

CONTENTS

- 1 Business Problem
- 2 Data Understanding
- 3 Data Preprocessing
- 4 Modeling
- 5 Conclusion

BUSINESS PROBLEM

Context

Problem Statement

Goals

Analytic Approach

Metric Evaluation

CONTEXT

- Automated Rentals
- Global Presence
- Impactful Role
- Data-Driven Insights
- Research Potential

PROBLEM STATEMENT

- Balancing Availability
- Customer Trust
- Data Complexity
- Urban Insights
- Resource Optimization

GOALS

- Reliable Forecasting
- Variable Factors
- Profit and Efficiency
- User Satisfaction
- Urban Insights

ANALYTIC APPROACH

- Exploratory Data Analysis (EDA)
- Feature Engineering
- Regression Model Development
- Impact Analysis
- Model Deployment
- Actionable Recommendations

METRIC EVALUATION

- Mean Absolute Error (MAE): To calculate the mean absolute value of the errors produced by the model.
- Mean Absolute Percentage Error (MAPE):
 MAPE is used to calculate the percentage error produced by the model.
- R-Squared: R-Squared is used to see how significantly the independent variables affect the dependent variable.

DATA UNDERSTANDING

Information of Dataset "Bike Sharing"

Attributes Information

Attribute	Data Type	Description
dteday	Object	Date
hum	Float	Normalized humidity (the values are divided to 100)
weathersit	Integer	1: Clear, Few clouds, Partly cloudy, Partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
holiday	Integer	0: Not holiday 1: Holiday
season	Integer	1: Winter 2: Spring 3: Summer 4: Fall
atemp	Float	"Feels like" temperature in Celsius
temp	Float	Normalized temperature in Celsius
hr	Integer	Hour (0 to 23)
casual	Integer	Count of casual users
registered	Integer	Count of registered users
cnt	Integer	Count of total rental bikes including both casual and registered users

- Adjustment for name and value columns
- Change datatypes and separate 'date' columns
- Check missing values and duplicate data
- Drop column (Feature Selection)
- Data Correlation
- Checking Outliers
- Clean Dataset

1. Adjustment for name and value columns

	date	hour	humidity	weather	holiday	season	atemp	temp	casual	registered	count
0	2011-01-01	0	0.81	clear	0	winter	0.2879	0.24	3	13	16
1	2011-01-01	1	0.80	clear	0	winter	0.2727	0.22	8	32	40
2	2011-01-01	2	0.80	clear	0	winter	0.2727	0.22	5	27	32
3	2011-01-01	3	0.75	clear	0	winter	0.2879	0.24	3	10	13
4	2011-01-01	4	0.75	clear	0	winter	0.2879	0.24	0	1	1

2. Change datatypes and separate 'date' columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12165 entries, 0 to 12164
Data columns (total 14 columns):
                Non-Null Count Dtype
    Column
                12165 non-null object
    date
 0
    hour
                12165 non-null int64
    humidity
                12165 non-null float64
                12165 non-null object
    weather
     holiday
                12165 non-null category
                12165 non-null object
    season
                12165 non-null float64
    atemp
                12165 non-null float64
     temp
    casual
                12165 non-null int64
     registered
                12165 non-null int64
                12165 non-null int64
    count
                12165 non-null category
    month
                12165 non-null category
     year
    dayname
                12165 non-null category
```


3. Check missing values and duplicate data

Missing Values = 0

Duplicate Data = False (0)

4. Drop column (Feature Selection)

Based on domain knowledge, **Casual** and **Registered** are directly related to the target. Additionally, the **date** column is no longer needed since its values are already represented by the 'year', 'month', and 'day' columns.

5. Data Correlation (Matrix and VIF Score)

Correlation Matrix							
Correlation Watrix							
hour	1.00	-0.28	0.14	0.51	- 0.8		
61					- 0.6		
humidity	-0.28	1.00	-0.05	-0.36	- 0.4		
atemp	0.14	-0.05	1.00	0.42	- 0.2		
count	0.51	-0.36	0.42	1.00	- 0.0 0.2		
	hour	humidity	atemp	∞unt			

	variables	VIF
0	humidity	6.623596
1	atemp	339.222594
2	temp	306.416661
3	hour	3.918037
4	count	3.065671
5	dayname	2.928169

	variables	VIF
0	humidity	5.571588
1	atemp	8.360153
2	hour	3.837270
3	count	3.063059

6. Checking Outliers

Count (Right-Skewed): upper bound : {645.0} There is more than 300 is >645

Humidity:
There is 14 rows that has
humidity value = 0

7. Clean Dataset

```
<class 'pandas.core.frame.DataFrame'>
Index: 12151 entries, 0 to 12164
Data columns (total 10 columns):
    Column
              Non-Null Count Dtype
    hour
              12151 non-null int64
    humidity 12151 non-null float64
    weather
              12151 non-null object
    holiday
              12151 non-null category
           12151 non-null object
    season
    atemp 12151 non-null float64
           12151 non-null int64
    count
          12151 non-null category
    month
          12151 non-null category
    year
              12151 non-null category
    dayname
dtypes: category(4), float64(2), int64(2), object(2)
memory usage: 712.7+ KB
```


ENCODING

TRAIN AND TEST SPLITTING

Target: Count

Passthrough: Humidity, Temperature, Hour,

Month, Year, Daynamne

OneHotEncoding: Season, Weather, Holiday

Train: 70

Test: 30

CHOOSE BENCHMARK MODEL

Base Model:

- 1. Linear Regression
- 2. K-Nearest Neighbors Regressor
- 3. Decision Tree Regressor

Ensemble Model:

- 1. Random Forest Regressor
- 2. Gradient Boosting Regressor
- 3. Extreme Gradient Boost Regressor

	Model	MAE	MAPE	R-squared
5	XGBoost Regressor	-26.964132	-0.257352	0.937008
3	RandomForest Regressor	-29.332776	-0.290825	0.925625
4	Gradient Boosting	-47.529187	-0.379345	0.817066
1	KNN Regressor	-40.993247	-0.394992	0.864377
2	DecisionTree Regressor	-41.030232	-0.439500	0.845962
0	Linear Regression	-106.474695	-1.361903	0.205071

From the results above, we know that XGBoost is the best model with the highest performance. The MAE score is 26.96, the MAPE is 0.25, and the R-Squared is approximately 0.94, which is higher than the other five models. Therefore, we can use the test set for prediction and benchmarking using the XGBoost model.

CHOOSE BENCHMARK MODEL

What is XGBoost?

- Highly Efficient & Scalable: Delivers superior performance and speed.
- Sequential Decision Trees: Corrects errors iteratively for enhanced accuracy.

Key Features:

- Handling Missing Values: Learns paths for missing data.
- Regularization Techniques: Prevents overfitting using L1 and L2 regularization.
- Parallel Processing: Utilizes multiple CPU cores for faster training.
- Tree Pruning: Uses max depth pruning for optimal splits.
- Sparsity Awareness: Efficient with sparse data structures.
- Cross-validation: Accurate performance metrics and overfitting prevention.
- Non-interpretable Model: Difficult to determine incorrect variable predictions.
- Robust Performance: Reliable for various data types and use cases.

Source:

XGBoost: A Scalable Tree Boosting System

XGBoost Documentation

GeeksforGeeks XGBoost Article

PREDICT TEST USING BENCHMARK

MAE MAPE R-squared
XGB 25.315776 0.248794 0.950021

From score above, we now that predict using test set XGBoost still have best performance. There is MAE and MAPE is decreasing and the R2 score is increasing.

HYPERPARAMETER TUNING

GridSearch: Systematically explores combinations of hyperparameter values to find the best performance.

Key Hyperparameters:

- 1. Tree Depth (max_depth):
 - Controls maximum tree depth: Captures complex patterns; risk of overfitting.
- 2. Learning Rate (learning_rate):
 - Step size shrinkage: Prevents overfitting;
 smaller values yield more accurate
 models but require more trees.
- 3. Number of Trees (n_estimators):
 - Sets number of trees: More trees can improve performance but increase computation time and risk of overfitting.

Goal: Balance model complexity and generalization to new data.

HYPERPARAMETER TUNING

Test score after using best parameter

	MAE	MAPE	R-squared
XGB	23.970842	0.243486	0.953526

PERFORMANCE COMPARISON

MODEL	MAE	MAPE	R-SQUARED
XGBoost Test Before Tuning	25.970842	0.248794	0.950021
XGBoost Test After Tuning	23.970842	0.243486	0.953526

MODEL LIMITATION

	Score MAE	Score MAPE
<=50	6.625687	0.503021
51-100	16.658716	0.225928
101-150	21.468126	0.172045
151-200	25.440823	0.146815
201-250	25.862781	0.116267
251-300	32.055356	0.116432
301-350	34.896643	0.108170
351-400	39.623156	0.105902
401-450	43.183431	0.101038
451-500	55.399033	0.116599
501-550	48.238999	0.091597
551-600	45.043717	0.078734
>600	61.259912	0.085578
All Count Range (Max 953)	23.970842	0.243486

EXPLAINABLE AI

CONCLUSION

RECOMMENDATION

- Best model is XGBoost Regressor.
- Optimal hyperparameters: n_estimators 200, max_depth 8, learning_rate 0.1.
- Evaluation metrics: MAE 23.97, MAPE 0.24, R-squared 0.9535.
- Total Bike prediction up to 980 bikes, the prediction is about 24%.
- Model limitations: low range (<=50) MAE 6.63, MAPE 50.30%; medium to high range (51-600) MAE 16.66-45.04, decreasing MAPE; struggles with very low and very high values.
- Feature importance: most influential are hour, year, season_winter; SHAP highlights hour, year, atemp.

- Addition of Relevant Features
- Expand Data Range
- Develop Additional Models
- Leverage Data Characteristics
- Continuos Model Improvement
- Optimize Bike Distribution

