

Achieving Precise Modeling of Geometric Transformations

Carson Wu September 2025

Introduction

- Introduction
- Lie Group Foundations

- Introduction
- Lie Group Foundations
- Framework Overview

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization
- Implementation Process

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization
- Implementation Process
- Practical Applications

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization
- Implementation Process
- Practical Applications
- Impact Analysis

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization
- Implementation Process
- Practical Applications
- Impact Analysis
- Future Directions

- Introduction
- Lie Group Foundations
- Framework Overview
- Neural Network Architecture
- Training and Optimization
- Implementation Process
- Practical Applications
- Impact Analysis
- Future Directions
- Conclusion

• **Challenge**: Traditional CNNs struggle with explicit geometric transformation modeling (e.g., rotation, translation).

- **Challenge**: Traditional CNNs struggle with explicit geometric transformation modeling (e.g., rotation, translation).
- **Solution**: L.E.P.A.U.T.E. Framework uses Lie group theory to model transformations intrinsically.

j4į

- **Challenge**: Traditional CNNs struggle with explicit geometric transformation modeling (e.g., rotation, translation).
- **Solution**: L.E.P.A.U.T.E. Framework uses Lie group theory to model transformations intrinsically.
- **Goal**: Achieve precise, robust modeling for computer vision tasks like 3D reconstruction, robotics, and medical imaging.

j4į

- **Challenge**: Traditional CNNs struggle with explicit geometric transformation modeling (e.g., rotation, translation).
- **Solution**: L.E.P.A.U.T.E. Framework uses Lie group theory to model transformations intrinsically.
- **Goal**: Achieve precise, robust modeling for computer vision tasks like 3D reconstruction, robotics, and medical imaging.

j4į

• Lie Group (\mathcal{G}) : A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.

- Lie Group (\mathcal{G}) : A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:

- Lie Group (\mathcal{G}): A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:
 - SE(2): 2D rotation and translation.

- Lie Group (\mathcal{G}) : A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:
 - SE(2): 2D rotation and translation.
 - SE(3): 3D rigid body transformations,

- Lie Group (\mathcal{G}) : A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:
 - SE(2): 2D rotation and translation.
 - SE(3): 3D rigid body transformations,

$$g = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, \quad R \in SO(3), \quad t \in \mathbb{R}^3$$

- Lie Group (\mathcal{G}): A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:
 - SE(2): 2D rotation and translation.
 - SE(3): 3D rigid body transformations,

$$g = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, \quad R \in SO(3), \quad t \in \mathbb{R}^3$$

• Lie Algebra (g): Tangent space at identity, e.g., $\mathfrak{se}(3)$ with generators for rotation and translation.

- Lie Group (\mathcal{G}) : A group with a differentiable manifold structure, e.g., SE(3) for 3D transformations.
- Examples:
 - SE(2): 2D rotation and translation.
 - SE(3): 3D rigid body transformations,

$$g = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, \quad R \in SO(3), \quad t \in \mathbb{R}^3$$

- Lie Algebra (g): Tangent space at identity, e.g., $\mathfrak{se}(3)$ with generators for rotation and translation.
- Exponential Map: $\exp : \mathfrak{g} \to \mathcal{G}$, maps algebra to group.

• **Core Idea**: Embed geometric transformations using Lie groups in neural networks.

- **Core Idea**: Embed geometric transformations using Lie groups in neural networks.
- Components:

į7į

- **Core Idea**: Embed geometric transformations using Lie groups in neural networks.
- Components:
 - Lie group convolutional layers for equivariant feature extraction.

- Core Idea: Embed geometric transformations using Lie groups in neural networks.
- Components:
 - Lie group convolutional layers for equivariant feature extraction.
 - Lie group attention mechanisms for geometric focus.

- Core Idea: Embed geometric transformations using Lie groups in neural networks.
- Components:
 - Lie group convolutional layers for equivariant feature extraction.
 - Lie group attention mechanisms for geometric focus.
 - Geometric invariance/equivariance loss functions.

- Core Idea: Embed geometric transformations using Lie groups in neural networks.
- Components:
 - Lie group convolutional layers for equivariant feature extraction.
 - Lie group attention mechanisms for geometric focus.
 - Geometric invariance/equivariance loss functions.
- Applications: 3D reconstruction, robotic navigation, medical imaging, autonomous driving.

- Core Idea: Embed geometric transformations using Lie groups in neural networks.
- Components:
 - Lie group convolutional layers for equivariant feature extraction.
 - Lie group attention mechanisms for geometric focus.
 - Geometric invariance/equivariance loss functions.
- **Applications**: 3D reconstruction, robotic navigation, medical imaging, autonomous driving.

i7į

• **Definition**: Convolution on Lie group G:

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

• Equivariance: Ensures $(f \circ L_g) * k = (f * k) \circ L_g$.

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

- Equivariance: Ensures $(f \circ L_g) * k = (f * k) \circ L_g$.
- Implementation:

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

- Equivariance: Ensures $(f \circ L_g) * k = (f * k) \circ L_g$.
- Implementation:
 - Discretize \mathcal{G} (e.g., grid sampling of SE(3)).

Lie Group Convolutional Layer

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

- Equivariance: Ensures $(f \circ L_g) * k = (f * k) \circ L_g$.
- Implementation:
 - Discretize \mathcal{G} (e.g., grid sampling of SE(3)).
 - Use spherical harmonics for SO(3) kernels.

Lie Group Convolutional Layer

• **Definition**: Convolution on Lie group G:

$$(f*k)(g) = \int_{\mathcal{G}} f(h)k(h^{-1}g) dh$$

- Equivariance: Ensures $(f \circ L_g) * k = (f * k) \circ L_g$.
- Implementation:
 - Discretize \mathcal{G} (e.g., grid sampling of SE(3)).
 - Use spherical harmonics for SO(3) kernels.
 - Optimize with FFT for efficiency.

• Formula:

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

• Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

į6į

• Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

• Geometric Compatibility: Scores based on relative transformations,

• Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

• Geometric Compatibility: Scores based on relative transformations,

$$score(g_i, g_j) = \phi(Q(g_i), K(g_j), g_i^{-1}g_j)$$

• Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

Geometric Compatibility: Scores based on relative transformations,

$$score(g_i, g_j) = \phi(Q(g_i), K(g_j), g_i^{-1}g_j)$$

 Features: Multi-head attention, geometric positional encoding via Lie algebra.

Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

where $Q, K, V : \mathcal{G} \to \mathbb{R}^d$.

• **Geometric Compatibility**: Scores based on relative transformations,

$$score(g_i, g_j) = \phi(Q(g_i), K(g_j), g_i^{-1}g_j)$$

• **Features**: Multi-head attention, geometric positional encoding via Lie algebra.

• Geometric Invariance Loss:

• Geometric Invariance Loss:

$$L_{\mathsf{inv}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(x_i) - f(T(g)x_i)|^2$$

• Geometric Invariance Loss:

$$L_{\mathsf{inv}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(x_i) - f(T(g)x_i)|^2$$

• Equivariance Loss:

• Geometric Invariance Loss:

$$L_{\mathsf{inv}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(x_i) - f(T(g)x_i)|^2$$

• Equivariance Loss:

$$L_{eq} = \sum_{i} \sum_{g \in G} |f(T(g)x_i) - T'(g)f(x_i)|^2$$

• Geometric Invariance Loss:

$$L_{\mathsf{inv}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(x_i) - f(T(g)x_i)|^2$$

• Equivariance Loss:

$$L_{eq} = \sum_{i} \sum_{g \in \mathcal{G}} |f(T(g)x_i) - T'(g)f(x_i)|^2$$

• **Self-Supervised Learning**: Contrastive loss:

• Geometric Invariance Loss:

$$L_{\text{inv}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(x_i) - f(T(g)x_i)|^2$$

• Equivariance Loss:

$$L_{\text{eq}} = \sum_{i} \sum_{g \in \mathcal{G}} |f(T(g)x_i) - T'(g)f(x_i)|^2$$

• **Self-Supervised Learning**: Contrastive loss:

$$L_{\mathsf{contrast}} = -\log \frac{\exp(\mathsf{sim}(f(x_i), f(T(g)x_i))/\tau)}{\sum_{j} \exp(\mathsf{sim}(f(x_i), f(x_j))/\tau)}$$

• **Optimizer**: Adam with learning rate 10^{-4} , cosine annealing.

- **Optimizer**: Adam with learning rate 10^{-4} , cosine annealing.
- **Regularization**: Weight decay (10^{-5}) , dropout (0.1).

- **Optimizer**: Adam with learning rate 10^{-4} , cosine annealing.
- **Regularization**: Weight decay (10^{-5}) , dropout (0.1).
- Data Augmentation: Random rotations, translations in G.

- **Optimizer**: Adam with learning rate 10^{-4} , cosine annealing.
- **Regularization**: Weight decay (10^{-5}) , dropout (0.1).
- Data Augmentation: Random rotations, translations in G.
- Monitoring: Track loss, geometric invariance metrics.

- **Optimizer**: Adam with learning rate 10^{-4} , cosine annealing.
- **Regularization**: Weight decay (10^{-5}) , dropout (0.1).
- Data Augmentation: Random rotations, translations in G.
- Monitoring: Track loss, geometric invariance metrics.

• **Standardization**: Normalize pixel values, adjust resolution (e.g., 256×256).

- **Standardization**: Normalize pixel values, adjust resolution (e.g., 256×256).
- Geometric Transformation Extraction: Use SIFT, ORB, or RANSAC for SE(3) estimation.

- **Standardization**: Normalize pixel values, adjust resolution (e.g., 256×256).
- Geometric Transformation Extraction: Use SIFT, ORB, or RANSAC for SE(3) estimation.
- Lie Group Representation: Map images to $f: \mathcal{G} \to \mathbb{R}^n$, discretize \mathcal{G} .

- **Standardization**: Normalize pixel values, adjust resolution (e.g., 256×256).
- **Geometric Transformation Extraction**: Use SIFT, ORB, or RANSAC for SE(3) estimation.
- Lie Group Representation: Map images to $f: \mathcal{G} \to \mathbb{R}^n$, discretize \mathcal{G} .
- Tools: OpenCV, PyTorch Geometric, Sophus.

• Encoder: 6-12 layers with:

- Encoder: 6-12 layers with:
 - Lie group convolution for feature extraction.

- Encoder: 6-12 layers with:
 - Lie group convolution for feature extraction.
 - Lie group attention for geometric focus.

- **Encoder**: 6-12 layers with:
 - Lie group convolution for feature extraction.
 - Lie group attention for geometric focus.
 - Feedforward network, LayerNorm, residual connections.

- Encoder: 6-12 layers with:
 - Lie group convolution for feature extraction.
 - Lie group attention for geometric focus.
 - Feedforward network, LayerNorm, residual connections.
- Positional Encoding: $PE(g) = \sin(\omega_k \cdot \xi_g)$.

- Encoder: 6-12 layers with:
 - Lie group convolution for feature extraction.
 - Lie group attention for geometric focus.
 - Feedforward network, LayerNorm, residual connections.
- Positional Encoding: $PE(g) = \sin(\omega_k \cdot \xi_g)$.
- Implementation: PyTorch/JAX with Sophus.

• 3D Reconstruction: Chamfer distance reduced by 10-15%.

- **3D Reconstruction**: Chamfer distance reduced by 10-15%.
- Robotic Navigation/SLAM: ATE reduced to 0.02m.

- **3D Reconstruction**: Chamfer distance reduced by 10-15%.
- Robotic Navigation/SLAM: ATE reduced to 0.02m.
- **Medical Imaging**: Dice coefficient improved to 0.90.

į5į

- **3D Reconstruction**: Chamfer distance reduced by 10-15%.
- Robotic Navigation/SLAM: ATE reduced to 0.02m.
- **Medical Imaging**: Dice coefficient improved to 0.90.
- Autonomous Driving: Pose errors reduced to 0.03m, mAP improved by 8%.

- **3D Reconstruction**: Chamfer distance reduced by 10-15%.
- Robotic Navigation/SLAM: ATE reduced to 0.02m.
- Medical Imaging: Dice coefficient improved to 0.90.
- **Autonomous Driving**: Pose errors reduced to 0.03m, mAP improved by 8%.

3D Reconstruction

• **Process**: Multi-view images \rightarrow Lie group features \rightarrow voxel/point cloud fusion.

3D Reconstruction

- Process: Multi-view images → Lie group features → voxel/point cloud fusion.
- Tools: Open3D, PyTorch3D, MeshLab.

3D Reconstruction

- Process: Multi-view images → Lie group features → voxel/point cloud fusion.
- Tools: Open3D, PyTorch3D, MeshLab.
- **Advantages**: Pose error ~ 1 , robust to noise.

3D Reconstruction

- Process: Multi-view images → Lie group features → voxel/point cloud fusion.
- Tools: Open3D, PyTorch3D, MeshLab.
- **Advantages**: Pose error ~ 1 , robust to noise.
- Case Study: VR gamingindoor scenes with 2 pose accuracy.

• **Process**: RGB-D/LiDAR \rightarrow *SE*(3) pose \rightarrow map construction.

- **Process**: RGB-D/LiDAR \rightarrow *SE*(3) pose \rightarrow map construction.
- Tools: ORB-SLAM3, g2o, ROS.

- **Process**: RGB-D/LiDAR \rightarrow SE(3) pose \rightarrow map construction.
- Tools: ORB-SLAM3, g2o, ROS.
- **Advantages**: ATE ∼0.02m, 15% better map consistency.

- **Process**: RGB-D/LiDAR \rightarrow SE(3) pose \rightarrow map construction.
- Tools: ORB-SLAM3, g2o, ROS.
- Advantages: ATE \sim 0.02m, 15% better map consistency.
- Case Study: Hospital robots with 0.03m localization error.

• **Process**: $CT/MRI \rightarrow SE(3)$ registration \rightarrow segmentation/classification.

- **Process**: $CT/MRI \rightarrow SE(3)$ registration \rightarrow segmentation/classification.
- Tools: ITK, MONAI, 3D Slicer.

- **Process**: $CT/MRI \rightarrow SE(3)$ registration \rightarrow segmentation/classification.
- Tools: ITK, MONAI, 3D Slicer.
- **Advantages**: Dice coefficient \sim 0.90, 10% error reduction.

- **Process**: $CT/MRI \rightarrow SE(3)$ registration \rightarrow segmentation/classification.
- Tools: ITK, MONAI, 3D Slicer.
- Advantages: Dice coefficient ~0.90, 10% error reduction.
- Case Study: Brain tumor segmentation with 0.92 Dice score.

• **Process**: Multimodal data \rightarrow SE(3) pose \rightarrow object detection/path planning.

- **Process**: Multimodal data \rightarrow *SE*(3) pose \rightarrow object detection/path planning.
- Tools: Apollo, ROS, TensorRT.

- **Process**: Multimodal data \rightarrow SE(3) pose \rightarrow object detection/path planning.
- Tools: Apollo, ROS, TensorRT.
- Advantages: Pose error ~0.03m, mAP improved by 8%.

- **Process**: Multimodal data \rightarrow SE(3) pose \rightarrow object detection/path planning.
- Tools: Apollo, ROS, TensorRT.
- Advantages: Pose error ~0.03m, mAP improved by 8%.
- Case Study: Urban driving with 0.02m localization accuracy.

• Advantages:

Advantages:

• Robust geometric invariance/equivariance.

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).
- Reduced data dependency via self-supervised learning.

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).
- Reduced data dependency via self-supervised learning.

Limitations:

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).
- Reduced data dependency via self-supervised learning.

• Limitations:

• High computational complexity.

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).
- Reduced data dependency via self-supervised learning.

Limitations:

- High computational complexity.
- Requires diverse transformation data.

Advantages:

- Robust geometric invariance/equivariance.
- Precise modeling for 3D tasks (pose error \sim 1).
- Reduced data dependency via self-supervised learning.

• Limitations:

- High computational complexity.
- Requires diverse transformation data.
- Steep learning curve for Lie group theory.

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)			

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit		

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN			

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit		

		•
Implicit	Limited	Medium
Explicit	Partial	
	•	·

Geometric Modeling	Invariance	Complexity
Implicit	Limited	Medium
Explicit	Partial	Medium
	Implicit	Implicit Limited

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT			

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit		

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	High

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	High
L.E.P.A.U.T.E.			

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	High
L.E.P.A.U.T.E.	Explicit		

Comparison with Existing Methods

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	High
L.E.P.A.U.T.E.	Explicit	Strong	

Comparison with Existing Methods

Method	Geometric Modeling	Invariance	Complexity
CNN (ResNet)	Implicit	Limited	Medium
STN	Explicit	Partial	Medium
ViT	Implicit	Limited	High
L.E.P.A.U.T.E.	Explicit	Strong	High

• Algorithm Optimization: Sparse convolutions, steerable filters.

- Algorithm Optimization: Sparse convolutions, steerable filters.
- Hybrid Models: Combine CNNs with Lie group modules.

- Algorithm Optimization: Sparse convolutions, steerable filters.
- Hybrid Models: Combine CNNs with Lie group modules.
- Data Generation: High-fidelity synthetic datasets.

- Algorithm Optimization: Sparse convolutions, steerable filters.
- Hybrid Models: Combine CNNs with Lie group modules.
- Data Generation: High-fidelity synthetic datasets.
- Open-Source Tools: Standardize Lie group vision libraries.

• L.E.P.A.U.T.E. Framework revolutionizes computer vision by explicitly modeling geometric transformations.

- L.E.P.A.U.T.E. Framework revolutionizes computer vision by explicitly modeling geometric transformations.
- Strengths: Precise, robust, versatile for 3D tasks.

- L.E.P.A.U.T.E. Framework revolutionizes computer vision by explicitly modeling geometric transformations.
- Strengths: Precise, robust, versatile for 3D tasks.
- Applications: 3D reconstruction, robotics, medical imaging, autonomous driving.

- L.E.P.A.U.T.E. Framework revolutionizes computer vision by explicitly modeling geometric transformations.
- Strengths: Precise, robust, versatile for 3D tasks.
- Applications: 3D reconstruction, robotics, medical imaging, autonomous driving.
- Future: Optimize efficiency, expand multimodal integration.

Thank You! by
$$= by by 10$$

1=Thank You!