Análise Matemática B

Folha 2

- 1. Desenvolver em série de potências de x as seguintes funções:
 - a) $f(x) = \cos^2 x$;
 - b) $g(x) = \sin^2 x;$
 - c) $h(x) = \sin^3 x$.
- 2. Use desenvolvimentos conhecidos para determinar:
 - a) $\lim_{x \to 0} \frac{\sin(x^3)}{x^2};$
 - b) $\lim_{x \to 0} \frac{\ln(1+x) x}{1 \cos x}$.
- 3. Determine os seguintes desenvolvimentos em série de potências:
 - a) e^x segundo potências de (x-2);
 - b) $x^3 2x^2 + 5x 7$ segundo potências de (x 1);
 - c) $x^2 \ln x^2$, definida em $\mathbb{R} \{0\}$, segundo potências de (x-1).
- 4. Considere o desenvolvimento em série de potências dado por:

$$(1+x)^r = 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \dots \quad |x| < 1, r \in \mathbb{R}$$

- a) Determine o desenvolvimento em série de potências de $\sqrt[3]{1+x}$.
- b) Determine a representação de $\sqrt[3]{1+x^4}$, em série de potências de x.
- c) Calcule uma aproximação de $\int_0^{0.3} \sqrt[3]{1+x^4} dx$.
- 5. Sabendo que

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$$

- a) Calcule uma aproximação de $\ln(1.1)$ usando os primeiros quatro termos da série. Dê um limite para o erro cometido.
- b) Calcule uma aproximação de $\sqrt[3]{30}$ usando os primeiros três termos da série. Dê um limite para o erro cometido.
- 6. Use o desenvolvimento da função $\sin x$ em série de MacLaurin para calcular as seguintes aproximações:
- a) $\sin 10^0$ usando os primeiros dois termos da série. Dê um limite para o erro cometido.
- b) $\sin 1^0$ usando os primeiros dois termos da série. Dê um limite para o erro cometido.