Physical Chemistry III

2022.03.21

Index of contents

- Schrödinger equation History
- Bra-ket notation
- Particle in a box

Quantum Physics for Poets (시인을 위한 양자물리학)

Book by Christopher T. Hill and Leon M. Lederman

10/10 알라딘 10/10 교보문고 4/5 고객센터 - 옥션

Did you like this book?

The Times Literary Supplement called their previous book, Symmetry and the Beautiful Universe: [A] tour de force of physics made simple.Quantum theory is the bedrock of contemporary physics and the basis of understanding matter in its tiniest dimensions and the vast universe as a whole. ... Google Books

Originally published: September 11, 2010

Authors: Christopher T. Hill, Leon M. Lederman

Double slit experiment

In 1801, Thomas Young

https://javalab.org/en/youngs_double_slit_en/

Light is made up of small discrete particles!

No. You wrong. Light is wave.

Double slit experiment

In 1801, Thomas Young

https://javalab.org/en/youngs_double_slit_en/

In 1927 at Bell Labs, Clinton Davisson and Lester Germer

Double slit experiment

In 1801, Thomas Young

https://javalab.org/en/youngs_double_slit_en/

letters to nature

Wave-particle duality of C₆₀ molecules

Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw & Anton Zeilinger

Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

Am I wave?

Matter wave

In 1924, De Broglie (Ph.D student)

De Broglie hypothesis

$$\lambda = \frac{h}{p}$$

 λ : wavelength of matter wave

h: Planck constant

p: momentum

Matter wave

Albert Einstein (Friend of Langevin)

Erwin Schrödinger (Research assistant of Einstein)

Schrödinger Equation

In 1925, (published in 1926)

If De Broglie hypothesis is correct, then it can be described by

Hamiltonian mechanics!

(a.k.a. King of classical mechanics)

$$\widehat{H}|\psi\rangle = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_0\right)|\psi\rangle = i\hbar\frac{\partial}{\partial t}|\psi\rangle = E|\psi\rangle$$

It is clear!

But I don't know the meaning of $|\psi\rangle$

After Schrödinger Equation

In 1926,

Uncertainty principle $\Delta r \ \Delta p \ge h$

 $|\psi|^2$ = Probability density function!

Werner Heisenberg

Max Born

After Schrödinger Equation

Werner Heisenberg

In 1927 Brussels conference..

Erwin Schrödinger

Max Born

Albert Einstein

Paul Langevin

Let,
$$|\psi\rangle = a_1 |\varphi_1\rangle + a_2 |\varphi_2\rangle + a_3 |\varphi_3\rangle$$

$$|\varphi_1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \qquad |\varphi_2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad |\varphi_3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
 Orthonormal basis

$$|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 $a_1^2 + a_2^2 + a_3^2 = 1$ $\langle \varphi_1 | = |\varphi_1\rangle^{\dagger} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^{\dagger} = (1 \quad 0 \quad 0)$

$$\langle \varphi_1 | \psi \rangle = (1 \quad 0 \quad 0) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1$$
: component (weight factor) of $| \varphi_1 \rangle$

$$|\psi\rangle = \sum_{i=1}^{3} a_i |\varphi_i\rangle = \sum_{i=1}^{3} |\varphi_i\rangle \langle \varphi_i |\psi\rangle = \mathbf{I}|\psi\rangle$$

Particle in a box

$$V = \infty$$
 $V = \infty$
 $V = \infty$
 $V = \infty$
 $V = \infty$
 $V = \infty$

$$\widehat{H}\psi(x) = E\psi(x)$$

$$\widehat{H} = \frac{\widehat{p}^2}{2m} + V(\widehat{x}) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L \\ \infty & \text{otherwise} \end{cases}$$

$$\psi(x) = \sum_{n=1}^{\infty} a_n \psi_n(x)$$

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right), E_n = \frac{h^2}{8mL^2}n^2$$

https://github.com/thereexist/Physical_chemistry_3/blob/main/Particle_in_a_box/particle_in_a_box.ipynb