BRL MR 2143

BRL

AD

MEMORANDUM REPORT NO. 2143

WIND TUNNEL MAGNUS TESTING OF
A CANTED FIN OR SELF-ROTATING CONFIGURATION

by

A. S. Platou

December 1971

Approved for public release; distribution unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

INCLASSIFIED

ennotation must be		
C	1	CURITY CLASSIFICATION
center		lassified
	ZE. GROUP	
		· · · · · · · · · · · · · · · · · · ·
N OR SELF-RO	TATING CON	FIGURATION
	· · · · · · · · · · · · · · · · · · ·	
74. TOTAL NO. O	F PAGES	7b. NO. OF REFS
24		11
M. ORIGINATOR	REPORT NUM	BER(S)
Memorandu	m Report No	o. 21 ₉₀
96. OTHER REPO this report)	RT NO(\$) (Any or	her numbers that may be contigued
<u> </u>		
unlimited.		
12. SPONSORING	MILITARY ACTIV	VITY
		Command
ted, and mea orce interac is due to a a balance in teristics an correction	ns of over tion brough small yaw nteraction d can lead may be made	coming the error are that about by the roll angle of the model error. The error the experimenter to existing da a,
	Center Center OR SELF-RO OR SELF-RO Memorandu Memorandu Memorandu U.S. Army Washington rement of Ma ted, and measore interaction a a balance interistics an correction a s to obtain	TOTAL NO. OF PASES 24 SA. CRICINATOR'S REPORT NUMBER REPORT NO. (S) (Any or while report) unlimited. 12. SPONSORING MILITARY ACTIVE U.S. Army Materiel (Washington, D. C. rement of Magnus force ted, and means of over orce interaction brough is due to a small yaw a balance interaction teristics and can lead correction may be made s to obtain balance re-

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be purchased from the U.S. Department of Commerce, National Technical Information Service, Springfield, Virginia 22151

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents. INCLASSIFIED
Security Classification

14.		LIN	K A	LIN	X P	I.IN	кс
	KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT
Magnus Forces Measuring Magnus	Famasa						
Measuring Magnus	rorces						
						,	
	-						
							,
						}	
						·	
				1			
						İ	
)				Ì	
	•	į					
						1	
			j	Ì]
						ļ	
		1					
	·	1				<u> </u>	
		1				ľ	
		1		1		1	
	• •			Ì			
	• • •	1	1			Ì	
		1					ļ
						ĺ	Ì
		İ		1			ĺ
		1 .				1.	
		1		ļ			
				.]		}	
, .	·	1		ļ		ļ	1
			. '	,		ŀ	
		}				}	
		}	}			}	
•		1	1			ì	
				1		1	
Ì		1			İ		
							Ì
l		1]		
.		1					
•]		1	ł	
1]	Į.		l	1	I

INCLASSIFIED
Security Classification

BALLISTIC RESEARCH LABOKATORIES

MEMORANDUM REPORT NO. 2143

DECEMBER 1971

WIND TUNNEL MAGNUS TESTING OF A CANTED FIN OR SELF-ROTATING CONFIGURATION

A. S. Platou

Exterior Ballistics Laboratory

Approved for public release; distribution unlimited.

RDT&E Project No. 1T061102A33D

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2143

ASP1atou/1ca Aberdeen Proving Ground, Md. December 1971

WIND TUNNEL MAGNUS TESTING OF A CANTED FIN OR SELF-ROTATING CONFIGURATION

ABSTRACT

A source of error in the wind tunnel measurement of Magnus forces and moments on a self-rotating configuration has been detected, and means of overcoming the error are presented. The error is due to a normal force interaction brought about by the roll of the angle of attack plane which in turn is due to a small yaw angle of the model at zero angle of attack. The error is not a balance interaction error. The error can completely mask the true Magnus characteristics and can lead the experimenter to wrong conclusions. Although a computed correction may be made to existing data, the best method of eliminating the error is to obtain balance readings with and without spin at each angle of attack of interest.

TABLE OF CONTENTS

		rage
	ABSTRACT	3
	LIST OF SYMBOLS	7
	LIST OF ILLUSTRATIONS	9
I.	INTRODUCTION	11
II.	THE NORMAL FORCE INTERACTION ERROR	11
III.	CONCLUSIONS	14
	REFERENCES	15
	DISTRIBUTION LIST	21

LIST OF SYMBOLS

m p yaw couple due to opposing forces N sin ε and N p p spin in rad/sec

$$C_{M_{CG}} = \frac{\text{pitching moment about CG}}{\frac{1}{2} \rho u^2 Sd}$$

body diameter

d

$$C_n$$
 measured yawing moment coefficient = $\frac{n}{1/2 \rho u^2 Sd}$
 C_N normal force coefficient on the configuration = $\frac{N}{\frac{1}{2} \rho u^2 S}$

$$C_{N_{p}}$$
 Magnus force coefficient = $\frac{N_{p}}{\frac{1}{2} \rho u^{2} S \frac{pd}{u}}$

C_Y measured side force coefficient

$$N_{\rm p}$$
 Magnus force

$$N_{_{\rm S}}$$
 normal force due to an angle of yaw

Re
$$\frac{\rho u}{\mu}$$
 = Reynolds number/ft.

S cross-sectional body area =
$$\frac{\pi d^2}{4}$$

$$\epsilon$$
 angle of roll of true angle of attack plane

distance between N sin
$$\epsilon$$
 and N_D

$$\ell_{_{
m F}}$$
 Magnus force C.P. to C.G. distance

$$\ell_N$$
 normal force C.P. to C.G. distance

LIST OF ILLUSTRATIONS

Figure		P	'age
1.	The Geometry Involved in Measuring Magnus Forces	•	17
2.	Side Force and Yawing Moment Coefficients Versus Angle of Attack for a 4° Fin Cant at Mach Number 0.90, Re = 1.5 x 10 ⁶		18
3.	The Couple Created by Normal Force Interaction		
4.	Figure 2 Corrected for Normal Force Interaction Assuming		
	Constant Flow Inclination		20

I. INTRODUCTION

It has recently come to our attention that most Magnus wind tunnel measurements on canted fin or self-rotating configurations contain a normal force interaction term which cannot be corrected in the usual manner. The error involves the fact that it is very difficult to obtain side force and moment data on the configuration at zero spin. The model must contain a lock or other means to prevent rotation and at the same time permit reading the side force and moment strain gage bridges. The normal force interaction term can be sufficiently large, so that if not eliminated, it can completely mask the Magnus force and moment.

II. THE NORMAL FORCE INTERACTION ERROR

In order to explain the interaction error let us assume that we have a test section tunnel flow which is exactly horizontal and contains no variation of flow inclination or Mach number in the test region. Let us also assume that the strain gage balance has no interaction terms and that the normal force or pitching moment measuring plane is exactly vertical and that the side force and moment measuring plane is exactly horizontal. All appears to be ideal except for one item. When installed in the test section at zero indicated angle of attack, the model and balance are at an angle of yaw "B", Figure 1. The side force developed on the configuration at zero spin is then

$$N_{s} = C_{N_{\alpha}} \frac{1}{2} \rho u^{2} \beta \frac{\pi d^{2}}{4}$$
 (1)

or the true angle of attack plane can be considered as being horizontal even though the indicated angle of attack is zero. As the indicated angle of attack is changed the true angle of attack plane will rotate such that

$$\sin \epsilon = \frac{\tan \beta}{\sin \alpha} \tag{2}$$

The normal force which acts in the true angle of attack plane will then we a component acting in the side force measuring direction such that $N_s = N \sin \epsilon$. If one does not measure N_s at zero spin and at each angle of attack, its value is included in the data obtained while the model is spinning.

Normally, since the zero spin data are difficult or impossible to obtain on a self rotating configuration, experimenters have tended to present the results of the spinning data at angle of attack minus the spin data at zero angle of attack. These data still contain the normal force interaction term and really present the $\frac{pd}{u}$ C_{N_n} - C_N sin ϵ .

A striking example of this error is shown in reference 1*. The side force and moment acting on the canted fin configuration of reference 1 is presented in Figure 2. The force is negative at low angles of attack, but becomes positive above 6° angle of attack. The moment on the other hand is positive at low angles, remains positive as the force crosses over at 6° and does not become negative until higher angles are reached. The existence of a moment at zero force is indicative of a couple and can be explained as shown in Figure 3. The normal force interaction term (N sin ε) acts at the normal force center of pressure while the Magnus force on the fins must act near the center of the fins. Therefore, the couple arm "1" can be estimated and the angle ε determined from

$$\sin \varepsilon = \frac{m_p}{\ell N} \tag{3}$$

Using the data of Figure 2 and normal force and pitching moment data on this configuration obtained from F. Ragan in a private communication, it is possible to determine ϵ , β , and $C_Y - C_n$ sin ϵ for each angle of attack. Originally the author had just computed ϵ and β for the case where the pure couple was present (i.e., $\alpha = 6^{\circ}$). During the review of

^{*} References are listed on page 15

this report, Dr. C. H. Murphy pointed out the possibility of doing this at each angle of attack.

$$C_{Y} = C_{N} \sin \varepsilon + C_{N} \frac{pd}{u} \cos \varepsilon$$
 (4)

$$C_n = \ell_N C_N \sin \varepsilon + \ell_F C_{N_p} \frac{pd}{u} \cos \varepsilon$$
 (5)

Above, it is assumed that the side force, C_{γ} , and the yawing moment, C_{n} , presented by Ragan are not divided by the spin. Combining (4) and (5):

$$\sin \varepsilon = \frac{C_n - \ell_F C_Y}{(\ell_N - \ell_F) C_N} = \frac{C_n - \ell_F C_Y}{\ell C_N}$$
 (6)

For each angle of attack, equation (6) can be solved for ϵ by inserting the known values of C_n , C_γ and C_N while values of ℓ and ℓ_F can be estimated by assuming the Magnus force center of pressure is at the mid chord of the fins. The distance, ℓ_F , can be estimated in the reference 1 case, for only the fins are rotating and creating the Magnus force. The distance, ℓ_F , cannot be estimated in the case of a finned projectile where the body rotates. The values used are shown in Table 1 and the values of ϵ , β and C_γ - C_N sin ϵ computed from them.

It is seen that the value of β for this experiment is always less than one half degree. This indicates that the variation of flow inclination in the test region is very good, but it also indicates that the normal force interaction term N sin ε is very sensitive to changes in β . Therefore, the computed correction may still contain errors of fairly high magnitude. A more exact way of obtaining accurate Magnus data is to obtain the side forces and moments at zero spin.

III. CONCLUSIONS

Wind tunnel Magnus data obtained to date on canted fin configurations may be invalid in that a severe normal force interaction may be present. Although it may be possible in some cases to correct for this interaction, it is in general best to remove the interaction by subtracting the zero spin data at each angle of attack. This requires a system in which the model can be kept at zero spin during an angle of attack sweep of the configuration.

REFERENCES

 F. J. Regan, "Magnus Measurements on a Freely Spinning Stabilizer," AIAA Paper No. 70-559, AIAA Atmospheric Flight Mechanics Conference, Arnold Engineering and Development Center, May 1970.

Table 1. Correction of the Data in Reference 1

	۵I	ol	П	7	ыl	4	ស	91	7	∞l	σl	의
	O _E	0	.015	.030	.040	.050	.055	.057	.045	.028	.003	-,009
	ځ	0	001	002	004	004	001	0	+.004	600.	.018	.022
	s F	3,31	3,31	3,31	3,31	3,31	3,31	3,31	3,31	3.31	3,31	3,31
	≈ی	20	+.035	060	.150	.225	. 300	. 385	.485	.585	069*	.810
	ე ლ	+ 002	.010	.010	0	035	115	210	310	445	009*-	735
	ž	.7	+1.05	+.38	0	54	-1.34	-1.91	-2.24	-2.66	-3.04	-3.18
	ચ	12.3	12.6	12	11.6	11.1	10.3	6.7	9.4	8.9	8.6	8.4
_	sin e		.143	.117	.107	.0885	.057	.0534	.0245	.0135	.0370	.0423
	ω		8.2	6.7	6.2	5.1	3,3	3,1	1.4	ထ	2.1	2.4
	•		.14	.23	.32	.35	.28	.316	.17	.11	.33	. 42
	Solving	Solving equation (4)	(4) for	N n nd	3 S00							
	$\zeta_{ m N}$ sin $arepsilon$		• 005	.011	.016	.020	.017	.0206	.012	.008	.025	.034
	$c_{\rm Y}$ - $c_{ m N}$ sin ϵ	sin e	900*-	013	020	024	018	0206	008	+.001	007	012

* ROTATION ARROWS ARE DIRECTIONS OF POSITIVE MOMENTS AND SPIN

Figure 1. The Geometry Involved in Measuring Magnus Forces

Figure 2. Side Force and Yawing Moment Coefficients Versus Angle of Attack for a 4° Fin Cant at Mach Number 0.90, Re = 1.5 x 10^6

Figure 3. The Couple Created by Normal Force Interaction

Figure 4. Figure 2 Corrected for Normal Force Interaction