

Requested Patent: SU655373A1
Title: METHOD OF IMPROVING SOIL STRUCTURE ;
Abstracted Patent: SU655373 ;
Publication Date: 1979-04-05 ;
Inventor(s): KOZHEVNIKOVA NINA V ;
Applicant(s): KOZHEVNIKOVA NINA V (SU) ;
Application Number: SU19762425763 19761119 ;
Priority Number(s): SU19762425763 19761119 ;
IPC Classification: A01N7/02 ;
Equivalents: ;
ABSTRACT:

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 655373

(61) Дополнительное к авт. свид-ву -

(22) Заявано 19.11.76 (21) 2425763/30-15

с присоединением заявки № -

(23) Приоритет -

Опубликовано 05.04.79 Бюллетень № 13 (53) УДК 631.417

Дата опубликования описания 09.04.79 (088.8)

(51) М. Кл.
А О 1 Н 7/02

(72) Автор
изобретения

Н. В. Кожевникова

(71) Заявитель

(54) СПОСОБ УЛУЧШЕНИЯ СТРУКТУРЫ ПОЧВЫ

1 Изобретение относится к почвоведению, в частности к использованию неорганических удобрений для улучшения структуры почвы.

В настоящее время органические вещества в почве увеличивают путем внесения заранее приготовленных гуминовых удобрений в почву. Обычно гуминовые удобрения готовят из каустобелитов — бурого угля, торфа, лигнина жестким химическим воздействием: кислотами, щелочами, высокой температурой, паром, давлением, даже ультразвуком и затем вносят в почву обычным способом как удобрения [1].

Также известен способ улучшения структуры почвы, включающий внесение полиметаfosфата щелочных металлов [2].

Недостатком этого способа является преимущественное физическое оструктуривание без значительного увеличения содержания органического вещества почвы.

Целью изобретения является повышение содержания органического вещества в почве.

2 Поставленная цель достигается тем, что в почву предварительно или вместе с аммонийными и кальциевыми удобрениями вносят фосфиты при $\text{pH} \geq 7$. Фосфиты, являясь активными химическими агентами, взаимодействуют со сложным органическим веществом почвы или образуют органические вещества в почве из простейших органических веществ (например, производных карбоновых кислот) и неорганических веществ (например, азотистых), которые образуют органо-минеральные комплексы с участием азота, карбоксильных, фосфоновых групп и иона кальция. Оптимальными условиями комплексообразования для иона кальция является $\text{pH} \geq 7$.

Одна из возможных структур органо-минерального комплекса:

Фосфиты неустойчивы и, если не вступают во взаимодействие с органическим веществом почвы, разлагаются до фосфатов.

Пример 1. В три вегетационных сосуда с отверстиями в дне закладывают смесь следующих компонентов (табл. 1): сосуд № 1 - 9,4 кг почвы, 4,2 г NH_4NO_3 , 2,7 г $\text{Ca}(\text{OH})_2$ и 5,06 г K_2HPO_4 ; сосуд № 2 - 9,4 кг почвы, 7,2 г NH_4NO_3 , 2,7 г $\text{Ca}(\text{OH})_2$, 3,09 г K_2HPO_4 ; сосуд № 3 - 9,4 кг почвы, 7,2 г NH_4NO_3 , 2,7 г $\text{Ca}(\text{OH})_2$.

Почва чернозем из-под многолетней травы костер, которую сеяли 5 лет подряд (земля неизменная). Вегетационные опыты проводят при комнатной температуре (20°C), влажность почвы поддерживалась 30%-ной ежедневным добавлением дистиллированной воды, pH 6,5 - 7,1; срок опыта 32 и 49 дней. Определение гумуса в почве: 0,3 г тонко измельченной, с удаленными корешками почвы обрабатывают 10 мл 0,4н. хромовой кислоты, помещают на 20 мин в термостат при 140°C , затем титруют избыток хромовой кислоты 0,1н. раствором соли Мора; содержание гумуса рассчитывают по формуле:

$$(a - b) \cdot K \cdot 0,000517 \cdot 100 \cdot 1,17$$

Р

где: a - количество 0,1н. соли Мора, прошедшей на титрование контроля, мл;
 b - количество 0,1н. соли Мора, прошедшей на титрование пробы, мл;

K - поправочный коэффициент к титру соли Мора;

R - навеска воздушно-сухой почвы, г.

Неподвижный гумус (A) определяют следующим образом: по 2 г обрабатывают 50 мл 0,5н. уксусной кислоты, содержащую взвешивают в течение 2 ч, отфильтровывают, 3 раза промывают тем же раствором. Затем почву (не промывая водой) обрабатывают 50 мл 4%-ного раствора аммиака, взвешивают 1 ч, фильтруют, 1 раз промывают тем же раствором, сушат и определяют содержание гумуса в почве. В фильтрате определяют также неорганический и затем органический фосфор (B) сжиганием части вытяжки в смеси H_2SO_4 , HClO_4 (1:4) по "молибденовой сини". Определяли общий фосфор из исходной почвы (из сосудов) и определяют количество устойчивых фосфористых соединений в почве по разности между общим фосфором и подвижным. Определяют количество вновь

образовавшегося (от внесенных удобрений) устойчивого фосфора (С) по разности содержания устойчивого фосфора в сосуде и в исходной почве.

Результаты работы представлены в табл. 1. Добавление фосфита в сосуд № 2 дало незначительную прибавку гумуса (0,94%).

Пример 2. В 4 вегетационных сосуда с отверстиями в дне закладывают смесь следующих компонентов: по 8 кг почвы (той же, что и в примере 1), в сосуды №№ 4 - 6 помещают по 10 г $\text{Ca}(\text{OH})_2$; в сосуд № 7 - 2,7 г $\text{Ca}(\text{OH})_2$; в сосуд № 4 - 16,8 г NH_4NO_3 и 50,8 г K_2HPO_4 ; в сосуд № 5 - 19,2 г K_2HPO_4 ; в сосуд № 6 помещают те же компоненты, что и в сосуд № 5, и микроэлементы: 1,4 г CuSO_4 , 0,94 г ZnCl_2 , 1,64 г MnSO_4 . В сосуде № 7 смешивают 9,5 г почвы с 2,7 г $\text{Ca}(\text{OH})_2$; 2,1 г NH_4OH ; 3,4 г K_2HPO_4 . Сосуды выдерживают 20 и 37 дней (сосуд № 13 - 13 дней) в тех же условиях, что и в примере 1, при pH 7,6-8,0. Все определения проводили аналогично примеру 1. Результаты работы представлены в табл. 2.

При уровне вероятности $P=0,05$, $n=8$ среднее содержание гумуса для 20 дней выдержки составляет $4,40 \pm 0,02\%$ при ошибке определения 0,5%. При уровне вероятности $P=0,05$, $n=30$ среднее содержание гумуса составляет $4,46 - 0,08\%$ при ошибке определения 1,9% (при всех сроках).

Для срока 20 дней при увеличении абсолютного количества гумуса на 0,14, что составляет 3,30%, неподвижный гумус увеличивается на 0,56, что составляет

$$\frac{A - A_0}{A_0} = \frac{0,56 \cdot 100}{1,40} = 40\%.$$

Результаты сосуда № 6 показывают, что микроэлементы "не работают" при pH 7.

Количество органического подвижного фосфора на одну дозу внесенного фосфата (5 г на 100 г почвы) увеличивается по сравнению с исходной почвой от 1,8 до 4,0 раза (до 60 мг/100 г почвы) за срок 18-49 дней. При этом количество устойчивого фосфора прибавляется от внесения одной дозы фосфата в 7,5 - 2,0 раза меньше, чем от одной дозы фосфата и достигает минимума при сочетании фосфата с аммонийными удобрениями (обратная зависимость).

Таблица 1

Изменение содержания гумуса в почве при использовании фосфитов и фосфатов

Номер пробы (с粗糙е)	Удобрение	$\text{Ca}(\text{OH})_2$		NH_4NO_3		K_2HPO_4		Срок вы- держивания, дни	Содер- жание содер- жания гу- муса, % (сред- нее),	Увеличе- ние содер- жания гу- муса поздней- шего гу- муса (среднее), %	$\frac{B}{B_4}$	C
		МГ-экв. Ca^{+2}	вес. мг-экв	МГ-экв вес.	МГ-экв вес.	P	F					
O (исходная почва)	-	-	-	-	-	-	-	-	4,26	-	1,40 (A ₀)	11,4 (B ₄)
1	$\text{Ca}_1\text{N}_2\text{PO}_3$	0,08	2,7	0,06	4,2	0,03	5,06	32	4,52	5,85	2,45	18,9
	-	-	-	-	-	-	-	49	4,55	-	3,06	35,8
	-	-	-	-	-	-	-	70	4,48	-	-	3,14
2	$\text{Ca}_1\text{N}_3\text{PO}_4$	"	0,09	7,2	0,03	3,09	32	4,31	0,94	-	4,2	0,37
	$\text{Ca}_2\text{N}_5\text{PO}_4$	0,06	5,4	0,15	11,4	"	49	-	-	-	4,2	62,0
3	Ca_4N_3	0,03	2,1	0,09	7,2	-	-	32	4,27	-	-	62,0 (C ₁)

Таблица 2

Изменение содержания гумуса в почве при использовании фосфатов

Номер пробы (сосуда)	Удобрение (PO_3^{4-}) ₀	$\text{Ca}(\text{OH})_2$		NH_4NO_3		K_2HPO_4		Срок дни гумуса (средний), %	Увеличение содержания гумуса		$\frac{C}{C_1}$
		МГ-ЕКВ Ca ⁺²	вес, г	МГ-ЕКВ P	вес, г	МГ-ЕКВ R	вес, г		A	B	
4	Ca_4N_2	0,11	10,0	0,30	16,8	0,32	50,8	20	4,40	3,30	1,95
								37	4,41		19,8
								58	4,65		3,00
											20,7
5	$\text{Ca}_4(\text{PO}_3)_4$	-	-	-	0,12	19,2	20	4,40	3,30	2,86	22,4
								37	4,45		29,3
								58	4,67		2,62
											23,8
6	$\text{Ca}_4(\text{PO}_3)_4$ микрозелен- менты	-	-	-	-	-	-	20	4,40	3,30	2,02
								37	4,47		2,62
								58	4,74		
7	$\text{Ca}_4\text{N}_2(\text{PO}_3)_2$ 0,03	2,7	0,06	2,1	0,20	31,4	13	4,42	3,70	2,20	78,9
								34	4,44		3,95
8	$\text{Ca}_4\text{N}_5(\text{PO}_3)_6$	0,15	11,4	0,32	50,8	34	4,45	-	4,35	-	-

Ф о р м у л а и з о б р е т е н и я

Способ улучшения структуры почвы, включающий внесение солей фосфорных кислот, отличающийся тем, что, с целью повышения органического вещества почвы, в нее предварительно или вместе с аммонийными и кальциевыми удобрениями вносят фосфиты при $pH \geq 7$.

Источники информации, принятые во внимание при экспертизе

1. Овчаренко Ф. Д. Кн. "Комплексные биоминеральные удобрения", Академия Наук УССР, Проблемная комиссия БМУ, Киев, 1970 г.

2. Авторское свидетельство СССР № 298318, кл. А 01 № 7/02, 1969.

Составитель В. Квашин
Редактор И. Квачадзе Техред Н. Бабурка Корректор П. Макаревич

Заказ 1378/2 Тираж 754 Подписьное
ЦНИИПИ Государственного комитета СССР
по делам изобретений и открытий.
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4