

Relational Design Theory

Multivalued Dependencies & 4th Normal Form

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies ⇒ Boyce-Codd Normal Form
- → Multivalued dependences ⇒ Fourth Normal Form

Example: College application info.

Apply(SSN, cName, hobby)

FDs? No.

Keys? All attrs.

BCNF? Yes.

Good design? No.

5 collèges, 6 hobbies -> 30 tuples.

Multivalued Dependency

- Based on knowledge of real world
- All instances of relation must adhere

R
$$\overline{A} \rightarrow B$$
 $A_1,...,A_n$ $B_1,...,B_n$
 $\forall t, u \in \mathbb{R}: t[\overline{A}] = u[\overline{A}] \text{ then } \overline{A} = \overline{B} \text{ rest}$
 $\exists v \in \mathbb{R}: v[\overline{A}] = t[\overline{A}] \text{ and } \overline{a} = \overline{b_1} \overline{r_1}$
 $v[\overline{B}] = t[\overline{B}] \text{ and } \overline{a} = \overline{b_2} \overline{r_1}$
 $v[rest] = u[rest]$
 $\forall u = \overline{b_2} \overline{r_1}$
 $\forall v = \overline{b_2} \overline{r_1}$

Apply(SSN, cName, hobby)

√	cName	55N →>>
SSN	cName	hobby
123	Stanford.	trumpet
123	Berkeley	tennis.
123	Stanford	tennis
123	Berkeley	trumpet
:		

Modified example

Apply(SSN, cName, hobby)

Reveal hobbies to colleges selectively 🚧

MVDs? None

Good design? Yes.

Expanded example

Apply(SSN, cName, date, major, hobby)

Reveal hobbies to colleges selectively
Apply once to each college
May apply to multiple majors

```
SSN, cName -> date
SSN, cName, date ->> major "rest"
hobby
```

Trivial Multivalued Dependency

Nontrivial MVD

Rules for Multivalued Dependencies

Rules for Multivalued Dependencies

Intersection rule

Transitive rule

Fourth Normal Form

Fourth Normal Form BCNF

Relation R with MVDs is in 4NF if: For each nontrivial A → B, A is a key

4NF decomposition algorithm

```
Input: relation R + FDs for R + MVDs for R
```

Output: decomposition of R into 4NF relations with "lossless join"

```
Compute keys for R 🗸
```

Repeat until all relations are in 4NF: <

Pick any R' with nontrivial $A \rightarrow B$ that violates 4NF

Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$

Compute FDs and MVDs for R₁ and R₂

Compute keys for R_1 and R_2

4NF Decomposition Example #1 Apply(SSN, cName, hobby)

4NF Decomposition Example #2

Apply(SSN, cName, date, major, hobby)

Relational design

Functional dependencies & Boyce-Codd Normal Form

Multivalued dependences & Fourth Normal Form