Grupo ARCOS

Departamento de Informática

Universidad Carlos III de Madrid

Lección 4 Sistemas de ficheros

Diseño de Sistemas Operativos Grado en Ingeniería Informática y Doble Grado I.I. y A.D.E.

Objetivos generales

- 1. Conocer el marco de trabajo asociado.
 - 1. Qué elementos interactúan con un sistema de ficheros.
- Requisitos generales comunes y diseño general de un sistema de ficheros.
- Repasar los principales elementos a considerar en sistemas de almacenamiento modernos.

A recordar...

Antes de clase

Clase

Después de clase

Preparar los pre-requisitos.

Estudiar el material asociado a la bibliografía: las transparencias solo no son suficiente. Preguntar dudas (especialmente tras estudio).

Ejercitar las competencias:

- Realizar todos los ejercicios.
- Realizar los cuadernos de prácticas y las prácticas de forma progresiva.

Ejercicios, cuadernos de prácticas y prácticas

Ejercicios 🗸	Cuadernos de prácticas X	Prácticas
Grado en Ingeniería Informática Diseño de Sistemas Operativos [4] Sistema de ficheros Grupo:		Universidad Carlos III de Madrid Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Práctica 2: Sistema de Ficheros DISEÑO DE SISTEMAS OPERATIVOS
		Silvina Cafno Lores Saúl Alonso Monsalve Rafael Sotomayor Fernández

Lecturas recomendadas

- I. Carretero 2007:
 - 1. Cap.9

- I. Tanenbaum 2006(en):
 - 1. Cap.5
- 2. Stallings 2005:
 - Parte tres
- 3. Silberschatz 2006:
 - I. Cap. 10, 11 y 12

Contenidos

- Journaling
- Snapshots
- Dynamic file system expansion

Contenidos

- Journaling
- Snapshots
- Dynamic file system expansion

sin Journaling

- El sistema de ficheros tradicional realiza las modificaciones directamente.
- Si se produce una parada no prevista (system crash), la recuperación consiste en repasar todos los metadatos buscando fallos e inconsistencias:
 - El tiempo de reparación es proporcional al tamaño del sistema de ficheros (hay que repasar todo)

sin Journaling

ejemplo de comprobaciones a realizar (hay más)

Sistema de ficheros en disco:

- Se comprueba que el contenido del superbloque responde a las características del sistema de archivos.
- Se comprueba que los mapas de bits de nodos-i se corresponden con los nodos-i ocupados en el sistema de archivos.
- Se comprueba que los mapas de bits de bloques se corresponden con los bloques asignados a archivos.
- Se comprueba que ningún bloque esté asignado a más de un archivo.

Directorios:

Se comprueba el sistema de directorios del sistema de archivos, para ver que un mismo nodo-i no está asignado a más de un directorio.

Archivos:

- Se comprueba que los bits de protección y privilegios.
- Se comprueba el contador de enlaces.

con Journaling

- El sistema de ficheros escribe cada cambio en un registro (log) de forma transparente a las aplicaciones antes de hacer los cambios definitivos.
- Si se produce una parada no prevista, la recuperación consiste en repasar el registro y hacer las modificaciones pendientes (commit):
 - El tiempo de reparación es proporcional a los cambios pendientes en el *log*, no al tamaño del sistema de almacenamiento: se puede pasar de horas a segundos

Características avanzadas

- Journaling
- Snapshots
- Dynamic file system expansion

Snapshot

- Snapshot congela el estado de un sistema de ficheros en un instante dado:
 - Se realiza en pocos segundos.
 - Es posible acceder a esta copia congelada a través de un directorio especial.
- Ej.: actualizaciones del sistema, copias de seguridad continuas, etc.

Características avanzadas

- Journaling
- Snapshots
- Dynamic file system expansion

Dynamic file system expansion

- Es importante diseñar el sistema de ficheros para que si se precisa cambiar el tamaño del mismo, se pueda hacer sin perder información y de forma eficiente:
 - Metadatos repartidos.
 - Estructuras dinámicas y flexibles.

Grupo ARCOS

Departamento de Informática

Universidad Carlos III de Madrid

Lección 4 Sistemas de ficheros

Diseño de Sistemas Operativos Grado en Ingeniería Informática y Doble Grado I.I. y A.D.E.

