On Homogeneous Spiking Neural P System Variants

Ren Tristan A. de la Cruz¹, Francis George C. Cabarle^{1,2}, Iva Cedric H. Macababayao¹, Henry N. Adorna¹, and Xiangxiang Zeng³

¹Algorithms and Complexity Laboratory
Department of Computer Science, University of the Philippines - Diliman
Diliman 1101, Quezon City, Philippines

²Shenzhen Research Institute of Xiamen University
Xiamen University, Shenzhen 518000, Guangdong, China.

³ School of Information Science and Engineering
Hunan University 410082, Changsha, China
radelacruz@up.edu.ph, fccabarle@up.edu.ph, ivan.cedric10@gmail.com,
hnadorna@dcs.upd.edu.ph, zxxhust@gmail.com

Abstract. (ABSTRACT)

Keywords: Membrane Computing, Spiking Neural P Systems, Homogeneous Neurons, Structural Plasticity

- 1 Introduction
- 2 Spiking Neural P System and Some Variants
- 3 Homogenization of Spiking Neural P Systems

A state transition diagram will be used to represent the activities of a neuron. A state is a set of spike counts. For example, the set $\{4,5\}$ represents spike counts 4 and 5, the set $\{0,2,4,8,\ldots\}$ represents even spike counts, and the set $\{15,20,25,30,35,\ldots\}$ represents spike counts that are multiples of 5 starting from 15

If a neuron has n spikes, the neuron is said to be in state S if $n \in S$. For example, let n = 10 be the number spikes in the neuron and $S_1 = \{1\}$, $S_2 = \{2, 4, 9, 10, ...\}$, $S_3 = \{5, 10, 15, 20, ...\}$ be states, the neuron is not in state S_1 since $n \notin S_1$ but it is in state S_2 and S_3 since $n \in S_2$ and $n \in S_3$. States can intersect since they are sets which means a neuron can be in multiple states at the same time.

Most states that are associated with a given neuron represent the regular expressions of the rules in the neuron. For example, in Figure 1 neuron 1 have the rules $r_1: a/a \to \lambda$ and $r_2: a(a^2)^+/a^2 \to a$, the state $S_1 = \{1\}$ represents the regular expression a of rule r_1 while the state $S_2 = \{3, 5, 7, 9, 11, ...\}$ represents the regular expression $a(a^2)^+$ of rule r_2 . Neuron 1 is

Figure 1

Fig. 1. Example Neurons