全天大学大学院自然科学研究科 博士前期嚴强入学試験 問題用紙 対 象 電子情報工学専攻,機能機械科学専攻,人間・機械科学専攻,社会基盤工学専攻	
分 按	電子情報工学專攻,機能機械科学專攻,人間・機械科学專攻,社会基盤工学專攻
試験科目名	数 学 P.1 / 1

2007年8月28日(火)10:00-11:00

[注意] 1. 網曜 1 2 3 4 のうち、2 服を選択して保御すること

2. 解答は各曜ごとに分けて、1 職を1枚の管理用級の表に合くこと、

① ① $\frac{dy}{dz} = (2-y)y$ の一般解と、z=0 のとき y=1 となる特殊を求めよ.

②
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$
 の一般解と、 $z = 0$ のとき $y = 1$, $\frac{dy}{dx} = 2$ となる特殊を求めよ.

(3)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = e^x$$
 の一般解と、 $x = 0$ のとき $y = 2$, $\frac{dy}{dx} = 3$ となる特殊を求めよ

- 2 ベクトル場 $u = (-y, z, z), v = (z^2 + z, zy y, z^2 3zz)$ に対して、次の問いに答えよ、a, b, c は正の定数とする。
 - (1) rotu および div v を求めよ.
 - (2) 曲線 $C: r(t) = (a\cos t, b\sin t, 0)$ $(0 \le t \le 2\pi)$ に対して、線積分

$$\frac{1}{2}\int_C \mathbf{w} \cdot d\mathbf{r}$$

を求めよ

(3) 立体 $V: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$, $0 \le x \le c$ の表面 S 上の面積分

$$\iint_{S} v \cdot n dS$$

を求めよ、ただしれはSの外向き単位依線ベクトルとする。

(1) 実数 R>1 に対し、曲線 C_j (j=1,2,3) をそれぞれ

$$C_1 = \{z = x \mid 0 \le x \le R\},$$
 $C_2 = \{z = Re^{i\theta} \mid 0 \le \theta \le 2\pi/3\}$
 $C_3 = \{z = xe^{2\pi i/3} \mid 0 \le x \le R\}$

で定める。このとき各曲線 C_j に沿う複楽関数 $\frac{1}{z^3+1}$ の積分 $I_j=\int_{C_j}\frac{dz}{z^3+1}$ を、パラメータ z または θ を用いて表せ。

- (2) 単一関曲線 $C=C_1+C_2-C_3$ に沿う積分 $I=\int_C \frac{dz}{z^2+1}$ の値が $\frac{2\pi i}{3}e^{-2\pi i/3}$ となることを示せ、
- (3) $\lim_{R\to+\infty} I_2 = 0$ となることを利用して、 $\int_0^{+\infty} \frac{dx}{x^3+1}$ を求めよ、
- ① $t \ge 0$ で定義された関数 f(t) のラブラス変換 $\mathscr{L}[f(t)]$ と, $0 \le t < \lambda$ のとき g(t) = 0, $t \ge \lambda$ のとき $g(t) = f(t \lambda)$ で与えられる関数 g(t) のラブラス変換 $\mathscr{L}[g(t)]$ の関係式を求めよ. ただし, $\lambda > 0$ とする.
 - (2) $t \ge 0$ で定義された周期が 1 の周期関数 f(t) = t(1-t) $(0 \le t \le 1)$, f(t+1) = f(t) のラブラス変換 $\mathcal{L}[f(t)]$ を求めよ.