漸化式(基本) (解答)

❷問1

次の漸化式で定まる数列
$$\{a_n\}$$
 の一般項を求めよ.
$$(1) \ a_1=1, \ a_{n+1}=\frac{1}{3}a_n+3 \qquad \qquad (2) \ a_1=\frac{3}{2}, \ 2a_{n+1}=5a_n+3$$

(2)
$$a_1 = \frac{3}{2}$$
, $2a_{n+1} = 5a_n + 3$

₩ 解答

(1) 特性方程式 $\alpha = \frac{1}{3}\alpha + 3$ の解は $\alpha = \frac{9}{2}$ である. よって、与えられた漸化式は

$$a_{n+1} - \frac{9}{2} = \frac{1}{3} \left(a_n - \frac{9}{2} \right)$$

と変形できる.これより,数列 $\left\{a_n-\frac{9}{2}\right\}$ は初項 $a_1-\frac{9}{2}=1-\frac{9}{2}=-\frac{7}{2}$,公比 $\frac{1}{3}$ の等比数 列であるから,

$$a_n=-\frac{7}{2}\cdot\left(\frac{1}{3}\right)^{n-1}+\frac{9}{2}$$

(2) 与式は $a_{n+1}=\frac{5}{2}a_n+\frac{3}{2}$ と変形できる.特性方程式 $\alpha=\frac{5}{2}\alpha+\frac{3}{2}$ の解は $\alpha=-1$ である. よって、与えられた漸化式は

$$a_{n+1} - (-1) = \frac{5}{2}(a_n - (-1)) \iff a_{n+1} + 1 = \frac{5}{2}(a_n + 1)$$

と変形できる.これより,数列 $\{a_n+1\}$ は初項 $a_1+1=\frac{3}{2}+1=\frac{5}{2}$,公比 $\frac{5}{2}$ の等比数列で あるから,

$$a_n = \left(\frac{5}{2}\right)^n - 1$$

○ 問 2

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_{n+1} = 3a_n + 2^n$

(2)
$$a_1 = 5$$
, $a_{n+1} = 3a_n + 5 \cdot 3^n$

₩ 解答

(1) 両辺を 2^{n+1} で割ると,

$$\frac{a_{n+1}}{2^{n+1}} = \frac{3}{2} \cdot \frac{a_n}{2^n} + \frac{1}{2}$$

 $b_n=rac{a_n}{2^n}$ とおくと,数列 $\{b_n\}$ は $b_1=rac{a_1}{2^1}=rac{2}{2}=1$, $b_{n+1}=rac{3}{2}b_n+rac{1}{2}$ で定まる数列である. 特性方程式 $\alpha = \frac{3}{2}\alpha + \frac{1}{2}$ の解は $\alpha = -1$ なので,

$$b_{n+1} + 1 = \frac{3}{2}(b_n + 1)$$

と変形できる. 数列 $\{b_n+1\}$ は初項 2,公比 $\frac{3}{2}$ の等比数列であるから, $b_n+1=2\cdot\left(\frac{3}{2}\right)^{n-1}$ となり, $b_n = 2 \cdot \left(\frac{3}{2}\right)^{n-1} - 1$. よって,

$$a_n = 2^n b_n = 4 \cdot 3^{n-1} - 2^n$$

(2) 両辺を 3^{n+1} で割ると,

$$\frac{a_{n+1}}{3^{n+1}} = \frac{a_n}{3^n} + \frac{5}{3}$$

 $b_n=rac{a_n}{3^n}$ とおくと,数列 $\{b_n\}$ は $b_1=rac{5}{3},\; b_{n+1}=b_n+rac{5}{3}$ で定まる数列である.これは初項 $\frac{5}{3}$, 公差 $\frac{5}{3}$ の等差数列であるから, $b_n = \frac{5}{3} + (n-1)\frac{5}{3} = \frac{5}{3}n$. よって,

$$a_n = 3^n b_n = 5n \cdot 3^{n-1}$$

₽問3

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + 2a_n$

(1)
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + 2a_n$ (2) $a_1 = 0$, $a_2 = 2$, $a_{n+2} = 4a_{n+1} - 4a_n$

₩ 解答

(1) 特性方程式 $x^2 = x + 2$ の解は x = 2, -1 であるから,

$$a_{n+2} + a_{n+1} = 2(a_{n+1} + a_n)$$

と変形できるので、数列 $\{a_{n+1}+a_n\}$ は初項 3, 公比 2 の等比数列なので、 $a_{n+1}+a_n=3\cdot 2^{n-1}$ である. よって、指数関数型の漸化式 $a_{n+1}=-a_n+3\cdot 2^{n-1}$ が得られたので、これを解 いて,

$$a_n = 2^{n-1} + (-1)^{n-1}$$

(2) 特性方程式 $x^2 = 4x - 4$ の解は x = 2 (重解) であるから,

$$a_{n+2} - 2a_{n+1} = 2(a_{n+1} - 2a_n)$$

と変形できるので、数列 $\{a_{n+1}-2a_n\}$ は初項 2、公比 2 の等比数列なので、 $a_{n+1}-2a_n=2^n$. つまり, $a_{n+1} = 2a_n + 2^n$. これを解いて,

$$a_n = (n-1)2^{n-1}$$

復習用問題

₽問4

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 6$$
, $a_{n+1} = 3a_n - 8$

(2)
$$a_1 = 2$$
, $a_{n+1} = 6a_n - 15$

√ 解答

(1) 特性方程式 $\alpha = 3\alpha - 8$ の解は $\alpha = 4$ である. よって、与えられた漸化式は

$$a_{n+1} - 4 = 3(a_n - 4)$$

と変形できる. これより,数列 $\{a_n-4\}$ は初項 2,公比 3 の等比数列であるから, $a_n-4=2\cdot 3^{n-1}$ である. よって,

$$a_n = 2 \cdot 3^{n-1} + 4$$

(2) 特性方程式 $\alpha=6\alpha-15$ の解は $\alpha=3$ である. よって、与えられた漸化式は

$$a_{n+1} - 3 = 6(a_n - 3)$$

と変形できる. これより, 数列 $\{a_n-3\}$ は初項 -1, 公比 6 の等比数列であるから, $a_n-3=(-1)\cdot 6^{n-1}$ である. よって,

$$a_n = -6^{n-1} + 3$$

₽問5

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 2$$
, $a_{n+1} = 3a_n + 2^n$

(2)
$$a_1 = -10, \ a_{n+1} = a_n + \frac{4}{3^n}$$

₩ 解答

(1) 問 2(1) と同じである. $a_n = 4 \cdot 3^{n-1} - 2^n$.

(2) 両辺に 3^{n+1} をかけて、 $3^{n+1}a_{n+1} = 3(3^na_n) + 12$ となるので、 $3^na_n = -8 \cdot 3^n - 6$. よって、

$$a_n = -2 \cdot \left(\frac{1}{3}\right)^{n-1} - 8$$

₽問6

次の漸化式で定まる数列 $\{a_n\}$ の一般項を求めよ.

(1)
$$a_1 = 1$$
, $a_2 = 2$, $a_{n+2} = a_{n+1} + 6a_n$ (2) $a_1 = 1$, $a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$

(2)
$$a_1 = 1$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$

√ 解答

(1) 特性方程式 $x^2 = x + 6$ の解は x = 3, -2 であるから.

$$a_{n+2} - 3a_{n+1} = -2(a_{n+1} - 3a_n)$$

と変形できる. 数列 $\{a_{n+1}-3a_n\}$ は初項 -1, 公比 -2 の等比数列なので, $a_{n+1} - 3a_n = -(-2)^{n-1}$. $\sharp \circ \tau$, $a_n = \frac{1}{5} (4 \cdot 3^{n-1} + (-2)^{n-1})$.

(2) 特性方程式
$$x^2=x+1$$
 の解は $x=\frac{1\pm\sqrt{5}}{2}$ である. $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$ とおくと,

$$a_{n+2} - \alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n)$$

と変形できる. これより、数列 $\{a_{n+1}-\alpha a_n\}$ は初項 $1-\alpha=\beta$ 、公比 β の等比数列なので、 $a_{n+1}-\alpha a_n=\beta^n$. 同様に、 $a_{n+1}-\beta a_n=\alpha^n$. 辺々を引くと、 $(\alpha-\beta)a_n=\alpha^n-\beta^n$. こ こで, $\alpha - \beta = \sqrt{5}$ であるから,

$$a_n = rac{1}{\sqrt{5}} \left\{ \left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight\}$$