Machine Learning on Loan Approval Prediction

Qingyang Cheng
Brown University - Data Science Institute
DATA1030 Course Project

Date of Presentation: December 13th, 2024

Github repository: https://github.com/CQY114/data1030_fall2024_final_project.git

Overview

Loan Approval Prediction

- Binary classification
- Predict whether a new loan application will get approved
- Helps (and only helps)
 - make decisions on loan approvals
 - understand financial risk factors
 - estimate credit scores

Link to Kaggle: https://www.kaggle.com/datasets/itshappy/ps4eg-original-data-loan-approval-prediction
Original: https://www.kaggle.com/datasets/itshappy/ps4eg-original-data-loan-approval-prediction

Exploratory Data Analysis

After Elementary Data Cleaning

- # data points: 31,679
- # features: 11
 - 7 numerical
 - 3 categorical
 - 1 ordinal
- Target: loan_status (binary)
 - 1: approved
 - o: not approved
- # missing values (in 1 numerical feature): 3,047 (~9.6%)

Data Preparations

Splitting and Preprocessing

- 5 different random states
- Regular shuffle split (more detail later)
- Preprocessor
 - Numerical features standard scalers
 - Categorical features one-hot encoder
 - Binary feature identity mapping
 - Ordinal feature ordinal encoder

Overview

XGBoost
 Logistic Regression
 Support Vector Machine

automatically handles missing values ©
needs reduce-feature techniques ©

• K-Nearest Neighbor

XGBoost

- Split with ratio 8:1:1 —> (25343, 3168, 3168)
- Preprocess
- Tune parameters
 - max_depth=[2, 5, 10]
 - reg_alpha=[0.1, 0.5, 1]
 - reg_lambda=[0.1, 0.5, 1]
- Mean of test accuracy: ~93.5% (std≈0.004)
- Runtime: 38.0 sec

Feature Reduction

within each random state

- Form 2 groups no missing & missing
- Group **no missing** (28,632 points)
 - split with ratio 8:1:1 —> (22905, 2863, 2864)
 - preprocess into 19 features
- Group **missing** (3,047 points)
 - split with ratio 6:2:2 —> (1828, 609, 610)
 - preprocess into 18 features
- Tune Logistic Regressor, SVC, and KNN

Summary

	Logistic Regressor	SVC	KNN
Tune on no missing	C=[0.1, 1, 10] l1_ratio=[<mark>0.1</mark> , 0.5, 0.9]	C=[0.1 ,1, 10] gamma=[0.01, 0.1, 1]	n_neighbors=[5, 10, 20]
Tune on missing	C=[0.1, 1, 10] l1_ratio=[0.1, 0.5, 0.9]	C=[0.1 ,1, 10] gamma=[0.01, 0.1, 1]	n_neighbors=[5, 10, 20]
Mean of accuracy	~85.0%	~91.2%	~89.1%
Std of accuracy ~0.007		~0.007	~0.006
Runtime	~ 4 min	~ 20 min 😂	5.5 sec 😯

Summary

More Metrics

- Retrain XGBoost once
 - split with ratio (9, 0.5, 0.5) —> test set size = 1,584
 - preprocess, train, and predict
- Accuracy ≈ 94.3% (baseline ≈ 79.1%)
- f1 score \approx 0.85 (baseline \approx 0.35)
- fo.4 score \approx 0.92 (baseline \approx 0.23)

Some Insights

- f1 score \approx 0.85 (baseline \approx 0.35)
- fo.4 score \approx 0.92 (baseline \approx 0.23)

$$f_{\beta} = (1 + \beta^2) \frac{PR}{\beta^2 P + R}$$

beta = 0.4 —> more weight on P

Global Feature Importance

Rank	Permutation	Total Gain	Global SHAP
1	loan_grade	loan_percent_income	income
2	loan_precent_income	loan_grade	loan_grade
3	income	income	loan_percent_income

Local Feature Importance

Outlook Updated Dataset

- Use updated dataset more features
- Maybe try neural network for predictive power
- New task: regression on credit_score new insights

Link to Kaggle: https://www.kaggle.com/datasets/itshappy/ps4eg-original-data-loan-approval-prediction