1

G.A.T.E.

EE1205 : Signals and Systems Indian Institute of Technology Hyderabad

Chirag Garg (EE23BTECH11206)

I. Question E.C.(45)

Question: Let a frequency modulated (FM) signal: $x(t) = A\cos(\omega_c t + k_f \int_{-\infty}^t m(\lambda)d\lambda)$, where m(t) is a message signal of bandwidth W. It is passed through a non-linear system with output $y(t) = 2x(t) + 5(x(t))^2$. Let B_T denote the FM bandwidth. The minimum value of ω_c required to recover x(t) from y(t) is:

(A)
$$B_T + W$$

(B)
$$\frac{3}{2}B_T$$

(C)
$$2B_T + W$$

(D)
$$\frac{5}{2}B_T$$

Solution: Let $k_f \int_{-\infty}^t m(\lambda) d\lambda = \phi$

$$x(t) = A\cos(\omega_c t + \phi) \tag{1}$$

$$y(t) = 2x(t) + 5(x(t))^{2}$$
(2)

$$= 2A\cos(\omega_c t + \phi) + 5A^2\cos^2(\omega_c t + \phi)$$
 (3)

$$=2A\cos(\omega_c t + \phi) + \frac{5}{2}A^2[\cos(2\omega_c t + 2\phi) + 1] \tag{4}$$

From garph ,to recover x(t) from y(t)

$$2\omega_c - B_T > \omega_c + \frac{B_T}{2} \tag{5}$$

$$\omega_c > \frac{3B_T}{2} \tag{6}$$

$$\therefore (\omega_c)_{min} = \frac{3}{2}B_T \tag{7}$$

Hence the correct option is (b)

Fig 1: Plot of M(Modulation Frequency) vs ω