SDP Formulation of the Fermat-Toricelli Problem with Weights Hon Leung Lee

We describe here the idea of SDP formulation in [1]. Our problem (d = 2 case) is to minimize over $x \in \mathbb{R}^2$, $F(x) = \sum_{j=1}^n \eta_j ||x - a_j||$ where all η_j is positive and $a_j \in \mathbb{R}^2$. Let x and a_j have coordinates (x, y) and (a_j, b_j) respectively (some abuse of notation here). Then the objective function becomes

$$F(x,y) = \sum_{j=1}^{n} \eta_j \sqrt{(x - a_j)^2 + (y - b_j)^2}.$$

Let the minimization problem be (\mathcal{P}) .

Introduce slack variables $d_j = \sqrt{(x-a_j)^2 + (y-b_j)^2}$ for all j. Then $d_j^2 = (x-a_j)^2 + (y-b_j)^2$. One can use this to show that:

Theorem 1. The problem (P) is equivalent to the semidefinite program (SDP) (P_2) :

minimize
$$F(x) = \sum_{j=1}^{n} \eta_j d_j$$
 subject to $\begin{bmatrix} d_j + x - a_j & y - b_j \\ y - b_j & d_j - x + a_j \end{bmatrix} \succeq 0$ for all $j = 1, \dots, n$

(Here $A \succeq 0$ means the matrix A is positive semidefinite; Notice the decision variables of (\mathcal{P}_2) are d_1, \dots, d_n, x, y).

Proof.

We remark that for two square matrices A and B, $A \oplus B$ is formed by stacking A and B on the diagonal:

$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

The problem (\mathcal{P}_2) is an SDP because the constraints of the problem is equivalent to

$$\bigoplus_{j=1}^{n} \begin{bmatrix} d_j + x - a_j & y - b_j \\ y - b_j & d_j - x + a_j \end{bmatrix} \succeq 0.$$

This condition is equivalent to the linear matrix inequality (LMI)

$$\sum_{j=1}^{n} d_j B_j + xC + yD \succeq 0$$

where B_j, C, D are $2n \times 2n$ matrices of which definitions are obvious.

References

[1] NIE, J., PARRILO, P. A. STURMFELS, B.: Semidefinite Representation of the k-Ellipse. In Algorithms in Algebraic Geometry. Springer New York (2008), 117-132.