Chapter 1

2024-04-20 – The basic Hopf fibre bundles

1.1 Explicit construction

Definition 1.1.1. For $\mathbb{T} = \mathbb{R}^n$ assume a multiplication $\mu \colon \mathbb{T} \otimes_{\mathbb{R}} \mathbb{T} \to \mathbb{T}$ making $\mathbb{T}^{\times} \supset \mathbb{S}(\mathbb{T}) \cong \mathbb{S}^{n-1}$ into an H-space. Then we can construct a fibre bundle as follow: Consider the unit sphere in $\mathbb{S}(\mathbb{T} \times \mathbb{T})$, which can be identified as $\mathbb{S}(\mathbb{R}^{2n}) = \mathbb{S}^{2n-1}$, and the one-point compactification of $\mathbb{S}^{\mathbb{T}} = \mathbb{S}^{dim_{\mathbb{R}}} \mathbb{T} = \mathbb{S}^n$.

Notice that for $\mathbb{S}(\mathbb{T}^2)$ the components can be written as pairs of elements of \mathbb{T} with norms each less than or equal to one, and norm-squares summing to one. Thus consider the map:

$$m_{\exists}$$
: $\mathbb{S}^{2n-1} = \mathbb{S}(\exists \times \exists) \to \mathbb{S}^{\exists}$
 $a, b \mapsto a \cdot b^{\exists} 1.$

Proposition 1.1.2. This is a fibre bundle for $k = \mathbb{R}, \mathbb{C}, \mathbb{H}$.