Deberl

1) Decimal a binavio

(49263749) = 1011011110110 100 10000101

49263749 \2		384873	، ک		30	DE 15		23 [2		
1 24631	४२५ ७	1	192436	, Z	6	1503	2	' 11 G	-	
	^० । ८३। ५९३२ ।	2	0	96218	12		7512	5	12	
		5796812		0	1810d Js		3752	, =	ر ا	12
		9 2078	1984 5		1 240:	542	1 15	87 LE	Ð	1
			o 1239a	9212	0	120271	2 '	93 12		l
			٥	7697	4612	، (ઇ ટા	1 46		
					o)	0		

```
Decimal to binary 2s comprement
(-20)10 ->
             11010 = conviteum = 00101 = 01 (05) 5]05
             0 1012
               0 512
                 1213
                                  01011
                  o I
                                 + <u>1</u>
                       Como -zo es negativo agregamos 1 al micio pura
                       representar et signo
                      Se requieren al menos 6 bits para representar
                        101100,
(-1025)10 ->
             1025LZ 0 32L3
              1 SIZLZ 0 16 LZ
0 ZS6L 0 8 LZ
                                                 (1025)10 - 10000000001
                   0 128 12 0 412
                                   0 1
                                   10000000001 -> oullilli
                                                   0 11 11 11 1
 El numuro minimo de bits para representar - 1025 es 12
 por lo cod
        10 1111111111111101
(-3975) 10
  3925 LZ 61LZ
1 1962 LZ 1 30LZ
                         (3925) IIII 01010101
 3925 12
          98112 0 1512
           1 490 12 1 712
                               111101010101 1comp 000010101010
               0 245/2 1 3/2
                  1 12212 1 1
                     0 61 1
```

```
010101010000
 000010101011 -> El minimo de bits para representar -1025 es 13
                   por lo que
                      1000010101011 //
-104596
  45962 81712 613

0 5279812 1 40812 0 312

0 7614912 0 70412 1 1

1 1307412 0 10212 1

0 653712 0 5112

1 326812 1 7512
                                                (104296) in > 11001100010010100
10459612
                          0 1634 1 1712
                                6
1001100010010100 -> 001100111010101 El numuro minimo de bits para por lo que 10011001110110100 por lo que
                                               100110011101101100 /
Unsigned binary to hex
  Short method
• 1100 1111 0101 0110 0110 1110 1101 1000 0010 1001
  C F S 6 6 E D 8 Z Q
  CF 566ED8 Z9 /
• 1000 0111 1000 1110 0011 1000 1110 0011 1111 0011
    8 7 8 E 3 8 E 3 F 3
    878E38E3F3/
```

```
• (010
           1101
                  0101
                        1100
                                0110
                                       0101 0100 1010 1010
                                               4
                                6 5
                   S
                        C
                                                         A
                                                              Α
                                                                    A
     A
            D
    ADSC654AAA,
  • 1010
                                            1011
           0016
                 1010
                        010 1010 1010
                                                     100
                                                           1100 0000
     A
                   A
                           A A
                                      Α
                                                     F
           7.
                                            В
                                                           ( . |
                                                                  0
    AZAAAABFCO
  Long method
-1100 1111 6101 6110 0110 1110 1101 1000 0010 1001
  (1.2^{39})+(1.2^{38})+(0.2^{37})+(0.2^{36})+(1.2^{35})+(1.2^{39})+(1.2^{33})+(1.2^{32})+
   (0.2^{31}) + (1.2^{30}) + (0.2^{29}) + (1.2^{28}) + (0.2^{27}) + (1.2^{26}) + (1.2^{25}) + (0.2^{24}) + (0.2^{23}) + (1.2^{22}) + (1.2^{21}) + (0.2^{20}) + (1.2^{19}) + (1.2^{18}) + (1.2^{17}) + (0.2^{16}) +
   (1.215) + (1.214) + (0.213) + (1.212) + (1.211) + (0.210) + (0.24) + (0.26) + (0.21)
   (0.7') + (1.7') + (0.7') + (1.2') + (0.2') + (0.2') + (1.2') =
   (890508335145)_{10} \rightarrow 890508335145/16 = 55656770946 res = 9
                                  55656770946/16 = 3478548184 res= 2
                                  34785 48184/16 = 217409761 res = 8
                                 217409261/16 = 13388078 res = 13 -> D en Hex
                                 13388078/16 = 849233 res = M -> E
                                  849255/16 = 53078 ve1 = 6
                                  $3078/16 = 3317 res = 6
                                  3317/16 = 207 res=S
                                 207/16 = 12 re)=15 (f) en Hex
                                  12/16 = 0 res=12 (c) en Hex
                                  CF S66 FD 829
• 1000 0111 1000 1110 0011 1000 1110 0011 1111 0011
 (1.2^{39})+(0.2^{35})+(0.2^{37})+(0.2^{36})+(0.2^{35})+(1.2^{39})+(1.2^{32})+
  (1.231) + (0.2^{30}) + (0.2^{29}) + (0.2^{28}) + (1.2^{27}) + (1.2^{26}) + (1.2^{25}) + (0.2^{24}) + (0.2^{23}) + (0.2^{22}) + (1.2^{21}) + (1.2^{20}) + (1.2^{19}) + (0.2^{18}) + (0.17) + (0.2^{16}) +
  (1.2^{15}) + (1.2^{14}) + (1.2^{13}) + (0.2^{17}) + (0.2^{11}) + (0.2^{10}) + (1.2^{4}) + (1.2^{6}) + (1.2^{4})
  (1.7^{6}) + (1.7^{5}) + (1.7^{6}) + (0.2^{3}) + (0.2^{2}) + (1.2^{1}) + (1.2^{0}) =
  (S82206678003) 10 -> /16= 36387917375
                                                           re5 = 3
                              36387917375/16 = 2274244835 re>=F
                              2274 2448 35/16 = 142140307 re) 3
                              142140302/16 = 8883768 ves = £
                             8883768/16 = $5$233 re> = 8
```

```
2168/16= 133
                                                                                                                         rcs = 8
                                                                 135/16=8
                                                                                                                        res = 7
                                                                  8/16 =
                                                                                                                        res = 8
                                                                   878E38E3F3
  0101 0101 0101 0100 0110 0100 1010 1010
 (1. Z39) + (0. Z38) + (1. Z37) + (0. Z36) + (1. Z35) + (1. Z34) + (0. Z33) + (1. Z32) +
  (0.2^{31}) + (1.2^{30}) + (0.2^{29}) + (1.2^{28}) + (1.2^{27}) + (1.2^{26}) + (0.2^{25}) + (0.2^{24}) + (0.2^{23}) + (0.2^{22}) + (0.2^{21}) + (0.2^{20}) + (0.2^{19}) + (1.2^{18}) + (0.17) + (1.2^{16}) + (0.2^{21}) + (0.2^{21}) + (0.2^{20}) + (0.2^{19}) + (1.2^{18}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{19}) + (0.2^{1
  (0.215) + (1.214) 7 (0.213) + (0.212) + (1.211) + (0.210) + (1.24) + (0.26) + (1.2+)
  (0.7') + (1.7') + (0.7') + (0.2') + (0.2') + (1.2') + (0.2') =
                                                                                                            res=A res=A
    (7445794 84330)10 = 46536217770/16
                                                                                                 N=6 97
                                                           2902513610/16
                                                            181782100/16
                                                                                                 res= 4
                                                                                             100 = S
                                                                                                                            ADSC 654AAA
                                                            11361381/16
                                                            716086 /16
                                                                                                 res = 6
                                                           94 380/16
                                                                                                 res = c
                                                           7773/18
                                                                                                 res = S
                                                                                                res = D
                                                           173/16
                                                            10/16
                                                                                                  res = A
• 1010
                                    1010 1010 1010 1011 1111
                                                                                                                             1100 0000
                 0016
  (1.2^{39})+(0.2^{35})+(1.2^{37})+(0.2^{36})+(0.2^{35})+(0.2^{34})+(1.2^{33})+(0.2^{32})+
   (1.231) + (0.230) + (1.229) + (0.228) + (1.227) + (0.226) + (1.25) + (0.224) +
   (1.223) + (0.222) + (1.221) + (0.220) + (1.219) + (0.218) + (1.17) + (0.216) +
   (1.2^{15}) + (0.2^{14}) + (1.2^{13}) + (1.2^{12}) + (1.2^{11}) + (1.2^{10}) + (1.2^{4}) + (1.2^{6}) + (1.2^{6})
    (1.7') + (0.7') + (0.2') + (0.2') + (0.2') + (0.2') + (0.2') =
                                                            ves = 0
     698648018880 /16
                                                 43665501180/16
                                                                                                      res = c
                                                                                                     res = f
                                                 27 2909 3823/16
                                                170568363 /16
                                                                                                       res =B
                                                                                                                                      AZAAAABFCOA
                                                                                                      res = A
                                                 10660522/16
                                                 666282/16
                                                                                                     res = A
                                                 41642/16
                                                                                                     res = A
                                                2602/16
                                                                                                    ves = A
                                                162/16
                                                                                                   res = 7
                                                                                                   res a
                                                10/16
```

SSS 233/16 = 34707

34702 116 = 2168

res = 3 res = E

Z's complement for a binary number of 3 bits

Creamos una tabla de verdad con los inputs que son numeros de 3 bits y la salida es el comptemento de z

A	В	C	×	γ	Z
0	0	6	0	0	0
٥	O	ı	١	١	l
٥	1	0	1	1	D
O	1	1	1	0	1
١	0	0	\	٥	٥
١	Ō	1	0	1	1
1	1	Q	0	1	0
ı	1	\	0	٥	1

La respuesta para este ejercicio se obtuvo del siguiente enlace https://m.youtube.com/watch?v=cxRy_9ZR-E0&ab_channel=DKavitha

Pova obtener el circuito utilizamos mapas de tarnaugh (contenido de electronica basica)

Unimos


```
PD-HD
                10
Do the following multiplications in binary
                 PD + MD
(8) x (≥)
11011 00000 00000 00000 00000 0
(40)10
(11100 10010)_2 \longrightarrow 00011 01101
(00011 01110)_7 = (110)_{10}
(-110)2
(000110)_{1} = (6)_{10}
```

(-4) v 11100 x	(~ 8) 11000	00000	11100 11000 2	o -> 00000	11100 01100 4	0 ->	00000	11100	0
00000	11100 11000 2	0	00100	00100 00000 00000	∞I∞	11100 COO111 Z	0		
00010	1 00001 11100	1 ->	000 01	11100 00000 0	-> (000	01 000	$(\infty)_{i} =$	31	