

Density based spatial clustering of applications with noise

(Agrupamiento espacial de aplicaciones con ruido basado en densidad)

- No necesita la definición de cantidad de clusters.
- Se adapta mejor a formas no convexas.
- Identifica outliers.
- Reconoce regiones densas (con muchos datos) y las distingue de las poco densas.
- Se adecúa muy bien al agrupamiento intuitivo humano.

Algoritmo

- **Epsilon**: distancia para considerar dos datos vecinos.
- Min_samples: mínima cantidad de datos necesarios para considerarse un core sample.

Algoritmo

- Comienza con un dato aleatorio y analiza los vecinos que haya con un radio eps.
- Si num_vecinos ≥ min_samples entonces el dato es considerado un core sample. Si no existe el cluster, se crea.

¡Cuidado!

Al medir distancia, es susceptible a la escala de las variables!

Algoritmo

 Continúa con un vecino del cluster generado, aplicando el mismo procedimiento.

Algoritmo

 Si un vecino de un core sample no tiene suficientes vecinos para ser otro core sample del cluster, entonces es considerado un border point.

Algoritmo

- Continúa con el resto de vecinos hasta que se terminan.
- Luego, comienza con un nuevo punto aleatorio y realiza el mismo procedimiento.

Algoritmo

 Si algún dato no tiene el mínimo de vecinos dentro del radio eps y no es vecino de ningún core sample entonces es considerado ruido (outlier).

Algoritmo

 Al finalizar, el algoritmo detecta una cierta cantidad de clusters con sus puntos núcleo y puntos bordes y datos outliers que no pertenecen a ningún cluster.

DBSCAN - ejemplos

Visualización:

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

DBSCAN en sklearn

```
from sklearn.cluster import DBSCAN
db = DBSCAN(eps= 0.5, min_samples=5).fit(data)
labels = db.labels
noise maks= labels==-1
X noise= data[noise maks]
core samples mask = np.zeros like(db.labels , dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
X_coresamples= data[~noise_maks & core_samples_mask]
```

Parámetros por defecto

Etiquetas de cada cluster. Sklearn pone -1 para datos con ruido

Filtramos los datos detectados como outliers.

Filtramos los datos detectados como *core* samples.

DBSCAN – hiper-parámetros

DBSCAN - desventajas

Desventajas:

- Configurar eps y minsamples no es sencillo. Generalmente requiere experticia del dominio.
- No se adapta bien a clusters de densidad variable, ya que todos los clusters comparten los hiperparámetros eps y minsamples. HDBSCAN soluciona parcialmente estos problemas.
- Es muy sensible a los hiperparámetros. Pequeños cambios generan cambios drásticos.
- No es muy bueno con datos de alta dimensionalidad.
- La interpretación del índice Silhouette no resulta del todo adecuado, ya que presupone clusters gaussianos.

Diferentes técnicas de agrupamiento

