UTILITY APPLICATION

UNDER 37 CFR § 1.53(B) (2)

TITLE:

TAPELESS MICRO-LEADFRAME

APPLICANT:

Matthew S. Read and Robbie U. Villanueva

Correspondence Enclosed:

Utility Application (2 pgs); Cover Sheet (1 pg); Specification (10 pgs); Claims (4 pgs); Abstract (1 pg); Drawings (2 pgs); Declaration (2 pgs); Grant of Power of Attorney; Assignment and Assignment Recordation Cover Sheet (4 pgs); and Check No. 504857 in the Amount of \$750.00

"EXPRESS MAIL" Mailing Label Number <u>EL573656309US</u> Date of Deposit <u>November 30</u>, <u>2000.</u> I hereby certify under 37 CFR §1.10 that this correspondence is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" with sufficient postage on the date indicated above and is addressed to the Commissioner for Patents, Washington D.C. 20231.

Danielle Dixon

Tapeless Micro-Leadframe

Inventors:

Matthew S. Read

Robbie U. Villanueva

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to integrated circuit packaging, and more particularly, to microleadframe packaging.

2. Background Art

10 Micro-leadframes have been used in the semiconductor integrated circuit industry miniaturized replacements for printed circuit boards to reduce the size and cost of integrated circuit Conventional micro-leadframe packages have packages. been implemented for circuit connections with low pin 15 count semiconductor devices in various applications in which small-size circuit packages are required. example, conventional micro-leadframe packages been implemented in mobile telephones and other hand-20 held devices.

A conventional micro-leadframe is made of a flat base with planar conductive lead patterns to provide

15

electrically conductive paths for integrated circuits. A conventional semiconductor integrated circuit package typically includes a semiconductor die which contains an integrated circuit enclosed within a plastic mold In a typical integrated circuit package, a die cap. using gold wire bonds from die pads to leadframe leads are used to make electrical connections with the conductive external lead pattern of the microleadframe.

10

5

In a conventional fabrication process, the plastic mold cap of the integrated circuit package is heated and injected between a mold cavity and the microleadframe. In order to prevent any mold flash from reaching the exposed pads and die paddle, a tape is applied to the bottom of the conventional microleadframe according to the current industry standard. The need for application of tapes in a conventional fabrication process usually results in increased raw materials cost and causes clamping problems during wire bonding and subsequent removal of the tapes.

20

Therefore, there is a need for an improved microleadframe package without the use of tapes to prevent undesirable leakage of mold flash. Furthermore, there is a need for a method of fabricating an improved micro-leadframe package while obviating the need for applying a tape to the micro-leadframe.

SUMMARY OF THE INVENTION

5

The present invention provides a micro-leadframe for mounting an integrated circuit, generally comprising a flat base having a conductive lead pattern to provide electrically conductive paths integrated circuit, and a plurality of extension tabs arranged about the conductive lead The preload extension tabs protrude at an pattern. angle to a predetermined height above the flat base.

10

Furthermore, the present invention provides a

method of packaging an integrated circuit. The method

generally includes the step of providing a patterned

flat base with a plurality of preload extension tabs

protruding from the flat base at an angle with respect

to the flat base to a predetermined height above the

flat base.

20

Advantageously, the micro-leadframe and the method for packaging an integrated circuit in an embodiment according to the present invention allows the packaging process to be simplified by obviating the need for applying a tape to the micro-leadframe, thereby

avoiding the problems associated with the application of tapes to conventional micro-leadframes.

Further features and advantages of the invention as well as the structure and operation of various embodiments of the invention are described in detail below with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with particular embodiments thereof, and references will be made to the drawings in which:

FIG. 1 shows a sectional view of a micro-leadframe with a plurality of preload retention tabs in an embodiment according to the present invention;

FIG. 2 shows a sectional view of a top mold platten used in a process for attaching the mold compound or encapsulation material of a semiconductor device to the micro-leadframe in an embodiment according to the present invention;

FIG. 3 shows a sectional view illustrating the clamping of a micro-leadframe with heated top and bottom mold plattens in an embodiment according to the present invention;

15

20

10

10

FIG. 4 shows a sectional view of an integrated circuit with the preload extension tabs in an embodiment according to the present invention;

FIG. 5 shows a simplified top plan view of the integrated circuit of FIG. 4, with the preload extension tabs in an embodiment according to the present invention; and

FIG. 6 shows a bottom plan view of an example of a conductive lead pattern of the micro-leadframe in an embodiment according to the present invention.

DETAILED DESCRIPTION

FIG. 1 shows a sectional view of a micro-leadframe 2 which comprises a flat base for and a plurality of preload extension tabs 6, 8, 10, 12 and 14 protruding from the flat base 4 in an embodiment according to the present invention. The flat base 4 has a plurality of conductive lead patterns, which are not shown in the sectional view of FIG. 1, to provide electrically conductive paths for integrated circuits to be attached to the micro-leadframe. The preload extension tabs 6, 8, 10, 12 and 14 and the flat base 4 are formed in one integral piece. In an embodiment, the extension tabs are formed as part of the flat base and bent upward protruding at a predefined angle with

25

respect to the flat base. The conductive lead patterns integrated circuit packages can be designed, patterned and etched on the flat base conventional manner similar to that which is used for a conventional planar micro-leadframe known to a person skilled in the art.

FIG. 2 shows a sectional view of a conventional top mold platten 16 which is used for heating and molding the plastic resin mold compound or encapsulant of an integrated circuit package against the microleadframe 2 of FIG. 1 to produce an integrated microleadframe package. The top mold platten 16 typically comprises a large, flat chunk of steel with heater rods (not shown in FIG. 2) to heat the plastic resin mold compound of the integrated circuit package to a desired temperature. As shown in FIG. 2, the top mold platten 16 has an indentation which defines a mold cavity 18 having a predetermined depth x equal to the height of the integrated circuit package (not shown in FIG. 2), which is heated to allow the heated mold compound to be attached to the micro-leadframe of FIG. 1 in a process that will be described in further detail below with reference to FIG. 3.

20

As shown in FIG. 1, the preload extension tabs 6, 8, 10, 12 and 14 extend from the flat base 4 at an

angle with respect to the flat base to a predetermined height x + y above the flat base. The height x + y of the preload extension tabs 6, 8, 10, 12 and 14 is slightly greater than the depth x of the mold cavity 18 in the top mold platten 16 of FIG. 2 for attachment of the bottom of the micro-leadframe to top of the bottom mold platten in an embodiment according to the present invention.

5

20

25

FIG. 3 shows a sectional view of an integrated circuit on a micro-leadframe being overmolded by heated top and bottom mold plattens during the manufacturing in an embodiment according to the present invention. In FIG. 3, a heated top mold platten 16 forces the micro-leadframe extension tabs 6, 8, 10, 12 and 14 against the top cavity surface 34 of the top mold platten 16, while a heated bottom mold platten 20 exerts a pressure on the bottom surface 26 of the flat base 4. The bottom mold platten 20 typically comprises a large, flat chunk of steel with heater rods (not shown in FIG. 3) similar to the top mold platten 16 but without the indentation to provide the mold cavity for the semiconductor integrated circuit package. The integrated circuit 22 comprises a semiconductor die 28 enclosed in a plastic mold cap 30. An example of a typical integrated circuit package with flipchip

bonding will be described in further detail below with reference to FIG. 4.

In the embodiment shown in FIG. 3, the integrated circuit package 22 includes a plurality semiconductor dies 28 and 32 which are enclosed within the mold cap 30. The mold cap 30, which comprises a plastic resin material in an embodiment, is heated by the top and bottom mold plattens 16 and 20 and attached to the micro-leadframe 2 under heated pressure. preload extension tabs 6, 8, 10, 12 and 14 comprise bent flexible metal segments protruding from the top surface 24 of the flat base 4 of the micro-leadframe 2 in an embodiment. During the molding process, the preload extension tabs 6, 8, 10, 12 and 14 make contact with the top 34 of the mold cavity 18 when the heated top mold platten 16 presses the micro-leadframe 2 against the top of the bottom mold platten 20.

FIG. 4 shows a more detailed sectional view of an integrated circuit 22 with a conventional flipchip configuration. In FIG. 4, the integrated circuit 22 comprises plastic resin а mold cap 30 and semiconductor die 28 within the mold cap plurality of lead fingers 38, 40, 42 and 44 connected between the micro-leadframe 2 and the die 28 to provide electrical connections. The lead fingers

25

38, 40, 42 and 44 also support the semiconductor die 28.

FIG. 5 shows a top plan view of the integrated circuit package of FIG. 4 in an embodiment in which four preload extension tabs 8, 10, 46 and 48 provided to secure four corners 50, 52, 54 and 56 of the integrated circuit package 22, which has a square top area in this example. In an embodiment, sectional view οf FIG. 4 is obtained along sectional line A-A' in FIG. 5. In an alternate embodiment, the preload extension tabs may implemented at locations along the edges of integrated circuit package with a square or rectangular top area. Other arrangements of preload extension tabs may also be implemented in various embodiments within the scope of the present invention.

FIG. 6 shows the bottom plan view of a typical example of a conductive lead pattern 60 on the bottom surface 26 of the flat base 4 of the micro-leadframe 2. Various conductive lead patterns can be designed and etched on the flat base 4 of the micro-leadframe 2 in a conventional manner known to a person skilled in the art. When a semiconductor integrated circuit with a typical flipchip configuration such as the one shown in FIG. 4 is attached to the micro-leadframe 2 in an

25

embodiment according to the present invention, the lead fingers which are formed as part of the conductive lead pattern on the micro-leadframe provide electrical connections to the flipchip die.

5

10

From the above description of the invention it is manifest that various equivalents can be used to implement the concepts of the present invention without departing from its scope. Moreover, while invention has been described with specific reference to certain embodiments, a person of ordinary skills in the art would recognize that changes can be made in form and detail without departing from the spirit and the scope of the invention. The described embodiments are to be considered in all respects as illustrative and not restrictive. It should also be understood that the invention is not limited to the particular embodiments described herein, but is capable of many equivalents, rearrangements, modifications, and substitutions without departing from the scope of the invention.