ESERCIZI SU GRAMMATICHE LIBERE E DIPENDENTI DA CONTESTO E PUMPING LEMMA PER I LINGUAGGI LIBERI DA CONTESTO

Esercizi #2 - #3 - #4 - #9 Pumping Lemma per linguaggi contextfree

Dipartimento di Informatica

CdS Informatica

Esercizi

- Esercizi sui seguenti argomenti
 - Pumping lemma per i linguaggi liberi da contesto
 - Esercizio #2
 - Esercizio #3
 - Esercizio #4
 - Esercizio #9

Esercizio #2

Stabilire se il seguente linguaggio

$$L = \{a^i b^j c^k \mid j = \min\{i, k\}, i > 0, k > 0\}$$

è libero da contesto

Giustificare formalmente la risposta

- Parole che costituiscono il linguaggio L
 - abc
 - abc^2
 - •
 - a^2bc
 - a^3bc
 - •
 - $a^2b^2c^2$
 - $a^2b^2c^3$
 - •

- Supponiamo, <u>per assurdo</u>, che L sia libero da contesto
- Per il Pumping Lemma sui linguaggi liberi da contesto esiste una costante p tale che

 $\forall z, z \in L, |z| > p \implies z = uvwxy$ ed inoltre valgono le seguenti proprietà

- $|vwx| \le p$
- $vx \neq \lambda$
- $\forall i \geq 0$: $uv^i w x^i y \in L$

Consideriamo una parola in L

$$z = a^p b^p c^p$$

• Avremo che $z \in L$ e

$$|z| = p + p + p = 3p > p$$

 Per z vale quindi il Pumping Lemma e può essere scritta nella forma

$$z = uvwxy$$

- Consideriamo le diverse possibilità per vwx ricordando che $|vwx| \le p$
 - $vwx = a^k$, $1 \le k \le p$
 - $vwx = b^k$, $1 \le k \le p$
 - $vwx = c^k$, $1 \le k \le p$
 - $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - $vwx = b^t c^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
- Osservazione
 - vwx non può essere formata da a, b e c

Caso 1

- Consideriamo la stringa depompata uv^0wx^0y
- Segue che $uv^0wx^0y = a^{p-k'}b^pc^p$, $1 \le k' \le k$
- È evidente che:
 - $p p \le \#_a (uv^0wx^0y) \le p 1 \implies 0 \le \#_a (uv^0wx^0y) \le p 1$
 - Togliamo almeno una a, al più p a
 - $\#_b(uv^0wx^0y) = p$
 - $\#_c(uv^0wx^0y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^0wx^0y) > \#_a(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

Caso 2

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^{p+k'}c^p$, $1 \le k' \le k$
- È evidente che:
 - $* \#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una b, al più p b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^2wx^2y) > \#_a(uv^2wx^2y)$, $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 3

- Consideriamo la stringa depompata uv^0wx^0y
- Segue che $uv^0wx^0y = a^pb^pc^{p-k'}$, $1 \le k' \le k$
- È evidente che:
 - $\#_a(uv^0wx^0y) = p$
 - $\#_b(uv^0wx^0y) = p$
 - $p p \le \#_c (uv^0wx^0y) \le p 1 \implies 0 \le \#_c (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più $p\ c$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^0wx^0y) > \#_c(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 4: $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - Analisi dei sotto-casi
 - Caso 4.1: $v \neq \lambda$, $x = \lambda$
 - Caso 4.2: $v = \lambda, x \neq \lambda$
 - Caso 4.3: $v \neq \lambda$, $x \neq \lambda$
 - Osservazioni
 - Se $v \neq \lambda$, allora $v = a^{t'}$ (v è composta da sole a) con $1 \leq t' \leq t$; infatti, se $v = a^t b^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = a^t b^{s'} a^t b^{s'}$ e $uv^2 wx^2 y \notin L$
 - Se $x \neq \lambda$, allora $x = b^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = a^{t'}b^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = a^{t'}b^sa^{t'}b^s$ e $uv^2wx^2y \notin L$

- Caso 4.1: $v \neq \lambda$, $x = \lambda$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^0wx^0y = a^{p-t'}b^pc^p$, $1 \le t' \le t$
 - È evidente che:
 - $p (p 1) \le \#_a (uv^0wx^0y) \le p 1 \implies 1 \le \#_a (uv^0wx^0y) \le p 1$
 - Togliamo almeno una a, al più (p-1) a
 - $\#_b(uv^0wx^0y) = p$
 - $\#_c(uv^0wx^0y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^0wx^0y) > \#_a(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 4.2: $v = \lambda, x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+s'}c^p$, $1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più $(p-1)\ b$
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^2wx^2y) > \#_a(uv^2wx^2y)$, $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 4.3: $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p+t'}b^{p+s'}c^p$, $1 \le t' \le t$, $1 \le s' \le s$
 - È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) a
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 5

- $vwx = b^t c^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
- Analisi dei sotto-casi
 - Caso 5.1: $v \neq \lambda$, $x = \lambda$
 - Caso 5.2: $v = \lambda, x \neq \lambda$
 - Caso 5.3: $v \neq \lambda$, $x \neq \lambda$

- Se $v \neq \lambda$, allora $v = b^{t'}$ (v è composta da sole b) con $1 \leq t' \leq t$; infatti, se $v = b^t c^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = b^t c^{s'} b^t c^{s'}$ e $uv^2 wx^2 y \notin L$
- Se $x \neq \lambda$, allora $x = c^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = b^{t'}c^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = b^{t'}c^sb^{t'}c^s$ e $uv^2wx^2y \notin L$

- Caso 5.1: $v \neq \lambda$, $x = \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+t'}c^p$, $1 \le t' \le t$
 - È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^2wx^2y) > \#_a(uv^2wx^2y)$, $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 5.2: $v = \lambda, x \neq \lambda$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^0wx^0y = a^pb^pc^{p-s'}$, $1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^0wx^0y) = p$
 - $\#_b(uv^0wx^0y) = p$
 - $p (p 1) \le \#_c (uv^0wx^0y) \le p 1 \implies 1 \le \#_c (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più (p-1) c

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^0wx^0y) > \#_c(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 5.3: $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+t'}c^{p+s'}$, $1 \le t' \le t$, $1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) b
 - $p + 1 \le \#_c (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_c (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) c

- Vincolo: $\#_b(z) = \min\{\#_a(z), \#_c(z)\}, z \in L$
- Si osserva che $\#_b(uv^2wx^2y) > \#_a(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Conclusioni

- In tutti i casi abbiamo ottenuto che:
 - $uv^0wx^0y \notin L$
 - $uv^2wx^2y \notin L$
- Violazione del punto (3) del Pumping Lemma per i linguaggi liberi da contesto
- L non è un linguaggio libero da contesto, poiché per il linguaggio non vale il Pumping Lemma

Esercizio #3

Stabilire se il seguente linguaggio

$$L = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$$

è libero da contesto

Giustificare formalmente la risposta

- Parole che costituiscono il linguaggio L
 - λ
 - C
 - bc cc
 - ccc bcc abc
 - cccc bccc bbcc abc²
 - $ab^2c^2...$
 - $a^2b^3c^3...$
 - $a^2b^3c^4...$
 - . . .

- Supponiamo, <u>per assurdo</u>, che L sia libero da contesto
- Per il Pumping Lemma sui linguaggi liberi da contesto esiste una costante p tale che

 $\forall z, z \in L, |z| > p \implies z = uvwxy$ ed inoltre valgono le seguenti proprietà

- $|vwx| \le p$
- $vx \neq \lambda$
- $\forall i \ge 0$: $uv^i w x^i y \in L$

Consideriamo una parola in L

$$z = a^p b^p c^p$$

• Avremo che $z \in L$ e

$$|z| = p + p + p = 3p > p$$

 Per z vale quindi il Pumping Lemma e può essere scritta nella forma

$$z = uvwxy$$

- Consideriamo le diverse possibilità per vwx ricordando che $|vwx| \le p$
 - $vwx = a^k$, $1 \le k \le p$
 - $vwx = b^k$, $1 \le k \le p$
 - $vwx = c^k$, $1 \le k \le p$
 - $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - $vwx = b^t c^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
- Osservazione
 - vwx non può essere formata da a, b e c

- Caso 1: $vwx = a^k$, $1 \le k \le p$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p+k'}b^pc^p$, $1 \le k' \le k$
 - È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una a, al più p a
 - $\#_b(uv^0wx^0y) = p$
 - $\#_c(uv^0wx^0y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_a(uv^2wx^2y) > \#_b(uv^2wx^2y) \in \#_a(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 2: $vwx = b^k$, $1 \le k \le p$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+k'}c^p$, $1 \le k' \le k$
 - È evidente che:
 - $* \#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una b, al più p b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 3: $vwx = c^k$, $1 \le k \le p$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^0wx^0y = a^pb^pc^{p-k'}$, $1 \le k' \le k$
 - È evidente che:
 - $\#_a(uv^0wx^0y) = p$
 - $\#_b(uv^0wx^0y) = p$
 - $p p \le \#_c (uv^0wx^0y) \le p 1 \implies 0 \le \#_c (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più p c

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_c(uv^0wx^0y) < \#_b(uv^0wx^0y) \in \#_c(uv^0wx^0y) < \#_a(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 4: $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - Analisi dei sotto-casi
 - Caso 4.1: $v \neq \lambda$, $x = \lambda$
 - Caso 4.2: $v = \lambda, x \neq \lambda$
 - Caso 4.3: $v \neq \lambda$, $x \neq \lambda$
 - Osservazioni
 - Se $v \neq \lambda$, allora $v = a^{t'}$ (v è composta da sole a) con $1 \leq t' \leq t$; infatti, se $v = a^t b^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = a^t b^{s'} a^t b^{s'}$ e $uv^2 wx^2 y \notin L$
 - Se $x \neq \lambda$, allora $x = b^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = a^{t'}b^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = a^{t'}b^sa^{t'}b^s$ e $uv^2wx^2y \notin L$

- Caso 4.1: $v \neq \lambda$, $x = \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p+t'}b^pc^p$, $1 \le t' \le t$
 - È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^0wx^0y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) a
 - $\#_b(uv^2wx^2y) = p$
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_a(uv^2wx^2y) > \#_b(uv^2wx^2y)$ e $\#_a(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 4.2: $v = \lambda, x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+s'}c^p$, $1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p+1 \le \#_b \left(uv^2wx^2y\right) \le p+(p-1) \Longrightarrow p+1 \le \#_b \left(uv^2wx^2y\right) \le 2p-1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 4.3: $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y=a^{p+t'}b^{p+s'}c^p$, $1 \le t' \le t$, $1 \le s' \le s$
 - È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) a
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_c(uv^2wx^2y) < \#_b(uv^2wx^2y) \in \#_c(uv^2wx^2y) < \#_a(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 5: $vwx = b^t c^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - Analisi dei sotto-casi
 - Caso 5.1: $v \neq \lambda$, $x = \lambda$
 - Caso 5.2: $v = \lambda, x \neq \lambda$
 - Caso 5.3: $v \neq \lambda$, $x \neq \lambda$
 - Osservazioni
 - Se $v \neq \lambda$, allora $v = b^{t'}$ (v è composta da sole b) con $1 \leq t' \leq t$; infatti, se $v = b^t c^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = b^t c^{s'} b^t c^{s'}$ e $uv^2 wx^2 y \notin L$
 - Se $x \neq \lambda$, allora $x = c^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $v = b^t c^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = b^t c^{s'} b^t c^{s'}$ e $uv^2 wx^2 y \notin L$

- Caso 5.1: $v \neq \lambda$, $x = \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^pb^{p+t'}c^p$, $1 \le t' \le t$
 - È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_c(uv^2wx^2y) = p$

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_b(uv^2wx^2y) > \#_c(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 5.2: $v = \lambda, x \neq \lambda$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^0wx^0y = a^pb^pc^{p-s'}$, $1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^0wx^0y) = p$
 - $\#_b(uv^0wx^0y) = p$
 - $p (p 1) \le \#_c (uv^0wx^0y) \le p 1 \implies 1 \le \#_c (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più (p-1) c

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_c(uv^0wx^0y) < \#_b(uv^0wx^0y) = \#_c(uv^0wx^0y) < \#_a(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 5.3: $v \neq \lambda$, $x \neq \lambda$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^0wx^0y = a^pb^{p-t'}c^{p-s'}, 1 \le t' \le t, 1 \le s' \le s$
 - È evidente che:
 - $\#_a(uv^0wx^0y) = p$
 - $p (p 1) \le \#_b (uv^0wx^0y) \le p 1 \Longrightarrow 1 \le \#_b (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più (p-1) c
 - $p (p 1) \le \#_c (uv^0wx^0y) \le p 1 \implies 1 \le \#_c (uv^0wx^0y) \le p 1$
 - Togliamo almeno una c, al più (p-1) c

- Vincolo: $0 \le \#_a(z) \le \#_b(z) \le \#_c(z)$
- $\#_c(uv^0wx^0y) < \#_a(uv^0wx^0y) \in \#_b(uv^0wx^0y) < \#_a(uv^0wx^0y)$
- Si conclude che $uv^0wx^0y \notin L$

Conclusioni

- In tutti i casi abbiamo ottenuto che:
 - $uv^0wx^0y \notin L$
 - $uv^2wx^2y \notin L$
- Violazione del punto (3) del Pumping Lemma per i linguaggi liberi da contesto
- L non è un linguaggio libero da contesto, poiché per il linguaggio non vale il Pumping Lemma

Esercizio #4

Stabilire se il seguente linguaggio

$$L = \{a^r b^k \mid r > k^3, r > 0, k > 0\}$$

è libero da contesto

Giustificare formalmente la risposta

- Parole che costituiscono il linguaggio L
 - (1) a^2b a^3b a^4b a^5b ...
 - (2) a^9b^2 $a^{10}b^2$ $a^{11}b^2$...
 - (3) $a^{28}b^3 a^{29}b^3 a^{30}b^3 \dots$
 - ...
 - (p) $z = a^{p^3 + 1}b^p$
 - (p+1) $a^{(p+1)^3+1}b^{p+1}$
 - ...
 - (p+s') $a^{(p+s')^3+1}b^{p+s'}$
 - ...

In generale, $a^{n^3+1}b^n$

- Supponiamo, <u>per assurdo</u>, che L sia libero da contesto
- Per il Pumping Lemma sui linguaggi liberi da contesto esiste una costante p tale che

 $\forall z, z \in L, |z| > p \implies z = uvwxy$ ed inoltre valgono le seguenti proprietà

- $|vwx| \le p$
- $vx \neq \lambda$
- $\forall i \ge 0$: $uv^i w x^i y \in L$

Consideriamo una parola in L

$$z = a^{p^3 + 1}b^p$$

• Avremo che $z \in L$ e

$$|z| = p^3 + 1 + p = p^3 + p + 1 > p$$

 Per z vale quindi il Pumping Lemma e può essere scritta nella forma

$$z = uvwxy$$

- Consideriamo le diverse possibilità per vwx ricordando che $|vwx| \le p$
 - $vwx = a^k$, $1 \le k \le p$
 - $vwx = b^k$, $1 \le k \le p$
 - $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$

- Caso 1: $vwx = a^k$, $1 \le k \le p$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^{0}wx^{0}y = a^{p^{3}+1-k'}b^{p}$, $1 \le k' \le k$
 - È evidente che:
 - $p^3 + 1 p \le \#_a (uv^0wx^0y) \le p^3 + 1 1 \Longrightarrow p^3 p + 1 \le \#_a (uv^0wx^0y) \le p^3$
 - Togliamo almeno una a, al più p a
 - $\#_b(uv^0wx^0y) = p$

- Vincolo: $\#_a(z) > (\#_b(z))^3$
- Nella migliore delle ipotesi $\#_a (uv^0wx^0y) = p^3$ e quindi $\#_a (uv^0wx^0y) \le (\#_b (uv^0wx^0y))^3$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 2: $vwx = b^k$, $1 \le k \le p$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p^3+1}b^{p+k'}$, $1 \le k' \le k$
 - È evidente che:
 - $* \#_a(uv^2wx^2y) = p^3 + 1$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una a, al più p a

- Vincolo: $\#_a(z) > (\#_b(z))^3$
- Nella migliore delle ipotesi $\#_b (uv^2wx^2y) = 2p$ e quindi $\#_a (uv^2wx^2y) \le (\#_b (uv^2wx^2y))^3$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 3: $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - Analisi dei sotto-casi
 - Caso 3.1: $v \neq \lambda$, $x = \lambda$
 - Caso 3.2: $v = \lambda, x \neq \lambda$
 - Caso 3.3: $v \neq \lambda$, $x \neq \lambda$
 - Osservazioni
 - Se $v \neq \lambda$, allora $v = a^{t'}$ (v è composta da sole a) con $1 \leq t' \leq t$; infatti, se $v = a^t b^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = a^t b^{s'} a^t b^{s'}$ e $uv^2 wx^2 y \notin L$
 - Se $x \neq \lambda$, allora $x = b^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = a^{t'}b^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = a^{t'}b^sa^{t'}b^s$ e $uv^2wx^2y \notin L$

- Caso 3.1: $v \neq \lambda$, $x = \lambda$
 - Consideriamo la stringa depompata uv^0wx^0y
 - Segue che $uv^{0}wx^{0}y = a^{p^{3}+1-t'}b^{p}$, $1 \le t' \le t$
 - È evidente che:
 - $p^3 + 1 (p 1) \le \#_a (uv^0wx^0y) \le p^3 + 1 1 \Longrightarrow p^3 p + 2 \le \#_a (uv^0wx^0y) \le p^3$
 - Togliamo almeno una a, al più (p-1) a
 - $\#_b(uv^0wx^0y) = p$

- Vincolo: $\#_a(z) > (\#_b(z))^3$
- Nella migliore delle ipotesi $\#_a (uv^0wx^0y) = p^3$ e quindi $\#_a (uv^0wx^0y) \le (\#_b (uv^0wx^0y))^3$
- Si conclude che $uv^0wx^0y \notin L$

- Caso 3.2: $v = \lambda, x \neq \lambda$
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p^3+1}b^{p+s'}$, $1 \le s' \le s$
 - È evidente che:
 - $* \#_a(uv^2wx^2y) = p^3 + 1$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) a

- Vincolo: $\#_a(z) > (\#_b(z))^3$
- Nella migliore delle ipotesi $\#_b (uv^2wx^2y) = 2p-1$ e quindi $\#_a (uv^2wx^2y) \le \left(\#_b (uv^2wx^2y)\right)^3$
- Si conclude che $uv^2wx^2y \notin L$

- Caso 3.3
 - Consideriamo la stringa pompata uv^2wx^2y
 - Segue che $uv^2wx^2y = a^{p^3+1+t'}b^{p+s'}$, $1 \le t' \le t$, $1 \le s' \le s$
 - È evidente che:

•
$$p^3 + 1 + 1 \le \#_a(uv^2wx^2y) \le p^3 + 1 + (p-1) \Rightarrow p^3 + 2 \le \#_a(uv^2wx^2y) \le p^3 + p$$

- Aggiungiamo almeno una a, al più $(p-1)\ a$
- $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b al più (p-1) b

- Caso 3.3: $v \neq \lambda$, $x \neq \lambda$ Osservazioni
 - Dobbiamo operare sulla lunghezza della stringa uv^2wx^2y
 - $|uv^2wx^2y| = |uvwxy| + |vx|$
 - Dato che $vx \neq \lambda$ e $|vwx| \leq p$, allora avremo che $|uv^2wx^2y| = |uvwxy| + |vx| \leq$ $\leq |uvwxy| + |vwx| = p^3 + 1 + p + |vwx| \leq p^3 + 1 + p + p$ $= p^3 + 2p + 1$
 - Ma $p^3 + 2p + 1 < (p+1)^3 + 1 + (p+1) = |a^{(p+1)^3+1}b^{p+1}|$
 - $(p+1)^3 + 1 + (p+1)$ è la lunghezza della successiva stringa valida a uvwxy con una b in più, cioè $a^{(p+1)^3+1}b^{p+1}$
- Si conclude che $uv^2wx^2y \notin L$

Conclusioni

- In tutti i casi abbiamo ottenuto che:
 - $uv^0wx^0y \notin L$
 - $uv^2wx^2y \notin L$
- Violazione del punto (3) del Pumping Lemma per i linguaggi liberi da contesto
- L non è un linguaggio libero da contesto, poiché per il linguaggio non vale il Pumping Lemma

Esercizio #9

Dimostrare formalmente che il seguente linguaggio

$$L = \{a^n b^n a^n \mid n > 0\}$$

non è libero da contesto

- Parole che costituiscono il linguaggio *L*
 - aba
 - aabbaa
 - aaabbbaaa
 - $a^4b^4a^4$
 - $a^5b^5a^5$
 - ...

- * Determinare L(G)
 - Studio del comportamento del non terminale A rispetto alle regole di produzione

Consideriamo una parola in L

$$z = a^p b^p a^p$$

• Avremo che $z \in L$ e

$$|z| = p + p + p = 3p > p$$

 Per z vale quindi il Pumping Lemma e può essere scritta nella forma

$$z = uvwxy$$

- Consideriamo le diverse possibilità per vwx ricordando che $|vwx| \le p$
 - $vwx = a^k$, $1 \le k \le p$
 - $vwx = b^k$, $1 \le k \le p$
 - $vwx = a^k$, $1 \le k \le p$
 - $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
 - $vwx = b^t a^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$

- vwx non può essere formata da a (iniziali), b e a (finali), così come non può essere a cavallo tra a (iniziali) e b e tra b e a (finali)
- Non è sufficientemente lunga

Caso 1

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^{p+k'}b^pa^p$, $1 \le k' \le k$
- · È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una a, al più p a
 - $\#_b(uv^2wx^2y) = p$
 - $\#_{a'}(uv^2wx^2y) = p$ (Notazione: a' indica le a dopo le b)

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_a(uv^2wx^2y) \neq \#_b(uv^2wx^2y)$ e $\#_a(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 2

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^{p+k'}a^p$, $1 \le k' \le k$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una b, al più $p\ b$
 - $\#_{a'}(uv^2wx^2y) = p$

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_b(uv^2wx^2y) \neq \#_a(uv^2wx^2y)$ e $\#_b(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 3

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^pa^{p+k'}$, $1 \le k' \le k$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $\#_b(uv^2wx^2y) = p$
 - $p + 1 \le \#_{a'} (uv^2wx^2y) \le p + p \Longrightarrow p + 1 \le \#_{a'} (uv^2wx^2y) \le 2p$
 - Aggiungiamo almeno una a (finale), al più p a (finale)

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_{a'}(uv^2wx^2y) \neq \#_a(uv^2wx^2y) \in \#_{a'}(uv^2wx^2y) \neq \#_b(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 4

- $vwx = a^t b^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
- Analisi dei sotto-casi
 - Caso 4.1: $v \neq \lambda$, $x = \lambda$
 - Caso 4.2: $v = \lambda, x \neq \lambda$
 - Caso 4.3: $v \neq \lambda, x \neq \lambda$

- Se $v \neq \lambda$, allora $v = a^{t'}$ (v è composta da sole a) con $1 \leq t' \leq t$; infatti, se $v = a^t b^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = a^t b^{s'} a^t b^{s'}$ e $uv^2 wx^2 y \notin L$
- Se $x \neq \lambda$, allora $x = b^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = a^{t'}b^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = a^{t'}b^sa^{t'}b^s$ e $uv^2wx^2y \notin L$

Caso 4.1

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^{p+t'}b^pa^p$, $1 \le t' \le t$
- È evidente che:
 - $\quad \circ \ p+1 \leq \#_a \ (uv^2wx^2y) \leq p+(p-1) \Longrightarrow p+1 \leq \#_a (uv^2wx^2y) \leq 2p-1$
 - Aggiungiamo almeno una a, al più (p-1) a
 - $\#_b(uv^2wx^2y) = p$
 - $\#_{a'}(uv^2wx^2y) = p$

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_a(uv^2wx^2y) \neq \#_b(uv^2wx^2y) \in \#_a(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 4.2

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^{p+s'}a^p$, $1 \le s' \le s$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_{a'}(uv^2wx^2y) = p$

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_b(uv^2wx^2y) \neq \#_a(uv^2wx^2y)$ e $\#_b(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 4.3

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^{p+t'}b^{p+s'}a^p$, $1 \le t' \le t$, $1 \le s' \le s$
- È evidente che:
 - $p + 1 \le \#_a (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_a (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a, al più (p-1) a
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $* \#_{a'}(uv^2wx^2y) = p$

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_a(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y) \in \#_b(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 5

- $vwx = b^t a^s$, $1 \le t + s \le p$, $1 \le t \le p$, $1 \le s \le p$
- Analisi dei sotto-casi
 - Caso 5.1: $v \neq \lambda$, $x = \lambda$
 - Caso 5.2: $v = \lambda, x \neq \lambda$
 - Caso 5.3: $v \neq \lambda, x \neq \lambda$

- Se $v \neq \lambda$, allora $v = b^{t'}$ (v è composta da sole b) con $1 \leq t' \leq t$; infatti, se $v = b^t a^{s'}$, $1 \leq s' \leq s$, ne conseguirebbe che $v^2 = b^t a^{s'} b^t a^{s'}$ e $uv^2wx^2y \notin L$
- Se $x \neq \lambda$, allora $x = a^{s'}$ (x è composta da sole b) con $1 \leq s' \leq s$; infatti, se $x = b^{t'}a^s$, $1 \leq t' \leq t$, ne conseguirebbe che $x^2 = b^{t'}a^sb^{t'}a^s$ e $uv^2wx^2y \notin L$

Caso 5.1

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^{p+t'}a^p$, $1 \le t' \le t$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $\#_{a'}(uv^2wx^2y) = p$

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_b(uv^2wx^2y) \neq \#_a(uv^2wx^2y) \in \#_b(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 5.2

- Consideriamo la stringa pompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^pa^{p+s'}$, $1 \le s' \le s$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $\#_b(uv^2wx^2y) = p$
 - $p + 1 \le \#_{a'} (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_{a'} (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a', al più (p-1)a'

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_{a'}(uv^2wx^2y) \neq \#_a(uv^2wx^2y) \in \#_{a'}(uv^2wx^2y) \neq \#_b(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Caso 5.3

- Consideriamo la stringa depompata uv^2wx^2y
- Segue che $uv^2wx^2y = a^pb^{p+t'}a^{p+s'}$, $1 \le t' \le t$, $1 \le s' \le s$
- È evidente che:
 - $\#_a(uv^2wx^2y) = p$
 - $p + 1 \le \#_b (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_b (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una b, al più (p-1) b
 - $p + 1 \le \#_{a'} (uv^2wx^2y) \le p + (p 1) \Longrightarrow p + 1 \le \#_{a'} (uv^2wx^2y) \le 2p 1$
 - Aggiungiamo almeno una a', al più (p-1)a'

- Vincolo: $\#_a(z) = \#_b(z) = \#_{a'}(z), z \in L$
- $\#_a(uv^2wx^2y) \neq \#_{a'}(uv^2wx^2y) \in \#_a(uv^2wx^2y) \neq \#_b(uv^2wx^2y)$
- Si conclude che $uv^2wx^2y \notin L$

Conclusioni

- In tutti i casi abbiamo ottenuto che:
 - $uv^2wx^2y \notin L$
- Violazione del punto (3) del Pumping Lemma per i linguaggi liberi da contesto
- L non è un linguaggio libero da contesto, poiché per il linguaggio non vale il Pumping Lemma

Credits

 Si ringraziano il Prof. Marco de Gemmis ed il Tutor 2018-2019: Francesco Paolo Caforio