1 Basics

Crysal Structure

Material Structure:

- Lattice = Periodische arrangement of atoms in a crystal.
- in a crystal: atom never strays far from a single, fixed position.
- Kristallijn: Deeltjes bestaat uit kristal(len) met een zekere kristalstructuur of gebrek daaraan.
 - Monokristallijn: eenvoudig continue kristallijn.
 - Multikristallijn: mm tot cm korrelgrootte.
 - Polykristallijn: μm korrelgrootte.
- Amorf: geen periodiciteit, geen ordening.
- Unit Cell: groep van deeltjes dat een hele lattice kan vormen.
 - Primitive unit cell: kleinste cell.
 - Conventional unit cell: gekozen voor conventie, los gedefinieerd.
 - Parameters:
 - * Lattice constante: \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .
 - * Lattice punt $\overrightarrow{R} = h \overrightarrow{d} + n \overrightarrow{b} + p \overrightarrow{c}$, met integers h, k, l.
- Miller Indices: Notatie in crystallography voor lattice richtingen en vlakken.
 - **punt:** (h, k, l).
 - Richting: [hkl].
 - parallelle richting: < hkl >.
 - vlak: (hkl).
 - parallelle vlak: $\{hkl\}$.
 - negative number: $\overline{|nummer|}$.

TO DO

Band Structure of a Material

The interactions between 2 identical atoms, including attraction, repulsion between atoms, cause a **shift in the energy levels**. Instead of 2 levels, N separate & closely spaced levels are formed. \Rightarrow When N is large \rightarrow Continuous Band of Energy.

Conductieband: De Hogere band

- = Lowest range of vacant electronic states.
- Empty at O Kelvin temperature.

Valentieband: De Lagere band

- = Highest range of electron energy, more negative.
- 100% filled at 0 Kelvin temperature.

Bandgap:

- = In semiconductors & insulators, conduction & Valence bands are **separated** by a bandgap.
- = Energy range in a solid where no electron states can exist due to quantization of energy.

Conductieband	Bandgap	<u>Valentieband</u>
= de hogere band	= energie bereik tussen	= de lagere band
	conductie- & valentieband	

Table 1: Difference between energy bands.

Metal	Semiconductor	Insulator
Very low resistivity	All electrons in valence band &	valence electrons form strong
	no electrons in condition band.	bonds
No bandgap	energy gap of order $1eV$	large bandgap

Table 2: Difference between metal, semiconductor & insulator.

- 2 P-N Diode
- 3 MOS Transistor
- 4 Bipolaire Transistor
- 5 CMOS Invertor
- 6 Technologie van Halfgeleidercomponenten
- 7 Zonnecellen/ Fotodiodes
- ${\bf 8}\quad {\bf Vermogen component en}$