CS147 HW2 Keonwoong Min

1. Design a 3-bit sequence comparator circuit which has 3 bits data inputs (A, B, C), 1 clock signal (CLK) and 1 bit output (Y). This circuit takes stream of bits per clock cycle through these 3 data input pins. Output turns 1 in a clock cycle if latest 3 bit sequence in 3 bit streams matches. Show all the necessary steps to implement this logic circuit and draw final schematic diagram. Use D-F/F as storage if needed. Sample input / output is given in following block diagram of this circuit.

ANS)

a) State Diagram

State I Nothing matching

State J 1 bit sequence in 3 bit streams matching

State K 2 bit sequence in 3 bit streams matching

b) State Table

Present State	Next States		Output Y		
	(A XOR B	(A XOR B	(A XOR B	(A XOR B	
I	XOR C)' = 0	XOR C)' = 1	XOR C)' = 0	$\frac{XOR\ C)' = 1}{0}$	
J	I	K	0	0	
K	I	K	0	1	

c) State Assignment

Present	Next	States	Outp	out Y
State				
	(A XOR B	(A XOR B	(A XOR B	(A XOR B
	XOR C)' = 0	XOR C)' = 1	XOR C)' = 0	XOR C)' = 1
00	00	01	0	0
01	00	11	0	0
11	00	11	0	1

• States are in gray code I = 00

J = 01

K = 11

d) Truth Table

Set X = (A XOR B XOR C),

	State Variables at present state		Primary Input	State Variable at next state		Primary Output
	$\mathbf{U_t}$	V_{t}	X	U_{t+1}	V_{t+1}	Y
m0	0	0	0	0	0	0
m1	0	0	1	0	1	0
m2	0	1	0	0	0	0
m3	0	1	1	1	1	0
m6	1	1	0	0	0	0
m7	1	1	1	1	1	1
m4	X	X	X	X	X	X
m5	X	X	X	X	X	X

e) Optimization with K-map

$$\begin{aligned} U_{t+1} &= D_{U}(U_{t}, V_{t,} X) \\ &= \sum m(3,7) \\ &= X V_{t} \end{aligned}$$

$$V_{t+1} = D_V(U_t, V_t, X)$$

= $\sum m(1,3,7)$
= X

$$Y = \sum m(7)$$
$$= XU_t$$

$\begin{aligned} & \underline{State~Equation} \\ & U_{t+1} = XV_t \\ & V_{t+1} = X \end{aligned}$

Output Equation

 $Y = XU_t$

f) Technology mapping

2. How many basic logic gates a 32-bit ripple carry adder-subtractor circuit will have (as in lecture note 9, page 14). Assume this digital implementation has basic logic gate list as 2-input NAND, 2-input NOR, and NOT. [10pts]

ANS)

32-bit ripple carry adder-subtractor circuit has 32 full adders and one Overflow register.

One full adder contains 2 XOR gates, 2 AND gates and 1 OR gate.

XOR can be replaced with 4 NAND gates, AND gate can be replaced with 2 NAND, and OR gate can be replaced with 1 NOR and 1 NOT gates. It is 14 gates in total per full adder.

Since we have 32 adders, it is 32 * 14 = 448 gates for full adders.

And there are 32 XOR gates between SnA and one 32bit register,

Such that there are 32*4 NAND gates which is 128 NAND gates.

Such that, 32bit ripple carry adder-subtractor circuit has 576 gates.

- 3. For a non-pipeline implementation of data and control path in following diagram for a processor implementing CS147DV show the control signal logic values (in compact Hex format) at different phase of the processor executing the following instructions. You need to construct 10 tables similar to Table shown (may use hexadecimal for multi-bus signal, put 0 if don't care). Assumptions on this design are as following. [30pts]
- a) Assume that the memory / register file with read=0, write=0 is hold configuration (hold the previous read data) and read=1, write=1 causes electrical isolation of the memory (HiZ). Both of memory and register file reads with read=1, write=1 and writes with read=0, write=1. If memory or register needs to hold previous value, keep it at hold configuration (not in 'read' configuration).
- b) ALU assumes operation code as in Lecture 11 notes. For 'alu_oprn' CTRL[25] is MSB and CTRL[22] is LSB.
- c) Instruction register is implemented with a transparent latch. This means, as soon as 'ir_load' is turned to 1, input is transferred to output without any waiting for successive clock cycle.

I.	add	r1, r2, r1
II.	srl	r15, r19, 0xa3
III.	jr	r8
IV.	addi	r15, r14, 0x1234
v.	andi	r3, r4, 0x8a5f
VI.	lui	r14, 0xabcd
VII.	beq	r21, r30, 0x123a; // r21 = 0x2; r30 = 0x1
VIII.	sw	r29, r10, 0xa5a5
IX.	jal	0x3A0B12A
х.	push	

I. add r1, r2, r1

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc sel 1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc sel 3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	0
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	1
CTRL[10]	wa_sel_1	0	0	0	0	1
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	1
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	1	1	1
CTRL[22:25]	Alu_oprn	0	0	0x1 _(hex)	$0x1_{(hex)}$	0x1 _(hex)
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa	l Value in	32'h080000	32'h000001	32'h006000	32'h006000	32'h006096
Hex	ζ	20	10	00	00	0B

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc sel 1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc sel 3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem w	0	0	0	0	0
CTRL[7]	r1 sel 1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	1
CTRL[10]	wa_sel_1	0	0	0	0	0
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	1
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	1	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	1	1	1
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0xA _(hex)	0xA _(hex)	0xA _(hex)
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa	l Value in	32'h080000	32'h000001	32'h029400	32'h029000	32'h029092
Hex	x	20	10	00	00	0B

III. jr r8 (Operation: PC = {6'b0, address})

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc_sel_1	0	0	0	0	0
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	0
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	0
CTRL[10]	wa_sel_1	0	0	0	0	0
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	0
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	0
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0	0	0
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'h080000	32'h000001	32'h000000	32'h000000	32'h000000
Hex	X	20	10	00	00	09

IV. addi r15, r14, 0x1234d (Operation: R[rt] = R[rs] (op) SignExtImm)

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc sel 1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	1
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	1
CTRL[10]	wa_sel_1	0	0	0	0	1
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	1
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	1	1	1
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	$0x1_{(hex)}$	$0x1_{(hex)}$	$0x1_{(hex)}$
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa	l Value in	32'h080000	32'h000001	32'h004800	32'h004800	32'h004896
Hex	ζ	20	10	00	00	4B

V. and ir3, r4, 0x8a5f (Operation: R[rt] = R[rs] (op) ZeroExtImm)

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc sel 1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	0
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	1
CTRL[10]	wa_sel_1	0	0	0	0	1
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	1
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0x5 _(hex)	0x5 _(hex)	0x5 _(hex)
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'hx08000	32'h000001	32'h014000	32'h0140000	32'h0140960
Hex	X .	020	10	00	0	В

 $VI. \qquad \text{lui r14, 0xabcd Operation: R[rt] = \{imm, 16'b0\}}$

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc_sel_1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	0
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	0	0	0	0
CTRL[9]	reg_w	0	0	0	0	1
CTRL[10]	wa_sel_1	0	0	0	0	1
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	1
CTRL[15]	wd_sel_3	0	0	0	0	1
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0	0	0
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'hx08000	32'h000000	32'h000000	32'h000000	32'h0000D6
Нех	X.	020	10	00	00	0B

 $VII. \quad \text{beq r21, r30, 0x123a // r21 = 0x2; r30 = 0x1} \\ \text{(Operation: PC = PC + 1 + SignExtImm; if R[rs] == R[rt] or R[rs] != R[rt])}$

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc_sel_1	0	0	0	0	0
CTRL[2]	pc_sel_2	0	0	0	0	1
CTRL[3]	pc sel 3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem w	0	0	0	0	0
CTRL[7]	r1 sel 1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	0
CTRL[10]	wa_sel_1	0	0	0	0	0
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	0
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	0
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	1	1	1
CTRL[22:25]	Alu_oprn	0	0	0x7 _(hex)	$0x7_{(hex)}$	0x7 _(hex)
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa	l Value in	32'hx08000	32'h000001	32'h01E000	32'h01E000	32'h01E000
He	X	020	10	00	00	0D

VIII. sw r29, r10, 0xa5a5

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc_sel_1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	1	0
CTRL[7]	r1_sel_1	0	0	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	0
CTRL[10]	wa_sel_1	0	0	0	0	0
CTRL[11]	wa_sel_2	0	0	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	0
CTRL[13]	wd_sel_1	0	0	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	0
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	1	1	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	$0x1_{(hex)}$	$0x1_{(hex)}$	0
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'hx08000	32'h000001	32'h004800	32'h004800	32'h000000
He	X	020	10	00	40	0B

 $IX. \qquad \mbox{jal 0x3a0b12a} \\ (\mbox{Operation: R[31] = PC + 1; PC = {6'b0, address})}$

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc_sel_1	1	0	0	0	0
CTRL[2]	pc sel 2	0	0	0	0	0
CTRL[3]	pc sel 3	1	0	0	0	0
CTRL[4]	ir_load	0	1	1	1	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	0	0
CTRL[7]	r1_sel_1	0	0	0	0	1
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	0
CTRL[10]	wa_sel_1	0	0	0	0	1
CTRL[11]	wa_sel_2	0	1	0	0	0
CTRL[12]	wa_sel_3	0	0	0	0	1
CTRL[13]	wd_sel_1	0	1	0	0	0
CTRL[14]	wd_sel_2	0	0	0	0	1
CTRL[15]	wd_sel_3	0	1	0	0	0
CTRL[16]	sp_load	0	0	0	0	0
CTRL[17]	op1_sel_1	0	0	0	0	0
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	0	0	0
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0	0	0
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'hx08000	32'h0000A9	32'h000000	32'h0000001	32'h0000548
Hex	ζ	02A	10	10	0	1

X. push (M[\$sp] = R[0]; \$sp = \$sp - 1)

Control			S	tage		
Signal	CTRL	IF	ID/RF	EXE	MEM	WB
CTRL[0]	pc load	0	0	0	0	1
CTRL[1]	pc sel 1	0	0	0	0	1
CTRL[2]	pc_sel_2	0	0	0	0	0
CTRL[3]	pc_sel_3	0	0	0	0	1
CTRL[4]	ir_load	0	1	0	0	0
CTRL[5]	mem_r	1	0	0	0	0
CTRL[6]	mem_w	0	0	0	1	0
CTRL[7]	r1_sel_1	0	1	0	0	0
CTRL[8]	reg_r	0	1	0	0	0
CTRL[9]	reg_w	0	0	0	0	0
CTRL[10]	wa_sel_1	0	0	0	0	0
CTRL[11]	wa_sel_2	0	0	0	0	1
CTRL[12]	wa_sel_3	0	0	0	0	0
CTRL[13]	wd_sel_1	0	0	0	1	0
CTRL[14]	wd_sel_2	0	0	0	0	0
CTRL[15]	wd_sel_3	0	0	0	0	0
CTRL[16]	sp_load	0	0	0	0	1
CTRL[17]	op1_sel_1	0	0	1	1	1
CTRL[18]	op2_sel_1	0	0	0	0	0
CTRL[19]	op2_sel_2	0	0	0	0	0
CTRL[20]	op2_sel_3	0	0	1	1	1
CTRL[21]	op2_sel_4	0	0	0	0	0
CTRL[22:25]	Alu_oprn	0	0	0x2 _(hex)	0x2 _(hex)	0x2 _(hex)
CTRL[26]	ma_sel_1	0	0	0	0	0
CTRL[27]	ma_sel_2	1	0	0	0	0
CTRL[28]	md_sel_1	0	0	0	0	0
CTRL Signa		32'hx08000	32'h000001	32'h009200	32'h009220	32'h009308
Hex	ζ.	020	90	00	40	0B

^{4.} A computing system X is running on 1.6GHz clock. Another system Y running on 2.5GHz clock. Both of these systems support 4 types of instruction A, B, C, D. The following is the CPI table per instruction type in both the system. To compare performance between these two system one benchmark program has been used which has mix of 25% type A, 25% type B, 30% type C and 20% type D. Compare performance between these two systems (P_Y/P_X) with respect to this benchmark program? [20pts]

Instruction Type	CPI of X	CPI of Y
Α	4	3
В	2	5
С	1	4
D	3	1

ANS)

- i) Since P = 1/E and E = N * T = N/F
- ii) $E_x = (1/1.6 \text{GHz})((4*0.25)+(2*0.25)+(1*0.3)+(3*0.2)) = 2.4/1.6 \text{GHz}$ $E_Y = (1/2.5 \text{GHz})((3*0.25)+(5*0.25)+(4*0.3)+(1*0.2)) = 3.4/2.5 \text{GHz}$
- iii) $P_Y/P_X = E_X/E_Y = (N_X/N_Y)(F_Y/F_X) = (2.4/3.4)(2.5GHz/1.6GHz) = 1.10$
- So, The system Y is about 1.10 times faster than system X
- 5. Consider the following piece of code in a 5-stage pipeline processor (as discussed in class).
 - a. Fill out the data hazard and resolution table. Use <inst#>-<stage> to denote instruction- stage in pipe line. For example, 1-MEM means 'MEM stage for instruction 1'. Mark the resolution methods as FWD (data forward) and STALL (stall). Consider no reordering in this case. [5pts]
 - b. Fill out data hazard and resolution table after the stall is inserted. [5pts]
 - c. Write down minimally re-ordered code to avoid stall. Fill out data hazard and resolution after re-ordering. Do not alter the instruction ID numbers in left most columns [10pts]

Ans:

a) The data hazard table for original code as following.

	Instruction						Pipelin	e Stages					
ID	Statement	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	T10	T11	T12
1	lw r1, r20, 0x2056	IF	ID/RF	EXE	MEM	WB							
2	lw r2, r21, 0xF5C4		IF	ID/RF	EXE	MEM	WB						
3	add r3, r1, r2			IF	ID/RF	EXE	MEM	WB					
4	lw r4, r22, 0x0014				IF	ID/RF	EXE	MEM	WB				
5	addi r8, r4, 0x1A					IF	ID/RF	EXE	MÉM	WB			
6	add r5, r8, r4						IF	ID/RF	EXE	MEM	WB		

Data Hazard (Original)								
STAGE	FWD-FORM							
3-EXE	1-WB	FWD	1-MEM					
3-EXE	2-WB	STALL						
5-EXE	4-WB	STALL						
6-EXE	4-WB	FWD	4-MEM					
6-EXE	5-WB	FWD	5-EXE					

b) Data hazard table after the STALL. After stalling, it would be like this table

	Instruction		Pipeline Stages										
ID	Statement	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	lw r1 , r20, 0x2056	IF	ID/RF	EXE	MEM	WB							
2	lw r2, r21, 0xF5C4		IF	ID/RF	EXE	MEM	WB						
3	add r3, r1, r2			IF	ID/RF	bubble	EXE	MEM	WB				
4	lw r4, r22, 0x0014				IF	bubble	ID/RF	EXE	MEM	WB			
5	addi r8, r4, 0x1A					bubble	IF	ID/RF	bubble	EXE	MEM	WB	
6	add r5, r8, r4							IF	bubble	ID/RF	EXE	MEM	WB

Data Hazard (After Stall)								
STAGE	FWD-FORM							
3-EXE	1-WB	FWD	1-MEM					
3-EXE	2-WB	FWD	2-MEM					
5-EXE	4-WB	FWD	4-MEM					
6-EXE	4-WB	FWD	4-MEM					
6-EXE	5-WB	FWD	5-EXE					

c) Minimal re-ordered code to avoid STALL would be as following. We change the Stage 3, add r3, r1, r2 and Stage 4, lw r4, r22, 0x0014 and we get

	Instruction		Pipeline Stages										
ID	Statement	T1	T2	Т3	T4	T5	T6	T7	T8	T9	T10	T11	T12
1	lw r1, r20, 0x2056	IF	ID/RF	EXE	MEM	WB							
2	lw r2, r21, 0xF5C4		IF	ID/RF	EXE	MEM	WB						
4	lw r4, r22, 0x0014			IF	ID/RF	EXE	MEM	WB					
3	add r3, r1, r2				IF	ID/RF	EXE	MEM	WB				
5	addi r8, r4, 0x1A					IF	ID/RF	EXE	MEM	WB			
6	add r5, r8, r4						IF	ID/RF	EXE	MEM	WB		

Data Hazard (After Reorder)									
STAGE	STAGE DEPENDENCY RESOLUTION FWD-FORM								
3-EXE 1-WB FWD 1-MEM									

3-EXE	2-WB	FWD	2-MEM
5-EXE	4-WB	FWD	4-MEM
6-EXE	4-WB	FWD	4-MEM
6-EXE	5-WB	FWD	5-EXE