Gate 21. IN. 45

EE23BTECH11062 - V MANAS

Question:

A sinusoid $(\sqrt{2}sin(t))\mu(t)$, where $\mu(t)$ is the step input,is applied to a system with transfer function $G(s) = \frac{1}{1+s}$. The amplitude of the steady state output

Solution:

Parameter	Laplace transform
x(t)	X(s)
y(t)	Y(s)
$\sqrt{2}sin(t) \cdot \mu(t)$	$\frac{1}{1+s^2}$
$\frac{e^{-t}}{2} + \frac{1}{2}(\sin(t) - \cos(t))$	$(\frac{1}{1+s})(\frac{1}{1+s^2})$

TABLE I

TRANSFORMATION

By using laplace transform,

$$X(s) = \frac{1}{1 + s^2} \tag{1}$$

$$Y(s) = G(s) \times X(s) \tag{2}$$

$$Y(s) = (\frac{1}{1+s})(\frac{1}{1+s^2}) \tag{3}$$

By finding inverse Laplace transform of Y(s),

$$y(t) = \frac{e^{-t}}{2} + \frac{1}{2}(\sin(t) - \cos(t)) \tag{4}$$

$$y(t) = \frac{e^{-t}}{2} - \frac{1}{\sqrt{2}}(\sin(\frac{\pi}{4} - t))$$
 (5)

So at steady state(at $t \rightarrow \infty$) the amplitude of output will be $\frac{1}{\sqrt{2}}$