Kinematics (of robot arms)

science of motion without regarding the underlying forces

- link: rigid component
- joint: moving parts
 - -revolute: rotation
 - prismatic: translation

joints symbols rotation

translation

degree of freedom (DOF):

- number of variables
- needed to describe the motion
- of a system

3D Kinematics Rigid Body

6-DoF Pose: Position and Orientation

forward kinematics

- given joint values
- determine pose

inverse kinematics

- given desired pose
- find joint values

often:

not whole system but only end-effector pose of interest

Kinematic Chain

kinematics topology as a graph

- link (rigid): edge between joints
- joint: vertex
 - revolute aka hinged: 1 DoF rotation
 - prismatic aka sliding: 1 DoF translation
 - screw: turning & sliding, but 1 DoF
 - cylindrical: revolute and sliding with 2 DoF
 - spherical aka ball joint: 3 DoF rotation

— ...

Kinematic Chain

- joints can get complex
 - e.g., cam & follower

- but mainly revolute & prismatic
- especially in combination with actuators
 - active joint: driven by motor
 - passive joint: following through mechanical linkage

Kinematic Chain

- closed vs open chain
 - contains loops or not
- standard robot arm: serial chain
 - open chain as "tree" with branching factor 1
 - only revolute or sliding joints, all active
- parallel robot arms: closed chains
 - e.g., Steward platform (active prism. joints) or low-DoF pick'n'place robots

Robotarm Forward Kinematics

- transformation between coordinate systems (frames)
 - world-frame
 - base-frame
 - manipulator-frame
- kinematics becomes easy
 - determining manipulatorpose
 - through standardized matrix operations
 (or quaternions for rotation)
- conventions
 - Denavit-Hartenberg Rules
 - how to attach frame to link

Denavit-Hartenberg Rules

Denavit-Hartenberg Rules

short summary

- z-axis of each joint: along its axis of motion
- x-axes: along the common normals between z-axes
- y-axes follow from right-hand-rule
- only four parameters for each transformation between frames:
 - d : "depth" along the previous joint's z axis
 - $-\theta$: rotation about the previous z (the angle between the common normal and the previous x axis)
 - r : radius of the new origin about the previous z (the length of the common normal)
 - α : rotation about the new x axis (the common normal) to align the old z to the new z

Work Space (WS)

- aka work envelope, reach envelope
- space of poses the end-effector can reach
 - dexterous ws: reach with arbitrary orientation
 - reachable ws: reach with at least 1 orientation

Work Space

example

Arm Types & Workspaces

type	robots	kinematic chains	workspace
Cartesian		Y X X X X X X X X X X X X X X X X X X X	
cylindrical		ZU CA	R
spherical		B C A	A
horizontal articulated		C D E C D E	
vertical articulated		B P	M

Forward Kinematics

- more Forward Kinematics
 - later on in the context of locomotion
- Inverse Kinematics soon
 - first: how are active joints implemented
 - i.e., how are DoF physically actuated