A bemenet első sorában a városok száma (1≤N≤1000), és a szállító kamionok kapacitása (1≤K≤1000) van. A második sorban az egyes városokban termelt termékek száma van (legfeljebb 2000). A harmadik sorban az egyes városokban tárolható termékek száma van (legfeljebb 3000). A negyedik sorban az i-edik szám annak a városnak a sorszáma, ahova az i-edik városból közvetlenül mehet kamion. A sorban egy helyen szerepel 0, ha ez az i-edik szám a sorban, akkor ez azt jelenti, hogy az i-edik városban van a központi raktár.

A kimenet első sorába a minimálisan szükséges kamionok számát kell írni, a második sorba pedig az építendő központi raktár méretét!

Tizenegyedik-tizenharmadik osztályosok

1. feladat: Metró (20 pont)

Egy metróállomásra N időegységben érkeznek utasok, a K hosszú mozgólépcsőre legfeljebb ketten léphetnek egyszerre (azaz az érkezők közül ketten azonnal a mozgólépcső legfelső fokára kerülnek), a lépcsőn nincs mozgás – időegységenként mindenki egyet halad lefelé. A lépcső egy L utast befogadni képes váróterembe érkezik, az i-edik időegységben váróterembe lépőt ugyanabban az időegységben nem viheti el a metró. A metró M időegységenként jön, kiszáll belőle adott számú utas, és elviszi az összes metróra várakozó utast. A ki- és beszállás 1 időegység alatt megtörténik. A felfelé menő mozgólépcsőre várakozó utasok közül egy időegységben legfeljebb 2 léphet a lépcsőre. Aki most szállt le a metróról, az leghamarabb a következő időegységben léphet a mozgólépcsőre. Kezdetben (a 0. időegységben) a lépcső és a váróterem is üres, az első metró az M. időegységben érkezik. Ha a váróterembe nem férnek be az utasok, akkor a metróállomás működését leállítják.

Készíts programot, amely megadja, hogy az egyes metrószerelvények hány utast visznek el! A végrehajtás vagy N+K+M időegység után fejeződjön be, vagy amikor a metróállomás működését leállítják!

A bemenet első sorában az időegységek száma ($1 \le N \le 1000000$), a mozgólépcső hossza ($1 \le K \le 100$), a váróterem kapacitása ($1 \le L \le 1000$), a metrók követési távolsága ($1 \le M \le 1000$) és az érkező utasok száma ($1 \le U \le 1000000$) van. A következő U sor mindegyikében egy-egy utas érkezési ideje van ($0 \le Idő_1 \le N$), nemcsökkenő sorrendben. A következő sorban az egyes metrószerelvényekről leszállók száma van, a szerelvények érkezési sorrendjében.

A kimenet első sorába az állomásról utasokat elvivő metrószerelvények S számát kell írni! A másodikba S szám kerüljön: az egyes metrószerelvények által elvitt utasok száma!

Példa:

Bemen	net	:		Kimenet:			
12 4	10	8	12	3	9	1	
3 3 3 3 3							
3							
3							
5							
6							
8							
8							
9 12							
3 5 2	2						

2. feladat: Fénykép (30 pont)

Egy rendezvényre vendégek érkeznek. Ismerjük mindenkinek az érkezési és távozási időpontját. A szervező megbízott egy fényképészt, hogy a résztvevőkről csoportképeket készítsen. A fényképész minél hamarabb szeretne végezni, ezért amint jelen van legalább K vendég, akkor közülük pontosan K vendéget lefényképez egy csoportképen, azaz csak abban dönthet, hogy adott időpontban kiket fényképez le. Egy időpontban csak egy fényképet tud készíteni, és minden vendég legfeljebb 1 képen szerepelhet. A vendégek már az érkezési időpontjukban lefényképezhetők és az utolsó lehetőség a lefényképezésükre a távozási időpontjuk.

Készíts programot, amely megadja, hogy maximum hány fényképet tud készíteni a fényképész, és megadja, hogy az egyes képeken kik lesznek!

A bemenet első sorában a vendégek száma (1≤N≤100 000), valamint a K értéke (1≤K≤100) van. A következő N sor mindegyikében egy-egy vendég érkezési és távozási időpontja (1≤Ei<Ti≤10 000) van, érkezési időpont szerint nemcsökkenő sorrendben.

A kimenet első sorába a fényképezések maximális F számát kell írni! A következő F sor mindegyike pontosan K különböző egész számot tartalmazzon, azon vendégek sorszámait, akit az adott időpontban a csoportképen lesznek! Több megoldás esetén bármelyik megadható.

Példa:

Bemenet:	Kimenet:
8 3	2
1 5	2 1 3
2 3	5 6 4
2 9	
3 9	
3 4	
3 5	
4 6	
5 7	

3. feladat: Koncert (30 pont)

A nagy érdeklődéssel várt koncertre jegyet lehet igényelni. A szervező célja, hogy a lehető legtöbb ülőhelyet adja el úgy, hogy az eladott jegy az igénylőnek megfelelő legyen.