H;

MA 106 D1-T3 Tutorial-6

Siddhant Midha

04-05-2022

Nilpotent Matrices

A matrix $A\in\mathbb{C}^{n\times n}$ for some $n\in\mathbb{N}$ is said to be *nilpotent* if $\exists k\in\mathbb{N}$ such that

$$(A^k = O)$$

A -> n.ilpoken

and 1st specify any rast on 10

Show that if \underline{A} is nilpotent then $\underline{I} - \underline{A}$ is invertible. (Hint: Illegal Expansion) $(\underline{1 - \alpha})^{-1} = 1 + 9 + \cdots$

Show that if A is nilpotent then I - A is invertible. (Hint: Illegal Expansion)

■ Let *k* be the degree of nilpotency.

Show that if A is nilpotent then I-A is invertible. (Hint: Illegal Expansion)

- Let k be the degree of nilpotency.
- Let

$$M := I + A + \dots A^{k-1}$$

$$(MA) = A + A^{2} + \dots A^{k-1}$$

$$= A + \dots A^{k-1}$$

$$= M - M$$

$$= M - (M - E) = T$$

$$= M - M$$

$$M(t-A) = M - MA = \frac{M - (M-E)}{2} = \frac{1}{2}$$

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

So, all evalue are zono!
$$\therefore \beta_A(x) = x^{\alpha}$$

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$)

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

(Assume $k \neq 0$) Let $B = A/\lambda$. $A \neq 0$ (B) is also nilpotent.

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I-B)(I+B+\dots B^{k-1})=I$$

$$\star (\lambda^{^{n}})$$

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I - B)(I + B + \dots B^{k-1}) = I$$
multiply by λ^k

$$(\lambda I - A)(\lambda^{k-1}I + \dots A^{k-1}) = \lambda^k I$$

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I - B)(I + B + \dots B^{k-1}) = I$$

multiply by λ^k

Take determinant.
$$\frac{(\lambda I - A)(\lambda^{k-1}I + \dots A^{k-1})}{P_{\mathbf{A}}(\lambda)} = \lambda^k I$$

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I-B)(I+B+\ldots B^{k-1})=I$$

multiply by λ^k

$$(\lambda I - A)(\lambda^{k-1}I + \dots A^{k-1}) = \lambda^k I$$

Take determinant. p_A divides x^{nk} .

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I-B)(I+B+\ldots B^{k-1})=I$$

multiply by λ^k

$$(\lambda I - A)(\lambda^{k-1}I + \dots A^{k-1}) = \lambda^k I$$

Take determinant. p_A divides x^{nk} . But, $deg(p_A) = n$.

If A is nilpotent, what are its eigenvalues and characteristic polynomial?

Let

$$Av = \lambda v$$

• (Assume $k \neq 0$) Let $B = A/\lambda$. We have,

$$(I-B)(I+B+\ldots B^{k-1})=I$$

multiply by λ^k

$$(\lambda I - A)(\lambda^{k-1}I + \dots A^{k-1}) = \lambda^k I$$

Take determinant. p_A divides x^{nk} . But, $deg(p_A) = n$.

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^{T}$$

$$Av = \begin{bmatrix} y & y & y & y \\ y & y & y & y \\ 0 & y & y & y \end{bmatrix}$$

$$Out \quad \text{free year: all} \quad \implies \underline{din} = 1$$

Let

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$Av = \begin{bmatrix} y \\ z \\ w \\ 0 \end{bmatrix}$$

Dimension = 1.

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^{T}$$
$$Av = \begin{bmatrix} y \\ 0 \\ w \\ 0 \end{bmatrix}$$

Let

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
this is considered then were 4 typo in the shull
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$Av = \begin{bmatrix} y \\ 0 \\ w \\ 0 \end{bmatrix}$$

Dimension = 2.

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^{T}$$

$$Av = \begin{bmatrix} y \\ z \\ 0 \\ 0 \end{bmatrix}$$

Let

$$A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$v = \begin{bmatrix} x & y & z & w \end{bmatrix}^T$$

$$Av = \begin{bmatrix} y \\ z \\ 0 \\ 0 \end{bmatrix}$$

Dimension = 2.

(Product of commuting nilpotents is nilpotent (why?)] Show that this fails if matrices do not commute.

by
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

Product of commuting nilpotents is nilpotent (why?). Show that this fails if matrices do not commute.

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} B := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} B := \begin{bmatrix} 0 & 1$$

Additional notes on Q1

- The only nilpotent matrix which is diagonalizable is the null matrix. (Why?)
- Any matrix with a non-zero eigenvalue cannot be nilpotent.
- Show that all complex eigen values zero \implies nilpotency. (hint: show that $A^n = O$, where n is the size of the matrix)
 - If the degree of nilpotency is defined as the smallest k such that $A^k = 0$, hence conclude that this degree cannot exceed n.

Projection Matrices

A square matrix \underline{P} is said to be a projection if

$$P^2 = P$$

Show that if P is a projection so is I - P.

$$(T-P)^{2} = (T-P)(T-P)$$

$$= T-P-P+P$$

$$= (T-P)$$

$$= (T-P)$$

$$= (T-P)$$

$$= (T-P)$$

$$= (T-P)$$

$$= (T-P)$$

$$Pv = \lambda v$$

$$\frac{Pv = \lambda v}{P(\lambda v) = \lambda Pv = \lambda^2 v}$$

$$\frac{P^2v}{P^2v} = \lambda^2 v = Pv = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = Pv = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = Pv = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = Pv = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$\frac{P^2v}{A^2v} = \lambda^2 v = V = \lambda v$$

$$Pv = \lambda v$$

$$P^2v = \lambda^2v = Pv = \lambda v$$

If P is invertible then it is the identity.

If P is invertible then it is the identity.

If *P* is invertible then it is the identity.

$$PM = I$$

If P is invertible then it is the identity.

$$PM = I$$

$$PPM = P$$

If *P* is invertible then it is the identity.

$$PM = I$$

$$PPM = P$$

$$PM = P = P$$

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- If we extend this to a basis $v_1, \ldots v_k, v_{k+1}, \ldots v_n$ (of \mathbb{R}^n),

 Prove/Disprove the linear independence of $Pv_{k+1}, \ldots Pv_n$.
- Deduce about diagonalizablity of P.
 Let there exist c_i not all zero such that

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- Prove/Disprove the linear independence of $Pv_{k+1}, \dots Pv_n$.
- Deduce about diagonalizablity of P.

$$c_{k+1}Pv_{k+1}+\cdots+c_nPv_n=0$$

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- Prove/Disprove the linear independence of $Pv_{k+1}, \dots Pv_n$.
- Deduce about diagonalizablity of *P*.

$$c_{k+1}Pv_{k+1}+\cdots+c_nPv_n=0$$

$$P(c_{k+1}v_{k+1}+\cdots+c_{n}v_{n})=0$$
is in the notisped

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- Prove/Disprove the linear independence of $Pv_{k+1}, \dots Pv_n$.
- Deduce about diagonalizablity of P.

$$c_{k+1}Pv_{k+1}+\cdots+c_nPv_n=0$$

$$P(c_{k+1}v_{k+1} + \dots + c_nv_n) = 0$$
Thus,

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ of \mathbb{R}^n ,

- Prove/Disprove the linear independence of $Pv_{k+1}, \dots Pv_n$.
- Deduce about diagonalizablity of P.

$$c_{k+1}Pv_{k+1} + \dots + c_nPv_n = 0$$

$$P(c_{k+1}v_{k+1} + \dots + c_nv_n) = 0$$
Thus,
$$(c_{k+1}v_{k+1} + \dots + c_nv_n) = \underbrace{a_1v_1 + \dots + a_kv_k}_{\text{But } l}$$

$$\{v_i\} \text{ on } \text{ in } \text{$$

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P. If we extend this to a basis $v_1, \dots v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- Prove/Disprove the linear independence of $Pv_{k+1}, \dots Pv_n$.
- Deduce about diagonalizablity of P.

Suppose det(P) = 0, and let $v_1 \dots v_k$ be a basis for nullspace of P.

If we extend this to a basis $v_1, \dots, v_k, v_{k+1} \dots v_n$ (of \mathbb{R}^n),

- Prove/Disprove the linear independence of Pv_{k+1},...Pv_n
 Deduce about diagonalizablity of P.
 - Let there exist c_i not all zero such that

- Given H and H₀ (and discarding the tut-0 knowledge), which one is a reflection and which one is a projection? Olympians
- Find their eigenvalues.
- Are they diagonalizable?
- \rightarrow Is H_0 idempotent? (geometric+algebraic way)

• For a projection, $\underline{P}^2 = \underline{P}$.

- For a projection, $P^2 = P$.
- For a reflection, $P^2 = I$.

- For a projection, $P^2 = P$.
- For a reflection, $P^2 = I$.
- Already established that eigenvalues of H_0 are 0 and 1.

- For a projection, $P^2 = P$.
- For a reflection, $P^2 = I$.
- Already established that eigenvalues of H_0 are 0 and 1.

Note,
$$H = 2H_0 - I$$
. Thus, $\lambda_H = 2\lambda_{H_0} - 1$.

Hove $\lambda_V = \lambda_V$
 $\lambda_V = (2\mu_0 - I)V$
 $\lambda_V = (2\lambda_V - I)V$
 $\lambda_V = \lambda_V$
 $\lambda_V = \lambda_V$

- For a projection, $P^2 = P$.
- For a reflection, $P^2 = I$.
- Already established that eigenvalues of H_0 are 0 and 1.
- Note, $H = 2H_0 I$. Thus, $\lambda_H = 2\lambda_{H_0} 1$.
- Yes!

- For a projection, $P^2 = P$.
- For a reflection, $P^2 = I$.
- Already established that eigenvalues of H_0 are 0 and 1.
- Note, $H = 2H_0 I$. Thus, $\lambda_H = 2\lambda_{H_0} 1$.
- Yes!
- Yes!

Let
$$A_1:=\begin{bmatrix}2&10^5&10^9\\0&1&3\end{bmatrix}, A_2:=\begin{bmatrix}3&0&0\\e&2&0\\10^8&10^{10}&1\end{bmatrix}$$
 Are they similar?

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable.

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why?

Let

$$A_1 := egin{bmatrix} 2 & 10^5 & 10^9 \ 0 & 1 & \pi \ 0 & 0 & 3 \end{bmatrix}, A_2 := egin{bmatrix} 3 & 0 & 0 \ e & 2 & 0 \ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why? Distinct Eigenvalues!

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why? Distinct Eigenvalues! Now let $P^{-1}A_1P = diag(2,1,3)$

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why? Distinct Eigenvalues! Now let $P^{-1}A_1P = \underline{\text{diag}(2,1,3)}$ and $Q^{-1}A_2Q = \underline{\text{diag}(3,2,1)}$ follows for Som Z six $Z^{-1}A_2Z^{-1}A_3Z$

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why? Distinct Eigenvalues! Now let $P^{-1}A_1P = diag(2,1,3)$ and $Q^{-1}A_2Q = diag(3,2,1)$

Can find R such that, $diag(2,1,3) = R^{-1}diag(3,2,1)R$.

Let

$$A_1 := \begin{bmatrix} 2 & 10^5 & 10^9 \\ 0 & 1 & \pi \\ 0 & 0 & 3 \end{bmatrix}, A_2 := \begin{bmatrix} 3 & 0 & 0 \\ e & 2 & 0 \\ 10^8 & 10^{10} & 1 \end{bmatrix}$$

Are they similar? Note that they are diagonalizable. Why? Distinct Eigenvalues! Now let $P^{-1}A_1P=diag(2,1,3)$ and $Q^{-1}A_2Q=diag(3,2,1)$ Can find R such that, $diag(2,1,3)=R^{-1}diag(3,2,1)R$. Thus, $RP^{-1}A_1PR^{-1}=diag(3,2,1)$

- Eigenvalues of a skew-symmetric matrix?
 Diagonalizability?

Few points:

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

■ A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- \blacksquare A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.
- If A is real skew symmetric, then ιA is hermitian.

$$(iA)^{R} = -i(A^{R}) = -i(-A^{T})$$

--i(-A) = iA

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.
- If A is real skew symmetric, then ιA is hermitian.

Now use the Spectral Theorem [2] And use the second point above.

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.
- If A is real skew symmetric, then ιA is hermitian.

Now use the Spectral Theorem [2] And use the second point above. Thus the eigenvalues of our skew symmetric matrix (let's say S) are either purely imaginary or zero - (#).

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- \blacksquare A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.
- If A is real skew symmetric, then ιA is hermitian.

Now use the Spectral Theorem [2] And use the second point above. Thus the eigenvalues of our skew symmetric matrix (let's say S) are either purely imaginary or zero - (#). Also see

$$p_{S}(x) = \det(xI - S) = \det(xI - S)^{T} = \det(xI + S) = \underbrace{(-1)^{n}\det((-x)I - S)^{T}}_{p_{S}(-n)}$$

- Eigenvalues of a skew-symmetric matrix?
- Diagonalizability?

Few points:

- A is hermitian $\Leftrightarrow \iota A$ is skew-hermitian
- If λ_i are the eigenvalues of A, then $c\lambda_i$ are the eigenvalues of cA.
- If A is real skew symmetric, then ιA is hermitian.

Now use the Spectral Theorem [2] And use the second point above. Thus the eigenvalues of our skew symmetric matrix (let's say S) are either purely imaginary or zero - (#). Also see,

$$p_S(x) = det(xI - S) = det(xI - S^T) = det(xI + S) = (-1)^n det((-x)I - S)$$

$$= (-1)^n p_S(-x)$$

So if n is,

So if n is,

■ Even, then $p_S(x) = p_S(-x)$. By (#) and the fact that coefficients of p_S are real, we conclude all purely imaginary eigenvalues.

So if n is,

Even, then $p_S(x) = p_S(-x)$. By (#) and the fact that coefficients of p_S are real, we conclude all purely imaginary eigenvalues.

Odd, then $p_S(x) = -p_S(-x)$. Thus, one eigenvalue is zero and all the others are purely imaginary.

104 dieg 11-10 m=1

Question 5 - Aliter

This is a direct way.

Again note that $p_S(x) = (-1)^n p_S(-x)$ and coefficients of p_S are real. Conclude.

Question 5 - Aliter

This is a direct way.

What above
$$v^*Av = \lambda v^*v$$

Lispondizability $(A^*v)^*v = \lambda v^*v$
 $(-Av)^*v = \lambda v^*v$
 $(-\lambda v)^*v = \lambda v^*v$
 $(-\bar{\lambda}v)^*v = \lambda v^*v$

Again note that $p_S(x) = (-1)^n p_S(-x)$ and coefficients of p_S are real. Conclude.

Hence what about diagonalizability? It was the he's make t

Let
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 be a function such that $f(0) = 0$ and $f(x) - f(y)|| = ||x - y||$ Is it true that $f(x) = Ax$ for some matrix A . If so, what kind of matrix?

Claim: f is inner-product preserving.

Claim: f is inner-product preserving. That is,

$$\langle \underline{f(x)}, \underline{f(y)} \rangle = \langle \underline{x}, \underline{y} \rangle \forall x, y \in \mathbb{R}^3$$

Claim: f is inner-product preserving. That is,

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^3$$

Proof: First note that
$$||f(x)|| = ||\underline{x}||$$

Claim: f is inner-product preserving. That is,

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^3$$

Proof: First note that ||f(x)|| = ||x||. Now,

$$||f(x) - f(y)|| = ||x - y||$$

Claim: f is inner-product preserving. That is,

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \forall x, y \in \mathbb{R}^3$$

Proof: First note that ||f(x)|| = ||x||. Now,

$$||f(x) - f(y)|| = ||x - y||$$

$$\langle (f(x) - f(y)), (f(x) - f(y)) \rangle = \langle (x - y), (x - y) \rangle - 2$$

$$\langle \underbrace{f(y), f(y)}_{(y)} - f(y), f(y) \rangle - \langle f(y), f(y) - \langle f(y), f(y), f(y) - \langle f(y), f(y), f(y) - \langle f(y), f(y), f(y), f(y), f(y), f(y) \rangle - 2$$

Now let $x, y \in \mathbb{R}^3$ be arbitrary vectors and $a, b \in \mathbb{R}$ be arbitrary scalars.

Now let $x,y\in\mathbb{R}^3$ be arbitrary vectors and $a,b\in\mathbb{R}$ be arbitrary scalars. Consider,

$$\langle (f(ax + by) - af(x) - bf(y)), (f(ax + by) - af(x) - bf(y)) \rangle$$

$$\langle f(au + by), f(au + by) - 29 \langle f(au + by), f(u) \rangle - \frac{1}{2} \langle f(au + by), f(y) \rangle$$

$$+ a^{2} \langle f(u), f(u) \rangle + b^{2} \langle f(u), f(u) \rangle$$

$$+ 29 \langle f(u), f(u) \rangle$$

Now let
$$f(x) = Ax$$
.

$$3AER^{3} + F(x) = Ax$$

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

Now let f(x)=Ax. Using the fact that ||f(x)||=||x|| we have $\langle Ax,Ax\rangle=\langle x,x\rangle$

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^T(Ax) = x^Tx \implies x^TA^TAx - x^Tx = 0$$

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^{T}(Ax) = x^{T}x \implies x^{T}A^{T}Ax - x^{T}x = 0$$
$$x^{T}(A^{T}A - I)x = 0$$

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^T(Ax) = x^Tx \implies x^TA^TAx - x^Tx = 0$$

$$x^{T}(A^{T}A - I)x = 0$$

The previous equations holds for all $x \in \mathbb{R}^3$.

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^T(Ax) = x^Tx \implies x^TA^TAx - x^Tx = 0$$

$$x^{T}(A^{T}A - I)x = 0$$

The previous equations holds for all $x \in \mathbb{R}^3$. Symmetricity is crucial. Ways to tackle:

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^T(Ax) = x^Tx \implies x^TA^TAx - x^Tx = 0$$

$$x^{T}(A^{T}A - I)x = 0$$

The previous equations holds for all $x \in \mathbb{R}^3$. Symmetricity is crucial. Ways to tackle:

Quadratic form

Now let f(x) = Ax. Using the fact that ||f(x)|| = ||x|| we have

$$\langle Ax, Ax \rangle = \langle x, x \rangle$$

$$(Ax)^T(Ax) = x^Tx \implies x^TA^TAx - x^Tx = 0$$

$$x^{T}(A^{T}A - I)x = 0$$

The previous equations holds for all $x \in \mathbb{R}^3$. Symmetricity is crucial. Ways to tackle:

- Quadratic form
- Spectral Theorem [2] part 2