Elaborato Calcolo Numerico

Alessio Santoro (7029440) - Lorenzo Campinoti (7030227) A.A. 2022/2023

Nota: Per gli esercizi che prevedono delle *funcion* Matlab, si specifica nella relativa risposta al quesito i file tra gli alleagti a cui essa si riferisce.

1

Si considera lo sviluppo delle funzioni f(x-h), f(x+h), f(x+2h), f(x+3h):

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{4h^2}{2}f''(x) + \frac{8h^3}{6}f^{(3)}(x) + \frac{16h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+3h) = f(x) + 3hf'(x) + \frac{9h^2}{2}f''(x) + \frac{27h^3}{6}f^{(3)}(x) + \frac{81h^4}{24}f^{(4)}(x) + O(h^5)$$

Si sostiuiscono le espressioni così trovate nella parte sinistra dell'equaziome iniziale e si ottiene la seguente espressione:

$$-\frac{1}{4}\left[f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$-\frac{5}{6}\left[f(x)\right] +$$

$$+\frac{3}{2}\left[f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$-\frac{1}{2}\left[f(x) + 2hf'(x) + \frac{4h^2}{2}f''(x) + \frac{8h^3}{6}f^{(3)}(x) + \frac{16h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$+\frac{1}{12}\left[f(x) + 3hf'(x) + \frac{9h^2}{2}f''(x) + \frac{27h^3}{6}f^{(3)}(x) + \frac{81h^4}{24}f^{(4)}(x) + O(h^5)\right]$$

Si procede a moltiplicare i coefficienti di ogni espressione e poi raccogliere i termini che contengono le derivate dello stesso ordine, una volta raccolti i temrini assumono i seguenti valori che, stando all'equazione iniziale dovranno poi essere

sommati:

$$f(x)\left[-\frac{1}{4} - \frac{5}{6} + \frac{3}{2} - \frac{1}{2} + \frac{1}{12}\right] = 0\tag{1}$$

$$f'(x) \cdot h \left[\frac{1}{4} + \frac{3}{2} - \frac{1}{2} 2 + \frac{1}{12} 3 \right] = hf'(x)$$
 (2)

$$f''(x) \cdot \frac{h^2}{2} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}4 + \frac{1}{12}9 \right] = 0 \tag{3}$$

$$f^{(3)}(x) \cdot \frac{h^3}{6} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}8 + \frac{1}{12}27 \right] = 0 \tag{4}$$

$$f^{(4)}(x) \cdot \frac{h^4}{24} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}16 + \frac{1}{12}81 \right] = 0$$
 (5)

Dalle espressioni (1)...(5) e dalle proprietà degli "O-grande" di moltiplicazione per una costante segue l'asserto.

$\mathbf{2}$

La doppia precisione dello standard IEEE 754 è una rappresentazione in base binaria, in forma normalizzata (1.f) che approssima per arrotondamento e occupa 64 bit, di cui 52 dedicati alla frazione (53 alla mantissa).

Si può dunque ottenere il valore della precisione di macchina (u) dalla seguente espressione, dove: b=2 rappresenta la base, e m=53 la mantissa:

$$u = \frac{1}{2}b^{1-m} = 2^{-53}$$

Invece eps è definito dalla stessa funzione help di Matlab come la distanza tra 1.0 e il maggior valore a doppia precisione successivo disponibile, ovvero 2^{-52} . Si osserva infatti che, considerato il valore $x=1+u=1+2^{-53}\neq 1$ e sia fl la funzione di floating, allora vale che fl(x)=1, poichè $u=2^{-53}<2^{-52}=$ eps. Vi è dunque un errore di rappresentazione del valore x (ε_x), determinato dalla seguente espressione:

$$\varepsilon_x = \frac{|x - fl(x)|}{|x|} = \frac{|1 + 2^{-53} - 1|}{|1 + 2^{-53}|} = \frac{|2^{-53}|}{|1 + 2^{-53}|} < |2^{-53}| = u$$

3

La cancellazione numerica è quel fenomeno in cui, sommando in aritmetica finita due numeri quasi opposti si verifica la perdita di cifre significative. Questo è dovuto all'espressione del numero di condizionamento della somma in aritmetica finita (k) che per due valori $x \in y$ è dato da:

$$k = \frac{|x| + |y|}{|x + y|}$$

Infatti, se $x \to -y$ allora $k \to \infty$ e la somma tra x e y risulta mal condizionata.

Sia $x^* \in \mathbb{R}$ il valore di cui si ricerca la radice sesta. Per calcolarlo si definisce una funzione f(x) come segue:

$$f(x) = x^6 - x^*$$

La cui derivata è:

$$f'(x) = 6x^5$$

La funzione f(x) si annulla solo nella radice sesta di x^* , quindi avendo un'approsimazione iniziale x_0 si può applicare il metodo di Newton alla funzione f(x) per ricercarne una radice che coinciderà con il valore cercato:

$$x_{i+1} = x_i + \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^6 - x^*}{6x_i^5} = \frac{1}{6} \left[5x_i + \frac{x^*}{x_i} \right]$$

La function che implementa il metodo presentato è contenuta nel file radice.m:

```
function root = radice(x)
%
    root = radice(x)
%
%
    Questa funzione calcola la radice sesta di un valore non
    attraverso il metodo iterativo di Newton utilizzando
   solo operazioni elementari
%
    Input:
%
        x: valore di cui si vuole calcolare la radice sesta
%
    Output:
%
       root; risultato del calcolo
if(x<0), error("Value x must be not negative");end</pre>
if(x==0)
    root = 0;
    return;
end
root = x;
er = 1;
while(er \geq eps*(1+abs(x)))
    xi = (5*root+x/root^5)/6;
    er = abs(root - xi);
    root = xi;
end
return;
end
```

I dati sul confronto tra il risultato offerto dalla funzione e il valore x(1/6) sono contentuti nel file 4_table.txt:

х	radice(x)	x^(1/6)	errore
1e-10	0.021544	0.021544	3.4694e-18
1.1288e-09	0.032268	0.032268	6.9389e-18
1.2743e-08	0.048329	0.048329	6.9389e-18
1.4384e-07	0.072385	0.072385	1.3878e-17
1.6238e-06	0.10841	0.10841	4.1633e-17
1.833e-05	0.16238	0.16238	0
0.00020691	0.2432	0.2432	2.7756e-17
0.0023357	0.36425	0.36425	5.5511e-17
0.026367	0.54556	0.54556	0
0.29764	0.81711	0.81711	1.1102e-16
3.3598	1.2238	1.2238	2.2204e-16
37.927	1.833	1.833	0
428.13	2.7453	2.7453	4.4409e-16
4832.9	4.1118	4.1118	8.8818e-16
54556	6.1585	6.1585	0
6.1585e+05	9.2239	9.2239	1.7764e-15
6.9519e+06	13.815	13.815	1.7764e-15
7.8476e+07	20.691	20.691	3.5527e-15
8.8587e+08	30.99	30.99	3.5527e-15
1e+10	46.416	46.416	7.1054e-15

5

Il seguente testo è cotnenuto nel file newtonMethod.m e rappresenta il metodo di Newton:

```
function [x,n] = newtonMethod(f,df, x0, tol)
    x = newtonMethod(f,df,x0,tol, itmax)
%
   Ricerca la radice di una funzione di cui è nota la
%
   derivata a partire
%
   da un approssimazione iniziale mediante il metodo di
   Newton
%
   Input:
        f: funzione di cui si ricercano le radici
        df: derivata della funzione f
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
    Output:
%
       x: approssimazione della radice di f
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
```

```
if tol<0, error("Invalid arguments: tolerance must be non</pre>
   negative"); end
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0 - fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx == 0
        error("Value of derivative function is 0, invalid
            first approximation");
    end
    n = n+1;
    x = x0 - fx/dfx; %calcolo effettivo
end
return
end
```

Da qui in poi viene presentato il contenuto del file secantsMethod.m che rappresenta il metodo delle secanti:

```
function [x,i] = secantsMethod(f, x0, x1, tol)
%
   x = secantsMethod(f,df,x0,tol, itmax)
%
%
   Ricerca la radice di una funzione di cui è nota la
   derivata a partire
   da un approssimazione iniziale mediante il metodo delle
   secanti
%
%
   Input:
%
       f: funzione di cui si ricercano gli 0
%
       x0: prima approssimazione iniziale della radice
%
       x1: seconda approssimazione iniziale della radice
%
       tol: errore assoluto ammissibile
%
    Output:
       x: approssimazione della radice di f
%
%
        i: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non
   negative"); end
fx0 = feval(f,x0);
fx1= feval(f,x1);
```

Nel file 6_result.txt è contenuta la tabella dei risultati delle funzioni precedentemente mostrate:

Tolleranza	Ris.	Newton	Iterazoni	Newton	Ris.	secanti	Iterazioni	secanti
0.001		0.73909		8		0.7391		4
1e-06		0.73909		9		0.73909		6
1e-09		0.73909		10		0.73909		7
1e-12		0.73909		10		0.73909		7

Per entrambi i metodi, la parte più costosa computazionalmente è la valutazione funzionale, dato che tutte le altre operazioni che vengono svolte sono operazioni elementari.

Il metodo di Newton esegue due valutazioni in ogni iterazione.

Sia n il numero di iterazioni, il costo computazionale del metodo di Newton è dato da 2(n+1).

Il metodo delle secanti esegue due valutazioni iniziali e poi una per ogni iterazione, quindi il suo costo computazionale per n iterazioni è dato da n+2.

Tolleranza	Iterazioni Newton	Costo Newton	Iterazioni secanti	Costo secanti
10^{-3}	8	16	4	6
10^{-6}	9	18	6	8
10^{-9}	10	20	6	8
10^{-12}	10	20	7	9

La seguente tabella fornisce i risultati dell'utilizzo delle funzioni precedenti per calcolare la radice della funzione $f(x) = [x - \cos(x)]^5$:

tolleranza	Newton ris.	Newton iter.	Secant ris.	Secant iter.
10e-3	0.74512	18	0.73015	26
10e-6	0.73909	49	0.73908	70
10e-9	0.73909	80	0.73909	115
10e-12	0.73909	111	0.73909	159

Dopo aver sviluppato la *function* modifiedNewtonMethod.m si sono riscontrati i seguenti risultati:

tolleranza	risultato Newton modificato	numero di iterazioni
1e-3	0.73909	22
1e-6	0.73909	23
1e-9	0.73909	24
1e-12	0.73909	24

Come atteso, i metodi di Newton e delle secanti sono più lenti a causa del metodo di Newton modificato, a causa della natura multipla della radice. Infatti il metodo di Newton e quello delle secanti hanno convergenza quadratica nel caso di radici a molteplicità 1, ma solo lineare nel caso di radici multiple. La modifica che abbiamo fatto, ovvero $x_{i+1} = x_i - m \cdot \frac{f(x_i)}{f'(x_i)}$, nonostante richieda che la molteplicità m della radice sia nota, ripristina la convergenza quadratica del metodo di Newton.

I rislutati sono contentuti nel file table_7.txt e si mostra di seguito il codice della funztion del metodo di Newton modificato:

```
function [x,n] = modifiedNewtonMethod(f,df, m, x0, tol)
%
    x = newtonMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la
   derivata a partire
%
   da un approssimazione iniziale mediante il metodo di
   Newton
%
%
    Input:
%
        f: funzione di cui si ricercano le radici
%
        df: derivata della funzione f
%
        m: molteplicità (nota) della radice
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
%
        x: approssimazione della radice di f
%
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 5, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non
```

```
negative"); end
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0 - m*fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx==0
        error("Value of derivative function is 0, invalid
            first approximation");
    end
    n = n+1;
    x = x0 - m*fx/dfx; %calcolo effettivo
end
return
end
```

Il codice della function è contenuto nel file mialu.m:

```
function x = mialu(A,b)
% x = mialu(A,b)
% presa in input una matrice ed un vettore calcola la
   soluzione del
% corrispondente sistema lineare utilizzando il metodo di
   fattorizzazione
\% LU con pivoting parziale
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
% Output:
% x = soluzione del sistema lineare
[m,n] = size(A);
if m = n
    error("La matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
```

```
"non è coerente con quella della matrice");
end
p = (1:n).;
for i = 1:n
    [mi, ki] = max(abs(A(i:n,i)));
    if mi == 0
        error("la matrice è singolare");
    end
    ki = ki+i-1;
    if ki>i
        A([i,ki],:) = A([ki,i],:);
        p([i,ki]) = p([ki,i]);
    end
    A(i+1:n,i) = A(i+1:n,i)/A(i,i);
    A(i+1:n,i+1:n) = A(i+1:n,i+1:n)-A(i+1:n,i)*A(i,i+1:n);
end
x = b(p);
for i=1:n
    x(i+1:n) = x(i+1:n)-A(i+1:n,i)*x(i);
for i=n:-1:1
    x(i) = x(i)/A(i,i);
    x(1:i-1) = x(1:i-1)-A(1:i-1,i)*x(i);
end
return;
\verb"end"
```

Un esempio di utilizzo è contenuto nel file di testo ex_8_mialu.txt:

9

Il codice della function è contenuto nel file mialdl.m:

```
function x = mialdl(A,b)
%
    x = mialdl(A,b)
%
% presa in input una matrice ed un vettore calcola la
        soluzione del
% corrispondente sistema lineare utilizzando il metodo di
        fattorizzazione
% LDL
%
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
%
% Output:
% x = soluzione del sistema lineare
%
[m,n] = size(A);
if m ~= n
```

```
error("la matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
        "non è coerente con quella della matrice");
if A(1,1) <= 0
    error("la matrice non è sdp");
end
\% la matrice non è memorizzata in forma compressa! (cit.
   libro)
A(2:n,1) = A(2:n,1)/A(1,1);
for i = 2:n
    v = (A(i,1:i-1).') .* diag(A(1:i-1,1:i-1));
    A(i,i) = A(i,i) - A(i,1:i-1)*v;
    if A(i,i) <= 0</pre>
        error("la matrice non è sdp");
    A(i+1:n,i) = (A(i+1:n,i) - A(i+1:n,1:i-1) * v) / A(i,i);
end
x = b;
for i = 2:n
    x(i:n) = x(i:n) - A(i:n,i-1) * x(i-1);
end
x = x ./ diag(A);
for i = n-1:-1:1
    x(1:i) = x(1:i) - A(i+1,1:i) .* x(i+1);
end
end
```

Un esempio di utilizzo è contenuto nel file di testo 9_mialdl.txt:

```
% si genera una matice quadrata casuale
A = randi([-8,8],4)
A =
     0
           0
                  2
                       -3
    -1
           0
                 -2
                        7
           5
                  5
                        6
    -1
    -3
           5
                  1
                        1
\% si generano i valori di una diagonale
d = randi([5,30],4,1)
d =
    21
    20
    10
    12
```

% si costruisce una matrice adeguata per la fattorizzazione LDL

```
A = tril(A,-1)+triu(A',1)+diag(d)
A =
    21
          -1
                -1
                      -3
    -1
          20
                5
                      5
    -1
           5
                10
                      1
           5
    -3
                 1
                      12
\% Si genera la soluzione, da confrontare dopo
x = randi([-8,8],4,1)
x =
     0
    -5
     6
    -5
% si calcolano i termini noti
b = A*x
b =
    14
   -95
    30
   -79
\% si usa la funzione per calcolare la soluzione
mialdl(A,b)
ans =
    0.0000
   -5.0000
    6.0000
   -5.0000
A = randi([-8,8],4)
A =
    -7
           7
                -4
                      0
                -1
    -4
           4
                      -5
     5
                 8
                       0
```

-8

1

d = randi([5,30],4,1)

1

```
d =
    22
    15
    14
    30
A = tril(A,-1)+triu(A',1)+diag(d)
A =
    22
          -4
                 5
                       -8
    -4
          15
                 0
                        1
     5
           0
                 14
                       1
    -8
           1
                 1
                       30
x = randi([-8,8],4,1)
    -8
     7
     7
     5
b = A*x
b =
  -209
   142
    63
   228
mialdl(A,b)
ans =
   -8.0000
    7.0000
    7.0000
    5.0000
```

La funzione è nel file ${\tt functions/miaqr.m}$, mostrato di seguito insieme ad un esempio in cui viene applicato:

```
function [x,nr] = miaqr(A,b)
    [x, nr] = miaqr(A,b)
%
%
   Calcola la soluzione del sistema lineare
   sovradimensioanto Ax = b
   nel senso dei minimi quadrati e restituisce la norma del
%
   corrispondente vettore residuo
%
%
   Input:
%
        A: matrice dei coefficienti del sistema
%
        b: vettore dei termini noti
       x: soluzione nel senso dei minimi quadrati
       nr: norma del vettore resiudo
[m,n] = size(A);
if(n>=m), errror("Il sistema non è sovradimensionato"); end
if(m~=length(b)), error("Le dimensioni della matrice e del
   vettore " + ...
        "non sono compatibili"); end
for i=1:n
    alfa = norm( A(i:m,i));
    if alfa==0,error("La matrice A non ha rango massimo");
    if(A(i,i) \ge 0), alfa = -alfa; end
    v = A(i,i) - alfa;
    A(i,i) = alfa;
    A(i+1:m,i) = A(i+1:m,i)/v;
    beta = -v/alfa;
    A(i:m,i+1:n) = A(i:m,i+1:n)-(beta*[1;A(i+1:m,i)])*...
        ([1; A(i+1:m,i)] '*A(i:m,i+1:n));
end
for i=1:n
   v = [1; A(i+1:m,i)];
   beta = 2/(v'*v);
    b(i:end) = b(i:end) - (beta*(v'*b(i:end)))*v;
end
for i=n:-1:1
   b(i) = b(i)/A(i,i);
   b(1:i-1) = b(1:i-1)-A(1:i-1,i)*b(i);
end
x = b(1:n);
nr = norm(b(n+1:m));
return ;
end
```

```
>> A = randi([-20,20],7,4)

A =

-6     6     -13     -1
13     -2     -5     -3
```

```
-20
     2
          5
              -2
-19
     -8
         11
              -8
-14
     10
         -17
               0
 6
    -13
          18
               0
10
     8
          11
               13
```

>> b = randi([-20,20],7,1)

b =

12

6

-5

13

1 -6

18

>> [x,nr] = miaqr(A,b)

x =

0.5023

2.5325

1.1667

-2.1687

nr =

22.8572

>> A\b

ans =

0.5023

2.5325

1.1667

-2.1687

>> A = randi([-20,20],7,4)

A =

```
-8 -11
        20
            4
-1
   -3
        -3
             9
```

>> b = randi([-20,20],7,1)

b =

-11

-16

-8 -7 -3 0

-17

>> [x,nr] = miaqr(A,b)

x =

-1.2544

0.2774

-0.6423

-0.2978

nr =

22.2472

>> A\b

ans =

-1.2544

0.2774

-0.6423

-0.2978

>>

Di seguito un esempio di applicazione di mialu per risolvere i sistemi generati da linsis:

```
[A1,A2,b1,b2]=linsis(5)
A1 =
    0.0659
             -0.4423
                        0.2073
                                  -0.5127
                                              0.3531
             -0.2493
    0.7016
                        -0.1158
                                   0.1664
                                             -0.0385
   -0.1391
             -0.4272
                        0.4168
                                   0.2575
                                             -0.0030
    0.2598
             -0.4140
                        -0.0020
                                  -0.2632
                                             -0.6674
    0.0654
             -0.2921
                        -0.6037
                                  -0.1323
                                              0.5153
A2 =
   -0.2172
             -0.0838
                        0.2868
                                  -0.3463
                                              0.3624
    0.3869
              0.1493
                        -0.0275
                                   0.3514
                                             -0.0281
             -0.3713
   -0.1833
                        0.4292
                                   0.2834
                                             -0.0016
             -0.0121
                                             -0.6569
   -0.0576
                        0.0871
                                  -0.0767
```

-0.5420

-0.0032

0.5225

- b1 =
 - -0.3287

-0.1544

-0.0139

- 0.4645
- 0.1050
- -1.0869
- -0.4475
- b2 =
 - 0.0019
 - 0.8320
 - 0.1565
 - -0.7163
 - -0.1910

mialu(A1,b1)

- ans =
 - 1.0000
 - 1.0000
 - 1.0000
 - 1.0000

1.0000

mialu(A2,b2)

ans =

1.0000

1.0000

1.0000

1.0000

1.0000

Il risltato sembra essere corretto, ma se si sottrae le soluzioni ad un vettore composto di soli 1, si può osservare l'errore nella risoluzione.

Nel sistema $A_1x=b_1$ l'errore è nell'ordine di 10^{-15} mentre nel secondo sistema $A_2x=b_2$ l'ordine di errore è di 10^{-6} .

L'errore molto maggiore nel secondo sistema è dovuto al mal condizionamento della matrice dei coefficienti.

mialu(A1,b1)-[1 1 1 1 1]'

ans =

1.0e-15 *

0 -0.1110 0 0 0.2220

mialu(A2,b2)-[1 1 1 1 1]'

ans =

1.0e-06 *

0.3523

-0.4462

-0.0989

-0.2071

-0.0116

>> cond(A1)

ans =

2.5000

>> cond(A2)

```
ans =
    1.0000e+10
>> cond(b1)
ans =
    1
>> cond(b2)
ans =
    1
>>
```

Similemente a quanto si è ottenuto per l'esercizio precedente, si può osservare come i risultati ottenuti dalla funzione miald1 siano accurati con un oridne di grandezza dell'errore di 10^{-15} per il primo sistema e 10^{-6} per il secondo. Anche in questo caso la differenza è dovuta alla differenza del condizionamento delle due matrici A_1 e A_2 .

```
[A1,A2,b1,b2] = linsis(5,1)
A1 =
    0.7625
              0.0003
                         0.1094
                                    0.0730
                                               0.1782
    0.0003
               0.7442
                                               0.1085
                         0.0084
                                    0.1772
               0.0084
                                              -0.1291
    0.1094
                         0.6419
                                    0.0332
    0.0730
               0.1772
                         0.0332
                                    0.8375
                                              -0.1198
    0.1782
               0.1085
                        -0.1291
                                   -0.1198
                                               0.8139
A2 =
    0.5197
              -0.2696
                         0.0716
                                   -0.1992
                                              -0.0102
   -0.2696
              0.4441
                        -0.0337
                                   -0.1254
                                              -0.1010
    0.0716
              -0.0337
                         0.6360
                                   -0.0092
                                              -0.1585
   -0.1992
             -0.1254
                        -0.0092
                                    0.5324
                                              -0.3310
   -0.0102
             -0.1010
                                   -0.3310
                                               0.6677
                        -0.1585
```

b1 =

1.1234

1.0385

```
0.6638
```

1.0011

0.8517

b2 =

0.1124

-0.0855

0.5063

-0.1323

0.0670

>> x1 = mialdl(A1,b1)

x1 =

1.0000

1.0000

1.0000

1.0000

1.0000

>> x2 = mialdl(A2,b2)

x2 =

1.0000

1.0000

1.0000

1.0000

1.0000

>> x1 - [1 1 1 1 1]'

ans =

1.0e-15 *

0

-0.4441

-0.1110

-0.1110 0

>> x2 - [1 1 1 1 1],

ans =

1.0e-06 *

```
0.3138
```

0.3488

0.0489

0.3518

0.2435

>>

13

Di seguito si mostra come sono stati assegnati i valori richiesti, le soluzioni trovate con la funzione \mathtt{miaqr} sono confrontate con il risultato dell'operatore \backslash .

```
>> A = [ 1 3 2; 3 5 4; 5 7 6; 3 6 4; 1 4 2 ];
>> b = [ 15 28 41 33 22 ]';
>> D = diag(1:5);
>> D1 = diag(pi*[1 1 1 1 1])
D1 =
                                         0
    3.1416
                    0
                              0
                                                    0
               3.1416
                              0
                                         0
                                                    0
         0
                         3.1416
                                         0
                                                    0
                    0
         0
                    0
                              0
                                    3.1416
                                                    0
         0
                    0
                              0
                                         0
                                              3.1416
>> [x,nr] = miaqr(A,b)
```

x =

3.0000

5.8000

-2.5000

nr =

1.2649

>> A\b

ans =

3.0000

5.8000

-2.5000

>> [x,nr] = miaqr(D*A,D*b)

```
x =
   -0.6026
    4.7017
    1.7584
nr =
    3.7352
>> (D*A)\(D*b)
ans =
   -0.6026
    4.7017
    1.7584
>> [x,nr] = miaqr(D1*A,D1*b)
x =
    3.0000
    5.8000
   -2.5000
nr =
    3.9738
>> (D1*A)\(D1*b)
ans =
    3.0000
    5.8000
   -2.5000
```

Si osserva come le soluzioni siano coerenti, ma la norma del vettore residuo aumenta, negli ultimi due sistemi è quasi il triplo che nel primo.

La funzione è contenuta nel file newton.m nella cartella 14.

```
function [x,nit] = newton(fun, jacobian, x0, tol, maxit)
%
    [x,nit] = newton(fun, jacobian, x0, tol, maxit)
%
%
    Utilizza il metodo di Newton per risolvere sistemi di
   equazioni
    nonlineari
%
%
    Input:
%
        fun: vettore delle funzioni del sistema
%
        jacobian: matrice jacobiana di fun
%
        x0: approssimazione iniziale
%
        tol: tolleranza aspettata
%
        maxit: numero massimo di iterazioni ammesso
%
    Output:
%
        x: approssimazione della funzione
        nit: numero delle iterazioni del metodo
if(nargin<4), tol = eps;</pre>
if(nargin<5), maxit = 1e3; end</pre>
              error("La tolleranza deve essere positiva");
if(tol<=0),
             end
if(maxit <= 0), error("Il numero di iterazioni deve essere</pre>
   positivo");end
x = x0;
nit = 0;
while (nit < \max it \& \& norm(x-x0) \le tol * (1 + norm(x0)))
    x0 = x;
    fx0 = feval(fun, x0);
    jx0 = feval(jacobian,x0);
    x = x0 - fx0/jx0;
end
if(nit == maxit)
    disp("Il numero di iterazioni specificato non ha
        permesso " + ...
        "di raggiungere la tolleranza desiderata");
end
return;
end
```



```
function 1 = lagrange(x,y,xq)
% 1 = lagrange(x,y,xq)
   Implementa in modo vettoriale la forma di lagrange del
   polinomio
   interpolante di una funzione
%
%
   Input:
%
       x: ascisse di interpolazione
%
        y: valori della funzione sulle ascisse di
   \verb"interpolazione"
       xq: punti in cui calcolare il polinomio
%
%
    Output:
        1: polinomio di lagrange calcolato
%
n = length(x);
if n ~= length(y)
    error("il numero di punti sulle ascisse x non è coerente
        con" + ...
        " il numero di quelli sulle ordinate");
end
if n ~= length(unique(x))
    error("ad una stessa ascissa non possono corrispondere
       più punti")
1 = zeros(size(xq));
for k = 1:n
    Lkn = ones(size(xq));
    for j = 1:n
        if k = j
            Lkn = Lkn .* ((xq - x(j))/(x(k) - x(j)));
        \verb"end"
    end
    l = l + y(k)*Lkn;
end
return;
end
```

```
function l = newton(x,y,xq)
% Implementa in modo vettoriale, la forma di Newton del
   polinomio
% interpolante una funzione
%
% Input:
% x: vettore contenente le ascisse di interpolazione
% y: valori assunti dalla funzione sulle ascisse di
% interpolazione
```

```
xq: punti su cui si vuole calcolare la funzione
%
    Output:
%
        1: approsimazione dei valori della funzione secondo
%
            il polinomio interpolante
n = length(x);
if n ~= length(y)
    error("il numero di punti sulle ascisse x non è coerente
        con il numero" + ...
        " di quelli sulle ordinate");
end
if n ~= length(unique(x))
    error ("ad una stessa ascissa non possono corrispondere
       più punti")
end
f = y; %differenze divise
for k = 1:n-1
    for r = n:-1:k+1
        f(r) = (f(r) - f(r-1)) ./ (x(r) - x(r-k));
    end
end
l = ones(size(xq)) * f(n);
for k = n-1:-1:1
    1 = 1 .* (xq - x(k)) + f(k);
end
end
```

```
function yy = hermite( xi, fi, f1i, xx )
   Implementa in modo vettoriale il polinomio interpolante
   di Hermite
%
    Input:
%
                vettore delle ascisse di interpolazione
       xi:
%
                valori assunti dalla funzione sulle ascisse
%
                di interpolazione
%
       f1i:
               valori assunti dalla derivata della funzione
    sulle ascisse
                di interpolazione
%
                vettore di ascisse su cui si vuole calcolare
       xx:
    il polinomio
%
    Output:
%
                valori assunti dal polinomio sui punti
        уу:
   specificati
n = length(xi);
if n ~= length(fi)
    error("il numero di punti sulle ascisse xi " + ...
        "non è coerente con il numero di quelli sulle
            ordinate fi");
end
```

```
if n ~= length(f1i)
    error("il numero di punti sulle ascisse xi non è
       coerente" + ...
        " con il numero di quelli sulle ordinate fi"); % ---
if n ~= length(unique(xi))
    error ("le ascisse di interpolazione non sono tutte
       distinte");
end
x = repelem(xi, 2);
%differenze divise
f = zeros(2 * n, 1);
f(1:2:end) = fi;
f(2:2:end) = f1i;
% algortimo 4.2 libro
n = length(f)/2-1;
for i = (2*n-1):-2:3
    f(i) = (f(i)-f(i-2))/(x(i)-x(i-1));
end
for j = 2:2*n-1
    for i = (2*n+2):-1:j+1
        f(i) = (f(i)-f(i-1))/(x(i)-x(i-j));
end
%algoritmo di horner
n = length(f)-1;
yy = f(n+1)*ones(size(xx));
for i = n:-1:1
    yy = yy .* (xx-x(i))+f(i);
end
end
```

```
function x = chebyshev(n,a,b)
   Genera n+1 coordinate di Chebyschev nell'intervallo [a,b
%
   1
%
%
   Input:
       n: numero di coordinate da generare (n+1)
%
        a: estremo inferiore dell'intervallo
%
       b: estremo superiore dell'intervallpo
%
    Output:
%
       x: vettore contenente le coordinate
if n <= 0
    error ("il grado del polinomio deve essere maggiore di
       zero");
end
if a >= b
```

Il codice della function è contenuto nel file lebesgue.m:

```
function 11 = lebesgue(a, b, nn, type)
%
if a >= b
    error("l'estremo inferiore dell' intervallo non può
        essere " + ...
        "minore o coincidente con quello maggiore");
end
n = length(nn);
11 = ones(length(n));
xq = linspace(a, b, 10001);
for i = 1:n
    if type == 0
        x = linspace(a, b, nn(i)+1);
    elseif type == 1
        x = chebyshev(nn(i), a, b);
    else
        error ("il valore di type può essere soltanto 0 o 1")
    end
    L = zeros(size(xq));
    m = length(x);
    for k = 1:m
        Lkn = ones(size(xq));
        for j = 1:m
            if k = j
                Lkn = Lkn .* ((xq - x(j))/(x(k) - x(j)));
        end
        L = L + abs(Lkn);
    ll(i) = max(abs(L));
end
end
```

Si riportano inoltre i grafici dei risultati ottenuti per l'approssimazione della costante di Lebesgue su due intervalli distinti, si nota che il risultato è unica-

Approsimazione della costante di Lebesgue

mente dipendente dalla scelta delle ascisse che operiamo e non dagli intervalli considerati.

Grafici in scala semilogaritmica degli errori di interpolazione commessi dai vari algoritmi di interpolazione.


```
function yy = myspline(xi, fi, xx, type )
    Se type è uguale a O allora calcola la spline cubica
%
   interpolante
   naturale i punti (xi(i),fi(i)), mentre se type è diverso
%
    da O allora
%
   calcola quella not-a-knot (default)
%
%
    Input:
                vettore delle ascisse di interpolazione
%
       xi:
%
        fi:
                valori assunti dalla funzione nei rispettivi
    punti xi
       xx:
                ascisse su cui deve essere calcolata la
   spline
%
                valore che stabilisce il tipo di spline da
       type:
   creare
%
   Output:
                valori assunti dalla spline nei rispettivi
%
       yy:
   punti xx
if nargin < 3, error("argomenti essenziali assenti"); end</pre>
if nargin == 3, type = 1; end
if size(xi) ~= size(fi), error("Le quantità di dati forniti
   per " + ...
        "l'interpolazione non corrispondono"); end
if length(xi) ~= length(unique(xi)), error("Le ascisse di "
        "interpolazione devono essere tutte distinte tra
           loro");end
n = length(xi)-1;
h = zeros(1,n);
for i=1:n, h(i)=xi(i+1)-xi(i);end
phi = zeros(1,n);
xhi = zeros(1,n);
for i=1:n-1
    phi(i) = h(i)/(h(i)+h(i+1));
    xhi(i) = h(i+1)/(h(i)+h(i+1));
end
f = fi ; %differenze divise
for j = 1 : 2
    for i = n+1 : -1 : j +1
        f(i) = (f(i)-f(i-1))/(xi(i)-xi(i-j));
    end
end
f = f (3: n+1); % Calcolo le differenze divise
%definizione diagonali del sistema tridiagonale per trovare
   m0...mn
if type==0 %spline naturale
```

```
a = 2*ones(n-1,1); %size n-1
   b = xhi(1:n-2);
                        % n-2
   c = phi(2:n-1);
                         % n-2
   d = 6*f;
else %spline not-a-knot
    a = [1 \ 2-phi(1) \ 2*ones(1,n-3) \ 2-xhi(n-1) \ 1]; %size 2+n
       -3+2=n+1
    b = [0 xhi(i)-phi(i) xhi(2:n-1)];
                                                 % 2+n-2=n
    c = [phi(1:n-2) phi(n-1)-xhi(n-1) 0];
                                                 n-2+2 = n
    d = 6*[f(1) f f(end)];
end
%risoluzione sistema tridiagonale
dim = length(d);
m = zeros(dim, 1);
for i = 2:dim
    w = c(i-1)/a(i-1);
    a(i) = a(i) - w*b(i-1);
    d(i) = d(i) - w*d(i-1);
end
m(end) = d(end)/a(end);
for i = (dim-1):(-1):1
   m(i) = (d(i)-b(i)*m(i+1))/a(i);
if type == 0 %spline cubica
   m = [O m' O];
else % spline not-a-knot
   m(1) = m(1)-m(2)-m(3);
    m(n+1) = m(n+1)-m(n)-m(n-1);
end
yy = zeros(length(xx),1) ;
for j = 1:length(xx)
    for i = 2:length(xi)
        if ((xx(j)>=xi(i-1) && xx(j)<=xi(i)) || xx(j)<xi(1))
            r = fi(i-1)-h(i-1)^2/6*m(i-1);
            q = (fi(i)-fi(i-1))/h(i-1)-h(i-1)/6*(m(i)-m(i-1))
               ) ;
            yy(j) = ((xx(j)-xi(i-1))^3*m(i)+ ...
                (xi(i)-xx(j))^3*m(i-1))/(6*h(i-1))+...
                q*(xx(j)-xi(i-1))+...
                r;
            break
        end
    end
end
return;
end
```


Si hanno 1000 coppie di dati (x_i, y_i) che rappresentano un fenomeno fisico descritto da una potenza $y = x^n$. Si sa tuttavia che le coppie sono condizionate da un errore la cui distribuzione segue una gaussiana con media 0 e varianza "piccola". Si vogliono determinare i coefficienti a_1, \ldots, a_m ignoti di un polinomio p(x) di grado m che approssima i dati affetti da errore.

$$p(x) = \sum_{k=0}^{m} a_k x^k$$

$$p(x_i) = y_i, i = 1, \dots, 1000$$

Il vettore dei valori attesi è dato dal prodotto matrice-vettore $V \cdot a$:

$$V = \begin{pmatrix} x_0^0 & x_0^1 & \dots & x_0^m \\ x_1^0 & x_1^1 & \dots & x_1^m \\ \vdots & \vdots & \ddots & \vdots \\ x_m^0 & x_m^1 & \dots & x_m^m \end{pmatrix}, a = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{pmatrix},$$

La matrice V ha rango massimo ed è fattorizzabile QR e quindi il sistema ha

soluzione.

Nota: Durante il calcolo si usa una versione diversa dell'algoritmo di Hormer per il calcolo di un polinomio. Il ciclo dell'algoritmo avviene in modo ascendente invece che discnedente perchè la funzione polyfit restituisce i coefficienti del polinomio secondo la potenza decrescente.

```
xi_yi = load("data.mat").data;
m_max = 100;
xi = xi_yi(:,1);
yi = xi_yi(:,2);
er = zeros(1,m_max);
for m = 1:m_max
    px = polyfit(xi,yi,m);
    \% hormer algorithm with reverse loop
    y = px(1);
    for i = 2:length(px)
        y = y .* xi + px(i);
    end
    er(m) = norm(xi.^m - y);
end
% view
figure;
semilogy(1:m_max, er, '-');
xlabel('Least-square polynomial degree, m');
ylabel('Error');
grid on;
```

Questo script importa i dati (x_i,y_i) dal file data.mat e li salva in due diversi vettori. Viene scelto un valore $(\mathtt{m_max})$ che viene utilizzato come massimo grado ammissibile per il polinomio di approssimazione ai minimi quadrati. All'interno di un ciclo, per ogni m viene utilizzata la funzione polyfit per calcolare i coefficenti di p(x) di grado m e viene salvata nel vettore er l'errore trovato. Tutti gli errori vengono mostrati graficati nella figura sottostante, che mostra come il polionomio che meglio approssima i dati (x_i,y_i) è quello di grado m=5.

