Databázové systémy

Ostatní typy spojení

Vilém Vychodil

KMI/DATA1, Přednáška 5

Databázové systémy

Přednáška 5: Přehled

- Vlastnosti přirozeného spojení:
 - úplné spojení a bezeztrátová dekompozice,
 - vztah přirozeného spojení a dalších operací,
 - θ -spojení, spojení na rovnost.
- Související problémy:
 - kompozice a tranzitivní uzávěr,
 - rekurzivní dotazy.
- Problematika vnějších spojení:
 - definice, úskalí, vztah k relačnímu modelu,
 - formalizace pomocí tříhodnotových logik,
 - jiné možnosti přístupu k problému.

Věta (Další vlastnosti přirozeného spojení)

Mějme \mathcal{D}_1 , \mathcal{D}_2 a \mathcal{D}_3 na schématech R_1 , R_2 a $R_3=R_2$. Pak platí:

- je isotonní;

Důkaz.

- plyne z isotonie konjunkce; je zřejmé; plyne analogicky jako předchozí bod;
- ① je důsledkem distributivity konjunkce a disjunkce; ② plyne z idempotence konjunkce; ② platí, protože $rst \in \mathcal{D}_1 \bowtie (\mathcal{D}_2 \setminus \mathcal{D}_3)$ p. k. $rs \in \mathcal{D}_1$ a $st \in \mathcal{D}_2 \setminus \mathcal{D}_3$ p. k. $rs \in \mathcal{D}_1$, $st \in \mathcal{D}_2$ a $st \notin \mathcal{D}_3$ p. k. $rs \in \mathcal{D}_1$, $st \in \mathcal{D}_2$ a $rs \in \mathcal{D}_1$, $st \notin \mathcal{D}_3$ p. k.

Úplné spojení

motivace:

V některých spojeních jsou všechny n-tice z výchozích tabulek spojitelné s některými n-ticemi z ostatních tabulek – vede na pojem úplné spojení

nespojitelná n-tice, angl.: dangling tuple

Mějme relace $\mathcal{D}_1,\ldots,\mathcal{D}_2$ na schématech R_1,\ldots,R_n . Pak n-tice $r_i\in\mathcal{D}_i$ se nazývá nespojitelná vzhledem k $\bowtie_{i=1}^n \mathcal{D}_i$ pokud neexistují žádné $r_j\in\mathcal{D}_j$ $(j\neq i)$ tak, že $r_1\cup\cdots\cup r_n\in\bowtie_{i=1}^n \mathcal{D}_i$.

úplné spojení, angl.: complete join

Relace $\mathcal{D}_1, \ldots, \mathcal{D}_2$ na schématech R_1, \ldots, R_n mají úplné spojení, pokud žádná \mathcal{D}_i neobsahuje nespojitelnou n-tici vzhledem k $\bowtie_{i=1}^n \mathcal{D}_i$.

poznámka: \mathcal{D}_1 a \mathcal{D}_2 mají úplné spojení p. k. $\mathcal{D}_1 \ltimes \mathcal{D}_2 = \mathcal{D}_1$ a $\mathcal{D}_2 \ltimes \mathcal{D}_1 = \mathcal{D}_2$.

Věta (Charakterizace úplných spojení)

Mějme relace $\mathcal{D}_1, \dots, \mathcal{D}_n$ na schématech R_1, \dots, R_n . Pak platí:

- \bullet $\pi_{R_j}ig(m{\bowtie}_{i=1}^n \mathcal{D}_iig)\subseteq \mathcal{D}_j$ pro každé $j=1,\ldots,n$;
- ② $\pi_{R_j}ig(\bowtie_{i=1}^n\mathcal{D}_iig)=\mathcal{D}_j$ pro každé $j=1,\ldots,n$ p. k. $\mathcal{D}_1,\ldots,\mathcal{D}_n$ lze úplně spojit;
- lacktriangledown $\bowtie_{i=1}^n \mathcal{D}_i = \bowtie_{j=1}^n \pi_{R_j} (\bowtie_{i=1}^n \mathcal{D}_i)$ pro každé $j=1,\ldots,n$;
- $\bullet \ \pi_{R_j}\bigl(\bowtie_{k=1}^n \pi_{R_k}\bigl(\bowtie_{i=1}^n \mathcal{D}_i\bigr)\bigr) = \pi_{R_j}\bigl(\bowtie_{i=1}^n \mathcal{D}_i\bigr) \ \textit{pro každ\'e} \ j=1,\ldots,n.$

Důkaz.

Bod ① plyne z toho, že pokud $r \in \bowtie_{i=1}^n \mathcal{D}_i$, pak $r(R_j) \in \mathcal{D}_j$. V případě ② ukážeme obměnou: $\mathcal{D}_1, \ldots, \mathcal{D}_n$ nelze úplně spojit pokud existuje $r_j \in \mathcal{D}_j$, která je nespojitelná vzhledem k $\bowtie_{i=1}^n \mathcal{D}_i$; to je p. k. $r(R_j) \neq r_j$ pro každou $r \in \bowtie_{i=1}^n \mathcal{D}_i$ a to je p. k. $r_j \notin \pi_{R_j} (\bowtie_{i=1}^n \mathcal{D}_i)$ p. k. existuje j tak, že $\pi_{R_j} (\bowtie_{i=1}^n \mathcal{D}_i) \subset \mathcal{D}_j$. Pro dokázání inkluze "⊆" bodu ③ vyjdeme z toho, že pokud $r \in \bowtie_{i=1}^n \mathcal{D}_i$, pak $r = r_1 \cup \cdots \cup r_n$, kde $r(R_j) = r_j$ pro každé j. To jest $r_j \in \pi_{R_j} (\bowtie_{i=1}^n \mathcal{D}_i)$ a tedy $r \in \bowtie_{j=1}^n \pi_{R_j} (\bowtie_{i=1}^n \mathcal{D}_i)$. Opačná inkluze plyne z ④ a isotonie \bowtie . Bod ④ je triviální důsledek ④.

Příklad (Úplné spojení)

relace, které nemají úplné spojení:

 \mathcal{D}_1

 $\mathcal{D}_1 \bowtie \mathcal{D}_2$

 $\mathcal{D}_1 \ltimes \mathcal{D}_2$

 $\mathcal{D}_2 \ltimes \mathcal{D}_1$

F00 BAR BAZ 444 ghi 103 555 def | 102 555 ghi | 103 666 abc 101

BAR BAZ QUX abc | 111 ZZZ def 102 www def 102 yyy ghX 103 xxx ghi 103 ttt ghi 103 luuu ghi 103 vvv F00 BAR BAZ QUX 444 ghi 103 ttt 444 ghi 103 uuu 444 ghi 103 vvv 555 def | 102 | www 555 def | 102 | yyy ghi 103 ttt 555 555 ghi 103 uuu 555 ghi | 103 | vvv

FOO BAR BAZ 444 ghi 103 555 def 102 555 ghi 103

BAR	BAZ	QUX
def	102	WWW
def	102	ууу
ghi	103	ttt
ghi	103	uuu
ghi	103	vvv

dle předchozího tvrzení:

• relace $\mathcal{D}_3 = \mathcal{D}_1 \ltimes \mathcal{D}_2$ a $\mathcal{D}_4 = \mathcal{D}_2 \ltimes \mathcal{D}_1$ mají úplné spojení $\mathcal{D}_1 \bowtie \mathcal{D}_2 = \mathcal{D}_3 \bowtie \mathcal{D}_4$

Bezeztrátová dekompozice relace

motivace:

Duální pojem k pojmu úplné spojení: Je možné vyjádřit výchozí relace pomocí spojení některých jejich projekcí?

bezeztrátová dekompozice, angl.: nonloss decomposition

Relace \mathcal{D} na schématu $R_1 \cup \cdots \cup R_n$ má bezeztrátovou dekompozici vzhledem k množině schémat $\{R_1, \ldots, R_n\}$ pokud $\mathcal{D} = \bowtie_{i=1}^n \pi_{R_i}(\mathcal{D})$.

existence dekompozic:

• každá $\mathcal D$ na R má (jednoprvkovou) bezeztrátovou dekompozici vzhledem k $\{R\}$ (triviální případ; hledáme dekompozice vzhledem k větším množinám schémat)

další typy dekompozic:

• horizontální/vertikální typy dekompozic, faktorové dekompozice, . . .

Věta (Vlastnosti bezeztrátových dekompozic)

Mějme relaci \mathcal{D} na schématu $R_1 \cup \cdots \cup R_n$. Pak platí

Důkaz.

Pro dokázání ① vezměme $r \in \mathcal{D}$. Vzhledem ke schématům R_1, \ldots, R_n lze r chápat jako n-tici ve tvaru $r_1 \cup \cdots \cup r_n$, kde $r_i = r(R_i)$ pro každé $i = 1, \ldots, n$. Zřejmě tedy $r_i \in \pi_{R_i}(\mathcal{D})$ pro každé $i = 1, \ldots, n$ a tím pádem $r \in \bowtie_{i=1}^n \pi_{R_i}(\mathcal{D})$.

Tvrzení ② je speciálním případem bodu ③ předchozí věty pro $\mathcal{D}_i = \pi_{R_i}(\mathcal{D})$.

důsledek:

ullet $\bowtie_{i=1}^n \pi_{R_i}(\mathcal{D})$ má bezeztrátovou dekompozici vzhledem k $\{R_1,\ldots,R_n\}$

Příklad (Bezeztrátová dekompozice)

$$\mathcal{D} \qquad \qquad \pi_{\{\texttt{FOO},\texttt{BAR},\texttt{BAZ}\}}(\mathcal{D}) \quad \pi_{\{\texttt{BAZ},\texttt{QUX}\}}(\mathcal{D}) \quad \pi_{\{\texttt{BAR},\texttt{QUX}\}}(\mathcal{D}) \quad \pi_{\{\texttt{FOO},\texttt{BAR}\}}(\mathcal{D})$$

F00	BAR	BAZ	QUX
100	aaa	444	GGG
100	aaa	444	ннн
200	bbb	555	III
300	ссс	555	III

F00	BAR	BAZ
100	aaa	444
200	bbb	555
300	ссс	555

$$\mathcal{D} = \pi_{\{\mathtt{FOO},\mathtt{BAR},\mathtt{BAZ}\}}(\mathcal{D}) \bowtie \pi_{\{\mathtt{BAZ},\mathtt{QUX}\}}(\mathcal{D})$$

$$\mathcal{D} = \pi_{\{\texttt{FOO},\texttt{BAR},\texttt{BAZ}\}}(\mathcal{D}) \bowtie \pi_{\{\texttt{BAR},\texttt{QUX}\}}(\mathcal{D})$$

$$\mathcal{D} = \pi_{\{\texttt{FOO},\texttt{BAR},\texttt{BAZ}\}}(\mathcal{D}) \bowtie \pi_{\{\texttt{FOO},\texttt{BAR}\}}(\mathcal{D})$$

ale například: $\mathcal{D} \neq \pi_{\{\text{FOO},\text{BAR}\}}(\mathcal{D}) \bowtie \pi_{\{\text{BAZ},\text{QUX}\}}(\mathcal{D})$

poznámky (k tomtuto konkrétnímu příkladu):

- neexistuje dekompozice na dvě dvouprvková schémata
- celkem 60,672 možných dekompozic (složených z vzájemně různých schémat)

Odvozené operace: θ -spojení

motivace:

Chceme spojovat data ze dvou tabulek tak, aby kritérium spojitelnosti nebylo dáno pouze rovností na určitých hodnotách, ale obecnou podmínkou vztahující se na hodnoty n-tic z obou tabulek.

Definice (θ -spojení, angl.: θ -join)

Mějme relace \mathcal{D}_1 a \mathcal{D}_2 na schématech R a T takových, že $R \cap T = \emptyset$ a nechť θ je skalární výraz typu "pravdivostní hodnota", který může obsahovat jména atributů z $R \cup T$. Pak θ -spojení \mathcal{D}_1 a \mathcal{D}_2 splňující θ je relace $\sigma_{\theta}(\mathcal{D}_1 \bowtie \mathcal{D}_2)$ a označujeme ji $\mathcal{D}_1 \bowtie_{\theta} \mathcal{D}_2$.

poznámky:

- \bowtie_{θ} je definováno jako *restrikce* z *kartézského součinu*
- podle definice σ_{θ} a \bowtie :

$$\mathcal{D}_1 \bowtie_{\theta} \mathcal{D}_2 = \{ rt \mid r \in \mathcal{D}_1 \text{ a } r \in \mathcal{D}_2 \text{ tak, že } rt \text{ splňuje } \theta \}.$$

Odvozené operace: Spojení na rovnost

motivace:

Speciální případ θ -spojení, ve kterém je podmínka θ formulována jako konjunkce podmínek vyjadřující rovnost hodnot atributů stejných typů.

Definice (spojení na rovnost, angl.: equijoin)

Mějme relace \mathcal{D}_1 a \mathcal{D}_2 na schématech R a T takových, že $R\cap T=\emptyset$ a nechť $\{y_1,\ldots,y_n\}\subseteq R$, $\{y_1',\ldots,y_n'\}\subseteq T$ tak, že atributy mají y_i a y_i' stejný typ. Pak θ -spojení \mathcal{D}_1 a \mathcal{D}_2 , kde θ je va tvaru $y_1=y_1'\wedge\cdots\wedge y_n=y_n'$ nazýváme **spojení** \mathcal{D}_1 a \mathcal{D}_2 na rovnost (atributů y_1,y_1' až y_n,y_n') a označujeme jej $\mathcal{D}_1\bowtie_{y_1=y_1',\ldots,y_n=y_n'} \mathcal{D}_2$.

Tutorial D:

SQL:

SELECT * FROM $\langle jm\acute{e}no_1 \rangle$, $\langle jm\acute{e}no_2 \rangle$ WHERE $\langle podm\acute{n}ka \rangle$

Vzájemná zastupitelnost operací

pozorování:

Spojení na rovnost lze vyjádřit pomocí přirozeného spojení a restrikce, protože na disjunktních schématech přechází přirozené spojení v kartézský součin.

otázka:

Lze naopak vyjádřit přirozené spojení pomocí spojení na rovnost?

úvaha:

Přirozené spojení lze chápat jako spojení na rovnost, ve kterém nejprve vhodně přejmenujeme atributy a provedeme dodatečnou projekci.

Pro relace \mathcal{D}_1 a \mathcal{D}_2 nad schématy $R\cup S$ a $S\cup T$ tak, že $R\cap T=\emptyset$ a $S=\{y_1,\ldots,y_k\}$, s použitím přejměnování y_1,\ldots,y_k na y_1',\ldots,y_k' máme:

$$\mathcal{D}_{1} \bowtie \mathcal{D}_{2} = \pi_{R \cup S \cup T} \left(\mathcal{D}_{1} \bowtie_{y_{1}=y'_{1},\dots,y_{k}=y'_{k}} \rho_{y'_{1} \leftarrow y_{1},\dots,y'_{k} \leftarrow y_{k}} (\mathcal{D}_{2}) \right)$$
$$= \pi_{R \cup S \cup T} \left(\sigma_{y_{1}=y'_{1},\dots,y_{k}=y'_{k}} \left(\mathcal{D}_{1} \bowtie \rho_{y'_{1} \leftarrow y_{1},\dots,y'_{k} \leftarrow y_{k}} (\mathcal{D}_{2}) \right) \right).$$

Obecné formule pro restrikce na rovnost

motivace:

Ve spojení na rovnost je θ vyjádřená jako konjunkce atomických formulí (tzv. identit). Snadno lze úvahy rozšířit na libovolně složité formule konstruované z identit a výrokových spojek.

Definice (formule definující podmínky pro restrikce)

Mějme relační schéma R obsahující atributy $y \in R$ typů D_y . Pak **formule** pro restrikce nad R definujeme takto:

- pokud jsou $y_1, y_2 \in R$, pak $y_1 = y_2$ je (atomická) formule;
- ② pokud je $y \in R$ a $d \in D_y$, pak y = d je (atomická) formule;
- **3** pokud jsou φ a ψ formule, pak jsou $\neg \varphi$ a $(\varphi \Rightarrow \psi)$ formule.
- přijímáme konvenci o vynechávání vnějších závorek formulí
- $(\varphi \Leftrightarrow \psi) \ (\varphi \land \psi)$, $(\varphi \lor \psi)$ chápeme jako zkratky (běžným způsobem)

Věta (Rozšíření spojení na rovnost)

Nechť R je relační schéma a θ je formule pro restrikci nad R. Pak existuje posloupnost relačních operací zahrnující pouze restrikce na rovnost, sjednocení a rozdíl tak, že pro každou \mathcal{D} nad R je výsledek aplikace těchto operací roven $\sigma_{\theta}(\mathcal{D})$.

Důkaz.

Nejprve nahládněme, že podle předchozí definice lze θ chápat jako formuli, ve které se vyskytují pouze spojky \neg a \Rightarrow . Použitím známého faktu, že $\varphi \Rightarrow \psi$ je sémanticky ekvivalentní $\neg \varphi \lor \psi$, můžeme θ chápat jako formuli obsahující \neg a \lor jako základní spojky. Dále můžeme využít faktu, že pro každou $\mathcal D$ nad R zřejmě platí následující

$$\begin{split} \sigma_{\neg \theta}(\mathcal{D}) &= \{r \in \mathcal{D} \,|\, r \text{ nesplňuje } \theta\} = \mathcal{D} \setminus \sigma_{\theta}(\mathcal{D}), \\ \sigma_{\theta_1 \vee \theta_2}(\mathcal{D}) &= \{r \in \mathcal{D} \,|\, r \text{ splňuje } \theta_1 \text{ nebo } r \text{ splňuje } \theta_2\} = \sigma_{\theta_1}(\mathcal{D}) \cup \sigma_{\theta_2}(\mathcal{D}). \end{split}$$

To jest, $\sigma_{\theta}(\mathcal{D})$ pro libovolně složitou θ lze vyjádřit konečně mnoha aplikacemi \ a \cup pouze za použití výchozí relace \mathcal{D} .

poznámka: spojení na rovnost je "dost obecná" relační operace

Intermezzo: Tranzitivní uzávěr

tranzitivní uzávěr relace na množině, angl.: transitive closure

Mějme binární relaci $R \subseteq A \times A$. Pak tranzitivním uzávěrem R, rozumíme binární relací $R^{\infty} \subseteq A \times A$ splňující následující podmínky:

- \mathbf{Q} R^{∞} je tranzitivní,
- lacksquare je nejmenší relace splňující lacksquare a lacksquare.

konstruktivně lze R^{∞} vyjádřit jako

$$R^{\infty} = \bigcup_{n=1}^{\infty} R^n = \bigcup_{n=1}^{\infty} \underbrace{R \circ \cdots \circ R}_{n\text{-krát}},$$

přitom platí:

- pokud je R konečná, pak existuje index m tak, že $R^{\infty} = \bigcup_{n=1}^{m} R^n$
- pokud je navíc R reflexivní, pak $R^{\infty} = R^m$

Příklad (Tranzitivní uzávěr binární relace na konečné množině)

uvažujme binární relaci $R = \{\langle a, c \rangle, \langle b, d \rangle, \langle c, b \rangle, \langle d, b \rangle\}$ na množině A tranzitivní uzávěr relace R nalezneme takto:

$$\begin{split} R^1 &= \{\langle \mathbf{a}, \mathbf{c} \rangle, \langle \mathbf{b}, \mathbf{d} \rangle, \langle \mathbf{c}, \mathbf{b} \rangle, \langle \mathbf{d}, \mathbf{b} \rangle\} \\ R^2 &= \{\langle \mathbf{a}, \mathbf{b} \rangle, \langle \mathbf{b}, \mathbf{b} \rangle, \langle \mathbf{c}, \mathbf{d} \rangle, \langle \mathbf{d}, \mathbf{d} \rangle\} \\ R^3 &= \{\langle \mathbf{a}, \mathbf{d} \rangle, \langle \mathbf{b}, \mathbf{d} \rangle, \langle \mathbf{c}, \mathbf{b} \rangle, \langle \mathbf{d}, \mathbf{b} \rangle\} \\ R^4 &= \{\langle \mathbf{a}, \mathbf{b} \rangle, \langle \mathbf{b}, \mathbf{b} \rangle, \langle \mathbf{c}, \mathbf{d} \rangle, \langle \mathbf{d}, \mathbf{d} \rangle\} \\ R^\infty &= \{\langle \mathbf{a}, \mathbf{b} \rangle, \langle \mathbf{a}, \mathbf{c} \rangle, \langle \mathbf{a}, \mathbf{d} \rangle, \langle \mathbf{b}, \mathbf{b} \rangle, \langle \mathbf{b}, \mathbf{d} \rangle, \langle \mathbf{c}, \mathbf{b} \rangle, \langle \mathbf{c}, \mathbf{d} \rangle, \langle \mathbf{d}, \mathbf{b} \rangle, \langle \mathbf{d}, \mathbf{d} \rangle\} \end{split}$$

graficky:

Příklad (Tranzitivní uzávěr v relačním modelu)

motivace: Binární relaci R na množině A z předchozího příkladu můžeme formalizovat jako relaci $\mathcal D$ nad schématem $\{x,y\}$ tak, že

$$\mathcal{D} = \{ \{ \langle x, a \rangle, \langle y, b \rangle \} \mid \langle a, b \rangle \in R \}.$$

Pak můžeme vyjádřit protějšky \mathcal{D}^1 , \mathcal{D}^2 , \mathcal{D}^3 , \mathcal{D}^4 , \mathcal{D}^∞ relací R^1 , R^2 , R^3 , R^4 , R^∞ :

$$\mathcal{D}^{1} = \mathcal{D},$$

$$\mathcal{D}^{2} = \rho_{z \leftarrow y}(\mathcal{D}) \circ \rho_{z \leftarrow x}(\mathcal{D}) = \pi_{\{x,y\}}(\rho_{z \leftarrow y}(\mathcal{D}) \bowtie \rho_{z \leftarrow x}(\mathcal{D})),$$

$$\mathcal{D}^{3} = \rho_{z \leftarrow y}(\mathcal{D}) \circ \rho_{z \leftarrow x}(\mathcal{D}^{2}) = \pi_{\{x,y\}}(\rho_{z \leftarrow y}(\mathcal{D}) \bowtie \rho_{z \leftarrow x}(\mathcal{D}^{2})),$$

$$\mathcal{D}^{4} = \rho_{z \leftarrow y}(\mathcal{D}) \circ \rho_{z \leftarrow x}(\mathcal{D}^{3}) = \pi_{\{x,y\}}(\rho_{z \leftarrow y}(\mathcal{D}) \bowtie \rho_{z \leftarrow x}(\mathcal{D}^{3})),$$

$$\mathcal{D}^{n} = \pi_{\{x,y\}}(\bowtie_{i=1}^{n} \rho_{x'_{i,n} \leftarrow x, y'_{i,n} \leftarrow y}(\mathcal{D})),$$

$$\mathcal{D}^{\infty} = \bigcup_{n=1}^{m} \mathcal{D}^{n} = \bigcup_{n=1}^{m} \pi_{\{x,y\}}(\bowtie_{i=1}^{n} \rho_{x'_{i,n} \leftarrow x, y'_{i,n} \leftarrow y}(\mathcal{D})),$$

kde $x'_{1,n}=x$ pro každé n; $y'_{n,n}=y$ pro každé n; $x'_{i,n}=y'_{i-1,n}$ pro každé $2\leq i\leq n.$

problém: parametr m ve výrazu pro \mathcal{D}^{∞} závisí na konkrétní \mathcal{D} (!!)

Tranzitivní uzávěr relací

Definice (tranzitivní uzávěr relace, angl.: transitive closure)

Mějme relaci \mathcal{D} nad dvouprvkovým schématem $R = \{y_1, y_2\}$. Pak relace \mathcal{D}^{∞} nad relačním schématem R splňující následující podmínky:

- $\mathfrak{O} \mathcal{D} \subseteq \mathcal{D}^{\infty}$,
- $oldsymbol{0} \mathcal{D}^{\infty}$ je nejmenší relace splňující $oldsymbol{0}$ a $oldsymbol{0}$,

se nazývá tranzitivní uzávěr relace \mathcal{D} .

Tutorial D:

```
TCLOSE (\langle relačni-v\acute{y}raz \rangle)
```

poznámky:

- SQL nepodporuje přímo jako relační operaci (ale je definovatelné)
- důležitý aspekt: ukázat konstruktivní předpis pro výpočet TCLOSE

Lokální pojmenování výsledků dotazů v SQL

```
WTTH
    \langle jm\acute{e}no_1 \rangle AS (\langle dotaz_1 \rangle),
    \langle jm\acute{e}no_n \rangle AS (\langle dotaz_n \rangle)
    \langle dotaz-používající-jména \rangle;
WITH RECURSIVE
    \langle jm\acute{e}no_1 \rangle (\langle atribut_{1,1} \rangle, \langle atribut_{1,2} \rangle, ...) AS
        (\langle nerekurzivni-v\acute{y}raz_1 \rangle \ UNION \ DISTINCT \ \langle rekurzivni-v\acute{y}raz_1 \rangle),
    \langle jm\acute{e}no_n \rangle (\langle atribut_{n,1} \rangle, \langle atribut_{n,2} \rangle, ...) AS
        (\langle nerekurzivni-v\acute{y}raz_n\rangle) UNION DISTINCT \langle rekurzivni-v\acute{y}raz_n\rangle)
    \langle dotaz-používající-jména \rangle;
```

související pojem: "rekurzivní dotazy" v SQL

Iterativní vyhodnocení pojmenovaných dotrazů v SQL

vstup:

- $\langle jm\acute{e}no_i \rangle$ (jméno pro výsledek), $\langle atribut_{i,1} \rangle$, $\langle atribut_{i,2} \rangle$, . . . (jména atributů)
- $\langle nerekurzivni-v\acute{y}raz_i \rangle$ (dotaz)
- $\langle rekurzivni-v\acute{y}raz_i \rangle$ (předpis iterace, může obsahovat $\langle jm\acute{e}no_i \rangle$ a atributy)

způsob vyhodnocení:

- vyhodnoť $\langle nerekurzivni-výraz_i \rangle$; výsledek ulož do RESULT a WORK;
- **2** dokud $WORK \neq \emptyset$, opakuj:
 - vyhodnoť $\langle rekurzivní-výraz_i \rangle$ v němž je každé $\langle jm\acute{e}no_i \rangle$ nahrazeno obsahem tabulky WORK; z výsledku odstraň duplicitní řádky a každý řádek, který se již nachází v RESULT; výsledek ulož do WORK;
 - připoj obsah WORK na konec RESULT;
- \odot navaž obsah RESULT na $\langle jm\acute{e}no_i \rangle$

poznámka: varianta s UNION ALL neodstraňuje duplicity

Příklad (SQL: Tranzitivní uzávěr relace)

využijeme faktu, že $\mathcal{D}^{\infty}=f(\mathcal{D},\mathcal{D})$, kde

$$f(\mathcal{D}_1,\mathcal{D}_2) = \begin{cases} \mathcal{D}_2, & \text{pokud } \mathcal{D}_1 = \emptyset, \\ f(\mathcal{D}' \setminus \mathcal{D}_2, \mathcal{D}' \cup \mathcal{D}_2), & \text{pro } \mathcal{D}' = \rho_{z \leftarrow x}(\mathcal{D}_1) \circ \rho_{z \leftarrow y}(\mathcal{D}) \text{ a } \mathcal{D}_1 \neq \emptyset. \end{cases}$$

```
CREATE TABLE r (
  x NUMERIC NOT NULL,
  y NUMERIC NOT NULL,
 PRIMARY KEY (x, y); ...
/* computing transitive closure */
WITH RECURSIVE
 tr(x, y) AS(
   SELECT * FROM r
      UNTON DISTINCT
   SELECT r.x, tr.y FROM r, tr WHERE r.y = tr.x)
  SELECT * FROM tr;
```

Lokální pojmenování výsledků dotazů v Tutorial D

lokální pojmenování pro skalární výrazy (analogie let* z dialektů LISPu):

```
WITH (\langle prom\check{e}nn\acute{a}_1 \rangle := \langle v\acute{y}raz_1 \rangle, \ldots, \langle prom\check{e}nn\acute{a}_n \rangle := \langle v\acute{y}raz_n \rangle) : \langle skal\acute{a}rn\acute{i}-v\acute{y}raz-pou\check{z}\acute{v}aj\acute{c}\acute{i}-prom\check{e}nn\acute{e} \rangle
```

lokální pojmenování pro n-ticové výrazy:

```
WITH (\langle prom\check{e}nn\acute{a}_1 \rangle := \langle v\acute{y}raz_1 \rangle, \ldots, \langle prom\check{e}nn\acute{a}_n \rangle := \langle v\acute{y}raz_n \rangle) : \langle n\text{-}ticov\acute{y}\text{-}v\acute{y}raz\text{-}pou\check{z}\acute{v}aj\acute{c}\acute{i}\text{-}prom\check{e}nn\acute{e} \rangle
```

lokální pojmenování pro relační výrazy:

```
WITH (\langle prom\check{e}nn\acute{a}_1 \rangle := \langle v\acute{y}raz_1 \rangle, \ldots, \langle prom\check{e}nn\acute{a}_n \rangle := \langle v\acute{y}raz_n \rangle) : \langle rela\check{c}n\acute{e}-v\acute{y}raz-pou\check{z}\acute{v}aj\acute{c}\acute{e}-prom\check{e}nn\acute{e} \rangle
```

poznámka:

• pouze lokální pojmenování (neslouží k vyjadřování "rekurzivních" předpisů)

Příklad (Tutorial D: Použití WITH a tranzitivní uzávěr relace)

```
WITH (r1 := r,
      r2 := (r RENAME {y AS z}) COMPOSE (r1 RENAME {x AS z}),
      r3 := (r RENAME \{y AS z\}) COMPOSE (r2 RENAME \{x AS z\}),
      r4 := (r RENAME {y AS z}) COMPOSE (r3 RENAME {x AS z})):
  UNION {r1, r2, r3, r4}
WITH (r1 := r,
      w2 := (r RENAME \{ y AS z \}) COMPOSE (r1 RENAME \{ x AS z \}),
      r2 := w2 MINUS r1,
      w3 := (r RENAME \{ y AS z \}) COMPOSE (r2 RENAME \{ x AS z \}),
      r3 := w3 MINUS UNION {r1, r2},
      w4 := (r RENAME \{y AS z\}) COMPOSE (r3 RENAME \{x AS z\}),
      r4 := w4 MINUS UNION {r1, r2, r3}):
  UNION {r1, r2, r3, r4}
TCLOSE (r)
```

Příklad (Tutorial D: Implementace tranzitivního uzávěru)

```
OPERATOR tr (r RELATION {x INT, y INT}) RETURNS SAME_TYPE_AS (r);
  BEGIN:
    VAR result PRIVATE INIT (r) KEY {x,y};
    VAR work PRIVATE INIT (r) KEY {x,y};
    WHILE NOT (IS_EMPTY (work));
      BEGIN:
        work := (r RENAME {y AS z}) COMPOSE (work RENAME {x AS z});
        work := work MINUS result;
        result := result UNION work;
      END;
    END WHILE:
    RETURN result;
  END:
END OPERATOR;
```

Problematika nespojitelných n-tic

motivace:

Pokud se v relacích, které spojujeme, nacházejí nějaké nespojitelné n-tice, ve výsledky dochází ke "ztrátě informace." Jak tento problém vyřešit?

převládající, ale koncepčně špatné řešení:

- snahy se objevují kolem roku 1979 (10 let po představení originálního modelu)
- zavedení vnějších spojení a konceptu nedefinovaných (chybějících) hodnot
- tabulky nelze formalizovat jako relace nad relačními schématy
- formální model je pochybný, postrádá logiku, velký potenciál vzniku chyb

další řešení:

- místo nedefinovaných hodnot používat designované hodnoty z domén (např. "??" může mít význam, že řetězcová hodnota je neznámá)
- zavedení relační operace **polorozdíl**, která vyjadřuje nespojitelné *n*-tice
- plné využití RM a konceptu relace jako hodnoty atributu (Přednáška 6)

Vnitřní a vnější spojení

vnější přirozená a θ -spojení v SQL:

princip vnějších spojení:

- ve výsledku levého (pravého/oboustranného) vnějšího spojení jsou zahrnuty i n-tice z první (druhé/obou) relace(í), které jsou nespojitelné
- v tabulkách se projevuje přítomností NULL (značí "absenci hodnot")
- doposud diskutovaná spojení jsou tzv. vnitřní spojení (v SQL lze místo NATURAL JOIN psát NATURAL INNER JOIN)

Příklad (Vnější přirozená spojení)

	-	
F00	BAR	BAZ
444	ghi	103
	def	102
555	ghi	103
666	abc	101

 \mathcal{D}_1

	_	
BAR	BAZ	QUX
abc	111	ZZZ
def	102	www
def	102	ууу
ghX	103	xxx
ghi	103	ttt
ghi	103	uuu
ghi	103	vvv

 \mathcal{D}_2

	F00	BAR	BAZ	QUX
1	444	ghi	103	ttt
	444	ghi	103	uuu
	444	ghi	103	vvv
	555	def		www
	555		102	
	555	ghi	103	ttt
	555	0		uuu
	555	ghi	103	vvv
	666	abc	101	

levé

F00	BAR	BAZ	QUX
444	ghi	103	ttt
444	ghi	103	uuu
444	ghi	103	vvv
555	def	102	www
555	def	102	ууу
555	ghi	103	ttt
555	ghi	103	uuu
555	ghi	103	vvv
666	abc	101	
	abc	111	ZZZ
	ghX	103	xxx

oboustranné

F00	BAR	BAZ	QUX
444	ghi	103	ttt
444	ghi	103	uuu
444	ghi	103	vvv
555	def	102	www
555	def	102	ууу
555	ghi	103	ttt
555	ghi	103	uuu
555	ghi	103	vvv
	abc	111	ZZZ
	ghX	103	xxx

pravé

```
SELECT * FROM r1 NATURAL LEFT OUTER JOIN r2
SELECT * FROM r1 NATURAL FULL OUTER JOIN r2
SELECT * FROM r1 NATURAL RIGHT OUTER JOIN r2
```

Související problémy

patologický rys:

- výsledek vnějšího spojení nelze formalizovat jako relaci nad schématem ($\{\{\langle x,10\rangle,\langle y,20\rangle\},\{\langle x,66\rangle\},\{\langle y,77\rangle\}\}$ může být vysledkem vnějšího spojení)
- související otázky:
 - Jak implementovat množinové relační operace?
 - Jak vlastně implementovat jakékoliv relační operace?
 - Co je výsledkem restrikce, pokud není hodnota atributu definovaná?

je nutné:

- explicitně zavést nedefinovanou hodnotu (označení ω, v SQL NULL)
- uvažovat artimetické, logické a další operace, jejichž argumenty mohou být nedefinované (jaké jsou jejich výsledky?)
- rozšířit (zprznit) relačního modelu dat

3VL v SQL

přístup k "nedefinovaným hodnotám" v SQL:

• použití fragmentu Kleeneho tříhodnotové logiky (3VL) s hodnotami $\{0,\omega,1\}$ a interpretací logických spojek \land , \lor , \Rightarrow , \Leftrightarrow , \neg danou tabulkami:

								\rightarrow									
0	0	0	0	0	0	ω	1	0	1	1	1	0	1	ω	0	0	1
ω	0	ω	ω	ω	ω	ω	1	ω	ω	ω	1	ω	ω	ω	ω	ω	ω
1	0	ω	1	1	1	1	1	1	0	ω	1	1	0	ω	1	1	0

bohužel, nedává smysl, protože:

- nespecifita ≠ pravdivost
- bereme-li v úvahu nespecifitu, přestává platit princip kompozicionality, to jest pravdivost složených formulí (v daném ohodnocení) nezávisí pouze na pravdivosti podformulí (a spojkách), ale i na struktuře podformulí. (!!)

například: pokud je $e(\varphi) = \omega$ a $e(\psi) = \omega$, pak dle 3VL máme $e(\varphi \vee \psi) = \omega$; ale pokud je ψ ve tvaru $\neg \varphi$, musí být $e(\varphi \vee \psi) = 1$ (tertium non datur, !!)

Příklad (Příklad důsledků 3VL v SQL, C. J. Date)

```
CREATE TABLE r1 (x NUMERIC NOT NULL PRIMARY KEY, yn VARCHAR);
CREATE TABLE r2 (v NUMERIC NOT NULL PRIMARY KEY, zn VARCHAR);
INSERT INTO r1 VALUES (45, 'London');
INSERT INTO r2 VALUES (33, NULL);
SELECT x, y FROM r1, r2 WHERE (yn <> zn OR zn <> 'Paris');
logický výsledek: \begin{vmatrix} x & y \\ \hline 45 & 33 \end{vmatrix}, protože \begin{cases} buď zn = 'Paris' \text{ a tím pádem yn } \neq zn \\ nebo zn \neq 'Paris' \end{cases}
výsledek dotazu v SQL: [x]y (prázdná relace), protože \omega \vee \omega = \omega
```

You can never trust the answers you get from a database with nulls.

— C. J. Date

Alternativní přístup: designované hodnoty domén

motivace:

Snaha obejít problémy s 3VL a nedefinovanými hodnotami.

úskalí předchozího řešení:

- NULL jako "pravdivostní hodnota" nedává smysl
- další možnost: používat místo NULL speciální hodnoty domén

formalizace:

- \bullet uvažovat domény $D_y \cup \{\omega_y\}$ rozšířené o ω_y (nedef. hodnota domény atributu y)
- ullet typicky: ω_y jsou prázdné řetězce, zpeciální znaky, čísla, . . .

přetrvávající nevýhody:

- soudobé SŘBD přímo nepodporují (například u vnějších spojení)
- lacktriangle problémy s použitím ω_y omylem jako "skutečnou hodnotu" (zdroj chyb)

Odvozená operace: Polorozdíl

Definice (polorozdíl, angl.: semidifference)

Mějme relace \mathcal{D}_1 a \mathcal{D}_2 na schématech R_1 a R_2 . Položme:

$$\mathcal{D}_1 \ltimes \mathcal{D}_2 = \mathcal{D}_1 \setminus \pi_{R_1}(\mathcal{D}_1 \bowtie \mathcal{D}_2).$$

Relace $\mathcal{D}_1 \ltimes \mathcal{D}_2$ se nazývá polorozdíl \mathcal{D}_1 a \mathcal{D}_2 (v tomto pořadí).

Tutorial D (zobecňuje MINUS):

```
\langle rela\check{c}n\acute{i}-v\acute{y}raz_1\rangle NOT MATCHING \langle rela\check{c}n\acute{i}-v\acute{y}raz_2\rangle
```

SQL:

```
SELECT * FROM \langle jm\acute{e}no_1 \rangle
EXCEPT
```

SELECT DISTINCT $\langle jm\acute{e}no_1 \rangle$.* FROM $\langle jm\acute{e}no_1 \rangle$ NATURAL JOIN $\langle jm\acute{e}no_2 \rangle$

význam: $r_1 \in \mathcal{D}_1 \ \overline{\ltimes} \ \mathcal{D}_2$ p. k. $r_1 \in \mathcal{D}_1$ není spojitelná s žádnou n-ticí z \mathcal{D}_2

Příklad (Vnější spojení a polorozdíly)

 \mathcal{D}_2

 \mathcal{D}_1 F00 BAR BAZ ghi 103 555 def 102 ghi 103 555 666 abc 101

	_	
BAR	BAZ	QUX
abc	111	ZZZ
def	102	www
def	102	ууу
ghX	103	xxx
ghi	103	ttt
ghi	103	uuu
ghi	103	vvv

F00	BAR	BAZ	QUX
444	ghi	103	ttt
	g ₁₁ T		
444	ghi	103	uuu
444	ghi	103	vvv
555	def	102	www
555	def	102	ууу
555	ghi	103	ttt
555	ghi	103	uuu
555	ghi	103	vvv
666	abc	101	

levé

F00	BAR	BAZ	QUX	F
444	ghi	103	ttt	4
444	ghi	103	uuu	4
444	ghi	103	vvv	4
555	def	102	www	5
555	def	102	ууу	5
555	ghi	103	ttt	5
555	ghi	103	uuu	5
555	ghi	103	vvv	5
666	abc	101		6

F00	BAR	BAZ	QUX
444	ghi	103	ttt
444	ghi	103	uuu
444	ghi	103	vvv
555	def	102	www
555	def	102	ууу
555	ghi	103	ttt
555	ghi	103	uuu
555	ghi	103	vvv
666	abc	101	
	abc	111	zzz
	ghX	103	xxx

oboustranné

BAR	BAZ	QUX
ghi	103	ttt
ghi	103	uuu
ghi	103	vvv
def	102	www
def	102	ууу
ghi	103	ttt
ghi	103	uuu
ghi	103	vvv
abc	111	ZZZ
ghX	103	xxx
	ghi ghi ghi def def ghi ghi ghi	ghi 103 ghi 103 ghi 103 def 102 def 102 ghi 103 ghi 103 ghi 103 abc 111

pravé

$$\mathcal{D}_1 \, \overline{m{ imes}} \, \mathcal{D}_2 = egin{array}{|c|c|c|c|} \hline { t F00 & BAR & BAZ} \ \hline 666 & abc & 101 \ \hline \end{array}$$

$$\mathcal{D}_2 \, \overline{\ltimes} \, \mathcal{D}_1 = egin{array}{c|c} \mathsf{BAR} & \mathsf{BAZ} & \mathsf{QUX} \ \mathsf{abc} & \mathsf{111} & \mathsf{zzz} \ \mathsf{ghX} & \mathsf{103} & \mathsf{xxx} \ \end{array}$$

Přednáška 5: Závěr

pojmy k zapamatování:

- úplné přirozené spojení, bezeztrátová dekompozice
- θ -spojení a spojení na rovnost
- tranzitivní uzávěr, lokální pojmenování, rekurzivní dotazy
- vnitřní a vnější spojení, nedefinované hodnoty, polorozdíl

použité zdroje:

- Date C. J.: Database in Depth: Relational Theory for Practitioners O'Reilly Media 2005, ISBN 978-0596100124
- Date C. J., Darwen H.: *Databases, Types and the Relational Model* Addison Wesley 2006, ISBN 978–0321399427
- Maier D: *Theory of Relational Databases*Computer Science Press 1983, ISBN 978-0914894421