Tablas de hash 1

Fernando Schapachnik^{1,2}

 ¹En realidad... push('Fernando Schapachnik', push('Esteban Feuerstein', autores))
²Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Algoritmos y Estructuras de Datos II, segundo cuatrimestre de 2018

(2) El desafío de hoy

- ¿Se puede buscar en O(1)?
- Con más precisión: ¿puede un diccionario obtener() en O(1)?

(3) ¿Y si las claves son los números del 1 al 1000?

- Para algunos tipos particulares de diccionarios es fácil: si α es nat en el rango $1 \dots n$.
- En realidad, también puedo si el rango es $k \dots n + k$.
- ¿Y si el rango es muy grande pero ralo?
- Dejemos de lado las opciones que desperdician memoria.

(4) Relajemos

- Si relajamos algunos de los requerimientos podemos empezar a obtener resultados interesantes.
- Vamos a conformarnos con tener O(1) en el caso esperado sabiendo que podría haber casos peores.
- Supongamos que queremos almacenar n elementos, cuyos claves son valores numéricos en $1 \dots N$ y sabemos que $N \gg n$.
- \bullet Por ejemplo, 100 DNIs, y β son todos los datos de la persona.

(5) Relajemos (cont.)

- Entonces, en lugar de tener un arreglo: A[1 ... N] de β ...
- ...vamos a tener un arreglo A[1...n] de conj $(\langle \alpha, \beta \rangle)$.
- Y además una función: $h: \mathsf{DNI} \to [0 \dots n-1].$
- Por ejemplo: $h(d) = d \mod 100$.
- Forma de uso: los datos del DNI d están en A[h(d)].
- Eso sí: tal vez no sean los únicos que están ahí.
- Ésa es la idea básica detrás de una estructura de datos llamada *tabla de hash*.
- h es la función de hash (o función hash, o función de hashing).
- ¿Y si α no es numérico?
- Alcanza con encontrar una función total de $\alpha \to [0 \dots n-1]$.

(6) Formalicemos

- Una tabla de hash es una tupla $\langle A, h \rangle$, donde A es un arreglo de k posiciones y h la función de hash $\alpha \to [0 \dots k-1]$.
- Tarea: pensar en invariante y función de abstracción.
- (Cada posición del arreglo se suele llamar bucket.)
- Si h distribuye "bien" a los α tendremos un caso "esperado" de O(1).
- El peor caso será bastante mayor. Cuánto?
- Depende de cómo resolvamos las colisiones.

(7) Hashing perfecto vs colisiones

- Se dice que una función de hash es perfecta si: $\forall c_1, c_2 \in \alpha, c_1 \neq c_2 \Rightarrow h(c_1) \neq h(c_2)$
- Para eso necesitamos que $k \ge |\alpha|$, lo que muy rara vez sucede.
- De hecho, suele suceder que $|\alpha| \gg k$.
- Por ende, es muy probable (más de lo que uno se imagina) que $h(c_1) = h(c_2)$. Es decir, que c_1 y c_2 colisionen.
- Ejercicio: proponer una función hash perfecta para el caso en que las claves sean strings de largo 3 en el alfabeto {a, b, c}.

(8) Nadie es perfecto

- Si perfecto es mucho pedir, ¿qué pasa con "bueno"?
- Supongamos que conocemos la distribución de frecuencias de α y llamamos P(c) a la probabilidad de la clave c.
- Nos gustaría que

$$\forall i \in [0 \dots k-1], (\sum_{c \mid h(c)=i} P(c)) \sim 1/k$$

- Es decir, que para cada posición del arreglo, la probabilidad de que algún α vaya a parar ahí, sea aproximadamente uniforme.
- Eso se llama uniformidad simple, y es muy difícil de lograr.
- En gran parte, porque P suele ser desconocida.

(9) Nadie es perfecto (cont.)

- A modo de ejemplo, pensemos en A[0...5] y $h(c) = c \mod 5$.
- Dos conjuntos de datos muy similares $\{1,7,10,14\}$ vs $\{1,6,11,16\}$.
- En el primer caso, ocupan las posiciones 1, 2, 0 y 4.
- En el segundo caso, todos quedan en la 1.
- Como conocer las distribuciones es muy difícil, lo que se busca en la práctica es tener independencia de la distribución de los datos.
- Y además, saber que las colisiones son prácticamente inevitables y habrá que lidiar con ellas sí o sí.
- Son inevitables?

(10) Paradoja del cumpleaños

- Si tenemos una tabla con k = 365 y h distribuye uniformemente entre las celdas, cuál es la probabilidad de tener colisiones?
- (No es una paradoja en sentido estricto: es una contradicción entre la intuición y el resultado matemático.)
- Si elegimos 23 personas al azar, la probabilidad de que dos de ellas cumplan años el mismo día es $> \frac{1}{2}$ (aprox. 50,7%).
- Es decir, aún suponiendo distribución uniforme de los nacimientos, hay alta probabilidad de festejo conjunto.
- Tarea: pensar en la demo (pista: calcular la inversa, es decir, la probabilidad de que no haya dos personas que colisionen).
- Corolario: si tenemos una tabla con k=365 y h distribuye uniformemente entre ellas, aún así tenemos probabilidad $>\frac{1}{2}$ de que luego de 23 inserciones se produzca una colisión.

(11) Resolviendo las colisiones

- Dado que las colisiones son inevitables, una buena tabla de hash tiene que poder lidiar con ellas.
- Dos familias de métodos:
 - Hashing (o direccionamiento) abierto: los elementos se guardan en la tabla.
 - Hashing (o direccionamiento) cerrado: en cada A[i] hay algún tipo de contenedor que almacena todos los elementos que son hasheados a i.
- Ojo: la bibliografía a veces alterna los nombres y las definiciones. Lo que importa, como siempre, es la idea más que el nombre.

(12) Hashing cerrado por concatenación

- Tenemos varias alternativas para el contenedor a usar en un habshing cerrado.
- Por ejemplo, podrían ser AVLs...
- Pero perderíamos el ansiado O(1).
- Empecemos por las listas y analicemos sus complejidades:
 - Inserción: podemos tener una lista que permita agregar el elemento en O(1).
 - Búsqueda y borrado: lineal en la cantidad de elementos del bucket.
- ¿Cuánto pueden medir esas listas?

(13) Factor de carga

- Definimos el factor de carga fc = n/k.
- Es decir, la relación entre la cant. de elementos presentes y el tamaño de la tabla.
- Teorema: suponiendo que *h* es simplemente uniforme y se usa hashing cerrado por concatenación, en promedio
 - una búsqueda fallida requiere $\Theta(1+fc)$, y
 - una búsqueda exitosa requiere $\Theta(1 + fc/2)$.
- Corolario: si $n \le k$ o incluso si $n \sim k$, tenemos O(1).
- Por ende, es muy importante dimensionar bien la tabla.

(14) Hashing abierto

- Veamos cómo funciona el hashing abierto.
- La idea es que ante una colisión vamos a ubicar al elemento en otra celda de la tabla que esté libre.
- Los métodos varían según cómo hacen para encontrar esa otra posición.
- La función de hash incorpora como segundo parámetro al número de intento:
- El *i*-ésimo intento para c se corresponde con h(c, i).
- En hashing abierto el borrado suele ser problemático.

(15) Algoritmos de hashing abierto

- Inserción de clave c en A:
 - 1 i = 0
 - 2 mientras ($i < |A| \land A[h(c, i)]$ esté ocupada) incrementar i
 - 3 si (i < |A|), el elemento va en A[h(c, i)]
 - 4 si no, overflow!
- Búsqueda de clave c en A:
 - 1 i = 0
 - 2 incrementar *i* mientras:
 - $i < |A| \land$
 - $A[h(c,i)] \neq \text{null } \land$
 - A[h(c,i)].clave $\neq c$
 - 3 si $(i < |A|) \land A[h(c,i)] \neq \text{null return } A[h(c,i)].\text{valor}$
 - 4 sino return no está
- Borrado:
 - ¿Marcamos como null? Ojo con la búsqueda.
 - Es mejor marcarlos como borrados.
 - Aunque empeora la performance de la búsqueda para el caso exitoso. ¿Por qué?

(16) Repaso y continuación

- La próxima veremos cómo construir las h(c, i),
- los problemas que se pueden presentar.
- y cómo solucionarlos.