

# Features & Visualisations

Machine Learning



## What is Machine Learning?

- Use *features* (X) to describe a dataset of *instances* 
  - Instances can be things, events, categories, etc.
  - Features have many names, including (predictor) variables, stimulus, etc.
- Unsupervised Learning
  - Principal Components Analysis = describe variance in dataset
  - Clustering = group / segment data instances
- Supervised Learning
  - One part of data is a target (Y)
  - We expect that Y is correlated to each X by some function
  - Tasks:
    - We need to choose our features (X) so they correlated with Y
    - We need to choose the function on each X that minimises the error in predicting Y



## Machine learning process

#### Goal

- Unsupervised: describe X
- Supervised: use X to predict Y

#### Process

- Determine the problem (classification?) and choose one or more performance metrics (accuracy?)
- Collect data?
- Visualise the data identify types of data and plot them, clean outliners, etc.
- Transform data / engineer features?
- Implement and tune model(s); compare efficacy of each model using chosen metric(s)... or vs. baseline

#### ML in production: expectation

- Collect data
- 2. Train model
- 3. Deploy model



https://twitter.com/chipro/status/1348265019012743169



## **Types of data**



| Has / Can                      | Nominal  | Ordinal  | Interval | Ratio    |
|--------------------------------|----------|----------|----------|----------|
| Count / Frequency / Proportion | <b>V</b> | <b>V</b> | <b>V</b> | V        |
| Mode, Median                   |          | <b>V</b> | <b>V</b> | V        |
| Order of values is known       |          | <b>V</b> | <b>V</b> | <b>V</b> |
| Mean, stdev of values          |          |          | <b>V</b> | <b>V</b> |
| Add / subtract values          |          |          | <b>V</b> | <b>V</b> |
| Multiply / divide values       |          |          |          | <b>V</b> |
| True zero                      |          |          |          | V        |

https://towardsdatascience.com/data-types-in-statistics-347e152e8bee



## **Feature Engineering**

- The art of creating good feature variables (X) from raw data
- Good feature set
  - Describes or represents the target well with fewest values
  - Leads to good models (better results)
  - Requires less complex algorithms
- Requires a lot of domain knowledge?
  - Listen to Subject Matter Experts (SMEs), knowing:
  - SMEs are often overestimate how predictive some data is
  - SMEs often miss some important predictors (or combinations of predictors)
  - SMEs often lack one or more data transformation steps

## (One) Feature Engineering Process

- Get SME input
- Brainstorm features
  - Look at what other people have done\*
  - Encourage wild ideas (especially working in teams) and get a lot of ideas
- Decide which one(s) to use in the model
  - Judge effort vs. expected return in power of model
  - Go for novelty so that the model becomes more powerful
- Implement the features above
- Study the impact of the implemented features
- Repeat, repeat, repeat



## Algorithms vs. outliers

| Class          | Algorithm                                    | Sensitive to outliers? |  |
|----------------|----------------------------------------------|------------------------|--|
| Unsupervised   | K-Means                                      | Sensitive              |  |
|                | Hierarchical Clustering                      | Sensitive              |  |
|                | PCA                                          | Sensitive              |  |
| Regression     | Linear Regression                            | Sensitive              |  |
| Classification | Logistic Regression                          | Sensitive              |  |
|                | K-Nearest Neighbours                         | Not sensitive          |  |
|                | Naive Bayes, SVM                             | Not sensitive          |  |
|                | Decision Trees, Random Forest, Boosted Trees | Not sensitive          |  |
|                | Neural Networks                              | Sensitive              |  |



-> North America

-> North America

-> Asia

-> Asia

#### Data —> Features (1)

#### Imputation

- Numerical: default value (eg. 0), mean, median, etc.
- Categorical: most frequent value

#### Outlier detection

- Standard deviation is often used for detecting outliers
- Common to project data to normal distribution and flagging values +/-3x std. Dev



- Combining range of numerical values or multiple categorical values
- Use carefully since it loses (important?) information

#### Mathematical transformation

- Log transform can make small differences more significant
- Sine / cosine to cyclical data (eg. dates) can show that Jan & Dec are closer than May & Jul



https://www.simplypsychology.org/boxplots.html

Canada

Thailand

Iran

**USA** 



#### Data —> Features (2)

- One-hot encoding
  - Encoded categorical data may look related eg. 1 = Alabama, 2 = Alaska
  - o 1-hot encoding transforms data to multiple unrelated binary columns
- Splitting
  - Taking a string (eg. date: 2021-01-24) and extracting important parts
  - Also typical for NLP
- Lookup / External
  - Dates —> holidays, weekday, etc.
  - External sources are often useful
- Feature combinations
  - Add, subtract, multiply or divide two features to form a third
  - Remove features which are not useful



## Why use visualisations?

- Difficult to see data patterns, trends, etc. in "wall of numbers" charts
- We can sometimes determine functions relating X to Y
- We can see outliers, possible errors in data, etc.

| 1  |       | II |          | III |       | IV |      |
|----|-------|----|----------|-----|-------|----|------|
| X  | У     | X  | <u>y</u> | X   | У     | X  | У    |
| 10 | 8.04  | 10 | 9.14     | 10  | 7.46  | 8  | 6.58 |
| 8  | 6.95  | 8  | 8.14     | 8   | 6.77  | 8  | 5.76 |
| 13 | 7.58  | 13 | 8.74     | 13  | 12.74 | 8  | 7.71 |
| 9  | 8.81  | 9  | 8.77     | 9   | 7.11  | 8  | 8.84 |
| 11 | 8.33  | 11 | 9.26     | 11  | 7.81  | 8  | 8.47 |
| 14 | 9.96  | 14 | 8.10     | 14  | 8.84  | 8  | 7.04 |
| 6  | 7.24  | 6  | 6.13     | 6   | 6.08  | 8  | 5.25 |
| 4  | 4.26  | 4  | 3.10     | 4   | 5.39  | 19 | 12.5 |
| 12 | 10.84 | 12 | 9.13     | 12  | 8.15  | 8  | 5.56 |
| 7  | 4.82  | 7  | 7.26     | 7   | 6.42  | 8  | 7.91 |
| 5  | 5.68  | 5  | 4.74     | 5   | 5.73  | 8  | 6.89 |



https://towardsdatascience.com/9-data-visualization-tools-that-you-cannot-miss-in-2019-3ff23222a927



#### What do visualisations need?

Title — Count of unique speakers outside the USA





#### **Tufte**

- Known for...
  - Data visualisation pioneer
  - "Formally documented" the sparkline chart
- Principles for graphic design
  - Graphical Integrity
    - Chart axes must be labelled
    - Scale must be consistent
  - Minimalism
    - Use as little "ink" to show the data
    - Use few (no?) graphical effects instead, show how the data varies

#### **Example sparklines in small multiple**



https://en.wikipedia.org/wiki/Sparkline



### Why matplotlib / seaborn?

#### matplotlib

- Basic plotting library, default for python
- Widely used

#### seaborn

- A layer on top of matplotlib
- Provides additional functionality and improved aesthetics

#### Not ggplot

- A copy (port?) of package in R (ggplot2)
- Not pythonic, therefore not intuitive for data people who are stronger in python
- ... but preferred by many for its OO-treatment of charts



### Set up matplotlib & seaborn

Basic syntax

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

- Common plot types:
  - Bar plot ("countplot")
  - Box plot
  - Line plot
  - Scatterplot



## Example

- Countplot (bar plot)
  - x-axis = category labels
  - y-axis is frequency count of category
- Basic syntax

$$sns.countplot(x = df['LABEL'], data = df)$$



- Example
  - o 2018 <u>FARS</u> ACCIDENT.CSV
  - Best day of week to be on the road is Wednesday?



## Some parameters to countplot

Add additional dimensions (as "hue")

```
sns.countplot(x = df['LABEL'], hue=df['WEATHER1'], data = df)
```

Change orientation

```
sns.countplot(y = df['LABEL'],\
hue=df['WEATHER1'], data = df)
```

Save

```
myplot = sns.countplot(...
```





## Other common plot types

