AN OPEN-SOURCE TOOLBOX FOR MULTIPHASE FLOW SIMULATION IN PEM FUEL CELLS

Jean-Paul Kone¹

1. INTRODUCTION

An open-source code toolbox for the numerical simulation of multiphase flow in a PEM fuel cell has been developed using OpenFOAM. The toolbox includes a main program, relevant library classes, and a constructed simulation case for a co-flow galvanostatic simulation. The mathematical model accounts for liquid water formation, transport, and their effects in the fuel cell.

2. SOURCE CODE

2.1 LIBRARY SOURCE CODE

The libraries of the pemfcModels-4.0 toolbox are in the lib/ directory. Table 1 contains a complete list of the libraries (the names are reasonably descriptive).

Table 1 Libraries of the pemfcModels-4.0 toolbox

Library name	Description
diffusivityModels	Diffusivity models used for laminar incompressible flow with multi-component mixtures and/or porous media
myContinuityErrs	Calculates and prints the continuity errors
MyMeshWave	Wave propagation of information through the grid
myPatchToPatchInterpolation	Interpolation class dealing with transfer of data between two primitivePatches
myPorosityModel	Porosity models with input/output functionality
pemfcSpecie	A set of electrochemical properties for a PEM fuel cell species
phaseModel	Incompressible phase model for the pemfcMultiphaseNonIsothermalSolver
polyToddYoung	Todd-Young polynomials for gases thermodynamics properties calculation
regionProperties	Holds region information for coupled region simulations
smearPatchToMesh	Smears data from patch to mesh, giving each cell the value of the nearest patch face

¹ International Doctoral Innovation Centre IDIC, University of Nottingham, Ningbo 315100, China.

2.2 SOLVER SOURCE CODE

The coded file program starts in the main function, in $\verb|pemfcMultiphaseNonIsothermalSolver.c|, through the model execution. The$ multiphase flow model then begins by including the required OpenFOAM source code files to check the case path, and to read the system/controlDict file and instantiate the Time object runTime. This is followed by the creation of meshes, the reading of properties, and the creation of fields for the global cell mesh and the region meshes. Table 2 contains the list of the different components of the solver code, along with a brief description of each component.

Table 2 Description of solver source code

Folder/file name	Description
pemfcMultiphaseNon- IsothermalSolver.C	Solver that can simulate the multiphase non-isothermal operation of PEM fuel cell
constants	Holds the physical constant values (e.g. universal gas constant, Faraday's constant, etc.)
createFields	Creates field variables (e.g. temperature, velocity, pressure, etc.) for the entire cell, and for the individual cell components. Fields related to liquid water transport are added (e.g. liquid water saturation field, etc.)
createMesh	Creates mesh for the entire cell, and for the individual cell components.
createSpecies	Creates the individual gas species in the fuel (e.g. hydrogen and water vapour) on the anode side, and in air (e.g. oxygen, nitrogen and water vapour) on the cathode side. Calculates the mole fraction fields from the mass fractions fields of the gas species
diffusivity	Creates the gas diffusivity models of both fuel and air and calculates the diffusivity values for the individual gas species. Liquid water diffusivity is added
electrochemistry	Calculates electrochemistry (e.g. cell current density, cell voltage, Nernst potential, overpotentials, electrochemical heating, etc.). The heat source due to phase change is added
energyTransport	Solves the energy equation for the global mesh. The effects of liquid water are considered
liquidWaterTransport	Solves liquid water saturation on both the anode and the cathode sides. All required fields such as capillary pressure, phase change rate, etc. are also calculated
mapping	Map regional fields to global mesh to solve the energy equation. Map global temperature to fluid region meshes to calculate local fluid density
momentumTransport	Solves pressure and momentum using the PISO iteration for both fuel and air. Following the solution, the Reynolds numbers are calculated (this is informative only). The mass source due to phase change (phase change rate) is added to the mass conservation equation

Table 2 (Continued)

Folder/file name	Description
multiSpeciesTransport	Solves the species transport equation for each specie other than the background (inert) specie. The mass fraction of the inert specie is computed by subtracting the sum of the mass fractions of all the other species from unity
patch	Sets global variables for the IDs of many patches that are frequently referenced. Creates patch to patch interpolation for interpolating mole fraction fields of fuel on the air since electrochemistry is assumed to occur on air/electrolyte interface
physicalProperties	Computes physical properties such as thermal conductivity, dynamic viscosity and density for both fuel and air
readParameters	Reads the activation parameters
readProperties	Reads properties of the entire cell and individual cell components, as well as properties of the reactants gases and the reaction. Liquid water thermodynamic properties are added
tools	Holds various tools for function integration, Ridder's method of root finding, etc.

2.3 COMPILING THE SOURCE CODE

Assuming OpenFOAM version 4.0 is installed, with the environmental variables set. To compile the library and application source code, go to:

pemfcModels-4.0/multiPhaseNonIsothermal

directories and run the (Allwmake) script. To do this, type (./Allwmake) at the command terminal. This should generate the shared object library libMultiphasePEMFC.so in the \$FOAM_USER_LIBBIN directory and application executable

pemfcMultiphaseNonIsothermalSolver in the \$FOAM_USER_APPBIN directory.

A lnInclude/ directory, containing links to all the lib class files, will appear in the lib/ directory.

3. MODEL RUN

3.1 RUNNING A SIMULATION

Assuming OpenFOAM version 4.0 is installed, with the environmental variables set and the

pemfcMultiphaseNonIsothermalSolver application already compiled, the command (make run) will run the constructed simulation case from the terminal.

The command

(pemfcMultiphaseNonIsothermalSolver | tee log.run)

will redirect the output that is normally directed to Standard Out, to a file when the model is run by typing the executable name.

After the model has run to completion, VTK files for visualization, e.g. with ParaView, can be created using the Makefile file by typing (make view) at the command line to generate VTK files for the last output step and (make viewAll) to get VTK files for all output directories. Otherwise, the (paraFoam) utility supplied with OpenFOAM can be invoked directly for visualization of results with ParaView.

3.2 SIMULATION INPUTS

Runtime inputs to the model are supplied in dictionaries in the case directory. Table 3 and 4 contain the fields variables and the parameters that must be specified. The specifications supplied for the constructed case study can be viewed in the case files.

The fvSchemes used are listed in Table 5, along with an indication of the regions in which they are applicable. The solvers and other algorithmic controls and tolerances are supplied by the fvSolution dictionary files in the system directories as given in Table 6. The table shows three sub-dictionaries in the fvSolution files: solvers, PISO, and relaxationFactors. In the solvers sub-dictionary, the settings for the linear solvers chosen to solve the discretized finite volume equations for the various fields are specified. The relaxationFactors sub-dictionary contains under-relaxation factors to improve stability. The PISO sub-dictionary controls the PISO algorithm for the simultaneous solution of pressure and momentum. Table 6 also shows in which regions the settings are applied. Note that the fvSolution file must exist in the system directory even though it may not need any sub-dictionaries.

Table 3 Simulation input parameters and properties

file constant/cellProperties	
Parameter/property	Comments
voltage	initial value of voltage
Ibar0	prescribed mean current density
fuelCellType	fuel cell type
Rhat	voltage correction coefficient
Tinit	initial temperature of fuel and air
kappaCl	electronic conductivity of catalyst layer
kappaGdl	electronic conductivity of gas diffusion layer
kappaBp	electronic conductivity of bipolar plate
rContact	contact resistance between gas diffusion layer and bipolar plate
tCl	thickness of catalyst layer
tGdl	thickness of gas diffusion layer
tBp	thickness of bipolar plate
epsilonGdl	porosity of gas diffusion layer
epsilonCl	porosity of catalyst layer
etaConConstant	concentration overpotential constant
condensationRateConstant	condensation rate constant

phaseChangeEnthalpySourceCoefficient	phase change enthalpy source coefficient
surfaceTension	surface tension
contactAngle	contact angle
absolutePermeability	absolute permeability

Table 3 (Continued)

file constant/cellProperties	
Parameter/property	Comments
anodeFluidInletPatch	anodeFluid mesh patch name for the inlet patch
anodeFluidOutletPatch	anodeFluid mesh patch name for the outlet patch
anodePatch	anodeFluid mesh patch name for the anodeFluid /electrolyte interface
anodeFluidAbpPatch	anodeFluid mesh patch name for the anodeFluid /anode bipolar plate interface
file constant/anodeFluid/anodeFlu	idProperties
Parameter/property	Comments
fuel	fuel properties sub-dictionary
rho	initial density of fuel mixture
mu	dynamic viscosity of fuel mixture
Ср	initial isobaric heat capacity of fuel mixture
k	thermal conductivity of fuel mixture
anodeLiquidWater	anodeLiquidWater properties sub- dictionary
rho	density of liquid water
mu	dynamic viscosity of liquid water
Ср	heat capacity of liquid water
k	thermal conductivity of liquid water
dHyd	hydraulic diameter for Reynolds number calculation
file constant/anodeFluid/anodeFlu	idProperties
Parameter/property	Comments
diffusivity	fuel diffusivity model sub-dictionary
file constant/anodeFluid/pemfcSpe	ciesProperties
Parameter/property	Comments
speciesList	list of gas species in the fuel mixture
Н2	properties of hydrogen
H2O	properties of water vapour
CpCoeffs	heat capacity coefficients sub-dictionary
muCoeffs	dynamic viscosity coefficients sub- dictionary
kCoeffs	thermal conductivity coefficients sub- dictionary

Table 3 (Continued)

file constant/anodeFluid/poro	sityProperties
Parameter/property	Comments
agdl	anode gas diffusion layer sub-dictionary
acl	anode catalyst layer sub-dictionary
porosity	porosity value
Ср	heat capacity
k	thermal conductivity
myDarcyForchheimerCoeffs	Darcy-Forchheimer sub-dictionary
diffusivity	diffusivity model sub-dictionary
file constant/cathodeFluid/ca	thodeFluidProperties
same as for anodeFluidProperties,	but for cathodeFluidProperties
file constant/cathodeFluid/pe	mfcSpeciesProperties
same as for fuel species, but for air species	
file constant/cathodeFluid/po	rosityProperties
same as for anodeFluid porous zones, b	out for cathodeFluid porous zones
file constant/cbp/cbpProperti	es
same as for abpProperties, but for cb	pProperties
file constant/electrolyte/act	ivationParameters
Parameter/property	Comments
i0Reference	reference exchange current density
ECathode	activation energy
alphaCathode	transfer coefficient
file constant/electrolyte/ele	ctrolyteProperties
Parameter/property	Comments
rho	density of electrolyte
Ср	heat capacity of electrolyte
k	thermal conductivity of electrolyte
sigma	initial ionic conductivity of electrolyte

Table 4 Simulation input initial fields

File	Field variable	Comments
0/k	cell thermal	May be changed to suit operating
	conductivity	conditions
0/T	cell	Inlet values = 1e-15 prevents outward
	temperature	diffusion at inlets
0/anodeFluid/	diffusivity of	Inlet value = 1e-15 prevents outward
DiffanodeLiquidWater	liquid water in	diffusion at inlet
0/ 1 77 1/1/557705 1	the anode	Inlaturation 4 of 5 minutes and a substantial
0/anodeFluid/diffH2fuel	diffusivity of hydrogen in	Inlet value = 1e-15 prevents outward diffusion at inlet
	fuel mixture	Not required if outward diffusion at
	luci illixture	inlet is not an issue. Never required for
		background specie
0/anodeFluid/p	fuel pressure	internalField and outlet boundaries at
	'	atmospheric pressure; other patches
		zeroGradient or equivalent
0/anodeFluid/rho	fuel density	Optional
0/anodeFluid/T	fuel	Optional
	temperature	
0/anodeFluid/U	fuel velocity	internalField 0 (or initialized to inlet
		value); inlet specified; outlet
		zeroGradient; cathodePatch type must allow code to set value (e.g.
		fixedValue)
0/anodeFluid/YSpfuel	mass fraction	internalField initialized to inlet value
	of specie Sp	cathodePatch must be type
		fixedGradient. Require one such file for
		each air species, e.g., YH2fuel,
		YH2Ofuel
0/cathodeFluid/	diffusivity of	Inlet value = 1e-15 prevents outward
DiffcathodeLiquidWater	liquid water in	diffusion at inlet
0/ 11 1 77 1/1/5500 /	the cathode	
0/cathodeFluid/diffO2air	diffusivity of oxygen in air	same as for 0/anodeFluid/diffH2fuel
	mixture	
0/cathodeFluid/p	air pressure	same as for 0/anodeFluid/p
0/cathodeFluid/rho	air density	same as for 0/anodeFluid/rho
0/cathodeFluid/T	air	same as for 0/anodeFluid/T
	temperature	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0/cathodeFluid/U	air velocity	same as for 0/anodeFluid/U
0/cathodeFluid/YSpair	mass fraction	same as for O/anodeFluid/YSpfuel e.g.,
	of specie Sp	YO2air, YN2air, YH2Oair

Table 5 Simulation input fvScheme settings

Operator	Scheme	Region(s)
ddtSchemes		
default	steadyState;	all
gradSchemes		
default	Gauss linear;	all
grad(p)	Gauss linear;	air, fuel
divSchemes		
default	none;	all
div(rhoCpPhi,T)	Gauss upwind;	cell
div(phiair,U)	Gauss GammaV 0.2;	air
div(phiair,y)	Gauss upwind;	air
div(phiair,S)	Gauss upwind;	air
div(phifuel,U)	Gauss GammaV 0.2;	fuel
div(phifuel,y)	Gauss upwind;	fuel
div(phifuel,S)	Gauss upwind;	fuel
laplacianSchemes		
default	none;	all
laplacian(k,T)	Gauss harmonic corrected;	cell
laplacian(mu,U)	Gauss harmonic corrected;	air, fuel
laplacian((rho A(U)), p)	Gauss linear corrected;	air, fuel
laplacian(gamma,y)	Gauss harmonic corrected;	air, fuel
laplacian(diff,y)	Gauss harmonic corrected;	air, fuel
laplacian(diff,S)	Gauss linear corrected;	air, fuel
interpolationSchemes		
default	linear;	all
interpolate(T)	harmonic;	cell, air, fuel
interpolate(k)	harmonic;	cell, air, fuel
interpolate(rho)	harmonic;	air, fuel
snGradSchemes		
default	corrected;	all
fluxRequired		
default	no;	all
Т		cell
р		air, fuel

Table 6 Simulation input fvSolution settings

Solver dictionary			
Field	Solver	Parameters	Region(s)
Т	PBiCG	preconditioner DILU;	cell
		tolerance 1e-18;	
		relTol 0.0;	
		minIter 1;	
		maxIter 5000;	
р	PCG	preconditioner DIC;	air, fuel
		tolerance 1e-9;	
		relTol 0.0;	
		minIter 1;	
		maxIter 700;	
U	PBiCG	preconditioner DILU;	air, fuel
		tolerance 1e-9;	
		relTol 0.0;	
		minIter 1;	
		maxIter 700;	
S	PBiCG	preconditioner DILU;	
		tolerance 1e-9;	
		relTol 0.0;	
		minIter 1;	
		maxIter 1000;	
Yi	PBiCG	preconditioner DILU;	
		tolerance 1e-9;	
		relTol 0.0;	
		minIter 1;	
DICO distingui		maxIter 1000;	
PISO dictionary		Malua	Denien/el
Parameter		Value	Region(s)
nIteration		0;	air, fuel
nCorrectors		2;	_
nNonOrthogonalCo	rrectors	0;	-
pRefCell		0;	1
pRefValue		0;	
relaxationFactors dictio	nary	T	15
Field		Value	Region(s)
р		0.3;	air, fuel
υ		0.7;	
S		0.5	
yi		0.5	

3.3 SIMULATION OUTPUTS

Not only the model writes selected fields to time directories in the case directory, but it also writes to Standard Out as it proceeds. The model produces time directories in the case directory, in accordance with the settings in the control dictionary For model like (system/controlDict). а steady-state pemfcMultiphaseNonIsothermalSolver, these directory time name (e.g. 60/, 120/, etc.) represent the iteration count rather than time. Field IOobjects created with the AUTO_WRITE attribute as given in Table 7, will be written to these time directories.

Table 7 Simulation outputs at time > 0

<case>/</case>	/apb/	/anodeFluid/	/cathodeFluid/	/cpb/	/electrolyte/	field variable
		anodePhaseChange-	cathodePhaseChange-			phase change enthalpy source
		EnthalpySource	EnthalpySource			
		anodePhaseChangeRate	cathodePhaseChangeRate			phase change rate
		cpfuel	cpair			heat capacity
		DiffanodeLiquidWater	DiffcathodeLiquidWater			liquid water diffusivity
		diffSpfuel	diffSpair			diffusivity of species <i>Sp</i>
		g(S)	g(S)			saturation function
*k		kfuel	kair			thermal conductivity
		ď	Q			pressure
		pcanodeLiquidWater	pccathodeLiquidWater			capillary pressure
		phifuel	phiair			velocity flux
		rho	rho			density
		ß	8			liquid water saturation
L_{*}	T	Т	T	T	T	temperature
		Ω*	Ω_*			velocity
		XSpfuel	XSpair			mole fraction of species Sp
		*YSpfuel	*YSpair			mass fraction of species Sp
Tsource						energy source
					electrochemicalH	electrochemical heating
					etaActC	activation overpotential
					etaConC	concentration overpotential
					etaOhmic	ohmic overpotential
					I	current density
					ioc	exchange current density
					ilC	limiting current density
					NernstPot	Nernst potential
					sigmaMem	ionic conductivity
					Λ	voltage

*are $\mathtt{MUST_READ}$ and thus required at time 0