1 Некоторые свойства абсолютно инт функций

Определение 1.1. Функция f(x) называется абсолютно интегрируемой на конечном или бесконечном интервале (a,b), если выполняются два условия:

- 1. $\exists x_0, x_1, \dots, x_k : a = x_0 < x_1 < x_2 < \dots < x_k = b$, что на любом отрезке $[\xi, \eta]$ из (a, b), не содерж x_i функция f(x) интегрируема по Риману.
- 2. $\int_a^b |f(x)| dx$ сходится

Лемма 1.1. Пусть f(x) абсолютно интегрируема на конечном или бесконечном (a,b). Пусть $\varphi(x)$ - непрерывна и ограничена на (a,b). $f(x)\varphi(x)$ - абсолютно интегрируемо на [a,b]

Доказательство. а) Рассмотрим $\forall [\xi,\eta] \subset (x_{i-1},x_i)$. На нём f(x) и $\varphi(x)$ - интегрируема по Риману, следовательно $f(x)\varphi(x)$ инт. по Риману $\Rightarrow 1$. б) Так как $\varphi(x)$ - ограничена то $\exists M: |\varphi(x)| \leq M$ на (a,b). Тогда $|f(x)\varphi(x)| \leq |f(x)|M$ на (a,b). Т.к. $\int_a^b |f(x)| dx$ - сход., то $\int_a^b |f(x)\varphi(x)| dx$ - сход. по признаку сравнения $\Rightarrow 2$. $\Rightarrow f(x)\varphi(x)$ - абс. инт. на (a,b)

Определение 1.2. Функция $\varphi(x)$ определённая на $\mathbb R$ называется ступенчатой если \exists числа $x_0, x_1, x_2, \ldots, x_k : x_0 < x_1 < x_2 < \cdots < x_k$ и c_1, c_2, \ldots, c_k :

$$\varphi(x) = \begin{cases} c_i, & x \in [x_{i-1}, x_i) \\ 0, & x \in (-\infty, x_0) \cup [x_k, +\infty) \end{cases}$$

Замечание. Если положить

$$\varphi_i(x) = \begin{cases} 1, & x \in [x_{i-1}, x_i) \\ 0, & x \notin [x_{i-1}, x_i) \end{cases}$$

TO $\varphi(x) = c_1 \varphi_1(x) + \dots + c_k \varphi_k(x)$.

Теорема 1.1 (О приближении абс инт функций ступенчатыми). Пусть f(x) - абс. инт. на конечном или бесконечном (a,b) тогда $\forall \varepsilon>0$ \exists ступенчатая функция $\varphi(x):\int_a^b|f(x)-\varphi(x)|dx<\varepsilon$

Доказательство. Пусть для простоты записи у функции имеются только две особенности в точках a и b, т.е. f(x) - инт по Риману на $\forall [\xi,\eta]$ из (a,b).

Возьмём $\forall \varepsilon > 0$. Из абсолютной инт. f(x) следует \exists таких $[\xi, \eta] \in (a, b)$:

$$\int_{a}^{\varepsilon} |f(x)| dx + \int_{\eta}^{b} |f(x)| dx < \frac{\varepsilon}{2}$$

Так как f(x) инт. по Риману на $[\xi, \eta]$ то для рассмотренного $\varepsilon > 0$ $\exists \delta : \forall$ разб. отр. $[\xi, \eta]$ $\tau = \{x_i\}_{i=0}^{n_{\tau}} (|\tau| < \delta), \, \forall \xi_i \in [x_{i-1}, x_i].$

Выполняется $\left|\int_{\xi}^{\eta}f(x)dx-\sigma_{\tau}\right|<arepsilon/2$, где σ_{τ} - сумма Дарбу.

 $\left| \int_{\xi}^{\eta} f(x) dx - s_{\tau} \right| \leq \frac{\varepsilon}{2}$, rge $s_{\tau} = \sum_{i=1}^{n_{\tau}} m_{i} \Delta x_{i}$ $(m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x), \Delta x_{i} = x_{i} - x_{i-1}).$

Также $\int_{\xi}^{\eta} f(x) dx \ge s_{\tau} \ \Rightarrow \ 0 \le \int_{\xi}^{\eta} f(x) dx - s_{\tau} \le \varepsilon/2.$

Рассмотрим ступенчатую функцию:

$$\varphi(x) = \begin{cases} m_i, & x \in [x_{i-1}, x_i) \\ 0, & x \notin [\xi, \eta) \end{cases}$$

Отметим:
$$s_{\tau} = \sum_{i=1}^{n_{\tau}} m_{i} \Delta x_{i} = \int_{\xi}^{\eta} f(x) dx, \ \varphi(x) \leq f(x) \ \text{на} \ [\xi, \eta]$$

$$\Rightarrow \int_{a}^{b} |f(x) - \varphi(x)| dx = \int_{a}^{\xi} |f| dx + \int_{\xi}^{\eta} |f - \varphi| dx + \int_{\eta}^{b} |f| dx, \ \text{но} \ \int_{\xi}^{\eta} |f - \varphi| dx = \int_{\xi}^{\eta} (f - \varphi) dx = \int_{\xi}^{\eta} f dx - s_{\tau}$$

$$\Rightarrow \int_{a}^{b} |f(x) - \varphi(x)| dx < \varepsilon/2 + \varepsilon/2 = \varepsilon \qquad \Box$$

Теорема 1.2 (Римана (об осциляциях)). Пусть f(x) абс. инт. на конечном или бесконечном интервале (a,b), тогда $\lim_{\nu\to\infty}\int_a^b f(x)\cos\nu x dx=0$ и $\lim_{\nu\to\infty}\int_a^b f(x)\sin\nu x dx=0$

Доказательство. 1) Если

$$\varphi(x) = \begin{cases} 1, & x \in [\xi, \eta) \\ 0, & x \notin [\xi, \eta) \end{cases}, [\xi, \eta] \in (a, b)$$

To:

$$\int_a^b \varphi(x) \sin \nu x dx = \int_\xi^\eta \sin \nu x dx = -\frac{\cos \nu x}{\nu} \bigg|_\xi^\eta \underset{\nu \to \infty}{\longrightarrow} 0$$

- 2) Если $\varphi(x)$ ступенчатая, то она является линейно комбинацией расмотренных одноступенчатых функций, поэтому для неё утверждение справедливо.
- 3) Рассмотрим абс. инт. на (a,b) функцию f(x). Возьмём $\underline{\forall \varepsilon > 0}$.

По предыдущей теорме $\exists \varphi(x)$ - ступенчатая функция: $\int_a^b |f-\varphi| dx < \varepsilon/2$.

Т.к. $\lim_{\nu\to\infty}\int_a^b\varphi(x)\sin\nu xdx=0$, то $\underline{\exists}\nu_{\varepsilon}:\forall\nu\;(|\nu|>\nu_{\varepsilon})\hookrightarrow|\int_a^b\varphi(x)\sin\nu xdx|<\varepsilon/2$. Тогда $\forall\nu:\;(|\nu|>\nu_{\varepsilon})$ выполняется:

$$\frac{|\int_{a}^{b} f(x) \sin \nu x dx|}{|\int_{a}^{b} f(x) - \varphi(x)| \sin \nu x dx + \int_{a}^{b} \varphi(x) \sin \nu x dx|} \le |\int_{a}^{b} (f(x) - \varphi(x)) \sin \nu x dx| + |\int_{a}^{b} \varphi(x) \sin \nu x dx| < |\int_{a}^{b} |f(x) - \varphi(x)| dx + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Подчёркнутое означает,
что $\lim_{\nu\to\infty}\int_a^b f(x)\sin\nu x dx=0.$ Аналогично косинус.

Замечание. Интервал (a,b) при исследовании абсолютно интегрируемых на другой промежуток [a,b],[a,b),(a,b]