Lista 4

Arruti, Sergio, Jesús

Ej 68. Sea R un anillo artiniano (noetheriano) a izquierda. Pruebe que $\forall M \in mod(R), M$ es artiniano (noetheriano).

 $\begin{array}{l} \textit{Demostraci\'on.} \text{ Sea } M \text{ un } R\text{-m\'odulo finitamente generado, como} \bigoplus_{m \in M} R_m \\ \text{genera a } M \text{ entonces existe un subconjunto finito } A \text{ de } M \text{ tal que} \\ M \bigoplus_{m \in A} R_m, \text{ por lo que si } m_0 \in A, \text{ la sucesi\'on} \end{array}$

$$0 \longrightarrow R_{m_0} \stackrel{i_0}{\longrightarrow} M \stackrel{\pi_0}{\longrightarrow} \bigoplus_{m \in M \setminus \{m_0\}} R_m \longrightarrow 0.$$

Ahora, si R es artiniano (noetheriano) entonces R_{m_0} y $\bigoplus_{m \in M \setminus \{m_0\}} R_m$ también son artinianos (noetherianos) por ser A finito. Y por la proposición 10.12 del libro de Anderson-Fuller, M es artiniano (noetheriano).

- Ej 69.
- Ej 70.
- **Ej 71.** Para un anillo R y $M \in Mod(R)$, pruebe que
 - a) Si $e \in End(_RM)$ es tal que $e^2 = e$, entonces $M = eM \oplus (1 e)M$ y $eM = \{m \in M \mid e(m) = m\}$.
 - b) Sean $M_1, M_2 \in \mathcal{L}(M)$. Si $M = M_1 \oplus M_2$, entonces existe $e \in End(_RM)$ tal que: $e^2 = e, eM = M_1$ y $(1 e)M = M_2$.

Demostración. a)

Supongamos $x \in M \cap (1-e)M$, entonces x = ey = (1-e)z, es decir, ey = z - ez por lo que e(y+z) = z, Así

$$x = (1 - e)(e(y + z)) = e(y + z) - e^2(y + z) = e(y + z) - e(y - z) = 0.$$
 por lo tanto $M \cap (1 - e)M = \{0\}.$

Sea $x \in M$ entonces x = (x - ex) + ex donde $(x - ex) = (1 - e)x \in (1 - e)M$ y $ex \in eM$. Así $x \in eM \oplus (1 - e)M$.

Por último, sea $y \in eM$ entonces y = ex para alguna $x \in M$, y por lo anterior, e(y) = eex = ex = y. Así $eM = \{m \in M \mid e(m) = m\}$.

b)

Sea $e = \mu_1 \pi_1$ donde $\pi : M \longrightarrow M_1$ es la proyección canónica y $\mu_1 : M_1 \longrightarrow M$ es la inclusión canónica. Entonces $\pi_1 \mu_1 = Id_{M_1}$, por lo que $e^2(m_1) = \mu_1 \pi_1 \mu_1 \pi_1(m_1) = \mu_1 \pi_1(m_1) = e(m_1)$ para toda $m_1 \in M_1$.

Sea $m \in M$ entonces $e(m) = \mu_1 \pi_1(m) = \mu_1(\pi_1(m)) \in M_1$, por lo que $eM \subseteq M_1$ y todo elemento $x \in M_1$ cumple que $e(x) = \mu_1 \pi_1(x) = \mu_1(x) = x$ por lo que $M_1 = eM$.

Por otra parte, por a), $M = M_1 \oplus (1-e)M$ y por hipótesis $M = M_1 \oplus M_2$, entonces $M_2 = (1-e)M$ pues si $x \in M$, existe $m_1 \in M_1$, $m_2 \in M_2$ y $m_3 \in M$ tales que $x = m_1 + m_2 = m_1 + (1-e)m_3$ por lo que $m_2 = (1-e)m_3$.

- Ej 72.
- Ej 73.
- **Ej 74.** Para un anillo artiniano a izquierda R, pruebe que R es local $\iff R^{op}$ es local.

Demostración. Por definición un anillo A es local si $A \neq 0$ y satisface alguna de las condiciones de 2.7.20 (en particular c) de esta proposición). Dado que $R^{op} - U(R^{op}) = R - U(R)$ y $J(R) = J(R^{op})$, entonces R es local si y sólo si

$$R - U(R) = J(R)$$

si v sólo si

$$R^{op} - U(R^{op}) = J(R^{op})$$

si y sólo si R^{op} es local.

Ej 75.

Ej 76.

Ej 77. Para un anillo R y $M \in Mod(R)$, pruebe que

- a) M es proyectivo $\iff pd(M)=0$.
- b) M es inyectivo $\iff id(M)=0$.

Demostraci'on. a)

Supongamos M es proyectivo, entonces tenemos la sucesión exacta

$$P_{\bullet}: \ldots \longrightarrow P_1 = 0 \xrightarrow{0} M = P_0 \xrightarrow{Id_M} M \longrightarrow 0$$

donde, como M es proyectivo, P_{\bullet} es resolución proyectiva. Así $pd(M) = l(P_{\bullet}) = 0$.

Por otra parte, si pd(M)=0 entonces existe resulución proyectiva P_{\bullet} tal que $l(P_{\bullet})=0$, es decir, se tiene la siguiente sucesión exacta con P_0 proyectivo,

$$P_{\bullet}: \ldots \longrightarrow P_1 = 0 \xrightarrow{0} P_0 \longrightarrow M \longrightarrow 0,$$

pero por el ejercicio 38 esto implica que P_0 es isomorfo a M, por lo tanto M es proyectivo.

b)

Supongamos M es inyectivo, entonces tenemos la siguiente corelación inyectiva:

$$I_{\bullet} \colon 0 \longrightarrow M \xrightarrow{Id_M} M = P_0 \longrightarrow 0 = P_1 \longrightarrow \dots$$

entonces $l(I_{\bullet}) = 0$ y por lo tanto id(M) = 0.

Por otra parte, si id(M) = 0 entonces existe una correlación inyectiva de longitud cero, es decir, una sucesión exacta de la siguiente forma:

$$I_{\bullet} : 0 \longrightarrow M \longrightarrow P_0 \longrightarrow 0 = P_1 \longrightarrow \dots$$

Como la sucesión es exacta, entonces por el ejercicio 38 se tiene que M es isomorfo a P_0 el cual es inyectivo, por lo tanto M es inyectivo.