

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

Supervised learning | classification

Supervised learning

What we need to know about classification

- What is classification?
- What we need as a dataset in classification
- Binary vs. multiclass classification
- Classification models (categories of classifier models)
- How to choose a classification model?
- Support vector machine (SVM) classifier model
- Designing a multiclass SVM model with an example
- How to evaluate the performance of a classifier model?

Classification applications

- Text categorisation (e.g., spam filtering)
- Optical character recognition (OCR) (e.g., a computerised system transferring hard documents into word doc.)
- Machine vision (e.g., face detection)
- Natural-language processing (NLP) (e.g., spoken language understanding)
- Market segmentation (e.g., predict if customer will respond to promotion)
- Bioinformatics and medicine (e.g., classify cancer patients into different immune subtypes)

•

Pattern recognition systems

Suppose that we measure the feature vectors for our samples

ENGNIEERING AND COMPUTER SCIENCE

Classification vs. clustering

Classification – training vs. prediction

Training phase TCGA tumours Learning algorithm **Validation Pre-processing** Feature preparation (RNA-seg with immune subgroup) (train a model) (analytical) n=9126 30 cancer types ~ 20,000 genes ● C1 ○ C2 ● C5 % Accuracy ■ C3 ○ C4 ○ C6 **Prediction phase Unlabelled data** Labelled data (without immune subgroup) **Pre-processing Feature preparation Trained model Post-processing** (with subgroup) □ Probability ☐ Harmonising ☐ Confidence ■ Normalising ~ 20,000 genes interval Multiple platforms ☐ Imputation □ Accuracy Cross cancer (solid) ☐ NC Row or normalised ☐ FFPE or frozen tissues

Classification stages. a, Training phase. b, Prediction phase.

Prediction problem

Consider the following example

It is important for the bank to be able to **predict** in advance **the risk associated with a loan**, which is the probability that the customer will default and not pay the whole amount back.

In **credit scoring**, the bank calculates the risk given the amount of credit and **the information about the customer**. The **information about the customer** includes data we have access to and is relevant in calculating his or her financial capacity - namely, **income**, **savings**, **collaterals**, **profession**, **age**, **past financial history**, and so forth. The bank has a record of past loans containing such customer data and whether the loan was paid back or not.

From this data of particular applications, the aim is to infer a general rule coding the association between a customer's attributes and his risk.

A machine learning system fits a model to the past data to be able to calculate the risk for a new application and then decides to accept or refuse it accordingly.

Prediction problem - classification

- It is important for the bank to be able to predict in advance the risk associated with a loan, which is the probability that the customer will default and not pay the whole amount back.
- From a data of particular applications, the aim is to infer a general rule coding association between a customer's attribute (features) and his/her risk.
- This is an example of a *classification* problem where there are two classes: low-risk and high-risk customers. The information about a customer makes up the *input* to the classifier whose task is to assign the input to one of the two classes.

Dataset in classification

17 samples (customers)

#	Income	Savings	Collaterals	Profession	age	Risk
1	£25K	2K	Yes		24	low
2	£35K	5K	No		30	low
3	£5K	0.5K	Yes		26	high
			•••			
17	£45K	10K	No		40	low

Class labels or subgroups

Dataset in classification

#	Income	Savings	Collaterals	Profession	age	Risk
1	£25K	2K	Yes		24	low
2	£35K	5K	No		30	low
3	£5K	0.5K	Yes		26	high
17	£45K	10K	No		40	low

This figure illustrates an example of a dataset. Each circle corresponds to one **data instance** with input values in the corresponding axes. **For simplicity**, only two customer **attributes or features**, income and savings, are taken **as input** and the two classes are low-risk ('+') and high-risk ('-').

Income

Prediction problem – discriminant

X₁: Income

Y: low-risk or high-risk

X₂: Savings

- This is an example of discriminant, it is a function that separates the examples of different classes.
- Discriminant analysis

Prediction problem; parameters of the model

IF $x_1 > \theta_1$ and $x_2 > \theta_2$ THEN low-risk ELSE high-risk

Once we have a rule like this that fits the past data, if the future is similar to past, then we can make correct predications for new instances.

Prediction problem – discriminant

X₁: Income

Y (output): low-risk or high-risk

X₂: Savings

- This is an example of discriminant, it is a function that separates the examples of different classes.
- Discriminant analysis

Classification - concept

Basic idea: classify samples into pre-defined groups

What is difference between classification and regression?

Regression vs. classification

Basic idea: classify samples into pre-defined groups

A regression algorithm predicts a continuous output

A classification algorithm predicts a discrete output (class label)

Prediction in regression & classification

What is the temperature going to be tomorrow?

Based on previous data

Will it be cold or hot weather?

Based on previous data

Binary vs. multiclass classification

Binary classifier classifies data points into one of two classes

Multiclass classifier: classifies data points into one of three or more classes

Classification algorithms

- □ K-Nearest Neighbour
- □ Naive Bayes Classifier
- ☐ Support Vector Machines (the basic SVM supports only binary classification); linear or with Gaussian kernels
- ☐ Decision Trees (e.g., Random Forest)
- ☐ Artificial Neural Networks (ANN)
- ☐ Hierarchal classifier
- **∟**...

Classification algorithms

- □ K-Nearest Neighbour
- Naive Bayes Classifier
- ☐ Support Vector Machines (the basic SVM supports only binary classification); linear or with Gaussian kernels
- ☐ Decision Trees (e.g., Random Forest)
- ☐ Artificial Neural Networks (ANN)
- ☐ Hierarchal classifier
- ┗...

Parametric vs. nonparametric models

In parametric "learners" or models, we have a fixed size of parameters (the weight coefficient). This makes them not very flexible.

- ☐ Linear Regression
- Linear Support Vector Machines
- Logistic Regression
- Naive Bayes

Parametric vs. nonparametric models

While nonparametric "learners" or models are good when you have a large data and you don't want to worry too much about choosing just the right features

- Decision Trees
- ☐ K-Nearest Neighbour
- ☐ Support Vector Machines with Gaussian Kernels
- Artificial Neural Networks

Non-parametric models assume that the data distribution cannot be defined in terms of such a finite set of parameters. This makes them more flexible

Parametric vs. nonparametric models

Linear regression

Naive Bayes

Linear SVMs

Logistic regression

Less flexibility

Decision Trees

KNN

SVMs (nonlinear kernels)

ANNs

More flexibility

Good vs. bad classifiers?

Assume, we have four classifiers developed on four training datasets.

Good vs. bad classifiers

Good

Sufficient data Low training error Simple classifier

Insufficient data

Bad

Training error too high

Classifier too complex

Any Questions?