Appendix S4

Modelling

A warming western boundary current increases the prevalence of commercially disruptive parasites in broadbill swordfish

Jessica A. Bolin, Karen J. Evans, David S. Schoeman, Claire M. Spillman, Thomas S. Moore II, Jason R. Hartog, Scott F. Cummins & Kylie L. Scales

Fisheries Oceanography

Table of Contents

Table S1	2
Table S2	4
Table S3	<i>€</i>

Table S1

Model covariate combinations used in the analysis for the prevalence dataset (n = 42). Covariate combinations enclosed in brackets with the suffix 2 indicate all pairwise interactions.

Model focus	Covariates
Temperature/EAC (using dist_core)	mean_SST
	(mean_SST + sd_SST + mon_clim_sst_sd) ^2
	(mean_SST + dist_core + mo_anom) ^2
	(mean_SST + dist_core + DHD) ^2
	(mean_SST + dist_core + DHD) ^2 + mon_clim_sst_sd
	(mean_SST + dist_core + mon_clim_sst_sd) ^2
	(mean_SST + dist_core + DHD) ^2 + seas_clim_sst_sd
	(mean_SST + dist_core + DHD) ^2 + mo_anom
	(mean_SST + dist_core + DHD) ^2 + se_anom
	(mean_SST + dist_core + DHD) ^2 + mean_ssh_corrected
	(mean_SST + dist_core + mean_v) ^2 + DHD
	(mean_SST + dist_core + DHD + mean_eke) ^2
	(mean_SST + dist_core + mean_mld1) ^2 + DHD
	(mean_SST + dist_core + sd_SST) ^2 + DHD
	(mean_SST + dist_core + DHD + sd_depth) ^2
	<pre>mean_SST + dist_core + DHD + sd_SST + mo_anom + mean_v + mean_eke + mean_ssh_corrected + sd_depth</pre>
Topographic	SeamountDistKM * sd_depth
	(sd_depth + SeamountDistKM + mean_SST) ^2
	(SeamountDistKM + mean_SST + mean_eke + sd_depth) ^2
	(SeamountDistKM + mean_SST + sd_SST + sd_depth) ^2
	(SeamountDistKM + dist_core + sd_depth + mean_SST) ^2
	SeamountDistKM + mean_SST + mean_eke + sd_SST + dist_core + sd_depth

	(mean_depth + sd_depth + mean_mld1 + mean_SST)^2
	(mean_depth + sd_depth + DHD + mean_SST)^2
Dynamic oceanography	<pre>mean_SST + dist_core + mean_v + mean_mld1 + mean_eke + seamountDistKM + sd_depth</pre>
	(mean_SST + mean_ssh_corrected + mean_eke + mean_mld1) ^2
	(mean_SST + mean_ssh_corrected + mean_eke + DHD) ^2
Productivity	(mean_chla + mean_mld1 + mean_ssh_corected + mean_eke) ^2
	(SeamountDistKM + mean_chla + mean_eke + sd_depth) ^2
EAC models (not using dist_core)	(mean_SST + mean_ssh_corrected + mean_v) ^2
	(mean_SST + mean_v + DHD) ^2
	(mean_SST + mean_v + DHD + mon_clim_sst_sd) ^2
	(mean_SST + mean_v + mean_eke + mon_clim_sst_sd) ^2
	(mean_SST + mean_v + mon_clim_sst_sd)^2
	<pre>(mean_SST + mean_ssh_corrected + mon_clim_sst_sd) ^2</pre>
	(mean_SST + mean_ssh_corrected) ^2 + mon_clim_sst_sd + DHD
	(mean_SST + mean_v + DHD + seas_clim_sst_sd) ^2
	(mean_SST + mean_v + mo_anom) ^2 + DHD
	(mean_SST + mean_v + se_anom)^2 + DHD
	<pre>(mean_SST + mean_v + mean_eke + mean_ssh_corrected) ^2 + DHD</pre>
	<pre>(mean_SST * mean_v) + (DHD * mean_sst) + (DHD * mo_anom) + (mo_anom * mean_SST) + mon_clim_sst_sd</pre>
Month	Month

Table S2

Model covariate combinations used in the analysis for the intensity dataset (n = 42). Covariate combinations enclosed in brackets with the suffix 2 indicate all pairwise interactions.

Model focus	Covariates
Temperature/EAC (using dist_core)	mean_SST
	(mean_SST + sd_SST + mean_mld1) ^2
	(mean_SST + dist_core + mo_anom) ^2
	(mean_SST + dist_core + DHD) ^2
	(mean_SST + dist_core) ^2 + DHD + mean_mld1
	(mean_SST + dist_core) ^2 + DHD + seas_clim_sst_sd
	(mean_SST + dist_core) ^2 + DHD + mo_anom
	(mean_SST + dist_core + DHD) ^2 + se_anom
	(mean_SST + DHD) ^2 + mean_ssh_corrected + dist_core
	(mean_SST + dist_core) ^2 + DHD + mean_v
	(mean_SST + DHD) ^2 + mean_eke + dist_core
	(mean_SST + mean_mld1 + DHD) ^2
	(mean_SST + DHD) ^2 + sd_SST + dist_core
	<pre>mean_SST + dist_core + sd_SST + mo_anom + mean_v + mean_mld1 + mean_eke + mean_ssh_corrected</pre>
Topographic	SeamountDistKM * sd_depth
	(SeamountDistKM + mean_SST) ^2 + sd_depth
	(SeamountDistKM + mean_SST + sd_depth + mean_eke) ^2
	(SeamountDistKM + mean_SST) ^2 + mean_mld1
	(SeamountDistKM + mean_SST + sd_SST) ^2 + sd_depth
	(SeamountDistKM + dist_core + mean_SST) ^2 + sd_depth
	SeamountDistKM + mean_SST + mean_eke + sd_SST + dist_core + sd_depth
	(mean_depth + sd_depth + mean_mld1) ^2 + mean_SST

	_					
	(mean_depth + sd_depth) ^2 + DHD + mean_SST					
Dynamic oceanography	<pre>mean_SST + dist_core + mean_v + mean_mld1 + mean_eke + SeamountDistKM + sd_depth</pre>					
	(mean_SST + mean_ssh_corrected) ^2 + mean_mld1 + mean_eke					
	(mean_SST + mean_ssh_corrected + mean_eke) ^2 + mean_v					
Productivity	<pre>(mean_chla + mean_mld1 + mean_ssh_corrected + mean_eke) ^2</pre>					
	(mean_chla + mean_mld1) ^2 + sd_depth + SeamountDistKM					
Month	Month					
	Month * mean_SST					
EAC models (not using dist_core)	<pre>(mean_SST + mean_SSH_corrected + mean_v) ^2</pre>					
	(mean_SST + mean_v + DHD) ^2					
	(mean_SST + mean_v + DHD + mon_clim_sst_sd) ^2					
	<pre>(mean_SST + mean_v + mean_eke + mon_clim_sst_sd) ^2</pre>					
	(mean_SST + mean_v + mon_clim_sst_sd) ^2					
	<pre>(mean_SST + mean_ssh_corrected) ^2 + mon_clim_sst_sd + mean_mld1</pre>					
	<pre>(mean_SST + mean_ssh_corrected) ^2 + mon_clim_sst_sd + sd_depth</pre>					
	(mean_SST + mean_v + sd_depth) ^2 + seas_clim_sst_sd					
	(mean_SST + mean_v + mo_anom) ^2 + DHD					
	(mean_SST + mean_v + se_anom) ^2 + DHD					
	(mean_SST + mean_v + mean_eke + mean_ssh_corrected) ^2					
_	<pre>(mean_SST * mean_v) + (DHD * mean_SST) + (DHD * mo_anom) + mon_clim_sst_sd</pre>					

Table S3

Model results from the prevalence and intensity datasets, after performing model selection and removing models with identical AIC Δ values. Significant covariates (i.e., P < 0.05), AIC Δ , marginal R^2 and deviance explained are presented for all remaining models, in addition to the area under the receiver-operating curve (AUC), true skill statistic (TSS), kappa and root mean square error (RMSE) statistics for the prevalence models. Covariate acronym key presented in Appendix S1: Table S2. Bolded values indicate the minimum adequate model for each dataset.

Response	Covariates	AIC A	R2 (%)	Devianc e	AUC	TSS	Kappa	RMSE	Overdis persion
Prevalenc e	(mean_SST * mean_v) + (mean_SST * mo_anom) + mon_clim_sst_sd	0	0.097	1503.52	0.654	0.157	0.109	0.396	
	(mean_SST * mean_v) + (mean_SST * mo_anom)	3.05	0.089	1508.57	0.658	0.16	0.109	0.395	
	(mean_SST * mean_v) + se_anom	6.98	0.084	1512.5	0.665	0.165	0.113	0.394	
	(mean_SST * mean_V) + (mean_V + DHD)	7.08	0.075	1512.61	0.658	0.159	0.107	0.395	
	(mean_SST * dist_core) + DHD + mon_clim_sst_sd	7.77	0.079	1513.3	0.652	0.156	0.108	0.396	
	(mean_SST * dist_core) + (mean_SST * mo_anom)	10.31	0.07	1515.84	0.664	0.167	0.115	0.394	
	(mean_SST * mo_anom) + (mean_ssh_corrected * DHD) + mean_eke	10.77	0.074	1514.29	0.654	0.156	0.108	0.395	
	(sd_depth * mean_mld1) + mean_SST	11.43	0.06	1518.96	0.655	0.158	0.11	0.395	
	(mean_SST * dist_core) + sd_depth	12.71	0.067	1520.24	0.667	0.17	0.118	0.394	
	(mean_SST * mo_anom) + (mean_ssh_corrected * DHD) + mon_clim_sst_sd	13.34	0.069	1516.87	0.659	0.162	0.112	0.395	
	sd_depth * mean_SST	13.74	0.053	1523.26	0.662	0.164	0.113	0.394	

	(mean_SST * dist_core) + (mean_SST + mean_eke)	14.36	0.067	1519.88	0.666	0.171	0.118	0.394	
	(dist_core * mean_mld1) + mean_SST + DHD	14.76	0.064	1520.28	0.664	0.163	0.114	0.394	
	mean_SST * dist_core	15.13	0.059	1524.66	0.672	0.173	0.121	0.394	
	(mean_SST * mo_anom) + mean_eke	15.23	0.061	1522.75	0.666	0.17	0.119	0.395	
	mean_SST * mean_v	15.36	0.056	1524.89	0.667	0.168	0.117	0.394	
	mean_SST	17.31	0.041	1530.83	0.673	0.175	0.12	0.394	
	(mean_SST * mon_clim_sst_sd)	18.61	0.043	1530.13	0.671	0.175	0.121	0.394	
	(mean_mld1 * sd_depth) + mean_chla	18.97	0.045	1526.5	0.669	0.172	0.12	0.394	
	(mean_mld1 * mean_chla)	22.35	0.037	1531.88	0.665	0.163	0.118	0.394	
Intensity	sd_depth + mon_clim_sst_sd	0	0.064	21928.9 4					1.316
	sd_depth + mean_mld1	2.42	0.056	21931.3 7					1.309
	(mean_SST * mo_anom) + mean_mld1 + mon_clim_sst_sd	3.79	0.069	21926.7 4					1.316
	mean_chla * mean_mld1	3.93	0.054	21930.8 7					1.302
	mon_clim_sst_sd	4.29	0.043	21935.2 3					1.299
	(mean_SST * dist_core) + mean_mld1	4.64	0.061	21929.5 8					1.31
	mean_mld1	5.33	0.039	21936.2 8					1.292
	(mean_SST * mo_anom) + mean_mld1	6.33	0.056	21931.2 8					1.31
	(mean_v * sd_depth)	6.35	0.046	21933.3					1.324
	sd_depth	9.04	0.02	21939.9 9					1.303