Mediation

Gemma Wallace & Neil Yetz PSY 653 Module 8 Lab Apr 1, 2020

The "paths" in mediation

Baron & Kenny criteria for testing mediation

- 1. Show X is related to Y (c path)
- 2. Show X is related to M (a path)
- 3. Show Y is related to M (b path)
- 4. Show that M explains the relationship between X and Y (c' path)
 - O One way to do this is to show that controlling for M will cause r_{xy} to go toward zero

^{*}Must meet **all** criteria to run a mediation model

Load Libraries

```
6 - # Load libraries
 7 → ```{r,message=FALSE}
  install.packages("mediation")
 9
10
   library(tidyverse)
   library(psych)
12 library(mediation)
   library(ppcor)
13
14
```

Read in data

```
13
14 - # Read in data
15 - ```{r}
   med <- read csv("mediate2.csv")</pre>
16
17
     Parsed with column specification:
     cols(
       X1 = col_double().
       X2 = col_double().
       X3 = col_double(),
       X4 = col_double(),
       x5 = col_double().
       Y1 = col double()
18
```

This is a simulated dataset with four predictor variables (X1-X5) and one outcome variable (Y1)

Note: though not shown here, don't forget to do your data management "best practices" by examining descriptives and visualizing data before conducting analyses!

Examine correlations between variables

```
22
23 -
    ```{r}
 cor (med)
24
25
 X2
 X5
 X1
 х3
 X4
 0.03946291 0.03657073 0.04344269
 X1 1.00000000
 0.1020180
 0.3465506
 X2 0.03946291
 1.00000000 0.08889150 0.06447405 -0.1310097
 -0.3227619
 X3 0.03657073 0.08889150 1.00000000 0.34246913
 0.7331822
 0.5053060
 0.4068431
 0.4104644
 x4 0.04344269 0.06447405 0.34246913 1.00000000
 X5 0.10201803 -0.13100973 0.73318217 0.40684310
 1.0000000
 0.6405100
 Y1 0.34655064 -0.32276194 0.50530603 0.41046440
 1,0000000
 0.6405100
26
```

Analysis 1: Test the hypothesis that X4 mediates the

relationship between X1 and Y1

### Step 1: Determine if mediation is plausible, based on the Baron & Kenny Criteria

Examine correlations between variables

```
22
23 + ```{r}
 cor (med)
25
 x_1
 X1 1.00000000 0.03946291 0.03657073 0.04344269 0.1020180
 x2 0.03946291 1.00000000 0.08889150 0.06447405 -0.1310097
 X3 0.03657073
 0.08889150 1.00000000 0.34246913
 0.7331822
 0.5053060
 x4 0.04344269 0.06447405 0.34246913 1.00000000
 0.4068431
 0.4104644
 X5 0.10201803 -0.13100973 0.73318217 0.40684310
 1.0000000
 0.6405100
 Y1 0.34655064 -0.32276194 0.50530603 0.41046440
 0.6405100
 1.0000000
26
 rxy = .3466 (c path)
 rxm = .0434 (a path)
 rmy = .4105 (b path)
```

## Do we have justification to test the mediation hypothesis? (Baron & Kenny criteria)

```
22
23 -
    ```{r}
    cor (med)
25
                Х1
                            X2
                                       х3
                                                             X5
                   0.03946291 0.03657073 0.04344269 0.1020180
     X1 1.00000000
     X2 0.03946291
                    1.00000000 0.08889150 0.06447405 -0.1310097
                                                                 0.5053060
     X3 0.03657073
                    0.08889150 1.00000000 0.34246913
                                                      0.7331822
                                                      0.4068431
                                                                 0.4104644
     x4 0.04344269 0.06447405 0.34246913 1.00000000
                                                      1.0000000
     X5 0.10201803 -0.13100973 0.73318217 0.40684310
                                                                 0.6405100
     Y1 0.34655064 -0.32276194 0.50530603 0.41046440
                                                      0.6405100
                                                                 1.0000000
26
```

```
rxy = .3466 (c path)
rxm = .0434 (a path)
rmy = .4105 (b path)
```

Do we have justification to test the mediation hypothesis? (Baron & Kenny criteria)

```
22
23 -
      `{r}
    cor (med)
24
25
                 X1
                             X2
                                                                X5
                                                         0.1020180
       1.00000000
                     0.03946291 0.0365
                                                                     0.3465506
                                         50 0.
                     1.00000000 0.0888
                                                447405
                                                        -0.1310097
     X2 0.03946291
                                                                    -0.3227619
                     0.08889150 1.0
                                               4246913
     X3 0.03657073
                                                         0.7331822
                                                                    0.5053060
                                                         0.4068431
                                                                    0.4104644
     X4 0.04344269
                     0.06447405
     X5 0.10201803 -0.13100973
                                                         1.0000000
                                                                     0.6405100
                                            0.40684310
     Y1 0.34655064 -0.32276194 0.
                                    0530603 0.41046440
                                                         0.6405100
                                                                     1.0000000
26
```


Analysis 2: Test the hypothesis that X4 mediates the

relationship between X3 and Y1

Step 1: Determine if mediation is plausible, based on the Baron & Kenny Criteria

```
22
23 + ```{r}
    cor (med)
25
                X1
                            X2
                                       х3
                                                  X4
                                                             X5
                                                                        Υ1
    X1 1.00000000
                   0.03946291 0.03657073 0.04344269
                                                      0.1020180
     X2 0.03946291
                   1.00000000 0.08889150 0.06447405 -0.1310097
                                                                -0.3227619
     X3 0.03657073 0.08889150 1.00000000 0.34246913 0.7331822
                                                                0.5053060
     X4 0.04344269 0.06447405 0.34246913 1.00000000
                                                      0.4068431 0.4104644
                                                      1.0000000
                                                                 0.6405100
     X5 0.10201803 -0.13100973 0.73318217 0.40684310
     Y1 0.34655064 -0.32276194 0.50530603 0.41046440
                                                      0.6405100
                                                                 1.0000000
26
```

```
rxy = .5053 (c path)
rxm = .3425 (a path)
rmy = .4105 (b path)
```

Do we have justification to test the mediation hypothesis? (Baron & Kenny criteria)

```
22
23 -
   ```{r}
 cor (med)
25
 Х1
 X2
 х3
 X4
 X5
 Υ1
 0.03946291 0.03657073 0.04344269
 X1 1.00000000
 0.1020180
 0.3465506
 X2 0.03946291
 1.00000000 0.08889150 0.06447405 -0.1310097
 -0.3227619
 X3 0.03657073 0.08889150 1.00000000 0.34246913 0.7331822
 0.5053060
 X4 0.04344269
 0.06447405 0.34246913 1.00000000
 0.4068431
 0.4104644
 1.0000000
 0.6405100
 X5 0.10201803 -0.13100973 0.73318217 0.40684310
 Y1 0.34655064 -0.32276194 0.50530603 0.41046440
 0.6405100
 1.0000000
26
```

```
rxy = .5053 (c path)
rxm = .3425 (a path)
rmy = .4105 (b path)
```

## Do we have justification to test the mediation hypothesis? (Baron & Kenny criteria)



# Step 2: Use semi-partial correlation to examine correlation between X and Y when partialling out the effect of the mediator



(Baron & Kenny Criteria, continued)

## Step 2.1: Compare semi-partial correlation to rxy (Baron & Kenny criteria)



Compare to rxy = .5053 (from previous slide)

r y(x.m) = 0.3999. This is 0.11 smaller than rxy (0.5053), indicating that partial mediation is plausible. In other words, there is a portion of the relation between x and y that involves m.

### Step 3: Compare models via hierarchical regression

```
48 - ### Regression method
49 + ```{r}
 m1 just regresses the outcome (Y1) on the
50 m1 <- lm(Y1 \sim X3) , data = med)
 m2 < -llow 1m(Y1 \sim X3 + X4 , data = med)
 predictor (X3)
52
 anova(m1, m2)
 m2 regresses the outcome (Y1) on both the
 predictor (X3) and the hypothesized mediator (X4)
 Analysis of Variance Table
 Model 1: Y1 ~ X3
 Model 2: Y1 \sim X3 + X4
 Res.Df RSS Df Sum of Sq F Pr(>F)
 598 373.91
 597 341.85 1 32.062 55.993 2.617e-13 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
56
57
```

m2 explains significantly more variance in the outcome than m1

### Step 4: Test mediation model via psych::mediate

```
59 * ### mediate in psych
60 * ```{r}
61
62 fitmed <- psych::mediate(Y1 ~ X3 + (X4), data = med)
63 summary(fitmed)
64
65 ```</pre>
```

- psych::mediate: mediate function (via psych package)
- Y1: Outcome variable
- X3: Predictor variable
- (X4): Mediator variable (keep it enclosed in parentheses)
- data = med: dataset

```
59 - ### mediate in psych
60 - ```{r}
61
 fitmed <- psych::mediate(Y1 \sim X3 + (X4), data = med)
 summary(fitmed)
64
65
 6
 data.frame
 data.frame
 data.frame
 data.frame
 data.frame
 R Console
 3 x 5
 1 x 5
 2 x 5
 1 x 5
 1 x 5
 Mediation
 WINDOWS
 Model diagram with paths
 2. Function call
 c' path
 c path
 c = 0.29
 a path
 c' = 0.24
 b path
 ab bootstrapped results
 (indirect effect)
```

#### psych::mediate output windows



### psych::mediate output windows



Bootstrapped estimate

1 row

Evidence of partial mediation

#### psych::mediate a\*b interpretation

To evaluate if the indirect effect is significant:

#### Output Window 7: a\*b path bootstrapped analysis (indirect effect)

	<b>Y1</b> <dbl></dbl>	boot <dbl></dbl>	sd <dbl></dbl>	lower <dbl></dbl>	upper <dbl></dbl>
<b>X</b> 3	0.05	0.05	0.01	0.04	0.07
1 row					

Does the bootstrapped confidence interval for the indirect effect (aka a path estimate \* b path estimate) contain zero?

In this case it does not, indicating that X4 partially mediates the relation between X3 and Y1.

You can calculate the proportion of the relation of Y1 on X3 that is mediated by X4 by dividing the indirect effect by the total effect:

Proportion mediated = (a\*b)/c

Proportion mediated = 0.05/0.29 = .1862. 18.6% of the effect is mediated.

#### Step 5: Test mediation via mediation::mediate

```
69 - ### Mediate in mediation package
 Regress mediator
70 - ```{r}
 fitM <- 1m(X4 \sim X3, data = med)
 variable (X4) on
 fitY <- 1m(Y1 \sim X3 + X4, data = med)
73
 predictor variable (X3)
74
 fitmed <- mediation::mediate(fitM, fitY, treat = "X3", mediator = "X4")</pre>
 summary(fitmed)
 Regress outcome
 variable (Y1) on
 predictor (X3) and
 Causal Mediation Analysis
 mediator (X4)
 Quasi-Bayesian Confidence Intervals
 Estimate 95% CI Lower 95% CI Upper p-value
 0.0535
 0.0366
 ACME
 Use mediation::mediate
 0.2405
 0.2002
 0.28 <2e-16 ***
 ADF
 Total Effect
 0.2940
 0.2515
 0.33 <2e-16 ***
 to test models for
 0.1246
 0.24 <2e-16 ***
 Prop. Mediated
 0.1806
 mediation. Indicate
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Signif. codes:
 predictor variable (treat
 Sample Size Used: 600
 = "X3") and mediator
 Simulations: 1000
 variable (mediator =
 This is an alternative function() for testing mediation. Both work!
 "X4")
```

#### Step 5: Test mediation via mediation::mediate

```
69 - ### Mediate in mediation package
70 - ```{r}
 fitM <- 1m(X4 \sim X3, data = med)
 fitY \leftarrow 1m(Y1 \sim X3 + X4, data = med)
73
74
 fitmed <- mediation::mediate(fitM, fitY, treat = "X3", mediator = "X4")
 summary(fitmed)
 Causal Mediation Analysis
 Quasi-Bayesian Confidence Intervals
 Estimate 95% CI Lower 95% CI Upper p-value
 0.0535
 0.0366
 ACME
 <2e-16 ***
 ADF
 0.2405
 0.2002
 <2e-16 ***
 Total Effect
 0.2940
 0.2515
 <2e-16 ***
 Prop. Mediated
 0.1806
 0.1246
 0.24
 <2e-16 ***
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Signif. codes:
 Sample Size Used: 600
```

ACME: "Average Causal Mediated Effect." This is the effect of the mediator alone (ab bootstrapped; equivalent to window 7 via psych::mediate)

ADE: "Average Direct Effect" (c' path; equivalent to window 3 via psych::mediate)

Total Effect: c path (equivalent to window 4 via psych::mediate)

**Prop. Mediated**: Proportion of variance explained by the mediator. (a path\*b path)/c path

Simulations: 1000

Analysis 3: Test the hypothesis that X4 mediates the

relationship between X5 and Y1

### Determine if mediation is plausible, based on the Baron & Kenny Criteria

```
22
    ```{r}
    cor (med)
                            X2
                                                             X5
                x1
                                       X3
                                                  X4
                                                                         Υ1
       1.00000000
                    0.03946291 0.03657073 0.04344269
                                                      0.1020180
     X2 0.03946291
                    1.00000000 0.08889150 0.06447405
                                                     -0.1310097
                                                     0.7331822 0.5053060
     X3 0.03657073 0.08889150 1.00000000 0.34246913
     X4 0.04344269 0.06447405 0.34246913 1.00000000 0.4068431
                                                                 0.4104644
     X5 0.10201803 -0.13100973 0.73318217 0.40684310
                                                      1.0000000
                                                                 0.6405100
     Y1 0.34655064 -0.32276194 0.50530603 0.41046440
                                                      0.6405100
26
                              rxy = .6405 (c path)
```

```
rxy = .6405 (c path)
rxm = .4068 (a path)
rmy = .4105 (b path)
```

Do we have justification to test the mediation hypothesis?

```
22
23 -
   ```{r}
 cor (med)
25
 X1
 X2
 х3
 X4
 X5
 Υ1
 X1 1.00000000
 0.03946291 0.03657073 0.04344269
 0.1020180
 X2 0.03946291
 1.00000000 0.08889150 0.06447405
 -0.1310097
 -0.3227619
 X3 0.03657073 0.08889150 1.00000000 0.34246913
 0.7331822
 0.5053060
 X4 0.04344269 0.06447405 0.34246913 1.00000000 0.4068431
 0.4104644
 1.0000000
 0.6405100
 X5 0.10201803 -0.13100973 0.73318217 0.40684310
 Y1 0.34655064 -0.32276194 0.50530603 0.41046440
 0.6405100
26
```

```
rxy = .6405 (c path)
rxm = .4068 (a path)
rmy = .4105 (b path)
```

### Do we have justification to test the mediation hypothesis?



# Step 2.1: Use semi-partial correlation to examine correlation between X and Y when partialling out the effect of the mediator



### Step 2.1: Compare semi-partial correlation to rxy (Baron & Kenny criteria)



Compare to rxy = .6405 (from previous slide)

r y(x.m) = 0.5193. This is 0.12 smaller than rxy (0.6405), indicating that partial mediation is plausible. In other words, there is a portion of the relation between x and y that involves m.

#### Step 3: Compare models via hierarchical regression

```
101 - ### Regression method
102 * ``` \{r\}
103 m1 <- 1m(Y1 \sim X5) , data = med)
104 \text{ m2} < -1m(Y1 \sim X5 + X4 \text{ , data} = med)
105
106
 anova(m1, m2)
107
 . . .
108
 Analysis of Variance Table
 Model 1: Y1 \sim X5
 Model 2: Y1 \sim X5 + X4
 Res.Df RSS Df Sum of Sq F Pr(>F)
 1 598 296.12
 2 597 282.61 1 13.517 28.553 1.299e-07 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
109
```

### Step 4: Test mediation model via psych::mediate

```
111 * ### mediate in psych
112 * ```{r}
113
114 fitmed <- psych::mediate(Y1 ~ X5 + (X4), data = med)
115 summary(fitmed)
116
117 ```</pre>
```

- psych::mediate: mediate function (via psych package)
- Y1: Outcome variable
- X5: Predictor variable
- (X4): Mediator variable (keep it enclosed in parentheses)
- data = med: dataset

```
112 • ```{r}
113
114
 fitmed <- psych::mediate(Y1 \sim X5 + (X4), data = med)
115
 summary(fitmed)
116
117
 3
 5
 6
 4
 data.frame
 data.frame
 data.frame
 data.frame
 data.frame
 R Console
 3 X 5
 1 x 5
 2 x 5
 1 x 5
 1 x 5
 Mediation
 WINDOWS
 Diagram
 2. Function call
 3. c' path
 c path
 c = 0.05
 a path
 X5
 c' = 0.04
 b path
 ab bootstrapped results
 (indirect effect)
```

111 - ### mediate in psych

#### psych::mediate window 7



#### Step 5: Test mediation via mediation::mediate

```
119
120 - ### Mediate in mediation package
121 • ```{r}
122 fitM <- 1m(x4 \sim x5, data = med)
123 fitY \leftarrow 1m(Y1 \sim X5 + X4, data = med)
125
126
 fitmed <- mediation::mediate(fitM, fitY, treat = "X5", mediator = "X4")
 summary(fitmed)
128
129
 Causal Mediation Analysis
 Quasi-Bayesian Confidence Intervals
 Estimate 95% CI Lower 95% CI Upper p-value
 ACME
 <2e-16 ***
 0.00552
 0.00343
 ADE
 0.04265
 0.03739
 <2e-16 ***
 Total Effect
 0.04817
 0.04346
 <2e-16 ***
 Prop. Mediated 0.11361
 0.07107
 0.16 <2e-16 ***
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Signif. codes:
```

ACME: "Average Causal Mediated Effect." This is the effect of the mediator alone (ab bootstrapped; Equivalent to window 7 via psych::mediate)

ADE: "Average Direct Effect" (c' path; equivalent ro window 3 via psych::mediate)

**Total Effect**: c path (Equivalent to window 4 via psych::mediate)

Prop. Mediated: Proportion of variance explained by the mediator. (a path\*b path)/c path

Sample Size Used: 600

Simulations: 1000