Chapter 9 Graph – part 1

South China University of Technology

College of Software Engineering

Huang Min

Definition of Graph

Graphs

- Graphs are composed of
 - > Nodes (vertices)
 - Labeled or unlabeled
 - > Edges (arcs)
 - Directed or undirected
 - Labeled or unlabeled

Motivation for Graphs

- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges
- B-trees: nodes with 1 incoming edge
 + multiple outgoing edges

Motivation for Graphs

- Consider data structures for representing the following problems...
 - > Representing a Maze
 - (Nodes = rooms; Edge = door or passage)
 - > Representing Electrical Circuits
 - Nodes = battery, switch, resistor, etc; Edges = connections
 - > Program statements
 - Nodes = symbols/operators; Edges = relationships
 - > Information Transmission in a Computer Network
 - Nodes = computers; Edges = transmission rates
 - Traffic Flow on Highways
 - Nodes = cities; Edges = # vehicles on connecting highway

Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - > V is a set of vertices or nodes
 - > E is a set of edges that connect vertices

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠ (v₂, v₁)

• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G
 - > edge e = {u,v} is incident with vertex u and vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it, denoted with deg(v)
 - a self-loop counts twice (both ends count)

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - > vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

B adjacent to C and C adjacent from B

Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=e edges. Then

$$2e = \sum_{v \in V} deg(v)$$

Add up the degrees of all vertices.

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = | V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

Adjacency Matrix for a Undirected Digraph

$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in E} \\ 0 & \text{otherwise} \end{cases}$$

Space =
$$|V|^2$$

Adjacency Matrix for a Directed Digraph

$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in E} \\ 0 & \text{otherwise} \end{cases}$$

Space =
$$|V|^2$$

Adjacency List for a Undirected Digraph

For each v in V, L(v) = list of w such that (v, w) is in E

Adjacency List for a Directed Digraph

For each v in V, L(v) = list of w such that (v, w) is in E

Graph Searching

Graph Searching

Find Properties of Graphs

- > Spanning trees
- Connected components
- > Bipartite structure
- > Biconnected components

Applications

- Finding the web graph used by Google and others
- Garbage collection used in Java run time system
- Alternating paths for matching

Graph Searching Methodology Breadth-First Search (BFS)

- Breadth-First Search (BFS)
 - Use a queue to explore neighbors of source vertex, then neighbors of neighbors etc.
 - All nodes at a given distance (in number of edges) are explored before we go further

Graph Searching Methodology Depth-First Search (DFS)

- Depth-First Search (DFS)
 - Searches down one path as deep as possible
 - When no nodes available, it backtracks
 - When backtracking, it explores side-paths that were not taken
 - > Uses a stack (instead of a queue in BFS)
 - > Allows an easy recursive implementation

Depth First Search Algorithm

Recursive marking algorithm

```
    Initially every vertex is unmarked
```

```
DFS(i: vertex)
  mark i;
  for each j adjacent to i do
    if j is unmarked then DFS(j)
end{DFS}
```


DFS(i)

Marks all vertices reachable from i

DFS Application: Spanning Tree

- Given a (undirected) graph G(V,E) a spanning tree of G is a graph G'(V',E')
 - V' = V, the tree touches all vertices (spans)the graph
 - > E' is a subset of E such G' is connected and there is no cycle in G'
 - A graph is connected if given any two vertices u and v, there is a path from u to v

Example of DFS: Graph connectivity and spanning tree

Red links will define the spanning tree if the graph is connected

Example Steps 6 and 7

Example Steps 8 and 9

Example Step 10 (backtrack)

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5, but it has no more neighbors.

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

Back up to 4. From 4 we can get to 6.

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is nowhere new to go. Back up.

DFS(1)
DFS(2)
DFS(3)
DFS(4)

Back to 4. Keep backing up.

All nodes are marked so graph is connected; red links define a spanning tree

Adjacency List Implementation

Adjacency lists

Another Use for Depth First Search: Connected Components

3 connected components

Connected Components

3 connected components are labeled

Depth-first Search for Labeling Connected components

```
Main {
i : integer
for i = 1 to n do M[i] := 0; //initial label is zero
label := 1;
for i = 1 to n do
  if M[i] = 0 then DFS(G,M,i,label); //if i is not labeled
 label := label + 1:
                                   then call DFS
DFS(G[]: node ptr array, M[]: int array, i,label: int) {
 v : node pointer;
 M[i] := label;
 v := G[i]; // first neighbor //
 while v \neq null do // recursive call (below)
    if M[v.index] = 0 then DFS(G,M,v.index,label);
   v := v.next; // next neighbor //
```

Connected Components for Image Analysis

Performance DFS

- n vertices and m edges
- Storage complexity O(n + m)
- Time complexity O(n + m)
- Linear Time!

Depth First Search

Figure 11.8 (a) A graph. (b) The depth-first search tree for the graph when starting at Vertex A.

Order that nodes are processed: ACBFDE

Breadth-First Search

```
BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do
    i := Dequeue(Q);
    for each j adjacent to i do
        if j is not marked then
            Enqueue(Q,j) and mark j;
end{BFS}
```

Can do Connectivity using BFS

Uses a queue to order search

Queue = 1

Beginning of example

Queue = $\frac{2}{4}$,6

Mark while on queue to avoid putting in queue more than once

Breadth First Search

Figure 11.11 (a) A graph. (b) The breadth-first search tree for the graph when starting at Vertex A.

Order that nodes are processed: ACEBDF

Depth-First vs Breadth-First

Depth-First

- Stack or recursion
- Many applications

Breadth-First

- › Queue
- Can be used to find shortest paths from the start vertex
- Can be used to find short alternating paths for matching