# Filter Summary Report: TIA,simple,Z1,ZL

# Generated by MacAnalog-Symbolix

# December 10, 2024

# Contents

| 1 Examined $H(z)$ for TIA simple Z1 ZL: $\frac{Z_1Z_Lg_m}{Z_1g_m+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $_{ m 2}$ HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        |
| 3 BP<br>3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$                                                                                                                                                                                                                                                                                                                                                                          | <b>5</b> |
| 3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_I R_L s + 1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |
| 3.3 BP-3 $Z(s) = \left\langle \frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \infty, R_L \right\rangle$                                                                                                                                                                                                                                                                                                                                                                                           | 5        |
| 3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                              | 6        |
| 4 LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        |
| 4.1 LP-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                    | 6        |
| $4.2  \text{LP-2 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)  \dots $                                                                                                                                                                                                                                                                                                                                                     | 6        |
| 4.3 LP-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$                                                                                                                                                                                                                                                                                                                                                                                                | 7        |
| 4.1 LP-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$<br>4.2 LP-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$<br>4.3 LP-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$<br>4.4 LP-4 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$ | 7        |
| 5 BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        |
| 5.1 BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L\left(C_LL_Ls^2+1\right)}{C_LL_Ls^2+C_LR_Ls+1}\right)$                                                                                                                                                                                                                                                                                                                                                                                  | 7        |
| 5.2 BS-2 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$                                                                                                                                                                                                                                                                                                                                                                                                          | 8        |
| 5.3 BS-3 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right)$                                                                                                                                                                                                                                                                                                                                                               | 8        |
| 6 GE 6.1 GE-1 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_L}, \infty, \infty, \infty, \infty, \infty, R_L\right)$                                                                                                                                                                                                                                                                                                                                                                                                 | <b>8</b> |
| 6 GE<br>6.1 GE-1 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$                                                                                                                                                                                                                                                                                                                                                                                            | 9        |
| 7 AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9        |
| 8 INVALID-NUMER<br>8.1 INVALID-NUMER-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$                                                                                                                                                                                                                                                                                                                                                        | <b>9</b> |
| 8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$                                                                                                                                                                                                                                                                                                                                                               | 9        |
| 8.3 INVALID-NUMER-3 $Z(s) = \left(\frac{L_1R_1s}{C_1L_1R_1s^2 + L_1s + R_1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$                                                                                                                                                                                                                                                                                                                                                                    | 10       |
| 0 INVALID.W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       |
| 9.1 INVALID-WZ-1 $Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ L_Ls + \frac{1}{C_Ls}\right)$                                                                                                                                                                                                                                                                                                                                                                   | 10       |
| 9.1 INVALID-WZ-1 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$<br>9.2 INVALID-WZ-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$<br>9.3 INVALID-WZ-3 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$                                                              | 10       |
| 9.3 INVALID-WZ-3 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$                                                                                                                                                                                                                                                                                                                                                              | 11       |
| 9.4 INVALID-WZ-4 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$                                                                                                                                                                                                                                                                                                                                                | 11       |

| 0 INVALID-ORDER                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, \infty, R_L)$                                                                                                                                                                                                                               |
| 10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$                                                                                                                                                                                                      |
| 10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_{c_c}}\right)$                                                                                                                                                                                                |
| 10.5 INVALID-ORDER-5 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{G_{-s}}\right)$                                                                                                                                                                                               |
| 10.6 INVALID-ORDER-6 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$                                                                                                                                                                                                  |
| 10.7 INVALID-ORDER-7 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$                                                                                                                                                                                          |
| 10.8 INVALID-ORDER-8 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$                                                                                                                                                                                            |
| 10.9 INVALID-ORDER-9 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, R_L)$                                                                                                                                                                                                                             |
| 10.10INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$                                                                                                                                                                                                             |
| 10.11INVALID-ORDER-11 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$                                                                                                                                                                                       |
| $10.12 \text{INVALID-ORDER-12 } Z(s) = \left(L_1 s, \ \infty, \$                                                                                                                                                                                   |
| $10.13\text{INVALID-ORDER-}13\ Z(s) = \left(L_1 s,\ \infty,\ \infty,\ \infty,\ \infty,\ \infty,\ \infty,\ \frac{L_L s}{C_L L_L s^2 + 1}\right)  \dots \qquad 1$                                                                                                                                                |
| $10.14 \text{INVALID-ORDER-} 14 \ Z(s) = \left(L_1 s, \ \infty, \$                                                                                                                                                                                 |
| $10.15 \text{INVALID-ORDER-15 } Z(s) = \left(L_1 s, \ \infty, \$                                                                                                                                                                                   |
| $10.16 \text{INVALID-ORDER-} 16 \ Z(s) = \left(L_1 s, \ \infty, \$                                                                                                                                                                                 |
| $10.17 \text{INVALID-ORDER-17 } Z(s) = \left(L_1 s, \ \infty, \$                                                                                                                                                                                   |
| $10.18 \text{INVALID-ORDER-} 18 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.19 \text{INVALID-ORDER-19 } Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                        |
| $10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                        |
| $10.21 \text{INVALID-ORDER-} 21 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.22 \text{INVALID-ORDER-} 22 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.23 \text{INVALID-ORDER-} 23 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.24 \text{INVALID-ORDER-} 24 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.26 \text{INVALID-ORDER-} 26 \ Z(s) = \left(\frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                      |
| $10.27 \text{INVALID-ORDER-} 27 \ Z(s) = \left(\begin{array}{c} R_1 \\ \overline{C_1 R_1 s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L \end{array}\right)  .  .  .  .  .  .  .  .  .  $                                                                                                        |
| $10.28 \text{INVALID-ORDER-} 28 \ Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \ \dots $                                                                                                                                                 |
| $10.29 \text{INVALID-ORDER-} 29 \ Z(s) = \left(\begin{array}{c} R_1 \\ \hline C_1 R_1 s + 1 \end{array}\right), \ \infty, \ $                                                                                                                      |
| $10.30 \text{INVALID-ORDER-30 } Z(s) = \left( \frac{R_1}{C_1 R_1 s + 1}, \ \infty, \ $                                                                                                                                                             |
| $10.31 \text{INVALID-ORDER-31 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)^{-1}$                                                                                                                                                             |
| $10.32 \text{INVALID-ORDER-32 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) $                                                                                                                                                         |
| $10.33 \text{INVALID-ORDER-33 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right) $                                                                                                                                       |
| $10.34 \text{INVALID-ORDER-34 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$                                                                                                                                                    |
| $10.35 \text{INVALID-ORDER-35 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right) \dots \dots$ |
| $10.36 \text{INVALID-ORDER-36 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                  |
| $10.37 \text{INVALID-ORDER-37 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) $                                                                                                                                                     |
| $10.38 \text{INVALID-ORDER-38 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) $                                                                                                                                                         |
| $10.39 \text{INVALID-ORDER-39 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                  |
| $10.40 \text{INVALID-ORDER-40 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                |

| $10.41\text{INVALID-ORDER-41 } Z(s) = \left(R_1 + \frac{1}{C_{1,8}}, \infty, \infty, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_{L,8}}\right) \dots \dots$                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $10.42 \text{INVALID-ORDER-42 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                                |
| $10.43\text{INVALID-ORDER-43 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) $                                                                                                                                      |
| $10.44 \text{INVALID-ORDER-} 44 \ Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                              |
| $10.45 \text{INVALID-ORDER-} 45 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \ \dots \ $                                                                                         |
| $10.46 \text{INVALID-ORDER-} 46 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right)  \dots $                                                                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                        |
| $10.48 \text{INVALID-ORDER-48 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right) \dots \dots$                                              |
| $10.49 \text{INVALID-ORDER-49 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right) $                                                                                                                                                         |
| $10.50 \text{INVALID-ORDER-50 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right) $                                                                                                                                                 |
| $10.51 \text{INVALID-ORDER-51 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right) $                                                                                                                                       |
| $10.52 \text{INVALID-ORDER-52 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                              |
| $10.53 \text{INVALID-ORDER-53 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right) \dots \dots$ |
| $10.54 \text{INVALID-ORDER-} 54 \ Z(s) = \left(\frac{L_{1s}}{C_{1}L_{1}s^{2}+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_{L}}{C_{L}R_{L}s+1}\right) $                                                                                                                                    |
| $10.55 \text{INVALID-ORDER-55 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots \dots$                                |
| $10.56 \text{INVALID-ORDER-} 56 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right) $                                                                                                                   |
| $10.57 \text{INVALID-ORDER-57 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \infty, \ $                                                                                                                                                        |
| $10.58INVALID-ORDER-58 \ Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ $                                                                                                                                                                    |
| $10.59 \text{INVALID-ORDER-59 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_1 s}\right) $                                                                                                                                                                 |
| $10.60 \text{INVALID-ORDER-} 60 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) \ \dots $                                                                                                                                 |
| 10.61INVALID-ORDER-61 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty, \infty, 18\right)$                                                                                                                                                                        |
| $10.62 \text{INVALID-ORDER-} 62 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                      |
| $10.63 \text{INVALID-ORDER-} 63 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $                                                                                                                                     |
| $10.64 \text{INVALID-ORDER-} 64 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                      |
| $10.65 \text{INVALID-ORDER-} 65 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                      |
| $10.66 \text{INVALID-ORDER-} 66 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                      |
| $10.67 \text{INVALID-ORDER-} 67 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ $                                                                                                                                                      |
| $10.68 \text{INVALID-ORDER-} 68 \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) $                                                                                                                       |
| $10.69 \text{INVALID-ORDER-} 69 \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $                                                                                                                             |
| 10.70INVALID-ORDER-70 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$ 19                                                                                                                              |
| $10.71 \text{INVALID-ORDER-71 } Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ $                                                                                                                                      |
| $10.72 \text{INVALID-ORDER-} 72 \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ $                                                                                                                                    |
| $10.73 \text{INVALID-ORDER-73 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) $                                                                                                                                                         |
| $10.74 \text{INVALID-ORDER-} 74 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{\dot{R}_L}{C_L R_L s + 1}\right)  \dots $                                                                                                                                |
| $10.75 \text{INVALID-ORDER-} 75 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) \ \dots $                                                                                                                               |
| 10.76INVALID-ORDER-76 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$                                                                                                                                                 |
| $10.77 \text{INVALID-ORDER-} 77 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $                                                                                                                               |
| $10.78 \text{INVALID-ORDER-78 } Z(s) = \left( \frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ $                                                                                                                                                 |
| $10.79 \text{INVALID-ORDER-79 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ $                                                                                                                                                  |

| $10.80 \text{INVALID-ORDER-80 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \ \infty, \ $                                                                                                                                                        | 20 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10.81INVALID-ORDER-81 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$                                                                                                                                          | 20 |
| $10.82 \text{INVALID-ORDER-82 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$                                                                                                                                   | 20 |
| 10.83INVALID-ORDER-83 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$                                                                                                                                                            | 20 |
| 10.84INVALID-ORDER-84 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$                                                                                                                                                             | 20 |
| 10.85INVALID-ORDER-85 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$                                                                                                                                                            | 20 |
| 10.86INVALID-ORDER-86 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)'$                                                                                                                                                                | 20 |
| 10.87INVALID-ORDER-87 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$                                                                                                                                                      | 20 |
| 10.88INVALID-ORDER-88 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$                                                                                                                                            | 21 |
| $10.89 \text{INVALID-ORDER-89 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right) \dots \dots$ | 21 |
| $10.90 \text{INVALID-ORDER-90 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(C_LL_Ls^2+1\right)'}{C_LL_Ls^2+C_LR_Ls+1}\right) \ \dots $                                                                                | 21 |
|                                                                                                                                                                                                                                                                                                                    |    |

- 1 Examined H(z) for TIA simple Z1 ZL:  $\frac{Z_1Z_Lg_m}{Z_1g_m+1}$
- 2 HP
- 3 BP
- 3.1 BP-1  $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

Q: 
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$
  
wo:  $\sqrt{\frac{1}{C_L L_L}}$   
bandwidth:  $\frac{1}{C_L R_L}$   
K-LP: 0  
K-HP: 0  
K-BP:  $\frac{R_1 R_L g_m}{R_1 g_m + 1}$   
Qz: 0  
Wz: None

3.2 BP-2  $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$ 

#### Parameters:

Q: 
$$\frac{C_{L}L_{1}R_{L}g_{m}\sqrt{\frac{1}{C_{L}L_{1}R_{L}g_{m}}}}{C_{L}R_{L}+L_{1}g_{m}}$$
 wo: 
$$\sqrt{\frac{1}{C_{L}L_{1}R_{L}g_{m}}}$$
 bandwidth: 
$$\frac{C_{L}R_{L}+L_{1}g_{m}}{C_{L}L_{1}R_{L}g_{m}}$$
 K-LP: 0 K-HP: 0 K-BP: 
$$\frac{L_{1}R_{L}g_{m}}{C_{L}R_{L}+L_{1}g_{m}}$$
 Qz: 0 Wz: None

**3.3** BP-3  $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$ 

$$\begin{array}{l} \text{Q:} \ \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}\\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}}\\ \text{bandwidth:} \ \frac{g_m}{C_1}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ R_L\\ \text{Qz:} \ 0 \end{array}$$

$$H(z) = \frac{Z_1 Z_L g_m}{Z_1 g_m + 1}$$

$$H(s) = \frac{L_L R_1 R_L g_m s}{(R_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

$$H(s) = \frac{L_1 R_L g_m s}{(C_L R_L s + 1) (L_1 g_m s + 1)}$$

$$H(s) = \frac{L_1 R_L g_m s}{C_1 L_1 s^2 + L_1 g_m s + 1}$$

**3.4** BP-4 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_L\right)$$

Q: 
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo:  $\sqrt{\frac{1}{C_1L_1}}$  bandwidth:  $\frac{R_1g_m+1}{C_1R_1}$  K-LP: 0 K-HP: 0 K-BP:  $\frac{R_1R_Lg_m}{R_1g_m+1}$  Qz: 0 Wz: None

### 4 LP

**4.1** LP-1 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

#### Parameters:

$$\begin{aligned} &\mathbf{Q} \colon \frac{C_1 C_L R_L \sqrt{\frac{g_m}{C_1 C_L R_L}}}{C_1 + C_L R_L g_m} \\ &\mathbf{wo} \colon \sqrt{\frac{g_m}{C_1 C_L R_L}} \\ &\mathbf{bandwidth} \colon \frac{C_1 + C_L R_L g_m}{C_1 C_L R_L} \\ &\mathbf{K-LP} \colon R_L \\ &\mathbf{K-HP} \colon 0 \\ &\mathbf{K-BP} \colon 0 \\ &\mathbf{Qz} \colon \mathbf{None} \\ &\mathbf{Wz} \colon \mathbf{None} \end{aligned}$$

**4.2** LP-2 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}C_{L}R_{1}R_{L}\sqrt{\frac{R_{1}g_{m}+1}{C_{1}C_{L}R_{1}R_{L}}}}{C_{1}R_{1}+C_{L}R_{1}R_{L}g_{m}+C_{L}R_{L}} \\ \text{wo:} \ \sqrt{\frac{R_{1}g_{m}+1}{C_{1}C_{L}R_{1}R_{L}}} \\ \text{bandwidth:} \ \frac{C_{1}R_{1}+C_{L}R_{1}R_{L}g_{m}+C_{L}R_{L}}{C_{1}C_{L}R_{1}R_{L}} \\ \text{K-LP:} \ \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

$$H(s) = \frac{L_1 R_1 R_L g_m s}{C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1}$$

$$H(s) = \frac{R_L g_m}{(C_1 s + g_m) (C_L R_L s + 1)}$$

$$H(s) = \frac{R_1 R_L g_m}{(C_L R_L s + 1) (C_1 R_1 s + R_1 g_m + 1)}$$

**4.3** LP-3 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

Q: 
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo: 
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth: 
$$\frac{g_m}{C_1}$$
 K-LP: 
$$\frac{L_1g_m}{C_L}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

**4.4** LP-4 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

#### Parameters:

Q: 
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo: 
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth: 
$$\frac{R_1g_m+1}{C_1R_1}$$
 K-LP: 
$$\frac{L_1g_m}{C_L}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

## 5 BS

**5.1** BS-1 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$\begin{aligned} &\text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{R_L}{L_L} \\ &\text{K-LP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ &\text{K-HP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

$$H(s) = \frac{L_1 g_m}{C_L \left( C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

$$H(s) = \frac{L_1 R_1 g_m}{C_L \left( C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

$$H(s) = \frac{R_1 R_L g_m \left( C_L L_L s^2 + 1 \right)}{\left( R_1 g_m + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}$$

**5.2** BS-2 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

Q: 
$$L_1 g_m \sqrt{\frac{1}{C_1 L_1}}$$
  
wo:  $\sqrt{\frac{1}{C_1 L_1}}$   
bandwidth:  $\frac{1}{L_1 g_m}$   
K-LP:  $R_L$   
K-HP:  $R_L$   
K-BP: 0  
Qz: None  
Wz:  $\sqrt{\frac{1}{C_1 L_1}}$ 

**5.3** BS-3 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, R_L\right)$$

#### Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_1\sqrt{\frac{1}{C_1L_1}}(R_1g_m+1)}{R_1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1}{L_1(R_1g_m+1)} \\ \text{K-LP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ \text{K-HP:} \ \frac{R_1R_Lg_m}{R_1g_m+1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

# 6 **GE**

**6.1** GE-1 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$\begin{aligned} &\text{Q: } \frac{L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ &\text{bandwidth: } \frac{R_{1}g_{m}+1}{L_{1}g_{m}} \\ &\text{K-LP: } R_{L} \\ &\text{K-HP: } R_{L} \\ &\text{K-BP: } \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ &\text{Qz: } \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 g_m s^2 + C_1 s + g_m}$$

$$H(s) = \frac{R_1 R_L g_m \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1}$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right)}{C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m}$$

**6.2 GE-2** 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L\right)$$

 $H(s) = \frac{R_L g_m \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1}$ 

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1 \sqrt{\frac{1}{C_1 L_1}} (R_1 g_m + 1)}{g_m} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{g_m}{C_1 (R_1 g_m + 1)} \\ &\text{K-LP: } \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-HP: } \frac{R_1 R_L g_m}{R_1 g_m + 1} \\ &\text{K-BP: } R_L \\ &\text{Qz: } C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_1 L_1}} \end{aligned}$$

### 7 AP

## 8 INVALID-NUMER

8.1 INVALID-NUMER-1  $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$ 

#### Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1C_LR_L\sqrt{\frac{g_m}{C_1C_LR_L(R_1g_m+1)}}(R_1g_m+1)}{C_1R_1g_m+C_1+C_LR_Lg_m} \\ \text{wo:} \ \sqrt{\frac{g_m}{C_1C_LR_L(R_1g_m+1)}} \\ \text{bandwidth:} \ \frac{C_1R_1g_m+C_1+C_LR_Lg_m}{C_1C_LR_L(R_1g_m+1)} \\ \text{K-LP:} \ R_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_1R_1R_Lg_m}{C_1R_1g_m+C_1+C_LR_Lg_m} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.2 INVALID-NUMER-2  $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$ 

$$\begin{aligned} &\text{Q:} \ \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ &\text{bandwidth:} \ \frac{g_m}{C_1} \\ &\text{K-LP:} \ \frac{L_1g_m}{C_L} \\ &\text{K-HP:} \ 0 \\ &\text{K-BP:} \ R_L \\ &\text{Qz:} \ 0 \\ &\text{Wz:} \ \text{None} \end{aligned}$$

$$H(s) = \frac{R_L g_m \left( C_1 R_1 s + 1 \right)}{\left( C_L R_L s + 1 \right) \left( C_1 R_1 g_m s + C_1 s + g_m \right)}$$

$$H(s) = \frac{L_1 g_m \left( C_L R_L s + 1 \right)}{C_L \left( C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

**8.3** INVALID-NUMER-3 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m (C_L R_L s + 1)}{C_L (C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1)}$$

$$\begin{array}{l} \text{Q: } \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth: } \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP: } \frac{L_{1}g_{m}}{C_{L}} \\ \text{K-HP: } 0 \\ \text{K-BP: } \frac{R_{1}R_{L}g_{m}}{R_{1}g_{m}+1} \\ \text{Qz: } 0 \\ \text{Wz: None} \end{array}$$

## 9 INVALID-WZ

**9.1** INVALID-WZ-1 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left( C_L L_L s^2 + 1 \right)}{C_L \left( C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}\\ &\text{wo: } \sqrt{\frac{1}{C_1L_1}}\\ &\text{bandwidth: } \frac{g_m}{C_1}\\ &\text{K-LP: } \frac{L_1g_m}{C_L}\\ &\text{K-HP: } \frac{L_Lg_m}{C_1}\\ &\text{K-BP: } 0\\ &\text{Qz: None}\\ &\text{Wz: } \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

**9.2** INVALID-WZ-2 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L \left( C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}\\ &\text{wo:} \ \sqrt{\frac{1}{C_1L_1}}\\ &\text{bandwidth:} \ \frac{g_m}{C_1}\\ &\text{K-LP:} \ \frac{L_1g_m}{C_L}\\ &\text{K-HP:} \ \frac{L_Lg_m}{C_1}\\ &\text{K-BP:} \ R_L\\ &\text{Qz:} \ \frac{L_L\sqrt{\frac{1}{C_1L_1}}}{R_L}\\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

**9.3** INVALID-WZ-3 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 R_1 g_m \left( C_L L_L s^2 + 1 \right)}{C_L \left( C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ \text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ \text{K-LP:} \ \frac{L_{1}g_{m}}{C_{L}} \\ \text{K-HP:} \ \frac{L_{L}g_{m}}{C_{1}} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{array}$$

**9.4** INVALID-WZ-4  $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$ 

$$H(s) = \frac{L_1 R_1 g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L \left( C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{C_{1}R_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ &\text{wo:} \ \sqrt{\frac{1}{C_{1}L_{1}}} \\ &\text{bandwidth:} \ \frac{R_{1}g_{m}+1}{C_{1}R_{1}} \\ &\text{K-LP:} \ \frac{L_{1}g_{m}}{C_{L}} \\ &\text{K-HP:} \ \frac{L_{L}g_{m}}{R_{1}g_{m}+1} \\ &\text{Qz:} \ \frac{R_{1}R_{L}g_{m}}{R_{L}} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_{L}L_{L}}} \end{aligned}$$

#### 10 INVALID-ORDER

10.1 INVALID-ORDER-1  $Z(s) = (R_1, \infty, \infty, \infty, \infty, \infty, R_L)$ 

$$H(s) = \frac{R_1 R_L g_m}{R_1 g_m + 1}$$

10.2 INVALID-ORDER-2  $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$ 

$$H(s) = \frac{R_1 g_m}{C_L s \left( R_1 g_m + 1 \right)}$$

10.3 INVALID-ORDER-3  $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$ 

$$H(s) = \frac{R_1 R_L g_m}{(R_1 g_m + 1) (C_L R_L s + 1)}$$

11

10.4 INVALID-ORDER-4 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m (C_L R_L s + 1)}{C_L s (R_1 g_m + 1)}$$

10.5 INVALID-ORDER-5 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L s^2 + 1 \right)}{C_L s \left( R_1 g_m + 1 \right)}$$

10.6 INVALID-ORDER-6 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{(R_1 g_m + 1) (C_L L_L s^2 + 1)}$$

10.7 INVALID-ORDER-7 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left( R_1 g_m + 1 \right)}$$

10.8 INVALID-ORDER-8 
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( R_1 g_m + 1 \right) \left( C_L L_L s^2 + 1 \right)}$$

10.9 INVALID-ORDER-9 
$$Z(s) = (L_1 s, \infty, \infty, \infty, \infty, \infty, R_L)$$

$$H(s) = \frac{L_1 R_L g_m s}{L_1 g_m s + 1}$$

10.10 INVALID-ORDER-10 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m}{C_L \left( L_1 g_m s + 1 \right)}$$

10.11 INVALID-ORDER-11 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m (C_L R_L s + 1)}{C_L (L_1 g_m s + 1)}$$

10.12 INVALID-ORDER-12 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left( C_L L_L s^2 + 1 \right)}{C_L \left( L_1 g_m s + 1 \right)}$$

10.13 INVALID-ORDER-13 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{(C_L L_L s^2 + 1) (L_1 g_m s + 1)}$$

10.14 INVALID-ORDER-14 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_1 g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L \left( L_1 g_m s + 1 \right)}$$

10.15 INVALID-ORDER-15 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{\left(L_1 g_m s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}$$

10.16 INVALID-ORDER-16 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 g_m s \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( L_1 g_m s + 1 \right)}$$

10.17 INVALID-ORDER-17 
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L\left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_L g_m s \left( C_L L_L s^2 + 1 \right)}{\left( L_1 g_m s + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}$$

10.18 INVALID-ORDER-18 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_L g_m}{C_1 s + q_m}$$

10.19 INVALID-ORDER-19 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m}{C_L s \left(C_1 s + g_m\right)}$$

10.20 INVALID-ORDER-20 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_L R_L s + 1)}{C_L s (C_1 s + g_m)}$$

10.21 INVALID-ORDER-21 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L L_L s^2 + 1 \right)}{C_L s \left( C_1 s + g_m \right)}$$

10.22 INVALID-ORDER-22 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s}{(C_1 s + g_m) (C_L L_L s^2 + 1)}$$

10.23 INVALID-ORDER-23 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left( C_1 s + g_m \right)}$$

10.24 INVALID-ORDER-24 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L g_m s}{(C_1 s + g_m) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.25 INVALID-ORDER-25 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_1 s + q_m \right) \left( C_L L_L s^2 + 1 \right)}$$

10.26 INVALID-ORDER-26 
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_L L_L s^2 + 1 \right)}{\left( C_1 s + g_m \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}$$

10.27 INVALID-ORDER-27 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_1 R_L g_m}{C_1 R_1 s + R_1 g_m + 1}$$

10.28 INVALID-ORDER-28 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m}{C_L s (C_1 R_1 s + R_1 q_m + 1)}$$

10.29 INVALID-ORDER-29 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m (C_L R_L s + 1)}{C_L s (C_1 R_1 s + R_1 g_m + 1)}$$

10.30 INVALID-ORDER-30 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L s^2 + 1 \right)}{C_L s \left( C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.31 INVALID-ORDER-31 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s}{(C_L L_L s^2 + 1) (C_1 R_1 s + R_1 g_m + 1)}$$

10.32 INVALID-ORDER-32 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left( C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.33 INVALID-ORDER-33 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_1 R_L g_m s}{(C_1 R_1 s + R_1 g_m + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

10.34 INVALID-ORDER-34 
$$Z(s) = \left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{R_1 g_m \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.35 INVALID-ORDER-35 
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_1 R_L g_m \left( C_L L_L s^2 + 1 \right)}{\left( C_1 R_1 s + R_1 g_m + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}$$

10.36 INVALID-ORDER-36 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L g_m (C_1 R_1 s + 1)}{C_1 R_1 g_m s + C_1 s + g_m}$$

10.37 INVALID-ORDER-37 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1)}{C_L s (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.38 INVALID-ORDER-38 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L R_L s + 1)}{C_L s (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.39 INVALID-ORDER-39 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L L_L s^2 + 1)}{C_L s (C_1 R_1 q_m s + C_1 s + q_m)}$$

10.40 INVALID-ORDER-40 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s (C_1 R_1 s + 1)}{(C_L L_L s^2 + 1) (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.41 INVALID-ORDER-41 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{C_L s (C_1 R_1 q_m s + C_1 s + q_m)}$$

10.42 INVALID-ORDER-42 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_{L}R_{L}g_{m}s\left(C_{1}R_{1}s+1\right)}{\left(C_{1}R_{1}g_{m}s+C_{1}s+g_{m}\right)\left(C_{L}L_{L}R_{L}s^{2}+L_{L}s+R_{L}\right)}$$

10.43 INVALID-ORDER-43 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m (C_1 R_1 s + 1) (C_L L_L R_L s^2 + L_L s + R_L)}{(C_L L_L s^2 + 1) (C_1 R_1 g_m s + C_1 s + g_m)}$$

10.44 INVALID-ORDER-44 
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_1 R_1 s + 1 \right) \left( C_L L_L s^2 + 1 \right)}{\left( C_L L_L s^2 + C_L R_L s + 1 \right) \left( C_1 R_1 g_m s + C_1 s + g_m \right)}$$

10.45 INVALID-ORDER-45 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + 1 \right)}{C_L s \left( C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.46 INVALID-ORDER-46 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 s^2 + 1 \right)}{\left( C_L R_L s + 1 \right) \left( C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.47 INVALID-ORDER-47 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 L_1 s^2 + 1) (C_L R_L s + 1)}{C_L s (C_1 L_1 g_m s^2 + C_1 s + g_m)}$$

10.48 INVALID-ORDER-48 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_1 L_1 s^2 + 1) (C_L L_L s^2 + 1)}{C_L s (C_1 L_1 g_m s^2 + C_1 s + g_m)}$$

10.49 INVALID-ORDER-49 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 s^2 + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 s + g_m\right)}$$

10.50 INVALID-ORDER-50 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left( C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.51 INVALID-ORDER-51 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 s^2 + 1\right)}{\left(C_1 L_1 g_m s^2 + C_1 s + g_m\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}$$

**10.52** INVALID-ORDER-52 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + 1 \right) \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.53 INVALID-ORDER-53 
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 s^2 + 1 \right) \left( C_L L_L s^2 + 1 \right)}{\left( C_L L_L s^2 + C_L R_L s + 1 \right) \left( C_1 L_1 g_m s^2 + C_1 s + g_m \right)}$$

10.54 INVALID-ORDER-54 
$$Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{L_1 R_L g_m s}{(C_L R_L s + 1) (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

10.55 INVALID-ORDER-55 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L g_m s^2}{(C_L L_L s^2 + 1) (C_1 L_1 s^2 + L_1 g_m s + 1)}$$

10.56 INVALID-ORDER-56 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_1 L_L R_L g_m s^2}{(C_1 L_1 s^2 + L_1 g_m s + 1) (C_L L_L R_L s^2 + L_L s + R_L)}$$

**10.57** INVALID-ORDER-57 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 g_m s \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 s^2 + L_1 g_m s + 1 \right)}$$

10.58 INVALID-ORDER-58 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_L g_m s \left( C_L L_L s^2 + 1 \right)}{\left( C_1 L_1 s^2 + L_1 g_m s + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}$$

10.59 INVALID-ORDER-59 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right)}{C_L s \left( C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m \right)}$$

10.60 INVALID-ORDER-60 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right)}{\left( C_L R_L s + 1 \right) \left( C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m \right)}$$

**10.61** INVALID-ORDER-61 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m (C_L R_L s + 1) (C_1 L_1 s^2 + C_1 R_1 s + 1)}{C_L s (C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m)}$$

**10.62** INVALID-ORDER-62 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right)}{C_L s \left( C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m \right)}$$

**10.63** INVALID-ORDER-63 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

**10.64** INVALID-ORDER-64 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right) \left( C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L s \left( C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m \right)}$$

10.65 INVALID-ORDER-65 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L R_L s^2 + L_L s + R_L\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

**10.66** INVALID-ORDER-66 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 s^2 + C_1 R_1 s + 1 \right) \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m \right)}$$

10.67 INVALID-ORDER-67 
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left(C_L L_L s^2 + 1\right) \left(C_1 L_1 s^2 + C_1 R_1 s + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 g_m s^2 + C_1 R_1 g_m s + C_1 s + g_m\right)}$$

10.68 INVALID-ORDER-68 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_1 R_L g_m s}{\left(C_L R_L s + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

**10.69** INVALID-ORDER-69 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_1 L_L R_1 g_m s^2}{(C_L L_L s^2 + 1) (C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1)}$$

10.70 INVALID-ORDER-70 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_1 L_L R_1 R_L g_m s^2}{(C_L L_L R_L s^2 + L_L s + R_L) (C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1)}$$

10.71 INVALID-ORDER-71 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_1 R_1 g_m s \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1 \right)}$$

10.72 INVALID-ORDER-72 
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_1 R_1 R_L g_m s \left(C_L L_L s^2 + 1\right)}{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_1 L_1 R_1 s^2 + L_1 R_1 g_m s + L_1 s + R_1\right)}$$

10.73 INVALID-ORDER-73 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_L s \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

**10.74** INVALID-ORDER-74 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{\left( C_L R_L s + 1 \right) \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

**10.75** INVALID-ORDER-75 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L R_L s + 1 \right) \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_L s \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

10.76 INVALID-ORDER-76 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_L s \left( C_1 L_1 R_1 q_m s^2 + C_1 L_1 s^2 + L_1 q_m s + R_1 q_m + 1 \right)}$$

10.77 INVALID-ORDER-77 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L g_m s \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

**10.78** INVALID-ORDER-78 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m \left( C_L L_L s^2 + C_L R_L s + 1 \right) \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{C_L s \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

10.79 INVALID-ORDER-79 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

$$H(s) = \frac{L_L R_L g_m s \left(C_1 L_1 R_1 s^2 + L_1 s + R_1\right)}{\left(C_L L_L R_L s^2 + L_L s + R_L\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1\right)}$$

**10.80** INVALID-ORDER-80 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{g_m \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right) \left( C_L L_L R_L s^2 + L_L s + R_L \right)}{\left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

10.81 INVALID-ORDER-81 
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L g_m \left( C_L L_L s^2 + 1 \right) \left( C_1 L_1 R_1 s^2 + L_1 s + R_1 \right)}{\left( C_L L_L s^2 + C_L R_L s + 1 \right) \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + L_1 g_m s + R_1 g_m + 1 \right)}$$

10.82 INVALID-ORDER-82 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_1 L_1 s^2 + 1 \right)}{C_L s \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.83 INVALID-ORDER-83 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_1 R_L g_m \left( C_1 L_1 s^2 + 1 \right)}{\left( C_L R_L s + 1 \right) \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1 \right)}$$

10.84 INVALID-ORDER-84 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_1 L_1 s^2 + 1 \right) \left( C_L R_L s + 1 \right)}{C_L s \left( C_1 L_1 R_1 q_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 q_m + 1 \right)}$$

10.85 INVALID-ORDER-85 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1 g_m \left( C_1 L_1 s^2 + 1 \right) \left( C_L L_L s^2 + 1 \right)}{C_L s \left( C_1 L_1 R_1 q_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 q_m + 1 \right)}$$

10.86 INVALID-ORDER-86 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L R_1 g_m s \left(C_1 L_1 s^2 + 1\right)}{\left(C_L L_L s^2 + 1\right) \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1\right)}$$

10.87 INVALID-ORDER-87 
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_1 g_m \left(C_1 L_1 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{C_L s \left(C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1\right)}$$

$$\textbf{10.88} \quad \textbf{INVALID-ORDER-88} \ Z(s) = \left( \frac{R_1 \left( C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L} \right)$$
 
$$H(s) = \frac{L_L R_1 R_L g_m s \left( C_1 L_1 s^2 + 1 \right)}{\left( C_L L_L R_L s^2 + L_L s + R_L \right) \left( C_1 L_1 R_1 g_m s^2 + C_1 L_1 s^2 + C_1 R_1 s + R_1 g_m + 1 \right) }$$

10.89 INVALID-ORDER-89 
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1} + R_L\right)$$

$$H(s) = \frac{R_1g_m\left(C_1L_1s^2+1\right)\left(C_LL_LR_Ls^2+L_Ls+R_L\right)}{\left(C_LL_Ls^2+1\right)\left(C_1L_1R_1g_ms^2+C_1L_1s^2+C_1R_1s+R_1g_m+1\right)}$$

10.90 INVALID-ORDER-90 
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L\left(C_LL_Ls^2+1\right)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_1R_Lg_m\left(C_1L_1s^2+1\right)\left(C_LL_Ls^2+1\right)}{\left(C_LL_Ls^2+C_LR_Ls+1\right)\left(C_1L_1R_1g_ms^2+C_1L_1s^2+C_1R_1s+R_1g_m+1\right)}$$

# 11 PolynomialError