Лекция 1

Аксиоми за вероятността Р(А)

- **1.** P(A) >= 0 за всяко A (позитивност)
- **2.** $P(\Omega) = 1$ (нормираност)
- **3.** Ако A1,A2,.. изброими и $A_iA_j = \emptyset$ за всяко і,j, такива, че $A_iA_j \in A$, тогава $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

Свойства на вероятностите

1.
$$P(\overline{A}) = P(\Omega) - P(A) = 1 - P(A)$$

$$2. A \subset B \Rightarrow P(A) \iff P(B)$$

3.
$$P(A) <= 1$$

4.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

5.
$$P(B \cap \overline{A}) = P(B) - P(B \cap A)$$

6.
$$P(B) = P(BA \cup B\overline{A})$$

Независимост на събития – Две събития са независими ⇔ P(AB) = P(A).P(B)

Несъвместимост на събития – A и B са несъвместими, ако P(AB) = 0.

Независимост в съвкупност – Събитията A1..An са независими в съвкупност, ако за всяко k: 2 <= k <= n и за всяко i: i <= i1..ik <= n => P(Ai1..Aik) = P(Ai1)..P(Aik).**Тв:**Ако A1..An – независими в съвкупност <math>=> независими две по две.

Формула за произведение на вероятности – $P(A1..An) = P(A1).P(A2 \mid A1).P(A3 \mid A1A2)..P(An \mid A1..An-1)$

Формула за пълната вероятност – Пълна група от събития (хипотези): $\bigcup_{i=1}^n H_i = \Omega$ и за всяко

і, j HiHj = Ø. =>
$$\sum_{i=1}^{n} P(H_i) = 1$$
 => Формулата: $P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(H_i) = \sum_{i=1}^{n} P(AH_i)$

Формула на Бейс -
$$\frac{P(H_k).P(H_k)}{\sum\limits_{i=1}^{n}P(H_i).P(H_i)}$$

Лекция 3

Случайна величина – обект, който може да взима за стойности случайни реални числа с някаква вероятност.

Дискретни случайни величини – взимат само краен или най-много изброим брой стойности. Формално: Нека Hj – някое разлагане на Ω, а xj са произв. различни R числа. ДСВ наричаме

$$X(w) = \sum\limits_{j} x_{j} I_{H_{j}}(w)$$
, където I – индикатор.

Непрекъснати случайни величини – взимат стойности в някое неизброимо множество.

Независимост при дискретни случайни величини – Нека X,Y – дискр. сл. в. => X _| |_ Y, ако са независими всички двойки събития, породени от тях, т.е. X _| |_ Y \iff \mathbb{Z} i,j: $P(X = x_i, Y = y_j) = P(X = x_i)$ $P(Y = y_i)$.

Функция на разпределение – $F_x(x) = P(X < x)$, x – произв R число. Ако разполагаме с плътността не е проблем да намерим ф-ята ма разпределение, както и обратното. Съгласно усл. 3) от

деф. на плътност:
$$F_X(x) = P(X < x) = \int\limits_{-\infty}^x f_X(t) dt$$

Математическо очакване – Мат. оч. на дискретната случ. велич. X нар. числото $EX = \sum_{j} x_{j} p_{j}$, където $p_{i} = P(X = x_{i})$. Мат. оч. = средна стойност.

Свойства на математическото очакване

- 1. Ako C = const, to EC = C
- 2. E(cX) = cEX, където X е произволна сл.в., а с = const.
- **3.** E(X + Y) = EX + EY, където X и Y са произволни сл.в.
- **4.** Нека X _ | | _ Y, тогава E(XY) = EXEY

5.
$$Eg(X) = \sum_{j} g(x_{j}) p_{j}$$
 и $g(x)$ – произв. ф-я.

6.
$$E(aX +- bY) = aEX +- bEY$$

7.
$$E(aX + b) = aEX + b$$

Дисперсия – мярка за разсейването на стойностите на една случ. в. около нейното мат. очак. $DX = EX^2 - (EX)^2$. Прието е \sqrt{DX} да се нар. стандартно отклонение.

Свойства на дисперсията

- **1.** DX >= 0
- **2.** Dc = 0, където с const.
- **3.** $D(cX) = c^2DX$
- **4.** Heka X | | Y, Toraba D(X + Y) = DX + DY
- **5.** AKO X! | | Y => D(aX +- bY) = $a^2DX + b^2DY +- 2ab.cov(X,Y)$
- **6.** $D(aX + b) = a^2DX$

Пораждаща функция – Нека X – случ. в., чиито ст-сти са цели положителни числа. Поражд.

ф-я е
$$gX(s) = \sum_{k=0}^{\infty} P(X=k)s^k$$

Пораждаща функция на сума – Нека X1..Xn – незав. сл. в., които взимат цели неотриц. ст-сти => $g_{x_1+...+x_n}(s) = g_{x_1}(s).g_{x_2}(s)...g_{x_n}(s)$

Лекция 5

Разпределения на дискретни случайни величини

1. Разпределение на Бернули

Опит на Бернули - опит, при който има само две възможности - "успех" и "неуспех"

Схема на Бернули – извършват се последователни, независими опити на Бернули. Вероятността за успех на всеки опит е една и съща, ще я означим с р. Съотв. вер. за неуспех q = 1 – р също е еднаква за отделните опити. Няма огранич. за броя на опитите.

Разпределението – Извършваме един Бернулиев опит. Нека X – бр. на успехите => X = {0,1}

$$EX = p; EX^2 = p; DX = p.q$$

2. Биномно разпределение – X е Bi(n,p)

X – бр. на успехите; n – бр. опити; p – вероятност за успех.

Вероятността за точно k на бр. успехи: $P(X = k) = (n k) p^k q^{n-k}$

$$EX = n.p; DX = n.p.q$$

3. Геометрично разпределение – X е Ge(p)

Х – бр. на неуспехите до достигане на 1вия успех; р – вероятност за успех.

Вероятността за точно k успеха до 1вия успех: $P(X = k) = q^k p$

EX =
$$q/p$$
; **DX** = q/p^2 .

4. Отрицателно биномно разпределение – X е NB(r,p)

X – бр. а неуспехите до достигане на r-тия успех; r – r-ти успех; р – вероятност за успех.

Вероятността за точно k неуспеха до r-тия успех: $P(X = k) = (r + k - 1 r - 1) p^r q^k$

$$EX = r.q/p$$
; $DX = r.q/p^2$

Поасоново разпределение – X е Ро(λ)

Използваме го за описване на редки събити, т.е. извършват се мн. независими опити, но вероятността за успех при всеки от тях е малка. При това разпределение случ. в. X е биномно разпределена, т.е. X е Bi(n,p), но $n \to \infty$, а $p \to 0$.; X – $p \to 0$ 0.

Вероятността за точно k успеха: $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}$, където $\lambda>0$ e const.

$$EX = \lambda$$
; $DX = \lambda$

6. Хипергеометрично разпределение – X е HG(N,M,n)

Разглеждаме мн-во от общо N ел-та като M от тях са маркирани. От цялото мн-во избираме по случ. начин без повторение n ел-та. X – бр. на маркираните ел-ти, които са избрани.

Вероятността за точно k успеха:
$$P(X = k) = \frac{(M k)(N - M n - k)}{(N n)}$$

EX = n.M/N;
$$DX = n \frac{M}{N} \frac{N-M}{N} \frac{N-M}{N-1}$$

Лекция 6

Ковариация – cov(X,Y) = E(XY) – EX EY, където X,Y – случ. вел.

Корелация - $\rho_{X,Y} = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$, където DX същесвтува, т.е. не е безкрайност.

Тв. $|\rho_{\chi_Y}| <= 1$ **Док**: Нека разгледаме следната случайна величина $Z = \left[\frac{X - EX}{\sqrt{DX}} + \frac{Y - EY}{\sqrt{DY}}\right]^2 \ge 0$. Тя е неотриц. следователно и мат. й очакване е неотриц.

$$0 \le E \left[\frac{X - EX}{\sqrt{DX}} + \frac{Y - EY}{\sqrt{DY}} \right]^2 = \frac{E(X - EX)^2}{DX} + \frac{E(Y - EY)^2}{DY} + 2 \frac{E(X - EX)(Y - EY)}{\sqrt{DX}\sqrt{DY}} = \frac{DX}{DX} + \frac{DY}{DY} + 2 \frac{cov(X, Y)}{\sqrt{DX}\sqrt{DY}} = 2 + 2\rho_{X, Y}$$

. Сега от 2 + $2\rho_{_{X,Y}}{\ge}0$ елементарно следва $\rho_{_{X,Y}}{\ge}$ - 1. Аналогично, за да се докаже

неравенството $\rho_{X,Y} \leq 1$ се разглежда случайната величина $\left[\frac{X - EX}{\sqrt{DX}} - \frac{Y - EY}{\sqrt{DY}} \right]^2 \geq 0$.

Тв. X и Y са линейно зависими $\Leftrightarrow |\rho_{X,Y}| = 1$. **Док:** Нека X, Y – лин. зависими, т.е. съществуват константи а и b, такива, че X = aY + b. Ще докажем, че $|\rho_{X,Y}| = 1$: EX = E(aY + b) = aEY + b; DX = D(aY + b) = D(aY) + Db = a^2 DY. Следователно

$$\rho_{X,Y} = \frac{{_E[(X-EX)(Y-EY)]}}{\sqrt{DX}\sqrt{DY}} = \frac{{_E[(aY+b-(aEY+b))(Y-EY)]}}{\sqrt{a^2DY}\sqrt{DY}} = \frac{{_E[a(Y-EY)(Y-EY)]}}{|a|DY} = \frac{{_aE(Y-EY)^2}}{|a|DY} = \frac{a}{|a|}.$$
 Последният

израз е равен на +- 1 в зависимост от закона на а. С това твърдението е доказано в едната посока. Другата посока: нека сега $|\rho_{x,y}| = 1$. Ще докажем, че случайните величини X и Y са линейно зависими. За определеност ще приемем, че $\rho_{x,y} = -1$. Ще разгледаме отново сучайната величина Z, която използвахме в предишното твърдение. Там доказахме, че:

 $EZ = E \left[\frac{X - EX}{\sqrt{DX}} + \frac{Y - EY}{\sqrt{DY}} \right]^2 = 2 + 2\rho_{X,Y}$. Тогава от направеното допускане $\rho_{X,Y} = -1$ ще следва, че EZ

= 0. След като очакването на една неотрицателна случайна величина е 0, то и самата случайна величина е равна на 0. Наистина нека Z >= 0, но EZ = 0, ако допуснем, че съществува

 $z_k > 0$, такова че $p_k = P(Z = z_k) > 0$, то ще следва, че $EZ = z_k p_k + \sum_{i!=k} z_i p_i > 0$, което е противоречие.

Следователно Z = 0. Но тогава ще е изпълнено и $\frac{X-EX}{\sqrt{DX}} + \frac{Y-EY}{\sqrt{DY}} = 0$. В това равенство EX, EY, DX, DY – конст. Това означава линейна зависимост между X и Y.

Графики при различни коефициенти на корелация:

Коефициентът няма връзка с наклона.

Лекция 7

Непрекъснати случ. величини

Плътност – така наричаме ф-ята $f_x(x)$, изпълняваща следните условия:

1.
$$f_x(x) >= 0$$

$$2. \int_{-\infty}^{\infty} f_X(x) dx = 1$$

3. $P(a \le X < b) = \int\limits_a^b f_X(x) dx$ – дава вероятността за попадане на сл. в. X в някакво множ – като се сумират, в случая интегрират, вероятностите на благоприятните случаи.

Ако разполагаме с плътността не е проблем да намерим ф-ята ма разпределение, както и обратното. Съгласно усл. 3) от деф. на плътност: $F_X(x) = P(X < x) = \int\limits_{-\infty}^x f_X(t) dt$

Математическо очакване – на непрек. сл. в. X наричаме $EX = \int\limits_{-\infty}^{\infty} x f_{X}(x) dx$

Формула за очакване на ф-я от случ. велич. - $E_g(X) = \int\limits_{-\infty}^{\infty} g(x) f_X(x) dx$, където X – непрек. сл. в., а g(x) – произв. ф-я.

Разпределения на непрекъснати случайни величини

1. Равномерно разпределение – X е U(a,b)

Нека [a,b] – произв. интервал в/у R права. Казваме, че случ. велич. X е равномерно разпределена в [a,b], ако вероятността да вземе коя да е ст-ст в този интервал е една и съща => плътността е константа.

Плътност:
$$f_X(x) = \{\frac{1}{b-a}, x \in [a, b] \ 0, x \text{ не} \in [a, b] \}$$

$$EX = (a + b)/2$$
; $DX = (b - a)^2/12$

Функция на разпределение:
$$F_{\chi}(x) = \{0, \ x < a \, \frac{x-a}{b-a}, \ a \le x < b \, 1, \, \ge b \}$$

2. Нормално разпределение – X е $N(\mu, \sigma^2)$

Плътност:
$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, x e ot (-∞,∞), $\sigma > 0$, μ e ot R.

EX =
$$\mu$$
; **DX** = σ^2

Функция на разпределение на Z е N(0,1): $\Phi(-q) = 1 - \Phi(q)$

3. Експоненциално разпределение – X е Ex(λ)

Експ. разпред. е непрекъснат аналог на геометричното разпред. Експ. разпределена случ. величина е "времето, изминало до първия успех" при определени условия.

Плътност:
$$f_{\chi}(x) = \{\lambda e^{-\lambda x}, x \ge 0 0, x < 0 \text{ където } \lambda > 0 \}$$

EX =
$$1/\lambda$$
; **DX** = $1/\lambda^2$

4. Гама разпределение – X е Γ(α,β)

Плътност:
$$f_X(x) = \{\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}, x \ge 0 \ 0, x < 0 \ \text{където } \alpha > 0, \beta > 0 \}$$

EX = α/β ; **DX** = α/β^2

5. Хи-квадрат разпределение – X е χ²(n)

n – степени на свобода.

Плътност:
$$f_X(x) = \{\frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}, x \ge 0 \ 0, x < 0 \}$$

EX = n; DX = 2n

6. Разпределение на Стюдънт – X e t(n)

n – "степен на свобода" – ест. число.

Кога възниква: Нека Z е N(0,1) и X е χ^2 (n) са незав. случ. величини. Тогава $\frac{Z}{\sqrt{\frac{X}{n}}} \epsilon t(n)$.

Лекция 9

Неравенство на Чебишов – Нека X е произв. случайна величина и EX съществува, тогава за всяко ε е изпълнено: $P(|X-EX| \ge \varepsilon) \le \frac{DX}{\varepsilon^2}$. Използва се в доказателството на закон за големите числа.

Док: Неравенството е изпълнено за произволни сл.в. Ще го докажем поотделно за дискретни и непрекъснати случ. величини. 1) Нека X е дискр. сл.в. За удобство ще означим pi = P(X = xi). Знаем, че EX е число и тогава |X - EX| също е дискр. сл.в. Нека S е мн-вото от индекси на онези ст-сти xi на X, за които $|xi - EX| >= \epsilon$. т.е. $S = \{i: |xi - EX| >= \epsilon\}$. В частност мн-вото S може и да е празно. Вероятността, която се опитваме да оценим се получава чрез сумиране върху S.

$$P(|X - EX| \ge \epsilon) = \sum\limits_{S} p_i$$
. За ел-тите от S е изпълнено $1 \le \frac{|x_i - EX|}{\epsilon}$ и следователно $1 \le \frac{(x_i - EX)^2}{\epsilon^2}$. Ако

в горната сума умножим събираемите с този множител, то сумата само може да нарасне. Ако разширим границите на сумирането, то сумата също ще нарасне.

$$P(|X-EX| \geq \epsilon) \leq \sum_{s} \frac{\left(x_i - EX\right)^2}{\epsilon^2} p_i \leq \sum_{i=1}^{\infty} \frac{\left(x_i - EX\right)^2}{\epsilon^2} p_i$$
. За да завършим доказателството е достатъчно

да използваме формулата на ф-ята от сл.в. $\sum_{i=1}^{\infty} \left(x_i - EX\right)^2 p_i = E(X - EX)^2 = D(X).$

2) Нека сега X е непрек. сл.в. с плътност $f_X(X)$. Следваме сходен подход – представяме вероятността като интеграл върху подходящо мнво. $P(|X-EX| \ge \varepsilon) = \int\limits_{|X-EX| \ge \varepsilon}^{\infty} 1. \, f_X(x) dx$.

Заменяме константата 1-ца в интеграла с $\frac{\left(x_{i}-EX\right)^{2}}{\varepsilon^{2}} \ge 1$ и разширяваме границите на

интегриране. =>
$$\int\limits_{|X-EX|\geq \epsilon}^{\infty} 1. \, f_X(x) dx \le \le \int\limits_{|X-EX|\geq \epsilon}^{\infty} \frac{\left(x_i^{-EX}\right)^2}{\epsilon^2}. \, f_X(x) dx \le \frac{1}{\epsilon^2} \int\limits_{-\infty}^{\infty} \left(x_i^{-EX}\right)^2. \, f_X(x) dx = \frac{DX}{\epsilon^2}$$

Закон за големите числа – Нека X1..Xn.. е редица от случ.в., казваме, че за нея е в сила ЗГЧ, ако $\frac{1}{n}\sum\limits_{i=1}^{n}\left(X_{i}-EX_{i}\right)\to 0$ (над стрелката тр са има "Р") при n -> ∞ .

За да е в сила ЗГЧ, трябва да са изпълнени няколко теореми, които задават условия над редицата:

<u>1. Теорема на Марков</u> – Ако за редицата X1..Xn.. е изп. $\frac{1}{n^2} D \left(\sum\limits_{i=1}^n X_i \right) \to 0$ при $n \to \infty$, то е в сила ЗГЧ.

Док: Съгласно деф за сходимост по вероятност, за да е изпълнен ЗГЧ, вероятността тр да клони към 0. $P\left(\left|\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-EX_{i}\right)\right|>\varepsilon\right)$ ще преобразуваме този израз и ще приложим неравенството на Чебишов

към сл.в.
$$\sum\limits_{i=1}^{n}X_{i}$$
 т.е. $P\left(\left|\frac{1}{n}\sum\limits_{i=1}^{n}\left(X_{i}-EX_{i}\right)\right|>\varepsilon\right)=P\left(\left|\frac{1}{n}\sum\limits_{i=1}^{n}X_{i}-E(\sum\limits_{i=1}^{n}X_{i})\right|>n\varepsilon\right)\leq\frac{D\left(\sum\limits_{i=1}^{n}X_{i}\right)}{n^{2}\varepsilon^{2}}\rightarrow0$

<u>2. Теорема на Чебишов</u> – Ако случ. величини X1..Xn.. са независими и дисперсиите им са ограничени, т.е. $DX_i \le C$, то е в сила $3\Gamma Y$.

Док:
$$\frac{1}{n^2} D\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n D(X_i) \le \frac{1}{n^2} \sum_{i=1}^n C = \frac{C}{n} \to 0$$
 при n -> ∞

<u>3. Теорема</u> Ако сл.в. X1..Xn.. са незав., еднакво разпределени и дисперсията им съществува, т.е. е крайна $DX_1 = \sigma^2$, то е в сила ЗГЧ.

Док:
$$\frac{1}{n^2} D\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n D\left(X_i\right) = \frac{n\sigma^2}{n^2} \to 0$$
 при n -> ∞

Лекция 10

Централна гранична теорема – Нека X1..Xn.. са незав., еднакво разпред. сл. в. и нека $EX_k = \mu$, $DX_k = \sigma^2 < \infty$, т.е. очакването и дисперсията съществуват, тогава: $\frac{\sum\limits_{k=1}^n X_k - n\mu}{\sigma\sqrt{n}} \to N(0,1)$ над стрелката тр да има "d", под стрелката тр да има "n-> ∞ "

Док: От условието следва, че
$$E\left(\sum\limits_{k=1}^{n}X_{k}\right)=\sum\limits_{k=1}^{n}EX_{k}=n\mu$$
 и $D\left(\sum\limits_{k=1}^{n}X_{k}\right)=\sum\limits_{k=1}^{n}DX_{k}=n\sigma^{2}$, с цел

опростяване на записа, ще използваме сл.в. X, която е разпределена точно както зададената редица. Това е възможно, тъй като X1..Xn.. са еднакво разпределени. Допускаме, че $M_x(t)$ – функция, порждаща моментите на X съществува за $|t| < \epsilon$. Ще означим с m(t) ф-ята, праждаща моменти на $X - \mu$, т.е. $m(t) = M_{X-\mu}(t) = E(e^{t(X-\mu)}) = e^{-t\mu} E(e^{tX}) = e^{-t\mu} M_x(t)$ и явно m(t) също съществува за $|t| < \epsilon$. Освен това, съгласно св-ва 1),2),3) на ф-иите, пораждащи моменти е изпълнено, че m(0) = 1; $m'(0) = E(X - \mu) = 0$; $m''(0) = E(X - \mu)^2 = \sigma^2$. Ще развием m(t) в реда на Тейлор около точката t = 0. $m(t) = m(0) + m'(0)t + (m''(0)t^2)/2 + O(t^3) = 1 + (\sigma^2 t^2)/2 + O(t^3)$. Тук $O(t^3)$ е стандартен запис, показващ, че събираемото е равно на константа по t^3 . Ще разгледаме

сумата $\frac{\sum\limits_{k=1}^{X_k-n\mu}}{\sigma\sqrt{n}}$ и ще означим с M(t,n) нейната ф-я, пораждаща моменти.

$$M(t,n) = E \left| \exp exp \left(t \frac{\sum\limits_{k=1}^{n} X_k - n\mu}{\sigma \sqrt{n}} \right) \right| = E \left[\exp exp \left(t \frac{X_1 - \mu}{\sigma \sqrt{n}} \right) \dots \exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] = E \left[\exp exp \left(t \frac{X_1 - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_1 - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right] \dots E \left[\exp e$$

. Очакването в лявата част на последното равенство разглеждаме като m() – ф-я, пораждаща моменти на X – μ с аргумент $\frac{t}{\sigma \sqrt{n}}$. Ще използваме развитието на m(t) в ред на Тейлор, което

изведохме:
$$M(t,n) = \left[m(\frac{t}{\sigma\sqrt{n}})\right]^n = \left[1 + \frac{\sigma^2 t^2}{2\sigma^2 n} + O(\frac{t^3}{\sigma^3 n^{3/2}})\right]^n = \left[1 + \frac{t^2}{2n} + O(\frac{t^3}{n^{3/2}})\right]^n$$
. Интересува ни границата на този израз при n-> ∞ . Събираемото $O(t^3/n^{3/2})$ клони към 0 и то с порядък по-бързо от предишното събираемо, тъй като има в знаменател по-висока стапен на n. Следователно основната

тежест в асимптотиката се носи от $t^2/2n$. Прилагаме известната граница за експонента $M(t,n)=e^{t^2/2}$. Това е ф-ята, пораждаща моментите на N(0,1). Според Th на Къртис, сходимостта на ф-ята, пораждаща моменти означава, че имаме и сходимост по разпределение към същата случайна величина, т.е.

$$\sum\limits_{k=1}^{n} X_k - n\mu \over \sigma \sqrt{n}$$
 o $N(0,1)$ над стрелката тр да има "d", под стрелката тр да има "n->∞"

Лекция 11

Неизместена оценка – казваме, че θ е неизместена оценка за θ , ако $E\theta$ ($X_1...X_n$) = θ . (бтв $X1...X_n$ е хубаво да ги заместиш с X и стрека над него като вектор).

Оценката за очакването µ^ е неизместена, защото

$$E\mu' = E\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\right) = \frac{1}{n}\sum_{k=1}^{n}EX_{k} = \frac{1}{n}\sum_{k=1}^{n}\mu = \mu$$

Оценката за дисперсията σ^2 при известно очакване μ е неизместена

$$E\sigma^2 = E\left(\frac{1}{n}\sum_{k=1}^n (X_k - \mu)^2\right) = \frac{1}{n}\sum_{k=1}^n E(X_k - \mu)^2 = \frac{1}{n}\sum_{k=1}^n DX_k = \sigma^2$$

Оценката за дисперсията σ² при неизвестно очакване μ е изместена

$$E\sigma^{2} = E\left(\overline{X_{n}^{2}}\right) - E\left(\overline{X_{n}^{2}}\right)^{2} = E\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}^{2}\right) - E\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}^{2}\right)^{2} = \frac{1}{n}\sum_{k=1}^{n}EX_{k}^{2} - \frac{1}{n^{2}}E\left(\sum_{k=1}^{n}X_{k}^{2} + \sum_{i=1}^{n}\sum_{j\neq i}X_{i}X_{j}^{2}\right) = \frac{n-1}{n^{2}}\sum_{k=1}^{n}EX_{i}^{2}$$

Точкова оценка – Нека \overrightarrow{X} = (X₁,...,X_n) – независими наблюдения над X. Нека разпределенеието на случ. велич. X зависи от неизвестен параметър θ . Функцията $\hat{\theta} = \hat{\theta}(\overrightarrow{X})$, представляваща стойността на θ , наричаме точкова оценка / статистика за параметъра θ .

Максимално правдоподобна оценка и метод на максимално правдоподобие – Идеята на метода на макс правдоподобие е неизвестният параметър θ да се ибере по такъв начин, че направените наблюдения да се окажат с най-голяма вероятност. Това се свежда до намиранена максимумана функцията на правдоподобие по θ . $\overrightarrow{X} = (X_1, ..., X_n)$ са независими наблюдения над сл.в. X с ф-я на разпределение $F_x(x, \theta)$. М.п.о за неизвестния параметър θ е тази ст-ст $\hat{\theta}$, за която ф-ята на правдоподобие достига максимум. Ф-я на правдоподобие:

$$L(\vec{X}, \theta) = \prod_{k=1}^{n} f_{X_k}(x_{k'}, \theta).$$

Лекция 12

Доверителен интервал – Нека X1..Xn са независими наблюдения над сл.в. X. Ще предполагаме, че типа на разпределението на X е известно, но то зависи от неизвестен параметър θ , който е възможно и да е многомерен. Търсим интервал $I = I(\overrightarrow{X})$, такъв че $P(\theta \in I) \ge \gamma$. Константата γ се нарича ниво на доверие, което е предварително зададено. Нивото на доверие зависи от най-голямата вероятност, с която можем да си позволим да допуснем грешка от гледна точка на щетите, които ще понесем при грешка в статистиката.

Доверителен интервал за μ **при известна** σ^2 : $I = (\overline{X} - q \frac{\sigma}{\sqrt{n}}; \overline{X} + q \frac{\sigma}{\sqrt{n}})$ за q е N(0,1), където \overline{X} е средно аритметично на наблюденията над X; q е (1 + γ)/2 квантил; n – бр. наблюдения; σ – стандартно отклонение.

Доверителен интервал за μ при неизвестна σ^2 : $I=(\overline{X}-q\frac{S}{\sqrt{n}};\,\overline{X}+q\frac{S}{\sqrt{n}})$ за q e t(n-1), където q e (1 + γ)/2 квантил на разпределение на Стюдънт при n-1 степени на свобода, а γ – ниво на доверие; $S^2=\frac{1}{n-1}\sum\limits_{k=1}^n \left(X_k-\overline{X}\right)^2$; S е оценка за дисперсията.

Доверителен интервал за σ^2 при известно μ : $I = (\frac{\sum\limits_{k=1}^n (X_k - \mu)^2}{q_2}; \frac{\sum\limits_{k=1}^n (X_k - \mu)^2}{q_1})$ за q1,q2 e χ^2 (n)

Доверителен интервал за
$$\sigma^2$$
 при неизвестно μ : $I=(\frac{\sum\limits_{k=1}^n\left(X_k-\overline{X}\right)^2}{q_2};\frac{\sum\limits_{k=1}^n\left(X_k-\overline{X}\right)^2}{q_1})$ за q1,q2 е χ^2 (n-1)

Квантил от ред р – стойността x_p , за която $P(X < x_p) = p$, т.е. $F_X(x_p) = p$, където p е от [0,1]. С други думи 100 * p% от данните се намират преди x_p или по друг начин – p представлява частта от данните, които се намират преди x_p .

Квартил – Квартилите са общо 3 – Q1, Q2, Q3. Те са съответно квантили от ред 0.25, 0.50, 0.75. Q2 съвпада с медианата. Квантилите разделят данните на 4 равни части. При Q1 25% от данните се намират преди този квантил, при Q2 – 50% и при Q3 – 75%.

Медиана - стойността M, за която P(X < M) = 1/2, т.е. $F_X(M) = 1/2$. С други думи M е средата на наблюденията, т.е. 1/2 от данните се намират преди M.

p-value – достигнатото ниво на съгласие, с други думи: това е показател за вземане на решение в статистическия софтуер. Това също е вероятността, с която приетата хипотеза е вярна или невярна.

Лекция 14

Проста линейна регресия – Това е линейна зависимост между променливите X (предиктор = независима променлива) и Y (отклик = зависима променлива): Y = β_0 + β_1 .X + ϵ , където ϵ е грешка, нарушаваща зависимостта, а β_0 и β_1 са коефициенти със следните оценки:

$$\beta_{1} = \frac{\sum_{k=1}^{n} (y_{k} - \overline{y})(x_{k} - x)}{\sum_{k=1}^{n} (x_{k} - \overline{x})^{2}} \quad \text{if } \beta_{0} = \overline{y} - b_{1}\overline{x}$$