LCA CODE MANUAL

- Camille Colle -

Contents

1	Code tipz	2			
2	Definitions 2.1 Rewriting Maartens summations, the simple way	4			
3	Momentum distributions 3.1 Second quantization	4			
4	Nucleus 4.1 shell.h 4.2 nucleus.h				
5	Pair coupling 5.1 pair.h 5.2 newcoef.h 5.3 paircoef.h	8			
6	Normalisation				
7	Matrix Elements				
8	8.1 norm_ob : public operator_virtual_ob	11 12 13 13			
9	One body operators acting on coupled states	15			
10	10.1 C.M. momentum integral	16 28 30 31			
11	V I	32			
12	Fourier transform of HO wave functions	33			
13	13.1 one-body momentum distributions	3 5 35 36			

Figure 1: The harmonic-oscillator parameter ν in function of the mass number A.

1 Code tipz

Maartens code contains a lot of "prints" so your the output of the test program may be difficult to isolate. A possible solution is to use a makeshift filter in the following way. Tag your prints with a marker, for example std::cout << "[mymarker] ... " << std::endl;. When you run your program, you can use something like ./myprogram | tee fulloutput.log | grep "^[mymarker]". The file fulloutput.log will contain the full output.

2 Definitions

A short (probably incomplete) overview of the quantities used in this manual, $\psi_{nlm_l}(\vec{r})$ are the \vec{r} -space solutions of the harmonic oscillator with parameter $\nu = m_N \omega/\hbar$,

$$\psi_{nlm_l}(\vec{r}) = R_{nl}(r)Y_{lm}(\Omega_r), \qquad (1)$$

$$R_{nl}(r) = \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})}\nu^{l+\frac{3}{2}}\right]^{\frac{1}{2}}r^{l}e^{-\frac{\nu r^{2}}{2}}L_{n}^{l+\frac{1}{2}}(\nu r^{2}).$$
 (2)

 m_N is the average nucleon mass, 938.5 MeV (this appears to be 938.0 in the code). $\hbar\omega$ is parameterized as,

$$\hbar\omega = 45A^{-\frac{1}{3}} - 25A^{-\frac{2}{3}} [\text{MeV}].$$
 (3)

 ν in function of the mass number A is displayed in figure 1. It is well known that the solutions $\phi_{nlm_l}(\vec{p})$ in \vec{p} -space are of the exact same form, where compared to the \vec{r} -space solution \vec{r} is replaced by \vec{p} and ν by $\nu' = 1/\nu$. However, when taking the explicit Fourier transformation, some

(non-neglectable) phase factors appear (see Sec. 12),

$$\phi_{nlm_l}(\vec{p}) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int d^3 \vec{r} e^{-i\vec{p}\cdot\vec{r}} \psi_{nlm_l}(\vec{r})$$
(4)

$$= i^{-l} (-1)^n \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})} \nu'^{l+\frac{3}{2}} \right]^{\frac{1}{2}} p^l e^{-\frac{\nu'p^2}{2}} L_n^{l+\frac{1}{2}} (\nu'p^2) Y_{lm}(\Omega_p)$$
 (5)

$$=i^{-l}(-1)^n\Pi_{nl}(p)Y_{lm}(\Omega_p), \qquad (6)$$

$$\Pi_{nl}(p) = \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})}\nu'^{l+\frac{3}{2}}\right]^{\frac{1}{2}}p^{l}e^{-\frac{\nu'p^{2}}{2}}L_{n}^{l+\frac{1}{2}}(\nu'p^{2})$$

$$\tag{7}$$

Here, the Laguerre polynomials are often expanded as follows,

$$L_n^{l+\frac{1}{2}}(x) = \sum_{i=0}^n a_{nl,i} x^i,$$

$$a_{nl,i} = (-1)^i \frac{\Gamma(n+l+3/2)}{\Gamma(i+l+3/2)(n-i)!i!}$$
(8)

In the LCA a one-body operator $\widehat{\Omega}^{[1]} = \sum_{i=1}^{A} \widehat{\Omega}_{i}$ becomes,

$$\widehat{\Omega}^{[1],LCA} = \widehat{\Omega}^{[1]} + \sum_{i,j\neq i}^{A} \left(\hat{l}_{ij}^{\dagger} \widehat{\Omega}_{i} + \widehat{\Omega}_{i} \hat{l}_{ij} + \hat{l}_{ij}^{\dagger} \widehat{\Omega}_{i} \hat{l}_{ij} \right). \tag{9}$$

In similar vein, the LCA transforms a two-body operator $\widehat{\Omega}^{[2]} = \sum_{i < j} \widehat{\Omega}_{ij}$ to

$$\widehat{\Omega}^{[2],LCA} = \widehat{\Omega}^{[2]} + \sum_{m < n}^{A} \sum_{i < j}^{A} \left(\hat{l}_{mn}^{\dagger} \widehat{\Omega}_{ij} + \widehat{\Omega}_{ij} \hat{l}_{mn} + \hat{l}_{mn}^{\dagger} \widehat{\Omega}_{ij} \hat{l}_{mn} \right)$$

$$\times \left[(\delta_{mi} + \delta_{ni} + \delta_{mj} + \delta_{nj}) (1 - \delta_{mi} \delta_{nj}) (1 - \delta_{mj} \delta_{ni}) + \delta_{mi} \delta_{nj} + \delta_{mj} \delta_{ni} \right]$$

$$= \widehat{\Omega}^{[2]} + \sum_{i < j}^{A} \left[\hat{l}_{ij}^{\dagger} \widehat{\Omega}_{ij} + \widehat{\Omega}_{ij} \hat{l}_{ij} + \hat{l}_{ij}^{\dagger} \widehat{\Omega}_{ij} \hat{l}_{ij} \right]$$

$$+ \sum_{n \notin \{i,j\}}^{A} (\hat{l}_{in}^{\dagger} + \hat{l}_{jn}^{\dagger}) \widehat{\Omega}_{ij} + \widehat{\Omega}_{ij} (\hat{l}_{in} + \hat{l}_{jn}) + \hat{l}_{in}^{\dagger} \widehat{\Omega}_{ij} \hat{l}_{in} + \hat{l}_{jn}^{\dagger} \widehat{\Omega}_{ij} \hat{l}_{jn} \right].$$
 (10)

To preserve normalization the normalisation denominator $\mathcal{N} = \langle \Phi | \widehat{\mathcal{G}}^{\dagger} \mathcal{G} | \Phi \rangle$, should be expanded to the same order in \hat{l} as the numerator. The normalisation factor \mathcal{N} can be calculated by replacing $\widehat{\Omega}_i$ with $\frac{1}{A}$ in Eq. (9) or $\widehat{\Omega}_{ij}$ with $\frac{2}{A(A-1)}$ in Eq. (10),

$$\mathcal{N}^{[1]} = 1 + \frac{2}{A} \sum_{i < j}^{A} \langle \alpha_i \alpha_j | \hat{l}_{ij}^{\dagger} + \hat{l}_{ij} + \hat{l}_{ij}^{\dagger} \hat{l}_{ij} | \alpha_i \alpha_j \rangle , \qquad (11)$$

$$\mathcal{N}^{[2]} = 1 + \frac{2(2A - 3)}{A(A - 1)} \sum_{i < j}^{A} \langle \alpha_i \alpha_j | \hat{l}_{ij}^{\dagger} + \hat{l}_{ij} + \hat{l}_{ij}^{\dagger} \hat{l}_{ij} | \alpha_i \alpha_j \rangle . \tag{12}$$

2.1 Rewriting Maartens summations, the simple way

The LCA summations derived in the previous section are at first glance not the same as found in Sec. 2.2 of [1]. Here it is shown that these are equivalent. In particular the equivalence of the

Eqs. found in Camille's PHD thesis and (2.43),(2.45) of [1] is derived here. The derivation for the other summations is analogous. Starting from Eq. (2.43) of [1] with $\widehat{\Omega}_{ij} = \widehat{\Omega}_{ji}$ and $\widehat{l}_{ij} = \widehat{l}_{ji}$,

$$\widehat{\Omega}^{[2],l} = \sum_{i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ij} + \sum_{i < j < k}^{A} \left(\widehat{\Omega}_{ij} \hat{l}_{ik} + \widehat{\Omega}_{ij} \hat{l}_{jk} + \widehat{\Omega}_{ik} \hat{l}_{ij} + \widehat{\Omega}_{ik} \hat{l}_{jk} + \widehat{\Omega}_{jk} \hat{l}_{ij} + \widehat{\Omega}_{jk} \hat{l}_{ik} \right). \tag{13}$$

It is useful to note that there are $\frac{A(A-1)}{2} + A(A-1)(A-2) = A(A-1)(A-\frac{3}{2}) = A^3 - A^2 - 3\frac{A(A-1)}{2}$ individual terms in this summation. The sum indices i, j, k are reshuffled in such a way that each term contains $\widehat{\Omega}_{ij}$,

$$\widehat{\Omega}^{[2],1} = \sum_{i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ij} + \sum_{i < j < k}^{A} \widehat{\Omega}_{ij} \hat{l}_{jk} + \sum_{i < k < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ik} + \sum_{i < k < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ik} + \sum_{k < i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ik} + \sum_{k < i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{jk} + \sum_{k < i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ij} + \left(\sum_{i < j < k}^{A} + \sum_{i < k < j}^{A} + \sum_{k < i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{ik} + \left(\sum_{i < j < k}^{A} + \sum_{k < i < j}^{A} + \sum_{k < i < j}^{A} \widehat{\Omega}_{ij} \hat{l}_{jk}\right) = \sum_{i < j}^{A} \widehat{\Omega}_{ij} \left(\hat{l}_{ij} + \sum_{k \notin \{i,j\}}^{A} \left[\hat{l}_{ik} + \hat{l}_{jk}\right]\right). \quad (14)$$

It is easy to see that there are $\frac{A(A-1)}{2}(1+2(A-2)) = \frac{A(A-1)}{2} + A(A-1)(A-2)$ distinct terms, exactly the same as the original expression of Eq. (13). Eq. (14) appears in Eq. (10). The equivalence of the remaining contributions to Eq. (10) are derived in a completely similar fashion.

Remark, can be removed. As there are an equal number of distinct terms in the two equivalent summations: Eq. (14) and Eq. (13), I see no reason to use the arguably more obfuscated summation of Eq. (13).

At the cost of some readability Eq. (14) can be formulated shorter,

$$\widehat{\Omega}^{[2],l} = \sum_{i < j}^{A} \widehat{\Omega}_{ij} \left(\hat{l}_{ij} + \sum_{k \notin \{i,j\}}^{A} \left[\hat{l}_{ik} + \hat{l}_{jk} \right] \right) = \frac{1}{2} \sum_{i \neq j}^{A} \widehat{\Omega}_{ij} \left(\hat{l}_{ij} + \sum_{k \notin \{i,j\}} \left[\hat{l}_{ik} + \hat{l}_{jk} \right] \right)$$

$$= \sum_{i \neq j}^{A} \widehat{\Omega}_{ij} \left(\frac{\hat{l}_{ij}}{2} + \sum_{k \notin \{i,j\}}^{A} \hat{l}_{jk} \right) = \sum_{i \neq j}^{A} \widehat{\Omega}_{ij} \sum_{k \neq j}^{A} \hat{l}_{jk} (1 - \frac{\delta_{ik}}{2}). \tag{15}$$

The last step introduced double counting of some terms, corrected by the factor $(1 - \frac{\delta_{ik}}{2})$. Eq. (15) has a total of $A(A-1)^2$ terms, an overhead $\frac{A(A-1)}{2}$ compared to Eq. (14). The relative increase is $\frac{A(A-1)^2}{A(A-1)(A-\frac{3}{2})} = 1 + \frac{1}{2A-3}$, about 1.048 for A = 12 and 1.003 for A = 208.

3 Momentum distributions

3.1 Second quantization

This section will be somewhat over-elaborated. But it can serve as a recapitulation of second quantization.

The one body momentum distribution operator is defined as,

$$\hat{n}(p) = \frac{1}{(2\pi)^3} \int d^2 \Omega_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$
(16)

Figure 2: The diagrammatic representation of the LCA expansion of a one-body operator (Eq. (9)). Below each diagram is their corresponding expression. The black dot represents the particle "i" on which the operator $\widehat{\Omega}_i$ is acting on. The dashed lines are the correlation operator \widehat{l}_{ij} acting the particle pair "ij". In the LCA, two dashed lines (correlation operators) are required to connect the same pair. Disconnected diagrams are not considered in the LCA.

$$\widehat{\Omega}^{[2]} + \sum_{i < j}^{A} \left[\begin{array}{ccc} \widehat{l}_{ij}^{\dagger} \widehat{\Omega}_{ij} & & + & \widehat{l}_{ij}^{\dagger} \widehat{\Omega}_{ij} \widehat{l}_{ij} & + \sum_{n \notin \{i,j\}}^{A} \widehat{\Omega}_{ij} (\widehat{l}_{in} + \widehat{l}_{jn}^{\dagger}) \widehat{\Omega}_{ij} & + & \widehat{l}_{in}^{\dagger} \widehat{\Omega}_{ij} \widehat{l}_{in} \\ \widehat{\Omega}_{ij} \widehat{l}_{ij} & & + & \widehat{l}_{ij}^{\dagger} \widehat{\Omega}_{ij} \widehat{l}_{ij} & + \sum_{n \notin \{i,j\}}^{A} \widehat{\Omega}_{ij} (\widehat{l}_{in} + \widehat{l}_{jn}) & + & \widehat{l}_{jn}^{\dagger} \widehat{\Omega}_{ij} \widehat{l}_{jn} \end{array} \right]$$
 disconnected

Figure 3: The diagrammatic representation of the LCA expansion of a two-body operator (Eq. (9)). Below each diagram is their corresponding expression. The black dots represent the particle pair "ij" on which the operator $\hat{\Omega}_{ij}$ is acting on. The dashed lines are the correlation operator \hat{l}_{in} acting the particle pair "in". In the LCA, two dashed lines (correlation operators) are required to connect the same pair. Disconnected diagram are not considered in the LCA.

It's action on a multi particle ground state $|\Phi\rangle$,

$$\langle \Phi | \hat{n}(p) | \Phi \rangle = \frac{1}{(2\pi)^3} \int d^2 \Omega_{\mathbf{p}} \langle \Phi | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle \tag{17}$$

The creation and annihilation operators $a_{\mathbf{p}}^{\dagger}, a_{\mathbf{p}}$ have only meaning working on particles with definite momentum or the vacuum state $|0\rangle$.

$$\langle \Phi | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle = \int d^{3} \mathbf{p}_{1} \dots d^{3} \mathbf{p}_{A} \langle \Phi | \mathbf{p}_{1} \mathbf{p}_{2} \dots \mathbf{p}_{A} \rangle \langle \mathbf{p}_{1} \mathbf{p}_{2} \dots \mathbf{p}_{A} | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle$$
(18)

$$= \int d^{3}\mathbf{p}_{1} \dots d^{3}\mathbf{p}_{A} \langle \Phi | \mathbf{p}_{1}\mathbf{p}_{2} \dots \mathbf{p}_{A} \rangle \langle 0 | a_{\mathbf{p}_{1}}a_{\mathbf{p}_{2}} \dots a_{\mathbf{p}_{A}}a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}} | \Phi \rangle$$
(19)

Using the anticommutation relation $\{a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}\} = \delta(\mathbf{p} - \mathbf{q})$, we get

$$\langle 0|a_{\mathbf{p}_{1}}a_{\mathbf{p}_{2}}\dots a_{\mathbf{p}_{A}}a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}}|\Phi\rangle = \langle 0|a_{\mathbf{p}_{1}}a_{\mathbf{p}_{2}}\dots\delta(\mathbf{p}-\mathbf{p}_{A})a_{\mathbf{p}}|\Phi\rangle - \langle 0|a_{\mathbf{p}_{1}}a_{\mathbf{p}_{2}}\dots a_{\mathbf{p}_{A-1}}a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}_{A}}a_{\mathbf{p}}|\Phi\rangle \quad (20)$$

$$= \delta(\mathbf{p}-\mathbf{p}_{A})\langle \mathbf{p}_{1}\mathbf{p}_{2}\dots\mathbf{p}|\Phi\rangle - \delta(\mathbf{p}-\mathbf{p}_{A-1})\langle 0|a_{\mathbf{p}_{1}}\dots a_{\mathbf{p}_{A-2}}a_{\mathbf{p}_{A}}a_{\mathbf{p}}|\Phi\rangle \quad (21)$$

$$+ \langle 0|a_{\mathbf{p}_{1}}\dots a_{\mathbf{p}_{A-2}}a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}_{A-1}}a_{\mathbf{p}_{A}}a_{\mathbf{p}}|\Phi\rangle \quad (22)$$

$$= \delta(\mathbf{p}-\mathbf{p}_{A})\langle \mathbf{p}_{1}\mathbf{p}_{2}\dots\mathbf{p}_{A}|\Phi\rangle + \delta(\mathbf{p}-\mathbf{p}_{A-1})\langle \mathbf{p}_{1}\dots\mathbf{p}_{A-2}\mathbf{p}_{A-1}\mathbf{p}_{A}|\Phi\rangle \quad (23)$$

$$+ \langle 0|a_{\mathbf{p}_{1}}\dots a_{\mathbf{p}_{A-2}}a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}_{A-1}}a_{\mathbf{p}_{A}}a_{\mathbf{p}}|\Phi\rangle \quad = \dots \quad (24)$$

$$= \sum_{i=1}^{A} \delta(\mathbf{p} - \mathbf{p}_i) \langle \mathbf{p}_1 \dots \mathbf{p}_A | \Phi \rangle + (-1)^A \underbrace{\langle 0 | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}_1} \dots a_{\mathbf{p}_A} a_{\mathbf{p}} | \Phi \rangle}_{=0}$$
(25)

Hence,

$$\langle \Phi | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle = \int d^{3} \mathbf{p}_{1} \dots d^{3} \mathbf{p}_{A} \langle \Phi | \mathbf{p}_{1} \mathbf{p}_{2} \dots \mathbf{p}_{A} \rangle \sum_{i=1}^{A} \delta(\mathbf{p} - \mathbf{p}_{i}) \langle \mathbf{p}_{1} \mathbf{p}_{2} \dots \mathbf{p}_{A} | \Phi \rangle$$
(26)

If $|\Phi\rangle$ is a slater determinant of orthonormal single particle wave functions $|\phi_{\alpha_i}\rangle$ we get,

$$\langle \Phi | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle = \sum_{i=1}^{A} |\langle \mathbf{p} | \phi_{\alpha_i} \rangle|^2 = \sum_{i=1}^{A} \phi_{\alpha_i}^{\dagger}(\mathbf{p}) \phi_{\alpha_i}(\mathbf{p})$$
 (27)

Note that we also could have derived this result by instead of inserting the unit $\prod_{i=1}^{A} d^{3}\mathbf{p}_{i} |\mathbf{p}_{i}\rangle \langle \mathbf{p}_{i}|$ we expand $|\Phi\rangle$ in terms of single particle creation operators,

$$a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} |\Phi\rangle = a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} |\alpha_{1} \alpha_{2} \dots \alpha_{A}\rangle = a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \dots a_{\alpha_{A}}^{\dagger} |0\rangle$$
 (28)

The commutation relations between $a_{\mathbf{p}}$ and a_{α_i} are easily derived by expanding a_{α_i} in momentum creation operators,

$$a_{\alpha_i}^{\dagger} = \int d^3 \mathbf{k} \phi_{\alpha_i}(\mathbf{k}) a_k^{\dagger} \tag{29}$$

$$\Rightarrow a_{\mathbf{p}} a_{\alpha_i}^{\dagger} = \int d^3 \mathbf{k} \phi_{\alpha_i}(\mathbf{k}) a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger} = \phi_{\alpha_i}(\mathbf{p}) - a_{\alpha_i}^{\dagger} a_{\mathbf{p}}$$
(30)

So,

$$a_{\mathbf{p}} |\Phi\rangle = a_{\mathbf{p}} a_{\alpha_1}^{\dagger} a_{\alpha_2}^{\dagger} \dots a_{\alpha_A}^{\dagger} |0\rangle = (\phi_{\alpha_1}(\mathbf{p}) - a_{\alpha_1}^{\dagger} a_{\mathbf{p}}) a_{\alpha_2}^{\dagger} \dots a_{\alpha_A}^{\dagger} |0\rangle$$
(31)

$$= \sum_{i=1}^{A} (-1)^{i-1} \phi_{\alpha_i}(\mathbf{p}) | \alpha_1 \dots \alpha_{i-1} \alpha_{i+1} \dots \alpha_A \rangle$$
(32)

The conjugate gives,

$$\langle \Phi | a_{\mathbf{p}}^{\dagger} = \sum_{j=1}^{A} (-1)^{j-1} \langle \alpha_1 \dots \alpha_{j-1} \alpha_{j+1} \dots \alpha_A | \phi_{\alpha_j}^{\dagger}(\mathbf{p})$$
(33)

Hence,

$$\langle \Phi | a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} | \Phi \rangle = \sum_{i,j=1}^{A} (-1)^{i+j} \phi_{\alpha_{j}}^{\dagger}(\mathbf{p}) \phi_{\alpha_{i}}(\mathbf{p}) \underbrace{\langle \alpha_{1} \dots \alpha_{j-1} \alpha_{j+1} \dots \alpha_{A} | \alpha_{1} \dots \alpha_{i-1} \alpha_{i+1} \dots \alpha_{A} \rangle}_{=\delta_{i,j}}$$
(34)

$$= \sum_{i} \phi_{\alpha_i}^{\dagger}(\mathbf{p}) \phi_{\alpha_i}(\mathbf{p}) \tag{35}$$

Which is exactly the same result as before.

So the one body momentum distribution is given by,

$$\langle \Phi | \hat{n}(p) | \Phi \rangle = \sum_{i=1}^{A} \frac{1}{(2\pi)^3} \int d^2 \Omega_{\mathbf{p}} \phi_{\alpha_i}^{\dagger}(\mathbf{p}) \phi_{\alpha_i}(\mathbf{p})$$
(36)

Note that this distribution is normed to the number of particles A. To get the momentum distribution normed to unity we have to divide by A,

$$\langle \Phi | \hat{n}(p) | \Phi \rangle = \frac{1}{A} \sum_{i=1}^{A} \frac{1}{(2\pi)^3} \int d^2 \Omega_{\mathbf{p}} \phi_{\alpha_i}^{\dagger}(\mathbf{p}) \phi_{\alpha_i}(\mathbf{p})$$
(37)

4 Nucleus

4.1 shell.h

This class contains the quantum number of a shell nlj. It has two (proton & neutron) static arrays containing all the shells.

```
shellsN = [ Shell(n1,11,j1), Shell(n2,12,j2), ... ] shellsP = [ Shell(n1,11,j1), Shell(n2,12,j2), ... ]
```

Once the pairs (Pair::Pair) are generated we can generate a

These two arrays are initialised and deleted by the static methods Shell::initialiseShells, Shell::deleteShells.

4.2 nucleus.h

First important method here is Nucleus::makePairs. Note that this relies on overloaded virtual functions to function. It iterates over the quantum numbers, $n_1l_1j_1m_{j_1}, n_2l_2j_2m_{j_2}$ and makes a pair for each of these combinations: Pair::Pair(mosh,n1,l1,j1,mj1,t1,n2,l2,j2,mj2,t2). mosh is the return value of RecMosh::createRecMosh(n1,l1,n2,l2,inputdir,outputdir), being a RecMosh object. The moshinsky brackets $\langle n_1l_1n_2l_2; \Lambda|nlNL; \Lambda\rangle$ can be accessed by calling RecMosh::getCoefficient(n,l,N,L,Lambda). Open shells are taken care of by calculating a open shell correction factor and applying it to the pair via Pair::setfnorm(factor).

5 Pair coupling

5.1 pair.h

This class represents the state

$$|\alpha_1, \alpha_2\rangle_{\text{nas}} , |\alpha\rangle \equiv |nljm_j t m_t\rangle$$
 (38)

The class calculates all the coefficients.

$$C_{\alpha_1\alpha_2}^A = \langle A \equiv \{ nlSjm_j, NLM_LTM_T \} | \alpha_1\alpha_2 \rangle_{\text{nas}}$$
(39)

The main method here is Pair::makecoeflist(). It loops over all possible values of $A \equiv \{S, T, n, l, N, M_L, j, m_j\}$. Where in the summation over $\{n, l, N, L\}$ the energy conservation $2n_1 + l_1 + 2n_2 + l_2 = 2n + l + 2N + L$ is taken into account to eliminate one of the summation loops, $L = 2n_1 + l_1 + 2n_2 + l_2 - 2n - l - 2N$. Note that M_T is also fixed by $M_T = m_{t_1} + m_{t_2}$ and no summation over this is performed, as we want to keep the contribution from different pairs separated. For each A a new object Newcoef is generated and stored in the member std::vector<NewCoef*> coeflist.

5.2 newcoef.h

This class takes the parameters $n_1l_1j_1m_{j_1}m_{t_1}n_2l_2j_2m_{j_2}m_{t_2}NLM_LnlSjm_jTM_T$, and calculates the coefficient given in Eq. (39). It takes also a pointer to a RecMosh object that holds the Moshinsky brackets. The class looks similar to the later Paircoef, but contrary to that one the Newcoef class still explicitly refers to the original uncoupled pair and has the coupling coefficient to it.

The only function in this class is to calculate $C^A_{\alpha_1\alpha_2}$ using the formula,

$$\sum_{JM_{J}} \sum_{\Lambda} \frac{1}{\sqrt{2}} [1 - (-1)^{l+S+T}] \langle t_{1} m_{t_{1}} t_{2} m_{t_{2}} | TM_{T} \rangle \langle j_{1} m_{j_{1}} j_{2} m_{j_{2}} | JM_{J} \rangle \langle j m_{j} LM_{L} | JM_{J} \rangle
\langle nlNL; \Lambda | n_{1} l_{1} n_{2} l_{2}; \Lambda \rangle_{\text{SMB}} \sqrt{2\Lambda + 1} \sqrt{2j + 1} \left\{ \begin{array}{cc} j & L & J \\ \Lambda & S & l \end{array} \right\}
\sqrt{2j_{1} + 1} \sqrt{2j_{2} + 1} \sqrt{2S + 1} \sqrt{2\Lambda + 1} \left\{ \begin{array}{cc} l_{1} & s_{1} & j_{1} \\ l_{2} & s_{2} & j_{2} \\ \Lambda & S & J \end{array} \right\}$$
(40)

It is easy to check that the result indeed depends on α_1, α_2, A . Note that it is always assumed that $s_i, t_i \equiv \frac{1}{2}$ as we are dealing with protons and neutrons. This class also defines a ''key'' to be able to index the coefficients, key = ''nlSjm_j.NLM_L.TM_T''.

5.3 paircoef.h

This is a very thin class designed to do some bookkeeping. As outlined in Maartens thesis pg 156, different $|\alpha_1\alpha_2\rangle$ combinations will sometimes map to the same "rcm" states $A = |nlSjm_jNLM_LTM_T\rangle$. In matrix element calculations,

$$\langle \alpha_1 \alpha_2 | \hat{\mathcal{O}} | \alpha_1 \alpha_2 \rangle = \sum_{AB} C_{\alpha_1 \alpha_2}^{A\dagger} C_{\alpha_1 \alpha_2}^B \langle A | \hat{\mathcal{O}} | B \rangle \tag{41}$$

We want to calculate matrix elements as $\langle A|\hat{\mathcal{O}}|B\rangle$ only once. $|\alpha_1\alpha_2\rangle$ that map to the same A,B states should lookup the earlier calculated values for $\langle A|\hat{\mathcal{O}}|B\rangle$. In general the matrix element $\langle A|\hat{\mathcal{O}}|B\rangle$ is not diagonal. A Paircoef object has all the quantum numbers in a rcm state A. In addition it holds a value and a map std::map<Paircoef*, double>. The map is used to link a rcm state $|A\rangle$ to all other rcm states $|B\rangle$ which yield a non zero contribution for $\langle A|\hat{\mathcal{O}}|B\rangle$. The value for the transformation coefficients $C^{A,\dagger}_{\alpha_1,\alpha_2}C^B_{\alpha_1,\alpha_2}$ is stored in the second field of the map (double). So that the the summation over B (Eq. 41) is replaced by,

$$\langle \alpha_1 \alpha_2 | \hat{\mathcal{O}} | \alpha_1 \alpha_2 \rangle = \sum_{A \text{ Paircoef(A).links}} \text{link.strength} \, \langle A | \hat{\mathcal{O}} | B \rangle \tag{42}$$

Contrary to the Newcoef class, paircoef does not have information on the original pair quantum numbers. It only stores the linkstrengths to other coupled states. This is all we need to compute matrix elemnts as shown in the last formula. Partially filled shells are taken into account in the link strengths of this class!

Note that the "linked" rcm states $|A\rangle, |B\rangle$ both stem from the expansion of the same single particle state $|\alpha_1\alpha_2\rangle$. This means that the linked rcm states will have certain properties. For example, the parity of $|\alpha_1\alpha_2\rangle$ is given by $(-1)^{l_1+l_2}$, the parity of a rcm state is $(-1)^{l+L}$, with l the relative angular momentum and L the c.m. angular momentum. Conservation of parity means that $(-1)^{l_1+l_2}=(-1)^{l_A+L_A}=(-1)^{l_B+L_B}$. For example, for operators that do not change the total spin S (this is the case for the operators considered here), we have $S_A=S_B$, it then follows that

- if $T_A = T_B$ then l_A and l_B have the same even-odd parity because of l + S + T = odd. From $l_A l_B$ is even it then follows that $L_A L_B$ is even, or L_A, L_B have the same even-odd parity.
- if $T_A \neq T_B$ then l_A and l_B have opposite even-odd parity. Resulting in the condition that L_A and L_B also must have different even-odd parity.

6 Normalisation

Since it sometimes is a bit of a headache keeping track of certain normalisations in various parts of the code. Here is a (partial, so far have checked one-body operators and the nucleus/pair related classes) overview:

- A Pair object has a fnorm attribute, this is if for a pair where at least one of the nucleons originates from a partially filled shell.
- The various Pair:getRelPair() functions are normalized to the above mentioned norm.
- In the Nucleus classes, the map with the coupled states and link strengths has the normalisations for partially filled shells taken into account in the value of the links. So if one computes matrix elements by iterating over Paircoefs, everything should be ok norm-wise.
- If one iterates over the pairs vector in a Nucleus object, partially filled shells are not automatically taken care of and one should weigh the sum with the fnorm attribute of each pair!
- The various Nucleus::getRellPair functions are normalized to the total number of pairs possible in that certain nucleus (A(A-1)/2) for Nucleusall, NZ for Nucleusapetc.). Normalisations of partially filled shells are accounted for by the calls to the Pair:getRelPair() functions.

7 Matrix Elements

First some theory on the matrix elements. In the calculation of the norm we only have the correlation operator \hat{i} between the bras and kets.

$$\langle \alpha \beta | \hat{\iota}(\vec{x}_1, \vec{x}_2) + \hat{\iota}^{\dagger}(\vec{x}_1, \vec{x}_2) + \hat{\iota}^{\dagger}(\vec{x}_1, \vec{x}_2) \hat{\iota}(\vec{x}_1, \vec{x}_2) | \alpha \beta \rangle \tag{43}$$

ĉ contains a central, tensor and spin-isospin part,

$$\hat{l}(\vec{x}_1, \vec{x}_2) = -f_c(r_{12}) + f_{t\tau}(r_{12})\hat{S}_{12}\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2 + f_{\sigma\tau}(r_{12})\hat{\vec{\sigma}}_1 \cdot \hat{\vec{\sigma}}_2\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2.$$

Transforming to the c.m. and relative coordinates a general matrix-element term can be written as,

$$\langle n(lS)jm_jNLM_LTM_T|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}f_q\hat{\mathcal{O}}^q|n'(l'S')j'm_j'N'L'M_L'T'M_T'\rangle$$

With $f_{p,q} \in \{1, f_c, f_{t\tau}, f_{\sigma\tau}\}$ and $\hat{\mathcal{O}}^{p,q}$ the corresponding operator $\in \{\mathbb{1}, \mathbb{1}, \hat{S}_{12}\hat{\tau}_1 \cdot \hat{\tau}_2, \hat{\sigma}_1 \cdot \hat{\sigma}_2\hat{\tau}_1 \cdot \hat{\tau}_2\}$. As no operators act on the c.m. part $|NLM_L\rangle$ here we have,

$$\delta_{NN'}\delta_{LL'}\delta_{M_LM'_L}\langle n(lS)jm_jTM_T|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}f_q\hat{\mathcal{O}}^q|n'(l'S')j'm'_jT'M'_T\rangle$$

Let us now take a look at the separate cases for $\delta_{NN'}\delta_{LL'}\delta_{M_LM'_L}\langle n(lS)jm_jTM_T|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}f_q\hat{\mathcal{O}}^q|n'(l'S')j'm'_jT'M'_T\rangle$,

•
$$\hat{\mathcal{O}}^p = \mathbb{1}, f_p = 1, \hat{\mathcal{O}}^q = \mathbb{1}, f_q = f_c(r_{12})$$

$$\begin{split} \delta_{NN'}\delta_{LL'}\delta_{M_LM'_L} \left\langle n(lS)jm_jTM_T|f_c(r_{12})|n'(l'S')j'm'_jT'M'_T \right\rangle \\ &= \delta_{NN'}\delta_{LL'}\delta_{M_LM'_t}\delta_{SS'}\delta_{jj'}\delta_{m_jm'_s}\delta_{TT'}\delta_{M_TM'_T}\delta_{ll'} \left\langle nl|f_c(r_{12})|n'l' \right\rangle \end{split}$$

$$\langle nl|f_c(r_{12})|n'l'\rangle = \int dr_{12} \, r_{12}^2 R_{nl}(r_{12}) f_c(r_{12}) R_{n'l'}(r_{12})$$

With
$$R_{nl}(r) = \left[\frac{2n!}{\Gamma(n+l+3/2)}\nu^{l+3/2}\right]^{\frac{1}{2}}r^le^{-\nu r^2/2}L_n^{l+1/2}(\nu r^2) = N_{nl}\nu^{\frac{l+3/2}{2}}r^le^{-\nu r^2/2}L_n^{l+1/2}(\nu r^2)$$
 and $\nu = M_N\omega/\hbar$.

$$\langle nl|f_c(r_{12})|n'l'\rangle = N_{nl}N_{n'l'}\nu^{\frac{l+l'+3}{2}} \int dr_{12} \, r_{12}^2 r_{12}^l e^{-\nu r_{12}^2/2} L_n^{l+1/2}(\nu r_{12}^2) f_c(r_{12}) r_{12}^{l'} e^{-\nu r_{12}^2/2} L_{n'}^{l'+1/2}(\nu r_{12}^2)$$

The correlation functions $f_p(r)$ are expanded as $\sum_{\lambda}^{\lambda_{\max}} b_{\lambda} r^{\lambda} e^{-br^2}$. In the current parameterization of the correlation functions it appears that $\lambda_{\max} = 10$ for the central correlation function and $\lambda_{\max} = 9$ for the tensor and spin-isospin correlation functions. Expanding the generalized laguerre polynomials as $L_n^l(r) = \sum_k a_{nl,k} r^k$ results in,

$$\langle nl|f_c(r_{12})|n'l'\rangle = N_{nl}N_{n'l'}\nu^{\frac{l+l'+3}{2}} \sum_{l:l'} a_{nl,k}a_{n'l',k'}b_{\lambda} \int dr_{12}r_{12}^{2+l+l'}e^{-\nu r_{12}^2} (\nu r_{12}^2)^k r_{12}^{\lambda}e^{-br_{12}^2} (\nu r_{12}^2)^{k'}$$

With the substitution $r = \sqrt{\nu} \, r_{12}$, $B = b/\nu$ (units are $[\nu] = \mathrm{m}^{-2}$, $[b] = \mathrm{m}^{-2}$, [r] = 1, [B] = 1) we get,

Maarten says $B=b/\sqrt{\nu}$ (D.19), I think this is incorrect (units do not match), Bx^2 of (D.19) is NOT dimensionless while it should be... (appears to be correct in the code however...)

$$\langle nl|f_{c}(r_{12})|n'l'\rangle = N_{nl}N_{n'l'}\nu^{\frac{l+l'+3}{2}} \sum_{kk'\lambda} a_{nl,k}a_{n'l',k'}b_{\lambda}\nu^{-\frac{3+l+l'+\lambda}{2}} \int dr \, r^{2+l+l'}e^{-r^{2}}r^{2k}r^{\lambda}e^{-Br^{2}}r^{2k'}$$

$$= N_{nl}N_{n'l'} \sum_{kk'\lambda} \nu^{-\frac{\lambda}{2}}a_{nl,k}a_{n'l',k'}b_{\lambda} \int dr \, r^{2+l+l'+\lambda+2k+2k'}e^{-(B+1)r^{2}}$$

$$= N_{nl}N_{n'l'} \sum_{kk'\lambda} \nu^{-\frac{\lambda}{2}}a_{nl,k}a_{n'l',k'}b_{\lambda} \frac{1}{2}\Gamma\left(\frac{K+1}{2}\right)(1+B)^{-\frac{K+1}{2}}$$

$$= \frac{N_{nl}N_{n'l'}}{2} \sum_{kk'\lambda} \nu^{-\frac{\lambda}{2}}a_{nl,k}a_{n'l',k'}b_{\lambda}\Gamma\left(\frac{K+1}{2}\right)(1+B)^{-\frac{K+1}{2}}$$

$$(44)$$

 $K=2+l+l'+\lambda+2k+2k'$. To recapitulate, $a_{nl,k}$ is the k'th expansion coefficient of the Laguerre polynomials. The sum over k (k') ranges from 0 to n (n'). b_{λ} is the λ 'th

expansion coefficient of the correlation function, runs from 0 to a finite value (10 or 11 for Maartens' fits). $\nu = M_N \omega / \hbar$ is the H.O.-potential parameter and is nucleus dependent.

 $N_{nl} = \left[\frac{2n!}{\Gamma(n+l+3/2)}\right]^{\frac{1}{2}} = \left[\frac{2\Gamma(n+1)}{\Gamma(n+l+3/2)}\right]^{\frac{1}{2}}$ are the normalisation factors of the orbital wave functions, these factors are nucleus independent (only n, l dependencies).

Orthonormality using this expansion (Eq. 44) can easily be checked, $\langle nl|1|n'l\rangle$ (l=l' because of the orthonormality of the spherical harmonics), if we set $b_{\lambda}=\delta_{\lambda,0}$, b=0.

$$\langle nl|1|n'l\rangle = \frac{N_{nl}N_{n'l}}{2} \sum_{kk'=0}^{nn'} a_{nl,k} a_{n'l,k'} \Gamma\left(\frac{3+2l+2k+2k'}{2}\right)$$
(45)

• $\hat{\mathcal{O}}^p = \mathbb{1}$, $f_p = f_c(r_{12})$, $\hat{\mathcal{O}}^q = \mathbb{1}$, $f_q = f_c(r_{12})$, the non trivial part of the matrix element now comes down to calculating,

$$\langle nl|f_{c}^{2}(r_{12})|n'l'\rangle = \int dr_{12} r_{12}^{2} R_{nl}(r_{12}) f_{c}^{2}(r_{12}) R_{n'l'}(r_{12})$$

$$= N_{nl} N_{n'l'} \nu^{\frac{l+l'+3}{2}} \sum_{kk'\lambda\lambda'} a_{nl,k} a_{n'l',k'} b_{\lambda} b_{\lambda'} \int dr_{12} r_{12}^{2+l+l'} e^{-\nu r_{12}^{2}} (\nu r_{12}^{2})^{k} r_{12}^{\lambda+\lambda'} e^{-2br_{12}^{2}} (\nu r_{12}^{2})^{k'}$$

$$= N_{nl} N_{n'l'} \nu^{\frac{l+l'+3}{2}} \sum_{kk'\lambda\lambda'} a_{nl,k} a_{n'l',k'} b_{\lambda} b_{\lambda'} \nu^{-\frac{3+l+l'+\lambda+\lambda'}{2}} \int dr \, r^{2+l+l'+2k+2k'+\lambda+\lambda'} e^{-(2B+1)r^{2}}$$

$$= \frac{N_{nl} N_{n'l'}}{2} \sum_{kk'\lambda\lambda'} \nu^{-\frac{\lambda+\lambda'}{2}} a_{nl,k} a_{n'l',k'} b_{\lambda} b_{\lambda'} \Gamma\left(\frac{K+1}{2}\right) (2B+1)^{-\frac{K+1}{2}}$$

With $K=2+l+l'+2k+2k'+\lambda+\lambda'$ and $B=b/\nu$

8 Matrix elements bis

Let us take a look at

$$\langle S | \hat{\vec{\sigma}}_1 \cdot \hat{\vec{\sigma}}_2 | S' \rangle = 2 \, \langle S | \hat{\vec{s}}_1 \cdot \hat{\vec{s}}_2 | S' \rangle = 4 \, \langle S | \hat{\vec{S}}^{\, 2} - \hat{\vec{s}}_1^{\, 2} - \hat{\vec{s}}_2^{\, 2} | S' \rangle = 2 (S(S+1) - \frac{3}{4} - \frac{3}{4}) \delta_{SS'} = \delta_{SS'}(2S(S+1) - 3) \delta_{SS'$$

As we have 2 spin 1/2 particles S can be either 0, 1 resulting in $\langle 1|\hat{\vec{\sigma}}_1\cdot\hat{\vec{\sigma}}_2|1\rangle=1,\ \langle 0|\hat{\vec{\sigma}}_1\cdot\hat{\vec{\sigma}}_2|0\rangle=-3.$

Note that in the Maartens code the expression is modified to 4S-3, which is equivalent for $S \in \{0,1\}$.

As this is independent of the spin projection M_S we have,

$$\langle SM_S|\hat{\vec{\sigma}}_1 \cdot \hat{\vec{\sigma}}_2|S'M_S'\rangle = \delta_{SS'}\delta_{M_SM_S'}(2S(S+1)-3)$$

Exactly the same derivation can be made for $\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2$ leading to the same result.

$$\langle TM_T | \hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2 | T'M_T' \rangle = \delta_{TT'} \delta_{M_T M_T'} (2T(T+1) - 3)$$

When selecting a a specific isospin projection $m_t = \pm 1/2$ (proton or neutron) of a nucleon this result changes however. The product $\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2$ written in the spherical basis becomes,

$$\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2 = \hat{\tau}_{1,0} \hat{\tau}_{2,0} - \hat{\tau}_{1,+} \hat{\tau}_{2,-} - \hat{\tau}_{1,-} \hat{\tau}_{2,+} = \hat{\tau}_{1,0} \hat{\tau}_{2,0} + \frac{\hat{\tau}_1^+ \hat{\tau}_2^-}{2} + \frac{\hat{\tau}_1^- \hat{\tau}_2^+}{2}$$

Where $\hat{\tau}^{\pm}$ are the raising/lowering operators. Transitioning to the operators $\hat{t} = \hat{\tau}/2$ (analogues to the spin case $\hat{S} = \hat{\sigma}/2$) with the properties,

$$\hat{t}_0 | t, m_t \rangle = m_t | t, m_t \rangle$$

$$\hat{t}^{\pm} | t, m_t \rangle = \sqrt{t(t+1) - m(m \pm 1)} | t, m_t \pm 1 \rangle.$$

we get

$$\hat{\vec{\tau}}_1 \cdot \hat{\vec{\tau}}_2 = 4\hat{t}_{1.0}\hat{t}_{2.0} + 2\hat{t}_1^+\hat{t}_2^- + 2\hat{t}_1^-\hat{t}_2^+$$

Defining the isospin-projection operator acting on particle "i" of the nucleon pair $\hat{\delta}_{m_t}^{[i]} = (1 + (2m_t)\hat{t}_{i,0})/2$ we get,

$$\hat{\delta}_{m_{t}}^{[1]} | 1, \pm 1 \rangle = \delta_{\pm 1, 2m_{t}} | 1, \pm 1 \rangle
\hat{\delta}_{m_{t}}^{[2]} | 1, \pm 1 \rangle = \delta_{\pm 1, 2m_{t}} | 1, \pm 1 \rangle
\hat{\delta}_{m_{t}}^{[2]} | 1, 0 \rangle = \frac{1}{\sqrt{2}} | \frac{1}{2}, m_{t} \rangle \otimes | \frac{1}{2}, -m_{t} \rangle
\hat{\delta}_{m_{t}}^{[2]} | 1, 0 \rangle = \frac{1}{\sqrt{2}} | \frac{1}{2}, -m_{t} \rangle \otimes | \frac{1}{2}, m_{t} \rangle
\hat{\delta}_{m_{t}}^{[1]} | 0, 0 \rangle = \frac{1}{\sqrt{2}} (-2m_{t}) | \frac{1}{2}, m_{t} \rangle \otimes | \frac{1}{2}, -m_{t} \rangle
\hat{\delta}_{m_{t}}^{[2]} | 0, 0 \rangle = \frac{1}{\sqrt{2}} (-2m_{t}) | \frac{1}{2}, m_{t} \rangle \otimes | \frac{1}{2}, -m_{t} \rangle$$

Note that $sgn(m_t) \equiv 2m_t$ as $m_t = \pm 1/2$. It is straightforward to show that,

$$\langle 1, \pm 1 | \hat{\delta}_{m_t}^{[1]} | 1, \pm 1 \rangle = \delta_{\pm 1, 2m_t} \qquad \qquad \langle 1, \pm 1 | \hat{\delta}_{m_t}^{[2]} | 1, \pm 1 \rangle = \delta_{\pm 1, 2m_t}$$

$$\langle 1, 0 | \hat{\delta}_{m_t}^{[1]} | 1, 0 \rangle = \langle 0, 0 | \hat{\delta}_{m_t}^{[1]} | 0, 0 \rangle = \frac{1}{2} \qquad \qquad \langle 1, 0 | \hat{\delta}_{m_t}^{[2]} | 1, 0 \rangle = \langle 0, 0 | \hat{\delta}_{m_t}^{[1]} | 0, 0 \rangle = \frac{1}{2}$$

$$\langle 1, 0 | \hat{\delta}_{m_t}^{[1]} | 0, 0 \rangle = \langle 0, 0 | \hat{\delta}_{m_t}^{[1]} | 1, 0 \rangle = \frac{1}{2} (-2m_t)$$

$$\langle 1, 0 | \hat{\delta}_{m_t}^{[1]} | 0, 0 \rangle = \langle 0, 0 | \hat{\delta}_{m_t}^{[1]} | 1, 0 \rangle = \frac{1}{2} (-2m_t)$$

8.1 norm_ob: public operator_virtual_ob

Here we take a look at the calculation of the norm \mathcal{N} (see Eqs. (11),(12)) in norm_ob.cpp. Note that this class inherits from operator_virtual_ob, declaring general one body member functions.

• norm_ob::get_me(Pair). This calculates the matrix element meanfield matrix element sum:

$$\frac{2}{A} \sum_{AB} \hat{\delta}_{t_1, n_A, l_A, n_B, l_B} C_{\alpha_1 \alpha_2}^{A\dagger} C_{\alpha_1 \alpha_2}^B \langle A | B \rangle = \frac{2}{A} \sum_{A} \hat{\delta}_{t_1, n_A, l_A} \left| C_{\alpha_1 \alpha_2}^A \right|^2 \tag{46}$$

for a specific pair $|\alpha_1\alpha_2\rangle$ passed trough Pair. It is possible to filter on relative quantum numbers on n_A, l_A, n_B, l_B , represented by the operator $\hat{\delta}_{t_1, n_A, l_A, n_B, l_B}$. It selects specific contributions nAs,lAs,nBs,lBs to the sum. A value of -1 for these variables is interpreted as "all values allowed". Trough the bracket $\langle A|B\rangle$ we already have $n_A=n_B:=n,\ l_A=l_B:=l$.

- if (nAs > -1 && nBs > -1) This forces nAs = nBs = n. So for $nAs \neq nBs$ we will get 0.
- if (nAs == -1 && nBs > -1) This forces nBs = n. Selecting a specific $n = n_A = n_B$ contribution.
- if (nAs > -1 && nBs == -1) This forces nAs = n. Selecting a specific $n = n_A = n_B$ contribution.
- if (nAs == -1 && nBs == -1) This makes no restrictions on $n=n_A=n_B$.

The exact same is valid for $l = l_A = l_B$ and lAs,lBs. A few examples (nAs,lAs,nBs,lBs):

- (-1, 2,-1,-1): allow all $n=n_A=n_B$ values. Restriction on $l=l_A=l_B=2$.
- (-1, 2,-1, 2): allow all $n=n_A=n_B$ values. Restriction on $l=l_A=l_B=2$.

As the unrestricted sum $\sum_{AB} C_{\alpha_1\alpha_2}^{A\dagger} C_{\alpha_1\alpha_2}^B \langle A|B \rangle = \sum_A |C_{\alpha_1\alpha_2}^A|^2$ equals 1, the return value of get_me (for the unrestricted sum) is,

 $-\frac{2}{A}$ with no restriction on the isospin (norm_ob::norm_ob_params.t = 0)

- $-\frac{2}{A}$ for pp-pairs, $\frac{1}{A}$ for pn-pairs and 0 for nn-pairs for a proton (norm_ob::norm_ob_params.t = 1)
- -0 for pp-pairs, $\frac{1}{A}$ for pn-pairs and $\frac{2}{A}$ for nn-pairs for a neutron (norm_ob::norm_ob_params.t =-1)

If we sum over all the pairs $\sum_{pair in pairs} norm::ob_get_me(pair,...)$ we get,

- $-\frac{A(A-1)}{2}\frac{2}{A}=A-1$ with no restriction on the isospin (norm_ob::norm_ob_params.t = 0)
- $-\frac{Z(Z-1)}{2}\frac{2}{A}+NZ\frac{1}{A}+\frac{N(N-1)}{2}0=Z\frac{A-1}{A} \text{ for a proton (norm_ob::norm_ob_params.t = 1)}$
- $-\frac{Z(Z-1)}{2}0+NZ\frac{1}{A}+\frac{N(N-1)}{2}\frac{2}{A}=N\frac{A-1}{A} \text{ for a neutron (norm_ob::norm_ob_params.t =-1)}$

Open shellness not taken into account here. Must be done somewhere else (higher up)...

For closed shell nuclei everything seems fine. For open shells however we get some strange results. For example 27 Al with 13 protons and 14 neutrons has an open $1d\frac{5}{2}$ proton shell. Open-shell nuclei are treated as closed shell but the pairs in the open shells get a weight factor. This weight factor however is **not** present in the method norm::ob_get_me(pair,...). Hence as A=27 but the closed shell equivalent with A=28 causes the number of pairs to be $28 \cdot 27/2$ instead of $27 \cdot 26/2$. We get

- $-\frac{28\cdot27}{2}\frac{2}{27}=28 \text{ (norm_ob::norm_ob_params.t = 0)}$
- $-\frac{14\cdot13}{2}\frac{2}{27}+\frac{14\cdot14}{27}=\frac{378}{27}=14$ (norm_ob::norm_ob_params.t = 1)
- $-\frac{14\cdot14}{27} + \frac{14\cdot13}{2} \cdot \frac{2}{27} = \frac{378}{27} = 14 \text{ (norm_ob::norm_ob_params.t =- 1)}$

WIM: Yes \rightarrow all the normalisations are accounted for in the linkstrenghts (summation over paircoefs) or in the operator_virtual_ob::sum_me_pairs function for the summation over pairs!

• norm_ob::get_me_corr_right(Pair).

8.2 density_ob_integrand3

Here we look at the file density_ob_integrand3. See section 10.1 for more information. The following integral is calculated,

$$\int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12})$$

The symbols $\chi_{p,nl_p}^{l_1k}(p_1,P_{12})$, $\chi_{p,n'l_q'}^{l_1k'}(p_1,P_{12})$ are calculated in density_ob_integrand_cf. Hence this integrand takes two density_ob_integrand_cf* pointers. Additionally it takes the parameters, $n,l_p,k,n',l_q',k',p_1,\nu,$ index (nA,lA,la,nB,lB,l,k,nu,index in the code). index corresponds to the power of P_{12} in the integrand. This is because the $\Pi_{NL}^*(P_{12})\Pi_{N'L'}(P_{12})$ are expanded in powers of P_{12} , again see 10.1 for more details.

8.2.1 Alternative approach

Here we will investigate an alternative approach of calculating the following integral.

$$\int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_p}^{kK}(p_1, P_{12}) \chi_{p,n'l_q'}^{k'K'}(p_1, P_{12})$$
(47)

We will try to perform the integral over P_{12} instead of keeping it last. The χ symbols are defined as,

$$\chi_{p,nl}^{kK}(p_1, P) = \int dr \, r^2 f_p(r) R_{nl}(r) j_k(\sqrt{2}p_1 r) j_K(Pr)$$

Eq. (47) then becomes,

$$\int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_p}^{kK}(p_1, P_{12}) \chi_{p,n'l_q'}^{k'K'}(p_1, P_{12}) =$$

$$\int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12})$$

$$\int dr \, r^2 f_p(r) R_{nl_p}(r) j_k(\sqrt{2}p_1 r) j_K(P_{12} r) \int dr' \, r'^2 f_q(r') R_{nl_q}(r') j_{k'}(\sqrt{2}p_1 r') j_{K'}(P_{12} r') .$$

Expanding $\Pi_{NL}(P) = N_{NL}P^L e^{-\frac{\nu'P^2}{2}} \sum_{i=0}^{N} a_{NL,i}P^i$ and isolating the integral over P_{12} results in,

$$\int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1}, P_{12}) \chi_{p,n'l_{q}'}^{k'K'}(p_{1}, P_{12}) =$$

$$\int dr \, r^{2} f_{p}(r) R_{nl_{p}}(r) j_{k}(\sqrt{2}p_{1}r) \int dr' \, r'^{2} f_{q}(r') R_{nl_{q}}(r') j_{k'}(\sqrt{2}p_{1}r')$$

$$N_{NL} N_{N'L'} \sum_{i=0}^{N} \sum_{j=0}^{N'} a_{NL,i} a_{N'L',j} \int dP_{12} P_{12}^{2+L+L'+i+j} e^{-\nu' P_{12}^{2}} j_{K}(P_{12}r) j_{K'}(P_{12}r')$$

With $j_l(x) = \frac{\sqrt{\pi}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+l+3/2)} \left(\frac{x}{2}\right)^{2k+l}$ this results in,

$$\int \mathrm{d}P_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1},P_{12}) \chi_{p,n'l_{q}}^{k'K'}(p_{1},P_{12}) =$$

$$\int \mathrm{d}r \, r^{2} f_{p}(r) R_{nl_{p}}(r) j_{k}(\sqrt{2}p_{1}r) \int \mathrm{d}r' \, r'^{2} f_{q}(r') R_{nl_{q}}(r') j_{k'}(\sqrt{2}p_{1}r')$$

$$N_{NL} N_{N'L'} \frac{\pi}{4} \sum_{i=0}^{N} \sum_{j=0}^{N'} a_{NL,i} a_{N'L',j} \sum_{s,s'} \frac{(-1)^{s+s'}}{s!s'!\Gamma(s+K+3/2)\Gamma(s'+K'+3/2)} \left(\frac{r}{2}\right)^{2s+K} \left(\frac{r'}{2}\right)^{2s'+K'}$$

$$\int \mathrm{d}P_{12} \, P_{12}^{2+L+L'+i+j+2s+2s'+K+K'} e^{-\nu'P^{2}}$$

$$= \int \mathrm{d}r \, r^{2} f_{p}(r) R_{nl_{p}}(r) j_{k}(\sqrt{2}p_{1}r) \int \mathrm{d}r' \, r'^{2} f_{q}(r') R_{nl_{q}}(r') j_{k'}(\sqrt{2}p_{1}r')$$

$$N_{NL} N_{N'L'} \frac{\pi}{4} \sum_{i=0}^{N} \sum_{j=0}^{N'} a_{NL,i} a_{N'L',j} \sum_{s,s'} \frac{(-1)^{s+s'}}{s!s'!\Gamma(s+K+3/2)\Gamma(s'+K'+3/2)} \left(\frac{r}{2}\right)^{2s+K} \left(\frac{r'}{2}\right)^{2s'+K'}$$

$$\frac{1}{2} \Gamma \left(\frac{3+L+L'+i+j+2s+2s'+K+K'}{2}\right) \nu'^{\frac{3+L+L'+i+j+2s+2s'+K+K'}{2}}$$

8.3 density_ob_integrand_cf

cf probably stands for correlation function. This class calculates integrals of the form

$$F_{p_1}(P) = \int dr r^{i+2} j_l(\frac{rP}{\sqrt{\nu}}) j_k(\frac{rp_1\sqrt{2}}{\sqrt{\nu}}) f(\frac{r}{\sqrt{\nu}}) e^{\frac{-r^2}{2}}$$

Where p is the one-body momentum and P is the c.m. momentum. This corresponds with the χ symbols defined below in Eq. (52).

$$\chi_{p,nl}^{kK}(p_1,P) = \int dr \, r^2 f_p(r) R_{nl}(r) j_k(\sqrt{2}p_1 r) j_K(Pr)$$

With
$$R_{nl}(r) = N_{nl} \nu^{\frac{l+3/2}{2}} r^l e^{-\nu r^2/2} L_n^{l+1/2}(\nu r^2)$$
 and $\nu = M_N \omega/\hbar$,

$$\chi_{p,nl}^{kK}(p_1, P) = N_{nl} \nu^{\frac{l+3/2}{2}} \int dr \, r^{2+l} f_p(r) e^{-\nu r^2/2} L_n^{l+1/2}(\nu r^2) j_k(\sqrt{2}p_1 r) j_K(Pr)$$

Expanding the Generalized-Laguerre polynomials gives,

$$\chi_{p,nl}^{kK}(p_1,P) = N_{nl} \nu^{\frac{l+3/2}{2}} \sum_{i=0}^{n} a_{nl,i} \int dr \, r^{2+l} f_p(r) e^{-\nu r^2/2} (\nu r^2)^i j_k(\sqrt{2}p_1 r) j_K(Pr)$$

Changing variables $r \to r/\sqrt{\nu}$ gives,

$$\chi_{p,nl}^{kK}(p_1,P) = N_{nl}\nu^{-\frac{3}{4}} \sum_{i=0}^{n} a_{nl,i} \int dr \, r^{2+l+2i} f_p(\nu^{-\frac{1}{2}}r) e^{-r^2/2} j_k(\nu^{-\frac{1}{2}}\sqrt{2}p_1r) j_K(\nu^{-\frac{1}{2}}Pr)$$

This is exactly what is found in density_ob_integrand_cf::integrand and density_ob_integrand_cf::get_value. The integrals are stored in a map where the key field contains the order of the spherical Bessel functions k, K and is calculated as 100k+K. It is necessary to assume that K < 100. The value field contains a two dimensional vector (std::vector<std::vector<double>>). The first dimension (index) corresponds with the power of r in the integrand and ranges from 0 to 2n + l + 2. The second dimension (index) corresponds with the different discretized values of P.

9 One body operators acting on coupled states

For a one body operator sandwiched between antisymmetric A-particle states $|\alpha_1 \alpha_2 \dots \alpha_A\rangle$ the following identity is valid,

$$\sum_{i=1}^{A} \langle \alpha_1 \alpha_2 \dots \alpha_A | \hat{\mathcal{O}}_i | \alpha_1 \alpha_2 \dots \alpha_A \rangle = A \langle \alpha_1 \alpha_2 \dots \alpha_A | \hat{\mathcal{O}}_1 | \alpha_1 \alpha_2 \dots \alpha_A \rangle$$

In particular for two particles,

$$\sum_{i=1}^{2} \langle \alpha_1 \alpha_2 | \hat{\mathcal{O}}_i | \alpha_1 \alpha_2 \rangle = 2 \langle \alpha_1 \alpha_2 | \hat{\mathcal{O}}_1 | \alpha_1 \alpha_2 \rangle$$

We now investigate how this result changes if we let the one-body operator act on coupled states of two particles. More specifically we will look at the one-body momentum operator $\hat{n}_{s_1,t_1}^{[1],i}(\vec{p}_1)$. The square brackets [1] denote that this is a one-body operator. The number right next to that i symbolizes which particle it acts on. s,t denote the single-particle spin and isospin projections.

$$\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1}) = \hat{n}_{s_{1},t_{1}}^{[1]}(\vec{p}_{1}) \otimes \mathbb{1} = |\vec{p}_{1}s_{1}t_{1}\rangle \langle \vec{p}_{1}s_{1}t_{1}| \otimes \sum_{s_{2},t_{2}} \int d^{3}\vec{p}_{2} |\vec{p}_{2}s_{2}t_{2}\rangle \langle \vec{p}_{2}s_{2}t_{2}| \\ \hat{n}_{s_{1},t_{1}}^{[1],2}(\vec{p}_{1}) = \mathbb{1} \otimes \hat{n}_{s_{1},t_{1}}^{[1]}(\vec{p}_{1}) = \sum_{s_{2},t_{2}} \int d^{3}\vec{p}_{2} |\vec{p}_{2}s_{2}t_{2}\rangle \langle \vec{p}_{2}s_{2}t_{2}| \otimes |\vec{p}_{1}s_{1}t_{1}\rangle \langle \vec{p}_{1}s_{1}t_{1}|$$

We will try to relate $\langle A|\hat{n}_{s_1,t_1}^{[1],2}(\vec{p_1})|A'\rangle$ to $\langle A|\hat{n}_{s_1,t_1}^{[1],1}(\vec{p_1})|A'\rangle$. We will see that the naive expectation that these are equal does not hold. This is caused by the fact that we are sandwiching the one-body operator between **coupled** states and not single-particle states.

$$\langle A | \hat{n}_{s_1,t_1}^{[1],2}(\vec{p}_1) | A' \rangle = \langle A | \mathbb{1} \otimes \hat{n}_{s_1,t_1}^{[1]}(\vec{p}_1) | A' \rangle = \langle A | \left(\sum_{s_2,t_2} \int \mathrm{d}^3 \vec{p}_2 \, | \vec{p}_2 s_2 t_2 \rangle \, \langle \vec{p}_2 s_2 t_2 | \otimes | \vec{p}_1 s_1 t_1 \rangle \, \langle \vec{p}_1 s_1 t_1 | \right) | A' \rangle$$

$$\propto \sum_{s_2,t_2} \int \mathrm{d}^3 \vec{p}_2 \int \mathrm{d}^3 \vec{r}_1 \mathrm{d}^3 \vec{r}_1' \mathrm{d}^3 \vec{r}_2' \mathrm{d}^3 \vec{r}_2'$$

$$\langle \widetilde{A} | \vec{r}_1 \vec{r}_2 \rangle \, \langle S M_S | \frac{1}{2} s_2 \frac{1}{2} s_1 \rangle \, \langle T M_T | \frac{1}{2} t_2 \frac{1}{2} t_1 \rangle \, \langle \vec{r}_1 | \vec{p}_2 \rangle \, \langle \vec{r}_2 | \vec{p}_1 \rangle$$

$$\langle \vec{r}_1' \vec{r}_2' | \widetilde{A}' \rangle \, \langle \frac{1}{2} s_2 \frac{1}{2} s_1 | S' M_S' \rangle \, \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | T' M_T' \rangle \, \langle \vec{p}_2 | \vec{r}_1' \rangle \, \langle \vec{p}_1 | \vec{r}_2' \rangle$$

Note that we used \propto instead of the equality sign as we omit the LS-coupling for conciseness. This has no influence on the results. \widetilde{A} symbolizes the coupled state without the spin and isospin part (with the LS-coupling omitted), $\widetilde{A} = |nlm_l N L M_L\rangle$. Using the identity,

$$\langle j_1 m_1, j_2 m_2 | JM \rangle = (-1)^{j_1 + j_2 - J} \langle j_2 m_2, j_1 m_1 | JM \rangle$$

we get

$$\langle A | \hat{n}_{s_{1},t_{1}}^{[1],2}(\vec{p_{1}}) | A' \rangle \propto \sum_{s_{2},t_{2}} \int \mathrm{d}^{3} \vec{p_{2}} \int \mathrm{d}^{3} \vec{r_{1}} \mathrm{d}^{3} \vec{r_{1}}' \mathrm{d}^{3} \vec{r_{2}} \mathrm{d}^{3} \vec{r_{2}}'$$

$$(-1)^{S+S'+T+T'}$$

$$\langle \widetilde{A} | \vec{r_{1}} \vec{r_{2}} \rangle \langle S M_{S} | \frac{1}{2} s_{1} \frac{1}{2} s_{2} \rangle \langle T M_{T} | \frac{1}{2} t_{1} \frac{1}{2} t_{2} \rangle \langle \vec{r_{1}} | \vec{p_{2}} \rangle \langle \vec{r_{2}} | \vec{p_{1}} \rangle$$

$$\langle \vec{r_{1}}' \vec{r_{2}}' | \widetilde{A}' \rangle \langle \frac{1}{2} s_{1} \frac{1}{2} s_{2} | S' M_{S}' \rangle \langle \frac{1}{2} t_{1} \frac{1}{2} t_{2} | T' M_{T}' \rangle \langle \vec{p_{2}} | \vec{r_{1}}' \rangle \langle \vec{p_{1}} | \vec{r_{2}}' \rangle$$

The part involving the spatial and momentum coordinates is not so straightforward,

$$\int d^{3} \vec{p}_{2} \langle \vec{r}_{1} | \vec{p}_{2} \rangle \langle \vec{r}_{2} | \vec{p}_{1} \rangle \langle \vec{p}_{2} | \vec{r}_{1}' \rangle \langle \vec{p}_{1} | \vec{r}_{2}' \rangle = \delta(\vec{r}_{1} - \vec{r}_{1}') e^{i\vec{p}_{1} \cdot (\vec{r}_{2} - \vec{r}_{2}')}$$

$$= \delta\left(\frac{\vec{R}_{12} - \vec{r}_{12} - \vec{R}_{12}' + \vec{r}_{12}'}{\sqrt{2}}\right) e^{-i\sqrt{2}\vec{p}_{1} \cdot (\vec{r}_{12} - \vec{r}_{12}')}$$

For $\langle A|\hat{n}_{s_1,t_1}^{[1],1}(\vec{p}_1)|A'\rangle$ we would get,

$$\begin{split} \int \mathrm{d}^{3}\,\vec{p}_{2}\,\langle\vec{r}_{1}|\vec{p}_{1}\rangle\,\langle\vec{r}_{2}|\vec{p}_{2}\rangle\,\langle\vec{p}_{2}|\vec{r}_{2}'\rangle\,\langle\vec{p}_{1}|\vec{r}_{1}'\rangle &= \delta(\vec{r}_{2}-\vec{r}_{2}')e^{i\vec{p}_{1}\cdot(\vec{r}_{1}-\vec{r}_{1}')} \\ &= \delta\left(\frac{\vec{R}_{12}+\vec{r}_{12}-\vec{R}_{12}'-\vec{r}_{12}'}{\sqrt{2}}\right)e^{i\sqrt{2}\vec{p}_{1}\cdot(\vec{r}_{12}-\vec{r}_{12}')} \end{split}$$

It is easy to see that the difference between $\langle A|\hat{n}_{s_1,t_1}^{[1],1}(\vec{p_1})|A'\rangle$ and $\langle A|\hat{n}_{s_1,t_1}^{[1],2}(\vec{p_1})|A'\rangle$ concerning the spatial coordinates is a sign flip of \vec{r}_{12} and \vec{r}_{12}' , which can be intuitively understood. So to summarize,

$$\langle A|\hat{n}_{s_1,t_1}^{[1],2}(p_1)|A'\rangle = (-1)^{S+S'+T+T'} \langle A|\hat{n}_{s_1,t_1}^{[1],1}(p_1)\left[(\vec{r}_{12},\vec{r}_{12}') \to (-\vec{r}_{12},-\vec{r}_{12}')\right]|A'\rangle \tag{48}$$

Yes I agree that this is terrible notation but it should make the main message clear.

10 One body momentum distribution

We will look into one-body momentum distributions in more detail. A matrix element as calculated in the norm Eq. (43) is now extended by including the ony-body momentum operator $\hat{n}_{s,t}^{[1]}(\vec{p}) = \sum_i \hat{n}_{s,t}^{[1],i}(\vec{p})$. The square brackets [1] denote that this is a one-body operator. The number right next to that i symbolizes which particle it acts on. s is the spin projection of the nucleon and t the isospin projection. We will calculate the case where the momentum operator acts on "particle 1" first and then use the relation derived in Eq. (48) to get the expression for the case where the momentum operator acts on "particle 2".

$$\langle A|\hat{n}_{s,t}^{[1],1}(p)|A'\rangle = \langle A \equiv n(lS)jm_jNLM_LTM_T|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}\hat{n}_{s,t}^{[1]}(\vec{p})f_q\hat{\mathcal{O}}^q|A' \equiv n'(l'S')j'm_j'N'L'M_L'T'M_T'\rangle$$

The one-body momentum operator $\hat{n}_{s_1,t_1}^{[1],1}(\vec{p_1})$ is given by,

$$\begin{split} \hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p_{1}}) &= |\vec{p_{1}}s_{1}t_{1}\rangle \, \langle \vec{p_{1}}s_{1}t_{1}| \otimes \mathbb{1} = \sum_{s_{2},t_{2}} \int \mathrm{d}^{3}\vec{p_{2}} \, n_{s_{1},t_{1}}^{[2]}(\vec{p_{1}},\vec{p_{2}}) \\ &= \sum_{s_{2},t_{2}} \int \mathrm{d}^{3}\vec{p_{2}} \, |\vec{p_{1}}s_{1}t_{1},\vec{p_{2}}s_{2}t_{2}\rangle \, \langle \vec{p_{1}}s_{1}t_{1},\vec{p_{2}}s_{2}t_{2}| \end{split}$$

Hence,

$$\begin{split} \langle A|\hat{n}_{s_1,t_1}^{[1],1}(\vec{p}_1)|A'\rangle &= \sum_{s_2,t_2} \int \mathrm{d}^3\vec{p}_2 \, \langle A|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}|\vec{p}_1s_1t_1,\vec{p}_2s_2t_2\rangle \, \langle \vec{p}_1s_1t_1,\vec{p}_2s_2t_2|f_q\hat{\mathcal{O}}^q|A'\rangle \\ &= \sum_{s_2,t_2} \int \mathrm{d}^3\vec{p}_2\mathrm{d}^3\vec{r}_1\mathrm{d}^3\vec{r}_2\mathrm{d}^3\vec{r}_1'\mathrm{d}^3\vec{r}_2' \\ &\qquad \langle A|\hat{\mathcal{O}}^{p\dagger}f_p^{\dagger}|\vec{r}_1s_1t_1,\vec{r}_2s_2t_2\rangle \, \langle \vec{r}_1\vec{r}_2|\vec{p}_1\vec{p}_2\rangle \, \langle \vec{p}_1\vec{p}_2|\vec{r}_1'\vec{r}_2'\rangle \, \langle \vec{r}_1's_1t_1,\vec{r}_2's_2t_2|f_q\hat{\mathcal{O}}^q|A'\rangle \end{split}$$

With
$$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2\pi)^{3/2}} e^{i\vec{p}\cdot\vec{r}}$$
 and $\vec{R}_{12} = \frac{\vec{r}_1 + \vec{r}_2}{\sqrt{2}}, \vec{r}_{12} = \frac{\vec{r}_1 - \vec{r}_2}{\sqrt{2}}$.

$$\langle A | \hat{n}_{s_1,t_1}^{[1],1}(\vec{p}_1) | A' \rangle = \frac{1}{(2\pi)^6} \sum_{s_2,t_2} \int \mathrm{d}^3 \vec{p}_2 \mathrm{d}^3 \vec{R}_{12} \mathrm{d}^3 \vec{r}_{12} \mathrm{d}^3 \vec{r}_{12}' \mathrm{d}^3 \vec{r}_{12}' \mathrm{e}^{i\vec{p}_1 \cdot (\vec{r}_1 - \vec{r}_1')} e^{i\vec{p}_2 \cdot (\vec{r}_2 - \vec{r}_2')} \\ \langle A | \hat{\mathcal{O}}^{p\dagger} f_p^{\dagger} | \vec{R}_{12} s_1 t_1, \vec{r}_{12} s_2 t_2 \rangle \, \langle \vec{R}_{12}' s_1 t_1 \vec{r}_{12}' s_2 t_2 | f_a \hat{\mathcal{O}}^q | A' \rangle$$

With
$$\vec{r}_1 - \vec{r}_1' = \frac{\vec{R}_{12} + \vec{r}_{12} - \vec{R}_{12}' - \vec{r}_{12}'}{\sqrt{2}}$$
, $\vec{r}_2 - \vec{r}_2' = \frac{\vec{R}_{12} - \vec{r}_{12} - \vec{R}_{12}' + \vec{r}_{12}'}{\sqrt{2}}$, we have,

$$\int d^3 \vec{p}_2 e^{i\vec{p}_2 \cdot (\vec{r}_2 - \vec{r}_2')} = (2\pi)^3 \sqrt{2}^3 \delta^{(3)} (\vec{R}_{12} - \vec{r}_{12} - \vec{R}_{12}' + \vec{r}_{12}')$$

$$\begin{split} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p_{1}})|A'\rangle &= \frac{\sqrt{8}}{(2\pi)^{3}} \sum_{s_{2},t_{2}} \int \mathrm{d}^{3}\vec{R}_{12} \mathrm{d}^{3}\vec{r}_{12} \mathrm{d}^{3}\vec{r}_{12}' e^{i\sqrt{2}\vec{p_{1}}\cdot(\vec{r}_{12}-\vec{r}_{12}')} \\ & \langle A|\hat{\mathcal{O}}^{p\dagger}f_{p}^{\dagger}|\vec{R}_{12}s_{1}t_{1},\vec{r}_{12}s_{2}t_{2}\rangle \, \langle \vec{R}_{12}'s_{1}t_{1},\vec{r}_{12}'s_{2}t_{2}|f_{q}\hat{\mathcal{O}}^{q}|A'\rangle \, \Big|_{\vec{R}_{12}'=\vec{R}_{12}-\vec{r}_{12}+\vec{r}_{12}'} \end{split}$$

Let us investigate the matrix element with the operators $\hat{\mathcal{O}}^{p,q}$ (central,tensor or spin-isospin) and the spin/isospin projections s_1, t_1, s_2, t_2 in detail:

$$\sum_{s_2,t_2} \langle A|\hat{\mathcal{O}}^{p\dagger}|s_1t_1,s_2t_2\rangle \, \langle s_1t_1,s_2t_2|\hat{\mathcal{O}}^q|A'\rangle$$

Using the expressions for $\hat{\mathcal{O}}^p |A'\rangle$ (??) this becomes,

$$\sum_{s_{2},t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{O}^{p\dagger}(S,T,j,l,l_{p}) \mathcal{O}^{q}(S',T',j',l',l'_{q})$$

$$\langle n(l_{p}S)jm_{j}NLM_{L}TM_{T}|s_{1}t_{1},s_{2}t_{2}\rangle \langle s_{1}t_{1},s_{2}t_{2}|n'(l'_{q}S')j'm'_{j}N'L'M'_{L}T'M'_{T}\rangle$$

with

$$\langle \frac{1}{2} s_1 \frac{1}{2} s_2 | (lS) j m_j \rangle = \sum_{m_l m_s} \langle l m_l S m_S | j m_j \rangle \langle \frac{1}{2} s_1 \frac{1}{2} s_2 | S m_S \rangle | l m_l \rangle$$

$$= \langle l m_l S m_S | j m_j \rangle \langle \frac{1}{2} s_1 \frac{1}{2} s_2 | S m_S \rangle | l m_l \rangle \Big|_{\substack{m_S = s_1 + s_2 \\ m_l = m_j - s_1 - s_2}}$$

We get,

$$\begin{split} \sum_{s_2,t_2} \left\langle A|\hat{\mathcal{O}}^{p\dagger}|s_1t_1,s_2t_2\right\rangle \left\langle s_1t_1,s_2t_2|\hat{\mathcal{O}}^q|A'\right\rangle = \\ \sum_{s_2,t_2} \sum_{l_p=|j-1|}^{j+1} \sum_{l_q=|j'-1|}^{j'+1} \operatorname{O}^{p\dagger}(S,T,j,l,l_p) \operatorname{O}^q(S',T',j',l',l'_q) \\ \left\langle \frac{1}{2}t_1\frac{1}{2}t_2|TM_T\right\rangle \left\langle \frac{1}{2}t_1\frac{1}{2}t_2|T'M'_T\right\rangle \\ \left\langle l_pm_{l_p}Sm_S|jm_j\right\rangle \left\langle \frac{1}{2}s_1\frac{1}{2}s_2|Sm_S\right\rangle \left\langle l_pm_{l_p}|\left\langle l'_qm'_{l_q}S'm'_S|j'm'_j\right\rangle \left\langle \frac{1}{2}s_1\frac{1}{2}s_2|S'm'_S\right\rangle |l'_qm'_{l_q}\right\rangle \\ \left\langle A|\hat{n}_{s_1,t_1}^{[1],1}(\vec{p}_1)|A'\right\rangle = \sum_{s_2,t_2} \sum_{l_p=|j-1|}^{j+1} \sum_{l'_q=|j'-1|}^{j'+1} \operatorname{O}^{p\dagger}(S,T,j,l,l_p) \operatorname{O}^q(S',T',j',l',l'_q) \left\langle \frac{1}{2}t_1\frac{1}{2}t_2|TM_T\right\rangle \left\langle \frac{1}{2}t_1\frac{1}{2}t_2|T'M'_T\right\rangle \\ \left\langle l_pm_{l_p}Sm_S|jm_j\right\rangle \left\langle \frac{1}{2}s_1\frac{1}{2}s_2|Sm_S\right\rangle \left\langle l'_qm'_{l_q}S'm'_S|j'm'_j\right\rangle \left\langle \frac{1}{2}s_1\frac{1}{2}s_2|S'm'_S\right\rangle \\ \frac{\sqrt{8}}{(2\pi)^3} \int \operatorname{d}^3\vec{R}_{12}\operatorname{d}^3\vec{r}'_{12}\operatorname{d}^3\vec{r}'_{12}e^{i\sqrt{2}\vec{p}_1\cdot(\vec{r}_{12}-\vec{r}'_{12})}f_p^\dagger(r_{12})f_q(r'_{12}) \\ \psi^\dagger_{NLM_L}(\vec{R}_{12})\psi^\dagger_{nl_pm_{l_p}}(\vec{r}_{12})\psi_{N'L'M'_L}(\vec{R}'_{12})\psi_{n'l_qm_{l_q}}(\vec{r}'_{12}) \left| \frac{\vec{R}_{1'_2}=\vec{R}_{12}-\vec{r}_{12}+\vec{r}'_{12}}{m_{l_p}=m_j-s_1-s_2} \right| \\ m'_{l_p}=m'_j-s_1-s_2} \end{aligned}$$

For the sake of brevity we define,

$$\mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) = O^{p\dagger}(S,T,j,l,l_{p})O^{q}(S',T',j',l',l'_{q}) \langle \frac{1}{2}t_{1}\frac{1}{2}t_{2}|TM_{T}\rangle \langle \frac{1}{2}t_{1}\frac{1}{2}t_{2}|T'M'_{T}\rangle$$

$$\langle l_{p}m_{l_{p}}Sm_{S}|jm_{j}\rangle \langle \frac{1}{2}s_{1}\frac{1}{2}s_{2}|Sm_{S}\rangle \langle l'_{q}m'_{l_{q}}S'm'_{S}|j'm'_{j}\rangle \langle \frac{1}{2}s_{1}\frac{1}{2}s_{2}|S'm'_{S}\rangle$$
 (49)

The c.m. wave functions $\psi_{NLM_L}(\vec{R}_{12})$, $\psi_{N'L'M'_L}(\vec{R}'_{12})$ are written as their inverse Fourier transformation (see Secs. 2,12),

$$\psi_{NLM_L}(\vec{R}) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int d^3 \vec{P} e^{i\vec{P}\cdot\vec{R}} \phi_{NLM_L}(\vec{P})$$

$$= i^{-L} (-1)^N (2\pi)^{-\frac{3}{2}} \int d^3 \vec{P} e^{i\vec{P}\cdot\vec{R}} \Pi_{NL}(P) Y_{LM_L}(\Omega_P) .$$
(50)

The one-body momentum distribution can then be written as,

$$\begin{split} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1})|A'\rangle &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &\frac{\sqrt{8}}{(2\pi)^{3}} \int \mathrm{d}^{3}\vec{R}_{12} \mathrm{d}^{3}\vec{r}_{12}^{\prime} \mathrm{d}^{3}\vec{r}_{12}^{\prime\prime} \mathrm{e}^{i\sqrt{2}\vec{p}_{1}\cdot(\vec{r}_{12}-\vec{r}_{12}^{\prime\prime})} f_{p}^{\dagger}(r_{12}) f_{q}(r'_{12}) \psi_{nl_{p}m_{l_{p}}}^{\dagger}(\vec{r}_{12}) \psi_{n'l'_{q}m_{l'_{q}}}(\vec{r}_{12}^{\prime\prime}) \\ &\frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\vec{P}_{12} \int \mathrm{d}^{3}\vec{P}_{12}^{\prime\prime} \mathrm{e}^{-i\vec{P}_{12}\cdot\vec{R}_{12}} \phi_{NLM_{L}}^{\dagger}(\vec{P}_{12}) \mathrm{e}^{i\vec{P}_{12}^{\prime\prime}\cdot(\vec{R}_{12}-\vec{r}_{12}+\vec{r}_{12}^{\prime\prime})} \phi_{N'L'M'_{L}}(\vec{P}_{12}^{\prime\prime}) \\ &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &\frac{\sqrt{8}}{(2\pi)^{3}} \int \mathrm{d}^{3}\vec{r}_{12} \mathrm{d}^{3}\vec{r}_{12}^{\prime\prime} \mathrm{e}^{i\sqrt{2}\vec{p}_{1}\cdot(\vec{r}_{12}-\vec{r}_{12}^{\prime\prime})} f_{p}^{\dagger}(r_{12}) f_{q}(r'_{12}) \psi_{nl_{p}m_{l_{p}}}^{\dagger}(\vec{r}_{12}) \psi_{n'l'_{q}m'_{l_{q}}}(\vec{r}_{12}^{\prime\prime}) \\ &\int \mathrm{d}^{3}\vec{P}_{12} \mathrm{e}^{-i\vec{P}_{12}\cdot(\vec{r}_{12}-\vec{r}_{12}^{\prime\prime})} \phi_{NLM_{L}}^{\dagger}(\vec{P}_{12}) \phi_{N'L'M'_{L}}(\vec{P}_{12}) \end{split}$$

Using the plane wave expansion $e^{i\vec{p}\cdot\vec{r}} = 4\pi \sum_{lm_l} i^l j_l(pr) Y_{lm_l}^*(\Omega_p) Y_{lm_l}(\Omega_r) = 4\pi \sum_{lm_l} i^l j_l(pr) Y_{lm_l}(\Omega_p) Y_{lm_l}(\Omega_r)$ and the fact that the isotropic harmonic oscillator wavefunctions factorize in $\psi_{nlm_l}(\vec{r}) = R_{nl}(r) Y_{lm_l}(\Omega_r)$, $\phi_{nlm_l}(\vec{p}) = i^{-l}(-1)^n \Pi_{nl}(p) Y_{lm_l}(\Omega_p)$ (see Secs. 2,12).

$$\begin{split} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1})|A'\rangle &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{p}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &\frac{\sqrt{8}}{(2\pi)^{3}} \int \mathrm{d}^{3}\vec{r}_{12}\mathrm{d}^{3}\vec{r}_{12}'e^{i\sqrt{2}\vec{p}_{1}\cdot(\vec{r}_{12}-\vec{r}_{12}')}f_{p}^{\dagger}(r_{12})f_{q}(r_{12}')\psi_{nl_{p}m_{l_{p}}}^{\dagger}(\vec{r}_{12})\psi_{n'l'_{q}m'_{l_{q}}}(\vec{r}_{12}') \\ &\int \mathrm{d}^{3}\vec{P}_{12}e^{-i\vec{P}_{12}\cdot(\vec{r}_{12}-\vec{r}_{12}')}\phi_{NLM_{L}}^{\dagger}(\vec{P}_{12})\phi_{N'L'M'_{L}}(\vec{P}_{12}) \\ &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|} \sum_{l'_{q}=|j'-1|} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &= \sum_{s_{$$

Rearranging the integrals results in

$$\langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1})|A'\rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2})$$

$$64\sqrt{2}\pi \sum_{km_{k}} \sum_{k'm'_{k}} \sum_{Km_{K}} \sum_{K'm'_{K}}^{j'+1} \sum_{k''m'_{K}}^{j'-1} i^{L-L'+k-k'-K+K'} Y_{km_{k}}^{*}(\Omega_{p_{1}}) Y_{k'm'_{k}}(\Omega_{p_{1}})$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12})$$

$$\int dr_{12} r_{12}^{2} f_{p}^{\dagger}(r_{12}) R_{nl_{p}}(r_{12}) j_{k}(\sqrt{2}p_{1}r_{12}) j_{K}(P_{12}r_{12})$$

$$\int dr_{12} r_{12}^{\prime 2} f_{q}(r'_{12}) R_{n'l'_{q}}(r'_{12}) j_{k'}(\sqrt{2}p_{1}r'_{12}) j_{K'}(P_{12}r'_{12})$$

$$\int d^{2}\Omega_{r_{12}} Y_{l_{p}m_{l_{p}}}^{*}(\Omega_{r_{12}}) Y_{km_{k}}(\Omega_{r_{12}}) Y_{Km_{K}}(\Omega_{r_{12}})$$

$$\int d^{2}\Omega_{r_{12}} Y_{l'_{q}m_{l'_{q}}}^{*}(\Omega_{r'_{12}}) Y_{k'm'_{k}}^{*}(\Omega_{r'_{12}}) Y_{k'm'_{K}}^{*}(\Omega_{r_{12}})$$

$$\int d^{2}\Omega_{P_{12}} Y_{LM_{L}}^{*}(\Omega_{P_{12}}) Y_{L'M'_{L}}(\Omega_{P_{12}}) Y_{Km_{K}}^{*}(\Omega_{P_{12}}) Y_{K'm'_{K}}(\Omega_{P_{12}})$$

As in Eq. (D.38) we define,

$$\chi_{p,nl}^{kK}(p_1, P) = \int dr \, r^2 f_p(r) R_{nl}(r) j_k(\sqrt{2}p_1 r) j_K(Pr)$$
 (52)

Using the identity (see for example Sakurai, modern quantum mechanics)

$$Y_{lm}(\Omega)Y_{l'm'}(\Omega) = \sum_{LM} \sqrt{\frac{(2l+1)(2l'+1)}{4\pi(2L+1)}} \left\langle lml'm'|LM \right\rangle \left\langle l0l'0|L0 \right\rangle Y_{LM}(\Omega)$$

We can easily derive

$$\int d\Omega Y_{lm}(\Omega) Y_{l'm'}(\Omega) Y_{l''m''}^*(\Omega) = \sqrt{\frac{(2l+1)(2l'+1)}{4\pi(2l''+1)}} \langle lml'm'|l''m'' \rangle \langle l0l'0|l''0 \rangle ,$$

and,

$$\int \mathrm{d}\Omega \, Y_{lm_{l}}(\Omega) Y_{l'm'_{l}}(\Omega) Y_{km_{k}}^{*}(\Omega) Y_{k'm'_{k}}^{*}(\Omega)$$

$$= \int \mathrm{d}\Omega \, \sum_{LM_{L}} \sqrt{\frac{(2l+1)(2l'+1)}{4\pi(2L+1)}} \, \langle lm_{l}l'm'_{l}|LM\rangle \, \langle l0l'0|L0\rangle \, Y_{LM}(\Omega)$$

$$\sum_{KM_{K}} \sqrt{\frac{(2k+1)(2k'+1)}{4\pi(2K+1)}} \, \langle km_{k}k'm'_{k}|KM_{K}\rangle \, \langle k0k'0|K0\rangle \, Y_{KM_{K}}^{*}(\Omega)$$

$$= \sum_{LM_{L}} \sqrt{\frac{(2l+1)(2l'+1)}{4\pi(2L+1)}} \sqrt{\frac{(2k+1)(2k'+1)}{4\pi(2L+1)}} \, \langle lm_{l}l'm'_{l}|LM\rangle \, \langle l0l'0|L0\rangle \, \langle km_{k}k'm'_{k}|LM_{L}\rangle \, \langle k0k'0|L0\rangle$$

The one-body momentum matrix element can then be written as,

$$\begin{split} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p_{1}})|A'\rangle &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ & 64\sqrt{2}\pi \sum_{km_{k}} \sum_{k'm_{k}'} \sum_{KM_{K}} \sum_{K'M_{K}'} i^{L-L'+k-k'-K+K'} Y_{km_{k}}^{*}(\Omega_{p_{1}}) Y_{k'm_{k}'}(\Omega_{p_{1}}) \\ & (-1)^{N+N'} \int \mathrm{d}P_{12} \, P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK\dagger}(p_{1},P_{12}) \chi_{q,n'l_{q}'}^{k'K'}(p_{1},P_{12}) \\ & \sqrt{\frac{(2k+1)(2K+1)}{4\pi(2l_{p}+1)}} \, \langle km_{k}KM_{K}|l_{p}m_{l_{p}} \rangle \, \langle k0K0|l_{p}0 \rangle \\ & \sqrt{\frac{(2k'+1)(2K'+1)}{4\pi(2l_{q}'+1)}} \, \langle k'm_{k}'K'M_{K}'|l_{q}'m_{l_{q}'} \rangle \, \langle k'0K'0|l_{q}'0 \rangle \\ & \sum_{JM_{J}} \sqrt{\frac{(2L+1)(2K+1)}{4\pi(2J+1)}} \, \langle LM_{L}KM_{K}|JM_{J} \rangle \, \langle L0K0|J0 \rangle \\ & \sqrt{\frac{(2L'+1)(2K'+1)}{4\pi(2J+1)}} \, \langle L'M_{L}'K'M_{K}'|JM_{J} \rangle \, \langle L'0K'0|J0 \rangle \end{split}$$

Introducing the notation $\hat{j} = \sqrt{2j+1}$ we get,

$$\begin{split} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1})|A'\rangle &= \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ &\frac{4\sqrt{2}}{\pi} \sum_{km_{k}} \sum_{k'm'_{k}} \sum_{KM_{K}} \sum_{K'M'_{K}} i^{L-L'+k-k'-K+K'} Y_{km_{k}}^{*}(\Omega_{p_{1}}) Y_{k'm'_{k}}(\Omega_{p_{1}}) \\ &(-1)^{N+N'} \int \mathrm{d}P_{12} \, P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK\dagger}(p_{1},P_{12}) \chi_{q,n'l'_{q}}^{k'K'}(p_{1},P_{12}) \\ &\frac{\hat{k}\hat{k}'\hat{K}\hat{K}'}{\hat{l}_{p}\hat{l}'_{q}} \, \langle km_{k}KM_{K}|l_{p}m_{l_{p}} \rangle \, \langle k0K0|l_{p}0 \rangle \, \langle k'm'_{k}K'M'_{K}|l'_{q}m_{l'_{q}} \rangle \, \langle k'0K'0|l'_{q}0 \rangle \\ &\sum_{JM_{J}} \frac{\hat{L}\hat{L}'\hat{K}\hat{K}'}{\hat{J}^{2}} \, \langle LM_{L}KM_{K}|JM_{J} \rangle \, \langle L0K0|J0 \rangle \, \langle L'M'_{L}K'M'_{K}|JM_{J} \rangle \, \langle L'0K'0|J0 \rangle \end{split}$$

Integration over the ob-momentum angle Ω_{p_1} gives $\delta_{kk'}\delta_{m_km'_k}$,

$$\langle A | \hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1}) | A' \rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2})$$

$$\frac{4\sqrt{2}}{\pi} \sum_{km_{k}} \sum_{KM_{K}} \sum_{K'M'_{K}} i^{L-L'-K+K'}$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK\dagger}(p_{1},P_{12}) \chi_{q,n'l'_{q}}^{kK'}(p_{1},P_{12})$$

$$\frac{\hat{k}^{2} \hat{K} \hat{K}'}{\hat{l_{p}} \hat{l'_{q}}} \langle km_{k} KM_{K} | l_{p} m_{l_{p}} \rangle \langle k0K0 | l_{p} 0 \rangle \langle km_{k} K'M'_{K} | l'_{q} m_{l'_{q}} \rangle \langle k0K'0 | l'_{q} 0 \rangle$$

$$\sum_{JM_{J}} \frac{\hat{L} \hat{L}' \hat{K} \hat{K}'}{\hat{J}^{2}} \langle LM_{L} KM_{K} | JM_{J} \rangle \langle L0K0 | J0 \rangle \langle L'M'_{L} K'M'_{K} | JM_{J} \rangle \langle L'0K'0 | J0 \rangle$$

To cross check this result with Maartens (D.37) we must go back a step and make another (debatably less logical) choice for contracting the spherical harmonics (note the subtle difference the complex conjugation choice of the spherical harmonics arising from the plane wave expansion).

$$\langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(\vec{p}_{1})|A'\rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2})$$

$$64\sqrt{2}\pi \sum_{km_{k}} \sum_{k'm'_{k}} \sum_{Km_{K}} \sum_{K'm'_{K}} i^{L-L'+k-k'-K+K'} Y_{km_{k}}^{*}(\Omega_{p_{1}}) Y_{k'm'_{k}}(\Omega_{p_{1}})$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1},P_{12}) \chi_{p,n'l'_{q}}^{k'K'}(p_{1},P_{12})$$

$$\int d^{2}\Omega_{r_{12}} Y_{l_{p}m_{l_{p}}}^{*}(\Omega_{r_{12}}) Y_{km_{k}}(\Omega_{r_{12}}) Y_{Km_{K}}^{*}(\Omega_{r_{12}})$$

$$\int d^{2}\Omega_{r'_{12}} Y_{l'_{q}m_{l'_{q}}}^{*}(\Omega_{r'_{12}}) Y_{k'm'_{k}}^{*}(\Omega_{r'_{12}}) Y_{K'm'_{K}}^{*}(\Omega_{r'_{12}})$$

$$\int d^{2}\Omega_{P_{12}} Y_{LM_{L}}^{*}(\Omega_{P_{12}}) Y_{L'M'_{L}}^{*}(\Omega_{P_{12}}) Y_{Km_{K}}^{*}(\Omega_{P_{12}}) Y_{K'm'_{K}}^{*}(\Omega_{P_{12}})$$

$$\langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j+1} \mathcal{M}_{AA'}^{pq_{q},l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2}) \\ + 64\sqrt{2}\pi \sum_{km_{k}} \sum_{K'm_{K}} \sum_{k'm_{K}} i^{L-L'-K+K'} \\ + (-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{km_{l_{p}}}^{kK}(p_{1},P_{12}) \chi_{p,n'l'_{q}}^{kK'}(p_{1},P_{12}) \\ + \int d^{2}\Omega_{r_{12}} Y_{l_{p}m_{l_{p}}}^{*}(\Omega_{r_{12}}) Y_{km_{k}}^{*}(\Omega_{r_{12}}) Y_{K'm_{K}}^{*}(\Omega_{r_{12}}) \\ + \int d^{2}\Omega_{r_{12}} Y_{l'_{q}m_{l'_{q}}}^{*}(\Omega_{r'_{12}}) Y_{km_{k}}^{*}(\Omega_{r_{12}}) Y_{K'm_{K}}^{*}(\Omega_{r_{12}}) \\ + \int d^{2}\Omega_{r_{12}} Y_{l'_{q}m_{l'_{q}}}^{*}(\Omega_{r'_{12}}) Y_{km_{k}}^{*}(\Omega_{r_{12}}) Y_{K'm_{K}}^{*}(\Omega_{r_{12}}) \\ + \int d^{2}\Omega_{P_{12}} Y_{LM_{L}}^{*}(\Omega_{P_{12}}) Y_{L'M'_{L}}^{*}(\Omega_{P_{12}}) Y_{Km_{K}}^{*}(\Omega_{P_{12}}) Y_{K'm'_{K}}^{*}(\Omega_{P_{12}}) \\ + \int d^{2}\Omega_{P_{12}} Y_{LM_{L}}^{*}(\Omega_{P_{12}}) Y_{L'M'_{L}}^{*}(\Omega_{P_{12}}) Y_{Km_{K}}^{*}(\Omega_{P_{12}}) Y_{K'm'_{K}}^{*}(\Omega_{P_{12}}) Y_{K'm'_{K}}^{*}(\Omega_{P_{1$$

The CGC coefficients are written as Wigner-3j symbols,

$$\langle j_1 m_1 j_2 m_2 | JM \rangle = (-1)^{j_1 - j_2 + M} \hat{J} \begin{pmatrix} j_1 & j_2 & J \\ m_1 & m_2 & -M \end{pmatrix}$$

resulting in,

$$\langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \mathcal{M}_{AA'}^{pq,l_{p}l'_{q}}(s_{1},t_{1},s_{2},t_{2})$$

$$\frac{4\sqrt{2}}{\pi} \sum_{km_{k}} \sum_{Km_{K}} \sum_{K'm'_{K}} i^{L-L'-K+K'}$$

$$(-1)^{N+N'} \int \mathrm{d}P_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1},P_{12}) \chi_{p,n'l'_{q}}^{kK'}(p_{1},P_{12})$$

$$\hat{l}_{p} \hat{l}'_{q} \hat{K} \hat{K}' \hat{k}^{2} \begin{pmatrix} l_{p} & K & k \\ m_{l_{p}} & m_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l_{p} & K & k \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ m_{l'_{q}} & m'_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ 0 & 0 & 0 \end{pmatrix}$$

$$\sum_{IM} \hat{K} \hat{L} \hat{K}' \hat{L}' \hat{J}^{2} \begin{pmatrix} L & K' & J \\ M_{L} & m'_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L & K' & J \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L' & K & J \\ M'_{L} & m_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L' & K & J \\ 0 & 0 & 0 \end{pmatrix} .$$

The sign of the summation indices M_J and m_k have been flipped here, this is equivalent with simply rearranging the terms in the sums over M_J and m_k . Writing $\mathcal{M}_{AA'}^{pq,l_pl'_q}(s_1,t_1,s_2,t_2)$ explicitly gives,

$$\langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{2}t_{2}} \sum_{l_{p}=|j-1|}^{j+1} \sum_{l_{q}=|j'-1|}^{j'+1} \mathcal{O}^{p\dagger}(S,T,j,l,l_{p}) \mathcal{O}^{q}(S',T',j',l',l'_{q})$$

$$(-1)^{M_{T}+M'_{T}+m_{S}+m'_{S}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ t_{1} & t_{2} & -M_{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T' \\ t_{1} & t_{2} & -M'_{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & S \\ s_{1} & s_{2} & -m_{S} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & S' \\ s_{1} & s_{2} & -m'_{S} \end{pmatrix}$$

$$(-1)^{l_{p}+l'_{q}-S-S'+m_{j}+m'_{j}} \hat{j} \hat{j}' \begin{pmatrix} l_{p} & S & j \\ m_{l_{p}} & m_{S} & -m_{j} \end{pmatrix} \begin{pmatrix} l'_{q} & S' & j' \\ m_{l_{q}} & m'_{S} & -m'_{j} \end{pmatrix}$$

$$\frac{4\sqrt{2}}{\pi} \sum_{km_{k}} \sum_{Km_{K}} \sum_{K'm'_{K}} i^{L-L'-K+K'}$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \prod_{NL}^{*}(P_{12}) \prod_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1},P_{12}) \chi_{p,n'l'_{q}}^{kK'}(p_{1},P_{12})$$

$$\hat{l}_{p} \hat{l}'_{q} \hat{K} \hat{K}' \hat{k}^{2} \begin{pmatrix} l_{p} & K & k \\ m_{l_{p}} & m_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l_{p} & K & k \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ m_{l'_{q}} & m'_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ 0 & 0 & 0 \end{pmatrix}$$

$$\sum_{JM_{J}} \hat{K} \hat{L} \hat{K}' \hat{L}' \hat{J}^{2} \begin{pmatrix} L & K' & J \\ M_{L} & m'_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L & K' & J \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L' & K & J \\ M'_{L} & m_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L' & K & J \\ 0 & 0 & 0 \end{pmatrix} .$$

If we are not interested in the spin decomposition of the one-body momentum matrix element, the spin s_1 can be summed over,

$$\langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{1}} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \operatorname{O}^{p\dagger}(S,T,j,l,l_{p}) \operatorname{O}^{q}(S,T',j',l',l'_{q})$$

$$\sum_{t_{2}} (-1)^{M_{T}+M'_{T}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ t_{1} & t_{2} & -M_{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T' \\ t_{1} & t_{2} & -M'_{T} \end{pmatrix}$$

$$(-1)^{l_{p}+l'_{q}+m_{j}+m'_{j}} \hat{j} \hat{j}' \begin{pmatrix} l_{p} & S & j \\ m_{l_{p}} & m_{S} & -m_{j} \end{pmatrix} \begin{pmatrix} l'_{q} & S & j' \\ m_{l'_{q}} & m_{S} & -m'_{j} \end{pmatrix}$$

$$\frac{4\sqrt{2}}{\pi} \sum_{km_{k}} \sum_{Km_{K}} \sum_{K'm'_{K}} i^{L-L'-K+K'}$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{kK}(p_{1}, P_{12}) \chi_{p,n'l'_{q}}^{kK'}(p_{1}, P_{12})$$

$$\hat{l}_{p} \hat{l}'_{q} \hat{K} \hat{K}' \hat{k}^{2} \begin{pmatrix} l_{p} & K & k \\ m_{l_{p}} & m_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l_{p} & K & k \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ m_{l'_{q}} & m'_{K} & m_{k} \end{pmatrix} \begin{pmatrix} l'_{q} & K' & k \\ 0 & 0 & 0 \end{pmatrix}$$

$$\sum_{JM_{J}} \hat{K} \hat{L} \hat{K}' \hat{L}' \hat{J}^{2} \begin{pmatrix} L & K' & J \\ M_{L} & m'_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L & K' & J \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L' & K & J \\ M'_{L} & m_{K} & M_{J} \end{pmatrix} \begin{pmatrix} L' & K & J \\ 0 & 0 & 0 \end{pmatrix}$$

To make the comparison with (D.37) easier we swap variables: $JM_J \to qm_q$, $KM_K \to km_k$, $K'M'_K \to k'm'_k$, $km_k \to l_1m_{l_1}$

$$\langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{1}} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{l_{p}=|j-1|}^{j+1} \sum_{l'_{q}=|j'-1|}^{j'+1} \operatorname{O}^{p\dagger}(S,T,j,l,l_{p}) \operatorname{O}^{q}(S,T',j',l',l'_{q})$$

$$\sum_{t_{2}} (-1)^{M_{T}+M'_{T}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ t_{1} & t_{2} & -M_{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T' \\ t_{1} & t_{2} & -M'_{T} \end{pmatrix}$$

$$(-1)^{l_{p}+l'_{q}+m_{j}+m'_{j}} \hat{j} \hat{j}' \begin{pmatrix} l_{p} & S & j \\ m_{l_{p}} & m_{S} & -m_{j} \end{pmatrix} \begin{pmatrix} l'_{q} & S & j' \\ m_{l'_{q}} & m_{S} & -m'_{j} \end{pmatrix}$$

$$\frac{4\sqrt{2}}{\pi} \sum_{l_{1}m_{l_{1}}} \sum_{km_{k}} \sum_{k'm'_{k}} i^{L-L'-k+k'}$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{l_{1}k}(p_{1}, P_{12}) \chi_{p,n'l'_{q}}^{l_{1}k'}(p_{1}, P_{12})$$

$$\hat{l}_{p} \hat{l}'_{q} \hat{k} \hat{k}' \hat{l}_{1}^{2} \begin{pmatrix} l_{p} & k & l_{1} \\ m_{l_{p}} & m_{k} & m_{l_{1}} \end{pmatrix} \begin{pmatrix} l_{p} & k & l_{1} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l'_{q} & k' & l_{1} \\ m_{l'_{q}} & m'_{k} & m_{l_{1}} \end{pmatrix} \begin{pmatrix} l'_{q} & k' & l_{1} \\ m_{l'_{q}} & m'_{k} & m_{l_{1}} \end{pmatrix} \begin{pmatrix} l'_{q} & k' & l_{1} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\sum_{qm_{q}} \hat{k} \hat{L} \hat{k}' \hat{L}' \hat{q}^{2} \begin{pmatrix} L & k' & q \\ M_{L} & m'_{k} & m_{q} \end{pmatrix} \begin{pmatrix} L & k' & q \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L' & k & q \\ M'_{L} & m_{k} & m_{q} \end{pmatrix} \begin{pmatrix} L' & k & q \\ 0 & 0 & 0 \end{pmatrix}$$

Finally we make use of

$$\begin{pmatrix} a & b & c \\ m_a & m_b & m_c \end{pmatrix} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a & c & b \\ m_a & m_c & m_b \end{pmatrix} \begin{pmatrix} a & c & b \\ 0 & 0 & 0 \end{pmatrix}$$

and compare our expression against (D.37). Parts that are not found in (D.37) are colored red. Maarten uses the definition,

$$\langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{s_{1}} \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1})|A'\rangle = \sum_{l_{p}=|j-1|} \sum_{l'_{q}=|j'-1|}^{j'+1} O^{p\dagger}(S,T,j,l,l_{p})O^{q}(S,T',j',l',l'_{q})$$

$$\sum_{t_{2}} (-1)^{M_{T}+M'_{T}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ t_{1} & t_{2} & -M_{T} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T' \\ t_{1} & t_{2} & -M'_{T} \end{pmatrix}$$

$$(-1)^{l_{p}+l'_{q}+m_{j}+m'_{j}} \hat{j} \hat{j}' \begin{pmatrix} l_{p} & S & j \\ m_{l_{p}} & m_{S} & -m_{j} \end{pmatrix} \begin{pmatrix} l'_{q} & S & j' \\ m_{l'_{q}} & m_{S} & -m'_{j} \end{pmatrix}$$

$$\frac{4\sqrt{2}}{\pi} \sum_{l_{1}m_{l_{1}}} \sum_{km_{k}} \sum_{k'm'_{k}} i^{L-L'-k+k'}$$

$$\begin{pmatrix} l_{p} & l_{1} & k \\ m_{l_{p}} & m_{l_{1}} & m_{k} \end{pmatrix} \begin{pmatrix} l_{p} & l_{1} & k \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l'_{q} & l_{1} & k' \\ m_{l'_{q}} & m_{l_{1}} & m'_{k} \end{pmatrix} \begin{pmatrix} l'_{q} & l_{1} & k' \\ 0 & 0 & 0 \end{pmatrix}$$

$$\sum_{qm_{q}} \hat{l}_{1}^{2} \hat{l}_{p} \hat{l}'_{q} \hat{k}^{2} \hat{k}'^{2} \hat{L} \hat{L}' \hat{q}^{2} \begin{pmatrix} L & k' & q \\ M_{L} & m'_{k} & m_{q} \end{pmatrix} \begin{pmatrix} L & k' & q \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L' & k & q \\ M'_{L} & m_{k} & m_{q} \end{pmatrix} \begin{pmatrix} L' & k & q \\ 0 & 0 & 0 \end{pmatrix}$$

$$(-1)^{N+N'} \int dP_{12} P_{12}^{2} \Pi_{NL}^{*}(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_{p}}^{l_{1}k}(p_{1}, P_{12}) \chi_{p,n'l_{q}}^{l_{1}k'}(p_{1}, P_{12})$$

In the case that Maarten has simply omitted the LS coupling but than there should **not** be $(-1)^{l+l'm_j+m'_j}$ as this stems from the 3j LS coupling symbol. Maarten also omitted the sums over l_p and l'_q and picked a specific contribution l,l' which do not necessarily correspond with l,l' of the coupled states $|A\rangle$, $|A'\rangle$. The factor $(-1)^{N+N'}$ is absorbed in the way Maarten calculated the

 $\Pi_{NL}(P_{12})$. Maartens definition of $\Pi_{NL}(P_{12})$ deviates slightly from our definition. This is detailed in Sec. 10.1.

If we now go back to the sum,

$$\begin{split} \langle A|\hat{n}_{t_{1}}^{[1]}(p_{1})|A'\rangle &= \langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\rangle + \langle A|\hat{n}_{t_{1}}^{[1],2}(p_{1})|A'\rangle \\ &= \langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\rangle + (-1)^{S+S'+T+T'} \, \langle A|\hat{n}_{s_{1},t_{1}}^{[1],1}(p_{1}) \left[(\vec{r}_{12},\vec{r}_{12}') \to (-\vec{r}_{12},-\vec{r}_{12}') \right] |A'\rangle \end{split}$$

A closer look at the above derivation shows that the effect of $(\vec{r}_{12}, \vec{r}'_{12}) \to (-\vec{r}_{12}, -\vec{r}'_{12})]$ translates into a sign switch in $i^{k-k'} \to i^{k'-k}, i^{K'-K} \to i^{K-K'}$. The phase factor $i^{L-L'}$ is connected to the c.m. coordinate R_{12} and is not affected. Suppose we are looking at a specific term in the summation over K, K'. (The dependence on $i^{k-k'}$ has vanished by integration over the solid angle of the one body momentum). The factors containing the imaginary unit i is explicitly written here.

$$\begin{split} \langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} &= \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} \left[i^{L-L'+K'-K} + (-1)^{S+S'+T+T'}i^{L-L'+K-K'}\right] \\ &= \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} \, i^{L-L'+K'-K} \left[1 + (-1)^{S+S'+T+T'+K-K'}\right] \end{split}$$

The imaginary unit i is pulled out of the matrix element $\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'}$, and written explicitly. It can easily be checked that this means that $\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'}$ is real (that is, if the CondonShortley convention for the Clebsch-Gordan coefficients (CGC) is adopted, ensuring that the CGC are real).

As outlined in Sec. 5.3, A and A' have the same parity.

$$(-1)^{l+L} = (-1)^{l'+L'} \Leftrightarrow (-1)^{l+l'+L+L'} = 1 \Leftrightarrow (-1)^{l\pm l'} = (-1)^{L\pm L'}. \tag{53}$$

From the antisymmetry requirement of a fermion wave function it follows that $(-1)^{l+S+T} = -1$, hence,

$$(-1)^{S+S'+T+T'} = (-1)^2(-1)^{l+l'} = (-1)^{L+L'}.$$
 (54)

This allows us to rewrite $\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'}$ as,

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'}\,i^{L-L'+K'-K}\left[1+(-1)^{L+L'+K-K'}\right]\,.$$

Because $L, L', K, K' \in \mathbb{N}$ we can flip the signs in the exponent of (-1), leading to,

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} i^{L-L'+K'-K} \left[1+(-1)^{L-L'+K'-K}\right].$$

An alternative expression can be derived using the fact that the correlation operators do not change the total spin S (S = S'),

$$\left\langle A|\hat{n}_{t_{1}}^{[1]}(p_{1})|A'\right\rangle _{K,K'}=\left\langle A|\hat{n}_{t_{1}}^{[1],1}(p_{1})|A'\right\rangle _{K,K'}i^{L-L'+K'-K}\left[1+(-1)^{T+T'+K-K'}\right]$$

Let us take a look how this is, **IN A VERY OBFUSCATED WAY**, dealt with in Maarten's code. The powers of i, namely $i^{L-L'+K'-K}$ and $i^{L-L'+K-K'}$, are denoted ipower1 and ipower2 in Maarten's code.

```
int ipower1= (LA-LB+l-la)%4;
int ipower2= (LA-LB+la-l)%4;
double ifactor= preifactor;
if( TA == TB ) {
    if( GSL_IS_ODD( ipower1 ) ) {
        if( (ipower1+ipower2)%4 == 0 ) continue;
```

```
else
            cerr << __FILE__ << __LINE__ << "IMAG" << endl;</pre>
    }
    if( fabs( ipower1) != fabs(ipower2) ) continue;
    if(ipower1 == 0)
        ifactor *= 2;
    else
        ifactor*= -2;
}
if( TA != TB ) {
    if( GSL_IS_ODD( ipower1 ) ) {
        if( fabs((ipower1+ipower2)%4) == 2 ) continue;
            cerr << __FILE__ << __LINE__ << "IMAG" << endl;
    if( fabs( ipower1) == fabs(ipower2) ) continue;
    if(ipower1 == 0)
        ifactor *= 2;
    else
        ifactor*= -2;
}
```

First of all the modulo 4's you see appearing is because n in i^n can be changed by multiples of four for free. The variables LA,LB,1,1a correspond to our L,L',K',K. Secondly note that as ipower1 and ipower2 are of the form a+b,a-b with $a,b\in\mathbb{Z}$ we have that they both have the same parity (even or odd) (The modulo 4 does not change this fact).

• T=T' (TA==TB) As we already have S=S' and l+S+T= odd, we have that $l\pm l'$ or equivalently $L\pm L'$ (LA,LB) is even,

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} i^{L-L'+K'-K} \left[1 + (-1)^{K-K'}\right]$$
(55)

- ipower1 is odd

As $L \pm L'$ is even, this implies K - K' is odd, from Eq. (55) it follows that the matrix element is zero. The check (ipower1+ipower2) % 4 == 0 is automatically valid and not necessary,

$$ipower1 + ipower2 = 2(L - L')$$
(56)

As L - L' is even, this is always a multiple of 4.

- ipower1 is even

As $L \pm L'$ is even, this implies K - K' is even as well. Eq. (55) then becomes,

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} 2i^{L-L'+K'-K},$$
 (57)

where it ensured that L-L'+K'-K is even, leading to a real result. If L-L'+K'-K is a multiple of 4 a positive sign appears, otherwise a negative sign will survive. Additionally both ipower1 and ipower2 are even. Through the modulo 4 they can only equal -2,0, or 2. Next we have the check

if(fabs(ipower1) != fabs(ipower2)) continue;

We will show that this is unnecessary as well. Without loss of generality we can assume

ipower1 =
$$(2n + 2m)\%4$$

ipower2 = $(2n - 2m)\%4$

With $n, m \in [-1, 0, 1]$. Larger ranges will be mapped back to [-1, 0, 1] by the modulo %4 operator. $|ipower1| \neq |ipower2|$ implies that ipower1 = 0, $ipower2 = \pm 2$, or $ipower1 = \pm 2$, ipower2 = 0. It is straightforward to see that $ipower1 = 0 \Leftrightarrow ipower2 = 0$.

- * ipower1 == 0 As we have just argued, this implies ipower2 == 0 as well. $i^{\text{ipower1}} + i^{\text{ipower2}} = 1 + 1 = 2$, justifying the ifactor *= 2;
- * ipower1 != 0 (corresponding to the else statement) We now have ipower1 = ± 2 , ipower2 = ± 2 , where the signs of ipower1 and ipower2 do not have to be the same. $i^{\text{ipower1}} + i^{\text{ipower2}} = (-1)^{\pm 1} + (-1)^{\pm 1} = -1 1 = -2$, hence the ifactor *=-2;
- $T \neq T'$, (TA != TB)

Again using the argument that l+S+T=odd, S=S' and the fact that $T,T'\in[0,1]$ it is easy to see that this time $l\pm l'$ or $L\pm L'$ are odd.

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} i^{L-L'+K'-K} \left[1 - (-1)^{K-K'}\right]. \tag{58}$$

- ipower1 is odd

As $L\pm L'$ is odd, this implies that K'-K and K-K' (1-la and la-1) are even. Eq. (58) is zero in this case. As we have that ipower1,ipower2 \in [-3, -1, 1, 3], we can, without loss of generality, assume that $L-L'(\mathtt{LA-LB})=m$, $m\in[-1,1]$, $K'-K(\mathtt{1-la})=2n$, $n\in[-1,0,1]$. Hence ipower1 + ipower2= 2m, $m\in[-1,1]$. Hence,

if (fabs((ipower1+ipower2)%4) == 2)

is always true here. $i^{ipower1} - i^{ipower2} = i^{ipower1} - i^{2m-ipower1} = i^{ipower1} - i^{ipower1} = 0$. Again the iteration is skipped in this case through the continue statement.

- ipower1 is even

In this case K - K' is odd and Eq. (58) becomes

$$\langle A|\hat{n}_{t_1}^{[1]}(p_1)|A'\rangle_{K,K'} = \langle A|\hat{n}_{t_1}^{[1],1}(p_1)|A'\rangle_{K,K'} 2i^{L-L'+K'-K},$$
 (59)

here it ensured that L - L' + K' - K is even, leading to a real result. If L - L' + K' - K is a multiple of 4 a positive sign appears, otherwise a negative sign will survive. Here we have power1, power2 \in [-2,0,2]. Next we have the check

if(fabs(ipower1) == fabs(ipower2)) continue;

Without loss of generality we can write

ipower1 =
$$(2n+1+2m+1)\%4$$

ipower2 = $(2n+1-2m-1)\%4$

With $n, m \in [-1, 0, 1]$. It is an easy exercise to show that ipower1 = \pm ipower2 implies that either n or m is equal to -1/2 which contradicts our starting point. This proves that |ipower1| = |ipower2| is never true in this case.

* ipower1 == 0 As we have just argued, this implies ipower2 == ± 2 . $i^{ipower1} - i^{ipower2} = 1 + 1 = 2$, justifying the ifactor *= 2;

* ipower1 != 0 (corresponding to the else statement) We now have ipower1 = ± 2 , ipower2 = 0. $i^{\text{ipower1}} - i^{\text{ipower2}} = (-1)^{\pm 1} - 1 = -2$, hence the ifactor *=-2;

THE MAIN MESSAGE:

All this spaghetti code above of Maarten is equivalent with the simple one-liner:

$$\begin{split} \text{ifactor*} &= i^{L-L'+K'-K} \left[1 + (-1)^{T+T'+K-K'} \right] \\ &\quad \text{or} \\ &\quad \text{ifactor*} &= i^{L-L'+K'-K} \left[1 + (-1)^{L-L'+K'-K} \right] \end{split}$$

ALL of the if-statements can be replaced by checking the antisymmetry $(-1)^{l+S+T} = (-1)^{l'+S'+T'} = -1$, the total spin-conservation S = S' and the parity conservation $(-1)^{l+L} = (-1)^{l'+L'}$. The implementation is now straightforward, with a = L - L' + K' - K we have

- \bullet if a is odd then the result is 0
- \bullet if a is even and multiple of 4 then result if 2
- if a is even and not a multiple of 4 then the result is -2

as those are the only things used to make the above derivation.

WHY MAARTEN, WHHYYYYYYYYYY?????????

This factor is now implemented in the code density_ob3::get_me12_factor, the implementation reads,

```
int get_me12_factor(int a){
    if (a & 0b01) { // odd
        return 0;
    } else if (a & 0b10) { // multiple of 2 but not of 4
        return -2;
    } else { //multiple of 4
        return 2;
    }
}
```

10.1 C.M. momentum integral

Let us take a closer a look at how the integral

$$(-1)^{N+N'} \int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12})$$

$$= N_{NL} N_{N'L'}(-1)^{N+N'} \nu^{-\frac{L+L'+3}{2}} \int dP_{12} P_{12}^2 P_{12}^L e^{-\frac{P_{12}^2}{2\nu}} L_N^{L+\frac{1}{2}}(P_{12}^2/\nu) P_{12}^{L'} e^{-\frac{P_{12}^2}{2\nu}} L_{N'}^{L'+\frac{1}{2}}(P_{12}^2/\nu)$$

$$\chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12})$$
 (60)

with $N_{NL} = [2n!/\Gamma(N+L+3/2)]^{1/2}$, is calculated. Note in particular the phase factor $(-1)^{N+N'}$, critical to the derivation. For the calculation of the above integral Maarten used a "somewhat more complicated approach", whereby the symmetry between the coordinate and momentum space of the HO is not exploited. The phase factor is hidden in Maarten's more complicated formulation.

Expanding the generalized Laguerre polynomials in momentum space gives,

$$(-1)^{N+N'} \int dP_{12} P_{12}^2 \Pi_{NL}^*(P_{12}) \Pi_{N'L'}(P_{12}) \chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12})$$

$$= N_{NL} N_{N'L'} \nu^{-\frac{L+L'+3}{2}} (-1)^{N+N'} \sum_{i=0}^{N} \sum_{j=0}^{N'} a_{NL,i} a_{NL,j} \nu^{-i-j}$$

$$\int dP_{12} P_{12}^{2+L+L'+2i+2j} e^{-\frac{P_{12}^2}{\nu}} \chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12})$$
(61)

is calculated in the code. As discussed in (??????) the symbols $\chi_{p,nl_p}^{l_1k}(p_1,P_{12})$ are calculated in density_ob_integrand_cf. The calculation of the c.m. momentum integral (Eq. (61)) is done in density_ob_integrand3. The integrand of (61) can be found in density_ob_integrand3::integrand.

$$P_{12}^2 P_{12}^{\text{index}} e^{-\frac{P_{12}^2}{\nu}} \chi_{p,nl_p}^{l_1k}(p_1,P_{12}) \chi_{p,n'l_o'}^{l_1k'}(p_1,P_{12})$$

Where the "index" (see code) is the power of the c.m. momentum (not including the P_{12}^2 of the Jacobian) L + L' + 2i + 2j.

ERROR: Maarten has extra summations, binomial coefficients, pochhammer symbols etc, of which I have no clue where they are coming from (see density_ob_integrand3::add @ line 34). If I read the code correctly it calculates the equation below, but I have no idea where it comes from... I was NOT able to derive this formula from the expression in appendix C.2 of Maartens thesis

Maarten's expression in the c++ code:

$$N_{NL}N_{N'L'}\nu^{-\frac{L+L'+3}{2}} \sum_{i=0}^{N} \sum_{j=0}^{N} a_{NL,i}a_{N'L',j}2^{i+j}$$

$$\sum_{i'=0}^{i} \sum_{j'=0}^{j} (-2\nu)^{-i'-j'} \binom{i}{i'} \binom{j}{j'} (L+i'+\frac{3}{2})^{(i-i')} (L'+j'+\frac{3}{2})^{(j-j')}$$

$$\int dP_{12} P_{12}^{2+L+L'+2i'+2j'} e^{-\frac{P_{12}^{2}}{\nu}} \chi_{p,nl_p}^{l_1k}(p_1, P_{12}) \chi_{p,n'l_q'}^{l_1k'}(p_1, P_{12}) \quad (62)$$

We introduced the notation $a^{(n)} = \Gamma(a+n)/\Gamma(a)$ for the rising factorial or Pochhammer function. It is easy to see that eqs. (61) and (62) are equivalent if we can show that,

$$(-1)^{N}\Pi_{NL}(P_{12}) = (-1)^{N}\sum_{i=0}^{N}a_{NL,i}\nu^{-i}P_{12}^{2i} = \sum_{i=0}^{N}a_{NL,i}2^{i}\sum_{i'=0}^{i}(-2\nu)^{-i'}\begin{pmatrix}i\\i'\end{pmatrix}(L+i'+\frac{3}{2})^{(i-i')}P_{12}^{2i'}$$

The proof goes as follows:

$$\begin{split} \sum_{i=0}^{N} a_{NL,i} 2^{i} \sum_{i'=0}^{i} (-2\nu)^{-i'} \begin{pmatrix} i \\ i' \end{pmatrix} (L+i'+\frac{3}{2})^{(i-i')} P_{12}^{2i'} \\ &= \sum_{i=0}^{N} \frac{(-1)^{i}}{i!(N-i)!} \frac{\Gamma(N+L+3/2)}{\Gamma(i+L+3/2)} 2^{i} \sum_{i'=0}^{i} (-2\nu)^{-i'} \frac{i!}{i'!(i-i')!} \frac{\Gamma(L+i+3/2)}{\Gamma(L+i'+3/2)} P_{12}^{2i'} \\ &= \sum_{i=0}^{N} \sum_{i'=0}^{i} \frac{(-1)^{i}}{(N-i)!i'!(i-i')!} \frac{\Gamma(N+L+3/2)}{\Gamma(L+i'+3/2)} 2^{i} (-2\nu)^{-i'} P_{12}^{2i'} \end{split}$$

Changing the summation order to $i' \in [0, N], i \in [i', N]$ gives,

$$\begin{split} \sum_{i'=0}^{N} \frac{(-1)^{i'}}{i'!(N-i')!} \frac{\Gamma(N+L+3/2)}{\Gamma(L+i'+3/2)} \nu^{-i'} P_{12}^{2i'} \sum_{i=i'}^{N} (-1)^{i} \frac{(N-i')!}{(N-i)!(i-i')!} 2^{i-i'} \\ &= (-1)^{N} \sum_{i'=0}^{N} a_{NL,i'} \nu^{-i'} P_{12}^{2i'} \sum_{i=i'}^{N} (-1)^{N-i} \frac{(N-i')!}{(N-i)!(i-i')!} 2^{i-i'} \end{split}$$

All we have to do now is to prove that

$$\sum_{i=i'}^{N} (-1)^{N-i} \frac{(N-i')!}{(N-i)!(i-i')!} 2^{i-i'} = 1$$

to get the equivalence of Eqs. (61) and (62). Defining j = N - i, j' = N - i' gives,

$$\sum_{j=j'}^{0} \frac{j'!}{j!(j'-j)!} (-1)^{j} 2^{j'-j} = \sum_{j=0}^{j'} \binom{j'}{j} (-1)^{j} 2^{j'-j} = (-1+2)^{j'} = 1^{N-i} = 1$$

This equivalence was checked in the code and found to be correct. Eq. (62) has been replaced with Eq. (61) in the c++ code, reducing the number of lines from 30 to 10 and removing the two extra (summation) nested for loops.

10.2 The matrix element $\mathcal{M}_{AA'}^{p,q}(s_1,t_1)$

Let us now look into the factorized matrix element $\mathcal{M}_{AA'}^{p,q}(s_1,t_1)$ in the one-body momentum distribution. Note that we implicitly assumed that the operators $\mathcal{O}^{p,q}$ do not change the quantum numbers of the orbital wave functions, $n(lS)jm_jNLM_L$ (the quantum numbers involved in the radial integrals). More explicitly,

$$\hat{\mathcal{O}}^p | n(lS) j m_i N L M_L \rangle = O^p(n, l, S, j, m_i, N, L, M_L) | n(lS) j m_i N L M_L \rangle$$

If not it is impossible to factorize $\mathcal{M}_{AA'}^{p,q}(s_1,t_1)$ as is done in (above (??)). We now investigate this in detail to make sure this is the case. For the central and spin-isospin operators $\hat{\mathcal{O}} = \mathbb{1}$, $\vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2$ this is trivially valid,

$$\begin{split} \mathbb{1} \left| n(lS)jm_jNLM_L \right\rangle &= \left| n(lS)jm_jNLM_L \right\rangle \\ \vec{\sigma}_1 \cdot \vec{\sigma_2}\vec{\tau_1} \cdot \vec{\tau_2} \left| n(lS)jm_jNLM_L \right\rangle &= \left[2S(S+1) - 3 \right] \left| n(lS)jm_jNLM_L \right\rangle \vec{\tau_1} \cdot \vec{\tau_2} \end{split}$$

The case for the tensor operator $\hat{S}_{12}=2\left[3\frac{\vec{S}\cdot\vec{r}_{12}}{r_{12}^2}-\vec{S}^2\right]$ requires a bit more work. As it only operates on the total spin S and the (unit) relative coordinate r_{12} we only write out the ket $|(lS)jm_j\rangle$ and drop $|n\rangle\,|NLM_L\rangle$.

Maybe one can use something like a general thing that scalar operators cannot change quantum numbers but let us proof it explicitly for our case.

$$\begin{split} \hat{S}_{12} \left| (lS)jm_{j} \right\rangle &= \sum_{l'S'j'm'_{j}} \left| (l'S')j'm'_{j} \right\rangle \left\langle (l'S')j'm'_{j} \right| \hat{S}_{12} \left| (lS)jm_{j} \right\rangle \\ &= \sum_{l'S'j'm'_{j}} \left| (l'S')j'm'_{j} \right\rangle 2\delta_{jj'}\delta_{m_{j}m'_{j}} (-1)^{S+j} \sqrt{120} \, \hat{l}\hat{l}' \begin{pmatrix} l & l' & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l & l' & 2 \\ S' & S & j \end{cases} \delta_{jj'}\delta_{m_{j}m'_{j}}\delta_{SS'}\delta_{S1} \\ &= \sum_{l'=|j-1|}^{j+1} \left| (l'S)jm_{j} \right\rangle (-1)^{S+j} \sqrt{120} \, \hat{l}\hat{l}' \begin{pmatrix} l & l' & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l & l' & 2 \\ S & S & j \end{cases} \delta_{S1} \\ &= \sum_{l'=|j-1|}^{j+1} S_{12}(S,j,l,l') \left| (l'S)jm_{j} \right\rangle \end{split}$$

Where we have made use of the unity,

$$\begin{split} \sum_{lSjm_{j}}\left|(lS)jm_{j}\right\rangle \left\langle (lS)jmj\right| &= \sum_{lSjm_{j}}\sum_{m_{l}m_{S}}\sum_{m'_{l}m'_{S}}\left\langle lm_{l}Sm_{S}|jm_{j}\right\rangle \left|lm_{l}Sm_{S}\right\rangle \left\langle jm_{j}|lm'_{l}Sm'_{S}\right\rangle \left\langle lm'_{l}Sm'_{S}\right| \\ &= \sum_{lS}\sum_{m_{l}m_{S}}\sum_{m'_{l}m'_{S}}\left|lm_{l}Sm_{S}\right\rangle \left\langle lm'_{l}Sm'_{S}\right|\sum_{jm_{j}}\left\langle lm_{l}Sm_{S}|jm_{j}\right\rangle \left\langle jm_{j}|lm'_{l}Sm'_{S}\right\rangle \\ &= \sum_{lS}\sum_{m_{l}m_{S}}\left|lm_{l}Sm_{S}\right\rangle \left\langle lm_{l}Sm_{S}\right| = \mathbb{1} \end{split}$$

Summarizing we can write,

$$\hat{\mathcal{O}}^p |n(lS)jm_jNLM_LTM_T\rangle = \sum_{l'=|j-1|}^{j+1} \mathcal{O}^p(S,T,j,l,l') |n(l'S)jm_jNLM_LTM_T\rangle$$

With

$$\hat{\mathcal{O}}^p = \mathbb{1} \Rightarrow \mathcal{O}^p(S, T, j, l, l') = \delta_{ll'} \tag{63}$$

$$\hat{\mathcal{O}}^p = \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 \Rightarrow O^p(S, T, j, l, l') = [2S(S+1) - 3][2T(T+1) - 3]\delta_{ll'}$$
(64)

$$\hat{\mathcal{O}}^p = \hat{S}_{12} \Rightarrow \mathcal{O}^p(S, T, j, l, l') = \mathcal{S}_{12}(S, j, l, l')$$
(65)

These equations are implemented by

operator_virtual::get_central_me
operator_virtual::get_tensor_me
operator_virtual::get_spinisospin_me

10.3 Isospin projection part

Let us investigate the expression,

$$\sum_{t_2} \left\langle \frac{1}{2} t_1 \frac{1}{2} t_2 | T M_T \right\rangle \left\langle \frac{1}{2} t_1 \frac{1}{2} t_2 | T' M_T' \right\rangle = \sum_{t_2} (-1)^{M_T + M_T'} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ t_1 & t_2 & -M_T \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T' \\ t_1 & t_2 & -M_T' \end{pmatrix}$$

separately as in Maartens code the 3j symbols do not appear but some if, else magic is employed. We will cover the 3 cases for $|TM_T\rangle$, $|T'M_T'\rangle \in \{|11\rangle, |10\rangle, |1-1\rangle, |00\rangle\}$, leading to 10 $(\frac{4\cdot5}{2})$ possible combinations:

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \pm 1 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \mp 1 \rangle = 0$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \pm 1 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \pm 1 \rangle = \delta_{t_1, \pm \frac{1}{2}}$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \pm 1 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 10 \rangle = 0$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 1 \pm 1 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 00 \rangle = 0$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 10 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 10 \rangle = \frac{1}{2}$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 10 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 00 \rangle = \operatorname{sgn}(t_1) \frac{1}{2} = t_1$$

$$\sum_{t_2} \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 00 \rangle \langle \frac{1}{2} t_1 \frac{1}{2} t_2 | 00 \rangle = \frac{1}{2}$$

Yes, there are 10 terms here above if you take the \pm -signs into account. The first line only counts for 1, the second, third and fourth lines each represent 2 different combinations. Together with the last 3 single combinations that makes 1+6+3=10. Note that all the non zero terms have $M_T = M_T'$, and we may effectively include a $\delta_{M_T,M_T'}$ (which is done in Maarten's Code):

```
if( t != 0 ) {
    if( t == -MT )
        continue;
    if( MT == 0 ) {
        preifactor*= 0.5;
        if( TA != TB ) preifactor *= t;
    }
}
if( t == 0 && TA != TB ) {
    continue;
}
```

t is equal to $2t_1$. A value of t=0 means summing over t_1 resulting in $\delta_{TT'}\delta_{M_TM'_T}$.

11 Two-body operators

We now turn our attention to 2-body operators.

11.1 norm_tb: public operator_virtual

Here we take a look at the calculation of the 2-body norm (Eq. (12). norm_tb::get_me seems to return

$$\frac{2}{A(A-1)} \sum_{AB} C_{\alpha_1,\alpha_2}^{A\dagger} C_{\alpha_1,\alpha_2}^{B} \hat{\delta}_{\alpha_1,\alpha_2}^{A,B}$$

Whereby the $\hat{\delta}$ operator denotes to possibility to isolate the contributions from specific quantum numbers $n_{\alpha_1}l_{\alpha_1}n_{\alpha_2}l_{\alpha_2}ST$. $(S_A = S_B \text{ and } T_A = T_B)$. The function norm_tb::sum_me inherited from operator_virtual::sum_me sums the function norm_tb::get_me over the pairs resulting in,

$$\frac{2}{A(A-1)} \sum_{\alpha_1,\alpha_2} \sum_{AB} C_{\alpha_1,\alpha_2}^{A\dagger} C_{\alpha_1,\alpha_2}^{B} \hat{\delta}_{\alpha_1,\alpha_2}^{A,B}$$

In the case of $\hat{\delta}_{\alpha_1,\alpha_2}^{A,B} \equiv 1$ this expression is equal to $\frac{2}{A(A-1)} \frac{A(A-1)}{2} = 1$.

norm_tb::sum_me_corr_coefs is inherited from operator_virtual::sum_me_corr_coefs. It performs the summation of Eq. (12, iterating over the paircoefs (a paircoef contains information about the states $|\alpha_1,\alpha_2\rangle$, $|A\rangle$, the coefficient $C_{\alpha_1,\alpha_2}^A=\langle A|\alpha_1,\alpha_2\rangle$ and all the coupled states $|B\rangle$ with non-zero overlap). First the iteration is started over all the paircoefs in a nucleus, then a nested iteration is done to access the coupled states (paircoefs) with non-zero overlap. The effect of the correlation operators is calculated with the functions,

```
norm_tb::get_me_corr_left
norm_tb::get_me_corr_right
norm_tb::get_me_corr_both
```

representing the correlation-operator terms \hat{i}^{\dagger} , \hat{i} and $\hat{i}^{\dagger}\hat{i}$.

12 Fourier transform of HO wave functions

The HO Shrödinger equation is given by

$$\left(-\frac{\hbar^2}{2m_N}\nabla^2 + \frac{1}{2}m_N\omega^2 r^2 - E\right)\psi(\vec{r}) = 0$$

With $\nu = \frac{m_N \omega}{\hbar}$ (units 1/fm²) and writing E in units $\hbar \omega$ (E $\rightarrow \hbar \omega E$),

$$\left(-\frac{1}{2}\nabla^2 + \frac{1}{2}\nu^2 r^2 - \nu E\right)\psi(\vec{r}) = 0$$

With solutions

$$\psi_{nlm}(\vec{r}) = \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})}\nu^{l+\frac{3}{2}}\right]^{\frac{1}{2}}r^{l}e^{-\frac{\nu r^{2}}{2}}L_{n}^{l+\frac{1}{2}}(\nu r^{2})Y_{lm}(\Omega_{r})$$

The HO Shrödinger equation in momentum space is obtained by using $\hat{\vec{r}} = i\hbar \vec{\nabla}_{\vec{p}}$

$$\left(\frac{p^2}{2m_N} - \frac{1}{2}m_N\hbar^2\omega^2\nabla^2 - E\right)\phi(\vec{p}) = 0$$

Defining $\nu' = 1/\nu = \frac{\hbar}{m_N \omega}$ and writing the energy E again in units of $\hbar \omega \ (E \to \hbar \omega E)$,

$$\left(-\frac{1}{2}\frac{\hbar^2}{\nu'}\nabla^2 + \frac{\nu'}{\hbar^2}p^2 - E\right)\phi(\vec{p}) = 0$$

If we define \vec{p} in units \hbar so that the dimension of \vec{p} becomes 1/fm we get $(\vec{p} \to \hbar \vec{p})$,

$$\left(-\frac{1}{2}\nabla^2 + \nu'^2 p^2 - \nu' E\right)\phi(\vec{p}) = 0$$

This has exactly the same form as the Shrödinger equation in r-space. The solutions are,

$$\phi_{nlm}(\vec{p}) = \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})}\nu'^{l+\frac{3}{2}}\right]^{\frac{1}{2}}p^{l}e^{-\frac{\nu'p^{2}}{2}}L_{n}^{l+\frac{1}{2}}(\nu'p^{2})Y_{lm}(\Omega_{p})$$

If you don't believe in the trick $\hat{\vec{r}} = i\hbar \vec{\nabla}_p$, we can also show this in a slightly more elaborate way, starting from the r-space Shrödinger equation and write (we will now explicitly put the \hbar 's in the exponents, this is generally omitted) $\psi_{nlm}(\vec{r})$ as $\frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int d^3\vec{p} e^{i\vec{p}\cdot\vec{r}/\hbar} \phi_{nlm}(\vec{p})$,

$$\left(-\frac{1}{2}\nabla^{2} + \frac{1}{2}\nu^{2}r^{2} - \nu E\right) \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int d^{3}\vec{p}e^{i\vec{p}\cdot\vec{r}/\hbar} \phi_{nlm}(\vec{p}) = 0$$

Noting that $\vec{r} \int d^3 \vec{p} e^{i\vec{p}\cdot\vec{r}/\hbar} \phi_{nlm}(\vec{p})$ can be written as,

$$\begin{split} \vec{r} \int \mathrm{d}^3 \vec{p} e^{i \vec{p} \cdot \vec{r} / \hbar} \phi_{nlm}(\vec{p}) &= \frac{\hbar}{i} \int \mathrm{d}^3 \vec{p} \left(\vec{\nabla}_p e^{i \vec{p} \cdot \vec{r} / \hbar} \right) \phi_{nlm}(\vec{p}) \\ &= \frac{\hbar}{i} \left[e^{i \vec{p} \cdot \vec{r} / \hbar} \phi_{nlm}(\vec{p}) \right]_{-\infty}^{+\infty} - \frac{\hbar}{i} \int \mathrm{d}^3 \vec{p} \, e^{i \vec{p} \cdot \vec{r} / \hbar} \left(\vec{\nabla}_p \phi_{nlm}(\vec{p}) \right) \\ &= i \hbar \int \mathrm{d}^3 \vec{p} \, e^{i \vec{p} \cdot \vec{r} / \hbar} \left(\vec{\nabla}_p \phi_{nlm}(\vec{p}) \right) \end{split}$$

and $\vec{\nabla} \int d^3 \vec{p} e^{i\vec{p}\cdot\vec{r}/\hbar} \phi_{nlm}(\vec{p}) = \int d^3 \vec{p} \frac{i}{\hbar} \vec{p} e^{i\vec{p}\cdot\vec{r}} \phi_{nlm}(\vec{p})$, we get,

We replaced \vec{p}' with \vec{p} in the last line. Again, redefining \vec{p} in units \hbar so that its dimension becomes 1/fm instead of MeV/c. We get,

$$\begin{split} &\left(-\frac{1}{2}\nabla_{\vec{p}}^2 + \frac{1}{2}\frac{1}{\nu^2}p^2 - \frac{1}{\nu}E\right)\phi_{nlm}(\vec{p}) = 0\\ \Rightarrow &\left(-\frac{1}{2}\nabla_{\vec{p}}^2 + \frac{1}{2}\nu'^2p^2 - \nu'E\right)\phi_{nlm}(\vec{p}) = 0 \end{split}$$

which is exactly what we set out to prove! But let us try a even more elaborate way by taking the Fourier transform of the wave function in r-space!

$$\begin{split} \phi_{nlm}(\vec{p}) &= \frac{1}{(2\pi)^{\frac{3}{2}}} \int \mathrm{d}^{3}\vec{r} \, e^{-i\vec{p}\cdot\vec{r}} \psi_{nlm}(\vec{r}) \\ &= \frac{1}{(2\pi)^{\frac{3}{2}}} \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})} \nu^{l+\frac{3}{2}} \right]^{\frac{1}{2}} \int \mathrm{d}^{3}\vec{r} \, e^{-i\vec{p}\cdot\vec{r}} r^{l} e^{-\frac{\nu r^{2}}{2}} L_{n}^{l+\frac{1}{2}} (\nu r^{2}) Y_{lm}(\Omega_{r}) \end{split}$$

For the sake of conciseness We define $N_{nl} = \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})}\nu^{l+\frac{3}{2}}\right]^{\frac{1}{2}}$. We use the plane wave expansion $e^{-i\vec{p}\cdot\vec{r}} = (4\pi)\sum_{km_k}(-i)^kj_k(pr)Y_{km_k}^*(\Omega_r)Y_{km_k}(\Omega_p)$.

$$\begin{split} \phi_{nlm}(\vec{p}) &= \frac{1}{(2\pi)^{\frac{3}{2}}} \int \mathrm{d}^{3}\vec{r} \, e^{-i\vec{p}\cdot\vec{r}} \psi_{nlm}(\vec{r}) \\ &= N_{nl} \frac{4\pi}{(2\pi)^{\frac{3}{2}}} \sum_{km_{k}} (-i)^{k} Y_{km_{k}}(\Omega_{p}) \int \mathrm{d}r \, r^{2} j_{k}(pr) r^{l} e^{-\frac{\nu r^{2}}{2}} L_{n}^{l+\frac{1}{2}}(\nu r^{2}) \int \mathrm{d}^{2}\Omega_{r} \, Y_{km_{k}}^{*}(\Omega_{r}) Y_{lm}(\Omega_{r}) \\ &= N_{nl} \sqrt{\frac{2}{\pi}} (-i)^{l} Y_{lm}(\Omega_{p}) \int \mathrm{d}r \, r^{2} j_{l}(pr) r^{l} e^{-\frac{\nu r^{2}}{2}} L_{n}^{l+\frac{1}{2}}(\nu r^{2}) \end{split}$$

Using the expansion of the spherical bessel function $j_l(x)$ and the generalized Laguerre polynomials $L_n^{l+\frac{1}{2}}(x)$,

$$j_{l}(x) = \sqrt{\frac{\pi}{2x}} J_{l+\frac{1}{2}}(x) = \sqrt{\frac{\pi}{2x}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \Gamma(k+l+3/2)} \left(\frac{x}{2}\right)^{2k+l+1/2}$$

$$= \sqrt{\frac{\pi}{2x}} J_{l+\frac{1}{2}}(x) = \sqrt{\frac{\pi}{2x}} \left(\frac{x}{2}\right)^{l+\frac{1}{2}} e^{-t} \sum_{k=0}^{\infty} \frac{t^{k}}{\Gamma(k+l+3/2)} L_{k}^{l+\frac{1}{2}} \left(\frac{x^{2}}{4t}\right)$$

$$L_{n}^{l+\frac{1}{2}}(x) = \sum_{j=0}^{n} (-1)^{j} \binom{n+l+1/2}{n-j} \frac{x^{j}}{j!} = \sum_{j=0}^{n} (-1)^{j} \frac{\Gamma(n+l+3/2)}{\Gamma(j+l+3/2)(n-j)!} \frac{x^{j}}{j!}$$

Making the "inspired" choice $t = \frac{p^2}{2\nu}$ we get,

$$\phi_{nlm}(\vec{p}) = N_{nl}(-i)^l p^l Y_{lm}(\Omega_p) e^{-\frac{p^2}{2\nu}} 2^{-l-\frac{1}{2}} \sum_{k=0}^{\infty} \frac{\left(\frac{p^2}{2\nu}\right)^k}{\Gamma(k+l+3/2)} \int dr \, r^{2+2l} L_k^{l+\frac{1}{2}} (\frac{\nu r^2}{2}) e^{-\frac{\nu r^2}{2}} L_n^{l+\frac{1}{2}} (\nu r^2)$$

Changing the integration variable r to $x = \nu r^2$ gives,

$$\phi_{nlm}(\vec{p}) = N_{nl}(-i)^l p^l Y_{lm}(\Omega_p) e^{-\frac{p^2}{2\nu}} 2^{-l-\frac{3}{2}} \nu^{-l-\frac{3}{2}}$$

$$\sum_{l=0}^{\infty} \frac{\left(\frac{p^2}{2\nu}\right)^k}{\Gamma(k+l+3/2)} \int \mathrm{d}x \, x^{l+\frac{1}{2}} e^{-\frac{x}{2}} L_k^{l+\frac{1}{2}} (x/2) \, L_n^{l+\frac{1}{2}}(x)$$

Using the identity (Applied Mathematics Letters 16 (2003) 1131-1136, equation (19)) 1.

$$\int_0^{+\infty} \mathrm{d}x \, x^{\alpha} e^{-\sigma x} L_n^{\alpha}(\lambda x) L_k^{\alpha}(\sigma x) = \frac{\Gamma(\alpha + n + 1)}{\sigma^{\alpha + n + 1}} \frac{(\sigma - \lambda)^{n - k}}{(n - k)!} \frac{\lambda^k}{k!}$$

With $\alpha = l + 1/2, \sigma = 1/2, \lambda = 1$ we get,

$$\begin{split} \phi_{nlm}(\vec{p}) &= N_{nl}(-i)^l p^l Y_{lm}(\Omega_p) e^{-\frac{p^2}{2\nu}} 2^{-l-\frac{3}{2}} \nu^{-l-\frac{3}{2}} \\ &\sum_{k=0}^{\infty} \frac{\left(\frac{p^2}{2\nu}\right)^k}{\Gamma(k+l+3/2)} \frac{\Gamma(n+l+3/2)}{(1/2)^{n+l+3/2}} \frac{\left(-\frac{1}{2}\right)^{n-k}}{(n-k)!} \frac{1}{k!} \\ &= N_{nl}(-i)^l p^l Y_{lm}(\Omega_p) e^{-\frac{p^2}{2\nu}} \nu^{-l-\frac{3}{2}} \\ &(-1)^n \sum_{k=0}^n \frac{(-1)^k}{k!} \left(\frac{p^2}{\nu}\right)^k \frac{\Gamma(n+l+3/2)}{(n-k)!\Gamma(k+l+3/2)} \\ &= \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})} \nu^{l+\frac{3}{2}}\right]^{\frac{1}{2}} (-i)^l p^l Y_{lm}(\Omega_p) e^{-\frac{p^2}{2\nu}} \nu^{-l-\frac{3}{2}} (-1)^n L_n^{l+\frac{1}{2}} (\frac{p^2}{\nu}) \end{split}$$

Note that we have applied a somewhat dirty trick we truncated the sum $\sum_{k=0}^{\infty} \dots 1/(n-k)! \dots$ to $\sum_{k=0}^{n} \dots 1/(n-k)! \dots$ The reasoning is that the factorial of a negative integer diverges to $\pm \infty$. Because the negative integer factorial appears in the denominator for k > n we can truncate the sum to k = n. With $\nu' = 1/\nu$ and $(-i)^l = i^{-l}$ the final solution becomes,

$$\phi_{nlm}(\vec{p}) = i^{-l} (-1)^n \left[\frac{2n!}{\Gamma(n+l+\frac{3}{2})} \nu'^{l+\frac{3}{2}} \right]^{\frac{1}{2}} p^l Y_{lm}(\Omega_p) e^{-\frac{\nu' p^2}{2}} L_n^{l+\frac{1}{2}} (\nu' p^2)$$

Which is the expected result except for the phase factor $(-i)^l(-1)^n=i^{2n+3l}$.

13 Optimizing code

13.1 one-body momentum distributions

In this section we discuss the performance and optimization of the code for the calculation of one-body momentum distributions.

Using valgrind --tool=callgrind it has been established that for light nuclei the majority of the cpu time is invested into calculating the one-dimensional integrals. For medium to heavy

¹ Remarks on Some Associated Laguerre Integral Results. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.2040&rep=rep1&type=pdf

nucleus	# 3j evaluations
$^4{ m He}$	39 372
$^{12}\mathrm{C}$	24 683 830
$^{27}\mathrm{Al}$	1 728 227 422
$^{40}\mathrm{Ca}$	1 937 280 216
56 Fe	50 136 361 455

Table 1: The number of 3j evaluations in the calculation of the one-body momentum distribution. Going much higher in this table is difficult. Logging the number of 3j calls slows down the calculations considerably.

nuclei $(A \gtrsim 20)$ the load shifts towards the evaluation of the 3j coefficients. In Maartens implementation an efficient storage scheme is used, described in SIAM J. SCI. COMPUT. 25, No 4 pp 1416, J.Rasch and A.c.h. Yu. This scheme exploits different symmetry properties of the 3j symbols. The evaluation of each 3j symbol requires the calculation of the index used to access the value of the 3j coefficient. As several symmetry operations are done this can become quite cpu-intensive as the 3j's are evaluated a lot (see table 1).

Here, we discuss the attempt to improve the speed of the one-body momentum distribution calculations. As the computation is only 3j-heavy for heavy nuclei, the testing of the optimizations has to be done for those. This makes this process somewhat slow.

In order to improve computation speed while sacrificing some memory efficiency an \mathtt{std} ::unordered_map is used to store the 3j coefficients. This is a "hashmap". The 3js are hashed and mapped to an index in the map. In this case it is imperative that the hash keys, given $j_1, j_2, j_3, m_1, m_2, m_3$ of the 3j coefficient, can be generated fast, while minimizing hash collisions.

This issue can be investigated by counting the number of elements in each "bucket" of the hash map. Elements in the same bucket have the same hash key (and are therefore in hash collision). For a perfect hash key the number of elements in each bucket is 0 (empty) or 1. With the following hash key², it is established that the number of hash collisions is limited to acceptable amounts,

 $2m_3$ is not used as it is guaranteed that $m_1 + m_2 + m_3 = 0$ before storing/requesting the 3j coefficient. Each value of j_1, j_2, j_3, m_1, m_2 shifted in multiples of 6 bits to the left. This is done to stay within 32 bits for the key $(5 \times 6 = 30)$. It is expected that for $2j_{\text{max}} < 2^6 = 64$ this hash key will perform well. The XOR operator $\hat{}$ is used instead of the + operator solely because of a small, but noticeable, speed gain.

It is established that the memory usage of the hashmap is less than or comparable to that of the previous storage scheme up to $A \approx 60$. For heavy nuclei the memory usage becomes significantly large, for example, ≈ 1 Gb for 142 Nd up to ≈ 3 Gb for 208 Pb. However a large fraction of this is not due to the growing hashmap.

The speed comparison is shown in table 2.

13.2 Heavy nuclei

The one-body momentum distributions for heavy nuclei gets very noisy tails. After extensive research it appeared that increasing integration precision in density_ob_integrand_cf::calculate softens this problem as shown in figure 6.

The time the code takes to complete is dominated by the highest l-value of the single-particle orbitals. The main reason I have not yet been able to calculate ^{208}Pb is because the valence shell has l=6 (for particle numbers above 112). ^{208}Pb has 126 neutrons, meaning the l=6 is populated, and the computation time is multiplied with a considerable factor.

²Several other "more advanced" hash-key generation algorithms have been tested but this simple one was found to be the best

nucleus	speedup $\frac{\text{old time}}{\text{new time}}$
$^{-12}\mathrm{C}$	1.00
27 Al	1.21
$^{40}\mathrm{Ca}$	1.04
$^{48}\mathrm{Ca}$	1.06
$^{56}\mathrm{Fe}$	1.39
$^{124}\mathrm{Xe}$	2.30
$^{142}\mathrm{Nd}$	2.81

Table 2: This table shows the speedup of the one-body momentum distributions when the hash map is used to store the 3j coefficients.

Figure 4: An overview of the hash map "buckets". For 12 C the collision rate is 80%, dropping to 60% for 56 Fe, 54% for 124 Xe and 50% for 142 Nd. Given that the collision rate drops when the mass number is increased, with the bucket sizes remaining small, combined with the fact that the number of buckets drops very fast for increasing bucket size, leads to the conclusion that the chosen hash key performs excellent.

Figure 5: The number of 3j coefficients in function of how many times they are evaluated. Note that both axes are logarithmic. For example, the first bar in both figures represent the number of 3j coefficients that have been evaluated twice.

Figure 6: The one-body momentum distribution before and after (new calcs.) the increased precision of density_ob_integrand_cf::calculate. The effect in 142 Xe is almost invisible on the log scale but for 142 Nd the fluctuations in the tails become problematic. It is expected that this effect grows worse for increasing mass number A.

References

[1] M. Vanhalst PhD thesis