MSPA PREDICT 411

Bonus Problem: Chapter 6

```
In [1]: #!pip install sas7bdat
    import numpy as np
    import pandas as pd
    import statsmodels.api as sm

from patsy import dmatrices
    from sas7bdat import SAS7BDAT

import seaborn as sns
    import matplotlib.pyplot as plt
    import matplotlib.pylab as pylab

sns.set_style('darkgrid')
%matplotlib inline
```

Introduction

This document presents the results of third set of bonus problems for the Masters of Science in Predictive Analytics course: PREDICT 411. This assessment required the student to work through the problem set of Chapters 6 of Hoffmann (2004), Generalized Linear Models, An Applied Approach.

Question 1

Loading the Data

Out[3]:

	AGE	COHES	ESTEEM	GRADES	SATTACH	STRESS	NEWID
0	11	61.256001	32	15	21	0	5
1	14	49.000000	33	17	22	0	6
2	14	35.000000	27	15	28	0	10
3	11	74.000000	34	14	33	0	15
4	14	58.000000	29	15	28	0	16

Part A

Estimate a histogram and summary statistics for the variable stress. What do you think is its most likely probability distribution?

```
In [4]: import matplotlib.pyplot as plt
%matplotlib inline

plt.hist(df_stress['STRESS'], 24)
plt.show()
```


Seems to have a shape similar to that of a Beta Negative Binomial distribution. Is non-continuous in nature.

```
In [5]: print('mean:', round(df_stress['STRESS'].mean(), 2))
mean: 1.73
In [6]: import numpy as np
    print('variance:', round(np.var(df_stress['STRESS']), 2))
variance: 3.41
```

The variance is greater than the mean.

Part B

Plot a normal probability (Q-Q) plot of the variable stress. Comment about its departure from a normal distribution.

```
In [7]: import statsmodels.api as sm
    from matplotlib import pyplot as plt

#fig = sm.qqplot(df_stress['STRESS'], line='45')
    fig = sm.qqplot(df_stress['STRESS'])
    plt.show()
```


Has a fat negative tail.

Question 2

Part A

Interpret the coefficients (from the Poisson and negative binomial models) associated with the variables cohes and sattach using the percent change formula we have seen in this and earlier chapters.

Out [62]: Generalized Linear Model Regression Results

Dep. Variable:	STRESS	No. Observations:	651
Model:	GLM	Df Residuals:	646
Model Family:	Poisson	Df Model:	4
Link Function:	log	Scale:	1.0
Method:	IRLS	Log-Likelihood:	-1203.6
Date:	Mon, 15 Aug 2016	Deviance:	1245.4
Time:	09:44:34	Pearson chi2:	1.15e+03
No. Iterations:	8		

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	2.7345	0.234	11.683	0.000	2.276 3.193
COHES	-0.0129	0.003	-4.466	0.000	-0.019 -0.007
ESTEEM	-0.0237	0.008	-2.947	0.003	-0.039 -0.008
GRADES	-0.0235	0.010	-2.379	0.017	-0.043 -0.004
SATTACH	-0.0165	0.006	-2.850	0.004	-0.028 -0.005

Out [63]: Generalized Linear Model Regression Results

Dep. Variable:	STRESS	No. Observations:	651
Model:	GLM	Df Residuals:	646
Model Family:	NegativeBinomial	Df Model:	4
Link Function:	log	Scale:	0.664952252883
Method:	IRLS	Log-Likelihood:	-1148.4
Date:	Mon, 15 Aug 2016	Deviance:	576.00
Time:	09:44:37	Pearson chi2:	430.
No. Iterations:	7		

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	2.7623	0.334	8.272	0.000	2.108 3.417
COHES	-0.0135	0.004	-3.340	0.001	-0.021 -0.006
ESTEEM	-0.0229	0.011	-2.047	0.041	-0.045 -0.001
GRADES	-0.0244	0.014	-1.795	0.073	-0.051 0.002
SATTACH	-0.0169	0.008	-2.088	0.037	-0.033 -0.001

Part B

Based on both the Poisson and negative binomial regression models, compute the predicted count of stress for those w hose levels of family cohesion are less than one standard deviation below the mean (low), between one standard deviation below and one standard deviation above the mean (medium), and more than one standard deviation above the mean (high).

```
In [36]: import numpy as np
mean = df_stress['COHES'].mean()
std = np.std(df_stress['COHES'])

lq = mean - std
uq = mean + std
```

```
In [43]: df_stress['STRESS_pred'] = model_poi.predict()
    print('Poisson:')
    print('low:', df_stress[df_stress['COHES'] < lq]['STRESS_pred'].sum())
    print('medium:', df_stress[(df_stress['COHES'] >= lq) & (df_stress['COHES'] <= uq
)]['STRESS_pred'].sum())
    print('high:', df_stress[df_stress['COHES'] > uq]['STRESS_pred'].sum())
```

Poisson: low: 265.2951611150819 medium: 743.0657502689479 high: 117.63908861596572

Part C

What is the expected percent difference in the number of stressful life events for those at high and low levels of family cohesion in each model?

Negative Binomial: STRESS for low COHES is 2.3 times higher than high COHES

Question 3

Compute the AICs and BICs from the Poisson, the overdispersed Poisson, and the negative binomial regression models estimated in exercise 2. Discuss which model you prefer and why.

```
In [64]: model_poi.summary2()
```

Out[64]:

Model:	GLM	AIC:	2417.2190	
Link Function:	log	BIC:	-2939.6906	
Dependent Variable:	STRESS	Log-Likelihood:	-1203.6	
Date:	2016-08-15 09:44	LL-Null:	-1255.8	
No. Observations:	651	Deviance:	1245.4	
Df Model:	4	Pearson chi2:	1.15e+03	
Df Residuals:	646	Scale:	1.0000	
Method:	IRLS			

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	2.7345	0.2341	11.6826	0.0000	2.2758	3.1933
COHES	-0.0129	0.0029	-4.4656	0.0000	-0.0186	-0.0072
ESTEEM	-0.0237	0.0080	-2.9472	0.0032	-0.0394	-0.0079
GRADES	-0.0235	0.0099	-2.3791	0.0174	-0.0428	-0.0041
SATTACH	-0.0165	0.0058	-2.8501	0.0044	-0.0278	-0.0051

```
In [66]: #model_nb.summary2()
#no easy way to get AIC/BIC for nb using statsmodel at the moment
```

Question 4

Using the Poisson regression model estimated in exercise 2, plot the deviance residuals by the predicted values. Discuss what this plot indicates about the regression model.