

OLIMPIADA NAȚIONALĂ DE INFORMATICĂ BRĂILA 26 APRILIE – 03 MAI 2002

Sursa: pod.pas, pod.c, pod.cpp

Intrare: pod.in Ieşire: pod.out

Problema 2

Pod - soluție

Rezolvarea problemei se bazează pe observarea unei relații de recurență, cu ajutorul căreia se poate calcula numărul de posibilități de a ajunge pe o anumită traversă a podului.

Știind numărul de posibilități de a ajunge pe traversele t_i -1, t_i -2, t_i -3, se poate calcula numărul de posibilități pentru traversa t_i .

 $\mathbf{t_i} = \mathbf{suma} \ \mathbf{t_j}$, unde j este de la i-3 la i-1, și se poate sări de la traversa $\mathbf{t_j}$ la traversa $\mathbf{t_j}$.

Exemplu:

- dacă traversa t_i este **ruptă**, numărul de posibilități este 0 (nu se poate ajunge)
- dacă traversa t_i este deteriorată, se poate ajunge doar de la t_i -1, dacă traversa t_i -1 nu este ruptă;
- dacă traversa t_i este ok, se poate ajunge de la traversele t_i -2 și t_i -3 numai dacă acestea sunt ok, și de la traversa t_i -1 dacă aceasta este ok sau cel mult deteriorată.

Pentru a simplifica relația de recurență, se introduc 3 traverse fictive la începutul podului, $(\mathbf{t}_{-2}, \mathbf{t}_{-1}, \mathbf{t}_0)$ și o traversă fictivă la sfârșitul podului (\mathbf{t}_{n+1}) .

Numărul total de posibilități se va găsi în t_{n+1} .

Observație

Operațiile de adunare se vor face folosind o emulare pentru numere mari. Pentru reconstituirea unei soluții, se va folosi un vector care ține evidența pașilor.