Implementation of RISC-V in SME

Daniel Ramyar

December 12, 2019

Chapter 1

Placeholder

1.1 Communicating Sequential Processes

The problem with multiprocessor workloads is the sharing of memory. This creates a whole slew of problems. There are many different processes going on at once all having access to the same memory. Unless you got superpowers it is very hard to determine where in the program something goes wrong. It all boils down to the non-determinism.

For example if you are going to print multiple strings using multiple threads you don't know which string i going to be printed first it's gonna depend on the operating system not on anything in your code. That can create race conditions (meaning the behaviour in your code is dependent on the timing of different threads) which can cause unpredictable behaviour and therefore bugs which is undesirable.

This has been tried to been solved with mutexes or locks but this also have its downside inform of deadlocks where multiple processes are waiting for each other and because these processes are non-deterministic it is very hard to reproduce errors in your code which in turn makes it hard to debug and therefore hard to make reliable software.

This is where Communicating Sequential Processes (CSP) comes in. CSP was an algebra first proposed by Hoare [1]. CSP is build on two very basic primitives one is the process (which should not be confused with operating system processes) which could be an ordered sequence of operations. These processes do not share any memory so one process cannot access a specific value in another process (which solves a lot the problems we had with shared memory).

The other primitive is channels which is the way the processes communicate which each other. You can pass whatever you want through these channels and once you pass a value you loose access to it.

There is a lot of ways the processes and channels can be arranged the most simple one can be found in figure 1.1 which illustrates process 1 which passes a value onto a channel which process 2 takes as input. Some different configuations can be found in figures 1.2-1.4

1.2 Synchronous Message Exchange

Figure 1.1: CSP one to one

Figure 1.2: CSP one to many

Figure 1.3: CSP many to one

Figure 1.4: CSP many to many

Risc V Reference Card

Instruction Formats

31		25	24	20	19		15	14	12	11	7	6		0	
	funct7		rs2			rs1		func	t3		rd		opcode		R-type
	imm[11:0]					rs1 funct3			$_{ m rd}$		opcode		I-type		
	imm[11:6]		imm[5:0]			rs1		func	t3		rd		opcode		I -type *
	imm[11:5]		rs2			rs1		func	t3	i	mm[4:0]		opcode		S-type
	imm[12 10:5]		rs2			rs1		func	t3	im	m[4:1 11]		opcode		B-type
	imm[31:12]												opcode		U-type
imm[20 10:1 11 19:12]											rd		opcode		J-type

^{*} This is a special case of the RV64I I-type format used by slli, srli and srai instructions where the lower 6 bits in the immediate are used to determine the shift amount (shamt). If slliw, srliw and sraiw are used it should generate an error if $imm[6] \neq 0$

RV64I Base Instructions

Name	Fmt	Opcode	Funct3	Funct7/ imm[11:5]	Assembly	Description (in C)
Add	R	0110011	000	0000000	add rd, rs1, rs2	rd = rs1 + rs2
Subtract	R	0110011	000	0100000	sub rd, rs1, rs2	rd = rs1 - rs2
AND	R	0110011	111	0000000	and rd, rs1, rs2	rd = rs1 & rs2
OR	R	0110011	110	0000000	or rd, rs1, rs2	$rd = rs1 \mid rs2$
XOR	R	0110011	100	0000000	xor rd, rs1, rs2	$rd = rs1 \hat{r} rs2$
Shift Left Logical	R	0110011	001	0000000	sll rd, rs1, rs2	$rd = rs1 \ll rs2$
Set Less Than	R	0110011	010	0000000	slt rd, rs1, rs2	rd = (rs1 < rs2)?1:0
Set Less Than (U)*	R	0110011	011	0000000	sltu rd, rs1, rs2	rd = (rs1 < rs2)?1:0
Shift Right Logical	R	0110011	101	0000000	srl rd, rs1, rs2	$rd = rs1 \gg rs2$
Shift Right Arithmetic [†]	R	0110011	101	0100000	sra rd, rs1, rs2	$rd = rs1 \gg rs2$
Add Word	R	0111011	000	0000000	addw rd, rs1, rs2	rd = rs1 + rs2
Subtract Word	R	0111011	000	0100000	subw rd, rs1, rs2	rd = rs1 + rs2 rd = rs1 - rs2
Shift Left Logical Word	R	0111011	001	0000000	sllw rd, rs1, rs2	$rd = rs1 \ll rs2$
Shift Right Logical Word	R	0111011	101	0000000	srlw rd, rs1, rs2	$rd = rs1 \gg rs2$
Shift Right Arithmetic Word [†]	R	0111011	101	0100000	sraw rd, rs1, rs2	$rd = rs1 \gg rs2$
Add Immediate	I	0010011	000	0100000	addi rd, rs1, imm	rd = rs1 # is2 $rd = rs1 + imm$
AND Immediate	I	0010011	111		and rd, rs1, imm	rd = rs1 & imm
OR Immediate	I	0010011	110		or rd, rs1, imm	rd = rs1 & mm
XOR Immediate	Ī	0010011	100		xor rd, rs1, imm	rd = rs1 nmm
Shift Left Logical Immediate	Ī	0010011	001	0000000	slli rd, rs1, shamt	$rd = rs1 \ll shamt$
Shift Right Logical Immediate	Ī	0010011	101	0000000	srli rd, rs1, shamt	$rd = rs1 \gg shamt$
Shift Right Arithmetic Immediate [†]	Ī	0010011	101	0100000	srai rd, rs1, shamt	$rd = rs1 \gg shamt$
Set Less Than Immediate	I	0010011	010	0100000	slti rd, rs1, imm	rd = 181 % shant rd = (rs1 < imm)?1:0
Set Less Than Immediate (U)*	I	0010011	011		sltiu rd, rs1, imm	rd = (rs1 < imm) : 1:0 rd = (rs1 < imm) : 1:0
Add Immediate Word	I	0010011	000		addiw rd, rs1, imm	rd = (rs1 < mm) : 1:0 rd = rs1 + imm
Shift Left Logical Immediate Word	I	0011011	000	0000000	slliw rd, rs1, shamt	rd = rs1 + mm $rd = rs1 \ll shamt$
Shift Right Logical Immediate Word	I	0011011	101	0000000	srliw rd, rs1, shamt	$rd = rs1 \ll shamt$ $rd = rs1 \gg shamt$
Shift Right Arithmetic Imm Word [†]	I	0011011	101	0100000	· '	
Load Byte	Ī	0000011	000	0100000	sraiw rd, rs1, shamt	$rd = rs1 \gg shamt$ rd = M[rs1+imm][0:7]
Load Byte Load Half	I	0000011	000		lb rd, rs1, imm lh rd, rs1, imm	rd = M[rs1+imm][0:7] rd = M[rs1+imm][0:15]
Load Word	I	0000011	010		lw rd, rs1, imm	rd = M[rs1+imm][0:15] rd = M[rs1+imm][0:31]
Load Word Load Doubleword	I	0000011	010		ld rd, rs1, imm	$ \mathbf{rd} = \mathbf{M}[\mathbf{rs1} + \mathbf{mm}][0.31]$ $ \mathbf{rd} = \mathbf{M}[\mathbf{rs1} + \mathbf{mm}][0.63]$
	I	ł				1 1 1
Load Byte (U)*		0000011	100		lbu rd, rs1, imm	rd = M[rs1+imm][0:7]
Load Half (U)*	I	0000011	101		lhu rd, rs1, imm	rd = M[rs1+imm][0:15]
Load Word (U) [*]	I	0000011	110		lwu rd, rs1, imm	rd = M[rs1+imm][0:31]
Store Byte	S	0100011	000		sb rs1, rs2, imm	M[rs1+imm][0:7] = rs2[0:7]
Store Half	S	0100011	001		sh rs1, rs2, imm	M[rs1+imm][0:15] = rs2[0:15]
Store Word	S	0100011	010		sw rs1, rs2, imm	M[rs1+imm][0:31] = rs2[0:31]
Store Doubleword	S	0100011	011		sd rs1, rs2, imm	M[rs1+imm][0:63] = rs2[0:63]
Branch If Equal	В	1100011	000		beq rs1, rs2, imm	if(rs1 == rs2) PC += imm
Branch Not Equal	В	1100011	001		bne rs1, rs2, imm	if(rs1 != rs2) PC += imm
Branch Less Than	В	1100011	100		blt rs1, rs2, imm	if(rs1 < rs2) PC += imm
Branch Greater Than Or Equal	В	1100011	101		bge rs1, rs2, imm	$if(rs1 \ge rs2) PC += imm$
Branch Less Than (U)*	В	1100011	110		bltu rs1, rs2, imm	if(rs1 < rs2) PC += imm
Branch Greater Than Or Equal $(U)^*$	В	1100011	111		bgeu rs1, rs2, imm	$if(rs1 \ge rs2) PC += imm$
Load Upper Immediate	U	0110111			lui rd, imm	$rd = imm \ll 12$
Add Upper Immediate To PC	U	0010111			auipc rd, imm	$rd = PC + (imm \ll 12)$
Jump And Link	J	1101111			jal rd, imm	rd = PC + 4; $PC += imm$
Jump And Link Register	I	1100111	000		jalr rd, rs1, imm	rd = PC + 4; $PC = rs1 + imm$

^{*}Assumes values are unsigned integers and zero extends \dagger Fills in with sign bit during right shift and msb (most significant bit) extends

RV64M Standard Extension Instructions

Name	Fmt	Opcode	Funct3	Funct7	Assembly	Description (in C)
Multiply	R	0110011	000	0000001	mul rd, rs1, rs2	$rd = (rs1 \cdot rs2)[63:0]$
Multiply Upper Half	R	0110011	001	0000001	mulh rd, rs1, rs2	$rd = (rs1 \cdot rs2)[127:64]$
Multiply Upper Half Sign/Unsigned [†]	R	0110011	010	0000001	mulhsu rd, rs1, rs2	$rd = (rs1 \cdot rs2)[127:64]$
Multiply Upper Half (U)*	R	0110011	011	0000001	mulhu rd, rs1, rs2	$rd = (rs1 \cdot rs2)[127:64]$
Divide	R	0110011	100	0000001	div rd, rs1, rs2	rd = rs1 / rs2
Divide (U)*	R	0110011	101	0000001	divu rd, rs1, rs2	rd = rs1 / rs2
Remainder	R	0110011	110	0000001	rem rd, rs1, rs2	rd = rs1 % rs2
Remainder (U)*	R	0110011	111	0000001	remu rd, rs1, rs2	rd = rs1 % rs2
Multiply Word	R	0111011	000	0000001	mulw rd, rs1, rs2	$rd = (rs1 \cdot rs2)[63:0]$
Divide Word	R	0111011	100	0000001	divw rd, rs1, rs2	rd = rs1 / rs2
Divide Word (U)*	R	0111011	101	0000001	divuw rd, rs1, rs2	rd = rs1 / rs2
Remainder Word	R	0111011	110	0000001	remw rd, rs1, rs2	rd = rs1 % rs2
Remainder Word (U)*	R	0111011	111	0000001	remuw rd, rs1, rs2	rd = rs1 % rs2

^{*}Assumes values are unsigned integers and zero extends † Multiply with one operand signed and the other unsigned

Bibliography

[1] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666-677, 1978. ISSN 1557-7317.