

DEPARTAMENTO DE ESTATÍSTICA

26 junho 2023

Lista 8 - Correlação Canônica

Prof. Dr. George von Borries Análise Multivariada 1

Aluno: Bruno Gondim Toledo | Matrícula: 15/0167636

Questão 71

Ex. 10.1 | Johnson & Wichern

Considerar a matriz de covariâncias

$$\mathbf{Cov} = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \\ --\\ x_1^{(2)} \\ x_2^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} \Sigma_{11} & | & \Sigma_{12} \\ -- & -|- & --\\ \Sigma_{21} & | & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} 100 & 0 & | & 0 & 0 \\ 0 & 1 & | & 0,95 & 0 \\ -- & -- & -|- & --\\ 0 & 0,95 & | & 1 & 0 \\ 0 & 0 & | & 0 & 100 \end{bmatrix}$$

Verificar que o primeiro par de variáveis canônicas são $U_1=X_2^{(1)}, V_1=X_1^{(2)}$ com correlação canônica $\rho_1^*=0,95$. sol.:

$$\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{11}^{-1/2} =$$
[,1] [,2]
[1,] 0 0.0000

Com autovalores:

e autovetores normalizados:

Ou seja,

$$U_1 = e_1' \Sigma_{11}^{1/2} x^{(1)} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} = x_2^{(1)}$$

E ainda

$$V_1 = f_1' \Sigma_{22}^{-1/2} x^{(2)} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0, 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = x_1^{(2)}$$

Então, o par canônico $(U_1, V_1) = (X_2^{(1)}, X_1^{(2)})$, e $\rho_1^* = 0, 95$.

Questão 72

Ex. 10.2 | Johnson & Wichern

Os vetores aleatórios $\mathbf{X^{(1)}},\mathbf{X^{(2)}}$ $(\mathbf{2}\times\mathbf{1})$ têm vetor de médias e variâncias conjuntas

$$\mu = \begin{bmatrix} \mu^{(1)} \\ -- \\ \mu^{(2)} \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ -- \\ 0 \\ 1 \end{bmatrix}; \mathbf{\Sigma} = \begin{bmatrix} \Sigma_{11} & | & \Sigma_{12} \\ -- & -|- & -- \\ \Sigma_{21} & | & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} 8 & 2 & | & 3 & 1 \\ 2 & 5 & | & -1 & 3 \\ -- & -- & -|- & -- & -- \\ 3 & -1 & | & 6 & -2 \\ 1 & 3 & | & -2 & 7 \end{bmatrix}$$

2

 $\mathbf{a})$

Calcular as correlações canônicas ρ_1^*, ρ_2^* .

b)

Determinar os pares de variáveis canônicas (U_1, V_1) e (U_2, V_2) .

c)

Seja $\mathbf{U} = [U_1, U_2]'$ e $\mathbf{V} = [V_1, V_2]'$. Avalie:

$$\mathbf{E} \left[egin{array}{c} U \ -- \ V \end{array}
ight] \, \mathbf{e} \, \, \mathbf{Cov} \left[egin{array}{c} U \ -- \ V \end{array}
ight] = \left[egin{array}{ccc} \Sigma_{UU} & | & \Sigma_{UV} \ -- & -| - & -- \ \Sigma_{VU} & | & \Sigma_{VV} \end{array}
ight]$$

•

Comparar os resultados com as propriedades do resultado 10.1.

Questão 73

Ex. 10.9 | Johnson & Wichern (itens (a) e (c))

Foram aplicados para n=140 alunos da sétima série quatro testes, tais que $\mathbf{X_1^{(1)}}=$ velocidade de leitura; $\mathbf{X_2^{(1)}}=$ habilidade de leitura; $\mathbf{X_1^{(2)}}=$ velocidade em aritmética; $\mathbf{X_2^{(2)}}=$ habilidade em aritmética. A correlação da performance medida foi:

$$\mathbf{R} = \begin{bmatrix} R_{11} & | & R12 \\ -- & -|- & -- \\ R21 & | & R22 \end{bmatrix} = \begin{bmatrix} 1.0 & 0,6328 & | & 0,2412 & 0,0586 \\ 0,6328 & 1 & | & -0,0553 & 0,0655 \\ -- & -|- & -- & \\ 0,2412 & -0,0553 & | & 1 & 0,4248 \\ 0,0586 & 0,0655 & | & 0,4248 & 1 \end{bmatrix}$$

.

a)

Encontrar todas as correlações e variáveis canônicas amostrais

 $\mathbf{c})$

Avaliar as matrizes de erros aproximados para $\mathbf{R_{11}}$, $\mathbf{R_{22}}$ e $\mathbf{R_{12}}$ determinadas pelo primeiro par de variáveis canônicas \hat{U}_1 , \hat{V}_1 .

Questão 74

Ex. 10.10 | Johnson & Wichern

Em um estudo sobre pobreza, criminalidade e detenção, reportou-se um sumário estatístico da criminalidade em vários estados para os anos de 1970 e 1973. Uma parte da matriz de correlação amostral é:

$$\mathbf{R} = \begin{bmatrix} R_{11} & | & R12 \\ -- & -|- & -- \\ R21 & | & R22 \end{bmatrix} = \begin{bmatrix} 1.0 & 0,615 & | & -0,111 & -0,266 \\ 0,615 & 1 & | & -0,195 & -0,085 \\ -- & -|- & -- \\ -0,111 & -0,195 & | & 1 & -0,269 \\ -0,266 & -0,085 & | & -0,269 & 1 \end{bmatrix}$$

.

As variáveis são: $\mathbf{X_1^{(1)}}=$ Homicídios não primários em 1973; $\mathbf{X_2^{(1)}}=$ Homicídios primários em 1973 (homicídios envolvendo familiares ou conhecidos); $\mathbf{X_1^{(2)}}=$ Severidade da punição em 1970 (mediana de meses encarceirado); $\mathbf{X_2^{(2)}}=$ Convicção de punição em 1970 (Número de encarceiramentos dividido pelo número de homicídios).

a)

Encontrar a correlação canônica amostral.

b)

Determinar o primeiro par de variáveis canônicas $\hat{U}_1, \hat{V}_1,$ e interpretar as quantidades.

Questão 75

Ex. 11.8 | Rencher & Christensen

- (a) Encontre as correlações canônicas entre (y1, y2) e (x1, x2, x3).
- (b) Encontre os coeficientes padronizados das variáveis canônicas.