Hybrid PE-ML Method for nonlinear WSI

Qingwei Ma, Shiqiang Yan and Ningbo Zhang City St George's, University of London

A LOT

CAN YOU HELP WITH WSI?

Outline

- □ Numerical models for ocean/offshore engineering
- ☐ Machine learning (ML) models
- □ ML applications to WSI
- ☐ Hybrid PE-ML for WSI
- ☐ Case study on more complex cases using GNN trained on data of simple cases
- **□** Summary
- □ Acknowledgements

Overview of Numerical Modelling

Need of numerical modelling in ocean/offshore engineering

- Predicting wind/wave/current fields
- Fluid structure interaction
 e.g wind turbine problems; vortex induced vibration
- Wave structure interaction (WSI)
 e.g, ships in waves; floating body in waves

Almost all projects in ocean/offshore need considering WSI

Overview of Numerical Methods

Classes of numerical models used in ocean/offshore engineering

Physics-Equation (PE) Based Methods Hybrid PE-ML Methods

PE Based

ML based

Data /Machine Learning (DL/ML) Based

Methods

Overview of Numerical Modelling

Track records of our team in developing numerical models for ocean/offshore engineering

QALE-FEM: Fully nonlinear potential method

qale-FOAM (Hybrid methods): combining fully nonlinear potential model with NS model (OpenFOAM)

Numerical models with embedded ML: embedding ML in the procedure of conventional numerical modelling to replace a part of numerical module.

Overview of ML: Main Components

Overview of ML: Types of ML

In terms of learning tasks

Supervised

Regression

Unsupervised

features identification

Semisupervised

generative or reinforced

In terms of the ways ML incorporated

Fully datadriven (Naïve)

ML

No physics emended

Physics informed ML

Embedding physics equations in objective function and/or features

Hybrid PE-ML

Embedding ML into the traditional procedure of solving physics equations

ML Based Models

Hybrid PE-ML

Overview of ML Applications to WSI: Problems to Be Solved

Problems to be solved: Interaction between waves and rigid bodies

- Wave dynamics (single phase)
- Aerodynamics
- Wave loads (hydrodynamics)
- Interface between air and water
- Floating body dynamics (rigid)
- Mooring line dynamics (springs here)
- Conditions on fixed and moving rigid boundaries

Overview of ML Applications to WSI

Physical problems	Data-driven	Physics-informed	Hybrid PE-ML
Wave parameters	Liu et al (2023) predict short-term wave surface. Many others	Wang et al (2022) simulates wave energy fields	Chang et al (2011) and others predict on the error of numerical models from measured data
Parameters in WSI	Tomasz (2020) used ML to predict the added resistance. Guth et al (2024) predicts wave load.	Lang et al (2024) predicts ship speed or engine power.	Not found
Responses of structures	ML predicts responses of floating body (Jiang, et al, 2024)	Mentzelopoulos et al (2023) used ML predicts the riser motion. Halder et al (2023) predict the floating box motions	Lee et all (2023) and Eskilsson et al (2023) use ML to predict the nonlinear effects of floating body motions
Loading, response and flow fields	Gonzalez et al (2020) and Li et al (2022), predicting flow field of dam breaking, water fall and others	Many for problems without free surfaces	Zhang et al (2023, 2024a.b) uses ML for solving Poisson equation

Hybrid PE-ML for WSI: Equations

Governing Equations of fluid:

$$\nabla \cdot \mathbf{u} = 0 \qquad \frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla p + \mathbf{g} + \nu \nabla^2 \mathbf{u}$$

Governing Equations of floating body (2D)

$$M\frac{d\mathbf{V}}{dt} = F + Mg$$
 $I\frac{d\Omega}{dt} = T$ $\frac{d\mathbf{r}_G}{dt} = \mathbf{V}$ $\frac{d\boldsymbol{\theta}}{dt} = \Omega$

Boundary conditions of fluid:

$$\mathbf{n} \cdot \nabla p = \rho (\mathbf{n} \cdot \mathbf{g} - \mathbf{n} \cdot \dot{\mathbf{U}})$$

$$u_b = V + \Omega \times R_{b,0}$$

$$\dot{\mathbf{U}} = \frac{d\mathbf{V}}{dt} + \frac{d\mathbf{\Omega}}{dt} \times \mathbf{R}_{b,0} + \mathbf{\Omega} \times \mathbf{V}$$

$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0}$$

$$p=0$$
 $\tau=0$

on moving rigid boundaries

on fixed rigid boundaries p=0 au=0 on free surface

Hybrid PE-ML for WSI:

Numerical Method and Procedure in ISPH

Incompressible Smoothed Particle Hydrodynamics (**ISPH**) combined with ML

- Hybrid PE-ML

Fractional step procedure used, needing solve PPE

The accuracy and efficiency are largely determined by solving the PPE

PPE is of the most timeconsuming

 $\mathbf{u}^* = \mathbf{u}_t + \Delta \mathbf{u}^*$ $\Delta \mathbf{u}^* = (\mathbf{g} + \nu \nabla^2 \mathbf{u}) \Delta t$ $\mathbf{r}^* = \mathbf{r}_t + \mathbf{u}^* \Delta t$ $\mathbf{V}^* = \mathbf{V}_t + d\mathbf{V}_t \Delta t$ $\mathbf{\Omega}^* = \mathbf{\Omega}_t + d\mathbf{\Omega}_t \Delta t$ $\mathbf{u}_{h}^{*} = \mathbf{V}^{*} + \mathbf{\Omega}^{*} \times \mathbf{R}_{h0}$ $\nabla^2 p_{t+\Delta t} = \Psi/\Delta t$ $\Psi = \alpha \frac{\rho - \rho^*}{\Delta t} + (1 - \alpha) \rho \nabla \cdot \mathbf{u}^*$ $\mathbf{u}^{**} = -\frac{\Delta t}{2} \nabla p_{t+\Delta t}$ $d\mathbf{V}_{t+\Delta t} = (M^{-1}\mathbf{F} + \mathbf{g})dt$ $d\mathbf{\Omega}_{t+\Delta t} = \mathbf{I}^{-1}\mathbf{T}dt$ $\mathbf{u}_{t+\Lambda t} = \mathbf{u}^* + \mathbf{u}^{**}$ $\mathbf{r}_{t+\Delta t} = \mathbf{r}_t + \frac{\mathbf{u}_t + \mathbf{u}_{t+\Delta t}}{2} \Delta t$ $\mathbf{V}_{t+\Delta t} = \mathbf{V}_t + \frac{1}{2}(d\mathbf{V}_t + d\mathbf{V}_{t+\Delta t})\Delta t$ $\Omega_{t+\Delta t} = \Omega_t + \frac{1}{2}(d\Omega_t + d\Omega_{t+\Delta t})\Delta t$

 $\mathbf{u}_{b,t+\Delta t} = \mathbf{V}_{t+\Delta t} + \mathbf{\Omega}_{t+\Delta t} \times \mathbf{R}_{b,0}$

Flowchart Normal ISPH with ML \mathbf{u}_t and \mathbf{r}_t of fluid particles; $d\mathbf{V}_t$, $d\Omega_t$, V_t and Ω_t of floating body at time t **u*** and **r*** of fluid particles; u_h on floating body surface Solve PPE ML Model **u**** of fluid particles; $d\mathbf{V}_{t+\Delta t}$ and $d\mathbf{\Omega}_{t+\Delta t}$ of floating body $\boldsymbol{u}_{t+\Delta t}$ and $r_{t+\Delta t}$ of fluid particles; Next time step $\mathbf{V}_{t+\Delta t} \; \mathbf{\Omega}_{t+\Delta t}$ and $\mathbf{u}_{b,t+\Delta t}$ on floating body surface at time $t + \Delta t$

Hybrid PE-ML for WSI: Numerical Method and Procedure in galeFOAM

ML estimate pressure

ML estimate eddy viscosity

Fig.1 flowchart of (a) current CPU-based qaleFOAM and (b) proposed GPU-based galeFOAM

Colour code:

CPU: QALE-FEM

CPU: OpenFOAM

Single or multi-GPU development

Hybrid PE-ML for WSI: Challenges Met and Tackled

- How to consider the boundary conditions when using ML to evaluate the pressure?
- Which part of the pressure evaluated using ML
- How to formulate the objective functions?
- What are inputs to ML?
- Which ML model is used?
- Can we use the data of simpler cases for training?

Hybrid PE-ML for WSI: Implementing Boundary Conditions

- Two kinds of BC for WSI: free surface and rigid boundaries
- Satisfying these BC is important
- Difficult for ML to accurately satisfy these BC due to nature of training
- Our approach: ML trained and evaluating pressure excluding the points or particle on BC
- Pressure on BC evaluated by formulation satisfying BC

On free surface of single phase: p=0

On rigid boundary: determine pressure using boundary conditions

Hybrid PE-ML for WSI: Evaluation of Pressure

Evaluation of the pressure plays a decisive role in correctly simulate WSI problem.

Total pressure include dynamic pressure and pressure related to vertical coordinate z. Dynamic pressure is more dominant in WSI.

ML may lead large error in region where dynamic pressure is relatively smaller if it is used for total pressure.

Our approach:

Hybrid PE-ML for WSI: Weights in Objective Function

During ML training, learnable variables are found by minimising the objective function, which is sum of errors of all points. Due to the nature of WSI, we desire the pressure errors near rigid boundary as smaller as possible. *Our approach*:

$$f_{obj} = \sum_{i}^{N} s_i (\hat{p}_{d,i} - p_{d,i})^2$$

$$s_{i} = \begin{cases} 3 & d_{b} \leq 3.0 \cdot dx \\ 2 & 3.0 \cdot dx < d_{b} \leq 6.0 \cdot dx \\ 1 & d_{b} > 6.0 \cdot dx \\ 0 & \text{free surface} \end{cases}$$

Hybrid PE-ML for WSI: Inputs

ML used to evaluate the pressure governed by PPE

$$\nabla^2 p_{t+\Delta t} = \Psi / \Delta t \qquad \Psi = \alpha \frac{\rho - \rho^*}{\Delta t} + (1 - \alpha) \rho \nabla \cdot \mathbf{u}^*$$

Our approach using ML is to establish the relationship below

$$\hat{p}_{d,t+\Delta t} = f(\Psi, \mathbf{u}^*, p_{d,t}, c_p)$$

Hybrid PE-ML for WSI: ML Models -GNN

GNN (graphic neural network)

Encoder:

Convert the input data into network embeddings with learnable weights

Message Passing:

Establish the relation between the initial embeddings and final embeddings with learnable weights

Decoder:

Establish the relation between final embeddings and output with learnable weights

Architecture (e.g., GNN, CNN)

SPH Case A: sloshing for training

For generating the training/testing data *without* baffle: L/d = 2 D /L=1; $a=0.3L \sim 0.7L$, $\omega = 0.6\omega_1$, $\omega = 0.8\omega_1$ and $\omega = 0.9\omega_1$

Applied case with a baffle using GNN: a = 0.01L and $\omega = 0.8\omega_1$; Height and width of the baffle are 0.2L and 0.04L

Applied case with a baffle using GNN: a = 0.01L and $\omega = 0.8\omega_1$; Height and width of the baffle are 0.2L and 0.04L

SPH Case B: Datasets generated for regular waves and solitary waves without any object and trained GNN applied to cases with various structures

Training data: 30 regular wave cases and 40 solitary wave cases

- For each of regular wave cases, H randomly selected in 0.05D to 0.25D and T in 1.0 s to 1.2 s (D = 0.4 m and L = 25D);
- For each of the solitary wave cases, H randomly selected in 0.2D to 0.4D with D is 0.25 m, 0.275 m or 0.3 m, L = 40D

Applied SPH Case B1: Solitary wave overtopping over a step

Wave: H= 0.1825D Tank: l/D=15, d/D=0.3, length=75D, D=0.2m

Mean error from experimental data:

Position	ISPH	ISPH_GNN
G1	5.9%	5.2%
G2	7.3%	5.8%

Applied SPH Case B2: Regular wave passing over a submerged fixed

Applied SPH Case B3: Motions of a floating body in regular waves

Wave: H=0.1D, T=1.2s; *Body:* b=0.75D, h=0.5D, uniform mass: 500 kg/m³, draft=0.25*D*, *CoG:* (20.0*D*, 1.0*D*); *Tank:* L=50D, D=0.4

10

20

Mean error from experimental data:

Motion	ISPH	ISPH_GNN		
Sway	4.1%	4.4%		
Heave	8.9%	7.7%		
Roll	15.2%	13.8%		

Applied SPH Case B4: Motions of a floating body in solitary waves

Wave: H = 0.27D; **Body**: b = 1.0D, h = 0.33D, uniform mass: 500 kg/m³, draft=0.25*D*, *CoG*: (11.67*D*, 1.0*D*);

14

8

10

x/d

Mean Difference between results of ISPH and ISPH-GNN

Motion	Difference	
Heave	3.7%	
Roll	11.6%	

Applied SPH Case B5: a moored floating breakwater

Wave: H=0.0767*D*, T=1.0s; *Body:* b = 0.6*D*, h = 0.25*D*, *M*=42kg, /=0.64 kg.m², d=0.17*D*, CoG:

(20.0D, 0.705D); Tank: L= 35D; D=0.6m;

Mooring lines: linear spring with $k = 1.2*10^5$ N/m

Mean error from experimental data

xperimental data:				
Motion/	ISPH_GNN			
mooring forces				
Sway	11.5%			
Heave	16.2%			
Roll	13.8%			
Fs	19.3%			
FL	17.2%			
120 80 (a) 80 -40 -40 -80 0 1 2 t/T	EXP ISPH_GNN			

Damping zone

Applied SPH Case B6: Green water impact on a floating deck

Wave: H=0.143D, T=1.2s; **Body**: b = 0.714D, h = 0.429D, M=?kg, I=6.531kg.m², draft=0.357D, d=0.286D, d1 = 0.0714D, CoG: (14.3D, 0.83D); Tank: L= 28D; D=0.7m

Mean error from experimental data:

18.7% for ISPH_GNN; 19.5% for ISPH

SPH Case B7: data from dam breaking and sloshing to model object dropping and oyster-like WECs

Computational Efficiency:

Applied SPH Case B3 and B7:

Averaged speedup ratio for pressure evaluation per step

Averaged speedup ratio for pressure evaluation per step

qaleFOAM Case 1

6.54 M cells, to achieve the results at 10.5 s With ML for pressure: 55 hours (laptops or workstation Without ML: 333 hours (laptops or workstation

T = 1.8 s, H = 0.08 m, d = 0.35 m; OpenFoam domain (6m * 14m * 1m) , QALE-FEM domain (70 m * 0.35 m)

Summary

Hybrid PE-ML methods: solving PPE is replaced by ML or solving turbulent models by ML. It has been applied to model single/multiphase WSI problems, related to four type of WECs. Good agreement with experimental results

Our experience shows that

- (1) Not using ML to evaluating the pressure on boundaries;
- (2) Not using ML to evaluate total pressure;
- (3) Carefully select objective function, with considering effects of boundaries;
- (4) GNN is better than CNN for particle-based or irregular grid methods.

Our results demonstrate that

- (1)Evaluating pressure using ML is much faster than directly solving PPE;
- (2) ML trained on simpler cases can be applied to more complex cases. This is particularly interesting as generating data on simpler cases costs less

Acknowledgements

- Development of Hybrid PE-ML was partially supported by EPSRC grants EP/V040235, EP/T026782 and EP/T00424X
- Experimental data for CorPower model and Mocean model provided by Edinburgh University. Models are provided by CorPower Ocean and Mocean Energy, respectively.
- Experimental data for OWC model provided by IIT Madras University.
- Part of dataset for training eddy viscosity provided by Bath University and Cardiff University
- Imperial College team participates in discussions on some contents during project meetings
- Dr. Qian Li contributes to development of ML model for eddy viscosity.
- Mr Pai Liu participates in the tests related to CorPower model.

We are very grateful to all the contributors

References Cited

Zhang, N.B., Yan, S.Q., Ma, Q.W, Guo, X.H, Xie, Z.H, Zheng, X. A CNN-supported Lagrangian ISPH model for free surface flow. Appl. Ocean Res. 136 (2023) 103587.

Zhang, N.B., Yan, S.Q., Ma, Q.W., Li, Q. (2024). Numerical simulation of wave-floater interactions using ISPH_GNN trained on data for wave-only cases. *Ocean Eng.*, *306*, 118041.

Zhang, N.B., Yan, S.Q., Ma, Q.W., Li, Q. (2024). A hybrid method combining ISPH with graph neural network for simulating free-surface flows. Computer Physics Communications 301 (2024) 109220.

Zhang, N.B., Yan, S.Q., Ma, Q.W., Li, Q. (2024). Hybrid ISPH-GNN method for simulating violent wave-structure interactions using wave-only data for training. Journal of Computational Physis (under review).