Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Российский государственный университет нефти и газа имени И. М. Губкина»

ТЕЗИСЫ ДОКЛАДОВ

Х ВСЕРОССИЙСКАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ

«Актуальные проблемы развития нефтегазового комплекса России»

10-12 февраля 2014 г.

Москва 2014 г.

В сборнике представлены тезисы докладов Х Всероссийской научно-технической конференции «Актуальные проблемы развития нефтегазового комплекса России». В докладах рассматривается широкий геологии, геофизики и мониторинга круг вопросов, касающихся: месторождений нефти и газа; разработки и эксплуатации месторождений природных углеводородов; проектирования, сооружения и эксплуатации трубопроводного транспорта углеводородов нефтегазопродуктообеспечения; вопросов технологии переработки нефти и газа, нефтехимии и химмотологии топлив и смазочных материалов; проектирования, изготовления и эксплуатации оборудования и сооружений нефтегазового комплекса; автоматизации, моделирования энергообеспечения технологических процессов нефтегазового комплекса; экономики и управления нефтегазовым производством; международного энергетического бизнеса; совершенствования систем управления трудом и персоналом в компаниях нефтегазовой отрасли; правового регулирования деятельности организаций нефтегазового комплекса и гуманитарного образования в нефтегазовых вузах.

Ответственный редактор: проф. В.Г. Мартынов

Редакционная комиссия: проф. А.Ф.Андреев,

проф. В.В. Бондаренко,

проф. В.В. Калинов,

проф. А.М. Короленок,

проф. А.В. Лобусев,

проф. А.В. Мурадов,

проф. В.Е. Попадько,

проф. А.К. Прыгаев,

проф. С.Н. Рожнов,

проф. И.Ф. Симонова,

проф. Е.А. Телегина,

проф. Б.П. Тонконогов.

[©] РГУ нефти и газа имени И. М. Губкина, 2014

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Российский государственный университет нефти и газа имени И. М. Губкина»

ТЕЗИСЫ ДОКЛАДОВ

Х ВСЕРОССИЙСКАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ

«Актуальные проблемы развития нефтегазового комплекса России»

10-12 февраля 2014 г.

Секция 4
Технология переработки нефти и газа, нефтехимия и химмотология топлив и смазочных материалов

Москва 2014 г.

ИНГИБИРУЮЩАЯ СПОСОБНОСТЬ ЦИКЛИЧЕСКИХ АЗОТ СОДЕРЖАЩИХ СОЕДИНЕНИЙ

Иванов А.Н., Гаеткулова Г.К., Тимербаев Г.Г., Исламутдинова А.А., Калимуллин Л.И. (филиал ФГБОУ ВПО УГНТУ в г.Стерлитамаке)

Основным фактором износа оборудования нефтегазового комплекса и выхода его из строя является кислотная коррозия, возникающая в результате процесса окисления металлических частей оборудования кислородом, растворенном в нефти. Для этих целей используются ингибиторы, различающиеся по своему составу, эффективности и прочим показателям.

В ходе данного научного исследования был получен и проверен новый ингибирующий состав, основанный на циклических продуктах взаимодействия дихлорэтана и полиэтиленполиамина, имеющих строение:

В процессе синтеза в течении 4 часов поддерживалась постоянная температура, равная 75°С, а соотношение реагентов дихлорэтан:полиэтиленполиамин составляет 2:1. В результате реакции образующаяся смесь желтого цвета подвергалась испытаниям на аппарате МОНИКОР-2М. Для этого были проведены измерения скорости кислотной коррозии металлов в 4 растворах, содержащих 23%-ный раствор соляной кислоты и 0,4%; 0,8%; 1,2% и 1,6% полученного ингибитора соответственно, а также в растворе, содержащем исключительно 23%-ную соляную кислоту. Результаты проведенных измерений приведены в таблице:

Таблица - Защитный эффект ингибитора при различных концентрациях

Содержание ингибитора, г на 100 г раствора	Время, ч.	Устоявшаяся скорость коррозии, мм/год	Защитный эффект, %
70 TO	2,00	3,40	0
0,4	2,00	2,20	35,29
0,8	2,00	1,55	54,41
1,2	2,00	1,02	70,00
1,6	2,00	1,00	70,59

На основании полученных данных можно сделать вывод о том, что расход в количестве 1,2 г на 100 г раствора кислоты является наиболее оптимальным по соотношению эффективность/содержание. В настоящее время ведётся работа по изучению токсичных, бактериостатических свойств, эффективности использования данного продукта в качестве катализатора химических процессов межфазового переноса, а также по компоудированию данного ингибитора с целью усиления его ингибирующей способности.

17.3лотский С.С., Михайлова Н.Н., Казакова А.Н., Раскильдина Г.З.
Циклические ацетали в нефтехимическом синтезе получение и
превращения141
18.Иванов А.Н., Гаеткулова Г.К., Тимербаев Г.Г., Исламутдинова А.А.,
Калимуллин Л.И.
Ингибирующая способность циклических азотсодержащих
соединений142
19.Иванова Л.В., Буров Е.А., Бобровский Е.С.
Влияние углеводородного состава дизельных топлив на работу
депрессорных присадок
20.Ившина Л.А.
Исследование детандерных циклов в системах низкотемпературной
конденсации для попутных нефтяных газов
21.Исаева Е.А., Дедов А.Г., Локтев А.С., Голиков С.Д., Спесивцев Н.А.
Гидроконверсия рапсового масла на ВК-цеолитных катализаторах145
22.Канаева К.А., Магадова Л.А.,Малкин Д.Н.
Разработка суспензионного реагента на основе полиакриламида для
процессов повышения нефтеотдачи пластов146
23. Караваев А.А., Левченко Д.А., Локтев А.С., Дедов А.Г., Голиков С.Д.,
Спесивцев Н.А.
Влияние промотирования и щелочной обработки ВК-цеолитов на
селективность каталитических превращений легких алканов147
24.Каримова А.Ф., Кожевников Д.А., Тонконогов Б.П., Багдасаров Л.Н.
Исследование процессов деасфальтизации остаточных и дистиллятных
экстрактов н-пентаном с целью получения экологически чистых
пластификаторов для шинных резин
$25.$ Карпов $A.Б.$, Жагфаров Φ . Γ .
Разработка ингибиторов коксообразования в процессе пиролиза
углеводородов GTL149
26.Карпов В.А., Макарова Ю.Н., Михайлова О.Л., Ковальчук Ю.Л.
Защитные смазочные материалы для использования в условиях
тропического климата
27.Карпов Ю.О., Кривцов Е.Б., Головко А.К.
Влияние пероксида бензоила на состав продуктов инициированного
крекинга вакуумного газойля Новокуйбышевского НПЗ151
28.Кашин Е.В., Шабалина Т.Н.
Смазочные материалы для эксплуатации в уловиях экстремально низких
температур
29.Кильмухаметов М.Д., Садретдинов И.Ф., Султанбекова И.А.
Парафазное окисление пропилена до акриловой кислоты