# Manufacturing System Analysis Experiment

EOQ, (Q, r)



### 1. Experiment Overview

■ Title

EOQ vs. (Q, r) model

### Objective

- Understanding the concept and principle of the EOQ and (Q, r) model.
- Considering the implications in real life inventory management issues when applying the model.



#### **■** EOQ (Economic Order Quantity) Model

- Assumptions
  - Demand is constant and continuous
  - Ordering and Holding cost are constant over time
  - The whole batch quantity is delivered at the same time (zero lead time)
  - No shortages are allowed





**■** EOQ (Economic Order Quantity) Model (cont.)

$$Y(Q) = \frac{hQ}{2} + \frac{AD}{Q} + cD$$

$$\frac{dY(Q)}{dQ} = \frac{h}{2} - \frac{AD}{Q^2}$$

$$\frac{d^2Y(Q)}{dQ^2} = \frac{2AD}{Q^3} > 0$$

$$Q^* = \sqrt{\frac{2AD}{h}}$$

$$COST$$

$$Q^* = \sqrt{\frac{2AD}{h}}$$

$$Q^*$$

Total Cost

$$Y^* = Y(Q^*) = \frac{hQ^*}{2} + \frac{AD}{Q^*} = \frac{h\sqrt{\frac{2AD}{h}}}{2} + \frac{AD}{\sqrt{\frac{2AD}{h}}} = \sqrt{2ADh}$$



order quantity

- (Q, r) Model
  - Assumptions
    - Demand: random & stationary
    - Lead time: fixed
    - Inventory level: continuous review





- (Q, r) Model (cont.)
  - Q

$$G(Q,r) = A\frac{D}{Q} + h\left(\frac{Q}{2} + r - \theta\right) + b\frac{D}{Q}(n(r))$$

$$\frac{dG}{dQ} = -A\frac{D}{Q^2} + \frac{h}{2} - b\frac{D}{Q^2}n(r) = 0$$

$$\frac{1}{Q^2} \{AD + bDn(r)\} = \frac{h}{2}$$

$$\therefore Q^* = \sqrt{\frac{2D\{A + bn(r)\}}{h}}$$



• r

$$G(r^*) = 1 - \frac{hQ_n}{bD}$$



# 3. Experiment Design

Production department at Yonsei Electronics has the basic data value as <Table 1>. They are trying to make a purchase plan based on the forecasted demand as <Table 2>. Create a minimum cost order plan using the EOQ and (Q, r) model.

| T | Total planning horizon           | 30  |  |  |  |  |
|---|----------------------------------|-----|--|--|--|--|
| D | Expected demand rate over T      | 360 |  |  |  |  |
| l | Replenishment lead time          | 2   |  |  |  |  |
| С | Unit cost (per unit)             | 50  |  |  |  |  |
| A | Fixed ordering cost              | 150 |  |  |  |  |
| h | Holding cost (per unit per week) | 10  |  |  |  |  |
| b | b Backorder cost                 |     |  |  |  |  |
|   | Initial inventory                | 30  |  |  |  |  |

<Table 1> Basic parameter

| Week   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Demand | 11 | 12 | 12 | 14 | 14 | 12 | 11 | 11 | 12 | 13 | 12 | 13 | 12 | 12 | 11 |
| Week   | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Demand | 13 | 11 | 13 | 12 | 13 | 12 | 12 | 10 | 10 | 12 | 12 | 12 | 13 | 12 | 11 |

<Table 2> Demand data (sum = 360)



# 3. Experiment Design

- 1. Create an order plan using EOQ and (Q, r) model, and compare the results to see which model is better.
- 2. Conduct an experiment with different demand data, and discuss the applicability to the reality through the result analysis.



- 1) Q\* calculation
  - $Q^* = \sqrt{\frac{2AD}{h}}$ , (A = Fixed ordering cost, D = Expected demand rate over T initial inventory, h = Holding cost \* Total planning horizon T)
  - Order quantity must be an integer (Roundup function)





- 2) T\* calculation
  - $T^* = \frac{Q^*}{D}$  (Q\*=Q\*, D = Expected demand rate over T initial inventory / total planning horizon)





- 3) Inventory calculation
  - [Inventory of t] = [Inventory of t 1] + [Replenishment quantity of t] [Demand of t] [Backorder of t 1]
  - Inventory must be a positive value (MAX function)

| ▼ : × ✓ f <sub>x</sub> =MAX((E21+F20-G20-C21),0) |        |                |                        |           |           |  |  |  |  |  |  |
|--------------------------------------------------|--------|----------------|------------------------|-----------|-----------|--|--|--|--|--|--|
| В                                                | С      | D              | E                      | F         | G         |  |  |  |  |  |  |
|                                                  |        |                |                        |           |           |  |  |  |  |  |  |
| Order plan                                       |        |                |                        |           |           |  |  |  |  |  |  |
| Week                                             | Demand | Order quantity | Replenishment quastity | Inventory | Backorder |  |  |  |  |  |  |
| 0                                                |        |                |                        | 30        | Ī         |  |  |  |  |  |  |
| 1                                                | 11     | 0              | 0                      | =MAX((E2  | 0         |  |  |  |  |  |  |
| 2                                                | 12     | 19             | 19                     | 26        | 0         |  |  |  |  |  |  |
|                                                  |        |                |                        |           |           |  |  |  |  |  |  |



- 4) Backorder calculation
  - Backorder occurs when demand is not satisfied each period
  - [Backorder of t] = [Inventory of t-1] + [Replenishment quantity of t] [Demand of t] [Backorder of t-1]
  - Backorder must be a positive value (\*(-1), MAX function)

| ¥ | :                | =MAX((E21+F20-G20-C21)*(-1),0) |                      |                               |                      |                        |  |  |  |  |  |
|---|------------------|--------------------------------|----------------------|-------------------------------|----------------------|------------------------|--|--|--|--|--|
|   | В                | С                              | D                    | E                             | F                    | G                      |  |  |  |  |  |
|   |                  |                                |                      |                               |                      |                        |  |  |  |  |  |
|   | Order plan       |                                |                      |                               |                      |                        |  |  |  |  |  |
|   | 4                |                                |                      |                               |                      |                        |  |  |  |  |  |
|   | Week             | Demand                         | Order quantity       | Replenishment quantity        | Inventory            | Backorder              |  |  |  |  |  |
|   | Week<br>0        | Demand                         | Order quantity       | Replenishment quantity        | Inventory<br>30      | Backorder              |  |  |  |  |  |
|   | 0<br>1           | Demand<br>11                   | Order quantity 0     | Replenishment quantity  0     | Inventory<br>30<br>0 | Backorder<br>=MAX((E2) |  |  |  |  |  |
|   | 0<br>1<br>2      | 11 12                          | Order quantity  0 19 | Replenishment quantity  0  19 | 30<br>0<br>26        |                        |  |  |  |  |  |
|   | 0<br>1<br>2<br>3 | 11                             | 0                    | 0                             | 30<br>0              |                        |  |  |  |  |  |



- 5) Total cost calculation
  - Cost of the current period =
     (Replenishment quantity \*
     Expected demand rate) +
     (Inventory amount \* Holding cost)
     + (Backorder amount \* Backorder cost) + (Ordering cost)
  - Use IF function to see if any ordering occur, (IF(replenishment is 0, if true = value is 0, if false = value is 1) \* ordering cost)





- **■** Step 2. (Q, r) Model
  - 1)  $\theta$  calculation

 $\theta$  = expected demand during replenishment lead time

$$\theta = \frac{D * l}{T}$$





### **■** Step 2. (Q, r) Model

2) p(r), G(r) calculation

p(r) = density function of demand during lead time

G(r) = cumulative distribution function of demand during lead time

(Round up nearest to 4 decimals because initial values are very small)



#### **■** Step 2. (Q, r) Model

3) n(r) calculation

n(r) = expected quantity by which lead-time demand exceeds the base stock level

$$n(r) = \theta p(r) + (\theta - r)(1 - G(r))$$





### **■** Step 2. (Q, r) Model

- 4)  $Q_0$ ,  $r_0$  calculation
  - Use EOQ to find  $Q_0$
  - Calculate G(r) using  $G(r) = 1 \frac{hQ_n}{bD}$  and use Poisson table to find  $r_0$

$$r_0 = \underline{\text{minimum r value}}$$
 which satisfies  $G(r) \ge 1 - \frac{hQ_0}{bD}$ 

| × ✓ f <sub>x</sub> -1-(\$D\$8*I19)/(\$D\$9*\$D\$4/\$D\$3) |        |        |         |   |   |   |                                |                              |       |  |  |  |  |
|-----------------------------------------------------------|--------|--------|---------|---|---|---|--------------------------------|------------------------------|-------|--|--|--|--|
| В                                                         | С      | D      | E       | F | G | Н | 1                              | J                            | K     |  |  |  |  |
|                                                           |        |        |         |   |   |   | $G(r) \geq 1 - \frac{hQ_0}{r}$ |                              |       |  |  |  |  |
| Poisson table                                             |        |        |         |   |   |   | `                              | $bD = 1 - \frac{bD}{bD}$     |       |  |  |  |  |
| r                                                         | p      | G      | n       |   |   | n | $Q_n$                          | $1$ - $(hQ_n)/(bD)$          | $r_n$ |  |  |  |  |
| 0                                                         | 0.0000 | 0.0000 | 22.0000 |   |   | 0 | 19                             | =1 <b>-</b> (\$D\$8*I19)/(\$ | 26    |  |  |  |  |
| 1                                                         | 0.0000 | 0.0000 | 21.0000 |   |   | 1 | 21.410626                      | 0.76210416                   | 25    |  |  |  |  |



- **■** Step 2. (Q, r) Model
  - 5) (Q, r) calculation
    - Calculate  $Q_n \& G(r)$

$$Q_n = \sqrt{\frac{2D(A + bn(r_{n-1}))}{h}}, \qquad G(r) = 1 - \frac{hQ_n}{bD}$$

• Find  $r_n$  same way as the  $r_0$ 

$$r_n = \underline{\text{minimum r value}}$$
 which satisfies  $G(r) \ge 1 - \frac{hQ_n}{bD}$ 



- **■** Step 2. (Q, r) Model
  - 6)  $(Q^*, r^*)$  calculation
    - If  $|Q_n Q_{n-1}| < 1$  and  $|r_n r_{n-1}| < 1$ , set  $Q^* = Q_n$ ,  $r^* = r_n$  (according to (2))
    - Else, set t = t + 1 and go to (1)



### **■** Step 2. (Q, r) Model

- 7) Order quantity & replenishment amount calculation
  - Orders occur when (inventory at current period) + (scheduled replenishment) fell below reorder point  $(r^*)$
  - Scheduled replenishment means ordered, but not yet received quantity
  - Considering (inventory at current period) + (scheduled replenishment) allow us to avoid the unnecessary extra orders
  - Only orders from 2 weeks before is considered due to the lead time. Which means, replenishment quantity is received 2 weeks after the order
  - Order quantity is calculated using current inventory, scheduled replenishment, safety stock,  $r^*$ , and  $Q^*$



- **■** Step 2. (Q, r) Model
  - 8) Inventory, backorder, and cost can be calculated same as the EOQ model.



### ■ Step 3. EOQ model result & cost calculation

- 1) Total order quantity, total inventory, and total backorder calculated be by summing up values from each period.
- 2) Total order frequency = total order quantity /  $Q^*$
- 3) Total cost calculation
  - Total purchase cost = total order quantity x unit cost
  - Total ordering cost = total order frequency x ordering cost
  - Total inventory cost = total inventory x holding cost
  - Total backorder cost = total backorder x backorder cost
  - Total cost = sum of each element



- Step 4. (Q, r) model result & cost calculation
  - Same as EOQ model cost calculation
- Step 5. Result comparison of EOQ & (Q, r)
- Step 6. Repeat experiments and derive the results by controlling variability when demands occur



# Q & A

