Professor Youngjoon Hong

Problem 1 (Theory) Show that the following scheme

$$\begin{split} \tilde{v}_m^{n+1} &= v_m^n - a\lambda(v_{m+1}^n - v_m^n) + kf_m^n, \\ v_m^{n+1} &= \frac{1}{2}(v_m^n + \tilde{v}_m^{n+1} - a\lambda(\tilde{v}_m^{n+1} - \tilde{v}_{m-1}^{n+1}) + kf_m^{n+1}) \end{split}$$

Due Date: Oct. 19 (3:00 pm)

is a second-order accurate scheme for the one-way wave equation.

Problem 2 (Numerics) Complete the following table to implement Lax-Wendroff and Lax-Friedrichs schemes to the homogeneous one-way wave equation with a=1 and $x \in (-2,5)$. Use $\lambda = 0.8$ and the initial condition u_0 :

$$u(0,x) = \begin{cases} \cos^2(\pi x), & |x| \le 1/2, \\ 0, & otherwise, \end{cases}$$

with the final time T=1.0. You can simply put a zero boundary condition. Note that the numerical error can be measured by

$$Error(t_n) = ||u(t_n, \cdot) - v^n||_h = \left(h \sum_m |u(t_n, x_m) - v_m^n|^2\right)^{1/2}.$$

	Lax-Wendroff		Lax-Friedrichs	
h	Error	Order	Error	Order
1/10				
1/20				
1/40				
1/80				