GAS LEAKAGE MONITORING AND ALERTINGSYSTEM FOR INDUSTRIES

IBM PROJECT REPORT

TEAM MEMBERS : ESWARAMOORTHY .P 422119104006

GURUMOORTHY .S 422119104008

SIRANJEEVI .K 422119104025

PURUSHOTHAMAN .R 422119104019

TEAM ID : PNT2022TMID39018

BATCH NO : B11-5A1E

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

ST. ANNE'S COLLEGE OF ENGINEERING AND TECHNOLOGY

ANNA UNIVERSITY: CHENNAI - 600 025

Table of Contents

Title	Page no
1. INTRODUCTION	4
a. Project Overview	4
b. Purpose	4
2. LITERATURE SURVEY	4
a. Existing Problem	4
b. References	4
c. Problem Statement Definition	5
3. IDEATION & PROPOSED SOLUTION	5
a. Empathy Map Canvas	5
b. Ideation & Brainstorming	6
c. Proposed Solution	10
d. Problem Solution fit	11
4. REQUIREMENT & ANALYSIS	10
a. Functional Requirement	10
b. Non-Functional requirements	10
5. PROJECT DESIGN	14
a. Data Flow Diagrams	14
b. Solution & Technical Architecture	14
c. User Stories	15
6. PROJECT PLANNING & SCHEDULING	16
a. Sprint Planning & Estimation	16
b. Sprint Delivery Schedule	17
7. CODING & SOLUTIONING	19
a. Feature 1	19
b. Feature 2	19
8. ADVANTAGES & DISADVANTAGES	20
9. CONCLUSION	21
10. FUTURE SCOPE	21
11. APPENDIX	21
Source Code	21
GitHub & Project Demo Link	23

1.INTRODUCTION

a. Project Overview:

This project helps the industries in monitoring the emission of harmful gases. In several areas, the integration of gas sensors helps in monitoring the gas leakage. If in any area gas leakage is detected the admins will be notified along with the location. In the web application, admins can view the sensor parameters.

b. Purpose:

Inhaling concentrated gas can lead to asphyxia and possible death. To overcome these disasters, we designed a system for monitoring and alerting the leakage of those harmful gases. This makes the industrialists get rid of the fear of any disasters caused by the gases.

2.LITERATURE SURVEY

a. Existing Problem:

This scheme is meant to fulfill the daily needs of the people. In our country 40 percent people die due to gas explosion at home. That number keepsgrowing. Even pregnant women and small children are affected. Using a GSM module and a mobile phone, the Gas Leakage Monitor is used to find, intimate leaks. The buzzer and LED are then activated after the gas leak is detected using a bracket sensor. When the designated time has passed, it will automatically turn off.

b. Problem statement definition:

This device does not get damaged very quickly, and if itdoes get damaged, water is the main reason for it. This device is easily damaged by water. Therefore, this device should be installed in a place where water does not go. This installation will not damage the device, if the device does, an example is water.

This tool is considered to be one and very safe for the users. My members are trusted. My members' invention is considered very safe for this country and its people and their families. Absence of this tool makes women in our country nervous by the spread of gas in their kitchen and is considered to be a sign of some accident. It is also proud to think of this project for people's lives only to eliminate this fear.

3.IDEATION & PROPOSED SOLUTION:

a. Empathy Map Canvas:

b. Ideation & Brainstorming:

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

c. Proposed Solution:

S.NO	Parameter	Description
1.	Problem Statement (Problem to be solved)	This monitoring is used to prevent fire accidents due flammable gas leakage in house from cylinders, industries, hospitals, hotels etc.
2.	Idea / Solution description	This monitoring system uses cloud and iot based hard wares and sensors. The sensors in the system detectsflammable gaseous components in the environment and temperatureusing iot system and send indication via alarms and lights.
3.	Novelty / Uniqueness	The uniqueness of this system is that it uses clouddue to this, the alarm can beto the person via sms to his mobile when he is not in home.
4.	Social Impact / Customer Satisfaction	It helps in many ways to the society it prevents fire accidents due careless handle of gas cylinders . this is a real-time systems so it is faster and accidents can be prevented very easily.
5.	Business Model (Revenue Model)	This is a cloud based real time system, that collects thedata from the environment very quickly i.e. temperature, humidity and oxygen composition. using sensors and indicate via alarms and lights.

	Scalability of the Solution	Accuracy.
6.		Low cost.
		Less maintenance.
		Reliability.

d. Problem Solution Fit:

Project Title: Gas Leakage Monitoring and Alerting System

Project Design Phase-I: Solution Fit Template

Team ID: PNT2022TMID45387

Define CS, fit into CC

1. CUSTOMER SEGMENT(S)

Government is our primary customer.

6. CUSTOMER CONSTRAINTS

Only one gas can be measured with each instrument spending power, budget, no cash, network connection, available devices.

5. AVAILABLE SOLUTION

Apply soapy water to the entire hose assembly, including the tank's valve and regulator, using a spray bottle or sponge. Pressurise the system without turning on any appliances. If you see bubbles or smell rotten eggs, you have a leak.

Explore AS, difference

Identify strong TR & EM

2. JOBS-TO-BE-DONE / PROBLEMS

Gas detectors can be used to detect combustible, flammable and toxic gases, and oxygen depletion. This type of device is used widely in industry and can be found in locations, such as on oil rigs, to monitor manufacturing processes and emerging technologies such as photovoltaic.

9. PROBLEM ROOT CAUSE

Overloading of gas causes the gas leakage. This leads to affect the customers or workers. The leakage of the gas will be detected and help to resolve this problem.

7. BEHAVIOUR

Our Customer uses All-Purpose Leak Detector is designed to form large bubbles to indicate even the smallest leaks in many types of piping applications dentify strong TR & EM

4.REQUIREMENT ANALYSIS

a. Functional Requirement:

FR No.	Functional Requirement (EPIC)	Sub Requirement (Story / Sub-Task)	
FR-1	Create cloud account	Registration through Form Registration through G mail Registration through Link	
FR-2	User Confirmation	Confirmation via Email Confirmation via OT	
FR-3	User Login	User Login Via Mail id And Password	
FR-4	Cloud registration	Connect the hardware device	
FR-5	Connect to mobile	Connect the cloud with the mobile phone	
FR-6	Connect Hardware	Connect hardware to the gas cylinders or in the wall	

b. Non-functional Requirements:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	 It is user friendly Easy to handle Process is simple
NFR-2	Security	The device is highly secure.Privacy is maintained
NFR-3	Reliability	 The device is more reliable The device is more trustable in tough conditions
NFR-4	Performance	 The performance is more accurate. It is a real time application
NFR-5	Availability	 It can be available easily. It requires very few hardware components.
NFR-6	Scalability	Less maintenance.Low cost.Compact.

5.PROJECT DESIGN:

a. Data Flow Diagrams:

Data Flow Diagram:

b.Solution & Technical Architecture

Solution Architecture Diagram:

c. User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	High	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can access by message	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
Customer (Web user)	Dashboard					
Customer Care Executive	Registeraion	USN-1	User want to use sim card and gsm module	Message reciver for arduino connected sim	High	Sprint-1
		USN-1	Sensor and module	All component is connected to arduino	High	Sprint-1

Administrator	DATA	USN-1	What is Main component in this project	Arduino	High	Sprint-2
power	Dc	USN-1	How much power is required	9v is enff	High	Sprint-1

6.PROJECT PLANNING AND SCHEDULING:

a. Sprint Planning & Estimation:

Sprint	Functional Requirement	User Story	User Story /	Story	Priority	Team	
	(Epic)	Number	Task	Points		Members	
Sprint-1	Data Preparation & Data Visualization	USN-1	As a user, I provide Safety to the customers	5	High	Eswaramoorthy P	
Sprint-1		USN-2	As an Analyst, I collect the data & Provide meaningful insights through IBM Cloud	3	High	Siranjeevi K	
Sprint-2	Dashboard	USN-3	As a user, I want to make sure the safe environment.	3	High	Purushothaman R	
Sprint-2		USN-4	As an Analyst, I will upload the data in IBM Cloud to createa interactive dashboard	3	Medium	Gurumoorthy S	
Sprint-3	Report	USN-5	As a user, I want to secure the lives and data of each employee that report a particular event	3	Medium	Eswaramoorthy P	

Sprint-3		USN-6	As an Analyst, I will use IBM Cloud to generate a report	3	Medium	Gurumoorthy S
Sprint-4	Story	USN-7	As a user, I can only understandthe Analysis in animated presentation of dataset	5	Medium	Siranjeevi K
Sprint-4		USN-8	As an Analyst, I use IBM to create an animated presentation (Story) of the dataset	3	High	Purushothaman R

b. Sprint Delivery Schedule:

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint ReleaseDate
	Points		Date	Date	Completed	(Actual)
				(Planned)	(as on	
					Planned End	
					Date)	
Sprint-1	5	6 Days	24 Oct 2022	24 Oct 2022	5	29 Oct 2022
Sprint-2	5	6 Days	31 Oct 2022	05 Nov 2022	5	05 Nov 2022
Sprint-3	5	6 Days	07 Nov 2022	12 Nov 2022	5	12 Nov 2022
Sprint-4	5	6 Days	14 Nov 2022	19 Nov 2022	5	15 Nov 2022

Velocity:

We have an 6-day sprint duration, and the velocity of the team is 4 (points per sprint). To calculate the team's average velocity (AV) per iteration unit (story points per day

7. CODING AND SOLUTIONING:

a. Feature 1:

b. Feature 2:

(Python Output)

8.ADVANTAGES AND DISADVANTAGES:

Advantages:

- Detect the concentration of the gases
- The sensor-enabled solution helps prevent the high risk of gas explosions and affecting any casualties within and outside the premises.
- Get real-time alerts about the gaseous presence in the atmosphere
- Prevent fire hazards and explosions
- Ensure worker's health
- Real-time updates about leakages
- Measure oxygen level accuracy
- Get immediate gas leak alerts
- Cost-Effective Installation

Disadvantage:

- o Get immediate gas leak alerts
- When heavy dust, steam or fog blocks the laser beam, the system will notbe able to take measurements

9. CONCLUSION:

Gas leakage leads to severe accidents resulting in material losses and human injuries. Gas leakage occurs due to poor maintenance of equipment and inadequate awareness of the people. Hence, gas leakage detection is essential to prevent accidents and to save human lives. This paper presented LPG leakage detection and alert system. This system triggers buzzer and notification to alert people when gas leakage is detected. This system is basic yet reliable.

10. FUTURE SCOPE:

Major cities of India are pushing Smart Home application, gas monitoring system is a part of SmartHome application. Enhancing Industrial Safety using IoT. This system can be implemented in Industries, Hotels and wherever the gas cylinders are used. This system can be used in industries involving applications such as Furnace, Boilers, Gas welding, Gas cutting, Steel Plants, Metallurgical industries, Food processing Industries, Glass Industries, Plastic industries, Pharmaceuticals, Aerosol manufacturing. As hospitals require to provide maximum possible safety to patients, this system can be used to keep track of all the cylinders used in it. Some of the cylinders used are Oxygen cylinder, Carbon dioxide cylinder, Nitrous oxide cylinder. As many students are naive the risk of causing accidents is high. Hence, our system can also be used in schools, colleges. Many colleges have well established labs including chemistry lab and pharmaceutical labs where gas burners are used. Several medical equipment requires gas cylinders.

11.APPENDIX:

a. Source Code:

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
int redled = 2;
int greenled = 3;
int buzzer = 4;
```

```
int sensor = A0;
int sensorThresh = 400;
void setup()
{
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
lcd.begin(16,2);
}
void loop()
{
int analogValue = analogRead(sensor);
Serial.print(analogValue);
if(analogValue>sensorThresh)
{
digitalWrite(redled,HIGH);
digitalWrite(greenled,LOW);
tone(buzzer,1000,10000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("ALERT");
delay(1000);
```

```
lcd.clear();
lcd.setCursor(0,1);
lcd.print("EVACUATE");
delay(1000);
}
else
digitalWrite(greenled,HIGH);
digitalWrite(redled,LOW);
noTone(buzzer);
lcd.clear();
lcd.setCursor(0,0);
lcd.print("SAFE");
delay(1000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("ALL CLEAR");
delay(1000);
}
}
```

b. GitHub & Project Demo Link:

