Simulation and High-Performance Computing Part 8: Krylov Methods

Steffen Börm

Christian-Albrechts-Universität zu Kiel

October 1st, 2020

Positive definite matrices

Task: We want to solve a linear system Ax = b.

Assumption: The matrix $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, i.e.,

$$\langle x, Ay \rangle = \langle y, Ax \rangle$$
 for all $x, y \in \mathbb{R}^n$,
 $\langle x, Ax \rangle > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$.

Positive definite matrices

Task: We want to solve a linear system Ax = b.

Assumption: The matrix $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, i.e.,

$$\begin{split} \langle x,Ay\rangle &= \langle y,Ax\rangle & \text{for all } x,y \in \mathbb{R}^n, \\ \langle x,Ax\rangle &> 0 & \text{for all } x \in \mathbb{R}^n, \ x \neq 0. \end{split}$$

Approach: Characterize the solution x via a minimization problem.

Example: For a > 0, the function $f(x) = \frac{1}{2}ax^2 - bx$ takes its minimum at ax = b, since f'(x) = ax - b.

Minimization problem

Goal: Prove that the function

$$f(x) := \frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$$

takes its minimum if Ax = b.

Minimization problem

Goal: Prove that the function

$$f(x) := \frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$$

takes its minimum if Ax = b.

Approach: Given a direction $p \in \mathbb{R}^n$, we prove that

$$f(x) \leq f(x + \theta p)$$

holds for all $\theta \in \mathbb{R}$

if and only if p and Ax - b are orthogonal, i.e.,

$$\langle p, Ax - b \rangle = 0.$$

Minimization problem

Goal: Prove that the function

$$f(x) := \frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$$

takes its minimum if Ax = b.

Approach: Given a direction $p \in \mathbb{R}^n$, we prove that

$$f(x) \le f(x + \theta p)$$

holds for all $\theta \in \mathbb{R}$

if and only if p and Ax - b are orthogonal, i.e.,

$$\langle p, Ax - b \rangle = 0.$$

Result: If Ax = b, the minimality condition holds for all $p \in \mathbb{R}^n$, and f takes its global minimum in x.

If f takes its global minimum in x, we can choose p = Ax - b and obtain $||Ax - b||^2 = \langle Ax - b, Ax - b \rangle = 0$, i.e., Ax = b.

Orthogonality implies minimality

Binomial equation: Given $p \in \mathbb{R}^n$, $\theta \in \mathbb{R}$, we have

$$f(x + \theta p) = \frac{1}{2} \langle x + \theta p, A(x + \theta p) \rangle - \langle b, x + \theta p \rangle$$

$$= f(x) + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta \langle p, Ax \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle - \theta \langle b, p \rangle$$

$$= f(x) + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle - \theta \langle b, p \rangle$$

$$= f(x) + \theta \langle p, Ax - b \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle.$$

Orthogonality implies minimality

Binomial equation: Given $p \in \mathbb{R}^n$, $\theta \in \mathbb{R}$, we have

$$f(x + \theta p) = \frac{1}{2} \langle x + \theta p, A(x + \theta p) \rangle - \langle b, x + \theta p \rangle$$

$$= f(x) + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta \langle p, Ax \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle - \theta \langle b, p \rangle$$

$$= f(x) + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta \langle x, Ap \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle - \theta \langle b, p \rangle$$

$$= f(x) + \theta \langle p, Ax - b \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle.$$

Minimality: If p and Ax - b are orthogonal, i.e., if $\langle p, Ax - b \rangle = 0$ holds, we have

$$f(x + \theta p) = f(x) + \frac{1}{2}\theta^2 \langle p, Ap \rangle \ge f(x),$$

since A is positive definite, i.e., x cannot be reduced any further along the direction p.

Minimality implies orthogonality

We choose $p \in \mathbb{R}^n$ with $p \neq 0$ and assume that we cannot improve our solution in direction p, i.e.,

$$f(x) \le f(x + \theta p)$$

for all $\theta \in \mathbb{R}$.

5 / 16

Minimality implies orthogonality

We choose $p \in \mathbb{R}^n$ with $p \neq 0$ and assume that we cannot improve our solution in direction p, i.e.,

$$f(x) \le f(x + \theta p)$$
 for all $\theta \in \mathbb{R}$.

We can choose $\theta = - \frac{\langle p, Ax - b \rangle}{\langle p, Ap \rangle}$ and obtain

$$f(x) \le f(x + \theta p) = f(x) + \theta \langle p, Ax - b \rangle + \frac{1}{2} \theta^2 \langle p, Ap \rangle$$

$$= f(x) - \frac{\langle p, Ax - b \rangle^2}{\langle p, Ap \rangle} + \frac{\langle p, Ax - b \rangle^2}{2 \langle p, Ap \rangle}$$

$$= f(x) - \frac{\langle p, Ax - b \rangle^2}{2 \langle p, Ap \rangle} \le f(x),$$

since $\langle p, Ap \rangle > 0$. This implies $\langle p, Ax - b \rangle = 0$.

Iterative minimization

Idea: Given $x_m \in \mathbb{R}^n$, pick a direction $p_m \in \mathbb{R}^n$ and a stepsize $\theta_m \in \mathbb{R}$ with

$$f(x_m + \theta_m p_m) \leq f(x_m).$$

The next approximation is $x_{m+1} = x_m + \theta_m p_m$.

Locally optimal direction: If θ is small, we have

$$f(x + \theta p) \approx f(x) + \theta \langle p, Ax - b \rangle,$$

and the best direction is p = b - Ax.

Optimal stepsize: For $p \in \mathbb{R}^n$ with $p \neq 0$, the best stepsize satisfies

$$0 = \langle p, A(x + \theta p) - b \rangle = \langle p, Ax - b \rangle + \theta \langle p, Ap \rangle,$$

i.e., we have $\theta=-rac{\langle p,Ax-b
angle}{\langle p,Ap
angle}=rac{\langle p,b-Ax
angle}{\langle p,Ap
angle}.$

Gradient iteration Simple version:

$$\begin{array}{l} \text{for } m = 0, 1, \dots \text{ do} \\ p_m \leftarrow b - A x_m \\ \theta_m \leftarrow \frac{\|p_m\|^2}{\langle p_m, A p_m \rangle} \\ x_{m+1} \leftarrow x_m + \theta_m \, p_m \\ \text{end} \end{array}$$

Gradient iteration Simple version:

$$\begin{array}{l} \text{for } m = 0, 1, \dots \text{ do} \\ p_m \leftarrow b - Ax_m \\ \theta_m \leftarrow \frac{\|p_m\|^2}{\langle p_m, Ap_m \rangle} \\ x_{m+1} \leftarrow x_m + \theta_m \, p_m \\ \text{end} \end{array}$$

Improved version avoiding unnecessary matrix-vector multiplications:

$$\begin{aligned} p_0 \leftarrow b - Ax_0 \\ \text{for } m &= 0, 1, \dots \text{ do} \\ a_m \leftarrow Ap_m \\ \theta_m \leftarrow \frac{\|p_m\|^2}{\langle p_m, a_m \rangle} \\ x_{m+1} \leftarrow x_m + \theta_m p_m \\ p_{m+1} \leftarrow p_m - \theta_m a_m \end{aligned}$$
 end

Gradient iteration: Implementation

```
copy(n, b, 1, p, 1);
addeval_laplace(-1.0, x, 1, p, 1);
error = nrm2(n, p, 1);
while(error > eps) {
  clear(n. a. 1):
  addeval_laplace(1.0, p, 1, a, 1);
  omega = dot(n, p, 1, a, 1);
  theta = dot(n, p, 1, p, 1) / omega;
  axpy(n, theta, p, 1, x, 1);
  axpy(n, -theta, a, 1, p, 1);
  error = nrm2(n, p, 1);
```

Experiment: Gradient iteration

Task: Solve the linear system $-\Delta_h u_h = f$.

m	$\ b-Ax_m\ $	$f(x_m)$
0	2.33_{+3}	0.00_{+0}
1	1.21_{+3}	-1.27_{+3}
2	8.92 ₊₂	-1.61_{+3}
3	7.31_{+2}	-1.80_{+3}
4	6.34 ₊₂	-1.92_{+3}
10	4.20_{+2}	-2.25_{+3}
100	1.89_{+2}	-3.02_{+3}
1000	3.04 ₊₀	-3.45_{+3}
2000	3.14_{-2}	-3.45_{+3}

Observation: Very slow convergence, rate $\sim 1 - ch^2$.

Preserving optimality

Optimality: Our choice of θ_m guarantees

$$\langle p_m, Ax_{m+1} - b \rangle = 0,$$

i.e., x_{m+1} cannot be improved in the direction p_m .

Problem: Optimality is lost in later steps, usually already in the next.

Preserving optimality

Optimality: Our choice of θ_m guarantees

$$\langle p_m, Ax_{m+1} - b \rangle = 0,$$

i.e., x_{m+1} cannot be improved in the direction p_m .

Problem: Optimality is lost in later steps, usually already in the next.

Idea: Modify the directions in order to preserve optimality. If x_m is already optimal with respect to p_0, \ldots, p_{m-1} , we need

$$0 \stackrel{!}{=} \langle p_{\ell}, Ax_{m+1} - b \rangle = \langle p_{\ell}, A(x_m + \theta_m p_m) - b \rangle$$

= $\langle p_{\ell}, Ax_m - b \rangle + \theta_m \langle p_{\ell}, Ap_m \rangle = \theta_m \langle p_{\ell}, Ap_m \rangle.$

Preserving optimality

Optimality: Our choice of θ_m guarantees

$$\langle p_m, Ax_{m+1} - b \rangle = 0,$$

i.e., x_{m+1} cannot be improved in the direction p_m .

Problem: Optimality is lost in later steps, usually already in the next.

Idea: Modify the directions in order to preserve optimality. If x_m is already optimal with respect to p_0, \ldots, p_{m-1} , we need

$$0 \stackrel{!}{=} \langle p_{\ell}, Ax_{m+1} - b \rangle = \langle p_{\ell}, A(x_m + \theta_m p_m) - b \rangle$$

= $\langle p_{\ell}, Ax_m - b \rangle + \theta_m \langle p_{\ell}, Ap_m \rangle = \theta_m \langle p_{\ell}, Ap_m \rangle.$

Conjugate direction: We have to ensure

$$\langle p_{\ell}, Ap_{m} \rangle = 0$$
 for all $\ell \in [0: m-1]$.

Conjugate gradients

Idea: Start with the residual

$$r_m := b - Ax_m$$

and apply the Gram-Schmidt procedure:

$$p_m := r_m - \sum_{k=0}^{m-1} \frac{\langle p_k, Ar_m \rangle}{\langle p_k, Ap_k \rangle} p_k.$$

Result: Due to $\langle p_{\ell}, Ap_{k} \rangle = 0$ for $\ell \neq k$, we obtain

$$\langle p_{\ell}, Ap_{m} \rangle = \langle p_{\ell}, Ar_{m} \rangle - \sum_{k=0}^{m-1} \frac{\langle p_{k}, Ar_{m} \rangle}{\langle p_{k}, Ap_{k} \rangle} \langle p_{\ell}, Ap_{k} \rangle = 0.$$

Conjugate gradients

Idea: Start with the residual

$$r_m := b - Ax_m$$

and apply the Gram-Schmidt procedure:

$$p_m := r_m - \sum_{k=0}^{m-1} \frac{\langle p_k, Ar_m \rangle}{\langle p_k, Ap_k \rangle} p_k.$$

Result: Due to $\langle p_{\ell}, Ap_{k} \rangle = 0$ for $\ell \neq k$, we obtain

$$\langle p_{\ell}, Ap_{m} \rangle = \langle p_{\ell}, Ar_{m} \rangle - \sum_{k=0}^{m-1} \frac{\langle p_{k}, Ar_{m} \rangle}{\langle p_{k}, Ap_{k} \rangle} \langle p_{\ell}, Ap_{k} \rangle = 0.$$

Problem: This procedure is not particularly efficient.

Krylov space: We have

$$\mathsf{span}\{p_0,\ldots,p_m\}=\mathsf{span}\{r_0,\ldots,r_m\}=\mathsf{span}\{r_0,Ar_0,\ldots,A^mr_0\}$$

Krylov space: We have

$$\mathsf{span}\{p_0,\ldots,p_m\}=\mathsf{span}\{r_0,\ldots,r_m\}=\mathsf{span}\{r_0,Ar_0,\ldots,A^mr_0\}$$

First inclusion: We start with $p_0 = r_0$ and use induction with

$$p_{m+1} = r_{m+1} - \sum_{k=0}^{m} \alpha_k p_k = r_{m+1} - \sum_{k=0}^{m} \beta_k r_k.$$

Krylov space: We have

$$\mathsf{span}\{p_0,\ldots,p_m\}=\mathsf{span}\{r_0,\ldots,r_m\}=\mathsf{span}\{r_0,Ar_0,\ldots,A^mr_0\}$$

First inclusion: We start with $p_0 = r_0$ and use induction with

$$p_{m+1} = r_{m+1} - \sum_{k=0}^{m} \alpha_k \, p_k = r_{m+1} - \sum_{k=0}^{m} \beta_k \, r_k.$$

Second inclusion: We again use induction with

$$r_{m+1} = r_m - \theta_m A p_m = r_m - \theta_m \sum_{k=0}^m \alpha_k A r_k.$$

Krylov space: We have

$$\mathsf{span}\{p_0,\ldots,p_m\}=\mathsf{span}\{r_0,\ldots,r_m\}=\mathsf{span}\{r_0,Ar_0,\ldots,A^mr_0\}$$

First inclusion: We start with $p_0 = r_0$ and use induction with

$$p_{m+1} = r_{m+1} - \sum_{k=0}^{m} \alpha_k \, p_k = r_{m+1} - \sum_{k=0}^{m} \beta_k \, r_k.$$

Second inclusion: We again use induction with

$$r_{m+1} = r_m - \theta_m A p_m = r_m - \theta_m \sum_{k=0}^m \alpha_k A r_k.$$

Equality: The conjugate directions p_0, \ldots, p_m are linear independent, therefore all spaces have full dimension m+1.

Krylov space: We have

$$\mathcal{K}_m := \mathsf{span}\{r_0, Ar_0, \dots, A^m r_0\} = \mathsf{span}\{p_0, \dots, p_m\}.$$

13 / 16

Krylov space: We have

$$\mathcal{K}_m := \mathsf{span}\{r_0, Ar_0, \dots, A^m r_0\} = \mathsf{span}\{p_0, \dots, p_m\}.$$

Optimality: By construction, we have

$$\langle q, r_{m+1} \rangle = \langle q, b - Ax_{m+1} \rangle = 0$$

for all $q \in \mathcal{K}_m$.

Krylov space: We have

$$\mathcal{K}_m := \operatorname{span}\{r_0, Ar_0, \dots, A^m r_0\} = \operatorname{span}\{p_0, \dots, p_m\}.$$

Optimality: By construction, we have

$$\langle q, r_{m+1} \rangle = \langle q, b - Ax_{m+1} \rangle = 0$$
 for all $q \in \mathcal{K}_m$.

Symmetry: Since A is symmetric and $Ap_k \in \mathcal{K}_{k+1}$, we have

$$\langle p_k, Ar_{m+1} \rangle = \langle Ap_k, r_{m+1} \rangle = 0$$
 for all $k \in [0: m-1]$

Krylov space: We have

$$\mathcal{K}_m := \operatorname{span}\{r_0, Ar_0, \dots, A^m r_0\} = \operatorname{span}\{p_0, \dots, p_m\}.$$

Optimality: By construction, we have

$$\langle q, r_{m+1} \rangle = \langle q, b - Ax_{m+1} \rangle = 0$$
 for all $q \in \mathcal{K}_m$.

Symmetry: Since A is symmetric and $Ap_k \in \mathcal{K}_{k+1}$, we have

$$\langle p_k, Ar_{m+1} \rangle = \langle Ap_k, r_{m+1} \rangle = 0 \qquad \qquad \text{for all } k \in [0:m-1]$$

Result: New direction can be computed efficiently via

$$p_{m+1} := r_{m+1} - \frac{\langle p_m, Ar_{m+1} \rangle}{\langle p_m, Ap_m \rangle} p_m = r_{m+1} - \frac{\langle Ap_m, r_{m+1} \rangle}{\langle p_m, Ap_m \rangle} p_m.$$

Conjugate gradient method

$$r_0 \leftarrow b - Ax_0$$
 $p_0 \leftarrow r_0$
for $m = 0, 1, \dots$ do
 $a_m \leftarrow Ap_m$
 $\omega_m \leftarrow \langle p_m, a_m \rangle$
 $\theta_m \leftarrow \frac{\langle p_m, r_m \rangle}{\omega_m}$
 $x_{m+1} \leftarrow x_m + \theta_m p_m$
 $r_{m+1} \leftarrow r_m - \theta_m a_m$
 $\mu_m \leftarrow \frac{\langle a_m, r_{m+1} \rangle}{\omega_m}$
 $p_{m+1} \leftarrow r_{m+1} - \mu_m p_m$
end

Experiment: Conjugate gradient method

Task: Solve the linear system $-\Delta_h u_h = f$.

m	$\ b-Ax_m\ $	$f(x_m)$
0	2.33_{+3}	0.00_{+0}
1	1.21_{+3}	-1.27_{+3}
2	8.64_{+2}	-1.74_{+3}
3	7.08_{+2}	-2.02_{+3}
10	5.44 ₊₂	-2.85_{+3}
20	4.46 ₊₂	-3.35_{+3}
30	4.95_{+0}	-3.45_{+3}
40	2.05_{-1}	-3.45_{+3}
50	4.95_{-4}	-3.45_{+3}
100	6.11_{-15}	-3.45_{+3}

Observation: Significantly faster than the gradient method, rate $\sim 1-ch$.

Summary

Minimization problem: $\langle p, Ax - b \rangle = 0$ is equivalent with

$$f(x) \le f(x + \theta p)$$
 for all $\theta \in \mathbb{R}$.

The global minimum of f corresponds with the solution of Ax = b.

Gradient method approximates the minimum.

$$p_m = b - Ax_m$$
 $x_{m+1} = x_m + \frac{\|p_m\|^2}{\langle p_m, Ap_m \rangle} p_m.$

Conjugate gradient method ensures that x_m is optimal with respect to p_0, \ldots, p_{m-1} and converges significantly faster than the gradient method.

Krylov spaces allow us to implement the cg method efficiently.