Autres Systèmes Déductifs **Exercice 2**

Logique des Propositions

Autres Systèmes déductifs

- -Système (\neg, \rightarrow)
 - -Système (¬, ∨)
 - Système (....)

Les Systèmes Déductifs de la Logique des Propositions

Système Déductif de *Ip*

{ Ensemble de règles associées aux connecteurs }

Les Systèmes Déductifs de la Logique des Propositions

{ Ensemble de règles associées aux connecteurs }

Les Systèmes Déductifs de la Logique des Propositions

Equivalences entre les différents systèmes déductifs (Exo2)

Le But est d'arriver à dire, que toute déduction (démonstration) faite dans un système déductif pourra être effectuée aussi dans un autre système déductif équivalent

Le système déductif (\neg, \land) défini par les règles : $\{(E \land), (I \land), (E \neg), (I \neg)\}$

Le système déductif (\neg, \rightarrow) défini par les règles : $\{(E \rightarrow), (I \rightarrow), (E \neg), (I \neg)$

Le système déductif (\neg, \lor) défini par les règles : $\{(E \lor), (I \lor), (E \neg), (I \neg)\}$

Système
Déductif
(¬, ^)

Système Déductif (¬, →)

Système Déductif

Système déductif (¬, ∧) Rappel des Règles

Le système déductif (¬, ∧)

Les règles du connecteur « ∧ » : (E ∧) et (I ∧)

1ere Forme:

$$\frac{\alpha \wedge \beta}{\alpha} \quad (E \wedge)$$

2eme Forme:

$$\frac{\alpha \wedge \beta}{\beta} \quad (E \wedge)$$

Règle d'Elimination du « 🔥 »

$$\alpha \wedge \beta \vdash \alpha$$

 $\alpha \wedge \beta \vdash \beta$

$$\frac{\alpha \qquad \beta}{\alpha \wedge \beta} \qquad (| \wedge \rangle)$$

Règle d'Introduction du « 🔥 »

$$\alpha$$
, $\beta \vdash \alpha \land \beta$

Système déductif (¬, ∧) Rappel des Règles

Le système déductif (\neg, \land)

• Les règles du connecteur « ¬ » : (E ¬) et (I ¬)

$$\frac{\neg \neg \alpha}{\alpha} \quad (E \neg)$$

Règle d'Elimination du « ¬ »

$$\neg \neg \alpha \vdash \alpha$$

Règle d'Introduction du « ¬ »

$$\alpha \vdash \bot \Rightarrow \vdash \neg \alpha$$

Autres Systèmes déductifs

Le système déductif (\neg, \rightarrow)

- Les règles du connecteur « ¬ » : (E¬) et (I¬)
- C'est les mêmes règles vues précédemment

$$\frac{\alpha \rightarrow \beta}{\beta}$$
 α (E \rightarrow)

Règle d'Elimination de la « \rightarrow »

$$lpha{
ightarrow}eta$$
 , $lpha$ $dash$ eta

Règle d'Introduction de la « \rightarrow »

$$\alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$$

Autres Systèmes déductifs

Le système déductif (\neg, \lor)

- Les règles du connecteur « ¬ » : (E¬) et (I¬)
- C'est les mêmes règles vues précédemment
- Les règles du connecteur « ∨ » : (E ∨) et (I ∨)

1ere Forme:

$$\frac{\alpha}{\alpha \vee \beta} \quad (| \vee \rangle)$$

2eme Forme:

$$\frac{\beta}{\alpha \vee \beta} \quad (| \vee \rangle)$$

Règle d'Introduction du « ∨ »

$$\alpha \vdash \alpha \lor \beta$$
 $\beta \vdash \alpha \lor \beta$

Règle d'Elimination du « 🗸 »

$$\alpha \vdash \delta \text{ et } \beta \vdash \delta$$
 $\Rightarrow \alpha \lor \beta \vdash \delta$

Comment monter que deux (02) systèmes déductifs sont

équivalents?

Système Déductif N°1 défini par : { R1, R2, R3, R4, ... }

Système Déductif
N°2 défini par:
{ R'1, R'2, R'3, R'4, ...}

Exprimable dans

Déduction dans le Système N°2

Comment monter que deux (02) systèmes déductifs sont

Montrons que:

Application du 1^{er} sens

Autres Systèmes déductifs

1. Les règles de \rightarrow dans le système (\neg, \land) :

$$(E\rightarrow):\alpha\rightarrow\beta$$
, $\alpha \vdash \beta$

$$(I\rightarrow): \alpha \vdash \beta \Rightarrow \vdash \alpha \rightarrow \beta$$

Exercice 1:

Démontrer les déductions suivantes dans le langage $L_P(\neg, \land)$:

- a1) $\alpha \vdash \neg \neg \alpha$
- a2) $\vdash \neg(\alpha \land \neg \alpha)$
- a3) $\beta \land \neg \beta \models \alpha$
- **b1)** $\alpha \vdash \alpha \lor \beta$ **b2)** $\beta \vdash \alpha \lor \beta$
- **d1)** $\alpha, \alpha \leftrightarrow \beta \models \beta$
- a4) α , $\neg \alpha \mid \beta$
- c1) α , $\alpha \to \beta \models \beta$ | c2) $\alpha \models \beta \Rightarrow \models \alpha \to \beta$ | c3) $\models \alpha \to \beta \Rightarrow \alpha \models \beta$
 - **d2)** $\beta, \alpha \leftrightarrow \beta \mid -\alpha$
- **b3)**($\alpha \mid -\delta$ et $\beta \mid -\delta$) $\Rightarrow \alpha \lor \beta \mid -\delta$
 - - d3) $\alpha \vdash \beta$ et $\beta \vdash \alpha \Rightarrow \vdash \alpha \leftrightarrow \beta$

Application du 2^{eme} sens

Autres Systèmes déductifs Exercice N°2

Enoncé de l'exercice N°2 : Montrer les déductions suivantes dans le Système déductif (\neg, \rightarrow)

•
$$\alpha \wedge \beta \vdash \alpha$$

•
$$\alpha \wedge \beta \vdash \beta$$

•
$$\alpha$$
 , $\beta \vdash \alpha \land \beta \Rightarrow Règle (I \land)$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Montrer : $\alpha \land \beta \vdash \alpha$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}\mathbf{p}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\alpha \rightarrow \neg \beta) \vdash \alpha$$

$$\neg(\alpha \to \neg \beta) \vdash \alpha$$
On suppose : $\neg \alpha$ et α

$$\neg(\alpha \to \neg \beta)$$

$$\neg \beta$$

$$\neg \beta$$

$$\alpha \to \neg \beta$$

$$\alpha \to \neg \beta$$

$$\neg \alpha$$

$$\alpha \to \neg \beta$$

$$\neg \alpha$$

$$(I \to)$$

$$\neg \alpha$$

$$\alpha \to \neg \alpha$$

$$(E \to)$$

Montrer : $\alpha \wedge \beta \vdash \beta$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathbf{p}}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\alpha \rightarrow \neg \beta) \vdash \beta$$

$$\neg(\alpha \to \neg \beta) \vdash \beta$$
On suppose : α et $\neg \beta$

$$\neg(\alpha \to \neg \beta)$$

$$\alpha \to \neg \beta$$

$$\neg(\alpha \to \neg \beta)$$

$$\alpha \to \neg \beta$$

$$\neg(\alpha \to \neg \beta)$$

Montrer: $\alpha, \beta \vdash \alpha \land \beta$

$$\alpha \land \beta =_{def} \neg (\alpha \rightarrow \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathbf{p}}(\neg, \rightarrow)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\alpha$$
, $\beta \vdash \neg(\alpha \rightarrow \neg \beta)$

$$\begin{array}{c} \alpha \ , \ \beta \ \vdash \neg (\alpha \to \neg \ \beta) \\ \hline \text{On suppose} \ : \alpha \to \neg \beta \\ \hline \alpha \to \beta \qquad \alpha \\ \hline \neg \ \beta \\ \hline \hline (E \to) \\ \hline \neg (\alpha \to \neg \ \beta) \end{array} \text{On a: } \alpha \text{ et } \beta$$

CONCLUSION

```
Le système déductif (\neg, \land) défini par les règles : { (E \land), (I \land), (E \neg), (I \neg) }
```

Quelques déductions dans le système déductif (\neg, \rightarrow)

1. Montrer le théorème suivant dans le système déductif (\neg, \rightarrow) :

$$\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \alpha \rightarrow \beta)$$

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha \vdash (\neg \beta \rightarrow \alpha) \rightarrow \beta$$

Donc, cela revient à :

$$\neg \beta \rightarrow \neg \alpha$$
 , $\neg \beta \rightarrow \alpha \vdash \beta$

2. Montrer dans le système déductif (\neg, \rightarrow) :

$$\vdash (\alpha \rightarrow (\beta \rightarrow \delta)) \rightarrow (\alpha \rightarrow \beta \rightarrow (\alpha \rightarrow \delta))$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta) \vdash (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \delta)$$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta \vdash \alpha \rightarrow \delta$

Donc, cela revient à :

$$\alpha \rightarrow (\beta \rightarrow \delta)$$
, $\alpha \rightarrow \beta$, $\alpha \vdash \delta$

$$\alpha \longrightarrow (\beta \longrightarrow \delta), \ \alpha \longrightarrow \beta, \ \alpha \vdash \delta$$
On a: $\alpha \longrightarrow (\beta \longrightarrow \delta), \ \alpha \longrightarrow \beta$ et α

$$\alpha \qquad \alpha \longrightarrow \beta \qquad \alpha \qquad \alpha \longrightarrow (\beta \longrightarrow \delta)$$

$$\beta \longrightarrow \beta \qquad \beta \longrightarrow \delta$$

$$\delta$$

3. Montrer dans le système déductif (\neg, \rightarrow)

$$P \rightarrow Q \rightarrow (R \rightarrow S), \neg S \lor \neg Q, P \rightarrow Q \vdash \neg R \lor \neg P$$

$$\alpha \lor \beta =_{def} \neg \alpha \rightarrow \beta$$

Donc, cela revient à :

$$P \rightarrow Q \rightarrow (R \rightarrow S), \neg \neg S \rightarrow \neg Q, P \rightarrow Q \vdash \neg \neg R \rightarrow \neg P$$

$$P \rightarrow Q \rightarrow (R \rightarrow S), \neg S \rightarrow \neg Q, P \rightarrow Q \vdash \neg R \rightarrow \neg P$$

$$On a: P \rightarrow Q \rightarrow (R \rightarrow S), \neg S \rightarrow \neg Q \text{ et } P \rightarrow Q$$

$$On suppose: P \text{ et } \neg R$$

$$(P \rightarrow Q) \rightarrow (R \rightarrow S) \quad P \rightarrow Q$$

$$(E \rightarrow) \quad R$$

$$(E \rightarrow) \quad R$$

$$(E \rightarrow) \quad Q$$

$$Q \quad \neg Q$$

Montrons que:

Application du 1^{er} sens

Autres Systèmes déductifs

Les règles de \vee dans le système (\neg, \land) : (I \vee) 1er: $\alpha \vdash \alpha \lor \beta \vdash \alpha \lor \beta$ (E \vee): $\alpha \vdash \delta$ et $\beta \vdash \delta \Rightarrow \alpha \lor \beta \vdash \delta$

Exercice 1:

Démontrer les déductions suivantes dans le langage $L_P(\neg, \land)$:

- a2) $\vdash \neg(\alpha \land \neg\alpha)$
- a3) $\beta \land \neg \beta \models \alpha$ a4) α , $\neg \alpha \vdash \beta$
- **b1)** $\alpha \models \alpha \lor \beta$ **b2)** $\beta \models \alpha \lor \beta$

c1)
$$\alpha$$
, $\alpha \to \beta \models \beta$ c2) $\alpha \models \beta \Rightarrow \models \alpha \to \beta$ c3) $\models \alpha \to \beta \Rightarrow \alpha \models \beta$

d1)
$$\alpha, \alpha \leftrightarrow \beta \models \beta$$
 d2) $\beta, \alpha \leftrightarrow \beta \models \alpha$

b3)
$$(\alpha | -\delta \text{ et } \beta | -\delta) \Rightarrow \alpha \vee \beta | -\delta$$

c3)
$$\mid -\alpha \rightarrow \beta \Rightarrow \alpha \mid -\beta$$

d3)
$$\alpha \mid -\beta$$
 et $\beta \mid -\alpha \Rightarrow \mid -\alpha \leftrightarrow \beta$

Application du 2^{eme} sens

Autres Systèmes déductifs Exercice N°2

Enoncé de l'exercice N°2 : Montrer les déductions suivantes dans le Système déductif (¬, ∨)

•
$$\alpha \wedge \beta \vdash \alpha$$

•
$$\alpha \wedge \beta \vdash \beta$$

•
$$\alpha$$
 , $\beta \vdash \alpha \land \beta \Rightarrow Règle (I \land)$

$$\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$$

Montrer:
$$\alpha \wedge \beta \vdash \alpha$$

$$\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$$

Etant donné qu'on est dans le système déductif de $\mathcal{I}\mathbf{p}(\neg, \vee)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\neg(\neg \alpha \lor \neg \beta) \vdash \alpha$$

$$\neg (\neg \alpha \lor \neg \beta) \vdash \alpha$$
On suppose : $\neg \alpha$

$$\neg (\neg \alpha \lor \neg \beta)$$

Montrer:
$$\alpha \wedge \beta \vdash \beta$$

 $\alpha \wedge \beta =_{def} \neg (\neg \alpha \vee \neg \beta)$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathbf{p}}(\neg, \vee)$,

on doit remplacer le ^ par sa définition.

Cela revient à :

$$\neg(\neg \alpha \lor \neg \beta) \vdash \beta$$

$$\neg (\neg \alpha \lor \neg \beta) \vdash \beta$$
On suppose : ¬β
$$\neg (\neg \alpha \lor \neg \beta)$$

Montrer:
$$\alpha$$
, $\beta \vdash \alpha \land \beta$
 $\alpha \land \beta =_{def} \neg (\neg \alpha \lor \neg \beta)$

Etant donné qu'on est dans le système déductif de $\mathcal{I}_{\mathbf{p}}(\neg, \vee)$,

on doit remplacer le \(\) par sa définition.

Cela revient à :

$$\alpha$$
, $\beta \vdash \neg(\neg \alpha \lor \neg \beta)$

CONCLUSION

```
Le système déductif (\neg, \land) défini par les règles : { (E \land), (I \land), (E \neg), (I \neg) }
```

```
Le système déductif (\neg, \lor) défini par les règles : \{(E \lor), (I \lor), (E \neg), (I \neg)\}
```

Fin TD sur les systèmes déductifs