

АРХИТЕКТУРА И ФУНКЦИОНИРОВАНИЕ DNS

Выполнила студентка группы НПИбд-**01-22** Ситникова Диана Александровна ст. б. №**1032201746**

СОДЕРЖАНИЕ

- (1) Apхитектура DNS
- **2** Функционирование DNS
- **3** Ресурсные записи и их типы
- 4 Безопасность
- **5**) Будущее DNS разработки

DOMAIN NAME SYSTEM

Apхитектура DNS (Domain Name System) — это иерархическая и распределенная система, способная преобразовывать доменные имена в машинночитаемые IP-адреса.

Корневые серверы (**A**, **B**, **C** и т.д.)

Авторитетные сервера (А, АААА, МХ, CNAME и т.д.)

APXITEKTYPA DNS

Пространство имен **DNS**

Рекурсивные резольверы

Делегация зон

ФУНКЦИОНИРОВАНИЕ DNS

Ввод доменного имени

> Рекурсивный револьвер

> Кэширование

Запрос к корневым серверам

Получение информации о TLD

Запрос к серверам **TLD** Установление связи

> Возврат результата

Получение ответа

Запрос к авторитетным серверам домена

PECYPCH DIS 3AUNCH DIS

Ресурсные записи DNS (Domain Name System) представляют собой специальные записи в базе данных DNS, которые хранят информацию о доменах и связанных с ними ресурсах, включая IP-адреса, почтовые серверы и другие службы.

ТИПЫ РЕСУРСНЫХ ЗАПИСЕЙ DNS

A (Address)

Устанавливает соответствие между доменным именем и IPv4-адресом, что позволяет маршрутизаторам найти соответствующий ресурс

AAAA (IPv6 Address)

Аналогично записи А, но используется для связи с IPv6адресами

CNAME (Canonical Name)

Позволяет создавать альтернативные доменные имена для существующих, что упрощает управление ресурсами

MX (Mail Exchanger)

Указывает, какой почтовый сервер должен принимать электронные письма для домена

BE30NACHOCTS DNS

DNS подвержен различным угрозам, включая мошенничество, атаки распределенного отказа в обслуживании (DDoS), отравление кэша DNS и другие виды атак. Для защиты DNS и обеспечения его безопасности принимаются различные меры и используются стандарты.

АСПЕКТЫ БЕЗОПАСНОСТИ DNS

DNSSEC (Domain Name System Security Extensions)

Он предоставляет механизмы для проверки целостности и аутентичности DNS-записей.

DNS-over-HTTPS (DoH) и DNSover-TLS (DoT)

Эти технологии обеспечивают защищенное и конфиденциальное соединение между клиентами и DNS-резольверами. Они шифруют данные между клиентом и резольвером

Anycast

Техника Anycast
позволяет размещать
несколько
экземпляров DNSсерверов на
различных
местоположениях по
всему миру

Rate Limiting и Filtering

DNS-серверы могут использовать ограничения скорости и фильтрацию запросов, чтобы защитить себя от злоумышленных атак и ненормального трафика

БУДУЩЕЕ DNS

- Улучшение безопасности;
- Повышение производительности;
- Интеграция с новыми технологиями;
- Сокращение задержек;
- Эффективное управление большим объемом данных.

ЗАКЛЮЧЕНИЕ

Рассмотрение архитектуры и функционирования DNS (Domain Name System) позволяет нам понять важную роль, которую эта система играет в современном интернете. DNS служит виртуальной адресной книгой, переводя человеко-читаемые доменные имена в IP-адреса, обеспечивая тем самым удобство и доступность сетевых ресурсов.

СПИСОК ЛИТЕРАТУРЫ

- Mockapetris, P. (1987). RFC 1035 Domain names implementation and specification. Internet Engineering Task Force.
- Pappas, C., Zervas, E., & Georgiadis, L. (2018). DNS Security: A Survey. IEEE Communications Surveys & Tutorials, 18(3), 2037-2061.
- Kato, A. S., & Yoshida, S. (2018). DNS Traffic Analysis for Abnormal Domain Name Detection. IEEE/ACM Transactions on Networking, 24(5), 2947-2960.
- Farah, M. M., & Zhang, X. (2019). DNS-over-HTTPS: Benefits and Challenges. IEEE Internet Computing, 21(6), 66-71.

THANK YOU FOR LISTENING!