Введение в теорию процессов Леви

Павел Иевлев

Санкт-Петербургский Государственный Университет

Санкт-Петербург, 2020

Definition

Вероятностная мера μ на $\mathbb R$ называется безгранично делимой, если для любого $n\geq 1$ найдётся вероятностная мера μ_n такая, что $\mu = \mu_n^{*n}$.

Definition

Вероятностная мера μ на $\mathbb R$ называется безгранично делимой, если для любого $n \ge 1$ найдётся вероятностная мера μ_n такая, что $\mu = \mu_n^{*n}$.

Иначе говоря, случайная величина Y имеет безгранично делимое распределение, если она может быть представлена в виде суммы n независимых одинаково распределённых величин.

Definition

Вероятностная мера μ на $\mathbb R$ называется безгранично делимой, если для любого $n \ge 1$ найдётся вероятностная мера μ_n такая, что $\mu = \mu_n^{*n}$.

Иначе говоря, случайная величина Y имеет безгранично делимое распределение, если она может быть представлена в виде суммы n независимых одинаково распределённых величин.

Легко видеть, что распределения Гаусса, Пуассона и Коши – безгранично делимые.

Definition

Вероятностная мера μ на $\mathbb R$ называется безгранично делимой, если для любого $n\geq 1$ найдётся вероятностная мера μ_n такая, что $\mu=\mu_n^{*n}$.

Иначе говоря, случайная величина Y имеет безгранично делимое распределение, если она может быть представлена в виде суммы n независимых одинаково распределённых величин.

Легко видеть, что распределения Гаусса, Пуассона и Коши – безгранично делимые. Безгранично-делимые распределения важны потому, что только они могут выступать в качестве предельных распределений сумм независимых одинаково распределённых величин

$$\sum_{k=1}^{n(k)} X_{nk}$$

Формула Леви-Хинчина

При помощи аналитического метода Феллера можно доказать, что преобразование Фурье $\widehat{\mu}$ безгранично делимого закона μ представимо в виде $\widehat{\mu}(z)=\exp(\psi(z))$, где

$$\psi(z) = i\beta z - \frac{\sigma^2 z^2}{2} + \int \left(e^{izx} - 1 - \frac{iux}{1+x^2}\right) \nu(dx),$$

а мера Леви $\nu(dx)$ удовлетворяет условию

$$\int \frac{x^2}{1+x^2} \, \nu(dx) < \infty.$$

Смотри, например, ([1], стр. 115).

Definition

Процесс $(X_t)_{t\geq 0}$ в \mathbb{R}^d называется процессом Леви, если он удовлетворяет условиям

- X процесс с независимыми приращениями
- **3** Приращения *X* стационарные
- ${\color{blue} \bullet}$ Процесс X стохастически непрерывен, то есть

$$\lim_{s \to t} P[|X_s - X_t| > \varepsilon] = 0$$

 \bullet Найдётся множество Ω_0 полной меры, вне которого X_t непрерывен справа и имеет пределы слева.

Рис.: Типичная траектория процесса Леви

Генератор процесса Леви

Нетрудно убедиться, что переходные функции $P_t(x,dy)$ процессов Леви порождают феллеровскую полугруппу в C_0

$$(T_t f)(x) = \int P_t(x, dy) f(y).$$

Генератор этой полугруппы в общем случае задан может быть задан квадратичной формой

$$\mathcal{E}(u,v) = \int \frac{\partial u}{\partial x_i} \frac{\overline{\partial v}}{\partial x_j} \mu_{ij}(dx) + \int \left(u(x) - u(y) \right) \overline{(v(x) - v(y))} J(dxdy) + \int u(x) \overline{v(x)} k(dx)$$

на области определения $\mathcal{D}[\mathcal{E}] = C_0^{\infty}(D).$

Генератор процесса Леви

Нетрудно убедиться, что переходные функции $P_t(x,dy)$ процессов Леви порождают феллеровскую полугруппу в C_0

$$(T_t f)(x) = \int P_t(x, dy) f(y).$$

Генератор этой полугруппы в общем случае задан может быть задан квадратичной формой

$$\mathcal{E}(u,v) = \int \frac{\partial u}{\partial x_i} \overline{\frac{\partial v}{\partial x_j}} \, \mu_{ij}(dx) + \int \left(u(x) - u(y) \right) \overline{(v(x) - v(y))} \, J(dxdy) + \int u(x) \overline{v(x)} \, k(dx)$$

на области определения $\mathcal{D}[\mathcal{E}] = C_0^\infty(D).$

Первое слагаемое обычно интерпретируется как вклад диффузии, второе – как вклад скачков, а третье – как поглощение в среде.

Приложения процессов Леви

• Процессы Леви используются в финансовой математике чтобы моделировать распределения с длинными хвостами, возникающие в ходе эмпирического анализа так называемых стохастических процентных ставок

$$h_n = \ln \frac{S_n}{S_{n-1}},$$

где S_n – это цена акции в момент времени n. Подробнее в [2].

- Кроме того, процессы Леви возникают как естественные кандидаты в связи с описанием статистических эффектов долгой памяти.
- Наконец, процессы Леви возникают в задачах теории массового обслуживания и теории запасов.

Daniel Revuz и Marc Yor: Continuous Martingales and Brownian Motion. Springer, 3rd редакция, 2005.

Ширяев, А. Н.: Основы стохастической финансовой математики. Том 1. МЦНМО, 2016.