Information Retrieval

What is IR

- The process of obtaining relevant information from a large repository (e.g., documents, web pages, databases).
- Documents: Textual data (web pages, articles, books)
 - Multimedia & Maps
- Queries: User input expressing information need.
- **Indexing**: Creating efficient data structures for fast retrieval.
- Ranking: Ordering results by relevance.

Applications

- Search engines
- Document retrieval
- Recommender system

•

BM25

- probabilistic retrieval model based on the Bag-of-Words assumption
- Probability Ranking Principle
 - : document
 - : relevance; {1, 0}
- Interested only in ranking

Binary Independence Model (BIM)

Given query

Naïve Bayes

• : binary representation of document (Term-existence)

Naive Bayes conditional independence assumption:
 presence/absence of a word in a document is independent
 of the presence/absence of any other word

Binary Independence Model (BIM)

- Assumption:
 - Terms not in query does not impact relevance

Retrieval Status Value

Retrieval Status Value

• If assume RSVIDF

BM25

- Best match 25
- Words are drawn independently from the vocabulary using a multinomial distribution
- Distribution of term frequencies (tf) follows a binomial distribution – approximated by a Poisson
- Assume that term frequencies in a document follow a Poisson distribution

Poisson Distribution

- Models the probability of the number of events occurring in a fixed interval of time/space, with known average rate
- Examples
 - Number of cars arriving at the toll booth per minute
 - Number of typos on a page
- Also be used to approximate binomial
- Assume that term frequencies in a document follow a Poisson distribution
 - Implies fixed document length
 - Reasonable fit for "general" words, but poor for the topic-specific words

Extensions

- Term is either regular or topic related
- Extend the Poisson as mixture of Poisson
 - Use a simple function to approximate:
 - controls term frequency scaling
- Document length normalization
 - b: a parameter between 0 and 1. 0 means no length normalization

BM25

Normalize term frequency using document length

Ranking function

Google

- Google was founded on September 4, 1998, by Larry Page and Sergey Brin.
- Google began in January 1996 as a research project by Larry Page and Sergey Brin while they were both PhD students at Stanford

• Brin, Sergey, and Lawrence Page. "The anatomy of a large-scale hypertextual web search engine." *Computer networks and ISDN systems* 30.1-7 (1998): 107-117.

Ranking

- Webpage corpus is not a controlled collection
 - BM25/tf-idf only consider relevance
 - Reputation?
- Hit rate
 - Rank higher if it is visited more frequently
 - Fake hits
 - Cold start for new pages
- Citation
 - A paper is important if it is cited by many papers
 - Not well-controlled

PageRank

- A page with many links to it is more likely to be useful than one with few links to it
 - Just like citation
- The links from a page that itself is the target of many links are likely to be particularly important
 - This is something new

PageRank

- Each page is ranked using a value called PageRank (PR)
- A page's PR depends on the PRs of its back link pages
 - : damping factor, normally this is set to 0.85
 - : pages linking to page A
 - : PageRank of page A
 - : PageRank of page pointing to page A
 - : the number of links going out of page

PageRank Example

- Assign each page an initial rank value Seed = 40
 - Could be any number (seed)
- Repeat calculations until converge


```
PR(A) = 0.15 + 0.85 * 40 = 34.25
                                           PR(B) = 0.15 + 0.85 * 0.385875 = 29.1775
Seed = 0
                                           2)
                                           PR(A)= 0.15 + 0.85 * 29.1775 = 24.950875
PR(A) = 0.15 + 0.85 * 0 = 0.15
                                           PR(B)= 0.15 + 0.85 * 24.950875 = 21.35824375
PR(B) = 0.15 + 0.85 * 0.15 = 0.2775
                                           3) .....
PR(A) = 0.15 + 0.85 * 0.2775 = 0.385875
PR(B) = 0.15 + 0.85 * 0.385875 = 0.47799375
3)
PR(A)= 0.15 + 0.85 * 0.47799375 = 0.5562946875
PR(B)= 0.15 + 0.85 * 0.5562946875 = 0.622850484375
```

```
d = 0.85
PR(A) = (1 - d) + d(PR(B)/1)
PR(B) = (1 - d) + d(PR(A)/1)
```

Supervised Ranking Methods

Binary classification

- Learning to rank
 - Pointwise (regression problem)
 - : predicting the real-value or ordinal score of x

•

- Pairwise
 - : classification problem for a given pair
 - Usually implemented with a scoring function:
- Listwise

Training loss

max-margin loss

Cross-entropy loss

Negative log-likelihood loss

• : small set of negative samples for query

ranking score

Dense Retrieval

- Sparse
 - bag-of-words
 - Lexical similarity
- Learning to rank
 - Feature-based
 - hand-crafted features or embedding (pre-PLM)
- Dense
 - Pretrained Language Model (PLM) -based
 - Semantic similarity

Zhao, Wayne Xin, et al. "Dense text retrieval based on pretrained language models: A survey." *ACM Transactions on Information Systems* 42.4 (2024): 1-60.

Encoder Architecture

- Can you think about potential pros and cons them?
- effectiveness and efficiency trade-off

Training – negative selection

- In-batch Negatives
 - given a query, the positive texts paired with the rest queries from the same batch are considered as negatives.
 - Assume that there are queries () in a batch
 - How many in-batch negatives for each query?
- Cross-batch Negatives
 - multi-GPU setting
 - Assume there are GPUs, queries () in a batch in one GPU
 - How many in-batch negatives for each query?

Training – negative selection

- Hard Negatives
 - irrelevant texts but having a high semantic similarity with the query
- static hard negatives
 - sample negatives from top retrieval results from some other retrievers, such as BM25
 - first clusters the queries before training and then samples queries out of one cluster per batch
- dynamic hard negatives
 - sample from the top retrieved texts by the optimized retriever itself as negatives
- Denoised hard negatives: reduce false negatives

Zero-shot retrieval

- Shot
 - Examples
 - Few-shot: few examples
 - Zero-shot: no examples
- Zero-shot
 - Instruction only. E.g., prompt
 - Train in domain A, apply in domain B
 - Train a retriever for Wikipedia, apply it in PubMed

Evaluation

- Recall@k
 - Percentage of queries that the relevant documents are ranked within top k
- NDCG (Normalized Discounted Cumulative Gain)
 - Considers the position of a relevant text (higher the better)
 - https://www.evidentlyai.com/ranking-metrics/ndcg-metric
- MRR (Mean Reciprocal Rank)
 - : the rank of the first retrieved positive text for query q

Recommender System

- eCommerce
- Job matching
- News feed

• ...

• For a user, return a ranked list based on preference

Recommender System

- Features of users
 - History of rating/click
 - Social network
- Features of items
 - Topic labels (genre)
 - Reviews

- Content Filtering
- Collaborative Filtering

Content Filtering

- description of the item
- a profile of the user's preferences
 - A model of the user's preference.
 - A history of the user's interaction with the recommender system
- estimate the probability that the user is going to like the item

Collaborative Filtering

personal tastes are correlated

• If Alice and Bob both like X and Alice likes Y then Bob is more likely

to like ¥

Items / Users	Movie 1	Movie 2	Movie 3	Movie 4
Alex	1		5	4
George	2	3	4	
Mark	4	5		2
Peter			4	5

Collaborative Filtering

- Matrix factorization
 - This matrix is large and very sparse
 - Non-negative Matrix Factorization
 - Low dimensional representation of user and items
 - Embed users and items in the same space

Hybrid approach

Evaluation

- Fixed test data
 - Netflix challenge: predict users' ratings, MSE
- User study
 - Small scale
- A/B test (online)
 - Click through rate
- Diversity, novelty, and others