Probabilidade e Estatística

Probabilidade e Estatística

Variáveis aleatórias discretas (parte 2)

- Distribuição Hipergeométrica
- Distribuição de Poisson

Capítulo 5, pp. 116 - 139

Distribuição Hipergeométrica

Capítulo 5, pp. 132 - 133

Considere o problema básico de inspeção por amostragem, em que observamos uma amostra de n itens de um lote de N itens, sendo r defeituosos.

Avaliamos o **número** X **de itens defeituosos na amostra**. A variável aleatória X aparenta ser binomial, mas só é realmente binomial se:

- ✓ a seleção da amostra for **aleatória** (para garantir a mesma probabilidade p de sair item defeituoso em todos os ensaios);
- ✓ com reposição (para garantir independência entre os ensaios).

Distribuição Hipergeométrica

A segunda condição não costuma ser satisfeita na prática. Se a amostragem for aleatória, mas sem reposição, a distribuição de X é conhecida como *hipergeométrica* de parâmetros N, n e r .

X = número de defeitos na amostra

Distribuição Hipergeométrica

X = número de defeitos na amostra

A função de probabilidade de X é expressa por:

$$p(x) = \frac{\binom{r}{x} \cdot \binom{N-r}{n-x}}{\binom{N}{n}} \qquad [x = 0, 1, \dots, \min(r, n)]$$

Com valor esperado e variância dados por:

$$E(X) = n.p$$

$$VAR(X) = n. p. (1 - p). \frac{N - n}{N - 1}$$
 onde $p = \frac{r}{n}$

Distribuição Hipergeométrica – Exemplo 1

Placas de vídeo são expedidas em lotes de 30 unidades. Antes que a remessa seja aprovada, um inspetor escolhe aleatoriamente cinco placas do lote e as inspeciona. Se **nenhuma** das placas inspecionadas for defeituosa, o lote é aprovado. Se **uma ou mais forem defeituosas**, todo o lote é inspecionado. Supondo que haja três placas defeituosas no lote, qual é a probabilidade de que o controle da qualidade aponte para a inspeção total?

Seja **X** = número de placas defeituosas na amostra. Desejamos calcular:

$$P(X \ge 1) = 1 - P(X = 0)$$

Usando o modelo hipergeométrico:

Distribuição Hipergeométrica – Exemplo 1

Dados
$$\begin{cases} N = \\ n = \\ r = \\ x = \end{cases} \qquad p(x) = \frac{\binom{r}{x} \cdot \binom{N-r}{n-x}}{\binom{N}{n}}$$

Distribuição Hipergeométrica – Observação

Quando N é muito maior que n, a distribuição hipergeométrica pode ser aproximada pela binomial.

Muitos autores prescrevem uma relação $^n/_N \le 0.05$ para que seja possível fazer a aproximação.

Nesse caso, a binomial tem parâmetros n = tamanho da amostra e p = r/N.

Observe que se N for muito maior que n, as retiradas, mesmo feitas sem reposição, não irão modificar em demasia as probabilidades condicionais de ocorrências de sucessos (e de fracassos), na sequência de ensaios.

EXERCÍCIOS

01. Considere um baralho comum de 52 cartas. Qual a probabilidade de se retirar duas cartas vermelhas em cinco cartas retiradas sem reposição?

Observação: em um baralho comum de 52 cartas, 26 são vermelhas e 26 são pretas.

Dados
$$\begin{cases} N = \\ n = \\ r = \\ x = \end{cases} \qquad p(x) = \frac{\binom{r}{x} \cdot \binom{N-r}{n-x}}{\binom{N}{n}}$$

EXERCÍCIOS

02. Placas de circuito integrado são avaliadas após serem preenchidas com chips semicondutores. Considere que foi produzido um lote de 20 placas e selecionadas 5 para avaliação. Calcule a probabilidade de encontrar pelo menos uma placa defeituosa, sabendo que o lote tenha 4 defeituosas e que tenha sido realizada:

- uma amostragem aleatória com reposição;
- b) uma amostragem aleatória **sem** reposição.

p. 138, exercício 21

Resposta

Pedro Alberto Barbetta
Marcelo Mencess Reis
Antonio Cezar Bornia

ESTATÍSTICA
PARA CURSOS DE
ENGENHARIA
INFORMÁTICA

3º EDIÇÃO

Capítulo 5, pp. 133 - 136

Considere as situações em que se avalia o número de ocorrências de um tipo de evento por unidade de tempo, de comprimento, de área, ou de volume.

Exemplos:

- ✓ número de consultas a uma base de dados em um minuto;
- √ número de pedidos a um servidor num intervalo de tempo;
- √ número de erros de tipografia em um formulário;
- √ número de defeitos em um m² de piso cerâmico.

Capítulo 5, pp. 133 - 136

- A distribuição de Poisson é uma distribuição de probabilidade discreta de uma variável aleatória x que satisfaz às seguintes condições:
- 1. O experimento consiste em calcular o número de vezes que um evento ocorre em um dado intervalo. O intervalo pode ser tempo, área, volume etc.
- A probabilidade de o evento acontecer é a mesma em cada intervalo.
- 3. A número de ocorrências em um intervalo é independente do número de ocorrências em outro intervalo.

Suposições básicas:

- ✓ independência entre as ocorrências do evento considerado;
- ✓ Os eventos ocorrem de forma aleatória, de tal forma que não haja tendencia de aumentar ou reduzir as ocorrências do evento, no intervalo considerado.

Seja X uma variável aleatória

A função de probabilidade de X é expressa por:

$$p(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, x = 0, 1, 2, ...$$

onde

x = número de sucessos $\lambda =$ número médio de sucessos num intervalo específico e = base do logaritmo natural ($e \approx 2,72$)

$$E(X) = VAR(X) = \lambda$$

Distribuição Poisson – Exemplo 2

Supondo que as consultas num banco de dados ocorrem de forma independente e aleatória, com uma taxa média de três consultas **por minuto**, calcular a probabilidade de que no próximo minuto ocorram menos que três consultas.

Seja X o número de consultas por minuto. Então:

$$P(X < 3) = p(0) + p(1) + p(2)$$
Usando o modelo de Poisson $p(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$
 $x = \lambda = p(x) = 0$

Muitos livros trazem tabelas estatística com os valores das probabilidades acumuladas, (distribuições acumuladas)

Tabela de distribuição acumulada de probabilidades

pp. 375 e 376

Tabela 2 Distribuição acumulada de Poisson: $P(X \le x) = \sum_{j=0}^{x} \frac{\lambda^{j} e^{-\lambda}}{j!}$.

x	λ									
	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
0	0,9512	0,9048	0,8607	0,8187	0,7788	0,7408	0,7047	0,6703	0,6376	0,6065
1	0,9988	0,9953	0,9898	0,9825	0,9735	0,9631	0,9513	0,9384	0,9246	0,9098
2	1,0000	0,9998	0,9995	0,9989	0,9978	0,9964	0,9945	0,9921	0,9891	0,9856
3	1,0000	1,0000	1,0000	0,9999	0,9999	0,9997	0,9995	0,9992	0,9988	0,9982
4	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9999	0,9998
5	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Tabela de distribuição acumulada de probabilidades

Tabela 2 (Continuação).

	λ									
x	2	2,5	3	4	5	6	7	8	9	10
0	0,1353	0,0821	0,0498	0,0183	0,0067	0,0025	0,0009	0,0003	0,0001	0,0000
1	0,4060	0,2873	0,1991	0,0916	0,0404	0,0174	0,0073	0,0030	0,0012	0,0005
2	0,6767	0,5438	0,4232	0,2381	0,1247	0,0620	0,0296	0,0138	0,0062	0,0028
3	0,8571	0,7576	0,6472	0,4335	0,2650	0,1512	0,0818	0,0424	0,0212	0,0103
4	0,9473	0,8912	0,8153	0,6288	0,4405	0,2851	0,1730	0,0996	0,0550	0,0293
5	0,9834	0,9580	0,9161	0,7851	0,6160	0,4457	0,3007	0,1912	0,1157	0,0671
6	0,9955	0,9858	0,9665	0,8893	0,7622	0,6063	0,4497	0,3134	0,2068	0,1301
7	0,9989	0,9958	0,9881	0,9489	0,8666	0,7440	0,5987	0,4530	0,3239	0,2202
8	0,9998	0,9989	0,9962	0,9786	0,9319	0,8472	0,7291	0,5925	0,4557	0,3328
9	1,0000	0,9997	0,9989	0,9919	0,9682	0,9161	0,8305	0,7166	0,5874	0,4579
10	1,0000	0,9999	0,9997	0,9972	0,9863	0,9574	0,9015	0,8159	0,7060	0,5830

Distribuição Poisson – Exemplo 3

O número de falhas de certo tipo de placa térmica tem distribuição de Poisson, com taxa média de 0,1 defeitos por m². Na confecção da superfície de um armário, é necessário cobrir uma superfície de 2 m por 2 m com essa placa. Calcular a probabilidade que haja **pelo menos uma** falha nessa superfície.

Distribuição Poisson – Exemplo 3

O número de falhas de certo tipo de placa térmica tem distribuição de Poisson, com taxa média de 0,1 defeitos por m². Na confecção da superfície de um armário, é necessário cobrir uma superfície de 2 m por 2 m com essa placa. Calcular a probabilidade que haja pelo menos uma falha nessa superfície.

Seja X o número de falhas por m². Desejamos calcular

$$P(X \ge 1) = p(1) + p(2) + p(3) + \dots = 1 - P(X = 0)$$

 $\lambda = 0.1 \ por \ m^2$

 $\lambda = 0.4 \ para \ a \ superfície \ de \ 4 \ m^2$

$$p(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

EXERCÍCIOS

- 11. Mensagens chegam a um servidor de acordo com uma distribuição de Poisson, com taxa média de cinco chegadas por minuto.
 - a) Qual é a probabilidade de que duas chegadas ocorram em um minuto?
 - b) Qual é a probabilidade de que uma chegada ocorra em 30 segundos?

p. 136, exercício 11

Resposta

EXERCÍCIOS

p. 138, exercício 22

- 22. Suponha que o número de falhas em certo tipo de placa plástica tenha distribuição de Poisson, com taxa média de 0,05 defeito por m². Na construção de um barco, é necessário cobrir uma superfície de 3 m x 2 m com essa placa.
 - a) Qual é a probabilidade de que não haja falhas nessa superfície?
 - b) Qual é a probabilidade de que haja mais que uma falha nessa superfície?

Resposta