Topic 6: Multiple Regression

Major Topics:

Matrix Notation

Assumptions

Estimators

Output

ANOVA

Adjusted R²

Version 3.1 Page 6.1

Econometrics 322

Multiple Regression Introduction

- Expanded model
 - Our model now must account for several factors

$$Y_{i} = \boldsymbol{b}_{0} + \boldsymbol{b}_{1}X_{i1} + \boldsymbol{b}_{2}X_{i2} + ... + \boldsymbol{b}_{p}X_{ip} + \boldsymbol{e}_{i}$$

- Now have i equations with p > 1 independent variables plus one constant
 - Have p+1 unknown parameters
 - Still have *n* observations

Multiple Regression Notation

- To economize on writing equations, use matrix notation
 - Model is now written as

where
$$\mathbf{Y} = \begin{vmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ ... \\ \mathbf{Y}_n \end{vmatrix} \qquad \mathbf{X} = \begin{vmatrix} 1 & X_{11} & X_{12} & ... & X_{1p} \\ 1 & X_{21} & X_{22} & ... & X_{2p} \\ ... \\ 1 & X_{n1} & X_{n2} & ... & X_{np} \end{vmatrix}$$
on 3.1
$$\mathbf{n} \ \mathbf{X} \ 1 \qquad \qquad \mathbf{n} \ \mathbf{X} \ (\mathbf{p}+\mathbf{1})$$
Page 6.3

Version 3.1

Econometrics 322

Multiple Regression

Notation (Continued)

$$\mathbf{b} = \begin{vmatrix} \mathbf{b}_0 \\ \mathbf{b}_1 \\ \mathbf{b}_2 \\ \dots \\ \mathbf{b}_p \end{vmatrix} \qquad \mathbf{e} = \begin{vmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \dots \\ \mathbf{e}_n \end{vmatrix}$$

$$(p+1) \times 1 \qquad n\times 1$$

Multiple Regression Classical Assumptions

- Same classical assumptions as for simple regression model, but...
 - New assumption:
 - The *p* independent variables are linearly independent

Multiple Regression

Classical Assumptions (Continued)

- New assumption interpretation
 - Cannot write one independent variable as a linear combination of the other p - 1 variables
 - Example: cannot write

$$\mathbf{X}_1 = \mathbf{a}\mathbf{X}_2 + \mathbf{g}\mathbf{X}_3$$

 If could write one variable as linear combination, then that variable is redundant

- Example
$$RU_t = \boldsymbol{b}_0 + \boldsymbol{b}_1GDP_t + \boldsymbol{b}_2C_t + \boldsymbol{b}_3I_t + \boldsymbol{b}_4G_t + \boldsymbol{b}_5X_t + \boldsymbol{e}_t$$
 but

$$GDP = C + I + G + X$$
Version 3.1

Page 6.7

Econometrics 322

Multiple Regression

Classical Assumptions (Continued)

- Writing any independent variable as linear combination of one or more of the other independent variables is called *multicollinearity*
 - Serious problems arise if multicollinearity exists
 - Yet this is a common problem with economic data
 - We will discuss this extensively in a separate lecture

Multiple Regression Digression on Inverses

• Suppose we have the two simultaneous equations

$$-2 = 4\mathbf{b}_1 - 10\mathbf{b}_2$$

 $13 = 3\mathbf{b}_1 + 7\mathbf{b}_2$

• In matrix form, this is

$$\begin{bmatrix} -2 \\ 13 \end{bmatrix} = \begin{bmatrix} 4 & -10 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \end{bmatrix}$$

Version 3.1 Page 6.9

Econometrics 322

Multiple Regression

Digression on Inverses (Continued)

• Solve these two simultaneous equations for b_1

$$(-2)(7) = (4)(7)\mathbf{b}_{1} - (10)(7)\mathbf{b}_{2}$$

$$(13)(-10) = (3)(-10)\mathbf{b}_{1} + (7)(-10)\mathbf{b}_{2}$$

$$or$$

$$-14 = 28\mathbf{b}_{1} - 70\mathbf{b}_{2}$$

$$-130 = -30\mathbf{b}_{1} - 70\mathbf{b}_{2}$$

• So
$$\boldsymbol{b}_1 = \frac{116}{58} = 2$$

Version 3.1

Page 6.10

Multiple Regression Classical Assumptions (c.

Classical Assumptions (Continued)

Key Classical Assumptions

Normality $e_{i} \approx N \quad \forall i$

Zero Mean $E(\mathbf{e}_{i}) = 0 \ \forall i$

Homoskedas ticity $s_e^2 = s^2 \forall i$

Zero Autocorrel ation $COV(\mathbf{e}_i, \mathbf{e}_j) = 0 \quad \forall i, j \quad i \neq j$

Independence of X_i , e_i $COV(e_i, X_i) = 0 \quad \forall i$

Linearity Linear in Parameters

No Exact Linear Relationsh ip No Multicolli nearity

Non-stochastic X; Fixed X

Version 3.1 Page 6.11

Econometrics 322

Multiple Regression Estimators

- Derive estimators in same manner as before
 - Minimize the error sum of squares
 - Solve normal equations for unknown parameter estimators
 - Have p+1 normal equations
- Estimator written in matrix notation

$$\hat{\boldsymbol{b}} = (\mathbf{X'X})^{-1}\mathbf{X'Y}$$

Multiple Regression

Estimators (Continued)

- Note that estimator form is no different than previously derived estimator for simple OLS
 - Multiple regression

$$\hat{\boldsymbol{b}} = (\mathbf{X'X})^{-1}\mathbf{X'Y}$$

- Simple regression

$$\hat{\boldsymbol{b}}_{1} = \frac{\mathbf{S}_{XY}}{\mathbf{S}_{XX}}$$
$$= \mathbf{S}_{XX}^{-1} \mathbf{S}_{XY}$$

Version 3.1

Page 6.13

Econometrics 322

Multiple Regression

Estimators (Continued)

• Other estimator formulas
$$\mathbf{S}_{b}^{2} = \mathbf{S}^{2} (\mathbf{X}' \mathbf{X})^{-1}$$

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{b}} = \mathbf{H}\mathbf{Y} \qquad \mathbf{H} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$$

$$\mathbf{S}_{\hat{\mathbf{Y}}}^{2} = \mathbf{S}^{2} \mathbf{H}$$

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}}$$

$$\mathbf{S}_{\mathbf{e}}^{2} = \mathbf{S}^{2} (\mathbf{I} - \mathbf{H}) = \mathbf{S}^{2} \mathbf{M}$$

$$\mathbf{S}^{2} = \frac{\mathbf{e}' \mathbf{e}}{\mathbf{n} - \mathbf{p} - 1}$$
Version 3.1

Version 3.1

Page 6.14

Multiple Regression

Estimators (Continued)

• Properties

- Desirable small sample properties still hold for general case of multiple regression
 - Linearity
 - Unbiasedness
 - Minimum variance
- Under expanded classical assumptions, OLS estimators are still BLUE

Econometrics 322

Variable Coding Sheet

Variable	Mnemonic	Source	Possible Values
Moody's AA Rated Corporate Bonds	AAA	Moody's	% per Annum
Industrial Production Index	IP	Federal Reserve	Index, 1987=100, SA
Money Supply	M2	Federal Reserve	\$Billion
Producer Price Index, Finished Goods	PPI	BLS	Index, 1982=100, NSA
Unemploy. Rate	URATE	BLS	% for 16+ older

Multiple Regression Goodness of Fit

ANOVA Table

Source of Variation	DF	Sum of Squares	Mean Square	F-Ratio
Regression	p	SSR	MSR= SSR/p	MSR/MSE
Residual	n - p - 1	SSE	MSE= SSE/n-p-1	
Total	n - 1	SST	MST= SST/n-1	

Multiple Regression New R²

- Have to adjust conventional R²
 - R² can be made arbitrarily large simple by adding independent variables to model
 - New R^2 is called *Adjusted R*² or \overline{R}^2

$$\overline{R}^{2} = 1 - (\frac{n-1}{n-p-1})(1-R^{2})$$

$$= 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

$$= 1 - \frac{s^{2}}{s_{Y}^{2}}$$

Version 3.1

Page 6.21

Econometrics 322

Multiple Regression

 $New \ R^2 \, ({\tt Continued})$

Notice that

$$\overline{R}^2 \leq R^2$$

One modeling objective

- Maximize $\overline{\mathbf{R}}^2$
- Property of \overline{R}^2
 - Can decline if added independent variable has no or little explanatory power
 - Reason
 - Increase n p 1

Multiple Regression Alternative Models

- Can now develop alternative models by adding or deleting variables
 - Each model is a new regression run
 - Criteria for selecting variables will be discussed later

Model Portfolio

	Models				
Independent Variables	1	2	3		
Constant	-5.075* (0.0000)	4.499* (0.0000)	-3.305* (0.0000)		
IP	0.112* (0.0000)	0.105* (0.0000)	0.095* (0.0000)		
M2	-0.006* (0.0000)	-0.006* (0.0000)			
PPI	0.188* (0.0000)	0.209* (0.0000)			
URATE	0.145* (0.0000)	_	0.759* (0.0000)		
\mathbb{R}^2	0.925	0.923	0.799		
R ² Adjusted	0.924	0.922	0.798		
F-stat	1134.311* (0.0000)	1472.136* (0.0000)	734.026* (0.0000)		
N	372	372	372		
Notes: p-values in parentheses; * = significant					

Version 3.1

Page 6.27

Econometrics 322

Multiple Regression Model Selection

- Develop *Model Portfolio*
- Very important topic
 - Will discuss shortly

Multiple Regression Knowledge Checks

- Outline the procedure for deriving the estimator vector for the parameters. How does this compare to the procedure used in Topic 5?
- What is the final form in matrix notation for the parameter vector estimator? For the standard linear model, what is the first element of the estimator?

Version 3.1 Page 6.29

Econometrics 322

Multiple Regression Knowledge Checks (Continued)

- What is the problem with R^2 ?
- How does \overline{R}^2 correct for this problem?
- What is an upper bound on $\overline{\mathbb{R}}^2$? Can it ever decrease or be negative?