Essays in Empirical Industrial Organization

Moritz Schwarz

Supervisors: Philipp Schmidt-Dengler and Christine Zulehner

March 22, 2024

Department of Economics

■ Traditionally, empirical models of demand make the following assumptions:

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period
 - Additively-separable demand shocks

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period
 - Additively-separable demand shocks
- Do we make the right conclusions if these assumptions are violated?

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period
 - Additively-separable demand shocks
- Do we make the right conclusions if these assumptions are violated?
 - Berry and Haile (2014): yes, if we care only about how demand reacts to changes in price

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period
 - Additively-separable demand shocks
- Do we make the right conclusions if these assumptions are violated?
 - Berry and Haile (2014): yes, if we care only about how demand reacts to changes in price
 - Hendel and Nevo (2006), Abaluck and Adams-Prassl (2021): not always

■ Traditionally, empirical models of demand make the following assumptions:

- Full information: consumer considers all products
- Static: consumer considers only current period
- Additively-separable demand shocks
- Do we make the right conclusions if these assumptions are violated?
 - Berry and Haile (2014): yes, if we care only about how demand reacts to changes in price
 - Hendel and Nevo (2006), Abaluck and Adams-Prassl (2021): not always
- What do we miss?

- Traditionally, empirical models of demand make the following assumptions:
 - Full information: consumer considers all products
 - Static: consumer considers only current period
 - Additively-separable demand shocks
- Do we make the right conclusions if these assumptions are violated?
 - Berry and Haile (2014): yes, if we care only about how demand reacts to changes in price
 - Hendel and Nevo (2006), Abaluck and Adams-Prassl (2021): not always
- What do we miss?
 - We cannot evaluate counterfactuals that affect information or dynamics

Research Proposal

Department of Economics

1 Inertia in the market for mobile telephony

Research Proposal

Department of Economics

- Inertia in the market for mobile telephony
- 2 Collusion in the Austro-Hungarian Sugar Industry 1889-1914

with Nikolaus Fink, Philipp Schmidt-Dengler, and Christine Zulehner

Research Proposal

- 1 Inertia in the market for mobile telephony
- 2 Collusion in the Austro-Hungarian Sugar Industry 1889-1914 with Nikolaus Fink, Philipp Schmidt-Dengler, and Christine Zulehner
- 3 Revisiting demand estimation in storable goods markets

Chapter 1

Inertia in the market for mobile telephony

Chapter 1 _____ Department of Economics

■ Active choice is the basis of competition — yet consumers make dominated choices

- Active choice is the basis of competition yet consumers make dominated choices
- Despite availability of better offers, significant inertia in market for mobile telephony

- Active choice is the basis of competition yet consumers make dominated choices
- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)

- Active choice is the basis of competition yet consumers make dominated choices
- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)
- Research Questions:

Chapter 1 Department of Economics

Active choice is the basis of competition – yet consumers make dominated choices

- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)
- Research Questions:
 - Which market frictions matter for explaining observed inertia?

Chapter 1 Department of Economics

Active choice is the basis of competition – yet consumers make dominated choices

- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)
- Research Questions:
 - Which market frictions matter for explaining observed inertia?
 - What is the optimal regulatory response?

- Active choice is the basis of competition yet consumers make dominated choices
- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)
- Research Questions:
 - Which market frictions matter for explaining observed inertia?
 - What is the optimal regulatory response?
 - Should consumers be "forced to make a choice"?

Chapter 1 Department of Economics

Active choice is the basis of competition – yet consumers make dominated choices

- Despite availability of better offers, significant inertia in market for mobile telephony
- Regulatory efforts: EU directive 2018/1972, TKG (2021)
- Research Questions:
 - Which market frictions matter for explaining observed inertia?
 - What is the optimal regulatory response?
 - Should consumers be "forced to make a choice"?
- I estimate a structural model of demand incl. switching cost, inattention, and limited consideration to simulate "forced choice".

Chapter 1 Department of Economics

Chapter 1 _____ Department of Economics

Chapter 1 Department of Economics

- → I account for limited consideration and inattention
 - Quantification of frictions. Shcherbakov (2016), Heiss et al. (2021), Abaluck and Adams-Prassl (2021), Dressler and Weiergraeber (2023)

Chapter 1 Department of Economics

- → I account for limited consideration and inattention
 - Quantification of frictions. Shcherbakov (2016), Heiss et al. (2021), Abaluck and Adams-Prassl (2021), Dressler and Weiergraeber (2023)

Chapter 1 Department of Economics

- → I account for limited consideration and inattention
 - Quantification of frictions. Shcherbakov (2016), Heiss et al. (2021), Abaluck and Adams-Prassl (2021), Dressler and Weiergraeber (2023)
- \rightarrow I may be able to estimate within- and between provider switching cost
 - Smart defaults and other policies targetting inertia: Gravert (2024), Handel and Kolstad (2015), CMA, BEREC

Chapter 1 Department of Economics

- → I account for limited consideration and inattention
 - Quantification of frictions. Shcherbakov (2016), Heiss et al. (2021), Abaluck and Adams-Prassl (2021), Dressler and Weiergraeber (2023)
- \rightarrow I may be able to estimate within- and between provider switching cost
 - Smart defaults and other policies targetting inertia: Gravert (2024), Handel and Kolstad (2015), CMA, BEREC

Chapter 1 Department of Economics

- → I account for limited consideration and inattention
 - Quantification of frictions. Shcherbakov (2016), Heiss et al. (2021), Abaluck and Adams-Prassl (2021), Dressler and Weiergraeber (2023)
- ightarrow I may be able to estimate within- and between provider switching cost
 - Smart defaults and other policies targetting inertia: Gravert (2024), Handel and Kolstad (2015), CMA, BEREC
- ightarrow I add a study in another market: mobile telephony

I construct a data set on individual-time-product level by matching two data sources:

Survey¹

¹Funding for the survey is provided by the FWF/DFG, PIs Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers

¹Funding for the survey is provided by the FWF/DFG, Pls Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers
 - Consumer sociodemographics, user type, search behaviour

¹Funding for the survey is provided by the FWF/DFG, Pls Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers
 - Consumer sociodemographics, user type, search behaviour
 - Current and previous plan choice in 2022-2024

¹Funding for the survey is provided by the FWF/DFG, PIs Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers
 - Consumer sociodemographics, user type, search behaviour
 - Current and previous plan choice in 2022-2024
 - Caveats: only observe sociodemographics in 2024, multiple switchers

¹Funding for the survey is provided by the FWF/DFG, PIs Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers
 - Consumer sociodemographics, user type, search behaviour
 - Current and previous plan choice in 2022-2024
 - Caveats: only observe sociodemographics in 2024, multiple switchers
- Tarife.at

¹Funding for the survey is provided by the FWF/DFG, Pls Christine Zulehner and Heiko Karle.

- Survey¹
 - N = 2000-3000 Austrian consumers
 - Consumer sociodemographics, user type, search behaviour
 - Current and previous plan choice in 2022-2024
 - Caveats: only observe sociodemographics in 2024, multiple switchers
- Tarife.at
 - Plan prices and characteristics 2019Q2-2024Q1

¹Funding for the survey is provided by the FWF/DFG, Pls Christine Zulehner and Heiko Karle.

Utility
$$u_{ijt} = \mathbf{x}_{jt}'\beta + \zeta \cdot \mathbb{1}_{y_{it} \neq y_{it-1}} + \xi_{\psi(j)} + \epsilon_{ijt}$$

$$= \delta_{ijt} + \epsilon_{ijt}$$

Attention
$$\mu_{it} = \Lambda(\mathbf{x}_0, \mathbf{z}_i, \xi_{\psi(j)})$$

$$\mbox{Consideration} \qquad \phi_{ijt} = \Lambda(\mathbf{x}_{jt}, \mathbf{z}_i, \xi_{\psi(j)}) \label{eq:phijt}$$

$$\begin{split} s_0(\cdot) &= \mu \sum_{C \in \mathbb{P}(j)} \pi_C(\cdot) s_j^{\star}(\cdot \mid C) + (1 - \mu), \\ s_j(\cdot) &= \mu \sum_{C \in \mathbb{P}(j)} \pi_C(\cdot) s_j^{\star}(\cdot \mid C), \\ \pi_C &= \prod_{j \in C} \phi_j \prod_{j' \notin C} (1 - \phi_{j'}), \\ s_{ijt}^{\star}(\mathbf{x}_t \mid C) &= \begin{cases} \frac{\exp(\delta_{ijt})}{\sum_{k \in \mathbb{P}_{it}(C)} \exp(\delta_{ikt})} & \text{if } j \in C \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Chapter 1 _____ Department of Economics

■ Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{jj}}$

- Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{z'}}$
- \blacksquare Consideration probabilities π_C are identified from asymmetric demand responses

- Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{s'}}$
- $lue{}$ Consideration probabilities π_C are identified from asymmetric demand responses
 - Intuition: consumers switch away when their current plan increases in price, but not when other plans decrease in price

- Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{s'}}$
- $lue{}$ Consideration probabilities π_C are identified from asymmetric demand responses
 - Intuition: consumers switch away when their current plan increases in price, but not when other plans decrease in price
 - In the model this can only happen because of inattention/limited consideration

- Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{z'}}$
- \blacksquare Consideration probabilities π_C are identified from asymmetric demand responses
 - Intuition: consumers switch away when their current plan increases in price, but not when other plans decrease in price
 - In the model this can only happen because of inattention/limited consideration
 - Technically, a (testable) rank condition on the coefficient matrix of market share differences between goods needs to be fulfilled

- Need to assume that there are no time varying unobserved product characteristics that correlate with included variables, so that we identify $\frac{s_j}{p_{jj}}$
- lacktriangle Consideration probabilities π_C are identified from asymmetric demand responses
 - Intuition: consumers switch away when their current plan increases in price, but not when other plans decrease in price
 - In the model this can only happen because of inattention/limited consideration
 - Technically, a (testable) rank condition on the coefficient matrix of market share differences between goods needs to be fulfilled
- lacksquare Latent choice probabilities $s^{\star}(\quad | \ C)$ are identified from absence of nominal illusion

■ I estimate the model by maximum likelihood.

$$\log \mathcal{L}(y_{it}; X, \theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{j \in \mathcal{J}_{it}} \mathbb{1}_{y_{it} = j} \log s_{itj}(\mathbf{x}_t, \mathbf{z}_i; \theta).$$

■ I estimate the model by maximum likelihood.

$$\log \mathcal{L}(y_{it}; X, \theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{j \in \mathcal{J}_{it}} \mathbb{1}_{y_{it} = j} \log s_{itj}(\mathbf{x}_t, \mathbf{z}_i; \theta).$$

lacktriangle Computational challenge: large number of consideration sets $(2^{\# products})$

Next Steps

Chapter 1 Department of Economics

Run pre-test and survey

Next Steps

- Run pre-test and survey
- Expand model to account for heterogeneities

Next Steps

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model
- \blacksquare Simulate counterfactuals and compare switching rates $\frac{1}{N}\sum_{i=1}^{N}(1-s_{i0})$:

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model
- \blacksquare Simulate counterfactuals and compare switching rates $\frac{1}{N}\sum_{i=1}^{N}(1-s_{i0})$:
 - Forced attention/choice: $\mu = 1$

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model
- \blacksquare Simulate counterfactuals and compare switching rates $\frac{1}{N}\sum_{i=1}^{N}(1-s_{i0})$:
 - Forced attention/choice: $\mu = 1$
 - lacksquare Remove switching cost: $\xi=0$

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model
- \blacksquare Simulate counterfactuals and compare switching rates $\frac{1}{N}\sum_{i=1}^{N}(1-s_{i0})$:
 - Forced attention/choice: $\mu = 1$
 - Remove switching cost: $\xi = 0$
 - Full consideration: $\phi = 1$

- Run pre-test and survey
- Expand model to account for heterogeneities
- Coding up estimator and estimate model
- \blacksquare Simulate counterfactuals and compare switching rates $\frac{1}{N}\sum_{i=1}^{N}(1-s_{i0})$:
 - Forced attention/choice: $\mu = 1$
 - lacksquare Remove switching cost: $\xi=0$
 - Full consideration: $\phi = 1$
 - Differences in switching rates reveals relative importance of frictions

Chapter 2 Department of Economics

Chapter 2

Collusion in the Austro-Hungarian Sugar Industry 1889-1914

with Nikolaus Fink, Philipp Schmidt-Dengler, and Christine Zulehner

Chapter 2 Department of Economics

■ Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct
- Cartel dates were public information which appears to have triggered stockpiling

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct
- Cartel dates were public information which appears to have triggered stockpiling
- Research questions:

Chapter 2 Department of Economics

■ Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry

- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct
- Cartel dates were public information which appears to have triggered stockpiling
- Research questions:
 - What is the average degree of collusion? Whta is the counterfactual competitive price?

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct
- Cartel dates were public information which appears to have triggered stockpiling
- Research questions:
 - What is the average degree of collusion? Whta is the counterfactual competitive price?
 - Did storing behaviour reduce the welfare costs of cartelisation?

- Series of *legal* cartels between 1889-1914 in Austria-Hungary's sugar industry
- This was an important industry for the monarchy (10% of total trade flows)
- Observing cartel dates we estimate demand, supply, and conduct
- Cartel dates were public information which appears to have triggered stockpiling
- Research questions:
 - What is the average degree of collusion? Whta is the counterfactual competitive price?
 - Did storing behaviour reduce the welfare costs of cartelisation?
 - Did integrated cartels obtain higher mark-ups than downstream-only cartels?

Chapter 2 Department of Economics

Estimation of conduct in the sugar industry: Genesove and Mullin (1998)

Chapter 2 Department of Economics

Estimation of conduct in the sugar industry: Genesove and Mullin (1998)

- **Estimation of conduct in the sugar industry:** Genesove and Mullin (1998)
 - ightarrow We estimate conduct in Austria-Hungary's sugar industry
- Estimation of conduct in homogeneous good industry: Porter (1983)

- **Estimation of conduct in the sugar industry:** Genesove and Mullin (1998)
 - ightarrow We estimate conduct in Austria-Hungary's sugar industry
- Estimation of conduct in homogeneous good industry: Porter (1983)

- **Estimation of conduct in the sugar industry:** Genesove and Mullin (1998)
 - ightarrow We estimate conduct in Austria-Hungary's sugar industry
- Estimation of conduct in homogeneous good industry: Porter (1983)
 - → We estimate conduct taking into account stockpiling dynamics
- Factors determining cartel success: Levenstein and Suslow (2006)

Hints of stockpiling

Chapter 2 Department of Economics

■ We borrow and adapt the dynamic model from Hendel and Nevo (2013)

■ We borrow and adapt the dynamic model from Hendel and Nevo (2013)

Instruments:

Chapter 2 Department of Economics

■ We borrow and adapt the dynamic model from Hendel and Nevo (2013)

- Instruments:
 - Cost shifters: price of raw sugar (global market), tax on refined sugar

■ We borrow and adapt the dynamic model from Hendel and Nevo (2013)

- Instruments:
 - Cost shifters: price of raw sugar (global market), tax on refined sugar
 - Markup shifters: cartel dates

■ Supply: generalization of static and symmetric Cournot (for now)

$$\text{FOC:} \quad P(Q) + \underbrace{\frac{dQ}{dq_j}}_{=:\theta} P'(Q)q_j = MC(q_j, W, ST)$$

■ Supply: generalization of static and symmetric Cournot (for now)

$$\mathrm{FOC:} \quad P(Q) + \underbrace{\frac{dQ}{dq_j}}_{=:\theta} P'(Q) q_j = MC(q_j, W, ST)$$

• Conduct parameter θ (elasticity adjusted price-cost markup):

■ Supply: generalization of static and symmetric Cournot (for now)

$$\mathrm{FOC:} \quad P(Q) + \underbrace{\frac{dQ}{dq_j}}_{=:\theta} P'(Q) q_j = MC(q_j, W, ST)$$

• Conduct parameter θ (elasticity adjusted price-cost markup):

■ Supply: generalization of static and symmetric Cournot (for now)

$$\label{eq:foc:posterior} \text{FOC:} \quad P(Q) + \underbrace{\frac{dQ}{dq_j}}_{=:\theta} P'(Q)q_j = MC(q_j, W, ST)$$

• Conduct parameter θ (elasticity adjusted price-cost markup):

$$\frac{\theta}{N} = \frac{\frac{P - MC}{P}}{\frac{1}{\eta}}$$

Chapter 2 Department of Economics

■ Finish coding up estimator

- Finish coding up estimator
- Expand specification for supply side

- Finish coding up estimator
- Expand specification for supply side
- Digitalise more data

- Finish coding up estimator
- Expand specification for supply side
- Digitalise more data
- Estimate demand, supply, conduct

- Finish coding up estimator
- Expand specification for supply side
- Digitalise more data
- Estimate demand, supply, conduct
- Simulate counterfactuals

- Finish coding up estimator
- Expand specification for supply side
- Digitalise more data
- Estimate demand, supply, conduct
- Simulate counterfactuals
 - lacksquare Price under cournot competition: $\theta=1$

- Finish coding up estimator
- Expand specification for supply side
- Digitalise more data
- Estimate demand, supply, conduct
- Simulate counterfactuals
 - Price under cournot competition: $\theta = 1$
 - Collusive price in absence of stockpiling

Chapter 3

Revisiting demand estimation in storable goods markets

Chapter 3 Department of Economics

■ Demand in storable goods markets often feature stockpiling dynamics

- Demand in storable goods markets often feature stockpiling dynamics
- The resulting non-linearities may give rise to *non-additively separable* demand shocks

- Demand in storable goods markets often feature stockpiling dynamics
- The resulting non-linearities may give rise to non-additively separable demand shocks
- Hendel and Nevo (2013) derive such a model, but eventually ignore non-separable shocks

- Demand in storable goods markets often feature stockpiling dynamics
- The resulting non-linearities may give rise to non-additively separable demand shocks
- Hendel and Nevo (2013) derive such a model, but eventually ignore non-separable shocks
- Research questions:

- Demand in storable goods markets often feature stockpiling dynamics
- The resulting non-linearities may give rise to *non-additively separable* demand shocks
- Hendel and Nevo (2013) derive such a model, but eventually ignore non-separable shocks
- Research questions:
 - Can we ignore non-additively separable shocks if they are indeed present?

- Demand in storable goods markets often feature stockpiling dynamics
- The resulting non-linearities may give rise to *non-additively separable* demand shocks
- Hendel and Nevo (2013) derive such a model, but eventually ignore non-separable shocks
- Research questions:
 - Can we ignore non-additively separable shocks if they are indeed present?
 - Should we include them in our model in the first place?

Chapter 3 Department of Economics

■ Model from Hendel and Nevo (2013)

- Model from Hendel and Nevo (2013)
- Comparable data sets

- Model from Hendel and Nevo (2013)
- Comparable data sets
 - Simulated data (Monte Carlo study)

- Model from Hendel and Nevo (2013)
- Comparable data sets
 - Simulated data (Monte Carlo study)
 - Oberservational data (scanner data)

Literature

- Dynamic models of demand. Hendel and Nevo (2013), Wang, Rojas, and Colantuoni (2017)
 - \rightarrow I examine the empirical relevance of non-additively separable shocks for matching purchasing patterns in a storeable goods market

Small Sample

Repetitions = 1000 Sample Sizes: 100, 200, 300

universität wien

Large Sample

Repetitions = 1000 Sample Sizes: 500, 5000, 50000

universität wien

Large Sample Properties

Repetitions = 1000 Sample Sizes: 10000, 100000, 1000000

Chapter 3 Department of Economics

Code up the full original estimator (panel setting)

- Code up the full original estimator (panel setting)
 - Stores

- Code up the full original estimator (panel setting)
 - Stores
 - Three differentiated products (Pepsi, Coca-Cola, store brand)

- Code up the full original estimator (panel setting)
 - Stores
 - Three differentiated products (Pepsi, Coca-Cola, store brand)
- Estimate model with and without non-separable shocks on observational data

Research Proposal

Chapter 3 Department of Economics

1 Inertia in the market for mobile telephony

- 1 Inertia in the market for mobile telephony
- 2 Collusion in the Austro-Hungarian Sugar Industry 1889-1914

with Nikolaus Fink, Philipp Schmidt-Dengler, and Christine Zulehner

- 1 Inertia in the market for mobile telephony
- 2 Collusion in the Austro-Hungarian Sugar Industry 1889-1914 with Nikolaus Fink, Philipp Schmidt-Dengler, and Christine Zulehner
- 3 Revisiting demand estimation in storable goods markets

Appendix 1

Screenshot of Survey

Department of Economics

Willkommen zu einer anonymen Umfrage der Universität Wien, Innsbruck, und Frankfurt School of Finance & Management. **Thema**: Konsumentenverhalten am Markt für Handytarife. Dauer: 15 min. Möchten Sie teilnehmen? O Ja O Nein

The survey filters for consumers that fullfill the following criteria:

At least 18 years old in 2022

The survey filters for consumers that fullfill the following criteria:

- At least 18 years old in 2022
- They have and know about their Austrian (domestic) plan

The survey filters for consumers that fullfill the following criteria:

- At least 18 years old in 2022
- They have and know about their Austrian (domestic) plan
- The plan is for retail customers

Department of Economics

The survey filters for consumers that fullfill the following criteria:

- At least 18 years old in 2022
- They have and know about their Austrian (domestic) plan
- The plan is for retail customers
- They pay for the plan themselves

Department of Economics

The survey filters for consumers that fullfill the following criteria:

- At least 18 years old in 2022
- They have and know about their Austrian (domestic) plan
- The plan is for retail customers
- They pay for the plan themselves
- They chose the plan

Possibilities of single wave

Did you switch mobile telephony plan in 2022/2023/2024?

Department of Economics

Attention

$$\mu_{it} = \frac{\exp(\mathbf{x}_{0_it}'\lambda + \mathbf{z}_i'\kappa + \xi_{\psi(0_i)}^{in})}{1 + \exp(\mathbf{x}_{0_it}'\lambda + \mathbf{z}_i'\kappa + \xi_{\psi(0_i)}^{in})}$$

Consideration

$$\phi_{ijt} = \frac{\exp(\mathbf{x}'_{jt}\gamma + \mathbf{z}'_{i}\rho + \xi^{c}_{\psi(j)})}{1 + \exp(\mathbf{x}'_{jt}\gamma + \mathbf{z}'_{i}\rho + \xi^{c}_{\psi(j)})}$$

Choice

$$\begin{split} u_{ijt} &= \mathbf{x}_{jt}'\beta + \zeta_1 \cdot \mathbbm{1}_{y_{it} \neq y_{it-1}} + \zeta_2 \cdot \mathbbm{1}_{\psi(y_{it}) \neq \psi(y_{it-1})} + \xi_{\psi(j)}^u + \epsilon_{ijt} \\ &= \delta_{ijt} + \epsilon_{ijt} \end{split}$$

Variables $(\mathbf{z}_i, \mathbf{x}_t)$

Sociodemographics	Plan Characteristics	
Gender	Monthly fee	
Age	Annual fee	
Region	SMS	
Income Bracket	Minutes	
Education	Gigabyte	
Marital Status	5G	
Household Size	Download Speed	
Children	Commitment period	
Employment Status	EU Roaming	
User Type	Non-EU Roaming	
	Part of bundle (plan+wifi, plan+fixed line)	
	Family rebate	

Frequency of bundles

Department of Economics

RTR Graph

What is a plan?

•

■ Can reduce number of plans by grouping them into four categories: low (prepaid), mid, high, power

What is a plan?

- Can reduce number of plans by grouping them into four categories: low (prepaid), mid, high, power
- RTR definitions for usage (gigabyte etc) available

Appendix 2

Reasons for cartel breakdowns

Cartel	Duration	Reason for Breakdown
1st refinery cartel	1891m10- 1894m9	Entry from new refineries
2nd refinery cartel	1895m11- 1897m10	Entry from raw sugar factories with crystal
1st integrated cartel	1897m11- 1903m8	International trade agreement
3rd refinery cartel	1906m10- 1911m9	Integreated was better
2nd integreated cartel	1911m10 -1914m8	World War I

$$\begin{split} X_t &= x_t^n + x_t^s \\ &= q_t^n + (\mathbbm{1}_{\mathsf{buy for t}} \, q_t + \mathbbm{1}_{\mathsf{buy for t}+1} \, q_{t+1}) \\ &= \omega e^{\alpha + \beta^n p_t + \varepsilon_t} + (1 - \omega) (\mathbbm{1}_{\mathsf{buy for t}} \, e^{\alpha + \beta^s p_t + \varepsilon_t} + \mathbbm{1}_{\mathsf{buy for t}+1} \, e^{\alpha + \beta^s p_t + \varepsilon_{t+1}}). \end{split}$$

lacksquare We simulate shocks $arepsilon_t, arepsilon_{t+1}$ because otherwise we cannot evaluate the sample analog of the moment condition

Elasticity in absence of dynamics

$$\begin{split} \eta \coloneqq \frac{\partial Q}{\partial P} \frac{P}{Q} &= \frac{\frac{\partial}{\partial P} \left[\omega e^{\alpha + \beta^n P} + (1 - \omega) e^{\alpha + \beta^s P} \right]}{Q} P \\ &= \frac{\beta^n \omega e^{\alpha + \beta^n P} + \beta^s (1 - \omega) e^{\alpha + \beta^s P}}{\omega e^{\alpha + \beta^n P} + (1 - \omega) e^{\alpha + \beta^s P}} P \\ &= \left[\beta^n \frac{\omega e^{\alpha + \beta^n P}}{\omega e^{\alpha + \beta^n P} + (1 - \omega) e^{\alpha + \beta^s P}} + \beta^s \frac{(1 - \omega) e^{\alpha + \beta^s P}}{\omega e^{\alpha + \beta^n P} + (1 - \omega) e^{\alpha + \beta^s P}} \right] P \\ &= \left[\beta^n Q share^n + \beta^s Q share^s \right] P \end{split}$$

Apendix 3

Set up

References

References

- Abaluck, Jason, and Abi Adams-Prassl, "What do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses," *The Quarterly Journal of Economics*, 136 (2021), 1611–1663.
- Berry, Steven T., and Philip A. Haile, "Identification in Differentiated Products Markets Using Market Level Data," *Econometrica*, 82 (2014), 1749–1797.
- Bourreau, Marc, Yutec Sun, and Frank Verboven, "Market Entry, Fighting Brands, and Tacit Collusion: Evidence from the French Mobile Telecommunications Market," *American Economic Review*, 111 (2021), 3459–3499.
- Dressler, Luisa, and Stefan Weiergraeber, "Alert the Inert? Switching Costs and Limited Awareness in Retail Electricity Markets," *American Economic Journal: Microeconomics*, 15 (2023), 74–116.
- Genesove, David, and Wallace P. Mullin, "Testing Static Oligopoly Models: Conduct and Cost in the Sugar Industry, 1890-1914," *The RAND Journal of Economics*, 29 (1998), 355–377 ([RAND Corporation, Wiley]).

References (cont.)

- Gravert, Christina, "From Intent to Inertia: Experimental Evidence from the retail electricity market," (2024).
- Grubb, Michael D., and Matthew Osborne, "Cellular Service Demand: Biased Beliefs, Learning, and Bill Shock," *American Economic Review*, 105 (2015), 234–271.
- Handel, Ben, and Jonathan Kolstad, "Getting the Most from Marketplaces: Smart Policies on Health Insurance Choice," Hamilton Project Discussion Paper, 2015.
- Heiss, Florian, Daniel McFadden, Joachim Winter, Amelie Wuppermann, and Bo Zhou, "Inattention and Switching Costs as Sources of Inertia in Medicare Part D," *American Economic Review*, 111 (2021), 2737–2781.
- Hendel, Igal, and Aviv Nevo, "Measuring the Implications of Sales and Consumer Inventory Behavior," *Econometrica*, 74 (2006), 1637–1673.
- ——, "Intertemporal Price Discrimination in Storable Goods Markets," *American Economic Review*, 103 (2013), 2722–2751.

References (cont.)

- Levenstein, Margaret C., and Valerie Y. Suslow, "What Determines Cartel Success?" *Journal of Economic Literature*, 44 (2006), 43–95 (American Economic Association).
- Porter, Robert H., "A Study of Cartel Stability: The Joint Executive Committee, 1880-1886," *The Bell Journal of Economics*, 14 (1983), 301–314 ([RAND Corporation, Wiley]).
- Shcherbakov, Oleksandr, "Measuring consumer switching costs in the television industry," *The RAND Journal of Economics*, 47 (2016), 366–393.
- Train, Kenneth E., Daniel L. McFadden, and Moshe Ben-Akiva, "The Demand for Local Telephone Service: A Fully Discrete Model of Residential Calling Patterns and Service Choices," *The RAND Journal of Economics*, 18 (1987), 109–123.
- Viard, V. Brian, "Do Switching Costs Make Markets More or Less Competitive? The Case of 800-Number Portability," *The RAND Journal of Economics*, 38 (2007), 146–163 ([RAND Corporation, Wiley]).

References (cont.)

- Wang, Emily, Christian Rojas, and Francesca Colantuoni, "Heterogeneous Behavior, Obesity, and Storability in the Demand for Soft Drinks," *American Journal of Agricultural Economics*, 99 (2017), 18–33.
- Weiergraeber, Stefan, "Network Effects and Switching Costs in the U.S. Wireless Industry," *International Economic Review*, 63 (2022), 601–630.