Расчет параметров E-антенны с помощью пакета Ветрр

```
Артемьева М.В.^{1}, Калинин М.В.^{2}, Кирякин М.В.^{3}
```

Ментор: Романова A.B., Huawei

5-19 августа 2022

Летняя школа «Матричные методы и моделирование в науках о жизни и Земле»

¹artemeva.mv140physics.msu.ru, ²3lou4yballl0gmail.com,

³makxim.kiryakin@gmail.com

Содержание

- Постановка задачи
 - Геометрия антенны
 - Математическая формулировка задачи
- 2 Метод решения интегральных уравнений
 - Базисные функции
 - Построение сетки
 - Схема метода моментов
- 3 Результаты вычислений
 - Электрическое поле
 - Z-параметр
- 4 Выводы

Геометрия антенны

Два рефлектора соединенны между собой проводом, в центральной части которого находится "порт" — источник тока. Все элементы конструкции антенны считаются идеально проводящими.

Математическая формулировка задачи

$$\mathbf{n} \times \mathbf{E}_{pec} = -\mathbf{n} \times \mathbf{E}_{src},$$

где

$$\mathbf{E}[\mathbf{J}(y)] = \int_{\Sigma} \left\{ \text{grad div} \left[\mathbf{J}(y)G(x-y) \right] + k^2 \mathbf{J}(y)G(x-y) \right\} dy,$$

 Σ — площадь поверхности антенны, k — волновое число, ${\bf J}$ — поверхностные токи, G(x-y) — функция Грина

$$G(x-y) = \frac{e^{ik|x-y|}}{4\pi|x-y|}$$

Базисные функции

$$\mathbf{J} = \sum_{n=1}^{N} J_n \varphi_n,$$

RWG (Rao-Wilton-Glisson) базисные функции

$$\varphi_n(r) = \begin{cases} \frac{l_n}{2A_n^+} \rho_n^+, & r \in tr^+, \\ \frac{l_n}{2A_n^-} \rho_n^-, & r \in tr^-, \end{cases}$$

где A_n — площадь треугольника, ρ_n — вектор, направленный к центру треугольника из противолежащей ребру вершины, l_n — длина ребра.

Построение сетки

Схема метода моментов

Представим неизвестную функцию ${f J}$ в виде разложения по базисным RWG-функциям

$$\mathbf{J} = \sum_{n=1}^N J_n arphi_n, \quad ext{тогда} \quad \sum_{n=1}^N J_n \mathbf{E}_{\mathsf{pec}}[arphi_n] = \mathbf{E}_{\mathsf{src}}[\mathbf{J}_{\mathsf{src}}].$$

Умножим скалярно на тестовую функцию из пространства RWG-функций

$$\sum_{n=1}^{N} J_n \Big(\psi_m, \mathbf{E}_{\mathsf{pec}}[\varphi_n] \Big) = \Big(\psi_m, \mathbf{E}_{\mathsf{src}}[\mathbf{J}_{\mathsf{src}}] \Big)$$

и получим СЛАУ относительно неизвестных коэффициентов J_n :

$$EJ=a, \quad \text{где},$$

$$E_{mn}=-ik\int\limits_{\Gamma_{\text{pec}}}G(x,y)\varphi_n(y)\psi_m(x)ds-\frac{1}{ik}\int\limits_{\Gamma_{\text{pec}}}G(x,y)\nabla\varphi_n(y)\nabla\psi_m(y)ds,$$

$$a_m=ik\int\limits_{\Gamma}\psi_m(y)\mathbf{J}_{\text{src}}G(x,y)dy-\frac{1}{ik}\int\limits_{\Gamma}\nabla\psi_m(y)\mathbf{J}_{\text{src}}G(x,y)dy.$$
 6/12

Вычисление электрического поля на частоте 1,5 ГГц

$$\mathbf{E} = \mathbf{E}_{\mathsf{src}} + \mathbf{E}_{\mathsf{pec}},$$
 где $\mathbf{E}_{\mathsf{src,pec}} = \int\limits_{\Sigma_{\mathsf{src,pec}}} \Big\{ \operatorname{grad} \, \operatorname{div} \left[\mathbf{J}_{\mathsf{src,pec}}(y) G(x-y) \right] + k^2 \mathbf{J}_{\mathsf{src,pec}}(y) G(x-y) \Big\} ds$

поле источника и антенны соответственно.

Вычисление Z-параметра в диапазоне частот 1,6-3,0 ГГц

$$Z = \int_{\Gamma_{\rm src}} \mathbf{J}_{\rm src} \cdot \overline{\mathbf{E}} \ ds,$$

где $\Gamma_{\rm src}$ — поверхность порта, на которой определен электрический ток ${f J}_{\rm src},\,{f E}$ — электрическое поле, \overline{E} — комплексное сопряжение.

Поскольку в функциональном пространстве φ_i электрический ток представляется коэффициентами J_i , справедлива следующая цепочки равенств:

$$Z = \sum_{i=1}^{N} J_{i} \int\limits_{\Gamma_{\mathsf{src}}} \varphi_{i} \cdot \overline{\mathbf{E}} \ ds = \sum_{i=1}^{N} J_{i} \int\limits_{\Gamma_{\mathsf{src}}} (\mathbf{n} \times \varphi_{i}) \cdot (\mathbf{n} \times \overline{\mathbf{E}}) \ ds = \sum_{i=1}^{N} J_{i} \overline{E^{i}},$$

где $\overline{E^i}$ — проекции вектора ${f n} imes\overline{f E}$ на функциональное пространство $\psi_i={f n} imes arphi_i.$

Вычисление Z-параметра в диапазоне частот 1,6-3,0 ГГц

Выводы

- 🛮 Построена треугольная сетка на поверхности Е-антенны
- Поверхностные токи на частоте 1,5 ГГц найдены с помощью метода моментов с базисными функциями RWG
- Вычислено ближнее поле
- Рассчитаны Z-параметры в диапазоне частот 1,6–3,0 ГГц
- **5** Полученные характеристики Е-антенны сравнивались с референсным решением

Основные источники

- *C.A. Balanis*. Modern Antenna Handbook. USA: Wiley-Interscience, 2008.
- The Bempp Handbook

Расчет параметров Е-антенны с помощью пакета Ветрр

Артемьева Маргарита, artemeva.mv14@physics.msu.ru Калинин Михаил, 3lou4yballl@gmail.com Кирякин Максим, makxim.kiryakin@gmail.com

Ментор: Романова Алла Владимировна, Huawei

Летняя школа «Матричные методы и моделирование в науках о жизни и Земле»