

Figure 10.2: Solving multiple equalities

10.2.2 Extension to Multiple Equalities

extend the same idea for general cases. We assume that constraints have two variables. We first present an approach for solving polynomial constraints with 2 equalities and then

 $0 \wedge g_2 = 0$, F can be proved as SAT by following steps: For a polynomial constraint $F = (x_1 \in (a_1, b_1) \land x_2 \in (a_2, b_2)) \bigwedge_j f_j > 0 \land g_1 = 0$

- first, find a box such that $\bigwedge_j f_j > 0$ is IA-VALID, i.e., $(l_1, h_1) \times (l_2, h_2)$,
- find 2 instances $c_1, d_1 \in (l_1, h_1)$ such that $g_1 < 0$ on $\{c_1\} \times (l_2, h_2)$ and $g_1 > 0$ $\{d_1\} \times (l_2, h_2)$ (values of g_1 are estimated by interval arithmetic), 0 on
- find 2 instances $c_2, d_2 \in (l_2, h_2)$ such that $g_2 < 0$ on $(l_1, h_1) \times \{c_2\}$ and $g_2 > 0$ on $(l_1, h_1) \times \{d_2\}$ (values of g_2 are also estimated by interval arithmetic)

ities and proving that the line $g_1 = 0$ intersects the line $g_2 = 0$ insides the IA-VALID equalities. The idea behind is finding a box such that IA-VALID for polynomial inequal-Figure 10.2 demonstrates our approach when solving polynomial constraints with 2