3OURNS®

- 80 W at 25°C Case Temperature
- 7 A Continuous Collector Current
- 10 A Peak Collector Current
- Maximum $V_{CE(sat)}$ of 2 V at $I_C = 5$ A
- I_{CEX(sus)} 7 A at rated V_{(BR)CEO}

TO-220 PACKAGE

Pin 2 is in electrical contact with the mounting base.

MDTRACA

This series is obsolete and not recommended for new designs.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIP150		300	
Collector-base voltage (I _E = 0)	TIP151	V _{CBO}	350	V
	TIP152		400	
	TIP150		300	
Collector-emitter voltage (I _B = 0)	TIP151	V _{CEO}	350	V
	TIP152		400	
Emitter-base voltage		V _{EBO}	8	V
Continuous collector current		I _C	7	Α
Peak collector current (see Note 1)		I _{CM}	10	Α
Continuous base current	I _B	1.5	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P_{tot}	80	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W
Operating junction temperature range			-65 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	260	°C	

- NOTES: 1. This value applies for t_p ≤ 5 ms, duty cycle ≤ 10%.
 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	NS .	MIN TYP		MAX	UNIT
V _{(BR)CBO}	Collector-base breakdown voltage	I _C = 1 mA	I _E = 0	TIP150 TIP151 TIP152	300 350 400			V
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 10 mA (see Note 4)	I _B = 0	TIP150 TIP151 TIP152	300 350 400			V
I _{CEO}	Collector-emitter cut-off current	V _{CE} = 300 V V _{CE} = 350 V V _{CE} = 400 V	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$	TIP150 TIP151 TIP152			250 250 250	μА
I _{CEX(sus)}	Collector-emitter sustaining current	V _{CLAMP} = V _{(BR)CEO}			7			Α
I _{EBO}	Emitter cut-off current	V _{EB} = 8 V	I _C = 0				15	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 5 V$ $V_{CE} = 5 V$ $V_{CE} = 5 V$	$I_{C} = 2.5 A$ $I_{C} = 5A$ $I_{C} = 7 A$	(see Notes 4 and 5)	150 50 15			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 10 \text{ mA}$ $I_B = 100 \text{ mA}$ $I_B = 250 \text{ mA}$	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 5 A$	(see Notes 4 and 5)			1.5 1.5 2	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B = 100 mA I _B = 250 mA	$I_C = 2 A$ $I_C = 5 A$	(see Notes 4 and 5)			2.2 2.3	٧
V _{EC}	Parallel diode forward voltage	I _E = 7 A	I _B = 0	(see Notes 4 and 5)			3.5	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 5 V	I _C = 0.5 A	f = 1 kHz	200			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 5 V	I _C = 0.5 A	f = 1 MHz	10			
C _{ob}	Output capacitance	V _{CB} = 10 V	$I_{E} = 0$	f = 1 MHz			100	pF

NOTES: 4. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W
C_{\thetaC}	Thermal capacitance of case		0.9		J/°C

inductive-load-switching characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{sv}	Voltage storage time	$\mathbf{V}(clomp) = \mathbf{V}(PP)CEO$				3.9		μs
t _{si}	Current storage time					4.7		μs
t _{rv}	Voltage transition time		$I_{B(on)} = 250 \text{ mA}$	$R_{BE} = 47 \Omega$		1.2		μs
t _{ti}	Current transition time					1.2		μs
t _{xo}	Cross-over time					2.0		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{5.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Functional Test Circuit

Figure 2. Functional Test Waveforms

Figure 3. Switching Test Circuit

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs

Figure 4.

COLLECTOR-EMITTER SATURATION VOLTAGE

Figure 5.

BASE-EMITTER SATURATION VOLTAGE

COLLECTOR CUT-OFF CURRENT

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

Figure 8.

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

Figure 9.

PRODUCT INFORMATION