FCC PART 95

MEASURMENT AND TEST REPORT

For

KONGTOP Industrial (Shenzhen) Co., Ltd.

Xinwuyuan Industrial Area, Gushu, Xixiang, Baoan, Shenzhen, P.R. China

FCC ID: XUI10WT0001

Report Concerns:	Equipment Type:		
Original Report	two-way radio		
Model:	<u>KT-100</u>		
Report No.:	STR10028029I		
Test/Witness Engineer:	Susan Su		
Test Date:	2010-02-22 to 2010-02-26		
Issue Date:	2010-03-09		
Prepared By:			
3/F, Jinbao Comme	ance Service Co., Ltd erce Building, Xin'an Fanshen Road, enzhen, P.R.C. (518101)		
Approved & Authorized By:	Jumyso		
	Jandy So / PSQ Manager		

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 1.2 TEST STANDARDS. 1.3 RELATED SUBMITTAL(S)/GRANT(S) 1.4 TEST METHODOLOGY. 1.5 TEST FACILITY. 1.6 EUT EXERCISE SOFTWARE. 1.7 ACCESSORIES EQUIPMENT LIST AND DETAILS. 1.8 EUT CABLE LIST AND DETAILS.	
2. SUMMARY OF TEST RESULTS	5
3. §2.1046 AND §95.639(A) (1) & (D)- RF OUTPUT POWER	6
3.1 STANDARD APPLICABLE 3.2 TEST EQUIPMENT LIST AND DETAIL 3.3 TEST PROCEDURE 4.4 ENVIRONMENTAL CONDITIONS 3.4 TEST RESULT/PLOTS	
4. §2.1049 AND § 95.633(A) & (C) - OCCUPIED BANDWIDTH OF EMISSION	8
4.1 Standard Applicable 4.2 Test Equipment List and Details 4.3 Test Procedure 4.4 Environmental Conditions 4.5 Test Results/Masks	
5. §95.635(B)- UNWANTED RADIATED EMISSION	11
5.1 MEASUREMENT UNCERTAINTY 5.2 STANDARD APPLICABLE 5.3 TEST EQUIPMENT LIST AND DETAILS 5.4 TEST PROCEDURE 5.5 ENVIRONMENTAL CONDITIONS 5.6 SUMMARY OF TEST RESULTS/PLOTS	11 11 11
6. §2.1055, §95.621 (B) AND §95.627(B)- FREQUENCY STABILITY	20
6.1 Standard Applicable 6.2 Test Equipment List and Details 6.3 Test Procedure 6.4 Test Results/Plots	20 20
7. §2.1047, AND §90.637-MODULATION CHARACTERISTICS	24
7.1 STANDARD APPLICABLE	
() LEST KESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: KONGTOP Industrial (Shenzhen) Co., Ltd.

Address of applicant: Xinwuyuan Industrial Area, Gushu, Xixiang, Baoan, Shenzhen,

P.R. China

Manufacturer: KONGTOP Industrial (Shenzhen) Co., Ltd.

Address of manufacturer: Xinwuyuan Industrial Area, Gushu, Xixiang, Baoan, Shenzhen,

P.R. China

General Description of E.U.T

Items	Description			
EUT Description:	two-way radio			
Trade Name:	KONGTOP			
Model No.:	KT-100			
Adding Model:	KT-80			
Rated Voltage:	DC 4.5V Battery			
RF Output Power:	0.375 W for GMRS transmitter;			
	0.375 W for FRS unit			
Frequency Range:	462.5500-462.7250 MHz (GMRS CH15~CH22)			
	462.5625-462.7125MHz (FRS CH1~CH7)			
	467.5625-467.7125 MHz (FRS CH8~CH14)			
Size:	4.5X8.0X3.5 cm			
Antenna Type:	Integral Antenna			
Antenna Length:	2.5cm			
For more information refer to the circuit diagram form and the user's manual.				

The test data is gathered from a production sample Model KT-100, provided by the manufacturer.

1.2 Test Standards

The following report of is prepared on behalf of the KONGTOP Industrial (Shenzhen) Co., Ltd. in accordance with FCC Rules and Regulations Part 2 & FCC Rules and Regulations Part 95 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with the <u>FCC Rules and Regulations Part 2 & FCC Rules and Regulations Part 95 Subpart E</u> of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s).

1.4 Test Methodology

Measurements contained in this report were also conducted with Part 2 & FCC Rules and Regulations Part 95 Subpart E of the Federal Communication Commissions rules and ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level according to TIA/EIA 603A to represent the worst-case results during the final qualification test. The test modes were adapted with transmitting mode. For more detail refer to the Operating Instructions.

1.5 Test Facility

• FCC – Registration No.: 994117

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

• Industry Canada (IC) Registration No.: 7673A

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

1.6 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components.

1.7 Accessories Equipment List and Details

Manufacturer	Description	Model	Serial Number	
/	/	/	/	

1.8 EUT Cable List and Details

Cable Description Length (M)		Shielded/Unshielded	With Cord/Without Cord	
/	/	/	/	

2. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	LIMIT
2.1046 95.639 (a)(1), (d)	RF Output Power	<50W for GMRS transmitter <0.5W for FRS unit
2.1049 95.633 (a), (c)	Occupied Bandwidth Emission	20 kHz for GMRS transmitter 12.5kHz for FRS unit
95.635(b)(1) 95.635(b)(3) 95.635(b)(7)	Radiated Spurious Emissions	Reference to section 5.6 in this report
2.1055 95.621 & 95.627	Frequency Stability Vs. Temperature Vs. Voltage	Deviation <0.0005% for GMRS transmitter Deviation < 0.00025% for FRS unit
2.1047 95.637 (a), (b)	Modulation Characteristics	±5 kHz for GMRS transmitter ±2.5kHz for FRS unit

3. §2.1046 and §95.639(a) (1) & (d)- RF OUTPUT POWER

3.1 Standard Applicable

According to FCC §2.1046, and §95.639(a)(1), No GMRS transmitter, under and condition of modulation, shall exceed: (1) 50W Carrier power (average TP during one unmodulated RF cycle) when transmitting emission type A1, F1D, G1D, A3E, F3E or G3E. §95.639(d), No FRS unit, under and condition of modulation, shall exceed 0.500W effective radiated power (ERP).

3.2 Test Equipment List and Detail

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSEA20	DE25181	2009-08-12	2010-08-11
Positioning Controller	C&C	CC-C-1F	N/A	2009-08-12	2010-08-11
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2009-07-21	2010-07-20
Horn Antenna	SCHWARZBECK	BBHX 9120	9120-426	2009-07-21	2010-07-20
RF Switch	EM	EMSW18	SW060023	2009-08-12	2010-08-11
Amplifier	Agilent	8447F	3113A06717	2009-08-12	2010-08-11
Coaxial Cable	SCHWARZBECK	AK9513	9513-10	2009-08-12	2010-08-11
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	25498514	2009-08-12	2010-08-11

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

3.3 Test Procedure

- 1. The EUT was powered ON and placed on a table in the chamber. The antenna of the transmitter was extended to its maximum length of 91cm.
- 2. The fundamental frequency of the transmitter was maximized on the test receiver display by raising and lowering the receive antenna and by rotating the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3. Steps 1 and 2 were preformed with the EUT and the receive antenna in both vertical and horizontal polarization and performed a pre-test three orthogonal planes.
- 4. The transmitter was then removed and replaced with a substitution antenna.
- 5. A signal at the fundamental frequency was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally and vertically polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2 is obtained for this set of conditions.

6. The output power into the substitution antenna was then measured.

4.4 Environmental Conditions

Temperature:	22 °C
Relative Humidity:	51%
ATM Pressure:	1012 mbar

3.4 Test Result/Plots

Frequency	Substitude SG Reading	Height	Table	Polar	Cable loss	Antenna Gain	Corrected Ampl.	Corrected Ampl.	FCC Part 95 Limit
MHz	dBm	Meter	Degree	H/V	dB	dB	dBm	mW	mW
				For GM	RS transm	nitter			
462.6500	16.52	1.5	180	Η	2.30	0	14.52	28.314	50000
462.6500	28.05	1.5	196	٧	2.30	0	25.75	375.837	50000
				Fo	r FRS unit				
462.6375	17.64	1.5	26	Η	2.30	0	15.34	34.198	500
462.6375	27.98	1.5	189	٧	2.30	0	25.68	369.828	500
467.6375	17.71	1.5	261	Η	2.30	0	15.41	34.754	500
467.6375	28.03	1.5	55	V	2.30	0	25.73	374.111	500

4. §2.1049 and § 95.633(a) & (c) - OCCUPIED BANDWIDTH OF EMISSION

4.1 Standard Applicable

According to FCC §2.1049 and FCC §95.633 (a), The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. §95.633 (c), The authorized bandwidth for emission type F3E or F2D transmitted by a FRS unit is 12.5 kHz.

Per FCC §95.635 (b)(1), at least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.

Per FCC §95.635 (b)(3), At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.

Per FCC §95.635 (b)(7), At least 43 + 10 log10(T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

4.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2009-08-12	2010-08-11
Atten	Attenuator	DC-4GHz	ATS100-4-20	2009-08-12	2010-08-11

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

4.3 Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. Turn on the transmitter, and set it to transmit the pulse train continuously.
- 3. The bandwidth of the carrier was measured and recorded.

4.4 Environmental Conditions

Temperature:	22 °C
Relative Humidity:	55 %
ATM Pressure:	1012 mbar

4.5 Test Results/Masks

The occupied Bandwidth Emission of all fall in the Mask, full fit the requirements of the standards.

For GMRS transmitter (462.6500 MHz)

For FRS unit (462.6375 MHz)

For FRS unit (467.6375 MHz)

5. §95.635(b)- UNWANTED RADIATED EMISSION

5.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 0.5 dB.

5.2 Standard Applicable

Per FCC §95.635 (b)(1), at least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.

Per FCC §95.635 (b)(3), At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.

Per FCC §95.635 (b)(7), At least 43 + 10 log10(T) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

5.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSEA20	DE25181	2009-08-12	2010-08-11
Positioning Controller	C&C CC-C-1F N/A		N/A	2009-08-12	2010-08-11
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2009-07-21	2010-07-20
Horn Antenna	SCHWARZBECK	BBHX 9120	9120-426	2009-07-21	2010-07-20
RF Switch	EM	EMSW18	SW060023	2009-08-12	2010-08-11
Amplifier	Agilent	8447F	3113A06717	2009-08-12	2010-08-11
Coaxial Cable	SCHWARZBECK	AK9513	9513-10	2009-08-12	2010-08-11
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	25498514	2009-08-12	2010-08-11

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.4 Test Procedure

- 1. The setup of EUT is according with per TIA/EIA Standard 603 and ANSI C63.4-2003 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

5.5 Environmental Conditions

Temperature:	18° C
Relative Humidity:	53%
ATM Pressure:	1011 mbar

5.6 Summary of Test Results/Plots

According to the data below, the FCC Part 95 standards, and had the worst margin of:

-2.2 dB at 1387.9500 MHz in the Vertical polarization, 30 MHz to 5 GHz, 3 Meters

For GMRS transmitter (462.6500 MHz)

Plots of the spurious emission for below 1GHz:

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	925.7563	-58.81	40.58	-18.23	-13.00	-5.23	EIRP

Vertical

No.		Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
Ī	1	925.7563	-59.2	40.58	-18.62	-13.00	-5.62	EIRP

For FRS Unit (462.6375 MHz)

Plots of the spurious emission for below 1GHz:

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	925.7563	-61.49	40.58	-20.91	-13.00	-7.91	EIRP

Vertical

No.		Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
Ī	1	925.7563	-59.57	40.58	-18.99	-13.00	-5.99	EIRP

For FRS unit (467.6375 MHz)

Plots of the spurious emission for below 1GHz:

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	938.8326	-56.82	40.66	-16.16	-13.00	-3.16	EIRP

Vertical

No.		Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
Ī	1	938.8326	-59.6	40.66	-18.94	-13.00	-5.94	EIRP

Plots of the spurious emission for Above 1GHz:

Frequency	SG	Height	Polar	Cable loss	Antenna	Corrected Ampl.	FCC Part 90	FCC Part 90		
	Reading		. 0.0.	000.01000	Gain	Остоской и при	Limit	Margin		
MHz	dBm	Meter	H/V	dB	dB	dBm	dBm	dB		
	GMRS transmitter (462.6500MHz)									
1387.9500	-19.0	1.5	V	2.6	6.4	-15.23	-13	-2.2		
1387.9500	-30.9	1	Η	2.6	6.4	-27.11	-13	-14.1		
1850.6000	-26.0	1.5	V	2.9	7.2	-21.74	-13	-8.7		
1850.6000	-40.8	1.2	Η	2.9	7.2	-36.49	-13	-23.5		
			FRS	S unit (462.	6375MHz)					
1387.9125	-20.3	1.5	V	2.6	6.4	-16.51	-13	-3.5		
1387.9125	-29.7	1.5	Η	2.6	6.4	-25.94	-13	-12.9		
1850.5500	-22.7	1.0	V	2.9	7.2	-18.44	-13	-5.4		
1850.5500	-33.8	1.5	Н	2.9	7.2	-29.53	-13	-16.5		
			FRS	3 unit (467.	6375MHz)					
1402.9125	-19.6	1.5	V	2.7	6.6	-15.65	-13	-2.7		
1402.9125	-31.9	1	Н	2.7	6.6	-27.99	-13	-15.0		
1870.5500	-24.0	1.5	V	3.0	7.4	-19.56	-13	-6.6		
1870.5500	-34.6	1.5	Н	3.0	7.4	-30.22	-13	-17.2		

Note: Testing is carried out with 3-orthogonal axis and frequency rang 30MHz to the tenth harmonics. Emissions undetected below the base noise are not reported.

6. §2.1055, §95.621 (b) and §95.627(b)- FREQUENCY STABILITY

6.1 Standard Applicable

According to FCC $\S2.1055(a)(1)$, the frequency stability shall be measure with variation of ambient temperature from -30° C to $+50^{\circ}$ C, and according to FCC 2.1055(d)(2), the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point which is specified by the manufacturer.

According to FCC §95.621(b), Each GMRS transmitter for mobile station, small base station and control operation must be maintained within a frequency tolerance of 0.0005%. §95.627(b), Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

6.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2009-08-12	2010-08-11
Atten	Attenuator	DC-4GHz	ATS100-4-20	2009-08-12	2010-08-11
GONGWEN	Moisture Test Chamber	GDS-150	SEMT-0013	2009-08-12	2010-08-11

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

- 1. Setup the configuration of the ambient temperature form -30°C to 50°C with sufficient time. And measure the different power of the EUT with an artificial power from highest to end point voltage.
- 2. Active the Analyzer frequency counter option, center frequency to the right frequency needs to be measured.

6.4 Test Results/Plots

For GMRS transmitter (462.6500MHz)

Re	Reference Frequency: 462.6500 MHz, Limit: +/-0.0005%							
Environment Temperature (°C)	Power Supplied (VDC)	Frequency Measure	e with Time Elapsed Error %					
50	4.5	462.65201	+0.00044					
40	4.5	462.65086	+0.00019					
30	4.5	462.65223	+0.00048					
20	4.5	462.65182	+0.00039					
10	4.5	462.65206	+0.00046					
0	4.5	462.64910	-0.00019					
-10	4.5	462.64832	-0.00036					
-20	4.5	462.64824	-0.00038					
-30	4.5	462.64801	-0.00043					

So, Frequency Stability Versus Input Voltage is:

Reference Frequency: 462.6500 MHz, Limit: +/-0.0005%					
Power Supplied	Frequency Measure with Time Elapsed				
(VDC)	Frequency (MHz)	Error %			
3.6	462.64784	-0.00047			

For FRS unit (462.6375MHz)

Re	Reference Frequency: 462.6375 MHz, Limit: +/-0.00025%							
Environment	Power Supplied	Frequency Measure	e with Time Elapsed					
Temperature (°C)	(VDC)	MCF (MHz)	Error %					
50	4.5	462.63852	+0.00022					
40	4.5	462.63836	+0.00019					
30	4.5	462.63812	+0.00013					
20	4.5	462.63844	+0.00020					
10	4.5	462.63765	-0.00003					
0	4.5	462.63718	-0.00007					
-10	4.5	462.63759	-0.00002					
-20	4.5	462.63643	-0.00023					
-30	4.5	462.63701	-0.00011					

So, Frequency Stability Versus Input Voltage is:

Reference Frequency: 462.6375 MHz, Limit: +/-0.00025%				
Power Supplied Frequency Measure with Time Elapsed				
(VDC)	Frequency (MHz) Error %			
3.6	462.63712	-0.00008		

For FRS unit (467.6375MHz)

Reference Frequency: 467.6375 MHz, Limit: +/-0.00025%				
Environment	Power Supplied	Frequency Measure with Time Elapsed		
Temperature (°C)	(VDC)	MCF (MHz)	Error %	
50	4.5	467.63763	+0.00003	
40	4.5	467.63774	+0.00005	
30	4.5	467.63817	+0.00014	
20	4.5	467.63786	+0.00008	
10	4.5	467.63614	-0.00029	
0	4.5	467.63619	-0.00028	
-10	4.5	467.63712	-0.00006	
-20	4.5	467.63708	-0.00009	
-30	4.5	467.63671	-0.00017	

So, Frequency Stability Versus Input Voltage is:

Reference Frequency: 467.6375 MHz, Limit: +/-0.00025%				
Power Supplied Frequency Measure with Time Elapsed				
(VDC)	Frequency (MHz) Error %			
3.6	467.63675	-0.00016		

7. §2.1047, and §90.637-MODULATION CHARACTERISTICS

7.1 Standard Applicable

According to FCC §90.637:

A GMRS transmitter that transmits emission types F1D, G1D, or G3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.

According to FCC §2.1047

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

7.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Modulation Analyzer	Rohde & Schwarz	FAM 54	334.2015.54	2009-08-12	2010-08-11
Attenuator	Atten	DC-4GHz	ATS100-4-20	2009-08-12	2010-08-11
Audio Generator	MEILI	MFG-3005	200612187	2009-08-12	2010-08-11

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

7.3 Test Procedure

Test is carried out under the procedure of TIA/EIA-603 §2.2.3.

7.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55%
ATM Pressure:	1015mbar

7.5 Test Results/Plots

For GMRS transmitter (462.6500MHz)

Audio	300Hz	1kHz	3kHz	FCC Limit(kHz)
Input(mV)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)	FCC LIMIT (KHZ)
0	0.43	0.44	0.73	5
2	0.57	1.53	1.18	5
4	0.67	1.76	1.42	5
6	0.75	1.77	1.57	5
8	0.76	1.85	1.73	5
10	0.77	1.86	1.78	5
12	0.82	1.92	1.83	5
14	0.84	1.92	1.83	5
16	0.85	1.93	1.84	5
18	0.86	1.94	1.84	5
20	0.88	2.02	1.85	5
24	0.92	2.13	1.83	5
28	0.92	2.16	1.82	5
32	0.85	2.13	1.81	5
36	0.83	2.11	1.80	5

For FRS unit (467.6375MHz)

Audio	300Hz	1kHz	3kHz	FCC Limit(kHz)
Input(mV)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)	rcc limit(knz)
0	0.41	0.45	0.72	2. 5
2	0.58	1.54	1.14	2. 5
4	0.68	1.76	1.41	2. 5
6	0.74	1.76	1.55	2. 5
8	0.76	1.87	1.72	2. 5
10	0.78	1.88	1.80	2. 5
12	0.83	1.91	1.81	2. 5
14	0.84	1.92	1.82	2. 5
16	0.85	1.95	1.84	2. 5
18	0.87	1.96	1.85	2. 5
20	0.89	2.07	1.83	2. 5
24	0.90	2.15	1.82	2. 5
28	0.90	2.18	1.81	2. 5
32	0.88	2.15	1.80	2. 5
36	0.86	2.12	1.80	2.5

For FRS unit (467.6375MHz)

Audio	300Hz	1kHz	3kHz	FCC Limit(kHz)
Input (mV)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)	FCC LIMIT (KHZ)
0	0.37	0.58	0.73	2. 5
2	0.57	1.56	1.13	2. 5
4	0.68	1.58	1.42	2. 5
6	0.74	1.75	1.52	2. 5
8	0.76	1.83	1.73	2. 5
10	0.79	1.88	1.76	2. 5
12	0.83	2.00	1.82	2. 5
14	0.85	2.07	1.83	2. 5
16	0.88	2.12	1.82	2. 5
18	0.90	2.16	1.83	2. 5
20	0.92	2.29	1.84	2. 5
24	0.95	2.30	1.83	2. 5
28	0.95	2.34	1.82	2. 5
32	0.92	2.32	1.82	2. 5
36	0.89	2.30	1.81	2.5

Audio Low Pass Filter Characteristic Curve

***** END OF REPORT *****