Spike-and-Slab Additive Models And Fast Algorithms For High-Dimensional Data Analysis

Boyi Guo

Department of Biostatistics University of Alabama at Birmingham

July 12th, 2022

Outline

Outline

- Background
 - Spline Model Development
 - Bayesian Regularization
 - Bayesian Variable Selection
- Dissertation
 - Two-part Spike-and-slab LASSO Prior for Spline Functions
 - EM-Coordinate Descent Algorithms
 - Empirical Performance of Prediction & Selection
- Future Research
 - Structured Additive Regression with Spike-and-Slab LASSO prior
 - Spatially Variable Genes Screening
 - Other Questions of Interest

Background

Spline Model Development

Spline Model Development

Spline Model Development

"It is extremely unlikely that the true (effect) function f(X) (on the outcome) is actually linear in X."

- Hastie, Tibshirani, and Friedman (2009) PP. 139
- Traditional modeling approaches
 - Categorization of continuous variable, polynomial regression
 - Simple but may be statistically flawed
- Machine learning methods
 - Black-box algorithms: Random forests, neural network
 - Predict accurate but too complicated for interpretation

Spline Functions

A spline function is a piece-wise polynomial function

$$B(x) = \sum_{k=1}^{K} \beta_k b_k(x) \equiv \boldsymbol{X}^T \boldsymbol{\beta}$$

 $b_k(x)$ are the basis functions, possibly truncated power basis and b-spline basis.

Figure 1: A cubic spline function with 2 knots (courtesy of Hastie, Tibshirani, and Friedman (2009))

Generalized Additive Models with Splines

Generalized additive model (Hastie and Tibshirani 1987) is expressed

$$y_i \stackrel{\text{iid}}{\sim} EF(\mu_i, \phi), \quad i = 1, \dots, n$$
 $g(\mu_i) = \beta_0 + B(x_i) = \beta_0 + \boldsymbol{X}_i^T \boldsymbol{\beta}, \quad \mathbb{E}[B(X)] = 0$

where $B(x_i)$ is the spline function, $g(\cdot)$ is a link function, ϕ is the dispersion parameter

Model fitting follows the generalized linear models, e.g. ordinary least square for Gaussian outcome

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{arg\,min}} \sum_{i=1}^n \left[y_i - eta_0 - oldsymbol{X}_i^{\mathsf{T}} oldsymbol{eta}
ight]^2$$

Problem: Function Smoothness

The estimation of B(X) can be wiggly when the underlying function is smooth, particularly as the number of bases K, increases.

[TODO: add two plots, overfitting and not overfitting]

0000

Bayesian Regularization

Bayesian Regularization

Smoothing Spline Model

- ► Smoothing penalty $\lambda \int B''(X)^2 dx = \lambda \beta^T S \beta$
 - \triangleright The smoothing penalty matrix **S** is known given **X**
 - **S** is symmetric and positive semi-definite
- Penalized Least Square for Gaussian Outcome

$$\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=1}^{n} \sum_{i=1}^{n} \left[y_i - \beta_0 - \boldsymbol{X}_i^T \boldsymbol{\beta} \right]^2 + \lambda \boldsymbol{\beta}^T \boldsymbol{S} \boldsymbol{\beta}$$

 \blacktriangleright The smoothing parameter λ is a tuning parameter, selected via cross-validation

Problem: Multiple Predictor Model

When a model contains multiple spline functions for variables X_1, \ldots, X_n , the penalized least square estimator is

$$\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=1}^n \sum_{j=1}^n \left[y_i - \beta_0 - \sum \boldsymbol{X}_{ij}^T \boldsymbol{\beta}_j \right]^2 + \lambda_j \boldsymbol{\beta}_j^T \boldsymbol{S}_j \boldsymbol{\beta}_j$$

How to decide λ_i ?

- Global smoothing, i.e. $\lambda_1 = \cdots = \lambda_p$ assumes all functions shares the same shape
- Adaptive smoothing, i.e. examining λ_i combination, are computationally intensive

Bayesian Regularization

- Bayesian Regularization is the Bayesian analogy of penalized models by using regularizing priors
 - Bayesian ridge via normal prior

$$\beta \sim N(0, \tau^2) \rightarrow \lambda = \sigma^2/\tau^2$$

Adaptive shrinkage with hierarchical priors

$$au_j^2 \stackrel{\mathsf{iid}}{\sim} \mathit{IG}(a,b)$$

- Adaptive Smoothing
 - Random walk prior on b-spline bases with IG hyperprior
 - Normal prior on truncated power bases with a log-normal spline model for variance

Bayesian Variable Selection

Bayesian Variable Selection

Problem: Functional Selection

In the context of variable selection and high-dimensional statistics, we always assume some variables are not effective or predictive to the outcome.

How to statistically detect

- ▶ if a variable is predictive to the outcome, $B_i(X_i) = 0$
- lacktriangledown if a variable has a nonlinear relationship with the outcome, $B_j(X_j)=eta_jX_j$

Bi-level selection is the procedure that simultaneously addresses the two questions above

Spike-and-Slab Priors

Spike-and-slab priors are a family of mixture distributions that deploys a characterizing structure

$$\beta | \gamma \sim (1 - \gamma) f_{\sf spike}(\beta) + \gamma f_{\sf slab}(\beta)$$

- \blacktriangleright Latent indicator γ follows a Bernoulli distribution with probability θ
- \triangleright Spike density $f_{spike}(x)$ concentrates around 0 for small effects
- ▶ Slab density $f_{slab}(x)$ is a flat density for large effects
- Natural procedure to select variables via posterior distribution of γ
- Markov chain Monte Carlo is not compelling for high-dimensional data analysis

Spike-and-Slab LASSO Priors

Double exponential distributions as the spike and slab distributions

$$\beta | \gamma \sim (1 - \gamma) DE(0, s_0) + \gamma DE(0, s_1), 0 < s_0 < s_1$$

- Seamless variable selection as coefficients shrinkage to 0
- Computation advantages via Expectation-Maximization (EM) algorithms
- Group spike-and-slab LASSO
 - Structure underlying predictors, e.g. gene pathways, bases of a spline function
 - Structured prior on γ

$$\gamma_k | \theta_j$$
 Binomial $(1, \theta_j), k \in j$

Problem: High-dimensional Spline Model

0000

How to jointly model signal sparsity and function smoothness, while capable of bi-level selection?

- Excess shrinkage due to ignoring smooth penalty completely
 - ► Group lasso penalty (Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010), group SCAD penalty (Wang, Chen, and Li 2007; Xue 2009)
 - Global penalty VS adaptive penalty
- ► All-in-all-out selection
 - Can not detect if a function is linear, e.g. spike-and-slab grouped LASSO prior (Bai et al. 2020; Bai 2021)
 - ▶ Failed to select function as whole, e.g. group spike-and-slab LASSO prior
- Computational prohibitive algorithms
 - ▶ MCMC algorithms doesn't scale well for high-dimensional models (Scheipl, Fahrmeir, and Kneib 2012)

Dissertation

- ► To develop statistical models that improve curve interpolation and outcome prediction
 - Local adaption of sparse penalty and smooth penalty
 - ▶ Bi-level selection for linear and nonlinear effect
- To develop a fast and scalable algorithm
- To implement a user-friendly statistical software

Scope

Scope of this dissertation * BHAM * Survival Model * R package BHAM

References

References I

- Bai, Ray. 2021. "Spike-and-Slab Group Lasso for Consistent Estimation and Variable Selection in Non-Gaussian Generalized Additive Models." arXiv:2007.07021v5.
- Bai, Ray, Gemma E Moran, Joseph L Antonelli, Yong Chen, and Mary R Boland. 2020. "Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models." *Journal of the American Statistical Association*, 1–14.
- Hastie, Trevor, and Robert Tibshirani. 1987. "Generalized additive models: Some applications." *Journal of the American Statistical Association* 82 (398): 371–86. https://doi.org/10.1080/01621459.1987.10478440.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media.

References II

- Huang, Jian, Joel L Horowitz, and Fengrong Wei. 2010. "Variable Selection in Nonparametric Additive Models." *Annals of Statistics* 38 (4): 2282.
- Ravikumar, Pradeep, John Lafferty, Han Liu, and Larry Wasserman. 2009. "Sparse additive models." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 71 (5): 1009–30. https://doi.org/10.1111/j.1467-9868.2009.00718.x.
- Scheipl, Fabian, Ludwig Fahrmeir, and Thomas Kneib. 2012. "Spike-and-slab priors for function selection in structured additive regression models." *Journal of the American Statistical Association* 107 (500): 1518–32. https://doi.org/10.1080/01621459.2012.737742.
- Wang, Lifeng, Guang Chen, and Hongzhe Li. 2007. "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data." *Bioinformatics* 23 (12): 1486–94.

References III

- Wood, Simon N. 2017. *Generalized additive models: An introduction with R, second edition.* https://doi.org/10.1201/9781315370279.
- Xue, Lan. 2009. "Consistent Variable Selection in Additive Models." *Statistica Sinica*, 1281–96.