The single most comprehensive and unified source of information about mathematical functions.

Abs

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Absolute value function

Traditional notation

|z|

Mathematica StandardForm notation

Abs[z]

Primary definition

$$|x| = x /; x \in \mathbb{R} \land x \ge 0$$

$$|x| = -x/; x \in \mathbb{R} \land x < 0$$

$$|z| = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$$

|z| is the absolute value of z. The absolute value (or modulus) of a complex number z is the Euclidean distance from z to the origin.

Specific values

Specialized values

$$|x| = \operatorname{sgn}(x) x /; x \in \mathbb{R}$$

$$|i\,x| = x\,/; \, x \in \mathbb{R} \wedge x \ge 0$$

$$|i x| = -x/; x \in \mathbb{R} \land x < 0$$

$$|x + iy| = \sqrt{x^2 + y^2} /; x \in \mathbb{R} \land y \in \mathbb{R}$$

Values at fixed points

12.01.03.0005.01

|0| = 0

12.01.03.0006.01

|1| = 1

12.01.03.0007.01

|-1| == 1

12.01.03.0008.01

|i| == 1

12.01.03.0009.01

|-i| == 1

12.01.03.0021.01

 $|1 + i| = \sqrt{2}$

12.01.03.0022.01

 $|-1 + i| = \sqrt{2}$

12.01.03.0023.01

 $|-1-i|==\sqrt{2}$

12.01.03.0024.01

 $|1 - i| = \sqrt{2}$

12.01.03.0025.01

 $\left|\sqrt{3} + i\right| = 2$

12.01.03.0026.01

 $\left|1+i\sqrt{3}\right|=2$

12.01.03.0027.01

 $\left|-1+i\sqrt{3}\right|=2$

12.01.03.0028.01

 $\left|-\sqrt{3}+i\right|=2$

12.01.03.0029.01

 $\left|-\sqrt{3}-i\right|=2$

12.01.03.0030.01

 $|-1 - i\sqrt{3}| = 2$

12.01.03.0031.01

 $\left|1-i\sqrt{3}\right|=2$

12.01.03.0032.01

 $\left|\sqrt{3} - i\right| = 2$

12.01.03.0010.01

|2| = 2

12.01.03.0011.01

|-2| = 2

```
|\pi| = \pi
|2.01.03.0012.01
|3 i| = 3
|2.01.03.0014.01
|-2 i| = 2
|2.01.03.0015.01
|2 + i| = \sqrt{5}
```

Values at infinities

```
|\infty| = \infty
|2.01.03.0016.01
|-\infty| = \infty
12.01.03.0017.01
|-\infty| = \infty
12.01.03.0018.01
|i \infty| = \infty
12.01.03.0019.01
|-i \infty| = \infty
12.01.03.0020.01
|\tilde{\infty}| = \infty
```

General characteristics

Domain and analyticity

|z| is nonanalytical function; it is a real-analytic function of the variable z for $z \neq 0$.

```
12.01.04.0001.01
z \longrightarrow |z| :: \mathbb{C} \longrightarrow \mathbb{R}
```

Symmetries and periodicities

Parity

|z| is an even function.

|-z| == |z|

Mirror symmetry

 $\begin{aligned} & 12.01.04.0003.01 \\ & |\bar{z}| = |z| \end{aligned}$

Periodicity

No periodicity

Homogeneity

12.01.04.0004.01

|a z| = |a| |z|

Scale symmetry

12.01.04.0005.01

$$|z^a| = |z|^a /; a \in \mathbb{R}$$

Sets of discontinuity

The function |z| is continuous function in \mathbb{C} .

$$\mathcal{DS}_z(|z|) = \{\}$$

Series representations

Other series representations

12.01.06.0001.01

$$|x| = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{4 \cdot k^2 - 1} T_{2k}(x) + \frac{2}{\pi} /; x \in \mathbb{R} \land -1 < x < 1$$

12.01.06.0002.01

$$|x| = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} \left(2 k + \frac{1}{2} \right) \left(-\frac{1}{2} \right)_k P_{2k}(x) /; x \in \mathbb{R} \land -1 < x < 1$$

12.01.06.0003.01

$$|x| = \frac{1}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \left(-\frac{1}{2} \right)_k H_{2k}(x) /; x \in \mathbb{R} \land -1 < x < 1$$

Limit representations

12.01.09.0001.01

$$|x| = \lim_{n \to \infty} x \frac{p_n(x) - p_n(-x)}{p_n(-x) + p_n(x)} /; n \in \mathbb{N} \bigwedge -1 < x < 1 \bigwedge p_n(x) = \prod_{k=0}^{n-1} \left(x + e^{-\frac{k}{\sqrt{n}}} \right)$$

Differential equations

Ordinary linear differential equations and wronskians

In a distributional sense:

12.01.13.0001.01

$$w'(x) = \theta(x) - \theta(-x) /; w(x) == |x|$$

Transformations

Transformations and argument simplifications

Argument involving basic arithmetic operations

$$|z| = |z|$$

$$|z| = |z|$$

$$|z| = |z|$$

$$|z| = |z| + |z|$$

$$|z| = |z| + |z|$$

$$|z| = |z| + |z|$$

$$|z| = |z|$$

Addition formulas

$$\begin{aligned} &12.01.16.0007.01\\ |x+iy| &= \sqrt{x^2 + y^2} \ /; \ x \in \mathbb{R} \ \bigwedge y \in \mathbb{R} \end{aligned}$$

$$&12.01.16.0008.01\\ |z_1 + z_2| &= ||z_1| - |z_2|| + |z_1| + |z_2| - |z_1 - z_2|$$

Multiple arguments

$$|a z| = a |z| /; a \in \mathbb{R} \land a > 0$$

$$|a z| = a |z| /; a \in \mathbb{R} \land a > 0$$

$$|iz| = |z|$$

$$|z| = |z|$$

Power of arguments

$$|x^{a}| = x^{\text{Re}(a)} /; x \in \mathbb{R} \land x > 0$$

12.01.16.0017.01

$$|z^{a}| = |z|^{a} /; a \in \mathbb{R}$$
12.01.16.0018.01

$$|z^{a}| = \exp(i a \operatorname{Im}(\log(z))) /; i a \in \mathbb{R}$$
12.01.16.0019.01

$$|z^{a}| = \exp(i a \operatorname{arg}(z)) /; i a \in \mathbb{R}$$
12.01.16.0020.01

$$|z^{a}| = \exp(\operatorname{Re}(a \log(z)))$$
12.01.16.0021.01

$$|z^{a}| = \exp(\operatorname{Re}(a) \log(|z|) - \operatorname{Im}(a) \operatorname{arg}(z))$$
12.01.16.0022.01

$$|z^{a}| = |z|^{\operatorname{Re}(a)} \exp(-\operatorname{Im}(a) \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z)))$$
12.01.16.0023.01

$$|z^{a}| = |z|^{\operatorname{Re}(a)} \exp(-\operatorname{Im}(a) \operatorname{arg}(z))$$

Exponent of arguments

$$|e^{x+iy}| = e^{x}$$

$$|e^{x+iy}| = e^{x}$$

$$|e^{x}| = e^{x}$$

Products, sums, and powers of the direct function

Products of the direct function

$$|z_1| |z_2| = |z_1| z_2|$$

Powers of the direct function

$$|z|^{a} = |z^{a}| /; a \in \mathbb{R}$$

Sums of powers of the direct function

$$|z_1|^2 + |z_2|^2 = \frac{1}{2} \left(|z_1 - z_2|^2 + |z_1 + z_2|^2 \right)$$

Complex characteristics

Real part

12.01.19.0001.01

$$Re(|x + i y|) = \sqrt{x^2 + y^2}$$

$$12.01.19.0002.01$$

$$Re(|z|) == |z|$$

Imaginary part

$$12.01.19.0003.01$$

$$Im(|x + i y|) = 0$$

$$12.01.19.0004.01$$

$$Im(|z|) = 0$$

Absolute value

$$||x + i y|| = \sqrt{x^2 + y^2}$$

$$||z|| = |z|$$

Argument

$$12.01.19.0007.01$$

$$\arg(|x + i y|) = 0$$

$$12.01.19.0008.01$$

$$\arg(|z|) = 0$$

Conjugate value

$$\frac{12.01.19.0009.01}{|x+iy|} = \sqrt{x^2 + y^2}$$

$$\frac{12.01.19.0010.01}{|z|} = |z|$$

Signum value

$$12.01.19.0011.01$$

$$sgn(|x + i y|) = 1 /; x + i y \neq 0$$

$$12.01.19.0012.01$$

$$sgn(|z|) = 1 /; z \neq 0$$

Differentiation

Low-order differentiation

In a distributional sense, for $x \in \mathbb{R}$:

$$\frac{\partial |x|}{\partial x} = \operatorname{sgn}(x)$$

12.01.20.0002.01

$$\frac{\partial^2 |x|}{\partial x^2} = 2 \, \delta(x)$$

Fractional integro-differentiation

$$\frac{\partial^{\alpha} |x|}{\partial x^{\alpha}} = \frac{|x| x^{-\alpha}}{\Gamma(2-\alpha)}$$

Integration

Indefinite integration

Involving only one direct function

For $x \in \mathbb{R}$:

$$\int |x| \, dx = \frac{x \, |x|}{2}$$

Definite integration

For the direct function itself

12.01.21.0002.01
$$\int_{-1}^{1} |t| \, dt = 1$$
12.01.21.0003.01
$$\int_{-a}^{a} |t| \, dt = a \sqrt{\text{Im}(a)^2 + \text{Re}(a)^2}$$
12.01.21.0004.01
$$\int_{-a}^{a} t^k |t| \, dt = \frac{\left(1 + (-1)^k\right) a^{k+2}}{k+2} /; \, a \in \mathbb{R} \land a > 0 \land \text{Re}(k) > -2$$

Involving the direct function

$$12.01.21.0005.01$$

$$\int_{-\infty}^{\infty} e^{-|t|} dt = 2$$

$$12.01.21.0006.01$$

$$\int_{-\infty}^{\infty} \frac{\cos(t)}{\sqrt{|t|}} dt = \sqrt{2\pi}$$

$$12.01.21.0007.01$$

$$\int_{-\infty}^{\infty} \frac{\sin(t)}{\sqrt{|t|}} dt = 0$$

Contour integration

$$\int_{C} \frac{z^{m-1}}{|z-w|^{2(n+1)}} dz = 2\pi i \left(\frac{\theta(|w|-\rho)}{k} \left(\sum_{k=0}^{n} {k+n \choose k} {m+n \choose n-k} \frac{\rho^{2(k+m)}}{\overline{w}^{m} (|w|^{2}-\rho^{2})^{k+n+1}} \right) + \theta(\rho-|w|) \left(\sum_{k=0}^{n} {k+n \choose k} {m+n \choose n-k} \frac{w^{m} |w|^{2k}}{(\rho^{2}-|w|^{2})^{k+n+1}} \right) \right) / ;$$

$$n \in \mathbb{N} \land m \in \mathbb{N} \land w \neq 0 \land |w| \neq \rho$$

In the last formula C is a positively oriented circle around the origin with radius ρ .

Integral transforms

Fourier exp transforms

$$\mathcal{F}_t[|t|](x) = -\sqrt{\frac{2}{\pi}} \frac{1}{x^2}$$

$$\mathcal{F}_t \left[\frac{1}{\sqrt{|t|}} \right] (x) = \frac{1}{\sqrt{|x|}}$$

$$\mathcal{F}_{t}[|t|^{\alpha}](x) = -\sqrt{\frac{2}{\pi}} |x|^{-\alpha - 1} \Gamma(\alpha + 1) \sin\left(\frac{\pi \alpha}{2}\right) /; \operatorname{Re}(\alpha) > -1$$

$$\mathcal{F}_{t}[|t|^{\alpha}\operatorname{sgn}(t)](x) = i\sqrt{\frac{2}{\pi}}|x|^{-\alpha-1}\cos\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)\operatorname{sgn}(x)/;\operatorname{Re}(\alpha) > -1$$

Inverse Fourier exp transforms

$$\mathcal{F}_t^{-1}[|t|](z) = -\sqrt{\frac{2}{\pi}} \frac{1}{z^2}$$

Fourier cos transforms

$$\mathcal{F}c_t[|t|](z) = -\sqrt{\frac{2}{\pi}} \frac{1}{z^2}$$

Fourier sin transforms

$$\mathcal{F}s_t[|t|](z) = -\sqrt{\frac{\pi}{2}} \delta'(z)$$

Laplace transforms

12 01 22 0005 01

$$\mathcal{L}_t[|t|](z) = \frac{1}{z^2}$$

Representations through more general functions

Through Meijer G

Classical cases involving cosh

12.01.26.0001.01

$$|1 - x|^{\nu} \cosh\left(\nu \tanh^{-1}\left(\frac{2\sqrt{x}}{x+1}\right)\right) = \frac{\sqrt{\pi}}{\Gamma(-\nu)} \Gamma\left(\nu + \frac{1}{2}\right) G_{2,2}^{1,1} \left(x \middle| \begin{array}{c} \nu + 1, \ \nu + \frac{1}{2} \\ 0, \frac{1}{2} \end{array}\right) /; \ x > 0$$

12 01 26 0002 01

$$|1 - x|^{\nu} \cosh\left(\nu \coth^{-1}\left(\frac{1 + x}{\sqrt{x}}\right)\right) = \frac{\sqrt{\pi}}{\Gamma(-\nu)} \Gamma\left(\nu + \frac{1}{2}\right) G_{2,2}^{1,1} \left(x \middle| \begin{array}{c} \nu + 1, \nu + \frac{1}{2} \\ 0, \frac{1}{2} \end{array}\right) /; x > 0$$

Classical cases involving sinh

12.01.26.0003.0

$$|1 - x|^{\nu} \sinh\left(\nu \tanh^{-1}\left(\frac{2\sqrt{x}}{x+1}\right)\right) = -\frac{\sqrt{\pi}}{\Gamma(-\nu)} \Gamma\left(\nu + \frac{1}{2}\right) G_{2,2}^{1,1} \left(x \middle| \begin{array}{c} \nu + \frac{1}{2}, \nu + 1 \\ \frac{1}{2}, 0 \end{array}\right) /; x > 0$$

12.01.26.0004.01

$$|1 - x|^{\nu} \sinh\left(\nu \coth^{-1}\left(\frac{1 + x}{\sqrt{x}}\right)\right) = -\frac{\sqrt{\pi}}{\Gamma(-\nu)} \Gamma\left(\nu + \frac{1}{2}\right) G_{2,2}^{1,1} \left(x \middle| \begin{array}{c} \nu + \frac{1}{2}, \nu + 1\\ \frac{1}{2}, 0 \end{array}\right) /; x > 0$$

Generalized cases for powers of Abs

12.01.26.0005.01

$$|1 - x|^{\nu} = \frac{\pi}{\Gamma(-\nu)} \sec\left(\frac{\nu \pi}{2}\right) G_{2,2}^{1,1} \left(x \mid \frac{\nu + 1, \frac{\nu + 1}{2}}{0, \frac{\nu + 1}{2}}\right) /; x > 0$$

Representations through equivalent functions

With related functions

With Re

$$|z| = \sqrt{2 z \operatorname{Re}(z) - z^2}$$

With Im

12.01.27.0009.01

$$|z| = \sqrt{z^2 - 2iz \operatorname{Im}(z)}$$

$$|z| = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$$

With Arg

$$|z| == z\, e^{-i\arg(z)}$$

12.01.27.0002.01

$$|z| = z \left(\cos(\arg(z)) - i \sin(\arg(z))\right)$$

12.01.27.0003.01

$$|z| = \frac{\operatorname{Re}(z)}{\cos(\arg(z))}$$

12.01.27.0004.01

$$|z| = \frac{\operatorname{Im}(z)}{\sin(\arg(z))}$$

With Conjugate

$$|z| = \sqrt{z\,\bar{z}}$$

With Sign

$$|z| = \frac{z}{\operatorname{sgn}(z)} /; z \neq 0$$

Inequalities

$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$|z_1-z_2| \geq ||z_1|-|z_2||$$

$$|\mathrm{Re}(z)| \leq |z|$$

$$|\mathrm{Im}(z)| \leq |z|$$

$$|arg(z)| \le \pi$$

$$|\operatorname{sgn}(z)| \le 1$$

$$|z_1|-|z_2|\leq |z_1+z_2|\leq |z_1|+|z_2|$$

Triangle inequality

12.01.29.0008.01

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|$$

Triangle inequality

Zeros

12.01.30.0001.01

$$|z| = 0 /; z = 0$$

History

- -J. R. Argand (1806, 1814) introduced the word "module" for absolute value
- -K. Weierstrass (1841) introduced the notation |x|

Abs is encountered in mathematics and the natural sciences.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.