (5 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck	. 2					
AHU-2 (5 Zone, Stm,	CHW)			1	1	
Hot/Cold Deck	2					
AHU-3 (Stm, CHW)				1	1	
AHU-4 (Stm, CHW)				1	1	
AHU-5 (Stm, CHW)				1	1	
Space	5					

Total of 19 Points and 1 MUX

RECREATION CENTER 184

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1, 2				1		
AHU (HW, CHW)				1	1	
Fan Coil Units				1		
CHW	1					
Space	3					
HW	1					

Total of 10 Points and 1 MUX

ADMINISTRATION 201

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler AHU-1, 2, 3, 4 (Stm) Space	3			1	1	

Total of 5 Points and 1 MUX

MOTOR REPAIR SHOP 205

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler				1	1	1
Stm Unit Heaters				1		
Space	1					

Total of 4 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

OFFICER'S CLUB 255

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler-1				1	1	1
CHW Pump				1	1	
AHU-1 (HW, CHW)				1	1	
Discharge Air	1					
AHU-2 (HW, CHW)				1	1	
Discharge Air	1					
AHU-3 (HW, CHW)				1	1	
Discharge Air	1			4		
AHU-4 (HW, CHW)	4			1	1	
Discharge Air	1			4	4	
AHU-5 (HW, CHW)	4			ı	ı	
Discharge Air CHW	1					
HW	1					
AHU-6 (HW, CHW)	'			1	1	
Discharge Air	1			•	,	
AHU-7 (HW, CHW)	•			1	1	
Discharge Air	1					
AHU-9 (HW, CHW)				1	1	
Discharge Air	1					
AHU-10 (HW, CHW)				1	1	
Discharge Air	1					
AHU-11 (HW, CHW)				1	1	
Discharge Air	1					
MAH (No Coil)				1	1	
Discharge Air	1					
Space	10					

Total of 37 Points and 3 MUX's

MARKSMANSHIP TRAINING 296

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler Steam UH's				1	1	1
Space	1					

Total of 4 Points and 1 MUX

BARRACKS W/MESS 315

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas HW Boiler-2 AHU-1 (Stm, CHW)				1 1 1	1 1 1	1 1
Discharge Air ASU-2 (Stm, CHW) Discharge Air	1			1	1	
CHW Space	1 3					

Total of 12 Points and 1 MUX

HQ 355

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump				1		
Space	1					

Total of 3 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BOQ 487

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
CHW Pump AHU-1 (2 Zone, CHW) AHU-2 (2 Zone, CHW) AHU-3 (2 Zone, CHW) AHU-4 (2 Zone, CHW) AHU-5 (2 Zone, CHW) AHU-6 (2 Zone, CHW) Space	6			1 1 1 1 1	1 1 1 1 1 1	
HW	1					

Total of 14 Points and 1 MUX

DENTAL CLINIC 495

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
Air Cooled Chiller	1			1	1	
CHW Pump				1	1	
HW Pump				1	1	
AHU (DD, HW, CHW)				1	1	
Hot/Cold Duct	2					
Space	1					
HW Convertor	1					•

Total of 11 Points and 1 MUX

HQ 801

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
AHU-1 (Stm, DX)				1	1	
AHU-2				1	1	
AHU-3 (Stm, DX)				1	1	
AHU-4 (Stm)				1	1	
SCAC-1				1	1	
Space	5					

Total of 14 Points and 1 MUX

AIRCRAFT TRAINING 860

ITEM		TEMP	PRESS	FLOW	s/s	STAT	AL/C
AHU-1 (HW, AHU-2 (HW,	DX)				1	1	
Space	DA)	1			•	1	

Total of 3 Points and 1 MUX

HANGAR 864

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler HW Pump HW UH-1, 2, 3, 4 Steam Radiators	1			1 1	1	1
Space Space	1					

Total of 6 Points and 1 MUX

HANGAR 866

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 HW HW Pump-1, 2 UH-1, 2, 3, 4	1			1 1 1	1	1
Space	1					

Total of 8 Points and 1 MUX

ARMY RESERVES 1470

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Oil HW Boiler-1 Oil HW Boiler-2 HW Pump-1 AHU (HW, DX) HW Space	1 3			1 1 1 1	1 1 1	1

Total of 10 Points and 1 MUX

SALVAGE 1950

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Oil HW Boiler HW Pump AHU (DX)				1 1 1	1 1 1	
HW	1					
Space	2					

Total of 6 Points and 1 MUX

FIELD HOUSE 1980

ITEM			TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Furnace-1, Gas Furnace-3, and AHU (DX) Gas Furnace-7 Space	5,	6,	3			1 1 1	1	

Total of 7 Points and 1 MUX

POST OFFICE 5302

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
HW Pump-1,2 AHU (4 Zones, HW, 3 Space	DX)			1	1	

Total of 3 Points and 1 MUX

CHAPEL 5315

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler CHW	1			1	1	1
CHW Pump-1, 2, 3 AHU (HW, CHW)	·			1		
Discharge Air FCU-group-1	1			1		
FCU-group-2				1		
Space	3					

Total of 10 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

NCO CLUB 6620

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HW	1					
CHW	1					
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (7 Zone, Stm, CHW	1)			1	1	
Hot/Cold Deck	2					
AHU-2				1	1	
Discharge Air	1					
AHU-3				1	1	
Discharge Air	1					
AHU-4				1	1	
Discharge Air	1					
AHU-5				1	1	
Discharge Air	1					
Space	り					

Total of 24 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MAIN PX 6910 & 6914

ITEM	TEMP	PRESS	FLOW	CPA	s/s	STAT	AL/C
Gas HW Boiler					1	1	1
Recip. Chiller-1, 2					1		
& ACC-1, 2, 3, 4,							
& CHW Pump-1, 2							
HW Pump-1, 2					· 1		
CHW	1			1			
AC-1 (HW, CHW)					1	1	
AC-2 (HW, CHW)					1	1	
AC-3 (HW, CHW)					1	1	
AC-4 (6 Zone, HW, CHW)					1	1	
AC-5 (6 Zone, HW, CHW)					1	1	
AC-6					1	1	
Space	6						

Total of 18 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

POOL 6940

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Oil HW Boiler-1				1	1	1
Oil HW Boiler-2				1	1	1
Oil HW Boiler-3				1	1	1
AHU-2 (HW)				1	1	
Space	1					

Total of 8 Points and 1 MUX

BARRACKS W/MESS 7004

SIMILAR BUILDINGS 7007, 7010, 7013, 7050, 7053

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 HW Pump-3				1 1 1	1 1 1	1
AHU-1 (Stm, CHW) Discharge Air AHU-2 (3 Zone, Stm only)	1			1	1	
Hot/Cold Deck Space HW CHW	2 2 1 1					

Total of 14 Points and 1 MUX

BARRACKS W/MESS 7007

SIMILAR BUILDINGS 7004, 7010, 7013, 7050, 7053

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HW Pump-3				1	1	
AHU-1 (Stm, CHW)				1	1	
Discharge Air	1					
AHU-2 (3 Zone, Stm o	nly)			1	1	
Hot/Cold Deck	2					
Space	2					
HW	1					
CHW	1					

Total of 14 Points and 1 MUX

BARRACKS W/MESS 7010

SIMILAR BUILDINGS 7004, 7007, 7013, 7050, 7053

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2 HW Pump-3				1	1	1
AHU-1 (Stm, CHW) Discharge Air	1			1	1	
AHU-2 (3 Zone, Stm on Hot/Cold Deck	ly)			1	1	
Space	2					
HW CHW	1 1					

Total of 14 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 7013

SIMILAR BUILDINGS 7004, 7007, 7010, 7050, 7053

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HW Pump-3				1	1	
AHU-1 (Stm, CHW)				1	1	
Discharge Air	1					
AHU-2 (3 Zone, Stm	only)			1	1	
Hot/Cold Deck	2					
Space	2					
HW	1					
CHW	1					

Total of 14 Points and 1 MUX

BN HQ 7017

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump				1	1	
Space	1					
HW	1					

Total of 4 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

GYM 7024

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Stm Blr (Spc. Heat)				1	1	
Gas HW Blr (Dom. HW)				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2				1	1	
Discharge Air	1					
HV-3				1	1	
Discharge Air	1					
HV-4				1	1	
Discharge Air	1					
HV-5				1	1	
Discharge Air	1			•	•	
Space	2					
-	_					

Total of 14 Points and 1 MUX

EM CLUB 7028

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump CHW Pump				1 1 1	1 1 1	
Space HW CHW	1 1 1					

Total of 6 Points and 1 MUX

BN CLASSROOM 7031

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump				1	1	
Space	1					
HW	1					

Total of 4 Points with MUX at 7028

ADMINISTRATION 7033

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler HW Pump				1	1	
AHU-1 (HW, DX) Discharge Air AHU-2 (Self-Cont. AC-	1			1	1	
no heat)				1	1	
Discharge Air	1					
HW	1					
Space	1					

Total of 8 Points and 1 MUX

DENTAL CLINIC 7034

ITEM		TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler					1	1	
AHU (3 Zone, Stm, I	DX)				1	1	
Hot/Cold Deck		2					
Space		1					

Total of 5 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

HQ 7036

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2				1 1 1	1 1 1	
Space HW	1			·	·	

Total of 5 Points with MUX at 7034

BARRACKS W/MESS 7044

SIMILAR BUILDINGS 7224, 7227, 7230, 7233

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
AHU-1 (Stm, CHW)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
AHU-6 (CHW only)				1	1	
Discharge Air	1				4	
AHU-7 (CHW only)	4			1	1	
Discharge Air HW Pump-1	ı			4	4	
HW Pump-2				1	1	
HW Fump-2	1			1	1	
CHW	1					
Space	7					
DPacc	1					

Total of 29 Points and 2 MUX's

BN CLASSROOM 7046

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump				1	ı	
Space	1					
HW	1					

Total of 4 Points with MUX at 7047

BN CLASSROOM 7047

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump Space HW	1 1			1	1	

Total of 4 Points and 1 MUX

BN HQ 7048

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump Space	1			1	'	
ΗW	1					

Total of 4 Points with MUX at 7047

BARRACKS W/MESS 7050

SIMILAR BUILDINGS 7004, 7007, 7010, 7013, 7053

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HW Pump-3				1	1	
AHU-1 (Stm, CHW)				1	1	
Discharge Air	1					
AHU-2 (3 Zone, Stm or	nly)			1	1	
Hot/Cold Deck	2					
Space	2					
HW	1					
CHW	1					

Total of 14 Points and 1 MUX

BARRACKS W/MESS 7053

SIMILAR BUILDINGS 7004, 7007, 7010, 7013, 7050

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1				1	1	1
Gas Steam Boiler-2				1	1	1
HW Pump-3				1	1	
AHU-1 (Stm, CHW)				1	1	
Discharge Air	1					
AHU-2 (3 Zone, Stm only)				1	1	
Hot/Cold Deck	2					
Space	2					
HW	1					
CHW	1					

Total of 14 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BN HQ 7055

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump				1	1	
Space	1					
HW	1					

Total of 4 Points and 1 MUX

CHAPEL 7086

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler P-1 (CDW) P-2 (CDW) P-3 (HW)				1 1 1	1 1 1	
P-4 (Dual Temp) AC-1 (HW, DX)				1	1	
Discharge Air	1					
HW/CHW	1					
Space	2					

Total of 10 Points and 1 MUX

CHILLER PLANT 7210

ITEM	TEMP	PRESS	FLOW	CPA	<u>KWH</u>	<u>s/s</u>	STAT	AL/C
Centri. Chiller-1					1	1	1	
Centri. Chiller-2					1	1	1	
Centri. Chiller-3					1	1	1	
Cooling Tower (3-DS Fa	ns)					6	6	
CHW Pump-1						1	1	
CHW Pump-2						1	1	
CHW Pump-3						1	1	
CDW Pump-1						1	1	
CDW Pump-2						1	1	
CDW Pump-7						1	1	
CHW	8		3	3				
CDW	6		3					

Total of 41 Points and 3 MUX's

BN HQ 7215

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump-1				1	1	
Space	1					
HW	1					

Total of 4 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 7224

SIMILAR BUILDINGS 7044, 7227, 7230, 7233

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 AHU-1 (Stm, CHW)				1 1 1	1 1 1	1
Discharge Air AHU-2 (CHW only)	1			1	1	
Discharge Air AHU-3 (CHW only)	1			1	1	
Discharge Air AHU-4 (CHW only)	1			1	1	
Discharge Air AHU-5 (CHW only) Discharge Air	1			1	1	
AHU-6 (CHW only) Discharge Air	1			1	1	
AHU-7 (CHW only) Discharge Air	1			1	1	
HW Pump-1 HW Pump-2				1	1	
HW CHW	1					
Space	.7					

Total of 29 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 7227

SIMILAR BUILDINGS 7044, 7224, 7230, 7233

L/C
1

Total of 29 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 7230

SIMILAR BUILDINGS 7044, 7224, 7227, 7233

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 AHU-1 (Stm, CHW)				1 1 1	1 1 1	1 1
Discharge Air AHU-2 (CHW only)	1			1	1	
Discharge Air AHU-3 (CHW only) Discharge Air	1			1	1	
AHU-4 (CHW only) Discharge Air	1			1	1	
AHU-5 (CHW only) Discharge Air	1			1	1	
AHU-6 (CHW only) Discharge Air	1			1	1	
AHU-7 (CHW only) Discharge Air	1			1	1	
HW Pump-1 HW Pump-2	<i>-</i>			1	1	
HW CHW	1					
Space	7					

TABLE II-4 POINT LIST: (continued)

BARRACKS W/MESS 7233

SIMILAR BUILDINGS 7044, 7224, 7227, 7230

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler-1 Gas Steam Boiler-2 AHU-1 (Stm, CHW)				1 1 1	1 1 1	1
Discharge Air AHU-2 (CHW only)	1			1	1	
Discharge Air AHU-3 (CHW only)				1	1	
Discharge Air AHU-4 (CHW only)	1			1	1	
Discharge Air AHU-5 (CHW only)	1			1	1	
Discharge Air AHU-6 (CHW only)	1			1	1	
Discharge Air AHU-7 (CHW only)	1			1	1	
Discharge Air HW Pump-1	1			1	1	
HW Pump-2 HW	4			1	1	
CHW	1					
Space	7					

Total of 29 Points and 2 MUX's

FIVE CO ADMIN & SUPPLY 7243

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump				1	1	
Space Space	1			'	,	
HW	1					

Total of 4 Points with MUX at 7245

TABLE II-4 POINT LIST: (continued)

MESS HALL 7245

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	$\frac{AL/C}{}$
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
CDW Pump				1	1	
HW Pump				1	1	
Din Rm AHU (Stm, CHW)				1	1	
Discharge Air	1					
AHU-1 (Stm only)			^-	1	1	
Discharge Air	1					
AHU-2 (Stm only)				1	1	
Discharge Air	1					
AHU-3 (Stm only)				1	1	
Discharge Air	1					
CHW	1					
HW	1					
Space	4					

Total of 19 Points and 2 MUX's

ADJ GENERAL 7253

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boile	er-1			1	1	1
Gas Steam Boile	er-2			1	1	1
HW Pump-1				1	1	
HW Pump-2				1	1	
HW	1					
Space	1					

REC CTR 7264

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Stm Blr-1 (Sp. Ht)				1	1	
Gas Stm Blr-2 (Dom. HW)				1	1	
CHW Pump				1	1	
CDW Pump				1	1	
Rome Inn AHU (Stm only)	•			1	1	
Discharge Air	1					
Kitchen AHU (Stm, DX)				1	1	
Discharge Air	1					
AHU-1 (Stm, DX)				1	1	
Discharge Air	1					
AHU-2 (Stm, DX)				1	1	
Discharge Air	1					
AHU-3 (Stm, DX)				1	1	
Discharge Air	1					
Space	5					

Total of 19 Points and 2 MUX's

HQ & CLASSROOM 7270

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
Gas Steam Boiler				1	1	
HW Pump	1			1	1	
AHU (5 Zones, HW, DX)				1	1	
Hot/Cold Deck	2					
Space	1					

THEATER 7285

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
HW Pump-1				1	1	
HW Pump-2				1	1	
CDW Pump				1	1	
AHU-1 (HW, DX)		•		1	1	
Discharge Air	1					
AHU-2 (HW, DX W/COMP)				1	1	
Discharge Air	1					
HW	1					
Space	2					

Total of 11 Points and 1 MUX

SPECIAL WEAPONS CLASSROOM 7305

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	
Dual Temp Pump				1	1	
HW Pump				1	1	
Space	1					
HW/CHW	1					

MOTOR REPAIR SHOP 7350

SIMILAR BUILDINGS 7500, 7520, 7720, 7740, 7760, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A,				1 1 1	1 1 1	1
E-4B UH-XA, UH-XB, UH-XC,				1		
UH-XD				1		
Space HW	1 1					
$\frac{\text{BAY B}}{\text{UV-2B}}, \text{ E-2, E-4C,}$						
E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C	1					
UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G,						
E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB				1		
UV-1C, E-4I, E-4J				1		
UH-YC, UH-YD, UH-YE, UH-YF				1		
Space	1			'		

BARRACKS W/OUT MESS 7404

SIMILAR BUILDING 7424

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Blr-1 (Spc Ht)				1	1	
Gas HW Blr-2 (Dom HW)				1	1	
HW Pump-1				1	1	
HW Pump-2				1	1	
AHU-1 (HW, CHW)				1	1	
Discharge Air	1					
AHU-2 (HW, CHW)				1	1	
Discharge Air	1					
WH	1					
CHW	1					
Space	1					

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7424

SIMILAR BUILDING 7404

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Blr-1 (Spc Ht) Gas HW Blr-2 (Dom HW) HW Pump-1 HW Pump-2 AHU-1 (HW, CHW) Discharge Air AHU-2 (HW, CHW) Discharge Air HW CHW Space	1 1 1 1			1 1 1 1 1	1 1 1 1 1	
-						

TABLE II-4 POINT LIST: (continued)

HQ 7450

SIMILAR BUILDING 7636

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump Dual Temp Pump AHU (Dual Temp Coil) Discharge Air HW/CHW Space	1 1 1			1 1 1 1	1 1 1	1

Total of 8 Points and 1 MUX

BOWLING CENTER 7485

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
HW Pump				1	1	
AHU-1 (DD, HW, DX)				1	1	
Hot/Cold Duct	2					
HW	1					
Space	3					

MOTOR REPAIR SHOP 7500

SIMILAR BUILDINGS 7350, 7520, 7720, 7740, 7760, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A				1 1 1	1 1 1	1
UV-2A, E-1, E-4A, E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW BAY B	1					
UV-2B, E-2, E-4C, E-4D UH-XE, UH-XF, UH-XG,				1		
UH-XH Space	1			1		
BAY C UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G,						
E-4H UH-YA, UH-YB, UH-ZA,				1		
UH-ZB				1		
UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		
-r	•					

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 7520

SIMILAR BUILDINGS 7350, 7500, 7720, 7740, 7760, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A				1 1 1	1 1 1	1
UV-2A, E-1, E-4A, E-4B UH-XA, UH-XB, UH-XC,				1		
UH-XD Space HW BAY B	1			1		
UV-2B, E-2, E-4C, E-4D UH-XE, UH-XF, UH-XG,				1		
UH-XH Space BAY C	1			1		
UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G, E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		

FIVE CO ADMIN & STORAGE 7602

SIMILAR BUILDINGS 7608, 7652, 7658, 7802, 7808, 7852, 7858

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

Total of 21 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7604

SIMILAR BUILDINGS 7606, 7654, 7656, 7804, 7806, 7854, 7856

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7606

SIMILAR BUILDINGS 7604, 7654, 7656, 7804, 7806, 7854, 7856

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	•
HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

FIVE CO ADMIN & STORAGE 7608

SIMILAR BUILDINGS 7602, 7652, 7658, 7802, 7808, 7852, 7858

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)	_			1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

Total of 21 Points and 2 MUX's

BARRACKS W/OUT MESS 7610

SIMILAR BUILDINGS 7612, 7614, 7616

Gas HW Boiler 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
bpace 4	DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4	1 4			1 1 1 1	1 1 1 1	1

BARRACKS W/OUT MESS 7612

SIMILAR BUILDINGS 7610, 7614, 7616

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
HW/CHW	1					
Space	4					

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7614

SIMILAR BUILDINGS 7610, 7612, 7616

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4	4			ı	1	
HW/CHW	1					
Space	4					

BARRACKS W/OUT MESS 7616

SIMILAR BUILDINGS 7610, 7612, 7614

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4				1 1 1 1	1 1 1 1	1
HW/CHW Space	4					

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7618

SIMILAR BUILDINGS 7642, 7644, 7646, 7648, 7650

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4 HW/CHW Space	1 4			1 1 1 1	1 1 1 1	1
F	т -					

DENTAL CLINIC 7620

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump AHU (5 Zones, HW, DX) Hot/Cold Deck Space HW	2 1 1			1 1 1	1 1 1	1

Total of 8 Points and 1 MUX

BN ADMIN 7622

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (3 Zn Wild HW	, CHW)			1	1	
Hot/Cold Deck	2					
AHU-2 (5 Zn Wild HW	, CHW)			1	1	
Hot/Cold Deck	2					
AHU-3 (3 Zn Wild HW	, CHW)			1	1	
Hot/Cold Deck	2					
HW	1					
CHW	1					
Space	1					

BN ADMIN & CLASSROOM 7624

SIMILAR BUILDINGS 7630, 7638

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump AHU-1 (5 Zn, HW, DX) Hot/Cold Deck HW Space	2 1 1			1 1 1	1 1 1	

Total of 7 Points with MUX at 7630

DISPENSARY 7626

SIMILAR BUILDING 7826

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump AHU-1 (2 Zn, HW, DX Hot/Cold Deck HW Space	2 1 1			1 1 1	1 1 1	

BN ADMIN & CLASSROOM 7630

SIMILAR BUILDINGS 7624, 7638

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump AHU-1 (5 Zn, HW, DX) Hot/Cold Deck	2			1 1 1	1 1 1	
HW	1					
Space	1					

Total of 7 Points and 1 MUX

GYM 7632

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Stm Boiler-1				1	1	1
Gas Stm Boiler-2				1	1	1
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
HV-3 (Stm only)				1	1	
Discharge Air	1					
HV-4 (Stm only)				1	1	
Discharge Air	1					
HV-5 (Stm only)				1	1	
Discharge Air	1					
Space	2					

TABLE II-4 POINT LIST: (continued)

HQ 7636

SIMILAR BUILDING 7450

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump Dual Temp Pump AHU (Dual Temp Coil) Discharge Air HW/CHW Space	1 1			1 1 1 1	1 1 1	1
phace	ı					

Total of 8 Points and 1 MUX

BN ADMIN & CLASSROOM 7638

SIMILAR BUILDINGS 7624, 7630

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump AHU-1 (5 Zn, HW, DX) Hot/Cold Deck HW Space	2 1 1			1 1 1	1 1 1	

TABLE II-4 POINT LIST: (continued)

BRANCH EXCHANGE 7640

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	
AHU-1 (Stm, DX)				1	1	
Discharge Air	1					
AHU-2 (Stm, DX)				1	1	
Discharge Air	1					
Space	1					

Total of 6 Points with MUX at 7636

BARRACKS W/OUT MESS 7642

SIMILAR BUILDINGS 7618, 7644, 7646, 7648, 7650

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2				1 1 1	1 1 1	1
DT Pump-3 DT Pump-4				1	1	
HW/CHW Space	1 4					

BARRACKS W/OUT MESS 7644

SIMILAR BUILDINGS 7618, 7642, 7646, 7648, 7650

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
HW/CHW	1					
Space	4					4

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7646

SIMILAR BUILDINGS 7618, 7642, 7644, 7648, 7650

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1				1	1	1
DT Pump-2 DT Pump-3				1	1	
DT Pump-4 HW/CHW	1			1	1	
Space	4					

BARRACKS W/OUT MESS 7648

SIMILAR BUILDINGS 7618, 7642, 7644, 7646, 7650

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4 HW/CHW Space	1 4			1 1 1 1	1 1 1 1	1

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7650

SIMILAR BUILDINGS 7618, 7642, 7644, 7646, 7648

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
HW/CHW	1					
Space	4					

FIVE CO ADMIN & STORAGE 7652

SIMILAR BUILDINGS 7602, 7608, 7658, 7802, 7808, 7852, 7858

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

TABLE II-4 POINT LIST: (continued)

MESS HALL 7654

SIMILAR BUILDINGS 7604, 7606, 7656, 7804, 7806, 7854, 7856

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7656

SIMILAR BUILDINGS 7604, 7606, 7654, 7804, 7806, 7854, 7856

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

TABLE II-4 POINT LIST: (continued)

FIVE CO ADMIN & STORAGE 7658

SIMILAR BUILDINGS 7602, 7608, 7652, 7802, 7808, 7852, 7858

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

Total of 21 Points and 2 MUX's

DENTAL CLINIC 7665

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Oil Steam Boiler AHU (6 Zn, Stm, DX) Hot/Cold Deck Space	2			1	1	1

Total of 6 Points and 1 MUX

DENTAL CLINIC 7670

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Oil Steam Boiler				1	1	1
HW Pump				1	1	
AHU (DD, HW/CHW)	2			1	1	
Hot/Cold Duct	2					
Space	1					

MOTOR REPAIR SHOP 7720

SIMILAR BUILDINGS 7350, 7500, 7520, 7740, 7760, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A				1 1 1	1 1 1	1
UV-2A, E-1, E-4A, E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW BAY B	1 1					
UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G,	1					
E-4H UH-YA, UH-YB, UH-ZA,				1		
UH-ZB UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		

TABLE II-4 POINT LIST: (continued)

MOVING TARGET SIMULATOR 7739

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 AHU-1 (3 Zn, HW, DX) Hot/Cold Deck HW-1 HW-2 Space	2 1 1			1 1 1	1 1 1	
•						

MOTOR REPAIR SHOP 7740

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7760, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A,				1 1 1	1 1 1	1
E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW BAY B	1					
UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G,	1					
E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 7760

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7740, 7780, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
HW Pump-1				1	1	
HW Pump-2				1	1	
BAY A						
UV-2A, E-1, E-4A,						
E-4B				1		
UH-XA, UH-XB, UH-XC,						
UH-XD				1		
Space	1					
HW	1					
BAY B						
UV-2B, E-2, E-4C,						
E-4D				1		
UH-XE, UH-XF, UH-XG,						
UH-XH	4			1		
Space BAY C	1					
UV-1A, UV-1B, E-3,						
E-4E, $E-4F$, $E-4G$,						
E-4H, E-4F, E-4G,				4		
UH-YA, UH-YB, UH-ZA,				1		
UH-ZB				1		
UV-1C, E-4I, E-4J				1		
UH-YC, UH-YD, UH-YE,				1		
UH-YF				1		
Space	1					
-						

MOTOR REPAIR SHOP 7780

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7740, 7760, 7900, 7940, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A,				1 1 1	1 1 1	1
E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW BAY B	1					
UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space <u>BAY C</u> <u>UV-1A</u> , <u>UV-1B</u> , <u>E-3</u> , <u>E-4E</u> , <u>E-4F</u> , <u>E-4G</u> ,	1			1		
E-4H UH-YA, UH-YB, UH-ZA,				'		
UH-ZB UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		
-1	•					

TABLE II-4 POINT LIST: (continued)

FIVE CO ADMIN & STORAGE 7802

SIMILAR BUILDINGS 7602, 7608, 7652, 7658, 7808, 7852, 7858

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

TABLE II-4 POINT LIST: (continued)

MESS HALL 7804

SIMILAR BUILDINGS 7604, 7606, 7654, 7656, 7806, 7854, 7856

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
· HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7806

SIMILAR BUILDINGS 7604, 7606, 7654, 7656, 7804, 7854, 7856

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
HV-1 (Stm only)				1 '	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1			•	·	
HW	1					
CHW	1					
Space	2					
_						

Total of 16 Points and 2 MUX's

FIVE CO ADMIN & STORAGE 7808

SIMILAR BUILDINGS 7602, 7608, 7652, 7658, 7802, 7852, 7858

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)		•		1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

Total of 21 Points and 2 MUX's

BARRACKS W/OUT MESS 7810

SIMILAR BUILDINGS 7844

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4 DT Pump-5 HW/CHW Space	1 5			1 1 1 1 1	1 1 1 1 1	1

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7812

SIMILAR BUILDINGS 7814, 7816, 7818, 7842, 7846, 7848, 7850

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW	1					
Space	5					

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7814

SIMILAR BUILDINGS 7812, 7816, 7818, 7842, 7846, 7848, 7850

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW	1					
Space	5					

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7816

SIMILAR BUILDINGS 7812, 7814, 7818, 7842, 7846, 7848, 7850

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW	1					
Space	5					

Total of 13 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BARRACKS W/OUT MESS 7818

SIMILAR BUILDINGS 7812, 7814, 7816, 7842, 7846, 7848, 7850

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4 DT Pump-5 HW/CHW Space	1 5			1 1 1 1 1	1 1 1 1 1	1

Total of 13 Points and 1 MUX

ADMINISTRATION 7820

ITEM		TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler					1	1	1
HW Pump		1			1	1	
AHU (5 Zones, HW,	DX)				1	1	
Hot/Cold Deck		2					
Space		1					

Total of 8 Points with MUX at 7836

TABLE II-4 POINT LIST: (continued)

BN HQ 7824

SIMILAR BUILDING 7836

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	
CHW Pump				1	1	
HW Pump-1				1	1	
AC-1 (3 Zn, HW, CHW)				1	1	
Hot/Cold Deck	2					
AC-2 (5 Zn, CHW only)				1	1	
Hot/Cold Deck	2					
AC-3 (3 Zn, HW, CHW)				1	1	
Hot/Cold Deck	2					
HW	1					
CHW	1					
Space	3					
-						

Total of 17 Points and 2 MUX's

DISPENSARY 7826

SIMILAR BUILDING 7626

ITEM		TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump	>				1	1	
AHU-1 (2 Zn, HW, Hot/Cold Deck	DX)	2			1	1	
HW Space		1 1					

Total of 7 Points with MUX at 7834

TABLE II-4 POINT LIST: (continued)

GYM 7832

ITEM		TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Stm Blr (Gas HW Blr (I							1 1
HV-1 (Stm onl Discharge A	•	4			1	1	,
HV-2	TIL	t			1	1	
Discharge A	lir	1			1	1	
Discharge A HV-4	Air	1			1	1	
Discharge A	ir	1			1	1	
Discharge A	air	1 2			•	r	

Total of 14 Points with MUX at 7824

HQ 7834

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler DT Pump				1 1	1	1
HW/CHW	1					
Space	1					

Total of 5 Points and 1 MUX

BN HQ 7836

SIMILAR BUILDING 7824

ITEM		TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler					1	1	
CHW Pump					1	1	
HW Pump-1					1	1	
AC-1 (3 Zn, HW,	CHW)				1	1	
Hot/Cold Deck		2					
AC-2 (5 Zn, CHW	only)				1	1	
Hot/Cold Deck		2					
AC-3 (3 Zn, HW,	CHW)				1	1	
Hot/Cold Deck		2					
HW		1					
CHW		1					
Space .		3					

Total of 17 Points and 1 MUX

BRANCH EXCHANGE 7840

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
AHU-1 (MZ, HW, DX)				1	1	
Hot/Cold Deck	2					
AHU-2 (HW, DX)				1	1	
Discharge Air	1					
HW Pump				1	1	
HW	1					
Space	2					

Total of 11 Points and 1 MUX

BARRACKS W/OUT MESS 7842

SIMILAR BUILDINGS 7812, 7814, 7816, 7818, 7846, 7848, 7850

TEMP	PRESS	FLOW	s/s	STAT	$\frac{\text{AL/C}}{}$
			1	1	1
			1	1	
			1	1	
			1	1	
			1	1	
			1	1	
1					
5					
	1	1	1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7844

SIMILAR BUILDINGS 7810

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW	1					
Space	5					

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7846

SIMILAR BUILDINGS 7812, 7814, 7816, 7818, 7842, 7848, 7850

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler DT Pump-1 DT Pump-2 DT Pump-3 DT Pump-4				1 1 1 1	1 1 1 1	1
DT Pump-5 HW/CHW Space	1 5			1	1	

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7848

SIMILAR BUILDINGS 7812, 7814, 7816, 7818, 7842, 7846, 7850

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW _	1					
Space	5					

Total of 13 Points and 1 MUX

BARRACKS W/OUT MESS 7850

SIMILAR BUILDINGS 7812, 7814, 7816, 7818, 7842, 7846, 7848

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler				1	1	1
DT Pump-1				1	1	
DT Pump-2				1	1	
DT Pump-3				1	1	
DT Pump-4				1	1	
DT Pump-5				1	1	
HW/CHW	1					
Space	5					

Total of 13 Points and 1 MUX

FIVE CO ADMIN & STORAGE 7852

SIMILAR BUILDINGS 7602, 7608, 7652, 7658, 7802, 7808, 7858

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	5					

Total of 21 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7854

SIMILAR BUILDINGS 7604, 7606, 7654, 7656, 7804, 7806, 7856

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump			•	1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MESS HALL 7856

SIMILAR BUILDINGS 7604, 7606, 7654, 7656, 7804, 7806, 7854

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas Steam Boiler				1	1	1
CHW Pump				1	1	
HW Pump				1	1	
HV-1 (Stm only)				1	1	
Discharge Air	1					
HV-2 (Stm only)				1	1	
Discharge Air	1					
AC-1 (Stm, CHW)				1	1	
Discharge Air	1					
AC-2 (Stm, CHW)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	2					

Total of 16 Points and 2 MUX's

FIVE CO ADMIN & STORAGE 7858

SIMILAR BUILDINGS 7602, 7608, 7652, 7658, 7802, 7808, 7852

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
Gas HW Boiler				1	1	1
CHW Pump				1	1	•
HW Pump				1	1	
AHU-1 (CHW only)				1	1	
Discharge Air	1					
AHU-2 (CHW only)				1	1	
Discharge Air	1					
AHU-3 (CHW only)				1	1	
Discharge Air	1					
AHU-4 (CHW only)				1	1	
Discharge Air	1					
AHU-5 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	5					
Space)					

Total of 21 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

THEATER 7866

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler				1	1	1
HW Pump-1				1	1	
HW Pump-2				1	1	
HW Pump-3				1	1	
HW Pump-4				1	1	
AHU-1 (2 Zn, HW, DX)				1	1	
Hot/Cold Deck	2					
AHU-2 (Elec, DX)				1	1	
Discharge Air	1					
HW	1					
Space	2					

Total of 14 Points and 1 MUX

MOTOR REPAIR SHOP 7900

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7740, 7760, 7780, 7940, 7960

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A, E-4B				1 1 1	1 1 1 .	1
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW BAY B	1 1					
UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space <u>BAY C</u> <u>UV-1A</u> , <u>UV-1B</u> , <u>E-3</u> , <u>E-4E</u> , <u>E-4F</u> , <u>E-4G</u> ,	1					
E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		
-r	•					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 7920

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
CENT TECH SUPPLY						
Ten UH-2's				1		
Eight DH-1's				1		
EF-2, EF-13, &						
Eight EF-14's				1		
MAH-4				1	1	
Discharge Air	1					
AC-4, HF-4				1	1	
Discharge Air	1					
Space *	1					
WINGS C, D, & E (TYP.)						
Nineteen RH-1's				3		
Three RH-2's &						
One UH-1				3		
MAH-1				3	3	
Discharge Air	3					
HF-1				3	3	
Discharge Air	3					
HVAC-1, AC-1				3	3	
Discharge Air	3					
Eleven EF-1's &						
One EF-2, EF-3,						
EF-9, & EF-15	-			3		
Space	3					
SW WING						
Twenty-two RH-1's MAH-2				1		
Discharge Air	1			1	1	
HF-2	1			1	1	
Discharge Air	1			'	1	
HVAC-2, AC-2	'			1	1	
Discharge Air	1			•	'	
HVAC-3	'			1	1	
Discharge Air	1			'	'	
AC-3	•			1	1	
Discharge Air	1			•		
Eleven EF-4's &						
One EF-2 & EF-5				1		
Space	1					

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 7920 (continued)

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
SE WING						
Twenty-two RH-1's				1		
MAH-3				1	1	
Discharge Air	1					
HF-3				1	1	
Discharge Air	1					
HVAC-4, $AC-4$				1	1	
Discharge Air	1					
Ten EF-4's & One						
EF-6, EF-7, EF-8						
EF-11, & EF-15				1		
Space	1					

Total of 60 Points and 1 FID

^{*} Each of the three wings to have 1/3 of the Points for each Item.

MOTOR REPAIR SHOP 7940

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7740, 7760, 7780, 7900, 7960

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A,				1 1 1	1 1 1	1
E-4B UH-XA, UH-XB, UH-XC,				1		
UH-XD				1		
Space HW BAY B UV-2B, E-2, E-4C,	1					
E-4D UH-XE, UH-XF, UH-XG,				1		
UH-XH Space BAY C UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G, E-4H	1			1		
UH-YA, UH-YB, UH-ZA, UH-ZB				·		
UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF	4			1		
Space	1					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 7960

SIMILAR BUILDINGS 7350, 7500, 7520, 7720, 7740, 7760, 7780, 7900, 7940

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Gas HW Boiler HW Pump-1 HW Pump-2 BAY A				1 1 1	1 1 1	1
UV-2A, E-1, E-4A, E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW	1					
BAY B UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C UV-1A, UV-1B, E-3,	1					
E-4E, E-4F, E-4G, E-4H UH-YA, UH-YB, UH-ZA,				1		
UH-ZB UV-1C, E-4I, E-4J				1		
UH-YC, UH-YD, UH-YE, UH-YF Space	1			1		
Dpace	'					

Total of 16 Points and 2 MUX's

TYPE B BARRACKS 8002

SIMILAR BUILDINGS 8006, 8012, 8038, 8042, 8052

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW Space	1 3			1 1 1	1 1 1	

Total of 7 Points and 1 MUX

TYPE B BARRACKS 8006

SIMILAR BUILDINGS 8002, 8012, 8038, 8042, 8052

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump				1	1	
FCU's, Group A				1	1	
FCU's, Group B				1	1	
HW/CHW	1					
Space	3					

Total of 7 Points and 1 MUX

TYPE A BARRACKS 8008

SIMILAR BUILDINGS 8014, 8018, 8040, 8048, 8050, 8054

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW Space	1 3			1 1 1	1 1 1	

Total of 7 Points with MUX at 8002

SERVICE MODULE 8010

SIMILAR BUILDINGS 8020, 8046, 8056

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
AHU (Stm, CHW)				1	1	
Discharge Air	1					
CHW Pump				1	1	
CHW	1					
Space	1					

Total of 5 Points with MUX at 8006

TYPE B BARRACKS 8012

SIMILAR BUILDINGS 8002, 8006, 8038, 8042, 8052

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW Space	1 3			1 1 1	1 1 1	

Total of 7 Points and 1 MUX

TYPE A BARRACKS 8014

SIMILAR BUILDINGS 8008, 8018, 8040, 8048, 8050, 8054

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B				1 1 1	1 1 1	
HW/CHW	1					
Space	3					

Total of 7 Points with MUX at 8020

TYPE A BARRACKS 8018

SIMILAR BUILDINGS 8008, 8014, 8040, 8048, 8050, 8054

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW Space	1 3			1 1 1	1 1 1	

Total of 7 Points with MUX at 8020

SERVICE MODULE 8020

SIMILAR BUILDINGS 8010, 8046, 8056

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
AHU (Stm, CHW)				1	1	
Discharge Air	1					
CHW Pump				1	1	
CHW	1					
Space	1					

Total of 5 Points and 2 MUX's

FIVE CO ADMIN & SUPPLY 8021

SIMILAR BUILDINGS 8023, 8057, 8059

ITEM		TEMP	PRESS	FLOW	S/S	STAT	AL/C
DT Pump HV-101A					1	1	
Discharge HV-101B	Air	1			1	1	
Discharge HV-102A		1			1	1	
Discharge HV-102B		1			1	1	
Discharge HV-102C		1			1	1	
Discharge HW/CHW	Air	1					
Space		3					

Total of 15 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

FIVE CO ADMIN & SUPPLY 8023

SIMILAR BUILDINGS 8021, 8057, 8059

ITEM		TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump HV-101A					1 1	1	
Discharge HV-101B	Air	1			1	1	
Discharge HV-102A	Air	1			1	1	
Discharge HV-102B	Air	1			1	1	
Discharge HV-102C	Air	1			1	1	
Discharge HW/CHW Space	Air	1 1 3					
1		-					

Total of 15 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

BN ADMIN & CLASSROOM 8025

SIMILAR BUILDING 8037

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
No Boiler						
CHW Pump				1	1	
HW Pump				1	1	
*AC-1 (CHW only)				1	1	
Discharge Air	1					
*AC-2 (CHW only)				1	1	
Discharge Air	1					
*AC-3 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	3					

Total of 13 Points and 1 MUX

^{*} There is only one CHW Valve serving all three AC's.

BN ADMIN & CLASSROOM 8037

SIMILAR BUILDING 8025

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	$\frac{AL/C}{}$
No Boiler						
CHW Pump				1	1	
HW Pump				1	1	
*AC-1 (CHW only)				1	1	
Discharge Air	1					
*AC-2 (CHW only)				1	1	
Discharge Air	1					
*AC-3 (CHW only)				1	1	
Discharge Air	1					
HW	1					
CHW	1					
Space	3					

Total of 13 Points and 1 MUX

TYPE B BARRACKS 8038

SIMILAR BUILDINGS 8002, 8006, 8012, 8042, 8052

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump				1	1	
FCU's, Group A				1	1	
FCU's, Group B				1	1	
HW/CHW	1					
Space	3					
_						

Total of 7 Points and 1 MUX

^{*} There is only one CHW Valve serving all three AC's.

TYPE A BARRACKS 8040

SIMILAR BUILDINGS 8008, 8014, 8018, 8048, 8050, 8054

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B				1 1 1	1 1 1	
HW/CHW	1					
Space	2					

Total of 7 Points with MUX at 8038

TYPE B BARRACKS 8042

SIMILAR BUILDINGS 8002, 8006, 8012, 8038, 8052

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW	1			1 1 1	1 1 1	
Space	3					

Total of 7 Points and 1 MUX

SERVICE MODULE 8046

SIMILAR BUILDINGS 8010, 8020, 8056

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
AHU (Stm, CHW)				1	1	
Discharge Air CHW Pump	1			1	1	
CHW	1	•				
Space	1					

Total of 5 Points with MUX at 8042

TYPE A BARRACKS 8048

SIMILAR BUILDINGS 8008, 8014, 8018, 8040, 8050, 8054

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B				1	1	
HW/CHW	1			1	'	
Space	3					

Total of 7 Points with MUX at 8056

TYPE A BARRACKS 8050

SIMILAR BUILDINGS 8008, 8014, 8018, 8040, 8048, 8054

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW				1 1 1	1 1 1	
HW/CHW	1					
Space	3					

Total of 7 Points with MUX at 8056

TYPE B BARRACKS 8052

SIMILAR BUILDINGS 8002, 8006, 8012, 8038, 8042

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump FCU's, Group A				1 1	1	
FCU's, Group B HW/CHW	1			1	1	
Space	3					

Total of 7 Points and 1 MUX

TYPE A BARRACKS 8054

SIMILAR BUILDINGS 8008, 8014, 8018, 8040, 8048, 8050

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
DT Pump FCU's, Group A FCU's, Group B HW/CHW Space	1 3			1 1 1	1 1 1	

Total of 7 Points with MUX at 8052

SERVICE MODULE 8056

SIMILAR BUILDINGS 8010, 8020, 8046

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
AHU (Stm, CHW)				1	1	
Discharge Air	1					
CHW Pump				1	1	
CHW	1					
Space	1					

Total of 5 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

FIVE CO ADMIN & SUPPLY 8057

SIMILAR BUILDINGS 8021, 8023, 8059

ITEM		TEMP	PRESS	FLOW	S/S	STAT	AL/C
DT Pump HV-101A					1	1	
Discharge HV-101B	Air	1			1	1	
Discharge HV-102A	Air	1			1	1	
Discharge HV-102B	Air	1			1	4	
Discharge	Air	1					
Discharge	Air	1			1	1	
HW/CHW Space		1 3					

Total of 15 Points and 1 MUX

FIVE CO ADMIN & SUPPLY 8059

SIMILAR BUILDINGS 8021, 8023, 8057

ITEM		TEMP	PRESS	FLOW	S/S	STAT	AL/C
DT Pump HV-101A					1	1	
Discharge HV-101B	Air	1			1	1	
Discharge HV-102A	Air	1			1	1	
Discharge HV-102B	Air	1			1	1	
Discharge HV-102C	Air	1			1	1	
Discharge	Air	1					
HW/CHW Space		1 3					

Total of 15 Points and 1 MUX

MESS HALL 8063

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
AH-1 (6 Zn, Stm, C Hot/Cold Deck	HW)			1	1	
AH-2 (Stm)	۷			1	1	
Discharge Air	1					
CHW	1					
Space	2					

Total of 8 Points and 2 MUX's

DISPENSARY 8065

ITEM	TEMP	PRESS	FLOW	S/S	STAT	AL/C
HW Pump				1	1	
CHW Pump				1	1	
AHU-1 (2 Zn, HW, CHW	1)			1	1	
Hot/Cold Deck	2					
HW	1					
CHW	1					
Space	1					

Total of 8 Points with MUX at 8063

BRANCH EXCHANGE 8067

ITEM		TEMP	PRESS	FLOW	s/s	STAT	AL/C
CHW Pump-1 AHU-1 (3 Zn, Stm,	CHW)				1	1 1	
Hot/Cold Deck		2					
CHW		1					
Space		1					

Total of 6 Points with MUX at 8063

TABLE II-4 POINT LIST: (continued)

GYM W/POOL 8069

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
HW Pump-1				1	1	
HW Pump-2				1	1	
Pool Pump				1	1	
HV-1 (HW only)				1	1	
Discharge Air	1					
HV-2 (HW only)				1	1	
Discharge Air	1					
HV-3 (HW only)				1	1	
Discharge Air	1					
HV-4 (HW only)				1	1	
Discharge Air	1					
HV-5 (HW only)				1	1	
Discharge Air	1					
HV-6 (HW only)				1	1	
Discharge Air	1					
HV-7 (HW only)	4			1	1	
Discharge Air HV-8 (HW only)	1			4	4	
	1			'	'	
Discharge Air HV-9 (HW only)	'			1	1	
Discharge Air	1				1	
AH-1 (HW, DX)	1			1	1	
Discharge Air	1			'	ı	
AH-2 (HW, DX)	'			1	1	
Discharge Air	1			'		
HW	1					
	3					
Space)					

Total of 29 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

REG BDE HQ 8071

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
CHW Pump AHU-1 (10 Zn, Stm, Hot/Cold Deck CHW Space	CHW) 2 1			1	1	

Total of 6 Points and 1 MUX

TABLE II-4 POINT LIST: (continued)

HEATING/COOLING CENTRAL PLANT 8073

ITEM	TEMP	PRESS	FLOW	CPA	TL	<u>s/s</u>	STAT	AL/C	OTHER
Oil HP-Stm Blr-1 Oil HP-Stm Blr-2 Boiler Water Level						1	1	1	2
Combustion Air	2		2						
Draft Pressure	0	4							
Blr Exh Gas Blr Exh Gas 0 ₂ %	2								2
Smoke Indicator									2 2
HP Steam	2	2	2						
FW Pump-1						1	1		
FW Pump-2						1	1		
FW Pump-3	0	0	0			1	1		
Feedwater Deaerator	2	2	2		1				
Fuel Oil Pump-1					'	1	1		
Fuel Oil Pump-2						1	1		
Fuel Oil	1	1	1		3				
Cond Pump-1						1	1		
Cond Pump-2						1	1		
Condensate	1		4		1				
Makeup Water	1		1						1
Blr Water Conductivity Absorp Chiller-1						1	1		'
Absorp Chiller-2						1	1		
CHW Pump-1						1	1		
CHW Pump-2						1	1		
CDW Pump-1						1	1		
CDW Pump-2						1	1		
CHW	6		2						
CHW Supply CPA	4		2	2					
CDW Cooling Tower Fan-1	4		2			1	1		
Cooling Tower Fan-2						1	1		
Cooling Tower Fan-3						1	1		
Air Compressor		1				1	1		

Total of 78 Points and 6 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 8300

SIMILAR BUILDINGS 8320, 8340

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Oil HW Boiler HW Pump-1				1	1	1
HW Pump-2 BAY A				1	1	
UV-2A, E-1, E-4A, E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW	1					
BAY B UV-2B, E-2, E-4C,						
E-4D UH-XE, UH-XF, UH-XG,				1		
UH-XH Space	1			1		
$\frac{\text{BAY C}}{\text{UV-1A}}, \text{ UV-1B, E-3},$						
E-4E, E-4F, E-4G, E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB				1		
UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 8320

SIMILAR BUILDINGS 8300, 8340

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
Oil HW Boiler HW Pump-1 HW Pump-2 BAY A				. 1	1 1 1	1
UV-2A, E-1, E-4A, E-4B				1		
UH-XA, UH-XB, UH-XC, UH-XD				1		
Space HW	1 1					
BAY B UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C	1					
UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G, E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB UV-1C, E-4I, E-4J				1		
UH-YC, UH-YD, UH-YE, UH-YF				1		
Space	1					

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 8340

SIMILAR BUILDINGS 8300, 8320

ITEM	TEMP	PRESS	FLOW	<u>s/s</u>	STAT	AL/C
Oil HW Boiler HW Pump-1 HW Pump-2 BAY A UV-2A, E-1, E-4A,				1 1 1	1 1 1	1
E-4B UH-XA, UH-XB, UH-XC,				1		
UH-XD				1		
Space HW BAY B	1 1					
UV-2B, E-2, E-4C, E-4D				1		
UH-XE, UH-XF, UH-XG, UH-XH				1		
Space BAY C	1 .					
UV-1A, UV-1B, E-3, E-4E, E-4F, E-4G, E-4H				1		
UH-YA, UH-YB, UH-ZA, UH-ZB				1		
UV-1C, E-4I, E-4J UH-YC, UH-YD, UH-YE,				1		
UH-YF Space	1			1		

Total of 16 Points and 2 MUX's

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 8360

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
MAH				1	1	
Discharge Air	1			4		
EF-3, 11, 15, 24 HV-1				1	1	
Discharge Air	1					
HV-6	1			1	1	
Discharge Air VUH-1	ı			1	1	
Eight VUH-2's				1		
Space EF-4, 5, 6, 12,	2					
17, 18, 19				1		
Two CUH-1's						
WAC-5 WAC-6				1	1 1	
AHU (MZ)				1	1	
Hot/Cold Deck	2					
ACC	1					
Space EF-1, 7, 8	•			1		
EF-13, 22				1		
HV-4				1	1	
Discharge Air HV-5	1			1	1	
Discharge Air	1			·		
Ten IRH's				1		
Two CUH-1's WAC-1				1	1	
WAC-2				1	1	
Space	3					
EF-16, 20, 21 Three HUH-1's				1 1		
Three HUH-3's				1		
Two CUH-1's						
WAC-7 WAC-8				1 1	1	
Space	1			,	,	

TABLE II-4 POINT LIST: (continued)

MOTOR REPAIR SHOP 8360 (continued)

ITEM	TEMP	PRESS	FLOW	s/s	STAT	AL/C
EF-2,9,10,14,23				1		
HV-2				1	1	
Discharge Air	1					
HV-3				1	1	
Discharge Air	1					
Twelve IRH's				1		
WAC-3				1	1	
WAC-4				1	1	
Space	3					

Total of 47 Points and 4 MUX's

For information on individual buildings, see Volumes 2 through 5 of this report. Point counts, cost and benefit estimates, and I/O Summary Tables are included in Volume 3.

C. BUILDINGS NOT RECOMMENDED FOR EMCS

- 1. Youth Center 71 has a program clock located in the manager's office. It is more economical to install a new program clock with battery backup power, than to tie into the EMCS.
- 2. Commissary 127 is a grocery store. Night setback is not practical, since the heating system does not have enough excess capacity for morning warm-up. Scheduling of air conditioning is not practical because of potential spoilage problems.
- Residence Halls 144, 145, 146, 440, 441, 442, 480, 481, 5309:
 These buildings are occupied 24 hours per day, 7 days per week.
 Time-related programs such as scheduled start/stop and night setback are not feasible. Air conditioning is accomplished by window units; there is no practical method of switching these via the base-wide EMCS. For Will Hall 5309 (transient officers' quarters), where occupancy changes daily, a line-carrier energy management system may be worthwhile.

II-127

- 4. Aviation Operations Buildings 839 and 863 operate on a round-the-clock basis. Like other buildings which are always occupied, it is not practical to put these buildings on the EMCS.
- 5. Shoppette 5302 has a heat pump. Night setback and scheduling of air conditioning are not economical control schemes for heat pumps.
- 6. Telephone Exchange 6420 is a very small building. The expected energy savings is limited, and the cost of connecting to the EMCS cannot be justified. We recommend a program clock with battery backup and locking thermostats for this building.

For more information, see the first section in Volume 3 of this report.

D. CENTRAL PLANTS

1. CHILLER PLANT 7210

Chiller Plant 7210 serves thirteen barracks in the Custer Hill troop housing area. The plant includes two 504-ton and one

650-ton electric centrifugal chillers. The units all operate on 42 degrees F leaving water temperature. The two 504-ton units are piped in series, i.e., if the 650-ton unit is not operating, all chilled water flows through both units. The 650-ton unit is piped in parallel with the two 504-ton units.

The plant is operated from late May until late September each year, and at least one chiller runs, around the clock, during that time span. The plant operators manually start and stop a second chiller as they anticipate the need for additional cooling. To date there has been no need to run all three chillers simultaneously.

We are proposing 41 EMCS points for Building 7210. See Table II-5.

Under computer control there will be several energy saving oportunities:

- a. Resetting chilled water temperature to meet the demand.
- b. Resetting condenser water temperature for optimum chiller performance.
- c. Optimum lead-lag operation of chillers.

- d. Optimum start/stop.
- e. Scheduled start/stop where the chillers will shut down at 2100 hours and restart at 0900 hours.

Table II-5 CHILLER PLANT 7210 COST SUMMARY (February 1982)

Point	No. Pts.	Cost Each	Total
Chiller S/S w/Status	3	\$1,150	\$3,450
CHW Supply Temperature	4	870	3,480
CHW Return Temperature	4	880	3,520
CHW Flow	3	2,910	8,730
Entering CDW Temperature	3	870	3,480
Leaving CDW Temperature	3	870	3,480
CDW Flow	3	2,900	8,700
Chiller kWh	3	2,450	7,350
CHW Pump Status	3	650	1,950
CDW Pump Status	3	650	1,950
Cooling Tower Fan Status	6	650	3,900
CHW Temperature Adjust	_ 3	1,360	4,080
Totals	41		\$54,070

2. BOILER - CHILLER PLANT 8073

Building 8073 serves 28 buildings in the 8000 Area of Custer Hill. The plant contains two 14,700 MBH oil-fired steam boilers and two steam absorption chillers. The boilers generate steam at 125 psi and are fired by No. 2 fuel oil. The chillers supply 440 tons of cooling and 1,275 gpm of 42 degrees F chilled water each.

The plant is manned 24 hours per day year-round. The boilers supply the distribution loop with steam for heating and for

domestic hot water. The boilers also supply steam for the absorption machines during the cooling season. Consequently, at least one boiler is active at all times.

We are proposing 78 EMCS points for Building 8073. See Table II-6. These points will allow reassignment of operators currently stationed there. These points will also make it possible to save energy through:

- a. Scheduled start/stop and optimum start/stop of the chillers.
- b. Chiller optimization and chilled water temperature reset.
- c. Boiler optimization.

All of these proposed control schemes have tentative approval of the chiller manufacturers.

Table II-6
BOILER-CHILLER PLANT 8073 COST SUMMARY
(February 1982)

Point	No. Req'd.	Cost Each	Total
Absorption Chiller S/S w/Status	2	\$1,150	\$ 2,300
CHW Supply Temperature	3	870	2,610
CHW Return Temperature	3 3 2	870	2,610
CHW Flow		2,900	5,800
CDW Flow	2	2,900	5,800
Entering CDW Temperature	2	870	1,740
Leaving CDW Temperature	2	870	1,740
CDW Pump S/S w/Status	2	650	1,300
CHW Pump S/S w/Status	2	650	1,300
Cooling Tower Fan S/S w/Status	3	650	1,950
CHW Supply CPA	2	1,340	2,720
Boiler S/S w/Status	2	1,150	2,300
Boiler Alarm Contactor	2	300	600
Boiler Water Level	2	2,700	5,400
Combustion Air Temp	2	800	1,600
Draft Pressure	4	800	3,200
Combustion Air Flowrate	2	800	1,600
Exhaust Gas Temperature	2	800	1,600
Exhaust Gas Oxygen Percent	2	800	1,600
Steam Pressure	2	800	1,600
Steam Temperature	2	800	1,600
Steam Flow Rate	2	800	1,600
Feedwater Temperature	2	800	1,600
Feedwater Pressure	2	800	1,600
Feedwater Flowrate	2	800	1,600
Smoke Indicator	2	1,100	2,200
Condensate Pump S/S w/Status	2	900	1,800
Condensate Tank Level	1	1,200	1,200
Condensate Temperature	1	800	800
Feedwater Pump S/S w/Status	3	1,150	3,450
Deaerator Tank Level	1	1,850	1,850
Makeup Water Temperature	1	800	800
Makeup Water Flowrate	1	2,000	2,000
Fuel Oil Tank Level	3	1,000	3,000
Fuel Oil Pump S/S w/Status	2	1,150	2,300
Fuel Oil Flowrate	1	1,900	1,900
Fuel Oil Temperature	1	800	800
Fuel Oil Pressure	1	1,350	1,350

Water Conductivity	1	2 , 300	2,300
Air Compressor S/S w/Status	1	1,150	1,150
Air Compressor Pressure Limits	1	800	800
Totals	78		\$85.070

E. DATA TRANSMISSION MEDIA (DTM)

Ft. Riley is presently served by the United Telephone network and a government-owned network. Where spares are available, lines will be donated (by the government) or leased (from United Telephone). However, the availability of spare phone lines is limited and changes from day to day.

It will be helpful at this point to refer to Figure 1 at the end of Part I.

Data transmission for the EMCS will be via telephone lines equal to a 3002-C2 voice-grade circuit (conditioned). The existing telephone lines are unconditioned. Where existing telephone lines are used, conditioning equipment will be provided under the EMCS contract.

Communication between MUX panels and FID panels will be over two pairs of telephone lines provided under the EMCS contract. Table II-1 (page II-3) lists the costs for MUX-to-FID communication. The estimated cost for these lines is \$209,890. Figure I indicates how

buildings are grouped together. One building in each group has a FID panel; the other buildings in the group will require new lines wired to the FID panel. Existing phone lines will link the FIDs to the CCU, through the central telephone exchanges.

The transmission system from Custer Hill to the Main Post area (Building No. 6420 to Building No. 33) will be over 16 pairs (i.e. two pairs for each Custer Hill FID, for backup protection) of telephone lines leased from United Telephone Company. The present lease rate is \$1.50 per 1/4-mile per month per pair.

The transmission system between Main Post Central Exchange (Building No. 33) to the Central Computer System, located in Building No. 187, shall be over twenty-two (i.e. two pairs for each FID in the system, for backup assurance) pairs of telephone lines provided under the EMCS contract. The estimated cost of these lines is \$50,000.

Subsequent upgrade projects may provide large numbers of available spares, and reduce the cost of the EMCS installation. For this report, we have assumed the present situation will not change, however.

F. DEMAND LIMITING

Demand limiting can be a highly effective method of reducing energy bills at Ft. Riley. The degree of success, however, is dependent on a firm commitment by post authorities to assign and keep an adequate number of low-priority users. Such users would consist primarily of cooling equipment in noncritical areas where a temporary shut-off of air conditioning would be acceptable.

Demand sensing equipment would be installed only at the Anzio Substation. This substation supplies most of the electrical power for Custer Hill and the Main Post or about 75 percent of the total Post consumption.

Demand limiting would be accomplished through the installation of a Pulse Accumulator and one MUX panel located at the substation. The demand pulse would be monitored and transmitted to the Central Computer System. As the demand approaches the Target Peak Demand, the System would begin shutting off low priority loads.

We have estimated a 3750-kW reduction in summer peak demand; this is equivalent to 15 percent of the 1980 peak. Such a reduction will produce a savings of about \$100,000 annually.

II-135

Five other schemes for demand limiting by radio were considered.

All five were found to be not feasible.

The alternatives were:

- Switching of air conditioners for 860 units in the 1001 Family Housing group.
- Switching of electric water heaters and air conditioners for 860 units in the 1001 Family Housing group.
- 3. Switching of electric water heaters and air conditioners for all units in the 1001 Family Housing group.
- 4. Switching of well pumps.
- 5. Switching of family housing and well pumps (i.e., combination of Alternatives 3 and 4).

See Volume 2, Section 2 for more details

G. MASTER CONTROL ROOM (MCR)

The EMCS computer room will be located in the basement of the Facilities Engineer building (Building No. 187). A remodel of an area adjacent to the boiler room will be necessary to accommodate the new electronic equipment. A cost breakdown and abbreviated description of the work are presented in Table II-7.

Table II-7
COSTS FOR MASTER CONTROL ROOM
(February 1982)

General Construction includes fire-rated partitions and door, cutting, patching, painting, telephones	\$3, 750
Mechanical includes air-conditioning units, humidity control, ductwork, diffusers	15,600
Electrical includes fluorescent light fixtures and power for computer equipment and air conditioning equipment	3,750
Furniture Total	5,000 \$28,100

A remote monitoring station will be required at the hospital boiler plant, building 486. If the new EMCS is compatible with the hospital EMCS, no new CRT or printer will be necessary. If spare phone lines are available the DTM cost could be as low as \$1,000. Table II-8 illustrates the worst condition.

Table II-8
COSTS OF REMOTE MONITORING STATION
(February 1982)

B & W CRT \$9,600

Keyboard/printer 4,700

DTM 5,000

Subtotal \$19,300

Note: If new EMCS is compatible with existing hospital EMCS, cost for remote station could be as low as \$1,000.

H. OPERATIONS AND MAINTENANCE COSTS

The EMCS concept is relatively new and has been marked by rapid advancements. Because this technology has such a short history and nearly every installation is a new prototype, predicting O&M costs has been very difficult. This firm's investigation consisted of searches through periodicals, manufacturers' recommendations, conversations with designers, operators and managers of EMC systems. No one source agreed closely with any other.

The following is our best estimate of annual costs:

1. Maintenance cost, for the first year, is approximately \$60 per point. For the Ft. Riley EMCS, that amounts to \$60 x 2,314 points = \$138,840. (In other words, this would permit

approximately 8 hours of maintenance at \$50 per hour for each of 347 points (15 percent of total) the first year.)

- 2. Maintenance cost, for subsequent years, is approximately \$150 per point. For the proposed system, that amounts to \$150 x 2,314 points = \$347,100 per year. (This rate would allow 3 plus servicemen per year full time plus parts and equipment billed at "service" rates.)
- 3. Operations costs are primarily additional labor attributable to the EMCS operators.

Additional power use, supplies, furniture and the like are negligible costs in comparison to the additional labor. Ft. Riley estimates one new WG11 operator will be required. The cost of this man will be \$20,800 per year, plus benefits: \$20,800 x 130 percent benefits = \$27,040 per year.

The EMCS will be monitored around the clock by operators trained and certified by the equipment manufacturer. In addition to checking the routine functions of the EMCS, the operator must be capable of responding quickly to user requests and alarms.

The ratio of 0&M cost to the EMCS cost is 13.6 percent. See Volume 2, page 7-5.

If the EMCS function is extended to include fire protection and security, the operators must be trained in those areas. too.

I. CONDITION OF EXISTING CONTROLS

The Ft. Riley maintenance force is unique because it includes a controls shop with an adequate stock of replacement parts, a trouble-shooting lab and well-trained personnel.

In general, the survey teams found the existing controls to be in satisfactory condition. However, their inspection was limited. For example, some problems, such as economizer controls out of calibration, can only be detected by testing, and that treatment was beyond the scope of the field work. Many more problems with the old controls will become evident when the EMCS work commences. Therefore, we are recommending a lump sum of \$50,000 for repairing existing controls which do not work properly or are incompatible with the EMCS.

Table II-9 lists modifications and corrections which we are aware of. These costs have been accounted for in the economic analysis.

Table II-9
MODIFICATIONS AND CORRECTIONS TO EXISTING CONTROLS

Bldg.			Cost
No.	Bldg. Function	Action	(February 1982)
34	Administration	Replace broken belt on	Note 1
		air handler HV-1	
72	Band Training	Fix night setback	Note 1
		control	
149	Barracks	Modify steam pipe and	\$2,000
		controls for night setback	
165	Barracks	Modify steam pipe and	\$2,000
		controls for night setback	
6620	NCO Club	Modify piping and controls	\$2,000
	•	for CHW and CDW reset	
6940	Pool	Add humidistat for AH-2	\$ 600
7024	Gymnasium	Overhaul controls and	\$2,000
		damper seals	
7033	Administration	Provide starter for	Note 1
		HW pump	
7044	Barracks W/Mess	Modify steam piping	\$2,000
		and controls for night	
		setback	
7048	HQ	Fix 3-way valve at	Note 1
		boiler	
7227	Barracks W/Mess	Fix AHU-1 econommizer.	Note 1
		Modify steam piping and	\$2,000
		controls for night setback.	
7305	Special Weapons	Overhaul controls	Note 2
	Classroom		** ***
7230	Barracks W/Mess	Modify steam piping	\$2,000
		and controls for night	
		setback.	40.000
7233	Barracks W/Mess	Modify steam piping	\$2,000
		and controls for night	
5055		setback.	# 0.000
7253	Adj. General	Modify steam piping	\$2,000
		and controls for night	
		setback	

Table II-9 (continued) MODIFICATIONS AND CORRECTIONS TO EXISTING CONTROLS

Bldg. No.	Bldg. Function	Action	Cost (February 1982)
7720	Motor Repair	Tighten damper linkage.	Note 1
1120	Shop	provide filters, close access doors for two	иосе г
7740	Motor Repair Shop	Tighten damper linkage, provide filters, close access doors for two UV-2's.	Note 1
7854	Mess Hall	Cover torch-cut panels in AHU-1 and 2.	Note 1

Notes:

- 1. This is within routine duties of base maintenance force; it is assumed they will take action.
- 2. Maintenance has scheduled this for autumn 1981.

APPENDIX A — EXHIBIT 1

CORPS OF E	NGINEERS		
			_
		:	
		•	
		i	
٠			
		! !	
\mathbf{O}			

F

CUSTER HILL TELEPHONE EXCHANGE BUILDING NO. 6420

LEGEND

RULDING, PERMANENT
RULDING, SEM-PERMANENT
RULDING, TEMPORANEY

WATERCHTS TOTAL ATTEMPT
RUCCE
WELL CUTLINE
ESSENIATION SOLNEMBY
RESTER COMMENT
REGGE
RULLINGT
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RUCCE
RU

****** ******

STEEP SLOPE

LEGEND

BULLIONS, PERMANENT

BULLIONS, SERV-PERMANENT

BULLIONS, TEMPORANY

PROMERY SERVE AND

(16)

RESERVATION SQUARMAY
RIGHT-OF-WAY OR EASEMENT

SPECIAL
COLVERT
CHARMAGE CHANNEL

DAM
SHORELINE

LEVEZ

CENTERLINE
SENCH MARK in manual

CEMESSION

TOP OF STEEP SLOPE

HOLK CONTOLIR

HIGGINBOTHAM AND ASSOCIATES ARCHITECTS AND PLANNERS COCOCORDO SPRINGS, COLORADO 80903 Exhibit 1 ENÉRGY MONITORING AND CONTROL S' RECOMMENDED BY THE HISTALLATION PLANNING ROARD FOR APPROVAL ROBERT E. SPILLER, C DEPUTY POST COMM. CHAIRMAN INSTALLAT

REVIEWED & COMMENTED ON BY MAJOR COMMANDER & PORWARDED TO THE CHIEF OF ENGINEERS

DATE

FORT RILEY

KANSAS

HIGGINEOTHAM AND ASSOCIATES
ARCHITECTS AND PLANNERS
COLORADO SPRINGS, COLORADO 80903

U.S. ARMY ENGINEER DISTRICT, KANSAS CITY
CORPS OF ENGINEERS
KANSAS CITY, MISSOURI 64106

Exhibit 1 ENERGY MONITORING AND CONTROL SYSTEM

ROBERT E. SPI DEPUTY POST CHAIRMAN INS	Solles LLER, COL, INF. COMMANDER STALLATION PLANNING I	BOARD
S COMMENTED ON BY MAJOR COMMANDER DED TO THE CHIEF OF ENGINEERS	DATE I MAR, 1977	DRAWNS NO. 18-02-06
	SHEET HO.	AMEA NO.

APPENDIX B — ENERGY POINTS

APPENDIX B

ENERGY POINTS

Not all EMCS points are intended to save energy. Some points serve other useful purposes, such as maintenance management or safety.

This fact creates a problem in approving funds for energy management systems, since energy-related projects are judged by ECIP criteria (E/C ratio, B/C ratio, payback)¹.

To officially recognize the need for points which do not meet ECIP criteria, the Corps of Engineers group in Huntsville has made these policy statements:

- 1. Each EMCS point does not need to meet E/C and B/C minimums. However, the overall EMCS project still must meet all ECIP criteria.
- 2. Maintenance points are not to be counted in calculating E/C ratios; only energy points are to be included.
- 3. Maintenance points must be accounted for in calculating B/C ratios and payback periods.

See Reference 3 for a full explanation of these terms.

And so, the distinction between energy points and maintenance points is very important. Here are our definitions:

Energy points are EMCS points which directly or indirectly save enough energy to pay for themselves.

Maintenance points do not save enough energy to pay for themselves.

Some maintenance points pay for themselves in labor savings. For instance, automating a boiler plant frees the operators to meet other needs by the workforce.

Some maintenance points also save energy, even though it is not enough to fully pay for themselves. For example, some start/stop points on fans will not pay for themselves; such points are included to improve surveillance. But, such points will make duty cycling possible; and some limited savings will result.

Maintenance points are inexpensive. They can be added for half the cost of energy points. This is because most MUX, FID, wiring and central computer costs are borne by energy points.

Maintenance points contribute to workforce productivity to a much larger degree than energy points. Maintenance points can reduce checkup visits to mechanical rooms, because critical equipment items can be monitored automatically.

Adding maintenance points adds protection against damage due to freeze-ups and forgotton maintenance. The Ft. Riley Facilities Engineer anticipates a reduction of \$27,000 per year in avoided damage (this is not included in the economic analysis).

Table B-1
ENERGY POINTS - IMPORTANT FACTS

Project Cost	\$2,771,100
B/C Ratio	4.0
E/C Ratio	41
Payback Period	2.9 yrs
Number of Points	939
Number of Buildings Controlled	178

Table B-2 COST SUMMARY FOR ENERGY POINTS (Feb 82)

```
Central Computer Equipment
1.a.
                                                      $ 426,900
       FID's<sup>2</sup>
                                                          115,500
  b.
  c.
                                                           28,100
       Remote Monitor<sup>4</sup>
                                                           19,300
            Subtotal 1
                                                         589,800
                                                                        $ 589,800
       Field Hardware<sup>5</sup>
                                                      $1,378,940
       Modifications to Existing Controls<sup>5</sup>
  b.
                                                           20,600
      DTM<sup>6</sup>
  c.
                                                          259,020
           Subtotal 2
                                                      $1,658,560
                                                                        $1,658,560
       Training<sup>7</sup>
3.a.
                                                          $12,500
       Documentation<sup>8</sup>
                                                           98,440
            Subtotal 3
                                                         110,940
                                                                          110,940
       Allowance for Control Work
4.
                                                                             50,000
       Contingencies 9
5.
                                                                            229,840
       Supervision and Administration 10
6.
                                                                        $ 131,960
                                    Total Project Cost
                                                                        $2,771,100
```

Notes: Items 1,2,3,4 Include Contractor's Overhead and Profit.

2See Table B-4.

7 FIDs x \$16,500 each.

See Table II-7 (page II-137).

See Table II-8 (page II-138).

See Table B-6 (pages B-8 through B-16).

See Table B-6 and pages II-33 & 34:

7\$209,020 + \$50,000 = \$259,020

Per Manufacturer's Estimate

95% x [1+2a.].

10% x [1+2+4].

5% x [1+2+3+4+5].

Table B-3

FOR ENERGY POINTS (July 1986 Dollars)

Economic Life: 15 Years

Cost	
1. Nonrecurring Initial Capital Costs	
a. CWE ¹	\$3,568,330
b. Design (5% of 1a)	178,420
c. Salvage Value of Existing System	Negligible
d. Total	\$3,746,750
Benefits	
2. Recurring Benefit/Cost Differential Other than Energy	
a. Annual Labor Decrease $(+)/Increase (-)^2$	\$-34,820
b. Annual Maintenance Decrease $(+)/Increase (-)^3$	\$-181,370
c. DTM Rental Decrease (+)/Increase (-)	\$ -2,410
d. Total Costs	\$-218,600
e. 10% Discount Factor	7.980
f. Discounted Recurring Cost (dxe)	\$-1,744,430
3. Recurring Energy Benefit/Costs	
a. Electricity	
(1) Annual Energy Decrease	53,861/Mega Btu
(2) Cost per Mega Btu	\$8.17/Mega Btu
(3) Annual Dollar Decrease	\$440,044/yr
(4) Differential Escalation Rate (7%) Factor	10.57
(5) Discounted Dollar Decrease	\$4,651,269
b. Natural Gas	
(1) Annual Energy Decrease	68,958/Mega Btu
(2) Cost per Mega Btu	\$6.68/Mega Btu
(3) Annual Dollar Decrease	\$460,639/yr
(4) Differential Escalation Rate (8%) Factor	13.55
(5) Discounted Dollar Decrease	\$6,241,664
c. No. 2 Fuel Oil	04 515 /W Phy
(1) Annual Energy Decrease	24,717/Mega Btu
(2) Cost per Mega Btu	\$14.91/Mega Btu
(3) Annual Dollar Decrease	\$368,530/yr
(4) Differential Escalation Rate (8%) Factor	11.41
(5) Discounted Dollar Decrease	\$4,204,933
d. Electrical Demand Reduction	2.7501-117
(1) Reduction in summer peak	3,750kW
(2) Annual Dollar Decrease	\$162,676/yr
(3) Differential Escalation Rate (7%) Factor	10.57
(4) Discounted Dollar Decrease	\$1,719,485
e. Discounted Energy Benefits $[3a(5) + 3b(5) + 3c(5) + 3d(4)]$	\$16,817,351 \$15,072,921
4. Total Benefits (sum 2f + 3e)	4.0
5. Discounted Benefit/Cost Ratio (Line 4 ÷ Line 1d)	147,536 Mega Btu
6. Total Annual Energy Savings $[3a(1)+3b(1)+3c(1)]$	147,556 Mega Btu 41
7. E/C Ratio (Line $6 \div \text{Line } 1a/1000$)	\$1,213,289
8. Annual \$ Savings $[2d + 3a(3) + 3b(3) + 3c(3) + 3d(2)]$	91,213,203 2 9 vrs

2.9 yrs

9. Pay-back Period [(Line 1a-Salvage) ÷ Line 8]

Table B-3

FOR ENERGY POINTS (July 1986 Dollars) (continued)

Notes:

Table B-4
CENTRAL COMPUTER EQUIPMENT
FOR TRI-SERVICES MEDIUM EMCS
(Feb 82)

Item	Cost
CPU	\$ 70,900
Color CRT	10,100
B&W CRT	9,600
Alarm Printer	4,700
Disk Drive	32,200
Floppy Disk	8,600
Calendar Clock	3,800
Software	121,000
Test Equipment	32,000
Contractors OH&P	134,000
Total	\$426,900

Table B-5
ESTIMATED UNIT PRICES FOR FIELD HARDWARE
(Feb 82)

Item	Cost
FID	\$16,500
MUX	1,890
Air Temperature Point	800
Water Temperature Point (Note 2)	850
Pressure or Humidity Point	1,350
Damper Position Indicator Point	1,200
Alarm Contract Point	650
Binary Temperature Point	650
Start/Stop Point w/Status	1,150
Start/Stop Point w/o Status	1,000
Status Only	650
Control Point Adjustment (CPA)	1 , 360
Accumulator (kW input)	2,450
Accumulator (demandd meter contact)	780
Analog Flow (Note 2)	2,700

Notes

- 1. Estimates include labor, material, on-post travel time allowance, wiring allowance (100 ft/point).
- 2. Estimate includes allowance for installation of sensor well in piping.

Table B-6
ENERGY POINTS
COST/BENEFIT SUMMARY

E/C	RATIO	19	29	73	50	75	7	/ O /	t 0	77	20	53	L L	22	53	34	53.	74	75	52	19	31	74		31	40	118	73	39
Ñ.	PTS	2	∞	4	12	5	,	۷ ح	+ (7 (2	7	,	7 0	7	7	7	∞	2	4	2	2	4	,	5	4	2	7	12
	TOTAL	168	1708	1123	1518	1462	737	/U/ CAA	200	155	149	519	17	747	519	566	519	1877	1073	684	168	595	1168		595	621	3397	854	1204
NERGY SAVED MEGA BTU/YR	OIL	1	1	I	ı	ł			1	I	ı	ı		i	I	1	1	80	1	1	ı	ı	1		I	1	ı	I	I
ENERGY SAVED MEGA BTU/YR	GAS	103	1670	1064	950	299	070	7 7 7	1+1	155	139	113	7 2	113	113	566	113	1	1073	545	103	169	303		169	366	3397	854	374
	ELECTRIC	9	38	59	568	863	765	110	TT	1 4	10	406	101	491	400	I	406	1797	ı	139	65	426	865		426	255	1	1	830
	TOTAL	5840	11,360	6510	15,760	0908	4060	0064	4140	4/10	4710	4960	4060	4960	4960	4560	4960	10,560	0609	0999	5840	11,460	0999	•	11,460	8710	7160	4960	17,370
COSTS (FEB. 82)	DTM	2000	870	870	870	870	0.70	0/0	0/0	0/0	0/8	870	0.70	0/0	8/0	820	870	870	2000	870	2000	870	870	1	870	870	870	870	3530
00 FE	EXIST CONTROLS	-	ı	l	1	I		l	ı	1	ı	ł			ı	1	ı	ŀ	1	1	ı	2000	-		2000	1	ı		1
	PTS	3840	10,490	5640	14,890	7190	4000	5790	2040	2040	3840	4090	4000	0000	4090	3690	4090	0696	4090	5790	3840	8590	224	1	8590	7840	6290	4090	13,840
BLDG.	FUNCTION	Chapel	Field House	Admin.	Admin.	Barracks	Child Care	Finance	Dond Tarining	Dally Halling	Ked Cross	Barracks	Borres	Daniachs	Darracks	Н	Barracks	Barracks w/Mess	Post HQ	Warehouse	Chapel	Barracks	Theater	,	Barracks	Rec. Ctr.	Admin.	Motor Rep. Shop	Officer's Club
BLDG.	SO.	3	32	34	37	40	46	70	7 2	7 1	6/2	68	00	20	71	26	93	94	108	126	128	149	163	I V	165	184	201	205	255

Table B-6
ENERGY POINTS
COST/BENEFIT SUMMARY

E/C	RATIO	ì	97	38	19	41	74		32	94	94	25	42		42	31	35	28	39	1	53	35	35	35	7.	33	15	101	21	32
NO.	РТЅ	,	7	7	2	3	ıc)	2	3	3	3	2		7	3	7	14	14	•	2 .	4	4	4	_	4	7	7	3	7
	TOTAL	0.50	319	408	139	450	1292		265	1678	1678	377	836		1059	507	855	883	1257	1	260	430	430	430	7 20	430	110	1592	191	157
SAVED ITU/YR	OIL		I	1	ı	ı	ı		I	1	I	377	762		I	ŀ	1	ı	ı	!	377	I	ı	1		ł	l	ı		I
ENERGY SAVED MEGA BTU/YR	GAS		319	48	139	1	920)	156	1646	1646	ı	ı		1052	271	392	285	ı		1	84	84	84	0	84	110	1381	144	157
	ELECTRIC		I	360	ı	450	372	1	109	32	32	ı	74		7	236	463	598	1257	(183	346	346	346	77.	340	I	211	47	
	TOTAL		//10	0609	4710	5960	7360		4960	6110	6110	9490	10,890		13,990	0686	14,140	19,280	17,720		5310	7010	7010	7010		010/	4710	5070	5710	2820
COSTS (FEB. 82)	DTM		3620	2000	870	870	870)	870	870	870	4100	4100		4100	4900	4900	870	870		870	870	870	870	Ċ	0/8	870	870	870	870
) 34)	EXIST CONTROLS		ı	ŀ	1	1	1			1	ı	ı	ı		ı	1	ı	2000	1	,	009	1	ı	ł		l	1	2000	1	
	PTS		4090	4090	3840	5090	6490	-	4090	5240	5240	5390	0629		0686	4990	9240	16,410	16,850		3840	6140	6140	6140	7	0140	3840	2200	4840	1950
BLDG.	FUNCTION		Marksmanship	Barracks w/Mess	НО	BOO	Admin		Flight Training	Hangar	Hangar	Army Reserves	Salvage	o	Field House	Post Office	Chapel	NCÔ Club	Run-in Chef	Main Px	Pool	Barracks w/Mess	Barracks w/Mess	Barracks w/Mess		Barracks w/Mess	НQ	Gym	EM Club	Classroom
BLDG.	NO.		296	315	355	487	801	100	860	864	998	1470	1950		1980	5302	5315	6620	6910	6914	6940	7004	7007	7010	7	/013	7017	7024	7028	7031

Table B-6
ENERGY POINTS
COST/BENEFIT SUMMARY

E/C	RATIO	50	34	77	33	32		21	24	35	35	15		36	37	15	41	33		41	41	72	27	89		37	63	70	40	53
NO.	PTS	2	2	2	3	2		7	2	4	4	2		4	41	2	3	3		4	4	7	ĸ	4		∞	3	7	3	6
	TOTAL	275	275	529	469	157		157	110	430	430	110		435	3969	110	469	469		9/9	929	476	367	1350	,	200	787	1653	532	1678
SAVED STU/YR	OIL	ŀ	ı		I	I		1	1	ĺ	ı	1		1	l	1	1	1		I	ı	1	1	ı		1	1	ı	1	I
ENERGY SAVED MEGA BTU/YR	GAS	162	162	418	110	157		157	110	84	84	110		259	1	110	110	110		207	207	470	142	1314		268	430	428	418	1646
	ELECTRIC	113	113	111	359	I		1	1	346	346	ı		176	3969	1	359	359		469	469	9	225	36		432	357	1225	114	32
	TOTAL	2820	4710	2820	8260	2820	,	4710	2820	7010	7010	4710		6910	60,610	4710	6370	8260		9260	9260	2820	8160	0906	3	10,560	5860	10,360	7330	15,830
COSTS (FEB. 82)	DTM	870	870	870	870	870	į	870	870	870	870	870		870	870	870	870	870		870	870	870	870	870	1	870	870	870	2340	2340
CC FE	EXIST CONTROLS	ı	ı	1	2000	ı		ı	ı	1	1	1		1	1	1	2000	2000		2000	2000	1	1	2000		1	1	1	1	ı
	PTS	1950	3840	1950	5390	1950		3840	1950	6140	6140	3840		6040	59,740	3840	3500	5390		6390	6390	1950	7290	6190		0696	4990	9490	4990	13,490
BLDG.	FUNCTION	Dispensary	Dispensary	НО	Barracks w/Mess	Classroom	7	Classroom) JH	Barracks w/Mess	Barracks w/Mess	НQ		Chapel	Chiller Plant	НО	Barracks w/Mess	Barracks w/Mess		Barracks w/Mess	Barracks w/Mess	Five Co. Admin. & Stor.	Mess Hall	Adj. General		Rec. Cff.	HQ & Classroom	Theater	Spec. Weap. Clrm.	Motor Rep. Shop
BLDG.	20 2	7033	7034	7036	7044	7046	7047	1047	/048	7050	7053	7055	,	7086	7210	7215	7224	7227	1	7230	7233	7243	7245	7253	7367	/204	7270	7285	7305	7350

Table B-6
ENERGY POINTS
COST/BENEFIT SUMMARY

E/C	RATIO	84	84	51	77	53	46	38	27	27	38	16	1,5	10	10	16	16	42	88	81	37	64	122	5.	64	43	16
NO.	PTS	4	4	4	2	6	6	9	2	2	9	~	. ~	٠ د		3	n	3	4	3	3	3	2	4	~	2 2	6
	TOTAL	1464	1464	269	873	1678	1366	809	367	367	809	158	7 2 2 2	170	158	158	158	787	1737	816	257	816	1592	269	816	258	158
SAVED STU/YR	OIL	l	1	ł	ŀ	-	I	I	I	1	ŀ	İ		l	1	l	l	1	1	1	ı	ı	١		1	ı	ı
ENERGY SAVED MEGA BTU/YR	GAS	ı	ı	418	167	1646	1334	470	142	142	470	l		ł	ĺ	1	ı	430	888	430	151	430	1381	418	430	152	1
	ELECTRIC	1464	1464	279	902	32	32	138	225	225	138	158	158	100	158	158	158	357	849	386	106	386	211	279	386	106	158
	TOTAL	0999	0999	7010	4710	15,830	15.830	9110	8160	8160	9110	0989	0969	0000	0969	6360	6360	3970	7260	3970	3970	2860	3070	7010	5860	3220	6360
COSTS (FEB. 82)	DTM	870	870	870	870	2340	2340	870	870	870	870	870	870	0/0	0/8	870	870	870	870	870	870	870	870	870	870	870	870
CO (FEI	EXIST CONTROLS	1	1	ļ	1	ı	ı	1	ı	1	ı	1		1	1	1	1	1	ı	l	ı	ı	١	١	١	1	l
	PTS	5790	5790	6140	3840	13,490	13.490	8240	7290	7290	8240	5490	5400	2490	5490	5490	5490	3100	6390	3100	3100	4990	2200	6140	4990	2350	5490
BLDG.	FUNCTION	Barracks	Barracks	НО	Bowling Ctr.	Motor Rep. Shop	Motor Rep. Shop	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Rorracks	Bossolo	Darracks	Barracks	Barracks	Barracks	HQ & Classroom	Admin.	Admin. & Classroom	Dispensary	Admin. & Classroom	u.S.	OH	Admin & Classroom	Branch Px	Barracks
BLDG.	NO.	7404	7424	7450	7485	7500	7520	7602	7604	9092	8092	7610	7610	7017	7614	7616	7618	7620	7622	7624	7626	7630	7632	7636	7638	7640	7642

Table B-6 ENERGY POINTS COST/BENEFIT SUMMARY

E/C	RATIO	16	16	16	16	38	7.0	27	38	108	130	Ç	00	٠ 4 أ	53	46	46	38	27	27	38	16	16	2 .	10	16	16	42
NO.	PTS	3	3	3	3	9	ur	יא נ	9	2	4	c	<i>v</i>	n (5	6	6	٥	Ŋ	7.	9	3	"	, ,	· ·		3	3
	TOTAL	158	158	158	158	809	798	367	809	1744	3553	1/10	200	067	1678	1366	1366	809	367	367	809	158	158	100	158	158	158	787
SAVED STU/YR	OIL	Ι	1	I	1	I		1	I	1	1072			1	ı	1	ı	ı	1	ı	ı	1				I	1	1
ENERGY SAVED MEGA BTU/YR	GAS	-	ı	ı	ı	470	142	142	470	880	ı	1646	171	1/1	1646	1334	1334	470	142	142	470	ļ			ı	ı	ı	430
	ELECTRIC	158	158	158	158	138	225	225	138	864	2481	,	110	119	32	32	32	138	225	225	138	158	27.0	0 1 1	150	158	158	357
	TOTAL	6360	6360	6360	6360	9110	8160	8160	9110	4710	5520	15 020	19,630	4740	15,830	15,830	15,830	9110	8160	8160	9110	6360	0989	6260	0000	6360	6360	3970
COSTS FEB. 82)	DTM	870	870	870	870	870	870	870	870	870	870	2340	100	100	2340	2340	2340	870	870	870	870	870	870	0.70	0/0	0/8	820	870
) 3.	EXIST CONTROLS	ı	ı	ı	1	I		ı	ı	1	l		l	ı	ı	1	1	١	ı	ı	1	ļ	ı		1	ı	1	l
	PTS	5490	5490	5490	5490	8240	7290	7290	8240	3840	4650	13 400	4840	1010	13,490	13,490	13,490	8240	7290	7290	8240	5490	5490	2700	0440	5490	5490	3100
BLDG.	FUNCTION	Barracks	Barracks	Barracks	Barracks	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Dental Clinic	Dental Clinic	Motor Den Chon	Redevie	icacyc	Motor Kep. Shop	Motor Rep. Shop	Motor Rep. Shop	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Barracks	Barracks	Rapracle	Domosto	Darracks	Barracks	HQ & Classroom
BLDG.	NO.	7644	7646	7648	7650	7652	7654	7656	7658	7665	0/9/	7720	7739	0777	7740	09//	7780	7802	7804	9082	7808	7810	7812	7814	7014	010/	7818	7820

Table B-6 ENERGY POINTS COST/BENEFIT SUMMARY

E/C	RATIO	87	39	122	48	87	43	16	16	16	16	16	38	27	27	38	49	46	74	46	53	~	18	21	27	18
NO.		4	3	2	3	4	,	1 W	3	3	3		9	5	5	9	7	6	40	6	6	4	4	2	2	4
	TOTAL	1688	275	1592	529	1688	258	158	158	158	158	158	809	367	367	809	934	1366	12,012	1366	1678	199	199	100	143	199
SAVED ITU/YR	OIL	- 1	1	ı	1	1			1	ı	ı	I	ı	I	1	I	1	1	1	ı	I		1	ı	52	1
ENERGY SAVED MEGA BTU/YR	GAS	888	162	1381	418	888	152	101	1	ı	ı	ı	470	142	142	470	242	1334	9719	1334	1646	l	ļ	I	1	l
	ELECTRIC	800	113	211	111	800	106	158	158	158	158	158	138	225	225	138	692	32	2293	32	32	199	199	100	91	199
	TOTAL	7260	3970	3070	5860	7260	3220	6360	6360	6360	6360	6360	9110	8160	8160	9110	9810	15,830	68,710	15,830	15,830	7160	7160	3070	3220	7160
COSTS (FEB. 82)	DTM	870	870	870	870	870	870	870	870	870	870	870	870	870	870	870	870	2340	2340	2340	2340	870	870	870	870	870
CC FE	EXIST CONTROLS	ı	١	ı	ı	I			I	ı	ı	ı	ı	1	ı	ı	ı	ı	ı	1	ı	ı	1	l	1	l
	PTS	6390	3100	2200	4990	6390	2350	5490	5490	5490	5490	5490	8240	7290	7290	8240	8940	13,490	66,370	13,490	13,490	6290	6290	2200	2350	6290
BLDG.	FUNCTION	НО	Dispensary	Gym	HQ	НQ	Branch Dv	Barracks	Barracks	Barracks	Barracks	Barracks	Five Co. Admin. & Stor.	Mess Hall	Mess Hall	Five Co. Admin. & Stor.	Theater	Motor Repair Shop	Motor Repair Shop	Motor Repair Shop	Motor Repair Shop	Tvpe B Barracks	Type B Barracks	Type A Barracks	Day Room	Type B Barracks
BLDG.	NO.	7824	7826	7832	7834	7836	7840	7842	7844	7846	7848	7850	7852	7854	7856	7858	7866	7900	7920	7940	0962	8002	9008	8008	8010	8012

Table B-6 ENERGY POINTS COST/BENEFIT SUMMARY

E/C	RATIO	5	77	21	18	39	39	81	81	18	21	18	27	21	21	18	21		18	39	39	104	48	48	70	78	46	53
NO.	PTS	,	7	7	2	7	7	4	4	4	7	4	2	7	2	4	2		2	7	7	4	2	7	6	7	74	6
	TOTAL	100	001	100	143	742	742	1479	1479	199	100	199	143	100	100	199	100		143	742	742	2292	257	258	1891	899	8036	1678
SAVED STU/YR	OIL		1	1	52	470	470	894	894	1	1	ı	52	1	ı	1	ı		52	470	470	1035	151	152	1327	382	7686	1646
ENERGY SAVED MEGA BTU/YR	GAS		1	1	ı	ı		ı	1	ı	ı	ı	ı	1		1	1		ı	-	I	1	1	I	I	ı	ı	ı
	ELECTRIC	100	001	100	91	272	272	585	585	199	100	199	91	100	100	199	100	-	91	272	272	1257	106	106	564	517	350	32
	TOTAL	0000	20/0	3070	5110	10,510	10,510	7260	7260	7160	3070	7160	3220	3070	3070	7160	3070		5110	10,510	10,510	0999	2820	2820	11,760	4710	92,240	15,830
COSTS (FEB. 82)	DTM	0.00	0/0	870	870	870	870	870	870	870	870	870	870	870	870	870	870		870	870	870	870	870	870	870	870	870	2340
CO (FE	EXIST CONTROLS		1	1	ı	1	1	1	1	1	1	1	ı	ı	ı	ı	1			1	ı	1	1		1	1	1	ı
	PTS	0000	2200	2200	4240	9640	9640	6390	6390	6290	2200	6290	2350	2200	2200	6290	2200		4240	9640	9640	5790	1950	1950	10,890	3840	91,370	13,490
BLDG.	FUNCTION	Trees A Bossoole	Type A Dallacks	Type A Barracks	Day Room	Five Co Admin & Supply	Five Co Admin & Supply	HQ & Classroom	HQ & Classroom	Type B Barracks	Type A Barracks	Type B Barracks	Day Room	Type A Barracks	Type A Barracks	Type B Barracks	Type A Barracks	,	Day Room	Five Co Admin & Supply	Five Co Admin & Supply	Mess Hall	Dispensary	Branch Px	Gym	НО	Central Plant	Motor Repair Shop
BLDG.	NO.	8014	0000	8018	8020	8021	8023	8025	8037	8038	8040	8042	8046	8048	8050	8052	8054	i c	8056	8057	8059	8063	8065	8067	6908	8071	8073	8300

Table B-6 ENERGY POINTS COST/BENEFIT SUMMARY

E/C RATIO		53 24
NO. PTS		6 6 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
ENERGY SAVED MEGA BTU/YR	TOTAL	1678 1678 2551
	· 01L	1646 2502
	GAS	j 1 l
	ELECTRIC	32 32 49
	TOTAL	15,830 15,830 64,470
COSTS (FEB. 82)	DTM	2340 2340 2340
	EXIST CONTROLS	
	PTS	13,490 13,490 62,130
BLDG. FUNCTION		Motor Repair Shop Motor Repair Shop Motor Repair Shop
BLDG. NO.		8320 8340 8360

Table B-6

ENERGY POINTS COST/BENEFIT SUMMARY TOTALS

Building Count

Number of buildings having energy points	178
Number of buildings without energy points	_16
Total buildings examined	194

Energy Point Count

Buildings	924
OA points at FID's	14
Anzio Substation	1
Total	939

Costs (Feb. 82 dollars)

Pts.	Exist. Controls	DTM	Total
\$1,378,940	\$20,600	\$209,020	\$1,608,560
Total costs for existing contri	\$1,608,560		

Energy Savings (Mega BTU/Yr)

Electricity	Gas	Oil	Total
53,861	68,958	24,717	147,536

 $Total\ energy\ saved\ -145,\!600\ Mega\ BTU/Yr$

APPENDIX C - REFERENCES

REFERENCES

- 1. U.S. Army Corps of Engineers, Huntsville Division, Preliminary Survey & Feasibility Study for Energy Monitoring and Control Systems, HNDSP80-013-EDME, 1980.
- 2. Energy Monitoring and Control Systems, Technical Manual TM5-815-2, U.S. Army Corps of Engineers, Huntsville Division, September 1, 1981.
- 3. Office of the Chief of Engineers, Army Facilities Energy Plan, October 1, 1980.
- 4. Ottaviano, Victor B., Frank M. Neal, and Joseph S. Cataudella, Energy Management, Ottaviano Technical Services, Inc., 150 Broad Hollow Road, Mellville NY 11746.
- 5. Honeywell, Energy Conservation with Comfort, 2nd ed., U.S.A., Sept. 1979.
- 6. The Electrification Council, Energy Management Action Course, 2nd ed., 1981.
- 7. Burns & McDonnell, <u>Integrated Energy Master Plan for Fort Riley</u>, KS, 1980.
- 8. Burns & McDonnell, <u>Integrated Energy Master Plan for Fort</u> Carson, CO, 1980.
- 9. Johnson Controls, Ft. Riley Energy Study, 1978.
- 10. Johnson Controls, Energy Conservation Control, 1978
- 11. <u>Large Energy Monitoring and Control Systems</u>, CEGS-13947, U.S. Army Corps of Engineers, Huntsville Division, Huntsville, Alabama, June 1, 1981.
- 12. Medium Energy Monitoring and Control Systems, CEGS-13948, U.S. Army Corps of Engineers, Huntsville Division, Huntsville, Alabama, June 1, 1981.
- 13. Small Energy Monitoring and Control Systems, GCES-13949, U.S. Army Corps of Engineers, Huntsville Division, Huntsville, Alabama, June 1, 1981.

- 14. Micro Energy Monitoring and Control Systems, CEGS-13950, U.S. Army Corps of Engineers, Huntsville Division, Huntsville, Alabama, June 1, 1981.
- 15. American Society of Heating, Refreigerating and Air Conditioning Engineers (ASHRAE), 1976 Systems Volume.
- 16. ASHRAE, 1977 Fundamentals Volume.
- 17. ASHRAE, 1978 Applications Volume.
- 18. ASHRAE, 1979 Equipment Volume.
- 19. ASHRAE, 1980 Systems Volume.
- 20. ASHRAE, 1981 Fundamentals Volume.
- 21. Departments of the Air Force, the Army and the Navy, TM5-785, Engineering Weather Data, 1978.
- 22. Robert M. Graves and Paul R. Hirsch (Argonne National Laboratory), CALERDA Users Manual, 1979.
- 23. Consultants Computation Bureau, <u>CCB/CALERDA</u> <u>User Introduction</u> Manual for the CDC Cybernet System, 1979.
- 24. Communique from TRADOC General Staff, Energy Monitoring and Control System (EMCS) Lessons Learned, 1 October 1981.
- 25. Communique from TRADOC General Staff, Staffing Guidance for Energy Monitoring and Control Systems (EMCS), 28 May 1980.
- 26. U.S. Army Forces Command, <u>Facilities</u> <u>Energy Plan Summary</u>, March 1981.
- 27. Ft. Eustis DFE, Energy Monitoring and Control System, Video Tape EMCS-4A-777-8103-B, June 1981.
- 28. Alfred Berutti, <u>Marine Base Saves Millions by Managing Energy</u>, Electrical Construction and <u>Maintenance</u>, June 1981.
- 29. Dept. of the Army, Office of the Chief of Engineers,

 ETL-1110-3-318, Procedures for Programming Energy Monitoring and

 Control Systems (EMCS) Funded through the MCA Program, 8

 February 1980.

2

- 30. Paula Ruth, MSU Snubs Powers Opts for Oak/Adec, Energy User News, December 7, 1981.
- 31. <u>Honeywell's Winning Bid Links EMS Bills, Savings, Energy User News, December 7, 1981.</u>
- Preventive Maintenance System Helps Prevent HVAC Failures at NYC's School for Firemen, Air Conditioning, Heating & Refregeration News, December 14, 1981.
- 33. Headquarters, Dept. of the Army, AR415-17, Construction Cost Estimating for Military Programming, 15 February 1980.
- 34. National Bureau of Standards, NBSIR 81-2346, Energy

 Management and Control Systems (EMCS) User Satisfaction Study,

 August 1981.

APPENDIX D – ABBREVIATIONS AND GLOSSARY

ABBREVIATIONS

AA Analog alarm

AC Alternating current

AHU Air handling unit

ATC Automatic temperature control

B/C Benefit to cost ratio

Btu British thermal unit

CCC Central communications controller

CCU Central control unit

CHW Chilled water

CDW Condenser Water

CPA Control point adjustment

CPU Central processing unit

CRT Cathode ray tube

CT Current transformer

CWE Current working estimate

dB Decibel

dc Direct current

DE Data environment

DPS Differential pressure switch

DTM Data transmission media

DX Direct expansion

E/C Energy to cost ratio

EMCS Energy monitoring and control systems

FCB Failover control board

FID Field interface device

FS Flow switch

h,hr hour

HOA Hand-off-automatic

HVAC Heating, ventilating, and air conditioning

HW Hot water

I/O Input/output

kHz Kilohertz

kW Kilowatt

kWh Kilowatt-hour

MBtu 1,000 Btu

MBtuh 1,000 Btu per hour

MCR Master control room

Mega Btu 1,000,000 (one million) Btu

Mega Btuh 1,000,000 (one million) Btu per hour

MHz Megahertz

MUX Multiplexer

OA Outdoor air

0&M Operations and maintenance

USA.EMC

PS Pressure switch

psi Pounds per square inch

psia Pounds per square inch, absolute

psid Pounds per square inch, differential

psig Pounds per square inch, gauge

RA Return air

RH Relative humidity

RTC Real time clock

SIOH Supervision, inspection and overhead

S/S Start/stop

UPS Uninterruptible power supply

GLOSSARY

Architecture:

The general organization and structure of

hardware and software.

Automatic Temperature

A local loop network of pneumatic

Control (ATC)

or electric/electronic devices which are

interconnected to control temperature.

Central Memory:

Core or semiconductor memory which

communicates directly with a CPU.

Central Communication

A computer that performs data gathering

Controller (CCC):

and dissemination from and to the FIDs, as

well as providing limited backup to the

CCU.

Central Control Unit (CCU): A process control digital computer that

includes a CPU, central memory, and I/O

bus.

Central Processing Unit
(CPU):

The portion of a computer that performs the interpretation and execution of instructions. It does <u>not</u> include memory or I/O.

Clock:

A device or a part of a device that generates all the timing pulses for the coordination of a digital system. System clocks usually generate two or more clock phases. Each phase is a separate, square wave pulse train output.

Compiler:

A language translator which converts source statements written in a high level language into multiple machine instructions. A compiler translates the entire program before it is executed.

Control Point Adjustment
(CPA):

The procedure of changing the operating point of a local loop controller from a remote location.

Control Sequence:

Equipment operating order established upon a correlated set of data environment conditions.

Data Environment (DE):

The sensors and control devices connected to a single FID from the equipment and systems sampled or controlled.

Data Transmission

Media (DTM):

Transmission equipment including cables and interface modules (excluding MODEMs) permitting transmission of digital and analog information.

Deck:

In HVAC terminology, the air discharge of the hot or cold coil in a duct serving a conditioned space.

Demand:

The term used to describe the maximum rate of use of electrical energy averaged over a specific interval of time and usually expressed in kilowatts.

Disk Storage:

A bulk storage, random access device for storing digital information. Usually constructed of a thin rotating circular plate having a magnetizable coating, a read/write head and associated control equipment.

<u>Distributed Processing</u>

System:

A system of multiple processors each performing its own task, yet working together as a complete system under the supervision of a central computer, to perform multiple associated tasks.

Failover Control Board:

A bus switch to transfer the communications function from CCU to CCC in the event of CCU failure, or the communications function from CCC to CCU in the event of CCC failure.

Fall-Back Mode:

The pre-selected operating mode of a FID when communcations cease with the MCR or the operating sequence of each local

control loop when the FID to which it is connected ceases to function.

Input/Output (I/O)

Digital hardware that transmits or

Device:

receives data.

Interactive:

Functions performed by an operator with the machine prompting or otherwise assisting these endeavors, while continuing to perform all other tasks as scheduled.

Local Loop Control:

The controls for any system or subsystem which existed prior to the installation of an EMCS and which will continue to function when the EMCS is nonoperative.

Memory:

Any device that can store logic 1 and logic 0 bits in such a manner that a single bit or group of bits can be assessed and retrieved.

Microcomputer:

A computer system based on a microprocessor and containing all the memory and interface hardware necessary to perform calculations and specified transformations.

Microprocessor:

A central processing unit fabricated as one integrated circuit.

Point:

Individual connected monitor or control devices. Example: relay, temperature sensor.

Predictor/Corrector

Program:

Applications software which allows continuous prediction of a future value and subsequent correction based on actual measurements.

Program:

A sequence of instructions causing the computer to perform a specified function.

Real Time:

A situation in which a computer monitors, evaluates, reaches decisions, and effects

USG.EMC

controls within the response time of the fastest phenomenon.

Software:

A term used to describe all programs whether in machine, assembly, or high-level language.

Zone:

An area composed of a building, a portion of a building, or a group of buildings affected by a single device or piece of equipment.

APPENDIX E — METHOD OF ANALYSIS AND EXAMPLES

APPENDIX E

METHOD OF ANALYSIS AND EXAMPLES

A. PURPOSE

The purpose of this Appendix is to illustrate the procedure used in arriving at the conclusions and recommendations of this report.

Examples are included.

B. REFERENCES

The procedure to be used in the analysis is specified in two publications:

- 1. Preliminary Survey & Feasibility Study for Energy Monitoring and Control Systems, HNDSP80-013-EDME, issued circa 1980.
- 2. Energy Monitoring & Control Systems, TM5-815-2, Chapter 7, issued September 1, 1981.

C. FIVE VOLUMES OF THE REPORT

This report is separated into five volumes, for ease of publication.

Volume 1 is the Executive Summary. As the name implies, Volume 1 summarizes the information developed in Volumes 2 through 4.

Volume 2 is the Report Analysis. Volume 2 contains such information as energy savings calculations, some preliminary cost estimates, and notes on the components of the EMCS. Volume 2 also contains the correspondence on this report.

Volumes 3, 4 and 5 contain building-by-building report forms required by the Corps of Engineers.

Volume 3 has five basic types of forms:

- 1. The Check Sheet, which lists potential EMCS programs.
- 2. The Energy Point Summary, which lists costs, energy savings and the number of energy points.

- 3. The Building E/C Ratio Calculation.
- 4. The Building Summary, which is the same as the Energy Points Summary, except all EMCS points (energy points plus maintenance points) are included.
- 5. The I/O Summary Table, which describes in detail the EMCS points to be installed.

Volumes 4 and 5 contain information gathered during the field survey. Such information as occupancy schedules and equipment characteristics are noted.

D. PROCEDURE

1. Prepare a list of candidate buildings. Good candidates are those buildings likely to benefit most from the EMCS. A preliminary list was prepared by the Facility Engineer. The final list was the result of discussions between the Facility Engineer and Burns & McDonnell.

E-3

2. The field survey was conducted. A total of 194 buildings were visited. The results of this survey comprise Volumes 4 and 5. Some groups of buildings were found to be identical for our purposes. Some buildings were found to be similar in all respects except size. (Example: Some storage buildings are built to accommodate four companies, some for five companies. Essentially, the smaller buildings are equal to 4/5 of the larger.) These similarities reduced the amount of repetitive analysis.

Volumes 4 and 5 contain the results of the field survey.

3. Computer programs were prepared. Because of the similarities found in the field survey, only about 50 computer models were necessary. Actually, the computer models had been created under an earlier contract by Burns & McDonnell. These models were modified where necessary and rerun. The result was a set of models and corresponding energy data which formed the foundation of the study.

The computer programs are not included in this report, but they are referenced in the analyses of Volume 2.

Steps 4 through 7 were done for energy points in each building. (See Appendix B for an explanation of the energy points.)

4. Based on the field survey and computer programs, check sheets were prepared. The check sheets indicated those EMCS programs likely to save energy. The check sheets also indicated those EMCS programs which cannot save energy.

At this point, some buildings were eliminated from further consideration, since no EMCS programs could save energy for them.

The check sheets are in Volume 3.

5. Energy savings were estimated. Those EMCS programs judged earlier to have a high potential were pursued. Wherever possible, the computer program was the basis for the estimated energy saved. In some cases, other methods of calculating energy savings were used. The total energy savings for each building was determined.

Energy savings are calculated in Volume 2.

Where costs and savings were close, costs to implement the energy savings were estimated and compared to the present value of the energy saved.

This was done in Volume 2.

6. All energy conservation methods having costs higher than savings were eliminated. Some energy conservation methods which were marginal were eliminated on the basis of O&M (operation and maintenance) costs. The check sheets prepared in Step 4 were revised accordingly. Following this step some more buildings were eliminated from futher consideration.

This step was done in the analysis of Volume 2. The revised check sheets are in Volume 3.

7. Total savings and costs were calculated for each building. Then E/C ratios were calculated for each building. Number of points were estimated for each building.

These figures are in Volume 3.

8. Cost savings due to electrical demand limiting and costs to implement were estimated.

Information on demand limiting can be found in the appropriate sections of Volumes 2 and 3.

- 9. Number of points were totalled.
- 10. Characteristics and costs of central computer equipment were estimated.

See Volume 2 for this information.

11. Costs of central computer equipment were prorated (on the basis of \$ fixed cost per Mega Btu saved) and added to "per-building" costs.

This was done on the Building E/C Ratio calculation sheets in Volume 3.

- 12. E/C ratios were calculated for each building (see Volume 3).

 Buildings were ranked by E/C ratio (See Table II-3 in Volume 1 for results).
- 13. Costs such as maintenance and training were calculated (See Volume 2, Part 7).
- 14. Life cycle cost analysis was done for the total project.

 Results are shown in Table SC-3.
- 15. Maintenance points were identified.
- 16. Steps 4 through 7 were repeated for maintenance plus energy points in each building.
- 17. Steps 9 through 11 and 13 through 14 were repeated for energy points plus maintenance points.

E. EXAMPLE 1 - DISPENSARY 7034

 Dispensary 7034 was one of the original candidate buildings selected by the Facilities Engineer.

- 2. The survey of this building can be found in Volume 4. This is a single-story office-type building, 3842 total gross square feet, occupied hours 0700 to 1500, Monday through Friday.
- 3. The computer models (in this case, there was more than one model) for Building 7034 are described on page 8-9 of Volume 2.

Following this, steps 4 through 7 were performed for energy points.

4. A check sheet was prepared to separate EMCS programs having energy saving potential from the programs having no potential. The check sheet for Building 7034 can be found in Volume 3. At this time, some programs were marked with a (1), meaning those programs cannot be applied to Building 7034 and, therefore, cannot save energy. Hence, the programs marked with a (1) were eliminated from further consideration.

At this point, nine EMCS programs remained to be analyzed (scheduled start/stop, optimum start/stop, day/night setback, dry-bulb economizer, enthalpy economizer, ventilation and

recirculation, hot deck/cold deck temperature reset, hot water outside air reset, and lighting controls).

5. Energy savings were estimated. See pages 8-9 through 8-22 of Volume 2. By this analysis, scheduled start/stop and day/night setback were found to be beneficial. Optimum start/stop was found to be beneficial, too, since optimum start/stop is worthwhile wherever scheduled start/stop is justified (the cost difference between the two is insignificant for our purposes).

Dry-bulb economizer and hot deck/cold deck temperature reset were eliminated from further consideration, because Building 7034 already had those features.

6. Enthalpy economizer was eliminated because (according to the computer simulation) there was no significant reduction in energy use. Ventilation and recirculation was eliminated because the start/stop functions (scheduled start/stop and optimum start/stop) essentially have this feature - the outdoor air dampers of the air handler close automatically when the unit is off. Hot water outside air reset requires piping modifications which cost more than the expected savings, so it was eliminated.

In summary, only scheduled start/stop, optimum start/stop and day/night setback were worthwhile programs. The check sheet in Volume 3 was changed.

- 7. Total savings, costs, E/C ratio and number of energy points was determined. This information is found in Volume 3.
- 8. Following this, steps 4 through 7 were repeated for maintenance points plus energy points. For Building 7034, there are two energy points (a space thermostat and a start/stop switch for the air handler) and three maintenance points (a start/stop with status indicator for the boiler and two temperatures sensors for cold deck and hot deck for the air handlers).

F. EXAMPLE 2 - HQ 355

- HQ 355 was one of the original candidate buildings selected by the Facilities Engineer.
- 2. The survey of this building can be found in Volume 4. This is a two-story building, of 3,230 square feet gross floor area. It is occupied from 0730 to 0430, Monday through Friday.

No computer model was prepared for this building. The construction of the building and its occupancy are similar to Dispensary 7034. Therefore, a reasonable estimate can be made by prorating the Dispensary 7034 savings on the basis of gross square foot floor area.

Following this, steps 4 through 7 were performed for the energy points.

4. A check sheet was prepared to separate EMCS programs having energy savings potential from the programs having no potential.

This check sheet can be found in Volume 3.

At this time, nine programs were eliminated (these are marked with a (1) on the check sheet). The remaining programs were: scheduled start/stop, optimum start/stop, duty cycling, demand limiting, day/night setback, hot water outside air reset, lighting control, and outdoor air start/stop.

5. Worthwhile EMCS programs were selected and energy savings were estimated. See page 8-67 of Volume 2. Night setback savings

was estimated at 139 MegaBtu/yr, by prorating the savings of Dispensary 7034.

Scheduled start/stop, optimum start/stop, duty cycling, demand limiting and outdoor air start/stop were determined to be worthwhile, but no energy savings were calculated. These programs will be applied to a 1/4-hp pump. They cost nothing to install because the start/stop switch and thermostat had already been charged against night setback. But we felt that the savings would be insignificant.

Hot water outside air reset is not worthwhile; costs exceed benefits (see page 8-3 of Volume 2). Lighting control was eliminated because we knew by experience that this could not be justified for a small building like 355.

- 6. The check sheet was revised accordingly.
- 7. Total savings, costs, E/C ratio and number of energy points was determined. This information is in Volume 3.

8. Following this, steps 4 through 7 were repeated for maintenance points plus energy points. A start/stop with status indicator was added for the boiler.

* * * * *