Wektory

12 kwietnia 2012

1 Trójkąt

1.1 Okrąg opisany na trójkącie

Promień $R = \frac{a}{2\sin\alpha} = \frac{abc}{4P}$

Trójkąt równoboczny $R=\frac{a\sqrt{3}}{3}$

Trójkąt prostokątny Trójkąt oparty na średnicy jest prostokątny.

Środek Środek okręgu opisanego znajdujemy na przecięciu symetralnych boków trójkąta.

1.2 Okrąg wpisany w trójkąt

Promień $r = \frac{2P}{a+b=c}$

Trójkąt równoboczny $r = \frac{a\sqrt{3}}{6}$

Trójkąt prostokątny $r = \frac{b+a-c}{2}$

Trójkąt równoramienny Podstawa – a, ramiona – b, $r = \frac{ab - \frac{1}{2}a^2}{2\sqrt{\left(b^2 - \frac{1}{4}a^2\right)}}$

Środek Środek okręgu wpisanego znajdujemy na przecięciu dwusiecznych kątów trójkąta.

2 Czworokąt

2.1 Okrąg opisany na czworokącie

Środek Środek okręgu opisanego znajdujemy na przecięciu symetralnych boków.

1

2.1.1 Warunek konieczny do opisania okręgu

Twierdzenie Okrąg można opisać na czworokącie wtedy i tylko wtedy, gdy sumy miar przeciwległych kątów czworokąta równe są π .

Dowód \Rightarrow Z twierdzenia o miarach kątów wpisanych i środkowych opartych na tym samym łuku miara kąta $\alpha'=2\alpha$, a kąta $\beta'=2\beta$. Jednocześnie $\alpha'+\beta'=2\pi$. Zatem $\alpha+\beta=\pi$.

Dowód ← Rozważmy sobie dwa przypadki, gdy czworokąta nie da się wpisać w okrąg.

Wierzchołek wystaje poza okrąg Wtedy z twierdzenia o kątach wpisanych i środkowych opartych na tym samym łuku dostajemy, że

$$\angle ADC \leqslant \pi - 2 \angle ABC$$

, a zatem

$$\angle ADC + \angle ABC < \pi$$

Wierzchołek jest wewnątrz okręgu

2.2 Okrąg wpisany w czworokąt

Okrąg styczny do każdego z boków wielokąta.

Twierdzenie Okrąg można wpisać w czworokąt wtedy i tylko wtedy, gdy sumy długości przeciwległych boków są sobie równe.

 ${\bf Dowód}\ \ {\bf Z}$ "najmocniejszego twierdzenia geometrii" dostajemy taki rysunek, zaiste a+b+c+d=a+b+c+d.

