MATH457 - Algebra 4 Representation Theory; Galois Theory

Based on lectures from Winter 2025 by Prof. Henri Darmon. Notes by Louis Meunier

Contents

1 Representation Theory	2
1.1 Introduction	
1.2 Maschke's Theorem	
1.3 Characters	
1.4 Fourier Analysis on Finite Groups	
1.4.1 Application to Computing Particular Infinite Series	

§1 Representation Theory

§1.1 Introduction

Definition 1.1 (Linear Representation): A *linear representation* of a group *G* is a vector space *V* over a field \mathbb{F} equipped with a map $G \times V \to V$ that makes *V* a *G*-set in such a way that for each $g \in G$, the map $v \mapsto gv$ is a linear homomorphism of *V*.

This induces a homomorphism

$$\rho: G \to \operatorname{Aut}_{\mathbb{F}}(V),$$

or, in particular, when $n = \dim_{\mathbb{F}} V < \infty$, a homomorphism

$$\rho: G \to \mathrm{GL}_n(\mathbb{F}).$$

Alternatively, a linear representation V can be viewed as a module over the group ring $\mathbb{F}[G] = \left\{ \sum_{g \in G} : \lambda_g g : \lambda_g \in \mathbb{F} \right\} \text{ (where we require all but finitely many scalars } \lambda_g \text{ to be zero)}.$

 \hookrightarrow **Definition 1.2** (Irreducible Representation): A linear representation *V* of a group *G* is called *irreducible* if there exists no proper, nontrivial *subspace W* \subseteq *V* such that *W* is *G*-stable.

⊗ Example 1.1:

1. Consider $G = \mathbb{Z}/2 = \{1, \tau\}$. If V a linear representation of G and $\rho : G \to \operatorname{Aut}(V)$. Then, V uniquely determined by $\rho(\tau)$. Let p(x) be the minimal polynomial of $\rho(\tau)$. Then, $p(x) \mid x^2 - 1$. Suppose \mathbb{F} is a field in which $2 \neq 0$. Then, $p(x) \mid (x - 1)(x + 1)$ and so p(x) has either 1, -1, or both as eigenvalues and thus we may write

$$V = V_+ \oplus V_-$$

where $V_{\pm} := \{v \mid \tau v = \pm v\}$. Hence, V is irreducible only if one of V_+, V_- all of V and the other is trivial, or in other words τ acts only as multiplication by 1 or -1.

2. Let $G = \{g_1, ..., g_N\}$ be a finite abelian group, and suppose \mathbb{F} an algebraically closed field of characteristic 0 (such as \mathbb{C}). Let $\rho: G \to \operatorname{Aut}(V)$ and denote $T_j := \rho(g_j)$ for j = 1, ..., N. Then, $\{T_1, ..., T_N\}$ is a set of mutually commuting linear transformations. Then, there exists a simultaneous eigenvector, say v, for $\{T_1, ..., T_N\}$, and so span (v) a G-stable subspace of V. Thus, if V irreducible, it must be that $\dim_{\mathbb{F}} V = 1$.

PROOF. Let $\rho: G \to \operatorname{Aut}(V)$, label $G = \{g_1, ..., g_N\}$ and put $T_j := \rho(g_j)$ for j = 1, ..., N. Then, $\{T_1, ..., T_N\}$ a family of mutually commuting linear transformations on V. Then,

1.1 Introduction 2

there is a simultaneous eigenvector v for $\{T_1,...,T_N\}$ and thus span(v) is $T_1,...,T_N$ -stable and so V = span(v).

Lemma 1.1: Let *V* be a finite dimensional vector space over \mathbb{C} and let $T_1, ..., T_N : V \to V$ be a family of mutually commuting linear automorphisms on *V*. Then, there is a simultaneous eigenvector for $T_1, ..., T_N$.

 \hookrightarrow Proposition 1.1: Let \mathbb{F} a field where 2 ≠ 0 and V an irreducible representation of S_3 . Then, there are three distinct (i.e., up to homomorphism) possibilities for V.

PROOF. Let $\rho: G \to \operatorname{Aut}(V)$ and let $T = \rho((23))$. Then, notice that $p_T(x) \mid (x^2 - 1)$ so T has eigenvalues in $\{-1, 1\}$.

If the only eigenvalue of T is -1, we claim that V one-dimensional.

If *T* has 1 as an eigenvalue.

 \hookrightarrow Proposition 1.2: D_8 has a unique faithful irreducible representation, of dimension 2 over a field F in which 0 ≠ 2.

PROOF. Write $G=D_8=\left\{1,r,r^2,r^3,v,h,d_1,d_2\right\}$ as standard. Let ρ be our irreducible, faithful representation and let $T=\rho(r^2)$. Then, $p_T(x)\mid x^2-1=(x-1)(x+1)$ and so $V=V_+\oplus V_-$, the respective eigenspaces for $\lambda=+1,-1$ respectively for T. Then, notice that since r^2 in the center of G, both V_+ and V_- are preserved by the action of G, hence one must be trivial and the other the entirety of V. V can't equal V_+ , else T=I on all of V hence ρ not faithful so $V=V_-$.

Next, it must be that $\rho(h)$ has both eigenvalues 1 and -1. Let $v_1 \in V$ be such that $hv_1 = v_1$ and $v_2 = rv_1$. We claim that $W \coloneqq \operatorname{span} \{v_1, v_2\}$, namely V = W 2-dimensional.

We simply check each element. $rv_1 = v_2$ and $rv_2 = r^2v_1 = -v_1$ which are both in W hence r and thus $\langle r \rangle$ fixes W. Next, $hv_1 = v_1$ and $vv_2 = vrv_1 = rhv_1 = rv_1 = v_2$ (since $rhr^{-1} = v$) and so $hv_2 = -v_2$ and $vv_1 = -v_1$ and so W G-stable. Finally, d_1 and d_2 are just products of these elements and so W G-stable.

 \hookrightarrow **Definition 1.3** (Isomorphism of Representations): Given a group *G* and two representations ρ_i : *G* → Aut_{\mathbb{F}}(V_i), i=1,2 an isomorphism of representations is a vector space isomorphism $\varphi: V_1 \to V_2$ that respects the group action, namely

$$\varphi(gv)=g\varphi(v)$$

for every $g \in G, v \in V_1$.

§1.2 Maschke's Theorem

1.2 Maschke's Theorem

→Theorem 1.2 (Maschke's): Any representation of a finite group G over \mathbb{C} can be written as a direct sum of irreducible representations, i.e.

$$V = V_1 \oplus \cdots \oplus V_t$$

where V_i irreducible.

Remark 1.1: $|G| < \infty$ essential. For instance, consider $G = (\mathbb{Z}, +)$ and 2-dimensional representation given by $n \mapsto \binom{1}{0} \binom{n}{1}$. Then, $n \cdot e_1 = e_1$ and $n \cdot e_2 = ne_1 + e_2$. We have that $\mathbb{C}e_1$ irreducible then. But if $v = ae_1 + e_2 \in W := V \setminus \mathbb{C}e_1$, then $Gv = (a+1)e_1 + e_2$ so $Gv - v = e_1 \in W$, contradiction.

Remark 1.2: $|\mathbb{C}|$ essential. Suppose $F = \mathbb{Z}/3\mathbb{Z}$ and $V = Fe_1 \oplus Fe_2 \oplus Fe_3$, and $G = S_3$ acts on V by permuting the basis vectors e_i . Then notice that $F(e_1 + e_2 + e_3)$ an irreducible subspace in V. Let W = F(w) with $w := ae_1 + be_2 + ce_3$ be any other G-stable subspace. Then, by applying (123) repeatedly to w and adding the result, we find that $(a + b + c)(e_1 + e_2 + e_3) \in W$. Similarly, by applying (12), (23), (13) to w, we find $(a - b)(e_1 - e_2)$, $(b - c)(e_2 - e_3)$, $(a - c)(e_1 - e_3)$ all in W. It must be that at least one of a - b, a - c, b - c nonzero, else we'd have $w \in F(e_1 + e_2 + e_3)$. Assume wlog $a - b \neq 0$. Then, we may apply $(a - b)^{-1}$ and find $e_1 - e_2 \in W$. By applying (23), (13) to this vector and scaling, we find further $e_2 - e_3$ and $e_1 - e_3 \in W$. But then,

$$2(e_1 - e_2) + 2(e_1 - e_3) = e_1 + e_2 + e_3 \in W$$
,

so $F(e_1 + e_2 + e_3)$ a subspace of W, a contradiction.

Proposition 1.3: Let *V* be a representation of |G| < ∞ over \mathbb{C} and let $W \subseteq V$ a sub-representation. Then, *W* has a *G*-stable complement W', such that $V = W \oplus W'$.

Proof. Denote by ρ the homomorphism induced by the representation. Let $W_{0'}$ be any complementary subspace of W and let

$$\pi:V\to W$$

be a projection onto W along $W_{0'}$, i.e. $\pi^2 = \pi$, $\pi(V) = W$, and $\ker(\pi) = W_{0'}$. Let us "replace" π by the "average"

$$\tilde{\pi} \coloneqq \frac{1}{\#G} \sum_{g \in G} \rho(g) \pi \rho(g)^{-1}.$$

Then the following hold:

- (1) $\tilde{\pi}$ *G*-equivariant, that is $\tilde{\pi}(gv) = g\tilde{\pi}(v)$ for every $g \in G, v \in V$.
- (2) $\tilde{\pi}$ a projection onto W.

1.2 Maschke's Theorem 4

Let $W' = \ker(\tilde{\pi})$. Then, W' *G*-stable, and $V = W \oplus W'$.

We present an alternative proof to the previous proposition by appealing to the existence of a certain inner product on complex representations of finite groups.

Definition 1.4: Given a vector space V over \mathbb{C} , a *Hermitian pairing/inner product* is a hermitian-bilinear map $V \times V \to \mathbb{C}$, $(v, w) \mapsto \langle v, w \rangle$ such that

- linear in the first coordinate;
- conjugate-linear in the second coordinate;
- $\langle v, v \rangle \in \mathbb{R}^{\geq 0}$ and equal to zero iff v = 0.

Theorem 1.3: Let *V* be a finite dimensional complex representation of a finite group *G*. Then, there is a hermitian inner product $\langle \cdot, \cdot \rangle$ such that $\langle gv, gw \rangle = \langle v, w \rangle$ for every $g \in G$ and $v, w \in V$.

PROOF. Let $\langle \cdot, \cdot \rangle_0$ be any inner product on V (which exists by defining $\langle e_i, e_j \rangle_0 = \delta_i^j$ and extending by conjugate linearity). We apply "averaging":

$$\langle v, w \rangle \coloneqq \frac{1}{\#G} \sum_{g \in G} \langle gv, gw \rangle.$$

Then, one can check that $\langle \cdot, \cdot \rangle$ is hermitian linear, positive, and in particular *G*-equivariant.

From this, the previous proposition follows quickly by taking $W' = W^{\perp}$, the orthogonal complement to W with respect to the G-invariant inner product that the previous theorem provides.

From this proposition, Maschke's follows by repeatedly applying this logic. Since at each stage V is split in two, eventually the dimension of the resulting dimensions will become zero since V finite dimensional. Hence, the remaining vector spaces $V_1, ..., V_t$ left will necessarily be irreducible, since if they weren't, we could apply the proposition further.

 \hookrightarrow **Theorem 1.4** (Schur's Lemma): Let V, W be irreducible representations of a group G. Then,

$$\operatorname{Hom}_G(V,W) = \begin{cases} 0 \text{ if } V \not\cong W \\ \mathbb{C} \text{ if } V \cong W' \end{cases}$$

where $\operatorname{Hom}_G(V, W) = \{T : V \to W \mid T \text{ linear and } G - \text{ equivariant}\}.$

PROOF. Suppose $V \not\cong W$ and let $T \in \operatorname{Hom}_G(V,W)$. Then, notice that $\ker(T)$ a subrepresentation of V (a subspace that is a representation in its own right), but by assumption V irreducible hence either $\ker(T) = V$ or $\{0\}$.

1.2 Maschke's Theorem 5

If $\ker(T) = V$, then T trivial, and if $\ker(T) = \{0\}$, then this implies $T: V \to \operatorname{im}(T) \subset W$ a representation isomorphism, namely $\operatorname{im}(T)$ a irreducible subrepresentation of W. This implies that, since W irreducible, $\operatorname{im}(T) = W$, contradicting the original assumption.

Suppose now $V \cong W$. Let $T \in \operatorname{Hom}_G(V, W) = \operatorname{End}_G(V)$. Since $\mathbb C$ algebraically closed, T has an eigenvalue, λ . Then, notice that $T - \lambda I \in \operatorname{End}_G(V)$ and so $\ker(T - \lambda I) \subset V$ a, necessarily trivial because V irreducible, subrepresentation of V. Hence, $T - \lambda I = 0 \Rightarrow T = \lambda I$ on V. It follows that $\operatorname{Hom}_G(V, W)$ a one-dimensional vector space over $\mathbb C$, so namely $\mathbb C$ itself.

Corollary 1.1: Given a general representation $V = \bigoplus_{j=1}^{t} V_{j}^{m_{j}}$,

$$m_j = \dim_{\mathbb{C}} \operatorname{Hom}_G(V_j, V).$$

 \hookrightarrow **Definition 1.5** (Trace): The trace of an endomorphism $T:V\to V$ is the trace of any matrix defining T. Since the trace is conjugation-invariant, this is well-defined regardless of basis.

 \hookrightarrow Proposition 1.4: Let *W* ⊆ *V* a subspace and $\pi : V \to W$ a projection. Then, $\operatorname{tr}(\pi) = \dim(W)$.

 \hookrightarrow Theorem 1.5: If ρ : G → Aut_{\mathbb{F}}(V) a complex representation of G, then

$$\dim(V^G) = \frac{1}{\#G} \sum_{g \in G} \operatorname{tr}(\rho(g)),$$

where $V^G = \{v \in V : gv = v \ \forall \ g \in G\}.$

PROOF. Let $\pi = \frac{1}{\#g} \sum_{g \in G} \rho(g)$. Then, notice that $\operatorname{im}(\pi) = V^G$ and $\pi^2 = \pi$ hence a projection from V onto V^G . Using the previous proposition and linearity of the trace completes the proof.

§1.3 Characters

 \hookrightarrow **Definition 1.6**: Let dim(V) < ∞ and G a group. The *character* of V is the function

$$\chi_V: G \to \mathbb{C}, \qquad \chi_V(g) \coloneqq \operatorname{tr}(\rho(g)).$$

→ Proposition 1.5: Characters are class functions, namely constant on conjugacy classes.

1.3 Characters 6

Theorem 1.6: If V_1 , V_2 are 2 representations of G, then $V_1 \cong V_2 \Leftrightarrow \chi_{V_1} = \chi_{V_2}$.

→Proposition 1.6: Given two representations V, W of G, there is a natural action of G on Hom(V, W) given by $g * T = g \circ T \circ g^{-1}$. Then,

$$\text{Hom}(V, W)^G = \{T : V \to W \mid g * T = T\},\$$

so

$$\operatorname{Hom}(V, W)^G = \operatorname{Hom}_G(V, W).$$

→Proposition 1.7: Suppose $V = V_1^{m_1} \oplus \cdots \oplus V_t^{m_t}$ a representation of G written in irreducible form. Then,

$$\operatorname{Hom}_G(V_j, V) = \mathbb{C}_j^m.$$

PROOF. "Hom is linear with respect to \oplus ".

→Proposition 1.8: If V, W are two representations, then so is $V \oplus W$ with point-wise action, and $\chi_{V \oplus W} = \chi_V + \chi_W$.

→Theorem 1.7: $\chi_{\text{Hom}(V,W)} = \overline{\chi_V} \chi_W$.

PROOF. Use an eigenbasis for V, W respectively to define a corresponding eigenbasis for Hom(V, W) such as to write any $g \in G$ as a diagonal matrix. The entries will contain an expression depending solely on the eigenvalues for g acting on V, W.

Theorem 1.8 (Orthogonality of Irreducible Group Characters): Suppose $V_1, ..., V_t$ is a list of irreducible representations of G and $\chi_1, ..., \chi_t$ are their corresponding characters. Then, the χ_j 's naturally live in the space $L^2(G) \simeq \mathbb{C}^{\#G}$, which we can equip with the inner product

$$\langle f_1, f_2 \rangle : \frac{1}{\#G} \sum_{g \in G} \overline{f_1(g)} f_2(g).$$

Then,

$$\langle \chi_i, \chi_j \rangle = \delta_i^j.$$

Proof.

1.3 Characters 7

$$\langle \chi_{i}, \chi_{j} \rangle = \frac{1}{\#G} \sum_{g \in G} \overline{\chi_{i}(g)} \chi_{j}(g)$$

$$= \frac{1}{\#G} \sum_{g \in G} \chi_{\operatorname{Hom}(V_{i}, V_{j})}(g)$$

$$= \dim_{\mathbb{C}} \left(\operatorname{Hom} \left(V_{i}, V_{j} \right)^{G} \right)$$

$$= \begin{cases} \dim_{\mathbb{C}}(\mathbb{C}) i = j \\ \dim_{\mathbb{C}}(0) i \neq j \end{cases} = \delta_{i}^{j}.$$

Corollary 1.2: χ_1 , ..., χ_t orthonormal vectors in $L^2(G)$.

Corollary 1.3: $\chi_1, ..., \chi_t$ linearly independent, so in particular $t \leq \#G = \dim L^2(G)$.

 \hookrightarrow Corollary 1.4: $t \le h(G) := \#$ conjugacy classes.

PROOF. We have that $L_c^2(G) \subseteq L^2(G)$, where $L_c^2(G)$ is the space of \mathbb{C} -valued functions on G that are constant on conjugacy classes. It's easy to see that $\dim_{\mathbb{C}}\left(L_c^2(G)\right) = h(G)$. Then, since $\chi_1, ..., \chi_t$ are class functions, the live naturally in $L_c^2(G)$ and hence since they are linearly independent, there are at most h(G) of them.

Remark 1.3: We'll show this inequality is actually equality soon.

Theorem 1.9 (Characterization of Representation by Characters): If *V*, *W* are two complex representations, they are isomorphic as representations $\Leftrightarrow \chi_V = \chi_W$.

PROOF. By Maschke's, $V = V_1^{m_1} \oplus \cdots \oplus V_t^{m_t}$ and hence $\chi_V = m_1 \chi_1 + \cdots + m_t \chi_t$. By orthogonality, $m_j = \langle \chi_V, \chi_j \rangle$ for each j = 1, ..., t, hence V completely determined by χ_V .

→ Definition 1.7 (Regular Representation): Define

$$V_{\text{reg}} := \mathbb{C}[G]$$
 with left mult.
 $\simeq L^2(G)$ with $(g * f)(x) := f(g^{-1}x)$,

the "regular representation" of G.

1.3 Characters 8

$$Arr Proposition 1.9: \chi_{reg}(g) = \begin{cases} \#G & \text{if } g = id \\ 0 & \text{else} \end{cases}$$

PROOF. If $g = \mathrm{id}$, then g simply acts as the identity on V_{reg} and so has trace equal to the dimension of V_{reg} , which has as basis just the elements of G hence dimension equal to #G. If $g \neq \mathrm{id}$, then g cannot fix any basis vector, i.e. any other element $h \in G$, since $gh = h \Leftrightarrow g = \mathrm{id}$. Hence, g permutes every element in G with no fixed points, hence its matrix representation in the standard basis would have no 1s on the diagonal hence trace equal to zero.

Theorem 1.10: Every irreducible representation of V, V_j , appears in V_{reg} at least once, specifically, with multiplicity dim_ℂ(V_i). Specifically,

$$V_{\text{reg}} = V_1^{d_1} \oplus \cdots \oplus V_t^{d_t},$$

where $d_j := \dim_{\mathbb{C}}(V_j)$.

In particular,

$$\#G = d_1^2 + \dots + d_t^2.$$

PROOF. Write $V_{\text{reg}} = V_1^{m_1} \oplus \cdots \oplus V_t^{m_t}$. We'll show $m_j = d_j$ for each j = 1, ..., t. We find $m_j = \langle \chi_{\text{reg}}, \chi_j \rangle$ $= \frac{1}{\#G} \sum_{g \in G} \overline{\chi_{\text{reg}}(g)} \chi_j(g)$ $= \frac{1}{\#G} \#G \chi_j(\text{id}) = \chi_j(\text{id}) = d_j,$

since the trace of the identity element acting on a vector space is always the dimension of the space. In particular, then

$$\begin{split} \#G &= \dim_{\mathbb{C}} \left(V_{\mathrm{reg}} \right) = \dim_{\mathbb{C}} \left(V_1^{d_1} \oplus \cdots \oplus V_t^{d_t} \right) \\ &= d_1 \cdot \dim_{\mathbb{C}} (V_1) + \cdots + d_t \cdot \dim_{\mathbb{C}} (V_t) \\ &= d_1^2 + \cdots + d_t^2. \end{split}$$

\hookrightarrow Theorem 1.11: t = h(G).

PROOF. Remark that $\mathbb{C}[G]$ has a natural ring structure, combining multiplication of coefficients in \mathbb{C} and internal multiplication in G. Define a group homomorphism

$$\underline{\rho} = (\rho_1, ..., \rho_t) : G \to \operatorname{Aut}(V_1) \times \cdots \times \operatorname{Aut}(V_t),$$

1.3 Characters

9

collecting all the irreducible representation homomorphisms into a single vector. Then, this extends naturally by linearity to a ring homomorphism

$$\rho: \mathbb{C}[G] \to \operatorname{End}_{\mathbb{C}}(V_1) \oplus \cdots \oplus \operatorname{End}_{\mathbb{C}}(V_t).$$

By picking bases for each $\operatorname{End}_{\mathbb{C}}(V_j)$, we find that $\dim_{\mathbb{C}}(\operatorname{End}_{\mathbb{C}}(V_j)) = d_j^2$ hence $\dim_{\mathbb{C}}(\operatorname{End}_{\mathbb{C}}(V_1) \oplus \cdots \oplus \operatorname{End}_{\mathbb{C}}(V_t)) = d_1^2 + \cdots + d_t^2 = \#G$, as we saw in the previous theorem. On the other hand, $\dim_{\mathbb{C}}(\mathbb{C}[G]) = \#G$ hence the dimensions of the two sides are equal. We claim that $\underline{\rho}$ an isomorphism of rings. By dimensionality as \mathbb{C} -vector spaces, it suffices to show $\underline{\rho}$ injective.

Let $\theta \in \ker(\underline{\rho})$. Then, $\rho_j(\theta) = 0$ for each j = 1, ..., t, i.e. θ acts as 0 on each of the irreducibles $V_1, ..., V_t$. Applying Maschke's, it follows that θ must act as zero on every representation, in particular on $\mathbb{C}[G]$. Then, for every $\sum \beta_g g \in \mathbb{C}[G]$, $\theta \cdot \left(\sum \beta_g g\right) = 0$ so in particular $\theta \cdot 1 = 0$ hence $\theta = 0$ in $\mathbb{C}[G]$. Thus, $\underline{\rho}$ has trivial kernel as we wanted to show and thus $\mathbb{C}[G]$ and $\operatorname{End}_{\mathbb{C}}(V_1) \oplus \cdots \oplus \operatorname{End}_{\mathbb{C}}(V_t)$ are isomorphic as rings (moreover, as \mathbb{C} -algebras).

We look now at the centers of the two rings, since they are (in general) noncommutative. Namely,

$$Z(\mathbb{C}[G]) = \Bigl\{\sum \lambda_g g \mid \Bigl(\sum \lambda_g g\Bigr)\theta = \theta\Bigl(\sum \lambda_g g\Bigr) \, \forall \, \theta \in \mathbb{C}[G]\Bigr\}.$$

Since multiplication in $\mathbb C$ is commutative and "factors through" internal multiplication, it follows that $\sum \lambda_g gnZ(\mathbb C[G])$ iff it commutes with every group element, i.e.

$$\begin{split} \left(\sum \lambda_g g\right) h &= h \Big(\sum \lambda_g g\Big) \Leftrightarrow \sum_g \left(\lambda_g h^{-1} g h\right) = \sum_g \lambda_g g \\ &\Leftrightarrow \sum_g \lambda_{h^{-1} g h} g = \sum_g \lambda_g g \\ &\Leftrightarrow \lambda_{h^{-1} g h} = \lambda_g \ \forall \ g \in G. \end{split}$$

Hence, $\sum \lambda_g g \in Z(\mathbb{C}[G])$ iff $\lambda_{h^{-1}gh} = \lambda_g$ for every $g,h \in G$. It follows, then, that the induced map $g \mapsto \lambda_g$ a class function, and thus $\dim_{\mathbb{C}}(Z(\mathbb{C}[G])) = h(G)$.

On the other hand, $\dim_{\mathbb{C}} \left(Z \left(\operatorname{End}_{\mathbb{C}} \left(V_j \right) \right) \right) = 1$ (by representing as matrices, for instance, one can see that only scalar matrices will commute with all other matrices), hence $\dim_{\mathbb{C}} (Z(\operatorname{End}_{\mathbb{C}} (V_1) \oplus \cdots \oplus \operatorname{End}_{\mathbb{C}} (V_t))) = t$. $\underline{\rho}$ naturally restricts to an isomorphism of these centers, hence we conclude justly t = h(G).

§1.4 Fourier Analysis on Finite Groups

 \hookrightarrow **Definition 1.8**: For a finite group *G*, let

$$L^2(G) = \{ \text{square integrable functions } G \to \mathbb{C} \},$$

equipped with the L^2 -norm, $||f||^2 = \frac{1}{\#G} \sum_{g \in G} |f(g)|^2$. This is a vector space isomorphic to $\mathbb{C}^{\#G}$. We make the space a Hilbert space by defining

$$\langle f_1, f_2 \rangle = \frac{1}{\#G} \sum_{g \in G} \overline{f_1(g)} f_2(g).$$

 \hookrightarrow Definition 1.9: Denote by $\hat{G} = \{\chi_1, ..., \chi_N\}$ the set of irreducible characters of G. Then, \hat{G} an orthonormal family of functions in $L^2(G)$.

We suppose for now G abelian. In this case, $\#\hat{G} = \#G$ so \hat{G} is an orthonormal basis for $L^2(G)$ (comparing dimensions).

 \hookrightarrow **Definition 1.10**: Given $f \in L^2(G)$, the function $\hat{f} : \hat{G} \to \mathbb{C}$ is defined by

$$\widehat{f}(\chi) = \frac{1}{\#G} \sum_{g \in G} \overline{\chi}(g) f(g),$$

called the *Fourier transform* of *f* over *G*. Then,

$$f = \sum_{\chi \in \hat{G}} \hat{f}(\chi) \chi,$$

is called the Fourier inversion formula.

⊗ Example 1.2: Consider $G = \mathbb{R}/\mathbb{Z}$. $L^2(G)$ space of \mathbb{C} -valued periodic functions on \mathbb{R} which are square integrable on [0,1]. Then, \hat{G} abstractly isomorphic to \mathbb{Z} . Write $\hat{G} = \{\chi_n \mid n \in \mathbb{Z}\}$. Then, remark that

$$\chi_n: \mathbb{R}/\mathbb{Z} \to \mathbb{C}^{\times}, \qquad \chi_n(x) = e^{2\pi i n x}$$

gives the characteristic function for any integer n. More precisely, its not hard to see that the map $\mathbb{R} \to \mathbb{C}^{\times}$, $x \mapsto e^{2\pi i n x}$ factors through (is constant on integer multiples) \mathbb{Z} .

To speak about orthogonality of members of \hat{G} , we must define a norm. We can identity \mathbb{R}/\mathbb{Z} with [0,1], and so write

$$\langle f_1, f_2 \rangle := \int_0^1 \overline{f_1(x)} f_2(x) \, \mathrm{d}x.$$

Then, its not hard to see

$$\langle \chi_n, \chi_m \rangle = \int_0^1 e^{-2\pi i (m-n)x} \, \mathrm{d}x = \delta_m^n.$$

Example 1.3: Let $G = \mathbb{Z}/N\mathbb{Z}$ under addition. Note that G then a subgroup of \mathbb{R}/\mathbb{Z} , and in particular,

$$\hat{G} = \{\chi_0, \chi_1, ..., \chi_{N-1}\}, \qquad \chi_i(k) := e^{2\pi i j k/N}.$$

Then, one notices

$$\chi_{j_1} \cdot \chi_{j_2} = \chi_{j_1 + j_2},$$

so there is indeed a natural group structure on \hat{G} . Then, the Fourier transform in this case gives, for $f \in L^2(\mathbb{Z}/N\mathbb{Z})$,

$$\hat{f}(n) = \frac{1}{N} \sum_{k=0}^{N-1} e^{-2\pi i n k/N} f(k).$$

1.4.1 Application to Computing Particular Infinite Series

We consider an application of the theory we've developed on $G = \mathbb{Z}/N\mathbb{Z}$ to study particular infinite summations. Its well know that the harmonic series $1 + \frac{1}{2} + \frac{1}{3} + \cdots$ diverges. A natural extension is to study modified such series, for instance $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ and to ask if this series converges, and if it does, to what?

To approach this question, we more generally consider, for $f \in L^2(\mathbb{Z}/N\mathbb{Z})$ (i.e. a complex-valued N-periodic function defined on the integers), the series

$$S(f) := \sum_{n=1}^{\infty} \frac{f(n)}{n},$$

when the summation exists. Remark then that $f \mapsto S(f)$ is linear. So, it suffices to consider the value of S(f) on a basis of $L^2(\mathbb{Z}/N\mathbb{Z})$, which we've derived in the previous example, namely $\hat{G} = \{\chi_j : j = 0, ..., N-1\}$. We can explicitly compute $S(\chi_j)$:

$$S(\chi_j) = \sum_{n=1}^{\infty} \frac{\chi_j(n)}{n}$$
$$= \sum_{n=1}^{\infty} \frac{x^n}{n}, \qquad x := e^{\frac{2\pi i j}{N}}$$
$$= -\log(1-x),$$

where the final sequence converges on the unit circle in the complex plane centered at the 1 + 0i.

In particular, if j = 0, $S(\chi_0)$ diverges. Otherwise, each χ_j maps onto the roots of unity hence the convergence is well-defined. In particular, then, we find

$$S(\chi_j) = \begin{cases} -\log\left(1 - e^{2\pi i \frac{j}{N}}\right) & \text{if } j \neq 0, \\ 0 & \text{else} \end{cases}$$

Now, for a general function $f \in L^2(\mathbb{Z}/N\mathbb{Z})$, we find by the Fourier inversion formula

$$S(f) = S(\hat{f}(0)\chi_0 + \dots + \hat{f}(N-1)\chi_{N-1}),$$

which certainly diverges if $\hat{f}(0) \neq 0$. Otherwise, we find by linearity

$$S(f) = \sum_{i=1}^{N-1} \hat{f}(j) \left(-\log(1-x)\right).$$

So, returning to our original example, we can define $f \in L^2(\mathbb{Z}/4\mathbb{Z})$ by $f(n) = \begin{cases} 0 & \text{if } n \text{ even} \\ 1 & \text{if } n = 1 + 4k. \end{cases}$ Then, we find

$$\begin{split} 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots &= S(f) \\ &= \frac{1}{2i} (S(\chi_1) - S(\chi_3)) \\ &= \frac{1}{2i} (-\log(1-i) + \log(1+i)) \\ &= \frac{1}{2i} \Big(-\log\Big(\sqrt{2}\Big) + \frac{\pi i}{4} + \log\Big(\sqrt{2}\Big) + \frac{\pi i}{4} \Big) = \frac{\pi}{4}. \end{split}$$