Lie Algebras: Abstract Theory of Weights

Ana Nora Evans

December 4, 2010

These notes are based on chapter 13 in 'Introduction to Lie Algebras and Representation Theory', by James E. Humphreys.

Let Φ be a root system in an euclidean space E, with Weyl group \mathcal{W} .

Recall, a subset Φ of the euclidean space E is called a **root system** in E if the following axioms are satisfied:

- (R1) Φ is finite, spans E and it does not contain 0.
- (R2) If $\alpha \in \Phi$, the only multiples of α in Φ are $\pm \alpha$.
- (R3) If $\alpha \in \Phi$, the reflexion σ_{α} leaves Φ invariant.
- (R4) If $\alpha, \beta \in \Phi$ then $\langle \beta, \alpha \rangle \in \mathbb{Z}$.

For each $\alpha \in E$ we define $\alpha^{\vee} = \frac{2\alpha}{(\alpha,\alpha)}$. Let $\Phi^{\vee} = \{\alpha^{\vee} : \alpha \in \Phi\}$.

Lemma 1: Φ^{\vee} is a root system.

Proof. I will check the four axioms of the root system.

- (R1) Since $|\Phi^{\vee}| = |\Phi|$, then Φ^{\vee} is finite. Since Φ spans E and α^{\vee} is a non-zero scalar
- multiple of α for all $\alpha \in \Phi$, then Φ^{\vee} spans E and $0 \notin \Phi^{\vee}$. (R2) Since $(-\alpha)^{\vee} = \frac{2(-\alpha)}{((-\alpha),(-\alpha))} = -\frac{2\alpha}{(\alpha,\alpha)} = -\alpha^{\vee}$, then the only multiples of α^{\vee} are
- (R3) I need to show that if $\alpha^{\vee} \in \Phi^{\vee}$ then the reflection $\sigma_{\alpha^{\vee}}$ leaves Φ^{\vee} invariant. Let α in Φ , then for all $\beta \in \Phi$, $\sigma_{\alpha}(\beta) \in \Phi$. Let $\beta \in \Phi$.

$$\sigma_{\alpha^{\vee}}(\beta^{\vee}) = \beta^{\vee} - \frac{2(\beta^{\vee}, \alpha^{\vee})}{(\alpha^{\vee}, \alpha^{\vee})} \alpha^{\vee}$$

$$= \frac{2\beta}{(\beta, \beta)} - \frac{2(\frac{2\beta}{(\beta, \beta)}, \frac{2\alpha}{(\alpha, \alpha)})}{(\frac{2\alpha}{(\alpha, \alpha)}, \frac{2\alpha}{(\alpha, \alpha)})} \frac{2\alpha}{(\alpha, \alpha)}$$

$$= \frac{2\beta}{(\beta, \beta)} - \frac{4(\beta, \alpha)\alpha}{(\beta, \beta)(\alpha, \alpha)}$$

$$= \frac{2}{(\beta, \beta)} \left(\beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha\right)$$

$$= \frac{2}{(\beta, \beta)} \sigma_{\alpha}(\beta)$$

But,

$$(\sigma_{\alpha}(\beta), \sigma_{\alpha}(\beta)) = \left(\beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha, \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha,\right)$$

$$= (\beta, \beta) - \frac{2(\beta, \alpha)(\beta, \alpha)}{(\alpha, \alpha)} - \frac{2(\beta, \alpha)(\alpha, \beta)}{(\alpha, \alpha)} + \frac{4(\beta, \alpha)^{2}(\alpha, \alpha)}{(\alpha, \alpha)^{2}}$$

$$= (\beta, \beta) - \frac{4(\beta, \alpha)^{2}}{(\alpha, \alpha)} + \frac{4(\beta, \alpha)^{2}}{(\alpha, \alpha)}$$

$$= (\beta, \beta)$$

Therefore,

$$\sigma_{\alpha^{\vee}}(\beta^{\vee}) = \frac{2}{(\beta, \beta)} \sigma_{\alpha}(\beta)$$

$$= \frac{2}{(\sigma_{\alpha}(\beta), \sigma_{\alpha}(\beta))} \sigma_{\alpha}(\beta)$$

$$= (\sigma_{\alpha}(\beta))^{\vee}$$

Thus, $\sigma_{\alpha^{\vee}}(\beta^{\vee}) \in \Phi^{\vee}$.

(R4) I need to show that $\langle \alpha^{\vee}, \beta^{\vee} \rangle \in \mathbb{Z}$. We have:

$$<\alpha^{\vee}, \beta^{\vee}> = \frac{2(\beta^{\vee}, \alpha^{\vee})}{(\alpha^{\vee}, \alpha^{\vee})}$$

$$= \frac{2(\frac{2\beta}{(\beta, \beta)}, \frac{2\alpha}{(\alpha, \alpha)})}{(\frac{2\alpha}{(\alpha, \alpha)}, \frac{2\alpha}{(\alpha, \alpha)})}$$

$$= \frac{2(\beta, \alpha)}{(\beta, \beta)}$$

$$= \frac{2(\alpha, \beta)}{(\beta, \beta)}$$

$$= <\beta, \alpha>$$

Since Φ is a root system, then $\langle \beta, \alpha \rangle \in \mathbb{Z}$. Therefore $\langle \alpha^{\vee}, \beta^{\vee} \rangle \in \mathbb{Z}$.

Lemma 2: If $\Delta = \{\alpha_1, \dots, \alpha_l\}$ is a basis of E contained in Φ such that for all $\alpha \in \Phi$, $\alpha = \sum_{i=1}^{l} k_i \alpha_i$ all k_i are nonnegative or all k_i are nonpositive, then Δ is a base of E.

Proof. Step 1: Find γ regular such that $(\gamma, \alpha_i) > 0$ for all $1 \le i \le l$. For each $1 \le i \le l$, let P_i be the hyperplane generated by $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_l$. Let δ_i be the projection of α_i on the orthogonal complement of P_i . I will show that $(\delta_i, \alpha_i) > 0$. Let v_1, \ldots, v_{l-1} be an orthonormal basis of P_i . Then v_1, \ldots, v_{l-1}, w where $w = \frac{\delta_i}{|\delta_i|}$ is an orthonormal basis of E. Let $v = \alpha_i$. By Pythagoras theorem, (v, v) = 0

$$\sum_{i=0}^{l-1}(v,v_i)^2+(v,w)^2, \text{ therefore } (v,v)-\sum_{i=0}^{l-1}(v,v_i)^2\geq 0. \text{ But, } (\delta_i,\alpha_i)=|\delta_i|(w,v)=|\delta_i|(v-\sum_{j=1}^{l-1}(v,v_j)v_j,v)=|\delta_i|\left((v,v)-\sum_{j=1}^{l-1}(v,v_j)^2\right)\geq 0. \text{ Since } \alpha_i\notin P_i, \text{ then } (\delta_i,\alpha_i)>0.$$
 Let $\gamma=\sum_{i=1}^{l}r_i\delta_i$ where $r_i>0.$ Since $(\delta_i,\alpha_j)=0$ for all $i\neq j$, then $(\gamma,\alpha_i)=r_i(\delta_i,\alpha_i)>0.$

Let $\alpha \in \Phi$. Then $\alpha = \sum_{i=1}^{l} k_i \alpha_i$ all k_i are nonnegative or all k_i are nonpositive.

Thus $(\gamma, \alpha) = \sum_{i=1}^{l} k_i(\gamma, \alpha_i)$. Since not all k_i are zero and $(\gamma, \alpha_i) > 0$ and all k_i are nonnegative or all k_i are nonpositive, then $(\gamma, \alpha) \neq 0$. Therefore $\gamma \notin P_{\alpha}$. Since α was arbitrary, then $\gamma \notin \bigcup_{\alpha \in \Phi} P_{\alpha}$. By the definition, γ is regular.

Step 2: Δ is a base of Φ .

We know from a theorem in 10.1, that the set $\Delta(\gamma)$ of indecomposable elements of $\Phi^+(\gamma) = \{\alpha \in \Phi : (\gamma, \alpha) > 0\}$ is a base of Φ . Thus, it is enough to show that the elements of Δ are indecomposable. Assume $\alpha_i \in \Delta$ is decomposable, that is

$$\alpha_i = \beta_1 + \beta_2$$
, where $\beta_1, \beta_2 \in \Phi^+(\gamma)$. Since Δ is a basis of E , then $\beta_1 = \sum_{j=1}^{r} k_j \alpha_j$

and $\beta_1 = \sum_{j=1}^l l_j \alpha_j$. Since Δ is a basis, then $k_j, l_j \in \mathbb{Z}$ for all j and $1 = k_i + l_i$ and

 $k_j + l_j = 0$ for all $j \neq i$. We have two cases:

Case 1: $k_j = l_j = 0$ for all $i \neq j$

Then $\beta_1 = k_i \alpha_i$ and $\beta_2 = l_i \alpha_i$. Since Φ is a root system, $k_i, l_i \in \{\pm 1\}$. Then $k_i + l_i \in \{-2, 0, 2\}$. This contracts $k_i + l_i = 1$.

Case 2: $k_j \neq 0$ for some $j \neq i$

Since either all k_i nonnegative or all k_i nonpositive, and similarly for l_i , then then one set must be nonnegative and one nonpositive. Without loss of generality, assume

$$k_i \geq 0$$
 and $l_i \leq 0$. Then $(\gamma, \beta_2) = \sum_{i=1}^l l_i(\gamma, \alpha_i)$. Since γ is regular, then $(\gamma, \alpha_i) > 0$

and $(\gamma, \beta_2) > 0$, we reached a contradiction.

Thus α_i is indecomposable. Therefore $\Delta = \Delta(\gamma)$.

Corollary: If Δ is a base of Φ , then Δ^{\vee} is a base of Φ^{\vee} .

Proof. Since (,) is positive definite, then $(\alpha, \alpha) > 0$ for all $\alpha \in E$. Since Δ is a base of Φ , then $\alpha = \sum_{i=1}^{l} k_i \alpha_i$ all k_i are nonnegative or all k_i are nonpositive. Then

 $\alpha^{\vee} = \sum_{i=1}^{l} k_i' \alpha_i^{\vee}$ where $k_i' = \frac{(\alpha_i, \alpha_i)}{(\alpha, \alpha)} k_i$ are all nonnegative or all nonpositive. By lemma 2, Δ^{\vee} is a base of Φ^{\vee} .

A weight λ is an element of the euclidean space E such that $<\lambda,\alpha>\in\mathbb{Z}$ for all $\alpha\in\Phi$. Let Λ denote the set of all weights. Since <,> is linear in the first factor, then Λ is a subgroup of E. By the axiom (R4) of the definition of the root system, $\Phi\subset\Lambda$.

Lemma 3: Let Φ be a root system in an euclidean space E, with base Δ . Let Λ be the set of weights. Then $\lambda \in \Lambda$ iff $< \lambda, \alpha > \in \mathbb{Z}$ for all $\alpha \in \Delta$.

Proof. The forward implication follows from the definition of weight. Conversely, let $\alpha \in \Phi$. Since $\langle \lambda, \alpha \rangle = \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} = (\lambda, \frac{2\alpha}{(\alpha, \alpha)}) = (\lambda, \alpha^{\vee})$, then we need to show that

 $(\lambda, \alpha^{\vee}) \in \mathbb{Z}$. By the previous corollary, Δ^{\vee} is a base of Φ^{\vee} , therefore $\alpha = \sum_{i=1}^{l} k_i \alpha_i^{\vee}$

where $k_i \in \mathbb{Z}$ for all $1 \leq i \leq l$. Thus $(\lambda, \alpha^{\vee}) = \sum_{i=1}^{l} k_i(\lambda, \alpha_i^{\vee})$. By assumption $\langle \lambda, \alpha_i \rangle \in \mathbb{Z}$ for all $1 \leq i \leq l$, thus $(\lambda, \alpha_i^{\vee}) \in \mathbb{Z}$. Thus $(\lambda, \alpha^{\vee}) \in \mathbb{Z}$ as a sum of integers.

The **root lattice** Λ_r is the subgroup of Λ generated by Φ .

Lemma 4: Λ_r is a lattice.

Proof. Let $\Delta = \{\alpha_1, \dots, \alpha_l\}$ be a base of Φ . Then Δ is a basis of E. I will show that Λ_r is the \mathbb{Z} -span of Δ .

Let $\sum_{i=1}^{l} k_i \alpha_i$ be in the \mathbb{Z} -span of Δ . By the axiom (R4) of the root system, $\langle \alpha_i, \alpha_i \rangle \in$

Z. Thus
$$<\sum_{i=1}^{l} k_i \alpha_i, \alpha_j > = \sum_{i=1}^{l} k_i < \alpha_i, \alpha_j > \in \mathbb{Z}$$
 as the sum of integers. Therefore,

by lemma 3, $\sum_{i=1} k_i \alpha_i$ is a weight, and it is in the subgroup generated by $\Delta \subset \Phi$.

Let $\lambda \in \Lambda_r$. Then $\lambda = \sum_{\alpha \in \Phi} k_{\alpha} \alpha$ where $k_{\alpha} \in \mathbb{Z}$ for all $\alpha \in \Phi$. Since Δ is a base

of Φ , then $\alpha = \sum_{i=1}^{l} k_{\alpha,i} \alpha_i$ where all $k_{\alpha,i}$ are integers. Therefore $\lambda = \sum_{i=1}^{l} k_i \alpha$, where

 $k_i = \sum_{\alpha \in \Phi} k_{\alpha,i} k_{\alpha}$. Since Φ is finite and all $k_{\alpha,i}$ are integers, then $k_i \in \mathbb{Z}$ for all $1 \leq i \leq l$. Therefore λ is in the \mathbb{Z} -span of Δ .

For a fixed base Δ of the root system Φ , a weight λ is called **dominant** if $<\lambda, \alpha>\geq 0$ for all $\alpha \in \Delta$. A weight λ is called **strongly dominant** if $<\lambda, \alpha>>0$ for all $\alpha \in \Delta$. Let Λ^+ denote the set of dominant weights. By definition, the fundamental Weyl chamber relative to Δ , $\mathfrak{C}(\Delta)$, is the connected component of $E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$ containing a regular γ such that $\Delta = \Delta(\gamma)$ is the set of indecomposable elements of $\Phi^+ = \{\alpha \in \Phi : (\gamma, \alpha) > 0\}$. Therefore Λ^+ is the set of weights lying in the closure of the fundamental Weyl chamber, and the set of strongly dominant weights is the intersection of the fundamental Weyl chamber with Λ .

Let $\Delta = \{\alpha_1, \ldots, \alpha_l\}$. Let the basis dual (relative to the inner product) to Δ^{\vee} be denoted by $\{\lambda_1, \ldots, \lambda_l\}$. Then $(\lambda_i, \alpha_j^{\vee}) = \delta_{ij}$. An element of $\{\lambda_1, \ldots, \lambda_l\}$ is called a **fundamental dominant weight**. Indeed λ_i is a weight, since $\langle \lambda_i, \alpha_j \rangle = (\lambda_i, \alpha_j^{\vee}) = \delta_{ij} \in \mathbb{Z}_{>0}$.

Note that, $\sigma_{\alpha_i}(\lambda_j) = \lambda_j - \langle \lambda_j, \alpha_i \rangle \alpha_i = \lambda_j - \delta_{ij}\alpha_i$.

Lemma 5: Λ is a lattice with basis $\Delta' = \{\lambda_1, \dots, \lambda_l\}$. Furthermore, $\lambda \in \Lambda^+$ iff $m_i = \langle \lambda, \alpha_i \rangle \geq 0$.

Proof. I will show that Λ is the \mathbb{Z} -span of Δ' .

Let $\sum_{i=1}^{l} k_i \lambda_i$ be in the \mathbb{Z} -span of Δ' . By lemma 3, it is enough to show that <

$$\sum_{i=1}^{l} k_i \lambda_i, \alpha_j > \in \mathbb{Z}. \text{ We have } < \sum_{i=1}^{l} k_i \lambda_i, \alpha_j > = \sum_{i=1}^{l} k_i < \lambda_i, \alpha_j > = \sum_{i=1}^{l} k_i \delta_{ij} = k_j \in \mathbb{Z}.$$

Let $\lambda \in \Lambda$. Then $m_i = \langle \lambda, \alpha_i \rangle \in \mathbb{Z}$ for all $1 \leq i \leq l$. Then $\langle \lambda - \sum_{i=1}^{l} m_i \lambda_i, \alpha_j \rangle = \langle \lambda, \alpha_i \rangle \in \mathbb{Z}$

$$\lambda, \alpha_j > -\sum_{i=1}^l m_i < \lambda_i, \alpha_j > = m_j - \sum_{i=1}^l m_i \delta_{ij} = 0$$
 for all $1 \le i \le l$. Then $(\lambda - 1)$

$$\sum_{i=1}^{l} m_i \lambda_i, \alpha_j) = 0 \text{ for all } 1 \leq j \leq l. \text{ Thus } \lambda = \sum_{i=1}^{l} m_i \lambda_i.$$

$$\lambda \in \Lambda^+ \text{ iff } \langle \lambda, \alpha_i \rangle \geq 0 \text{ for all } 1 \leq i \leq l \text{ iff } m_i \geq 0 \text{ for all } 1 \leq i \leq l.$$

Examples:

- (1) Calculate the fundamental dominant weights of A_1 . Let $\Phi = \{\pm \alpha_1\}$ be a root system pf A_1 with base $\{\alpha_1\}$. Let $\lambda_1 = k_1\alpha_1$. Since $\langle \lambda_1, \alpha_1 \rangle = \delta_{11} = 1$, then $2k_1 = 1$. Therefore $\alpha_1 = 2\lambda_1$.
- (2) Calculate the fundamental dominant weights of A_2 . We know from previous chapters that the Cartan matrix of A_2 is

$$\begin{pmatrix}
2 & -1 \\
-1 & 2
\end{pmatrix}$$

Say $\lambda_1 = k_1 \alpha_1 + k_2 \alpha_2$. Then

$$\begin{cases} k_1 < \alpha_1, \alpha_1 > +k_2 < \alpha_2, \alpha_1 > = 1 \\ k_1 < \alpha_1, \alpha_2 > +k_2 < \alpha_2, \alpha_2 > = 0 \end{cases} \begin{cases} 2k_1 - k_2 = 1 \\ -k_1 + 2k_2 = 0 \end{cases} \begin{cases} k_1 = \frac{2}{3} \\ k_2 = \frac{1}{3} \end{cases}$$

Thus $3\lambda_1 = 2\alpha_1 + \alpha_2$. Similarly, $3\lambda_2 = \alpha_1 + 2\alpha_2$.

The group Λ/Λ_r is called **the fundamental group** of Φ .

Lemma 6: The fundamental group of Φ has finite order equal to the determinant of the Cartan matrix of Φ .

Proof. First I will prove the following: Let M be a free \mathbb{Z} -module of rank l with basis $\{y_1, \ldots, y_l\}$ and L be a \mathbb{Z} -submodule of M of rank l with basis $\{x_1, \ldots, x_l\}$. Let T denote the change of basis matrix from $\{y_1, \ldots, y_l\}$ to $\{x_1, \ldots, x_l\}$. Then the order of the group M/L is |det T|.

We know from Algebra II, theorem 7.1, that there exists a basis $\{y'_1, \ldots, y'_l\}$ of M and integers m_1, \ldots, m_l such that $\{m_1 y'_1, \ldots, m_l y'_l\}$ is a basis of L. Furthermore, the integers m_i are unique up to multiplication by units and $m_1 | m_2 | \ldots | m_l$. Thus, w.l.o.g we can assume $m_i > 0$.

I will show next, that $\sum_{i=1}^{i} c_i y_i'$ where $0 \le c_i \le m_i - 1$ is a system of cosets represen-

tatives of M/L. By using the division algorithm, one can see that any element of M is in one of these cosets, thus these cosets cover M. Since $0 \le c_i \le m_i - 1$, then

$$\sum_{i=1}^{l} c_i y_i' - \sum_{i=1}^{l} d_i y_i' \in L \text{ iff } (c_i - d_i) | m_i \text{ iff } c_i = d_i. \text{ Therefore, all the cosets above are}$$

distinct. Then $|M/L| = [M:L] = m_1 \dots m_l$.

Let A be the change of basis matrix from $\{y_1, \ldots, y_l\}$ to $\{y'_1, \ldots, y'_l\}$, $B = diag(m_1, \ldots, m_l)$ the change of basis matrix from $\{y'_1, \ldots, y'_l\}$ to $\{m_1 y'_1, \ldots, m_l y'_l\}$, and C be the change of basis matrix from $\{m_1 y'_1, \ldots, m_l y'_l\}$ to $\{x_1, \ldots, x_l\}$. Since A and C are invertible matrices with integer elements, then $det A, det C \in \{\pm 1\}$. Since T = ABC, then $|det T| = det B = m_1 \ldots m_n$. Therefore |M/L| = |det T|.

Say
$$\alpha_i = \sum_{i=1}^l m_{ij} \lambda_j$$
, where $m_{ij} \in \mathbb{Z}$. Then $\langle \alpha_i, \alpha_k \rangle = \sum_{j=1}^l m_{ij} \langle \lambda_j, \alpha_k \rangle =$

 $\sum_{j=1}^{l} m_{ij} \delta_{jk} = m_{ik}.$ Thus the change of basis matrix from $\{\alpha_1, \ldots, \alpha_l\}$ to $\{\lambda_1, \ldots, \lambda_l\}$

is the Cartan matrix of Φ . Then $|\Lambda/\Lambda_r|$ is the determinant of the Cartan matrix.

Examples: (1) Calculate the determinant of the Cartan matrix of A_l .

We know from chapter 11, that the Cartan matrix of A_l is

$$A_{l} = \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 \\ & & & & \dots & & \\ 0 & 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix}$$

To calculate its determinant, we add all the columns to the first one and we expand the minors along the first column:

We know that $A_1 = (2)$, thus $det(A_1) = 2$. By induction, it follows that $det(A_l) = l + 1$.

(2) Calculate the determinant of the Cartan matrix of B_l . We know from chapter 11, that the Cartan matrix of B_l is

$$B_{l} = \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 & 0 \\ & & & & \dots & & & \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 & -2 \\ 0 & 0 & 0 & 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$

Then $B_1 = (2)$ and thus $det(B_1) = 2$. We have $B_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$ and, thus, $det(B_2) = 2$. To calculate the determinant we expand the minors along the first

column.

By induction, one can check that $det(B_l) = 2$.

(3) Calculate the determinant of the Cartan matrix of C_l . We know from chapter 11, that the Cartan matrix of C_l is

$$C_l = \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 & 0 & 0 \\ & & & & & \dots & & & & \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & -2 & 2 \end{pmatrix}$$

Then $C_1 = (2)$ and thus $det(C_1) = 2$. We have $C_2 = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$ and, thus, $det(C_2) = 2$. A calculation similar to the one for B_l gives the same recurrence relation, $det(C_l) = 2det(C_{l-1}) - det(C_{l-2})$. Similarly, it follows that $det(C_l) = 2$.

(4) Calculate the determinant of the Cartan matrix of D_l . We know from chapter 11, that the Cartan matrix of D_l is

$$D_{l} = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 & 0 & 0 & 0 \\ & & & & \dots & & & \\ 0 & 0 & 0 & \dots & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & -1 & 2 & -1 & -1 \\ 0 & 0 & 0 & \dots & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & -1 & 0 & 2 \end{pmatrix}$$

We have $D_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and, thus, $det(D_2) = 2$.

$$det(D_3) = \begin{vmatrix} 2 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{vmatrix} = - \begin{vmatrix} -1 & -1 \\ 2 & 0 \end{vmatrix} + 2 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = -2 + 6 = 4$$

A calculation similar to the one for B_l gives the same recurrence relation, $det(D_l) = 2det(D_{l-1}) - det(D_{l-2})$. Similarly, it follows that $det(D_l) = 4$.

Note that the Weyl group W leaves Λ invariant. Indeed if λ is a weight then $< \lambda, \alpha > \in \mathbb{Z}$ for all $\alpha \in \Phi$. We know that an element of the Weyl group preserves the inner product and it permutes the elements of Φ . Thus $\sigma\lambda$ has the desired property.

Lemma 7: Each weight is conjugate under W to one and only one dominant weight. If λ is dominant, then $\sigma\lambda \prec \lambda$ for all $\sigma \in W$, and if λ is strongly dominant, then $\sigma\lambda = \lambda$ only when $\sigma = 1$.

Proof. To prove this lemma we will use exercise 10.14 and lemma 10.3B.

Recall lemma 10.3B: Let $\lambda, \mu \in \mathfrak{C}(\Delta)$. If $\sigma\lambda = \mu$ for some $\sigma \in \mathcal{W}$, then σ is a product of simple reflections which fix λ ; in particular $\lambda = \mu$.

I will prove next exercise 10.14: prove that each point of E is W-conjugate to a point in the closure of the fundamental base chamber relative to a base Δ .

Recall $\beta \prec 0$ if $\beta = \sum_{i=1}^{r} k_i \alpha_i$ where all $k_i \leq 0$ and $\mu \prec \lambda$ iff $\mu - \lambda \prec 0$. Let $\mu \in E$. Let

 $\sigma \in \mathcal{W}$ such that $\lambda = \sigma \mu$ is maximal with the property that $\mu \prec \lambda$. Assume $\lambda \notin \mathfrak{C}(\Delta)$. Then there exists $\alpha_i \in \Delta$ such that $\langle \lambda, \alpha_i \rangle < 0$. Then $\sigma_{\alpha_i} \lambda - \underline{\lambda} = -\langle \lambda, \alpha_i \rangle \alpha_i$. Thus $\lambda \prec \sigma_{\alpha_i} \lambda$. This contradicts the choice of λ . Therefore $\underline{\lambda} \in \mathfrak{C}(\Delta)$.

Let λ be a weight. By the exercise 10.14, there exists $\lambda' \in \mathfrak{C}(\Delta)$ \mathcal{W} -conjugate to λ . Since Λ is closed under the action of the Weyl group, then λ' is also a weight, thus a dominant weight.

Assume λ is conjugate to two dominant weights, λ' and λ'' . Then $\lambda' \in \overline{\mathfrak{C}(\Delta)}$ and $\lambda'' \in \overline{\mathfrak{C}(\Delta)}$. By theorem 10.3B, $\lambda' = \lambda''$.

If λ is dominant, then $\lambda \in \underline{\mathfrak{C}(\Delta)}$. Let $\mu \in \underline{\mathfrak{C}(\Delta)}$ be the \mathcal{W} -conjugate of $\sigma\lambda$ by the reflection τ . Then $\lambda, \mu \in \underline{\mathfrak{C}(\Delta)}$ with $\tau \sigma \lambda = \mu$. By the above result $\sigma\lambda \prec \mu$ and by lemma 10.3B $\mu = \lambda$. Therefore $\sigma\lambda \prec \lambda$.

Assume λ is strongly dominant and $\sigma\lambda = \lambda$. Then $\lambda \in \mathfrak{C}(\Delta)$. From 10.1, we know that $\Delta(\sigma\lambda) = \sigma\Delta(\lambda)$, and thus $\Delta = \sigma(\Delta)$. By theorem 10.3e, $\sigma = 1$.

Note that the following is possible: μ is dominant, λ is not dominant and $\mu \prec \lambda$.

Lemma 8: Let $\lambda \in \Lambda^+$. Then the number of dominant weights $\mu \prec \lambda$ is finite.

Proof. Let μ be a dominant weight such that $\mu \prec \lambda$. Since μ is a dominant weight, then $\langle mu, \alpha \rangle \geq 0$ for all $\alpha \in \Delta$. Since $\lambda \in \Lambda^+$, then $\langle \lambda, \alpha \rangle \geq 0$ for all $\alpha \in \Delta$.

Then $\langle \lambda + \mu, \alpha \rangle \geq 0$ for all $\alpha \in \Delta$. Since $\mu \prec \lambda$, then $\lambda - \mu = \sum_{i=1}^{n} k_i \alpha_i$ with $k_i \geq 0$ for all $1 \leq i \leq l$. Thus $(\lambda + \mu, \lambda - \mu) = \sum_{i=1}^{l} k_i (\lambda + \mu, \alpha_i) \geq 0$. Therefore $(\lambda,\lambda)-(\mu,\mu)\geq 0$. Thus $\mu\in\{(x,x)\in E:(x,x)\leq (\lambda,\lambda)\cap\Lambda^+$. Since then set $\{(x,x)\in E:(x,x)\leq (\lambda,\lambda) \text{ is compact and }\Lambda^+ \text{ is discrete, then their intersection is}$ finite.

Lemma 9: Let $\delta = \frac{1}{2} \sum_{i=1}^{n} \alpha_i$. Then $\delta = \sum_{i=1}^{l} \lambda_j$, so δ is a strongly dominant weight.

Proof. Recall corollary to lemma 10.2B: $\sigma_{\alpha}\delta = \delta - \alpha$ for all $\alpha \in \Delta$. Since $\sigma_{\alpha}\delta = \delta - \langle \delta, \alpha \rangle \alpha$, then $\langle \delta, \alpha \rangle = 1$ for all $\alpha \in \Delta$. We showed already that $\delta = \sum_{i=1}^{l} \langle \delta, \lambda_i \rangle \lambda_i$. Thus $\delta = \sum_{i=1}^{l} \lambda_j$. By lemma 5, $\delta \in \Lambda^+$.