CSE301 – Computer Organization

Lecture 1 Notes

Architecture vs. Organization

Architecture

- The **conceptual (functional) design** of the computer system as seen by the programmer.
- Describes what the system does.
- Examples:
 - Instruction Set Architecture (ISA)
 - Data types
 - Registers
 - Addressing modes
 - o I/O mechanisms visible to software

Organization

- The **implementation details** of the architecture.
- Describes how the system is built internally.
- Examples:
 - o Datapath, control signals
 - Memory hierarchy
 - o Pipelining
 - Physical arrangement of components

Critical Thinking ?

- When we say single-cycle or multi-cycle, is that an architecture or an organization?
- Is MIPS considered an architecture or an organization?

Structure vs. Function

Structure

• How the components are related to each other.

Function

- The operation of individual components.
- Four core functions of any computer:
 - 1. Data Processing
 - 2. Data Storage
 - 3. Data Movement
 - 4. Control

Computer Evolution and Performance

Parameters affecting performance:

- 1. System clock speed (f)
- 2. Instruction count (I_c)
- 3. Cycles per instruction (CPI)

Since CPI varies across instructions, we use the average CPI:

$$CPl_{avg} = \frac{\sum CPl_{\chi} \cdot I_{\chi}}{I_{c}}$$

Performance Metrics

1. Instructions per second (IPS, Ri)

$$T_i = \frac{\text{CPI}}{f}, R_i = \frac{1}{T_i} \text{instructions/sec}$$

2. Million instructions per second (MIPS, (R_m))

$$R_m = \frac{R_i}{10^6}$$

3. Programs per second (PPS, Rp)

$$T_p = T_i \cdot I_C, R_p = \frac{1}{T_p}$$

These performance metrics are valid for analyzing a single system.

They cannot be directly used to compare **different systems** because of differences in manufacturers, architectures, and instruction sets.

To compare across systems, we use benchmark programs.

Benchmark Programs

- Written in high-level language.
- Designed in different styles and widely distributed.
- Used to compare machines with a common workload.

Definitions:

- T_{ref} = runtime on the **reference machine**
- T_{Sut} = runtime on the **system under test**

Relative speed:

$$r_{\chi} = \frac{T_{\text{ref}}}{T_{\text{sut}}}$$

Geometric mean speed:

$$r_g = \left(\prod_{i}^{n} r_{\chi,i}\right)^{\frac{1}{n}}$$

🚺 Info:

The larger the $r_{m{g}}$, the faster the **system under test** compared to the reference machine.

Amdahl's Law

If a program takes time (T) on a single processor and only a fraction (f) can be executed in parallel on (N) processors:

SpeedUp =
$$\frac{1}{(1-f) + \frac{f}{M}}$$

Maximum speedup (as $N \rightarrow \infty$):

SpeedUp_{max} =
$$\frac{1}{1-f}$$