

Introduction to AMS Behavioral Modeling in SOC

Prof. Chien-Nan Liu Institute of Electronics National Chiao-Tung Univ.

Tel: (03)5712121 ext:31211 E-mail: jimmyliu@nctu.edu.tw http://mseda.ee.nctu.edu.tw/jimmyliu

Outline

- AMS circuits in SOC
- Behavioral modeling for analog circuits
- Applications of analog models
 - Noise interactions in AMS systems
 - Supply noise aware behavioral modeling
 - SCORE macromodel
 - Yield Enhancement
 - Analysis of process variation effects
 - Process variation aware behavioral modeling

AMS Blocks in SOC

- Analog/Mixed-Signal (AMS) definitions
 - Analog: designs contain continuous signal (ex. continuous time filter, OP amp., mixer...)
 - Mixed-signal: designs contain both analog and digital signals (ex. A/D, D/A, PLL...)
 - Mainly focused on analog functionality
- SOC designs often include the analog interface to the outside world
- Synthesis still does not exist for AMS blocks
 - AMS languages only model the behavior of AMS blocks
 - Today, AMS VCs are in hard (layout) form

Prof. Chien-Nan Liu

P.3

Major Respin Causes

Collett Intl. 2000 Survey

Noise Coupling in AMS Designs

Source: Workshop on Substrate Noise-Coupling in Mixed-Signal ICs, Imec, Belgium, Sep. 2001

Prof. Chien-Nan Liu

P.5

Conventional MS Design Approach

- Design/simulate digital and analog circuits separately
 - May miss the interaction effects
- Can perform co-simulation at transistor level only
 - High complexity
 - Too slow
- Solutions
 - Use a systematic, top-down design approach to capture design intent
 - Develop some tools to rapidly target for different requirements

Traditional Analog Simulation

- Analog designers have been using SPICE or SPICE-like tools for analog simulation over 30 years
 - Contain models of circuit elements (R, L, C, ...)
- Perform various analysis of circuits with high accuracy
 - DC, AC, transient, TF, ...
- Limited to small circuits due to long computation time
- Existing fast spice products are not still suitable for nanometer circuit analysis
 - Insufficient accuracy caused by simplified model
 - Latency assumption fails to address logically idle but electrically active nature of nanometer circuit behavior

Prof. Chien-Nan Liu

P.7

Top-Down AMS Design Flow

Starting from behavioral models to check system behavior

Adv. Of Top-Down Methodology

- A widely accepted concept for digital designs
- Start design by using behavioral modeling
- Allow system simulation and architecture verification
- Allow design and verification of the circuit architecture before block design
- Allow mixed-level simulation with other digital circuits
- Allow changes with minimum impact to the design cycle

Prof. Chien-Nan Liu

P.9

Outline

- AMS circuits in SOC
- Behavioral modeling for analog circuits
- Applications of analog models
 - Noise interactions in AMS systems
 - Supply noise aware behavioral modeling
 - SCORE macromodel
 - Yield Enhancement
 - Analysis of process variation effects
 - Process variation aware behavioral modeling

Analog Behavioral Modeling

- A mathematical model written in Hardware Description Language (HDL)
 - Verilog-AMS
 - VHDL-AMS
 - Matlab
 - C/C++
 -
- Emulate circuit block functionality by sensing and responding to circuit conditions
 - Simulate at behavioral level
- Faster simulation time
 - Allow whole chip simulation

Prof. Chien-Nan Liu

P.11

An Example of Verilog-AMS Code

- Keys to a good behavioral model
 - Concise mathematical equations of the behavior
 - For faster simulation time
 - Appropriate value for each parameter
 - For accurate simulation results

Top-down Modeling Approach

Bottom-Up Modeling Approach

- While using existing blocks, bottom-up behavior extraction is required for system verification
 - An interesting research direction
- Bottom-up approach can be much accurate
 - More accurate (loading effects, parasitic effects, ...)
 - Actual non-ideal circuit information
 - Signal interaction effects
- Bottom-up approach can still effective when those design parameters are hard to obtain
 - Only have flattened transistor-level design
 - Suitable for IP-based designs (SOC designs)

Bottom-Up Behavior Extraction

Prof. Chien-Nan Liu

P.15

Accurate Behavior Extraction

- Bottom-up extraction from simulation results
 - More accurate
 - Still useful for flattened designs
- Do not separate into sub-blocks
 - Correctly deal with timing information, loading, parasitics and interactions
- Do not measure from normal operations
 - Develop a special characterization mode
 - Easily send special patterns to trigger the circuit
 - Long extracting time can be avoided

Characterization Mode

Example: Charge Pump Phase-Locked Loop (CPPLL)

(Extraction patterns)

C.C. Kuo, Y.C. Wang, and **C.N. Liu**, "An Efficient Approach to Build Accurate PLL Behavioral Models of PLL Designs", *IEICE Trans. on Fundamentals (SCI)*, vol. E89-A, no. 2, pp. 391-398, Feb. 2006.

C.C. Kuo, Y.C. Wang, and **C.N. Liu**, "An Efficient Bottom-Up Extraction Approach to Build Accurate PLL Behavioral Models for SOC Designs", *ACM/IEEE GLSVLSI*, pp. 286-290, Apr. 2005.

Prof. Chien-Nan Liu

P.17

Extract Circuit Properties

Prof. Chien-Nan Liu

Case Study

- Charge pump PLL
- Use Verilog-AMS language to describe PLL behaviors
- Simulation environment:
 - Analog Artist (Cadence)
 - Simulator: Spectre

	Specification
Process	TSMC 0.18um
Input freq.	25MHz
Output freq.	800MHz
T _{lock}	< 5us
pk-pk Jitter	< 20ps

Prof. Chien-Nan Liu

P.19

Ideal Behavioral Model

Use the embedded behavioral blocks from Cadence's AHDL library

Prof. Chien-Nan Liu

Extracted Behavioral Model

Prof. Chien-Nan Liu

P.21

Peak-to-peak Jitter

Similar Frequency Responses

Prof. Chien-Nan Liu

P.23

Outline

- AMS circuits in SOC
- Behavioral modeling for analog circuits
- Applications of analog models
 - Noise interactions in AMS systems
 - Supply noise aware behavioral modeling
 - > SCORE macromodel
 - Yield Enhancement
 - Analysis of process variation effects
 - Process variation aware behavioral modeling

Possible Applications

- Using analog behavioral models has fast simulation time
 - Can be used to replace the time-consuming simulation process in traditional design flow
 - Model accuracy is the key issue to be solved
- Used for system simulation with digital/analog circuits
 - Digital circuits are too large to be simulated by HSPICE
- Used for analyzing the noise effects in analog circuits
 - Noise-aware behavioral models can help to check noise issues
- Used for analyzing the design yield of analog circuits under process variation
 - Fast simulation time can speedup the Monte Carlo simulation
 - Enable designers to make improvement at behavioral level

Prof. Chien-Nan Liu

P.25

Analog Models in System Design

Transmission link system

Digital: by Verilog HDL

AMS System Simulation

Simulation Time: 2727 sec (5000 data)

Outline

- AMS circuits in SOC
- Behavioral modeling for analog circuits
- Applications of analog models
 - Noise interactions in AMS systems
 - Supply noise aware behavioral modeling
 - SCORE macromodel
 - Yield Enhancement
 - Analysis of process variation effects
 - Process variation aware behavioral modeling

Analog Performance Variations

- PVT (Process, Voltage, and Temperature) variations have large performance impact
 - Process variation
 - Supply noise especially from digital circuits
 - Substrate noise
 - Temperature issue
- Performance variation analysis of analog circuits often needs expensive transistor-level simulation
- Efficient analyzer is necessary for system design
 - Variation-aware behavioral modeling approach

Prof. Chien-Nan Liu

P.29

Noise-Aware Behavioral Models

- Process variation and outside noise have large impacts on analog circuits
 - Often appear as random variables
- Typical approach: model the performance (timing, jitter, ...) as a function of those random variables
 - Use curve fitting to obtain the parameters of those functions
 - # variables \uparrow , complexity \uparrow
- Alternative approach:
 - Use behavioral models
 - Find suitable internal parameters instead of trying to fit the final performance directly

Supply Noise

- Issues
- Impacts
- L di/dtIR drop
- Performance loss
- Yield loss

Prof. Chien-Nan Liu

P.31

Stochastic Analysis Approaches

Regular Noise Analysis

Prof. Chien-Nan Liu

P.33

Handle Irregular Supply Noise

- Behavioral-level simulation
 - Save much simulation time
 - Dynamic adjustment
 - Real-time calculation using current noise status
- Suitable for real systems
 - Handle unpredictable noise

C.C. Kuo and **C.N. Liu**, "Accurate Behavioral Modeling Approach for PLL Designs with Supply Noise Effects", IEEE BMAS, pp. 48-53, Sept. 2005.

C.C. Kuo and **C.N. Liu**, "On Efficient Behavioral Modeling to Accurately Predict Supply Noise Effects of PLL Designs in Real Systems", IFIP *VLSISOC*, pp. 116-121, Oct. 2006.

Linear Model for Intermediate Parameters

For example:

$$T_d + \Delta t = f(V_{DD} + \Delta v dd)$$

Sensitivity analysis under different V_{DD}:

$$S_E = \frac{\Delta delay}{\Delta V_{DD}} (constant)$$

$$S_{E} = \frac{(T_{d} + \Delta t) - T_{d}}{(V_{DD} + \Delta v dd) - V_{DD}} \qquad \begin{pmatrix} S_{E}^{+} & \text{for } \Delta v dd > 0 \\ S_{E}^{-} & \text{for } \Delta v dd < 0 \end{pmatrix}$$

Prof. Chien-Nan Liu

P.35

Simulation with Supply Noise

		Circuit-level	Ours	Noise free model
	V _{max} (V)	1.095	1.102	1.083
From V _{ctrl} waveform	V _{lock} (V)	1.0352	1.0348	1.034
	ΔV _{ctrl} (mV)	6.6	6.8	6.1
	pk-pk PJ @ 800MHz (UI)	0.0176	0.016	0.0082
	T _{simulation} (sec)	40413	1507	824

Noise Issues in AMS Integration

- Using a noise-aware behavioral model may not accurate to analyze supply noise effects
 - V_{DD} waveform is independent on PLL behaviors
 - Only consider the external supply noise
 - When the noise affects PLL behaviors, the behavior changes also influence the noise waveform

Prof. Chien-Nan Liu

P.37

SCORE Macromodel for Noise Interaction

- SCORE: State-controlled resistors
- Help PLL models handle supply noise interaction issues
 - Provide accurate V_{DD} waveforms with PLL interactions
 - Can be combined with other noise-aware approaches

Ideas of SCORE Macromodel

- Treat whole PLL design as a black-box
- Approximate the PLL behaviors under a parasitic power line
- Not record entire PLL IDD waveform to reduce cost
 - Extract the peak voltages induced by the PLL IDD, peak
- Model the PLL as state-controlled switches and resistors
 - PLL behaviors in system view: 3-state machine

Prof. Chien-Nan Liu

P.39

Recursive Simulation Platform for PLL

- The real-time supply noise V(t) affects the PLL behaviors
- The PLL behaviors also affect the supply noise V(t)
 - Supply noise is not only an independent input
 - V(t) also varies with real-time circuit behavior

(just like using a transistor-level simulator)

Experiments

Without SCORE Macromodel

- Replace the PLL nelist by
 - Only using a noise-aware PLL behavioral model

Prof. Chien-Nan Liu

Recursive Approach

- Replace the PLL nelist by
 - PLL behavioral model + SCORE macromodel

Prof. Chien-Nan Liu

P.43

Comparison Results

Ideal V _{DD} = 1.8V		With supp	ly noise int	No interaction		
		HSPICE	With SCORE	Error (%)	No SCORE	Error (%)
	PPV (V)	1.8113	1.8095	0.1	1.8035	0.4
Supply	NPV (V)	1.7763	1.7737	0.2	1.7881	0.7
noise	RMS value (mV)	6.75	6.38	5.4	5.04	25.4
waveform	Correlation coefficient	1	0.92	-	0.72	-
	V _{lock} (V)	0.9945	0.9943	0.02	0.9940	0.05
PLL responses	T _{lock} (us)	3.505	3.482	0.7	3.561	1.6
	pk-pk jitter (ps)	34.3	35.2	2.6	27.5	19.8
T _{extract} for SCORE (sec)		-	247	-	-	-
T _{sim} (sec)		37721	1218	-	1153	-

fast and accurate

Outline

- AMS circuits in SOC
- Behavioral modeling for analog circuits
- Applications of analog models
 - Noise interactions in AMS systems
 - Supply noise aware behavioral modeling
 - > SCORE macromodel
 - Yield Enhancement
 - Analysis of process variation effects
 - Process variation aware behavioral modeling

Prof. Chien-Nan Liu

P.45

Process Variation

Yield Loss Issues

- In deep-submicron technology, yield loss issues are more and more serious
- Parametric variability will dominate yield loss

Prof. Chien-Nan Liu

P.47

Model Corner

FF

FS

: Real Data

SF

SS

Corner Simulation

- Typical verification approach: simulating the process corners
 - Provided in technology file
 - Require only a few simulations
- Often results in over-design
 - Things may not go so worse
- The process corner may not the real distribution corner
 - Wrong estimation
- There are more and more corners in advanced process
 - Combinations of every PVT corners (process, voltage, temperature) are huge
 - How to simulate hundreds of corners?

Monte Carlo

Phase Margin

Courtesy: Solido Design Automation

Phase Margin

Phase Margin

Phase Margin

Phase Margin

Prof. Chien-Nan Liu

Monte Carlo (MC) Analysis

- MC analysis is a comprehensive method to check the process variation effects
 - Corner simulations often result in over design
- Simulate a circuit with random samples of devices variations (ex: W, L, V_t, and T_{ox} variations)
 - Huge amount of simulations
- Transistor-level simulation is often required for analog circuits
 - Extremely time-consuming

Prof. Chien-Nan Liu

P.49

Hierarchical Statistical Analysis

- Hierarchical statistical analysis is popular to improve the analysis speed
- Regression-based approach
 - Regression cost is often expensive
 - Poor observability

 (only statistical numbers)
- Our approach: use behavioral models
 - Avoid fitting the final performance directly

Behavioral Monte Carlo Analysis

- Behavioral Monte Carlo Simulation (BMCS)
 - Take a CPPLL design as the first study case to analyze its process variation effects

- The behavioral model accuracy is the most critical issue
 - Ideal top-down model is not accurate enough
 - Use bottom-up method to extract actual circuit properties to improve the accuracy
- Sensitivity analysis (SA) and quasi-SA models are adopted instead of RSM
 - Timing: traditional SA (linear)
 - Analog: quasi-SA (non-linear)

C.C. Kuo, M.J. Lee, C.N. Liu, and C.J. Huang, "Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models", IEEE Trans. on Circuits and Systems I, pp.1160-1172, Jun. 2009.

Prof. Chien-Nan Liu

P.51

Quasi-SA for CP

lacktriangle Estimate the **current variation ratio** under V_t variation:

$$ratio(\Delta V_{t}) = \frac{I_{CP}(\Delta V_{t})}{I_{CP,0}} \cong \frac{\left[V_{GS} - (V_{t0} + \Delta V_{t})\right]^{2}}{(V_{GS} - V_{t0})^{2}} = \left(\frac{(V_{GS} - V_{t0}) - \Delta V_{t}}{V_{GS} - V_{t0}}\right)^{2}$$
$$= \left(1 - \frac{\Delta V_{t}}{V_{GS} - V_{t0}}\right)^{2} = \left(1 - \frac{\Delta V_{t}}{k}\right)^{2}$$

Extract the k value

- Same extraction time as in traditional SA
- More accurate: similar to HSPICE results

P.52

Quasi-SA for VCO

- Traditional sensitivity analysis is not accurate in VCO
 - Different V_{ctrl} has different sensitivity
- Consider V_{ctrl} effects in the proposed model

Quasi-SA model: f_{VCO} error < $\pm 1\%$

Prof. Chien-Nan Liu

P.53

Comparison of Different MC Approaches

Scatter Plots – V_{lock} (100 runs)

Corr. Coe. : correlation coefficient

EDITO IN THE PARTY OF THE PARTY

Prof. Chien-Nan Liu

P.55

Comparison Results: 100-run MCS

f _{out} : 800MHz		1 st RSM + BMCS	SA + BMCS	Quasi-SA + BMCS	HSPICE
\/ (\/)	Mean	0.993 (-0.1%)	0.993 (-0.1 %)	0.995 (0.1 %)	0.994
V _{lock} (V)	St. Dev.	0.036 (6.4%)	0.045 (32.1 %)	0.035 (1.7 %)	0.034
T ()	Mean	3.449 (2.2%)	3.441 (2.0 %)	3.438 (1.9 %)	3.374
T _{lock} (us)	St. Dev.	0.573 (-0.6%)	0.541 (-6.2 %)	0.572 (-0.8 %)	0.576
pk-pk	Mean	12.2 (-7.6%)	12.4 (-6.1 %)	12.4 (-6.1 %)	13.2
Jitter	St. Dev.	1.36 (-2.9%)	2.29 (63.6 %)	1.41 (0.7 %)	1.40
(ps)	Worst	16.6 (-2.4 %)	16.4 (-3.5 %)	16.7 (-1.8 %)	17.0
T _{extract} (hr)		34.2	8.55	8.55	N/A
T _{sim.} (hr)		2.95	2.93	3.50	598.54

St. Dev.: Standard Deviation

I
Low regression cost & accurate

Design Centering

- In early design stages, process variation impacts must be considered to reduce the yield loss
- Design centering approach is often used to improve the design-based yield
- Need to extract the boundary of the feasible design region before computing the "center" → a heavy

Acceptable Design Region

- For analog circuits, it is not easy to figure out the acceptable design region at device level
 - Ex: a simple RC low-pass filter

- Numerous design constraints are also big troubles
 - Ex: optimize a PLL using geometric programming approach
 - 40,000 optimization variables
 - 150,000 design constraints

Ref: Helmut E. Graeb, "Analog design centering and sizing", Springer, 2007.

D. Colleran et al. "Optimization of Phase-Locked Loop Circuits via Geometric Programming," CICC, 2003.

Why not Forgetting the Boundary?

- Performance distribution in the yield analysis has partial information of the feasible region
- Reusing yield analysis results has no extra simulation cost
 - Yield analysis is essential in the design flow
 - The heavy overhead for boundary extraction can be avoided

Prof. Chien-Nan Liu

P.59

Force-Directed Nominal Point Moving

- Force-directed nominal point moving (NPM) algorithm
 - Close to the Pass group (attraction)
 - Far from the Fail group (repulsion)
 - The force equilibrium point is the new nominal point
- Iteratively calculate the forces until the nominal point is stable
 - May not find the best location in one calculation
 - Push the nominal point to better location gradually

Prof. Chien-Nan Liu

Proposed Yield Enhancement Flow

- Three major steps in the iterative yield enhancement flow
 - Use force-directed model to avoid boundary extraction cost
- Behavior-level yield enhancement approach is much faster

Behavior-Level Yield Enhancement

- Perform all steps at performance level and behavior level
 - Reduce the iteration time of the sizing-evaluation loop
- Perform device-level sizing/evaluation after yield enhancement
 - Become a one-time cost → shorten yield enhancement process

Behavior-Level Sizing

- Map the NPM results into behavioral parameters
- Hierarchical approach is often used for complicated analog circuits, such as PLLs
- Add an extra PCA level to reduce the regression efforts
 - PCA = Principal Component Analysis

Principal Component Analysis

Find a few linear combinations of behavioral parameters (B_j) to represent the numerous samples

$$PC_i = \sum_{i < j, j=1}^n p_{ij} B_j$$

pc,

pc

- PCs are orthogonal to each other
- Dimension reduction
 - Often results in fewer variables
- Include the correlation between parameters
 - Avoid infeasible solutions
- Example:
 - Variables: x₁,x₂,x₃
 - Principal component: $pc_1(x_1,x_2,x_3),pc_2(x_1,x_2,x_3)$

$$pc_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots$$

$$pc_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots$$

$$\vdots$$

FBMCS

- Is the yield of the new nominal design satisfied?
- How to perform next NPM without new distribution?
- Fast Behavioral-level Monte Carlo Simulation (FBMCS)
- It's an equation-based MC simulation
 - Generate random samples at behavior level
 - Translate to performance distribution through RSM equations
- Provide rough yield analysis to guide next NPM
 - Shorten the iteration time
 - Accurate analysis can be done after the iterations

PCs to performance:
$$S_i = e_{io} + \sum_{j=0}^{m-1} d_{ij} PC_j$$

Prof. Chien-Nan Liu

P.65

Case Study: CPPLL

- This Charge-Pump PLL is consisted of 5 blocks
 - Phase-frequency detector (PFD), voltage-controlled oscillator (VCO), charge-pump (CP), low-pass filter (LPF), and frequency divider (FD)
 - Contain 163 transistors
- TSMC RF 0.18µm process
 - Process variation : ΔW, ΔL, ΔVt, ΔTox
- Simulation environment MC simulation:
 - 1000-run Behavioral MC simulation [17]
 - Analog Artist (Cadence) + Spectre
- Yield enhancement calculation :
 - Stop iterations when the yield value is stable within 1%
- Device sizing:
 - WiCkeD (MunEDA)

Performance	Specification
Lock voltage	1 V ± 0.2V
Lock time	< 5us
P-P jitter	< 34ps
Power	< 0.9mW

[17] C.C. Kuo, M.J. Lee, C.N. Liu, and C.J. Huang, "Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models", *IEEE Trans. on Circuits and Systems I*, Jun. 2009.

Nominal Point Moving Results

- Start from an existing design
 - Nominal point meets all spec.
 - Initial yield is only 50.7%
- ♦ Yield: 50.7% → 93.0%
 - Only need 3 iterations
- Total run time: 4.43 seconds

Blocks	Parameters	Spec.	Initial Design	After Enhance
	$V_{lock}(V)$	1 ± 0.2	0.99	1.08
CPPLL	$T_{lock}(\mu s)$	< 5	1.17	1.50
(nominal)	pk-pk jitter (ps)	< 34	32.72	28.77
	power (mW)	< 0.9	0.88	0.85
СР	Current ratio I _{ratio}		1.00	1.00
CP	Switch time T _{sw} (ns)		4.64	5.01
	K _{VCO} (GHz/V)	_	1.14	1.00
VCO	f _{min} (MHz)		317.3	275.5
	f _{max} (MHz)		1036.1	904.1
Yield (%)			50.7	93.0

P.67

Device-Level Sizing Results

- Use commercial sizing tool to obtain the corresponding device sizes of the final nominal point
- Block-level sizing improves the sizing speed
 - Use the obtained behavioral parameters as the sizing target of each sub-block
 - Device sizing is performed block-by-block → faster
 - Use the spec. directly for sizing the whole circuit is too slow
- A new circuit with the expected yield is really achievable!!

Blocks	Parameters	Spec.	Behavioral results	Whole PLL sizing	Block-level sizing
	$V_{lock}(V)$	1 ± 0.2	1.08	1.11	1.09
CPPLL	$T_{lock}(\mu s)$	< 5	1.50	1.39	1.33
(nominal)	jitter (ps)	< 34	28.77	25.59	26.9
	power (mW)	< 0.9	0.85	0.86	0.86
	Yield (%)		93.0	91.5	92.3
Area (um²)			416.45	417.30	
Optimization Time (min.)		0.07	300	6	

Run Time Comparison

- Previous work about CPPLL circuits [3]
 - Use performance space exploration (PSE) method to extract the part of acceptable design region → 4-5 hours
 - Behavior-level sizing → 1-2 hours
- Only need 4.43 seconds by using the proposed approach
 - Including NPM, behavior-level sizing, and FBMCS

The final result has been confirmed with device-level sizing and evaluation

1st Nominal Design
(Yield = 50.7%)

3rd Nominal Design
(Yield = 92.3%)

4 3 2 1 1 1.5 2 2.5 3

x 10⁻¹¹
P-P Jitter(s) Lock Time(s)

Prof. Chien-Nan Liu

P.69

Conclusions

- Analog behavioral modeling is indeed useful for AMS system verification
 - Top-down behavioral modeling is for new designs
 - Bottom-up behavioral modeling is suitable for IP-based
 SOC designs
- Accurate behavioral models also have many useful applications
 - Analyze supply noise effects
 - Analyze design yield and make improvement
- CAD could also be useful to analog designers
 - Waiting for more investment !!!

