Foundations of Statistical and Machine Learning for Actuaries

(Tree-based) Ensemble methods and Interpretability

Edward (Jed) Frees, University of Wisconsin - Madison Andres M. Villegas, University of New South Wales

July 2025

Tree: VicRoads Crash Data

Tree: VicRoads Crash Data (ROC)

AUC		
Method	Train	Test
glm	0.663	0.650
lasso	0.809	0.797
tree	0.629	0.610

Advantages and disadvantages of Trees

Advantages

- Easy to explain
- (Mirror human decision making)
- Graphical display
- Easily handle qualitative predictors

Disadvantages

- Low predictive accuracy compared to other regression and classification approaches
- Can be very non-robust

Is there a way to improve the predictive performance of trees?

- Ensemble methods
- Bagging, random forest, boosting

Ensamble methods

Ensembles tend to have lower error and produce less overfitting

Bootstrap Aggregation (Bagging)

- A general-purpose procedure to reduce the variance of a statistical learning method
 - particularly useful and frequently used in the context of decision trees

Bagging procedure

- Bootstrap
 - sample with replacement repeatedly
 - generate B different bootstrapped training data sets
- Train
 - train on the bth bootstrapped training set to get $\hat{f}^{*b}(x)$
- Aggregate
 - Take a majority vote of all of the trained models

Bagging: Illustration

Bagging: Illustration

8

Random forest

Random forests decorrelates the bagged trees

- At each split of the tree, a fresh random sample of m predictors is chosen as split candidates from the full set of p predictors
- Strong predictors are used in (far) fewer models, so the effect of other predictors can be properly measured.
 - Reduces the variance of the resulting trees
- Typically choose $m \approx \sqrt{p}$
- Bagging is a special case of a random forest with m = p

Bagging/Random Forest: Variable Selection and Importance

- Bagging and Random Forest can lead to difficult-to-interpret results, since, on average, no predictor is excluded
- Variable importance measures can be used
 - Bagging classification trees: Gini index reduction for each split (measure of node purity)
- Pick the ones with the highest variable importance measure

Random forest: Variable Importance VicRoads Data

Boosting motivation

Boosting procedure

- A general approach that can be applied to many statistical learning methods for regression or classification
- Involves combining a large number of decision trees
 - trees are grown sequentially
 - using the information from previously grown trees
 - no bootstrap instead each tree is fitted on a modified version of the original data (sequentially)
- Unlike standard trees, boosting learns slowly by focusing on the residuals and hence focusing on areas the previous tree did not perform well.

Boosting: Variable Importance VicRoads Data

Comparison of methods: VicRoads Crash Data

AUC		
Method	Train	Test
glm	0.663	0.650
lasso	0.809	0.797
tree	0.629	0.610
RF	0.676	0.759
Boosting	0.813	0.800

Summary of key concepts in (tree-based) ensemble methods and interpretability

- Bagging
 - Bootstrap aggregation
 - Reduces variance of a statistical learning method
 - Particularly useful for decision trees
- Random Forest
 - Decorrelates the bagged trees
 - Randomly selects predictors at each split
- Boosting
 - Sequentially builds trees
 - Focuses on residuals of previous trees
- Interpretability

SHAP values

- Variable importance measures
- Partial dependence plots
- LIME