Analista Programador Universitario

Programación Estructurada

ESTRUCTURAS DE CONTROL

Facultad de Ingeniería Universidad Nacional de Jujuy

Indice

- Estructura y elementos de programa
- Programación Estructurada
- Teorema de la PE
- Estructuras de Control
 - Secuenciales
 - Selectivas
 - Repetitivas
- Anidamiento de Control
- Prueba de escritorio

Estructura de Programa

- Al escribir un programa, éste debe incluir al menos:
 - Nombre de programa
 - Declaración de variables y constantes
 - Inicio de programa
 - Cuerpo del programa
 - Fin de Programa

Elementos de Programa (1)

- Palabras Reservadas: palabras que tienen un significado especial para los lenguajes de programación.
- Identificadores: "nombres" que se dan a las variables, módulos, y otros elementos en un programa.
- Caracteres especiales: símbolos que tienen un significado especial. Por ejemplo: +, -, *, / se utilizan para indicar operaciones aritméticas.

Elementos de Programa (2)

- Constantes: elementos de datos que no se modifican, se nombran mediante identificadores. Por ejemplo: PI=3,14159265
- Variables: elementos de datos modificables
 - contadores, acumuladores, banderas
- Expresiones: combinación de variables, constantes y operadores.
- Instrucciones
 - secuenciales, selectivas y repetitivas (bucles)

Programación Estructurada

- Los programas tienen una estructura.
- La PE permite desarrollar programas que son más fáciles de escribir, verificar, leer y mantener.
- Técnicas de la PE:
 - Diseño Top-Down (descomposición del problema)
 - Recursos Abstractos (acciones simples ejecutables por la computadora)
 - Estructuras de Control (instrucciones secuenciales selectivas y repetitivas)

Qué hace? ¿Cómo lo hace?

Teorema de la PE

- ► El Teorema de la PE dice que un programa propio puede ser escrito usando sólo estructuras de control:
 - Secuenciales
 - Selectivas
 - Repetitivas
- Un programa es propio si:
 - tiene un único punto de entrada y salida para el control del programa, y
 - todas las instrucciones son ejecutables.

Estructuras Secuenciales (1)

Sucesión de operaciones, en la que el orden de ejecución coincide con el orden físico de aparición de las instrucciones.

Estructuras Secuenciales (2)

■ LEER, ESCRIBIR y ASIGNACIÓN (←)

```
INICIO

acciones_1
acciones_2
...
acciones_N
FIN
```


Representación

LEER **LEER** variables E (entrada) / I (input) variables **ESCRIBIR ESCRIBIR** "Mensaje", variables S (salida) / O (output) "Mensaje", variables ASIGNACIÓN (←) variable

expresión variable ← expresión

Bjemplo Secuenciales (1)

 Diseñe un algoritmo que muestre el mensaje "Programación Estructurada"

Djemplo Secuenciales (2)

Diseñe un algoritmo que muestre un valor ingresado por el usuario.


```
PROGRAMA ejemplo2

VARIABLES

num:ENTERO

INICIO

ESCRIBIR "Ingrese valor: "

LEER num

ESCRIBIR "Valor ingresado: " num

FIN
```

Bjemplo Secuenciales (3)

Diseñe un algoritmo que sume 2 valores ingresados por el usuario.

Bjemplo Secuenciales (4)

- Diseñe un algoritmo que calcule el perímetro y área de un círculo.
- Diseñe un algoritmo que determine el porcentaje de varones y el porcentaje de mujeres de un curso.
- Diseñe un algoritmo que convierta a segundos los datos de horas, minutos y segundos ingresados por el usuario.
- Diseñe un algoritmo que calcule la raíces de una ecuación cuadrática.

Estructuras Selectivas

- ¿Qué ocurre con los problemas que no pueden resolverse sólo con estructuras secuenciales?
- Muchas veces es necesario elegir caminos alternativos de acción en base a condiciones del problema.
- Estructuras Selectivas
 - Simples
 - Dobles
 - Múltiples

Selectivas Simples

► La estructura SI/ENTONCES/FIN_SI permite realizar un conjunto de acciones si la condición que se evalúa es VERDADERA, caso contrario, dichas acciones se omiten.

```
SI condición ENTONCES
acciones_1
acciones_2
...
acciones_N
FIN SI
```


Selectivas Dobles

La estructura SI/ENTONCES/SINO/FIN_SI presenta 2 caminos alternativos de acción, que se eligen según el valor de una condición (VERDADERA o FALSA).

```
SI condición ENTONCES
acciones_1
SINO
acciones_2
FIN_SI
```


Selectivas Múltiples (1)

- La estructura SEGÚN/HACER/FIN_SEGÚN elige las acciones a ejecutar entre n caminos alternativos.
- La elección del camino se basa en una expresión de tipo ordinal que puede tomar n valores distintos.

Selectivas Múltiples (2)

Bjemplo Selectivas (1)

Diseñe un algoritmo que determine si un número es par.


```
PROGRAMA ejemplo4

VARIABLES

num:ENTERO

INICIO

ESCRIBIR "Ingrese valor: "

LEER num

SI num mod 2 = 0 ENTONCES

ESCRIBIR "El valor es PAR"

FIN_SI

FIN
```

Bjemplo Selectivas (2)

Diseñe un algoritmo que determine el mayor de 2 valores.


```
PROGRAMA ejemplo5
VARIABLES
   num1, num2:ENTERO
INICIO
   ESCRIBIR "Ingrese valores: "
   LEER num1, num2
   SI num1 > num2 ENTONCES
        ESCRIBIR "El mayor es: " num1
   SINO
        ESCRIBIR "El mayor es: " num2
   FIN_SI
FIN
```

Bjemplo Selectivas (3)

Diseñe un algoritmo que indique si un dígito pertenece al sistema binario (0 ó 1) o no.

Bjemplo Selectivas (4)

Diseñe

- a. un algoritmo que, dados 2 valores ingresados por el usuario, determine si son iguales o no.
- b. un algoritmo que determine si un carácter ingresado por el usuario es una minúscula o no.
- c. un algoritmo que determine si un número ingresado por el usuario es impar y positivo.
- d. Diseñe un algoritmo que calcule la raíces de una ecuación cuadrática. Controle que el cálculo sea posible.

Anidamiento

- La PE permite combinar las estructuras de control básicas de manera flexible.
- Una estructura de control puede contener otras estructuras. Esto se llama anidamiento de estructuras de control.
- Reglas de anidamiento
 - la estructura interna debe quedar completamente incluida dentro de la externa, y
 - no puede existir solapamiento de estructuras.

Anidamiento Válido

Ejemplos

```
SI condición1 ENTONCES
       acción1
SINO
       SI condición2 ENTONCES
              acción2
       SINO
              SI condición3 ENTONCES
                     acción3
              SINO
                     acción4
              FIN_SI
       FIN SI
FIN_SI
```

```
SI condición 1 ENTONCES
    SI condición_2 ENTONCES
        acciones
    SINO
        acciones
   FIN SI
SINO
  SI condición_3 ENTONCES
        acciones
   FIN SI
FIN_SI
SI condición1 ENTONCES
       acción1
SINO
       SEGÚN valor HACER
          CASO 1: acciones
         CASO 2: acciones
          CASO 3: acciones
          CASO N: acciones
          DE OTRO MODO: acciones
       FIN_SEGUN
FIN_SI
```

Anidamiento Inválido

Ejemplos

```
SI condición1 ENTONCES

acción1

SINO

SI condición2 ENTONCES

acción2

SI condición3 ENTONCES

acción3

FIN_SI

SINO

acción4

FINSI
```

```
CASO 1: acciones
CASO 2: acciones
CASO 3: acciones
...
CASO N: acciones
...
CASO N: acciones
DE OTRO MODO: acciones
N_SEGUN
FIN_SI
```

Bjemplo Anidamiento

Diseñe

- a. un algoritmo que determine si 2 valores ingresados por el usuario son iguales o siendo distintos cuál es el mayor.
- b. un algoritmo que determine si un valor ingresado por el usuario es positivo, negativo o cero.
- c. un algoritmo que determine si un carácter ingresado por el usuario es minúscula, mayúscula o un símbolo especial.
- d. un algoritmo que, dados los lados de un triángulo, determine si se trata de un triángulo equilátero, isósceles o escaleno.

Prueba de Escritorio (1)

- La prueba de escritorio permite comprobar, en tiempo de diseño, el comportamiento de un algoritmo.
- Consiste en analizar instrucción a instrucción el algoritmo, registrando los cambios de las variables y condiciones.
- Es conveniente utilizar datos representativos del problema y también valores de excepción o no esperados.

Prueba de Escritorio (2)

a>b

a,b,c/

b,a,c/

b>a Y b>c

 Diseñe un algoritmo que muestre, en orden creciente, 3 valores ingresados por el usuario.

Proceso ejemplo

Prueba de Escritorio (3)

Realice la prueba de escritorio para los valores a=2, b=3 c=1

Prueba de Escritorio (4)

Realice la prueba de escritorio para los valores a=2, b=1 c=3

Prueba de Escritorio (5)

Realice la prueba de escritorio para los valores a=5, b=7 c=5

Bibliografía

- Sznajdleder, Pablo Augusto. Algoritmos a fondo. Alfaomega. 2012.
- López Román, Leobardo. Programación estructurada y orientada a objetos. Alfaomega. 2011.
- De Giusti, Armando et al. Algoritmos, datos y programas, conceptos básicos. Editorial Exacta, 1998.
- Joyanes Aguilar, Luis. Fundamentos de Programación. Mc Graw Hill. 1996.
- Joyanes Aguilar, Luis. Programación en Turbo Pascal. Mc Graw Hill. 1990.