BÀI 8. LIST & TREE

NỘI DUNG BÀI HỌC

- Kỹ thuật con trỏ nhảy:
- Chu trình Euler
- Các bài toán trên cây

1. KỸ THUẬT CON TRỞ NHẢY

KỸ THUẬT CON TRỞ NHẢY

KỸ THUẬT CON TRỞ NHẢY

- Danh sách được định nghĩa bởi 2 mảng:
 - Mång giá trị A[1..n]
 - Mảng địa chỉ L[1..n], L[i] là chỉ số phần tử kế tiếp mà A[i] trỏ đến.
 - Phần tử cuối là phần tử trỏ đến chính nó

```
for k = 1 to log2n do

// forall nodes i do in parallel

for i = 1 to n do in parallel

do_something;

L[i] = L[L[i]];

end parallel

end for.
```

ROOTED-DIRECTED TREE

- Định nghĩa: Rooted-directed Tree (cây hướng gốc) T là một đồ thị có hướng với 1 nút đặc biệt r thỏa mãn:
 - outdegree(r)=0
 - outdegree(v)=1, $\forall v \in V \setminus \{r\}$
 - $\forall v \in V \setminus \{r\}: \exists 1 \text{ duòng di từ v tới r}$
- r được gọi là gốc của cây
- Biểu diễn cây T theo mảng P[1..n]
 - P[i] = j nếu j là cha của i trên cây
 - Gốc là nút trỏ đến chính nó: P[r]=r

XÁC ĐỊNH GỐC CÂY TRONG RÙNG

- Phát biểu bài toán:
 - Gọi F là rừng các cây hướng gốc
 - F được biểu diễn thông qua mảng P[1..n]
 - Với mỗi nút i trong rừng, hãy xác định gốc của cây chứa nút i, ta gọi là S[i]
- Cách tiếp cận:
 - Sử dụng kỹ thuật con trỏ nhảy

VÍ DỤ GỐC CÂY TRONG RÙNG

XÁC ĐỊNH GỐC CÂY TRONG RÙNG

```
input : rừng F xác định bởi P[1..n]
output : S[1..n], S[i] -- gốc của cây con chứa nút i
begin
for i = 1 to n do in parallel
S[i] = P[i];
while S[i] <> S[S[i]] do
S[i] = S[S[i]];
end while.
end for.
end.
```

BÀI TOÁN SUFFIX SUM TRÊN CÂY

- Phát biểu bài toán:
 - Rừng F biểu diễn bởi mảng P[1..n].
 - Các nút trên cây có trọng số là W[1..n]
 - Nút gốc cây có trọng số bằng 0.
 - Hãy xác định tổng trọng số đi từ nút v bất kỳ tới gốc ra của cây con chứa v.
- Cách tiếp cân:
 - Kỹ thuật con trỏ nhảy

BÀI TOÁN SUFFIX SUM TRÊN CÂY

```
input :rừng F xác định bởi P[1..n], W[1..n]
output : R[1..n], R[i] -- trọng số đi từ i tới S[i]
begin
     for i = 1 to n do in parallel
          S[i] = P[i];
         while S[i] <> S[S[i]] do
               W[i] = W[i] + W[S[i]];
               S[i] = S[S[i]];
          end while.
     end for.
end.
```

Mô hình CREW

- Nhắc lại khái niệm:
 - Chu trình Euler đi qua tất cả các cạnh của đồ thị 1
 lần
 - Đối với đồ thị có hướng thì được gọi là chu trình có hướng
 - Những đồ thị thỏa mãn điều kiện trên được gọi là đồ thị Euler

- Xét T=(V,E) là một cây vô hướng Mỗi cạnh vô hướng (u,v) thuộc E được chuyển thành 2 cạnh có hướng <u,v> và <v,u>
- Khi đó:
 - T' = (V,E') là 1 đồ thị có hướng
 - Outdegree(v) = Indegree(v)
 - Xác định chu trình Euler trên đồ thị T'

- Xây dựng hàm successor $s: E' \rightarrow E$
- Xác định danh sách kề với v; $adj(v) = \langle u_0, u_1,...u_{d-1} \rangle$ với d là bậc của v trong T.
- Hàm successor:

$$s(\langle u_i, v \rangle) = \langle v, u_{(i+1) \mod d} \rangle, \forall i | 0 \le i < d-1$$

- Xét 1 nút u nằm trong L[v] bất kỳ:
 - Một con trỏ xác định u' nằm sau u.
 - Một con trỏ dùng để xác định vị trí cặp cạnh ngược chiều <u,v> và <v,u> trong T' từ 2 danh sách kề L[u] và L[v]

```
input : T = (V,E) biểu diễn bởi L(v).
output : Euler tour : {next(e) vơi mọi e thuộc E}
begin
    for each edge <u,v> thuộc E
        next(<u,v>) = s(<u,v>);
    end parallel
end.
(s(e) := successor of reverse edge in adjacency list)
```

- Định lý: Cho cây T=(V,E):
 - Xác định bởi các danh sách kề của các đỉnh.
 - Mỗi nút của danh sách kề có 2 con trỏ
 - Chu trình Euler trong cây T': O(1) đơn vị thời gian
 và O(n) thao tác thực hiện

- Nếu cây có n đỉnh, ta có thể biểu diễn cây dưới dạng 1 danh sách 2n-2 nút.
- Với quy ước như sau: với mỗi đỉnh v ta gọi p(v) là cha của v. Khi đó:
 - Nút đỏ là cạnh có dạng <p(v),v>
 - Nút hồng là cạnh có dạng <v,p(v)>

- Biểu diễn cây T, đồ thị T' bởi danh sách liên kết
- Xây dựng chu trình Euler theo thuật toán đã có

• Adjacency list:
$$\frac{1}{(1,2)} \frac{2}{(2,1)} \frac{3}{(3,1)} \frac{4}{(4,2)} \frac{5}{(5,2)}$$

$$\frac{(1,3)}{(2,4)} \frac{(2,4)}{(1,3)}$$

(2,5)

Solution:

Path:
$$1 \rightarrow 2 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 1$$

3. CÁC BÀI TOÁN TRÊN CÂY

3.1. ROOTED TREE

PHÁT BIỂU BÀI TOÁN

- Cho 1 cây T = (V,E) xác định bởi danh sách đỉnh kề và 1 nút r bất kỳ thuộc V. Hãy xây dựng cây T với gốc là r bằng cách: với mỗi nút $v \neq r$ xác định nút cha của v (đặt nút cha là p(v))
- Cách tiếp cận:
 - Thiết lập 1 chu trình Euler trên cây T'
 - Giả sử u là nút cuối cùng trong danh sách kề của nút r. Đặt s(<u.r>) = 0.
 - Đặt trọng số 1 cho các cạnh <x,y> trên T' và thực hiện suffix_sum trên cây
 - Với mỗi $\langle x,y \rangle$ xác định x = p(y) nếu suffix_sum($\langle x,y \rangle$) lớn hơn suffix_sum($\langle y,x \rangle$)

VÍ DỤ ROOTED TREE (ROOT: 4)

VÍ DỤ ROOTED TREE (ROOT: 4)

Euler Tour				Result	
Thứ tự	Cạnh	Giá trị	Suffix_sum	V	p(v)
1	<4,3>	1	10	1	3
2	<3,2>	1	9	2	3
3	<2,3>	1	8	3	4
4	<3,1>	1	7	4	4
5	<1,3>	1	6	5	4
6	<3,4>	1	5	6	4
7	<4,5>	1	4		
8	<5,4>	1	3		
9	<4,6> <6,4>	1	2		
10	<6,4>	1	1		

3.2. DUYỆT CÂY

DUYỆT CÂY

- Qui tắc duyệt cây:
 - Đi qua lần lượt các nút của cây, mỗi nút 1 lần (tên nút hoặc giá trị chứa bên trong nút) theo thứ tự đi qua.
- Có 3 cách duyệt cây quan trọng;
 - Duyệt trước: Pre-Order
 - Duyệt giữa: In-Order
 - Duyệt sau: Post Order

DUYỆT TRƯỚC PRE-ORDER

DUYỆT GIỮA IN-ORDER

DUYỆT SAU POST-ORDER

PHƯƠNG PHÁP TIẾP CẬN

Euler	Tour	Tree		
Thứ tự	Cạnh	V	p(v)	
1	<1,2>	1	1	
2	<2,4>	2	1	
3	<4,2> <2,5> <5,2>	3	1	
4	<2,5>	4	2	
5	<5,2>	5	2	
6	<2,1>	6	3	
7	<1,3>	7	3	
8	<3,6>			
9	<6,3>			
10	<3,7>			
11	<7,3>			
12	<3,1>		_	

DUYÊT SAU POST-ORDER

- Thiết lập chu trình Euler trên cây T
- Với gốc r, xác định cây hướng gốc (với mọi v xác định p(v) là cha của v)
- Đặt trọng số cho các cạnh
 - $w(\langle v, p(v) \rangle) = 1 \& w(\langle p(v), v \rangle) = 0.$
- Với mỗi cặp <u,v>, xác định suffix_sum cho
 cạnh <u,v>. Ta gọi là S(<u,v>)
- Vị trí duyệt v là: |V| $S(\langle v, p(v) \rangle)$
- Cuối cùng là duyệt đỉnh gốc r

DUYỆT SAU POST-ORDER

Euler Tour					Tree	
Thứ tự	Cạnh	Giá trị	Suffix_sum	\mathbf{V}	p(v)	
1	<1,2>	0	6	1	1	
2	<2,4>	0	6	2	1	
3	<4,2>	1	6	3	1	
4	<2,5>	0	5	4	2	
5	<5,2>	1	5	5	2	
6	<2,1>	1	4	6	3	
7	<1,3>	0	3	7	3	
8	<3,6>	0	3			
9	<6,3>	1	3			
10	<3,7>	0	2			
11	<7,3>	1	2			
12	<3,1>	1	1			

DUYÊT SAU POST-ORDER

Xác định vị trí các đỉnh như sau:

$$S(<2,1>) = 4 -> Position (2) = 7 - 4 = 3$$

$$S(<3,1>) = 1 -> Position (3) = 7 - 1 = 6$$

$$S(<4,2>) = 6 -> Position (4) = 7 - 6 = 1$$

$$S(<5,2>) = 5 -> Position (5) = 7 - 5 = 2$$

$$S(<6,3>) = 3 -> Position (6) = 7 - 3 = 4$$

$$S(<7,3>) = 2 -> Position (7) = 7 - 2 = 5$$

Thứ tự duyệt là :

DUYỆT TRƯỚC PRE-ORDER

- Thiết lập chu trình Euler trên cây T
- Với gốc r, xác định cây hướng gốc (với mọi v xác định p(v) là cha của v)
- Đặt trọng số cho các cạnh
 - $w(\langle v, p(v) \rangle) = 0 \& w(\langle p(v), v \rangle) = 1$
- Với mỗi cặp <u,v> xác định suffix_sum cho cạnh <u,v>. Ta gọi là S(<u,v>)
- Vị trí duyệt v là |V| $S(\langle p(v), v \rangle)$
- Gốc duyệt đầu tiền

DUYỆT TRƯỚC PRE-ORDER

Euler Tour				Tree	
Thứ tự	Cạnh	Giá trị	Suffix_sum	\mathbf{V}	p(v)
1	<1,2>	1	6	1	1
2	<1,2> <2,4>	1	5	2	1
3	<4.2>	0	4	3	1
4	<2,5>	1	4	4	2
5	<5,2>	0	3	5	2
6	<2,1>	0	3	6	3
7	<1,3>	1	3	7	3
8	<3,6>	1	2		
9	<6,3>	0	1		
10	<3.7>	1	1		
11	<7,3>	0	0		
12	<3,1>	0	0		

DUYỆT TRƯỚC PRE-ORDER

Xác định vị trí các đỉnh như sau:

$$S(<1,2>) = 6 -> Position (2) = 7 - 6 = 1$$

$$S(<1,3>) = 3 -> Position (3) = 7 - 3 = 4$$

$$S(<2,4>) = 5 -> Position (4) = 7 - 5 = 2$$

$$S(<2,5>) = 4 -> Position (5) = 7 - 4 = 3$$

$$S(<3,6>) = 2 -> Position (6) = 7 - 2 = 5$$

$$S(<3,7>) = 1 -> Position (7) = 7 - 1 = 6$$

Thứ tự duyệt là:

$$[1 -> 2 -> 4 -> 5 -> 3 -> 6 -> 7]$$

VÍ DỤ MINH HỌA

CÁCH TIẾP CẬN KHÁC

- Đối với cây nhị phân:
 - Mỗi nút v được coi là 3 nút con: v[a], v[b], v[c]
 - Quy tắc của nút [a]:
 - Nếu v có con trái là u thì: v[a] -> u[a]
 - Nếu v không có con trái thì: v[a] -> v[b]
 - Quy tắc của nút [b]:
 - Nếu v có con phải là u thì: v[b] -> u[a]
 - Nếu v không có con phải thì: v[b] -> v[c]
 - Quy tắc của nút [c]:
 - Nếu v là con trái của u thì: v[c] -> u[b]
 - Nếu v là con phải của u thì: v[c] -> u[c]
 - Nếu v là nút gốc thì: v[c] -> NULL

CHU TRÌNH EULER VÀ LINKED LIST

 $1[A] \rightarrow 2[A] \rightarrow 4[A] \rightarrow 4[B] \rightarrow 4[C] \rightarrow 2[B] \rightarrow 5[A] \rightarrow 5[B]$ $\rightarrow 5[C] \rightarrow 2[C] \rightarrow 1[B] \rightarrow 3[A] \rightarrow 6[A] \rightarrow 6[B] \rightarrow 6[C] \rightarrow 3[B]$ $\rightarrow 3[C] \rightarrow 1[C] \rightarrow (NULL)$

PREORDER: A=1, B=0, C=0

TÍNH SUFFIX SUM TRÊN DANH SÁCH

THỨ TỰ DUYỆT PREORDER

- Thứ tự duyệt đỉnh v: |V| v[A] + 1
 - \blacksquare 1[A] = 6 -> Position (1) = 6 6 + 1 = 1
 - $^{\circ}$ 2[A] = 5 -> Position (2) = 6 5 + 1 = 2
 - $3[A] = 2 \rightarrow Position (3) = 6 2 + 1 = 5$
 - $4[A] = 4 \rightarrow Position (4) = 6 4 + 1 = 3$
 - $^{\circ}$ 5[A] = 3 -> Position (5) = 6 3 + 1 = 4
- Thứ tự duyệt là [1 -> 2 -> 4 -> 5 -> 3 -> 6]

INORDER: A= 0, B=1, C=0

TÍNH SUFFIX SUM TRÊN DANH SÁCH

THỨ TỰ DUYỆT INORDER

- Thứ tự duyệt đỉnh v: |V| v[B] + 1
 - \blacksquare 1[B] = 3 -> Position (1) = 6 3 + 1 = 4
 - $^{\circ}$ 2[B] = 5 -> Position (2) = 6 5 + 1 = 2
 - $\overline{ }$ 3[B] = 1 -> Position (3) = 6 1 + 1 = 6
 - -4[B] = 6 -> Position (4) = 6 6 + 1 = 1
 - $5[B] = 4 \rightarrow Position(5) = 6 4 + 1 = 3$
- Thứ tự duyệt là [4 -> 2 -> 5 -> 1 -> 6 -> 3]

POSTORDER: A= 0, B=0, C=1

TÍNH SUFFIX SUM TRÊN DANH SÁCH

THỨ TỰ DUYỆT POSTORDER

- Thứ tự duyệt đỉnh v: |V| v[C] + 1
 - 1[C] = 1 -> Position (1) = 6 1 + 1 = 6
 - $^{\circ}$ 2[C] = 4 -> Position (2) = 6 4 + 1 = 3
 - 3[C] = 2 -> Position (3) = 6 2 + 1 = 5
 - $\overline{-4[C]} = 6 -> Position (4) = 6 6 + 1 = 1$
 - $^{\bullet}$ 5[C] = 5 -> Position (5) = 6 5 + 1 = 2
 - | 6[C] = 3 -> Position (6) = 6 3 + 1 = 4
- Thứ tự duyệt là [4 -> 5 -> 2 -> 6 -> 3 -> 1]

DEPTH(V): A=1, B=0, C=-1

TÍNH SUFFIX SUM TRÊN DANH SÁCH

XÁC ĐỊNH ĐỘ SÂU CÁC NÚT

- Độ cao của đỉnh v: abs(v[A])
 - \blacksquare 1[A] = 0 -> Position (1) = 6 1 + 1 = 0
 - $^{\circ}$ 2[A] = -1 -> Position (2) = 6 4 + 1 = 1
 - 3[A] = -1 -> Position (3) = 6 2 + 1 = 1
 - -4[A] = -2 -> Position (4) = 6 6 + 1 = 2

 - $\overline{ } \ 6[A] = -2 \rightarrow Position (6) = 6 3 + 1 = 2$
- Độ cao: Height(v) = H Depth(v). Trong đó $H = max \{ Depth(v) \}$

XÁC ĐỊNH KÍCH THƯỚC CÂY CÓ GỐC V

Với mọi v, xác định số nút trong cây con có v là gốc. Đặt A = 0, B = 0, C = 1

XÁC ĐỊNH KÍCH THƯỚC CÂY CÓ GỐC V

 Tính Suffix Sum trên danh sách dựa theo chu trình Euler

XÁC ĐỊNH KÍCH THƯỚC CÂY CÓ GỐC V

• Size
$$(v) = v[A] - v[C] + 1$$

$$Size(1) = 6 - 1 + 1 = 6$$

$$Size(2) = 6 - 4 + 1 = 3$$

• Size
$$(3) = 3 - 2 + 1 = 2$$

• Size
$$(4) = 6 - 6 + 1 = 1$$

• Size
$$(5) = 5 - 5 + 1 = 1$$

Size
$$(6) = 3 - 3 + 1 = 1$$

CHU TRÌNH EULER CHO CÂY TỔNG QUÁT

- Xét 1 nút v bất kỳ. Giả sử {v₁, v₂, ... v_m} là các con của v từ trái qua phải.
- Mô phỏng v bởi m+1 nút con:
 - v[A]: Điểm vào của v trong chu trình Euler
 - v[C]: Điểm ra của v trong chu trình Euler
 - $v[B_k]$: nối với các nút con của v_{k+1} . (k=1..m-1)
- Nếu v là nút lá hoặc chỉ có 1 con thì vẫn biểu diễn v bởi v[A], v[B], v[C]

QUY TẮC NỐI ĐỈNH

- Quy tắc đối với A:
 - Nếu v có con trái ngoài cùng là v₁ thì v[A] nối với v₁[A]
 - Nếu v không có con thì v[A] nối với v[B]
- Quy tắc đối với B:
 - Nếu v là nút thì v[B] nối với v[C]
 - Nếu v có các nút con $\{v_1, v_2, ..., v_m\}$ thì $v[B_k]$ nối với $v_{k+1}[A]$. Với k=1.. m-1
- Quy tắc đối với C:
 - Nếu v là con ngoài cùng bên phải của u thì v[C] nối với u[C]
 - Nếu v là con thứ k của u thì v[C] nối với u[B_k]
 - Nếu v là gốc thì v[C] nối với NULL

VÍ DŲ MINH HỌA

CÁC BÀI TOÁN VỚI CÂY TỔNG QUÁT

- Bài toán duyệt:
 - Không có khái niệm InOrder
 - PreOrder và PostOrder duyệt giữa trên đỉnh đầu vào A và đỉnh ra C. Các giá trị $B_k = 0$
 - PreOrder: A = 1; C = 0
 - PostOrder: A = 0; C = 1
 - Bài toán về độ sâu, độ cao: A = 1; C = -1.
 - Bài toán kích thước cây con; A = 0; C = 1

PREORDER: $A = 1, B_k = 0, C = 0$

PREORDER: $A = 1, B_k = 0, C = 0$

3.3. TREE CONTRACTION

PHÁT BIỂU BÀI TOÁN

Cho một cây nhị phân. Hãy thực hiện việc rút gọn cây lại thành 1 cây bao gồm 1 gốc và 2 nút con.

- Cây T = (V,E) là 1 cây nhị phân gốc r:
 - p(v) là nút cha của v trên cây T
 - sib(v) là nút anh em của v: là con của cùng 1 nút cha.
- Thao tác RAKE cho nút lá v: p(v) <> r
 - Xóa các nút v, p(v) trên cây T.
 - Nối sib(v) với p(p(v)) trên cây T

■ Toán tử RAKE — rút gọn các nút lá:

- Vấn đề nảy sinh
 - Không thể thực hiện toán tử RAKE với nút lá nối liền với gốc
 - Chỉ thực hiện song song trên các lá mà cha của chúng không kề nhau
 - Ví dụ: nút lá 1,8,9 không thể cùng thực hiện

- Cách giải quyết:
 - Mỗi nút cha phải lưu trữ thông tin về con trái và con phải của mình
 - Đánh dấu các nút là theo thứ tự từ 1,2,...
 - Xét các nút có chỉ số lẻ:
 - Các nút là con trái thì cha của chúng sẽ không kề nhau. Ta gọi là nhóm 1
 - Tương tự với các nút con phải lẻ. Ta gọi là nhóm 2
 - Thực hiện song song trên từng nhóm lần lượt sẽ đảm bảo không bị vi phạm điều kiện của RAKE

CÁC BƯỚC THUẬT TOÁN

■ B1: Đánh dấu các nút lá theo thứ tự từ 1..n để lưu vào mảng Z, (ngoại trừ 2 nút lá nằm bên trái, phải ngoài cùng)

Lặp:

- B2. Thực hiện RAKE với các nút Z[k] với k lẻ và là con bên trái
- B3. Thực hiện RAKE với các nút Z[k] với k lẻ còn lại
- B4. Gán Z = tập các Z[k] với k chẵn
- Cho đến khi còn lại 3 nút thì dừng lại

VÍ DỤ

CÁC BƯỚC CHI TIẾT

- Giải bước 1 trong thuật toán:
 - Cho cây T = (V,E)
 - Hãy đánh số các lá từ trái qua phải (ngoại trừ 2 nút trái, phải ngoài cùng) theo thứ tự từ 1..n
- Cách giải quyết:
 - Sử dụng chu trình Euler
- Ví dụ minh họa với cây nhị phân (mỗi nút có đúng 2 nút con)

ĐÁNH THỨ TỤ CÁC LÁ TỪ TRÁI – PHẢI

CÁC BƯỚC CHI TIẾT

XÁC ĐỊNH CÁC NÚT LÁ

- Xây dựng chu trình Euler trên cây
- Tại mỗi nút v: v[A]=0; v[B]=0; v[C]=1
- Tính Suffix Sum đối với các nút trên danh sách sinh ra từ chu trình Euler
- Nút lá là nút có đặc điểm: giá trị Suffix tại các nút con bằng nhau: v[A] = v[B] = v[C]
- Từ hình vẽ xác định các lá:
 [H Q S M E J N T P G]

XÁC ĐỊNH CÁC NÚT LÁ

XÁC ĐỊNH CÁC NÚT LÁ

ĐẶT THỨ TỰ CHO CÁC LÁ

- Đặt A = 1; B = 0; C = 0
- Tính Suffix sum cho các nút trên danh sách sinh ra từ chu trình Euler.
- Thứ tự các lá sắp xếp từ phải qua trái thông qua giá trị v[A]
- Có thể đánh số từ trái qua phải bằng công thức
 |số lá| v[A] + 1
- Lưu trữ các lá ngoại trừ các lá ngoài cùng bên trái và bên phải vào mảng Z[1..n]

ĐẶT THỨ TỰ CHO CÁC LÁ

ĐẶT THỨ TỰ CHO CÁC LÁ

ĐÁNH THỨ TỰ TỪ TRÁI – PHẢI

TREE CONTRACTION B1.1

TREE CONTRACTION B1.2

TREE CONTRACTION (B1.2,B2.1)

Gán Z = Z[k] với k chẵn

RAKE: Z[3]

TREE CONTRACTION (B2.2,B2.3)

RAKE: Z[1]

Gán : Z = Z[k] với k chẵn

TREE CONTRACTION (B3.1,B3.2)

HÉT BÀI