SD-TSIA204 : PCA

Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Outline

ACP

Table of Contents

ACP

Définition Interprétation et récursion

ACP

On observe n points x_1, \ldots, x_n dans \mathbb{R}^p , ainsi on créé une matrice $X = [x_1, \ldots, x_n]^\top \in \mathbb{R}^{n \times p}$, n observations (lignes), p features (colonnes)

Rem: on doit recentrer les points pour qu'ils aient une moyenne nulle $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (on peut aussi mettre à l'échelle pour avoir un écart-type similaire par *feature*)

ACP

On observe n points x_1,\ldots,x_n dans \mathbb{R}^p , ainsi on créé une matrice $X=[x_1,\ldots,x_n]^{\top}\in\mathbb{R}^{n\times p}$, n observations (lignes), p features (colonnes)

Rem: on doit recentrer les points pour qu'ils aient une moyenne nulle $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (on peut aussi mettre à l'échelle pour avoir un écart-type similaire par *feature*)

ACP

On observe n points x_1,\ldots,x_n dans \mathbb{R}^p , ainsi on créé une matrice $X=[x_1,\ldots,x_n]^{\top}\in\mathbb{R}^{n\times p}$, n observations (lignes), p features (colonnes)

Rem: on doit recentrer les points pour qu'ils aient une moyenne nulle $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (on peut aussi mettre à l'échelle pour avoir un écart-type similaire par feature)

Analyse en Composante Principale, ACP (: Principal Component Analysis, PCA)

Paramètre k: nombre d'axes pour représenter un nuage de n points (x_1, \ldots, x_n) , représentés par les lignes de $X \in \mathbb{R}^{n \times p}$.

Cette méthode ${\bf compresse}$ le nuage de points de dimension p en un nuage de dimension k

L'ACP (de niveau k) consiste à effectuer la SVD de X, et à ne garder que les k axes principaux pour représenter le nuage.

$$X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top} \longrightarrow \sum_{i=1}^{k} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

On appelle axes principaux les k vecteurs $\mathbf{v}_1, \dots, \mathbf{v}_k$, et en général $k \ll p$ (e.g., k = 2, pour une visualisation planaire)

Nouvelle représentation des données

Les axes (de direction) $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^p$ sont appelés axes principaux ou axes factoriels, les nouvelles variables $\mathbf{c}_j = X\mathbf{v}_j, j = 1, \dots, p$ sont appelées composantes principales

Nouvelle représentation (ordre k) :

La matrice XV_k (avec $V_k = [\mathbf{v}_1, \dots, \mathbf{v}_k]$) est la matrice représentant les données dans la base des k premiers vecteurs propres

Reconstruction dans l'espace original (débruiter) :

- ▶ Reconstruction "parfaite" pour $\mathbf{x} \in \mathbb{R}^p$: $\mathbf{x} = \sum_{j=1}^p (\mathbf{x}^{\top} \mathbf{v}_j) \mathbf{v}_j$
- Reconstruction avec perte d'information : $\hat{\mathbf{x}} = \sum_{j=1}^k (\mathbf{x}^\top \mathbf{v}_j) \mathbf{v}_j$

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Principal direction (main axis)

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \mathbf{v}^\top X^\top X \mathbf{v} = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \|X\mathbf{v}\|^2 = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}:$ après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top X^\top X \mathbf{v} = \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \|X\mathbf{v}\|^2 = \operatorname*{arg\,max}_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}:$ après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 \mathbf{v} tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien)

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \mathbf{v}^\top X^\top X \mathbf{v} = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \|X\mathbf{v}\|^2 = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\text{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe \mathbf{v}

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K \mathbf{v} tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien) pour $k=1,\ldots,K$ faire

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \mathbf{v}^\top X^\top X \mathbf{v} = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \|X\mathbf{v}\|^2 = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg \, max}} \, \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}:$ après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe $\mathbf v$

Algorithme : Méthode de la puissance itérée

 $\begin{array}{l} \textbf{Entr\'ees}: X \in \mathbb{R}^{n \times p} \text{, it\'erations } K \\ \mathbf{v} \text{ tir\'e al\'eatoirement dans } \mathbb{R}^{n \times p} \text{ (e.g.,} u/\|u\| \text{ avec } u \text{ gaussien)} \\ \mathbf{pour } k = 1, \ldots, K \text{ faire} \\ \mid \mathbf{w} \leftarrow X \mathbf{v} \end{array}$

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \mathbf{v}^\top X^\top X \mathbf{v} = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \|X\mathbf{v}\|^2 = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

Rem: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe ${f v}$

Algorithme : Méthode de la puissance itérée

$$\begin{split} &\textbf{Entr\'ees}: X \in \mathbb{R}^{n \times p} \text{, it\'erations } K \\ &\textbf{v} \text{ tir\'e al\'eatoirement dans } \mathbb{R}^{n \times p} \text{ (e.g.,} u/\|u\| \text{ avec } u \text{ gaussien)} \\ &\textbf{pour } k = 1, \dots, K \text{ faire} \\ & & \textbf{w} \leftarrow X \textbf{v} \\ & & \textbf{v} \leftarrow X^{\top} \textbf{w} \end{split}$$

L'axe principal (normalisé) \mathbf{v}_1 est la solution du problème :

$$\mathbf{v}_1 \in \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \mathbf{v}^\top X^\top X \mathbf{v} = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \|X\mathbf{v}\|^2 = \underset{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \sum_{i=1}^n (x_i^\top \mathbf{v})^2$$

 $\underline{\mathsf{Rem}}$: après recentrage le dernier terme est la variance du nuage de points projeté sur l'axe \mathbf{v}

Algorithme : Méthode de la puissance itérée

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 \mathbf{v} tiré aléatoirement dans $\mathbb{R}^{n \times p}$ (e.g., $u/\|u\|$ avec u gaussien)

pour
$$k = 1, \dots, K$$
 faire

$$\mathbf{w} \leftarrow X\mathbf{v}$$

$$\mathbf{v} \leftarrow X^{\top} \mathbf{w}$$

$$\mathbf{v} \leftarrow \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Sorties : Axe principale (approché) $\mathbf{v}_1 = \mathbf{v}$

Premier axe principal

Maximiser la fonction objectif suivante en ${f v}$:

$$\mathcal{L}(\mathbf{v}, \lambda) = (X\mathbf{v})^{\top} (X\mathbf{v}) - \lambda (\mathbf{v}^{\top} \mathbf{v} - 1) = \mathbf{v}^{\top} X^{\top} X \mathbf{v} - \lambda (\mathbf{v}^{\top} \mathbf{v} - 1)$$

 λ : multiplicateur de Lagrange

Conditions d'optimalité du premier ordre en un extremum

$$\frac{\partial \mathcal{L}(\mathbf{v}_1, \lambda)}{\partial \mathbf{v}} = 0 \Leftrightarrow X^{\top} X \mathbf{v}_1 = \lambda \mathbf{v}_1$$

La matrice de Gram $X^{\top}X$ est diagonalisable (symétrique) donc si \mathbf{v}_1 est un extremum alors c'est un vecteur propre.

<u>Rem</u>: on normalise \mathbf{v}_1 pour que $\|\mathbf{v}_1\| = 1$, ainsi $\lambda = \mathbf{v}_1^\top X^\top X \mathbf{v}_1$ et \mathbf{v}_1 est un vecteur propre, de valeur propre λ maximale

Aspect récursif de l'ACP/SVD - Déflation

<u>Construction récursive</u> : définir les axes principaux en partant du plus important et en descendant

Par récurrence, on définit le k^e axe pour qu'il soit orthogonal aux axes principaux précédents :

$$\mathbf{v}_k = \underset{\mathbf{v} \in \mathbb{R}^p, \, \mathbf{v}^\top \mathbf{v}_1 = \dots = \mathbf{v}^\top \mathbf{v}_{k-1} = 0, \|\mathbf{v}\| = 1}{\operatorname{arg max}} \|X\mathbf{v}\|^2$$

- le premier axe maximise la variance des données projetées sur l'axe porté par ce vecteur
- le deuxième axe est celui orthogonal au premier, de variance projetée maximale
- etc.

Rem:numériquement il y a d'autres alternatives à la déflation

Autres méthodes numériques

- Algorithme de Lánczos / Espace de Krylov : utile quand plusieurs composantes / valeurs propres sont requises
- Itérations d'Arnoldi

cf.Golub et VanLoan (2013)

Rem: des techniques récentes ont permis des gains en rapidité en utilisant des méthodes aléatoires (cf.sketching), Halko et al.(2011)

Temps de calcul pour quelques solveurs SVD

Alternatives à l'ACP

D'autres méthodes de réduction de dimension peuvent existent, e.g.,t-SNE (t-distributed Stochastic Neighbor Embedding)

 $\frac{\mathsf{Exemple}}{(1797\;\mathsf{chiffres}\;\mathsf{num\'eris\'es}\;\mathsf{d'image}\;8\times8)} \ \ \mathrm{avec}\;(n,p) = (1797,64)$

Exemple sur "digits": PCA (2 axes)

Exemple sur "digits": t-SNE (2 axes)

Références I

G. H. Golub and C. F. van Loan.
 Matrix computations.
 Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.

► N. Halko, P. Martinsson, and J. A. Tropp.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Review, 53:217, 2011.