JC07 Rec'd PCT/PTO 2 7 APR 2001

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

ATTORNEY'S DOCKET NUMBER

Mo-6305/HR-199 US APPLICATION NO (If known, see 37 CFR 1.5

09/830514

INTERNA	ATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED					
PCT/EP9			October 31, 1998					
TITLE OF INVENTION Construction of Production Strains for Producing Substituted Phenols By Specifically								
Inactivating Genes of the Eugenol and Ferulic Acid Catabolism								
APPLICANT(S) FOR DO/EO/US RABENHORST, Jurgen; STEINBUCHEL, Alexander; PRIEFERT, Horst and OVERHAGE, Jorg								
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:								
1. X Th	nis is a FIRST submission of items	concerning a filing under 35 U.S.C. 371.						
2. Th	2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.							
ite								
<u> </u>		iration of 19 months from the priority date (A	Article 31).					
	copy of the International Applicati		nal Bureau)					
a. b.	 a. X is attached hereto (required only if not communicated by the International Bureau). b. A has been communicated by the International Bureau. 							
c.		lication was filed in the United States Receiving	ng Office (RO/US).					
GX A		he International Application as filed (35 U.S.						
a.		, ,	× 1× 11					
a. b.		itted under 35 U.S.C. 154(d)(4).						
担 A	mendments to the claims of the Int	ternational Aplication under PCT Article 19 (35 U.S.C. 371(c)(3))					
of a.	- are attached hereto (regan	red only if not communicated by the Internation	onal Bureau).					
b .		by the International Bureau.						
E C.		ever, the time limit for making such amendme	ents has NOT expired.					
d d.	. have not been made and w	ill not be made.	• 1					
8 A	An English language translation of t	he amendments to the claims under PCT Artic	cle 19 (35 U.S.C. 371 (c)(3)).					
	An oath or declaration of the invent	tor(s) (35 U.S.C. 371(c)(4)).						
	An English lanugage translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).							
Items 11 to 20 below concern document(s) or information included:								
11.	An Information Disclosure Statem	nent under 37 CFR 1.97 and 1.98.						
12. 🗓	An assignment document for reco	ording. A separate cover sheet in compliance	with 37 CFR 3.28 and 3.31 is included.					
13. X	A FIRST preliminary amendment	† "						
14.	A SECOND or SUBSEQUENT preliminary amendment.							
15.	A substitute specification.							
16.	A change of power of attorney an	nd/or address letter.						
17. 🔀	A computer-readable form of the	sequence listing in accordance with PCT Rule	e 13ter.2 and 35 U.S.C. 1.821 - 1.825.					
18.	A second copy of the published in	nternational application under 35 U.S.C. 154((d)(4).					
19.	A second copy of the English lan	nguage translation of the international applicat	tion under 35 U.S.C. 154(d)(4).					
20. X	Other items or information:							
Preliminary Amendment w/Abstract, Sequence Listing (Paper Copy and Disk Copy) Form PTO 1449 w/references								
I								

To Be usagned	0514 PCT/	TERNATIONAL APPLICATION NO EP99/07952		Mo-6305/HR		
	ng fees are submitted:	CALCULATIONS PT	O USE ONLY			
	FEE (37 CFR 1.492 (a)	(1) - (5)):				
Neither internationa	I preliminary examination	on fee (37 CFR 1.482)			}	
nor international sea	irch fee (37 CFR 1.445() arch Report not prepared					
International prelim USPTO but Internat	inary examination fee (3 tional Search Report pre					
International prelim but international sea	inary examination fee (3 irch fee (37 CFR 1.445(ļ			
International prelim	inary examination fee (3 of P					
International prelim	inary examination fee (
		BASIC FEE AMO		\$ 860.00		
Surcharge of \$130.00 months from the earli	for furnishing the oath lest claimed priority date	or declaration later than (37 CFR 1.492(e)).	20 30	\$ 0.00		
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	\$		
Total claims	15 -20 =	0	x \$18.00	\$ 0.00		
Independent claims	5 -3 =	2	x \$80.00	\$ 160.00		
	DENT CLAIM(S) (if app	olicable)	+ \$270.00	\$ 0.00		
		OF ABOVE CALCU		\$ 1,020.00		
Applicant claims	s small entity status. See	2 37 CFR 1.27. The fees	indicated above	\$		
are reduced by i	14.			0.00		
			$\frac{UBTOTAL}{\text{pan}} = \frac{20}{30}$	\$ 1.020.00		
Precessing fee of \$13 months from the earl	30.00 for furnishing the liest claimed priority dat	0.00				
waters Street Parkets Programmer		TOTAL NATIO		\$ 1,020.00		
accompanied by an a	e enclosed assignment (3 appropriate cover sheet (\$ 40.00				
Agents Ag Ag Agents Ag Ag Agents Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag		\$ 1,060.00				
en de la companya de		Amount to be refunded:	\$			
in the second se				charged:	\$	
a. A check in the amount of \$ to cover the above fees is enclosed.						
b. Please charge my Deposit Account No. 13-3848 in the amount of \$ 1,060.00 to cover the above fees. A duplicate copy of this sheet is enclosed.						
c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 13-3848. A duplicate copy of this sheet is enclosed.						
d. Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.						
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.						
SEND ALL CORRESPONDENCE TO SIGNATURE						
		1 J. Cheung				
	0015 / PATENT TRADEMARK	RATION NUMBER				

TRANSMITTAL LETTER TO THE UNITED STATES RECEIVING OFFICE

JC18 Rec'd PCT/PTO 2 7 APR 2001 International Application No. Mo-6305/HR-199

I,			· · · · · · · · · · · · · · · · · · ·				
	Certification v	inder 37 CFR 1.10	(if applicable)			····	
1	ET146893673US			April 27, 2001			
	Express Mail mailing number			Date of Deposit			
I hereb			ached hereto is being deposited wit	n the United	States Postal Service	"Express Mail Post Office to	
I hereby certify that the application/correspondence attached hereto is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1 10 on the date indicated above and is addressed to Assistant Commissioner for Patents, Washington, D.C. 20231.							
	Donn	D Ven+.			Donna J.	Veatch	
		person mailing correspond	dence	Typed or	printed name of pers	on mailing correspondence	
II. X	New Internat	ional Application			-		
TIT	LE CONSTRU	CTION OF PROD	UCTION STRAINS FOR	PRODU	CING	Earliest priority date	
1			BY SPECIFICALLY INA			(Day/Mon/Year)	
			AND FERULIC ACID C		1 1	(31/10/98)	
						international	
			RMATION: In order to assist in whether a license for foreign tra				
	other purposes, the	ne following information	on is supplied. (Note: check as	many boxes	s as apply):	antou una 101	
A,		_	nde in the United States.				
В.	X There is no p	orior U.S. application re	elating to this invention.				
	٠ لــــــــــــــــــــــــــــــــــــ	• •	n(s) contain subject matter wh	ich ie relate	ed to the invention	disclosed in the	
Emp C.	attached inte	g prior 0.3. application.	n(s) contain subject matter wh (NOTE, priority to these app	lications m	eay or may not be c	laimed on form	
D.			sting does not constitute a cla			•	
	application no.		1	iled on			
	application no.			iled on			
i fi					<u> </u>		
D.	The present	international application	on contains additional subje	ct matter n	ot found in the price	or U.S. application(s) identified	
	in paragraph	C. above. The addition	nal subject matter is found on	pages			
≅	and DO	DES NOT ALTER	MIGHT BE CONSIDER	ED TO AL	TER the general n	ature of the invention in a	
	manner which	h would require the U	.S. application to have been m	ade availab	le for inspection by	the appropriate	
Parties.	defense agen	icies under 35 U.S.C. 1	81 and 37 CFR 5.1. See 37 C	FR 5.15		•	
	1						
	A Response to	an Invitation from	the RO/US. The following	document	t(s) is(are) enclos	ed:	
A Response to an Invitation from the RO/US. The following document(s) is(are) enclosed: A Request for An Extension of Time to File a Response							
■ A.	A Requ	est for An Extension of	•				
A.	· ·		f Time to File a Response				
A. B.	A Powe	er of Attorney (General	f Time to File a Response				
A.	A Powe Replace		f Time to File a Response or Regular)			of the figures	
A. B.	A Powe Replace	er of Attorney (General	f Time to File a Response or Regular) of the request (PCT/RO/101)	pages		of the figures	
A. B.	A Power Replace pages pages	er of Attorney (General	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description			of the figures	
A. B.	A Powe Replace	er of Attorney (General	f Time to File a Response or Regular) of the request (PCT/RO/101)	pages			
A. B.	A Power Replace pages pages	er of Attorney (General	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims	pages			
B.	A Power Replace pages pages pages Submission	er of Attorney (General ement pages:	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims	pages	ment		
B. C.	A Power Replace pages pages pages pages Priority doc	er of Attorney (General ement pages: of Priority Document element	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s	pages pages			
B.	A Power Replace pages pages pages pages Priority doc	er of Attorney (General ement pages: of Priority Document element	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims	pages pages			
B. C.	A Power Replace pages pages pages pages Priority doc	er of Attorney (General ement pages: of Priority Document element	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s	pages pages			
B. C.	A Power Replace pages pages pages pages Priority doc Fees as sp	er of Attorney (General ement pages: of Priority Document element	of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/	pages pages iority documents of the pages pages	nex		
A. B. C.	A Power Replace pages pages pages pages Priority doc Fees as sp	er of Attorney (General ement pages: of Priority Document ement exament ecified on attached Fe	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/	pages pages iority documents on	A Sequence 1	of the abstract	
A. B. C.	A Power Replace Replace pages pages pages Submission Priority doc Fees as sp A Request for	er of Attorney (General ement pages: of Priority Document ement pages on attached Ferencified on attached Ferencification under specify): Prelimina	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr PCT 91 A Petition ary Amendment w/Abstra	pages pages pages pages pages pages pages pages pages page page page page page page page page	A Sequence 1	of the abstract	
A. B. C. D.	A Power Replace Replace pages pages pages Submission Priority doc Fees as sp A Request for	r of Attorney (General ement pages: of Priority Document cument pages on attached Feedification under specify): Prelimina Form PTG	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references	pages pages pages pages pages pages pages pages pages page page page page page page page page	A Sequence 1	of the abstract	
A. B. C.	A Power Replace Replace pages pages pages Submission Priority doc Fees as sp A Request for	r of Attorney (General ement pages: of Priority Document cument pages on attached Feedification under specify): Prelimina Form PTG	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr PCT 91 A Petition ary Amendment w/Abstra	pages pages pages pages pages pages pages pages pages page page page page page page page page	A Sequence 1	of the abstract	
A. B. C.	A Power Replace Replace pages pages pages Submission Priority doc Fees as sp A Request for	r of Attorney (General ement pages: of Priority Document cument pages on attached Feedification under specify): Prelimina Form PTG	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references	pages pages pages pages pages pages pages pages pages page page page page page page page page	A Sequence 1	of the abstract	
A. B. C.	A Power Replace Replace pages pages pages Submission Priority doc Fees as sp A Request for	r of Attorney (General ement pages: of Priority Document ement pages on attached Ferrority Prelimina Form PTC Drawings	of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/ r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references s (3 sheets)	pages pages pages pages pages pages pages pages pages page page page page page page page page	A Sequence 1	of the abstract	
A. B. C. D. E. V. X	A Power Replace Replace pages pages pages pages Priority doc Fees as sp A Request for Other (please	r of Attorney (General ement pages: of Priority Document cument ecified on attached Fe Rectification under Form PTO Drawing:	f Time to File a Response or Regular) of the request (PCT/RO/101) of the description of the claims s Pr r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references	pages pages pages iority documents RO/101 and ct, Seques	A Sequence I	of the abstract	
A. B. C. D. E. V. X	A Power Replace Replace pages pages pages pages Priority doc Fees as sp A Request for Other (please	r of Attorney (General ement pages: of Priority Document ement pecified on attached Fe Rectification under Form PTO Drawing: cant ney/Agent (Reg. No.)	of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/ r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references s (3 sheets)	pages pages pages iority documents RO/101 and ct, Seques	A Sequence 1	of the abstract	
A. B. C. D. E. V. X	A Power Replace Replace pages pages pages pages Priority doc Fees as sp A Request for Other (please	r of Attorney (General ement pages: of Priority Document ement pecified on attached Fe Rectification under Form PTO Drawing: cant ney/Agent (Reg. No.)	of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/ r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references s (3 sheets)	pages pages pages iority documents RO/101 and ct, Seques	A Sequence I	of the abstract	
A. B. C. D. E. V. X	A Power Replace Pages pages pages pages Priority doc Fees as sp A Request for Other (please Appliants Autor and a specific seconds) A Attornation and a specific seconds.	r of Attorney (General ement pages: of Priority Document ement pecified on attached Fe Rectification under Form PTO Drawing: cant ney/Agent (Reg. No.)	of the request (PCT/RO/101) of the description of the claims s Pr e Calculation sheet form PCT/ r PCT 91 A Petition ary Amendment w/Abstra O 1449 w/references s (3 sheets)	pages pages pages iority documents RO/101 and ct, Seques	A Sequence I	of the abstract	

PATENT APPLICATION Mo-6305 HR-199

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICA	TION OF)
JÜRGEN	RABENHORST, ET AL.)) PCT/EP99/07952
SERIAL I	NUMBER: TO BE ASSIGNED)
FILED:	HEREWITH)
TITLE:	CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM))))))))

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231 Sir:

Upon the granting of a Serial Number and Filing Date and prior to the examination of the subject application, kindly amend the Specification and Claims as follows:

"Express Mail" mailing I	Anril	27,	ET1468 2001	393673U	S	
I hereby certify that th Postal Service "Expres 1.10 on the date indica of Patents and Tradem	ss Mail Post Of ted above and i	ffice to s addre	Addresse ssed to th	e" service un	ider 37 CFH	
Do	onna JV					
(Name of person mailing paper or fee)						
Down Vlotu						
Signature of person mailing paper or fee)						

IN THE SPECIFICATION:

Kindly replace the Title of the Invention with the following:

-- CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM --.

Kindly insert the following "ABSTRACT" page

-- The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated. --

On page 1, line 4, kindly insert the following:

-- FIELD OF THE INVENTION --.

On page 1, line 7, kindly insert the following:

--BACKGROUND OF THE INVENTION ---.

On page 2, after line 9, kindly insert the following:

-- BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a to 1r show gene structures for isolating organisms and mutants.

FIG. 2a: shows a nucleotide sequence of the $calA\Omega$ Km gene structure (SEQ ID NO: 1).

FIG. 2b: shows a nucleotide sequence of the $calA\Omega$ Gm gene structure (SEQ ID NO: 2).

FIG. 2c: shows a nucleotide sequence of the $calA_{\Delta}$ gene structure (SEQ ID NO: 3).

FIG. 2d: shows a nucleotide sequence of the $calB_{\Omega}$ Km gene structure (SEQ ID NO: 4).

- FIG. 2e: shows a nucleotide sequence of the $calB\Omega$ Gm gene structure (SEQ ID NO: 5).
- FIG. 2f: shows a nucleotide sequence of the $calB_{\Delta}$ gene structure (SEQ ID NO: 6).
- FIG. 2g: shows a nucleotide sequence of the $fcs\Omega$ Km gene structure (SEQ ID NO: 7).
- FIG. 2h: shows a nucleotide sequence of the $fcs\Omega Gm$ gene structure (SEQ ID NO: 8).
- FIG. 2i: shows a nucleotide sequence of the fcs_{Δ} gene structure (SEQ ID NO: 9).
- FIG. 2j: shows a nucleotide sequence of the $ech\Omega$ Km gene structure (SEQ ID NO: 10).
- FIG. 2k: shows a nucleotide sequence of the $ech\Omega$ Gm gene structure (SEQ ID NO: 11).
- FIG. 2I: shows a nucleotide sequence of the ech_{Δ} gene structure (SEQ ID NO: 12).
- FIG. 2m: shows a nucleotide sequence of the $vdh\Omega$ Km gene structure (SEQ ID NO: 13).
- FIG. 2n: shows a nucleotide sequence of the $vdh\Omega$ Gm gene structure (SEQ ID NO: 14).
- FIG. 2o: shows a nucleotide sequence of the vdh_{Δ} gene structure (SEQ ID NO: 15).
- FIG. 2p: shows a nucleotide sequence of the $aat\Omega$ Km gene structure (SEQ ID NO: 16).
- FIG. 2q: shows a nucleotide sequence of the $aat\Omega$ Gm gene structure (SEQ ID NO: 17).
- FIG. 2r: shows a nucleotide sequence of the aat_{Δ} gene structure (SEQ ID NO: 18). --.
- On page 2, line 10, kindly insert the following:

--SUMMARY OF THE INVENTION --.

On page 2, line 19, kindly insert the following:
--DETAILED DESCRIPTION OF THE INVENTION--.

IN THE CLAIMS:

Kindly cancel Claims 1 - 16.

Kindly add the following new claims:

- 17. Transformed and/or mutagenized unicellular or multicellular organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.
- 18. An organism according to Claim 17, wherein eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.
- 19. Organism according to Claim 17, wherein one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.
- 20. An organism according to Claim 17, wherein said organism is unicellular.
- 21. An organism according to Claim 20, wherein said organism is selected from a group consisting of a microorganism, a plant or animal cell.
- 22. An organism according to Claim 17, wherein said organism is a bacterium

- 23. An organism according to Claim 22, wherein said organism is of the *Pseudomonas* species.
- 24. Gene structures comprising nucleotide sequences which encode the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, and are altered and/or inactivated.
- 25. Gene structures having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 26. Vectors comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 27. A transformed organism according to Claim 17, wherein said organism comprises at least one vector comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 28. Organism according to Claim 17, wherein said organism comprises at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18 which is integrated into the genome instead of the respective intact gene.
- 29. Process for the biotechnological preparation of alcohols, aldehydes and organic acids, comprising the step of adding an organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

- 30. Process for preparing an organism according to Claim 17, wherein the alteration eugenol and/or ferulic acid catabolism is achieved by microbiological culturing methods.
- 31. Process for preparing an organism according to Claim 29, wherein the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by means of recombinant DNA methods. --.

REMARKS

The Applicants respectfully request the Preliminary Amendment be entered as the amendment places the claims as well as the Specification in proper form.

New Claims 17 - 31 replace now cancelled Claims 1 - 16. Support for the new claims are found in the respective original cancelled claims. The Applicants respectfully submit that no new matter is added.

Additionally, the Applicants hereby submit a paper copy of the "Sequence Listing" as well as a copy of the "Sequence Listing" in computer readable form. The "Sequence Listing" has been amended to place it in proper form for U.S. filing. The Applicants also state that the information recorded in computer readable form is identical to the written sequence listing.

The attached page is captioned "<u>VERSION WITH MARKINGS TO SHOW</u> CHANGES MADE".

Respectfully submitted,

Noland J. Cheung Attorney for Applicants Reg. No. 39,138

Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-8338 FACSIMILE PHONE NUMBER: (412) 777-8363 s:\ksl\NJC1008

Mo-6305/HR-199

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE SPECIFICATION:

Kindly replace the Title of the Invention with the following:

-- CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM --.

Kindly insert the following "ABSTRACT" page

-- The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated. --

On page 1, line 4, kindly insert the following:

-- FIELD OF THE INVENTION --.

On page 1, line 7, kindly insert the following:

--BACKGROUND OF THE INVENTION--.

On page 2, after line 9, kindly insert the following:

-- BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a to 1r show gene structures for isolating organisms and mutants.

FIG. 2a: shows a nucleotide sequence of the $calA_{\Omega}$ Km gene structure (SEQ ID NO: 1).

FIG. 2b: shows a nucleotide sequence of the $calA\Omega$ Gm gene structure (SEQ ID NO: 2).

FIG. 2c: shows a nucleotide sequence of the $calA_{\Delta}$ gene structure (SEQ ID NO: 3).

- FIG. 2d: shows a nucleotide sequence of the $calB_{\Omega}$ Km gene structure (SEQ ID NO: 4).
- FIG. 2e: shows a nucleotide sequence of the $calB_{\Omega}Gm$ gene structure (SEQ ID NO: 5).
- FIG. 2f: shows a nucleotide sequence of the $calB_{\Delta}$ gene structure (SEQ ID NO: 6).
- FIG. 2g: shows a nucleotide sequence of the $fcs\Omega$ Km gene structure (SEQ ID NO: 7).
- FIG. 2h: shows a nucleotide sequence of the $fcs\Omega$ Gm gene structure (SEQ ID NO: 8).
- FIG. 2i: shows a nucleotide sequence of the fcs_Δ gene structure (SEQ ID NO: 9).
- FIG. 2j: shows a nucleotide sequence of the ech_{Ω} Km gene structure (SEQ ID NO: 10).
- FIG. 2k: shows a nucleotide sequence of the $ech_{\Omega}Gm$ gene structure (SEQ ID NO: 11).
- FIG. 2I: shows a nucleotide sequence of the ech_{Δ} gene structure (SEQ ID NO: 12).
- FIG. 2m: shows a nucleotide sequence of the $vdh\Omega$ Km gene structure (SEQ ID NO: 13).
- FIG. 2n: shows a nucleotide sequence of the $vdh\Omega Gm$ gene structure (SEQ ID NO: 14).
- FIG. 2o: shows a nucleotide sequence of the vdh_{Δ} gene structure (SEQ ID NO: 15).
- FIG. 2p: shows a nucleotide sequence of the aat_{Ω} Km gene structure (SEQ ID NO: 16).
- FIG. 2q: shows a nucleotide sequence of the $aat\Omega$ Gm gene structure (SEQ ID NO: 17).
- FIG. 2r: shows a nucleotide sequence of the aat_{Δ} gene structure (SEQ ID NO: 18). --.

On page 2, line 10, kindly insert the following:

--SUMMARY OF THE INVENTION--.

On page 2, line 19, kindly insert the following:

-- DETAILED DESCRIPTION OF THE INVENTION--.

IN THE CLAIMS:

Kindly cancel Claims 1 - 16.

Kindly add the following new claims:

- -- 17. Transformed and/or mutagenized unicellular or multicellular organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.
- 18. An organism according to Claim 17, wherein eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.
- 19. Organism according to Claim 17, wherein one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.
- 20. An organism according to Claim 17, wherein said organism is unicellular.
- 21. An organism according to Claim 20, wherein said organism is selected from a group consisting of a microorganism, a plant or animal cell.

Mo-6305 - 10 -

- 22. An organism according to Claim 17, wherein said organism is a bacterium.
- 23. An organism according to Claim 22, wherein said organism is of the *Pseudomonas* species.
- 24. Gene structures comprising nucleotide sequences which encode the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, and are altered and/or inactivated.
- 25. Gene structures having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 26. Vectors comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 27. A transformed organism according to Claim 17, wherein said organism comprises at least one vector comprising at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18.
- 28. Organism according to Claim 17, wherein said organism comprises at least one gene structure having the sequences corresponding to SEQ ID NO:1 to SEQ ID NO: 18 which is integrated into the genome instead of the respective intact gene.
- 29. Process for the biotechnological preparation of alcohols, aldehydes and organic acids, comprising the step of adding an organism comprising enzymes of eugenol and/or ferulic acid catabolism which are inactivated such that the

Mo-6305 - 11 -

intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

- 30. Process for preparing an organism according to Claim 17, wherein the alteration eugenol and/or ferulic acid catabolism is achieved by microbiological culturing methods.
- 31. Process for preparing an organism according to Claim 29, wherein the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by means of recombinant DNA methods. --.

Mo-6305 - 12 -

PCT/FP99/07952/PTO 2 7 APR 2001

- 37 -

CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM

ABSTRACT OF THE DISCLOSURE

The present invention relates to a transformed and/or mutagenated unicellular or multicellular organism which is characterized in that enzymes of the eugenol and/or ferulic acid catabolism are deactivated in such a manner that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillinic acid are accumulated.

The present invention relates to the construction of production strains and to a process for preparing substituted methoxyphenols, in particular vanillin.

DE-A 4 227 076 (process for preparing substituted methoxyphenols, and microorganism which is suitable for this purpose) describes the preparation of substituted methoxyphenols using a novel *Pseudomonas* sp.. The starting material in this context is eugenol and the products are ferulic acid, vanillic acid, coniferyl alcohol and coniferyl aldehyde.

An extensive review of the biotransformations which were possible using ferulic acid, which was written by Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. **15**:457-471), also appeared in 1995.

The genes and enzymes for synthesizing coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillic and vanillin acid from *Pseudomonas* sp. were described in EP-A 0 845 532.

The enzymes for converting *trans*-ferulic acid into *trans*-feruloyl-SCoA ester and subsequently into vanillin, and also the gene for cleaving the ester, were described by the Institute of Food Research, Norwich, GB, in WO 97/35999. In 1998, the content of the patent also appeared in the form of scientific publications (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. J. Biol. Chem. **273:**4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly isolated strain of *Pseudomonas fluorescens*. Microbiology

144:1397 - 1405). "Express Mail" mailing label number <u>ET146393673US</u>

Date of Deposit <u>April</u> 27, 2001

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date Indicated above and is addressed to the Assistant Commissioner of Patents and Trademarks, Washington, D.C. 20231

HD 199

Donna J. Veatch
(Name of person malling paper or fee)
Signature of person malling paper or fee)

30

10

15

20

25

DE-A 195 32 317 describes the use of *Amycolatopsis* sp. for obtaining vanillin from ferulic acid fermentatively in high yields.

The known processes suffer from the disadvantage that they either achieve only very low yields of vanillin or make use of relatively expensive starting compounds. While the last-mentioned process (DE-A 195 32 317) does achieve high yields, the use of *Pseudomonas* sp. HR199 and *Amycolatopsis* sp. HR167 for biotransforming eugenol into vanillin requires a fermentation which is carried out in two steps, consequently leading to substantial expense and consumption of time.

10

5

The object of the present invention is therefore to construct organisms which are able to convert the relatively inexpensive raw material eugenol into vanillin in a one-step process.

15

This object is achieved by means of constructing production strains of unicellular or multicellular organisms, which strains are characterized in that enzymes of eugenol and/or ferulic acid catabolism are inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid accumulate.

20

25

The production strain may be unicellular or multicellular. Accordingly, the invention can relate to microorganisms, plants or animals. Furthermore, use can also be made of extracts which are obtained from the production strain. According to the invention, preference is given to using unicellular organisms. These latter organisms can be microorganisms or animal or plant cells. According to the invention, particular preference is given to using fungi and bacteria. The highest preference is given to bacterial species. Those bacteria which may in particular be used, after their eugenol and/or ferulic acid catabolism has/have been altered, are species of *Rhodococcus*, *Pseudomonas* und *Escherichia*.

30

In the simplest case, known, conventional microbiological methods can be used for isolating the organisms which may be employed in accordance with the invention.

10

15

20

25

Thus, the enzymic activity of the proteins involved in eugenol and/or ferulic acid catabolism can be altered by using enzyme inhibitors. Furthermore, the enzymic activity of the proteins involved in eugenol and/or ferulic acid catabolism can be altered by mutating the genes which encode these proteins. Such mutations can be generated in a random manner by means of classical methods, for example by using UV irradiation or mutation-inducing chemicals.

Recombinant DNA methods, such as deletions, insertions and/or nucleotide exchanges, are likewise suitable for isolating the novel organisms. Thus, the genes of the organisms can, for example, be inactivated using other DNA elements (Ω elements). Suitable vectors can likewise be used for replacing the intact genes with gene structures which are altered and/or inactivated. In this context, the genes which are to be inactivated, and the DNA elements which are employed for the inactivation, can be obtained by means of classical cloning techniques or by means of polymerase chain reactions (PCR).

For example, in one possible embodiment of the invention, eugenol catabolism and ferulic acid catabolism can be altered by inserting Ω elements, or introducing deletions, into appropriate genes. In this context, the abovementioned recombinant DNA methods can be used to inactivate the functions of the genes, which encode dehydrogenases, synthetases, hydratase-adolases, thiolases or demethylases, such that production of the relevant enzymes is blocked. Preferably, the genes are those which encode coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehdrogenases or vanillic acid demethylases. Very particular preference is given to genes which encode the amino acid sequences specified in EP-A 0845532 and/or nucleotide sequences which encode their allelic variations.

The invention accordingly also relates to gene structures for preparing transformed organisms and mutants.

10

15

20

25

30

Preference is given to employing gene structures in which the nucleotide sequences encoding dehydrogenases, synthetases, hydratase-aldolases, thiolases or demethylases are inactivated for isolating the organisms and mutants. Particular preference is given to gene structures in which the nucleotide sequences encoding coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases are inactivated. Very particular preference is given to gene structures which exhibit the structures given in Figures 1a to 1r having the nucleotide sequences which are depicted in Figures 2a to 2r and/or nucleotide sequences encoding their allelic variations. In this context, particular preference is given to nucleotide sequences 1 to 18.

The invention also encompasses the part sequences of these gene structures as well as functional equivalents. Functional equivalents are to be understood as meaning those derivatives of the DNA in which individual nucleobases have been exchanged (wobble exchanges) without the function being altered. Amino acids may also be exchanged at the protein level without this resulting in an alteration in function.

One or more DNA sequences can be inserted upstream and/or downstream of the gene structures. By cloning the gene structures, it is possible to obtain plasmids or vectors which are suitable for the transformation and/or transfection of an organism and/or for conjugative transfer into an organism.

The invention furthermore relates to plasmids and/or vectors for preparing the organisms and mutants which are transformed in accordance with the invention. These organisms and mutants consequently harbour the gene structures which have been described. The present invention accordingly also relates to organisms which harbour the said plasmids and/or vectors.

The nature of the plasmids and/or vectors depends on what they are being used for. In order, for example, to be able to replace the intact genes of eugenol and/or ferulic

acid catabolism in pseudomonads with the genes which have been inactivated with omega elements, there is a need for vectors which, on the one hand, can be transferred into pseudomonads (conjugatively transferable plasmids) but which, on the other hand, cannot be replicated in these organisms and are consequently unstable in pseudomonads (so-called suicide plasmids). DNA segments which are transferred into pseudomonads with the aid of such a plasmid system can only be retained if they become integrated by homologous recombination into the genome of the bacterial cell.

10

5

The described gene structures, vectors and plasmids may be used for preparing different transformed organisms or mutants. The said gene structures can be used for replacing intact nucleic acid sequences with altered and/or inactivated gene structures. In the cells, which can be obtained by transformation or transfection or conjugation, the intact gene is replaced, by homologous recombination, with the altered and/or inactivated gene structure, as a consequence of which the resulting cells now only possess the altered and/or inactivated gene structure in their genome. In this way, preferably genes can be altered and/or inactivated, in accordance with the invention, such that the relevant organisms are able to produce coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid.

20

15

Mutants of the strain *Pseudomonas* sp. HR199 (DSM 7063), which was described in detail in DE-A 4 227 076 and EP-A 0845532, are examples of production strains which have been constructed in this way in accordance with the invention, with the corresponding gene structures ensuing, inter alia, from Figures 1a to 1r, in combination with Figures 2a to 2r:

25

 Pseudomonas sp. HR199calAΩKm, which contains the ΩKm-inactivated calA gene in place of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1a; Fig. 2a).

- 2. Pseudomonas sp. HR199 $calA\Omega$ Gm, which contains the Ω Gm-inactivated calA gene in place of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1b; Fig. 2b).
- 3. Pseudomonas sp. HR199calAΔ, which contains the deletion-inactivated calA gene in place of the intact calA gene encoding coniferyl alcohol dehydrogenase (Fig. 1c; Fig. 2c).
- 4. Pseudomonas sp. HR199calB Ω Km, which contains the Ω Km-inactivated calB gene in place of the intact calB gene encoding coniferyl aldehyde dehydrogenase (Fig. 1d; Fig. 2d)
- 10 5. Pseudomonas sp. HR199 $calB\Omega$ Gm, which contains the Ω Gm-inactivated calB gene in place of the intact calB gene encoding coniferyl aldehyde dehydrogenase (Fig. 1e; Fig. 2e).
 - 6. Pseudomonas sp. HR199calBΔ, which contains the deletion-inactivated calB gene in place of the intact calB gene encoding coniferyl aldehyde dehydrogenase (Fig.1f; Fig. 2f).
 - 7. Pseudomonas sp. HR199 $fcs\Omega$ Km, which contains the Ω Km-inactivated fcs gene in place of the intact fcs gene encoding feruloyl-CoA synthetase (Fig.1g; Fig. 2g).
 - 8. Pseudomonas sp. HR199 $fcs\Omega$ Gm, which contains the Ω Gm-inactivated fcs gene in place of the intact fcs gene encoding feruloyl-CoA synthetase (Fig.1h; Fig. 2h).
 - 9. Pseudomonas sp. $HR199fcs\Delta$, which contains the deletion-inactivated fcs gene in place of the intact fcs gene encoding feruloyl-CoA synthetase (Fig. 1i; Fig. 2i).
- 25 Pseudomonas sp. HR199echΩKm, which contains the ΩKm-inactivated ech gene in place of the intact ech gene encoding enoyl-CoA hydratase-aldolase (Fig.1j; Fig. 2j).
 - 11. Pseudomonas sp. HR199ech Ω Gm, which contains the Ω Gm-inactivated ech gene in place of the intact ech gene encoding enoyl-CoA hydratase-aldolase (Fig.1k; Fig. 2k).

5

20

25

30

- 12. Pseudomonas sp. HR199echΔ, which contains the deletion-inactivated ech gene in place of the intact ech gene encoding enoyl-CoA hydratase-aldolase (Fig.11; Fig. 21).
- 13. Pseudomonas sp. HR199 $aat\Omega$ Km, which contains the Ω Km-inactivated aat gene in place of the intact aat gene ecnoding beta-ketothiolase (Fig. 1m; Fig. 2m).
- 14. Pseudomonas sp. HR199aat Ω Gm, which contains the Ω Gm-inactivated aat gene in place of the intact aat gene encoding beta-ketothiolase (Fig.1n; Fig. 2n).
- 15. *Pseudomonas* sp. HR199aatΔ, which contains the deletion-inactivated aat gene in place of the intact aat gene encoding beta-ketothiolase (Fig.1o; 2o).
 - 16. Pseudomonas sp. HR199 $vdh\Omega$ Km, which contains the Ω Km-inactivated vdh gene in place of the intact vdh gene encoding vanillin dehydrogenase (Fig.1p; Fig. 2p).
- 17. Pseudomonas sp. HR199 $vdh\Omega$ Gm, which contains the Ω Gm-inactivated vdh gene in place of the intact vdh gene encoding vanillin dehydrogenase (Fig.1q; Fig. 2q).
 - 18. Pseudomonas sp. HR199 $vdh\Delta$, which contains the deletion-inactivated vdh gene in place of the intact vdh gene encoding vanillin dehydrogenase (Fig.1r; Fig. 2r).
 - 19. Pseudomonas sp. HR199 $vdhB\Omega$ Km, which contains the Ω Km-inactivated vdhB gene in place of the intact vdhB gene encoding vanillin dehydrogenase II.
 - 20. Pseudomonas sp. HR199 $vdhB\Omega$ Gm, which contains the Ω Gm-inactivated vdhB gene in place of the intact vdhB gene encoding vanillin dehydrogenase Π .
 - 21. Pseudomonas sp. HR199 $vdhB\Delta$, which contains the deletion-inactivated vdhB gene in place of the intact vdhB gene encoding vanillin dehydrogenase II.
 - 22. Pseudomonas sp. HR199adh Ω Km, which contains the Ω Km-inactivated adh gene in place of the intact adh gene encoding alcohol dehydrogenase.

15

30

- 23. Pseudomonas sp. HR199adh Ω Gm, which contains the Ω Gm-inactivated adh gene in place of the intact adh gene encoding alcohol dehydrogenase.
- 24. Pseudomonas sp. $HR199adh\Delta$ which contains the deletion-inactivated adh gene in place of the intact adh gene encoding alcohol dehydrogenase.
- 5 25. Pseudomonas sp. HR199 $vanA\Omega$ Km, which contains the Ω Km-inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
 - 26. Pseudomonas sp. HR199 $vanA\Omega$ Gm, which contains the Ω Gm-inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
 - 27. Pseudomonas sp. HR199 $vanA\Delta$, which contains the deletion-inactivated vanA gene in place of the intact vanA gene encoding the α -subunit of vanillic acid demethylase.
 - 28. Pseudomonas sp. HR199 $vanB\Omega$ Km, which contains the Ω Km-inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.
 - 29. Pseudomonas sp. HR199 $vanB\Omega$ Gm, which contains the Ω Gm-inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.
- 20 30. Pseudomonas sp. HR199 $vanB\Delta$, which contains the deletion-inactivated vanB gene in place of the intact vanB gene encoding the β -subunit of vanillic acid demethylase.
- The invention additionally relates to a process for the biotechnological preparation of organic compounds. In particular, this process can be used to prepare alcohols, aldehydes and organic acids. The latter are preferably coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid.

The above-described organisms are employed in the novel process. The organisms which are very particularly preferred include bacteria, in particular the *Pseudomonas*

10

15

20

25

30

species. Specifically, the abovementioned *Pseudomonas* species can preferably be employed for the following processes:

- 1. Pseudomonas sp. HR199calAΩKm, Pseudomonas sp. HR199calAΩGm and Pseudomonas sp. HR199calAΔ for preparing coniferyl alcohol from eugenol.
- 2. Pseudomonas sp. HR199cal $B\Omega$ Km, Pseudomonas sp. HR199cal $B\Omega$ Gm and Pseudomonas sp. HR199cal $B\Delta$ for preparing coniferyl aldehyde from eugenol or coniferyl alcohol.
- Pseudomonas sp. HR199fcsΩKm, Pseudomonas sp. HR199fcsΩGm, Pseudomonas sp. HR199fcsΔ, Pseudomonas sp. HR199echΩKm, Pseudomonas sp. HR199echΩGm and Pseudomonas sp. HR199echΔ for preparing ferulic acid from eugenol or coniferyl alcohol or coniferyl aldehyde.
- 4. Pseudomonas sp. HR199vdhΩKm, Pseudomonas sp. HR199vdhΩGm, Pseudomonas sp. HR199vdhΔ, Pseudomonas sp. HR199vdhΩGmvdhBΩKm, Pseudomonas sp. HR199vdhΩKmvdhBΩGm, Pseudomonas sp. HR199vdhΔ vdhBΩGm and Pseudomonas sp. HR199vdhΔvdhBΩKm for preparing vanillin from eugenol or coniferyl alcohol or coniferyl aldehyde or ferulic acid.
- 5. Pseudomonas sp. HR199vanAΩKm, Pseudomonas sp. HR199vanAΩGm, Pseudomonas sp. HR199vanAΔ, Pseudomonas sp. HR199vanBΩKm, Pseudomonas sp. HR199vanBΩGm and Pseudomonas sp. HR199vanBΔ for preparing vanillic acid from eugenol or coniferyl alcohol or coniferyl aldehyde or ferulic acid or vanillin.
- Eugenol is the preferred substrate. However, it is also possible to add further substrates or even to replace the eugenol with another substrate.

Suitable nutrient media for the organisms which are employed in accordance with the invention are synthetic, semisynthetic or complex culture media. These media may comprise carbon-containing and nitrogen-containing compounds, inorganic salts, where appropriate trace elements, and vitamins.

5

Carbon-containing compounds which may be suitable are carbohydrates, hydrocarbons or organic standard chemicals. Examples of compounds which may preferably be used are sugars, alcohols or sugar alcohols, organic acids or complex mixtures.

10

The sugar is preferably glucose. The organic acids which may preferably be employed are citric or acetic acid. Examples of the complex mixtures are malt extract, yeast extract, casein or casein hydrolysate.

15

Inorganic compounds are suitable nitrogen-containing substrates. Examples of these are nitrates and ammonium salts. Organic nitrogen sources can also be used. These sources include yeast extract, soya bean meal, casein, casein hydrolysate and corn steep liquor.

20

Examples of the inorganic salts which may be employed are sulphates, nitrates, chlorides, carbonates and phosphates. The metals which the said salts contain are preferably sodium, potassium, magnesium, manganese, calcium, zinc and iron.

25

The temperature for the culture is preferably in the range from 5 to 100°C. The range from 15 to 60°C is particularly preferred, with 22 to 37°C being most preferred.

The pH of the medium is preferably 2 to 12. The range from 4 to 8 is particularly

preferred.

30

In principle, any bioreactor known to the skilled person can be employed for carrying out the novel process. Preferential consideration is given to any appliance which is

10

15

20

25

30

suitable for submerged processes. This means that vessels which do or do not possess a mechanical mixing device may be employed in accordance with the invention. Examples of the latter are shaking apparatuses, and bubble column reactors or loop reactors. The former preferably include all the known appliances which are fitted with stirrers of any design.

The novel process can be carried out continuously or batchwise. The fermentation time required for achieving a maximum quantity of product depends on the specific nature of the organism employed. However, in principle, the fermentation times are between 2 and 200 hours.

The invention is explained in more detail below while referring to examples:

Mutants of the eugenol-utilizing strain *Pseudomonas* sp. HR199 (DSM 7063) were generated in a targeted manner by specifically inactivating genes of eugenol catabolism by means of inserting omega elements or introducing deletions. The omega elements employed were DNA segments which encoded resistances to the antibiotics kanamycin (Ω Km) and gentamycin (Ω Gm). These resistance genes were isolated from Tn5 and the plasmid pBBR1MCS-5 using standard methods. The genes calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA and vanB, which encode coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase, feruloyl-CoA synthetase, enoyl-CoA hydratase-aldolase, beta-ketothiolase, vanillin dehdrogenase, alcohol dehydrogenase, vanillin dehdrogenase II and vanillic acid demethylase, were isolated from genomic DNA of the strain Pseudomonas sp. HR199 using standard methods and cloned into pBluescript SK. By means of digesting with suitable restriction endonucleases, DNA segments were removed from these genes (deletion) or substituted with Ω elements (insertion), resulting in the respective gene being inactivated. The genes which had been mutated in this manner were recloned into conjugatively transferable vectors and subsequently introduced into the strain Pseudomonas sp. HR199. Suitable selection was used to obtain transconjugants which had replaced the respective functional wild-type gene with the newly

10

introduced inactivated gene. The insertion and deletion mutants which were obtained in this way now only possessed the respective inactivated gene. This procedure was used to obtain both mutants possessing only one defective gene and multiple mutants, in which several genes had been inactivated in this manner. These mutants were employed for biotransforming

- a) eugenol into coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid;
- b) coniferyl alcohol into coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid;
- c) coniferyl aldehyde into ferulic acid, vanillin and/or vanillic acid;
- d) ferulic acid into vanillin and/or vanillic acid, and
 - e) vanillin into vanillic acid.

10

15

20

25

30

Materials and Methods

Conditions for growing the bacteria.

Strains of *Escherichia coli* were propagated at 37°C in Luria-Bertani (LB) or M9 mineral medium (J. Sambrook, E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York). Strains of *Pseudomonas* sp. were propagated at 30°C in Nutrient Broth (NB, 0.8%, wt/vol) or in mineral medium (MM) (H. G. Schlegel, et al. 1961. Arch. Mikrobiol. 38:209-222) or HR mineral medium (HR-MM) (J. Rabenhorst, 1996. Appl. Microbiol. Biotechnol. 46:470-474.). Ferulic acid, vanillin, vanillic acid and protocatechuic acid were dissolved in dimethyl sulphoxide and added to the respective medium to give a final concentration of 0.1% (wt/vol). Eugenol was either added directly to the medium to give a final concentration of 0.1% (vol/vol) or applied to filter paper (circular filter 595, Schleicher & Schuell, Dassel, Germany) in the lids of MM agar plates. When transconjugants and mutants of *Pseudomonas* sp. were being propagated, tetracycline, kanamycin and gentamycin were employed in final concentrations of 25 μg/ml, 100 μg/ml and 7.5 μg/ml, respectively.

Qualitative and quantitative detection of metabolic intermediates in culture supernatants.

Culture supernatants were analysed by high pressure liquid chromatography (Knauer HPLC) either directly or after dilution with doubly distilled H₂O. The chromatography was carried out on Nucleosil 100 C18 (7 μ m, 250 x 4 mm). 0.1% (vol/vol) formic acid and acetonitrile was used as the solvent. The course of the gradient employed for eluting the substances was as follows:

 $00:00 - 06:30 \rightarrow 26\%$ acetonitrile

 $06:30 - 08:00 \rightarrow 100\%$ acetonitrile

 $08:00 - 12:00 \rightarrow 100\%$ acetonitrile

 $12:00 - 13:00 \rightarrow 26\%$ acetonitrile

 $13:00 - 18:00 \rightarrow 26\%$ acetonitrile

15

20

25

30

Purification of vanillin dehydrogenase II.

The purification was carried out at 4°C.

5 Crude extract.

Pseudomonas sp. HR199 cells which had been propagated on eugenol were washed in 10 mM sodium phosphate buffer, pH 6.0, then resuspended in the same buffer and disrupted by being passed twice through a French press (Amicon, Silver Spring, Maryland, USA) at a pressure of 1000 psi. The cell homogenate was subjected to an ultracentrifugation (1 h, 100,000 x g, 4°C), resulting in the soluble fraction of crude extract being obtained as the supernatant.

Anion exchange chromatography on DEAE Sephacel.

The soluble fraction of the crude extract was dialysed overnight against 10 mM sodium phosphate buffer, pH 6.0. The dialysate was loaded onto a DEAE-Sephacel column (2.6 cm x 35 cm, bed volume[BV]: 186 ml) which had been equilibrated with 10 mM sodium phosphate buffer, pH 6.0, and which had a flow rate of 0.8 ml/min. The column was rinsed with two BV of 10 mM sodium phosphate buffer, pH 6.0. The vanillin dehydrogenase II (VDH II) was eluted with a linear salt gradient of from 0 to 400 mM NaCl in 10 mM sodium phosphate buffer, pH 6.0 (750 ml). 10 ml fractions were collected. Fractions having a high VDH II activity were combined to form the DEAE pool.

Determining the vanillin dehydrogenase activity.

The VDH activity was determined at 30°C using an optical enzymic test. The reaction mixture, whose volume was 1 ml, contained 0.1 mmol of potassium phosphate (pH 7.1), 0.125 μ mol of vanillin, 0.5 μ mol of NAD, 1.2 μ mol of pyruvate (Na salt), lactate dehydrogenase (1 U; from pig heart) and enzyme solution. The oxidation of vanillin was monitored at $\lambda = 340$ nm ($\epsilon_{\text{vanillin}} = 11.6$ cm²/ μ mol). The enzyme activity was given in units (U), with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of vanillin per minute. The protein concentrations in

the samples were determined using the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).

Determining the coniferyl alcohol dehydrogenase activity.

The CADH activity was determined at 30°C using an optical enzymic test in accordance with Jaeger et al. (E. L. Jaeger, Eggeling and H. Sahm. 1981. Current Microbiology. **6:**333-336). The reaction mixture, whose volume was 1 ml, contained 0.2 mmol of tris/HCl (pH 9.0), 0.4 μ mol of coniferyl alcohol, 2 μ mol of NAD,

0.1 mmol of semicarbazide and enzyme solution. The reduction of NAD was monitored at $\lambda = 340$ nm ($\epsilon = 6.3$ cm²/ μ mol). The enzyme activity was given units (U), with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined by the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R.

J. Randall. 1951. J. Biol. Chem. 193:265-275).

Determining the coniferyl aldehyde dehydrogenase activity.

The CALDH activity was determined at 30°C using an optical enzymic test. The reaction mixture, whose volume was 1 ml, contained 0.1 mmol of tris/HCl (pH 8.8), 0.08 μ mol of coniferyl aldehyde, 2.7 μ mol of NAD and enzyme solution. The oxidation of coniferyl aldehyde to ferulic acid was monitored at $\lambda = 400$ nm ($\epsilon = 34$ cm²/ μ mol). The enzymic activity was given in units (U) with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined by the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).

Determining the feruloyl-CoA synthetase (ferulic acid thiokinase) activity.

The FCS activity was determined at 30°C using an optical enzymic test which was a modification of that of Zenk et al. (Zenk et al. 1980. Anal. Biochem. 101:182-187). The reaction mixture, whose volume was 1 ml, contained 0.09 mmol of potassium phosphate (pH 7.0), 2.1 µmol of MgCl₂, 0.7 µmol of ferulic acid, 2 µmol of ATP,

15

20

25

30

5

0.4 μ mol of coenzyme A and enzyme solution. The formation of the CoA ester from ferulic acid was monitored at $\lambda = 345$ nm ($\epsilon = 10$ cm²/ μ mol). The enzymic activity was given in units (U), with 1 U corresponding to the quantity of enzyme which converts 1 μ mol of substrate per minute. The protein concentrations in the samples were determined using the method of Lowry et al. (O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. J. Biol. Chem. 193:265-275).

Electrophoretic methods.

Protein-containing extracts were fractionated under native conditions in 7.4% (wt/vol) polyacrylamide gels using the method of Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch. 28c:722-732) and under denaturing conditions in 11.5% (wt/vol) polyacrylamide gels using the method of Laemmli (Laemmli, U. K. 1970. Nature (London) 227:680-685). Serva Blue R was used for non-specific protein staining. For specifically staining the coniferyl alcohol dehydrogenase, coniferyl aldehyde dehydrogenase and vanillin dehydrogenase, the gels were rebuffered for 20 min in 100 mM KP buffer (pH 7.0) and subequently incubated at 30°C in the same buffer to which 0.08% (wt/vol) NAD, 0.04% (wt/vol) p-nitro blue tetrazolium chloride, 0.003% (wt/vol) phenazine methosulphate and 1 mM of the respective substrate had been added until corresponding colour bands became visible.

20

15

5

10

Transfer of proteins from polyacrylamide gels to PVDF membranes.

Proteins were transferred from SDS-polyacrylamide gels to PVDF membranes (Waters-Millipore, Bedford, Mass., USA) using a Semidry Fastblot appliance (B32/33, Biometra, Göttingen, Germany) in accordance with the manufacturer's instructions.

25

Determining N-terminal amino acid sequences.

N-terminal amino acid sequences were determined using a Protein Peptide Sequencer (Type 477 A, Applied Biosystems, Foster City, USA) and a PTH analyser in accordance with the manufacturer's instructions.

10

15

20

25

Isolating and manipulating DNA

Genomic DNA was isolated using the method of Marmur (J. Marmur, 1961. J. Mol. Biol. 3:208-218). Other plasmid DNA and/or DNA restriction fragments was/were isolated and analysed using standard methods (J. E. Sambrook, F. Fritsch and

T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York).

Transferring DNA.

Competent *Escherichia coli* cells were prepared and transformed using the method of Hanahan (D. Hanahan, 1983. J. Mol. Biol. **166:**557-580). Conjugative plasmid transfer between plasmid-harbouring *Escherichia coli* S17-1 strains (donor) and *Pseudomonas* sp.strains (recipient) was performed on NB agar plates in accordance with the method of Friedrich et al. (B. Friedrich et al. 1981. J. Bacteriol. **147:**198-205), or by means of a "minicomplementation method" on MM agar plates containing 0.5% (wt/vol) gluconate as the C source and $25~\mu g$ of tetracycline/ml or $100~\mu g$ of kanamycin/ml. In this case, cells of the recipient were applied in one direction as an inoculation streak. After 5 min, cells of the donor strains were then applied as inoculation streaks, with these streaks crossing the recipient inoculation streak. After incubating at 30° C for 48 h, the transconjugants grew directly downstream of the crossing site whereas neither the donor strain nor the recipient strain was able to grow.

Hybridization experiments.

DNA restriction fragments were fractionated electrophoretically in a 0.8% (wt/vol) agarose gel in 50 mM tris- 50 mM boric acid- 1.25 mM EDTA buffer (pH 8.5) (J. E. Sambrook, F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.). The transfer of the denatured DNA out of the gel onto a positively charged nylon membrane (pore size: 0.45 μ m, Pall Filtrationstechnik, Dreieich, Germany), the subsequent hybridization with biotinylated or digoxigenin-labelled DNA probes, and the preparation of these DNA probes, were all performed using standard methods

15

(J. E. Sambrook, F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

5 DNA sequencing.

instructions.

Nucleotide sequences were determined "non-radioactively" in accordance with the Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74:5463-5467) dideoxy chain termination method using a "LI-COR" DNA Sequencer Model 4000L" (LI-COR Inc., Biotechnology Division, Lincoln, NE, USA) and using a "thermo sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International plc., Little Chalfont, Buckinghamshire, England), in each case in accordance with the manufacturer's

Synthetic oligonucleotides were used to carry out sequencing in accordance with the "primer-hopping strategy" of Strauss et al. (E. C. Strauss et al. 1986. Anal. Biochem. **154:**353-360).

Chemicals, biochemicals and enzymes.

Restriction enzymes, T4 DNA ligase, lambda DNA and enzymes and substrates for the optical enzymic tests were obtained from C.F. Boehringer & Söhne (Mannheim, Germany) or from GIBCO/BRL (Eggenstein, Germany). [γ-32P]ATP was from Amersham/Buchler (Braunschweig, Germany). Oligonucleotides were obtained from MWG-Biotech GmbH (Ebersberg, Germany). Type NA agarose was obtained from Pharmacia-LKB (Uppsala, Sweden). All other chemicals were from Haarmann & Reimer (Holzminden, Germany), E. Merck AG (Darmstadt, Germany), Fluka Chemie (Buchs, Switzerland), Serva Feinbiochemica (Heidelberg, Germany) or Sigma Chemie (Deisenhofen, Germany).

15

20

25

Examples

Example 1

Constructing omega elements which mediate resistances to kanamycin (Ω Km) or gentamycin (Ω Gm).

For constructing the ΩKm element, the 2099 bp *Bgl*I fragment of Transposons Tn5 (E. A. Auerswald, G. Ludwig and H. Schaller. 1981. Cold Spring Harb. Symp. Quant. Biol. **45**:107-113; E. Beck, G. Ludwig, E. A. Auerswald, B. Reiss and H. Schaller. 1982. Genes **19**:327-336; P. Mazodier, P. Cossart, E. Giraud and F. Gasser. 1985. Nucleic Acids Res. **13**:195-205) was isolated on a preparative scale. The fragment was shortened down to approx. 990 bp by treating it with Bal 31 nuclease. This fragment, which now only comprised the kanamycin resistance gene (encoding an aminoglycoside-3'-O-phosphotransferase), was then ligated to *Sma*I-cut pSKsym DNA (pBluescript SK derivative which contains a symmetrically constructed multiple cloning site [*Sal*I, *Hind*III, *Eco*RI, *Sma*I, *Eco*RI, *Hind*III, *Sal*I]). It was possible to reisolate the ΩKm element from the resulting plasmid as a *Sma*I fragment, an *Eco*RI fragment, a *Hind*III fragment or a *Sal*I fragment.

For constructing the ΩGm element, the 983 bp *Eae*I fragment of the plasmid pBR1MCS-5 (M. E. Kovach, P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop and K. M. Peterson. 1995. Genes **166:**175-176) was isolated on a preparative scale and then treated with mung bean nuclease (progressive digestion of single-stranded DNA molecule ends). This fragment, which now only comprised the gentamycin resistance gene (encoding a gentamycin-3-acetyltransferase), was then ligated to *Sma*I-cleaved pSKsym DNA (see above). It was possible to reisolate the ΩGm element from the resulting plasmid as a *Sma*I fragment, an *Eco*RI fragment, a *Hind*III fragment or a *Sal*I fragment.

Example 2

5

10

15

20

Cloning the genes from *Pseudomonas* sp. HR199 (DSM7063) which were to be inactivated by inserting Ω elements or by means of deletions.

The fcs, ech, vdh and aat genes were cloned separately proceeding from the E. coli S17-1 strains DSM 10439 and DSM 10440 and using the plasmids pE207 and pE5-1 (see EP-A 0845532). The given fragments were isolated on a preparative scale from these plasmids and treated as described below:

For cloning the *fcs* gene, the 2350 bp *Sall/Eco*RI fragment from plasmid pE207 and the 3700 bp *Eco*RI/*Sal*I fragment from plasmid pE5-1 were cloned together in pBluescript SK⁻ such that the two fragments were joined together by way of the *Eco*RI ends. The 6050 bp *Sal*I fragment was isolated on a preparative scale from the resulting hybrid plasmid and shortened down to approx. 2480 bp by being treated with Bal 31 nuclease. *Pst*I linkers were subsequently ligated to the ends of the fragment and, after digestion with *Pst*I, the fragment was cloned into pBluescript SK⁻ (pSK*fcs*). After transformation of *E. coli* XL1 blue, clones were obtained which expressed the *fcs* gene and exhibited an FCS activity of 0.2 U/mg of protein.

For cloning the *ech* gene, the 3800 bp *HindIII/Eco*RI fragment from plasmid pE207 was isolated on a preparative scale and shortened down to approx. 1470 bp by treating it with Bal 31 nuclease. *Eco*RI linkers were then ligated to the ends of the fragment and, after digestion with *Eco*RI, the fragment was cloned into pBluescript SK⁻ (pSK*ech*).

25

30

For cloning the *vdh* gene, the 2350 bp *Sall/Eco*RI fragment from plasmid pE207 was isolated on a preparative scale. After cloning into pBluescript SK, the fragment was truncated at one end by approx. 1530 bp using an exonuclease III/mung bean nuclease system. An *Eco*RI linker was then ligated to the end of the fragment and, after digestion with *Eco*RI, the fragment was cloned into pBluescript SK (pSK*vdh*).

Following transformation of *E. coli* XL1 blue, clones were obtained which expressed the VDH gene and exhibited a VDH activity of 0.01 U/mg of protein.

For cloning the *aat* gene, the 3700 bp *EcoRI/SalI* fragment from plasmid pE5-1 was isolated on a preparative scale and shortened down to approx. 1590 bp by treating it with Bal 31 nuclease. *EcoRI* linkers were then ligated to the ends of the fragment and, after digestion with *EcoRI*, the fragment was cloned into pBluescript SK⁻(pSK*aat*).

Example 3

5

10

15

20

25

30

Inactivating the above-described genes by inserting Ω elements or by deleting constituent regions of these genes.

Plasmid pSKfcs, which contained the fcs gene, was digested with BssHII, resulting in a 1290 bp fragment being excised from the fcs gene. Following religation, the deletion derivative of the fcs gene ($fcs\Delta$) (see Figs. 1i and 2i) was obtained in cloned form in pBluescript SK $^-$ (pSK $fcs\Delta$). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in in its stead. This resulted in the Ω -inactivated derivatives of the fcs gene ($fcs\Omega$ Km, see Figs. 1g and 2g) and ($fcs\Omega$ Gm, see Fig. 1h and 2h) being obtained in cloned form in pBluescript SK $^-$ (pSK $fcs\Omega$ Km and pSK $fcs\Omega$ Gm). It was not possible to detect any FCS activity in crude extracts of the resulting E. coli clones, whose hybrid plasmids possessed an fcs gene which was inactivated by deletion or by Ω element insertion.

Plasmid pSKech, which contained the ech gene, was digested with NruI, resulting in a 53 bp fragment and a 430 bp fragment being excised from the ech gene. After religation, the deletion derivative of the ech gene (ech Δ , see Fig. 11 and 21) was obtained in cloned form in pBluescript SK⁻ (pSKech Δ). In addition, after the fragments had been excised, the omega elements Ω Km and Ω Gm were ligated in in their stead. This resulted in the Ω -inactivated derivatives of the ech gene (ech Ω Km

10

15

20

and $ech\Omega Gm$) being obtained in cloned form in pBluescript SK⁻ (pSK $ech\Omega Km$ and pSK $ech\Omega Gm$).

Plasmid pSKvdh, which contained the vdh gene, was digested with BssHII, resulting in a 210 bp fragment being excised from the vdh gene. After religation, the deletion derivative of the vdh gene ($vdh\Delta$, see Figs. 10 and 20) was obtained in cloned form in pBluescript SK⁻ (pSKvdh Δ). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in in its stead. This resulted in the Ω -inactivated derivatives of the vdh gene ($vdh\Omega$ Km and $vdh\Omega$ Gm) being obtained in cloned form in pBluescript SK⁻ (pSKvdh Ω Km, see Figs. 1m and 2m) and (pSKvdh Ω Gm, see Figs. 1n and 2n). It was not possible to detect any VDH activity in crude extracts of the resulting E. coli clones, whose hybrid plasmids possessed a vdh gene which was inactivated by deletion or by Ω element insertion.

Plasmid pSKaat, which contained the aat gene, was digested with BssHII, resulting in a 59 bp fragment being excised from the aat gene. After religation, the deletion derivative of the aat gene (aat Δ , see Figs. 1r and 2r) was obtained in cloned form in pBluescript SK⁻ (pSKaat Δ). In addition, after the fragment had been excised, the omega elements Ω Km and Ω Gm were ligated in in its stead. This resulted in the Ω -inactivated derivatives of the aat gene (aat Ω Km, see Figs. 1p and 2p) and (aat Ω Gm, see Figs. 1q and 2q) being obtained in cloned form in pBluescript SK⁻ (pSKaat Ω Km and pSKaat Ω Gm).

5

10

15

20

25

Subcloning the Ω element-inactivated genes into the conjugatively transferable "suicide plasmid" pSUP202.

In order to be able to replace the intact genes in *Pseudomonas sp.* HR199 with the Ω -element inactivated genes, there is a need for a vector which can, on the one hand, be transferred into pseudomonads (conjugatively transferable plasmids) but which, on the other hand, cannot replicate in these bacteria and is consequently unstable in pseudomonads ("suicide plasmid"). DNA segments which are transferred into pseudomonads using such a plasmid system can only be retained if they are integrated by means of homologous recombination (RecA-dependent recombination) into the genome of the bacterial cell. In the present case, the "suicide plasmid" pSUP202 (Simon et al. 1983. *In*: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, pp. 98-106) was used.

Following digestion with PstI, the inactivated genes $fcs\Omega Km$ and $fcs\Omega Gm$ were isolated from plasmids $pSKfcs\Omega Km$ and $pSKfcs\Omega Gm$ and ligated to PstI-cleaved pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid $(pSUPfcs\Omega Km)$ contained the inactivated gene $fcs\Omega Km$ were obtained. The corresponding hybrid plasmid $(pSUPfcs\Omega Gm)$ of the gentamycin-resistant transformants contained the inactivated gene $fcs\Omega Gm$.

Following EcoRI digestion, the inactivated genes $ech\Omega Km$ and $ech\Omega Gm$ were isolated from plasmids $pSKech\Omega Km$ and $pSKech\Omega Gm$ and ligated to EcoRI-cleaved pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid $(pSUPech\Omega Km)$ contained the inactivated gene $ech\Omega Km$ were obtained. The

10

15

20

25

corresponding hybrid plasmid (pSUPech Ω Gm) of the gentamycin-resistant transformants contained the inactivated gene $ech\Omega$ Gm.

Following EcoRI digestion, the inactivated genes $vdh\Omega Km$ and $vdh\Omega Gm$ were isolated from plasmids pSK $vdh\Omega Km$ and pSK $vdh\Omega Gm$ and ligated to EcoRI-cleaved pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid (pSUP $vdh\Omega Km$) contained the inactivated gene $vdh\Omega Km$ were obtained. The corresponding hybrid plasmid (pSUP $vdh\Omega Gm$) of the gentamycin-resistant transformants contained the inactivated gene $vdh\Omega Gm$.

Following EcoRI digestion, the inactivated genes $aat\Omega Km$ and $aat\Omega Gm$ were isolated from plasmids pSK $aat\Omega Km$ and pSK $aat\Omega Gm$ and ligated to EcoRI-cleaved pSUP202 DNA. The ligation mixtures were transformed into E. coli S17-1. Selection took place on tetracycline-containing LB medium which also contained kanamycin or gentamycin, respectively. Kanamycin-resistant transformants whose hybrid plasmid (pSUP $aat\Omega Km$) contained the inactivated gene $aat\Omega Km$ were obtained. The corresponding hybrid plasmid (pSUP $aat\Omega Gm$) of the gentamycin-resistant transformants contained the inactivated gene $aat\Omega Gm$.

Example 5

Subcloning the deletion-inactivated genes into the conjugatively transferable "suicide plasmid" PHE55, which possesses the "sacB selection system".

In order to be able to replace the intact genes in *Pseudomonas* sp. HR199 with the deletion-inactivated genes, there is a need for a vector which possesses the properties which have already been described in the case of pSUP202. Since no possibility (no antibiotic resistance) exists of selecting for successful replacement of the genes in *Pseudomonas* sp. HR199 in the case of deletion-inactivated genes, in contrast to the Ω element-inactivated genes, another selection system had to be used. In the "sacB"

10

15

20

25

30

selection system", the replacing, deletion-inactivated gene is cloned in a plasmid which possesses the sacB gene in addition to an antibiotic resistance gene. Following the conjugative transfer of this hybrid plasmid into a pseudomonad, the plasmid is integrated by means of homologous recombination at the site in the genome at which the intact gene is located (first crossover). This results in a "heterogenotic" strain which possesses both an intact gene and a deletion-inactivated gene, with these genes being separated from each other by the pHE55 DNA. These strains exhibit the resistance which is encoded by the vector and also possess an active sacB gene. The intention then is that the pHE55 DNA, together with the intact gene, should then be separated out of the genomic DNA by means of a second homologous recombination event (second crossover). This recombination event results in a strain which now only possesses the inactivated gene. In addition, the pHE55-coded antibiotic resistance and the sacB gene are both lost. If strains are streaked on sucrosecontaining media, the growth of strains which express the sacB gene is inhibited since the gene product converts sucrose into a polymer which is accumulated in the periplasm of the cells. The growth of cells which no longer carry the sacB gene as a result of the second recombination event having taken place is consequently not inhibited. In order to have a possibility of selecting phenotypically for the integration of the deletion-inactivated gene, this gene is not exchanged for an intact gene; instead, use is made of a strain in which the gene to be replaced is already "labelled" by the insertion of an Ω element. When successful replacement takes place, the resulting strain loses the antibiotic resistance which is encoded by the Ω element.

Following digestion with PstI, the inactivated gene $fcs\Delta$ was isolated from plasmid $pSKfcs\Delta$ and ligated to PstI-cleaved pHE55 DNA. The ligation mixture was transformed into $E.\ coli\ S17-1$. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $fcs\Delta$) contained the inactivated gene $fcs\Delta$, were obtained.

Following digestion with EcoRI, the inactivated gene $ech\Delta$ was isolated from plasmid pSK $ech\Delta$ and treated with mung bean nuclease (generation of blunt ends).

The fragment was ligated to BamHI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into $E.\ coli$ S17-1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $ech\Delta$) contained the inactivated gene $ech\Delta$, were obtained

5

Following digestion with EcoRI, the inactivated gene $vdh\Delta$ was isolated from plasmid pSK $vdh\Delta$ and treated with mung bean nuclease. The fragment was ligated to BamHI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into $E.\ coli\ S17$ -1. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $vdh\Delta$) contained the inactivated gene $vdh\Delta$, were obtained.

10

15

Following digestion with EcoRI, the inactivated gene $aat\Delta$ was isolated from plasmid pSK $aat\Delta$ and treated with mung bean nuclease. The fragment was ligated to BamHI-cleaved and mung bean nuclease-treated pHE55 DNA. The ligation mixture was transformed into $E.\ coli\ S17-1$. Selection took place on tetracycline-containing LB medium. Tetracycline-resistant transformants, whose hybrid plasmid (pHE $aat\Delta$) contained the inactivated gene $aat\Delta$, were obtained.

Generating mutants of the strain *Pseudomonas* sp. HR199 in which genes of eugenol catabolism have been specifically inactivated by inserting an Ω -element.

The strain Pseudomonas sp. HR199 was employed as the recipient in conjugation experiments in which strains of E. coli S17-1 harbouring the hybrid plasmids of pSUP202 which are listed below were used as donors. The transconjugants were selected on gluconate-containing mineral medium which contained the antibiotic corresponding to the Ω element. It was possible to distinguish between "homogenotic" (replacement of the intact gene with the Ω element insertion-inactivated gene by means of a double crossover) and "heterogenotic" (integration of the hybrid plasmid into the genome by means of a single crossover) transconjugants on the basis of the pSUP202-encoded tetracycline resistance.

The mutants Pseudomonas sp. HR199 $fcs\Omega$ Km and Pseudomonas sp. HR199 $fcs\Omega$ Gm were obtained after conjugating Pseudomonas sp. HR199 with E.~coli~S17-1 (pSUP $fcs\Omega$ Km) and E.~coli~S17-1 (pSUP $fcs\Omega$ Gm), respectively. The replacement of the intact fcs gene with the Ω Km-inactivated or Ω Gm-inactivated gene ($fcs\Omega$ Km and $fcs\Omega$ Gm, respectively) was verified by means of DNA sequencing.

The mutants Pseudomonas sp. HR199 $ech\Omega Km$ and Pseudomonas sp. HR199 $ech\Omega Gm$ were obtained after conjugating Pseudomonas sp. HR199 with E. coli S17-1 (pSUP $ech\Omega Km$) and E. coli S17-1 (pSUP $ech\Omega Gm$), respectively. The replacement of the intact ech gene with the ΩKm -inactivated or ΩGm -inactivated gene ($ech\Omega Km$ and $ech\Omega Gm$, respectively) was verified by means of DNA

The mutants Pseudomonas sp. HR199 $vdh\Omega$ Km and Pseudomonas sp. HR199 $vdh\Omega$ Gm were obtained after conjugating Pseudomonas sp. HR199 with E.~coli S17-1 (pSUP $vdh\Omega$ Km) and E.~coli S17-1 (pSUP $vdh\Omega$ Gm), respectively. The

20

15

5

10

30

25

sequencing.

20

25

replacement of the intact vdh gene with the Ω Km-inactivated or Ω Gm-inactivated gene ($vdh\Omega$ Km and $vdh\Omega$ Gm, respectively) was verified by means of DNA sequencing.

The mutants Pseudomonas sp. HR199 $aat\Omega Km$ and Pseudomonas sp. HR199 $aat\Omega Gm$ were obtained after conjugating Pseudomonas sp. HR199 with E. coli S17-1 (pSUP $aat\Omega Km$) and E. coli S17-1 (pSUP $aat\Omega Gm$), respectively. The replacement of the intact aat gene with the ΩKm -inactivated or ΩGm -inactivated gene ($aat\Omega Km$ and $aat\Omega Gm$, respectively) was verified by means of DNA sequencing.

The mutant Pseudomonas sp. $HR199~fcs\Omega Kmvdh\Omega Gm$ was obtained after conjugating Pseudomonas sp. $HR199~fcs\Omega Km$ with $E.~coli~S17-1~(pSUPvdh\Omega Gm)$. The replacement of the intact vdh gene with the ΩGm -inactivated gene $(vdh\Omega Gm)$ was verified by means of DNA sequencing.

The mutant Pseudomonas sp. $HR199 \ vdh\Omega Kmaat\Omega Gm$ was obtained after conjugating Pseudomonas sp. $HR199 \ vdh\Omega Km$ with $E.\ coli\ S17-1\ (pSUPaat\Omega Gm)$. The replacement of the intact aat gene with the ΩGm -inactivated gene $(aat\Omega Gm)$ was verified by means of DNA sequencing.

The mutant Pseudomonas sp. $HR199 \ vdh\Omega Kmech\Omega Gm$ was obtained after conjugating Pseudomonas sp. $HR199 \ vdh\Omega Km$ with $E.\ coli\ S17-1\ (pSUPech\Omega Gm)$. The replacement of the intact ech gene with the ΩGm -inactivated gene ($ech\Omega Gm$) was verified by means of DNA sequencing.

5

10

15

20

Generating of mutants of the strain *Pseudomonas* sp. HR199 in which genes of eugenol catabolism have been specifically inactivated by deleting a constituent region.

The strains Pseudomonas sp. $HR199\ fcs\Omega Km$, Pseudomonas sp. $HR199\ ech\Omega Km$, Pseudomonas sp. $HR199\ vdh\Omega Km$ and Pseudomonas sp. $HR199\ aat\Omega Km$ were employed as recipients in conjugation experiments in which strains of E. coli S17-1 harbouring the hybrid plasmids of pHE55 which are listed below were used as donors. The "heterogenotic" transconjugants were selected on gluconate-containing mineral medium which also contained the antibiotic corresponding to the Ω element in addition to tetracycline (pHE55-encoded resistance). After streaking out on sucrose-containing mineral medium, transconjugants were obtained which had eliminated the vector DNA by means of a second recombination event (second crossover). By streaking out on mineral medium which was without antibiotic or which contained the antibiotic corresponding to the Ω element, it was possible to identify the mutants in which the Ω element-inactivated gene had been replaced with the deletion-inactivated gene (no antibiotic resistance).

The mutant *Pseudomonas* sp. HR199 $fcs\Delta$ was obtained after conjugating *Pseudomonas* sp. HR199 $fcs\Omega$ Km with *E. coli* S17-1 (pHE $fcs\Delta$). The replacement of the Ω Km inactivated gene ($fcs\Omega$ Km) with the deletion-inactivated gene ($fcs\Delta$) was verified by means of DNA sequencing.

The mutant Pseudomonas sp. HR199 $ech\Delta$ was obtained after conjugating Pseudomonas sp. HR199 $ech\Omega$ Km with E.~coli~S17-1 (pHE $ech\Delta$). The replacement of the Ω Km-inactivated gene ($ech\Omega$ Km) with the deletion-inactivated gene ($ech\Delta$) was verified by means of DNA sequencing.

The mutant *Pseudomonas* sp. HR199 $vdh\Delta$ was obtained after conjugating *Pseudomonas* sp. HR199 $vdh\Omega$ Km with *E. coli* S17-1 (pHE $vdh\Delta$). The replacement

of the Ω Km-inactivated gene ($vdh\Omega$ Km) with the deletion-inactivated gene ($vdh\Delta$) was verified by means of DNA sequencing.

The mutant Pseudomonas sp. HR199 $aat\Delta$ was obtained after conjugating Pseudomonas sp. HR199 $aat\Omega Km$ with E. coli S17-1 (pHE $aat\Delta$). The replacement of the ΩKm -inactivated gene ($aat\Omega Km$) with the deletion-inactivated gene ($aat\Delta$) was verified by means of DNA sequencing.

Example 8

10

15

20

25

5

Biotransforming eugenol into vanillin using the mutant Pseudomonas sp. HR199 $vdh\Omega Km$.

The strain Pseudomonas sp. HR199 $vdh\Omega$ Km was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx. OD600nm = 0.6. After 17 h, it was possible to detect 2.9 mM vanillin, 1.4 mM ferulic acid and 0.4 mM vanillic acid in the culture supernatant.

Example 9

HR199 $vdh\Omega Gmaat\Omega Km$.

The strain Pseudomonas sp. HR199 $vdh\Omega Gmaat\Omega Km$ was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx.OD600nm = 0.6. After 18 h, it was possible to detect 1.9 mM vanillin, 2.4 mM ferulic acid and

Biotransforming eugenol into ferulic acid using the mutant Pseudomonas sp.

0.6 mM vanillic acid in the culture supernatant.

Biotransforming eugenol into coniferyl alcohol using the mutant Pseudomonas sp. $HR199 \ vdh\Omega Gmaat\Omega Km$.

The strain *Pseudomonas* sp. HR199 *vdh*ΩGm*aat*ΩKm was propagated in 50 ml of HR-MM containing 6 mM eugenol up to an optical density of approx. OD600nm = 0.4. After 15 h, it was possible to detect 1.7 mM coniferyl alcohol, 1.4 mM vanillin, 1.4 mM ferulic acid and 0.2 mM vanillic acid in the culture supernatant.

Example 11

10

15

20

25

Fermentatively producing natural vanillin from eugenol in a 10 l fermenter using mutant Pseudomonas sp. HR 199 $vdh\Omega$ Km.

The production fermenter was inoculated with 100 ml of a 24-hour-old preliminary culture which had been propagated at 32°C on a shaking incubator (120 rpm) in a medium which was adjusted to pH 7.0 and which consisted of 12.5 g of glycerol/l, 10 g of yeast extract/l and 0.37 g of acetic acid/l. The fermenter contained 9.9 l of medium of the following composition: 1.5 g of yeast extract/l, 1.6 g of KH₂PO₄/l, 0.2 g of NaCl/l, 0.2 g of MgSO₄/l. The pH was adjusted to pH 7.0 with sodium hydroxide solution. After sterilization, 4 g of eugenol were added to the medium. The temperature was 32°C, the aeration was 3 Nl/min and the stirrer speed was 600 rpm. The pH was maintained at pH 6.5 with sodium hydroxide solution.

At 4 hours after the inoculation, continuous addition of eugenol was begun such that 255 g of eugenol had been added to the culture when fermentation ended after 65 hours. 40 g of yeast extract were also fed in during the fermentation. At the end of the fermentation, the concentration of eugenol was 0.2 g/l. The content of vanillin was 2.6 g/l. 3.4 g of ferulic acid/l were also present.

The vanillin which is obtained in this way can be isolated by known physical methods such as chromatography, distillation and/or extraction and used for preparing natural flavourings.

5 Explanatory notes regarding the figures:

FIG. 1a to 1r:

Gene struktures for isolating organisms and mutants

10

calA*: Part of the inactivated gene for coniferyl alcohol dehydrogenase calB*: Part of the inactivated gene for coniferyl aldehyde dehydrogenase fcs*: Part of the inactivated gene for feruloyl-CoA synthetase ech*: Part of the inactivated gene for enoyl-CoA hydratase-aldolase vdh*: Part of the inactivated gene for vanillin dehydrogenase aat*: Part of the inactivated gene for beta-ketothiolase

15

While the restriction enzyme cleavage sites labelled "*" were used for the construction, they are no longer functional in the resulting construct.

	FIG. 2a: Nucleotide sequence of the $calA\Omega Km$ gene structure
	FIG. 2b: Nucleotide sequence of the calAΩGm gene structure
	FIG. 2c: Nucleotide sequence of the calAΔ gene structure
	FIG. 2d: Nucleotide sequence of the calBΩKm gene structure
5	FIG. 2e: Nucleotide sequence of the calBΩGm gene structure
	FIG. 2f: Nucleotide sequence of the calBΔ gene structure
	FIG. 2g: Nucleotide sequence of the fcsΩKm gene structure
	FIG. 2h: Nucleotide sequence of the $fcs\Omega$ Gm gene structure
	FIG. 2i: Nucleotide sequence of the fcsΔ gene structure
10	FIG. 2j: Nucleotide sequence of the $ech\Omega Km$ gene structure
	FIG. 2k: Nucleotide sequence of the $ech\Omega Gm$ gene structure
	FIG. 21: Nucleotide sequence of the $ech\Delta$ gene structure
	FIG. 2m: Nucleotide sequence of the $vdh\Omega Km$ gene structure
	FIG. 2n: Nucleotide sequence of the $vdh\Omega Gm$ gene structure
15	FIG. 20: Nucleotide sequence of the vdhΔ gene structure
	FIG. 2p: Nucleotide sequence of the $aat\Omega Km$ gene structure
	FIG. 2q: Nucleotide sequence of the $aat\Omega Gm$ gene structure
	FIG. 2r: Nucleotide sequence of the aatΔ gene structure

10

15

20

25

30

Patent claims

- Transformed and/or mutagenized unicellular or multicellular organism which
 is characterized in that enzymes of eugenol and/or ferulic acid catabolism are
 inactivated such that the intermediates coniferyl alcohol, coniferyl aldehyde,
 ferulic acid, vanillin and/or vanillic acid accumulate.
- 2. Organism according to Claim 1, characterized in that eugenol and/or ferulic acid catabolism is altered by inserting Ω elements, or introducing deletions, into corresponding genes.
- Organism according to either Claim 1 or 2, characterized in that one or more genes encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratasealdolases, beta-ketothiolases, vanillin dehydrogenases or vanillic acid demethylases is/are altered and/or inactivated.
- 4. Organism according to one of Claims 1 to 3, characterized in that it is unicellular, preferably a microorganism or a plant or animal cell.
- 5. Organism according to one of Claims 1 to 4, characterized in that it is a bacterium, preferably a *Pseudomonas* species.
- 6. Gene structures in which the nucleotide sequences encoding the enzymes coniferyl alcohol dehydrogenases, coniferyl aldehyde dehydrogenases, feruloyl-CoA synthetases, enoyl-CoA hydratase-aldolases, beta-ketothiolases, vanillin-dehydrogenases or vanillic acid demethylases, or two or more of these enzymes, are altered and/or inactivated.
 - 7. Gene structures having the sequences given in Figures 1a to 1r.

10

15

20

25

- 8. Gene structures having the sequences given in Figures 2a to 2r.
- 9. Vectors which contain at least one gene structure according to one of Claims 6 to 8.

10. Transformed organism according to one of Claims 1 to 5, characterized in that it harbours at least one vector according to Claim 9.

- 11. Organism according to one of Claims 1 to 5, characterized in that it contains at least one gene structure according to one of Claims 6 to 8 which is integrated into the genome instead of the respective intact gene.
- 12. Process for the biotechnological preparation of organic compounds, in particular alcohols, aldehydes and organic acids, characterized in that an organism according to one of Claims 1 to 5 or 10 to 11 is employed.
- 13. Process for preparing the organisms according to one of Claims 1 to 5, characterized in that the alteration eugenol and/or ferulic acid catabolism is achieved by means of microbiological culturing methods which are known per se.
- 14. Process for preparing an organism according to one of Claims 1 to 5 or 10 to 11, characterized in that the alteration in eugenol and/or ferulic acid catabolism, and/or the inactivation of the corresponding genes, is achieved by means of recombinant DNA methods.
- 15. Use of the organisms according to one of Claims 1 to 5 or 10 to 11 for preparing coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and/or vanillic acid.

16. Use of gene structures according to one of Claims 6 to 8 or of a vector according to Claim 9 for preparing transformed and/or mutagenized organisms.

Sequences

	
CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser 1 5 10 15	472
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr 20 25 30	520
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe 35 40 45	568
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GAT AAG GCC ATC GGG Val Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asp Lys Ala Ile 50 55 60 62	616
ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC	676
AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT	736
GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC Met Ile Glu Gln Asp Gly Leu His 1 5	790
GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp 10 15 20	838
GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser 25 30 35 40	886
GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala 45 50 55	934
CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr 60 65 70	982

ACG GGC Thr Gly																1030
AGG GAC Arg Asr 90	Trp															1078
TCT CAC Ser His 105	CTT Leu	GCT Ala	CCT Pro	GCC Ala 110	GAG Glu	AAA Lys	GTA Val	TCC Ser	ATC Ile 115	ATG Met	GCT Ala	GAT Asp	GCA Ala	ATG Met 120	;	1126
CGG CGC Arg Arg																1174
GCG AAA Ala Lys																1222
GTC GAT Val Asp																1270
GAA CTO Glu Let 170	ı Phe															1318
GTC GTC Val Val 185																1366
GGC CGG Gly Arg																1414
CGC TA																1462
GGC GGG Gly Gl		Trp														1510
CCC GA' Pro Asp 25	, Ser															1558
TGAGCG	GGAC	TCTG	GGGT'	TC G.	AAAT	GACC(G AC	CAAG	CGAC	GCC		GCC (Ala 1 225				1613
ATT GC		Met														1661

ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255	GTTCGTGGAC 1710
GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTT	TTG GTTTTGATCG 1770
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCT	TTG TGAAGCTTTA 1830
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAA	AGT AGATCAGTCT 1890
GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGC	CCA ATGTCAGCTG 1950
CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTT	rgg ggacaacacc 2010
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTG	GAC AAATGCGCCG 2070
ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACT	TTT GACCGGGGC 2130
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	2164
FIG. 2a:	

CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGCCCCTG ATGGGTTGGA TGATTTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser 1 5 10 15	472
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr 20 25 30	520
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe 35 40 45	568
GTT CAG GCT GAC CTG AGC CAT CCT GAGGGGAGAG GCGGTTTGCG TATTGGGCGC Val Gln Ala Asp Leu Ser His Pro 50 55	622
ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG	682
GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG	742
CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT	802
CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA	862
CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT	922
TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT	982
TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG Met Leu Arg Ser Ser Asn Asp Val Thr Gln 1 5 10	1033
CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly Ile 15 20 25	1081
ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val Lys Ser Met Arg Ala 30 35 40	1129
GCT CTT GAT CTT TTC GGT CGT GAG TTC GGA GAC GTA GCC ACC TAC TCC Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp Val Ala Thr Tyr Ser 45 50 55	1177

CAA CAT CAG CCG GAC TCC GAT TAC CTC GGG AAC TTG CTC CGT AGT AAG Gln His Gln Pro Asp Ser Asp Tyr Leu Gly Asn Leu Leu Arg Ser Lys 60 65 70	1225
ACA TTC ATC GCG CTT GCT GCC TTC GAC CAA GAA GCG GTT GTT GGC GCT Thr Phe Ile Ala Leu Ala Ala Phe Asp Gln Glu Ala Val Val Gly Ala 75	1273
CTC GCG GCT TAC GTT CTG CCC AGG TTT GAG CAG CCG CGT AGT GAG ATC Leu Ala Ala Tyr Val Leu Pro Arg Phe Glu Gln Pro Arg Ser Glu Ile 95	1321
TAT ATC TAT GAT CTC GCA GTC TCC GGC GAG CAC CGG AGG CAG GGC ATT Tyr Ile Tyr Asp Leu Ala Val Ser Gly Glu His Arg Arg Gln Gly Ile 110 115 120	1369
GCC ACC GCG CTC ATC AAT CTC CTC AAG CAT GAG GCC AAC GCG CTT GGT Ala Thr Ala Leu Ile Asn Leu Leu Lys His Glu Ala Asn Ala Leu Gly 125	1417
GCT TAT GTG ATC TAC GTG CAA GCA GAT TAC GGT GAC GAT CCC GCA GTG Ala Tyr Val Ile Tyr Val Gln Ala Asp Tyr Gly Asp Asp Pro Ala Val 140 145 150	1465
GCT CTC TAT ACA AAG TTG GGC ATA CGG GAA GAA GTG ATG CAC TTT GAT Ala Leu Tyr Thr Lys Leu Gly Ile Arg Glu Glu Val Met His Phe Asp 155 160 165 170	1513
ATC GAC CCA AGT ACC GCC ACC TAA CAATTCGTTC AAGCCGAGAT CGGCTTCCCT Ile Asp Pro Ser Thr Ala Thr 175 177	1567
G ATT GCA TTC ATG TGT GCT GAG GAG TCA CGT TGG ATC AAC GGC ATA AAT Ile Ala Phe Met Cys Ala Glu Glu Ser Arg Trp Ile Asn Gly Ile Asn 228 230 235 240	1616
ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255	1665
GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG	1725
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	1785
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	1845
GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG	1905
CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	1965
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	2025
ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC	2085
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG FIG. 2b:	2119

CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser 1 5 10 15	472
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr 20 25 30	520
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe 35 40 45	568
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GATC G	617
ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255	666
GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG	726
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	786
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	846
GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG	906
CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	966
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	1026
ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC	1086
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	1120

FIG. 2c:

GAATTCCGCG TATC	GCCCGG TTCTATC	AGC GGGCCGCTTT	CGAAAGTCAT GGTGTT	'AGCC 60
GGTAGGGTCT TTT	CTTGGC CATGCTTG	STT GCCTGAACCT	TCGTTGACAT AGGGCA	AGAGG 120
TGCGTTTGCC GCT	CGCTTC GCGATGA	ACC GCATCGAGAT	GCTGAGGTCA GGATTT	TTCC 180
TTAACTCGCG TAAC	GCATTCT GTCATTT	TTT TGGTGGCTTT	GAACAGCCTG ATGAAA	AGGTG 240
GTCTCGCCCT TTG	AGGCCGA TTCTTGGC	CG CTTGGCGGCG	TCGAAGCGAT GCTCCA	CTAC 300
CGATTAAGAT AAT	raaaata aggaaaco	CGC ATGGTTTCTT	ATGTGAATTT GTCTGG	CATA 360
CTCCAGCTCA AGG	GCAATTT TTGGGCT	ATT GGCTGAGCAG	TTGCCTCTAT ATGGTT	PATTC 420
AGAATAACAA TTG	ACTCCTC AGGAGGT(ATT CTT GGT TTG A Ile Leu Gly Leu A 5	
	l Gly Ala Glu G		GCT CTT GAT CGC A Ala Leu Asp Arg M 20	
			TTG GAG CTG CGT C Leu Glu Leu Arg I 35	
			GAA AAT CGT GAA G Glu Asn Arg Glu A	
ATT GCC GAC GC Ile Ala Asp Al	G GTT TCT GCT GA a Val Ser Ala As 60	AC TTT GGC AAT sp Phe Gly Asn 65	CGC AGC CGT GAG C Arg Ser Arg Glu G 70	CAA 665 Gln
	s Asp Ile Ala G		AGC CTG AAG GAT A Ser Leu Lys Asp S 85	
	l Ala Lys Trp Me		CAT CAC AAG GCG A His His Lys Ala M 100	
Phe Pro Gly Al		al Glu Phe Gln	CCG CTG GGT GTC (Pro Leu Gly Val V 115	
			CTG GCC TTT GGG C Leu Ala Phe Gly I	
			ATG CTC AAG CCG T Met Leu Lys Pro S 150	
	o Arg Thr Ser A		GAG CTA ATT GCT (Glu Leu Ile Ala A 165	

Tyr Phe Asp 170	GAA ACT Glu Thr											1001
GGT GCG CTG Gly Ala Leu 185			Pro									1049
GGC ACT GCC Gly Thr Ala 200	GTG GCC Val Ala	AAG CAC Lys His 205	ATC Ile	ATG Met	CGT Arg	GCC Ala 210	GCG Ala	GCG Ala	GAT Asp	AAC Asn	CTA Leu 215	1097
GTG CCC GTT Val Pro Val												1145
CGC AGT GCA Arg Ser Ala												1193
ACC TTC AAT Thr Phe Asn 250												1241
CCG GAA GGG Pro Glu 265	ACAGCAA	GCGAACCG	GA A'	rtgco	CAGCT	GGC	GCG	CCCT	CTG	CAATE	GGT	1297
TGGGAAGCCC	TGCAAAGT	AA ACTGO	ATGG(C TT	rctt(GCCG	CCA	AGGA:	rct (GATG(GCGCAG	1357
								ATG	ATT		CAA	1357 1412
TGGGAAGCCC	TCTGATCA CAC GCA	AG AGAC <i>i</i> GGT TC1	GGAT	G AGG	GATC(FTTT TGG	CGC	ATG Met 1 GAG	ATT Ile	GAA Glu CTA	CAA Gln TTC	
TGGGAAGCCC GGGATCAAGA GAT GGA TTG Asp Gly Leu	TCTGATCA CAC GCA His Ala TGG GCA	GGT TCT Gly Ser 10 CAA CAG Gln Glr	GGATO CCG Pro	G AGC GCC Ala ATC	GCT Ala GGC	TGG Trp 15	CGC GTG Val	ATG Met 1 GAG Glu	ATT Ile AGG Arg	GAA Glu CTA Leu	CAA Gln TTC Phe 20 GTG	1412
TGGGAAGCCC GGGATCAAGA GAT GGA TTG Asp Gly Leu 5 GGC TAT GAC Gly Tyr Asp TTC CGG CTG Phe Arg Leu	CAC GCA His Ala TGG GCA Trp Ala 25 TCA GCG Ser Ala	GGT TCT Gly Ser 10 CAA CAG Gln Glr	GGATO CCG Pro ACA Thr	GCC Ala ATC Ile CCG Pro	GCT Ala GGC Gly 30 GTT Val	TGG Trp 15 TGC Cys	CGC GTG Val TCT Ser TTT Phe	ATG Met 1 GAG Glu GAT Asp	ATT Ile AGG Arg GCC Ala AAG Lys	GAA Glu CTA Leu GCC Ala 35 ACC Thr	CAA Gln TTC Phe 20 GTG Val	1412
TGGGAAGCCC GGGATCAAGA GAT GGA TTG Asp Gly Leu 5 GGC TAT GAC Gly Tyr Asp TTC CGG CTG Phe Arg Leu	CAC GCA His Ala TGG GCA Trp Ala 25 TCA GCG Ser Ala 40 GCC CTG Ala Leu	GGT TCT Gly Ser 10 CAA CAG Gln Glr CAG GGG Gln Gly	GGATO CCG ACA Thr CCGC Arg	G AGC Ala ATC Ile CCG Pro 45 CAG	GCT Ala GGC Gly 30 GTT Val	TGG Trp 15 TGC Cys CTT Leu	GTG Val TCT Ser TTT Phe	ATG Met 1 GAG Glu GAT Asp GTC Val GCG	ATT Ile AGG Arg GCC Ala AAG Lys 50 CGG	GAA Glu CTA Leu GCC Ala 35 ACC Thr	CAA Gln TTC Phe 20 GTG Val GAC Asp	1412 1460 1508

_							CTA Leu								1700
							CCT Pro								1748
							ACG Thr 125								1796
	-						ATC Ile								1844
							GAT Asp								1892
							AGG Arg								1940
							GGC Gly								1988
							GGA Gly 205								2036
							ATA Ile								2084
							GCT Ala								2132
		 					CGC Arg								2180
	GAG Glu		TGA	GCG	GGAC'	rct (GGGG'	rtcg/	AA A	rgac(CGAC	C AA(GCGA	CGCC	2235
CGC	His						CAA Gln								2283
							GAA Glu								2331

	Ser Thr G		AACCGTTGGT A	AGTGGTTTTG (GACGGGCCCA	2385
GGAGCATGCG	CTTCTGGGCC	CGTTTCTTGA	GTATTCATTG	GATAGTCACG	CGTGGTAGCT	2445
TCGAGCCTGC	ACAGCTGATG	AGCACCCTGG	AAGGCGCGCT	GTACGCGGAC	GACTGGGTTC	2505
ATCTTCGCCA	TTCATGACGG	AACTCCGTTC	CCCAGTACCG	CGATGACTAT	TTTGCCTCTT	2565
CCGATGTCCG	ATTCCACGCC	GCCTGACGCT	AAGCGGGGGC	GGGGGCGCCC	GCATCCCAGC	2625
CCAGACAGCA	ACAAATGAGT	AGGCTCTTGG	ATGCCGCGGC	GGCTGAGATT	GGTAACGGCA	2685
ATTTCGTCAA	TGTGACGATG	GATTCGATTG	CCCGTGCTGC	CGGCGTCTCA	AAAAAAACGC	2745
IGTACGTCTT	GGTGGCGAGC	AAGGAAGAAC	TCATTTCCCG	GTTAGTGGCT	CGAGACATGT	2805
CCAACCTTGA	GGAATTC					2822
FIG. 2d:						

GAATTCCGCG TATCGCCCGG TTCTATCAGC GGGCCGCTTT CGAAAGTCAT GGTGTTAGCC	60
GGTAGGGTCT TTTTCTTGGC CATGCTTGTT GCCTGAACCT TCGTTGACAT AGGGCAGAGG	120
TGCGTTTGCC GCTTCGCTTC GCGATGAACC GCATCGAGAT GCTGAGGTCA GGATTTTTCC	180
TTAACTCGCG TAAGCATTCT GTCATTTTTT TGGTGGCTTT GAACAGCCTG ATGAAAGGTG	240
GTCTCGCCCT TTGAGGCCGA TTCTTGGGCG CTTGGCGGCG TCGAAGCGAT GCTCCACTAC	300
CGATTAAGAT AATTAAAATA AGGAAACCGC ATGGTTTCTT ATGTGAATTT GTCTGGCATA	360
CTCCAGCTCA AGGGCAATTT TTGGGCTATT GGCTGAGCAG TTGCCTCTAT ATGGTTATTC	420
AGAATAACAA TTGACTCCTC AGGAGGTCAG CG ATG AGC ATT CTT GGT TTG AAT Met Ser Ile Leu Gly Leu Asn 1 5	473
GGT GCC CCG GTC GGA GCT GAG CAG CTG GGC TCG GCT CTT GAT CGC ATG Gly Ala Pro Val Gly Ala Glu Gln Leu Gly Ser Ala Leu Asp Arg Met 10 15 20	521
AAG AAG GCG CAC CTG GAG CAG GGG CCT GCA AAC TTG GAG CTG CGT CTG Lys Lys Ala His Leu Glu Gln Gly Pro Ala Asn Leu Glu Leu Arg Leu 25 30 . 35	569
AGT AGG CTG GAT CGT GCG ATT GCA ATG CTT CTG GAA AAT CGT GAA GCA Ser Arg Leu Asp Arg Ala Ile Ala Met Leu Leu Glu Asn Arg Glu Ala 40 45 50 55	617
ATT GCC GAC GCG GTT TCT GCT GAC TTT GGC AAT CGC AGC CGT GAG CAA Ile Ala Asp Ala Val Ser Ala Asp Phe Gly Asn Arg Ser Arg Glu Gln 60 65 70	665
ACA CTG CTT TGC GAC ATT GCT GGC TCG GTG GCA AGC CTG AAG GAT AGC Thr Leu Leu Cys Asp Ile Ala Gly Ser Val Ala Ser Leu Lys Asp Ser 75 80 85	713
CGC GAG CAC GTG GCC AAA TGG ATG GAG CCC GAA CAT CAC AAG GCG ATG Arg Glu His Val Ala Lys Trp Met Glu Pro Glu His His Lys Ala Met 90 95 100	761
TTT CCA GGG GCG GAG GCA CGC GTT GAG TTT CAG CCG CTG GGT GTC GTT Phe Pro Gly Ala Glu Ala Arg Val Glu Phe Gln Pro Leu Gly Val Val 105 110 115	809
GGG GTC ATT AGT CCC TGG AAC TTC CCT ATC GTA CTG GCC TTT GGG CCG Gly Val Ile Ser Pro Trp Asn Phe Pro Ile Val Leu Ala Phe Gly Pro 120 125 130 135	857
CTG GCC GGC ATA TTC GCA GCA GGT AAT CGC GCC ATG CTC AAG CCG TCC Leu Ala Gly Ile Phe Ala Ala Gly Asn Arg Ala Met Leu Lys Pro Ser 140 145 150	905
GAG CTT ACC CCG CGG ACT TCT GCC CTG CTT GCG GAG CTA ATT GCT CGT Glu Leu Thr Pro Arg Thr Ser Ala Leu Leu Ala Glu Leu Ile Ala Arg 155 160 165	953

Tyr Phe Asp Glu Thr Glu Leu Thr Thr Val Leu Gly Asp Ala Glu Val 170 175 180	1001
GGT GCG CTG TTC AGT GCT CAG CCT TTC GAT CAT CTG ATC TTC ACC GGC Gly Ala Leu Phe Ser Ala Gln Pro Phe Asp His Leu Ile Phe Thr Gly 185	1049
GGC ACT GCC GTG GCC AAG CAC ATC ATG CGT GCC GCG GCG GAT AAC CTA Gly Thr Ala Val Ala Lys His Ile Met Arg Ala Ala Ala Asp Asn Leu 200 205 210 215	1097
GTG CCC GTT ACC CTG GAA TTG GGT GGC AAA TCG CCG GTG ATC GTT TCC Val Pro Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Val Ile Val Ser 220 230	1145
CGC AGT GCA GAT ATG GCG GAC GTT GCA CAA CGG GTG TTG ACG GTG AAA Arg Ser Ala Asp Met Ala Asp Val Ala Gln Arg Val Leu Thr Val Lys 235 240 245	1193
ACC TTC AAT GCC GGG CAA ATC TGT CTG GCA CCG GAC TAT GTG CTG GGG Thr Phe Asn Ala Gly Gln Ile Cys Leu Ala Pro Asp Tyr Val Leu 250 255 260 262	1241
GAGAGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAATTCAT TAAGCATTCT	1301
GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATCGCCAGCG GCATCAGCAC	1361
CTTGTCGCCT TGCGTATAAT ATTTGCCCAT GGACGCACAC CGTGGAAACG GATGAAGGCA	1421
	1 101
CGAACCCAGT TGACATAAGC CTGTTCGGTT CGTAAACTGT AATGCAAGTA GCGTATGCGC	1481
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT	1541
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA	1541 1601
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT	1541
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg	1541 1601
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1 AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu	1541 1601 1656
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1 AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu 5 10 GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp	1541 1601 1656 1704
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1 AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu 5 GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp 20 25 30 35 CAA GTC AAA TCC ATG CGG GCT GCT CTT GAT CTT TTC GGT CGT GAG TTC Gln Val Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe	1541 1601 1656 1704
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACGGCGC AGTGGCGGTT TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGGCATC CAAGCAGCAA GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1 AGC AGC AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA Ser Ser Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu 5 10 15 GGT GGC TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC Gly Gly Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp 20 25 30 35 CAA GTC AAA TCC ATG CGG GCT GCT CTT GAT CTT TTC GGT CGT GAG TTC Gln Val Lys Ser Met Arg Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe 40 45 50 GGA GAC GTA GCC ACC TAC TCC CAA CAT CAG CCG GAC TCC GAT TAC CTC Gly Asp Val Ala Thr Tyr Ser Gln His Gln Pro Asp Ser Asp Tyr Leu	1541 1601 1656 1704 1752

Gln	Glu 85	Ala	Val	Val	Gly	Ala 90	Leu	Ala	Ala	Tyr	Val 95	Leu	Pro	Arg	Phe	
GAG Glu 100	CAG Gln	CCG Pro	CGT Arg	AGT Ser	GAG Glu 105	ATC Ile	TAT Tyr	ATC Ile	TAT Tyr	GAT Asp 110	CTC Leu	GCA Ala	GTC Val	TCC Ser	GGC Gly 115	1992
GAG Glu	CAC His	CGG Arg	AGG Arg	CAG Gln 120	GGC Gly	ATT Ile	GCC Ala	ACC Thr	GCG Ala 125	CTC Leu	ATC Ile	AAT Asn	CTC Leu	CTC Leu 130	AAG Lys	2040
CAT His	GAG Glu	GCC Ala	AAC Asn 135	GCG Ala	CTT Leu	GGT Gly	GCT Ala	TAT Tyr 140	GTG Val	ATC Ile	TAC Tyr	GTG Val	CAA Gln 145	GCA Ala	GAT Asp	2088
									TAT Tyr							2136
									CCA Pro					TAA	CAA	2184
TTC	GTTC	AAG (CCGA	GATC(GG C'	TCC	(AGT (Ser 1		Val (2236
									GCG Ala							2284
					Glu		TAG	AAC	CGTT	GGT Z	AGTG(GTTT'	rg Gi	ACGG(GCCCA	2338
GGA	GCAT	GCG (CTTC'	TGGG	CC C	STTT(CTTG	A GT	ATTC	ATTG	GAT	AGTC	ACG (CGTG	GTAGCT	2398
TCG	AGCC'	rgc :	ACAG	CTGA'	TG A	GCAC	CCTG	G AA	GGCG(CGCT	GTA	CGCG	GAC (GACT(GGTTC	2458
ATC'	rtcg(CCA '	TTCA	TGAC	GG A	ACTC	CGTT	C CC	CAGT	ACCG	CGA'	rgac'	rat '	TTTG	CCTCTT	2518
CCG	ATGT	CCG :	ATTC	CACG	CC G	CCTG	ACGC'	T AA	GCGG	GGGC	GGG	GGCG	CCC (GCAT	CCCAGC	2578
CCA	GACA	GCA :	ACAA	ATGA	GT A	GCT	CTTG	G AT	GCCG	CGGC	GGC'	rgag:	ATT (GGTA.	ACGGCA	2638
ATT'	TCGT	CAA '	TGTG.	ACGA'	rg g	ATTC	GATT	G CC	CGTG	CTGC	CGG	CGTC'	TCA .	AAAA	AAACGC	2698
TGT	ACGT	CTT	GGTG	GCGA	GC A	AGGA	AGAA	C TC	ATTT	CCCG	GTT.	AGTG	GCT (CGAG.	ACATGT	2758
CCA	ACCT	TGA (GGAA	TTC												2775
FIG	. 2e	:														

FIG. 2e:

GAATI	rccg	CG T	ATCG	CCCG	G TI	CTAT	CAGC	GGG	3CCG(TTT	CGA	AAGT	CAT	GGTG'	TAGCC	60
GGTAG	GGT	CT I	TTTC	TTG	C C	ATGCT	TGTT	r GCC	CTGA	ACCT	TCG	TTGAC	CAT A	AGGG	CAGAGG	120
TGCGT	rttg	CC G	CTTC	CGCTT	C GC	CGATO	BAACC	GCZ	ATCG	AGAT	GCT	GAGG	CA (GGAT.	TTTTCC	180
TTAAC	CTCG	CG I	CAAGC	CATTO	CT GT	rcati	TTTT	r TGC	GTGG	CTTT	GAA	CAGC	CTG A	ATGA	AAGGTG	240
GTCTC	CGCC	CT I	TGAG	GCC	A T	CTTC	GGCC	G CT	rggco	GCG	TCG	AAGC	AT (GCTC	CACTAC	300
CGATT	ΓΑΑG	AT A	ATTA	CAAA	TA AC	GGAAA	ACCG(CATO	GGTT	TTT	ATG	rgaa:	TTT (GTCT	GCATA	360
CTCCZ	AGCI	CA A	AGGGC	CAATT	T T	rgggc	CTATI	r GG(CTGAC	GCAG	TTG	CCTC	TAT A	ATGG:	TATTC	420
AGAAT	FAAC	r aa	TTGAC	CTCCT	C AC	GGAG	GTCAC	G CG						TTG Leu		473
GGT (521
AAG A																569
AGT A Ser A																617
ATT (665
ACA (713
CGC (761
TTT (809
GGG (Gly V 120																857
CTG (905
GAG (Glu I																953

)1
19
7
15
€3
10
88
12
02
62
22
82
42
02
62
79

FIG. 2f:

CTGCAGCC	GA G	CATC	GATT	'G AG	CACI	TTAC	CCA	GCT	CGC	TGGC	TGAC	CA 1	TCAC	SAATGG	60
CCCGCGGC	CAC T	ATCC	AATC	T AA	ATCG	SATCI	TCC	GGCC	GCCG	CGGG	CATO	CAT (GCCC	GCGGCG	120
CTCGCCTC	CAT T	TCAA	rctc	T AA	CTTC	SATA	AAA	ACAGA	AGCT	GTTC	CTCCC	GT (CTTGG	TGGAT	180
CAAGGCCA	AGT C	GCGGZ	AGAG	T CI	CGAA	GAGG	G AGA	AGTA(CAGT	GAAC	CGCC	GAG T	CCAC	CATTGC	240
AACCGCAG	GC A	TCATO	CATG	C TO	TGCT	CAGC	CAC	CGCTA	ACCG	CAGI	GTGI	rcg <i>i</i>	ATTGO	STCATC	300
CTCCGGTT	rga g	GTTA(CGCA	A GA	CGCT	GGAG	GT#	ATTGT	CCG					C GAG u Glu 5	356
GCG CTT Ala Leu															404
GCT AAG Ala Lys															452
GGG GAA Gly Glu															500
GCC ATC Ala Ile 55															548
CTG CTT Leu Leu 70															596
GGG GCT Gly Ala															644
TCA CTG Ser Leu	Leu														692
CTG CAA Leu Gln														GGG	740
ACAGCAAG	GCG A	ACCG(GAAT	T GC	CAGO	TGGG	G GCC	CCC	CTG	GTA	AGGTT	rgg (GAAGO	CCTGC	800
AAAGTAAA	ACT G	GATG(GCTT	T CI	TGCC	CGCCF	A AGO	SATC:	GAT	GGCC	CAGO	GGG A	ATCAZ	AGATCT	860
GATCAAGA	AGA C.	AGGA:	TGAG	G AI	CGTT	TCGC	Met		_		ı Ası			G CAC 1 His	914
GCA GGT Ala Gly 10															962

							CGG Arg		1010
							TCC Ser		1058
	 _						CTG Leu 70		1106
							GAA Glu		1154
							CTC Leu		1202
							GAT Asp		1250
							GAC Asp		1298
							GCC Ala 150		1346
							GCG Ala		1394
_							GAG Glu		1442
							стс Val		1490
							GTG Val		1538
							GAA Glu 230		1586
							ATC Ile		1634

CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe 250 255 260 264	1682
TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCCT GTT TTG CAA Val Leu Gln 563 565	1737
TGG CGG TCG GCG AAA GTT GAT GCG CTG TAT CGT GGT GAA GAT CAA TCC Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg Gly Glu Asp Gln Ser 570 575 580	1785
ATG CTG CGT GAC GAG GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC Met Leu Arg Asp Glu Ala Thr Leu 585 589	1832
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG	1892
GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG	1952
ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA	2012
GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG	2072
TCGGTTCCGG CCTTGGGGGT GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG	2132
GCCGGCGAGC AGATTTCCCA AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG	2188
FTG. 2a:	

CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTG	ACCA TTCAGAATGG 60
CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCA	TCAT GCCCGCGGCG 120
CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTC	CGGT CTTGGTGGAT 180
CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGC	CGAG TCCACATTGC 240
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGT	GTCG ATTGGTCATC 300
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG G ATG Met 1	CGT TCT CTC GAG 356 Arg Ser Leu Glu 5
GCG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG CGT CT Ala Leu Leu Pro Phe Pro Gly Arg Ile Leu Glu Arg Le 10 15	
GCT AAG ACC CGT CCA GAA CAA ACC TGC GTT GCT GCC AG Ala Lys Thr Arg Pro Glu Gln Thr Cys Val Ala Ala Ar 25	
GGG GAA TGG CGT CGT ATC AGC TAC GCG GAA ATG TTC CAGGLY Glu Trp Arg Arg Ile Ser Tyr Ala Glu Met Phe Hi	
GCC ATC GCA CAG AGC TTG CTT CCT TAC GGA CTA TCG GCA Ala Ile Ala Gln Ser Leu Leu Pro Tyr Gly Leu Ser Ala 55 60 65	
CTG CTT ATC GTC TCT GGA AAT GAC CTG GAA CAT CTT CALLeu Leu Ile Val Ser Gly Asn Asp Leu Glu His Leu Gl	
GGG GCT ATG TAT GCG GGC ATT CCC TAT TGC CCG GTG TCG Gly Ala Met Tyr Ala Gly Ile Pro Tyr Cys Pro Val Se 90 95	
TCA CTG CTG TCG CAA GAT TTG GCG AAG CTG CGT CAC AT Ser Leu Leu Ser Gln Asp Leu Ala Lys Leu Arg His II 105	
CTG CAA CCG GGA CTG GTC TTT GCT GCC GAT GCA GCA CC Leu Gln Pro Gly Leu Val Phe Ala Ala Asp Ala Ala Pr 120 125 13	
GAGAGGCGGT TTGCGTATTG GGCGCATGCA TAAAAACTGT TGTAAT	TTCAT TAAGCATTCT 800
GCCGACATGG AAGCCATCAC AAACGGCATG ATGAACCTGA ATCGCC	CAGCG GCATCAGCAC 860
CTTGTCGCCT TGCGTATAAT ATTTGCCCAT GGACGCACAC CGTGGA	AAACG GATGAAGGCA 920
CGAACCCAGT TGACATAAGC CTGTTCGGTT CGTAAACTGT AATGCA	AAGTA GCGTATGCGC 980
TCACGCAACT GGTCCAGAAC CTTGACCGAA CGCAGCGGTG GTAACC	GGCGC AGTGGCGGTT 1040
TTCATGGCTT GTTATGACTG TTTTTTTGTA CAGTCTATGC CTCGGC	GCATC CAAGCAGCAA 1100

GCGCGTTACG CCGTGGGTCG ATGTTTGATG TTATGGAGCA GCAACG ATG TTA CGC Met Leu Arg 1											
AGC AGC AAC GAT G Ser Ser Asn Asp V 5	TT ACG CAG CAG Val Thr Gln Gln 10	GGC AGT CGC Gly Ser Arg	CCT AAA ACA AAG Pro Lys Thr Lys 15	TTA 1203 Leu							
GGT GGC TCA AGT A Gly Gly Ser Ser M 20	ATG GGC ATC ATT Met Gly Ile Ile 25	CGC ACA TGT Arg Thr Cys 30	AGG CTC GGC CCT Arg Leu Gly Pro	GAC 1251 Asp 35							
CAA GTC AAA TCC A Gln Val Lys Ser M											
GGA GAC GTA GCC A Gly Asp Val Ala T 55											
GGG AAC TTG CTC C Gly Asn Leu Leu A 70											
CAA GAA GCG GTT G Gln Glu Ala Val V 85	GTT GGC GCT CTC /al Gly Ala Leu 90	GCG GCT TAC Ala Ala Tyr	GTT CTG CCC AGG Val Leu Pro Arg 95	TTT 1443 Phe							
GAG CAG CCG CGT A Glu Gln Pro Arg S 100	AGT GAG ATC TAT Ser Glu Ile Tyr 105	ATC TAT GAT Ile Tyr Asp 110	CTC GCA GTC TCC Leu Ala Val Ser	GGC 1491 Gly 115							
GAG CAC CGG AGG C Glu His Arg Arg G 1											
CAT GAG GCC AAC G His Glu Ala Asn A 135											
TAC GGT GAC GAT C Tyr Gly Asp Asp F 150											
GAA GAA GTG ATG C Glu Glu Val Met H 165				CAA 1683							
TTCGTTCAAG CCGAGA	,	GTT TTG CAA 7 Val Leu Gln 7 563 565	TGG CGG TCG GCG Trp Arg Ser Ala	AAA 1735 Lys 570							
GTT GAT GCG CTG T Val Asp Ala Leu T				Glu							

GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC TCGGCGTTTT CCGACACTGC Ala Thr Leu 589	1835
GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC	1895
GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTTGAACC	1955
ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA GCAAGCTTTG ATGCTTACCT	2015
GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG TCGGTTCCGG CCTTGGGGGT	2075
GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG GCCGGCGAGC AGATTTCCCA	2135
AGGCGCTGAT CACGTGCTGT GTGTCGCGGG CTGCAG	2171
FIG. 2h:	

CTGCAGCCGA	GCATCGA'	TTG AGCAC	TTTAC C	CAGCTG	CGC	TGGCTG	GACCA I	TCAG	AATGG	60
CCCGCGGCAC	TATCCAA	CT AAATC	GATCT T	CGGGCG	CCG	CGGGCZ	ATCAT G	CCCG	CGGCG	120
CTCGCCTCAT	TTCAATC'	CT AACTT	GATAA A	AACAGA	GCT	GTTCTC	CCGGT C	TTGG	TGGAT	180
CAAGGCCAGT	CGCGGAG	AGT CTCGA	AGAGG A	GAGTAC	AGT	GAACGO	CCGAG T	CCAC	ATTGC	240
AACCGCAGGC	ATCATCA'	rgc TCTGC	TCAGC C	ACGCTA	.CCG	CAGTGT	rgtcg A	ATTGG	TCATC	300
CTCCGGTTGA	GGTTACG	CAA GACGC'	rggag g	TATTGT	CCG		CGT TC			356
GCG CTT CT Ala Leu Le	r CCC TTo u Pro Ph 1	e Pro Gly	CGA AT Arg Il	T CTT e Leu 15	GAG Glu	CGT CT Arg Le	rc GAG eu Glu	CAT His 20	TGG Trp	404
GCT AAG AC			Thr Cy							452
GGG GAA TG Gly Glu Tr 4	p Arg Ar					Phe H				500
GCC ATC GC Ala Ile Al 55			Pro Ty							548
CTG CTT AT Leu Leu Il 70										596
GGG GCT AT Gly Ala Me	G TAT GC t Tyr Al 9	a Gly Ile	CCC TA	T TGC r Cys 95	CCG Pro	GTG TO Val Se	CT CCT er Pro	GCT Ala 100	TAT Tyr	644
TCA CTG CT Ser Leu Le				rs Leu						692
CTG CAA CC Leu Gln Pr 12	o Gly Le					Ala P				740
GCT GTT TT Ala Val Le 562				s Val						788
GAA GAT CA Glu Asp Gl 58	n Ser Me						GA GTT(GGTC#	AGG	837
GGGGGCTTAC	TCGGCGT	TTT CCGAC	ACTGC C	GTTGGT:	rgcg	GCAGT	GCGCA (cccc	CTGGAT	897
max mmaaaaa	остопо	mam aaama	omorro o	7.C.C.M.7.M.C	7070	mm» cc	CCDAA .		raamaa	057

CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	1017
TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	1077
TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	1137
GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGG	1197
CTGCAG						1203

FIG. 2i:

GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys 1 5 10	290
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg 15 20 25 30	338
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 35 40 45	386
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50 55 60	434
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65	482
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80 85 90 91	531
AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT	591
AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA	651
AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala 1 5	703
GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10 15 20 25	751
CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCC Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30 35 40	799
CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45 50 55	847
AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG ASn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr 60 65 70	895

GGC Gly	GTT Val 75	CCT Pro	TGC Cys	GCA Ala	GCT Ala	GTG Val 80	CTC Leu	GAC Asp	GTT Val	GTC Val	ACT Thr 85	GAA Glu	GCG Ala	GGA Gly	AGG Arg	943
GAC Asp 90	TGG Trp	CTG Leu	CTA Leu	TTG Leu	GGC Gly 95	GAA Glu	GTG Val	CCG Pro	GGG Gly	CAG Gln 100	GAT Asp	CTC Leu	CTG Leu	TCA Ser	TCT Ser 105	991
CAC His	CTT Leu	GCT Ala	CCT Pro	GCC Ala 110	GAG Glu	AAA Lys	GTA Val	TCC Ser	ATC Ile 115	ATG Met	GCT Ala	GAT Asp	GCA Ala	ATG Met 120	CGG Arg	1039
CGG Arg	CTG Leu	CAT His	ACG Thr 125	CTT Leu	GAT Asp	CCG Pro	GCT Ala	ACC Thr 130	TGC Cys	CCA Pro	TTC Phe	GAC Asp	CAC His 135	CAA Gln	GCG Ala	1087
	CAT His															1135
	CAG Gln 155															1183
	TTC Phe															1231
	ACC Thr															1279
	TTT Phe															1327
	CAG Gln															1375
	GAA Glu 235															1423
	TCG Ser														TGA	1471
GCG	GGAC	TCT	GGGG	TTCG.	AA A	TGAC	CGAC	C AA	GCGA	CGCC			CAG Gln			1525
	CAG Gln 260	Phe					Ser					Leu				1573

AAG CGC TGA Lys Arg 275 276	A TAAATGCGCC	: GGGGCCCTCG	; CTGCGCCCCC	GGCCTTCCAA	TAATGACAAT	1632
AATGAGGAGT	GCCCAATGTT	TCACGTGCCC	CTGCTTATTG	GTGGTAAGCC	TTGTTCAGCA	1692
TCTGATGAGC	GCACCTTCGA	GCGTCGTAGC	CCGCTGACCG	GAGAAGTGGT	ATCGCGCGTC	1752
GCTGCTGCCA	GTTTGGAAGA	TGCGGACGCC	GCAGTGGCCG	CTGCACAGGC	TGCGTTTCCT	1812
GAATGGGCGG	CGCTTGCTCC	GAGCGAACGC	CGTGCCCGAC	TGCTGCGAGC	GGCGGATCTT	1872
CTAGAGGACC	GTTCTTCCGA	GTTCACCGCC	GCAGCGAGTG	AAACTGGCGC	AGCGGGAAAC	1932
TGGTATGGGT	TTAACGTTTA	CCTGGCGGCG	GGCATGTTGC	GGGGAATTC		1983
FiG. 2j:						

GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
	120
GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys 1 5 10	290
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg 15 20 25 30	338
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 35 40 45	386
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50 55 60	434
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65 70 75	482
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGGAGAG Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80 85 90 91	531
GCGGTTTGCG TATTGGGCGC ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA	591
CATGGAAGCC ATCACAAACG GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT	651
CGCCTTGCGT ATAATATTTG CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC	711
CCAGTTGACA TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG	771
CAACTGGTCC AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT	831
GGCTTGTTAT GACTGTTTTT TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG	891
TTACGCCGTG GGTCGATGTT TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AGC AGC AGC AGC AGC AGC AG	947
AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly 10 15 20	995
TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val 25 30 35	1043

					GCT Ala											1091
					CAA Gln											1139
TTG Leu 70	CTC Leu	CGT Arg	AGT Ser	AAG Lys	ACA Thr 75	TTC Phe	ATC Ile	GCG Ala	CTT Leu	GCT Ala 80	GCC Ala	TTC Phe	GAC Asp	CAA Gln	GAA Glu 85	1187
GCG Ala	GTT Val	GTT Val	GGC Gly	GCT Ala 90	CTC Leu	GCG Ala	GCT Ala	TAC Tyr	GTT Val 95	CTG Leu	CCC Pro	AGG Arg	TTT Phe	GAG Glu 100	CAG Gln	1235
					TAT Tyr											1283
					GCC Ala											1331
					GCT Ala											1379
					GCT Ala 155											1427
					ATC Ile							TAA	CAA'	TTCG	PTC	1476
AAG	CCGA	GAT (CGGC'	TTCC(ys G						1526
					GGC Gly 270					Lys		TGA	TAA	ATGC	GCC	1575
GGG	GCCC'	TCG (CTGC	GCCC	CC G	GCCT'	TCCA	A TA	ATGA	CAAT	AAT	GAGG.	AGT	GCCC.	AATGTT	1635
TCA	CGTG	ccc (CTGC	TTAT'	TG G	rggt:	AAGC	C TT	GTTC.	AGCA	TCT	GATG.	AGC	GCAC	CTTCGA	1695
GCG'	rcgt:	AGC (CCGC'	TGAC	CG G	AGAA	GTGG'	T AT	CGCG	CGTC	GCT	GCTG	CCA	GTTT	GGAAGA	1755
TGC	GGAC	GCC (GCAG'	TGGC	CG C	rgca(CAGG	C TG	CGTT	TCCT	GAA	TGGG	CGG	CGCT	TGCTCC	1815
GAG	CGAA	CGC (CGTG	CCCG.	AC T	GCTG	CGAG	C GG	CGGA	TCTT	СТА	GAGG	ACC	GTTC	TTCCGA	1875

		1
١		75
		1000
		2
		10110
į	-	
	3	
	1	2
1	П	J. Cont.
	To a	

GTTCACCGCC	GCAGCGAGTG	AAACTGGCGC	AGCGGGAAAC	TGGTATGGGT	TTAACGTTTA	1935
CCTGGCGGCG	GGCATGTTGC	GGGGAATTC				1964
FTG. 2k:						

GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCA	rggcc acggctgggc ggtaactgat 60
GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTG	CCAAA TTTCGGCGAG AGAATCATGC 120
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTC	CGTGC CTTGAATCAG AAAAATAGTT 180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGC	TCACC CACCAAATCC ACAGCACTGG 240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TO Met Asn Ser Tyr Asp Gly Arg T: 1 5	GG TCT ACC GTT GAT GTG AAG 290 rp Ser Thr Val Asp Val Lys 10
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTC Val Glu Glu Gly Ile Ala Trp Val Thr Let 15 20	G AAC CGC CCG GAG AAG CGC 338 u Asn Arg Pro Glu Lys Arg 25 30
AAC GCA ATG AGC CCA ACT CTC AAT CGA GA Asn Ala Met Ser Pro Thr Leu Asn Arg Gl 35 4	u Met Val Glu Val Leu Glu
GTG CTG GAG CAG GAC GCA GAT GCT CGC GT Val Leu Glu Gln Asp Ala Asp Ala Arg Va 50 55	G CTT GTT CTG ACT GGT GCA 434 1 Leu Val Leu Thr Gly Ala 60
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG Gly Glu Ser Trp Thr Ala Gly Met Asp Le 65 70	G AAG GAG TAT TTC CGC GAG 482 u Lys Glu Tyr Phe Arg Glu 75
ACC GAT GCT GGC CCC GAA ATT CTG CAA GA Thr Asp Ala Gly Pro Glu Ile Leu Gln Gl 80 85	G AAG ATT CGT CGC GAG CAG 530 u Lys Ile Arg Arg Glu Gln 90 92 255
GGC ATG AAG CAG TTC CTT GAC GAG AAA AG Gly Met Lys Gln Phe Leu Asp Glu Lys Se 260 265	
ACC TAC AAG CGC TGA TAAATGCGCC GGGGCCC Thr Tyr Lys Arg 275 276	TCG CTGCGCCCCC GGCCTTCCAA 633
TAATGACAAT AATGAGGAGT GCCCAATGTT TCACG	TGCCC CTGCTTATTG GTGGTAAGCC 693
TTGTTCAGCA TCTGATGAGC GCACCTTCGA GCGTC	GTAGC CCGCTGACCG GAGAAGTGGT 753
ATCGCGCGTC GCTGCTGCCA GTTTGGAAGA TGCGG	ACGCC GCAGTGGCCG CTGCACAGGC 813
TGCGTTTCCT GAATGGGCGG CGCTTGCTCC GAGCG	AACGC CGTGCCCGAC TGCTGCGAGC 873
GGCGGATCTT CTAGAGGACC GTTCTTCCGA GTTCA	CCGCC GCAGCGAGTG AAACTGGCGC 93
AGCGGGAAAC TGGTATGGGT TTAACGTTTA CCTGG	CGGCG GGCATGTTGC GGGGAATTC 99:
FIG. 21:	

GAATTCC	AAT AA	ATGAC	TA ATAA	GAGG	AGTG	CCC							G CTT u Leu	55
ATT GGT	GGT A Gly L 10	AAG CO Lys Pi	CT TGT ro Cys	TCA Ser	GCA Ala 15	TCT Ser	GAT Asp	GAG Glu	CGC Arg	ACC Thr 20	TTC Phe	GAG Glu	CGT Arg	103
CGT AGO Arg Sei 25	Pro L	CTG A(Leu Tl	CC GGA hr Gly	GAA Glu 30	GTG Val	GTA Val	TCG Ser	CGC Arg	GTC Val 35	GCT Ala	GCT Ala	GCC Ala	AGT Ser	151
TTG GAA Leu Glu 40	A GAT G	GCG GA Ala As	AC GCC sp Ala 45	GCA Ala	GTG Val	GCC Ala	GCT Ala	GCA Ala 50	CAG Gln	GCT Ala	GCG Ala	TTT Phe	CCT Pro 55	199
GAA TGO Glu Tr		Ala L												247
GCG GCC Ala Ala														295
AGT GAA Ser Gli														343
GCG GCC Ala Ala 10	a Gly N													391
GGC GA' Gly Ası 120			ro Ser 125											439
CGA CAC Arg Gli		Cys G												487
GTA ATO	e Leu (TA CGG al Arg											535
			AA AGC ys Ser											583
	y Gln V		TG CAT eu His											631
			CC CCG la Pro 205											679

ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC Ile Ala Asn Pro Ala Val Arg Arg Val Asn Phe Thr Gly Ser Thr His 220 225 230	727
GTT GGA CGG ATC ATT GGT GAG CTG TCT GCG CGT CAT CTG AAG CCT GCT Val Gly Arg Ile Ile Gly Glu Leu Ser Ala Arg His Leu Lys Pro Ala 235 240 245	775
GTG CTG GAA TTA GGT GGT AAG GCT CCG TTC TTG GTC TTG GAC GAT GCC Val Leu Glu Leu Gly Gly Lys Ala Pro Phe Leu Val Leu Asp Asp Ala 250 255 260	823
GAC CTC GAT GCG GCG GTC GAA GCG GCG GCC TTT GGT GCC TAC TTC AAT Asp Leu Asp Ala Ala Val Glu Ala Ala Ala Phe Gly Ala Tyr Phe Asn 265 270 275	871
CAG GGT CAA ATC TGC ATG TCC ACT GAG CGT CTG ATT GTG ACA GCA GTC Gln Gly Gln Ile Cys Met Ser Thr Glu Arg Leu Ile Val Thr Ala Val 280 295	919
GCA GAC GCC TTT GTT GAA AAG CTG GCG AGG AAG GTC GCC ACA CTG CGT Ala Asp Ala Phe Val Glu Lys Leu Ala Arg Lys Val Ala Thr Leu Arg 300 305 310	967
GCT GGC GAT CCT AAT GAT CCG CAA TCG GTC TTG GGT TCG TTG ATT GAT Ala Gly Asp Pro Asn Asp Pro Gln Ser Val Leu Gly Ser Leu Ile Asp 315 320 325	1015
GCC AAT GCA GGT CAA CGC ATC CAG GTT CTG GTC GAT GAT GCG CTC GGG Ala Asn Ala Gly Gln Arg Ile Gln Val Leu Val Asp Asp Ala Leu 330 335 340 342	1063
GACAGCAAGC GAACCGGAAT TGCCAGCTGG GGCGCCCTCT GGTAAGGTTG GGAAGCCCTG	1123
CAAAGTAAAC TGGATGGCTT TCTTGCCGCC AAGGATCTGA TGGCGCAGGG GATCAAGATC	1183
TGATCAAGAG ACAGGATGAG GATCGTTTCG C ATG ATT GAA CAA GAT GGA TTG Met Ile Glu Gln Asp Gly Leu 1 5	1235
CAC GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp 10 15 20	1283
TGG GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu 25 30 35	1331
TCA GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly 40 45 50 55	1379
GCC CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC Ala Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala 60 65 70	1427

													ACT Thr 85			1475
GGA Gly	AGG Arg	GAC Asp 90	TGG Trp	CTG Leu	CTA Leu	TTG Leu	GGC Gly 95	GAA Glu	GTG Val	CCG Pro	GGG Gly	CAG Gln 100	GAT Asp	CTC Leu	CTG Leu	1523
TCA Ser	TCT Ser 105	CAC His	CTT Leu	GCT Ala	CCT Pro	GCC Ala 110	GAG Glu	AAA Lys	GTA Val	TCC Ser	ATC Ile 115	ATG Met	GCT Ala	GAT Asp	GCA Ala	1571
ATG Met 120	CGG Arg	CGG Arg	CTG Leu	CAT His	ACG Thr 125	CTT Leu	GAT Asp	CCG Pro	GCT Ala	ACC Thr 130	TGC Cys	CCA Pro	TTC Phe	GAC Asp	CAC His 135	1619
CAA Gln	GCG Ala	AAA Lys	CAT His	CGC Arg 140	ATC Ile	GAG Glu	CGA Arg	GCA Ala	CGT Arg 145	ACT Thr	CGG Arg	ATG Met	GAA Glu	GCC Ala 150	GGT Gly	1667
CTT Leu	GTC Val	GAT Asp	CAG Gln 155	GAT Asp	GAT Asp	CTG Leu	GAC Asp	GAA Glu 160	GAG Glu	CAT His	CAG Gln	GGG Gly	CTC Leu 165	GCG Ala	CCA Pro	1715
													GGC Gly			1763
CTC Leu	GTC Val 185	GTG Val	ACC Thr	CAT His	GGC Gly	GAT Asp 190	GCC Ala	TGC Cys	TTG Leu	CCG Pro	AAT Asn 195	ATC Ile	ATG Met	GTG Val	GAA Glu	1811
AAT Asn 200	GGC Gly	CGC Arg	TTT Phe	TCT Ser	GGA Gly 205	TTC Phe	ATC Ile	GAC Asp	TGT Cys	GGC Gly 210	CGG Arg	CTG Leu	GGT Gly	GTG Val	GCG Ala 215	1859
													GCT Ala			1907
									Leu				GGT Gly 245			1955
			Ser										GAC Asp			2003
TTC Phe 264		GCG	GGAC	TCT	GGGG	TTCG.	AA A	TGAC	CGAC	C AA	.GCGA	CGCC		GCC Ala 421		2057
CGC Arg	GTC Val	GAT Asp 425	Ser	GGC Gly	ATT Ile	TGC Cys	CAT His 430	Ile	AAT Asn	GGA Gly	CCG Pro	ACT Thr 435	Val	CAT His	GAC Asp	2105

Glu														GGC Gly			2153
TTC Phe 455	GGC Gly	AGT Ser	CGA Arg	GCA Ala	TCG Ser 460	ATT Ile	GAG Glu	CAC His	TTT Phe	ACC Thr 465	CAG Gln	CTG Leu	CGC Arg	TGG Trp	CTG Leu 470		2201
									Pro	ATC Ile 481	TAA	ATC	GATC	TTC			2247
GGGC	CGCC	GCG (GGCA'	rcat(GC C	CGCG	GCGC:	r CG(CCTC	ATTT	CAA	rctc'	TAA	CTTG	AAAATA		2307
ACAC	GAGC:	rgt :	rctc	CGGT	CT TO	GTG	GATC	A AGO	GCCA	GTCG	CGG	AGAGʻ	rct	CGAA	GAGGAG	÷	2367
AGT <i>I</i>	ACAG:	rga 2	ACGC(CGAG'	rc cz	ACAT	rgca <i>i</i>	A CCO	GCAG	GCAT	CAT	CATG	CTC	TGCT	CAGCCA		2427
CGCT	PACCO	GCA (GTGT	GTCG	T TA	GGTC	ATCC:	r cc	GGTT	GAGG	TTA	CGCA	AGA	CGCT	GGAGGT		2487
ATTO	TCC	GGA '	rgcg'	TTCT	CT C	GAGG	CGCT	r CT	rccc'	TTCC	CGG	GTGG.	AAT	TC			2539
FIG.	. 2m	:															

GAATTCCAAT AATGA	.CAATA ATGAGG	Me	G TTT CAC GTG CC t Phe His Val Pr 1	
ATT GGT GGT AAG Ile Gly Gly Lys 10	CCT TGT TCA (Pro Cys Ser)	GCA TCT GAT Ala Ser Asp 15	GAG CGC ACC TTC Glu Arg Thr Phe 20	GAG CGT 103 Glu Arg
CGT AGC CCG CTG Arg Ser Pro Leu 25	ACC GGA GAA G Thr Gly Glu	GTG GTA TCG Val Val Ser	CGC GTC GCT GCT Arg Val Ala Ala 35	GCC AGT 151 Ala Ser
TTG GAA GAT GCG Leu Glu Asp Ala 40	GAC GCC GCA Asp Ala Ala 45	GTG GCC GCT Val Ala Ala	GCA CAG GCT GCG Ala Gln Ala Ala 50	TTT CCT 199 Phe Pro 55
GAA TGG GCG GCG Glu Trp Ala Ala				
GCG GCG GAT CTT Ala Ala Asp Leu 75	CTA GAG GAC Leu Glu Asp	CGT TCT TCC Arg Ser Ser 80	GAG TTC ACC GCC Glu Phe Thr Ala 85	GCA GCG 295 Ala Ala
AGT GAA ACT GGC Ser Glu Thr Gly 90	GCA GCG GGA Ala Ala Gly	AAC TGG TAT Asn Trp Tyr 95	GGG TTT AAC GTT Gly Phe Asn Val 100	TAC CTG 343 Tyr Leu
GCG GCG GGC ATG Ala Ala Gly Met 105	TTG CGG GAA Leu Arg Glu 110	GCC GCG GCC Ala Ala Ala	ATG ACC ACA CAG Met Thr Thr Gln 115	ATT CAG 391 Ile Gln
GGC GAT GTC ATT Gly Asp Val Ile 120	CCG TCC AAT Pro Ser Asn 125	GTG CCC GGT Val Pro Gly	AGC TTT GCC ATG Ser Phe Ala Met 130	GCG GTT 439 Ala Val 135
CGA CAG CCA TGT Arg Gln Pro Cys	GGC GTG GTG Gly Val Val 140	CTC GGT ATT Leu Gly Ile 145	GCG CCT TGG AAT Ala Pro Trp Asn	GCT CCG 487 Ala Pro 150
GTA ATC CTT GGC Val Ile Leu Gly 155	GTA CGG GCT Val Arg Ala	GTT GCG ATG Val Ala Met 160	CCG TTG GCA TGC Pro Leu Ala Cys 165	GGC AAT 535 Gly Asn
ACC GTG GTG TTG Thr Val Val Leu 170	AAA AGC TCT Lys Ser Ser	GAG CTG AGT Glu Leu Ser 175	CCC TTT ACC CAT Pro Phe Thr His 180	CGC CTG 583 Arg Leu
ATT GGT CAG GTG Ile Gly Gln Val 185	TTG CAT GAT Leu His Asp 190	GCT GGT CTG Ala Gly Leu	GGG GAT GGC GTG Gly Asp Gly Val 195	GTG AAT 631 Val Asn
GTC ATC AGC AAT Val Ile Ser Asn 200	GCC CCG CAA Ala Pro Gln 205	GAC GCT CCT Asp Ala Pro	GCG GTG GTG GAG Ala Val Val Glu 210	CGA CTG 679 Arg Leu 215

ATT GCA AAT CCT GCG GTA CGT CGA GTG AAC TTC ACC GGT TCG ACC CAC Ile Ala Asn Pro Ala Val Arg Arg Val Asn Phe Thr Gly Ser Thr His 220 225 230	727
GTT GGA CGG ATC ATT GGT GAG CTG TCT GCG CGT CAT CTG AAG CCT GCT Val Gly Arg Ile Ile Gly Glu Leu Ser Ala Arg His Leu Lys Pro Ala 235 240 245	775
GTG CTG GAA TTA GGT GGT AAG GCT CCG TTC TTG GTC TTG GAC GAT GCC Val Leu Glu Leu Gly Gly Lys Ala Pro Phe Leu Val Leu Asp Asp Ala 250 255 260	823
GAC CTC GAT GCG GCG GTC GAA GCG GCG GCC TTT GGT GCC TAC TTC AAT Asp Leu Asp Ala Ala Val Glu Ala Ala Ala Phe Gly Ala Tyr Phe Asn 265 270 275	871
CAG GGT CAA ATC TGC ATG TCC ACT GAG CGT CTG ATT GTG ACA GCA GTC Gln Gly Gln Ile Cys Met Ser Thr Glu Arg Leu Ile Val Thr Ala Val 280 295	919
GCA GAC GCC TTT GTT GAA AAG CTG GCG AGG AAG GTC GCC ACA CTG CGT Ala Asp Ala Phe Val Glu Lys Leu Ala Arg Lys Val Ala Thr Leu Arg 300 305 310	967
GCT GGC GAT CCT AAT GAT CCG CAA TCG GTC TTG GGT TCG TTG ATT GAT Ala Gly Asp Pro Asn Asp Pro Gln Ser Val Leu Gly Ser Leu Ile Asp 315 320 325	1015
GCC AAT GCA GGT CAA CGC ATC CAG GTGGGGAGAG GCGGTTTGCG TATTGGGCGC Ala Asn Ala Gly Gln Arg Ile Gln 330 335	1069
ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA CATGGAAGCC ATCACAAACG	1129
GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT CGCCTTGCGT ATAATATTTG	1189
CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC CCAGTTGACA TAAGCCTGTT	1249
CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG CAACTGGTCC AGAACCTTGA	1309
CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT GGCTTGTTAT GACTGTTTTT	1369
TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG TTACGCCGTG GGTCGATGTT	1429
TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC AAC GAT GTT ACG CAG Met Leu Arg Ser Ser Asn Asp Val Thr Gln 1 5 10	1480
CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC TCA AGT ATG GGC ATC Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly Ile 15 20 25	1528
ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC AAA TCC ATG CGG GCT Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val Lys Ser Met Arg Ala 30 35 40	1576

													ACC Thr			1624
CAA Gln	CAT His 60	CAG Gln	CCG Pro	GAC Asp	TCC Ser	GAT Asp 65	TAC Tyr	CTC Leu	GGG Gly	AAC Asn	TTG Leu 70	CTC Leu	CGT Arg	AGT Ser	AAG Lys	1672
ACA Thr 75	TTC Phe	ATC Ile	GCG Ala	CTT Leu	GCT Ala 80	GCC Ala	TTC Phe	GAC Asp	CAA Gln	GAA Glu 85	GCG Ala	GTT Val	GTT Val	GGC Gly	GCT Ala 90	1720
													AGT Ser			1768
													CAG Gln 120			1816
													GCG Ala			1864
													CCC Pro			1912
													CAC His			1960
					GCC Ala		TAA	CAA'	T'TCG'	TTC Z	AAGC(CGAG	AT C	GGCT'	TCCCA	2014
L					al As					ys H					CG ACT ro Thr 435	2063
													TCC Ser			2111
									Ile				ACC Thr 465			2159
												Pro	ATC Ile 481			2204
ATC	GATC	TTC	GGGC	GCCG	CG G	GCAT	CATG	c cc	GCGG	CGCT	CGC	CTCA	TTT	CAAT	CTCTAA	2264
CTT	GATA	AAA .	ACAG.	AGCT	GT T	CTCC	GGTC	T TG	GTGG	ATCA	AGG	CCAG	TCG	CGGA	GAGTCT	2324

CGAAGAGGAG	AGTACAGTGA	ACGCCGAGTC	CACATTGCAA	CCGCAGGCAT	CATCATGCTC	2384
TGCTCAGCCA	CGCTACCGCA	GTGTGTCGAT	TGGTCATCCT	CCGGTTGAGG	TTACGCAAGA	2444
CGCTGGAGGT	ATTGTCCGGA	TGCGTTCTCT	CGAGGCGCTT	CTTCCCTTCC	CGGGTGGAAT	2504
TC						2506

FIG. 2n:

GAATTCCAAT AA	TGACAATA AT	GAGGAGTG (T CAC GTG CC e His Val Pr		55
ATT GGT GGT ALTICLE Gly Gly LY						103
CGT AGC CCG C' Arg Ser Pro L 25	TG ACC GGA eu Thr Gly	GAA GTG GT Glu Val Va 30	TA TCG CGC al Ser Arg	GTC GCT GCT Val Ala Ala 35	GCC AGT Ala Ser	151
TTG GAA GAT G Leu Glu Asp A 40						199
GAA TGG GCG GG Glu Trp Ala A						247
GCG GCG GAT C		Asp Arg Se				295
AGT GAA ACT G Ser Glu Thr G 90						343
GCG GCG GGC A Ala Ala Gly M 105						391
GGC GAT GTC A Gly Asp Val I 120						439
CGA CAG CCA T Arg Gln Pro C						487
GTA ATC CTT G Val Ile Leu G 1		Ala Val A				535
ACC GTG GTG T Thr Val Val L 170						583
ATT GGT CAG G Ile Gly Gln V 185						631
GTC ATC AGC A Val Ile Ser A 200						679

ATT Ile	GCA Ala	AAT Asn	CCT Pro	GCG Ala 220	GTA Val	CGT Arg	CGA Arg	GTG Val	AAC Asn 225	TTC Phe	ACC Thr	GGT Gly	TCG Ser	ACC Thr 230	CAC His	727
					GGT Gly											775
					GGT Gly											823
					GTC Val											871
					ATG Met 285											919
					GAA Glu											967
GCT Ala	GGC Gly	GAT Asp	CCT Pro 315	AAT Asn	GAT Asp	CCG Pro	CAA Gln	TCG Ser 320	GTC Val	TTG Leu	GGT Gly	TCG Ser	TTG Leu 325	ATT Ile	GAT Asp	1015
			-		CGC Arg											1063
	Gly	GCG Ala 346		rgga.		ı Ala					o Se				C CAT s His 430	1113
					GTG Val											1161
					TAC Tyr											1209
					CGC Arg											1257
	Pro	ATC Ile 481		ATC	GATC'	TTC (GGGC(GCCG(CG G	GCAT(CATG	c cc	GCGG	CGCT		1309
CGC	CTCA'	TTT	CAAT	CTCT.	AA C'	rtga'	TAAA.	A AC.	AGAG	CTGT	TCT	CCGG	TCT '	TGGT	GGATCA	1369
AGG	CCAG'	TCG	CGGA	GAGT	CT C	GAAG.	AGGA	G AG	TACA	GTGA	ACG	CCGA	GTC (CACA'	TTGCAA	1429

CCGCAGGCAT	CATCATGCTC	TGCTCAGCCA	CGCTACCGCA	GTGTGTCGAT	TGGTCATCCT	1489
CCGGTTGAGG	TTACGCAAGA	CGCTGGAGGT	ATTGTCCGGA	TGCGTTCTCT	CGAGGCGCTT	1549
CTTCCCTTCC	CGGGTGGAAT	TC				1571
FIG 20:						

GAAT	TTCC	GCG	GTCG	GCGA2	AA G	TTGA'	TGCG	C TG	TATC	GTGG	TGA	AGAT	CAA	TCCA'	TGCTGC	60
GTG?	ACGA(GGC	CACA										er A		TT TCC he Ser	112
			TTG Leu													160
			TCG Ser													208
CGC Arg 45	GAA Glu	GTT Val	CTG Leu	ATG Met	CGT Arg 50	GCG Ala	TCG Ser	CTT Leu	GAA Glu	CCA Pro 55	CAA Gln	ATG Met	GTC Val	GAT Asp	AGC Ser 60	256
GTA Val	CTC Leu	GCA Ala	GGC Gly	TCT Ser 65	ATG Met	GCT Ala	CAA Gln	GCA Ala	AGC Ser 70	TTT Phe	GAT Asp	GCT Ala	TAC Tyr	CTG Leu 75	CTC Leu	304
CCG Pro	CGG Arg	CAC His	ATT Ile 80	GGC Gly	TTG Leu	TAC Tyr	AGC Ser	GGT Gly 85	GTT Val	CCC Pro	AAG Lys	TCG Ser	GTT Val 90	CCG Pro	GCC Ala	352
			CAG Gln													400
			CAG Gln													448
GCA Ala 125	GAG Glu	TCC Ser	ATG Met	TCG Ser	CGT Arg 130	AAC Asn	CCC Pro	ATC Ile	GCG Ala	TCG Ser 135	TAT Tyr	ACA Thr	CAC His	CGG Arg	GGC Gly 140	496
GGG Gly	TTC Phe	CGC Arg	CTC Leu	GGT Gly 145	GCG Ala	CCC Pro	GTT Val	GAG Glu	TTC Phe 150	AAG Lys	GAT Asp	TTT Phe	TTG Leu	TGG Trp 155	GAG Glu	544
GCA Ala	TTG Leu	TTT Phe	GAT Asp 160	CCT Pro	GCT Ala	CCA Pro	GGA Gly	CTC Leu 165	GAC Asp	ATG Met	ATC Ile	GCT Ala	ACC Thr 170	GCA Ala	GAA Glu	592
AAC Asn		GGG.	ACAGO	CAA (ECGA <i>I</i>	ACCG(GA A	rTGC(CAGC'	r GG(GGCG(CCCT	CTG	GTAA(GGT	648
TGGG	SAAGO	CCC '	TGCA	AGTA	AA AC	CTGG	ATGG(C TTT	CTT	GCCG	CCA	AGGAT	CT (GATGO	GCGCAG	708
GGGA	TCAA	AGA '	TCTGA	ATCAZ	AG AG	GACAC	GAT(G AGO	SATC	GTTT	CGC			GAA Glu		763

		GGT Gly 10				_			811
		CAA Gln							859
		CAG Gln							907
		AAT Asn							955
		GGC Gly							1003
		GAC Asp 90							1051
		CAC His							1099
		CGG Arg							1147
		AAA Lys							1195
		GAT Asp							1243
		CTG Leu 170							1291
		GTG Val							1339
		CGC Arg							1387
 	 	 TAT Tyr	 		_				1435

													CTT Leu		1483
													CTT Leu		1531
	TTC Phe		TGA	GCG	GAC1	rct (GGGC	TTCG#	AA AT	rgac(CGAC	C AAC	ecga(CGCC	1586
I	 	Ala (rp :					Ile V	GTG (/al / 210		1633
													GCA Ala		1681
													CGC Arg		1729
													TCT Ser		1777
													GCC Ala		1825
													TTG Leu 290		1873
													ATG Met		1921
													GAT Asp		1969
													GCC Ala		2017
													AAA Lys		2065
													GCG Ala 370		2113

														AAT Asn	AAC Asn	2161
															ATG Met	2209
															AGT Ser	2257
			AAC Asn								Ser	TAA	CGG	GCAT(CTC	2306
CTT:	rgtt	GCT T	rtga(GGTG	GC G(CACG	AAGG	A GG(SCTC	GAAA	ATC	rctg	CTA Z)AAAA	CAAGAA	2366
GAA(GGAA(CAG (GGAA	CATG	AT TA	AGTT	rcgc:	r CG	ratg(GCAG	AAA	STTT	AGG 1	AGTC	CAGGCT	2426
AAA	CTTG	ccc :	TTGC	CTTC	GC A	CTCG	PATT	A TG	rgtco	GGC	TGA:	rtgt'	FAC (CGGC	ACGGGT	2486
TTC	raca(STG ?	raca:	TACC'	rt G	rcag(GTT	G GT	GGGA	ATTC						2526
FIG	. 2p	:														

GAAT	TCC	CG (GTCGG	CGA	AA G1	TGAT	GCGC	TGI	CATCO	STGG	TGA	AGATO	CAA 7	rccan	rgctgc	60
GTGA	ACGAG	GC (CACAC										er Al		TT TCC ne Ser	112
			TTG Leu													160
			TCG Ser													208
			CTG Leu													256
			GGC Gly													304
			ATT Ile 80													352
TTG Leu	GGG Gly	GTG Val 95	CAG Gln	CGC Arg	ATT Ile	TGC Cys	GGC Gly 100	ACA Thr	GGC Gly	TTC Phe	GAA Glu	CTG Leu 105	CTT Leu	CGG Arg	CAG Gln	400
			CAG Gln												GCG Ala	448
			ATG Met													496
			CTC Leu													544
			GAT Asp 160													592
	CTG Leu 174	GGG	GAGA	GGC (GGTT	TGCG'	TA T	TGGG	CGCA'	T GC.	ATAA.	AAAC	TGT	TGTA	ATT	648
CAT'	TAAG	CAT	TCTG	CCGA	CA T	GGAA	GCCA'	r ca	CAAA	CGGC	ATG.	ATGA	ACC	TGAA'	TCGCCA	. 708
GCG	GCAT	CAG	CACC'	TTGT	CG C	CTTG	CGTA'	T AA'	TATT	TGCC	CAT	GGAC	GCA	CACC	GTGGAA	. 768
ACG	GATG.	AAG	GCAC	GAAC	CC A	GTTG.	ACAT	A AG	CCTG	TTCG	GTT	CGTA	AAC	TGTA	ATGCAA	828
CITIZA	ററന	איזיכי	CCCT	CACC	רא א	משכים:	חירים א	C 33	റ്റുന	GACC	CAA	CCCA	aca	araa	TAACCC	888

CGCAG	GTGG	GCG (TTTT:	rcat(GG C	rtgt:	ratg <i>i</i>	A CTO	GTTT'	TTTT	GTA	CAGT	CTA 1	rgcc:	rcgggc	948
ATCCA	AAGC	AGC	CAAGO	CGCG	TTAC	CGCC	GTG (GTC	GATG!	rttg	ATG:	TATO	GGA (GCAG(CAACG	1007
ATG T Met L 1																1055
ACA A																1103
GGC C			_	_					_	_						1151
CGT G Arg G	_															1199
GAT T Asp T 65																1247
GCC T Ala F																1295
CCC A																1343
GTC T																1391
CTC C Leu L 1																1439
CAA G Gln A 145																1487
GGC A																1535
ACC T Thr 177	ГАА	CAAT	TTCG	TTC 2	AAGC(CGAG	AT CO	GCT.	rccc2		ı Arg			ı Glı	G GAG ı Glu	1589
AAA T Lys T																1637

						CGA Arg 225										1685
TTG Leu 235	TTG Leu	ATC Ile	GTG Val	ACA Thr	GTC Val 240	ATC Ile	CGC Arg	GGC Gly	CTA Leu	GCA Ala 245	GTC Val	TTT Phe	GAA Glu	GCC Ala	CTT Leu 250	1733
TCC Ser	CGA Arg	TTG Leu	AAG Lys	CCT Pro 255	GTT Val	CAT His	TCT Ser	GGC Gly	GGG Gly 260	GTG Val	CAG Gln	ACT Thr	GCG Ala	GGC Gly 265	AAC Asn	1781
AGC Ser	TGT Cys	GCC Ala	GTA Val 270	GTG Val	GAC Asp	GGC Gly	GCC Ala	GCG Ala 275	GCG Ala	GCT Ala	TTG Leu	GTG Val	GCT Ala 280	CGA Arg	GAG Glu	1829
						GTC Val										1877
GTC Val	GGG Gly 300	ATC Ile	GAG Glu	CCC Pro	GAG Glu	CAT His 305	ATG Met	GGG Gly	CTC Leu	GGC Gly	CCT Pro 310	GCG Ala	CCC Pro	GCG Ala	ATT Ile	1925
CGC Arg 315	CTG Leu	CTG Leu	CTT Leu	GCG Ala	CGT Arg 320	AGT Ser	GAT Asp	CTT Leu	AGT Ser	TTG Leu 325	AGG Arg	GAT Asp	ATC Ile	GAC Asp	CTC Leu 330	1973
						CAG Gln										2021
						TCA Ser										2069
						GCC Ala										2117
CTC Leu	GCT Ala 380	CAC His	CAA Gln	TTG Leu	CAA Gln	GCT Ala 385	AAT Asn	AAC Asn	TTT Phe	CGA Arg	TAT Tyr 390	GGA Gly	ATT Ile	GCC Ala	TCG Ser	2165
GCA Ala 395	TGC Cys	ATT Ile	GGT Gly	GGG Gly	GGA Gly 400	CAG Gln	GGG Gly	ATG Met	GCG Ala	GTT Val 405	CTT Leu	TTA Leu	GAG Glu	AAT Asn	CCC Pro 410	2213
										Met					GAC Asp	2261
	TAT Tyr		Leu		TAA	CGG	GCAT ⁽	CTC	CTTT	GTTG	СТ Т	TGAG	GTGG	С		2309

GCACGAAGGA	GGGCTCGAAA	ATCTCTGCTA	AAAACAAGAA	GAAGGAACAG	GGAACATGAT	2369
TAGTTTCGCT	CGTATGGCAG	AAAGTTTAGG	AGTCCAGGCT	AAACTTGCCC	TTGCCTTCGC	2429
ACTCGTATTA	TGTGTCGGGC	TGATTGTTAC	CGGCACGGGT	TTCTACAGTG	TACATACCTT	2489
GTCAGGGTTG	GTGGGAATTC					2509
FIG. 2q:						

GAAT	TCCG	GCG G	STCGO	CGA	AA GI	TGAT	GCGC	TGT	TATCO	GTGG	TGA	AGATO	CAA :	rcca7	TGCTGC	60
GTG	ACGAG	GC (CACAC										er Al		TT TCC ne Ser	112
										CCC Pro						160
										TTA Leu						208
										CCA Pro 55						256
										TTT Phe						304
										CCC Pro						352
										TTC Phe						400
										CAC His						448
										TCG Ser 135						496
										AAG Lys						544
										ATG Met						592
	CTG Leu	Ala		L			la G					rp I			AA GAG ln Glu	641
										TTA Leu						689
										TTG Leu 235						737

ATC .	CGC Arg	GGC Gly	CTA Leu	GCA Ala 245	GTC Val	TTT Phe	GAA Glu	GCC Ala	CTT Leu 250	TCC Ser	CGA Arg	TTG Leu	AAG Lys	CCT Pro 255	GTT Val	785
CAT His	TCT Ser	GGC Gly	GGG Gly 260	GTG Val	CAG Gln	ACT Thr	GCG Ala	GGC Gly 265	AAC Asn	AGC Ser	TGT Cys	GCC Ala	GTA Val 270	GTG Val	GAC Asp	833
GGC Gly	GCC Ala	GCG Ala 275	GCG Ala	GCT Ala	TTG Leu	GTG Val	GCT Ala 280	CGA Arg	GAG Glu	TCG Ser	TCT Ser	GCG Ala 285	ACA Thr	CAG Gln	CCG Pro	881
GTC Val	TTG Leu 290	GCT Ala	AGG Arg	ATA Ile	CTG Leu	GCT Ala 295	ACC Thr	TCC Ser	GTA Val	GTC Val	GGG Gly 300	ATC Ile	GAG Glu	CCC Pro	GAG Glu	929
CAT His 305	ATG Met	GGG Gly	CTC Leu	GGC Gly	CCT Pro 310	GCG Ala	CCC Pro	GCG Ala	ATT Ile	CGC Arg 315	CTG Leu	CTG Leu	CTT Leu	GCG Ala	CGT Arg 320	977
AGT Ser	GAT Asp	CTT Leu	AGT Ser	TTG Leu 325	AGG Arg	GAT Asp	ATC Ile	GAC Asp	CTC Leu 330	TTT Phe	GAG Glu	ATA Ile	AAC Asn	GAG Glu 335	GCG Ala	1025
CAG Gln	GCC Ala	GCC Ala	CAA Gln 340	Val	CTA Leu	GCG Ala	GTA Val	CAG Gln 345	CAT His	GAA Glu	TTG Leu	GGT Gly	ATT Ile 350	GAG Glu	CAC His	1073
TCA Ser	AAA Lys	CTT Leu 355	Asn	ATT Ile	TGG Trp	GGC Gly	GGG Gly 360	GCC Ala	ATT Ile	GCA Ala	CTT Leu	GGA Gly 365	CAC His	CCG Pro	CTT Leu	1121
GCC Ala	GCG Ala 370	Thr	GGA Gly	TTG Leu	CGT Arg	CTC Leu 375	TGC Cys	ATG Met	ACC Thr	CTC Leu	GCT Ala 380	His	CAA Gln	TTG Leu	CAA Gln	1169
GCT Ala 385	Asn	AAC Asn	TTT Phe	CGA Arg	TAT Tyr 390	GGA Gly	ATT Ile	GCC Ala	TCG Ser	GCA Ala 395	TGC Cys	ATT Ile	GGT Gly	GGG Gly	GGA Gly 400	1217
CAG Gln	GGG Gly	ATG Met	GCG Ala	GTT Val 405	Leu	TTA Leu	GAG Glu	AAT Asn	CCC Pro 410	His	TTC Phe	GGT Gly	TCG Ser	TCC Ser 415	TCT Ser	1265
				Met	ATT				Asp				Leu			1313
CGG	GCAT	CTC	СТТТ	GTTG	CT T	TGAG	GTGG	C GC	ACGA	AGGA	GGG	CTCG	AAA	ATCT	CTGCTA	1373
AAA	ACAA	.GAA	GAAG	GAAC	'AG G	GAAC	ATGA	T TA	GTTT.	CGCT	CGI	'ATGG	CAG	AAAG	TTTAGG	1433
AGT	CCAG	GCT	AAAC	TTGC	CC T	TGCC	TTCG	C AC	TCGT	ATTA	TGT	GTCG	GGC	TGAT	TGTTAC	1493
CGG	CACG	GGT	TTCI	ACAG	TG T	'ACA'I	ACCI	T GT	CAGG	GTTG	GTO	GGAA	TTC			1543
FIC	. 2r	:														

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATAAGGCC	ATCGGGACAG	CAAGCGAACC	GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	660
GGTTGGGAAG	CCCTGCAAAG	TAAACTGGAT	GGCTTTCTTG	CCGCCAAGGA	TCTGATGGCG	720
CAGGGGATCA	AGATCTGATC	AAGAGACAGG	ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	780
TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	840
ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	900
GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	960
GCGGCTATCG	TGGCTGGCCA	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	1020
TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	1080
TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	1140
GCTTGATCCG	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	1200
TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	1260
CGCGCCAGCC	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	1320
CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	1380
ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	1440
CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	1500
TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	1560
AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	CAAGCGACGC	CCTGGCCGCG	GTGATTGCAT	1620
TCATGTGTGC	TGAGGAGTCA	CGTTGGATCA	ACGGCATAAA	TATTCCAGTG	GACGGAGGTT	1680
TGGCATCGAC	CTACGTGTAA	GTTCGTGGAC	GCCCTTTGCA	CGCGCACTAT	ATCTCTATGC	1740
AGCAGCTGAA	AGCAGCTTTG	GTTTTGATCG	GAGGTAGCGG	GCGGAAAGGT	GCAGAATGTC	1800
TAAATAATAA		TGAAGCTTTA	GTTGTCCGTA		AAAATAAAGA	1860
GGAATGATAT	GAAAGCAAGT	AGATCAGTCT	GCACTTTCAA		CTGGCAGGCG	1920
CCATTTATGC	AGCGCTGCCA	ATGTCAGCTG	CAAACTCGAT	GCAGCTGGAT	GTAGGTAGCT	1980
CGGATTGGAC	GGTGCGTTGG	GGACAACACC	CTCAAGTATA	GCCTTGCCTC	TCGCCTGAAT	2040
GAGCAAGACT	CAAGTCTGAC	AAATGCGCCG	ACTGTCAATG	GTTATATCCG	GATATTCAAA	2100
GTCAGGGTGA	TCGTAACTTT	GACCGGGGGC	TTGGTATCCA	ATCGTCTCGA	TATTCTGGCT	2160
GCAG						2164

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAGGGGAG	600
AGGCGGTTTG	CGTATTGGGC	GCATGCATAA	AAACTGTTGT	AATTCATTAA	GCATTCTGCC	660
GACATGGAAG	CCATCACAAA	CGGCATGATG	AACCTGAATC	GCCAGCGGCA	TCAGCACCTT	720
GTCGCCTTGC	GTATAATATT	TGCCCATGGA	CGCACACCGT	GGAAACGGAT	GAAGGCACGA	780
ACCCAGTTGA	CATAAGCCTG	TTCGGTTCGT	AAACTGTAAT	GCAAGTAGCG	TATGCGCTCA	840
CGCAACTGGT	CCAGAACCTT	GACCGAACGC	AGCGGTGGTA	ACGGCGCAGT	GGCGGTTTTC	900
ATGGCTTGTT	ATGACTGTTT	TTTTGTACAG	TCTATGCCTC	GGGCATCCAA	GCAGCAAGCG	960
CGTTACGCCG	TGGGTCGATG	TTTGATGTTA	TGGAGCAGCA	ACGATGTTAC	GCAGCAGCAA	1020
CGATGTTACG	CAGCAGGGCA	GTCGCCCTAA	AACAAAGTTA	GGTGGCTCAA	GTATGGGCAT	1080
CATTCGCACA	TGTAGGCTCG	GCCCTGACCA	AGTCAAATCC	ATGCGGGCTG	CTCTTGATCT	1140
TTTCGGTCGT	GAGTTCGGAG	ACGTAGCCAC	CTACTCCCAA	CATCAGCCGG	ACTCCGATTA	1200
CCTCGGGAAC	TTGCTCCGTA	GTAAGACATT	CATCGCGCTT	GCTGCCTTCG	ACCAAGAAGC	1260
GGTTGTTGGC	GCTCTCGCGG	CTTACGTTCT	GCCCAGGTTT	GAGCAGCCGC	GTAGTGAGAT	1320
CTATATCTAT	GATCTCGCAG	TCTCCGGCGA	GCACCGGAGG	CAGGGCATTG	CCACCGCGCT	1380
CATCAATCTC	CTCAAGCATG	AGGCCAACGC	GCTTGGTGCT	TATGTGATCT	ACGTGCAAGC	1440
AGATTACGGT	GACGATCCCG	CAGTGGCTCT	CTATACAAAG	TTGGGCATAC	GGGAAGAAGT	1500
GATGCACTTT	GATATCGACC	CAAGTACCGC	CACCTAACAA	TTCGTTCAAG	CCGAGATCGG	1560
CTTCCCTGAT	TGCATTCATG	TGTGCTGAGG	AGTCACGTTG	GATCAACGGC	ATAAATATTC	1620
CAGTGGACGG	AGGTTTGGCA	TCGACCTACG	TGTAAGTTCG	TGGACGCCCT	TTGCACGCGC	1680
ACTATATCTC	TATGCAGCAG	CTGAAAGCAG	CTTTGGTTTT	GATCGGAGGT	AGCGGGCGGA	1740
AAGGTGCAGA	ATGTCTAAAT	AATAAAGGAT	TCTTGTGAAG	CTTTAGTTGT	CCGTAAACGA	1800
AAATAAAAT	AAAGAGGAAT	GATATGAAAG	CAAGTAGATC	AGTCTGCACT	TTCAAAATAG	1860
CTACCCTGGC	AGGCGCCATT	TATGCAGCGC	TGCCAATGTC	AGCTGCAAAC	TCGATGCAGC	1920
TGGATGTAGG	TAGCTCGGAT	TGGACGGTGC	GTTGGGGACA	ACACCCTCAA	GTATAGCCTT	1980
GCCTCTCGCC	TGAATGAGCA	AGACTCAAGT	CTGACAAATG	CGCCGACTGT	CAATGGTTAT	2040
ATCCGGATAT	TCAAAGTCAG	GGTGATCGTA	ACTTTGACCG	GGGGCTTGGT	ATCCAATCGT	2100
CTCGATATTC	TGGCTGCAG					2119

CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATCAACGG	CATAAATATT	CCAGTGGACG	GAGGTTTGGC	ATCGACCTAC	GTGTAAGTTC	660
GTGGACGCCC	TTTGCACGCG	CACTATATCT	CTATGCAGCA	GCTGAAAGCA	GCTTTGGTTT	720
TGATCGGAGG	TAGCGGGCGG	AAAGGTGCAG	AATGTCTAAA	TAATAAAGGA	TTCTTGTGAA	780
GCTTTAGTTG	TCCGTAAACG	AAAATAAAA	TAAAGAGGAA	TGATATGAAA	GCAAGTAGAT	840
CAGTCTGCAC	TTTCAAAATA	GCTACCCTGG	CAGGCGCCAT	TTATGCAGCG	CTGCCAATGT	900
CAGCTGCAAA	CTCGATGCAG	CTGGATGTAG	GTAGCTCGGA	TTGGACGGTG	CGTTGGGGAC	960
AACACCCTCA	AGTATAGCCT	TGCCTCTCGC	CTGAATGAGC	AAGACTCAAG	TCTGACAAAT	1020
GCGCCGACTG	TCAATGGTTA	TATCCGGATA	TTCAAAGTCA	GGGTGATCGT	AACTTTGACC	1080
GGGGGCTTGG	TATCCAATCG	TCTCGATATT	CTGGCTGCAG			1120

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTTAGCC	60
GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCGAT	GTTTCCAGGG	GCGGAGGCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT			TGCTTGCGGA		CGTTACTTCG	960
		GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
	AATCTGTCTG	GCACCGGACT	ATGTGCTGCT	GCCGGAAGGG	ACAGCAAGCG	1260
AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG	GTAAGGTTGG	GAAGCCCTGC	AAAGTAAACT	1320
GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	GGCGCAGGGG	ATCAAGATCT	GATCAAGAGA	1380
CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	AAGATGGATT	GCACGCAGGT	TCTCCGGCCG	1440
CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	GGGCACAACA	GACAATCGGC	TGCTCTGATG	1500
CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	GCCCGGTTCT	TTTTGTCAAG	ACCGACCTGT	1560
CCGGTGCCCT	GAATGAACTG	CAGGACGAGG	CAGCGCGGCT	ATCGTGGCTG	GCCACGACGG	1620
GCGTTCCTTG	CGCAGCTGTG	CTCGACGTTG	TCACTGAAGC	GGGAAGGGAC	TGGCTGCTAT	1680
TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	1740
CCATCATGGC	TGATGCAATG	CGGCGGCTGC	ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	1800
ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	CACGTACTCG	GATGGAAGCC	GGTCTTGTCG	1860
ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	GGCTCGCGCC	AGCCGAACTG	TTCGCCAGGC	1920
TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	1980
CGAATATCAT	GGTGGAAAAT	GGCCGCTTTT	CTGGATTCAT	CGACTGTGGC	CGGCTGGGTG	2040
TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA	TATTGCTGAA	GAGCTTGGCG	2100
GCGAATGGGC	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	2160

TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT	TCTGAGCGGG	ACTCTGGGGT	TCGAAATGAC	2220
CGACCAAGCG	ACGCCCGCCA	TGCCAAGCCT	GTTCTCGTGC	AAAGTCCTGT	GGGTGAGTCG	2280
AACTTGGCGA	TGCGCGCACC	CTACGGAGAA	GCGATCCACG	GACTGCTCTC	TGTCCTCCTT	2340
TCAACGGAGT	GTTAGAACCG	TTGGTAGTGG	TTTTGGACGG	GCCCAGGAGC	ATGCGCTTCT	2400
GGGCCCGTTT	CTTGAGTATT	CATTGGATAG	TCACGCGTGG	TAGCTTCGAG	CCTGCACAGC	2460
TGATGAGCAC	CCTGGAAGGC	GCGCTGTACG	CGGACGACTG	GGTTCATCTT	CGCCATTCAT	2520
GACGGAACTC	CGTTCCCCAG	TACCGCGATG	ACTATTTTGC	CTCTTCCGAT	GTCCGATTCC	2580
		GGGGCGGGG				2640
TGAGTAGGCT	CTTGGATGCC	GCGGCGGCTG	AGATTGGTAA	CGGCAATTTC	GTCAATGTGA	2700
CGATGGATTC	GATTGCCCGT	GCTGCCGGCG	TCTCAAAAAA	AACGCTGTAC	GTCTTGGTGG	2760
CGAGCAAGGA	AGAACTCATT	TCCCGGTTAG	TGGCTCGAGA	CATGTCCAAC	CTTGAGGAAT	2820
TC						2822

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTTAGCC	60
GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCGAT	GTTTCCAGGG	GCGGAGGCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCCC	TGCTTGCGGA	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGA	GCTGACTACA	GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGGACT	ATGTGCTGGG	GGAGAGGCGG	TTTGCGTATT	1260
GGGCGCATGC	ATAAAAACTG	TTGTAATTCA	TTAAGCATTC	TGCCGACATG	GAAGCCATCA	1320
CAAACGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA	CCTTGTCGCC	TTGCGTATAA	1380
TATTTGCCCA	TGGACGCACA	CCGTGGAAAC	GGATGAAGGC	ACGAACCCAG	TTGACATAAG	1440
CCTGTTCGGT	TCGTAAACTG	TAATGCAAGT	AGCGTATGCG	CTCACGCAAC	TGGTCCAGAA	1500
				TTTCATGGCT	TGTTATGACT	1560
GTTTTTTTGT	ACAGTCTATG	CCTCGGGCAT	CCAAGCAGCA		GCCGTGGGTC	1620
GATGTTTGAT	GTTATGGAGC	AGCAACGATG	TTACGCAGCA	GCAACGATGT	TACGCAGCAG	1680
GGCAGTCGCC	CTAAAACAAA	GTTAGGTGGC		GCATCATTCG	CACATGTAGG	1740
CTCGGCCCTG	ACCAAGTCAA	ATCCATGCGG	GCTGCTCTTG	ATCTTTTCGG	TCGTGAGTTC	1800
GGAGACGTAG	CCACCTACTC	CCAACATCAG	CCGGACTCCG	ATTACCTCGG	GAACTTGCTC	1860
CGTAGTAAGA	CATTCATCGC	GCTTGCTGCC	TTCGACCAAG	AAGCGGTTGT	TGGCGCTCTC	1920
GCGGCTTACG	TTCTGCCCAG	GTTTGAGCAG		AGATCTATAT	CTATGATCTC	1980
GCAGTCTCCG	GCGAGCACCG		ATTGCCACCG			2040
	ACGCGCTTGG		ATCTACGTGC			2100
CCCGCAGTGG	CTCTCTATAC	AAAGTTGGGC	ATACGGGAAG	AAGTGATGCA	CTTTGATATC	2160

GACCCAAGTA	CCGCCACCTA	ACAATTCGTT	CAAGCCGAGA	TCGGCTTCCC	TGCAAAGTCC	2220
TGTGGGTGAG	TCGAACTTGG	CGATGCGCGC	ACCCTACGGA	GAAGCGATCC	ACGGACTGCT	2280
CTCTGTCCTC	CTTTCAACGG	AGTGTTAGAA	CCGTTGGTAG	TGGTTTTGGA	CGGGCCCAGG	2340
AGCATGCGCT	TCTGGGCCCG	TTTCTTGAGT	ATTCATTGGA	TAGTCACGCG	TGGTAGCTTC	2400
GAGCCTGCAC	AGCTGATGAG	CACCCTGGAA	GGCGCGCTGT	ACGCGGACGA	CTGGGTTCAT	2460
CTTCGCCATT	CATGACGGAA	CTCCGTTCCC	CAGTACCGCG	ATGACTATTT	TGCCTCTTCC	2520
GATGTCCGAT	TCCACGCCGC	CTGACGCTAA	GCGGGGGCGG	GGGCGCCGC	ATCCCAGCCC	2580
AGACAGCAAC	AAATGAGTAG	GCTCTTGGAT	GCCGCGGCGG	${\tt CTGAGATTGG}$	TAACGGCAAT	2640
TTCGTCAATG	TGACGATGGA	TTCGATTGCC	CGTGCTGCCG	GCGTCTCAAA	AAAAACGCTG	2700
TACGTCTTGG	TGGCGAGCAA	GGAAGAACTC	ATTTCCCGGT	TAGTGGCTCG	AGACATGTCC	2760
AACCTTGAGG	AATTC					2775

GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTTAGCC	60
GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCGAT	GTTTCCAGGG	GCGGAGGCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCCC	TGCTTGCGGA	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGA	GCTGACTACA	GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGTGGG	TGAGTCGAAC	TTGGCGATGC	GCGCACCCTA	1260
CGGAGAAGCG	ATCCACGGAC	TGCTCTCTGT	CCTCCTTTCA	ACGGAGTGTT	AGAACCGTTG	1320
GTAGTGGTTT	TGGACGGGCC	CAGGAGCATG	CGCTTCTGGG	CCCGTTTCTT	GAGTATTCAT	1380
TGGATAGTCA	CGCGTGGTAG	CTTCGAGCCT	GCACAGCTGA	TGAGCACCCT	GGAAGGCGCG	1440
CTGTACGCGG	ACGACTGGGT	TCATCTTCGC	CATTCATGAC	GGAACTCCGT	TCCCCAGTAC	1500
CGCGATGACT	ATTTTGCCTC	TTCCGATGTC	CGATTCCACG	CCGCCTGACG	CTAAGCGGGG	1560
GCGGGGGCGC		GCCCAGACAG		GTAGGCTCTT	GGATGCCGCG	1620
GCGGCTGAGA	TTGGTAACGG	CAATTTCGTC	AATGTGACGA		TGCCCGTGCT	1680
GCCGGCGTCT				GCAAGGAAGA	ACTCATTTCC	1740
CGGTTAGTGG	CTCGAGACAT	GTCCAACCTT	GAGGAATTC			1779

CECCA CCCCA	QQ3 mQQ3 mmQ	3 CC3 CDDDD3 C	003.0000000	maaamaa aaa		
		AGCACTTTAC				60
		AAATCGATCT		CGGGCATCAT	GCCCGCGGCG	120
		AACTTGATAA		GTTCTCCGGT	CTTGGTGGAT	180
		CTCGAAGAGG		GAACGCCGAG	TCCACATTGC	240
	ATCATCATGC	TCTGCTCAGC			ATTGGTCATC	300
		GACGCTGGAG		GATGCGTTCT		360
		ATTCTTGAGC			ACCCGTCCAG	420
		AGGGCGGCAA			AGCTACGCGG	480
	-	GCCATCGCAC		TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG			GCATTTGGGG	600
	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
ATGCAGCACC	TTTCCAGGGG	ACAGCAAGCG	AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG	780
GTAAGGTTGG	GAAGCCCTGC	AAAGTAAACT	GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	840
GGCGCAGGGG	ATCAAGATCT	GATCAAGAGA	CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	900
AAGATGGATT	GCACGCAGGT	TCTCCGGCCG	CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	960
GGGCACAACA	GACAATCGGC	TGCTCTGATG	CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	1020
GCCCGGTTCT	TTTTGTCAAG	ACCGACCTGT	CCGGTGCCCT	GAATGAACTG	CAGGACGAGG	1080
CAGCGCGGCT	ATCGTGGCTG	GCCACGACGG	GCGTTCCTTG	CGCAGCTGTG	CTCGACGTTG	1140
TCACTGAAGC	GGGAAGGGAC	TGGCTGCTAT	TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	1200
CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	CCATCATGGC	TGATGCAATG	CGGCGGCTGC	1260
ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	1320
CACGTACTCG	GATGGAAGCC	GGTCTTGTCG	ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	1380
GGCTCGCGCC	AGCCGAACTG	TTCGCCAGGC	TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	1440
TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	CGAATATCAT	GGTGGAAAAT	GGCCGCTTTT	1500
CTGGATTCAT	CGACTGTGGC	CGGCTGGGTG	TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	1560
CTACCCGTGA	TATTGCTGAA	GAGCTTGGCG	GCGAATGGGC	TGACCGCTTC	CTCGTGCTTT	1620
ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT	1680
TCTGAGCGGG	ACTCTGGGGT	TCGAAATGAC	CGACCAAGCG	ACGCCCCTGT	TTTGCAATGG	1740
CGGTCGGCGA	AAGTTGATGC	GCTGTATCGT	GGTGAAGATC	AATCCATGCT	GCGTGACGAG	1800
GCCACACTGT	GAGTTGGTCA	GGGGGGCTT	ACTCGGCGTT	TTCCGACACT	GCGTTGGTTG	1860
CGGCAGTGCG	CACCCCTGG	ATTGATTGCG	GGGGTGCCCT	GTCGCTGGTG	TCGCCTATCG	1920
ACTTAGGGGT	AAAGGTCGCT	CGCGAAGTTC	TGATGCGTGC	GTCGCTTGAA	CCACAAATGG	1980
TCGATAGCGT	ACTCGCAGGC	TCTATGGCTC	AAGCAAGCTT	TGATGCTTAC	CTGCTCCCGC	2040
GGCACATTGG	CTTGTACAGC	GGTGTTCCCA	AGTCGGTTCC	GGCCTTGGGG	GTGCAGCGCA	2100
TTTGCGGCAC	AGGCTTCGAA	CTGCTTCGGC	AGGCCGGCGA	GCAGATTTCC	CAAGGCGCTG	2160
	GTGTGTCGCG					2188

CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCGCGGCG	120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCGC	360
TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCGG	480
AAATGTTCCA	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
CTATGTATGC	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
ATGCAGCACC	TTTCCAGGGG	GAGAGGCGGT	TTGCGTATTG	GGCGCATGCA	TAAAAACTGT	780
TGTAATTCAT	TAAGCATTCT	GCCGACATGG	AAGCCATCAC	AAACGGCATG	ATGAACCTGA	840
ATCGCCAGCG	GCATCAGCAC	CTTGTCGCCT	TGCGTATAAT	ATTTGCCCAT	GGACGCACAC	900
CGTGGAAACG	GATGAAGGCA	CGAACCCAGT	TGACATAAGC	CTGTTCGGTT	CGTAAACTGT	960
AATGCAAGTA	GCGTATGCGC	TCACGCAACT	GGTCCAGAAC	CTTGACCGAA	CGCAGCGGTG	1020
GTAACGGCGC	AGTGGCGGTT	TTCATGGCTT	GTTATGACTG	TTTTTTTTTA	CAGTCTATGC	1080
CTCGGGCATC	CAAGCAGCAA	GCGCGTTACG	CCGTGGGTCG	ATGTTTGATG	TTATGGAGCA	1140
GCAACGATGT	TACGCAGCAG	CAACGATGTT	ACGCAGCAGG	GCAGTCGCCC	TAAAACAAAG	1200
TTAGGTGGCT	CAAGTATGGG	CATCATTCGC	ACATGTAGGC	TCGGCCCTGA	CCAAGTCAAA	1260
TCCATGCGGG	CTGCTCTTGA	TCTTTTCGGT	CGTGAGTTCG	GAGACGTAGC	CACCTACTCC	1320
CAACATCAGC	CGGACTCCGA	TTACCTCGGG	AACTTGCTCC	GTAGTAAGAC	ATTCATCGCG	1380
CTTGCTGCCT	TCGACCAAGA	AGCGGTTGTT	GGCGCTCTCG	CGGCTTACGT	TCTGCCCAGG	1440
TTTGAGCAGC	CGCGTAGTGA	GATCTATATC	TATGATCTCG	CAGTCTCCGG	CGAGCACCGG	1500
AGGCAGGGCA	TTGCCACCGC	GCTCATCAAT	CTCCTCAAGC	ATGAGGCCAA	CGCGCTTGGT	1560
GCTTATGTGA	TCTACGTGCA	AGCAGATTAC	GGTGACGATC	CCGCAGTGGC	TCTCTATACA	1620
AAGTTGGGCA	TACGGGAAGA	AGTGATGCAC	TTTGATATCG	ACCCAAGTAC	CGCCACCTAA	1680
CAATTCGTTC	AAGCCGAGAT	CGGCTTCCCC	TGTTTTGCAA	TGGCGGTCGG	CGAAAGTTGA	1740
TGCGCTGTAT	CGTGGTGAAG	ATCAATCCAT	GCTGCGTGAC	GAGGCCACAC	TGTGAGTTGG	1800
TCAGGGGGGG	CTTACTCGGC	GTTTTCCGAC	ACTGCGTTGG	TTGCGGCAGT	GCGCACCCCC	1860
TGGATTGATT	GCGGGGGTGC	CCTGTCGCTG	GTGTCGCCTA	TCGACTTAGG	GGTAAAGGTC	1920
GCTCGCGAAG	TTCTGATGCG	TGCGTCGCTT	GAACCACAAA	TGGTCGATAG	CGTACTCGCA	1980
GGCTCTATGG	CTCAAGCAAG	CTTTGATGCT	TACCTGCTCC	CGCGGCACAT	TGGCTTGTAC	2040
AGCGGTGTTC	CCAAGTCGGT	TCCGGCCTTG	GGGGTGCAGC	GCATTTGCGG	CACAGGCTTC	2100
GAACTGCTTC	GGCAGGCCGG	CGAGCAGATT	TCCCAAGGCG	CTGATCACGT	GCTGTGTGTC	2160
GCGGGCTGCA	G					2171

CCCGCGGCAC TATCCAATCT AAATCGATCT TCGGGCGCCG CGGGCATCAT GCCCGCGGCG 180 CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT 180 CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATCTTTGAGC GTCTCGACCA TTGGGCTACA ACCCGTCCAG ACCCGTCCAG ACCACACCC AGGGCGC ACCACACCAC	CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAGA ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCG TGTCCTCCTC TTATTCACTG CTGTCCCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCA 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGT GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGT ACCACGGGGC ACCACGCCC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TGGTGTCGCC TATCGACTA AGCGTTATCGCGA 960 AGTTCTGATG CGTGCGTCGC TGGAACCAC AATGGTCGAT AGCGTACTCG CAGGCTCTT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGCC GTTCCGGCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCC GGCGACTGT TCGAACTGCT 1140	CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCGCGGCG	120
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCG TGTCCTCC TTATTCACTG CTGTCCCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCA 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTCC AATGGCGGT GGCGAAAGTT GATGCGCTG 780 ATCGTGGTGA AGATCAATCC ATGCTGCGT ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTC GTGCGCACC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCG TTGAACCACA AATGGTCGAT AGCGTACTC CAGGCTCT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGCC GTCCGCCT TGGGGGTGCA GCCCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCA GTGCTTGTG TCGCGGGTT 1140 TCCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCACGCTT TCGCGGGTT 1140	CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCG TGTCCTCCTC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCAAG 660 ATCGTGGTGA AGATCAATCC ATCGTAGGTC TCTTGCAACC GGGACAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTC ACACTGCGTC GCTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCACC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCA GTGCTTGTGT TCGCGGGCTG 1200	CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCG TGTCCTCC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCAAG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTC ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCACC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCCCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTTGATCA GTGCTTGTGT TCGCGGGCTG 1200	AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 660 CTATGTATGC GGGCATTCCC TATTGCCCG TGTCCTCC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTCCG ACACTGCGTT GGTTGCGCA ACTGTGAGTT GGTCAGGGGG 840 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200	CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCGC	360
AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGCT TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTG 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCGG	480
CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	AAATGTTCCA	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	CTATGTATGC	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 900 GCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGCAC AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GCGTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCAC TTGCGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAC GCCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGCC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	ATGCAGCACC	TTTCCAGCGC	GCTGTTTTGC	AATGGCGGTC	GGCGAAAGTT	GATGCGCTGT	780
TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	ATCGTGGTGA	AGATCAATCC	ATGCTGCGTG	ACGAGGCCAC	ACTGTGAGTT	GGTCAGGGGG	840
AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	GGCTTACTCG	GCGTTTTCCG	ACACTGCGTT	GGTTGCGGCA	GTGCGCACCC	CCTGGATTGA	900
GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	TTGCGGGGGT	GCCCTGTCGC	TGGTGTCGCC	TATCGACTTA	GGGGTAAAGG	TCGCTCGCGA	960
TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	AGTTCTGATG	CGTGCGTCGC	TTGAACCACA	AATGGTCGAT	AGCGTACTCG	CAGGCTCTAT	1020
TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	GGCTCAAGCA	AGCTTTGATG	CTTACCTGCT	CCCGCGGCAC	ATTGGCTTGT	ACAGCGGTGT	1080
	TCCCAAGTCG	GTTCCGGCCT	TGGGGGTGCA	GCGCATTTGC	GGCACAGGCT	TCGAACTGCT	1140
CAG 1203	TCGGCAGGCC	GGCGAGCAGA	TTTCCCAAGG	CGCTGATCAC	GTGCTGTGTG	TCGCGGGCTG	1200
	CAG						1203

GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGGGGACAG	CAAGCGAACC	540
GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	GGTTGGGAAG	CCCTGCAAAG	TAAACTGGAT	600
GGCTTTCTTG	CCGCCAAGGA	TCTGATGGCG	CAGGGGATCA	AGATCTGATC	AAGAGACAGG	660
ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	720
GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	780
CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	840
TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	TGGCTGGCCA	CGACGGGCGT	900
TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	960
CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	1020
CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA	1080
CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	1140
GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	GAACTGTTCG	CCAGGCTCAA	1200
GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	1260
TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	1320
GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	1380
ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	1440
CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	1500
CAAGCGACGC	CCCGAGCAGG	GCATGAAGCA	GTTCCTTGAC	GAGAAAAGCA	TCAAGCCGGG	1560
CTTGCAGACC	TACAAGCGCT	GATAAATGCG	CCGGGGCCCT	CGCTGCGCCC	CCGGCCTTCC	1620
AATAATGACA	ATAATGAGGA	GTGCCCAATG	TTTCACGTGC	CCCTGCTTAT	TGGTGGTAAG	1680
CCTTGTTCAG	CATCTGATGA	GCGCACCTTC	GAGCGTCGTA	GCCCGCTGAC	CGGAGAAGTG	1740
GTATCGCGCG	TCGCTGCTGC	CAGTTTGGAA	GATGCGGACG	CCGCAGTGGC	CGCTGCACAG	1800
GCTGCGTTTC	CTGAATGGGC	GGCGCTTGCT	CCGAGCGAAC	GCCGTGCCCG	ACTGCTGCGA	1860
GCGGCGGATC	TTCTAGAGGA	CCGTTCTTCC	GAGTTCACCG	CCGCAGCGAG	TGAAACTGGC	1920
	ACTGGTATGG	GTTTAACGTT	TACCTGGCGG	CGGGCATGTT	GCGGGGAATT	1980
C						1981

GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGGGGGAGA	GGCGGTTTGC	540
GTATTGGGCG	CATGCATAAA	AACTGTTGTA	ATTCATTAAG	CATTCTGCCG	ACATGGAAGC	600
CATCACAAAC	GGCATGATGA	ACCTGAATCG	CCAGCGGCAT	CAGCACCTTG	TCGCCTTGCG	660
TATAATATTT	GCCCATGGAC	GCACACCGTG	GAAACGGATG	AAGGCACGAA	CCCAGTTGAC	720
ATAAGCCTGT	TCGGTTCGTA	AACTGTAATG	CAAGTAGCGT	ATGCGCTCAC	GCAACTGGTC	780
CAGAACCTTG	ACCGAACGCA	GCGGTGGTAA	CGGCGCAGTG	GCGGTTTTCA	TGGCTTGTTA	840
TGACTGTTTT	TTTGTACAGT	CTATGCCTCG	GGCATCCAAG	CAGCAAGCGC	GTTACGCCGT	900
GGGTCGATGT	TTGATGTTAT	GGAGCAGCAA	CGATGTTACG	CAGCAGCAAC	GATGTTACGC	960
AGCAGGGCAG	TCGCCCTAAA	ACAAAGTTAG	GTGGCTCAAG	TATGGGCATC	ATTCGCACAT	1020
GTAGGCTCGG	CCCTGACCAA	GTCAAATCCA	TGCGGGCTGC	TCTTGATCTT	TTCGGTCGTG	1080
AGTTCGGAGA	CGTAGCCACC	TACTCCCAAC	ATCAGCCGGA	CTCCGATTAC	CTCGGGAACT	1140
TGCTCCGTAG	TAAGACATTC	ATCGCGCTTG	CTGCCTTCGA	CCAAGAAGCG	GTTGTTGGCG	1200
CTCTCGCGGC	TTACGTTCTG	CCCAGGTTTG	AGCAGCCGCG	TAGTGAGATC	TATATCTATG	1260
ATCTCGCAGT	CTCCGGCGAG	CACCGGAGGC	AGGGCATTGC	CACCGCGCTC	ATCAATCTCC	1320
TCAAGCATGA	GGCCAACGCG	CTTGGTGCTT	ATGTGATCTA	CGTGCAAGCA	GATTACGGTG	1380
ACGATCCCGC	AGTGGCTCTC	TATACAAAGT	TGGGCATACG	GGAAGAAGTG	ATGCACTTTG	1440
ATATCGACCC	AAGTACCGCC	ACCTAACAAT	TCGTTCAAGC	CGAGATCGGC	TTCCCCGAGC	1500
AGGGCATGAA	GCAGTTCCTT	GACGAGAAAA	GCATCAAGCC	GGGCTTGCAG	ACCTACAAGC	1560
GCTGATAAAT	GCGCCGGGGC	CCTCGCTGCG	CCCCCGGCCT	TCCAATAATG	ACAATAATGA	1620
GGAGTGCCCA	ATGTTTCACG	TGCCCCTGCT	TATTGGTGGT	AAGCCTTGTT	CAGCATCTGA	1680
TGAGCGCACC	TTCGAGCGTC	GTAGCCCGCT	GACCGGAGAA	GTGGTATCGC	GCGTCGCTGC	1740
TGCCAGTTTG	GAAGATGCGG	ACGCCGCAGT	GGCCGCTGCA	CAGGCTGCGT	TTCCTGAATG	1800
GGCGGCGCTT	GCTCCGAGCG	AACGCCGTGC	CCGACTGCTG	CGAGCGGCGG	ATCTTCTAGA	1860
GGACCGTTCT	TCCGAGTTCA			GGCGCAGCGG	GAAACTGGTA	1920
TGGGTTTAAC	GTTTACCTGG	CGGCGGGCAT	GTTGCGGGGA	ATTC		1964

GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC			AAAAATAGTT	180
AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA			480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGCGAGCAG	GGCATGAAGC	540
AGTTCCTTGA	CGAGAAAAGC	ATCAAGCCGG	GCTTGCAGAC	CTACAAGCGC	TGATAAATGC	600
GCCGGGGCCC	TCGCTGCGCC	CCCGGCCTTC	CAATAATGAC	AATAATGAGG	AGTGCCCAAT	660
GTTTCACGTG	CCCCTGCTTA	TTGGTGGTAA	GCCTTGTTCA	GCATCTGATG	AGCGCACCTT	720
CGAGCGTCGT	AGCCCGCTGA	CCGGAGAAGT	GGTATCGCGC	GTCGCTGCTG	CCAGTTTGGA	780
AGATGCGGAC	GCCGCAGTGG	CCGCTGCACA	GGCTGCGTTT	CCTGAATGGG	CGGCGCTTGC	840
TCCGAGCGAA	CGCCGTGCCC	GACTGCTGCG	AGCGGCGGAT	CTTCTAGAGG	ACCGTTCTTC	900
CGAGTTCACC	GCCGCAGCGA	GTGAAACTGG	CGCAGCGGGA	AACTGGTATG	GGTTTAACGT	960
TTACCTGGCG	GCGGGCATGT	TGCGGGGAAT	TC			992

GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
		CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCG	GCCTTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCTT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	GGTTCGTTGA	TTGATGCCAA	1020
TGCAGGTCAA	CGCATCCAGG	TTCTGGTCGA	TGATGCGCTC	GGGGACAGCA	AGCGAACCGG	1080
AATTGCCAGC	TGGGGCGCCC	TCTGGTAAGG	TTGGGAAGCC	CTGCAAAGTA	AACTGGATGG	1140
CTTTCTTGCC	GCCAAGGATC	TGATGGCGCA	GGGGATCAAG			1200
GAGGATCGTT	TCGCATGATT	GAACAAGATG	GATTGCACGC	AGGTTCTCCG	GCCGCTTGGG	1260
TGGAGAGGCT	ATTCGGCTAT	GACTGGGCAC	AACAGACAAT	CGGCTGCTCT	GATGCCGCCG	1320
TGTTCCGGCT	GTCAGCGCAG	GGGCGCCCGG	TTCTTTTTGT	CAAGACCGAC	CTGTCCGGTG	1380
CCCTGAATGA	ACTGCAGGAC	GAGGCAGCGC	GGCTATCGTG	GCTGGCCACG	ACGGGCGTTC	1440
CTTGCGCAGC	TGTGCTCGAC	GTTGTCACTG	AAGCGGGAAG	GGACTGGCTG	CTATTGGGCG	1500
	GCAGGATCTC		ACCTTGCTCC	TGCCGAGAAA	GTATCCATCA	1560
TGGCTGATGC	AATGCGGCGG	CTGCATACGC	TTGATCCGGC	TACCTGCCCA	TTCGACCACC	1620
	TCGCATCGAG	CGAGCACGTA	CTCGGATGGA	AGCCGGTCTT	GTCGATCAGG	1680
		CAGGGGCTCG	CGCCAGCCGA	ACTGTTCGCC	AGGCTCAAGG	1740
		GATCTCGTCG	TGACCCATGG	CGATGCCTGC	TTGCCGAATA	1800
	AAATGGCCGC	TTTTCTGGAT	TCATCGACTG	TGGCCGGCTG	GGTGTGGCGG	1860
ACCGCTATCA	GGACATAGCG	TTGGCTACCC	GTGATATTGC	TGAAGAGCTT	GGCGGCGAAT	1920
GGGCTGACCG		CTTTACGGTA	TCGCCGCTCC	CGATTCGCAG	CGCATCGCCT	1980
TCTATCGCCT		TTCTTCTGAG	CGGGACTCTG	GGGTTCGAAA	TGACCGACCA	2040
	GGCCCAGCGC		GCATTTGCCA			2100
ATGACGAGGC	TCAGATGCCA	TTCGGTGGGG	TGAAGTCCAG	CGGCTACGGC	AGCTTCGGCA	2160

GGCACTATCC CTCATTTCAA CCAGTCGCGG CAGGCATCAT GTTGAGGTTA	AATCTAAATC TCTCTAACTT AGAGTCTCGA CATGCTCTGC CGCAAGACGC	GATCTTCGGG	CGCCGCGGC GAGCTGTTCT ACAGTGAACG TACCGCAGTG	ATCATGCCCG CCGGTCTTGG CCGAGTCCAC TGTCGATTGG	TCATCCTCCG	2220 2280 2340 2400 2460 2520
CCCTTCCCGG		IGGAGGIAIT	GICCGGATGC	GTTCTCTCGA	GGCGCTTCTT	2520 2539

GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC			GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCG		CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCTT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
ACTGCGTGCT		ATGATCCGCA		GGTTCGTTGA	TTGATGCCAA	1020
TGCAGGTCAA	CGCATCCAGG	TGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCA	TGCATAAAAA	1080
CTGTTGTAAT	TCATTAAGCA	TTCTGCCGAC	ATGGAAGCCA	TCACAAACGG	CATGATGAAC	1140
CTGAATCGCC		GCACCTTGTC		TAATATTTGC	CCATGGACGC	1200
		GGCACGAACC	CAGTTGACAT	AAGCCTGTTC	GGTTCGTAAA	1260
CTGTAATGCA	AGTAGCGTAT	GCGCTCACGC	AACTGGTCCA	GAACCTTGAC	CGAACGCAGC	1320
GGTGGTAACG	GCGCAGTGGC	GGTTTTCATG	GCTTGTTATG	ACTGTTTTTT	TGTACAGTCT	1380
ATGCCTCGGG		GCAAGCGCGT	TACGCCGTGG	GTCGATGTTT	GATGTTATGG	1440
AGCAGCAACG	ATGTTACGCA	GCAGCAACGA		CAGGGCAGTC	GCCCTAAAAC	1500
AAAGTTAGGT	GGCTCAAGTA			AGGCTCGGCC	CTGACCAAGT	1560
CAAATCCATG	CGGGCTGCTC	TTGATCTTTT	CGGTCGTGAG	TTCGGAGACG	TAGCCACCTA	1620
CTCCCAACAT	CAGCCGGACT	CCGATTACCT	CGGGAACTTG	CTCCGTAGTA	AGACATTCAT	1680
CGCGCTTGCT		AAGAAGCGGT	TGTTGGCGCT	CTCGCGGCTT	ACGTTCTGCC	1740
CAGGTTTGAG		GTGAGATCTA	TATCTATGAT	CTCGCAGTCT	CCGGCGAGCA	1800
CCGGAGGCAG	GGCATTGCCA			AAGCATGAGG	CCAACGCGCT	1860
TGGTGCTTAT	GTGATCTACG	TGCAAGCAGA	TTACGGTGAC	GATCCCGCAG	TGGCTCTCTA	1920
TACAAAGTTG	GGCATACGGG		=	ATCGACCCAA	GTACCGCCAC	1980
CTAACAATTC		AGATCGGCTT	CCCAATTGGC	CCAGCGCGTC	GATTCGGGCA	2040
TTTGCCATAT		ACTGTGCATG			GGTGGGGTGA	2100
AGTCCAGCGG	CTACGGCAGC	TTCGGCAGTC	GAGCATCGAT	TGAGCACTTT	ACCCAGCTGC	2160

GCTGGCTGAC	CATTCAGAAT	GGCCCGCGGC	ACTATCCAAT	CTAAATCGAT	CTTCGGGCGC	2220
					AAAAACAGAG	2280
CTGTTCTCCG	GTCTTGGTGG	ATCAAGGCCA	GTCGCGGAGA	GTCTCGAAGA	GGAGAGTACA	2340
					GCCACGCTAC	
CGCAGTGTGT	CGATTGGTCA	TCCTCCGGTT	GAGGTTACGC	AAGACGCTGG	AGGTATTGTC	2460
CGGATGCGTT	CTCTCGAGGC	GCTTCTTCCC	TTCCCGGGTG	GAATTC		2506

GAATTCCAAT		ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCG	GCCTTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCTT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	GGTTCGTTGA	TTGATGCCAA	1020
TGCAGGTCAA	CGCATCCAGG	TTCTGGTCGA	TGATGCGCTC	GCAAAAGGCG	CGCAATGGAA	1080
TTGGCCCAGC	GCGTCGATTC	GGGCATTTGC	CATATCAATG	GACCGACTGT	GCATGACGAG	1140
GCTCAGATGC	CATTCGGTGG	GGTGAAGTCC	AGCGGCTACG	GCAGCTTCGG	CAGTCGAGCA	1200
TCGATTGAGC	ACTTTACCCA	GCTGCGCTGG	CTGACCATTC	AGAATGGCCC	GCGGCACTAT	1260
CCAATCTAAA	TCGATCTTCG	GGCGCCGCGG	GCATCATGCC	CGCGGCGCTC	GCCTCATTTC	1320
AATCTCTAAC	TTGATAAAAA	CAGAGCTGTT	CTCCGGTCTT	GGTGGATCAA	GGCCAGTCGC	1380
GGAGAGTCTC	GAAGAGGAGA	GTACAGTGAA	CGCCGAGTCC	ACATTGCAAC	CGCAGGCATC	1440
ATCATGCTCT	GCTCAGCCAC	GCTACCGCAG	TGTGTCGATT	GGTCATCCTC	CGGTTGAGGT	1500
TACGCAAGAC	GCTGGAGGTA	TTGTCCGGAT	GCGTTCTCTC	GAGGCGCTTC	TTCCCTTCCC	1560
GGGTGGAATT	C					1571

GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
GTTGGTTGCG	GCAGTGCGCA	CCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
GCCTATCGAC	TTAGGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	240
ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	360
GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	540
GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
GACAGCAAGC	GAACCGGAAT	TGCCAGCTGG	GGCGCCCTCT	GGTAAGGTTG	GGAAGCCCTG	660
CAAAGTAAAC	TGGATGGCTT	TCTTGCCGCC	AAGGATCTGA	TGGCGCAGGG	GATCAAGATC	720
TGATCAAGAG	ACAGGATGAG	GATCGTTTCG	CATGATTGAA	CAAGATGGAT	TGCACGCAGG	780
TTCTCCGGCC	GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCACAAC	AGACAATCGG	840
CTGCTCTGAT	GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	900
GACCGACCTG	TCCGGTGCCC	TGAATGAACT	GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	960
GGCCACGACG	GGCGTTCCTT	GCGCAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	1020
CTGGCTGCTA	TTGGGCGAAG	TGCCGGGGCA	GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	1080
CGAGAAAGTA	TCCATCATGG	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	1140
CTGCCCATTC	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	1200
CGGTCTTGTC	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC	CAGCCGAACT	1260
GTTCGCCAGG	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT	CTCGTCGTGA	CCCATGGCGA	1320
TGCCTGCTTG	CCGAATATCA	TGGTGGAAAA	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	1380
CCGGCTGGGT	GTGGCGGACC	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	1440
AGAGCTTGGC	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA	1500
	ATCGCCTTCT		TGACGAGTTC	TTCTGAGCGG	GACTCTGGGG	1560
TTCGAAATGA	CCGACCAAGC	GACGCCCATT	GAGGGCGCAA	GAGGAGAAAT	GGATTGACCA	1620
AGAGATCGTG	GCTGTTACGG	ATGAACAGTT	CGATTTAGAG	GGCTACAACA	GTCGAGCAAT	1680
TGAACTGCCT	CGGAAGGCAA			ATCCGCGGCC	TAGCAGTCTT	1740
TGAAGCCCTT		AGCCTGTTCA	TTCTGGCGGG	GTGCAGACTG	CGGGCAACAG	1800
CTGTGCCGTA		CCGCGGCGGC	TTTGGTGGCT	CGAGAGTCGT	CTGCGACACA	1860
	GCTAGGATAC	TGGCTACCTC	CGTAGTCGGG	ATCGAGCCCG	AGCATATGGG	1920
GCTCGGCCCT	GCGCCCGCGA			AGTGATCTTA	GTTTGAGGGA	1980
TATCGACCTC		ACGAGGCGCA			TACAGCATGA	2040
ATTGGGTATT	GAGCACTCAA		TTGGGGCGGG		TTGGACACCC	2100
GCTTGCCGCG	ACCGGATTGC	GTCTCTGCAT	GACCCTCGCT	CACCAATTGC	AAGCTAATAA	2160

CTTTCGATAT	GGAATTGCCT	CGGCATGCAT	TGGTGGGGGA	CAGGGGATGG	CGGTTCTTTT	2220
AGAGAATCCC	CACTTCGGTT	CGTCCTCTGC	ACGAAGTTCG	ATGATTAACA	GAGTTGACCA	2280
					GAAGGAGGC	2340
TCGAAAATCT	CTGCTAAAAA	CAAGAAGAAG	GAACAGGGAA	CATGATTAGT	TTCGCTCGTA	2400
		CAGGCTAAAC				2460
TCGGGCTGAT	TGTTACCGGC	ACGGGTTTCT	ACAGTGTACA	TACCTTGTCA	GGGTTGGTGG	2520
GAATTC						2526

	GTCGGCGAAA		TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
	CACACTGTGA		GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
GTTGGTTGCG	GCAGTGCGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
GCCTATCGAC	TTAGGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	240
ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	360
GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	540
GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
GGAGAGGCGG	TTTGCGTATT	GGGCGCATGC	ATAAAAACTG	TTGTAATTCA	TTAAGCATTC	660
TGCCGACATG	GAAGCCATCA	CAAACGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA	720
CCTTGTCGCC	TTGCGTATAA	TATTTGCCCA	TGGACGCACA	CCGTGGAAAC	GGATGAAGGC	780
ACGAACCCAG	TTGACATAAG	CCTGTTCGGT	TCGTAAACTG	TAATGCAAGT	AGCGTATGCG	840
CTCACGCAAC	TGGTCCAGAA	CCTTGACCGA	ACGCAGCGGT	GGTAACGGCG	CAGTGGCGGT	900
TTTCATGGCT	TGTTATGACT	GTTTTTTTGT	ACAGTCTATG	CCTCGGGCAT	CCAAGCAGCA	960
AGCGCGTTAC	GCCGTGGGTC	GATGTTTGAT	GTTATGGAGC	AGCAACGATG	TTACGCAGCA	1020
GCAACGATGT	TACGCAGCAG	GGCAGTCGCC	CTAAAACAAA	GTTAGGTGGC	TCAAGTATGG	1080
GCATCATTCG	CACATGTAGG		ACCAAGTCAA	ATCCATGCGG	GCTGCTCTTG	1140
ATCTTTTCGG	TCGTGAGTTC	GGAGACGTAG	CCACCTACTC	CCAACATCAG	CCGGACTCCG	1200
ATTACCTCGG	GAACTTGCTC	CGTAGTAAGA	CATTCATCGC	GCTTGCTGCC	TTCGACCAAG	1260
AAGCGGTTGT			TTCTGCCCAG	0-1100110	CCGCGTAGTG	1320
AGATCTATAT			GCGAGCACCG	GAGGCAGGGC	ATTGCCACCG	1380
CGCTCATCAA	TCTCCTCAAG			TGCTTATGTG	ATCTACGTGC	1440
AAGCAGATTA			CTCTCTATAC		ATACGGGAAG	1500
			CCGCCACCTA		CAAGCCGAGA	1560
	ATTGAGGGCG			CCAAGAGATC	GTGGCTGTTA	1620
	GTTCGATTTA			AATTGAACTG	CCTCGGAAGG	1680
CAAAATTGTT	GATCGTGACA			CTTTGAAGCC	CTTTCCCGAT	1740
TGAAGCCTGT			CTGCGGGCAA	CAGCTGTGCC	GTAGTGGACG	1800
GCGCCGCGC		GCTCGAGAGT	CGTCTGCGAC	ACAGCCGGTC	TTGGCTAGGA	1860
TACTGGCTAC		GGGATCGAGC	CCGAGCATAT	GGGGCTCGGC	CCTGCGCCCG	1920
CGATTCGCCT		CGTAGTGATC	TTAGTTTGAG	GGATATCGAC	CTCTTTGAGA	1980
TAAACGAGGC		CAAGTTCTAG			ATTGAGCACT	2040
CAAAACTTAA		GGGGCCATTG			GCGACCGGAT	2100
TGCGTCTCTG	CATGACCCTC	GCTCACCAAT	TGCAAGCTAA	TAACTTTCGA	TATGGAATTG	2160

CCTCGGCATG	CATTGGTGGG	GGACAGGGGA	TGGCGGTTCT	ТТТАСАСААТ	CCCCACTTCG	2220
GTTCGTCCTC	TGCACGAAGT	TCGATGATTA	ACAGAGTTGA	CCACTATCCA	CTGAGCTAAC	
GGGCATCTCC	TTTGTTGCTT	TGAGGTGGCG	CACGAAGGAG	GGCTCGAAAA	TCTCTGCTAA	2340
AAACAAGAAG	AAGGAACAGG	GAACATGATT	AGTTTCGCTC	GTATGGCAGA	AAGTTTAGGA	2400
GTCCAGGCTA	AACTTGCCCT	TGCCTTCGCA	CTCGTATTAT	GTGTCGGGCT	GATTGTTACC	2460
GGCACGGGTT	TCTACAGTGT	ACATACCTTG	TCAGGGTTGG	TGGGAATTC		2509

GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	C 0
GTGACGAGGC	CACACTGTGA		GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	60 120
GTTGGTTGCG	GCAGTGCGCA		TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
GCCTATCGAC	TTAGGGGTAA		CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	
ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG		240
GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	ATGCTTACCT	300
GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	CCTTGGGGGT	360
AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG		AGATTTCCCA	420
GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	TCGCGTAACC	CCATCGCGTC	480
GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GAGTTCAAGG	ATTTTTTGTG	540
GCGCATTGAG	GGCGCAAGAG	GAGAAATGGA	· -	GCTACCGCAG	AAAACCTGGC	600
AACAGTTCGA	TTTAGAGGGC	TACAACAGTC	TTGACCAAGA	GATCGTGGCT	GTTACGGATG	660
TGTTGATCGT	GACAGTCATC	CGCGGCCTAG	GAGCAATTGA	ACTGCCTCGG	AAGGCAAAAT	720
CTGTTCATTC	TGGCGGGGTG	CAGACTGCGG	CAGTCTTTGA	AGCCCTTTCC	CGATTGAAGC	780
CGGCGGCTTT	GGTGGCTCGA	GAGTCGTCTG	GCAACAGCTG	TGCCGTAGTG	GACGGCGCCG	840
CTACCTCCGT	AGTCGGGATC		CGACACAGCC	GGTCTTGGCT	AGGATACTGG	900
GCCTGCTGCT	TGCGCGTAGT	GAGCCCGAGC	ATATGGGGCT	CGGCCCTGCG	CCCGCGATTC	960
AGGCGCAGGC	CGCCCAAGTT	GATCTTAGTT	TGAGGGATAT	CGACCTCTTT	GAGATAAACG	1020
TTAATATTTG		CTAGCGGTAC	AGCATGAATT	GGGTATTGAG	CACTCAAAAC	1080
TCTGCATGAC	GGGCGGGGCC	ATTGCACTTG	GACACCCGCT	TGCCGCGACC	GGATTGCGTC	1140
	CCTCGCTCAC	CAATTGCAAG	CTAATAACTT	TCGATATGGA	ATTGCCTCGG	1200
CATGCATTGG	TGGGGGACAG	GGGATGGCGG	TTCTTTTAGA	GAATCCCCAC	TTCGGTTCGT	1260
CCTCTGCACG	AAGTTCGATG	ATTAACAGAG	TTGACCACTA	TCCACTGAGC	TAACGGGCAT	1320
CTCCTTTGTT	GCTTTGAGGT	GGCGCACGAA	GGAGGGCTCG	AAAATCTCTG	CTAAAAACAA	1380
GAAGAAGGAA	CAGGGAACAT	GATTAGTTTC	GCTCGTATGG	CAGAAAGTTT	AGGAGTCCAG	1440
GCTAAACTTG	CCCTTGCCTT	CGCACTCGTA	TTATGTGTCG	GGCTGATTGT	TACCGGCACG	1500
GGTTTCTACA	GTGTACATAC	CTTGTCAGGG	TTGGTGGGAA	TTC		1543

١

f

١

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought

on the invention entitled

"CONSTRUCTION OF PRODUCTION STRAINS FOR PRODUCING SUBSTITUTED PHENOLS BY SPECIFICALLY INACTIVATING GENES OF THE EUGENOL AND FERULIC ACID CATABOLISM"

the specification of which is attached hereto,

or was filed on October 20, 1999

as a PCT Application Serial No. PCT/EP99/07952

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, \$119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

198 50 242.7 (Number)

Germany (Country)

October 31, 1998 (Month/Day/Year Filed)

I hereby claim the benefit under Title 35, United States Code, \$120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, \$1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status)
		(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

JOSEPH C. GIL, Patent Office Registration Number 26,602
ARON PREIS, Patent Office Registration Number 29,426
LYNDANNE M. WHALEN, Patent Office Registration Number 29,457
THOMAS W. ROY, Patent Office Registration Number 29,582
RICHARD E. L. HENDERSON, Patent Office Registration Number 31,619
GODFRIED R. AKORLI, Patent Office Registration Number 28,779
N. DENISE BROWN, Patent Office Registration Number 39,138
DIDERICO VAN EYL, Patent Office Registration Number 38,641
CAROLYN M. SLOANE, Patent Office Registration Number 44,339
JAMES R. FRANKS, Patent Office Registration Number 42,552

JACKIE ANN ZURCHER, Patent Office Registration Number 42,251 all of Bayer Corporation, Pittsburgh, Pennsylvania 15205-9741

Send Correspondence To: Patent Department Bayer Corporation 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741		Direct Telephone Ca (412) 777-2349	lls To:
FULL NAME OF SOLE OR FARST INVENTOR	INVENTOR'S SIGNATURE	r	DATE
Jürgen Rabenhorst		benland	30.3.200
RESIDENCE	Joseph Ice	CITIZENSHIP	1 13
D 37671 Höxter, Germany		German	
POST OFFICE ADDRESS		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
c/o HAARMANN & REIMER GMBH, D 37601 Holz	minden Germany	•	
FULL NAME OF SECOND INVENTOR)	INVENTOR'S SIGNATUR	<u>. </u>	DATE
Alexander Steinbüchel	1 Xexande F		DATE 17.4. 2001
RESIDENCE	100000	CITIZENSHIP	-1
D 48341 Altenberge, Germany	A	German	
POST OFFICE ADDRESS		Cerman	· · · · · · · · · · · · · · · · · · ·
Rönnenthal 27, D 48341 Altenberge, German			
FULL NAME OF THIRD INVENTOR			раше
Horst Priefert	INVENTOR'S SIGNATUR	りへん	29.4.2004
RESIDENCE	1 Order A	CITIZENSHIP	7,1 (.4.00)
The state of the s	/		
D 48291 Telgte, Germany	\ 	German	
POST OFFICE ADDRESS			
Potthoffskamp 5, D 48291 Telgte, Germany	T		
FULL NAME OF FOURTH INVENTOR	INVENTOR'S SIGNATUR	E	DATE
Jörg Overhage	Jones Oinvage		18.4.2001
RESIDENCE	0 10	CITIZENSHIP	
D 59192 Bergkamen, Germany		German	
POST OFFICE ADDRESS			
Rotherbachstr. 42A, D 59192 Bergkamen, G	ermany		
FULL NAME OF FIFTH INVENTOR	INVENTOR'S SIGNATUR	E	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF SIXTH INVENTOR	INVENTOR'S SIGNATUR	E	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			-
			1
FULL NAME OF SEVENTH INVENTOR	INVENTOR'S SIGNATUR	RE	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			