CAN PROTOCOL

Introduction Vehicle network

Introduction

History

Year

Introduction

Characteristics of 'CAN'

- CAN is a multi-master Bus
- Theoretically No limitation on the number of nodes
- Configuration flexibility No node addressing
- Prioritization of messages through "Identifiers"
- Multicast reception with the time synchronization
- System wide data consistency
- Guarantee of latency times
- Error detection and error signaling
- Automatic retransmission of corrupted messages
- Temporary errors permanent failures of nodes and auto switching off defect nodes

Introduction

CAN in the OSI model

7	Application	 Logical Link Control (LLC) Acceptance Filtering Overload Notification Recovery Management
6	Presentation	Medium Access control(MAC)Data Encapsulation/Decapsulation
5	Session	Frame CodingError Detection/Signaling/Handling
4	Transport	
		Physical Signaling (PLS)
3	Network	Bit Encoding/DecodingBit Time Synchronization
2	Network Data Link	Bit Time SynchronizationPhysical Medium attachment(PMA)Driver/Receiver Characteristics
		–Bit Time Synchronization ■ Physical Medium attachment(PMA)

Physical Layer

- Bit rate: up to 1Mbit/s
- → Bidirectional Dual-wire bus with 40-50m maximum in length
- → Multi-Master

Relation between Baud Rate and Bus Length

Bus Access and Arbitration

Bus access through CSMA with AMP

Advantages

- No Collision
- Transmission of highest priority message within the latency time

Message Transfer

Frame Formats

- Standard Frame 11bit Identifier
- Extended Frame 29 bit Identifier

Frame Types

- Data Frame
- Remote Frame (not useful)
- Error Frame
- Overload Frame (not useful)
- Inter-frame Spacing

Data Frame

Standard Data Frame Format

Extended Data Frame Format

Difference between Standard Frame and Extended Frame

Differs only in Arbitration field and Control field

CAN Protocol Error Frame

Error Frame Format (Active Error Frame)

• Error flag can start within the frame that is currently being transmitted

Types of Error flags

- Active Error flag consists of 6 consecutive 'dominant' bit
- Passive Error flag consists of 6 consecutive 'recessive' bit

Error Handling

Interframe Spacing

After the transmission of a frame by an Error Active node

After the transmission of a frame by an Error Passive node

CAN Protocol Message Coding

Non-Return-to-Zero coding

• Keeps the frequency of the signal on the bus to minimum.

Bit-Stuffing

• Ensures sufficient Recessive and Dominant edges for Re-Synchronization.

Types of Error Detected in CAN Bus

CRC Error:

• Every node receive the message, Calculate CRC and compare it with Received CRC.

Acknowledge Error:

• Transmitting node send a ACK slot bit as a recessive bit and check for dominant bit to verify reception.

Form Error:

• Generated when any of following bit is detected as a dominant bit where One should not be. e.g. CRC delimiter, ACK delimiter, End of Frame, Inter Frame Space.

Bit Error:

Node detect the signal that is opposite of what it send on Bus.

Stuff Error:

• Bit stuffing rule is violated when 6-consecutive bits with the same polarity are detected.

Introduction about CAN FD

Main improvement:

- Increase bit rate (2,4 ... up to 8 Mbit/s)
- Increase payload up to 64 bytes

Reference

-CAN Specification 2.0 – Bosch

-ISO 11898-2 – High speed CAN

-ISO 11898-2 2015 - CAN FD

