Package 'ISRaD'

December 20, 2019

Title	Tools and	Data for	r the In	ternational	Soil	Radiocarbon	Database
-------	-----------	----------	----------	-------------	------	-------------	----------

Version 1.1.2

Description This is the central location for data and tools for the development, maintenance, analysis, and deployment of the International Soil Radiocarbon Database (ISRaD). ISRaD was developed as a collaboration between the U.S. Geological Survey Powell Center and the Max Planck Institute for Biogeochemistry. This R package provides tools for accessing and manipulating ISRaD data, compiling local data using the ISRaD data structure, and simple query and reporting functions for ISRaD. For more detailed information visit the ISRaD website at: https://soilradiocarbon.org/.

Depends R (>= 3.5.0)

Imports openxlsx, devtools, raster, rgdal, dplyr, tidyr, RCurl, ggplot2, maps, assertthat, rcrossref, pangaear, tidyverse, stringr

License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr,

rmarkdown

R topics documented:

checkTemplateFiles
compile
future14C
Gaudinski_2001
graven
ISRaD.extra
ISRaD.extra.Cstocks
ISRaD.extra.delta_delta
ISRaD.extra.fill_14c
ISRaD.extra.fill_coords
ISRaD.extra.fill_dates
ISRaD.extra.fill_fm
ISRaD.extra.geospatial
ISRaD.extra.geospatial.keys
ISRaD.flatten
ISRaD getdata

2 checkTemplateFiles

Index		18
	QAQC	16
	ISRaD.save.xlsx	16
	ISRaD.report	15
	ISRaD.rep.site.map	15
	ISRaD.rep.entry.stats	14
	ISRaD.rep.count.frc	14
	ISRaD.rep.count.all	13

checkTemplateFiles

Check ISRaD Template/Info files

Description

Check that the template information file and the template file match appropriately.

Usage

```
checkTemplateFiles(outfile = "", verbose = T)
```

Arguments

outfile file to dump the output report. Defaults to an empty string that will print to

standard output.

verbose if TRUE (default) will print output to specified outfile

Details

Used in compile() function, but primarily a development tool

Value

returns NULL

Examples

checkTemplateFiles()

compile 3

Compile ISRaD data product

Description

Construct data products to the International Soil Radiocarbon Database.

Usage

```
compile(dataset_directory, write_report = FALSE, write_out = FALSE,
  return_type = c("none", "list")[2], checkdoi = F, verbose = T)
```

Arguments

string defining directory where completed and QC passed soilcarbon datasets are stored

write_report boolean flag to write a log file of the compilation. File will be in the specified dataset_directory at "database/ISRaD_log.txt". If there is a file already there of this name it will be overwritten.

write_out boolean flag to write the compiled database file as .xlsx in dataset_directory return_type a string that defines return object. Default is "list". Acceptable values are "none" or "list" depending on the format you want to have the database returned in.

checkdoi set to F if you do not want the QAQC check to validate doi numbers

set to TRUE to print results of function to console

Examples

verbose

future14C

Future atmospheric 14C dataset for delta delta calculation

Description

Data from: Sierra, C. "Forecasting atmospheric radiocarbon decline to pre-bomb values", Radiocarbon, Vol 60, Nr 4, 2018, p 1055–1066 DOI:10.1017/RDC.2018.33

4 graven Usage future14C **Format** dataframe Gaudinski_2001 Gaudinski Harvard Forest example dataset Description Data from Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis Usage Gaudinski_2001 **Format** list Graven dataset for delta delta calculation graven Description Data from Graven et al 2017 https://www.geosci-model-dev.net/10/4405/2017/gmd-10-4405-2017.pdf Usage graven **Format** dataframe

ISRaD.extra 5

ISRaD.extra

ISRaD.extra

Description

Fills in transformed and geospatial data where possible, generating an enhanced version of ISRaD.

Usage

```
ISRaD.extra(database, geodata_directory)
```

Arguments

```
database soilcarbon dataset object
geodata_directory
directory where geospatial data are found
```

Details

Fills fraction modern, delta 14C, delta-delta values, profile coordinates, BD, orgC, and SOC stocks from entered data; fills soil and climatic data from external geospatial data products

Value

returns new ISRaD_extra object with derived, transformed, and filled columns

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill ISRaD.extra data
database.x <- ISRaD.extra(database,
  geodata_directory = system.file("extdata", "geodata_directory", package = "ISRaD"))</pre>
```

 ${\tt ISRaD.extra.Cstocks}$

ISRaD.extra.Cstocks

Description

Calculates soil organic carbon stock

Usage

```
ISRaD.extra.Cstocks(database)
```

Arguments

database

ISRaD dataset object.

Details

Function first fills lyr_bd_samp, lyr_c_org, lyr_c_org, lyr_coarse_tot. Notes: 1) SOC stocks can only be calculated if organic carbon concentration and bulk density data are available, 2) SOC stocks are calculated for the fine earth fraction (<2mm).

Value

returns ISRaD_data object with filled columns "lyr_coarse_tot_filled", "lyr_bd_samp_filled", "lyr_c_inorg_filled", "lyr_corg_filled", "lyr_soc_filled"

Author(s)

J. Beem-Miller

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
database.x <- ISRaD.extra.Cstocks(database)</pre>
```

ISRaD.extra.delta_delta

ISRaD.extra.delta_delta

Description

Calculates the difference between sample delta 14C and the atmosphere for the year of collection (delta-delta)

Usage

```
ISRaD.extra.delta_delta(database, future = TRUE)
```

Arguments

database ISRaD dataset object

future Project atmospheric radiocarbon into the future? T/F

Details

Creates new column for delta-delta value. Observation year and profile coordinates must be filled (use ISRaD.extra.fill_dates, and ISRaD.extra.fill_coords fxs). The relevant atmospheric d14C data (northern or southern hemisphere, or tropics) are determined by profile coordinates. Projection for 2016 to 2021 uses the four quarter average projected atmospheric radiocarbon concentration for Central Europe as estimated in Sierra (2019). Central Europe projection used for northern hemisphere (performs better against observation than northern hemisphere projection), while suthern hemisphere and tropic atmospheric radiocarbon projection lagged by 2.5 per mille, as this is the mean lag observed from 2000 to 2015 in the Graven (2017) dataset.

Value

returns ISRaD_data object with new delta delta columns in relevant tables

ISRaD.extra.fill_14c 7

Author(s)

J. Beem-Miller and C. Hicks-Pries

References

Graven et al. 2017 https://www.geosci-model-dev.net/10/4405/2017/gmd-10-4405-2017.pdf; Sierra, C. "Forecasting atmospheric radiocarbon decline to pre-bomb values", Radiocarbon, Vol 60, Nr 4, 2018, p 1055–1066 DOI:10.1017/RDC.2018.33

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill profile coordinates
database.x <- ISRaD.extra.fill_coords(database)
# Fill dates
database.x <- ISRaD.extra.fill_dates(database.x)
# Fill delta 14C from fraction modern
database.x <- ISRaD.extra.fill_14c(database.x)
# Fill delta delta
database.x <- ISRaD.extra.delta_delta(database.x)</pre>
```

Description

: Fills delta 14C from fraction modern if delta 14C not reported.

Usage

```
ISRaD.extra.fill_14c(database)
```

Arguments

database

ISRaD dataset object.

Details

: Warning: xxx_obs_date_y columns must be filled for this to work!

Value

returns ISRaD_data object with filled delta 14C columns

Author(s)

: J. Beem-Miller & A. Hoyt

References

: Stuiver and Polach, 1977

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill dates
database.x <- ISRaD.extra.fill_dates(database)
# Fill delta 14C from fraction modern
database.x <- ISRaD.extra.fill_14c(database.x)
# Column flx_14c in the "flux" table is now filled</pre>
```

```
ISRaD. \ extra. fill\_coords \\ ISRaD. \ extra. fill\_coords
```

Description

Fills profile coordinates from site coordinates if profile coordinates not reported.

Usage

```
ISRaD.extra.fill_coords(database)
```

Arguments

database ISRaD dataset object.

Value

returns ISRaD_data object with filled profile coordinates

Author(s)

J. Beem-Miller

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill profile coordinates
database.x <- ISRaD.extra.fill_coords(database)</pre>
```

ISRaD.extra.fill_dates 9

```
ISRaD.extra.fill_dates
```

ISRaD.extra.fill_dates

Description

Fills frc_obs_date_y and inc_obs_date_y columns from lyr_obs_date_y if not reported.

Usage

```
ISRaD.extra.fill_dates(database)
```

Arguments

database

ISRaD dataset object.

Details

This function must be run prior to the ISRaD.extra.fill_14c, ISRaD.extra.fill_fm, and ISRaD.extra.delta_delta for the layer and fraction tables.

Value

returns ISRaD_data object with filled obs_date_y columns

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill dates
database.x <- ISRaD.extra.fill_dates(database)
# Fraction table now has lyr_obs_date_y values in frc_obs_date_y field</pre>
```

Description

Fills fraction modern from delta 14C if fraction modern not reported.

Usage

```
ISRaD.extra.fill_fm(database)
```

Arguments

database

ISRaD dataset object.

Details

: Warning: xxx_obs_date_y columns must be filled for this to work!

Value

returns ISRaD_data object with filled fraction modern columns

Author(s)

```
: J. Beem-Miller & A. Hoyt
```

References

: Stuiver and Polach, 1977

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Fill dates
database.x <- ISRaD.extra.fill_dates(database)
# Fill fraction modern from delta 14C
database.x <- ISRaD.extra.fill_fm(database.x)</pre>
```

ISRaD.extra.geospatial

ISRaD.extra.geospatial

Description

Extracts data from a user-supplied raster file and adds data as a new variable at the profile level

Usage

```
ISRaD.extra.geospatial(database, geodata_directory,
  crs = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0",
  fillWorldClim = TRUE)
```

Arguments

Details

Generic function that uses geographic coordinates of profiles to extract data from one or more raster files. Raster data will be added as new variables at the profile level.

The new variable name will be a concatenation of "pro_", and the file name (excluding the file extension). The ISRaD recommended file name convention for geospatial files uses a 6 component string, separated by "_". Missing components can be replaced with "x" ("x"s will be dropped before creating variable names). The 6 components are as follows:

- 1) Short description of the data type, e.g. "bd" for bulk density
- 2) Top layer depth or exact depth (numeric, cm)
- 3) Bottom layer depth (numeric, cm)
- 4) Year of data observation (numeric)
- 5) Data units (e.g. mmyr for mean annual precipitation)
- 6) Any relevant notes

Coordinate reference system can be specified with the "crs" argument; default is WGS84. Note that all files in geodata_directory must use the same crs.

 $Option \ "fillWorldClim" \ fills \ climate \ data \ from \ worldclim \ V1.4 \ at \ 2.5 \ resolution \ (http://www.worldclim.org/bioclim).$

Variable descriptions are as follows:

bio1 = Annual Mean Temperature,

bio2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)),

bio3 = Isothermality (BIO2/BIO7) (* 100),

bio4 = Temperature Seasonality (standard deviation *100),

bio5 = Max Temperature of Warmest Month,

bio6 = Min Temperature of Coldest Month,

bio7 = Temperature Annual Range (BIO5-BIO6),

bio8 = Mean Temperature of Wettest Quarter,

bio9 = Mean Temperature of Driest Quarter,

bio10 = Mean Temperature of Warmest Quarter,

bio11 = Mean Temperature of Coldest Quarter,

bio12 = Annual Precipitation,

bio13 = Precipitation of Wettest Month,

bio14 = Precipitation of Driest Month,

bio15 = Precipitation Seasonality (Coefficient of Variation),

bio16 = Precipitation of Wettest Quarter,

bio17 = Precipitation of Driest Quarter,

bio18 = Precipitation of Warmest Quarter,

bio19 = Precipitation of Coldest Quarter

Value

returns updated ISRaD_extra object with new columns at the profile level

ISRaD.extra.geospatial.keys

ISRaD.extra.geospatial.keys

Description

Recode numeric values from categorical geospatial data products

Usage

ISRaD.extra.geospatial.keys(database, geodata_keys)

Arguments

database ISRaD dataset object

geodata_keys directory where geospatial data are found

12 ISRaD.flatten

Details

Generic function that reads .csv files paired with categorical raster data and recodes extracted data in the ISRaD_extra object. For the function to work, the .csv filenames must be identical to the corresponding raster filenames, except for the file extension. Additionally, the first column of the .csv file must contain the numeric identifier and the second column the corresponding character value.

Value

returns updated ISRaD_extra object with recoded columns

ISRaD.flatten

ISRaD.flatten

Description

: Joins tables in ISRaD based on linking variables and returns "flat" dataframes

Usage

```
ISRaD.flatten(database, table)
```

Arguments

database ISRaD dataset object: e.g. ISRaD_data, or ISRaD_extra

table ISRaD table of interest ("flux", "layer", "interstitial", "fraction", "incubation").

Must be entered with "".

Details

: ISRaD.extra.flatten generates flat files (2 dimensional matrices) for user specified ISRaD tables by joining higher level tables (metadata, site, profile, layer) to lower level tables (layer, fraction, incubation, flux, interstitial).

Value

returns a dataframe with nrow=nrow(table) and ncol=sum(ncol(meta),ncol(site),ncol(profile),...,ncol(table))

Author(s)

: J. Beem-Miller

References

:

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
fractions <- ISRaD.flatten(database, "fraction")
layers <- ISRaD.flatten(database, "layer")</pre>
```

ISRaD.getdata 13

Description

ISRaD.getdata

Usage

```
ISRaD.getdata(directory, dataset = "full", extra = F,
  force_download = F)
```

Arguments

directory location of ISRaD_database_files folder. If not found, it will be created.

dataset Specify which data you want. Options are c("full", flux", "interstitial", "incubation", "fraction", "layer")

extra T or F. If T, the ISRaD_extra object will be returned. If F, ISRaD_data will be

returned. Default is F.

force_download T or F. If there are already ISRaD_database files in the directory you specify,

new data will not be downloaded by default. However, if you set force_downlaod

to T, the newest data from github will be downloaded regardless.

Value

ISRaD data object

Examples

```
# Return full dataset ("full")
ISRaD_full <- ISRaD.getdata(tempdir(), dataset = "full", extra = FALSE)
# Return full dataset plus "extra" filled data
ISRaD_extra <- ISRaD.getdata(tempdir(), dataset = "full", extra = TRUE)
# Return only fraction data, including filled fraction data
ISRaD_fractions <- ISRaD.getdata(tempdir(), dataset = "fraction", extra = TRUE)</pre>
```

 ${\tt ISRaD.rep.count.all} \qquad {\tt \it ISRaD.rep.count.all}$

Description

Generates a report of counts of observations at each level of the database

Usage

```
ISRaD.rep.count.all(database = NULL)
```

Arguments

database ISRaD data object

ISRaD.rep.entry.stats

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
ISRaD.rep.count.all(database)</pre>
```

Description

Generates a report of fraction level observations, including fraction scheme and properties

Usage

```
ISRaD.rep.count.frc(database = NULL)
```

Arguments

database

ISRaD data object

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
ISRaD.rep.count.frc(database)</pre>
```

```
ISRaD.rep.entry.stats ISRaD.rep.entry.stats
```

Description

Generates a report of metadata statistics for all entries

Usage

```
ISRaD.rep.entry.stats(database = NULL)
```

Arguments

database ISRaD data object

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
ISRaD.rep.entry.stats(database)</pre>
```

ISRaD.rep.site.map 15

ISRaD.rep.site.map

Description

Generate a world map showing locations of all ISRaD sites

Usage

```
ISRaD.rep.site.map(database = NULL)
```

Arguments

database ISRaD data object

Examples

```
# Obtain current ISRaD data
database <- ISRaD.getdata(tempdir(), dataset = "full", extra = FALSE)
# Generate a map of all ISRaD sites
ISRaD.rep.site.map(database)</pre>
```

ISRaD.report

ISRaD.report

Description

Generate basic summary reports of ISRaD data

Usage

```
ISRaD.report(database, report)
```

Arguments

database ISRaD data object

report Parameter to define which type of report you want. The default is "count.all"

other options include "entry.stats", "count.frc", or "site.map".

```
# Obtain current ISRaD data
database <- ISRaD.getdata(tempdir(), dataset = "full", extra = FALSE)
# Report metadata statistics
ISRaD.report(database, report = "entry.stats")
# Report summary statistics for all levels of the database
ISRaD.report(database, report = "count.all")
# Generate a map of all ISRaD sites
ISRaD.report(database, report = "site.map")</pre>
```

QAQC

ISRaD.save.xlsx

ISRaD.save.xlsx

Description

Saves ISRaD data object as .xlsx file in ISRaD template format

Usage

```
ISRaD.save.xlsx(database, template_file = system.file("extdata",
   "ISRaD_Master_Template.xlsx", package = "ISRaD"), outfile)
```

Arguments

database ISRaD data object.

template_file path and name of template file to use (defaults to ISRaD_Master_Template).

outfile path and name to save the excel file

Author(s)

J Grey Monroe

Examples

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
ISRaD.save.xlsx(database = database,
  template_file = system.file("extdata", "ISRaD_Master_Template.xlsx", package = "ISRaD"),
  outfile = paste0(tempdir(),"/Gaudinski_2001.xlsx"))</pre>
```

QAQC

QAQC

Description

Check the imported soil carbon dataset for formatting and entry errors

Usage

```
QAQC(file, writeQCreport = F, outfile_QAQC = "", summaryStats = T,
  dataReport = F, checkdoi = T, verbose = T)
```

QAQC 17

Arguments

file directory to data file

writeQCreport if TRUE, a text report of the QC output will be written to the outfile. Default is

FALSE

outfile_QAQC filename of the output file if writeQCreport==TRUE. Default is NULL, and the

outfile will be written to the directory where the dataset is stored, and named by

the dataset being checked.

summaryStats prints summary statistics. Default is TRUE

dataReport prints list structure of database. Default is FALSE

checkdoi set to F if you do not want the QAQC check to validate doi numbers

verbose set to TRUE to print results of function

Details

This function is also called by the online QAQC tool available at the ISRaD website http://soilradiocarbon.org.

```
# Load example dataset Gaudinski_2001
database <- ISRaD::Gaudinski_2001
# Save as .xlsx file
ISRaD.save.xlsx(database = database,
   template_file = system.file("extdata", "ISRaD_Master_Template.xlsx", package = "ISRaD"),
   outfile = paste0(tempdir(),"/Gaudinski_2001.xlsx"))
# Run QAQC
QAQC(paste0(tempdir(),"/Gaudinski_2001.xlsx"))</pre>
```

Index

```
*Topic datasets
    future14C, 3
    Gaudinski_2001,4
    graven, 4
{\tt checkTemplateFiles, 2}
compile, 3
future14C, 3
Gaudinski_2001, 4
graven, 4
ISRaD.extra, 5
ISRaD.extra.Cstocks, 5
ISRaD.extra.delta_delta,6
ISRaD.extra.fill_14c,7
ISRaD.extra.fill_coords, 8
ISRaD.extra.fill_dates,9
ISRaD.extra.fill_fm, 9
{\tt ISRaD.extra.geospatial}, 10
ISRaD.extra.geospatial.keys, 11
ISRaD. flatten, 12
ISRaD.getdata, 13
ISRaD.rep.count.all, 13
ISRaD.rep.count.frc, 14
ISRaD.rep.entry.stats, 14
ISRaD.rep.site.map, 15
ISRaD.report, 15
ISRaD.save.xlsx, 16
QAQC, 16
```