#### COMP47490 Tutorial

**Ensembles** 

## **Aonghus Lawlor**

School of Computer Science Autumn 2019



#### **Tutorial Q1(a)**

Q. In Weka, load the *Wine* data set using the ARFF file provided, and evaluate a decision tree classifier (J48) using 10-fold cross-validation. What percentage of instances are correctly classified?



#### **Tutorial Q1(b)**

- Q. Apply ensemble classification using bagging to achieve diversity and with a decision tree classifier. What percentage of instances are now correctly classified with an ensemble of size 50?
- 1. Using Weka, click on the Classify tab.
- 2. Click *Choose*, select method *classifiers->meta->Bagging*.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the *numlterations* to 50 Click *OK* button.
- 6. Click Start button to build the ensemble.



#### **Tutorial Q1(b)**



Improvement: 93.82% → 94.94%

#### **Tutorial Q1(c)**

Q. Repeat (b), but increase the ensemble size to 100, 250, then 500 classifiers. What level of improvement does this provide, in terms of percentage of instances correctly classified?



| Ensemble<br>Size | %<br>Correct | %<br>Incorrect |
|------------------|--------------|----------------|
| 50               | 94.94        | 5.06           |
| 100              | 95.51        | 4.49           |
| 250              | 95.51        | 4.49           |
| 500              | 96.07        | 3.93           |

#### **Tutorial Q1(d)**

Q. Why does the level of improvement in accuracy often "level off" after an ensemble has been increased to a certain size?

| Ensemble<br>Size | %<br>Correct | %<br>Incorrect |
|------------------|--------------|----------------|
| 50               | 94.94        | 5.06           |
| 100              | 95.51        | 4.49           |
| 250              | 95.51        | 4.49           |
| 500              | 96.07        | 3.93           |
| 1000             | 96.07        | 3.93           |
| 1500             | 96.07        | 3.93           |
| 2000             | 96.07        | 3.93           |



➡ Eventually, new ensemble members will have prediction patterns collinear with existing members. No new diversity is added, so ensemble accuracy will plateau.

#### **Tutorial Q2(a)**

Q. In Weka, load the *Glass* data set using the ARFF file provided, and evaluate a decision tree classifier (J48) using 10-fold cross-validation. What percentage of instances are correctly classified?



#### **Tutorial Q2(b)**

- Q. Apply bagging with a decision tree classifier for an ensemble size of 100. What is the improvement over a single tree?
- 1. Using Weka, click on the Classify tab.
- 2. Click *Choose*, select method *classifiers->meta->Bagging*.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the *numlterations* to 100.
- 6. Click OK button.
- 7. Click *Start* button to build the ensemble.



#### **Tutorial Q2(b)**



#### **Tutorial Q2(c)**

- Q. Now apply boosting with a decision tree classifier for an ensemble size of 100. How does it compare to the results from (b)? How do you explain this difference?
- 1. Using Weka, click on the Classify tab.
- 2. Click Choose, select method classifiers->meta->AdaBoostM1.
- 3. Click *AdaBoostM1* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the numlterations to 100.
- 6. Click OK button.
- 7. Click *Start* button to build the ensemble.



#### **Tutorial Q2(c)**

→ Boosting adds diversity to the ensemble, while also improving accuracy on the difficult examples.



#### **Tutorial Q3(a)**

Q. In Weka, load the *Glass* data set. Evaluate a k-NN classifier with k=2 neighbours using 10-fold cross-validation. What percentage of instances are correctly classified?



#### **Tutorial Q3(b)**

# Q. Apply bagging with with a k-NN classifier (k=2) for an ensemble size of 100. What is the improvement?

- 1. Using Weka, click on the Classify tab.
- 2. Click *Choose*, select method *classifiers->meta->Bagging*.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select IBk.
- 5. Click *IBk*. In the configuration window, set *KNN* to 2. Close window.
- 6. Set the *numlterations* to 100.
- 7. Click OK button.
- 8. Click Start button to build the ensemble.



### **Tutorial Q3(b)**



#### **Tutorial Q3(c)**

- Q. Now apply random subspacing with a k-NN classifier (k=3) for an ensemble size of 100. How does it compare to the results from (b)? How do you explain this difference?
- 1. Using Weka, click on the Classify tab.
- 2. Click Choose, select method classifiers->meta->RandomSubSpace.
- 3. Click *RandomSubSpace* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select IBk.
- 5. Click *IBk*. In the configuration window, set *KNN* to 3. Close window.
- 6. Set the *numlterations* to 100.
- 7. Click OK button.
- 8. Click Start button to build the ensemble.



#### **Tutorial Q3(c)**

- Bagging is ineffective using a stable classifier (k-NN).
- Random subspacing adds more instability into the classifier (diversity)
  ⇒ different features used when calculating distances.

