数学Z問題

(120分)

【選択問題】 次の Z1 $\sim Z3$ の 3 題の中から 2 題選択し、解答せよ。

- **Z1** 座標平面上に直線 $\ell: y = 2x 11$ があり、点 A(-2, 5) を通り ℓ に垂直な直線を m と する。また、 ℓ と m との交点を B とする。
 - (1) 点 B の座標を求めよ。
 - (2) 点 B においてℓに接し,点 C(5,4)を通る円の方程式を求めよ。 (配点 20)
- **Z2** A, Bの2つのチームがあり、試合を3回行う。各試合でAがBに勝つ確率は $\frac{2}{5}$, B が Aに勝つ確率は $\frac{2}{5}$, 引き分けとなる確率は $\frac{1}{5}$ である。3試合して、2勝以上したチームがあったときはそのチームを優勝とし、2勝以上したチームがなければ【優勝なし】とする。(1) 3試合とも引き分けとなる確率を求めよ。また、Aが1勝1敗1引き分けとなる確率を求めよ。
- (2) 【優勝なし】となる確率を求めよ。また, 【優勝なし】であったとき, A が 1 勝 1 敗 1 引き分けである条件付き確率を求めよ。 (配点 20)

- Z3 整数Aがある。
 - (1) $10 \le A \le 20$ とする。A(A-1) が 4 で割り切れるような A をすべて求めよ。
 - (2) $100 \le A \le 200$ とする。 $A^2 A$ が 25 で割り切れるような A をすべて求めよ。 また, A^2 と A の下 2 桁が一致するような A をすべて求めよ。 (配点 20)

【選択問題】 次の Z4, Z5 から1題選択し、解答せよ。

- **Z4** a は定数とし、e は自然対数の底とする。関数 $f(x) = \frac{x^2 + ax}{e^x}$ があり、f'(0) = 2 を満たしている。
 - (1) aの値を求めよ。
 - (2) f(x) の増減,極値を調べて,y=f(x) のグラフの概形をかけ。ただし, $\lim_{x\to\infty}\frac{x^2}{e^x}=0$ を 用いてもよい。
 - (3) 〇を原点とする座標平面上に曲線 y=f(x) があり、曲線 y=f(x) 上の点 P(t, f(t)) (t>0) における接線と y軸との交点を Q とする。 \triangle OPQ の面積が最大となるような t の値を求めよ。

- **Z5** pは正の実数とする。複素数 $\alpha=-\frac{\sqrt{6}}{2}+pi$ があり、 $|\alpha|=\sqrt{2}$ である。ただし、iは 虚数単位である。
 - (1) pの値を求めよ。また, α を極形式で表せ。ただし,偏角 θ を $0 \le \theta < 2\pi$ とする。
 - (2) α^6 の値を求めよ。また, α^n が正の整数となるような最小の自然数 n を k とする。 k の値を求めよ。
- (3) (2)のとき,複素数平面上で $\frac{\alpha^6}{|\alpha^6|}$ を表す点を A, $\frac{\alpha^k}{|\alpha^k|}$ を表す点を B とし, $w=\frac{1}{z-1}$ とする。点z が線分 AB の垂直二等分線上を動くとき,点w の描く図形を求めよ。

(配点 40)

【必答問題】 26~28 は全員全問解答せよ。

Z6 右の図のように、O を原点とする座標平面上に $\angle BAC = \frac{\pi}{2}$ の直角二等辺三角形 ABC があり、

 $AB = AC = \sqrt{2}$ である。また,点 A は第 1 象限,点 B は第 2 象限,点 C は第 4 象限にあり,線分 BC の中点は O である。さらに,直線 AC と x 軸との交点を D とし, $\angle AOD = \theta \left(0 < \theta < \frac{\pi}{2}\right)$ とする。

- ∠ODA を θ を用いて表せ。また、sin ∠ODA を sin θ, cos θ を用いて表せ。
- (2) 線分 AD の長さを sin θ, cos θ を用いて表せ。
- (3) 直線 AB と y 軸との交点を E とし、 \triangle ADE の面積を S とする。 $S=\frac{1}{6}$ となるような θ の値を求めよ。

Z7 pを定数とする。

 $a_1 = 3$, $a_4 = 9$, $a_{n+1} = a_n + p$ $(n = 1, 2, 3, \dots)$

で定められる数列 {an} がある。

- (1) pの値を求めよ。また、anをnを用いて表せ。
- (2) bは0でない定数とする。数列 {b_n} において

$$b_1 = b$$
, $b_{n+1} = 2b_n$ $(n = 1, 2, 3, \dots)$, $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{b_k} = 1$

が成り立つとき, bの値を求めよ。また, bnをnを用いて表せ。

(3) (2)のとき, $T_n = \sum_{k=1}^n a_k b_k$ ($n=1, 2, 3, \dots$) とする。 T_n を n を用いて表せ。

また、rは0でない定数とする。 $\lim_{n\to\infty}\frac{T_n-2}{nr^n}=4$ となるようなrの値を求めよ。

(配点 40)

- **Z8** 四面体 OABC があり、OB=3、OC=2、 \angle BOC=90°、 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 3$ 、 $\overrightarrow{OA} \cdot \overrightarrow{OC} = 1$ である。 \triangle OAC の重心を G とし、線分 BG の中点を M とする。また、3 点 O、B、C を通る平面を α 、点 A から平面 α に下ろした垂線を AH とする。さらに、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とする。
 - (1) \overline{OM} を \overline{a} , \overline{b} , \overline{c} を用いて表せ。
 - (2) OH を b, c を用いて表せ。
 - (3) 平面 α 上の点を P とする。 AP+PM が最小となるような P を P。とするとき, \overline{OP} 。を \overline{b} , \overline{c} を用いて表せ。