Análisis de datos con Stat y Caret

Emmanuel N. Millán FCEN 2017

Introducción

Caret significa Classification And REgression Training.

El paquete caret contiene un conjunto de herramientas para construir modelos con Machine Learning o Aprendizaje Automático en R.

Herramientas que provee:

- Preparación de datos, imputación, centrado/ajuste de datos, remoción de predictores correlacionados, reducción de falta de simetría.
- División de datos
- Evaluación de modelos
- Selección de variables

Características de caret

- La mayoría de las herramientas de Machine Learning (ML) en R se utilizan de distinta forma y son difíciles de integrar entre sí.
- caret soluciona este problema, provee una interfaz común para acceder a un número importante de modelos y métodos de machine learning (ML).
- Se puede acceder a métodos de ML como: regresión lineal, redes neuronales,
 SVM (Support Vector Machine), randomForest, k nearest neighbors, etc.

Algoritmos de ML: estilos de aprendizaje

Aprendizaje supervisado

Algorithms

Aprendizaje no supervisado

Unsupervised Learning Algorithms

Aprendizaje semi-supervisado

Semi-supervised Learning Algorithms

Aprendizaje supervisado

Entrenamiento

Clasificación

Aprendizaje no supervisado

Set de datos

- Se utilizo un set de datos descargado de: http://www.basketball-reference.com/players/g/ginobma01.html
- Este set de datos tiene las estadísticas de juego por año de Emanuel Ginobili en la NBA.
- Se graficó la relación de Minutos Jugados (MP) y Puntos Anotados (PTS).
- El set de datos completo se puede ver en el siguiente slide.

Manu Ginobili estadísticas por juego anuales

Per Game Share & more ▼ Glossary

Season	Age	Tm	Lg	Pos	G	GS	MP	FG	FGA	FG%	3P	3PA	3P%	2P	2PA	2P%	eFG%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS
2002-03	25	SAS	NBA	SG	69	5	20.7	2.5	5.8	.438	0.7	2.1	.345	1.8	3.6	.494	.503	1.8	2.5	.737	0.7	1.7	2.3	2.0	1.4	0.2	1.4	2.5	7.6
2003-04	26	SAS	NBA	SG	77	38	29.4	4.3	10.2	.418	1.1	3.2	.359	3.1	7.1	.445	.474	3.1	3.9	.802	1.1	3.4	4.5	3.8	1.8	0.2	2.1	2.4	12.8
2004-05 *	27	SAS	NBA	SG	74	74	29.6	5.0	10.5	.471	1.3	3.5	.376	3.6	7.1	.517	.533	4.8	6.0	.803	1.0	3.4	4.4	3.9	1.6	0.4	2.3	2.6	16.0
2005-06	28	SAS	NBA	SG	65	56	27.9	4.8	10.3	.462	1.3	3.3	.382	3.5	7.0	.500	.524	4.3	5.5	.778	0.6	2.9	3.5	3.6	1.6	0.4	1.9	2.4	15.1
2006-07	29	SAS	NBA	SG	75	36	27.5	5.3	11.4	.464	1.7	4.3	.396	3.6	7.1	.505	.539	4.3	5.0	.860	0.8	3.6	4.4	3.5	1.5	0.4	2.1	2.1	16.5
2007-08	30	SAS	NBA	SG	74	23	31.1	6.1	13.3	.460	2.1	5.3	.401	4.0	8.0	.499	.540	5.1	6.0	.860	0.9	3.9	4.8	4.5	1.5	0.4	2.7	2.3	19.5
2008-09	31	SAS	NBA	SG	44	7	26.8	5.1	11.2	.454	1.6	4.8	.330	3.5	6.4	.546	.524	3.8	4.3	.884	0.5	4.0	4.5	3.6	1.5	0.4	2.0	2.0	15.5
2009-10	32	SAS	NBA	SG	75	21	28.7	5.3	12.0	.441	1.8	4.7	.377	3.5	7.4	.481	.514	4.1	4.7	.870	0.9	2.9	3.8	4.9	1.4	0.3	2.1	2.1	16.5
2010-11 *	33	SAS	NBA	SG	80	79	30.3	5.5	12.7	.433	1.9	5.5	.349	3.6	7.2	.497	.509	4.5	5.1	.871	0.5	3.2	3.7	4.9	1.5	0.4	2.2	2.0	17.4
2011-12	34	SAS	NBA	SG	34	7	23.3	4.4	8.4	.526	1.5	3.7	.413	2.9	4.7	.616	.618	2.6	3.0	.871	0.5	2.9	3.4	4.4	0.7	0.4	1.9	1.6	12.9
2012-13	35	SAS	NBA	SG	60	0	23.2	3.8	9.0	.425	1.4	3.9	.353	2.4	5.1	.480	.502	2.7	3.4	.796	0.5	2.9	3.4	4.6	1.3	0.2	2.2	1.9	11.8
2013-14	36	SAS	NBA	SG	68	3	22.8	4.3	9.2	.469	1.3	3.8	.349	3.0	5.4	.553	.541	2.4	2.8	.851	0.4	2.5	3.0	4.3	1.0	0.3	2.0	1.9	12.3
2014-15	37	SAS	NBA	SG	70	0	22.7	3.6	8.4	.426	1.3	3.7	.345	2.3	4.7	.489	.502	2.1	2.9	.721	0.4	2.6	3.0	4.2	1.0	0.3	2.2	2.0	10.5
2015-16	38	SAS	NBA	SG	58	0	19.6	3.4	7.5	.453	1.2	3.1	.391	2.2	4.4	.496	.533	1.6	1.9	.813	0.4	2.1	2.5	3.1	1.1	0.2	1.7	1.7	9.6
2016-17	39	SAS	NBA	SG	69	0	18.7	2.5	6.4	.390	1.3	3.3	.392	1.2	3.1	.387	.491	1.2	1.6	.804	0.4	1.9	2.3	2.7	1.2	0.2	1.4	1.7	7.5
Career			NBA		992	349	25.8	4.4	9.9	.447	1.4	3.9	.370	3.0	6.0	.497	.520	3.3	4.0	.826	0.7	2.9	3.6	3.9	1.4	0.3	2.0	2.1	13.6

scatter plot: geom_point()

```
ggplot(data = manu, aes(x = MP, y = PTS)) + geom_point(size=5)
```


función train() de caret

```
model.manu_caret <- train(PTS ~ MP, data=manu, method="lm")
coef.icept <- coef(model.manu_caret$finalModel)[1]
coef.slope <- coef(model.manu_caret$finalModel)[2]
pl <- ggplot(data = manu, aes(x = MP, y = PTS))
pl <- pl + geom_point(size=5)
pl <- pl + geom_abline(slope = coef.slope, intercept = coef.icept, color="red")
pl</pre>
```

Parámetros de la función train():

- Dataset con el que se va a trabajar
- La variable que se desea predecir (PTS)
- La variable de entrada (MP)
- El método de ML que se desea utilizar (lm o linear regression)
- La sintaxis PTS ~ MP le dice a caret "Quiero predecir PTS utilizando como base una sola variable, MP"

caret con método "lm" o linear regression

geom_smooth con method="lm"

```
ggplot(data = manu, aes(x = MP, y = PTS)) + geom_point(size=5) + geom_smooth(method="lm")
```


geom_smooth con method="loess"

 $ggplot(data = manu, aes(x = MP, y = PTS)) + geom_point(size=5) + geom_smooth(method="loess")$

loess:

Local Polynomial Regression Fitting

MP vs PTS y Edad por color

 $ggplot(data = manu, aes(x = MP, y = PTS, color=Age)) + geom_point(size=5) + geom_smooth(method="loess")$

Análisis con kmeans, 3 clases

Análisis con kmeans, 4 clases

Código Kmeans

```
manu d <- dplyr::select(data=manu, Age, MP)
manuCluster <- kmeans(manu_d, 4, nstart=20)
manuCluster$cluster <- as.factor(manuCluster$cluster)
pl <- ggplot(manu, aes(MP, PTS, color=manuCluster$cluster))
pl <- pl + geom_point(size=5)
pl <- pl + scale_color_discrete(name="Kmeans 4 clases\npor edad",
      breaks=c("1","2","3","4"),
      labels=c("36.5","31.5","27.5","25"))
рl
```

Referencias

- http://sharpsightlabs.com/blog/quick-introduction-machine-learning-r-caret/
- http://www.cookbook-r.com/Graphs/Legends_(ggplot2)/
- https://datascienceplus.com/k-means-clustering-in-r/
- http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
- https://shiny.rstudio.com/gallery/kmeans-example.html