Digital Signal Processing

Spring Semester 2022

Digital Systems, Part 2

Last time's learning objectives

- Explain the terms "digital system" and "digital filter"
 - Digital system: Takes as input a digital signal and does something with it (processing) to yield another signal
 - Digital filter: Type of digital system that "shapes" a signal to achieve a desired effect
- List the ways to characterize a filter
 - Via an equation for computing output given input:
 - Difference equation: y(n) = some function of x(n)
 - Via how filter responds to a "ping" (a single pulse):
 - Impulse response: h(n)
 - Via how filter responds to "tones" (single-frequency sines/cosines)
 - Frequency response: $H(e^{j\omega})$

Today's learning objectives

From today's lecture, you should be able to...

- Use convolution to filter a signal
- Characterize a filter in terms of its frequency response

How do you process a signal?

- How is a filter characterized?
 - Two ways:
 - 1. By examining how the filter changes an impulse
 - Called the filter's "impulse response"
 - By examining how the filter changes sines/cosines of various frequencies
 - Called the filter's "frequency response"
- How is a filter applied?
 - Two ways:
 - Convolution in the time domain
 - 2. Multiplication in the frequency domain

LTI systems (filters) can be characterized by how they change an impulse:

	: : : : : : : : : : : : : : : : : : :		· · · · · · · · · · · · · · · · · · ·	:		ļ <u>i</u> .		<u>.</u> i			<u> </u>	:	···· : · ·		:					<u>:</u> <u>;</u>
						<u>.</u>	<u></u> .			 :; •	T	: :	<u> </u>				:			
		: 			XC) =	= ပ်	(n)	 >	< u	-Lew		>	ч	LM	=	hlu	6	:	
				 			4	: . : 						O,	• •		4			:
				:				j				· :	i				ا			:
			: 				Ime	ulse)								res	pov	15e	
: : :							in	ulse ont		:			······································				10	im	rse puls	e
:	. :			. !.					:		:				: :					:
:										:	:		:		:					
					:			:	:		:		:						,	
(Ne		ca	LLI		n Li	1)	46	e .	il iv	MIDU	راجـد	≥ ٢	es	pon	5 e.	C	t		
											Y	: :		:						
:	the	2		ሳ \$-	fert	ί									:		:			
				1	•						:	: :								

Ex: Moving - average filter (length - 3)
$$h(n) = \frac{1}{3}\delta(n+1) + \frac{1}{3}\delta(n) + \frac{1}{3}\delta(n-1) = \frac{1}{3}\int_{-1}^{1}\int_{-1}^{1}n$$
Earlier, $y(n) = \frac{1}{3}(x(n+1) + x(n) + x(n-1))$

Ex: Moving - average filter (length - 3)
$$h(n) = \frac{1}{3}\delta(n+1) + \frac{1}{3}\delta(n) + \frac{1}{3}\delta(n-1) = \frac{\frac{1}{3}}{-1010}n$$
Earlier, $y(n) = \frac{1}{3}(x(n+1) + x(n) + x(n-1))$
Here, $y(n) = x(n) + h(n)$

$$= x(n) + \frac{1}{3}(x(n+1) + x(n) + x(n-1))$$

$$= \frac{1}{3}(x(n+1) + x(n) + x(n-1))$$

In Matlab:

Use the conv function

$$y = conv(x, h);$$

Use the filter function

```
y = filter(h, 1, x);
```

In Python:

Use the convolve function from the numpy library

```
from numpy import convolve
y = convolve(x, h)
```

Use the Ifilter function from the scipy.signal library

```
from scipy.signal import lfilter
y = lfilter(b=h, a=1, x=x)
```

How do you process a signal?

- How is a filter characterized?
 - Two ways:
 - 1. By examining how the filter changes an impulse
 - Called the filter's "impulse response"
 - 2. By examining how the filter changes sines/cosines of various frequencies
 - Called the filter's "frequency response"
- How is a filter applied?
 - Two ways:
 - 1. Convolution in the time domain
 - 2. Multiplication in the frequency domain

After-class Activity

$$y(n) = 0.3x(n) + 0.5x(n-1) + 0.3x(n-2)$$

What's the filter's impulse response?

$$h(n) = 0.3\delta(n) + 0.5\delta(n-1) + 0.3\delta(n-2)$$

• Is the filter memoryless?

No, requires storing past samples x(n-1) and x(n-2)

Is the filter causal?

Yes, does not require future samples

What type of filter is it?

Lowpass filter

Does the filter induce phase distortion?

No, it is a linear-phase filter (because h(n) is symmetric)

How do you process a signal?

- How is a filter characterized?
 - Two ways:
 - 1. By examining how the filter changes an impulse
 - Called the filter's "impulse response"
 - By examining how the filter changes sines/cosines of various frequencies
 - Called the filter's "frequency response"
- How is a filter applied?
 - Two ways:
 - 1. Convolution in the time domain
 - 2. Multiplication in the frequency domain

Frequency Response

- 1. What is frequency response (and how to compute it)?
- 2. Example: Frequency response of a movingaverage filter

Frequency Response

- 1. What is frequency response (and how to compute it)?
- 2. Example: Frequency response of a moving-average filter

Frequency response

Frequency response

$$e^{j\omega_0 n} = \cos(\omega_0 n) + j\sin(\omega_0 n)$$
$$\cos(\omega_0 n) = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n}$$
$$\sin(\omega_0 n) = \frac{1}{2j}e^{j\omega_0 n} - \frac{1}{2j}e^{-j\omega_0 n}$$

Sinusoid in, sinusoid out

Frequency response

alco-licine	messago:	Given i	mpulse r	esponse hlu)
		we can	compule	frequency
		response	H(ein)	by computing
		he DIF		
Magn: Hud	e: H(ein	2))	you by	how much H
	- 5ystem	r Changas	the hei	glat of ejman
Phase:	X Hleiw)	tells you	by how	much the
	5yotem 56	riffs the	phase (a son

Frequency Response

- 1. What is frequency response (and how to compute it)?
- 2. Example: Frequency response of a movingaverage filter

Ex: Length-3 MA filter

Ex:	Leng	16r -	3	mo	vir	3-4	ive	ago	-fille	
	h	=	<u> </u>	-ect	3 (n	5		1/3 9		
								O	1 2	-DVI
Give	n in	put	X	¹ (N)	_	ونو) M	,	ያ.ሙ)	= ?
				2 (n)				-	y 2 (n)	
			×	3 (W)	=	ون	y n)	y3 (n) = ?

$$H(e^{j\omega}) = \frac{1}{3}e^{j\omega} \sin(\frac{3}{2}\omega)$$

$$\sin(\frac{1}{2}\omega)$$

$$x(n) = e^{j0n} \qquad y(n) = ?$$

$$x(n) = e^{j0n}$$
 $y(n) = \text{Mag} e^{j0n} e^{j\text{Phase}}$

$$x(n) = e^{j0n} \qquad y(n) = 1 e^{j0n} e^{j0}$$
$$= e^{j0n}$$

$$x(n) = e^{j\frac{\pi}{3}n}$$
 $y(n) = \frac{2}{3}e^{j\frac{\pi}{3}n}e^{j(-\pi/3)}$
= $\frac{2}{3}e^{j\frac{\pi}{3}(n-1)}$

$$x(n) = e^{j\frac{2\pi}{3}n} \qquad y(n) = 0 \qquad e^{j\frac{2\pi}{3}n} e^{j\text{ who cares}}$$

$$= 0$$

<u>Summary</u>

- Impulse response: h(n)
 - How the system responds to an impulse
- Frequency response: $H(e^{j\omega})$
 - How the system responds to various frequencies $(\sin(\omega n),\cos(\omega n),e^{j\omega n})$
 - $-H(e^{j\omega}) = DTFT[h(n)]$
 - Magnitude of $H(e^{j\omega_0})$ = how system will change amplitude at frequency ω_0
 - Phase of $H(e^{j\omega_0})$ = how system will change phase (i.e., what time-shift) at frequency ω_0