0.1 不变子空间

例题 0.1 设线性空间 V 上的线性变换 φ 在基 $\{e_1, e_2, e_3, e_4\}$ 下的表示矩阵为

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & -2 \\ 2 & -1 & 0 & 1 \\ 2 & -1 & -1 & 2 \end{pmatrix},$$

求证: $U = L(e_1 + 2e_2, e_3 + e_4, e_1 + e_2)$ 和 $W = L(e_2 + e_3 + 2e_4)$ 都是 φ 的不变子空间.

证明 要证明由若干个向量生成的子空间是某个线性变换的不变子空间,通常只需证明这些向量在线性变换的作用下仍在这个子空间中即可.因此只需证明这些子空间的一组基在线性变换的作用下仍在这个子空间中即可.注意到 $\varphi(e_1+2e_2)$ 的坐标向量为

$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & -2 \\ 2 & -1 & 0 & 1 \\ 2 & -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix},$$

即 $\varphi(e_1 + 2e_2) = e_1 + 2e_2 \in U$. 同理可计算出

$$\varphi(e_3 + e_4) = (e_1 + 2e_2) + (e_3 + e_4) \in U,$$

$$\varphi(e_1 + e_2) = (e_1 + e_2) + (e_3 + e_4) \in U,$$

$$\varphi(e_2 + e_3 + 2e_4) = e_2 + e_3 + 2e_4 \in W,$$

因此结论成立.

命题 0.1

设 V_1, V_2 是 V 上线性变换 φ 的不变子空间, 任取 $V_0 \subset V$, 求证:, $V_0, V_1 \cap V_2, V_1 + V_2$ 也是 φ 的不变子空间.

证明 V_0 是 φ - 不变子空间是显然的.

任取 $v \in V_1 \cap V_2$, 则由 $v \in V_i$ 可得 $\varphi(v) \in V_i (i = 1, 2)$, 于是 $\varphi(v) \in V_1 \cap V_2$, 从而 $V_1 \cap V_2$ 是 φ - 不变子空间. 任取 $v \in V_1 + V_2$, 则 $v = v_1 + v_2$, 其中 $v_i \in V_i$, 故 $\varphi(v_i) \in V_i (i = 1, 2)$, 于是 $\varphi(v) = \varphi(v_1) + \varphi(v_2) \in V_1 + V_2$, 从而 $V_1 + V_2$ 是 φ - 不变子空间.

命题 0.2

设 φ 是 $n(n \ge 2)$ 维线性空间 V 上的线性变换, 证明以下 n+1 个结论等价:

(1) V 的任一 1 维子空间都是 φ - 不变子空间;

.

(r) V 的任一r 维子空间都是 φ - 不变子空间;

.

(n-1)V 的任一n-1 维子空间都是 φ - 不变子空间;

(n)V 本身就是 φ - 不变子空间;

(n+1) φ 是纯量变换.

证明 $(n+1) \Rightarrow (n)$ 是显然的. 注意到当 $1 \le i \le n-2$ 时, 任一 i 维子空间 V_0 都可表示为两个 i+1 维子空间 V_1, V_2 的交; 而 V 的任意 n-1 维子空间都是 V 的子空间. 于是由命题??可知: $(n) \Rightarrow (n-1) \Rightarrow (n-2) \Rightarrow \cdots \Rightarrow (1)$ 显然成立, 剩下只要证明 $(1) \Rightarrow (n+1)$ 即可. 取 V 的一组基 $\{e_1, e_2, \cdots, e_n\}$,由 (1) 可知 $L(e_1), L(e_2), \cdots, L(e_n)$ 都是 φ -不变子空间,设 $\varphi(e_i) = \lambda_i e_i (1 \le i \le n)$. 只要证明 $\lambda_1 = \lambda_2 = \cdots = \lambda_n$ 即可得到 φ 为纯量变换. 用反证法, 不妨设

 $\lambda_1 \neq \lambda_2$,则由 $L(e_1 + e_2)$ 也是 φ -不变子空间可设 $\varphi(e_1 + e_2) = \lambda_0(e_1 + e_2)$,于是 $(\lambda_1 - \lambda_0)e_1 + (\lambda_2 - \lambda_0)e_2 = \mathbf{0}$,从而由 e_1, e_2 线性无关可知 $\lambda_1 = \lambda_2 = \lambda_0$,矛盾.

命题 0.3

设 φ , ψ 是线性空间 V 上的线性变换且 $\varphi\psi = \psi\varphi$, 求证: $\mathrm{Im}\varphi$ 及 $\mathrm{Ker}\varphi$ 都是 ψ 的不变子空间. 同理, $\mathrm{Im}\psi$ 及 $\mathrm{Ker}\psi$ 也都是 φ 的不变子空间.

证明 任取 $v \in \text{Im}\varphi$, 即 $v = \varphi(u)$, 则 $\psi(v) = \psi\varphi(u) = \varphi\psi(u) \in \text{Im}\varphi$, 即 $\text{Im}\varphi$ 是 ψ 的不变子空间.

任取 $v \in \text{Ker}\varphi$, 即 $\varphi(v) = 0$, 则 $\varphi\psi(v) = \psi\varphi(v) = 0$. 因此, $\psi(v) \in \text{Ker}\varphi$, 即 $\text{Ker}\varphi \neq \psi$ 的不变子空间.

命题 0.4

设 φ 是 n 维线性空间 V 上的线性变换,W 为 φ - 不变子空间, φ 在 W 上的限制为 $\varphi|_W$, 则 $\varphi|_W$ 的像集与原像集相同且均为 W, 对 $\forall k \in \mathbb{N}, (\varphi|_W)^k$ 有意义并且 $\varphi^k|_W = (\varphi|_W)^k$.

证明 因为 W 为 φ - 不变子空间, 所以 $\varphi|_W$ 的像集与原像集相同且均为 W 是显然的. 并且对 $\forall \alpha \in W$, 有 $\varphi|_W(\alpha) \in W$. 因此对 $\forall k \in \mathbb{N}$, 有 $(\varphi|_W)^k(\alpha) \in W$. 故 $(\varphi|_W)^k$ 有意义. 下证 $\varphi^k|_W = (\varphi|_W)^k$.

对 $\forall k \in \mathbb{N}$, 显然 $\varphi^k|_W$ 和 $(\varphi|_W)^k$ 的定义域都是 W. 从而对 $\forall a \in W$, 有

$$\varphi^k|_W(a) = \varphi^k(a),$$

$$(\varphi|_W)^k(a) = (\varphi|_W)^{k-1}\varphi|_W(a) = (\varphi|_W)^{k-1}\varphi(a) = \dots = \varphi^k(a).$$

因此 $\varphi^k|_W(a) = (\varphi|_W)^k(a) = \varphi^k(a)$. 故 $\varphi^k|_W = (\varphi|_W)^k$.

命题 0.5

设 φ 是 n 维线性空间 V 上的自同构,W 为 φ - 不变子空间, φ 在 W 上的限制为 $\varphi|_W$, 则 $\varphi|_W$ 的像集与原像集相同且均为 W, $\varphi|_W$ 是 W 上的自同构并且 $(\varphi|_W)^{-1} = \varphi^{-1}|_W$.

证明

例题 0.2 设 A 为数域 \mathbb{K} 上的 n 阶幂零阵,B 为 n 阶方阵,满足 AB = BA 且 r(AB) = r(B). 求证:B = O.

注 因为 Im B 是 A — 不变子空间, 所以 $A|_{Im B}(Im B) \in Im B$. 因此 $(A|_{Im B})^k$ 有意义. 对于一般的限制 $W, (A|_W)^k$ 不一定有意义. 见命题??.

证明 将 A, B 都看成是 \mathbb{K}^n 上 (由矩阵 A, B 乘法诱导) 的线性变换, 设 $A^k = O$, 其中 k 为正整数. 由 AB = BA 以及命题??可知 ImB 是 A— 不变子空间. 考虑 A 在 ImB 上的限制 $A|_{ImB}$, 其像空间的维数 $dim AB(\mathbb{K}^n) = r(AB) = r(B) = dim ImB$, 故 $A|_{ImB}$ 是 ImB 上的满线性变换. 于是由命题??和满射的复合仍是满射可知 $(A|_{ImB})^k = A^k|_{ImB} = O|_{ImB}$ 也是 ImB 上的满线性变换, 从而只能是 $ImB = \{0\}$, 即 B = O.

命题 0.6

设 φ 是n维线性空间V上的自同构, 若W是 φ 的不变子空间, 求证:W 也是 φ^{-1} 的不变子空间.

证明 将 φ 限制在 W 上,得到 φ : $W \to W$. 它是 W 上的线性变换. 由于 φ 是单映射,故它在 W 上的限制也是单映射,从而由推论??可知, φ 在 W 上的限制也是满映射,即它是 W 上的自同构,于是结合命题??可知 $W = \varphi|_W(W) = \varphi(W)$,对其两边同时取 φ^{-1} 可得 $\varphi^{-1}(W) = W$. 故结论得证.

 $\dot{\mathbf{z}}$ 如果 V 是无限维线性空间,则这个命题的结论一般并不成立. 例如, $V=\mathbb{K}[x^{-1},x]$ 是由数域 \mathbb{K} 上的 Laurent 多项式 $f(x)=\sum_{i=-m}^n a_i x^i (m,n\in\mathbb{N})$ 构成的线性空间,V 上的线性变换 φ,ψ 定义为 $\varphi(f(x))=xf(x),\psi(f(x))=x^{-1}f(x)$. 显然, φ,ψ 互为逆映射,从而都是自同构. 注意到 $W=\mathbb{K}[x]$ 是 V 的 φ - 不变子空间,但 W 显然不是 φ^{-1} - 不变子空间.

证明 任取 D 的一个 $k(k \ge 1)$ 维不变子空间 V_0 ,再取出 V_0 中次数最高的一个多项式 (不唯一) $f(x) = a_l x^l + a_{l-1} x^{l-1} + \cdots + a_1 x + a_0$,其中 $a_l \ne 0$.注意到 V_0 是 D- 不变子空间,由 $D^l f(x) = a_l l! \in V_0$ 可得 $1 \in V_0$;由 $D^{l-1} f(x) = a_l l! x + a_{l-1} (l-1)! \in V_0$ 可得 $x \in V_0$; \cdots ;由 $D f(x) = a_l l x^{l-1} + a_{l-1} (l-1) x^{l-2} + \cdots + a_1 \in V_0$ 可得 $x^{l-1} \in V_0$;最后由 $f(x) \in V_0$ 可得 $x^l \in V_0$. 因为 V_0 中所有多项式的次数都小于等于 l,所以 $\{1, x, \cdots, x^l\}$ 构成了 V_0 的一组基,于是 $k = \dim V_0 = l+1$,即 l = k-1,从而结论得证.

例题 0.4 设 φ 是 n 维线性空间 V 上的线性变换, φ 在 V 的一组基下的表示矩阵为对角阵且主对角线上的元素互不相同, 求 φ 的所有不变子空间.

证明 证法一:设 φ 在基 e_1, e_2, \cdots, e_n 下的表示矩阵为 $\operatorname{diag}\{d_1, d_2, \cdots, d_n\}$, 其中 d_1, d_2, \cdots, d_n 互不相同,则 $\varphi(e_i) = d_i e_i$. 对任意的指标集 $1 \leq i_1 < i_2 < \cdots < i_r \leq n$, 容易验证 $U = L(e_{i_1}, e_{i_2}, \cdots, e_{i_r})$ 是 φ 的不变子空间. 注意到 $1, 2, \cdots, n$ 的子集共有 2^n 个 (空集对应于零子空间), 故上述形式的 φ — 不变子空间共有 2^n 个. 下面我们证明 φ 的任一不变子空间都是上述不变子空间之一.

任取 φ 的非零不变子空间U,设指标集

$$I = \{i \in [1, n] |$$
存在某个 $\alpha \in U$,使得 $\alpha = ce_i + \cdots$,其中 $c \neq 0\}$.

因为 $U \neq 0$, 故 $I \neq \emptyset$, 不妨设 $I = \{i_1, i_2, \cdots, i_r\}$. 由指标集 I 的定义可知, $U \subseteq L(e_{i_1}, e_{i_2}, \cdots, e_{i_r})$. 下面我们证明 $e_{i_i} \in U(j = 1, 2, \cdots, r)$ 成立. 不失一般性, 我们只需证明 $e_{i_1} \in U$ 即可. 由指标集 I 的定义可知, 存在 $\alpha \in U$, 使得

$$\alpha = c_1 \boldsymbol{e}_{i_1} + c_2 \boldsymbol{e}_{i_2} + \cdots + c_k \boldsymbol{e}_{i_k},$$

其中 c_1, c_2, \cdots, c_k 都是非零常数. 将上式作用 φ^l , 可得

$$\varphi^l(\alpha) = c_1 d_{i_1}^l \boldsymbol{e}_{i_1} + c_2 d_{i_2}^l \boldsymbol{e}_{i_2} + \dots + c_k d_{i_k}^l \boldsymbol{e}_{i_k}, l = 1, 2, \dots, k - 1.$$

因此,我们有

$$(\alpha, \varphi(\alpha), \cdots, \varphi^{k-1}(\alpha)) = (e_{i_1}, e_{i_2}, \cdots, e_{i_k}) \begin{pmatrix} c_1 & c_1 d_{i_1} & \cdots & c_1 d_{i_1}^{k-1} \\ c_2 & c_2 d_{i_2} & \cdots & c_2 d_{i_2}^{k-1} \\ \vdots & \vdots & & \vdots \\ c_k & c_k d_{i_k} & \cdots & c_k d_{i_k}^{k-1} \end{pmatrix}.$$

上式右边的矩阵记为 A, 由于 $|A|=c_1c_2\cdots c_k\prod_{1\leqslant r< s\leqslant k}(d_{i_s}-d_{i_r})\neq 0$, 故 A 为可逆矩阵, 从而

$$(\boldsymbol{e}_{i_1}, \boldsymbol{e}_{i_2}, \cdots, \boldsymbol{e}_{i_k}) = (\alpha, \varphi(\alpha), \cdots, \varphi^{k-1}(\alpha)) \boldsymbol{A}^{-1},$$

特别地, e_{i_1} 可以表示为 α , $\varphi(\alpha)$, \cdots , $\varphi^{k-1}(\alpha)$ 的线性组合. 因为U 是 φ 的不变子空间, 故 α , $\varphi(\alpha)$, \cdots , $\varphi^{k-1}(\alpha)$ 都是U 中的向量,从而 $e_{i_1} \in U$,因此 $U = L(e_{i_1}, e_{i_2}, \cdots, e_{i_r})$.

又因为任取 $j_1, j_2, \dots, j_m \in \{1, 2, \dots, n\}$, 都有

$$L(\boldsymbol{e}_{j_1}, \boldsymbol{e}_{j_2}, \cdots, \boldsymbol{e}_{j_r}) = V_{j_1} \oplus V_{j_2} \oplus \cdots \oplus V_{j_m}.$$

而特征子空间 $V_{j_k}(k=1,2,\cdots,m)$ 都是 φ 的不变子空间, φ 的不变子空间的直和仍是不变子空间,所以 $L(e_{j_1},e_{j_2},\cdots,e_{j_r})$ 也是 φ 的不变子空间.

综上所述, φ 的不变子空间共有 2^n 个.

证法二: 设线性变换 φ 在 V 的一组基 $\{e_1, e_2, \cdots, e_n\}$ 下的表示矩阵是对角矩阵 $\operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$, 且 λ_i 互不相同, 因此 φ 可对角化, φ 有 n 个不同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 且 $\varphi(e_i) = \lambda_i e_i (1 \leq i \leq n)$. 此时, 特征值 λ_i 的特

征子空间 $V_i = L(e_i)$, 并且 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$.

任取 φ 的非零不变子空间U以及U的一组基,并将这组基扩张为V的一组基,则 φ 在这组基下的表示矩阵是分块上三角矩阵 $\begin{pmatrix} A & C \\ O & B \end{pmatrix}$,其中A是 $\varphi|_U$ 的表示矩阵,不妨设为r阶矩阵.考虑到

$$|\lambda \mathbf{I}_{V} - \boldsymbol{\varphi}| = |\lambda \mathbf{I} - \boldsymbol{A}| |\lambda \mathbf{I} - \boldsymbol{B}| = (\lambda - \lambda_{1})(\lambda - \lambda_{2}) \cdots (\lambda - \lambda_{n}),$$

故 A 或 $\varphi|_U$ 有 r 个不同的特征值,设为 $\lambda_{i_1},\lambda_{i_2},\cdots,\lambda_{i_r}$. 考虑 $\varphi|_U$ 关于特征值 λ_{i_j} 的特征子空间 $U_{i_j}=\{u\in U|\varphi(u)=\lambda_{i_j}u\}$,由于 $U_{i_j}=U\cap V_{i_j}$ 且 dim $V_{i_j}=1$,故只能是 $U_{i_j}=V_{i_j}=L(e_{i_j})(1\leqslant j\leqslant r)$. 因为 $\varphi|_U$ 有 r 个不同的特征值,所以 $\varphi|_U$ 可对角化,于是

$$U = U_{i_1} \oplus U_{i_2} \oplus \cdots \oplus U_{i_r} = L(\boldsymbol{e}_{i_1}, \boldsymbol{e}_{i_2}, \cdots, \boldsymbol{e}_{i_r}).$$

又因为任取 $j_1, j_2, \dots, j_m \in \{1, 2, \dots, n\}$, 都有

$$L(\boldsymbol{e}_{j_1}, \boldsymbol{e}_{j_2}, \cdots, \boldsymbol{e}_{j_r}) = V_{j_1} \oplus V_{j_2} \oplus \cdots \oplus V_{j_m}.$$

而特征子空间 $V_{j_k}(k=1,2,\cdots,m)$ 都是 φ 的不变子空间, φ 的不变子空间的直和仍是不变子空间,所以 $L(e_{j_1},e_{j_2},\cdots,e_{j_r})$ 也是 φ 的不变子空间.

综上所述, φ 的不变子空间共有 2^n 个.

定理 0.1

设 φ 是数域 \mathbb{F} 上向量空间 V 上的线性变换,W 是 φ 的不变子空间. 若取 W 的一组基 $\{e_1, \cdots, e_r\}$, 再扩张为 V 的一组基 $\{e_1, \cdots, e_r, e_{r+1}, \cdots, e_n\}$, 则 φ 在这组基下的表示矩阵具有下列分块上三角矩阵的形状:

$$\begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix},$$

其中 A_{11} 是一个 r 阶矩阵, 并且 A_{11} 就是 $\varphi|_{W}$ 在基 $\{e_{1}, \dots, e_{r}\}$ 下的表示矩阵.

定理 0.2

设 φ 是数域 \mathbb{F} 上向量空间 V 上的线性变换, V_1,V_2,\cdots,V_m 是 φ 的不变子空间且 $V=V_1\oplus V_2\oplus\cdots\oplus V_m$. 若 取 V_i 的基拼成 V 的一组基 $\{e_1,e_2,\cdots,e_n\}$, 则 φ 在这组基下的表示矩阵具有下列分块对角矩阵的形状:

并且 A_{ii} 就是 $\varphi |_{V_i}$ 在 V_i 的一组基下的表示矩阵.

命题 0.7

设 φ 是 n 维线性空间 V 上的线性变换,U 是 r 维 φ — 不变子空间. 取 U 的一组基 $\{e_1,\cdots,e_r\}$,并扩张为 V 的一组基 $\{e_1,\cdots,e_r,e_{r+1},\cdots,e_n\}$. 设 φ 在这组基下的表示矩阵 $A=(a_{ij})=\begin{pmatrix}A_{11}&A_{12}\\O&A_{22}\end{pmatrix}$ 为分块上三角阵,其中 A_{11} 是 φ 在不变子空间 U 上的限制 $\varphi|_U$ 在基 $\{e_1,\cdots,e_r\}$ 下的表示矩阵. 证明: φ 诱导的变换 $\overline{\varphi}(v+U)=\varphi(v)+U$ 是商空间 V/U 上的线性变换,并且在 V/U 的一组基 $\{e_{r+1}+U,\cdots,e_n+U\}$ 下的表示矩阵为 A_{22} .

证明 由 $U \neq \varphi$ - 不变子空间容易验证 $\overline{\varphi}$ 的定义不依赖于 U - 陪集代表元的选取, 从而是定义好的变换. $\overline{\varphi}$ 的线性 由 φ 的线性即得. 由 φ 的表示矩阵为 A, 再结合 $e_1, e_2 \cdots, e_r \in U$ 及 U-陪集的性质 (2) 和商空间的加法和数乘的

定义可得

$$\overline{\varphi}(e_{r+1} + U) = \varphi(e_{r+1}) + U = a_{1,r+1}e_1 + \dots + a_{r,r+1}e_r + a_{r+1,r+1}e_{r+1} + \dots + a_{n,r+1}e_n + U$$

$$= a_{r+1,r+1}e_{r+1} + \dots + a_{n,r+1}e_n + U = a_{r+1,r+1}(e_{r+1} + U) + \dots + a_{n,r+1}(e_n + U),$$

$$\dots \dots \dots \dots$$

$$\overline{\varphi}(e_n + U) = a_{r+1,n}(e_{r+1} + U) + \dots + a_{n,n}(e_n + U),$$

故 $\overline{\varphi}$ 在基 $\{e_{r+1}+U,\cdots,e_n+U\}$ 下的表示矩阵为 A_{22} .