Chương 3: Tích phân phụ thuộc tham số

Giảng viên: PGS.TS. Nguyễn Duy Tân tan.nguyenduy@hust.edu.vn

Viên Toán ƯDTH, HUST

Nội dung

- 🚺 3.1. Tích phân xác định phụ thuộc tham số
 - 3.1.1. Định nghĩa
 - 3.1.2. Tính liên tục, khả vi, khả tích
- 3.2. Tích phân suy rộng phụ thuộc tham số
 - 3.2.1. Định nghĩa
 - 3.2.2. Tiêu chuẩn hội tụ đều
 - 3.2.3. Tính liên tục, khả vi, khả tích
- ③ 3.3. Tích phân Euler
 - 3.3.1. Hàm Gamma
 - 3.3.2. Hàm Beta

3.1.1. Định nghĩa

Cho hàm $f:[a,b]\times[c,d]\to\mathbb{R}$. Giả sử với mỗi $t\in[c,d]$ cố định, hàm số f(x,t) khả tích trên [a,b]. Ta định nghĩa hàm $I:[a,b]\to\mathbb{R}$ như sau

$$I(t) = \int_{a}^{b} f(x, t) dx.$$

Ta gọi I(t) là tích phân phụ thuộc tham số t.

3.1.2. Tính liên tục, khả vi, khả tích

Định lý

Nếu f(x,t) liên tục trên $[a,b] \times [c,d]$ thì I(t) liên tục [c,d].

$$\lim_{t \to t_0} \int_a^b f(x, t) dx = \int_a^b \lim_{t \to t_0} f(x, t) dx = \int_a^b f(x, t_0) dx.$$

(Có thể đưa lim vào trong tích phân.)

Sơ lược chứng minh

• Xét $t_0 \in [c, d]$ bất kỳ, và $\epsilon > 0$ cho trước.

$$|I(t)-I(t_0)|=|\int_a^b (f(x,t)-f(x,t_0))|dx \leq \int_a^b |f(x,t)-f(x,t_0)|dx.$$

- Vì f(x, t) liên tục trên hình chữ nhật $R = [a, b] \times [c, d]$ nên nó liên tục đều trên R.
- Với mọi $\epsilon > 0$ cho trước, tồn tại $\delta > 0$ sao cho:

$$|f(x_1,t)-f(x_2,t_0)|<\frac{\epsilon}{b-a+1},\quad\forall |x_1-x_2|<\delta, |t-t_0|<\delta.$$

• Nói riêng, với $|t-t_0|<\delta$,

$$|I(t)-I(t_0)| \leq \int_a^b |f(x,t)-f(x,t_0)| \leq (b-a)\frac{\epsilon}{b-a+1} < \epsilon.$$

I liên tục tại t₀.

Ví dụ (GK20201)

Cho hàm số $I(y)=\int_{-1}^1 \sqrt{x^4+x^2+y^4}dx$. Xét tính liên tục của I(y). Từ đó tìm $\lim_{y\to 0} I(y)$.

- Hàm $f(x,y) = \sqrt{x^4 + x^2 + y^4}$ liên tục trên mọi hình chữ nhật $[-1,1] \times [c,d]$.
- Do vậy I(y) liên tục trên mọi đoạn đóng [c,d]. Do đó I(y) liên tục trên \mathbb{R} .

•

$$\lim_{y \to 0} I(y) = I(0) = \int_{-1}^{1} \sqrt{x^4 + x^2} dx = 2 \int_{0}^{1} \sqrt{x^4 + x^2} dx$$
$$= \int_{0}^{1} \sqrt{1 + x^2} d(1 + x^2) = \frac{2}{3} (1 + x^2)^{3/2} \Big|_{0}^{1} = \frac{2}{3} (2\sqrt{2} - 1).$$

Tính khả tích

Định lý

Nếu hàm f(x,t) liên tục trên [a,b] imes [c,d] thì I(t) khả tích trên [c,d] và

$$\int_{c}^{d} I(t)dt = \int_{c}^{d} dt \int_{a}^{b} f(x,t)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,t)dt.$$

Tính khả vi

Định lý

Nếu hàm f(x,t) và đạo hàm riêng $f_t'(x,t)$ liên tục trên $[a,b]\times [c,d]$, thì I(t) có đạo hàm trên [c,d] và

$$I'(t) = \int_a^b f_t'(x, t) dx.$$

$$\frac{d}{dt}I(t) = \int_{a}^{b} \frac{\partial f}{\partial t}(x, t) dx$$

Có thể đưa dấu đạo hàm vào trong tích phân.

Sơ lược chứng minh

- Đặt $J(t) = \int_a^b f_t'(x,t) dx$. Khi đó J(t) là hàm liên tục trên [c,d]
- Với mọi $y \in [c, d]$ ta có

$$VT = \int_{c}^{y} J(t)dt = \int_{c}^{y} \int_{a}^{b} f'_{t}(x, t) dxdt = \int_{a}^{b} \int_{c}^{y} f'_{t}(x, t) dtdx$$
$$= \int_{a}^{b} (f(x, t)|_{c}^{y}) dx = \int_{a}^{b} f(x, y) dx - \int_{a}^{b} f(x, c) dx = VP.$$

- Lấy đạo hàm VT và VP.
- Đạo hàm của VT bằng J(y).
- Đạo hàm của VP bằng I'(y).
- Vậy I'(t) = J(t).

Ví dụ

$$\int_{0}^{1} x^{t} dx = \frac{1}{t+1} (t > -1). \Rightarrow \frac{d}{dt} \int_{0}^{1} x^{t} dx = \int_{0}^{1} \frac{\partial}{\partial t} (x^{t}) dx \Rightarrow$$

$$\int_{0}^{1} x^{t} \ln x dx = -\frac{1}{(t+1)^{2}}.$$

- (Putnam 2005, A5) Tính $\int_{0}^{1} \frac{\ln(x+1)}{x^2+1} dx$.
- Tính $\int_{0}^{\pi} e^{\cos(x)} \cos(\sin x) dx$.

Ví dụ (GK20162)

Cho hàm số $f(y) = \int_0^{\pi/2} \ln(y^2 \sin^2 x + \cos^2 x) dx$. Tính f'(1).

- Hàm $F(x, y) = \ln(y^2 \sin^2 x + \cos^2 x)$ và đạo hàm riêng $F'_y(x, y) = \frac{2y \sin^2 x}{y^2 \sin^2 x + \cos^2 x}$ liên tục trên $[0, \pi/2] \times [1/2, 2]$.
- ullet Do vậy hàm f(y) khả vi trên [1/2,2] và

$$f'(y) = \int_0^{\pi/2} \frac{2y \sin^2 x}{y^2 \sin^2 x + \cos^2 x} dx.$$

•
$$f'(1) = \int_{0}^{\pi/2} \frac{2\sin^2 x}{\sin^2 x + \cos^2 x} dx = \int_{0}^{\pi/2} (1 - \cos(2x)) dx = \pi/2.$$

Tích phân phụ thuộc tham số với cận biến thiên

Cho hàm f(x,t) khả tích trên $[a,b] \times [c,d]$. Cho hai hàm $\alpha(t),\beta(t)$ xác định trên [c,d] với $a \leq \alpha(t),\beta(t) \leq b, \ \forall t \in [c,d]$. Xét tích phân phụ thuộc tham số với cận biến thiên $I(t) = \int_{\alpha(t)}^{\beta(t)} f(x,t) dx$

Định lý (Tính liên tục)

Nếu f liên tục trên $[a, b] \times [c, d]$, các hàm $\alpha(t)$, $\beta(t)$ liên tục trên [c, d] và nhận giá trị trong [a, b], thì I(t) liên tục trên [c, d].

Định lý (Tính khả vi) (Công thức Leibniz)

Nếu hàm f(x,t) và đạo hàm riêng $f'_t(x,t)$ liên tục trên $[a,b] \times [c,d]$, và các hàm $\alpha(t)$, $\beta(t)$ khả vi trên [c,d], thì I(t) có đạo hàm trên [c,d] và

$$I'(t) = \int_{\alpha(t)}^{\beta(t)} f'_t(x,t) dx + f(\beta(t),t) \beta'(t) - f(\alpha(t),t) \alpha'(t).$$

Ví dụ (GK20192)

Tìm giới hạn
$$\lim_{y\to 0} \int_{y}^{\pi/2} \sin(x^2y + 2x + y^2) dx$$
.

- Hàm lấy tích phân và các cận là các hàm liên tục.
- Do vậy $I(y) = \int\limits_{y}^{\pi/2} \sin(x^2y + 2x + y^2) dx$ liên tục.

$$\lim_{y \to 0} \int_{y}^{\pi/2} \sin(x^2y + 2x + y^2) dx = I(0) = \int_{0}^{\pi/2} \sin(2x) dx = -\frac{\cos(2x)}{2} \Big|_{0}^{\pi/2} = 1.$$

Ví dụ (GK20192)

Cho hàm số $I(y) = \int_{y}^{1} \sin(x^2 + xy + y^2) dx$. Tính I'(0).

- Hàm số lấy tích phân $f(x,y) = \sin(x^2 + xy + y^2)$ và đạo hàm riêng f_y' là các hàm liên tục. Các cận lấy tích phân là các hàm khả vi.
- Do vậy I(y) khả vi và

$$I'(y) = \int_{y}^{1} f'_{y}(x, y) dx - f(y, y)$$

=
$$\int_{y}^{1} (x + 2y) \cos(x^{2} + xy + y^{2}) dx - \sin(3y^{2}).$$

• $I'(0) = \int_0^1 x \cos(x^2) dx - \sin 0 = \frac{1}{2} \sin 1$.

Một số bài tập

- (GK20152) Tìm giới hạn $\lim_{y\to 0} \int_{-1}^{1} \frac{x^{2015}\cos(xy)}{1+x^2+2y^2} dx$.
- (CK20182) Tìm giới hạn $\lim_{x\to 0}\int\limits_{\pi/4}^{\pi/3}\frac{1}{x^4+\sin^2y}dy$.
- (GK20181) Tìm giới hạn $\lim_{y\to 0} \int\limits_{\frac{1}{2}+y^2}^{\sin y} \frac{\arcsin(x+3y)}{\sqrt{1-x^2+3y^2}} dx$.

3.2.1. Định nghĩa

• Cho hàm $f\colon [a,+\infty] \times [c,d] \to \mathbb{R}$. Giả sử với mỗi $t\in [c,d]$ cố định, tích phân suy rộng

$$I(t) = \int_{a}^{+\infty} f(x, t) dx$$

hội tụ. Ta gọi I(t) là tích phân suy rộng phụ thuộc tham số t.

• Ta nói tích phân suy rộng I(t) hội tụ đều trên [c,d] nếu với mọi $\epsilon>0$, tồn tại A>a sao cho:

$$b \ge A \Rightarrow \left| I(t) - \int_a^b f(x,t) dx \right| = \left| \int_b^{+\infty} f(x,t) dx \right| < \epsilon, \quad \forall t \in [c,d].$$

• Nhận xét: (Giả sử với mỗi $t \in [c,d]$, hàm f(x,t) khả tích trên [a,b] với mọi b>a.) Khi đó tích phân suy rộng $\int_a^{+\infty} f(x,t) dx$ hội tụ đều trên [c,d] nếu và chỉ nếu tích phân suy rộng $\int_u^{+\infty} f(x,t) dx$ hội tụ đều trên [c,d], với u>a.

3.2.2. Tiêu chuẩn hội tụ đều

Tiêu chuẩn Weierstrass

- Cho hàm f(x, t) xác định trên $R = [a, +\infty] \times [c, d]$ và với mỗi $t \in [c, d]$ hàm f(x, t) khả tích trên mỗi đoạn $[a, b], b \ge a$.
- Giả sử tồn tại hàm số $\varphi(x)$ xác định trên $[a,+\infty]$ sao cho $|f(x,t)| \leq \varphi(x)$ với mọi $(x,t) \in R$ và $\int\limits_a^{+\infty} \varphi(x) dx < +\infty.$
- Khi đó tích phân $I(t) = \int_a^{+\infty} f(x,t) dx$ hội tụ tuyệt đối và đều trên [c,d].

Ví dụ

Xét sự hội tụ đều của $I(t)=\int\limits_0^{+\infty}e^{-x}x^tdx$ trên đoạn [0,a], a là số dương cho trước.

- Ta có $|e^{-x}x^t|=e^{-x}x^t\leq e^{-x}x^a$ với mọi $x\geq 1$, $t\in [0,a]$.
- Tích phân $\int_{1}^{+\infty} e^{-x} x^a dx$ hội tụ.
- Theo dấu hiệu Weierstrass, tích phân $\int\limits_1^{+\infty}e^{-x}e^tdx$ hội tụ đều trên [0,a].
- Tích phân $\int_{0}^{+\infty} e^{-x} e^{t} dx$ hội tụ đều trên [0,a].

3.2.3. Tính liên tục, khả vi, khả tích

Định lý (Tính liên tục)

Nếu f liên tục trên $[a, +\infty) \times [c, d]$, và tích phân

$$I(t) = \int_{a}^{+\infty} f(x, t) dx$$
 hội tụ đều trên $[c, d]$,

thì I(t) liên tục trên [c, d].

Định lý (Tính khả tích)

Nếu hàm f(x,t) liên tục trên $[a,+\infty) imes [c,d]$ và

$$I(t) = \int_{a}^{+\infty} f(x, t) dx$$
 hội tụ đều trên $[c, d]$,

thì I(t) khả tích trên [c,d] và

$$\int_{c}^{d} I(t)dt = \int_{c}^{d} dt \int_{a}^{+\infty} f(x,t)dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,t)dt.$$

Định lý (Tính khả vi)

Cho hàm f(x,t) và đạo hàm riêng $f_t'(x,t)$ liên tục trên $[a,+\infty)\times [c,d]$. Giả sử

$$I(t) = \int\limits_{a}^{+\infty} f(x,t) dx$$
 hội tụ và $J(t) = \int\limits_{a}^{+\infty} f_t'(x,t) dx$ hội tụ đều trên $[c,d]$.

Khi đó I(t) có đạo hàm trên [c,d] và

$$I'(t) = \int_{2}^{+\infty} f'_t(x, t) dx.$$

$$\frac{d}{dt}I(t) = \int_{a}^{+\infty} \frac{\partial f}{\partial t}(x, t) dx$$

Ví dụ (GK20193)

Chứng minh rằng hàm số $I(y) = \int\limits_0^{+\infty} \frac{\sin(x^6 + 3y + 2)}{1 + x^6 + y^2} dx$ liên tục và có đạo hàm trên \mathbb{R} .

- Ta chỉ cần chứng minh hàm số I(y) liên tục và có đạo hàm trên mọi đoạn đóng [c,d].
- Hàm $f(x,y) = \frac{\sin(x^6 + 3y + 2)}{1 + x^6 + v^2}$ liên tục trên $[0, +\infty] \times [c, d]$.
- $\left| \frac{\sin(x^6 + 3y + 2)}{1 + x^6 + y^2} \right| \le \frac{1}{1 + x^6}$, với mọi $x \ge 0$, $c \le y \le d$.
- Tích phân $\int_{0}^{+\infty} \frac{1}{1+x^6} dx$ hội tụ.
- Do vậy tích phân I(t) hội tụ đều trên [c, d].
- Suy ra I(t) liên tục trên [c, d].

- $\begin{array}{l} \bullet \ \ {\rm H\`{a}m} \ f_y'(x,y) = \frac{3\cos(x^6+3y+2)}{1+x^6+y^2} \frac{2y\sin(x^6+3y+2)}{1+x^6+y^2} \ \ {\rm li\^{e}n} \ {\rm tuc} \\ {\rm tr\^{e}n} \ [0,+\infty] \times [c,d]. \end{array}$
- Tích phân $\int\limits_0^{+\infty} \varphi(x)$ hội tụ.
- Do vậy $\int\limits_0^{+\infty} f_y'(x,y)dx$ hội tụ đều.
- Như vậy I(t) khả vi.

Ví dụ (CK20172)

Tính tích phân $\int\limits_0^{+\infty} \frac{e^{-ax^2}-e^{-bx^2}}{x} dx$, với a,b>0.

- $\bullet \int_{0}^{+\infty} \frac{e^{-ax^2} e^{-bx^2}}{x} dx = \int_{0}^{+\infty} \left(\int_{a}^{b} x e^{-x^2 y} dy \right) dx.$
- Tích phân $I(y) = \int_{0}^{+\infty} xe^{-x^2y} dx$ hội tụ đều trên [a, b]:
- Vì $xe^{-x^2y} \le xe^{-x^2a}$ với mọi $x \ge 0$ và $y \in [a,b]$ và $\int\limits_0^{+\infty} xe^{-x^2a}dx$ hội tụ.
- Ta có thể đổi thứ tự lấy tích phân

$$\int_{0}^{+\infty} \left(\int_{a}^{b} x e^{-x^{2}y} dy \right) dx = \int_{a}^{b} \int_{0}^{+\infty} x e^{-x^{2}y} dx dy = \int_{a}^{b} \frac{1}{2y} dy = \frac{1}{2} (\ln b - \ln a).$$

Bài tập

- Đọc lại các ví dụ trong giáo trình.
- Làm bài tập trong giáo trình.
- Đọc trước phần kiến thức tiếp theo (Tích phân Euler, tích phân đường,...).

3.3.1. Hàm Gamma

- Với n nguyên dương, $n! = 1 \cdot 2 \cdot \cdot \cdot n$.
- Lý thuyết hàm gamma được phát triển khi giải quyết bài toán mở rộng hàm giai thừa cho cả biến giá trị thực (dương).
- $n! = \int_{0}^{+\infty} x^n e^{-x} dx$ (Euler, khoảng 1730).

Định nghĩa

Hàm gamma là tích phân suy rộng phụ thuộc tham số t

$$\Gamma(t) = \int_{0}^{+\infty} x^{t-1} e^{-x} dx.$$

Xét t > 0 cố định.

- $\int_{a}^{1} e^{-x} x^{t-1} dx < \int_{a}^{1} x^{t-1} dx = \frac{1}{t} \frac{a^{t}}{t} < \frac{1}{t}.$
- Suy ra tồn tại $\int_{0}^{1} e^{-x} x^{t-1} dx = \lim_{a \to 0} \int_{a}^{1} e^{-x} x^{t-1} dx$.
- $e^{x} > \frac{x^{n}}{n!}$, với mọi n tự nhiên. Chọn n > t + 1.
- $e^{-x}x^{t-1} < \frac{n!}{x^{n+1-t}}$.
- $\int_{1}^{b} e^{-x} x^{t-1} dx < \int_{1}^{b} \frac{n!}{x^{n+1-t}} dx = n! \left(\frac{1}{n-t} \frac{1}{b^{n-t}} \right) < \frac{n!}{n-t}.$ Suy ra tồn tại $\int_{1}^{\infty} e^{-x} x^{t-1} dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x} x^{t-1} dx.$

Tính chất

- $\Gamma(t)$ xác định và có đạo hàm mọi cấp tại mọi t>0.
- $\Gamma(1) = 1$.
- $\Gamma(t+1) = t\Gamma(t), t > 0.$
- $\Gamma(n+1) = n!$.
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$
- $\Gamma(n+\frac{1}{2}) = \frac{(2n)!}{n!2^{2n}}\sqrt{\pi} = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{3}{2}\cdot\frac{1}{2}\sqrt{\pi}.$
- ullet $\Gamma(p)\Gamma(1-p)=rac{\pi}{\sin(p\pi)}$, (0 1). (Euler's reflection formula.)

Định lý Bohr-Mollerup

Định lý Bohr-Mollerup (1922)

Hàm $\Gamma(x)$ là hàm duy nhất f trên $(0,+\infty)$ thỏa mãn đồng thời các điều kiện:

- f(1) = 1,
- f(x+1) = xf(x).
- $\log f(x)$ là hàm lồi.

3.3.2. Hàm Beta

Định nghĩa

Hàm Beta là tích phân suy rộng phụ thuộc tham số p, q:

$$B(p,q) = \int_{0}^{1} t^{p-1} (1-t)^{q-1} dt.$$

Tính chất

- Hàm B(p,q) xác định và khả vi mọi cấp, với p>0, q>0.
- $\bullet \ B(p,q) = B(q,p).$
- $\bullet \ B(p+1,q) = \frac{p}{p+q}B(p,q).$
- $B(p,q) = \int_{0}^{+\infty} \frac{t^{p-1}}{(1+t)^{p+q}} dt.$
- $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.
- $\bullet \ \Gamma(p)\Gamma(1-p) = B(p,1-p) = \int\limits_0^{+\infty} \frac{t^{p-1}}{1+t} dt = \frac{\pi}{\sin(p\pi)}.$

Ví dụ (CK20171)

Tính
$$I = \int_0^{+\infty} x^4 e^{-x^2} dx$$
.

- Đổi biến $t = x^2$. Khi đó $dt = 2xdx \Rightarrow dx = \frac{dt}{2\sqrt{t}}$.
- $I = \int_{0}^{+\infty} t^2 e^{-t} \frac{1}{2\sqrt{t}} dt = \frac{1}{2} \int_{0}^{+\infty} e^{-t} t^{3/2} dt = \frac{1}{2} \Gamma(5/2) = \frac{1}{2} \cdot \frac{3}{2} \Gamma(3/2) = \frac{1}{2} \cdot \frac{3}{2} \Gamma(1/2) = \frac{3\sqrt{\pi}}{8}.$

Ví dụ (CK20192)

Tính
$$I = \int_{1}^{+\infty} \frac{(\ln x)^{3/2}}{x^4} dx$$
.

- Đổi biến $t = \ln x$. Khi đó $x = e^t$ và $dx = e^t dt$.
- $I = \int_{0}^{+\infty} t^{3/2} e^{-4t} e^{t} dt = \int_{0}^{+\infty} t^{3/2} e^{-3t} dt.$
- Đổi biến $u = 3t \Leftrightarrow t = u/3$.

•
$$I = \int_{0}^{+\infty} \frac{1}{3^{3/2}} u^{3/2} e^{-u} \frac{1}{3} du = \frac{1}{9\sqrt{3}} \int_{0}^{+\infty} u^{3/2} e^{-u} du = \frac{1}{9\sqrt{3}} \Gamma(5/2) = \frac{1}{9\sqrt{3}} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma(1/2) = \frac{\sqrt{\pi}}{12\sqrt{3}}.$$

Một số bài tập

- Xem ví dụ và bài tập trong giáo trình.
- (CK20161) Tính $\int_{0}^{1} x^{5} (\ln x)^{10} dx$.
- (CK20182) Tính $\int_{0}^{+\infty} x^{6}3^{-x^{2}}dx$.
- (CK20152) Tính $\int_{0}^{+\infty} x^{25} e^{-x^2} dx$.
- (CK20152) Tính $\int_{0}^{+\infty} x^{6} e^{-\sqrt{x}} dx$.
- (CK20142) Tính $\int_{0}^{+\infty} x^{9} e^{-x^{4}} dx$.

Ví dụ (CK20152)

Tính tích phân $\int_{-\infty}^{0} e^{2x} \sqrt[3]{1 - e^{3x}} dx.$

- Đặt $t=e^{3x}$, $t\colon 0\to 1$. Khi đó $x=\frac{1}{3}\ln t$ và $dx=\frac{1}{3t}dt$.
- $I = \int_{0}^{1} t^{2/3} (1-t)^{1/3} \frac{1}{3t} dt = \frac{1}{3} B(2/3, 4/3) = \frac{1}{3} \frac{\Gamma(2/3)\Gamma(4/3)}{\Gamma(2)} = \frac{1}{3} \Gamma(2/3) \frac{1}{3} \Gamma(1/3) = \frac{1}{9} \Gamma(2/3)\Gamma(1/3) = \frac{1}{9} \frac{\pi}{\sin(\pi/3)} = \frac{2\pi}{9\sqrt{3}}.$

Ví dụ (CK20182)

Tính tích phân $\int_{1}^{+\infty} \frac{x^2}{(1 \pm \sqrt{4})^4} dx.$

• Đặt
$$t = x^4 \to x = t^{1/4} \to dx = \frac{t^{-3/4}}{4} dt$$
.

Một số bài tập

- (CK20152) Tính tích phân $\int_{0}^{1} \sqrt[4]{\frac{x^3}{(1-\sqrt{x})^2}} dx.$
- (CK20162) Tính tích phân $\int\limits_0^{+\infty} \frac{1}{(1+x^2)\sqrt[5]{x^4}} dx$.
- (CK20171) Tính tích phân $\int\limits_0^{+\infty} \frac{1}{(1+4x^4)^2} dx$.
- (CK20192) Tính tích phân $\int\limits_{-\infty}^{+\infty} \frac{e^{x/4}}{(1+e^x)^2} dx$.
- (CK20193) Tính tích phân $\int\limits_0^{+\infty} \frac{x^5}{1+x^{2000}} dx.$
- CMR: $\int_{0}^{\pi/2} (\sin x)^{2p-1} (\cos x)^{2q-1} dx = \frac{1}{2} \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \ (p, q > 0).$