

Semester Project - Part 03

Table of Contents

- Video Specifications
- Global Lighting Evaluation on Scenes
- Deep Learning-Based Optical Flow
- Unwarping
- RAFT

Video Specifications

Video Specifications

- **Duration:** 3 min 0 s
- **Width:** 6,144 pixels
- Height: 3,072 pixels
- Frame rate: 25.000 FPS
- Overall bit rate: 240 Mb/s
- General Codec ID: mp42 (mp42/mp41)
- Video Codec ID: avc1
- Bit depth: 8 bits
- Color space: YUV

Global Lighting Evaluation on Scenes - Scene 05 Example

Global Lighting Evaluation on Scenes - Scene 01 Example

Global Lighting Evaluation on Scenes - Scene 02 Example

Global Lighting Evaluation on Scenes - Part 02 Merged

Global Lighting Evaluation on Scenes - Part 02 Merged

Deep Learning-Based Optical Flow

Deep Learning-Based Optical Flow - Farneback vs RAFT

Farneback

- Utilizes grayscale (G channel)
- Captures primarily cloud edges

RAFT

- Deep learning-based approach
- Employs RGB channels
- Yields more fluent directional flow

Deep Learning-Based Optical Flow - Farneback

Deep Learning-Based Optical Flow - RAFT

Deep Learning-Based Optical Flow - Scene 05 Example

Unwarping

Unwarping - Warped Frames

Issue: image is warped

Unwarping - Intrinsic Parameters

- Focal lengths (in pixels)
- Principal point
- Skew of the axis
- Distortion coefficients

$$K = egin{pmatrix} lpha_u & s & p_u \ 0 & lpha_v & p_v \ 0 & 0 & 1 \end{pmatrix}$$

$$D = (k_1, k_2, k_3, k_4)$$

Unwarping - Intrinsic Parameters

- Focal lengths (in pixels)
- Principal point
- Skew of the axis
- Distortion coefficients

$$K = egin{pmatrix} lpha_u & s & p_u \ 0 & lpha_v & p_v \ 0 & 0 & 1 \end{pmatrix}$$

$$D=(k_1,k_2,k_3,k_4)$$

$$egin{aligned} lpha_u &= focal_length \cdot rac{W_{resolution}}{W_{sensor}} & lpha_v &= focal_length \cdot rac{H_{resolution}}{H_{sensor}} \ p_u &= rac{W_{resolution}}{2} & p_v &= rac{H_{resolution}}{2} & s &= 0 \end{aligned}$$

$$p_v = rac{oldsymbol{n}_{resolution}}{oldsymbol{2}}$$

Unwarping - Results Scene 01

Unwarping - Optical Flow Scene 05 Example

Unwarping - Optical Flow Scene 05 Example

RAFT

RAFT - Part 01

RAFT - L1 Differences vs Flow magnitudes

RAFT - Part 02

RAFT - L1 Differences vs Flow magnitudes

RAFT - Part 02 Merged

