Rozwiązanie problemu przypisania pokojów – dokumentacja projektu wykonywanego w ramach zajęć: Systemy równoległe i rozproszone

Gabriela Leśniak Mateusz Górczany

Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie 9 maja 2022

1. Cel programu i wykorzystane technologie

Celem programu było rozwiązanie problemu przypisania pokojów - mając N osób, chcemy przypisać je do N/2 pokojów, tak aby zminimalizować konflikty interpersonalne. Zakładamy, że każda osoba wypełniła ankietę, na podstawie których powstała tablica "nielubienia" - innymi słowy każda wartość na pozycji (i,j) tablicy wskazuje stopień w jakim osoby i oraz j będą się nie lubić. Problem ten rozwiązano przy pomocy techniki symulowanego wyżarzania.

Do wykonania zadania wykorzystano bibliotekę XcalableMP, która umożliwia zrównoleglenie wykonywanego programu.

2. Wykonanie programu

Program do skonstruowania macierzy "nielubienia" używa generatora liczb losowych. Macierz ta konstruowana jest w procesie 0 przy użyciu dyrektywy #pragma xmp task on p[0] i przy użyciu dyrektywy #pragma xmp bcast (d) udostępniana pozostałym procesom, tak że każdy proces rozwiązuje problem dla tej samej macierzy. Symulowane wyżarzanie nie gwarantuje otrzymania optymalnego rozwiązania i ten sam algorytm używający różnych strumieni liczb losowych może zbiec do różnych rozwiązań. Z tego powodu każdy proces używa innego ziarna do wyliczenia rozwiązania. Kiedy wszystkie procesy zakończą wykonywanie algorytmu, wybierane jest najlepsze rozwiązanie - takie w którym suma nielubienia jest najmniejsza - zastosowano do tego dyrektywę

#pragma xmp reduction(min:solution).

3. Obsługa programu

Projekt został przygotowany do uruchamiania w środowisku pracowni sali 206 budynku D-10 AGH. Do łatwej obsługi programu stworzony został plik Makefile,

którego wszystkie funkcjonalności można sprawdzić używając komendy **make info**. W pliku zdefiniowano następujące cele:

- all kompilacja pliku rooms.c
- nodes sprawdzenie dostępności stacji roboczych i przekierowanie ich do pliku nodes
- run uruchomienie programu dostępne są kolejne argumenty:
 - nodes_number (wartość domyślna: 2, wartość minimalna: 2) liczba wątków, na których ma być uruchomiony program
 - nodes (domyślna wartość: nodes) nazwa pliku z listą stacji roboczych; plik można stworzyć przy pomocy komendy make nodes
 - dislike_array plik z macierzą nielubienia w postaci floatów rozdzielonych spacjami - w przypadku nieprzekazania pliku, program sam wygeneruje losową macierz
 - assignment_array plik z początkową tablicą przydziału do pokojów, w postaci floatów rozdzielonych spacjami - indeks to osoba, a wartość to numer pokoju - w przypadku nieprzekazania pliku, program użyje innej początkowej wartości
- clean usunięcie pliku rooms powstałego w wyniku kompilacji

Przykładowe użycie make run:

make run nodes_number=9 dislike_array=d_example.dat assignment_array=a_example.dat

4. Działanie programu

Po uruchomieniu programu wyświetlą sie

- parametry, dla których uruchomiony został program
- w którym procesie znaleziono najlepsze rozwiązanie
- ścieżkę do pliku z zapisanym rozwiązaniem
- suma nielubienia
- rozwiązanie tablica z przydzielonymi numerami pokojów
- suma nielubienia.

Wynik działania programu oraz plik z zapisanym rozwiązaniem znajdują się poniżej.

```
Sporczany@stud206-03:~/Documents/mgr/SRiR/Projekt2/simulated-annealing_parallel/xmp$ make run nodes_number=8 dislike_array=d_example.dat assignment_array=a_example.dat source /opt/nfs/config/source_omni134_xmp.sh && mpiexec -f nodes -n 8 ./rooms.o d_example.dat a_example.dat | egrep -v '(context|handle)'
room assignment array:
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
calculating best room division...
best solution found for process:7
saving results to file: ./solutions/best_solution_from_node_7.log
least dislike : 4.00
9 1 4 6 7 9 1 2 5 7 4 2 0 3 8 0 8 5 3 6
```

best found division for process: 6

least dislike : 12.00

dislike array:

5 7 1 4 3 9 2 4 7 2 0 8 9 5 3 8 0 6 6 1