```
import pandas as pd
import numpy
from sklearn.datasets import load iris
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import
classification report, accuracy score, confusion matrix
data=load iris()
print(data)
{'data': array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3., 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5., 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5., 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3., 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4., 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1., 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5., 3., 1.6, 0.2],
       [5., 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.2],
       [5., 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.6, 1.4, 0.1],
       [4.4, 3., 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
```

```
[5., 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5., 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5., 3.3, 1.4, 0.2],
[7., 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1.],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5., 2., 3.5, 1.],
[5.9, 3., 4.2, 1.5],
[6., 2.2, 4., 1.],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3., 4.5, 1.5],
[5.8, 2.7, 4.1, 1.],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4., 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3., 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3., 5., 1.7],
[6., 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1.],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1.],
[5.8, 2.7, 3.9, 1.2],
[6., 2.7, 5.1, 1.6],
[5.4, 3., 4.5, 1.5],
[6., 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3., 4.1, 1.3],
[5.5, 2.5, 4., 1.3],
```

```
[5.5, 2.6, 4.4, 1.2],
[6.1, 3., 4.6, 1.4],
[5.8, 2.6, 4., 1.2],
[5., 2.3, 3.3, 1.],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3., 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3., 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6., 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3., 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3., 5.8, 2.2],
[7.6, 3., 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2.],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3., 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3., 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6., 2.2, 5., 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2.],
[7.7, 2.8, 6.7, 2.],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6., 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3., 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3., 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2.],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3., 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6., 3., 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
```

```
[6.7, 3.1, 5.6, 2.4],
           [6.9, 3.1, 5.1, 2.3],
           [5.8, 2.7, 5.1, 1.9],
           [6.8, 3.2, 5.9, 2.3],
           [6.7, 3.3, 5.7, 2.5],
           [6.7, 3., 5.2, 2.3],
           [6.3, 2.5, 5., 1.9],
           [6.5, 3., 5.2, 2.],
           [6.2, 3.4, 5.4, 2.3],
           [5.9, 3., 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0,
0,
           1,
           1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2,
           2,
           'frame': None, 'target names': array(['setosa', 'versicolor',
'virginica'], dtype='<\bullet{U10'}, 'DESCR': '.. _iris_dataset:\n\nIris
plants dataset\n-----\n\n**Data \overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\ove
           :Number of Instances: 150 (50 in each of three classes)\
n\n
        :Number of Attributes: 4 numeric, predictive attributes and the
                  :Attribute Information:\n

    sepal length in cm\n

class\n
sepal width in cm\n
                                                 petal length in cm\n
width in cm\n
                                  - class:\n
                                                                               - Iris-Setosa\n
- Iris-Versicolour\n
                                                            - Iris-Virginica\
                                      :Summary Statistics:\n\n
                         === ======\n
                                                                                                      Min
                                                                                                              Max
                     Class Correlation\n
Mean
             SD
                                                            ______
===== =====\n
                                                     sepal length:
                                                                                4.3
                                                                                        7.9
                                                                                                   5.84
                                                                                                              0.83
                                                                                        -0.4194\n
0.7826\n
                   sepal width:
                                               2.0 4.4
                                                                 3.05
                                                                            0.43
                                                         1.76
                                                                      0.9490 (high!) \n
petal length:
                          1.0 6.9
                                             3.76
                                                                                                         petal
width:
                0.1
                         2.5
                                   1.20
                                              0.76
                                                            0.9565 (high!) \n
               :Missing Attribute Values: None\n
                                                                      :Class Distribution: 33.3%
for each of 3 classes.\n :Creator: R.A. Fisher\n
                                                                                            :Donor: Michael
Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n
                                                                         :Date: July, 1988\n\nThe
famous Iris database, first used by Sir R.A. Fisher. The dataset is
taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not
as in the UCI\nMachine Learning Repository, which has two wrong data
points.\n\nThis is perhaps the best known database to be found in the\
npattern recognition literature. Fisher\'s paper is a classic in the
field and\nis referenced frequently to this day. (See Duda & Hart,
for example.) The\ndata set contains 3 classes of 50 instances each,
where each class refers to a\ntype of iris plant. One class is
```

```
linearly separable from the other 2; the\nlatter are NOT linearly
separable from each other.\n\n.. topic:: References\n\n
R.A. "The use of multiple measurements in taxonomic problems"\n
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
        Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda,
R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n
- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New
System\n
            Structure and Classification Rule for Recognition in
Partially Exposed\n
                     Environments". IEEE Transactions on Pattern
Analysis and Machine\n
                           Intelligence, Vol. PAMI-2, No. 1, 67-71.\n
- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
                  on Information Theory, May 1972, 431-433.\n
Transactions\n
also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n
conceptual clustering system finds 3 classes in the data.\n
many more ...', 'feature names': ['sepal length (cm)', 'sepal width
(cm)', 'petal length (cm)', 'petal width (cm)'], 'filename':
'iris.csv', 'data_module': 'sklearn.datasets.data'}
x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,
random state=42)
model=RandomForestClassifier(n estimators=100)
model.fit(x train,y train)
y pred=model.predict(x test)
print("classification Report:\n",classification report(y test,y pred))
classification Report:
                                                     ť
```

	precision	recall	f1-score	support
0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	30 30 30

corr_mat=data.corr()
ptint(corr mat)

KeyError
last)

Traceback (most recent call

~\anaconda3\lib\site-packages\sklearn\utils\ init .py in

```
__getattr___(self, key)
    116
                try:
--> 117
                    return self[key]
    118
                except KeyError:
KeyError: 'corr'
During handling of the above exception, another exception occurred:
AttributeError
                                          Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel_17088\2000260655.py in <module>
----> 1 corr_mat=data.corr()
      2 ptint(corr_mat)
~\anaconda3\lib\site-packages\sklearn\utils\ init .py in
__getattr__(self, key)
                    return self[key]
    117
    118
                except KeyError:
--> 119
                    raise AttributeError(key)
    120
    121
            def setstate (self, state):
```

AttributeError: corr