Lista 3

15 de junho de 2025

- 1. (Quali Agosto-2024) Mostre que todo aberto conexo de \mathbb{R}^n é conexo por caminhos.
- 2. (Quali Agosto-2024) Seja (X, \mathcal{T}) um espaço topológico e $X^* = X \cup \{\infty\}$ o conjunto X aumentado de um "ponto no infinito".
 - (a) Mostre que

$$\mathcal{T}^* = \mathcal{T} \cup \{(X \setminus K) \cup \{\infty\} : K \text{ \'e fechado e compacto em } X\}$$

- é uma topologia em X^* . O espaço topológico (X^*, \mathcal{T}^*) é dito compactificação de Alexandroff de (X, \mathcal{T}) .
- (b) Mostre que X^* , com a topologia acima, é sempre compacto e que X^* é Hausdorff se, e somente se, X é Hausdorff.
- (c) Demonstre que a esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, com a topologia induzida de \mathbb{R}^3 , é homeomorfa à compactificação de Alexandroff de \mathbb{R}^2 .
- 3. Verdadeiro ou falso. Justifique
 - (a) Se M é conexo por caminhos então $M \times [0, 1]$ é conexo por caminhos.
 - (b) $S^n \setminus \Gamma$ é conexo se $\Gamma \subset S^n$ é um subconjunto enumerável.
 - (c) Se $X = \mathbb{R}$ é dotado com a topologia do complemento finito, então a função $f: X \to X, f(x) = \sin x$, é contínua.
 - (d) Seja X um espaço de Hausdorff compacto. Então X é metrizável se e somente se X tem uma base enumerável.
 - (e) Uma função $f:X\to S^n$ não sobrejetora é homotópica à função constante, independentemente do espaço X.

- (f) Se M é Hausdorff e $A, B \subset M$ são localmente compactos, $A \cap B$ é localmente compacto.
- 4. (Quali Fevereiro-2023)
 - (a) Seja $p: E \to B$ uma aplicação de recobrimento e seja B um espaço conexo. Mostre que se $p^{-1}(b_0)$ tem k elementos para algum $b_0 \in B$, então $p^{-1}(b)$ possui exatamente k elementos para todo $b \in B$.
 - (b) Seja $p:E\to B$ uma aplicação de recobrimento, $b_0\in B$ e $e_0\in p^{-1}(b_0)$ fixados. Denote por

$$\varphi: \pi_1(B, b_0) \to p^{-1}(b_0)$$

a correspondência de levantamento induzida por p e com respeito aos pontos b_0 e e_0 . Mostre que se E for simplesmente conexo então φ será bijetora.

5. (Quali Fevereiro-2022) Seja $\{A_i\}_{i\in I}$ uma família de subconjuntos conexos de um espaço topológico X. Seja A um conjunto conexo de X tal que $A \cap A_i \neq \emptyset$ para cada $i \in I$. Prove que o conjunto

$$A \cup \left(\bigcup_{i \in I} A_i\right)$$

é conexo.

6. (Quali Fevereiro-2022) Um subconjunto $A\subseteq\mathbb{R}^n$ é dito estrelado se existe um $a\in A$ de forma que, para todo $p\in A$, o conjunto

$$\{ta + (1-t)p : t \in [0,1]\}$$

está contido em A. Mostrar que se A é estrelado então é conexo e simplesmente conexo.

7. (Quali Agosto-2021) Teorema do Ponto Fixo de Brouwer. Seja $D \subset \mathbb{R}^2$ o disco fechado unitário

$$D = \{ x \in \mathbb{R}^2 : ||x|| \le 1 \}.$$

Qualquer função contínua $f: D \to D$ possui pelo menos um ponto fixo, ou seja, existe $x_0 \in D$ tal que $f(x_0) = x_0$.

8. (Quali Agosto-2021) Mostre que $\pi_1(S^1) = \mathbb{Z}$.

- 9. (Quali Março-2021) Seja X um espaço topológico.
 - (a) Mostre que se X é conexo por caminhos, então o grupo fundamental de X não depende do ponto base. Para $n \geq 1$, determine $\pi_1(\mathbb{R}^n)$.
 - (b) Se $n \ge 2$, mostre que todo laço $f: [0,1] \to S^n$ em x_0 é homotópico a um laço em x_0 que não é sobrejetor.
 - (c) Mostre que $\pi_1(S^2)$ é trivial.
- 10. (Quali Março-2021) Seja $p:X_e\to X$ uma aplicação de recobrimento.
 - (a) Mostre que se X é compacto e $p^{-1}(x)$ é finito para todo $x \in X$, então X_e é compacto.
 - (b) Ilustre o resultado anterior com um exemplo.
- 11. (Quali Fevereiro-2018) Calcule o grupo fundamental:
 - (a) $S^2 \setminus \{p\}$.
 - (b) $S^2 \setminus \{p, q\} \text{ com } p \neq q$.
 - (c) $S^2 \setminus \{p, q, r\}$ com p, q, r distintos.
- 12. Exercícios do Munkres:
 - Seção 23: 1, 9, 11.
 - Seção 24: 8.
 - Seção 25: 4, 5, 7, 8.
 - Seção 52: 2 a 6.
 - Seção 53: 1, 2, 4, 5, 6.
 - Seção 54: Todos.