E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2022/2023

Estructuras Algebraicas para la Computación

Relación de ejercicios del tema 3

1. En el espacio vectorial \mathbb{R}^4 se consideran los vectores

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ a \\ b \end{pmatrix}, \quad \vec{v_1} = \begin{pmatrix} 3 \\ 4 \\ 6 \\ -8 \end{pmatrix}, \quad \vec{v_2} = \begin{pmatrix} 1 \\ 2 \\ 4 \\ -2 \end{pmatrix}, \quad \vec{v_3} = \begin{pmatrix} 4 \\ 6 \\ 10 \\ -10 \end{pmatrix}$$

Determina $a, b \in \mathbb{R}$ tales que el vector \vec{v} pertenezca al subespacio generado por el sistema $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$.

2. En el espacio vectorial \mathbb{R}^4 se considera el sistema de vectores

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \\ a \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -b \\ 1 \end{pmatrix} \right\}$$

Estudia, en función de a y b, la dimensión de $\mathcal{L}(\mathcal{S})$.

3. En el espacio \mathbb{R}^5 se considera el subespacio \mathcal{W} generado por el sistema formado por los siguientes vectores

$$\vec{u_1} = \begin{pmatrix} 1\\2\\1\\2\\1 \end{pmatrix}, \quad \vec{u_2} = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix}, \quad \vec{u_3} = \begin{pmatrix} 2\\4\\4\\6\\6 \end{pmatrix}, \quad \vec{u_4} = \begin{pmatrix} 3\\6\\5\\8\\8 \end{pmatrix}, \quad \vec{u_5} = \begin{pmatrix} 1\\2\\1\\2\\2 \end{pmatrix}$$

Halla una base para W y complétala para \mathbb{R}^5 .

4. En el espacio vectorial \mathbb{R}^4 se consideran los subespacios:

$$\mathcal{V}_{1} = \mathcal{L} \begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \ \mathcal{V}_{2} = \left\{ \vec{x} \in \mathbb{R}^{4} \mid 2x_{1} + x_{2} - x_{3} - 2x_{4} = 0 \right\}, \ \mathcal{V}_{3} \equiv \begin{cases} x_{1} = \lambda \\ x_{2} = \lambda - \mu \\ x_{3} = 2\gamma \\ x_{4} = \mu - \gamma \end{cases}$$

Justifica que el vector $\vec{v} = (4, 0, 4, 2)^t$ pertenece a $\mathcal{V}_1 \cap \mathcal{V}_2 \cap \mathcal{V}_3$.

- 5. Determina una base y las ecuaciones cartesianas de cada uno de los subespacios de \mathbb{R}^4 siguientes:
 - a) El subespacio \mathcal{M} generado por el sistema de vectores

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 3 \\ 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 4 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ -3 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 4 \\ 1 \\ 7 \\ 3 \end{pmatrix}$$

b) El subespacio $\mathcal N$ que tiene por ecuaciones paramétricas:

$$\begin{cases} x_1 = \lambda + \alpha + \beta \\ x_2 = \lambda - \alpha + 3\beta \\ x_3 = \lambda + \alpha \\ x_4 = 2\lambda + 4\alpha + \beta \end{cases}$$

6. En el espacio vectorial \mathbb{R}^4 se consideran los sistemas de vectores

$$S_{1} = \left\{ \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix} \right\} \quad S_{2} = \left\{ \begin{pmatrix} 2\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\3\\7 \end{pmatrix} \right\}$$

y los subespacios $\mathcal{U} = \mathcal{L}(S_1)$ y $\mathcal{W} = \mathcal{L}(S_2)$.

- a) Determina una base de la intersección $\mathcal{U} \cap \mathcal{W}$.
- b) Halla las ecuaciones cartesianas de la suma $\mathcal{U} + \mathcal{W}$.
- 7. En el espacio vectorial $\mathbb{R}_3[t]$ de los polinomios de una variable con coeficientes en \mathbb{R} y de grado menor o igual a 3 se considera el subconjunto

$$\mathcal{P} = \{at^3 + bt^2 + ct + d \in \mathbb{R}_3(t) \mid a = b, c = d\}$$

Demuestra que \mathcal{P} es un subespacio vectorial y determina una base.

8. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$, estudia si los siguientes subconjuntos son subespacios.

a)
$$\mathcal{U} = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid |A| = 0 \}$$

b)
$$\mathcal{W} = \{ A \in \mathcal{M}_2(\mathbb{R}) \mid A^2 = A \}$$

9. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ se considera el subconjunto \mathcal{A} definido

$$\mathcal{A} = \left\{ \begin{pmatrix} a & b+c \\ -b+c & a \end{pmatrix}; \ a, b \in \mathbb{R} \right\}$$

Demuestra que \mathcal{A} es un subespacio vectorial y halla una base.

- 10. Sea $\mathcal{B}_1 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ una base de un espacio vectorial \mathcal{V} .
 - a) Prueba que $\mathcal{B}_2 = \{\vec{v}_1, -\vec{v}_1 + \vec{v}_2, \vec{v}_4 \vec{v}_2, \vec{v}_1 + \vec{v}_3\}$ también es una base de \mathcal{V} .
 - b) Encuentra la matriz P del cambio de base de \mathcal{B}_1 a \mathcal{B}_2 y la matriz Q del cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .
 - c) Si un vector $\vec{x} \in \mathcal{V}$ tiene coordenadas $(0, \alpha, 0, \alpha)^t$ respecto de la base \mathcal{B}_1 , ¿qué coordenadas tendrá respecto de la base \mathcal{B}_2 ?
- 11. En el espacio vectorial $\mathbb{R}_2[x]$ se consideran los sistemas

$$S = \{x^2 + x, x^2 + 1, x\},$$
 $\mathcal{T} = \{x^2 + 1, x - 2, 3 - x\}$

- a) Demuestra que S y T son bases de $\mathbb{R}_2[x]$.
- b) Halla las coordenadas de $p(x) = 2x^2 + 2x + 1$ en la base S.

- c) Determina la matriz del cambio de la base $\mathcal T$ a la base $\mathcal S$
- 12. En el espacio vectorial \mathbb{R}^3 el vector \vec{v} tiene por coordenadas (8,1,5) respecto de la base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ y respecto de la base $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ sus coordenadas son (6, -3, 2). Halla las coordenadas de \vec{w}_3 en la base \mathcal{B} sabiendo que:

$$\vec{w}_1 = 3\vec{v}_1 - \vec{v}_2 + \vec{v}_3$$

$$\vec{w}_2 = 4\vec{v}_1 + \vec{v}_2 - \vec{v}_3$$

13. Sea $V = \{(x, y, z)^t \in \mathbb{Z}_{19}^3 \mid 8x - 18y + 7z = 0\}$ y consideramos los siguientes vectores de \mathbb{Z}_{19}^3 :

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -3 \\ 1 \\ 6 \end{pmatrix}, \quad \vec{p} = \begin{pmatrix} 1 \\ -8 \\ 0 \end{pmatrix}, \quad \vec{q} = \begin{pmatrix} 0 \\ -7 \\ 1 \end{pmatrix}$$

- a) Comprobar que V es un subespacio vectorial de \mathbb{Z}_{19}^3 .
- b) Demostrar que u, v, p, q pertenecen a V.
- c) ¿Cuál de los conjuntos $\{u,v\}$ y $\{p,q\}$ es un sistema generador de V?
- 14. Sea $A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 4 & -2 \\ 1 & 0 & 4 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_5)$ y consideremos los siguientes subconjuntos de \mathbb{Z}_5^3 :

$$\mathcal{V} = \{ \vec{v} \in \mathbb{Z}_5^3 \mid A\vec{v} = 0 \}, \qquad \mathcal{W} = \{ \vec{v} \in \mathbb{Z}_5^3 \mid A\vec{v} = 2\vec{v} \}$$

- a) Demostrar que \mathcal{V} y \mathcal{W} son subespacios de \mathbb{Z}_5^3 .
- b) Obtener una base de cada uno de ellos.
- 15. En el espacio vectorial de los polinomios de grado menor o igual que 3 con coeficientes en \mathbb{Z}_{11} , consideramos el subconjunto $\mathcal{V} = \{p(x) \mid xp'(x) = p(x)\}$, donde p'(x) denota la derivada del polinomio p(x).
 - a) Comprobar que \mathcal{V} es espacio vectorial.
 - b) Encontrar una base de \mathcal{V} .