Solving under-constrained hyperelasticity without the null space

Leila Ghaffari, Toby Isaac, and Jed Brown

University of Colorado Boulder

Leila.Ghaffari@colorado.edu

SIAM-PP24

March 6, 2024

Motivation & Goal

- Under-constrained
 hyperelasticity: free energy
 f(x) has invariant motions
- Some motions (translations) are in the null space of the Hessian, but some (rotations) aren't
- How does this affect minimizing $f(\mathbf{u})$ using Newton-Krylov methods?

Our goal:

Robust Newton-Krylov for under-constrained hyperelasticity

Free Energy Functional & the Newton-Krylov Method

Free energy: f(x)

- $g(x_k) = \nabla f(x_k) \leftarrow$ gradient
- $H(x_k) = \nabla^2 f(x_k) \longleftarrow$ Hessian

Key Step: Solve $H_k \delta x_k = -g_k$ using Krylov method

Objective: Find x_* such that $f(x_*)$ is local minimum

Important fact:
$$\text{if } g_k \perp \ker(H_k) \longrightarrow \delta \boldsymbol{x}_k = -H_k^+ \boldsymbol{g}_k$$

Small Strain Invariants vs. Finite Strain Invariants

Small strain:

$$arepsilon(oldsymbol{u}) = rac{1}{2} \left(
abla oldsymbol{u} +
abla oldsymbol{u}^T
ight)$$

The rigid body modes are in the null space of the symmetric gradient.

Finite strain:

$$\boldsymbol{e}(\boldsymbol{u}) = \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T + \underbrace{\nabla \boldsymbol{u} \nabla \boldsymbol{u}^T}_{\text{nonlinear}} \right)$$

The rigid body modes are **NOT** in the null space of the Green strain tensor.

Free Energy Restrictions: Objectivity & Invariance!

Coordinates of *N* particles of a free body without Dirichlet BCs:

$$\mathbf{x} = (x_1, y_1, z_1, x_2, y_2, z_2, \dots, x_N, y_N, z_N)^T$$

Translational Invariants:

$$\mathbf{t}_{X} = (1, 0, 0, 1, 0, 0, \dots, 1, 0, 0)^{T}$$

 $\mathbf{t}_{Y} = (0, 1, 0, 0, 1, 0, \dots, 0, 1, 0)^{T}$

$$t_z = (0, 0, 1, 0, 0, 1, \dots, 0, 0, 1)^T$$

$$f(\mathbf{x}+\mathbf{t})=f(\mathbf{x})$$

- is subspace: $t \in \ker(H(x)), g \perp t$
- doesn't affect Krylov iteration

Rotational Invariants:

 \mathbf{q} : an element in SO(3)

 $R(q) = (I_N \otimes R(q))$: rotation matrix o(q, x) = R(q)x: orbit function

$$\mathbf{r}_{x} = (0, -z_{1}, y_{1}, 0, -z_{2}, y_{2}, \dots, 0, -z_{n}, y_{n})^{\mathsf{T}}$$

 $\mathbf{r}_{y} = (z_{1}, 0, -x_{1}, z_{2}, 0, -x_{2}, \dots, z_{n}, 0, -x_{n})^{\mathsf{T}}$
 $\mathbf{r}_{z} = (-y_{1}, x_{1}, 0, -y_{2}, x_{2}, 0, \dots, -y_{n}, x_{n}, 0)^{\mathsf{T}}$

* r_x , r_y , and r_z are the tangents of the orbit at x.

$$f(\boldsymbol{o}(\boldsymbol{q},\boldsymbol{x}))=f(\boldsymbol{x})$$

- is curved: $\mathbf{r} \notin \ker(H(\mathbf{x}))$
- does affect Krylov iteration

Plain Newton-Krylov & the Rotations!

An Implementation in PETSc:

Rigid body modes:

$$Z_{m\times 6}=[\boldsymbol{t}_x|\boldsymbol{t}_y|\boldsymbol{t}_z|\boldsymbol{r}_x|\boldsymbol{r}_y|\boldsymbol{r}_z]$$

$$Y_{m\times 6} = A_{m\times m}Z_{m\times 6}$$

$$D_{6\times 6} = Y^T Y$$

$$D = U\sigma^2 V^T$$

 $\rightarrow \hat{\mathcal{V}}$: corresponding right singular vectors of the zero singular values

The desired (?) null space:

$$\hat{Z} = Z\hat{V}$$

newton ad(x₀, strain energy); # reproduced in Julia

Iteration 1: energy 0.5402974677121607 gradient norm 1.4105813620865468 hessian rank 21 effective condition number 61.58224740081209

Iteration 2: energy 0.005247987808287236 gradient norm 0.11625451629789378 hessian rank 21

step length 1.0

effective condition number 777.3217296711898 step length 1.0 Iteration 3: energy 5.415541871298145e-7

gradient norm 0.0015862456717649644
hessian rank 21
effective condition number 20594.65732797073
step length 1.0

Iteration 5: energy 2.220446049250321e-16 gradient norm 2.748665926407727e-15

hessian rank 18 effective condition number 15.00000000000000

Re-parameterize Rotations


```
1.5
1.0
0.5
0.0
0 1 2 3 4 5 6
```

```
[36]:
H = ForwardDiff.hessian(f, randn(2))
rank(H)
[36]:
```

```
[38]:

Ĥ = ForwardDiff.hessian(Î, randn(2))

rank(Ĥ)

[38]:

1
```

Project out the Rotational Modes

U: Orthonormal basis spanning $\partial_{\mathbf{q}} o(\mathbf{q}, \mathbf{x}) : \mathbf{q} \in SO(3)$

Modified Hessian:
$$\tilde{H} = (I - UU^T)H(I - UU^T)$$

Rotation-corrected Newton Krylov

It's easy to implement, but does it affect convergence?

If there is a neighborhood ${\mathcal N}$ where:

- H is Lipschitz
- \tilde{H} is Lipschitz up to unitary transformation: $\min \tilde{H}(x)Q - Q\tilde{H}(y) : Q^TQ = I \lesssim |x - y|$
- The curvature of orbits is bounded: $|D^2o(\mathbf{q},\mathbf{x})| \leq C$

Then the iteration $x_{k+1} = x_k - \tilde{H}(\mathbf{x}_k)^+ \mathbf{g}_k$ converges R-quadratically near a solution

Plain vs Corrected Newton-Krylov

newton_ad(xo, strain_energy);	$newton(x_0, strain_energy, x \rightarrow ForwardDiff.gradient(strain_energy)$	
Iteration 1: energy 0.5402974677121604 gradient norm 1.4105813620865468 hessian rank 21 effective condition number 61.582247400812136 step length 1.0 Iteration 2: energy 0.605247987808286681 gradient norm 0.11625451629789381 hessian rank 21 effective condition number 777.3217296712144 step length 1.0	<pre>x -> rigid_body_corrected_hessian(strain_energy, x));</pre>	
	Iteration 1: energy 0.5402974677121604 gradient norm 1.4105813620865468 hessian rank 18 effective condition number 15.55394648873718 step length 1.0	
	Iteration 2: energy 0.004959838476031193 gradient norm 0.11654294393222203	
Iteration 3: energy 5.415541876854953e-7 gradient norm 0.0015862456717675895	step length 1.0 Iteration 3: energy 6.684727159775428e-7	
hessian rank 21 effective condition number 20594.6573278 step length 1.0	gradient norm 0.001280378513351747	
Iteration 4: energy 6.44902375026225e-15 gradient norm 1.2847656622972564e-7 hessian rank 21	step length 1.0 Iteration 4: energy 9.788756571327347e-15	
effective condition number 1.88204488080 step length 1.0	ilesstall falls to	
Iteration 5: energy -1.2212453270876712-15 gradient norm 3.2934620808806433e-15 hesslan rank 18 effective condition number 15.00000000000001	effective condition number 14.999999934516481 step length 1.0	
	Iteration 5: energy 1.1102230246251573e-15 gradient norm 3.3453785797687322e-15 hessian rank 18 effective condition number 15.00000000000000023	

(2) Projecting out rotational modes

What if the body is partially constrained?

- Rotation-corrected Newton should only project out tangents of invariant rotations
- Can the invariant rotations be determined automatically?

What if the set of invariant rotations is unknown?

A rotation q is invariant if

$$f(o(\epsilon q, x)) = f(x)$$
 for all ϵ

First order condition:

$$\partial_{\boldsymbol{q}} f(\boldsymbol{o}(\epsilon \boldsymbol{q}, \boldsymbol{x})) = 0 \Rightarrow g(\boldsymbol{x})^T V_{\boldsymbol{o}}(\boldsymbol{x}) \boldsymbol{q} = 0$$
where, $\partial_{\boldsymbol{q}} \boldsymbol{o}(0, \boldsymbol{x}) = V_{\boldsymbol{o}}(\boldsymbol{x}) \boldsymbol{q}$

Second order condition:

$$\partial_{\mathbf{q}}^{2} f(\mathbf{o}(\epsilon \mathbf{q}, \mathbf{x})) = 0 \Rightarrow u^{T} [\nabla_{\mathbf{x}} V_{\mathbf{o}}(\mathbf{x}) : \mathbf{g}(\mathbf{x})] \mathbf{q} + \mathbf{u}^{T} H(\mathbf{x}) V_{\mathbf{o}}(\mathbf{x}) \mathbf{q} = 0$$

Therefore q is an invariant rotation if:

$$\begin{bmatrix} HV_o + [\nabla_x V_o(x) : g(x)] \\ g^T V_o \end{bmatrix} q = 0$$

4 D > 4 B > 4 E > 4 E > E 990

Determining Invariant Rotations

If the orbit function o(q, x) of all rotations is known, the subset of invariant rotations can be determined at the cost (per Newton iteration) of

- 3 Hessian-vector products
- One tall-skinny $\mathbb{R}^{n\times 3}$ QR factorization

Outlook

- Projecting out the whole rigid body mode from the Hessian
- Implementation in PETSc and our solid mechanics software (Ratel: https://gitlab.com/micromorph/ratel)