Elemente de teoria grafurilor

Noțiuni introductive

Un *graf* (neorientat sau orientat) este o pereche ordonată de mulțimi G = (V, E).

Mulțimea V este o mulțime nevidă și finită de elemente denumite *vârfurile* grafului.

Mulţimea *E* este o mulţime de perechi de vârfuri din graf.

În cazul grafurilor neorientate, perechile de vârfuri din mulțimea E sunt neordonate și sunt denumite *muchii*. Perechea neordonată formată din vârfurile x și y se notează [x,y]; vârfurile x și y se numesc *extremitățile muchiei* [x,y].

În cazul grafurilor orientate, perechile de vârfuri din mulțimea E sunt ordonate și sunt denumite arce. Perechea ordonată formată din vârfurile x și y se notează (x,y); vârful x se numește extremitate inițială a arcului (x,y), iar vârful y se numește extremitate finală a arcului (x,y).

Dacă există un arc sau o muchie cu extremitățile x și y, atunci vârfurile x și y sunt **adiacente**; fiecare extremitate a unei muchii/unui arc este considerată **incidentă** cu muchia/arcul respectiv.

Vom considera că extremitățile unei muchii, respectiv ale unui arc, sunt distincte (adică graful nu conține bucle).

Observatii

- 1. Cu ajutorul unui graf neorientat putem modela *o relație simetrică* între elementele unei mulțimi, în timp ce cu ajutorul unui graf orientat modelăm *o relație care nu este simetrică*.
- 2. Între oricare două vârfuri ale unui graf poate exista cel mult o muchie/arc. Dacă între două vârfuri există mai multe muchii/arce atunci structura se numește *multigraf*. Nu vom lucra cu structuri multigraf.
- 3. În practică, informațiile asociate unui graf pot fi oricât de complexe, dar, pentru a simplifica, vom considera că vârfurile grafului sunt etichetate cu numere naturale de la 1 la *n* (unde cu *n* vom nota numărul de vârfuri din graf). Această numerotare nu este o restrângere a generalității (de exemplu, numărul vârfului poate fi considerat poziția pe care sunt memorate într-un vector informațiile asociate vârfului).
- 4. În unele lucrări de specialitate, un vârf al grafului se numește *nod*.

1. Reprezentare vizuală a grafurilor

- Fiecărui vârf din graf îi corespunde un punct în plan care are asociat numărul vârfului. Pentru o mai mare lizibilitate, un vârf se reprezintă ca un cerc sau pătrat în interiorul căruia se specifică numărul vârfului
- Dacă graful este neorientat, vom reprezenta fiecare muchie ca o linie (dreaptă sau curbă), care unește cele două extremități ale muchiei.
- Dacă graful este orientat, vom reprezenta fiecare arc ca o săgeată (dreaptă sau curbă) dinspre extremitatea inițială către extremitatea finală a arcului.

Graf neorientat G = (V, E).

 $V = \{1,2,3,4,5,6\},\$

 $E = \{(1,2), (1,3,), (1,5)(2,5), (4,5)\}$

Graf neorientat

Graf orientat G = (V, E).

 $V = \{1,2,3,4,5,6\},\$

 $E = \{(1,2), (1,3), (2,5), (4,5), (5,1)(5,4)\}$

Figura 2 Graf orientat

2. Gradul unui vârf

Fie G = (V, E) un *graf neorientat*. Se numește *grad* al unui vârf x numărul de muchii incidente cu vârful respectiv. Gradul vârfului x se notează d(x).

Se numește *vârf izolat* un vârf care are grad 0.

Se numește *vârf terminal* un vârf cu gradul 1.

De exemplu, pentru graful din figura 1:

x	1	2	3	4	5	6
d(x)	3	2	1	1	3	0

Vârfuri izolate: 6

Vârfuri terminale: 3, 4

Fie G = (V, E) un graf orientat și x un vârf din graf.

Gradul exterior al vârfului x se notează $d^+(x)$ și este egal cu numărul de arce care au ca extremitate inițială pe x.

Gradul interior al vârfului x se notează $d^-(x)$ și este egal cu numărul de arce care au ca extremitate finală pe x.

De exemplu, pentru graful din figura 2:

x	1	2	3	4	5	6
$d^+(x)$	2	1	0	1	2	0
$d^-(x)$	1	1	1	1	2	0

Observații

- 1. Suma gradelor unui graf neorientat este egală cu dublul numărului de muchii din graf.
- 2. Suma gradelor interioare ale vârfurilor unui graf orientat este egală cu suma gradelor exterioare ale vârfurilor grafului și este egală cu numărul de arce din graf.

3. Lanţ, ciclu, drum, circuit

Se numește *lanț* într-un graf neorientat, o secvență de vârfuri $[x_1, x_2, ..., x_p]$, cu proprietatea că oricare două vârfuri consecutive din secvență sunt adiacente.

Un lant este *elementar* dacă el nu contine de mai multe ori acelasi vârf.

Un lant este simplu dacă el nu conține de mai multe ori aceeași muchie.

Se numește *ciclu* un lanț simplu pentru care extremitatea inițială coincide cu extremitatea finală. Ciclul se numește *elementar* dacă nu conține de mai multe ori același vârf (exceptând extremitățile sale).

Se numește *lungime a unui lanț* numărul de muchii conținute.

De exemplu, pentru graful neorientat din figura 1:

Lanţ: [3,1,2,5,1,3,1,5,4] - lungime 8.

Lant elementar: [3,1,2,5] - lungime 3, [4,5,2,1,3] - lungime 4.

Lanţ simplu: [3,1,2,5,1], [4,5,1].

Ciclu: [1,2,5,1,2,5,1]. Ciclu elementar: [1,2,5,1]. Se numește *drum* într-un graf orientat o secvență de vârfuri $(x_1, x_2, ..., x_p)$, astfel încât pentru oricare două vârfuri consecutive x_i și x_{i+1} există arcul (x_i, x_{i+1}) .

Drumul se numește *elementar* dacă nu conține de mai multe ori același vârf.

Drumul se numește simplu dacă nu conține de mai multe ori același vârf.

Se numește *circuit* un drum simplu pentru care extremitatea inițială coincide cu extremitatea finală. Circuitul se numește *elementar* dacă nu conține de mai multe ori același vârf (exceptând extremitățile sale).

Se numește *lungime a unui drum* numărul de arce conținute.

De exemplu, pentru graful orientat din figura 2:

Drum: (1,2,5,1,3) – lungime 4.

Drum elementar: (4,5,1,2) – lungime 3.

Drum simplu: (5,4,5, 1,2,5), (1,2).

Circuit: (4,5,4,5,4), (1,2,5,1). Circuit elementar: (1,2,5,1,).

Un lanţ/drum/ciclu/circuit elementar se numeşte *hamiltonian* dacă el trece prin toate vârfurile grafului.

Un lanţ/drum/ciclu/circuit elementar se numeşte *eulerian* dacă el trece prin fiecare muchie/arc a/al grafului o singură dată.

4. Grafuri asociate unui graf dat

Fie G = (V, E) un graf orientat sau neorientat.

Graful G' = (V, E') se numește *graf parțial* al lui G dacă $E' \subset E$.

Observație: Un graf parțial al lui G se obține eliminând muchii/arce din graful G.

Graf parțial obținut din graful din figura 1 prin eliminarea muchiilor [1,3], [1,5].

Graf parțial obținut din graful din figura 2 prin eliminarea arcelor (1,2), (5,4).

Graful G'' = (V'', E'') se numește *subgraf* al lui G dacă $V'' \subset V$, iar E'' este mulțimea tuturor muchiilor/arcelor din E cu proprietatea că au ambele extremități în V''.

Se spune că subgraful G'' este indus (sau generat) de mulțimea de vârfuri V''.

Observație: Un subgraf al lui G se obține eliminând vârfuri din graful G împreună cu toate muchiile/arcele incidente cu acestea.

Elemente de teoria grafurilor - Noțiuni introductive

2

6

Figura 5

Subgraf obținut din graful din figura 1 prin eliminarea vârfului 5 și a tuturor muchiilor incident cu acesta: [1,5], [2,5], [4,5].

Figura 6

Subgraf obținut din graful din figura 2 prin eliminarea vârfurilor 1, 3 și 6 și a tuturor arcelor incidente cu acestea: (1,2), (1,3), (5,1).

Graful G'' = (V''', E''') se numește *subgraf parțial* al lui G dacă $V''' \subset V$, iar E''' este inclusă în mulțimea tuturor muchiilor/arcelor din E cu proprietatea că au extremitățile în V'''.

Observație: Un subgraf parțial al lui *G* se obține eliminând vârfuri din graful *G*, toate muchiile/arcele incidente cu vârfurile eliminate, precum și alte muchii/arce din graf.

Figura 7

Subgraf parțial obținut din graful din figura 1 prin eliminarea vârfului 5 și a muchiilor [1,3], [1,5], [2,5], [4,5].

Exerciții

Subgraf parțial obținut din graful din figura 2 prin eliminarea vârfurilor 1, 3 și 6 și a arcelor (1,2), (1,3), (2,5)(5,1).

Fie G un graf orientat sau neorientat cu n vârfuri și m muchii/arce.

1. Numărul de grafuri parțiale ale lui G este 2^m .

Soluție: Numerotăm muchiile grafului de la 1 la m. Fiecărui graf parțial îi putem asocia în mod biunivoc o funcție $f: \{1,2,...,m\} \rightarrow \{0,1\}$ astfel:

 $f(i) = \begin{cases} 1, \text{ dacă muchia numerotată } i \text{ aparține grafului parțial} \\ 0, \text{ dacă muchia numerotată } i \text{ nu aparține grafului parțial} \end{cases}$

Numărul de grafuri parțiale este egal cu numărul de funcții definite, adică 2^m (considerăm că un graf este parțial al său).

2. Numărul de subgrafuri ale lui G este $2^n - 1$.

Soluție: Pentru a genera un subgraf, trebuie să selectăm mulțimea vârfurilor sale, mulțimea muchiilor/arcelor fiind unic determinată de mulțimea vârfurilor selectate. Mulțimea $\{1,2,...,n\}$ are 2^n submulțimi, dintre care trebuie să eliminăm mulțimea vidă. Deci, există 2^n-1 subgrafuri ale unui graf cu n vârfuri (considerăm că un graf este subgraf al său).

Fie G = (V, E) un graf *orientat*. Graful $G^T = (V, E^T)$ se numește **graf transpus** al grafului Gdacă $E^T = \{(y, x) | (x, y) \in E\}.$ 3 Figura 9

Graful transpus al grafului orientat din figura 2

5. Tipuri speciale de grafuri

Graf complet

Un graf orientat sau neorientat se numeste complet dacă oricare două vârfuri din graf sunt adiacente.

Observație: Graful neorientat complet cu n vârfuri se notează K_n și conține $\frac{n(n-1)}{2}$ muchii.

Pentru un număr de vârfuri fixat, graful neorientat este unic, dar grafurile orientate complete sunt mai multe.

Figura 11 Grafuri orientate complete cu 4 vârfuri

Graf antisimetric

Un graf *orientat* se numește *antisimetric* dacă pentru oricare două vârfuri din graf x și y dacă există arcul (x, y), atunci nu există arcul (y, x).

Observație: Orice relație de ordine între elementele unei mulțimi poate fi modelată cu ajutorul unui graf orientat asimetric (vârfurile grafului corespund elementelor mulțimii; dacă elementul x este în relația de ordine respectivă cu elementul y, atunci în graf va exista arcul (x, y); graful astfel definit este antisimetric, deoarece relația de ordine este antisimetrică).

Graful din figura 9 nu este antisimetric deoarece există vârfurile 4 și 5 pentru care avem arcele (4,5) și (5,4).

Graf turneu

Un graf *orientat* complet si antisimetric se numeste graf *turneu*.

Graf bipartit

Un graf neorientat G = (V, E) se numește **bipartit** dacă mulțimea vârfurilor sale poate fi partiționată în două submulțimi A și B nevide $(A \cup B = V, A \cap B = \emptyset)$ astfel încât orice muchie are o extremitate în A și una în B.

Graf bipartit complet

Un graf bipartit se numește complet dacă fiecare vârf din mulțimea A este adiacent cu fiecare vârf din mulțimea B.

Observație: Dacă numărul de vârfuri din mulțimea A este p, iar numărul de vârfuri din mulțimea B este q, graful bipartit complet se notează K_{p-q} și conține p-q muchii.

Graf regulat

Un graf *neorientat* se numește *regulat* dacă toate vârfurile sale au același grad.

