Non-Euclidean data analysis with applications to multi-omics data

Kipoong Kim

Department of Statistics, Changwon National University

July 17, 2025

Multi-omics datasets from an individual

Clinical Outcomes

	A		C	0	E	· F	G	H	1
ľ	DATE	DAY	BRAIN	LUNGS	HEART	SYSTOLIC	DIASTOLIC	CELSIUS	PULSE
1	11/1/2020	Sunday	5	5	5	123	82	36.6	172
3	11/2/2020	Monday	5	5	5	119	78	36.6	179
ı	11/5/2020	Tuesday	5	5	5	111	80	36.6	84
3	11/4/2020	Wednesday	5	5	5	120	80	36.6	162
5	11/5/2020	Thursday	5	4	5	120	80	36.6	52
1	11/6/2020	Friday	5	5	5	125	81	36.6	80
1	11/7/2020	Saturday	2	4	5	90	56	37.2	95
1	11/8/2020	Sunday	2	2	3	101	68	37.4	171
0	11/9/2020	Monday	5	4	4	147	95	37.6	76
1	11/10/2020	Tuesday	5	3	4	199	133	37.7	151
2	11/11/2020	Wednesday	4	2	3	97	70	37.8	154
3	11/12/2020	Thursday	4	3	4	193	125	38.3	140
4	11/13/2020	Friday	2	1	2	114	74	38.4	134
5	11/14/2020	Saturday	2	1	3	207	151	38.5	102

Electronic Health Records

Sequencing data

Electrocardiogram (ECG)

Medical Imaging data

Connectome

What is the non-Euclidean data?

- □ Non-Euclidean data:
 - ➤ Data whose underlying structure is not Euclidean
- \square Some characteristics of \mathbb{R}^p :
 - ➤ It is a vector space closed under the vector addition + and scalar multiplication ·
- Non-Euclidean data lying on the following spaces will be introduced:
 - Finite-dimensional vector spaces which are not closed under + and ·

[1] Microbiome compositional data

Compositional space

$$\mathbb{C}^{p-1} := \left\{ \boldsymbol{x} = \left[x_1, \dots, x_p \right] \in \mathbb{R}^p \colon x_1 + \dots x_p = 1, \, x_j > 0 \ \forall j \right\}$$

- \square For $x, y \in \mathbb{C}^{p-1}$ and $c \in \mathbb{R} \setminus \{1\}$,
 - ightharpoonup (i) $x+y \notin \mathbb{C}^{p-1}$, (ii) $c \cdot x \notin \mathbb{C}^{p-1}$, (iii) $x-y \notin \mathbb{C}^{p-1}$

PCA for zero-inflated compositional data¹

☐ Global compositional PCA solves the following optimization problem:

$$\underset{\mu \in \mathbb{C}^{p-1}, \mathbf{U}, \mathbf{V}}{\text{minimize}} \sum_{i=1}^{n} ||\mathbf{x_i} - \mu - \mathbf{V}\mathbf{u_i}||_2^2$$

subject to

 \triangleright U = [u₁, ..., u_n]^T and V have orthogonal and orthonormal columns

$$\triangleright \mu + \mathbf{V}\mathbf{u}_i \in \mathbb{C}^{p-1}$$
 for all $i = 1, ..., n$

*Prot: Proteobacteria: Firm: Firmicutes: Actin: Actinobacteria: Bact: Bacteroidetes

¹ Kim, K., Park, J., and Jung, S. (2024). Principal component analysis for zero-inflated compositional data, Computational Statistics and Data Analysis, 198, 107989.

[2] Shape data from a brain MRI

☐ This study tests for shape differences in the hippocampus, derived from brain MRI, between a Parkinson's disease (PD) group and a normal control group.

Discrete-skeletal representation of a shape

- ☐ For simplicity, we use a discrete-skeletal representation (ds-rep). This represents a shape with:
 - spine centroid (red point)
 - \triangleright n_c connection directions (green arrows) and their lengths
 - \triangleright n_s spoke directions (blue arrows) and their lengths

The shape space of ds-reps

☐ Then, from an individual, the following variable is collected:

$$\mathbb{R}^3 \times (\mathbb{S}^2)^{n_c} \times \mathbb{R}^{n_c}_+ \times (\mathbb{S}^2)^{n_s} \times \mathbb{R}^{n_s}_+$$
 centroid connections spokes

where
$$\mathbb{S}^{q-1}$$
: = { $\mathbf{x} \in \mathbb{R}^q : x_1^2 + \dots + x_q^2 = 1$ }, $\mathbb{R}_+ = \{ \mathbf{x} \in \mathbb{R} : \mathbf{x} > 0 \}$

- \square Here, \mathbb{S}^{q-1} is also clearly non-Euclidean space.
- ☐ We focus on a direction at a single spoke or connection.
 - \triangleright It lies on a two-dimensional sphere (\mathbb{S}^2).

Two-sample testing for spherical responses²

□ PD group ~ $vMF(\mu_1, \kappa_1)$ vs. Control group ~ $vMF(\mu_2, \kappa_2)$

with a pdf
$$f_{vMF}(\mathbf{y}; \boldsymbol{\zeta}, \kappa) = C_q(\kappa) \cdot \exp(\kappa \cdot \boldsymbol{\zeta}^T \mathbf{y})$$

- > ζ: mean direction
- $\triangleright \kappa$: concentration parameter

² Kipoong Kim and Sungkyu Jung (2025+). Generalized linear model for spherical response with projection-based inference

[3] Non-Euclidean data integration

- ☐ Structural decomposition for multiple (non-)Euclidean datasets:
 - Joint variation (red arrow)
 - Individual variation (blue arrow)

Multi-source data integration

■ Joint and Individual Variation Explained (JIVE) model

$$\begin{bmatrix} \mathbf{X}_{(1)}^T \\ \vdots \\ \mathbf{X}_{(D)}^T \end{bmatrix} = \underbrace{\begin{bmatrix} \boldsymbol{\mu}_{(1)} \\ \vdots \\ \boldsymbol{\mu}_{(D)} \end{bmatrix}}_{\text{Intercept}} \mathbf{1}_n^T + \underbrace{\begin{bmatrix} \mathbf{V}_{(1)} \\ \vdots \\ \mathbf{V}_{(D)} \end{bmatrix}}_{\text{Joint}} \mathbf{U}_{(0)}^T + \underbrace{\begin{bmatrix} \mathbf{A}_{(1)} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{A}_{(D)} \end{bmatrix}}_{\text{Individual}} \underbrace{\begin{bmatrix} \mathbf{U}_{(1)}^T \\ \vdots \\ \mathbf{U}_{(D)}^T \end{bmatrix}}_{\text{Error}} + \underbrace{\begin{bmatrix} \mathbf{E}_{(1)} \\ \vdots \\ \mathbf{E}_{(D)} \end{bmatrix}}_{\text{Error}}$$

 \Box For the *d*-th source case:

$$\mathbf{X}_{(d)} = \mathbf{1}\boldsymbol{\mu}_{(d)}^T + \mathbf{U}_{(0)}\mathbf{V}_{(d)}^T + \mathbf{U}_{(d)}\mathbf{A}_{(d)}^T + \mathbf{E}_{(d)},$$
 Where $\mathbf{U}_{(0)} \in \mathbb{R}^{n \times r_0}$, $\mathbf{V}_{(d)} \in \mathbb{R}^{p_d \times r_0}$, $\mathbf{U}_{(d)} \in \mathbb{R}^{n \times r_d}$, $\mathbf{A}_{(d)} \in \mathbb{R}^{p_d \times r_d}$

■ We will extend this JIVE model to non-Euclidean case

Thank you for your attention!