Межсоединения QSys

Программа курса

- Системы с несколькими доменами ТИ
- Повышение производительности межсоединений
- Реализация интерфейсов в периферийных модулях

Системы с несколькими доменами ТИ

Поддержка переходов между доменами ТИ

CDC = Clock Domain Crossing Logic (логика перехода между доменами) Реализуется автоматически в SOPC Builder

© 2010 Altera Corporation—Confidential

Настройка ТИ в QSys

- Автоматическая реализация логики перехода между доменами
- Автоматическая реализация конвейеризации
- Неограниченное количество доменов ТИ
- Реализует пересинхронизацию сигналов управления

Логика перехода между доменами

Handshake

Логика перехода между доменами

- Реализует пересинхронизацию сигналов управления
- Используются конечные автоматы на стороне приемника и передатчика
- Для чтения вносимая задержка составляет по пять тактов с каждой стороны
 - 4 такта на логику синхронизатора
 - 1 так на подавление метастабильности
 (для настройки domain synchronizer length = 2)
- Master ожидает завершения каждой передачи
 - Падение производительности для конвейеризованных передач
- Для повышения скорости обмена используйте настройку FIFO или мост Clock Crossing Bridge

Mocт Avalon-MM Clock Crossing Bridge

- Используется для повышения производительности передачи между доменами
 - Соединяет главные и подчиненные порты, находящиеся в разных доменах
 - Разрядность настраивается
 - Предоставляет возможность буферизации чтения и записи для конвейеризованных передач
 - Поддерживает пакетные передачи

Moct Avalon-MM Clock Crossing Bridge

■ FIFO могут быть реализованы на триггерах и в модулях памяти

© 2010 Altera Corporation—Confidential

Пример системы

Используется несколько мостов

Каждый мост связан с несколькими подчиненными портами

Повышение производительности системной шины

Mocт Avalon-MM Pipeline Bridge

Предоставляет возможность конвейеризации данных

Use

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{v}}$

 ∇

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{v}}$

 $\overline{\mathbf{v}}$

 ∇

 $\overline{\mathsf{v}}$

Connections

в системной шине

Повышение частоты системы

Управление архитектурой

© 2010 Altera Corporation—Confidential

Module Name

instruction_master data_master

jtag_debug_module

instruction_master data_master jtag_debug_module

instruction_master data_master itaq debuq module

□ cpu1

□ cpu2

□ cpu3

□ bridge s1 m1

☐ ddr sdram

s1

pipeline_bridge

ext_ssram_bus

ext ssram

avalon_slave tristate_master

□ message buffer ram

message_buffer_mu...

Mocт Avalon-MM Pipeline Bridge

Hастройки Avalon-MM Pipelined Bridge

- Поддерживает настройку разрядности
- Поддерживает пакетные передачи
- Имеется возможность отключать конвейеризацию для управления топологией

Система без применения мостов

© 2010 Altera Corpora...

Система с применением мостов

© 2010 Altera Corporation—Confidential

Система с применением мостов

Интерфейс Avalon-MM Slave в периферийных модулях

Порты Avalon-MM Slave

- Отвечают на запросы передач от системной шины
- Типы передач
 - Fundamental Read
 - Fundamental Write
- Характеристики передач
 - Циклы ожидания
 - Задержка
 - Пакетные передачи
 - Управление потоком передачи

Сигналы интерфейса Avalon-MM Slave

- Основные сигналы
 - clk, chipselect, address, read, readdata, write, writedata, byteenable, writebyteenable
- Запрос циклов ожидания
 - waitrequest
- Управление конвейеризацией
 - readdatavalid
- Сигналы пакетных передач
 - burstcount, beginbursttransfer
- Сигналы управления потоком
 - readyfordata, dataavailable, endofpacket
- Сигналы управления третьим состоянием
 - data, outputenable
- Прочие сигналы
 - irq, reset, resetrequest

Чтение с фиксированным ожиданием

(Fixes Wait States)

1 Setup Cycle

1 Wait Cycle

Чтение с управлением циклами ожидания (Variable Wait States)

Количество циклов ожидания определяется сигналом waitrequest, формируемым подчиненным портом

© 2010 Altera Corporation—Confidential

Последовательное чтение различных Master из одного Slave

Запись в Avalon-MM Slave

Без циклов ожидания

С одним циклом ожидания

Запись с ожиданием, предустановкой и удержанием

- Установка и удержание
 - Используются для медленных внешних устройств (вне ПЛИС)
 - Поддерживаются и для чтения

- Управление циклами ожидания
 - Подчиненное устройство формирует сигнал waitrequest

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS & STRATIX are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

Минимальный набор сигналов Avalon-MM Slave

- Для записи в порт
 - write, writedata ,clk
- Для чтения из порта
 - readdata, clk
- Для формирования запроса прерывания
 - $_{-}$ IRQ

Управление разрядностью

- Главные порты выставляют адрес байта
- Подчиненным портам выставляется адрес слова
 - Например, при последовательном чтении из 32-х разрядного подчиненного порта адрес в главном устройстве должен инкрементироваться на 4, но при этом на вход адреса подчиненного порта будет подаваться адрес с инкрементом на 1.

- Означает автоматическое управление разрядностью
- Передачи формируются таким образом, чтобы данные подчиненных устройств отображались в непрерывную последовательность в побайтной адресации главного устройства

Table 3.3. Dynamic Bus Sizing Master-to-Slave Address Mapping		
Master Address	32-Bit Master Data	
	When Accessing a 16-Bit Slave Port	When Accessing a 64-Bit Slave Port
0x00	OFFSET[1] ₁₅₀ :OFFSET[0] ₁₅₀	OFFSET[0] ₃₁₀
0x04	OFFSET[3] ₁₅₀ :OFFSET[2] ₁₅₀	OFFSET[0] ₆₃₃₂
0x08	OFFSET [5] ₁₅₀ :OFFSET [4] ₁₅₀	OFFSET[1] ₃₁₀
0x0C	OFFSET[7] ₁₅₀ :OFFSET[6] ₁₅₀	OFFSET[1] ₆₃₃₂

- Пример: разрядность главного порта больше
 - Главный порт разрядностью 32 выставляет адрес байта
 - Из 16-ти разрядного подчиненного порта системной шиной будет осуществлено два чтения по последовательным адресам в карте памяти подчиненного устройства (в пословной адресации)
 - Сформированное 32-х разрядное слово будет представлено на вход главного устройства

- Пример: разрядность главного порта меньше
 - При чтении главный порт разрядностью 32 выставляет адрес байта
 - Из 64-х разрядного подчиненного порта системной шиной будет считано значение и выбраны нужные байты
 - Сформированное 32-х разрядное слово будет представлено на вход главного устройства

- Пример: разрядность главного порта меньше
 - При записи главный порт разрядностью 32 выставляет адрес байта
 - На входе 64-х разрядного подчиненного порта системной шиной будут выставлены сигналы byteenable для 4 байт, значение которых изменяется

2

3

Интерфейс Avalon-MM Master в периферийных модулях

Схема арбитража для Avalon-MM Master

- В системах с несколькими главными портами используется "справедливая" схема арбитража
 - Каждой паре портов Master/Slave назначается доля (целое число)
 - При конфликте нескольких портов Master доступ к Slave получает Master с наибольшим количеством долей и использует их
 - Далее доступ получает Master с меньшим количеством долей.
 - При условии формирования постоянных запросов все порты Master будут получать доступ в течение времени, пропорционального их доле в общей сумме долей

Настройка долей для арбитража

- Для отображения долей вызовите контекстное меню в панели Connections и выберите Show Arbitration
- Настраивается для каждого разделяемого подчиненного порта

Пример арбитража

Master A Shares = 4

Master B Shares = 2

Арбитраж при постоянном доступе

Конвейеризованные передачи

Конвейеризованные передачи

- Конвейеризованные передачи увеличивают пропускную способность для синхронных подчиненных портов, которые требуют несколько тактов на формирование результата после первого доступа, но далее могут формировать результаты каждый такт
- Конвейеризованные передачи поддерживаются только для чтения из подчиненных портов
- При использовании конвейеризованных передач главный порт может начать новую передачу до получения считанного значения предыдущих передач

Конвейеризованное чтение для Master

- Раздельные фазы адреса и данных
- Сигнал "readdatavalid" информирует Master о готовности данных
 - Генерируется шиной или Slave (в зависимости от настройки задержки)

Конвейеризованное чтение с переменной длительностью

 Slave формирует readdatavalid, если используется переменная длительность

Пакетные передачи (burst)

Поддержка Avalon-MM Burst

- Главному порту предоставляется непрерывный доступ к подчиненному порту для определенного количества передач
- Дополнительные сигналы для поддержки пакетных передач
 - burstcount, beginbursttransfer
- SOPC Builder автоматически реализует согласование:
 - Разрядности данных, размера пакета,
 - Перехода от пакетных к обычным передачам

Пакетные передачи

- Гарантирует последовательный доступ к определенному числу байт
- Реализует несколько передач в рамках одной
 - Подчиненному порту выставляется адрес и сигналы управления пакетной передачей
 - Подразумевается доступ по последовательным адресам
- Пакетные передачи должны поддерживаться как главным, так и подчиненным портом
 - Также требуется поддержка конвейеризованных передач с переменным числом циклов ожидания и задержкой для пакетного чтения из подчиненного порта
 - Т.е. требуется поддержка сигналов waitrequest и readdatavalid

Пакетные передачи

- Повышает производительность, так как в пересылке используется только одна фаза адреса
 - При пакетной передаче отключается арбитраж для обеспечения непрерывности

Примеры подчиненных портов с поддержкой пакетных передач

- DDR/DDR2
- PCI
- Burstable FIFO

Потоковые передачи

Интерфейс Avalon-ST

- Характеристики
 - Высокая пропускная способность
 - Малая задержка
 - Однонаправленный
- Основные применения
 - Мультиплексирование потоков
 - Блочные передачи
 - Обмен в системах ЦОС
- Поддерживает различные требования к интерфейсам
 - От простых до сложных

Avalon-MM и Avalon-ST

- Могут использоваться совместно
- Упрощает проектирование топологии системы
 - Управление осуществляется процессором через порты Avalon-MM
 - Поток данных передается через порты Avalon-ST

© 2010 Altera Corporation—Confidential

Описание сигналов Avalon-ST

Основные сигналы			
Тип	Бит	Направление	Описание
ready	1	Sink -> Source	Показывает готовность приемника к получению данных
valid	1	Source -> Sink	Подтверждает действительность сигналов от источника к приемнику
data	1-256	Source -> Sink	Линии передачи данных
channel	0-8	Source -> Sink	Номер канала в приемнике, в который передаются данные
error	1-255	Source -> Sink	Битовая маска, помечающая ошибки разных типов в передаваемых данных (0 – в передаваемых данных нет ни одной ошибки)
Сигналы пакетных передач			
startofpacket	1	Source -> Sink	Начало пакета
endofpacket	1	Source -> Sink	Конец пакета
empty	0-8	Source -> Sink	Количество пустых символов в конце пакета на последнем такте (если разрядность data больше разрядности символа)

Sink — приемник, source — источник © 2010 Altera Corporation—Confidential

Пример простой потоковой передачи

Пример:

Используются только сигналы
 "data" и "valid" для передачи
 данных от источника к приемнику

Еще один пример:

- Блок инверсии 32-х битных чисел в потоке данных
- Добавлен сигнал "ready" для управления потоком передачи

Временная диаграмма обмена

Пример

- Передача с поддержкой "backpressure"

Адаптеры и мультиплексоры Avalon-ST

- Конфигурируемые компоненты SOPC Builder
 - Адаптер формата данных
 - Соединяет интерфейсы с разными параметрами сигналов для передачи данных, например, с различной разрядностью
 - Адаптер временных параметров
 - Соединяет интерфейсы компонент с различным количеством циклов перед получением/передачей данных
 - Задействует FIFO между источником и приемником и сигналы управления потоком
 - Канальный адаптер
 - Соединяет интерфейсы с различными параметрами каналов, например, при уменьшении количества каналов (см. след. слайд)

Avalon-ST адаптеры, мультиплексоры и FIFO

52