Ch(4): chemical equilibrium

I- Introduction

A reversible reaction is a chemical reaction where the reactants form the products that react together at the same time to give the reactants back. Reversible reactions will reach an <u>equilibrium state</u> when the concentrations of reactants remained and of products formed will <u>no longer change</u>.

In reality, a great many reactions do not proceed entirely to completion.

II- Reversible reactions

Reversible reactions are represented as the following general form:

$$a A + b B \stackrel{1}{\rightleftharpoons} c C + d D$$

$$a A + b B \stackrel{1}{\rightleftharpoons} c C + d D$$

The direction (1) is called forward direction.

The direction (2) is called reverse direction (or backward direction).

Examples of reversible reactions

Reaction of formation of (NO):

$$N_{2(g)} + O_{2(g)} \implies 2 NO_{(g)}$$

Esterification reaction:

Reaction of carboxylic acids with water:

$$R-COOH + H_2O \implies R-COO^- + H_3O^+$$

Consider the esterification reaction of 1 mol of ethanol (C_2H_6O) with 1 mol of ethanoic acid ($C_2H_4O_2$):

$$C_2H_6O + C_2H_4O_2 \Rightarrow C_4H_8O_2 + H_2O_2$$

The following table is obtained experimentally.

Initial number of moles	1 mol	1 mol	0	0
Number of moles at equilibrium	0.33 mol	0.33 mol	0.66 mol	0.66 mol

The kinetic curves of C₂H₆O and of C₄H₈O₂ are the following:

III- Equilibrium constant K_c

Each reversible reaction has a specific equilibrium state and it is characterized by a specific constant called equilibrium constant relative to concentrations, this constant is designated by K.:

$$K_{c} = \frac{[C]^{c}_{formed} \times [D]^{d}_{formed}}{[A]^{a}_{remaining} \times [B]^{b}_{remaining}}$$

Where [A], [B], [C] and [D] are respectively the concentrations of reactants remained and the concentrations of products formed when the equilibrium is established.

IV- Degree of conversion of a reactant and yield of reaction

The degree of conversion of reactant (A for example) is designated by alfa (α) :

$$\alpha(A) = \frac{n(A) \text{ reacted at equilibrium}}{n_0(A)}$$

The percentage of conversion is equal to $\alpha \times 100$

The yield of the reaction is calculated with respect to a product (C for example):

Yield =
$$\frac{n(C) \text{ formed at equilibrium}}{n(C) \text{ theoretical}}$$

The percentage yield is : yield \times 100

Consider the reaction of formation of ammonia (NH₃):

$$N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$$

At a temperature $T = 472^{\circ}C$, 0.0415 mol of N_2 is mixed initially with 0.131 mol of H_2 in a container of volume V = 1 L, when the equilibrium is established, the number of moles of NH_3 obtained is n = 0.00272 mol

- 1. Determine the number of moles of N₂ and of H₂ remained at equilibrium.
- 2. Calculate the equilibrium constant K_c of this reaction.
- 3. Deduce the degree of conversion α of N_2

1. At equilibrium, acc. to. SR:

```
\begin{split} &n(N_2)_{\, reacted} \, / 1 = n(H_2)_{\, reacted} / 3 = n \, (NH_3)_{\, formed} \, / 2 = 0.00272 / 2 = 0.00136 \\ &n(N_2)_{\, reacted} = 0.00136 \, \, mol \\ &n(H_2)_{\, reacted} = 3 \times \, (0.00136) = 0.00408 \, \, mol \\ &n(N_2)_{\, remained} = n(N_2)_0 \, - n(N_2)_{\, reacted} = 0.0415 - 0.00136 = 0.0401 \, \, mol \\ &n(H_2)_{\, remained} = n(H_2)_0 - n(H_2)_{\, reacted} = 0.131 - 0.00408 = 0.126 \, \, mol. \end{split}
```

2.
$$K_c = [NH_3]^2_{formed} / [N_2]_{rem} \times [H_2]^3_{rem}$$

= $(0.00272/1)^2/(0.0401/1) \times (0.126/1)^3 = 0.0922$

3. The degree of conversion : $\alpha (N_2) = n(N_2)_{\text{reacted at eq}} / n(N_2)_0$ = 0.00136/0.0415 = 0.0327 (3.27 %)

Consider the following esterification reaction:

$$C_2H_4O_{2(I)} + C_2H_6O_{(I)} \leftrightarrow C_4H_8O_{2(I)} + H_2O_{(I)}$$

The equilibrium constant of this reaction is : $K_c = 4$

The reaction is started by mixing certain number of moles of reactants in a container of volume V=2 L.

After certain time t, the number of moles of reactants remained and of products formed are measured, we found:

$$n(C_2H_4O_2)_t = 1 \text{ mol}$$
 $n(C_2H_6O)_t = 3 \text{ mol}$
 $n(C_4H_8O_2)_t = 0.5 \text{ mol}$ $n(H_2O)_t = 2 \text{ mol}$

Specify whether the system reached its equilibrium state or not at this time.

We calculate the quotient Q:

$$Q = [C_4H_8O_2] \times [H_2O] / [C_2H_4O_2] \times [C_2H_6O]$$
$$= (0.5/2) \times (2/2) / (1/2) \times (3/2) = 1/3 = 0.333 < 4$$

Q < K_c, thus the system did not reach its equilibrium state yet.

Consider the following reaction:

$$COCl_{2(g)} \leftrightarrow CO_{(g)} + Cl_{2(g)}$$

4 mol of COCl₂ is introduced initially in a container of volume V= 1L.

The equilibrium constant of this reaction at 25°C is $K_c = 2.19 \times 10^{-10}$

- 1. Determine the molar concentrations of the reactant and of the products when the reaction reaches its equilibrium state.
- 2. Calculate the percentage of conversion of COCl₂.

1. Let x be the number of moles of COCl₂ reacted at equilibrium.

Acc.to.SR at equilibrium:

$$n(COCl_2)_{reacted} / 1 = n(CO)_{formed} / 1 = n(Cl_2)_{formed} / 1$$

$$x = n(CO)_{formed} = n(Cl_2)_{formed}$$

$$Thus : n(CO)_{formed} = x , n(Cl_2)_{formed} = x and n(COCl_2)_{reacted} = x$$

$$n(COCl_2)_{remaining} = n_0 - n_{reacted} = 4-x mol$$

	COCI ₂	CO	Cl ₂
Initial state (mol)	4	0	0
Final state (equilibrium state) (mol)	4-x	X	X

$$K_c = [CO]_{formed} \times [CI_2]_{formed} / [COCI_2]_{remaining}$$

= $x^2/4-x = 2.19 \times 10^{-10}$

$$x^{2} = 4 \times 2.19 \times 10^{-10} - 2.19 \times 10^{-10} x$$

 $x^{2} + 2.19 \times 10^{-10} x - 8.76 \times 10^{-10} = 0$

We find
$$x_1 = 2.95 \times 10^{-5}$$
 mol : accepted $x_2 = -2.95 \times 10^{-5}$ mol : rejected

$$[COCl_2]_{remaining} = 4-2.95 \times 10^{-5} = 3.99 \text{ mol/L}$$

 $[CO]_{formed} = [Cl_2]_{formed} = 2.95 \times 10^{-5} \text{ mol/L}$

2. % of conversion of
$$COCl_2 = n(COCl_2)_{reacted at eq} \times 100/n_0(COCl_2)$$

= x ×100/4 = 2.95×10⁻⁵ ×100/4
= 7.37×10⁻⁴%

Generalization about the determination of the composition of the system at equilibrium

Consider the general equation : a A + b B \leftrightarrow c C + d D For example we give : $n_0(A) = 2$ mol and $n_0(B) = 3$ mol The equilibrium constant of this reaction is given, for example: $K_c = 5$ and V(container) = 1L

How to determine the number of moles of each reactant and of each product at equilibrium?

Let x be the number of moles of (A) reacted at equilibrium.

Acc.to.SR. at equilibrium:

$$n(A)_{reacted}/a = n(B)_{reacted}/b = n(C)_{formed}/c = n(D)_{formed}/d$$

Thus:
$$x/a = n(B)_{reacted}/b = n(C)_{formed}/c = n(D)_{formed}/d$$

Therefore: $n(B)_{reacted} = bx/a$ $n(C)_{formed} = cx/a$ $n(D)_{formed} = dx/a$

$$n(A)_{rem} = n_0(A) - n(A)_{reacted} = 2-x$$

$$n(B)_{rem} = n_0(B) - n(B)_{reacted} = 3 - bx/a$$

$$K_c = [C]_{formed}^c \times [D]_{formed}^d / [A]_{rem}^a \times [B]_{rem}^b$$

$$= (cx/a)^c \times (dx/a)^d/(2-x)^a \times (3-bx/a)^b = 5$$

After multiplication, we obtain a quadratic equation. By solving the equation we obtain two roots x_1 and x_2

The accepted value of x is the positive one.

If the two values of x are positive, thus:

$$x_1 < n_0(A)$$
 is accepted
 $x_2 > n_0(A)$ is rejected

6.55 g of $NOCl_{(g)}$ was introduced in a container of volume V = 2 L at T = 25 °C 25% of NOCl are decomposed to give an equilibrium state according to the following reaction :

$$2 \text{ NOCl}_{(g)} \leftrightarrow 2 \text{NO}_{(g)} + \text{Cl}_{2(g)}$$

<u>Given</u>

$$M(N) = 14$$
 $M(O) = 16$ $M(CI) = 35.5$ g.mol⁻¹

- 1. Show that [NOCI]_{remaining} at equilibrium is equal to 0.0375 mol.L⁻¹.
- 2. Calculate the concentrations of the products formed at equilibrium.
- 3. Show that the equilibrium constant of this reaction is $K_c = 6.94 \times 10^{-4}$

1.
$$M(NOCI) = 14 + 16 + 35.5 = 65.5$$
 g/mol $n_0(NOCI) = m/M = 6.55/65.5 = 0.1$ mol $\alpha(NOCI) = n(NOCI)_{reacted}/n_0(NOCI) = 25\% = 0.25$ $n(NOCI)_{reacted} = 0.25$ $n_0(NOCI) = 0.25 \times 0.1 = 0.025$ mol $n(NOCI)_{remaining} = n_0(NOCI) - n(NOCI)_{reacted} = 0.1-0.025 = 0.075$ mol.L⁻¹ [NOCI]_{remaining} = $n/V = 0.075/2 = 0.0375$ mol.L⁻¹ 2. Acc. to SR. at equilibrium :

 $n(NO)_{formed} = 0.025 \text{ mol}$ $n(Cl_2)_{formed} = 0.0125 \text{ mol}$

 $[NO]_{formed} = 0.025/2 = 0.0125 \text{ mol/L}$ $[Cl_2]_{formed} = 0.0125/2 = 6.25 \times 10^{-3} \text{ mol/L}$

 $n(NOCI)_{reacted}/2 = n(NO)_{formed}/2 = n(CI_2)_{formed}/1$

 $0.0125/2 = n(NO)_{formed}/2 = n(Cl_2)_{formed}/1$

3.
$$K_c = [NO]_{formed}^2 \times [Cl_2]_{formed}^2 / [NOCl]_{rem}^2$$

= $(0.0125)^2 \times (6.25 \times 10^{-3}) / (0.0375)^2$
= 6.94×10^{-4}

2 mol of Ethanoic acid ($C_2H_4O_2$) is mixed initially with 3 mol of ethanol (C_2H_6O) in a container of volume V = 3L, the mixture is heated to reach the equilibrium state producing the ester ($C_4H_8O_2$) and water as the following equation:

$$C_2H_4O_{2(I)} + C_2H_6O_{(I)} \leftrightarrow C_4H_8O_{2(I)} + H_2O_{(I)}$$

The equilibrium constant of this reaction is $K_c = 4$

- 1. Determine the composition of the system at equilibrium in mol.
- 2. Determine the % yield of this reaction.

1. Let x be the number of moles of $C_2H_4O_2$ reacted at equilibrium.

Acc. to. SR at equilibrium:

$$\begin{split} n(C_2H_4O_2)_{reacted} &= n(C_2H_6O)_{reacted} = n(C_4H_8O_2)_{formed} = n(H_2O)_{formed} \\ x &= n(C_2H_6O)_{reacted} = n(C_4H_8O_2)_{formed} = n(H_2O)_{formed} \\ n(C_2H_4O_2)_{rem} &= n_0(C_2H_4O_2) - n(C_2H_4O_2)_{reacted} \\ &= 2 - x \\ n(C_2H_6O)_{rem} &= n_0(C_2H_6O) - n(C_2H_6O)_{reacted} \\ &= 3 - x \\ K_c &= [C_4H_8O_2]_{formed} \times [H_2O]_{formed} / [C_2H_4O_2]_{rem} \times [C_2H_6O]_{rem} \\ &= (x/2) \times (x/2) / ((2-x)/2) \times ((3-x)/2) = 4 \\ &= x^2/(2-x)(3-x) = 4 \\ x^2 - 24 - 20x + 4x^2 & 3x^2 - 20x + 24 = 0 \\ \end{split}$$
 We find $x_1 = 1.56 < 2$ accepted and $x_2 = 5.097 > 2$ rejected

The composition of the system at equilibrium is:

$$n(C_2H_4O_2)_{rem} = 2-x = 2-1.56 = 0.44 \text{ mol}$$

$$n(C_2H_6O)_{rem} = 3-x = 3 - 1.56 = 1.44 \text{ mol}$$

$$n(C_4H_8O_2)_{formed} = n(H_2O)_{formed} = x = 1.56 \text{ mol}$$

2. $R(C_2H_4O_2) = 2/1 < R(C_2H_6O) = 3/1$, thus $C_2H_4O_2$ is the limiting reactant.

Acc. to.SR:
$$n(C_4H_8O_2)_{max theoretical} = n_0(C_2H_4O_2)_0 = 2 mol$$

% yield =
$$n(C_4H_8O_2)_{formed at equilibrium} \times 100/n(C_4H_8O_2)_{max theoretical}$$