STA 260 OH 1

The following practice problems are designed to assist with review material from STA256. Some of the solutions will be discussed during office hours on Tuesday from 11:00 AM to 12:00 PM in MN 3220. These problems were prepared, either partially or entirely, by a previous STA260 instructor, Jerry Brunner.

- 1. Let the continuous random variable X have density $f_X(x) = 2x e^{-x^2} I(x > 0)$.
 - (a) Write the cumulative distribution function $F_X(x)$ using indicator functions. Show your work.
 - (b) Calculate $P(X > \frac{1}{2})$.
- 2. Let $X \sim N(\mu, \sigma^2)$. Show $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$.
- 3. Let $X_1, \ldots X_n$ be independent and identically distributed $N(\mu, \sigma^2)$ random variables. Find the distribution of $Y = a + \sum_{i=1}^n b_i X_i$. Show your work.
- 4. Let $Z \sim N(0, 1)$. Show $Z^2 \sim \chi^2(1)$.
- 5. Let $Y_1, \dots Y_n$ be independent $\chi^2(\nu_i)$ random variables. Show $Y = \sum_{i=1}^n Y_i \sim \chi^2(\sum_{i=1}^n \nu_i)$.
- 6. Let the random variable X have distribution function $F_X(x) = 1$ for all real x. Is this possible? Answer Yes or No and briefly explain.
- 7. Let the continuous random variable X have density $f_{x}(x)$. What's wrong with this?

$$F_{\scriptscriptstyle X}(x) = \int_{-\infty}^{\infty} f_{\scriptscriptstyle X}(t) \, dt$$

- 8. What's wrong with this? $F_{X|Y}(x|y) = \frac{F_{X,Y}(x,y)}{F_{Y}(y)}$. To see it more easily, let X and Y be discrete.
- 9. Let X be a continuous random variable. Either prove that the following proposition is true in general, or show that it is not by giving a simple counter-example: $E\left(\frac{1}{X}\right) = \frac{1}{E(X)}$.
- 10. What's wrong with this? $Var(X) = E((X \mu)^2) = (E(X \mu))^2 = (E(X) E(\mu))^2 = (\mu \mu)^2 = 0.$

These questions were prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License.