

Digital Signal Processing

Digital Signal Processing

Module 9- 1

Module Overview:

- ▶ Module 8.1: Introduction to Images and Image Processing
- ► Module 8.2: Affine Transforms
- ► Module 8.3: 2D Fourier Analysis
- ► Module 8.4: Image Filters
- ► Module 8.5: Image Compression
- ▶ Module 8.6: The JPEG Compression Standard

8

Digital Signal Processing

Digital Signal Processing

Module 8 1-1

Overview:

- ► Images as multidimensional digital signals processing
 ► 2D signal representations Digital Signal Martin Vetterli
 ► Basic signals and operators prandoni and Paolo Paolo Paolo Paolo

Overview:

- Images as multidimensional digital signals processing
 2D signal representations Digital Signal Martin
 Basic signals and operators prandoni and paolo prandoni and paolo pao

Overview:

- Images as multidimensional digital signals processing
 2D signal representations
 Basic signals and operators prandoni and processing
 Digital Signal Martin
 Digital Signal Martin
 Digital Signal Martin
 Digital Signal Martin

Please meet ...

- indices locate a point on a grid \rightarrow grid is usually regularly spaced on a grid on a

- indices locate a point on a grid \rightarrow pixel all Processing Vetterli prices is usually regularly spaced and Martin values $x[n_1, n_2]$ refer processing vetterli $x[n_1, n_2]$ refer processing vetterli $x[n_1, n_2]$ refer processing vetterli $x[n_1, n_2]$ values $x[n_1, n_2]$ refer processing vetterli $x[n_2, n_2]$ values $x[n_2, n_2]$ refer processing vetterli $x[n_2, n_2]$ values $x[n_2, n_2]$ refer processing vetterli $x[n_2, n_2]$ refer processing ve

- indices locate a point on a grid \rightarrow pixel at Processing Vetterli price grid is usually regularly spaced values $x[n_1, n_2]$ refer proche pixel's appearance

- indices locate a point on a grid → pixel
 grid is usually regularly spaced
 values x[n₁, n₂] refer to the pixel's apparent

Digital images: grayscale vs color

- grayscale images: scalar pixel values

we can consider the single components separately:

Digital Sign and Martin VetterIII

Paolo Prandoni and C 2013

Digital images: grayscale vs color

- ► grayscale images: scalar pixel values
- ▶ color images: multidimensional pixel values in a color space (RGB, HSV, YUV, etc)
- we can consider the single components separately:

 Digital Signand Martin Vetteril

 Paolo Prandoni and Martin Paolo Prandoni © 2013

Digital images: grayscale vs color

- ► grayscale images: scalar pixel values
- ▶ color images: multidimensional pixel values in a color space (RGB, HSV, YUV, etc)
- we can consider the single components separately:

From one to two dimensions...

- something still works
- something breaks down
- Jown Digital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 Paolo Prandoni 2013

From one to two dimensions...

- Jown Digital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 O 2013 something still works
- something breaks down

From one to two dimensions...

- Juown Digital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 Paolo Prandoni and Martin Vetterli something still works
- ▶ something breaks down
- something is new

What works:

- → interpolation, sampling Paolo Prandoni and Martin Vetterli

What works:

- mer transform

 Digital Signal Processing

 Vetterli

 Digital Signal Processing

 Vetterli

 Digital Signal Processing

 Vetterli

 O 2013

 Paolo Prandoni and Martin Vetterli

 O 2013

What works:

- → interpolation, sampling Processing

 Digital Signal Processing Vetterli Vetterli and Martin Vetterli

 © 2013

What breaks down:

- Filter design hard, IIRs rare igital Signal Martin Vetterli

 Iinear operators only mildly useful © 2013

What breaks down:

- Filter design hard, IIRs rare igital Signal Martin Vetterli

 linear operators only mildly useful © 2013

- □ Filter design hard, IIRs rare igital Signal Martin

 Illustrates in the image of the imag

- images are finite-support signals | Signal Processing | Vetterli
 images are (most often) available in their entirety → causality loses meaning images are very speciantal signals.

- new manipulations: affine transforms
 images are finite-support signals
 images are (most often) available in their entirety → causality loses meaning

- images are finite-support signals | Signal Processing | Vetterli
 images are (most often) available in an income. images are (most often) available in their entirety \rightarrow causality loses meaning
- ▶ images are very specialized signals, designed for a very specific processing system, i.e. the human brain! Lots of semantics that is extremely hard to deal with

2D signal processing: the basics

A two-dimensional discrete-space signal:

discrete-space signal:

$$processing$$
 $processing$
 $proc$

2D signals: Cartesian representation

2D signals: support representation

- just show coordinates of nonzero

$$\delta[n_1, n_2] = \begin{cases} 1 & \text{if } n_1 = n_2 = 0 \\ 0 & \text{otherwise.} \end{cases}$$

2D signals: image representation

- medium has a certain dynamic range (paper, screen)
- image values are quantized (usually to 8 bits, or 256 levels)
- the eye does the interpolation in space provided the pixel density is high enough

Why 2D?

- ► images could be unrolled (printers, fax) al Processing

 ► but what about spatial comedition?

 Paolo Prandoni and Martin

 Paolo Prandoni 2013

Why 2D?

- images could be unrolled (printers, fax) al Processing
 but what about spatial correlation?
 paolo Prando (2013)

2D vs raster scan

2D vs raster scan

2D vs raster scan

Basic 2D signals: the impulse

Basic 2D signals: the rect

Separability


```
Digix[ns, ignal processing vetterli pigix[ns, ignal pigix[ns,
```

Separable signals

$$\begin{split} \delta[\textit{n}_1,\textit{n}_2] &= \delta[\textit{n}_1] \delta[\textit{n}_1] \, \text{ng} \\ \text{processing Vetter li} \\ \text{Digital Signal Processing Vetter li} \\ \text{Digital Signal Martin Vetter li} \\ \text{Prandoni and Martin Vetter li} \\ \text{rect} \left(\frac{|\textit{n}_1|}{2N_1}, \frac{\textit{n}_2}{2N_2}\right) &= \text{rect} \left(\frac{\textit{n}_1}{2N_1}\right) \, \text{rect} \left(\frac{\textit{n}_2}{2N_2}\right). \end{split}$$

Separable signals

$$\delta[n_1,n_2] = \delta[n_1]\delta[n_1] \log \frac{1}{N_1} \log \frac{1}{N_2} \log \frac{1}{N_2} \log \frac{1}{N_1} \log$$

Nonseparable signal

Nonseparable signal

2D convolution

$$x[n_1, n_2] * h[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2] h[n_1 - k_1, n_2 - k_2]$$

2D convolution for separable signals

If
$$h[n_1, n_2] = h_1[n_1]h_2[n_2]$$
:
$$x[n_1, n_2] * h[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} h_1[n_1 - k_1] \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2]h_2[n_2 - k_2]$$

$$= h_1[n_1] * (h_2[n_2] * x[n_1, n_2]).$$

2D convolution for separable signals

- If $h[n_1, n_2]$ is an $M_1 \times M_2$ finite-support signal:

 non-separable convolution: $M_1 M_2$ operations per output sample
 - separable convolution: $M_1 + M_2$ operations per output sample!

END OF MODULE 8.1

Digital Signa and Martill E 8.1

Paolo Prandoni and 2013

Digital Signal Processing

Digital Signal Processing

Module 8.2. In
Paolo Prandoni and C 2013

Overview:

- Affine transforms
- Digital Signal Processing

 Paolo Prandoni and Martin Vetterli

 Paolo Prandoni © 2013

Overview:

- Affine transforms
- non Digital Signal Processing
 Paolo Prandoni and Martin Vetterli
 Paolo Prandoni © 2013 ► Bilinear interpolation

Affine transforms

mapping $\mathbb{R}^2 \to \mathbb{R}^2$ that reshapes the coordinate system:

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \underbrace{ssi} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \underbrace{tterli}$$
Digital Sign and Martin $\begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \underbrace{tterli}$
Paolo Prandoni and
$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \mathbf{A} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} - \mathbf{d}$$

Affine transforms

mapping $\mathbb{R}^2 \to \mathbb{R}^2$ that reshapes the coordinate system:

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \underbrace{SSI} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$
Digital Sign and Martin $\begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$

$$egin{bmatrix} t_1' \ t_2' \end{bmatrix} = \mathbf{A} egin{bmatrix} t_1 \ t_2 \end{bmatrix} - \mathbf{d}$$

Translation

Translation

Scaling

Scaling

$$\mathbf{A} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$

$$\mathbf{d} = 0$$
Digital Signal Proces tin Vet in Vet

Rotation

Rotation

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{gital Signal Processing Vetterli}$$

$$\mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \mathbf{0}$$

Rotation

Flips

Horizontal:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Vertical:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

 $\mathbf{d} = 0$

Flips

Horizontal:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Vertical:

 $\mathbf{d} = 0$

Shear

Horizontal:

$$\mathbf{A} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{d} = \mathbf{0}$$

Vertical:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

$$\mathbf{d} = 0$$

Shear

Horizontal:

$$\mathbf{A} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$

$$\boldsymbol{d}=\boldsymbol{0}$$

Vertical:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

$$\mathbf{d} = 0$$

Affine transforms in discrete-space

Solution for images

apply the inverse transform:

$$\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} m_1 + d_1 \\ m_2 + d_2 \end{bmatrix}; \text{etc.}$$

interpolate from the original grid point; to the "mid-point"
$$(t_1,t_2) = 0 \quad \text{and} \quad \eta_{1,2} \in \mathbb{Z}, \quad 0 \leq \tau_{1,2} < 1$$

Solution for images

▶ apply the *inverse* transform:

$$\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} m_1 + d_1 \\ m_2 + d_2 \end{bmatrix}; \text{etter}$$

▶ interpolate from the original grid point to the "mid-point"

$$(t_1,t_2)=(\eta_1+ au_1,\eta_2+ au_2), \qquad \eta_{1,2}\in\mathbb{Z}, \quad 0\leq au_{1,2}<1$$

Bilinear Interpolation

If we use a first-order interpolator:

st-order interpolator:
$$y[m_1,m_2]=(1-\tau_1)(1-\tau_2)x[\eta_1,\eta_2]+\tau_1(1-\tau_2)x[\eta_1+1,\eta_2]\\+(1-\tau_1)\tau_2x[\eta_1,\eta_2+1]+\tau_1\tau_2x[\eta_1+1,\eta_2+1]$$

Shearing

END OF MODULE 8.2

Digital Sign and Martin E 8.2

Paolo Prandoni and Martin E 8.2

Digital Signal Processin Digital Digital Processin Digital Digital Processin Digital Digi Digital Signal Processing

Module 8.3: Frequency Analysis

Overview:

- ► DFT
- Magnitude and phase Digital 319 and IVIA.

 Paolo Prandoni and IVIA.

 Paolo Prandoni 2013

Overview:

- DFT
- Priase Digital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 Paolo Prandoni and Martin Vetterli ► Magnitude and phase

$$X[k_{1},k_{2}] = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x[n_{1},n_{2}] e^{-j\frac{2\pi}{N_{1}}n_{1}k_{1}} e^{-j\frac{2\pi}{N_{2}}n_{2}k_{2}}$$

$$\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{1}-1} x[n_{1},n_{2}] e^{-j\frac{2\pi}{N_{1}}n_{1}k_{1}} e^{-j\frac{2\pi}{N_{2}}n_{2}k_{2}}$$

$$x[n_{1},n_{2}] = \frac{1}{N_{1}N_{2}} \sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x[k_{1},k_{2}] e^{j\frac{2\pi}{N_{1}}n_{1}k_{1}} e^{j\frac{2\pi}{N_{2}}n_{2}k_{2}}$$

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

$$x[n_1, n_2] = \frac{1}{N_1N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X[k_1, k_2] e^{j\frac{2\pi}{N_1}n_1k_1} e^{j\frac{2\pi}{N_2}n_2k_2}$$

$$x[n_1, n_2] = \frac{1}{N_1 N_2} \sum_{k_1 = 0}^{N_1 - 1} \sum_{k_2 = 0}^{N_2 - 1} X[k_1, k_2] e^{j\frac{2\pi}{N_1} n_1 k_1} e^{j\frac{2\pi}{N_2} n_2 k_2}$$

2D-DFT Basis Vectors

There are N_1N_2 orthogonal basis vectors for an $N_1 \times N_2$ image:

re are
$$N_1N_2$$
 orthogonal basis vectors for an $N_1 \times N_2$ in $w_{k_1,k_2}[n_1,n_2]=e^{j\frac{2\pi}{N_1}n_1k_1}e^{j\frac{2\pi}{N_2}n_2k_2}$ or $n_1,k_1=0,1,\ldots,N_1-1$ and $n_2,k_2=0,1,\ldots,N_2-1$

for
$$n_1, k_1 = 0, 1, \dots, N_1 - 1$$
 and $n_2, k_2 = 0, 1, \dots, N_2 - 1$

2D-DFT basis vectors for $k_1 = 1, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 0, k_2 = 1$ (real part)

2D-DFT basis vectors for $k_1 = 2, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 3, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 0, k_2 = 3$ (real part)

2D-DFT basis vectors for $k_1 = 30, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 1, k_2 = 1$ (real part)

2D-DFT basis vectors for $k_1 = 2, k_2 = 7$ (real part)

2D-DFT basis vectors for $k_1 = 5$, $k_2 = 250$ (real part)

2D-DFT basis vectors for $k_1 = 3$, $k_2 = 230$ (real part)

2D-DFT basis functions are separable, and so is the 2D-DFT:

2D-DFT basis functions are separable, and so is the 2D-DFT:
$$X[k_1,k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1,n_2] e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

$$\downarrow 1D-DFT along n_2 \text{ (the columns)}$$

$$\downarrow 1D-DFT along n_1 \text{ (the rows)}$$

- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

2D-DFT basis functions are separable, and so is the 2D-DFT:
$$X[k_1,k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1,n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

$$\downarrow 1D-DFT along n_2 (the columns)$$

- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

$$\bullet \text{ 1D-DFT along } n_2 \text{ (the columns)}$$

- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

- ▶ 1D-DFT along n_2 (the columns)
- ▶ 1D-DFT along n_1 (the rows)

- ▶ finite-support 2D signal can be written as a matrix **x**
- $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)

recall also the
$$N \times N$$
 DFT matrix (ModuleP4.2):

$$V_{N} \neq 0$$

$$V_{N}$$

- ▶ finite-support 2D signal can be written as a matrix x
- $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)

recall also the
$$N \times N$$
 DFT matrix (Module P4.2):

$$V_{N} \neq Q_{N} = V_{N} = V$$

- ▶ finite-support 2D signal can be written as a matrix **x**
- \triangleright $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)
- ▶ recall also the $N \times N$ DFT matrix (Module 4.2):

$$X[k_{1}, k_{2}] = \sum_{n_{1}=0}^{N_{1}-1} \left[\sum_{n_{2}=0}^{N_{2}-1} x[n_{1}, n_{2}] e^{-j\frac{2\pi}{N_{2}}n_{2}k_{2}} \right] e^{-j\frac{2\pi}{N_{1}}n_{1}k_{1}}$$

$$V = W_{N_{2}} x$$

$$V \in \mathbb{R}^{N_{2} \times N_{1}}$$

$$X[k_{1}, k_{2}] = \sum_{n_{1}=0}^{N_{1}-1} \left[\sum_{n_{2}=0}^{N_{2}-1} x[n_{1}, n_{2}] e^{-j\frac{2\pi}{N_{2}}n_{2}k_{2}} \right] e^{-j\frac{2\pi}{N_{1}}n_{1}k_{1}}$$

$$V = W_{N_{2}} x$$

$$V \in \mathbb{R}^{N_{2} \times N_{1}}$$

$$X = V W_{N_{1}}$$

$$X \in \mathbb{R}^{N_{2} \times N_{1}}$$

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

$$\mathbf{V} = \mathbf{W}_{N_2} \mathbf{x}$$

$$\mathbf{X} = \mathbf{V} \mathbf{W}_{N_1}$$

$$\mathbf{X} \in \mathbb{R}^{N_2 \times N_1}$$

$$\mathbf{X} = \mathbf{W}_{N_2} \mathbf{x} \mathbf{W}_{N_1}$$

How does a 2D-DFT look like?

- try to show the magnitude as an image
- problem: the range is too big for the grayscale range of paper or screen
- ▶ try to normalize: $|X'[n_1, n_2]| = |X[n_1, n_2]| / \max |X[n_1, n_2]|$ ▶ but it doesn't work...

DFT coefficients sorted by magnitude

Dealing with HDR images

if the image is high dynamic range we need to compress the levels

- remove flagrant outliers (e.g. $X[0,0] = \sum x[n_1, n_2]$)
- where α is a nonlinear mapping: e.g. α is after α after α is after α is a nonlinear mapping: α is a n

Dealing with HDR images

if the image is high dynamic range we need to compress the levels

- remove flagrant outliers (e.g. $X[0,0] = \sum \sum x[n_1, n_2]$)
- use a nonlinear mapping: e.g. $y = x^{1/3}$ after normalization ($x \le 1$)

How does a 2D-DFT look like?

8.3 56

DFT magnitude doesn't carry much information

DFT phase, on the other hand...

Image frequency analysis

- edges are points of abrupt change in signal's values.
- edges are a "space-domain" feature -> not captured by DFT's magnitude
- phase alignment is important for reproducing edges

END OF MODULE 18.3

Digital Signa and Martin Paolo Prandoni and Paolo Prandon

Digital Signal Processing

Overview:

- ▶ Filters for image processing
- ► Classification
- Examples

processing

Digital Signal Processing

Digital Processing

Digi

Overview:

- ► Filters for image processing
- Classification
- Examples

Digital Signal Processing

Digital Signal Processing

Nartin Vetterli

Paolo Prandoni and Martin Vetterli

© 2013

Overview:

- ► Filters for image processing
- Classification
- Examples

processing

Digital Signal Processing

Digital Signal Martin Vetterli

and Martin

Paolo Prandoni and 2013

Analogies with 1D filters

- linearity
- space invariance
- ▶ impulse response
- nse Digital Signal Processing

 Digital Signal Processing

 Nartin Vetterli

 and Martin Vetterli

 2013 frequency response
- stability
- ▶ 2D CCDE

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way etterli but we should process things differential Properties Vetterli

 edges

 paolo Prandoni and Martin Vetterli

 paolo Prandoni and 2013

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way etterli
 but we should process things differential Properties
 edges
 gradients
 textures

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
 but we should process things differently all productions and martin
 edges
 gradients
 textures

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
 but we should process things differently allowed and martin
 edges
 gradients
 textures

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
 but we should process things differently
 edges
 gradients

- ▶ interesting images contain lots of *semantics*: different information in different areas
- Digital Spandoni and Martin Vetterli

 Paolo Prandoni © 2013 ► space-invariant filters process everything in the same way
- ▶ but we should process things differently
 - edges
 - gradients
 - textures

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
 but we should process things differently
 edges
 gradients
 - - textures

- ► IIR, FIR
- ...pass, lowpass, ... Digital Signal Processing Vetterli

 lowpass → image smooth prandoni and Martin Vetterli

 lowpass → image smooth prandoni © 2013

 highpass → enhaltement, edge december

- ► IIR, FIR
- causal or noncausal
- June June Signal Processing

 Digital Signal Processing

 Nartin Vetterli

 Digital Signal Processing

 Martin Vetterli

 Digital Signal Processing

 On 2013

 Martin Vetterli

 Digital Signal Processing

 Nartin Vetterli

 Digital Signal Processing

 On 2013

 Digital Signal Processing

 On 2013

 Digital Signal Processing

 On 2013

- ► IIR, FIR
- causal or noncausal
- ► highpass, lowpass, ...

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
- ...gnpass, lowpass, ... Digital Signal Processing Vetterli

 lowpass → image smoothing and oni and Martin C 2013

 highpass → enhancement, edge detection

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
- lowpass → image smoothing and one of the highpass → enhancement, edge det

- border effects

 stability: the fundamental Pheorem of algebra desn't hold in multiple dimensions!

 computability

 paolo

 Prance Ssing

 Martin Vetterli

 stability: the fundamental Pheorem of algebra desn't hold in multiple dimensions!

- border effects

 stability: the fundamental Pheorem of algebra desn't hold in multiple dimensions!

 computability

 paolo

 Prancessing

 Vetterli

 Signal Processing

 Vetterli

 Stability: the fundamental Pheorem of algebra desn't hold in multiple dimensions!

- nonlinear phase (edges!)
- border effects
- nital Signal Processing

 Jital Signal Processing

 Jital Signal Processing

 Jital Signal Processing

 Jital Signal Processing stability: the fundamental theorem of algebra doesn't hold in multiple dimensions! paolo Pran

- nonlinear phase (edges!)
- border effects
- nital Signal Processing Premioral and Martin Vetterli stability: the fundamental theorem of algebra doesn't hold in multiple dimensions! Paolo Pran

computability

A noncomputable CCDE

$$y[n_1,n_2] = a_0y[n_1+1,n_2] + a_1y[n_1,n_2-1] + a_2y[n_1-1,n_2] + a_3y[n_1,n_2+1] + x[n_1,n_2];$$

A noncomputable CCDE

 $y[n_1,n_2] = a_0y[n_1+1,n_2] + a_1y[n_1,n_2-1] + a_2y[n_1-1,n_2] + a_3y[n_1,n_2+1] + x[n_1,n_2];$

- ample complexity:

 M_1M_2 for nonseparable pigitise respon Qs 2013

 $M_1 + M_2$ for separable pigitise respon Qs 2013

 ously always stable ▶ generally zero centered (causality not an issue) ⇒
- per-sample complexity:

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - M_1M_2 for nonseparable in (a)• $M_1 + M_2$ for separable impulse responses 2013

- M_1M_2 for separable impulse responses $M_1 + M_2$ for separable impulse $M_1 + M_2$ for separable $M_1 + M_2$ for separable impulse $M_1 + M_2$ for separable impulse $M_1 + M_2$ for separable impulse $M_1 + M_2$ for separable $M_1 + M_2$ for separable impulse $M_1 + M_2$ for separable $M_1 + M_2$ f ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:

 - $M_1 + M_2$ for separable impulse responses 2013

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - M_1M_2 for nonseparable impulse responses
 - ullet M_1+M_2 for separable impulse responses

obviously always stable

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - M_1M_2 for nonseparable impulse responses
 - ullet M_1+M_2 for separable impulse responses
- obviously always stable

Moving Average

$$y[n_{1}, n_{2}] = \frac{1}{(2N+1)^{2}} \sum_{k_{1}=+N}^{N} \sum_{k_{2}=-N}^{N} x[n_{1} - k_{1}, n_{2}] - k_{2}]$$

$$p(n_{1}, n_{2}) = \frac{1}{(2N+1)^{2}} \sum_{k_{1}=+N}^{N} x[n_{1} - k_{1}, n_{2}] - k_{2}$$

$$p(n_{1}, n_{2}) = \frac{1}{(2N+1)^{2}} \operatorname{rect}\left(\frac{n_{1}}{2N}, \frac{n_{2}}{2N}\right)$$

Moving Average

$$y[n_1, n_2] = \frac{1}{(2N+1)^2} \sum_{k_1 = -N}^{N} \sum_{k_2 = -N}^{N} x[n_1 - k_1, n_2 - k_2]$$

$$h[n_1, n_2] = \frac{1}{(2N+1)^2} \operatorname{rect}\left(\frac{n_1}{2N}, \frac{n_2}{2N}\right)$$

 ϵ

Moving Average


```
\begin{array}{c} \text{Dig} h[n_1, n_2] = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix} \\ \text{Paolo Prandoni} & 2 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix} \end{array}
```

Moving Average

22 // 22 11/1/

$$h[n_1, n_2] = \frac{1}{2\pi\sigma^2} e^{-\frac{n_1^2 + n_2^2}{2\sigma^2}} \cdot \text{Nart}[n_1, n_2] < N$$
pigitandoni and prandoni and with $N \approx 3\sigma$

 $\sigma = 1.8, 11 \times 11 \; \mathrm{blur}$

 $\sigma = 8.7, 51 \times 51$ blur

approximation of the first derivative in the horizontal direction:

approximation of the first derivative in the horizontal direction:
$$s_o[n_1, n_2] = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0.5.2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c} \text{Digital Signal Prandoni} \\ \text{Opperators} \\ \text{Separability and structure} \\ \text{So}[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$s_o[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

approximation of the first derivative in the horizontal direction:

approximation of the first derivative in the horizontal direction:
$$s_o[n_1, n_2] = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$s_o[n_1, n_2] = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
separability and structure:
$$s_o[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$s_o[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

approximation of the first derivative in the vertical direction:

e first derivative in the vertical direction:
$$[n_1, n_2] = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

horizontal Sobel filter

vertical Sobel filter

Sobel operator

approximation for the square magnitude of the gradient: $\sin 9$

approximation for the square magnitude of the gradient:
$$|\nabla x[n_1,n_2]|^2=|s_o[n_1,n_2]*x[n_1,n_2]|^2+|s_v[n_1,n_2]*x[n_1,n_2]|^2$$
 ("operator" because it's nonlinear)

Gradient approximation for edge detection

Sobel operator

thresholeded Sobel operator

Laplacian operator

Laplacian of a function in continuous-space:

etion in continuous-space:

$$\begin{array}{c} \text{Dig}\,\Delta f(t_1,t_2) = \frac{\partial^2 f}{\partial t_1^2} + \frac{\partial^2 f}{\partial t_2^2} \\ \text{Page 2} \end{array}$$

Laplacian operator

approximating the Laplacian; start with a Taylor expansion

$$f(t+\tau) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t)}{n!} \tau^n$$

$$f(t+\tau) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t)}{n!} \tau^n$$
 and compute the expansion in $(t+\tau)$ and $(t-\tau)$:
$$f(t+\tau) = f(t) + f'(t)\tau + \frac{1}{2}f''(t)\tau^2$$

$$f(t-\tau) = f(t) - f'(t)\tau + \frac{1}{2}f''(t)\tau^2$$

Laplacian operator

by rearranging terms:
$$f''(t)=\frac{1}{\tau^2}(f(t-\tau)-2f(t)+f(t+\tau))$$
 which, on the discrete grid, is the FIR $h[n]=\begin{bmatrix}1&-2&1\end{bmatrix}$

Laplacian

summing the horizontal and vertical components:

ental and vertical components:

$$\begin{array}{c} \text{product} \\ \text{pro$$

Laplacian

If we use the diagonals too:

Laplacian for Edge Detection

Laplacian operator

thresholeded Laplacian operator

END OF MODULE 18.4

Digital Signal Martine 18.4

Paolo Prandoni and Martine 19.1

Digital Signal Processing

Digital Signal Processing

Paolo Prandoni and Martin Va

Paolo Prandoni and C 2013 Digital Signal Processing

Module 8.5: Image Compression

Overview:

- Image coding ingredients Digital Signal Martin Vetterli

 Paolo Prandoni and Martin

 © 2013

Overview:

- Image coding ingredients Digital Signal Martin Vetterli

 Paolo Prandoni and Martin

 Paolo Prandoni © 2013

- Total number of possible images 12^{3,2,288} ≥ 001^{37,826}

 number of atoms in the universe: 10⁸²

- -,200 bits

 --,200 bits

 Digital Signal Processing

 And Martin Vetterli

 Digital Signal Martin Vetterli

 Digital Signal Martin Vetterli

 Digital Signal Martin Vetterli

 Digital Signal Processing

 Digital Signal Processing

 And Martin Vetterli

 Digital Signal Processing

 Digital Signal Proce

- bits $\begin{array}{c} \text{Digital Signal Processing} \\ \text{Digital Signal Martin} \\ \text{Digital Signal Processing} \\ \text{Digital Signal Martin} \\ \text$

- ,__oo bits $\begin{array}{c} \text{Joseph Dist} \\ \text{Local number of possible images: } 2^{524,288} \approx 10^{157,826} \\ \text{number of atoms in the universe: } 10^{82} \end{array}$

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ► to indicate an image, simply give its number rocessing

 ► on the Internet: M = 50 by the per image © 2013

 ► raw encoding: 524,288 bits per image © 2013

 - ▶ (of course, side information is HUGE)

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ► to indicate an image, simply give its number rocessing

 ► on the Internet: M = 50 by the per image © 2013

 ► raw encoding: 524,288 bits per image © 2013

 - ▶ (of course, side information is HUGE)

- ▶ take all images in the world and list them in an "encyclopedia of images"
- to indicate an image, simply give its number rocessing
 on the Internet: M = 50 billion
 raw encoding: 524,288 bits per image

 - enumeration-based encoding: $\log_2 M \approx 36$ bits per image
 - ▶ (of course, side information is HUGE)

- ▶ take all images in the world and list them in an "encyclopedia of images"
- to indicate an image, simply give its number ocessing vetterii
 on the Internet: M = 50 billion
 raw encoding: 524,288 bits per image

 - enumeration-based encoding: $\log_2 M \approx 36$ bits per image
 - ▶ (of course, side information is HUGE)

- ▶ take all images in the world and list them in an "encyclopedia of images"
- to indicate an image, simply give its number ocessing
 on the Internet: M = 50 billion
 raw encoding: 524,288 bits per image

 - enumeration-based encoding: $\log_2 M \approx 36$ bits per image
 - ▶ (of course, side information is HUGE)

- ▶ take all images in the world and list them in an "encyclopedia of images"
- to indicate an image, simply give its number ocessing
 on the Internet: M = 50 billion
 raw encoding: 524,288 bits per image

 - enumeration-based encoding: $\log_2 M \approx 36$ bits per image
 - (of course, side information is HUGE)

Compression

Another approach:

- exploit "physical" redundancy
- allocate bits for things that matter clerg, edges Wartin Vetterli use psychovisual experiments to find out what matters
- some information is discarded: *lossy* compression

Compression

Another approach:

- exploit "physical" redundancy
- allocate bits for things that matter (e.g. edges) use psychovisual experiments to find out what matters
- some information is discarded: *lossy* compression

Compression

Another approach:

- allocate bits for things that matter (e.g. edges)

 use psychovisual exercises
- some information is discarded: *lossy* compression

Compression

Another approach:

- allocate bits for things that matter (e.g. edges)

 use psychovisual experi
- ▶ some information is discarded: *lossy* compression

- compressing at block level
- using a suitable transform (i.e., a change of basis) rtin Vetterli smart quantization

 Digital and and ntropy coding

 Paolo Prandoni and 2013
- entropy coding

- using a suitable transform (i.e., a change of basis) rtin Vetterli

 smart quantization

 entropy coding

 Paolo Prandoni and

 2013

- using a suitable transform (i.e., a change of basis) rtin
 smart quantization entropy coding

- using a suitable transform (i.e., a change of basis) rtin
 smart quantization entropy coding

Compressing at pixel level

- equivalent to coarser quantization Signal Martin Vetterli
 in the limit, 1bpp

 Paolo Prandoni and Martin Vetterli

 © 2013

Compressing at pixel level

- equivalent to coarser quantization Signal Martin Vetterli
 in the limit, 1bpp

 paolo Prandoni and Martin © 2013

Compressing at pixel level

- reduce number bits per pixel
- equivalent to coarser quantization
 in the limit, 1bpp

- code the average value with 8 bits al Signal Processing

 3 × 3 blocks at 8 bits per block gives less c 2013

 than 1bpp

 paolo

 paolo

- code the average value with 8 bits | Signal Processing Vetterli

 3 × 3 blocks at 8 bits per block gives less (2013)

 than 1bpp

 paolo

- Code the average value with 8 bits a Signal Proces
 3 × 3 blocks at 8 bits per blocks than 1bpp

- compress remote regions independently and Martin Vetterli paolo Prand © 2013

- compress remote regions independently and Martin exploit the local spatial correlation
- Paolo Prana © 2013

- ▶ take a DT signal, assume R bits per sample
- storing the signal requires NR bits ignal Proces

 now you take the DFT and it looks like 2013
 this paolo Proces
- ▶ in theory, we can just code the two

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it lookedike this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

Ideally, we would like a transform that:

- an image block in Digital Sign and Marth Digital Sign and Digital Si ▶ captures the important features of an image block in a few coefficients
- ▶ is efficient to compute

Ideally, we would like a transform that:

- ▶ captures the important features of an image block in a few coefficients

► is efficient to compute

Digital Signary

Digital Signary

Prandoni

Prandoni

Prandoni

Transform

Ideally, we would like a transform that:

- ► captures the important features of an image block in a few coefficients
- ▶ is efficient to compute
- ▶ answer: the Discrete Cosine Transform

2D-DCT

$$C[k_1, k_2] = \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} x[n_1, n_2] \cos \left[\frac{\pi}{N} \left(n_1 + \frac{1}{2}\right) k_1\right] \cos \left[\frac{\pi}{N} \left(n_2 + \frac{1}{2}\right) k_2\right]$$

DCT basis vectors for an 8×8 image

Smart quantization

- variable step (fine to coarse)gital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 Paolo Prandoni © 2013

Smart quantization

- ► variable step (fine to coarse)gital Signal Processing Vetterli

 Paolo Prandoni and Martin Vetterli

 © 2013

Quantization

 $\hat{x}[n]$

Quantization

- minimize the effort to encode a certain amount of information
- ► associate short symbols to frequent values and vice-versa Digital doni and vice-ver

- minimize the effort to encode a certain amount of information
- associate short symbols to frequent values and vice-versa

Digitar Digita

- ▶ minimize the effort to encode a certain amount of information
- associate short symbols to frequent values and vice-versa

▶ if it sounds familiar it's because it is... © 2013

END OF MODULE 18.5

Digital Signa and Martin Paolo Prandoni and 2013

Paolo Prandoni 2013

Digital Signal Processing

Digital Signal Processing

Module 8.6: The JPEG Compression Algorithm

Paolo Prandoni © 2013

- using a suitable transform (i.e., a change of basis) rtin
 smart quantization entropy coding

- using a suitable transform (i.e., a change of basis) tin
 smart quantization entropy coding

- vion Digital Signal Processing

 Digital Signal Martin Vetterli

 Paolo Prandoni and Martin

 Paolo Prandoni © 2013 ► split image into 8 × 8 non-overlapping blocks
- ► compute the DCT of each block
- smart quantization
- entropy coding

- split image into 8 × 8 non-overlapping blocks
 compute the DCT of each block
 quantize DCT coefficients according to psycovisually-tuned tables
- entropy coding

Key ingredients

- split image into 8 × 8 non-overlapping blocks
 compute the DCT of each block
 quantize DCT coefficients according to psycovisually-tuned tables

- run-length encoding and Huffman coding

DCT coefficients of image blocks (detail)

DCT coefficients of image blocks (detail)

- ightharpoonup most coefficients are negligible ightharpoonup captured by the deadzone
- some coefficients are more important than others rtin Vetterli
- ▶ find out the critical coefficients by

- lacktriangle most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- ▶ find out the critical coefficients by experimentation
- allocate more bits (or, equivalently, fine quantization levels) to the most important coefficients

- lacktriangleright most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- ▶ find out the critical coefficients by experimentation
- allocate more bits (or, equivalently, fine quantization levels) to the most important coefficients

- ightharpoonup most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- find out the critical coefficients by experimentation
- ▶ allocate more bits (or, equivalently, finer quantization levels) to the most important coefficients

Psychovisually-tuned quantization table

$$\hat{c}[k_1, k_2] = \mathsf{round}(c[k_1, k_2]/Q[k_1, k_2])$$

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

Advantages of nonuniform bit allocation

uniform tuned

Advantages of nonuniform bit allocation (detail)

uniform tuned

Efficient coding

- ▶ most coefficients are small, decreasing with index ssing vetterli
 ▶ use zigzag scan to maximize ordering and Martin
 ▶ quantization will create long peries of zeros 013

Efficient coding

- most coefficients are small, decreasing with index vetterli
 use zigzag scan to maximize ordering
 quantization will create long pedes of zero 2013

Efficient coding

- most coefficients are small, decreasing with index
 use zigzag scan to maximize ordering
- ▶ quantization will create long series of zeros 013

Zigzag scan

Example

Example

- r is the *runlength* i.e. the number of zeros before the current value
- s is the size i.e. the number of this needed to lencode the value c is the actual value Paolo
- ▶ (0,0) indicates that from now on it's only zeros (end of block)

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- ightharpoonup c is the actual value Paolo
- \triangleright (0,0) indicates that from now on it's only zeros (end of block)

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- ► c is the actual value PO
- \triangleright (0,0) indicates that from now on it's only zeros (end of block)

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- c is the actual value
- ▶ (0,0) indicates that from now on it's only zeros (end of block)

Example

[(0,7), 100], [(0,6), -60], [(4,3), 6], [(3,4), 13], [(8,1), -1], [(0,0)]

Example

$$[(0,7), 100], [(0,6), -60], [(4,3), 6], [(3,4), 13], [(8,1), -1], [(0,0)]$$

- some pairs are much more common whin others.

 a lot of space can be saved by being smart

- some pairs are much more common than others,
 a lot of space can be saved by being smart

- ▶ by design, $(r, s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- some pairs are much more common than others!

 lot of space can be saved by heir
- ▶ a lot of space can be saved by being smart

- ▶ by design, $(r, s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- some pairs are much more common than others!

 lot of space can be saved by being
- ▶ a lot of space can be saved by being smart

great idea: shorter binary sequences for common symbols

however: if symbols have different lengths, we must know how to parse them!

- \blacktriangleright in English, spaces separate words \rightarrow extra symbol (wasteful)
- ► in Morse code, pauses separate letters and words (wasteful)

 ► can we do away with separators? © 2013

however: if symbols have different lengths, we must know how to parse them!

- lacktriangleright in English, spaces separate words ightarrow extra symbol (wasteful)
- ▶ in Morse code, pauses separate letters and words (wasteful)
- can we do away with separators?

however: if symbols have different lengths, we must know how to parse them!

- lacktriangleright in English, spaces separate words ightarrow extra symbol (wasteful)
- ▶ in Morse code, pauses separate letters and words (wasteful)
- can we do away with separators?

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- ► can parse a bitstream sequentially with no dock ahead Dig extremely easy to understand graphically ... 2013

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- can parse a bitstream sequentially with no look-ahead
- extremely easy to understand prophical 2013

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- can parse a bitstream sequentially with no look-ahead
- ► extremely easy to understand graphically...2013

Prefix-free code

001100110101100

Prefix-free code

001100110101100

Prefix-free code

001100110101100

Α

001100110101100

AA

001100110101100

 $\mathsf{A}\mathsf{A}\mathsf{B}$

001100110101100

AABA

001100110101100

AABAA

0011001101100

AABAAB

001100110101100

AABAABA

001100110101100

AABAABAD

001100110101100

AABAABADC

Entropy coding

goal: minimize message length

- oal: minimize message length

 ➤ assign short sequences to more frequent symbols

 ➤ the Huffman algorithm builds the optimal code for a set of symbol probabilities

 ➤ in JPEG, you can use a "general purpose" 2 furfman code or build your own

Entropy coding

goal: minimize message length

- ► assign short sequences to more frequent symbols
- ▶ the Huffman algorithm builds the optimal code for a set of symbol probabilities
- in JPEG, you can use a "general purpose" 2 furfiman code or build your own (but then you pay a part information" price)

Entropy coding

goal: minimize message length

- ► assign short sequences to more frequent symbols
- ▶ the Huffman algorithm builds the optimal code for a set of symbol probabilities
- ▶ in JPEG, you can use a "general-purpose" Huffman code or build your own (but then you pay a "side-information" price)

Example

- ▶ four symbols: A, B, C, D
- probability table:

B, C, D

$$DAJAP = 0.38 \text{ and } Processing}$$

$$DAJAP = 0.38 \text{ and } P(B) = 0.32$$

$$P(D) = 0.2$$

Example

- ▶ four symbols: A, B, C, D
- probability table:

B, C, D
$$p(A) = 0.38 \text{ and } p(B) = 0.32$$

$$p(C) = 0.1 \qquad p(D) = 0.2$$

Building the Huffman code

$$p(A) = 0.38$$
 $p(B) = 0.32$ $p(C) = 0.1$ $p(D) = 0.2$

Building the Huffman code

$$p(A) = 0.38$$
 $p(B) = 0.32$ $p(C + D) = 0.3$

Huffman Coding

8.6 121

END OF MODULE 18.6

Digital Signal Martine 18.6

Paolo Prandoni and Martine 19.13

END OF MODULE 8

Digital Sign and Martin E 8

Paolo Prandoni and 2013