#### ANNOUNCEMENTS

- Homework 2 is out on Canvas:
  - Due date: May 1 (midnight) on Canvas
    - Should be submitted as a pdf file
    - Answers for homework 1: discussion sections and office hours of TAs (you can ask for specific problems)
- Quiz 3: April 23, last 10 minutes of class.
  - Material: "The Sorcerer's Apprentice" chapter from Logicomix and lectures 6 and 7 (today's lecture is lecture 7).
  - You will get 2 attempts.
- Exam 1: May 5. Canvas quiz during class time. Covering all month of April

# EQUIVALENT STATEMENTS FOR $P \rightarrow Q$

- If x > 2 then  $x^2 > 4$
- $x^2 > 4$  if x > 2
- x > 2 only if  $x^2 > 4$
- x > 2 is sufficient for  $x^2 > 4$
- $x^2>4$  is necessary for x>2
- You will find any of the above statements in many math books when introducing theorems
  - You need to memorize the above equivalent statements to understand what the theorem is saying.



WHY I TRY NOT TO BE PEDANTIC ABOUT CONDITIONALS.

#### COMMON MISTAKE FOR

 $P \rightarrow Q$ 

- If x > 2 then  $x^2 > 4$ 
  - $(p \rightarrow q)$
  - Does this mean that If  $x^2>4$  then x>2?
  - i.e.,  $(q \rightarrow p)$ ?
- If you are a bird, you have wings  $p \rightarrow q$ 
  - In class someone said the above is false because bats have wings and they are not birds
    - This assumes I said if you have wings, you are a bird  $q \rightarrow p$ 
      - But that is now what I said!
- If you make this mistake, you will fail this class
  - $(p \rightarrow q)$
  - That does not mean that if you don't make this mistake, you will pass the class

#### Xkcd1652:

Cueball does not assume the converse

#### **BICONDITIONAL**

• If p and q are propositions, then we can form the *biconditional* proposition  $p \leftrightarrow q$ , read as "p if and only if q." The biconditional  $p \leftrightarrow q$  denotes the proposition with this truth table:

| p | q | $p \leftrightarrow q$ |
|---|---|-----------------------|
| Т | T | T                     |
| Т | F | F                     |
| F | T | F                     |
| F | F | Т                     |

• If p denotes "I am at home." and q denotes "It is raining." then  $p \leftrightarrow q$  denotes "I am at home if and only if it is raining."

#### EXPRESSING THE BICONDITIONAL

- Some alternative ways "p if and only if q" is expressed in English:
  - p is necessary and sufficient for q
  - if p then q, and conversely
  - p iff q



# CAN YOU HONK IF HE STOPPED FOR A PEDESTRIAN?

- Note that this implies you should NOT honk solely because I stopped for a pedestrian and you're behind me.
- If you honk, then you love formal logic
- If you love formal logic you honk

#### TAUTOLOGIES AND CONTRADICTIONS

- A tautology is a proposition which is always true.
  - Example:  $p \lor \neg p$
- A contradiction is a proposition which is always false.
  - Example:  $p \land \neg p$







| P | $\neg p$ | $p \vee \neg p$ | $p \land \neg p$ |
|---|----------|-----------------|------------------|
| Т | F        | T               | F                |
| F | T        | T               | F                |

# CONVERSE AND INVERSE OF $P \rightarrow Q$

- From  $p \rightarrow q$  we can form new conditional statements .
  - $q \rightarrow p$  is the **converse** of  $p \rightarrow q$
  - $\neg p \rightarrow \neg q$  is the **inverse** of  $p \rightarrow q$

**Example**: Find the converse, and inverse of "if you are a bird, then you have wings."

#### Solution:

converse: If you have wings, then you are a bird

inverse: If you are not a bird, then you do not have wings.

- They are not equivalent to  $p \rightarrow q$ 
  - If you are a bird you have wings, (assume this is true)
    - If you have wings then you are a bird (not necessarily true)
    - If you are not a bird, then you do not have wings (not necessarily true)

# USING A TRUTH TABLE TO SHOW NON-EQUIVALENCE

**Example**: Show using truth tables that neither the converse nor inverse of an implication are not equivalent to the implication.

**Solution:** (the inverse and converse are equivalent between themselves, but they are both different to the original statement)

| p | q | $\neg p$ | $\neg q$ | $p \rightarrow q$ | $\neg p \rightarrow \neg q$ | $q \rightarrow p$ |
|---|---|----------|----------|-------------------|-----------------------------|-------------------|
| T | T | F        | F        | T                 | T                           | T                 |
| T | F | F        | T        | F                 | Т                           | Т                 |
| F | Т | T        | F        | Т                 | F                           | F                 |
| F | F | Т        | T        | Т                 | Т                           | T                 |

## CONTRAPOSITIVE $P \rightarrow Q$

- $\neg q \rightarrow \neg p$  is the **contrapositive** of  $p \rightarrow q$
- **Example**: Find the contrapositive of "It raining is a sufficient condition for my not going to town."
  - contrapositive: If I go to town, then it is not raining.
- Assume the following statement is true:
  - If you are a bird, then you have wings.
  - Contrapositive: if you do not have wings, then you are not a bird
  - Is the contrapositive true?

# LOGICALLY EQUIVALENT

- Two compound propositions p and q are logically equivalent iff  $p \leftrightarrow q$  is a tautology.
- We write this as  $p \Leftrightarrow q$  or as  $p \equiv q$  where p and q are compound propositions.
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.

| • T | p | q | $\neg p$ | $\neg p \lor q$ | $p \rightarrow q$ |
|-----|---|---|----------|-----------------|-------------------|
|     | T | T | F        | T               | T                 |
|     | T | F | F        | F               | F                 |
|     | F | T | T        | T               | T                 |
|     | F | F | T        | T               | T                 |

#### DE MORGAN'S LAWS

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

This truth table shows that De Morgan's Second Law holds.

| p | q | $\neg p$ | $\neg q$ | (p∨q) | ¬ <b>(</b> p∨q) | $\neg p \land \neg q$ |
|---|---|----------|----------|-------|-----------------|-----------------------|
| T | Т | F        | F        | T     | F               | F                     |
| Т | F | F        | T        | Т     | F               | F                     |
| F | T | T        | F        | Т     | F               | F                     |
| F | F | Т        | Т        | F     | Т               | Т                     |

## LAWS OF PROPOSITIONAL LOGIC

| Idempotent laws:        | $p \vee p \equiv p$                                       | $p \wedge p \equiv p$                                             |
|-------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| Associative laws:       | $(p \vee q) \vee r \equiv p \vee (q \vee r)$              | $(p \wedge q) \wedge r = p \wedge (q \wedge r)$                   |
| Commutative laws:       | $p \vee q = q \vee p$                                     | $p \wedge q = q \wedge p$                                         |
| Distributive laws:      | $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ | $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$       |
| Identity laws:          | $p \vee F \equiv p$                                       | $p \wedge T \equiv p$                                             |
| Domination laws:        | $p \wedge F \equiv F$                                     | $p \vee T \equiv T$                                               |
| Double negation law:    | $\neg \neg p \equiv p$                                    |                                                                   |
| Complement laws:        | p ∧ ¬p ≡ F<br>¬T ≡ F                                      | $p \vee \neg p \equiv T$<br>$\neg F \equiv T$                     |
| De Morgan's laws:       | $\neg(p \lor q) \equiv \neg p \land \neg q$               | $\neg(p \land q) \equiv \neg p \lor \neg q$                       |
| Absorption laws:        | $p \lor (p \land q) \equiv p$                             | $p \wedge (p \vee q) \equiv p$                                    |
| Conditional identities: | $p \rightarrow q = \neg p \lor q$                         | $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$ |

$$\neg Q \rightarrow \neg P$$
 IS THE SAME AS  $P \rightarrow Q$ 

- Two propositions are equivalent if they always have the same truth value.
- **Example**: Show using a truth table that the conditional is equivalent to the contrapositive.

#### Solution:

| p | q | $\neg p$ | $\neg q$ | $p \rightarrow q$ | $\neg q \rightarrow \neg p$ |
|---|---|----------|----------|-------------------|-----------------------------|
| T | T | F        | F        | T                 | T                           |
| T | F | F        | T        | F                 | F                           |
| F | Т | Т        | F        | T                 | T                           |
| F | F | Т        | Т        | Т                 | T                           |

You can also show the equivalence using "proofs": ZyBook 2.5

# CONVERSE, CONTRAPOSITIVE, INVERSE

| Proposition:    | $p \rightarrow q$ | Ex: If it is raining today, the game will be cancelled.     |
|-----------------|-------------------|-------------------------------------------------------------|
| Converse:       | $q \rightarrow p$ | If the game is cancelled, it is raining today.              |
| Contrapositive: | ¬q → ¬p           | If the game is not cancelled, then it is not raining today. |
| Inverse:        | ¬p → ¬q           | If it is not raining today, the game will not be cancelled. |

Only the contrapositive is equivalent to the original statement

# PREDICATES AND QUANTIFIES

ZyBook 2.6-2.10

#### SECTION SUMMARY

- Predicates
- Variables
- Quantifiers
  - Universal Quantifier
  - Existential Quantifier
- Negating Quantifiers
  - De Morgan's Laws for Quantifiers
- Translating English to Logic
- Logic Programming

# PROPOSITIONAL LOGIC

- •Premises:
- If Jack knows Jill, then Jill knows Jack.
- Jack knows Jill.
- Conclusion:
- Is it the case that Jill knows Jack?

# **PROBLEM**

- Premises:
- If one person knows another, then the second person knows the first.
- Jack knows Jill.
- Conclusion:
- Is it the case that Jill knows Jack?

• How do we represent the first premise in a way that allows us to derive the desired conclusion?

#### PREDICATE LOGIC

- Predicate logic uses the following new features:
  - Variables: x, y, z
  - Predicates: P(x), M(x)
  - Quantifiers (to be covered in a few slides):
- Propositional functions are a generalization of propositions.
  - They contain variables and a predicate, e.g., P(x)
  - Variables can be replaced by elements from their domain.

#### PROPOSITIONAL FUNCTIONS

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain (or bound by a quantifier, as we will see later).
- The statement P(x) is said to be the value of the propositional function P at x.
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
  - P(-3) is false.
  - P(0) is false.
  - P(3) is true.
- Often the domain is denoted by U. So in this example U is the integers.

#### EXAMPLES OF PROPOSITIONAL FUNCTIONS

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values:

```
R(2,-1,5)
Solution: F
R(3,4,7)
Solution: T
R(x, 3, z)
Solution: Not a Proposition
```

• Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

```
Q(2,-1,3)
Solution: T
Q(3,4,7)
Solution: F
Q(x,3,z)
Solution: Not a Proposition
```

#### COMPOUND EXPRESSIONS

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

```
P(3) \vee P(-1) Solution: T
P(3) \wedge P(-1) Solution: F
P(3) \rightarrow P(-1) Solution: F
P(3) \rightarrow ¬P(-1) Solution: T
```

 Expressions with variables are not propositions and therefore do not have truth values. For example,

$$P(3) \land P(y)$$
  
 $P(x) \rightarrow P(y)$ 

 When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.





Charles Peirce (1839-1914)

- We need quantifiers to express the meaning of English words including all and some:
  - "All men are Mortal."
  - "Some cats do not have fur."
- The two most important quantifiers are:
  - Universal Quantifier, "For all," symbol:  $\forall$
  - Existential Quantifier, "There exists," symbol: ∃
- We write as in  $\forall x P(x)$  and  $\exists x P(x)$ .
- $\forall x P(x)$  asserts P(x) is true for every x in the domain.
- $\exists x P(x)$  asserts P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable x in these expressions.

#### UNIVERSAL QUANTIFIER

•  $\forall x P(x)$  is read as "For all x, P(x)" or "For every x, P(x)"

#### **Examples**:

- If P(x) denotes "x > 0" and U is the integers, then  $\forall x P(x)$  is false.
- 2) If P(x) denotes "x > 0" and U is the positive integers, then  $\forall x P(x)$  is true.
- 3) If P(x) denotes "x is even" and U is the integers, then  $\forall x P(x)$  is false.

#### EXISTENTIAL QUANTIFIER 3

■  $\exists x P(x)$  is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

#### **Examples**:

- If P(x) denotes "x > 0" and U is the integers, then  $\exists x P(x)$  is true. It is also true if U is the positive integers.
- 2. If P(x) denotes "x < 0" and U is the positive integers, then  $\exists x P(x)$  is false.
- 3. If P(x) denotes "x is even" and U is the integers, then  $\exists x P(x)$  is true.

## UNIQUENESS QUANTIFIER 3!

- $\exists ! x P(x)$  means that P(x) is true for one and only one x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
  - "There is a unique x such that P(x)."
  - "There is one and only one x such that P(x)"
- Examples:
  - 1. If P(x) denotes "x + 1 = 0" and U is the integers, then  $\exists ! x P(x)$  is true.
  - 2. But if P(x) denotes "x > 0," then  $\exists ! x P(x)$  is false.
- The uniqueness quantifier is not really needed as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x \ (P(x) \land \forall y \ (P(y) \to y = x))$$

# BOUND AND FREE VARIABLES

•An occurrence of a variable is **bound** if and only if it lies in the scope of a quantifier of that variable. Otherwise, it is **free**.

 $\blacksquare \exists y.q(x,y)$ 

In this example, x is free and y is bound.

# THINKING ABOUT QUANTIFIERS

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate  $\forall x P(x)$  loop through all x in the domain.
  - If at every step P(x) is true, then  $\forall x P(x)$  is true.
  - If at a step P(x) is false, then  $\forall x P(x)$  is false and the loop terminates.
- To evaluate  $\exists x P(x)$  loop through all x in the domain.
  - If at some step, P(x) is true, then  $\exists x P(x)$  is true and the loop terminates.
  - If the loop ends without finding an x for which P(x) is true, then  $\exists x P(x)$  is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

# PROPERTIES OF QUANTIFIERS

■ The truth value of  $\exists x P(x)$  and  $\forall x P(x)$  depend on both the propositional function P(x) and on the domain U.

#### • Examples:

- 1. If *U* is the positive integers and P(x) is the statement "x < 2", then  $\exists x P(x)$  is true, but  $\forall x P(x)$  is false.
- 1. If *U* is the negative integers and P(x) is the statement "x < 2", then both  $\exists x P(x)$  and  $\forall x P(x)$  are true.
- 1. If U consists of 3, 4, and 5, and P(x) is the statement "x > 2".

then both  $\exists x P(x)$  and  $\forall x P(x)$  are true. But if P(x) is the statement "x < 2", then both  $\exists x P(x)$  and  $\forall x P(x)$  are false.

# PRECEDENCE OF QUANTIFIERS

- The quantifiers  $\forall$  and  $\exists$  have higher precedence than all the logical operators.
- For example,  $\forall x P(x) \lor Q(x)$  means  $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$  means something different.
- Unfortunately, often people write  $\forall x P(x) \lor Q(x)$  when they mean
- $\forall x (P(x) \lor Q(x)).$

# NEGATING QUANTIFIED STATEMENTS



ZyBook 2.8

# NEGATING QUANTIFIED EXPRESSIONS

• Consider  $\forall x J(x)$ 

"Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.

• Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."

Symbolically  $\neg \forall x J(x)$  and  $\exists x \neg J(x)$  are equivalent

# NEGATING QUANTIFIED EXPRESSIONS

- Now Consider ∃x J(x)
   "There is a student in this class who has taken a course in Java."
   Where J(x) is "x has taken a course in Java."
- Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"

Symbolically  $\neg \exists x J(x)$  and  $\forall x \neg J(x)$  are equivalent