

Advanced Life Support

Dr Jasmeet Soar

Resuscitation Council (UK)

Chain of Survival

Chain of Prevention

The National Early Warning Score (NEWS)

PHYSIOLOGICAL PARAMETERS	3	2	1	0	1	2	3
Respiration Rate	≤8		9 - 11	12 - 20		21 - 24	≥25
Oxygen Saturations	≤91	92 - 93	94 - 95	≥96			
Any Supplemental Oxygen		Yes		No			
Temperature	≤35.0		35.1 - 36.0	36.1 - 38.0	38.1 - 39.0	≥39.1	
Systolic BP	≤90	91 - 100	101 - 110	111 - 219			≥220
Heart Rate	≤40		41 - 50	51 - 90	91 - 110	111 - 130	≥131
Level of Consciousness				А			V, P, or U

Adult Advanced Life Support

GUIDELINES 2015

During CPR

- Ensure high quality chest compressions
- Minimise interruptions to compressions
- · Give oxygen
- Use waveform capnography
- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- · Give adrenaline every 3-5 min
- · Give amiodarone after 3 shocks

Treat Reversible Causes

- Hypoxia
- Hypovolaemia
- Hypo-/hyperkalaemia/metabolic
- Hypothermia
- Thrombosis coronary or pulmonary
- Tension pneumothorax
- Tamponade cardiac
- Toxins

Consider

- Ultrasound imaging
- Mechanical chest compressions to facilitate transfer/treatment
- Coronary angiography and percutaneous coronary intervention
- Extracorporeal CPR

Unresponsive and not breathing normally

To confirm cardiac arrest...

- Patient response
- Open airway
- Check for normal breathing
 - Caution agonal breathing
- Check for signs of life

Unresponsive and not breathing normally

To confirm cardiac arrest...

- Pulse check if trained to do so
- Take less than 10 seconds for assessment
- Call for help early

Cardiac arrest confirmed

Unresponsive and not breathing normally

Call resuscitation team

Cardiac arrest confirmed

Unresponsive and not breathing normally

Call resuscitation team

CPR 30:2
Attach defibrillator/monitor
Minimise interruptions

Chest compression

- **3**0:2
- Compressions
 - centre of chest
 - 5-6 cm depth
 - 2 per second (100-120 min⁻¹)
- Maintain high quality compressions with minimal interruptions (<5 s)
- Continuous compressions once airway secured
- Switch CPR provider every 2 min cycle to avoid fatigue

Chest compression

- 30:2
- Compressions
 - centre of chest
 - 5-6 cm depth
 - 2 per second (100-120 min⁻¹)
- Maintain high quality compressions with minimal interruptions (<5 s)
- Continuous compressions once airway secured
- Switch CPR provider every 2 min cycle to avoid fatigue

Less than 5 second pause in chest compression for:

- Rhythm check
- Shock delivery
- Tracheal intubation

Shockable (VF/Pulseless VT)

Shockable (VF/Pulseless VT)

MINIMISE INTERRUPTIONS IN CHEST COMPRESSIONS

Shockable (VF/Pulseless VT)

GUIDELINES

- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- Give adrenaline every 3-5 min
- Give amiodarone after 3 shocks
- Thrombosis coronary or pulmonary
- Tension pneumothorax
- Tamponade cardiac
- Toxins

- transfer/treatment
- · Coronary angiography and percutaneous coronary intervention
- · Extracorporeal CPR

During CPR

- Ensure high quality chest compressions
- Minimise interruptions to compressions
- Give oxygen
- Use waveform capnography
- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- Give adrenaline every 3-5 min
- Give amiodarone after 3 shocks

Waveform capnography

Information from waveform capnography during CPR

- Tracheal tube placement
- Guide to rate of ventilation
- Quality of chest compressions
- ROSC
- Prognostication

Example end-tidal CO₂ trace

Information from waveform capnography during CPR

- Tracheal tube placement
- Guide to rate of ventilation
- Quality of chest compressions
- ROSC
- Prognostication

Information from waveform capnography during CPR

- Tracheal tube placementGuide to rate of ventilation
- Quality of chest compressions
- ROSC
- Prognostication

During CPR

- Ensure high quality chest compressions
- Minimise interruptions to compressions
- Give oxygen
- Use waveform capnography
- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- Give adrenaline every 3-5 min
- Give amiodarone after 3 shocks

Airway and ventilation during CPR

- Stepwise approach according to rescuer/patient
 - Compression-only
 - Mouth-to-mouth
 - Mouth-to-mask
 - Bag-mask
 - Supraglottic airway device (e.g. LMA, i-gel)
 - Tracheal tube (videolaryngoscopy)

Airway and ventilation during CPR

- Stepwise approach according to rescuer/patient
 - Compression-only
 - Mouth-to-mouth
 - Mouth-to-mask
 - Bag-mask
 - Supraglottic airway device
 - Tracheal tube
 - 10 breaths/minute = continuous compressions

During CPR

- Ensure high quality chest compressions
- Minimise interruptions to compressions
- Give oxygen
- Use waveform capnography
- Continuous compressions when advanced airway in place
- Vascular access (intravenous or intraosseous)
- Give adrenaline every 3-5 min
- Give amiodarone after 3 shocks

Vascular access

Peripheral versus central veins

Intraosseous

Adrenaline & Amiodarone

Adrenaline

- Timings and dose not changed
- Non-shockable during CPR
- Shockable during third two minutes of CPR
- Subsequent doses every 3 -5 min

Amiodarone

After three shocks

Treat Reversible Causes

- Hypoxia
- Hypovolaemia
- Hypo-/hyperkalaemia/metabolic
- Hypothermia
- Thrombosis coronary or pulmonary
- Tension pneumothorax
- Tamponade cardiac
- Toxins

GUIDELINES 2015

Consider

- Ultrasound imaging
- Mechanical chest compressions to facilitate transfer/treatment
- Coronary angiography and percutaneous coronary intervention
- Extracorporeal CPR

Return of spontaneous circulation

Immediate post cardiac arrest treatment

- Use ABCDE approach
- Aim for SpO₂ of 94-98%
- Aim for normal PaCO₂
- 12-lead ECG
- Treat precipitating cause
- Targeted temperature management

Resuscitation team

- Roles planned in advance
- Identify team leader
- Importance of non-technical skills
 - task management
 - team working
 - situational awareness
 - decision making
- Structured communication
 - SBAR or RSVP

Implementation

Advanced Life Support

Seventh Edition

Immediate Life Support

Fourth Edition

By RESUSCITATION COUNCIL (U.K.) TRADING LTD

Open iTunes to buy and download apps.

Description

iResus is a free support tool that has been developed by the Resuscitation Council (UK) and Cranworth Medical Ltd.

iResus enables the user to access the latest Adult, Paediatric and Newborn resuscitation algorithms without the need for of an internet connection at the point of care.

iResus is fully compliant with the Resuscitation Council (UK) Guidelines 2015 and is an essential tool for UK doctors.

RESUSCITATION COUNCIL (U.K.) TRADING LTD Web Site > iResus Support >

View in iTunes

This app is designed for both iPhone and iPad

Free

Category: Medical

Released: 16 October 2015

Version: 1.0 Size: 4.7 MB

Language: English

Developer: RESUSCITATION COUNCIL (U.K.) TRADING LTD © RESUSCITATION COUNCIL

(U.K.) TRADING LTD

You must be at least 17 years old to download this application.

Infrequent/Mild Alcohol, Tobacco, or Drug Use or

References

Frequent/Intense Medical/Treatment Information

Compatibility: Requires iOS 8.0 or later. Compatible with IPhone. IPad, and IPod touch.

Customer Ratings

Current Version: ★★★★ 6 Ratings

Summary

- Importance of high quality chest compressions
- Minimise interruptions in chest compressions
- Monitoring during CPR
- Correct reversible causes of cardiac arrest
- Role of resuscitation team

