Latent variable modeling: A practical guide

Introduction

Waylon Howard

Webinar, March 05, 2025

Navigating Research Complexities

About me

Waylon Howard

- Principal Quantitative Methodologist and Biostatistician at *Biostatistics, Epidemiology and Analytics in Research (BEAR) Core* (Seattle Children's Research Institute)
 - Research methods, statistics, and measurement
 - Grant writing, manuscript development, and methodological innovation
 - Training and mentoring

About you

- What's your name?
- What is your research area?
- What are your experiences with latent variable modeling in research (and the tools used)?
- What are your expectations for this workshop?

Preliminaries

Slides and material are available at

https://github.com/wwwaylon/bcorp-2025

- The session consists of a combination of lectures and hands-on exercises
- Feel free to ask questions anytime
- We will primarily rely on GitHub, R & RStudio with additional support for SAS and even Excel.

Workshop schedule

Wednesday, March 5th, 2025

When?	What?
12:00 - 12:10	Introduction
12:10 - 12:25	Estimation and Model Fit
12:25 - 12:45	Applied Examples
12:45 - 1:00	Questions

Survey Measurement

- 1. My friends really try to help me.
- 2. I can count on my friends when things go wrong.
- 3. I can talk about my problems with my friends.

Very Strongly Disagree	Strongly Disagree	Mildly Disagree	Neutral	Mildly Agree	Strongly Agree	Very Strongly Agree
1	2	3	4	5	6	7

Higher scores = More Perceived Social Support

1. My friends really try to help me.

Very Strongly Disagree	Strongly Disagree	Mildly Disagree	Neutral	Mildly Agree	S	trong Agree		Very Strongly Agree
1	2	3	4	5		6	1	7
							/	

$$X_i = T_i + (S_i + e_i)$$

 T_i is the 'true' score

 S_i is item-specific, yet reliable e_i is random error, or noise

Using the scoring procedure:

Path Diagram

Illustration adapted from Little, T. D. (2024).

$$X_i = T_i + (S_i + e_i)$$

Illustration adapted from Little, T. D. (2024).

Matrix Formula: $\Sigma = \Lambda \Psi \Lambda' + \Theta$

Σ = Variance/Covariance Matrix

	X1	X2	Х3
X1	5.66		
X2	4.90	5.50	
Х3	4.33	4.38	5.63

Estimated Parameters: 7

Observed Information: 6

Model Implied Matrix

	X1	X2	Х3
X1	$\lambda_{11} \psi_{11} \lambda_{11} + \theta_{11}$		
X2	$λ_{11}$ $ψ_{11}$ $λ_{21}$	$\lambda_{21} \psi_{11} \lambda_{21} + \theta_{22}$	
ХЗ	$λ_{11} ψ_{11} λ_{31}$	$λ_{21}$ $ψ_{11}$ $λ_{31}$	$\lambda_{31} \psi_{11} \lambda_{31} + \theta_{33}$

Model Identification:

$$a + b = 20$$

$$a + 10 = 20$$

Set the scale (via latent variance)

Observed Variance/Covariance Matrix

Fix the latent variance to 1.0

	X1	X2	Х3
X1	5.66		
X2	4.90	5.50	
X3	4.33	4.38	5.63

Implied Variance/Covariance Matrix

	X1	X2	Х3
X1	$\lambda_{11} \lambda_{11} + \theta_{11}$		
X2	λ ₁₁ λ ₂₁	$\lambda_{21} \lambda_{21} + \theta_{22}$	
Х3	λ ₁₁ λ ₃₁	$\lambda_{21} \lambda_{31}$	$\lambda_{31} \lambda_{31} + \theta_{33}$

Just Identified.

Set the scale (via indicator)

Observed Variance/Covariance Matrix

	X1	X2	Х3
X1	5.66		
X2	4.90	5.50	
X3	4.33	4.38	5.63

Implied Variance/Covariance Matrix

	X1	X2	Х3
X1	ψ ₁₁ + θ ₁₁		
X2	ψ ₁₁ λ ₂₁	$\lambda_{21} \psi_{11} \lambda_{21} + \theta_{22}$	
Х3	ψ ₁₁ λ ₃₁	$\lambda_{21} \psi_{11} \lambda_{31}$	$\lambda_{31} \psi_{11} \lambda_{31} + \theta_{33}$

Fix the loading to 1.0

Set the scale (via constraint)

Observed Variance/Covariance Matrix

Constrain loading to average 1.0

	X1	X2	Х3
X1	5.66		
X2	4.90	5.50	
X3	4.33	4.38	5.63

Implied Variance/Covariance Matrix

	X1	X2	Х3
X1	(3-λ ₂₁ -λ ₃₁) ψ ₁₁ (3- λ ₂₁ -λ ₃₁) + θ ₁₁		
X2	$(3-\lambda_{21}-\lambda_{31}) \psi_{11} \lambda_{21}$	$\lambda_{21} \psi_{11} \lambda_{21} + \theta_{22}$	
ХЗ	$(3-\lambda_{21}-\lambda_{31})\psi_{11} \lambda_{31}$	$λ_{21} ψ_{11} λ_{31}$	$\lambda_{31} \psi_{11} \lambda_{31} + \theta_{33}$

Observed Variance/Covariance Matrix

	X1	X2	Х3
X1	5.66		
X2	4.90	5.50	
Х3	4.33	4.38	5.63

	X1	X2	Х3
X1	2.20 * 1.0 * 2.20 + 0.81 = 5.66		
X2	2.20 * 1.0 * 2.23 = 4.90	2.23 * 1.0 * 2.23 + 0.54 = 5.50	
хз	2.20 * 1.0 * 1.97 = 4.33	2.23 * 1.0 * 1.97 = 4.38	1.97 * 1.0 * 1.97 + 1.77 = 5.63

Reporting Model Specification

A three-factor confirmatory factor analysis (CFA) was conducted to assess the measurement properties of three latent constructs: Cognitive Engagement, Behavioral Engagement, and Emotional Engagement. The Cognitive Engagement factor was measured by three items: "I try to understand difficult concepts in class" (CE1), "I make connections between what I learn and real life" (CE2), and "I seek additional information on topics that interest me" (CE3). The Behavioral Engagement factor included three items: "I complete my assignments on time" (BE1), "I participate actively in class discussions" (BE2), and "I follow classroom rules" (BE3). The Emotional Engagement factor was measured by three items: "I feel excited about learning new things" (EE1), "I enjoy working on challenging tasks" (EE2), and "I feel connected to my classmates" (EE3). Factor variances were fixed to 1.0 for model identification (Brown, 2012).

Any questions so far?