Midterm

Jeffrey Zhuohui Liang

3/7/2021

Method

Table 1: Data summary

Name	hrt data
Number of rows	920
Number of columns	15
Column type frequency:	
factor	9
numeric	6
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
diagnosis_heart_disease	0	1.00	FALSE	2	pre: 509, abs: 411
location	0	1.00	FALSE	4	cle: 303, hun: 294, va: 200, swi: 123
sex	0	1.00	FALSE	2	mal: 726, fem: 194
chest_pain_type	0	1.00	FALSE	4	asy: 496, non: 204, aty: 174, typ: 46
fasting_blood_sugar	90	0.90	FALSE	2	fas: 692, fas: 138
resting_ecg	2	1.00	FALSE	3	nor: 551, lef: 188, ST-: 179
exercise_induced_angina	55	0.94	FALSE	2	no: 528, yes: 337
peak_exercise_st_segment	309	0.66	FALSE	3	Fla: 345, Up-: 203, Dow: 63
thalassemia	486	0.47	FALSE	3	nor: 196, rev: 192, fix: 46

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
age	0	1.00	53.51	9.42	28.0	47	54.0	60.0	77.0
resting_blood_pressure	59	0.94	132.13	19.07	0.0	120	130.0	140.0	200.0
$serum_cholesterol$	30	0.97	199.13	110.78	0.0	175	223.0	268.0	603.0
$max_heart_rate_achieved$	55	0.94	137.55	25.93	60.0	120	140.0	157.0	202.0
$st_depression_exercise$	62	0.93	0.88	1.09	-2.6	0	0.5	1.5	6.2
num_major_vessels_flouro	611	0.34	0.68	0.94	0.0	0	0.0	1.0	3.0

Modeling

```
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
logistic_model =
  train(
    X_tr,
    Y_tr,
    method = "glmnet",
    tuneGrid = expand.grid(alpha = seq(0,1,length=6),
                           lambda = exp(seq(
                             6, to = -6, length = 50
                           ))),
    family = "binomial",
    preProcess = PPS,
   metric = "ROC",
    trControl = TRC
stopCluster(cl)
p_logistics =
  ggplot(logistic_model) +
  scale_x_continuous(trans = "log")+
  labs(title = "Lasso Logistics")
```

```
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
```

```
mars_model =
  train(X_tr,
        Y tr,
        method = "earth",
        tuneGrid = expand.grid(degree = 1:3,
                               nprune = 5:20),
        preProcess = PPS,
        trControl = TRC,
        metric = "ROC")
stopCluster(cl)
p_mars = ggplot(mars_model) +labs(title ="MARS")
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
knn_model =
  train(X_tr,
       Y_tr,
        method = "knn",
        tuneGrid = expand.grid(k = seq(10,60,2)),
        preProcess = PPS,
        trControl = TRC,
        metric = "ROC")
stopCluster(cl)
p_knn = ggplot(knn_model)+labs(title = "KNN")
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
lda_model = train(
  X_tr,
 Y_tr,
 method = "lda",
 preProcess = PPS,
 trControl = TRC,
 metric = "ROC"
)
stopCluster(cl)
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
qda_model = train(
 X_tr,
Y_tr,
```

```
preProcess = PPS,
  trControl = TRC,
 metric = "ROC"
stopCluster(cl)
set.seed(123123)
cl = parallel::makePSOCKcluster(5)
doParallel::registerDoParallel(cl)
nb_model =
  train(
    X_tr,
    Y_tr,
    method = "nb",
    tuneGrid = expand.grid(
     usekernel = c(T, F),
     fL = 1,
     adjust = seq(.2, 3, by = .2)
    ),
    preProcess = PPS,
   trControl = TRC,
    metric = "ROC"
stopCluster(cl)
coef(logistic_model$finalModel,logistic_model$bestTune$lambda) %>%
  as.vector() %>%
  tibble(term = c("Intercept",colnames(X_tr)),
         coefficient = .) %>%
```

method = "qda",

Table 4: Coefficient of Lasso Logistic Regression

knitr::kable(caption = "Coefficient of Lasso Logistic Regression")

term	coefficient
Intercept	0.420
locationhun	-0.156
locationswi	0.789
locationva	0.019
age	0.048
sexmale	0.396
chest_pain_typeatypical angina	-0.385
chest_pain_typenon-angina pain	-0.288
chest_pain_typetypical angina	-0.068
resting_blood_pressure	0.000
serum_cholesterol	0.000
fasting_blood_sugarfasting blood sugar $> 120 \text{ mg/dl}$	0.000
resting_ecgnormal	0.000
resting_ecgST-T wave abnormality	0.000
max_heart_rate_achieved	-0.063

term	coefficient
exercise_induced_anginayes	0.427
st_depression_exercise	0.409
peak_exercise_st_segmentFlat	0.342
peak_exercise_st_segmentUp-sloaping	-0.117
num_major_vessels_flouro	0.846
thalassemianormal	-0.468
thalassemiareversible defect	0.075

Lasso Logistics Model

MARS: Importance of predictor

p_logistics | (p_mars/p_knn)

Performance comparison

Number of resamples: 50

```
rsmp = resamples(
  list(
    logistic = logistic_model,
    MARS = mars_model,
    knn = knn_model,
    lda = lda_model,
    qda = qda_model
),
    metric = c("ROC", "Kappa")
)
summary(rsmp)

##
## Call:
## summary.resamples(object = rsmp)
##
## Models: logistic, MARS, knn, lda, qda
```

```
##
## ROC
##
           Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## logistic 0.829   0.891   0.921   0.914   0.938   0.979
       0.822 0.892 0.923 0.915
                                   0.941 0.986
## MARS
## knn
          0.840 0.891 0.917 0.915
                                   0.936 0.982
                                                 0
## lda
         0.819 0.881 0.914 0.910 0.937 0.980
         0.804 0.866 0.881 0.881 0.908 0.943
## qda
##
## Sens
##
           Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## logistic 0.545
                 0.758 0.818 0.797
                                   0.848 0.909
                                   0.848 0.909
## MARS
         0.545
                0.758 0.818 0.797
                                                  0
                0.735 0.788 0.782 0.848 0.909
## knn
          0.545
## lda
         0.576  0.758  0.818  0.802  0.848  0.939
                                                 0
## qda
          0.606 0.758 0.812 0.799
                                   0.848 0.909
##
## Spec
           Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
##
## logistic 0.732   0.829   0.854   0.862   0.902   0.976
## MARS
       0.756
                0.826 0.878 0.862 0.902 0.951
## knn
          0.805
                0.875 0.902 0.900 0.927 0.976
## lda
         0.732
                 0.829 0.864 0.863 0.902 0.976
                                                 0
          ## qda
```

bwplot(rsmp,metric = "ROC")


```
ROC =
  expand.grid(
   test_X = list(X_ts),
   test_Y = list(Y_ts),
   model = list(logistic_model, mars_model, knn_model, lda_model, qda_model)
  ) %>%
  mutate(
   pred = map2(model, test_X, ~ predict(.x, newdata = .y, type = "prob")[, 2]),
   roc = map2(test_Y, pred, ~ pROC::roc(.x, .y))
  ) %>%
 pull(roc)
auc = c()
for (i in 1:5){
  auc = append(auc,ROC[[i]]$auc[1])
  plot(ROC[[i]],col = i, add = T * (i>1), legacy.axes = T * (i==1))
model_name =
  c("lasso logistic","MARS","KNN","LDA","QDA")
legend("bottomright",
```

