

Aplicação da WiSARD na classificação da base MNIST

Aluno: Cleiton Moya de Almeida

Disciplina: CPS841 – Redes Neurais Sem Peso

- Pré-processamento da entrada
- Variação de parâmetros da WiSARD
- Validação
- Conclusões

Pré-processamento da entrada

Binarização por threshold

- Testes para verificar a influência do threshold;
- RAMs com 28 bits de endereçamento;
- Execução de 10 testes para verificar acurácia média;
- Conclusões:
 - Maior parte das palavras da entrada possuem valor maior que 250;
 - Pouca variação da acurácia para limites abaixo de 128.

Limite	Acurácia média
4	(93 ± 0)%
16	(93 ± 0)%
64	(93 ± 0)%
128	(91 ± 1)%
192	(88 ± 0)%
252	(73 ± 0)%
253	(54 ± 1)%

Variação de parâmetros da WiSARD

Número de bits de endereçamento da RAM

o Performance:

Nº bits	Acurácia média	\overline{T} trein.	\overline{T} classif.
4	(73 ± 1)%	1,4s	26,9s
14	(85 ± 1)%	1,4 s	1,1 s
28	(93 ± 1)%	1,32s	0,82 s
35	(94 ± 0)%	1,33s	0,80s
40	(93 ± 0)%	1,49s	0,87s
56	(89 ± 0)%	1,28s	0,60s

Matriz de confusão:

- ✓ Linhas: y
- ✓ Colunas: g

	0	1	2	3	4	5	6	7	8	9
0[[960	1	3	1	0	8	4	1	2	0]
1 [0	1106	7	3	1	1	6	0	10	1]
2	11	0	960	13	5	2	4	11	23	3]
3 [1	0	9	939	1	25	2	13	17	3]
4 [1	0	7	1	915	1	6	4	4	43]
5	7	1	1	41	4	798	9	2	22	7]
6	9	2	0	1	4	5	933	0	4	0]
7	1	5	16	7	11	1	0	950	3	34]
8	8	0	2	25	3	16	3	5	901	11]
9 [7	3	3	10	25	7	2	18	13	921]]

- n_i : número de bits de endereçamento
- M: número de bits da retina
- N: número de RAMs
- Para $n_i = 35 \text{ e M} = 784$, temos N = 23 RAMs
- Para $n_i = 28 \text{ e M} = 784$, temos N = 28 RAMs
- Para $n_i = 14 \text{ e M} = 784$, temos N = 56 RAMs

Poucas RAMs \Rightarrow \uparrow esparsidade \Rightarrow \downarrow generalização (Carneiro, 2012)

Variação de parâmetros da WiSARD

- Mecanismo de desempate (bleaching)
 - Sem o uso de *bleaching*, a performance é bastante degrada para redes com menor número de RAMs (maior número de empates):

Nº bits	Acurácia média	\overline{T} trein.	\overline{T} classif.
14	(57 ± 1)%	1.26s	0,81s
28	(87 ± 1)%	1,31s	0,78s
35	(92 ± 0)%	1,31s	0,72s

Variação de parâmetros da WiSARD

• Ignorar o endereço 0:

 Também verificou-se performance degradada em caso de utilização do parâmetro ignoreZero:

Nº bits	Acurácia média	\overline{T} trein.	\overline{T} classif.
14	(52 ± 3)%	1.28s	0,86s
28	(88 ± 2)%	1,34s	0,79s

Validação

• Estratégia 1: Splits com shuffle

- Junção das duas base de dados;
- Embaralhamento (*shuffle*);
- *Splits* 70/30, 80/20, 90/10.

• Estratégia 2: k-fold

- Partição da base em k sub-conjuntos;
- Em cada iteração, um sub-conjunto é selecionada para teste e os k-1 conjuntos utilizados para treinamento.
- Processo repetido k vezes.
- Utilizado k=10.

	Acurácia média		
Split	$n_i = 14$	$n_{i} = 28$	
70/30	(85 ± 0)%	(93 ± 0)%	
80/20	(85 ± 0)%	(93 ± 0)%	
90/10	(85 ± 0)%	(93 ± 0)%	

	Acurácia média		
k-fold	$n_i = 14$	$n_i = 28$	
10	(84 ± 1)%	(93 ± 0)%	

Conclusão:

- ✓ Em ambas estratégias, performance semelhante ao cenário com as bases de dados originais;
- ✓ Boa robustez da rede.

Conclusões

- O modelo WiSARD foi capaz de classificar a base MNIST com um nível de acurácia na ordem de 90%;
- Os tempos de treinamento e classificação observados foram na ordem de segundos, tornando o paradigma bastante interessante para aplicações com elevado volume de dados ou em aplicações de tempo real;
- O mecanismo de *bleaching* influencia bastante na acurácia;
- Boa robustez verificada nos testes de validação.