STEP Supply-Demand Integration Model and Methodology

STEP Assumptions and Scenario Cases

- 1. <u>Energy Prices</u> (EIA base case; higher prices to induce conservation, fuel switch)
- 2. <u>Government Policies</u> (business as usual; carbon reduction policies; R and D budgets)
- 3. <u>Technology Assumptions</u> (historical, current best, future best)
- 4. Pace of Capital Stock Turn-Over (autos I0 years; homes -50 years; industry 75-100 years)
- 5. Energy Security/Carbon Reduction Cases (historical, current best technology, projected "best" technology)

STEP Methodology

For different scenario cases, determine energy demand by category, energy supply, and energy supply-demand integration

- 1. Determine energy consumption and carbon emissions for each category (ie. economic activity x energy efficiency).
 - A. Economic activity derived from macro-economic model (tons of steel) to ensure consistency of categories (ie. tons of steel consistent with autos produced) based on GNP
- B. Each demand sector has energy efficiency or carbon intensity based on technology choice (historical, current, best) determined by price and technology availability
- Determine fuel mix for each demand category (historical and based on price of fuels and government policy)
- 3. Add up final demand for key demand sectors
- 4. Determine energy transformation sector
- A. Fuel mix for electrical generation (depends on price, government policy)
- B. Efficiency of electricity generation process (historically 33%; current 37%; best future?)
- 5. Add up columns (across and down) and determine "primary energy demand"
- Determine energy supply parameters (domestic, imports or exports)
- A. Impact of price and policy on fuel choices in demand sectors
- B. Impact of price and policy on electricity
- 7. Determine most effective government R&D
- 8. Feasibility of scenarios in real-world business applications

STEP Results

- Each demand line item would afford opportunity to showcase key technologies (transport, commercial, residential, industrial)
- Integration would occur as fuel choices for each sector are made (oil, coal, renewables, electricity)
- Renewables can be both direct (remote power) or part of electrical transformation (large-scale)
- Total energy (energy efficiency) and total carbon output is thus determined by demand sectors, supply options and energy transformation
- 5. Alternative Scenarios chosen would bracket
 - A. Base EIA case—no change in policy
 B. 450 ppm reduction case—what set of assumptions would be required to achieve this case (economic growth, energy prices, technology success).
- 6. Leads to the conclusion that 450 ppm case can be achieved if . . .
- What are the costs and benefits of this? Key issue is to quantify the externalities of not achieving this 450 ppm case (and lower oil imports)
- 8. A key factor is the discount rate used for the future. A high interest rate devalues the future and makes adjustments very expensive.
- 9. Translate model results into practice in the presentation

STEP Goals

- STEP endeavors to seek <u>efficiency in energy and carbon in every cell of this matrix</u>
- 2. STEP seeks to ensure consistency of forecast (economic, policy)
- 3. STEP seeks to showcase key technologies in each cell
- 4. STEP seeks to determine what sets of assumptions achieve 450 ppm and the costs/benefits
- 5. STEP approach allows for framework to discuss government-business partnership
- STEP methodology <u>enables comparison of US</u> <u>with other nations</u>, a framework for bilateral/IPCC/IEA discussions

		Natural			Renewable		
Major Sectors	Petroleum	Gas	Electricity	Coal	Sources*	Nuclear	TOTAL
Transportation							
Light-duty vehicles							
Commercial light trucks							
Bus Transportation							
Freight Trucks							
Passenger Rail							
Freight Rail							
Domestic Shipping							
International Shipping							
Recreational Boats							
Air							
Military Use							
Lubricants							
Pipeline Fuel							
Other							

Industrial
Manufacturing
Aluminum
Cement
Chemicals
Computers, Electronics,
Appliances, Electrical
Equipment Fabricated Metals
Food and Beverage
Forest Products
Foundries
Glass and Fiber Glass
Heavy Machinery
Mining
Petroleum Refining
Plastics and Rubber
Products
Steel
Textiles
Transportation Equipment
Other

Commercial
Space Heating
Space Cooling
Water Heating
Ventilation
Cooking
Lighting
Refrigeration
Office Equipment (PC)
Office Equipment (non-PC)
Other

Residential		
Space Heating		
Space Cooling		
Water Heating		
Refrigeration		
Cooking		
Clothes Dryers		
Freezers		
Lighting		
Clothes Washers		
Dishwashers		
Color Televisions and Set-		
Top Boxes		
Personal Computers and		
Related Equipment		
Furnace Fans and Boiler		
Circulation Pumps		
Other		

Demana	
Energy Transformation	
Electricity	
Synthetic Gas	
Synthetic Gas Synthetic Liquids	
Heat	
Heat Energy Sector	

Total Energy Demand	
Domestic Supply	
Imports	
Exports	

*Renewable Sources currently include hydropower, solar, wind, geothermal, biomass, and ethanol.