	DTFT proporties.
	$\chi(n) \leftarrow \chi(e^{j\omega}) \cdot E = \chi(n)e^{-j\omega n} \cdot w = digital from Menor$
	= XR (ein) + jXT (ein). In po
	= malon / c
	= /x(ein)/e i/x(ein).
l.	DTFT Visualization regnives two plots: representation
	(X(ein)) VS W -> Magniturale Spectrum.
	(x (ein) Vs W -> phase spectrum.
2.	Inverse DTFT.
	Inverse DTFT. $X(n) = \int_{2\pi}^{\pi} \int X(e^{j\omega}) e^{j\omega n} d\omega,$ $-\pi \qquad \qquad \longrightarrow Try \text{ to prove this equation,}$ $X(e^{j\omega}) \text{ is a periodic many solution.}$
	- Toy to prove this
3 . !	X(ein) is a periodic over w & period = 27.
	$\left(\times (e^{j\omega}) = \times (e^{j(\omega + 2\pi)}) \right)$

$$\chi(n) = \frac{1}{\chi(n)} + \frac{1}{\chi(n)$$

M(n)
$$\sim N$$
 length Sequence
 N -point Sequence
 $N(n) = 0$, outside $O(n(N-1))$
 $\times (e^{jw}) = \sum_{n=0}^{N-1} \pi(n) e^{-jwn}$
 $V(e^{jw}) = \sum_{n=0}^{N-1} \pi(n) e^{-jwn}$

Haten at
$$pts:=$$
 $w_0=0$; $w_1=\frac{2\pi}{N}$; $w_2=\frac{2\pi}{N}\times 2$; $w_3=\frac{2\pi}{N}\times 2$; $w_{N-1}=\frac{2\pi}{N}$

 $\times (k) = \times \left(e^{j \frac{\pi}{N} k} \right) = \sum_{n=1}^{\infty} \chi(n) e^{-j \frac{\pi}{N} k n}$

 $X(k) = \sum_{N=1}^{k \geq 0} \lambda(k) e^{-\frac{1}{2} \frac{N}{N} k k}$

> Kth pt. D FT of M(n). As such we will have n pt. DFTs of M[n]