

Mining Association Rules –Efficient and scalable frequent itemset mining methods——

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

Association and Correlations

- Association and Correlations
- Efficient and Scalable Frequent Itemset Mining Methods
- Mining Various Kinds of Association Rules
- From Association Mining to Correlation Analysis
- Constraint-based Association Mining

Scalable Methods for Mining Frequent Patterns

- The downward closure (向下闭) property of frequent patterns
 - ◆ Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB' 94)
 - ◆ Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD′00)
 - ◆ Vertical data format approach (Charm—Zaki & Hsiao @SDM′02)

3

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB' 94, Mannila, et al. @ KDD' 94)
- Method:
 - ◆ Initially, scan DB once to get frequent 1-itemset
 - ◆ Generate length (k+1) candidate itemsets from length k frequent itemsets
 - ◆ Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

Important Details of Apriori

- How to generate candidates?
 - ◆ Step 1: self-joining L_k
 - ♦ Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - ◆ L₃={abc, abd, acd, ace, bcd}
 - ♦ Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - **◆** *C*₄={*abcd*}

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

insert into C_k

 $\mathbf{select}\ p.item_{2^{t}}\ p.item_{2^{t}}\ ...,\ p.item_{k-1^{t}}\ q.item_{k-1}$

from $L_{k-1} p, L_{k-1} q$

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

Step 2: pruning

For all itemsets c in C_k do

For all (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

Challenges of Frequent Pattern Mining

- Challenges
 - ◆ Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

9

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - ◆ To find frequent itemset i₁i₂...i₁₀₀
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{1000} \binom{1}{00} = 2^{100} 1 = 1.27 \times 10^{30}$!
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - ◆ Get all transactions having "abc" : DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

11

Construct FP-tree from a Transaction Database

<i>TID</i>	Items bought (ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	$min_support = 3$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	${a, f, c, e, l, p, m, n}$	$\{f, c, a, m, p\}$	0
	-		10

- Scan DB once, find frequent 1itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- Scan DB again, construct FP-tree

Benefits of the FP-tree Structure

- Completeness (完备性)
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness (紧致性)
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)

13

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - ◆ F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **...**
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form *p'* s conditional pattern base

Conditional pattern bases

<u>item</u>	<u>cond. pattern base</u>	
c	f:3	
a	fc:3	
b	fca:1, f:1, c:1	
m	fca:2, fcab:1	
n	fcam:2. cb:1	

fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

16

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3) $\begin{cases} \{ \} \\ f:3 \end{cases}$ cam-conditional FP-tree

17

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional
 FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

19

FP-growth Algorithm

FP tree construct procedure:

- Scan the transaction database D once, construct the F-list
- Scan the transaction database D again,
- Construct the FP_tree using Insert_tree()
- procedure FP_growth(Tree, α)
 - (1) if Tree contains a single path P then
 - (2) for each combination (eta) of the nodes in the path P
 - (3) generate pattern $\beta \cup \alpha$ with support count = minimum support count of nodes in β ;
 - (4) else for each a; in the header of Tree {
 - (5) generate pattern = $\beta \bigcup a_i$ with support count = a_i .support;
 - (6) construct β 's conditional pattern base and then β 's conditional FP tree *Tree*;}
 - (7) if $Tree_{\beta} \neq \phi$; then
 - (8) call FP_growth(Tree_{β} ; β);

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

