Tomas Mikolov et al. publish four papers on vector representations of words constituting the *word2vec* framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

2013

Tomas Mikolov et al. publish four papers on vector representations of words constituting the *word2vec* framework.

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

2013

01/2018

! January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model since no biLSTMs are used.

Tomas Mikolov et al. publish four papers on vector representations of words constituting the *word2vec* framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

I Guys from **AllenNLP** developed a bidirectionally contextual framework by proposing ELMo (Embeddings from Language **Mo**dels; **Peters et al., 2018**).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

2013

01/2018

02/2018

January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A Unidirectional contextual model since no biLSTMs are used.

Tomas Mikolov et al. publish four papers on vector representations of words constituting the *word2vec* framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

Guys from AllenNLP developed a
bidirectionally contextual framework
by proposing ELMo (Embeddings from
Language Models; Peters et al., 2018).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

2013

01/2018

02/2018

06/2018

January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A **Unidirectional contextual** model since no biLSTMs are used.

June 2018 - OpenAl GPT

Radford et al., 2018 abandon the use of LSTMs. The combine multiple Transformer decoder block with a standard language modelling objective for pre-training.

Compared to ELMo it is just unidirectionally contextual, since it uses only the decoder side of the Transformer. On the other hand it is end-to-end trainable (cf. ULMFiT) and embeddings do not have to be extracted like in the case of ELMo.

Tomas Mikolov et al. publish four papers on vector representations of words constituting the *word2vec* framework

This received very much attention as it revolutionized the way words were encoded for deep learning models in the field of NLP.

February 2018 - ELMo

Guys from AllenNLP developed a bidirectionally contextual framework by proposing ELMo (Embeddings from Language Models; Peters et al., 2018).

Embeddings from this architecture are the (weighted) combination of the intermediate-layer representations produced by the biLSTM layers.

October 2018 - BERT

BERT (**Devlin et al., 2018**) is a bidirectional contextual embedding model purely relying on Self-Attention by using multiple **Transformer encoder** blocks.

BERT (and its successors) rely on the Masked Language Modelling objective during pre-training on huge unlabelled corpora of text.

2013

01/2018

02/2018

06/2018

10/2018

January 2018 - ULMFiT

The first transfer learning architecture (Universal Language Model Fine-Tuning) was proposed by Howard and Ruder (2018).

An embedding layer at the bottom of the network was complemented by three AWD-LSTM layers (Merity et al., 2017) and a softmax layer for pre-training.

A **Unidirectional contextual** model since no biLSTMs are used.

June 2018 - OpenAl GPT

Radford et al., 2018 abandon the use of LSTMs. The combine multiple Transformer decoder block with a standard language modelling objective for pre-training.

Compared to ELMo it is just unidirectionally contextual, since it uses only the decoder side of the Transformer. On the other hand it is end-to-end trainable (cf. ULMFiT) and embeddings do not have to be extracted like in the case of ELMo.