들 FONCTIONS POLYNÔMIALES DU SECOND DEGRÉ

OBJECTIFS 👌

- Être en mesure de vérifier qu'une valeur conjecturée est racine d'un polynôme de degré 2.
- Savoir factoriser, dans des cas simples, une expression du second degré.
- Utiliser la forme factorisée (en produit de facteurs du premier degré) d'un polynôme de degré 2 pour trouver ses racines et étudier son signe.
- Déterminer des éléments caractéristiques de la fonction $x \mapsto a(x-x_1)(x-x_2)$ (signe, extremum, allure de la courbe, axe de symétrie...).
- Savoir associer une parabole à une expression algébrique de degré 2, pour les fonctions de la forme $x \mapsto ax^2$, $x \mapsto ax^2 + c$ et $x \mapsto a(x-x_1)(x-x_2)$.

Définitions

1. Fonction du second degré

EXEMPLE \$

La fonction carré $x \mapsto x^2$ est une fonction du second degré.

2. Racines

EXERCICE 1
Combien de racines distinctes la fonction $f: x \mapsto x^2 + 1$ possède-t-elle dans \mathbb{R} ?

√Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-1.

3. Forme développée, forme factorisée

EXEMPLE 🔋

On définit une fonction f sur \mathbb{R} par $f(x) = x^2 + 2x + 1$. C'est une fonction du second degré (avec a = 1, b = 2 et c = 1). Comme $(x + 1)^2 = x^2 + 2x + 1$, on a:

- La forme factorisée de $f : f(x) = (x+1)^2 = (x+1)(x+1)$.
- La forme développée de $f: f(x) = x^2 + 2x + 1$.

EXERCICE 2

On définit une fonction f du second degré sur \mathbb{R} par $f(x) = x^2 - 4$.

- 1. Factoriser f(x).
- **2.** Quelles sont les racines de f?
- **3.** En déduire formes développées et factorisées de f.
 - **a.** Forme factorisée de f: **b.** Forme développée de f:

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-2.

Courbe représentative

1. Orientation de la parabole

EXERCICE 3

Pour chacune des fonctions du second degré ci-dessous, donner l'orientation de sa courbe représentative.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-3.

2. Sommet, axe de symétrie

EXERCICE 4

Après avoir esquissé la courbe représentative de la fonction $f: x \mapsto 4x^2 + 8x + 1$, déterminer le tableau de variation de f.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-4.

3. Fonctions $x \mapsto ax^2 + c$

À RETENIR 99

Propriété

Soit $f: x \mapsto ax^2 + c$ une fonction du second degré (notons que le coefficient b est nul).

EXERCICE 5

On a tracé ci-contre la courbe représentative de la fonction carré $x \mapsto x^2$. Tracer à main levée l'allure de la courbe représentative de la fonction $x \mapsto -3x^2 - 0,5$. Décrire les différentes étapes.

Étape 1. Étape 2.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-5.

4. Lien avec les racines

On définit une fonction f du second degré sur \mathbb{R} par $f(x) = 3x^2 - 9x - 30$.

1. Vérifier que -2 et 5 sont les racines de f.

3. Donner les tableaux de signes et de variation de f.

Voir la correction : https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-6.