Лекции по курсу *"Математическая Статистика"* Ибрагимов Д. Н.

Contents

1		огомерное нормальное распределение ечание Лемма 1 Определение 1
	1.1 1.2 1.3	Лемма 1
	1.2 1.3	Определение 1
	1.3	* **
	1.4	Лемма 2
		Лемма 3
	1.5	Лемма 4
		note
	1.6	Определение 2
	Зам	- ечание
	1.7	Лемма 5
		Доказательство
	Зам	ечание
	1.8	Определение 3
		1.8.1 Доказательство леммы 3
		1.8.2 Доказательство леммы 4
	Зам	ечание
2	Тоот	рема о нормальной корреляции
_	2.1	Определение 1
	2.1	Основные свойства условного М. О.
	۷.۷	2.2.1 Свойство 1
		2.2.1 Свойство 1
		2.2.3 Свойство 3
		2.2.4 Свойство 4
	2.3	
	2.3	Лемма 1
	2	Доказательство
		ечание
	2.4	Определение 2
	2.5	Определение 3
	2.6	Теорема 1
	0.5	Доказательство
	2.7	Теорема 2 (О нормальной корреляции)
		Доказательство
	Зам	ечание
3	Вид	ы сходимости последовательностей случайных величин
	3.1	Определение 1
	3.2	Определение 2
	3.3	Определение 3

	3.4	Определение 4	5
	3.5	Пример 1	5
	3.6	Пример 2	6
	3.7	Пример 3	6
	3.8	Пример 4	6
	3.9	Пример 5	7
	Заме	ечание	7
	3.10	Лемма 1	7
		Доказательство	7
	3.11	Лемма 2 (Неравенство Маркова)	8
		Доказательство	8
	3.12	Следствие 1	8
		Доказательство	8
	3.13	Следствие 2 (Неравенство Чебышёва)	8
		Доказательство	8
	3.14	Лемма 3	8
		Доказательство	9
	3.15	Теорема 1 (Бореля — Кантелли)	9
		Доказательство	9
	3.16	Лемма 4	9
		Доказательство	0
	Заме	ечание	0
4		он больших чисел	
	4.1	Определение 1	
	4.2	Определение 2	
	4.3	Теорема 1 (Закон Больших Чисел Чебышёва)	
		Доказательство	
	4.4	Теорема 2 (Закон Больших Чисел Колмогорова)	
		ечание	
	4.5	Теорема 3	
		Доказательство	
	4.6	Следствие 1	
		Доказательство	
	4.7	Теорема 4	
		рчание	
	4.8	Следствие 2	
		Доказательство	3
5	Пец	гральная предельная теорема (ЦПТ)	1
J	цсп	гральная предельная теорема (ЦПТ)	
	Зама	учание 2	4
		ечание	
	5.1	Определение 1	4
	5.1 5.2	Определение 1 2 Лемма 1 2	4
	5.1	Определение 1	4 4

	5.4	Доказательство леммы 5.1	25
	Заме	ечание	25
	5.5	Определение 2	25
	5.6	Теорема 1 (Центральная предельная)	25
		Доказательство	26
	5.7	Следствие 1 (Теорема Муавра - Лапласа)	26
		Доказательство	26
	5.8	Пример 1	27
	5.9	Теорема 2 (Ляпунова)	27
		ечание	27
	5.10	Теорема 3 (Неравенство Берри-Эссеена)	27
		ечание	28
		Пример	28
	0.11	Tapanap	
6	Выб	орка и ее характеристики	29
	6.1	Определение 1	29
	6.2	Определение 2	29
	6.3	Определение 3	29
	Заме	ечание	29
	6.4	Определение 4	29
	6.5	Определение 5	29
	Заме	ечание	29
	6.6	Определение 6	29
	6.7	Определение 7	29
	6.8	Лемма 1	30
		Доказательство	30
	6.9	Следствие 1	30
	6.10	Определение 8	30
	6.11	Теорема 1 (Мостеллера)	30
	6.12	Определение 9	30
		ечание	30
		Свойства $\hat{F_n}(x)$	31
		ечание	31
		Определние 10	32
		ечание	32
		орочные моменты	32
		Определние 1	32
	6.16	Определение 2	32
		Определение 3	32
		Свойства выборочных моментов	33
	0.10	22012124 22100po man Mondinos	55
7	Осн	овные распределения в статистике	35
		ечные оценки	35
	7.1	Опредление 1	35
	7.2	Свойства распределения $\chi^2(n)$	35

	7.3	Определение 2
	7.4	Свойства распределения $t(n)$
	7.5	Определение 3
	7.6	Свойства распределения $F(n;m)$
	7.7	Определение 4
	7.8	Определение 5
	Заме	ечание
	7.9	Определение 6
	7.10	Определение 7
	7.11	Определение 8
		Определение 9
		ечание
	7.13	Определение 10
		Пример
	7.15	Теорема 1
	7.13	Доказательство
		доказательство
8	Эфф	ективные оценки 40
	8.1	Определение 1
		ечание
	8.2	Определение 2
		ечание
	8.3	Определение 3
	8.4	Лемма 1
	0.1	Доказательство
	8.5	Определение 4
		ечание
	8.6	Лемма 2
	0.0	Доказательство
	8.7	Пример 1
	8.8	Пример 2
	8.9	Теорема 1 (Неравенство Рао-Крамера) 42
	0.9	Доказательство
	Q 10	Определение 5
		ечание
	0.11	Пример 3
9	Мет	оды построения точеченых оценок 44
		од максимального правдоподобия
	9.1	Определение 1
		ечание
	9.2	Пример 1
	9.3	Пример 2
		ечание
	9.4	Пример 3

Заме	ечание
9.5	Теорема 1
Мето	од моментов
9.6	Определение 2
9.7	Определение 3
9.8	Теорема 2
	Доказательство
9.9	Пример 1
9.10	Пример 2
Заме	ечание

Источники

• Ивченко Г. И., Медведев Ю. И. "Математическая статистика", изд. "Высшая школа", 1984

- Кибзун А. И., Наумов А. В., Горяинова Е. Р. "Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами", изд "ФИЗМАТЛИТ", 2013
- Панков А. Р., Платонов Е. Н. "Практикум по математической статистике", изд. "МАИ", 2006

1 Многомерное нормальное распределение

Замечание

Вектор $X=(X_1,\dots,X_n)^T$ называется **случайным**, если X_1,\dots,X_n — случайные величины (далее **с.в**), определенные на одном вероятностном пространстве.

Через $M[X] = m_X$ обозначим вектор математического ожидания:

$$M[X] = m_X = \begin{pmatrix} M[X_1] \\ \vdots \\ M[X_n] \end{pmatrix}$$

Через K_x обозначим ковариационную матрицу с.в X:

$$K_X = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

1.1 Лемма 1

Пусть $K_X \in \mathbb{R}^{n \times n}$ — ковариационная матрица с.в X. Тогда:

1.
$$K_X \geqslant 0$$
, т.е. $\forall x \in \mathbb{R}^n \setminus \{0\}, x^T K_X x \geqslant 0$;

2.
$$K_X^T = K_X$$

1.2 Определение 1

Случайный вектор $X = (X_1, \dots, X_n)^T$ называется **невырожденным нормальным вектором**:

$$X \sim N(m_X, K_X)$$

если совместная плотность вероятности имеет вид:

$$f_X(x)=((2\pi)^n\det K_X)^{\frac{-1}{2}}\exp\{\frac{-1}{2}(x-m_X)^TK_X^{-1}(x-m_X)\}$$
 где $m_X\in\mathbb{R}^n,K_X\in\mathbb{R}^{n\times n},K_X>0,K_x^T=K_X$

1.3 Лемма 2

Пусть X — невырожденный нормальный вектор с параметрами m_X и K_X . Тогда $M[X]=m_X$, а K_X — корвариационная матрица X. Рассмотрим основные свойства многомерного нормального распределения.

1.4 Лемма 3

Пусть $X \sim N(m_X, K_X), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$ Тогда:

$$Y = AX + b \sim N(m_Y, K_Y),$$

$$m_Y = Am_X + b,$$

$$K_Y = AK_XA^T.$$

1.5 Лемма 4

Пусть $X \sim N(m_X, K_X)$.

Тогда компоненты вектора X **независимы** тогда и только тогда, когда они некоррелированы.

note

Доказательство данных утверждений при помощи аппарата функций распределения и плотности довольно сложно. Поэтому рассмотрим аппарат характеристических функций.

1.6 Определение 2

Пусть $X = (X_1, ..., X_n)^T -$ случайный вектор.

Тогда характеристической функцией называется:

$$\psi_X(\lambda) = M[e^{i\lambda^TX}] = \int\limits_{\mathbb{R}^n} e^{i\lambda^TX} dF_X(x)$$

Замечание

Характеристическая функция определена для любого случайного вектора или с.в. Если с.в **дискретная**, то:

$$\psi_X(\lambda) = \sum_{k=1}^{\infty} e^{i\lambda X_k} p_k$$

Если с.в абсолютно непрерывная, то

$$\psi_X(\lambda) = \int\limits_{\mathbb{D}} e^{i\lambda X} f_X(x) dx$$

В этом случае $\psi_X(\lambda)$ является **преобразованием Фурье** f_X .

Поскольку преобразование Фурье взаимно однозначно, а f_X однозначно определяет распределение, то характеристическая функция $\psi_X(x)$ также однозначно определяет распределение с.в X.

Причем:

$$f_X(x) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}} e^{-i\lambda^T X} \psi_X(x) d\lambda$$

1.7 Лемма 5

Пусть X — случайный вектор, $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$. Тогда:

1. для Y = AX + b

$$\psi_Y(\lambda) = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

2. компоненты вектора X **независимы** тогда и только тогда, когда

$$\psi_Y(\lambda) = \prod_{k=1}^n \psi_{X_k}(\lambda_k)$$

Доказательство

1.
$$\psi_Y(\lambda) = M[e^{i\lambda^T Y}] = M[e^{i\lambda^T AX} e^{i\lambda^T b}] = e^{i\lambda^T b} M[e^{i(A^T \lambda)^T X}] = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

$$2. \ \psi_X(\lambda) = \int\limits_{\mathbb{R}} \dots \int\limits_{\mathbb{R}} e^{i(\lambda_1 x_1 + \dots + \lambda_n x_n)} f_X(x_1, \dots, x_n) dx_1 \cdot \dots \cdot dx_n = \{\text{H/3}\} = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} \cdot \dots \cdot e^{\lambda_n x_n} \cdot f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_1 \cdot \dots \cdot dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{x_1}(x_1) dx_1 \cdot \dots \cdot \int\limits_{\mathbb{R}} e^{i\lambda_n x_n} f_{x_n}(x_n) dx_n = \prod\limits_{k=1}^n \psi_{X_k}(\lambda_k) dx_k = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_k}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_1 \cdot \dots \cdot f_{X_n} dx_n = \int\limits_{\mathbb{R}} e^{i\lambda_1 x_1} f_{X_n}(x_n) dx_n = \int\limits_{\mathbb{R}} e^{i$$

Замечание

При помощи характеристической функции можно дать другое определение нормального распределения. В том числе для вырожденного K_X .

1.8 Определение 3

Случайный вектор X называется **нормальным**: $X \sim N(m_X, K_X)$, если:

$$\psi_X(\lambda) = \exp\{i\lambda^T m_X - \frac{1}{2}\lambda^T K_X \lambda\}$$

1.8.1 Доказательство леммы 3

В силу Леммы 5, п.1

$$\begin{split} \psi_Y(\lambda) &= e^{i\lambda^T b} \psi_X(A^T \lambda) = e^{i\lambda^T b} \exp\{i\lambda^T A m_x - \frac{1}{2} \lambda^T A K_X A^T \lambda\} = \\ &= \exp\{i\lambda^T (A m_x + b) - \frac{1}{2} \lambda^T (A K_x A^T) \lambda\} \end{split}$$

9

1.8.2 Доказательство леммы 4

Пусть X_i,\dots,X_n попарно некоррелированы. Тогда $cov(X_i,X_i)=0,$ $i\neq 0,$ т.е. :

$$\begin{split} K_x &= diag(\sigma_{X_1}^2, \dots, \sigma_{X_n}^2) = \\ &= \begin{pmatrix} \sigma_{X_1}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{X_n}^2 \end{pmatrix} \end{split}$$

$$\begin{array}{ll} \psi_X(\lambda) \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}\lambda^T K_X \lambda\} \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}(\lambda_1^2 \sigma_{X_1}^2 + \dots + \lambda_n^2 \sigma_{X_n}^2)\} = \prod_{k=1}^n \exp\{i\lambda_n m_{X_n} - \frac{1}{2}\lambda_k^2 \sigma_{K_n}^2\} = \prod_{k=1}^n \psi_{X_k}(\lambda_k). \end{array}$$

Откуда с учетом Леммы 5, п.1 X_1, \dots, X_n — н/з.

Пусть X_1,\dots,X_n — н/з. Тогда X_1,\dots,X_n попарно некоррелированы. \blacksquare

Замечание

Поскольку K_X — невырожденная, симметричная и положительноопределенная, то существует $S \in \mathbb{R}^{n \times n}$ — ортогональная (т. е. $S^T = S^{-1}$) такая, что:

$$S^TK_XS = \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

где
$$\lambda_i > 0, i = \overline{1,n}$$

Определим матрицу $\Lambda^{-\frac{1}{2}}=diag(\lambda_1^{-\frac{1}{2}},\dots,\lambda_n^{-\frac{1}{2}}).$ Рассмотрим вектор

$$Y = \Lambda^{-\frac{1}{2}} S^T (X - m_X)$$

Тогда $A=\Lambda^{-\frac{1}{2}}S^T, b=-\Lambda^{-\frac{1}{2}}S^Tm_X.$

В силу Леммы 3:

$$\begin{split} m_Y &= A m_X + b = \Lambda^{-\frac{1}{2}} S^T - \Lambda^{-\frac{1}{2}} S^T m_X = 0, \\ K_Y &= A K_X A^T = \Lambda^{-\frac{1}{2}} S^T K_X S \Lambda^{-\frac{1}{2}} = I, \end{split}$$

т. е.
$$Y \sim N(0, I)$$
.

При помощи невырожденного линейного преобразования с.в. X может быть преобразован в стандартный нормальный вектор.

Верно и обратное:

$$X = m_X + S\Lambda^{\frac{1}{2}}Y,$$

откуда следует Лемма 2

2 Теорема о нормальной корреляции

2.1 Определение 1

Условным математическим ожиданием абсолютно непрерывного случайного вектора X относительно абсолютно непрерывного случайного вектора Y называется:

$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx,$$
где $f_{X\mid Y}(x\mid Y)=\frac{f_z(x,Y)}{f_y(Y)},z=\binom{X}{Y}$

2.2 Основные свойства условного М. О.

2.2.1 Свойство 1

$$\boxed{M[C\mid Y]=C}$$
 Доказательство
$$M[C\mid Y]=\int\limits_{-\infty}^{+\infty}Cf_{X\mid Y}(x\mid Y)dx=\frac{C\int\limits_{-\infty}^{+\infty}f_{z}(x,Y)dx}{f_{Y}(Y)}=C\frac{f_{Y}(Y)}{f_{Y}(Y)}=C.$$

2.2.2 Свойство 2

2.2.3 Свойство 3

$$\boxed{M[\alpha X_1 + \beta X_2 \mid Y] = \alpha M[X_1 \mid Y] + \beta M[X_2 \mid Y]}$$

2.2.4 Свойство 4

Пусть
$$X,Y$$
 — независимые. Тогда $M[X\mid Y]=M[X]$ Доказательство
$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx=\int\limits_{-\infty}^{+\infty}x\frac{f_z(x,Y)}{f_Y(Y)}dx=\int\limits_{-\infty}^{}+\infty x\frac{f_X(x)f_Y(Y)}{f_Y(Y)}dx=M[X].$$

2.2.5 Свойство 5

$$M[M[X\mid Y]]=M[X]$$
 (формула повторного М. О.)

Доказательство

2.3 Лемма 1

Пусть X,Y — случайные векторы с конечными вторыми моментами. Тогда: $M[(X-\hat{X})\phi(Y)^T]=0$ где $\hat{X}=M[X\mid Y]$

Доказательство

$$\begin{split} &M[(X-\hat{X})\phi(Y)^T] = M[X\phi(Y)^T] - M[M[X\mid Y]\phi(Y)^T] = \\ &= \text{по Cвойству 2} = M[X\phi(Y)^T] - M[M[X\phi(Y)^T\mid Y]] = \text{по Свойству 5} = M[X\phi(Y)^T] - M[X\phi(Y)^T] = 0. \ \blacksquare \end{split}$$

Замечание

Если рассмотреть евклидово пространство $\mathbb{L}_2(\Omega)$ со скалярным произведением:

$$(X,Y) = M[X \cdot Y]$$

то *условное* М. О. — **оператор ортогонального проектирования** X на подпространство, порождаемое Y.

2.4 Определение 2

Оценкой X по наблюдениям Y называется любая измеримая функция $\phi(Y).$

2.5 Определение 3

 \pmb{O} Оденка \hat{X} называется с.к.-оптимальной оценкой X, если для любой другой оценки \tilde{X} верно

$$M[|\tilde{X}-\hat{X}|^2]\leqslant M[|X-\tilde{X}|^2]$$

2.6 Теорема 1

 $M[X\mid Y]-$ с.к.-оптимальная оценка X по наблюдениям Y.

Доказательство

$$\begin{split} M[|X - \tilde{X}|^2] &= M[|X - \hat{X} + \hat{X} - \tilde{X}|^2] = M[|X - \hat{X}|^2] + 2M[(X - \hat{X})^T(\hat{X} - \tilde{X})] + M[|\hat{X} - \tilde{X}|^2] \stackrel{*}{=} \end{split}$$

Поскольку по определению $\tilde{X}-\hat{X}=\phi(Y)$, то в силу Леммы 2.1 $M[(X-\hat{X})^T(\tilde{X}-\hat{X})]=0$.

$$\stackrel{*}{=} M[|X - \hat{X}|^2] + M[|\hat{X} - \tilde{X}|^2] \geqslant M[|X - \hat{X}|^2]. \blacksquare$$

2.7 Теорема 2 (О нормальной корреляции)

Пусть

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} m_X \\ m_Y \end{pmatrix}, \begin{pmatrix} K_X & K_{XY} \\ K_{XY}^T & K_Y \end{pmatrix} \right)$$

Тогда

1.
$$Law(X | Y) = N(\mu(Y), \Delta),$$

где

$$\mu(Y) = M[X \mid Y] = m_X + K_{XY} K_Y^{-1} (Y - m_Y)$$

 $\Delta = K_X - K_{XY} K_Y^{-1} K_{YX}$

2.
$$M[|X - \mu(Y)|^2] = tr(K_X - K_{XY}K_Y^{-1}K_{YX})$$

Доказательство

Рассмотрим линейное преобразование Y:

$$\mu(Y) = m_X + K_{XY} K_Y^{-1} (Y - m_Y)$$

В силу Леммы 1.3

$$X-\mu(Y)=(I-K_{XY}K_Y^{-1})\begin{pmatrix} X\\Y\end{pmatrix}-m_X+K_{XY}K_Y^{-1}m_Y\sim N(\mu,K)$$

$$\mu=(I-K_{XY}K_Y^{-1})\begin{pmatrix} m_X\\m_Y\end{pmatrix}-m_X+K_{XY}K_Y^{-1}m_Y=0$$

$$K=(I-K_{XY}K_Y^{-1})\begin{pmatrix} K_X&K_{XY}\\K_{XY}^T&K_Y\end{pmatrix}\begin{pmatrix} I\\-(K_{XY}K_Y^{-1})^T\end{pmatrix}=$$

$$=(K_X-K_{XY}K_Y^{-1}K_{XY}^T&K_{XY}-K_{XY}K_Y^{-1}K_Y)\begin{pmatrix} I\\K_Y^{-1}K_{XY}^T\end{pmatrix}=$$

$$=K_X-K_{XY}K_Y^{-1}K_{XY}^{-1}=\Delta$$

$$cov(X-\mu(Y),Y)=cov(X,Y)-cov(\mu(Y),Y)=cov(X,Y)-cov(K_{XY}K_Y^{-1}Y+m_X-K_{XY}K_Y^{-1}m_Y,Y)=cov(X,Y)-K_{XY}K_Y^{-1}cov(Y,Y)=K_{XY}-K_{XY}K_Y^{-2}K_Y=0$$
 т.е. $X-\mu(Y)$ и Y некорреливаны.

Тогда в силу Леммы 1.5, п.2 $X - \mu(Y)$ и Y независимы. Построим характеристическую функцию условного распределения X относительно Y:

$$\psi_{X\mid Y}(\lambda\mid Y) = \int\limits_{\mathbb{R}^n} e^{i\lambda^T X} f_{X\mid Y}(x\mid Y) dx = M[e^{i\lambda^T X}\mid Y] = M[e^{i\lambda^T (X-\mu(Y))} e^{i\lambda^T \mu(Y)}\mid Y] \stackrel{*}{=}$$

в силу Леммы 1.2 и независимости
$$X - \mu(Y)$$
 и $Y = M[e^{i\lambda^T(X-\mu(Y))} \mid Y] \cdot M[e^{i\lambda^T\mu(Y)} \mid Y] = M[e^{i\lambda^T(X-\mu(Y))}]e^{i\lambda^T\mu(Y)} = \psi_{X-\mu(Y)}(\lambda)e^{i\lambda^T\mu(Y)} = \exp\{-\frac{1}{2}\lambda^T\Delta\lambda\} \cdot \exp\{i\lambda^T\mu(Y) - \frac{1}{2}\lambda^T\Delta\lambda\}$

т.е. Условное распределение нормальное:

$$X(Y \sim N(\mu(Y), \Delta))$$

Вычислим с.к. ошибку:

$$M[|X - \mu(Y)|^2] = M[\Delta X_1^2 + \Delta X_2^2 + \dots + \Delta X_n^2] = \sum_{k=1}^n M[\Delta X_k^2] = \sum_{k=1}^n D[\Delta X_k] = \sum_{k=1}^n \Delta_{kk} = tr\Delta$$
. ■

Замечание

- 1. Из Теоремы о нормальной корреляции следует, что в гауссовском случае с.к.оптимальная оценка является линейной.
- 2. Если X и Y независимы, то с.к.-оптимальная оценка m_X .
- 3. С.к.-оптимальная оценка **несмещенная**, т.к. $M[X \mu(Y)] = 0$.

3 Виды сходимости последовательностей случайных величин

3.1 Определение 1

Говорят, что $\{X_n\}_{n=1}^\infty$ образует **последовательность случайных величин**, если $\forall N \in \mathbb{N}$ X_n определены на одном вероятностном пространстве.

3.2 Определение 2

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится по вероятности к с.в. X, если $\forall \varepsilon>0$:

$$\lim_{n \to \infty} P(|X_n - X| \leqslant \varepsilon) = 1$$

ИЛИ

$$\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$$

3.3 Определение 3

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится почти наверное к с.в. X, если

$$P(\{\omega: X_n(\omega) \overset{n \to \infty}{\nearrow} X(\omega)\}) = 0$$

ИЛИ

$$P(\{\omega: X_n(\omega) \overset{n \to \infty}{\longrightarrow} X(\omega)\}) = 1$$

3.4 Определение 4

Говорят, что последовательность с.в. $\{X\}_{n\in\mathbb{N}}$ сходится в среднем квадратическом к с.в. X, если

$$M[|X_n - X|^2] \stackrel{n \to \infty}{\longrightarrow} 0$$

3.5 Пример 1

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — случайная последовательность.

$$X \sim \begin{pmatrix} 0 & n \\ 1 - \frac{1}{n^2} & \frac{1}{n^2} \end{pmatrix}$$

$$P(\{\omega: \lim_{n\to\infty} X_n(\omega)\neq 0\})=P(\{\omega: \forall N\in \mathbb{N} \exists n\geqslant N: X_n(\omega)=n\})=P(\prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: X_n(\omega)=n\})\stackrel{*}{=}$$

1.
$$\sum\limits_{n=N+1}^{\infty}\{\omega:X_n(\omega)=n\}\subset\sum\limits_{n=N}^{\infty}\{\omega:X_n(\omega)=n\}$$

$$\text{2. }P(\sum_{n=N}^{\infty}\{\omega:X_n(\omega)=n\}\leqslant \sum_{n=N}^{\infty}P(\{\omega:X_n(\omega)=n\})=\sum_{n=N}^{\infty}\frac{1}{n^2}\overset{n\to\infty}{\longrightarrow}0\text{, t.k. }\sum_{n=1}^{\infty}\frac{1}{n^2}<\infty$$

Тогда в силу *аксиомы непрерывности* $\stackrel{*}{=}$ 0, т.е. $X_n \stackrel{\text{п.н.}}{\longrightarrow} 0$

3.6 Пример 2

Рассмотрим ту же последовательность. Выберем $\varepsilon > 0$

$$P(|X_n - 0| \leqslant \varepsilon) = \begin{cases} 1, & \varepsilon \geqslant n \\ 1 - \frac{1}{n^2}, & \varepsilon \in (0; n) \end{cases}$$

Тогда $X_n \stackrel{P}{\longrightarrow} 0$

3.7 Пример 3

Рассмотрим ту же последовательность:

$$M[|X_n-0|^2]=M[X_n^2]=0^2(1-\tfrac{1}{n^2})+n^2\tfrac{1}{n^2}=1 \overset{n\to\infty}{\longrightarrow} 0$$
 Тогда $X_n\overset{\text{с.к.}}{\longrightarrow} 0$

3.8 Пример 4

Пусть $f_{nk}:[0;1]\longrightarrow\{0;1\}, n\in\mathbb{N}, k=\overline{1,n},$

$$f_{n,k} = \begin{cases} 0, & t \notin \left[\frac{k-1}{n}; \frac{k}{n}\right], \\ 1, & t \in \left[\frac{k-1}{n}; \frac{k}{n}\right]. \end{cases}$$

Пусть $X\sim R(0;1)$. Рассмотрим последовательность с.в. $X_{nk}=f_{nk}(X)$. $\forall\omega\in\Omega X(\omega)\in[0;1]$. Тогда $\forall n\in\mathbb{N}\exists k=\overline{1,n}$ такое, что $X(\omega)\in[\frac{k-1}{n};\frac{k}{n}]$. Т.е. если $\varepsilon=\frac{1}{2}$, то $\forall n\in\mathbb{N}$ найдется $k=\overline{1,n}$ такой, что

$$|f_{nk}(X(\omega)) - 0| > \varepsilon$$

Тогда $X_{nk}(\omega) \xrightarrow{n \to \infty} 0$, т.е.

$$\{\omega: \lim_{n,k\to\infty} X_{nk}(\omega) = 0\} = \emptyset$$

$$X_{nk} \xrightarrow{\Pi. \text{ M.}} 0$$

При этом $\forall \varepsilon > 0$

$$R(|X_{nk}-0|>\varepsilon) = \begin{cases} 0, & \varepsilon\geqslant 1,\\ P(X\in \left[\frac{k-1}{n}, & \frac{k}{n}\right]), \varepsilon\in (0;1) \end{cases} = \begin{cases} 0, & \varepsilon\geqslant 1, & \underset{n\to\infty}{n\to\infty}\\ \frac{1}{n}, & \varepsilon\in (0;1) \end{cases} \stackrel{n\to\infty}{\longrightarrow} 0$$

$$X_{nk} \stackrel{P}{\longrightarrow} 0$$

$$M[|X_{nk}-0|^2] = M[X_{nk}] = M[f_{nk}(X)] = \int\limits_0^1 f_{nk}(x)f_x(x)dx = \int\limits_0^1 f_{nk}(x)dx = \int\limits_{\frac{k-1}{n}}^1 1dx = \frac{1}{n} \stackrel{n\to\infty}{\longrightarrow} 0$$

$$X_{nk} \stackrel{\text{c.k}}{\longrightarrow} 0$$

3.9 Пример 5

Рассмотрим последовательность с.в. $Y_{n_1k}=nK_{n_1k}$ Тогда $Y_{n_1k}\stackrel{\text{п.н.}}{\longrightarrow} 0.\ \forall \varepsilon>0.$ $P(|Y_{n_1k}-0|>\varepsilon)=\begin{cases} 0, & \varepsilon\geqslant n, \\ P(X\in[\frac{k-1}{n};\frac{k}{n}]), & \varepsilon\in(0;n) \end{cases}=\begin{cases} 0, & \varepsilon\geqslant n, & \underset{1}{n to\infty}\\ \frac{1}{n}, & \varepsilon\in(0;n) \end{cases}\stackrel{nto\infty}{\longrightarrow} 0$ $Y_{n_1k}\stackrel{P}{\longrightarrow} 0$ $M[|Y_{n_1k}-0|^2]=M[n^2X_{nk}^2]=n^2M[X_{nk}]=n\stackrel{P}{\longrightarrow} \infty$ $Y_{n_1k}\stackrel{\text{c.s.}}{\longrightarrow} 0$

Замечание

Согласно определению для исследования на сходимость нужно знать совместное распределение с.в. X_n и X, а для случая сходимости почти наверное совместное распределение всей последовательности $\{X_n\}_{n\in\mathbb{N}}$ и X. Поэтому исследование на сходимость иначе, чем к детерминированной константе, довольно проблематично.

3.10 Лемма 1

Пусть
$$X_n \stackrel{\text{п.н.}}{\longrightarrow} X$$
. Тогда $X_n \stackrel{P}{\longrightarrow} X$.

Доказательство

$$0 = P(\{\omega: \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega) > \varepsilon\}) = P(\sum_{\varepsilon > 0} \prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon'\}),$$
 $\forall \varepsilon' > 0$ Тогда $0 = P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}),$

$$\sum_{n=N+1}^{\infty}\{\omega:|X_n(\omega)-X(\omega)|>\varepsilon\})\subset\sum_{n=N}^{\infty}\{\omega:|X_n(\omega)-X(\omega)|>\varepsilon\}$$

В силу аксиомы непрерывности:

$$\begin{split} 0 = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant \lim_{N \to \infty} P(\{\omega : |X_N(\omega) - X(\omega)| > \varepsilon\}) \\ X_N \xrightarrow{P} X \end{split}$$

3.11 Лемма 2 (Неравенство Маркова)

Пусть $P(X \geqslant 0) = 1, M[X] < \infty$. Тогда $\forall \varepsilon > 0$

$$P(X > \varepsilon) = \frac{M[X]}{\varepsilon}$$

Доказательство

$$M[X] = \int\limits_0^{+\infty} x dF_X(x) \geqslant \int\limits_{\varepsilon}^{+\infty} x dF_X(x) \geqslant \varepsilon \int\limits_{\varepsilon}^{+\infty} dF_X(X) = \varepsilon P(X > \varepsilon). \ \blacksquare$$

3.12 Следствие 1

Пусть $M[X^{-k}] < \infty$. Тогда $\forall \varepsilon > 0$:

$$P(|X| > \varepsilon) \leqslant \frac{M[|X|^k]}{\varepsilon^k}$$

Доказательство

$$P(|X| > \varepsilon) = P(|X|^k > \varepsilon^k) \leqslant \frac{M[|X|^k]}{\varepsilon^k}.$$

3.13 Следствие 2 (Неравенство Чебышёва)

Пусть $M[X^2] < \infty$. Тогда

$$P(|X - M[X]| > \varepsilon) \leqslant \frac{D[X]}{\varepsilon^2}$$

Доказательство

$$P(|X-M[X]|>\varepsilon)\leqslant \tfrac{M[|X-M[X]|^2]}{\varepsilon^2}=\tfrac{D[X]}{\varepsilon^2}. \ \blacksquare$$

3.14 Лемма 3

Пусть
$$X_n \stackrel{\text{с.к.}}{\longrightarrow} X$$
. Тогда $X_n \stackrel{P}{\longrightarrow} X$.

Доказательство

$$P(|X_n-X|>\varepsilon)\leqslant \tfrac{M[|X_n-X|^2]}{\varepsilon^2}\overset{n\to\infty}{\longrightarrow} 0. \ \blacksquare$$

Теорема 1 (Бореля — Кантелли) 3.15

Пусть
$$A_1,\dots,A_n\subset\Omega,B=\prod\limits_{N=1}^\infty\sum\limits_{n=N}^\infty A_n.$$
 Тогда

1. Если
$$\sum\limits_{n=1}^{\infty}P(A_n)<\infty$$
, то $P(B)=0$;

2. Если
$$A_1,\dots,A_n$$
 независимы в совокупности и $\sum\limits_{n=1}^{\infty}P(A_n)=\infty$, то $P(B)=1.$

Доказательство

1.
$$P(B) = P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} A_n) \stackrel{*}{=}$$

т.к.
$$\sum_{n=N+1}^\infty A_n \subset \sum_{n=N}^\infty A_n, \text{ то по аксиоме непрерывности } \stackrel{*}{=} \lim_{N\to\infty} P(\sum_{n=N}^\infty A_n) \leqslant \lim_{N\to\infty} \sum_{n=N}^\infty P(A_n) \stackrel{N\to\infty}{\longrightarrow} 0,$$
 т.к.
$$\sum_{n=1}^\infty P(A_n) < \infty$$

$$2. \ \ P(B) = \cdots = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} A_n) = \lim_{N \to \infty} (1 - P(\prod_{n=N}^{\infty} \overline{A_n})) = 1 - \lim_{N \to \infty} P(\prod_{M=N}^{\infty} \prod_{n=N}^{M} \overline{A_n}) \stackrel{*}{=}$$

т.к.
$$\prod_{n=N}^{M+1}\overline{A_n}\subset\prod_{n=N}^{M}\overline{A_n}$$
, то по аксиоме непрерывности

$$\overset{n=N}{=} 1 - \lim_{N \to \infty} \lim_{M \to \infty} P(\prod_{n=N}^{M} \overline{A_n}) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^{M} (1 - P(A_n)) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^{M} e^{\ln(1 - P(A_n))} = 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N$$

$$1-\lim_{} \lim_{} \lim_{} e^{\sum n=N^{M}\ln(1-P(A_{n}))} \geqslant \stackrel{*}{\geqslant}$$

т.к.
$$\ln(1-t) = -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \dots < -t$$
, то

$$\stackrel{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{-\sum\limits_{n=N}^{M} P(A_n)} = 1 - \lim_{n \to \infty} 0 = 1. \; \blacksquare$$

3.16 Лемма 4

Пусть $X_n \stackrel{P}{\longrightarrow} X$,

$$\sum_{n=1}^{\infty}P(|X_n-X|>\varepsilon)<\infty$$

Тогда $X_n \stackrel{\text{п.н.}}{\longrightarrow} X$

Доказательство

В силу Теоремы 3.1 $\forall \varepsilon > 0$

$$P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega : |X_n - X| > \varepsilon\}) = 0$$

Тогда

$$\begin{split} &P(\{\omega: \lim_{n\to\infty} X_n X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \varepsilon\}) \\ &= P(\{\omega: \exists M \in \mathbb{N}, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \frac{1}{M}\}) = P(\sum_{M=1}^\infty \prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: |X_n - X| > \frac{1}{M}\}) \leqslant \sum_{M=1}^\infty P(\prod_{N=1}^\infty \sum_{N=1}^\infty n = N^\infty \{\omega: |X_n - X| > \frac{1}{M}\}) = 0. \ \blacksquare \end{split}$$

Замечание

1.

$$\begin{array}{ccc} X_n \stackrel{\text{c.k.}}{\longrightarrow} X & \Longrightarrow & X_n \stackrel{P}{\longrightarrow} X \\ \text{ИЛИ} & & & \\ X_n \stackrel{\text{п.н.}}{\longrightarrow} X & \Longrightarrow & X_n \stackrel{P}{\longrightarrow} X \end{array}$$

- 2. В силу теоремы Рисса (функциональный анализ) если $X_n \stackrel{P}{\longrightarrow} X$, то существует подпоследовательность $\{X_{n_k}\}_{k\in\mathbb{N}}: X_{n_k} \stackrel{\text{п.н.}}{\underset{k\to\infty}{\longrightarrow}} X$
- 3. В силу теоремы о мажорирующей сходимости, если $X_n \stackrel{P}{\longrightarrow} X$ и $\exists Y-$ с.в.: $|X_n| \leqslant Y, M[Y^2] < \infty$, то $X_n \stackrel{\text{с.к.}}{\longrightarrow} X$
- 4. Также из функционального анализа известно, что операция предела (по мере, почти наверное, в средне квадратическом) замкнута относительно линейных операций и непрерывных преобразований.

4 Закон больших чисел

4.1 Определение 1

Выборкой объема n будем называть с.в. $Z_n = (X_1, \dots, X_n)^T$, где X_1, \dots, X_n — независимые с.в.

Через $F_k(x)$ обозначим функцию распределения k-го элемента выборки.

Если $F_k = F_1, k = \overline{2,n}$, то выборка называется *однородной*.

4.2 Определение 2

Выборочным средним $\overline{X_n}$ выборки Z_n называется $\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k$

4.3 Теорема 1 (Закон Больших Чисел Чебышёва)

Пусть Z_n — однородная выборка, $M[X_k^2] < \infty$.

Тогда
$$\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X, \overline{X_n} \stackrel{P}{\longrightarrow} m_X$$

Доказательство

$$M[|\overline{X_n}-m_X|^2]=M[|\overline{X_n}-M[\overline{X_n}]|^2|^2]=D[\overline{X_n}]=\tfrac{1}{n^2}D[\tfrac{n}{k=1}X_k]=\tfrac{nD[X_1]}{n^2}\overset{n\to\infty}{\longrightarrow}0$$

Т.е. по определению $\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X.$

С учетом Леммы 3.3 $\overline{X_n} \stackrel{P}{\longrightarrow} m_X$.

4.4 Теорема 2 (Закон Больших Чисел Колмогорова)

Пусть Z_n — однородная выборка, $M[X_k]=m_X<\infty$.

Тогда $\overline{X_n} \stackrel{\text{п.н.}}{\longrightarrow} m_X$

Замечание

Т.о. для однородной выборки $\overline{X_n}$ сходится почти наверное и по вероятности к m_X , если оно существует, и в среднем квадратичном, если существует дисперсия.

4.5 Теорема 3

Пусть Z_n — неоднородная выборка, $M[X_k]=m_X<\infty, D[X_k]=D_k\leqslant D_{max}<\infty,$ где $k\in\mathbb{N}$

Тогда
$$\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X, \overline{X_n} \stackrel{P}{\longrightarrow} m_X.$$

Доказательство

$$M[|\overline{X_n}-m_X|^2]=M[|\overline{X_n}-M[\overline{X_n}]|^2]=D[X_n]=\frac{1}{n^2}\sum_{k=1}^nD_k\leqslant\frac{nD_{max}}{n^2}=\frac{D_{max}}{n}\overset{n\to\infty}{\longrightarrow}0$$
 Т.о. $\overline{X_n}\overset{\text{с.к.}}{\longrightarrow}m_X$. Тогда в силу Леммы 3.3 $\overline{X_n}\overset{P}{\longrightarrow}m_X$.

4.6 Следствие 1

Пусть
$$Z_n$$
 — неоднородная выборка, $D[X_k]=D_k\leqslant D_{max}<\infty, k\in\mathbb{N}.$ Тогда $\overline{X_n}-\frac{1}{n}\sum\limits_{k=1}^n m_{X_k}\stackrel{\text{с.к.}}{\longrightarrow} 0, \overline{X_k}-\frac{1}{n}\sum\limits_{k=1}^n m_{X_k}\stackrel{P}{\longrightarrow} 0.$

Доказательство

$$\overline{X_n} - \tfrac{1}{n} \sum_{k=1}^n m_{X_k} = \tfrac{1}{n} \sum_{k=1}^n (X_k - m_{X_k}) = \tfrac{1}{n} \sum_{k=1}^n Y_k,$$
 где $M[Y_k] = 0, D[Y_k] = D[X_k] = \leqslant D_{max} < \infty$ Тогда $\overline{Y_k}$ удовлетворяет условиям Теоремы 4.3. \blacksquare

4.7 Теорема 4

Пусть Z_n — неоднородная выборка, $M[X_k]=m_X<\infty, D[X_k]=D_k<\infty$,

$$\sum_{k=1}^{n} \frac{D[X_k]}{k^2} < \infty$$

Тогда

$$\overline{X_n} \overset{\text{\tiny п.н.}}{\longrightarrow} m_X$$

Замечание

Условие Теоремы 4 более мягкое, чем условие Теоремы 3. Пусть $D[X_k]\leqslant D_{max}, k\in\mathbb{N}.$ Тогда

$$\sum_{k=1}^n \frac{D[X_k]}{k^2} \leqslant \sum_{k=1}^n \frac{D_{max}}{k^2} = \frac{\pi^2 D_{max}}{\sigma} < \infty$$

4.8 Следствие 2

Пусть N(A) — число появления события A в серии из N независимых опытов. Тогда

$$\frac{N(A)}{N} \xrightarrow{\text{\tiny I.H.}} P(A), \frac{N(A)}{N} \xrightarrow{\text{\tiny C.K.}} P(A)$$

Доказательство

По условию $N(A)\sim Bi(N;P(A))$. Тогда $\exists X_1,\dots,X_n\sim Be(P(A))$ — независимые с.в. При этом $M[X_1]=P(A),D[X_1]=P(A)(1-P(A))\leqslant \frac{1}{4}.$ Тогда в силу Теоремы 4

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{c.k.}} P(A)$$

в силу Теоремы 2

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{\tiny II.H.}} P(A)$$

5 Центральная предельная теорема (ЦПТ)

Замечание

Сходимости ${\it c.к.}$, ${\it n.н.}$ и P в общем случае исследования предполагают либо знание совместного распределения элементов последовательности, либо наличие точкой функциональной зависимости от $\omega \in \Omega$.

Как правило, в теории вероятностей это неизвестно, а с.в. описываются при помощи их распределений, а не как функции. При этом если у двух величин совпадают распределения, то это вовсе не значит, что они равны.

Поэтому довольно важным является вид сходимости *по распределению*, т.е. в смысле **"описательного инструмента" с.в.

5.1 Определение 1

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится по распределению к с.в. X, если

$$F_{X_n}(x) \overset{n o \infty}{\longrightarrow} F_X(x)$$
, $orall x$ — точки непрерывности $F_X(x)$.

5.2 Лемма 1

Пусть
$$X_n \stackrel{P}{\longrightarrow} X$$
. Тогда $X_n \stackrel{d}{\longrightarrow} X$

5.3 Лемма 2

Пусть
$$X_n \stackrel{d}{\longrightarrow} X, Y_n \stackrel{P}{\longrightarrow} C$$
 Тогда $X_n + Y_n \stackrel{d}{\longrightarrow} C$

Доказательство

Пусть
$$C=0, x_0$$
 — точка непрерывности $F_X(x)$. Тогда $\forall \varepsilon>0$
$$F_{X_n+Y_n}(x_0)=P(X_n+Y_n\leqslant x_0)=\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|>\varepsilon\})}_{p_1}+\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|\leqslant\varepsilon\})}_{p_2}$$
 $0\leqslant p_1\leqslant P(|Y_n>\varepsilon)\overset{n\to\infty}{\longrightarrow}0$
$$p_2=P(\{X_n+Y_n\leqslant x_0\}\{-\varepsilon\leqslant Y_n\leqslant\varepsilon\})\overset{*}{\leqslant}$$

$$\begin{cases} X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant Y_n\leqslant\varepsilon\end{cases} \Longrightarrow \begin{cases} X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant-Y_n\leqslant\varepsilon\end{cases} \Longrightarrow X_n\leqslant x_0+\varepsilon$$

$$\overset{*}{\leqslant}P(X_n\leqslant x_0+\varepsilon)=F_{X_n}(x_0+\varepsilon)$$

$$p_2\geqslant P(\{\varepsilon+X_n\leqslant x_0\}\{-\varepsilon\leqslant Y_n\leqslant\varepsilon\})\overset{*}{\geqslant}$$

$$P(AB)=P(A)-P(A\backslash B)\geqslant P(A)-P(\overline{B})$$

$$\stackrel{*}{\geqslant} P(\varepsilon+X_n\leqslant x_0)-P(|Y_n>\varepsilon)=F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)$$
 Т.о. $F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)\leqslant F_{X_n+Y_n}(x_0)\leqslant F_{X_n}(x_0+\varepsilon)+p_1$ Выберем $\varepsilon>0$ так, чтобы $(x_0-\varepsilon;x_0+\varepsilon)$ было областью непрерывности $F_X(x)$ Тогда $\lim_{n\to\infty}F_{X_n}(x_0\pm\varepsilon)=F_X(x_0\pm\varepsilon)$

$$F_{X_n}(x_0-\varepsilon)\leqslant \varliminf_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant \varlimsup_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant F_X(x_0+\varepsilon)$$

Возьмем предел по $\varepsilon\to 0$. В силу непрерывности $F_X(x)$ в $x_0\lim_{\varepsilon\to 0}F_X(x_0\pm\varepsilon)=F_X(x_0)$ Откуда $F_X(x_0)=\lim_{\varepsilon\to 0}F_{X_n+Y_n}(x_0)$, т.е.

$$X_n + Y_n \stackrel{d}{\longrightarrow} X$$

Пусть
$$C\neq 0$$
. Тогда $Y_n-C=\tilde{Y}\stackrel{P}{\longrightarrow} 0$,
$$X_n+C=\tilde{X_n}\stackrel{d}{\longrightarrow} X+C=\tilde{X}$$
 Получаем $X_n+Y_n=\tilde{X_n}+\tilde{Y_n}\stackrel{d}{\longrightarrow} \tilde{X}=X+C$. \blacksquare

5.4 Доказательство леммы 5.1

$$X_n=(X_n-X)+X$$
, где $X\stackrel{d}{\longrightarrow} X, X_n-X\stackrel{P}{\longrightarrow} 0.$ В силу Леммы 5.2 $X_n=(X_n-X)+X\stackrel{d}{\longrightarrow} X+0=X.$ \blacksquare

Замечание

Из теории преобразования Фурье следует, что $X_n \stackrel{d}{\longrightarrow} X$ тогда и только тогда, когда $\psi_{X_n}(\lambda) \stackrel{n \to \infty}{\longrightarrow} \psi_X(\lambda), \lambda \in \mathbb{R}$

5.5 Определение 2

Последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ называется асимптотически нормальной, если $X_n\stackrel{d}{\longrightarrow} X$, где $X\sim N(m;\sigma^2)$

5.6 Теорема 1 (Центральная предельная)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в., причем

$$M[X_1] = m_X, D[X_1] = \sigma_X^2$$

Тогда

$$S_n \frac{\sum\limits_{k=1}^n X_n - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0;1)$$

Доказательство

Обозначим через $Y_k = \frac{X_k - m_X}{\sigma_X \sqrt{n}}$

Тогда $\sum_{k=1}^n Y_k$, где Y_1,\ldots,Y_n — независимые с.в.

В силу Леммы 1.5

$$\psi_{S_n}(\lambda) = \psi_Y(\lambda,\lambda,\dots,\lambda) = \prod_{k=1}^n \psi_{Y_k}(\lambda) = \psi_{Y_1}^n(\lambda) = \psi^n(\frac{\lambda}{\sigma_X\sqrt{n}})$$

где $\psi(\lambda)$ — характеристическая функция X_k-m_X .

$$\psi(0) = M[e^{i0(X_k - m_X)}] = M[1] = 1$$

$$\psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0$$

$$\begin{array}{l} \psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0 \\ \psi''(0) = -M[(X_k - m_X)^2e^{i0(X_k - m_X)}] = -M[(X_k - m_X)^2] = -\sigma_X^2 \end{array}$$

Тогда согласно формуле Тейлора

$$\psi(\lambda) = \psi(0) + \psi'(0)\lambda + \psi''(0)\frac{\lambda^2}{2} + 0(\lambda^2) = 1 - \frac{\sigma_X^2}{2}\lambda^2 + 0(\lambda^2)$$

Рассмотрим $\ln \psi_{S_n}(\lambda) = n \ln \psi(\frac{\lambda}{\sigma_X \sqrt{n}}) = n \ln(1-\frac{\lambda^2}{2n}+0(\frac{\lambda^2}{\sigma_X^2 n})) = n(-\frac{\lambda^2}{2n}+0(\frac{\lambda^2}{\sigma_X^2 n}) + 1)$

$$0(-\frac{\lambda^2}{2n} + 0(\frac{\lambda^2}{\sigma_X^2 n}))) = n(-\frac{\lambda^2}{2n} + 0(\frac{\lambda^2}{\sigma_X^2 n})) = -\frac{\lambda^2}{2n} + \frac{0(\frac{\lambda^2}{\sigma_X^2 n})}{\frac{\lambda^2}{\sigma_X^2 n}} \cdot \frac{\lambda^2}{2} \xrightarrow{n \to \infty} -\frac{\lambda^2}{2},$$

$$\psi_{S_n}(\lambda) \xrightarrow{n \to \infty} e^{-\frac{\lambda^2}{2}}$$

где $\psi_Y(\lambda)=e^{-\frac{\lambda^2}{2}}$ по определению является *характеристической функцией $Y\sim$

Тогда
$$S_n \stackrel{d}{\longrightarrow} Y \sim N(0;1)$$
.

Следствие 1 (Теорема Муавра - Лапласа)

Пусть $X_n \sim Bi(n;p)$

Тогда

$$\frac{X_n-np}{\sqrt{np(1-p)}}\stackrel{d}{\longrightarrow} N(0;1)$$

Доказательство

Т.к. $X_n \sim Bi(n;p)$, то существуют независимые $\tilde{X_1}, \dots, \tilde{X_n} \sim Be(p)$ такие, что

$$X_n = \sum_{k=1}^n \tilde{X_k}, M[\tilde{X_k}] = p = m_X, D[\tilde{X_k}] = p(1-p) = \sigma_X^2$$

Тогда в силу Теоремы 1:

$$\frac{\sum\limits_{k=1}^{n} \tilde{X_k} - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0;1). \blacksquare$$

5.8 Пример 1

Вычислить вероятность того, что при n=1000 подбрасываниях монета упадет "орлом" от 400 до 600 раз.

Пусть X — число выпавших "орлов". Тогда $X \sim Bi(1000; \frac{1}{2})$. По формуле БернуллиЖ

$$P(X \in [400; 600]) = \sum_{k=400}^{600} C_{1000}^k \frac{1}{2^{1000}}$$

Оценим данную величину с помощью ЦПТ.

В силу Теоремы 1 и Следствия

$$\frac{X - n\frac{1}{2}}{\sqrt{n\frac{1}{2}(1 - \frac{1}{2})}} \stackrel{n \to \infty}{\longrightarrow} N(0; 1)$$

Тогда

$$P(400\leqslant X\leqslant 600)=P(\tfrac{400-500}{\sqrt{250}}\leqslant \tfrac{X-nm_X}{\sigma_X\sqrt{n}}\leqslant \tfrac{600-500}{\sqrt{250}})\approx \Phi_0(\tfrac{100}{5\sqrt{10}})-\Phi_0(-\tfrac{100}{5\sqrt{10}})=2\Phi_0(2\sqrt{10})\approx 1.$$

5.9 Теорема 2 (Ляпунова)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых с.в., $M[X_n]=m_{X_n}, D[X_n]=\sigma^2_{X_n}, M[|X_n-m_{X_n}|^3]=C_n^3<\infty$

При этом
$$\frac{(\sum\limits_{k=1}^{n}C_{k}^{3})^{\frac{1}{3}}}{(\sum\limits_{k=1}^{n}\sigma_{X_{n}}^{2})^{\frac{1}{2}}}\stackrel{n\to\infty}{\longrightarrow} 0$$
 (Условие Ляпунова)

Тогда
$$\dfrac{(\sum\limits_{k=1}^n X_k - M[\sum\limits_{k=1}^n X_k]}{\sqrt{D[\sum\limits_{k=1}^n X_k]}} \xrightarrow[n o \infty]{d} \sim N(0;1)$$

Замечание

Для *аппроксимации* точности использования ЦПТ используется **неравенство Берри- Эссеена**

5.10 Теорема 3 (Неравенство Берри-Эссеена)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в.

$$M[X_n] = m_X, D[X_n] = \sigma_X^2, M[|X_n - m_X|^3] = \rho < \infty$$

Тогда $\forall x \in \mathbb{R}$ и $n \in \mathbb{N}$

$$|P(\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}})-(\frac{1}{2}+\Phi_{0}(x))|\leqslant\frac{C_{0}\rho}{\sigma_{X}^{3}\sqrt{n}}$$

Замечание

Точное значение константы C неизвестно. По текущим данным (2010 г.) $C_0 \leqslant 0.4784$

5.11 Пример

Оценим точность решения в предыдущем примере: $\sigma_X^2=\frac{1}{4}, n=1000, m_X=\frac{1}{2}, X_n\sim \begin{pmatrix} 0 & 1\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $\rho=M[|X_n-m_X|^3]=|0-\frac{1}{2}|^3\cdot\frac{1}{2}+|1-\frac{1}{2}|^3\cdot\frac{1}{2}=\frac{1}{8}$ Тогда погрешность составит для двухстороннего нер-ва:

$$\frac{2C_0\rho}{\sigma_X^3\sqrt{n}} = \frac{2\cdot0.4784\cdot\frac{1}{8}}{\frac{1}{64}\cdot\sqrt{1000}} \approx 0.03$$

6 Выборка и ее характеристики

6.1 Определение 1

Выборкой называется $Z_n=(X_1,\dots,X_n)^T$ независимый вектор с.в. Если все X_1,\dots,X_n — одинаково распределены, а F(x) — функция распределения, то говорят, что Z_n — однородная выбрка, порожденная распределением F(x)

6.2 Определение 2

Реализацией выборки $Z_n\in\mathbb{R}^n$ называется неслучайный вектор $z_n=Z_n(\omega)$, состоящий из реализаций элементов выборки $X_k, k=\overline{1,n}$.

6.3 Определение 3

Множество S всех возможных реализаций выборки Z_n называют выборочным пространством

Замечание

Обычно распределение, порождающее выбрку, известно неточно.

$$F_X = F_X(x;\theta)$$

Задача состоит в построении оценки θ по элементам выборки.

6.4 Определение 4

С.в. $\phi(Z_n)$, где $\phi:S o\mathbb{R}$ — измерима, называется **статистикой**.

6.5 Определение 5

 ${\it k}$ -ой порядковой статистикой называется k-е по величине значение элемента выборки $Z_n = (X_1, \dots, X_n)^T$ и обозначается $X^{(k)}$

Замечание

 $X^{(k)}$ является функцией от всей выборки, т.к. при различных $\omega \in \Omega X^{(k)}$ будет совпадать по значению с разными X_i .

6.6 Определение 6

Набор порядковых статистик $X^{(1)},\dots,X^{(n)}$ называется вариационным рядом.

6.7 Определение 7

$$X^{(1)} = \min_{k = \overline{1,n}} X_k, X^{(n)} = \max_{k = \overline{1,n}} X_k.$$

6.8 Лемма 1

Пусть однородная выборка Z_n порождена распределением F(x). Тогда функция распределения $X^{(k)}$ имеет вид:

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$

Доказательство

Рассмотрим с.в. Y, равную числу элементов выборки, не превоскходящих x. Тогда $Y \sim Bi(n; F(x))$.

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = P(Y \geqslant k) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$
.

6.9 Следствие 1

$$\begin{split} F_{(1)}(x) &= 1 - (1 - F(x))^n, \\ F_{(n)}(x) &= (F_{(x)})^n. \end{split}$$

6.10 Определение 8

Выборочной квантилью уровня $\alpha \in (0;1)$ называется порядковая статистика $\chi^{([nd]+1)}$

6.11 Теорема 1 (Мостеллера)

Пусть X- абсолютно непрерывная с.в., $x_{\alpha}-$ точка гладкости $f_X(x), f_X(x_{\alpha})>0$ Тогда $(X^{([nd]+1)}-x_{\alpha})\sqrt{\frac{nf_X^2(x_{\alpha})}{p(1-p)}}\stackrel{d}{\longrightarrow} N(0;1)$

6.12 Определение 9

Выборочной функцией распределения называется статистика $\hat{F}_n(x)$:

$$\hat{F_n}(x) = \begin{cases} \frac{1}{n} \max\{k = \overline{1,n} : X^{(k)} \leqslant x\}, & x \geqslant X^{(1)}, \\ 0, & x < X^{(1)} \end{cases}$$

Замечание

Фактически $\hat{F_n}(x)$ — частота события $\{X\leqslant x\}$, которая исользуется для оценки вероятности $F(x)=P(X\leqslant x)$.

6.13 Свойства $\hat{F_n}(x)$

1.
$$n \cdot \hat{F}_n(x) \sim Bi(n; F(x))$$

$$2. \ \boxed{M[\hat{F_n}(x)] = F(x)}$$

3.
$$\boxed{\sup_{x \in \mathbb{R}} |\hat{F_n}(x) - F(x)| \xrightarrow{\text{\tiny II.H.}} 0}$$

(Теорема Гливенко - Кантелли)

4.
$$\left[(\hat{F_n}(x)-F(x))^2\right]=\frac{F(x)(1-F(x))}{n}\leqslant \frac{1}{4n}$$

5.
$$|\hat{F_n}(x) - F(x)| \xrightarrow{\text{c.k.}} 0$$

6.
$$\frac{\hat{F_n}(x) - F(x)}{\sqrt{F(x)(1 - F(x))}} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1)$$

(Следует из теоремы Муавра - Лапласа)

Замечание

 $\hat{F}_n(x)$ При увеличении n равномерно приблежается к F(x), при этом точность приближения можно оценить при помощи свойств 4 и 6.

 $\frac{\Gamma$ истрограмма. На основе реализации вариационного ряда построим разбиение \mathbb{R} $-\infty=t_0 < t_1 < t_2 < \cdots < t_l < t_{l+1} = +\infty,$ $t_1 \leqslant x^{(1)}, t_l > x(n).$

Как правило, длина интервалов разбиения выбирается одинаковой:

$$h_k = t_{k+1} - t_k = \frac{t_l - t_1}{l-1}, k = \overline{1, l-1}$$

Вычислим частоту попадания элементов выборки в k-й интервал: $\hat{p_k} = \frac{n_k}{n}$, где n_k — число элементов выборки, попавших в $[t_k; t_{k+1}), k = \overline{0,l}$ Заметим, что $\hat{p_0} = \hat{p_l} = 0$.

6.14 Определние 10

Гистограммой называется функция:

$$\hat{f}_n(x) = \begin{cases} 0, & x \in (t_0; t_1) \cup [t_l; t_{l+1}), \\ \hat{p_k}, & x \in (t_k; t_{k+1}), k = \overline{1, l-1} \end{cases}$$

Замечание

Если плотность вероятности $f_X(x)$ непрерывна и ограничена, а число разрядо гистограммы l_n удовлетворяет условию: $l_n \longrightarrow +\infty, \frac{n}{l_n} \longrightarrow +\infty,$ то

$$\hat{f}_n(x) \stackrel{P}{\longrightarrow} f_X(x)$$

Т.е. гистограмма является статистической аппроксимацией функции плотности вероятности.

Выборочные моменты

6.15 Определние 1

Выборочным начальным и **центральным моментами** называется соответственно статистики:

$$\begin{split} \nu_r \hat(n) &= \tfrac{1}{n} \sum_{k=1}^n X_k^r \\ \mathbf{W} \\ \hat{\mu_r}(n) &= \tfrac{1}{n} \sum_{k=1}^n (X_k - \hat{\nu}_1(n))^r \end{split}$$

6.16 Определение 2

Выборочным средним и **выборочой дисперсией** называются соответственно статистики:

$$\begin{split} \overline{X_n} &= \nu_1 \hat{(}n) = \tfrac{1}{n} \sum_{k=1}^n X_k \\ \mathbf{M} \\ \hat{d_X}(n) &= \hat{S}^2(n) = \hat{\mu_2}(n) = \tfrac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2 \end{split}$$

6.17 Определение 3

Пусть $Z_n=(X_1,\dots,X_n)^T$ и $V_n=(Y_1,\dots,Y_n)^T$ — выборки, порожденные распределениями F_X и F_Y соответственно. Тогда выборочным коэффициентом корреляции называется:

$$\hat{r_{XY}} = \frac{\sum\limits_{k=1}^{n}(X_k - \overline{X_n})(Y_k - \overline{Y_k})}{n\sqrt{\hat{d_X}\cdot\hat{d_Y}}}$$

6.18 Свойства выборочных моментов

1.
$$\boxed{M[\hat{\nu_r}(n)] = \nu_r, r \in \mathbb{N}}$$

Доказательство

$$M[\hat{\nu_r}(n)] = \frac{1}{n} \sum_{k=1}^n M[X_k^r] = \frac{1}{n} n \nu_r$$
.

2. Если
$$M[X^r] < \infty$$
, то $\hat{\nu_r}(n) \stackrel{\text{п.н.}}{\longrightarrow} \nu_r$

Доказательство

Доказательство

$$\overline{\hat{\mu_r}(n)} = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X_n})^r = \frac{1}{n} \sum_{k=1}^n \sum_{i=0}^r C_r^i X_k^i (-\hat{X_n})^{r-i} = \sum_{i=0}^r C_r^i (-\hat{X_n})^{r-i} (\frac{1}{n} \sum_{k=1}^n X_k^i) = \sum_{i=0}^r C_r^i (-\hat{X_n})^{r-i} \hat{\nu_i}(n) \xrightarrow[\text{CB-BO}(2)]{\text{II.H.}} \sum_{i=0}^r C_r^i (-\nu_1)^{r-i} \hat{\nu_i} = \dots = \mu_i. \blacksquare$$

$$4. \ \left| D[\overline{X_n}] = \frac{1}{n}D[X] \right|$$

Доказательство

 $\overline{\mathrm{C}}$ учетом независимости X_1,\dots,X_n

$$D[X\overline{X_n}] = D[\frac{1}{n}\sum_{k=1}^n X_k] = \frac{1}{n^2}\sum_{k=1}^n D[X_k] = \frac{nD[X]}{n^2}.$$

5.
$$M[\hat{d_X}(n)] = \frac{n-1}{n}D[X]$$

Доказательство

$$\begin{split} &\widehat{M[\hat{d_X}(n)]} = \frac{1}{n} \sum_{k=1} n M[(X_k - \overline{X_n})^2] = M[(X_1 - \overline{X_n})^2] = D[X_1 - \overline{X_n})^2] = D[\frac{n-1}{n} X_1 - \sum_{k=2} n \frac{1}{n} \overline{X_k}] \overset{\text{\tiny H}/3}{=} \frac{n-1}{n} D[X_1] + \frac{1}{n^2} \sum_{k=2}^n D[X_k] = D[X] \frac{n^2 - 2n + 1 + n - 1}{n^2} = D[X] \cdot \frac{n-1}{n}. \end{split}$$

6.
$$\overline{\frac{\overline{X_n} - m_X}{\sigma_X} \sqrt{n}} \xrightarrow{d} N(0; 1)$$

Доказательство Т.к. X_1,\dots,X_n независимые, $M[X_k]=m_k,D[X_k]=\sigma_X^2,k\in\mathbb{N}$, то в силу Теоремы 5.1:

$$\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}}=\frac{\frac{1}{n}\sum\limits_{k=1}^{n}X_{k}-m_{X}}{\frac{\sigma_{X}}{\sqrt{n}}}\stackrel{d}{\longrightarrow}N(0;1)$$

7.
$$\left[\frac{\hat{d_X(n)} - \sigma_X^2}{\sqrt{\mu_4 - \mu_2}} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1) \right]$$

7 Основные распределения в статистике

Точечные оценки

7.1 Опредление 1

Пусть X_1,\dots,X_n — независимые с.в. Тогда

$$Y = \sum_{k=1}^n X_k^2 \sim \chi^2(n)$$

имеет распределение хи-квадрат с n степенями свободы.

7.2 Свойства распределения $\chi^2(n)$

1. У имеет плотность вероятности

$$f_Y(x;n) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}\chi^{\frac{n}{2}-1}e^{-\frac{x}{2}}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$$

где $\Gamma(z)=\int\limits_0^{+\infty}y^{z-1}e^{-y}dy$ — гамма-функция.

2. У имеет характеристическую функцию

$$\psi_Y(\lambda) = (1 - 2\lambda i)^{\frac{n}{2}}$$

- 3. $Y \sim X^{2}(n), M[Y] = n, D[Y] = 2n.$
- 4. Пусть μ / з $Y_1 \sim \chi^2(n_1), \dots, Y_k \sim \chi^2(n_k)$. Тогда

$$\sum_{k=1}^n Y_i \sim \chi^2(\sum_{k=1}^n n_i)$$

5.

$$\frac{Y-n}{\sqrt{2n}} \xrightarrow{d} N(0;1)$$

6. Пусть Z_n *порожденная распределением $N(m_X,\sigma_X^2)$. Тогда если

$$\begin{split} \hat{d_X} &= \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X_n})^2, \\ \text{to } \frac{n\hat{d_X}}{\sigma_X^2} &\sim \chi^2(n-1). \end{split}$$

(Доказательство приведено далее в теореме Фишера)

7.3 Определение 2

Пусть $X_0, X_1, \dots, X_n \sim N(0;1)$ — *независимые с.в.. Тогда с.в.

$$Y = \frac{X_0}{\sqrt{\frac{1}{n}\sum_{k=1}^n X_k^2}} \sim t(n)$$

имеем *распределение Стьюдента* с *n* степенями свободы.

7.4 Свойства распределения t(n)

1. У имеет плотность вероятности

$$f_{x,n} = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$

2. $Y \sim t(n), M[Y] = 0, n \ge 2$

$$D[Y] = \frac{n}{n-2}, n > 2$$

- 3. t(1) = C pаспределение Коши
- 4. $Y \sim t(n), Y \stackrel{d}{\longrightarrow} N(0; 1)$
- 5. Пусть Z_n порождена распределением $N(m_X;\sigma_X^2)$. Тогда

$$\frac{\overline{X_n} - m_X}{\sqrt{\hat{d_X}}} \cdot \sqrt{n-1} \sim t(n-1)$$

(Доказательство приведено далее в теореме Фишера)

7.5 Определение 3

Пусть $X \sim \chi^2(n), Y \sim \chi^2(m)$ — независимые с.в. Тогда с.в. $V = \frac{Xm}{Yn} \sim F(n;m)$ имеет Распределение Фишера с n и m степенями свободы.

7.6 Свойства распределения F(n; m)

1. V имеет плотность вероятности

$$f_V(x,n,m) = \begin{cases} \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2}) \cdot \Gamma(\frac{m}{2})} n^{\frac{n}{2}} m^{\frac{n}{2}} \frac{x^{\frac{n}{2}-1}}{(m+nx)^{\frac{n+m}{2}}}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$$

2. $V \sim F(n; m), M[V] = \frac{m}{m-2}, m > 2$,

$$D[V] = \frac{2m^2(m+n-2)}{n(m-2)^2(m-4)}, m > 4$$

3. Пусть $Z_n=(X_1,\dots,X_n)^T$ и $W_m=(Y_1,\dots,Y_m)^T-$ однородные выборки, порожденные распределениями $N(m_X;\sigma^2)$ и $N(m_Y;\sigma^2)$.

Тогда если Z_n и W_n независимы,

$$V = \frac{\frac{1}{n-1} \sum\limits_{k=1} n(X_k - \overline{X_n})^2}{\frac{1}{m-1} \sum\limits_{k=1} n(Y_k - \overline{Y_m})^2} \sim F(n-1; m-1)$$

(Данный факт следует из свойства 6 распределения $\chi^2(n)$)

7.7 Определение 4

 $\pmb{\Pi apametpom}\,\theta\in\mathbb{R}^n$ $\pmb{pacпpeделения}$ с.в. X называется любая числовая характеристика, входящая в $F_x(x,\theta)$ явно.

7.8 Определение 5

Точечной оценкой неизвестного параметра θ называется произвольная стастистика $\hat{\theta}(Z_n).$

Замечание

Оценка $\hat{\theta}(Z_n)$ является с.в.

На практике используется ее реализация.

7.9 Определение 6

Оценка $\hat{ heta}(Z_n)$ называется **несмещенной**, если

$$M[\hat{\theta}] = \theta$$

7.10 Определение 7

Оценка $\hat{\theta}(Z_n)$ называется ${\it coctostenbedi}$, если

$$\hat{\theta} \stackrel{P}{\longrightarrow} \theta$$

7.11 Определение 8

Оценка $\hat{\theta}(Z_n)$ называется **сильно состоятельной**, если

$$\hat{\theta} \stackrel{\text{п.н.}}{\longrightarrow} \theta$$

7.12 Определение 9

Оценка $\hat{\theta}(Z_n)$ называется $\emph{c.к.}$ $\emph{coстоятельной},$ если

$$\hat{\theta} \overset{\text{c.k.}}{\longrightarrow} \theta$$

Замечание

- 1. Из свойств $\overline{X_n}$ следует, что $\overline{X_n}$ несмещенная и сильносостоятельная оценка m_X .
- 2. Из свойств $\hat{d_X}$ следует, что $\hat{d_X}$ смещенная и сильносостоятельная оценка m_X .

7.13 Определение 10

 Несмещнная оценка $\hat{\theta}^*(Z_n)$ называется эффективной, если $\forall \hat{\theta}(Z_n)$ — несмещенной оценки верно, что

$$D[\hat{\theta}^*(Z_n)] \leqslant D[\hat{\theta}(Z_n)]$$

7.14 Пример

Пусть $M[\overline{X}]<\infty$. Тогда $\overline{X}-$ сильно состоятельная оценка m_X . Если $D[\overline{X}]<\infty$, то $\overline{X}-$ с.к.-состоятельная оценка m_X

(Доказательство следует из ЗБЧ)

7.15 Теорема 1

Пусть $\hat{\theta_1}, \hat{\theta_2}, -$ *с.к.-оптимальные* оценки параметра θ . Тогда

$$\hat{\theta_1} = \hat{\theta_2}$$

Доказательство

Т.к. $\hat{\theta_1}$ и $\hat{\theta_2}$ оптимальны, то $D[th\hat{eta_1}] = D[th\hat{eta_2}] = d$. Пусть $\hat{\theta_3} = \frac{1}{2}(\hat{\theta_1} + \hat{\theta_2})$. Тогда $D[\hat{\theta_3}] = \frac{1}{4}D[\hat{\theta_1} + \hat{\theta_2}] = \frac{1}{4}(D[\hat{\theta_1}] + [D\hat{\theta_2}] + 2cov(\hat{\theta_1}, \hat{\theta_2})) = \frac{1}{2}(d + cov(\hat{\theta_1}, \hat{\theta_2})) \leqslant \frac{1}{2}(d + cov(\hat{\theta_1}, \hat{\theta_2})) \leqslant \frac{1}{2}(d + \sqrt{D[\hat{\theta_1}] \cdot D[\hat{\theta_2}]}) = d$

Тогда в силу оптимальности $\hat{ heta_1}$ и $\hat{ heta_2}$

$$D[\hat{\theta_3}] = d$$

 $d = D[\hat{\theta_3}] = \tfrac{1}{2}(d + cov(\hat{\theta_1}, \hat{\theta_2})), cov(\hat{\theta_1}, \hat{\theta_2}) = d = \sqrt{D[\hat{\theta_1}] \cdot D[\hat{\theta_2}]},$

т.е. в нераввенстве Коши-Буняковского достигается равенство. Следовательно,

$$t\hat{het}a_1 = \alpha t\hat{het}a_2 + \beta, \alpha > 0$$

$$\begin{cases} M[\hat{\theta_1}] = \alpha M[\hat{\theta_2}] + \beta \\ D[\hat{\theta_1}] = \alpha^2 D[\hat{\theta_2}] \end{cases} \implies \begin{cases} \theta = \alpha \theta + \beta \\ d = \alpha^2 d \end{cases} \implies \begin{cases} \beta = 0 \\ \alpha = 1 \end{cases}$$

Окончательно, $\hat{\theta_1} = \hat{\theta_2}$.

8 Эффективные оценки

Обозначим через $f(x;\theta)$ плотность вероятности с.в. X, порождающей выборку в абсолютно неперывном случае или функцию в дискретном случае. В силу критерия независимости функция

$$L(z_n;\theta) = \prod_{k=1}^n f(x_k;\theta)$$

является плотностью вероятности с.в. Z_n .

8.1 Определение 1

 $L(z_n; \theta)$ при фиксированном $z_n \in S$ и переменной θ называется **функцией** правдоподбия.

Замечание

Далее будем полагать, что $\theta \in \mathbb{R}^1$.

8.2 Определение 2

Распределение с.в. X называется **регулярным**, если

- 1. $\sqrt{f(x;\theta)}$ дифференцируема по θ почти для всех x.
- 2. $i(\theta)=\int\limits_{-\infty}^{+\infty}(\frac{\partial \ln f(x;\theta)}{\partial \theta})^2f(x;\theta)dx$ конечна, непрерывна по θ и положительна.

Замечание

Далее будем предполагать, что выборка Z_n порождена регулярным распределением.

8.3 Определение 3

Случайная величина

$$U(Z_n;\theta) = \frac{\partial \ln L(Z_n;\theta)}{\partial \theta} = \sum_{k=1}^n \frac{\partial \ln f(x;\theta)}{\partial \theta}$$

называется вкладом выборки Z_n

8.4 Лемма 1

Пусть распределение регулярное. Тогда

$$M[U(Z_n;\theta)]=0$$

Доказательство

В силу условия нормировки

$$\int\limits_{\mathbb{R}^n}L(z_n;\theta)d_{X_1},\dots,d_{X_n}=1$$

С учетом условий регулярности

$$0 = \frac{\partial}{\partial \theta} \int\limits_{\mathbb{R}^n} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial L(z_n;\theta)}{\partial \theta} d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_1}, \dots, d_{X_n} = \int\limits_{\mathbb{R}^n} \frac{\partial \ln L(z_n;\theta)}{\partial \theta} L(z_n;\theta) d_{X_n} d_{X$$

8.5 Определение 4

Информацией Фишера о параметре θ , **содержащейся в выбрке** Z_n , называют

$$I_n(\theta) = D[U(Z_n; \theta)] \stackrel{\text{pery.n.}}{=} M[U^2(Z_n; \theta)]$$

 $i(\theta)=M[(rac{\partial \ln f(x;\theta)}{\partial heta})^2]$ называется количеством информации Фишера, содержащимся в одном наблюдении.

Замечание

Из определения $U(Z_n;\theta)$ и независимости элементов выборки следует, что $I_n(\theta)=n\cdot i(\theta)$, т.е. количество информации выростает пропорционально объему выборки.

8.6 Лемма 2

Пусть $f(x;\theta)$ дважды непрерывно дифференцируема по θ . Тогда

$$i(\theta) = -M[\frac{\partial^2 \ln f(X_1;\theta)}{\partial \theta^2}]$$

Доказательство

$$U(X_1;\theta) = \frac{\partial \ln f(X_1;\theta)}{\partial \theta}. \text{ C учетом Леммы 1}$$

$$0 = \frac{\partial}{\partial \theta} M[U(X_1;\theta)] = \frac{\partial}{\partial \theta} \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} f(x;\theta) dx = \int\limits_{-\infty}^{+\infty} \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} f(x;\theta) dx + \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} \cdot \frac{\partial \ln f(x;\theta)}{\partial \theta} dx = \int\limits_{-\infty}^{+\infty} \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} f(x;\theta) dx + \int\limits_{-\infty}^{+\infty} \frac{\partial \ln f(x;\theta)}{\partial \theta} dx = M[\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2}] + i(\theta). \blacksquare$$

8.7 Пример 1

Пусть $X \sim N(\theta; \sigma^2)$.

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\theta)^2}{2\sigma^2}\}$$

$$\begin{split} U(X_1;\theta) &= \frac{\partial}{\partial \theta} (-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(x-\theta)^2}{2\sigma^2}) = \frac{X_T \theta}{\sigma^2} \\ &\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} = -\frac{1}{\sigma^2} \end{split}$$

С учетом Леммы 2

$$i(\theta) = -M[-\frac{1}{\sigma^2}] = \frac{1}{\sigma^2}$$

8.8 Пример 2

Рассмотрим нерегулярную модель.

$$X \sim R(0; \theta)$$

Здесь из множества $\int\limits_0^\theta \frac{1}{\theta} dx = 1$ не следует, что $\int\limits_0^\theta \frac{\partial}{\partial \theta} (\frac{1}{\theta}) dx = 0$, т.к. при диффференцировании по θ появляется еще одно слагаемое:

$$\frac{\partial}{\partial \theta} \int_{0}^{\theta} \frac{1}{\theta} dx = \frac{1}{\theta} + \int_{0}^{\theta} \frac{\partial}{\partial \theta} (\frac{1}{\theta}) dx$$

8.9 Теорема 1 (Неравенство Рао-Крамера)

Пусть распределение $F(x;\theta)$, порождающее выборку Z_n регулярно. Тогда для любой несмещенной оценки $\hat{\theta}$ верно неравенство:

$$D[\hat{\theta}(Z_n)]\geqslant \frac{1}{I_n(\theta)}=\frac{1}{ni(\theta)}$$

При этом равенство достигается лишь в том случае, если

$$\hat{\theta}(Z_n) - \theta = a(\theta) \cdot U(Z_n; \theta)$$
, где

 $a(\theta)$ — некоторая функция от θ

Доказательство

В силу несмещенности $\hat{\theta}$

$$M[\hat{\theta}] = \int\limits_{\mathbb{R}^n} (z_n) L(z_n;\theta) dx_1, \dots, dx_n = \theta$$

В силу регулярности и Леммы 1

$$1 = \tfrac{\partial}{\partial \theta}(\theta) = \tfrac{\partial}{\partial \theta} M[\hat{\theta}] = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} \cdot L(z_n;\theta) dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) \tfrac{\partial \ln L(z_n;\theta)}{\partial \theta} dx_1, \dots, dx_n = \int\limits_{\mathbb{R}^n} \hat{\theta}(z_n) dz_1, \dots, dx_n = \int\limits_{\mathbb{R}^n}$$

$$M[\hat{\theta}U(Z_n;\theta)] = M[(\hat{\theta}-\theta)(U(Z_n;\theta)-\theta)] + \theta \cdot M[U(Z_n;\theta)] = cov(\hat{\theta},U(Z_n;\theta))$$

Откуда с учетом неравенства Коши-Буняковского

$$1^2 \leqslant D[\hat{\theta}] \cdot D[U(Z_n; \theta)] = D[\hat{\theta}] \cdot I_n(\theta)$$

Причем равенство достигается в том и только том случае, когда $\hat{\theta} = a(\theta)U(Z_n;\theta) + b(\theta)$ Ho с учетом Леммы 1 $b(\theta) = 0$.

Определение 5 8.10

Оценка $\hat{ heta}^*(Z_n)$, для которой достигается равенство в неравенстве Рао-Крамера называется эффективной

Замечание

В силу Теоремы 1 эффективная оценка является оптимальной. А с учетом Теоремы 7.1 эффективная оценка единственна

Пример 3 8.11

Пусть
$$X \sim N(\theta; \sigma^2)$$

$$U(Z_n; \theta) = \sum_{k=1}^n \frac{\partial \ln f(X_k; \theta)}{\partial \theta} = \sum_{k=1}^n \frac{X_k - \theta}{\sigma^2} = \frac{n}{\sigma^2} (\overline{X_n} - \theta)$$

 $U(Z_n;\theta) = \sum_{k=1}^n \frac{\partial \ln f(X_k;\theta)}{\partial \theta} = \sum_{k=1}^n \frac{X_k - \theta}{\sigma^2} = \frac{n}{\sigma^2} (\overline{X_n} - \theta)$ Т.о. $a(\theta) = \frac{\sigma^2}{n}$. Тогда $a(\theta)U(Z_n;\theta) = \overline{X_n} - \theta$, откуда следует, что $\overline{X_n} - \mathfrak{I}$ оценка.

9 Методы построения точеченых оценок

Метод максимального правдоподобия

9.1 Определение 1

Оценкой максимального правдоподобия θ называют

$$\hat{\theta} = \underset{\theta}{argmax} L(Z_n; \theta)$$

Замечание

1. В силу монотонности функции $\ln x$ справедливо представление:

$$\hat{\theta} = \underset{\theta}{argmax} L(Z_n; \theta) = \underset{\theta}{argmax} \ln L(Z_n; \theta)$$

2. Если $L(Z_n;\theta)$ — гладкая и максимум по θ достигается внутри множества возможных значений θ , то θ можно вычислить из *уравнения правдоподбия*

$$U(Z_n;\theta) = \frac{\partial \ln L(z_n;\theta)}{\partial \theta} = 0$$

3. Из Теоремы 8.1 следует, что $\hat{\theta}$ будет также эффективной оценкой.

9.2 Пример 1

Рассмотрим случайную величину $X \sim N(m; \sigma^2)$ с неизвестными m и σ^2 :

$$\theta = (m; \sigma^2)^T$$

$$\begin{split} L(Z_n;\theta) &= \prod_{k=1}^n \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(X_k-\theta_1)^2}{2\theta_2}} \\ &\ln L(Z_k;\theta) = \sum_{k=1} n(-\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln\theta_2 - \frac{(X_k-\theta_1)^2}{2\theta_2}) \\ &\left\{ \frac{\partial \ln L(Z_n;\theta)}{\partial \theta_1} = \sum_{k=1}^n \frac{(X_k-\theta_1)}{\theta_2} = \frac{1}{\theta_2} (n\overline{X_n} - n\theta_1) = 0 \\ \left\{ \frac{\partial \ln L(Z_n;\theta)}{\partial \theta_2} = \sum_{k=1}^n (\frac{(X_k-\theta_1)^2}{2\theta_2^2} - \frac{1}{2\theta_2}) = \frac{1}{2\theta_2} (n\hat{d_X}(n) - n\theta_2) = 0 \\ \left\{ \hat{\theta_1} = \overline{X_n} \\ \hat{\theta_2} = \hat{d_X}(n) \right. \end{split}$$

9.3 Пример 2

Пусть $X \sim R(\theta_1; \theta_2)$. В этом случае $L(Z_n; \theta)$ не является непрерывной:

$$L(Z_n;\theta) = \prod_{k=1}^n f_X(X_k;\theta) = \begin{cases} 0, & \exists k = \overline{1,n}: X_k \notin [\theta_1;\theta_2] \\ \frac{1}{(\theta_2-\theta_1)^n}, & \forall k = \overline{1,n}: X_k \in [\theta_1;\theta_2] \end{cases}$$

Тогда оценка максимального правдоподобия **не может быть вычислена** из **уравнений правдаподобия**. Хотя $\hat{\theta}$ существует:

$$L(Z_n;\theta) = \begin{cases} 0, & \min_{k=\overline{1,n}} X_k < \theta_1 || \max_{k=\overline{1,n}} X_k > \theta_2 \\ \frac{1}{(\theta_2 - \theta_1)^n}, & \theta_1 \leqslant \min_{k=\overline{1,n}} X_k \leqslant \max_{k=\overline{1,n}} X_k \leqslant \theta_2 \end{cases}$$

Откуда $L(Z_n;\theta)$ возрастает по θ_1 и убывает по θ_2 Тогда $\hat{\theta_1}=\min_{k=\overline{1,n}}X_k=X^{(1)},\hat{\theta_1}=\max_{k=\overline{1,n}}X_k=X^{(n)}$

Замечание

Для МП-оценок выполняется принцип инвариантности:

Пусть $g(\theta)$ — биективное отображение.

Тогда МП-оценка $\hat{g}(Z_n) = g(\hat{\theta}(Z_n)).$

Действительно,

$$\sup_{\mathbf{Q}} L(Z_n;\theta) = \sup_{\mathbf{Q}} L(Z_n;g^{-1}(g))$$

Тогда
$$g^{-1}(\hat{g}) = \hat{\theta}$$
, т.е. $\hat{g} = g(\hat{\theta})$

9.4 Пример 3

Пусть $X\sim N(\theta_1;\theta_2)$. Требуется оценить $F_X(x_0)=\frac{1}{2}+\Phi_0(\frac{x_0-\theta_1}{\theta_2})$. Рассмотрим биективное отображение

$$g(\theta_1;\theta_2) = \begin{pmatrix} \frac{1}{2} + \Phi_0(\frac{x_0 - \theta_1}{\theta_2}) \\ \theta_2 \end{pmatrix}$$

Тогда

$$\hat{g}(Z_n) = \begin{pmatrix} \frac{1}{2} + \Phi_0(\frac{x_0 - X_n}{\sqrt{d_{\hat{X}}(n)}}) \\ \sqrt{d_{\hat{X}}(n)} \end{pmatrix}$$

$$X_0 \in \mathbb{R}$$

Замечание

Для решения уравнений правдоподобия часто используются численные методы

9.5 Теорема 1

Пусть распределение с.в. X, порождающей выборку Z_n , регулярно.

Функция правдоподобия $L(z_n;\theta)$ имеет единственный достижимый максимум по $\theta \forall z_n \in S, n \in \mathbb{N}.$ Тогда

- 1. МП-оценка $\hat{\theta}$ состоятельна;
- 2. Если $|rac{\partial^k f(x; heta)}{\partial heta^k}| \leqslant g_k(x), orall heta,$ где

 $\int\limits_{\mathbb{R}}g_1(x)dx < \infty, \int\limits_{\mathbb{R}}g_2(x)dx \leqslant \infty, \int\limits_{\mathbb{R}}g_3(x)f(x;\theta)dx \leqslant C \leqslant \infty, \text{ а функция } i(\theta) = \int\limits_{\mathbb{R}}(\frac{\partial \ln f(x;\theta)}{\partial \theta})^2f(x;\theta)dx$ конечна и положительна $\forall \theta$, то

- $2.1~M[\hat{ heta}]
 ightarrow heta$ (асимптотически несмещенность)
- $2.2 \ \hat{\theta}$ сильно состоятельна;

$$2.3 \sqrt{ni(\theta)}(\hat{\theta} - \theta) \stackrel{d}{\longrightarrow} N(0; 1)$$

Асимптотическая нормальная

Метод моментов

9.6 Определение 2

Пусть $\theta=(\theta_1,\dots,\theta_r)^T$, а для распределения $F_X(x;\theta)$, порождающего выборку $Z_n,M[X^r]<\infty$

$$\begin{cases} \nu_1(\theta) = & \hat{\nu_1}(n) \\ \vdots & \vdots \\ \nu_r(\theta) = & \hat{\nu_r}(n) \end{cases}$$

называется системой метода моментов.

9.7 Определение 3

Решение системы метода моментов

$$\hat{\theta}_i = \phi_i(\hat{\nu_1}(n), \dots, \hat{\nu_r}(n)), i = \overline{1, r}$$

называется оценкой метода моментов.

9.8 Теорема 2

Пусть функции ϕ_1, \dots, ϕ_r , определяющие оценку метода моментов *непрерывные* и биективные. Тогда оценка метода моментов **состоятельна**.

Доказательство

Доказательство следует из состоятельности статистик $\hat{\nu_i}(n)$.

9.9 Пример 1

$$X \sim N(\theta_1; \theta_2)$$
. Тогда $\hat{\theta_1} = \overline{X_n}, \hat{\theta_2} = \hat{d_X}(n)$

9.10 Пример 2

$$X \sim R(\theta_1; \theta_2)$$
. Тогда

$$\begin{cases} \overline{X_n} = \frac{\theta_1 + \theta_2}{2} \\ \hat{X}(n) = \frac{(\theta_2 - \theta_1)^2}{12} \end{cases} \quad \begin{cases} \theta_1 + \theta_2 = 2\overline{X_n} \\ \theta_2 - \theta_1 = 2\sqrt{\hat{d_X}(n)}\sqrt{3} \end{cases} \quad \begin{cases} \theta_1 = \overline{X_n} - \sqrt{3\hat{d_X}(n)} \\ \theta_2 = \overline{X_n} + \sqrt{3\hat{d_X}(n)} \end{cases}$$

Замечание

Метод моментов **трудноприменим**, если *теоретические моменты не удается* вычислить явно.