Cálculo Numérico (521230)

Test 2 – Tema 2

Fecha: 15-May-02; 16:00-17:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & \cdots & 0 & \frac{1}{2} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 & 0 & \cdots & 0 & \frac{1}{2} \\ \hline \frac{1}{2} & 0 & \cdots & 0 & 2 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{2} & 0 & \cdots & 0 & 2 \end{bmatrix} \in \mathbb{R}^{2n \times 2n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2n \end{bmatrix} \in \mathbb{R}^{2n}.$$

Haga un programa MATLAB que genere la matriz anterior para n=10 como matriz sparse y que resuelva mediante el **método del gradiente conjugado** el sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$. Indique el nombre del archivo donde ha guardado el programa en el diskette y los valores obtenidos de las componentes x_1 y x_{2n} de la solución:

Archivo	
x_1	
x_{2n}	

[10 PTS.]

2. En un experimento se hace que una partícula uniformemente acelerada atraviese una película delgada que, se supone, no le ofrece resistencia alguna. Para ello, en distintos instantes, antes y después de que la atraviese, se fotografía la partícula y se miden sobre la fotografía las distancias de ésta a la película. Así se obtiene la siguiente tabla, donde distancias negativas significan que la partícula está de un lado de la película (antes de atravesarla) y positivas del otro (después de haberlo hecho):

t (seg)	1	2	3	4	5
d (cm)	-36.21	-22.05	-4.53	22.34	53.01

Se quiere determinar el instante en que la partícula atraviesa la película. Para ello, como la partícula está uniformemente acelerada y la película no le ofrece resistencia, la distancia (con signo) de una a otra se modela mediante la expresión:

$$d(t) \approx d_0 + v_0 t + \frac{a}{2} t^2,$$

donde d_0 y v_0 son la distancia y velocidad de la partícula en el instante t=0 y a es la aceleración uniforme de la misma.

Determine los valores de d_0 , v_0 y a a partir de la tabla dada y el instante t_a en el que la partícula atraviesa la película.

Indique el nombre del archivo donde ha guardado el programa en el diskette y los resultados obtenidos:

Archivo	
d_0	
v_0	
a	
$t_{ m a}$	

[15 PTS.]

3. Se tiene la siguiente tabla de valores de una función f(x), que se sabe que es infinitamente derivable en el intervalo [0,5]:

x	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	2.7183	3.3919	4.4452	6.1849	9.2585	15.1543

(a) Determine el valor de la función en x=0.5 mediante interpolación polinomial. Indique también el nombre del archivo donde ha guardado el programa en el diskette:

f(0.5)	
Archivo	

(b) Indique si cada una de las siguientes afirmaciones es verdadera o falsa:

Afirmación	Verdadera	Falsa
Habría sido conveniente usar splines, pues la interpolación polinomial jamás es confiable.		
No es posible usar splines para interpolar esta tabla, porque la función es infinitamente derivable.		
El resultado obtenido es bueno, porque la interpolación polinomial es confiable en la mitad de la tabla.		

[10 PTS.]