111 學年度 深度學習程式設計 Programming for Deep Learning

組別:17

學號 姓名:110502518 陳文獻

壹、 執行環境

(google Colab)

- Python 3.10.11
- Tensorflow 2.12.0
- Numpy 1.22.4
- GPU Tesla T4 16G

貳、 資料處理

- 利用 openCV 做影像處理:
 - 將圖片轉為黑白(灰階)
 - 將圖片的"負號"加粗(偵測橫線條)
 - 將圖片的噪點(長寬太小的線條)塗成白色
 - 最後把圖片轉成數個 npy 檔案再上傳雲端給 colab 使用

範例圖片:

(data01)

(data02)

參、 模型架構

• 簡述:

- 使用 5 個 residual blocks (節點數從 16-256)
- 每個 residual blocks 由三個 residual block 組成
- 每個 residual block 由兩個 CNN 組成
- 兩個 residual blocks 間用過度的 CNN 層連接
- 通過 flatten & 2 層全連階層
- 接上9個13類分類器
- CNN kernel size 皆為(3, 3)
- 可學習參數: 6,138,485 (6M)

肆、 模型訓練

● 超參數設定:

- Adam $1r = 10^-3$
- Batch size = 128
- Epoch = 100
- validation_split = 0.1 (40000 筆訓練 10000 筆驗證)

● 其他優化:

- LearningRateScheduler(1r/= if acc > 0.95)
- Ensemble 前 4 好的模型(Epoch97 98 99 100)

伍、 分析結論

以訓練歷程來看,過擬合狀況還沒出現,說明可能調大 Epoch 數可能會有更好的結果。

Epoch	loss	Val_loss
97	0. 1862	0. 1613
98	0. 1862	0. 1621
99	0.1864	0. 1627
100	0.1860	0.1618

以上傳後的正確率來看,可能因為沒有套用同學使用的二值化+侵蝕 膨脹,使得我在Data2雜訊太多,性能大幅下降。

前幾名的同學使用了 transformer base/resnet 的預訓練模型做微調,在模型架構上效能較 CNN from scratch 好。

Data01 (Closed)

Data02	CI	osed)
Databe	\sim	OSCG,

組別	圖形辨識率	時間	排名
03	0.9997	2023-05-16 20:54:04	1
07	0.9994	2023-05-22 15:53:45	2
02	0.9994	2023-05-23 05:25:38	3
28	0.999	2023-05-16 15:03:15	4
17	0.9939	2023-05-16 21:44:41	5
31	0.9932	2023-05-22 15:09:19	6
18	0.9928	2023-05-23 09:12:12	7
05	0.9904	2023-05-21 21:26:53	8
12	0.9896	2023-05-22 15:04:46	9
32	0.988	2023-05-22 22:27:10	10

		,	
組別	圖形辨識率	時間	排名
02	0.9842	2023-05-30 05:48:50	1
28	0.98	2023-05-24 23:52:13	2
03	0.9793	2023-05-30 01:28:12	3
11	0.9731	2023-05-27 00:09:19	4
31	0.9717	2023-05-28 16:40:41	5
05	0.9654	2023-05-29 16:44:00	6
06	0.959	2023-05-30 11:41:39	7
27	0.9564	2023-05-29 17:53:37	8
17	0.9381	2023-05-26 11:56:53	9
32	0.9354	2023-05-30 00:26:19	10

陸、 參考資料

Resnet:

https://arxiv.org/abs/1512.03385

https://stackoverflow.com/questions/64792460/how-to-code-a-residual-block-using-two-layers-of-a-basic-cnn-algorithm-built-wit

Chat GPT