

Universidad Tecnológica Nacional Facultad Regional Villa María

Ingeniería en Sistemas de la Información

Sintaxis y Semántica del Lenguaje

Trabajo práctico N°3

<u>GRUPO H</u>

Alumnos:

- Arias Matías [matiasarias384@gmail.com][13673]
- Márquez Juan Cruz [marquezjuanchy@hotmail.com][13359]
- Muzillo Tomás [tomimuzzillo@gmail.com][13765]
- Zoy Eder [ederzoy6@gmail.com][13620]

1.

a) q1 es el estado inicial.

c) Secuencia de estados para cadena aabb:

Deberia tener un estado final y no lo tiene.

d) Descripción formal M1:

$$Q = \{q1, q2, q3\}$$

$$\Sigma = \{a, b\}$$

δ:

- 1					
		а	b		
	q1	q2	q1		
	q2	q3	q3		
	q3	q2	q1		

$$q0 = q1$$

$$F = \{q2\}.$$

2.

$$(\{q_1, q_2, q_3, q_4, q_5\}, \{\mathbf{u}, \mathbf{d}\}, \delta, q_3, \{q_3\}),$$
 \mathbf{q}
 \mathbf{q}
 \mathbf{q}
 \mathbf{d}
 \mathbf{d}
 \mathbf{q}
 \mathbf{q}
 \mathbf{d}
 \mathbf{d}
 \mathbf{u}
 \mathbf{q}

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

3.

a) L = {w|w Comienza con 1 y termina con 0 } , Σ = {0, 1}

b) L = {w|w Contiene al menos tres 1} Σ = {0, 1}

c) L = {w|w Contiene el substring 0101} Σ = {0, 1}

0 Esta transición es incorrecta, debería ir al estado 0

d) L = {w|w tiene una longitud de al menos 3, y su tercer símbolo es un 0} $A\Sigma$ ={0,1}

e) L = {w| w tiene longitud impar y comienza con 0, o comienza con 1 y tiene longitud par} Σ = {0, 1}

f) L = {w| w tiene una cantidad par de 0 y 1} Σ = {0, 1}

g) L = {w| w no contiene tres b consecutivas} $\Sigma = \{a, b\}$

h) L = $\{w|w \text{ no contiene la cadena aa o bb}\} \Sigma = \{a, b\}$

i) L = $\{w | w \text{ contiene una cantidad impar de } 0 \text{ y } 1\} \Sigma = \{0, 1\}$

j) $L = \{w | w \in \Sigma^*, y, si |w|=5, entonces contiene al menos dos a's\} \Sigma = \{a,b\}$

a) Descripción formal M1:

Q = {q1, q2, q3,q4}

$$\Sigma$$
 = {0, 1}

δ:

	<u> </u>							
		0	1	ε				
	q1	{q1}	{q1,q2}	Ø				
	q2	{q3}	Ø	{q3}				
	q3	Ø	{q4}	Ø				
	q4	{q4}	{q4}	Ø				

 $F = \{q4\}.$

b) L = {w|w Contiene la cadena 101 o 11}.

Reconocidas: 01010, 1110, 00110, 1110100 No reconocidas: 0100, 01001, 010, 00000

5.

6.

a) Es no deterministico [AFN]

L = {w|w contiene solo una b o comienza con una cantidad n de "a" y termina con "b" o comienza con una "a" }. 6. Dados los siguientes AF:

Ingeniería en Sistemas de Información Sintaxis y Semántica de los Lenguajes

b) No deterministico [AFN].L = {w|w contiene la cadena "aa" o la cadena "bb"}.

c) No deterministico [AFN].L = {w|w es la cadena "a" o contiene "ab" n veces}.

7.

a)

Estado inicial: q1 Estado final: q5 Alfabeto: {a, b}

b) cadenas reconocidas por el lenguaje:

- "abaa"
- "abbabaa"
- "abbbbaa"

El lenguaje que reconoce este autómata es:

L= {w/w comienza con el substring "ab" y termina con el substring "baa" }

8.

a)

9. PARTE 1:

a.

b.

10.

Considerando los lenguajes sobre el alfabeto $\Sigma = \{0,1\}$

L1 = {w|w termina en 10 o termina en 1}.

L2 = {w|w contiene como mínimo dos 1s}.

A1

A1 X A2:

1. L1 U L2

2. L1 - L2

3. L1∩L2

11. Parte 1:

La metodología implementada para obtener el autómata fue primero darle un nombre a los estados de ambos autómatas, llamando A, B, C a los estados de L1 y D,E,F a los estados de L2.

Luego generamos el producto cartesiano entre ambos lenguajes (L1 X L2) para lograr todos los estados posibles del autómata resultado. Luego de realizar las transacciones correspondientes definimos los estados finales, ya que la operación qué realizamos fue la intersección (L1 n L2) los estados finales van a ser los conjuntos qué sean finales en ambos autómatas, en nuestro caso son: {BD, CD}

Los códigos correspondientes se adjuntan a la entrega.