Variabili aleatorie continue

Definizione (Densità di probabilità). La distribuzione di probabilità di una variabile aleatoria continua X viene definita assegnando una funzione f, detta densità (di probabilità) di X, tale che:

1.
$$f(x) \ge 0$$
 per ogni $x \in \mathbb{R}$;

2.
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Le probabilità che X assuma valori in un dato intervallo [a,b] è data dall'integrale della sua densità sull'intervallo [a,b] considerato $(P(a \le X \le b) = \int_a^b f(x) dx)$.

Osservazione:

- 1. il fatto che una la densità f è non negativa assicura che, comunque sia scelto [a,b], la probabilità dell'evento $X \in [a,b]$ è non negativa;
- 2. il fatto che l'integrale della densità f sull'intervallo $(-\infty, +\infty)$ valga 1 assicura che la probabilità dell'evento certo è 1.

Esercizio 1. Data la funzione

$$f(x) = \begin{cases} kx^2 & se \ 0 \le x \le 30\\ 0 & altrimenti \end{cases}$$

determiniamo per quale valore di k essa definisce la densità di una variabile aleatoria X;

Svolgimento. Affinché la funzione f definisca una densità di probabilità devono essere soddisfatte le due condizioni

1. $f(x) \ge 0$ per ogni $x \in \mathbb{R}$;

$$2. \int_{-\infty}^{+\infty} f(x) dx = 1$$

Affinché la funzione sia sempre non negativa deve essere $kx^2 \ge 0$, che equivale a $k \ge 0$.

Poiché la funzione f è nulla al di fuori dell'intervallo $0 \le x \le 3$ la condizione $\int_{-\infty}^{+\infty} f(x) dx = 1$ equivale alla seguente equazione, che risolviamo:

$$\int_0^3 kx^2 = 1 \Rightarrow k \int_0^3 x^2 = 1 \Rightarrow k \left[\frac{x^3}{3} \right]_0^3 = 1 \Rightarrow k = \frac{1}{9}.$$

Questo valore di k è accettabile perché è positivo.

È importante fare alcune osservazioni

• Se l'intervallo [a, b] si riduce a un punto, cioè se a = b, risulta:

$$P(a \le X \le a) = P(X = a) = \int_{a}^{a} f(x)dx = 0.$$

Perciò, se X è una variabile aleatoria continua, la probabilità che essa assuma un qualsivoglia valore reale prefissato è sempre nulla; in simboli: P(X = a) = 0 per ogni $a \in \mathbb{R}$. Conseguenza di questo fatto è che aggiungere o togliere un numero finito di punti a un intervallo non altera la sua probabilità; per esempio:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b).$$

• Data la densità di probabilità f di una variabile aleatoria continua X, il valore f(a) da essa assunto quando x=a non ha (come invece accade nel caso discreto) il significato di probabilità dell'evento X=a: infatti questa probabilità è sempre uguale a zero, mentre il valore assunto da f in x=a, in generale, è un numero positivo, eventualmente maggiore di 1. Nel continuo solo l'integrale della densità su unintervallo ha il significato di probabilità di un evento.

Media e Varianza di una variabile aleatoria continua

Le definizioni di media e varianza di una variabile aleatoria discreta si estendono al caso continuo sostituendo semplicemente la sommatoria con l'integrale.

Definizione (Media di una variabile aleatoria continua). Data una variabile aleatoria continua X, di densità f, si dice media (o valore medio o valore atteso o speranza matematica) di X e si indica con il simbolo E(X) (o con la lettera μ) il numero, se esiste, così definito:

$$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) dx.$$

Definizione. Varianza e deviazione standard di una variabile aleatoria continua Data una variabile aleatoria continua X, di densità f e media μ , si dice varianza di X e si indica con il simbolo Var(X) (o con σ^2) il numero, se esiste, così definito:

$$\sigma^2 = Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx.$$

Anche nel caso continuo, per il calcolo della varianza vale una formula abbreviata simile a quella vista nel caso discreto:

$$\sigma^2 = Var(X) = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$$

Si definisce deviazione standard di X (e si indica con σ) la radice quadrata della varianza:

$$\sigma = \sqrt{Var(X)}.$$

Esercizio 2. Calcoliamo media e varianza della variabile aleatoria X di densità

$$f(x) = \begin{cases} \frac{1}{9}x^2 & se \ 0 \le x \le 3\\ 0 & altrimenti \end{cases}$$

Svolgimento. Osserviamo che nell'esercizio precedente abbiamo già verificato che f è la densità di probabilità di una variabile aleatoria X.

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{3} \frac{1}{9} x^{2} dx =$$

(la densità è nulla al di fuori dell'intervallo [0,3], quindi sugli intervalli $(-\infty,0)$ e $(3,+\infty)$ anche l'integrale della densità è nullo.

$$= \frac{1}{9} \int_0^3 x^2 dx = \frac{1}{9} \cdot \frac{81}{4} = \frac{9}{4}.$$

Per calcolare la varianza, utilizziamo la formula abbreviata

$$Var(X) = \int_0^3 x^2 \cdot \frac{1}{9} x^2 dx - \mu^2 = \frac{1}{9} \int_0^3 x^4 - \left(\frac{9}{4}\right)^2 = \frac{1}{9} \left[\frac{x^5}{5}\right]_0^3 - \frac{81}{16} = \frac{27}{80}.$$

Definizione (Funzione di ripartizione di una variabile aleatoria continua). Sia X una variabile aleatoria continua, avente come densità la funzione f; si chiama funzione di ripartizione di X la funzione che, per ogni $x \in \mathbb{R}$, è così definita:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt.$$

Esercizio 3. Determinare la funzione di ripartizione della variabile continua X di densità:

$$f(x) = \begin{cases} \frac{1}{2}x & se \ 0 \le x \le 2\\ 0 & altrimenti. \end{cases}$$

Svolgimento. Determiniamo F(x) nei seguenti casi: x < 0, $0 \le x \le 2$ e x > 2.

• $Se \ x < 0$, allora

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{x} 0dt = 0.$$

• Se $0 \le x \le 2$, allora

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} f(t)dt + \int_{0}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{x} \frac{1}{2}tdt = \frac{1}{4}x^{2}.$$

• $Se \ x > 2$, allora

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} f(t)dt + \int_{0}^{2} f(t)dt + \int_{2}^{x} f(t)dt = 0 + 1 + 0 = 1.$$

Dunque,

$$F(x) = \begin{cases} 0 & se \ x < 0 \\ \frac{1}{4}x^2 & se \ 0 \le x \le 2 \\ 1 & se \ x > 2 \end{cases}$$

Il grafico di F(x) è il seguente:

Si può dimostrare che la funzione di ripartizione di una variabile aleatoria continua:

- è crescente;
- tende a 0 per $x \to -\infty$;
- tende a 1 per $x \to +\infty$.

Inoltre, poiché la funzione di ripartizione di una variabile aleatoria continua è la funzione integrale della sua densità, segue che:

- la funzione di ripartizione di una variabile aleatoria continua è sempre una funzione continua;
- se la densità f(x) di X è una funzione continua, la funzione di ripartizione F(x) di X è derivabile e la sua derivata è la densità:

$$F'(x) = f(x)$$

(per il primo teorema forndamentale del calcolo integrale). $P(a \leq X \leq b)$ può essere calcolato mediante F, infatti per il secondo teorema fondamentale del calcolo integrale

$$P(a \le X \le b) = \int_a^b f(x)dx = F(a) - F(b).$$