AMR Prediction tools and databases: an overview

Dr. Narender Kumar

Senior Bioinformatician

Whole genome sequencing

Bacteria

Genomic DNA isolation

Library Preparation

Applications

Whole Genome Sequencing

- 1 Pathogen diversity and surveillance
 - 2 Transmission tracking
 - 3 Outbreak investigation
- 4 AMR prediction and surveillance

Predicting antimicrobial resistance

- **Information on resistance mechanisms**
 - Acquired Example: mecA
 - Chromosomal mutations Example: gyrA mutations
 - Resistance databases: CARD, ResFinder and AMRFinder

- 2. Whole Genome Sequence
- 3. Analysis and interpretation tools

Antibiotics

a Antibiotic targets in bacterial cells Nitroimidazoles *Resistance mechanisms not (metronidazole*) well understood Nitrofurans (nitrofurantoin) **☐** Rifamycins Quinolones (ciprofloxacin) (rifampin) Cell wall Glycopeptides (vancomycin) mRNA DNA β-lactams (penicillin) DNA transcription gyrase Ethambutol (ethambutol) Isoniazid (isoniazid) Fosfomycin (fosfomycin) Nucleic acid synthesis Bacitracin ⊥⊥ (bacitracin) Cycloserine RNA synthetase (cycloserine*) Ribosome 50S **Macrolides** (azithromycin) 30S Streptogramins (dalfopristin) Cell membrane Amphenicol (chloramphenicol) Lincosamide Aminoglycosides (gentamicin) Sulfonamides Lipopeptide Mupirocin (clindamycin) (sulfamethoxazole) (daptomycin) (mupirocin) Oxazolidinone (linezolid) Trimethoprim Polymyxin (colistin) Tetracyclines (doxycycline) (trimethoprim) **■** Fusidanes Pyrazinamide (fusidic acid) (pyrazinamide*)

Resistance mechanisms

Antimicrobial resistance databases

Predicting phenotypic resistance

AMRFinder (Feldgarden M et al. 2019):

Validated on 6,242 isolates across 3 different species

concordance >98%

Mycobacterium tuberculosis (Hunt et al. 2019):

validated against 10207 isolates

concordance 94%

Staphylococcus aureus (Kumar N et al. 2020):

validated against 778 isolates

concordance 99%

CARD

- Determinants from 263 pathogens (N > 100,000) genes, SNPs and plasmids
- Gene ontology structure (6453 GO Terms) for characterization
- Uses both BLAST, homology and SNP models
- latest versions with Kmer based algorithms
- Integrated within easy-to-use webtool

Usage considerations:

- Results need to be filtered based on the cutoffs used (manual curation)
- Species nonspecific predcitions
- Prediction limited to class of drugs in certain instances
- Limited upload size not suitable for large scale usage
- Accepts only assembled sequences

ResFinder

- Reference database contains 2919 genes, 266 SNPs and >57 antimicrobials
- Regularly curated and updated
- Uses Kmer based algorithms
- Integrated within easy-to-use webtool and command line version also available

Usage considerations:

- Species specific predictions
- Minimal curation of the results needed
- Prediction limited to class of drugs in certain instances
- Can accept multiple sequences at a time
- Accepts both assembled sequences and reads

AMRFinder

- Reference database contains 4579 proteins, 560 HMM
- Regularly curated and updated maintained by NCBI
- Allows identification of potentially novel mechanisms

Usage considerations:

- Command line only tool
- Results include drug class
- Can accept multiple sequences at a time
- Accepts assembled sequences

Detecting resistance

Prediction tools

Prediction tools	Databases used
Web tools	
Pathogenwatch	own
ResFinder	own
CARD-RGI	own

Command line tools

NCBI AMRFinder	own
ResFinder	own
SRST2	Derived from ARG-ANNOT
ABRICATE	ResFinder, CARD, AMRFinder, PlasmidFinder, VFDB

Considerations

- Input files reads/assemblies
- Comprehensiveness
- Curation
- Regularly updated
- Easy to access
- Comparability
- Discrepancies between phenotype and genotype

Acknowledgement

GPS team

Prof. Stephen Bentley

SAGESA network

Thank you

