Analogový přeladitelný filtr se zesilovači OTA

Klára Pacalová

29. dubna 2019

1 Typy filtrů a jejich aplikace

Filtry jsou určeny k potlačení nebo zvýraznění určité části kmitočtového spektra signálu. Jsou to obvody s kmitočtově závislou přenosovou funkcí (pro napěťový přenos $H_s(j\omega) = \frac{U_{out}(j\omega)}{U_{in}(j\omega)}$). Základní rozdělení je na dolní propust (low-pass - LP), horní propust(high-pass - HP), pásmovou propust (band-pass - BP) a pásmovou zádrž (band-stop - BS).

Dolní propust nepropouští na výstup vstupní signál nad frekvencí f_s , signál v propustném pásmu zůstává beze změny nebo zesílený. Základní pasivní dvojbranné zapojení je ke vstupu sériově zapojený rezistor a k této větvi paralelně kapacitor. Tento RC člen se zvyšující se frekvencí snižuje svou vstupní impedanci. Přenosová funkce má nulu v nekonečnu a pól v levé polorovině s-roviny. Ideální integrátor má pól v nule.

Horní propust nepropouští signály o nízkých frekvencích. Nejjednodušší zapojení je RC člen, kdy kapacitor je zapojen sériově se zdrojem a k této větvi paralelně rezistor. Pro toto zapojení reaktance kapacitoru se zvyšující se frekvencí klesá. Přenosová funkce ideálního derivátoru má pól v nekonečnu a nulu v nule. Horní propust má nulu v nule a pól v levé polorovině s-roviny.

Pásmová propust propouští pásmo určené dvěma kmitočty. Pasivní pásmové propusti nedosahují účinnosti větší než 1. Jsou složeny z integračního článku (RC - dolní propust) a derivačního článku (CR - horní propust) Pásmová zádrž nepropouští kmitočty pásma definovaného dvěma kmitočty. Pasivní zapojení je složeno ze dvou rezistorů a kapacitorů. Má vždy ztrátový přenos.

Obrázek 1: Toleranční schéma pro a) dolní propust (LP), b) horní propust (HP), c) pásmovou propust (BP) a d) pásmovou zádrž (BS)[1]

Filtry se používají k redukci nežádoucích frekvencí např. pro efektivní reprodukci zvuku reproduktory, k redkci okolního rušení např. vysílače blokují harmonické frekvence, které interferují, jako filtry v obvodech rekonstrukce signálů u D/A převodníků, nebo jako anti-aliasing filtry např předvzorkování u A/D převodníku).

Obecná přenosová funkce filtru typu dolní propust je

$$H(j\omega) = \frac{H_0}{\sum_{i=1}^{n} 1 + a_i s + b_i s^2},\tag{1}$$

kde n je řád filtru.

Obecná přenosová funkce filtru typu horní propust je

$$H(j\omega) = \frac{H_{\infty}}{\sum_{i=1}^{n} 1 + \frac{a_i}{s} + \frac{b_i}{s^2}},$$
 (2)

kde n je řád filtru.

Podle rozložení nul a pólů jmenovatele rozlišujeme různé aproximace. Koeficienty filtru a_i, b_i určují zesílení v propustném pásmu. Činitel jakosti je definován jako $Q = \frac{\sqrt{b_i}}{a_i}$. Čím větší Q je obdrženo, tím spíš bude filtr nestabilní.

Obrázek 2: Typy aproximací (LP)[2]

1.1 Butterworthova aproximace

Butterworthova má maximálně plochou amplitudovou charakteristiku v propustném pásmu. Frekvenční charakteristika má sklon daný počtem pólů a pro její posouzení je užíváno skupinové zpoždění (derivace fáze podle frekvence). Pro Butterworthovu aproximaci je skupinové zpoždění nezvlněné v propustném pásmu. Přechodová charakteristika má mírný překmit, zvyšující se s řádem filtru. Zesílení $G(\omega)$ je kmitočtově závislé a odpovídá absolutní hodnotě přenosové funkce $H(j\omega)$.

$$G(\omega) = |H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 \frac{\omega}{\omega_c}^{2n}}},$$

kde ϵ je poměrné zvlnění kmitočtové charakteristiky v propustném pásmu (faktor zvlnění), n je řád filtru a ω_c mezní frekvence. Mezní frekvence je definována jako frekvence, která nastává při útlumu -3 dB. Pro $\omega_c = 1$ je faktor zvlnění $\epsilon = 1$.

1.2 Čebyševova aproximace

Čebyševova aproximace má strmější pokles, což vede k užití nižšího řádu filtru. Zato má ale zvlněnou frekvenční charakteristiku v propustném pásmu.

1.2.1 Typ I

Vyjádření modulové charakteristiky pro tuto aproximaci je dáno jako

$$G(\omega) = |H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 T_n^2 \frac{\omega}{\omega_c}^{2n}}},\tag{3}$$

kde T_n je Čebyševův polynom, ϵ je poměrné zvlnění, n je řád filtru a ω_c mezní frekvence. Čebyševův polynom je definován vztahem $2\omega^2 - 1$ pro n = 2. Obecně jsou to kořeny Chebyshevových diferenciálních rovnic

$$(1 - x^2)y'' - xy' + n^2y = 0 (4)$$

$$(1 - x^2)y'' - 3xy' + n(n+2)y = 0.$$
(5)

1.2.2 Typ II

Typ II je nazýván také jako inverzní Čebeševova aproximace. V praxi není příliš používaný, jelikož nemá tak rychlý pokles jako typ I a k jeho realizaci je třeba více prvků. Nemá zvlnění v propustném pásmu, zato v zádržném ano. Zesílení je definováno jako

$$G(\omega, \omega_c) = \frac{1}{\sqrt{1 + \frac{1}{\epsilon^2 T_n^2 \frac{\omega_c}{\omega}^{2n}}}},\tag{6}$$

kde T_n je Čebyševův polynom, ϵ je poměrné zvlnění, n je řád filtru a ω_c mezní frekvence.

1.3 Besselova aproximace

Besselova aproximace se používá v telekomunikační technice v případech, kdy je požadováno zachování tvaru signálu. Amplitudová charakteristika v nepropustném pásmu je velmi plochá. Koeficienty polynomu jsou zvoleny tak, aby fázová charakteristika v pásmu okolo kritické frekvence byla maximálně lineární. Nevýhodou je poměrně malá strmost modulové charakteristiky. Ta je pro Besselovu aproximaci je dána vztahem

$$G(\omega) = |H(j\omega)| = \frac{\Theta_n(0)}{\Theta_n(\frac{j\omega}{\omega_c})},\tag{7}$$

kde Φ_n je Besselův polynom a ω_c mezní frekvence. Besselův polynom je definován součtem řady (Grosswald 1978, Berg 2000)

$$\Theta_n(x) = x^n y_n(\frac{1}{x}) = \sum_{k=0}^n \frac{(n+k)!}{(n-k)!k!} \frac{x^{n-k}}{2^k}.$$
 (8)

Pro filtr druhého řádu platí

$$G(\omega) = |H(j\omega)| = \frac{3}{\sqrt{\omega^4 + 3\omega^2 + 9}}.$$
(9)

1.4 Cauerova (eliptická) aproximace

Cauerova aproximace (eliptická) má nejstrmější pokles, při jejím užití jsou voleny nižší řády filtru. Pokud se zvlnění v zádržném pásmu blíží nule, filtr se stává Čebyševovým (výše zmíněný - typ I). Opačně je tomu v propustném pásmu - přiblížením k nule se filtr stává inverzním Čebyševovým (typ II). Pokud se obě hodnoty zvlnění blíží k nule, filtr se stává Butterworthovým. Kmitočtová charakteristika je dána vztahem

$$G(\omega) = |H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 R_n^2(\zeta, \frac{\omega}{\omega_c})}},$$
(10)

kde ϵ je faktor zvlnění, R_n eliptická racionální funkce n-tého řádu, ζ selektivní faktor a ω_c mezní frekvence. Pokud pro selektivní faktor platí $\zeta \to \infty$, filtr se stává Čebyševovým (typ I).

2 Transkonduktanční zesilovače (OTA)

V telekomunikacích se používají filtry v rozsahu kmitočtů desítek až stovek megahertz, v bezdrátové komunikaci až v řádu gigahertz. Běžné RC filtry by neměly být užívány ve frekvenčním rozsahu nad 5-10% ω_c - tedy v tomto rozsahu používaném v telekomunikačních technologiích nemají předvídatelné průběhy. Krom toho ve spínačích CMOS, kde rezistory běžně nejsou dostupné, jsou potřeba zesilovače s velkou šířkou pásma a zároveň vysokým zesílením. Dodržení těchto požadavků je náročné a drahé. Dalším extrémem pro analogové integrované filtry jsou telefonní linky, kde jsou kmitočtové rozsahy sice nízké, ale je požadována nízká cena a vysoká přesnost. Pro nízké frekvence se ke splnění těchto požadavků používají obvody se spínanými kapacitory (SC). Přepínaný kapacitor se chová jako rezistor, tudíž časová konstanta RC je definována poměrem kapacitorů a hodinovou (CLK) frekvencí, se kterou jsou přepínány. Pro vysokofrekvenční aplikace (až v řádu gigahertz) se používají MOSFET-C filtry.

Další z možných prvků, které jsou dostupné jak pro nízkofrekvenční aplikace, tak pro kmitočtový rozsah stovek megahertz, jsou transkonduktanční zesilovače.

Transkonduktanční zesilovače (označují se též jako OTA (Operational Transconductance Amplifiers) jsou napětím řízené zesilovače s proudovým výstupem - zdroje proudu

$$i_{out} = g_m(u_+ - u_-), (11)$$

kde u_+ a u_- jsou napětí invertujícího a neinvertujícího vstupu. Transkonduktance je řízena externím proudem I_{ABC} (Bias Current). Ideální OTA má kmitočtově nezávislou transkonduktanci g_m (na rozdíl od reálného, který je kmitočtově závislý).

Obrázek 3: OTA - schematické značky [3]

Obrázek 4: Linearizovaný model reálného OTA [4]

Připojením zátěže R_z na výstup bylo získáno napětí naprázdno

$$u_{out} = R_z g_m(u_+ - u_-) = G_0(u_+ - u_-), \tag{12}$$

kde G_0 je zesílení. Ze vztahu (2) plyne, že zesílení je konečné a mezi vstupy je nenulové napětí. Připojením kondenzátoru jako zátěže byl získán bezeztrátový integrátor s přenosem

$$H(s) = \frac{v_2}{v_1} = \frac{g_m}{sC} \tag{13}$$

$$v_0(t) = \frac{1}{C} \int i(t)dt = \frac{1}{C} \int g_m v_1(t)dt.$$
 (14)

Obrázek 5: OTA-C [4]

Toto zapojení integrátoru s uzemněným kondenzátorem se označuje jako OTA-C.

Ztrátový integrátor lze utvořit sériovým zapojením dalšího OTA jako odporu se zápornou zpětnou vazbou. Rozdíl mezi ideálním a ztrátovým integrátorem lze pozorovat i v modulové charakteristice - pro ztrátový je konstantní a pak teprve lineárně klesá se sklonem -20 dB/dek.

$$v_0(t) = \frac{g_{m1}}{sC + g_{m2}} (v_1^+ - v_1^-)$$
(15)

Obrázek 6: Ztrátový OTA-C [4]

3 Integrované obvody s OTA zesilovači

Integrované obvody se vyrábí buď s jedním nebo dvěma zesilovači v pouzdře. Varianty s jedním operačním zesilovačem jsou např. OPA615, OPA860 a novější OPA861. Všechny součástky s jedním OZ mají velkou šířku pásma (v řádech stovek MHz), cenově vychází na 75-280 Kč. Integrované obvody s dvěma OZ v pouzdře mají užší šířku pásma (2 MHz), menší rychlost přeběhu (50 V/ μ s), mnohem menší výstupní proud (650 μ A) i offset vstupního napětí a operují při cca 4x nižších proudech. Cenové rozpětí je 25-65 Kč.

	GBP - Gain Bandwidth Product	SR - Slew Rate	Output Current per Channel	I_b - Input Bias Current	V_{os} - Input Offset Voltage	Operating Supply Current	Forward Transcon- ductance Min	Supply Voltage
OPA615	710 MHz	$2.5 \text{ kV}/\mu\text{s}$	$5~\mathrm{mA}$	$3 \mu A$	$40~\mathrm{mV}$	13 mA	$65~\mathrm{mA/V}$	8-12.4 V
OPA860	470 MHz	$3.5~\mathrm{kV}/\mu\mathrm{s}$	15 mA	5 μΑ	$12 \mathrm{\ mV}$	11.2 mA	80 mA/V	5-13 V
OPA861	400 MHz	$900~\mathrm{V}/\mu\mathrm{s}$	15 mA	$1~\mu\mathrm{A}$	12 mV	5.4 mA	$65~\mathrm{mA/V}$	4-12.6 V

Tabulka 1: orovnání integrovaných obvodů s jedním OTA [5]

	GBP - Gain Bandwidth Product	SR - Slew Rate	Output Current per Channel	I_b - Input Bias Current	V_{os} - Input Offset Voltage	Operating Supply Current	Forward Transcon- ductance - Min	Supply Voltage
LM13700	$2~\mathrm{MHz}$	$50 \text{ V/}\mu\text{s}$	$650~\mu\mathrm{A}$	$5 \mu A$	$4~\mathrm{mV}$	1.3 mA	$6700 \ \mu S$	10-36 V
NE5517	$2~\mathrm{MHz}$	$50 \mathrm{\ V/\mu s}$	$650~\mu\mathrm{A}$	$5 \mu A$	$5~\mathrm{mV}$	2.6 mA	$5400 \ \mu S$	4-44 V
AU5517	$2~\mathrm{MHz}$	$50 \mathrm{\ V/\mu s}$	$650~\mu\mathrm{A}$	$5 \mu A$	$5~\mathrm{mV}$	2.6 mA	$5400~\mu\mathrm{S}$	4-44 V
NJM13600	$2~\mathrm{MHz}$	$50~\mathrm{V/\mu s}$	$650~\mu\mathrm{A}$	$5 \mu A$	$5~\mathrm{mV}$	2.6 mA	$6700~\mu\mathrm{S}$	36 V
NJM13700	$2~\mathrm{MHz}$	$50~\mathrm{V/\mu s}$	$650~\mu\mathrm{A}$	$5 \mu A$	$4~\mathrm{mV}$	2.6 mA	$6700~\mu\mathrm{S}$	36 V

Tabulka 2: Porovnání integrovaných obvodů se dvěma OTA [5]

Pro realizaci přeladitelného filtru byl zvolen LM13700 s dvěma OZ.

Obrázek 7: Konfigurace pinů na LM13700M [6]

Vnitřní zapojení LM13700 na obrázku 8 obsahuje symetrický rozdílový stupeň (tranzistory Q4, Q5), který je napájen řízeným zdrojem proudu s tranzistorem Q2. Dvojice diod a tranzistorů tvoří proudová zrcadla (*Current Mirror*) - referenční proud tekoucí v jedné větvi obvodu se "zrcadlí"v jeho druhé větvi. Principiálně jsou to zdroje proudu řízené proudem.

Obrázek 8: Vnitřní chéma OTA [6]

4 Odvození

Náhradní obvod, ze kterého bude spočítána přenosová funkce pro přenos filtru druhého řádu, popisuje obrázek 9.

Obrázek 9: Dolní propust 2. řádu (RLC obvod) [7]

Přenos obvodu byl vyjádřen jako

$$H(s) = \frac{U_{out}}{U_{in}} = \frac{Z_2}{Z_1},$$
 (16)

kde $Z_1 = sL$ a $Z_2 = \frac{\frac{R}{sC}}{R + \frac{1}{sC}}$. Tedy

$$H(s) = \frac{\frac{\frac{R}{SC}}{R + \frac{1}{sC}}}{sL + \frac{R}{SC}}.$$
 (17)

Elementárními algebraickými úpravami a následným vynásobením členem $\frac{1}{LRC}$ byl získán výsledný přenos.

$$H(s) = \frac{R}{s^2 LRC + sL + R} = \frac{\frac{1}{LC}}{s^2 + \frac{s}{RC} + \frac{1}{LC}}.$$
 (18)

Pro ideální OTA zesilovač (vstupní i výstupní impedance nulové) je možno odpor nahradit obvodem s uzemněným neinvertujícím vstupem a zpětnou vazbou z invertujícího vstupu na výstup a to hodnotou

$$R_{in} = \frac{1}{g_{m1}},\tag{19}$$

kde g_{m1} označuje transkonduktanci zesilovače. Prohození invertujícího a neinvertujícího vstupu vede na opačnou polaritu.

Obrázek 10: Obvod pro simulaci uzemněného rezistoru [8]

Pro nahrazení indukčnosti o impedanci $Z_L = \frac{1}{sC}$ lze použít obvod s třemi OTA. Uzemněny jsou invertující vstup prvního OTA a neinvertující druhého. Použita je zpětná vazba z výstupu na neinvertující vstup prvního OTA. Propojení výstupu prvního OTA na invertující vstup druhého OTA je realizován přes uzemněný kapacitor. Vyjádřením napětí a proudů v obvodu bylo získáno napětí na kapacitoru a vstupní proud

$$V_C = \frac{g_{m1}}{sC}V_1 \tag{20}$$

$$I_1 = g_{m2}V_C = \frac{g_{m1}g_{m2}}{sC}V_1. (21)$$

Výsledná indukčnost - impedance vstupu byla vyjádřena vztahem (11).

$$Z_{in}(s) = \frac{V_1}{I_1} = s \frac{C}{g_{m1}g_{m2}} \tag{22}$$

Byl obdržen induktor o hodnotě

$$L = \frac{C}{g_{m1}g_{m2}}. (23)$$

Obrázek 11: Obvod pro simulaci indukčnosti [8]

Pro uzemněnou indukčnosti o impedanci $Z_L = \frac{1}{sC}$ byl použit obvod na obrázku 12. Vyjádřením napětí a proudů v obvodu bylo získáno napětí na kapacitoru a vstupní proud

$$V_C = \frac{g_{m1}}{sC} V_1 \tag{24}$$

$$I_1 = g_{m2}V_C = \frac{g_{m1}g_{m2}}{sC}V_1. (25)$$

Výsledná indukčnost - impedance vstupu byla vyjádřena vztahem (16).

$$Z_{in}(s) = \frac{V_1}{I_1} = s \frac{C}{g_{m1}g_{m2}} \tag{26}$$

Obrázek 12: Obvod pro simulaci uzemněné indukčnosti pro $g_{m1} = g_{m2}[8]$

Nyní je možno za odpor a indukčnost dosadit do vztahu (8). Byly uvažovány kapacitory o stejné hodnotě C.

$$H(s) = \frac{\frac{\frac{1}{C^2}}{\frac{C^2}{g_{m1}g_{m2}}}}{s^2 + \frac{s}{\frac{C}{G^2}} + \frac{1}{\frac{C^2}{G^2}}} = \frac{\frac{g_{m1}g_{m2}}{C^2}}{s^2 + \frac{sg_{m2}}{C} + \frac{g_{m1}g_{m2}}{C^2}} = \frac{g_{m1}g_{m2}}{s^2C^2 + sg_{m2}C + g_{m1}g_{m2}}.$$
 (27)

Porovnáním jmenovatele se jmenovatelem přenosu filtru 2. řádu byl obdržen vztah

$$s^{2} + s\frac{\omega_{c}}{Q} + \omega_{c}^{2} = s^{2}C^{2} + sg_{m2}C + g_{m1}g_{m2}$$
(28)

$$s^{2} + s\frac{\omega_{c}}{Q} + \omega_{c}^{2} = s^{2} + \frac{sg_{m2}}{C} + \frac{g_{m1}g_{m2}}{C^{2}}.$$
 (29)

Z tohoto vztahu byl vyjádřen mezní kmitočet jako

$$\omega_c^2 = \frac{g_{m1}g_{m2}}{C^2} \tag{30}$$

$$\omega_c^2 = \frac{g_{m1}g_{m2}}{C^2}$$

$$\omega_c = \sqrt{\frac{g_{m1}g_{m2}}{C^2}}$$
(30)

a činitel jakosti dosazením za ω_c

$$Q = \frac{\omega_c}{\frac{g_{m2}}{C}} = \sqrt{\frac{g_{m1}}{g_{m2}}}. (32)$$

Pokud navíc byly uvažovány stejné transkonduktance $g_{m1}, g_{m2} = g_m$, byl obdržen výsledek

$$\omega_c = \sqrt{\frac{g_m^2}{C^2}},$$

$$Q = \sqrt{1} = 1.$$
(33)

$$Q = \sqrt{1} = 1. \tag{34}$$

5 Dolní propust 2. řádu

Dolní propust druhého řádu má přenos v nekonečnu nulový $H_{\infty}=0$. Přenosová funkce je

$$H(j\omega) = \frac{H_0\omega_c^2}{(j\omega)^2 + \frac{\omega_c}{O}(j\omega) + \omega_c^2}.$$
 (35)

Obvodová simulace byla realizována v programu Multisim. Zapojení dvou OTA-C v sérii vede na dolní propust druhého řádu. Bylo zvoleno symetrické napájení OZ $V_{DD}, V_{SS}=\pm 15$ V. Regulací vstupního proudu je ovlivňován pracovní bod obvodu (mezní kmitočet). Vstupní externí proud $I_{ABC}=0.5~\mu\mathrm{A}$ byl zvolen tak, aby byl obdržen mezní kmitočet cca 100 kHz. Externím proudem $I_{ABC} \in <5~\mu\mathrm{A}$; 500 $\mu\mathrm{A}>$ je výrobcem garantováno minimální výstupní napětí $U_{OUT}=\pm 12$ V, standardně $V_{peak1}=14.2$ V a $V_{peak2}=-14.4$ V. Při výstupním napětí v tomto intervalu je šum vzhledem k signálu zanedbatelný a nezkreslí výsledky simulace.

Obrázek 13: Schéma zapojení dolní propusti 2. řádu

Obrázek 14: Amplitudová a fázová charakteristika dolní propusti 2. řádu

Obvod lze realizovat i zapojením indukčnosti
(náhradní schéma pro OTA - Obrázek 11), odporu (náhradní schéma - Obrázek 10) a uzemněného kapacitoru.

Obrázek 15: RLC obvod [9]

Mezní frekvence a činitel jakosti tohoto obvodu byly spočítány jako

$$\omega_c = \sqrt{\frac{1}{LC}} \tag{36}$$

$$Q = \frac{L\sqrt{\frac{C}{L}}}{RC}. (37)$$

Zapojení obvodu v Multisimu ilustruje Obrázek 15.

Obrázek 16: Schéma zapojení dolní propusti 2. řádu

Obrázek 17: Amplitudová a fázová charakteristika dolní propusti 2. řádu

Lze použít i zapojení z kapitoly 4 s uzemněným kapacitorem a odporem, avšak při této realizaci dochází v amplitudové charakteristice k překmitu. Proto bylo zvoleno řešení zmíněné výše.

6 Dolní propust čtvrtého řádu - kaskádně

Kaskádní zapojení je realizováno násobením sériově zapojených bloků.

$$\overline{U_{in}(s)} H_1(s) \overline{U_1(s)} H_2(s) \overline{U_2(s)} H_3(s) \overline{U_3(s)} \cdots$$

Obrázek 18: Kaskádní zapojení [4]

Přenosové funkce jednotlivých bloků se násobí

$$H_k(j\omega) = \frac{U_k(j\omega)}{U_{k-1}(j\omega)}. (38)$$

Přenos posledního bloku je dán vztahem

$$H_{1\to k}(j\omega) = \frac{U_k(j\omega)}{U_{in}(j\omega)} = \sum_{n=1}^k H_n(j\omega).$$
(39)

Kaskádním zapojením dvou dolních propusti ze sekce 5 byl obdržen filtr 4. řádu s poklesem -80 dB/dek.

Obrázek 19: Schéma kaskádního zapojení dolní propusti 4. řádu

Obrázek 20: Amplitudová a fázová charakteristika káskádního zapojení dolní propusti 4. řádu

7 Pásmová propust

Horní propust druhého řádu má přenos v nule nulový $H_0=0$. Přenosová funkce je

$$H(j\omega) = \frac{H_{\infty}(j\omega)^2}{(j\omega)^2 + \frac{\omega_c}{Q}(j\omega) + \omega_c^2}.$$
 (40)

Nejprve byla získána horní propust kaskádním zapojením dvou RC článků.

Obrázek 21: Schéma zapojení horní propusti 2. řádu

Obrázek 22: Amplitudová a fázová charakteristika horní propusti 2. řádu

Pásmová propust má přenos v nule i nekonečnu nulový $H_0=H_\infty=0$. Přenosová funkce je

$$H(j\omega) = \frac{H_B \frac{\omega_c}{Q}(j\omega)}{(j\omega)^2 + \frac{\omega_c}{Q}(j\omega) + \omega_c^2}.$$
 (41)

Následně byla sériovým zapojením dolní a horní propusti 2. řádu obdržena pásmová propust 2. řádu.

Obrázek 23: Schéma zapojení pásmové propusti 2. řádu

Obrázek 24: Amplitudová a fázová charakteristika pásmové propusti 2. řádu

8 Pásmová propust čtvrtého řádu

Kaskádním zapojením dvou pásmových propustí 2. řádu byl obdržen filtr 4. řádu s poklesem -80 dB/dek.

Obrázek 25: Schéma kaskádního zapojení pásmové propusti 4. řádu

Obrázek 26: Amplitudová a fázová charakteristika káskádního zapojení pásmové propusti 4. řádu

9 LC filtry

Pasivní dolní propust je realizována zapojením induktoru ke vstupnímu napětí a k této větvi je následně zapojen paralelně rezistor. Pasivní horní propust má ke vstupu připojený sériově rezistor a poté k této větvi paralelně induktor.

K realizaci filtrů vyšších řádů se užívají π nebo T články s LC prvky. Při návrhu filtru musí být zohledněn vnitřní odpor zdroje R_s a zatěžovací odpor R_L . LC filtry jsou tedy dvojitě zakončeny. Indukčnosti a kapacity prvků se určí z rovnic pro normované kapacity a indukčnosti. Normované hodnoty budou vypočteny pro mezní kmitočet $\omega_c = \frac{1}{\sqrt{LC}}$ a pro zatěžovací odpor R_L . Hodnoty prvků lze pro požadovanou aproximaci odečíst z tabulek.

Obrázek 27: Pasivní dolní propust n-tého řády s π články [10]

Obrázek 28: Pasivní dolní propust n-tého řády s T články [10]

10 Návrh v Maple

Byly zvoleny parametry tolerančního schématu

$$fm = 80000Hz$$
 $delta_fp = 130000Hz$
 $delta_fs = 300000Hz$
 $ap = 20dB$
 $as = 80dB$,

kde fm značí geometrický střed propustného pásma [Hz], $delta_fp$ šířku propustného pásma [Hz], $delta_fs$ šířku nepropustného pásma [Hz], ap maximální útlum v propustném pásmu [dB], as minimální útlum v nepropustném pásmu [dB]. Funkcí BP22NLP byly spočteny spodní a horní hranice nepropustného pásma f_s, fs a spodní a horní hranice propustného pásma f_p , fp.

$$f_{_}s = \frac{\sqrt{delta_{_}fs^{2} + 4f_{_}m^{2}} - delta_{_}fs}{2}$$

$$f_{_}p = \frac{\sqrt{delta_{_}fp^{2} + 4f_{_}m^{2}} - delta_{_}fp}{2}$$

$$fp = \frac{\sqrt{delta_{_}fp^{2} + 4f_{_}m^{2}} + delta_{_}fp}{2}$$

$$(42)$$

$$f_{p} = \frac{\sqrt{delta_fp^2 + 4f_m^2 - delta_fp}}{2} \tag{43}$$

$$fp = \frac{\sqrt{delta_fp^2 + 4f_m^2 + delta_fp}}{2} \tag{44}$$

$$fs = \frac{\sqrt{delta_fs^2 + 4f_m^2} + delta_fs}{2} \tag{45}$$

$$f_s = 20000Hz$$

$$f_p = 38077Hz$$

$$fp = 168077Hz$$

fs = 320000Hz

Byl obdržen kmitočet hranice nepropustného pásma normované dolní propusti (NDP) Os [1/s].

$$Os = 2.3076921/s$$

Obrázek 29: Toleranční schéma navrhované pásmové propusti

Reference

- [1] KAŠPER, Ladislav. Návrh kmitočtového filtru [online]. Ostrava, 2012 [cit. 2019-04-28]. Dostupné z: https://dspace.vsb.cz/bitstream/handle/10084/92901/KAS279_FEI_N2647_2601T013_2012.pdf?sequence=1&isAllowed=y. Diplomová práce. VŠB-TU Ostrava, FEI. Strana 18/69.
- [2] High-pass filtering pre-processing before computing audio features. Stack Exchange Inc [online]. 2019 [cit. 2019-04-22]. Dostupné z: https://dsp.stackexchange.com/questions/27586/high-pass-filtering-pre-processing-before-computing-audio-features
- [3] MICHAL, Vratislav. Vybrané vlastnosti obvodů pracujících v proudovém módu a napětovém módu [online]. Brno, 2017 [cit. 2019-03-30]. Dostupné z: https://docplayer.cz/
 43256146-Vybrane-vlastnosti-obvodu-pracujících-v-proudovem-modu-a-napetovem-modu.html.
 Článek. Brno University of Technology. Strana 5/6.
- [4] HOSPODKA, Jiří. Úvod do analogových filtrů [online]. Praha, 2018 [cit. 2019-03-30]. Dostupné z: https://moodle.fel.cvut.cz/course/view.php?id=1434. Přednáška. ČVUT FEL. Pořadě slide 24/41, 21/41.
- [5] Transconductance Amplifiers [online]. 2019 [cit. 2019-03-30]. Dostupné z: https://cz.mouser.com/ Semiconductors/Integrated-Circuits-ICs/Amplifier-ICs/Transconductance-Amplifiers/_/ N-6j731?P=1y95od0
- [6] LM13700: Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers. In: *Texas Instruments* [online]. Dallas, Texas: Texas Instruments Incorporated, 2018 [cit. 2019-03-30]. Dostupné z: www.ti.com/lit/ds/symlink/lm13700.pdf Strana 1/37. Strana 9/37 Obrázek 16.
- [7] Low-pass filter. In: *Wikipedia: the free encyclopedia* [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2019-03-30]. Dostupné z: https://en.wikipedia.org/wiki/Low-pass_filter
- [8] SCHAUMANN, Rolf a Mac E. Van VALKENBURG. Design of Analog Filters. New York: Oxford University Press, 2001. ISBN 0195118774. Pořadě obrázek 4-13, 4-36 a),b).

- [9] WADE, Augustus. Presentation on theme: Circuits for sensors Ideal OP Amps Basic OP Amp Circuit Blocks [online]. In: . 2015 [cit. 2019-04-26]. Dostupné z: https://slideplayer.com/slide/4458062 Prezentace. Slide 20/48.
- [10] VEDRAL, Josef a Jakub SVATOŠ. Zpracování a digitalizace analogových signálů v měřící technice. Praha: Česká technika nakladatelství ČVUT, 2018. ISBN 978-80-01-06424-5. Strana 136, Obrázek 5.3.9, 5.3.10.