Paths and Connectivity

Content

- Paths
- Connectivity

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

A path in a graph is a continuous way of getting from one vertex to another by using a sequence of edges.

$$1-e_1 \rightarrow 2-e_1 \rightarrow 1-e_3 \rightarrow 3-e_4 \rightarrow 2-e_6 \rightarrow 2-e_5 \rightarrow 2-e_4 \rightarrow 3$$

Definition: A path of length n in an undirected graph is a sequence of n edges e_1 , e_2 , ..., e_n such that each consecutive pair e_i , e_{i+1} share a common vertex. In a simple graph, one may instead define a path of length n as a sequence of n+1 vertices v_0 , v_1 , v_2 , ..., v_n such that each consecutive pair v_i , v_{i+1} are adjacent. Paths of length 0 are also allowed according to this definition.

Q: Why does the second definition work for simple graphs?

A: For simple graphs, any edge is unique between vertices so listing the vertices gives us the edge-sequence as well.

Definition: A simple path contains no duplicate edges (though duplicate vertices are allowed). A cycle (or circuit) is a path which starts and ends at the same vertex.

Note: Simple paths need not be in simple graphs. E.g., may contain loops.

Q: Find a longest possible simple path in the following graph:

A: The following path from 1 to 2 is a maximal simple path because

- · simple: each of its edges appears exactly once
- maximal: because it contains every edge except the unreachable edge \mathbf{e}_7

The maximal path: $e_1, e_5, e_6, e_2, e_3, e_4$

One can define paths for directed graphs by insisting that the target of each edge in the path is the source of the next edge:

Definition: A path of length n in a directed graph is a sequence of n edges e_1 , e_2 , ..., e_n such that the target of e_i is the source e_{i+1} for each i.

In a digraph, one may instead define a path of length n as a sequence of n+1 vertices v_0 , v_1 , v_2 , ... , v_n such that for each consecutive pair v_i , v_{i+1} there is an edge from v_i to v_{i+1} .

Q: Consider digraph adjacency matrix:

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

- 1. Find a path from 1 to 4.
- 2. Is there a path from 4 to 1?

A:

A:

A:

A:

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 \rightarrow 3 \rightarrow 2 \rightarrow 4
\end{pmatrix}$$

2. There's no path from 4 to 1. From 4 must go to 2, from 2 must stay at 2 or return to 4. In other words 2 and 4 are disconnected from 1.

Definition: Let G be a pseudograph. Let u and v be vertices. u and v are connected to each other if there is a path in G which starts at u and ends at v. G is said to be connected if all vertices are connected to each other.

- 1. Note: Any vertex is automatically connected to itself via the empty path.
- 2. Note: A suitable definition for directed graphs will follow later.

Q: Which of the following graphs are connected?

A: First is disconnected. Second and Last are connected.

English Connectivity Puzzle

Can define a puzzling graph G as follows:

 $V = \{3\text{-letter English words}\}$

E: two words are connected if can get one word from the other by changing a single letter.

One small subgraph of G is:

Q: Is "fun" connected to "car"?

A: Yes: fun→fan→far→car
Or:
fun→fin→bin→ban→bar→car

Definition: A connected component (or just component) in a graph G is a set of vertices such that all vertices in the set are connected to each other and every possible connected vertex is included.

Q: What are the connected components of the following graph?

A: The components are $\{1,3,5\},\{2,4,6\},\{7\}$ and $\{8\}$ as one can see visually by pulling components apart:

A: The components are $\{1,3,5\},\{2,4,6\},\{7\}$ and $\{8\}$ as one can see visually by pulling components apart:

A: The components are $\{1,3,5\},\{2,4,6\},\{7\}$ and $\{8\}$ as one can see visually by pulling components apart:

Not all connected graphs are created equal!

Q: Rate following graphs in terms of their design value for computer networks:

A: Want all computers to be connected, even if 1 computer goes down:

- 1) 2nd best. However, there's a weak link— "cut vertex"
- 2) 3rd best. Connected but any computer can disconnect
- 3) Worst!Already disconnected
- 4) Best! Network dies only with 2 bad computers

N-Connectivity

The network is best because it can only become disconnected when 2 vertices are removed. In other words, it is 2-connected. Formally:

Definition: A connected simple graph with 3 or more vertices is 2-connected if it remains connected when any vertex is removed. When the graph is not 2-connected, we call the disconnecting vertex a cut vertex.

Q: Why the condition on the number of vertices?

N-Connectivity

A: To avoid o being 2-connected.

There is also a notion of N-Connectivity where we require at least N vertices to be removed to disconnect the graph.

In directed graphs may be able to find a path from a to b but not from b to a. However, Connectivity was a symmetric concept for undirected graphs. So how to define directed Connectivity is non-obvious:

- 1. Should we ignore directions?
- 2. Should we insist that can get from a to b in actual digraph?
- 3. Should we insist that can get from a to b and that can get from b to a?

Resolution: Don't bother choosing which definition is better. Just define to separate concepts:

- 1. Weakly connected: can get from a to b in underlying undirected graph
- 2. Semi-connected (my terminology): can get from a to b OR from b to a in digraph
- 3. Strongly connected: can get from a to b AND from b to a in the digraph

Definition: A graph is strongly (resp. semi, resp. weakly) connected if every pair of vertices is connected in the same sense.

Q: Classify the connectivity of each graph.

A:

semi

weak

strong

Euler Characteristic

The formula is proved by showing that the quantity $(chi) \chi = r - |E| + |V|$ must equal 2 for planar graphs. χ is called the **Euler characteristic**. The idea is that any connected planar graph can be built up from a vertex through a sequence of vertex and edge additions. For example, build 3-cube as follows:

Euler Characteristic

Thus to prove that χ is always 2 for planar graphs, one calculate χ for the trivial vertex graph:

$$\chi$$
 = 1-0+1 = 2

and then checks that each possible move does not change $\boldsymbol{\chi}$.

Euler Characteristic

Check that moves don't change χ :

1) Adding a degree 1 vertex:

r is unchanged. |E| increases by 1. |V| increases by 1. χ += (0-1+1)

2) Adding an edge between pre-existing vertices:

r increases by 1. |E| increases by 1. |V| unchanged. χ += (1-1+0)

 $\begin{vmatrix} |V| & |E| & r & \frac{\chi}{r-|E|+|V|} \\ 1 & 0 & 1 & 2 \end{vmatrix}$

V	1
2	

V	<i>E</i>	r	χ = r- E + V
2	1	1	2

V	<i>E</i>	r	χ = r- E + V
3	2	1	2

V	<i>E</i>	r	χ = r- E + V
4	3	1	2

	<i>E</i>	r	χ = r- E + V
4	4	2	2

V	<i>E</i>	r	χ = r- E + V
5	5	2	2

V	<i>E</i>	r	χ = r- E + V
6	6	2	2

V	<i>E</i>	r	χ = r- E + V
7	7	2	2

V	<i>E</i>	r	χ = r- E + V
8	8	2	2

	<i>E</i>	r	χ = r- E + V
8	9	3	2

V	<i>E</i>	r	χ = r- E + V
8	10	4	2

V	<i>E</i>	r	$\chi = r - E + V $
8	11	5	2

V	<i>E</i>	r	χ = r- E + V
8	12	6	2

Face-Edge Handshaking

For all graphs handshaking theorem relates degrees of vertices to number of edges.

For planar graphs, can relate regions to edges in similar fashion:

EG: There are two ways to count the number of edges in 3-cube:

- 1) Count directly: 12
- 2) Count no. of edges around

each region; divide by 2:

(4+4+4+4+4+4)/2 = 12 (2 triangles per edge)

Face-Edge Handshaking

Definition: The degree of a region F is the number of edges at its boundary, and is denoted by deg(F).

Theorem: Let G be a planar graph with region set R. Then:

$$|E| = \frac{1}{2} \sum_{F \in R} \deg(F)$$

The End