伴随函子的 unit 与 counit

伴随函子: 对任意 c 和 d 有 $(d \xrightarrow{D} (cR)) \stackrel{Set}{\cong} ((dL \xrightarrow{C} c)$ 。如此

不难看出这其实蕴含着一个二元的自然同构 ϕ_2 , 见下:

套用反变米田引理我们便可获得

由反变米田引理的证明可知:对每个左侧集合中的自然同构 $(\underline{},\underline{})^{\phi_2}$ 都会有一个右侧集合中的箭头与之相对应,即 $\underline{}_{:cR}\mathrm{id}(\underline{},\underline{})^{\phi_2}=\underline{}_{\varepsilon}$ 。为何 $\underline{}$ 构成自然变换呢?下方右图第二行的第二个节点说明了一切。这两张图这其实就是反变米田引理证明的两个图拼在一起后的结果。

不难看出这其实蕴含着一个二元的自然同构 ϕ_1 , 见下:

套用协变米田引理我们便可获得

由协变米田引理的证明可知:对每个左侧集合中的自然同构 $(\mathbf{d}_{\perp})^{\phi_1}$ 都会有一个右侧集合中的箭头与之相对应,即 $\mathbf{d}_{\mathbf{d}}$ $\mathbf{$

