Clustering للـ External Validation Metrics مقارنة

- نظرة عامة على المقاييس 🎯
- 1. Adjusted Rand Index (ARI) 🛣
- 2. Adjusted Mutual Information (AMI) 📊
- 3. Fowlkes-Mallows Index (FMI) 6
- 4. V-Measure (V-Score) Z
- 5. Normalized Mutual Information (NMI)
- 6. Homogeneity & Completeness

المقارنة الأساسية 📊

المقياس	المدى	الأفضل	التعقيد الحسابي	مقاوم للصدفة
ARI	[-1, 1]	أعلى (→ 1)	O(n)	نعم 🔽
АМІ	[0, 1]	أعلى (→ 1)	O(n log n)	نعم 🔽
FMI	[0, 1]	أعلى (→ 1)	O(n)	× ע
V-Measure	[0, 1]	أعلى (→ 1)	O(n)	х и
NMI	[0, 1]	أعلى (→ 1)	O(n log n)	х и
Homogeneity	[0, 1]	أعلى (→ 1)	O(n)	х л

التحليل التفصيلي 🔍

1. Adjusted Rand Index (ARI)

طريقة الحساب

```
RI = (TP + TN) / (TP + FP + FN + TN)
ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)
```

class والـ cluster أزواج في نفس الـ = TP مختلفة clusters و classes أزواج في = TN

مختلفة cluster لكن classes أزواج في نفس الـ = FP

class مختلفة لكن نفس الـ clusters أزواج في = FN

المزايا 🔽

- **معدل للصدفة**: يعطى 0 للتصنيف العشوائي •
- **مدى واضح**: [-1, 1] سهل التفسير •
- مقياس دقيق: يراعي كل أنواع الاتفاق/الاختلاف •
- clusters/classes مستقل عن الحجم: لا يتأثر بعدد الـ
- معيار ذهبي: الأكثر استخداماً في الأبحاث

العيوب 🗶

- **حساس للخلل**: مع البيانات غير المتوازنة •
- **قيم سالبة محيرة**: صعب تفسير القيم السالبة •
- missing labels يحتاج بيانات كاملة: مشاكل مع الـ
- clusters بطء مع البيانات الكبيرة: خاصة مع عدد كبير من الـ •

أفضل استخدام 6

- المقارنات العلمية: الأكثر قبولاً في الأبحاث
- متشابهة في الحجم classes **البيانات المتوازنة**: عندما الـ •
- التقييم الشامل: عندما تريد مقياس دقيق وموثوق
- benchmarking مقارنة الخوارزميات: الأفضل لل

2. Adjusted Mutual Information (AMI)

طريقة الحساب

```
MI(U,V) = \Sigma\Sigma P(i,j) * log(P(i,j) / (P(i) * P(j)))
AMI = (MI - E[MI]) / (max(H(U), H(V)) - E[MI])
```

الفعلي clustering الـ = U

V = JI ground truth

H = Entropy

المزايا 🔽

- **معدل للصدفة**: يعطي 0 للتصنيف العشوائي •
- يقيس المعلومات المحفوظة: مفهوم واضح •
- **مرن مع الأحجام**: يتعامل جيداً مع الاختلافات ●
- **مستقر إحصائياً**: أقل تذبذب من المقاييس الأخرى •

نظریة قویة: مبنی علی نظریة المعلومات •

العيوب 🗶

- أبطأ في الحساب: O(n log n) complexity
- معقد Mutual Information صعب التفسير: مفهوم الـ
- classes **يحتاج ذاكرة أكبر**: خاصة مع عدد كبير من الـ
- مع البيانات المستمرة :discretization حساس للـ •

أفضل استخدام 6

- **تحليل المعلومات**: عندما تريد قياس المعلومات المحفوظة •
- البيانات غير المتوازنة: يتعامل جيداً معها •
- **الدراسات النظرية**: مناسب للتحليل الأكاديمي •
- NLP مقارنة مع الطرق الإحصائية: خاصة في •

3. Fowlkes-Mallows Index (FMI)

طريقة الحساب

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

FMI = $\sqrt{\text{(Precision} \times \text{Recall)}}$

المتوسط الهندسي للدقة والاستدعاء

المزايا 🔽

- المعروفين Precision & Recall **سهل الفهم**: مبني على •
- سريع الحساب: O(n) complexity
- مباشر: مفهوم واضح ومباشر
- **مناسب للتطبيقات**: عملي في الاستخدام اليومي •
- مرتبط بـ Classification مألوف لمن يعمل في

العيوب 🗶

- غير معدل للصدفة: يعطي قيم عالية للتصنيف العشوائي •
- clusters متحيز للعدد: يفضل عدد أكبر من الـ
- غير المتوازنة clusters حساس للحجم: مشاكل مع الـ •

قد يكون مضلل: خاصة مع البيانات الصغيرة •

أفضل استخدام 6

- **التطبيقات السريعة**: عندما السرعة مهمة •
- **المقارنات البسيطة**: للحصول على فكرة سريعة •
- مع مقاييس أخرى: كمقياس تكميلي وليس أساسي •
- متشابهة في الحجم clusters **البيانات المتوازنة**: عندما الـ •

4. V-Measure (V-Score)

طريقة الحساب

Homogeneity = H(C|K) = 0 إذا كان كل cluster واحد class يحتوي class اإذا كان كل cluster واحد cluster واحد

V-measure = $2 \times (h \times c) / (h + c)$ والـ Homogeneity والـ Completeness

المزايا 🔽

- مفهوم بديهي: Homogeneity + Completeness
- **متوازن**: يراعي كلاً من النقاء والاكتمال •
- **ا قابل للتخصيص**: يمكن إعطاء أوزان مختلفة للـ •
- تحلیل مفصل: یمکن دراسة کل مکون علی حدة •
- سریع نسبیاً: O(n) complexity

العيوب 🗶

- غير معدل للصدفة: مشكلة مع التصنيف العشوائي •
- clusters متحيز للعدد: يحابي عدد أكبر من الـ •
- متضاربین c و h معقد التفسیر: عندما
- **حساس للمعاملات**: اختيار الأوزان يؤثر على النتيجة •

أفضل استخدام 6

- التحليل التفصيلي: عندما تريد فهم نوع المشاكل
- **تحسين الخوارزميات**: لمعرفة إذا المشكلة في النقاء أو الاكتمال ●
- **الدراسات التطبيقية**: مناسب للتطبيقات العملية •

مع البيانات المتوازنة: الأفضل مع البيانات المنتظمة •

5. Normalized Mutual Information (NMI)

طريقة الحساب

MI(U,V) = المعلومات المتبادلة H(U) = entropy للـ clustering H(V) = entropy للـ ground truth

 $NMI = MI(U,V) / \sqrt{H(U) \times H(V)}$ أو طرق تطبيع أخرى مختلفة

المزايا 🔽

- مبني على نظرية المعلومات: أساس نظري قوي •
- clusters مستقل نسبياً: أقل تأثر بعدد الـ
- مفهوم واضح: يقيس المعلومات المشتركة •
- normalization مرن: عدة طرق للـ

العيوب 🗶

- غير معدل للصدفة: مشكلة أساسية
- طرق تطبيع مختلفة: قد تعطي نتائج مختلفة
- أبطأ من البعض: خاصة مع البيانات الكبيرة •
- **صعب المقارنة**: بسبب اختلاف طرق التطبيع •

أفضل استخدام 🎯

- الدراسات الأكاديمية: خاصة في
- مختلف clusters مقارنة الخوارزميات: عندما عدد الـ
- **تحليل المعلومات**: لفهم كمية المعلومات المحفوظة •
- كمقياس مكمل :**AMI مع**

6. Homogeneity & Completeness

طريقة الحساب 🏢

Homogeneity = 1 - H(C|K) / H(C)
واحد فقط؟ cluster محتوي على cluster واحد

Completeness = 1 - H(K|C) / H(K)
واحد فقط؟ cluster هل کل

المزايا 🔽

- مفهوم بديهي جداً: أسهل المقاييس في الفهم •
- **تحلیل مفصل**: یمکن دراسة کل جانب منفصل
- تشخيص المشاكل: يساعد في فهم نوع الأخطاء •
- سریع: O(n) complexity

العيوب 🗶

- **غير معدل للصدفة**: مشكلة كبيرة •
- **لا يعطي درجة واحدة**: محتاج للجمع في
- **متحيز**: كل واحد يحابي استراتيجية معينة •
- **قد يكون مضلل**: مع البيانات غير المتوازنة •

أفضل استخدام 🌀

- التحليل والتشخيص: لفهم طبيعة المشاكل •
- تحسين الخوارزميات: معرفة أين المشكلة بالضبط •
- clustering التعليم: لشرح مفاهيم الـ
- مع مقاییس أخرى: كمقاییس مساعدة •

توصيات الاستخدام 🙎

للبحث العلمي والأكاديمي

- المعيار الذهبي 1. **ARI**
- للدقة الإحصائية 2. **AMI**
- اللتحليل المفصل 3. **V-Measure**

للتطبيقات العملية

- سريع وبسيط 1. **FMI**
- متوازن وعملي 2. **V-Measure**

للتأكد من الجودة - 3. **ARI**

للتشخيص وحل المشاكل

- 1. Homogeneity & Completeness تشخیص مفصل
- نظرة شاملة 2. **V-Measure**
- التقييم النهائي 3. **ARI**

حسب نوع البيانات 📈

البيانات المتوازنة

ARI :**الأول**

AMI :الثاني •

• الثالث: V-Measure

البيانات غير المتوازنة

AMI :الأول •

ARI :**الثاني**

• الثالث: V-Measure

(> 100К) البيانات الكبيرة

• ا**الأول** (سرعة) FMI (سرعة)

ARI :**الثاني**

• الثالث: V-Measure

تحذيرات مهمة 🔔

للمقاييس غير المعدلة Baseline مشكلة الـ

:قد يعطي Random Clustering

- FMI ≈ 0.5
- NMI ≈ 0.3-0.7
- V-Measure ≈ 0.4

يعطوا ≈ 0.0 AMI و ARI بينما

المختلف Clusters عدد الـ

• ARI & AMI: مقاومين للتغيير

بقية المقاييس: متأثرة بشدة •

النصائح العملية 📏

عند اختيار المقاييس

المعيار الأساسي - **ARI ابدأ دائماً بـ** .1

للتأكد - خاصة مع البيانات غير المتوازنة **AMI أضف** .2

للتحليل - فهم طبيعة الأخطاء V-Measure استخدم .3

عند تفسير النتائج

• **ARI > 0.7**: ممتاز

• **ARI 0.5-0.7**: جيد

• **ARI 0.2-0.5**: متوسط

• **ARI < 0.2**: ضعيف

للحصول على أفضل النتائج

لا تعتمد على مقياس واحد •

اعتبر طبيعة بياناتك •

احذر من المقاييس غير المعدلة •

عشوائي baseline قارن مع •

الخلاصة النهائية 📊

المقياس	الأفضل لـ	تجنبه مع	الموثوقية	السهولة
ARI	البحث العلمي	البيانات الضخمة	****	***
AMI	البيانات غير المتوازنة	التطبيقات السريعة	****	***
FMI	التطبيقات السريعة	التقييم الدقيق	**	****
V-Measure	التحليل العملي	المقارنات العلمية	***	***
NMI	الدراسات النظرية	المقارنات المباشرة	***	**
H & C	التشخيص	التقييم النهائي	**	****

:التوصية الذهبية

ARI للتأكد، واستعن بـ AMI كمقياس أساسي، وأضف Homogeneity & Completeness للفهم طبيعة المشاكل.