Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux 1999 Examen Partiel

Mercredi le 20 octobre 1999; Durée: 13h30 à 15h20 Une feuille documentation permise; aucune calculatrice permise

Problème 1 (12 points sur 40)

A. (10 points) Trouvez la transformée de Fourier de la fonction

$$f(t) = \begin{cases} e^{\beta t} & -1 < t < 1 \\ 0 & \text{ailleurs} \end{cases} = e^{\beta t} \operatorname{Rect}\left(\frac{t}{2}\right)$$

B. (2 points) Quelle est l'énergie DC?

Problème 2 (16 points sur 40)

A. (12 points) Trouvez la transformée de Fourier de la fonction périodique

$$f_{p}(t) = |\cos t|$$

- B. (2 points) Donnez une esquisse du spectre d'amplitude de la transformée de Fourier.
- C. (2 points) Quelle est la puissance moyenne dans la bande de fréquence $-\pi < \omega < \pi$?

GEL19962: Analyse des signaux 1999 Examen Partiel

Problème 3 (12 points sur 40)

(12 points) Trouvez la transformée inverse de

$$F(\omega) = \frac{\cos^2(\omega)}{\omega}$$

i.e., trouvez f(t) tel que $f(t) \Leftrightarrow F(\omega)$.

Examen Partiel 1999

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega-b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/ au)^1$	$ au$ Sa $(\omega au/2)$
$\operatorname{Tri}\left(t/ au ight)_2$	$ au \operatorname{Sa}^2(\omega au/2)$
$\delta(t)$	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(t)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	2/ jω
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta_t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

Rect $\left(\frac{t-t_0}{\tau}\right)$ est un rectangle de hauteur un, centré sur $t=t_0$, et de longueur τ .

 $Tri\left(\frac{t-t_0}{\tau}\right) \quad \text{est un triangle de hauteur} \\ \text{un centré sur } t=t_0, \text{ avec un} \\ \text{base de longueur } 2\tau.$