Algorithmische Geometrie - Vorlesung vom 11-05-2005

Stephan Scheerer, Wolfgang Sprenger

13. Mai 2005

Suchen in ebenen Unterteilungen

Beispiel: "Post-Office-Problem"

Geg.: Menge S = $\{p_1,...,p_2\} \subset \mathbb{R}^2$

Ziel: Datenstruktur für S anlegen, so dass für einen Anfragepunkt $q \in \mathbb{R}^2$ effizient ein q am nächsten liegende $p_i \in S$ bestimmt werden kann.

allgemeiner:

Ebene Unterteilung ist Partition von \mathbb{R}^2 in durch Strecken oder Strahlen begrenzte Gebiete, also geometrischer Graph G. Finde Datenstruktur für G_0 , so dass für Anfragepunkt $q \in \mathbb{R}^2$ effizient die Facette bestimmt werden kann, die q enthält.

Ressourcen:

("point location")

- 1. Vorbereitungszeit zur Konstruktion der Datenstruktur aus \mathcal{G}_0
- 2. Speicherplatzbedarf
- 3. Anfragezeit

zunächst: triangulierte ebene Unterteilungen

<u>Lemma:</u> Es gibt Konstanten 1 > c > 0, $k \in \mathbb{N}$, so dass für jede ebene Unterteilung G_0 mit n Knoten (einschliesslich ∞ entfernten Punkt und Annahme, dass dieser Punkt auch existiert). Gibt es eine unabhängige Kontenmenge I mit \geq cn Elementen, in der jeder Knoten Grad \leq k hat. I kann in Zeit O(n) gefunden werden.

<u>Beweis:</u> Da die Anzahl der Kanten $\leq 3n$ - 6 ist, ist die Summe der Knotengrade $\leq 6n$ - $\frac{12}{2}$ (da jede Kante 2mal gezählt wird) : es gibt höchstens $\frac{n}{2}$ Knoten vom Grad ≥ 12

Nimm die anderen ($\geq \frac{n}{2}$, Grad ≤ 11) und bezeichne das als Menge K.

Nimm den ersten Knoten davon in I auf, entferne alle dazu adjazenten Knoten aus K (höchstens 11 entfernt),

nimm nächsten Knoten nach I auf usw.

für das entstehende I: $|I| \ge \frac{n}{24}$, das Lemma gilt für $c = \frac{1}{24}$, K = 11

Algorithmus zur Konstruktion einer Datenstruktur:

geg.: triangulierte ebene Unterteilung G_0 , Suchstruktur: Baum, Blätter \cong Dreiecke in G_0

- ① falls G_0 3 Knoten und 3 Kanten hat: Suchstruktur ist ein Baum mit 1 Wurzel F_0 (\triangleq ganze Ebene) mit 2 Kindern (\triangleq 2 Facetten)
- 2 bestimme Menge I gemä ßdem Lemma
- 3 Elemente von I mit anhängenden Kanten entfernen

 \rightarrow ebene Unterteilung G_1 mit \leq d*n Knoten wobei d = 1 - c

Facetten von G_1 : m-Ecken mit m ≤ 11

- 4 trianguliere alle diese Facetten: triangulierte ebene Unterteilung G_2
- $\ \$ sonstruiere rekursiv eine Datenstruktur D_2 zum Suchen in G_2
- 6 daraus: Datenstruktur zum Suchen in G_1 durch Zusammenfassen entsprechender Dreiecke, die von einer Facette von G_1 her rühren.
- \mathfrak{D} Daraus Datenstruktur D_0 (Suchstruktur) zum Suchen in G_0 : betrachte alle Facetten F von G_1 , falls ein Knoten $x \in I$ in F liegt (dann genauer einer)

Kanten $e_1,...,e_k$ inzident zu x in G_0 ($k \le 11$) in Suchstruktur neue Knoten $F_1,...,F_k$: Kinder von F Beispiel:

I = 1,4 Zeile 2 / Schritt 2: G_0

Schritt 3: G_1

Schritt 4: Triangulierung : G_2

1. rek. Schritt I = 2.8

2. rek. Schritt I = 3

Datenstruktur:

Suche nach einem Punkt $q \in \mathbb{R}^2$, starte mit der Wurzel in einem Knoten v der Baumstruktur, vergleiche q mit allen Kindern von v (höchstens 11) und bestimme das, dessen zugeh. Dreieck q enthält, usw.

Laufzeit: O(Höhe der Baumstruktur)

Anzahl der Blätter der Dreiecke in $G_0 = O(n)$

in jedem Vergröberungsschritt v unten nach oben im Baum: Anteil \subset der Kosten fallen raus, d=1 - c bleiben $\frac{23}{24}$ also ist die Höhe des Baumes $\log_{\frac{23}{34}}$ n = $O(\log_2 n)$