

What is plantseg?

- Tool for 2D and 3D segmentation
 - Unet prediction task
 - Watershed task + clustering task + post processing task
- Different models for different data

Segmentation of plant tissues into cells using PlantSeg. A.Wolny et al, 2020

	Generic unet	Arabidopsis Ovules	Lateral Root Primordia	Arabidopsis thaliana Apical stem cell	Mouse embryo ex vivo
Resolution [µm]	[0.235, 0.150, 0.150]/ [0.25, 0.1625, 0.1625]	[0.235, 0.075, 0.075]/ [0.235, 0.150, 0.150]/ [1., 0.150, 0.150]	[0.25, 0.1625, 0.1625]/ [0.25, 0.325, 0.325]/ [0.25, 0.4875, 0.4875]	[1., 0.25, 0.25] / [0.25, 0.25, 0.25]	[1.0, 0.2, 0.2]
Dimensionality	3D	3D / 2D	3D / 2D	3D / 2D	3D
Modality	Light-sheet / Confocal	Confocal	Light-sheet	Confocal	Light-sheet / Confocal
Recommended patch size	[80,160,160]	[80,160,160] / [1, 256, 256]	[80, 160, 160] / [1, 256, 256]	[1, 256, 256] / [80, 160, 160]	[80, 160, 160] / [40, 220, 220]
Output type	Boundaries	Boundaries	Boundaries / Nuclei	Boundaries	Boundaries / Nuclei

PlantSeg Graphical User Interface (GUI)

- Very intuitive, but might be overwhelming
 - Install plantseg
 (https://kreshuklab.github.io/plantseg/chapters/plantseg_legacy/instal
 lation/) Linux:
 conda create -n plant-seg -c pytorch
 -c nvidia -c conda-forge pytorch
 pytorch-cuda=12.1 plant-seg=1.8.1
 bioimageio.core --no-channelpriority
 - Activate evironment and run: plantseg --napari

A lot of Options

- GridSearch, Avoid repeating already done computations
 - Pyramidal structure in 3: Watershed task + clustering task + post processing task
- Metric and Ground Thruth (Jean Yves), <u>StarDist</u>

Metric: Intersection over Union

Mean Matched score: is the mean IoUs of matched true positives

Accuracy: Proportion of total predictions that are correct

https://www.v7labs.com/blog/intersection-over-union-guide

Closer look to the parameters:

Parameter Correlation Matrix

Closer look to the parameters:

Closer look to the parameters:

Best model

Metric: Intersection over Union

Mean Matched score: is the mean loUs of matched true positives

Cellpose: No smoothing, CP_20241007_h2bxncad model, channels = [[1,2]], diameter=30

Mean Matched score: 0.7466

https://www.v7labs.com/blog/intersection-over-union-guide

٧

Plantseg 1: gaussian smoothing α =2.5, lightsheet_3D_unet_mouse_embryo_cells model, Watershed options: Threshold=0.4, SigmaSeed=0.2, SigmaWeight=0, MinSize=90, Alpha=0.7,

PixelPitch=(1.441,1,1), Mode=gasp

Clustering options: Beta=0.7, Minsize=100

Post Processing options: Threshold=0.1, Instances= False

Mean Matched score: 0.78103

Accuracy: 0.074743

But result are terrible

Plantseg 2: gaussian smoothing α =2.5, lightsheet_3D_unet_mouse_embryo_cells model,

Watershed options: Threshold=0.7, SigmaSeed=0.2, SigmaWeight=0, MinSize=100, Alpha=1.25,

PixelPitch=(1.441,1,1), Mode=gasp

Clustering options: Beta=1.0, Minsize=75

Post Processing options: Threshold=0.1, Instances= False

Mean Matched score: 0.722506

Accuracy: 0.292969

Training our model

- Retrain lightsheet_3D_unet_mouse_embryo_cells model
 - Took similar parameters that the original one
 - File formats
 - Low training data (3 for train and 5 for validation) converges (25h)
 - High training data (70% for train and 30% for validation) does not converge (not even 1 epoch in 48h)
 - Carfull with memory error

Results (biased because file in validation data)

• Its still running 🕾

Future aspects

- Is my metric good/did I understand correctly how it works, tune the thresholds
- Work with general model from plantseg
- Finish correctly the new model, preprocessing training data, early stopping in order to avoid the cons of cellpose?
- Perhaps making a general classification model could help

Thanks a lot for everything