I Superconductivity

Superconductivity is an example of an emergent phenomenon: the Schrödinger equation describing all interactions between electrons gives no indication that there exists parameters for which the electrons condense into phase coherent pairs. In this chapter we review theoretical concepts needed for understanding superconductivity and introduce the tools used to study superconductivity in the later chapters. There are many textbooks covering these topics which can be referenced for a more detailed treatment, such as refs. [1–5].

Macroscopially, the superconducting state can be described by a spontaneous breaking of a U(1) phase rotation symmetry that is associated with an order parameter. Theory of spontaneous symmetry breaking and associated phase transitions is Ginzburg-Landau theory discussed in section I.1. Ginzburg-Landau theory introduces two length scales: the coherence length ξ describing

Section I.1 also introduces the theoretical framework based on introducing a finite momentum for the Cooper pairs [6] that will be used in later chapters to calculate these length scales from microscopic theories.

Ginzburg Landau theory is not a macroscopic theory, but it can be connected to microscopic theories: if a theory finds an expression for the order parameter describing the symmetry breakdown, it can be connected to quantities expressed by Ginzburg-Landau theory, such as the superconducting current. One such theory to describe superconductivity from a microscopic perspective is BCS (Bardeen-Cooper-Schrieffer) theory in section I.2.

A method to treat local interactions non-perturbatively is DMFT (Dynamical Mean Field Theory). Section I.3 briefly introduces the Greens function method to treat many-body problems and outlines the DMFT self-consistency cycle.

I.1 Ginzburg-Landau Theory of Superconductivity

This review partially follows the introduction given in refs. [1, 7].

I.1.1 Sponteneous Symmetry Breaking and Order Parameter

Symmetries are a powerful concept in physics. Noethers theorem [8] connects the symmetries of physical theories to associated conservation laws. An interesting facet of symmetries in physical theories is the fact, that a ground state of a system must not necessarily obey the same symmetries of its Hamiltonian, i.e. for a symmetry operation that is described by a unitary operator U, the Hamiltonian commutes with U (which results in expectation values of the Hamiltonian being invariant under the symmetry operation) but the states $|\phi\rangle$ and $U|\phi\rangle$ are different. This phenomenon is called SSB (Sponteneous Symmetry Breaking) and the state $|\phi\rangle$ is said to be symmetry-broken.

One consequence of this fact is that for a given symmetry-broken state $|\phi\rangle$, there exists multiple states that can be reached by repeatedly applying U to $|\phi\rangle$ and all have the same energy. To differentiate the symmetry-broken states an operator can be defined that has all these equivalent states as eigenvectors with different eigenvalues and zero expectation value for symmetric states. This is the microscopic notion of an order parameter.

The original notion of an order parameter was motivated from macroscopic observables that can then be related to the microscopic order parameter operator introduced above. Macroscopically we characterize the symmetry breaking by an order parameter Ψ which generally can be a complex-valued vector that becomes non-zero below the transition temperature T_C

$$|\Psi| = \begin{cases} 0 & T > T_C \\ |\Psi_0| > 0 & T < T_C \end{cases} . \tag{I.1}$$

In the example of a ferromagnet, a finite magnetization of a material is associated with a finite expectation value for the z-component of the spin operator, $m_z = \langle \hat{S_z} \rangle$. The order parameter describes the 'degree of order' [9]. Similarly to a magnetically ordered state, the SC state is characterized by an order parameter. The theory of phase transitions in superconductors was developed by Ginzburg and Landau [10]. Landau theory and conversely Ginzburg-Landau theory is not concerned with the the microscopic properties of the order parameter, but describes the changes in thermodynamic properties of matter with the development of an order parameter.

I.1.2 Landau and Ginzburg-Landau Theory

Explain free energy here

Figure I.1: (a) Landau free energy and (b) Mexican hat potential

The fundamental idea underlying Landau theory is to write the free energy $F[\Psi]$ as function of the order parameter Ψ and expand it as a polynomial:

$$F[\Psi] = \frac{r}{2}\Psi^2 + \frac{u}{4}\Psi^4 \ . \tag{I.2}$$

Provided the parameters r and u are greater than 0, there is a minimum of $F[\Psi]$ that lies at $\Psi=0$. Landau theory assumes that at the phase transition temperature T_C the parameter r changes sign, so it can be written in first order as

$$r = a(T - T_C) . (I.3)$$

Figure I.1a shows the free energy as a function of a single-component, real order parameter Ψ and it illustrates the essence of Landau theory: there are two cases for the minima of the free energy F

$$\Psi = \begin{cases} 0 & T \ge T_C \\ \pm \sqrt{\frac{a(T_C - T)}{u}} & T < T_C \end{cases}$$
 (I.4)

so there is a for $T < T_C$ there are two minima corresponding to ground states with broken symmetry. When the order parameter can be calculated from

Work over graphic for Landau free energy

Work over graphic for mexican hat potential

some microscopic theory, the critical temperature T_C can be extracted from the behavior of the order parameter near T_C via a linear fit of

$$|\Psi|^2 \propto T_C - T \,. \tag{I.5}$$

Generalizing this from a one to an *n*-component order parameters is straightforward. One example is the complex or two component order parameter that will become important for

$$\Psi = \Psi_1 + i\Psi_2 = |\Psi|e^{i\phi}. \tag{I.6}$$

The Landau free energy then takes the form

$$F[\psi] = r\psi^*\psi + \frac{u}{2}(\psi^*\psi)^2 = r|\psi|^2 + \frac{u}{2}|\psi|^4$$
 (I.7)

with again

$$r = a(T_C - T) . (I.8)$$

Instead of the two minima, the free energy here is rotational symmetry, because it is independent of the phase of the order parameter:

$$F[\Psi] = f[e^{ia}\Psi]. \tag{I.9}$$

Work over paragraph

This gives the so called 'Mexican hat' potential shown in fig. I.1b.

In this order parameter can be rotated continuously from one broken-symmetry state to another. If we want the phase to be rigid, we need to introduce an There is a topological argument for the fact that the phase is rigid. This leads to Ginzburg-Landau theory. Will see later: well-defined phase is associated with persistent currents or superflow.

Landau theory: energy cost of a uniform order parameter, more general theory needs to account for inhomogenous order parameters, in which the amplitude varies or direction of order parameter is twisted -> GL theory. First: one-component, 'Ising' order parameter. GL introduces additional energy $\delta f \propto |\Delta\psi|^2$, $f_{GL}[\psi, \Delta\psi] = \frac{s}{2}|\Delta\psi|^2 + f_L[\psi(s)]$, or in full:

$$f_{GL}[\psi, \Delta \psi, h] = \frac{s}{2} (\Delta \psi)^2 + \frac{r}{2} \psi^2 + \frac{u}{4} \psi^4$$
 (I.10)

GL theory is only valid near critical point, where OP is small enough to permit leading-order expansion. Dimensional analysis shows: $\frac{s}{r} = L^2$ has dimension

of length squared. Length scale introduced by the gradient term: correlation length ξ

$$\xi(T) = \sqrt{\frac{s}{|r(T)|}} = \xi_0 \left| 1 - \frac{T}{T_C} \right|^{-\frac{1}{2}}$$
 (I.11)

sets characteristic length scale of order-parameter fluctuations, where the zero temperature value

$$\xi_0 = \xi(T=0) = \sqrt{\frac{s}{\alpha T_C}}$$
 (I.12)

is the microscopic coherence length ξ_0 . Near transition $\xi(T)$ diverges, but far from transition it becomes comparable with the coherence length.

Work over paragraph

Now: GL theory of complex or two-component order parameters, so superfluids and superconductors. Heart of discussion: emergence of a 'macroscopic wavefunction', where the microscopic field operators $\hat{\psi}(x)$ acquire an expectation value:

$$\langle \hat{\psi}(x) \rangle = \psi(x) = |\psi(x)|e^{i\theta(x)}$$
 (I.13)

Reminder: Field operators are the real space representations of creation/annihilation operators. They can be thought of the super position of all ways of creating a particle at position x via the basis coefficients.

Magnitude determines density of particles in the superfluid:

$$|\psi(x)|^2 = n_c(x) \tag{I.14}$$

Density operator is

$$\hat{\rho} = \hat{\psi}(x)\hat{\psi}^{\dagger}(x) \tag{I.15}$$

so expectation value of that is the formula above.

Twist/gradient of phase determines superfluid velocity:

$$\mathbf{v}_{\scriptscriptstyle S}(x) = \frac{\hbar}{m} \Delta \phi(x) \tag{I.16}$$

We will derive this later in the chapter. Counterintuitive from quantum mechanics: GL suggested that $\Phi(x)$ is a macroscopic manifestation of a macroscopic number of particles condensed into precisely the same quantum state. Emergent phenomenon, collective properties of mater not a-priori evident from microscopic physics.

GL free energy density for superfluid (with one added term in comparison to Landau energy):

$$f_{GL}[\psi, \Delta \psi] = s|\Delta \psi|^2 + r|\psi|^2 + \frac{u}{2}|\psi|^4$$
 (I.17)

Compare with the energy density of a bosonic field (with a quarctic interaction):

$$H = \int d^{D}x \frac{\hbar^{2}}{2m} |\Delta \psi|^{2} + r|\psi|^{2} + \frac{u}{2}|\psi|^{4}$$
 (I.18)

Interpret GL free energy as energy density of a condensate of bosons in which the field operator behaves as a complex order parameter. Gives interpretation of gradient term as kinetic energy:

$$s|\Delta\psi|^2 = \frac{\hbar^2}{2m} \langle \Delta\hat{\psi}^{\dagger} \Delta\hat{\psi} \rangle \implies s = \frac{\hbar^2}{2m}$$
 (I.19)

As in Ising order: correlation length/GL-coherence length governs characteristic range of amplitude fluctuations of the order parameter:

$$\xi = \sqrt{\frac{s}{|r|}} = \sqrt{\frac{\hbar^2}{2m|r|}} = \xi_0 (1 - \frac{T}{T_C})^{-\frac{1}{2}}$$
 (I.20)

where $\xi_0 = \xi(T=0) = \sqrt{\frac{\hbar^2}{2maT_C}}$ is the coherence length. Beyond this length scale: only phase fluctuations survive.

Freeze out fluctuations in amplitude (no x-dependence in amplitude) $\psi(x) = \sqrt{n_s}e^{\mathrm{i}\phi(x)}$, then $\Delta\psi = \mathrm{i}\Delta\phi\psi$ and $|\Delta\psi|^2 = n_s(\Delta\phi)^2$, dependency of kinetic energy on the phase twist is (bringing it into the form $\frac{m}{2}v^2$):

$$\frac{\hbar^2 n_s}{2m} (\Delta \phi)^2 = \frac{m n_s}{2} (\frac{\hbar}{m} \Delta \phi)^2 \tag{I.21}$$

So twist of phase results in increase in kinetic energy, associated with a superfluid velocity:

$$\mathbf{v}_{\scriptscriptstyle S} = \frac{\hbar}{m} \Delta \phi \tag{I.22}$$

(this is explained in detail later).

I dont know why that is. Can I support that somehow better? -> See Niklas thesis For interpretation of superfluid states: coherent states. These are eigenstates of the field operator

$$\hat{\psi}(x) | \psi \rangle = \psi(x) | \psi \rangle \tag{I.23}$$

and don't have a definite particle number. Importantly, this small uncertainty in particle number enables a high degree of precision in phase (which is the property of a condensate).

In GL theory, energy is sensitive to a twist of the phase. Substitute $\psi = |\psi|e^{i\phi}$ into GL free energy, gradient term is:

$$\Delta \psi = (\Delta |\psi| + i\Delta \phi |\psi|)e^{i\phi} \tag{I.24}$$

So:

$$f_{GL} = \frac{\hbar}{2m} |\psi|^2 (\Delta \phi)^2 + \left[\frac{\hbar}{2m} (\Delta |\psi|)^2 + r |\psi|^2 + \frac{u}{2} |\psi|^4 \right] \tag{I.25}$$

The second term resembles GL functional for an Ising order parameter, describes energy cost of variations in the magnitude of the order parameter.

Phase rigidity and superflow

I.1.3 Superconducting Length Scales

From [11].

Better introduction

In most materials: Cooper pairs do not carry finite center-of-mass momentum. In presence of e.g. external fields or magnetism: SC states with FMP might arise.

Theory/procedure in the paper: enforce FMP states via constraints on pair-center-of-mass momentum \mathbf{q} , access characteristic lenght scales ξ_0 , λ_L through analysis of the momentum and temperature-dependent OP. FF-type pairing with Cooper pairs carrying finite momentum:

$$\psi_{\mathbf{q}}(\mathbf{r}) = |\psi_{\mathbf{q}}|e^{i\mathbf{q}\mathbf{r}} \tag{I.26}$$

Then the free energy density is

$$f_{GL}[\psi_{\mathbf{q}}] = \alpha |\psi_{\mathbf{q}}|^2 + \frac{b}{2} |\psi_{\mathbf{q}}|^4 + \frac{\hbar^2 q^2}{2m^*} |\psi_{\mathbf{q}}|^2$$
 (I.27)

Stationary point of the system:

$$\frac{\delta f_{GL}}{\delta \psi_{\mathbf{q}}^*} = 2\psi_{\mathbf{q}} \left[\alpha (1 - \xi^2 q^2) + b |\psi_{\mathbf{q}}|^2 \right] = 0 \tag{I.28}$$

which results in the q-dependence of the OP

$$|\psi_{\mathbf{q}}|^2 = |\psi_0|^2 (1 - \xi(T)^2 q^2) \tag{I.29}$$

For some value, SC order breaks down, $\psi_{\mathbf{q}_c} = 0$, because the kinetic energy from phase modulation exceeds the gain in energy from pairing. In GL theory: $q_c = \xi(T)^{-1}$. The temperature dependence of the OP and extracted $\xi(T)$ gives access to the coherence length via

$$\xi(T) = \xi_0 (1 - \frac{T}{T_C})^{-\frac{1}{2}} \tag{I.30}$$

Specifically: take

$$\xi(T) = \frac{1}{\sqrt{2}|\mathbf{Q}|} \tag{I.31}$$

with Q such that

$$|\frac{\psi_{\mathbf{Q}}(T)}{\psi_{0}(T)}| = \frac{1}{\sqrt{2}} \tag{I.32}$$

Depairing current from FMP

Full formula for supercurrent, with sum over orbitals

DS from FMP

Write more about the connection between all the things here The Cooper pair [12, 13]

I.2 Bardeen-Cooper-Schrieffer Theory

First phenomenological description of SC: Fritz London in 1937 [14]. He was motivated by the discovery of the Meissner effect in 1933 [15], where magnetic flux inside of the superconductor is always pushed out in contrast to a perfectly conducting material, which would hold a 'memory' of the magnetic field at the time of the phase transition. This suggests that transition to the SC state is reversible and a SC is not just the limiting case of a conductor with infinite conductivity, in which according to the Maxwell equations, the magnetic flux would not change. Londons first descriptions is based on a one-particle wave function $\phi(x)$. He proposed that persistent supercurrent is a property of the ground state associated with its rigidity against the application of a field.

In 1950 [10]: GL interpreted this wave function as a complex order parameter as explained in section I.1.

Following [1, ch. 14].

I.2.1 BCS Hamiltonian

Microscopic description of SC: 1957 by John Bardeen, his postdoc Leon Cooper and the graduate in the group, J. Robert Schrieffer [16]. Description is based on the fact that the Fermi sea is unstable towards development of bound pairs under arbitrarily small attraction [17]. The final element in this description was the origin of the attractive interaction $V_{\mathbf{k},\mathbf{k}'}$ between electrons, which Bardeen, Cooper and Schrieffer identified as a retarded electron-phonon interaction [16]. BCS-Hamiltonian:

$$H_{\text{BCS}} = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$
(I.33)

This Hamiltonian can be solved exactly using a mean field approach, because it involves an interaction at zero momentum and thus infinite range. Order parameter in mean field BCS theory is the pairing amplitude

$$\Delta = -\frac{U}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle = -U \langle c_{-\mathbf{r}=0\downarrow} c_{\mathbf{r}=0\uparrow} \rangle \simeq U \Psi . \tag{I.34}$$

More about mean field theory in section I.2.2

A finite Δ corresponds to the pairing introduced above: there is a finite expectation value for a coherent creation/annihilation of a pair of electrons with opposite momentum and spin. A finite Δ also introduces a band gap into the spectrum. BCS theory brings multiple aspects together: concept of paired electrons with the pairing amplitude being the order parameter in SC, an explanation for the attractive interaction overcoming Coulomb repulsion and a model Hamiltonian that very elegantly captures the essential physics.

It is very successful in two ways: on the one hand it could quantitatively predict effects in the SCs known at the time, for example the Hebel-Slichter peak that was measured in 1957 [18, 19] and the band gap measured by Giaever in 1960 [20]. On the other hand, it established electronic pairing as the microscopic mechanism behind SC, which holds still today even for high T_C /unconventional superconductors, so SCs that cannot be described by BCS theory [21].

Other pairing interactions can be taken, gives explanations for a lot of different SCs

Make graphic for Landau OP and BCS OP -> Formula for BCS OP!

I.2.2 Attractive Hubbard Model

The Hubbard model is the simplest model for interacting electron systems. It goes back to works by Hubbard [22], Kanamori [23] and Gutzweiler [24].

$$H_{\text{int}} = U \sum_{i} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{i,\downarrow} c_{i,\uparrow}$$
 (I.35)

where U > 0.

Besides

[25]

Some relevance of the repulsive Hubbard model

This simple Hubbard model can be extended in a multitude of ways to model a variety of physical system. In this work: extension to multiple orbitals (i.e. atoms in the unit cell for lattice systems) and an attractive interaction, i.e. a negative U. Physical motivation for taking a negative-U Hubbard model: electrons can experience a local attraction interaction, for example through electrons coupling with phononic degrees of freedom or with electronic excitations that can be described as bosons [26]. The form of the interaction term is then:

$$H_{\text{int}} = -\sum_{i,\alpha} U_{\alpha} c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow}$$
 (I.36)

where α counts orbitals and the minus sign in front is taken so that U > 0 now corresponds to an attractive interaction (this is purely convention).

MULTIBAND BCS MEAN FIELD THEORY There are a multitude of ways to derive a mean field description of a given interacting Hamiltonian. Very rigorous in path integral formulations as saddle points, given for example in ref. [1]. A more intuitive way based on ref. [3] discussed here looks at the operators and

which one are small.

Look at interaction term eq. (I.36). Mean-field approximation (here specifically for superconductivity i.e. pairing): operators do not deviate much from their average value, i.e. the deviation operators

$$d_{i,\alpha} = c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} - \langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \rangle \tag{I.37}$$

$$e_{i,\alpha} = c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} - \langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \rangle$$
 (I.38)

There are some more specific papers to the specific mechanisms (and also some more mechanism), could cite these here and say some more things

Order of operators? -> also in all other equations!

there are other combinations, talk about that are small (dont contribute much to expectation values and correlation functions), so that in the interaction part of the Hamiltonian

$$H_{\text{int}} = -\sum_{i,\alpha} U_{\alpha} c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow}$$
(I.39)

$$= -\sum_{i,\alpha} U_{\alpha} \left(d_{i,\alpha}^{\dagger} + \langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \rangle \right) \left(e_{i,\alpha} + \langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \rangle \right) \tag{I.40}$$

$$= -\sum_{i,\alpha} U_{\alpha} (d_{i,\alpha} e_{i,\alpha} + d_{i,\alpha} \langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \rangle + e_{i,\alpha} \langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \rangle$$
 (I.41)

$$+ \langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \rangle \langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \rangle) \tag{I.42}$$

the first term is quadratic in the deviation and can be neglected. Thus arrive at the approximation

$$H_{\text{int}} \approx -\sum_{i,\alpha} U_{\alpha} \left(d_{i,\alpha} \left\langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \right\rangle + e_{i,\alpha} \left\langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \right\rangle + \left\langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \right\rangle \left\langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \right\rangle \right)$$

$$(I.43)$$

$$= -\sum_{i,\alpha} U_{\alpha}(c_{i,\alpha,\uparrow}^{\dagger}c_{i,\alpha,\downarrow}^{\dagger}\langle c_{i,\alpha,\downarrow}c_{i,\alpha,\uparrow}\rangle + c_{i,\alpha,\downarrow}c_{i,\alpha,\uparrow}\langle c_{i,\alpha,\uparrow}^{\dagger}c_{i,\alpha,\downarrow}^{\dagger}\rangle$$
(I.44)

$$-\langle c_{i,\alpha,\uparrow}^{\dagger} c_{i,\alpha,\downarrow}^{\dagger} \rangle \langle c_{i,\alpha,\downarrow} c_{i,\alpha,\uparrow} \rangle) \tag{I.45}$$

$$= (I.46)$$

with the expectation values

$$\Delta$$
 (I.47)

 $H_{\rm int} \approx \sum_{\alpha, \mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$ (I.48)

Fourier transformation:

$$H_{int} = -\frac{1}{N^2} \sum_{\alpha, \mathbf{k}_{1,2,3,4}} U_{\alpha} e^{i(\mathbf{k}_1 + \mathbf{k}_4 - \mathbf{k}_1 - \mathbf{k}_3) r_{i\alpha}} c^{\dagger}_{\mathbf{k}_1 \alpha \uparrow} c^{\dagger}_{\mathbf{k}_3 \alpha \downarrow} c_{\mathbf{k}_2 \alpha \downarrow} c_{\mathbf{k}_4 \alpha \uparrow}$$
(I.49)

Impose zero-momentum pairing: $\mathbf{k}_1 + \mathbf{k}_3 = 0$ and $\mathbf{k}_2 + \mathbf{k}_4 = 0$:

$$H_{int} = -\sum_{\alpha, \mathbf{k}, \mathbf{k}'} U_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow}$$
(I.50)

General multi-band mean field theory theory

Mean field with finite momentum

Mean-field approximation:

$$H_{int} \approx \sum_{\alpha, \mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
 (I.51)

with

$$\Delta_{\alpha} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow} \rangle \tag{I.52}$$

$$\Delta_{\alpha}^{*} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{\mathbf{k}'\alpha\uparrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow}^{\dagger} \rangle \tag{I.53}$$

This gives the BCS mean field Hamiltonian:

$$H_{BCS} = \sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} c_{\mathbf{k}\alpha\sigma}^{\dagger} c_{\mathbf{k}\beta\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{\mathbf{k}\alpha\sigma} + \sum_{\alpha,\mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
(I.54)

Nambu spinor

_with Nambu spinor

$$\Psi_{\mathbf{k}} = \begin{pmatrix} c_{1,\mathbf{k}\uparrow} \\ c_{2,\mathbf{k}\uparrow} \\ c_{3,\mathbf{k}\uparrow} \\ c_{1,-\mathbf{k}\downarrow}^{\dagger} \\ c_{2,-\mathbf{k}\downarrow}^{\dagger} \\ c_{3,-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix}$$
(I.55)

we have:

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}$$
 (I.56)

with

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} H_{0,\uparrow}(\mathbf{k}) - \mu & \Delta \\ \Delta^{\dagger} & -H_{0,\downarrow}^{*}(-\mathbf{k}) + \mu \end{pmatrix}$$
(I.57)

with $H_{0,\sigma}$ being the F.T. of the kinetic term and $\Delta = diag(\Delta_1, \Delta_2, \Delta_3)$.

Self-consistency Formula for OP using the Bogoliubov operators

$$\Delta_{\alpha} = -U \tag{I.58}$$

How to solve mean field theory self-consistently

Finite momentum To include finite momentum, take the ansatz of a Fulde-Ferrel (FF) type pairing [27]:

$$\Delta \tag{I.59}$$

nclude fientum

I.3 Dynamical Mean-Field Theory (DMFT)

I.3.1 Green's Function Formalism

Green's functions: method to encode influence of many-body effects on propagation of particles in a system.

Following [3]

Have different kinds of Green's functions, for example the retarded Green's function:

$$G^{R}(\mathbf{r}\sigma t, \mathbf{r}'\sigma't') = -i\Theta(t - t') \langle \{c_{\mathbf{r}\sigma}(t), c_{\mathbf{r}\sigma}^{\dagger}(t')\} \rangle$$
 (I.60)

They give the amplitude of a particle inserted at point \mathbf{r}' at time t' to propagate to position \mathbf{r} at time t. For time-independent Hamiltonians and systems in equilibrium, the GFs only depend on time differences:

$$G^{R}(\mathbf{r}\sigma t, \mathbf{r}'\sigma't') = G^{R}(\mathbf{r}\sigma, \mathbf{r}'\sigma', t - t')$$
(I.61)

So we can take t' = 0 and consider t as the only free variable:

$$G^{R}(\mathbf{r}\sigma,\mathbf{r}'\sigma',t) = -i\Theta(t) \langle \{c_{\mathbf{r}\sigma}(t),c_{\mathbf{r}\sigma}^{\dagger}(0)\}\rangle$$
 (I.62)

In a translation invariant system: can use k as a natural basis set:

$$G^{R}(\mathbf{k}, \sigma, \sigma' t) = -i\Theta(t - t') \langle \{c_{\mathbf{k}\sigma}(t), c_{\mathbf{k}\sigma'}^{\dagger}(0)\} \rangle$$
 (I.63)

Define Fourier-transform:

$$G^{R}(\mathbf{k}, \sigma, \sigma', \omega) = \int_{-\infty}^{\infty} dt G^{R}(\mathbf{k}, \sigma, \sigma't)$$
 (I.64)

Can define the spectral function from this:

$$A(\mathbf{k}\sigma,\omega) = -2\Im G^{R}(\mathbf{k}\sigma,\omega) \tag{I.65}$$

Introduction DMFT, citing what has been achieved with it so far, what is the basic idea etc.

Give an introduction

Work over the paragraph

Slim down to relevant information

Looking at the diagonal elements of G^R here. The spectral function can be thought of as the energy resolution of a particle with energy ω . This mean, for non-interacting systems, the spectral function is a delta-function around the single-particle energies:

$$A_0(\mathbf{k}\sigma,\omega) = 2\pi\delta(\omega - \epsilon_{\mathbf{k}\sigma}) \tag{I.66}$$

Show GFs can be related to observables

Introduction Matsubara GF: finite temperatures

For interacting systems this is not true, but A can still be peaked.

$$t \to -i\tau \tag{I.67}$$

where τ is real and has the dimension time. This enables the simultaneous expansion of exponential $e^{-\beta H}$ coming from the thermodynamic average and $e^{-\mathrm{i}Ht}$ coming from the time evolution of operators.

Define imaginary time/Matsubara GF $C_{AB}(\tau, 0)$:

$$C_{AB}(\tau,0) = -\langle T_{\tau}(A(\tau)B(0))\rangle \tag{I.68}$$

with time-ordering operator in imaginary time:

$$T_{\tau}(A(\tau)B(\tau')) = \Theta(\tau - \tau')A(\tau)B(\tau') + \Theta(\tau' - \tau)B(\tau')A(\tau) \tag{I.69}$$

so that operators with later 'times' go to the left.

Can prove from properties of Matsubara GF, that they are only defined for

$$-\beta < \tau < \beta \tag{I.70}$$

Due to this, the Fourier transform of the Matsubara GF is defined on discrete values:

$$C_{AB}(i\omega_n) = \int_0^\beta d\tau \tag{I.71}$$

with fermionic/bosonic Matsubara frequencies

$$\omega_n = \begin{cases} \frac{2n\pi}{\beta} & \text{for bosons} \\ \frac{(2n+1)\pi}{\beta} & \text{for fermions} \end{cases}$$
 (I.72)

How to resolve ambiguity at borders of integral

It turns out that Matsubara GFs and retarded GFs can be generated from a common function $C_{AB}(z)$ that is defined on the entire complex plane except for the real axis. So we can get the retarded GF $C_{AB}^{R}(\omega)$ by analytic continuation:

$$C_{AB}^{R}(\omega) = C_{AB}(i\omega_n \to \omega + i\eta)$$
 (I.73)

he eta there to define it ed GF So in particular the extrapolation of the Matsubara GF to zero is proportional to the density of states at the chemical potential. Gapped: density is zero (Matsubara GF goes to 0), metal: density is finite (Matsubara GF goes to finite value) [3, p. 8.3.4].

single-particle Matsubara GF

I.3.2 Self Energy

Dyson equation:

$$\mathcal{G}_{\sigma}(\mathbf{k}, i\omega_n) = \frac{\mathcal{G}_{\sigma}^0(\mathbf{k}, i\omega_n)}{1 - \mathcal{G}_{\sigma}^0(\mathbf{k}, i\omega_n)\Sigma_{\sigma}(\mathbf{k}, i\omega_n)} = \frac{1}{i\omega_n - \xi_{\mathbf{k} - \Sigma_{\sigma}(\mathbf{k}, i\omega_n)}}$$
(I.74)

Short introduction to diagrams

Self energy

Dyson equation

I.3.3 Nambu-Gorkov GF

Introduction following [1, ch. 14.7]

Order parameter can be chosen as the anomalous GF:

$$\Psi = F^{\text{loc}}(\tau = 0^-) \tag{I.75}$$

or the superconducting gap

$$\Delta = Z\Sigma^{\text{AN}} \tag{I.76}$$

that can be calculated from the anomalous self-energy Σ^{AN} and quasiparticle weight Z

More general introduction into NG GFs, how they look like, what they describe etc.

Sources for these?

How to get quasiparticle weight?

I.3.4 DMFT

Following [28].

Most general non-interacting electronic Hamiltonian in second quantization:

$$H_0 = \sum_{i,i,\sigma} \tag{I.77}$$

with lattice coordinates i, j and spin σ .

One particle Green's function (many-body object, coming from the Hubbard model):

$$G(\mathbf{k}, i\omega_n) = \frac{1}{i\omega_n + \mu - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k}, i\omega_n)}$$
(I.78)

with the self energy $\Sigma(\mathrm{i}\omega_n)$ coming from the solution of the effect on-site problem:

The Dyson equation

$$G(\mathbf{k}, i\omega_n) = (G_0(\mathbf{k}, i\omega_n) - \Sigma(\mathbf{k}, i\omega_n))^{-1}$$
(I.79)

relates the non-interacting Greens function $G_0(\mathbf{k}, \mathrm{i}\omega_n)$ and the fully-interacting Greens function $G(\mathbf{k}, \mathrm{i}\omega_n)$ (inversion of a matrix!).