RLisbonaMSDS6306_Week4_BootstrapSampling

Randy Lisbona June 4, 2016

Create the normal and exponential sample datasets

Use rnorm and rexp to create some sample datasets

Print the datasets, inlcude the first 10 records from each dataset

```
## [1] 9.375238 12.042547 9.551198 10.263642 9.609880 9.475843 10.093066 ## [8] 10.009806 11.559126 10.670639 ## [1] 10.571837 11.728115 9.008957 7.638036 10.541675 11.487561 9.351434 ## [8] 8.392174 9.047143 7.947642 ## [1] 0.36791059 0.26898470 0.68497053 1.89173806 1.75132854 0.58634140 ## [7] 4.57834219 1.26032563 0.64594186 0.02722699 ## [1] 0.4280592 4.1090919 1.1921795 0.3848168 0.5788840 0.2988509 0.7363150 ## [8] 1.3036542 0.1252027 0.9225025
```

Explore the data with Plot of the normal and exponential sample datasets

Use plot and hist to compare the datasets set x and y limits to make it easier to compare plots

Sort the records ascending and plot again. Include histograms

set x and y limits to make it easier to compare plots

Resample the datasets, compare original histogram to resampled histogram # notice that the resampled histograms closely resemble a normal distribution, illustrating the central limit theorem

[1] 10.01863

Original dataset

Bootstrap resampled

Normal Dist, n=30, mu=10, sd=1

[1] 9.571457

Normal Dist

```
## [1] "Original dataset"
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1    1 30 10.02 0.82 10.04    9.98 0.77 8.16 12.04 3.88 0.29    0.06
## se
## 1 0.15
## [1] "Resampled dataset"
## vars n mean sd median trimmed mad min max range skew kurtosis
## 1    1 1000 10.01 0.14 10.01 10.01 0.13 9.64 10.47 0.83 0.12    -0.02
## se
## 1 0
```

Original dataset

Bootstrap resampled

Normal Dist, n=10, mu=10, sd=1

Normal Dist

```
vars n mean sd median trimmed mad min max range skew kurtosis
## 1 1 10 9.57 1.44
                               9.54 1.92 7.64 11.73 4.09 0.18
                        9.2
##
      se
## 1 0.46
## [1] "Resampled dataset"
                    sd median trimmed mad min max range skew kurtosis
            n mean
                                9.58 0.47 8.32 11.05 2.73 0.11
## 1
       1 1000 9.58 0.43
                         9.58
##
      se
```

[1] 0.9492649

1 0.01

[1] "Original dataset"

Original dataset

Bootstrap resampled

Exponential, n=30, lambda = 1.0

Exponential

```
## [1] "Original dataset"
```

[1] "Resampled dataset"

vars n mean sd median trimmed mad min max range skew kurtosis se ## 1 1 1000 0.94 0.15 0.93 0.93 0.15 0.5 1.52 1.02 0.46 0.22 0

[1] 1.007956

Bootstrap resampled


```
## [1] "Original dataset"
##
                    sd median trimmed mad min max range skew kurtosis
     vars n mean
        1 10 1.01 1.16
                                 0.73 0.47 0.13 4.11
                                                      3.98 1.83
                                                                     2.26 0.37
## [1] "Resampled dataset"
##
     vars
             n mean
                      sd median trimmed mad min max range skew kurtosis
## 1
        1 1000 1.01 0.35
                           0.97
                                   0.98 0.36 0.35 2.38 2.04 0.74
                                                                       0.37
##
       se
## 1 0.01
```

Conclusion

The bootstrap method can be used to create a sample distribution from small data sets that approximates a normal sample from the original population.