

AMENDMENT

Please amend the above-identified application as follows:

In the claims:

Please rewrite the claims as follows:

1. (Currently Amended) A process for the production of physically foamed injection molded articles, wherein in a first stage a propellant-free first melt portion is fed into a cavity (initial filling), in a second stage adding a physical propellant [is added] at elevated pressure to [the following] a second melt portion and injecting the second melt portion containing the propellant into the cavity (propellant injection phase), and [possibly] optionally in a third stage a propellant-free [further] third melt portion is charged into the cavity, the production of the injection molded articles occurring in the cavity,

wherein metering of the physical propellant in the second stage occurs in a pressure regulated manner, wherein the pressure which is exerted on the propellant during the propellant injection phase is greater than the pressure which is exerted on the propellant in the phases between or before or after metered addition, and the expansion of the propellant occurs in the cavity.

2. (Previously Amended) The process of Claim 1, wherein the propellant is a compressible fluid.
3. (Currently Amended) The process of Claim 1 further comprising the step of maintaining the propellant under pressure in [the] an intermediate cycle time[s] before and after the propellant injection phase.

4. (Currently Amended) The process of Claim 3, further comprising maintaining the propellant at a pressure of at least $p_{(crit)}$ at a given temperature during the intermediate cycle time[s].
5. (Previously Amended) The process of Claim 1, further comprising the step of controlling the pressure exerted on the propellant via a pressure control valve.
6. (Previously Amended) The process of Claim 5, wherein the pressure control valve is a multi-way valve.
7. (Previously Amended) The process of Claim 6, wherein the multi-way valve is a 3/3-way proportional valve or a 2/3-way proportional valve.
8. (Currently Amended) The process of Claim 1 further comprising the step of controlling the pressure of [the] a critical propellant[s] via at least one pressure relief valve connected downstream of the pressure control valve.
9. (Currently Amended) The process of Claim 8, wherein at least one of the pressure relief valves has a holding pressure equal to or higher than the pressure at which a critical propellant is held in [the] an intermediate cycle time[s].
10. (Currently Amended) The process according to Claim 1 further comprising the step of regulating the pressure preset by the pressure control valve via one or more pressure relief valves to the injection pressure at which the propellant is added to the second melt portion via an injection point.

11. (Previously Amended) The process of claim 1, wherein the injection point is configured as a throttle means.
12. (Previously Amended) The process of Claim 11, wherein the injection point is in the form of a defined gap in an injector or of an injector with a sinter metal.
13. (Previously Amended) The process of Claim 11, wherein the injection point is configured as a controlled closure mechanism.
14. (Previously Amended) The process of Claim 1 further comprising the step of using water as the propellant.
15. (Previously Amended) The process of Claim 1 further comprising the step of using a gas or gas mixture as the propellant.
16. (Previously Amended) The process of Claim 15, further comprising the step of using carbon dioxide as the propellant.
17. (Currently Amended) The process of Claim 16, wherein the carbon dioxide is held in [the] an intermediate cycle time[s] at a pressure of at least 60 bar.
18. (Previously Amended) The process of Claim 1 further comprising the step of elevating the pressure of the propellant during the propellant injection phase to a pressure of over 60 bar using the pressure control valve.

19. (Previously Amended) The process of Claim 1 further comprising the step of generating a counterpressure in the cavity.
20. (Previously Amended) The process of Claim 1, wherein the physically foamed injection molded article is selected from the group consisting of a handle, a knob, a gearshift knob, a steering wheel casing, a ball, a sphere, a fender, a float and a closing means for bottle-like containers.
21. (Currently Amended) A device for the discontinuous metered addition of physical propellants to a foamable melt, comprising:
 - a storage means, in which the propellant is stored under pressure,
 - a pressure control valve for regulating the propellant pressure, and
 - an injection point, which is configured as a throttle means, at which the propellant under pressure is fed to the melt,wherein a controlled closure mechanism is provided at the injection point, and the controlled closure mechanism opens upon an increase in pressure above its holding pressure.
22. (Previously Amended) The device of Claim 21, further comprising at least one pressure relief valve.
23. (Currently Amended) The process of claim 1, further comprising the step of:
maintaining the propellant in a compressed state in [the] an intermediate cycle time[s]
before and after the propellant injection phase.

24. (Currently Amended) A device for the discontinuous metered addition of physical propellants to a foamable melt, comprising:

a storage means, in which the propellant is stored under pressure,
a pressure control valve for regulating the propellant pressure, and
an injection point, which is configured as a throttle means, at which the propellant under pressure is fed to the melt,

wherein at least one pressure relief valve is provided [at] before the injection point, and the pressure relief valve opens upon pressure increase above its holding pressure.