1.1. Differenzierbare Mannigfaltigkeiten

Erinnerung (LA/Analysis)

Euklidischer Raum
$$\mathbb{R}^n, \langle \cdot, \cdot \rangle$$

Norm $\|a\| \coloneqq \sqrt{\langle a, a \rangle}$
Metrik $d(a, b) \coloneqq \|a - b\|$
Winkel $\cos \angle(a, b) \coloneqq \frac{\langle a, b \rangle}{\|a\| \cdot \|b\|}$

Die Funktion $f:U(\overset{\circ}{\subset}\mathbb{R}^n)\to\mathbb{R}$ ist glatt (oder C^{∞}) falls in jedem Punkt $p\in U$ alle gemischten partiellen Ableitungen existieren und stetig sind.

Die C^{∞} -Funktion

$$u^i: p = (p_1, \dots, p_n) \mapsto p_i = u^i(p)$$

heißt *i*-te Koordinatenfunktion $(i=1,\ldots,n)$. Eine Abbildung $\phi:U(\overset{\circ}{\subset}\mathbb{R}^n)\to\mathbb{R}^n$ heißt glatt falls jede der reellen Funktionen $u^i\circ\phi$ glatt ist $(i=1,\ldots,n)$.

Karten und Atlanten

Sei M ein topologischer Raum, der hausdorff'sch ist und eine abzählbare Basis hat.

Ein Koordinatensystem (oder Karte) in M ist ein Homöomorphismus

$$\varphi: U(\overset{\circ}{\subset} M) \to \varphi(U)(\overset{\circ}{\subset} \mathbb{R}^n)$$

Schreibt man $\varphi(p) = (x^1(p), \dots, x^n(p))$, dann heißen die Funktionen $x^i := u^i \circ \varphi : U \to \mathbb{R}$ Koordinatenfunktionen von φ . n heißt Dimension von (φ, U) .

Ein n-dimensionaler, differenzierbarer Atlas für M ist eine Kollektion \mathcal{A} von n-dimensionalen Karten von M. Es gilt:

- (A1) Jeder Punkt von M liegt im Definitionsbereich mindestens einer Karte, d.h. M ist lokal euklidisch.
- ($\mathcal{A}2$) Alle zu \mathcal{A} gehörigen Kartenwechsel sind glatt, das heißt: Sind die Karten $\varphi: U \to \varphi(U)$ und $\psi: V \to \psi(V)$ in \mathcal{A} und $V \cap U \neq \emptyset$, so sind $\varphi \circ \psi^{-1}: \psi(U \cap V) \to \varphi(U \cap V)$ sowie $\psi \circ \varphi^{-1}: \varphi(U \cap V) \to \psi(U \cap V)$, genannt Kartenwechsel, glatt.

 $^{^{1}}A\stackrel{\circ}{\subset}B\coloneqq A$ offen und $A\subset B$

Eine Karte ψ von M heißt mit \mathcal{A} verträglich, wenn auch $\mathcal{A} \cup \{\psi\}$ ein differenzierbarer Atlas für M ist.

 \mathcal{A} ist vollständig (oder maximal) wenn jede mit \mathcal{A} verträgliche Karte zu \mathcal{A} gehört.

Definition

Eine n-dimensionale differenzierbare Mannigfaltigkeit ist ein topologischer Hausdorff-Raum mit abzählbarer Basis versehen mit einem vollständigen differenzierbaren n-dimensionalen Atlas.

Bemerkung (Lokal euklidisch \Rightarrow hausdorffsch): Sei $Y := \{(s,t) \in \mathbb{R}^2 \mid t = \pm 1\}$ versehen mit Teilraum-Topologie. $(s,t) \sim (s',t') :\iff s = s' > 0$, $X := Y / \sim$ mit Quotienten-Topologie.

- X ist lokal euklidisch (lokal homöomorph zu \mathbb{R}).
- X ist nicht hausdorffsch: p = [(0, 1)], q = [(0, -1)] sind nicht durch offene Mengen trennbar.

Beispiele

(1) \mathbb{R}^n : $\tilde{\mathcal{A}} = \{(\mathbb{R}^n, \mathrm{id})\}$ ist ein Atlas. Durch Erweiterung zu einem vollständigen Atlas \mathcal{A} erhalten wir die standard-differenzierbare Struktur auf \mathbb{R}^n .

Bemerkung: Auf \mathbb{R}^n , $n \neq 4$, existiert bis auf Diffeomorphismus genau eine differenzierbare Struktur. Auf \mathbb{R}^4 existieren weitere, "exotische" differenzierbare Strukturen.

(2) Die Sphären $S^n := \{p = (p_1, \dots, p_{n+1}) \in \mathbb{R}^{n+1} \mid ||p|| = 1\}$. Wir behaupten: S^n ist eine n-dimensionale differenzierbare Mannigfaltigkeit.

Als Topologie wählen wir die Teilmengen-Topologie, d.h. $U \subset S^n$ offen $\iff \exists U' \subset \mathbb{R}^{n+1}$ offen, so dass $U = S^n \cap U'$. Daher folgt auch, dass die Sphären auch hausdorff'sch sind und eine abzählbare Basis haben.

Seien U_i^+ bzw. U_i^- die offenen Hemisphären, definiert durch

$$U_i^+ := \{ p \in S^n \mid p_i > 0 \}$$

$$U_i^- := \{ p \in S^n \mid p_i < 0 \}.$$

Die Abbildungen $\varphi_i^\pm:U_i^\pm\to\mathbb{R}^n$ (Projektion in Richtung i-te Koordinaten-Achse) für $i=1,\dots,n+1$ mit

$$\varphi_i^\pm(p)\coloneqq \left(u^1(p),\dots,u^{i-1}(p),u^{i+1}(p),\dots,u^{n+1}(p)\right)$$

sind Karten mit glatten (C^{∞}) Kartenwechsel, was wir am Beispiel n=2 überprüfen:

$$\left(u^{1},u^{2}\right) \overset{(\varphi_{3}^{+})^{-1}}{\longmapsto} \left(u^{1},u^{2},\sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}\right) \overset{\varphi_{1}^{+}}{\longmapsto} \left(u^{2},\sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}\right) \quad \left(\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}<1\right)$$

- (3) Kurven und Flächen in \mathbb{R}^3 sind 1- bzw. 2-dimensionale Mannigfaltigkeiten
- (4a) Der *n*-dimensionale reell-projektiver Raum $P^n\mathbb{R}$

Definition

Auf $X := \mathbb{R}^{n+1} \setminus \{0\}$ betrachte die Äquivalenz-Relation

$$x \sim y \iff \exists t \in \mathbb{R}, \ t \neq 0, \ y = tx, \ \text{also} \ (y^1, \dots, y^n) = (tx^1, \dots, tx^{n+1})$$

Die Äquivalenzklassen sind also Geraden durch den Ursprung. Nun definieren wir:

$$P^n\mathbb{R} := \mathbb{R}^{n+1} \setminus \{0\}_{\sim}$$

Wir behaupten nun dass $P^n\mathbb{R}$ eine n-dimensionale differenzierbare Mannigfaltigkeit ist.

Die Topologie erhalten wir aus dem topologischen Raum $\mathbb{R}^{n+1} \setminus \{0\}$ über die Quotienten-Topologie, für die wir die surjektive Abbildung π verwenden:

$$\pi: \frac{\mathbb{R}^{n+1} \setminus \{0\} \to P^n \mathbb{R}}{x \mapsto [x]_{\sim}}$$

Zur Erinnerung: Die Quotiententopologie ist allgemein:

$$U \subset X /_{\sim}$$
 offen $\iff \pi^{-1}(U) \subset X$ offen

Um zu zeigen, dass $P^n\mathbb{R}$ eine abzählbare Basis hat, genügt es nach Lemma 1 des verteilten Blattes "Einige Grundbegriffe der Topologie" zu zeigen, dass $\pi:\mathbb{R}^{n+1}\setminus\{0\}\to P^n\mathbb{R}$ offen ist. (π ist offen wenn π -Bilder offener Mengen offen sind.) Dazu betrachten wir die Streckung $\alpha_t:X\to X;\,x\mapsto tx\;(t\neq 0).$ α_t ist ein Homöomorphismus mit $\alpha_t^{-1}=\alpha_{\frac{1}{2}}.$

Sei nun $U \subset X$ offen, so ist $\pi^{-1}(\pi(U)) = \bigcup_{t \neq 0} \alpha_t(U)$. Da jedes $\alpha_t(U)$ offen ist, ist $\pi^{-1}(\pi(U))$ offen. Nach der Definition der Quotiententopologie also ist $\pi(U)$ offen.

Weiter müssen wir zeigen, dass $P^n\mathbb{R}$ hausdorff'sch ist. Anschaulich heißt das, um zwei "Geraden" [x] und [y] je einen offenen "Kegel" zu finden, welche disjunkt sind. Wir zeigen dies über das Lemma 2 des Blattes "Einige Grundbegriffe der Topologie", wozu wir zeigen müssen: $R := \{(x,y) \in X \times X \mid x \sim y\}$ ist abgeschlossen.

Die Idee ist, auf $X\times X\subset \mathbb{R}^{n+1}\times \mathbb{R}^{n+1}$ die reelle Funktion f zu betrachten:

$$f(x,y) = f(x^1, \dots, x^{n+1}, y^1, \dots, y^{n+1}) := \sum_{i \neq j} |x^i y^j - x^j y^i|$$

f ist stetig und $f(x,y) = 0 \iff y = tx$ für ein $t \neq 0 \iff x \sim y$. Also ist $R = f^{-1}(\{0\})$. Da f stetig ist, ist das Urbild einer abgeschlossenen Menge abgeschlossen, also ist R abgeschlossen. Damit ist gezeigt, dass X/\sim hausdorff'sch ist.

Also ist $P^n\mathbb{R}$ ein topologischer Raum mit den gewünschten Eigenschaften. Es bleibt zu zeigen, dass für diese Menge ein vollständiger Atlas existiert.

Wir definieren also n+1 Karten (U_i, φ_i) $(i=1, \ldots, n+1)$. Es ist $\bar{U}_i := \{x \in X \mid x^i \neq 0\}$ und $U_i := \pi(\bar{U}_i) \subset P^n \mathbb{R}$. Damit ist $P^n \mathbb{R}$ abgedeckt $(\bigcup_{i=1,\ldots,n+1} U_i = P^n \mathbb{R})$. Weiter ist:

$$U_i \to \mathbb{R}^n$$

$$\varphi_i : [x] \mapsto \left(\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^n}{x^i}\right)$$

Diese Definition ist representanten-unabhängig und injektiv:

$$\varphi_i([x]) = \varphi_i([y]) \implies \frac{y^1}{y^i} = \frac{x^1}{x^i} =: t$$

$$\implies y^1 = tx^1$$

$$\implies y = tx$$

$$\implies [y] = [x]$$

Auch ist φ_i stetig, und surjektiv: $\varphi_i^{-1}(z^1,\ldots,z^n)=\pi(z^1,\ldots,z^{i-1},1,z^{i+1},\ldots,z^n)$.

Die Koordinatenwechsel $\varphi_j \circ \varphi_i^{-1}$ sind affin, also C^{∞} (Übungsaufgabe).

Diese Karten lassen sich zu einem vollständigen Atlas für $P^n\mathbb{R}$ erweitern, also liegt eine differenzierbare Mannigfaltigkeit vor.

- (4b) $P^n\mathbb{C}$ ist eine 2n-dimensionale differenzierbare Mannigfaltigkeit, was sich ähnlich zeigen lässt. Die doppelte Dimension kommt von der 2-dimensionalität von \mathbb{C} .
 - (5) Wir wollen aus gegebenen Mannigfaltigkeiten neue Mannigfaltigkeiten erhalten.

Sei M eine differenzierbare Mannigfaltigkeit mit vollständigem Atlas \mathcal{A} . Sei \mathcal{A}' die Menge aller Koordinatensysteme mit Definitionsbereich in einer offenen Teilmenge $O \subset M$. \mathcal{A}' ist ein Atlas für O. Die entsprechende differenzierbare Mannigfaltigkeit heißt offene Untermannigfaltigkeit.

Beispiel

Die allgemeine lineare Gruppe

$$GL_n\mathbb{R} := \{ A \in \mathbb{R}^{n \times n} \mid \det A \neq 0 \}$$

ist eine n^2 -dimensionale differenzierbare Mannigfaltigkeit: $\mathbb{R}^{n\times n} = \mathbb{R}^{n^2}$ ist eine n^2 -differenzierbare Mannigfaltigkeit und $GL_n\mathbb{R} = \mathbb{R}^{n\times n}\setminus \{\det A = 0\}$ ist offen, da die Determinantenfunktion stetig ist, also $\{\det A = 0\}$ abgeschlossen ist.

(6) Die Produkt-Mannigfaltigkeit: Sind M^m und N^n m- bzw. n-dimensionale Mannigfaltigkeit. Reiten, so ist das topologische Produkt $M \times N$ eine (n+m)-dimensionale Mannigfaltigkeit. Der Atlas besteht aus den Karten $\varphi \times \psi : U \times V \to \mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{n+m}$ für Karten (U, φ) von M und (V, ψ) von N.

Beispiel

 $(S^1 \text{ ist der Einheitskreis im } \mathbb{R}^2)$

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ Faktoren}}$$

$$\mathbb{T}^n = \overbrace{S^1 \times \cdots \times S^1}_{n \text{ -dimensionaler Torus}}$$
 n-dimensionaler Torus

(7) Eine Lie-Gruppe G ist eine Gruppe die zugleich eine Mannigfaltigkeitsstruktur besitzt und zwar so, dass die Gruppenoperationen i und m differenzierbare Abbildungen (siehe nächster Abschnitt) sind.

$$m: G \times G \to G,$$
 $m(g_1, g_2) = g_1 g_2$
 $i: G \to G,$ $i(g) = g^{-1}$

Beispiele

- (i) Die eindimensionalen Gruppen $GL_n\mathbb{R}$, $GL_1\mathbb{R} = (\mathbb{R} \setminus \{0\}, \cdot)$ und (\mathbb{R}^+, \cdot)
- (ii) Die null-dimensionale Gruppe $(\mathbb{Z}, +)$.
- (iii) Die spezielle Orthogonale Gruppe

$$SO(2) \coloneqq \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}$$

welche homöomorph zu S^1 ist.

(iv) Die spezielle unitäre Gruppe

$$SU(2) := \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in \mathbb{C}, \ \alpha\bar{\alpha} + \beta\bar{\beta} = 1 \right\}$$

welche homöomorph zu S^3 ist.

(8) Ein Kegel ist keine differenzierbare Mannigfaltigkeit ("die Spitze ist nicht differenzierbar").

1.2. Differenzierbare Abbildungen

Definition (differenzierbare Abbildung)

Eine Abbildung $f: M^m \to N^n$ zwischen differenzierbaren Mannigfaltigkeiten heißt differenzierbar (oder glatt) im Punkt $p \in M$ falls für eine (und damit jede) Karte $\varphi: U \to U' = \varphi(U) \subset \mathbb{R}^m$ um p und $\psi: V \to V' = \psi(V) \subset \mathbb{R}^n$ mit $f(U) \subset V$ die Darstellung von f in lokalen Koordinaten $\psi \circ f \circ \varphi^{-1}: U' \to V'$ glatt (oder C^{∞}) ist.

Die Unabhängigkeit der Aussage von der Wahl der Karte folgt aus der Definition des Atlasses. Seien $\tilde{\varphi}$ und $\tilde{\psi}$ andere Karten um p bzw. f(p).

$$\begin{split} \tilde{\psi} \circ f \circ \tilde{\varphi}^{-1} &= \tilde{\psi} \circ (\psi^{-1} \circ \psi) \circ f \circ (\varphi^{-1} \circ \varphi) \circ \tilde{\varphi}^{-1} \\ &= \underbrace{(\tilde{\psi} \circ \psi^{-1})}_{C^{\infty}, \text{ da Kartenwechsel}} \circ \psi \circ f \circ \varphi^{-1} \circ \underbrace{(\varphi \circ \tilde{\varphi}^{-1})}_{C^{\infty}, \text{ da Kartenwechsel}} \end{split}$$

Also $\tilde{\psi} \circ f \circ \tilde{\varphi}^{-1}$ ist $C^{\infty} \iff \psi \circ f \circ \varphi^{-1}$ ist C^{∞} .

Spezialfälle sind:

- Falls n=1 heißt $f:M\to\mathbb{R}$ differenzierbare Funktion
- Falls m=1 heißt $f:\mathbb{R}\to N$ heißt differenzierbare Kurve

Definition

 $C^{\infty}(M)$ ist die Menge aller C^{∞} -Funktionen auf einer differenzierbaren Mannigfaltigkeit M.

Bemerkung: $C^{\infty}(M)$ ist eine \mathbb{R} -Algebra bezüglich Addition, Multiplikation, skalare Multipli-

kation: $(p \in M, \lambda \in \mathbb{R})$

$$(f+g)(p) := f(p) + g(p)$$
$$(f \cdot g)(p) := f(p) \cdot g(p)$$
$$(\lambda f)(p) := \lambda f(p)$$

Definition (Diffeomorphismus)

Eine differenzierbare Abbildung $f:M\to N$ heißt Diffeomorphismus falls f bijektiv und f sowie f^{-1} glatt sind.

Beispiele

- (1) Identität auf M
- (2) Kartenwechsel

Die Menge Diff(M) aller (Selbst-)Diffeomorphismen von M bilden eine Gruppe.

 \mathfrak{Z} Ein differenzierbarer Homöomorphismus ist im allgemeinen **kein** Diffeomorphismus! So ist etwa $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3$ ein differenzierbarer Homöomorphismus, aber $f^{-1}: \mathbb{R} \to \mathbb{R}, \ x \mapsto \sqrt[3]{x}$ ist zwar stetig aber nicht glatt.

1.3. Tangentialvektoren und -räume

Erinnerung

 $v \in T_p \mathbb{R}^n = \{p\} \times \mathbb{R}^n \text{ und } f : U(p)(\overset{\circ}{\subset} \mathbb{R}^n) \to \mathbb{R} \text{ sei } C^{\infty}.$ Dann ist die Richtungsableitung von f in Richtung v:

$$\partial_v f := \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t} = \left. \frac{d}{dt} \right|_{t=0} f(p+tv)$$

Für $v = e_i$ erhält man die *i*-te partielle Ableitung

$$\frac{\partial f}{\partial x^i} = \partial_{e_i} f$$

Es gilt: $(a, b \in \mathbb{R}, f, g \in C^{\infty}(\mathbb{R}^n))$

$$\partial_v(af + bg) = a\partial_v f + b\partial_v g$$
$$\partial_v(f \cdot g) = f(p) \cdot \partial_v g + g(p) \cdot \partial_v f$$

Definition (Funktionskeim)

Zwei Funktionen $f,g:M\to\mathbb{R}$, die auf offenen Umgebungen von $p\in M$ differenzierbar sind, heißen äquivalent, falls sie auf einer Umgebung übereinstimmen. Die Äquivalenzklassen heißen Funktionskeime in $p\in M$. Die Menge aller Funktionskeime in p schreiben wir als $C^{\infty}(p)$.

Definition (Tangentialvektor)

Sei M eine differenzierbare Mannigfaltigkeit und $p \in M$. Ein Tangentialvektor an M in p ist eine Funktion $v: C^{\infty}(p) \to \mathbb{R}$ so dass gilt: $(a, b \in \mathbb{R}, f, g \in C^{\infty}(p))$

- (T1) v ist \mathbb{R} -linear: v(af + bg) = av(f) + bv(g)
- (T2) Leibniz-Regel: v(fg) = v(f)g(p) + f(p)v(g)

Sei T_pM die Menge aller Tangentialvektoren von M im Punkt p

Beispiel

$$v(f) \coloneqq 0$$

Wie rechnet man mit Funktionskeimen? Praktisch genügt es mit Repräsentanten, also in p differenzierbaren Funktionen zu rechnen.

Lemma 1.1

- a) $v: C^{\infty}(p) \to \mathbb{R}$ erfülle (T1) und (T2) für Funktionen, die in p differenzierbar sind. Falls f und g in einer Umgebung von p übereinstimmen (d.h. $f \sim g \iff [f] = [g]$) so ist v(f) = v(g). Also insbesondere: $\tilde{v}([f]) := v(f)$.
- b) Falls h in einer Umgebung von p konstant ist, so ist v(h) = 0.

Beweis

- a) Da v linear ist, genügt es zu zeigen: Falls f=0 in einer Umgebung U von p, so ist v(f)=0 $(v(g-h)=0 \implies v(g)=v(h))$. Dazu betrachte die "Abschneidefunktion" \tilde{g} mit
 - (1) Träger von $\tilde{g} := \{q \in M \mid \tilde{g}(q) \neq 0\} \subset U$
 - (2) $0 \le \tilde{g} \le 1$ auf M
 - (3) $\tilde{g} = 1$ in einer Umgebung V von $p, V \subset U$.

Es ist dann $f\tilde{g}=0$ auf M. Nun folgt aus den Axiomen (T1) und (T2) dass wegen v(0)=v(0+0)=v(0)+v(0) gilt: v(0)=0. Somit ist

$$0 = v(0) = v(f\tilde{g}) \stackrel{(T2)}{=} v(f) \underbrace{\tilde{g}(p)}_{=1} + \underbrace{f(p)}_{=0} v(\tilde{g}) = v(f).$$

b) Nach a) können wir annehmen dass h konstant c auf M ist. Es ist dann $v(h) = v(c \cdot 1) = c \cdot v(1)$. Aus $v(1) = v(1 \cdot 1) = v(1) \cdot 1 + 1 \cdot v(1)$ folgt v(1) = 0 und damit die Behauptung.

 T_pM ist ein \mathbb{R} -Vektorraum: $(v, w \in T_pM, f \in C^{\infty}(p), a \in \mathbb{R})$

$$(v+w)(f) := v(f) + w(f)$$
$$(a \cdot v)(f) := a \cdot v(f)$$

Weitere Beispiele von Tangentialvektoren via Karten:

Sei $\varphi = (x^1, \dots, x^n)$ ein Koordinatensystem (eine Karte) von M im Punkt p. (d.h. $x^i = u^i \circ \varphi$). Für $f \in C^{\infty}(p)$ setze:

$$\frac{\partial f}{\partial x^i}(p) := \frac{\partial (f \circ \varphi^{-1})}{\partial u^i} \left(\varphi(p) \right)$$

Eine direkte Rechnung zeigt:

$$\frac{\partial}{\partial x^i}\Big|_p: C^{\infty}p \to \mathbb{R}$$
 $f \mapsto \frac{\partial}{\partial x^i}\Big|_p(f) \coloneqq \frac{\partial f}{\partial x^i}(p)$

ist ein Tangentialvektor in p.

Satz 1.1 (Basis-Satz)

Sei M eine m-dimensionale differenzierbare Mannigfaltigkeit und $\varphi=(x^i,\ldots,x^n)$ eine Karte um $p\in M$. Dann bilden die Tangentialvektoren $\frac{\partial}{\partial x^i}\big|_p$, $i=1,\ldots,n$, eine Basis von T_pM und es gilt für alle $v\in T_pM$:

$$v = \sum_{i=1}^{m} v(x^{i}) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

Insbesondere ist dim $T_pM = m = \dim M$.

Für diesen Satz benötigen wir noch das

Lemma 1.2 (Analysis)

Sei g eine C^{∞} -Funktion in einer bezüglich o sternförmigen offenen Umgebung von $o \in \mathbb{R}^n$. Dann gilt: $g = g(0) + \sum_{j=1}^n u^j g_j$ für C^{∞} -Funktionen g_j , $j = 1, \ldots, n$.

Beweis (Lemma 1.2)

Taylorintegralformel:

$$g(u) - g(0) = \int_0^1 \frac{d}{dt} g(tu) dt = \sum_{j=1}^n u^j \int_0^1 \frac{\partial g}{\partial u^j} (tu) dt$$

Beweis (Satz 1.1)

(a) $\frac{\partial}{\partial x^i}|_p$ ist ein Tangentialvektor in p. (Rechnung hier ausgelassen) und für die k-te Koordinatensystem $x^k \coloneqq u^k \circ \varphi$ gilt:

$$\frac{\partial}{\partial x^i}\bigg|_{p}(x^k) = \frac{\partial \left(x^k \circ \varphi^{-1}\right)}{\partial u^i} \left(\varphi(p)\right) = \frac{\partial u^k}{\partial u^i} \left(\varphi(p)\right) = \delta_{ik}.$$

(b) Die Vektoren $\left.\frac{\partial}{\partial x^i}\right|_p,\,i=1,\ldots,n,$ sind linear unabhängig: Sei

$$\sum_{i=1}^{m} \lambda_i \left. \frac{\partial}{\partial x^i} \right|_p = 0 \qquad (\lambda_i \in \mathbb{R})$$

Dann ist für $k = 1, \ldots, m$:

$$0 = 0(x^k) = \sum_{i=1}^m \lambda_i \underbrace{\frac{\partial}{\partial x^i} \bigg|_p (x^k)}_{\delta_{ik}} = \lambda_k$$

(c) Die Vektoren $\frac{\partial}{\partial x^i}|_p$, $i=1,\ldots,n$, bilden ein Erzeugendensystem. Ohne Einschränkung gelte $\varphi(p)=0$ ((*)). Sei $v\in T_pM$ und $a_k:=v(x^k),\ k=1,\ldots,m$. Setze

$$w \coloneqq v - \sum_{k=1}^{m} a_k \left. \frac{\partial}{\partial x^k} \right|_p \in T_p M.$$

Dann ist für alle k = 1, ..., m:

$$w(x^k) = v(x^k) - \sum_{i=1}^m a_i \frac{\partial}{\partial x^i} \Big|_p (x^k) = a_k - \sum_{i=1}^m a_i \delta_{ik} = 0 \quad (**)$$

Nun wollen wir zeigen: w = 0, d.h. w(f) = 0 für alle $f \in C^{\infty}(p)$. Sei $f \in C^{\infty}(p)$. Dann ist $g := f \circ \varphi^{-1} \in C^{\infty}(\varphi(p))$.

$$\begin{split} w(f) &= w \left(f \circ \varphi^{-1} \circ \varphi \right) \\ &= w(g \circ \varphi) \\ &\stackrel{\text{Lemma 1.2}}{=} w \left(g(0) + \sum_{j=1}^{m} (u^{j} \circ \varphi) \cdot (g_{j} \circ \varphi) \right) \\ &\stackrel{\text{(T1),(T2)}}{=} 0 + \sum_{j=1}^{m} \underbrace{w(x^{j})}_{\stackrel{(*^{*})}{=} 0} \cdot (g_{j} \circ \varphi)(p) + \underbrace{x^{j}(p)}_{\stackrel{(*)}{=} 0} \cdot w(g_{j} \circ \varphi)) \\ &= 0 \end{split}$$

1.4. Tangentialabbildungen

In diesem Abschnitt verwendete Notation: $\Phi: M \to N$ differenzierbar, $f \in C^{\infty}(M)$ oder $f \in C^{\infty}(p), \varphi: U \to U'$ eine Karte.

Sei $\Phi: M^m \to N^n$ eine differenzierbare Abbildung zwischen differenzierbaren Mannigfaltigkeiten. Das Ziel ist Φ in jedem Punkt von $p \in M$ durch lineare Abbildungen $d\Phi_p: T_pM \to T_{\Phi(p)}N$ zu "approximieren".

Definition

Das Differential (oder die Tangentialabbildung) von Φ in p ist: $d\Phi_p: T_pM \to T_{\Phi(p)}N$ mit $d\Phi_p(v): C^{\infty}(\Phi(p)) \to \mathbb{R}$ gegeben durch

$$d\Phi_p(v)(f) := v(f \circ \Phi)$$
.

Nun ist zu zeigen dass $d\Phi_p(v) \in T_{\Phi(p)}N$:

(T1)

$$\begin{split} d\Phi_p(v)(a\cdot f + b\cdot g) &= v((a\cdot f + b\cdot g)\circ\Phi) \\ &= v(a\cdot f\circ\Phi + b\cdot g\circ\Phi) \\ &= a\cdot v(f\circ\Phi) + b\cdot v(g\circ\Phi) \\ &= a\cdot d\Phi_p(v)(f) + b\cdot d\Phi_p(v)(g) \end{split}$$

(T2)

$$\begin{split} d\Phi_p(v)(fg) &= v((fg) \circ \Phi) \\ &= v((f \circ \Phi) \cdot (g \circ \Phi)) \\ &= v(f \circ \Phi)(g \circ \Phi)(p) + v(g \circ \Phi)(f \circ \Phi)(p) \\ &= d\Phi_p(v)(f) + \cdots \end{split}$$

Beachte, dass aus der Definition direkt folgt: Ist $\Phi = \mathrm{id}_M : M \to M$, $p \mapsto p$, so gilt $d\Phi_p(v) = d(\mathrm{id})_p(v) = v$ für alle $v \in T_pM$.

Lemma 1.3

Sei $\Phi \in C^{\infty}(M, N)$, $\xi = (x^1, \dots, x^m)$ eine Karte um $p \in M$ und $\eta = (y^1, \dots, y^n)$ eine Karte um $\Phi(p) \in N$. Dann gilt:

$$d\Phi_p\left(\left.\frac{\partial}{\partial x^j}\right|_p\right) = \sum_{i=1}^n \frac{\partial (y^i \circ \Phi)}{\partial x^j}(p) \left.\frac{\partial}{\partial y^i}\right|_{\Phi(p)} \tag{*}$$

Beweis

Sei $w \in T_{\Phi(p)}N$ die linke Seite von (*). Dann gilt nach dem Basis-Satz (Satz 1.1) ist

$$w = \sum w(y^i) \left. \frac{\partial}{\partial y^i} \right|_{\Phi(n)}$$
.

Nach der Definition des Differentials ist

$$w(y^i) = d\Phi_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) (y^i) = \frac{\partial \left(y^j \circ \Phi \right)}{\partial x^i} (p).$$

Definition

Die Matrix

$$\left(\frac{\partial (y^i \circ \Phi)}{\partial x^j}(p)\right) = \left(\frac{\partial \left(y^i \circ \Phi \circ \xi^{-1}\right)}{\partial u^j}\left(\xi(p)\right)\right) \qquad (1 \le i \le n, 1 \le j \le m)$$

heißt Jacobi-Matrix von Φ bezüglich ξ und η .

Lemma 1.4 (Kettenregel)

Falls $\Phi \in C^{\infty}(M, N)$ und $\Psi \in C^{\infty}(N, L)$, so gilt

$$d(\Psi \circ \Phi)_p = d\Psi_{\Phi(p)} \circ d\Phi_p.$$

Beweis

Mit einer Testfunktion g überprüfen wir:

$$d(\Psi \circ \Phi)(v)(g) = v(g \circ \Psi \circ \Phi) = d\Phi(v)(g \circ \Psi) = d\Psi(d\Phi(v))(g)$$

Bemerkung: Falls $\Phi: M \to N$ ein Diffeomorphismus ist, so folgt wegen

$$\operatorname{id} = d(\operatorname{id})_p = d(\Phi \circ \Phi^{-1})|_p \stackrel{\text{Lemma 1.4}}{=} d\Phi_p \circ d\Phi_{\Phi(p)}^{-1}$$

dass

$$(d\Phi_p)^{-1} = d\Phi_{\Phi(p)}^{-1}$$
.

Das heißt insbesondere, dass $d\Phi_p$ ein Vektorraum-Isomophismus ist, und dim $M=\dim N$.

Satz 1.2 (Inverser Funktionensatz für Mannigfaltigkeiten)

Ist $\Phi \in C^{\infty}(M,N)$ und $d\Phi_p: T_pM \to T_{\Phi(p)}N$ ein Vektorraum-Isomorphismus für ein Punkt $p \in M$, dann existiert eine Umgebung V von p und eine Umgebung W von $\Phi(p)$ so dass $\Phi|_V$ ein Diffeomorphismus von V auf $\Phi(V) = W$ ist. $\Phi|_V$ nennen wir einen lokalen Diffeomorphismus.

Beweis

Wähle eine Karte ξ um $p \in M$ und eine Karte η um $\Phi(p) \in N$. Nach dem Satz über inverse Funktionen (Analysis II) ist $\eta \circ \Phi \circ \xi^{-1}$ ein lokaler Diffeomorphismus (da $d(\eta \circ \Phi \circ \xi^{-1}) = d\eta \circ d\Phi \circ (d\xi)^{-1}$, was jeweils reguläre lineare Abbildungen sind).

1.5. Tangentialvektoren an Kurven

Die bisherige Herangehensweise an die Tangentialvektoren war sehr abstrakt, was Vor- und Nachteile hat. Ein weiterer Ansatz ist der Zugang über Kurven, den wir im Folgenden untersuchen.

Eine Kurve ist eine C^{∞} -Abbildung $c: I \to M$, wobei I ein offenes Intervall in \mathbb{R} (meist mit $0 \in I$) und M eine differenzierbare Mannigfaltigkeit ist.

Die erste (und einzige) Koordinatenfunktion der trivialen Karte von $I \subset \mathbb{R}$ schreiben wir als $u \coloneqq u^1$. Der Tangentialvektor ist dann $\frac{d}{du}|_t \coloneqq \frac{\partial}{\partial u^1}|_t \in T_t I = T_t \mathbb{R}$.

Definition

Der Tangentialvektor an c in c(t) ist

$$c'(t) := dc_t \left(\frac{d}{du} \Big|_t \right) \in T_{c(t)}M$$
.

Diese Tangentialvektoren haben interessante Eigenschaften:

- (1) Für $f \in C^{\infty}(M)$ ist $c'(t)(f) = \frac{d(f \circ c)}{du}(t)$ (Richtungsableitung)
- (2) Falls $v \in T_pM$ und c eine Kurve mit c(0) = p und c'(0) = v, dann gilt:

$$v(f) = \frac{d}{dt} (f \circ c) (0)$$

(3) Ist $c:I\to M$ eine glatte Kurve und $\Phi:M\to N$ eine differenzierbare Abbildung, so ist $\Phi\circ c:I\to N$ eine glatte Kurve in N und es gilt dass

$$d\Phi_{c(t)}\left(c'(t)\right) = \left(\Phi \circ c\right)'(t)$$

Beweis

$$d\Phi\left(c'\right)\left(f\right) = c'(f \circ \Phi) = \frac{d}{du}\left(f \circ \Phi \circ c\right)\left(t\right) = \left(\Phi \circ c\right)'\left(t\right)\left(f\right)$$

(4) Ist φ eine Karte um p und $c_i(t)$: $\varphi^{-1}(\varphi(p) + te_i)$, i = 1, ..., n die i-te Koordinatenline um p bezüglich φ , so gilt

$$c_i'(0) = \frac{\partial}{\partial x^i}\Big|_{n}$$
 $(i = 1, \dots, n)$

Beweis

Sei $f \in C^{\infty}(p)$.

$$c_{i}(p)(f) = \frac{d}{dt}(f \circ c_{i})(0)$$

$$= \frac{d}{dt}(f \circ \varphi^{-1}(\varphi(p) + te_{i}))(0)$$

$$= \frac{\partial}{\partial u^{i}}(f \circ \varphi^{-1})(\varphi(p))$$

$$= \frac{\partial}{\partial x^{i}}\Big|_{p}(f)$$

1.6. Untermannigfaltigkeiten und spezielle differenzierbare Abbildungen

Eine C^{∞} -Abbildung $\Phi: M^m \to N^n$ heißt

• Immersion, falls $d\Phi_p: T_pM \to T_{\Phi(p)}N$ injektiv ist für alle $p \in M$.

- Submersion, falls $d\Phi_p: T_pM \to T_{\Phi(p)}N$ surjektiv ist für alle $p \in M$.
- Einbettung, falls Φ eine Immersion ist und M homö
omoph zu $\Phi(M) \subset N$ (versehen mit der Teilraum-Topologie) ist.

Eine Teilmenge $M \subset N$ heißt (reguläre) Untermannigfaltigkeit, falls die Inklusionsabbildung $i: M \hookrightarrow N, i(p) := p$, eine differenzierbare Einbettung ist.

Manchmal definiert man eine (allgemeine) Untermannigfaltigkeit als injektive Immersion Φ : $M \to N$, so dass M und $\Phi(M)$ diffeomorph sind. Dabei hat $\Phi(M)$ nicht notwendigerweise die Teilraum-Topologie.

Beispiele

(1) Immersion:

$$\mathbb{R}^k \to \mathbb{R}^{k+l}$$
$$\left(x^1, \dots, x^k\right) \mapsto \left(x^1, \dots, x^k, 0, \dots, 0\right)$$

Man kann zeigen: Lokal sieht jede Immersion so aus.

(2) Submersion:

$$\mathbb{R}^{k+l} \to \mathbb{R}^k$$
$$\left(x^1, \dots, x^{k+l}\right) \mapsto \left(x^1, \dots, x^k\right)$$

Auch hier kann man zeigen, dass jede Submersion lokal so aussieht.

(3) Die Kurve $c: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (t^3, t^2)$ ist differenzierbar, aber keine Immersion, denn

$$c'(o) = dc_0 \left(\underbrace{\frac{d}{dt}}_{\neq 0}\right) = (0,0).$$

- (4) Die Kurve $c: \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (t^3 4t, t^2 4)$ ist eine Immersion, aber keine Einbettung.
- (5) \mathbb{R}^2 versehen mit der Äquivalenzrelation

$$(x,y) \sim (u,v) \iff x \equiv u \pmod{2\pi\mathbb{Z}}$$

 $y \equiv v \pmod{2\pi\mathbb{Z}}$

ergibt den zweidimensionalen Torus $T^2 := \mathbb{R}^2 / \sim$. Wir betrachten nun die Kurve $c_{\alpha} : \mathbb{R} \to T^2$, $t \mapsto (e^{it}, e^{i\alpha t})$.

Satz (Kronecker)

- $\alpha \in 2\pi \mathbb{Q} \implies c_{\alpha}(\mathbb{R})$ geschlossene Kurve.
- $\alpha \notin 2\pi \mathbb{Q} \implies c_{\alpha}(\mathbb{R}) \text{ dicht in } \mathbb{R}^2$

Beweis

Siehe V.I. Arnold: Gewöhliche Differenzialgleichungen

Daraus folgt: Für $\alpha \notin 2\pi \mathbb{Q}$ ist c_{α} eine injektive Immersion, aber keine Einbettung, da $c_{\alpha}(\mathbb{R}) \subset \mathbb{R}^2$ mit der Teilraumtopologie nicht homöomoph zu \mathbb{R} ist.

Bemerkungen: (1) Jede Immersion ist lokal eine Einbettung.

(2) Einbettungs-Satz von Whitney (1936): Jede differenzierbare n-dimensionale Mannigfaltigkeit kann in \mathbb{R}^{2n+1} eingebettet werden:

$$\Phi: M^n \hookrightarrow \mathbb{R}^{2n+1}$$

(Beweis: L.Führer: Topologie)

1.7. Tangentialbündel und Vektorfelder

Satz 1.3 (Tangentialbündel)

Sei M eine n-dimensionale differenzierbare Mannigfaltigkeit und

$$TM := \bigcup_{p \in M} T_p M = \{(p, v) \mid p \in M, v \in T_p M\}$$
.

TM ist eine 2n-dimensionale differenzierbare Mannigfaltigkeit.

TM heißt Tangentialbündel und ist ein Spezialfall eines Vektorraumbündels. In der Physik entspricht dies dem Phasenraum (Ort, Geschwindigkeit).

Beweis

(Skizze) Sei $(U_{\alpha}, \varphi_{\alpha})_{\alpha \in A}$ ein Atlas für M. Ist $\varphi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n})$, so gilt nach Basis-Satz (Satz 1.1), dass $\left\{\frac{\partial}{\partial x^{i}}\Big|_{p} \mid i=1,\dots,n\right\}$ eine Basis von $T_{p}M$ für alle $p \in U_{\alpha}$ ist. Für $v \in T_{p}M$ gilt also $v = \sum_{i=1}^{n} v(x^{i}) \frac{\partial}{\partial x^{i}}\Big|_{p}$.

Somit erhalten wir für jedes $\alpha \in A$ eine bijektive Abbildung

$$h_{\alpha}: V_{\alpha} := TU_{\alpha} = \bigcup_{p \in U_{\alpha}} T_{p}M \to \mathbb{R}^{2n}$$
$$(p, v) \mapsto \left(x^{1}(p), \dots, x^{n}(p), v(x^{1}), \dots, v(x^{n})\right)$$

Ohne Beweis: $(V_{\alpha}, v_{\alpha})_{\alpha \in A}$ ist ein differenzierbarer Atlas für TM.

Definition

Sei M eine differenzierbarere Mannigfaltigkeit, TM das Tangentialbündel von M und $\pi:TM\to M,\,(p,v)\mapsto p$ die natürliche (oder kanonische) Projektion.

Ein Vektorfeld (VF) auf M ist eine Abbildung $V: M \to TM$, $p \mapsto v_p$ mit $\pi \circ V = \mathrm{id}_M$, d.h. $v_p \in T_pM$.

Das Vektorfeld ist differenzierbar $(C^{\infty}, \text{ glatt})$, falls $V: M \to TM$ eine differenzierbare Abbildung ist. Äquivalent dazu: Für alle $f \in C^{\infty}(M)$ ist $Vf \in C^{\infty}(M)$ mit $(Vf)(p) := v_p(f)$. Wir definieren für $p \in M$ und $f \in C^{\infty}(M)$:

- $(f \cdot V)(p) := f(p)v_p$ sowie
- $(V+W)(p) := v_p + w_p$.

Damit ist $\mathcal{V}M$ (die Menge aller Vektorfelder auf M) ein $C^{\infty}(M)$ -Modul.

Die lokale Darstellung der Vektorfelder liefert uns Basisfelder: Sei $\varphi = (x^1, \dots, x^n)$ für $U \subset M$. Dann ist für $i = 1, \dots, n$

$$\frac{\partial}{\partial x^i}: \left. \begin{array}{l} U \to TU \\ p \mapsto \left. \frac{\partial}{\partial x^i} \right|_p \end{array} \right.$$

ein Vektorfeld auf U, nämlich das i-te Koordinaten-Vektorfeld von φ oder "begleitendes n-Bein".

Nach dem Basissatz (Satz 1.1) gilt: Jedes Vektorfeld $V \in \mathcal{V}M$ kann auf U geschrieben werden als

$$V = \sum_{i=1}^{n} V(x^{i}) \frac{\partial}{\partial x^{i}}$$

Definition

Eine Derivation von $C^{\infty}M$ ist eine Abbildung $\mathcal{D}: C^{\infty}M \to C^{\infty}M$ mit

- (D1) \mathcal{D} ist \mathbb{R} -linear: $\mathcal{D}(af + bg) = a\mathcal{D}(f) + b\mathcal{D}(g)$
- (D2) Leibnitz: $\mathcal{D}(f \cdot g) = \mathcal{D}(f) \cdot g + f\mathcal{D}(g)$

Aus den Axiomen (T1), (T2) für Tangentialvektoren folgt, dass $V \in \mathcal{V}M$ eine Derivation ist.

Umgekehrt gilt, dass jede Derivation von einem Vektorfeld kommt: Sei \mathcal{D} eine Derivation. Definiere für jeden Punkt $p \in M$: $v_p(f) := \mathcal{D}(f)(p)$. Aus (D1), (D2) folgt: $v_p \in T_pM$ und $V: M \to TM$, $p \mapsto v_p$ ist ein Vektorfeld.

Weiter gilt für alle $p \in M$: $(Vf)(p) = v_p(f) = (\mathcal{D}f)(p)$, also ist $Vf = \mathcal{D}f$, insbesondere ist V glatt. Also entspricht VM den Derivationen auf $C^{\infty}M$.

Warum also führen wir Derivationen ein? Die entscheidende Eigenschaft ist dass das Produkt zwei Vektorfelder V und W

$$(V \cdot W)(f) := V(Wf)$$

keine Derivation ist, da (D2) nicht erfüllt ist, also $(V \cdot W)$ kein Vektorfeld ist!

Dies korrigieren wir mit der Lie-Klammer

$$[V, W] := V \cdot W - W \cdot V$$

welche eine Derivation liefert! Insbesondere ist also [V, W] wieder ein Vektorfeld.

Also

$$[\cdot,\cdot]: \frac{\mathcal{V}M \times \mathcal{V}M \to \mathcal{V}M}{(V,W) \mapsto [V,W]}$$

Lemma 1.5

 $\mathcal{V}M$ versehen mit der Lie-Klammer $[\cdot,\cdot]:\mathcal{V}M\times\mathcal{V}M\to\mathcal{V}M$ ist eine Lie-Algebra.

Definition

Eine reelle Lie-Algebra ist ein \mathbb{R} -Vektorraum L mit einer Verknüpfung $[\cdot,\cdot]:L\times L\to L$ mit

- (L1) \mathbb{R} -Linearität: [ax + by, z] = a[x, z] + b[y, z] sowie [x, ay + bz] = a[x, y] + b[x, z] für $a, b \in \mathbb{R}$
- (L2) Schiefsymetrie: [x, y] = -[y, x]
- (L3) Jacobi-Identität: [[x,y],z] + [[z,x],y] + [[y,z],x] = 0

Vektorfelder und Differentialgleichungen

Sei $V \in \mathcal{V}M$. Eine Integralkurve von V ist eine differenzierbare Kurve $\alpha: I \to M$ mit $\alpha'(t) = V(\alpha(t))$ für alle $t \in I$.

In einem Koordinatensystem $\varphi = (x^1, \dots, x^n)$ gilt:

$$\alpha'(t) = \sum_{i=1}^{n} \frac{d}{dt} \left(x^{i} \circ \alpha \right) \left. \frac{\partial}{\partial x^{i}} \right|_{\alpha(t)} \text{ sowie } V\left(\alpha(t)\right) = \sum_{i=1}^{n} V\left(x^{i} \circ \alpha \right) \left. \frac{\partial}{\partial x^{i}} \right|_{\alpha(t)}$$

Also gilt für $i = 1, \ldots, n$

$$\alpha'(t) = V(\alpha(t)) \iff \frac{d}{dt} (x^i \circ \alpha) = V(x^i \circ \alpha)$$

Dies ist ein System von n gewöhnlichen Differenzialgleichungen erster Ordnung. Aus Existenzund Eindeutigkeitssätzen für solche Systeme (zum Beispiel Königsberger II, 4.2) folgt

Satz 1.4 (Existenz und Eindeutigkeit der Integralkurven)

Sei $V \in \mathcal{V}M$. Dann existiert für jeden Punkt $p \in M$ ein Intervall I = I(p) um 0 und eine eindeutige Integralkurve $\alpha : I \to M$ von V mit $\alpha(0) = p$.

Korrolar

Ist $v \in T_pM$, dann existiert eine differenzierbare Kurve $\alpha : I \to M$ mit $\alpha(0) = p$ und $\alpha'(0) = v$.

Beweisidee: Ergänze v zu einem Vektorfeld in einer Umgebung von p und wende Satz 1.4 an.