Date: October 10, 2018

DS 100: Principles and Techniques of Data Science

Discussion #7

Name:

var(D) = E | (E(D)-D)2/

Bias-Variance Trade-off

n(x): true values $Y = h(\pi) + \varepsilon$: observe $f(\pi)$: model

1. Assume that we have a function h(x) and some noise generation process that produces ϵ such that $\mathbb{E}\left[\epsilon\right] = 0$ and $\operatorname{var}(\epsilon) = \sigma^2$. Every time we query mother nature for Y at a given a x, she gives us $Y = h(x) + \epsilon$. A new ϵ is generated each time, independent of the last. We randomly sample some data $(x_i, y_i)_{i=1}^n$ and use it to fit a model $f_{\hat{\theta}}(x)$ according to some procedure (e.g. OLS, Ridge, LASSO). In class, we showed that Bias-Variance Decomp.

 $\underbrace{\mathbb{E}\left[(Y-f_{\hat{\theta}}(x))^2\right]}_{\text{model risk}} = \underbrace{\sigma^2}_{\text{obs.}} + \underbrace{\left(h(x)-\mathbb{E}\left[f_{\hat{\theta}}(x)\right]\right)^2}_{\text{model bias}} + \underbrace{\mathbb{E}\left[\left(\mathbb{E}\left[f_{\hat{\theta}}(x)\right]-f_{\hat{\theta}}(x)\right)^2\right]}_{\text{model bias}}.$

- (a) Label each of the terms above. Word bank: observation variance, model variance, observation bias², model bias², model risk, empirical mean square error.
- (b) What is random in the equation above? Where does the randomness come from?

y is random as it depends on fo(x) depends on Y, - it is also random

- (c) True or false and explain. $\mathbb{E}\left[\epsilon f_{\theta}(x)\right] = 0$
- (d) Suppose you lived in a world where you could collect as many data sets you would like. Given a fixed algorithm to fit a model f_{θ} to your data e.g. linear regression, describe a procedure to get good estimates of $\mathbb{E}[f_{\hat{\theta}}(x)]$ (technical point: you may assume this

expectation exists).

b) I is random as it involves random noise (e) If you could collect as many data sets as you would like, how does that affect the quality

- gives good estimate of year desired model of your model $f_{\theta}(x)$?

mudel(x) = 12

1 - Loesa't tell you quality
of the model

Discussion #7

2. We find the optimal θ that minimizes squared loss with L_1 regularization:

$$\hat{\theta} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} ||\mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\theta}||_{2}^{2} + \lambda ||\boldsymbol{\theta}||_{1} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \boldsymbol{\Phi}_{i, \mathbf{T}}^{\mathbf{T}}\boldsymbol{\theta})^{2} + \lambda \sum_{j=1}^{d} |\theta_{j}|.$$

You receive all your (nice, clean, numerical) data in a single DataFrame called Complete Data. The first column contains the responses and the remaining d columns hold the features. You want to use 60% of your data in the training set and implement part of 5-fold cross-validation with the following pseudocode:

```
Phi_train, Y_train, Phi_test, Y_test =\
    make_train_test_split(CompleteData, 0.60)
lambdas = make_lambdas(from=0.1, to=0.4, by=0.1)

n = count_rows(...)
fold_size = n / k
idx = range(n)
randomly shuffle the ordering of idx
folds = [idx[i * fold_size : (i+1) * fold_size] for i in range(k)]

for i, fold in enumerate(folds):
    for j, lam in enumerate(lambdas):
        mse[i, j] = calculate_mse_lasso(Phi_, Y_, fold, lam)
```

- (a) What should the ... be in count_rows above? Your choices are CompleteData, Phi_train, and Phi_test.
- (b) What should the blanks be in calculate_mse_lasso above? Your choices are train and test.
- (c) Describe an algorithm for calculate_mse_lasso.

(d) After running 5-fold cross validation, we get the following mean squared errors for each fold and value of λ :

Tota and value of 70.						
Fold Num	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.3$	$\lambda = 0.4$	Row Avg	
1	80.2	70.2	91.2	91.8	83.4	should
2	76.8	66.8	88.8	98.8	82.8	should
3	81.5	71.5	86.5	88.5	82.0	all be
4	79.4	68.4	92.3	92.4	83.1	1.
5	77.3	67.3	93.4	94.3	83.0	61154
Col Avg	79.0	68.8	90.4	93.2		
						_

How do we use the information above to choose our model? Do we pick a specific fold? a specific lambda? or a specific fold-lambda pair? Explain.

3. Ridge regression is a variant of least squares that involves regularization. The problem is stated as follows:

$$\hat{\theta} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} L(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} ||\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\theta}||_{2}^{2} + \lambda ||\boldsymbol{\theta}||_{2}^{2} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \boldsymbol{\Phi}_{i,\cdot}^{T} \boldsymbol{\theta})^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

Here, λ is a hyperparameter that determines the impact of the regularization term. Φ is a $n \times d$ matrix, θ is a $d \times 1$ vector and y is a $n \times 1$ vector. The optimal choice is $\hat{\theta} = (\Phi^T \Phi + \lambda \mathbf{I})^{-1} \Phi^T \mathbf{y}$.

(a) As model complexity increases, what happens to the bias and variance of the model?

As moder complexity mercanes,

The complexity decreases

- bias increases

- variance decreases

(and vice versa)

(b) In terms of bias and variance, how does the a regularized regression estimator compare to ordinary least squares regression?

OLS has the most complex model =. RR has higher biar, lower var

(c) In ridge regression, what happens if we set $\lambda = 0$? What happens as λ approaches ∞ ?

 $\lambda=0$: this is just ols $\lambda \rightarrow \infty$: $\theta \rightarrow 0$

(d) How does model complexity compare between ridge regression and ordinary least squares regression? How does this change for large and small values of λ ?

(e) If we have a large number of features (10,000+) and we suspect that only a handful of features are useful, which type of regression (Lasso vs Ridge) would be more helpful in

(f) What are the benefits of using ridge regression?

- (g) On last week's discussion, we discussed possible situations where the matrix $\Phi^T\Phi$ was not invertible, such as the presence of linearly dependent columns or an insufficient number of observations. In this question, we will demonstrate that the L_2 regularization penalty always ensures that the matrix $(\mathbf{\Phi}^T\mathbf{\Phi} + \lambda \mathbf{I})^{-1}$ is invertible, resulting in a unique solution.
 - i. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **positive semi-definite** if for every non-zero vector $\mathbf{v} \in \mathbb{R}^n$, we have $\mathbf{v}^T \mathbf{A} \mathbf{v} \geq 0$. Given a matrix $\mathbf{\Phi} \in \mathbb{R}^{n \times d}$ (think our feature matrix), show that $\Phi^T \Phi$ is positive semi-definite.

$$\sqrt{T} \phi^{\dagger} \phi v = (\phi v)^{T} \phi v = ||\phi v||_{L}^{2} \geq 0$$

ii. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **positive definite** if for every non-zero vector $\mathbf{v} \in \mathbb{R}^n$, we have $\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$. Notice that the inequality is now strict. Given a matrix $\Phi \in \mathbb{R}^{n \times d}$ (think our feature matrix) and $\lambda > 0$ (our regularization hyperparameter), show that $\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}$ is positive definite.

iii. Prove that a positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is always invertible by showing that its null space only contains the zero vector i.e.

Proof by Contradiction

Assume there exists some
$$v \in N(A)$$
, $v \neq 0$
 $Av = 0$
 $V^TAV = V^TO = 0$

but, we assume A is PD , i.e. $V^TAV > 0$

Contradiction! $N(A) = \{0\}$