МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ОТЧЕТ

О ВЫПОЛНЕНИИ ЗАДАНИЯ № 2 «РАСЧЕТ ДОПУСТИМОГО ЭНЕРГОВЫДЕЛЕНИЯ В БОЧКЕ С ЖРО В СУХОМ ХРАНИЛИЩЕ»

> Выполнил студент группы C19-103 Мамлеев Антон Алексеевич

Руководитель кандидат технических наук Куценко Кирилл Владленович

1 Результаты

Исследовались зависимости температур бочки, бетонной стенки, а также температуры воздуха в зазоре от энерговыделения в бочке с ЖРО. В результате расчета были получены зависимости, представленные на рис. 1. Также были построены зависимости массового расхода через зазор и коэффициента теплоотдачи от мощности энерговыделения (рис. 2, 3).

Наиболее важные параметры системы в точках достижения критических температур (вспенивания отходов и охрупчивания бетона) вынесены в таблицу 1.

Рис. 1. Графики зависимости температур бочки, бетонной стенки и воздуха от мощности энерговыделения в бочке

В отсутствие бетонного ограждения температура вспенивания отходов достигается при меньшем энерговыделении (см. дз. №1): 2.69 кВт (с учетом теплоотдачи с торцов) или 2.55 кВт (с «теплоизолированными» торцами). Таким образом можно сделать вывод, что установка бетонного ограждения позволяет повысить эффективность отвода тепла от бочки с ЖРО.

Рис. 2. График зависимости массового расхода через зазор от мощности энерговыделения в бочке

Рис. 3. График зависимости коэффициента теплоотдачи от мощности энерговыделения в бочке

Таблица 1. Параметры системы при достижении критических температур

Параметры	Достижение температуры	Достижение температуры
системы	вспенивания ($t_{\text{боч}} = 90 ^{\circ}\text{C}$)	охрупчивания $(t_{\text{стен}} = 60 {}^{\circ}\text{C})$
Q, к B т	2.73	8.07
q_v , к ${ m BT/m^3}$	12.6	37.3
$t_{\text{боч}}, {}^{\circ}\text{C}$	90	214
$t_{\text{стен}}, {}^{\circ}\text{C}$	7.5	60.0
$t_{\rm cp},{}^{\circ}{\rm C}$	-15.0	-10.0
$t_{\scriptscriptstyle \mathrm{BMX}},{}^{\circ}\mathrm{C}$	-10.1	0.1
$\alpha, \frac{B_T}{M^2 \cdot K}$	12.7	16.1
$G, \mathrm{Kr/c}$	0.273	0.399
$\frac{G, Ki/C}{G}$	0.219	0.033