## Vv285 Recitation Class for Mid 1

Yuxiang Chen

June 4, 2022

## Outline

- Linear Map
- 2 Matrices
- Reference

## Important Properties

- Additivity and homogeneity.
- ② Determine a unique linear map  $L \in \mathcal{L}(U, V)$  using a basis in U and a ordered list of vectors in V.
- **③** Dimension formula dim ker L+ dim ran L= dim U for  $L\in\mathcal{L}(U,V)$
- Isomorphisms: basis to basis; injective and surjective.
- Linear maps on finite dimensional vector space are bounded.
- Induced norm.

#### Definition

If  $T \in \mathcal{L}(V, W)$ , then the **dual map** of T is the linear map  $T^* \in \mathcal{L}(W^*, V^*)$  such that  $T^*(\varphi) = \varphi \circ T$  for  $\varphi \in W^*$ 

#### **TASK**

Define  $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$  by  $(Tp)(x) = x^2p(x) + p''(x)$  for  $x \in \mathbb{R}$  (a) Suppose  $\varphi \in \mathcal{P}^*(\mathbb{R})$  is defined by  $\varphi(p) = p'(4)$ , i.e,  $\varphi(p(x)) = \frac{d}{dx}p|_{x=4}$ . Describe the linear functional  $T'(\varphi)$  on  $\mathcal{P}(\mathbb{R})$ . (b) Suppose  $\varphi \in \mathcal{P}(\mathbb{R})'$  is defined by  $\varphi(p) = \int_0^1 p(x) dx$ . Evaluate  $(T'(\varphi))(x^3)$ .

#### Definition

For  $U \subseteq V$ , the **annihilator** of U, denoted as  $U^0$ , is defined by

$$U^0 = \{ \varphi \in V^* \colon \varphi(u) = 0 \text{ for all } u \in U \}$$

This clear that  $U^0$  is a subspace of  $V^*$ 

#### **TASK**

Suppose V is finite dimensional and  $U \subseteq V$  is a subspace, prove:

$$\dim U + \dim U^0 = \dim V$$



#### Proof.

Proof using dual map: Let  $i \in \mathcal{L}(U, V)$  to be the inclusion map, i.e, i(u) = u for  $u \in U$ . Then  $i^* \in \mathcal{L}(V^*, U^*)$ . Apply the dimension formula on i:

$$\dim \operatorname{ran} i^* + \dim \ker i^* = \dim V^* = \dim V$$

Now, consider the kernel of  $i^*$ .

$$\varphi \in \ker i^* \Leftrightarrow \varphi \circ i = 0$$

$$\forall u \in U, \ \varphi \circ i(u) = 0 \Leftrightarrow \varphi(u) = 0$$

$$\Leftrightarrow \varphi \in U^0$$





#### Proof.

(continued) Therefore,  $\ker i^* = U^0$ . Similarly, the range of  $i^*$  consists all the linear functional in  $U^*$  such that  $I = \varphi \circ i$  for  $I \in U^*$  and  $\varphi \in V^*$ . Obviously, I is a restriction of  $\varphi$  on to U and any linear functional in  $U^*$  can be represented by  $\varphi \circ i$  for some specific  $\varphi \in V^*(\text{why?})$ . Therefore,  $\operatorname{ran} i^* = U^*$ . We can conclude that:

 $\dim \operatorname{ran} i^* + \dim \ker i^* = \dim U^* + \dim \ker i^* = \dim U + \dim U^0 = \dim V$ 



# Exercise - Projection Matrix (do you really know about projection?)

<sup>1</sup>Let 
$$A \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$$
 be a projection onto the plane  $\{(x, y, z) \in \mathbb{R}^3 \colon x = z\}$ 

- (a) If ker A is the x-axis, determine the matrix  $M_1$  representing A (w.r.t standard basis in  $\mathbb{R}^3$ ).
- (b) If A is self-adjoint, determine the matrix  $M_3$  representing A (w.r.t standard basis in  $\mathbb{R}^3$ ).
- (c) Suppose that  $B \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$  is another projection whose range is the x-axis and  $\ker B = \{(x, y, z) \in \mathbb{R}^3 \colon x = z\}$ . Let  $M_3$  be the representing matrix of B (w.r.t standard basis in  $\mathbb{R}^3$ ). Calculate  $(M_1 + M_3)M_1$ .

<sup>&</sup>lt;sup>1</sup>This exercise is from Leyang Zhang. Vielen Dank!



### References I

- Linear Algebra Done Right by Axler
- Practice questions from Leyang Zhang

