▼ MACHINE LEARNING

▼ MULTIPLE LINEAR REGRESSION

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>
ERROR: Could not find a version that satisfies the requirement skleton (from versions: rERROR: No matching distribution found for skleton

Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (Local Packages (Local
```

▼ import libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
```

▼ STEP-1 import data

```
df= pd.read_csv("ml_data_salary.csv")
df.head()
```

	age	distance	YearsExperience	Salary	10+
0	31.1	77.75	1.1	39343	

▼ step-2 define dependent and independent variables

```
X=df[["age","distance","YearsExperience"]]
y=df["Salary"]
```

X.head()

	age	distance	YearsExperience	2
0	31.1	77.75	1.1	
1	31.3	78.25	1.3	
2	31.5	78.75	1.5	
3	32.0	80.00	2.0	
4	32.2	80.50	2.2	

y.head()

- 0 39343
- 1 46205
- 2 37731
- 3 43525
- 4 39891

Name: Salary, dtype: int64

▼ step-3 fit linear regression model

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model=model.fit(X,y)
model
```

v LinearRegression LinearRegression()

▼ step-4 evaluating model fitness

model.score(X,y)

0.9569960750337954

▼ step-5 predicting of unknown value

Colab paid products - Cancel contracts here