1 线性映射的进一步练习

- 1. 给定一个 R^n 到自己的线性映射f, 这个线性映射满足条件 $f^2 = I$, 这里I是单位映射。
 - (a) 求f可能的特征值。
 - (b) 定义 $W_+ = \{v \in R^n | fv = v\}, W_- = \{v \in R^n | fv = -v\}.$ 证明: 任何 向量都可以写成下面的形式 $v = v_+ + v_-$, 这里 $v_+ \in W_+$, $v_- \in W_-$.
- 2. 给定一个 R^n 到自己的线性映射f, 这个线性映射满足条件 $f^2 = f$. 如果f对应的矩阵A的秩为r. 那么A的对角线元素之和为多少?
- 3. 给定一个 R^n 到自己的线性映射f, $Im(f) \cap ker(f) = \{0\}$ 的条件是什么?
- 4. 给定一个线性映射 $f: R^n \to R^m$. 我们之前定义了一个矩阵的norm: $|A|_{norm} = \max_{x \neq 0} \frac{|Ax|}{|x|}$. 选一组基之后,我们可以用线性映射对应的矩阵的norm来定义一个线性映射的norm。
 - (a) 在不同基的选取下线性映射有不同的矩阵, 换基之后我们有新的矩阵 $A' = Q^{-1}AP$, 如果我们要求矩阵的范数不变,求换基矩阵Q和P需要满足的的性质。
 - (b) 我们计算了矩阵的norm等于A的最大的奇异值。假设 $|\lambda_1|$ 是A的绝对值最大的特征值,证明: $\sigma_1 \geq |\lambda_1|$.
- 5. 一个 R^n 到 R^n 的线性映射T称之为幂零(nilpotent)的,如果存在一个正整数k使得 $T^k = 0$,这里0是指零映射。
 - (a) 证明一个线性映射T是幂零的当且仅当它所对应的特征多项式 $det(\lambda I A) = \lambda^n$. 这里A是线性映射的表示矩阵。
 - (b) 证明: 如果T是幂零的,那么 $T^n = 0$. 利用这个结果,写下所有二乘二的幂零矩阵。
 - (c) 一个线性映射T叫做幂幺(unipotent), 如果T I是 幂零的。 决定一个幂幺矩阵的特征多项式。并决定它的可能的特征值。
 - (d) 一个线性映射T叫做拟幂幺(quasi-unipotent), 如果 $T^k I$ 是 幂零的, 这里k是一个正整数。 决定它的可能的特征值的形式。
- **6. 证明**: 一个 R^n 上的线性映射f可以上三角化 (总可以找到一组基,使得对应的矩阵为上三角矩阵).
- 7. 我们之前证明了:如果一个n×n的矩阵A有n个线性独立的特征向量,那么我们可以用相似变换把A变成一个对角矩阵,且对角元为矩阵A的特征值。对于一个一般的矩阵,我们可以把它变成一个所谓的若当标准型。这周,我们先研究一下广义特征向量。
 - (a) 我们有所谓的广义特征值方程 $(\lambda I A)^n x = 0$, 这里n是任意一个正整数, x是一个非0向量.
 - i. 上述广义特征值方程有解,当且仅当 λ 是A的特征值。

- ii. 取A的一个特征值 λ_1 。固定一个 n,那么 $(\lambda_1 I A)^n x = 0$ 的解空间(加上零向量)构成一个线性子空间,记这个子空间为 $N_n(\lambda_1)$. 证明:1): $N_1(\lambda_1) \subset N_2(\lambda_1) \subset N_3(\lambda_1) \subset ...$; 2): 存在一个k,使得 $N_{k-1}(\lambda_1) \neq N_k(\lambda_1)$,但是 $N_k(\lambda_1) = N_{k+1}(\lambda_1) = N_{k+2}(\lambda_1) = ...$
- iii. 证明: $N_k(\lambda_1)$ 是A的不变子空间。(A的不变子空间 V指: 对任何的 $v \in V$,我们有Av还是属于V.)
- iv. 证明: $Im(\lambda_1 I A)^k \cap Ker(\lambda_1 I A)^k = 0$.
- v. 证明: $N_k(\lambda_1)$ 的维数等于 λ_1 的代数重数。

2 张量

- 1. 考虑一个三维的线性空间 $V = R^3$. 我们在V中取一组基 (e_1, e_2, e_3) . 考虑它的对偶空间 V^* , 这个对偶空间的基定义为 $e^{i*}(e_i) = \delta_{ij}$.
 - (a) 证明: e^{1*} , e^{2*} , e^{3*} 是线性相关,且张开对偶空间.
 - (b) 写下 e^{1*} , e^{2*} , e^{3*} 对应的矩阵。我们取R中的基为1.
 - (c) R^3 中的一个向量可以写成 $\vec{x} = x^1e_1 + x^2e_2 + x^3e_3$,任何一个线性映射 $f: R^3 \to R$ 都可以写成 e^{1*}, e^{2*}, e^{3*} 的线性组合 $f = f_1e^{1*} + f_2e^{2*} + f_3e^{3*}$. 写下 $f(\vec{x})$ 的表达式。(用f在上面构造出的基的坐标。)
 - (d) 换一组基之后 $E^{'}=EP$ ($E=[e_{1},e_{2},e_{3}],E^{'}=[e_{1}^{'},e_{2}^{'},e_{3}^{'}]].$ 计算对偶基的变换公式,一个向量坐标变换公式,以及一个线性映射坐标变换。
- 2. 考虑一个二维线性空间 V. 我们考虑张量积 $V^* \otimes V^*$ 。选定V的一组基 (e_1,e_2) , 我们得到 V^* 的一组基.
 - (a) $V^* \otimes V^*$ 的一个元素是一个双重线性映射 $f: V^2 \to R$. 写下 $V^* \otimes V^*$ 的一组基,写下一个该线性空间的向量在这组基下的坐标.
 - (b) 换一组基之后 $E^{'}=EP$, 计算 $V^{*}\otimes V^{*}$ 中一个向量在新基下的坐标和原来基下坐标的变换。
- 3. 考虑一个三维空间 R^3 。选定一组标准的正交归一基 (e_1, e_2, e_3) ,那么 R^3 中一个向量的坐标为 (x^1, x^2, x^3) . 转动惯量定义为

$$M^{ij} = m(|x|^2 \delta^{ij} - x^i x^j) \tag{1}$$

这里 $|x|^2 = (x^1)^2 + (x^2)^2 + (x^3)^2$. 如果我们换一组基之后

$$e_{i}^{'} = \sum_{j=1}^{3} e_{j} P_{ji} \tag{2}$$

- (a) 写下一个向量在新的基下面的坐标 $(x^{'1}, x^{'2}, x^{'3})$ 。
- (b) 如果我们需要保持一个向量的长度, 那么对矩阵P的限制是?

(c) 证明在保长变换下, $M^{'ij}$ 和原来的 M^{ij} 的变换关系是

$$M^{'ij} = \sum_{k=1}^{3} \sum_{l=1}^{3} (P^{-1})^{i}_{k} P^{-1}^{j}_{l} M^{kl}$$
 (3)

这里 $(P^{-1})^i_k = (P^{-1})_{ik}$. 也就是说转动惯量是一个二阶逆变张量。

- (d) 从转动惯量的形式可以看出,它是一个对称矩阵。证明:在保长变换下,M的变换方式就是一个相似变换。 (提示:证明: $M' = P^{-1}MP$). 因为对称矩阵在相似变换下是可以对角化的,而坐标变换是个相似变换,所以转动惯量总是可以在某个坐标系下对角化。
- 4. 这一道题是关于线性空间在狭义相对论的应用。狭义相对论中的时空是一个所谓的四维闵可夫斯基空间。这个空间可以看成一个四维的线性空间,并且我们有一个下面的不定二次型

$$x^T S x = -t^2 + x^2 + y^2 + z^2. (4)$$

这里(t,x,y,z)是选定一组基 (e_1,\ldots,e_4) 之后的任意一个向量的坐标。 (物理上,这个可以理解为选定一个参照系)

- (a) 写下矩阵S。
- (b) 如果我们改变一组基 $(e_1^{'},\ldots,e_4^{'})$ 之后

$$e_{i}^{'} = \sum_{1}^{4} e_{j} P_{ji} \tag{5}$$

物理上,这个换基的操作可以理解为换一个参照系. 物理上对参照系的要求是上面的变换需要保持二次型的形式 $(x^TSx = x^{'T}Sx^{'})$,求对可逆矩阵P的限制。

- (c) 求矩阵P的行列式的可能值。对于每种可能的行列式,写出一个矩阵。
- 5. 量子纠缠是一个流行的概念。现在我们用线性代数中的张量来理解一下这个概念。我们有两个粒子。这两个粒子分别有两个对应的态空间:分别是两个两维的线性空间 H_A 和 H_B . 分别在这两个 线性空间取正交归一基 (e_A^1,e_A^2) , (e_B^1,e_B^2) . 这两组基通常有一些物理意义,比如 e_A^1,e_A^2 这个状态是自旋的本征态(对应自旋为上,下)。 那么两个粒子在一起的态空间就是张量空间 $H_{AB}=H_A\otimes H_B$,它的基为

$$\alpha_1 = e_A^1 \otimes e_B^1, \quad \alpha_2 = e_A^1 \otimes e_B^2, \quad \alpha_3 = e_A^2 \otimes e_B^1, \quad \alpha_4 = e_A^2 \otimes e_B^2 \quad (6)$$

(a) 找到 H_A 上的一个线性变换 σ_A ,使得 e_A^1 , e_A^2 为它的特征向量,特征值分别为+1, -1. 并找出这个线性变换在这组基下的矩阵。类似的,找到一个线性变换 σ_B ,使得 e_B^1 , e_B^2 为它的特征向量,特征值分别为+1, -1. 并找出这个线性映射在这组基下的矩阵. σ_A 可以看成粒子A的自旋对应的算子.

- (b) 求 $\sigma_A \otimes I_B$ 在 α_i 这组基上的矩阵S,这里 I_B 是作用在 I_B 的单位线性变换.。这里我们考虑的是两个线性变换组成的线性空间的张量积.这个空间的元素可以作用在张量空间 I_A B. $\sigma_A \otimes I_B$ 可以看成测量粒子 I_A B的自旋.
- (c) 张量空间 H_{AB} 的一个向量称之为非纠缠态,如果它可以写成下面的形式

$$v \otimes w$$
 (7)

这里 $v \in H_A$, $w \in H_B$. 假设 $v = a_1 e_A^1 + a_2 e_A^2$, $w = b_1 e_B^1 + b_2 e_B^2$. 写下一个非纠缠态在 α_i 这组基下的坐标。检查一个非纠缠态长度是归一的,如果 v和w是归一的。

- (d) 如果一个 H_{AB} 的中的一个向量不能写成上题出的形式则称之为纠缠态,请找出一个纠缠态。
- (e) 写下 $\sigma_A \otimes I_B$ 这个映射在一个非纠缠态的期望值。(这里我们假设非纠缠态的长度是归一的,期望值是 x^TSx ,这里x是一个非纠缠态在 α_i 这组基下的坐标). 观察一下结果对系数的依赖(看一下(c)中的系数.). 从中理解对于一个非纠缠态,对粒子B的状态的了解得不到任何关于粒子A的状态的信息。
- (f) 考虑一个纠缠态

$$\Psi = \frac{1}{\sqrt{2}}e_A^1 \otimes e_B^1 + \frac{1}{\sqrt{2}}e_A^2 \otimes e_B^2 \tag{8}$$

验证它是一个纠缠态,思考一下粒子A的状态怎么和粒子B的状态纠缠在一起?