

Aula 09

Visualização

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

Introdução

- No Ray Tracing, vimos que, para cada pixel, um raio é traçado. Em seguida, verifica-se se esse raio, a partir do pixel, tem alguma interseção.
- Na visualização, o processo é justamente o oposto. Sendo assim, para cada ponto do modelo, verifica-se qual pixel será utilizado para projetá-lo.
- Esse processo funciona bem para renderizações "aramadas" (wireframe rendering).

Wireframe Rendering

Figure 7.1. Left: wireframe cube in orthographic projection. Middle: wireframe cube in perspective projection. Right: perspective projection with hidden lines removed.

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

- As transformações de visualização tem o papel de mapear localizações em 3D, representadas em (x,y,z), para coordenadas de imagem, expressadas em unidades de pixels.
- Algumas das variáveis são: posição e orientação da câmera, o tipo de projeção, o campo de visão e a resolução da imagem.

- Tratar essas variáveis pode ser uma tarefa complexa. Por isso, pode-se dividir esse tipo de transformação em três transformações:
 - Transformação de câmera: transforma o corpo rígido e posiciona a câmera como o ponto origem. Depende somente da posição e orientação da câmera
 - Transformação de projeção: projeta pontos do espaço de câmera, de modo que os pontos visíveis fiquem no intervalo [-1, 1] (volume de visualização canônica), tanto em x como em y.
 Depende somente do tipo de projeção desejado
 - Transformação de janela: mapeia o retângulo da transformação de projeção para o retângulo redesenhado em coordenadas de pixels. Depende somente do tamanho e posição da imagem que será exibida.

- Para facilitar, damos nomes aos sistemas de coordenadas que são entradas ou saídas das transformações.
- A transformação de câmera converte pontos de coordenadas canônicas (ou espaço de mundo) para coordenadas de câmera.

- A transformação de projeção passa pontos do espaço de câmera para volume de visualização canônica (pontos estão em [-1, 1]).
- A transformação de janela mapeia o volume de visualização canônica para espaço de tela.

 Cada uma das transformações será discutida para a projeção ortográfica.

 A geometria que queremos ver está no volume de visualização canônica (valores estão no [-1, 1]) e queremos vê-lo em uma câmera ortográfica na direção –z.

$$(x, y, z) \in [-1, 1]^3$$

- Cada pixel "tem" uma unidade ao quadrado centrado em coordenadas inteiras; e os limites da imagem ultrapassam bordas em meia unidade; e as menores coordenadas do centro do pixel são (0, 0).
- Se estamos a desenhar plano de projeçnao (ou janela na tela), que tem n_x por n_y pixels, precisamos mapear o quadrado [-1, 1]² para o retângulo [-0.5, n_x 0,5] \times [-0.5, n_y 0,5].

 Porque a transformação de janela mapeia um retângulo com os eixos alinhados para outro retângulo (retângulo de pixels), a transformação de janela é dada por:

$$\begin{bmatrix} x_{\text{screen}} \\ y_{\text{screen}} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{\text{canonical}} \\ y_{\text{canonical}} \\ 1 \end{bmatrix}$$

- Note que a coordenada z é ignorada na matriz de transformação de janela. Isso ocorre porque a profundidade do ponto não afeta a posição deste na imagem projetada.
- Porém, se for importante considerar a coordenada z, então uma linha e uma coluna são acrescentadas na matriz.

Matriz de transformação de janela

$$M_{\text{vp}} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- É usual projetar geometrias em algum espaço que não seja o volume de visualização canônica (valores estão no [-1, 1]).
- Primeiro vamos generalizar a vista e manteremos a direção da vista e orientação fixa, olhando ao longo de –z e +y. Mas, permitiremos que retângulos arbitrários sejam visualizados.
- Em vez de substituir a matriz de transformação de janela, vamos aumentá-la, multiplicando-a por outra matriz.

- O volume de visualização é uma caixa alinhada a eixo e vamos nomear as coordenadas dos seus lados de modo que o volume contém [l,r]x[b,t],[f,n].
- Chamamos esta caixa de volume de visão ortográfica.

 Referimo-nos aos planos, como segue:

$$x = I = plano da esquerda$$

$$x = r = plano da direita$$

$$y = b = plano da base$$

$$y = t = plano do topo$$

$$z = n = plano próximo$$

$$z = f = plano longe$$

 Esse vocabulário assume que o observador está posicionado no eixo –z, com a sua face na direção de y.

• Se quisermos transformar a visão ortográfica em volume de visualização canônica (valores estão no [-1, 1]), aplicamos a matriz de transformação de projeção ortográfica:

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Para desenhar linhas 3D em um volume de visão ortográfica, os projetamos na tela com os valores das coordenadas x e y e ignoramos a coordenada z.
- Assim, multiplicamos as matrizes de transformação de janela e de projeção ortográfica.

Matriz de transformação de janela

$$M_{
m vp} = egin{bmatrix} rac{n_x}{2} & 0 & 0 & rac{n_x - 1}{2} \ 0 & rac{n_y}{2} & 0 & rac{n_y - 1}{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de transformação de projeção ortográfica

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$egin{bmatrix} x_{ ext{pixel}} \ y_{ ext{pixel}} \ z_{ ext{canonical}} \ 1 \ \end{bmatrix} = (\mathbf{M}_{ ext{vp}} \mathbf{M}_{ ext{orth}}) egin{bmatrix} x \ y \ z \ 1 \ \end{bmatrix}$$

Transformação de câmera

- Há muitas maneiras de se mudar o ponto de vista para visualizar algo no espaço 3D.
- Usaremos a seguinte notação:

e é a posição dos olhos do observador

g é a direção do olhar

t é o vetor para olhar para cima

Transformação de câmera

e é a posição dos olhos do observador
g é a direção do olhar
t é o vetor para olhar para cima

 Assim, podemos definir um sistema de coordenadas com base nos vetores uvw.

Transformação de câmera

 Assim, podemos definir um sistema de coordenadas com base nos vetores uvw.

$$\mathbf{w} = -\frac{\mathbf{g}}{\|\mathbf{g}\|},$$
 $\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|},$
 $\mathbf{v} = \mathbf{w} \times \mathbf{u}.$

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

 Na projeção em perspectiva, os olhos do observador estão localizados sobre o eixo z.

 Na projeção em perspectiva, o tamanho de um objeto é proporcional a 1/z.

$$y_{s=\frac{d}{z}y}$$

onde, y é a distância do ponto sobre o eixo y e y_s é onde o pondo deve ser desenhado na tela.

- Seria bastante conveniente utilizar a matriz de projeção ortográfica e multiplicá-la por alguma outra matriz para obter uma matriz de transformação de projeção em perspectiva.
- Porém, devemos saber, minimamente, o que são coordenadas homogêneas e transformações afins.

Coordenadas Homogêneas

- Introduzida em Matemática
- Adiciona uma terceira coordenada $w \begin{bmatrix} y \\ w \end{bmatrix}$
- Um ponto 2D passa a ser um vetor com 3 coordenadas
- 2 pontos são iguais se e somente se: $\frac{x'}{w'} = \frac{x}{w} e \frac{y'}{w'} = \frac{y}{w}$
- Homogeneizar: dividir por w

- Com a mesma lógica das coordenadas homogêneas, que permitem transformações afins (tema para aulas após a P2), poderemos utilizar a matriz de projeção ortográfica para obtermos a matriz de projeção em perspectiva.
- As coordenadas homogêneas auxiliam na criação de novas bases ortogonais.

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

 Na projeção em perspectiva, todas as coordenadas nos eixos y, e d mudam em função de y. Portanto, há um deslocamento apenas em um eixo e o valor de y_s e d devem ser computados a cada movimento da câmera no eixo y.

 Então, para implementar a transformação dos pixels da figura, pode-se aplicar a matriz de transformação:

$$\begin{bmatrix} y_s \\ 1 \end{bmatrix} \sim \begin{bmatrix} d & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \\ 1 \end{bmatrix}$$

para
$$y_{s=\frac{d}{z}y}$$

Transformação de projeção ortográfica

- Na projeção ortográfica, adotamos que
 z = n = plano próximo
- Porém, na projeção em perspectiva, o plano da imagem é -n.
- Assim, o mapeamento a ser feito é $y_s = \left(\frac{n}{z}\right) y$ e isso é similar para o eixo x.

Projeção ortográfica z = n = plano próximo

• Assim, a matriz de perspectiva é:

$$\mathbf{P} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 Há muitas matrizes que mapeiam projeção ortográfica para perspectiva, todas elas distorcem a coordenada z de forma não linear.

 Ao concatenar a matriz perspectiva com a matriz de transformação de projeção ortográfica, teremos:

$$M_{per} = M_{orth}P$$

• Assim, a M_{per} tem a seguinte aparência:

$$\mathbf{M}_{\text{per}} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- As explicações matemáticas sobre como se chega a cada matriz são melhor detalhadas nas leituras.
- Também, em disciplinas do programa de pósgraduação da UFABC, as explicações matemáticas podem ser revisadas.
- Por questões de priorização, as matrizes de transformação são apenas apresentadas nesta disciplina, sem as deduções.

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

Propriedades das projeções em perspectiva

- As transformações em perspectiva levam linhas a linhas e planos a planos.
- Levam segmentos de reta do volume de visão a segmentos de reta no volume canônico.
- Assim, ao expandir essas propriedades, concluímos que as transformações em perspeciva levam vértices e arestas de triângulo para outro triângulo. Também, levam planos de uma projeção para planos em outra projeção.

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

Campo de visão

 Nós podemos especificar qualquer janela utilizando o (*I, r, b, t*) e *n* valores, às vezes gostaríamos de ter um sistema mais simples, no qual nós olhamos através do centro da janela. Isto implica a restrição de que:

$$l = -r$$

$$b = -t$$

Campo de visão

 Se também adicionarmos a restrição de que os pixels são quadrados, isto é, não há distorção na forma da imagem, então a relação de r a t deve ser a mesma que a relação entre o número de pixels horizontais com o número de pixels verticais:

$$\frac{n_x}{n_y} = \frac{r}{t}$$

Sumário

- Transformações de visualização
- Transformações de projeção
- Projeções em perspectiva
- Propriedades das projeções em perspectiva
- Campo de visão

Aula de hoje

Shirley, Peter, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics. CRC Press, 3rd Edition, 2009.

Capítulo 7

Fim da Aula 09

André Luiz Brandão

