Towards a Stallings-type theorem for finite groups

Jan Kurkofka

TU Freiberg

Joint work with

Johannes Carmesin, George Kontogeorgiou and Will J. Turner

end of a graph: equivalence class of 1-way infinite paths w.r.t. the relation 'not separable by finitely many vertices'

Theorem (Stallings).

TFAE for every group Γ with finite generating set S:

- ightharpoonup Cay (Γ, S) has $\geqslant 2$ ends;
- $ightharpoonup \Gamma$ decomposes as a non-trivial amalgamated free product or HNN-extension over a finite subgroup.

(This is independent of S.)

$Cay(\Gamma, S)$ has $\geqslant 2$ ends

 \Leftrightarrow Γ decomposes as a non-trivial amalgamated free product or HNN-extension over a finite subgroup.

Open problem: Extend Stallings' theorem to finite groups.

Challenges:

- 1. Ends have no finite counterparts
- 2. Key step of the proof fails for finite Γ

Hard: $\mathsf{Cay}(\Gamma, S)$ has $\geqslant 2$ ends $\Longrightarrow \Gamma$ decomposes

Hard: $Cay(\Gamma, S)$ has $\geqslant 2$ ends $\Longrightarrow \Gamma$ decomposes

Proof idea. First, find separator X of Cay (Γ, S) that crosses no separators in its Γ -orbit:

Hard: $\mathsf{Cay}(\Gamma, S)$ has $\geqslant 2$ ends $\Longrightarrow \Gamma$ decomposes

Proof idea. First, find separator X of $Cay(\Gamma, S)$ that crosses no separators in its Γ -orbit:

Then show that Γ decomposes over the stabilizer of X. (\Box)

Hard: $\mathsf{Cay}(\Gamma, S)$ has $\geqslant 2$ ends $\Longrightarrow \Gamma$ decomposes

Proof idea. First, find separator X of $Cay(\Gamma, S)$ that crosses no separators in its Γ -orbit:

Then show that Γ decomposes over the stabilizer of X. (\Box)

Challenge for finite Γ . If X exists, then Γ must be infinite:

Recent development in graph-minor theory:

local separators

Rough idea: vertex-sets that separate G <u>locally</u> in a ball of given radius r/2>0, not necessarily G itself

A *covering* of G is a surjective graph-homomorphism $p\colon C\to G$ such that for every vertex $v\in C$:

▶ p restricts to a bijection $E_C(v) \to E_G(p(v))$.

Example: universal coverings are trees.

 $\forall G \text{ and } r > 0 \text{ there is a unique } r\text{-local covering } p_r \colon G_r \to G \text{ s.t.}$

- 1. p_r restricts to an isomorphism $B_{G_r}(v,r/2) \to B_G(p_r(v),r/2)$ for every $v \in V(G_r)$, and
- 2. p_r is 'nearest' to the universal covering with (1).

r-local separators of G := projections of separators of G_r (roughly)

Ideas for challenges for finite Γ :

- 1. Use ends of r-local covering of some $Cay(\Gamma, S)$.
- 2. Use Γ -orbit of suitable r-local separator in proof.

Main result (Carmesin, Kontogeorgiou, K., Turner '24)

Let Γ be a finite group that is nilpotent of class $\leqslant n$.

Let $r \geqslant 4^{n+1}$. Then TFAE:

- The r-local covering of some Cayley graph G of Γ has $\geqslant 2$ ends that are separated by $\leqslant 2$ vertices.
- G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.
- $\Gamma \cong \mathbb{Z}_i \times \mathbb{Z}_j$ for some i > r and $j \in \{1, 2\}$.

Why nilpotent?

r-local covering has 2^{\aleph_0} ends separated by cutvertices for $r\leqslant 9$. But A_5 is simple.

Open problem (in reach): Extend main result to solvable groups.

Why only (local) separators of size ≤ 2 ?

Heavily exploited in proof...

Theorem (Tutte 60s): Every 2-connected graph is either

- ▶ 3-connected,
- has a 2-separator that crosses no other 2-separator, or
- is a cycle.

Why only (local) separators of size ≤ 2 ?

Heavily exploited in proof...

Theorem (Carmesin '20): Every r-locally 2-connected graph is

- ightharpoonup r-locally 3-connected,
- has an r-local 2-separator that crosses no other r-local 2-separators, or
- ▶ is a cycle of length $\leq r$.

Outlook

Open problem: Extension to solvable groups (and beyond).

Open problem: Extension to (local) separators of size > 2.

Big question: What types of products will occur?

Main result. Let Γ be a finite group that is nilpotent of class $\leq n$. Let $r \geqslant 4^{n+1}$. Then TFAE:

- The r-local covering of some Cayley graph G of Γ has ≥ 2 ends that are separated by ≤ 2 vertices.
- G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.
- $\Gamma \cong \mathbb{Z}_i \times \mathbb{Z}_j$ for some i > r and $j \in \{1, 2\}$.

Open: • Solvable groups. • Local (> 2)-separators.

 $arXiv:2403.07776 \longrightarrow$ Slides: jan-kurkofka.eu

Thank you!