

...an (experimental) SAR Training Course

Prepared by DLR-HR's Pol-InSAR Team

German Aerospace Center (DLR), Microwaves & Radar Institute (HR), Pol-InSAR Research Group Email: kostas.papathanassiou@dlr.de, matteo.pardini@dlr.de, islam.mansour@dlr.de

ESAMAAP EEBIOMASS

Course Content & Outline

Synthetic Apperture Radar - SAR

- 1. 1D Focusing in Range & Azimuth: Spatial resolution, SAR principle, Matched Filter, ...
- 2. 2D Focusing of a SAR image: 2D array processing, speckle, multi-looking, ...

SAR Polarimety - PolSAR

- 1. Scatering matrix: basis dependent interpretation of scattering mechanisms, ...
- 2. Covariance matrix: depolarization, eigen-vectors/-values, decomposition, ...

SAR Interferometry - InSAR

- 1. Interferogram formation: image co-registration, flat earth removal, geometric interpretation, ...
- 2. Coherence estimation: coherence estimators, decorrelation contributions, volume decorrelation,

Polarimetric SAR Interferometry - PolinSAR

- 1. Forest height inversion Part 1
- 2. Forest height inversion Part 2

SAR Tomography - TomoSAR

- 1. 3D Focusing Part 1
- 2. 3D Focusing Part 2

Course Content & Outlin

Synthetic Apperture Radar - SAR

- 1. 1D Focusing in Range & Azimuta: Spatial resolution, SAR
- 2. 2D Focusing of a SAR image: 21

SAR Polarimety - PolSAR

- 1. Scatering matrix: basis depende
- 2. Covariance matrix: depolarization

SAR Interferometry - InSAR

- 1. Interferogram formation: image
- 2. Coherence estimation: coherence

Polarimetric SAR Interferometry - P

- 1. Forest height inversion Part 1
- 2. Forest height inversion Part 2

SAR Tomography - TomoSAR

- 1. 3D Focusing Part 1
- 2. 3D Focusing Part 2

Course Format

Mon

Theoretical Background (~60min) + Introduction of Exercise(s) (~60min)

Tue

Wed

Check Point: Discussion of problems & results, questions & answers (~60min)

Thu

Fri

Closing Session: Discussion of results, questions & answers (~60min)

Sat

Sun

Course Keywords

- > Python Exercises in Jupiter Notebooks to be resolved by each participant.
- > No background- / prior-knowledge on SAR is expected but knowledge is always useful!
- > Some basic-knowledge on programming (... in Python ?) could make life easier.
- BIOMASS Mission Algorithm & Analysis Platform (MAAP)
- This is an experiment and you are part of it... this also means you can / should form it!

Course Timeline

2. 3D Focusing - Part 2

Synthetic Apperture Radar - SAR	
1. 1D Focusing in Range & Azimuth	Week 22 31.05-06.06
2. 2D Focusing of a SAR image	Week 23 07.06-12.06
SAR Polarimety - PolSAR	
1. Scatering matrix interpretation	Week 24 13.06-20.06
2. Covariance matrix interpretation	Week 25 21.06-27.06
SAR Interferometry - InSAR	
1. Interferogram formation	Week 26 28.06-04.07
2. Interferometric coherence	Week 27 05.07-11.07
Polarimetric SAR Interferometry - PolinSAR	
1. Forest height inversion – Part 1	tbd
2. Forest height inversion – Part 2	tbd
SAR Tomography - TomoSAR	
1. 3D Focusing – Part 1	tbd

tbd

Course Shedule

Mon

14:00 – 16:00 The first Monday (31.05 may be 30 min longer)

Tue

Wed

16:00 - 17:00

Thu

Fri

15:00 - 16:00

Sat

Sun

Times can change with / adapt on the development of the course. But we start with this and will see ©

...an (experimental) SAR Training Course

Prepared by DLR-HR's Pol-InSAR Team

German Aerospace Center (DLR), Microwaves & Radar Institute (HR), Pol-InSAR Research Group

Email: kostas.papathanassiou@dlr.de, matteo.pardini@dlr.de, islam.mansour@dlr.de

ESAMAAP EEBIOMASS