

Deep Learning

Deep Recommender System

U Kang Seoul National University

In This Lecture

- Deep recommender system
 - MLP Based System
 - AE Based System
 - CNN Based System
 - RNN Based System

Outline

- → □ MLP Based System
 - ☐ AE Based System
 - ☐ CNN Based System
 - ☐ RNN Based System

Covington et al., Deep Neural Networks for Youtube Recommendations, RecSys'16

U Kang

3

Deep Neural Networks for Youtube Recommendations

Candidate Generation

Embedding

- Embedded video watches, and embedded search tokens
- The vectors are learned together, using backpropagation

Recommendation as Classification

Recommendation can be viewed as extreme multiclass classification to accurately classify a specific video watch w_t at time t among millions of video i from a corpus V, based on user U and context C

$$P(w_t = i | U, C) = \frac{e^{v_i u}}{\sum_{j \in V} e^{v_j u}}$$

Serving

- Return top N results
- Nearest neighbor using dot-products

Example Age Feature

 Machine learning systems often exhibit an implicit bias towards the past because they are trained to predict future behavior from historical examples

Correction

- Feed the age of the training example as a feature during training
- At serving time, this feature is set to zero (or slightly negative) to reflect that the model is making predictions at the very end of the training window

Effects of Features

Ranking

Normalization

- A continuous feature x with distribution f is transformed to \tilde{x} by scaling the values such that the feature is equally distributed in [0, 1) using the cumulative distribution $\tilde{x} = \int_{-\infty}^{x} p(x) dx$
- In addition to raw normalized feature \tilde{x} , add powers \tilde{x}^2 and $\sqrt{\tilde{x}}$, giving the network more expressive power by allowing it to easily form super- and sub-linear functions of the feature.

Model Training

- Model is trained with logistic regression under crossentropy loss
 - Positive impressions are weighted by the observed watch time on the video
 - Negative impressions all receive unit weight

Experiments with Hidden Layers

Increasing width and depth improves performance

Hidden layers	weighted,
	per-user loss
None	41.6%
256 ReLU	36.9%
512 ReLU	36.7%
1024 ReLU	35.8%
$512~{\rm ReLU} \rightarrow 256~{\rm ReLU}$	35.2%
$1024~{\rm ReLU} \rightarrow 512~{\rm ReLU}$	34.7%
$1024~{\rm ReLU} \rightarrow 512~{\rm ReLU} \rightarrow 256~{\rm ReLU}$	34.6%

Covington et al.: Summary

- FNN-based recommender system
 - Candidate generation followed by ranking of candidates
 - Partially consider sequence information in FNN framework (by averaging vectors for watches)
 - Interesting features
 - Video embedding
 - "Age" of videos

Outline

- MLP Based System
- → □ AE Based System
 - ☐ CNN Based System
 - ☐ RNN Based System

Wang et al., Collaborative Deep Learning for Recommender Systems, KDD'15

Problem Definition

Given

 Rating information of users and items, and additional information (e.g. text) for items

Goal

Infer the ratings of unrated items by users

Matrix Factorization

Collaborative Deep Learning

Challenges

How to incorporate text information of items in its embeddings, such that items with similar contents are more likely to have similar embeddings?

Collaborative Deep Learning

Main Idea

- Use code vectors of an "autoencoder" as item vectors!
- The autoencoder is jointly trained in the MF framework

Stacked Denoising Autoencoder

Feature: (SDAE) bag of words

Corrupted input

Clean input

SDAE solves the following optimization problem:

$$\min_{\{\mathbf{W}_l\},\{\mathbf{b}_l\}} \|\mathbf{X}_c - \mathbf{X}_L\|_F^2 + \lambda \sum_l \|\mathbf{W}_l\|_F^2,$$

where λ is a regularization parameter and $\|\cdot\|_F$ denotes the Frobenius norm.

Vincent et al. 2010

Learning

$$\mathcal{L} = -\frac{\lambda_u}{2} \sum_{i} \|\mathbf{u}_i\|_2^2 - \frac{\lambda_w}{2} \sum_{l} (\|\mathbf{W}_l\|_F^2 + \|\mathbf{b}_l\|_2^2)$$

SDAE loss

Use code as item vector

$$-\frac{\lambda_{v}}{2} \sum_{j} \|\mathbf{v}_{j} - \mathbf{X}_{\frac{L}{2}, j*}^{T}\|_{2}^{2} - \frac{\lambda_{n}}{2} \sum_{j} \|\mathbf{X}_{L, j*} - \mathbf{X}_{c, j*}\|_{2}^{2}$$

$$-\frac{\lambda_s}{2} \sum_{l} \sum_{j} \|\sigma(\mathbf{X}_{l-1,j*} \mathbf{W}_l + \mathbf{b}_l) - \mathbf{X}_{l,j*}\|_2^2$$

SDAE layer-next layer relation

$$-\sum_{i,j}rac{\mathbf{C}_{ij}}{2}(\mathbf{R}_{ij}-\mathbf{u}_i^T\mathbf{v}_j)^2$$

MF loss

Datasets

	citeulike-a	citeulike-t	Netflix
#users	5551	7947	407261
#items	16980	25975	9228
#ratings	204987	134860	15348808

Content information

Collaborative Deep Learning for Recommender Systems ABSTRACT

ANSTRUCT
Collaborative Minning (US) is a masseabil appeared con-munity and by more encounanced systems. Conventional Collaboral antibles me the training plant to that be passed for the encountry of the encountry of the encountry of the states applications, coming Climoto antibles to designate states applications, coming Climoto antibles to designate affects that appears and the encountry independent and as-inguished to the encountry independent and as-inguished antible and the encountry of the encountry tops content independent control of encountry of the passes and the encountry of the encountry of the passes and the encountry of the encountry of the large from two Collisions stories of climation in. Neverthelesse, the boost approximation beared in CVE, may cert be encountried. any obstice when the nonlines to be contain a to very groun-To adhres the problem, or generated account obstices in these harming from i.e.d. may to special, "(I-T-most) to put and prospin is this paper a fraction of Beneden model collections deep foreign (T.R.), which paints per-ferance from presentation beneating the contains informa-tions when comparisons to the contains informa-tions when the presentation is then are an industrial fraction times offerance instants about the coming relatedary times offerance instants above that CTM consignationally and consume the states of the act. Callaborative Deep Learning for Recommender Systems AISTRACT

AINTHACT

Collaborative Witning (CF) is a manufal appetitely con-country and by many recommender grown. Committee of CF from the states on the rating grown to think by many or fire risk sectors of inheritation for learning to make one many application, enable CF-leaved particles to highest applicately in their recumendation performance. For al-thous the experimental profession, and an interest of the con-traction before the committee of the contraction of the discountry of the committee of the contraction of the leavest of the committee of the committee of the con-traction before the committee of the committee of the contraction before the committee of the committee of the contraction of the committee of the committee of the contraction of the committee of this agreement which slightly complex for two components what have two collisions described in Selection 1s, Newton Samuri George 11, 1997, and the state of the selection of t

Fantastic Four costs be 26 PO-13 | 100 err | Autory Adventure, Du ft | 7 August 2010 (UDA) O for set became I voting begins ofter referred Four young outsiders teleport to an alternate and dangerous universe which alters their physical form in shocking ways. The four must learn to harmone their new abilities and work together to save Earth from a former friend turned enemy.

Titles and abstracts Titles and abstracts Movie plots

Evaluation Metrics

Recall:

$$\text{recall@}M = \frac{\text{number of items that the user likes among the top }M}{\text{total number of items that the user likes}}$$

Mean Average Precision (mAP):

$$mAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$

P(k): precision at k

rel(k): 1 if relevant, 0 otherwise

$$AveP = \frac{\sum\limits_{k=1}^{n}(P(k)\times rel(k))}{\text{number of relevant items}}$$

Higher recall and mAP indicate better recommendation performance

MAP

Ground truth User1 Prediction (top-k) precision 0.5 0.5 0.43 $AP_2 = \frac{1 + 0.29}{6} = 0.22$ User2 Ground truth Prediction (top-k) precision 0.29

 $MAP = \frac{AP_1 + AP_2}{2} = 0.29$

Recall

When the ratings are **very sparse**:

citeulike-t, sparse setting

When the ratings are dense:

citeulike-t, dense setting

Netflix, sparse setting

Netflix, dense setting

Mean Average Precision (mAP)

	citeulike- a	citeulike- t	Netflix
CDL	0.0514	0.0453	0.0312
CTR	0.0236	0.0175	0.0223
DeepMusic	0.0159	0.0118	0.0167
CMF	0.0164	0.0104	0.0158
SVDFeature	0.0152	0.0103	0.0187

CDL: Summary

- AE-based recommender system
 - Combined PMF framework with deep learning
 - Learn item representation from stacked denoising autoencoder (SDAE)
 - Effective especially when the rating is very sparse

Outline

- MLP Based System
- AE Based System
- → □ CNN Based System
 - ☐ RNN Based System

Kim et al., Convolutional Matrix Factorization for Document Context-Aware Recommendation, RecSys'16

Matrix Factorization

A popular model-based CF method

Use of Text

 To handle sparseness of a rating matrix, text information (review, synopsis, abstract etc.) can be used

Previous Work

- Collaborative deep learning for recommender system (CDL): use Stacked Denoising Autoencoder (SDAE)
 - Limitation: bag of words models

Convolutional MF (ConvMF)

- Consider contextual information
 - Considering surrounding words and word order as "contextual information" improves the accuracy of word vectors in the word embedding
 - Word2vec
- Effectively exploit both ratings and description documents
- Jointly optimize the recommendation model in order to properly predict ratings to items of users

CNN

- For NLP and IR tasks, CNN have been mainly developed to consider local contextual information in a document
- Example of CNN architecture for sentiment classification

U Kang

34

Overview of CNN in ConvMF

Embedding Layer – Word Embedding

Convolution Layer – Contextual information

Extract contextual features from a document matrix

Convolution Layer – Contextual information

Example (window size: 3)

 $c = [c_1, c_2, \dots, c_i, \dots, c_{l-ws+1}]$ c_2 $\dots \text{ people betray his trust finally } \dots$ c_4 $\dots \text{ people betray his trust finally } \dots$

Pooling Layer – Representative Information

Extract representative features from the convolution layer

Output Layer – High Level Features of Documents

Project representative features to a k-dim. space

Objective Function

$$\mathcal{L}(U, V, W) = \sum_{i}^{N} \sum_{j}^{M} \frac{I_{ij}}{2} (r_{ij} - u_{i}^{T} v_{j})^{2} + \frac{\lambda_{U}}{2} \sum_{i}^{N} \|u_{i}\|_{2}$$
$$+ \frac{\lambda_{V}}{2} \sum_{j}^{M} \|v_{j} - cnn(W, X_{j})\|_{2} + \frac{\lambda_{W}}{2} \sum_{k}^{|w_{k}|} \|w_{k}\|_{2},$$

41

Performance

■ RMSE – training/valid/test dataset (80%/10%/10%)

Model	ConvMF and Convince improvement			
PMF	0.8971 (0.0020)	0.8311 (0.0010)	1.4118 (0.0105)	
CTR	0.8969 (0.0027)	0.8275 (0.0004)	1.5496 (0.0104)	-
CDL	0.8879 (0.0015)	0.8186 (0.0005)	1.3594 (0.0139)	-
ConvMF	0.8531 (0.0018)	0.7958 (0.0006)	1.1337 (0.0043)	Improvement
ConvMF+	0.8549 (0.0018)	0.7930 (0.0006)	1.1279 (0.0073)	by pre-trained word embedding
Improve	3.92%	2.79%	16.60%	_

extremely sparse dataset!

Outline

- MLP Based System
- M AE Based System
- CNN Based System
- → □ RNN Based System

Hidasi et al., Session-based Recommendations with Recurrent Neural Networks, ICLR'16

GRU4Rec

- GRU-based recommender system
- GRU trained on session data, adapted to the recommendation task
 - Input: current item ID
 - Hidden state: session representation
 - Output: likelihood of being the next item

GRU4Rec

45

LSTM vs. GRU

U Kang

(a) Long Short-Term Memory

$$egin{aligned} i_t &= \sigmaig(x_t U^i + h_{t-1} W^iig) \ f_t &= \sigmaig(x_t U^f + h_{t-1} W^fig) \ o_t &= \sigmaig(x_t U^o + h_{t-1} W^oig) \ ilde{C}_t &= anhig(x_t U^g + h_{t-1} W^gig) \ C_t &= \sigmaig(f_t * C_{t-1} + i_t * ilde{C}_tig) \ h_t &= anh(C_t) * o_t \end{aligned}$$

(b) Gated Recurrent Unit

$$egin{aligned} z_t &= \sigmaig(x_t U^z + h_{t-1} W^zig) \ r_t &= \sigmaig(x_t U^r + h_{t-1} W^rig) \ ilde{h}_t &= anhig(x_t U^h + (r_t * h_{t-1}) W^hig) \ h_t &= (1-z_t) * h_{t-1} + z_t * ilde{h}_t \end{aligned}$$

r: reset gate

z: update gate

Key Ideas of GRU4Rec

- Session-parallel mini-batches
- Output sampling
- Loss functions: cross-entropy, BPR, TOP1

Session-parallel Mini-batches

- Mini-batch is defined over sessions.
 - Lots of sessions are very short
 - Mix long and short sessions using session-parallel mini-batches

Output Sampling

- Computing scores for all items (100k 1m) in every step is slow
- One positive item (target) + several negative samples
- Which negative samples to choose?
 - Missing event = dislike?
 - □ The more popular an item is, the more probable that the use knows about it, and thus it is more likely that a missing event expresses dislike
- Solution: scores on mini-batch targets
 - Use items from the other training examples of the mini-batch as negative examples
 - This is popularity-based sampling!
 - Further reduce computational times by skipping the sampling
 - Implementation side: make the code less complex to faster matrix operations

Loss Functions

- Cross-entropy
- BPR (Bayesian Personalized Ranking)

$$L_{s} = -\frac{1}{N_{s}} \sum_{j=1}^{N_{s}} \log \sigma(\hat{r}_{s,i} - \hat{r}_{s,j})$$

 \square N_s : sample size, i: desired item, j: negative samples

TOP1

$$L_{S} = \frac{1}{N_{S}} \sum_{j=1}^{N_{S}} I\{\hat{r}_{S,j} > \hat{r}_{S,i}\}$$

- Approximate I(·) with sigmoid; however this is unstable as certain positive items also act as negative examples, and thus scores tend to become increasingly higher
- □ To avoid the problem, add regularization term:

$$L_{S} = \frac{1}{N_{S}} \sum_{j=1}^{N_{S}} \sigma(\hat{r}_{S,j} - \hat{r}_{S,i}) + \sigma(\hat{r}_{S,j}^{2})$$

U Kang

50

Experimental Results

Table 3: Recall@20 and MRR@20 for different types of a single layer of GRU, compared to the best baseline (item-KNN). Best results per dataset are highlighted.

Loss / #IIvita	RS	C15	VIDEO		
Loss / #Units	Recall@20	MRR@20	Recall@20	MRR@20	
TOP1 100	0.5853 (+15.55%)	0.2305 (+12.58%)	0.6141 (+11.50%)	0.3511 (+3.84%)	
BPR 100	0.6069 (+19.82%)	0.2407 (+17.54%)	0.5999 (+8.92%)	0.3260 (-3.56%)	
Cross-entropy 100	0.6074 (+19.91%)	0.2430 (+18.65%)	0.6372 (+15.69%)	0.3720 (+10.04%)	
TOP1 1000	0.6206 (+22.53%)	0.2693 (+31.49%)	0.6624 (+20.27%)	0.3891 (+15.08%)	
BPR 1000	0.6322 (+24.82%)	0.2467 (+20.47%)	0.6311 (+14.58%)	0.3136 (-7.23%)	
Cross-entropy 1000	0.5777 (+14.06%)	0.2153 (+5.16%)	_	_	

GRU4Rec: Summary

- GRU-based recommender system
- GRU trained on session data, adapted to the recommendation task
 - Input: current item ID
 - Hidden state: session representation
 - Output: likelihood of being the next item
- Key ideas
 - Session-parallel mini-batches
 - Output sampling
 - Loss functions: cross-entropy, BPR, TOP1

U Kang

52

News Recommendation with RNN

Koo et al., Accurate News Recommendation Coalescing Personal and Global Temporal Preferences, PAKDD 2020

Overview

News recommendation on online news service

- News data patterns
 - Popularity/Freshness patterns
- News Recommendation Coalescing Personal and Global Temporal Preferences (PGT)
 - How well does PGT exploit news data patterns to provide accurate news recommendation?

Online News Service

- Online news service
 - Thousands of news everyday
 - Millions of users

- Challenges
 - Newly published news articles everyday!
 - The cold-start problem
 - News recommendation considering users' interests
 - Individual personal preference
 - Time-dependent preference

Popularity/Freshness patterns

- News data patterns
 - Popularity pattern
 - Users mostly prefer popular news
 - Freshness pattern
 - # of interactions of news rapidly decreases over age

(b) Freshness pattern

Problem Definition

Input

- lacksquare News watch history of each user u
- Candidate news articles at time t
- Contents of news article

Output

 \square Ranks of candidates for each user u at time t

To Address/Consider

- The cold-start problem
- Popularity/Freshness patterns of news

 PGT (News Recommendation Coalescing Personal and Global Temporal Preferences)

Main intuition

- Global temporal preference
 - Comprehensive preference of all users at recommendation time
- Attention network for the personal preference
 - To deal with a quick change of personal preference
 - The global temporal preference vector is used as context

Overview of PGT

(a) Global temporal preference (b) Personal preference (c) Ranking candidates

Global temporal preference

- Intuition
 - Comprehensive preference of all users at recommendation time t
 - Extract time-dependent features
 - To deal with popularity and freshness patterns
 - To recommend newly published articles well
 - To better handle the cold-start problem

Global temporal preference

Input

- $lack e_1, \dots, e_{k_p}, \dots, e_{k_p+k_f}$
 - Popular/Fresh articles
 - \square k_p : # of popular articles
 - \square k_f : # of fresh articles

Output

 \bullet τ_t : Global temporal preference

How

- Weighted sum by attention network
 - ullet v_i : unnormalized attention score

- Personal preference
 - Intuition
 - Individual personal preference from previous user behaviors
 - Highlight important behaviors using the attention network
 - lacktriangle Time-dependent highlighting by $oldsymbol{ au}_t$

Personal preference

Input

- S_1, S_2, \dots, S_{t-1}
 - Previous watches of a user
- au_t : global temporal preference

Output

• u_t : personal preference

How

- Bidirectional RNN
- Weighted sum of hidden states
 - lacksquare By attention network using $oldsymbol{ au}_t$ as context

Ranking candidates

Intuition

- Generate prediction vector \hat{y}_t from two preferences τ_t , and u_t
- Scores each candidate articles by utilizing \hat{y}_t , then ranks candidates

Similarity

Inverse of L2 distance between \hat{y}_t and candidate article vector

Ranking candidates

Input

- $oldsymbol{ au}_t$: global temporal preference
- u_t : personal preference
- $cand_t$: candidate articles

Output

• $cand_rank_t$: rank of candidates

How

• Measure the similarity between prediction vector \hat{y}_t and candidate article vector

Experimental Question

Q1. Accuracy on news recommendation

 Q2. Effect of modeling the global temporal preference

 Q3. Effect of modeling the attention network in modeling personal preference

Datasets

Datasets

- Adressa: user-news interaction of 'Adresseavision' in Norway
- Globo: user-news interaction of 'G1' in Brazil

Summary of datasets

Dataset	# Sessions	# Events	# Articles	Period
ADRESSA $1W^1$ ADRESSA $10W^1$ GLOBO ²	$112,\!405 \\ 655,\!790 \\ 296,\!332$	$487,961 \\ 8,167,390 \\ 2,994,717$	$11,069 \\ 43,460 \\ 46,577$	7 days 90 days 16 days

^{1:} http://reclab.idi.ntnu.no/dataset

²: https://www.kaggle.com/gspmoreira/news-portal-user-interactions-by-globocom

Competitors

- Competitors
 - Only popularity
 - POP
 - RNN-based method
 - Park et al. [CIKM'17]
 - Okural et al. [SIGKDD'17]
 - 3-D CNN method
 - Weave&Rec [Khattar et al. CIKM'18]
 - Attention-based method
 - HRAM [Khattar et al. CIKM'18]
 - NPA [Wu, C. et al. SIGKDD'19]

Experimental Setup

Training method

- Divide data into training, validation, and test sets with ratio of 8:1:1 based on the interaction time
- To maximize the similarity between 1) a prediction vector 2) and the corresponding selected article vector
 - PGT
 - Loss function: mean squared error (MSE) of two vector
 - Optimizer: Adam optimizer
 - Competitors: follow their best setting
- Mini-batched inputs of size 512

Experimental Setup

Metric

- □ HR@5: Hit Rate
- MRR@20: Mean Reciprocal Rank

$$HR@5 = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} |\{r_i | r_i <= 5\}|$$

$$MRR@20 = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} c_i, \quad c_i = \begin{cases} \frac{1}{r_i}, & \text{if } r_i \leq 20\\ 0, & \text{otherwise} \end{cases}$$

Q1. Accuracy

- Q1. How well does PGT recommend news articles?
 - PGT shows the best performance for all datasets

Dataset	Metric	POP	Park et al. [11]	Okura et al. [10]	Weave&Rec [5]	HRAM [4]	NPA [16]	PGT
Adressa 1W	HR@5 MRR@20	0.4988 0.3291	0.4714 0.3361	0.4569 0.3341	0.4377 0.3013	0.5347 0.3452	0.6512 0.4983	$0.8668 \\ 0.6857$
Adressa 10W	HR@5 MRR@20	0.5672 0.3735	0.3677 0.2461	0.3477 0.2320	$0.3007 \\ 0.2101$	0.3941 0.2531	0.5819 0.3818	$0.7106 \\ 0.6197$
Globo	HR@5 MRR@20	0.2845 0.2001	0.3551 0.2483	0.3537 0.2500	-	0.4474 0.3101	- -	0.5663 0.5116

Q2. Effect of modeling the global temporal preference

- Q2. Does the modeling of global temporal preference help improve the accuracy?
 - \square PGT_{-T} : without the global temporal preference
 - \square PGT_{-A} : without the attention network of BiLSTM

Dataset	Metric	$\mathbf{PGT}_{\text{-}T}$	$\mathbf{PGT}_{\text{-}A}$	PGT
Adressa 1W	HR@5 MRR@20	$0.6662 \\ 0.5647$	$0.8497 \\ 0.6756$	$0.8668 \\ 0.6857$
Adressa 10W	HR@5 MRR@20	$0.6360 \\ 0.5423$	$0.6946 \\ 0.5610$	$0.7106 \\ 0.6197$
Globo	HR@5 MRR@20	0.5366 0.4923	$0.5562 \\ 0.5035$	$0.5663 \\ 0.5116$

Q3. Effect of modeling the attention network in personal preference

Case study of the attention network

- Different attention weights to the same news watch history when the inference time is changed
- When 'sport' or 'general' is popular
 - The attention network gives more weights to articles in the same categories

Summary

- Proposed PGT for recommendation on an online news service
 - To provide accurate recommendation
- Main idea: Let's extract time-dependent features by the global temporal preference
 - The global temporal preference and attention network in personal preference
 - Better handle the popularity and freshness patterns of news
 - Improve the accuracy compared to other competitors

What You Need to Know

- Deep recommender system
 - MLP Based System
 - AE Based System
 - CNN Based System
 - RNN Based System

Questions?