1. In the following, I will present a decision matrix designed for comparing universities, tailored to the context of Multi-Attribute Decision Making (MADM). This decision matrix will aid in evaluating the relative merits of several universities by using various attributes that are crucial for decision-making.

Note.

Let a_1 represent the **Tuition Fees (USD)**,

Let a_2 represent the World Ranking,

Let a_3 represent the Average Graduate Salary (USD),

Let a_4 represent the Campus Crime Rate (per 100,000).

Note.

Let o_1 represent **Harvard**,

Let o_2 represent **Stanford**,

Let o_3 represent **MIT**,

Let o_4 represent UC Berkeley.

The **Decision Matrix** is as follows:

$$D_{4\times4} = \begin{bmatrix} \mathbf{Uni} & a_1^- & a_2^- & a_3^+ & a_4^- \\ o_1 & 56,000 & 3 & 120,000 & 290 \\ o_2 & 57,000 & 2 & 130,000 & 250 \\ o_3 & 55,000 & 1 & 125,000 & 310 \\ o_4 & 43,000 & 15 & 110,000 & 350 \end{bmatrix}$$

In this document, the original decision matrix is denoted by $D_{4\times4}$. After applying the normalization methods, the resulting normalized matrix is denoted by $N_{4\times4}$, which will allow for easier comparison across the attributes.

1. NORMALIZATION METHODS

In this section, we perform normalization on the original decision matrix $D_{4\times4}$ to create a normalized matrix $N_{4\times4}$. Each normalization method is detailed below, and the final normalized matrix for each method is presented.

1.1. Linear Normalization. The formula for Linear Normalization is:

$$n_{ij} = \frac{r_{ij}}{\sum_{i=1}^{m} r_{ij}}, \quad j = 1, \dots, n, \quad i = 1, \dots, m$$

After applying the formula, we obtain the following normalized matrix N:

	Uni	a_1^-	a_2^-	a_3^+	a_4^-
$N_{4\times4} =$	$ \begin{array}{c} o_1 \\ o_2 \\ o_3 \\ o_4 \end{array} $	$0.270 \\ 0.261$	0.143 0.095 0.048 0.714	$0.268 \\ 0.258$	0.208 0.258

Here is corresponding python code for the discussed:

LISTING 1. Code for Linear Normalization
Python code for Linear Normalization Method

def linear_normalization(dm: pd.DataFrame):
 n = dm.copy().astype(float)
 for col_name in n.columns:
 n[col_name] /= n[col_name].sum()
 return n.round(3)

1.2. Euclidean Normalization. The formula for Euclidean Normalization is:

$$n_{ij} = \frac{r_{ij}}{\sqrt{\sum_{i=1}^{m} r_{ij}^2}}$$

After applying the formula, we obtain the following normalized matrix N:

$$N_{4\times4} = \begin{bmatrix} \mathbf{Uni} & a_1^- & a_2^- & a_3^+ & a_4^- \\ \\ o_1 & 0.528 & 0.194 & 0.494 & 0.480 \\ o_2 & 0.537 & 0.129 & 0.535 & 0.414 \\ o_3 & 0.518 & 0.065 & 0.515 & 0.513 \\ o_4 & 0.405 & 0.970 & 0.453 & 0.579 \\ \end{bmatrix}$$

Here is corresponding python code for the discussed:

LISTING 2. Code for Euclidean Normalization # Python code for Euclidean Normalization Method def euclidean_normalization (dm: pd.DataFrame):

```
n = dm.copy().astype(float)
for col_name in n.columns:
    col_sum = (n[col_name] ** 2).sum()
    n[col_name] /= math.sqrt(col_sum)
return n.round(3)
```

1.3. Max-Min Normalization. This method depends on whether the attribute is beneficial (a_i^+) or non-beneficial (a_i^-) :

If
$$a_j^+$$
: $n_{ij} = \frac{r_{ij}}{r_j^{\text{max}}}$, and if a_j^- : $n_{ij} = \frac{r_j^{\text{min}}}{r_{ij}}$

After applying the formula, we obtain the following normalized matrix N:

	Uni	a_1^+	a_2^+	a_3^+	a_4^+
$N_{4\times4} =$	$ \begin{array}{c} o_1 \\ o_2 \\ o_3 \\ o_4 \end{array} $	1.000 0.965	0.500 1.000	0.923 1.000 0.962 0.846	0.806

As you see, after applying this normalization method (which is the only one of the three), both a_j^+ and a_j^- are transformed into a_j^+ .

Here is corresponding python code for the discussed:

```
LISTING 3. Code for Max Min Normalization

# Python code for Max Min Normalization Method

def max_min_normalization(dm: pd.DataFrame):
    n = dm.copy().astype(float)
    for col_name in n.columns:
        # criteria_types is defined before
        # accessing the criteria types df in order to find the type
        criteria_type = criteria_types.iloc[0, n.columns.get_loc(col_name)]
        if criteria_type == "-":
            n[col_name] = n[col_name].min() / n[col_name]
        # +
        else:
            n[col_name] /= n[col_name].max()
        return n.round(3)
```

Note.

Each method produces a unique normalized matrix N, providing a standardized basis for decision-making.