Kommunikationssysteme

(Modulcode 941306)

Prof. Dr. Andreas Terstegge SS 2020

Problem: Class C-Netze sind sehr klein, Class B-Netze oft aber schon wieder zu groß, um sie ohne Router zu konzipieren. Daher gibt es die Möglichkeit, ein durch die IP-Adresse identifiziertes Netz in so genannte *Subnetze* zu zerlegen. die IP-Adresse identifiziertes Netz in so genannte **Subnetze** zu zerlegen.

IP-Subnetz-Adressen

• IP-Adresse (hier Klasse B):

 Subnetzmasken kennzeichnen den Bereich der IP-Adresse, der das Netzwerk und das Subnetzwerk beschreibt. Dieser Bereich wird dabei durch Einsen ("1") in der binären Form der Subnetzmaske festgestellt.

- Beispiel:	140.	<mark>201.</mark>	10.	100
	255.	255.	255.	0
Netzwerk: Subnetz: Endsystem:	140.	201.	10.	100

- Der Netzwerk-Teil kann aus der Adressklasse abgeleitet werden
- Überdeckt die Subnetzmaske nur den Netzwerk-Teil, dann gibt es keinen Subnetz-Teil (z.B. 255.255.0.0)

Flexiblere Adressierung

"Durch das Vorgehen, den Adressraum in nur drei Klassen zu organisieren, werden Millionen von Adressen durch Fragmentierung verloren. Insbesondere finden sich fast nur im Bereich der Class-C-Netze noch Freiräume.

Lösung: Classless Inter-Domain Routing (CIDR)

- Trennung von starrer Klasseneinteilung durch Ersetzen der festen Klassen durch Netzwerk-Präfixe variabler Länge
- Die Längenangabe sagt aus, wie viele Bit als Netzteil der Adresse verwendet werden sollen (Länge der 1-Folge)
- Router merken sich in ihrer Routing-Tabelle zusätzlich zu den IP-Adressen die Präfixlänge,
 - z.B. 194.142.0.x/17 = betrachte die ersten 17 Bit als Netzadresse
- Sehr flexible Gestaltung von Routing-Tabellen möglich

Subnetting - Supernetting

- Subnetting: Der Verfügbare Host-Bereich wird in weitere Unternetze (Subnets) unterteilt
- **Supernetting:** Zusammenfassen mehrere Netze mit teilweise übereistimmendem Network-Bereich zu einem gemeinsamen Netz (aus Sicht des Routings)

CIDR – Classless InterDomain Routing

Einige Beispieladressen

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

Bei der Anzahl der möglichen Knoten muss die

Netzwerk-Adresse (Host-Teil nur 0-Bits) und Broadcast-Adresse (Host-Teil nur 1-Bits)

abgezogen werden (also immer 2 Adressen weniger)!

CIDR-Adressblöcke

CIDR Block Prefix	# of Host Addresses
<i>1</i> 27	32
<i>l</i> 26	64
/25	128
<i>1</i> 24	256
<i>1</i> 23	512
122	1,024
/21	2,048
/20	4,096
/19	8,192
/18	16,384
/17	32,768
/16	65,536
/15	131,072
/14	262,144
/13	524,288

Bei der Anzahl der möglichen Knoten muss die

- Netzwerk-Adresse (Host-Teil nur 0-Bits) und
- Broadcast-Adresse (Host-Teil nur 1-Bits) abgezogen werden (also immer 2 Adressen weniger)!

Problem

Während wir vorher die Routing-Tabelle sehr einfach durchsuchen konnten verursacht CIDR, dass es mehrere gültige Einträge geben kann

Beispiel:

Die Zieladresse 134.94.80.2 ist

für 134.94.0.0/16 als auch für 134.94.80.0/24 zutreffend

Wegewahl: Longest Prefix Match

- Suche nach dem Routing-Eintrag mit der größten Überdeckung der 7 ieladresse
- Es befinden sich auch Einträge für einzelne Rechner (Host route, loopback entry)
 - → 32-bit prefix match
- Default route wird als 0.0.0.0/0 repräsentiert
 - → 0-bit prefix match

128.143.71.21

Destination address	s Next hop
10.0.0.0/8	R1
128.143.0.0/16	R2
128.143.64.0/20	R3
128.143.192.0/20	R3
128.143.71.0/24	R4
128.143.71.55/32	R3
default	R5

Der longest prefix match für 128.143.71.21 wird für 24 bits mit dem Eintrag 128.143.71.0/24 erreicht. **Datengramm wird nach R4** verschickt

Longest Prefix Match: Ein Beispiel

Ziel	11.1.2.5	= 00001011.0000001.00000010.00000101
Route #1	11.1.2.0/24	= 00001011.0000001.00000010.00000000
Route #2	11.1.0.0/16	$= \frac{00001011.0000001}{000000000000000000000$
Route #3	11.0.0.0/8	= 00001011.0000000.00000000.000000000000

Es wird der Weg ermittelt, welcher am genausten spezifiziert wurd (most specific)

CIDR hilft dabei, die für das Routing notwendige Anzahl der bekannten Netze durch "verstecken" zu reduzieren

CIDR und Routing

Verkleinerung der Routing-Tabelle durch CIDR

- Der Longest Prefix Match Algorithmus erlaubt das Zusammenfassen von Routen
 - Es reicht, wenn die genaue Adresse erst nahe am Ziel bekannt ist
 - Signifikante Beitrag zur Reduktion der Größe der Routing-Tabellen im Internet

Destination	Next Hop	Destination	Next Hop
10.1.0.0/24	R3	10.1.0.0/24	R3
10.1.2.0/24	direct	10.1.2.0/24	direct
10.2.1.0/24	direct	10.2.1.0/24	direct
10.3.1.0/24	R3	10.3.1.0/24	R3
20.2.0.0/16	R2	→ 20.0.0.0/14	R2
20.1.1.0/28	R2		

Vorsicht: Durch das Zusammenfassen von Routing-Einträgen dürfen keine fehlerhaften Regeln entstehen

- 1. Ein Zusammenfassen in nur möglich, wenn gleiche Ziele (Next Hop) verwendet werden
- 2. Die relaxierte Interpretation der Netzwerkadresse kann ggf. andere, nicht gewollte Einträge umfassen. Hier hilft aber ggf. die Longest Match Regel. Hierzu muss aber der Präfix der überschriebenen Regel länger sein.
- 3. 0.0.0.0/0 ist ein Default-Route

FH Aachen
Fachbereich 9 Medizintechnik und Technomathematik
Prof. Dr.-Ing. Andreas Terstegge
Straße Nr.
PLZ Ort
T +49. 241. 6009 53813
F +49. 241. 6009 53119
Terstegge@fh-aachen.de
www.fh-aachen.de