

In the future, an AI agent will know that you are at work and have ten minutes free, and then help you accomplish something that is high on your todo list.

컴퓨터 비전

PART1. 컴퓨터 비전

컴퓨터 비전 알아보기

컴퓨터 눈을 뜨다!!!

컴퓨터 비전이란

• 인공지능 한 분야로 컴퓨터와 시스템을 통해 디지털 이미지, 비디오 및 기타 시각적 입력에 서 의미 있는 정보를 추출한 다음 이런 정보를 바탕으로 작업을 실행 및 추천할 수 있도록 함

Computer Vision

컴퓨터 비전의 목적

• 어떤 영상에서 장면이나 특징(scene or features)들을 "이해(Understanding)" 하는 컴퓨터를 프로그램 하는 것

Computer Vision의 응용 프로그램

Search by Image

Click the upload button to submit your picture for reverse search

UPLOAD

상상해보세요! 줄이나 전자장치 없이 종이만 으로 음악 만들기.

http://www.youtube.com/watch?v=xyfSUOfFI_E

컴퓨터 비전 응용분야

- **문자 인식** 문서 인식, 번호판 인식, 교통표지만 인식 등
- **생체 인식** 얼굴 인식, 홍체 인식, 지문 인식
- **의료 분야** X-ray 사진 분석, MRI 사진 분석
- 제조 공정 검사 PCB 기판 불량 유무 검사, 공정 자동화 모니터링
- 지능형 자동차
 차선 감지, 자동 주행, 자동 주차, 교통 흐름 통제
- 영화 및 엔터테인먼트 모션 캡쳐, 제스쳐 인식 기반 인터액티브 게임

컴퓨터 비전 작업구분

컴퓨터 비전

저수준 비전 처리

잡음처리, 화질 개선 작업 수행

중간수준 비전처리

영역 분할 및 특징 추출

고수준 비전처리

영상 해석

컴퓨터 비전 작업

잡음처리, 화질 개선 작업 수행

저수준 비전처리

입력 이미지를 목적에 의해 더 나은 출력 이미지로 변환

디블러링(Deblurring) 흐릿한 이미지를 선명하게

에지 디텍션(Edge Detection) 밝기 변화가 이루어지는 부분 탐지

수퍼 레졸루션(Super-resolution) 저해상도를 고해상도로 변환

컬러리제이션(Colorization) 흑백이미지를 컬러이미지로 변환

저수준 비전처리

Enhancement

컴퓨터 비전 작업

영역 분할 및 특징 추출

중간수준 비전처리

입력 이미지를 어떤 특징이 있는 출력 이미지로 변환

바운더리 디텍션(Boundary detection) 물체의 경계를 찾음

세그멘티이션(Segmentation) 이미지를 동일한 영역으로 분할하는 과정

쉐이프 프럼 쉐이딩(Shape-from-shading) 그림자가 보이는 정보로부터 3차원 정보파악

O'SLOID E (Alignment)

얼라인먼트(Alignment) 어떤 영역이 어떤 영역과 매칭되는지 맞추는 과정

Reconstruction

Given an Internet photo collection of a landmark, we synthesize a 3D time-lapse video

Lombard Street, San Francisco 2279 photos

중간수준 비전처리

컴퓨터 비전 작업

영상 해석

고수준 비전처리

입력 이미지에 대한 어떤 의미를 파악하는 것

이미지 클래시피케이션(Image classification) 물주어진 이미지에 대해 표범이란 의미로 해석

이미지 캡셔닝(Image captioning) 주어진 이미지에 대한 설명하는 문장을 만들기

오브젝트 디텍션(Object detection) 각 물체가 전체 이미지 상 어디에 존재하는지 사 각형으로 영역지정하고 그것이 무엇인지 파악

포즈 디텍션(Pose detection) 주어진 사진에서 사람이 어떤 자세로 있는지 알아 내는 과정

고수준 비전처리

PART2. 이미지 처리

이미지를 이해하고 처리하기

컴퓨터는 이미지를 어떻게 표시하고 저장할까?

컴퓨터가 이미지를 어떻게 표시하고 저장합니까?

Source: frescadesigns.com

Source: Wikipedia

서로 다른 화면에서의 픽셀 배열

컴퓨터로 정보를 표현하는 방법

• 컴퓨터는 이진수를 사용하여 데이터를 저장,처리함

컴퓨터가 정보를 나타내는 방법 이진수 컴퓨터는 전기적 신호를 이용하여 0과 1 두개의 정보를 저장함

이미지를 나타내는 단위

• 이미지를 나타내는 가장 작은 단위를 픽셀이라고 함

왜 255 인가?

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

1 bit					
0	1				

Number of bits	Different patterns	No. of patterns	No. of patterns
1	0 1	2^1	2
2	00 01 10 11	2^2	4
3	000 001 010 1 00 011 101 11 0 111	2^3	8

 $2^8 = 256$

범위: 0 to 255

T byte = 8 bit

이미지를 컴퓨터에 나타내보기

• 컴퓨터에서 1비트에 색이 있는 부분을 1, 없는 부분을 0 으로 표시하면 아래 그림처럼 나타낼 수 있습니다.

이미지를 표현하는 방법(=이미지 채널)

이진 이미지	회색조 이미지	컬러 이미지
각 픽셀이 1비트로 이루어져 있음. 각 픽셀은 밝음(=1), 어두움(=0) 두가지만 표현	각 픽셀의 밝기 값을 8비트(0~255 사이의 값) 으로 표현한 이미지	빨강(R), 녹색(G), 파랑(B) 3개의 채널로 표현되고 각 채널은 0~255 사이의 값 으로 표현한 이미지
		빨강(Red) 채널 녹색(Green) 채널 파랑(Blue) 채널

이미지를 표현하는 방법 – 이진 이미지

이미지를 표현하는 방법 – 회색 이미지

Gray Scale Image

각 픽셀의 밝기 값을 0~255 사이 의 값으로 표현한 이미지

```
108
                                         153
                           132
                                        129
                                         152
                                             156
                           135
                                         138
                 132
                          125
                               139
                                        132
                          130
                                    120
                                        102
                 133 111
                               121
                           120
                               138
   137 131 109 114
                           128
                               119 104
                                        102
<del>140</del>▶ 120
                               122
   111 136
                           122
                      125
                                                  112
                                                      130
                                                          109
                                                               113
                                                                    126 129
```

그레이 스케일 이미지를 표현하는 방법?

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

yscale image

Source: processing.org

이미지를 표현하는 방법 – 컬러 이미지

빨강색 채널 이미지가 가장 밝음 (즉, 높은 값이 많이 분포됨) → 빨간색일 확률 높음

Source: processing.org

색상이 있는 이미지는 어떨까요?

색상 계산기 사용하기

• 색상 계산기를 사용하여 채널 별 값 지정에 따른 변화 알아보기

Source: processing.org

https://www.w3schools.com/colors/colors_rgb.asp