EXPOSYS DATA LABS

$\overline{CUSTOMER\ SEGMENTATION\ PROJECT}$

Presenter's name : Bahaduri Prachiti Jagdish

Position: Data Science Intern

DATA SCIENCE

DATA SCIENCE IS AN INTER – DISCIPLINARY THAT USES SCIENTIFIC METHODS, PROCESSES, ALGORITHMS TO EXTRACT KNOWLEDGE AND INSIGHTS FROM MANY STRUCTURAL AND UNSTRUCTURED DATA.

- ☐ Customer Segmentation enables a company to customize its relationship with its customers.
- ☐ The basic characteristics and needs are generalized into groups using various strategies viz,
- Targeted marketing activities to specific groups
- Launch of features aligning with the customer demand
- Development of the product roadmap

$CUSTOMER\\SEGMENTATION$

```
# Import the necessary libraries
import pandas as pd
import warnings as w
w.filterwarnings('ignore')
import matplotlib.pyplot as plt|
import seaborn as sns
%matplotlib inline
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, LabelEncoder
```

```
# Read the file
df = pd.read_csv(r'C:\Users\pjbahaduri7\Desktop\Mall_Customers.csv')
df
```

	CustomerID	Gender	Δαρ	Annual Income (k\$)	Spending Score (1-100)
	Customend	Centuel	Age	Allitual Illoonie (KV)	opending score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

ABOUT THE DATASET AND PROJECT OBJECTIVE

- ☐ The code is written in Python of V3.7.6
- ☐ The required modules are imported with the respective versions
- Pandas V1.0.1
- Matplotlib V3.1.3
- Seaborn V0.10.0
- Scikit learn V0.22.1
- ☐ The attributes of the dataset are the basic characteristics and needs of the customer.
- ☐ The main aim of the project is to use Unsupervised Learning via K means technique to identify segments of customers using clusters.

DATA CLEANING AND OTHER OPERATIONS

```
# to find the unique values present in each column attributes
df.nunique()
```

```
CustomerID 200
Gender 2
Age 51
Annual Income (k$) 64
Spending Score (1-100) 84
dtype: int64
```

```
# data cleaning - not required
df.isnull().sum()
```

CustomerID	0
Gender	0
Age	0
Annual Income (k\$)	0
Spending Score (1-100) dtype: int64	0

- ☐ The dataset is checked for the presence of null values.
- ☐ Also the number of unique values are obtained for each attributes.
- ☐ The gender is label encoded for easier analysis by calling the LabelEncoder function.

```
# Label encoding the Gender attribute
le = LabelEncoder()
df["Gender"] = le.fit_transform(df["Gender"])
df
```

0 1 19 15 1 1 21 15 2 0 20 16 3 0 23 16 4 0 31 17 195 0 35 120 196 0 45 126	39 81 6 77
2 0 20 16 3 0 23 16 4 0 31 17 195 0 35 120	6
3 0 23 16 4 0 31 17 195 0 35 120	
4 0 31 17 195 0 35 120	77
 195 0 35 120	
195 0 35 120	40
196 0 45 126	79
120	28
197 1 32 126	74
198 1 32 137	18
199 1 30 137	83

200 rows × 4 columns

RANGE OF SPENDING SCORE

- ☐ Univariate distribution of Spending Score.
- ☐ The bin size between each value in the X variable is 20.
- ☐ There is a rise in the count when score is in the range of 40 and 60.
- ☐ The least count of 10 is in the score range of 20 to 30.

$BOX\,PLOT \\ ESTIMATIONS$

- A standardized way of displaying a dataset.
- Maximum annual income is 48\$ age 18 and 19 Minimum income is 15\$ for the ages 19 and 21.
- Equal number of customers who have surpassed first and third quartile regions are of the age 18, 27, 29, 30.
- No sign of outliers.
- □ 25 percentile surpassed customers with age 19, 21 and 24 with income 31\$, 22\$ and 28\$ respectively.
- ☐ The interquartile region is more for age 20 with income 28\$.

```
# Box plot
df = df[(df['Age'] <= 30) & (df['Annual Income (k$)'] <= 50)]
sns.boxplot('Age', 'Annual Income (k$)', data=df)
plt.title('Box plot of Age for different Annual income groups')</pre>
```

BEFORE CLUSTERING

- ☐ A type of plot using cartesian coordinates to display values.
- ☐ Scatter plot is used to map out a better relationship between the two numeric variables.
- ☐ Suggests various kinds of correlations between variables with certain confidence interval.

THE ELBOW METHOD

- ☐ A heuristic used in determining the number of clusters in the dataset.
- \square Pick the elbow of the curve as a number of clusters.
- ☐ Sum of squared errors has to be minimized for the given set of centroids.
- \Box It is evident that the k value is 5.

```
# Use of Elbow method to find the right number of clusters
sse = []
k_range = range(1,31)
for k in k_range:
    km = KMeans(n_clusters=k)
    km.fit(df[['Spending Score (1-100)', 'Annual Income (k$)']])
    sse.append(km.inertia_)
```

```
# Plotting the graph
plt.xlabel('Spending Score (1-100)')
plt.ylabel('Sum of Squared Errors')
plt.plot(k_range, sse)
plt.title('Plot of Elbow method')
```

$AFTER \\ CLUSTERING$

Spending Score – 0 to 40 within 20\$ to 40\$ of income.

☐ Red coloured custer

Spending score – 0 to 40 within income 80\$ to 140\$

→ Yellow coloured cluster

Spending score – 40 to 60 within income 40\$ to 70\$

☐ Orange coloured cluster

Spending score – 60 to 100 within income 20\$ to 40\$

☐ Pink coloured cluster

Spending score – 60 to 100 within income 78\$ to 140\$

☐ Finally the K means method is called and the result is acquired.

```
km = KMeans(n_clusters=5)
km.fit(df[['Spending Score (1-100)','Annual Income (k$)']])
```

THANK YOU