Scilab Textbook Companion for Integrated Electronics: Analog And Digital Circuits and Systems by J. Millman And C. C. Halkias¹

Created by
Shivam
B-Tech
Electronics Engineering
Institute of Technology, BHU
College Teacher
Arif Jamal
Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Integrated Electronics: Analog And Digital Circuits and Systems

Author: J. Millman And C. C. Halkias

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 50

Year: 1991

ISBN: 978-0-07-462245-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Energy Band in Solid	5	
2	Transport Phenomena in Semiconductor	7	
5	Transistor Characteristic	11	
6	Digital Circuits	19	
7	Integrated Circuit Fabrication and Characteristic	32	
8	The Transistor at Low Frequency	36	
9	Transistor Biasing and Thermal Stabilization	43	
10	Field Effect Transistor	54	
12	MultiStage Amplifiers	62	
13	Feedback Amplifier	64	
14	Stability and Oscillators	79	
15	Operational Amplifier	82	
16	Integrated Circuits as Analog System Building blocks	86	
18	Power Circuits and Systems	98	

List of Scilab Codes

Exa 1.1	Plane Parallel plate Capacitor	5
Exa 2.1.a	Using Avogadro no find the numerical value of concen-	
	tration of atom in Germanium	7
Exa 2.1.b	Resistivity of intrinsic Germanium	8
Exa 2.1.c	Resistivity with given condition in germanium atoms.	9
Exa 2.1.d	Ratio of Conductivities	9
Exa 5.1.a	To find transistor currents for npn transistor	1
Exa 5.1.b	To find transistor currents for npn transistor after adding	
	resistor to circuit	2
Exa 5.2.a	Check whether transistor is in saturation region or not 1	4
Exa 5.2.b	Check whether transistor is in saturation region or not	
	after adding a Emitter Transistor	5
Exa 6.1	Output Levels for a given input in a silicon transistor . 1	9
Exa 6.2	To verify given equation	0
Exa 6.3.a	To find wether a given circuit is positive NAND 2	1
Exa 6.3.b	To find wether with given conditions NAND gate is sat-	
	isfied	2
Exa 6.3.c	Silicon Transistors and diodes are used in positive NAND 2	3
Exa 6.4	To verify that AND OR topology is equivalent to NAND	
	NAND system	4
Exa 6.5.a	To find hFEmin	5
Exa 6.5.b	When at least one input is at V0 in NAND gate 2	7
Exa 6.5.c	If input is high in NAND gate	8
Exa 6.5.d	If input is low in NAND gate	9
Exa 6.6	Calculation of FAN OUT of NAND gate	9
Exa 7.1	Diffusion of a pn junction	2
Exa 7.2.a	Fabrication and Characteristics	3
Exa 7.2.b	Fabrication and Characteristics	4

Exa	8.2	transistor as a Common Emitter Amplifier	36
Exa	8.3	To derive output impedence of given figure in open cir-	
			37
Exa	8.4		38
Exa	8.5	• • • • • • • • • • • • • • • • • • •	39
Exa	8.6		41
Exa	9.1		43
Exa	9.2	* *	44
Exa	9.3.a	Variation of Ic in given Transistor	45
Exa	9.3.b		47
Exa	9.4	· · · · · · · · · · · · · · · · · · ·	49
Exa	9.5		51
Exa	9.6.a	To find parameters of power amplifier using pnp gema-	
			51
Exa	9.6.b	To find parameters of power amplifier using pnp gema-	
			52
Exa	10.1.a		54
			55
			55
			56
		-	57
		· ·	57
		-	58
		To find the range of possible values of Id in FET 2N3684	
			59
Exa	10.4	Voltage Gain of MOSFET as a single stage and then as	
			60
Exa	12.1.a		62
			63
	13.1	parameters of a Second collector to first emmitter feed-	
			64
Exa	13.2.a	1	66
			67
		1	68
		±	69
			70
		_	71
		•	72

Exa	13.3.d	Gain of second emitter to first basefeedback pair	74
Exa	13.4.a	To find gain and resistance of Voltage Shunt Feedback	75
Exa	13.4.b	To find gain and resistance of Voltage Shunt Feedback	76
Exa	13.4.c	To find gain and resistance of Voltage Shunt Feedback	77
Exa	14.1.a	Lowest poles of an Amplifier	79
Exa	14.1.b	Frequency Response Peak	80
Exa	15.1.a	difference in output voltage for two set of output signals	82
Exa	15.1.b	difference in output voltage for two set of output signals	83
Exa	15.2	Design an amplifier using yA702A	85
Exa	16.1	Fourth Order Butterworth Filter	86
Exa	16.2	Design a second order bandpass filter	87
Exa	16.3	Design a video amplifier using MC1550	88
Exa	16.4.a	Logic Level Output of an ECL gate	89
Exa	16.4.b	Calculation of noise margin	91
Exa	16.4.c	Verify that conducting transistor is in active region	92
Exa	$16.4.\mathrm{d}$	Calculation of R	94
Exa	16.4.e	Average power dissipated by the gate	95
Exa	18.1.a	Design a series regulated power supply	98
Exa	18.1.b	Calculation of Sv	100
Exa	18.1.c	Find output resistance Ro	101
Exa	$18.1.\mathrm{d}$	Calculation of change in output voltage due to change	
		in input voltage and load current	103
Exa	18.2.a	SCR half wave power control circuit	105
Exa	18.2.b	SCR half wave power control circuit	106
Exa	18.2.c	SCR half wave power control circuit	107
Exa	18.3	SCR Relaxation Oscillator Phase control Circuit	108

Energy Band in Solid

Scilab code Exa 1.1 Plane Parallel plate Capacitor

```
1 clear;
2 clc;
4 // Caption: Plane Parallel plate Capacitor
5 //Given Data
6 d=0.001; // distance between parallel plate in m
7 V=1000; //applied voltage
8 q=1.6*(10^-19); //charge on an electron
9 m = 9.1*(10^-31); //mass of electron in kg
10 //Time taken by electron to reach other side of
      parallel plate capacitor
11 E=V/d; // Electric Field in V/m
12 //Formulae : s = u*t + (a*t^2)/2
13 a = (q*E)/m; // acceleration on electron in m/s^2
14 t = (2*d/a)^0.5; //time taken to reach the other side
      of plate
15 disp('sec',t,'Time taken to reach other side = ');
16
17 //Magnitude of force exerted on electron
18 disp('Since the potential is constant the force will
      be constant between the paltes of capacitor');
```

```
19 F=q*E;//force
20 disp('N',F,'Force on electron = ');
21
22 //Velocity of electron at the other plate
23 //Formulae: v = u + a*t
24 v = a*t;//velocity at the end of other plate
25 disp('m/sec',v,'v=');
26
27
28 //end
```

Transport Phenomena in Semiconductor

Scilab code Exa 2.1.a Using Avogadro no find the numerical value of concentration of atom in Germanium

```
1 clear;
2 clc
3
4 //Example 2a
  //Using Avogadro no. find the numerical value of
      concentration of atom in Germanium
  //Given Values
9 Av = 6.02*(10^23) / Avogadro No.
10 m=72.6 //Molar mass of germanium in gm/moles
11 d=5.32//density in gm/cm^3
12
  conc = (Av/m)*d //Concentration of atom in germanium
13
14
  disp('atom/cm<sup>3</sup>',conc,'The concentration of
     germanium atom is=');
16
```

Scilab code Exa 2.1.b Resistivity of intrinsic Germanium

```
1 clear;
2 clc
4 //Example 2b
5 //To find the resistivity of intrinsic germanium at
      300K
  //Given Values
9 Av = 6.02*(10^23) / Avogadro No.
10 m=72.6 //Molar mass of germanium in gm/moles
11 d=5.32//density in gm/cm^3
12 ni=2.5*(10^13); //in cm^-3
13 n=ni;
14 p=ni;//n=magnitude of free electrons, p=magnitude of
       holes, ni=magnitude of intrinsic concentration
15 q=1.6*(10^-19);//Charge of an Electron
16 yn=3800; //in \text{ cm}^2/V-s
17 yp=1800; //in cm^2/V-s
18
19 //Required Formula
20 A=ni*q*(yn+yp); //Conductivity
21 \operatorname{disp}(\operatorname{'ohm-cm^-}-1', A, \operatorname{'Conductivity} is =');
22
23 R = 1/A // Resistivity
24 disp('ohm-cm',R,'Resistivity is =');
25
26 / End
```

Scilab code Exa 2.1.c Resistivity with given condition in germanium atoms

```
1 clear;
2 clc;
3
4 disp ('We know that n=p=ni where n is conc of free
      electron p is conc of holes and ni is conc of
      intrinsic carriers');
5 //Given data
6 // Resistivity if 1 donor atom per 10<sup>8</sup> germanium
      atoms
7 Nd=4.41*(10^14); // in atoms/cm^3
8 ni=2.5*(10^13); //in cm^3
9 yn=3800; // \text{in cm}^2/\text{V-s}
10 q=1.6*(10^-19);
11
12 \quad n = Nd;
13 p=(ni^2)/Nd;
14
  disp('holes/cm<sup>3</sup>',p,'the concentration of holes is='
      );
  if(n>p)
16
        A=n*q*yn; // Conductivity
17
       disp('ohm-cm^-1',A,'The conductivity is =');
18
19 end
20
21 R=1/A; //Resistivity
22 disp('ohm-cm',R,'The resistivity is=');
23
24
25 //End
```

Scilab code Exa 2.1.d Ratio of Conductivities

```
1 clear;
```

```
2 clc;
4 disp ('We know that n=p=ni where n is conc of free
      electron p is conc of holes and ni is conc of
      intrinsic carriers');
5 //Given data
6 //Ratio of Conductivities
7 Nd=4.41*(10^14); // in atoms/cm^3
8 ni=2.5*(10^13); //in cm^3
9 yn=3800; //in cm^2/V-s
10 q=1.6*(10^-19);
11
12 \quad n = Nd;
13 A=n*q*yn; // Conductivity
14
15 // If germanium atom were monovalent metal, ratio of
       conductivity to that of n-type semiconductor
16
17 n=4.41*(10^22); //in electrons/cm^3
18
19 disp('If germanium atom were monovalent metal');
20 A1=n*q*yn;
21 disp('ohm=cm^-1', A1, 'the coductivity of metal is=');
22
23 F = A1/A;
24 disp(F, 'The factor by which the coductivity of metal
       is higher than that of n type semiconductor is')
25
26 //End
```

Transistor Characteristic

Scilab code Exa 5.1.a To find transistor currents for npn transistor

```
1 clear;
2 clc;
3
4 //Example 1.1
5 // Caption: Program to find transistor currents for
      npn transistor.
7 // Given Values
9 // Silicon Transistor
           //Beta
10 B = 100;
           //in nA
11 Ico=20;
12 Rc=3;
13 Rb=200;
14 \text{ Vbb=5};
           //in V
15 Vcc=10; //in V
16 Vbe=0.7; //in Active region
17
18 // Applying KVL to base circuit
19
20 //Vbb+Rb*Ib+Vbe=0
```

```
21
22 Ib = (Vbb - Vbe)/Rb; //in mA
23
24 //Ico << Ib
25
26 Ic=B*Ib; //in mA
27
28 //To verify the Active region Assumption
29
30 / Vcc+Rc*Ic+Vcb+Vbe=0
31
32 Vcb=(-Rc*Ic)+Vcc-Vbe; //in V
33
34 \text{ disp}('V', Vcb, 'Vcb = ');
35
36 if (Vcb>0)
     disp('Positive value of Vcb represents reversed
37
        biased collector junction and Transistor in
        active region');
38
  end
39
40 disp('mA', Ic, 'Current in transistor(Ic) is ');
41
42 disp('mA', Ib, 'Current in transistor(Ib) is ');
43
44 //End
```

Scilab code Exa 5.1.b To find transistor currents for npn transistor after adding resistor to circuit

```
1 clear;
2 clc;
3 
4 //Example 1.2
5 //Caption : Program to find transistor currents for
```

```
npn transistor after adding resistor to circuit.
6
7 // Given Values
9 // Silicon Transistor
10 B = 100;
            //Beta
11 Ico=20;
             //in nA
12 Rc=3;
13 Ico=20;
             //in nA
14 Rb=200;
15 Re=2;
16 \text{ Vbb=5};
            //in V
17 Vcc=10; //in V
18 Vbe=0.7; //in Active region
19
20 //Ico << Ib Assuming
21
22 //Itot = Ib + Ic = Ib + B*Ib = (B+1)*Ib
23
24 // Applying KVL to base circuit
25
26 / Vbb+Rb*Ib+Vbe+Re*Itot=0
27
28 Ib = (Vbb - Vbe) / (Rb + (Re * (B+1))); // in mA
29
30 Ic=B*Ib; //in mA
31
32 //Hence Ico << Ib
33
34 //To verify the Active region Assumption
35
36 / Vcc+Rc*Ic+Vcb+Vbe=0
37
38 Vcb=(-Rc*Ic)+Vcc-Vbe-(Re*(B+1)*Ib); //in V
40 disp('V', Vcb, 'Vcb = ');
41
42 if (Vcb>0)
```

Scilab code Exa 5.2.a Check whether transistor is in saturation region or not

```
1 clear;
2 clc;
4 // Caption: Program to find transistor currents for
     npn transistor and check whether transistor is in
      saturation region or not.
6 //Given Values
8 // Silicon Transistor
9
10 Rc=3;
11 Rb=50;
12 Vbb=5;
           //in V
13 Vcc=10; //in V
14 Vce=0.2; //in V
15 Vbe=0.8; //in Active region
16 hFE=100;
17
18 //Assuming transistor in saturated region
```

```
19
  //Applying KVL to base circuit
20
21
22 / Vbb+Rb*Ib+Vbe=0
23
24 Ib=(Vbb-Vbe)/Rb; //in mA
25
  //Applying KVL to Collector circuit
26
27
  //Vcc+Rc*Ic+Vce=0
28
29
30 Ic=(Vcc-Vce)/Rc; //in mA
31
32 Ib_min=Ic/hFE;
33
34 disp('mA', Ib_min, 'Minimum Ib = ');
35
36 if(Ib>Ib_min)
37
     disp('Transistor in saturated Region');
38
  end
39
40 disp('mA', Ic, 'Current in transistor(Ic) is');
41
42 disp('mA', Ib, 'Current in transistor(Ib) is');
43
44
45 / End
```

Scilab code Exa 5.2.b Check whether transistor is in saturation region or not after adding a Emitter Transistor

```
1 clear;
2 clc;
3
4 //Caption : Program to find transistor currents for
```

```
npn transistor and check whether transistor is in
       saturation region or not after adding a Emitter
      Transistor.
5
6 //Given Values
8 // Silicon Transistor
9
                //Beta
10 Beta=100;
11 Rc=3;
12 Rb=50;
13 Re=2;
            //in V
14 Vbb=5;
15 Vcc=10; //in V
16 Vce=0.2; //in V
17 Vbe=0.8; //in Active region
18 hFE=100;
19
20 //Assuming transistor in saturated region
21
22 // Applying KVL to base circuit
23
24 //-Vbb+Rb*Ib+Vbe+Re*(Ic+Ib)=0
25
26 //Simplifing (Rb+Re)Ib+Re*Ic=Vbb-Vbe
27
28 //Applying KVL to Collector circuit
29
30 //-Vcc+Rc*Ic+Vce+Re*(Ic+Ib)=0
31
32 //Simplifing Re*Ib+(Rc+Re)Ic=Vcc-Vce
33
34
35 \quad A = [(Rb+Re) \quad Re; Re, (Rc+Re)];
36 B = [(Vbb - Vbe); (Vcc - Vce)];
37 X = A \setminus B;
38 \text{ Ib}=X(1);
39 \text{ Ic=X(2)};
```

```
40
  Ib_min=Ic/hFE;
41
42
43 disp('mA', Ib_min, 'Minimum Ib = ');
44
45
46 disp('mA', Ic, 'Current in transistor(Ic)');
47
48 disp('mA', Ib, 'Current in transistor(Ib)');
49
50 if (Ib>Ib_min)
     disp('Transistor in Saturated Region');
51
52 else
     disp ('Transistor not in Saturated Region. Hence
53
        must be operating in Active region');
54
  end
55
56 //Ico << Ib
               Assuming
57
58 / Itot = Ib + Ic = Ib + B*Ib = (B+1)*Ib
59
60 //Applying KVL to base circuit
61
62 / Vbb+Rb*Ib+Vbe+Re*Itot=0
63
64 Ib=(Vbb-Vbe)/(Rb+(Re*(Beta+1))); //in mA
65
66 Ic=Beta*Ib; //in mA
67
68 //Hence Ico << Ib
69
70
  //To verify the Active region Assumption
71
72 / Vcc+Rc*Ic+Vcb+Vbe=0
73
74 Vcb=(-Rc*Ic)+Vcc-Vbe-(Re*(Beta+1)*Ib); //in V
75
76 \operatorname{disp}('V', \operatorname{Vcb}, '\operatorname{Vcb} = ');
```

```
if(Vcb>0)
disp('Positive value of Vcb represents reversed biased collector junction and Transistor in active region');
end
disp('mA',Ic,'Current in transistor(Ic) is ');
disp('mA',Ib,'Current in transistor(Ib) is ');
disp('mA',Ib,'Current in transistor(Ib) is ');
find
```

Digital Circuits

Scilab code Exa 6.1 Output Levels for a given input in a silicon transistor

```
1 clear;
2 clc;
4 //Caption: Output Levels for a given input in a
      silicon transistor
5 // Given Data
6 R1=15; //in K
7 R2=100; //in K
8 //R1 and R2 are voltages at base which acts as
      potential divider
9 Rc=2.2;//voltage at collector in K
10 hfe=30;
11
12 / \text{For vi} = 0
13 Vb = (R1/(R1+R2))*(-12); //Voltage at base in V
14 disp('V', Vb, 'Vb=');
15 //A bias of OV is required to cut off a silicon
      emitter junction transistor given in table
16 Vo = 0; // in V
17 disp('Vo', Vo, 'Vo = ');
18
```

```
19 / \text{For vi} = 12
20 vi=12; // in V
21 //Few standard values for silicon transistor
22 Vbesat=0.8; //in V
23 Vcesat=0.2; //in V
24 //Assumption: Q is in saturation region
25 Ic = (vi-Vcesat)/Rc;//Collector Current
26 disp('mA', Ic, 'Ic=');
27 Ibmin=(Ic/hfe);//Mininmum current at the base
28 disp('mA', Ibmin, 'Ibmin=');
29 I1=(vi-Vbesat)/R1;//Current in R1
30 I2=(Vbesat-(-12))/100; // Current in R2
31 Ib = I1-I2; //Base current
32 disp('mA', Ib, 'Ib=');
33
34 if (Ib > Ibmin)
       disp('Since Ib>Ibmin, The transistor is in
35
          saturation region and drop is Vcesat');
       vo=Vcesat;
36
       disp('V', vo, 'vo=');
37
38 end
39
40 //end
```

Scilab code Exa 6.2 To verify given equation

```
1 clear;
2 clc;
3
4 //Caption: To verify given equation
5
6 disp('NOTE: We will write A with a bar on its top as a ');
7 disp('To verify');
8 disp(' A + aB = A + B');
```

```
9
10 disp('We know that B + 1 = 1 and A1 = A');
11 disp('A + aB = A(B+1) + aB = AB + A + aB =');
12 disp('(A + a)B + A = B + A');
13 disp('which is equal to RHS')
14 //end
```

Scilab code Exa 6.3.a To find wether a given circuit is positive NAND

```
1 clear;
2 clc;
4 // Caption: To find wether a given circuit is positive
      NAND
5 //Given Data
6 R=15; // in K
7 R1=15; // in K
8 R2=100; //in K
9 R3=2.2; // in K
10 V0=0; //in V
11 V1=12; //in V
12 Vcc=12; //in V
13
14 // If input is at V0=0V
15 Vb = -Vcc*(R1/(R1+R2)); //The base voltage of the
      transistor
  disp('V', Vb, 'The base voltage of transistor Vb=');
16
17
  if (Vb<0)
18
       disp('Q is cutoff and Y is at 12V');
       disp ('The result confirms the first three rows
19
          of truth table');
20
  end
21
22 //If input is at V1 = 12V
23 //Assumption: All the diodes are reversed biased and
```

```
transistor is in saturation
24 //If Q is in saturation
25 Vbe=0; //in V
26 Vp = V1*(R/(R+R1)); // voltage at point P in front of
      all diodes
27 disp(Vp, 'All diodes are reversed biased by');
28 Iq = (V1/(R+R1)-(V1/R2)); //The base current of Q
29 Ic=V1/R3; // Current in the collector junction
30 disp('mA', Ic, 'Ic=');
31 \text{ hFEmin} = Ic/Iq;
32 disp(hFEmin, 'hFEmin=');
33 disp(hFEmin, 'When hFE >');
34 disp('Under these condition the output is at ground
      and this satisfies the first three rows of truth
      table');
35
36
37 / \text{end}
```

Scilab code Exa 6.3.b To find wether with given conditions NAND gate is satisfied

```
13
14 //If input is at V0=0V
15 Vb = -Vcc*(R1/(R1+R2));//Base Current in V
16
17 // Finding thevenin equivallent fom P to ground
18 Rd = 1; // in K
19 Vd = 0.7; //in v
20 Vr = 1; //in K
21 //Thevenin Equivallent Voltage and resistance from P
       to ground
22 \ v = (Vcc*(Rd/(Rd+R)))+(Vd*(R/(R+Rd)));
23 rs = Rd*(R/(R+Rd));
24 //Open Circuit Voltage at base of the transistor
25 \text{ Vb1} = (-\text{Vcc}*((\text{R1+rs})/(\text{R1+R2+rs}))) + (\text{v*}(\text{R2}/(\text{R1+R2+rs})))
      )));
26 disp('V', Vb1, 'Vb1=');
27 if (Vb1 > Vb)
        disp('The voltage is adequate to reverse bias Q'
           );
29
   end
30
31
32 //end
```

Scilab code Exa 6.3.c Silicon Transistors and diodes are used in positive NAND

```
8 R2=100; //in K
9 R3=2.2; //in K
10 V0=0; //in V
11 V1=12; //in V
12 Vcc=12; //in V
13
14 //To find wether with given conditions NANAD gate is
        satisfied
15 //Finding thevenin equivallent from P to ground
16 Rd = 1; // in K
17 Vd = 0.7; //in v
18 Vr=1; //in K
19 v = (Vcc*(Rd/(Rd+R)))+(Vd*(R/(R+Rd)));
20 rs = Rd*(R/(R+Rd));
21
22 // If the inputs are high
23
24 Vcesat = 0.2; //in V
25 \text{ Vb2} = (-\text{Vcc}*(\text{R1}/(\text{R1}+\text{R2})) + ((\text{Vd}+\text{Vcesat})*\text{R2}/(\text{R1}+\text{R2})))
26 disp('V', Vb2, 'Vb2=');
27 disp('It cuts off Q Y=1');
28
29 // end
```

Scilab code Exa 6.4 To verify that AND OR topology is equivalent to NAND NAND system

```
bar but here we will denote as');
6 disp('X with a bar = Xb and X with two bars = Xbb');
8 //Solution
9 disp('We know that X = Xbb');
10 disp('For AND OR logic the output of AND and
     simultaneously neglecting the input to following
     OR does not change the logic');
11 disp ('We have also neglected the output of the OR
     gate and at the same time have added an INVERTER
     so that logic is once again unaffected');
12 disp ('AN OR gate neglected at each terminal is an an
      AND circuit');
13 disp('Since AND followed by an inverter is NAND');
14 disp ('Hencee the NAND NAND is equivallent to AND OR'
     );
15
16 // end
```

Scilab code Exa 6.5.a To find hFEmin

```
1 clear;
2 clc;
3
4 //Caption:To find hFEmin
5 //Given Data
6 //For transistor
7 Vbesat=0.8;//Vgamma of diode in V
8 Vy=0.5;//in V
9 Vcesat=0.2;//in V
10 R = 5;//in K
11 Rc = 2.2;//in K
12
13 //For diode
14 Vyd=0.6;//in V
```

```
15 Vdrop=0.7; //in V
16
17 //The logic levels are Vcesato=0.2V for 0 state
18 Vcesato=0.2; //in V
19 //The logic levels are Vcc=5V for 1 state
20 Vcc=5; //in V
21 disp('If atleast one input is in 0 state');
22 Vp = Vcesato + Vy; // Potential at point P
23 disp('V', Vp, 'Vp=');
24 //For diodes D1 and D2 to be conducting
25 v = 2*Vdrop;
26 disp('For diodes D1 and D2 to be conducting');
27 disp(v, 'required voltage = ');
28 //These diodes cutoff
29 \text{ Vbe} = 0;
30 \text{ if } (Vbe < Vy)
       disp('Q is OFF');
31
32
       disp('Output rises to 5V and Y = 1');
       disp('This confirms first 3 rows of NAND truth
33
          table');
34 end
35
36 //if all inputs are at V(1)=5V, we shall assume all
       input diodes OFF and D1 and D2 conduct and Q is
      in saturation
37 disp('When inputs are at 5V');
38 Vp = Vdrop + Vdrop + Vbesat;
39 disp('V', Vp, 'Vp=');
40 disp(Vcc-Vp, 'The voltage across all input diode');
41
42 //For finding hFEmin
43 I1 = (Vcc-Vp)/R;
44 	ext{ I2} = Vbesat/R;
45 \text{ Ib} = I1 - I2;
46 \text{ Ic} = (\text{Vcc-Vcesat})/\text{Rc};
47 \text{ hFEmin} = Ic/Ib;
48 disp(hFEmin, 'hFEmin=');
49
```

Scilab code Exa 6.5.b When atleast one input is at V0 in NAND gate

```
1 clear;
2 clc;
4 // Caption: When atleast one input is at V(0) in NAND
      gate
5 // Given Data
6 //For transistor
7 Vbesat=0.8; //in V
8 Vy = 0.5; //in V
9 Vcesat=0.2; //in V
10 R = 5; //in K
11 Rc = 2.2; //in K
12
13 //For diode
14 Vyd=0.6; //Vgamma in V
15 Vdrop=0.7; //in V
16
17 //The logic levels are Vcesato=0.2V for 0 state
18 Vcesato=0.2; //in V
19
20 disp('If atleast one input is in 0 state');
21 Vp = Vcesato + Vdrop; // Voltage at point P
22 disp('V', Vp, 'Vp=');
23 Vbe = Vp-Vyd; // Voltage at base emitter
24 disp('V', Vbe, 'Vbe=');
25 if (Vbe < Vy)
       disp('Q is cutoff');
26
27 end
28 if (Vbe > Vy)
29
       disp('Q is ON');
30 end
```

Scilab code Exa 6.5.c If input is high in NAND gate

```
1 clear;
2 clc;
4 // Caption: If input is high in NAND gate
5 // Given Data
6 //For transistor
7 Vbesat=0.8; //in V
8 Vy = 0.5; //in V
9 R = 5; //in K
10 Rc = 2.2; //in K
11
12 //For diode
13 Vyd=0.6; //in V
14 Vdrop=0.7; //in V
15
16 //The logic levels are Vcesato=0.2V for 0 state
17 Vcesato=0.2; //in V
18
19 Vp = Vdrop + Vdrop + Vbesat; // Voltage at point P
20 disp('V', Vp, 'Vp=');
21 disp('V', Vcc-Vp, 'Each diode is reversed biased by ')
  disp('V', Vyd, 'A diode starts to conduct when it is
      forward bias by');
23 vn = (Vcc-Vp) + Vyd; //Noise Spike which will cause
      the malfunction
24 disp('V', vn, 'A noise spike which will cause
      malfunction is');
25
26
27 //end
```

Scilab code Exa 6.5.d If input is low in NAND gate

```
1 clear;
2 clc;
3
4 //Caption: If input is low in NAND gate
5 // Given Data
6 //For transistor
7 Vbesat=0.8; //in V
8 Vy = 0.5; //in V
9 R = 5; //in K
10 Rc = 2.2; //in K
11
12 //The logic levels are Vcesato=0.2V for 0 state
13 Vcesato=0.2; //in V
14 //For diode
15
16 Vyd=0.6; //in V
17 Vdrop=0.7; //in V
18
19 Vp = Vcesato + Vdrop; // Voltage at point P
20 \quad disp('V', Vp, 'Vp=');
21 Vbe = Vy; // Voltage at base emitter will be same as
      Vgamma
22 vp = Vbe + Vyd + Vyd; //The level to which vp should
      increase
23 Vn = vp - Vp; // Noise Margin
24 disp('V', Vn, 'Noise Margin = ');
25
26 / end
```

Scilab code Exa 6.6 Calculation of FAN OUT of NAND gate

```
1 clear;
2 clc;
4 // Caption: Calculation of FAN OUT of NAND gate
5 // Given Values
6 \text{ hFE} = 30;
7 Vbe1active=0.7; //in V
8 Vd2=0.7; //in V
9 Vbe2sat=0.8; //in V
10 Vcc=5; //in V
11 R1=1.75; // in K
12 R2=2; // in K
13 R3=2.2; // in K
14 R4=5; // in K
15
16 Vp = Vbelactive + Vd2 + Vbelsat; // Voltage at point P
17 //The current in 2K resistor is Ib1
18 //In active region
19 // Ic1 = hFE * Ib1
20 / I1 = Ib1+Ic1=(1+hFE)*Ib1... Now applying KVL
      between Vcc and Vp
21 / Vcc-Vp = R1*(1+hFE)*Ib1 + 2*Ib1
22 Ib1 = (Vcc-Vp)/(R1*(1+hFE)+2);//Base current in
      transistor 1
23 disp('mA', Ib1, 'Ib1=');
24 Ic1=hFE*Ib1;//Collector Current in transistor 1
25 disp('mA', Ic1, 'Ic1=');
26 I1 = Ib1 + Ic1; // in mA
27 I2=Vbe2sat/R4; // in mA
28 Ib2 = I1-I2;//Base Current in Transistor 2
29 //The unloaded current of Q2
30 \text{ Iq2=(Vcc-0.2)/R3};
31 //For each gate which it drive ,Q2 must sink a
      standard load of
32 I = (Vcc - Vd2 - 0.2) / (R1 + R2);
33 //To Calculate the FAN OUT
34 //The maximum current is hFE*Ib2
35 / hFE*Ib2 = (I*N) + Iq2
```

```
36 N=((hFE*Ib2)-Iq2)/I;//FAN OUT
37 disp(N,'N=');
38
39 //end
```

Integrated Circuit Fabrication and Characteristic

Scilab code Exa 7.1 Diffusion of a pn junction

```
1 clear;
2 clc;
4 //caption: Diffusion of a pn junction
6 disp('At distance equal to x=xi at which N =
      concentration n of doped silicon wafers, the net
      impurity density is zero. Thus xi is the
      distance at which junction is formed');
8 //Given Data
9 = 1.6*(10^-19); // Charge of electron
10 yn=1300; // mobility of silicon
11 p = 0.5; // resistivity in ohm=cm
12 y = 2.2;
13 t=2*3600; //in sec.
14 xi = 2.7*(10^-4); // Junction Depth in cm.
15
16 n = 1/(p*yn*q); // Concentration of doped silicon
```

Scilab code Exa 7.2.a Fabrication and Characteristics

```
1 clear;
2 clc;
3
4 // Caption: Fabrication and Characteristics
5 // Given Data
6 y = 2.2; //from the figure y=2.2
7 Nob = 5*10^18//Uniform Concentration of Boron
      Profile
8
9 //y = 2.7/(2*(D*t)^0.5)
10 //2*(D*t)^0.5 = a
11 a = 2.7/y;
12 x = 2; // distance at which emitter junction is formed
       in micrometer
13 Nb = Nob*erfc(x/a);//boron Profile
14 disp('cm^-3', Nb, 'Nb=');
15 disp('The boron diffusion equation is');
16 disp(a, 5*10^18*erfc x / );
17 //At x=2 Np = Nb
18 // \operatorname{erfc} (2/(2*(D*t)^0.5)) = k
19 Nop=10^21;
```

```
20 k = Nb/Nop;

21 a = 2/2.7;

22 disp('The phosphorous diffusion equation is');

23 disp(a, '10^21*erfc x / ');

24

25

26 //end
```

Scilab code Exa 7.2.b Fabrication and Characteristics

```
1 clear;
2 clc;
3
4 // Caption: Fabrication and Characteristics
5 // Given Data
6 y = 2.2; //from the figure y=2.2
7 Nob = 5*10^18//Uniform Concentration of Boron
      Profile
9 //y = 2.7/(2*(D*t)^0.5)
10 //2*(D*t)^0.5 = a(let)
11 a = 2.7/y;
12 x = 2; // distance at which emitter junction is formed
      in micrometer
13 Nb = Nob*erfc(x/a); //boron Profile
14
15 //At x=2 Np = Nb
16 // \operatorname{erfc} (2/(2*(D*t)^0.5)) = k
17 Nop=10^21;
18 k = Nb/Nop;
19 a = 2/2.7;
20 //Time allowed for diffusion if diffusion of
      Phosphorous is conducted at 1100 degreeC
21 //From the figure D=3.8*10^-13 \text{ cm}^2/\text{sec}
22 D=3.8*10^-13//in cm^2/sec
```

```
23 t = ((a*10^-4)/2)^2*(1/D);
24 disp('sec',t,'t=');
25
26 //end
```

Chapter 8

The Transistor at Low Frequency

Scilab code Exa 8.2 transistor as a Common Emitter Amplifier

```
1 clear;
2 clc;
4 // Caption: transistor as a Common Emitter Amplifier
5 // Given Data
7 R1=10; // in K
8 Rs=1; //in K
9 hie=1.1; //in K
10 hre=2.5*(10^-4);
11 hfe=50;
12 hoe=25*(10^-3); // in K^-1
13
14 Ai = -hfe/(1+(hoe*Rl));//Current Gain or Current
      Amplification
  disp(Ai, 'Ai=');
15
16
17 Ri = hie + (hre*Rl*Ai);
18 disp('K',Ri,'Ri=');
```

```
19
20 Av=(Ai*Rl)/Ri;//Voltage Gain
21 disp(Av, 'Av=');
22
23
  Avs=(Av*Ri)/(Ri+Rs);//Overall Voltage Gain taking
      source resistance into account
  disp(Avs, 'Avs=');
24
25
  Ais=(Ai*Rs)/(Ri+Rs);//Overall current gain taking
26
      source resistance into account
  disp(Ais, 'Ais=');
27
28
29 Yo=hoe-((hfe*hre)/(hie+Rs));//Admittance
30 disp('K^-1', Yo, 'Yo=');
31
32 \text{ Zo} = 1/\text{Yo}; //\text{Impedence}
33 disp('K',Zo,'Zo=');
34
35 // end
```

Scilab code Exa 8.3 To derive output impedence of given figure in open circuit voltage short circuit current theorem

```
1 clear;
2 clc;
3
4 //Caption:To derive output impedence of given figure
        in open circuit-voltage short-circuit-current
        theorem
5 //Solution
6
7 //Yo = I/Vo
8 //When current in a short circuit placed across the
        output terminals and V is the open circuit
        voltage
```

Scilab code Exa 8.4 Parameters of a Common Emitter Amplifier

```
1 clear;
2 clc;
3
4 // Caption: Parameters of a Common Emitter Amplifier
5 // Given Data
6 hie=1.1; //in K
7 hre=2.5*(10^-4);
8 \text{ hfe} = 50;
9 hoe=25*(10^-3); //in K^-1
10 r = 200; //in K
11 Rs=10; // in K
12 Ri=1; // in K
13 R1=10; // in K
14
15 rl=(r*Rs)/(r+Rs); //in K
16
17 Ai = -hfe/(1+(hoe*rl)); //Current Gain
18 disp(Ai, 'Ai = ');
19
20 Ri = hie + (hre*Ai*rl);
21 disp('K',Ri,'Ri=');
```

```
22
23 Av=(Ai*rl)/Ri;//Voltage Gain
24 \operatorname{disp}(\operatorname{Av}, \operatorname{Av} = ');
25
26 k = r/(1-Av);
27 ri = (Ri*k)/(Ri+k);
28 \operatorname{disp}('K', \operatorname{ri}, '\operatorname{ri} = ');
29
30 Avs = Av*(ri/(ri+Rs)); // Overall voltage Gain taking
        Source resistance into account
31 disp(Avs, 'Avs = ');
32
33 ai = Avs*((ri+Rs)/R1);
34 disp(ai, 'ai = -I2/I1');
35
36 / End
```

Scilab code Exa 8.5 CE CC configuration

```
1 clear;
2 clc;
3
4 // Caption : CE-CC configuration
5 // Given Data
6 hie = 2;//in K
7 \text{ hfe} = 50;
8 \text{ hre} = 6*(10^-4);
9 hoe = 25*(10^-3); //in K^-1
10 hic=2; //in K
11 hfc=-51;
12 hrc=1;
13 hoc=25*(10^-3); ///in K^-1
14 Re2=5; // in K
15 Rs=1; // in K
16 Rc1=5; // in K
```

```
17
18 //The Second Stage
19
20 R1 = Re2;
21 Ai2 = -hfc/(1+(hoc*Re2));//Current Gain in @nd
       Transistor
22 disp(Ai2, 'Ai2=');
23
24 \text{ Ri2} = \text{hic} + (\text{hrc}*\text{Ai2}*\text{Re2});
25 disp('K',Ri2,'Ri2=');
26
27 Av2 = (Ai2*Re2)/Ri2;//Voltage Gain in 2nd Transistor
28 disp(Av2, 'Av2=');
29
30 //The First Stage
31
32 \text{ Rl1} = (\text{Rc1}*\text{Ri2})/(\text{Rc1}+\text{Ri2});
33 disp('K',Rl1,'Rl1=');
34
35 Ai1 = -hfe/(1+(hoe*Rl1)); //Current Gain in 1st
       Transistor
36 disp(Ai1, 'Ai1=');
37
38 \text{ Ri1} = \text{hie} + (\text{hre}*\text{Ai1}*\text{Rl1});
39 disp('K', Ri1, 'Ri1=');
40
41 Av1 = (Ai1*Rl1)/Ri1;//Voltage Gain in 1st Transistor
42 disp(Av1, 'Av1=');
43
44 disp('The output Admittance of Transistor');
45 Yo1 = hoe - ((hfe*hre)/(hie+Rs));
46 disp('K^-1', Yo1, 'Yo1=');
47
48 \text{ Ro1} = 1/\text{Yo1};
49
50 //Output Impedence of First Stage
51 disp('Output Impedence of First Stage');
52 \text{ ro1} = (Ro1*Rc1)/(Ro1+Rc1);
```

```
53 disp('K',ro1,'ro1=');
54
55 \text{ rs2} = \text{ro1};
56
57 \text{ Yo2} = \text{hoc} - ((\text{hfc*hrc})/(\text{hic+rs2}));
58 disp('K^-1', Yo2, 'Yo2=');
59
60 A1 = (Ai2*Ai2*Rc1)/(Ri2+Rc1); //Overall Current gain
61 disp(A1, 'A1=');
62
63 Av = Av2*Av1; // Overall Voltage Gain
64 disp(Av, 'Voltage Gain = Av=');
65
  Avs = (Av*Ri1)/(Ri1+Rs);//Overall Voltage gain with
      Source Impedence
  disp(Avs, 'Overall Voltage gain taking Source
      Impedence into account = Avs = ');
68
69
70 / End
```

Scilab code Exa 8.6 Parameters of CE CC configuration

```
1 clear;
2 clc;
3
4 //Caption: Parameters of CE-CC configuration
5 //Given Data
6
7 hie = 2; //in K
8 hfe = 50;
9 hre = 6*(10^-4);
10 hoe = 25*(10^-3); //in K^-1
11 hic=2; //in K
12 hfc=-51;
```

```
13 hrc=1;
14 hoc=25*(10^-3); ///in K^-1
15 Re2=5; // in K
16 Rs=5; //in K
17 Rc1=5; // in K
18
19 //For the CC output Stage
20 disp('For the CC output Stage');
21 R1 = Re2;
22 Ai2 = 1+ hfe; // Current gain in 2nd Transistor
23 disp(Ai2, 'Ai2=');
24 \text{ Ri2} = \text{hie} + ((1+\text{hfe})*\text{Rl});
25 disp('K',Ri2,'Ri2=');
26 Av2=1-(hie/Ri2);//voltage gain in 2nd transistor
27 \text{ disp}(Av2, 'Av2=');
28
29 //For the CE input Stage
30 disp('For the CE input Stage');
31
32 Ai1=-hfe; // Current gain in 1st transistor
33 Ri1 = hie;
34 disp(Ai1, 'Ai1=');
35 Rl1=(Rc1*Ri2)/(Rc1+Ri2);
36 disp('K',Rl1,'Rl1=');
37 Av1=(Ai1*Rl1)/Ri1;//Voltage gain in 1st transistor
38 disp(Av1, 'Av1=');
39 ro1=Rc1;
40 \text{ Ro2} = (hie+Rs)/(1+hfe);
41 ro2=(Ro2*R1)/(Ro2+R1);
42 disp('K',ro2, 'Effective Source Impedence');
43
44 Av = Av1*Av2; // Overall voltage gain
45 disp(Av, 'Overall Voltage Gain=');
46 Ai = Ai1*Ai2*(Rc1/(Rc1+Ri2));//Overall current Gain
47 disp(Ai, 'Overall Current Gain=');
48
49 / End
```

Chapter 9

Transistor Biasing and Thermal Stabilization

Scilab code Exa 9.1 To find Q point

```
1 clear;
2 clc;
4 //Caption:To find Q point
5 // Given Data
6 Vcc = 22.5 / in V
7 Rc=5.6; //in K
8 Re=1; //in K
9 R2=10; // in K
10 R1=90; // in K
11 B=55; //beta
12
13
14 V=(R2*Vcc)/(R2+R1);//Thevenin Equivallent Voltage
15 Rb=(R2*R1)/(R2+R1);//Thevenin Equivallent Resistance
16 disp('Volts', V, 'The equivallent Vbb =');
17 disp('ohm', Rb, 'The equivallent Rb is');
18
19 //For base current large compared to reverse
```

```
saturation current ie Ib>>Ico it follows that Ic=
      B*Ib
20
21 //Applying KVL to the base circuit
22 / 0.65 - 2.25 + Ic + 10 * Ib = 0
23 disp('As B=55 we have Ic=55*Ib');
24
               -1.60 + Ic + (10/55) * Ic = 0
25 //We have
26 \text{ Ic}=1.60/(65/55);
27 \text{ Ib=Ic/55};
28 disp('milli amp',Ic,'Ic=');
29 disp('micro amp', Ib, 'Ib=');
30
31 //Applying KVL to the collector circuit yields
32 // -22.5 + 6.6 * Ic + Ib + Vce
33
34 \text{ Vce} = 22.5 - (6.6 * 1.36) - 0.025;
35 disp('Volts', Vce, 'Vce=');
36
37 / \text{end}
```

Scilab code Exa 9.2 To find resistances in 2N335 transistor

```
1 clear;
2 clc;
3
4 //Caption:To find resistances in 2N335 transistor
5 //Given Data
6 Rc=4; //in K
7 Vcc=20; //in V
8 Vce=10; //in V
9 Ic=2; //in mA
10 //Ic varies from 1.75 to 2.25 and B(beta) varies from 36 to 90
11
```

```
12 Re = (Vcc-Vce)/Ic - Rc;
13
14 //S=delta Ic/delta B
15 Ic2=2.25; //in mA
16 Ic1=1.75; // in mA
17 B2=90;
18 B1=36;
19 S=(Ic2-Ic1)/(B2-B1);
20 S2=(S*36*(1+90))/1.75;
21 disp(S2, 'S2=', 'K', Re, 'Re=', 'B2=90');
22
23 //S2=(1+B)*(1+(Rb/Re))/(1+B+(Rb/Re))
24 Rb=(S2-1)*(1+B2)*Re/(1+B2-S2);
25 disp('K', Rb, 'Rb=');
26
27 Vbe=0.65; //in V
28 disp('V', Vbe, 'We know that Vbe = ');
29
30 V = Vbe + ((Rb+Re*(1+B1))*Ic1/B1);
31 disp('Volts', V, 'V = ');
32
33 R1=Rb*Vcc/V;
34 R2 = R1 * V / (Vcc - V);
35 disp('K',R1,'R1=');
36 disp('K',R2,'R2=');
37
38 // end
```

Scilab code Exa 9.3.a Variation of Ic in given Transistor

```
1 clear;
2 clc;
3
4 //Caption: Variation of Ic in given Transistor
5 //Given Data at 25 degree C
```

```
6 Re=4.7; //in K
7 Rb=7.75; //in K
8 B1=55; // beta at 25 degree C
9 Ic1=1.5; //in mA
10 Ico1=1;
11 Vbe1=0.6; //in V
12
13 // Part a
14
15 Ico2=33000; //in nA
16 Vbe2=0.225; //in V
17 M1=1/(1+(Rb/(Re*B1))); //Stability Factor
18 disp(M1, 'Stabitity Factor at 25 deree C=');
19 B2=100; //at 175 degree C
20 M2=1/(1+(Rb/(Re*B2))); //Stability Factor
21 disp(M2, 'Stabitity Factor at 175 degree C=');
22
23 if (M2>M1)
24
       M1 = 1;
25
       M2 = 1;
26 \text{ end}
27
28 //Let k = (delta Ic)/(Ic1)
29 k=(1+(Rb/Re))*(M1*(Ico2-Ico1)*(10^-9)/Ic1*(10^-3))-(
      M1*(Vbe2-Vbe1)/(Ic1*Re))+(1+(Rb/Re))*(M2*(B2-B1)
      /(B2*B1));
30 deltaIc=k*Ic1;
31 disp('mA', deltaIc, 'Change in Collector Current at
      175  degree C is =');
32
   //Given Data at -65degree C
34
    Ico2=1.95*(10^-3);
35
    B2 = 25;
36
    Vbe2=0.78;
37
    M2=1/(1+(Rb/(Re*B2))); //Stability Factor
38
39
    disp(M2, 'Stabitity Factor at -65 degree C=');
40
```

Scilab code Exa 9.3.b Variation of Ic in given Transistor

```
1 clear;
2 clc;
3
4 // Caption: Variation of Ic in given Transistor
5 //Given Data at 25 degree C
6 Re=4.7; // in K
7 Rb=7.75; //in K
8 B1=55; // beta at 25 degree C
9 Ic1=1.5; //in mA
10 Ico1=1;
11 Vbe1=0.6; //in V
12
13 // Part b
14
15 Ico2=33000; //in nA
16 Vbe2=0.225; //in V
17 M1=1/(1+(Rb/(Re*B1))); //Stability Factor
18 // Given Data at -65 degree C
19
    Ico2=1.95*(10^-3);
20
    B2 = 25;
21
    Vbe2=0.78;
22
```

```
23
    M2=1/(1+(Rb/(Re*B2)));//Stability Factor
24
25 //Let k = (delta Ic)/(Ic1)
26 k = (1 + (Rb/Re)) * (M1 * (Ico2 - Ico1) * (10^-9) / Ic1 * (10^-3)) - (
      M1*(Vbe2-Vbe1)/(Ic1*Re))+(1+(Rb/Re))*(M2*(B2-B1))
      /(B2*B1));
27 deltaIc=k*Ic1;
28
29
30 //Given Data
31 Ico2=32; //in nA
32 Vbe2=0.10; //in V
33 M1=1/(1+(Rb/(Re*B1))); //Stability Factor
34 disp(M1, 'Stabitity Factor at 25 deree C=');
35 B2=90; //at 175 degree C
36 M2=1/(1+(Rb/(Re*B2))); //Stability Factor
37 disp(M2, 'Stabitity Factor at 75 degree C=');
38
39 if (M2>M1)
40
       M1=1;
41
       M2 = 1;
42 end
43
44 //Let k = (delta Ic)/(Ic1)
45 \text{ k} = (1+(Rb/Re))*(M1*(Ico2-Ico1)*(10^-9)/Ic1*(10^-3))-(
      M1*(Vbe2-Vbe1)/(Ic1*Re))+(1+(Rb/Re))*(M2*(B2-B1)
      /(B2*B1));
46 deltaIc=k*Ic1;
47 disp('mA',deltalc,'Change in Collector Current at 75
      degree C is =');
48
49 //Given Data at -65 degree C
    Ico2=1.95*(10^-3);
50
51
    B2 = 20;
52
    Vbe2=0.38;
53
    M2=1/(1+(Rb/(Re*B2))); // Stability Factor
54
    disp(M2, 'Stabitity Factor at −65 degree C=');
55
```

Scilab code Exa 9.4 To design a self bias circuit

```
1 clear;
2 clc;
3
4 //Caption: To design a self bias circuit
6 //Given Data at 25 degree C
7 B1=150; // beta
8 Ico1=50; //in nA
10 //Given Data at 65 degree C
11 B2=1200; // beta
12 Ico2=3; //in micro A
13
14 Vbe=0.65; // in mV
15 Vcc=20; //in V
16 M = 1;
17 // Assumption: Each factor Ico, B, and Vbe cuses the
      same percentge change (5%)
18
19 / \text{Let Rb/Re=k}
20 / (1+k)*((1200-150)/(1200*150))=0.05
21
```

```
22 k = ((0.05)*((1200*150)/(1200-150)))-1;
23 disp(k, 'Rb/Re=');
24 //Let us check our assumption
25
26 \text{ if}(M>(1/(1+(k/B1))))
27
        M=1;
28 end
29
30 //(1+(Rb/Re))*((Ico2-Ico1)/Ic1)=0.05
                                               Since Ico2>>
      Ico1, we consider only Ico2
31
32 \text{ Ic1} = ((1+k)*\text{Ico2})/(0.05*1000);
33 disp('mA', Ic1, 'Ic1=');
34
35 //Vbe changes 2.5mV/degree
36 \text{ DVbe} = 2.5*40;
37 //Total increment
38 \text{ dVbe} = 2 * DVbe * (10^-3);
39
40 //Let l = (Ic1 *Re)
41 l = dVbe/0.05;
42
43 Re=1/Ic1;
44 disp(Re, 'Re=');
45 \text{ Rb=k*Re};
46 disp(Rb, 'Rb=');
47
48 B=(B1+B2)/2; //beta
49 V = ((Ic1/B)*Rb)+(Vbe)+(((Ic1/B)+Ic1)*Re);
50 disp('Volts', V, 'V=');
51 R1 = (Rb * Vcc) / V;
52 R2 = (R1 * V) / (Vcc - V);
53
54 disp('ohm', R1, 'R1=');
55 disp('ohm', R2, 'R2=');
56
57 //end
```

Scilab code Exa 9.5 Value of theta for Ge Transistor

```
1 clear;
2 clc;
3
4 //Caption: Value of theta for Ge Transistor
6 //Given Data
7 Vcc=30; //in V
8 Rc=2; //in K
9 Re=4.7; // in K
10 Ic=1.5; //in mA
11
12 //We know that dPc/dIc = Vcc - (2*Ic*(Rc+Re))
13 // Let D=dPc/dIc
14
15 D = Vcc - (2*Ic*(Re+Rc));
16 disp('Ic increases by 0.131mA over a temprature
       range of 35 to 75 degree C');
17 \operatorname{disp}('\operatorname{theta} < (\operatorname{A}=(\operatorname{dPc}/\operatorname{dIc}) * (\operatorname{dIc}/\operatorname{dTc}))');
18 A=D*((0.131*(10^-3))/(75-25));
19
20 \operatorname{disp}('\operatorname{degreeC/W'},1/A,'\operatorname{theta}<');
21 disp('The upper bound on theta is so high that
       transistor would not violate it and therefore
       circuit will be safe from thermal runaway');
22
23 / End
```

Scilab code Exa 9.6.a To find parameters of power amplifier using pnp gemanium transistor

```
1 clear;
2 clc;
4 // Caption: To find parameters of power amplifier
      using pnp gemanium transistor
6 //Given Data
7 B=100; // beta
8 Ico=-5; //in mA
9 Ic=-1; // in mA
10 Vcc = 40;
11 Re=5; // in ohm
12 Rc=10; //in ohm
13
14 //Ic = BIb + (1+B)*Ico
15 //Ic=B(Ib+Ico)
16 Ib=-(Ic/B)+Ico;
17 disp('mA', Ib, 'Ib=');
18
19 // Neglecting Vbe
20 Rb = (5 - Vcc) / (Ib * 0.001);
21 disp('ohm', Rb, 'Rb=');
22
23 Vce=Vcc-15;
24 \quad if(Vce>(Vcc/2))
        S=(1+B)*(1+(Rb/Re))/(1+B+(Rb/Re));
25
26
        disp(S, 'Stability Factor is=');
27 end
28
29 A=-(Vcc+(2*Ic*(Re+Rc)))*(S)*(0.007*Ico*0.01);
30
31 \operatorname{disp}('\operatorname{degreeC/W'},1/A,'\operatorname{theta='});
32
33 //end
```

Scilab code Exa 9.6.b To find parameters of power amplifier using pnp gemanium transistor

```
1 clear;
2 clc;
4 //Caption: To find parameters of power amplifier
      using pnp gemanium transistor
6 //Given Data
7 B=100; //beta
8 Ico=-5; //in mA
9 Ic=-1; // in mA
10 Vcc = 40;
11 Re=5; //in ohm
12 Rc=10; //in ohm
13
14 //Ic = BIb + (1+B)*Ico
15 //Ic=B(Ib+Ico)
16 Ib=-(Ic/B)+Ico;
17
18 // Neglecting Vbe
19 Rb = (5 - Vcc) / (Ib * 0.001);
20
21 Vce=Vcc-15;
22 if (Vce > (Vcc/2))
       S=(1+B)*(1+(Rb/Re))/(1+B+(Rb/Re));
23
       disp(S, 'Stability Factor is=');
24
25
  end
26
27 A=-(Vcc+(2*Ic*(Re+Rc)))*(S)*(0.007*Ico*0.01);
28
29 disp('degreeC/W',1/A,'theta=');
30
31 // end
```

Chapter 10

Field Effect Transistor

Scilab code Exa 10.1.a Pinch off V and channel half width of silicon FET

```
1 clear;
2 clc;
4 //Caption: Pinch off V and channel half width of
      silicon FET
5
6 //Given Values
7 a=3*(10^-4); //in cm
8 Nd=10^15; //in electrons/cm^3
9 q=1.6*(10^-19)/in C
10 eo=8.85*(10^-12); // Permittivity of free space
11 e=12*eo; // Relative Permittivity
12
13 Vp = (q*Nd*a*a*10^6*10^-4)/(2*e); //in V
14 //a is in cm so 10^-4 is multiplied and Nd is in
      electrons/cm<sup>3</sup> so 10<sup>6</sup> is multiplied
15 disp('V', Vp, 'Pinch off Voltage =');
16
17 //end
```

Scilab code Exa 10.1.b Pinch off V and channel half width of silicon FET

```
1 clear;
2 clc;
3
4 //Caption: Pinch off V and channel half width of
      silicon FET
5
6 //Given Values
7 a=3*(10^-4); //in m
8 Nd=10^15; //in electrons/m<sup>3</sup>
9 q=1.6*(10^-19)/in C
10 eo=8.85*(10^-12);//Permittivity of free space
11 e=12*eo; // Relative Permittivity
12
13 Vp = (q*Nd*a*a*10^6*10^-4)/(2*e); //in V
14 //a is in cm so 10^-4 is multiplied and Nd is in
      electrons/cm<sup>3</sup> so 10<sup>6</sup> is multiplied
15 Vgs = Vp/2;
16
17 b=a*(1-((Vgs/Vp)^(0.5)));//in cm
18
19 disp('cm',b,'Channel Half Width = ');
20
21 //end
```

Scilab code Exa 10.2.a Amplifier using n channel FET

```
1 clear;
2 clc;
3
4 //Caption:amplifier using n channel FET
```

```
5
6 //Given Data
7
8 Vp=-2;//in V
9 Idss=1.65;//in mA
10 //it is desired to bias the circut at Id=0.8mA
11 Ids=0.8;//in mA
12 Vdd=24;//in V
13 //Assumption: rd>Rd
14
15 Vgs=Vp*(1-(Ids/Idss)^0.5);//in V
16 disp('V', Vgs, 'Vgs=');
17
18
19 //end
```

Scilab code Exa 10.2.b Amplifier using n channel FET

```
clear;
clc;

//Caption:amplifier using n channel FET

//Given Data

Vp=-2;//in V

Idss=1.65;//in mA

//it is desired to bias the circut at Id=0.8mA

Ids=0.8;//in mA

Vdd=24;//in V

//Assumption: rd>Rd

Vgs=Vp*(1-(Ids/Idss)^0.5);//in V

gmo=-(2*Idss/Vp);
```

```
18 disp('mA/V',gmo,'gmo=');
19 gm=gmo*(1-(Vgs/Vp));
20 disp('mA/V',gm,'gm=');
21
22 //end
```

Scilab code Exa 10.2.c Amplifier using n channel FET

```
1 clear;
2 clc;
4 // Caption: amplifier using n channel FET
6 // Given Data
8 Vp = -2; //in V
9 Idss=1.65; // in mA
10 //it is desired to bias the circut at Id=0.8mA
11 Ids=0.8; //in mA
12 Vdd=24; //in V
13 //Assumption: rd>Rd
14
15 Vgs=Vp*(1-(Ids/Idss)^0.5);//in V
16
17 gmo = -(2*Idss/Vp);
18 gm=gmo*(1-(Vgs/Vp));
19
20 Rs=-(Vgs/Ids); //in ohm
21 disp('K', Rs, 'Rs=');
22
23 //end
```

Scilab code Exa 10.2.d Amplifier using n channel FET

```
1 clear;
2 clc;
4 //Caption: amplifier using n channel FET
6 // Given Data
8 Vp=-2;//in V
9 Idss=1.65; // in mA
10 //it is desired to bias the circut at Id = 0.8mA
11 Ids=0.8; // in mA
12 Vdd=24; //in V
13 // Assumption: rd>Rd
14
15 Vgs=Vp*(1-(Ids/Idss)^0.5);//in V
16
17 gmo = -(2*Idss/Vp);
18 gm = gmo * (1 - (Vgs/Vp));
19
20 Rs=-(Vgs/Ids); //in ohm
21
22 disp('20dB corresponds to voltage gain of i0');
23 Av=10;
24 Rd=Av/gm; //in ohm
25 disp('ohm', Rd, 'Rd=');
26
27 //end
```

Scilab code Exa 10.3.a To find the parameters of a FET 2N3684

```
1 clear;
2 clc;
3
4 //Caption: To find the parameters of a FET 2N3684
```

```
6 //Given Values
7 Vpmin=-2;//in V
8 Vpmax=-5;//in V
9 Idssmin=1.6; //in mA
10 Idssmax=7.05; //in mA
11 Idmin=0.8; //in mA
12 Ia=Idmin;
13 Idmax=1.2; //in mA
14 Ib=Idmax;
15 Vdd=24; //in V
16 Vgs1=0; //in V
17 Id1=0.9; // in mA
18 Vgs2=-4; //in V
19 Id2=1.1; //in mA
20 //Slope determines Rs
21 Rs=(Vgs1-Vgs2)/(Id2-Id1);
22 disp('ohm', Rs, 'Rs=');
23 \text{ Vgg=Id1*Rs};
24 disp('V', Vgg, 'Vgg=');
25
26 //end
```

Scilab code Exa 10.3.b To find the range of possible values of Id in FET 2N3684 from the graph

```
1 clear;
2 clc;
3
4 //Caption:To find the range of possible values of Id
    in FET 2N3684 from the graph
5
6 //In the figure given The line of Rs=3.3K cuts Vp =
    -2V at Id = 0.4 mA
7 Idmin = 0.4; //in mA
8 disp('mA', Idmin, 'Idmin=');
```

Scilab code Exa 10.4 Voltage Gain of MOSFET as a single stage and then as first transistor

```
1 clear;
2 clc;
3
4 // Caption: Voltage Gain of MOSFET as a single stage
      and then as first transistor
6 //Given Data
7 Rd=100; // in K
8 f=20000; //frequency in Hertz
9 //MOSFET parameters
10 gm=1.6; // \text{in } \text{mA/V}
11 rd=44; //in k
12 Cgs = 3*(10^-12); //in F
13 Cds=1*(10^-12); //in F
14 Cgd=2.8*(10^-12); //in F
15 m = gm * rd; //mew
16
17 //Required Formulae
18 Ygs=2*%pi*f*Cgs*%i;//in mho
19 Yds=2*%pi*f*Cds*%i;//in mho
20 Ygd=2*%pi*f*Cgd*%i; //in mho
21 gd=1/rd; //in mho
22 Yd=1/Rd; //in mho
23 gm=1.6*(10^-3);//in mho
```

```
24 disp('Gain of one stage amplifier');
25 \text{ Av} = (-\text{gm} + \text{Ygd}) / (\text{gd} + \text{Yd} + \text{Yds} + \text{Ygd}); // \text{Voltage Gain}
26 disp(Av, 'Av=');
27
28 disp('Gain after nelecting the interelectrode
      capacitance');
29 Av=-(m*Rd)/(Rd+rd); // Voltage Gain
30 \text{ disp}(Av, 'Av=');
31
32 //Let k = gm*Rd
33 k = -Av;
34 Ci = (Cgs*(10^12)) + ((1+k)*Cgd*(10^12));
35 disp('Value of Input Impedence Capacitance');
36 \text{ disp}('pF',Ci,'Ci=');
37
38 //Now considering a two stage amplifier consisting
      of an FET operating
39 //New input Impedence taking into account various
      factors for present codition
40 Ci=200*(10^-12);
41 disp('Now considering a two stage amplifier
      consisting of an FET operating');
42 Yl = (0.001/Rd) + (2*\%pi*f*Ci*\%i);
43 disp(Y1, 'Load Admittance =');
44
45 gd=gd*0.001;
46 disp('Gain');
47 Av=-(gm)/(gd+Y1); // Voltage Gain
48 disp(Av, 'Av=');
49
50 //end
```

Chapter 12

MultiStage Amplifiers

Scilab code Exa 12.1.a Minimum value of coupling capacitance for a given FET

```
1 clear;
2 clc;
4 // Caption: Minimum value of coupling capacitance for
      a given FET
5 //Given Value
6 Ry=1; //in K
7 Rg=1; //in M
8 Ri=1; //in K
9 h0E=1/40; //in K^-1
10
11 // fL = 1/(2*\%pi*(ro+ri)*Cb) <= 10
12 // Since ri=1M, ro < Ry=1K, then ro+ri=1M
13
14 Cb=1/(2*\%pi*1*10);
15 disp(Cb, 'Minimum Value of coupling Capacitance for
      given FET=');
16
17 / \text{end}
```

Scilab code Exa 12.1.b Minimum value of coupling capacitance for a given FET

```
1 clear;
2 clc;
3
4 // Caption: Minimum value of coupling capacitance for
      a given FET
5 //Given Value
6 Ry=1; //in K
7 Rg=1; //in M
8 Ri=1; //in K
9 h0E=1/40; //in K^-1
10
  // fL = 1/(2*\%pi*(ro+ri)*Cb) <=10
12
  //Ro>1/hOE=40K ro=Rc=1K. Rb>Ri=1K then ri=1K
13
14
15 ro=1000; //in ohm
16 ri=1000; //in ohm
17
18 Cb=1/(2*\%pi*10*(ro+ri));
19 disp('pF',Cb*(10^6), 'Coupling Capacitance for given
      transistor = ');
20
21 / end
```

Chapter 13

Feedback Amplifier

Scilab code Exa 13.1 parameters of a Second collector to first emmitter feedback amplifier

```
1 clear;
2 clc;
4 // Caption: parameters of a Second collector to
      first emmitter feedback ampkifier
5 // Given Data
6 Rs=0; //in V
7 hfe=50; //in K
8 hie=1.1; // in K
9 hre=0; // in K
10 hoe=0; //in K
11
12 disp ('We first calculate the effective load Rl1 at
      the first calculator');
13 r1=10; // in K
14 r2=47; //in K
15 r3=33; //in K
16 \text{ r4=1+0.1; } // \text{in } K
17
18 Rl1=(r1*r2*r3*r4)/((r1*r2*r3)+(r1*r2*r4)+(r1*r3*r4)
```

```
+(r2*r3*r4));
19 disp('K',Rl1,'Rl1=');
20
21 disp('Similarly for 2nd Transistor');
22 R1=0.1; //in K
23 R2=4.7; // in K
24 Rc1 = R1 + R2;
25 Rc2=4.7; //in K
26
27 R12=(Rc1*Rc2)/(Rc1+Rc2);
28 disp('K',R12,'Rl2=');
29
30 Re=(R1*R2)/(R1+R2);
31
32 disp('Voltage Gain of Transistor Q1');
33 Av1 = -(hfe*Rl1)/(hie+((1+hfe)*Re));
34 disp(Av1, 'Av1=');
35
36 disp('Voltage Gain of Transistor Q2');
37 \text{ Av2=-(hfe*R12)/hie};
38 disp(Av2, 'Av2=');
39
40 disp ('Voltage Gain of two transistors in cascade
      without feedback');
41 Av = Av1 * Av2;
42 disp(Av, 'Av=');
43
44 B=R1/(R1+R2);//beta which is feedback
45 D=1+(B*Av);
46
47 Avf = Av/D;
48 disp(Avf, 'Avf=');
49
50 disp('Input resistance without external feedback');
51 Ri=hie+(1+hfe)*Re;
52 disp('K',Ri,'Ri=');
53
54 Rif = Ri * D;
```

```
55 disp('K',Rif,'Rif=');
56
57 Ro=R12;
58 Rof=Ro/D;
59 disp('K',Rof,'Rof=');
60
61 //end
```

Scilab code Exa 13.2.a To find parameters of Current series Feedback Amplifier

```
1 clear;
2 clc;
 3
 4 // Caption: To find parameters of Current series
       Fwwdback Amplifier
 5 // Given Data
 6 Gmf = -1; // Transconductance in mA/V
7 D=50; // Desensivity
8 Avf = -4; // Voltage Gain
9 Rs=1; //in K
10 hfe=150;
11 Vt = 0.026; //in V
12
13 Gm = Gmf *D;
14 \operatorname{disp}(\mathrm{'mA/V'}, \operatorname{Gm}, \mathrm{'Gm='});
15
16 / B = -Re, D = 1 + B*Gm = 1 - B*Gm
17 Re=(1-D)/Gm; //in K
18 \operatorname{disp}('K', \operatorname{Re},'\operatorname{Re}');
19
20 // end
```

Scilab code Exa 13.2.b To find parameters of Current series Feedback Amplifier

```
1 clear;
2 clc;
4 // Caption: Gain of second emitter to first
      basefeedback pair
5 // Given Data
6 Rc1=3; //in K
7 Rc2=0.5; // in K
8 Re=0.05; //in K
9 Rs=1.2; //in K
10 hfe=50;
11 hie=1.1; // in K
12 \text{ hre=0};
13 hoe=0;
14
15 R=Rs;
16
17 //Ai = -Ic2/Is = -(Ic2/Ib2) * (Ib2/Ic1) * (Ic1/Ib1) * (Ib1/Is)
18 // -Ic2/Ib2 = -50
19 // Ic1/Ib1 = hfe
20 / \text{Let Ib} 2 / \text{Ic} 1 = k
21 Ri2= hie + ((1+hfe)*(Re*R/(Re+R)));
22 k = -Rc1/(Rc1+Ri2);
23
24 r= Rs*(Rs+Re)/(Rs+R+Re);
25 / \text{Let Ib1/Is} = 1
26 l=r/(r+hie);
27
28 Ai = (-hfe)*(k)*(hfe)*(1);
29
30 B=Re/(Re+R); //beta
31 D=1+(B*Ai);
32
33 Aif=Ai/D;
34
```

```
35 Avf=(Aif*Rc2)/Rs;
36
37 //To find Rif
38
39 Ri=(r*hie)/(r+hie);
40 Rif=Ri/D;
41 disp('ohm', Rif*1000, 'Rif=');
42
43 //End
```

Scilab code Exa 13.2.c To find parameters of Current series Feedback Amplifier

```
1 clear;
2 clc;
3
  //Caption:To find parameters of Current seris
      Fwwdback Amplifier
5 // Given Data
6 Gmf = -1; // Transconductance in mA/V
7 D=50; // Desensivity
8 Avf = -4; // Voltage Gain
9 Rs=1; //in K
10 hfe=150;
  Vt = 0.026; //in V
11
12
13
  Gm = Gmf *D;
14
15 / B = -Re, D = 1 + B*Gm = 1 - B*Gm
16 Re=(1-D)/Gm; //in K
17
18 Rl=Avf/Gmf; //in K
19
20 // \text{Gm} = -hfe/(Rs+hie+Re)
21 hie= -(hfe/Gm)-Rs-Re;
```

```
22 Ri = Rs + hie +Re;
23 Rif = Ri*D
24 disp('K',Rif,'Rif=');
25
26
27 //end
```

Scilab code Exa 13.2.d To find parameters of Current seris Feedback Amplifier

```
1 clear;
2 clc;
 3
4 // Caption: To find parameters of Current seris
       Feedback Amplifier
   //Given Data
6 Gmf=-1; // Transconductance in mA/V
7 D=50; // Desensivity
8 Avf = -4; // Voltage Gain
9 Rs=1; //in K
10 hfe=150;
11 Vt=0.026; //in V
12
13 Gm = Gmf *D;
14
15 / B = -Re, D = 1 + B*Gm = 1 - B*Gm
16 Re=(1-D)/Gm; //in K
17
18 Rl=Avf/Gmf; //in K
19
20 // \text{Gm} = -hfe/(Rs+hie+Re)
21 hie= -(hfe/Gm)-Rs-Re;
22 \text{ Ri} = \text{Rs} + \text{hie} + \text{Re};
23 \text{ Rif} = \text{Ri}*D
24
```

```
25  Ic=(hfe*Vt)/hie;
26  disp('mA',Ic,'Quiscent Collector Current = ');
27  28  //end
```

Scilab code Exa 13.3.a Gain of second emitter to first basefeedback pair

```
1 clear;
2 clc;
4 // Caption: Gain of second emitter to first
      basefeedback pair
5 // Given Data
6 Rc1=3; //in K
7 Rc2=0.5; //in K
8 Re=0.05; //in K
9 Rs=1.2; // in K
10 hfe=50;
11 hie=1.1; // in K
12 \text{ hre=0};
13 hoe=0;
14
15 R=Rs;
16
17 //Ai = -Ic2/Is = -(Ic2/Ib2) * (Ib2/Ic1) * (Ic1/Ib1) * (Ib1/Is)
18 // -Ic2/Ib2 = -50
19 // Ic1/Ib1 = hfe
20 / \text{Let Ib} 2 / \text{Ic} 1 = k
21 Ri2= hie + ((1+hfe)*(Re*R/(Re+R)));
22 k = -Rc1/(Rc1+Ri2);
23
24 r= Rs*(Rs+Re)/(Rs+R+Re);
25 / \text{Let Ib1/Is} = 1
26 l=r/(r+hie);
27
```

```
28 Ai = (-hfe) * (k) * (hfe) * (1);
29 disp(Ai, 'Ai=');
30
31 B = Re / (Re + R); // beta
32 D = 1 + (B * Ai);
33
34 Aif = Ai / D;
35 disp(Aif, 'Aif=');
36
37 Avf = (Aif * Rc2) / Rs;
38 disp(Avf, 'Avf=');
39
40 // End
```

Scilab code Exa 13.3.b Gain of second emitter to first basefeedback pair

```
1 clear;
 2 clc;
 3
 4 // Caption: Gain of second emitter to first
        basefeedback pair
 5 // Given Data
6 Rc1=3; //in K
 7 Rc2=0.5; //in K
8 Re=0.05; //in K
 9 Rs=1.2; //in K
10 hfe=50;
11 hie=1.1; // in K
12 \text{ hre=0};
13 hoe = 0;
14
15 \quad R=Rs;
16
17 // \text{Ai} = -\text{Ic2}/\text{Is} = -(\text{Ic2}/\text{Ib2}) * (\text{Ib2}/\text{Ic1}) * (\text{Ic1}/\text{Ib1}) * (\text{Ib1}/\text{Is})
18 // -Ic2/Ib2 = -50
```

```
19 // Ic1/Ib1 = hfe
20 / \text{Let Ib} 2 / \text{Ic} 1 = k
21 Ri2= hie + ((1+hfe)*(Re*R/(Re+R)));
22 k = -Rc1/(Rc1+Ri2);
23
24 r= Rs*(Rs+Re)/(Rs+R+Re);
25 / \text{Let Ib1/Is} = 1
26 l=r/(r+hie);
27
28 Ai=(-hfe)*(k)*(hfe)*(1);
29
30 B=Re/(Re+R); // beta
31 D=1+(B*Ai);
32
33 Aif=Ai/D;
34
35 \text{ Avf} = (\text{Aif} * \text{Rc2}) / \text{Rs};
36
37 //To find Rif
38
39 Ri=(r*hie)/(r+hie);
40 Rif=Ri/D;
41 disp('ohm', Rif*1000, 'Rif=');
42
43 / End
```

Scilab code Exa 13.3.c Gain of second emitter to first basefeedback pair

```
1 clear;
2 clc;
3
4 //Caption:Gain of second emitter to first
        basefeedback pair
5 //Given Data
6 Rc1=3; //in K
```

```
7 Rc2=0.5; //in K
8 Re=0.05; //in K
9 Rs=1.2; //in K
10 hfe=50;
11 hie=1.1; //in K
12 \text{ hre=0};
13 hoe = 0;
14
15 R=Rs;
16
17 //Ai = -Ic2/Is = -(Ic2/Ib2) * (Ib2/Ic1) * (Ic1/Ib1) * (Ib1/Is)
18 // -Ic2/Ib2 = -50
19 // Ic1/Ib1 = hfe
20 / \text{Let Ib} 2 / \text{Ic} 1 = k
21 Ri2= hie + ((1+hfe)*(Re*R/(Re+R)));
22 k=-Rc1/(Rc1+Ri2);
23
24 \text{ r= Rs*(Rs+Re)/(Rs+R+Re)};
25 / \text{Let Ib1/Is} = 1
26 l=r/(r+hie);
27
28 Ai = (-hfe)*(k)*(hfe)*(1);
29
30 B=Re/(Re+R); // beta
31 D=1+(B*Ai);
32
33 Aif=Ai/D;
34
35 \text{ Avf} = (\text{Aif} * \text{Rc2}) / \text{Rs};
36
37 Ri=(r*hie)/(r+hie);
38 \text{ Rif} = \text{Ri}/D;
39
40 rif = (Rif*Rs)/(Rs-Rif);
41 disp('K', rif+Rs, 'Resistance with feedback seen by
       voltage source');
42
43 //End
```

Scilab code Exa 13.3.d Gain of second emitter to first basefeedback pair

```
1 clear;
2 clc;
4 // Caption: Gain of second emitter to first
      basefeedback pair
5 // Given Data
6 Rc1=3; //in K
7 Rc2=0.5; //in K
8 Re=0.05; //in K
9 Rs=1.2; //in K
10 hfe=50;
11 hie=1.1; //in K
12 \text{ hre=0};
13 hoe=0;
14
15 R=Rs;
16
17 //Ai = -Ic2/Is = -(Ic2/Ib2) * (Ib2/Ic1) * (Ic1/Ib1) * (Ib1/Is)
18 // -Ic2/Ib2 = -50
19 // Ic1/Ib1 = hfe
20 / \text{Let Ib} 2 / \text{Ic} 1 = k
21 Ri2= hie + ((1+hfe)*(Re*R/(Re+R)));
22 k = -Rc1/(Rc1+Ri2);
23
24 r= Rs*(Rs+Re)/(Rs+R+Re);
25 / \text{Let Ib1/Is} = 1
26 l=r/(r+hie);
27
28 Ai=(-hfe)*(k)*(hfe)*(1);
29
30 B=Re/(Re+R); // beta
31 D=1+(B*Ai);
```

```
32

33 Aif=Ai/D;

34

35 Avf=(Aif*Rc2)/Rs;

36

37 Rof=(Avf*Rs)/Aif;

38 disp('K',Rof,'Output Resistance = ');

39

40 //End
```

Scilab code Exa 13.4.a To find gain and resistance of Voltage Shunt Feedback

```
1 clear;
2 clc;
3
4 // Caption: To find gain and resistance of Voltage
      Shunt Feedback
5 // Given Values
6 Rc=4; //in K
7 r = 40; //in K
8 Rs=10; //in K
9 hie=1.1; //in K
10 hfe=50;
11 hre=0;
12 hoe=0;
13
14 //Required Formulae
15 rc=(Rc*r)/(Rc+r);
16 R=(Rs*r)/(Rs+r);
17 Rm = -(hfe*rc*R)/(R+hie);
18 disp('K', Rm, 'Rm=');
19 B=-1/r; // \text{in } \text{mA/V}
20 D=1+(B*Rm);
21 Rmf = Rm/D;
```

```
22
23  //Avf = Vo/Vs = Vo/(Is*Rs) = Rmf/Rs
24  Avf=Rmf/Rs;
25  disp(Avf, 'Avf=');
26
27
28  //End
```

Scilab code Exa 13.4.b To find gain and resistance of Voltage Shunt Feedback

```
1 clear;
2 clc;
3
4 //Caption: To find gain and resistance of Voltage
      Shunt Feedback
5 //Given Values
6 Rc=4; //in K
7 \text{ r=40;} // \text{in } K
8 Rs=10; //in K
9 hie=1.1; //in K
10 hfe=50;
11 hre=0;
12 \text{ hoe=0};
13
14 //Required Formulae
15 rc=(Rc*r)/(Rc+r);
16 R=(Rs*r)/(Rs+r);
17 Rm=-(hfe*rc*R)/(R+hie);
18 B=-1/r; // in mA/V
19 D=1+(B*Rm);
20 Rmf = Rm/D;
21
22 //Avf = Vo/Vs = Vo/(Is*Rs) = Rmf/Rs
23 Avf=Rmf/Rs;
```

```
24
25 Ri = (R*hie)/(R+hie);
26 Rif=Ri/D;
27 disp('K',Rif,'Rif=');
28
29 //End
```

Scilab code Exa 13.4.c To find gain and resistance of Voltage Shunt Feedback

```
1 clear;
2 clc;
3
4 //Caption: To find gain and resistance of Voltage
      Shunt Feedback
5 // Given Values
6 Rc=4; //in K
7 r = 40; //in K
8 Rs=10; // in K
9 hie=1.1; //in K
10 hfe=50;
11 hre=0;
12 hoe=0;
13
14 //Required Formulae
15 rc=(Rc*r)/(Rc+r);
16 R=(Rs*r)/(Rs+r);
17 Rm = -(hfe*rc*R)/(R+hie);
18 disp('K', Rm, 'Rm=');
19 B=-1/r; // in mA/V
20 D=1+(B*Rm);
21 Rmf = Rm/D;
22
23 //Avf = Vo/Vs = Vo/(Is*Rs) = Rmf/Rs
24 Avf=Rmf/Rs;
```

```
25
26 Ri = (R*hie)/(R+hie);
27 \text{ Rif} = \text{Ri}/D;
28
29 // If the input resistance looking to the right of Rs
        is rif then Rif = (rif *Rs) / (rif +Rs)
30 rif=(Rif*Rs)/(Rs-Rif);
31
32 disp('K', Rs+rif, 'The impedence seen by the voltage
       source=Rif=');
33
34 Ro=40; // in K
35 \text{ r} = 40; // \text{in } K
36
37 \text{ Rm} = -(\text{hfe*r*R})/(\text{R+hie});
38 \text{ Rof} = \text{Ro}/(1+(B*Rm));
39 //We are writting Rof' = rof
40 rof = (Rof*Rc)/(Rof+Rc);
41 disp('K',rof,'rof=');
42
43 / End
```

Chapter 14

Stability and Oscillators

Scilab code Exa 14.1.a Lowest poles of an Amplifier

```
1 clear;
2 clc;
3
4 // Caption: Lowest poles of an Amplifier
5 // Given Data
7 // Poles in radians per sec
8 	 s1 = -46.2*(10^5);
9 	 s2 = -45.9*(10^6);
10 	ext{ s3} = -11.4*(10^8);
11 s4 = -30.4*(10^8);
12
13 // Zeros
14 	ext{ s5} = 16.65*(10^9);
15 	ext{ s6} = 15.4*(10^8);
16 	ext{ s7} = -22.55*(10^8);
17 s = 6.28*(10^6);
18 B = 0.040;
19 Ai = 410; // Gain
20
21 n = s2/s1;
```

```
22 disp(n, 'n=');
23 Q = (n*(1+(B*Ai)))^0.5/(n+1);
24 disp(Q, 'Q=');
25 k = 1/(2*Q);
26 disp(k, 'k=');
27
28 s1f = s1*((n+1)/2)*(1-%i*((4*Q*Q)-1)^0.5);
29 disp(s1f, 'The first pole is');
30 s2f = s1*((n+1)/2)*(1+%i*((4*Q*Q)-1)^0.5);
31 disp(s2f, 'The second pole is');
32
33
34 //end
```

Scilab code Exa 14.1.b Frequency Response Peak

```
1 clear;
2 clc;
3
4 //Frequency Response Peak
5 // Given Data
7 // Poles in radians per sec
8 	ext{ s1} = -46.2*(10^5);
9 	 s2 = -45.9*(10^6);
10 \text{ s3} = -11.4*(10^8);
11 s4 = -30.4*(10^8);
12
13 // Zeros
14 	ext{ s5} = 16.65*(10^9);
15 	ext{ s6} = 15.4*(10^8);
16 	ext{ s7} = -22.55*(10^8);
17 s = 6.28*(10^6);
18 B = 0.040;
19 Ai = 410; //Gain
```

```
20
21 n = s2/s1;
22 \ Q = (n*(1+(B*Ai)))^0.5/(n+1);
23 k = 1/(2*Q);
24
25 s1f = s1*((n+1)/2)*(1-\%i*((4*Q*Q)-1)^0.5);
26 \text{ s2f} = \text{s1}*((n+1)/2)*(1+\%i*((4*Q*Q)-1)^0.5);
27
28 //Frequency Response Peak
29 wo = -Q*(s1+s2);
30 disp(wo, 'wo=');
31 w = wo*(1-(2*k*k))^0.5//frequency at which frequency
       response peak occours
32 \quad disp(w, 'w=');
33 fpeak = (wo/s)*(1-(2*k*k))^0.5;
34 \text{ disp}('MHz',fpeak,'fpeak=');
35 //At peak
36 \ a = 1/(2*k*(1-(k*k))^0.5);
37 \text{ overshoot} = 20*log10(a);
38 disp('dB', overshoot, 'Overshoot is');
39
40
41 // end
```

Chapter 15

Operational Amplifier

Scilab code Exa 15.1.a difference in output voltage for two set of output signals

```
1 clear;
2 clc;
4 // Caption: difference in output voltage for two set
      of output signals
5 // Given Data
6 // First Set of Input Signal
7 \text{ v11=50}; // \text{in microV}
8 v21 = -50; //in microV
9 //Second Set of Input Signal
10 v12=1050; // in microV
11 v22=950; //in microV
12 p=100; //Common Mode Rejection Ratio
13
14 //Required Formulae
15 //vo = Ad*vd*(1+vc/p*vd) .... p = common mode
      rejection ratio
16 //Ad will be same for both case, So let us write Vo
       = vo/Ad = Ad*(1+vc/p*vd)
17
```

```
18  //First Set of Values
19  vd1=v11-v21; //in microV
20  vc1=(v11+v21)/2; //in microV
21  Vo1 = vd1*(1+vc1/(p*vd1));
22
23  //Second Set of Values
24  vd2=v12-v22; //in microV
25  vc2=(v12+v22)/2; //in microV
26  Vo2 = vd2*(1+vc2/(p*vd2));
27
28  disp(100*(Vo2-Vo1)/Vo1, 'Percentage difference in output signal=');
29
30
31  //end
```

Scilab code Exa 15.1.b difference in output voltage for two set of output signals

```
1 clear;
2 clc;
3
4 //Caption: difference in output voltage for two set
      of output signals when Common Mode Rejection
      Ratio =10000
5 //Given Data
6 // First Set of Input Signal
7 v11=50; //in microV
8 v21 = -50; //in microV
9 //Second Set of Input Signal
10 v12=1050; //in microV
11 v22=950; //in microV
12 p=100; //Common Mode Rejection Ratio
13
14 // Required Formulae
```

```
15 //vo = Ad*vd*(1+vc/p*vd) .... p = common mode
       rejection ratio
16 //Ad will be same for both case, So let us write Vo
       = vo/Ad = Ad*(1+vc/p*vd)
17
18 // First Set of Values
19 vd1=v11-v21; //in microV
20 vc1=(v11+v21)/2; //in microV
21 \text{ Vol} = \text{vdl}*(1+\text{vcl}/(p*\text{vdl}));
22
23 //Second Set of Values
24 vd2=v12-v22; //in microV
vc2=(v12+v22)/2;//in microV
26 \text{ Vo2} = \text{vd2}*(1+\text{vc2}/(p*\text{vd2}));
27
28
   //Now we have to calculate the same thing with
      common mode rejection ratio = 10000
30
31 p=10000; //Common Mode Rejection Ratio
32
33 // First Set of Values
34 \text{ vd1}=\text{v11}-\text{v21};//\text{in microV}
35 \text{ vc1} = (\text{v11} + \text{v21})/2; //\text{in microV}
36 \text{ Vol} = \text{vdl}*(1+\text{vcl}/(p*\text{vdl}));
37
38 //Second Set of Values
39 vd2=v12-v22; //in microV
40 vc2=(v12+v22)/2;//in microV
41 Vo2 = vd2*(1+vc2/(p*vd2));
42
   disp(100*(Vo2-Vo1)/Vo1, 'Percentage difference in
43
       output signal=');
44
45 // end
```

Scilab code Exa 15.2 Design an amplifier using yA702A

```
1 clear;
2 clc;
3
4 // Caption: Design an amplifier using yA702A
5 // Given Data
6 f=32; //feedback in dB
7 //from the Bodes plot we get that Avo = 2510
8 Avo = 2510; //gain
9 disp('The parameters are R, r (for Rdash), C (for
      Cdash)');
10 // Desensivity D = B*Rmo = Avo*(R/(R+r))
11 / 20 \log 10 (D) = f
12 k = f - (20*log10(Avo));
13 / \text{Let } (R+r) / R = 1
14 \ 1 = 1/(10^{(k/20)});
15 / R/(R+r) = fp/fz
16 //For 45 degree phase margin and 32dB of low
      frequency feedback we find by trial and error
      method from the graph
17 fz = 10; // in MHz
18 \text{ fp = fz*1;}
19 //to determine c we can arbitrarily choose R
20 R = 1000; //in ohm
21 disp('ohm',R,'R = ');
22 r = (1-1)*R
23 disp('ohm',r,'r = ');
24 C = 1/(2*\%pi*fz*r*10^-6);
25 \text{ disp}('pF',C,'C = ');
26
27
28 // end
```

Chapter 16

Integrated Circuits as Analog System Building blocks

Scilab code Exa 16.1 Fourth Order Butterworth Filter

```
1 clear;
2 clc;
4 // Caption: Fourth Order Butterworth Filter
5 //Given Data
6 fo=1; // Cutoff Frequency in Hz
7 / \text{For } n = 4
8 k1=0.765;
9 k2=1.848;
10
11 \text{ Av1} = 3-k1;
12 \text{ Av2} = 3-k2;
13 disp('For a fourth order Buttworth filter we cacade
      2 second order Buttworth filter with parameters
      R1 R2 R1d R2d R C');
14 //we arbitrarily choose
15 R1=10; // in K
16 \text{ disp}('K',R1,'R1=');
17 / Av1 = (R1 + R1d) / R1
```

```
18 R1d=(Av1*R1)-R1;
19 disp(R1d, 'R1d = ');
20
21 R2 = 10; //in K
22 disp('K',R2, 'R2=');
23 R2d=(Av2*R2)-R2;
24 disp(R2d, 'R2d = ');
25
26 //To satisfy fo = 1/(2*%pi*r*c) = 1kHz
27 R=1; //in K
28 C = 1/(2*%pi*R*fo);
29 disp('K',R, 'R=');
30 disp('microF',C, 'C = ');
```

Scilab code Exa 16.2 Design a second order bandpass filter

```
1 clear;
2 clc;
3 //Caption : Design a second order bandpass filter
4 //Given Value
5 Ao=50; //Gain
6 fo=160; //center frequency
7 B=16; //Bandwidth in Hz
8 \text{ C1=0.1;}//\text{in microF}
9 C2=0.1; //in microF
10
11 //Required Formulae
12
13 Q=fo/B;
14 R1=(1000*Q)/(Ao*2*\%pi*fo*C1);
15 R3=(1000*Q)/((2*\%pi*fo)*(C1*C2/(C1+C2)));
16 //As C is in microFarad to compensate for it 1000 is
       multiplied
17 / \text{Let r} = R'
18 r=(10^6)/((2*\%pi*fo)^2*R3*C1*C2);
```

```
19 R2=(R1*r)/(R1-r);
20
21 disp('K',R1,'R1=');
22 disp('K',R3,'R3=');
23 disp('K',r,'r=');
24 disp('K',R2,'R2=');
25
26 //end
```

Scilab code Exa 16.3 Design a video amplifier using MC1550

```
1 clear;
2 clc;
3
4 // Caption: Design a video amplifier using MC1550
5 // Given Data
6 Avo = -25;
7 Vagc=20; //in V
8 Vcc=6; //in V
9 \text{ hfe=50};
10 rbb=50; //in ohm
11 Cs=5; //in pF
12 Cl=5; //in pF
13 Ie1=1; // in mA
14 ft=900; // in MHz
15 Vt=26; //in V
16 n=2; // eeta
17 / re2 = infinity
18
19 //Since Vagc=0 , transistor Q2 is in cut off region
      and collector current of Q1 flows through Q3....
      So
20 Ie2=0;
21 Ie3=1; //in mA
22 re3 = (n*Vt)/Ie3;//in ohm
```

```
23 disp('ohm',re3,'re3=');
24 gm = (Ie1)/Vt; //in ohm^-1
25 disp('ohm^-1',gm,'gm=');
26 rbe=hfe/gm;
27 disp('ohm',rbe,'rbe=');
28 Ce=gm/(2*\%pi*ft*10^-6);
29 disp('pF', Ce, 'Ce=');
30 a3=1; //we make an assumption that alpha is one
31 s = 0:
32 / Av0 = -((a3*gm)/(re3*rbb))*(1/(((1/rbb)+(1/rbe)+(s)))
      *Ce))*((1/re3)+(s*Cs))*((1/Rl)+(s*(Cs+Cl)))))
33 //From here we can find Rl
34 k = -((a3*gm)/(re3*rbb))*(1/(((1/rbb)+(1/rbe)+(s*Ce)))
      )*((1/re3)+(s*Cs))));
35 R1=Avo/k;
36 disp('ohm',Rl,'Rl=');
37
38 //C is in picoFarad so to compensate the whole
      equation some constants are multiplied
39 f1 = 1/(2*\%pi*Rl*(Cs+Cl)*10^-6);
40 disp('MHz',f1,'f1=');
41 f2 = 1/(2*\%pi*Ce*10^-6*((rbe*rbb))/(rbe+rbb)));
42 disp('MHz',f2,'f2=');
43 f3 = 1/(2*\%pi*Cs*re3*10^-6);
44 disp('MHz',f3,'f3=');
45
46
47 // \text{end}
```

Scilab code Exa 16.4.a Logic Level Output of an ECL gate

```
1 clear;
2 clc;
3
4 //Caption:Logic Level Output of an ECL gate
```

```
5 //Given Data
6 Vbb = 1.15; //in V
7 Vee=5.20; //in V
8 Vbe5=0.7; //in V
9 R=1.18; //in K
10 r = 300; //in ohm
11 Vbecutin=0.5; //in V
12
13 //If all inputs are low then we assume that Q1,Q2
      and Q3 are cutoff and Q4 is conducting
14 Ve=-Vbb-Vbe5; // Voltage at Common Emitter in V
15 // Current I in 1.18K Resistor
16 I = (Ve+Vee)/R; //in mA
17 I1=I;
18 disp('mA', I, 'Current in 300 ohm resistance I=');
19 //Output Voltage at Y
20 vy = -(r*I/1000) - Vbe5; //I is in mA so 1000 is
      multiplied
21 Vbe = vy-Ve;
22 disp('V', Vbe, 'Vbe = ');
23 if (Vbe < Vbecutin)
24
       disp('Input transistors are non conducting as
          was assumed');
       disp('If atleast one input is high then it is
25
          assumed that curent in 1.18K resistance is
          switched to R and Q4 is cutoff');
26
       disp('Drop in 300 ohm resistance is zero. Since
          the base aand collector are tied together Q5
          now behaves as a diode');
27
       disp('Across Q5');
       v=0.7; // voltage across Q5 in V
28
29
       rQ5 = 1.5; //in K
30
       i = (Vee-v)/rQ5;
31
       v = 0.75; //from the graph in V
32
       disp('mA',i,'i=');
       disp('V', v, 'v=');
33
       Ve = -v - Vbe5;
34
       Vbe4 = -Vbb - Ve;
35
```

```
36     disp('V', Vbe4, 'Vbe4=');
37     end
38     disp('The total output swing between two logic gates
         ');
39     vo = -vy-v;
40     disp('V', vo, 'vo=');
41
42
43     //end
```

Scilab code Exa 16.4.b Calculation of noise margin

```
1 clear;
2 clc;
4 // Calculation of noise margin
5 // Given Data
6 Vbb = 1.15; //in V
7 Vee=5.20; //in V
8 Vbe5=0.7; //in V
9 R=1.18; //in K
10 r = 300; //in ohm
11 Vbecutin=0.5; //in V
12
13 // If all inputs are low then we assume that Q1, Q2
      and Q3 are cutoff and Q4 is conducting
14 Ve=-Vbb-Vbe5; // Voltage at Common Emitter in V
15 // Current I in 1.18K Resistor
16 I = (Ve+Vee)/R; //in mA
17 I1=I;
18 //Output Voltage at Y
19 vy = -(r*I/1000)-Vbe5;//I is in mA so 1000 is
      multiplied
20 Vbe = vy-Ve;
21 if (Vbe < Vbecutin)
```

```
22
       v=0.7; // voltage across Q5 in V
23
        rQ5 = 1.5; //in K
        i = (Vee-v)/rQ5;
24
25
        v = 0.75; //from the graph in V
26
        Ve = -v - Vbe5;
27
        Vbe4 = -Vbb - Ve;
28 end
29 \text{ vo } = -\text{vy-v};
30
31 // Calculation of noise margin
32 vn = Vbecutin-Vbe4;
33 disp('Positive noise spike which will cause the gate
       to malfunction');
34 disp('V', vn,'vn=');
35
36 // end
```

Scilab code Exa 16.4.c Verify that conducting transistor is in active region

```
1 clear;
2 clc;
3
4 //Verify that conducting transistor is in active region
5 //Given Data
6 Vbb = 1.15; //in V
7 Vee=5.20; //in V
8 Vbe5=0.7; //in V
9 R=1.18; //in K
10 r=300; //in ohm
11 Vbecutin=0.5; //in V
12
13 //If all inputs are low then we assume that Q1,Q2 and Q3 are cutoff and Q4 is conducting
```

```
14 Ve=-Vbb-Vbe5; // Voltage at Common Emitter in V
15 // Current I in 1.18K Resistor
16 I = (Ve+Vee)/R; //in mA
17 I1=I;
18 //Output Voltage at Y
19 vy = -(r*I/1000)-Vbe5; //I is in mA so 1000 is
       multiplied
20 Vbe = vy-Ve;
  if (Vbe < Vbecutin)</pre>
21
        v=0.7; //voltage across Q5 in V
23
        rQ5 = 1.5; //in K
        i = (Vee-v)/rQ5;
24
25
        v = 0.75; //from the graph in V
26
        Ve = -v - Vbe5;
27
        Vbe4 = -Vbb - Ve;
28 end
29 \text{ vo } = -\text{vy-v};
30
31 \text{ Vb4} = \text{Vbb};
32 \text{ Vc4} = -(I*r)/1000; //in \text{ V}
33 \text{ Vcb4} = \text{Vc4} + \text{Vb4};
34 disp('V', Vcb4, 'Vcb4 = ');
35 if (Vcb4>0)
36
        disp('For on npn transistor this represents a
            reverse bias and Q4 must be in active region,
            );
37 end
38 \text{ Vb1} = v;
39 \text{ Vc1} = \text{vy+Vbe5};
40 \text{ Vcb1} = \text{Vc1} + \text{Vb1};
41 disp('V', Vc1, 'Vc1=');
42 disp('V', Vcb1, 'Vcb1=');
43 if (Vcb1<0)
44
        disp('For an npn transistor this represents a
            forward bias .... therefore Q1 is in
            saturation region');
45
        end
46
```

Scilab code Exa 16.4.d Calculation of R

```
1 clear;
2 clc;
4 // Calculation of R
5 // Given Data
6 Vbb = 1.15; //in V
7 Vee=5.20; //in V
8 Vbe5=0.7; //in V
9 R=1.18; //in K
10 r = 300; //in ohm
11 Vbecutin=0.5; //in V
12
13 //If all inputs are low then we assume that Q1,Q2
      and Q3 are cutoff and Q4 is conducting
14 Ve=-Vbb-Vbe5; // Voltage at Common Emitter in V
15 // Current I in 1.18K Resistor
16 I = (Ve+Vee)/R; //in mA
17 I1=I;
18 //Output Voltage at Y
19 vy = -(r*I/1000)-Vbe5;//I is in mA so 1000 is
      multiplied
20 \text{ Vbe} = \text{vy-Ve};
  if(Vbe<Vbecutin)</pre>
       v=0.7; //voltage across Q5 in V
22
23
       rQ5 = 1.5; //in K
       i = (Vee-v)/rQ5;
24
25
       v = 0.75; //from the graph in V
26
       Ve = -v-Vbe5;
       Vbe4=-Vbb-Ve;
27
28 end
29 \text{ vo } = -\text{vy-v};
```

```
30
31 // Verify that conducting transistor is in active
       region
32 \text{ Vb4} = \text{Vbb};
33 Vc4 = -(I*r)/1000; //in V
34 \text{ Vcb4} = \text{Vc4+Vb4};
35 \text{ Vb1} = v;
36 \text{ Vc1} = \text{vy+Vbe5};
37 \text{ Vcb1} = \text{Vc1} + \text{Vb1};
38
39 Vbe1 = Vbe5;
40 \text{ Ve} = -(Vb1+Vbe1);
41 disp('V', Ve, 'Ve=');
42 I = (Ve + Vee)/R;
43 I2=I;
44 R = -Vc1/I;
45 disp('ohm',R,'R=');
46
47 // end
```

Scilab code Exa 16.4.e Average power dissipated by the gate

```
1 clear;
2 clc;
3
4 //Average power dissipated by the gate
5 //Given Data
6 Vbb = 1.15; //in V
7 Vee=5.20; //in V
8 Vbe5=0.7; //in V
9 R=1.18; //in K
10 r=300; //in ohm
11 Vbecutin=0.5; //in V
12
13 //If all inputs are low then we assume that Q1,Q2
```

```
and Q3 are cutoff and Q4 is conducting
14 Ve=-Vbb-Vbe5; // Voltage at Common Emitter in V
15 // Current I in 1.18K Resistor
16 I = (Ve+Vee)/R; //in mA
17 I1=I;
18 //Output Voltage at Y
19 vy = -(r*I/1000) - Vbe5; //I is in mA so 1000 is
       multiplied
20 Vbe = vy-Ve;
21 if (Vbe < Vbecutin)
22
        v=0.7; // voltage across Q5 in V
        rQ5 = 1.5; //in K
23
24
        i = (Vee-v)/rQ5;
        v = 0.75; //from the graph in V
25
26
        Ve = -v - Vbe5;
        Vbe4 = -Vbb - Ve;
27
28 end
29
30 \text{ vo} = -\text{vy-v};
31
32 \text{ Vb4} = \text{Vbb};
33 Vc4 = -(I*r)/1000; //in V
34 \text{ Vcb4} = \text{Vc4+Vb4};
35 \text{ Vb1} = v;
36 \text{ Vc1} = \text{vy+Vbe5};
37 \text{ Vcb1} = \text{Vc1} + \text{Vb1};
38
39 \text{ Vbe1} = \text{Vbe5};
40 \text{ Ve} = -(Vb1+Vbe1);
41 I = (Ve + Vee)/R;
42 I2=I;
43
44 I = (I1+I2)/2;
45 disp('mA', I, 'I=');
46 	 I2 = (Vee-v)/rQ5;
47 	 I3 = (Vee+vy)/rQ5;
48 I = I + I2 + I3;
49 P = Vee*I;
```

```
50 disp('mW',P,'Power dissipated = ');
51
52 //end
```

Chapter 18

Power Circuits and Systems

Scilab code Exa 18.1.a Design a series regulated power supply

```
1 clear;
2 clc;
3
4 // Caption: Design a series regulated power supply
5 // Given Data
6 Vo = 25; //in V
7 ro=10; //in ohm
9 disp('select a silicon reference diode');
10 disp('two IN7555 diodes are provided');
11 Rz = 12; //in ohm
12 Vo=25; //output voltage in V
13 Vr = 7.5 + 7.5; //because two diodes are used
14 Iz = 20; // in mA
15 Ie2=10; //in mA
16 \text{ Ic2} = \text{Ie2};
17 Icmax=30; //in mA
18 Vcemax=45;//in V
19 hFE2=220;
20 \text{ hfe2=200};
21 hie2=800; //in ohm
```

```
22 Id=10; // in mA
23 Il = 1000; // in mA
24 Vi = 50; //in V
25 dVi = 10; //change in input voltage
26 dIl = 1; //change in load current
27
28 //For D1 and D2 operate
29 Iz = Id + Id;
30 \text{ Rd} = (Vo-Vr)/Id;
31 disp('K', Rd, 'Rd=');
32
33 \text{ Ib2} = (1000*\text{Ic2})/\text{hFE2};
34 disp('microA', Ib2, 'Ib2=');
35
36 //Since we require I1>Ib2, we select
37 I1=10*(10^-3); //in A
38 Vbe = 0.7; //in V
39
40 \text{ V2} = \text{Vbe} + \text{Vr};
41 disp('V', V2, 'V2=');
42
43 R1 = (Vo-V2)/I1;
44 R2 = V2/I1;
45 disp('ohm',R1,'R1=');
46 disp('ohm', R2, 'R2=');
47
48 //We are selecting Texas Instruments 2N1722 silicon
      power transistor, so following parameters are
      required
49 disp ('We are selecting Texas Instruments 2N1722
       silicon power transistor');
50 \text{ Ic1} = 1; //\text{in A}
51 hFE1=125;
52 \text{ hfe1} = 100;
53 \text{ hie1=20};
54
55 \text{ Ib1} = (1000*\text{I1} + \text{Il} + \text{Id})/\text{hFE1};
56 disp('mA', Ib1+Ic2, 'The current through resistor R3
```

```
is');
57 I=Ib1 + Ic2;
58
59 R3 = (Vi - (Vbe + Vo))/I;
60 disp('K',R3,'The value of R3 is');
61
62 //End
```

Scilab code Exa 18.1.b Calculation of Sv

```
1 clear;
2 clc;
3
4 // Caption: Calculation of Sv
5 // Given Data
6 Vo = 25; //in V
7 ro=10; //in ohm
9 Rz = 12; //in ohm
10 Vo=25; //output voltage in V
11 Vr = 7.5 + 7.5; //because two diodes are used
12 Iz = 20; // in mA
13 Ie2=10; //in mA
14 \text{ Ic2} = \text{Ie2};
15 Icmax=30; //in mA
16 Vcemax=45; //in V
17 hFE2=220;
18 hfe2=200;
19 hie2=800;//in ohm
20 Id=10; // in mA
21 Il = 1000; //in mA
22 Vi = 50; //in V
23 dVi = 10; //change in input voltage
24 dIl = 1; //change in load current
25
```

```
26 //For D1 and D2 operate
27 Iz = Id + Id;
28 \text{ Rd} = (Vo-Vr)/Id;
29
30 \text{ Ib2} = (1000*\text{Ic2})/\text{hFE2};
31
32 //Since we require I1>Ib2, we select
33 I1=10*(10^-3); //in A
34 Vbe = 0.7; //in V
35
36 \text{ V2} = \text{Vbe} + \text{Vr};
37
38 R1 = (Vo-V2)/I1;
39 R2 = V2/I1;
40
41 //We are selecting Texas Instruments 2N1722 silicon
       power transistor, so following parameters are
       required
42 Ic1 = 1; //in A
43 hFE1=125;
44 hfe1=100;
45 \text{ hie1=20};
46
47 	ext{ Ib1} = (1000*I1 + I1 + Id)/hFE1;
48 //The current through resistor R3
49 I = Ib1 + Ic2;
50
51 R3 = (Vi - (Vbe + Vo))/I;
52 \text{ Gm} = \text{hfe2}*(R2/(R2+R1))*(1/((R1*R2/(R1+R2))+\text{hie2}+(1+R2)))
       hfe2)*Rz));
53 \text{ Sv} = (10^-3)/(\text{Gm}*\text{R3});
54 \operatorname{disp}(\operatorname{Sv}, '\operatorname{Sv}=');
55
56 / End
```

Scilab code Exa 18.1.c Find output resistance Ro

```
1 clear;
2 clc;
3
4 //Caption: Find output resistance Ro
5 // Given Data
6 Vo=25; //in V
7 ro=10; //in ohm
8 Rz = 12; //in ohm
9 Vo=25; //output voltage in V
10 Vr = 7.5 + 7.5; //because two diodes are used
11 Iz = 20; // in mA
12 Ie2=10; // in mA
13 \text{ Ic2} = \text{Ie2};
14 Icmax=30; //in mA
15 Vcemax=45; //in V
16 hFE2=220;
17 hfe2=200;
18 hie2=800; //in ohm
19 Id=10; // in mA
20 Il = 1000; // in mA
21 \text{ Vi} = 50; // \text{in V}
22 dVi = 10; //change in input voltage
23 dIl = 1;//change in load current
24
25 //For D1 and D2 operate
26 \text{ Iz} = \text{Id} + \text{Id};
27 \text{ Rd} = (Vo-Vr)/Id;
28
29 \text{ Ib2} = (1000*\text{Ic2})/\text{hFE2};
30
31 //Since we require I1>Ib2, we select
32 \text{ I1=10*(10^--3); //in A}
33 Vbe = 0.7; //in V
34
35 V2 = Vbe + Vr;
36
```

```
37 R1 = (Vo-V2)/I1;
38 R2 = V2/I1;
39
40 //We are selecting Texas Instruments 2N1722 silicon
       power transistor, so following parameters are
       required
41 Ic1 = 1; //in A
42 hFE1=125;
43 hfe1=100;
44 hie1=20;
45
46 \text{ Ib1} = (1000*\text{I1} + \text{I1} + \text{Id})/\text{hFE1};
47 //The current through resistor R3 is
48 I = Ib1 + Ic2;
49
50 \text{ R3} = (Vi - (Vbe + Vo))/I;
51
52 \text{ Gm} = \text{hfe2}*(R2/(R2+R1))*(1/((R1*R2/(R1+R2))+\text{hie2}+(1+R2)))
       hfe2)*Rz));
   disp(Gm, 'Gm=');
53
54
55 \text{ Ro} = (\text{ro} + (((1000*\text{R3}) + \text{hie1})/(1+\text{hfe1})))/(1 + (Gm))
       *((1000*R3) + ro)));
56 disp('K', Ro, 'The output impedence is = ');
57
58 //End
```

Scilab code Exa 18.1.d Calculation of change in output voltage due to change in input voltage and load current

```
1 clear;
2 clc;
3
4 //Caption: Calculation of change in output voltage
    due to change in input voltage and load current
```

```
5 //Given Data
6 Vo = 25; //in V
7 ro=10; //in ohm
8
9 Rz = 12; // in ohm
10 Vo=25; //output voltage in V
11 Vr = 7.5 + 7.5; //because two diodes are used
12 Iz = 20; // in mA
13 Ie2=10; //in mA
14 \text{ Ic2} = \text{Ie2};
15 Icmax=30; //in mA
16 Vcemax=45; //in V
17 hFE2=220;
18 hfe2=200;
19 hie2=800; //in ohm
20 Id=10; // in mA
21 Il = 1000; // in mA
22 Vi = 50; //in V
23 dVi = 10; //change in input voltage
24 dIl = 1; //change in load current
25
26 //For D1 and D2 operate
27 \text{ Iz} = \text{Id} + \text{Id};
28 \text{ Rd} = (Vo-Vr)/Id;
29
30 \text{ Ib2} = (1000*Ic2)/hFE2;
31
32 //Since we require I1>Ib2, we select
33 I1=10*(10^-3); //in A
34 Vbe = 0.7; //in V
35
36 \text{ V2} = \text{Vbe} + \text{Vr};
37
38 R1 = (Vo-V2)/I1;
39 R2 = V2/I1;
40
41 //We are selecting Texas Instruments 2N1722 silicon
      power transistor, so following parameters are
```

```
required
42 Ic1 = 1; //in A
43 hFE1=125;
44 hfe1=100;
45 \text{ hie1=20};
46
47 Ib1 = (1000*I1 + I1 + Id)/hFE1;
48 //The current through resistor R3 is
49 I = Ib1 + Ic2;
50
51 R3 = (Vi - (Vbe + Vo))/I;
52
53 \text{ Gm} = \text{hfe2}*(R2/(R2+R1))*(1/((R1*R2/(R1+R2))+\text{hie2}+(1+R2)))
       hfe2)*Rz));
54 \text{ Sv} = (10^-3)/(Gm*R3);
55
56 \text{ Ro} = (\text{ro} + (((1000*\text{R3}) + \text{hie1})/(1+\text{hfe1})))/(1 + (Gm))
       *((1000*R3) + ro)));
57
58 \text{ dVo} = (Sv*dVi)+(Ro*dIl);
59 disp('V', dVo, 'Change in output voltage = ');
60
61 / End
```

Scilab code Exa 18.2.a SCR half wave power control circuit

```
9  //Instantaneous Current il = (230*2^0.5*sin(a))/200
10
11  // to find rms value
12  xo = %pi/3; //lower limit of integration
13  x1 = %pi; //upper limit of integration
14
15  X = integrate('((230*(2^0.5)*sin(x))/200)^2', 'x', xo, x1);
16  Irms = (X/(2*%pi))^0.5;
17  disp('A',Irms,'Irms = ');
18
19  //End
```

Scilab code Exa 18.2.b SCR half wave power control circuit

```
1 clear;
2 clc;
4 // Caption: SCR half wave power control circuit
5 //Given Data
6 Vs = 230; //in V
7 R1=200; //in ohm
8 //Trigger is adjusted so that conduction starts
      after 60 degree of start of cycle
9 //Instantaneous Current il = (230*2^0.5*\sin(a))/200
10 //It is noted that between 0 to pi/3 SCR voltage
      equals line voltage and between pi/3 to pi it is
      zer and for the rest it is equal to line voltage
11 //Vl = 230*2^0.5*sin(x)
12 //To find instantaneous power
13
14 x0=%pi/3;//lower limit of integral
15 x1=%pi; //upper limit of integral
16 X = integrate ('(230*230*2*(\sin(x)^2))/200', 'x', x0, x1)
     );
```

```
17 P = X/(2*3.14);
18 disp('W',P,'P=');
19
20 //End
```

Scilab code Exa 18.2.c SCR half wave power control circuit

```
1 clear;
2 clc;
3
4 // Caption: SCR half wave power control circuit
5 // Given Data
6 Vs = 230; //in V
7 R1 = 200; //in ohm
8 //Trigger is adjusted so that conduction starts
      after 60 degree of start of cycle
9 //Instantaneous Current il = (230*2^0.5*\sin(a))/200
10
11 //To find Vrms
12
13 //It is noted that between 0 to pi/3 SCR voltage
      equals line voltage and between pi/3 to pi it is
      zer and for the rest it is equal to line voltage
14 xo=0; //lower limit of first integral
15 x1=%pi/3; //upper limit of first integral
16 x2=%pi;//lower limit of second integral
17 x3=2*(%pi);//upper limit of second integral
18 X1 = integrate('(230*(2^0.5)*\sin(x))^2', 'x', xo, x1);
19 X2 = integrate('(230*(2^0.5)*\sin(x))^2', 'x',x2,x3);
20 Vrms = ((X1+X2)/(2*\%pi))^0.5;
21 disp('V', Vrms, 'Vrms=');
22
23 / End
```

Scilab code Exa 18.3 SCR Relaxation Oscillator Phase control Circuit

```
1 clear;
2 clc;
3
4 // Caption: SCR Relaxation Oscillator Phase control
      Circuit
5 // Given Data
6 C=0.1; //in microF
7 V = 60; //in V
8 Vb=32; //in V
9 Vh=10; //holding voltage in V
10 Ih=100; // in microA
11 c=45; //conductance angle in degree
12 cd = 360 - c; // angle in which capacitor will get
      charged
13 td = (cd/360)*(1/60); //in ms
14
15 //if the anode voltage is positive, the SCR will fire
       when vc = 32V
16 vc=32; // in V
17 //let time constant = t = R*C
18 //vc-Vh = (V-Vh)(1-exp(-td/t))
19 t = -td/log(1-((vc-Vh)/(V-Vh)));
20 disp('sec',t,'time constant = ');
21 R = t/C; // Resistance in K
22 disp('K',R*1000, 'R=');
23
24
25 //end
```