

Phasen

∘ Fetch

Decode

• Execute

Memory Access

Write Back

Phasen

- Fetch
 - Laden aus Instruction Memory
- Decode
 - Register laden
 - Control Unit
- Execute
 - ALU
- Memory Access
 - Data Memory laden/speichern
- Write Back
 - In Registers speichern

Single Cycle - Taktzykluszeit

- Phasen müssen nacheinander passieren -> Zeiten von Phasen aufaddieren
- Taktzykluszeit beträgt am längsten benötigte Zeit -> alle Phasen müssen berücksichtigt werden
 - Data Access darf nicht ausgelassen werden (bei R-Befehlen nicht benutzt)
- Gegeben: t_ALU = 100ps, t_Speicherzugriff = 150ps, t_Register = 50ps
- Phasenzeiten:
- ∘ T Fetch =
- ∘ T_Decode =
- ∘ T Execute =
- o T_Memory_Access =
- T_Write_Back =

Single Cycle - Taktzykluszeit

- Phasen müssen nacheinander passieren -> Zeiten von Phasen aufaddieren
- Taktzykluszeit beträgt am längsten benötigte Zeit -> alle Phasen müssen berücksichtigt werden
 - Data Access darf nicht ausgelassen werden (bei R-Befehlen nicht benutzt)
- Gegeben:t_ALU = 100ps, t_Speicherzugriff = 150ps, t_Register = 50ps
- Phasenzeiten:
- \circ T_Fetch = I50ps
- ∘ T_Decode = 50ps
- ∘ T_Execute = I00ps
- T_Memory_Access = I50ps
- T_Write_Back = 50ps

Taktzykluszeit - Speedup

- Neue Taktzykluszeit bei Speedup S berechnen: T_new = T_old / S
- Verbesserung einzelner Komponenten mit T_new gegeben (Componente kommt n-Malvor):

```
t_new_com = (T_new - (T_old - t_com) / n, S_com = t_old_com / t_new_com
```

Arithmetisches Mittel

- Arithmetisches Mittel:
 - Durschnittliche Ausführungszeit

$$\frac{1}{n}\sum_{i=1}^{n}Time_{i}$$

$$\sum_{i=1}^{n} Weight_{i} \times Time_{i}$$

- Gewichtetes arithmetisches Mittel:
 - Durchschnittliche Ausführungszeit mit Gewicht z. B. für Häufigkeit eines Programmes,
 Wichtigkeit von Programmen

Geometrisches Mittel, Referenzmaschinen

 \circ Geometrisches Mittel:

• Ratio:Ausführungszeit normiert auf Referenzmaschine -> Ratio_P_i = T_P_i / T_P_Ref

$$T = N_{instr} \cdot CPI \cdot t_{cycle} = \frac{N_{instr} \cdot CPI}{f}$$

CPU-Leistungsgleichung

∘ Bei Single-Cycle CPI = I

$$S = \frac{T_{\text{old}}}{T_{\text{new}}} = \frac{T_{\text{old}}}{(1 - f)T_{\text{old}} + (f/x)T_{\text{old}}} = \frac{1}{1 - f + f/x}$$

Amdahl's Law

 f:Anteil des Programmes, den wir verbesern können