CS 395 Homework 2

Colby Blair

Due February 1st, 2012

Grade: _____

PROBLEMS

1.

Figures 1 and 3 illustrate the operation of the merge sort on an array A=[3,41,52,26,38,57,9,49]:

Figure 1: Merge sort mapping down each element group

Figure 2: Merge sort reducing up each element group

```
//merge without sentinels
merge(A, p, q, r):
         n1 = q - p + 1
         n2 = r - q
         //create arrays L and R
         L = \begin{bmatrix} 1 & \dots & n1 + 1 \end{bmatrix}
         R = \begin{bmatrix} 1 & \dots & n2 + 1 \end{bmatrix}
         for \ i = 1 \ to \ n1
                  L[i] = A[p + i - 1]
         for j = 1 to n2
                  R[j] = A[q + j]
         i = 1
         j = 1
         for k in p to r
                   //if R is empty, copy the rest of L and break
                   if j = length(R)
                            for i2 in i to length(L)
                                     A[k] = L[i2]
                                      i2 = i2 + 1
                                      k = k + 1
                            return A
                   //if L is empty, copy the rest of R and break
                   if i = length(L)
                             for j2 in j to length (L)
                                     A[k] = L[j2]
                                      j2 = j2 + 1
                                     k = k + 1
                            return A
                   if L[i] \leftarrow R[j]
                            A[k] = L[i]
                            i = i + 1
                   else
                            A[k] = R[j]
                            j = j + 1
         return A
```

Figure 3: Merge without sentinels

For an array of size n, there are nlg(n) levels (or recursions) in the evaluation tree, where $lg(n) = log_2(n)$. We will show this with the following.

Assume $n = 2^i$, with i levels having 2^i leaves. By the induction assumption, it has $2^i lg(2^i)$ levels. Notice that $2^i lg(2^i) = i2^i$, since n has to be a power of 2. $(2^i)(2^{i+1}) = nlg(n)$ with $n = 2^{i+1}$. Thus, the induction step holds, demonstrating Proof by Induction.

4

The pseudocode for recursive insertion sort is as follows:

		$^{\mathrm{C}}$	${f T}$
	insertion_sort (A)		
1	if len(A) == 1	C1	n
2	return A	C2	1
3	j = length(A)	C3	n
4	key = A[j]	C4	n
5	$A2 = A[0 \dots j - 1]$	C5	n
6	$A2 = insertion_sort(A2)$	C6	n
7	i = length(A2)	C7	n
8	while $i \ge 0$ and $A2[i] > key$:	C8	n * t1(i)
9	i = i - 1	C9	(n * t1(i)) - 1
10	A[i + 1] = key	C10	n
11	return A2	C11	n

Figure 4: Recursive insertion sort

To find total run time T(n) (Θ), we total the line costs (C) and how many times they are ran (T). In the worse case, the array A is in reverse order, so t1(i) =, all the lengths of the subarrays being considered:

$$t1(i) = \sum_{j=1}^{i} i$$

$$= \sum_{j=1}^{n} n$$
(1)
(2)

This leads to the equation:

$$T(n) = nC_1 + C_2 + nC_3 + nC_4 + nC_5 + nC_6 + nC_7 + n(\sum_{j=1}^{i} i)C_8 + n((\sum_{j=1}^{i} i) - 1)C_9 + nC_{10} + nC_{11} + nC_{11} + nC_{12} + nC_{13} + nC_{14} + nC_{15} +$$

$$T(n) = (C_1 + C_3 + C_4 + C_5 + C_6 + C_7 + (\sum_{j=1}^{i} i)C_8 + ((\sum_{j=1}^{i} i) - 1)C_9 + C_{10} + C_{11})n + C_2$$

All the nC constants can be expressed as one constant, and we change C_2 to b:

$$T(n) = a((\sum_{j=1}^{i} i) + (\sum_{j=1}^{i} i) - 1)n + b$$

$$T(n) = 2a((\sum_{i=1}^{i} i) - 1)n + b$$

We can now trop the leading constants 2a, which leaves us with Θ (or T(n)) = $(((\sum_{j=1}^{n} n) - 1)n)$. Or simply = $\Theta(lg(n))$.

```
\mathbf{C}
                                                                                                                 \mathbf{T}
     binary_search(A, s)
                  \begin{array}{l} q \, = \, l\,e\,n\,g\,t\,h\,\left(A\right) \,\,/\,\,\,2 \\ w\,h\,i\,l\,e \,\, l\,e\,n\,g\,t\,h\,\left(A\right) \,\, > \,\,0 \end{array}
                                                                                      C1
2
                                                                                      C2
                                                                                                                 lg (n)
                                                                                      C3
                                                                                                                 lg (n) - 1
3
                                if\ A[\,q\,] == s
                                             return q
                                                                                      C4
                                i\,f\ A\,[\,q\,]\ >\ s
                                                                                      C5
                                                                                                                 5
                                             A = A[1 \dots q - 1]
6
                                                                                      C6
7
                                                                                      C7
                                else if A[q] < s
                                                                                                                 n = length(A)
8
                                                                                      C8
                                             A = A[q + 1 \dots n]
                                                                                      C9
```

Figure 5: Iterative binary search

Considering Figure 5, we can derive the equation for total run time: $T(n) = C_1 + lg(n)C_2 + C_3(lg(n) - 1) + C_4 + C_5 lg((n) - 1) + C_6 \frac{lg(n) - 1}{2} + C_7(lg(n) - 1) + C_8 \frac{lg(n) - 1}{2} + C_9 \frac{lg(n) - 1}{2}$ $T(n) = C_1 + C_4 + lg(n)C_2 + (2C_3(lg(n) - 1) + 2C_5(lg(n) - 1) + C_6(lg(n) - 1) + 2C_7(lg(n) - 1) + C_8(lg(n) - 1) + C_9(lg(n) - 1))$ $T(n) = C_1 + C_4 + lg(n)C_2 + (2C_3(lg(n) - 1) + 2C_5(lg(n) - 1) + C_6(lg(n) - 1) + 2C_7(lg(n) - 1) + C_8(lg(n) - 1) + C_9(lg(n) - 1))$ $T(n) = C_1 + C_4 + lg(n)C_2 + (lg(n) - 1)(2C_3 + 2C_5 + C_6 + 2C_7 + C_8 + C_9)$ T(n) = alg(n) + b(lg(n) - 1) + c

We can drop the leading constant, and ignore the rest of the terms, as lg(n) is dominate as n increases. Therefore, $\Theta(lg(n))$.