

1 Find Limits Graphically

1.
$$\begin{cases} f(1) = \\ \lim_{x \to 1^{-}} f(x) = \\ \lim_{x \to 1^{+}} f(x) = \\ \lim_{x \to 1} f(x) = \end{cases}$$

4.
$$\begin{cases} f(4) = \\ \lim_{x \to 4^{-}} f(x) = \\ \lim_{x \to 4^{+}} f(x) = \\ \lim_{x \to 4} f(x) = \end{cases}$$

7.
$$\begin{cases} f(7) = \\ \lim_{x \to \mathbf{7}^{-}} f(x) = \\ \lim_{x \to \mathbf{7}^{+}} f(x) = \\ \lim_{x \to \mathbf{7}} f(x) = \end{cases}$$

2.
$$\begin{cases} f(2) = \\ \lim_{x \to \mathbf{2}^{-}} f(x) = \\ \lim_{x \to \mathbf{2}^{+}} f(x) = \\ \lim_{x \to \mathbf{2}} f(x) = \end{cases}$$

5.
$$\begin{cases} f(5) = \\ \lim_{x \to 5^{-}} f(x) = \\ \lim_{x \to 5^{+}} f(x) = \\ \lim_{x \to 5} f(x) = \end{cases}$$

3.
$$\begin{cases} f(3) = \\ \lim_{x \to 3^{-}} f(x) = \\ \lim_{x \to 3^{+}} f(x) = \\ \lim_{x \to 3} f(x) = \end{cases}$$

6.
$$\begin{cases} f(6) = \\ \lim_{x \to 6^{-}} f(x) = \\ \lim_{x \to 6^{+}} f(x) = \\ \lim_{x \to 6} f(x) = \end{cases}$$

2 Find Limits Involving Infinity Graphically

8.
$$\begin{cases} f(8) = \\ \lim_{x \to \mathbf{8}^{-}} f(x) = \\ \lim_{x \to \mathbf{8}^{+}} f(x) = \\ \lim_{x \to \mathbf{8}} f(x) = \end{cases}$$

10.
$$\begin{cases} f(10) = \\ \lim_{x \to \mathbf{10}^{-}} f(x) = \\ \lim_{x \to \mathbf{10}^{+}} f(x) = \\ \lim_{x \to \mathbf{10}} f(x) = \end{cases}$$

12.
$$\begin{cases} f(12) = \\ \lim_{x \to 12^{-}} f(x) = \\ \lim_{x \to 12^{+}} f(x) = \\ \lim_{x \to 12} f(x) = \end{cases}$$

9.
$$\begin{cases} f(9) = \\ \lim_{x \to 9^{-}} f(x) = \\ \lim_{x \to 9^{+}} f(x) = \\ \lim_{x \to 9} f(x) = \end{cases}$$

11.
$$\begin{cases} f(11) = \\ \lim_{x \to 11^{-}} f(x) = \\ \lim_{x \to 11^{+}} f(x) = \\ \lim_{x \to 1} f(x) = \end{cases}$$

$$13. \lim_{x \to -\infty} f(x) =$$

$$14. \lim_{x \to +\infty} f(x) =$$

Famous Functions 3

$$f(x) = 1/x$$

$$f(0) = \lim_{x \to 0^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \\ \lim_{x \to \mathbf{0}} f(x) = \\ \lim_{x \to -\infty} f(x) = \\ \lim_{x \to -\infty} f(x) =$$

 $x \rightarrow +\infty$

$$f(x) = 1/x^2$$
$$f(0) =$$

$$\lim_{x \to 0^{-}} f(x) =$$

$$\lim_{x \to 0^{+}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

 $x \rightarrow +\infty$

$$f(x) = |x|$$

$$f(0) = \lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to$$

 $x \rightarrow +\infty$

$$f(x) = \sqrt[3]{x}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x$$

 $x \rightarrow +\infty$

$$f(x) = x^3$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} f(x)$$

$$\begin{array}{ccc}
& & & \\
x \to 0 & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{\substack{x \to \mathbf{0} \\ \lim x \to -\infty \\ \lim f(x) = \\ x \to +\infty}} f(x) =$$

$$f(x) = e^x$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x \to \mathbf{0}} f(x) = 0$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

21.

$$f(x) = \ln(x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to 0^+} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}^+} f(x)$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$

22.

$$f(x) = \frac{|x|}{x}$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to 0^+} f(x) =$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \lim_{x \to \mathbf{0}} f(x) = 0$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

$$f(x) = \cos(x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x$$

$$\lim_{x \to \mathbf{0}^+} f(x) =$$

$$\lim_{x \to -\infty} f(x) = \text{DNE}$$

$$\lim_{x \to +\infty} f(x) = \text{DNE}$$

$$f(x) = \frac{\sin(x)}{x}$$
$$f(0) = \frac{\sin(x)}{x}$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \lim_{x \to \mathbf{0}^{+}} f(x) = \lim_{x$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

25.

$$f(x) = \sin(1/x)$$

$$f(0) = \text{DNE}$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) = \text{DNE}$$
$$\lim_{x \to \mathbf{0}^{+}} f(x) = \text{DNE}$$

$$\lim_{x \to \mathbf{0}^+} f(x) = \text{DNE}$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

 $x \rightarrow +\infty$

$$f(x) = x\sin(1/x)$$

$$f(0) =$$

$$\lim_{x \to \mathbf{0}^{-}} f(x) =$$

$$\lim_{x \to \mathbf{0}^{+}} f(x) =$$

$$\lim_{x \to 0} f(x) =$$

$$\lim_{x \to \mathbf{0}} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

4 Identify Infinite, Jump, Removable Discontinuities Graphically

· · · · · · · · · · · · · · · · · · ·
We say f is continuous (cts) at $x = a$ if $\lim_{x \to a} f(x)$ is finite and equals $f(a)$.
The function f above is continuous at integers $x = \underline{\hspace{1cm}}$.
We say f has a discontinuity at if $\lim_{x\to a} f(x)$ is finite and unequal to $f(a)$.
The function f above has this type of discontinuity at integers $x = \underline{\hspace{1cm}}$.
We say f has a discontinuity at if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ are finite but u nequestions.
The function f above has this type of discontinuity at integers $x = \underline{\hspace{1cm}}$.
We say f has an discontinuity at if $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ is infinite.
The function f above has this type of discontinuity at integers $x = \underline{\hspace{1cm}}$.
5 Continuity on an Interval
We say f is continuous on the open interval (a, b) if f is continuous at every x in (a, b) . Find the union of all open intervals on which f is continuous .
(Set-builder notation)
(Interval notation)
We say f is continuous everywhere if f is continuous at every x in
We say f is a continuous function if f is continuous at every x in its
6 Left and Right Continuity
We say f is continuous at $x = a$ if $\lim_{x \to a^+} f(x)$ is finite and equals $f(a)$.
The function f above has this type of continuity at integers $x = \underline{\hspace{1cm}}$.
We say f is continuous at $x = a$ if $\lim_{x \to a^-} f(x)$ is finite and equals $f(a)$.
The function f above has this type of continuity at integers $x = \underline{\hspace{1cm}}$.
We say f is continuous on the closed interval $[a, b]$ if f is continuous at every x in the open interval $[a, b]$