Causal Inference with Noisy and Missing Covariates

Vikram Mullachery

Feb 2019

References

 Causal Inference with Noisy and Missing Covariates by Nathan Kallus, Xiaojie Mao, Madeleine Udell (2018)

Summary

- Observational vs. experimental
- Samples contain Treated $T_i = 1$ and Control $T_i = 0$
- Covariates *U_i* (either observed or unobserved)
- Outcome of interest Y_i
- Confounders are covariates that effect both the outcome and treatment

Assumptions

- Stable Unit Treatment Value Assignment
- Consistency
- Ignorability
- Positivity

To estimate

ullet Average Treament Effect, ATE: $\mathbb{E}[Y^1] - \mathbb{E}[Y^0]$

Potential Outcome framework

- Matching (Mahalanobis-distance, calipers etc.)
- Propensity score based inverse probability weighting (IPW)
- Doubly Robust methods

Techniques

- Assume a causal relationship (a causal graph)
- Identify set of confounders to be controlled (or measured)
- Use backdoor criteria or frontdoor criteria etc. to assist discovery of valid adjustment set

Problem Setting

Notation

- Treatment $T \in \{0,1\}^N$
- Unobserved Covariates $U \in \mathbb{R}^{N \times r}$
- Outcome $Y \in \mathbb{R}^{N \times 1}$
- Observed noisy and missing covariates $X \in \mathbb{R}^{N \times p}$

Assumptions

- Linear $Y_i = U_i \alpha + \tau T_i + \epsilon_i$
- Low rank matrix factorization of the observed X to yield confounders $X = UV^T + W$
- Exponential Family Matrix Completion preprocessing

Causality Feb 2019

Contribution

Claim

- Preprocessing to augment wide variety of causal inferences
- Matrix factorization based preprocessing is a general framework
- Seamlessly integrated into regression adjustment, propensity score reweighting, matching etc.
- Bounded error on the induced average treatment effect estimator

Problem Formulation

- Estimate $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$
- Unconfoundedness assumption $\mathbb{P}(Y_i|T_i,U_i) = \mathbb{P}(Y_i|U_i) \quad \forall i$
- $X \in \mathbb{R}^{N \times p}$ and observed over $\Omega \subset [N] \times [p], p < N$
- Generative assumption $X_{ij} \sim \mathcal{N}(U_i^T V_j, 1)$
- $W \in \mathbb{R}^{N \times p}$ independent with (mean, variance) = $(0, \sigma_w^2)$
- Linear $Y_i = U_i^T \alpha + \tau T_i + \epsilon_i$
- Additive noise model $X = UV^T + W$

Measurement Noise and Bias

Asymptotic bias of least squares estimator in linear regression of Y_i on X_i , T_i $\mathbb{E}(T_iU_i)\mathbb{E}(U_i^TU_i)^{-1}[\frac{1}{\sigma_w^2}V^TV + \mathbb{E}(U_i^TU_i)^{-1}]^{-1}\alpha$ $\mathbb{E}(T_i^2) - \mathbb{E}(T_iU_i)[\frac{1}{\sigma_w^2}V^TV + \mathbb{E}(U_i^TU_i)]^{-1}\mathbb{E}(U_i^TU_i)$

This asymptotically diminishes to 0, when $||V|| \to \infty$

Low rank matrix factorization preprocessing

Low rank Assumption Observed X is a noisy realization of a low rank matrix $\Phi \in \mathbb{R}^{N \times p}$ with rank $r \ll \min\{N, p\}$

Missing Completely At Random Assumption

 $\forall i, j \in \Omega, i \sim \mathsf{Unif}([N]), j \sim \mathsf{Unif}([p])$

Natural Exponential Family Assumption

 $\mathbb{P}(X_{ij}|\Phi_{ij})=h(X_{ij})exp(X_{ij}\Phi_{ij}-G(\Phi_{ij}))$, where $G:\mathbb{R}\mapsto\mathbb{R}$ is the log-partition and strictly convex, $\nabla^2G\geq e^{-\eta|u|}$, for $\eta>0$, and $u\in\mathbb{R}$

EFMC estimates using regularized M-estimator:

$$\hat{\Phi} = min \frac{-Np}{|\Omega|} [\sum_{(i,j) \in \Omega} \log \mathbb{P}(X_{ij}|\Phi_{ij})] + \lambda ||\Phi||_*$$

Left singular matrix of $\hat{\Phi}$ is an estimate of the confounder U

Theoretical guarantee (sufficient conditions)

Definition Principal angle between column spaces of two matrices M, \tilde{M} is defined as $\angle(\hat{M}, M) = \sqrt{1 - \sigma_{\min r, k}^2(\hat{M}^T M)}$

Theorem There exists a constant c > 0 such that with probability at least $1-2exp(-c\sqrt{N})$,

 $|\hat{\tau} - \tau^*| \leq \frac{\frac{2A}{\sqrt{N}}||T||(\frac{1}{\sqrt{Nr}}||U||)(r\angle(U,\hat{U})) - \frac{\sigma}{N^{1/4}}}{\frac{1}{N}T^T(I-P_U)T - \frac{2}{N}||T||^2\angle(U,\hat{U})}$, which $\to 0$ as $N \to \infty$, where

Vikram Mullachery Causality Feb 2019 12 / 18

Theoretical guarantee (sufficient conditions)

- $||\alpha||_{max} \leq A$
- $\frac{1}{\sqrt{Nr}}||U||$
- $\frac{1}{N}T^T(I-P_U)T$ is bounded away from 0
- $r \angle \hat{U}, U \rightarrow 0$ as $N \rightarrow 0$
- Unconfoundedness

Theoretical guarantee(Confounders and Covariates Loadings

- $\underline{\mathbf{v}}$, $\overline{\mathbf{v}}$, c_V , $c_L > 0$
- For $i \in [N]$, U_i are i.i.d Gaussian samples with covariance $\Sigma_{r \times r} = LL^T$, full rank $L \in \mathbb{R}^{r \times r}$, such that $\frac{1}{\sqrt{r}}||L|| < c_L$ (Gaussian random design)
- $\underline{\mathsf{v}}\mathsf{p} \leq \sigma_r^2(\mathsf{V}\mathsf{L}^\mathsf{T}) \leq \sigma_1^2(\mathsf{V}\mathsf{L}^\mathsf{T}) \leq \bar{\mathsf{v}}\mathsf{p}$
- $\frac{\max_{j}||V_{j}||}{||V||_{F}} \leq \frac{c_{V}}{\sqrt{p}}, j \in [p]$ (excludes degenerate case)

Theoretical guarantee

- Let X_{ij} be sub-exponential on U_i with parameter σ' for $\forall i, j$
- T_i is almost certainly not a linear combination of U_i
- Suppose EFMC is used as the preprocessing step with $\lambda = 2c_0\sigma'\sqrt{Np}\sqrt{\frac{r\bar{N}\log\bar{N}}{|\Omega|}}$, where $\bar{N} = \max(N,p)$, and $|\Omega| > c_1r\bar{N}\log\bar{N}$ for $c_0,c_1>0$
- $\exists \delta$, s.t. $p^{1+\delta}/N \to 0$

Theoretical guarantee (Consistent Estimator)

Theorem There exist constants c_2 , c_3 , $c_{\sigma',\eta}$ such that with probability at least $1 - c_2 exp(-c_3 N^{1/2}) - c_2 N^{-1/2} - 2exp(-c_3 p^{\delta})$,

$$|\hat{\tau} - \tau| \leq \frac{Ac_L c_{\sigma',\eta} c_V \sqrt{\frac{r^5 \bar{\tau} \bar{N} \log \bar{N}}{|\Omega|}} - \frac{\sigma}{N^{1/4}} [\sqrt{\frac{\underline{v}}{\underline{v} + 2\bar{v}}} - \Lambda(r, \bar{N}, |\Omega|)]}{[\sqrt{\frac{\underline{v}}{\underline{v} + 2\bar{v}}} - \Lambda(r, \bar{N}, |\Omega|)][\frac{1}{\bar{N}} T^T (I - P_U) T - 2\Lambda(r, \bar{N}, |\Omega|)]}, \text{ where}$$

$$\Lambda(r, \bar{N}, |\Omega|) = c_{\sigma', \eta} c_V \sqrt{\frac{\bar{r} r^3 \bar{N} \log \bar{N}}{|\Omega|}}$$
, and $\bar{r} = \max r, \log \bar{N}$

Vikram Mullachery Causality Feb 2019 16 / 18

Numerical Results (Consistent Estimator)

- $r^5 \bar{r} \bar{N} \log \bar{N}/|\Omega| o 0$ vs. $r \bar{N} \log \bar{N}/|\Omega| o 0$
- Numerical results: N = 1500, p = 1450, r = 5, that is $r^6 \gg N$

Questions

Thank you