2021 年秋季线性代数期末回忆

匿名

2022年1月5日

1. (20 分) 三阶矩阵

$$\mathbf{A} = \begin{bmatrix} -4 & 2 & 2\\ 2 & -1 & 4\\ 2 & 4 & a \end{bmatrix} \tag{1}$$

已知 -5 是 A 的二重特征值。

- (a) 求 a 的值。
- (b) 求正交矩阵 Q 使得 $Q^{-1}AQ$ 是对角矩阵。
- 2. (15 分) $\alpha_1 = (1,2,1,0), \alpha_2 = (-1,1,1,1), \beta_1 = (2,-1,0,1), \beta_2 = (1,-1,3,7), 求 <math>\langle \alpha_1, \alpha_2 \rangle \cap \langle \beta_1, \beta_2 \rangle$ 的一组基。
- 3. (15 分) $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 是正定的,求 t 取值范围。
- 4. (10 分) A, B 分别是 $n \times k, k \times n$ 矩阵, 证明: $|I_n AB| = |I_k BA|$
- 5. (10 分) $V \in K$ 上的 n 维线性空间, $\alpha_1 \cdots \alpha_n \in V$ 的一组基。定义映射 $\sigma: Hom_K(V,V) \to M_{n \times n}(K)$: 对于 $Hom_K(V,V)$ 上任意线性映射 \mathcal{A} ,均有

$$\begin{bmatrix} \mathcal{A}(\alpha_1) \\ \cdots \\ \mathcal{A}(\alpha_n) \end{bmatrix} = \sigma(\mathcal{A}) \begin{bmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{bmatrix}$$

- (a) 证明 σ 线性同构。
- (b) 判断 $\sigma(AB) = \sigma(A)\sigma(B)$ 是否成立,并给出证明或者举出反例。

6. (10 分) A 是实数域上的 $m \times n$ 矩阵。证明存在 m 阶正交矩阵 P 和 n 阶正交矩阵 Q,使得

$$A = P \begin{bmatrix} D_r & 0 \\ 0 & 0 \end{bmatrix} Q$$

其中 D_r 表示 r 阶对角矩阵, r 为矩阵 A 的秩, 并且对角元均为正数。 三个 0 表示零矩阵。

- 7. (10 分) 数域 K 上的 n 阶方阵 A 满足 $A^2 = 2A$, 证明 A 可以对角化。
- 8. $(10 \, \mathcal{H})V$ 是数域 K 上维数大于 1 的有限维线性空间。 $V^* = Hom_K(V, K)$ 。 对 i = 1, 2 取集合 $V^* \times V$ 中的元素 (ψ_i, α_i) 满足 $0 \neq \psi_i \in V^*$, $0 \neq m_i \in V$,并且 $\psi_i(\alpha_i) = 0$ 定义 V 上线性变换 $\tau_i(v) = v + \psi_i(v) + \alpha_i (i = 1, 2)$
 - (a) 证明 τ_i 是可逆变换。
 - (b) 存在 V 上的可逆线性变换 g 使得 $g^{-1}\tau_1g = \tau_2$ 。