Probabilistic graphical models Directed (BNs) and undirected (MRFs) graphs

22-808: Generative models Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Probabilistic graphical models

- A framework to tackle with complex joint distributions
 - Representation
 - Directed graphs: Bayesian network
 - Undirected graphs: Markov random fields
 - Learning
 - Inference
- This lecture
 - Representation in PGMs

Probabilistic graphical models

- Searching in the fully generalized space of distributions even in a simple probabilistic problem is impossible!
- Learn an effective and general technique for parameterizing probability distributions using only a few parameters.

Probabilistic graphical models

- Independencies assumptions are useful
 - Simplify representation and alleviate inference complexities

- Enable us to incorporate domain knowledge and structures
 - Modular combination of heterogeneous parts
 - Combining data and knowledge (Bayesian philosophy)

Bayesian networks

- Directed graphical models are tools to present family of probability distributions that can be naturally described using a directed acyclic graph.
 - Nodes as random variables
 - Edges as dependencies
- The intention behind these parameterization is chain rule!

$$p(x_1, x_2, \dots, x_n) = p(x_1) p(x_2 \mid x_1) \cdots p(x_n \mid x_{n-1}, \dots, x_2, x_1)$$

Bayesian networks

 Bayesian networks represent a joint distribution in terms of the graph structure and conditional probability distributions (CPD)

$$G = (V, E)$$

- A random variable x_i for each node $i \in V$.
- One conditional probability distribution (CPD) $p(x_i \mid x_{A_i})$ per node, specifying the probability of x_i conditioned on its parents' values.

Bayesian networks Discrete example

▶ When the variables are discrete, we may think of the factors (CPDs) as *probability tables*, in which rows correspond to assignments to parents and columns correspond to values of the node.

Bayesian networks Continues example

Bayesian networks

- ▶ A probability distribution is factorized over a *DAG G* if it can be decomposed into a product of factors specified by *G*.
- ▶ A Bayesian network represent distributions via products of smaller, local conditional probability distributions.
 - Introduces independency assumptions over variables
- ▶ I(p): denote the set of all independencies that hold for a joint distribution p.
 - $p(x,y) = p(x)p(y) \to x \perp y \in I(p)$

Bayesian networks

Let G be a graph over $x_1, x_2, ..., x_n$ distribution p factorizes over G if:

$$p(x_1, x_2, ..., x_n) = \prod_{i=1}^n p(x_i | pa(x_i))$$

- $\rightarrow pa(.)$: parents of a node
- ▶ Factorization ⇔ Independence
 - If p factorizes over G, then any variable in p is independent of its non-descendants given its parents (in G)
 - ▶ If any variable in the distribution *p* is independent of its non-descendants given its parents (in the graph *G*) then *p* factorizes over *G*

Independencies described by directed graphs

- Common parent. If G is of the form X ← Z → Y, and Z is observed, then X ⊥ Y | Z. However, if Z is unobserved, then X ⊥ Y.
 Intuitively this stems from the fact that Z contains all the information that determines the outcomes of X and Y; once it is observed, there is nothing else that affects these variables' outcomes.
- Cascade: If G equals $X \to Z \to Y$, and Z is again observed, then, again $X \perp Y \mid Z$. However, if Z is unobserved, then $X \not\perp Y$. Here, the intuition is again that Z holds all the information that determines the outcome of Y; thus, it does not matter what value X takes.
- *V-structure* (also known as *explaining away*): If G is $X \to Z \leftarrow Y$, then knowing Z couples X and Y. In other words, $X \perp Y$ if Z is unobserved, but $X \not\perp Y \mid Z$ if Z is observed.

Independencies described by directed graphs D-separation

- Considering three disjoint sets of nodes:
 - ▶ *A, B, C*
- ▶ A is d-separated from B by C if all paths between A and B are blocked by C
 - There is no active path between A and B
- ▶ A is d-separated from B by C if $A \perp B \mid C$

Path blocking

Head to tail during path

▶ Tail to tail during path

- Head to head, visiting a v-structure
 - Z and none of its descendants are observed

Independencies described by directed graphs

For example, in the graph below, X_1 and X_6 are d-separated given X_2, X_3 . However, X_2, X_3 are not d-separated given X_1, X_6 , because we can find an active path (X_2, X_6, X_5, X_3)

A simple d-separation simulator

Markov blanket of a node

- A variable is conditionally independent of all other variables given its Markov blanket
- Markov blanket if a set A is U when:
 - ▶ The minimal set of nodes such that A is independent from the rest of the graph if U is observed
- Markov blanket of a node:
 - All parents
 - All children
 - Co-parents of children

Independencies described by directed graphs

- If p factorizes over G, then $I(G) \subseteq I(p)$. In this case, we say that G is an **I-map** (independence map) for p.
 - All independencies encoded in G are valid in p
 - However, the converse is not true:
 - \blacktriangleright a distribution may factorize over G, yet have independencies that are not captured in G.

The representation power of BNs

- Can we show all independencies in a distribution p with a DAG?
 - A perfect map: I(G) = I(p)?
 - Not for every distribution exist a perfect map
- ▶ It is easy to reach $I(G) \subseteq I(p)$
 - In a complete graph: |I(G)| = 0
- A minimal I-map G for p: an I-map such that the removal of even a single edge from G will result in it no longer being an I-map.

The representation power of BNs

▶ **I-equivalence**: When two graphs G_1 and G_2 encode a same set of dependencies: $I(G_1) = I(G_2)$

▶ Fact: If G and G' have the same skeleton and the same v-structures, then I(G) = I(G')

Markov random networks

- Undirected graphs for representation of joint distributions
 - Unlike in the directed case, we are not saying anything about how one variable is generated from another set of variables (as a conditional probability distribution would do).

$$\tilde{p}(A, B, C, D) = \phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A)$$

$$\phi(X,Y) = egin{cases} 10 & ext{if } X = Y = 1 \ 5 & ext{if } X = Y = 0 \ 1 & ext{otherwise.} \end{cases}$$
 $p(A,B,C,D) = rac{1}{Z} ilde{p}(A,B,C,D)$

Markov random networks

- They specify dependent variables (but no causality relations) and define the strength of their interactions.
- ▶ This defines an energy landscape over the space of possible assignments and we convert this energy to a probability via the normalization constant.

MRF factorization

- Clique: subsets of nodes in the graph that are fully connected (complete subgraph)
- Maximal clique: no superset of the nodes in a clique are also compose a clique
- Factors are functions of the variables in cliques
 - ▶ To reduce the number of factors we allow factors only for maximal cliques

Max-cliques: $\{A,B,C\}$, $\{B,C,D\}$

MRF factorization

 \blacktriangleright A distribution p(.) is factorized over an MRF G if it can be parameterized as follows,

$$p(x_1, x_2, ..., x_n) = \frac{1}{Z} \prod_{i=1}^{k} \phi_i(D_i)$$
$$Z = \sum_{X} \prod_{i=1}^{k} \phi_i(D_i)$$

where each D_i is a **complete subgraph** of G

When there is no direct edge between two nodes, x_i and x_j , there exist at least the following conditional independency between them:

$$x_i \perp x_j \mid X/\{x_i, x_j\}$$

To hold this independency in p(.), these two variables are not appeared in the domain of a same factor

MRF factorization

- Potential functions:
 - The function over each clique (factor)
- Potential functions and cliques in the graph completely determine the joint distribution.

Potentials are not necessarily marginal or conditional distributions

Markov random networks

Formal definition

A Markov Random Field (MRF) is a probability distribution p over variables x_1, \ldots, x_n defined by an *undirected* graph G in which nodes correspond to variables x_i . The probability p has the form

$$p(x_1,\ldots,x_n)=rac{1}{Z}\prod_{c\in C}\phi_c(x_c),$$

where C denotes the set of *cliques* (i.e., fully connected subgraphs) of G, and each factor ϕ_c is a non-negative function over the variables in a clique. The partition function

$$Z = \sum_{x_1,\dots,x_n} \prod_{c \in C} \phi_c(x_c)$$

Independencies in MRFs

▶ A simple rule:

Variables x and y are dependent if they are connected by a path of unobserved variables.

Markov blanket in MRFs:

- In both BNs and MRFs
- In MRFs: simply all neighbors of a node

MRF example: Image denoising

- ightharpoonup Pixels are noisy observed variables: y_i
- We assume the noise free image as a latent behind the observed pixels: x_i

MRFs compared to BNs

Pros.

- They can be applied to a wider range of problems in which there is no natural directionality associated with variable dependencies.
- Undirected graphs can succinctly express certain dependencies that Bayesian nets cannot easily describe (although the converse is also true)

Cons.

- Computing the normalization constant Z requires summing over a potentially exponential number of assignments.
 - NP-hard; thus many undirected models will be intractable and will require approximation techniques.
- Difficult to interpret.
- It is much easier to generate data from a Bayesian network

Hybrid graphs

- Partially directed acyclic graphs
 - A combination of both directed and undirected graphs

Plate notation

- Plate notation is a rectangle in graphical model representation which shows random variables generated from the same distribution
- Plate notation present a replication of random variables that share same parameters

Generative vs. discriminative models

- In generative models we describe the generation process of observed variables
- In discriminative models, we learn how samples are discriminated
 - Decision boundaries in classifiers

Generative vs. discriminative models Example

- Generative classifier
 - We should learn p(y), p(x|y)

- Discriminative classifier
 - We should learn p(x), p(y|x)
 - Nowever, for classification task p(y|x) is the only thing we need.
 - Less parameters are needed to be learned

When we only need to discriminateBetween samples, discriminative models are preferred.

Generative PGM example Hyperspectral unmixing with PGMs

- A generative model
 - K = number of patches
 - P = number of pixels in each patch
 - N = the dimension of vector A

Generative PGM example Hyperspectral unmixing with PGMs

- A generative model
- A partially directed model
 - With a plate notation and gate structure

Next topic

- Probabilistic graphical models
 - Exact and approximate inference