EE204 – COMPUTER ARCHITECTURE

Spring 2017 - FAST-NU, LAHORE

Course Instructor: Dr. Haroon Mahmood

Lectures: Section A: Monday and Wednesday 15:30 - 16:50 (room CS-3)

Section B: Monday and Wednesday 12:30 - 13:50 (room CS-3)

Office hours: Tuesday and Wednesday 10:00 – 12:00

Course Books

1. M. Morris Mano, Computer System Architecture 3rd Edition 1993, Prentice Hall

- 2. David A. Patterson, John L. Hennessy, *Computer Organization and Design: The hardware/software interface*, 4th Edition
- 3. Modern Processor Design: Fundamentals of Superscalar Processors by John Paul Shen and Mikko H. Lipasti

Course Objective

- The main objective of this course is to provide a profound understanding of the architectural design and internal working of a microprocessor which will allow computer science students to appreciate concepts like optimization and hardware level performance issues.
- This course also introduces advanced concepts like pipelining and superscalar architecture and techniques like microprogramming.
- Multi-Core processors and issues related to multicore processors are introduced.

MARKS BREAKUP

•	Quiz	4/5	15%
•	Assignments	3/4	10%
•	Midterms	2	30%
•	Final	1	45%

MISCELLANEOUS

- Academic integrity is expected of all the students. Plagiarism or cheating in any assessment will result in at least an F grade in the course, and possibly more severe penalties.
- There will be no makeup for a missed quiz.

TOPICS TO BE COVERED	ВООК	LECTURE #
Introduction to basic hardware components and	Text1	1
devices	Chapter 1	
a) Digital Logic Design Review	(Excluding 1.4)	
i) Boolean Algebra		
ii) Combinational Circuits		
iii) Sequential Circuits		

D 4 1	T .1	
Frequently used components in computers	Text1	2
a) Adders	Chapter 2	
b) Decoders		
c) Multiplexers		
d) Registers (Parallel load with shifts)		
e) Counters		
Number Systems and Binary Representations	Text1	3
a) Integer Representations	Chapter 3	
b) Floating point representation	(Excluding 3.5)	
Arithmetic Operations (Combined Circuit)	Text2	
, , , , , , , , , , , , , , , , , , ,	Chapter 3	
	(Section 3.1 - 3.3,	
	Section 3.6: IEEE	
	754)	
	Text1	
	Chapter 4	
	(Section 4.4)	
Logic Operations	Text1	4
		4
Shift Operations	Chapter 4	
Combined Arithmetic, Logic and Shift Unit.	(Section $4.5 - 4.7$)	
Additional Arithmetic Operations:	Text2	5
a) Integer Multiplication, Division	Chapter 3	
b) Floating Point Operations (Addition)	(Section 3.4 – 3.6)	
b) Floating Fornt Operations (Addition)	(Section 5.4 – 5.0)	
	Text2	6
Complete ALU and FPU design	Chapter 3	
Introduction to Machine Language	(Section 3.6)	
introduction to Wachine Language	(Section 3.0)	
Register File	Text1	7
RTL: Register Transfer Language	Chapter 4	
Description of Operations in RTL	(Section 4.1 – 4.3)	
Register Transfer	(5500001 7.1 - 7.5)	
Register, bus and memory transfers		
Register, ous and memory transfers		
Computer Instructions and instruction codes	Text2	8
Introduction to the MIPS Assembly Language	Chapter 5	
Instruction Types	(Section $5.1 - 5.4$)	
1) Arithmetic Instructions	Text2	
2) Memory Reference	Chapter 2	
3) Branch Instructions	(Figure 2.25, 2.47)	
Design of a Single Cycle Machine	(118010 2.23, 2.47)	
1) Register File		
1) Negister The		1

	<u></u>	1
2) ALU		
3) Instruction and Data Memory		
4) Control Unit		
5) Integration of Units		
Revision for Mid 1		9
The vision for this i		
Single Cycle Machine Design Continued	Text2	10
Control Unit (As a hardwired combinational circuit)	Chapter 5	
Exceptions and Interrupts	(Section $5.1 - 5.4, 5.6$)	
Central processing unit in detail	Text1	11
a) General register organization	Chapter 8	
b) Program control	(Excluding 8.4, 8.6,8.7)	
c) System stack	(Excluding 6.1, 6.6,6.7)	
d) Addressing modes	Text2	
e) CISC Vs RISC	Chapter 2	
e) CISC VS RISC	Chapter 2	
Multi-cycle implementation	Text2	12
Motivation and Hardware Differences	Chapter 5	
	(Section 5.5)	
Multi-cycle Continued	Text2	13
Control Unit State for each instruction type	Chapter 5	
	(Section 5.5)	
Multi-cycle Continued	Text2	14
Control Unit State Machine combined	Chapter 5	
Exception Handling in Multi-Cycle machine	(Section 5.5, 5.6)	
Microprogrammed Control	Text1	15
	Chapter 7	
Understanding Performance	Text2	16
a) CPU Performance	Chapter 4	
b) Benchmarks		
c) Evaluating Performance		
Enhancing Dorforman as with Dinelining	Toyt?	17
Enhancing Performance with Pipelining	Text2	1/
a) Introduction to pipelining	Chapter 6	
b) A pipelined data-path	(Section $6.1 - 6.3$)	
c) Pipelined Control		
d) Shallow and deep pipelining		
Pipelined Machine:	Text2	18
Hardware and Control Unit	Chapter 6	
	(Section 6.1 – 6.3)	
	(55000000000000000000000000000000000000	
Data Hazards	Text2	19
a) RAW (covered in detail)	Chapter 6	
b) WAR	Section (6.4 - 6.5)	

c) WAW		
Control Hazards a) Branch Prediction Performance of pipelined systems	Text2 Chapter 6 Section (6.6)	20
Revision for Mid 2		21
Cache Design: Memory Hierarchy basic concepts Basics and Direct mapped caches	Text 2 Chapter 7	22
Cache Design: Associative Caches and Miss Rates	Text 2 Chapter 7	23
Cache Design: Processor performance evaluation with cache / Multi-level Caches.	Text 2 Chapter 7	24
Superscalar Processors. Basic concepts of superscalar processors and instruction independence		25
Step by step execution of instructions in superscalar processors.		26
Multi-processor Systems basics. Multi-processor system types Into to memory sharing models and cache coherence problem	Text 3 Chapter 7	27
Revision for Final		28