Natural Language Processing CSE 325/425

Sihong Xie

Lecture 10:

- Maximum entropy principle
- Maximum entropy Markov model

Maximum entropy principle

Logistic regression models is a special case of the Maximum Entropy models.

What's the "best" estimation of a prob. distribution with partial information?

- Estimate the probabilities of seeing each of the six faces of a dice: = { 1, 2,3,4,5,63
 - \circ Without any information, the best estimation is $\Pr(i) = 1/6$.
 - Entropy

$$H(X) = -\sum_{i=1}^{6} \Pr(i) \log \Pr(i)$$

 $H(X) = -\sum_{i=1}^{6} \Pr(i) \log \Pr(i)$ $\lim_{i \to \infty} \operatorname{Comm}_{i} + \operatorname{Comm}_{i$

For discrete random variables, maximum entropy <=> uniform distributions.

o If we know that the odd numbers are twice more likely than odd numbers, then

$$Pr(1) = Pr(3) = Pr(5) = 2/9$$
 $Pr(2)$

$$Pr(2) = Pr(4) = Pr(6) = 1/9$$

Information
$$Pr(1) = Pr(3) = Pr(5) = 2/9$$

$$Pr(2) = Pr(4) = Pr(6) = 1/9$$

$$(Prior [anowledge])$$
 Still have maximum entropy, but also conform to the constraints (what are they?)
$$(Pr(1) + Pr(2) + Pr(3)) = 2 \left[Pr(2) + Pr(4) + Pr(6) \right]$$

$$Pr(1) + Pr(3) = 2 \left[Pr(1) + Pr(4) + Pr(6) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + Pr(3) \right]$$

$$Pr(1) = 2 \left[Pr(1) + Pr(3) + P$$

Maximum entropy principle

Predict the POS-tag of the word "zzfish".

- Without any information, we give equal probabilities to all tags.
- More information: "zzfish" can only be tagged as one of {NN, JJ, NNS, VB}:

Pr(NN) =
$$\Pr(JJ) = \Pr(NNS) = \Pr(VB) = 1/4 \frac{1}{h_{man}}$$

More information: "zzfish" is a sort of noun in 8 out of 10 times:

$$Pr(NN) = Pr(NNS) = 2/5$$
 $Pr(JJ) = Pr(VB) = 1/10$

More information: "zzfish" is a verb in 1 out of 20 times:

$$Pr(NN) = Pr(NNS) = 2/5$$
 $Pr(JJ) = 3/20$ $Pr(VB) = 1/20$

Setting: Training data $(X^{(i)}, Y^{(i)})$ i=1,...,m, 1-4 $X^{(i)} \in \mathbb{R}$, $Y^{(i)} \in \{0,1\}$ train a ligistic Regression model that outputs Pr(y=1|X)

Maximum entropy principle

Logistic regression is a maximum entropy classifier

• Go through the last HW question of CSE326/426.

Warning: we're not using the traditional MLE to train the LR model

maximize the entropy of the random variable
$$Y$$

max $H(Y) = \sum_{i=1}^{m} \sum_{y=0}^{i} \frac{1}{Y} \frac{1}{Y}$

Maximum entropy principle

Logistic regression is a maximum entropy classifier

Go through the last HW question of CSE326/426.

Maximum Entropy distribution over y given some x

$$Pr(y|x) = \frac{e^{\lambda(y)x}}{1 - e^{\lambda(y')x}} \Rightarrow \frac{Pr(y=1|x)}{1 + exp(-\lambda c_0x)}$$

where $\lambda(y) \in \mathbb{R}$ for class $y \in \{6,13\}$ (sigmoid function)

Department for class y in \mathbb{R} function)

Department $\lambda(y) \in \mathbb{R}$ for class $\lambda(y) \in \{6,13\}$ (sigmoid function)

Department $\lambda(y) \in \mathbb{R}$ for class $\lambda(y) \in \{6,13\}$ (sigmoid function)

Express $\lambda(y) = \frac{1}{1 + exp(-\lambda c_0x)}$

$$= \sum_{s} \exp\{(0, f(x_{t-1}, x_{t-1}))\} = \alpha \text{ function of } (2t-1, 0t)$$

Not

Multi-class logistic regression can predict a POS-tag for one word, then predict

the POS-tag q_t using the *fixed* previous predicted tag q_{t-1} .

$$\Pr(q_t = c | q_{t-1}, o_t; \boldsymbol{\theta}_{q}^c) = \frac{1}{Z(q_{t-1}, o_t)} \exp\left\{\sum_{i=1}^d \theta_i^c f_i(q_{t-1}, o_t, q_t = c)\right\} \quad \text{transiting transiting}$$

In 14MM:
P(St1 St-1)
**P(Ot1 St)

Secreta	riat is e	expected	to	race to	omorrow.
NNP —	→ VBZ -	→VBN→	TO -	VB —	RB
	MM	RB		NN	

V. $24-1 \rightarrow 2t=0$ 2 observed word 0+" 2 observed 0 observed

HMM2

- Cons:
 - o Can't use later predictions to correct previous predictions.
 - o Errors propagate.

Marry logistic regression and Markov model

- Predict the whole sequence of POS-tags via Viterbi algorithm.
- When predicting a tag, the decision is made based on information from both directions.
- Slightly modify the multi-class logistic regression model to predict q_t

based on all possible
$$q_{t-1}$$
 . From $1 + N$ we have fixed
$$\Pr(q_t = c | q_{t-1}, o_t; \boldsymbol{\theta}^c) = \frac{1}{Z(q_{t-1}, o_t)} \exp\left\{\sum_{i=1}^d \theta_i^c f_i(q_{t-1}, o_t, q_t = c)\right\}$$

vary both C', C Secretariat is expected to race tomorrow. destination Vary Vary

Predict optimal sequences

Viterbi algorithm (for MEMM): compute maximum probability and the optimal sequence

- 1. Initialize $v_1(i)$ for each value $\,i$ of the first hidden state q_1 .
- 2. for $t=2,\ldots,T$ $\text{for } j=1,\ldots,N$ $\text{compute } v_t(j)=\max_k v_{t-1}(k)a_{kj}b_j(o_t)$ $\text{record back-pointers} \quad p_t(j)=\arg\max_k v_{t-1}(k)a_{kj}b_j(o_t)$

V+-1(k) Pr (2+= j | 26-1=k, 0+ =)

- 3. Backtracking to find Q^*
- 4. Return $\Pr(Q^*|O) = \max_{j} v_T(j)$

Training of MEMM

- Can only train with some labeled data (supervised or semi-supervised learning).
- Design feature functions $\mathbf{f}(q_{t-1}, o_t, q_t = c)$ for all possible tags and words.
- Evaluate the feature functions on the POS-tag sentences.
 - Go through each word, based on the observed word, the previous and the current POS-tags, compute the features.
 - Usually need to consider rich features beyond the word and tag identities.
 - consider suffixes, prefixes, Captipalizations, lower-cases, hyphens, dictionaries, tags that are farther away.
- Parameters: $\theta^c, c \in \{\text{All POS-tags}\}$

Drawbacks of MEMM:

Labeling bias in the tag probabilities, due to local normalization

$$\Pr(q_t = c | q_{t-1}, o_t; \boldsymbol{\theta}^c) = \frac{1}{Z(q_{t-1}, o_t)} \exp\left\{ \sum_{i=1}^d \theta_i^c f_i(q_{t-1}, o_t, q_t = c) \right\}$$

1 tends to move to 2 then stay with 2:

$$\Pr(1 \to 1 \to 1 \to 1) =$$

$$\Pr(1 \to 2 \to 2 \to 2) =$$

Next lecture:

address this issue using Conditional Random Fields