1. Which of the following equations *could* be of the graph presented below?

A.
$$-18(x+3)^6(x+1)^4(x-3)^8$$

B.
$$12(x+3)^8(x+1)^4(x-3)^7$$

C.
$$-7(x+3)^6(x+1)^{10}(x-3)^7$$

D.
$$8(x+3)^6(x+1)^6(x-3)^6$$

E.
$$-12(x+3)^{10}(x+1)^{11}(x-3)^5$$

2. Describe the end behavior of the polynomial below.

$$f(x) = -9(x+8)^{2}(x-8)^{5}(x-6)^{2}(x+6)^{3}$$

В.

A.

C.

3. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$4 + 3i \text{ and } 1$$

A.
$$b \in [1, 2], c \in [-6, -4.35], \text{ and } d \in [3.48, 4.06]$$

B.
$$b \in [1, 2], c \in [-4.24, -2.63], \text{ and } d \in [2.96, 3.37]$$

C.
$$b \in [-17, -7], c \in [31.51, 33.82], \text{ and } d \in [-25.2, -24.86]$$

D.
$$b \in [8, 10], c \in [31.51, 33.82]$$
, and $d \in [24.44, 25.5]$

E. None of the above.

4. Which of the following equations *could* be of the graph presented below?

A.
$$-5x^5(x+4)^8(x+3)^7$$

B.
$$-19x^6(x+4)^6(x+3)^7$$

C.
$$-14x^{10}(x+4)^9(x+3)^5$$

D.
$$10x^{11}(x+4)^8(x+3)^{10}$$

E.
$$19x^{11}(x+4)^4(x+3)^7$$

5. Describe the zero behavior of the zero x=8 of the polynomial below.

$$f(x) = -9(x-6)^9(x+6)^6(x-8)^{12}(x+8)^9$$

A.

6. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{3}{2}$$
, 5, and $\frac{-4}{3}$

A. $a \in [0, 10], b \in [45, 52], c \in [97, 103], \text{ and } d \in [55, 64]$

B. $a \in [0, 10], b \in [-34, -27], c \in [-9, -4], \text{ and } d \in [55, 64]$

C. $a \in [0, 10], b \in [-34, -27], c \in [-9, -4], \text{ and } d \in [-66, -56]$

D. $a \in [0, 10], b \in [26, 37], c \in [-9, -4], \text{ and } d \in [-66, -56]$

E. $a \in [0, 10], b \in [-13, -7], c \in [-76, -68], \text{ and } d \in [-66, -56]$

7. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-3 + 2i$$
 and 2

A. $b \in [-5.5, -1.2], c \in [-3, 3], \text{ and } d \in [24, 27]$

B. $b \in [0.7, 1.5], c \in [-6, -3], \text{ and } d \in [0, 9]$

C. $b \in [3.8, 5.3], c \in [-3, 3], \text{ and } d \in [-32, -24]$

D. $b \in [0.7, 1.5], c \in [-3, 3], \text{ and } d \in [-10, -3]$

E. None of the above.

8. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-3}{5}, \frac{-7}{2}, \text{ and } \frac{-3}{2}$$

A. $a \in [15, 23], b \in [110, 119], c \in [165, 169], \text{ and } d \in [-64, -58]$

B. $a \in [15, 23], b \in [-117, -109], c \in [165, 169], \text{ and } d \in [-64, -58]$

C. $a \in [15, 23], b \in [110, 119], c \in [165, 169], \text{ and } d \in [54, 68]$

D. $a \in [15, 23], b \in [-53, -49], c \in [-85, -80], \text{ and } d \in [54, 68]$

E. $a \in [15, 23], b \in [88, 93], c \in [36, 51], \text{ and } d \in [-64, -58]$

9. Describe the zero behavior of the zero x = 7 of the polynomial below.

$$f(x) = 2(x+7)^{7}(x-7)^{10}(x-3)^{4}(x+3)^{8}$$

Α.

5170-5105 Summer C 2021

В.

10. Describe the end behavior of the polynomial below.

$$f(x) = -3(x+4)^3(x-4)^6(x-5)^5(x+5)^7$$

С.

4

A.

В.

E. None of the above.

11. Which of the following equations *could* be of the graph presented below?

A.
$$-20(x-3)^6(x+4)^{11}(x+3)^5$$

B.
$$-3(x-3)^7(x+4)^9(x+3)^{11}$$

C.
$$6(x-3)^4(x+4)^{11}(x+3)^9$$

D.
$$-3(x-3)^4(x+4)^8(x+3)^9$$

E.
$$18(x-3)^5(x+4)^5(x+3)^{11}$$

12. Describe the end behavior of the polynomial below.

$$f(x) = 6(x+4)^5(x-4)^6(x-3)^4(x+3)^5$$

A.

C.

В.

13. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-5 + 5i$$
 and -3

A.
$$b \in [-1, 9], c \in [-8, 1], \text{ and } d \in [-15, -11]$$

B.
$$b \in [11, 16], c \in [80, 82], \text{ and } d \in [147, 158]$$

C.
$$b \in [-1, 9], c \in [7, 11], \text{ and } d \in [11, 19]$$

D.
$$b \in [-19, -12], c \in [80, 82], \text{ and } d \in [-158, -146]$$

- E. None of the above.
- 14. Which of the following equations *could* be of the graph presented below?

A.
$$3(x-3)^4(x+4)^8(x-1)^5$$

B.
$$-12(x-3)^4(x+4)^5(x-1)^7$$

C.
$$9(x-3)^7(x+4)^{11}(x-1)^{11}$$

D.
$$-12(x-3)^9(x+4)^{11}(x-1)^5$$

E.
$$10(x-3)^6(x+4)^{11}(x-1)^7$$

15. Describe the zero behavior of the zero x = -8 of the polynomial below.

$$f(x) = 9(x+2)^{11}(x-2)^7(x+8)^7(x-8)^6$$

A.

16. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{5}{2}, \frac{-1}{3}, \text{ and } \frac{-2}{3}$$

A. $a \in [17, 23], b \in [19, 28], c \in [-45, -36], \text{ and } d \in [8, 11]$

B. $a \in [17, 23], b \in [-27, -24], c \in [-45, -36], \text{ and } d \in [-17, -9]$

C. $a \in [17, 23], b \in [50, 54], c \in [3, 12], \text{ and } d \in [-17, -9]$

D. $a \in [17, 23], b \in [58, 75], c \in [44, 53], \text{ and } d \in [8, 11]$

E. $a \in [17, 23], b \in [-27, -24], c \in [-45, -36], \text{ and } d \in [8, 11]$

17. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$4 + 5i$$
 and -2

A. $b \in [1, 3], c \in [-4.5, -2.7], \text{ and } d \in [-10.1, -9.4]$

B. $b \in [1, 3], c \in [-2.53, -1.56]$, and $d \in [-8.9, -6.6]$

C. $b \in [6, 11], c \in [22.96, 25.33], \text{ and } d \in [-83.9, -75.9]$

- D. $b \in [-7, -3], c \in [22.96, 25.33], \text{ and } d \in [80.5, 82.2]$
- E. None of the above.
- 18. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{7}{5}, \frac{-1}{4}, \text{ and } \frac{2}{5}$$

- A. $a \in [97, 103], b \in [75, 77], c \in [-81, -77], \text{ and } d \in [6, 19]$
- B. $a \in [97, 103], b \in [-163, -151], c \in [5, 14], \text{ and } d \in [-14, -13]$
- C. $a \in [97, 103], b \in [-163, -151], c \in [5, 14], \text{ and } d \in [6, 19]$
- D. $a \in [97, 103], b \in [147, 156], c \in [5, 14], \text{ and } d \in [-14, -13]$
- E. $a \in [97, 103], b \in [119, 127], c \in [-37, -25], \text{ and } d \in [-14, -13]$
- 19. Describe the zero behavior of the zero x = -6 of the polynomial below.

$$f(x) = 9(x-6)^5(x+6)^{10}(x-9)^7(x+9)^{11}$$

Α.

В.

20. Describe the end behavior of the polynomial below.

$$f(x) = -8(x-2)^4(x+2)^5(x+9)^5(x-9)^6$$

A.

С.

D.

В.

E. None of the above.

21. Which of the following equations *could* be of the graph presented below?

A.
$$19(x-2)^{10}(x+3)^6(x+1)^8$$

B.
$$-18(x-2)^{10}(x+3)^6(x+1)^{11}$$

C.
$$-19(x-2)^8(x+3)^9(x+1)^{10}$$

D.
$$13(x-2)^{10}(x+3)^{10}(x+1)^5$$

E.
$$-4(x-2)^{10}(x+3)^5(x+1)^5$$

22. Describe the end behavior of the polynomial below.

$$f(x) = 4(x+6)^4(x-6)^9(x+9)^3(x-9)^3$$

В.

A.

C.

23. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-3 - 5i$$
 and -4

A.
$$b \in [-1, 5], c \in [8, 9.7], \text{ and } d \in [16, 22]$$

B.
$$b \in [-1, 5], c \in [6.7, 8.6], \text{ and } d \in [10, 14]$$

C.
$$b \in [-15, -8], c \in [56.1, 58.3], \text{ and } d \in [-143, -134]$$

D.
$$b \in [6, 14], c \in [56.1, 58.3], \text{ and } d \in [130, 141]$$

E. None of the above.

24. Which of the following equations *could* be of the graph presented below?

A.
$$7(x+2)^6(x+3)^{11}(x-3)^7$$

B.
$$-10(x+2)^{10}(x+3)^9(x-3)^9$$

C.
$$11(x+2)^9(x+3)^9(x-3)^9$$

D.
$$-2(x+2)^9(x+3)^{11}(x-3)^5$$

E.
$$-5(x+2)^4(x+3)^8(x-3)^9$$

25. Describe the zero behavior of the zero x = -6 of the polynomial below.

$$f(x) = -9(x-6)^{9}(x+6)^{10}(x+2)^{9}(x-2)^{12}$$

5170-5105 Summer C 2021

26. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$-2, \frac{-7}{3}, \text{ and } \frac{3}{2}$$

A. $a \in [5, 11], b \in [16, 20], c \in [-14, -9], \text{ and } d \in [40, 47]$

B. $a \in [5, 11], b \in [-12, -2], c \in [-33, -27], \text{ and } d \in [40, 47]$

C. $a \in [5, 11], b \in [-43, -32], c \in [63, 68], \text{ and } d \in [-47, -37]$

D. $a \in [5, 11], b \in [-21, -14], c \in [-14, -9], \text{ and } d \in [40, 47]$

E. $a \in [5, 11], b \in [16, 20], c \in [-14, -9], \text{ and } d \in [-47, -37]$

27. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$-4 - 3i$$
 and -3

A. $b \in [11, 19], c \in [48.36, 49.78], \text{ and } d \in [72.6, 77.1]$

B. $b \in [0, 7], c \in [4.02, 6.83]$, and $d \in [7.9, 9.5]$

C. $b \in [0, 7], c \in [6.29, 9.06], \text{ and } d \in [11.8, 14.7]$

D. $b \in [-16, -10], c \in [48.36, 49.78], \text{ and } d \in [-76, -71.8]$

E. None of the above.

28. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{-7}{5}, \frac{-1}{4}, \text{ and } \frac{3}{5}$$

A. $a \in [100, 104], b \in [-230, -224], c \in [129, 136], \text{ and } d \in [-21, -15]$

B. $a \in [100, 104], b \in [-177, -171], c \in [30, 38], \text{ and } d \in [20, 32]$

C. $a \in [100, 104], b \in [-112, -104], c \in [-65, -60], \text{ and } d \in [20, 32]$

D. $a \in [100, 104], b \in [103, 115], c \in [-65, -60], \text{ and } d \in [20, 32]$

E. $a \in [100, 104], b \in [103, 115], c \in [-65, -60], \text{ and } d \in [-21, -15]$

29. Describe the zero behavior of the zero x = 7 of the polynomial below.

$$f(x) = -7(x-3)^{11}(x+3)^9(x-7)^{14}(x+7)^9$$

Α.

5170-5105 Summer C 2021

30. Describe the end behavior of the polynomial below.

$$f(x) = -3(x+9)^5(x-9)^8(x-3)^2(x+3)^3$$

С.

D.

В.

E. None of the above.