Back-Office Web Traffic on the Internet

Enric Pujol TU-Berlin

Philipp Richter TU-Berlin

Balakrishnan Chandrasekaran Duke University

Georgios Smaragdakis MIT / TU-Berlin / Akamai

Anja Feldmann TU-Berlin

Bruce Maggs Duke University / Akamai

Keung-Chi Ng Akamai

IMC 2014

Vancouver, BC, CANADA

November 5-7, 2014

The Web for an end user

AdPublisher

The front-office

Behind the scenes...

Search engines: crawlers

Content delivery: proxies

AdExchanges: real-time bidding

Agenda

- 1. Introduction
- 2. Methodology and datasets
- 3. Characteristics
 - 1. Traffic
 - 2. Patterns
 - 3. Inter-domain perspective
- 4. CDN back-office traffic
- 5. The end-user perspective
- 6. Summary and implications

Vantage points (VP)

Туре	VP	Daily traffic	Observations	
IXPs	L-IXP	11,900 TB	SFlow (1/16K)	
	M-IXP	1,580 TB		
Transit	BBone-1	40 TB	Packet sampled (1/1K)	
	BBone-2	70 TB		
Content	CDN	350 TB	5 locations	
Eyeballs	RBN	35 TB	Packet dumps	

Diverse vantage points: multiple perspectives

Dual role IPs are prime candidates

Heavy hitter IPs are also prime candidates

Sources of back-office Web traffic

Sources of back-office Web traffic

Dual-role IPs: active measurements

		Client only (%)	%) Server only (%) Dual-role (%	
L-IXP	Passive	96.90	2.74	0.36
	Passive+Active	93.85	2.74	3.40

ZMap project: Internet-wide scan of Web Servers (scans.io)

Observations:

- 1. Most IPs have only client behavior
- 2. Many servers also show client behavior

Active measurements augment the number of servers

Crawlers:

• Reverse DNS + Origin AS

Crawlers:

Reverse DNS + Origin AS

3.9K IPs, 74% in <u>2 orgs</u>

Auctioneers:

• URL + Origin AS

316 IPs<u>, 4 orgs</u>

Crawlers:

Reverse DNS + Origin AS

3.9K IPs, 74% in <u>2 orgs</u>

Auctioneers:

• URL + Origin AS

316 IPs<u>, 4 orgs</u>

Content Delivery Proxies:

Origin AS + Reverse DNS (for caches)

36K IPs, <u>8 orgs</u>

Crawlers:

Reverse DNS + Origin AS

3.9K IPs, 74% in <u>2 orgs</u>

Auctioneers:

• URL + Origin AS

316 IPs<u>, 4 orgs</u>

Content Delivery Proxies:

Origin AS + Reverse DNS (for caches)

36K IPs, <u>8 orgs</u>

Other:

Rest of dual-role IPs

151K IPs, mostly in <u>cloud prov</u>.

Agenda

- 1. Introduction
- 2. Methodology and datasets
- 3. Characteristics
 - 1. Traffic
 - 2. Patterns
 - 3. Inter-domain perspective
- 4. CDN back-office traffic
- 5. The end-user perspective
- 6. Summary and implications

Traffic

At least 10% in our VPs

Traffic: Contribution per class

		CDPs	Auctioneers	Crawlers	Other
L-IXP	Bytes	12.1 %	1.1 %	10.3 %	76.5 %
	Requests	11.8 %	22.5 %	15.1 %	50.6 %

Observations:

- 1. CDPs
- 2. Real-time bidding
- 3. Crawlers
- 4. Other

big players – significant share many but small transactions a few orgs – significant share cloud service providers

All classes contribute. More to discover

Traffic patterns: bytes

% back-office Web traffic increases during off hours in IXPs

Traffic patterns: requests

Observations:

- 1. A multiplicative factor of human activity (e.g., RTB)
- Non-human triggered activity (e.g., crawlers)

Inter-domain perspective

Back-office traffic appears in many peering links

Agenda

- 1. Introduction
- 2. Methodology and datasets
- 3. Characteristics
 - 1. Traffic
 - 2. Patterns
 - 3. Inter-domain perspective
- 4. CDN back-office traffic
- 5. The end-user perspective
- 6. Summary and implications

Three sub-classes of back-office traffic

Public: front-end back-end over the Internet

Private: within same cluster

Origin: inter-organization over the Internet

Back-office per location

CDNs heavily rely on back-office traffic

Agenda

- 1. Introduction
- 2. Methodology and datasets
- 3. Characteristics
 - 1. Traffic
 - 2. Patterns
 - 3. Inter-domain perspective
- 4. CDN back-office traffic
- 5. The end-user perspective
- 6. Summary and implications

The end-user perspective

Residential broadband network: backbone latency (no access)

A smaller front-office: but the back-office may be large

Summary

- 1. A back-office to support the Web
- 2. Significant traffic: bytes and requests
- 3. Different type of traffic patterns
- 4. Visible at multiple peering links

An important yet understudied class of traffic

Implications

Feasibility to deploy new protocols:

• It is easier to change the back office than the front office

Implications

Feasibility to deploy new protocols:

It is easier to change the back office than the front office

Performance evaluation:

- Interactions with the back office
- More users than anticipated

Implications

Feasibility to deploy new protocols:

It is easier to change the back office than the front office

Performance evaluation:

- Interactions with the back office
- More users than anticipated

Opportunities:

- ISPs: micro-data centers, virtualized services
- IXPs: co-location strategies
- NSPs: new services e.g., SLAs

Back-office traffic on the Internet

