

Technische Informatik I

Übungsblatt 3

Prof. Dr. Dirk Hoffmann

Aufgabe 1: Leiten Sie aus den Gesetzen der booleschen Algebra die folgenden Rechenregeln für den Äquivalenzoperator '↔' und Antivalenzoperator '↔' (XOR) her:

a)
$$\bar{x} \leftrightarrow y = x \leftrightarrow y$$

b)
$$\bar{x} \leftrightarrow \bar{y} = x \leftrightarrow y$$

c)
$$(x \land z) \nleftrightarrow (y \land z) = (x \nleftrightarrow y) \land z$$

d)
$$(x \lor z) \leftrightarrow (y \lor z) = (x \leftrightarrow y) \lor z$$

Aufgabe 2: Zeigen oder widerlegen Sie die folgende Beziehung:

a)
$$x \leftrightarrow y \leftrightarrow z = x \leftrightarrow y \leftrightarrow z$$

Zeigen Sie, dass die folgenden beiden Varianten des Distributivgesetzes für ↔ und ↔ falsch sind:

b)
$$(x \lor z) \leftrightarrow (y \lor z) = (x \leftrightarrow y) \lor z$$

c)
$$(x \land z) \leftrightarrow (y \land z) = (x \leftrightarrow y) \land z$$

Aufgabe 3: Die erweiterten De Morgan'schen Regeln lauten wie folgt:

a)
$$(\overline{x_1 \wedge x_2 \wedge \ldots \wedge x_n}) = \overline{x_1} \vee \overline{x_2} \vee \ldots \vee \overline{x_n}$$

b)
$$(\overline{x_1 \lor x_2 \lor \ldots \lor x_n}) = \overline{x_1} \land \overline{x_2} \land \ldots \land \overline{x_n}$$

Beweisen Sie die Regeln mit Hilfe der vollständigen Induktion.

Aufgabe 4: Zeigen oder widerlegen Sie, dass die folgenden Operatorenmengen jeweils ein vollständiges Operatorensystem bilden:

a)
$$\{\neg, \rightarrow\}$$

b)
$$\{\overline{\wedge}\}$$

Aufgabe 5: Gegeben seien die folgenden drei booleschen Funktionen:

$$\phi_1 = (x \to y) \to z, \quad \phi_2 = x \to (y \to z), \quad \phi_3 = \overline{x \wedge y} \vee \overline{x \wedge \overline{z}}$$

Stellen Sie ϕ_1 unter ausschließlicher Verwendung der NOR-Funktion, ϕ_2 unter ausschließlicher Verwendung der NAND-Funktion und ϕ_3 unter ausschließlicher Verwendung der Implikation dar.

Aufgabe 1: Leiten Sie aus den Gesetzen der booleschen Algebra die folgenden Rechenregeln für Aufgabe 6: Für die folgende 7-Segment-Anzeige soll eine Ansteuerungslogik konstruiert werden:

Über die vier Eingangssignale x_4, \ldots, x_1 nimmt die Schaltung eine beliebige BCD-Ziffer entgegen. Jedes Leuchtsegment wird über eines der sieben Ausgangssignale s_0, \ldots, s_6 angesprochen und leuchtet genau dann, wenn der Wert der Steuerleitung gleich 1 ist. Modellieren Sie die Ansteuerungslogik, indem Sie zunächst die abgebildete Wahrheitstabelle vervollständigen. Stellen Sie anschließend für jedes der Ausgangssignale s_i eine boolesche Formel auf und vereinfachen Sie diese algebraisch so weit wie möglich.

	x_4	<i>x</i> ₃	x_2	x_1	<i>s</i> ₆	<i>s</i> ₅	<i>s</i> ₄	<i>s</i> ₃	s_2	s_1	s_0
0	0	0	0	0							
1	0	0	0	1							
2	0	0	1	0							
3	0	0	1	1							
4	0	1	0	0							
5	0	1	0	1							
6	0	1	1	0							
7	0	1	1	1							
8	1	0	0	0							
9	1	0	0	1							
10	1	0	1	0							
11	1	0	1	1							
12	1	1	0	0							
13	1	1	0	1							
14	1	1	1	0							
15	1	1	1	1							

Welche Werte haben Sie für die Bitkombinationen gewählt, die keiner BCD-Ziffer entsprechen? War Ihre Wahl für diese Bitkombinationen eindeutig?