Функционални редове

1. Ред $\sum_{n=0}^{\infty} f_n(x)$, чиито членове са функции, се нарича функционален ред.

Казваме, че редът е сходящ в множеството D, ако за всяко фиксирано $x \in D$, редицата $S_k(x) = \sum_{n=0}^k f_n(x)$ е сходяща и $\lim_{k \to \infty} S_k(x) = S(x) = \sum_{n=0}^\infty f_n(x)$.

Може да се случи всички членове на реда да са непрекъснати или диференцируеми, а функцията S(x) да не е непрекъсната или диференцируема.

- 2. Ако редицата $S_k(x)$ е равномерно сходяща в D, казваме че редът е равномерно сходящ в D.
- 3. **Критерий на Вайерщрас.** Ако съществува сходящ ред $\sum_{n=0}^{\infty} a_n$, такъв че в D $|f_n(x)| \le a_n$ за всяко n и за всяко $x \in D$, то редът е равномерно сходящ.

Да отбележим, че критерия на Вайерщрас установява абсолютна сходимост при всяко фиксирано x.

4. Да разгледаме ред от вида $\sum_{n=0}^{\infty} u_n(x).v_n(x)$

Критерий на Дирихле. Ако

- съществува число A, такова че $\left|\sum_{n=0}^k u_n(x)\right| \leq A$ за всяко κ и за всяко $x \in D$
- редицата $v_n(x)$ е монотонна за всяко фиксирано x
- редицата $v_n(x)$ клони **равномерно** към 0.

то редът $\sum_{n=0}^{\infty} u_n(x).v_n(x)$ е равномерно сходящ.

Критерий на Абел. Ако

- съществува число A, такова че $|u_n(x)| \le A$ за всяко k и $x \in D$
- редицата $u_n(x)$ е монотонна за всяко фиксирано $x \in D$
- редът $\sum_{n=0}^{\infty} v_n(x)$ е равномерно сходящ,
- то $\sum_{n=0}^{\infty} u_n(x).v_n(x)$ е равномерно сходящ.

Задача 1. Да се изследват за равномерна сходимост редовете

а)
$$\sum_{n=0}^{\infty} x^n (1-x^n)$$
 при $x \in [0;1];$ б) $\sum_{n=0}^{\infty} x^n (1-x^n)$ при $x \in \left[0;\frac{1}{2}\right];$

в)
$$\sum_{n=0}^{\infty} \frac{\sin nx}{2^n}, x \in \mathbb{R};$$
 в) $\sum_{n=0}^{\infty} \frac{1}{2^{n-1}\sqrt{1+nx}}$ при $0 \le x < \infty$.

Решение. a) Очевидно S(0) = S(1) = 0

При 0 < x < 1имаме сума на две геометрични прогресии

$$\sum_{n=0}^{\infty} x^n (1-x^n) = \sum_{n=0}^{\infty} x^n - \sum_{n=0}^{\infty} x^n x^n = \sum_{n=0}^{\infty} x^n - \sum_{n=0}^{\infty} (x^2)^n = \frac{1}{1-x} - \frac{1}{1-x^2} = \frac{x}{1-x^2}.$$

Редът
$$\sum_{n=0}^{\infty} x^n (1-x^n)$$
 е сходящ в $x \in [0;1]$ и $S(x) = \begin{cases} \frac{x}{1-x^2} & \text{при } 0 \leq x < 1 \\ 0 & \text{при } x = 1 \end{cases}$

Граничната функция не е непрекъсната и следователно редът не е равномерно сходящ.

б) Да разгледаме функцията $\varphi(x) = x^n (1 - x^n) = x^n - x^{2n}$ в интервала $\left[0; \frac{1}{2}\right]$.

Производната $\varphi'(x) = nx^{n-1} - 2nx^{2n-1} = 2nx^{n-1}(\frac{1}{2} - x^n)$ се анулира при $x_0 = \sqrt[n]{\frac{1}{2}}$.

Редицата $\sqrt[n]{\frac{1}{2}}$ клони към 1. Следователно съществува n_0 , такова че при $n\!>\!n_0$, е изпълнено $\sqrt[n]{\frac{1}{2}}\!>\!\frac{1}{2}$.

Ще разгледаме редът $\sum_{n=k_0}^{\infty} x^n (1-x^n)$ (редът се различава от дадения ред по краен броя събираеми — без функциите с индекс по-малък от n_0). Ясно е, че ако той е равномерно сходящ, то и даденият ред ще бъде равномерно сходящ.

Тъй като производната $\varphi'(x) = 2nx^{n-1}(\frac{1}{2}-x^n) > 0$ при $0 \le x \le \frac{1}{2} < \sqrt[n]{\frac{1}{2}}$, то най-

голямата стойност на $\varphi(x) = x^n (1-x^n) e \varphi(\frac{1}{2}) = \frac{1}{2^n} - \frac{1}{2^{2n}}$ или

$$0 \le x^n (1-x^{2n}) \le \frac{1}{2^n} - \frac{1}{2^{2n}}$$
 за всяко $n > n_0$ и всяко $x \in \left[0; \frac{1}{2}\right]$.

Редът $\sum_{n=k_0}^{\infty} (\frac{1}{2^n} - \frac{1}{2^{2n}})$ е сходящ като сума на две геометрични прогресии с частно по-малко от 1.

Съгласно критерия на Вайерщрас редът е равномерно сходящ.

в) Имаме $\left|\frac{\sin nx}{2^n}\right| \le \frac{1}{2^n}$ за всяко $n \in \mathbb{N}$ и всяко $x \in \mathbb{R}$.

Редът $\sum_{n=0}^{\infty} \frac{1}{2^n}$ е сходящ (геометрична прогресия с частно $\frac{1}{2}$).

Съгласно критерия на Вайерщрас редът $\sum_{n=0}^{\infty} \frac{\sin nx}{2^n}$ е равномерно сходящ в $\mathbb R$.

$$\Gamma$$
) $\sum_{n=0}^{\infty} \frac{1}{2^{n-1}\sqrt{1+nx}}$ при $0 \le x < \infty$.

При фиксирано n функцията $f_n(x) = \frac{1}{\sqrt{1+nx}}$ е намаляваща при $0 \le x < \infty$

(функцията $\sqrt{1+nx} \ge 0$ е растяща при $x \ge 0$) и следователно

$$0 \le f_n(x) = \frac{1}{\sqrt{1+nx}} \le f_n(0) = 1$$
.

Тогава $\left| \frac{1}{2^{n-1}\sqrt{1+nx}} \right| \le \frac{1}{2^{n-1}}$ за всяко $n \in \mathbb{N}$ и всяко $x \in [0,\infty)$.

Съгласно критерия на Вайерщрас редът $\sum_{n=0}^{\infty} \frac{1}{2^{n-1}\sqrt{1+nx}}$ е равномерно сходящ в $[0;\infty)$.

Задача 2. Да се изследва за равномерна сходимост реда $\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)}$

- а) в интервала $(0; \infty)$;
- б) в интервала $[1;\infty)$.

Решение. Тази задача ще решим като използваме дефиницията на равномерно сходящ ред. За да намерим k-тата парциална сума ще разложим дробта $\frac{1}{\lceil (t-1)x+1 \rceil (tx+1)} \ (t \ e \ променлива, \ a \ x - константа):$

$$\frac{x}{[(t-1)x+1](tx+1)} = \frac{A}{(t-1)x+1} - \frac{B}{tx+1} \quad \Rightarrow \quad x = A(tx+1) + B(tx-x+1)$$

При
$$t = -\frac{1}{x}$$
 имаме $x = B(-x)$ или $B = -1$.

При
$$t = \frac{x-1}{x}$$
 имаме $x = A[-(1-x)+1]$ \Rightarrow $x = Ax$ \Rightarrow $A = 1$.

Така
$$\frac{x}{[(t-1)x+1](tx+1)} = \frac{1}{(t-1)x+1} - \frac{1}{tx+1}$$
.

Пресмятаме парциалната сума

$$\sum_{n=1}^{k} \frac{x}{[(n-1)x+1](nx+1)} = \frac{x}{[(1-1)x+1](1.x+1)} + \frac{x}{[(2-1)x+1](2x+1)} + \dots + \frac{x}{[(k-1)x+1](kx+1)} =$$

$$= (\frac{1}{(1-1)x+1} - \frac{1}{1.x+1}) + (\frac{1}{(2-1)x+1} - \frac{1}{2x+1}) + \dots + (\frac{1}{(k-1)x+1} - \frac{1}{kx+1}) =$$

$$= \frac{1}{1} - \frac{1}{x+1} + \frac{1}{x+1} - \frac{1}{2x+1} + \dots + \frac{1}{(k-1)x+1} - \frac{1}{kx+1} = 1 - \frac{1}{kx+1} = \frac{kx}{kx+1}.$$

При фиксирано $x \in (0,\infty)$ редицата $S_k(x) = \frac{kx}{kx+1}$ е сходяща и

 $\lim_{k\to\infty} S_k(x) = \lim_{k\to\infty} \frac{kx}{kx+1} = 1$. Така за всяко $x\in(0,\infty)$ редът е сходящ и

$$\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)} = 1.$$

За да проверим, че дали е равномерно сходящ, трябва да разберем дали редицата $S_k(x) = \frac{kx}{kx+1}$ е равномерно сходяща.

Разглеждаме разликата $|S_k(x)-1|=\left|\frac{kx}{kx+1}-1\right|=\frac{1}{kx+1}$ фиксирано $k\in\mathbb{N}$.

Очевидно тази функция е намаляваща при x \in $(0;\infty)$ (функцията kx +1 е растяща, тъй като k > 0). Тогава при фиксирано k

$$\sup_{0 < x < \infty} |S_k(x) - 1| = \sup_{0 < x < \infty} \frac{1}{kx + 1} = \lim_{x \to 0} \frac{1}{kx + 1} = 1$$
 и
$$\lim_{k \to \infty} \left(\sup_{0 < x < \infty} |S_k(x) - 1| \right) = 1.$$

Следователно редицата $S_k(x) = \frac{kx}{kx+1}$ не е равномерно сходяща.

Това означава, че редът $\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)}$ не е равномерно сходящ.

б) Ясно е, че както в а) се вижда, че редът е сходящ $\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)} = 1$ и

 $S_k(x) = \frac{kx}{kx+1}$. Тогава при фиксирано k

$$\sup_{1 \le x < \infty} |S_k(x) - 1| = \sup_{1 \le x < \infty} \frac{1}{kx + 1} = \max_{1 \le x < \infty} \frac{1}{kx + 1} = \frac{1}{k + 1}$$

(Функция е намаляваща при $x \in [1;\infty)$).

Тогава
$$\lim_{k\to\infty} \left(\sup_{1\leq x\leq\infty} \left| S_k(x) - 1 \right| \right) = \lim_{k\to\infty} \frac{1}{k+1} = 0$$
.

Следователно редицата $S_k(x) = \frac{kx}{kx+1}$ е равномерно сходяща в [1; ∞).

Това означава, че редът $\sum_{n=1}^{\infty} \frac{x}{[(n-1)x+1](nx+1)}$ е равномерно сходящ в $[1;\infty)$.

Задача 3. (За самостоятелна работа). Даден е редът $\sum_{n=1}^{\infty} \frac{1}{1+n^2 x}$.

- а) Докажете, че при $x \ne 0$ редът е сходящ;
- б) Докажете, че в [1;∞) редът е равномерно сходящ.

Задача 4. Даден е редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$.

- а) Покажете, че за всяко х редът е условно сходящ.
- б) Покажете, че редът е равномерно сходящ в \mathbb{R} .

Решение. а) Нека х е произволно фиксирано число.

Тогава редицата $\frac{1}{x^2+n}$ е очевидно монотонно намаляваща и $\lim_{n\to\infty}\frac{1}{x^2+n}=0$.

Съгласно критерия на Лайбниц редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$ е сходящ.

За членовете на реда $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{x^2 + n} \right| = \sum_{n=1}^{\infty} \frac{1}{x^2 + n}$ имаме

$$\frac{1}{x^2+n} = \frac{1}{n} \frac{1}{\frac{x^2}{n}+1} \sim \frac{1}{n} \left(\lim_{n \to \infty} \frac{1}{\frac{x^2}{n}+1} = 1 \right).$$

Тогава редът $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{x^2 + n} \right|$ е разходящ, защото хармоничният ред $\sum_{n=1}^{\infty} \frac{1}{n}$ е разходящ.

C това показахме, че $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$ е условно сходящ.

б) Тъй като $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{x^2 + n} \right|$ е разходящ, критерия на Вайерщрас не може да се приложи. Ще използваме критерия на Дирихле.

Имаме
$$\sum_{n=1}^{\infty} u_n(x).v_n(x) = \sum_{n=1}^{\infty} (-1)^n.\frac{1}{x^2+n} - u_n(x) = (-1)^n$$
 и $v_n(x) = \frac{1}{x^2+n}$.

$$-$$
 От $\sum_{n=1}^k u_n(x) = \sum_{n=1}^k (-1)^n = \begin{cases} 1 & \text{при } k \text{ нечетно} \\ 0 & \text{при } k \text{ четно} \end{cases}$, следва $\left| \sum_{n=1}^k u_n(x) \right| \le 1$

— При фиксирано x редицата $v_n(x) = \frac{1}{x^2 + n}$ е монотонно намаляваща и $\lim_{n \to \infty} \frac{1}{x^2 + n} = 0$;

— Имаме $\sup_{x \in \mathbb{R}} \frac{1}{x^2 + n} = \frac{1}{0 + n}$ и $\lim_{n \to \infty} (\sup_{x \in \mathbb{R}} \frac{1}{x^2 + n}) = \lim_{n \to \infty} \frac{1}{0 + n} = 0$. Следователно редицата $v_n(x) = \frac{1}{x^2 + n}$ е равномерно сходяща.

Съгласно критерия на Дирихле редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n}$ е равномерно сходящ.

Задача 5. Нека a < b са дадени числа от $(0;2\pi)$. Да се докаже, че в редът $\sum_{n=1}^{\infty} \frac{\cos nx}{n}$ е равномерно сходящ в [a;b]. (Самостоятелно разгледайте реда $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ в [a;b]).

Решение. Отново ще приложим критерия на Дирихле.

Редът е $\sum_{n=1}^{\infty} \frac{\cos nx}{n} = \sum_{n=1}^{\infty} \cos nx \cdot \frac{1}{n} = \sum_{n=1}^{\infty} u_n(x) \cdot v_n(x)$ — означихме $u_n(x) = \cos nx$ и $v_n(x) = \frac{1}{n}$.

Ще използваме тъждеството

$$C_k(x) = \sum_{n=1}^k \cos nx = \cos x + \cos 2x + \dots + \cos kx = \frac{\sin \frac{kx}{2}}{\sin \frac{x}{2}} \cos \frac{(k+1)x}{2}$$
 (едно възможно

доказателство вж. по-долу). Числата $\frac{a}{2}$ и $\frac{b}{2}$ са в отворения интервала $(0;\pi)$. Следователно $\sin\frac{a}{2}$ и $\sin\frac{b}{2}$ са положителни. Нека A е по-малкото от тях. Тогава $\sin\frac{x}{2} \ge A > 0$ в интервала $[\frac{a}{2};\frac{b}{2}]$ (вж. графиката — подебелата линия е графиката на $\sin\frac{x}{2}$).

$$-\left|\sum_{n=1}^{k} u_n(x)\right| = \left|\sum_{n=1}^{k} \cos nx\right| = \left|\frac{\sin\frac{kx}{2}}{\sin\frac{x}{2}}\cos\frac{(k+1)x}{2}\right| \le \frac{1}{\sin\frac{x}{2}} \le \frac{1}{A}$$

- редицата $v_n(x) = \frac{1}{n}$ клони към 0
- редицата $v_n(x) = \frac{1}{n}$ не зависи от x следователно клони **равномерно** към 0.

Следователно по критерия на Дирихле редът е равномерно сходящ.

* Ще припомним как се пресмятат сумите

$$C_k(x) = \sum_{n=1}^k \cos nx = \cos x + \cos 2x + \dots + \cos kx$$
 и
$$S_k(x) = \sum_{n=1}^k \sin nx = \sin x + \sin 2x + \dots + \sin kx.$$

Разглеждаме сумата $\sum_{n=1}^{k} (\cos nx + i \sin nx)$:

$$C_k(x) + iS_k(x) = \sum_{n=1}^k \cos nx + i\sum_{n=1}^k \sin nx = \sum_{n=1}^k (\cos nx + i\sin nx) = \sum_{n=1}^k (\cos x + i\sin x)^n$$

Последното равенство следва от формулата на Моавр. Получената сума е геометрична прогресия с частно $\lambda = \cos x + i \sin x$, първи член $\lambda = \cos x + i \sin x$ и брой на членовете k или

$$\begin{split} &C_k(x) + iS_k(x) = \lambda \frac{1 - \lambda^k}{1 - \lambda} = \frac{\cos x + i \sin x - (\cos x + i \sin x)^{k+1}}{1 - (\cos x + i \sin x)} = \\ &= \frac{\cos x + i \sin x - \cos(k+1)x - i \sin(k+1)x}{1 - \cos x - i \sin x} = \qquad \text{(отново формулата на Моавр)} \\ &= \frac{\cos x - \cos(k+1)x + i \sin x - i \sin(k+1)x}{2 \sin^2 \frac{x}{2} - i 2 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2}} = \\ &= \frac{2 \sin^2 \frac{(k+2)x}{2} \sin \frac{kx}{2} - i 2 \sin \frac{kx}{2} \cos \frac{(k+2)x}{2}}{2 \sin^2 \frac{x}{2} - i \cos^2 \frac{x}{2}} = \frac{\sin \frac{kx}{2}}{\sin \frac{x}{2}} \cdot \frac{\sin \frac{(k+2)x}{2} - i \cos \frac{(k+2)x}{2}}{\sin \frac{x}{2} - i \cos \frac{x}{2}} = \\ &= \frac{\sin \frac{kx}{2}}{\sin \frac{x}{2}} \cdot \frac{(\sin \frac{(k+2)x}{2} - i \cos \frac{(k+2)x}{2})(\sin \frac{x}{2} + i \cos \frac{x}{2})}{(\sin \frac{x}{2} - i \cos \frac{x}{2})(\sin \frac{x}{2} + i \cos \frac{x}{2})} = \\ &= \frac{\sin \frac{kx}{2}}{\sin \frac{x}{2}} [\sin \frac{(k+2)x}{2} \sin \frac{x}{2} + \cos \frac{(k+2)x}{2} \cos \frac{x}{2} + i(\sin \frac{(k+2)x}{2} \cos \frac{x}{2} - \cos \frac{(k+2)x}{2} \sin \frac{x}{2})] = \\ &= \frac{\sin \frac{kx}{2}}{\sin \frac{x}{2}} (\cos \frac{(k+1)x}{2} + i \sin \frac{(k+1)}{2}x) \end{split}$$

Като вземем предвид, че две комплексни числа са равни, когато реалните им части и съответно имагинерните са равни, то

$$C_{k}(x) = \frac{\sin\frac{kx}{2}}{\sin\frac{x}{2}}\cos\frac{(k+1)x}{2} \text{ if } S_{k}(x) = \frac{\sin\frac{kx}{2}}{\sin\frac{x}{2}}\sin\frac{(k+1)}{2}x.*$$

Задача 6. Да се докаже, че редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+x)}}$ е равномерно сходящ в $[0;\infty)$.

Решение. Ще използваме критерия на Абел

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+x)}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{1+\frac{x}{n}}} \cdot \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} u_n(x) \cdot v_n(x) - u_n(x) = \frac{1}{\sqrt{1+\frac{x}{n}}} \quad \text{if } v_n(x) = \frac{(-1)^n}{n}.$$

$$-|u_n(x)| = \frac{1}{\sqrt{1+\frac{x}{n}}} \le 1 \text{ за всяко } x \in [0,\infty)$$

$$-\left|u_{n}(x)\right| = \frac{1}{\sqrt{1+\frac{x}{n}}} \le 1 \text{ за всяко } x \in [0;\infty)$$

$$- \text{Очевидно } \frac{1}{\sqrt{1+\frac{x}{n}}} \le \frac{1}{\sqrt{1+\frac{x}{n+1}}} \text{ при фиксирано, т.е. редицата } u_{n}(x) \text{ е монотонна}$$

— Редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ е сходящ по критерия на Лайбниц. Но този ред не зависи от x и следователно е равномерно сходящ.

Съгласно критерия на Абел редът $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+x)}}$ е равномерно сходящ в $[0;\infty)$.

Задача 6. (за самостоятелна работа) Докажете като използвате критерия на Абел, че редът $\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$ е равномерно сходящ в [a;b].