Real World Applications of Data Science

In partnership with: Proscia Inc, Betamore, Spark B-more

Lecture 1 Notes: Intro DS + Python Basics + Intro ML

What is a data scientist?

Data scientist definitions

"Data Scientist" is a Data Analyst who lives in California.

Data scientist definitions

Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

Data scientist roles

The Value of Data Scientists

The Value of Data Scientists

Data scientists add values to companies by doing one of 3 things:

- Predicting the good
- 2) Identifying the bad
- 3) Automating existing processes

Let's take a look at some real world applications of data science..

Predicting Neonatal Infection

Problem: Children born prematurely are at high risk of developing infections, many of which are not detected until after the baby is sick

Goal: Detect subtle patterns in the data that predicts infection before it occurs

Data: 16 vital signs such as heart rate, respiration rate, blood pressure, etc...

Impact: Model is able to predict the onset of infection 24 hours before the traditional symptoms of infection appear

Image: http://www.babycaretips4u.com/wp-content/uploads/2014/03/premature-baby.jpg Case Study: http://www.amazon.com/Big-Data-Revolution-Transform-Think/dp/0544002695

Automating government tasks

Problem: Processing disability claims at the Social Security Administration is a time-intensive process, with many claims taking over 2 years to adjudicate

Goal: Automate the approval of a subset of the "simplest" disability claims

Data: Free text in the claims form

Impact: Able to fully automate 20% of the simplest claims. Rating accuracy of the algorithm is higher than the average claims examiner.

Predicting grade of cancer

Problem: Interpathologist conccurrence rates as low as 55% for prevalent diseases like Prostate Cancer Adenocarcinoma

Goal: Increase diagnostic accuracy

Data: Labeled, digitized biopsy images

Impact: Much higher concurrence with prognostic consensus

Data Science Workflow

How to think like a data scientist

- 1) Define the problem/question
- 2) Identify and collect data
- 3) Explore and prepare data
- 4) Build and evaluate model
- 5) Communicate results

1) Define the Problem/Question

Can I predict infection before it occurs?

Can I predict claim approval from the start of the process?

2) Identify and Collect Data

Vital Areas: Heart Rate, Blood Pressure, etc...

Want to collect all data on the claim form (mostly free text)

3) Explore and Prepare Data

Aggregate data at the minute level

Cluster like words

4) Build and Evaluate Models

Compare
Decision Tree
with Logistic
Regression

Start with Naïve Bayes Classifier

5) Communicate Results

Create custom dashboard for doctors and nurses

Create report and dashboard proof of concept

Qualities of a Good Data Scientist

- Asks Rational Questions
- Understands Pros/Cons of different techniques
- Communicates Clearly
- Retains Intellectual Humility

What the hell is machine learning?

What is Machine Learning?

- "A field of study that gives computers the ability to learn without being explicitly programmed" (1959)
 - Machine learning is a class of algorithms that are datadriven. Unlike classical algorithms, it's the data that defines a "good" answer.
 - The core of machine learning deals with: Representation, and generalization

Types of ML problems

generalization

supervised unsupervised

making predictions extracting structure

Supervised: labeled data

Unsupervised: unlabeled data

representation

Supervised Learning

- "Vector" list of Predictors X
 - Features, independent variables, inputs, regressors, covariates, attributes
- Response Y
 - Outcome, dependent variable, label, target
- If Y is continuous: **Regression**
 - Price, blood pressure..
- If Y is categorical (values in finite, unordered set): **Classification**
 - Digits 0-9, cancer grades of tissue
- Data is composed of observations (predictors and associated response)
 - Samples, examples

Predicting Neonatal Infection

Problem: Children born prematurely are at high risk of developing infections, many of which are not detected until after the baby is sick

Goal: Detect subtle patterns in the data that predicts infection before it occurs

Data: 16 vital signs such as heart rate, respiration rate, blood pressure, etc...

Impact: Model is able to predict the onset of infection 24 hours before the traditional symptoms of infection appear predictors

Sample response: Did the child develop an infection? True/False

Iris Data Set Intro

Supervised Learning

Supervised learning uses known labeled/training cases to:

- Accurately predict unseen test cases
- Understand which predictors affect response, and how
- Assess the quality of our predictions

Regression Example

Establish the relationship between salary and demographic variables in population survey data

Income survey data for males from the central Atlantic region of the USA in 2009

Classification Example

Identify the numbers in a handwritten zip code

Source: https://class.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/introduction.pdf

Unsupervised Learning

- No response variable Y; Just predictor X
- Objective is more open:
 - Find groups of observations that behave similarly
 - Find predictors that behave similarly
 - Find combinations of features that explain behavior of data
- Sometimes useful as preprocessing step for supervised
 - Clustering, Principal Component Analysis

Supervised v. Unsupervised

supervised regression classification unsupervised dimension clustering reduction

Clustering example

Clustering example

Classify US residential neighborhoods into 67 unique segments based off of demographic and socioeconomic information

Example of cluster: Metro Renters:

- Young, mobile, educated, or still in school
- · Live alone or with a roommate
- Works long hours
- Buys groceries at Whole Foods and Trader loe's
- Shops at Banana Republic, Nordstrom, and Gap
- Loves yoga, go skiing, and attend Pilates sessions.

Source: http://www.esri.com/landing-pages/tapestry/

Supervised v. Unsupervised

	continuous	categorical
supervised unsupervised		classification clustering

Classification Example

Q: How does a classification problem work?

A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Suppose we want to predict the color of the gray dot.

QUESTION: What are the predictors? What is the response?

Suppose we want to predict the color of the gray dot.

1) Pick a value for k.

Suppose we want to predict the color of the gray dot.

- 1) Pick a value for k.
- Find colors of k nearest neighbors.

Suppose we want to predict the color of the gray dot.

- 1) Pick a value for k.
- Find colors of k nearest neighbors.
- 3) Assign the most common color to the gray dot.

NOTE:

function.

Suppose we want to predict the color of the gray dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the gray dot.

K-Nearest Neighbors specs

Advantages

- Simple to understand and explain
- Model training phase is fast (low complexity)
- Non-parametric (no assumed decision boundary)

<u>Disadvantages</u>

- Prediction phase slow when n is very large
- Sensitive to irrelevant features

Advanced algorithms available for study

Any questions?