Started on	Tuesday, 2 July 2024, 3:44 PM
State	Finished
Completed on	Tuesday, 2 July 2024, 3:54 PM
Time taken	10 mins 16 secs
Grade	4 out of 10 (40%)
Question 1	
Complete	
Mark 0 out of 1	
In a linear search a	lgorithm, worst case occur.
a. If the key e	element is exist at first position in the list.
b. If the key e	element is exist at last position in the list.
c. If the key e	element does not exist in the list.
od. If the key e	element either exists at last position or does not exist in the list.
Question 2	
Complete	
Mark 1 out of 1	
In binary search alg	porithm after every iteration search space is reduced by
oa. n	
○ b. n-1	
c. n/2	
d. 2n	
u. 211	
Question 3	
Complete	
Mark 1 out of 1	
In Which sorting alo	porithm elements which are at two consecutive positions get compared.
a. Selection S	Sort
b. Bubble So	
od. None Of Ti	

d. trav->next->next != head

Question 8	
Complete	
Mark 1 out	of 1
Which o	of the following is true about linked list implementation of queue?
a.	In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from end.
○ b.	In push operation, if new nodes are inserted at the end of linked list, then in pop operation, nodes must be removed from beginning.
○ c.	Queue data structure can be used to implement least recently used (LRU) page fault algorithm and Quick short algorithm.
d.	All of the above
Question 9	
Complete	
Mark 0 out	of 1
	of the following statement is false about singly linear linked list?
_ a.	In a SLLL, traversal can be done only in a forward direction.
a.b.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time.
a.b.c.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time.
a.b.c.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it.
a.b.c.d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it. O form of access is used to add and remove nodes from a queue.
a. b. c. d.	In a SLLL, traversal can be done only in a forward direction. In a SLLL, add and delete node at last position operations takes O[No] time. In SLLL, add and delete node at first position operations takes O(1) time. In SLLL, previous node of any node can be accessed from it. 10 11 12 13 14 15 16 16 17 17 18 18 19 19 19 19 19 19 19 19