Ecole Nationale des Sciences et Technologies Avancées à Borj Cédria

1ère TA

20 Novembre 2020

Devoir surveillé Physique des semi-conducteurs Documents non autorisés

Durée: 1 h30

Exercice I:

- 1. Définir les semi-conducteurs et les isolants tout en expliquant la différence entre les deux.
- 2. Expliquer comment on crée des porteurs libres par:
 - le dopage type P
 - le dopage type N.
 - dans le cas où tous les atomes dopants sont ionisés, tracer les diagrammes des bandes d'énergie complets dans les deux cas.
- 3. Démontrer la loi d'action de masse.

Exercice II:

La probabilité d'occupation d'un niveau d'énergie E par un électron, à la température T est donnée par la fonction de Fermi:

$$f(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

- **1.** Calculer $f(E_F)$. Que remarquez-vous?
- 2. Représenter f(E) pour T = 0 tout en expliquant la courbe obtenue.
- 3. Quelle est la signification physique d'E_F.
- 4. En déduire La probabilité d'occupation d'un niveau d'énergie E par un trou fp(E) dans le semi-conducteur.
- 5. Que devient l'expression de f(E) lorsque $(E E_F)$ est de l'ordre de quelques kT.

Exercice III

Soit un semi-conducteur dopé par des atomes donneurs de concentration N_D. Ces atomes introduisent un niveau donneur d'énergie E_D dans la bande interdite du semi-conducteur.

Soient:

 N_D la concentration totale d'atomes donneurs, N_D^+ la concentration des atomes ionisés, N_D^0 la concentration des atomes non ionisés, n la densité des électrons, p la densité des trous, E_F le niveau de Fermi.

On admet que la statistique d'occupation du niveau donneur est :

$$f_D(E) = \frac{1}{1 + \exp(\frac{E_D - E_F}{kT})}$$

- 1. Donner l'expression de N_D⁰. En déduire celle de N_D⁺.
- 2. Ecrire l'équation de neutralité électrique.
- 3. Décrire qualitativement ce qui se passe dans le semi-conducteur en fonction de la
- 4. Pour des températures assez basses, les atomes dopants sont partiellement ionisés. Comparer la densité des trous p et des électrons n. Justifier.
- 5. Si on augmente la température,
- a. Décrire son effet sur les concentrations des donneurs, des électrons et des trous.
 - b. Déterminer la condition (sur la température) pour laquelle on peut négliger la densité
- 6. On considère le semi-conducteur à température ambiante et à T=0K.
 - a. Représenter le diagramme des bandes énergétique du semi-conducteur dans les deux cas tout en mettant en valeur les différences.
 - b. Préciser quels sont les porteurs majoritaires et minoritaires dans les deux cas tout en précisant leur provenance.

Exercice IV:

On considère un semi-conducteur homogène, de type N, et de gap Eg. Les concentrations des électrons et des trous sont respectivement n et p.

- 1. Soit N_D la concentration des impuretés dans le semi-conducteur et E_D son niveau donneur. Décrire qualitativement comment évolue la concentration n des électrons
- 2. On introduit maintenant dans ce semi-conducteur des atomes « accepteurs » de concentration N_{A} et de niveau d'énergie accepteur E_{A} . Présenter le diagramme d'énergie complet du semi-conducteur en situant les différents niveaux d'énergie lorsque $N_A > N_D$.
- 3. A une certaine température T₀ assez basse, les deux impuretés se trouvent partiellement ionisées, la concentration des ions positifs et négatifs sont alors respectivement N_D+ et N_A-.
 - a. On considère toujours que $N_A > N_D$, déterminer à la température T_0 les concentrations n et p des électrons et des trous en fonction de N_D+, N_A- et n_i.

 - c. Comparer la résistivité (question (b)) avec celle du semi-conducteur à T=0K. b. Exprimer la résistivité de ce matériau.