

Questão 4

Inversão de uma fila usando uma pilha

Dada uma fila L, escreva um algoritmo que gere uma nova fila R contendo os elementos de L na ordem reversa utilizando uma estrutura de pilha.

Exemplo:

Entrada: L = [A, B, C, D]

Saída esperada: R = [D, C, B, A]

```
Pseudocódigo: Queue reverse (Queue'F) {

Stack'S= initialize Stack(F.size); O(1) ou O(n)

Queue'R= initialize Queue (F.size) · O(1) ou O(n)

while (F.size 70) }

intu-F. dequeue() · Arr normal: O(n) · Arr circ: O(1)

S. push(V) · O(1)

3

while (S. size 70) }

intu=S. pop(); O(1)

R. enqueue (V); O(1)

3
```

=)
$$\frac{3}{2}(n+1) + \frac{3}{2}(2) - n^{2} + 4n = 0(n^{2})$$
 or ray normal.
=) $\frac{3}{2}(n+1) + \frac{3}{2}(2) - n^{2} + 4n = 0(n^{2})$ or ray normal.
=) $\frac{3}{2}(n+1) + \frac{3}{2}(2) - n^{2} + 4n = 0(n^{2})$ or ray normal.

Explique como implementar duas pilhas em um único array de maneira eficiente.

A ideia seria controler o meio do array, ou seja, a primeira pilha começa no início do array e a segunda pilha começa no final de array. Assim, enquento a somo dos tomanhos das pilhas for 2 ao tomanho do array, podenos fazer eperações, caso contrário, dosá uma exceção.

🤊 Questão 6

Implemente a busca sequencial em uma lista circular.

Questão 8

Mostre como implementar uma fila utilizando duas pilhas. Analise o tempo de execução das operações.

Armazeno a ordem de entrada em uma pilha e crio outra empilhando "ao contrário", ou seja, o topo da primeira (o que entrou agora na fila) é o topo da primeira pilha e a base da segunda pilha.

Exemplo: Considere a fila: 1 chegou 1°, 2 chegou 2°, 3 chegou 3° e 4 chegou 4°.

A primeira pilha é 4321 (topo é 4 - último a chegar) e a segunda é 1234 (topo 1 - primeiro a chegar.)

	Questão 10						
		implemente a operação getMi	nValue , que retorna o mer	nor valor na fila:			
		ção com complexidade $O(n)$ que a fila só receberia valores n	o intervalo [1,10], seria pos	ssível implementar um	a solução mais eficient	e? Explique como	
	otimizá-la.				•		
a)	Busce	seguencial	rosmal	ص ۸۷۷	-a file	oircular.	
p)		y de inteiros que co					
		e a fila é [9, 10, 5, 4			=		-!
		1, 2, 2, 2]que é a q menor valor, deve			·		
		O e, como o array		=			