MAS374 Optimization Theory Homework #6

20150597 Jeonghwan Lee

Department of Mathematical Sciences, KAIST

November 17, 2021

Problem 1 (Exercise 9.3 in [1]).

(1) Given any two distinct points $\mathbf{p} \neq \mathbf{q} \in \mathbb{R}^n$, we denote the closed line segment whose endpoints are \mathbf{p} and \mathbf{q} by

$$\mathcal{L}(\mathbf{p}; \mathbf{q}) := \{(1 - \theta) \mathbf{p} + \theta \mathbf{q} : \theta \in [0, 1]\}.$$

Then,

$$D_* := (\text{the minimum distance from a point } \mathbf{a} \in \mathbb{R}^n \text{ to the line segment } \mathcal{L}(\mathbf{p}; \mathbf{q}))$$

$$= \min \{ \|(1 - \lambda)\mathbf{p} + \lambda\mathbf{q} - \mathbf{a}\|_2 : \lambda \in [0, 1] \}$$

$$= \min \{ \|\lambda(\mathbf{q} - \mathbf{p}) + (\mathbf{p} - \mathbf{a})\|_2 : \lambda \in [0, 1] \}.$$
(1.1)

So it suffices to choose $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$ by $\mathbf{c} := \mathbf{q} - \mathbf{p}$ and $\mathbf{d} := \mathbf{p} - \mathbf{a}$. Note that

$$D_* = \min \{ \|\lambda \{ (\mathbf{q} - \mathbf{a}) - (\mathbf{p} - \mathbf{a}) \} + (\mathbf{p} - \mathbf{a}) \|_2 : \lambda \in [0, 1] \}$$

$$= (\text{the minimum distance from a point } \mathbf{0} \in \mathbb{R}^n \text{ to the line segment } \mathcal{L} (\mathbf{p} - \mathbf{a}; \mathbf{q} - \mathbf{a})).$$

In words, the current scenario is completely equivalent with the circumstance occurred by translating three points $\mathbf{p}, \mathbf{q}, \mathbf{a} \in \mathbb{R}^n$ by $-\mathbf{a} \in \mathbb{R}^n$. So one can always assume that $\mathbf{a} = \mathbf{0}$ without loss of generality!

(2) Hereafter, we assume that $\mathbf{a} = \mathbf{0}$ without loss of generality. Then, one can interpret the optimization problem (1.1) in the following equivalent way:

$$D_*^2 = \min \{ f_0(\theta) : \theta \in [0, 1] \}, \tag{1.2}$$

where $f_0(\theta) := \|\theta(\mathbf{q} - \mathbf{p}) + \mathbf{p}\|_2^2$ for $\theta \in \mathbb{R}$. Doing some straightforward algebra, we arrive at

$$f_0(\theta) = \|\mathbf{p} - \mathbf{q}\|_2^2 \left\{ \theta - \frac{\mathbf{p}^\top (\mathbf{p} - \mathbf{q})}{\|\mathbf{p} - \mathbf{q}\|_2^2} \right\}^2 + \mathbf{q}^\top \mathbf{q} - \frac{\left\{ \mathbf{q}^\top (\mathbf{p} - \mathbf{q}) \right\}^2}{\|\mathbf{p} - \mathbf{q}\|_2^2}, \ \forall \theta \in \mathbb{R}.$$

Then it's clear that

$$\operatorname{argmin} \left\{ f_0(\theta) : \theta \in \mathbb{R} \right\} = \left\{ \frac{\mathbf{p}^\top (\mathbf{p} - \mathbf{q})}{\|\mathbf{p} - \mathbf{q}\|_2^2} \right\}.$$

So in order to solve the optimization problem (1.2), we consider the following three cases:

(i) $\theta^* > 1$: One can easily see that $\theta^* > 1$ if and only if $\mathbf{p}^{\top} \mathbf{q} > \mathbf{q}^{\top} \mathbf{q}$ and

$$\operatorname{argmin} \{ f_0(\theta) : \theta \in [0, 1] \} = \{ 1 \}. \tag{1.3}$$

Therefore, we have

$$D_*^2 = f_0(1) = \mathbf{q}^\top \mathbf{q},\tag{1.4}$$

provided that $\mathbf{p}^{\top}\mathbf{q} > \mathbf{q}^{\top}\mathbf{q}$;

(ii) $\theta^* < 0$: One can easily observe that $\theta^* < 0$ if and only if $\mathbf{p}^{\top} \mathbf{q} > \mathbf{p}^{\top} \mathbf{p}$ and

$$\operatorname{argmin} \{ f_0(\theta) : \theta \in [0, 1] \} = \{ 0 \}. \tag{1.5}$$

Therefore, we get

$$D_*^2 = f_0(0) = \mathbf{p}^{\top} \mathbf{p}, \tag{1.6}$$

provided that $\mathbf{p}^{\top}\mathbf{q} > \mathbf{p}^{\top}\mathbf{p}$;

(iii) $0 \le \theta^* \le 1$: One can easily recognize that $0 \le \theta^* \le 1$ if and only if $\mathbf{p}^\top \mathbf{q} \le \min \{\mathbf{p}^\top \mathbf{p}, \mathbf{q}^\top \mathbf{q}\}$ and

$$\operatorname{argmin} \left\{ f_0(\theta) : \theta \in [0, 1] \right\} = \left\{ \theta^* \right\} = \left\{ \frac{\mathbf{p}^\top (\mathbf{p} - \mathbf{q})}{\|\mathbf{p} - \mathbf{q}\|_2^2} \right\}. \tag{1.7}$$

Therefore, we get

$$D_*^2 = f_0(\theta^*) = \mathbf{q}^\top \mathbf{q} - \frac{\left\{ \mathbf{q}^\top (\mathbf{p} - \mathbf{q}) \right\}^2}{\|\mathbf{p} - \mathbf{q}\|_2^2}, \tag{1.8}$$

provided that $\mathbf{p}^{\top}\mathbf{q} \leq \min \{\mathbf{p}^{\top}\mathbf{p}, \mathbf{q}^{\top}\mathbf{q}\}.$

Taking three pieces (1.4), (1.6), and (1.8) collectively, one has

$$D_*^2 = \begin{cases} \mathbf{q}^{\top} \mathbf{q} - \frac{\left\{\mathbf{q}^{\top} (\mathbf{p} - \mathbf{q})\right\}^2}{\|\mathbf{p} - \mathbf{q}\|_2^2} & \text{if } \mathbf{p}^{\top} \mathbf{q} \le \min \left\{\mathbf{p}^{\top} \mathbf{p}, \mathbf{q}^{\top} \mathbf{q}\right\}; \\ \mathbf{q}^{\top} \mathbf{q} & \text{if } \mathbf{p}^{\top} \mathbf{q} > \mathbf{q}^{\top} \mathbf{q}; \\ \mathbf{p}^{\top} \mathbf{p} & \text{if } \mathbf{p}^{\top} \mathbf{q} > \mathbf{p}^{\top} \mathbf{p}. \end{cases}$$
(1.9)

(3) Lastly, we would like to give you some geometric interpretations of the result in part (2).

Case #1. $\theta^* > 1$: This case corresponds to the case where $\mathbf{p}^{\top}\mathbf{q} > \mathbf{q}^{\top}\mathbf{q}$. For this case, the closed point on the line segment $\mathcal{L}(\mathbf{p}; \mathbf{q})$ from the minimum-distance point of the affine line $\{(1 - \theta) \mathbf{p} + \theta \mathbf{q} : \theta \in \mathbb{R}\}$ from $\mathbf{0} \in \mathbb{R}^n$, $(1 - \theta^*) \mathbf{p} + \theta^* \mathbf{q}$, is precisely \mathbf{q} . By considering the Pythagorean theorem, the closest point on the line segment $\mathcal{L}(\mathbf{p}; \mathbf{q})$ from $\mathbf{0} \in \mathbb{R}^n$ becomes \mathbf{q} . See Figure 1 for detailed visualization.

Case #2. $\theta^* < 0$: This case corresponds to the case where $\mathbf{p}^{\top}\mathbf{q} > \mathbf{p}^{\top}\mathbf{p}$. For this case, the closed point on the line segment $\mathcal{L}(\mathbf{p}; \mathbf{q})$ from the minimum-distance point of the affine line $\{(1 - \theta)\mathbf{p} + \theta\mathbf{q} : \theta \in \mathbb{R}\}$ from $\mathbf{0} \in \mathbb{R}^n$, $(1 - \theta^*)\mathbf{p} + \theta^*\mathbf{q}$, is precisely \mathbf{p} . By considering the Pythagorean theorem, the closest point on the line segment $\mathcal{L}(\mathbf{p}; \mathbf{q})$ from $\mathbf{0} \in \mathbb{R}^n$ becomes \mathbf{p} . See Figure 2 for detailed visualization.

Case #3. $0 \le \theta^* \le 1$: This case corresponds to the case where $\mathbf{p}^{\top}\mathbf{q} \le \min\{\mathbf{p}^{\top}\mathbf{p}, \mathbf{q}^{\top}\mathbf{q}\}$. For this case, the minimum-distance point of the affine line $\{(1-\theta)\mathbf{p} + \theta\mathbf{q} : \theta \in \mathbb{R}\}$ from $\mathbf{0} \in \mathbb{R}^n$, $(1-\theta^*)\mathbf{p} + \theta^*\mathbf{q}$, lies on the line segment $\mathcal{L}(\mathbf{p};\mathbf{q})$. So the closest point on the line segment $\mathcal{L}(\mathbf{p};\mathbf{q})$ from $\mathbf{0} \in \mathbb{R}^n$ is $(1-\theta^*)\mathbf{p} + \theta^*\mathbf{q}$. See Figure 3 for detailed visualization.

This completes the geometric interpretation of the result in the part (2).

Figure 1: The case for which $\theta^* > 1 \Leftrightarrow \mathbf{p}^\top \mathbf{q} > \mathbf{q}^\top \mathbf{q}$.

Figure 2: The case for which $\theta^* < 0 \Leftrightarrow \mathbf{p}^\top \mathbf{q} > \mathbf{p}^\top \mathbf{p}$.

Figure 3: The case for which $0 \le \theta^* \le 1 \Leftrightarrow \mathbf{p}^\top \mathbf{q} \le \min \{ \mathbf{p}^\top \mathbf{p}, \mathbf{q}^\top \mathbf{q} \}.$

Problem 2 ($Exercise_{-}9.9$ in [1]).

(1) Let
$$\mathbf{A} := \begin{bmatrix} \mathbf{a}_1^\top \\ \vdots \\ \mathbf{a}_n^\top \end{bmatrix} \in \mathbb{R}_{++}^{n \times n} \text{ and } f(\cdot) : \mathcal{S} := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \succeq \mathbf{0} \text{ and } \mathbf{1}_n^\top \mathbf{x} = 1 \} \to \mathbb{R}_{++}, \text{ where } \mathbf{a} \in \mathbb{R}_n^\top \mathbf{x} = 1 \}$$

$$f(\mathbf{x}) := \min \left\{ \frac{\mathbf{a}_i^{\top} \mathbf{x}}{x_i} : i \in [n] \right\},$$

where $\mathbf{1}_n \in \mathbb{R}^n$ denotes the *n*-dimensional all-one vector. Here, we adopt the convention that $\frac{\mathbf{a}_i^{\top} \mathbf{x}}{x_i} := +\infty$ if $x_i = 0$. Since $S \subseteq \mathbb{R}_+^n$ and $f(\mathbf{x}) > 0$ for every $\mathbf{x} \in S$, it's evident that $f(\mathbf{x}) \cdot \mathbf{x} \succeq \mathbf{0}$, *i.e.*, $f(\mathbf{x}) \cdot \mathbf{x} \in \mathbb{R}_+^n$. In order to establish $\mathbf{A} \mathbf{x} \succeq f(\mathbf{x}) \cdot \mathbf{x}$, it suffices to show that

$$[\mathbf{A}\mathbf{x}]_i - f(\mathbf{x}) \cdot x_i \ge 0, \ \forall i \in [n]. \tag{2.1}$$

Indeed, this result holds since

$$[\mathbf{A}\mathbf{x}]_i - f(\mathbf{x}) \cdot x_i = \mathbf{a}_i^{\top} \mathbf{x} - f(\mathbf{x}) \cdot x_i = \begin{cases} \mathbf{a}_i^{\top} \mathbf{x} & \text{if } x_i = 0; \\ x_i \left\{ \frac{\mathbf{a}_i^{\top} \mathbf{x}}{x_i} - f(\mathbf{x}) \right\} & \text{otherwise.} \end{cases} \ge 0$$

for every $i \in [n]$ and $\mathbf{x} \in \mathcal{S}$. This completes the proof of

$$\mathbf{A}\mathbf{x} \succeq f(\mathbf{x}) \cdot \mathbf{x} \succeq \mathbf{0}, \ \forall (\mathbf{x}, \mathbf{A}) \in \mathcal{S} \times \mathbb{R}^{n \times n}_{++}.$$
 (2.2)

(2) Let $\mathbf{w} \in \mathbb{R}^n_{++}$ be a left eigenvector of \mathbf{A} corresponding to a dominant eigenvalue $\lambda = \rho(\mathbf{A}) > 0$, *i.e.*, $\mathbf{w}^{\top} \mathbf{A} = \lambda \mathbf{w}^{\top}$. Since $\mathbf{A} \mathbf{x} - f(\mathbf{x}) \cdot \mathbf{x} \in \mathbb{R}^n_+$ for all $\mathbf{x} \in \mathcal{S}$, one has

$$\mathbf{w}^{\top} \left\{ \mathbf{A} \mathbf{x} - f(\mathbf{x}) \cdot \mathbf{x} \right\} = \left(\mathbf{w}^{\top} \mathbf{A} \right) \mathbf{x} - f(\mathbf{x}) \left(\mathbf{w}^{\top} \mathbf{x} \right) = \left\{ \lambda - f(\mathbf{x}) \right\} \left(\mathbf{w}^{\top} \mathbf{x} \right) \ge 0$$

for every $\mathbf{x} \in \mathcal{S}$. Since $\mathbf{w}^{\top}\mathbf{x} > 0$ for every $\mathbf{x} \in \mathcal{S}$, we obtain $f(\mathbf{x}) \leq \lambda$ for all $\mathbf{x} \in \mathcal{S}$, *i.e.*,

$$\sup \{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{S} \} \le \lambda. \tag{2.3}$$

(3) Let $\mathbf{v} \in \mathbb{R}^n_{++}$ be a right eigenvector of \mathbf{A} corresponding to a dominant eigenvalue $\lambda = \rho(\mathbf{A}) > 0$, *i.e.*, $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$. Then it's clear that $\mathbf{a}_i^{\top}\mathbf{v} = \lambda v_i$ for all $i \in [n]$. Letting $\tilde{\mathbf{v}} := \frac{\mathbf{v}}{\|\mathbf{v}\|_1}$, it's clear that $\tilde{\mathbf{v}} \in \mathcal{S}$ and

$$f\left(\tilde{\mathbf{v}}\right) = \max\left\{\frac{\mathbf{a}_{i}^{\top}\tilde{\mathbf{v}}}{\tilde{v}_{i}}: i \in [n]\right\} = \max\left\{\frac{\mathbf{a}_{i}^{\top}\mathbf{v}}{v_{i}}: i \in [n]\right\} = \lambda.$$

So we arrive at

$$\sup \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{S} \right\} \stackrel{\text{(a)}}{\leq} \lambda = f(\tilde{\mathbf{v}}) \leq \sup \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{S} \right\},\,$$

where the step (a) follows from the inequality (2.3). This yields

$$\lambda = \max \{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{S} \} \quad \text{and} \quad \tilde{\mathbf{v}} \in \operatorname{argmax} \{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{S} \},$$

as desired.

References

[1]	Giuseppe	C Calafiore	and Laurent	El Ghaoui.	Optimization	models.	Cambridge	university p	oress, 2014.