2.1 Logistic Regression

Contents

Logistic Regression Overview		1
]	Log-Odds	1
]	Math	1
Logistic Regression in R		2
]	Interpretation of Results	3
]	Logistic Regression Example	3

Logistic Regression Overview

As opposed to linear regression, logistic regression applies horizontal asymptotes to create boundaries of possible values - In our case it allows us to constrict the range between 0 and 1 - The goal is to find a function of the predictor (X) variables that relates them to a 0 or 1 outcome

Process: - Initialize the coefficient and intercept of all features (X) to zero - Multiply the value of each attribute (Y) by the coefficient to obtain log-odds - Plug the log-odds into the sigmoid function to obtain the probability in the range between 0 and 1

Standard Linear Regression - Y = a + bX - Because it's linear, Y could be negative to positive infinity

Log-Odds

- Used to determine logistic regression
- Odds
 - $\begin{array}{l} -\ odds(Y=1) = \frac{P}{1-P} \\ -\ P\ \text{is probability of positive event} \end{array}$

 - Therefore odds are the probability of event occurring over the probability that it does not
- Log-Odds
 - Now we, get this, take a log of the odds. Specifically the natural log. log(2.33) = 0.846

Math

- Instead of using Y like linear regression, we use logit(Y)
- The logit can be mapped to a probability, which in turn can be mapped to a class

Obtaining the classification value P_i

$$\ln \tfrac{p}{1-p} = W*X \to \tfrac{p}{1-p} = e^{W*X} \downarrow p_i = \tfrac{1}{1+e^{-(\beta_0+\beta_1 x_1+\beta_2 x_2+\ldots\beta_q x_q)}}$$

Depending on our threshold value we can obtain the classification. For the default threshold of 0.5: $P_i > 0.5 \rightarrow 1$ $P_i \leq 0.5 \rightarrow 0$

Or Logit: $logit(P_i) > 1 \rightarrow 1 \ logit(P_i) \le 1 \rightarrow 0$

Logistic Regression in R

Helpful explainer from UCLA Statistical Consulting.

glm() function: > "glm is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution."

"A typical predictor has the form response \sim terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response."

- Basic Arguments:
 - glm(formula, data, family)
 - Formula: description of the model
 - Data: the data frame containing the variables in the formula
 - Family: The error distribution/link function to be used

Data set: Student breakfast, sleep, and leisure time vs performance

```
class <- read.csv("Data Sets/2.1-ClassPer.csv")
head(class)</pre>
```

```
##
    Obs Breakfast Sleep Laser.time Performance
## 1
                0
      1
                                             1
                      7
## 2
      2
                1
## 3
                0 9
      3
                                             1
                      6
                1
## 5
                1
                      8
                                 2
      5
                                             1
## 6
```

```
# Change Breakfast column to factor
class$Breakfast <- factor(class$Breakfast)

# Use glm() function
myLogit <- glm(Performance~Breakfast+Sleep+Laser.time, data = class, family = "binomial")
summary(myLogit)</pre>
```

```
##
## Call:
## glm(formula = Performance ~ Breakfast + Sleep + Laser.time, family = "binomial",
## data = class)
##
## Deviance Residuals:
```

```
##
                     Median
                                   3Q
                1Q
## -1.4861 -0.7081 -0.0453
                              0.4956
                                       2.0044
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -32.071
                           19.299 -1.662
                                            0.0966 .
## Breakfast1
                 2.450
                                     1.180
                                            0.2382
                            2.077
## Sleep
                 3.598
                            2.217
                                     1.623
                                            0.1045
## Laser.time
                 2.566
                            1.464
                                     1.753
                                            0.0795 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 20.19 on 14 degrees of freedom
## Residual deviance: 11.34 on 11 degrees of freedom
## AIC: 19.34
##
## Number of Fisher Scoring iterations: 6
```

Interpretation of Results

Reading the coefficients gives us the function:

```
logit(p) = -32.07 + 2.45 Break fast + 3.598 Sleep + 2.566 Leisure
```

• If logit(p) > 1 then it is classified as 1, otherwise classified as 0

To get probability can convert logit(P) of 1.85 to P as follows:

```
P = \frac{e^{1.85}}{1 + e^{1.85}}
```

P = 0.86 > 0.5 therefore classified

Logistic Regression Example

```
att <- read.csv("Data Sets/2.0-Attrition.csv")
#str(att)
att$Attrition <- factor(att$Attrition)</pre>
```

Splitting Data with createDataPartition()

```
#install.packages("caret")
library(caret)
createDataPartition(
   y,
   times = 1,
   p = 0.5,
   list = TRUE,
   groups = min(5, length(y))
)
```

Arguments

- y: a vector of outcomes.
- times: the number of partitions to create
- p: the percentage of data that goes to training
- **list:** logical should the results be in a list (TRUE) or a matrix with the number of rows equal to floor(p * length(y)) and times columns.
- groups: for numeric y, the number of breaks in the quantiles

Partitioning the Data

```
set.seed(123)
library(caret)

## Warning: package 'caret' was built under R version 4.0.2

## Loading required package: lattice

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 4.0.2

partition <- createDataPartition(y = att$Attrition, p = 0.7, list = FALSE)

train <- att[partition,]

test <- att[-partition,]

#str(train)</pre>
```

Running Regression Models with glm()

"...used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution."

```
glm(formula, family = gaussian, data, weights, subset,
   na.action, start = NULL, etastart, mustart, offset,
   control = list(...), model = TRUE, method = "glm.fit",
   x = FALSE, y = TRUE, singular.ok = TRUE, contrasts = NULL, ...)
```

Attributes Read the documentation, there's so much. Key points: - **formula:** the symbolic description of the model (uses the \sim) - **family:** the error distribution and link function you're using. - binomial: logistical regression - **data:** the data. Not to be confused with Data.

Running the Model

m1 model predicts the probability of attrition based on MonthlyIncome m2 model predicts the probability of attrition based on OverTime

```
m1 <- glm(Attrition ~ MonthlyIncome, family = "binomial", data = att)
m2 <- glm(Attrition ~ OverTime, family = "binomial", data = att)</pre>
##
## Call: glm(formula = Attrition ~ MonthlyIncome, family = "binomial",
##
       data = att)
##
## Coefficients:
##
     (Intercept) MonthlyIncome
      -0.9291087
                     -0.0001271
##
##
## Degrees of Freedom: 1469 Total (i.e. Null); 1468 Residual
## Null Deviance:
                        1299
## Residual Deviance: 1253 AIC: 1257
m2
##
## Call: glm(formula = Attrition ~ OverTime, family = "binomial", data = att)
##
## Coefficients:
## (Intercept) OverTimeYes
##
        -2.150
                      1.327
##
## Degrees of Freedom: 1469 Total (i.e. Null); 1468 Residual
## Null Deviance:
                        1299
## Residual Deviance: 1217 AIC: 1221
```

Interpreting the Logistic Model m1, monthly income - Coefficient of -0.0001271, slightly negatively correlated with attrition - Higher income means slightly less likely to leave m2, OverTimeYes - Coefficient of 1.327, highly correlated with attrition - Working overtime correlates to leaving

HOWEVER - This isn't meaningful until we put it in an exponential function - I'm not even sure the last section is accurate, he taught this badly

```
exp(coef(m1))
```

3.7712488

0.1165254

##

```
Exponential Function (what's your conjunction?)
##
     (Intercept) MonthlyIncome
       0.3949055
                     0.9998729
##
exp(coef(m2))
## (Intercept) OverTimeYes
```

Final Final Interpretation (Final) Verbatim from Professor for me to parse later when my brain works:

 $\mathbf{m1}$: The odds of employee attrition in model 1 increased by almost 1 for every \$1 increase in monthly income

m2: The odds of employee attrition in model 2 increased by almost 3.77 for employees who work overtime compared to those who do not