计算机组成原理实验说明

VANITY FAIR^a, KAEDE^a

^aUniversity of Science and Technology Beijing, 30 XUEYUAN ROAD, HAIDIAN DISTRICT, Beijing, 100083, Beijing, China

Abstract

本文旨在于帮助完成 2021 级计组实验课程的考核内容,其中包括了实验需要拓展的指令,以及相关提示信息。

Keywords: 计算机组成原理,实验,单周期CPU

目录

1	简介	1
2	提交要求	1
3	扩展指令JAL	1
	3.1 格式	3
	3.2 描述	3
	3.3 操作	
4	扩展指令JR	3
	4.1 格式	5
	4.2 描述	5
	4.3 操作	5
5	扩展指令BNE	5
	5.1 格式	7
	5.2 描述	7
	5.3 操作	7
6	扩展指令SLTI	7
	6.1 格式	9
	6.2 描述	9
	63 操作	Q

7 扩展指令SLTIU		9	
	7.1	格式	11
	7.2	描述	11
	7.3	操作	11

1. 简介

本次实验为了不受之前串口打印实验的影响¹,在CG平台上已经提供了正确添加 ori和lui指令的CPU,经过测试可以正常在串口输出信息。本次实验基于该工程,但如果你确认自己正确添加了命令,修改了Router文件,那么可以选择使用你自己的CPU工程,此处不做限制。注意,如果使用自己的项目,请确保提交文件中任何位置都不会在控制台输出字符,否则无法通过测评。

2. 提交要求

请提交ALU.v, ALUct.v, Control.v, Core.v, IFU.v. 共五个文件打包而成的压缩包,也可以自行增加模块或更改上述文件名²。并确保所有模块请放置于同一目录等级,也就是说,提交的压缩包中不要有任何文件夹,也不要试图提交*.data³。

3. 扩展指令JAL

本文要求扩展的指令为 JAL (Jump and Link)。

3.1. 格式

JAL target

3.2. 描述

在 31 号寄存器(GPR31)中存放返回地址,并跳转至 target 位置执行。由于目标地址为形式地址零扩展到 32 位,并左移两位得到(target << 2),因此有效目标地址在一个 256 MB 的空间中,有关此指令与延迟槽(delay slot)的关系,请查阅 MIPS32TM Architecture For Programmers Volume II: The MIPS32TM Instruction Set

¹据本文作者所知,许多人没有正确实现串口打印功能,这将会导致本实验验收无法正常通过

²不建议这么做

³这不会对你的分数产生任何影响

3.3. 操作

GPR[31]
$$\leftarrow$$
 PC + 4
PC \leftarrow 0⁴ || target || 0²

4. 扩展指令JR

本文要求扩展的指令为 JR (Jump Register)。

4.1. 格式

JR rs

4.2. 描述

跳转到寄存器 rs 中地址的位置。有关此指令与延迟槽(delay slot)的关系,请查阅 MIPS32TM Architecture For Programmers Volume II: The MIPS32TM Instruction Set

本指令要求 rs 的值是对齐的, 否则会产生 Address Error exception.

4.3. 操作

$$\texttt{PC} \leftarrow \texttt{rs}$$

5. 扩展指令BNE

本文要求扩展的指令为 BNE (Branch on Not Equal)。

5.1. 格式

BNE rs, rt, offset

5.2. 描述

如果rs ≠rt,则进行分支。

一个 18 位有符号偏移量(由 16 位 offset 左移两位得到)加到当前指令下一条指令的地址中,有 关此指令与延迟槽(delay slot)的关系,请查阅 *MIPS32*TM *Architecture For Programmers Volume II: The MIPS32*TM *Instruction Set*

5.3. 操作

if
$$GPR[rs] \neq GPR[rt]$$
 then
$$target_offset \leftarrow sign_extend (offset || 0^2)$$

$$PC \leftarrow PC + 4 + target_offset$$
 endif

6. 扩展指令SLTI

本文要求扩展的指令为 SLTI (Set on Less Than Immediate)。

6.1. 格式

SLTI rt, rs, immediate

6.2. 描述

将 rs 的内容与 16 位有符号立即数比较,在 rt 中记录比较结果: 如果 rs 小于立即数,结果为 1,否则为 0。

6.3. 操作

if GPR[rs] < sign_extend immediate then
$$\mbox{GPR[rt]} \leftarrow 0^{31} || \ 1$$
 else
$$\mbox{GPR[rt]} \leftarrow 0^{32}$$
 endif

7. 扩展指令SLTIU

本文要求扩展的指令为 SLTIU (Set on Less Than Immediate Unsigned)。

31	26	25 21	20 16	15 0
	SLTIU			
	001011	rs	rt	immediate
	6	5	5	16

7.1. 格式

SLTIU rt, rs, immediate

7.2. 描述

将 rs 的内容与 16 位无符号立即数进行有符号比较,在 rt 中记录比较结果:如果 rs 小于立即数,结果为 1,否则为 0。注意,为了简化操作,本指令与 MIPS 指令集行为不相同

7.3. 操作

if GPR[rs] < zero_extend(immediate) then
$$\mbox{GPR[rt]} \leftarrow 0^{31} || \ 1$$
 else
$$\mbox{GPR[rt]} \leftarrow 0^{32}$$
 endif