

N91-11962

DEEP SPACE PROPAGATION EXPERIMENTS AT K_a-BAND

Stanley A. Butman
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

ABSTRACT

This presentation discusses propagation experiments as essential components of the general plan to develop an operational deep space telecommunications and navigation capability at K_a-band (32-35 GHz) by the end of the 20th century. Significant benefits of K_a-band over the current deep space standard X-band (8.4 GHz) are an improvement of 4 to 10 dB in telemetry capacity and a similar increase in radio navigation accuracy. Propagation experiments are planned on the Mars Observer Mission in 1992 in preparation for the Cassini Mission to Saturn in 1996, which will use K_a-band in the search for gravity waves as well as to enhance telemetry and navigation at Saturn in 2002. Subsequent uses of K_a-band are planned for the Solar Probe Mission and the Mars Program.

DEEP SPACE PROPAGATION EXPERIMENTS AT K_a-BAND

**Presentation To
Fourteenth NASA Propagation Experimenters Meeting
Austin, Texas**

by

Stanley A. Butman

**Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California**

May 11, 1990

CONTENTS

K_a-BAND RATIONALE	2
DEEP SPACE DOWNLINK PERFORMANCE EVOLUTION	3
MISSIONS WITH K_a-BAND LINKS	4
OVERVIEW K_a-BAND SCHEDULE	5
MARS OBSERVER K_a-BAND LINK EXPERIMENT	6
MARS OBSERVER MISSION SCENARIO	7
MARS OBSERVER SPACECRAFT CONFIGURATIONS	8
MARS OBSERVER K_a-BAND BEACON PERFORMANCE	9
DLINK BUDGETS FOR MARS OBSERVER	10
CASSINI TRAJECTORY	11
CASSINI SPACECRAFT	12
K_a-BAND ADVANTAGES FOR CASSINI MISSION	13
CASSINI K_a-BAND DLINK SYSTEM ASSESSMENT	14
SUMMARY	15

K_a-BAND RATIONALE

- **K_a-BAND OFFERS SIGNIFICANT BENEFITS**

- **TELEMETRY**

- **EXPECTED x4 TO x10 IMPROVEMENT IN CHANNEL CAPACITY OVER X-BAND**

- **NAVIGATION AND RADIO SCIENCE**

- **REDUCED PLASMA SENSITIVITY ENABLES MORE PRECISE NAVIGATION AND HIGHER PRECISION GRAVITATIONAL EXPERIMENTS THAN X-BAND**

- **500 MHz BANDWIDTH INCREASES RADIO METRIC ACCURACY AND FACILITATES ACCURATE RELATIVITY MEASUREMENTS**

- **REDUCED FLIGHT RADIO SYSTEM COSTS**

- **PERMITS REDUCTION IN ANTENNA SIZE FOR EQUIVALENT PERFORMANCE AT X-BAND**

- **PERMITS REDUCTION IN POWER REQUIREMENTS FOR EQUIVALENT PERFORMANCE AT X-BAND**

- **REDUCED DSN TRACKING TIME vs EQUIVALENT DATA VOLUME AT X-BAND**

JPL

DEEP SPACE DOWNLINK PERFORMANCE EVOLUTION AT X-BAND AND K_a-BAND 30 DEG ELEVATION, 90% WEATHER, GOLDSTONE, CA

COMPONENT	X-BAND (8.4 GHz)		K _a -BAND (32 GHz)	
	1990	1995	1995	2000+
SPACECRAFT				
TRANSMITTER dBm	40.0	40.0	37.0	40.0
3.66 M ANT. GAIN dBi	48.3	48.3	59.3	59.3
POINTING LOSS dB	-1.0	-0.1	-1.0	-0.2
SPACE LOSS dB	-294.6	-294.6	-306.2	-306.2
GROUND				
ATMO. ATTEN. dB	-0.1	-0.1	-0.4	-0.4
70M ANT. GAIN dBi	74.2	74.4	84.0	85.8
POINTING LOSS dB	-0.3	-0.1	-0.3	-0.1
NOISE SPECTRUM dBm/Hz	-184.6	-185.9	-182.6	-182.6
SNR dB-Hz	51.1	* 53.7	55.0	** 60.8

*** X-BAND IMPROVES BY 2.6 dB FROM NOISE REDUCTION (1.3 dB) AND
1.3 dB ANTENNA AND POINTING IMPROVEMENTS REQUIRED FOR K_a-BAND**

**** K_a-BAND IMPROVES BY 5.8 dB FROM POWER INCREASE (3 dB) AND FURTHER
TOLERANCE TIGHTENING ON ANTENNAS AND POINTING SYSTEMS**

MISSIONS WITH K_a-BAND LINKS

MARS OBSERVER – SEPT 16, 1992

- IMPLEMENTING 10 mWatt BEACON TO EVALUATE PERFORMANCE OF LINK
RELATIVE TO X-BAND BASELINE

CASSINI (SATURN) – APRIL 8, 1996

- DESIGNING A 5 Watt TELEMETRY LINK AS A MISSION ENHANCEMENT TO
AUGMENT X-BAND BASELINE

SOLAR PROBE – ABOUT THE YEAR 2000

- PLANNING ON K_a-BAND AS THE BASELINE

MARS PROGRAM

- SIGNIFICANT USE OF K_a-BAND

06

JPL

OVERVIEW K_a-BAND SCHEDULE

MARS OBSERVER K_a-BAND LINK EXPERIMENT (KABLE)

DSN ANTENNA DSS-13

OBJECTIVE

- EVALUATE K_a-BAND LINK PERFORMANCE RELATIVE TO X-BAND OVER THE SAME PATH AND OVER THE DURATION OF THE MISSION

ENHANCEMENT OPPORTUNITY

- DEMONSTRATE ABILITY TO RECEIVE TELEMETRY AT K_a-BAND (EARLY OUTER CRUISE PHASE OF MISSION)
- EVALUATE DOPPLER AND INTERFEROMETRIC NAVIGATION USING K_a-BAND AND X-BAND

JPL

MARS OBSERVER MISSION SCENARIO

JPL

MARS OBSERVER SPACECRAFT CONFIGURATIONS

LAUNCH CONFIGURATION

CRUISE CONFIGURATION

MAPPING CONFIGURATION

MARS OBSERVER

K_a-BAND BEACON PERFORMANCE, 90% WEATHER AT GOLDSTONE, CA

DLINK BUDGETS FOR MARS OBSERVER TO DSN 34M ANTENNA AT GOLDSTONE CA FOR 90% WEATHER AT 30 DEG ELEVATION

MISSION, DISTANCE AND DATE	MARS OBSERVER AT 2.45 AU, 1994	
SPACECRAFT SYSTEM	X-BAND	K _a -BAND
FREQUENCY (GHz)	8.42	33.7
XMTR. PWR. (dBm)	43.0	10.0
ANT. GAIN (dBi)	40.0	37.0
POINTING LOSS (dB)	-0.8	-0.5
EIRP (dBm)	82.2	46.5
SPACE LOSS	-282.4	-294.4
GROUND SYSTEM		
* ATMO. ATTEN. (dB)	-0.1	-0.4
ANT. GAIN (dBi)	67.8	78.0
POINTING LOSS (dB)	-0.1	-0.2
* NOISE (dBm/Hz)	-184.6	-182.6
SIGNAL/NOISE (dB-Hz)	52.1	12.1

* VARIES WITH ANTENNA ELEVATION ANGLE AND ATMOSPHERIC CONDITIONS.
PROBABILITY IS 90% THAT VALUES WILL NOT BE EXCEEDED

JPL

CASSINI INTERPLANETARY TRAJECTORY

JPL

CASSINI SPACECRAFT DEPLOYED FRONT ISO VIEW

K_a-BAND ADVANTAGES FOR THE CASSINI MISSION

- REDUCED SPACECRAFT DC POWER (16 Watts) FOR TELEMETRY
- ENHANCED TELEMETRY
 - HIGHER TELEMETRY RATES AT LESS POWER
 - AVOID TAPE RECORDER CAPACITY CONSTRAINT
- IMPROVED RADIO SCIENCE
 - REDUCED PLASMA NOISE
 - IMPROVED SMALL BODY MASS DETERMINATIONS
 - GRAVITATIONAL WAVE DETECTION
- IMPROVED NAVIGATIONAL ACCURACY
 - 4 TO 6 dB REDUCED THERMAL NOISE FOR DOPPLER
 - WIDER BANDWIDTH FOR VLBI

JPL

CASSINI K_a-BAND DOWNLINK SYSTEM ASSESSMENT

<u>PARAMETER</u>	<u>BASELINE</u>	
	<u>X-BAND</u>	<u>K_a-BAND</u>
● CLASS	A	A
● FREQUENCY (GHz)	8.4	32.0
● ANTENNA GAIN (dB)	48.3	59.3
● POINTING ACCURACY REQUIREMENT (MRAD, 3σ)	2.0	0.87
● RF POWER OUT (W)	10.6	5.0
● POWER REQUIREMENT DURING DOWNLINK (W)		
● TRANSMITTER DC POWER INPUT	40.0	20.0
● K _a EXCITER	—	3.5
● SUN SENSOR	1.4	2.0
	—	—
● TOTAL	41.4	25.5
● MAGNETIC TAPE RECORDER	HIGH	LOWER
	DUTY CYCLE	DUTY CYCLE
● MASS (KG)		
● MASS DELTA (REDUNDANT EXC, PWR COND, TWT)	—	16.0
● SUN SENSOR	0.5	1.0
	—	—
● TOTAL	0.5	17.0
● BENEFITS		
● ACHIEVABLE DATA VOLUME @ 10 AU ON 70M G & M WITH 2 RATES PER PASS (GBITS/DAY)	3.6	8.3
● RADIO SCIENCE	HIGH	HIGHER
● NAVIGATIONAL ACCURACY	HIGH	HIGHER

SUMMARY

- **K_a-BAND OFFERS SIGNIFICANT BENEFITS TO NASA FOR FUTURE MISSION SCIENCE RETURN**
- **A DEVELOPMENT ROADMAP IS IN PLACE AND BEING FOLLOWED**
- **PROPAGATION EXPERIMENTS WILL PLAY A KEY ROLE**