



# KI in der Energiewirtschaft Entwicklung und Implementierung eines Verfahrens zur Eigenverbrauchsoptimierung auf Haushaltsebene mittels Methoden des Maschinellen Lernens



















## Gliederung

Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick





## Gliederung



Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick





#### Motivation

Dezentralisierung der Erzeugungsstruktur



Förderung von Investitionen dezentraler Energieerzeugungsanlagen auf Niederspannungsebene

Entwicklung eines
Optimierungsmodells zur
Eigenbedarfsdeckung von
Haushalten



Auf Grund von deterministischen Methoden hohe Rechenlaufzeiten Maschinelles Lernen
verspricht geringere
Rechenlaufzeiten und somit
eine praktikablere
Anwendung





### Zielsetzung

#### Hauptziel

Geeignete Methoden des Maschinellen Lernens zur Approximation eines gemischtganzzahligen Optimierungsproblems identifizieren

#### Nebenziele

Entscheidungshilfe für den Ausbau dezentraler Anlagen schaffen





Neue Lastprofile erschließen



Netzberechnung





## Gliederung

Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick











# Klassifizierung



Aufgabenstellung



Nichtlineare Aufgabenstellung

| Ausbauoptionen | Multi- | Label   | Multi-Class |         |  |
|----------------|--------|---------|-------------|---------|--|
| *              | *      | [1,0,1] | *           | [1,0,0] |  |
|                | *      | [1,1,0] |             | [0,1,0] |  |
|                |        | [1,1,1] |             | [0,0,1] |  |





#### Klassifizierung - Problemtransformationen

#### **Problemtransformationen**

Umwandlung des Multi-Label Problems in Multi- oder Single Class Probleme



#### **Label Powerset**

| X    | <b>Y1</b> | <b>Y2</b> | <b>Y</b> 3 | <b>Y4</b> | _        | X    | <b>Y1</b> |
|------|-----------|-----------|------------|-----------|----------|------|-----------|
| X(1) | 0         | 1         | 1          | 0         |          | X(1) | 1         |
| X(2) | 1         | 0         | 1          | 0         |          | X(2) | 2         |
| X(3) | 0         | 0         | 0          | 1         | <b>→</b> | X(3) | 3         |
| X(4) | 1         | 0         | 1          | 0         |          | X(4) | 2         |
| X(5) | 0         | 1         | 1          | 0         |          | X(5) | 1         |





| X    | <b>Y1</b> | Y2 | Y3 | <br>Y(n) |
|------|-----------|----|----|----------|
| X(1) | 0         | 1  | 1  | <br>     |
| X(2) | 1         | 0  | 1  | <br>     |
| X(3) | 0         | 0  | 0  | <br>     |
| X(4) | 1         | 0  | 1  | <br>     |
| X(n) |           |    |    | <br>     |
|      |           |    |    |          |

| X    | <b>Y1</b> | X    | <b>Y1</b> | Y2 | X    | <b>Y1</b> | Y2 | <b>Y</b> 3 | X    | <b>Y1</b> | Y2 | <b>Y3</b> | <br>Y(n) |
|------|-----------|------|-----------|----|------|-----------|----|------------|------|-----------|----|-----------|----------|
| X(1) | 0         | X(1) | 0         | 1  | X(1) | 0         | 1  | 1          | X(1) | 0         | 1  | 1         | <br>     |
| X(2) | 1         | X(2) | 1         | 0  | X(2) | 1         | 0  | 1          | X(2) | 1         | 0  | 1         | <br>     |
| X(3) | 0         | X(3) | 0         | 0  | X(3) | 0         | 0  | 0          | X(3) | 0         | 0  | 0         | <br>     |
| X(4) | 1         | X(4) | 1         | 0  | X(4) | 1         | 0  | 1          | X(4) | 1         | 0  | 1         | <br>     |
| X(n) |           | X(n) |           |    | X(n) |           |    |            | X(n) |           |    |           | <br>     |





#### **Neuronale Netze**

#### Feedforward Neuronales Netz



#### Konvolutionales Neuronales Netz



(Foto: Alexander Dummer/Unsplash)

Rekurrentes Neuronales Netz



Sequenz 1: [6, 0, 1, 2, 3, 6]

Sequenz 2: [9, 0, 1, 2, 3, 9]





#### Allgemeines Vorgehen für Modelle aus dem Bereich ML







## Gliederung

Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick











**Bewertung der Modelle** 



Anwendung der Modelle mit unbekannten Inputdaten. Anschließende Generierung neuer **Einspeise- und Lastprofile** 



- -Überanpassung
- -Unteranpassung
- -Genauigkeits-Koeffizienten

Ermittlung der Ausbauprognose und des Anlagenfahrplans mit dem entwickelten Modell





# Modellierung – Generierung der Trainingsdaten









### Modellierung – Modell zur Ausbauprognose









# Modell zur Ausbauprognose - Klassifizierungsalgorithmen

1 2 3 4

Entscheidungsbäume

k-Nächste-Nachbarn

Neuronale Netze











#### Modell zur Ausbauprognose mittels Neuronalen Netzen

1 2 3 4

Feedforward Neuronales Netz



Konvolutionales Neuronales Netz









### Modell zur Zeitreihenvorhersage mit Rekurrenten NN









# Gliederung

Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick













# Ergebnisse - Prognose der Ausbaupfade







## Ergebnisse - Prognose der Ausbaupfade







# Ergebnisse – Prognose des Anlagenfahrplans







# Ergebnisse – resultierendes Lastprofil





Abweichung von prognostiziertem und generiertem Lastprofil in kWh: ~12%





Gemischt-ganzzahlige Optimierung: ~600 Sek ML-Modell: ~ 0,6 Sek





#### Ergebnisse - Vergleich des Zeitaufwands der Modelle



Gemischt-ganzzahlige Optimierung ~10min ML-Modell ~ 0,6 Sek





## Gliederung

Motivation und Zielsetzung

Verwendete Methoden des Maschinellen Lernens

Modell

Ergebnisse

Zusammenfassung und Ausblick

26





#### Zusammenfassung

- Zugrundeliegendes Optimierungsproblem wurde analysiert
- Auswahl geeigneter Methoden aus dem Bereich ML zur Approximation des Optimierungsproblems getroffen
- Entwicklung des ML-Modells unter Anwendung der ausgewählten Methoden
- Bewertung des Modells mittels verschiedenen Beurteilungskriterien
- Anwendung der Modelle mit unbekannten Inputdaten





#### Ausblick

- Betriebs- und Investitionskosten variieren, um weitere Ausbaupfade wie Wärmepumpen und BHKW etc. zu generieren
- Optimierung der Trainingsdaten hinsichtlich der Ausgeglichenheit des Lösungsraums
- Hyperparameter Optimierung zur strukturellen Verbesserung der Algorithmen insbesondere der Neuronalen Netze
- Szenarioanalysen mit den neuen Lastprofilen







29





#### Konvolutionale Neuronale Netze

 Konvolutionale Netze sind Neuronale Netze, die speziell für die Merkmalsextrahierung gedacht sind.

- Anwendungsbereiche
  - Bildanalyse, Objekterkennung





(Foto: Alexander Dummer/Unsplash)





#### Rekurrente Neuronale Netze

- Rekurrente Netze nutzen die Eigenschaft bestimmte Informationen aus vergangenen Zeitschritten als zusätzlichen Input zu verwenden.
- Anwendungsbereiche
  - Übersetzungsprogramme
  - Textgenerierung
  - Sequenzgenerierung
  - Audio Erzeugung







#### Backpropagierung



- Aktualisierung der Gewichte zwischen den neuronalen Schichten und somit die Fähigkeit zu "lernen"
- Fehler kann mit verschiedenen
   Fehlerfunktionen
   berechnet werden





#### Entscheidungsbäume

- Gut geeignet zur Klassifizierung
- Auch geeignet bei nicht kategorialen Daten
- Neigt zur Überanpassung
- Abhängig von Hyperparametern
  - Max Features:
    - -> Wie viele Merkmale werden maximal benutzt
  - Maximale Tiefe:
    - -> Entscheidungsgrenzen werden komplizierter
  - Min samples split
  - Min samples leaf







#### Random Forest

- mehrere unkorrelierte Entscheidungsbäume
  - Sonderform von Entscheidungsbäumen, eine sogenannte Ensemble Methode
  - Ensemble mehrerer Entscheidungsbäume mit jeweils großer Varianz bilden ein stabileres Modell, welches beim Verallgemeinern besser arbeitet
  - Sehr gut geeignet zur Klassifizierung
  - Neigt weniger zur Überanpassung als einzelne Entscheidungsbäume





#### K-nächste-Nachbarn

- Algorithmus speichert die Trainingsdaten
- Funktionsweise:
  - 1. Auswahl der Merkmale und Sammeln von Trainingsdaten
  - 2. Auswahl der k nächsten Nachbarn des zu klassifizierenden Exemplars
  - 3. Zuweisung der Klassenbezeichnung durch eine Mehrheitsentscheidung
- Neigt zur Überanpassung bei hoher Dimensionalität







- Berechnung der Binären Kreuz Entropie
  - "Wahrscheinlichkeit der Klasse 1 zu entsprechen" für jede Ausbauoption
  - → Schwellenwertklassifizierung zur Maximierung der Ergebnisse

|              | Predicted Class |                |                |  |  |  |
|--------------|-----------------|----------------|----------------|--|--|--|
|              |                 | Class = 1      | Class = 0      |  |  |  |
| Actual Class | Class = 1       | True Positive  | False Negative |  |  |  |
|              | Class = 0       | False Positive | True Negative  |  |  |  |

"Confusion Matrix

• Multilabel:

TP = 
$$2\sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1}(P_{ij} = 1)\mathbb{1}(G_{ij} = 1)$$

Analog dazu TN, FP und FN





- Accuracy Score
  - Der für ein Sample vorhergesagte Satz von Labels muss genau mit dem entsprechenden wirklichen Satz von Labels übereinstimmen.
  - Formel f

    ür Multilabel:

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Oder

$$Acc(P|G) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{1} (P_{ij} = G_{ij})$$

•  $\rightarrow$  True: [0,1] und [1,1]  $\rightarrow$  Predicted: [1,1], [1,1]  $\rightarrow$  AS = 0.5





- Jaccard Similarity
  - Der Jaccard Ähnlichkeitskoeffizient ist definiert als die Größe des Schnittpunktes geteilt durch die Größe der Vereinigung zweier Labelsätze.
  - Formel:

$$Jaccard = \frac{TP}{TP + FN + FP}$$

•  $\rightarrow$  True: [0,1] und [1,1]  $\rightarrow$  Predicted [1,1], [1,1]  $\rightarrow$  JS = 0.75





- F1 Score
  - Der F1-Score kann als gewichteter Mittelwert aus "Precision Score" und "Recall" interpretiert werden.
  - Precision Score
    - Der "Precision Score" ist die Fähigkeit des Klassifikators, eine Probe, die negativ ist, nicht als positiv zu kennzeichnen.
  - Recall
    - Der "Recall" ist die Fähigkeit des Klassifikators, alle positiven Proben zu finden.





### Ergebnisse - Bewertungskriterien

- Test auf Über- und Unteranpassung:
  - Modell mit den Trainingsdaten validieren
    - Wenn Trainingsscore ~100% -> Überanpassung
    - Wenn Trainigsscore schlecht -> Unteranpassung
    - Wenn Trainingsscore ähnlich Testscore -> generalisiertes Modell
    - Hier: Exemplarisch anhand der "Baum Tiefe" eines Entscheidungsbaumes getestet.





**Kernaussauge:** Modelle müssen anhand bestimmter Hyperparemeter auf Über-/Unteranpassung getestet und validiert werden.