

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree

First year - Semester I Examination - September / October 2013

MAA 1201 Mathematical Methods I

Time allowed: Two hours.

Answer FOUR Questions selecting Question No. 01 and three of the remaining questions.

- 01. (i). By vector methods, find the perimeter of a triangle whose vertices are the points (3,1,5), (-1,-1,9) and (0,-5,1). [25 Marks]
 - (ii). Find the value of α such that the vectors $2\underline{i} \underline{j} + \underline{k}$, $\underline{i} + 2\underline{j} 3\underline{k}$ and $3\underline{i} + \alpha\underline{j} + 5\underline{k}$ are coplanar. [25 Marks]
 - (iii). Find the vector equation of the plane through the three points (-1, 1, 2), (1, -2, 1) and (2, 2, 4) in terms of \underline{i} , \underline{j} , \underline{k} and two parameters.

[25 Marks]

- (iv). Show by vector methods that the triangle whose vertices are A(2,-1,1), B(1,-3,-5) and C(3,-4,-4) is right-angled. [25 Marks]
- (v). If $\underline{a} \times \underline{b} = \underline{c} \times \underline{d}$ and $\underline{a} \times \underline{c} = \underline{b} \times \underline{d}$, show that $\underline{a} \underline{d}$ and $\underline{b} \underline{c}$ are parallel vectors. [25 Marks]
- (vi). Find the area of the triangle whose vertices are the points with rectangular Cartesian co-ordinates (1, 2, 3), (-2, 1, -4) and (3, 4, -2). [25 Marks]
- (vii). Show that $\underline{i} \times (\underline{a} \times \underline{i}) + j \times (\underline{a} \times \underline{j}) + \underline{k} \times (\underline{a} \times \underline{k}) = 2\underline{a}$. [25 Marks]
- (viii). A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Using the vector method find the components of its velocity and acceleration at t = 1. [25 Marks]

Turn Over

(ix). Show that the vector $\underline{r} = (\sin y + z)\underline{i} + (x\cos y - z)\underline{j} + (x - y)\underline{k}$ is irrotational.

[25 Marks]

- (x). Determine the constant "c" so that the vector $\underline{f} = (x+3y)\underline{i} + (y-2z)\underline{j} + (x+cz)\underline{k}$ is solenoidal. [25 Marks]
- 02. (a).(i).Let $\underline{a} = \underline{i}$, $\underline{b} = \underline{i} + \underline{j}$ and $\underline{c} = 2\underline{i} + \underline{j} + 3\underline{k}$. Show that the set of vectors $\{\underline{a}, \underline{b}, \underline{c}\}$ is linearly dependent.

Is the set of vectors $\{\underline{a}, \underline{b}, \underline{c}\}$ a basis? Justify your answer.

[75 Marks]

- (ii). Show that the points A, B, C with position vectors $-2\underline{i}+3\underline{j}+5\underline{k}$, $\underline{i}+2\underline{j}+3\underline{k}$ and $7\underline{i}-\underline{k}$ are collinear. [25 Marks]
- (b).(i). \overrightarrow{OB} and \overrightarrow{OC} are two lines and \overrightarrow{D} is a point on \overrightarrow{BC} such that $\frac{\overrightarrow{BD}}{\overrightarrow{DC}} = \frac{m}{n}$. Show that $\overrightarrow{\overrightarrow{OD}} = \frac{n \overrightarrow{OB} + m \overrightarrow{OC}}{m+n}$. [50 Marks]
 - (ii). OAB is a given triangle. X is a point on OA such that $\overrightarrow{OX} = 2 \overrightarrow{OA}$ and Y is a point on OB, such that $\overrightarrow{OY} = \frac{2}{3} \overrightarrow{OB}$. The line XY meets the side AB of the triangle at P. Find the ratio in which P divides AB. Find also the ratio in which P divides YX. [100 Marks]
- 03. (a). Define the *gradient* of a function $\phi(x, y, z)$, where ϕ is a continuously differentiable function of x, y, z. [10 Marks]

Show that $\operatorname{grad} \phi = \underline{0}$ if and only if ϕ is a constant.

[50 Marks]

(b). Define the *divergence* for a differentiable vector valued function. [10 Marks]

Show that,

(i)
$$div(\phi \underline{F}) = \phi \ div \underline{F} + grad \phi \bullet \underline{F}$$
,

[30 Marks]

(ii)
$$div(grad \phi) = \nabla^2 \phi$$
,

[30 Marks]

where \underline{F} is a vector field and ϕ is a scalar field.

- (c). Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $|\underline{r}| = r$. Show that $\frac{1}{r}$ is a solution of the Laplace equation, $\nabla^2 \phi = 0$. [45 Marks]
- (d). Show that, $curl(\phi \underline{F}) = \phi \ curl \underline{F} + grad\phi \times \underline{F}$, where \underline{F} is a vector field and ϕ is a scalar field. [30 Marks]

Using the above result, find $curl(r^n\underline{r})$, where $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $|\underline{r}| = r$.

[45 Marks]

04. (a). Define the *scalar product* of two vectors \underline{a} and \underline{b} .

[20 Marks]

Using the above product, show that the angle subtended at a point on a semi-circle by two ends of a diameter is a right-angle. [40 Marks]

(b). Find the reciprocal set of vectors $\{\underline{a}^{\,\prime}\,,\,\underline{b}^{\,\prime}\,,\underline{c}^{\,\prime}\}$ and verify that

$$[\underline{a}, \underline{b}, \underline{c}][\underline{a}^{\prime}, \underline{b}^{\prime}, \underline{c}^{\prime}] = 1$$

[95 Marks]

(c). Find the vector \underline{x} and the scalar λ which satisfy the equations:

$$\underline{a} \times \underline{x} = \underline{b} + \lambda \underline{a}$$

$$\underline{a} \cdot \underline{x} = 2$$
 ; where $\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{b} = 2\underline{i} - \underline{j} + \underline{k}$

[95 Marks]

- 05. Let C be the curve given by, $\underline{r}(\theta) = 2\theta \underline{i} + \cos \theta \underline{j} + \sin \theta \underline{k}$, where θ is a parameter.
 - (i). Find the unit tangent vector and the unit principal normal vector at the point with parameter θ . [120Marks]
 - (ii). Let l be the tangent line to C at the point $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Find the equation of l.

[80 Marks]

(iii). Find the curvature of the curve.

[50 Marks]