1) (опр. первообразной. Сформулировать свойства первообразной и неопределенного интеграла) Onp. Пусть f(x) и F(x)- заданы на пром. I F(x) назыв первообразной ф-ции f(x) если $\forall x \in I (F(x))'=f(x)$ Св-ва П 1)Если F(x)-первооб. f(x) то и F(x)+с явл. первооб. ƒ(x) где С **є** IR. 2)Если ф-иии F(x) и G(x) –первообр одной и той же фции f(x) то F(x)-G(x)=C С ϵ IR Свойства НИ: 1)Если F(x) первообр f(x), то и $\int f(x)dx = F(x) + \mathcal{C}$ где С – произвольная константа $2) \left(\int f(x) dx \right)' = f(x),$ 3) $d \int f(x) dx = f(x) dx$ $4) \int 1 df(x) = F(x) + C$ 5) $\int \alpha f(x) dx = \alpha \int f(x) dx \quad \forall \ a \in IR, \ \alpha \neq 0$

4 (Св-ва опр. интеграла. Доказать теорему об оценке опр. интеграла)

6) $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx$

- Св-ва : 1 Линейность: Пусть $f_1(x)$ и $f_2(x)$ интегрируемы на [a,b], A_1 и A_2 – произвольн. числа. Тогда $A_1\,f_1(x)$ + $A_2\,f_2(x)$ так же интегр. на [a,b]; $\int (A_1 f_1(x) + A_2 f_2(x)) dx = A_1 \int f_1(x) dx + A_2 \int f_2(x) dx$ 2.Аддитивность. Пусть функция f(x) интегрируема на отрезках [a, c] и [c, b]. Тогда она интегрируема и на отрезке [a, b], причем $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx;$ 3.Ориентирован. промежутка интегрир. $\int_a^b f(x)dx = -\int_b^a f(x)dx$ Пусть функция f(x) интегрируема на отрезках [a, b] тогда верно равенство **Теорема:** Пусть f(x) интегрируема на [a;b] и m≤f(x)≤M для любых х принадлежащих [a;b], тогда: $m(b-a) \le {}^b f_a f(x) dx \le M(b-a)$ Док-во: (Из теоремы об интегр. неравенств) следует, что если m≤f(x)≤M для любых х принадлежащих[a;b] то

7)(Определение интеграла с переменным верхним пределом.

 $_{a}^{b}$ \int_{a} $mdx \le _{a}^{b}$ \int_{a} $f(x)dx \le _{a}^{b}$ \int_{a} $Mdx \rightarrow m(b-a) \le _{a}^{b}$ \int_{a} $f(x)dx \le M(b-a)$

Доказать теорему о производной от интеграла по его верхнему пределу.)

Опр.: Пусть f(x) интегр.на [a,b],тогда $\forall x \in [a,b]$ опр.интегралом $F(x)=^x \int_a f(t) dt$,

который назыв.интегралом с переменным верхним пределом.

Теорема: Пусть f(x) интегр.на [a,b] и f(x) непрерывна в некой точке x₀∈[a,b],тогда F(x)= x[af(t)dt

диф-ема в x_0 и $F'(x_0)=f(x_0)$

Док-во: Достаточно док-ть, что

$$\begin{split} &\lim_{\Delta x \to 0} (\frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0)) = 0 \\ &\frac{|F(x_0 + \Delta x) - F(x_0)|}{\Delta x} - f(x_0)| = \frac{1}{|\Delta x|} |\int_{x_0}^{x_0 + \Delta x} f(t) dt - f(x_0) \Delta x| = \\ &\frac{1}{|\Delta x|} |\int_{x_0}^{x_0 + \Delta x} f(t) dt - f(x_0) \int_{x_0}^{x_0 + \Delta x} 1 dt | = \\ &\frac{1}{|\Delta x|} |\int_{x_0}^{x_0 + \Delta x} (f(t) - f(x_0)) dt| \leq \\ &\frac{1}{|\Delta x|} |\int_{x_0}^{x_0 + \Delta x} |f(t) - f(x_0)| dt| \end{split}$$

f(x) по усл. непрерывна в $x_0 \Longrightarrow \forall \frac{E}{2} > 0 \exists \delta > 0$: $\forall t \in ($ x_0 - δ , x_0 + δ) выполняется:

$$\begin{split} &|f(t)\text{-}f(\mathsf{x}_0)| < \frac{E}{2} \Rightarrow \\ &|\int_{x_0}^{x_0+\Delta x}|f(t) - f(x0)|dt| \leq |\int_{x_0}^{x_0+\Delta x} \frac{E}{2}dt|^2 \\ &= \frac{E}{2}|\Delta x| \Rightarrow \text{при} |\Delta x| < \delta : \frac{1}{\Delta x} \frac{E}{2}|\Delta x| = \frac{E}{2} < E \Rightarrow \forall E > 0 \ \exists \delta > 0 \end{split}$$
 take, 4To при $|\Delta x| < \delta$
$$&|\frac{F(x0+\Delta x)-F(x0)}{2} - f(x0)| < E \Rightarrow 0$$

$$\log_{\Delta x \to 0} \left| \frac{F(x0 + \Delta x) - F(x0)}{\Delta x} - f(x0) \right| = 0$$

9. (Сформулировать и доказать теорему об интегрировании подстановкой для определенного интеграла.)

Пусть f(x) непрерывна на [a;b], пусть ф(t) непрерывно диф-ма на $[\alpha, \beta]$, тогда если а = $\phi(\alpha)$ и b= $\phi(\beta)$, то справедливо равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta} f(\phi(t))\phi'(t)dt.$$

 $\int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt.$

Док-во: Пусть F(x) первообразн. ф-ии f(x) на [a;b] эта первообр сущ-ет, поскольку f9x0 непрер. на [a;b]. Тогда $F(\phi(t))' = F(\phi(t)) \phi'(t) = f(\phi(t)) \phi'(t)$. Применим формулу Ньютона-Лейбница: $\int_{b}^{a} f(x)dx = F(b) - F(a)$. Но также и $\int_{0}^{b} f(\phi(t)) \phi'(t) dt =$ $F(\phi(t)) \mid_{\alpha}^{\beta} = F(\phi(\beta)) - F(\phi(\alpha)) = F(b) - F(a)$ следовательно : $F(b) - F(a) = \int_b^a f(x) dx =$

2)(Разложение правильной рациональной дроби на простейшие. Интегрирование простейших дробей) -Любую правильн. рац.дробь вида . $Q_m = b_m(x-1)$

 C_1) $^{k_1}(x-C_2)^{k_2}\dots(x-C_i)^{k_i}\cdot(x^2+p_1x+q_1)^{e_1}(x^2+p_1x+q_2)^{e_2}\dots(x^2+p_sx+q_i)^{e_i}$ можно представить в виде суммы простейших рац.

Интегрирование простейших дробей

$$1) \int \frac{A}{(x-C_1)^k} dx$$

$$= \begin{cases} Aln|x-C_1| + C, k = 1 \\ -\frac{A}{k-1} \frac{A}{(x-C_1)^{k-1}} + C, k = 2,3 \dots \end{cases}$$

$$2) \frac{Ax+B}{(x^2+px+q)^k} dx = \int \frac{\frac{B}{2}(2x+p)-\frac{Bp}{2}}{(x^2+px+q)^k} dx = \frac{B}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \left(D - \frac{Bp}{2}\right) I_k$$

$$I_k = \begin{cases} Aln|x-C_1| + C, k = 1 \\ -\frac{A}{k-1} \frac{A}{(x-C_1)^{k-1}} + C, k = 2,3 \dots \end{cases}$$

$$J_k = \int \frac{dx}{(x^2 + px + q)^k} = \int \frac{dx}{(\left(x - \frac{p^2}{4}\right)^2 \left(q - \frac{p^2}{4}\right))^k}$$
$$= \begin{vmatrix} t = x + \frac{p}{2} \\ a^2 = q - \frac{p^2}{4} > 0 \end{vmatrix} =$$

$$\begin{split} &=\int \frac{dt}{(t^2+a^2)^k} = \int \frac{t}{(t^2+a^2)^k} - \int t \, d\frac{1}{(t^2+a^2)^k} = \frac{t}{(t^2+a^2)^k} + \\ &2k \int \frac{t}{(t^2+a^2)^k+1} = \frac{t}{(t^2+a^2)^k} + 2k \int (\frac{t}{(t^2+a^2)^{k+1}} - \frac{a^2}{(t^2+a^2)^{k+1}}) \mathrm{d}t = \\ &\frac{t}{(t^2+a^2)^k} + 2kJ_k - 2k\alpha^2J_k + 1 \quad \Rightarrow J_{k+1} = \frac{1}{2ka^2} * \\ &\frac{t}{(t^2+a^2)^k} + \frac{2k-1}{2ka^2} J_k \end{split}$$

 $\begin{array}{l} (t^2 4 a^2)^k \\ \frac{t}{(t^2 4 a^2)^k} + \frac{2k - 1}{2k a^2} J_k \\ \text{Однако } J_1 = \frac{dt}{t^2 + a^2} = \frac{1}{a} \arctan \frac{t}{4} + \mathsf{C} \ , \ \text{значит мы легко} \\ \text{можем найту } J_k \ , A_k \in N \ в частности \\ J_k = \int \frac{dt}{(t^2 + a^2)^2} = \frac{1}{2a^2} \frac{1}{t^2 + a^2} \frac{1}{2a^3} \arctan \frac{t}{2} + \mathsf{C} \end{array}$

5 (Св-ва опр. интеграла. Доказать теорему об оценке модуля опр. Интеграла)

- Св-ва : 1 Линейность: Пусть $f_1(x)$ и $f_2(x)$ интегрируемы на [a,b], A_1 и A_2 – произвольн. числа. Тогда $\ A_1 \ f_1(x) + A_2 \ f_2(x)$ так же интегр. на [a,b];

$$\int_{a}^{b} (A_{1}f_{1}(x) + A_{2}f_{2}(x))dx = A_{1} \int_{a}^{b} f_{1}(x)dx + A_{2} \int_{a}^{b} f_{2}(x)dx$$

2.Аддитивность<u>.</u> Пусть функция f(x) интегрируема на отрезках [a, c] и [c, b]. Тогда она интегрируема и на отрезке [a, b], причем

 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx;$

3.Ориентирован. промежутка интегрир.

 $\int_a^b f(x)dx = -\int_b^a f(x)dx$ Пусть функция f(x)

интегрируема на отрезках [a, b] тогда верно равенство Теорема: Пусть f(x) интегрируема на [a;b], тогда |f(x)| так же интегрируем на [a;b] при этом $\int_a^b f(x) dx \le \int_a^b f(x) dx$

Док-во: Интегрируемость |f(x)| очевидна следует из того, что если f(x) интегр. на [a;b] то и -f(x) интегр.на

Запишем очевидное нер-во $|\sum_{i=1}^{N} f(c) \Delta x_i| \le \sum_{i=1}^{N} f(c) |\Delta x_i|$ Поскольку для любых a1....an принадлежащих R |a1+....+an|≤|a1|+....+|an|

Переходя к пределу $\lambda(r) -> 0$ получим : $| {}^b \int_a f(x) dx | \le {}^b \int_a f(x) dx | \ge {}^b \int_a f(x) dx | \le {}^b$

8. (Сформулировать свойства определенного интеграла. Вывести формулу Ньютона-Лейбница.)

- Св-ва : 1 Линейность: Пусть $f_1(x)$ и $f_2(x)$ интегрируемы на $[a,b], A_1$ и A_2 – произвольн. числа. Тогда A_1 $f_1(x)$ + A_2 $f_2(x)$ так же интегр. на [a,b]; $\int_{a}^{b} (A_{1}f_{1}(x) + A_{2}f_{2}(x))dx = A_{1} \int_{a}^{b} f_{1}(x)dx +$

2. Аддитивность. Пусть функция f(x) интегрируема на отрезках [a, c] и [c, b]. Тогда она интегрируема и на отрезке [a, b], причем

 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx;$

3.Ориентирован. промежутка интегрир. $\int_a^b f(x)dx = -$

 $\int_{a}^{a} f(x)dx$ Пусть функция f(x) интегрируема на отрезках [a, b] тогда верно равенство.

Теорема (формула Ньютона-Лейбница)

Пусть f(x) непрерывна на отрезке [a,b] и $\phi(x)$ — какаялибо первообразная функции f(x) на отрезке [a,b]. Тогда справедлива формула Ньютона-Лейбница $\int_a^b f(x)dx =$

Док-во: Интеграл с переменным верхним пределом $F(x) = \int_{a}^{x} f(t)dt$ также будет первообразной функции f(x) на отрезке [a,b]. Две первообразные отличаются на константу $\varphi(x) - \int_a^x f(t)dt = C$

Подставим x=a, получим $\varphi(a) - \int_a^a f(t)dt =$ $C \Rightarrow \phi(a) = C$, имеем $\phi(x) - \int_a^x f(t)dt = \phi(a)$ Подставим x=b, получим $\varphi(b) - \int_a^b f(t)dt =$ $\varphi(a) \Rightarrow \int_a^b f(t)dt = \varphi(b) - \varphi(a)$

3) (свойства опр. интеграла. Доказать теорему о сохранении определенным интегралом знака подынтегральной функции)

- Св-ва : 1 Линейность: Пусть $f_1(x)$ и $f_2(x)$ интегрируемы на [a,b], A_1 и A_2 – произвольн. числа.Тогда $A_1\,f_1(x)$ + $A_2\,f_2(x)$ так же интегр. на [a,b]; $\int_{a}^{b} (A_{1}f_{1}(x) + A_{2}f_{2}(x))dx = A_{1} \int_{a}^{b} f_{1}(x)dx +$ $A_2 \int_a^b f_2(x) dx$

2. Аддитивность. Пусть функция f(x) интегрируема на отрезках [a, c] и [c, b]. Тогда она интегрируема и на отрезке [a, b], причем

 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx;$

3. Ориентирован. промежутка интегрир

 $\int_a^b f(x)dx = -\int_b^a f(x)dx$ Пусть функция f(x) интегрируема на отрезках [a, b] тогда верно равенство 4.Теорема (о сохранении определенным интегралом

знака полынтегральной функции) Пусть f(x) интегрируема на [a, b] и $f(x) \ge 0$ и $\forall x \in [a, b]$, тогда $\int_a^b f(x)dx \ge 0$

-Доказательство $\sum_{i=1}^n f(\xi_i) \Delta x_i \geq 0$ поскольку $\Delta x_i > 0 \ u f(\xi_i) \ge 0$

 $\forall \; \xi_i \; {f \epsilon}[a,b]$, Переходя к пределу ${f \lambda}({f \tau})$ ->0 получим требуемое $\int_a^b f(x)dx \ge 0$

5. Теорема (об интегрир. нерав.)

Пусть функции $f_1\left(x\right)$ и $f_2\left(x\right)$ интегрируемы на отрезке $[a,b], f1(x) \le f2(x) \quad \forall x \in [a,b]$. Тогда $\int_a^b f_1(x) dx \le f(x)$

6. Теорема (об оценке) Пусть f(x) интегрир. на [a,b] и $m \le f(X) \le M \quad \forall x \in [a,b]$

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

7. Теорема (об оценке модуля определенного интеграла)

Пусть функция f(x) интегрируема на отрезке [a, b]. Тогда функция |f(x)| также интегрируема на этом отрезке, и $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

8. Терема(о среднем) Пусть функция f(x) непрерывна на отрезке [a,b] . Тогда $\exists \xi \in [a,b]$ такая, что $\int_{a}^{b} f(x)dx = f(\xi)(b-a)$

6 (Св-ва опр. интеграла. Доказать теорему о среднем для опр. Интеграла)

- Св-ва : 1 Линейность: Пусть $f_1(x)$ и $f_2(x)$ интегрируемы на [a,b], A_1 и A_2 – произвольн.

числа. Тогда
$$A_1 f_1(x) + A_2 f_2(x)$$
 так же интегр. на $[a,b];$
$$\int\limits_{b}^{b} \left(\mathbf{A}_1 f_1(x) + \mathbf{A}_2 f_2(x) \right) \! dx = \mathbf{A}_1 \int\limits_{b}^{b} f_1(x) dx + \mathbf{A}_2 \int\limits_{b}^{b} f_2(x) dx$$

2.Аддитивность. Пусть функция f(x) интегрируема на отрезках [а, с] и [с, b]. Тогда она интегрируема и на отрезке [a, b], причем

 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx;$

3. Ориентирован. промежутка интегрир.

 $\int_a^b f(x)dx = -\int_b^a f(x)dx$ Пусть функция f(x) интегрируема на отрезках [a, b] тогда верно

Теорема: Пусть f(x) непрерывна на [a;b], тогда существуе с принадлежащие [a;b] такое что b [af(x)dx=f(c)(b-a) Док-во: Из свойства ф-ий непрерывных на отр. следует. что f(x) достигает на [a;b] своего максимума М и минимума m. И принимает все значения на [m;M] (m≤f(x)≤M) для любых х принадлежавших [a;b]->(Из теоремы об интегр. неравенств) $m(b-a) \le {}^{b} \int_{a} f(x) dx \le M(b-a) --> m \le {}^{b} \int_{a} f(x) dx * (1/(b-a)) \le M -->$ существует с принадлежащие [a;b] такое что $_{a}^{b} \int_{a}^{b} f(x) dx^{*}(1/(b-a)) = f(c) --> _{a}^{b} \int_{a}^{a} f(x) dx = f(c)(b-a)$

10.(Сформулировать и доказать теорему об интегрир. По частям для опр. интеграла.)

Пусть u(x) и v(x) непрерывно дифференцируемы на [a:b], тогда справедливо равенство $\int_{a}^{b} u(x) v'(x) dx = u(x) v(x) I_{a}^{b} - \int_{a}^{b} u'(x) v(x) dx$

Рассмотрим функцию $f(x)=u(x) v(x)-\int_a^b u'(t) v(t) dt$. Найдем производную: (F(x))'=u'(x)v(x)+ $+u(x)v'(x)-(\int^{x} u'(t) v(t)dt)'=u'(x)v(x)+u(x)v'(x)-u'(x)v(x)=$ u(x)v'(x) (по т. о произв. Интеграла с перем. Верхним

пределом): $(\int_a^x u'(t) v(t)dt)' = u'(x)v(x) => F(x)$ первообразная функции u(x)v'(x) Применим формулу Ньютона Лейбница: $\int_{a}^{b} u(x) v'(x) dx = F(x) I_{a}^{b} = u(x) v(x) I_{a}^{b} - \int_{a}^{b} u'(x) v(x) dx$ 11. (Сформулировать свойства определенного интеграла. Интегрирование периодических функций. интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.) Свойства в билетах:3,5,6,8!!

Пусть f(x) — периодическая с периодом Т функция. Тогда, если f(x) непрерывна на каком-либо отрезке длины Т, то она непрерывна на всей числовой прямой и интеграл $\int_{a}^{a+T} f(x) dx$ не зависит от а.

Док-во: Докажем первое утверждение от противного. Пусть x_0 – точка разрыва f(x). Тогда в силу её периодичности \mathbf{x}_0 +Tn — также точка разрыва $\mathbf{f}(\mathbf{x}) \ \forall n \in$ Z. Следовательно, не существует отрезка длины T, на котором f(x) непрерывна. Противоречие: f(x) не имеет точек разрыва.

Запишем очевидное равенство: $\int_a^{a+T} f(x) dx =$ $\int_a^0 f(x)dx + \int_0^T f(x)dx + \int_T^{a+T} f(x)dx$ В последнем интеграле сделаем замену: x=t+T, A=0, B=a, dx=dT и $\int_{T}^{a+T} f(x) dx = \int_{0}^{a} f(t+T) dT = \int_{0}^{a} f(x) dt$, т.к. $f(t+T)=f(t)(T-период)=>\int_{a}^{a+T} f(x) dx = \int_{a}^{a} f(x) dx + \int_{0}^{a} f(x) dx$ $\int_0^T f(x)dx + \int_0^a f(t)dt = \int_0^T f(x)dx$ Т.е. $\int_0^a f(t)dt = -\int_a^0 f(t)dt$ и $\int_a^{a+T} f(x)dx = \int_0^T f(x)dx$ **Теорема** (Об интегрировании чётных и нечётных функций по симметричному промежутку Пусть f(x) непрерывна на отрезке [-a,a]. Тогда: 1)Если f(x) — четная, то $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ 2)Если f(x) — нечетная, то $\int_{-a}^{a}f(x)dx=0$ **Док-во:** напишем очевидное рав-во: $\int_{-a}^{a} f(x) dx =$ $\int_{0}^{0} f(x)dx + \int_{0}^{a} f(x)dx$, в первом интеграле сделаем замену: -x=t, A=a, B=0, dx=-dt, и $\int_{-a}^{a} f(x)dx =$ $-\int_{0}^{0}f(-t)dt=\int_{0}^{a}f(-t)dt$, и $\int_{-a}^{a}f(x)dx=$ $\int_{0}^{a} f(-t)dt + \int_{0}^{a} f(x)dx = \int_{0}^{a} (f(-x) + f(x))dx$ T.K. $\int_0^a f(-t)dt = \int_0^a f(-x)dx$ 1)Если f(x) — четная, то f(-x)=f(x) и $\int_{-a}^{a} f(x) dx =$ $2\int_0^a f(x)dx$ 2)Если f(x) — нечетная, то f(-x)=-f(x) и $\int_{-a}^{a} f(x) dx = 0$

12) (Опр. несобств интеграла 1-го рода. Сформулир и док-ть признак сходимости по неравенству для несобств. Инт. 1-го рода.)

Опр. Пусть f(x) опр-на $\forall x >= a$ и интегрир на любом отрезке [a;b] , b ∈ [a;+ ∞) . Тогда на промеж[a;+ ∞) можно задать F(b) = $\int_a^b f(x)dx$. Если сущ-ет конечн предел $\lim_{b\to +\infty} \int_a^b f(x) dx = \lim_{b\to +\infty} F(b)$ б то этот предел назыв несобств интегралом 1-го рода от функции f(x) на пром [a;+ ∞) и обознач $\int_a^{+\infty} f(x)dx$.

Пусть f(x) и g(x) опр-ны на промеж [a:+ ∞] и интегрир на любом отрезке [a;b] , b ∈ [a;+ ∞) . Пусть также 0<=f(x)<=(x) р $\forall x \in [a;+\infty)$. Тогда: 1) если сходится $\int_a^{+\infty} g(x) dx$, то сход $\int_a^{+\infty} f(x) dx$. 2)Если $\int_a^{+\infty} f(x) dx$ расходится , то расходится и $\int_{a}^{+\infty} \rho(x) dx$.

Док-во: Пусть $\int_a^{+\infty} \rho(x) dx$ сход, тогда $\int_a^{+\infty} \rho(x) dx \leq c =$ $>\int_{a}^{+\infty}f(x)dx \le \int_{a}^{+\infty}
ho(x)dx \le c =>$ сходится и $\int_{a}^{+\infty} f(x) dx$.

Если $\int_a^{+\infty} f(x) dx$ расходится, а $\int_a^{+\infty} \rho(x) dx$ сход, то приходим к противоречию уже доказанного => $\int_{a}^{+\infty} f(x)dx$ расход => $\int_{a}^{+\infty} \rho(x)dx$ расход.

15.(Опр. несобств инт 2-го рода и признаки сходимости

Onp. Пусть f(x) опр на [a;b) неогранич в левой окрестности точки b и интегрир на любом отрезке [a:n] Тогда $\lim_{\mathrm{n} o \mathrm{b}} f(x) dx$ назыв несобств интегр 2-го рода от ϕ -ции f(x) по промеж [a;b) : $\int_a^b f(x) dx$.

Признаки сходимости:

1)Признак сравнения в предельной форме. Пусть f(x) и g(x) опр-ны на [a;b), неогранич в левой окрестности точки b и интегрир на любом отрезке [a;n] ⊂ [a;b). Пусть также f(x)>0 и g(x)>0 ∀x∈ [a;b). Тогда если сущ предел $\lim_{x \to b} \frac{f(x)}{g(x)} = k \ (0 < k < +00)$, то $\int_a^b f(x) dx$ и: $\int_{a}^{b} g(x)dx$ сходим и расходим одноврем 2) Пусть также $\forall x \in [a;b) \ 0 \le f(x) \le g(x)$, Тогда: a) если $\int_a^b g(x)dx$ сход то $\int_a^b f(x)dx$ сход так же и про расход.

13.(Определение несобств. интеграла 1 рода. Предельный признак сравнения для несобств интегралов 1 рода.)

Пусть f(x) определена ∀ x ≥ а и интегрируема на любом отрезке [a,b] , b ∈ [a,+∞) , тогда на промежутке [a;+∞] можно задать $F(b) = \int_a^b f(x) dx$. Если существует конечный предел $\lim_{b \to +\infty} \int_a^b f(x) dx = \lim_{b \to +\infty} F(b)$, то этот предел называют несобственным интегралом 1 рода от f(x) на промежутке [a;+ ∞) и обозначают $\int_{-\infty}^{+\infty} f(x) dx$

Пусть f(x) и g(x) положительны и определены $\forall x \geq 2$ и интегрируемы на любом отрезке [a,b] , $b\in [a,+\infty)$, тогда, если $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$, $\; 0 < k < +\infty$, то интеграл $\int_a^{+\infty} f(x) dx$ и $\int_a^{+\infty} g(x) dx$ сходятся или расходятся одновременно

Пусть $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k > 0$, тогда для $\varepsilon = \frac{k}{2} > 0$ $\exists \delta =$ $\delta\left(rac{k}{2}
ight)>0$ такое что $\forall x\geq \delta(rac{k}{2})$ выполнено неравенство

$$\begin{array}{c} \left|\frac{f(x)}{g(x)}-k\right| < \varepsilon = \frac{k}{2} \\ -\frac{k}{2}+k < \frac{f(x)}{g(x)} < \frac{k}{2}+k \\ \frac{k}{2} < \frac{f(x)}{g(x)} < \frac{3k}{2} \\ 0 < \frac{k}{2}g(x) < f(x) < \frac{3k}{2}g(x) \ \forall x \geq \delta(\frac{k}{2}) \\ -\operatorname{ecn} \int_{a}^{+\infty} f(x) dx - \operatorname{cxodutca} = \operatorname{cno} \operatorname{addutushoctu}) \\ + \frac{\operatorname{con}}{2} \int_{a}^{+\infty} f(x) dx - \operatorname{cxodutca} = \operatorname{cno} \operatorname{addutushoctu}) \\ + \frac{\operatorname{con}}{2} \int_{a}^{+\infty} f(x) dx - \operatorname{cxodutca} = \operatorname{cxodutca} \operatorname{c$$

 $\int_{\delta(rac{k}{c})}^{+\infty}f(x)dx$ сходится => сходится и несобственный интеграл $\int_{\delta(\frac{k}{2})}^{+\infty} \frac{k}{2} g(x) dx =>$ (аддитивность) сходится и

- если $\int_a^{+\infty} g(x) dx$ – сходится => (по аддитивности) $\int_{\deltarac{k}{\lambda}}^{+\infty}g(x)dx$ сходится => сходится и несобственный интеграл $\int_{\delta(\frac{k}{\zeta_0})}^{+\infty} \frac{3k}{2} f(x) dx$ => (аддитивность) сходится и $\int_{a}^{+\infty} f(x) dx$

14. (Сформулировать определение несобственного интеграла 1-го рода. Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов 1-го рода.)

Опр. Несобственного интеграла 1-го рода Пусть f(x) определена $\forall x \geq a$ и интегрируема на любом отрезке [a,b], $b \in [a; +\infty)$. Тогда на промежутке $[a; +\infty)$ можно задать $F(b) = \int_a^b f(x) dx$. Если существует конечный предел $\lim_{b \to +\infty} \int_a^b f(x) dx =$ $\lim_{b o +\infty} F(b)$, то этот предел назыв. несобственным интегралом 1-го рода от функции f(x) на промежутке $[a,+\infty)$ и обозначается $\int_a^{+\infty}f(x)dx$.

Теорема (о сходимости абсолютно сходящегося несобственного интеграла.

Если интеграл $\int_{a}^{+\infty} f(x) dx$ сходится абсолютно, то он

Док-во: Запишем очевидное рав-во: $0 \le f(x) + |f(x)| \le 2|f(x)\}$ $\forall x \in [a; +\infty)$ По условию $\int_a^{+\infty} |f(x)| dx$ — сходится => (св. лин.) $\int_{a}^{+\infty} 2|f(x)|dx$ — сходится. Тогда по теореме о признаке сравнения сходится и интеграл $\int_a^{+\infty} (f(x) +$ |f(x)| dx. Тогда $\int_{a}^{+\infty} f(x) dx = \int_{a}^{+\infty} (f(x) + |f(x)|) dx - \int_{a}^{+\infty} f(x) dx = \int_{a}^{+\infty} (f(x) + |f(x)|) dx$ $\int_{a}^{+\infty} |f(x)| dx$ — тоже сходится(как линейная комбинация сходящихся несобственных интегралов

20.{Кривая задана в полярных координатах уравнением $r=a(\varphi)>0$, где r и φ — полярные координаты точки, $a\leq \varphi\leq b$.Вывести формулу для вычисления длины дуги этой кривой

Если $r=r(oldsymbol{arphi})$ задана в полярной системе координат, то $egin{cases} x(\phi)=r(\phi)\cdot\cos\phi \\ y(\phi)=r(\phi)\cdot\sin\phi \end{cases}$, $\phi\in[lpha,eta]$

Имеем: $((r(\varphi) \cdot \cos \varphi)')^2 + ((r(\varphi) \cdot \sin \varphi)')^2 = (r'(\varphi) \cdot \cos \varphi - r(\varphi) \cdot \sin \varphi)^2$ $+ (r'(\varphi) \cdot \sin \varphi + r(\varphi)$ $\cdot \cos \varphi)^2 =$ $(\left(r^{'}(\varphi)\right)^{2}\cdot\cos^{2}\varphi+r^{2}(\varphi)\cdot\sin^{2}\varphi-2r^{'}(\varphi)\cdot r(\varphi)$ $\cdot \sin \varphi \cdot \cos \varphi +$ $+\left(r^{'}(\varphi)\right)^{2}\cdot\sin^{2}\varphi+r^{2}(\varphi)\cdot\cos^{2}\varphi+2r^{'}(\varphi)\cdot r(\varphi)$ $\sin \varphi \cdot \cos \varphi$ $= (r'(\varphi))^2 + r^2(\varphi)$

В итоге имеем $\,L=\int_{lpha}^{eta}\sqrt{(r^{'}(arphi)^{2}+(r(arphi))^{2}}\,darphi.\,$

16.(Фигура ограничена кривой y = f(x) ≥ 0, прямыми x : а, x = b и y = 0 (a<b). Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры.)

Разобьем отрезок [a;b] : $\mathsf{a} = x_0 < x_1 < \dots < x_n = b$ Запишем очевидное равенство: $f(n_i)\Delta x_i < S_i < f(\xi)\Delta x_i$ Где S_i – площадь под графиком функции f(x), ограниченной $x=x_{i-1}$; x=x и y=0 . $f(\eta_i)$ и $f(\xi_i)$ – наим. и наиб. (MIN и MAX) знач. Функции f(x) на отрезке $[x_{i-1}; x_i]$.

Проинтегрируем на 🕯 от 1 до n, получим: $\sum_{i=1}^n f(\eta_i) \Delta x_i \le S \le \sum_{i=1}^n f(\xi_i) \Delta x.$ Переходя к пределу $\lambda(\tau) \to 0$ Получим: $\int_a^b f(x) \, dx \le S \le \int_a^b f(x) \, dx \Rightarrow S = \int_a^B f(x) \, dx.$

17.(Фигура ограничена лучами φ = α, φ = β и кривой r = f(φ). Здесь r и φ – полярные координаты точки, 0 ≤ α < β ≤ 2π. Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры.)

Выполним au разбиение отрезка [lpha,eta]: $lpha=arphi_0<arphi_1<\dots<arphi n=eta$ Запишем очевидное равенство: $\frac{1}{5}r^2(\eta_i)\Delta\varphi_i < S_i < \frac{1}{2}r^2(\xi_i)\Delta\varphi.$ Γ де S_i - площадь криволинейного сектора, ограниченного отрезками лучей: ограниченного огрезками лучеи. $\varphi=\varphi_{i-1} \ \text{ и } \varphi=\varphi_i \ \text{ и графиком } r=r(\varphi).$ $r(\eta_i)$ и $r(\xi_i)$ — наим. и наиб. Значения функции $r(\varphi)$ на отрезке $[arphi_{i-1}; arphi_i].$ Проинтегрируем по і до п , получим: $rac{1}{2}\sum_{i=1}^{n}r^{2}(\eta_{i})\,\Delta arphi i\leq S\leq rac{1}{2}\sum_{i=1}^{n}r^{2}\left(\xi_{i}\right)\!\Delta arphi_{i}.$ Переходя к пределу при $\lambda(\tau)$ = $\max \varphi_i \to 0$, получим: $\frac{1}{2} \int_a^b r^2(\varphi) \, d\varphi \le S \le \frac{1}{2} \int_a^b r^2(\varphi) \, d\varphi \Rightarrow S = \frac{1}{2} \int_a^b r^2(\varphi) \, d\varphi.$

18. (Тело образовано вращением вокруг оси Ох криволинейной трапеции, ограниченной кривой y = f(x) ≥ 0, прямыми x = a, x = b и y = 0 (a < b). Вывести формулу для вычисления с помощью определенного интеграла объема тела вращения.)

Пусть тело М находится между плоскостями х=а и х=b. Пусть $\forall x_0 \in [a;b]$

Известна $S(x_0)$ — площадь фигуры, полученной сечением тела М плоскостью $x=x_0$. Пусть также S(x) непрерывна на [a;b]. Построим

разбиение au отрезка [a;b]: $a=x_0<\cdots< x_n=b$.

 $V = \int_{a}^{b} S(x) dx$

Запишем очевидное равенство $S(\eta_i)\Delta x_i \leq V_i \leq S(\xi_i)\Delta x_i$, где V_i – объем тела M, заключенный между плоскостями $x=x_{i-1}$ и

 $x=x_i$. $S(\eta_i)$ и $S(\xi_i)$ — наим. и наиб. знач S(x) на отрезке $[x_{i-1};x_i]$. $\sum_{i=1}^n S(\eta_i) \Delta x_i \leq V \leq \sum_{i=1}^n S(\xi_i) \Delta x_i$. Переходя к пределу $\lambda(au) o 0$ Получим

*Если тело М получено вращением графика непрерывной функции y=f(x) вокруг оси Оx, то $S=\pi f^2(x)$ и V тела вращения будет равен: V= $\pi \int_a^b f^2(x) dx$.

19.{Кривая задана в декартовых координатах уравнением у = f(x), где x и у — декартовые координаты точки, $a \leq x \leq b$. Вывести формулу для вычисления длины дуги этой кривой}

Пусть у=у(х) - непрерывно дифференцируемая кривая на [a;b]. Построим разбиение т отрезка [a;b] : ${\bf a} = {\bf x}_0 < {\bf x}_1 < \dots < {\bf x}_n = {\bf b}$. Построим ломанную с вершинами в точках $(x_i, y_i) = (x_i, y(x_i))$ Тогда длина элемента этой прямой (по теореме Лагранжа):

 $\Delta L_i = \sqrt{\Delta {x_i}^2 + \Delta {y_i}^2} =$ $\sqrt{(x_i - x_{i-1})^2 + (y(x_i) - y(x_{i-1}))^2} =$ $\sqrt{(x_i - x_{i-1})^2 + (y'(\xi_i)(x_i - x_{i-1}))^2} =$ $\sqrt{(x_i - x_{i-1})^2 + (y'(\xi_i))^2} (\Delta x_i)^2 = \sqrt{1 + (y'(\xi_i))^2} \Delta x_i,$ где $\xi_i \in (x_i - x_{i-1})$ Проинтегрируем по і от 1 до n:

$$L^* = \sum_{i=1}^n \sqrt{1+\left(y^{'}(\xi_i)
ight)^2} \cdot \Delta x$$
 , перейдя к пределу $\lambda(\mathfrak{r}) \to 0$

Имеем $L = \lim_{\lambda(\tau) \to 0} L^* = \int_a^b \sqrt{1 + (y'(x))^2} dx$

21.{ЛДУ 1-го порядка. Интегрирование ЛДУ 1-го порядка методом Бернулли (u*v) и методом Лагранжа (вариация произвольной постоянной)} -метод Бернулли:

$$y' + p(x) \cdot y = f(x) \cdot y^{\alpha}$$

Подставим решение этого ДУ в виде $y = u(x) \cdot v(x)$ $u'v + v'u + uv \cdot p(x) = f(x)(uv)^{\alpha}$ u'v + u(v' + p(x)v) =

Найдём такое $v \neq 0$, что v' + p(x)v = 0, для чего решим его. Подставим v в наше ДУ, получим $u'v = f(x)(uv)^{\alpha}$ –ДУ с разделяющимися переменными. Решив его, найдём $u\Rightarrow y=uv$. При lpha=0 получим метод Бернулли для решения линейного ДУ 1-го порядка. При $\alpha>0$ y=0 также решение ДУ.

-метод Лагранжа:

 $C)e^{-p(x)}$

$$y' + p(x) \cdot y = f(x)$$

Чтобы решить такое ДУ, можно воспользоваться методом Лагранжа вариации производной постоянной. Этот метод заключается в том, что мы имеем решение ДУ в виде $y = \mathcal{C}^* \cdot \mathscr{E}^{-p(x)}$ Т.е. в общем решении ДУ $v' + p(x) \cdot v = 0$. Считаем $y = C^*(x) \cdot e^{-p(x)}$ – неизвестной функцией Подставим её в данное ДУ, мы найдём $\mathcal{C}^*(x) \Rightarrow$ и общее решение ДУ.

$$y = C^*(x) \cdot e^{-p(x)} \Rightarrow y' = \left(C^*(x)\right)' \cdot e^{-p(x)} - C^*(x) \cdot e^{-p(x)} \cdot p(x)$$
 $C^*(x) = \int f(x) e^{p(x)} dx + C$ И общее решение ДУ: $y(x,C) = \left(\int f(x) e^{p(x)} dx + C\right)$

24. Определения лин-зав и лин-незав систем функций. Доказать теорему об определителе Вронского лин-зав систем функций.

- Опр: С-ма функций y₁(x)...y_n(x), определённая на интервале I, называется лин-зав на интервале I, если ∃ числа A_1 , A_2 ... A_n такие, что $A_1^2 + A_2^2 + ... + A_n^2 \neq 0$ и $A_1y_1(x)$ +...+ $A_n y_n(x) = 0$ ∀x∈I. В противном случае с-ма функций называется лин-незав.
- **Т-ма:** Пусть у₁(x)...у_n(x) лин-зав с-ма (n-1) раз дифмых на интервале I функций. Тогда W(x)≡0 ∀x∈I.
- Док-во: С-ма y₁(x)...y_n(x) лин-зав-я => Э числа A₁, A₂...A_n такие, что $A_1y_1(x)$ +...+ $A_ny_n(x)$ = 0 ∀x∈I. Продиф-уем равво (n-1) раз:

$$A_1y_1(x) + ... + A_ny_n(x) = 0$$

 $A_1y_1'(x) + ... + A_ny_n'(x) = 0$

y_i⁽ⁿ⁻¹⁾(x) Имеем A₁Y₁ + A₂Y₂ +...+ A₂Y₃ = [0] => Столбцы Y₁...Y₃ лин-

0

зав-мы $=> W(x)=0 \forall x \in I$.

22. Теорема Коши о сущ-ии и един-сти решения ДУ пго порядка. Интегр-е ДУ п-го порядка, допуск. понижение степени.

- **Теорема**: Пусть в ДУ у⁽ⁿ⁾=f(x, y, y'...y⁽ⁿ⁻¹⁾) ф-ия f(x) и все её частные произв-ые по перем. у, у'...у $^{(n-1)}$ непрер. в некоторой области пространства перем. х, у, у'...у $^{(n-1)}$ Тогда для \forall точки $x_0, y_0, y_0'...y_0^{(n-1)} \in G \exists$ решение этого ДУ, удовл. условиям: $y(x_0)=y_0$; $y'(x_0)=y_0'...y^{(n-1)}(x_0)=y_0^{(n-1)}$. Два решения, удовл. одним нач. условиям, совпадают повсюду, где они определены.
- Интегр-е ДУ:
- 1) ДУ $y^n = f(x)$ можно решить, n раз проинтег-в f(x). 2) ДУ вида F(x, y^k , $y^{(k+1)}$, y^M)=0, не содержащих y, $y'...y^{(k-1)}$ в явном виде, можно преобразовать в ДУ порядка (n-k) заменой y^k =z, при этом получим $F(x, z, z'...z'^{(n-k)})$ =0. Решив его относительно z (если это возможно), найдём z, a затем и y, k раз проинтег-в z=z(x).
- 25/Линейно-зависимая и линейнонезависимая система функций. Определитель Вронского системы лин. независ. частных решений ЛОДУ n-го порядка.) **Теорема:** Пусть $y_1 = y_1(x)...y_n(x)$ — лин.независ. система решений ЛОДУ. $orall \exists \epsilon \Rightarrow$

 $y^{(n)}+a_1(x)$ $y^{(n-1)}+...+a_n(x)$ y=0 (1), где $a_1(x)...$ $a_n(x)$ непрерывны на промежутке I.

Тогда определитель этой системы не равен нулю ни в одной точке промежутка I.

$$extit{Док-во}(Om\ противного): | y_1(x_0) & ... & y_n(x_0)| \\ extit{Пусть } \exists x_0 \in I\ makoe, что } W(x_0) = | : & :| = C \\ extit{} | y_1^{(n-1)}(x_0) & ... & y_n^{(n-1)}(x_0)| \end{aligned}$$

Тогда $\exists A_1...A_n$ такие,что ${A_1}^2+...+{A_n}^2\neq 0$ и $A_1y_1^{(j)}(x_0)+A_2y_2^{(j)}(x_0)$ x_0)+...+ $A_n y_n^{(j)}(x_0)=0$ (2) ∀j=0,1...(n-1).

Пусть у(x)= $A_1y_1+...+A_ny_n$.Тогда у(x)-решение ДУ(1) как линейная комбинация

решений. у(х) также удовлетворяет начальным

Функция у * (х)=0 \forall х∈ I также является решением ДУ(1) и удовл.начальным усл.(2).

Но тогда по теореме о существовании и единственности решения:

y(x)≡ $y^*(x)$ ≡0 $\forall x$ ∈ $I \Rightarrow y_1...y_n$ – лин.зависимы. \Rightarrow

30. Сформулировать и доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения п-го порядка

Общее решение $y^{|n|}$ +а $_1$ (x) $y^{|n-1|}$ +...+а $_n$ (x)y=b(x) (1) может быть записано в виде

 $y(x C_1...C_n)=y_\tau(x)+C_1y_1+...C_ny_n$

где $y_{\tau}(x)$ – частное решение ДУ(1), $y_1...y_n$ – ФСР соответствующего ДУ L[у]=0

решением ДУ(1)

Проверим 2 пункта определения общего решения: 1) $L[y(x,C_1...C_n)] = L[y_\tau(x)] + C_1 \cdot L[y_1] + ... + C_n \cdot L[y_n] = b(x) + C_1 \cdot 0$ +...+ C_n·0=b(x) ∀C₁...C_n ∈ R

=> y(x,C₁...C_n) = y_{τ} (x) + C₁y₁+...+C_ny_n Решение ДУ(1) $\forall C_1...C_n \in R$

2) Пусть даны начальные условия у(x₀)=y₀ $y'(x_0) = y_0'...y_0^{n-1}(x_0) = y_0^{n-1}, x_0 \in I$

Тогда для нахождения неизвестных С1...Сп имеем СЛАУ. $y_{\tau}(x_0) + C_1 y_1(x_0) + \dots + C_n y_n(x_0) = y_0$ $y_{\tau}'(x_0) + C_1 y_1'(x_0) + \dots + C_n y_n'(x_0) = y_0'$ $\left(y_{r}^{n-1}(x_{0})+C_{1}y_{1}^{n-1}(x_{0})+\cdots+C_{n}y_{n}^{n-1}(x_{0})=y_{0}^{n-1}\right)$ Оба пункта входят в определение общего решения

проверены $=>y(x,C_1..C_n)=y_{\tau}(x)+C_1y_1+...+C_ny_n$ является общем

28. Вывести формулу Остроградского-Лиувилля для линейного дифференциального уравнения 2-го

Рассмотрим линейное ДУ 2-го порядка

 $y'' + a_1(x)y' + a_2(x)y = 0$ (1), где $a_1(x)$ и $a_2(x)$ непрерывна на промежутке І

Пусть у $_1$ = у $_1$ (x) и у $_2$ = у $_2$ (x) решения ДУ(1) Тогда W(x) = $\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$ = у $_1$ у $_2'$ -у $_2$ у $_1'$ Продифференцируем

определитель Вронского $W'(x) = (y_1y_2' - y_2y_1')' = y_1'y_2' + y_1y_2'' - y_2'y_1' - y_2y_1'' = y_1($ $a_1(x)y_2' - a_2(x)y_2) - y_2(-a_1(x)y_1'-a_2(x)y_1) =$ = $-a_1(x)(y_1y_2'-y_2y_1') = -a_1(x)W(x)$

Иными словами для определителя Вронского

справедливо равенство: $W'(x) + a_1(x)W(x) = 0$ Следовательно определитель

Вронского удовлетворяет ДУ у'+а1(х)у=0 Этому ДУ удовлетворяет функция у(x)= С $\cdot e^{-\int_{x_0}^x a_1(t)dt}$ Если заменить $C = W(x_0)$

то мы получим $y(x) = W(x_0) \cdot e^{-\int_{x_0}^x a_1(t)dt}$. Причем $y(x_0) =$ $W(x_0)$, => $y(x) = W(x) \ \forall x \in I$, а значит

W(x)= W(x₀) $\cdot e^{-\int_{x_0}^x a_1(t)dt}$ формула Остроградского-

23. Теорема Коши о сущ-ии и един-сти решения лин. ДУ n-го порядка. Доказать св-ва частных решений лин. ОДУ n-го порядка.

- **Теорема**: Пусть в ДУ(1) yⁿ+a₁(x)y⁽ⁿ⁻¹⁾+...+a_n(x)y=b(x), где $a_1(x)...a_n(x),b(x)$ непрерывны на интервале І. Тогда для $\forall x_0 \in I$ и вообще \forall чисел $y_0,y_0'...y_0^{(n-1)}$ \exists решение ДУ (1), удовл. нач. условиям $y_0=y(x_0)$, $y_0'=y'(x_0)...y_0^{(n-1)}=y^{(n-1)}$ Два решения, удовл. одним и тем же условиям, совпадают при ∀х∈І.

- CR-Ra:

1) Пусть $y_1 = y_1(x)$, $y_2 = y_2(x)$ — частное решение ДУ(2) L[y]=0. Тогда y_1+y_2 — тоже решение ДУ(2).

2) Пусть у=у(х) – частное решение ДУ(2). Тогда λy – тоже решение ДУ(2) ($\forall \lambda \in \mathbb{R}$).

3) Пусть $y_1 = y_1(x)$ и $y_2 = y_2(x)$ — частные решения ДУ(3) L(y)=b(x). Тогда $y=y_1-y_2$ - решение ДУ(2).

- Док-ва:

1) Дано L[y₁]=0 и L[y₂]=0. Имеем $L[y_1+y_2]=L[y_1]+L[y_2]=0+0=0$

Дано L[v]=0. Имеем L[λv]=λL[v]=λ*0=0

3) Дано L[y₁]=b(x) и L[y₂]=b(x). Имеем L[y₁-y₂]=L[y₁]-

26. О существовании ФСР линейного однородного ДУ 2 n-го порядка

Пусть даны однородны ДУ n-го порядка

$$y^{(n)} + a_1(x)^{n-1} + ... + a_n y(x) y = 0$$
 (1)

где a₁х непрерыв. на промежутке I. Тогда существуют фун-ции $y_1 = y_1(x)...y_n = y_n(x)$ который образуют ФСР этого ДУ

Док-во: Пусть K₀ - некая точка на I

Пусть $y_1 = y_1(x) ... y_n = y_n(x)$ решения этого ДУ,

удовлетворяющие следующим условиям

 $y_1(x_0) = 1$ $y_1'(x_0) = y_1''(x_0) = ... y_1^{(n-1)}(x_0) = 0$

 $y_n(x_0) = y_n'(x_0) = ... y_n^{(n-2)}(x_0) = 0 y_n^{(n-1)}(x_0) = 1$ Согласно теореме о един.решен.лин.ДУ эти решения существуют, они равны. Они лин.-независим., так как (100)

 $(0.1.0) = 1 \neq 0$

(001)

Докажем, что они образуют базис пр-ве решений пусть y = y(x) - решение ДУ (1)

Пусть оно удовл-ряет условию $y(x_0) = C$, $y'(x_0) = C_1$... $y'(x_0) = C_2 y^{(n-1)}(x_0) = C_n(3)$

(как линейная комбинация решений), $y^*(x)$ так же

удовлетворяет начальному условию $y^*(x_0) = C_1 * 1 + C_2 * 0 + ... + C_n * 0 = C_1$

$$(y^*(x_0))' = C_1 * 0 + C_2 * 1 + ... + C_3 * 0 + ... + C_n * 0 = C_2$$

 $(y^*(x_0))^{(n-1)} = (C_1 * 0) + C_2 * 0 + ... + C_{n-1} * 0 C_n * 1 = C_n \Rightarrow (no$ теорем. о един.решен.лин.ДУ) $y(x) = y^*(x) \ \forall x \in I \ и \ y(x) =$

 $C_1y_1+C_2y_2+...+C_ny_n$ \Rightarrow $y_1...$ y_n базис пр-ва решений \Rightarrow у₁... у_п - ФСР ДУ(1)

29.Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка при одном известном частном решении.

Рассмотрим линейное однородное ДУ 2-го порядка: у" $+ a_1(x)y' + a_2(x)y=0 (4)$

Пусть известно, что $y_1 = \varphi(x)$ – решение этого ДУ. Тогда решение можно искать

в виде y = φ (x)·z, где z-новая неизвестная функция

имеет $y = \varphi z$, $y' = \varphi' z + \varphi z'$, $y'' = \varphi'' z + \varphi' z' + \varphi' z' + \varphi z'' = \varphi'' z + 2\varphi' z' + \varphi z''$, $y'' = \varphi'' z + \varphi' z' + \varphi' z' + \varphi' z'' = \varphi'' z + 2\varphi' z' + \varphi z''$

 $z(\phi'' + a_1(x)\phi' + a_2(x)\phi) + z'(2\phi' + a_1(x)\phi) + z''\phi = 0$ $z'(2\varphi' + a_1(x)\varphi) + z''\varphi = 0$ — это ДУ не содержит явно z и заменой z'=t можно понизить его порядок. Имеем: $\int t(2\varphi' + a_1(x)\varphi) + t'\varphi = 0$

t = z'

Другой способ понижения порядка заключается в использовании формулы Остроградского-Лиувилля. Пусть как и прежде $v_1 = \varphi(x)$ — решение ДУ(4).

Тогда для у2=у2(х) имеет $\begin{vmatrix} \varphi(x) & y_2(x) \\ \varphi'(x) & y_2'(x) \end{vmatrix} = W(x_0)e^{-\int_{x_0}^x a_1(t)dt}$

Если начальное условие не дано, то можно то можно использовать следующую формулу

 $egin{array}{cc} |arphi(x) & y_2(x) \\ arphi'(x) & y_2'(x) \end{array} = e^{\int a_1(x)dx}$, где $\int a_1(x)dx$ — новая первообразная функция а₁(x) на I

27.О структуре общего решения лин. однородного ДУ

Пусть $y_1 = y_1(x_0)...$ $y_n = y_n(x_0)$ образуют ФСР лин. однородного ДУ п-го порядка

$$y^{(n)}+a_1(x)^{n-1}+...+a_ny(x)y=0$$
 (1), где $a_1(x)...a_n(x)$

непрерывные на промежутке І, тогда общее решение

 $y(x_1C_1 ... C_n) = C_1 y_1 + C_2 y_2 + ... + C_n y_n$

Док-во: проверим 2 условия из опр общего решения

1)Пусть C₁₀... C_{n0} - фикс. значения C₁ ... C_n, тогда C₁₀у₁ + ... $C_{n0}y_n$ - явл.решением ДУ(1) как линейная комбинация решений

2)Пусть даны начальные условия $y(x_0) = y_0$, $y'(x_0) = y'_0$... $y^{(n-1)}(x_0) = y_0^{(n-1)}$

Тогда от-но неизвестн. С1 ... Спимеем СЛАУ $C_1y_1(x_0) + C_2y_2(x_0) + ... + C_ny_n(x_0) = y_0$

 $C_1v_1'(x_0) + C_2v_2'(x_0) + ... + C_nv_n'(x_0) = v_0'$

 $C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + ... + C_n y_n^{(n-1)}(x_0) = y_0^{(n-1)}$ Эта система всегда имеет решение $C_1 = C_{10}...$ $C_n = C_{n0}$, поскольку

 $\forall x \in I$

По теореме 11.1 (об опр. Вронского линейнонезависимой системы)

31. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения. Рассмотрим линейное ОДУ 2-го порядка с постоянными . коэффициентами: $y^{||} + a_1 y^{||} + a_2 y = 0$ (1) Ему соответствует характеристическое уравнение: λ^2 $a_1 \lambda + a_2 = 0$ (2) Уравнение (2) имеет один вещественный корень кратности 2. Обозначим его λ_0 . В этом случае решениями ДУ (1) будут функции $y_1 = e^{\lambda_1 x}$ и $y_2 = xe^{\lambda_1 x}$ То, что у₁(х) решение ДУ (1) говорит утверждение 12.1. Докажем, что y_2 - решение ДУ (1), λ_0 - корень уравнения (2) кратности 2 = имеет вид $y(x, C_1, C_2) = C_1e^{ax}cosbx + C_2e^{ax}sinbx$ $(\lambda_0^2 + a_1 \lambda + a_2 = 0)$ $(2\lambda_0 + {\lambda_0}^2 x)$ Представим y_2, y_2^1, y_2^{11} в ДУ(1), имеем: $e_0^{\lambda_0}(2\lambda_0 + \lambda_0^2 x) + a_1 e_0^{\lambda_0}(1+\lambda_0 x) + a_2 x e_0^{\lambda_0} = e_0^{\lambda_0}(2\lambda_0 + a_1 + x(\lambda_0^2 + a_1 \lambda_0 + a_2)) = e_0^{\lambda_0}(0+x^*0) \Rightarrow y_2 = x e_0^{\lambda_0} - \text{решение}$ Докажем, что у $_1$ и у $_2$ линейно независимые: $W(x) = \begin{array}{c|c} & e^{\lambda \, x} & xe^{\lambda \, x} & | = e^{2\lambda 0 x} \mid 1 \\ & & |\lambda_0 e^{\lambda \, x} & e^{\lambda_0 \, x} \left(1 + \lambda_0 x\right)| & |\lambda_0 & 1 + e^{2\lambda_0 x} \mid 1 \end{array}$ $x = e^{2\lambda 0x}$ $|\lambda_0|$ 1+ $\lambda_0 x$ ≠ O \Rightarrow у $_1$ и у $_2$ линейно независимые \Rightarrow они образуют ФСР \Rightarrow общее решение в этом случае имеет вид у(x, C1, C2) = $C_1e^{2\lambda_0x}+C_2$ xe^{λ_0x} 34. Метод Лагранжа вариации произвольных постоянных для нахождения решения линейного неоднородного ДУ 2-го порядка.. Пусть $y_1 = y_1(x)$ и $y_2 = y_2(x)$ – ФСР ДУ $y^{''} + a_1(x)y^{'} +$

32. Вывести формулу для общего решения линейного 33. Частное решение линейного неоднородного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения. Уравнение (2) имеет пару комплексно-сопряженных корней λ = a±ib, тогда согласно следствию из утверждения 12.2: $y_1 = e^{ax} cosbx$, $y_2 = e^{ax} sinbx$ - решение ДУ(1). Докажем их линейную независимость $W(x) = |e^{ax} cosbx|$ e^{ax}sinbx |aeaxcosbx - beaxsinbx aeaxsinbx - beaxcosbx| $= e^{2ax}(b*cos^2bx + a*cosbx*sinbx - a*cosbx*sinbx + b*sin^2x)$ $= e^{2ax} * b \neq 0$ ⇒у $_1$ и у $_2$ - ФСР ДУ(1) ⇒общее решение в этом случае

33. Частное решение линейного неоднородного
дифференциального уравнения с постоянными
коэффициентами и правой частью специального вида
(являющейся квазимногочленом). Сформулировать и
доказать теорему о наложении частных решений.
Частное решение ЛНДУ n-го порядка с постоянным
коэффициентами $y^{(n)} + a_1 y^{(n-1)} + + a_n y = b(x)$ (1), где a_1 ,
, $\mathbf{a}_{n} \in IR$, $b(x)$ - квазимногочлен, может быть получено
методом неопределенных коэффициентов. Для
каждого слагаемого вида $e^{\alpha x}(P_{m1}(x)\cos\beta x + Q_{m2}(x)\sin\beta x)$
(2) частное решение ДУ $L[y] = e^{\alpha x} (P_{m1}(x) \cos \beta x)$
$+Q_{m2}(x)sin\beta x)$ ищется в виде $y_2=e^{\alpha x}x^k(R_m(x)cos\beta x$
+S $_{m}(x)$ sin βx), где k=0, если α = ib не является корнем
параметрического уравнения
$\lambda^{n} + a_{1}\lambda^{n-1} + + a_{n} = 0$ и k - кратность этого корня в
противном случае, R _m , S _m - многочлены с
неопределенными коэффициентами одной и той же
степени m = max(m ₁ , m ₂)
После того, как для каждого слагаемого вида (2) в
правой части ДУ(1), найдены частные решения, можно
получить частное решение ДУ(1), воспользовавшись
теоремой 12.2 (о наложении частных решений)
Теорема 12.2
Пусть $y_1(x)$ - решение ДУ $L[y] = b_1(x)$, пусть $y_2(x)$ -
решение ДУ L[y] = b ₂ (x), где L[y] = y ⁽ⁿ⁾ + a ₁ (x)y ⁽ⁿ⁻¹⁾ + +
$a_n(x)y$, где $a_1(x)$, $a_n(x)$, $b_1(x)$, $b_2(x)$ непрерывны на
промежутке I
Тогда $y(x) = y_1(x)+y_2(x)$ - решение ДУ $L[y] = b_1(x)+b_2(x)$
Док-во:
Дано: $L[y_1] = b_1(x), L[y_2] = b_2(x)$

 $a_2(x)y=0$. Тогда решение соотв. линейного неоднородного ДУ $y'' + a_1(x)y' + a_2(x)y = b(x)$ (3) будем искать в виде $y(x) = C_1 y_1 + C_2 y_2$, где $C_1 = C_1(x)$ и $C_2 = C_2(x)$ удов. системе: $\begin{cases} C_1 y_1 + C_2 y_2 = 0 \\ C_1 y_1 + C_2 y_2 = b(x) \end{cases}$ $y(x) = C_1(x)y_1 + C_2(x)y_2 \Rightarrow y' = C_1'y_1 + C_2y_2 - C_1y_1' + C_2y_2' = C_1y_1' + C_2y_2' = C_1y_1' + C_2y_2' = D(x) + C_1y_1' + C_2y_2' = D(x) + C_1y_1'' + C_2y_2'' + C_1y_1'' + C_1y_1'' + C_2y_2'' + C_1y_1'' + C_1y_1'' + C_1y_1'' +$ представления в ДУ (3), получим: $y^{''} + a_1(x)y^{'} +$ $a_2(x)y = b(x) + C_1y_1'' + C_2y_2'' + a_1(x)(C_1y_1' + C_2y_2') + a_2(x)(C_1y_1 + C_2y_2) = b(x) + C_1(y_1'' + a_1(x)y_1' + a_2(x)(C_1y_1'' + a_2(x)y_1'' + a_2(x)y_1''$ $a_2(x)y_1) + C_2(y_2'' + a_1(x)y_2' + a_2(x)y_2) = b(x) +$ $C_1(0) + C_2(0) \Rightarrow y = C_1 y_1 + C_2 y_2$ – решение ДУ (3)

35. ДУ п-го порядка, разрешенного относительно старшей производной. Задача Коши для такого уравнения. Сведение этого ДУ к нормальной системе ДУ.

ДУ п-го порядка, разрешенного относительно старшей производной, которое можно записать в виде $y^{(n)}=f(x,y,y^{'},...y^{(n-1)})$ (1). Задача Коши для ДУ (1) $\begin{cases} y^{(n)} = f(x, y, y', ... y^{(n-1)}) \\ y(x_0) = y_0 \end{cases}$ называется система: $y'(x_0)=y_0'$ Сведение: $y^{(n-1)}(x_0)=y_0^{(n-1)}$ Пусть $y^{(n)}=f(x,y,y^{'},...y^{(n-1)})$. Положим $y_1=y,\ y_2=y^{'},\ y_3=y^{''},...\ y_n=y^{(n-1)}.$ Имеем:

 $y_1 = y_2$ $y_2 = y_3$ $\stackrel{y_3^{'}=y_4}{\dots}$ Нормальную систему из п ДУ. $y'_{n-1} = y_n$ $y'_n = f(x, y, ..., y_n)$

36. Задача Коши для норм. сист. ду и т.Коши о 3 и ! решения этой задачи. Метод сведения НСДУ к ду высшего порядка.

Имеем $L[y_1 + y_2] = L[y_1] + L[y_2] = b_1(x) + b_2(x)$

Норм сист ду (НСДУ) имеет вид $y'_i = f_i(x, y_1, ..., y_n)$ (1), где (i=1,...,n). Задача Коши ставится так: Имеется точка $(x_0, y_0, ..., y_n)$ ϵ G. Требуется найти реш-е сист (1), удовлетв нач усл: $y_i(x_0)=y_{i0}$, (i=1,...,n)

Теорема. Пусть в сист (1) все функции в правой части опр, непрер и имеют непрер частные производные по перем-ым у₁,...,у_п в некоторой области G пр-ва перем-х х,у,...,у $_{n}$. Тогда для ∀точки (х $_{0}$,у $_{10}$,...,у $_{n0}$) ϵ G ∃реш-е сист (1), удовл-ее нач усл у_і(х₀)=у_{іо}, (i=1,...,n). ∀2 реш-я сист (1), удовлетв одним нач усл, совпадают всюду, где определены.

∀ ду п-го пор-ка, разрешенное отн-но старшей производной, можно свести к норм сист, состоящей из n ду. При некоторых усл-ях верно обратное.

Утв-е.Пусть в норм сист $\begin{cases} y_1 = f_1(x,y_1,y_2) \\ y_2' = f_2(x,y_1,y_2) \end{cases}$ из первого ду можно выразить y_2 =g(x,y₁,y'₁) или из 2-го ду y_1 =g(x,y₂,y ′2). Тогда эту сист ду можно свести к одному ду 2-го пор-

Док-во. Пусть из 1-го ду $y_2 = g(x, y_1, y'_1)$. Продефф-ем это

o-bot:
$$y_{2}^{\prime} = \frac{\delta g(x, y_{1}, y_{1}^{\prime})}{\delta x} + \frac{\delta g(x, y_{1}, y_{1}^{\prime})}{\delta y_{1}} \cdot \frac{dy_{1}}{dx} + \frac{\delta g(x, y_{1}, y_{1}^{\prime})}{\delta y_{1}^{\prime}} \cdot \frac{dy_{1}^{\prime}}{dx} + \frac{\delta g(x, y_{1}, y_{1}^{\prime})}{\delta y_{1}^{\prime}} = \frac{\delta g}{\delta x} + \frac{\delta g}{\delta y_{1}} y_{1}^{\prime} + \frac{\delta g}{\delta y_{1}^{\prime}} y_{1}^{\prime\prime}$$

$$= \frac{\delta g}{\delta x} + \frac{\delta g}{\delta y_{1}} y_{1}^{\prime} + \frac{\delta g}{\delta y_{1}^{\prime}} y_{1}^{\prime\prime}$$

$$= \frac{\delta g}{\delta x} + \frac{\delta g}{\delta y_{1}} y_{1}^{\prime} + \frac{\delta g}{\delta y_{1}^{\prime}} y_{1}^{\prime\prime} + \frac{\delta g}{\delta y_{1}^{\prime\prime}} y_{1}^{\prime\prime} + \frac{\delta g}$$

Мы знаем, что $y_2=f_2(x,y_1,y_2)=f(x,y_1,g(x,y_1,y_1))$. Окончательно имеем ду 2-го порядка отн-но неизв. функции у : $\frac{\delta g}{\delta x} + \frac{\delta g}{\delta y_1} y_1' + \frac{\delta g}{\delta y_1} y_1'' = f\left(x,y_1,g(x,y_1,y_1')\right)$ Этот метод наз-ся методом исключения

37. Первый интеграл норм системы. Методы нахождения. Пусть дана нормальная система ду (НСДУ) $y'_i = f_i$

(x,y₁,...,y_n) (1), где (i=1,...,n)(1), где f_i определены на некоторой области C_1 пр-ва перем $x,y_1,...,y_{n^-}$ Функция $\Phi(x,y_1,\ldots,y_n),(\Phi:C_1\to\Re)$ называется первым интегралом системы (1), если для ∀решения этой сист $y_1 = y_1(x),...,y_n = y_n(x)$, определенного на некотором промежутке I, $\Phi(x, y_1(x), ..., y_n(x))=C=const$ 1. Метод инт. комб. Интегрируемой комбинацией системы (1) назыв ду, являющееся следствием этой системы и легко интегрирующееся. Пример: Дана система: $y'_1 = y_2$, $y'_2 = y_1$. Складывая уравнения системы, получаем: $(y_1 + y_2)$ ' $= y_1 + y_2$, $\tau.e.$ $y_1 + y_2 = C1e^{\lambda}x$. Вычитая из первого уравнения второе, находим еще одну интегрируемую комбинацию: $(y_1 - y_2)' = -(y_1 - y_2)$, т.е. y_1 - y₂ = C2e^(-x) . Общее решение сист: y₁=½(C1e^x + $C2e^{-(-x)}$, $y_2=\frac{1}{2}(C1e^{-x}-C2e^{-(-x)})$. 2. Использование симметрической формы. Пусть

имеется НСДУ (1). Если переписать ее в виде $\frac{dy_i}{dx}$ = $f_i(x,y_1,...,y_n)$ и выразить dx, мы получим симметрическую форму сист (1)

$$d\!dx=\frac{d\!dy_1}{f_1(x,y_1,\dots,y_n)}=\dots=\frac{d\!dy_n}{f_n(x,y_1,\dots,y_n)}$$
 Для нахождения первых

 $S = \int_{-\infty}^{\infty} \left(f_{1(x)} - f_{2}(x) \right) dx$ В декарт. $S = \int_{t_1}^{t_2} y(t) x'(t) dt$ B парам. $S = \frac{1}{2} \int_{\alpha}^{B} r^{2}(\varphi) d\!\!/ \varphi$ В полярн. $V = \int_a^b S(x) dx$ По 'S' попереч. сеч. $V_{ox} = \pi \int_a^b f^2(x) \, dx$ Под граф. вокруг X $V_{ox} = \pi \int_a^b |f_1^2(x) - f_2^2(x)| \, d\!\!/ x$ (аналог) $V_{oy} = \pi \int_{c}^{d} g^{2}(y) dy$ Слева от граф. вокруг Y $V_{oy} = \pi \int_{c}^{d} |g_1^2(y) - g_2^2(y)| dy$ (аналог) $V_{oy} = 2\pi \int_a^b x |f(x)| \, d\!\!/ x \,$ Под граф. вокруг Y $V_{oy} = 2\pi \int_a^b x |f_1(x) - f_2(x)| \, dx$ (аналог) $V_{op} = \frac{2}{3}\pi \int_{lpha}^{eta} r^3 \sin arphi \, d\!\!/ arphi$ В полярн. $L = \int_{a}^{b} \sqrt{1 + y'(x)^2} \, dx$ В декарт. $L = \int_{t_1}^{t_2} \sqrt{x'(t)^2 + y'(t)^2} \, dt$ B парам. $L = \int^{\beta} \sqrt{r^2(\varphi) + r^{'}(\varphi)^2} \, d\!\!/ \varphi$ В полярн. $Q_x = 2\pi \int_a^b |y(x)| \sqrt{1 + y'(x)^2} \, dx$ В декарт. X $Q_y = 2\pi \int_a^b |x| \sqrt{1 + y'(x)^2} \, dx$ В декарт. Ү $Q_x = 2\pi \int_{t_1}^{t_2} |y(t)| \sqrt{x'(t)^2 + y'(t)^2} \, dt$ В парам. X $Q_y = 2\pi \int_{t_1}^{t_2} |x(t)| \sqrt{x'(t)^2 + y'(t)^2} \, dt \, B \, \text{парам Y}$ $Q_{\varphi} = 2\pi \int_{-\pi}^{\beta} r \sin \varphi \sqrt{r(\varphi)^2 + r'(\varphi)^2} \, d\!\!/ \varphi$ В полярн.

 $11. \int \frac{dx}{\sin x} = \ln \left| tg \frac{x}{2} \right| + c$ 1. $\int dx = x + c$ $2 \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1 \quad 12 \int \frac{dx}{a^2 + x^2} = \begin{cases} \frac{1}{a} \operatorname{arctg} \frac{x}{a} + c \\ -\frac{1}{a} \operatorname{arctg} \frac{x}{a} + c \end{cases}$ $3. \int a^x dx = \frac{a^x}{\ln a} + c$ 13. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$ 14. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$ $4 \int \frac{dx}{x} = \ln|x| + c$ 15. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \begin{cases} \arcsin \frac{x}{a} + c \\ -\arctan \frac{x}{a} + c \end{cases}$ 6. $\int \sin x dx = -\cos x + c$ 16. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + c$ 7. $\int \frac{dx}{\cos^2 x} = tgx + c$ 8. $\int \frac{dx}{\sin^2 x} = -ctgx + c$ 17. $\int shxdx = chx + c$ 18. $\int chxdx = shx + c$ $19. \int \frac{dx}{ch^2x} = thx + c$ $9. \int \frac{dx}{\sin x} = \ln \left| tg \frac{x}{2} \right| + c$ 10. $\int \frac{dx}{\cos x} = \ln \left| sg\left(\frac{x}{2} + \frac{\pi}{2}\right) \right| + c$ 20. $\int \frac{dx}{sh^2x} = -cthx + c$

Константа $y = C$.	Показательная функция $y = a^x$.
(C)' = 0	$(a^x)' = a^x \cdot \ln a$
Степенная функция $y = x^p$.	В частности, при а=е имеем $y = e^x$
$(x^p)' = p \cdot x^{p-1}$	$(e^x)' = e^x$
Логарифмическая функция.	Тригонометрические функции.
$(\log_a x)' = \frac{1}{x \cdot \ln a}$	$(\sin x)' = \cos x$
В частности, при а=е имеем $y = \ln x$	$(\cos x)' = -\sin x$
$\left(\ln x\right)' = \frac{1}{x}$	$(tgx)' = \frac{1}{\cos^2 x}$
	$\left(ctgx\right)' = -\frac{1}{\sin^2 x}$
Обратные тригонометрические	Гиперболические функции.
функции.	
$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	(shx)' = chx
¥*	(chx)' = shx
$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}$	$(thx)' = \frac{1}{ch^2x}$
$\left(arctgx\right)' = \frac{1}{1+x^2}$	$(cthx)' = -\frac{1}{cL^2x}$
II. a 1	Srt A

 $(arcctgx)' = -\frac{1}{1+x^2}$