

1/33 FIG. 1A

CO₂ NH₃ INTEIN FRAGMENTS
FUSED TO PROTEINS A AND B

RECONSTITUTION

A

RECONSTITUTED
INTEIN
PROTEIN SPLICING

CO₂ NH₃ EXCISED INTEIN
FRAGMENTS
SPLICED PROTEINS A AND B

FIG. 2B

FIG. 3

FIG. 5

FIG. 6

327 356 353 268 258	M	A A T	V V M	D H	S S N	S S A	D D D	l. l. V	L L I	l. l. F	A A A	F F	G G G	$egin{array}{c} V \ V \ V \end{array}$	R R R	F F F	D D D	D D D	R R R	V V T	T T T	G G N	K K N	1. 1. L	E E A	A A K	F F Y	A A C	S S P	R R N	Tob Tob E.	ze A acco acco Coli Coli	AL AL	SII A	LSIII LSII	
357 386 383 298 288	A A A A	K K T	1 1 V	V V L	H H H	I I I	D D D	$egin{array}{c} I & & & \\ I & & & \\ I & & & \end{array}$	D D D	S S	A A T	E S	I I I	G G S	K K K	N N T	K K V	Q Q T	P P A	II II D	$rac{V}{V}$	S S P	I I I	C C V	A A G	D D D	Í I A	K K R	L L Q	A A	Tob Tob E.	ze / acco acco Coli Coli	AL AL	SII	LSIII LSII	
387 416 413 328 318	L L L	Q Q E	G G Q	L L M	N N L	S S E	I I L	l. L L	E E S	s s Q	K K E	T E E S	G G A	K K H	l. L. Q	K K P	L L L	D D	E	F F I	S S R	A A D	W W	R R W	Q Q Q	E E Q	[.].]	T T E	E V Q	Q Q W	tot tot E.	ze / lacci lacci Col: Col:	o AL o AL i	SII. A	LSII	
416 445 442 358 338	K K R	V V A	K K R	Н Ү Q	P P C	L L L	N N K	F F	K K D	T T	F F H	G G S	D D E	A A K	1 1 1	P P K	Р Р Р	Q Q Q	$\frac{Y}{A}$	A A V	1 1 !	Q Q E	V V ·	L L L	D D W	E E R	L L L	T T T	N N K	ଓ ଓ ଓ	tot tot E.	ze deco	o Al o Al i	SII.	LSIII LSII	
446 475 472 388 368	N S D	4 A A	I I Y	 	S S	T T	G G D	$\begin{array}{c} V \\ V \\ \end{array}$	G G	Q Q Q	H H H	Q Q Q	M M M	W W F	A A A	A A A	Q Q L	Y Y Y	$\frac{Y}{Y}$	K K P	Y Y F	R R D	К К К	P P P	R R R	Q Q R	W = W	L L I	T T N	$\frac{S}{S}$	tol tol E.	ize bacc bacc Col Col	o Al o Al i	SII.	I ALSIII ALSII	[
476 505 502 418 398	G G	000	L L L	G G	A A T	M M M	G G	F F F	C C G	L L L	P P P	A A A	A A A	l I L	G G	A A V	A A K	V V	G G	R R L	Р Р Р	D D E	E E E	V V T	V V V	V = V = V	D D	 V	D D	0 0 0	to to E.	ize bacc bacc Col Col	o Al o Al i	LSI	I ALSII: ALSII	I

BEST AVAILABLE COPY

BEST AVAILABLE COP'

BEST AVAILABLE COPY

FIG. 9B

FIG. 9C

BEST AVAILABLE COP'

FIG. 10A

1 2 3 4 5

83 kD — CALS-14

62 kD — CALS NON-SPECIFIC CALS (N) - IN-n

FIG. 10B

1 2 3 4 5

62 kD — CALS-14

cALSm

47.5 kD —

32.5 kD — cALS(C) -IN-

FIG. 11

BEST AVAILABLE COP'

FIG. 12

FIG. 13A

FIG. 13B

TIME (HRS)

FIG. 15-1

EPSPS Insertion Site 07/P8 A10/R11 P35/C36 D48/D49 S67/A68 D69/R70 R70/T71 C73/D74 D74/I75 L82/R83 P85/G86 M121/K122 Y148/P149 L182/A183 A183/P184 K185/D186 D186/T187 I188/I189 I189/R190 E194/L195 F211/G212 V213/E214 I215/A216 A216/N217 H218/H219 0221/0222 V225/K226 K226/G227	Amino acid sequence inserted CLNIQ VFKHA LFKQP CLNSD CLNIS CLNTD CLNNR CLNSC CLNSD CLNTL VFKQP CLNSM CLNY CLNTL CLNMA VFKHK CLNTK CLNKD MFKQI CLNII LFKHE VFKHF CLNSV VFKQA LFKHH LFKHQ MFKHV VFKQK	Clone pCE-5aa 129 pCE-5aa 47 pCE-5aa 7 pCE-5aa 8 pCE-5aa 10 pCE-5aa 32 pCE-5aa 32 pCE-5aa 37 pCE-5aa 37 pCE-5aa 37 pCE-5aa 22 pCE-5aa 11 pCE-5aa 212 pCE-5aa 212 pCE-5aa 112 pCE-5aa 114 pCE-5aa 151 pCE-5aa 227 pCE-5aa 162 pCE-5aa 208 pCE-5aa 2
0221/0222 V225/K226	LFKHQ MFKHV	pCE-5aa 4 pCE-5aa 203

FIG. 15-2

EPSPS Insertion Site I311/P312 0375/H376 0375/H376 H376/A377 Y382/N383 E418/0419 0419/L420 S424/T425	Amino acid sequence inserted CLNNI LFKHQ CLNIQ CLNKH MFKQY LFKHE CLNKQ CLNKQ	Clone pCE-5aa 29 pCE-5aa 15 pCE-5aa 223 pCE-5aa 38 pCE-5aa 31 pCE-5aa 36 pCE-5aa 46 pCE-5aa 9
--	--	---

FIG. 16

EPSPS Insertion Site L31/A32 N55/A56 L57/S58 T71/R72 K122/E123 H128/L129 L176/L177 L238/V239 E240/G241 K256/G257 T286/I287 M328/N329 L331/R332 R344/L345 M348/A349 A349/T350 L404/D405 K411/T412 Y416/F417	Amino acid sequence inserted LCLNILA NCLNINA LMFKHLS TLFKHTR KVFKQKE HLVFKHL LCLNTLL LCLNNLV EVFKHEG KVFKQKG TCLNTTI MCLNNMN LLFKQLR RCLNNRL MVFKQMA AMFKQAT LVFKHLD KMFKQKT YCLNNYF	Clone pCE-5aa 21d pCE-5aa 217 pCE-5aa 24d pCE-5aa 24d pCE-5aa 126 pCE-5aa 122 pCE-5aa 122 pCE-5aa 171 pCE-5aa 140 pCE-5aa 180 pCE-5aa 115 pCE-5aa 124 pCE-5aa 107 pCE-5aa 3d pCE-5aa 110 pCE-5aa 199 pCE-5aa 5d pCE-5aa 5d pCE-5aa 163
---	--	--

FIG. 17

FIG. 18

EXPRESSION PLASMID pAGR3: 5910 bp. PROMOTER AND CLONING SITE MAP:

lac operator
1 GAATTGTGAG CGCTCACAAT TCTAGGATGT TAATTGCGCC GACATCATAA

-35 region 51 CGGTTCTGGC AAATATTCTG AAATGAGCTG TT<u>GACAA</u>TTA ATCATCGGCT

-10 region lac operator rbs
101 CGTATAATGT GTGGAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG

start
151 ACCATGGTGA ATTCTAGAGC TCGAGGATCC GCGGTACCCG GGCATGCATT
Ncol EcoRl Xbal Sacl Xhol BamHl Sacll Kpnl Smal BstBl

201 CGAAGCTTCC TTAAGCGGCC GTCGACCGAT GCCCTTGAGA GCCTTCAACC HindIII AflII EagI SalI

20/33 FIG. 19A

kDa
76 —
57 —
46 —
37 —

WESTERN: ANTI GFP ANTIBODIES

**The street of the street of t

28 -

20

FIG. 24

GAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTCATGTT ATACTGTTGAATAACAAGCCTTCCATTTTCTATTTTGATTTGTAGAAA ACTAGTGTGCTTGGGAGTCCCTGATGATTAAATAAACCAAGATTTTAC CTTAATTAAG

FIG. 25

FIG. 26

catATGGCgTCcATGATcTCCTCgTCcGCgGTGACcACgGTCAGCCGcG CgTCcACGGTGCAgTCGGCCGCGGTGGCcCCgTTCGGCGGCCTCAAgTC CATGACcGGcTTCCCgGTcAAGAAGGTCAACACgGACATcACgTCCATc ACgAGCAAcGGcGGcAGgGTgAAGTGCATGcgaagagc

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC CTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATG AGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAG TATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAAC GTTCTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTA TTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACA CTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGC ATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATA ACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGG AGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATG TAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCA AACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTT GCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAAC AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTG CGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGC CGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATG GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCA ACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTT AGATTGATTTACCCCGGTTGATAATCAGAAAAGCCCCCAAAAACAGGA AGATTGTATAAGCAAATATTTAAATTGTAAACGTTAATATTTTGTTA AAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATA GGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGAGA TAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAG AACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGA TGGCCCACTACGTGAACCATCACCCAAATCAAGTTTTTTGGGGTCGA GGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTT GCGAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCT GCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCG CGTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAA AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG AAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATC GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCA GCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTA GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCT GCTAATCCTGTTAC

CAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGC AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTC ACATGTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTAC ACTITATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATA ACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTA CGTAATACGACTCACTAGTGGGCAGATCTTCGAATGCATCGCGCGC TTGACGATATAGCAATTTTGCTTGGATTTATCAGTCGAAGCAGGAG ACAATATACCTTGATATTCTCGATCATTCTTTGATTCAAAGCATCG TTCCATCTCAATTGAAAAAGCAAATAACGTTTCAAGAACAAATCTA GTTCTGCTTCCGTGTTGCTTTTGTATTGTTTTTTCTTTTTACCCTT CTTTGTGTCTGATTCCGCGTAATCTTTTTTAAGAGCGTTTTGATGT TTTGAGAGAACAGGGCCCAGATTTCCTTTGTTTTCTATATCTGATC CACGCTCTTTTTCTCCTTGACTTGCGGGTTCTTTTGCTTCTTGAAT TCGATTCTTTATTTTTTATTTGATCGTAGAAAAAAGTTTTGTTTT TGGTTTTTATTGATGTTTTTATTTTGACTAACATTTTCATTTGTAT TCAAATTTAAAAGAAGTAATTTGCTTGGTATAATCCACGGTTTTAT TTTATATACATTATAAAGTGGTACAAATTCTGGGAAGAACCAAAAT TCCAATCAAAAAAGGCTTTTTTCGAATTTTTTTGATTGTTTTCTGG ATTTTGATGAATCGTAAGATAAAAAAAGCCTTTTTTATCAATTTTA TCAATTATTTGATAATTATTAATACCAATTTTAGTATTTGGATTAC TGTTGGTATCGATCTTAACCCAGGCCTCAATATCTTCTTTTTGTCT AAGAGAAAAATGGATAATTTTCCAATCAAAATATTTTCTATCGAGA TTTCTTTCTATATATAGAATATTGCCTTTTCTTAGATAATTATTGA TATGAAGATTGCCGAGCATATCAAAAAGGTTGTGTTTGGACGTGTT GGAATTAGAAGAAATTTCGAGGTTCTTATTTACTTGAAAGGGTAAT CTAGAAATAAAAGAGTCATTTTTTTTTTCATAATTAATCGATTTAT ATGCTAAAAGATCATATCTATAACATTTTTGAAAATTATCTTTTTG GTTTGCTAATGAATAGAGCTCAGAATCATTTTCTTTTTTGTAATGA ATTAATTGGTCTTTTTCATATGAATTCCATTTGTTTAAATTTCGAT TTTGAGCCATACAACCTTGATTAACCCTATTTCGCCATTTTTGTGG CATTAATCTAGACCATCTAATCTGAGATAAATCGTACGagaatact caatCATGAATAAATGCAAGAAAATAACCTCTCCTTCTTŤTTCTAT AAAAAGAAAAAAAGAAAGGAGCAATAGCACCCTCTTGATAGAACAA GAAAATGATTAT

TGCTCCTTTCTTTCAAAACCTCCTATAGACTAGGCCAGGATCCTCGA GcttaattaaGGTAAAATCTTGGTTTATTTAATCATCAGGGACTCCCA AGCACACTAGTTTTCTACAAATCAAAATAGAAAATAGAAAATGGAAGG CTTTTTATTCAACAGTATAACATGACTTATATACTCGTGTCAACCAAG GTGTATGTAGATCtattcCTGCAGGATATCTGGATCCACGAAGCTTCC CATGGGAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTC ATGTTATACTGTTGAATAAAAAGCCTTCCATTTTCTATTTTGATTTGT TTTACCGTTTAAACACCGGTGATCCTGGCCTAGTCTATAGGAGGTTTT GAAAAGAAAGGAGCAATAATCATTTTCTTGTTCTATCAAGAGGGTGCT ATTGCTCCTTTCTTTTTTCTTTTTATTTATTTACTAGTATTTTACTT ACATAGACTTTTTGTTTACATTATAGAAAAAGAAGGAGAGGTTATTT TCTTGCATTTATTCATGATTGAGTATTCTcctaggCGTATTGATAATG CCGTCTTAACCAGTTTTTCCATTGATTGATTCTĂŤAACTCTGAAGTTT CTTATGTTTTAATTCAGAATGAAATATTCCTAGTGTTCGAAAATAGTC CTTTATTTTAGTCTTAAGGAAAAAAGACGTTCTGTTATATTGAAGAAC AGATCTTAATTTAGACAAATTAATAACTTGGGGTTGTGATAATTTGTA ATTTTTCTTACTAATATTATAAAGTGACTTTTTTATAGTCGAAATAAA TGTATTAATTCTGGGAATATTAATGATAGATAAAAAATAGATCGATGTA TAATCTTTGAATGAATAATTTTAGAAAATAATGGAATTTCCATATTAA TCGAGTATTTCTTCTTTTTAATATTTGGAAAATCTTTTTTGGCGATTC GAATTTTTTAATATTATTTGTTTTATTAGGACTAATGTCTATTTCTGG AGTTACTTTCTTTTTCTCTTTTGTAATTCTTTCTATTTGATTTTTGAT TGTACTTGTTCTATCAGTCAAATCCTTCATTTTGCTTTCTATCAGTGA AGAATTTGGCCAATTTCCAGATTCAATTTGACTAAATGATTCGTTAAT TATCTGATTACTCATTAGAGAATCTTTTTCTTTTTTCGTTTCATTCGA TTCATCTATTTCTTTGAGTCTAAATAATACAATTGGATTTACTTTTGA AAGTTCTTTTTCATTTTTTTTATAAATAGACTACTTTTGATAAGCCA TTTTTTGGTTTCTTTTGAAATTCTTCGAAATAATTTTATTTTTCCTTT GAAAACTTTTAGAGTTATAAAATATTTCTTTTTGAATTTTCCAATTTT TTTTTCGAGTTCCTTAAAAATGGGCTCAAAAAAAGAAGGGCGTTTTCG GGGAGAACCAAAGGGAAGTTCAGCTTCCATTCCCCAAACTGTTAAAAA ACAAAAATCATCTTTTTGTTTTTTCTTTTTCATTAGCTCTCCACGGGA GGAGTACAGTTTAGATATATGCCAAGGTTTCAGACAAAAAGGAAATAA TATTTTGATCTGAATGCCATCTTTCAACCAATTTTTTTGGAAATTCTGT TTCTGATAATTGAACACCATTATAAGTACATTTAATATGCATTTCTCT ATTCCATTCCTGCAAATCTTCAGACCATTCAGGAAGTTGCAAGACTAA CATACGCCCGAGATTTTTGGCTATTATCAATGAAGGTAATACAATATA TTTTCGAAGAATTG

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC CCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCA TGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAA GAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTT GCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGA AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACAT CGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCC GAAGAACGTTCTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG GCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCG CCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTC ACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCA GACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC ATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA ATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGC CTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAG TGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATT GCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCT ACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGAT CGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGAC CAAGTTTACTCATATATACTTTAGATTGATTTACCCCGGTTGATAA TCAGAAAAGCCCCAAAAACAGGAAGATTGTATAAGCAAATATTTAA ATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTT AAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCC TTATAAATCAAAAGAATAGCCCGAGATAGGGTTGAGTGTTGTTCCA GTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCA AAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACC ATCACCCAAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTA AATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAA AGCGAACGTGGCGAGAAAGGAAGGAAGGAAGGAAGGAGCGGGC GCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCA CACCCGCCGCGTTAATGCGCCGCTACAGGGCGCGTAAAAGGATCT AGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACG TGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAA GGATCTTCTTGAGATCCTTTTTTTTCTGCGCGTAATCTGCTGCTTGC AAACAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCA AGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCG CAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAAT CCTGTTAC

CAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGGCCTATGGAAAAACGCCAGC AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTC ACATGTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTAC ACTITATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATA ACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTA CGTAATACGACTCACTAGTGGGCAGATCTTCGAATGCATCGCGCGC AATTCACCGCCGTATGGCTGACCGGCGATTACTAGCGATTCCGGCT TCATGCAGGCGAGTTGCAGCCTGCAATCCGAACTGAGGACGGGTTT TTGGGGTTAGCTCACCCTCGCGGGATCGCGACCCTTTGTCCCGGCC ATTGTAGCACGTGTGTCGCCCAGGGCATAAGGGGCATGATGACTTG ACGTCATCCTCACCTTCCTCCGGCTTATCACCGGCAGTCTGTTCAG GGTTCCAAACTCAACGATGGCAACTAAACACGAGGGTTGCGCTCGT TGCGGGACTTAACCCAACACCTTACGGCACGAGCTGACGACAGCCA TGCACCACCTGTGTCCGCGTTCCCGAAGGCACCCCTCTCTTTCAAG AGGATTCGCGGCATGTCAAGCCCTGGTAAGGTTCTTCGCTTTGCAT CGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATT CCTTTGAGTTTCATTCTTGCGAACGTACTCCCCAGGCGGGATACTT AACGCGTTAGCTACAGCACTGCACGGGTCGATACGCACAGCGCCTA GTATCCATCGTTTACGGCTAGGACTACTGGGGTATCTAATCCCATT CGCTCCCCTAGCTTTCGTCTCTCAGTGTCAGTGTCGGCCCAGCAGA GTGCTTTCGCCGTTGGTGTTCTTTCCGATCTCTACGCATTTCACCG CTCCACCGGAAATTCCCTCTGCCCCTACCGTACTCCAGCTTGGTAG TTTCCACCGCCTGTCCAGGGTTGAGCCCTGGGATTTGACGGCGGAC TTAAAAAGCCACCTACAGACGCTTTACGCCCAATCATTCCGGATAA CGCTTGCATCCTCTGTATTACCGCGGCTGCTGGCACAGAGTTAGCC GATGCTTATTCCCCAGATACCGTCATTGCTTCTTCTCCGGGAAAAG AAGTTCACGACCCGTGGGCCTTCTACCTCCACGCGGCATTGCTCCG TCAGCTTTCGCCCATTGCGGAAAATTCCCCACTGCTGCCTCCCGTA GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCTGATCATCCTCTC GGACCAGCTACTGATCATCGCCTTGGTAAGCTATTGCCTCACCAAC TAGCTAATCAGACGCGAGCCCCTCCTCGGGCGGATTCCTCCTTTTG CTCCTCAGCCTACGGGGTATTAGCAGCCGTTTCCAGCTGTTGTTCC CCTCCCAAGGCAGGTTCTTACGCGTTACTCACCCGTCCGCCACTG GAAACACCACTTCCCGTCCGACTTGCATGTGTTAAGC

ATGCCGCCAGCGTTCATCCTGAGCCAGGATCGAACTCTCCATGAGAT TCATAGTTGCATTACTTATAGCTTCCTTGTTCGTAGACAAAGCGGAT TCGGAATTGTCTTTCATTCCAAGGCATAACTTGTATCCATGCGCTTC ATATTCGCCCGGAGTTCGCTCCCAGAAATATAGCCATCCCTGCCCCC TCACGTCAATCCCACGAGCCTCTTATCCATTCTCATTGAACGACGGC GGGGGAGCAAATCCAACTAGAAAAACTCACATTGGGCTTAGGGATAA TCAGGCTCGAACTGATGACTTCCACCACGTCAAGGTGACACTCTACC GCTGAGTTATATCCCTTCCCCGCCCCATCGAGAAATAGAACTGACTA ATCCTAAGTCAAAGGCGTACGagaatactcaatCATGAATAAATGCA AGAAAATAACCTCTCCTTCTTTTTCTATAATGTAAACAAAAAAGTCT GCAATAGCACCCTCTTGATAGAACAAGAAAATGATTATTGCTCCTTT CTTTTCAAAACCTCCTATAGACTAGGCCAGGATCCTCGAGcttaatt aaGGTAAAATCTTGGTTTATTTAATCATCAGGGACTCCCAAGCACAC TAGTTTTCTACAAATCAAAATAGAAAATAGAAAATGGAAGGCTTTTT ATTCAACAGTATAACATGACTTATATACTCGTGTCAACCAAGGTGTA TGTAGATCtattcCTGCAGGATATCTGGATCCACGAAGCTTCCCATG GGAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTCATG TTATACTGTTGAATAAAAAGCCTTCCATTTTCTATTTTGATTTGTAG AAAACTAGTGTGCTTGGGAGTCCCTGATGATTAAATAAACCAAGATT TTACCGTTTAAACACCGGTGATCCTGGCCTAGTCTATAGGAGGTTTT GAAAAGAAAGGAGCAATAATCATTTTCTTGTTCTATCAAGAGGGTGC TATTGCTCCTTTCTTTTTTCTTTTTATTTATTTACTAGTATTTTAC TTACATAGACTTTTTTGTTTACATTATAGAAAAAGAAGGAGAGGTTA TTTTCTTGCATTTATTCATGATTGAGTATTCTcctaggGTCGAGAAA CTCAACGCCACTATTCTTGAACAACTTGGAGCCGGGČČTTCTTTTCG CACTATTACGGATATGAAAATAATGGTCAAAATCGGATTCAATTGTC AACTGCCCCTATCGGAAATAGGATTGACTACCGATTCCGAAGGAACT GGAGTTACATCTCTTTTCCATTCAAGAGTTCTTATGCGTTTCCACGC CCCTTTGAGACCCCGAAAAATGGACAAATTCCTTTTCTTAGGAACAC ATACAAGATTCGTCACTACAAAAAGGATAATGGTAACCCTACCATTA ACTACTTCATTTATGAATTTCATAGTAATAGAAATACATGTCCTACC GAGACAGAATTTGGAACTTGCTATCCTCTTGCCTAGCAGGCAAAGAT TTACCTCCGTGGAAAGGATGATTCATTCGGATCGACATGAGAGTCCA ACTACATTGCCAGAATCCATGTTGTATATTTGAAAGAGGTTGACCTC CTTGCTTCTCATGGTACACTCCTCTTCCCGCCGAGCCCCTTTTCT CCTCGGTCCACAGAGACAAAATGTAGGACTGGTGCCAACAATTCATC AGACTCACTAAGTCGGGATCACTAACTAATACTAATCTAATATAATA GTCTAATATCTAATATAATAGAAAATACTAATATAATAGAAAAGA ACTGTCTTTTCTGTATACTTTCCCCGGTTCCGTTGCTACCGCGGGCT TTACGCAATCGATCGGATTAGATAGATATCCCTTCAACATAGGTCAT CGA

AAGGATCTCGGAGACCCACCAAAGTACGAAAGCCAGGATCTTTCAG AAAACGGATTCCTATTCAAAGAGTGCATAACCGCATGGATAAGCTC ACACTAACCCGTCAATTTGGGATCCAAATTCGAGATTTTCCTTGGG AGGTATCGGGAAGGATTTGGAATGGAATAATATCGATTCATACAGA AGAAAAGGTTCTCTATTGATTCAAACACTGTACCTAACCTATGGGA TAGGGATCGAGGAAGGGGAAAAACCGAAGATTTCACATGGTACTTT TATCAATCTGATTTATTTCGTACCTTTCGTTCAATGAGAAAATGGG TCAAATTCTACAGGATCAAACCTATGGGACTTAAGGAATGATATAA AAAAAGAGAGGGAAAATATTCATATTAAATAAATATGAAGTAGAA GAACCCAGATTCCAAATGAACAAATTCAAACTTGAAAAGGATCTTC TTTTGTTCTTCTTATATATAAGATCGTGATGGTACCCTCTAGTCAA GGCCTTAAGTGAGTCGTATTACGGACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAG CACATCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCAC CGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGC