Contents

1 g

1 g

Definition 1.1 (topology). A topology on a set X is a collection T of subsets of X having the following properties:

- \emptyset and \mathbb{X} are in \mathbb{T}
- The union of the elements of any sub collection of \mathbb{T} is in \mathbb{T}
- The intersection of the elements of any finite sub collection of \mathbb{T} is in \mathbb{T}

Definition 1.2 (topology space). A topological space is a set X for which a topology T has been specified.

Definition 1.3 (open set). A open set \mathbb{U} is a subset of \mathbb{X} that belongs to a topology \mathbb{T} of \mathbb{X} .

Definition 1.4 (open sets). A topology can also be called a **open sets**

Definition 1.5 (discrete topology). The set of all subsets of a set X formed a topology called discrete topology

Definition 1.6 (trivial topology). The set consisting the set X and \emptyset only formed a topology of X called **trivial topology**

Definition 1.7 (finite complement topology). Let X be a set. Let \mathbb{T}_f be the collection of all subsets \mathbb{U} of X such that $X - \mathbb{U}$ either if a **finite** of is all of X. Then \mathbb{T}_f is a topology on X, called the .

Definition 1.8 (finer, larger, strictly finer, strictly larger, coarser, smaller, strictly coarser, strictly smaller, comparable). Let \mathbb{T} and \mathbb{T}' be two topology on a given set \mathbb{X} . If \mathbb{T} is a subset of \mathbb{T}' , we say that \mathbb{T}' is finer or larger than \mathbb{T} . If \mathbb{T} is a proper subset of \mathbb{T}' , we say that \mathbb{T}' is strictly finer or strictly larger than \mathbb{T} . We also say that \mathbb{T} is coarser or smaller or strictly coarser or strictly smaller than \mathbb{T}' . We say that \mathbb{T} and \mathbb{T}' is comparable if either \mathbb{T} is a subset of \mathbb{T}' or \mathbb{T}' is a subset of \mathbb{T} .

The set U can form a topology because of the definition of topology is intersection of finite sub collection. If this can be intersection of infinite sub collection, U will not be a topology.