Chapitre 7 - Vers des entités plus stables

Avec ce chapitre on, va répondre à deux questions :

- Dans un atome, comment se répartissent les électrons autour du noyau?
- Pourquoi certains atomes forment-ils des ions ou des molécules ?

1 Configuration électronique

Des capsules pour voir le cours en vidéo :

- https://youtu.be/pg1PdFSieT4;
- https://youtu.be/YZ03y NNbcM.

1.1 Établir la configuration électronique d'un atome

Les électrons d'un atome se placent sur les **couches** notées 1, 2, 3, etc. Les couches sont composées d'une ou plusieurs **sous-couches** :

- une sous-couches s qui contiennent au maximum 2 électrons;
- une sous-couches p qui contiennent au maximum 6 électrons;
- •

On établit la **configuration électronique** en remplissant les couches et sous-couches d'un atome avec ses électrons dans un ordre précis :

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow ...$$

Les électrons de la dernière couche sont appelés électrons de valence.

1.2 Des exemples pour comprendre

L'atome d'aluminium a un numéro atomique Z=13, donc son noyau possède 13 protons. Un atome est neutre donc l'atome d'aluminium a 13 électrons. On remplit les couches et les souscouches en suivant les règles ci-dessus : sa configuration électronique est donc :

Il y a 3 électrons sur la dernière couche donc il a 3 électrons de valence.

Établir la configuration électronique de l'hydrogène (Z=1), du carbone (Z=6) de l'oxygène (Z=8) et du phosphore (Z=15).

2 Le tableau périodique des éléments

Cf. activité 1 page 66.

1							18
Hydrogène							Hélium
₁ H							₂ He
	2	13	14	15	16	17	
Lithium	Béryllium	Bore	Carbone	Azote	Oxygène	Fluor	Néon
₃ Li	₄ Be	$_5\mathrm{B}$	$_{5}$ B $_{6}$ C		O_8	₉ F	₁₀ Ne
Sodium	Magnésium	Aluminium	Silicium	Phosphore	Soufre	Chlore	Argon
₁₁ Na	$_{12}$ Mg	₁₃ Al	$_{14}\mathrm{Si}$	₁₅ P	₁₆ S	₁₇ Cl	₁₈ Ar

•	Les l	ignes	du	tableau	sont	aussi	appelées		
---	-------	-------	----	---------	------	-------	----------	--	--

- Les colonnes du tableau sont aussi appelées .
- Les atomes sont rangés par ordre de numéro atomique . . .
- Les éléments d'une même famille ont le même nombre
- Les éléments d'une même période ont la même .

En utilisant le tableau, déterminer le nombre d'électrons de valence de l'azote : Déterminer le symbole de l'élément dont la configuration électronique est $1s^2$ $2s^2$ $2p^6$ $3s^2$:

3 Vers des entités plus stables

La dernière couche électronique des gaz nobles est pleine, ils sont stables.

3.1 Formation d'ions

Un élément peut perdre ou gagner des électrons pour avoir la même configuration électronique que le gaz noble le plus proche.

Exemple: Le fluor

La configuration électronique du fluor (Z=9) est $1s^2$ $2s^2$ $2p^5$. Pour remplir sa dernière couche, il peut gagner un électron et former l'ion fluorure F^- qui a la même configuration électronique que le néon : $1s^2$ $2s^2$ $2p^6$.

Le sodium a pour configuration électronique $1s^2$ $2s^2$ $2p^6$ $3s^1$. Déterminer l'ion stable qu'il peut former.

3.2 Formation de molécules, schéma de Lewis

Cf. activité 4 page 69 et https://youtu.be/ejE6BlQlcbw.

exemple: L'eau H ₂ O							