Assume, alpha=0.001

W1=0 & w2=0

Loop through each example in the training data, and use the current input features to make a prediction of thetas1 & thetas2.

Calculate the error between the predicted output and the actual output, and use this error to update the model parameters.

error=
$$y_i - \hat{y}_i$$

w(k+1) = w(k) + alpha * error* X_i

Stochastic LMS-

Using Batch LMS:

Calculate the dot product of the weight vector and the input features, X, to make a prediction, ŷ.

$$e = y - \hat{y}$$

 $w(k+1) = w(k) + alpha * error* X_i$

Using least square close form solution:

Using Least square close form

Using Mini Batch:

Comparison Graph:

Cost in Batch LMS:

Cost in Stochastic LMS:

