(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-15158

(P2001-15158A)

(43)公開日 平成13年1月19日(2001.1.19)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
HO1M 10/40		H 0 1 M 10/40	A 5H022
			B 5H029
2/34		2/34	Α

審査請求 未請求 請求項の数15 OL (全 13 頁)

(21)出願番号	特願平11-184931	(71) 出題人 000005821 松下電器産業株式会社
(22)出顧日	平成11年6月30日(1999.6.30)	大阪府門真市大字門真1006番地
		(72) 発明者 液邊 庄一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(72)発明者 岩本 和也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代理人 100097445 弁理士 岩橋 文雄 (外2名)

最終頁に絞く

(54) 【発明の名称】 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器

(57)【要約】

【課題】 安全性と長期信頼性に優れた電池および携帯情報機器を提供する。

【解決手段】 再充電可能な正極と負極と非水電解液とを用いる非水電解液二次電池において、半経験的分子軌道計算法でハミルトニアンにPM3法を用いて計算したHOMOエネルギー(最高占有軌道エネルギー)が一8.5 eV~11.0 eVであり、且つLUMOエネルギー(最低空軌道エネルギー)が一0.135 eV~3.5 eVである有機化合物を電解液添加剤と非水溶媒との合計に対して0.1~20重量%の範囲において添加した電池および充電制御システムを構成したものである。

BEST AVAILABLE COPY

(2)

【特許請求の範囲】

【請求項 】】 リチウム含有複合酸化物を正極活物質と し、リチウムの吸蔵、放出が可能な材料を負極材料と し、非水溶媒を含む非水電解液を用い、前記非水電解液 中に、半経験的分子軌道計算法でハミルトニアンにPM 3法を用いて計算したHOMOエネルギー(最高占有軌 道エネルギー) が-8.5eV~-11.0eVであ り、目つLUMOエネルギー(最低空軌道エネルギー) が -0.135eV~3.5eVである有機化合物を 媒と前記有機化合物の総量との合計に対して0.1~2 0重量%の範囲にある非水電解液二次電池。

【請求項2】 非水電解液中に含有する有機化合物が、 (化1) で表される請求項1記載の非水電解液二次電

【化1】

(R,~R。: Hもしくは以下の条件を満たす置換基(H の数は5個以下)

アルキル基(二重結合を含んでもよい)

1. 2位で環を形成してもよい(環中にヘテロ原子を含 んでもよい)

アリール基

シクロヘキサン (環中にヘテロ原子を含んでもよい) アミノ基(アリール基をもってもよい))

【請求項3】 非水電解液中の(化1)で表される有機 化合物が、ヘキサフェニルベンゼン、pーテルフェニ ル、1-フェニルピペラジン、1,2,3,4-テトラ ヒドロイソキノリン、フェニルシクロヘキサン、1, 3.5, -トリフェニルベンゼン、ドデカヒドロトリフ ェニレン、ジビニルベンゼン、1,4-ジシクロヘキシ ルベンゼンからなる群から選ばれた1種以上である請求 項2記載の非水電解液二次電池。

【請求項4】 非水電解液中に含有する有機化合物が、 (化2) で表される請求項1記載の非水電解液二次電 池.

【化2】

(R,~R.: Hもしくは以下の条件を満たす置換基(H の数は3個以下)

アルキル基(二重結合を含んでもよい)

アルキル基 (エステル結合を含んでもよい) アルキル基 (脂環式化合物を含んでもよい) アルコキシル基

アリール基(R,,R,もしくはR,,R,で環を形成しても

シクロヘキサン(環中にヘテロ原子を含んでもよい)) 【請求項5】 非水電解液中の(化2)で表される有機 化合物が、tープチルビニルエーテル、メタクリル酸メ チルモノマー、ピニルシクロヘキサン、2、3-ジメチ 1種類以上含有し、前記有機化合物の総量が前記非水溶 10 ルー1、3-ブタジエン、メチレンシクロヘキサンから なる群から選ばれた 1 種以上である請求項 4 記載の非水 電解液二次電池。

> 【請求項6】 非水電解液中に含有する有機化合物が、 (化3) で表される請求項1記載の非水電解液二次電

[化3]

20

(R,~R,:以下の条件を満たす置換基 アルキル基

アリールアルキル基

アリール基

ナフチル基)

【請求項7】 非水電解液中に含有する有機化合物がト リベンジルアミン、N-フェニル-ジベンジルアミンか 30 ら選ばれた少なくとも1種類の有機化合物であることを 特徴とする請求項6記載の非水電解液二次電池。

【請求項8】 非水電解液中に含有する有機化合物が、 二重結合を持つ炭素数15~60の直鎖型有機化合物で あることを特徴とする請求項1記載の非水電解液二次電

【請求項9】 非水電解液中に含有する有機化合物が、 スクアレンもしくは (E) - β-ファルネセンであると とを特徴とする請求項8記載の非水電解液二次電池。

【請求項10】 非水電解液中に含有する有機化合物 40 が、トリス (4-メトキシフェニル) ホスフィン、(1 R) - (+) - αビネン、ジシクロペンタジエン、ジ (エチレングリコール) ジビニルエーテル、9、10-ジヒドロアントラセン、トリプチセン、[2,2]バラ シクロファンから選ばれた少なくとも 1 種類の有機化合 物であることを特徴とする請求項1記載の非水電解液二 次電池。

【請求項11】 リチウム含有複合酸化物を正極活物質 とし、リチウムの吸蔵、放出が可能な材料を負極とし、 非水電解液とを用いた非水電解液二次電池において、上 50 記正極と負極は電解液を含浸保持する絶縁性の微多孔性 ボリオレフィン膜もしくは電解液とボリマーからなり、 少なくとも一部がゲル化した電解質を介して対向してい るととを特徴とする請求項1~10記載の非水電解液二 次電池。

【請求項12】 請求項1~11記載の非水電解液二次 電池の電池温度の上昇を感知して充電の回路を切断する 機能を持つ非水電解液二次電池の充電制御システム。

【請求項13】 前記電池温度の上昇を感知して充電の 回路を切断する機能が、正特性サーミスタ(PTC)も 二次電池の充電制御システム。

【請求項14】 前記正特性サーミスタ (PTC) もし くは温度ヒューズの作動温度が60~120℃の範囲で あることを特徴とする請求項13記載の非水電解液二次 電池の充電制御システム。

【請求項15】 請求項1~11のいずれかに記載の非 水電解液二次電池、もしくは請求項1~11のいずれか に記載の非水電解液二次電池と請求項12~14のいず れかに記載の非水二次電池の充電制御システムとを搭載 した携帯電話、携帯情報端末機器、カムコーダ、パーソ 20 ナルコンピュータ、PDA、携帯音響機器、電気自動 車、ロードレベリング用電源からなる群から選ばれる機 器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水電解液二次電 池および前記電池の充電制御システムに関する。

[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電 り、これらの駆動用電源として小型、軽量で高エネルギ 一密度を有する二次電池への要求が高い。この中でリチ ウムを活物質とする負極を用いた非水電解液二次電池は とりわけ高電圧、高エネルギー密度を有する電池として 期待が大きい。

【0003】上述の電池では、正極活物質に4V級の電 圧を示すリチウム含有金属酸化物が用いられ、負極には 例えば炭素質材料などのリチウムをインターカレート、 デインターカレートできる材料が用いられる。

全性の確保は最も重要な課題の一つである。

【0005】特に、リチウムイオン二次電池において は、例えば、充電制御回路の故障等により所定の充電電 圧を超えて充電された場合、過充電状態となり、正極の リチウムイオンが過剰に引き抜かれて負極に移動し、所 定の設計容量以上のリチウムが負極に吸蔵もしくは負極 表面に金属リチウムとして析出することになる。このよ うな状態で更に強制的に充電を続けた場合、電池の内部 抵抗が上昇し、ジュール熱による発熱が非常に大きくな り、異常発熱や最悪の場合熱暴走に至る場合がある。と 50 し、リチウムの吸蔵、放出が可能な材料を負極とし、非

のような課題を解決するために例えば(米国特許第49 43497号明細書) に記載されるように電池の内圧変 化を感知して充電電流を遮断する手段等が一般的に用い られている。

【0006】しかし、この様な機械的電流遮断機構で は、コストダウンが難しい上、電池が小型、薄型化する に従い、構造的に電池内部に挿入することが困難になっ てきている。

【0007】との様な課題に対し、電解液に可逆的な酸 しくは温度ヒューズである請求項12記載の非水電解液 10 化還元反応を起とす添加剤を電池内に添加し、レドック スシャトルとして電池内に投入された電気エネルギーを 自己消費する方法が提案されている。

> 【0008】(例えば、特開平1-206571号公 報、特開平6-338347号公報、特開平7-302 614号公報など)。

> 【0009】しかし、このようなレドックスシャトルを 用いた方法では、過充電電流が大きくなった場合、電荷 移動反応速度、リチウムイオンの移動速度に限界がある ため充分に安全であるとは言えない。

【0010】との様な課題に対し、例えば特開平9-5 0822号公報、特開平10-50342号公報では電 池内にメトキシ基とハロゲン基を有する芳香族化合物を 添加し、過充電時にとれらの添加剤が重合することによ り温度上昇を引き起とし安全性を確保する手段が提案さ れている。

【0011】また、特開平9-106835号公報、特 開平10-321258号公報では電解液にピフェニル やチオフェンを添加し、過充電時にこれらの添加剤が重 合し電池の電圧を上げる、電池の内圧を上げる、もしく 子機器のポータブル化、コードレス化が急速に進んでも 30 は導電性高分子を構成し、電池内に電子移動できるパス を生成せしめることによって過充電時の熱暴走を防止す る方法が提案されている。

. [0012]

【発明が解決しようとする課題】上述のような添加剤を 用いた場合、過充電時の安全性が向上する結果が得られ たが、電池の本質的な特性であるサイクル特性や保存特 性などが著しく低下することがわかった。

【0013】との様な劣化後の電池を分解、観察すると とにより電池の劣化要因の解析を行った結果、これらの 【0004】とのような、非水電解液電池において、安 40 添加剤が負極表面上で還元分解されその分解生成物が負 極表面を被覆し、放電特性を劣化させていることが明ら かとなった。

> 【0014】本発明はこのような課題を解決するもので あり、電池の本質的に必要とされる特性であるサイクル 特性、保存特性を良好に維持しつつ、過充電時における 安全性が確保された優れた電池を提供するものである。 [0015]

> 【課題を解決するための手段】本発明は、かかる問題を 解決するためにリチウム含有複合酸化物を正極活物質と

水溶媒を含む非水電解液を用い、前記非水電解液中に、 半経験的分子軌道計算法でハミルトニアンに PM 3 法を 用いて計算したHOMOエネルギー(最高占有軌道エネ ルギー) が-8.5eV~-11.0eVであり、且つ LUMOエネルギー (最低空軌道エネルギー)が-0. 135eV~3.5eVである有機化合物を電解液添加 剤として含有するものである。

【0016】添加剤の量としては非水溶媒と添加剤との 合計に対して0.1~20重量%の範囲において添加す ることが望ましい。

【0017】との様な添加剤として、(化1)で表され るような芳香族化合物がある。

[0018] (化1)

す置換基 (Hの数は5個以下)

アルキル基(二重結合を含んでもよい)

1. 2位で環を形成してもよい(環中にヘテロ原子を含 んでもよい)

アリール基

シクロヘキサン (環中にヘテロ原子を含んでもよい) アミノ基(アリール基をもってもよい))

例えばこの様な芳香族化合物の具体例としてはヘキサフ ェニルベンゼン、フェニルシクロヘキサン、1,3,5 ートリフェニルベンゼン、p-テルフェニル、ドデカヒ 30 **ドロトリフェニレン、1-フェニルピペラジン、ジビニ** ルベンゼン、ジシクロヘキシルベンゼンなどが挙げられ る..

【0020】また、このほかに添加剤として(化2)で 表される不飽和脂肪酸がある。

【0021】(化2)

[0022] (R,~R,: Hもしくは以下の条件を満た す置換基(Hの数は3個以下)

アルキル基(二重結合を含んでもよい)

アルキル基 (エステル結合を含んでもよい)

アルキル基 (脂環式化合物を含んでもよい)

アルコキシル基

アリール基(R,,R,もしくはR,,R,で環を形成しても よい)

シクロヘキサン(環中にヘテロ原子を含んでもよい))

とのような不飽和脂肪酸化合物としてはビニルシクロへ キサン、tープチルビニルエーテル、メタクリル酸メチ ルモノマー、cis-スチルベン、メチレンシクロヘキ サン、テトラフェニルエチレン、2、3-ジメチルー 1.3-ブタジエンが挙げられる。

【0023】また、添加剤として(化3)で表されるよ うなアミン類でもよい。

[0024](化3)

【0025】(R1~R1:以下の条件を満たす置換基 アルキル基

アリールアルキル基

アリール基

ナフチル基)

【0019】(R,~R。: Hもしくは以下の条件を満た 20 とのようなアミン類化合物としては例えばトリベンジル アミン、N-フェニル-ジベンジルアミンが挙げられ

> 【0026】また、添加剤として二重結合を持つ直鎖型 有機化合物でもよい。

【0027】 この様な添加剤としてスクアレンもしくは (E) - β-ファルネセンが挙げられる。

【0028】また、この他にも添加剤としてトリス(4 ーメトキシフェニル) ホスフィン、(1R)- (+) αピネン、ジシクロペンタジエン、ジ (エチレングリコ ール) ジビニルエーテル、9、10-ジヒドロアントラ セン、トリプチセン、 [2,2] パラシクロファンなど が具体的な例として挙げられる。

【0029】本発明は正極と負極が電解液を含浸保持す る絶縁性の微多孔性ポリオレフィン膜もしくは電解液と ポリマーからなり、少なくとも一部がゲル化した電解質 を介して対向している非水電解液電池においてより有効 に機能する。

【0030】また、電池温度の上昇を感知して充電の回 路を切断する機能を持たせた非水電解液二次電池の充電 40 制御システムと併用することでより信頼性を高めること ができる。

【0031】電池温度の上昇を感知して充電の回路を切 断する方法としては正特性サーミスタ(PTC)もしく は温度ヒューズなどが好ましく、これら正特性サーミス タ(PTC)もしくは温度ヒューズの作動温度は60~ 120℃の範囲であるときに最も高い信頼性が得られ

【0032】との様な非水電解液二次電池と非水電解液 二次電池を充電する制御システムを搭載することによ

50 り、より長期的寿命に優れ高い信頼性と安全性を有する

機器が実現可能である。

[0033]

【発明の実施の形態】本発明において、非水電解液中に 含有する有機化合物は電池が過充電領域になった際に、 正極活物質上で電解重合を開始する。この反応によって 正極からリチウムイオンが引き抜かれる反応効率が著し く低下し、正極活物質の熱的な安定性の低下を防止する ことが出来る。

7

【0034】また、重合により生成した重合体は正極表面に生成するため正極活物質の電荷移動反応を阻害し、 電池の内部抵抗を極端に増大させることができ、電源か らの電流を停止させることができる。

【0035】また、例えば微多孔性のポリオレフィンフィルムをセパレータとして用いた電池においては、熱溶融に基因するセパレータのシャットダウン機構の発現によって過充電電流を停止させることが可能となる。

【0036】との場合、添加剤を加えているととによって正極からリチウムイオンが引き抜かれる反応効率が著しく低下し、正極活物質の熱的な安定性が保持された状態で電池温度が上昇するので、電池は異常発熱すること 20なく、電流が停止した時点で電池温度は徐々に低下し、安全性を確保するととが出来る。

【0037】また、電池外部に温度感知型の電流遮断スイッチ(例えば正特性サーミスタ(PTC)や温度ヒューズ)を設ける事によってより的確に電流を遮断し、安全性を確保することが出来る。

【0038】本発明における添加剤はレドックスシットルを目的としていないので酸化反応は不可逆であることが望ましく、酸化還元反応の可逆性を目的とした特開平7-362614号公報、特開平9-50822号公報 30とは目的が異なるものである。

【0039】本発明の本質的な機能として添加される有機化合物は電池が通常作動する電位領域(正極にLiCoO、負極に炭素質材料を用いた場合では3.0~4.3Vにおいて化学的に安定でなければならず、且つ過充電領域においては速やかに酸化重合する必要がある。

【0040】この様な電気化学的酸化反応は最も取り去りやすい占有電子の軌道エネルギーレベル(HOMOエネルギー(最高占有軌道エネルギー))を半経験的分子 40 軌道計算法でハミルトニアンにPM3法を用いて計算することが可能である。(最近はMOPACを用いてコンピュータで容易に計算することが出来る:例えば特開平6-333576号公報)

電気化学的耐酸化性とHOMOエネルギーの関係を調査した結果、HOMOエネルギーが-8.5 eV~-11.0 eVであるときに通常電池が使用される電位領域では安定で、且つ過充電になった場合に効率的に酸化電解重合することがわかった。従って、本発明における添加剤としての有機化合物はHOMOエネルギーが-8.

5 e V~-11.0 e Vであるととが望ましい。

[0041]また、特にとの様な電気化学的に酸化重合が起とりやすい有機化合物として芳香族化合物や、ビニル基を有する化合物である場合に変換効率が高く有効に酸化電解重合が進行することがわかった。

8

【0042】また、本発明において添加される有機化合物は通常使用される負極の電位領域(Li金属電極基準に対し0V~1.5V)において安定であることが必要である

【0043】添加される有機化合物の耐遏元性は分子軌道のLUMOエネルギー(最低空軌道エネルギー)と相関関係があることが知られている。(例えば特開平5-290882号公報)。

【0044】つまり、LUMOエネルギーが高いほど還元電位が低い、つまり還元されにくいことを意味する。 このようなLUMOエネルギーも同様に半経験的分子執 道計算法でハミルトニアンにPM3法を用いて計算する ことができる。

【0045】負極として例えば炭素質材料、Snもしく はSi化合物等を用いた場合、少なくともLUMOエネルギー(最低空軌道エネルギー)が-0.135eV~3.5eVであることが望ましく、特に0.3~3.5eVであるとより好ましい。

【0046】すなわちとのような有機化合物を含有する ととにより、過充電状態になっても安全で且つサイクル 特性、保存特性に優れた非水電解液二次電池を実現し た。

【0047】更に上記電池に電池温度の上昇を感知して 充電の回路を切断する機能として正特性サーミスタ(P TC)もしくは温度ヒューズであることを備えた非水電 解液二次電池の充電制御システムとする事により、より 信頼性の高い二次電池システムを提供することが出来 ス

[0048] 本発明で正極活物質に用いる好ましいリチウム含有複合酸化物としては、Li、CoO,、Li、NiO,(米国特許第4302518号)、Li、MnO,、Li、Co、Ni,、O,(特開昭63-299056号公報)、Li、Co、Ni, Co、V,、O, Li、Ni, M, O, (M=Ti、V、Mn、Fe)、Li、Co、Ni, M, O, (M=Ti、Mn、Al、Mg、Fe、Zr)、Li、Mn,O,、Li、Mn,O, (M=Na、Mg、Sc、Y、Fe、Co、Ni、Ti、Zr、Cu、Zn、Al、Pb、Sb) (こてでx=0~1.2、y=0~0.9、f=0.9

 $(CCCx=0\sim1.2, y=0\sim0.9, 1=0.9$ $\sim0.98, z=2.0\sim2.3, a+b+c=1.0$ $\leq a \leq 1, 0 \leq b \leq 1, 0 \leq c < 1)$ があげられる。と CCC、上記のx 値は、充放電開始前の値であり、充放電 により増減する。

[0049] 本発明で正極活物質に用いるリチウム含有 複合酸化物はリチウムの炭酸塩、硝酸塩、酸化物又は水

酸化物とコバルト、マンガンあるいはニッケル等の遷移 金属の炭酸塩、硝酸塩、酸化物又は水酸化物等を所望の 組成に応じて粉砕混合し、焼成する、もしくは溶液反応 により合成することができる。特に焼成法が好ましく、 焼成温度は、混合された化合物の一部が分解、溶融する 温度の250~1500℃である。焼成時間は1~80 時間であることが好ましい。焼成ガス雰囲気としては、 空気、酸化雰囲気、還元雰囲気いずれでもよく特に限定 されない。

物質を併用してもよい。例えば、充放電時の膨張収縮挙 動が反対のものを用いることができる。放電時(リチウ ムイオン挿入時)に膨張し、充電時(リチウムイオン放 出時) に収縮する正極活物質の好ましい例はスピネル型 リチウム含有マンガン酸化物であり、放電時(リチウム イオン挿入時) に収縮し、充電時 (リチウムイオン放出 時)に膨張する正極活物質の好ましい例はリチウム含有 コバルト酸化物である。スピネル型リチウム含有マンガ ン酸化物の好ましい構造式としては、Li,-,Mn,O. (0≦x≦1)であり、リチウム含有コバルト酸化物の 20 料の表面を酸化することも用いられる。また、表面処理 好ましい例としてはLi,_,CoO, (0≤x≤1)であ

【0051】本発明における正極合剤中の導電剤は、構 成された電池において、化学変化を起こさない電子伝導 性材料であれば何でもよい。 例えば、天然黒鉛 (鱗片状 黒鉛など)、人造黒鉛などのグラファイト類、アセチレ ンプラック、ケッチェンプラック、チャンネルブラッ ク、ファーネスプラック、ランプブラック、サーマルブ ラック等のカーボンブラック類、炭素繊維、金属繊維な どの導電性繊維類、ファ化カーボン、銅、ニッケル、ア 30 い。これらは単独でも、組み合わせて用いてもよい。 ルミニウム、銀等の金属粉末類、酸化亜鉛、チタン酸カ リウムなどの導電性ウィスカー類、酸化チタンなどの導 電性金属酸化物あるいはポリフェニレン誘導体などの有 機導電性材料などを単独又はこれらの混合物として含ま せることができる。これらの導電剤のなかで、人造黒 鉛、アセチレンブラック、ニッケル粉末が特に好まし い。導電剤の添加量は、特に限定されないが、1~50 重量%が好ましく、特に1~30重量%が好ましい。カ ーボンやグラファイトでは、2~15重量%が特に好ま しい。

【0052】本発明における正極合剤中の好ましい結着 剤は、分解温度が300℃以上のポリマーである。例え ば、ポリエチレン、ポリブロビレン、ポリテトラフルオ ロエチレン (PTFE)、ポリフゥ化ビニリデン (PV DF)、テトラフルオロエチレンーヘキサフルオロエチ レン共重合体、テトラフルオロエチレンーヘキサフルオ ロプロピレン共重合体 (FEP)、テトラフルオロエチ レンーバーフルオロアルキルビニルエーテル共重合体 (PFA)、フッ化ビニリデン-ヘキサフルオロプロビ

エチレン共重合体、エチレンーテトラフルオロエチレン 共重合体(ETFE樹脂)、ポリクロロトリフルオロエ チレン(PCTFE)、フッ化ビニリデンーベンタフル オロブロピレン共重合体、プロピレンーテトラフルオロ エチレン共重合体、エチレンークロロトリフルオロエチ レン共重合体(ECTFE)、フッ化ビニリデンーへキ サフルオロプロピレンーテトラフルオロエチレン共重合 体、フッ化ビニリデンーバーフルオロメチルビニルエー テルーテトラフルオロエチレン共重合体を挙げる事がで 【0050】本発明においては、複数の異なった正極活 10 きる。特に、この中で最も好ましいのはポリファ化ビニ リデン(PVDF)、ポリテトラフルオロエチレン(P TFE) である。

> 【0053】正極の集電体としては、構成された電池に おいて化学変化を起こさない電子伝導体であれば何でも よい。例えば、材料としてステンレス鋼、ニッケル、ア ルミニウム、チタン、炭素などの他に、アルミニウムや ステンレス鋼の表面にカーボン、ニッケル、チタンある いは銀を処理させたものが用いられる。特に、アルミニ ウムあるいはアルミニウム合金が好ましい。これらの材 により集電体表面に凹凸を付けてもよい。形状は、フォ イルの他、フィルム、シート、ネット、パンチされたも の、ラス体、多孔質体、発泡体、繊維群、不織布体の成 形体などが用いられる。厚みは、特に限定されないが、 1~500μmのものが用いられる。

【0054】本発明で用いられる負極材料としては、リ チウム、リチウム合金、合金、金属間化合物、炭素、有 機化合物、無機化合物、金属錯体、有機高分子化合物等 のリチウムイオンを吸蔵・放出できる化合物であればよ

【0055】リチウム合金としては、Li-A1(米国 特許第4002492号等)、Li-A1-Mn、Li -Al-Mg, Li-Al-Sn, Li-Al-In, Li-Al-Cd、Li-Al-Te、Li-Ga (特 開昭60-257072号公報)、Li-Cd、Li-In、Li-Pb、Li-Bi、Li-Mg、などが挙 げられる。との場合、リチウムの含有量は10%以上で あることが好ましい。

【0056】合金、金属間化合物としては遷移金属と珪 40 素の化合物や透移金属とスズの化合物などが挙げられ、 特にニッケルと珪素の化合物が好ましい。

【0057】炭素質材料としては、コークス、熱分解炭 素類、天然黒鉛、人造黒鉛、メソカーボンマイクロビー ズ、黒鉛化メソフェーズ小球体、気相成長炭素、ガラス 状炭素類、炭素繊維(ポリアクリロニトリル系、ピッチ 系、セルロース系、気相成長炭素系)、不定形炭素、有 機化合物の焼成された炭素などが挙げられ、これらは単 独でも、組み合わせて用いてもよい。なかでもメソフェ ーズ小球体を黒鉛化したもの、天然黒鉛、人造黒鉛等の レン共重合体、ファ化ビニリデンークロロトリフルオロ 50 黒鉛材料が好ましい。尚、炭素質材料には、炭素以外に

も、O、B、P、N、S、SiC、B,Cなどの異種化 合物を含んでもよい。含有量としては0~10重量%が 好ましい。

【0058】無機化合物としては例えば、スズ化合物、 珪素化合物、無機酸化物としては、例えば、チタン酸化 物類、タングステン酸化物類、モリブデン酸化物類、ニ オブ酸化物類、バナジウム酸化物類、鉄酸化物類等が挙 げられる。また、無機カルコゲナイドとしては、例え は、硫化鉄、硫化モリブデン、硫化チタン等が挙げられ る。有機高分子化合物としては、ポリチオフェン、ポリ アセチレン等の高分子化合物、窒化物としては、コパル ト窒化物類、銅窒化物類、ニッケル窒化物類、鉄窒化物 類、マンガン窒化物類等を用いることができる。

【0059】これらの負極材料を複合して用いても良 く、例えば、炭素と合金、炭素と無機化合物などの組み 合わせが考えられる。

【0060】本発明で用いられる炭素材料の平均粒子サ イズはO. 1~60μmが好ましい。より好ましくは、 0. 5~30μmである。比表面積は1~10m²/g 平面の間隔 (d002) が3.35~3.40Åでc 軸方向の結晶子の大きさ(LC)が100A以上の黒鉛 が好ましい。

【0061】本発明においては正極活物質にしiが含有 されているため、Liを含有しない負極材料(炭素な ど) を用いることができる。また、そのようなLiを含 有しない負極材に、少量(負極材100重量部に対し、 0. 01~10重量部程度) のLiを含有させておく と、一部のLiが電解質などと反応したりして不活性と ができるので好ましい。上記のように負極材にLiを含 有させるには、例えば、負極材を圧着した集電体上に加 熱・溶融したリチウム金属を塗布して負極材にLiを含 浸させたり、あるいは予め電極群中に圧着などによりリ チウム金属を貼付し、電解液中で電気化学的に負極材料 中にしょをドープさせたりすればよい。

【0062】負極合剤中の導電剤は、正極合剤中の導電 剤同様、構成された電池において、化学変化を起てさな い電子伝導性材料であれば何でもよい。また、負極材料 に炭素質材料を用いる場合は炭素質材料自体が電子伝導 40 性を有するので導電剤を含有してもしなくてもよい。

【0063】負極合剤中の結着剤としては、熱可塑性樹 脂、熱硬化性樹脂のいずれであってもよいが、本発明に おいて好ましい結着剤は、分解温度が300℃以上のボ リマーである。例えば、ポリエチレン、ポリプロピレ ン、ポリテトラフルオロエチレン(PTFE)、ポリフ ッ化ピニリデン (PVDF) 、スチレンブタジエンゴ ム、テトラフルオロエチレンーヘキサフルオロプロピレ ン共重合体 (FEP)、テトラフルオロエチレンーパー フルオロアルキルビニルエーテル共重合体(PFA)、

ファ化ビニリデン-ヘキサフルオロプロピレン共重合 体、フッ化ピニリデンークロロトリフルオロエチレン共 重合体、エチレンーテトラフルオロエチレン共重合体 (ETFE樹脂)、ポリクロロトリフルオロエチレン (PCTFE)、フッ化ビニリデン-ベンタフルオロブ ロビレン共重合体、プロピレンーテトラフルオロエチレ ン共重合体、エチレンークロロトリフルオロエチレン共 重合体(ECTFE)、フッ化ビニリデン-ヘキサフル オロプロピレンーテトラフルオロエチレン共重合体、フ っ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体を挙げる事ができる。 より好ましくは、スチレンブタジエンゴム、ポリフッ化 ビニリデンである。なかでも最も好ましいのは、スチレ ンプタジェンゴムである。

【0064】負極の集電体としては、構成された電池に おいて化学変化を起とさない電子伝導体であれば何でも よい。例えば、材料としてステンレス鋼、ニッケル、 銅、チタン、炭素などの他に、銅やステンレス鋼の表面 にカーボン、ニッケル、チタンあるいは銀を処理させた であることが好ましい。また、結晶構造上は、炭素六角 20 もの、A 1 - C d 合金などが用いられる。特に、銅ある いは銅合金が好ましい。これらの材料の表面を酸化する ことも用いられる。また、表面処理により集電体表面に 凹凸を付けてもよい。形状は、フォイルの他、フィル ム、シート、ネット、パンチされたもの、ラス体、多孔 質体、発泡体、繊維群の成形体などが用いられる。厚み は、特に限定されないが、1~500 µmのものが用い られる.

【0065】電極合剤には、導電剤や結着剤の他、フィ ラー、分散剤、イオン導電剤、圧力増強剤及びその他の なっても、上記負極材に含有させたLiで補充すること 30 各種添加剤を用いることができる。フィラーは、構成さ れた電池において、化学変化を起こさない繊維状材料で あれば何でも用いることができる。通常、ポリプロピレ ン、ポリエチレンなどのオレフィン系ポリマー、ガラ ス、炭素などの繊維が用いられる。フィラーの添加量は 特に限定されないが、0~30重量%が好ましい。

> 【0066】本発明における正極・負極は、正極活物質 あるいは負極材料を含む合剤層の他に、集電体と合剤層 の密着や導電性、サイクル特性、充放電効率の改良等の 目的で導入する下塗り層や、合剤層の機械的保護や化学 的保護の目的で導入する保護層などを有してもよい。と の下塗り層や保護層は、結着剤や導電剤粒子、導電性を 持たない粒子などを含む事ができる。

【0067】本発明における非水電解液は、溶媒と、そ の溶媒に溶解するリチウム塩とから構成されている。非 水溶媒としては、例えば、エチレンカーボネート(E C)、プロビレンカーボネート (PC)、プチレンカー ボネート (BC)、ビニレンカーボネート (VC) など の環状カーボネート類、ジメチルカーボネート(DM C)、ジエチルカーボネート(DEC)、エチルメチル 50 カーボネート (EMC)、ジブロビルカーボネート (D

PC) などの非環状カーボネート類、ギ酸メチル、酢酸 メチル、プロピオン酸メチル、プロピオン酸エチルなど の脂肪族カルボン酸エステル類、アーブチロラクトン等 のァーラクトン類、1,2-ジメトキシエタン(DM) E)、1,2-ジェトキシエタン(DEE)、エトキシ メトキシエタン (EME) 等の非環状エーテル類、テト ラヒドロフラン、2-メチルテトラヒドロフラン等の環 状エーテル類、ジメチルスルホキシド、1,3-ジオキ ソラン、ホルムアミド、アセトアミド、ジメチルホルム アミド、ジオキソラン、アセトニトリル、プロピルニト 10 リル、ニトロメタン、エチルモノグライム、リン酸トリ エステル、トリメトキシメタン、ジオキソラン誘導体、 スルホラン、メチルスルホラン、1,3-ジメチル-2 ーイミダゾリジノン、3-メチル-2-オキサゾリジノ ン、プロピレンカーボネート誘導体、テトラヒドロフラ ン誘導体、エチルエーテル、1,3-プロバンサルト ン、アニソール、ジメチルスルホキシド、N-メチルピ ロリドンなどの非プロトン性有機溶媒を挙げることがで き、これらの一種または二種以上を混合して使用する。 なかでも環状カーボネートと非環状カーボネートとの混 20 ル、ポリフゥ化ビニリデン、ポリヘキサフルオロプロビ 合系または環状カーボネートと非環状カーボネート及び 脂肪族カルボン酸エステルとの混合系を主成分とするこ とが好ましい。

13

【0068】とれらの溶媒に溶解するリチウム塩として は、例えばLiClO。、LiBF。、LiPF。、L iA1C1, LiSbF, LiSCN, LiC1, L iCF,SO, LiCF,CO, Li(CF,SO,) LiAsF, LiN (CF, SO,), LiB, C 1,。(特開昭57-74974号公報)、低級脂肪族力 ルボン酸リチウム(特開昭60-41773号公報)、 LiCl、LiBr、Lil (特開昭60-24726 5号公報)、クロロボランリチウム(特開昭61-16 5957号公報)、四フェニルホウ酸リチウム(特開昭 61-214376号公報) 等を挙げることができ、こ れらを使用する電解液等に単独又は二種以上を組み合わ せて使用することができるが、特にLiPF。を含ませ ることがより好ましい。

【0069】本発明における特に好ましい非水電解液 は、エチレンカーボネートとエチルメチルカーボネート を少なくとも含み、リチウム塩としてLiPF。を含む 40 電解液である。とれら電解液を電池内に添加する量は、 特に限定されないが、正極活物質や負極材料の量や電池 のサイズによって必要量用いることができる。リチウム 塩の非水溶媒に対する溶解量は、特に限定されないが、 0.2~2mol/lが好ましい。特に、0.5~1. 5mol/1とすることがより好ましい。

【0070】また、上記電解液には必要に応じて、良好 な充放電特性を得る目的で、2-メチルフラン、チオフ ェン (特開昭61-161673号公報)、ピロール (特開平3-59963号公報)、アニリン(特開昭6 50 ブレード法、ナイフ法、エクストルージョン法、カーテ

0-79677号公報)、クラウンエーテル、ピリジ ン、トリエチルフォスファイト、トリエタノールアミ ン、環状エーテル、エチレンジアミン、n -グライム、 ヘキサリン酸トリアミド、ニトロベンゼン誘導体、含窒 紫芳香族複素環化合物(特開平9-204932号公 報)などの有機添加物を溶解させてもよい。この電解液 は、通常、多孔性ポリマー、ガラスフィルタ、不織布な どのようなセパレータに含浸あるいは充填させて使用さ

【0071】また、電解液を不燃性にするために含ハロ ゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを 電解液に含ませることができる。また、高温保存に適性 をもたせるために電解液に炭酸ガスを含ませることがで

【0072】また、有機固体電解質に上記非水電解液を 含有させたゲル電解質を用いるとともできる。上記有機 固体電解質とは、例えば、ポリエチレンオキサイド、ポ リプロピレンオキサイド、ポリホスファゼン、ポリアジ リジン、ポリエチレンスルフィド、ポリピニルアルコー レンなどやこれらの誘導体、混合物、複合体などの高分 子マトリックス材料が有効である。特に、フゥ化ビニリ デンとヘキサフルオロプロピレンの共重合体やボリフゥ 化ピニリデンとポリエチレンオキサイドの混合物が好ま

【0073】セパレータとしては、大きなイオン透過度 を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄 膜が用いられる。また、80℃以上で孔を閉塞し、抵抗 をあげる機能を持つととが好ましい。耐有機溶剤性と疎 30 水性からボリプロピレン、ボリエチレンなどの単独又は 組み合わせたオレフィン系ポリマーあるいはガラス繊維 などからつくられたシートや不織布が用いられる。セバ レータの孔径は、電極シートより脱離した活物質、結着 剤、導電剤が透過しない範囲であることが望ましく、例 えば、0.01~1μmであるものが望ましい。セパレ ータの厚みは、一般的には、10~300μmが用いち れる。また、空孔率は、電子やイオンの透過性と素材や 膜圧に応じて決定されるが、一般的には30~80%で あることが望ましい。

【0074】電池の形状はコイン型、ボタン型、シート 型、円筒型、扁平型、角型などいずれにも適用できる。 電池の形状がコイン型やボタン型のときは、正極活物質 や負極材料の合剤はベレットの形状に圧縮されて主に用 いられる。そのペレットの厚みや直径は電池の大きさに より決められる。また、電池の形状がシート型、円筒 型、角型のとき、正極活物質や負極材料の合剤は、集電 体の上に塗布(コート)、乾燥、圧縮されて、主に用い られる。塗布方法は、一般的な方法を用いることができ る。例えば、リバースロール法、ダイレクトロール法、

ン法、グラビア法、バー法、キャスティング法、ディゥ ブ法及びスクイーズ法を挙げることができる。そのなか でもブレード法、ナイフ法及びエクストルージョン法が 好ましい。塗布は、0.1~100m/分の速度で実施 されるととが好ましい。との際、合剤の溶液物性、乾燥 性に合わせて、上記塗布方法を選定することにより、良 好な塗布層の表面状態を得ることができる。塗布は、片 面ずつ逐時でも両面同時でもよい。また、塗布層を集電 体の両側に設けるのが好ましく、一方の面の塗布層が合 剤層を含む複数層から構成されていても良い。合剤層 は、正極活物質や負極材料のようにリチウムイオンの挿 入放出に係わる物質の他に、結着剤や導電材料などを含 む。合剤層の他に、活物質を含まない保護層、集電体上 に設けられる下塗り層、合剤層間に設けられる中間層等 を有していてもよい。これらの活物質を有さない層は、 導電性粒子や絶縁性粒子、結着剤を含むのが好ましい。 【0075】また、塗布は連続でも間欠でもストライプ でもよい。その塗布層の厚み、長さや巾は、電池の大き さにより決められるが、片面の塗布層の厚みは、ドライ 後の圧縮された状態で、1~2000µmが特に好まし 61

15

【0076】ペレットやシートの乾燥又は脱水方法とし ては、一般に採用されている方法を利用することができ る。特に、熱風、真空、赤外線、遠赤外線、電子線及び 低湿風を単独あるいは組み合わせて用いることが好まし い。温度は80~350℃の範囲が好ましく、特に10 0~250℃の範囲が好ましい。含水量は、電池全体で 2000ppm以下が好ましく、正極合剤、負極合剤や 電解質ではそれぞれ500ppm以下にすることがサイ クル性の点で好ましい。シートのプレス法は、一般に採 用されている方法を用いることができるが、特に金型ブ レス法やカレンダープレス法が好ましい。プレス圧は、 特に限定されないが、0.2~3t/cm'が好まし い。カレンダープレス法のプレス速度は、0.1~50 m/分が好ましい。プレス温度は、室温~200℃が好 ましい。負極シートに対する正極シートの幅の比率は、 0.9~1.1が好ましい。特に、0.95~1.0が 好ましい。正極活物質と負極材料の含有量比は、化合物 種類や合剤処方により異なるため、限定できないが、容 量、サイクル性、安全性の観点で最適な値に設定でき

【0077】尚、本発明における電極の巻回体は、必ず しも真円筒形である必要はなく、その断面が楕円である 長円筒形や長方形等の角柱状の形状であっても構わな

【0078】本発明の好ましい組み合わせは、上記の化 学材料や電池構成部品の好ましいものを組み合わすこと が好ましいが、特に正極活物質として、LixCo O₂, Lix NiO₂, LixMn₂O₄ (CCで0≤x≤ 1)を含み、導電剤としてアセチレンブラックも共に含 50 を用いた。このメソフェーズ黒鉛の重量に対して、スチ

む。正極集電体はステンレス鋼かアルミニウムから作ら れている、ネット、シート、箔、ラスなどの形状をして いる。負極材料としてはリチウム金属単独ではなく、合 金、炭素質材料等少なくとも1種の化合物を含むことが 好ましい。負極集電体はステンレス鋼か銅から作られて いる、ネット、シート、箔、ラスなどの形状をしてい る。正極活物質あるいは負極材料とともに用いる合剤に は、電子伝導剤としてアセチレンブラック、黒鉛などの 炭素材料を混合してもよい。結着剤はポリファ化ビニリ デン、ポリテトラフルオロエチレンなどの含ファ素熱可 塑性化合物、アクリル酸を含むポリマー、スチレンブタ ジェンゴム、エチレンプロピレンターポリマーなどのエ ラストマーを単独あるいは混合して用いることができ る。また、電解液として、エチレンカーボネート、さら に、ジエチルカーボネート、ジメチルカーボネート、エ チルメチルカーボネートなどの環状、非環状カーボネー トあるいはそれらに酢酸メチル、プロピオン酸メチルな どの脂肪族カルボン酸エステル化合物を加えた組み合わ せ、リチウム塩として、LiPF。を含むことが好まし い。さらに、セバレータとして、ポリプロピレンあるい はポリエチレンの単独またはそれらの組み合わせが好ま しい。電池の形態は、シリンダー、扁平、角型のいずれ でもよい。電池には、誤動作にも安全を確保できる手段 (例、内圧開放型安全弁、高温で抵抗を上げるセパレー タ)を備えることが好ましい。

[0079]

40

【実施例】以下、本発明の実施例を図面を参照しながら 説明する。

[0080] (実施例1) 図1 に本実施例で用いた円筒 形電池の縦断面図を示す。図において、1は耐有機電解 液性のステンレス鋼板を加工した電池ケース、2は安全 弁を設けた封口板、3は絶縁パッキングを示す。4は極 板群であり、正極および負極がセパレータを介して複数 回渦巻状に巻回されてケース1内に収納されている。そ して上記正極からは正極リード5が引き出されて封口板 2に接続され、負極からは負極リード6が引き出されて 電池ケース1の底部に接続されている。7 は絶縁リング で極板群4の上下部にそれぞれ設けられている。以下 正、負極板等について詳しく説明する。

【0081】正極はLi,CO,とCo,O,とを混合し、 900℃で10時間焼成して合成したLiCo0.の粉 末の重量に対して、アセチレンブラック3%、ファ素樹 脂系結着剤7%を混合し、カルボキシメチルセルロース 水溶液に懸濁させて正極合剤ペーストとした。厚さ30 μmのアルミ箔に正極合剤ペーストを塗工し、乾燥後圧 延して厚さ0. 18mm、幅37mm、長さ390mm の正極板とした。

【0082】負極はメソフェーズ小球体を2800℃の 高温で黒鉛化したもの(以下メソフェーズ黒鉛と称す)

17 レンノブタジェンゴム5%を混合した後、カルボキシメ チルセルロース水溶液に懸濁させてペースト状にした。 そしてとの負極合剤ペーストを厚さ0.02mmのCu 箔の両面に塗工し、乾燥後圧延して、厚さ0.20m m、幅39mm、長さ420mmの負極板とした。 【0083】そして、正極板にはアルミニウム製、負極 板にはニッケル製のリードをそれぞれ取り付け、厚さ

O. 025mm、幅45mm、長さ950mmのポリプ ロビレン製セバレータを介して渦巻状に巻回し、直径1 7. 0mm、高さ50. 0mmの電池ケースに納入し た。電解液にはECとDECとMPとを30:50:2 0の体積比で混合した溶媒に1mol/lのLiPF. を溶解したものを用い、電解液の添加剤として、(化 1) に該当する有機化合物としてヘキサフェニルベンゼ ン、p – テルフェニル、l – フェニルピペラジン、l, 2、3、4-テトラヒドロイソキノリン、フェニルシク ロヘキサン、1、3、5-トリフェニルベンゼン、ドデ カヒドロトリフェニレン、ジビニルベンゼンを有機溶媒 と添加剤の絵量に対して2重量%添加し、これを注液し た後封口し、本発明の電池1~9とした。

【0084】(実施例2)電解液の添加剤として、(化 2) に該当する有機化合物として t - ブチルビニルエー テル、メタクリル酸メチルモノマー、ビニルシクロヘキ サン、2、3-ジメチル-1、3-ブタジエンを用いた 以外は(実施例1)と同様に渦巻型の筒型電池を構成し た。これを本発明の電池10~14とした。

【0085】(実施例3)電解液の添加剤として、(化 3) に該当する有機化合物としてトリベンジルアミン、 N-フェニル_ジベンジルアミンを用いた以外は(実施 例1)と同様に渦巻型の筒型電池を構成した。これを本 30 電状態からさらに1Aで過充電を行い、電池が異常発熱 発明の電池15, 16とした。

【0086】 (実施例4) 電解液の添加剤として二重結 合を持つ炭素数15~60の直鎖型有機化合物に該当す る有機化合物としてスクアレンもしくは(E)-β-フ* *ァルネセンを用いた以外は(実施例1)と同様に渦巻型 の筒型電池を構成した。とれを本発明の電池15、16 とした。

[0087] (実施例5) 電解液の添加剤としてトリス (4-メトキシフェニル) ホスフィン、(1R) -(+) - αピネン、ジシクロペンタジエン、ジ (エチレ ングリコール) ジビニルエーテル、9、10-ジヒドロ アントラセン、トリプチセン、 [2、2] パラシクロフ ァンを用いた以外は(実施例1)と同様に渦巻型の筒型 10 電池を構成した。とれを本発明の電池19~25とし た。

【0088】(比較例1)比較例として、電解液の添加 剤を加えない電池を(実施例1)と同様に渦巻型の筒型 電池を構成した。とれを比較の電池(電池26)とし

【0089】(比較例2)比較例として、電解液の添加 剤としてピフェニル、チオフェン、3-クロロチオフェ ンを用いた以外は(実施例1)と同様に渦巻型の筒型電 池を構成した。これを比較の電池(電池27~29)と 20 した。

【0090】次に、本発明の電池1~25と比較の電池 26~29を各5セルずつ用意して、環境温度20℃ で、充電電圧4.2V、充電時間2時間の制限電流50 0mAの定電圧充電を行った充電状態の電池の1Aでの 放電特性を調べた後、充電状態で80℃で5日間保存 し、保存後の電池についても同様の条件で充電、放電を 行い保存後の容量回復率(保存後の容量/保存前の容量 ×100(%))を求めた結果を表1~6に示す。

【0091】また、これらを各20セルづつ用意し、充 するかどうかを確認した。 表1~6に20セル中異常 発熱が発生したセル数を示した。

【0092】表1(実施例1)

No.	添加剂	НОМО	LUMO	保存後回復率	漫光電試験
1	ヘキサフェニルセンゼン	-9.442	0.0813	91.2	0/20
2	pーテルフェニル	-9.3829	0.0474	93.7	0/20
3	1-フェニルピペラヴン	-8.8402	0.3045	94.8	0/20
4	1,23,4-テトラヒドロインキノリン	-9.1083	0.3747	92.8	D/20
5	フェニルシクロヘキサン	-9.4288	0.3961	92.3	· D/20
6	1,35-トリフェニルベンゼン	-9.5698	0.1704	93.7	0/20
7	ドデカヒドロトリフェニレン	-8.8282	0.5063	91.4	0/20
B	ジピニルベンゼン	-9.0738	-0.1222	91.7	0/20
9	1.4-ランクロヘキシルベンゼン	-9.2999	0.3508	91.7	0/20

No.	添加剂	номо	LUMO	保存後回復率	過充電試験
10	≒ -ブチルピニルエーテル	-9.3128	1,4402	93.5	0/20
11	メタクリル酸メチルモノマー	-10.56	0.4128	91.5	0/20
12	ピニルシクロヘキサン	-10.124	1.1991	91.7	0/20
13	23-ジメチルー13-ブタジエン	-9.5072	0.6255	91.5	0/20
14	メチレンシクロヘキサン	-9 .8256	1.1529	94.6	0/20

【0094】表3(実施例3)

No.	克加莉	номо	LUMO	保存後回復率	過充電試験
15	トリベンジルフミン	9.0909	0.1285	94.8	0/20
16	N-フェニルジベンジルアミン	-9. 25 71	0.2468	92.6	0/20

【0095】表4(実施例4)

No.	郑加利	номо	LUMO	保存後回復率	過充電試験
17	スクアレン	-9.2002	0.9853	93.4	0/20
18	(E)-8-ファルネセン	-9.3018	0.3382	91.5	0/20

(0096)表5 (実施例5)

No.	添加剤	номо	LUMO	保存後回復率	過充電試験
19	トリス(4-メトキシフェニル)ホスフィン	-8.7072	0.1294	94.1	0/20
20	(11の・(+)- αーピネン	-9.6117	1.1448	94.3	0/20
21	ジシクロペンタジェン	-9.5743	0.9682	93,2	0/20
22	ジ(エチレングリコール)ジビニルエーテル	-9 .5991	1.1676	92.5	0/20
23	9.10-ジヒドロアント ラセ ン	-9.171	0.3121	91.7	0/20
24	トリプチセン	-9.2378	0.1824	93.9	0/20
25	[22]パラシクロファン	-8.9716	0.2534	91.1	0/20

[0097]表6(比較例1,2)

No.	英位是	номо	LUMO	保存後回復率	過充電試験
26	tel.			93.9	8/20
27	ピフェニル	-9.1449	-0.1419	78.4	0/20
28	チオフェン	-9.5429	-0.1917	72.3	0/20
29	ロークロロチオフェン	-9.2515	-0.4247	69.6	0/20

【0098】表6に示したように、添加剤を加えない電池26については、過充電を行った場合、20セル中8セルにおいて異常発熱の現象が認められた。従来では、充電電圧の保護回路と、電流遮断機構による複数の安全性機構を設けることによって電池の安全性を確保してきたが、例えば本比較例1の様に安全性保護を行わない場合はこのような異常発熱が起こりうる。

【0099】図2に比較例1(電池26)の過充電時の 電圧と電池側面温度を測定した結果を示す。

【0100】過充電を行うことにより、まず正極中のリチウムが引き抜かれ、その後、正極の電子抵抗の増大、電解液の酸化分解による液抵抗の増大、液の枯渇等に基づき電池温度が上昇し、セパレータの溶融温度では既に熱安定性が低下しているために異常発熱が生じていることがわかる。

【0101】とれに対し、表1~表5に示したように、本発明の添加剤を加えた電池1~25では、過充電試験を行っても異常発熱は認められなかった。本実施例の代表例として、実施例1のヘキサフェニルベンゼンを添加した電池の過充電挙動を図3に示した。

【0102】本実施例においては、過充電が開始されるとすぐに電池電圧が著しく上昇し、電池の分極特性が悪くなっていることがわかる。これに伴い、電池温度も早くから上昇し、セパレータの溶融温度において電流が流れなくなり電池温度は異常発熱することなく安全に温度が低下する。

【0103】とれは、過充電において正極中のリチウムが引き抜かれるよりも優先的に添加剤が酸化重合により 正極表面に抵抗の高い酸化重合膜を生成し、分極が大き 50 くなるととによって電解液の分解が支配的に進行し、正

極の熱安定性が低下する以前に電解液の枯渇、もしくは セパレータのシャットダウンによって電池に電流が流れ なくなる為である。

【0104】当然、電池温度の上昇を感知して充電の回路を切断する機能として、正特性サーミスタ(PTC)もしくは温度ヒューズを設けるととで更に電池充電システムとして信頼性を向上させるととが出来る。正特性サーミスタ(PTC)もしくは温度ヒューズの作動温度は正極活物質が熱的に安定な温度で作動し、且つ電池機器の一般的な環境温度では作動しないことが必須であるた 10め60~120℃の範囲であるのが望ましい。

【0105】本実施例で用いた添加剤は負極における耐 還元性に優れるため、比較例2で用いた従来提唱されて いる添加剤に比べ、高温での保存特性が優れていた。

【0106】以上のように、本発明の添加剤を用いることにより、過充電時においても安全で、且つ高温保存特性の良好な極めて信頼性の高い電池が実現できることがわかった。

【0107】また、添加剤の濃度に対する検討を行った結果、0.1重量%以上で安全性の向上が認められた。添加量が20重量%以上では、電池の放電特性が悪くなり始めた。これは、電解液自身の電気伝導率が減少したためと考えられる。

[0108] とのことから、電解液への添加剤の添加量は0.1~20重量%の範囲であることが望ましい。

【0109】なお、本発明は本実施例に限定されるものではない。

[0110]

【発明の効果】以上のように本発明では、電解液添加剤 6 を電解液中溶媒と添加剤の合計に対し、0.1~20重 30 7 量%の範囲において添加することを特徴とする、非水電*

*解液二次電池である。本発明の添加剤を加えることにより、過充電時にも安全で、且つ保存特性に優れた高い信頼性を持つ電池が実現できる。この電池はセパレータとして、微多孔性ポリオレフィン膜を用いると更に信頼性が向上する。

【0111】また、電池温度の上昇を感知して充電の回路を切断する機能を持たせることにより更に信頼性の高い非水電解液二次電池と非水電解液二次電池の充電制御システムを提供することが出来る。

0 【0112】とのような非水電解液二次電池と非水電解 液二次電池の充電制御システムを用いることによって安 全性が高く、長期的に寿命特性の優れた携帯電話、携帯 情報端末機器、カムコーダ、パーソナルコンピュータ、 PDA、携帯音響機器、電気自動車、ロードレベリング 用電源などの機器を提供することができる。

【図面の簡単な説明】

【図1】本発明の実施例および比較例における円筒形電 池の縦断面図

【図2】比較例電池の過充電時の電圧・温度挙動を示す 20 図

【図3】本実施例電池の過充電時の電圧・温度挙動を示す図

【符号の説明】

- 1 電池ケース
- 2 封口板
- 3 絶縁パッキング
- 4 極板群
- 5 正極リード
- 6 負極リード
- 7 絶縁リング

【図】

フロントページの続き

(72)発明者 上田 敦史

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 布目 潤

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 越名 秀

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 5H022 AA09 BB06 KK01

5H029 AJ04 AJ05 AJ12 AK03 AK18

AL01 AL02 AL04 AL06 AL07

AL11 AL12 AL16 AL18 AM00

AMO2 AMO3 AMO4 AMO5 AMO7

AM16 BJ27 EJ11 HJ01 HJ02

НЈ16

				ŕ
		Ğ)		
	.70			
†			·	