Project Proposal

Credit One Banking Services

Understanding the Credit Limits and Lending of our Customers

Process

Created by Zumel and Mount

Step One - Define the Goal

One Project, Two Goals

1

Determine which potential customers are most likely to default

2

Determine how much credit balance to give customers

Step 2 – Collect and Manage Data

All data comes from Credit One's external SQL server

Data Summary

30201

customers

6 months

Billing and payment data

Age, Marital Status, Gender, Education Demographic Data

Limit Balance, Default

Target Variables

Management

The data warehouse is kept in secure servers on our team's private computers.

Data Issues

- There were a few rows whose values were what we wanted to name the columns, while the columns were merely X#. This was easily fixed.
- We assigned numbers to nonnumeric values for easier parsing

	Mydd	nknownColum	n	Х	1 X2	X3		X4	X5	X6	X7	X8	X 9	X10) X11
-	WyUi	iknowncolum	"	^	1 12	Λ3		Λ4	ΛO	Λ0	Α/	Λο	Λ3	All	, A11
0		I	D LI	IMIT_BA	L SEX	EDUCATION	MARRIA	GE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_	5 PAY_6
1			1	2000	0 female	university		1	24	2	2	-1	-1	-2	2 -2
2			2	12000	0 female	university		2	26	-1	2	0	0) () 2
3			3	9000	0 female	university		2	34	0	0	0	0	(0
4			4	5000	0 female	university		1	37	0	0	0	0	(0
_	ID	Limit_bal	Ge	nder	Educatio	n Marriage	e Age	Pa	iy_1	Pay_2	Pay_	3 Pay	_4 P	ay_5	Pay_6
1	1	20000		1		3 1	24		2	2	_	1	-1	-2	-2
2	2	120000		1		3 2	26		-1	2		0	0	0	2
3	3	90000		1		3 2	34		0	0	1	0	0	0	0
4	4	50000		1		3 1	37		0	0		0	0	0	0
5	5	50000		2		3 1	57		-1	0	-	1	0	0	0

Additional Useful Data

Credit Score

Income

Many credit card companies use credit score and income information to determine who to approve for credit cards and how high to set an individual's credit limit.

The available data is from customers who have used Credit One for at least 6 months. We will not have this data for new customers. If we want to use this model to evaluate new customers, then we will have to make a model without the payment or billing information.

Step Three – Evaluate and Critique the Model

Initial Observations

 The Limit Balance has a positive correlation with education, age, bill amount and pay amount, and a negative correlation with pay and default

Defaulting has a positive correlation with pay and a negative correlation with limit balance

Defaults by Percentage

More than 1 in 5 creditors defaulted on their cards within the last 6 months

Step Four – Present Results and Document

- The most important aspect of the model is how it will reduce Credit One's spending on loans that are likely to default.
- When presenting, we should emphasize the reduction of their losses and include any other findings that will help their business.
- Finally, we will need to document the model for the team that will be running and maintaining it.

Step Five – Deploy and Maintain the Model

- Going forward, we can use the algorithm to vet new prospective Credit One members and review current ones
- As new data is gathered, the model we create may prove to be inaccurate or need updating.

STEP 1

Define the Goal

- Misinterpreting the goal can lead to a model that is not useful.
- Communication with management and careful monitoring of the model can prevent this problem.

STEP 3

Evaluate and Critique the Model

- We may have to try many iterations of the model to get the most accurate result.
- Proper preparation and analysis before modeling can mitigate this

STEP 5

Deploy and Maintain the Model

- As new data emerges, the model may prove to be less accurate than originally thought.
- We may need to revisit this problem when new data arises

1

2

3

4

5

STEP 2

Collect and Manage Data

- Some of the data may not be useful for new customers.
- There may be additional data that is helpful.
- If we cannot get more data, then we will have to make the most of the data we have.

STEP 4

Present Results and Document

- We may not be able to create an accurate model with the data
- While we may not always be able to accurately predict the target value, there may still be some useful information in the data.

Noting potential pitfalls that may occur along the way