Electronic Circuits

Operational Amplifier

Lecture 2

Dr. Roaa Mubarak

Operational Amplifier (Ideal vs. Actual)

Properties	Ideal	Actual (Real or Typical)
1. Open loop gain	∞	High ≥ 10 ⁴
2. Open loop bandwidth	∞	Very high
3. Input resistance	00	High ≥ 10 MΩ
4. Output resistance	0	Low ≤ 500 Ω
5. Input current	0	< 0.5 μΑ
6. Offset voltage & current	0	Low < 10mv , < 0.2 nA

inverting input non-inverting input

Ideal Op Amp

V₁ O +V₀ =A_dV_d

V_d R₀ A_dV_d

-V_{CC}

Actual Op Amp

Actual Operational Amplifier

Ideal Operational Amplifier

Ideal Op-Amp

• The input Currents of Op-Amp $I_{\rm in}=0$ (R_{in} = ∞)

• Infinite Voltage gain $A = \infty$

• Zero Output Impedance $(R_{out} = 0)$

Gulden Rules of Op-Amp

• The inputs to the op-amp draw or source no current (true whether negative feedback or not)

 The output attempts to do whatever is necessary to make the voltage difference between the inputs zero

• The op-amp with negative feedback forces the two inputs v+ and v- to have the same voltage, even though no current flows into either input. This is sometimes called a "Virtual short"

Negative Feedback

- Negative feedback is the process whereby a portion of the output voltage of an amplifier is returned to the input with a phase angle that is opposite to the input signal.
- The open-loop gain of an op-amp is usually very high (more than 100,000).
- With negative feedback the gain of op-amp (called close-loop gain *Acl*) can be reduced and controlled so that an op-amp can function as a linear amplifier.

Op-Amp with Negative Feedback

Close-Loop Voltage Gain, Acl

☐ The close-loop voltage gain is the voltage of an op-amp with external feedback	k.

- ☐ The amplifier circuit consists of an op-amp and an external negative feedback circuit.
- □The feedback from the output is connected to the inverting input of the opamp.
- ☐ The negative feedback is determined and controlled by external components.

Op-Amp Applications

Linear Applications

- 1- The Inverting Amplifier
- 2-The Noninverting Amplifier
- **3- Summing Amplifier**
- 4- Subtractor
- 5- Voltage Follower
- **6- Controlled Sources**
- 7- Integrator
- 8- Differentiator

Op-Amp Applications

- Non linear Applications
- 9- Logarithmic Amplifier
- 10- Anti-Logarithmic Amplifier
- 11- Analog Multiplier
- 12- Analog Divider
- 13- Voltage Regulator
- **14- Comparator**
- 15- Schmitt Trigger
- **16- Digital to Analog Converter**

- 17- Rectifying using Op-Amp
- 18- Clipping using Op-Amp
- 19-Instrumentation Amplifier

Op-Amp Applications

1-Inverting Amplifier

1-Inverting Amplifier

We Have

$$I_{in} = \frac{V_{in}}{R_i} \quad I_f = \frac{-V_{out}}{R_f}$$

Since $I_{in} = I_f$

$$\frac{V_{in}}{R_i} = \frac{-V_{out}}{R_f}$$

$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

The closed loop gain

$$A_{cl(I)} = -\frac{R_f}{R_i}$$

1-Inverting Amplifier

1-Inverting Amplifier example

Determine the gain of the inverting amplifier shown.

Solution:
$$A_{cl(1)} = -\frac{R_f}{R_i}$$

$$= -\frac{82 \text{ k}\Omega}{3.3 \text{ k}\Omega}$$

$$= -24.8$$

The minus sign indicates inversion.

2- Noninverting Amplifier

- A **noninverting amplifier** is a configuration in which the signal is on the noninverting input and a portion of the output is returned to the inverting input.
- The feedback circuit is formed by input resistance Ri and feedback resistance Rf.
- This feedback creates a voltage divider circuit which reduces Vout and connects the reduced voltage Vf to the inverting input

2- Noninverting Amplifier

$$\frac{i_{2} - i_{1}}{V_{out} - V_{in}} - \frac{V_{in}}{R_{1}} = 0$$

$$\frac{V_{out}}{R_{2}} = \frac{(R_{1} + R_{2})}{R_{1}}$$

2- Noninverting Amplifier

2-Noninverting Amplifier example

Determine the gain of the noninverting amplifier shown.

Solution:

$$A_{cl(NI)} = 1 + \frac{R_f}{R_i}$$

$$= 1 + \frac{82 \text{ k}\Omega}{3.3 \text{ k}\Omega}$$

$$= 25.8$$

