8692869115->

RECEIVED CENTRAL FAX CENTER DEC 1 3 2006

143766-1

IN THE CLAIMS

1. (Currently Amended) A multilayered sheet consisting essentially of:

a core layer comprising a thermoplastic polymer and an <u>electromagnetic radiation absorbing</u> additive consisting of an IR absorbing additive; wherein the IR absorbing additive is a boride;

a first cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive; wherein a surface of the first cap layer is disposed upon and in intimate contact with a surface of the core layer; and

a second cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive; wherein the second cap layer is disposed upon and in intimate contact with a surface of the core layer opposite the surface in contact with the first cap layer; and

wherein the multilayered sheet has a haze value of less than or equal to 5%, measured in accordance with ASTM D1003.

- 2. (Cancelled)
- 3. (Cancelled)

4. (Currently amended) The sheet of Claim 1, wherein the IR absorbing additive is lanthanum boride (LaB₆), praseodymium boride (PrB₆), neodymium boride (NdB₆), cerium boride (CeB₆), gadolinium boride (GdB₆), terbium boride (TbB₆), dysprosium boride (DyB₆), holmium boride (HoB₆), yttrium boride (YB₆), samarium boride (SmB₆), europium boride (EuB₆), erbium boride (ErB₆), thulium boride (TmB₆), ytterbium boride (YbB₆), lutetium boride (LuB₆), strontium boride (SrB₆), calcium boride (CaB₆), titanium boride (TiB₂), zirconium boride (ZrB₂), hafnium boride (HfB₂), vanadium boride (VB₂), tantalum boride (TaB₂), a chromium borides (CrB and/or CrB₂), a molybdenum borides (MoB₂, Mo₂B₅ and/or MoB), tungsten boride (W₂B₅), or a combination comprising at least one of the foregoing borides.

8692869115->

- 5. (Original) The sheet of Claim 1, wherein the IR absorbing additive comprises nanosized particles having average particle dimensions of less than or equal to about 200 nanometers.
- 6. (Original) The sheet of Claim 1, wherein the IR absorbing additive is present in amounts of about 0.001 to about 2.0 gram/square meter, measured with respect to the surface of the core layer.
- 7. (Currently amended) The sheet of Claim 1, wherein the IR absorbing additive is present in an amounts of about amounts of about 0.02 ppm to about 3000 ppm based on the total weight of the core layer.
- 8. (Currently amended) The sheet of Claim 7, wherein the core layer comprises a thermal stabilizers, and further wherein the thermal stabilizers <u>isare a phosphites</u>, phosphonites, phosphines, hindered amines, hydroxyl amines, phenols, acryloyl modified phenols, hydroperoxide decomposers, benzofuranone derivatives, or a combination comprising at least one of the foregoing thermal stabilizers antioxidants.
- 9. (Currently amended) The sheet of Claim 8, wherein the thermal stabilizers is are present in an amount of about 0.001 to about 3 wt%, based on the total weight of the core layer.
- 10. (Original) The sheet of Claim 8, wherein the core layer has a thickness of about 0.5 to about 30 mm.

- 11. (Previously Presented) The sheet of Claim 1, wherein the thermoplastic polymer used in the core layer and/or the first cap layer is polyacetal, polyacrylic, polycarbonate, polystyrene, polyester, polyamide, polyamideimide, polyarylate, polyarylsulfone, polyethersulfone, polyphenylene sulfide, polyvinyl chloride, polysulfone, polyimide, polyetherimide, polytetrafluoroethylene, polyetherketone, polyether etherketone, polyether ketone ketone, polybenzoxazole, polyoxadiazole, polybenzothiazinophenothiazine, polybenzothiazole, polypyrazinoquinoxaline, polypyromellitimide, polyquinoxaline, polybenzimidazole, polyoxindole, polyoxoisoindoline, polydioxoisoindoline, polytriazine, polypyridazine, polypiperazine, polypyridine, polypiperidine, polytriazole, polypyrazole, polypyrrolidine, polycarborane, polyoxabicyclononane, polydibenzofuran, polyphthalide, polyacetal, polyanhydride, polyvinyl ether, polyvinyl thioether, polyvinyl alcohol, polyvinyl ketone, polysulfone, polysulfonamide, polyurea, polyphosphazene, polysulfonate, or a combination comprising at least one of the foregoing thermoplastic polymers.
- 12. (Currently amended) The sheet of Claim 1, wherein the thermoplastic polymer used in the core layer and/or the first cap layer is <u>a</u> bisphenol A polycarbonate, <u>a</u> copolyester carbonate, or a blend of a polyester with a polycarbonate.
- 13. (Previously Presented) The sheet of Claim 12, wherein the polyester is a cycloaliphatic polyester, a polyarylate or a combination of a cycloaliphatic polyester with a polyarylate.
- 14. (Previously Presented) The sheet of Claim 13, wherein the cycloaliphatic polyester has the structure (X)

$$+O-H_2C -CH_2-O-\overset{O}{C}-\overset$$

15. (Currently amended) The sheet of Claim 13, wherein the polyarylate is a resorcinol arylate polyesters having the structure (XII)

or the structure (XIII)

$$-\left(\begin{array}{c} 0 \\ C \\ C \end{array} \right) \left(\begin{array}{c} 0 \\ C \\ R_n \end{array} \right) \left(\begin{array}{c} XIIII \\ X \end{array} \right)$$

where R is a C_{1-12} alkyl or halogen, n is 0 to 3, and m is at least about 8.

16. (Currently amended) The sheet of Claim 13, wherein the polyarylates are is further copolymerized to form a block copolyestercarbonates, comprising structural units of the formula (XVI)

$$-\left(O-R^2-\overset{O}{C}-O\right)_{\mathfrak{m}} \underbrace{\begin{pmatrix} (R^1)_{\mathfrak{p}} & O \\ O-C & O \\ O & C \end{pmatrix}}_{\mathfrak{m}} \underbrace{\begin{pmatrix} (R^1)_{\mathfrak{p}} & O \\ O-C & O \\ O-C & O \\ O & C \end{pmatrix}}_{\mathfrak{m}} \underbrace{\begin{pmatrix} (R^1)_{\mathfrak{p}} & O \\ O-C &$$

wherein each R^1 is independently halogen or C_{1-12} alkyl, m is at least 1, p is about 0 to about 3, each R^2 is independently a divalent organic radical, and n is at least about 4.

17. (Currently amended) The sheet of Claim 1, wherein the <u>ultraviolet electromagnetic</u> radiation absorbing additives <u>is a are benzophenones</u>, benzotriazoles, salicylates, resorcinol monobenzoate, <u>2-ethylhexyl 2-cyano-3-phenylcinnamate2'ethyl hexyl 2-cyano, 3-phenylcinnamate</u>, 2-[[]]ethyl[[-]]hexyl-2-cyano-3,3-diphenyl acrylate, ethyl-2-cyano-3,3-diphenyl acrylate, [2-2'-thiobis(4-t-octylphenolate)-l-n-butylamine, or <u>a combinations</u> comprising at least one of the foregoing <u>ultravioletelectromagnetic</u> radiation absorbing additives and wherein the <u>ultravioletelectromagnetic</u> radiation absorbing additives <u>isare</u> present in an amount of 5 to about 15 wt%, based on the total weight of the first cap layer.

12/13/06 15:53:54

- (Cancelled) 18.
- 19. (Original) The sheet of Claim 1, having an infrared absorption of greater than or equal to about 20%.
- 20. (Original) The sheet of Claim 1, having a transmissivity of greater than or equal to about 40% in the visible light region.
- (Original) The sheet of Claim 1, having an infrared absorption of greater than or equal 21. to about 20%, an ultraviolet radiation absorption of greater than or equal to about 20%, and a transmissivity of greater than or equal to about 40% in the visible region.
 - 22. (Currently Amended) A method for manufacturing a multilayered sheet comprising:

disposing a first cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive onto a surface of a core layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an IR absorbing additive, wherein the IR absorbing additive is comprises a borides; and

disposing a second cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive onto a surface of the core layer opposite the surface contacting the first cap layer;-

wherein the multilayered sheet has a haze value less than or equal to 5%, measured in accordance with ASTM D1003.

- 23. (Original) The method of Claim 22, wherein the core layer is produced simultaneously or sequentially with the first cap layer.
 - 24. (Cancelled)
- 25. (Original) The method of Claim 24, wherein the second cap layer is produced simultaneously or sequentially with the first cap layer and/or the core layer.

26. (Original) The method of Claim 22, wherein the disposing is conducted in a two roll mill or a three roll mill.

8602860115->

- 27. (Original) The method of Claim 22 further comprising thermoforming, vacuum molding, blow molding, injection molding, and/or compression molding the multilayered sheet.
 - 28. (Currently Amended) A method for manufacturing a multilayered sheet comprising:

co-extruding a core layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an IR absorbing additive with a first cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing consisting of an ultraviolet radiation absorbinger additive, and a second cap layer that comprises a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive; wherein the IR absorbing additive iseemprises a borides and further wherein the second cap layer is disposed onto a surface of the core layer opposite the surface contacting the first cap layer-;

wherein the multilayered sheet has a haze value less than or equal to 5%, measured in accordance with ASTM D1003.

- (Cancelled)
- 30. (Original) The method of Claim 28, further comprising laminating the multilayered sheet.
 - 31. (Original) An article comprising the sheet of Claim 1.
 - 32. (Original) An article comprising the sheet of Claim 2.
 - 33. (Original) An article made by the method of Claim 22.
 - 34. (Original) An article made by the method of Claim 28.

Page 009

143766-1

(Currently Amended) A multilayered sheet comprising: 35.

8602860115->

a core layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an IR absorbing additive; wherein the IR absorbing additive is a boride; and

a first cap layer comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive; wherein a surface of the first cap layer is disposed upon and in intimate contact with a surface of the core layer; wherein the core layer has a thickness of about 0.5 to about 30 mm-;

wherein the multilayered sheet has a haze value less than or equal to 5%, measured in accordance with ASTM D1003.

(Currently Amended) The sheet of Claim 35, further comprising a second cap layer 36. comprising a thermoplastic polymer and an electromagnetic radiation absorbing additive consisting of an ultraviolet radiation absorbing additive; wherein the second cap layer is disposed upon and in intimate contact with a surface of the core layer opposite the surface in contact with the first cap layer.

37. (Canceled)

(Currently amended) The sheet of Claim 35, wherein the IR absorbing additive is 38. lanthanum boride (LaB₆), praseodymium boride (PrB₆), neodymium boride (NdB₆), cerium boride (CeB₆), gadolinium boride (GdB₆), terbium boride (TbB₆), dysprosium boride (DyB₆), holmium boride (HoB₆), yttrium boride (YB₆), samarium boride (SmB₆), europium boride (EuB₆), erbium boride (ErB₆), thulium boride (TmB₆), ytterbium boride (YbB₆), lutetium boride (LuB₆), strontium boride (SrB₆), calcium boride (CaB₆), titanium boride (TiB₂), zirconium boride (ZrB₂), hafnium boride (HfB2), vanadium boride (VB2), tantalum boride (TaB2), a chromium borides (CrB and/or CrB₂), a molybdenum borides (MoB₂, Mo₂B₅ and/or MoB), tungsten boride (W₂B₅), or a combination comprising at least one of the foregoing borides.

12/13/86 15:55:14

- 39. (Previously Presented) The sheet of Claim 35, wherein the IR absorbing additive comprises nanosized particles having average particle dimensions of less than or equal to about 200 nanometers.
- 40. (Currently amended) The sheet of Claim 35, wherein the IR absorbing additive is present in an amounts of about 0.001 to about 2.0 gram/square meter, measured with respect to the surface of the core layer.
- 41. (Currently amended) The sheet of Claim 35, wherein the IR absorbing additive is present in an amounts of about amounts of about 0.02 ppm to about 3000 ppm based on the total weight of the core layer.
- 42. (Currently amended) The sheet of Claim 41, wherein the core layer comprises a thermal stabilizers, and further wherein the thermal stabilizers is are a phosphites, phosphonites, phosphines, hindered amines, hydroxyl amines, phenols, acryloyl modified phenols, hydroperoxide decomposers, benzofuranone derivatives, or a combination comprising at least one of the foregoing thermal stabilizersantioxidants.
- 43. (Currently amended) The sheet of Claim 42, wherein thermal stabilizers is are present in an amount of about 0.001 to about 3 wt%, based on the total weight of the core layer.

44. (Previously Presented) The sheet of Claim 35, wherein the thermoplastic polymer used in the core layer and/or the first cap layer is polyacetal, polyacrylic, polycarbonate, polystyrene, polyester, polyamide, polyamideimide, polyarylate, polyarylsulfone, polyethersulfone, polyphenylene sulfide, polyvinyl chloride, polysulfone, polyimide, polyetherimide, polytetrafluoroethylene, polyetherketone, polyether etherketone, polyether ketone ketone, polybenzoxazole, polyoxadiazole, polybenzothiazinophenothiazine, polybenzothiazole, polypyrazinoquinoxaline, polypyromellitimide, polyquinoxaline, polybenzimidazole, polyoxindole, polyoxoisoindoline, polydioxoisoindoline, polytriazine, polypyridazine, polypiperazine, polypyridine, polypiperidine, polytriazole, polypyrazole, polypyrrolidine, polycarborane, polyoxabicyclononane, polydibenzofuran, polyphthalide, polyacetal, polyanhydride, polyvinyl ether, polyvinyl thioether, polyvinyl alcohol, polyvinyl ketone, polyvinyl halide, polyvinyl nitrile, polyvinyl ester, polysulfonate, polysulfide, polythioester, polysulfone, polysulfonamide, polyurea, polyphosphazene, polysilazane, or a combination comprising at least one of the foregoing thermoplastic polymers.

8602860115->

- 45. (Currently amended) The sheet of Claim 35, wherein the thermoplastic polymer used in the core layer and/or the first cap layer is a bisphenol A polycarbonate, a copolyestercarbonate, or a blend of a polyester with a polycarbonate.
- 46. (Currently amended) The sheet of Claim 45, wherein the polyester is a cycloaliphatic polyester, a polyarylate, or a combination of a cycloaliphatic polyester with a polyarylate.
- 47. (Previously Presented) The sheet of Claim 46, wherein the cycloaliphatic polyester has the structure (X)

48. (Currently amended) The sheet of Claim 46, wherein the polyarylate is <u>a resorcinol</u> arylate polyesters having the structure (XII)

$$-\left(\stackrel{O}{\overset{\square}{C}} - \stackrel{O}{\overset{\square}{C}} - O \right)_{m}$$
(XII)

or the structure (XIII)

where R is a C_{1-12} alkyl or halogen, n is 0 to 3, and m is at least about 8.