Probabilistic classification - generative models

Course of Machine Learning Master Degree in Computer Science

University of Rome "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

Naive Bayes classifiers recap

A language model is a (categorical) probability distribution on a vocabulary of terms (possibly, all words which occur in a large collection of documents).

Use: A language model can be applied to predict (generate) the next term occurring in a text. The probability of occurrence of a term is related to its information content and is at the basis of a number of information retrieval techniques.

Hypothesis: It is assumed that the probability of occurrence of a term is independent from the preceding terms in a text (bag of words model).

Bayesian classifiers

A language model can be applied to derive document classifiers into two or more classes through Bayes' rule.

- ▶ given two classes C_1, C_2 , assume that, for any document d, the probabilities $p(C_1|d)$ and $p(C_2|d)$ are known: then, d can be assigned to the class with higher probability
- ▶ how to derive $p(C_k|d)$ for any document, given a collection C_1 of documents known to belong to C_1 and a similar collection C_2 for C_2 ? Apply Bayes' rule:

$$p(C_k|d) \propto p(d|C_k)p(C_k)$$

the evidence p(d) is the same for both classes, and can be ignored.

• we have still the problem of computing $p(C_k)$ and $p(d|C_k)$ from \mathcal{C}_1 and \mathcal{C}_2

Bayesian classifiers

Computing $p(C_k)$

The prior probabilities $p(C_k)$ (k=1,2) can be easily estimated from C_1, C_2 : for example, by applying ML, we obtain

$$p(C_k) = \frac{|\mathcal{C}_1|}{|\mathcal{C}_1| + |\mathcal{C}_2|}$$

Naive bayes classifiers

Computing $p(d|C_k)$

For what concerns the likelihoods $p(d|C_k)$ (k=1,2), we observe that d can be seen, according to the bag of words assumption, as a multiset of n_d terms

$$d = \{\overline{t}_1, \overline{t}_2, \dots, \overline{t}_{n_d}\}$$

By applying the product rule, it results

$$p(d|C_k) = p(\overline{t}_1, \dots, \overline{t}_{n_d}|C_k)$$

= $p(\overline{t}_1|C_k)p(\overline{t}_2|\overline{t}_1, C_k) \cdots p(\overline{t}_{n_d}|\overline{t}_1, \dots, \overline{t}_{n_d-1}, C_k)$

Naive bayes classifiers

The naive Bayes assumption

Computing $p(d|C_k)$ is much easier if we assume that terms are pairwise conditionally independent, given the class C_k , that is, for $i, j = 1, \ldots, n_d$ and k = 1, 2,

$$p(\bar{t}_i, \bar{t}_j | C_k) = p(\bar{t}_i | C_k) p(\bar{t}_2 | C_k)$$

as, a consequence,

$$p(d|C_k) = \prod_{j=1}^{n_d} p(\bar{t}_j|C_k)$$

that is, we model the document as a set of samples from a categorical distribution (the language model): ML is applied to select the best categorical distribution (class)

Language models and NB classifiers

The categorical distributions $p(\bar{t}_j|C_k)$ have been derived for C_1 and C_2 , respectively from documents in C_1 and C_2 .

Generative models

- ▶ Classes are modeled by suitable conditional distributions $p(\mathbf{x}|C_k)$ (language models in the previous case): it is possible to sample from such distributions to generate random documents statistically equivalent to the documents in the collection used to derive the model.
- ▶ Bayes' rule allows to derive $p(C_k|\mathbf{x})$ given such models (and the prior distributions $p(C_k)$ of classes)
- ▶ We may derive the parameters of $p(\mathbf{x}|C_k)$ and $p(C_k)$ from the dataset, for example through maximum likelihood estimation
- lacktriangle Classification is performed by comparing $p(C_k|\mathbf{x})$ for all classes

Deriving posterior probabilities

▶ Let us consider the binary classification case and observe that

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)} = \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$

► Let us define

$$a = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)} = \log \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})}$$

that is, a is the log of the ratio between the posterior probabilities (log odds)

► We obtain that

$$p(C_1|\mathbf{x}) = \frac{1}{1+e^{-a}} = \sigma(a)$$
 $p(C_2|\mathbf{x}) = 1 - \frac{1}{1+e^{-a}} = \frac{1}{1+e^a}$

 $ightharpoonup \sigma(x)$ is the logistic function or (sigmoid)

Sigmoid

Useful properties of the sigmoid

$$(-x) = 1 - \sigma(x)$$

Deriving posterior probabilities

▶ In the case K > 2, the general formula holds

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$

▶ Let us define, for each k = 1, ..., K

$$a_k(\mathbf{x}) = \log(p(\mathbf{x}|C_k)p(C_k)) = \log p(C_k|\mathbf{x}) + \log p(C_k)$$

► Then, we may write

$$p(C_k|\mathbf{x}) = \frac{e^{a_k}}{\sum_j e^{a_j}} = s(a_k)$$

- ▶ $s(\mathbf{x})$ is the softmax function (or normalized exponential) and it can be seen as an extension of the sigmoid to the case K>2
- ▶ $s(\mathbf{x})$ can be seen as a smoothed version of the maximum: if $a_k \gg a_j$ for all $j \neq k$, then $s(a_k) \simeq 1$ and $s(a_j) \simeq 0$ for all $j \neq k$

Gaussian discriminant analysis

In Gaussian discriminant analysis (GDA) all class conditional distributions $p(\mathbf{x}|C_k)$ are assumed gaussians. This implies that the corresponding posterior distributions $p(C_k|\mathbf{x})$ can be easily derived.

Hypothesis

All distributions $p(\mathbf{x}|C_k)$ have same covariance matrix Σ , of size $D \times D$. Then,

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

Binary case

If
$$K=2$$
,
$$p(C_1|\mathbf{x}) = \sigma(a(\mathbf{x}))$$

where

$$a(\mathbf{x}) = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

$$= \frac{1}{2}(\boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 - \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \mathbf{x}) - \frac{1}{2}(\boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 - \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 - \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \mathbf{x}) + \log \frac{p(C_1)}{p(C_2)}$$

Binary case

Observe that the results of all products involving $\mathbf{\Sigma}^{-1}$ are scalar, hence, in particular

$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 = \boldsymbol{\mu}_1^T \mathbf{\Sigma}^{-1} \mathbf{x}$$
$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 = \boldsymbol{\mu}_2^T \mathbf{\Sigma}^{-1} \mathbf{x}$$

Then,

$$a(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

with

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)$$

$$w_0 = \frac{1}{2}(\mu_2^T \mathbf{\Sigma}^{-1} \mu_2 - \mu_1^T \mathbf{\Sigma}^{-1} \mu_1) + \log \frac{p(C_1)}{p(C_2)}$$

 $p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$ is computed by applying a non-linear function to a linear combination of the features (generalized linear model)

Example

Left, the class conditional distributions $p(\mathbf{x}|C_1), p(\mathbf{x}|C_2)$, gaussians with D=2. Right the posterior distribution of C_1 , $p(C_1|\mathbf{x})$ with sigmoidal slope.

Discriminant function

The discriminant function can be obtained by the condition $p(C_1|\mathbf{x}) = p(C_2|\mathbf{x})$, that is, $\sigma(a(\mathbf{x})) = \sigma(-a(\mathbf{x}))$.

This is equivalent to $a(\mathbf{x}) = -a(\mathbf{x})$ and to $a(\mathbf{x}) = 0$. As a consequence, it results

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

or

$$\Sigma^{-1}(\mu_1 - \mu_2)\mathbf{x} + \frac{1}{2}(\mu_2^T \Sigma^{-1} \mu_2 - \mu_1^T \Sigma^{-1} \mu_1) + \log \frac{p(C_2)}{p(C_1)} = 0$$

Simple case: $\Sigma = \lambda I$ (that is, $\sigma_{ii} = \lambda$ for i = 1, ..., d). In this case, the discriminant function is

$$2(\mu_2 - \mu_1)\mathbf{x} + ||\mu_1||^2 - ||\mu_2||^2 + 2\lambda \log \frac{p(C_2)}{p(C_1)} = 0$$

Multiple classes

In this case, we refer to the softmax function:

$$p(C_k|\mathbf{x}) = s(a_k(\mathbf{x}))$$

where $a_k(\mathbf{x}) = \log(p(\mathbf{x}|C_k)p(C_k))$.

By the above considerations, it easily turns out that

$$a_k(\mathbf{x}) = \frac{1}{2} \left(\boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k \right) + \log p(C_k) - \frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\boldsymbol{\Sigma}|$$
$$= \mathbf{w}_k^T \mathbf{x} + w_{0k}$$

Again, $p(C_k|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$ is computed by applying a non-linear function to a linear combination of the features (generalized linear model)

Multiple classes

Decision boundaries corresponding to the case when there are two classes C_j, C_k such that the corresponding posterior probabilities are equal, and larger than the probability of any other class. That is,

$$p(C_k|\mathbf{x}) = p(C_j|\mathbf{x})$$
 $p(C_i|\mathbf{x}) < p(C_k|\mathbf{x}) \quad i \neq j, k$

hence

$$e^{a_k(\mathbf{x})} = e^{a_j(\mathbf{x})}$$
 $e^{a_i(\mathbf{x})} < e^{a^k(\mathbf{x})}$ $i \neq j, k$

that is,

$$a_k(\mathbf{x}) = a_j(\mathbf{x})$$
 $a_i(\mathbf{x}) < a^k(\mathbf{x})$ $i \neq j, k$

As shown, this implies that boundaries are linear.

General covariance matrices, binary case

The class conditional distributions $p(\mathbf{x}|C_k)$ are gaussians with different covariance matrices

$$a(\mathbf{x}) = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

$$= \frac{1}{2} \left((\mathbf{x} - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) - (\mathbf{x} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) \right)$$

$$+ \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|} + \log \frac{p(C_1)}{p(C_2)}$$

General covariance matrices, binary case

By applying the same considerations, the decision boundary turns out to be

$$\left(\left(\mathbf{x} - \boldsymbol{\mu}_2\right)^T \boldsymbol{\Sigma}_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) - \left(\mathbf{x} - \boldsymbol{\mu}_1\right)^T \boldsymbol{\Sigma}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)\right) + \log \frac{|\boldsymbol{\Sigma}_2|}{|\boldsymbol{\Sigma}_1|} + 2\log \frac{p(C_1)}{p(C_2)} = 0$$

Classes are separated by a (at most) quadratic surface.

General covariance, multiple classe

It can be proved that boundary surfaces are at most quadratic.

Example

Left: 3 classes, modeled by gaussians with different covariance matrices.

Right: posterior distribution of classes, with boundary surfaces.

The class conditional distributions $p(\mathbf{x}|C_k)$ can be derived from the training set by maximum likelihood estimation.

For the sake of simplicity, assume K=2 and both classes share the same Σ .

It is then necessary to estimate μ_1, μ_2, Σ , and $\pi=p(C_1)$ (clearly, $p(C_2)=1-\pi$).

Training set \mathcal{T} : includes n elements (\mathbf{x}_i, t_i) , with

$$t_i = \begin{cases} 0 & \text{if } \mathbf{x}_i \in C_2 \\ 1 & \text{if } \mathbf{x}_i \in C_1 \end{cases}$$

- ▶ If $\mathbf{x} \in C_1$, then $p(\mathbf{x}, C_1) = p(\mathbf{x}|C_1)p(C_1) = \pi \cdot \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$
- ▶ If $\mathbf{x} \in C_2$, $p(\mathbf{x}, C_2) = p(\mathbf{x}|C_2)p(C_2) = (1 \pi) \cdot \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

The likelihood of the training set ${\mathcal T}$ is

$$L(\pi, \mu_1, \mu_2, \Sigma | \mathcal{T}) = \prod_{i=1}^{n} (\pi \cdot \mathcal{N}(\mathbf{x}_i | \mu_1, \Sigma))^{t_i} ((1 - \pi) \cdot \mathcal{N}(\mathbf{x}_i | \mu_2, \Sigma))^{1 - t_i}$$

The corresponding log likelihood is

$$l(\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma} | \mathcal{T}) = \sum_{i=1}^n \left(t_i \log \pi + t_i \log(\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})) \right) +$$

$$+ \sum_{i=1}^n \left((1 - t_i) \log(1 - \pi) + (1 - t_i) \log(\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_2, \boldsymbol{\Sigma})) \right)$$

Its derivative wrt π is

$$\frac{\partial l}{\partial \pi} = \frac{\partial}{\partial \pi} \sum_{i=1}^{n} (t_i \log \pi + (1 - t_i) \log (1 - \pi)) = \sum_{i=1}^{n} \left(\frac{t_i}{\pi} - \frac{(1 - t_i)}{1 - \pi} \right) = \frac{n_1}{\pi} - \frac{n_2}{1 - \pi}$$

which is equal to 0 for

$$\pi = \frac{n_1}{n}$$

The maximum wrt μ_1 (and μ_2) is obtained by computing the gradient

$$\frac{\partial l}{\partial \boldsymbol{\mu}_1} = \frac{\partial}{\partial \boldsymbol{\mu}_1} \sum_{i=1}^n t_i \log(\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})) = \dots = \boldsymbol{\Sigma}^{-1} \sum_{i=1}^n t_i (\mathbf{x}_i - \boldsymbol{\mu}_1)$$

As a consequence, we have $\frac{\partial l}{\partial \mu_1} = 0$ for

$$\sum_{i=1}^{n} t_i \mathbf{x}_i = \sum_{i=1}^{n} t_i \boldsymbol{\mu}_1$$

hence, for

$$\mu_1 = \frac{1}{n_1} \sum_{\mathbf{x}_i \in C_i} \mathbf{x}_i$$

Similarly,
$$\frac{\partial l}{\partial \mu_2} = 0$$
 for

$$\mu_2 = \frac{1}{n_2} \sum_{\mathbf{x}_i \in C_2} \mathbf{x}_i$$

Maximizing the log-likelihood wrt Σ provides

$$\Sigma = \frac{n_1}{n} \mathbf{S}_1 + \frac{n_2}{n} \mathbf{S}_2$$

where

$$\mathbf{S}_1 = \frac{1}{n_1} \sum_{\mathbf{x}_i \in C_1} (\mathbf{x}_i - \boldsymbol{\mu}_1) (\mathbf{x}_i - \boldsymbol{\mu}_1)^T$$

$$\mathbf{S}_2 = \frac{1}{n_2} \sum_{\mathbf{x}_i \in C_2} (\mathbf{x}_i - \boldsymbol{\mu}_2) (\mathbf{x}_i - \boldsymbol{\mu}_2)^T$$

and let

$$\mathbf{S} = \frac{n_1}{n} \mathbf{S}_1 + \frac{n_2}{n} \mathbf{S}_2$$