Методи оптимізації. Лекція 13 за 27.05.2022 (контрольна робота) **Лекція 14 за 03.06.2022**

Приклад. Метод гіперплощини, що відтинає (або метод Келлі січних площин). Розглянемо таку задачу:

$$f(x) = x^2 \rightarrow min, -1 \le x \le 2$$
.

Введемо додаткову змінну x_2 і перейдемо до задачі з лінійною цільовою функцією:

$$x_{2} \rightarrow min$$
,
 $x_{1}^{2} - x_{2} \le 0$, (7)
 $-1 - x_{1} \le 0$,
 $x_{1} - 2 \le 0$.

Від одновимірної вихідної задачі перейшли до двовимірної задачі. На рисунку а) зображено множину допустимих розв'язків, а на рис б) червоною точкою показано оптимальний розв'язок задачі та лінії рівня цільової функції.

Апроксимуємо допустиму множину багатокутником Z_1 (в даному випадку прямокутником ABCD): A(-1,-1), B(-1,4), C(2,4), D(2,-1). Отримаємо задачу:

$$x_2 \rightarrow min$$
,
 $-1 - x_1 \le 0$, $x_1 - 2 \le 0$,
 $-1 - x_2 \le 0$, $x_2 - 4 \le 0$. (8)

Оптимальним розв'язком цієї задачі буде точка $x^{(1)} = (-1, -1)$. Перевіримо, чи задовольняє ця точка обмеженням задачі (7):

$$g_{1}(x^{(1)}) = \left[x_{1}^{(1)}\right]^{2} - x_{2}^{(1)} = (-1)^{2} - (-1) = 2 > 0,$$

$$g_{2}(x^{(1)}) = -1 - (-1) = 0,$$

$$g_{3}(x^{(1)}) = (-1) - 2 < 0.$$

Додаємо до обмежень задачі (8) нове обмеження

$$g_1(x^{(1)}) + g_1'(x^{(1)})(x - x^{(1)}) \le 0$$
 as $-2x_1 - x_2 - 1 \le 0$.

Розпишемо детально:
$$g_1(x^{(1)}) = 2$$
, $g_1'(x^{(1)}) = \begin{pmatrix} 2x_1 \\ -1 \end{pmatrix}_{(-1,-1)} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$,

$$2 + \begin{pmatrix} -2 \\ -1 \end{pmatrix} \begin{pmatrix} x_1 - (-1) \\ x_2 - (-1) \end{pmatrix} = 2 + (-2x_1 - 2) + (-x_2 - 1) = -2x_1 - x_2 - 1.$$

Новий багатокутник Z_2 буде п'ятикутником з вершинами: A(0,-1), B(-1,1), C(-1,4), D(2,4), E(2,-1).

Розв'язуємо задачу

$$x_{2} \to min,$$

$$-1 - x_{1} \le 0, \ x_{1} - 2 \le 0,$$

$$-1 - x_{2} \le 0, \ x_{2} - 4 \le 0, \ -2x_{1} - x_{2} - 1 \le 0.$$
(9)

Оптимальним розв'язком задачі буде точка $x^{(2)} = (0, -1)$.

$$g_1(x^{(2)}) = [x_1^{(2)}]^2 - x_2^{(2)} = 0 - (-1) = 1 > 0,$$

$$g_2(x^{(2)}) = -1 - 0 < 0,$$

$$g_3(x^{(1)}) = 0 - 2 < 0.$$

Не виконується перше обмеження задачі (7). Тобто, j = 1.

До обмежень задачі лінійного програмування додаємо обмеження: $-x_2 \le 0$.

Отримуємо новий багатокутник Z_3 . Це п'ятикутник з вершинами: $A(-0.5,0),\ B(-1,1),\ C(-1,4),\ D(2,4),\ E(2,0).$

Продовжуємо виконання ітерацій. Обчислення закінчуються, якщо виконано умову зупинки.

Метод лінеаризації

Даний метод базується на ідеї лінійної апроксимації *цільової функції і обмежень задачі*. У цьому сенсі він є узагальненням методу умовного градієнту. Разом з тим метод лінеаризації містить і якісно нові моменти: до лінійної апроксимації цільової функції додається квадратичний член і тому в якості допоміжних виникають задачі квадратичного (а не лінійного, як можна було б очікувати) програмування.

Розглянемо задачу математичного програмування виду:

$$f(x) \to \min,$$

$$g_i(x) \le 0, \quad i = \overline{1, m},$$
(1)

де функції $f(x), g_1(x),..., g_m(x)$ — неперервно-диференційовні, а функції $g_1(x),..., g_m(x)$, крім того, опуклі в просторі E^n .

Нехай X — допустима множина задачі (1). Будемо вважати також, що X — непорожня множина.

Довільній точці $x \in E^n$ поставимо у відповідність таку задачу квадратичного програмування відносно p:

$$(f'(x), p) + \frac{1}{2} \|p\|^2 \to \min,$$

$$(g_i'(x), p) + g_i(x) \le 0, \quad i = \overline{1, m}.$$

$$(2)$$

Цю задачу сформульовано на основі лінійних частин розкладень:

$$f(x+p) = f(x) + (f'(x), p) + o(||p||),$$

$$g_i(x+p) = g_i(x) + (g'_i(x), p) + o(||p||), \quad i = \overline{1, m},$$

причому в цільову функцію додано квадратичний член $\frac{1}{2} \|p\|^2$, а константа f(x) відкинута.

Зауважимо, що в силу опуклості функцій $g_1(x),...,g_m(x)$ та умови $X \neq \emptyset$, допустима множина задачі (2) завжди непорожня. Завдяки квадратичному члену цільова функція задачі (2) є сильно опуклою. Тому ця задача має єдиний розв'язок. Позначимо його через p(x).

$$m||z||^2 \le (f''(x), z) \le M||z||^2$$

У методі лінеаризації послідовність наближень $\{x^{(k)}\}$ генерується за формулою

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, \ k = 0, 1, 2, \dots,$$
(3)

де $p^{(k)} = p\left(x^{(k)}\right)$ – розв'язок задачі (2) при $x = x^{(k)}$, α_k – параметр, який регулює довжину кроку вздовж напрямку $p^{(k)}$. При цьому, на відміну від методу умовного градієнту, точки послідовності $\left\{x^{(k)}\right\}$ не обов'язково повинні належати множині X, а послідовність значень функції $\left\{f\left(x^{(k)}\right)\right\}$ – спадати.

Сформулюємо теорему про збіжність варіанту методу з постійним кроком α_k .

Теорема. Нехай функції $f(x), g_1(x), ..., g_m(x)$ є диференційовними в просторі E^n , їх градієнти задовольняють в E^n умові Ліпшиця, функції $g_1(x), ..., g_m(x)$ є опуклими в E^n та існує точка $\overline{x} \in E^n$, така, що $g_i(\overline{x}) < 0$ для всіх $i = \overline{1,m}$ (умова Слейтера). Нехай $x^{(0)} \in X$, причому множина $N_0 = \left\{x \in E^n : f(x) \le f\left(x^{(0)}\right)\right\}$ — обмежена. Тоді існує число $\overline{\alpha} > 0$ таке, що будь-яка гранична точка x_* послідовності $\left\{x^{(k)}\right\}$, яка визначається за формулою (3), де $\alpha_k = \alpha \in (0, \overline{\alpha}]$, є стаціонарною в задачі (1), тобто

$$f'(x_*) + \sum_{i=1}^m \lambda_i^* g_i(x_*) = 0,$$
 (4)

$$\lambda_i^* g_i(x_*) = 0, \quad i = \overline{1, m}, \tag{5}$$

де $\lambda_1^* \ge 0,...,\lambda_m^* \ge 0$ — певні числа (множники Лагранжа). Якщо при цьому цільова функція f(x) є опуклою в просторі E^n , то x_* — розв'язок задачі (1).

Відзначимо, що умова обмеженості множини N_0 забезпечується, наприклад, умовою сильної опуклості функції або умовою $\lim_{\|x\|\to\infty} f\left(x\right) = +\infty$.

Алгоритм методу лінеаризації

Початковий етап. Вибрати початкову точку $x^{(0)} \in X$, константу зупинки $\varepsilon > 0$, покласти k = 0 і перейти до основного етапу.

Основний етап

Крок 1. Обчислити $f'(x^{(k)})$, $g_i(x^{(k)})$, $g_i'(x^{(k)})$ $i = \overline{1,m}$.

Крок 2. Знайти оптимальне розв'язок $p^{(k)}$ задачі:

$$\left(f'\left(x^{(k)}\right), p\right) + \frac{1}{2} \|p\|^{2} \to \min,$$

$$\left(g'_{i}\left(x^{(k)}\right), p\right) + g_{i}\left(x^{(k)}\right) \le 0, \quad i = \overline{1, m}.$$

Крок 3. Взяти за α_k оптимальний розв'язок такої задачі лінійного пошуку:

$$f(x^{(k)} + \alpha p^{(k)}) \rightarrow min, \ 0 \le \alpha \le 1.$$

Покласти $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$, замінити k на k+1.

Крок 4. Якщо $||x^{(k+1)}-x^{(k)}|| \le \varepsilon$, то зупинитися: $x^{(k)}$ — наближення до точки мінімуму. В іншому випадку - перейти до кроку 1. Алгоритм описано.

Приклад. Розглянемо задачу

$$f(x) = 2x_1^2 + 2x_2^2 - 2x_1x_2 - x_1 - 4x_2 \rightarrow min$$

при обмеженнях

$$x_1 + x_2 \le 2$$
, $x_1 + 5x_2 \le 5$, $x_1 \ge 0$, $x_2 \ge 0$.

Лінії рівня цільової функції і допустима область показані на рисунку.

Розв'яжемо цю задачу методом лінеаризації, взявши за вихідну точку $x^{(0)} = \left(0,0\right)^T \in X$, $f\left(x^{(0)}\right) = 0$.

Градієнт цільової функції дорівнює

$$f'(x) = \begin{pmatrix} 4x_1 - 2x_2 - 4 \\ -2x_1 + 4x_2 - 6 \end{pmatrix}.$$

Також будемо використовувати позначення:

$$g_1(x) = x_1 + x_2 - 2$$
, $g_2(x) = x_1 + 5x_2 - 5$, $g_3(x) = -x_1$, $g_4(x) = -x_2$.

Градієнти обмежень задачі мають вигляд:

$$g_1'(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, g_2'(x) = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, g_3'(x) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, g_4(x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

Кожна ітерація алгоритму містить розв'язок допоміжної задачі знаходження напрямку спуску і лінійний пошук вздовж цього напрямку (знаходження крокового множника).

Ітерація 1. Пошук напрямку. У початковій точці $x^{(0)} = (0,0)^T$ маємо $f'(x^{(0)}) = (-4;-6)^T$, $g_1(x^{(0)}) = -2$, $g_2(x^{(0)}) = -5$, $g_3(x^{(0)}) = 0$, $g_4(x^{(0)}) = 0$.

Напрямок спуску $p^{(0)}$ знайдемо з розв'язання такої задачі квадратичного програмування:

$$\frac{1}{2}(p_1^2 + p_2^2) - 4p_1 - 6p_2 \to min$$

при обмеженнях

$$p_1 + p_2 - 2 \le 0,$$

$$p_1 + 5p_2 - 5 \le 0,$$

$$-p_1 \le 0, -p_2 \le 0.$$

Допустиму область допоміжної задачі показано на рисунку нижче. Оптимальним розв'язком цієї задачі є вектор $p^{(0)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T$.

Лінійний пошук. Будь-яка точка $x^{(1)}$, яку знайдено з точки $x^{(0)}$ у напрямку $p^{(0)}$, може бути представлена у вигляді

$$x^{(1)} = x^{(0)} + \alpha p^{(0)}$$
, де $0 \le \alpha \le 1$.

Тобто маємо

$$x^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 5/4 \\ 3/4 \end{pmatrix} = \left(\frac{5\alpha}{4}, \frac{3\alpha}{4}\right)^T,$$

а відповідне їй значення цільової функції дорівнює $f\left(x^{(0)} + \alpha h^{(0)}\right) = \frac{19}{8}\alpha^2 - \frac{19}{2}\alpha \ .$

Значення α_0 знаходиться з розв'язання такої задачі одновимірної оптимізації:

$$\frac{19}{8}\alpha^2 - \frac{19}{2}\alpha \rightarrow min, \ 0 \le \alpha \le 1.$$

Оптимальний розв'язок дорівнює $\alpha_0 = 1$.

Отже,

$$x^{(1)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T \approx (1.25, 0.75)^T, f(x^{(1)}) = -7.125.$$

Ітерація 2. Пошук напрямку. В точці $x^{(1)} = \left(\frac{5}{4}, \frac{3}{4}\right)^T \approx \left(1.25, 0.75\right)^T$

маємо

$$f'(x^{(1)}) = \left(-\frac{1}{2}, -\frac{11}{5}\right)^{T},$$

$$g_{1}(x^{(1)}) = 0, \ g_{2}(x^{(1)}) = 0, \ g_{3}(x^{(1)}) = -\frac{5}{4}, \ g_{4}(x^{(1)}) = -\frac{3}{4}.$$

Для знаходження напрямку $p^{(1)}$ розв'яжемо таку задачу:

$$\begin{split} \frac{1}{2} \Big(p_1^2 + p_2^2 \Big) - 0.5 \, p_1 - 5.5 \, p_2 &\to \min, \\ p_1 + p_2 &\le 0, \\ p_1 + 5 \, p_2 &\le 0, \\ -p_1 - 1.25 &\le 0, \, -p_2 - 0.75 &\le 0. \\ \text{розв'язком} \qquad \text{цієї} \qquad \text{задачі} \end{split}$$

Оптимальним

задачі

 ϵ вектор

$$p^{(1)} = \left(-\frac{15}{26}, \frac{3}{26}\right) = \left(-0.577, 0.115\right)^{T}.$$

Лінійний пошук. Маємо

$$x^{(2)} = \begin{pmatrix} 1.25 \\ 0.75 \end{pmatrix} + \alpha \begin{pmatrix} -0.577 \\ 0.115 \end{pmatrix} = \begin{pmatrix} 1.25 - 0.577 \alpha \\ 0.75 + 0.115 \alpha \end{pmatrix},$$

відповідне цільової функції дорівнює $f(x^{(1)} + \alpha p^{(1)}) = \frac{279}{338} \alpha^2 - \frac{9}{26} \alpha - \frac{57}{8}$.

Значення α_1 знаходиться з розв'язання такої задачі одновимірної оптимізації:

$$0.825\alpha^2 - 0.346\alpha - 7.125 \rightarrow min, 0 \le \alpha \le 1.$$

Оптимальний розв'язок дорівнює $\alpha_1 = 0.2097$.

Отже, маємо
$$x^{(2)} = \left(\frac{35}{31}, \frac{24}{31}\right) = \left(1.129, 0.774\right)^T, f\left(x^{(2)}\right) = -7.1613.$$

Ітерація 3. Пошук напрямку. В точці $x^{(2)} = \left(\frac{35}{31}, \frac{24}{31}\right) = \left(1.129, 0.774\right)^T$

маємо
$$f'\left(x^{(2)}\right) = \left(-\frac{32}{31}, -\frac{160}{31}\right)^T$$
, $g_1\left(x^{(2)}\right) = -\frac{3}{31}$, $g_2\left(x^{(2)}\right) = 0$, $g_3\left(x^{(2)}\right) = -\frac{35}{31}$, $g_4\left(x^{(2)}\right) = -\frac{24}{31}$.

Задача для знаходження напрямку $p^{(2)}$ має вигляд:

$$\begin{split} \frac{1}{2} \Big(p_1^2 + p_2^2 \Big) - \frac{32}{31} p_1 - \frac{160}{31} p_2 &\to min \,, \\ p_1 + p_2 &\leq \frac{3}{31}, \\ p_1 + 5 p_2 &\leq 0, \\ -p_1 - \frac{35}{31} &\leq 0, \, -p_2 - \frac{24}{31} &\leq 0 \,. \end{split}$$

Оптимальним розв'язком цієї задачі є вектор $p^{(2)} = (0,0)^T$.

Отже, точка $x^{(2)} = \left(\frac{35}{31}, \frac{24}{31}\right) = \left(1.129, 0.774\right)^T \in$ оптимальним розв'язком задачі з заданою точністю.