1	The speed v of a	transverse wave	on a uniform	string is	given by	the expression

$$v = \sqrt{\frac{Tl}{m}}$$

where T is the tension in the string, l is its length and m is its mass.

An experiment is performed to determine the speed v of the wave. The measurements are shown in Fig. 1.1.

quantity	measurement	uncertainty		
T	1.8N	± 5%		
l	126cm	± 1%		
m	5.1g	± 2%		

Fig. 1.1

(a)	State an appropriate instrument to measure the length $\it l.$	
		[1]

(b) (i) the data in Fig. 1.1 to calculate the speed v.

$$v = \dots m s^{-1}$$
 [2]

(ii) your answer in (b)(i) and the data in Fig. 1.1 to determine the value of v, with its absolute uncertainty, to an appropriate number of significant figures.

$$v = \dots \pm \dots \pm m s^{-1}$$
 [3]