Notions de base, logique et raisonnements

Exercice 1:

On pose $f(x) = \ln |2x + 1| + \ln |x + 3|$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. Résoudre alors $\ln |2x+1| + \ln |x+3| < \ln 3 \text{ sur } \mathcal{D}_f$.

Exercice 2:

Les questions 1 et 2 ci-dessous sont indépendantes.

Pour fabriquer une boîte sans couvercle, on prend une feuille carrée en carton ou en métal dont le côté a une longueur donnée a. A chacun des quatre angles, on découpe un carré dont le côté a une longueur égale à x; on rabat perpendiculairement les quatre bandes qui restent (voir figure ci-dessous). Le but est de déterminer x pour que le volume de la boîte soit maximal.

- 1. (a) Montrer que le volume V(x) de la boîte est : $4x^3 4ax^2 + a^2x$.
 - (b) Déterminer la valeur de x pour laquelle le volume V(x) est maximal. Déterminer également la valeur maximale de V(x). Que dire de la boîte si $x = \frac{a}{2}$?
- 2. Montrer: $\forall x > 1$, $\ln(x) > 2 \times \frac{x-1}{x+1}$.

Exercice 3 : Récurrences

Les questions 1 et 2 ci-dessous sont indépendantes.

- 1. Montrer, pour tout $n \in \mathbb{N} \setminus \{0,1\}$: $\sum_{k=2}^{n} \frac{1}{k(k^2-1)} = \frac{n^2+n-2}{4n(n+1)}$
- 2. Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1, \ u_1 = 4, \\ \text{et} : \forall n \in \mathbb{N}, \ u_{n+2} = \frac{(u_{n+1})^5}{(u_n)^4} \end{cases}$ Montrer : $\forall n \in \mathbb{N}, \ u_n = 2^{\frac{2}{3}(4^n 1)}$.