Quantitative Analytics. Lectures. Week 1. The Black-Scholes-Merton model

Vorontsov Daniil

21 сентября 2022 г.

Contents

1	Логнормальное распределение	2
2	Расчёт исторической волатильности	2
3	Предположения модели БШМ	3
4	Вывод уравнения	3
5	Свойства уравнения БШМ	4
6	Вменённая волотильность	5
7	Влияние дивидендных платежей	5
8	Опционы на валютные пары и фьючерсы	6
9	Американские опционы	6
10	Оценка варрантов	6

Модель Блэка-Шоулза-Мёртона (БШМ) (англ. *Black-Scholes-Merton*) используется для оценки цены на классический (ванильный) европейский опцион.

1 Логнормальное распределение

Одно из предположений модели Блэка-Шоуза-Мёртона состоит в том, что стоимость базового актива (БА) подчинена **логнормальному** распределению. Что это значит?

Предположим, что возвратная инвестиция в какую-то акцию подчинена **нормальному** распределению:

$$\frac{\Delta S}{S} \sim \varphi(\mu \Delta t, \sigma^2 \Delta t) \tag{1}$$

Здесь μ — матожидание доходности, σ —волатильность цены акции.

В предположении независимости приращений из уравнения (1) можно математически вывести:

$$lnS_t \sim N(lnS_0 + (\mu - \frac{\sigma^2}{2})T, \sigma^2 T)$$
(2)

То есть логарифм S_t распределён нормально, или же сама величина распределена лог-нормально. Здесь обозначения:

 S_t — цена акции в момент времени T

 S_0 – цена акции в момент времени t=0

 $\mu-$ ожидаемый доход с акции за год

 σ — волатильность акции за год

У распределения (2) следует обозначить ряд свойств:

- Суммарный (кумулятивный) годовой доход с акции x распределён нормально с параметром матожидания $\mu-\frac{\sigma^2}{2}$ и параметром дисперсии $\frac{\sigma^2}{T}$: $x\sim \varphi(\mu-\frac{\sigma^2}{2},\frac{\sigma^2}{T})$
- $\mathbf{E}[S_t] = S_0 e^{\mu T}$
- $Var(S_t) = S_0^2 e^{2\mu T} (e^{\sigma^2 T} 1)$
- Матожидание доходности на малом промежутке $\Delta t: \mu$, на момент времени $T: \mu \frac{\sigma^2}{2}, \frac{\sigma^2}{T}$
- Средняя доходность всегда будет чуть меньше матожидания из-за стохастической компоненты.

2 Расчёт исторической волатильности

Как рассчитать волатильность БА? По одному из определений, волатильность - стандартное отклонение суммарного годового дохода (из свойств формулы (2): $\frac{\sigma}{\sqrt{T}}$)

В предположении о том, что случайная величина распределена на более длинном периоде аналогично короткому, можно вывести волотильность за нужный период как $\sigma\sqrt{N}$, где N- колво периодов.

Процесс расчёта исторической волатильности состоит в сборе данных дневных котировок цен S_i , получении серии соответствующих доходов $ln(\frac{S_i}{S_{i+1}})$ и расчёте методами математической статистики стандартного отклонения данного временного ряда. Годовая волатильность получается домножением отклонения на корень из кол-ва дней, в которые велась торговля в этом году.

Пример расчёта:

1. Конвертация N+1 дневных цен в N доходов: $R_i = \frac{S_i - S_{i-1}}{S_{i-1}}$

 $^{^1}$ Прим. здесь имеется в виду compound annual return - общая сумма дохода от инвестиции, когда начисляемый процент используется на увеличение суммы инвестиции, т.н. "сложный процент" (vocable.ru/termin/compound-annual-return.html)

- 2. Расчёт суммарного дохода $R_i^c = ln(1+R_i) = ln(\frac{S_i}{S_i-1})$
- 3. Расчёт дисперсии $\sigma^2 = \frac{\sum (R_i^c \overline{R}_i^c)^2}{N-1}$
- 4. Получение корня из дисперсии $s = \sqrt{\frac{1}{N-1}\sum(R_i^c \overline{R}_i^c)^2}$
- 5. Получение отклонения как $\hat{\sigma} = \frac{s}{\sqrt{\tau}}$, где τ интервал в годах (для годового отклонения $\tau = \frac{1}{12}$, для недельного $\tau = \frac{1}{52}$)

3 Предположения модели БШМ

В основе модели БШМ лежат 8 предположений:

- 1. БА подчинён логнормальному распределнию (на коротком промежутке времени)
- 2. Отсутствие арбитража: если появляется возможность арбитража, моментально элиминируется участниками торгов
- 3. Волатильность БА постоянна и известна
- 4. Отсутствуют транзакционные комиссии, налоги. БА бесконечно делимый
- 5. На БА отсутствуют денежные потоки (не приходят дивиденды)
- 6. Торговля ведётся непрерывно
- 7. Безрисковая процентная ставка постоянна
- 8. Исполнение опциона возможно в определённую контрактом дату. Иными словами, рассматриваются только Европейские опционы

При этом некоторые предположения могут быть ослаблены. Например 3 и 7: безрисковая ставка и волатильность могут рассматриваться как зависимые от времени.

4 Вывод уравнения

Очертим примерный вывод формулы БШМ: Предположим, что цена дериватива и цена БА зависят от одного источника неопределённости. Зная стохастический закон распределения:

$$\Delta S = \mu S \Delta t + \sigma S \Delta z \tag{3}$$

Из леммы Ито можно вывести

$$\Delta f = \left(\frac{\partial f}{\partial S}\mu S + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)\Delta t + \frac{\partial f}{\partial S}\sigma S\Delta z \tag{4}$$

Где f(S,T)— цена опционного контракта. Сконструируем риск-нейтральный портфель из опционов и БА по следующей схеме: на одну единицу дериватива должено приходиться $\frac{\partial f}{\partial S}$ единиц БА. Результативный портфель примет вид:

$$\Pi = -f + \frac{\partial f}{\partial S} \tag{5}$$

В этом случае по портфелю начисляется доход по безрисковой ставке, так как иное привело бы к возможности арбитража, что не соответствует нашему предположению (2). Посчитаем изменение портфеля:

$$\Delta\Pi = -\Delta f + \frac{\partial f}{\partial S} \Delta S \tag{6}$$

Доход должен начисляться по безрисковой ставке:

$$\Delta\Pi = r\Pi\Delta t \tag{7}$$

Из уравнений (5), (6) и (7) получаем:

$$-\Delta f + \frac{\partial f}{\partial S} \Delta S = r \left(-f + \frac{\partial f}{\partial S} S \right) \Delta t$$

Подставляя в это равенство выражения для ΔS и Δf из (3)-(4), получаем итоговое дифференциальное уравнение БШМ:

$$\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf \tag{8}$$

Путём решения уравнения (8) с граничными условиями, зависящими от выплаты опциона можно получить оценку стоимости ванильных опционов:

$$c = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p = K e^{-rT} (1 - N(d_2)) - S_0 (1 - N(d_1))$$
(9)

Где d_1, d_2 - коэффициенты, вычисляемые следующим образом:

$$d_{1} = \frac{\ln\left(\frac{S_{0}}{K}\right) + \left(r + \left(0.5\sigma^{2}\right)\right)T}{\sigma\sqrt{T}}$$

$$d_{2} = d_{1} - \left(\sigma\sqrt{T}\right)$$
(10)

В формулах (9)-(10) обозначения следующие:

Т - время до экспирации

 S_0 - цена БА в начальный момент времени

К - цена страйка

r - безрисковая ставка

 σ - волатильность актива

N(q) - кумулятивная функция нормального распределения

5 Свойства уравнения БШМ

У полученных уравнений (9)-(10) можно выделить ряд свойств:

ullet Цены опционов колл c и пут p могут быть выражены друг через друга:

$$c = p + S_o - Ke^{-rT}$$
$$p = c - S_0 + Ke^{-rT}$$

• При
$$S_0 \to \infty$$
:
 $c \to S_0 - Ke^{-rT}$
 $p \to 0$
При $S_0 \to 0$:
 $c \to 0$
 $p \to Ke^{-rT} - S_0$

Пример расчёта

Предположим, что акции Vola, Inc. торгуются по цене 50 долларов, и на Vola доступен опцион колл с ценой исполнения 45\$, срок действия которого истекает через три месяца. Безрисковая ставка 5%, а годовое стандартное отклонение доходности составляет 12%. Используя модель Блэка-Шоулза-Мертона, рассчитайте стоимость опциона колл.

$$d_1 = \frac{\ln\left(\frac{50}{45}\right) + \left(0.05 + \left(0.5 \cdot 0.12^2\right)\right) \cdot 0.25}{0.12 \cdot \sqrt{0.25}} = 1.99$$
$$d_2 = 1.99 - \left(0.12 \cdot \sqrt{0.25}\right) = 1.93$$

Считаем значение из таблицы распределения: $N\left(d_{1}\right)=0.9767, N\left(d_{2}\right)=0.9732,$ таким образом:

$$c_0 = (50 \cdot 0.9767) - (45 \cdot e^{-(0.05 \cdot 0.25)} \cdot 0.9732) = 5.59$$

6 Вменённая волотильность

Вменённая волотильность - волатильность БА, которую закладывают участники рынка на будущее.

Суть вменённой волотильности можно объяснить на примере модели БШМ. Из пяти параметров уравнения четыре наблюдаемы: цена БА S_0 , время до экспирации T, безрисковая ставка r, цена страйка K. Таким образом, подставляя эти значения в формулу, можно получить пятый параметр σ .

В аналитическом виде решение недоступно, расчёт возможен только числовыми методами. Как правило, используется метод Ньютона-Рафсона.

Для разных типов БА зависимость волатильности при таком расчёте приобретают разные виды т.н. "улыбок":

Рис. 1: Валютные опционы

Рис. 2: Опционы на акции

7 Влияние дивидендных платежей

Ослабим условие на наличие дивидендов в БА (5).

В случае непрерывных дивидендов цены приобретают вид:

$$c = S_0 e^{-qt} N(d_1) - K e^{-rT} N(d_2)$$

$$p = K e^{-rT} N(-d_2) - S_0 e^{-qt} N(-d_1)$$
(11)

Здесь q - сложная суммарная ставка дивиденда

В случае дискретных дивидендов: Пусть D - $present\ value\ дивидендов$, которые выплатят за период жизни опциона. Разобъём цену опциона S на две составляющие

- ullet Выплачиваемую дивидендную часть D
- Часть S-D, которая останется на момент экспирации T. Эта часть будет учитываться в уравнении БШМ, и к ней будет применяться вменённая волатильность σ . Таким образом, цена БА на начальный момент времени S_0-D

8 Опционы на валютные пары и фьючерсы

Валюту можно рассматривать как акцию, на которую выплачиваются дивиденды по безрисковой ставке центробанка страны-эмитента валюты r_f . В этом случае $q=r_f$, и уравнение БШМ примет вид:

$$c = S_0 e^{-r_f T} N (d_1) - K e^{-r T} N (d_2)$$

$$p = K e^{-r T} N (-d_2) - S_0 e^{-r_f T} N (-d_1)$$

$$d_1 = \frac{\ln \left(\frac{S_0}{K}\right) + \left(r - r_f + 0.5\sigma^2\right) T}{\sigma \sqrt{T}},$$

$$d_2 = \frac{\ln \left(\frac{S_0}{K}\right) + \left(r - r_f - 0.5\sigma^2\right) T}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T},$$

Фьючерсы в модели БШМ ведут себя аналогично валюте. В этом случае q=r, и уравнение БШМ:

$$c = F_0 e^{-rT} N (d_1) - K e^{-rT} N (d_2)$$

$$p = K e^{-rT} N (-d_2) - F_0 e^{-rT} N (-d_1)$$

$$d_1 = \frac{\ln \left(\frac{F_0}{K}\right) + \sigma^2 \frac{T}{2}}{\sigma \sqrt{T}},$$

$$d_2 = \frac{\ln \left(\frac{F_0}{K}\right) + \sigma^2 \frac{T}{2}}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T},$$

9 Американские опционы

Ослабим теперь ограничение (8). Позиция в американском опционе без дивидендов аналогична позиции в европейском опционе без дивидендов. Рассмотрим американский опцион с дивидендными выплатами:

Предположим, что на БА выплачиваются дискретные дивиденды D_i во времена t_i , при времени до экспирации опциона T. Тогда в момент времени t_i неисполненная цена опциона составляет $S(t_i) - D_i - Ke^{-r(t_i+1-t_i)}$. Отсюда получаем, что опцион имеет смысл исполнять только при

$$S(t_i) - X > S(t_i) - D_i - Ke^{-r(t_i + 1 - t_i)}$$

Если идти от противного, получим условие, при котором опцион никогда не будет исполнен:

$$D_i \le K \left(1 - e^{-r(t_{i+1} - t_i)} \right) \text{ M } D_n \le K \left(1 - e^{-r(T - t_n)} \right)$$

При условии достаточной малости, когда верхние неравенства выполняются, американские опционы эквивалентны европейским. **Аппроксимация Блэка** для американских аукционов заключается в вычислении стоимости двух эквивалентных европейских опционов, сроки действия которых истекают в момент экспирации и момент последнего дивидендного платежа перед экспирацией t_n . Стоимость американского опциона приравнивается к стоимости более дорогого европейского опциона. В большинстве случаев этот алгоритм даёт достаточно точные оценки.

10 Оценка варрантов

Варрант - обязательство, выпускаемое компанией на собственные акции. При исполнении варранта компания производит допэмиссию акций и продаёт их держателям варрантов по цене страйка, что приводит к размытию акционерного капитала.

Оценить варрант можно также при помощи модели БШМ. Принципиальное отличие заключается в наличии размытия капитала при исполнении контракта, и как следствие, падения цены акций. Стоимость варранта для держателей текущих акций зависит от степени размытия капитала: $\frac{pN}{N+M}$, где p - цена варранта, рассчитанная через БШМ, N - кол-во акций в обращении, M - кол-во выпускаемых акций.