House Price Analysis

Authors: Ricky Wong

Overview

Jim's Real Estate wants to help homeowners make the most of their property and would like to know how renovations affect house prices. Using linear regression we found two variables that affected house prices the most. Using that information, real estate agents can provide meaningful advice for homeowners.

Business Understanding

There are a variety of variables when determining the value of a property. Creating a model for real estate agents will help them advise homewoeners about how renovating affects the value of their property. To do this we will explore house data from King County to build a basic model then reiterate the process to improve on the model.

```
In [1]: #import packages
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   from sklearn import preprocessing
   import scipy.stats as stats
   import seaborn as sns
   from sklearn.metrics import mean_squared_error
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression

pd.options.mode.chained_assignment = None

%matplotlib_inline
```

```
In [2]: #read data from file
kc house data df = nd read csy('data/kc house data csy')
```

Data Understanding

We have obtained house data from King County to help us build the model. This includes useful information like the price of the property, the living area in square feet and the year the poroprty was renovated to name a few.

After getting an idea of the data we are dealing with we can see most of our data are numerical with some columns missing data like 'waterfront' and 'yr_renovated'. We will need to clean those up later

There are some data which is not really relevant to our model which we can remove.

In [3]: kc house data df info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
```

ш	6-1	Nam Null Carret	D4
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(8),	int64(11), obje	ct(2)
memoi	ry usage: 3.5+ N	МВ	
	-		

```
In [4]: drop = ['date','view','zipcode','lat','long','sqft_living15','sqft_lot15',
kc house data df dron(dron_axis=1_inplace=True)
```

Taking a closer look we can observe a few points

- A possible outlier with 33 bedrooms when the mean is only 3.
- Condition of the house is form 1-5
- There is a grading system from 3 13
- And house data from 1900 2015
- sqft_basement has '?' which could explain why it is an object instead of being numeric

In [5]: kc house data of describe()

Out[5]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	

In [6]: kc house data of head(10)

Out[6]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grad
0	7129300520	221900.0	3	1.00	1180	5650	1.0	3	
1	6414100192	538000.0	3	2.25	2570	7242	2.0	3	
2	5631500400	180000.0	2	1.00	770	10000	1.0	3	
3	2487200875	604000.0	4	3.00	1960	5000	1.0	5	
4	1954400510	510000.0	3	2.00	1680	8080	1.0	3	
5	7237550310	1230000.0	4	4.50	5420	101930	1.0	3	1
6	1321400060	257500.0	3	2.25	1715	6819	2.0	3	
7	2008000270	291850.0	3	1.50	1060	9711	1.0	3	
8	2414600126	229500.0	3	1.00	1780	7470	1.0	3	
9	3793500160	323000.0	3	2.50	1890	6560	2.0	3	

Continuous data

0.0000

2000

The histograms show the data being positively skewed. We will need to run log transformations to make them more normal.

```
In [7]: continuous = ['price', 'sqft_living', 'sqft_lot', 'sqft_above']
         for cont in continuous:
              plt.figure(figsize=(15,5))
              kc_house_data_df[cont].plot.hist(bins=50, density=True)
              plt.xlabel(cont)
              nlt show()
           1.50
           1.25
           1.00
            0.50
            0.25
           0.0005
            0.0004
           0.0003
            0.0002
            0.0001
```

3 of 24 11/06/2022, 10:00 pm

8000

sqft_living

10000

12000

14000

Categorical Data

The house with 33 bedrooms is an outlier which we can drop when cleaning
We can see there wasn't many renovations happening (less than 10) until after 1982
Knowing if the property has been renovated or not would be more useful than the year the property was renovated

```
In [8]: categorical = ['bedrooms', 'bathrooms', 'floors','condition', 'grade','yr_b
         for cat in categorical:
             if cat == 'yr_built':
                 plt.figure(figsize=(20,10))
             kc_house_data_df.groupby([cat])[cat].count().plot.bar()
             plt.ylabel('frequency')
             plt.show()
         #better view of when properties were renovated
         plt.figure(figsize=(20,10))
         yr_reno = kc_house_data_df.loc[kc_house_data_df['yr_renovated'] > 0]
         yr_reno.groupby(yr_reno['yr_renovated'])['yr_renovated'].count().plot.bar()
         plt.ylabel('frequency')
        nlt show()
            10000
             8000
             6000
         frequency
             4000
             2000
               0
                                  LO.
                                                              8
                                                      2
                                                          Π
                                      bedrooms
            5000
            4000
         frequency
            3000
            2000
```


1000

0


```
In [9]: clean_house_data_df = kc_house_data_df.dropna(subset=['yr_renovated'])
        clean_house_data_df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 17755 entries, 0 to 21596 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype						
0	id	17755 non-null	int64						
1	price	17755 non-null	float64						
2	bedrooms	17755 non-null	int64						
3	bathrooms	17755 non-null	float64						
4	sqft_living	17755 non-null	int64						
5	sqft_lot	17755 non-null	int64						
6	floors	17755 non-null	float64						
7	condition	17755 non-null	int64						
8	grade	17755 non-null	int64						
9	sqft_above	17755 non-null	int64						
10	sqft_basement	17755 non-null	object						
11	yr_built	17755 non-null	int64						
12	yr_renovated	17755 non-null	float64						
dtype	es: float64(4),	int64(8), object	t(1)						
memor	rv usage: 1.9+ N	memory usage: 1.9+ MB							

memory usage: 1.9+ MB

```
In [10]: # Convert basement to numeric and remove the ones that are unknown
          clean_house_data_df['sqft_basement'] = pd.to_numeric(clean_house_data_df['s
          clean_house_data_df.dropna(subset=['sqft_basement'], inplace=True)
          clean house data df info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 17389 entries, 0 to 21596
          Data columns (total 13 columns):
               Column
                               Non-Null Count Dtype
               -----
                               -----
                              17389 non-null int64
           0
               id
           1
               price
                               17389 non-null float64
           2 bedrooms 17389 non-null int64
3 bathrooms 17389 non-null float64
4 sqft_living 17389 non-null int64
5 sqft_lot 17389 non-null int64
6 floats 17389 non-null float64
               floors 17389 non-null float64 condition 17389 non-null int64 grade 17389 non-null int64
              floors
           7
           8
              sqft_above 17389 non-null int64
           9
           10 sqft_basement 17389 non-null float64
                                17389 non-null int64
           11 yr_built
           12 yr_renovated 17389 non-null float64
          dtypes: float64(5), int64(8)
          memory usage: 1.9 MB
In [11]: # remove outlier in bedrooms
          clean house data df.loc[(clean house data df['bedrooms'] >= 10)].sort value
          clean house data df dron(lahels=15856_avis=0_innlace=True)
In [12]: #change year to property been renovated or not
          clean_house_data_df.loc[(clean_house_data_df['yr_renovated'] > 0), 'yr_renovated']
          clean house data df rename(columns={'vr renovated':'renovated'} innlace=Tr
In [13]: #percentage of houses renovated
          no_reno, yes_reno = (clean_house_data_df[['renovated']] > 0).value_counts()
          (ves reno/(ves reno + no reno))*100
Out[13]: 4.158040027605245
```

Check for Multicollinearity

Variables that are highly correlated to another variable will cause problems for our regression analysis. Making the results unreliable. To fix that we look for highly correlated variables and remove some.

We removed 'sqft basement' and 'bathrooms'

In [15]: house ned corr()

Out[15]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grade	
bedrooms	1.000000	0.527457	0.592664	0.031053	0.185320	0.017068	0.366044	
bathrooms	0.527457	1.000000	0.753504	0.085354	0.503906	-0.131313	0.665489	
sqft_living	0.592664	0.753504	1.000000	0.167745	0.356532	-0.066163	0.764592	
sqft_lot	0.031053	0.085354	0.167745	1.000000	-0.008833	-0.011021	0.108905	
floors	0.185320	0.503906	0.356532	-0.008833	1.000000	-0.263477	0.460728	
condition	0.017068	-0.131313	-0.066163	-0.011021	-0.263477	1.000000	-0.151378	
grade	0.366044	0.665489	0.764592	0.108905	0.460728	-0.151378	1.000000	
sqft_above	0.491095	0.685983	0.875885	0.175682	0.527141	-0.161946	0.758232	
sqft_basement	0.310868	0.280347	0.436399	0.019582	-0.245058	0.165047	0.168573	
yr_built	0.160033	0.506510	0.317275	0.048982	0.487741	-0.366227	0.445345	
renovated	0.019734	0.051249	0.054029	0.003594	0.003153	-0.061755	0.016509	

```
In [16]: df=house_pred.corr().abs().stack().reset_index().sort_values(0, ascending=F
         # zip the variable name columns (Which were only named level_0 and level_1 \l
         df['pairs'] = list(zip(df.level_0, df.level_1))
         # set index to pairs
         df.set_index(['pairs'], inplace = True)
         # drop level columns
         df.drop(columns=['level_1', 'level_0'], inplace = True)
         # rename correlation column as cc rather than 0
         df.columns = ['cc']
         # drop duplicates. This could be dangerous if you have variables perfectly (
         # for the sake of exercise, kept it in.
         df.drop_duplicates(inplace=True)
         df[(df cc>0 75) & (df cc <1)]
Out[16]:
```

CC

pairs	
(sqft_above, sqft_living)	0.875885
(sqft_living, grade)	0.764592
(sqft_above, grade)	0.758232
(bathrooms, sqft_living)	0.753504

In [17]: clean_house_data_df.drop(['sqft_basement', 'bathrooms'], axis=1, inplace=Tr clean_house_data_df.reset_index(drop=True, inplace=True) clean house data df head()

Out[17]:

	id	price	bedrooms	sqft_living	sqft_lot	floors	condition	grade	sqft_abo\
_	7129300520	221900.0	3	1180	5650	1.0	3	7	118
	1 6414100192	538000.0	3	2570	7242	2.0	3	7	217
:	2487200875	604000.0	4	1960	5000	1.0	5	7	105
;	3 1954400510	510000.0	3	1680	8080	1.0	3	8	168
	1 7237550310	1230000.0	4	5420	101930	1.0	3	11	389

Normalise

Our data is positively skewed so we need to do log transformation to make it have a more normal distribution. After that we need to standardise our data making the mean 0

11/06/2022, 10:00 pm 10 of 24

In [20]: # standard

std_scale = preprocessing.StandardScaler().fit(data_log[['log_living', 'log
df_std = std_scale.transform(data_log[['log_living', 'log_lot', 'log_above'
standard_df = pd.DataFrame(df_std, columns=['std_living', 'std_lot', 'std_al
standard_df hist(figsize=[8 5]):

In [21]: clean house data df2 = nd concat([clean house data df['nrice'] standard df

One Hot Encode

For linear regression, categorical data should be transformed using one-hot encoding. In order to not have so many predictors for the year built we categorised them into 5 year increments.

```
In [22]: # categorise yr_built in 5 year increments
def categorise_yr(yr):
    yr_mod = yr % 10
    if yr_mod > 0 and yr_mod < 5:
        yr -= yr_mod
    elif yr_mod > 5 and yr_mod < 10:
        yr -= yr_mod - 5
    return yr</pre>
```

In [23]: # dummy variable

br_dum = pd.get_dummies(clean_house_data_df['bedrooms'], prefix='br', drop_fl_dum = pd.get_dummies(clean_house_data_df['floors'], prefix='fl', drop_ficond_dum = pd.get_dummies(clean_house_data_df['condition'], prefix='cond', gr_dum = pd.get_dummies(clean_house_data_df['grade'], prefix='grade', drop_yb_dum = pd.get_dummies(clean_house_data_df['yr_cat'], prefix='yr_built', drop_floor_dummies(clean_house_data_df['yr_cat'], prefix='yr_built', drop_floor_dummies(clean_house_data_df['yr_cat'])

add dummy variables

clean_house_data_df3 = pd.concat([clean_house_data_df2, br_dum, fl_dum, conclean_house_data_df3_head()

Out[23]:

	price	std_living	std_lot	std_above	renovated	br_2	br_3	br_4	br_5	br_6	•••	}
0	221900.0	-1.134041	-0.391525	-0.760796	0.0	0	1	0	0	0		_

	price	std_living	std_lot	std_above	renovated	br_2	br_3	br_4	br_5	br_6	 3
1	538000.0	0.704189	-0.117255	0.667971	1.0	0	1	0	0	0	
2	604000.0	0.064293	-0.526558	-1.034546	0.0	0	0	1	0	0	
3	510000.0	-0.299745	0.003721	0.067739	0.0	0	1	0	0	0	
4	1230000.0	2.466373	2.804408	2.036862	0.0	0	0	1	0	0	

Modeling

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17388 entries, 0 to 17387
Data columns (total 57 columns):

#	Column	Non-Null Count	Dtype
0	price	17388 non-null	float64
1	std_living	17388 non-null	float64
2	std_lot	17388 non-null	float64
3	std_above	17388 non-null	float64
4	renovated	17388 non-null	float64
5	br_2	17388 non-null	uint8
6	br_3	17388 non-null	uint8
7	br_4	17388 non-null	uint8
8	br_5	17388 non-null	uint8
9	br_6	17388 non-null	uint8
10	br_7	17388 non-null	uint8
11	br_8	17388 non-null	uint8
12	br_9	17388 non-null	uint8
13	br_10	17388 non-null	uint8
14	br_11	17388 non-null	uint8
15	fl_1.5	17388 non-null	uint8
16	fl_2.0	17388 non-null	uint8
17	fl_2.5	17388 non-null	uint8
18	fl_3.0	17388 non-null	uint8
19	fl_3.5	17388 non-null	uint8
20	cond_2	17388 non-null	uint8
21	cond 3	17388 non-null	uinta

Model 1

Our first model used all the available predictors and got an R-Squared value of 0.633 which is reasonable, being able to explain 63% of variations of our model.

std_above and conditions had p-values greater than 0.05 so we will remove those for the next model.

```
In [25]: # all predictors
price = house_df['price']
predictors = house_df.iloc[:,1:57]
predictors_int = sm.add_constant(predictors)
model = sm.OLS(price, predictors_int).fit()
model.summary()
```

Out[25]: OLS Regression Results

Dep. Variable:	price	R-squared:	0.633
Model:	OLS	Adj. R-squared:	0.632
Method:	Least Squares	F-statistic:	533.9
Date:	Sat, 11 Jun 2022	Prob (F-statistic):	0.00
Time:	21:56:41	Log-Likelihood:	-2.3890e+05
No. Observations:	17388	AIC:	4.779e+05
Df Residuals:	17331	BIC:	4.784e+05
Df Model:	56		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	6.503e+05	2.31e+05	2.815	0.005	1.98e+05	1.1e+06
std_living	1.379e+05	4276.659	32.233	0.000	1.29e+05	1.46e+05
std_lot	-1.62e+04	2316.634	-6.994	0.000	-2.07e+04	-1.17e+04
std_above	-932.2023	4489.225	-0.208	0.836	-9731.536	7867.132
renovated	8.674e+04	9159.535	9.469	0.000	6.88e+04	1.05e+05
br_2	-4.594e+04	1.93e+04	-2.375	0.018	-8.39e+04	-8032.671
br_3	-9.772e+04	1.95e+04	-5.017	0.000	-1.36e+05	-5.95e+04
br_4	-1.324e+05	2e+04	-6.617	0.000	-1.72e+05	-9.32e+04
br_5	-9.4e+04	2.11e+04	-4.458	0.000	-1.35e+05	-5.27e+04
br_6	-7.267e+04	2.53e+04	-2.871	0.004	-1.22e+05	-2.31e+04
br_7	5526.2010	4.96e+04	0.111	0.911	-9.17e+04	1.03e+05
br_8	1.745e+05	7.15e+04	2.440	0.015	3.43e+04	3.15e+05
br_9	-1.785e+05	9.46e+04	-1.887	0.059	-3.64e+05	6923.749
br_10	-6.378e+04	1.31e+05	-0.485	0.628	-3.22e+05	1.94e+05
br_11	-3.947e+05	2.26e+05	-1.746	0.081	-8.38e+05	4.84e+04
fl_1.5	-1.217e+04	7435.389	-1.636	0.102	-2.67e+04	2408.040
fl_2.0	7148.2418	6289.004	1.137	0.256	-5178.840	1.95e+04
fl_2.5	1.036e+05	2.11e+04	4.909	0.000	6.22e+04	1.45e+05
fl_3.0	8.658e+04	1.27e+04	6.817	0.000	6.17e+04	1.11e+05
fl_3.5	1.178e+05	9.29e+04	1.269	0.205	-6.42e+04	3e+05
cond_2	-5.008e+04	5.17e+04	-0.969	0.333	-1.51e+05	5.13e+04
cond_3	-3.032e+04	4.84e+04	-0.627	0.531	-1.25e+05	6.45e+04
cond_4	1384.9881	4.84e+04	0.029	0.977	-9.35e+04	9.63e+04
cond_5	4.229e+04	4.87e+04	0.869	0.385	-5.31e+04	1.38e+05
grade_4	-3335.2368	2.31e+05	-0.014	0.988	-4.57e+05	4.5e+05
grade_5	-5.714e+04	2.26e+05	-0.253	0.800	-5e+05	3.86e+05
grade_6	-3.668e+04	2.26e+05	-0.162	0.871	-4.79e+05	4.06e+05
grade_7	4.634e+04	2.26e+05	0.205	0.837	-3.96e+05	4.89e+05
grade_8	1.545e+05	2.26e+05	0.684	0.494	-2.88e+05	5.97e+05
grade_9	3.306e+05	2.26e+05	1.463	0.144	-1.12e+05	7.74e+05
grade_10	5.889e+05	2.26e+05	2.604	0.009	1.46e+05	1.03e+06
grade_11	9.444e+05	2.26e+05	4.171	0.000	5.01e+05	1.39e+06
grade_12	1.632e+06	2.28e+05	7.165	0.000	1.19e+06	2.08e+06
grade_13	2.823e+06	2.36e+05	11.949	0.000	2.36e+06	3.29e+06
yr_built_1905	2.457e+04	2.07e+04	1.188	0.235	-1.6e+04	6.51e+04
yr_built_1910	7147.3649	2.08e+04	0.344	0.731	-3.36e+04	4.79e+04
yr_built_1915	-799.0763	2.08e+04	-0.038	0.969	-4.16e+04	4e+04
yr_built_1920	-1441.6611	2.02e+04	-0.071	0.943	-4.1e+04	3.81e+04

```
8021.9628 1.92e+04
                                    0.418  0.676  -2.96e+04
                                                            4.56e+04
yr_built_1925
yr_built_1930 -3.122e+04
                         2.34e+04
                                    -1.334 0.182 -7.71e+04
                                                             1.46e+04
                                    0.302 0.763 -3.72e+04
yr_built_1935
              6773.2950 2.24e+04
                                                             5.07e+04
                                    -2.206 0.027 -7.92e+04 -4675.008
yr_built_1940 -4.195e+04
                          1.9e+04
yr_built_1945 -4.731e+04 1.88e+04
                                    -2.515 0.012 -8.42e+04 -1.04e+04
                         1.84e+04
                                    -3.041 0.002 -9.21e+04 -1.99e+04
yr_built_1950 -5.598e+04
yr_built_1955 -1.168e+05
                        1.85e+04
                                    -6.296 0.000 -1.53e+05 -8.04e+04
yr_built_1960
            -1.443e+05
                         1.86e+04
                                    -7.740 0.000 -1.81e+05 -1.08e+05
yr_built_1965 -1.639e+05
                         1.84e+04
                                    -8.892 0.000
                                                    -2e+05 -1.28e+05
yr_built_1970
               -1.5e+05
                         1.96e+04
                                    -7.636 0.000 -1.88e+05 -1.11e+05
               -2.1e+05 1.84e+04 -11.437 0.000 -2.46e+05 -1.74e+05
yr_built_1975
                                    -9.513 0.000 -2.18e+05 -1.44e+05
yr_built_1980 -1.811e+05
                          1.9e+04
yr_built_1985 -2.512e+05 1.87e+04 -13.431 0.000 -2.88e+05 -2.15e+05
yr_built_1990 -2.949e+05 1.89e+04 -15.567 0.000 -3.32e+05 -2.58e+05
             -2.69e+05 1.92e+04 -14.040 0.000 -3.07e+05 -2.31e+05
yr_built_1995
yr_built_2000 -2.437e+05 1.87e+04 -13.058 0.000
                                                  -2.8e+05 -2.07e+05
yr_built_2005 -2.308e+05 1.85e+04 -12.482 0.000 -2.67e+05 -1.95e+05
yr_built_2010 -2.254e+05
                        1.91e+04 -11.810 0.000
                                                 -2.63e+05 -1.88e+05
yr_built_2015 -1.922e+05 4.61e+04
                                    -4.167 0.000 -2.83e+05 -1.02e+05
     Omnibus: 13866.889
                                                  1.976
                            Durbin-Watson:
Prob(Omnibus):
                    0.000 Jarque-Bera (JB): 1113381.178
        Skew:
                    3.275
                                                   0.00
```

 Skew:
 3.275
 Prob(JB):
 0.00

 Kurtosis:
 41.650
 Cond. No.
 685.

Notes:

Model 2

Removing the two predictors have lowered our R-Squared score slightly Skew and Kurtosis is still quite high

Doing a QQ-plot shows it is not normal so we run log transformation on price as well.

```
In [26]: data1 = house_df[['std_living', 'renovated']]
    data2 = pd.concat([bedrooms, floors, grade, yr_built], axis=1)
    predictors = pd.concat([data1, data2], axis=1)

    predictors_int = sm.add_constant(predictors)
    model = sm.OLS(price, predictors_int).fit()

Out[26]: OLS Parassian Paculta
```

-

OLS Regression Results

Dep. Variable: price **R-squared:** 0.629

Model: OLS Adj. R-squared: 0.628 Method: Least Squares F-statistic: 587.8 Date: Sat, 11 Jun 2022 Prob (F-statistic): 0.00 21:56:42 Log-Likelihood: -2.3900e+05 Time: No. Observations: 17388 AIC: 4.781e+05 **Df Residuals:** 17337 BIC: 4.785e+05

Df Model: 50

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	6.745e+05	2.27e+05	2.972	0.003	2.3e+05	1.12e+06
std_living	1.328e+05	3277.778	40.514	0.000	1.26e+05	1.39e+05
renovated	6.815e+04	9054.610	7.527	0.000	5.04e+04	8.59e+04
br_2	-3.806e+04	1.94e+04	-1.960	0.050	-7.61e+04	0.450
br_3	-8.783e+04	1.95e+04	-4.497	0.000	-1.26e+05	-4.95e+04
br_4	-1.212e+05	2.01e+04	-6.041	0.000	-1.61e+05	-8.19e+04
br_5	-8.199e+04	2.11e+04	-3.877	0.000	-1.23e+05	-4.05e+04
br_6	-6.271e+04	2.54e+04	-2.470	0.014	-1.12e+05	-1.29e+04
br_7	1.683e+04	4.98e+04	0.338	0.735	-8.08e+04	1.14e+05
br_8	1.908e+05	7.19e+04	2.655	0.008	4.99e+04	3.32e+05
br_9	-1.843e+05	9.5e+04	-1.939	0.052	-3.71e+05	1971.127
br_10	-4.838e+04	1.32e+05	-0.366	0.714	-3.07e+05	2.11e+05
br_11	-3.934e+05	2.27e+05	-1.731	0.083	-8.39e+05	5.2e+04
fl_1.5	-1.181e+04	7199.974	-1.641	0.101	-2.59e+04	2300.042
fl_2.0	1.233e+04	5608.036	2.198	0.028	1335.255	2.33e+04
fl_2.5	1.146e+05	2.09e+04	5.480	0.000	7.36e+04	1.56e+05
fl_3.0	1.09e+05	1.21e+04	8.980	0.000	8.52e+04	1.33e+05
fl_3.5	1.475e+05	9.33e+04	1.581	0.114	-3.53e+04	3.3e+05
grade_4	-5.935e+04	2.32e+05	-0.255	0.798	-5.15e+05	3.96e+05
grade_5	-9.82e+04	2.27e+05	-0.432	0.666	-5.44e+05	3.47e+05
grade_6	-7.345e+04	2.27e+05	-0.324	0.746	-5.18e+05	3.71e+05
grade_7	1.701e+04	2.27e+05	0.075	0.940	-4.28e+05	4.62e+05
grade_8	1.262e+05	2.27e+05	0.556	0.578	-3.19e+05	5.71e+05
grade_9	2.978e+05	2.27e+05	1.311	0.190	-1.47e+05	7.43e+05
grade_10	5.519e+05	2.27e+05	2.429	0.015	1.07e+05	9.97e+05
grade_11	9.04e+05	2.28e+05	3.973	0.000	4.58e+05	1.35e+06
grade_12	1.587e+06	2.29e+05	6.935	0.000	1.14e+06	2.04e+06
grade_13	2.781e+06	2.37e+05	11.717	0.000	2.32e+06	3.25e+06
yr_built_1905	2.773e+04	2.08e+04	1.334	0.182	-1.3e+04	6.85e+04
yr_built_1910	8816.9599	2.09e+04	0.422	0.673	-3.22e+04	4.98e+04

17 of 24

yr_built_1915	-626.7098	2.09e+04	-0.030	0.976	-4.16e+04	4.03e+04
yr_built_1920	-4932.6092	2.03e+04	-0.243	0.808	-4.47e+04	3.48e+04
yr_built_1925	7723.2561	1.93e+04	0.401	0.689	-3e+04	4.55e+04
yr_built_1930	-3.892e+04	2.35e+04	-1.657	0.098	-8.5e+04	7122.242
yr_built_1935	-5119.2584	2.25e+04	-0.227	0.820	-4.92e+04	3.9e+04
yr_built_1940	-5.215e+04	1.91e+04	-2.734	0.006	-8.95e+04	-1.48e+04
yr_built_1945	-6.156e+04	1.89e+04	-3.265	0.001	-9.85e+04	-2.46e+04
yr_built_1950	-7.276e+04	1.84e+04	-3.947	0.000	-1.09e+05	-3.66e+04
yr_built_1955	-1.348e+05	1.86e+04	-7.269	0.000	-1.71e+05	-9.85e+04
yr_built_1960	-1.622e+05	1.86e+04	-8.705	0.000	-1.99e+05	-1.26e+05
yr_built_1965	-1.808e+05	1.84e+04	-9.818	0.000	-2.17e+05	-1.45e+05
yr_built_1970	-1.699e+05	1.96e+04	-8.660	0.000	-2.08e+05	-1.31e+05
yr_built_1975	-2.334e+05	1.83e+04	-12.741	0.000	-2.69e+05	-1.97e+05
yr_built_1980	-2.125e+05	1.89e+04	-11.218	0.000	-2.5e+05	-1.75e+05
yr_built_1985	-2.85e+05	1.86e+04	-15.322	0.000	-3.21e+05	-2.49e+05
yr_built_1990	-3.329e+05	1.88e+04	-17.694	0.000	-3.7e+05	-2.96e+05
yr_built_1995	-3.075e+05	1.9e+04	-16.151	0.000	-3.45e+05	-2.7e+05
yr_built_2000	-2.769e+05	1.86e+04	-14.925	0.000	-3.13e+05	-2.41e+05
yr_built_2005	-2.579e+05	1.84e+04	-14.006	0.000	-2.94e+05	-2.22e+05
yr_built_2010	-2.537e+05	1.9e+04	-13.361	0.000	-2.91e+05	-2.16e+05
yr_built_2015	-2.171e+05	4.63e+04	-4.688	0.000	-3.08e+05	-1.26e+05

 Omnibus:
 13776.736
 Durbin-Watson:
 1.976

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1075858.613

 Skew:
 3.250
 Prob(JB):
 0.00

 Kurtosis:
 40.983
 Cond. No.
 600.

Notes:

```
In [27]: resid1 = model.resid

fig = sm granhics donlot(resid1 dist=stats norm line='45' fit=True)

20
```


Out[28]: <AxesSubplot:>

Model 3

After log transformation on price we can see if has improved the distribution to be more normal

Improved Skewness from highly positive skew to slightly negative skew. Improved skew which is now between -0.5 and 0.5 meaning the data is pretty symmetrical as shown in the QQ-plot below

R-Squared value has also increased to 0.646 meaning 64.6% of the variance is explained by the model.

```
In [29]: data1 = house_df[['std_living', 'renovated']]
    data2 = pd.concat([bedrooms, floors, grade, yr_built], axis=1)
    predictors = pd.concat([data1, data2], axis=1)

    predictors_int = sm.add_constant(predictors)
    model = sm.OLS(price, predictors_int).fit()

Out[29]:
```

OLS Regression Results

Dep. Variable: price **R-squared:** 0.646

Model: OLS Adj. R-squared: 0.645

Method: Least Squares **F-statistic:** 633.8

Time: 21:56:42 **Log-Likelihood:** -4467.5

Prob (F-statistic):

0.00

No. Observations: 17388 **AIC:** 9037.

Df Residuals: 17337 **BIC:** 9433.

Df Model: 50

Date: Sat, 11 Jun 2022

Covariance Type: nonrobust

_	-					
	coef	std err	t	P> t	[0.025	0.975]
const	13.2076	0.315	41.941	0.000	12.590	13.825
std_living	0.2268	0.005	49.874	0.000	0.218	0.236
renovated	0.0344	0.013	2.735	0.006	0.010	0.059
br_2	-0.0489	0.027	-1.817	0.069	-0.102	0.004
br_3	-0.1369	0.027	-5.050	0.000	-0.190	-0.084
br_4	-0.1696	0.028	-6.094	0.000	-0.224	-0.115
br_5	-0.1508	0.029	-5.139	0.000	-0.208	-0.093
br_6	-0.1633	0.035	-4.636	0.000	-0.232	-0.094
br_7	-0.1575	0.069	-2.279	0.023	-0.293	-0.022
br_8	0.0288	0.100	0.289	0.773	-0.167	0.224
br_9	-0.2198	0.132	-1.667	0.096	-0.478	0.039
br_10	-0.0326	0.183	-0.178	0.859	-0.392	0.327
br_11	-0.4777	0.315	-1.515	0.130	-1.096	0.140
fl_1.5	0.0006	0.010	0.056	0.955	-0.019	0.020
fl_2.0	0.0139	0.008	1.788	0.074	-0.001	0.029
fl_2.5	0.0303	0.029	1.043	0.297	-0.027	0.087
fl_3.0	0.1887	0.017	11.199	0.000	0.156	0.222
fl_3.5	0.1056	0.129	0.816	0.415	-0.148	0.359
grade_4	-0.3337	0.322	-1.035	0.301	-0.966	0.298
grade_5	-0.2638	0.315	-0.837	0.403	-0.882	0.354
grade_6	-0.0925	0.315	-0.294	0.769	-0.710	0.525
grade_7	0.1851	0.315	0.588	0.557	-0.432	0.802
grade_8	0.4256	0.315	1.351	0.177	-0.192	1.043
grade_9	0.6683	0.315	2.121	0.034	0.051	1.286
grade_10	0.9005	0.315	2.856	0.004	0.283	1.519
grade_11	1.1192	0.316	3.545	0.000	0.500	1.738
grade_12	1.3894	0.318	4.376	0.000	0.767	2.012

grade_13	1.6329	0.329	4.958	0.000	0.987	2.278
yr_built_1905	0.0069	0.029	0.239	0.811	-0.050	0.063
yr_built_1910	-0.0545	0.029	-1.879	0.060	-0.111	0.002
yr_built_1915	-0.0442	0.029	-1.526	0.127	-0.101	0.013
yr_built_1920	-0.0353	0.028	-1.253	0.210	-0.090	0.020
yr_built_1925	-0.0489	0.027	-1.831	0.067	-0.101	0.003
yr_built_1930	-0.1559	0.033	-4.781	0.000	-0.220	-0.092
yr_built_1935	-0.1078	0.031	-3.451	0.001	-0.169	-0.047
yr_built_1940	-0.1731	0.026	-6.542	0.000	-0.225	-0.121
yr_built_1945	-0.1642	0.026	-6.277	0.000	-0.215	-0.113
yr_built_1950	-0.2182	0.026	-8.529	0.000	-0.268	-0.168
yr_built_1955	-0.3376	0.026	-13.114	0.000	-0.388	-0.287
yr_built_1960	-0.3906	0.026	-15.107	0.000	-0.441	-0.340
yr_built_1965	-0.4303	0.026	-16.840	0.000	-0.480	-0.380
yr_built_1970	-0.3855	0.027	-14.160	0.000	-0.439	-0.332
yr_built_1975	-0.4821	0.025	-18.968	0.000	-0.532	-0.432
yr_built_1980	-0.4429	0.026	-16.848	0.000	-0.494	-0.391
yr_built_1985	-0.5286	0.026	-20.481	0.000	-0.579	-0.478
yr_built_1990	-0.6020	0.026	-23.060	0.000	-0.653	-0.551
yr_built_1995	-0.5464	0.026	-20.687	0.000	-0.598	-0.495
yr_built_2000	-0.5149	0.026	-20.004	0.000	-0.565	-0.464
yr_built_2005	-0.4995	0.026	-19.551	0.000	-0.550	-0.449
yr_built_2010	-0.5064	0.026	-19.218	0.000	-0.558	-0.455
yr_built_2015	-0.4373	0.064	-6.806	0.000	-0.563	-0.311

Omnibus: 62.741 Durbin-Watson: 1.968

Prob(Omnibus): 0.000 Jarque-Bera (JB): 82.237

Skew: -0.039 **Prob(JB):** 1.39e-18

Kurtosis: 3.328 **Cond. No.** 600.

```
In [30]: resid1 = model.resid

fig = sm granhics agnlot(resid1 dist=stats norm line='45' fit=True)

4

self agranhics agnlot(resid1 dist=stats norm line='45' fit=True)

Theoretical Quantiles
```

Homoscedasticity

Scatterplot to show homoscedasticity. No cone like pattern

Training

With training and test MSE being similar, we can expect the model to perform similarly on different data.

Accuracy of the model is 63.42

```
In [32]: y = price
```

```
X = predictors
X_train, X_test, y_train, y_test = train_test_split(X, y)
linreg = LinearRegression()
linreg.fit(X_train, y_train)

y_hat_train = linreg.predict(X_train)
y_hat_test = linreg.predict(X_test)

train_mse = mean_squared_error(y_train, y_hat_train)
test_mse = mean_squared_error(y_test, y_hat_test)
print('Train Mean Squared Error:', train_mse)
print('Test Mean Squared Error:', test_mse)
```

Train Mean Squared Error: 0.09779224976352793 Test Mean Squared Error: 0.09848355578437429

```
In [33]: from sklearn.metrics import r2_score

Accuracy=r2_score(y_test,y_hat_test)*100

print(" Accuracy of the model is % 2f" %Accuracy)

Accuracy of the model is 63.10
```

In [34]: nlot = sns regulat(y=v test v=v hat test ci=None) set(title='Accuracy of Da

Conclusion

With our final model the OLS regression results tell us that the R-Squared value is 0.646 meaning 64.6% of the variance can be explained by the model. The results also tells us the skewness is -0.039 which is between -0.5 to 0.5 meaning the data is symmetrical, satisfying the normality assumption. This can also be seen from the QQ-plot with points mostly following the line. If we observed a QQ-plot like in model 2 then the distribution would be non-normal. Another assumption for linear regression is that data must be homoscedastic. To check this we created a scatterplot and did not observe any cone like shapes which would indicated the data is heteroscedastic.

The living space of a property has the strongest relationship with house prices. This is determined by the t value of 49.874 which tells us how statistically significant the coefficient is. This makes sense as we spend most of the time inside the house and having a larger living area generally means more rooms or floors making it appealing to buyers. Floor had

the next highest t value of 11.1 but only for 3 floors. Having more floors generally means more living area which can increase the value. Grades are also significant as it represents the quality of the home. Renovated has a t value of 2.7 which is not as high. This might be because the data for unrenovated homes heavily outweighed that of renovated homes.