CLOUD FOR AI

MODELOS SUPERVIZADOS: REGRESIÓN LOGÍSTICA

VÍCTOR ACEVEDO

ÍNDICE

- 1. Nociones iniciales
- 2. Evaluación
- 3. Fundamentos teóricos
- 4. Curva ROC
- 5. Bibliografía

NOCIONES INICIALES I

- Dado un conjunto de registros (conjunto de entrenamiento)
 - Cada registro contiene un conjunto de **atributos**, donde uno de ellos es la **clase**.
- Encontrar un modelo para el atributo de clase en función de los valores de los demás atributos.
- Objetivo: Nuevos registros sean asignados a una clase con la mayor precisión posible.
 - Un conjunto de prueba es usada para determinar la precisión del modelo.
 Usualmente, el conjunto de datos original es dividido en un conjunto de prueba y de entrenamiento, donde el conjunto de entrenamiento es usado para construir el modelo y el de prueba para validarlo.

NOCIONES INICIALES II

- Los modelos de clasificación generan dos tipos de predicciones:
 - Continuas: Usualmente en la forma de una probabilidad (los valores predichos de pertenencia a una clase para un individuo está entre 0 y 1).
 - Categóricas (discretas): Clase predicha.
- Para la mayoría de las aplicaciones prácticas, la predicción de una categoría discreta es necesaria para poder tomar una decisión y es el objetivo de la predicción. Ejemplo: Filtro automático de spam.
- La probabilidad estimada para cada clase puede ser muy útil para medir el ajuste del modelo sobre la clasificación predicha: Un mensaje por email con una probabilidad de ser spam de 0.51 puede ser clasificado de manera similar que otro mensaje con una probabilidad de 0.99
- En algunas aplicaciones el resultado deseado es la probabilidad de pertenecer a una clase, la que será usada como entrada para otros cálculos.

EVALUACIÓN I

Predichos	Observados	
	Eventos	No Eventos
Eventos	TP	FP
No Eventos	FN	TN

Figura: Matriz de confusión para un problema de clasificación con dos clases (eventos y no eventos). Las celdas de la tabla indican el número de verdaderos positivos (TP), falsos positivos (FP), verdaderos negativos (TN) y falsos negativos (FN)

EVALUACIÓN II

- La métrica más simple es el ratio de la precisión total (o, siendo pesimistas, el ratio de error).
- Este patrón es un indicador de que el modelo tiene una pobre calibración y también desempeño.

FUNDAMENTOS TEÓRICOS I

- En vez de modelar directamente la respuesta Y, los modelos de regresión logística modelan la probabilidad de que Y pertenezca a una categoría en particular.
- Para la data Default, la regresión logística modela la probabilidad de que un cliente incumpla con el pago de la tarjeta de crédito (moroso).
- Por ejemplo, la probabilidad de que sea moroso dado balance puede ser escrita como

$$Pr(default = Yes \mid balance)$$

- Los valores de Pr(default = Yes|balance), que puede abreviarse como π , se encontrarán en el rango entre 0 y 1.
- \bullet Por ejemplo, es posible predecir default=yes para aquellos individuos en que $\pi>0.5$

FUNDAMENTOS TEÓRICOS II

• En la regresión logística, es usada la función logística

$$\pi = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- La gráfica del lado derecho de la figura anterior muestra el ajuste a un modelo de regresión logística para el conjunto de datos Default.
- Se puede observar que el modelo logístico captura mejor el rango de probabilidades que el modelo de regresión lineal mostrado en el lado izquierdo.
- La probabilidad ajustada promedio en ambos casos es 0.0333, la cual es la misma ue la propoción total de morosos en la data.
- Con alguna manipulaciones básicas se puede obtener

$$\frac{\pi}{1-\pi} = e^{\beta_0 + \beta_1 X}$$

FUNDAMENTOS TEÓRICOS III

- El valor $\frac{\pi}{1-\pi}$ es conocido como odds y puede tomar cualquier valor entre 0 y ∞ .
- Los valores de odds cercanos a 0 o a ∞ indican probabilidades muy bajas o muy altas de ser morosos, de manera respectiva.
- Por ejemplo, en promedio 1 de 5 personas con un odd de 1/4 será morosa dado que $\pi=0.2$ implica que los odds son de $\frac{0.2}{1-0.2}=1/4$
- Del mismo modo, en promedio nueve de cada diez personas con odds de 9 será morosa, dado que $\pi=0.9$ implica un odds de $\frac{0.9}{1-0.9}=9$
- Tomando logaritmos a la anterior ecuación se obtiene

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$$

La expresión del lado izquierdo es conocido como el logit.

FUNDAMENTOS TEÓRICOS IV

• Componente aleatorio: Sean $Y_1,...,Y_n$ v.a. dicotómicas independientes. Asumiendo que $y_i=1$ tiene probabilidad π_i y $y_i=0$ con probabilidad $1-\pi_i$:

$$y_i \sim Bernoulli\left(\pi_i\right)$$

Componente sistemático:

$$\eta_i = \beta_1 x_{1i} + \dots + \beta_1 x_{pi} = \boldsymbol{x}_i^T \boldsymbol{\beta}$$

donde η_i es denominado como predictor lineal y $x_i = (x_{i1}, \dots, x_{ip})'$ es un vector de covariables, donde x_{i1} igual a 1 corresponde al intercepto.

• Función de Enlace:

$$g(\pi_i) = \eta_i$$

donde g(.) es una función monótona y diferenciable.

FUNDAMENTOS TEÓRICOS V

Enlace Logit

$$\log \left\{ \frac{\pi(x)}{1 - \pi(x)} \right\} = \beta_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

Enlace Probit

$$\Phi(\pi(x))^{-1} = \beta_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

donde $\Phi(.)$ es la f.d.a. de la normal estándar.

Enlace log-log complementario (cloglog)

$$\log \{-\log (1 - \pi (X))\} = \beta_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

FUNDAMENTOS TEÓRICOS VI

Enlace Logit

Este enlace debería ser usado si los errores siguen una distribución logística. Tiene colas ligeramente más largas que probit

Enlace Probit

Este enlace debería ser usado si los errores siguen una distribución normal. En estricto debería denominarse modelo normit.

Enlace log-log complementario (cloglog)

Es comúnmente usado cuando el evento a predecir es poco frecuente.

CURVA ROC I

Una curva ROC se construyen en base a:

- La sensibilidad (S), definida como $S = \frac{TP}{TP + FN}$; es decir, la proporción de objetos correctamente clasificados como éxitos e, informalmente, conocidos como la proporción de verdaderos positivos.
- La especificidad (E), definido como $S = \frac{TN}{FP + TN}$; es decir, la proporción de objetos correctamente clasificados como fracasos.

La curva ROC no es sino la gráfica de $1-E=\frac{n_{12}}{n_{.2}}$ o proporción de falsos positivos en el eje de las abscisas frente a la sensibilidad S o proporción de verdaderos positivos en el eje de las ordenadas, para diferentes valores del punto de corte $c\in[0,1]$.

CURVA ROC II

BIBLIOGRAFÍA

- Green, William H. (2003). *Econometric Analysis, fifth edition*. Prentice Hall.
- Hosmer, David W.; Stanley Lemeshow (2000). *Applied Logistic Regression, 2nd ed.* New York; Chichester, Wiley.
- Micromaster Data Science, EDX plataforma virtual
- Apuntes Clases de Maestría Universidad Nacional Agraria La Molina

