BE LAB TASK # 04

Name: SHAHMEER KHAN.

Student ID: 12113.

Class ID: 106293.

Topic: Parallel Resistive
Circuit.

TASK:

Observation/Calculations:

Objectives:

- A, Identify Parallel Circuits.
- B, Calculate and Measure the Resistance of a circuit.
- C, Measure the voltage Drop across each individual resistor using Digital Multimeter.
- D, Measure the current flow through each individual resistor using the Digital multi-meter.

On Next Page.

Objective A:

Identify Parallel Circuits.

Fig-2

Examine the four circuits as shown in Fig-2. Circle the identifying numbers of the parallel circuits.

Answer: D.

Objective B:

Calculate and Measure the Resistance of a circuit.

$$R_{T (CALCULATED)} = 611.1 Ohms.$$

R_{T (CALCULATED)} (Calculation);

$$1/R_T = 1/R_1 + 1/R_2 + 1/R_3$$
.

$$1/R_T = 1/1500 + 1/1500 + 1/3300.$$

$$1/R_T = 9/5500$$
 Ohms.

 $R_T = 5500/9$ Ohms.

 $R_T = 611.1 \text{ Ohms.}$

 $R_T = 0.6111 \text{ K Ohms.}$

 $R_{T (OHMMETER)} = 611.1 Ohms.$

R_{T (OHMMETER)} (Calculation);

 $R_{T (OHM'S LAW)} = 611.1 Ohms.$

R_{T (OHM'S LAW)} (Calculation);

Data:

 $R_T=??$

V=10 VDC.

 $I_T = 0.016364$

Solution:

 $V=I_T R_{T}$

 $R_T=V/I_{T_1}$

 $R_T = 10/0.016364$.

 $R_T = 611.1 \text{ Ohms.}$

• Are three Total resistance values are approximately same?

Answer: Yes.

 What factors besides resistors tolerance, would contribute to variation among the three values of R_T?

Answer:

- 1. Human Error.
- 2. Instrumental Error.
- Connect the resistor r3 into the circuit in parallel with resistors R1 and R2 as shown in Fig-3.

Answer:

Adjust the power source to 10 VDC.

• Measure the total current flow I_T in the circuit.

 $I_T = 16.36393$ mA DC.

I_T (Calculation);

 $I_T=??$

V=10 VDC.

 R_T =611.1 Ohms.

 $V = I_T R_T$.

 $I_T=V/R_T$.

 $I_T=10/611.1.$

I_T=0.016364 A DC.

I_T=16.364 mA DC.

Objective C:

Measure the voltage Drop across each individual resistor using Digital Multimeter.

$$V_{R1} = 10 \text{ VDC}.$$

$$V_{R2} = 10 \text{ VDC}.$$

$$V_{R3} = 10 \text{ VDC}.$$

- Return the voltage to zero.
- Calculate the total resistance R_T in circuit using ohm's law for resistance.

$$R_T = 611.1 \text{ Ohms.}$$

RT (OHM'S LAW) (Calculation);

Data:

 $R_T=??$

V=10 VDC.

 $I_T = 0.016364$

Solution:

 $V=I_T R_{T.}$

 $R_T=V/I_{T}$

 $R_T = 10/0.016364$.

 $R_T = 611.109 \text{ Ohms.}$

ullet List the total parallel resistance R_T of resistors R1, R2 and R3 as calculated above.

 $R_{T (CALCULATED)} = 601.11 Ohms.$

 $R_{T (OHMMETER)} = 601.1 Ohms.$

 $R_{T (OHM'S LAW)} = 601.109 Ohms.$

• Are the three resistance values approximately the same?

Answer: Yes.

Objective D:

Measure the current flow through each individual resistor using the Digital multimeter.

 $I_T = 6.667$ mA DC.

 $I_T = 6.667 \text{ mA DC}.$

 $I_T = 3.03 \text{ mA DC.}$

Link:

https://tinyurl.com/yydbpu3h