Probability & Statistics for DS & AI

Joint distributions

Michele Guindani

Summer

Joint distributions are high-dimensional PDF (or PMF or CDF).

Joint distributions are high-dimensional PDF (or PMF or CDF).

$$\underbrace{f_X(x)}_{\text{one variable}} \Longrightarrow \underbrace{f_{X_1, X_2}(x_1, x_2)}_{\text{two variables}}$$

Joint distributions are high-dimensional PDF (or PMF or CDF).

$$\underbrace{f_{X}(x)}_{\text{one variable}} \Longrightarrow \underbrace{f_{X_{1},X_{2}}\left(x_{1},x_{2}\right)}_{\text{two variables}} \Longrightarrow \underbrace{f_{X_{1},X_{2},X_{3}}\left(x_{1},x_{2},x_{3}\right)}_{\text{three variables}}$$

Joint distributions are high-dimensional PDF (or PMF or CDF).

$$\underbrace{f_{X}(x)}_{\text{one variable}} \Longrightarrow \underbrace{f_{X_{1},X_{2}}(x_{1},x_{2})}_{\text{two variables}} \Longrightarrow \underbrace{f_{X_{1},X_{2},X_{3}}(x_{1},x_{2},x_{3})}_{\text{three variables}}$$

$$\Longrightarrow \ldots \Longrightarrow \underbrace{f_{X_{1},\ldots,X_{N}}(x_{1},\ldots,x_{N})}_{N \text{ variables}}$$

Notation:

Joint distributions are high-dimensional PDF (or PMF or CDF).

$$\underbrace{f_{X}(x)}_{\text{one variable}} \Longrightarrow \underbrace{f_{X_{1},X_{2}}(x_{1},x_{2})}_{\text{two variables}} \Longrightarrow \underbrace{f_{X_{1},X_{2},X_{3}}(x_{1},x_{2},x_{3})}_{\text{three variables}}$$

$$\Longrightarrow \ldots \Longrightarrow \underbrace{f_{X_{1},\ldots,X_{N}}(x_{1},\ldots,x_{N})}_{N \text{ variables}}$$

Notation:

$$f_X(x) = f_{X_1,\ldots,X_N}(x_1,\ldots,x_N)$$

Why study joint distributions?

- Joint distributions are ubiquitous in modern data analysis.
- ullet For example, an image from a dataset can be represented by a high-dimensional vector $oldsymbol{x}$.
- Each vector has certain probability to be present.
- Such probability is described by the high-dimensional joint PDF $f_X(x)$.

Joint PMF

Definition

Let X and Y be two discrete random variables. The joint PMF of X and Y is defined as

$$p_{X,Y}(x,y) = \mathbb{P}[X = x \text{ and } Y = y]$$

Figure: A joint PMF for a pair of discrete random variables consists of an array of impulses. To measure the size of the event A, we sum all the impulses inside A.

Example (Coin and die)

Let X be a coin flip, Y be a dice. Find the joint PMF.

Example (Coin and die)

Let X be a coin flip, Y be a dice. Find the joint PMF.

Solution: The sample space of X is $\{0,1\}$. The sample space of Y is $\{1,2,3,4,5,6\}$. The joint PMF is

Or written in equation:

$$p_{X,Y}(x,y) = \frac{1}{12}, \quad x = 0,1, \quad y = 1,2,3,4,5,6$$

Example (Coin and die - contd.)

In the previous example, define $A = \{X + Y = 3\}$ and $\mathcal{B} = \{ \min(X, Y) = 1 \}$. Find $\mathbb{P}[\mathcal{A}]$ and $\mathbb{P}[\mathcal{B}]$.

Solution:

$$\mathbb{P}[\mathcal{A}] = \sum_{(x,y)\in\mathcal{A}} p_{X,Y}(x,y) = p_{X,Y}(0,3) + p_{X,Y}(1,2)$$
$$= \frac{2}{12}$$

$$\mathbb{P}[\mathcal{B}] = \sum_{(x,y)\in\mathcal{B}} p_{X,Y}(x,y)$$

$$= p_{X,Y}(1,1) + p_{X,Y}(1,2) + \dots + p_{X,Y}(1,5) + p_{X,Y}(1,6)$$

$$= \frac{6}{12}$$

Joint PDF

Definition

Let X and Y be two continuous random variables. The joint PDF of X and Y is a function $f_{X,Y}(x,y)$ that can be integrated to yield a probability:

$$\mathbb{P}[\mathcal{A}] = \int_{\mathcal{A}} f_{X,Y}(x,y) dx dy$$

for any event $A \subseteq \Omega_X \times \Omega_Y$

Consider a uniform joint PDF $f_{X,Y}(x,y)$ defined on $[0,2]^2$ with $f_{X,Y}(x,y) = \frac{1}{4}$. Let $\mathcal{A} = [a,b] \times [c,d]$. Find $\mathbb{P}[\mathcal{A}]$.

Solution:

$$\mathbb{P}[\mathcal{A}] = \mathbb{P}[a \le X \le b, \quad c \le X \le d]$$

$$= \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy$$

$$= \int_{c}^{d} \int_{a}^{b} \frac{1}{4} dx dy = \frac{(d-c)(b-a)}{4}$$

Suppose $[a, b] \equiv [0, 1], [c, d] \equiv [0.5, 1.5],$ then

$$\mathbb{P}[A] = \mathbb{P}[0 \le X \le 1, \quad 0.5 \le Y \le 1.5] = \frac{1}{4}$$

Marginal PMF and PDF

The marginal PMF is defined as

$$p_X(x) = \sum_{y \in \Omega_Y} p_{X,Y}(x,y)$$
 and $p_Y(y) = \sum_{x \in \Omega_X} p_{X,Y}(x,y)$

and the marginal PDF is defined as

$$f_X(x) = \int_{\Omega_Y} f_{X,Y}(x,y) dy$$
 and $f_Y(y) = \int_{\Omega_X} f_{X,Y}(x,y) dx$

Independence of random variables

Definition

If two random variables X and Y are independent, then

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
, and $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Independence of random variables

Definition

If two random variables X and Y are independent, then

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
, and $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Definition

If a sequence of random variables X_1, \ldots, X_N are independent, then their joint PDF (or joint PMF) can be factorized:

$$f_{X_1,...,X_N}(x_1,...,x_N) = \prod_{n=1}^N f_{X_n}(x_n)$$
 (1)

• Consider a uniform joint PDF $f_{X,Y}(x,y)$ defined on $[0,2]^2$ with $f_{X,Y}(x,y) = \frac{1}{4}$. Let $\mathcal{A} = [a,b] \times [c,d]$. Find $\mathbb{P}[\mathcal{A}]$

In this case,

$$f_{X,Y}(x,y) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = f_X(x) f_Y(y) \quad 0 \le x, y \le 2$$

• Consider a uniform joint PDF $f_{X,Y}(x,y)$ defined on $[0,2]^2$ with $f_{X,Y}(x,y) = \frac{1}{4}$. Let $\mathcal{A} = [a,b] \times [c,d]$. Find $\mathbb{P}[\mathcal{A}]$

In this case,

$$f_{X,Y}(x,y) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = f_X(x) f_Y(y) \quad 0 \le x, y \le 2$$

Why is this important?

• Consider a uniform joint PDF $f_{X,Y}(x,y)$ defined on $[0,2]^2$ with $f_{X,Y}(x,y) = \frac{1}{4}$. Let $\mathcal{A} = [a,b] \times [c,d]$. Find $\mathbb{P}[\mathcal{A}]$

In this case,

$$f_{X,Y}(x,y) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = f_X(x) f_Y(y) \quad 0 \le x, y \le 2$$

Why is this important?

✓ It is easy to compute in Python the probability of events of vectors of random variables (multivariate distributions) if we know the independence structure between the random variables.

Example (Python example)

 $\bullet \ \text{Let} \ [a,b] \equiv [0,1], [c,d] \equiv [0.5,1.5]. \ \text{Compute}$ $\mathbb{P}[\mathcal{A}] = \mathbb{P}[0 \leq X \leq 1, \quad 0.5 \leq Y \leq 1.5].$

Example (Python example)

- Let $[a, b] \equiv [0, 1], [c, d] \equiv [0.5, 1.5]$. Compute $\mathbb{P}[A] = \mathbb{P}[0 \le X \le 1, \quad 0.5 \le Y \le 1.5]$.
- We can use Monte Carlo approximation.

```
import numpy as np
import random
np.random.seed(12345)
nreps=1000000
x= np.random.uniform(low=0, high=2, size=nreps)
y= np.random.uniform(low=0, high=2, size=nreps)
# Probability of A
condition=np.zeros(nreps)
for rep in range(nreps):
condition[rep]=(((x[rep]>0) and (x[rep]<1)) and
                              ((y[rep]>0.5) \text{ and } (y[rep]<1.5))) #same line
count=sum(condition)
```

freq=count/nreps

In the previous example, $\mathcal{B} = \{X + Y \leq 2\}$. Find $\mathbb{P}[\mathcal{B}]$

In the previous example, $\mathcal{B} = \{X + Y \leq 2\}$. Find $\mathbb{P}[\mathcal{B}]$

```
import numpy as np
import random
np.random.seed(12345)
nreps=1000000
x= np.random.uniform(low=0, high=2, size=nreps)
y= np.random.uniform(low=0, high=2, size=nreps)
# Probability of B
sumxy=np.zeros(nreps)
for rep in range(nreps):
sumxy[rep] = x[rep] + y[rep]
freq=sum(sumxy<=2)/nreps
print(freq) #0.4998
```

Not all r.v. are independent!!

ullet Consider two random variables X and Y with a joint PDF given by

$$f_{X,Y}(x,y) \propto \exp\left\{-(x-y)^2\right\}$$

$$= \exp\left\{-x^2 + 2xy - y^2\right\}$$

$$= \underbrace{\exp\left\{-x^2\right\}}_{f_X(x)} \underbrace{\exp\left\{2xy\right\}}_{\text{extra term}} \underbrace{\exp\left\{-y^2\right\}}_{f_Y(y)}$$

• This PDF cannot be factorized into a product of two marginal PDFs. Therefore, the random variables are dependent.

An interesting case

Example

• A joint Gaussian random variable (X, Y) has a joint PDF given by:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{\left((x-\mu_X)^2 + (y-\mu_Y)^2\right)}{2\sigma^2}\right\}$$

Find the marginal PDFs $f_X(x)$ and $f_Y(y)$

• Solution:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

An interesting case

Example

• A joint Gaussian random variable (X, Y) has a joint PDF given by:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{\left((x-\mu_X)^2 + (y-\mu_Y)^2\right)}{2\sigma^2}\right\}$$

Find the marginal PDFs $f_X(x)$ and $f_Y(y)$

• Solution:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{\left((x-\mu_X)^2 + (y-\mu_Y)^2\right)}{2\sigma^2}\right\} dy$$

An interesting case

Example

• A joint Gaussian random variable (X, Y) has a joint PDF given by:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{\left((x-\mu_X)^2 + (y-\mu_Y)^2\right)}{2\sigma^2}\right\}$$

Find the marginal PDFs $f_X(x)$ and $f_Y(y)$

• Solution:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{\left((x-\mu_X)^2 + (y-\mu_Y)^2\right)}{2\sigma^2}\right\} dy$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu_X)^2}{2\sigma^2}\right\} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu_Y)^2}{2\sigma^2}\right\} dy$$

• Recognizing that the last integral is equal to unity because it integrates a Gaussian PDF over the real line, it follows that

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu_X)^2}{2\sigma^2}\right\}$$

• Similarly, we have

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu_Y)^2}{2\sigma^2}\right\}$$

• It's immediate to see that $f_{X,Y}(x,y) = f_X(x)f_Y(y)$, hence X, Y are independent.

Independent and Identically Distributed (i.i.d.)

A collection of random variables X_1, \ldots, X_N are called independent and identically distributed (i.i.d.) if

- All X_1, \ldots, X_N are independent;
- All X_1, \ldots, X_N have the same distribution, i.e., $f_{X_1}(x) = \ldots = f_{X_N}(x)$.

Why is i.i.d. so important?

- ▶ If a set of random variables are i.i.d., then the joint PDF can be written as a product of PDFs.
- Integrating a joint PDF is not fun. Integrating a product of PDFs is a lot easier.

Let $X_1, X_2, ..., X_N$ be a sequence of i.i.d. Gaussian random variables where each X_i has a PDF

$$f_{X_i}(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

 \leftarrow The joint PDF of X_1, X_2, \ldots, X_N is

$$f_{X_1,...,X_N}(x_1,...,x_N) = \prod_{i=1}^N \left\{ \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x_i^2}{2}\right\} \right\}$$
$$= \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left\{-\sum_{i=1}^N \frac{x_i^2}{2}\right\}$$

Joint CDF

• We can extend the definition of CDF also to vectors of r.v.'s.

Let X and Y be two random variables. The joint CDF of X and Y is the function $F_{X,Y}(x,y)$ such that

$$F_{X,Y}(x,y) = \mathbb{P}[X \le x \cap Y \le y]$$

• We won't say anything more about joint CDFs (see textbook)

Joint CDF

• We can extend the definition of CDF also to vectors of r.v.'s.

Let X and Y be two random variables. The joint CDF of X and Y is the function $F_{X,Y}(x,y)$ such that

$$F_{X,Y}(x,y) = \mathbb{P}[X \le x \cap Y \le y]$$

• We won't say anything more about joint CDFs (see textbook)

Joint Expectation

• Similarly, for the expectation, we can define the joint expectation:

$$\mathbb{E}[XY] = \sum_{y \in \Omega_Y} \sum_{x \in \Omega_X} xy \cdot pX, Y(x, y)$$

if X and Y are discrete, or

$$\mathbb{E}[XY] = \int_{y \in \Omega_Y} \int_{x \in \Omega_X} xy \cdot f_{X,Y}(x,y) dxdy$$

if X and Y are continuous.

Covariance

Let X and Y be two random variables. Then the covariance of X and Y is

$$Cov(X, Y) = \mathbb{E}\left[\left(X - \mu_X\right)\left(Y - \mu_Y\right)\right]$$

where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$.

Covariance

Let X and Y be two random variables. Then the covariance of X and Y is

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$.

Remark:

$$Cov(X, X) = \mathbb{E}[(X - \mu_X)(X - \mu_X)] = Var[X]$$

Covariance

Let X and Y be two random variables. Then the covariance of X and Y is

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

where $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$.

Remark:

$$Cov(X, X) = \mathbb{E}\left[\left(X - \mu_X\right)\left(X - \mu_X\right)\right] = Var[X]$$

Theorem

Let X and Y be two random variables. Then,

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Interesting properties

ullet For any X and Y

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$Var[X + Y] = Var[X] + 2 Cov(X, Y) + Var[Y]$$

Correlation coefficient

Definition

Let X and Y be two random variables. The correlation coefficient is

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}$$

- ρ is always between 0 and 1 , i.e., $1 \le \rho \le 1$. This is due to the cosine angle definition.
- When X = Y (fully correlated), $\rho = +1$.
- When X = -Y (negatively correlated), $\rho = -1$.
- When X and Y uncorrelated then $\rho = 0$.

Independence

Theorem

If X and Y are independent, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

- Consider the following two statements:
- a. X and Y are independent;
- b. Cov(X, Y) = 0.
- \Rightarrow It holds that (a) implies (b), but (b) does not imply (a). Thus, independence is a stronger condition than correlation.

Independence

Ideal vs Empirical

Theory:

$$\rho = \frac{\mathbb{E}[XY] - \mu_X \mu_Y}{\sigma_X \sigma_Y}.$$

Practice:

$$\widehat{\rho} = \frac{\frac{1}{N} \sum_{n=1}^{N} x_n y_n - \overline{x} \, \overline{y}}{\sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2} \sqrt{\frac{1}{N} \sum_{n=1}^{N} (y_n - \overline{y})^2}}$$

