Sistemas Distribuídos de Larga Escala (Large Scale Distributed Systems) Class Information 1º M.EIC

Carlos Baquero (cbm@fe.up.pt)
Pedro F. Souto (pfs@fe.up.pt)

October 18, 2021

Staff

- ► Carlos Baquero (cbm@fe.up.pt)
- ▶ Pedro Ferreira do Souto (pfs@fe.up.pt)

Context

Distributed System (Def.) A system with two or more processes:

- 1. executing on different computers
- 2. communicating via messages
 - with a no negligible delay (wrt computation)

Large Scale System A system with:

Thousands processes likely in different data centers Geographically distributed high latency communication Heavy load up to millions of request per second Several administrative domains

Think about:

- Some services on the Web (Gmail, Google Search, Amazon, Netflix, Facebook)
- The software infrastructure of cloud providers (Amazon, Microsoft, Google, IBM)
 - Cloud-based applications
- Peer-to-peer systems (Bitcoin)

Objectives

- 1. Understand the foundations of distributed computing;
- 2. Be able to:
 - design and implement distributed large-scale applications for partition-prone and high latency networks;
 - analyse distributed solutions and evaluate their fitness to the problem at hand.

A group of gangsters are about to pull off a big job. The plan of action is prepared down to the last detail. Some of the men are holed up in a warehouse across town, awaiting precise instructions. It is absolutely essential that the two groups act with complete reliance on each other in executing the plan.

in "Some Constraints and Trade-offs in the Design of Network Communications". Akkoyunlu, Ekanadham and Huber. 1975.

- Red gangsters have more mobsters if together, but need to attack at the same time
- Messengers are unreliable
- ▶ How to coordinate an attack?

- Red gangsters have more mobsters if together, but need to attack at the same time
- Messengers are unreliable
- How to coordinate an attack?

http://en.wikipedia.org/wiki/Two_Generals'_Problem

- The battleground is shared unreliable medium
- Build a private reliable tunnel
- Problem (mostly) solved

Synchronous model

Expected in small scale and cost dominated. Ex: Cars subsystems

- Processing delays have a known bound
- Message delivery delays have a known bound
- Rate of drift of local clocks has a known bound

Asynchronous model

Adapted to large scale and can spread costs. Ex: Internet

- Processing delays are unbounded or unknown
- Message delivery delays are unbounded or unknown
- Rate of drift of local clocks is unbounded or unknown

Consistency Models

Eventually Consistent. CACM 2009, Werner Vogels

- In an ideal world there would be only one consistency model: when an update is made all observers would see that update.
- Building reliable distributed systems at a worldwide scale demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems – data consistency, system availability, and tolerance to network partition – only two can be achieved at any given time.

Both strong and eventual consistency are covered in the course

Prerequisites

- Distributed Systems
 - Operating Systems concurrency
 - Computer Networks
 - Programming

Syllabus: Part 1/3 - Communication and Processing for Large Scale

Message Oriented Middleware

- Message queues
- ► Publish-Subscribe

Processing

Quorum systems

Linearizability (strong consistency)

Syllabus: Part 2/3 - Large Scale Systems

Scalable Distributed Topologies

Graphs, Gossip, Broadcast

System Design for Large Scale

P2P, Cloud and planetary systems

Physical and Logical Time

High Availability under Eventual Consistency

Local First and Convergence

Syllabus: Part 3/3 - Large Scale Byzantine Algorithms

Byzantine Generals Byzantine Quorums Distributed Ledgers

► Blockchain

Supporting Material

Textbook

van Steen, M. and Tanenbaum, A. S.

Distributed Systems: Principles and Paradigms, 3rd Ed. (2017) (available for free upon request)

Small fun "book" focused on the data center Distributed Systems: for fun and profit.

Topologies and Networks

Duncan J. Watts Small Worlds

Large scale systems

Alex Petrov Database Internals

Martin Kleppmann Designing Data-Intensive Applications

(Mini-)Projects

- Reliable Publish-Subscribe System
 - Groups of 3/4 students
 - ▶ Due date: November 26 @ 20:00 (Friday)
 - Must be built on top of ZeroMQ
 - Report
- 2. Peer-to-peer Based Timeline Application
 - Groups of 3/4 students
 - Due date: January 21 @ 20:00 (Friday)
 - Presentation: during the last week of the semester

Note 0 You can use your favourite programming language.

- Note 1 Both projects and their report/presentation must be submitted via GitLab@FEUP
 - We'll create the Git projects and will assign them to you.
- Note 2 Both projects have the same weight.

(Mini-)Projects: Grading

- Grading is individual
- We grade each project assuming the expected number of group members (4)
- ► To that grade we apply a **contribution factor** computed from the contribution using a piecewise linear function:
 - ► "Breaking point": 25%
 - ► Factor: 0 at 0%, 1 at 25%, 1.15 at 100%
- ► You are expected to perform peer-evaluation

Exam

Exam

- In Moodle
 - True/False questions
 - Multiple-choice questions
 - Open questions
- Closed books with cheat sheet
 - A4 (both sides)
 - Handwritten by yourself

Failure to comply means your exam will be **nullified**.

Final Grade

All students

$$G = min(0.45P + 0.45F + 0.1C, F + 3, P + 3)$$

where:

G course final grade

P average of the grades in both projects ($P \ge 10$)

C class participation

F final exam grade ($F \ge 10$)

The final grade cannot exceed in more than 3 points (in 20) both the projects' average grade and the final exam grade

Academic Integrity

- You are allowed to discuss the projects
 - ► For each project, there will be a discussion forum on Moodle
- ▶ But all code (and other artifacts) submitted for evaluation should be either:
 - Authored by the group members
 - Or authorized by us, and due credit should be given both in the report and in the source file (in the case of code).
- We will use tools to automatically detect plagarism
- Check out the Declaração de Princípios sobre a Integridade Académica na UP

Thank you! Questions?

Announcements

Lectures start 10 minutes after the hour

▶ 16:10 on Mondays and Thursdays

Labs start next week (10 minutes after the hour)

Course material available on the course's team on MS Teams Important dates:

	Due date
1st project	November 26 @ 20:00 (Friday)
2nd project	January 21 @ 20:00 (Friday)

Presentation of 2nd project in the last week.