A

# 北京航空航天大学

2021-2022 学年 第二学期期末

# 《 工科数学分析 (2) 》 试 卷 (A)

| 班   | 号       | _学号 | _姓名 |
|-----|---------|-----|-----|
| 任课教 | <b></b> | 考场  | 成绩  |

| 题号  | _ | 1 1 | 111 | 四 | 五. | 六 | 七 | 总分 |
|-----|---|-----|-----|---|----|---|---|----|
| 成绩  |   |     |     |   |    |   |   |    |
| 阅卷人 |   |     |     |   |    |   |   |    |
| 校对人 |   |     |     |   |    |   |   |    |

2022年06月24日



#### 一、计算题(每小题6分,共30分)

- 1. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{2n+1}$ 的收敛域及和函数.
- 2. 将 $f(x) = \frac{\pi}{4} \frac{x}{2}, x \in [0, \pi]$ 展开为正弦级数,设该级数的和函数为S(x), 求 $S(\frac{\pi}{2}), S(\pi)$ .
- 3. 已知区域 $D: x^2 + y^2 \le 2$ , 求 $f(x, y) = 3x^2 + 3y^2 2x^3$  在D上的最大值和最小值.
- 4. 已知 $z = x^2 f(x + y, x y) + g(xy)$ ,其中f 具有二阶连续偏导数,g 具有二阶导数,计算  $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial y \partial x}.$
- 5. 设f(u)具有连续导数, f(0) = 0, 区域 $\Omega: x^2 + y^2 + z^2 \le t^2$ , 计算极限

$$I = \lim_{t \to 0^+} \frac{\iiint\limits_{\Omega} f(\sqrt{x^2 + y^2 + z^2}) dx dy dz}{\ln(1 + t^4)}.$$

#### 二、(本题 10 分)

设
$$S(x) = \sum_{n=1}^{\infty} \sin \frac{n! x^n}{x^2 + n^n}$$
, 证明 $S(x)$ 在[-2,2]上连续.

#### 三、(本题 12 分)

设
$$f(x,y) = \begin{cases} \frac{x-y}{x^2+y^2} \sin(x^2+y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$
证明 $f(x,y)$ 在 $(0,0)$ 点可微,并求 $df(0,0)$ .

#### 四、(本题 12 分)

计算曲线积分  $\int_{L} \frac{(3x+y)dx - (x-3y)dy}{x^2 + y^2}$ , 其中 L 是沿曲线  $y = \pi \cos \frac{x}{2}$  从  $A(0,\pi)$  到  $B(\pi,0)$  的一段.

### 五、(本题 12 分)

应用
$$Gauss$$
公式计算 $\iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$ ,其中 $\Sigma$ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ ,取外侧.



# 六、(本题 12 分)

应用Stokes公式计算曲线积分 $\oint_{\Gamma}(y^2-z)dx+(z-x^2)dy+(x+2y)dz$ ,其中 $\Gamma$ 为柱面  $\frac{x^2}{4}+y^2=1$ 与平面x+y+z=2的交线,从z轴正向看去为顺时针方向.

# 七、(本题 12 分)

已知 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 绝对收敛, $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \ln(1 + \frac{1}{n^p})$ 条件收敛,试讨论p的取值范围.