Práctica 5

- **1.** Sea $K = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$. Probar, por definición, que K es compacto.
- **2.** Sea K un subconjunto compacto no vacío de \mathbb{R} . Probar que K tiene mínimo y máximo.
- **3.** Sea $K \subseteq \mathbb{R}$ compacto. Probar que los subconjuntos de \mathbb{R}

$$S = \{x + y : x, y \in K\}, \qquad P = \{x \cdot y : x, y \in K\}$$

también son compactos.

- **4.** Sea (E,d) un espacio métrico y sea $\{F_i\}_{i\in I}$ una familia de subconjuntos cerrados de E. Supongamos que existe $i_0 \in I$ tal que F_{i_0} es compacto. Probar que $\cap_{i\in I}F_i$ es compacto.
- **5.** Sea (E,d) un espacio métrico. Probar que E es compacto si y solo si para toda sucesión $(F_n)_{n>1}$ decreciente de cerrados no vacíos de E se tiene que $\cap_{n>1}F_n \neq \emptyset$.
- **6.** Sea E un conjunto, en el cual consideramos la métrica discreta. ¿Cuáles son los subconjuntos compactos de E?
- 7. Probar que la unión de un número finito de conjuntos compactos es compacto.
- 8. Probar que en un espacio métrico (E,d) la distancia de un punto a un compacto se realiza. Esto es, que para todo compacto $K \subseteq E$ y para todo $x \in E$ existe $y \in K$ tal que d(x,y) = d(x,K).
- 9. Sea (E,d) un espacio métrico, y sea \widehat{d} la función definida en el Ejercicio 18 de la Práctica 3. Probar que si $A \subseteq E$ es compacto, $B \subseteq E$ es cerrado y se cumple que $A \cap B = \emptyset$, entonces $\widehat{d}(A,B) > 0$. ¿Sucede lo mismo si A es sólo cerrado?
- 10. Consideremos en $(C[0,1], d_{\infty})$ la función f_0 constantemente nula. Probar que $\overline{B(f_0,1)}$ no es compacta (pero sí es cerrada y acotada). ¿Qué pasa si cambiamos la distancia por d_1 ?
- 11. Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ continua. Probar que:
 - (a) Si E es compacto, entonces f(E) también lo es.
 - (b) Si además f es biyectiva, entonces f resulta ser un homeomorfismo.
- 12. Sea $f: \mathbb{R} \to \mathbb{R}$ continua tal que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0.$$

Probar que f es uniformemente continua en \mathbb{R} .

- 13. Sea K un espacio métrico compacto, y sea $f: K \to (0, +\infty)$ una función continua. Probar que existe $\alpha > 0$ tal que $f(x) > \alpha$ para todo $x \in K$.
- **14.** Sea $E = \mathbb{R} \setminus \{0\}$, con la distancia usual de \mathbb{R} . Sea $f : E \to E$ dada por $f(x) = \frac{1}{3}x$. Probar que f es una contracción pero no tiene punto fijo. ¿Qué falla del Teorema de Banach?
- **15.** Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable. Supongamos que existe $k \in (0,1)$ tal que $|f'(x)| \leq k$ para todo $x \in \mathbb{R}$. Probar que f es una contracción.
- **16.** Sea (E, d) un espacio métrico y sea $f: E \to E$ una función. Para $n \in \mathbb{N}$ denotemos por $f^n: E \to E$ a la función $f \circ f \circ \cdots \circ f$ (n veces). Probar:
 - (a) Si $x \in E$ es punto fijo de f, entonces es punto fijo de f^n .
 - (b) Si E es completo y existe $n \in \mathbb{N}$ tal que f^n es una contracción, entonces existe un único punto fijo de f en E.
 - Sugerencia: probar que si $x \in E$ es punto fijo de f^n , entonces f(x) también lo es.
 - (c) Deducir que existe un único $x \in \mathbb{R}$ tal que $\cos(x) = x$.
- 17. Probar el Teorema de Bolzano: "Dada $f:[a,b]\to\mathbb{R}$ continua con f(a)<0 y f(b)>0 (o viceversa), existe $c\in[a,b]$ tal que f(c)=0".

 Sugerencia: Considerar $A=\{x\in[a,b]\ /\ f(x)\leq 0\}$, y ver que es no vacío y acotado superiormente.
- **18.** Sea $f:[a,b] \to [a,b]$ continua. Probar que f tiene un punto fijo.
- 19. Sea (E,d) un espacio métrico y sea $f:E\to E$ continua. Probar que el conjunto de puntos fijos de f es cerrado.
- **20.** Sea $f:[a,b] \to [a,b]$ una función creciente. Probar que f tiene un punto fijo.