# NASA TECHNICAL NOTE



# TECHNIQUES FOR EXAMINING STATISTICAL AND POWER-SPECTRAL PROPERTIES OF RANDOM TIME HISTORIES

by Herbert A. Leybold

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1965



# TECHNIQUES FOR EXAMINING

# STATISTICAL AND POWER-SPECTRAL PROPERTIES

OF RANDOM TIME HISTORIES

By Herbert A. Leybold

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

### TECHNIQUES FOR EXAMINING

#### STATISTICAL AND POWER-SPECTRAL PROPERTIES

OF RANDOM TIME HISTORIES\*

By Herbert A. Leybold Langley Research Center

#### SUMMARY

A technique is presented for digitally generating random time histories having any desired shaped power spectra. Four random time histories having different statistical and power-spectral properties have been generated and analyzed to determine their instantaneous mean and amplitude distributions. In each, the distribution of instantaneous means could be approximated by a normal or Gaussian distribution and the distribution of instantaneous amplitudes could be approximated by the sum of a Rayleigh distribution and a normal distribution. An attempt was made to relate the coefficients of the equations used to represent the distributions of means and amplitudes to the power-spectral properties of the generated time histories. Two of the coefficients could be related to the power-spectral properties of the time histories. The remaining two coefficients were empirically determined since no apparent relationship was found between these coefficients and the power-spectral properties of the generated random time histories.

#### INTRODUCTION

Many of the loads encountered by aircraft and missiles are random in nature and, consequently, are usually described statistically. In order to reduce the mathematical complexity in utilizing such a description in analyzing the response of structures to loads, most investigators have made simplifying assumptions about the statistics of the random-load history (ref. 1). As an example, in fatigue studies the statistics of the load peaks are usually used. These statistics are obtainable either by actually counting the peak loads at various levels or by a relationship developed by Rice (ref. 2) which relates the peak load distribution to the power spectrum of the random load-time history. When programing fatigue tests, all peak loads are usually applied about a common mean load. In general, this mean load is representative of the overall mean

\*The information presented herein was offered as a thesis in partial fulfillment of the requirements for the degree of Master of Science in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, May 1963.

of the random load-time history from which the peak load distribution was derived. A variation in mean load can have an effect on fatigue life (ref. 3). Thus, it appears that a statistical description of both the distribution of instantaneous mean loads (i.e., average of two successive peak loads) and associated instantaneous amplitude distributions (i.e., difference between peak load and instantaneous mean load) would be more useful than the peak load distribution alone for studying fatigue under random loading. The instantaneous mean load distributions and associated instantaneous amplitude distributions are hereafter referred to as simply the mean and amplitude distributions. These distributions can be obtained by actually counting the instantaneous means and instantaneous amplitudes, but there is no known relationship between these distributions and the power spectrum as was the case for the peak load distribution.

In the present investigation, an attempt is made to develop an empirical relationship between the power-spectral properties of a given random time history and the mean and amplitude distributions of this time history. This was done by digitally generating four random time histories with different power-spectral properties and counting the means and amplitudes in order to determine their distributions for each of the time histories generated. Equations describing the mean and amplitude distributions are developed and an attempt is made to relate the coefficients of these equations to the power-spectral properties of the generated time histories.

#### SYMBOLS

| A                             | amplitude of periodic function of time                                             |
|-------------------------------|------------------------------------------------------------------------------------|
| $\mathtt{a}_{\mathrm{K}}$     | filter factors or Fourier coefficients                                             |
| $F\left(\frac{f}{f_F}\right)$ | frequency-response function                                                        |
| f                             | frequency, cps                                                                     |
| ${	t f}_{	t F}$               | Nyquist or folding frequency, cps                                                  |
| fa                            | number of amplitudes counted in interval $y_1 \leq y \leq y_{1+1}$                 |
| $f_b$                         | number of amplitudes counted which exceed $y = y_1$                                |
| f <sub>c</sub>                | computed frequency of occurrence of amplitudes in interval $y_i \le y \le y_{i+1}$ |
| $f_0$                         | number of times per second zero axis is crossed with positive slope                |
| $\mathbf{f}_{\mathbf{p}}$     | number of positive peaks per second                                                |

2

 $\mathbf{f}_{\mathbf{y}}$ number of times per second that value y is exceeded fуi computed number of amplitudes which exceed  $y = y_1$ constants of peak probability distributions  $K_1, K_2$ raw spectral density estimate Lh  $N_{N}$ number of amplitudes normally distributed about specified mean value number of amplitudes distributed according to Rayleigh distribution  $N_R$ about specified mean value number of positive amplitudes about specified mean value Nт normal probability  $P_{N}$  $P_{R}$ Rayleigh probability

 $P_{p}(y)$  probability that peak will exceed given value of y

p modified random number

 $R(\tau)$  covariance function or autocorrelation function of continuous variable

R<sub>N</sub> generated random number

Rp covariance or autocorrelation of discrete set of values

t time, sec

Δt uniform interval of time, sec

X normal deviate

Y(t) filtered time history

 $Y_1$  discrete set of values obtained by sampling filtered time history Y(t) at uniform intervals of time  $\Delta t$ 

y(t) original time history

 $y_i$  discrete set of values obtained by sampling original time history y(t) at uniform intervals of time  $\Delta t$ 

z standard variable,  $y/\sigma_y$ 

α,β dummy variables

| $\sigma_{ m N}$       | coefficient of normal probability                          |
|-----------------------|------------------------------------------------------------|
| $\sigma_{ m R}$       | coefficient of Rayleigh probability                        |
| $\sigma_{\mathbf{y}}$ | standard deviation or root-mean-square (rms) value of y(t) |
| $\sigma_y^2$          | mean square value of y(t)                                  |
| σ. <sup>2</sup><br>y  | mean square value of first derivative of y(t)              |
| σ <u></u><br>y        | mean square value of second derivative of y(t)             |
| Ø(f)                  | power spectral density of a continuous variable            |
| $\phi_{ m h}$         | smoothed spectral density estimate                         |
| Matrix no             | tations:                                                   |
| []                    | square matrix                                              |
| {}                    | column matrix                                              |

A dot over a variable indicates differentiation with respect to time.

A bar over a term indicates the mean value of the term.

#### GENERATION OF RANDOM TIME HISTORIES

A digital random time history having the properties of band-limited white noise was generated and used as the input to several linear systems, each having significantly different frequency-response characteristics. The output responses obtained were used to calculate power-spectral properties and also to obtain the distributions of means and amplitudes.

A brief outline of the procedures used to simulate digitally random time histories having different shaped power spectra is as follows. A more detailed discussion of each of the following steps will appear in subsequent paragraphs.

1. Random numbers having a uniform probability distribution were generated.

- 2. The uniformly distributed random numbers were then transformed into a normal or Gaussian distribution having a mean of zero and a variance of one. The numbers obtained were assumed to be samples taken at 1/2-sec intervals from a continuous record. A power spectrum was calculated by using these numbers and was found to be essentially flat. The normally distributed numbers will be used as the input to a linear system.
- 3. In order to determine the frequency response of the linear system the following equation was used:

$$\phi_{\text{in}} \left| \frac{\mathbf{f}}{\mathbf{f}_{\text{F}}} \right|^2 = \phi_{\text{out}}$$

where  $\phi_{\rm in}$  is the power spectrum of the normally distributed numbers obtained in step 2 above and  $\phi_{\rm out}$  is the desired shaped power spectrum. Knowing both the input and the desired output power spectrums, the magnitude of the fre-

quency response  $\left| F\left(\frac{f}{f_F}\right) \right|$  can be determined from the above relationship.

4. The frequency response was then used to filter the input (i.e., the normally distributed numbers) to the linear system. The filtering was done by utilizing the following equation:

$$Y_{i} = \sum_{K=-M}^{M} a_{K} y_{i+K}$$

where  $y_{i+K}$  is the input to the system,  $a_K$  represents the filter factors obtained by transforming the frequency response into the time domain, and  $Y_i$  is the output which represents a random time history having the desired shaped power spectrum.

- 5. Four time histories were generated in this manner. Power spectrums were calculated for each in order to insure that the proper filter factors had been obtained.
- 6. Once it was determined that the calculated power spectrums were essentially the same as the desired shaped power spectrums, the digital random time histories of step 5 were analyzed to determine their instantaneous mean and amplitude distributions.

The procedure described can be used equally well for digitally simulating other random time histories having arbitrarily shaped power spectra.

#### RANDOM NUMBER GENERATOR

Random numbers were obtained with a fixed-point pseudo random number generator developed by the National Bureau of Standards (ref. 4). Each generated random number  $R_N$  was obtained from the previous random number  $R_{N-1}$  by taking the last 11 digits of the product  $R_0R_{N-1}$  where  $R_0=5^{15}$  and N=1, 2, 3, . . . . Numbers were then selected at random from the generated  $R_N$ . Only the first 6 digits p of the randomly selected 11-digit number were used in this investigation. Approximately 160 000 random numbers were selected in this manner each having an equally likely chance of occurring (i.e., uniform probability distribution). The set of numbers obtained were all greater than or equal to zero but less than or equal to 999 999.

#### TRANSFORMATION TO NORMAL DISTRIBUTION

The random numbers were transformed into a normal distribution with mean equal to zero and unit variance by an approximate equation developed by Tukey. (See ref. 5.) This transformation was made in order to simulate a stationary, Gaussian random process. The transformation requires that the random numbers be between zero and one. Therefore, all numbers p were divided by 10<sup>6</sup> and designated q. Tukey's transformation is

$$X' = 4.91 \left[ q^{0.14} - (1 - q)^{0.14} \right]$$
 (1)

where q is the modified random number and X' is the normal deviate. It was found in this investigation that when X' became greater than 2.4, there were significant departures from the normal distribution. Hence, it was necessary to use a corrected normal deviate X, as follows:

$$X = X^{\dagger} \qquad (|X^{\dagger}| \le 2.4)$$

$$X = X^{\dagger} + \frac{X^{\dagger}}{|X^{\dagger}|} (0.13)(X^{\dagger} - 2.4)^{2} \qquad (|X^{\dagger}| > 2.4)$$
(2)

It should be noted that these equations restrict the normal deviates to the range  $-5.73 \le X \le 5.73$  which is no great handicap.

A power spectrum was calculated by using equations (B1) to (B3) and the first 40 000 normally distributed random numbers X. Due to storage limitations in the computer used, only 5000 numbers could be handled at one time. Therefore, 8 power spectra were calculated for each of the first 8 groups of 5000 numbers generated. The 8 power spectra were found to be essentially flat and varied only slightly from each other, indicating that the sample size of 5000 numbers was sufficiently large. An average power spectrum was obtained

from the 8 groups of numbers (white noise) and the remaining properties were calculated based on this average spectrum.

#### FILTERING OF RANDOM NUMBERS

The generated random numbers X, which when taken at discrete uniform intervals of time define a time history having a flat power spectrum, can be modified by numerical filtering techniques in order to change their amplitude response characteristics and thus change the power spectrum of the time history. The amplitude response characteristics can be changed by utilizing the input-output relation of power-spectral analysis, which states that the product of the input power spectrum  $\phi_{in}(f)$  and the square of the amplitude response

 $\left| F\left(\frac{f}{f_F}\right) \right|^2$  (sometimes called a transfer function) is equal to the output power spectrum  $\phi_{\text{out}}(f)$ . Thus,

$$\phi_{\text{out}}(f) = \left| F\left(\frac{f}{f_F}\right) \right|^2 \phi_{\text{in}}(f)$$
 (3)

The amplitude response  $\left| F\left( rac{f}{f_F} 
ight) 
ight|$  can be determined from this equation since

 $\phi_{\text{in}}(\mathbf{f})$  is the flat power spectrum obtained by calculation from the generated random numbers and  $\phi_{\text{out}}(\mathbf{f})$  is the specified or desired power spectrum. The amplitude response defines the changes that have to be made in the frequency domain in order to obtain the desired shaped power spectrum. These changes can be reflected in the time domain by taking the Fourier transform of the amplitude response. A time history comprised of discrete values  $Y_1$  and having the desired shaped power spectrum can be calculated with the use of the following equation:

$$Y_{i} = \sum_{K=-M}^{M} a_{K} y_{i+K}$$
 (4)

where  $y_{i+K}=0$  when i < M. The Fourier coefficients  $a_K$  result from the Fourier transform of the amplitude response and the generated random numbers X are represented by  $y_{i\pm K}$ . Details for determining the coefficients of the Fourier cosine series representation of the amplitude response are given in appendix A. The four amplitude response functions used in this investigation are shown in figure 1. The symbols show the shape of the response actually used to filter the random numbers whereas the solid curve shows the desired response. Twenty points were used to represent this response. These four amplitude response functions represent the concepts of bandwidth-limited white noise, atmospheric turbulence phenomena, single-degree-of-freedom system, and a modified single-degree-of-freedom system (band pass), respectively. For brevity the

filtered time histories obtained by using these response functions are referred to as time histories A to D, respectively. Statistical samples showing the characteristically different features of the four time histories obtained in this manner are shown in figure 2. For clarity, the values of  $Y_1$  have not been plotted but rather the curves faired through these values. The increment of time is  $\Delta t = 1/2$  sec between values of  $Y_1$ . As a reference, 10  $\Delta t$  is shown in figure 2.

For the normally distributed numbers a power spectrum was calculated for each set of filtered random numbers using equations (Bl) to (B3) and the first 40 000 numbers in each set. The power spectra were obtained by averaging the power spectra of 8 groups of 5000 numbers. Power-spectral properties were calculated based on the average power spectrum. This procedure was followed in order to determine whether the filtered time histories had power spectra equivalent to the specified or desired power spectra. The calculated power spectra were equivalent, within small tolerances, to the specified power spectra.

In calculating these power spectra, the assumption was made that the filtered random numbers represented a sampling from a continuous time history y(t) at discrete uniform intervals of time  $\Delta t = 1/2~{\rm sec}$  which resulted in a discrete set of values Yi when t = i  $\Delta t$ . There is no loss of information from this sampling if the time history y(t) contains no frequencies greater than the Nyquist or folding frequency  $f_{\rm F}$  where

$$f_{\rm F} = \frac{1}{2 \Delta t} \tag{5}$$

The frequencies f,  $(2f_F \pm f)$ ,  $(4f_F \pm f)$ , . . . cannot be distinguished in any frequency representation of y(t) which is determined from the values of  $y_i$ . Thus, frequencies greater than  $f_F$  will appear to be in the range  $0 \le f \le f_F$ . It is said then that all the frequencies in y(t) have been folded into the range  $0 \le f \le f_F$ . This folding property follows from the relations

$$\sin 2\pi (2mf_F \pm f)t = \sin(2m\pi i \pm 2\pi f t) = \pm \sin 2\pi f t$$

where

$$i = 0, 1, 2, 3, \dots$$
  
 $m = 1, 2, 3, 4, \dots$ 

If frequencies higher than  $f_F$  are present in the sampling, they will appear to contribute power or energy to the lower frequencies which will result in errors in the power spectrum at the lower frequencies. This situation was automatically eliminated by properly selecting the frequency range of the shaped output power spectrum.

#### POWER-SPECTRAL-DENSITY CHARACTERISTICS

#### OF RANDOM TIME HISTORIES

In using the power-spectral-density approach for analyzing the fluctuations of a random process it will be assumed that the process is stationary (i.e., statistical properties are invariant with time) and also Gaussian in nature. The power spectrum or power spectral density  $\beta(f)$  is a frequency distribution function which describes the frequency content of the time variation of a random disturbance y(t). For stationary processes, the power spectrum  $\beta(f)$  may be defined by the relationship which exists between  $\beta(f)$  and the covariance or autocorrelation function  $R(\tau)$ . This relationship is expressed as a Fourier cosine transform pair as follows (ref. 6):

$$\phi(\mathbf{f}) = 4 \int_{0}^{\infty} R(\tau) \cos 2\pi \mathbf{f} \tau \, d\tau$$

$$R(\tau) = \int_{0}^{\infty} \phi(\mathbf{f}) \cos 2\pi \mathbf{f} \tau \, d\mathbf{f}$$
(6)

The covariance function, which is the mean value of the product  $y(t)y(t+\tau)$ , gives a measure of the correlation between values of y(t) separated by a time interval  $\tau$ . Hence

$$R(\tau) = \overline{y(t)y(t+\tau)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} y(t)y(t+\tau) dt$$
 (7)

For the special case when  $\tau = 0$ 

$$R(0) = \overline{y(t)^2} = \int_0^\infty \phi(f) df = \sigma_y^2$$
 (8)

The function  $\phi(f)$  may be regarded as the contribution of any frequency f to the mean square of y(t). The square root of the mean square value is known as the root mean square (rms) or standard deviation  $\sigma_y$  of y(t).

The derivatives of a Gaussian random process are required in order to determine the statistics of such quantities as the number of times per unit time the disturbance crosses the axis y(t) = 0, the number of maxima of y(t) per unit time, or the number of times per unit time that the disturbance exceeds a value of  $y(t) = y_1$  where  $i = 1, 2, 3, \ldots$  The following relationships are the ones developed by Rice (ref. 2) between the derivatives of y(t) and the power spectral density p(t):

$$\overline{\dot{\mathbf{y}}(\mathbf{t})^2} = \sigma_{\dot{\mathbf{y}}}^2 = \int_0^\infty (2\pi \mathbf{f})^2 \phi(\mathbf{f}) d\mathbf{f}$$
 (9)

and

$$\overline{\ddot{y}(t)^2} = \sigma_{\ddot{y}}^2 = \int_0^\infty (2\pi f)^4 \phi(f) df \qquad (10)$$

The relationships involving these derivatives in obtaining zero crossings, peaks, and level crossings are as follows.

The number of times per second that the zero axis is crossed with a positive slope is

$$f_{O} = \frac{1}{2\pi} \frac{\sigma_{\dot{y}}}{\sigma_{y}} \tag{11}$$

The number of positive peaks per second is

$$f_{p} = \frac{1}{2\pi} \frac{\sigma_{\dot{y}}^{2}}{\sigma_{\dot{y}}^{2}} \tag{12}$$

The number of times per second that a value of  $y(t) = y_i$  is exceeded is

$$f_y = f_0 \exp \frac{-y_1^2}{2\sigma_y^2}$$
 (13)

(See ref. 6 for limits on  $y_i$ .)

Another relationship involving the derivatives of y(t) can be used to obtain the probability  $P_p(y)$  that a peak will exceed a given value of  $y(t) = y_i$ . The probability is expressed in terms of a standard variable z where  $z = y_i/\sigma_y$ .

The expression for the probability of obtaining a peak greater than  $y_i$  is (ref. 7)

$$P_{p}(y) = P_{N}\left(\frac{z}{K_{1}}\right) + \frac{f_{0}}{f_{p}} e^{-\frac{z^{2}}{2}}\left[1 - P_{N}\left(\frac{z}{K_{2}}\right)\right]$$
 (14)

where  $P_N\left(\frac{z}{K_1}\right)$  and  $P_N\left(\frac{z}{K_2}\right)$  are the normal probabilities that  $\frac{z}{K_1}$  and  $\frac{z}{K_2}$  will be exceeded; that is

$$P_{N}\left(\frac{z}{K}\right) = \frac{1}{\sqrt{2\pi}} \int_{z/K}^{\infty} \exp \frac{-z^{2}}{2} dz$$
 (15)

where

$$K = K_{\perp} = \sqrt{1 - \left(\frac{f_0}{f_p}\right)^2} \tag{16}$$

or

$$K = K_2 = \frac{K_1}{f_0/f_p} \tag{17}$$

The previous relations are valid only for a stationary random process which is Gaussian in nature. A more detailed discussion of this subject may be found in references 6 and 8. For data-processing purposes, the operations representing these expressions are more conveniently expressed in other forms. Appendix B gives the expressions which are in a form amenable to digital computing (eqs. (B1) to (B6)).

#### ANALYSIS OF RANDOM TIME HISTORIES

An attempt is made in the present investigation to describe analytically the distributions of instantaneous means and amplitudes of several random time histories having different power-spectral properties and to develop relationships between these analytical expressions and the power-spectral properties of the random time histories used. This was done by analyzing four random time histories having different statistical and power-spectral properties which were generated with the aid of a digital computer. Some of the power-spectral properties of these time histories have been calculated and are given in table I. The distributions of instantaneous means and amplitudes were obtained by actually counting each mean and amplitude in the time histories. The number of occurrences of each of these values is listed in tables II to V. A discussion is presented of the distributions obtained by counting, the manner in which these distributions were described analytically, and the relationship between these distributions and the power spectra of the various time histories.

The frequency distributions of the means for the four time histories investigated are plotted in figure 3. All four distributions appear to be normally distributed. This normality was checked by plotting the probability of exceeding a given mean value on normal probability paper for each of the time histories (fig. 4). As a first approximation the means can be considered to be normally distributed.

The frequency distributions of the amplitudes  $f_a$  about specified means are tabulated in tables VI to IX. Only those distributions which were

considered to have a sufficient sample size to be representative have been plotted in figures 5 to 8. The positive and negative amplitudes are approximately symmetrical. Amplitudes were considered to be either positive or negative depending on whether the slope of the line between successive peaks was positive or negative. The amplitude distributions are approximately symmetrical about the zero mean.

An equation, similar to the one developed by Rice (ref. 2) for determining the peak distribution, which gave the best fit to the data was found to represent the distributions of the amplitudes about any specified mean. The equation represents the sum of a normal distribution and a Rayleigh distribution and is expressed mathematically as follows:

$$f_c = N_N P_N + N_R P_R \tag{18}$$

where

 $f_c$  computed number of occurrences of amplitudes in range  $y_i \leq y \leq y_{i+1}$ 

N<sub>N</sub> number of amplitudes normally distributed

 $N_{
m R}$  number of amplitudes distributed according to Rayleigh distribution

 $P_{\mathbb{N}}$  normal probability which may be expressed by the following expression:

$$P_{N} = \frac{1}{\sigma_{N}\sqrt{2\pi}} \int_{y_{1}}^{y_{1}+1} \exp \frac{-\alpha^{2}}{2\sigma_{N}^{2}} d\alpha$$
 (19)

P<sub>R</sub> Rayleigh probability which may be expressed by the following expression:

$$P_{R} = \frac{1}{\sigma_{R}^{2}} \int_{y_{i}}^{y_{i+1}} \exp \frac{-\beta^{2}}{2\sigma_{R}^{2}} d\beta$$
 (20)

The general form for equation (18) is a modification of the peak probability distribution equation which is the sum of a normal and a modified Rayleigh distribution. The coefficient  $\sigma_R$  in the Rayleigh portion of the equation is the slope of the straight-line portion of the curve obtained from a plot of log of the cumulative frequency of amplitudes against the square of the amplitude for any specified mean. It was found that the coefficient  $\sigma_R$  remained approximately constant, regardless of the mean value. The following relationship was developed, by using a trial and error procedure, in order to relate the coefficient  $\sigma_R$  to some of the power-spectral characteristics of a random time history:

$$\sigma_{R} = \frac{f_{o}}{f_{p}} + \frac{\left(\sqrt{K_{2}} - K_{1}\right)^{2}}{\frac{f_{o}}{f_{p}} + f_{p}}$$
(21)

where  $f_0$ ,  $f_p$ ,  $K_l$ , and  $K_2$  are derivable from the power spectrum of a random time history.

The coefficient  $\sigma_N$  in the normal portion of the equation which gave the best fit to the data was found to be related to the coefficient  $\sigma_R$  as follows:

$$\sigma_{\rm N} = 1 - \sigma_{\rm R} \tag{22}$$

The remaining coefficients in equation (18), namely  $N_{\rm N}$  and  $N_{\rm R}$ , were adjusted by a least-squares technique to give the best fit to the data (eqs. (C3) and (C4)). These coefficients might have some physical significance but for the purpose of the present paper they will be treated as being independent. The technique used is summarized in appendix C. Since the distributions of amplitudes are approximately symmetrical, only the positive amplitudes were used to determine the coefficients. The number of positive amplitudes at a specified mean  $N_{\rm T}$  was found to be related to the coefficients  $N_{\rm N}$  and  $N_{\rm R}$  by the following expression:

$$N_{T} = N_{R} + \frac{1}{2} N_{N}$$
 (23a)

which may be rewritten as follows:

$$1 = \frac{N_{R}}{N_{T}} + \frac{1}{2} \frac{N_{N}}{N_{T}}$$
 (23b)

The ratio of  $N_R/N_T$  was found to be a nonlinear function of the mean, being fairly constant for means close to zero and becoming progressively smaller for larger means. An attempt was made to predict the quantity  $N_T$  by determining the probability of occurrence of the means and multiplying it by the total number of occurrences in the time history. Since it has already been established that the probability distribution of the means is approximately normal, all that is required is the standard deviation of the means. A relationship between the standard deviation of the means and the power-spectral characteristics of a random time history was found but the relationship was not sufficiently accurate to predict small standard deviations - that is, time histories C and D - and therefore not accurate enough to predict  $N_T$ . No apparent relationship was found between the power-spectral characteristics of a random time history and the coefficients  $N_N$  and  $N_R$ .

The coefficients derived to give the best fit to the observed frequencies for each of the time histories investigated are presented in table X. The

computed frequencies based on these coefficients are given in tables VI to IX, and the observed frequencies are also given for comparison. In addition, the observed frequencies (open symbols) and the computed frequencies (solid symbols) are plotted in figures 5 to 8.

In the present paper, a strictly empirical approach was taken. An equation was fitted to the data using a least-squares technique and two variables, namely,  $N_{\rm N}$  and  $N_{\rm R}.$  Possibly a better fit could be achieved by adjusting the four coefficients  $\sigma_{\rm N},~\sigma_{\rm R},~N_{\rm N},$  and  $N_{\rm R}$  simultaneously with a least-squares procedure. However, a strictly analytical approach would be more desirable. It is most probable that an expression could be derived analytically since the expression for amplitudes developed in this paper is quite similar to the expression for peaks developed by Rice (ref. 2). In addition, a definite relationship exists between the peaks and the means and amplitudes.

#### CONCLUSIONS

Four random time histories with significantly different statistical and power-spectral properties have been generated with the aid of a digital computer. The statistics of the means and amplitudes as well as the power-spectral characteristics have been obtained for each time history. The following conclusions have been drawn from an analysis of the data obtained:

- 1. The frequency distributions of the means are, in first approximation, normally distributed and symmetrical about a mean of zero.
- 2. The frequency distributions of the positive (or negative) amplitudes for a specified mean can be described by the sum of a Rayleigh and a normal distribution. The positive and negative distributions are approximately symmetrical. These distributions are also approximately symmetrical about a mean of zero.
- 3. The standard deviations of both the normal and Rayleigh distributions representing the frequency distributions of the amplitudes are essentially constant over the entire range of mean values and can be approximated from the power-spectral characteristics of the time histories.
- $^4$ . The coefficients  $N_{
  m N}$  and  $N_{
  m R}$  in the general equation defining the distribution of amplitudes have been obtained empirically but no apparent relationship between these coefficients and the power-spectral properties of the time histories has been found.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 3, 1964.

#### APPENDIX A

#### DETERMINATION OF COEFFICIENTS OF A FOURIER COSINE SERIES

#### REPRESENTATION OF FREQUENCY-RESPONSE FUNCTION

Consider the continuous periodic function of time, amplitude A, and frequency f, such that

$$y(t) = A \cos 2\pi f t$$

If this function of time is sampled at discrete time intervals  $\Delta t$ , the continuous time history is replaced by a discrete set of values  $y_i$  equal to y(t) when  $t = i \Delta t$  and undefined in between. Thus,

$$y(t) = y_i = A \cos 2\pi f i \Delta t$$
 (t = i \Delta t)

When  $\Delta t = \frac{1}{2f_F}$ ,

$$y_i = A \cos i\pi \frac{f}{f_F}$$
 (Al)

The above time history can be modified to change its frequency characteristics (i.e., numerically filtered) as follows:

$$Y_{i} = \sum_{K=-M}^{M} a_{K} y_{i+K}$$
 (A2)

where

Y<sub>i</sub> filtered time history

 $y_{i+K}$  original time history

a<sub>K</sub> filter factors or coefficients

M number of points used to approximate the amplitude response

Equation (A2) represents, in numerical form, the passage of an input signal y(t) through some linear system which results in an output signal Y(t). Upon substituting  $y_i$  from equation (A1) for  $y_{i+K}$  in equation (A2),

$$Y_{1} = A \left\{ a_{0} \cos \pi \frac{f}{f_{F}} i + \sum_{K=1}^{M} \left[ a_{-K} \cos \pi \frac{f}{f_{F}} (i - K) + a_{K} \cos \pi \frac{f}{f_{F}} (i + K) \right] \right\}$$

Where  $a_K = a_{-K}$ 

$$Y_{i} = A \cos \pi \frac{f}{f_{F}} i \left( a_{O} + 2 \sum_{K=1}^{M} a_{K} \cos \pi \frac{f}{f_{F}} K \right)$$

$$Y_{i} = y_{i} \left( a_{O} + 2 \sum_{K=1}^{M} a_{K} \cos \pi \frac{f}{f_{F}} K \right)$$
(A3)

The term in parentheses is in the form of a Fourier cosine series. It is necessary therefore to represent the amplitude response function  $\left|F\left(\frac{f}{f_F}\right)\right|$  in the form of a Fourier cosine series in order to filter the generated time history. Therefore let

$$\frac{\mathbf{f}}{\mathbf{f}_{\mathbf{F}}} = \frac{\mathbf{h}}{\mathbf{H}}$$

where h = 0, 1, 2, ... H, then

$$\left| F\left(\frac{\mathbf{f}}{\mathbf{f}_F}\right) \right| \to F\left(\frac{\mathbf{h}}{\mathbf{H}}\right) = F_{\mathbf{h}} = a_0 + 2 \sum_{h=1}^{\mathbf{H}} a_K \cos \pi \frac{Kh}{\mathbf{H}}$$

where

$$a_{K} = \frac{1}{H} \int_{0}^{H} F_{h} \cos \pi \frac{Kh}{H} dh$$

Using the trapezoidal rule of numerical integration

$$\left\{ \mathbf{a}_{K} \right\} = \frac{1}{H} \left[ \cos \pi \frac{Kh}{H} \right] \left[ \mathbf{I}_{T} \right] \left\{ \mathbf{F}_{h} \right\}$$

where

$$\begin{bmatrix} \underline{1}_{2} & 0 & 0 & \cdot & \cdot \\ 0 & 1 & & & \\ 0 & & 1 & & \\ \cdot & & & \cdot & \\ \underline{1}_{2} \end{bmatrix}$$

#### APPENDIX B

#### EXPRESSIONS USED FOR DIGITAL COMPUTING

Given a time history y(t), digitized at discrete uniform time intervals  $\Delta t$ , and assuming that the origin of time occurs at one of these intervals, then

$$t = i \Delta t$$

where  $i = 0, 1, 2, \dots$  N and

$$y(t) \rightarrow y(i \Delta t) = y_i$$

The covariance or autocorrelation function shall be defined as a quantity  $\ensuremath{R_{\text{D}}}$  where

$$R_{p} = \frac{1}{N+1-p} \sum_{i=0}^{N-P} y_{i}y_{i+p} \qquad (p = 0, 1, 2, ... M = 60) \quad (B1)$$

Equation (B1) is the numerical integration of equation (7).

The power spectral density is the Fourier cosine transform of the covariance function  $R_p$ . For convenience it is obtained in two steps. The preliminary step gives estimates of the raw spectral density  $L_h$ , and the final step gives estimates of the smoothed spectral density  $p_h$ . Estimates of spectral density are termed raw when they are obtained from the covariance function  $R_p$  by Fourier cosine series transformation and smoothed when hanned (operation of smoothing with weights 1/4, 1/2, 1/4) from the raw estimates (ref. 9). The smoothing operation partially accounts for the fact that a finite sample rather than an infinite sample was used when taking the Fourier transform. There are as many estimates  $L_h$  as there are terms in  $R_p$ , that is, M. The raw spectral density estimates are given by the matrix equation:

where h is used to represent a frequency

$$f_h = \frac{h}{M} f_F = \frac{h}{2M \wedge t}$$

and

$$p = h = 0, 1, 2, ... M = 60$$

The smoothed spectral density estimates are given by the matrix equation

The mean square of y(t) and its derivatives are defined as follows:

$$\sigma_{\mathbf{y}}^{2} = \Delta f_{\mathbf{h}} \left( \frac{1}{2} \phi_{0} + \phi_{1} + \phi_{2} + \dots \phi_{M-1} + \frac{1}{2} \phi_{M} \right)$$
 (B4)

where  $\Delta f_h = \frac{h}{2M \Delta t} = \frac{1}{2M \Delta t}$ 

$$\sigma_{\dot{y}}^{2} = \frac{(2\pi)^{2}}{(2M \Delta t)^{3}} \left( \sum_{h=0}^{M-1} h^{2} \phi_{h} + \frac{1}{2} M^{2} \phi_{h} \right)$$
 (B5)

$$\sigma_{y}^{2} = \frac{(2\pi)^{4}}{(2M \Delta t)^{5}} \left( \sum_{h=0}^{M-1} h^{4} \phi_{h} + \frac{1}{2} M^{4} \phi_{h} \right)$$
 (B6)

#### APPENDIX C

#### LEAST-SQUARES TECHNIQUE FOR DETERMINING

# THE COEFFICIENTS $N_R$ AND $N_N$

The equation chosen to represent the frequency distribution of amplitudes about a specified mean is

$$f_{c} = N_{N}P_{N} + N_{R}P_{R}$$
 (C1)

where  $f_c$  is the computed number of occurrences of amplitudes in the range  $y_i \leq y \leq y_{i+1}$ . In order to facilitate computation of the number of occurrences of amplitudes in the range  $y > y_i$ ,  $f_{y_i}$  is computed first. The desired value  $f_c$  can then be computed from the following relation:

$$f_c = f_{y_i} - f_{y_{i+1}}$$

Thus,

$$f_{y_{\dot{1}}} = N_N P_N(y_{\dot{1}}) + N_R P_R(y_{\dot{1}})$$
 (C2)

where

$$P_{N}(y_{1}) = \frac{1}{\sigma_{N}\sqrt{2\pi}} \int_{y_{1}}^{\infty} \exp \frac{-\alpha^{2}}{2\sigma_{N}^{2}} d\alpha = 1 - \frac{1}{\sigma_{N}\sqrt{2\pi}} \int_{0}^{y_{1}} \exp \frac{-\alpha^{2}}{2\sigma_{N}^{2}} d\alpha = \frac{1}{2} \left[1 - \phi(x)\right]$$

where  $\phi(x) = \text{Error function}$ 

$$P_{R}(y_{1}) = \frac{1}{\sigma_{R}^{2}} \int_{y_{1}}^{\infty} \beta \exp \frac{-\beta^{2}}{2\sigma_{R}^{2}} d\beta = \exp \frac{-y_{1}^{2}}{2\sigma_{R}^{2}}$$

The following approximation, obtained from reference 10, was used to facilitate computation of the error function  $\phi(x)$  in the computer:

$$\phi(x) = 1 - \frac{1}{\left(1 + a_1x + a_2x^2 + a_3x^3 + a_4x^4\right)^4}$$

APPENDIX C

where

$$x = \frac{y_1}{2\sigma_N}$$

$$a_1 = 0.278393$$

$$a_2 = 0.230389$$

$$a_3 = 0.000972$$

$$a_{ll} = 0.078108$$

The least-squares technique involves minimizing with respect to each of the undetermined coefficients the sum of the differences squared between the actual and calculated number of times a value  $y = y_i$  is exceeded - that is,

 $\sum (f_b - f_{y_i})^2$ . Since the coefficients  $\sigma_N$  and  $\sigma_R$  have been previously

determined to be constant it is only necessary to minimize with respect to  $\,\text{N}_{\text{R}}\,$  and  $\,\text{N}_{\text{N}}\,\text{-}\,$  Thus,

$$\frac{\partial}{\partial N_{R}} \left\{ \sum_{i=0}^{\infty} \left[ \mathbf{f}_{a} - N_{N} P_{N}(\mathbf{y}_{i}) - N_{R} P_{R}(\mathbf{y}_{i}) \right]^{2} \right\} = 0$$

$$\frac{\partial}{\partial N_{R}} \left\{ \sum_{i=0}^{\infty} \left[ \mathbf{f}_{a} - N_{N} P_{N}(\mathbf{y}_{i}) - N_{R} P_{R}(\mathbf{y}_{i}) \right]^{2} \right\} = 0$$

Solving these two simultaneous linear equations for  $N_{\mbox{\scriptsize N}}$  and  $N_{\mbox{\scriptsize R}}$  gives

$$N_{R} = \frac{\sum_{i=0}^{\infty} \left[ P_{N}(y_{i}) \right]^{2} \sum_{i=0}^{\infty} f_{a} P_{R}(y_{i}) - \sum_{i=0}^{\infty} P_{R}(y_{i}) P_{N}(y_{i}) \sum_{i=0}^{\infty} f_{a} P_{N}(y_{i})}{\sum_{i=0}^{\infty} \left[ P_{R}(y_{i}) \right]^{2} \sum_{i=0}^{\infty} \left[ P_{N}(y_{i}) \right]^{2} - \left[ \sum_{i=0}^{\infty} P_{R}(y_{i}) P_{N}(y_{i}) \right]^{2}}$$
(C3)

$$N_{N} = \frac{\sum_{i=0}^{\infty} f_{a} P_{R}(y_{i}) \sum_{i=0}^{\infty} P_{R}(y_{i}) P_{N}(y_{i}) - \sum_{i=0}^{\infty} f_{a} P_{N}(y_{i}) \sum_{i=0}^{\infty} \left[P_{R}(y_{i})\right]^{2}}{\left[\sum_{i=0}^{\infty} P_{R}(y_{i}) P_{N}(y_{i})\right]^{2} - \sum_{i=0}^{\infty} \left[P_{N}(y_{i})\right]^{2} \sum_{i=0}^{\infty} \left[P_{R}(y_{i})\right]^{2}}$$
(C4)

#### REFERENCES

- 1. Schijve, J.: The Analysis of Random Load-Time Histories With Relation to Fatigue Tests and Life Calculations. Fatigue of Aircraft Structures, W. Barrois and E. L. Ripley, eds., The Macmillan Co., 1963, pp. 115-149.
- 2. Rice, S. O.: Mathematical Analysis of Random Noise. Bell System Tech. J. Pts. I and II, vol. XXIII, no. 3, July 1944, pp. 282-332. Pts. III and IV, vol. XXIV, no. 1, Jan. 1945, pp. 46-156.
- 3. Naumann, Eugene C.; Hardrath, Herbert F.; and Guthrie, David E.: Axial-Load Fatigue Tests of 2024-T3 and 7075-T6 Aluminum-Alloy Sheet Specimens Under Constant- and Variable-Amplitude Loads. NASA TN D-212, 1959.
- 4. Taussky, Olga; and Todd, John: Generation and Testing of Pseudo-Random Numbers. Symposium on Monte Carlo Methods, John Wiley & Sons, Inc., c.1956, pp. 15-28.
- 5. Tukey, John W.: The Practical Relationship Between the Common Transformations of Percentages or Fractions and of Amounts. STRG Tech. Rept. No. 36 (Contract No. DA 36-034-ORD-2297), Dept. Math., Princeton Univ., June 1960.
- 6. Bendat, Julius S.: Principles and Applications of Random Noise Theory. John Wiley & Sons, Inc., c.1958.
- 7. Huston, Wilber B.; and Skopinski, T. H.: Probability and Frequency Characteristics of Some Flight Buffet Loads. NACA TN 3733, 1956.
- 8. Davenport, Wilbur B., Jr.; and Root, William L.: Random Signals and Noise. McGraw-Hill Book Co., Inc., 1958.
- 9. Blackman, R. B.; and Tukey, J. W.: The Measurement of Power Spectra. Dover Publ., Inc., 1959.
- 10. Hastings, Cecil, Jr.: Approximations for Digital Computers. Princeton Univ. Press, 1955.

TABLE I

POWER-SPECTRAL-DENSITY CHARACTERISTICS OF THE

FOUR RANDOM TIME HISTORIES

| ,                              |                      | Time h | istory |        |
|--------------------------------|----------------------|--------|--------|--------|
|                                | A                    | В      | С      | D      |
| $\sigma_{\mathbf{y}}$          | 0.9978               | 1.0017 | 0.9924 | 0.9915 |
| σ <u>*</u>                     | 2.5147               | .6489  | 2.3571 | 2.6216 |
| σ <mark>:</mark>               | 11.5483              | 1.4698 | 7.7025 | 8.9284 |
| fo                             | •2529                | .1280  | .2462  | •2599  |
| fp                             | · 3 <sup>1</sup> +11 | •2395  | .2877  | •2937  |
| f <sub>o</sub> /f <sub>p</sub> | .7414                | •5344  | .8558  | .8849  |
| к                              | .6711                | .8452  | .5173  | .4658  |
| к <sub>2</sub>                 | .9052                | 1.5816 | .6045  | •5264  |

TABLE II
FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTORY A

| Mean<br>Amp. | 0.0   | -0.2  | +0.2     | -0.4      | +0.4     | -0.6     | +0.6     | -0.8     | +0.8     | -1.0     | +1.0     | -1.2 | +1.2       | -1.4   | +1.4     | -1.6   | +1.6   | -1.8 | +1.8 | -2.0 | +2.0 | -2.2 | +2.2 | -2.4 | +2.4 | -2.6 | +2.6 | Total      |
|--------------|-------|-------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|------|------------|--------|----------|--------|--------|------|------|------|------|------|------|------|------|------|------|------------|
| -0.1         | 323   | 306   | 297      | 251       | 257      | 202      | 217      | 141      | 155      | 87       | 87       | 53   | 42         | 28     | 27       | 15     | 20     | 4    | 5    |      |      | 2    |      |      |      |      |      | 2,519      |
| +.1          | 328   | 301   | 313      | 263       | -230     | 192      | 176      | 136      | 152      | 74       | 75       | 43   | <u>դ</u> դ | 28     | 29       | 16     | 15     | 3    | 8    | 2    | 1    | . 1  |      | 2    |      |      |      | 2,431      |
| 3            | 339   | 360   | 376      | 271       | 298      | 198      | 206      | 146      | 162      | 93       | 102      | 44   | 56         | 22     | 25       | 22     | 15     | 3    | 8    |      | 1    | 1    | 1    |      |      |      |      | 2,749      |
| +.3          | 325   | 322   | 379      | 291       | 312      | 216      | 235      | 146      | 155      | 97       | 123      | 50   | 56         | 35     | 25       | 15     | 9      | 5    | 7    | 1    | 2    |      | 2    |      |      |      |      | 2,808      |
| 5            | 430   | 430   | 401      | 355       | 342      | 279      | 257      | 190      | 181      | يدد      | 102      | 60   | 69         | 29     | 16       | 13     | 13     | 7    | 4    | 4    | 3    | 2    | 1    |      |      |      |      | 3,299      |
| +•5          | 441   | 440   | 391      | 330       | 380      | 256      | 253      | 182      | 183      | 107      | 117      | 56   | 62         | 32     | 26       | 19     | 18     | 14   | 4    | 3    | 2    |      | 1.   |      |      |      |      | 3,307      |
| 7            | 486   | 439   | 469      | 409       | 383      | 277      | 318      | 173      | 195      | 118      | 121      | 69   | 57         | 26     | 26       | 14     | 15     | 7    | 5    | 3    | 2    |      | 1    |      |      |      |      | 3,613      |
| +.7          | 483   | 450   | 463      | 405       | 356      | 309      | 286      | 193      | 207      | 129      | 110      | 60   | 78         | 24     | 42       | 14     | 16     | 7    | 4    | 4    | 2    |      |      |      |      |      |      | 3,642      |
| 9            | 451   | 472   | 470      | 404       | 404      | 311      | 284      | 196      | 205      | 112      | 114      | 61   | 76         | 36     | 32       | 12     | 17     | 8    | 7    | 1    | 1    |      |      |      |      |      |      | 3,674      |
| +.9          | 492   | 443   | կկկ      | 371       | 387      | 296      | 326      | 195      | 197      | 116      | 113      | 59   | 59         | 26     | 35       | 22     | 12     | 5    | 5    | 2    | 4    |      |      |      | 1    |      |      | 3,610      |
| -1.1         | 378   | 390   | 388      | 349       | 367      | 234      | 256      | 159      | 161      | 115      | 1.25     | 65   | 70         | 26     | 24       | 8      | 20     | 4    | 4    | 1    | 1    | 1    | 1    | ĺ    |      | ĺ    |      | 3,147      |
| +1.1         | 411   | 399   | 413      | 381       | 367      | 262      | 269      | 174      | 162      | 87       | 99       | 68   | 66         | 34     | 26       | 11     | 7      | 3    | 2    | 1    | 1    |      | 1    |      |      |      |      | 3,244      |
| -1.3         | 371   | 300   | 341      | 314       | 274      | 185      | 221      | 136      | 135      | 86       | 79       | 47   | 53         | 23     | 22       | 9      | 7      | 4    | 2    |      | 1    |      |      |      |      | 1    |      | 2,611      |
| +1.3         | 337   | 312   | 318      | 259       | 275      | 188      | 212      | 132      | 145      | 71       | 1.04     | 59   | 43         | 22     | 23       | 13     | 13     | 6    | 3    |      |      |      | 1    |      |      |      |      | 2,536      |
| -1.5         | 239   | 238   | 250      | 203       | 202      | 152      | 147      | 98       | 103      | 55       | 46       | 41   | 40         | 16     | 15       | 7      | 9      | 3    | 2    | 1    | 2    |      |      |      |      |      |      | 1,869      |
| +1.5         | 235   | 278   | 251      | 207       | 505      | 142      | 139      | 110      | 110      | 64       | 53       | 41   | 42         | 15     | 15       | 2      | 6      | 14   | 2    |      | 3    |      | 1    |      |      |      |      | 1,922      |
| -1.7         | 181   | 170   | 157      | 124       | 1.43     | 97       | 114      | 46       | 70       | 45       | 43       | 18   | 28         | 1.3    | 14       | 2      | 3      | 1    | 3    |      | 1    |      |      |      |      |      |      | 1,273      |
| +1.7         | 166   | 177   | 164      | 125<br>80 | 135      | 91       | 121      | 74       | 74       | 40       | 49       | 24   | 30         | 8      | 11<br>11 | 3<br>4 | 5      |      | 1    |      | 2    | 1.   |      |      |      |      |      | 1,300      |
| -1.9<br>+1.9 | 109   | 106   | 102      | 89        | 87       | 65       | 54<br>70 | 49       | 45       | 20       | 24       | 14   | 14         | 6<br>8 | - 1      | 1      | 2      | 1    | 1    | 1    |      | 1    |      |      |      |      |      | 796<br>783 |
| -2.1         | 55    | 64    | 99<br>48 | 48        | 76<br>42 | 65<br>35 | 36       | 30<br>32 | 35<br>34 | 35<br>19 | 17<br>20 | 13:  | 1.6        | 1      | 7        | 1      | 5<br>3 | 5    | 1    |      |      |      |      |      |      |      |      | 465        |
| +2.1         | 60    | 51    | 63       | 46        | 41       | 34<br>34 | 31       | 22       | 25       | 19       | 15       | 11   | 7          | 2      | 4        | ı      | ,      | -    |      |      |      |      |      |      |      |      |      | 432        |
| -2.3         | 38    | 37    | 27       | 31        | 25       | 16       | 20       | 20       | 10       | 5        | 8        | 2    | 4          | 3      | 2        | 1      |        |      |      |      |      |      |      |      |      |      |      | 249        |
| +2.3         | 36    | 21    | 24       | 24        | 24       | 18       | 22       | 15       | 1.2      | 8        | 8        | 4    | 2          |        |          | 2      | 1      | 1    |      |      |      |      |      |      |      |      |      | 222        |
| -2.5         | 10    | 16    | 11       | 8         | 7        | В        | 5        | 4        | 14       | 6        | 4        | 1    | 3          |        | 1        |        |        | 1    |      |      |      |      |      |      |      |      |      | 89         |
| +2.5         | 5     | 14    | 17       | 13        | 7        | 8        | 8        | 5        | 5        | 5        | 3        | 1    | 2          |        | 1        | ı      | 3.     |      | 1    |      |      |      |      |      |      |      |      | 97         |
| -2.7         | 6     | 9     | 3        | 4         | 3        | 5        | 3        | 2        | 3        |          |          |      |            | ı      |          |        | 1      |      | 1    |      |      |      |      |      |      |      | i    | 41         |
| +2.7         | 8     | 9     | 8        | 2         | 5        | 5        | 2        | 1        | 4        | 1        | 2        | 2    | 1          | ı      |          |        |        |      |      |      |      |      |      |      |      |      |      | 51         |
| -2.9         | 3     | 2     | 5        | 2         | 1        |          | 1        | 1        | 1        | 1        | ı        | 1    |            |        |          |        |        |      |      |      |      |      |      |      |      |      |      | 19         |
| +2.9         | lş.   | 2     | 3        | 2         | 1.       |          | 2        | 2        |          |          | 1        |      |            |        |          |        |        |      |      |      |      |      |      |      |      |      |      | 17         |
| -3.1         |       |       | 1        |           | 1        |          | ļ        |          | 1        |          | ı        |      |            |        |          |        |        |      |      |      |      |      |      |      |      |      |      | 4          |
| +3.1         | ı     | 1     | 1        | 1         |          |          |          |          |          |          | 1        |      |            |        |          |        | 1      |      |      |      |      |      |      |      |      |      |      | 6          |
| -3.3         |       |       | 1        |           |          |          |          |          |          |          |          |      |            |        |          |        |        |      |      |      |      |      |      |      |      |      |      | 1          |
| +3.3         | 1     |       | ļ        | ļ         |          |          | [        |          |          |          |          |      |            |        |          |        |        |      |      |      |      |      |      |      |      |      |      | ı          |
| Total        | 6,865 | 6,663 | 6,698    | 5,662     | 5,634    | 4,146    | 4,291    | 2,810    | 2,931    | 1,726    | 1,767    | 980  | 1,031      | 465    | 458      | 227    | 234    | 85   | 80   | 24   | 28   | 8    | 10   | 2    | 1    | 1    |      | 52,827     |

TABLE III

FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTORY B

| Mean  |         |          |         |       |      |       |       |       |        |         | <sub>[</sub> |         |        |      |                 |        |       |      |      |      | Т    | T      |      |      |      |      |      |          |      |      |      | _    | · · · · · · |           |
|-------|---------|----------|---------|-------|------|-------|-------|-------|--------|---------|--------------|---------|--------|------|-----------------|--------|-------|------|------|------|------|--------|------|------|------|------|------|----------|------|------|------|------|-------------|-----------|
| Amp.  | 0.0     | -0.2     | +0.2    | -0.4  | +0.4 | -0.6  | +0.6  | -0.8  | +0.8   | -1.0    | +1.0         | -1.2    | +1.2   | -1.4 | +1.4            | 1.6    | +1.6  | -1.8 | +1.8 | -2.0 | +2.0 | -2.2 + | -2.2 | -2.4 | +2.4 | -2.6 | +2.6 | -2.8     | +2.8 | -3.0 | +3.0 | -3.2 | +3.2        | Total     |
| -0.1  | 366     | 376      | 369     | 31+14 | 359  | 297   | 305   | 218   | 222    | 158     | 177          | 132     | 126    | 76   | 95              | 36     | 41    | 33   | 40   | 16   | 18   | 10     | 12   | 14   | 2    | 2    | 4    |          |      |      |      |      |             | 3,838     |
| +.1   | 386     | 380      | 364     | 368   | 338  | 286   | 290   | 211   | 234    | 183     | 182          | 132     | 139    | 74   | 100             | 54     | 49    | 34   | 39   | 16   | 24   | 9      | 9    | 4    | 3    | 1    | ·3   | 1        |      |      |      |      |             | 3,913     |
| 3     | 302     | 310      | 318     | 255   | 273  | 223   | 209   | 187   | 175    | 133     | 142          | 85      | 86     | 66   | 52              | 26     | 43    | 15   | 24   | 15   | 17   | 6      | 7    | 3    | 3    |      |      |          |      |      |      | '    | 1           | 2,976     |
| +.3   | 313     | 330      | 295     | 251   | 294  | 212   | 213   | 166   | 176    | 128     | 144          | 86      | 92     | 63   | 43              | 37     | 37    | 10   | 15   | 10   | 14   | 5      | 7    | 4    | 5    |      |      |          | 1    |      |      |      | 1           | 2,952     |
| 5     | 250     | 250      | 301     | 259   | 267  | 209   | 205   | 169   | 155    | 109     | 108          | 86      | 81     | 30   | 51              | 37     | 27    | 10   | 21   | 6    | 8    | 5      | 14   | 2    | 1    | 2    |      |          |      |      |      |      |             | 2,653     |
| +.5   | 249     | 264      | 291     | 223   | 244  | 211   | 219   | 163   | 189    | 107     | 115          | 77      | 91     | 45   | 35              | 30     | 23    | 12   | 25   | 10   | 11   | 5      | 1    |      | 1    | 1    |      |          | 1    |      | !    |      |             | 2,643     |
| 7     | 239     | 236      | 232     | 551   | 239  | 183   | 177   | 174   | 147    | 78      | 91           | 76      | 62     | 39   | 33 <sup>i</sup> | 23     | 25    | 15   | 23   | 14   | 5    | 14     | 5    | 1    | 1    |      |      |          |      |      | 1    |      |             | 2,331     |
| +.7   | 256     | 243      | 245     | 213   | 204  | 186   | 182   | 147   | 120    | 96      | 75           | 71      | 73     | 43   | 37              | 19     | 27    | 15   | 14   | 4    | ונו  | 6      | Ц    | 1    |      |      | 1    | 1        | 1    |      |      |      |             | 2,295     |
| 9     | 203     | 205      | 232     | 1.84  | 198  | 140   | 145   | 105   | 108    | 84      | 89           | 50      | 59     | 30   | 39              | 17     | 22    | 14   | 6    | 10   | 3    | 3      | ц    |      |      |      |      | 1        | 1    |      |      |      |             | 1,952     |
| +.9   | 192     | 223      | 189     | 178   | 191  | 165   | 152   | 94    | 100    | 77      | 92           | 57      | 52     | 32   | 25              | 15     | 19    | 11   | 10   | 4    | 5    |        | 1    |      |      |      |      |          |      |      |      |      |             | 1,884     |
| -1.1  | 171     | 153      | 153     | 140   | 139  | 109   | 119   | 92    | 82     | 68      | 53           | 42      | 39     | 19   | 29              | 14     | 11    | 9    | 8    | 4    | 5    | 2      |      |      |      |      |      |          |      |      |      |      |             | 1,458     |
| +1.1  | 187     | 154      | 159     | 122   | 172  | 116   | 125   | 76    | 73     | 52      | 57           | 39      | 33     | 24   | 19              | 16     |       | 5    | 6    | 2    | 1    |        | 1    |      |      |      | 1    |          |      |      |      |      |             | 1,458     |
| -1.3  | 154     | 123      | 124     | 107   | 117  | 103   | 94    | 47    | 72     | 40      | 42           | 29      | 30     | 7    | 11              | 4      | 11    | lş   | 1    |      | 1    |        | 4    |      |      |      |      |          |      |      |      |      |             | 1,125     |
| +1.3  | 130     | 778      |         | 109   | 90   |       | 89    |       |        | 45      | 57           | 27      | 41     | 13   | 20              | 10     | _     | 7    | 2    | 1    |      |        | 1    |      | 1    |      |      |          |      |      |      |      |             | 1,134     |
| -1.5  | 104     | 82       | -       | 49    | 74   | 72    |       |       | 45     | 22      | 54           | 21      | 55     | 5    | 11              | 6      | 8     | 2    | 3    |      | 2    |        |      |      |      | 1    |      |          |      |      |      |      |             | 765       |
| +1.5  | 84      | 71       | 100     | 88    | 84   | 60    | •     |       | կկ     | 37      | 29           | 17      | 17     | 10   | 5               | 5      | 7     | 3    | 3    |      | 1    |        |      |      |      |      |      |          |      |      |      |      |             | 782       |
| -1.7  | 60      | 64       | 48      | 58    | 1414 | 48    |       | 36    | 27     | 16      | 22           | 14      | 16     | 12   | 7               | 4      | 2     | _    |      | 1    |      |        |      |      |      |      |      |          |      |      |      |      |             | 513       |
| +1.7  | 69      | 60       |         |       | 48   |       |       |       | -      | 20      | 27           | 5       | 4      | 5    | 9               | 1      | 5     | 1    |      | 1    |      |        |      |      |      |      |      |          |      |      |      |      |             | 530       |
| -1.9  | 50      | 36<br>36 |         |       | -    |       |       |       |        | 9       | 11           | 7       | 7      | 5    | 5               | 1      | 1     | 1    | 2    | 1    |      |        |      | ,    |      |      |      |          |      |      |      |      |             | 326       |
| +1.9  | 39      | 36<br>01 |         |       |      |       |       |       |        | 17<br>6 | 9<br>4       | 10<br>2 | 5<br>4 | 3    | 5<br>2          | 5<br>2 | 3     | 1    |      |      |      | 1      |      | 1    |      |      |      |          |      |      |      |      |             | 356       |
| -2.1  | 23      | 21       |         |       | -    |       |       |       | 5<br>8 | 2       | 10           | 6       | 1      |      |                 | 2      | 1     |      |      | 1    |      | 1      |      |      |      |      |      |          |      |      |      |      |             | 186       |
| +2.1  | 15<br>6 | 25<br>13 |         |       |      |       |       |       |        | 2       | 10           | Ü       | 2      |      | ,               |        | 1     |      |      | _    |      |        |      |      |      |      |      |          |      |      |      |      |             | 170<br>78 |
| +2.3  | 8       |          |         |       |      |       | 7     |       | 6      | 3       | 2            | 1       |        |      | 1               |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 84        |
| -2.5  | 17      |          |         |       | 2    |       |       | -     | 5      | 3       |              |         | 1      |      | •               |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 52        |
| +2.5  | 4       | 8        |         |       | 5    |       |       |       | 2      |         | -            | 1       |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 46        |
| -2.7  | 4       |          | 3       |       | _    | •     |       |       | 1      |         | 1            |         | _      |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 18        |
| +2.7  | 2       | : 3      |         | 7     |      |       | -     |       | 1      |         |              |         |        | 1    |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 23        |
| -2.9  | 1       |          |         |       |      | 1     | . 1   | . 1   |        |         |              |         |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 8         |
| +2.9  | 2       | !        |         |       |      |       |       | 1     |        |         |              |         |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 14        |
| -3.1  |         |          | 1       |       |      | 1     |       |       |        |         |              | 1       |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 3         |
| +3.1  | 1       |          | 1       | . 1   | ·    |       |       |       |        |         |              |         |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 3         |
| -3.3  |         |          |         |       |      |       |       |       |        |         |              |         |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             |           |
| +3.3  |         |          | 1       | . 1   |      |       |       |       |        |         |              |         |        |      |                 |        |       |      |      |      |      |        |      |      |      |      |      |          |      |      |      |      |             | 2         |
| Total | 3,881   | 3,811    | . 3,890 | 3,362 | 3,51 | 2,874 | 2,860 | 2,133 | 2,138  | 1,497   | 1,599        | 1,074   | 1,086  | 607  | 637             | 362    | 2 389 | 202  | 248  | 107  | 122  | 57     | 5'   | 7 20 | 17   | 7    | 9    | <u> </u> | 14   |      | 1    |      | 2           | 36,561    |

TABLE IV

FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTORY C

| Mean        | 0.0        | -0.2       | +0.2       | -0.4   | +0.4  | -0.6  | +0.6  | -0.8     | +0.8       | -1.0  | +1.0     | -1.2 | +1.2 | -1.4 | +1.4 | -1.6 | +1.6 | -1.8 | +1.8 | -2.0 | +2.0 | -2.2 | +2.2         | -2.4 | +2.4 | Total   |
|-------------|------------|------------|------------|--------|-------|-------|-------|----------|------------|-------|----------|------|------|------|------|------|------|------|------|------|------|------|--------------|------|------|---------|
| Ашр         |            |            |            |        |       | 144   |       |          | 46         |       |          | 6    | 2    | 1    | 2    |      | 1    |      |      |      |      |      | <del> </del> |      |      | 1,967   |
| -0.1<br>+.1 | 401        | 324<br>344 | 364        | 232    | 224   | 133   | 132 ° | 49<br>56 |            | 17    | 22<br>13 | 6    | 5    | ı    | 0    | "    | 1    |      |      |      |      | 1    |              |      |      | 1,971   |
| 3           | 375<br>356 | 332        | 355<br>308 | 192    | 195   | 89    | 91    | 31.      | 55<br>28   | 6     | 9        | 2    | ,    | 1    | "    | ľ    |      | ļ    |      |      |      |      |              | 1    |      | 1,640   |
| +.3         | 334        | 321        | 310        | 173    | 199   | 73    | 89    | 33       | 25         | 8     | 6        | 2    | 1    |      | 1    |      |      |      |      |      |      |      |              | _    |      | 1,575   |
| 5           | 467        | 374        | 425        | 218    | 229   | 80    | 90    | 30       | 28         | 3     | 6        | 3    | 1    |      | -    |      |      | ŀ    |      |      |      |      | l            |      |      | 1,954   |
| +.5         | 443        | 426        | 437        | 240    | 221   | 86    | 117   | 35       | <i>2</i> 6 | 5     | 7        | 1    | 1    |      | 1    |      |      | ŀ    |      |      |      |      |              |      |      | 2,058   |
| 7           | 608        | 462        | 492        | 286    | 291   | 115   | 129   | 26       | <i>5</i> 0 | 'n    | 10       | -    | 1    |      |      |      |      | ļ    |      |      |      |      |              |      |      | 2,461   |
| +.7         | 585        | 453        | 501        | 264    | 29lt  | 124   | 124   | 31       | 32         | 3     | 2        | 1    | -    |      |      |      |      |      | ļ    |      |      |      |              |      |      | 2,414   |
| 9           | 690        | 509        | 403        | 278    | 290   | 142   | 116   | 38       | <br>  34   | ľ     | 9        | 1    | 1    | 1    |      |      |      |      |      |      |      |      |              |      |      | 2,623   |
| +.9         | 642        | 526        | 496        | 318    | 285   | 124   | 122   | 40       | 31         | 15    | 12       |      |      |      |      |      |      |      |      |      |      |      | 1            |      |      | 2,612   |
| -1.1        | 598        | 516        | 522        | 298    | 322   | 116   | 158   | 37       | 37         | 5     | 6        |      |      | 1    | 1    |      |      | ĺ    |      |      |      |      |              |      |      | 2,597   |
| +1.1        | 599        | 527        | 540        | 291    | 317   | 121   | 121   | 33       | 143        | 10    | 8        |      | 1    |      |      |      |      |      |      |      |      |      |              |      |      | 2,611   |
| -1.3        | 576        | 141414     | 468        | 262    | 278   | 115   | 126   | 37       | 38         | 5     | 8        | 1    |      |      |      |      | İ    |      |      |      |      |      |              |      |      | 2,358   |
| +1.3        | 541        | 429        | 14148      | 270    | 290   | 129   | 130   | 40       | 41         | 6     | 7        | 2    | 2    | 1    | İ    |      |      |      |      |      |      |      |              |      |      | 2,335   |
| -1.5        | 438        | 340        | 380        | 244    | 226   | 108   | 115   | 35       | 38         | 7     | 4        | 2    | 1    |      | ļ    |      |      |      | ļ    |      |      |      |              |      |      | 1,938   |
| +1.5        | 445        | 365        | 391        | 214    | 232   | 105   | 112   | 28       | 39         | 7     | 8        | 2    | 3    | 1    |      |      |      |      |      |      |      |      |              |      |      | 1,949   |
| -1.7        | 312        | 254        | 295        | 165    | 186   | 78    | 77    | 18       | 22         | 3     | 6        | 1    |      | 1    |      |      |      |      |      |      |      |      |              |      |      | 1,418   |
| +1.7        | 325        | 261        | 295        | 163    | 172   | 71    | 85    | 34       | 18         | 5     | 3        |      |      |      |      |      | 1    |      |      |      |      |      |              |      |      | 1,433   |
| -1.9        | 224        | 227        | 176        | 178    | 142   | 53    | 60    | 18       | 8          | 3     | 6        | 1    |      |      |      |      |      |      |      |      |      |      |              |      |      | 1,036   |
| +1.9        | 245        | 213        | 185        | 121    | 126   | 62    | 65    | 14       | 27         | 3     | 5        | 1    |      |      |      |      |      | 1    |      |      |      |      |              |      |      | 1,068   |
| -2.1        | 170        | 162        | 139        | 97     | 87    | 39    | 36    | 10       | 10         | 4     | 3        |      | 1    | 1    |      |      |      |      |      |      |      |      |              |      |      | 759     |
| +2.1        | 175        | 179        | 127        | 94     | 91    | 35    | 26    | 1.6      | 9          | 2     | 4        | ļ    |      |      |      |      |      |      |      |      |      |      |              |      |      | 758     |
| -2.3        | 104        | 98         | 94         | 57     | 60    | 16    | 19    | 7        | 9          | 1     | 2        |      |      |      |      |      |      |      | İ    | ł    |      |      |              |      |      | 467     |
| +2.3        | 104        | 85         | 110        | 36     | 49    | 22    | 5#    | 12       | 12         |       | 1        |      | 1    |      |      | İ    |      |      | Ì    |      |      |      |              |      |      | 456     |
| -2.5        | 73         | 50         | 69         | 36     | 39    | 23    | 21    | 6        | 7          |       | 1        | i    |      |      |      |      |      |      |      |      |      |      |              |      |      | 325     |
| +2.5        | 64         | 59         | 57         | 33     | 32    | 23    | 18    | 5        | 9          |       | 5        |      |      | Ì    |      |      |      |      |      |      |      |      |              |      |      | 302     |
| -2.7        | 42         | 36         | 40         | 23     | 22    | 6     | 13    | 5        | 5          | 1     | ĺ        |      |      |      |      |      | 1    |      |      |      |      |      |              |      |      | 193     |
| +2.7        | 46         | 33         | 35         | 21     | 25    | 6     | 7     | 2        | 3          | 1     | ŀ        |      |      | İ    |      | 1    | ľ    |      |      |      |      |      |              |      |      | 179     |
| -2.9        | 20         | 16         | 17         | 12     | 8     | 6     | 9     | 5        |            | ļ     | 1        | 1    |      |      |      |      |      |      |      |      |      | -    |              |      |      | 91      |
| +2.9        | 23         | 25         | 19         | 14     | 12    | 11    | 7     | 2        | 5          |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 115     |
| -3.1        | 13         | 15         | 18         | 7      | 3     | 2     |       |          |            |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 58      |
| +3-1        | 10         | 7          | 11         | 8      | 14    | 2     | 5     |          |            |       | 1        |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 48      |
| -3-3        | 4          | 3          | 10         | 1      | 3     |       |       |          |            |       |          |      |      |      | }    |      |      |      |      |      |      |      |              |      |      | 21      |
| +3-3        | 10         | 4          | 8          | 1      | 3     |       | 2     |          |            |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 28      |
| -3.5        | 2          | 1          | 6          |        | 1     |       | 1     | ĺ        |            |       |          |      |      |      |      |      |      | 1    |      |      |      |      |              |      |      | n       |
| +3•5        | 3          | 1          | 3          | 1      |       |       |       | 1        |            |       |          | }    |      |      |      |      |      | 1    | 1    | 1    |      |      |              |      |      | 8       |
| -3.7        | 1          | 1          | 1          | 1      |       |       |       |          | 1          |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 5       |
| +3.7        |            |            | 2          | 1      |       |       |       |          |            |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 3       |
| -3-9        | 1          |            |            | 1      | 1     | Į     |       |          | [          |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | 2       |
| +3.9        |            | 1          |            | 1      |       |       | 1     |          |            |       |          | 1    |      |      |      |      |      |      |      |      | 1    |      |              |      |      | 1       |
| -4.1        |            |            |            | 1      |       |       |       |          |            |       |          |      |      | 1    |      |      |      |      |      |      |      |      |              |      |      | 1       |
| +4.1        |            |            |            |        |       |       |       |          |            |       | 1        |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
| -4.3        |            |            |            |        | 1     |       |       | 1        |            |       |          |      |      |      | 1    |      |      |      |      |      |      | 1    |              | 1    |      |         |
| +4.3        |            |            |            | 1      |       |       | 1     |          |            |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      |         |
| -4-5        |            |            |            |        |       | ĺ     |       |          |            |       |          |      |      |      |      |      |      |      |      |      |      |      |              |      |      | _       |
| +4-5        | 10.00      | 1 0 105    | 0 (        | E 01.0 |       | 0.056 |       | -        | 70-        | 1,5   |          |      |      | _    | _    |      | ,    |      |      | -    | +    | -    | 1,           | +-   | +    | l z 950 |
| Total       | 10,069     | p,425      | 0,657      | P,040  | P,178 | 2,256 | 2,369 | 1730     | 723        | 1 160 | 172      | 1 32 | 21   | 7    | 5    | 1    | 3    | 1    |      |      |      |      | 1            | 1    | 1    | 43,850  |

TABLE V

FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTORY D

| Mean  | T      | Τ      | !      | Γ        | I    |       |      |      | ١    |      | 1    | l    |      | Ι.   | Ι.   | Ι.   | Ι.   | ١.   | Ι.         | İ    | 1    |      | l    |       |
|-------|--------|--------|--------|----------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------------|------|------|------|------|-------|
| Ашр.  | 0.0    | -0.2   | +0.2   | -0.4     | +0.4 | -0.6  | +0.6 | -0.8 | +0.8 | -1.0 | +1.0 | -1.2 | +1.2 | -1.4 | +1.4 | -1.6 | +1.6 | -1.8 | +1.8       | -2.0 | +2.0 | -2.2 | +2.2 | Total |
| -0.1  | 484    | 388    | 367    | 228      | 214  | 68    | 79   | 24   | 22   | 4    | 9    | 1    | İ    | ı    |      | İ    |      | ĺ    | İ          |      | İ    |      |      | 1,889 |
| +.1   | 486    | 395    | 355    | 231      | 194  | 73    | 94   | 27   | 23   | 5    | 4    | 2    | 3    |      |      |      |      |      |            |      |      |      |      | 1,892 |
| 3     | 492    | 356    | 349    | 168      | 137  | 34    | 30   | 7    | 6    | 2    | 2    |      |      |      |      |      |      |      |            |      |      |      |      | 1,583 |
| +.3   | 491    | 340    | 341    | 149      | 154  | 48    | 46   | 2    | 4    | 2    | 3    |      | 1    |      |      |      |      |      |            |      |      |      |      | 1,581 |
| 5     | 649    | 419    | 429    | 153      | 163  | 34    | 35   | 7    | 9    | l    | 2    |      | 1    |      |      |      |      |      |            |      |      |      |      | 1,901 |
| +•5   | 650    | 406    | 1,2,2, | 176      | 163  | 29    | 40   | 6    | 14   |      | ı    |      |      | Ì    |      |      |      |      |            |      |      |      |      | 1,919 |
| 7     | 824    | 573    | 553    | 183      | 199  | 31    | 43   | 6    | 6    | 1    | 1    |      |      |      |      |      |      |      |            |      |      |      |      | 2,420 |
| +.7   | 768    | 573    | 556    | 179      | 207  | 14.14 | 37   | 8    | 3    | 1    | 2    |      |      |      |      |      |      |      |            |      |      |      | ı    | 2,379 |
| 9     | 889    | 645    | 609    | S18      | 544  | 42    | 38   | 2    | 6    |      |      |      |      |      |      |      |      |      |            | Ì    |      |      |      | 2,693 |
| +.9   | 903    | 647    | 649    | 227      | 236  | 43    | 1414 | 3    | 2    |      |      |      |      |      |      |      |      |      |            |      |      |      |      | 2,754 |
| -1.1  | 872    | 587    | · 664  | 538      | 216  | 43    | 39   | В    | 8    |      |      |      |      |      |      | İ    |      |      |            |      |      |      |      | 2,675 |
| +1.1  | 840    | 619    | 635    | 209      | 21.4 | 43    | 40   | 6    | 8    |      |      |      |      |      |      |      |      |      |            |      |      |      |      | 2,614 |
| -1.3  | 764    | 542    | 550    | 205      | 214  | 42    | 30   | 5    | 3    |      | 1    |      |      |      |      |      |      |      |            |      |      |      |      | 2,356 |
| +1.3  | 738    | 525    | 538    | 215      | 237  | 50    | 43   | 7    | 5    |      |      |      |      |      |      |      |      |      |            |      |      |      |      | 2,358 |
| -1.5  | 603    | 415    | 462    | 501      | 202  | 48    | 51   | 4    | 4    |      |      |      |      |      |      | İ    |      |      |            |      |      |      |      | 1,990 |
| +1.5  | 650    | 443    | 437    | 190      | 193  | 40    | 45   | 8    | 4    | 1    |      |      |      |      |      |      |      |      |            |      |      |      |      | 2,011 |
| -1.7  | 1+14.9 | 358    | 378    | 144      | 131  | 36    | 37   | 2    | 1.   | 1    |      |      |      |      |      |      |      |      |            |      |      |      |      | 1,537 |
| +1.7  | 460    | 355    | 351    | 146      | 169  | 38    | 30   | 5    | 7    |      |      |      |      |      |      | ĺ    | ľ    | 1    | 1          |      |      |      |      | 1,562 |
| -1.9  | 322    | 248    | 229    | 120      | 107  | 22    | 26   | 5    | 3    |      |      |      |      |      |      |      |      |      |            |      |      |      |      | 1,082 |
| +1.9  | 316    | 263    | 251    | 105      | 107  | 24    | 29   | 7    | 5    |      |      |      |      |      |      | J    |      |      |            |      |      |      |      | 1,107 |
| -2.1  | 255    | 198    | 191    | 77       | 81   | 15    | 18   | 4    | 4    |      |      |      |      |      |      | -    |      |      |            |      |      |      |      | 843   |
| +2.1  | 242    | 200    | 190    | 74       | 62   | 17    | 17   | 3    | 1    |      |      |      |      |      |      |      |      |      |            |      |      |      |      | 806   |
| -2.3  | 155    | 144    | 119    | 50       | 74   | 18    | 15   | }    |      | 1    |      |      |      |      |      | 1    | -    | -    |            |      | İ    |      |      | 576   |
| +2.3  | 176    | 122    | 122    | 48       | 43   | 20    | 15   | 1    | 1    |      |      |      |      |      |      |      |      | 1    |            |      |      |      |      | 549   |
| -2.5  | 110    | 71     | 81     | 36       | 32   | 3     | 5    |      |      |      |      |      |      |      |      | ļ    |      |      |            |      |      | Ì    |      | 338   |
| +2.5  | 110    | 74     | 86     | 36       | 40   | 7     | 17   | - 1  | 2    |      |      |      |      |      | ĺ    | ſ    |      | ĺ    |            |      |      |      | - 1  | 372   |
| -2.7  | 62     | 44     | 63     | 29       | 20   | 7     | 8    |      | 1    |      |      | ĺ    |      |      | ĺ    |      | [    |      |            |      |      |      |      | 234   |
| +2.7  | 56     | 43     | 61     | 18       | 24   | 5     | 7    | -    | - 1  | - 1  |      |      |      |      |      |      |      | 1    |            |      |      |      |      | 214   |
| -2.9  | 43     | 33     | 24     | וינ      | 16   | 4     | 5    |      | 1    |      | ļ    |      |      |      |      | İ    |      |      | İ          |      |      |      |      | 137   |
| +2.9  | 37     | 42     | 20     | 13       | 12   | 3     | 1    |      | Ì    |      | ĺ    | ĺ    |      |      |      |      | ĺ    |      |            |      |      |      |      | 128   |
| -3.1  | 22     | 13     | 18     | 11       | 1    |       | 1    | 1    | ľ    | 1    | - 1  | ı    |      | ĺ    |      | - {  | 1    | 1    | l          |      |      | l    | ı    | 66    |
| +3.1  | 24     | 19     | 18     | 5        | 5    | 2     |      |      |      | ĺ    |      |      |      |      |      |      | -    |      | ĺ          |      |      |      |      | 73    |
| -3.3  | 14     | 9      | 7      | 3        | 2    |       |      |      |      |      |      |      | }    |      |      | J    |      |      |            |      |      |      | J    | 35    |
| +3.3  | 11     | 10     | 12     | 1        | 2    |       | 1    |      | 1    |      |      |      | İ    |      |      | ļ    |      |      | - 1        |      |      |      |      | 38    |
| -3.5  | 3      | 1      | 5      | 1        | 4    |       |      |      | -    |      |      | ļ    |      |      | İ    | İ    | ļ    |      |            |      |      | ļ    |      | 14    |
| +3.5  | 6      | 2      | 2      | - 1      | Ħ    |       | 1    |      | ł    | 1    |      | ł    |      | - 1  | -    | - 1  | - 1  | - {  | ł          | 1    | - {  | Ì    | ł    | 15    |
| -3•7  | 1      | 1      | 3      |          | _ ,  |       | 1    |      |      |      |      |      |      |      |      |      |      |      |            |      |      |      | ļ    |       |
| +3.7  | 3      | 1      | 3      | 1        | 1    |       |      |      |      |      |      |      |      |      |      |      |      |      |            |      |      | ĺ    |      | 9     |
| -3.9  | 2      | ĺ      | 2      | ĺ        |      |       | 1    | - 1  | ĺ    | - [  |      | ĺ    | 1    | ĺ    | ĺ    | ĺ    | ĺ    |      | - [        | ĺ    |      | ĺ    |      | 2     |
| +3•9  | 1      |        |        |          | 1    |       |      |      |      | 1    |      |      |      |      |      |      |      |      |            |      |      |      | İ    | 1     |
| -4.1  |        | }      | 1      | 1        | 1    |       |      |      | - }  |      |      |      | -    |      |      | - 1  | - 1  |      |            | İ    |      |      |      | -     |
| +4.1  |        |        |        |          |      |       |      |      |      |      |      |      |      |      |      |      |      |      |            |      |      |      |      |       |
| -4.3  |        |        |        |          | İ    |       |      |      |      |      | Ì    |      |      |      | -    |      |      |      | Ì          | ł    |      | -    |      |       |
| +4.3  | 1      | }      |        | 1        |      |       |      |      | -    |      |      | 1    |      | -    |      | - 1  |      | - 1  | 1          |      | 1    | - 1  | - 1  | 1     |
| -4-5  |        | ļ      |        |          |      | 1     |      |      |      |      |      |      | - 1  |      |      |      |      |      |            |      |      |      |      | 1     |
| +4.5  |        |        |        |          |      |       |      |      |      |      |      |      |      |      |      |      |      |      |            |      |      |      |      |       |
| -4.7  |        |        | ĺ      |          | 1    |       |      |      |      |      |      | -    | [    |      |      |      |      |      |            |      |      |      |      | 1     |
| +4-7  | 17 007 | 0.101  | 10 125 | 1 100 1  | 706  | 0.2), | 068  | 157  | , k. | 18   | 25   | 3    | 5    | 1    |      |      |      | 1    | ı          |      |      | i    | 1 4  | 4,765 |
| Total | 13,983 | 10,124 | 10,174 | +,100  4 | ,120 | 324   | 300  | -51  | 1    | 10   | 2)   | ا د  | 7    | ~ ]  | ı    | J    | - 1  | - 1  | - <u>!</u> | 1    | 1    | ı    | - 1  | اردار |

TABLE VI PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY A

|               | Mean | -1         | 4  | -1  | .2 |     | 1.0 | -(  | 8.0 | -(  | 0.6 | _(         | 0.4         | -(  | 0.2 | 0.          | .0             | +(  | 0.2         | +(           | 0.4  | +(  | 0.6 | +(  | 8.0 | +]         | L.O | +1. | .2 | +1.        | 4              |
|---------------|------|------------|----|-----|----|-----|-----|-----|-----|-----|-----|------------|-------------|-----|-----|-------------|----------------|-----|-------------|--------------|------|-----|-----|-----|-----|------------|-----|-----|----|------------|----------------|
| Amp.<br>class | mark | fa         | fc | fa  | fc | fa  | fc  | fa  | fc  | fa  | fc  | fa         | fc          | fa  | fe  | fa          | f <sub>e</sub> | fa  | fc          | fa           | fc   | fa  | fc  | fa  | fc  | fa         | fc  | fa  | fc | fa         | f <sub>c</sub> |
| С             | .1   | 28         | 28 | 43  | 46 | 74  | 87  | 136 | 153 | 192 | 183 | 263        | 243         | 301 | 325 | 328         | 321            | 313 | 325         | 2 <b>3</b> 0 | 215  | 176 | 183 | 152 | 153 | <b>7</b> 5 | 87  | 44  | 46 | 29         | 28             |
|               | •3   | <b>3</b> 5 | 26 | 50  | 51 | 97  | 91  | 146 | 152 | 216 | 213 | 291        | 280         | 322 | 342 | <b>3</b> 25 | 348            | 379 | 342         | <b>31</b> 2  | 293  | 235 | 213 | 155 | 152 | 123        | 91  | 56  | 51 | 25         | 26             |
|               | •5   | <b>3</b> 2 | 29 | 56  | 60 | 107 | 104 | 182 | 171 | 256 | 257 | 330        | 335         | 440 | 395 | 441         | 407            | 391 | <b>39</b> 5 | 380          | 347  | 253 | 257 | 183 | 171 | 117        | 104 | 62  | 60 | 26         | 29             |
|               | •7   | 24         | 33 | 60  | 69 | 129 | 119 | 193 | 195 | 309 | 294 | 405        | 384         | 450 | 451 | 483         | 466            | 463 | 451         | 356          | 386  | 286 | 294 | 207 | 195 | 110        | 119 | 78  | 69 | 42         | 33             |
|               | •9   | 26         | 33 | 59  | 69 | 116 | 120 | 195 | 197 | 296 | 297 | 371        | <b>3</b> 88 | 443 | 456 | 492         | 470            | 444 | 456         | 387          | 388  | 326 | 297 | 197 | 197 | 113        | 120 | 59  | 69 | <b>3</b> 5 | 33             |
| 1             | .1   | <b>3</b> 4 | 30 | 68  | 63 | 87  | 109 | 174 | 178 | 262 | 269 | 380<br>380 | 351         | 399 | 412 | 411         | 1426           | 413 | 412         | 367          | 351  | 269 | 269 | 162 | 178 | 99         | 109 | 66  | 63 | 26         | 30             |
| 1             | •3   | 22         | 25 | 59  | 52 | 71  | 90  | 132 | 147 | 188 | 222 | 260        | 289         | 312 | 340 | 337         | 351            | 318 | 340         | 275          | 289  | 212 | 221 | 145 | 147 | 104        | 90  | 43  | 52 | 23         | 25             |
| 1             | •5   | 15         | 19 | 41  | 39 | 64  | 68  | 110 | 111 | 142 | 168 | 207        | 219         | 278 | 258 | 235         | 266            | 251 | 258         | 202          | 21,9 | 139 | 168 | 110 | 111 | 53         | 68  | 42  | 39 | 15         | 19             |
| 1             | •7   | 8          | 13 | 24  | 28 | 40  | 48  | 74  | 78  | 91  | 117 | 125        | 154         | 177 | 181 | 166         | 186            | 164 | 181         | 135          | 154  | 121 | 118 | 74  | 78  | 49         | 48  | 30  | 28 | ונו        | 13             |
| 1             | •9   | 8          | 8  | 13  | 18 | 35  | 31. | 30  | 51  | 65  | 77  | 89         | 100         | 104 | 118 | 109         | 121            | 99  | 118         | 76           | 100  | 70  | 77  | 35  | 51  | 17         | 31  | 16  | 18 | 7          | 8              |
| 2             | .1   | 2          | 5  | 11. | זו | 19  | 19  | 22  | 31  | 34  | 46  | 46         | 61          | 51  | 71  | 60          | 74             | 63  | 71          | 41           | 61   | 31  | 46  | 25  | 31  | 15         | 19  | 7   | 11 | 4          | 5              |
| 2             | •3   | 0          | 3  | 4   | 6  | 8   | 11  | 15  | 17  | 18  | 26  | 24         | 34          | 21, | 40  | 36          | 42             | 24  | 40          | 24           | 34   | 22  | 26  | 12  | 17  | 8          | 11  | 2   | 6  | 0          | 3              |
| 2             | •5   | 0          | 2  | 1   | 3  | 5   | 6   | 5   | 9   | 8   | 14  | 13         | 18          | 14  | 21  | 5           | 22             | 17  | 21          | 7            | 18   | 8   | 14  | 5   | 9   | 3          | 6   | 2   | 3  | 1          | 2              |
| 2             | •7   | 1          | 1  | 2   | 2  | 1   | 3   | 1   | 5   | 5   | 7   | 2          | 9           | 9   | ונו | 8           | וו             | 8   | 11          | 5            | 9    | 2   | 7   | 4   | 5   | 2          | 3   | 1   | 2  |            |                |
| 2             | .9   |            |    | ĺ   |    |     |     | 2   | 2   |     |     | 2          | 4           | 2   | 5   | 4           | 2              | 3   | 5           | 1            | 4    | 2   | 3   |     |     | 1          | 1   |     |    |            |                |
| 3             | .1   |            |    |     |    |     |     |     |     |     |     | 1          | 2           | 1   | 2   | 1           | 1              | 1   | 2           |              |      |     |     |     |     | 1          | 1   |     |    |            |                |

 $f_a$  - observed frequency of occurrence (i.e., number of amplitudes counted in an interval)  $f_c$  - predicted frequency of occurrence (eq. (C1))

TABLE VII

PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES

ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY B

|             | Mean   | -1.        | 4   | -1  | 2        | -1  | .0  | -C  | .8  | -0  | .6  | -0  | .4         | -0          | .2          | 0               | .0          | +0  | .2           | +0  | .4  | +0          | .6  | +0   | .8         | +3   | 0    | +1       | 2          | +1.        | 4  |
|-------------|--------|------------|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|------------|-------------|-------------|-----------------|-------------|-----|--------------|-----|-----|-------------|-----|------|------------|------|------|----------|------------|------------|----|
| Amp<br>clas | s mark | fa         | fc  | fa  | fc       | fa  | fc  | fa  | fc  | fa  | fc  | fa  | fc         | fa          | fc          | fa              | fc          | fa  | fc           | fa  | fc  | fa          | fc  | fa   | fc         | fa   | fc   | fa       | fc         | fa         | fc |
|             | 0.1    | 74         | 89  | 132 | 136      | 183 | 184 | 211 | 236 | 286 | 282 | 268 | 344        | <b>3</b> 80 | 363         | <del>3</del> 86 | <b>3</b> 82 | 364 | 363          | 338 | 344 | 290         | 282 | 234  | 236        | 182  | 1,84 | 139      | 136        | 100        | 89 |
|             | •3     | 63         | 62  | 86  | 104      | 128 | 143 | 166 | 187 | 212 | 237 | 251 | 288        | 330         | 310         | 313             | 320         | 295 | <b>3</b> 10  | 294 | 288 | 213         | 237 | 176  | 187        | 144  | 143  | 92       | 104        | 43         | 62 |
|             | •5     | 45         | 36  | 77  | 72       | 107 | 102 | 163 | 137 | 211 | 187 | 223 | 225        | 264         | 250         | 249             | 250         | 291 | 250          | 244 | 225 | 219         | 187 | 189  | 137        | 115  | 102  | 91       | <b>7</b> 2 | <b>3</b> 5 | 36 |
|             | •7     | 43         | 27  | 71. | 61       | 96  | 88  | 147 | 120 | 186 | 171 | 213 | 205        | 243         | 2 <b>31</b> | 256             | 228         | 245 | 2 <b>3</b> 1 | 204 | 205 | 182         | 171 | 120  | 120        | 75   | 88   | . 73     | 61         | 37         | 27 |
|             | •9     | <b>3</b> 2 | 24  | 57  | 56       | 77  | 81  | 94  | דדר | 165 | 159 | 178 | 191        | 223         | 215         | 192             | 212         | 189 | 215          | 191 | 191 | <b>1</b> 52 | 159 | 100  | 111        | . 92 | 81   | 52       | 56         | 25         | 24 |
|             | 1.1    | 24         | 20  | 39  | 48       | 52  | 69  | 76  | 94  | 116 | 136 | 122 | 162        | 154         | 183         | 187             | 180         | 159 | 183          | 172 | 162 | 125         | 136 | 73   | 94         | 57   | 69   | 33       | 48         | 19         | 20 |
|             | 1.3    | .13        | 16  | 27  | 37       | 45  | 53  | 73  | 73  | 84  | 104 | 109 | 125        | 118         | 141         | 130             | 139         | 146 | 141          | 90  | 125 | 89          | 104 | 61   | 73         | 57   | 53   | 41       | 37         | 20         | 16 |
| !           | 1.5    | 10         | 11  | 17  | 26       | 37  | 37  | 47  | 51  | 60  | 73  | 88  | 87         | 71          | 99          | 84              | 97          | 100 | 99           | 84  | 87  | 70          | 73  | 1414 | 51         | 29   | 37   | 17       | 26         | 5          | 11 |
| 1           | 1.7    | , 5        | , 7 | 5   | 16       | 20  | 24  | 28  | 32  | 50  | 47  | 59  | 56         | 60          | 63          | 69              | 62          | 62  | 63           | 48  | 56  | 39          | 47  | 36   | <b>3</b> 2 | 27   | 24   | . 4      | 16         | 9          | 7  |
|             | 1.9    | : 3        | 14  | 10  | 10       | 17  | 14  | 13  | 19  | 36  | 27  | 37  | 33         | 36          | 37          | 39              | 37          | 42  | 37           | 35  | 33  | 43          | 27  | 16   | 19         | 9    | 14   | 5        | 10         | . 5        | 4  |
|             | 2.1    | 2          | 2   | 6   | 5        | . 2 | 8   | 6   | 10  | 8   | 15  | 13  | 18         | 25          | 20          | 15              | 20          | 24  | 20           | 21  | 18  | 24          | 15  | 8    | 10         | 10   | 8    | 1        | 5          | • 3        | 2  |
|             | 2.3    | 0          | 1   | . 1 | · .3     | 3   | 1 4 | 5   | 5   | 8   | 7   | 10  | 9          | 12          | 10          | 8               | 10          | 11  | 10           | 8   | 9   | 7           | 7   | 6    | 5          | 2    | 14.  | 2        | :<br>3     | 1          | 1  |
|             | 2.5    | 0          | ı   | 1   | 1        | ı   | 2   | 1   | 2   | 7   | 3   | 4   | <u>}</u> 4 | 8           | 5           | <u> </u> 4      | 5           | 6   | 5            | 5   | 4   | 6           | 3   | 2    | 2          | 0    | 2    | 1        | 1          |            |    |
|             | 2.7    | 1          | 0   |     | 1        | 1   | 1   | 0   | 1   | 1   | ı   | 7   | 2          | 3           | 2           | 2               | 2           | 0   | 2            | . 5 | 2   | 1           | 1   | 1    | ı          | l    | . 1  |          |            | 1          |    |
|             | 2.9    | :          |     |     | :        | 1   |     | 1   | 0   |     |     | 0   | 1          |             |             | 2               | 1           | 0   | 1            |     | !   | 1           |     | , 1  | 0          |      |      |          |            |            |    |
|             | 3.1    |            |     |     | <u> </u> |     |     |     |     |     |     | 1   | 0          |             |             | 1               | 0           | 1   | 0            |     |     |             | !   |      |            |      |      | <u>.</u> |            |            | !  |

4.52

fa - observed frequency of occurrence (i.e., number of amplitudes counted in an interval)

fc - predicted frequency of occurrence (eq. (C1))

TABLE VIII PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY C

| Mean | -o. | .8    | -0         | 0.6        | -0  | ).4               | -0          | 0.2 | (   | 0.0 | +(  | 0.2 | +(  | 0.4 | +(  | 0.6        | +0    | 8.0 |
|------|-----|-------|------------|------------|-----|-------------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|-------|-----|
| Amp. | fa  | $f_c$ | fa         | fc         | fa  | fc                | fa          | fc  | fa  | fc  | fa  | fc  | fa  | fc  | fa  | fc         | $f_a$ | fc  |
| 0.1  | 56  | 55    | 133        | 141        | 249 | 219               | 344         | 355 | 375 | 375 | 355 | 355 | 219 | 219 | 141 | 141        | 55    | 55  |
| •3   | 33  | 22    | 73         | 74         | 173 | 165               | 321         | 279 | 334 | 323 | 310 | 279 | 199 | 165 | 89  | 74         | 25    | 22  |
| •5   | 35  | 33    | 86         | 108        | 240 | 245               | 428         | 415 | 443 | 481 | 437 | 415 | 221 | 245 | 117 | 108        | 36    | 33  |
| •7   | 31  | 40    | 124        | 131        | 264 | 297               | 453         | 504 | 585 | 584 | 501 | 504 | 294 | 297 | 124 | 131        | 32    | 40  |
| •9   | 40  | 42    | 124        | 140        | 318 | 316               | 526         | 535 | 642 | 621 | 496 | 535 | 285 | 316 | 122 | 140        | 31    | 42  |
| 1.1  | 33  | 41    | 121        | 135        | 291 | 30 <sup>1</sup> 4 | 527         | 516 | 599 | 598 | 540 | 516 | 317 | 304 | 121 | 135        | 43    | 41  |
| 1.3  | 40  | 36    | 129        | 120        | 270 | 270               | 429         | 458 | 541 | 532 | 448 | 458 | 290 | 270 | 130 | 120        | 41    | 36  |
| 1.5  | 28  | 30    | 102        | 99         | 214 | 223               | <b>3</b> 65 | 379 | 445 | 440 | 391 | 379 | 232 | 223 | 112 | 99         | 39    | 30  |
| 1.7  | 34  | 23    | 71         | 77         | 163 | 173               | 261         | 293 | 325 | 340 | 295 | 293 | 172 | 173 | 85  | 77         | 18    | 23  |
| 1.9  | 14  | 17    | 62         | 56         | 121 | 126               | 213         | 214 | 245 | 248 | 185 | 214 | 126 | 126 | 65  | 56         | 27    | 17  |
| 2.1  | 16  | 12    | <b>3</b> 5 | <i>3</i> 8 | 94  | 87                | 179         | 147 | 175 | 170 | 127 | 147 | 91  | 87  | 26  | <i>3</i> 8 | 9     | 12  |
| 2.3  | 12  | 7     | 22         | 25         | 36  | 56                | 85          | 95  | 104 | 110 | 110 | 95  | 49  | 46  | 24  | 25         | 12    | 7   |
| 2.5  | 5   | 5     | 23         | 15         | 33  | 34                | 59          | 58  | 64  | 68  | 57  | 58  | 32  | 34  | 18  | 15         | 9     | 5   |
| 2.7  | 2   | 3     | 6          | 9          | 21  | 20                | 33          | 34  | 46  | 39  | 35  | 34  | 25  | 20  | 7   | 9          | 3     | 3   |
| 2.9  | 2   | 1     | בנו        | 5          | 14  | 11                | 25          | 19  | 23  | 22  | 19  | 19  | 12  | 11. | 7   | 5          | 2     | 1   |
| 3.1  |     |       | 2          | 3          | 8   | 6                 | 7           | 10  | 10  | 11  | 11  | 10  | 14  | 6   | 5   | 3          |       |     |
| 3.3  |     |       |            |            | 1   | 3                 | 4           | 5   | 10  | 6   | 8   | 5   | 3   | 3   | 2   | 1          |       |     |
| 3.5  |     |       |            |            | ı   | 1                 | 1.          | 2   | 3   | 3   | 3   | 2   |     |     | 0   | 1          |       |     |
| 3.7  |     |       |            |            | 1   | 1                 | 0           | 1   |     |     | 2   |     |     |     | 0   | 0          |       |     |
| 3.9  |     |       |            |            |     |                   | 0           | 0   |     |     |     |     |     |     | 1   | 0          |       |     |
| 4.1  |     |       |            |            |     |                   | 0           | 0   |     |     |     |     |     |     |     |            |       |     |
| 4.3  |     |       |            |            | 1   |                   | 0           | 0   |     |     |     |     |     |     |     |            |       |     |
| 4.5  |     |       |            |            |     |                   | 1           | 0   |     |     |     |     |     |     |     |            |       |     |

 $f_a$  - observed frequency of occurrence (i.e., number of amplitudes counted in an interval)  $f_c$  - predicted frequency of occurrence (eq. (C1))

TABLE IX PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY D

| Mean               | -0 | .6             |     | 0.4 | -           | 0.2 |     | 0.0 | +              | 0.2 | +   | 0.4 | +0 | .6    |
|--------------------|----|----------------|-----|-----|-------------|-----|-----|-----|----------------|-----|-----|-----|----|-------|
| Amp.<br>class mark | fa | $f_c$          | fa  | fc  | fa          | fc  | fa  | fc  | f <sub>a</sub> | fc  | fa  | fc  | fa | $f_c$ |
| 0.1                | 73 | 94             | 231 | 194 | 395         | 355 | 486 | 485 | 355            | 355 | 194 | 194 | 94 | 94    |
| .3                 | 48 | 25             | 149 | 121 | 340         | 309 | 491 | 427 | 341            | 309 | 154 | 121 | 46 | 25    |
| •5                 | 29 | <del>3</del> 8 | 176 | 184 | 406         | 470 | 650 | 650 | 444            | 470 | 163 | 184 | 40 | 38    |
| •7                 | 44 | 46             | 179 | 225 | 573         | 576 | 768 | 795 | 556            | 576 | 207 | 225 | 37 | 46    |
| •9                 | 43 | 50             | 227 | 242 | 647         | 618 | 903 | 854 | 649            | 618 | 236 | 242 | 44 | 50    |
| 1.1                | 43 | 49             | 209 | 236 | 619         | 604 | 840 | 834 | 635            | 604 | 214 | 236 | 40 | 49    |
| 1.3                | 50 | 44             | 215 | 213 | 525         | 545 | 738 | 753 | 538            | 545 | 237 | 213 | 43 | 44    |
| 1.5                | 40 | 37             | 190 | 179 | 443         | 459 | 650 | 635 | 437            | 459 | 193 | 179 | 45 | 37    |
| 1.7                | 38 | 29             | 146 | 142 | <b>3</b> 55 | 363 | 460 | 502 | 351            | 363 | 169 | 142 | 30 | 29    |
| 1.9                | 24 | 22             | 105 | 106 | 263         | 271 | 316 | 375 | 251            | 271 | 107 | 106 | 29 | 22    |
| 2.1                | 17 | 15             | 74  | 75  | 200         | 191 | 242 | 264 | 190            | 191 | 62  | 75  | 17 | 15    |
| 2.3                | 20 | 10             | 48  | 50  | 122         | 128 | 176 | 177 | 122            | 128 | 43  | 50  | 15 | 10    |
| 2.5                | 7  | 7              | 36  | 32  | 74          | 81  | 110 | 112 | 86             | 81  | 40  | 32  | 17 | 7     |
| 2.7                | 5  | 4              | 18  | 19  | 43          | 49  | 56  | 67  | 61             | 49  | 24  | 19  | 7  | 4     |
| 2.9                | 3  | 2              | 13  | 11  | 42          | 28  | 37  | 39  | 20             | 28  | 12  | וו  | 1  | 2     |
| 3.1                | 2  | 1              | 5   | 6   | 19          | 15  | 24  | 21  | 18             | 15  | 5   | 6   | 0  | 1     |
| 3.3                | ĺ  |                | ı   | 3   | 10          | 8   | 11  | 11  | 12             | 8   | 2   | 3   | 1  | 1     |
| 3.5                | 1  |                | 0   | 2   | 2           | 4   | 6   | 5   | 2              | 4   | 4   | 2   | 1  | 0     |
| 3.7                |    |                | 1.  | ı   | 1           | 2   | 3   | 3   | 3              | 2   | 1   | 1   |    |       |
| 3.9                |    |                | 0   | 0   |             |     | 1   | 1   |                |     | 1   | 0   |    |       |
| 4.1                |    |                | 0   | 0   |             | ľ   |     |     |                |     |     |     |    |       |
| 4.3                |    |                | 0   | 0   |             |     |     |     |                |     |     |     |    |       |
| 4.5                |    |                | 0   | 0   |             |     |     |     |                |     |     |     |    |       |
| 4.7                |    |                | 1   | _ 0 |             |     |     |     |                |     |     |     |    |       |

 $f_a$  - observed frequency of occurrence (i.e., number of amplitudes counted in an interval)  $f_c$  - predicted frequency of occurrence (eq. (C1))

TABLE X

COEFFICIENTS DETERMINED TO GIVE BEST FIT TO OBSERVED FREQUENCIES

|      | Time his $\sigma_{R} = 0$ $\sigma_{N} = 0$ | .814             | σ <sub>R</sub> = | story B<br>0.746<br>0.254 | Time his $\sigma_R = 0$ $\sigma_N = 0$ | .915       | Time his $\sigma_R = 0$ $\sigma_N = 0$ | .942             |
|------|--------------------------------------------|------------------|------------------|---------------------------|----------------------------------------|------------|----------------------------------------|------------------|
| Mean | $N_{ m R}$                                 | $N_{ m N}$       | $N_{\mathbf{R}}$ | $N_{N}$                   | $N_{ m R}$                             | ${ m N_N}$ | $N_{ m R}$                             | $N_{\mathbf{N}}$ |
| -1.4 | 224                                        | 60               | 153              | 295                       |                                        |            |                                        |                  |
| -1.2 | 473                                        | 88               | 358              | 433                       |                                        |            | :                                      |                  |
| -1.0 | 819                                        | 174              | 515              | 584                       |                                        | i          |                                        |                  |
| 8    | 1,340                                      | 316              | 709              | 743                       | 319                                    | 96         |                                        |                  |
| 6    | 2,026                                      | 3 <sup>4</sup> 3 | 1,019            | 865                       | 1,058                                  | 237        | 390                                    | 170              |
| 14   | 2,644                                      | 458              | 1,221            | 1,059                     | 2,392                                  | 332        | 1,888                                  | 304              |
| 2    | 3,104                                      | 650              | 1,378            | 1,104                     | 4,056                                  | 529        | 4,830                                  | 495              |
| .0   | 3,204                                      | 630              | 1,356            | 1,177                     | 4,705                                  | 538        | 6,675                                  | 674              |
| +.2  | 3,104                                      | 650              | 1,378            | 1,104                     | 4,056                                  | 529        | 4,830                                  | 495              |
| +.4  | 2,644                                      | 458              | 1,221            | 1,059                     | 2,392                                  | 332        | 1,888                                  | 304              |
| +.6  | 2,026                                      | 3 <del>4</del> 3 | 1,019            | 865                       | 1,058                                  | 237        | 390                                    | 170              |
| +.8  | 1,340                                      | 316              | 709              | 743                       | 319                                    | 96         |                                        |                  |
| +1.0 | 819                                        | 174              | 515              | 584                       |                                        |            |                                        |                  |
| +1.2 | 473                                        | 88               | 358              | 433                       |                                        |            |                                        |                  |
| +1.4 | 224                                        | 60               | 153              | 295                       |                                        |            |                                        |                  |



Figure 1.- Amplitude responses employed in filtering. Curves represent the desired response; symbols represent the response obtained using Fourier coefficients.



Figure 2.- Samples of the four time histories obtained by filtering.



Figure 3.- Statistical distributions of instantaneous mean values for the four time histories.



Figure 4.- Probability distributions of instantaneous mean values for the four time histories.



Figure 5.- Statistical distributions of instantaneous amplitudes with respect to a specified instantaneous mean value for time history A. Open symbols represent actual values; solid symbols represent computed values.



Figure 5.- Concluded.

1.1



Figure 6.- Statistical distributions of instantaneous amplitudes with respect to a specified instantaneous mean value for time history B. Open symbols represent actual values; solid symbols represent computed values.





Figure 6.- Concluded.



Figure 7.- Statistical distributions of instantaneous amplitudes with respect to a specified instantaneous mean value for time history C. Open symbols represent actual values; solid symbols represent computed values.



Figure 7.- Concluded.



Figure 8.- Statistical distributions of instantaneous amplitudes with respect to a specified instantaneous mean value for time history D. Open symbols represent actual values; solid symbols represent computed values.



Figure 8.- Concluded.

2/22/85

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

# NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546