a)

Prefix Match	Link Interface
11100000 00	0
11100000 01000000	1
1110000	2
11100001 1	3
otherwise	3

b) Prefix match for first address is 5th entry: link interface 3
Prefix match for second address is 3nd entry: link interface 2
Prefix match for third address is 4th entry: link interface 3

Destination Address Range	Link Interface
00000000 through	0
00111111	
01000000	
through	1
01011111	
01100000	
through	2
01111111	
10000000	
through	2
10111111	
11000000	
through	3
11111111	

number of addresses for interface $0 = 2^6 = 64$ number of addresses for interface $1 = 2^5 = 32$ number of addresses for interface $2 = 2^6 + 2^5 = 64 + 32 = 96$ number of addresses for interface $3 = 2^6 = 64$

Destination Address Range	Link Interface
11000000 through (32 addresses) 11011111	0
10000000 through(64 addresses) 10111111	1
11100000 through (32 addresses) 11111111	2
00000000 through (128 addresses) 01111111	3

Problem 11

223.1.17.0/26 223.1.17.128/25

223.1.17.64/28

Notes: The above choices are NOT unique. Two important things to remember:

- a. Always start assigning Blocks for the largest subnet (in this case it is B)
- b. Make sure that subnets do NOT overlap (i.e., all IP addresses are unique)

Destination Address	Link Interface
200.23.16/21	0
200.23.24/24	1
200.23.24/21	2
otherwise	3

Problem 13

Destination Address		Link Interface
11100000 00 (224.0/10)	0	
11100000 01000000 (224.64/16)	1	
1110000 (224/7)	2	
11100001 1 (225.128/9)	3	
otherwise	3	

Problem 14

Any IP address in range 128.119.40.128 to 128.119.40.191

Four equal size subnets: 128.119.40.64/28, 128.119.40.80/28, 128.119.40.112/28

Problem 15

From	214.97.254/23,	possible	assignments	are
a)	Subnet A: 214.97.255/24 (25 Subnet B: 214.97.254.0/25 - Subnet C: 214.97.254.128/25	214.97.254.0/29 (12	8-8 = 120 addresses)	
	Subnet D: 214.97.254.0/31 (2 Subnet E: 214.97.254.2/31 (2 Subnet F: 214.97.254.4/30 (4	addresses)		

b) To simplify the solution, assume that no datagrams have router interfaces as ultimate destinations. Also, label D, E, F for the upper-right, bottom, and upper-left interior subnets, respectively.

Router 1

Longest Prefix Match Outgoin	
11010110 01100001 11111111 Subne 11010110 01100001 111111110 0000000 Subne 11010110 01100001 111111110 000001 Subne	t D

Router 2

Longest Prefix Match	Outgoing Interface
11010110 01100001 11111111 0000000	Subnet D
11010110 01100001 11111110 0	Subnet B
11010110 01100001 11111110 0000001	Subnet E

Router 3

Longest Prefix Match	Outgoing Interface
11010110 01100001 11111111 000001	Subnet F
11010110 01100001 11111110 0000001 11010110 01100001 11111110 1	Subnet E Subnet C

Just a note here:" In the final exam, /31 Block will NIOT be allowed (i.e., the smallest block is /30). ?31 block is used by "some" ISPs to assign IP addresses for "point-to-point" interfaces, say for two routers connected directly)

Ste	ер	D(t),p(t)	D(u),p(u)	D(v), p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
	N'						
0	X	00	00	3,x	6,x	6, x	8,x
1	XV	7,v	6,v	3,x	6,x	6, x	8, x
2	xvu	7,v	6, v	3,x	6,x	6, x	8, x
3	xvuw	7,v	6, v	3,x	6, x	6, x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6, x	8, x
5	xvuwyt	7,v	6,v	3,x	6,x	6, x	8, x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

Problem 5

		Cost to				
		u	v	X	у	Z
	\mathbf{v}	00	œ	œ	00	00
From	X	00	00	00	00	00
	Z	00	6	2	œ	0

Cost to						
		u	v	x	у	z
	v	1	0	3	00	6
From	X	00	3	0	3	2
	Z	7	5	2	5	0

Cost to

		u	v	X	У	Z
	v	1	0	3	3	5
From	X	4	3	0	3	2
	Z	6	5	2	5	0
Cost to u v x y z						7
		u	٧	Α.	У	Z
	\mathbf{v}	1	0	3	3	5
From	X	4	3	0	3	2
	Z	6	5	2	5	0