A - 1

CHEMISTRY

61. During the extraction of gold the following reactions take place -

$$Au + CN^{-} + H_{2}O \xrightarrow{O_{2}} [X]$$
$$[X] + Zn \xrightarrow{} [Y] + Au$$

5 . j.

X and Y are respectively -

1)
$$\left[Au\left(CN\right)_{2}\right]^{-}$$
 and $\left[Zn\left(CN\right)_{4}\right]^{2-}$ 2) $\left[Au\left(CN\right)_{4}\right]^{3-}$ and $\left[Zn\left(CN\right)_{4}\right]^{2-}$

3)
$$\left[Au\left(CN\right)_{4}\right]^{2-}$$
 and $\left[Zn\left(CN\right)_{4}\right]^{2-}$ 4) $\left[Au\left(CN\right)_{2}\right]^{-}$ and $\left[Zn\left(CN\right)_{6}\right]^{4-}$

- 62. The number of gram molecules of chlorine in 6.02×10^{25} hydrogen chloride molecules is
 - 1) 5

2) 50

3) 100

- 4) 10
- **63.** Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite
 - 1) has molecules of variable molecular masses like polymers.
 - 2) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds.
 - 3) is a non-crystalline substance.
 - 4) is an allotropic form of carbon.
- 64. Paracetamol is a / an
 - 1) antimalarial

2) antipyretic

3) analgesic

- 4) both 2 and 3
- 65. Which one of the following has maximum number of atoms of oxygen?
 - 1) 2 g of water

- 2) 2 g of sulphur dioxide
- 3) 2 g of carbon dioxide
- 4) 2 g of carbon monoxide.

00.	WILLIE	me of the following	ig snows functional i	isomerism ?
	1)	CH_2Cl_2	2)	C_2H_5OH
	3)	C_3H_6	4)	C_2H_4
67.	In the id	onic equation – <i>Bi</i>	$O_3^- + 6H^+ + Xe^-$	$\rightarrow Bi^{3+} + 3H_2O$.
	•	es of X is -		
	1)	3	2)	4
	3)	2	4)	6
68.	Molarity	of a given orthop	hosphoric acid soluti	tion is 3M. It's normality is –
		1 N	2)	
	3)	0.3 N	4)	9 N
69.	Acidified colourate	d sodium fusion e	xtract on addition o s the presence of –	of ferric chloride solution gives blood re
	1)	S	2)	N
	3)	N and S	4)	S and Cl
70.	A body o	f mass 10 mg is mo	oving with a velocity ould be –	v of $100~{ m ms}^{-1}$. The wavelength of de-Brogli
	(Note: h	$a = 6.63 \times 10^{-34} \mathrm{Js}$		•
	1)	$6.63 \times 10^{-37} \text{m}$	2)	6.63×10^{-31} m
	3)	6.63×10^{-34} m	4)	6.63×10^{-35} m

71.	Mg^{2+}	is	isoelectronic	with
-----	-----------	----	---------------	------

1) Ca^{2+}

2) Na^{-1}

3) Zn^{2+}

4) Cu^{2+}

72. Gram molecular volume of oxygen at STP is -

1) 11200 cm³

2) 22400 cm³

3) 5600 cm^3

4) 3200 cm^3

73. Presence of halogen in organic compounds can be detected using -

1) Beilstien's test

2) kjeldahl test

3) Duma's test

4) Leibig's test

74. The electronic configuration of Cr^{3+} is

1) $[Ar]3d^54s^1$

 $2) \quad [Ar] 3d^2 4s^1$

3) $[Ar]3d^34s^0$

4) $[Ar]3d^44s^2$

75. The mass of a metal, with equivalent mass 31.75, which would combine with 8 g of oxygen is

1) 31.75

2) 3.175

3) 8

4) 1

	C_6H_5Cl $C_6H_6Cl_6$ veriodic table metals usually used	4)	C ₆ Cl ₆ CCl ₄		
In the p			CCl4	,	
	eriodic table metals usually used	-			
1)		d as ca	atalysts belong	to	
	s - block	2)	p - block		
3)	d - block	4)	f - block		
Dalton's	law of partial pressures is appl	icable	to which one	of the following systems	
1)	$CO+H_2$	2)	$H_2 + Cl_2$		
3)	$NO + O_2$	4)	$NH_3 + HCl$		
The gen	eral formula of a cycloalkane is				
1)	C_nH_{2n+2}	2)	C_nH_{2n-2}		
3)	C_nH_{2n}	4)	C_nH_n		
In acetylene molecule, between the carbon atoms there are -					
1)	three sigma bonds	2)	two sigma an	d one pi bonds	
3)	one sigma and two pi bonds	4)	three pi bond	s	
	(Space for I	Rough	Work)		
	3) Dalton's 1) 3) The gen 1) 3) In acety 1)	3) d - block Dalton's law of partial pressures is apple 1) $CO + H_2$ 3) $NO + O_2$ The general formula of a cycloalkane is 1) C_nH_{2n+2} 3) C_nH_{2n} In acetylene molecule, between the carbo 1) three sigma bonds 3) one sigma and two pi bonds	3) d - block Dalton's law of partial pressures is applicable 1) $CO + H_2$ 2) 3) $NO + O_2$ 4) The general formula of a cycloalkane is 1) C_nH_{2n+2} 2) 3) C_nH_{2n} 4) In acetylene molecule, between the carbon ato 1) three sigma bonds 2) 3) one sigma and two pi bonds 4)	3) d - block Dalton's law of partial pressures is applicable to which one of the following of the following partial pressures is applicable to which one of the following partial pressu	

81.	Denatured	alcohol	is
$o_{\mathbf{I}}$	Dellauarca	CLICOLICA	

- 1) Rectified spirit
- 2) Undistilled ethanol
- 3) Rectified spirit + methanol + naphtha
- 4) Ethanol + methanol

82. During the formation of a chemical bond

- 1) energy decreases
- 2) energy increases
- 3) energy of the system does not change
- 4) electron-electron repulsion becomes more than the nucleus-electron attraction
- 83. One mole of oxygen at 273 k and one mole of sulphur dioxide at 546 k are taken in two separate containers, then,
 - 1) kinetic energy of O_2 > kinetic energy of SO_2 .
 - 2) kinetic energy of O_2 < kinetic energy of SO_2 .
 - 3) kinetic energy of both are equal.
 - 4) None of these

84. +I effect is shown by

 $1) -NO_2$

2) *-Cl*

3) -Br

4) -CH₃

85. Formation of coloured solution is possible when metal ion in the compound contains

1) paired electrons

- 2) unpaired electrons
- 3) lone pair of electrons
- 4) none of these

86. Which of the following is an intensive property?					
	1)	temperature	2)	surface tension	
	3)	viscosity	4)	all of these	
87.	Hofman	n's bromamide reaction is to con	vert		
	1)	amine to amide	2)	amide to amine	
	3)	alcohol to acid	4)	acid to alcohol	
88.	IUPAC :	name of $Na_3igl[{\it Co(NO_2)}_6igr]$ is			
	1)	sodium cobaltinitrite	2)	sodium hexanitrito cobaltate (III)	
	3)	sodium hexanitro cobalt (III)	4)	sodium hexanitrito cobaltate (II)	
89.	Thermodynamic standard conditions of temperature and pressure are				
	1)	0^0 C and 1 atm	2)	273 k and 101.3 k Pa	
	3)	298 k and 1 atm	4)	$0^0\mathrm{C}$ and $101.3~\mathrm{k}$ Pa	
90.	How ma	ny chiral carbon atoms are prese	ent in	2, 3, 4 - trichloropentane?	
·	1)	3	2)	2	
	3)	1	4)	4	
	<u>.</u> <u>-</u> .		-		

- 91. The number of unidentate ligands in the complex ion is called
 - 1) EAN

2) Coordination number

3) primary valency

- 4) oxidation number
- **92.** $2SO_{2(g)} + O_{2(g)} \xrightarrow{V_2O_5}$ is an example for
 - 1) irreversible reaction
- 2) heterogenous catalysis
- 3) homogenous catalysis
- 4) neutralisation reaction
- 93. The amino acid which is not optically active is
 - 1) glycine

2) alanine

3) serine

- 4) lactic acid
- **94.** For a stable molecule the value of bond order must be
 - 1) negative
 - 2) positive
 - 3) zero
 - 4) there is no relationship between stability and bond order.
- 95. Which one of the following is a second order reaction?
 - 1) $CH_3COOCH_3 + NaOH \longrightarrow CH_3COONa + H_2O$
 - 2) $H_2 + Cl_2 \xrightarrow{\text{sunlight}} 2HCl$
 - 3) $NH_4NO_3 \longrightarrow N_2 + 3H_2O$
 - 4) $H_2 + Br_2 \longrightarrow 2HBr$

96.	According to Bayer's strain theory which is highly stable?				
	1)	cyclohexane	2)	cycloheptane	
	3)	cyclopentane	4)	cyclobutane	
97.	The nun	nber of antibonding electron pairs	$s in O_2$	$^{2-}$ molecular ion on the ba	asis of molecular
	orbital t	heory is			
	[Note - A	Atomic number of O is 18]	•		
	1)	2	2)	3,	
	3)	4	4)	5	
98.	Hydroxy	rl ion concentration of 1M HCl is	5		
	.1)	$1\times10^{-14}\mathrm{mol}\;\mathrm{dm}^{-3}$	2)	$1\times10^{-1}\mathrm{mol}\;\mathrm{dm}^{-3}$	•
	. 3)	$1\times10^{-13}\mathrm{mol}\;\mathrm{dm}^{-3}$	4)	$1\times10^1\mathrm{mol\ dm}^{-3}$. 3
99.	Geometr	rical isomerism is shown by			
	1)	-C-C-	2)	$-C \equiv C$ –	
	3)	-C - C - $C = C'$	4)	None of these	
100.	The oxid	dation state of iron in $K_4[Fe(C)]$	$N)_6$	i s	
	1)	2	. 2)	3	
	3)	4	4)	1	

101. In which of the following process, a maximum increase in entropy is observed?

- 1) dissolution of salt in water
- 2) condensation of water
- 3) sublimation of naphthalene
- 4) melting of ice

102. Decomposition of benzene diozonium chloride by using Cu_2Cl_2/HCl to form chlorobenzene is

- 1) Cannizarro's reaction
- 2) Kolbe's reaction
- 3) Sandmeyer's reaction
- 4) Raschig's reaction

103. Which complex can not ionise in solution?

1) $[pt(NH_3)_6]Cl_4$

2) $K_2[pt(F_6)]$

3) $K_4[Fe(CN)_6]$

4) $\left[CoCl_3 \left(NH_3 \right)_3 \right]$

104. Considering the reaction $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 393.5 \text{ kJ}$ the signs of ΔH , ΔS and ΔG respectively are

1) -, +, -

2) -,-,-

3) - + +

4) +, -, -

105. The product formed when hydroxylamine condenses with a carbonyl compound is called

1) hydrazone

2) hydrazine

3) oxime

4) hydrazide

106. Whi	ch o	f the following forms a colourles	s solu	ition in aqueous medium?
	1)	Ti ³⁺	2)	Sc^{3+}
	3)	_V 3+	4)	Cr^{3+}
		sulphur sol is evaporated sulphu rmed. The sol is	r is ob	otained. On mixing with water sulphur sol
	1)	hydrophilic	2)	hydrophobic
	3)	reversible	4)	lyophilic
108. An a	-	halide reacts with alcoholic am	monia	a in a sealed tube, the product formed
	1)	a primary amine	2)	a secondary amine
	3)	a tertiary amine	4)	a mixture of all the three
109. Whe	en co	onc. H_2SO_4 is heated with P_2O_5	, the	acid is converted into
	1)	sulphur		
	2)	sulphur dioxide		
	3)	sulphur trioxide		
	4)	a mixture of sulphur dioxide as	nd sul	lphur trioxide
110. Ent	ropy.	of the universe is		
•	1)	continuously increasing	2)	continuously decreasing
•	3)	zero	4)	constant
		(Space for	Rough	ı Work)

		•	20			
111.	Which o	f the following salts o	on being dissolved	in water give	es pH > 7 at 25° C ?	
	1)	NH_4CN	2)	NH_4Cl		
	3)	KNO ₃	4)	KCN		
112.	The reas	gent used in Clemme	nson's reduction	is		
	1)	alc. KOH	2)	aq. KOH		
	3)	Zn-Hg / con. HCl	4)	Conc. H_2SO_4	•	
113.	When K	Br is dissolved in wa	ter, K^+ ions are			•
	1)	oxidised	2)	reduced		
	3)	hydrolysed	4)	hydrated		
114.	The nob		ed in a coconut bu	ılb at 173 <i>K</i> . 7	The gases that are not	
	1)	He and Ne	2)	Ar and Kr		
	3)	He and Xe	4)	Ne and Xe	·	
115.	The volu	me of $10N$ and $4NH$	${\it Cl}$ required to ma	ke 1 litre of 7	N HCl are	
	1)	0.75 litre of 10 <i>N HC</i>	l and 0.25 litre of	4N~HCl		
	2)	0.80 litre of 10 <i>N HC</i>	l and 0.20 litre of	4N~HCl		
	3)	0.60 litre of 10 <i>N HC</i>	$\it l$ and 0.40 litre of	4N~HCl		
	4)	0.50 litre of 10 <i>N HC</i>	l and 0.50 litre of	4N HCl		
			(Space for Dough	Worls)		

116.	A metai	present in insum is			
	1)	copper	2)	iron	
	3)	zinc	4)	aluminium	
117.		forms two oxides which have dif	fere	ent compositions. The equivalent mas	ss of
	1)	carbon	2)	oxygen	
	3)	neither carbon nor oxygen	4)	both carbon and oxygen	
118.	Maximu	m number of molecules of CH_3I th	at c	can react with a molecule of CH_3NH_2	are
	1)	1	2)	2	
	3)	4	4)	3 -	
119.	Ellingha	nm diagram represents a graph of			
	1)	$\Delta G \operatorname{Vs} T$	2)	$\Delta G^0 \mathrm{Vs} T$	
	3)	$\Delta S \text{ Vs } P$	4)	$\Delta G \operatorname{Vs} P$	
120.	Identify	the ore not containing iron	٠		
	1)	chalcopyrites	2)) carnallite	
	3)	siderite	4)	limonite	-