

Molecular Spectroscopy with kHz Accuracy in the Mid-Infrared

Z.-T. Zhang, C.-F. Cheng, Y. R. Sun, A.-W. Liu, S.-M. Hu Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, China

Introduction

Precision spectroscopy of molecules in the mid-infrared region where the fundamental bands are located is of great interest in fundamental physics. Mid-infrared lasers with narrow linewidth and long-term stability are needed. In this presentation we report a new method to reduce the linewidth of a continuous-wave optical parametric oscillator (OPO) by locking the near-infrared pump and signal lights to an optical frequency comb, which also results in a long-term stability of the mid-infrared idler laser. Combined with high sensitive multipass cell or cavity-enhanced absorption technique, it allows to measure weak transitions of molecules with an accuracy of a few kHz.

Experimental Setup Narrow Line->3W(Output) width Laser Beat Lock 1 Frequency Comb **TS Cavity** LW <10kHz **EO Crystal PDH Lock Amplifier** DAQ

Fig 1. Narrow linewidth OPO and FMS optical Layout

Fig 2. CRDS and White Cell

Laser Performance

Average Duration(s) Fig 3. Laser Long-term Stability

Fig 4. Laser Linewidth (10ms)

Current results & Expectancy

CH₄ Demonstration (Before Laser Lock)

Fig 5. CH₄ @3017.71 cm⁻¹

CH₄ Demonstration (After Laser Lock)

With a narrower linewidth mid-infrared laser, we can improve the spectral resolution to a few tens of kHz.

Table 1. Spectral Linewidth of CH₄@3017.71cm⁻¹

Linewidth	Before Laser Lock	After Laser Lock
Pressure Broadening	148kHz(3.2Pa)	9.2kHz(0.2Pa)
Transit-time Broadening	69kHz(6mm)	41kHz(10mm)
Saturation Broadening	~(1.5)	~(0.27)
Total Linewidth	345kHz	57kHz

References

- 1. D. M. Dennison and G. E. Uhlenbeck, *Phys. Rev.* **41**, 313 (1932).
- 2. C. Sousa-Silva et al., J. Chem. Phys. **145**, 091102 (2016).
- 3. S. Okuda and H. Sasada, *J. Mol. Spectrosc.* **346**, 27 (2018).
- 4. K. Pachucki and J. Komasa, Phys. Chem. Chem. Phys. 12, 9188 (2010).
- 5. S. Kassi and A. Campargue, *J. Mol. Spectrosc.* **267**, 36 (2011).
- 6. L.-G. Tao et al., Phys. Rev. Lett. 120, 153001 (2018).

Acknowledgements

