Exercise 4.1 Let $(X, \|\cdot\|_X)$ be a normed space an let $U, V \subset X$ be subspaces. Prove the following.

- (i) If U is finite dimensional and V closed, then U + V is a closed subspace of X.
- (ii) If V is closed with finite codimension, i. e. $\dim(X/V) < \infty$, then U + V is closed.

Remark. The assumptions on the dimension and codimension above are crucial for the conclusions to hold; see Exercise 2.4.

Solution. Recall first that the canonical quotient map $\pi: X \to X/V$ is continuous whenever a subspace $V \subset X$ is closed (Satz 2.3.1).

- (i) dim $\pi(U) \le \dim U < \infty$ implies that $\pi(U) \subset X/V$ is closed (Satz 2.1.3). Since π is continuous, $\pi^{-1}(\pi(U)) = U + V \subset X$ is also closed.
- (ii) Since $\dim \pi(U) \leq \dim(X/V) < \infty$, we can argue the same way as in (i).

Exercise 4.2 Let $X = C^0([0,1])$ endowed with the norm $\|\cdot\|_X = \|\cdot\|_{C^0([0,1])}$ and consider

$$U = C_0^0([0,1]) := \{ f \in C^0([0,1]) \mid f(0) = 0 = f(1) \}.$$

- (i) Show that U is a closed subspace of X
- (ii) Compute the dimension of the quotient space X/U and find a basis for X/U.

Solution. (i) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in U which converges to f in $(X, \|\cdot\|_X)$. Then, since $f_n(0) = 0 = f_n(1)$, we can colclude f(0) = 0 = f(1), i.e. $f \in U$ by passing to the limit $n \to \infty$ in the following inequalities:

$$|f(0)| = |f_n(0) - f(0)| \le \sup_{x \in [0,1]} |f_n(x) - f(x)| = ||f_n - f||_X,$$

$$|f(1)| = |f_n(1) - f(1)| \le \sup_{x \in [0,1]} |f_n(x) - f(x)| = ||f_n - f||_X.$$

Alternative: It suffices to notice that $U = \Phi^{-1}(\{0,0\})$ where $\Phi: X \to \mathbb{R}^2$ is the continuous function given by $\Phi(f) = (f(0), f(1))$.

Figure 1: The functions $u_1, u_2 \in X$ and some $f \in [u_1]$.

(ii) Let $u_1, u_2 \in X$ be given by $u_1(t) = 1 - t$ and $u_2(t) = t$. We claim that the equivalence classes $[u_1], [u_2] \in X/U$ form a basis for X/U.

To prove linear independence, let $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1[u_1] + \lambda_2[u_2] = 0 \in X/U$ which means $\lambda_1 u_1 + \lambda_2 u_2 \in U$. This implies by definition

$$\lambda_1 = \lambda_1 u_1(0) + \lambda_2 u_2(0) = 0 = \lambda_1 u_1(1) + \lambda_2 u_2(1) = \lambda_2.$$

To show that $[u_1]$ and $[u_2]$ span X/U, let $[h] \in X/U$ with representative $h \in X$. By evaluation at t = 0 and t = 1, we conclude

$$(t \mapsto h(t) - h(0)u_1(t) - h(1)u_2(t)) \in U.$$

This implies $[h] = h(0)[u_1] + h(1)[u_2]$ in X/U which proves the claim. \square Remark. The components of [h] in this basis are unique since every representative $\tilde{h} \in [h]$ must have the same boundary values $\tilde{h}(0) = h(0)$ and $\tilde{h}(1) = h(1)$.

Exercise 4.3 A subspace $U \subset X$ of a Banach space $(X, \|\cdot\|_X)$ is called *topologically complemented* if there is a subspace $V \subset X$ such that the linear map I given by

$$I: (U \times V, \|\cdot\|_{U \times V}) \to (X, \|\cdot\|_X), \qquad \|(u, v)\|_{U \times V} := \|u\|_X + \|v\|_X,$$
$$(u, v) \mapsto u + v$$

is a continuous isomorphism of normed spaces with continuous inverse. In this case V is said to be a $topological\ complement$ of U.

Last modified: 9 October 2019

- (i) Prove that $U \subset X$ is topologically complemented if and only if there exists a continuous linear map $P: X \to X$ with $P \circ P = P$ and image P(X) = U.
- (ii) Show that a topologically complemented subspace must be closed.
- Remarks. \bullet Clearly, if V is a topological complement of U, then U is a topological complement of V.
 - If X is not isomorphic to a Hilbert space, then X has closed subspaces which are not topologically complemented [Lindenstrauss & Tzafriri. On the complemented subspaces problem. (1971)]. An example is $c_0 \subset \ell^{\infty}$ but this is not easy to prove.

Solution. (i) Suppose $U \subset X$ is topologically complemented by $V \subset X$. Then, $I: U \times V \to X$ with $(u, v) \mapsto u + v$ is an continuous isomorphism with continuous inverse. We define

$$P_1: U \times V \to U \times V,$$
 $P := I \circ P_1 \circ I^{-1}: X \to X.$
 $(u, v) \mapsto (u, 0)$

 P_1 is linear, bounded since $||P_1(u,v)||_{U\times V} = ||u||_U \le ||(u,v)||_{U\times V}$ and hence continuous. As composition of linear continuous maps, P is linear and continuous. Moreover,

$$P \circ P = (I \circ P_1 \circ I^{-1}) \circ (I \circ P_1 \circ I^{-1}) = I \circ P_1 \circ P_1 \circ I^{-1} = I \circ P_1 \circ I^{-1} = P,$$

 $P(X) = I(U \times \{0\}) = U.$

Conversely, suppose $U \subset X$ allows a continuous linear map $P \colon X \to X$ with $P \circ P = P$ and P(X) = U. Let $V := \ker(P)$. Then

$$P \circ (1 - P) = P - P = 0 \qquad \Rightarrow (1 - P)(X) \subseteq \ker(P) = V. \tag{1}$$

In fact, (1-P)(X) = V since given $v \in V$ we have v = (1-P)v. Analogously,

$$(1-P) \circ P = P - P = 0 \qquad \Rightarrow U = P(X) \subseteq \ker(1-P). \tag{2}$$

In fact, $U = \ker(1 - P)$ since x - Px = 0 implies $x = Px \in U$. We now claim that the map

$$I \colon U \times V \to X, \quad I(u,v) = u + v$$

is continuous and has a continuous inverse. Continuity of I follows directly from

$$||I(u,v)||_X = ||u+v||_X \le ||u||_X + ||v||_X = ||(u,v)||_{U\times V}.$$

By the assumptions on P, especially (1), the map

$$\Phi \colon X \to U \times V, \quad \Phi(x) = (Px, (1-P)x)$$

is well-defined and continuous. Since Pu = u for all $u \in U$ by (2) we have

$$(\Phi \circ I)(u, v) = \Phi(u + v) = (Pu + Pv, u - Pu + v - Pv) = (u, v),$$

$$(I \circ \Phi)(x) = I(Px, (1 - P)x) = Px + (1 - P)x = x,$$

so Φ is inverse to I. Consequently, U is topologically complemented.

(ii) If $U \subset X$ is topologically complemented, then (i) implies existence of a continuous map $P \colon X \to X$ with $\ker(1-P) = U$. Thus, U must be closed as the kernel of the continuous map 1-P.

Exercise 4.4 Let $(X||\cdot||_X)$, $(Y,||\cdot||_Y)$ be Banach spaces and let $T \in L(X,Y)$ be a surjective, continuous linear map. Prove the equivalence of the following statements:

- (i) The subspace $\ker T$ is topologically complemented.
- (ii) There exists a continuous linear map $S \in L(Y, X)$ so that $T \circ S = 1_Y$. S is called *section* of T.

Solution. $(i) \Rightarrow (ii)$. Let $\ker(T)$ be topologically complemented and let V be a topological complement. Then the map

$$I: \ker(T) \times V \to X, \quad I(u, v) = u + v$$

is a continuous isomorphism with continuous inverse. By construction, the restriction $T|_V:V\to X$ of T to V is bijective and linear, hence its inverse $S:=(T|_V)^{-1}:Y\to V$ is linear. Since V is a closed subspace of a Banach space, it is Banach as well. Thus from the Open Mapping Theorem S is also continuous.

 $(ii) \Leftarrow (i)$. We define

$$\Pi := S \circ T : X \to X$$

and $V := \Pi(V)$. The map Π is linear and continuous with

$$\Pi^2 x = S \circ (T \circ S) \circ T x = (S \circ T) x = \Pi x \quad \forall x \in X.$$

Claim: $ker(\Pi) = ker(T)$.

Proof. The inclusion " \supseteq " is obvious. For " \subseteq ", let $x \in \ker(\Pi)$. then S(T(x)) = 0 and hence $T(x) \in \ker S$, but since S is has a left inverse, it must be injective. Thus T(x) = 0.

The conclusion now follows using Exercise 4.3 (i) by using $P = 1 - \Pi$.

Exercise 4.5 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We consider the space $(X \times Y, \|\cdot\|_{X \times Y})$, where $\|(x, y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ and a bilinear map $B \colon X \times Y \to Z$.

(i) Show that B is continuous if

$$\exists C > 0 \quad \forall (x, y) \in X \times Y : \quad ||B(x, y)||_Z \le C||x||_X ||y||_Y.$$
 (†)

(ii) Assume that $(X, \|\cdot\|_X)$ is Banach. Assume further that the maps

$$X \to Z$$
 $Y \to Z$ $y \mapsto B(x, y')$ $Y \to Z$

are continuous for every $x' \in X$ and $y' \in Y$. Prove that then B is continuous.

Solution. (i) Let $((x_k, y_k))_{k \in \mathbb{N}}$ be a sequence in $X \times Y$ converging to (x, y) in $(X \times Y, \|\cdot\|_{X \times Y})$. By definition,

$$||x_k - x||_X + ||y_k - y||_Y = ||(x_k - x, y_k - y)||_{X \times Y} = ||(x_k, y_k) - (x, y)||_{X \times Y}$$

which yields convergence $x_k \to x$ in X and $y_k \to y$ in Y. Since $B: X \times Y \to Z$ is bilinear, we have

$$||B(x_k, y_k) - B(x, y)||_Z = ||B(x_k, y_k) - B(x, y_k) + B(x, y_k) - B(x, y)||_Z$$
$$= ||B(x_k - x, y_k) - B(x, y_k - y)||_Z$$
$$\leq ||B(x_k - x, y_k)||_Z + ||B(x, y_k - y)||_Z.$$

Using the assumption $||B(x,y)||_Z \leq C||x||_X||y||_Y$ and the fact that convergence of $(y_k)_{k\in\mathbb{N}}$ in $(Y,\|\cdot\|_Y)$ implies that $||y_k||_Y$ is bounded uniformly for all $k\in\mathbb{N}$, we conclude

$$||B(x_k, y_k) - B(x, y)||_Z < C||_X - x_k||_X ||y_k||_Y + C||_X ||_X ||_Y - y_k||_Y \xrightarrow{k \to \infty} 0.$$

(ii) Let $B_1^Y \subset Y$ be the unit ball around the origin in $(Y, \|\cdot\|_Y)$. For every $x \in X$ we have by assumption

$$\sup_{y'\in B_1^Y} \|B(x,y')\|_Z \le \sup_{y'\in B_1^Y} \|y'\|_Y \|B(x,\cdot)\|_{L(Y,Z)} \le \|B(x,\cdot)\|_{L(Y,Z)} < \infty,$$

which means that the maps $(B(\cdot,y'))_{y'\in B_1^Y}\in L(X,Z)$ are pointwise bounded. Since X is assumed to be complete, the Theorem of Banach-Steinhaus implies that $(B(\cdot,y'))_{y'\in B_1^Y}\in L(X,Z)$ are uniformly bounded, i.e.

$$C := \sup_{y' \in B_1^Y} ||B(\cdot, y')||_{L(X, Z)} < \infty.$$

From this we conclude

$$\begin{split} \|B(x,y)\|_{Z} &= \|y\|_{Y} \left\| B\left(x, \frac{y}{\|y\|_{Y}}\right) \right\|_{Z} \\ &\leq \|y\|_{Y} \|x\|_{X} \left\| B\left(\cdot, \frac{y}{\|y\|_{Y}}\right) \right\|_{L(X,Z)} \leq C \|x\|_{X} \|y\|_{Y}, \end{split}$$

so B is continuous by (i).

Hints to Exercises.

- **4.1** Is the canonical quotient map $\pi: X \to X/V$ continuous? What is $\pi^{-1}(\pi(U))$?
- **4.3** For (i), consider for one implication the projection map $P_1(u, v) = (u, 0)$, and for the other implication the identity 1 = P + (1 P), where 1 denotes the identity map on X.
- **4.4** For (i) \Rightarrow (ii), let V be the topological complement of ker T and consider the map $T|_V$. For (ii) \Rightarrow (i), use Exercise 4.3.
- **4.5** Apply the Theorem of Banach-Steinhaus to a suitable map. Do not forget that the theorem requires completeness of the domain.