



Como maximizar la productividad en levante y producción en galpones abiertos y automatizados

MIGUEL E. AYALA TRUJILLO, ABRIL 2016













# Balance Score Card (Cuadro de Mando Integral)

"Lo que no se mide no se puede controlar; lo que no se controla no se puede gestionar; lo que no se gestiona no se puede mejorar"



#### **ANALISIS Y SEGUMIENTO**









### **ANALISIS Y SEGUIMIENTO**



#### Condiciones de confort.

- Perfil de crecimiento
- Ganancia de peso
- Productividad
- Salud

#### **Procesos**

- Cría y levante
- Producción





### ¿Qué Factores afectan la Cría?





### **PESAJES**



- ◆Semanales
- ◆En ayuno
- ◆Individuales
- ◆Muestra (3 5 %)
- Precisos
- ◆Ordenados



### **Peso Corporal**

el cambio





### **Peso Corporal**







### Instrumentos de medición Peso Corporal

















#### **ANALISIS**



Cría y levante
 Maximizar el perfil de crecimiento
 Optimizar el consumo de alimento
 Salud de las aves



#### **VARIABLES**

- Temperatura Aire, Piso
- Humedad relativa %
- Recambio de aire
   Niveles de CO<sub>2 < 3000 ppm</sub>
   Amoniaco < 10 ppm</li>
- Luz
- Calidad de agua
- Granulometría del alimento

- Homogeneidad en diferentes puntos del galpón
- Variaciones
- Control
- ❖ Velocidad aire. 100-300 ppm



### Instrumentos de medición

























#### **ANALISIS DE CRIA LEVANTE**



Cría y levante





# TEMPERATURA. CASO 1 PISO Clima frio. 2060 msn



#### 4-5 DE MARZO

|             | Hora |  |
|-------------|------|--|
| N/S         |      |  |
| Tipo        |      |  |
| Descripción |      |  |
| Propiedad   |      |  |
| PROMEDIO    |      |  |
| MAX         |      |  |
| MIN         |      |  |

| Externa       |  |
|---------------|--|
| 1304-0236     |  |
| 2.2x          |  |
| Externo Emaus |  |
| Temperature   |  |

17,6 °C 25,3 °C 14,2 °C

-Se evidencian, serias dificultades para alcanzar y mantener la temperatura adecuada de crianza.

Objetivo de temperatura: 34-32°C. Min. 30°C.



## TEMPERATURA. CASO 1 PISO Clima frio. 2060 msn







03/03/2015 11:17:30 a.m.

# TEMPERATURA. CASO 1 PISO Clima frio. 2060 msn



Se evidencia, problemas de aislamiento termico con la cortina interna de area de cria. Temperaturas por debajo de 25 grados centigrados.





FLIR0486.jpg

FLIR E60

64506600

С

Fuertes corrientes de aire frio al interior del galpon. Incidiendo en la temperatura del tunel de cria. Es necesario ubicar doble cortina lateral, externa he interna.





## TEMPERATURA. CASO 1 PISO Clima frio. 2060 msn









| Medidas |         |      | °C |
|---------|---------|------|----|
| Ar1     | Max     | 28,5 |    |
|         | Min     | 23,3 |    |
|         | Average | 25,5 |    |
| Sp1     |         | 36,3 |    |

Muy baja temperatura, en el corral adjunto a la culata. Esta zona, oacisona una fuerte zona de enfriamiento, apar este corral.

Se debe aislar el corral de cria, de la culata.



# TEMPERATURA. CASO 2 PISO Clima frio 1850 msn







# TEMPERATURA. CASO 2 PISO Clima frio 1850 msn





30/09/2015 4:10:51 a.m.



DC\_15577.jpg

| Medidas    | °C   |
|------------|------|
| Sp1        | 36,1 |
| Sp1<br>Sp2 | 34,9 |
| Sp3        | 34,8 |
| Sp3<br>Sp4 | 38,8 |
| Sp5        | 40,0 |

#### Anotaciones de texto



# TEMPERATURA. CASO 2 PISO Clima frio 1850 msn



el cambio

















# TEMPERATURA.CASO 3. JAUL.AUTO Clima frio. 1850 msn

el cambio



55,5

98,5

Min.

Max.

15,2

20,6



# TEMPERATURA.CASO 4. JAULA.AUTO Clima cálido (1 semana). 850 msn







Emisividad

Temp. refl.

## TEMPERATURA.CASO 4. JAULA.AUTO Clima cálido (1 semana). 850 msn





0.95

22 °C



Se debe, buscar ubicación de los sensores de temperatura de los turbo-calentadores, en un sitio diferente a la cortina lateral; ya que esta puede tener influencia importante del exterior (sol de los costados) y alterar así el trabajo de los equipos.

También buscar un punto promedio de control para evitar fuertes variaciones internas.



# TEMPERATURA.CASO 4. JAULA.AUTO Clima cálido (1 semana). 850 msn









#### **CONCLUSIONES**



- Fallas de aislamiento térmico.
- Deficiente operación de sistemas de calefacción.
- Fallas de mantenimiento.
- Deficiencias de equipo de calefacción.
- Inadecuada circulación de aire.
- Alta fluctuación de temperaturas. Zonas.
- Mortalidad alta
- Desuniformidad
- Ineficiencia energética.



#### **ANALISIS DE PRODUCCION**

ProducciónMaximizar la productividadOptimizar el consumo de alimento









- Homogeneidad en diferentes puntos del galpón
- Variaciones
- Control
- **❖** Velocidad aire. 400-600 ppm



#### **ANALISIS**



#### Producción

-La zona termo neutral de las aves, corresponde al rango de temperatura en el cual permanecen en condición homeoterma, es decir sin gastar energía en enfriarse o calentarse.

Rango ideal de temperatura para las aves: 18-26 °C.

Para las gallinas ponedoras, maximizando su productividad 20-22 °C Dr. Xin (ISU)

La capacidad de enfriamiento de un ave, en relación con su entorno, depende de tres condiciones las cuales deben ser permanentemente evaluadas y monitoreadas:

- Temperatura del aire
- % Humedad relativa (HR)
- Velocidad del aire (m/s o ppm)

He indirectamente sobre la velocidad del aire, la evaluación de presión estática.

La temperatura del aire, en relación al % HR, influye directamente en la capacidad de enfriamiento y en la condición de stress calórico para las aves.



#### **ANALISIS**







• • • • Estándar 1.AC 2.JT 3.P



#### Termorregulación en las aves

Las principales vías de perdida de calor de las aves son:



- -Por convección (enfriamiento por aire) 40%
- -Por evaporación de agua del tracto respiratorio (jadeo) 60%.











# DISEÑO DEL GALPON (MONITOREO)







# DISEÑO DEL GALPON (MONITOREO)















#### **RESULTADO**

**TERMOGRAFIAS** 

#### Paneles evaporativos.



16/09/2015 10:32:51 a.m.



DC\_15389.jpg

°C

Medidas

Sp1 21,3

Falla en panel evaporativo.



#### **RESULTADO**

**CHEQUEO EXTRACTORES** 



| <b>EVALUACION EXTRACTORES</b> |      |           |  |
|-------------------------------|------|-----------|--|
| EXTRACTOR                     | RPM  | UBICACIÓN |  |
| 1                             | 1761 | Galpón    |  |
| 2                             | 1673 | Galpón    |  |
| 3                             | 1631 | Galpón    |  |
| 4                             | 1710 | Galpón    |  |
| 5                             | 1655 | Galpón    |  |
| 6                             | 1655 | Galpón    |  |
| 7                             | 1891 | Galpón    |  |
| 8                             | 1643 | Galpón    |  |
| 9                             | 1741 | Galpón    |  |
| 10                            | 1684 | Fosa      |  |
| 11                            | 1729 | Fosa      |  |

| Presion estática In H <sub>2</sub> O |                    |            |             |
|--------------------------------------|--------------------|------------|-------------|
| Paneles                              | Zona de transición | Zona media | Extractores |
| 0,08                                 | 0,12               | 0,18       | 0,21        |





#### **CALCULOS**

#### Calculos por recambio de aire

BTUS/hr 881.600
1.070.820

CFM 200.153

Estim. Extrac 7,8

CFM/AVE 5,0

Capacidad extractor 25700

Volumen de la caseta F<sup>3</sup> 262.202

Area Trans galpon F<sup>2</sup> 592

Velocidad- Galpon ffm 338 M/S 1,7

Velocidad-buscada ffm 600 M/S 3,0

355.200

808

Calculo extractores 13,8

Area Panel-pies<sup>2</sup>

Velocidad panel ffm 350 M/S m<sup>2</sup>

Recambio de aire 55,5 seg.  $\frac{m^2}{75,0}$  Ideal <35 seg.

Temperatura ambiental °C 34,5 94,1 Temperatura objetivo 29 84,2

| #. Extractores | CFM/extractor | Total CFM | vel.aire ffm | vel.aire M/S | CFM/Ave |
|----------------|---------------|-----------|--------------|--------------|---------|
| 11             | 25700         | 282700    | 478          | 2,4          | 7,1     |
| 14             | 25700         | 359800    | 608          | 3,1          | 9,0     |





#### **RESULTADO**

**TEMPERATURA-VEL AIRE** 

11-11-2015 (4.00 AM)

OPERACIÓN HABITUAL.(CORTINAS ABAJO. GALPON APAGADO)



V. 0 M/S V. 0 M/S

Α



T.EXTERNA 24,5°C HR 85,7%



# PRODUSS TEMPERATURA EFECTIVA 85-95°F (29.4-35°C)

el cambio

| • | TEMPERATURA | HUMIDAD RELATIVA | VELOCIDA DE AIRE METROS / SEG        |
|---|-------------|------------------|--------------------------------------|
| • | F C         | 30% 50% 70% 80%  | 0 0.5 1.0 1.5 2.0 2.5                |
|   | 35          | *                | 35 31.6 26.1 23.8 22.7 22.2          |
| • | 35          | *                | 35+ 32.2 26.6 24.4 23.3 22.2         |
| • | 35          | *                | 38.3 35.5 30.5 28.8 26.1 24.4        |
| • | 35          | *                | 40 37.2 31.6 30 27.2 25.5            |
| • | 32,2        | *                | 37.2 35 30 27.7 27.2 26.1            |
| • | 32.2        | *                | 32.2 29.4 25.5 23.8 22.7 <u>21.1</u> |
| • | 32.2        | *                | 35.5 32.7 28.8 27.2 25.5 23.3        |
| • | 32.2        | *                | 37.2 35 30 27.7 27.2 26.1            |
| • | 29.4        | *                | 29.4 26.1 23.8 22.2 20.5 19.4        |
| • | 29.4        | *                | 29.4 26.6 24.4 22.8 <u>21.1</u> 20.0 |
| • | 29.4        | *                | 31.6 30 27.2 25.5 24.4 23.3          |
|   | 29.4        | *                | 33.3 31.6 28.8 26.6 25 23.8          |



#### **CALIDAD DE AIRE**

el cambio





### CASO 3. BAT.AUT Clima frio. 2100 msn









### CASO 3. BAT.AUT Clima frio. 2100 msn

| Promedio | 84,6 | 17,3 |
|----------|------|------|
| Min.     | 55,5 | 15,2 |
| Max.     | 98,5 | 20,6 |







### CASO 3. BAT.AUT Clima frio. 2100 msn







|         | °C                           |
|---------|------------------------------|
| Max     | 50,3                         |
| Min     | 40,0                         |
| Average | 46,0                         |
| Max     | 36,9                         |
| Min     | 31,7                         |
| Average | 35,1                         |
|         | Min<br>Average<br>Max<br>Min |



#### **CALIDAD DE AIRE**





### Escuela Técnica Internacional PRODUSS

#### **CONCLUSIONES**



- Desconocimiento del modo de operación de los sistemas.
- Deficiencias de diseño.
   Que adquirió? Control de temperatura, velocidad, presión, condiciones de sello aislamiento, iluminación.
- Fallas de mantenimiento.
- Inadecuado desempeño productivo.
- Estrés calórico
- Mortalidad alta
- Ineficiencia productiva.
- Ineficiencia energética.



#### **GRANULOMETRIA**

el cambio



La presentación, puede condicionar hasta 10% el consumo diario de alimento





el cambio







**GRACIAS...**