

Fundação CECIERJ – Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação

1ª Avaliação Presencial de Física para Computação 2009 II

Nome:	 	 	
Pólo:			

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados. É permitido o uso de máquina de calcular.

Questão	Valor	Nota
1ª Questão	2,0	
2ª Questão	2,0	
3ª Questão	2,0	
4ª Questão	2,0	
5ª Questão	2,0	
Total	10,0	

1ª Questão

Um policial persegue um assaltante no topo de um edifício. Ambos correm a uma velocidade de 4,5m/s. Antes de o assaltante atingir a beirada do telhado ele terá de decidir se deve tentar ou não o salto para o próximo edifício, que está a 6,2m de distância e a 4,8 m mais baixo, conforme a figura abaixo. Poderá fazê-lo? Suponha que ele pule horizontalmente e despreze qualquer influência de atrito. Adote g = 9,8m/s².

Solução:

Ele precisa cair de uma altura de 4,8m, o que lhe dará um tempo de queda que poderá ser calculado, fazendo $\theta_0 = 0^\circ$ θ $y - y_0 = -4.8m$, assim tem-se:

$$t = \sqrt{-\frac{2(y - y_0)}{g}} = \sqrt{-\frac{2(-4.8m)}{9.8m/s^2}} = 0.990s$$

Agora perguntamos: "Que distância o assaltante percorreu horizontalmente neste intervalo de tempo?" A resposta pode ser obtida da seguinte forma:

$$x - x_0 = (v_0 \cos \theta_0)t = \left(\frac{4.5m}{s}\right)(\cos 0^\circ)(0.990s) = 4.5m.$$

Portanto ele não conseguiria percorrer os 6,2m.

2ª Questão

Você foi convidado (a) a dar uma opinião acerca do projeto de uma rampa de acesso entre pavimentos de um mercado. Especificamente, pede-se seu parecer sobre o ângulo de inclinação possível, sem que ocorram acidentes com carrinhos, nas condições previstas em modelo simplificado descrito a seguir. O usuário, de massa M, move o carrinho de compras rampa acima (ou abaixo), lentamente. Suponha que o menor coeficiente de atrito estático entre piso e calçado seja 0,4. Ademais, a massa que será puxada no conjunto carrinho+compras será m.

(a) Para a situação em que m é, no máximo, M/2, calcule o ângulo máximo de inclinação.

Solução:

Na figura temos a representação das forças que atuam na pessoa. Quando o sistema ainda não se move as acelerações são zero e, conseqüentemente, também o são as respectivas componentes da força resultante. Portanto, a segunda lei de Newton nos fornece para as componentes, horizontal e vertical as equações, respectivamente,

$$\begin{split} f_{atrito} - & P_{carrox} - P_{pessoax} = 0 \\ & N - P_{pessoay} = 0 \end{split}$$

Reescrevendo as equações:

$$f_{\rm strito} = P_{\rm carrox} \, + \, P_{\rm persoax} = m \, {\rm gsen}(\theta) + \, {\rm M} \, {\rm gsen}(\theta) = (m+M) \, {\rm gsen}(\theta)$$

е

$$N = P_{pessoay} = M g cos(\theta)$$

O limiar para que o sistema não permaneça em repouso ocorrerá quando $\mathbf{f}_{\mathtt{atrito}}$ seja igual a $\mu_s N$, ou seja,

$$f_{atrito} = \mu_{\sigma} N$$

Fazendo as devidas substituições:

$$(m + M) g sen(\theta) = \mu_0 M g cos(\theta)$$

Observando que $_{\rm m}=_{_{\rm Z}}^{\rm M}$ e $\mu_{\rm s}=$ 0.4, temos:

$$\frac{\text{sen}(\Theta)}{\cos(\Theta)} = \frac{\mu_s \text{ Mg}}{(\text{m} + \text{M}) \text{ g}} = \frac{0.4 \text{ M}}{\frac{M}{2} + M} = \frac{0.4 \text{M}}{\frac{3M}{2}} = \frac{0.8}{3}$$

Assim,

$$tg(\theta) = \frac{sen(\theta)}{cos(\theta)} = 0.2657$$

$$\theta = arctg(0.2667) \approx 15^{\circ}$$

Portanto, a rampa tem uma inclinação de 15°.

(b) Para os valores M=70 kg, m=45 kg, explique detalhadamente o que ocorre.

Solução:

Utilizando a relação anterior:

$$\frac{\text{sen}(\theta)}{\text{cos}(\theta)} - \frac{\mu_s M g}{(m + M) g} - \frac{(0.4)(70)}{70 + 45} - \frac{28}{115} - 0.2435$$

Logo

$$\theta = \arctan(0.2435) \approx 13.7$$

Assim, o ângulo da rampa que seria necessário manter a pessoa sobre ela sem deslizar seria menor.

3ª Questão

(a) Discuta o processo de congelamento da água, do ponto de vista da primeira lei da termodinâmica. Lembre-se de que o gelo ocupa um volume maior do que a mesma massa de água a zero grau.

Solução:

As moléculas de água cedem calor para o meio externo e assim têm sua energia interna reduzida e passam a ficar em uma configuração estável, mais organizada (com entropia reduzida) e que ocupa mais espaço do que quando a mobilidade era maior, para uma mesma quantidade de moléculas. Durante o processo, enquanto convivem moléculas já estabilizadas (região congelada) e outras ainda com muita mobilidade na temperatura de congelamento, estas ficam mais próximas e, portanto, caracterizam substância com densidade maior que aquelas das regiões já congeladas. Assim, o congelamento ocorre primeiro nas camadas superiores de água.

(b) Defina livre caminho médio dentro do contexto de mecânica clássica. De que maneira isto se associa à noção de temperatura?

Solução:

Defini-se livre caminho médio ou percurso livre médio como à distância ou espaço entre duas colisões sucessivas das moléculas de um gás. A temperatura é função da energia cinética do movimento das moléculas dos gases, movimento esse devido de as moléculas estarem se chocando constantemente, entre si e com as paredes que delimitam a região onde o gás está armazenado. A velocidade média com que as partículas do gás se movimentam é proporcional à raiz quadrada da temperatura.

4ª Questão

As linhas do campo elétrico gerado por duas esferas condutoras são mostradas na Figura. Quais são o sinal e a intensidade das cargas das duas esferas? Por quê?

Solução:

A carga de uma esfera é positiva se saem mais linhas do que entram e negativa se entram mais do que saem. A relação das intensidades das cargas é igual à relação entre o número resultante de linhas que entram ou saem das esferas. Uma vez que 11 linhas de campo elétrico saem da esfera maior à esquerda e 3 entram, o número resultante de linhas que saem é igual a 8, logo a carga da esfera maior é positiva. Para a esfera menor à direita, 8 linhas saem e nenhuma entra, assim sua carga também é positiva. Sendo o número resultante de linhas que deixam cada uma das esferas igual a 8, as esferas possuem cargas iguais e positivas. A carga da esfera menor gera um campo intenso nas vizinhanças da superfície da esfera maior, o que causa um acúmulo local de carga negativa na esfera maior — indicando pelas três linhas de campo entrando na esfera. Boa parte da superfície da esfera maior possui carga positiva, logo sua carga total é positiva.

5ª Questão

Duas lâmpadas, uma de resistência R1 e a outra de resistência R2, R1>R2, estão ligadas a uma bateria (a) em paralelo e (b) em série. Que lâmpada brilha mais (dissipa mais energia) em cada caso?

Solução:

- (a) Seja ε a fem da bateria. Quando as lâmpadas são conectadas em paralelo a diferença de potencial através delas é a mesma e é a mesma que a fem da bateria. A potencia dissipada pela lâmpada 1 é P₁ ε²/R₁ e a potencia dissipada pela lâmpada 2 é P₂ = ε²/R₂ Como R1 é maior que R2, a lâmpada 2 dissipa energia a uma taxa maior do que a lâmpada 1, sendo portanto a mais brilhante.
- (b) Quando as lâmpadas são conectadas em série a corrente nelas é a mesma. A potência dissipa pela lâmpada 1 é agora P₁ = f²R₁ e a potência dissipada pela lâmpada 2 é P₂ = f²R₂. Como R1 é maior do que R2, mais potência é dissipada pela lâmpada 1 do que pela lâmpada 2 sendo agora a lâmpada 1 a mais brilhante.

Formulário:

$$\begin{split} v &= \sqrt{\frac{T}{\mu}}; & k = \frac{w}{v}; & dE = k.\frac{dq}{r^2}; & \vec{F} = q.\vec{E}; & \vec{E} = \sum_i \frac{k.q_i}{r_i^2} \hat{r}_i; \\ \vec{F} &= m.\vec{a}; & T &= \frac{2\pi}{w}; & dq &= \frac{Q}{L} ds; & P &= m.v; & E_{cinetica} &= \frac{1}{2} m.v^2; \\ F &= p.\frac{\Delta N}{\Delta t}; & x &= x_0 + v_{0x}t + \frac{at^2}{2}; & y &= y_0 + v_{0y}t - \frac{gt^2}{2} \end{split}$$