# **Income Classification Using Logic Regression**

# I. Analytical Framework

- a) Dataset: UCI Adult Census Dataset
- b) Source: <a href="https://archive.ics.uci.edu/dataset/2/adult">https://archive.ics.uci.edu/dataset/2/adult</a>
- c) Limitations: Uses census data from 1994. This would not reflect current income distributions. Some features may have incomplete data.
- 1) Technology Platform
  - a) Tools: Python, Google Colab, Scikit-learn, Pandas, Matplotlib, Seaborn.
  - b) Ownership: Public dataset, no restrictions.
  - c) Constraints: Colab isn't the quickest.
- 2) Business Alignment
  - Being able to classify income is useful in marketing, governments, insurance, and banking industries. The dataset lacks other financial information.
- 3) Methodology
  - a) Approach: machine learning with binary logistic regression.
  - b) Justification: computationally efficient.
- 4) Data Prep
  - a) Missing Values: Dropped rows with missing values.
  - b) Omitted Fields: Some fields like fnlwgt had no effect on what was needed.
  - c) Encoding: Applied target and frequency coding.
  - d) Data Split: 80/20 testing, training.

# II. Machine Learning Techniques & Methodology

- 1) Modeling Approach
  - a) Machine Learning Technique: Binary Logistic Regression.
  - b) Encoding Techniques:
    - i) Target Encoding: encodes categorical values based on the mean target value.
    - ii) Frequency Encoding: Replaces the categorical values with the frequency counts.
- 2) Training & Validation Strategy
  - a) Train-Test Split: 80/20
  - b) Standardisation: StandardScaler
  - c) Eval Metrics:
    - i) Accuracy
    - ii) Confusion Matrix
    - iii) Precision, Recall, F1-Score
- 3) Limits
  - a) Imbalance: Income >50k is not really in the dataset

#### III. Results

1) Model Performance Comparison:

Target Encoding Model Accuracy: 0.8544449562413634 Frequency Encoding Model Accuracy: 0.7994779671426377

# 2) Confusion Matrix Analysis



- a)
- b) Frequency Encoding:
  - i) High False Negatives (1007): Model is bad at predicting earners >50k
  - ii) Lower True Positives (564): Poor recall for high-income
- c) Target Encoding:
  - i) Higher Accuracy: Good improvement for high income.
  - ii) Lower False Negatives: Comparable to frequency encoding.
- 3) Error Analysis
  - a) Target Encoding: Did better because we included the target variable.
  - b) Frequency Encoding: Lead to a feature bias making a bad classification.
  - c) Scaling: improved on convergence leading to a stable result.
- 4) Suggestions
  - a) Use advanced models.
  - b) Tune parameters so that the logistic progression has a better generalization