Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- C) Il sistema $H_{eq}(z)$ è sempre stabile
- $\mathbf{D})\;$ Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- E) $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) nessuna delle altre risposte

Esercizio 3.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- ${f B}$) il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- E) nessuna delle altre risposte

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 20 \exp[j\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- D) nessuna delle altre risposte
- **E)** $y[n] = 10\cos[\pi n/2]$

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- B) nessuna delle altre risposte
- C) 2j
- **D**) 1
- **E**) -2

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A**) y[n] = 0
- **B)** y[n] = 10j
- C) nessuna delle altre risposte
- **D**) y[n] = 5
- **E)** $y[n] = 10\delta[n]$

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- C) $\sigma_Y^2 = 4T^2(\sigma_n^2 m_n^2) + 4TN_0/2$
- **D)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$
- **E)** $\sigma_Y^2 = 4T^2\sigma_n^2 + 4TN_0/2$

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- ${f B}$) il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E**) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 2.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- ${\bf A})\;\; {\rm Il}\; {\rm sistema}\; H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- C) nessuna delle altre risposte
- **D)** $H_{eq}(z)$ corrisponde a un amplificatore ideale
- **E)** Il sistema $H_{eq}(z)$ è instabile

Esercizio 3.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. In
oltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- C) $y[n] = 10\cos[\pi n/2]$
- **D)** $y[n] = 20 \exp[j\pi n/2]$
- E) $y[n] = 1/\sqrt{20} \sin[\pi n/2]$

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- B) nessuna delle altre risposte
- **C**) 1
- **D**) 2
- **E**) j

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 2
- B) nessuna delle altre risposte
- C) $y[n] = 4\delta[n]$
- **D)** y[n] = 4j
- **E**) y[n] = 0

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2 \sigma_n^2 + T N_0 / 2$
- **B)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$
- C) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$
- D) nessuna delle altre risposte
- E) $\sigma_Y^2 = T^2(\sigma_n^2 m_n^2) + TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A)** $y[n] = 3\delta[n]$
- **B**) y[n] = 0
- **C**) y[n] = 3
- $\mathbf{D}) \ y[n] = j$
- E) nessuna delle altre risposte

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2

Esercizio 4.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$

- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 10\cos[\pi n/2]$
- **D)** $y[n] = 20 \exp[j\pi n/2]$
- **E**) y[n] = 0

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- **B**) 0
- (C) -2
- D) nessuna delle altre risposte
- **E**) 1

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- C) $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$
- **D)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$
- E) $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B)** 9/4
- **C**) j/2
- \mathbf{D}) 0
- E) -1/4

Esercizio 2.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- **B**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- C) nessuna delle altre risposte
- **D)** $H_{eq}(z)$ corrisponde a un amplificatore ideale
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 9T^2(\sigma_\eta^2 + m_\eta^2) + 9TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$
- **D**) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9T^2N_0/2$
- E) $\sigma_Y^2 = 9T^2(\sigma_\eta^2 m_\eta^2) + 9TN_0/2$

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2\cos[\pi n/2]$
- **B)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- C) $y[n] = 2 \exp[j\pi n/2]$

- D) nessuna delle altre risposte
- **E**) y[n] = 0

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- **D)** il segnale x(t) non ammette serie di Fourier
- **E**) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** $y[n] = 8\delta[n]$
- **B)** y[n] = 4
- C) nessuna delle altre risposte
- **D)** y[n] = 8j
- **E**) y[n] = 0

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B)** $y[n] = 8\delta[n]$
- **C**) y[n] = 8j
- **D)** nessuna delle altre risposte
- **E)** y[n] = 4

Esercizio 4.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 4T^2\sigma_n^2 + 4T^2N_0/2$
- **D)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$
- E) $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 10\cos[\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- **D)** $y[n] = 20 \exp[j\pi n/2]$
- **E**) y[n] = 0

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 2
- $\mathbf{C}) 0$
- **D**) 1
- **E**) j

Esercizio 7.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- E) $H_{eq}(z)$ corrisponde a un amplificatore ideale

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- B) nessuna delle altre risposte
- C) il segnale x(t) non ammette serie di Fourier
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $H_{eq}(z)$ corrisponde a un filtro IIR
- C) L'uscita del sistema equivalente è identica all'ingresso.
- **D**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **E)** Il sistema $H_{eq}(z)$ è instabile

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B)** y[n] = 8j
- **C**) y[n] = 0
- $\mathbf{D}) \ y[n] = 8\delta[n]$
- **E**) y[n] = 4

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 20 \exp[j\pi n/2]$
- **B)** $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- C) $y[n] = 10\cos[\pi n/2]$
- **D**) y[n] = 0
- E) nessuna delle altre risposte

Esercizio 4.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- B) nessuna delle altre risposte

C)
$$\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$$

D)
$$\sigma_Y^2 = T^2(\sigma_n^2 - m_n^2) + TN_0/2$$

E)
$$\sigma_V^2 = T^2 \sigma_n^2 + T^2 N_0 / 2$$

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) -1/4
- **B**) 0
- C) 9/4
- **D**) j/2
- E) nessuna delle altre risposte

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- B) il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- D) nessuna delle altre risposte
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- E) nessuna delle altre risposte

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** y[n] = 0
- **B)** $y[n] = 1/\sqrt{2} \sin[\pi n/2]$
- C) $y[n] = 2\cos[\pi n/2]$
- D) nessuna delle altre risposte
- **E)** $y[n] = 2 \exp[j\pi n/2]$

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.

Esercizio 3.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$
- C) il segnale x(t) non ammette serie di Fourier
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- **E**) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$

B) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

C) $R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

A) Il sistema $H_{eq}(z)$ è sempre stabile

B) Il sistema $H_{eq}(z)$ ha ROC |z| > 1

C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo

D) $H_{eq}(z)$ corrisponde a un filtro IIR

E) nessuna delle altre risposte

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

A) 0

B) j

C) 2

D) 1

E) nessuna delle altre risposte

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

A) y[n] = 5

B) nessuna delle altre risposte

C) y[n] = 10j

D) y[n] = 0

 $\mathbf{E)} \ y[n] = 10\delta[n]$

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A) $\sigma_Y^2 = 9T^2(\sigma_n^2 - m_n^2) + 9TN_0/2$

B) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$

C) $\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$

D) nessuna delle altre risposte

E) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9T^2N_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- **E**) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Esercizio 2.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **E)** $H_{eq}(z)$ corrisponde a un filtro FIR

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- **B)** $y[n] = 20 \exp[j\pi n/2]$
- C) $y[n] = 10\cos[\pi n/2]$
- **D**) y[n] = 0
- E) nessuna delle altre risposte

Esercizio 4.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$
- **B)** $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$
- C) $\sigma_Y^2 = 9T^2\sigma_n^2 + 9T^2N_0/2$
- **D)** $\sigma_Y^2 = 9T^2(\sigma_n^2 m_n^2) + 9TN_0/2$
- E) nessuna delle altre risposte

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- C) il segnale x(t) non ammette serie di Fourier
- D) nessuna delle altre risposte
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 2j
- **C**) 1
- **D**) 0
- **E**) -2

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- $\mathbf{B}) \ y[n] = j$
- C) $y[n] = 3\delta[n]$
- D) nessuna delle altre risposte
- **E**) y[n] = 3

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5\cos(2\pi f_c \tau) - 0.5R_x(\tau)\sin(2\pi f_c \tau)$$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

A)
$$y[n] = 4$$

B)
$$y[n] = 0$$

C)
$$y[n] = 8j$$

D) nessuna delle altre risposte

E)
$$y[n] = 8\delta[n]$$

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$$

B) nessuna delle altre risposte

C)
$$\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$$

D)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$$

E)
$$\sigma_Y^2 = 16T^2(\sigma_n^2 - m_n^2) + 16TN_0/2$$

Esercizio 4.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle altre risposte

B)
$$\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$$

- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- \mathbf{D}) il segnale x(t) non ammette serie di Fourier
- **E)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** $H_{eq}(z)$ corrisponde a un filtro FIR
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **D)** Il sistema $H_{eq}(z)$ è instabile
- E) nessuna delle altre risposte

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- B) nessuna delle altre risposte
- **C**) 1
- **D**) -2
- $\mathbf{E}) 0$

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2\cos[\pi n/2]$
- **B)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- C) $y[n] = 2 \exp[j\pi n/2]$
- D) nessuna delle altre risposte
- **E**) y[n] = 0

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- **A)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- C) nessuna delle altre risposte
- **D**) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$$

B) nessuna delle altre risposte

C)
$$\sigma_Y^2 = 4T^2(\sigma_\eta^2 + m_\eta^2) + 4TN_0/2$$

D)
$$\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$$

E)
$$\sigma_Y^2 = 4T^2(\sigma_\eta^2 - m_\eta^2) + 4TN_0/2$$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

A) nessuna delle altre risposte

$$\mathbf{B)} \ y[n] = 4\delta[n]$$

C)
$$y[n] = 0$$

D)
$$y[n] = 2$$

E)
$$y[n] = 4j$$

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

A)
$$y[n] = 4 \exp[j\pi n/2]$$

B)
$$y[n] = 0$$

C) nessuna delle altre risposte

D)
$$y[n] = 16 \sin[\pi n/2]$$

E)
$$y[n] = 1/\sqrt{8}\cos[\pi n/2]$$

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

A) 0

B) nessuna delle altre risposte

C) j/2

- D) -1/4
- **E)** 9/4

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** il segnale x(t) non ammette serie di Fourier
- **E**) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- B) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- C) nessuna delle altre risposte
- **D)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **E)** Il sistema $H_{eq}(z)$ è sempre stabile

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t)=2 per $|t| \leq T/2$ e r(t)=0 altrove. Inoltre $\alpha_i=\frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B**) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x=20T/3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- **B**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- **D)** $H_{eq}(z)$ corrisponde a un amplificatore ideale
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = T^2(\sigma_\eta^2 m_\eta^2) + TN_0/2$
- C) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- **D**) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$
- **E)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- **B**) 0
- **C**) 1
- **D)** nessuna delle altre risposte
- **E**) -2

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.

Esercizio 6

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- $\mathbf{B}) \ y[n] = 8\delta[n]$
- C) nessuna delle altre risposte
- **D**) y[n] = 4
- **E**) y[n] = 8j

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- C) $y[n] = 2 \exp[j\pi n/2]$
- **D)** $y[n] = 2\cos[\pi n/2]$
- **E)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) nessuna delle altre risposte
- **D)** il segnale x(t) non ammette serie di Fourier
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

A)
$$y[n] = 1/\sqrt{8}\cos[\pi n/2]$$

B)
$$y[n] = 16 \sin[\pi n/2]$$

C)
$$y[n] = 0$$

D)
$$y[n] = 4 \exp[j\pi n/2]$$

E) nessuna delle altre risposte

Esercizio 2.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 4T^2(\sigma_n^2 - m_n^2) + 4TN_0/2$$

B) nessuna delle altre risposte

C)
$$\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$$

D)
$$\sigma_Y^2 = 4T^2(\sigma_\eta^2 + m_\eta^2) + 4TN_0/2$$

E)
$$\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$$

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro IIR
- B) L'uscita del sistema equivalente è identica all'ingresso.
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- D) nessuna delle altre risposte
- **E)** Il sistema $H_{eq}(z)$ è instabile

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- E) nessuna delle altre risposte

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- $\mathbf{B}) \ y[n] = j$
- C) $y[n] = 3\delta[n]$
- **D**) y[n] = 3
- **E**) y[n] = 0

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 1
- **B**) 2j
- \mathbf{C}) 0
- **D**) -2
- E) nessuna delle altre risposte

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** Il sistema $H_{eq}(z)$ è sempre stabile
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **D)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **E**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- **A)** $y[n] = 16\sin[\pi n/2]$
- B) nessuna delle altre risposte
- **C**) y[n] = 0
- **D)** $y[n] = 4 \exp[j\pi n/2]$
- **E)** $y[n] = 1/\sqrt{8}\cos[\pi n/2]$

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 - m_\eta^2) + TN_0/2$$

B)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$$

C)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$$

D)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 + m_\eta^2) + TN_0/2$$

E) nessuna delle altre risposte

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ \mathbf{e} \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** il segnale x(t) non ammette serie di Fourier
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- **B**) 2j
- **C**) 1
- D) nessuna delle altre risposte
- **E**) -2

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- $\mathbf{B}) \ y[n] = 4j$
- C) nessuna delle altre risposte
- **D**) y[n] = 2
- $\mathbf{E}) \ y[n] = 4\delta[n]$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 20 \exp[j\pi n/2]$
- **D**) y[n] = 0
- **E)** $y[n] = 10\cos[\pi n/2]$

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) nessuna delle altre risposte

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) j/2
- $\mathbf{C}) 9/4$
- \mathbf{D}) -1/4
- **E**) 0

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A)** y[n] = 3
- B) nessuna delle altre risposte

- **C**) y[n] = 0
- $\mathbf{D}) \ y[n] = j$
- E) $y[n] = 3\delta[n]$

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- \mathbf{E}) il segnale x(t) non ammette serie di Fourier

Esercizio 7.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **D)** $H_{eq}(z)$ corrisponde a un filtro FIR
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2(\sigma_\eta^2 m_\eta^2) + TN_0/2$
- **B)** $\sigma_Y^2 = T^2 \sigma_n^2 + T^2 N_0 / 2$
- C) nessuna delle altre risposte
- **D)** $\sigma_Y^2 = T^2(\sigma_\eta^2 + m_\eta^2) + TN_0/2$
- **E**) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2\cos[\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 2 \exp[j\pi n/2]$
- **D)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- E) nessuna delle altre risposte

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- B) nessuna delle altre risposte
- C) $y[n] = 10\delta[n]$
- $\mathbf{D}) \ y[n] = 10j$
- **E**) y[n] = 5

Esercizio 4.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A) $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$

B) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$

C) $\sigma_Y^2 = T^2 \sigma_n^2 + T^2 N_0/2$

D) $\sigma_Y^2 = T^2(\sigma_n^2 - m_n^2) + TN_0/2$

E) nessuna delle altre risposte

Esercizio 5.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

 ${\bf A})\;\; {\rm Il}\; {\rm sistema}\; H_{eq}(z)$ rappresenta un ritardatore di 1 passo

B) Il sistema $H_{eq}(z)$ è instabile

C) $H_{eq}(z)$ corrisponde a un filtro IIR

D) nessuna delle altre risposte

E) L'uscita del sistema equivalente è identica all'ingresso.

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

A) 0

B) 2

C) j

D) 1

E) nessuna delle altre risposte

Esercizio 7.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$

B) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$

C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$

D) il segnale x(t) non ammette serie di Fourier

E) nessuna delle altre risposte

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A) $R_y(\tau) = 0.5[1 + R_x(\tau)] \cos(2\pi f_c \tau)$

B) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- C) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$
- **D)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$
- **E)** $\sigma_Y^2 = T^2(\sigma_\eta^2 m_\eta^2) + TN_0/2$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** 9/4
- **B**) 0
- C) nessuna delle altre risposte
- **D**) j/2
- E) -1/4

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1

- C) $H_{eq}(z)$ corrisponde a un filtro FIR
- **D)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** Il sistema $H_{eq}(z)$ è instabile

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B**) y[n] = 5
- C) nessuna delle altre risposte
- **D)** $y[n] = 10\delta[n]$
- **E)** y[n] = 10j

Esercizio 6.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|t|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 10 \cos[\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- D) nessuna delle altre risposte
- **E)** $y[n] = 20 \exp[j\pi n/2]$

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- \mathbf{E}) il segnale x(t) non ammette serie di Fourier

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 2j
- \mathbf{C}) 0
- **D**) 1
- **E**) -2

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- $\mathbf{A)} \ y[n] = 4\delta[n]$
- **B**) y[n] = 0
- C) nessuna delle altre risposte
- **D**) y[n] = 4j
- **E)** y[n] = 2

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 16 \sin[\pi n/2]$
- C) $y[n] = 1/\sqrt{8}\cos[\pi n/2]$
- **D**) y[n] = 0
- **E)** $y[n] = 4 \exp[j\pi n/2]$

Esercizio 6.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- **B**) $\sigma_Y^2 = T^2 \sigma_n^2 + T^2 N_0 / 2$
- C) nessuna delle altre risposte
- **D)** $\sigma_Y^2 = T^2(\sigma_\eta^2 + m_\eta^2) + TN_0/2$
- E) $\sigma_Y^2 = T^2(\sigma_\eta^2 m_\eta^2) + TN_0/2$

Esercizio 7.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **D)** Il sistema $H_{eq}(z)$ è sempre stabile
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k$ pari, e $\mu_k = 8/(\pi k)^2 \ \forall k$ dispari
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- \mathbf{E}) il segnale x(t) non ammette serie di Fourier

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$$

B)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 - m_\eta^2) + TN_0/2$$

C) nessuna delle altre risposte

D)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0 / 2$$

E)
$$\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$$

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A) il segnale x(t) non ammette serie di Fourier

B) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

C) nessuna delle altre risposte

D) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$

E) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 3.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.

B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

D) nessuna delle altre risposte

E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x=20$.

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **D**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** $H_{eq}(z)$ corrisponde a un filtro FIR

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2
- B) nessuna delle altre risposte
- **C**) j
- **D**) 1
- **E**) 0

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- **B)** $y[n] = 10 \cos[\pi n/2]$
- C) $y[n] = 20 \exp[j\pi n/2]$
- **D**) y[n] = 0
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- $\mathbf{A}) \ y[n] = j$
- **B**) $y[n] = 3\delta[n]$
- **C**) y[n] = 0
- D) nessuna delle altre risposte
- **E**) y[n] = 3

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$$

B)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$$

C) nessuna delle altre risposte

D)
$$\sigma_Y^2 = 16T^2(\sigma_\eta^2 - m_\eta^2) + 16TN_0/2$$

E)
$$\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

A)
$$y[n] = 10j$$

B)
$$y[n] = 10\delta[n]$$

C) nessuna delle altre risposte

D)
$$y[n] = 5$$

E)
$$y[n] = 0$$

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

A) nessuna delle altre risposte

B)
$$y[n] = 1/\sqrt{20}\sin[\pi n/2]$$

C)
$$y[n] = 10\cos[\pi n/2]$$

D)
$$y[n] = 20 \exp[j\pi n/2]$$

E)
$$y[n] = 0$$

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

A) $H_{eq}(z)$ corrisponde a un filtro IIR

B) Il sistema $H_{eq}(z)$ è instabile

- C) L'uscita del sistema equivalente è identica all'ingresso.
- D) nessuna delle altre risposte
- E) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.

Esercizio 7.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- C) il segnale x(t) non ammette serie di Fourier
- D) nessuna delle altre risposte
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2
- **B**) j
- **C**) 0
- **D)** nessuna delle altre risposte
- **E**) 1

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** 9/4
- B) nessuna delle altre risposte
- C) -1/4
- **D**) j/2
- \mathbf{E}) 0

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 3

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2 \exp[j\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 2\cos[\pi n/2]$
- **D**) y[n] = 0
- **E)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- C) $H_{eq}(z)$ corrisponde a un amplificatore ideale

- **D)** Il sistema $H_{eq}(z)$ è instabile
- E) nessuna delle altre risposte

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- D) nessuna delle altre risposte
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 6.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- **B)** $\sigma_Y^2 = 4T^2\sigma_n^2 + 4TN_0/2$
- C) $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$
- **D)** $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- $\mathbf{A)} \ y[n] = 3\delta[n]$
- B) nessuna delle altre risposte
- **C**) y[n] = 3
- $\mathbf{D}) \ y[n] = j$
- **E**) y[n] = 0

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A**) y[n] = 0
- **B)** y[n] = 8j
- C) nessuna delle altre risposte
- $\mathbf{D)} \ y[n] = 8\delta[n]$
- **E)** y[n] = 4

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t)=2 per $|t| \leq T/2$ e r(t)=0 altrove. Inoltre $\alpha_i=\frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è sempre stabile
- B) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- D) nessuna delle altre risposte
- E) $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)] \cos(2\pi f_c \tau)$

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$
- **B)** $\sigma_Y^2 = 4T^2(\sigma_\eta^2 + m_\eta^2) + 4TN_0/2$
- C) $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$
- D) nessuna delle altre risposte
- E) $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- B) nessuna delle altre risposte
- $\mathbf{C}) \ 9/4$
- **D**) j/2
- \mathbf{E}) -1/4

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** y[n] = 0
- **B)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- C) nessuna delle altre risposte
- **D)** $y[n] = 20 \exp[j\pi n/2]$
- E) $y[n] = 10\cos[\pi n/2]$

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E)** il segnale x(t) non ammette serie di Fourier

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- B) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 2.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$
- **B)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$
- C) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0/2$
- D) nessuna delle altre risposte
- **E)** $\sigma_Y^2 = T^2(\sigma_n^2 m_n^2) + TN_0/2$

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) $H_{eq}(z)$ corrisponde a un filtro FIR
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- E) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$

- **C**) y[n] = 0
- **D)** $y[n] = 10\cos[\pi n/2]$
- **E)** $y[n] = 20 \exp[j\pi n/2]$

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** j/2
- B) nessuna delle altre risposte
- C) -1/4
- **D)** 9/4
- **E**) 0

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** $y[n] = 10\delta[n]$
- **B**) y[n] = 5
- C) nessuna delle altre risposte
- **D)** y[n] = 10j
- **E**) y[n] = 0

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. In
oltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- **B**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) il segnale x(t) non ammette serie di Fourier
- **D**) nessuna delle altre risposte
- **E**) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E)** il segnale x(t) non ammette serie di Fourier

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 10 \cos[\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 20 \exp[j\pi n/2]$
- **D)** $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- **E**) y[n] = 0

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- $\mathbf{B}) \ y[n] = j$
- **C**) y[n] = 0

- **D**) $y[n] = 3\delta[n]$
- **E)** y[n] = 3

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- E) nessuna delle altre risposte

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) $H_{eq}(z)$ corrisponde a un filtro IIR
- D) L'uscita del sistema equivalente è identica all'ingresso.
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 16T^2(\sigma_n^2 + m_n^2) + 16TN_0/2$
- **B)** $\sigma_Y^2 = 16T^2\sigma_n^2 + 16TN_0/2$
- C) $\sigma_Y^2 = 16T^2\sigma_n^2 + 16T^2N_0/2$
- **D)** $\sigma_Y^2 = 16T^2(\sigma_n^2 m_n^2) + 16TN_0/2$
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- B) nessuna delle altre risposte
- $\mathbf{C}) 0$
- **D**) -2
- **E**) 1

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro FIR
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- **C**) y[n] = 2
- $\mathbf{D}) \ y[n] = 4\delta[n]$
- **E)** y[n] = 4j

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$
- **B)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$
- C) $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- D) nessuna delle altre risposte
- **E)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ \mathrm{e} \ \mu_k = 32/(\pi k)^2 \ \forall k \ \mathrm{pari}$
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** il segnale x(t) non ammette serie di Fourier
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- **B**) 0
- C) nessuna delle altre risposte
- **D**) -2
- **E**) 1

Esercizio 8.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- C) $y[n] = 1/\sqrt{2}\cos[\pi n/2]$
- **D)** $y[n] = 4 \exp[j\pi n/2]$
- **E)** $y[n] = 4\sin[\pi n/2]$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 16T^2(\sigma_\eta^2 - m_\eta^2) + 16TN_0/2$$

B)
$$\sigma_Y^2 = 16T^2\sigma_n^2 + 16T^2N_0/2$$

C)
$$\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$$

D)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$$

E) nessuna delle altre risposte

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 3.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t)=2 per $|t| \leq T/2$ e r(t)=0 altrove. Inoltre $\alpha_i=\frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.

Esercizio 4.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k$ pari, e $\mu_k = 16/(\pi k)^2 \ \forall k$ dispari
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$
- C) nessuna delle altre risposte
- **D)** il segnale x(t) non ammette serie di Fourier
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- B) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- **E**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 1
- **C**) 0
- **D**) 2j
- **E**) -2

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- **A)** y[n] = 0
- **B)** $y[n] = 1/\sqrt{8}\cos[\pi n/2]$
- C) nessuna delle altre risposte
- **D)** $y[n] = 16\sin[\pi n/2]$
- **E)** $y[n] = 4 \exp[j\pi n/2]$

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 4
- **B**) y[n] = 0
- **C**) y[n] = 8j
- $\mathbf{D}) \ y[n] = 8\delta[n]$
- E) nessuna delle altre risposte

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 1
- **B**) 2j
- **C**) 0
- **D**) -2
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- **A)** $y[n] = 4 \exp[j\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 4\sin[\pi n/2]$
- **D)** nessuna delle altre risposte
- E) $y[n] = 1/\sqrt{2}\cos[\pi n/2]$

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A**) y[n] = 2
- $\mathbf{B}) \ y[n] = 0$
- C) nessuna delle altre risposte
- $\mathbf{D}) \ y[n] = 4\delta[n]$
- $\mathbf{E}) \ y[n] = 4j$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

D) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 5.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) il segnale x(t) non ammette serie di Fourier
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) L'uscita del sistema equivalente è identica all'ingresso.
- **D)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 9T^2\sigma_n^2 + 9T^2N_0/2$
- **D)** $\sigma_Y^2 = 9T^2(\sigma_\eta^2 + m_\eta^2) + 9TN_0/2$
- E) $\sigma_Y^2 = 9T^2(\sigma_n^2 m_n^2) + 9TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** $y[n] = 10\delta[n]$
- **B**) y[n] = 0
- **C**) y[n] = 5
- **D)** y[n] = 10j
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** il segnale x(t) non ammette serie di Fourier
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- **B**) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- **A)** y[n] = 0
- B) nessuna delle altre risposte
- C) $y[n] = 1/\sqrt{8}\cos[\pi n/2]$
- **D)** $y[n] = 16\sin[\pi n/2]$
- **E)** $y[n] = 4 \exp[j\pi n/2]$

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **B)** Il sistema $H_{eq}(z)$ è sempre stabile
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- D) nessuna delle altre risposte
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- **D)** $\sigma_Y^2 = 16T^2\sigma_n^2 + 16T^2N_0/2$
- E) $\sigma_Y^2 = 16T^2\sigma_n^2 + 16TN_0/2$

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) -2
- **B**) 0
- **C**) 1
- D) nessuna delle altre risposte
- **E**) 2j

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- **D**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 20 \exp[j\pi n/2]$
- C) $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- **D)** $y[n] = 10\cos[\pi n/2]$
- **E**) y[n] = 0

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$
- C) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$
- **D**) $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9T^2N_0/2$
- E) $\sigma_Y^2 = 9T^2(\sigma_n^2 m_n^2) + 9TN_0/2$

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B)** $y[n] = 10\delta[n]$

- **C**) y[n] = 5
- **D**) y[n] = 0
- **E)** y[n] = 10j

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 1
- **C**) j
- **D**) 0
- **E**) 2

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) il segnale x(t) non ammette serie di Fourier
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 1
- B) nessuna delle altre risposte
- **C**) j
- **D**) 0
- **E**) 2

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$$

B)
$$\sigma_Y^2 = 9T^2(\sigma_\eta^2 - m_\eta^2) + 9TN_0/2$$

C) nessuna delle altre risposte

D)
$$\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9T^2N_0/2$$

E)
$$\sigma_Y^2 = 9T^2\sigma_n^2 + 9TN_0/2$$

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

1

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) L'uscita del sistema equivalente è identica all'ingresso.
- D) nessuna delle altre risposte
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$
- **D)** il segnale x(t) non ammette serie di Fourier
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B**) y[n] = 10j
- **C**) y[n] = 0
- **D)** $y[n] = 10\delta[n]$
- **E**) y[n] = 5

Esercizio 8.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 10\cos[\pi n/2]$
- **B)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- C) nessuna delle altre risposte
- **D)** $y[n] = 20 \exp[j\pi n/2]$
- **E**) y[n] = 0

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = T^2 \sigma_n^2 + T^2 N_0 / 2$$

B)
$$\sigma_Y^2 = T^2(\sigma_n^2 - m_n^2) + TN_0/2$$

C)
$$\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$$

D)
$$\sigma_Y^2 = T^2 \sigma_n^2 + T N_0 / 2$$

E) nessuna delle altre risposte

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

A)
$$y[n] = 1/\sqrt{8}\cos[\pi n/2]$$

B)
$$y[n] = 16 \sin[\pi n/2]$$

C) nessuna delle altre risposte

D)
$$y[n] = 4 \exp[j\pi n/2]$$

E)
$$y[n] = 0$$

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro FIR
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ è instabile
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **E)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

A)
$$y[n] = 8\delta[n]$$

B)
$$y[n] = 8j$$

- C) nessuna delle altre risposte
- **D**) y[n] = 0
- **E**) y[n] = 4

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- **B**) -2
- C) 2j
- D) nessuna delle altre risposte
- **E**) 1

Esercizio 6.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- D) nessuna delle altre risposte
- ${f E}$) il segnale x(t) non ammette serie di Fourier

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **D)** $H_{eq}(z)$ corrisponde a un filtro FIR
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2
- **B**) j
- C) nessuna delle altre risposte
- **D**) 0
- **E**) 1

Esercizio 3

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2\cos[\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 2 \exp[j\pi n/2]$
- **D)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- E) nessuna delle altre risposte

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$

- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- ${f B}$) il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 6.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2\sigma_n^2 + 4T^2N_0/2$
- **B)** $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$
- C) $\sigma_Y^2 = 4T^2(\sigma_\eta^2 + m_\eta^2) + 4TN_0/2$
- D) nessuna delle altre risposte
- **E**) $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$

Esercizio 7.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- $\mathbf{A)} \ y[n] = 3\delta[n]$
- **B**) y[n] = 0
- C) nessuna delle altre risposte
- $\mathbf{D}) \ y[n] = j$
- **E**) y[n] = 3

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = T^2(\sigma_n^2 - m_n^2) + TN_0/2$$

B)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$$

C)
$$\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$$

E)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$$

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E**) $\mu_k = 0 \ \forall k$ pari, e $\mu_k = 12/(\pi k^2) \ \forall k$ dispari

Esercizio 3.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- D) nessuna delle altre risposte
- **E**) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- B) nessuna delle altre risposte
- \mathbf{C}) 0
- **D**) -2
- **E**) 1

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- **A)** $y[n] = 4 \exp[j\pi n/2]$
- **B**) y[n] = 0
- C) $y[n] = 4\sin[\pi n/2]$
- D) nessuna delle altre risposte
- **E)** $y[n] = 1/\sqrt{2}\cos[\pi n/2]$

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- B) nessuna delle altre risposte
- C) L'uscita del sistema equivalente è identica all'ingresso.
- **D)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **E**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- $\mathbf{A)} \ y[n] = 3\delta[n]$
- **B)** y[n] = 3
- $\mathbf{C}) \ y[n] = j$
- **D**) y[n] = 0
- E) nessuna delle altre risposte

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** y[n] = 0
- B) nessuna delle altre risposte
- C) $y[n] = 20 \exp[j\pi n/2]$
- **D)** $y[n] = 10\cos[\pi n/2]$
- E) $y[n] = 1/\sqrt{20} \sin[\pi n/2]$

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) j
- **B**) 2
- **C**) 1
- D) nessuna delle altre risposte
- \mathbf{E}) 0

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro FIR
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

Esercizio 6

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- ${f B}$) il segnale x(t) non ammette serie di Fourier
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- **E**) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- $\mathbf{A)} \ y[n] = 0$
- B) nessuna delle altre risposte
- C) y[n] = j
- $\mathbf{D}) \ y[n] = 3\delta[n]$
- **E)** y[n] = 3

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2\sigma_n^2 + 4TN_0/2$
- **B**) $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$
- C) $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- D) nessuna delle altre risposte
- E) $\sigma_Y^2 = 4T^2(\sigma_\eta^2 m_\eta^2) + 4TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 2

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A)
$$\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$$

B)
$$\mu_k = 0 \ \forall k \text{ pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \text{ dispari}$$

C) il segnale
$$x(t)$$
 non ammette serie di Fourier

D)
$$\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$$

E) nessuna delle altre risposte

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 9T^2(\sigma_n^2 - m_n^2) + 9TN_0/2$$

B)
$$\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$$

C)
$$\sigma_Y^2 = 9T^2\sigma_n^2 + 9T^2N_0/2$$

D)
$$\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$$

E) nessuna delle altre risposte

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

A) nessuna delle altre risposte

- **B**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- C) $H_{eq}(z)$ corrisponde a un filtro IIR
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- **E)** Il sistema $H_{eq}(z)$ è sempre stabile

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** -1/4
- **B)** 9/4
- C) nessuna delle altre risposte
- **D**) j/2
- \mathbf{E}) 0

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B**) y[n] = 4
- C) $y[n] = 8\delta[n]$
- D) nessuna delle altre risposte
- **E)** y[n] = 8j

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- **A)** $y[n] = 4 \exp[j\pi n/2]$
- **B)** $y[n] = 1/\sqrt{8}\cos[\pi n/2]$
- **C**) y[n] = 0
- D) nessuna delle altre risposte
- E) $y[n] = 16 \sin[\pi n/2]$

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x=20$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) -1/4
- **B**) 0
- C) nessuna delle altre risposte
- **D**) j/2
- **E)** 9/4

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- C) y[n] = j
- **D**) y[n] = 3
- **E)** $y[n] = 3\delta[n]$

Esercizio 3.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A**) y[n] = 0
- **B)** $y[n] = 10\cos[\pi n/2]$
- C) $y[n] = 20 \exp[j\pi n/2]$
- **D)** $y[n] = 1/\sqrt{20} \sin[\pi n/2]$
- E) nessuna delle altre risposte

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **B)** Il sistema $H_{eq}(z)$ è instabile
- C) $H_{eq}(z)$ corrisponde a un filtro FIR
- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$
- **B)** $\sigma_Y^2 = 16T^2(\sigma_n^2 + m_n^2) + 16TN_0/2$
- C) $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- D) nessuna delle altre risposte
- E) $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- **A)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ è instabile
- E) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- **B)** il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- **B**) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0 / 2$
- C) nessuna delle altre risposte
- **D)** $\sigma_Y^2 = T^2(\sigma_n^2 m_n^2) + TN_0/2$
- **E)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- C) nessuna delle altre risposte
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 2 \exp[j\pi n/2]$
- **C**) y[n] = 0
- **D)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- **E**) $y[n] = 2\cos[\pi n/2]$

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- B) nessuna delle altre risposte
- (C) -2
- **D**) 0
- **E**) 1

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 8j
- **B)** $y[n] = 8\delta[n]$
- $\mathbf{C}) \ y[n] = 0$
- **D**) y[n] = 4
- E) nessuna delle altre risposte

Esercizio 8. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A)** $y[n] = 2\cos[\pi n/2]$
- **B)** $y[n] = 1/\sqrt{2} \sin[\pi n/2]$
- **C**) y[n] = 0
- **D)** $y[n] = 2 \exp[j\pi n/2]$
- E) nessuna delle altre risposte

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) -2
- B) nessuna delle altre risposte
- C) 2j
- $\mathbf{D}) 0$
- **E**) 1

Esercizio 4.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$

D)
$$\sigma_Y^2 = 16T^2(\sigma_n^2 - m_n^2) + 16TN_0/2$$

E)
$$\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$$

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- B) L'uscita del sistema equivalente è identica all'ingresso.
- C) Il sistema $H_{eq}(z)$ è instabile
- **D)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 6.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.

Esercizio 7.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B**) y[n] = 3
- **C**) y[n] = 0
- $\mathbf{D}) \ y[n] = j$
- $\mathbf{E)} \ y[n] = 3\delta[n]$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- \mathbf{E}) il segnale x(t) non ammette serie di Fourier

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 2j
- **B**) -2
- \mathbf{C}) 0
- D) nessuna delle altre risposte
- **E**) 1

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **E)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A)** y[n] = 3
- **B**) $y[n] = 3\delta[n]$
- C) nessuna delle altre risposte
- $\mathbf{D}) \ y[n] = j$
- **E**) y[n] = 0

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- B) $H_{eq}(z)$ corrisponde a un filtro IIR
- C) Il sistema $H_{eq}(z)$ è instabile
- D) L'uscita del sistema equivalente è identica all'ingresso.
- E) nessuna delle altre risposte

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B**) $y[n] = 2\cos[\pi n/2]$
- C) $y[n] = 2 \exp[j\pi n/2]$
- **D**) y[n] = 0
- E) $y[n] = 1/\sqrt{2}\sin[\pi n/2]$

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B**) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- C) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$
- **D)** $\sigma_Y^2 = T^2(\sigma_\eta^2 m_\eta^2) + TN_0/2$
- **E)** $\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 1
- **C**) 2
- **D**) 0
- **E**) j

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

$$\mathbf{A)} \ y[n] = 0$$

B)
$$y[n] = 2\cos[\pi n/2]$$

C) nessuna delle altre risposte

D)
$$y[n] = 2 \exp[j\pi n/2]$$

E)
$$y[n] = 1/\sqrt{2}\sin[\pi n/2]$$

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

A) Il sistema
$$H_{eq}(z)$$
 è instabile

B) $H_{eq}(z)$ corrisponde a un amplificatore ideale

C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

- **D)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- E) nessuna delle altre risposte

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A**) y[n] = 0
- B) nessuna delle altre risposte
- **C**) y[n] = 3
- **D**) $y[n] = 3\delta[n]$
- $\mathbf{E}) \ y[n] = j$

Esercizio 7.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$
- \mathbf{D}) il segnale x(t) non ammette serie di Fourier
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- **B)** $\sigma_Y^2 = 16T^2\sigma_n^2 + 16T^2N_0/2$
- C) nessuna delle altre risposte
- **D)** $\sigma_Y^2 = 16T^2(\sigma_n^2 + m_n^2) + 16TN_0/2$
- E) $\sigma_Y^2 = 16T^2\sigma_n^2 + 16TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$$

B) nessuna delle altre risposte

C)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$$

D)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 + m_\eta^2) + TN_0/2$$

E)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 - m_\eta^2) + TN_0/2$$

Esercizio 2.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

A) nessuna delle altre risposte

B) $H_{eq}(z)$ corrisponde a un filtro FIR

C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi

D) Il sistema $H_{eq}(z)$ ha ROC |z| > 1

E) Il sistema $H_{eq}(z)$ è instabile

Esercizio 3.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$

B) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$

C) nessuna delle altre risposte

D) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$

E) il segnale x(t) non ammette serie di Fourier

Esercizio 4.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

A) 2

B) nessuna delle altre risposte

- **C**) 1
- **D**) j
- **E**) 0

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** y[n] = 10j
- B) nessuna delle altre risposte
- C) $y[n] = 10\delta[n]$
- $\mathbf{D}) \ y[n] = 0$
- **E**) y[n] = 5

Esercizio 6.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 16 \sin[\pi n/2]$
- C) $y[n] = 4 \exp[j\pi n/2]$
- **D**) y[n] = 0
- **E)** $y[n] = 1/\sqrt{8}\cos[\pi n/2]$

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 8.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}$, $-\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 1 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5$.
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** j/2
- B) nessuna delle altre risposte
- (C) -1/4
- **D**) 0
- **E)** 9/4

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- **B**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- C) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- D) nessuna delle altre risposte
- **E)** Il sistema $H_{eq}(z)$ è instabile

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

A) $y[n] = 4 \exp[j\pi n/2]$

- B) nessuna delle altre risposte
- C) $y[n] = 1/\sqrt{2}\cos[\pi n/2]$
- **D**) y[n] = 0
- **E)** $y[n] = 4\sin[\pi n/2]$

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 4
- B) nessuna delle altre risposte
- **C**) y[n] = 0
- $\mathbf{D)} \ y[n] = 8\delta[n]$
- **E)** y[n] = 8j

Esercizio 6. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 7

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** il segnale x(t) non ammette serie di Fourier
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = 16T^2\sigma_n^2 + 16T^2N_0/2$
- C) $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- **D)** $\sigma_Y^2 = 16T^2(\sigma_n^2 + m_n^2) + 16TN_0/2$
- E) $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16TN_0/2$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$
- C) il segnale x(t) non ammette serie di Fourier
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 4. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 4
- B) nessuna delle altre risposte
- **C**) y[n] = 0
- **D**) $y[n] = 8\delta[n]$
- **E)** y[n] = 8j

Esercizio 3.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

- **A)** $y[n] = 4 \exp[j\pi n/2]$
- **B)** $y[n] = 1/\sqrt{8}\cos[\pi n/2]$
- $\mathbf{C}) \ y[n] = 0$
- **D)** $y[n] = 16\sin[\pi n/2]$
- E) nessuna delle altre risposte

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$

- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) -2
- **B**) 1
- C) nessuna delle altre risposte
- **D**) 2j
- **E**) 0

Esercizio 6.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. In
oltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- D) nessuna delle altre risposte
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 4T^2(\sigma_n^2 m_n^2) + 4TN_0/2$
- **D)** $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$
- **E)** $\sigma_Y^2 = 4T^2\sigma_n^2 + 4T^2N_0/2$

Esercizio 8.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) nessuna delle altre risposte
- B) L'uscita del sistema equivalente è identica all'ingresso.
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 1
- B) nessuna delle altre risposte
- **C**) 2
- **D**) j
- **E**) 0

Esercizio 2.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- **A)** $y[n] = 20 \exp[j\pi n/2]$
- B) nessuna delle altre risposte
- C) $y[n] = 10\cos[\pi n/2]$
- **D)** $y[n] = 1/\sqrt{20}\sin[\pi n/2]$
- **E**) y[n] = 0

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- C) $\sigma_Y^2 = T^2(\sigma_n^2 m_n^2) + TN_0/2$
- **D**) $\sigma_Y^2 = T^2 \sigma_n^2 + T^2 N_0/2$
- E) $\sigma_V^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** y[n] = 10j
- B) nessuna delle altre risposte
- **C**) y[n] = 5
- **D**) y[n] = 0
- **E)** $y[n] = 10\delta[n]$

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è instabile
- **B)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** $H_{eq}(z)$ corrisponde a un filtro FIR

Esercizio 7. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- E) il segnale x(t) non ammette serie di Fourier

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 2 \cdot tri[2t/T] - 2 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- ${\bf A}$) il segnale x(t) non ammette serie di Fourier
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{pari}$
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E**) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 8/(\pi k^2) \ \forall k \ \text{dispari}$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B)** y[n] = 2
- $\mathbf{C}) \ y[n] = 4j$
- $\mathbf{D}) \ y[n] = 4\delta[n]$
- **E**) y[n] = 0

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- B) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- E) nessuna delle altre risposte

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- B) L'uscita del sistema equivalente è identica all'ingresso.
- C) nessuna delle altre risposte
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E)** $H_{eq}(z)$ corrisponde a un filtro IIR

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) -2
- **B**) 2j
- \mathbf{C}) 0
- D) nessuna delle altre risposte
- **E**) 1

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 4T^2(\sigma_n^2 m_n^2) + 4TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = 4T^2\sigma_n^2 + 4TN_0/2$
- **D)** $\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4T^2N_0/2$
- **E)** $\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$

Esercizio 8.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B**) y[n] = 0
- C) $y[n] = 2\cos[\pi n/2]$
- **D)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$
- **E)** $y[n] = 2 \exp[j\pi n/2]$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_V^2 = T^2 \sigma_n^2 + T N_0 / 2$$

B)
$$\sigma_Y^2 = T^2(\sigma_\eta^2 - m_\eta^2) + TN_0/2$$

C)
$$\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$$

E)
$$\sigma_Y^2 = T^2(\sigma_n^2 + m_n^2) + TN_0/2$$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 1
- **B**) 2
- **C**) 0
- **D**) j
- E) nessuna delle altre risposte

Esercizio 3. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

A)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$$

C)
$$R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+4z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=4\sin[\pi n/2]$

A)
$$y[n] = 0$$

B)
$$y[n] = 4 \exp[j\pi n/2]$$

C)
$$y[n] = 1/\sqrt{8}\cos[\pi n/2]$$

- D) nessuna delle altre risposte
- E) $y[n] = 16 \sin[\pi n/2]$

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B**) y[n] = 2
- C) $y[n] = 4\delta[n]$
- **D)** y[n] = 4j
- E) nessuna delle altre risposte

Esercizio 7.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **B**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- C) Il sistema $H_{eq}(z)$ è sempre stabile
- D) nessuna delle altre risposte
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove q(t) = tri[2t/T] - tri[(2(t-T)/T]]. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 4/(\pi k)^2 \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 4/(\pi k^2) \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 8/(\pi k)^2 \ \forall k \ \text{pari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t - \varphi_0) - x(t)\sin(2\pi f_c t - \varphi_1)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$ e che φ_0 e φ_1 sono variabili aleatorie uniformemente distribuite tra $-\pi$ e π , statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5\cos(2\pi f_c \tau) 0.5R_x(\tau)\sin(2\pi f_c \tau)$

Esercizio 2.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- B) nessuna delle altre risposte
- **C**) y[n] = 2
- $\mathbf{D)} \ y[n] = 4j$
- E) $y[n] = 4\delta[n]$

Esercizio 3.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E)** $H_{eq}(z)$ corrisponde a un filtro FIR

Esercizio 4.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+5z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=2\cos[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 10 \cos[\pi n/2]$
- C) $y[n] = 1/\sqrt{20}\sin[\pi n/2]$

- **D**) y[n] = 0
- E) $y[n] = 20 \exp[j\pi n/2]$

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = T per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T^3$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T^3/3$.
- **E)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 10T^3$.

Esercizio 6.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- **B**) j
- C) nessuna delle altre risposte
- **D**) 2
- **E**) 1

Esercizio 7.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$
- **B)** $\sigma_Y^2 = 9T^2(\sigma_n^2 + m_n^2) + 9TN_0/2$
- C) $\sigma_Y^2 = 9T^2(\sigma_n^2 m_n^2) + 9TN_0/2$
- **D)** $\sigma_Y^2 = 9T^2\sigma_n^2 + 9T^2N_0/2$
- E) nessuna delle altre risposte

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 3 \cdot tri[2t/T] - 3 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k^2) \ \forall k \ \text{dispari}$
- **B)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 24/(\pi k)^2 \ \forall k \ \text{pari}$
- C) il segnale x(t) non ammette serie di Fourier
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 12/(\pi k)^2 \ \forall k \ \text{dispari}$
- E) nessuna delle altre risposte

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 3 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A)
$$\sigma_Y^2 = 9T^2(\sigma_\eta^2 + m_\eta^2) + 9TN_0/2$$

B)
$$\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9TN_0/2$$

C) nessuna delle altre risposte

D)
$$\sigma_Y^2 = 9T^2\sigma_\eta^2 + 9T^2N_0/2$$

E)
$$\sigma_Y^2 = 9T^2(\sigma_\eta^2 - m_\eta^2) + 9TN_0/2$$

Esercizio 2. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

A)
$$R_y(\tau) = 0.5 \cos(2\pi f_c \tau) - 0.5 R_x(\tau) \sin(2\pi f_c \tau)$$

B)
$$R_y(\tau) = 0.5[1 - R_x(\tau)]\cos(2\pi f_c \tau)$$

C)
$$R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

D)
$$R_y(\tau) = 0.5[1 + R_x(\tau)] \cos(2\pi f_c \tau)$$

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) nessuna delle altre risposte
- **B**) 1
- \mathbf{C}) 0
- **D**) 2j
- **E**) -2

Esercizio 4.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2
- B) nessuna delle altre risposte

- C) Il sistema $H_{eq}(z)$ è instabile
- **D**) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** $H_{eq}(z)$ corrisponde a un amplificatore ideale

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t) = 2 per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- B) nessuna delle altre risposte
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T/3$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.

Esercizio 6

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

- A) nessuna delle altre risposte
- **B**) y[n] = 4j
- **C**) y[n] = 2
- $\mathbf{D)} \ y[n] = 4\delta[n]$
- **E**) y[n] = 0

Esercizio 7.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- A) nessuna delle altre risposte
- **B)** $y[n] = 4 \exp[j\pi n/2]$
- C) $y[n] = 4\sin[\pi n/2]$
- **D)** $y[n] = 1/\sqrt{2}\cos[\pi n/2]$
- **E**) y[n] = 0

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$
- B) il segnale x(t) non ammette serie di Fourier
- C) nessuna delle altre risposte
- **D)** $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 2 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

A) nessuna delle altre risposte

B)
$$\sigma_Y^2 = 4T^2\sigma_\eta^2 + 4TN_0/2$$

C)
$$\sigma_Y^2 = 4T^2(\sigma_\eta^2 - m_\eta^2) + 4TN_0/2$$

D)
$$\sigma_Y^2 = 4T^2\sigma_n^2 + 4T^2N_0/2$$

E)
$$\sigma_Y^2 = 4T^2(\sigma_n^2 + m_n^2) + 4TN_0/2$$

Esercizio 2.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

A) nessuna delle altre risposte

B) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$

C) $\mu_k = 0 \ \forall k \ \text{pari, e } \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$

D) $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

E) il segnale x(t) non ammette serie di Fourier

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 2. L'uscita del filtro, y[n], vale

A) y[n] = 0

B) y[n] = 2

C) $y[n] = 4\delta[n]$

D) nessuna delle altre risposte

E) y[n] = 4j

Esercizio 4.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove r(t)=2 per $|t| \leq T/2$ e r(t)=0 altrove. Inoltre $\alpha_i=\frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

1

- A) nessuna delle altre risposte
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 20T$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 20$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x=20T/3$.

Esercizio 5. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_1)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, e che t_0 e t_1 sono variabili aleatorie uniformemente distribuite tra 0 e $1/f_c$ e statisticamente indipendenti tra loro e da x(t).

- **A)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Esercizio 6.

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+2z^{-1})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\cos[\pi n/2]$

- **A**) y[n] = 0
- B) nessuna delle altre risposte
- C) $y[n] = 2\cos[\pi n/2]$
- **D)** $y[n] = 2 \exp[j\pi n/2]$
- **E)** $y[n] = 1/\sqrt{2}\sin[\pi n/2]$

Esercizio 7.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- B) nessuna delle altre risposte
- C) $H_{eq}(z)$ corrisponde a un filtro FIR
- **D)** Il sistema $H_{eq}(z)$ è instabile
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1

Esercizio 8.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- A) 2j
- B) nessuna delle altre risposte
- **C**) 1
- **D**) -2
- **E**) 0

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 2. All'ingresso del filtro viene inviato il segnale x[n] = 5. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B**) y[n] = 5
- **C**) y[n] = 10j
- $\mathbf{D)} \ y[n] = 10\delta[n]$
- E) nessuna delle altre risposte

Esercizio 2.

Sia dato il segnale

$$x(t) = \sum_{i=-\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- **D)** x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.
- E) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.

Esercizio 3.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 4 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- A) nessuna delle altre risposte
- **B)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 + m_\eta^2) + 16TN_0/2$
- C) $\sigma_Y^2 = 16T^2\sigma_\eta^2 + 16T^2N_0/2$
- **D)** $\sigma_Y^2 = 16T^2(\sigma_\eta^2 m_\eta^2) + 16TN_0/2$
- E) $\sigma_Y^2 = 16T^2\sigma_n^2 + 16TN_0/2$

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos[2\pi f_c(t - t_0)] - x(t)\sin[2\pi f_c(t - t_0)]$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che t_0 è una variabile aleatoria uniformemente distribuita tra 0 e $1/f_c$, e che x(t) e t_0 sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- **D)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- **A)** $y[n] = 4 \exp[j\pi n/2]$
- **B)** $y[n] = 4\sin[\pi n/2]$
- C) $y[n] = 1/\sqrt{2}\cos[\pi n/2]$
- **D**) y[n] = 0
- E) nessuna delle altre risposte

Esercizio 6.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{1}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- **A)** Il sistema $H_{eq}(z)$ è sempre stabile
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 1 passo
- **D)** $H_{eq}(z)$ corrisponde a un filtro IIR
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 1

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A)** -1/4
- **B**) 0
- **C**) j/2
- D) nessuna delle altre risposte
- **E)** 9/4

Esercizio 8.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- **A)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- ${f B}$) il segnale x(t) non ammette serie di Fourier
- C) $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- D) nessuna delle altre risposte
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari}, \ e \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

Teoria dei segnali e Metodi di elaborazione dei segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. Sia dato il segnale

$$x(t) = \sum_{i = -\infty}^{\infty} \alpha_i r(t - iT)$$

dove $r(t) = \frac{1}{\sqrt{T}}$ per $|t| \le T/2$ e r(t) = 0 altrove. Inoltre $\alpha_i = \frac{1}{2^{|i|}}, -\infty < i < \infty$. Dire quali delle seguenti affermazioni è corretta.

- A) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5/3$.
- B) x(t) è un segnale a energia finita, e la sua energia vale $E_x = 5T/3$.
- C) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 10/T$.
- D) nessuna delle altre risposte
- E) x(t) è un segnale a potenza media finita, e la sua potenza media vale $P_x = 5/T$.

Esercizio 2.

Siano dati due sistemi numerici con funzioni di trasferimento $H_1(z) = \frac{2}{1-z^{-1}}$, |z| > 1, e $H_2(z) = \frac{2z^{-1}}{z^{-1}-1}$, |z| > 1. I due sistemi vengono connessi in parallelo; sia $H_{eq}(z)$ la funzione di traferimento del sistema equivalente. Dire quali di queste affermazioni è corretta.

- A) $H_{eq}(z)$ corrisponde a un amplificatore ideale
- B) nessuna delle altre risposte
- C) Il sistema $H_{eq}(z)$ è instabile
- $\mathbf{D})\;$ Il sistema $H_{eq}(z)$ rappresenta un ritardatore di 2 passi
- **E)** Il sistema $H_{eq}(z)$ ha ROC |z| > 2

Esercizio 3.

Sia dato un filtro numerico con risposta all'impulso $h[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Il modulo quadro della risposta in frequenza del filtro, in f = 1/2, vale

- **A**) 0
- **B)** 9/4
- C) nessuna delle altre risposte
- D) -1/4
- **E**) j/2

Esercizio 4. Calcolare la funzione di autocorrelazione del processo casuale

$$y(t) = \cos(2\pi f_c t + \varphi) - x(t)\sin(2\pi f_c t + \varphi)$$

sapendo che x(t) è un processo casuale stazionario a media nulla con funzione di autocorrelazione $R_x(\tau)$, che φ è una variabile aleatoria uniformemente distribuita tra 0 e 2π , e che x(t) e φ sono statisticamente indipendenti tra loro.

- **A)** $R_y(\tau) = 0.5[1 + R_x(\tau)]\cos(2\pi f_c \tau)$
- **B)** $R_y(\tau) = 0.5 \cos(2\pi f_c \tau) 0.5 R_x(\tau) \sin(2\pi f_c \tau)$
- C) $R_y(\tau) = 0.5[1 R_x(\tau)]\cos(2\pi f_c \tau)$
- **D)** $R_y(\tau) = [1 + R_x(\tau)] \cos(2\pi f_c \tau)$

Sia dato un filtro numerico causale con funzione di trasferimento $H(z)=(1+z^{-2})(1+z^{-2})$. Si calcoli y[n], la risposta del filtro all'ingresso $x[n]=\sin[\pi n/2]$

- **A)** y[n] = 0
- B) nessuna delle altre risposte
- C) $y[n] = 1/\sqrt{2}\cos[\pi n/2]$
- **D)** $y[n] = 4 \exp[j\pi n/2]$
- **E)** $y[n] = 4\sin[\pi n/2]$

Esercizio 6.

Sia dato il segnale $x(t) = \sum_{k=-\infty}^{\infty} q(t-2kT)$ dove $q(t) = 4 \cdot tri[2t/T] - 4 \cdot tri[(2(t-T)/T]]$. Inoltre tri[t/A] = 1 - |t|/A per |t| < A e 0 altrove. Siano μ_k , $-\infty < k < \infty$ i coefficienti dello sviluppo in serie di Fourier di x(t). Dire quale delle seguenti affermazioni è corretta.

- A) il segnale x(t) non ammette serie di Fourier
- B) nessuna delle altre risposte
- C) $\mu_k = 0 \ \forall k \ \text{pari, e} \ \mu_k = 16/(\pi k^2) \ \forall k \ \text{dispari}$
- **D)** $\mu_k = 0 \ \forall k \ \text{pari}, \ e \ \mu_k = 16/(\pi k)^2 \ \forall k \ \text{dispari}$
- **E)** $\mu_k = 0 \ \forall k \ \text{dispari, e} \ \mu_k = 32/(\pi k)^2 \ \forall k \ \text{pari}$

Esercizio 7.

Sia dato un filtro numerico con risposta all'impulso $h[n] = K(\delta[n] - \delta[n-1])$ e K = 1. All'ingresso del filtro viene inviato il segnale x[n] = 3. L'uscita del filtro, y[n], vale

- **A)** y[n] = 0
- **B**) $y[n] = 3\delta[n]$
- **C**) y[n] = 3
- D) nessuna delle altre risposte
- $\mathbf{E}) \ y[n] = j$

Esercizio 8.

Sia dato il processo casuale $X(t) = \eta + n(t)$, dove η è una variabile casuale con valore atteso $m_{\eta} \neq 0$ e varianza σ_{η}^2 , e n(t) è un processo di rumore gaussiano bianco, statisticamente indipendente da η , con densità spettrale di potenza $G_n(f) = N_0/2$. X(t) passa attraverso un sistema LTI causale, reale e stabile con risposta all'impulso h(t) = 1 per $0 \leq t \leq T$ e h(t) = 0 altrove. Sia Y(t) il processo casuale all'uscita di tale sistema. Si calcoli la varianza di Y(t), σ_Y^2 .

- **A)** $\sigma_Y^2 = T^2(\sigma_\eta^2 + m_\eta^2) + TN_0/2$
- B) nessuna delle altre risposte
- C) $\sigma_Y^2 = T^2(\sigma_n^2 m_n^2) + TN_0/2$
- **D**) $\sigma_Y^2 = T^2 \sigma_\eta^2 + T N_0 / 2$
- **E)** $\sigma_Y^2 = T^2 \sigma_\eta^2 + T^2 N_0/2$