(01: Determine the moments of inertia and radii OF gyration OF the circular area.

By letting r change by an amount or dr, we obtain an annular element of area dA = 2 rc-dr

$$J_0 = I_{x} + I_{y}$$

$$= \int r^2 dA = \int 2\pi r^3 dr$$

$$H_0 = \int \frac{J_0}{A} = \frac{J_0}{\pi A^2} = \frac{1}{\sqrt{2}} R = \frac{2\pi}{2\pi} \left[\frac{r^4}{4} \right]^R = \frac{1}{2\pi} R^4$$

The moment of inertia Iz= Iy= 1200 = 14 TER"

Q2:

Determine the moment

OF inertia in terms

of the xxy coordinate

Sustam system.

$$\begin{split} & I_{x'} = \frac{1}{12}bh^{3} \; ; \quad I_{y'} = \frac{1}{12}hb^{3} \\ & I_{x} = I_{x'} + d^{2}_{9}A \Rightarrow \frac{1}{12}bh^{3} + (\frac{1}{2}h)^{2}(bh) \\ & \Rightarrow \frac{1}{3}bh^{3} \\ & I_{y} = I_{y'} + d^{2}_{x}A \Rightarrow \frac{1}{2}hb^{3} + (\frac{1}{2}b)^{2}(hb) \\ & \Rightarrow \frac{1}{3}hb^{3} \\ & J_{0} = J_{0'} + d^{2}A = \frac{1}{12}(bh^{3} + hb^{3}) + \left[\left(\frac{1}{2}b\right)^{2} + \left(\frac{1}{2}h\right)^{2}\right](bh) \\ & = \frac{1}{3}(bh^{3} + hb^{3}) \\ & OR \quad J_{0} = I_{x} + I_{y} \end{split}$$

		dy (F+)	A (F+ =)	Ix (F) "	Ix = Ix + dy A (F+")
0003 5	1	2	(1)(4)	(1/2)(1)(4)3	21.33
PART	2	0.5	(2)(1)	(4/2)(2)(1)3	0.67

$$I_{z} = (I_{x})_{1} + (I_{x})_{2}$$
 $I_{z} = 21.33 + 0.67 = 22.00 \text{ F+ }^{\text{H}}$
 $M_{z} = \sqrt{I_{x}}_{A} \Rightarrow \sqrt{22}_{6} \Rightarrow 1.91 \text{ Ff}$

	d= do (4)	A (F+2)	Ix's' (f4")	Izy = Iz'y + (dzdy) A (F+")
1	0.5/2	(1)(H)	0	4
2	2 0.5	(2)(1)	Ø	2

$$(\Xi M_{\circ})_{,} = \begin{vmatrix} i & j & H_{\circ} \\ 6 & 0 & 0 & + (-90i + 150j + 60H) \\ 30 & 5 & 10 \end{vmatrix}$$
 $(\Xi M_{\circ})_{,} = 90i + 90j + 90H$

(EM 0) =	ì	.,	H	1
	6	3	3	
	10	20	-10	

=> -90: + 90:+ 90 h

.. the two systems are equivalent