Machine Learning for Cancer Diagnosis on Microarray Data

Ty Pacchione, Danny Rollo, Alexander Vandenberg, and Mitchell Wadas

December 7, 2023

Background

- Microarrays measure the expression of thousands of genes simultaneously.
- Microarray data is increasingly being used for early diagnosis of cancer.
- Researchers are struggling to extract meaningful information from so much data.
- We propose an application of machine learning to make diagnoses from microarray data.

Data

 Raw data was sourced from the Structural Bioinformatics and Computational Biology Lab's CuMiDa database [1]. Each file corresponds to a specific type of cancer and set of genes.

samples	type	1007_s_at	1053_at	117_at	121_at	1255_g_at
306	adenoma	9.4431086	3.65359337	5.08776789	7.61927763	3.78670578
307	adenoma	9.34227295	3.71458533	5.44399744	7.10476575	3.80912899
308	adenoma	9.1484732	3.69324912	5.17350663	7.53621486	3.7143997

- We downloaded approximately 40 datasets corresponding to different cancer / gene set combinations.
- We combined them into two datasets, one corresponding to each gene set.

Procedure

- We formulated the diagnosis as a multi-class classification problem.
- A notable characteristic of our data is the number of features, between 30,000 and 50,000.
- We compared traditional ML (logistic regression with PCA) and deep learning.
- We compared different set of genes (as features) to determine which has more diagnostic power.

Methods - Logistic Regression with PCA

- We decomposed the data into 50 principal components which captured roughly 95% of the variance (efficient reduction).
- We applied logistic regression to the principal components.
- This resulted in an accurate diagnosis in approximately 95% of cases.

Methods - Neural Network

- Instead of using PCA, we gave the network the full feature set, allowing it to perform feature extraction.
- We performed grid search hyperparameter optimization to find the optimal neural architecture.
- The optimal architecture was determined to be 5 hidden layers with 50 neurons in each with ReLU activation between each two layers.
- With this architecture, we achieved accurate diagnosis in approximately 97% of cases.

Cross Validation Results

Confusion Matrix - GPL96

Confusion Matrix - GPL570

Feature Analysis - GPL96

Feature Analysis - GPL570

LR on GPL570 - Feature Analysis

Conclusions

- We found that Neural Networks generally outperformed traditional machine learning techniques on this high dimensional multiclass problem.
- By comparing performance across datasets, we found that the GPL96 gene set was more suitable for cancer diagnosis.
- We observed that in both datasets, with both models, it was particularly hard to diagnose renal (kidney) cancer.

References

- [1] Bruno César Feltes et al. "CuMiDa: An Extensively Curated Microarray Database for Benchmarking and Testing of Machine Learning Approaches in Cancer Research". In: Journal of Computational Biology 26.4 (2019). PMID: 30789283, pp. 376–386. DOI: 10.1089/cmb.2018.0238. eprint: https://doi.org/10.1089/cmb.2018.0238. URL: https://doi.org/10.1089/cmb.2018.0238.
- [2] F. Pedregosa et al. "Scikit-learn: Machine Learning in Python". In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.