Gaëtan LE FLOCH

### Précédent chapitre

- Jusqu'à présent, nous nous sommes intéressés à la technologie de production.
- La firme utilise du capital (K) et du travail (L) pour produire une quantité donnée d'un bien unique (Q).
- Individuellement, ces facteurs de production ont une productivité totale, moyenne et marginale
- Nous pouvons substituer ces facteurs. La relation de substitution est donnée par l'isoquante.
- Il y a différents types de substituabilité. Cette caracteristique est donnée par la pente de l'isoquante, d'où nous pouvons dériver le Taux Marginal de Substitution Technique (TMST).

#### But de ce chapitre

- Le producteur a une certaine technologie de production, mais cette dernière est coûteuse.
- Ainsi, nous introduisons une notion de maximisation (du profit) sous contrainte (des coûts).
- Il est très important de différencier le coût comptable du coût économique.

#### Coût comptable vs coût économique

- Le coût comptable adopte une vision basée sur le passé.
  - Quel a été le coût effectif sur l'exercice précédent, quels sont les amortissements ect..
- Le coût économique, lui, est plus tourné vers l'avenir.
  - Nous pouvons relier celà à la notion de coût d'opportunité.

#### Les types de coûts

- En microéconomie, nous différencions les coûts fixes des coûts variables. Alors que ces premiers ne varient pas en fonction de la production, ce n'est pas pareil pour les seconds.
  - Le loyer, les frais d'assurance ect. sont fixes. En revanche, les salaires et les achats de matières premières varient en fonction de la production.
- A court terme, les frais liés au capital peuvent être considérés comme fixes (c'est moins vrai à long terme).
- Nous pouvons ainsi écrire le coût total comme étant:

$$CT(q) = CF + CV(q) = \underbrace{kK + wL}_{\text{Autre expression}}$$

### Le coût moyen

 Nous pouvons définir le coût par unité produite (le coût moyen) comme:

$$CM(q) = \frac{CT(q)}{q}$$

 Nous pouvons également obtenir le coût fixe moyen et le coût variable moyen:

$$CFM(q) = \frac{CF}{q}$$
 et  $CVM(q) = \frac{CV(q)}{q}$ 

 La firme cherche traditionnellement à avoir un coût moyen minimisé.

$$\frac{\partial CM(q)}{\partial q}=0$$

## Le coût marginal

• Il s'agit de l'accroissement de coût correspondant à la production d'une unité supplémentaire. Il ne dépend que des coûts variables, par définition.

$$Cm(q) = \frac{\partial CT(q)}{\partial q} = \frac{\partial CV(q)}{\partial q}$$

#### Application numérique

• Soit la fonction de coût total  $CT(q) = 10q^2 + 2q + 10$ . Déterminer le coût moyen ainsi que le coût marginal.

#### Allure des coûts





## Minimisation de la dépense

• Le producteur cherche à utiliser la combinaison de facteurs la moins chère possible lui permettant d'atteindre un niveau de production souhaité, selon la technologie disponible.

Minimisation de la dépense

- La fonction de coût total représente la dépense minimale qu'une entreprise doit envisager pour tout niveau de production. Elle résume les contraintes de technologie et de marché.
- Alors, nous suivons deux étapes:
- Caractérisation de la dépense minimale pour un niveau de production donné  $(\bar{q})$ .
- Que Généralisation pour tout niveau de production.

# Minimisation de la dépense

 Nous pouvons dans un premier lieu poser le programme de minimisation suivant:

$$\begin{cases} \min & kK + wL \\ \text{s.t.} & f(K, L) = \bar{q} \end{cases}$$

• La résolution de ce programme donne les quantités optimales de facteurs qui minimisent les dépenses étant donné un certain niveau de production  $\bar{q}$ .

# Représentation graphique

 Nous pouvons représenter graphiquement la dépense via une **droite d'isocoût**. En posant la dépense D = kK + wL, nous avons:



#### Isoquante: le retour

• Pour un niveau de production donné  $\bar{q}$ , le choix optimal de facteurs revient à trouver le point, sur l'isoquante correspondante, qui minimise la dépense, c'est-à-dire associé à la droite d'isocoût la plus basse possible (dépense minimale).

Minimisation de la dépense

• Lorsque les facteurs sont imparfaitement substituables, ce point est caractérisé par une relation de tangence : la pente de la tangente à l'isoquante doit être égale à la pente de la droite d'isocoût. Nous avons alors:

$$TMST_{L-K} = \frac{k}{w}$$

• En généralisant à plusieurs niveaux de production donnés, nous obtenons le sentier d'expansion: l'ensemble des combinaisons de facteurs optimales (qui minimisent la dépense) pour tout niveau de production, et pour un système de prix donné.



## Formalisation mathématique

 Alors, nous reprenons le système précédemment énoncé en le généralisant:

$$\begin{cases} \min & kK + wL \\ \text{s.t.} & f(K, L) = q \end{cases}$$

 Nous allons déterminer les demandes conditionnelles de chaque facteur,  $K^*(k, w, q)$  et  $L^*(k, w, q)$ , données par ce programme. Nous cherchons les quantités d'inputs, les prix étant fixes (cadre de la CPP).

### Formalisation mathématique

 Comme vu tout à l'heure avec le sentier d'expansion, nous pouvons écrire:

$$\frac{Pm_K}{k} = \frac{Pm_L}{w}$$

 Alors, nous en déduisons les conditions marginales d'optimalité:

$$\begin{cases} \frac{Pm_K}{Pm_L} = \frac{k}{w} \\ \text{s.t.} \quad f(K, L) = q \end{cases}$$

# Application guidée

Considérons le programme suivant:

$$\begin{cases} \min & kK + wL \\ s.t. & Q = (L-4) + 2\sqrt{K} \\ s.t. & L > 4 \\ s.t. & K > 0 \end{cases}$$

• Nous débutons par prendre en compte le  $TMST_{K-I}$ :

$$TMST_{K-L} = \frac{Pm_L}{Pm_K} = \frac{1}{\frac{1}{\sqrt{K}}} = \sqrt{K}$$

## Application guidée

 Comme vu précédemment, la condition marginale d'optimalité dispose que le TMST est égal au rapport inverse des prix:

$$\sqrt{K} = \frac{w}{k}$$

 Alors, nous obtenons une première forme de demande conditionnelle:

$$K^{dc} = \left(\frac{w}{k}\right)^2$$

Et nous en déduisons la demande conditionnelle de travail:

$$Q = (L-4) + 2\sqrt{\left(\frac{w}{k}\right)^2} \Longrightarrow L^{dc} = Q + 4 - 2\frac{w}{k}$$