- Let $a_1, a_2, a_3, ..., a_n$ be the n items that we have seen. We want to proof that the probability of any of them being in memory is $\frac{1}{n}$.
- Let's define a r.v. X_n which will take the value of the item in memory after h steps. So, we need to grows that $Pr[X_n = a_i] = \frac{1}{n}$ $\forall 1 \leq i \leq n$.
- · Induction proof:
 - . Base case: $n=1 \rightarrow X_n = a_n = 1$ (only one item at this point) $\sqrt{}$
 - · I. H. : Assuming that $Pr[X_h = a_i] = \frac{1}{n}$ works $\forall 1 \le i \le h$, we will most that it holds for n+1.
 - •h+1: After n+1 Herrs, we have that $X_{n+1} = \alpha_{n+1}$ with a probability of $\frac{1}{n+1}$. Therefore, $\Pr[X_{n+1} = \alpha_{n+1}] = \frac{1}{n+1}$. $\forall n \leq i \leq n$ we have:

And the second s

· Pr [Xn+1 = a;] = Pr [no replacement after n steps & Xh = a;] =

I.H. $\frac{1}{n} = \Pr[\text{no replacement after n steps}] \cdot \Pr[X_h = \text{ai}] = \frac{1}{n+1} \cdot \frac{1}{n} = \frac{1}{n+1} \checkmark$