Aula 5: GLMs e Métodos de Reamostragem

Machine Learning

Paulo Orenstein

Verão, 2025 IMPA

Capítulo 4: Métodos lineares para classificação

Capítulo 4

- Classificação: setup geral
- ▶ Métodos discriminativos: regressão logística e regressão multinomial
- ▶ Métodos generativos: LDA, QDA e naive Bayes
- Avaliação de classificadores
- Modelos lineares generalizados

Modelos lineares generalizados

- Até agora, separamos os nossos métodos de acordo com a natureza do output y
 - Se $y \in \mathbb{R}$, usamos métodos de regressão (capítulo 3)
 - Se $y \in \{0, 1\}$ ou conjuntos finitos, usamos métodos de classificação (capítulo 4)
- ▶ O que fazer quando y não é nem um nem outro? Por exemplo, $y \in \{0, 1, 2, 3, ...\}$, como é o caso com dados de contagem?
 - Regressão linear poderia retornar valores negativos (ou racionais)
 - Regressão logística funciona quando temos valores categóricos, sem ordenação
- Podemos generalizar a nossa motivação para regressão logística
 - Vamos definir a distribuição de y (por exemplo, $Y|X \sim Pois(\lambda(X))$)
 - **E**scolhemos $\lambda(X)$ de tal maneira que o impacto sobre y na log-verossimilhança é linear

Regressão de Poisson

▶ Um bom modelo para contagens é a distribuição de Poisson: se $Y \sim \text{Pois}(\lambda(X))$, então

$$\mathbb{P}[Y = k | X = x] = \frac{e^{-\lambda(x)} \lambda(x)^k}{k!}, \qquad k = 0, 1, 2, \dots$$

Em particular, $\lambda(x) = \mathbb{E}[Y|X=x] = \mathbb{V}[Y|X=x]$

A log-verossimilhança é:

$$L(y, \lambda(x)) = -\lambda(x) + y \log(\lambda(x)) - \log(y!)$$

▶ Como o impacto de X sobre y se dá por meio de $log(\lambda(x))$, gostaríamos que ele fosse linear:

$$\log(\lambda(x)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p,$$

ou seja,

$$\lambda(x) = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

Precisamos estimar $\lambda(x)$ ou, equivalentemente, β_0, \ldots, β_p

Regressão de Poisson: estimação

▶ Como antes, estimamos os coeficientes $\beta_0, \beta_1, \dots, \beta_p$ via máxima verossimilhança:

$$\begin{split} (\hat{\beta}_{0}, \hat{\beta}_{1}, \dots, \hat{\beta}_{\rho}) &= \underset{\tilde{\beta}_{0}, \dots, \tilde{\beta}_{\rho}}{\operatorname{argmin}} - \left(\sum_{i=1}^{n} -\tilde{\lambda}(x_{i}) + y_{i} \log(\tilde{\lambda}(x_{i})) \right) \\ &= \underset{\tilde{\beta}_{0}, \dots, \tilde{\beta}_{\rho}}{\operatorname{argmin}} \sum_{i=1}^{n} e^{\tilde{\beta}_{0} + \tilde{\beta}_{1}x_{i1} + \dots + \tilde{\beta}_{\rho}x_{i\rho}} - y_{i}(\tilde{\beta}_{0} + \tilde{\beta}_{1}x_{i1} + \dots + \tilde{\beta}_{\rho}x_{i\rho}) \end{split}$$

- Essa função é convexa nos coeficientes; podemos usar métodos de otimização convexa
- ▶ Depois de encontrar os coeficientes, podemos achar, e.g., $\hat{\mathbb{P}}[Y=0|X=x]$ ou $\hat{\mathbb{P}}[Y>5|X=x]$
- Diferenças da regressão de Poisson em relação a regressão linear:
 - Variância: regressão de Poisson supõe certa rigidez, pois $\lambda = \mathbb{E}[Y|X] = \mathbb{V}[Y|X]$
 - Valores não-negativos: valores negativos nunca são previstos (não era o caso antes)
 - Interpretação: um aumento de X_j em 1 tem impacto de e^{β_j} em $\mathbb{E}[Y|X]$ (versus β_j antes)

Regressão de Poisson: exemplo

Queremos estimar o número de usuários por hora num sistema de compartilhamento de bicicletas públicas via regressão de Poisson no dataset bikeshare

Capítulo 5: Métodos de reamostragem

Capítulo 5

- ► Validação: estimando erros de teste
 - Conjunto de validação
 - Validação cruzada leave-one-out
 - Validação cruzada em *k*-folds
 - O caso de classificação
- ▶ Bootstrap: obtendo medidas de incerteza sobre estimadores

Erros de treino e teste

- O erro de treino é o erro que obtemos ao usar um modelo treinado em dados de treino quando ele tenta prever os próprios dados de treino
- O erro de teste é o erro que um modelo treinado comete em dados que não foram utilizados em seu treinamento
- Quase sempre estamos interessados no erro de teste e não no de treino, pois é uma medida justa do erro que o método terá na prática
- O erro de treino costuma subestimar dramaticamente o erro de teste (e.g., overfitting)
- A relação entre erro de treino e teste indica se há underfitting ou overfitting
- O erro de teste é útil não só em si mesmo, mas também para escolher hiperparâmetros do modelo (e.g., k em kNN); nesse caso, costumamos usar um conjunto extra de validação

Erros de treino e teste

Model Complexity

Conjunto de validação: estratégia

- ▶ Objetivo: estimar o erro de validação de um método supervisionado (e.g., escolher dentre modelos)
- Estratégia:
 - 1. Dividir os dados em duas partes
 - 2. Treinar o método de ML na primeira parte
 - 3. Computar o erro (e.g., MSE) na segunda parte

Conjunto de validação: exemplo

Regressão polinomial de mpg em horsepower (nos dados Auto; splits diferentes à direita)

Conjunto de validação: problemas

- Estimativas variam muito com a divisão dos dados, como vimos
- ▶ Apenas um subconjunto dos dados é usado para treinar o modelo
- O erro de validação costuma sobrestimar o erro de teste
 - Ao invés de treinar o modelo com n pontos, treinamos só com uma fração dos dados
 - \blacksquare Para fazer uma previsão sobre o futuro, retreinamos o modelo com os n pontos
 - Os dados a mais vão ajudar o modelo, e ele provavelmente vai ter um erro de teste menor do que o estimado

Validação cruzada leave-one-out: estratégia

- Estratégia: para cada i = 1, ..., n,
 - Treine o modelo em todos os pontos, exceto o *i*-ésimo
 - Calcule o erro de validação usando apenas o ponto i
- ► Tire a média de todos os erros de validação

Validação cruzada leave-one-out: vantagens e desvantagens

- ightharpoonup Seja $\hat{y}_i^{(-i)}$ a previsão do *i*-ésimo ponto com modelo treinado em todos os pontos menos o *i*-ésimo
 - Regressão: $CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i^{(-i)})^2$
 - Classificação: $CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{[y_i \neq \hat{y}_i^{(-i)}]}$
- ▶ Vantagens de LOOCV sobre conjunto de validação:
 - LOOCV não é aleatório: sempre retorna o mesmo estimador
 - LOOCV usa quase todos os dados de treino: não sobrestima o erro de teste
- Desvantagens:
 - Modelos treinados em dados correlacionados, aumentando a variância da estimativa de teste
 - É computacionalmente intensivo (exceto no caso de regressão linear, onde há um atalho)

Validação cruzada em k-folds: estratégia

- ightharpoonup Divida os dados em k subconjuntos (tipicamente, k=5 ou 10)
- Para cada i = 1, ..., k:
 - Treine o modelo em todos os subconjuntos exceto o *i*-ésimo
 - Calcule o erro de validação no *i*-ésimo subconjunto
- ► Tire a média de todos os erros de validação

LOOCV vs k-fold CV

- k-fold CV depende da divisão dos dados, mas é menos computacionalmente intensivo
- ► Em k-fold CV, como no conjunto de validação, treinamos o modelo com menos dados do que o disponível; isso introduz viés, sobrestimando a estimativa de erro
- Em LOOCV, as amostras de treino são muito parecidas umas com as outras; tirar a média de n folds não traz redução tão drástica na variância do estimador de erro de validação

Escolhendo hiperparâmetros: regressão

▶ Mesmo que as estimativas de LOOCV não sejam sempre iguais a 10-fold CV (versus MSE de teste), os mesmos valores de hiperparâmetros costumam ser escolhidos

Escolhendo hiperparâmetros: classificação

▶ A situação é parecida em problemas de classificação (10CV, treino, teste), mas usamos perda 0-1

Escolhendo hiperparâmetros: regra do desvio padrão

 \triangleright Exemplo de forward selection com p previsores (10-CV, erro verdadeiro)

- Modelos $p = 9, 10, 11, \dots, 15$ têm quase o mesmo erro de CV
- Regra: escolha o modelo mais simples a um desvio padrão do melhor modelo (p = 9)

Jeito errado de fazer CV

- Queremos classificar se 200 indivíduos têm ou não câncer. Usamos regressão logística com 1000 medidas de expressão genética
- Proposta:
 - Usando todos os dados, usar testes z para encontrar os 20 genes mais significativos
 - Estimar o erro de teste da regressão logística nesses 20 previsores via 10-CV
- Isso é razoável?

Jeito errado de fazer CV

- Suponha o seguinte setup:
 - A expressão de um gene é Normal e independente dos outros
 - A resposta (câncer ou não) vem do jogar de uma moeda, sem correlação com a genética
- Qual é a taxa de erro para um classificador usando esses previsores? Em torno de 50%
- ▶ Mas usando o método do slide anterior, o erro de 10CV é de 3%!
 - \blacksquare Com n=200 indivíduos e p=1000 variáveis, alguns indivíduos vão ser acidentalmente correlacionados com a resposta
 - Fizemos seleção de previsores usando todos os dados, então em todos os subconjuntos deve haver alguma correlação com a resposta

Jeito certo de fazer CV

- Dividir os dados em 10 subconjuntos
- Para i = 1, ..., 10:
 - Usando todos os subconjuntos exceto o i-ésimo, faça a seleção de variáveis e treine o modelo com as variáveis selecionadas
 - Calcule o erro de teste no *i*-ésimo subconjunto
- Tire a média dos 10 erros de testes encontrados
- Dessa maneira, o erro estimado volta a ser perto de 50%
- Nota: em folds diferentes escolhemos variáveis diferentes!
- Moral da história: qualquer aspecto metodológico a ser aprendido através dos dados (e.g., seleção de variáveis) precisa estar dentro da validação cruzada

Capítulo 5

- ► Validação: estimando erros de teste
 - Conjunto de validação
 - Validação cruzada leave-one-out
 - Validação cruzada em *k*-folds
 - O caso de classificação
- ▶ Bootstrap: obtendo medidas de incerteza sobre estimadores

Bootstrap

- Objetivo: determinar a incerteza de estimadores de maneira não-paramétrica
- Até agora, encontramos o erro-padrão de estimadores de maneira específica
- Por exemplo: como estimar a variância da amostra x_1, \ldots, x_n e o erro padrão desse estimador?
 - Usamos $\hat{\sigma}^2 = (n-1)^{-1} \sum_{i=1}^n (x_i \overline{x})^2$
 - Para estimar o erro padrão, assumimos que $X_i \sim N(\mu, \sigma^2)$
 - Daí $\hat{\sigma}^2(n-1) \sim \chi^2_{n-1}$, ou seja sabemos qual é a distribuição do estimador
 - lacksquare Isso nos diz tudo que gostaríamos de saber sobre $\hat{\sigma}^2$; por exemplo, $\mathbb{V}[\hat{\sigma}^2]$ ou $\mathbb{P}[\hat{\sigma}^2>t]$
- O que fazer quando não é razoável assumir dados Normais? E se o estimador não tiver uma distribuição conhecida?

Exemplo: investimento em dois ativos

► Suponha que X e Y denotem os retornos de dois ativos

Exemplo: investimento em dois ativos

- \triangleright Queremos investir α do nosso dinheiro em X e $1-\alpha$ em Y. Quanto investir em cada?
- ightharpoonup O retorno será $\alpha X + (1 \alpha)Y$. O α que minimiza a variância é

$$\alpha = \frac{\sigma_Y^2 - \text{Cov}(X, Y)}{\sigma_X^2 + \sigma_Y^2 - 2 \text{Cov}(X, Y)}$$

Podemos estimar essa quantidade via

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \widehat{\text{Cov}}(X, Y)}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\widehat{\text{Cov}}(X, Y)}$$

- **Suponha que com uma amostra obtivéssemos** $\hat{\alpha} = 0.6$. Podemos confiar nesse valor?
- \triangleright Se soubéssemos a distribuição conjunta $\mathbb{P}[X,Y]$, bastaria simular e ver como os dados variam

Exemplo: investimento em dois ativos

Bootstrap: ideia

ldeia: para cada reamostragem dos dados, calculamos um valor de $\hat{\alpha}$:

$$(x_{1}^{(1)}, y_{1}^{(1)}), \dots, (x_{n}^{(1)}, y_{n}^{(1)}) \mapsto \hat{\alpha}^{(1)}$$

$$(x_{1}^{(2)}, y_{1}^{(2)}), \dots, (x_{n}^{(2)}, y_{n}^{(2)}) \mapsto \hat{\alpha}^{(2)}$$

$$\vdots$$

$$(x_{1}^{(m)}, y_{1}^{(m)}), \dots, (x_{n}^{(m)}, y_{n}^{(m)}) \mapsto \hat{\alpha}^{(m)}$$

- Vamos estimar o erro padrão de $\hat{\alpha}$ pelo desvio padrão de $\hat{\alpha}^{(1)}, \ldots, \hat{\alpha}^{(m)}$
- ▶ Note que só temos n pontos originais, então vamos reamostrar os n dados com reposição
- Isso equivale a "simular" a incerteza

Bootstrap: mecanismo

Bootstrap: comparação entre distribuição verdadeira e bootstrap

- Suponha que façamos m = 1000 reamostragens
- ► No nosso exemplo, obtemos

$$\overline{\alpha} = \frac{1}{1000} \sum_{r=1}^{1000} \hat{\alpha}_r = 0.5996,$$

bem próximo do valor real $\alpha = 0.6$

O desvio padrão das estimativas é

$$\sqrt{\frac{1}{1000-1}\sum_{r=1}^{1000}(\hat{\alpha}_r-\overline{\alpha})^2}=0.083,$$

então estimamos o erro padrão como $\hat{SE}(\hat{\alpha}) = 0.083$. Isso é próximo do verdadeiro valor.

Mais útil ainda: a distribuição de Bootstrap do estimador aproxima a distribuição verdadeira

Bootstrap: comparação entre distribuição verdadeira e bootstrap

Bootstrap: filosofia

Bootstrap: usos

- Principal uso: obter desvios padrões de estimadores (e outras quantificações de incerteza)
- ► Também pode ser usado para encontrar intervalos de confiança (usando os quantis desejados da distribuição de bootstrap)
- Situações mais complexas exigem cuidado; e.g., séries temporais e o bootstrap em blocos
- Seria possível usar bootstrap para estimar erro de teste?
 - Usaríamos cada amostra de bootstrap como amostra de treino, os dados de treino como a amostra completa
 - Problema: há interseção entre dados de treino e teste! Isso subestima o erro de teste
 - Alternativa: usar dados de teste como os pontos não sorteados na amostra de bootstrap;
 mas comeca a ficar complicado. Melhor usar k-fold CV

Perguntas para revisão

- \triangleright O que são GLMs? Como encontrar $\hat{\beta}$? Como interpretar os coeficientes?
- O que é possível aprender sobre um modelo comparando erros de treino e de teste?
- Qual é a diferença entre conjunto de validação, LOOCV e k-fold CV? Quando preferir um ao outro?
- Qual é o jeito errado de fazer CV?
- ▶ O que é o bootstrap e como encontrar estimativas de incerteza de método arbitrários?
- Quais são as limitações de bootstrapping?