- **Задача 1.** Докажите, что существует предел $\lim_{n\to\infty} \left(\frac{1}{1^3} \frac{1}{2^3} + \dots + (-1)^{n-1} \frac{1}{n^3}\right)$.
- **Задача 2.** Найдите предел $\lim_{n \to \infty} (n \sqrt{n^2 + 3n})$.
- **Задача 3.** Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$. Известно, что существуют пределы $\lim_{n \to \infty} \lim_{m \to \infty} f(m,n)$ и $\lim_{m \to \infty} \lim_{n \to \infty} f(m,n)$. Верно ли, что эти пределы обязательно совпадают?
- **Задача 4.** Последовательность (x_n) такова, что для всех $n \in \mathbb{N}$ выполнено неравенство $|x_{n+1} x_n| < \frac{1}{n^2}$. Докажите, что существует предел $\lim_{n \to \infty} x_n$.

CP №18'

Самостоятельная работа

29.03.2014

- **Задача 1.** Докажите, что существует предел $\lim_{n\to\infty} \left(\frac{1}{1^3} \frac{1}{2^3} + \dots + (-1)^{n-1} \frac{1}{n^3}\right)$.
- **Задача 2.** Найдите предел $\lim_{n \to \infty} (n \sqrt{n^2 + 3n}).$
- Задача 3. Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$. Известно, что существуют пределы $\lim_{n \to \infty} \lim_{m \to \infty} f(m,n)$ и $\lim_{m \to \infty} \lim_{n \to \infty} f(m,n)$. Верно ли, что эти пределы обязательно совпадают?
- **Задача 4.** Последовательность (x_n) такова, что для всех $n \in \mathbb{N}$ выполнено неравенство $|x_{n+1} x_n| < \frac{1}{n^2}$. Докажите, что существует предел $\lim_{n \to \infty} x_n$.

CP №18'

Самостоятельная работа

29.03.2014

- **Задача 1.** Докажите, что существует предел $\lim_{n\to\infty} \left(\frac{1}{1^3} \frac{1}{2^3} + \dots + (-1)^{n-1} \frac{1}{n^3}\right)$.
- **Задача 2.** Найдите предел $\lim_{n\to\infty} (n-\sqrt{n^2+3n})$.
- Задача 3. Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$. Известно, что существуют пределы $\lim_{n \to \infty} \lim_{m \to \infty} f(m,n)$ и $\lim_{m \to \infty} \lim_{n \to \infty} f(m,n)$. Верно ли, что эти пределы обязательно совпадают?
- **Задача 4.** Последовательность (x_n) такова, что для всех $n \in \mathbb{N}$ выполнено неравенство $|x_{n+1} x_n| < \frac{1}{n^2}$. Докажите, что существует предел $\lim_{n \to \infty} x_n$.

CP №18'

Самостоятельная работа

29.03.2014

- **Задача 1.** Докажите, что существует предел $\lim_{n\to\infty} \left(\frac{1}{1^3} \frac{1}{2^3} + \dots + (-1)^{n-1} \frac{1}{n^3}\right)$.
- **Задача 2.** Найдите предел $\lim_{n\to\infty} (n-\sqrt{n^2+3n})$.
- **Задача 3.** Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$. Известно, что существуют пределы $\lim_{n \to \infty} \lim_{m \to \infty} f(m,n)$ и $\lim_{m \to \infty} \lim_{n \to \infty} f(m,n)$. Верно ли, что эти пределы обязательно совпадают?
- **Задача 4.** Последовательность (x_n) такова, что для всех $n \in \mathbb{N}$ выполнено неравенство $|x_{n+1} x_n| < \frac{1}{n^2}$. Докажите, что существует предел $\lim_{n \to \infty} x_n$.