Inferencia Bayesiana

Modelos Bayesianos con aplicaciones ecológicas Dr. Cole Monnahan University of Concepción, Chile Enero, 2018

Resumen

- Para distribuciones continuas hay que integrar para obtener probabilidades
- Integración analítica es normalmente demasiado difícil
- Entonces se puede usar Monte Carlo como una flexible opción, pero a menudo (nunca?) la forma no es conocida
- Modelos Bayesianos resultan en distribuciones muy complejas que necesitan ser integrado

Conceptos importantes

- La inferencia Bayesiana es un paradigma diferente que la frecuentista
- Las probabilidades son grados de creencia
- Se actualiza la creencia a priori con los datos
- La incertidumbre se cuantifica mediante probabilidades
- Calculo de las probabilidades se requiere integración
 - Pinned Tweet
- \mathfrak{Michael Betancourt} @betanalpha · 5 Jan 2017

 Remember that using Bayes' Theorem doesn't make you a Bayesian. Quantifying uncertainty with probability makes you a Bayesian.

La regla de Bayes

- Si θ son los parámetros y y los datos (ambos son v.a)
- Entonces, $P(\theta,y)=P(\theta)P(y|\theta)$
- \blacksquare Y P(θ |y)=P(θ ,y)/P(y)
- Combinando los...

$$P(\theta \mid y) = \frac{P(\theta)P(y \mid \theta)}{P(y)} \propto P(\theta)P(y \mid \theta)$$

Posterior = (constant)(prior)(likelihood)

Componentes de la regla de Bayes

- P(θ)="Prior": la incertidumbre antes de experimento o conocimiento de un experto
- P(y|θ)="Likelihood": la verosimilitud de los datos dado los parámetros – lo mismo como clásica
- P(y) = Una constante que no se puede calcular
- P(θ|y) = "Posterior": la creencia que resulta de la combinación de dos fuentes da información: prior y datos.
 - Es una distribución de probabilidad
 - La usamos para hacer inferencia

Resumen de las diferencias de los paradigmas de inferencia.

	Frequentist	Bayesiana
Que es estimado?	P(Y H) Datos dado el hipótesis	P(H Y) Hipótesis dado los datos
La definición de probabilidad	frecuencias (infinitas) relativas de eventos	Grado de creencia
Fuentes de la información	Solo los datos	Los datos y información a priori
La definición de los parámetros	Estimaciones de cantidades "verdaderas"	Variables aleatorias estadísticas
Método de inferencia	Máximo verosimilitud	Integración (de posteriori)

Ellison 2004

Las ventajas de inferencia Bayesiana

- Hay respuestas intuitivas: los parámetros son distribuciones de probabilidad.
- Poder formalmente incorporar conocimiento antes del experimento
- Las suposiciones asintóticas no son necesarios
- La estimación de los modelos jerárquicos es natural y fácil
- Análisis de decisión: Poder calcular probabilidades de las consecuencias de varias acciones. (Punt and Hilborn 1997)

Desventajas

- Toma mas tiempo para estimar
- En general, la especificación de los priors
 - Poder ser sensitivo para la transformación de los parámetros. (e.g., Thorson and Cope 2017, Maunder 2003)
 - Poder ser difícil determinar apropiados "priors"
 - P.ej., no hay "uninformative priors"

Priors

- Cual es el rol de los priors?
 Gelman et al. (2014):
- Una población de valores posibles de los parámetros (perspectiva de la población)
- Una declaración del conocimiento y incertidumbre de los parámetros (perspectiva del estado del conocimiento)

En ambos casos, la prior debe incluir todos los valores posibles – "not in the prior not in the posterior" .. Pero ellas no pueden depender de los datos

La polémica

- Hay debates en la comunidad de los estadísticos por décadas
- Hay objeciones de priors "subjetivas" por el contrario de las decisiones "objetivas" con inferencia frecuentista
- Pero recentiemente ha disminuido.. "prior distributions are not necessarily any more subjective than other aspects of a statistical model" (Gelman and Hennig 2017)
- Vamos a ignorarla y enfocar en aplicaciones

Noninformative priors

- La idea es elegir una prior que resulta en un efecto pequeño de la posterior (also reference, vague, or flat)
- Puede permitir solo los datos guiar la inferencia a través de la verosimilitud
- "Improper priors" tiene una probabilidad infinita (e.g., X~U(-Inf,Inf))
- Por otro lado, una "proper prior"

Probabilities vs likelihoods

La diferencia puede ser confusa

Example: Normal likelihood

Probability (density):

$$Pr(\mathbf{x}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}$$

Likelihood:

$$\Pr(x; \mu, \sigma) = L(\mu, \sigma | x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

But calculated the same in R!

$$dnorm(x=2, mean=3, sd=1)$$

Exercise

- Deja X~Poisson(λ) y una sola observación y={5}. Crea una figura de la verosimilitud de λ de 1 a 10
- Repetirlo per con y={5,4,7} independiente y finalmente crea otra versión de la segunda que es un logoritmo de la verosimilitud.

Conjugacy

- En casos muy específicos se puede reconocer la forma da la posterior
- Normal prior + normal likelihood = normal posterior
- Eso es "conjugacy" o "conjugate prior" (see here)
- En tan casos la inferencia es fácil (p.ej. pnorm) pero es muy raro
- Sin conjugacy se necesita otra manera de integración

Conjugate examples

Ejemplo I

Suponga que usamos un solo dato (y) de una distribución normal donde la media (θ) no es conocida pero la varianza sí: p(y|θ)~N(θ,σ). La prior=p(θ)~N(μ₀,τ₀)

$$p(\theta \mid y) \propto p(y \mid \theta) p(\theta)$$

$$p(\theta \mid y) \propto \exp\left(-\frac{(y-\theta)^{2}}{2\sigma^{2}}\right) \cdot \exp\left(-\frac{(\theta-\mu_{0})^{2}}{2\tau_{0}^{2}}\right)$$

$$= \exp\left(-\frac{1}{2}\left[\frac{(y-\theta)^{2}}{\sigma^{2}} - \frac{(\theta-\mu_{0})^{2}}{\tau_{0}^{2}}\right]\right) \qquad \mu_{1} = \frac{\frac{1}{\tau_{0}^{2}}\mu_{0} + \frac{1}{\sigma^{2}}y}{\frac{1}{\tau_{0}^{2}} + \frac{1}{\sigma^{2}}}$$

$$= \exp\left(-\frac{(\theta-\mu_{1})^{2}}{2\tau_{1}^{2}}\right) \qquad \frac{1}{\tau_{1}^{2}} = \frac{1}{\tau_{0}^{2}} + \frac{1}{\sigma^{2}}$$

Ejemplo I

 Suponga que usamos un solo dato (y) de una distribución normal donde la media (θ) no es conocida pero la varianza sí: p(y|θ)~N(θ,σ). La prior=p(θ)~N(μ₀,τ₀)

$$p(\theta \mid y) \propto \exp\left(-\frac{\left(\theta - \mu_1\right)^2}{2\tau_1^2}\right)$$

$$\mu_1 = \frac{\frac{1}{\tau_0^2} \,\mu_0 + \frac{1}{\sigma^2} \,y}{\frac{1}{\tau_0^2} + \frac{1}{\sigma^2}}$$

Qué representa esta ecuación?

$$\frac{1}{\tau_1^2} = \frac{1}{\tau_0^2} + \frac{1}{\sigma^2}$$

- Una distribución normal! N(μ₁,τ₁)
- La media de la posterior "es el promedio ponderado de la media de la distribución a priori y el dato"
- [mostrar en R: prior, verosimilitud y posterior]

Ejemplo II

- Posterior Beta-binomial=beta prior + binomial likelihood
- Supongamos que la mitad de los animales marcados mueren (queremos estimar sobrevivencia)
- Qué pasa al aumentar los datos sin cambiar la prior?

Review of key concepts

- Actualizamos el conocimiento prior con los datos para formar la posterior
- Como todas las distribuciones, hay que integrarlas por inferencia (medianas, medias, cuantíales, etc.)
- Pero raramente tienen formas conocidas entonces no se puede usar Monte Carlo integración
- Entonces, como se puede integrarlas?

Método 3: Markov chain Monte Carlo

- La idea principal es generar muestras aleatorias correlacionadas y calcular porcentajes para aproximar probabilidades
- Usamos <u>cadenas de Márkov</u> (Markov chains)
- Es un tipo especial de <u>proceso estocástico</u> en que cada evento depende solamente del evento inmediatamente anterior
- Qué??

Método 3: Markov chain Monte Carlo

Un ejemplo:

$$X_{t+1} = X_t + U_t, \qquad U_t \sim U\left(-\frac{1}{2}, \frac{1}{2}\right)$$

X es una cadena de Markov

Following

One way to think of the Markov assumption: The future is independent of the past, given the present.

9:02 AM - 26 Dec 2018

Un ejemplo de cadena de Márkov simple

Método 3: Markov chain Monte Carlo

Un ejemplo:

$$X_{t+1} = X_t + U_t, \qquad U_t \sim U\left(-\frac{1}{2}, \frac{1}{2}\right)$$

- Esa cadena no es tan útil. No se puede usarla para hacer inferencia
- No es "Monte Carlo" en el sentido de inferencia Bayesiana
- Hay que cambiar la cadena un poco para usarla

Una cadena de Márkov especial: MCMC

```
mcmc \leftarrow function (Niter, f, x0=0, U=1) {
  x <- rep(NA, Niter)
                           Estado inicial
                                                 El próximo estado
  x[1] <- x0 ←
                                                 depende solamente del
  for(i in 2:Niter) {
                                                 evento anterior
     new \langle -x[i-1]+runif(1,-U,U)
     if(f(new)/f(x[i-1]) > runif(1))
       ## Update or "accept" this new point
       x[i] <- new
     } else {
                                        Se acepta el estado nuevo
       ## Stay at previous point
                                        depende de una condición
       x[i] \leftarrow x[i-1]
                                        aleatoria
                                                     f es la función de la
                 f \leftarrow function(x) dnorm(x, 0, 1)
  return(x)
                                                     densidad (PDF)
```

Una cadena Márkov especial

Una cadena Márkov especial

Notar que en la ecuación

$$c*f(new)/c*f(x[i-1])$$

- ... la constante (c) se cancelaría
- Significa que no es necesario conocer la constante para usar este método.
- Por eso podemos usarlo para aproximar las distribuciones a posteriori
- Este algoritmo se llama Metropolis-Hastings
- [Demonstrar con el ejemplo anterior]

Método 3: Markov chain Monte Carlo

- Thus the strong law of large numbers applies to MCMC just as it does for Monte Carlo
- For integrable function h(), the average converges on its expectation

$$\frac{1}{T} \sum_{t=1}^{T} h(X^{(t)}) \longrightarrow \mathbb{E}_f[h(X)]$$

So we can use the MCMC chain to approximate integrals just like with Monte Carlo

Markov chain Monte Carlo

- Hay muchos tipos de cadenas de Márkov Monte Carlo:
 - Metropolis-Hastings, Gibbs, NUTS, slice sampling, etc.
- La idea es la misma: generar muestras para estimar probabilidades
- MCMC es lento, y hay algunas dificultades
- Las discutiremos durante del curso
- Pero MCMC es flexible y por eso es usado ampliamente en estadística Bayesiana

Questions?

Exercise

$$p(y | \theta) \sim N(\theta, \sigma = 1)$$

$$p(\theta) \sim N(\mu_0 = -2, \tau_0 = 0.5)$$

$$p(\theta | y) \propto p(y | \theta) p(\theta)$$

Usa ejemplo 1:

Usa mcmc función para generar muestras de la posterior:

samples <- mcmc(Niter=5000, f=posterior, x0=0, U=1)

Contrasta a la solución analítica:

 $p(\theta \mid y) \sim N(\mu_1, \tau_1)$

$$\mu_{1} = \frac{\frac{1}{\tau_{0}^{2}} \mu_{0} + \frac{1}{\sigma^{2}} y}{\frac{1}{\tau_{0}^{2}} + \frac{1}{\sigma^{2}}}$$

$$\frac{1}{\tau_{1}^{2}} = \frac{1}{\tau_{0}^{2}} + \frac{1}{\sigma^{2}}$$

 Estima 95% credible interval usando ambas maneras de la integración

References

- Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2014. Bayesian data analysis. Taylor & Francis.
- Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics 21:1087-1092.