Chapter 1: Introduction

What is Reinforcement Learning?

- Learning from interaction
- ☐ Goal-oriented learning
- ☐ Learning about, from, and while interacting with an external environment
- ☐ Learning what to do—how to map situations to actions—so as to maximize a numerical reward signal

Supervised Learning

Training Info = desired (target) outputs

Error = (target output - actual output)

Reinforcement Learning

Training Info = evaluations ("rewards" / "penalties")

Objective: get as much reward as possible

Key Features of RL

- Learner is not told which actions to take
- ☐ Trial-and-Error search
- Possibility of delayed reward
 - Sacrifice short-term gains for greater long-term gains
- ☐ The need to *explore* and *exploit*
- ☐ Considers the whole problem of a goal-directed agent interacting with an uncertain environment

Complete Agent

- ☐ Temporally situated
- Continual learning and planning
- □ Object is to *affect* the environment
- ☐ Environment is stochastic and uncertain

Elements of RL

- **Policy**: what to do
- □ **Reward**: what is good
- ☐ Value: what is good because it *predicts* reward
- **Model**: what follows what

An Extended Example: Tic-Tac-Toe

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State	V(s) – estimated probability of winning		
#	.5	?	
<u>x </u>	.5	?	2. Now play lots of games.
x x x 0	: 1	win	To pick our moves,
•	•		look ahead one step
$\begin{array}{c c} x & o \\ \hline x & o \\ \hline \end{array}$	0	loss	current state
O X O O X X X X O O	; 0	draw	various poss next states

moves, one step:

Just pick the next state with the highest estimated prob. of winning — the largest V(s); a greedy move.

various possible

But 10% of the time pick a move at random; an exploratory move.

RL Learning Rule for Tic-Tac-Toe

We increment each V(s) toward V(s') – a **backup**:

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$
a small positive fraction, e.g., $\alpha = .1$
the *step - size parameter*

How can we improve this T.T.T. player?

- ☐ Take advantage of symmetries
 - representation/generalization
 - How might this backfire?
- ☐ Do we need "random" moves? Why?
 - Do we always need a full 10%?
- ☐ Can we learn from "random" moves?
- ☐ Can we learn offline?
 - Pre-training from self play?
 - Using learned models of opponent?
- **1** . . .

e.g. Generalization

How is Tic-Tac-Toe Too Easy?

- ☐ Finite, small number of states
- One-step look-ahead is always possible
- ☐ State completely observable
- **1** . . .

Some Notable RL Applications

- **TD-Gammon**: Tesauro
 - world's best backgammon program
- ☐ Elevator Control: Crites & Barto
 - high performance down-peak elevator controller
- ☐ Inventory Management: Van Roy, Bertsekas, Lee&Tsitsiklis
 - 10–15% improvement over industry standard methods
- **Dynamic Channel Assignment**: Singh & Bertsekas, Nie & Haykin
 - high performance assignment of radio channels to mobile telephone calls

TD-Gammon

Tesauro, 1992–1995

Action selection by 2-3 ply search

Start with a random network

Play very many games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Elevator Dispatching

Crites and Barto, 1996

10 floors, 4 elevator cars

STATES: button states; positions, directions, and motion states of cars; passengers in cars & in halls

ACTIONS: stop at, or go by, next floor

<u>REWARDS</u>: roughly, -1 per time step for each person waiting

Conservatively about 10²² states

Performance Comparison

Some RL History

Trial-and-Error learning

Temporal-difference learning

Optimal control, value functions

Thorndike (Ψ) 1911

Secondary reinforcement (Ψ)

Hamilton (Physics) 1800s

Shannon

Minsky

Samuel

Bellman/Howard (OR)

Klopf

Holland

Witten

Werbos

Barto et al.

Sutton

Watkins

MENACE (Michie 1961)

"Matchbox Educable Noughts and Crosses Engine"

The Book

- ☐ Part I: The Problem
 - Introduction
 - Evaluative Feedback
 - The Reinforcement Learning Problem
- Part II: Elementary Solution Methods
 - Dynamic Programming
 - Monte Carlo Methods
 - Temporal Difference Learning
- ☐ Part III: A Unified View
 - Eligibility Traces
 - Generalization and Function Approximation
 - Planning and Learning
 - Dimensions of Reinforcement Learning
 - Case Studies

The Course

- ☐ One chapter per week (with some exceptions)
- ☐ Read the chapter for the first class devoted to that chapter
- ☐ Written homeworks: basically all the non-programming assignments in each chapter. Due second class on that chapter.
- ☐ Programming exercises (not projects!): each student will do approximately 3 of these, including one of own devising (in consultation with instructor and/or TA).
- ☐ Closed-book, in-class midterm; closed-book 2-hr final
- ☐ Grading: 40% written homeworks; 30% programming homeworks; 15% final; 10% midterm; 5% class participation
- ☐ See the web for more details

Next Class

- ☐ Introduction continued and some case studies
- ☐ Read Chapter 1
- \square Hand in exercises 1.1 1.5