1FO3: ASSIGNMENT | SOLUTIONS

Q1. For the comet, perinelion distance p = 1 A.U. aphelion distance ra = 71 A.U.

Semi-major axis (a):

$$2a = fa + rp$$

 $\Rightarrow a = ra + rp = 1 + 71 = 36 \text{ A.u.}$

Eccentricity
$$e = 71 - 1 = 35 = 0.972$$
 $36 = 36$

Kepler's
$$3^{r4}$$
 Law: P^2 (yrs) = a^3 (A·v.).
 $P = a^{3/2} = (36)^{3/2}$

But, period is total time for comet to travel from perinelian to aphelion back to perihelion. ... Time to travel from aphelion to perihelion = 7/2 = 108 yrs

Q2·	a) The physical ideas behind kepler's Laws still hold for any
	2 bodies gravitationally, so long as the central objects mass
	(e.g. Earth) greatly exceeds the mass of the object
	orbitting it.
	Since the standard version of kepler's Laws apply to objects
	orbitting the sun, they need to be modified to describe
	objects orbitting the Earth.
	<u> </u>
	For the 1st & 2nd Laws, this simply requires us to change
	"Sun" to "Earth" & "planet" to "orbitting object).
	For the 3^{rd} Law, $P^2 = a^3$ is only true for objects orbitting the
	sun 2 when Pis in yrs 2
	a in A·v.
	For any other 2-body system, the 3rd Law can be stated as
	72 = Ca3 where the constant of proportionality c
	depends on the mass of the central object
	as well as the writz chasen.
	b) Since $P^2 = Ca^3$
	$P_1^2 = Ca_1^3$ and $P_2^2 = Ca_2^3$
	$\Rightarrow \left(P_{1}\right)^{2} = \left(Q_{1}\right)^{3} = \left(Q_{1}\right)^{3}$
	(P_1) (a_1)
	For the Moon, P1 = 27 days, a1 = 60 REarth
	For the satellite, 92 = REarth.
	$(27)^2 = 60 \text{ Beauty}^3 \Rightarrow P_2 = 27 = 0.058 \text{ days}$
	(P2) (BEATH) 603/2
i	

Question 4

 $\Gamma_{\rm c} = 0.073 \, r_{\rm \oplus} \, M_{\rm c} = 0.00015 \, M_{\rm \oplus}$

$$F_{\text{cores}} = GM_{\text{c}}M_{\text{astro}}$$
 $F_{\oplus} = GM_{\oplus}M_{\text{astro}}$ r_{c}^2

$$= \frac{0.00015 \, \text{M}_{\oplus}}{(0.073 \, \%)^2} \cdot \frac{9^{\frac{1}{2}}}{\text{M}_{\oplus}}$$

$$\frac{F_{\text{ones}}}{F_{\theta}} = \frac{0.00015}{(0.073)^2} = |0.028|$$

$$\theta = 2' \quad \chi = 21 \text{ cm} = 0.21 \text{ m}$$

$$\Theta(\text{rad}) = \frac{1.22 \, \lambda(m)}{O(m)}$$

$$2' \cdot \frac{1 \deg}{60'} \cdot \frac{\pi \operatorname{rad}}{180 \deg} = 5.81 \times 10^{-4} \operatorname{rad}$$

$$\rightarrow 0 = 1.22\lambda = 1.22 \cdot 0.21m = 441m$$

$$6 = 5.81 \times 10^{-4} \text{ rad}$$

Question 6

$$R_0 = 700000 \, \text{Km}$$

$$= 7 \times 10^8 \, \text{m}$$

$$V_{\text{max}} = \frac{d}{t} = \frac{2 \, \text{TR}_0}{P_0} = \frac{2 \, \text{TR} \cdot 7 \times 10^8 \text{m}}{2.10 \times 10^6 \text{s}} = \frac{2035 \, \text{m/s}}{2.10 \times 10^6 \text{s}}$$

$$\frac{\Delta \lambda}{\lambda_{\text{emit}}} = \frac{V_{\text{max}}}{C} = \frac{2035 \,\text{m/s}}{3 \times 10^8 \,\text{m/s}} = \left[0.78 \times 10^{-6} \right]$$