Categorical to Numerical

- It is very important convert categorical data to Numerical data
- Because in Machine learning models the input is in the form numbers
- ML models developed by maths, so passing text data is not works.
- We have different types of methods are there
 - map method
 - np.where
 - One hot encoder
 - Label Encoder

Import the packages

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Read the data

```
In [2]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
    visa_df.head(2)
```

```
Out[2]: case_id continent education_of_employee has_job_experience requires_job_training

O EZYV01 Asia High School N

I EZYV02 Asia Master's Y

N
```

```
In [3]: # categorical columns
visa_df.select_dtypes(include='object').columns
```

map

- first get the unique labels for each coumn
- create a dictionary by providing a values to each label
- For example case status has two lables , we are provding two values
 - Assign 0 for certified

Assign 1 for Denied

```
In [5]: visa_df['case_status'].unique()
Out[5]: array(['Denied', 'Certified'], dtype=object)
In [6]: d={'Denied':1,'Certified':0}
Out[6]: {'Denied': 1, 'Certified': 0}
In [ ]:
        visa_df['case_status_new']=visa_df['case_status'].map(d)
In [7]:
In [8]:
        visa_df
Out[8]:
                   case_id continent education_of_employee has_job_experience requires_job_1
             0
                   EZYV01
                                 Asia
                                                 High School
                                                                             Ν
             1
                   EZYV02
                                 Asia
                                                    Master's
             2
                   EZYV03
                                 Asia
                                                   Bachelor's
                                                                             Ν
                   EZYV04
                                 Asia
                                                   Bachelor's
                                                                             Ν
             4
                   EZYV05
                               Africa
                                                    Master's
                                                                             Υ
         25475 EZYV25476
                                 Asia
                                                   Bachelor's
                                                                             Υ
         25476 EZYV25477
                                 Asia
                                                 High School
         25477 EZYV25478
                                 Asia
                                                    Master's
                                                                             Υ
         25478 EZYV25479
                                 Asia
                                                    Master's
         25479 EZYV25480
                                 Asia
                                                   Bachelor's
                                                                             Υ
        25480 rows × 13 columns
In [9]: # read the data again
        visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
        d={'Denied':1,'Certified':0}
        visa_df['case_status']=visa_df['case_status'].map(d)
        visa_df
```

Out[9]:		case_id	continent	education_of_employee	has_job_experience	requires_job_1
	0	EZYV01	Asia	High School	N	
	1	EZYV02	Asia	Master's	Υ	
	2	EZYV03	Asia	Bachelor's	N	
	3	EZYV04	Asia	Bachelor's	N	
	4	EZYV05	Africa	Master's	Υ	
	•••					
	25475	EZYV25476	Asia	Bachelor's	Υ	
	25476	EZYV25477	Asia	High School	Υ	
	25477	EZYV25478	Asia	Master's	Υ	
	25478	EZYV25479	Asia	Master's	Υ	
	25479	EZYV25480	Asia	Bachelor's	Υ	
	25480 rd	ows × 12 colu	umns			
	4 6					
	4					•
In [11]:	-		experience	']=visa_df['has_job_ex	perience'].map(d2)	•
In [11]: Out[11]:	visa_d	f['has_job_ f		']=visa_df['has_job_ex education_of_employee		requires_job_1
	visa_d	f['has_job_ f				requires_job_1
	visa_d visa_d	f['has_job_ f case_id	continent	education_of_employee	has_job_experience	requires_job_1
	visa_d visa_d	f['has_job_ f case_id	continent Asia	education_of_employee High School	has_job_experience	requires_job_1
	visa_d visa_d 0	f['has_job_ff case_id EZYV01 EZYV02	continent Asia Asia	education_of_employee High School Master's	has_job_experience 0 1	requires_job_1
	visa_d visa_d 0 1	f['has_job_ff case_id EZYV01 EZYV02 EZYV03	continent Asia Asia Asia	education_of_employee High School Master's Bachelor's	has_job_experience 0 1 0	requires_job_1
	visa_d visa_d 0 1 2	f['has_job_ff case_id EZYV01 EZYV02 EZYV03 EZYV04	Asia Asia Asia Asia Asia	education_of_employee High School Master's Bachelor's Bachelor's	has_job_experience 0 1 0 0	requires_job_1
	visa_d visa_d 0 1 2 3	f['has_job_ff case_id EZYV01 EZYV02 EZYV03 EZYV04 EZYV05	continent Asia Asia Asia Asia Africa	education_of_employee High School Master's Bachelor's Bachelor's Master's	has_job_experience 0 1 0 1 1	requires_job_1
	0 1 2 3 4 25475	f['has_job_ff case_id EZYV01 EZYV02 EZYV03 EZYV04 EZYV05	Asia Asia Asia Asia Africa	education_of_employee High School Master's Bachelor's Bachelor's Master's	has_job_experience 0 1 0 1 1	requires_job_1
	0 1 2 3 4 25475 25476	f['has_job_ff case_id EZYV01 EZYV02 EZYV03 EZYV04 EZYV05	continent Asia Asia Asia Asia Africa Asia	education_of_employee High School Master's Bachelor's Bachelor's Master's Bachelor's	has_job_experience 0 1 0 0 1 0 1	requires_job_1

25480 rows × 12 columns

Asia

25479 EZYV25480

→

Bachelor's

task

• read the data again

- apply for loop
- Iterate through columns
- Get the unique lables of each column
- Get the count of unique lables
- Create a dictioanry
- apply in to the map

Out[20]:		case_id	continent	education_of_employee	has_job_experience	requires_job_trair
	0	0	0	0	0	
	1	1	0	1	1	
	2	2	0	2	0	
	3	3	0	2	0	
	4	4	1	1	1	
	•••					
	25475	25475	0	2	1	
	25476	25476	0	0	1	
	25477	25477	0	1	1	
	25478	25478	0	1	1	

25480 rows × 12 columns

25479

2

Label encoder

25479

- Label encoder is a package under sickit learn
- Sickit-learn is heart of Machine learning
- In side sickit-learn we have a method called **Preprocessing**

- Under preprocessing we have LableEncoder
- scikit-learn we will write as **sklearn**
- any sklearn package we have 3 steps
 - Step-1: Read the package
 - Step-2: Save the package
 - Step-3: Apply Fit transform

```
In [22]: # read the data
          visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
In [23]: # Step-1: Read the package
          from sklearn.preprocessing import LabelEncoder
          # Step-2: Save the package
          le=LabelEncoder()
          # Step-3: apply fit transform
          visa_df['case_status']=le.fit_transform(visa_df['case_status'])
In [24]: visa_df
Out[24]:
                     case_id continent education_of_employee has_job_experience requires_job_1
              0
                     EZYV01
                                  Asia
                                                   High School
                                                                               Ν
                     EZYV02
                                  Asia
                                                      Master's
              2
                    EZYV03
                                  Asia
                                                     Bachelor's
                                                                               Ν
              3
                     EZYV04
                                  Asia
                                                     Bachelor's
                                                                               Ν
              4
                     EZYV05
                                 Africa
                                                      Master's
                                                                               Υ
          25475 EZYV25476
                                                     Bachelor's
                                                                               Υ
                                  Asia
          25476 EZYV25477
                                                   High School
                                  Asia
          25477 EZYV25478
                                                                               Υ
                                  Asia
                                                      Master's
          25478 EZYV25479
                                  Asia
                                                      Master's
          25479 EZYV25480
                                                     Bachelor's
                                                                               Υ
                                  Asia
         25480 rows × 12 columns
```

In [26]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
 cols=visa_df.select_dtypes(include='object').columns

from sklearn.preprocessing import LabelEncoder
 le=LabelEncoder()
 for i in cols:
 visa_df[i]=le.fit_transform(visa_df[i])

visa_df			

\cap		+	г	7	\subset	п.	۰
U	u	L.	1	\angle	O	- 1	۰

	case_id	continent	education_of_employee	has_job_experience	requires_job_trair
0	0	1	2	0	
1	1	1	3	1	
2	2	1	0	0	
3	3	1	0	0	
4	4	0	3	1	
•••					
25475	17204	1	0	1	
25476	17205	1	2	1	
25477	17206	1	3	1	
25478	17207	1	3	1	
25479	17209	1	0	1	

25480 rows × 12 columns

inverse transform

• in order to see inverse of lables we need to perform individually again

```
In [30]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
    from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    visa_df['case_status']=le.fit_transform(visa_df['case_status'])
    print(visa_df['case_status'].values) # why we are applying values
    print(le.inverse_transform(visa_df['case_status']))
[1 0 1 ... 0 0 0]
```

['Denied' 'Certified' 'Denied' ... 'Certified' 'Certified' 'Certified']

LableEncoder will use most of the time

np.where

- np.where applicable only for binary
- np.where will take 3 arguments
 - condition
 - True value
 - False value

senario

- For example case status value equial to Certified replace with zero
- Other wise relpace with 1

```
In [31]: visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
    con=visa_df['case_status']=='Certified'
    visa_df['case_status']=np.where(con,0,1)
    visa_df
```

Out[31]:		case_id	continent	education_of_employee	has_job_experience	requires_job_1
	0	EZYV01	Asia	High School	N	
	1	EZYV02	Asia	Master's	Υ	
	2	EZYV03	Asia	Bachelor's	N	
	3	EZYV04	Asia	Bachelor's	N	
	4	EZYV05	Africa	Master's	Υ	
	•••					
	25475	EZYV25476	Asia	Bachelor's	Υ	
	25476	EZYV25477	Asia	High School	Υ	
	25477	EZYV25478	Asia	Master's	Υ	
	25478	EZYV25479	Asia	Master's	Υ	
	25479	EZYV25480	Asia	Bachelor's	Υ	

25480 rows × 12 columns

- One hot means if one is ON another one is OFF
- ON represents with 1, and OFF represents with 0
- For example case status has two unique lables
 - Denied
 - Certified
- If we apply one hot encoder on case status column it will create two extra columns
 - case_status_Denied
 - case_status_Certified

case_status	case_status_denied	case_status_certified
Denied	1	0
Certified	0	1

Advantages

- In Machine learning we have one important property is **Independent of variables**
- Machine learning models expects variables are independent each other
- One hot coder creating new columns, the new columns are independent each other
- Indepente variables means both variables have **90 degrees phase shift**
- 90 degrees phase shift also called as **perpendicular each other**
- Perpendicular means orthogonal each other

Disadvantage

- One hot encoder creates new columns equal to number of unique lables
- If number of unique lables increase, new columns also increase
- The more columns leads data is more
- Then data is more the complexity will increase
- Complexity increases more computation power required
- Also time also incease
- The entire process names as **curse of dimenionality**

pd.get_dummies

- Read the data again
- choose one column
- apply pd.get_dummies

Out[3]:		Certified	Denied
	0	0	1
	1	1	0
	2	0	1
	3	0	1
	4	1	0
	•••	•••	
	25475	1	0
	25476	1	0
	25477	1	0
	25478	1	0
	25479	1	0

25480 rows × 2 columns

In [4]:
 import pandas as pd
 visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
 pd.get_dummies(visa_df,dtype='int')

Out[4]:		no_of_employees	yr_of_estab	prevailing_wage	case_id_EZYV01	case_id_EZYV02
	0	14513	2007	592.2029	1	0
	1	2412	2002	83425.6500	0	1
	2	44444	2008	122996.8600	0	0
	3	98	1897	83434.0300	0	0
	4	1082	2005	149907.3900	0	0
	•••					
	25475	2601	2008	77092.5700	0	0
	25476	3274	2006	279174.7900	0	0
	25477	1121	1910	146298.8500	0	0
	25478	1918	1887	86154.7700	0	0
	25479	3195	1960	70876.9100	0	0

25480 rows × 25510 columns

Note

Always drop the id column

```
In [5]: import pandas as pd
    visa_df=pd.read_csv(r"C:\Users\omkar\OneDrive\Documents\Data science\Naresh IT\N
    visa_df.drop('case_id',axis=1,inplace=True)
    pd.get_dummies(visa_df,dtype='int')
```

Out[5]:

	no_of_employees	yr_of_estab	prevailing_wage	continent_Africa	continent_Asia
0	14513	2007	592.2029	0	1
1	2412	2002	83425.6500	0	1
2	44444	2008	122996.8600	0	1
3	98	1897	83434.0300	0	1
4	1082	2005	149907.3900	1	0
•••					
25475	2601	2008	77092.5700	0	1
25476	3274	2006	279174.7900	0	1
25477	1121	1910	146298.8500	0	1
25478	1918	1887	86154.7700	0	1
25479	3195	1960	70876.9100	0	1

25480 rows × 30 columns

- Generally we will prefer LabelEncoder
- One hot encoder when categorical data has less unique lables

In []: