lecture 22, trees for GPLI

phil1012 introductory logic

overview

this lecture

- trees for GPLI
- two new tree rules
 - the closure rule
 - substitution of identicals
- finished trees and saturated paths
 - new definition of saturation
- reading models off open paths
 - provisional domains and assignments of referents
 - trimming domains and assignments of referents

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - explain what it is for a GPLI tree to be finished and a path to be saturated
 - construct GPLI trees
 - read models off open paths of GPLI trees

required reading

• section 13.7 of chapter 13

tree rules for gpli

tree rules for gpli

- \bullet as in the transition from MPL to GPL we will build on our pre-existing tree rules
- ullet since = is part of the logical vocabulary, we need to say something about the tree rules for it

the closure rule

• the first new rule is called the closure rule

$$\underline{a} \neq \underline{a} \\ \otimes$$

- this basically says that you can close a path if there is a proposition on it which asserts that something is not identical to itself!
- the motivation for this rule should be obvious

new notation explained

- ullet recall that $lpha(\underline{x})$ stands for any arbitrary wff that has no free variables other than \underline{x} and that $lpha(\underline{a}/\underline{x})$ stands for the wff that results from $lpha(\underline{x})$ by replacing all free occurrences of \underline{x} in $lpha(\underline{x})$ with the name a
- ullet we use $lpha(\underline{a})$ to stand for any arbitrary wff in which the name \underline{a} occurs (one or more times)
- we then use $\alpha(b/a)$ to stand for any wff which results from $\alpha(a)$ by replacing some occurrences of a with the name b

some examples using the new notation

- ullet if $lpha(\ a)$ is Ga, then $lpha(\ b//a)$ is Gb and $lpha(\ c//a)$ is Gc
- ullet if lpha(a) is Rab, then lpha(b//a) is Rbb and lpha(c//a) is Rcb
- if $\alpha(a)$ is $(Ga \vee Rab)$, then $\alpha(c//a)$ is $(Gc \vee Rab)$ or $(Ga \vee Rcb)$ or $(Gc \vee Rcb)$
- if $\alpha(a)$ is $(Ga \to Rbb)$, then $\alpha(a//b)$ is $(Ga \to Rab)$ or $(Ga \to Rba)$ or $(Ga \to Raa)$

substitution of identicals

ullet the second new rule is called the **substitution of identicals** rule

$$\begin{array}{l} \alpha(\underline{a}) \\ \underline{a} = \underline{b} \\ \alpha(\underline{b}/\!\!/\underline{a}) \end{array} \quad \text{(or } \underline{b} = \underline{a}) \end{array}$$

• let's run through an example . . .

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

- 1. $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym)$
- $\neg I^2 m$

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

- 1. $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym)$
- 2. $\neg I^2 mr$

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) :: I^2mr$ is valid.

- 1. $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) \checkmark$
- 2. $\neg I^2 mr$
- \exists . $\forall xLxr$
- 4. $\forall y(Lry \rightarrow I^2ym)$

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) :: I^2mr$ is valid.

```
 \begin{array}{lll} 1. & \forall xLxr \wedge \forall y(Lry \rightarrow I^2ym) \checkmark \\ 2. & \neg I^2mr \\ 3. & \forall xLxr \setminus r \\ 4. & \forall y(Lry \rightarrow I^2ym) \setminus r \\ 5. & Lrr \\ 6. & Lrr \rightarrow I^2rm \\ \end{array}
```

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

```
 \begin{array}{cccc} 1. & \forall xLxr \wedge \forall y(Lry \rightarrow I^2ym) \checkmark \\ 2. & \neg I^2mr \\ 3. & \forall xLxr \setminus r \\ 4. & \forall y(Lry \rightarrow I^2ym) \setminus r \\ 5. & Lrr \\ 6. & Lrr \rightarrow I^2rm \checkmark \\ \hline 7. & \neg Lrr & I^2rm \end{array}
```

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

$$\begin{array}{cccc} 1. & \forall xLxr \wedge \forall y(Lry \rightarrow I^2ym) \checkmark \\ 2. & \neg I^2mr \\ 3. & \forall xLxr \setminus r \\ 4. & \forall y(Lry \rightarrow I^2ym) \setminus r \\ 5. & Lrr \\ 6. & Lrr \rightarrow I^2rm \checkmark \\ \hline 7. & \neg Lrr & I^2rm \\ \otimes \\ \end{array}$$

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) :: I^2mr$ is valid.

$$\begin{array}{cccc} 1. & \forall xLxr \wedge \forall y(Lry \rightarrow I^2ym) \checkmark \\ 2. & \neg I^2mr \\ 3. & \forall xLxr \setminus r \\ 4. & \forall y(Lry \rightarrow I^2ym) \setminus r \\ 5. & Lrr \\ 6. & Lrr \rightarrow I^2rm \checkmark \\ \hline 7. & \neg Lrr & I^2rm \\ \otimes & \otimes \\ \end{array}$$

- wrong!
- why? neither the closure rule nor the ordinary rule for closing a path applies here

To prove: whether $\forall x Lxr \land \forall y (Lry \rightarrow I^2ym) : I^2mr$ is valid.

```
1.
         \forall x Lxr \land \forall y (Lry \rightarrow I^2ym) \checkmark
                            \neg I^2mr
2.
3.
                         \forall x L x r \setminus r
4.
                \forall y(Lry \to I^2ym) \ \ r
5.
                             Lrr
                     Lrr \rightarrow I^2rm \checkmark
6.
                      \neg Lrr I^2rm
7.
                                 \neg I^2mm
                                                                 2.7 \mathrm{SI}
```

• right!

finished trees, closed and saturated paths

finished trees, closed and saturated paths

- a tree is finished when all paths are closed or saturated
- a tree is saturated when no more rules can be applied to it
- recall the qualification for the rule for the universal quantifier
- we add the following qualification for saturation

saturation

• saturation: a path is not saturated unless every application of SI that could be made on that path and that would result in the addition to the path of a formula that does not already appear on the path has been made

```
ullet let's consider another example . . .
```

2. I^2ab

Rab

1.

- 1. Rab
- $2. I^2ab$
- 3. Raa 1,2, SI $1=\alpha(b)$
- 1. Rab
- $2. I^2ab$
- 3. Raa 1,2, SI $1=\alpha(b)$
- 4. Rbb 1,2, SI $1=\alpha(a)$
- 1. Rab
- $2. I^2ab$
- 3. Raa 1,2, SI $1=\alpha(b)$
- 4. Rbb 1,2, SI $1=\alpha(a)$
- 5. Rba 4,2, SI $4=\alpha(b)$
- this tree is finished, as we cannot apply the SI rule to generate any new basic propositions (or negations of basic propositions)

reading models off open paths

reading models off open paths

- given a saturated open path, we can read off from it a model on which the proposition(s) at the top of the tree are true
- the process involves three stages
 - stage one: construct a provisional domain and assignment of referents to names
 - stage two: trim the domain and assignments of referents to names to obtain a final domain and assignment of referents to names
 - \circ stage three: assign extensions to predicates on the trimmed domain and assignments of referents
- let's consider an example . . .

To prove: whether $Rab, I^2ab, \therefore Rbc$ is valid.

To prove: whether $Rab, I^2ab, \therefore Rbc$ is valid.

- 1. Rab
- I^2ab
- $3. \neg Rbc$

To prove: whether $Rab, I^2ab, \therefore Rbc$ is valid.

- 1. Rab
- 2. I^2ab
- $3. \neg Rbc$
- 4. Raa
- 5. Rba
- 6. Rbb
- 7. $\neg Rac$

To prove: whether $Rab, I^2ab, \therefore Rbc$ is valid.

- 1. Rab
- I^2ab
- $3. \neg Rbc$
- $4. \qquad Raa$
- 5. Rba
- 6. Rbb
- 7. $\neg Rac$
- domain:
- referents:
- extensions:

To prove: whether $Rab, I^2ab, \therefore Rbc$ is valid.

- 1. Rab
- $2. I^2ab$
- $3. \neg Rbc$
- 4. Raa
- 5. Rba
- 6. Rbb
- 7. $\neg Rac$

```
• domain: {1, 2, 3} (provisional)
• referents: a:1, b:2, c:3 (provisional)
• extensions:
   To prove: whether Rab, I^2ab, ... Rbc is valid.
   1.
         Rab
        I^2ab
   2.
   3.
        \neg Rbc
   4.
        Raa
         Rba
   5.
         Rbb
   6.
        \neg Rac
• domain: {1, 2, 3} (provisional)
• referents: a:1, b:2, c: 3 (provisional)
• extensions:
   To prove: whether Rab, I^2ab, \therefore Rbc is valid.
   1.
         Rab
   2.
        I^2ab
        \overline{\neg Rbc}
   3.
         Raa
   4.
         Rba
   5.
         Rbb
   6.
        \neg Rac
• domain: {1, 2, 3} (provisional)
• referents: a:1, b:1, c:3 (revised)
• extensions:
   To prove: whether Rab, I^2ab, \therefore Rbc is valid.
         Rab
   1.
   2.
        I^2ab
   3.
        \overline{\neg Rbc}
   4.
         Raa
   5.
         Rba
         Rbb
   6.
        \neg Rac
• domain: {1, 2} (revised)
• referents: a:1, b:1, c:2 (revised)
• extensions:
   To prove: whether Rab, I^2ab, \therefore Rbc is valid.
        [Rab]
   1.
   2.
         \widetilde{I^2ab}
        \neg Rbc
   3.
        [Raa]
   4.
   5.
        Rba
   6.
         Rbb
        \overline{\neg Rac}
• domain: {1, 2} (revised)
• referents: a:1, b:1, c:2 (revised)
```

• extensions: $R: \{\langle 1, 1 \rangle\}$

• let's consider another example . . .

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, : Ga$ is valid.

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, \therefore Ga$ is valid.

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, \therefore Ga$ is valid.

$$\forall x(Fx \to Gx) \setminus a, b, c$$

$$\exists xFx \checkmark c$$

$$I^2ab$$

$$\neg Ga$$

$$Fa$$

$$Fa \to Ga \checkmark$$

$$\neg Fb \to Gb \checkmark \otimes$$

$$\neg Fb \to Gb \checkmark \otimes$$

$$\neg Fc \to Gc \checkmark \neg Gb$$

$$\neg Fc \to Gc \otimes$$

$$\otimes \neg Gb$$

- domain:
- referents:
- extensions:

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, \therefore Ga$ is valid.

$$\forall x(Fx \to Gx) \setminus a, b, c$$

$$\exists xFx \checkmark c$$

$$I^2ab$$

$$\neg Ga$$

$$Fa$$

$$Fa \to Ga \checkmark$$

$$\neg Fb \to Gb \checkmark \otimes$$

$$\neg Fb \to Gb \checkmark \otimes$$

$$\neg Fc \to Gc \checkmark \neg Gb$$

$$\neg Fc \to Gc \otimes$$

$$\otimes \neg Gb$$

- domain: {1, 2, 3}
- referents: a: 1, b:2, c:3
- extensions:

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, \therefore Ga$ is valid.

$$\forall x(Fx \to Gx) \ \backslash a,b,c$$

$$\exists xFx \checkmark c$$

$$I^2ab \\ \neg Ga$$

$$Fa \\ Fa \to Ga \checkmark$$

$$\neg Fb \quad Gb \\ Fc \to Gc \checkmark \quad \neg Gb$$

$$\neg Fc \quad Gc \\ \otimes \quad \neg Gb$$

- domain: {1, 2}
- referents: a: 1, b:1, c:2
- extensions:

To prove: whether $\forall x(Fx \to Gx), \exists xFx, I^2ab, \therefore Ga$ is valid.

$$\forall x(Fx \to Gx) \setminus a, b, c$$

$$\exists xFx \checkmark c$$

$$I^2ab$$

$$\neg Ga$$

$$Fc$$

$$Fa \to Ga \checkmark$$

$$\neg Fb \to Gb \checkmark \otimes$$

$$\neg Fb \leftarrow Gb$$

$$Fc \to Gc \checkmark \neg Gb$$

$$\neg Fc \leftarrow Gc$$

$$\otimes \neg Gb$$

- domain: {1, 2}
- \bullet referents: a: 1, b:1, c:2
- extensions: $F:\{2\}, G:\{2\}$

wrapping up

this lecture

- trees for GPLI
- two new tree rules
 - the closure rule
 - substitution of identicals
- ullet finished trees and saturated paths
 - \circ new definition of saturation
- reading models off open paths
 - \circ provisional domains and assignments of referents

• trimming domains and assignments of referents

live lecture and tutorials

 \bullet you will practice constructing GPLI trees on your own

next lecture

• lecture 23, numerical quantifiers and definite descriptions in GPLI