Exercice 1 (Questions de cours.)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Que peut-on dire du polynôme minimal de deux matrices semblables ?
- 2. Énoncer et prouver le théorème de Cayley-Hamilton.
- 3. Soit u un endomorphisme. Quel est le lien entre les valeurs propres de u et un polynôme annulateur de u?

EXERCICE 2 (Exercice préparé.)

Soit $n \geq 3$ et $A \in M_n(\mathbb{C})$. On suppose que rg A = 2, Tr A = 0, et que $A - I_n$ n'est pas inversible. Donner le spectre de A. La matrice A est-elle diagonalisable?

Exercice 3

Soit
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & -1 \\ -2 & -2 & 1 \end{pmatrix}$$
 la matrice de $f: \mathbb{R}^3 \to \mathbb{R}^3$ dans la base canonique de

- 1. Donner l'expression de f.
- 2. La matrice A est-elle diagonalisable?
- 3. Diagonaliser A.

Exercice 4

Soit $\varphi: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ l'endomorphisme défini par

$$\varphi:\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & a \\ b & c \end{pmatrix}.$$

L'endomorphisme φ est-il diagonalisable ?

Exercice 5

Soit \mathbb{K} un corps et E un \mathbb{K} -espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ un endomorphisme de E tel que rg u = 1.

- 1. Donner une condition nécessaire et suffisante pour que u soit diagonalisable.
- 2. Si u n'est pas diagonalisable, prouver que $u^2 = 0$.

Exercice 6

Soit a_1, \ldots, a_{n-1} et b_1, \ldots, b_{n-1} des nombres réels, avec $n \geq 3$, et soit

$$A = \begin{pmatrix} 0 & \cdots & 0 & b_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & b_{n-1} \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix} \in M_n(\mathbb{R}).$$

- 1. Prouver que rg $A \leq 2$.
- 2. Dans le cas où rg $A \leq 1$, prouver que A est diagonalisable si et seulement si A=0.
- 3. Dans le cas rg A=2, trouver une condition nécessaire et suffisante pour que A soit diagonalisable. Indication : on s'intéressera à la trace de A et A^2 .

Exercice 7

Soit \mathbb{K} un corps et E un \mathbb{K} -espace vectoriel de dimension finie. Soit $f,g\in\mathcal{L}(E)$ deux endomorphismes qui commutent : $f\circ g=g\circ f$.

- 1. Prouver que tout sous-espace propre de f est stable par g.
- 2. Soit F un sous-espace vectoriel de E stable par g. Prouver que si g est diagonalisable, alors $g_{|F}$, la restriction de g à F, est diagonalisable.
- 3. Prouver que si f et g sont diagonalisables, alors ils sont diagonalisables dans une même base.

Exercice 8

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ un endomorphisme. On suppose que f est inversible. Prouver que f^{-1} est un polynôme en f.

Exercice 9

Soit \mathbb{K} un corps et $n \in \mathbb{N}^*$ un entier. Soit $A \in M_n(\mathbb{K})$ une matrice et

$$B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in M_{2n}(\mathbb{K})$$

une matrice par blocs.

- 1. Soit $P \in \mathbb{K}[X]$ un polynôme. Prouver que $P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.
- 2. En déduire une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Exercice 10

Soit $m \in \mathbb{R}$ un nombre réel et

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1. Quels sont les valeurs propres de A?
- 2. Pour quelles valeurs de m la matrice A est-elle diagonalisable ?
- 3. Calculer A^k pour tout $k \in \mathbb{N}$ dans le cas où m = 2.