Finite Dimensional

1. It is easy to check whether a set is linearly independent or not.

- 1. It is easy to check whether a set is linearly independent or not.
- 2. It is easy to find a basis of a given finite dimensional vector space.

- 1. It is easy to check whether a set is linearly independent or not.
- It is easy to find a basis of a given finite dimensional vector space.
- 3. Basis deletion theorem is valid.

Infinite Dimensional

 It is not easy to check whether a set is linearly independent or not.

- It is easy to check whether a set is linearly independent or not.
- It is easy to find a basis of a given finite dimensional vector space.
- Basis deletion theorem is valid.
- 4. Extension theorem is valid.

Finite Dimensional

- 1. It is easy to check whether a set is linearly independent or not.
- It is easy to find a basis of a given finite dimensional vector space.
- 3. Basis deletion theorem is valid.
- 4. Extension theorem is valid.

Infinite Dimensional

- 1. It is not easy to check whether a set is linearly independent or not.
- 2. It is not easy to find a basis of a given infinite dimensional vector space. For example, C[a, b] over the field $\mathbb R$ is an infinite dimensional vector space. But we do not have any explicit basis for C[a, b].

- 1. It is easy to check whether a set is linearly independent or not.
- It is easy to find a basis of a given finite dimensional vector space.
- 3. Basis deletion theorem is valid.
- 4. Extension theorem is valid.

Infinite Dimensional

- 1. It is not easy to check whether a set is linearly independent or not.
- 2. It is not easy to find a basis of a given infinite dimensional vector space. For example, C[a,b] over the field $\mathbb R$ is an infinite dimensional vector space. But we do not have any explicit basis for C[a,b].
- 3. Basis deletion theorem is not valid.

valid.

1. It is easy to check whether a set is linearly independent or not.

2. It is easy to find a basis of a

- given finite dimensional vector space. 3. Basis deletion theorem is
- 4. Extension theorem is valid.

1. It is not easy to check

Tutorial-II

whether a set is linearly independent or not.

2. It is not easy to find a basis

of a given infinite dimensional vector space. For example, C[a, b] over the field \mathbb{R} is an infinite dimensional vector space. But we do not have any explicit basis for C[a, b].

- valid. 4. Extension theorem is not
 - Valid.

3. Basis deletion theorem is not

1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- 2. $\dim(\mathbb{V}) = n$ and you have a set B of n vectors such that $ls(B) = \mathbb{V}$ then B is a basis.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- 2. $\dim(\mathbb{V}) = n$ and you have a set B of n vectors such that $ls(B) = \mathbb{V}$ then B is a basis.
- Gram Schimdt Process is valid only for finite set.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- dim(V) = n and you have a set B of n vectors such that ls(B) = V then B is a basis.
- 3. Gram Schimdt Process is valid only for finite set.
- It is easy to prove any theorem which is valid here.

Infinite Dimensional

 We do not have this type result for infinite dimensional vector space.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- 2. $\dim(\mathbb{V}) = n$ and you have a set B of n vectors such that $ls(B) = \mathbb{V}$ then B is a basis.
- Gram Schimdt Process is valid only for finite set.
- It is easy to prove any theorem which is valid here.

nfinite Dimensional

 We do not have this type result for infinite dimensional vector space. 15

We do not have this type result for infinite dimensional vector space.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- dim(V) = n and you have a set B of n vectors such that ls(B) = V then B is a basis.
- Gram Schimdt Process is valid only for finite set.
- It is easy to prove any theorem which is valid here.

Infinite Dimensional 1. We do not have this

- 1. We do not have this type result for infinite dimensional vector space.
- We do not have this type result for infinite dimensional vector space.
- 3. Gram Schimdt Process is not valid for infinite set.

- 1. $\dim(\mathbb{V}) = n$ and you have a LI set B of n vectors then B is a basis.
- dim(V) = n and you have a set B of n vectors such that ls(B) = V then B is a basis.
- Gram Schimdt Process is valid only for finite set.
- It is easy to prove any theorem which is valid here.

Infinite Dimensional

- 1. We do not have this type result for infinite dimensional vector space.
- We do not have this type result for infinite dimensional vector space.
- Gram Schimdt Process is not valid for infinite set.
- sometime it is difficult to prove any theorem which is valid here.

Question 1. Let $\mathbb V$ be a vector space over the field $\mathbb K$. Let S be a LI set. Can we have an inner product on $\mathbb V$ such that S is orthogonal.

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of \mathbb{V} which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of \mathbb{V} which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $x,y\in\mathbb{V}$. Then there exist unique $c_1,\ldots,c_k\in\mathbb{K}$ such that

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $x, y \in \mathbb{V}$. Then there exist unique $c_1, \ldots, c_k \in \mathbb{K}$ such that $x = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n$.

Question 1. Let \mathbb{V} be a vector space over the field \mathbb{K} . Let S be a LI set. Can we have an inner product on \mathbb{V} such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of $\mathbb V$ which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $x,y\in\mathbb{V}$. Then there exist unique $c_1,\ldots,c_k\in\mathbb{K}$ such that

$$x=c_1u_1+c_2u_2+\cdots+c_nu_n.$$

Similarly $y = d_1u_1 + d_2u_2 + \cdots + d_nu_n$.

Question 1. Let $\mathbb V$ be a vector space over the field $\mathbb K$. Let S be a LI set. Can we have an inner product on $\mathbb V$ such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of \mathbb{V} which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $x,y\in\mathbb{V}$. Then there exist unique $c_1,\ldots,c_k\in\mathbb{K}$ such that

$$x=c_1u_1+c_2u_2+\cdots+c_nu_n.$$

Similarly $y = d_1u_1 + d_2u_2 + \cdots + d_nu_n$.

Then
$$\langle x, y \rangle = \sum_{i=1}^{n} c_i \overline{d_i}$$
.

Question 1. Let $\mathbb V$ be a vector space over the field $\mathbb K$. Let S be a LI set. Can we have an inner product on $\mathbb V$ such that S is orthogonal.

Answer: There are two cases.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then S is finite set. Let $S=\{u_1,\ldots,u_k\}$.

Using extension theorem we can extend S to a basis of \mathbb{V} which is $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$.

Let $x,y\in\mathbb{V}$. Then there exist unique $c_1,\ldots,c_k\in\mathbb{K}$ such that

$$x=c_1u_1+c_2u_2+\cdots+c_nu_n.$$

Similarly $y = d_1u_1 + d_2u_2 + \cdots + d_nu_n$.

Then
$$\langle x, y \rangle = \sum_{i=1}^{n} c_i \overline{d_i}$$
.

You know this one is an inner product.

To check S is orthogonal with respect to above inner product.

To check S is orthogonal with respect to above inner product.

Let $u_i, u_j \in S$. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and

To check S is orthogonal with respect to above inner product.

Let $u_i, u_j \in S$. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and $u_j = 0u_1 + 0u_2 + \cdots + u_j + 0u_{j+1} + 0u_n$

To check S is orthogonal with respect to above inner product.

 $\langle u_i, u_i \rangle = 0$, for $i \neq j$. Hence S is orthogonal.

Let
$$u_i, u_j \in S$$
. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and $u_j = 0u_1 + 0u_2 + \cdots + u_j + 0u_{j+1} + 0u_n$

Let $u_i, u_j \in S$. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and $u_j = 0u_1 + 0u_2 + \cdots + u_j + 0u_{j+1} + 0u_n$

Case-II. ♥ is infinite dimensional.

 $\langle u_i, u_i \rangle = 0$, for $i \neq j$. Hence S is orthogonal.

To check S is orthogonal with respect to above inner product.

Let
$$u_i, u_j \in S$$
. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and $u_j = 0u_1 + 0u_2 + \cdots + u_j + 0u_{j+1} + 0u_n$ $\langle u_i, u_i \rangle = 0$, for $i \neq j$. Hence S is orthogonal.

Case-II. V is infinite dimensional.

We cannot apply basis extension theorem. Then how do we proceed?

Let $u_i, u_j \in S$. Then $u_i = 0u_1 + 0u_2 + \cdots + u_i + 0u_{i+1} + 0u_n$ and

$$u_j = 0u_1 + 0u_2 + \cdots + u_j + 0u_{j+1} + 0u_n$$

 $\langle u_i, u_i \rangle = 0$, for $i \neq j$. Hence S is orthogonal.

We cannot apply basis extension theorem. Then how do we proceed?

Case-II. $\mathbb V$ is infinite dimensional.

We do not know whether this result is valid for infinite dimensional vector space or not.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B=\{u_1,\ldots,u_n\}$ such that $\langle u_i,u_j\rangle=0$ for all $i\neq j$ and $\langle u_i,u_i\rangle=1$ for $i=1,\ldots,n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B=\{u_1,\ldots,u_n\}$ such that $\langle u_i,u_j\rangle=0$ for all $i\neq j$ and $\langle u_i,u_i\rangle=1$ for $i=1,\ldots,n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Let $x, y \in \mathbb{V}$. Then there exist unique $c_1, \ldots, c_k \in \mathbb{K}$ such that

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B=\{u_1,\ldots,u_n\}$ such that $\langle u_i,u_j\rangle=0$ for all $i\neq j$ and $\langle u_i,u_i\rangle=1$ for $i=1,\ldots,n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Let $x, y \in \mathbb{V}$. Then there exist unique $c_1, \ldots, c_k \in \mathbb{K}$ such that

 $x = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n$.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B=\{u_1,\ldots,u_n\}$ such that $\langle u_i,u_j\rangle=0$ for all $i\neq j$ and $\langle u_i,u_i\rangle=1$ for $i=1,\ldots,n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Let $x,y\in\mathbb{V}.$ Then there exist unique $c_1,\ldots,c_k\in\mathbb{K}$ such that

 $x = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n.$

11 1 1 1 2 2 2 1 1 1 1 1 1 1 1

Similarly $y = d_1u_1 + d_2u_2 + \cdots + d_nu_n$.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B=\{u_1,\ldots,u_n\}$ such that $\langle u_i,u_j\rangle=0$ for all $i\neq j$ and $\langle u_i,u_i\rangle=1$ for $i=1,\ldots,n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Let $x, y \in \mathbb{V}$. Then there exist unique $c_1, \ldots, c_k \in \mathbb{K}$ such that

$$x=c_1u_1+c_2u_2+\cdots+c_nu_n.$$

Similarly $y = d_1u_1 + d_2u_2 + \cdots + d_nu_n$.

Then $\langle x, y \rangle$

$$= \langle c_1 u_1 + c_2 u_2 + \cdots + c_n u_n, d_1 u_1 + d_2 u_2 + \cdots + d_n u_n \rangle$$

$$=\sum_{i=1}^n c_i \overline{d_i}.$$

Question-2 Let $(\mathbb{V}, \langle ., \rangle)$ be an inner product space. Does there exists a basis in \mathbb{V} such that $\langle ., \rangle$ is equal to the inner product induced by B.

Case-I. $\mathbb V$ is finite dimensional and $\dim(\mathbb V)=n$. Then there exists a basis $B = \{u_1, \dots, u_n\}$ such that $\langle u_i, u_i \rangle = 0$ for all $i \neq j$ and $\langle u_i, u_i \rangle = 1$ for $i = 1, \dots, n$. (This can be proved using Gram Schimdt process, I will discuss in the next class.)

Let $x, y \in \mathbb{V}$. Then there exist unique $c_1, \ldots, c_k \in \mathbb{K}$ such that

 $X = C_1 U_1 + C_2 U_2 + \cdots + C_n U_n$

Similarly $y = d_1 u_1 + d_2 u_2 + \cdots + d_n u_n$.

Then $\langle x, y \rangle$

 $=\sum_{i=1}^{n}c_{i}\overline{d_{i}}.$

$$= \langle c_1 u_1 + c_2 u_2 + \cdots + c_n u_n, d_1 u_1 + d_2 u_2 + \cdots + d_n u_n \rangle$$

For finite dimensional inner product space it is true.

Case-I. V is infinite dimensional.

Case-I. V is infinite dimensional.

We cannot apply Gram Schimdt process. Then how do we proceed?

Case-I. \mathbb{V} is infinite dimensional.

We cannot apply Gram Schimdt process. Then how do we proceed?

We do not know whether this result is valid for infinite dimensional vector space or not.

• Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A = A^t$, $a_{11} > 0$, $a_{22} > 0$ and det(A) > 0.

• Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an

inner product on \mathbb{R}^2 if and only if $A=A^t$, $a_{11}>0$, $a_{22}>0$ and det(A)>0.

We first assume that f_A is an inner product.

• Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an

inner product on \mathbb{R}^2 if and only if $A = A^t$, $a_{11} > 0$, $a_{22} > 0$ and det(A) > 0.

We first assume that f_A is an inner product.

Using definition of inner product we have $f_A(x,x) > 0$ for all non-zero $x \in \mathbb{R}^2$.

• Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$

be a map defined by $f_A(x,y)=y^tAx$, where $x,y\in\mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A=A^t$, $a_{11}>0$, $a_{22}>0$ and det(A)>0.

We first assume that f_A is an inner product.

Using definition of inner product we have $f_A(x,x) > 0$ for all non-zero $x \in \mathbb{R}^2$.

Then
$$f_A(e_1, e_1) = e_1^t A e_1 = (1, 0) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} > 0$$

 $a_{11} > 0$.

• Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$

be a map defined by $f_A(x,y)=y^tAx$, where $x,y\in\mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A=A^t$, $a_{11}>0$, $a_{22}>0$ and det(A)>0.

We first assume that f_A is an inner product.

Using definition of inner product we have $f_A(x,x) > 0$ for all non-zero $x \in \mathbb{R}^2$.

Then
$$f_A(e_1, e_1) = e_1^t A e_1 = (1, 0) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} > 0$$

 $a_{11} > 0$.

Using e_2 we can show that $a_{22} > 0$.

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

 $y^t A x = x^t A y$

$$f_A(x,y) = \overline{f_A(y,x)} = f_A(y,x)$$

 $y^t A x = x^t A y$

 $(y^t A x)^t = x^t A y$

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

 $y^t A x = x^t A y$

 $(y^t A x)^t = x^t A y$

 $x^t A^t y = x^t A y$

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

 $v^t A x = x^t A y$

 $(y^t A x)^t = x^t A y$ $x^t A^t y = x^t A y$

 $x^t(A^t - A)y = 0$. This is true for all $x, y \in \mathbb{R}^2$.

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

 $y^t A x = x^t A y$

 $(v^t A x)^t = x^t A y$

 $x^t A^t y = x^t A y$

 $x^t(A^t - A)y = 0$. This is true for all $x, y \in \mathbb{R}^2$.

Take $x = (1,0)^t$ and $y = (0,1)^t$.

$$y^{t}Ax = x^{t}Ay$$
$$(y^{t}Ax)^{t} = x^{t}Ay$$
$$x^{t}A^{t}y = x^{t}Ay$$

 $f_A(x,y) = \overline{f_A(y,x)} = f_A(y,x)$

$$x^t(A^t - A)y = 0$$
. This is true for all $x, y \in \mathbb{R}^2$.

Take $x = (1,0)^t$ and $y = (0,1)^t$.

$$(1,0)\begin{pmatrix}0 & a_{21}-a_{12} \\ a_{12}-a_{21} & 0\end{pmatrix}\begin{pmatrix}0 \\ 1\end{pmatrix}$$

$$f_A(x, y) = \overline{f_A(y, x)} = f_A(y, x)$$

 $y^t A x = x^t A y$

$$x^t A^t y = x^t A y$$

 $(v^t A x)^t = x^t A v$

$$x^t(A^t - A)y = 0$$
. This is true for all $x, y \in \mathbb{R}^2$.

Take $x = (1,0)^t$ and $y = (0,1)^t$.

$$(1,0)\begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$a_{21} - a_{12} = 0 \implies a_{12} = a_{21}.$$

$$f_A(x,y) = \overline{f_A(y,x)} = f_A(y,x)$$

$$y^t A x = x^t A y$$

$$(y^t A x)^t = x^t A y$$

$$x^t A^t y = x^t A y$$

$$x^t(A^t - A)y = 0$$
. This is true for all $x, y \in \mathbb{R}^2$.

Take $x = (1,0)^t$ and $y = (0,1)^t$.

$$(1,0)\begin{pmatrix}0 & a_{21}-a_{12}\\a_{12}-a_{21} & 0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}$$

$$a_{21}-a_{12}=0 \implies a_{12}=a_{21}.$$

Hence $A = A^t$.

To prove det(A) > 0, we take $x = (a_{22}, -a_{12})$.

To prove det(A) > 0, we take $x = (a_{22}, -a_{12})$.

Since
$$f_A(x,x) > 0$$
, we have $(a_{11}, -a_{12})\begin{pmatrix} a_{11} & a_{12} \ a_{12} & a_{22} \end{pmatrix}\begin{pmatrix} a_{11} \ -a_{12} \end{pmatrix} > 0$

To prove det(A) > 0, we take $x = (a_{22}, -a_{12})$.

Since
$$f_A(x,x) > 0$$
, we have $(a_{11}, -a_{12})\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}\begin{pmatrix} a_{11} \\ -a_{12} \end{pmatrix} > 0$

Then $a_{11}a_{22} - a_{12}^2 = \det(A) > 0$.

1(a).
$$f_A(x,x) = (x_1,x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$=a_{11}(x_1+\frac{a_{12}}{a_{11}x_2})^2+\frac{a_{11}a_{22}-a_{12}^2}{a_{11}}x_2^2 \text{ (as } a_{11}>0)$$

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$= a_{11} \left(x_1 + \frac{a_{12}}{a_{11} x_2} \right)^2 + \frac{a_{11} a_{22} - a_{12}^2}{a_{11}} x_2^2 \text{ (as } a_{11} > 0 \text{)}$$

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$=a_{11}(x_1+\frac{a_{12}}{a_{11}x_2})^2+\frac{a_{11}a_{22}-a_{12}^2}{a_{11}}x_2^2$$
 (as $a_{11}>0$)

1(b).
$$f_A(x,x) = 0$$
. Using $a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} - a_{12}^2}{a_{11}}x_2^2$, this we have $x_1 = 0$ and $x_2 = 0$.

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$=a_{11}(x_1+\frac{a_{12}}{a_{11}x_2})^2+\frac{a_{11}a_{22}-a_{12}^2}{a_{11}}x_2^2$$
 (as $a_{11}>0$)

1(b).
$$f_A(x,x) = 0$$
. Using $a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} - a_{12}^2}{a_{11}}x_2^2$, this we have $x_1 = 0$ and $x_2 = 0$.

2. It is trivial.

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$=a_{11}(x_1+\frac{a_{12}}{a_{11}x_2})^2+\frac{a_{11}a_{22}-a_{12}^2}{a_{11}}x_2^2$$
 (as $a_{11}>0$)

- 1(b). $f_A(x,x) = 0$. Using $a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} a_{12}^2}{a_{11}}x_2^2$, this we have $x_1 = 0$ and $x_2 = 0$.
- 2. It is trivial.
- 3. It is trivia.

1(a).
$$f_A(x,x) = (x_1, x_2) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

= $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$ (as $a_{12} = a_{21}$)

$$=a_{11}(x_1+\frac{a_{12}}{a_{11}x_2})^2+\frac{a_{11}a_{22}-a_{12}^2}{a_{11}}x_2^2$$
 (as $a_{11}>0$)

- 1(b). $f_A(x,x) = 0$. Using $a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} a_{12}^2}{a_{11}}x_2^2$, this we have $x_1 = 0$ and $x_2 = 0$.
- 2. It is trivial.3. It is trivia.
- J. 11 15 111VI
- 4. It is trivia.

• $f_A(x,y) = x^t A y$ is an inner product on \mathbb{R}^3 if and only if A is symmetric, $a_{ii} > 0$ for i = 1, ..., 3 and all the leading principal minors are non-zero.

• $f_A(x,y) = x^t A y$ is an inner product on \mathbb{R}^3 if and only if A is symmetric, $a_{ii} > 0$ for $i = 1, \dots, 3$ and all the leading principal minors are non-zero.

Leading Principal minor: There are three leading principal of a matrix of order 3.

• $f_A(x,y) = x^t A y$ is an inner product on \mathbb{R}^3 if and only if A is symmetric, $a_{ii} > 0$ for $i = 1, \ldots, 3$ and all the leading principal minors are non-zero.

Leading Principal minor: There are three leading principal of a matrix of order 3.

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

• $f_A(x,y) = x^t A y$ is an inner product on \mathbb{R}^3 if and only if A is symmetric, $a_{ii} > 0$ for $i = 1, \dots, 3$ and all the leading principal minors are non-zero.

Leading Principal minor: There are three leading principal of a matrix of order 3.

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

1. a_{11} is the leading principal minor of size 1.

• $f_A(x,y) = x^t A y$ is an inner product on \mathbb{R}^3 if and only if A is symmetric, $a_{ii} > 0$ for $i = 1, \ldots, 3$ and all the leading principal minors are non-zero.

Leading Principal minor: There are three leading principal of a matrix of order 3.

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

1. a_{11} is the leading principal minor of size 1.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 is the leading prinicipal minor of size 2.

a ₁₁	a_{12}	a ₁₃	
a ₂₁	a ₂₂	a ₂₃	is the leading prinicipal minor of size 3.
201	200	200	