Recta de Euler

La recta de Euler de un triángulo es aquella recta en la que están situados el ortocentro, el circuncentro y el baricentro de un triángulo. Euler demostró que en cualquier triángulo el ortocentro, el circuncentro y el baricentro están alineados.

En los triángulos equiláteros, estos cuatro puntos coinciden, pero en cualquier otro triángulo no lo hacen, y la recta de Euler está determinado por dos cualesquiera de ellos.

Demostración.

Sea $\triangle ABC$ cualquiera y sean H, G, O su ortocentro, su baricentro y su circuncentro, respectivamente. Sean D, E, F los puntos medios de los lados AB, BC, CA, respectivamente.

Como la recta AH es altura y la recta EO es mediatriz del $\triangle ABC \Rightarrow BC \bot EO$ y $BC \bot AH \Rightarrow EO || AH$, por lo que con la recta AE se cumple que $\angle AEO = \angle EAH$ por ser alternos internos ...(1).

Como AE es una mediana en el $\triangle ABC \Rightarrow AG = 2GE \dots (2)$.

El $\triangle EFD$ es el triángulo medial del $\triangle ABC$, por lo que sus longitudes se encuentran en razón 1 : 2. Como cada mediatriz del $\triangle ABC$ es una altura del $\triangle EFD \Rightarrow O$ es el ortocentro del $\triangle EFD$, por lo que, entre los triángulos, EO es la longitud correspondiente a $AH \Rightarrow AH = 2EO$...(3). Con un razonamiento análogo se demuestra que BH = 2FO y CH = 2DO.

Por el criterio de semejanza LAL (Por (2), (1) y (3)) se tiene que $\triangle EOG \sim \triangle AHG$, por lo que $\angle OGE = \angle HGA$ y por consecuencia, H,G,O son colineales.

∴ Queda demostrado que el ortocentro, circuncentro y baricentro de un triángulo son colineales.