Lesson 4 Differential Application

Apisit Thaweboon 65050988

4.1.1

Explain the difference between an absolute minimum and a local minimum.

In mathematics, a minimum is a value of a function that is smaller than or equal to all other values of the function within a certain domain. There are two types of minimums: absolute minimums and local minimums.

An absolute minimum is the smallest value that a function can take over its entire domain. It is the global minimum of the function and is unique, meaning there is only one absolute minimum for a given function.

A local minimum, on the other hand, is a value of a function that is smaller than its nearby values but may not be the smallest value over the entire domain. A local minimum can occur at multiple points in the domain, and there may be other points in the domain where the function takes on smaller values.

4.1.9

Sketch the graph of a function f that is continuous on [1,5] and has the given properties

- 1. Absolute minimum at 3
- 2. absolute maximum at 4
- 3. local maximum at 2

60. Find the absolute maximum and absolute minimu values of f on the given interval.

$$f(x) = \frac{e^x}{1+x^2}, [0,3]$$

$$\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{e^x}{1+x^2} \right)$$

$$= \frac{d}{dx} \left((e^x)(1+x^2)^{-1} \right)$$

$$= \frac{d}{dx} \left(-(e^x)(1+x^2)^{-2} + (1+x^2)^{-1}(e^x) \right)$$

$$= -(e^x)(1+x^2)^{-2} \frac{d}{dx} (1+x^2) + (1+x^2)^{-1}(e^x)$$

$$f'(x) = \frac{2xe^x}{(1+x^2)^2} - \frac{e^x}{1+x^2}$$

find crtical value at f'(x) = 0

$$f'(x) = \frac{2xe^x}{(1+x^2)^2} - \frac{e^x}{1+x^2} = 0$$

$$\frac{\cancel{e^x}}{1+x^2} = \frac{2x\cancel{e^x}}{(1+x^2)^2}$$

$$\frac{\cancel{e^x}}{1+x^2} = \frac{2x\cancel{e^x}}{(1+x^2)^{\frac{1}{2}}}$$

$$1+x^2 = 2x$$

$$x^2 - 2x + 1 = 0$$

$$(x+2)(x-1) = 0$$

$$x = -2, 1$$

At x = -2, 1 causes critical values Now we need to check all values :

1.
$$x = -2$$

2.
$$x = 1$$

3.
$$x = 0$$
 (left bound)

4.
$$x = 3$$
 (right bound)

$$f(x) = \frac{e^x}{(1+x^2)}$$

$$f(-2) = \frac{e^{-2}}{1 + (-2)^2} = 0.02706$$

$$f(1) = \frac{e^1}{1 + (1)^2} = 1.3591$$

$$f(0) = \frac{e^0}{1 + (0)^2} = 1.0$$

$$f(3) = \frac{e^3}{1 + (3)^2} = 2.0085$$

So the **absolute minimum** is happend when x = -2So the **absolute maximum** is happend when x = 3

4.2.25 Show that the equation $x^3 - 15x + c = 0$ has at most one solution in the interval [-2, 2]

Use Rolle's theorm and Contradiction proof

Let $y = x^3 - 15x + c$

By IVT, theres exists at least one real root in $x \in (-2, 2)$ such that y(x) = 0

Use method of contradiction.

$$\forall a, b \left[y(x_1) = 0 \ \land \ y(x_2) = 0 \ \land \ a \neq b \right]$$

Since y is diffentialble, by Rolle's theorem, thres exists a number $a \in (x_1, x_2)$ such that y'(a) = 0 However,

Solve inequation

$$\begin{array}{l} \mathbf{y}' > 0 \\ 3x^2 - 15 > 0 \\ 3(x^2 - 5) > 0 \\ x^2 - 5 > 0 \\ (x - \sqrt{5})(x + \sqrt{5}) > 0 \end{array}$$

$$\begin{array}{l} \sqrt{5} \approx 2.2 \quad \text{then} \\ \in (-2.2, 2.2) \end{array}$$

so we get that y' is incresing on [-2, 2] then $y' \neq 0$ in this closed interval

So all of these reason we conclude that y has only one solution on that interval \Box

4.3.3 Suppose you are given a formula for a function f.

A: How do you detemine where f is increasing or decreasing?

Find $\frac{d}{dx}f(x)$ then see if $f^{'}$; 0 or ; 0

B: How do you determine where the graph of f is concave upward or concave downward

Find $\frac{d}{dx}\frac{d}{dx}f(x)orf''$ then see if f'' $\downarrow 0$ or $\downarrow 0$

C: How do you locate inflection points?

- (a) Find f'(x) Solve f or f'(x) = 0 ξ get x_i
- (b) received x_i are inflection points corresponding to x=c

4.3.4

A: State the First Derivative test

The fist derivative test is the process of analyzing functions using theris first derivatives in order to find their extremum point

A: State the Second Derivative Test. Under what circumstances is it inconclusive? What do you do if it fails.

The second derivative test stats that if f(x) has a stationary point when x = candiff'(c) = 0 then **the test is inconclusive** and we should study the sign of the first derivative

4.3.42 The graph of function y = f(x) is shown. At which point(s) are the following true?

Analysis:

- from graph y is on above of x-axis so y > 0
- $\begin{array}{ll} \bullet \ \frac{dy}{dx} \\ & \text{at } (x,y) = B \quad \frac{dy}{dx} > 0 \\ & \text{at } (x,y) = A, E \quad \frac{dy}{dx} < 0 \\ & \text{at } (x,y) = C \quad \frac{dy}{dx} = 0 \end{array}$

A

 $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ are both positive Ans : B, C

\mathbf{B}

 $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ are both negative Ans : A, E

 \mathbf{C}

 $\frac{dy}{dx}$ is negative but $\frac{d^2y}{dx^2}$ is positive Ans : D

4.4.10
$$\lim_{x\to -2} \frac{x^3+8}{x+2}$$

let

$$y = \frac{x^3 + 8}{x + 2}$$

$$= \frac{x^3 + 2^3}{x + 2}$$

$$= \frac{(x + 2)(x^2 - 2x + 4)}{x + 2}$$

$$= (x^2 - 2x + 4)$$

$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2} = (-2)^2 - 2(-2) + 4$$

$$= 4 + 4 + 4$$

$$= 12$$

4.4.15
$$\lim_{t\to 0} \frac{e^{2t}-1}{\sin t}$$

Use L'Hospital

$$LHS = \frac{e^{2t}(2) - 0}{-\sin t}$$

$$\lim_{t \to 0} \frac{e^{2t} - 1}{\sin t} = \frac{2e^{2*0}}{-\sin 0}$$

$$= 2/1$$

$$= 2$$

4.4.75 Prove that $\lim_{x\to\infty} \frac{e^x}{x^n} = \infty$ for any positive interget n. This shows that the exponential function approaces infinity faster tahn any powe rof x.

if we give $x_1 = 1$ then $f'(x_1) = f'(1) = 3(1)^2 - 3 = 0$ or we cannot find x_2 by using newton's method because it will divides by 0 causes a crucial singularity

Hence Newton's method can' use to find root of this equation