Transitioning from algorithmic to adaptive model-based designs

Phase I dose-escalation trials in oncology at Servier

Symposium on Early Phase Dose Finding Methodology
16 April 2015

Gautier Paux

Frédéric Dubois

Outline

What we used to do

What we proposed

What we do now

What's next

Oncology Phase I dose escalation Key elements

Objective

- Find the Maximum Tolerated Dose (MTD)
- MTD → Highest dose with acceptable toxicity

Main criterion

- Dose Limiting Toxicities
- Binary criterion (Yes / No)

Design

- Open labeled
- Non-randomized
- Non-comparative
- Sequential cohort inclusion

Oncology Phase I dose escalation Key requirements

What we used to do

Early Phase in Oncology at Servier *Feedback*

Algorithm-based design

2010 2012

• '3+3': 11

• CRM: 0

Why?

- ✓ Easy to implement
- ✓ Easy to understand
- ✓ Driven by clinician only

Some well-known limitations

- × Memoryless and slow
- × Too many patients to sub-therapeutic doses
- × Declares wrong MTD too often

Early Phase in Oncology at Servier *Feedback*

Be prospective is more efficient

What we proposed

Early Phase in Oncology at Servier *Ready for a change?*

Early Phase in Oncology at ServierClinicians questions

How long will it take to develop a protocol?

What do you mean by prior?

How proceed if a DLT is ruled on during the End of Cohort meeting?

Dose recommendation will come from a black box

Will we have to strictly follow the dose recommendation from the CRM?

Early Phase in Oncology at ServierAction plan

Statistical implementation plan

- ✓ Statistician experts consultations
- ✓ PhD student in collaboration with INSERM
- ✓ Internal software development

Clinical implementation plan

- ✓ Disseminate the idea among clinical teams
- ✓ Restrict model-based designs to a few projects first
- ✓ Communicate with investigators

Early Phase in Oncology at Servier *First attempts*

First clinical trials with model-based design

Study	Model	Nb doses	MTD definition	Stopping rule	Patients by cohort	Skipping dose
1	Power	4	Interval	No change in MTD ⁽¹⁾	3 to 6	Not allowed
2	Power	11	Interval	Gain in precision ⁽²⁾	2 (until 1st DLT) then 3 to 6	Not allowed
3	Power	11	Point estimate	No change in MTD ⁽¹⁾	3 to 6	Permitted

- ✓ Simulations provided confirmation of advantages of model-based designs over « 3+3 »
- ✓ Try out several « options »
- ✓ Protocol language

⁽²⁾ S. Zohar et al. (2001)

What we do now

Early Phase in Oncology at Servier

Communication and education

Training on model-based design performed for:

- ✓ Statistical department
- ✓ Oncology department
- ✓ Clinical operations

Presentation of the study design during:

- ✓ Investigators meeting
- ✓ Monitors meeting

Slidepack for presentation during team meeting

16/04/2015

Protocol development

Standardization of the study design section

Standardization of the statistical analysis section

Appendix to present the design's calibration and operating characteristics

Standardization of the timelines

Operating characteristics

Development of an internal package

- √ Flexible
- ✓ Not restricted to what is implemented in a software (models, stopping rules, number of patients by cohort, ...)
- ✓ See what happen in a single trial simulation

High-performance computing

- ✓ Reduce timelines for simulations
- ✓ Responsive in case of protocol amendment

Standardization of the metrics and the outputs to evaluate the performance of the design

Scenarios

Undertoxicity

Scenarios

MTD within the doses

Scenarios

Overtoxicity

Summary of results – by scenario

Varying parameters		Probability of selection		Average number of patients		Total Number of patients		Total Number of DLTs	Stopping Rules						
Param.	Param. 2		Dose 1	Dose 2		Dose 1	Dose 2		Min	Med	Max	Over all doses	Rule 1	Rule 2	

Varying parameters

- √ Cohort size
- √ Skipping dose
- √ Stopping rule
- **√** ...

All possible combinations

Optimal selection of the parameters

Decision rules for the first cohorts

Cohort	Dose level	Nb of DLT(s)/Nb of patients	Next dose level proposed
		0/3	Dose A
1	Starting	1/3	Dose B
•	Dose	2/3	Dose C
		3/3	Dose D
2 (0 DLT in	Dose A		
cohort 1)			

End of cohort statistical report

Standardization of the **End of cohort** statistical report

Word-based document automatically generated using (

- ✓ Faster
- ✓ Easier to quality-controlled

Document provides

- ✓ Dose allocation methodology summary
- ✓ Graphical summary of previous cohorts
- ✓ Dose recommendation for next cohort

Dose-DLT trajectory

Dose recommendation summary

Current cohort's dose	Number of DLTs in the current cohort	Include a new cohort?	If NO: stopping rule reason	Next recomended dose	MTD
Dose 6	0	YES		Dose 7	NO
Dose 6	1	YES		Dose 5	NO
Dose 6	2	YES		Dose 5	NO
Dose 6	3	YES		Dose 4	NO

Predicted interval probabilities

Dose-escalation meeting

Review all available data (from current and previous cohorts)

- ✓ DLT
- ✓ Safety and PK data

Agree on the total number of DLTs observed in the current cohort

Statistician informs participants of the recommended dose for the next cohort

Discussion between participants to select the dose for the next cohort

Early Phase in Oncology at Servier Dose escalation meeting

Clinically driven, statistically supported decisions

Early Phase in Oncology at Servier Where we are now

Clinical trials with model-based design

Study	Model	Nb doses	MTD def.	Stopping rule	N patients by cohort	Skipping dose	State
1	Power	4	Interval	No change in MTD ⁽¹⁾	3 to 6	Not allowed	On- going
2	Power	11	Interval	Gain in precision ⁽²⁾	2 (until 1 st DLT) 3 to 6	Not allowed	On- going
3	Power	11	Point estimate	No change in MTD ⁽¹⁾	3 to 6	Permitted	On- going
4	Power	3	Interval	No change in MTD ⁽¹⁾ or Min N ⁽³⁾	3 to 6	Not allowed	Protocol
5	Power	6	Point estimate	No change in MTD ⁽¹⁾	3 to 6	Permitted	Protocol

2013 2015

• '3+3' : 5

• CRM: 5

⁽¹⁾ O'Quigley et al. (1998)

⁽²⁾ S. Zohar et al. (2001)

⁽³⁾ At least X patients included in the study with at least Y patient at the MTD Transitioning from algorithmic to adaptive model-based designs – G. PAUX 28

What's next

Early Phase in Oncology at Servier New clinicians questions

We would like to implement a CRM for our study

How to account for late toxicities?

How to incorporate prior information?

How to use efficacy and safety data in a model-based design?

Could you come to our investigators meeting to present the CRM design?

Early Phase in Oncology at ServierAction plan

Statistical implementation plan

- ✓ Open door for other model-based designs
 - ✓ Bivariate
 - ✓ Drug combination
 - ✓ PK
- ✓ Better use of the prior information

Clinical implementation plan

- ✓ Feedback from first studies
- ✓ Continual trainings for clinicians
- ✓ Regular updates

Early Phase in Oncology at Servier

Conclusion

Transitioning from 3+3 to model based design was **fraught with pitfalls**

Implementation plan has worked well

- Disseminate the idea
- Communication and Education
- Standardization (protocol, end of cohort meeting, ...)
- Internal software development

Clinicians are now **asking for** model-based design

Early Phase in Oncology at Servier

Conclusion

Transitioning from 3+3 to model based design was with pitfalls

2016

3+3': 0

CRM : ? f cohort

are development

Clinica now **asking for** model-based design

Early Phase in Oncology at Servier *Key message*

Communication is essential

Early Phase in Oncology at Servier Contact

Gautier PAUX

Biostatistician, Oncology Clinical Biostatistics Institut de Recherches Internationales Servier (I.R.I.S.)

gautier.paux@servier.com

Frédéric DUBOIS

Deputy Head, Oncology Clinical Biostatistics Institut de Recherches Internationales Servier (I.R.I.S.)

frederic.dubois@servier.com

