Documentation Data Mining

by:

- عبدالرحمن رعدان
- مصعب الحبيشي •
- هادي الجمعي •
- مالك المصبحي •
- عبدالعزيز عبدالغني •
- ماجد النائب

: اشراف

أ. ابراهيم الذارحي

Data Preprocessing Steps

Handling Delimiters

Step 1: Converting Commas to Semicolons in the Dataset
 Objective: Ensure the dataset is properly formatted by replacing all semicolons (;) with commas (,).

• **Step 2:** Clean the "Country" Column Data **Objective**: Ensure data quality by addressing issues with special characters. In our database, we found that the value "Cote d'Ivoire" in the "Country" column contains an apostrophe, which is causing an error in the Wiki.

Problem: The value "Cote d'Ivoire" includes an apostrophe that leads to errors during data analysis or query execution.

• **Step** 3: Re-encoding the "Order Priority" Column We performed re-encoding of the textual values in the "Order Priority" column into numerical values to facilitate processing by machine learning algorithms.

The values were transformed as follows:

```
Critical \rightarrow 3
High \rightarrow 2
Medium \rightarrow 1
Low \rightarrow 0
```

This step was necessary because some algorithms, such as Naïve Bayes and K-Means, require numerical data for analysis and processing.

Options >>

×

Algorithm Implementation

Apriori Algorithm (Association Rule Mining)

- **Objective:** Discover frequent itemsets and generate association rules.
- Selected Columns: Item Type, Sales Channel.
- Parameters:
 - Support Threshold: A reasonable value based on dataset characteristics.
 - Confidence Threshold: Set a meaningful value to filter rules.
 - o Lift: Evaluated to assess rule significance.

• Steps:

Preprocessing for Apriori

- Preprocessed data by removing duplicates and inconsistencies.
- o Implemented Apriori using association rule mining tools in Weka.

Step 1: Association Rule Mining (Apriori)

Business Insights

Key Insight: When frozenset(['Region_Australia and Oceania']), they are 75.0% likely to also frozenset(['Order Priority']) (Lift = 1.00)

Algorithm and Reasoning:

The Apriori algorithm is used to identify frequent itemsets in a dataset and generate association rules. It helps in discovering interesting relationships between variables in large databases.

Parameters:

- **Support Threshold:** A minimum percentage of records in the dataset that contain the itemset. In our case, with 10,000 records, a support threshold of 0.05 means any itemset must appear in at least 500 transactions to be considered significant.
- **Confidence Threshold:** The likelihood that a rule is true for the dataset. A threshold of 0.5 means we are interested in rules where the likelihood is at least 50%.
- **Lift:** Measures the importance of a rule. Lift > 1 indicates a strong association.

Naïve Bayes (Classification)

- **Objective:** Build a probabilistic model to classify data into predefined classes.
- Selected Columns: Region, Item Type, country.
- Steps:
 - o Split dataset into training (80%) and testing (20%) sets.
 - Assumed feature independence.
 - Evaluated model using accuracy, precision, recall, and F1-score.

Algorithm and Reasoning:

Naïve Bayes is a probabilistic classification algorithm based on Bayes' Theorem. It assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.

Relevant Columns:

- **Region:** Useful for understanding geographic influence on purchasing behavior.
- **Item Type:** To know the types of products that are bought together.

Results:

- Accuracy: 36.25%.
- Confusion Matrix: Shows the number of correct and incorrect classifications.

Results

Incorrectly Cla	ssified Ir	stances	Yo. £11Y	/	1111	8			
Kappa statistic			1,113	17					
Mean absolute e	rror			737					
Root mean squar	ed error		1.50	1.6					
Relative absolu	te error		99.4	11 8					
Root relative s	quared err	or	1	17 8					
Total Number of	Instances		4						
=== Detailed Ac	curacy By	Class ===							
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	., YEA	., 197	.,	1,771	., ***	., **.	., 109	., ***	H
	1,718	.,	1,119	., Yo.	.,	1,111	., 170	., Yos	L
	1,110	٠,٠٠١	.,.*1	., ***	.,	., 117	., 109	.,	C
	., YEE	., £AY	.,.79-	1,714	., 110	•, ***	., 107	1,110	M
Weighted Avg.		1.017						150	

Time taken to test model on test split: $\cdot . \cdot \wedge$ seconds

Correctly Classified Instances

• Classification Report: Includes Precision, Recall, F1-Score, and Support.

Classification Report

	precision	recall	f1-score	support
0	0	0	0	304
1	0	0	0	154
2	0	0	0	209
3	0.2762	0.5981	0.3779	525
4	0	0	0	243
5	0	0	0	38
6	0.2677	0.4383	0.3324	527
accuracy	0.2725	0.2725	0.2725	0.2725
macro avg	0.0777	0.1481	0.1015	2,000
weighted av	0.143	0.2725	0.1868	2,000

☐ Show Prediction Probabilities

mean	917.55 1971	977979. 1170	4 a V 4 V V 1 A V V	454V\n 1+5
std. dev.		1171171.511		
weight sum		You		
precision		• 61.1179		
Total Profit				
mean	#1#555 (154	£+7440.471£	WA SW SW	******
std. dev.		779.17.7981		
weight sum		7000		
precision		141.1117		
prozeston				
Time taken to build model: \ \ se === Evaluation on test split === Time taken to test model on test s				
=== Evaluation on test split ===				
=== Evaluation on test split === Time taken to test model on test s === Summary === Correctly Classified Instances	plit: •.•A seconds	YFI \$		
=== Evaluation on test split === Time taken to test model on test s === Summary ===	plit: •.•A seconds	VF1 \$ FF16 \$		
=== Evaluation on test split === Time taken to test model on test s === Summary === Correctly Classified Instances Hoorrectly Classified Instances Hagpa statistic	plit: •.•A seconds			
=== Evaluation on test split === Time taken to test model on test s; === Summary === Correctly Classified Instances Incorrectly Classified Instances	plit: •.•A seconds ***********************************			
=== Evaluation on test split === Time taken to test model on test s === Summary === Correctly Classified Instances Hoorrectly Classified Instances Hagpa statistic	plit: A seconds **E.offf **O.271Y **.**********************************			
=== Evaluation on test split === Time taken to test model on test s === Summary === Correctly Classified Instances Incorrectly Classified Instances Incorrectly Classified Instances Hagos statistic Hean absolute error	plit: A seconds TE. offf Yo. 211Y 17 175 251A			
=== Evaluation on test split === Time taken to test model on test s === Summary === Correctly Classified Instances Hoperstalistic When absolute error Boot mean squared error	plit: seconds 15.efff 7.5117 17 175 181 1.51 1.51 1.51 1.51 1.51 1.51 1.			

ID3 Algorithm (Decision Trees)

- Objective: Create decision trees based on information gain.
- Selected Columns: Region, Item Type, Sales Channel, Order Priority, Order Date.
- Steps:
 - Used entropy and information gain to construct the tree.
 - o Visualized decision tree structure.
 - Evaluated accuracy using cross-validation.

K-Means Algorithm (Clustering)

- **Objective:** Partition the data into clusters based on similarity.
- Selected Columns: Units Sold, Unit Price, Total Revenue, Total Profit.
- Parameters:
 - Number of Clusters (K): Determined using the elbow method.
 - Initialization: Used k-means++ to enhance convergence.
- Steps:
 - o Standardized the data.
 - Applied K-Means clustering algorithm.
 - Visualized clusters and centroids.

Silhouette Score: 0.60

Evaluation Metrics

Results and Insights

