Esercizi

Algebra e Geometria Corso di Laurea in Informatica 10 Marzo 2016

Esercizio 1. Per quali valori del parametro reale a il polinomio $1+ax+x^2$ appartiene al sottospazio $\langle 1+ax+ax^2,\ a+x+ax^2\rangle$?

Esercizio 2. Si consideri, al variare del parametro reale b, il seguente sistema lineare nelle incognite x, y, z, t:

$$\Sigma_b: \begin{cases} x + by + z + bt = b\\ 2x + y + bz = 2b \end{cases}$$

Sia S_b l'insieme delle soluzioni di Σ_b .

a) Stabilire per quali valori del parametro reale b l'insieme S_b è un sottospazio vettoriale di \mathbb{R}^4 .

Per valori trovati nel punto a):

- b) stabilire se il sistema Σ_b è sempre risolubile e determinare esplicitamente, quando possibile, l'insieme S_b delle soluzioni;
- c) determinare un insieme di generatori per S_b ;
- d) determinare un insieme di generatori per S_b che non sia linearmente indipendente.

Esercizio 3. Stabilire per quali valori del parametro reale k i seguenti vettori di $M_2(\mathbb{R})$ sono linearmente dipendenti:

$$A = \left(\begin{array}{cc} -1 & k+1 \\ k & 0 \end{array} \right), \quad B = \left(\begin{array}{cc} k & 0 \\ -2 & 0 \end{array} \right), \quad C = \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array} \right).$$

Scelto uno dei valori di k trovati, scrivere un vettore come combinazione lineare degli altri.

Esercizio 4.

- a) Stabilire se i vettori (1,1,1) e (1,-1,0) generano \mathbb{R}^3 .
- b) Stabilire se i vettori (1,1,1), (1,-1,0) e (1,0,0) generano \mathbb{R}^3 . In caso affermativo, scrivere il vettore (2,1,1) come loro combinazione lineare. È possibile farlo in due modi diversi?
- c) Stabilire se i vettori (1,1,1), (1,-1,0), (1,0,0) e (0,1,1) generano \mathbb{R}^3 . In caso affermativo, scrivere il vettore (2,1,1) come loro combinazione lineare. È possibile farlo in due modi diversi?
- d) Stabilire se i vettori (1,1,1), (1,-1,0), (1,3,2) e (-1,3,1) generano \mathbb{R}^3 .

Esercizio 5. Sia $W = \{p(x) \in \mathbb{R}_2[x] \mid p(1) = 0\}.$

- a) Verificare che W è un sottospazio vettoriale di $\mathbb{R}_2[x]$.
- b) Determinare un insieme di generatori di W.
- c) Determinare, se possibile, un insieme di generatori di W costituito da polinomi con termine noto nullo.
- d) Determinare, se possibile, un insieme di generatori di W costituito da polinomi di grado 1.
- e) Determinare, se possibile, un insieme di generatori di W costituito da polinomi di grado 2.