Pregunta 1 (3 puntos)

Sea c_{00} , el subespacio de ℓ^2 de las sucesiones complejas que tienen sólo un número finito de términos no nulos, dotado de la restricción del producto interno de ℓ^2 . Sea F el siguiente subconjunto de c_{00} :

$$F = \left\{ x = \left\{ x_n \right\}_{n=1}^{\infty} \in c_{00} \colon \sum_{n=1}^{\infty} (x_n/n^2) = 0 \right\}$$

Demuestre que

- a) F es un subespacio vectorial cerrado de c_{00} .
- b) $F^{\perp \perp} \neq F$ y $c_{00} \neq F \oplus F^{\perp}$.

Pregunta 2 (3 puntos)

Considere en el espacio de Hilbert $L^2[0,1]$ el conjunto,

$$V = \left\{ f \in L^2[0,1] : \int_0^1 f(t)dt = \int_0^{1/2} f(t)dt = 0 \right\}.$$

- a) Demuestre que V es un subespacio vectorial cerrado de $L^2[0,1]$. Determine una base ortonormal de V^{\perp} .
- b) Calcule la proyección ortogonal de f sobre V siendo f(t)=t si $t\in [0,1]$ y la distancia de f a V.

Pregunta 3 (2 puntos)

En el espacio $L^2[-1,1]$ se define la aplicación

$$T: L^2[-1,1] \longrightarrow L^2[-1,1]$$

$$f \longmapsto Tf$$

tal que $(Tf)(x) = \int_{-1}^{1} (x^3 + t^3 + i3xt)f(t)dt$.

Demuestre que T es un operador lineal acotado y obténgase su adjunto.

Pregunta 4 (2 puntos)

Dadas las series trigonométricas,

$$\sum_{n=1}^{\infty} \frac{\cos nt}{\pi + n} \quad y \quad \sum_{n=2}^{\infty} \frac{\cos nt}{\sqrt{n-1}},$$

determine, para cada una de las series, si la serie define una función de $L^2[0,2\pi]$. Razone la respuesta.