4.2平衡二叉树

什么是平衡二叉树

平均查找长度是衡量查找效率

〖例〗搜索树结点不同插入次序,将导致不同的深度和平均查找长度ASL

(a) 自然月份序列

ASL(a)= $(1+2\times2+3\times3+4\times3+5\times2+6\times1)/12 = 3.5$

(b) 按July, Feb, May, Mar, Aug, Jan, Apr, Jun, Oct, Sept, Nov, Dec

ASL(b)=3.0

(c)月份字符串 大小顺序

ASL(c) = 6.5

衡量平衡的两个指标:1.左右两颗树的高度差不多 2.左右两棵树的节点数差不多

什么是平衡二叉树

"平衡因子(Balance Factor,简称BF): $BF(T) = h_L - h_R$,其中 h_L 和 h_R 分别为T的左、右子树的高度。 左右两颗子树的高度差

平衡二叉树(Balanced Binary Tree)(AVL树)

空树,或者

任一结点左、右子树高度差的绝对值不超过1,即|BF(T)|≤1

平衡二叉树的高度能达到 log_2 n吗? $\overset{越平衡,树的高度越低}$ 设 n_h 为高度为h的平衡二叉树的最少结点数。结点数最少时:

斐波那契序列:

$$F_0 = 1$$
, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$ for $i > 1$

设 n_h 是高度为h的平衡二叉树的最小结点数.

h	n_h	F_h	$\Rightarrow n_h = n_{h-1} + n_{h-2} + 1$
0	1	1	$\Rightarrow n_h = F_{h+2} - 1, ($ 対 $h \ge 0$)
1	2	1	$\mathbf{I} \left(1+\sqrt{5}\right)^i$ Nh和h是指数的关系
2	4	2	$F_i pprox rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2} ight)^i$ Nh和h是指数的关系 高度是h的话,节 点至少要一个常
3	7	3	$\Rightarrow n_h \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{h+2} = \frac{1}{2}$ 量的h次方
4	12	5	$\Rightarrow n_h \approx \frac{1}{\sqrt{5}} \left \frac{1+\sqrt{3}}{2} \right -1$
5	20	8	$\sqrt{3}$ $\left(-\frac{2}{3} \right)$
6	33	13	$\Rightarrow h = O(\log_2 n)$
7	54	21	
8	88	34	□ 给定结点数为 <i>n</i> 的AVL树的 最大高度为O(log ₂ <i>n</i>)!
9			

平衡二叉树的调整

● 不平衡的"发现者"是Mar, "麻烦结点"Nov 在发现者右子树的右边, 因而叫 RR 插入,需要RR 旋转(右单旋)

"发现者"是Mar, "麻烦结点"Apr 在发现者左子树的左边,

因而叫 LL 插入,需要LL 旋转(左单旋)

"发现者"是May,"麻烦结点"Jan在左子树的右边,

