Chapter 7 of Number Theory with Computer Applications by Kumanduri and Romero;

University of Windsor 62-322 Course notes by M. Hlynka and

W.L. Yee.

PRIMITIVE ROOTS

7.1 THE CONCEPT OF ORDER

Definition 7.1.1 Let a and n be integers with (a, n) = 1. Let the *the order of* $a \mod n$ (denoted $ord_n(a)$) be the smallest integer k such that $a^k \equiv 1 \mod n$.

By Euler's Theorem, if (a, n) = 1, then $a^{\phi(n)} = 1$. But there may be integers $k < \phi(n)$ for which $a^k \equiv 1 \mod n$. Let us consider n = 2, 3, 4, 5, 6.

For n = 2, $1^1 \equiv 1 \mod 2$ so $ord_2(1) = 1$.

For n = 3, $1^1 \equiv 1 \mod 3$ and $2^2 \equiv 1 \mod 3$ so $ord_3(1) = 1$, $ord_3(2) = 2$.

For n = 4, $1^1 \equiv 1 \mod 4$ and $3^2 \equiv 1 \mod 4$ so $ord_4(1) = 1$, $ord_4(3) = 2$.

For n = 5, $1^1 \equiv 1 \mod 5$, $2^4 \equiv 1 \mod 5$ while $2^2 \equiv 4 \not\equiv 1 \pmod 5$, $3^4 \equiv 1 \mod 5$ while $3^2 \equiv 4 \not\equiv 1 \pmod 5$, and $4^2 \equiv 1 \mod 5$ so $ord_5(1) = 1$, $ord_5(2) = 4$, $ord_5(3) = 4$, $ord_5(4) = 2$.

Note that $\phi(5) = 4$ so $a^4 \equiv 1 \mod 5$ for (a, 5) = 1. However, $4^2 \equiv 1 \mod 5$ so $ord_5(4) < \phi(5)$.

For n = 6, $1^1 \equiv 1 \mod 6$ and $5^2 \equiv 1 \mod 6$ so $ord_6(1) = 1$, $ord_6(5) = 2$.

Note: (a) $ord_n(1) = 1 \quad \forall n$.

- (b) $ord_n(-1) = 2 \quad \forall n > 2$.
- (c) If $ord_n(a) = k$, then $a^k \equiv 1 \mod n$ so $a^{2k}, a^{3k}, \dots \equiv 1 \mod n$.

Example: For n = 31, find $ord_n(2)$, $ord_n(3)$. Find all k such that $2^k \equiv 1 \mod 31$.

SOLUTION: We look at powers of 2: 2,4,8,16,32. Since $32 = 2^5 \equiv 1 \mod 31$,

we have $ord_{31}(2) = 5$. So $2^k \equiv 1 \mod 31$ for $k = 5, 10, 15, 20, 25, 30, \dots$. Look at powers of $3 \mod 31$: $3,9,27 \equiv -4 \mod 31,-12,-36 \equiv -5 \mod 31,-15,$ $-45 \equiv -14 \mod 31, -42 \equiv -11 \mod 31,-33 \equiv -2 \mod 31$. How far do we have to check???

Proposition 7.1.3 If $a^m \equiv 1 \mod n$, then $ord_n(a)|m$.

Proof. Let $k = ord_n(a)$. Then m = kq + r for some q and some r with $0 \le r < k$ (note typo in text). If $k \nmid m$, then 0 < r < k. So

$$1 \equiv a^m \equiv a^{kq+r} \equiv (a^k)^q a^r \equiv 1^q a^r \equiv a^r.$$

Since 0 < r < k and $a^r \equiv 1 \mod n$, this contradicts the definition of $k = ord_n(a)$ as being the smallest value j such that $a^j \equiv 1 \mod n$. Thus r = 0 so k|m.

Corollary 7.1.4: If (a, n) = 1 and $a^i \equiv a^j \mod n$, then $i \equiv j \mod ord_n(a)$. Proof. Assume i > j. Since (a, n) = 1, we also have $(a^j, n) = 1$. Divide both sides of $a^i \equiv a^j \mod n$ by a^j to get $a^{i-j} \equiv 1 \mod n$. Hence $ord_n(a)|(i-j)$ so $i \equiv j \mod ord_n(a)$.

Corollary 7.1.6 If (a, n) = 1 and $ord_n(a) = k$, then $1, a, a^2, \ldots, a^{k-1}$ are distinct mod n.

Proof. Assume $a^i \equiv a^j \mod n$ for some i, j with $1 \le i < j \le k < n$. Then by Corollary 7.1.4, $i \equiv j \mod k$. Since $1 \le i < j \le k$, this is not possible. So $1, a, a^2, \ldots, a^{k-1}$ are distinct mod n.

Corollary 7.1.5 (a) If (a, n) = 1, then $ord_n(a)|\phi(n)$.

(b) If p is prime, and (a, p) = 1, then $ord_n(a)|(p-1)$.

Proof. (a) By Euler's Theorem, if (a, n) = 1, then $a^{\phi(n)} \equiv 1 \mod n$. By Proposition 7.1.3, $\operatorname{ord}_n(a)|\phi(n)$.

(b) If n is prime, then $\phi(n) = n - 1$. So the second part follows.

Example Read Example 7.1.7. Beware of typos.

Find $k = ord_{31}(3)$. Since $\phi(31) = 30$, we know that k|30. So we need only check

if k = 1, 2, 3, 5, 6, 10, 15, 30.

 $3^1 \equiv 3 \mod 31$. $3^2 \equiv 9 \mod 31$. $3^3 \equiv 27 \mod 31$. $3^5 \equiv -5 \mod 31$, $3^6 \equiv -15 \mod 31$, $3^{10} \equiv 25 \equiv -6 \mod 31$, $3^{15} \equiv 3^{10}3^5 \equiv 30 \mod 31$. So the only possible value of k is k = 30.

Exercise, **p. 171.** Find a such that the powers of a together with 0 form a complete residue system mod 23.

SOLUTION: Note that $\phi(23) = 22$. We want to find a such that $\{a, a^2, \dots, a^{22}\}$ consists of distinct elements $\mod 23$. Try a = 2. Then the powers of a give values a^1, a^2, \dots , $\mod 23$, namely $2, 4, 8, 16 \equiv -7, -14 \equiv 9, 18 \equiv -5, -10, -20 \equiv 3, 6, 12, 24 \equiv 1 \mod 23$. The length of this cycle is 11, which divides 22. We want a cycle of length 22. We could try powers of 3, and if this does not work, try powers of 4, etc. A more clever idea is to note that $2^{11} \equiv 1$ so $(-2)^{11} \equiv -1 \mod 23$. The powers of -2 will be congruent to the same values as 2 except that the odd powers will give the negative of the previous odd powers. Since $21 \equiv -2 \mod 23$, it follows that $21^1, 21^2, \dots, 21^{22}$ will give a complete residue system $\mod 23$ (except for the missing value 0).

Connections to Abstract Algebra: Algebra is the study of groups, rings, fields, and other algebraic structures. A group G is a collection of objects with some kind of operation * on the elements of G with properties of closure $(a*b \in G)$, an identity element (a*e=e*a=a), an associative property, i.e. (a*b)*c=a*(b*c), and an inverse $(a*a^{-1}=e)$.

A complete residue system mod m forms a group under addition (sometimes written as $\mathbb{Z}/m\mathbb{Z}$).(Here $*=+,\ e=0,\ a^{-1}=-a$.)

If p is prime, then $\mathbb{Z}/p\mathbb{Z}$ is a finite field.

The nonzero integers mod p (p prime) form a group under multiplication. (Here $*=\times$, e=1, $a^{-1}=a^{-1}$.)

The nonzero integers mod n and relatively prime to n form a group under multiplication.

If G is a finite group, then the number of elements in G is called the *order of* G

o(G).

If G is a group, and if there exists an a such that $G = \{a, a^2, a^3, \dots, a^{o(G)}\}$, then G is a cyclic group, and a is a generator of G.

If G is a finite group, and $a \in G$, then $S = \{a, a^2, \dots, a^k = e\}$ is a subgroup of G and o(S)|o(G).

If G is a finite group and $a \in G$, then $a^{o(G)} = e$. (Euler's Theorem)

2001 Putnam A-1. Consider a set S and a binary operation * i.e., for each $a, b \in S$, $a*b \in S$. Assume (a*b)*a = b for all $a, b \in S$. Prove that a*(b*a) = b for all $a, b \in S$.

SOLUTION:
$$a * (b * a) = ((b * a) * b) * (b * a) = b$$
.

Lemma 7.1.8 If
$$(a, n) = 1$$
, then $ord_n(a^k) = \frac{ord_n(a)}{(k, ord_n(a))}$. **Proof.** See. text, p. 171.

Example:

If
$$ord_n(a) = 9$$
, then $ord_n(a^2) = \frac{9}{(9,2)} = 9$
If $ord_n(a) = 10$, then $ord_n(a^2) = \frac{10}{(10,2)} = 5$

Example: If $ord_n(a) = 12$, then by Corollary 7.1.6, $1, a^1, a^2, ..., a^{11}$ are distinct mod n. Since 1=(1,12)=(5,12)=(7,12)=(11,12), we know that a, a^5, a^7, a^{11} all have order 12.

Since 2=(2,12)=(10,12), we know that a^2, a^{10} have order 12/2=6.

Since 3=(3,12)=(9,12), we know that a^3, a^9 have order 12/3=4.

Since 4=(4,12)=(8,12), we know that a^4, a^8 have order 12/4=3.

Finally a^6 has order 12/6=2.

Note: The maximal possible order of an element $a \mod n$ is $\phi(n)$. Such a value a is useful. For example, in simulation of pseudo random numbers, a common algorithm uses a seed s and a multiplier a and a modulus m to give $s, as, a^2s, a^3s, \ldots$ mod m. We want this cycle to be as long as possible before

repeating. However, for some n, there is no element with the maximal possible order.

Note: If $ord_n(a) = \phi(n)$, then any invertible element (mod n) equals a^r for some r.

Definition 7.1.11: An integer a such that $ord_n(a) = \phi(n)$ is called a primitive root mod n.

Example: 21 is a primitive root mod 23.

Example: $\phi(8) = 4$. Recall that if a is an odd number, then $a^2 \equiv 1 \mod 8$. Thus if (a, 8) = 1, then $a^2 \equiv 1 \mod 8$. So $ord_8(a) = 2$ for a = 3, 5, 7. So there are NO primitive roots mod 8 since $\phi(8) = 4$.

Proposition 7.1.13. There is no primitive root mod 2^k for $k \geq 3$.

Proof. By contradiction, suppose a is a primitive root modulo 2^k . $\phi(2^k) = 2^{k-1}$, so $ord(a) = 2^{k-1}$ and thus the 2^{k-1} elements $\{a, a^2, a^3, \dots, a^{2^{k-1}}\}$ are distinct modulo 2^k and are all invertible. This implies that there is only one element of order 2 since if $x = a^i$ has order 2, then by Lemma 7.1.8 $ord_{2^k}(a^i) = 2^{k-1}/(i, 2^{k-1}) = 2$ which implies $(i, 2^{k-1}) = 2^{k-2}$ which implies $i = 2^{k-2}$. However, by Exercise 3.4.7, for $k \geq 3$, there are four solutions to the equation $x^2 \equiv 1 \pmod{2^k}$, and so there are three elements of order 2. Contradiction. Therefore there is no primitive root mod 2^k for $k \geq 3$.

Proposition 7.1.14: Suppose p is an odd prime. There can be no primitive root mod m unless $m = 2, 4, p^k, 2p^k$.

Proof. Suppose n = rs, with r and s greater than 2 and (r, s) = 1. (Integers not of this form $2^k, p^b, 2p^b$.) Here $\phi(n) = \phi(r)\phi(s)$. For any c > 2, it is easy to

check that $\phi(c)$ is even. By Euler's Theorem, we get for any a with (a, n) = 1,

$$a^{\phi(r)\phi(s)/2} \equiv \left(a^{\phi(r)}\right)^{\phi(s)/2} \equiv 1 \mod r$$
$$a^{\phi(r)\phi(s)/2} \equiv \left(a^{\phi(s)}\right)^{\phi(r)/2} \equiv 1 \mod s.$$

By the Chinese remainder theorem,

 $a^{\phi(r)\phi(s)/2} \equiv 1 \mod n$ for all a such that (a,n) = 1, so $a^{\phi(n)/2} \equiv 1 \mod n$. Thus for any a with (a,n) = 1, we have $ord_n(a)|\phi(n)/2$ so $ord_n(a) \leq \phi(n)/2 < \phi(n)$. So there is no primitive root mod n.

Example: There are no primitive roots mod 16. There are no primitive roots mod 15. There may be primitive roots mod 9 or mod 18.

Note that $\phi(9) = \#\{1, 2, 4, 5, 7, 8\} = 6$. Then, mod 9, $2, 2^2 = 4, 2^3 = 8$ so $ord_9(2) > 3$. But since $ord_9(2)|\phi(9)$, it follows that $ord_9(2) = 6$ so 2 is a primitive root mod 9.

Note that $\phi(18) = \phi(2)\phi(9) = 1(6) = 6$. Try 5 to check if it is a primitive root mod 18. 5, 5^2 , 5^3 , ... give 5,7,-1,-5,-7,1 mod 18. So 5 is a primitive root.

Example: Solve $4^x \equiv 5 \mod 19$.

SOLUTION: These values should repeat after $\phi(19) = 18$ steps. We could try each $x \mod 18$. Rather than that, we seek a primitive root and make a table of powers. Try 2. Its powers are 2,4,8,-3,-6,7,-5,9,-1,-2,-4,-8,3,6,-7,5,-9,1. So we get a table

Example: Use the table above to find the inverse of 6 mod 19.

SOLUTION: Note that $6 \equiv 2^{14} \mod 19$. Since $2^{18} \equiv 1 \mod 19$, the inverse must be $2^4 \equiv -3 \equiv 16 \mod 19$. So the inverse of 6 is 16 mod 19.

Exercises: p. 174, # 1, 2,3,4, 5, 6, 9, 10, 17.

Exercise p. 174 1) Determine the order of the following elements.

a) 9 (mod 17)

 $\phi(17) = 16 \text{ so } ord(9)|16.$

 $9^2 \equiv 81 \equiv -4 \pmod{17}$

 $9^4 \equiv 16 \equiv -1 \pmod{17}$

 $9^8 \equiv 1 \pmod{17}$

Therefore $ord_{17}(9) = 8$.

b) 11 (mod 47)

$$\phi(47) = 46 = 2 \cdot 23.$$

Therefore $ord_{47}(11) = 2, 23$, or 46.

 $11^2 \equiv 121 \equiv 27 \pmod{47}$ so the order of 11 isn't 2

 $11^4 \equiv 27^2 \equiv 24 \pmod{47}$

 $11^8 \equiv 24^2 \equiv 12 \pmod{47}$

 $11^{16} \equiv 12^2 \equiv 3 \pmod{47}$

 $11^{23} \equiv 11^{16} \times 11^4 \times 11^2 \times 11 \equiv 3 \times 24 \times 27 \times 11 \equiv 21384 \equiv 46 \pmod{47}$

Therefore $ord_{47}(11) = 46$.

Exercise p. 175 4) If a has order k, how many of $1, a, a^2, \ldots, a^{k-1}$ have order k? $ord(a^j) = \frac{ord(a)}{(j, ord(a))} = \frac{k}{(j,k)} = k$ when (j,k) = 1. Therefore $\phi(k)$ of the elements have order k.

Exercise p. 175 5a) Find a primitive root modulo 19 and use it to find all the primitive roots.

Note: to test if a is a primitive root modulo n:

- Find the prime factors p_1, \ldots, p_k of $\phi(n)$
- a is a primitive root if each $a^{\frac{\phi(n)}{p_i}} \not\equiv 1 \pmod{n}$ (see homework Assignment 5 #5)

 $ord_{19}(2)|\phi(19)=18$. $2^8\equiv 9\pmod{19}$ so $2^9\equiv 18\pmod{19}$ and $2^2\equiv 4\pmod{19}$ while $2^{18}\equiv 1\pmod{19}$. Therefore $ord_{19}(2)=18$ and 2 is a primitive root. All primitive roots of 19 are 2^j where (j,18)=1. We have the following table:

j:(j,18)=1	$2^j \pmod{19}$
1	2
5	$2^5 \equiv 13$
7	$2^7 \equiv 14$
11	$2^{11} \equiv 15$
13	$2^{13} \equiv 3$
17	$2^{17} \equiv 10$

Therefore the primitive roots of 19 are 2, 3, 10, 13, 14, 15.

Exercise p. 176 17b) Solve $7 \cdot 5^x \equiv 5 \pmod{19}$.

From the previous question, we know that 2 is a primitive root modulo 19. We have the following table:

 $7 \equiv 2^6 \pmod{19}$. Therefore our equation becomes:

 $2^6 \times 2^{16x} \equiv 2^{16} \pmod{19}$ so we need to solve $6+16x \equiv 16 \pmod{18}$, i.e. $8x \equiv 5 \pmod{9}$.

This has solution $x \equiv -5 \equiv 4 \pmod{9}$.

7.2 THE PRIMITIVE ROOT THEOREM

We prove the existence of primitive roots when $n=p^k,2p^k$ for p an odd prime.

Recall **Theorem 4.4.1** Lagrange's Theorem: Let p be a prime number and let f(x) be a polynomial of degree $n \ge 1$, not all of whose coefficients are divisible by p. Then $f(x) \equiv 0 \pmod{p}$ has at most n solutions in a complete residue system modulo p.

Theorem 7.2.8 Let p be a prime number; then there exists a primitive root modulo p.

Proof: Let λ be the minimal universal exponent of p: i.e. it is the smallest integer such that $a^{\lambda} \equiv 1 \pmod{n}$ for all (a, n) = 1. If $\lambda = p - 1$, then there

exists an element of order p-1, hence there is a primitive root. Assume that $\lambda < p-1$. All p-1 invertible elements satisfy $x^{\lambda} \equiv 1 \pmod{p}$ contradicting Lagrange's Theorem that it has at most λ solutions. Therefore $\lambda = p-1$ and there is a primitive root.

Theorem 7.2.10 Let p be an odd prime.

- a) If g is a primitive root modulo p, then either g or g + p is a primitive root modulo p^2 .
- b) If g is a primitive root modulo p^2 , then g is a primitive root modulo p^k for every $k \ge 2$.
- c) If g is odd and a primitive root modulo p^k for $k \geq 1$, then g is a primitive root modulo $2p^k$. Otherwise, if g is even, then $g + p^k$ is a primitive root modulo $2p^k$.

Proof: a) $d := ord_{p^2}(g)|p(p-1) = \phi(p^2)$. $g^d \equiv 1 \pmod{p^2} \Rightarrow g^d \equiv 1 \pmod{p}$ $\Rightarrow p-1|d \Rightarrow d=p-1 \text{ or } p(p-1)$. If d=p(p-1), then g is a primitive root modulo p^2 . So suppose d=p-1. We show in this case g+p is a primitive root modulo p^2 . Again, since $g+p \equiv g \pmod{p}$, then p-1 divides $ord_{p^2}(g+p)$, so $ord_{p^2}(g+p) = p-1$ or p(p-1). If $ord_{p^2}(g+p) = p-1$, then

$$(g+p)^p \equiv (g+p)(g+p)^{p-1} \equiv g+p \pmod{p^2}.$$

By the Binomial Theorem,

$$(g+p)^p \equiv \sum_{k=0}^p \binom{p}{k} g^k p^{p-k} \equiv g^p + p^2 g^{p-1} \equiv g^p \pmod{p^2}.$$

Since $g^{p-1} \equiv 1 \pmod{p^2}$ so that $g^p \equiv g \pmod{p^2}$, our equations give

$$(g+p)^p \equiv g+p \equiv g \pmod{p^2}$$

 $\Rightarrow p \equiv 0 \pmod{p^2}$ –contradiction. Therefore g+p is a primitive root modulo $p^2.$

b) Note: textbook has mistakes.

 $ord_{p^k}(g)$ divides $\phi(p^k) = p^{k-1}(p-1)$ and $p-1|ord_{p^k}(g)$ since g is a primitive root modulo p. Thus $ord_{p^k}(g) = p^a(p-1)$ for some $0 \le a \le k-1$. We wish to show a = k-1. Enough to show $g^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}$. Show by induction.

Base case: k = 2. Given. g is a primitive root modulo p^2 .

Induction step: Assume the result for k. That is, $g^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}$. We need to show that $g^{p^{k-1}(p-1)} \not\equiv 1 \pmod{p^{k+1}}$. $p^{k-2}(p-1) = \phi(p^{k-1})$ so $g^{\phi(p^{k-1})} \equiv 1 \pmod{p^k}$ while $g^{\phi(p^{k-1})} \not\equiv 1 \pmod{p^k}$. Therefore $g^{\phi(p^{k-1})} = 1 + bp^{k-1}$ where $p \not\mid b$. Then:

$$g^{p^{k-1}(p-1)} = (1+bp^{k-1})^p$$

$$= 1+pbp^{k-1} + \binom{p}{2}(bp^{k-1})^2 + \binom{p}{3}(bp^{k-1})^3 + \cdots$$

$$\equiv 1+bp^k \pmod{p^{k+1}}$$

so
$$g^{p^{k-1}(p-1)} \equiv 1 + bp^k \not\equiv 1 \pmod{p^{k+1}}$$
.

Therefore by induction g is a primitive root modulo p^k for every $k \geq 2$.

c) Note that $\phi(2p^{k}) = \phi(2)\phi(p^{k}) = \phi(p^{k})$.

If g is odd, then $g^{p^{k-1}(p-1)} \equiv 1 \pmod{p^k}$ while $g^{p^{k-1}(p-1)/q} \not\equiv 1 \pmod{p^k}$ for q=p and q= primes dividing p-1. $g^{p^{k-1}(p-1)} \equiv 1 \pmod{2}$ and $g^{p^{k-1}(p-1)/q} \equiv 1 \pmod{2}$. Therefore $g^{p^{k-1}(p-1)} \equiv 1 \pmod{2p^k}$ while $g^{p^{k-1}(p-1)/q} \not\equiv 1 \pmod{2p^k}$. Therefore g is a primitive root modulo $2p^k$.

Similarly, if g is even, $g + p^k$ is a primitive root modulo $2p^k$.

Combining Theorems 7.2.8 and 7.2.10 and Proposition 7.1.14,

Theorem: There are primitive roots modulo n only for $n = 2, 4, p^k, 2p^k$ where p is an odd prime.