Assignment - 6

2007-73 6 L8

1) single link pronunty function when below in the table with excledian distance blw each andividual point Py Pr Ps P2 P3 PI PI 0 Pr 6.2367 67 0.9518 0.1485 Py 0.3688 0.2042 0.1813 P6 0.3421 0.1386 0.2843 6.2932 0 Ph 0.2347 0.2540 0.1100 0.2216 0.3221 0 considery lover bond value, as opperbond value are equal to lower bond a finding clusters

Craphical representation by the given sin

as seen an above table min val in blau Po & Po after merging two nomber we need to find the distance with other member winy ecoldium distance we calculated the distance after first cluster we calculated the distance after first cluster are calculated to first cluster are calculated the distance after first cluster are calculated to first cluster ar

=> 0.2718

now updating matrix

Pi	PL PS	5,86	Py	66
0	0.5323			
0.2362	0	819 00	The second secon	
0.2217	6.1485	0	6	
6.3421	6.138 8		\ ,	2 6
	0.2367	0 0.2357 0.2367 0.2217 0.3488 0.3042	0 0.2353 0.2367 0 0.2217 0.1483 0 0.2012 0.1613	0 0.2357 0.2367 0 0.2217 0.1485 0 0.3488 0.2012 0.1613 0

we find min bodice i 0.1888 blw 12 & Pr

opdaring distance matrix

=> min [dux (Pz, Pr), Pi]

=> mm ((0.2362) (0.3421))

20 0.2367

=> min (dust (P2, PT) (P3, P6)

=> min (dun- (Pzi (P3, P8), (Pr) (P3, P6))

=> 0 483

=> min (dun (121Pg), P4))

min (dun (0.2042), (0.2952)

=> 0.2042

	PI	12,00	Ps , P6	Py
Pı	O			
12.05	0.2367	0		
83186	0 2512	01483	0	
Py	0.3688	0.2042	0.1615	0

mm value ai 0.1483 5/0 /2, P5 & Ps.P6

> updaling distance matrix min [dun ((Pz, Pr), (P3, Pr)), Pr))
min [dun ((Pz, P5), Pr)) ((P3, Pr), Pr)

20 0.2218

2) min [dis ((PQ, Pr), P4)), ((P3, P6), P4))
2) 6.1813

	PI P2	186167169	84
8,	0		
P2186, P3, P3	012218	0	
Py	0.3688	0.1617	0

0.1613 blw Pyg P2, P6, B, Pa mininom value is 4/6

matrin min [dut (P2, PE, P3, P6), P4) destate 20 0.2211

1	P2,86,63,86,84
5	
2218	0
	2218

fined clubber blus PIE PLIPETPS, Pally

Complete-lank 1- ploting nigy value with given mating

from dob we can say min value in 0.1100 blw P3 916

- -> max (dut (Ps, E)) (P6, PD)
 - => man ([0.2217, 0.23421)
 - => 0.23 43
- -> man (dur (B,12), (6, P2))
 - => man((10.1485), 10.2140))
 - -> 0-2540
 - => man (dost (P>, P4), (P6, P4))
 - => war (0.1619,0.5519)
 - 2) 0.2216
- -> opdams man(dist (P3, (P6), (P6, PM))
 - => 0.3921

(9)

P1 82 83.88 P4 P5

0

15 0.576.

83 RJ 6 2348 0.2590 00

14 2.3888 0.50AT 0 TTT 0

PC 6-3121 0.18 PE 6-3921 02952

> min val of laser bond is 0.1388 blu 12 EPS

-> man (dust (6561) (60.61))

=> man (0.25 ra, 0.342)

= 0.3421

-> man (dust((P2, (P3,P6)), (P5,P6)))

20 0·3921

-> man [dut [12, P4), [P6, P4)]

21 0-2932

Equal Education and Employment Opportunity

(10)

P1 P2, P5 P3, P6

196 91

PIO

P2, P5 0-3421 0

\$3,96 0.2397 6.3921 0

14 0.3688 0.2882 0.2216

min sal vi 0.2216 bles Ps, Ps & Py

> Updowny distance matin

-> man [dur ((P3, P6), P), (P4, P1))

-5 6-3688

-> man [dist ((P3, P6), [P2, P6)), (P4 [P2, P7))

20 0-3921

	P1 P21	66	P3186184
ρ,	0		
P2186	6-82421	0	
P3, P6, P4	0.3 688	0.3921	O

(P1, 185, P6, P4))

20 6-394

updaling distance matrix.

Average Link 1- 100 hs at distance the all parts out of the distances

found min value at 0.1100 blw PS & Po

6-3421 6-1388 0.3382 6.2932 6

88

py

-> min value a) at P4 & [P8, P6) which is 0.1864

0-3688 0.2482 0.1864 0

