Composite and Inverse Functions

College Algebra

Definition – Function Composition

Definition

If f and g are two functions so that the range of f is the same as the domain of g, then the composite function $g \circ f$ is defined by

$$(g \circ f)(x) = g(f(x))$$

Define

$$f(x) = x^2 + 5$$
; $g(x) = 3x + 4$

Find $(g \circ f)(2)$. Find $(f \circ g)(2)$.

Define

$$f(x) = x^2 + 5$$
; $g(x) = 3x + 4$

Find a formula for $(g \circ f)(x)$. Find a formula for $(f \circ g)(x)$.

Define

$$f(x) = 3x - 6$$
; $g(x) = \frac{1}{3}x + 2$

Find a formula for $(g \circ f)(x)$. Find a formula for $(f \circ g)(x)$.

Definition – Inverse Functions

Two functions f and g are **inverse functions** if $(g \circ f)(x) = x$ and $(f \circ g)(x) = x$ for all x in the domains of f and g. The inverse of the function f is denoted f^{-1} .

Procedure – Finding the Inverse of a Function

To find the inverse of the function y = f(x):

- 1. Set up the equation x = f(y).
- 2. Solve the equation for *y*.
- 3. Use the solution to define $y = f^{-1}(x)$.

Find a formula for
$$f^{-1}(x)$$
.
 $f(x) = 2x - 9$

Find a formula for
$$f^{-1}(x)$$
.
 $f(x) = 2x^3 - 4$