#### Esame - 14 Febbraio 2023

| Cognome   |  |
|-----------|--|
| Nome      |  |
| Matricola |  |

Tempo complessivo a disposizione per lo svolgimento: 2 <u>ore</u>

Si usi lo spazio bianco dopo ogni esercizio per la risoluzione

| <b>E1</b> | <b>E2</b> | <b>E3</b> | Quesiti | Lab |
|-----------|-----------|-----------|---------|-----|
|           |           |           |         |     |

## <u> 1 - Esercizio (6 punti)</u>

La rete di un ISP è riportata in figura. L'ISP possiede lo spazio di indirizzamento: 132.27.32.0/21 Definire un piano di indirizzamento in grado di supportare il numero di *host* indicato nella figura.

- a) Indicare le sottoreti IP graficamente nella figura, mettendo in evidenza i confini tra le reti IP ed assegnando una lettera identificativa a ciascuna rete. Assegnare le lettere in ordine alfabetico iniziando dalla rete più grande e procedendo per dimensione decrescente (# indirizzi rete A ≥ # indirizzi rete B ≥ .....). Per ciascuna sottorete definire l'indirizzo di rete, la *netmask* (in formato decimale puntato), e l'indirizzo di broadcast diretto, usando la tabella 1. Assegnare gli indirizzi alle sottoreti a partire da quelli più bassi del blocco 132.27.32.0/21.
- b) Scrivere nella tabella 2 la tabella di instradamento del router R3 nel modo più compatto possibile dopo aver assegnato opportunamente degli indirizzi ai router a cui R3 è connesso direttamente.



Tabella 1: Piano di indirizzamento

| Rete   | Indirizzo di rete    | Netmask | Ind. broadcast diretto |
|--------|----------------------|---------|------------------------|
| A      | 132.27.32.0          | /23     | 132.27.33.255          |
| В      | 132.27.34.0          | /24     | 132.27.34.255          |
| C      | 132.27.35.0          | /24     | 132.27.35.255          |
| D      | 132.27.36.0          | /24     | 132.27.36.255          |
| E      | 132.27.37.0          | /24     | 132.27.37.255          |
| F      | 132.27.38.0          | /25     | 132.27.38.127          |
| G      | 132.27.38.128        | /25     | 132.27.38.255          |
| Н      | 132.27.39.0          | /25     | 132.27.39.127          |
| I      | 132.27.39.128        | /26     | 132.27.39.191          |
| Ptp1-6 | 132.27.39.192-196208 | /30     |                        |

Tabella 2: Tabella di routing di R3

| Rete        | Netmask | Next hop |
|-------------|---------|----------|
| 132.27.34.0 | /24     | R4       |
| 0.0.0.0     | /0      | R2       |

# Esercizio 2 (6 punti)

Si consideri la rete in figura. S1 un server http e C un client http. S2 è un server ftp e D un client ftp. Il client C si collega al server S1 per scaricare una pagina web formata da un documento base di 30 KByte e 11 immagini di 0.250 MByte. Il trasferimento della pagina avviene mentre tra il server S2 e il client D è in corso un lungo file transfer (ftp usa connessione TCP con un solo flusso di pacchetti). Si assuma per le connessioni http RTT pari a 80 [ms].

- a) Si calcoli il tempo necessario a trasferire la pagina web assumendo che la connessione http sia unica e persistente.
- b) Come in a), ma con connessioni non-persistenti e trasferimento in parallelo delle immagini.



```
a)  \begin{array}{l} \text{C}_{html} = \text{Ci}_{mg} = 10 \text{Mb/s} \\ T_{html} = L_{html} / C_{html} = 24 \text{ms} \\ T_{img} = L_{img} / C_{img} = 200 \text{ms} \\ T_{a} = RTT + RTT + T_{html} + 11 (T_{img} + RTT) = 3,264 \text{s} \\ \\ b) \\ C_{html} = 10 \text{Mb/s} \\ C_{img} = 1 \text{Mb/s} \\ T_{html} = 24 \text{ms} \\ T_{img} = 2 \text{s} \\ \\ Tb = RTT + RTT + T_{html} + RTT + RTT + T_{img} = 2,324 \text{s} \\ \end{array}
```

## Esercizio 3 (6 punti)

In figura è rappresentato il grafo di una rete in cui sono presenti dei router (A, B, C, D, E, F, G) e 4 reti (NetA, NetD, NetF, NetG). I costi di attraversamento sono indicati accanto ad ogni link, i link sono bidirezionali e simmetrici.



#### Si chiede di:

- a) Calcolare mediante l'algoritmo di Bellman-Ford l'albero dei cammini minimi con **sorgente G** e destinazioni tutti gli altri router (si omettano le reti nel grafo). <u>Indicare:</u>
  - nella Tabella A, il valore dell'etichetta ad ogni step in cui il nodo viene analizzato: nel caso lo step successivo non modifichi l'etichetta dello step precedente occorre riscrivere l'etichetta dello step precedente.
  - nella figura sopra, l'albero trovato
- b) Sulla base dell'albero dei cammini calcolato al punto precedente, indicare i Distance Vector (DV) relativi alle reti NetA, NetD, NetF e NetG, inviati dal router G nella modalità Split Horizon senza Poisonous Reverse. Per ogni DV inviato indicare chiaramente: il destinatario del DV, le reti raggiungibili comunicate ed i rispettivi costi.

Tabella A

| Nodo A | Nodo B | Nodo (   | C No | odo D | Nodo E | No | do F | Nodo G |
|--------|--------|----------|------|-------|--------|----|------|--------|
| G,3    | G,1    | G,5      | -,i  | inf   | -,inf  | G, | 1    |        |
| B,2    | G,1    | F,3      | B,   | ,6    | C,6    | G, | 1    |        |
| B,2    | G,1    | F,3      | B,   | ,6    | C,4    | G, | 1    |        |
| B,2    | G,1    | F,3      | E,   | ,5    | C,4    | G, | 1    |        |
|        | A      | <u>.</u> | В    |       | С      |    | F    |        |
| NET A  | 2      |          |      |       | 2      |    | 2    |        |
| NET D  | 5      |          | 5    |       | 5      |    |      |        |
| NET F  | 1      |          | 1    |       | 1      |    |      |        |
| NET G  | 0      |          | 0    |       | 0      |    | 0    |        |

## Domande (9 punti)

**Q1** Indicare se le seguenti affermazioni sono vere o false motivando brevemente la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDEARATE ERRATE.

• La tecnica Carrier-Sense Multiple Access (CSMA) garantisce l'assenza di collisioni

 $\mathbf{F}$ 

• Le regole di inoltro negli switch sono configurate da protocolli di segnalazione espliciti

 $\mathbf{F}$ 

• Un segnale analogico con banda B=8[kHz] è campionato con una frequenza di campionamento fc=12[kHz]. Il segnale originale può essere ricostruito dai campioni così ottenuti senza perdita di informazione

F

• I protocolli di accesso al mezzo casuale offrono garanzie stringenti sul ritardo di trasferimento dell'informazione

F

 $\mathbf{Q2}$ 

Durante una sessione TCP, l'algoritmo di Jacobson stima valor medio e deviazione standard del RTT come  $SRTT^0 = 50$  ms e  $SDEV^0 = 20$  ms. I due segmenti successivi registrano un RTT di RTT $^1 = 100$  ms e  $RTT^2 = 30$  ms. *Si indichino* nella tabella i valori di SRTT, SDEV, DEV e del Timeout alla ricezione di ciascuno dei due segmenti considerando  $(1 - \alpha) = 7/8$  come peso della stima precedente di RTT e  $(1 - \beta) = 3/4$  come peso della stima precedente di SDEV. Si usi la tabella per indicare i risultati finali e lo spazio sottostante per mostrare i conti fatti.

|                        | RTT                    | SRTT                     | DEV        | SDEV        | Timeout                |
|------------------------|------------------------|--------------------------|------------|-------------|------------------------|
| $SRTT^0 = 50$          | RTT <sup>1</sup> = 100 | SRTT1=56,25              | DEV1=50    | SDEV1=27,5  | T1=138,75              |
| SDEV <sup>0</sup> = 20 | RTT <sup>2</sup> = 30  | SRTT <sup>2</sup> =52,96 | DEV2=22,96 | SDEV2=26,36 | T <sup>2</sup> =132,07 |

#### **Q3**

Nella rete in figura le tabelle di inoltro di switch e access point <u>sono</u> <u>complete</u> (contengono informazione per raggiungere tutti gli host). L'host A invia una ARP request per conoscere l'indirizzo MAC di E. E risponde con un ARP reply.

- a) Quali host ricevono la ARP request a livello 2?
- b) Quali host ricevono la ARP reply a livello 2?
- c) Indicare la tabella di inoltro dello switch S3.



a) TUTTI

b) SOLO A

c) E,F:2, G,H:3, A,B,C,D:1