Identify Language of a Text Using Logistic Regression and Multinomial Naive Bayes

Rio Pramana, Debora, Enrico Fernandez

O1 Background Problem

Presentation Outline

O2 Proposed Solution

O3 Methodology

04 Demo

Background Problem

01

More people get access to the web, and more languages and dialects start to appear and need to be processed.

02

Language Identification (LID) is crucial to many NLP applications, such as to give the right auto-correct suggestions

Track and identify text/document containing multiple languages (multilingual)

Proposed Solution

Logistic Regression

Multinomial Naive Bayes

Papluca Language Identification (from Hugging Face)

Link:

https://huggingface.co/datasets/pap luca/languageidentification#additional-information The Language Identification dataset is a collection of 90.000 samples and contains text in 20 languages

O2 Preprocessing Data and Exploratory Data Analysis

Handling missing data

Check data cardinality

Text Preprocessing

Handling Missing Data

The initial dataset has no missing data as seen in Fig. 1.

Fig 1. Number of mising data in the dataset

Check Data Cardinality

The 'text' variable contains 68978 labels, which means there are probably 68978 unique text data as seen in Fig. 2.

labels contains 20 labels text contains 68978 labels

Fig 2. Data Cardinality

Text Preprocessing

Lower case conversion

Lowering the case of all text can help the model to interpret the set. This helps to identify the inputted text as one.

Removing unnecessary text

We are cleaning the text before we use it to train the model. We used a regex to remove unnecessary characters such as punctuations and website links. The regex we used is:

(@[A-Za-z0-9]+)|([!"#\$%&\'()*+,-./:;<=>?@[\]^_`{|}])|(\w+://\S+)|^rt|http.+?

Text Preprocessing

Encoding categorical data

We performed Encoding using LabelEncoder() from scikit-learn on the target variable (labels) as the features (text) will be encoded in the process of vectorization.

Vectorization

We implement a couple of vectorizations, especially TF-IDF which creates vectors from text which contains information on the more important words and the less important ones as well. We used either CountVectorizer or TfldfVectorizer for each model

```
03 Modelling
```

Multinomial Naive Bayes

Logistic Regression

03 Modelling

CountVectorizer()

CountVectorizer(ngram_range=(1,3), analyzer='char')

TfldfVectorizer(ngram_range=(1,3), analyzer='char')

04

Evaluation Metrics

Evaluation metrics: accuracy, precision, recall, f1score and confusion matrix.

Classificatio					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	500	
1	1.00	1.00	1.00	500	
2	1.00	1.00	1.00	500	
3	1.00	1.00	1.00	500	
4	1.00	1.00	1.00	500	
5	0.99	0.99	0.99	500	
6	1.00	1.00	1.00	500	
7	1.00	0.97	0.98	500	
8	0.99	0.99	0.99	500	
9	1.00	1.00	1.00	500	
10	0.99	0.99	0.99	500	
11	0.99	0.99	0.99	500	
12	0.99	0.98	0.98	500	
13	1.00	1.00	1.00	500	
14	0.94	1.00	0.97	500	
15	1.00	1.00	1.00	500	
16	1.00	1.00	1.00	500	
17	1.00	0.96	0.98	500	
18	1.00	1.00	1.00	500	
19	0.99	1.00	1.00	500	
accuracy			0.99	10000	
macro avg	0.99	0.99	0.99	10000	
weighted avg	0.99	0.99	0.99	10000	
Accuracy:					
Model accuracy score: 0.9936					

04

Evaluation Metrics

We compared the results of each model with each other by their accuracy shown in Table below.

TABLE VI.	Model Accuracy Comparison (In Percentage)				
Model	with TfIdfVector izer(with parameters)	with CountVectoriz er(default parameters)	with CountVecto rizer(with parameters)		
Logistic Regression	99.36%	91.84%	99.20%		
Multinomi al Naive Bayes	98.97%	92.14%	98.81%		

From this result, we decided to go with Ir_model and mnb_model_tfidf for our final application as they are the best performing model for logistic regression and multinomial naive bayes respectively.

Demo

ThankYou