

Interpreting Ecological Niche Models

Shelly Gaynor
University of Florida

BiotaPhy

Step 1: Look at the output

Step 1: Look at the output

We will use this average file for all other analysis

Step 1: Look at the output

But first, lets make sure the model is good!

Step 1: Look at the output

Step 2: Evaluate the models

Step 1: Look at the output

Step 2: Evaluate the models

 How well can the model discriminate between occurrence points and background points? e.g., AUC

The test omission rate and predicted area as a function of the cumulative threshold

Mean area Mean area Mean area +/- one stddev Mean omission on test data Mean omission +- one stddev Predicted omission

Omission:

- the proportion of a given sample of actual presences that have probabilities of occurrence (or habitat suitability values) below a binarization threshold.
- Omission rate should be close to the predicted omission
- = quantifies overfitting

Methods in Ecology and Evolution

Leaving the area under the receiving operating characteristic curve behind: An evaluation method for species distribution modelling applications based on presence-only data

Laura Jiménez ⋈, Jorge Soberón

First published: 30 August 2020 | https://doi.org/10.1111/2041-210X.13479 | Citations: 1

	Method		Citation
How significant is the model?	Partial ROC, AUC	higher > 0.80	Peterson, Papes, & Soberón. 2008.
How well models created with training data predict test occurrence	Omission Rate	lower ≤5%	Anderson, Lew & Peterson, 2003
How complex is the model?	AICc, delta AICc, and AICc weights	lower ≤2	Warren, Glor & Turelli, 2010

ROC = receiver operating characteristic

AUC = area under the curve

AIC = Akaike information criterion

AICc = AIC for a small sample size

Cobos et al. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ.

	Method	Citation
How significant is the model?	Partial ROC, AUC	Peterson, Papes, & Soberón. 2008.

- Partial ROC ranges from 1 2 when E (amount of error) is set to 0.
 - Often, the probability of sampling an AUC is less than or equal to 1 (which results from bootstrapping) is reported. The lower the probability the better.

ROC = receiver operating characteristic

AUC = area under the curve

AIC = Akaike information criterion

AICc = AIC for a small sample size

Cobos et al. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ.

Pictures of the Model

Pictures of the model

The following two pictures show the point-wise mean and standard deviation of the 5 output grids. Other available summary grids are min, max and median.

The following two pictures show the point-wise mean and standard deviation of the 5 models applied to the environmental layers in all. Other available summary grids are min, max and median.

Response Curves

Response curves show how each environmental variable affects the Maxent prediction

Variable Contribution

Variable	Percent contribution	Permutation importance
elev	36.8	5.1
bio_14	21.4	5.1
bio_7	11.9	32.5
bio_18	11.8	15.7
bio_15	6.1	17.4
bio_9	5.9	7.9
bio_3	3.6	12.8
bio_8	2.5	3.4

For this model, we found the largest percent contribution with elevation (36.8%), followed by precipitation of driest month (21.4%) and temperature annual range (11.9%).

Variable Performance

Shows the importance of variables

Step 1: Look at the output

Step 2: Evaluate the models

Step 3: Additional Analysis

