

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$

Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

[Xb Yb Zb Fb] [-1 0 -1 0] [-1 -1 0 0] Matrice di equilibrio $\begin{bmatrix} H_A b & V_A b \end{bmatrix} \quad \begin{bmatrix} X b \\ \phi_{CB} \end{bmatrix} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

8/I

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

08.06.11

PROGRAMMAZIONE LINEARE

Sia H_n la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_{ii}$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{it}$ $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{iq} = H_{oq} H_{iq}$, escluso il pivot H_{oq} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{in} H_{ni}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{44} \\ \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{54} \\ \mathsf{H}_{61} & \mathsf{H}_{62} & \mathsf{H}_{63} \end{bmatrix} = \begin{bmatrix} \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

$$\begin{bmatrix} X & Y & Z & \alpha bF \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix} \\ W_{AB}^{-} & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} W_{BC}^{-} & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1/4 \\ W_{CB}^{-} & 0 & 0 & -1 & 0 \\ W_{DC}^{-} & -1 & -1 & 1 & -2 \\ -1 & -1 & 1 & -1 & 2 \\ -1 & -1 & 0 & 0 \end{bmatrix}$$

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1 -1/4
W_{BC} -	0	-1	0		1	0	0	≥	-1/4
W_{BC} +	0	1	0	0	-1	0	0	≤	-1/4
W_{CB} -		0	1	0	0	-1	0	≥	-1/4
W_{CB} +	0	0	-1	0	0	1	0	≤	-1/4
W_{DC} -	-1	-1	1	1	1	-1	-2	≥	
W_{DC} +	1	1	-1	-1	-1	1	2	≤	
Max	0	0	0	0	0	0	1 _	=	[0]

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
φ _{AB} -	1	0	0	0	-1	≥	[-1]	
φ _{AB} +	-1	0	0	0	1	≥	-1	
φ _{BC} -	0	-1	0	0	1	≥	-1/4	
φ _{BC} +	0	1	0	0	-1	≥	-1/4	
φ _{CB} -	0	0	1	0	-1	≥	-1/4	
φ _{CB} +	0	0	-1	0	1	≥	-1/4	
φ _{DC} -	-1	-1	1	-2	1	≥	-1	
φ _{DC} +	1	1	-1	2	-1	≥	-1	
L_{x}	0	0	0	0	-1	≥	-1	
Max	0	0	0	1	0 _	=	0	

Scambio pivotale 7-4

	[X	Υ	Z	ϕ_{DC} -	X		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	-1
ϕ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BC} -	0	-1	0	0	1	≥	-1/4
φ _{BC} +	0	1	0	0	-1	≥	-1/4
φ _{CB} -	0	0	1	0	-1	≥	-1/4
φ _{CB} +	0	0	-1	0	1	≥	-1/4
αbF	-1/2	-1/2	1/2	-1/2	1/2	≥	-1/2
φ _{DC} +	0	0	0	-1	0	≥	-2
L _x	0	0	0	0	-1	≥	-1
Max	-1/2	-1/2	1/2	-1/2	1/2	=	-1/2

Scambio pivotale 6-3

Scambio pivotale 4-5

Scambio pivotale 1-2

	[X	Υ	Z	$\alpha b F$	X-		[Fb]	
φ _{AB} -	0	0	0	0	0 -	≥	1/2	
φ_{AB} +	0	0	0	0	0	≥	0	
φ _{BC} -	0	0	0	0	0	≥	0	
φ _{BC} +	0	0	0	0	0	≥	1/2	
φ _{CB} -	0	0	0	0	0	≥	0	
φ _{CB} +	0	0	0	0	0	≥	1/2	
ϕ_{DC} -	0	0	0	0	0	≥	1/2	
φ _{DC} +	0	0	0	0	0	≥	0	
L _x	0	0	0	0	0	≥	0	
Max	0	3/4	5/4	5/4	1 _	=	-5/4	

Variabili soluzione dedotto il valore X-

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BC} \\ \phi_{CB} \\ \end{array} \begin{bmatrix} -1/2 \\ 1/2 \\ 1/2 \\ \phi_{DC} \\ -1/2 \end{bmatrix}$

REAZIONI Fattore di collasso = 5/4

 $H_A = 5/8F$

 $V_{\Delta} = 1/8F$

 $W_{\Delta} = -Fb$

··A — ·

 $H_{\rm D} = 5/8F$

 $V_{\rm D} = -1/8F$

 $W_D = -Fb$

 $H_{AB} = 5/8F$ $H_{BC} = -5/8F$ $H_{CD} = -5/8F$ $V_{AB} = 1/8F$ $V_{BC} = 1/8F$ $V_{CD} = 1/8F$ $W_{AB} = -Fb$ $W_{BC} = 1/4Fb$ $W_{CD} = -1/4Fb$ $H_{BA} = -5/8F$ $H_{CB} = 5/8F$ $H_{DC} = 5/8F$ $V_{BA} = -1/8F$ $V_{CB} = -1/8F$ $V_{DC} = -1/8F$ $W_{BA} = -1/4Fb$ $W_{CB} = 1/4Fb$ $W_{DC} = -Fb$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lll} u_{AAB} = 0 & u_{BBC} = -\delta & u_{CCD} = -\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = 1/2\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = 1/2\delta/b \end{array}$

EQUILIBRIO Nome:

08.06.11

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Matrice di equilibrio $\begin{bmatrix} H_Ab & V_Ab \end{bmatrix} \begin{bmatrix} Xb & Yb & Zb & Fb \end{bmatrix}$ $\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$$

+ + + +

 $\stackrel{\longleftarrow}{|}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_{i}$, $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{ir} 1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p (1 $\leq p < m$) la riga pivot di colonna q, a coefficiente negativo H_{in} , che minimizza il rapporto H_{in}/H_{in} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_p .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_5 & \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{54} \\ \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	-1
W_{AB} +	-1	0	0	0	≥	-1
W_{BC} -	0	-1	0	0	≥	-1/3
W_{BC} +	0	1	0	0	≥	-1/3
W_{CB} -	0	0	1	0	≥	-1/3
W_{CB} +	0	0	-1	0	≥	-1/3
W_{DC} -	-1	-1	1	8	≥	-1
W_{DC} +	1	1	-1	-8	≥	-1
Max	0	0	0	1 _	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	
W_{BC} -	0	-1	0	0	1	0	0	≥	-1/3
W_{BC} +	0	1	0	0	-1	0	0	≤	-1/3
W_{CB} -		0	1	0	0	-1	0	≥	-1/3
W_{CB} +	0	0	-1	0	0	1	0	≤	-1/3
W_{DC} -	-1	-1	1	1	1	-1	8	≥	
W_{DC} +	1	1	-1	-1	-1	1	-8	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

	X	Υ	Ζ	α bF	Χ-		Fb_	
φ _{AB} -	1	0	0	0	-1	≥	-1 ⁻	
φ _{AB} +	-1	0	0	0	1	≥	-1	
φ _{BC} -	0	-1	0	0	1	≥	-1/3	
φ _{BC} +	0	1	0	0	-1	≥	-1/3	
φ _{CB} -	0	0	1	0	-1	≥	-1/3	
φ _{CB} +	0	0	-1	0	1	≥	-1/3	
ϕ_{DC} -	-1	-1	1	8	1	≥	-1	
φ _{DC} +	1	1	-1	-8	-1	≥	-1	
L_{X}	0	0	0	0	-1	≥	-1	
Max	0	0	0	1	0 _	=	0	

Scambio pivotale 8-4

	[X	Υ	Z	ϕ_{DC} +	Χ-		[Fb]
φ _{AB} -	1	0	0	0	-1	≥	[-1]
φ _{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BC} -	0	-1	0	0	1	≥	-1/3
φ_{BC} +	0	1	0	0	-1	≥	-1/3
φ _{CB} -	0	0	1	0	-1	≥	-1/3
φ _{CB} +	0	0	-1	0	1	≥	-1/3
ϕ_{DC} -	0	0	0	-1	0	≥	-2
αbF	1/8	1/8	-1/8	-1/8	-1/8	≥	-1/8
L_{x}	0	0	0	0	-1	≥	-1
Max	1/8	1/8	-1/8	-1/8	-1/8	=	-1/8

Scambio pivotale 2-1

	[φ _{AB} +	Υ	Z	ϕ_{DC} +	X-		[Fb]	
φ _{AB} -	-1	0	0	0	0	≥	[-2]	
Χ	-1	0	0	0	1	≥	-1	
φ _{BC} -	0	-1	0	0	1	≥	-1/3	
φ _{BC} +	0	1	0	0	-1	≥	-1/3	
φ _{CB} -	0	0	1	0	-1	≥	-1/3	
φ _{CB} +	0	0	-1	0	1	≥	-1/3	
ϕ_{DC} -	0	0	0	-1	0	≥	-2	
αbF	-1/8	1/8	-1/8	-1/8	0	≥	-1/4	
L_{x}	0	0	0	0	-1	≥	-1	
Max	-1/8	1/8	-1/8	-1/8	0	=	-1/4	

Scambio pivotale 3-2

Scambio pivotale 5-5

	[φ _{AB} +	ϕ_{BC} -	Z	ϕ_{DC} +	φ_{CB} -		[Fb]
ϕ_{AB} -	-1	0	0	0	0	\geq	-2
Χ	-1	0	1	0	-1	\geq	-4/3
Υ	0	-1	1	0	-1	≥	-2/3
$\phi_{\text{BC}}\text{+}$	0	-1	0	0	0	≥	-2/3
X-	0	0	1	0	-1	≥	-1/3
φ_{CB} +	0	0	0	0	-1	≥	-2/3
ϕ_{DC} -	0	0	0	-1	0	\geq	-2
αbF	-1/8	-1/8	0	-1/8	-1/8	≥	-1/3
L_{x}	0	0	-1	0	1	≥	-2/3
Max	-1/8	-1/8	0	-1/8	-1/8	=	-1/3

	_φ _{AB} +	ϕ_{BC} -	Z	ϕ_{DC} +	φ _{CB} -		L Fb
ϕ_{AB} -	-1	0	0	0	0	≥	-2
Χ	-1	0	1	0	-1	≥	-4/3
Υ	0	-1	1	0	-1	≥	-2/3
ϕ_{BC} +	0	-1	0	0	0	≥	-2/3
X-	0	0	1	0	-1	≥	-1/3
ϕ_{CB} +	0	0	0	0	-1	≥	-2/3
$\phi_{\text{DC}}\text{-}$	0	0	0	-1	0	≥	-2
$\alpha b F$	-1/8	-1/8	0	-1/8	-1/8	≥	-1/3
L_{x}	0	0	-1	0	1	≥	-2/3
Max	-1/8	-1/8	0	-1/8	-1/8	=	-1/3

	[X	Υ	Z	$\alpha b F$	X-		[Fb]	
φ _{AB} -	0	0	0	0	0 -	≥	0	1
φ_{AB} +	0	0	0	0	0	≥	1/8	Ì
φ _{BC} -	0	0	0	0	0	≥	1/8	Ì
φ _{BC} +	0	0	0	0	0	≥	0	Ì
φ _{CB} -	0	0	0	0	0	≥	1/8	Ì
φ _{CB} +	0	0	0	0	0	≥	0	1
ϕ_{DC} -	0	0	0	0	0	≥	0	Ì
φ _{DC} +	0	0	0	0	0	≥	1/8	Ì
L _X	0	0	0	0	0	≥	0	Ì
Max	4/3	2/3	0	1/3	1/3_	=	-1/3	l

Variabili soluzione dedotto il valore X-

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BC} \\ \phi_{CB} \\ \phi_{DC} \end{array} \begin{bmatrix} 1/8 \\ -1/8 \\ -1/8 \\ 1/8 \end{bmatrix}$

REAZIONI Fattore di collasso = 1/3

 $H_A = -2/3F$

 $V_{\Delta} = -1/6F$

 $W_{\Delta} = Fb$

 $H_D = -2/3F$

 $V_{\rm D} = 1/6F$

 $W_D = Fb$

 $H_{AB} = -2/3F$ $H_{BC} = 2/3F$ $H_{CD} = 2/3F$ $V_{AB} = -1/6F$ $V_{BC} = -1/6F$ $V_{CD} = -1/6F$ $W_{AB} = Fb$ $W_{BC} = -1/3Fb$ $W_{CD} = 1/3Fb$ $H_{BA} = 2/3F$ $H_{CB} = -2/3F$ $H_{DC} = -2/3F$ $V_{BA} = 1/6F$ $V_{CB} = 1/6F$ $V_{DC} = 1/6F$ $W_{BA} = 1/3Fb$ $W_{CB} = -1/3Fb$ $W_{DC} = Fb$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lll} u_{AAB} = 0 & u_{BBC} = 1/4\delta & u_{CCD} = 1/4\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = -1/8\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = -1/8\delta/b \end{array}$

AL1.003

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$

Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Soluzione del sistema

+ + + +

$$\begin{bmatrix} Xb & Yb & Zb & Fb \\ -1/2 & -1/2 & 0 & 0 \\ V_Ab \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$$

[Xb Yb Zb Fb] [-1 0 -1 0] [-1 -1 0 0]

Matrice di equilibrio $\begin{bmatrix} H_A b & V_A b \end{bmatrix} \quad \begin{bmatrix} X b \\ \phi_{CB} \end{bmatrix} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

₽/↓-

 $\stackrel{\longrightarrow}{=}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{it}$ $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_p .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{44} \\ \mathsf{H}_{45} \\ \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{54} \\ \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	-1
W_{AB} +	-1	0	0	0	≥	-1
W_{BC} -	0	-1	0	0	≥	-1/2
W_{BC} +	0	1	0	0	≥	-1/2
W_{CB} -	0	0	1	0	≥	-1/2
W_{CB} +	0	0	-1	0	≥	-1/2
W_{DC} -	-1	-1	1	-3	≥	-1
W_{DC} +	1	1	-1	3	≥	-1
Max	0	0	0	1 _	=	0

	X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W _{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1 -1/2
W _{BC} -	0	-1	0	0	1	0	0	≥	-1/2
W_{BC} +	0	1	0	0	-1	0	0	≤	-1/2
W _{CB} -		0	1	0	0	-1	0	≥	-1/2
W_{CB} +		0	-1	0	0	1	0	≤	-1/2
W_{DC} -	-1	-1	1	1	1	-1	-3	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	3	≤	-1
Max	0	0	0	0	0	0	1 _	=	[o]

$$\begin{bmatrix} X & Y & Z & \alpha b F & X_{-} \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix} \\ \phi_{AB}^{-} & 1 & 0 & 0 & 0 & -1 \\ \phi_{BC}^{-} & 0 & -1 & 0 & 0 & 1 \\ \phi_{BC}^{+} & 0 & -1 & 0 & 0 & 1 \\ \phi_{CB}^{+} & 0 & 1 & 0 & 0 & -1 \\ \phi_{CB}^{+} & 0 & 0 & 1 & 0 & -1 \\ \phi_{CB}^{+} & 0 & 0 & 1 & 0 & -1 \\ \phi_{DC}^{+} & 0 & 0 & -1 & 0 & 1 \\ \phi_{DC}^{+} & -1 & -1 & 1 & -3 & 1 \\ \phi_{DC}^{+} & 1 & 1 & -1 & 3 & -1 \\ \phi_{DC}^{+} & 1 & 1 & -1 & 3 & -1 \\ \phi_{DC}^{+} & 0 & 0 & 0 & 0 & -1 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 & 0 & 0 \\ \phi_{DC}^{+} & 1 & 1 \\ \phi_{DC}^{+} & 1 \\ \phi_{DC}^{+} & 1 & 1 \\ \phi_{DC}^{+} & 1 \\ \phi_{D$$

Scambio pivotale 7-4

	[X	Υ	Z	ϕ_{DC} -	X-]		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	-1
ϕ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BC} -	0	-1	0	0	1	≥	-1/2
φ _{BC} +	0	1	0	0	-1	≥	-1/2
φ _{CB} -	0	0	1	0	-1	≥	-1/2
φ _{CB} +	0	0	-1	0	1	≥	-1/2
αbF	-1/3	-1/3	1/3	-1/3	1/3	≥	-1/3
φ _{DC} +	0	0	0	-1	0	≥	-2
L _x	0	0	0	0	-1	≥	-1
Max	-1/3	-1/3	1/3	-1/3	1/3	=	1/3_

Scambio pivotale 6-3

$$\begin{bmatrix} X & Y & \phi_{CB} + \phi_{DC} - & X - \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix} \\ \phi_{AB}^- & \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & -1 \\ \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ \phi_{BC}^- \end{bmatrix} \\ 0 & -1 & 0 & 0 & 1 \\ \phi_{BC}^+ & 0 & 1 & 0 & 0 & -1 \\ \phi_{CB}^- & 0 & 0 & -1 & 0 & 0 \\ \end{bmatrix} \geq \begin{bmatrix} -1/2 \\ -1/2 \\ \phi_{CB}^- \\ \end{bmatrix} \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 \\ \end{bmatrix} \geq \begin{bmatrix} -1/2 \\ -1/2 \\ -1/2 \\ \end{bmatrix} \\ \alpha b F \\ -1/3 & -1/3 & -1/3 & -1/3 & 2/3 \\ \end{bmatrix} \geq \begin{bmatrix} -1/2 \\ -1/2 \\ -1/2 \\ \end{bmatrix} \\ \phi_{DC}^+ & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{bmatrix} \geq \begin{bmatrix} -1/2 \\ -1/2 \\ \end{bmatrix} \\ Max & -1/3 & -1/3 & -1/3 & -1/3 & 2/3 \\ \end{bmatrix} = \begin{bmatrix} -1/2 \\ -1/2 \\ \end{bmatrix}$$

Scambio pivotale 4-5

$$\begin{bmatrix} X & Y & \phi_{CB}+ & \phi_{DC}- & \phi_{BC}+ \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix} \\ \phi_{AB}- & 1 & -1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 2 & -3/2 \\ 0 & 0 & 0 & 0 & -1 \\ -1/2 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 \\ -1/2 & 0 & 1 & -1 & 0 & -1 \\ -1/3 & 1/3 & -1/3 & -1/3 & -2/3 \\ -2/2 & 0 & 1 & -1 & 0 & 0 \\ -1/2 & 0 & 0 & 0 & -1 & 0 \\ -1/2 & 0 & -1 & 0 & 0 & 1 \\ -1/3 & 1/3 & -1/3 & -1/3 & -2/3 \\ -2/2 & 0 & -1 & 0 & 0 & 1 \\ -1/2 & 0 & -1/2 & 0 & -1/2 \\ -1/2 & 0 & -1/3 & 1/3 & -1/3 & -2/3 \\ -1/3 & 1/3 & -1/3 & -1/3 & -2/3 \\ -1/3 & 1/3 & -1/3 & -1/3 & -2/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 & -1/3 \\ -1/2 & 0 & -1/3 \\ -1/2 &$$

Scambio pivotale 1-2

$$\begin{bmatrix} X & \phi_{AB^-} & \phi_{CB}^+ & \phi_{DC^-} & \phi_{BC}^+ \end{bmatrix} & \begin{bmatrix} Fb \\ D & 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 0 & 0 & 2 \\ 0 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ 0 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \\ 0 & 0 & -1/3 & -1/3 & -1/3 & -1/3 \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
ϕ_{AB} -	0	0	0	0	0	≥	[1/3]	
φ_{AB} +	0	0	0	0	0	≥	0	
φ _{BC} -	0	0	0	0	0	≥	0	
φ _{BC} +	0	0	0	0	0	≥	1/3	
φ _{CB} -	0	0	0	0	0	≥	0	
φ _{CB} +	0	0	0	0	0	≥	1/3	
φ _{DC} -	0	0	0	0	0	≥	1/3	
φ_{DC} +	0	0	0	0	0	≥	0	
L _x	0	0	0	0	0	≥	0	
Max	0	1/2	3/2	1	1 _	=	L -1]	

Variabili soluzione dedotto il valore X-

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} & \begin{bmatrix} -1/3 \\ \\ \phi_{BC} \\ \end{bmatrix} & 1/3 \\ \phi_{CB} & 1/3 \\ \phi_{DC} & [-1/3] \\ \end{array}$

REAZIONI Fattore di collasso = 1

 $H_{\Delta} = 3/4F$

 $V_{\Delta} = 1/4F$

 $W_{\Delta} = -Fb$

 $H_D = 3/4F$

 $V_{D} = -1/4F$

 $W_D = -Fb$

 $H_{AB} = 3/4F$ $H_{BC} = -3/4F$ $H_{CD} = -3/4F$ $V_{AB} = 1/4F$ $V_{BC} = 1/4F$ $V_{CD} = 1/4F$ $W_{AB} = -Fb$ $W_{BC} = 1/2Fb$ $W_{CD} = -1/2Fb$ $H_{BA} = -3/4F$ $H_{CB} = 3/4F$ $H_{DC} = 3/4F$ $V_{BA} = -1/4F$ $V_{CB} = -1/4F$ $V_{DC} = -1/4F$ $W_{BA} = -1/2Fb$ $W_{CB} = 1/2Fb$ $W_{DC} = -Fb$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lll} u_{AAB} = 0 & u_{BBC} = -2/3\delta & u_{CCD} = -2/3\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = 1/3\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = 1/3\delta/b \end{array}$

08.06.11

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Matrice di equilibrio $\begin{bmatrix} H_Ab \ V_Ab \end{bmatrix} \quad \begin{bmatrix} Xb \ Yb \ Zb \ Fb \end{bmatrix}$ $\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$

Soluzione del sistema

$$\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$$

↑ +

 $\stackrel{\longleftarrow}{|}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

08.06.11

PROGRAMMAZIONE LINEARE

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$, $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_i$, $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p ($1 \le p < m$) la riga pivot di colonna q, a coefficiente negativo H_{in} , che minimizza il rapporto H_{in}/H_{in} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_q con la duale D_p .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna $q: H_{ii} = H_{ii} H_{ii} + H_{pi}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pj}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P, presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_5 & \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \\ \mathsf{MAX} & \mathsf{H}_{61} & \mathsf{H}_{62} & \mathsf{H}_{63} \end{bmatrix} = \begin{bmatrix} \mathsf{MIN} \\ \mathsf{H}_{44} \\ \mathsf{H}_{44} \\ \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	0	≥	-1
W_{BC} -	0	-1	0	0	≥	-2/3
W_{BC} +	0	1	0	0	≥	-2/3
W_{CB} -	0	0	1	0	≥	-2/3
W_{CB} +	0	0	-1	0	≥	-2/3
W_{DC} -	-1	-1	1	7	≥	-1
W_{DC} +	1	1	-1	-7	≥	-1
Max	0	0	0	1 _	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BC} -	0	-1	0	0	1	0	0	≥	-2/3
W_{BC} +	0	1	0	0	-1	0	0	≤	-2/3
W_{CB} -		0	1	0	0	-1	0	≥	-2/3
W_{CB} +	0	0	-1	0	0	1	0	≤	-2/3
W_{DC} -	-1		1	1	1	-1	7	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	-7	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

$$\begin{bmatrix} X & Y & Z & \alpha b F & X - \end{bmatrix} & \begin{bmatrix} F b \end{bmatrix} \\ \phi_{AB}^- & 1 & 0 & 0 & 0 & -1 \\ \phi_{BC}^- & 0 & -1 & 0 & 0 & 1 \\ \phi_{BC}^+ & 0 & -1 & 0 & 0 & 1 \\ \phi_{CB}^- & 0 & 1 & 0 & 0 & -1 \\ \phi_{CB}^+ & 0 & 0 & 1 & 0 & -1 \\ \phi_{CB}^+ & 0 & 0 & 1 & 0 & -1 \\ \phi_{DC}^+ & 1 & 1 & 7 & 1 \\ \phi_{DC}^+ & 1 & 1 & -1 & -7 & -1 \\ \phi_{DC}^+ & 1 & 1 & -1 & -7 & -1 \\ \phi_{DC}^+ & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \geq \begin{bmatrix} F b \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 0 \end{bmatrix}$$

Scambio pivotale 8-4

	[X	Υ	Z	ϕ_{DC} +	X-		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	[-1]
ϕ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BC} -	0	-1	0	0	1	≥	-2/3
ϕ_{BC} +	0	1	0	0	-1	≥	-2/3
ϕ_{CB} -	0	0	1	0	-1	≥	-2/3
φ _{CB} +	0	0	-1	0	1	≥	-2/3
ϕ_{DC}	0	0	0	-1	0	≥	-2
αbF	1/7	1/7	-1/7	-1/7	-1/7	≥	-1/7
L_{X}	0	0	0	0	-1	≥	-1
Max	1/7	1/7	-1/7	-1/7	-1/7	=	[-1/7]

Scambio pivotale 2-1

	$[\phi_{AB} +$	Υ	Z	ϕ_{DC} +	Χ-		[Fb]	
φ _{AB} -	-1	0	0	0	0	≥	[-2]	
Χ	-1	0	0	0	1	≥	-1	
φ _{BC} -	0	-1	0	0	1	≥	-2/3	
φ _{BC} +	0	1	0	0	-1	≥	-2/3	
φ _{CB} -	0	0	1	0	-1	≥	-2/3	
φ _{CB} +	0	0	-1	0	1	≥	-2/3	
φ _{DC} -	0	0	0	-1	0	≥	-2	
αbF	-1/7	1/7	-1/7	-1/7	0	≥	-2/7	
L_{x}	0	0	0	0	-1	≥	-1	
Max	-1/7	1/7	-1/7	-1/7	0	=	-2/7	

Scambio pivotale 3-2

Scambio pivotale 5-5

	[X	Υ	Z	αbF	X-]	[Fb]	
ϕ_{AB} -	0	0	0	0	0	≥	[0]	
ϕ_{AB} +	0	0	0	0	0	≥	1/7	
ϕ_{BC} -	0	0	0	0	0	≥	1/7	
φ _{BC} +	0	0	0	0	0	≥	0	
φ _{CB} -	0	0	0	0	0	≥	1/7	
φ _{CB} +	0	0	0	0	0	≥	0	
ϕ_{DC} -	0	0	0	0	0	≥	0	
ϕ_{DC} +	0	0	0	0	0	≥	1/7	
L _X	0	0	0	0	0	≥	0	
Max	5/3	4/3	0	10/21	2/3	=	10/21	

Variabili soluzione dedotto il valore X-

X Y Z [1 2/3 -2/3]

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BC} \\ \phi_{CB} \\ \phi_{DC} \end{array} \begin{bmatrix} 1/7 \\ -1/7 \\ -1/7 \\ 1/7 \end{bmatrix}$

REAZIONI Fattore di collasso = 10/21

 $H_{\Delta} = -5/6F$

 $V_{\Delta} = -1/3F$

 $W_{\Delta} = Fb$

 $H_{D} = -5/6F$

 $V_{D} = 1/3F$

 $W_D = Fb$

 $H_{AB} = -5/6F$ $H_{BC} = 5/6F$ $H_{CD} = 5/6F$ $V_{AB} = -1/3F$ $V_{BC} = -1/3F$ $V_{CD} = -1/3F$ $W_{AB} = Fb$ $W_{BC} = -2/3Fb$ $W_{CD} = 2/3Fb$ $H_{BA} = 5/6F$ $H_{CB} = -5/6F$ $H_{DC} = -5/6F$ $V_{BA} = 1/3F$ $V_{CB} = 1/3F$ $V_{DC} = 1/3F$ $W_{BA} = 2/3Fb$ $W_{CB} = -2/3Fb$ $W_{DC} = Fb$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

$u_{AAB} = 0$	$u_{BBC} = 2/7\delta$	$u_{CCD} = 2/7\delta$
$V_{AAB} = 0$	$V_{BBC} = 0$	$V_{CCD} = 0$
$\phi_{AAB} = -1/7\delta/b$	$\varphi_{BBC} = 0$	$\phi_{CCD} = -1/7\delta/b$

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

8/E-

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Soluzione del sistema

+ + + +

$$\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$$

[Xb Yb Zb Fb] [-1 0 -1 0] [-1 -1 0 0]

Matrice di equilibrio $\begin{bmatrix} H_A b & V_A b \end{bmatrix} \quad \begin{bmatrix} X b \\ \phi_{CB} \end{bmatrix} 2 \quad -4 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

 $\stackrel{\longleftarrow}{|}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_i$, $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{it}$ $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{in} H_{ni}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_5 & \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \\ \mathsf{MAX} & \begin{bmatrix} \mathsf{H}_{61} & \mathsf{H}_{62} & \mathsf{H}_{63} \end{bmatrix} = \begin{bmatrix} \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	0	≥	-1
W_{BC} -	0	-1	0	0	≥	-3/4
W_{BC} +	0	1	0	0	≥	-3/4
W_{CB} -	0	0	1	0	≥	-3/4
W_{CB} +	0	0	-1	0	≥	-3/4
W_{DC} -	-1	-1	1	-4	≥	-1
W_{DC} +	1	1	-1	4	≥	-1
Max	0	0	0	1 _	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BC} -	0	-1	0	0	1	0	0	≥	-3/4
W_{BC} +	0	1	0	0	-1	0	0	≤	-3/4
W_{CB} -	0	0	1	0	0	-1	0	≥	-3/4
W_{CB} +	0	0	-1	0	0	1	0	≤	-3/4
W_{DC} -	-1	-1	1	1	1	-1	-4	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	4	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

Scambio pivotale 7-4

	[X	Υ	Z	ϕ_{DC} -	X-]		[Fb]	
φ _{AB} -	1	0	0	0	-1	≥	[-1]	
φ _{AB} +	-1	0	0	0	1	≥	-1	
ϕ_{BC} -	0	-1	0	0	1	≥	-3/4	
φ _{BC} +	0	1	0	0	-1	≥	-3/4	
φ _{CB} -	0	0	1	0	-1	≥	-3/4	
φ _{CB} +	0	0	-1	0	1	≥	-3/4	
αbF	-1/4	-1/4	1/4	-1/4	1/4	≥	-1/4	
φ _{DC} +	0	0	0	-1	0	≥	-2	
L _X	0	0	0	0	-1	≥	-1	
Max	-1/4	-1/4	1/4	-1/4	1/4	=	-1/4	

Scambio pivotale 6-3

Scambio pivotale 4-5

Scambio pivotale 1-2

$$\begin{bmatrix} X & \phi_{AB^-} & \phi_{CB}^- + \phi_{DC^-} & \phi_{BC}^- + \end{bmatrix} & \begin{bmatrix} Fb \\ Y & \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} \geq \begin{bmatrix} -1/4 \\ -2/2 \\ -2/2 \\ -3/2 \\$$

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
φ _{AB} -	0	0	0	0	0 -	≥	1/4	
φ_{AB} +	0	0	0	0	0	≥	0	
φ _{BC} -	0	0	0	0	0	≥	0	
φ _{BC} +	0	0	0	0	0	≥	1/4	
φ _{CB} -	0	0	0	0	0	≥	0	
φ _{CB} +	0	0	0	0	0	≥	1/4	
φ _{DC} -	0	0	0	0	0	≥	1/4	
φ_{DC} +	0	0	0	0	0	≥	0	
L _x	0	0	0	0	0	≥	0	
Max	0	1/4	7/4	7/8	1 _	=	7/8	

Variabili soluzione dedotto il valore X-

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BC} \\ \phi_{CB} \\ \phi_{DC} \\ \end{array} \begin{bmatrix} -1/4 \\ 1/4 \\ 1/4 \\ -1/4 \\ \end{bmatrix}$

REAZIONI Fattore di collasso = 7/8

 $H_{\Delta} = 7/8F$

 $V_A = 3/8F$

 $W_{\Delta} = -Fb$

 $H_D = 7/8F$

 $V_{D} = -3/8F$

 $W_D = -Fb$

 $H_{AB} = 7/8F$ $H_{BC} = -7/8F$ $H_{CD} = -7/8F$ $V_{AB} = 3/8F$ $V_{BC} = 3/8F$ $V_{CD} = 3/8F$ $W_{BC} = 3/4Fb$ $W_{AB} = -Fb$ $W_{CD} = -3/4Fb$ $H_{BA} = -7/8F$ $H_{CB} = 7/8F$ $H_{DC} = 7/8F$ $V_{BA} = -3/8F$ $V_{CB} = -3/8F$ $V_{DC} = -3/8F$ $W_{BA} = -3/4Fb$ $W_{CB} = 3/4Fb$ $W_{DC} = -Fb$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

$u_{AAB} = 0$	$u_{BBC} = -1/2\delta$	$u_{CCD} = -1/2\delta$
$V_{AAB} = 0$	$V_{BBC} = 0$	$V_{CCD} = 0$
$\phi_{AAB} = 1/4\delta/b$	$\phi_{BBC} = 0$	$\phi_{CCD} = 1/4\delta/b$

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Matrice di equilibrio
$$\begin{bmatrix} H_Ab & V_Ab \end{bmatrix} \quad \begin{bmatrix} Xb & Yb & Zb & Fb \end{bmatrix}$$

$$\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$$

+ + + +

Soluzione del sistema

 $\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$

 $\stackrel{\longleftarrow}{|}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{ii}$, $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_q con la duale D_p .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{in} H_{ni}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	0	≥	-1
W_{BC} -	0	-1	0	0	≥	-1
W_{BC} +	0	1	0	0	≥	-1
W_{CD} -	0	0	-1	0	≥	-1
W_{CD} +	0	0	1	0	≥	-1
W_{DC} -	-1	-1	1	6	≥	-1
W_{DC} +	1	1	-1	-6	≥	-1
Max	0	0	0	1	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BC} -	0	-1	0	0	1	0	0	≥	-1
W_{BC} +	0	1	0	0	-1	0	0	≤	-1
W_{CD} -	0	0	-1	0	0	1	0	≥	-1
W_{CD} +	0	0	1	0	0	-1	0	≤	-1
W_{DC} -	-1	-1		1	1	-1	6	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	-6	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

Scambio pivotale 8-4

	[X	Υ	Z	ϕ_{DC} +	X-]		[Fb]
φ _{AB} -	1	0	0	0	-1	≥	[-1]
ϕ_{AB} +	-1	0	0	0	1	≥	-1
φ _{BC} -	0	-1	0	0	1	≥	-1
φ _{BC} +	0	1	0	0	-1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
φ _{CD} +	0	0	1	0	-1	≥	-1
φ _{DC} -	0	0	0	-1	0	≥	-2
αbF	1/6	1/6	-1/6	-1/6	-1/6	≥	-1/6
L _x	0	0	0	0	-1	≥	-1
Max	1/6	1/6	-1/6	-1/6	-1/6	=	-1/6

Scambio pivotale 2-1

	$\left[\phi_{AB}\right]$	Υ	Z	ϕ_{DC} +	Χ-		[Fb]
φ _{AB} -	-1	0	0	0	0	≥	[-2]
Χ	-1	0	0	0	1	≥	-1
φ _{BC} -	0	-1	0	0	1	≥	-1
φ _{BC} +	0	1	0	0	-1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
φ _{CD} +	0	0	1	0	-1	≥	-1
φ _{DC} -	0	0	0	-1	0	≥	-2
αbF	-1/6	1/6	-1/6	-1/6	0	≥	-1/3
L_{x}	0	0	0	0	-1	≥	-1
Max	-1/6	1/6	-1/6	-1/6	0	=	-1/3

Scambio pivotale 3-2

Scambio pivotale 6-5

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
φ _{AB} -	0	0	0	0	0	≥	0	
φ _{AB} +	0	0	0	0	0	≥	1/6	
φ _{BC} -	0	0	0	0	0	≥	1/6	
φ _{BC} +	0	0	0	0	0	≥	0	
φ _{CD} -	0	0	0	0	0	≥	0	
φ _{CD} +	0	0	0	0	0	≥	1/6	
φ _{DC} -	0	0	0	0	0	≥	0	
φ _{DC} +	0	0	0	0	0	≥	1/6	
L _x	0	0	0	0	0	≥	0	
Max	2	2	0	2/3	1 _	=	2/3_	

Variabili soluzione dedotto il valore X-

X Y Z
[1 1 -1]

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BC} \\ \phi_{CD} \\ \phi_{DC} \end{array} \begin{bmatrix} 1/6 \\ -1/6 \\ 1/6 \\ 1/6 \\ \end{bmatrix}$

REAZIONI Fattore di collasso = 2/3

 $H_A = -F$ $V_A = -1/2F$ $W_A = Fb$ $H_D = -F$

 $V_{\rm D} = 1/2F$

 $W_D = Fb$

 $\begin{array}{llll} H_{AB} = -F & H_{BC} = F & H_{CD} = F \\ V_{AB} = -1/2F & V_{BC} = -1/2F & V_{CD} = -1/2F \\ W_{AB} = Fb & W_{BC} = -Fb & W_{CD} = Fb \\ H_{BA} = F & H_{CB} = -F & H_{DC} = -F \\ V_{BA} = 1/2F & V_{CB} = 1/2F & V_{DC} = 1/2F \\ W_{BA} = Fb & W_{CB} = -Fb & W_{DC} = Fb \end{array}$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lllll} u_{AAB} = 0 & u_{BBC} = 1/3\delta & u_{CCD} = 1/3\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = -1/6\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = -1/6\delta/b \end{array}$

AL1.007

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

$$\begin{bmatrix} \mathsf{H}_\mathsf{A}\mathsf{b} \ \mathsf{V}_\mathsf{A}\mathsf{b} \end{bmatrix} \quad \begin{bmatrix} \mathsf{X}\mathsf{b} \ \mathsf{Y}\mathsf{b} \ \mathsf{Z}\mathsf{b} \ \mathsf{F}\mathsf{b} \end{bmatrix}$$

Matrice di equilibrio $\begin{bmatrix} H_A b & V_A b \end{bmatrix} \begin{bmatrix} X b & Y b & Z b & F b \end{bmatrix}$ $\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$

Soluzione del sistema

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{ii}$, $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{D}_2 & \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \mathsf{H}_{34} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \mathsf{H}_{34} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \mathsf{H}_{44} \\ \mathsf{D}_5 & \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \end{bmatrix} \geq \mathsf{H}_{54} \\ \mathsf{MAX} \begin{bmatrix} \mathsf{H}_{61} & \mathsf{H}_{62} & \mathsf{H}_{63} \end{bmatrix} = \begin{bmatrix} \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

$$\begin{bmatrix} X & Y & Z & \alpha bF \end{bmatrix} & [Fb] \\ W_{AB}^- & [1 & 0 & 0 & 0] & \geq [-1] \\ W_{AB}^+ & [1 & 0 & 0 & 0] & \leq [1] \\ W_{BA}^- & [0 & 1 & 0 & 0] & \geq [-1] \\ W_{BA}^+ & [0 & 1 & 0 & 0] & \leq [1] \\ W_{CD}^- & [0 & 0 & -1] & [0 & \geq [-1]] \\ W_{CD}^+ & [0 & 0 & -1] & [0 & \leq [1]] \\ W_{DC}^- & [-1 & -1] & [1 & -5] & \geq [-1] \\ W_{DC}^+ & [-1 & -1] & [1 & -5] & \leq [1] \\ Max & [0 & 0 & 0] & [1] & [0] \\ \end{bmatrix}$$

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	0	≥	-1
W_{BA} -	0	1	0	0	≥	-1
W_{BA} +	0	-1	0	0	≥	-1
W_{CD} -	0	0	-1	0	≥	-1
W_{CD} +	0	0	1	0	≥	-1
W_{DC} -	-1	-1	1	-5	≥	-1
W_{DC} +	1	1	-1	5	≥	-1
Max	0	0	0	1	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]	
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]	
W_{AB} +	-1	0	0	1	0	0	0	≤	-1	
W_{BA} -	0	1	0	0	-1	0	0	≥	-1	
W_{BA} +	0	-1	0	0	1	0	0	≤	-1	
W_{CD} -	0	0	-1	0	0	1	0	≥	-1	
W _{CD} +	0	0	1	0	0	-1	0	≤	-1	
W_{DC} -	-1	-1	1	1	1	-1	-5	≥	-1	
W_{DC} +	1	1	-1	-1	-1	1	5	≤	-1	
Max	0	0	0	0	0	0	1 _	=	0	

	[X	Υ	Z	αbF	X-]]	[Fb]	ı
φ _{AB} -	1	0	0	0	-1	≥	-1	1
φ _{AB} +	-1	0	0	0	1	≥	-1	Ì
ϕ_{BA} -	0	1	0	0	-1	≥	-1	Ì
φ _{BA} +	0	-1	0	0	1	≥	-1	Ì
φ _{CD} -	0	0	-1	0	1	≥	-1	Ì
φ _{CD} +	0	0	1	0	-1	≥	-1	1
ϕ_{DC} -	-1	-1	1	-5	1	≥	-1	Ì
φ_{DC} +	1	1	-1	5	-1	≥	-1	Ì
L_{x}	0	0	0	0	-1	≥	-3/2	Ì
Max	0	0	0	1	0	=	0]	ı

Scambio pivotale 7-4

	[X	Υ	Z	ϕ_{DC} -	X		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	-1
ϕ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BA} -	0	1	0	0	-1	≥	-1
ϕ_{BA} +	0	-1	0	0	1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
ϕ_{CD} +	0	0	1	0	-1	≥	-1
$\alpha b F$	-1/5	-1/5	1/5	-1/5	1/5	≥	-1/5
ϕ_{DC} +	0	0	0	-1	0	≥	-2
L_{x}	0	0	0	0	-1	≥	-3/2
Max	-1/5	-1/5	1/5	-1/5	1/5_	=	-1/5

Scambio pivotale 5-3

	[X	Υ	φ _{CD} -	ϕ_{DC} -	X-]		[Fb]	
φ _{AB} -	1	0	0	0	-1	≥	[-1]	
φ _{AB} +	-1	0	0	0	1	≥	-1	
φ _{BA} -	0	1	0	0	-1	≥	-1	
φ _{BA} +	0	-1	0	0	1	≥	-1	
Z	0	0	-1	0	1	≥	-1	
p _{CD} +	0	0	-1	0	0	≥	-2	
αbF	-1/5	-1/5	-1/5	-1/5	2/5	≥	-2/5	
p _{DC} +	0	0	0	-1	0	≥	-2	
_x	0	0	0	0	-1	≥	-3/2	
Max	-1/5	-1/5	-1/5	-1/5	2/5	=	-2/5	

Scambio pivotale 1-5

Scambio pivotale 3-1

	[X	Υ	Z	$\alpha b F$	X-		[Fb]	
φ _{AB} -	0	0	0	0	0	≥	1/5	
φ_{AB} +	0	0	0	0	0	≥	0	
ϕ_{BA} -	0	0	0	0	0	≥	1/5	
φ _{BA} +	0	0	0	0	0	≥	0	
φ _{CD} -	0	0	0	0	0	≥	1/5	
φ _{CD} +	0	0	0	0	0	≥	0	
φ _{DC} -	0	0	0	0	0	≥	1/5	
φ_{DC} +	0	0	0	0	0	≥	0	
L _x	0	0	0	0	0	≥	0	
Max	0	0	2	4/5	1	=	4/5_	

Variabili soluzione dedotto il valore X-

X Y Z

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BA} \\ \phi_{CD} \\ \end{array} \begin{bmatrix} -1/5 \\ -1/5 \\ -1/5 \\ -1/5 \\ -1/5 \\ \end{bmatrix}$

REAZIONI Fattore di collasso = 4/5

 $H_A = F$ $V_A = 1/2F$ $W_A = -Fb$ $H_D = F$ $V_D = -1/2F$ $W_D = -Fb$

 $\begin{array}{llll} H_{AB} = F & H_{BC} = -F & H_{CD} = -F \\ V_{AB} = 1/2F & V_{BC} = 1/2F & V_{CD} = 1/2F \\ W_{AB} = -Fb & W_{BC} = Fb & W_{CD} = -Fb \\ H_{BA} = -F & H_{CB} = F & H_{DC} = F \\ V_{BA} = -1/2F & V_{CB} = -1/2F & V_{DC} = -1/2F \\ W_{BA} = -Fb & W_{CB} = Fb & W_{DC} = -Fb \end{array}$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lll} u_{AAB} = 0 & u_{BBC} = -2/5\delta & u_{CCD} = -2/5\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = 1/5\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = 1/5\delta/b \end{array}$

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Matrice di equilibrio
$$\begin{bmatrix} H_A b & V_A b \end{bmatrix} \begin{bmatrix} X b & Y b & Z b & F b \end{bmatrix}$$

$$\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$$

↑ + +

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{it}$ $1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q ($1 \le q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pj} = -H_{pq} H_{pi}$, escluso il pivot H_{pq} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	0	≥	-1
W_{BA} -	0	1	0	0	≥	-1
W_{BA} +	0	-1	0	0	≥	-1
W_{CD} -	0	0	-1	0	≥	-1
W_{CD} +	0	0	1	0	≥	-1
W_{DC} -	-1	-1	1	5	≥	-1
W_{DC} +	1	1	-1	-5	≥	-1
Max	0	0	0	1	=	0

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BA} -	0	1	0	0	-1	0	0	≥	-1
W_{BA} +	0	-1	0	0	1	0	0	≤	-1
W _{CD} -	0	0	-1	0	0	1	0	≥	-1
W_{CD} +	0	0	1	0	0	-1	0	≤	-1
W_{DC} -	-1	-1	1	1	1	-1	5	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	-5	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
φ _{AB} -	1	0	0	0	-1	≥	-1	
φ _{AB} +	-1	0	0	0	1	≥	-1	
φ _{BA} -	0	1	0	0	-1	≥	-1	
φ _{BA} +	0	-1	0	0	1	≥	-1	
φ _{CD} -	0	0	-1	0	1	≥	-1	
φ _{CD} +	0	0	1	0	-1	≥	-1	
φ _{DC} -	-1	-1	1	5	1	≥	-1	
φ _{DC} +	1	1	-1	-5	-1	≥	-1	
L_{x}	0	0	0	0	-1	≥	-4/3	
Max	0	0	0	1	0 _	=	0	

Scambio pivotale 8-4

	[X	Υ	Z	ϕ_{DC} +	X-]		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	[-1]
ϕ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BA} -	0	1	0	0	-1	≥	-1
ϕ_{BA} +	0	-1	0	0	1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
ϕ_{CD} +	0	0	1	0	-1	≥	-1
ϕ_{DC} -	0	0	0	-1	0	≥	-2
$\alpha b F$	1/5	1/5	-1/5	-1/5	-1/5	≥	-1/5
L_{x}	0	0	0	0	-1	≥	-4/3
Max	1/5	1/5	-1/5	-1/5	-1/5	=	-1/5

Scambio pivotale 2-1

	$\left[\phi_{AB}\right]$	Υ	Z	ϕ_{DC} +	Χ-		[Fb]	
φ _{AB} -	-1	0	0	0	0	≥	-2	
Χ	-1	0	0	0	1	≥	-1	
φ _{BA} -	0	1	0	0	-1	≥	-1	
φ _{BA} +	0	-1	0	0	1	≥	-1	
φ _{CD} -	0	0	-1	0	1	≥	-1	
φ _{CD} +	0	0	1	0	-1	≥	-1	
φ _{DC} -	0	0	0	-1	0	≥	-2	
αbF	-1/5	1/5	-1/5	-1/5	0	≥	-2/5	
L_{x}	0	0	0	0	-1	≥	-4/3	
Max	-1/5	1/5	-1/5	-1/5	0	=	2/5	

Scambio pivotale 4-2

$$\begin{bmatrix} \phi_{AB} + \phi_{BA} + & Z & \phi_{DC} + & X - \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix}$$

$$\phi_{AB}^- \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \\ 2 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \geq \begin{bmatrix} -2 \\ -2 \\ 3 & -1 & 0 & 0 & 0 & 1 \\ 2 & -1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 1 \\ 3 & -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \\ 4$$

Scambio pivotale 6-5

	[X	Υ	Z	$\alpha b F$	Χ-		[Fb]	
φ _{AB} -	0	0	0	0	0	≥	0	
φ _{AB} +	0	0	0	0	0	≥	1/5	
φ _{BA} -	0	0	0	0	0	≥	0	
φ _{BA} +	0	0	0	0	0	≥	1/5	
φ _{CD} -	0	0	0	0	0	≥	0	
φ _{CD} +	0	0	0	0	0	≥	1/5	
φ _{DC} -	0	0	0	0	0	≥	0	
φ _{DC} +	0	0	0	0	0	≥	1/5	
L _x	0	0	0	0	0	≥	0	
Max	2	2	0	4/5	1	=	-4/5	

Variabili soluzione dedotto il valore X-

X Y Z
[1 1 -1]

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BA} \\ \phi_{CD} \\ \phi_{DC} \\ \end{array} \left[\begin{array}{c} 1/5 \\ 1/5 \\ 1/5 \\ 1/5 \end{array} \right]$

REAZIONI Fattore di collasso = 4/5

 $H_A = -F$ $V_A = -1/2F$ $W_A = Fb$

 $H_D = -F$ $V_D = 1/2F$

 $W_D = Fb$

 $\begin{array}{llll} H_{AB} = -F & H_{BC} = F & H_{CD} = F \\ V_{AB} = -1/2F & V_{BC} = -1/2F & V_{CD} = -1/2F \\ W_{AB} = Fb & W_{BC} = -Fb & W_{CD} = Fb \\ H_{BA} = F & H_{CB} = -F & H_{DC} = -F \\ V_{BA} = 1/2F & V_{CB} = 1/2F & V_{DC} = 1/2F \\ W_{RA} = Fb & W_{CR} = -Fb & W_{DC} = Fb \end{array}$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$ Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Matrice di equilibrio
$$\begin{bmatrix} H_Ab & V_Ab \end{bmatrix} \begin{bmatrix} Xb & Yb & Zb & Fb \end{bmatrix}$$

$$\phi_{CB} \begin{bmatrix} 2 & -4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix}$$

 $\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_A^b \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$

Soluzione del sistema

↑ +|-

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{ir} 1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p (1 $\leq p < m$) la riga pivot di colonna q, a coefficiente negativo H_{in} , che minimizza il rapporto H_{in}/H_{in} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pi} = -H_{pa}H_{pi}$, escluso il pivot H_{po} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna *n* dei termini noti, in corrispondenza delle variabili *P*, presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{44} \\ \mathsf{H}_{45} \\ \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{54} \\ \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

	[X	Υ	Z	αbF		[Fb]
W_{AB} -	1	0	0	0	≥	[-1 ⁻
W_{AB} +	-1	0	0	0	≥	-1
W_{BA} -	0	1	0	0	≥	-1
W_{BA} +	0	-1	0	0	≥	-1
W_{CD} -	0	0	-1	0	≥	-1
W_{CD} +	0	0	1	0	≥	-1
W_{DC} -	-1	-1	1	-6	≥	-1
W_{DC} +	1	1	-1	6	≥	-1
Max	0	0	0	1	=	0 _

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BA} -	0	1		0	-1	0	0	≥	1 - 1
W_{BA} +	0	-1	0	0	1	0	0	≤	-1
W_{CD} -	0	0	-1	0	0	1	0	≥	-1
W_{CD} +	0	0	1		0	-1	0	≤	1 1
W_{DC} -	-1	-1	1	1	1	-1	-6	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	6	≤	-1
Max	0	0	0	0	0	0	1 _	=	0

	[X	Υ	Z	$\alpha b F$	X]	[Fb]
φ _{AB} -	1	0	0	0	-1	≥	[-1]
φ _{AB} +	-1	0	0	0	1	≥	-1
φ _{BA} -	0	1	0	0	-1	≥	-1
φ _{BA} +	0	-1	0	0	1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
φ _{CD} +	0	0	1	0	-1	≥	-1
φ _{DC} -	-1	-1	1	-6	1	≥	-1
φ _{DC} +	1	1	-1	6	-1	≥	-1
L _X	0	0	0	0	-1	≥	-2
Max	0	0	0	1	0 _	=	0

Scambio pivotale 7-4

	[X	Υ	Z	$\phi_{\text{DC}}\text{-}$	X-]		[Fb]
ϕ_{AB} -	1	0	0	0	-1	≥	-1
φ_{AB} +	-1	0	0	0	1	≥	-1
ϕ_{BA} -	0	1	0	0	-1	≥	-1
φ _{BA} +	0	-1	0	0	1	≥	-1
φ _{CD} -	0	0	-1	0	1	≥	-1
φ _{CD} +	0	0	1	0	-1	≥	-1
αbF	-1/6	-1/6	1/6	-1/6	1/6	≥	-1/6
φ _{DC} +	0	0	0	-1	0	≥	-2
L _x	0	0	0	0	-1	≥	-2
Max	-1/6	-1/6	1/6	-1/6	1/6	=	-1/6

Scambio pivotale 5-3

Scambio pivotale 1-5

$$\begin{bmatrix} X & Y & \phi_{CD^-} & \phi_{DC^-} & \phi_{AB}^- \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix} \\ X - & \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} \geq \begin{bmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\phi_{BA}^+ & -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \geq \begin{bmatrix} -2 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\phi_{BA}^+ & 1 & -1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 \end{bmatrix} \geq \begin{bmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix}$$

$$\phi_{CD}^+ & 0 & 0 & -1 & 0 \\ 1/6 & -1/6 & -1/6 & -1/6 \\ -1 & 0 & 0 & 0 \\ 1/6 & -1/6 & -1/6 \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ -2 \\ -2 \end{bmatrix}$$

$$\phi_{DC}^+ & 0 & 0 & 0 & 0 \\ 1/6 & -1/6 & -1/6 & -1/6 \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\phi_{DC}^+ & 0 & 0 & 0 & 0 \\ 1/6 & -1/6 & -1/6 & -1/6 \end{bmatrix} = \begin{bmatrix} -2/3 \\ -2/3 \end{bmatrix}$$

Scambio pivotale 3-1

	[X	Υ	Z	$\alpha b F$	X-		[Fb]	
φ _{AB} -	0	0	0	0	0	≥	1/6	
φ_{AB} +	0	0	0	0	0	≥	0	
ϕ_{BA} -	0	0	0	0	0	≥	1/6	
φ _{BA} +	0	0	0	0	0	≥	0	
φ _{CD} -	0	0	0	0	0	≥	1/6	
φ _{CD} +	0	0	0	0	0	≥	0	
ϕ_{DC} -	0	0	0	0	0	≥	1/6	
φ_{DC} +	0	0	0	0	0	≥	0	
L _x	0	0	0	0	0	≥	0	
Max	0	0	2	2/3	1	=	-2/3	

Variabili soluzione dedotto il valore X-

X Y Z

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} & \begin{bmatrix} -1/6 \\ \phi_{BA} \\ \end{bmatrix} & -1/6 \\ \phi_{CD} & -1/6 \\ \phi_{DC} & -1/6 \\ \end{bmatrix}$

REAZIONI Fattore di collasso = 2/3

 $H_A = F$ $V_A = 1/2F$ $W_A = -Fb$ $H_D = F$ $V_D = -1/2F$

 $W_D = -Fb$

 $\begin{array}{llll} H_{AB} = F & H_{BC} = -F & H_{CD} = -F \\ V_{AB} = 1/2F & V_{BC} = 1/2F & V_{CD} = 1/2F \\ W_{AB} = -Fb & W_{BC} = Fb & W_{CD} = -Fb \\ H_{BA} = -F & H_{CB} = F & H_{DC} = F \\ V_{BA} = -1/2F & V_{CB} = -1/2F & V_{DC} = -1/2F \\ W_{BA} = -Fb & W_{CB} = Fb & W_{DC} = -Fb \end{array}$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE

 $\begin{array}{lll} u_{AAB} = 0 & u_{BBC} = \text{-}1/3\delta & u_{CCD} = \text{-}1/3\delta \\ v_{AAB} = 0 & v_{BBC} = 0 & v_{CCD} = 0 \\ \phi_{AAB} = 1/6\delta/b & \phi_{BBC} = 0 & \phi_{CCD} = 1/6\delta/b \end{array}$

AL1.010

EQUILIBRIO Nome:

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a C: aste CB BA $2H_Ab - 4V_Ab = -Xb - 2b$

Rotazione intorno a B: aste BA $2H_Ab = -Xb - Yb$

Soluzione del sistema

+ + + ---

$$\begin{bmatrix} Xb & Yb & Zb & Fb \\ H_Ab \end{bmatrix} = \begin{bmatrix} -1/2 & -1/2 & 0 & 0 \\ 0 & -1/4 & 1/4 & 0 \end{bmatrix}$$

[Xb Yb Zb Fb] [-1 0 -1 0] [-1 -1 0 0]

Matrice di equilibrio $\begin{bmatrix} H_A b & V_A b \end{bmatrix} \quad \begin{bmatrix} X b \\ \phi_{CB} \end{bmatrix} 2 \quad -4 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Sia H_{ii} la matrice del simplesso, con m righe e n colonne.

Siano P_i le variabili primali di riga e D_i le variabili duali di colonna, con $1 \le j < n$, $1 \le i < m$.

Siano a riga m i coefficienti della funzione obiettivo primale $\max \Sigma_i H_{mi} P_p$ $1 \le j < n$.

Siano a colonna n i coefficienti della funzione obiettivo duale $min \Sigma_i H_{in} D_{ir} 1 \le i < m$.

Sequenza di operazioni pivotali:

- 1 Sia q (1 $\leq q < n$) la colonna pivot con massimo valore H_{mi} in riga m.
- 2 Sia p $(1 \le p < m)$ la riga pivot di colonna q, a coefficiente negativo H_{io} , che minimizza il rapporto H_{in}/H_{io} .
- 3 Si ottiene il coefficiente pivotale H_{pq} .
- 4 Si scambia la variabile primale P_a con la duale D_a .
- 5 Si ridefinisce il coefficiente pivotale $H_{pq}=1/H_{pq}$.
- 6 Si ridefiniscono i coefficienti della colonna pivot $q: H_{ig} = H_{ng} H_{ig}$, escluso il pivot H_{ng} .
- 7 Si ridefiniscono tutti i coefficienti della matrice, esclusa la riga p e la colonna q: $H_{ii} = H_{ii} H_{ii} + H_{pr}$
- 8 Si ridefiniscono i coefficienti della riga pivot $p: H_{pi} = -H_{pa}H_{pi}$, escluso il pivot H_{po} .
- Si ripete il ciclo 1-8 sino a quando la funzione obiettivo di riga m ha solo coefficienti non-positivi.

Giunti a questo punto, si individua la soluzione.

Si hanno gli elementi non nulli del vettore soluzione primale, con segno cambiato, sulla colonna n dei termini noti, in corrispondenza delle variabili P_i presenti sulla colonna di sinistra.

Si hanno gli elementi non nulli del vettore soluzione duale, con segno cambiato, sulla riga m della funzione obiettivo, in corrispondenza delle variabili D_i presenti sulla colonna superiore.

Programmazione lineare *m*=6,*n*=4

$$\begin{bmatrix} \mathsf{P}_1 & \mathsf{P}_2 & \mathsf{P}_3 \end{bmatrix} & \begin{bmatrix} \mathsf{MIN} \\ \mathsf{D}_1 & \begin{bmatrix} \mathsf{H}_{11} & \mathsf{H}_{12} & \mathsf{H}_{13} \\ \mathsf{H}_{21} & \mathsf{H}_{22} & \mathsf{H}_{23} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{14} \\ \mathsf{H}_{24} \\ \mathsf{D}_3 & \mathsf{H}_{31} & \mathsf{H}_{32} & \mathsf{H}_{33} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{34} \\ \mathsf{H}_{44} \\ \mathsf{D}_4 & \mathsf{H}_{41} & \mathsf{H}_{42} & \mathsf{H}_{43} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{44} \\ \mathsf{H}_{45} \\ \mathsf{H}_{51} & \mathsf{H}_{52} & \mathsf{H}_{53} \end{bmatrix} \geq \begin{bmatrix} \mathsf{H}_{54} \\ \mathsf{H}_{64} \end{bmatrix}$$

SOLUZIONE DEL SIMPLESSO $X=W_{AB}$ $Y=W_{BA}$ $Z=W_{CB}$

Tableau con variabili non vincolate in segno

Tableau con variabili non vincolate in segno

[X	Υ	Z	αbF		[Fb]
1	0	0	0	≥	[-1 ⁻
-1	0	0	0	≥	-1
0	1	0	0	≥	-1
0	-1	0	0	≥	-1
0	0	-1	0	≥	-1
0	0	1	0	≥	-1
-1	-1	1	4	≥	-1
1	1	-1	-4	≥	-1
0	0	0	1	=	0 _
	1 -1 0 0 0 0 -1	1 0 -1 0 0 1 0 -1 0 0 0 0 -1 -1 1 1	1 0 0 -1 0 0 0 1 0 0 -1 0 0 0 -1 0 0 1 -1 -1 1 1 1 -1	1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 4 & 0 \\ 1 & 1 & -1 & -4 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \end{bmatrix} $

	[X+	Y+	Z+	X-	Y-	Z-	αbF		[Fb]
W_{AB} -	1	0	0	-1	0	0	0	≥	[-1]
W_{AB} +	-1	0	0	1	0	0	0	≤	-1
W_{BA} -	0	1	0	0	-1	0	0	≥	-1
W_{BA} +	0	-1	0	0	1	0	0	≤	-1
W_{CD} -	0	0	-1	0	0	1	0	≥	-1
W_{CD} +	0	0	1	0	0	-1	0	≤	-1
W_{DC} -	-1	-1	1	1	1	-1	4	≥	-1
W_{DC} +	1	1	-1	-1	-1	1	-4	≤	-1
Max	0	0	0	0	0	0	1 _	=	[0]

Scambio pivotale 8-4

$$\begin{bmatrix} X & Y & Z & \phi_{DC} + & X - \end{bmatrix} & \begin{bmatrix} Fb \end{bmatrix}$$

$$\phi_{AB}^- & \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & -1 \\ 0 & AB^- \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\phi_{BA}^- & \begin{bmatrix} 0 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & AB^- \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\phi_{BA}^+ & \begin{bmatrix} 0 & -1 & 0 & 0 & 1 \\ 0 & AB^- \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ AB^- \end{bmatrix}$$

$$\phi_{CD}^- & \begin{bmatrix} 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & AB^- \end{bmatrix} \geq \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\phi_{DC}^- & \begin{bmatrix} 0 & 0 & -1 & 0 & -1 \\ 0 & AB^- \end{bmatrix} \geq \begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix} = \begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix}$$

$$\begin{bmatrix} AB^- \\ AB^- \\ ABA \end{bmatrix} = \begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix}$$

$$\begin{bmatrix} AB^- \\ AB^- \\ AB^- \\ AB^- \end{bmatrix} = \begin{bmatrix} -1/4 \\ -1/4 \end{bmatrix}$$

Scambio pivotale 2-1

	$\left[\phi_{AB}\right]$	Υ	Z	ϕ_{DC} +	Χ-		[Fb]	
φ _{AB} -	-1	0	0	0	0	≥	[-2]	
Χ	-1	0	0	0	1	≥	-1	
φ _{BA} -	0	1	0	0	-1	≥	-1	
φ_{BA} +	0	-1	0	0	1	≥	-1	
φ _{CD} -	0	0	-1	0	1	≥	-1	
φ _{CD} +	0	0	1	0	-1	≥	-1	
φ _{DC} -	0	0	0	-1	0	≥	-2	
αbF	-1/4	1/4	-1/4	-1/4	0	≥	-1/2	
L_{x}	0	0	0	0	-1	≥	-3	
Max	-1/4	1/4	-1/4	-1/4	0	=	-1/2	

Scambio pivotale 4-2

Scambio pivotale 6-5

	$[\phi_{AB}$ +	ϕ_{BA} +	Z	ϕ_{DC} +	ϕ_{CD} +		[Fb]
ϕ_{AB} -	-1	0	0	0	0	≥	-2
Χ	-1	0	1	0	-1	≥	-2
ϕ_{BA} -	0	-1	0	0	0	≥	-2
Υ	0	-1	1	0	-1	≥	-2
φ _{CD} -	0	0	0	0	-1	≥	-2
X-	0	0	1	0	-1	≥	-1
ϕ_{DC} -	0	0	0	-1	0	≥	-2
αbF	-1/4	-1/4	0	-1/4	-1/4	≥	-1
L_{x}	0	0	-1	0	1	≥	-2
Max	-1/4	-1/4	0	-1/4	-1/4	=	-1

	[X	Υ	Z	$\alpha b F$	X		[Fb]	
φ _{AB} -	0	0	0	0	0 -	≥	[0]	
φ _{AB} +	0	0	0	0	0	≥	1/4	
φ _{BA} -	0	0	0	0	0	≥	0	
φ _{BA} +	0	0	0	0	0	≥	1/4	
φ _{CD} -	0	0	0	0	0	≥	0	
φ _{CD} +	0	0	0	0	0	≥	1/4	
φ _{DC} -	0	0	0	0	0	≥	0	
φ_{DC} +	0	0	0	0	0	≥	1/4	
L _x	0	0	0	0	0	≥	0	
Max	2	2	0	1	1 _	=	_ 1]	

Variabili soluzione dedotto il valore X-

X Y Z [1 1 -1]

Variabili soluzione differenza tra rotazioni

 $\begin{array}{c} \phi_{AB} \\ \phi_{BA} \\ \phi_{CD} \\ \phi_{DC} \end{array} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$

REAZIONI Fattore di collasso = 1

 $H_A = -F$ $V_A = -1/2F$ $W_A = Fb$ $H_D = -F$

 $V_D = 1/2F$ $W_D = Fb$

 $\begin{array}{llll} H_{AB} = -F & H_{BC} = F & H_{CD} = F \\ V_{AB} = -1/2F & V_{BC} = -1/2F & V_{CD} = -1/2F \\ W_{AB} = Fb & W_{BC} = -Fb & W_{CD} = Fb \\ H_{BA} = F & H_{CB} = -F & H_{DC} = -F \\ V_{BA} = 1/2F & V_{CB} = 1/2F & V_{DC} = 1/2F \\ W_{BA} = Fb & W_{CB} = -Fb & W_{DC} = Fb \end{array}$

SPOSTAMENTI NODALI

SPOSTAMENTI RIGIDI DELLE ASTE