Practical 7 - Josiah Teh IPYNB

December 28, 2021

1 First Name: Josiah

2 Last Name: Teh

```
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import scipy
     import matplotlib.pyplot as plt
     import statsmodels.formula.api as smf
[2]: pd.set_option('display.float_format', lambda x:'%.2f'%x)
     gapminder = pd.read_csv('gapminder.csv', low_memory=False)
     gapminder.head()
[2]:
                      incomeperperson alcconsumption armedforcesrate
            country
     0
        Afghanistan
                                                  .03
                                                             .5696534
     1
            Albania 1914.99655094922
                                                7.29
                                                            1.0247361
     2
            Algeria 2231.99333515006
                                                  .69
                                                            2.306817
     3
            Andorra 21943.3398976022
                                               10.17
             Angola 1381.00426770244
                                                5.57
                                                            1.4613288
       breastcancerper100th
                                 co2emissions femaleemployrate hivrate \
                       26.8
                                     75944000 25.6000003814697
     0
                             223747333.333333 42.0999984741211
     1
                       57.4
     2
                       23.5
                            2932108666.66667 31.7000007629394
                                                                      .1
     3
                       23.1
                                    248358000 69.4000015258789
                                                                       2
         internetuserate lifeexpectancy
                                            oilperperson polityscore
     0 3.65412162280064
                                 48.673
     1 44.9899469578783
                                 76.918
                                                                    9
     2 12.5000733055148
                                 73.131
                                        .42009452521537
                                                                    2
                                 51.093
     4 9.99995388324075
                                                                   -2
```

```
relectricperperson
                            suicideper100th
                                                   employrate urbanrate
                           6.68438529968262
                                             55.7000007629394
                                                                  24.04
     0
                                             51.4000015258789
                                                                  46.72
     1
         636.341383366604 7.69932985305786
     2
                                                                  65.22
         590.509814347428
                           4.8487696647644
                                                         50.5
     3
                           5.36217880249023
                                                                  88.92
         172.999227388199 14.5546770095825 75.6999969482422
                                                                   56.7
[3]: #setting variables you will be working with to numeric
     gapminder['oilperperson'] = pd.
     →to_numeric(gapminder['oilperperson'],errors='coerce')
     gapminder['relectricperperson'] = pd.
      →to_numeric(gapminder['relectricperperson'],errors='coerce')
     gapminder['co2emissions'] = pd.
      →to_numeric(gapminder['co2emissions'],errors='coerce')
```

- [4]: gapminder_clean=gapminder.dropna()
 - 3 Correlation Scenario 1
 - 4 Scatter plot to show association between relectric perperson (x) and oil perperson (y)

[6]: Text(0.5, 1.0, 'Scatterplot for the Association Between Electricty Use Per Person\nand Oil Use Per Person')

Scatterplot for the Association Between Electrcity Use Per Person and Oil Use Per Person

5 Pearson correlation - relectric perperson (x) and oilperperson (y)

```
[8]: # hint lecture cell 6
print ('association between relectricperperson and oilperperson')
print (scipy.stats.pearsonr(gapminder_clean['relectricperperson'],

→gapminder_clean['oilperperson'])) #pearson correlation
```

association between relectric perperson and oilperperson (0.5249373779159884, 1.0020621767836635e-05)

- 6 Correlation Scenario 2
- 7 Scatter plot to show association between co2emissions (x) and oilperperson (y)

```
[9]: # hint lecture cell 7
%matplotlib inline
plt.figure()
```

[9]: Text(0.5, 1.0, 'Scatterplot for the Association\nCO2 Emission and Oil Use Per Person')

8 Pearson correlation - co2emissions (x) and oilperperson (y)

```
[10]: # hint lecture cell 8

print ('association between co2emissions and oilperperson')

print (scipy.stats.pearsonr(gapminder_clean['co2emissions'],

→gapminder_clean['oilperperson'])) #pearson correlation
```

association between co2emissions and oilperperson (0.04444201231228795, 0.7294518840123059)

- 9 Regression Scenario 3
- 10 Scatter plot with regression to show relationship between relectric reperson (x) and oilperperson (y) - with regression line

[11]: Text(0.5, 1.0, 'Scatterplot for the Association Between Electricity Use Per Person\nand Oil Use Per Person')

Scatterplot for the Association Between Electricity Use Per Person and Oil Use Per Person

11 Regression analysis to show association between relectric person (x) and oilperperson (y)

```
[12]: # hint lecture cell 10
print ("OLS regression model for the association between Electric Use Per
    →Person and Oil Per Person")
reg1 = smf.ols('oilperperson ~ relectricperperson', data=gapminder_clean).fit()
print (reg1.summary())
```

OLS regression model for the association between Electric Use Per Person and Oil Per Person

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least : Tue, 28 D	OLS Squares ec 2021	R-squared: Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	cistic):	0.276 0.264 23.20 1.00e-05 -116.64 237.3 241.6		
0.975]	coef	std er	r t	P> t	[0.025		
Intercept 1.192 relectricperperson 0.001	0.6736 0.0005	0.25 9.69e-0		0.012	0.155		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		112.807 0.000 5.613 39.531	041440 2014		1.627 3834.005 0.00 3.52e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.52e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Residual plot - regression analysis between relectricperperson (x) and oilperperson (y)

[13]: Text(0.5, 1.0, 'Residual Plot')

- 13 # Regression Scenario 4
- 14 Scatter plot with regression to show association between co2emissions (x) and oilperperson (y) with regression line

```
plt.xlabel('CO2 Emission')
plt.ylabel('Oil Use Per Person')
plt.title('Scatterplot for the Association' + '\n' + 'Between CO2 Emission and

→Oil Use Per Person')
```

[14]: Text(0.5, 1.0, 'Scatterplot for the Association\nBetween CO2 Emission and Oil Use Per Person')

Regression analysis to show association between co2emissions (x) and oilperperson (y)

```
[16]: # hint lecture cell 13

print ("OLS regression model for the association between CO2 emission and Oil

→Use Per Person")

reg1 = smf.ols('oilperperson ~ co2emissions', data=gapminder_clean).fit()

print (reg1.summary())
```

OLS regression model for the association between CO2 emission and Oil Use Per Person

OLS Regression Results

Dep. Variable: oilperperson R-squared: 0.002

```
Model:
                       OLS
                          Adj. R-squared:
                                                 -0.014
Method:
                Least Squares F-statistic:
                                                0.1207
            Tue, 28 Dec 2021 Prob (F-statistic):
Date:
                                                 0.729
Time:
                   01:04:34 Log-Likelihood:
                                                -126.73
No. Observations:
                          AIC:
                        63
                                                  257.5
Df Residuals:
                        61
                           BIC:
                                                  261.7
Df Model:
                        1
Covariance Type: nonrobust
            coef std err t P>|t| [0.025 0.975]
______
          1.4561
                 0.245 5.939 0.000
                                          0.966
Intercept
                                                  1.946
co2emissions 1.829e-12 5.26e-12 0.347 0.729 -8.7e-12 1.24e-11
_____
                     82.847
                           Durbin-Watson:
                     0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                               1029.853
Skew:
                     3.814 Prob(JB):
                                               2.35e-224
                     21.279 Cond. No.
                                               4.93e+10
Kurtosis:
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.93e+10. This might indicate that there are strong multicollinearity or other numerical problems.

Residual plot - regression analysis between co2emissions (x) and oilperperson (y)

[17]: Text(0.5, 1.0, 'Residual Plot')

- 17 Regression with 3 variables
- 18 Use co2emissionsgrp function to divide/group data into 3 groups
- 19 Low co2emission (1): min 1846084167
- 20 Medium co2emission (2): 1846084168 7993752800
- 21 High co2emission (3): 7993752801 max

```
[18]: def co2emissionsgrp (row):
    if row['co2emissions'] <= 1846084167:
        return 1
    elif row['co2emissions'] <= 7993752800:
        return 2
    elif row['co2emissions'] > 7993752800:
        return 3
```

```
[19]: gapminder_clean['co2emissionsgrp'] = gapminder_clean.apply (lambda row:⊔

→co2emissionsgrp (row),axis=1)
```

```
<ipython-input-19-8ea3e03abd80>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
   gapminder_clean['co2emissionsgrp'] = gapminder_clean.apply (lambda row: co2emissionsgrp (row),axis=1)
```

22 Print the number of countries in each group of CO2 emission

```
[20]: # hint lecture cell 17
    chk1 = gapminder_clean['co2emissionsgrp'].value_counts(sort=False, dropna=False)
    print(chk1)

1    17
    2    27
    3    19
    Name: co2emissionsgrp, dtype: int64
```

23 Divide gapminder_clean into 3 dataframes, each dataframe representing rows of data in low, medium and high CO2 Emission

```
[21]: sub1=gapminder_clean[(gapminder_clean['co2emissionsgrp']== 1)] sub2=gapminder_clean[(gapminder_clean['co2emissionsgrp']== 2)] sub3=gapminder_clean[(gapminder_clean['co2emissionsgrp']== 3)]
```

- 24 Regression Scenario 5
- 25 Scatter plot with regression analysis to show association between electricity use per person (x) and oilperperson (y) for low CO2 emission countries

AxesSubplot(0.125,0.125;0.775x0.755)

Scatterplot for the Association Between Electricity Use Per Person and Oil Use Per Person for LOW CO2 emissions countries

Regression analysis to show association between electricity use per person (x) and oilperperson (y) for low CO2 emission countries

```
[23]: # hint lecture cell 20
print ('OLS regression model for the association between Electricty Use Per

→Person and Oil Use Per Person for' + '\n' + 'LOW CO2 Emission countries')
reg1 = smf.ols('oilperperson ~ relectricperperson', data=sub1).fit()
print (reg1.summary())
```

OLS regression model for the association between Electricty Use Per Person and Oil Use Per Person for LOW CO2 Emission countries

OLS Regression Results

Dep. Variable:	oilperperson	R-squared:	0.244
Model:	OLS	Adj. R-squared:	0.194
Method:	Least Squares	F-statistic:	4.840
Date:	Tue, 28 Dec 2021	Prob (F-statistic):	0.0439
Time:	01:07:27	Log-Likelihood:	-40.387
No. Observations:	17	AIC:	84.77
Df Residuals:	15	BIC:	86.44

	1			
no	nrobust			
	======	========	========	==========
coef	std er	r t	P> t	[0.025
0.8962	0.85	1.046	0.312	-0.929
0.0007	0.00	2.200	0.044	2.25e-05
=======	42 166	Durbin-Wota	========= on:	2.057
				126.442
		-	(35).	3.50e-28
	14.278	Cond. No.		3.32e+03
	coef 	0.8962 0.85 0.0007 0.00 43.166 0.000 3.582	coef std err t 0.8962 0.856 1.046 0.0007 0.000 2.200 43.166 Durbin-Wats 0.000 Jarque-Bera 3.582 Prob(JB):	coef std err t P> t 0.8962 0.856 1.046 0.312 0.0007 0.000 2.200 0.044 43.166 Durbin-Watson: 0.000 Jarque-Bera (JB): 3.582 Prob(JB):

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

C:\Users\Admin\anaconda3\lib\site-packages\scipy\stats\stats.py:1603:
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=17
warnings.warn("kurtosistest only valid for n>=20 ... continuing "

27 Residual plot - regression analysis between relectric perperson (x) and oilperperson (y) for Low CO2 emission countries

[24]: Text(0.5, 1.0, 'Residual Plot - LOW CO2 Emission Countries')

- 28 Regression Scenario 6
- 29 Scatter plot with regression analysis to show association between electricity use per person (x) and oilperperson (y) for medium CO2 emission countries

AxesSubplot(0.125,0.125;0.775x0.755)

Scatterplot for the Association Between Electricity Use Per Person and Oil Use Per Person for MEDIUM CO2 emissions countries

[26]: # hint lecture cell 25

print ('OLS regression model for the association between Electricty Use Per

→Person and Oil Use Per Person for' + '\n' + 'MEDIUM CO2 Emission countries')

reg1 = smf.ols('oilperperson ~ relectricperperson', data=sub2).fit()

print (reg1.summary())

 ${\tt OLS}$ regression model for the association between Electricty Use Per Person and ${\tt Oil}$ Use Per Person for

MEDIUM CO2 Emission countries

OLS Regression Results

=======================================			
Dep. Variable:	oilperperson	oilperperson R-squared:	
Model:	OLS	Adj. R-squared:	0.611
Method:	Least Squares	F-statistic:	41.89
Date:	Tue, 28 Dec 2021	Prob (F-statistic):	8.88e-07
Time:	01:09:49	Log-Likelihood:	-27.631
No. Observations:	27	AIC:	59.26
Df Residuals:	25	BIC:	61.85
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	=======================================		==========
=====			

coef std err t P>|t| [0.025]

\cap		a	7	ᇊ	ı
v	٠	J	1	U	ı

Intercept 0.859	0.5063	0.17	1 2.958	0.007	0.154
relectricperperson 0.000	0.0004	5.57e-0	05 6.472	0.000	0.000
Omnibus:		37.330	Durbin-Watso	on:	2.273
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	120.141
Skew:		2.643	Prob(JB):		8.16e-27
Kurtosis:		11.880	Cond. No.		3.91e+03
================	=======	=======	=========		=========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.91e+03. This might indicate that there are strong multicollinearity or other numerical problems.

30 Residual plot - regression analysis between relectricperperson (x) and oilperperson (y) for Medium CO2 emission countries

[27]: Text(0.5, 1.0, 'Residual Plot - Medium CO2 Emission Countries')

- 31 Regression Scenario 7
- 32 Scatter plot with regression analysis to show association between electricity use per person (x) and oilperperson (y) for high CO2 emission countries

AxesSubplot(0.125,0.125;0.775x0.755)

Scatterplot for the Association Between Electricity Use Per Person and Oil Use Per Person for HIGH CO2 emissions countries

[29]: # hint lecture cell 25 print ('OLS regression model for the association between Electricty Use Per →Person and Oil Use Per Person for' + '\n' + 'HIGH CO2 Emission countries') reg1 = smf.ols('oilperperson ~ relectricperperson', data=sub3).fit() print (reg1.summary())

OLS regression model for the association between Electricty Use Per Person and Oil Use Per Person for $HIGH\ CO2\ Emission\ countries$

OLS Regression Results

Dep. Variable:	oilperperson	R-squared:	0.619
Model:	OLS	Adj. R-squared:	0.597
Method:	Least Squares	F-statistic:	27.61
Date:	Tue, 28 Dec 2021	Prob (F-statistic):	6.45e-05
Time:	01:11:25	Log-Likelihood:	-14.302
No. Observations:	19	AIC:	32.60
Df Residuals:	17	BIC:	34.49
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	=======================================		
=====			

coef std err t P>|t| [0.025]

0.975

Intercept 0.979	0.5552	0.20	2.764	0.013	0.131
relectricperperson 0.001	0.0005	9.74e-0	5.255	0.000	0.000
=======================================		=======			=========
Omnibus:		20.501	Durbin-Watso	on:	2.188
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	23.814
Skew:		1.966	Prob(JB):		6.74e-06
Kurtosis:		6.823	Cond. No.		3.32e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

C:\Users\Admin\anaconda3\lib\site-packages\scipy\stats\stats.py:1603:
UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
warnings.warn("kurtosistest only valid for n>=20 ... continuing "

Residual plot - regression analysis between relectric perperson (x) and oilperperson (y) for High CO2 emission countries

[30]: Text(0.5, 1.0, 'Residual Plot - High CO2 Emission Countries')

