Monday, April 8, 2019

3:03 PM

Question #3 on exam:

Levenshtein Edit Distance

- Goal of an edit distance algorithm is to determine how many transformations are needed in order to turn one word into another.
- To make these transformation, we have access to three operations
 - o Insert new letter
 - Remove a letter
 - Substitute a letter

Example: Dog and Frog

- How many transformations are required to convert dog into frog?
- Possibility #1:
 - o Add "F" at 0
 - o Transform "D" into "R"

Example #2: Translate Raccoon into Racket

Possibility #1:

Possibility #2:

Y Y Y BBC

AAC

If we do transformations and drop the rest, we get 4 ops but if we delete the middle elements, we get 3 ops

- Start by simultaneously examining each index starting at 0
- If they line up perfectly (e.g. s1[0] == a and s2[0] == a), nothing needs to be done
- Otherwise, the character at index is a candidate for:
 - Insert
 - o Remove
 - Transform / replace
- The correct choice is determined by the final answer (lowest # of edits)

	F	2	0	6
D	2	1	1	4
0	2-	1	<u> </u>	1
6	3	2	_1	(-1)