

PREINFORME PRÁCTICA: 1.

Mateo Oyuela Rivero

1. Realice un preinforme de máximo 2 páginas para llevar el día que se realizara la práctica en donde se presenten las características de un montaje de EEG, que tipos de montaje existen y cuáles son las recomendaciones a tener en cuenta durante la adquisición de señales de EEG en reposo.

Marco Teórico:

El electroencefalograma (EEG) es una prueba diagnóstica no invasiva que registra la actividad eléctrica del cerebro. Se realiza colocando electrodos en el cuero cabelludo del paciente para detectar y registrar los impulsos eléctricos generados por las células cerebrales, conocidas como neuronas. Estos impulsos eléctricos se registran como patrones de ondas cerebrales y proporcionan información sobre la actividad cerebral, como la función cerebral básica y la presencia de anomalías eléctricas.

Características del Montaje de EEG:

- Electrodos: Los electrodos son dispositivos conductores que se colocan en el cuero cabelludo para registrar la actividad eléctrica cerebral. Se utilizan diferentes sistemas de colocación de electrodos, como el sistema 10-20 y el sistema 10-10, que proporcionan una distribución espacial uniforme de los electrodos.
- Amplificación: Las señales eléctricas registradas por los electrodos son amplificadas para mejorar la calidad de la señal
 y facilitar su análisis.
- **Filtros**: Se aplican filtros para eliminar el ruido eléctrico no deseado y resaltar las frecuencias de interés en la actividad cerebral. Los filtros suelen incluir un filtro pasa bajos para eliminar el ruido de alta frecuencia y un filtro pasa altos para eliminar el ruido de baja frecuencia.
- Referencia y Tierra: Seleccionar adecuadamente la referencia y la tierra es crucial para garantizar una medición precisa.
 La referencia se elige típicamente como un punto neutro en el cuero cabelludo, mientras que la tierra se conecta a una ubicación no cerebral, como el lóbulo de la oreja o la frente.

TIPOS DE MONTAJE:

1. Montaje Monopolar:

- En este tipo de montaje, cada electrodo se refiere a una ubicación común en el cuero cabelludo del paciente, como el lóbulo de la oreja o el punto Cz.
- Los electrodos registran la actividad eléctrica en relación con una referencia común, que puede ser un punto neutro en el cuero cabelludo o un electrodo específico.
- Este montaje proporciona una visión general de la actividad cerebral en todo el cuero cabelludo, pero puede ser menos sensible para detectar cambios locales en la actividad eléctrica.

2. Montaje Bipolar:

- En el montaje bipolar, la señal se registra entre dos electrodos adyacentes.
- Este montaje permite una medición más localizada de la actividad cerebral, ya que registra la diferencia de potencial entre dos puntos específicos en el cuero cabelludo.
- Se utiliza para detectar cambios más sutiles en la actividad eléctrica y para investigar la actividad en áreas cerebrales específicas.

3. Montaje Referenciado a Promedio:

- En este tipo de montaje, se utiliza un promedio de varios electrodos como referencia.
- El objetivo es reducir el ruido y mejorar la calidad de la señal al promediar la actividad eléctrica de múltiples puntos en el cuero cabelludo.
 - Este montaje es útil para investigaciones que requieren una alta resolución espacial y una buena relación señal-ruido.

Recomendaciones para la Adquisición de Señales en Reposo:

- 1. Ambiente Controlado: Es importante realizar las mediciones en un ambiente controlado para minimizar la interferencia externa y garantizar la comodidad del sujeto.
- 2. Posición del Sujeto: El sujeto debe estar relajado y en una posición cómoda durante la adquisición de señales en reposo para evitar artefactos en los datos.
- 3. Tiempo de Registro: Se recomienda registrar las señales durante un período de tiempo suficiente para capturar la actividad cerebral en reposo de manera consistente.
- 4. Calibración y Verificación: Antes de comenzar la adquisición de señales, es importante calibrar el equipo y verificar la impedancia de los electrodos para garantizar mediciones precisas.