Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 7. Mai 2014, 10 Uhr in die DWT Briefkästen

Hausaufgabe 1 (5 Punkte)

Wir verknüpfen Hausaufgabe 4 und Tutoraufgabe 2 von Blatt 1 wie folgt. Sei Ω_1 die Menge aller Paare von Farbmerkmalen aus $\{w, s, r\}$, d.h., $\Omega_1 = \{(x, y); x, y \in \{w, s, r\}\}$. Dann lassen sich die Ergebnisse (Elementarereignisse) der in HA 4 von Blatt 1 beschriebenen zufälligen Ziehung durch Ω_1 beschreiben.

- 1. Bestimmen Sie den HA 4 zugrunde liegenden diskreten Wahrscheinlichkeitsraum $(\Omega_1, \Pr)!$ Zeigen Sie, dass keine Laplace-Verteilung vorliegt.
- 2. Seien E_1 bzw. E_2 das Ereignis, dass beim ersten bzw. zweiten Zug ein schwarzen Ball gezogen wird. Sind E_1 und E_2 unabhängig? Beweis!
- 3. Die Ziehung in HA 4 lässt sich nach TA 2 durch einen Laplace-verteilten Wahrscheinlichkeitsraum (Ω_2 , Pr) beschreiben, so dass die Elementarereignisse $x \in \Omega_1$ eineindeutig gewissen Ereignissen $E \subseteq \Omega_2$ mit $\Pr(x) = \Pr[E]$ entsprechen.

Bestimmen Sie Ω_2 und definieren Sie eine Abbildung $X:\Omega_2\to\Omega_1$ so dass $\Pr(x)=\Pr[X=x]$ gilt.

Bemerkung: HA 4 ist Spezialfall eines Aufgabentypus, in dem die Auswahl von Elementen verschiedener Sorten betrachtet werden. In Übungsblatt 4 wird dieser Aufgabentypus zu hypergeometrischen bzw. poly-hypergeometrischen Verteilungen führen.

Hausaufgabe 2 (5 Punkte)

Sei $W = (\Omega, \Pr)$ mit $\Omega = [1, 60] \subseteq \mathbb{N}$, so dass alle Ergebnisse aus Ω gleichwahrscheinlich sind. Seien X_1 und X_2 Indikatorvariablen über W, deren Verteilung durch die folgenden Ereignisse gegeben ist:

$$A:=X_1^{-1}(1) \,=\, [1,15] \quad \text{und} \quad B:=X_2^{-1}(1) \,=\, [13,24]\,.$$

- 1. Zeigen Sie, dass die Variablen X_1 und X_2 unabhängig sind.
- 2. Geben Sie eine Indikatorvariable X_3 mit $\Pr[X_3=1]=\frac{1}{3}$ an, so dass die Variablen $X_1,\,X_2,\,X_3$ unabhängig sind.

Hinweis: $[1, n] = \{i \in \mathbb{N} ; 1 \le i \le n\}.$

Hausaufgabe 3 (5 Punkte)

Sei $W = (\Omega, \Pr)$ ein diskreter Wahrscheinlichkeitsraum. Für Ereignisse E bezeichnen wir $\Omega \setminus E$ mit \overline{E} .

- 1. Wir beobachten Ereignisse A und B und wissen, dass A mit Wahrscheinlichkeit $\Pr[A] = \frac{1}{10}$ eintritt. Die bedingte Wahrscheinlichkeit, dass B eintritt, wenn A bzw. \overline{A} eingetreten ist, sei $\Pr[B|A] = \frac{5}{9}$ bzw. $\Pr[B|\overline{A}] = \frac{1}{9}$.
 - Berechnen Sie $Pr[A \cup B]$, d. h. die Wahrscheinlichkeit, dass A oder B eintritt, als Bruchzahl!
- 2. Seien C und X Ereignisse aus W mit den bedingten Wahrscheinlichkeiten $\Pr[C|X] = \frac{2}{9}$, $\Pr[X|C] = \frac{1}{10}$ und $\Pr[C|\overline{X}] = \frac{2}{3}$. Berechnen Sie $\Pr[X]$.
- 3. Sei $W = (\Omega, \Pr)$ ein diskreter Wahrscheinlichkeitsraum mit $\Omega = \{\omega_1, \omega_2, \omega_3\}$ und $\Pr[\omega] \neq 0$ für alle $\omega \in \Omega$. Kann es in W zwei verschiedene, unabhängige Ereignisse $A, B \subseteq \Omega$ geben, für die |A| = |B| = 2 gilt? Beweisen Sie Ihre Antwort!

Hausaufgabe 4 (5 Punkte)

Wir gehen aus von einem Zufallsexperiment mit Ereignissen aus einem diskreten Wahrscheinlichkeitsraum (Ω, \Pr) , bei dessen Ausführung stets mindestens eines von 3 bestimmten Ereignissen $A, B, C \subseteq \Omega$ eintritt. A und B seien unabhängige Ereignisse mit den Wahrscheinlichkeiten $\Pr[A] = \Pr[B] = \frac{1}{2}$. Es sei C disjunkt zu A und B.

- 1. Berechnen Sie $Pr[A \cup B]$ und Pr[C]!
- 2. Geben Sie ein konkretes Beispiel für (Ω, Pr) an.

Zusatzaufgabe 1 (wird nicht korrigiert)

Sei $n \in \mathbb{N}$. Man zeige:

Paarweise verschiedene Ereignisse A_1, A_2, \ldots, A_n sind genau dann unabhängig, wenn die Indikatorvariablen $I_{A_1}, I_{A_2}, \ldots, I_{A_n}$ unabhängig sind.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Wir wählen nacheinander (gleichverteilt) zufällig und unabhängig Buchstaben aus der Multimenge der Buchstaben des Wortes CHOOSE aus. Berechnen Sie Erwartungswert und Varianz der folgenden Zufallsvariablen:

Z :=Anzahl der Züge (ohne Zurücklegen) bis beide 0 gezogen wurden.

Vorbereitung 2

Gegeben seien zwei Zufallsvariable X und Y. Zeigen Sie:

1. Es gilt

$$Var[X + Y] + Var[X - Y] = 2 \cdot Var[X] + 2 \cdot Var[Y].$$

2. Wenn X und Y die gleiche Varianz haben, so gilt

$$\mathbb{E}[(X+Y)\cdot(X-Y)] = \mathbb{E}[X+Y]\cdot\mathbb{E}[X-Y].$$

Vorbereitung 3

Mit einem fairen Würfel wird genau so lange gewürfelt, bis jede der Zahlen $1, \ldots, 6$ einmal vorgekommen ist. Sei der Wert der Zufallsvariablen X durch die Anzahl der Würfe bestimmt. Berechnen Sie $\mathbb{E}[X]$ und $\operatorname{Var}[X]!$

Vorbereitung 4

Sei $(K,+,\cdot)$ ein Körper. Man beweise durch vollständige Induktion, dass für alle $n\in\mathbb{N}$ und $x_1,x_2,\ldots,x_n\in K$ gilt:

$$\prod_{i=1}^{n} (1 - x_i) = 1 - \sum_{1 \le i_1 \le n} x_{i_1}
+ \sum_{1 \le i_1 < i_2 \le n} x_{i_1} \cdot x_{i_2}
\vdots
+ (-1)^l \cdot \sum_{1 \le i_1 < \dots < i_l \le n} x_{i_1} \cdot \dots \cdot x_{i_l}
\vdots
+ (-1)^n \cdot x_1 \cdot \dots \cdot x_n.$$

Tutoraufgabe 1

Sei T eine nicht leere Menge von n Tieren. T bestehe aus genau a Ochsen und b Eseln, so dass also a+b=n gilt. Die Wahrscheinlichkeit, dass von $r\neq 0$ ausgewählten Tieren genau x Tiere Ochsen sind, ist gegeben durch

$$\Pr[x] = \frac{\binom{a}{x} \cdot \binom{b}{r-x}}{\binom{n}{r}}.$$

Sei nun $\Omega = \{0, 1, 2, \dots, r\} \subseteq \mathbb{N}_0$. Zeigen Sie, dass (Ω, \Pr) ein diskreter Wahrscheinlichkeitsraum ist.

Tutoraufgabe 2

Sei $W=(\Omega_n,\Pr)$ mit $\Omega_n=\{a,b,c\}^n$, wobei die Wahrscheinlichkeit, dass a bzw. b bzw. c in der i-ten Komponente von $w\in\Omega_n$ auftritt jeweils $\frac{1}{2}$ bzw. $\frac{1}{3}$ bzw. $\frac{1}{6}$ seien.

Wir betrachten die Zufallsvariablen $X_a, X_b, X_c : \Omega_n \longrightarrow \mathbb{R}$, die einem Wort w entsprechend die Anzahl der enthaltenen a bzw. b bzw. c zuordnen.

- 1. Sind X_a, X_b, X_c unabhängig? Begründung!
- 2. Geben Sie die gemeinsame Dichte der Variablen X_a und X_b an! Geben Sie die entsprechenden Randdichten von X_a und X_b an!
- 3. Berechnen Sie den Erwartungswert von X_c .

Tutoraufgabe 3

In einem Schützenverein haben Anfänger beim Tontaubenschießen nur eine Trefferquote von 10%.

- 1. Seien $i \in \mathbb{N}_0$, $k \in \mathbb{N}$. Mit welcher Wahrscheinlichkeit erzielt ein Anfänger bei k Schüssen genau i Treffer?
- 2. Wir wollen die Leistung von 100 Anfängern mit Noten bewerten. Note 2 bedeutet, dass der Schütze bei 2 Schüssen genau 1 Treffer erzielt. Nun lassen wir jeden der 100 Schützen (je) 2 Schussversuche machen und bezeichnen mit X die Anzahl der Schützen, die die Note 2 erhalten.

Geben Sie die Dichtefunktion der diskreten Wahrscheinlichkeitsverteilung der Zufallsvariablen X an! Berechnen Sie den Erwartungswert von X!

Tutoraufgabe 4

Angenommen eine Maschine gehe an jedem Betriebstag mit der Wahrscheinlichkeit $\frac{1}{3}$ kaputt.

- 1. Wie groß ist die Wahrscheinlichkeit, dass die Maschine 10 Tage lang hintereinander störungsfrei arbeitet?
- 2. Wie groß ist die erwartete Anzahl k von hintereinander folgenden störungsfreien Tagen einer Maschine, unter der Annahme, dass die Maschine am Tagk+1 defekt ist?