

Ranking Data with Continuous Labels through Oriented Recursive Partitions

Stephan Clémençon Mastane Achab LTCI, Télécom Paris Tech

BASELINE: BIPARTITE RANKING

- n observations: $(X_i, Y_i) \in \mathcal{X} \times \{-1, 1\}$, where $\mathcal{X} \subset \mathbb{R}^d$
- Goal: build a scoring function $s: \mathcal{X} \to \mathbb{R}$ s.t. s(X) and $Y \nearrow$ or \searrow together with large probability
- Functional criterion: maximize $\forall \alpha \in [0,1]$, $ROC_s(\alpha) = 1 G_s \circ (1 H_s^{-1})(1 \alpha)$, with G_s and H_s cdf of (s(X)|Y = +1) and (s(X)|Y = -1)
- More convenient to maximize a scalar summary criterion: $AUC(s) = \int_{\alpha=0}^{1} ROC_s(\alpha) d\alpha = \mathbb{P}(s(X) < s(X')|Y < Y') + \frac{1}{2}\mathbb{P}(s(X) = s(X')|Y < Y')$
- Optimal scores: $s^*(x) = \mathbb{P}(Y = 1 | X = x)$ and strictly increasing transforms
- Treerank: Cart-like algorithm maximizing empirical AUC \rightarrow produces piecewise constant scoring function

Our problem: continuous ranking

- Continuous label $Y \in [0, 1]$
- Goal: build a scoring function s "good" for any bipartite subproblem at level $y \in [0, 1]$, with $Z_y = -1$ if Y < y and $Z_y = +1$ if Y > y
- Continuum of functional sub-criteria: $\forall y \in [0,1]$, maximize $\forall \alpha \in [0,1]$, $ROC_{s,y}(\alpha)$
- Aggregated criteria: $IROC_s(\alpha) = \int_{y=0}^1 ROC_{s,y}(\alpha) F_Y(dy)$ and $IAUC(s) = \int_{\alpha=0}^1 IROC_s(\alpha) d\alpha = \mathbb{P}(s(X) < s(X')|Y < Y'' < Y') + \frac{1}{2}\mathbb{P}(s(X) = s(X')|Y < Y'' < Y')$
- Existence of optimal scores: regression model $Y = h(X) + \epsilon$, exponential families \to optimal scores: $m(x) = \mathbb{E}[Y|X=x]$ and strictly increasing transforms

- regression function m(x) is optimal
- s_{LS} good for least squares regression but not for ranking
- $s^*(x)$ is also optimal even if large MSE

REFERENCES

- S. Robbiano S. Clémençon and N. Vayatis. Ranking data with ordinal labels: optimality and pairwise aggregation. Machine Learning, 91(1):67–104, 2013.
- S. Clémencçon and N. Vayatis. Tree-based ranking methods. IEEE Transactions on Information Theory, 55(9):4316–4336, 2009.
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks, 1984.

CRANK ALGORITHM

- Same idea as TreeRank
- In CRANK, IAUC plays the same role as AUC in TreeRank

CRANK

- 1: Input. Training data $\{(X_i, Y_i)\}_{i=1}^n$, tree depth $D \ge 1$.
- 2: Initialization. Set $C_{0,0} = \mathcal{X}$.
- 3: **Iterations.** For $d = 0, \ldots, D 1$ and $k = 0, \ldots, 2^d 1$,
 - (a) Find the best sub-rectangle $C_{d+1,2k}$ of rectangle $C_{d,k}$ in the empirical IAUC sense.
 - (b) Then, set $C_{d+1,2k+1} = C_{d,k} \setminus C_{d+1,2k}$.
- 4: Output. After D iterations, we get the piecewise constant scoring function:

$$s_D(x) = \sum_{k=0}^{2^D - 1} (2^D - k) \mathbb{I}\{x \in C_{D,k}\}.$$

Numerical experiments

- Regression model without noise: Y = m(X), with X and Y valued in [0,1] and m a polynomial function.
- Critical window I = [0.4, 0.5] where m slightly oscillates and $\mathbb{P}(Y \in I) = 0.8$.
- Training on $\{(X_i, Y_i)\}_{i=1}^{n_{\text{train}}}$ with $Y_i = m(X_i)$ and $n_{\text{train}} = 100$ with tree depth D = 3 \rightarrow then test on $n_{\text{test}} = 2000$ new iid copies of X.

	IAUC	Kendall τ	MSE
CRANK	0.95	0.92	0.10
KENDALL	0.94	0.93	0.10
CART	0.61	0.58	$7.4 \times 10^{-}$

Table 1: IAUC, Kendall τ and MSE empirical measures on test set