Machine learning

Machine Learning Algorithms that learn from data

Artificial Intelligence

A program that can sense, reason, act and adapt

Deep Learning

Multilayered artificial neural networks trained on big data

Convolution NN

Tackles computer vision problems

Reinforcement Learning

Tackles reward driven environment exploration and navigation problems

Deep Learning

Multilayered artificial neural networks trained on big data

Recurrent NN

Tackles data series problems

Supervised vs unsupervised learning

SUPERVISED

classification

regression

labels

UNSUPERVISED

clustering

reinforcement learning

no labels

Classification

Regression

Clustering

gameplay

Unboxing the box full of *neurons*

Artificial Neural Network (ANN)*

Neuron - inputs & outputs

INPUTS

Neuron - weights

WEIGHTS

Neuron - sum (\Sigma) & activation (g)

activations

Training procedure

- 1. Init weights
- 2. Feed forward
- 3. Calculate error
- 4. Update weights
- 5. Go to step 2

Applications

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

"man in blue wetsuit is surfing on wave."

https://www.youtube.com/watch?v=ohmajJTcpNk https://www.youtube.com/watch?v=HgDdaMy8KNE https://github.com/junyanz/CycleGAN

Getting started

What is required?

- Knowledge of Python
- 2. Data
- 3. Data
- 4. Data
- 5. Ph.D. from statistics

Machine learning frameworks

theano

768px (inputs)

[W_{768x10}]

10 CLASSES

YOLO example

YOLO object detection

What could possibly go wrong, right?

"panda" 57.7% confidence

"panda" 57.7% confidence

CAR(99.7%)

HORSE DOG(70.7%)

HORSE FROG(99.9%)

DOG CAT(75.5%)

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

DEER DOG(86.4%)

BIRD FROG(88.8%)

Backup slides

Machine learning

- algorithms learning automatically from (lots of) data
- field exists from the 60's, deep learning popularized in 2012
- outperforms competition in computer vision, language processing, translation, etc.

A change of approach

Traditional machine learning

Deep learning

Classification

- build a model that can classify input data into N classes
- 1) Get a lot of labeled data
- 2) Repeatedly present training examples to the classifier
- 3) Use the trained model for predictions

Training

Source: http://cs231n.github.io/neural-networks-1/

Training

Source: John McStravick, Wikipedia

Tensorflow

- open-source Python library from Google for machine learning
- TF computation is defined as a computational graph of math operations
- graph is executed on CPU, GPU or TPU
- low-level API, other libraries use TF as an "assembler" for machine learning

Classification

Western Digital.

Source: https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline/

Tensors.

N-dimensional arrays

Tensors. Flow.

Operations

Tensorflow example

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_raw.py

Keras

https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py