Hướng dẫn bài tập Vi tích phân 1 Tuần 6

Ngày 11 tháng 3 năm 2024

Bài toán diện tích

Xét hàm số y = f(x), xác định trên đoạn [a, b].

Chia đoạn [a,b] thành n đoạn con có độ dài bằng nhau $\Delta x = (b-a)/n$.

Đặt $x_0=a, x_1=a+\Delta x, \ldots, x_i=a+i\Delta x, \ldots, x_n=b.$

Đoạn con thứ i từ trái sang là $[x_{i-1}, x_i]$.

(a) Sử dụng đầu mút trái

(b) Sử dụng đầu mút phải

$$R_n = \sum_{i=1}^n f(x_i) \Delta x = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x.$$

là tổng diện tích các hình chữ nhật lấy theo biên phải.

$$L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x = f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x.$$

là tổng diện tích các hình chữ nhật lấy theo biên trái.

$$M_n = \sum_{i=1}^n f(\overline{x}_i) \Delta x = f(\overline{x}_1) \Delta x + f(\overline{x}_2) \Delta x + \dots + f(\overline{x}_n) \Delta x.$$

là tổng diện tích các hình chữ nhật lấy điểm đại diện là trung điểm, trong đó $\overline{x}_i=\frac{1}{2}(x_{i-1}+x_i).$

Định nghĩa

Diện tích A của miền S nằm dưới đồ thị của hàm liên tục f là giới hạn của tổng diện tích các hình chữ nhật xấp xỉ

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x \right].$$

Nếu ta lấy điểm mẫu ngẫu nhiên $x_i^* \in [x_{i-1}, x_i]$ trên mỗi đoạn con thì tổng

$$A_n = \sum_{i=1}^n f(x_i^*) \Delta x = f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x.$$

được gọi là tổng Riemann (hay tổng tích phân) của hàm số f trên đoạn [a,b].

Dinh lý

Nếu f khả tích trên [a,b], khi đó

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

 $\Delta x = \frac{b-a}{n}$ và $x_i = a + i\Delta x$. trong đó

Quy tắc trung điểm

Nếu f khả tích trên [a,b], khi đó

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(\overline{x}_{i}) \Delta x = \Delta x \left[f(\overline{x}_{1}) + \dots + f(\overline{x}_{n}) \right]$$

 $\Delta x = \frac{b-a}{n} \quad \text{và} \quad \overline{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{trung diểm của } [x_{i-1}, x_i].$ trong đó

Bài 1.

- a). Ước tính diện tích dưới đồ thị $f(x)=1+x^2$ từ x=-1 đến x=2 sử dụng 3 hình chữ nhật và các điểm đầu mút phải. Sau đó ước tính chính xác hơn bằng cách sử dụng 6 hình chữ nhật.
- b) Lặp lại câu a) sử dụng các điểm đầu mút trái.
- c) Lặp lại câu a) sử dụng các điểm chính giữa.

Bài 2. Dùng sáu hình chữ nhật để xấp xỉ diện tích phía dưới đồ thị của hàm f cho dưới đây từ x=0 đến x=12 theo các kiểu xấp xỉ

- a). L_6 điểm mẫu là các điểm biên trái
- b). R_6 điểm mẫu là các điểm biên phải
- c). M_6 điểm mẫu là các trung điểm.

Bài 3. Dựa theo đồ thị cho trước của g

Hãy xấp xỉ $\int_{-3}^3 g(x) \; dx$ bằng cách dùng sáu đoạn con với

- a). Các điểm biên phải
- b). Các điểm biên trái
- c). Các trung điểm.

Bài 4. Đồng hồ vận tốc của xe mô tô được ghi nhận cách mỗi 12 giây một lần, với giá trị được cho trong bảng dưới đây

t(s)	0	12	24	36	48	60
v(ft/s)	30	28	25	22	24	27

- a). Hãy ước tính độ dài quãng đường mô-tô chạy trong suốt khoảng thời gian trong bảng, bằng cách lấy vận tốc mẫu tại đầu mỗi khoảng thời gian 12 giây.
- Hãy cho một xấp xỉ khác bằng cách lấy vận tốc mẫu tại cuối mỗi khoảng thời gian 12 giây.
- c). Trong các xấp xỉ ở trên, cái nào là xấp xỉ thiếu, cái nào là xấp xỉ dư? Giải thích.

Bài 5. Sử dụng Quy tắc trung điểm với n=4 tính gần đúng tích phân

$$\int\limits_{2}^{10} \sqrt{x^3 + 1} \ dx$$

 ${\bf B}\grave{\bf a}{\bf i}$ ${\bf 6.}~{\rm S} \mathring{\bf u}$ dụng Quy tắc trung điểm với n=5 tính gần đúng tích phân

$$\int_{0}^{1} \sin(x^2) \ dx$$

Bài 7. Đánh giá tích phân thông qua diện tích

$$a. \int_{0}^{3} \left(\frac{1}{2}x - 1\right) dx$$

c.
$$\int_{1}^{3} (3-2x) dx$$

$$b. \int_{-1}^{2} |x| \ dx$$

$$d. \int_{-3}^{0} \left(1 + \sqrt{9 - x^2}\right) dx$$

Định lý (Định lý cơ bản của giải tích - công thức Newton-Leibniz)

Cho f là một hàm số liên tục trên [a, b]

$$\bullet \ \ \text{N\'eu} \ F(x) = \int\limits_{a}^{x} f(t) \ dt \ \text{thì}$$

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Bài 1. Tìm đạo hàm của hàm số

a).
$$G(x) = \int_{x}^{1} \cos \sqrt{t} dt$$

b).
$$H(x) = \int_{1}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz$$

c).
$$y = \int_{0}^{x^4} \cos^2 \theta \ d\theta.$$

Bài 2. Tính các tích phân sau

a.
$$\int x \left(4 + x^2\right)^{10} dx$$

c.
$$\int \frac{x}{x^2 + 1} dx$$

$$e. \int (\ln x)^2 dx$$

$$b. \int x^2 \sqrt{x^3 + 1} \, dx$$

$$d. \int \frac{x^2}{\sqrt{1-x}} \, dx$$

$$d. \int x^2 \sin(\pi x) \ dx$$