確率微分方程式

基礎工学研究科システム創成専攻修士 1 年 学籍番号 29C17095 百合川尚学

2017年10月14日

レポート問題 1.

1 10/11

基礎の確率空間を $(\Omega, \mathcal{F}, \mu)$ とする. $\mathcal{G} \subset \mathcal{F}$ を部分 σ -加法族とし、Hilbert 空間 $L^2(\Omega, \mathcal{F}, \mu)$ とその閉部分空間 $L^2(\Omega, \mathcal{G}, \mu)$ を考える. 任意の $f \in L^2(\Omega, \mathcal{F}, \mu)$ に対して、射影定理により一意に定まる射影 $g \in L^2(\Omega, \mathcal{G}, \mu)$ を

$$g = E[f | G]$$

と表現する. $G = \{\emptyset, \Omega\}$ のときは E[f|G] を E[f] と書いて f の期待値と呼ぶ.

レポート問題 2.

Hilbert 空間 $L^2(\Omega,\mathcal{F},\mu)$ における内積を $\langle\cdot,\cdot\rangle$,ノルムを $\|\cdot\|_{L^2(\Omega,\mathcal{F},\mu)}$ と表示する.次の $C1\sim C6$ を示せ.扱う関数は全て $\mathbb R$ 値と考える.(係数体を実数体として Hilbert 空間を扱う.)

C1 $\forall f \in L^2(\Omega, \mathcal{F}, \mu)$

$$E[f] = \int_{\Omega} f(x) \, \mu(dx)$$

C2 $\forall f \in L^2(\Omega, \mathcal{F}, \mu), \ \forall h \in L^2(\Omega, \mathcal{G}, \mu)$

$$\int_{\Omega} f(x)h(x) \,\mu(dx) = \int_{\Omega} \mathrm{E}\left[f \mid \mathcal{G}\right](x)h(x) \,\mu(dx)$$

C3 $\forall f_1, f_2 \in L^2(\Omega, \mathcal{F}, \mu)$

$$E[f_1 + f_2 | G] = E[f_1 | G] + E[f_2 | G]$$

C4 $\forall f_1, f_2 \in L^2(\Omega, \mathcal{F}, \mu)$

$$f_1 \le f_2$$
 a.s. \Rightarrow $E[f_1 | \mathcal{G}] \le E[f_2 | \mathcal{G}]$ a.s.

C5 $\forall f \in L^2(\Omega, \mathcal{F}, \mu), \ \forall g \in L^\infty(\Omega, \mathcal{G}, \mu)$

$$E[gf \mid \mathcal{G}] = g E[f \mid \mathcal{G}]$$

C6 \mathcal{H} が \mathcal{G} の部分 σ -加法族ならば $\forall f \in L^2(\Omega, \mathcal{F}, \mu)$

$$E[E[f|\mathcal{G}] | \mathcal{H}] = E[f|\mathcal{H}]$$

証明. C1 $G = \{\emptyset, \Omega\}$ とすれば、 $L^2(\Omega, G, \mu)$ の元は G-可測でなくてはならないから Ω 上の定数 関数である。従って任意の $g \in L^2(\Omega, G, \mu)$ に或る定数 $\alpha \in \mathbb{R}$ が対応して $g(x) = \alpha$ ($\forall x \in \Omega$) と表せる。Hilbert 空間 $L^2(\Omega, \mathcal{F}, \mu)$ におけるノルムを $\|\cdot\|_{L^2(\Omega, \mathcal{F}, \mu)}$ と表示すれば、射影定理より任意の $f \in L^2(\Omega, \mathcal{F}, \mu)$ の $L^2(\Omega, G, \mu)$ への射影 $E[f \mid G] = E[f]$ はノルム $\|f - g\|_{L^2(\Omega, \mathcal{F}, \mu)}$

を最小にする $g \in L^2(\Omega, \mathcal{G}, \mu)$ である. $g(x) = \alpha$ ($\forall x \in \Omega$) としてノルムを直接計算すれば,

$$\begin{split} \|f - g\|_{L^{2}(\Omega, \mathcal{F}, \mu)}^{2} &= \int_{\Omega} |f(x) - \alpha|^{2} \mu(dx) \\ &= \int_{\Omega} |f(x)|^{2} - 2\alpha f(x) + |\alpha|^{2} \mu(dx) \\ &= \int_{\Omega} |f(x)|^{2} \mu(dx) - 2\alpha \int_{\Omega} f(x) \mu(dx) + |\alpha|^{2} \\ &= \left|\alpha - \int_{\Omega} f(x) \mu(dx)\right|^{2} - \left|\int_{\Omega} f(x) \mu(dx)\right|^{2} + \int_{\Omega} |f(x)|^{2} \mu(dx) \\ &= \left|\alpha - \int_{\Omega} f(x) \mu(dx)\right|^{2} + \int_{\Omega} |f(x) - \beta|^{2} \mu(dx) & (\beta := \int_{\Omega} f(x) \mu(dx)) \end{split}$$

と表現できて最終式は $\alpha = \int_{\Omega} f(x) \, \mu(dx)$ となることで最小となる. すなわち

$$E[f] = E[f \mid \mathcal{G}] = \int_{\Omega} f(x) \, \mu(dx).$$

C2 射影定理により、 $f \in L^2(\Omega, \mathcal{F}, \mu)$ の $L^2(\Omega, \mathcal{G}, \mu)$ への射影 $E[f \mid \mathcal{G}]$ は

$$\langle f - \mathbf{E} [f \mid \mathcal{G}], h \rangle = 0 \quad (\forall h \in \mathbf{L}^2(\Omega, \mathcal{G}, \mu))$$

を満たし,内積の線型性から

$$\langle f, h \rangle = \langle \mathbb{E} [f | \mathcal{G}], h \rangle \quad (\forall h \in \mathbb{L}^2 (\Omega, \mathcal{G}, \mu))$$

が成り立つ. 積分の形式で表示することにより

$$\int_{\Omega} f(x)h(x) \,\mu(dx) = \int_{\Omega} \mathbf{E}\left[f \mid \mathcal{G}\right](x)h(x) \,\mu(dx) \quad (\forall h \in \mathbf{L}^{2}\left(\Omega, \mathcal{G}, \mu\right))$$

が示された.

C3 射影定理により任意の $h \in L^2(\Omega, \mathcal{G}, \mu)$ に対して

$$\langle \left(f_{1}+f_{2}\right)-\operatorname{E}\left[f_{1}+f_{2}\mid\mathcal{G}\right],h\rangle=0,\;\langle f_{1}-\operatorname{E}\left[f_{1}\mid\mathcal{G}\right],h\rangle=0,\;\langle f_{2}-\operatorname{E}\left[f_{2}\mid\mathcal{G}\right],h\rangle=0$$

が成り立っている. 従って任意の $h \in L^2(\Omega, \mathcal{G}, \mu)$ に対して

$$0 = \langle (f_1 + f_2) - \mathbb{E}[f_1 + f_2 \mid \mathcal{G}], h \rangle - \langle f_1 - \mathbb{E}[f_1 \mid \mathcal{G}], h \rangle - \langle f_2 - \mathbb{E}[f_2 \mid \mathcal{G}], h \rangle$$

$$= \langle (f_1 + f_2) - \mathbb{E}[f_1 + f_2 \mid \mathcal{G}], h \rangle - \langle (f_1 + f_2) - (\mathbb{E}[f_1 \mid \mathcal{G}] + \mathbb{E}[f_2 \mid \mathcal{G}]), h \rangle$$

$$= \langle \mathbb{E}[f_1 \mid \mathcal{G}] + \mathbb{E}[f_2 \mid \mathcal{G}] - \mathbb{E}[f_1 + f_2 \mid \mathcal{G}], h \rangle$$

となり、特に $h = E[f_1 | \mathcal{G}] + E[f_2 | \mathcal{G}] - E[f_1 + f_2 | \mathcal{G}] \in L^2(\Omega, \mathcal{G}, \mu)$ とすれば

$$\left\| \mathbf{E} \left[f_1 \mid \mathcal{G} \right] + \mathbf{E} \left[f_2 \mid \mathcal{G} \right] - \mathbf{E} \left[f_1 + f_2 \mid \mathcal{G} \right] \right\|_{\mathbf{L}^2(\Omega, \mathcal{F}, \mu)}^2 = 0$$

が成り立つことになるから

$$E[f_1 | \mathcal{G}] + E[f_2 | \mathcal{G}] = E[f_1 + f_2 | \mathcal{G}]$$

が示された.

C4 「任意の $f \in L^2(\Omega, \mathcal{F}, \mu)$ に対して, $f \ge 0$ a.s. ならば $E[f \mid \mathcal{G}] \ge 0$ a.s.」—(※) を示せばよい.これが示されれば $f_1, f_2 \in L^2(\Omega, \mathcal{F}, \mu)$ で $f_1 \le f_2$ a.s. となるものに対し

$$0 \le f_2 - f_1 \text{ a.s.} \implies 0 \le \mathbb{E}[f_2 - f_1 | \mathcal{G}] = \mathbb{E}[f_2 | \mathcal{G}] - \mathbb{E}[f_1 | \mathcal{G}] \text{ a.s.}$$

が成り立つ. しかし、この場合本題に入る前に次の命題を証明する必要がある. これは等号 $\mathbf{E}[f_2-f_1\mid \mathcal{G}]=\mathbf{E}[f_2\mid \mathcal{G}]-\mathbf{E}[f_1\mid \mathcal{G}]$ が成り立つことを保証するためである.

命題. 考えている空間は今までと同じ Hilbert 空間 $L^2(\Omega,\mathcal{F},\mu)$, $L^2(\Omega,\mathcal{G},\mu)$ である. 任意の実数 α と任意の $f\in L^2(\Omega,\mathcal{F},\mu)$ に対して次が成立する:

$$E[\alpha f | \mathcal{G}] = \alpha E[f | \mathcal{G}].$$

証明. 射影定理より

$$\langle f - \mathbb{E}[f | \mathcal{G}], h \rangle = 0, \quad \langle \alpha f - \mathbb{E}[\alpha f | \mathcal{G}], h \rangle = 0 \quad (\forall h \in L^2(\Omega, \mathcal{G}, \mu))$$

が成り立っているから

$$\langle \mathbf{E} [\alpha f \mid \mathcal{G}] - \alpha \mathbf{E} [f \mid \mathcal{G}], h \rangle = \langle \mathbf{E} [\alpha f \mid \mathcal{G}] - \alpha f, h \rangle - \langle \alpha \mathbf{E} [f \mid \mathcal{G}] - \alpha f, h \rangle$$
$$= \langle \mathbf{E} [\alpha f \mid \mathcal{G}] - \alpha f, h \rangle - \alpha \langle f - \mathbf{E} [f \mid \mathcal{G}], h \rangle = 0. \quad (\forall h \in \mathbf{L}^2 (\Omega, \mathcal{G}, \mu))$$

特に $h = E[\alpha f | \mathcal{G}] - \alpha E[f | \mathcal{G}] \in L^2(\Omega, \mathcal{G}, \mu)$ として

$$\left\| \mathbf{E} \left[\alpha f \mid \mathcal{G} \right] - \alpha \mathbf{E} \left[f \mid \mathcal{G} \right] \right\|_{\mathbf{L}^{2}(\Omega,\mathcal{F},u)}^{2} = 0$$

だから $E[\alpha f | \mathcal{G}] = \alpha E[f | \mathcal{G}]$ が成り立つ.

次に(※)を示す.

$$A := \{x \in \Omega \mid f(x) < 0\} \qquad (\in \mathcal{F}),$$

$$B := \{x \in \Omega \mid E[f \mid \mathcal{G}](x) < 0\} \qquad (\in \mathcal{G})$$

として $\mu(A)=0$ \Rightarrow $\mu(B)=0$ が成り立つと言えればよく, $\mu(A)=0$ の下で $\mu(B)>0$ と仮定しては不合理であることを以下に記述する.

 $\mu(A) = 0$, $\mu(B) > 0$ であるとする. $L^2(\Omega, \mathcal{G}, \mu)$ の元を

$$h(x) := \begin{cases} \mathrm{E}\left[f \mid \mathcal{G}\right](x) & (x \in B^c) \\ 0 & (x \in B) \end{cases}$$

として定義すると

$$\begin{aligned} \|f - h\|_{L^{2}(\Omega, \mathcal{F}, \mu)}^{2} &= \int_{\Omega} |f(x) - h(x)|^{2} \, \mu(dx) \\ &= \int_{A^{c} \cap B^{c}} |f(x) - h(x)|^{2} \, \mu(dx) + \int_{A^{c} \cap B} |f(x) - h(x)|^{2} \, \mu(dx) \\ &= \int_{A^{c} \cap B^{c}} |f(x) - \operatorname{E}[f \mid \mathcal{G}](x)|^{2} \, \mu(dx) + \int_{A^{c} \cap B} |f(x)|^{2} \, \mu(dx) \\ &< \int_{A^{c} \cap B^{c}} |f(x) - \operatorname{E}[f \mid \mathcal{G}](x)|^{2} \, \mu(dx) + \int_{A^{c} \cap B} |f(x) - \operatorname{E}[f \mid \mathcal{G}](x)|^{2} \, \mu(dx) \\ &= \|f - \operatorname{E}[f \mid \mathcal{G}]\|_{L^{2}(\Omega, \mathcal{F}, \mu)}^{2} \end{aligned}$$

が成り立つ. これは $\mu(A)=0$ であること, $\mu(A^c\cap B)=\mu(B)-\mu(A\cap B)=\mu(B)>0$ であること、それから $A^c\cap B$ の上で

$$|f(x) - E[f | G](x)|^{2} - |f(x)|^{2} = (f(x) - E[f | G](x) + f(x))(-E[f | G](x)) > 0$$

$$(\because f(x) \ge 0, E[f | G](x) < 0, \quad \forall x \in A^{c} \cap B)$$

が成り立っていることによる. 上の結果, すなわち

$$||f - h||_{L^2(\Omega, \mathcal{F}, \mu)} < ||f - \operatorname{E}[f | \mathcal{G}]||_{L^2(\Omega, \mathcal{F}, \mu)}$$

を満たす $h \in L^2(\Omega, \mathcal{G}, \mu)$ が存在することは $\mathrm{E}[f \mid \mathcal{G}]$ が f の射影であることに違反している. 以上より $\mu(B) = 0$ でなくてはならず, (※) が示された.

C5 $\| \mathbb{E}[gf \mid \mathcal{G}] - g\mathbb{E}[f \mid \mathcal{G}] \|_{L^2(\Omega,\mathcal{F},\mu)} = 0$ が成り立つことを示す。任意の $h \in L^2(\Omega,\mathcal{G},\mu)$ に対して

$$\langle \mathbb{E}\left[gf \mid \mathcal{G}\right] - g\,\mathbb{E}\left[f \mid \mathcal{G}\right], h\rangle = \langle \mathbb{E}\left[gf \mid \mathcal{G}\right] - gf, h\rangle + \langle gf - g\,\mathbb{E}\left[f \mid \mathcal{G}\right], h\rangle$$

を考えると、右辺が 0 になることが次のように証明される。先ず右辺第一項について、gf は $L^2(\Omega,\mathcal{F},\mu)$ に入る。g は或る μ -零集合 $E\in \mathcal{G}$ を除いて有界であるから、或る正数 α によって $|g(x)| \leq \alpha$ ($\forall x \in E^c$) と抑えられ、

$$\int_{\Omega} |g(x)f(x)|^2 \, \mu(dx) = \int_{E^c} |g(x)|^2 |f(x)|^2 \, \mu(dx) \leq \alpha^2 \int_{E^c} |f(x)|^2 \, \mu(dx) = \alpha^2 \int_{\Omega} |f(x)|^2 \, \mu(dx) < \infty$$

が成り立つからである. 従って射影定理により

$$\langle \mathbb{E}[gf \mid \mathcal{G}] - gf, h \rangle = 0 \quad (\forall h \in L^2(\Omega, \mathcal{G}, \mu)).$$

右辺第二項について,

$$\langle gf - g \, \mathbf{E} [f \mid \mathcal{G}], h \rangle = \int_{\Omega} (f(x) - \mathbf{E} [f \mid \mathcal{G}](x)) \, g(x) h(x) \, \mu(dx) = \langle f - \mathbf{E} [f \mid \mathcal{G}], gh \rangle$$

であって、先と同様の理由で $gh\in L^2(\Omega,\mathcal{G},\mu)$ ($\forall h\in L^2(\Omega,\mathcal{G},\mu)$) が成り立つから射影定理より

$$\langle gf - gE[f|\mathcal{G}], h \rangle = 0 \quad (\forall h \in L^2(\Omega, \mathcal{G}, \mu))$$

であると判明した. 始めの式に戻れば

$$\langle E[gf \mid G] - gE[f \mid G], h \rangle = 0 \quad (\forall h \in L^2(\Omega, G, \mu))$$

が成り立つことになり、特に $h = E[gf|G] - gE[f|G] \in L^2(\Omega, G, \mu)$ に対しては

$$\left\| \mathbb{E} \left[gf \mid \mathcal{G} \right] - g \mathbb{E} \left[f \mid \mathcal{G} \right] \right\|_{\mathbb{L}^{2}(\Omega,\mathcal{F}_{H})}^{2} = 0$$

となることから E[gf|G] = gE[f|G] が示された.