Reg. No.:	
Name :	

MID TERM EXAMINATIONS - August 2022

Programme	:	B.Tech.[BCY,BAS, MIM]	S	emester	:	Fall 2022-23
Course	:	Discrete Mathematics And Graph Theory	C	Code	:	MAT2002
Faculty	:	Dr. Navneet Kumar Verma	S	lot/ Class No.	:	A21+A22+A23/0134
Time	:	1½ hours	\mathbf{N}	Iax. Marks	:	50

Answer all the Questions

Q. No.	Sub. Sec.	Question Description		
1	(a)	Let Z be the set of integers and the relation R be defined over the set Z by aRb if $a^b = b^a$, where $a, b \in Z$. Is the relation R an equivalence relation?		
	(b)	Verify the statement $\overline{(A \cup B)} \cup \overline{(\overline{A} \cap \overline{B} \cap C)} = U$, stating all the used laws clearly.	5	
2	(a)	Prove by the principle of mathematical induction the inequality $(a+1)^n \ge 1 + na$, for $a > -1 \& n \ge 2$.	5	
	(b)	Let R and S be two relations from Set A to Set B then prove that		
		$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$ and $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$	5	
3		Write out the converse, contrapositive and negation of each of the following sentences: a) If Neha wins, then Shally loses. b) If 9 is odd then the square of 9 is odd c) If all cat's meow, then some dogs bark If john wins, then Mary loses and the school closes	10	
4		Show that $\{[(p \lor q) \Rightarrow r] \land (\neg p)\} \Rightarrow (q \Rightarrow r)$ is a tautology without using truth tables.	10	
5		A graph without self-loop and parallel edges having 'n' vertices and 'k' components. Then show that such graph cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges	10	
	1	⊥ ⇔⇔⇔		