

RotEqNet

Rotierte Kernel zur Bestimmung der Blickrichtung von Mistkäfern

Gliederung

- Motivation
- ► FIM Datensatz
- Künstliche Neuronale Netze
- Metriken
- Autoencoder
- Deconvolution Neural Network
- ► Architekturen zur Bildsegmentierung
- ► Denoising Autoencoder

Motivation

Bei RotEqNet (Rotation equivariant vector field network) handelt es sich um eine Convolutional-Netzarchitektur, welche sich durch folgende Punkte auszeichnet:

- zusätzliche Rotation der Kernel beim Bewegen über den Input
- ▶ sehr kompakte Modelle mit wenig Parametern
- vergleichbare Leistung zu Netzen mit deutlich größeren Modellen

RotEqNet - Layers

RotConv

Forwardpass

- ► Rotation eines kanonischen Grundfilters
- ► Anwendung der rotierten Filter auf den Input
- zusätzliche Durchpropagierung des Winkels

Backwardpass

- ► Rückrotation und Summation aller Gradienten
- ► Anpassung der Gewichte des kanonischen Filters

RotEqNet - Layers

Orientation Pooling

- pixelweise Bestimmung der größten Magnitude
- Bestimmung des zugehörigen Winkels
- Anwendung von ReLu auf die Magnitude
- ▶ Umwandlung der Darstellung in kartesische Koordinaten
 - ⇒ Vectorfield

RotEqNet - Layers

Spatial Pooling

▶ angepasste Version des Max-Pooling für Vectorfields

VectorBatchNorm

- angepasste Version von BatchNorm für Vectorfields
- ▶ BatchNorm wird lediglich auf die Magnitude angewendet

Netzarchitektur

Für alle RotConv Layer gelten folgende Parameter:

Padding: 9/2

R: 17

Layer	Parameter
RotConv	(1, 4, [9×9])
Orientation Pooling	
VectorBatchNorm	(4)
Spatial Pooling	Factor: 2
RotConv	(4, 8, [9×9])
Orientation Pooling	
VectorBatchNorm	(8)
Spatial Pooling	Factor: 2
RotConv	(8, 4, [9×9])
Orientation Pooling	
VectorBatchNorm	(4)
VectorUpsample	Factor: 2

RotConv	(4, 2, [9×9])
Orientation Pooling	
VectorBatchNorm	(2)
VectorUpsample	Factor: 2
RotConv	(2, 1, [9×9])
Orientation Pooling	
RotConv	(1, 1, [9×9])
Orientation Pooling	
Vector2Magnitude	

Entwicklung

Projekt geforked von Anders Waldeland

- ► Fix für Python 3 Kompatibilität
- ► Parser für .grndr Dateien
- Modularisierung des Codes und CleanUp
- ► Fix der mathematischen Berechnungen (nach Paper)
- Visualisierung des Vectorfields eines Bildes
- ► Training und Netzoptimierung anhand künstlichen Datensatzes

Entwicklung

- ► Test verschiedener Netzarchitekturen
 - ► Object Detection (nur auf Magnitude)
 - ► Klassifikation nach Winkeln
 - komplettes Vectorfield (Magnitude und Winkel)
- ► Test verschiedener Lossfunktionen
 - BinaryCrossEntropy
 - ► F1 Loss
 - 11
 - ► Smooth I 1
 - CategoricalCrossEntropy

Beispiel - Detection

Beispiel - Vectorfield

Beispiel - Vectorfield

