Topology 1 Lecture 1.

January 7 2014 Machray 415, TR. 8:30-9:45

- · Introduction + Re-schedule!
- · Website will have scanned notes that closely follow the book, but perhaps additional examples.
- "Textbooks: The one we'll use is Kalajdzievski "Illustrated introduction to topology and homotopy".

 (Designed for this course).

 Strongly recommend Munkres if you continue is math.
- Marking. 50/50 probably 5-6 assignments.

Everyone already sow metric spaces, correct?

There we have open sets and closed sets,

compact sets, etc, but all properties were based

upon the idea of openness of a set. So

we formalize this idea.

Definition: A topological space X is a set together with a collection T of subsets of X, satisfying:

(i) \$\operate{\pi}\$ and \$\times\$ are in \$\tau\$,
(ii) If {Ui}i=I are in T, so is UUi
(iii) If U,,, Un are in T, so is ñ Un.
In English: (i) T contains the empty set and the whole set
(ii) Closed under arbitrary unions,
(ii) Closed under arbitrary unions, (iii) Closed under finite intersections.
X nonempty to keep it interestry.

Examples:

- 1) Metric spaces are topological spaces.
 - (i) & and X are open.
 - (ii) Unions open
 - (iii) Intersections are open (take the smallest ball).
- 2) The discrete topology on X is when T = P(X), the power set. (I.e. every set is open).
- 3) The indiscrete topology is T = {\$\psi, X}.

4) The cofinite topology.
Set T = { U < X U = \$ or U is finite }.
We check T is a topology.
(i) I contains of and X. V.
(ii) If {Ui}iEI all have finite complements,
then (UUi) de Morgan De Mui
This is finite, since it is an intersection of finite sets.
So Ulli has finite complement, so it's in T.
(iii) Suppose U,,, Un all have finde complements.
Then $\left(\bigcap_{i=1}^{n}U_{i}\right)^{c} \stackrel{\text{de}}{=} U_{i}^{c}$ $\stackrel{\text{de}}{=} U_{i}^{c}$
This is a union of finitely many sets having finitely many elts each, so it is finite.
Thus Muli has finite complement, so it's in T.

Example: Let X=R and set

 $K = \{\frac{1}{n} \mid n \in \mathbb{Z}, n > 0\}$. Define T to be \emptyset with all unions of intervals (a,b) and sets of the form (a,b)-K. Then T is a topology because:

(i) $\phi \in T$ and $R = \bigcup_{i=1}^{n} (-n, n) \in T$.

(ii) T consists of unions of (a,b) and (a,b)-K, so it's closed under unions.

(iii) closed under finite intersections.

This will follow from later work on bases of topologies.

Ex: A finite topological space. Let $X = \{a, i\}$ and $X = \{a, b, c\}$ and $T = \{\emptyset, \{a, b, c\}, \{a, \}, \{a, b\}\}$.

(i) Is satisfied.

(ii) We check: $\frac{pair}{pair}$ Since $\phi = \{a_ib\} = \{a_ib\} = \{a_ib,c\}$.

(iii) Any intersection is equal to the largest, so it's in T.

Example 5: The countable complement topology on X. Set $T = \{U \subset X \mid U = \emptyset \text{ or } U^c \text{ is countable}\}.$ Then I is a topology, and more or less the same proof works.

Example 6: Let $X = (0,1) \subseteq \mathbb{R}$.

Set T={Un}n=2, where Un=(0, 1-1n), together with ϕ and X. Then T is a topology on X:

- (i) I contains & and X by definition.
 (ii) A union of Un's is either a Un or it is X.

Proof: Consider

Ulli. If I is finite, then there

is a largest i in I. Then Ulli = Uk,

where k is the largest of all numbers in I.
Otherwise there is no largest and UUi = (0,1)
= X & T

(iii) Consider Un, n... n. Unn. Suppose nj is the smallest of the ni's. Then Un n... n Une = Ung & T.

Example 7:

Define a topology on the integers \mathbb{Z}_{e} as follows. Let S(a,b) denote the arithmetic sequence $S(a,b) = \{an+b \mid n \in \mathbb{Z}_{e} \}$, $a \neq 0$.

Let T consist of

· the empty set, and

· all unions of sets of the form S(a,b).

Eg.: S(2,1) is $\{...,-5,-3,-1,1,3,5,...\}$

S(3,2) is $\{...,-7,-4,-1,2,5,8,...\}$. Both are in T. So is

 $S(2,1) \cup S(3,2) = \{..., -7, -5, -4, -3, -1, ... \text{ etc} \}$

We check this is a topology.

- (i) It contains \$\phi\$ and \$\mathbb{Z}\$, \$\mathbb{Z} = S(1,0).
- (ii) To is closed under unions, because if each subject is a union of sets S(a,b), then so is Ulli
- (iii) Closed under finite intersections is a bit tricky. It boils down to checking that

S(a, b,) n S(a2, b2) n... n S(an, bn)
is always in To but this is exactly
the conclusion of the chinese remainder of theorem.

Suppose X has a linear order <, with smallest let element a & X and largest element b & X.

Let T consist of all unions of intervals of the form [a, x), [y, b] and (x, y), where x, y & X. Then this is a topology on X (details to be checked later).

Ex 9: The "usual topology" on IR is actually the order topology.

Jan 9

Recall:

A topology T on a set X is a collection of subsets (the open sets) of X, satisfying:

(i) \$ and X are in T,

(ii) If {UitieI are in T, so 13 Uni

(iii) If U,, ..., Un are in T, 50 is U,n...nUn.

(X,T) together are a topological space.

This is meant to generalized and axismatize the notion of open sets in metric spaces.

Example: Given X a nonempty set; suppose $T = \{\emptyset, X, U_1, U_2, ..., U_n, \bigcup_{i=1}^n Y_i\}$ satisfying $U_i \subset U_2 \subset U_3 \subset ...$ Then the collection T is a topology on X, called the nested topology. Chech that T is a topology:

(i) Ø, x ∈ T by def.

(ii) If {UilieI is an arbitrary collection, there are two cases:

a) If I is finite then {Ui}ieI contains

a largest set U_k (some k,) and $U_k = U_k \in T$. b) If $|T| = \infty$ then $U_i = U_k$, which we've included in T.

(iii) If U,, u, e T, there is a smallest set. Uk (some k), and U, n... n Un= Uk. E T.
Thus T is a topology.

Def: Suppose X is a topological space and A = X. Then a is an interior point of A if there's an open set U (ie if JUET) such that a EUCA.

Example: In the usual (metric) topology on \mathbb{R}^2 , the interior of $[0,1) \times [0,1)$ is $(0,1) \times (0,1)$

But it's not so clear in general.

Example: Consider IR with the cofinite topology, that is,

T= {U = R | U is finite or U = \$\phi\$}.

Consider the subset (a,b) where a and b are finite.

Then any subset $U = (a_1b)$ has infinite complement, so cannot be open. Since (a_1b) contains no open sets, it has no interior points.

Proposition: A subset A of a topological space X is open iff every acA is an interior point.

Proof: (=>) Obvious.

(=) Suppose every point of a 1s an interior point. Then for each a, there's an open set Ua with a \(U = A \). But then A = U U = 1 is a union of open sets, and so is open.

Definition: The set of interior points of A is called the interior of A, and is written intA.

Proposition: If U=A and U is open, then U=intA. (ie to intA the largest open subset of A).

Proof: If UCA and U is open, then every point of U is an interior point and UcintA.

Example:

Consider $(0,1) \subseteq \mathbb{R}$ with the topology $T = \{(0,1-\frac{1}{n}) \mid n \in \mathbb{Z}, n > 0\}$.

Then int $(0, \frac{5}{4})$ is the largest set of the form $(0, 1-\frac{1}{n})$ contained in $(0, \frac{5}{17})$, so it's $(0, \frac{2}{3})$. (Check $\frac{2}{3} < \frac{5}{7} < \frac{3}{4}$).

Example: If R is given the cofinite topology,

int A = A if Ac is frate, and

int A = Ø if A° is infinite, because in this case A cannot contain an open set.

Definition: A subset A of a topological space X is closed if AIX is open.

From the definition of a topology T on X, we get:

Theorem: Suppose (X, T) is a topological space. Then:
(i) Ø, X are closed.

- (ii) IF {Ui]ier are closed, so 13 Mili
- (iii) If U,,.., Un are closed, so is U, u... Ulh.

Proof: De Morgan's Laus.

Remarks: Sets both open and closed (e.g Ø, X).
are sometimes called clopen (ugh).

Example: Consider { \frac{1}{n} \in \mathbb{R} n \in \mathbb{Z}, n > 0 } = K. In the usual topology on R, the set K is not of closed because the complement is not open. On the other hand, if we define a topology Ton R to be consist of: · intervals (a,b) = R · sets (a,b)-K · all unions of these types of sets. (called the K-topology on IR). Then $K^c = \bigcup_{i=1}^{\infty} ((-i, i) - K)$, which is open. So K is closed. Def: An open noted of xeX is an open subset U with xeU. The point x is an accumulation point of A if every open neighbourhood of x contains points of A.

Theorem: A subset $A \subset X$ is closed iff it contains all of its accumulation points.

Proof: (=>) Suppose x 1s an accumulation point of A, and x & A. Then x & Ac and x 1s not an interior point, so Ac is not spen. Therefore A is not closed.

(=) Suppose A contains all its interior points. Then \text{VxeA}^c, \(\frac{1}{2} \text{U s.t. } \text{xeU and } \text{UnA} = \text{\$\pi}, \\ i.e. \text{UCA}^c. \text{Therefore } \text{VxeA}^c, \(\text{x} \) it an interior point of \(A^c \), i.e. \(A^c \) is open. So \(A \) is closed.

Notation: The set of all accumulation points of A will be written A!

Example: In the K-topology on \mathbb{R} , \mathbb{C} is not an accumulation point of \mathbb{K} , because e.g. $\mathbb{D} \in (-1,1)$ - \mathbb{K} is open an contains no points of \mathbb{K} . So in \mathbb{R} with the \mathbb{K} -topology, $\mathbb{K}' = \mathbb{K}$.

For the next theorem (a named one) we need a lemma.

Lemma (Cantor's nested intervals theorem)

Let $I_1 \supset I_2 \supset I_3 \supset ...$ be a set of nested, closed intervals in R. Then $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$.

(Proof: 2nd yr analysis type question).

Recall that a subset of a metric space is bounded if it is contained in some ball B(x, e)

Theorem (Bolzano-Weierstrass) Every bounded, infinite subset of IK has an accumulation point. Proof: WLOG assum A C [0,1] = I, of the intervals [0, 2] and [2,1], choose the one containing infinitely many points of A and call that interval Iz. In general, to create Ins, you cut In into (closed) halves, and choose the a half with infinitely many points from A in it.

Then from Cantor's lemma, \(\int_{n=1}^{\infty}\) In \$\neq \phi\$. Choose ac [] In. Then choose a noble of a, say (a-E, atE). By construction there is a large enough j s.t. I; $C(\alpha-\epsilon, \alpha+\epsilon)$, so $(\alpha-\epsilon, \alpha+\epsilon)$ contains infinitely many points of A since Ij does. Thus every nished of a contains points of A other shan a itself, so a E A'. (i.e. we found an acc. pt). This will be generalized to a top, space in 7.4! Def: The closure of A is the smallest closed subset containing A, and is denoted A. (ie. if A C U and U is closed, then U C A).

Theorem: Let A, B < X.

(a) If A < B then A' < B'

(b) A = AUA'.

Proof: ... Left to the student to read book.

Example: