Note: "3 sfs"	means an answer which is equal to, or rounds to, the given a	ınswer. If such	an answer is seen and then later rounded, apply ISW.
1	$(0\times0.1) + 1\times0.2 + 2\times0.3 + 3\times0.4$	M1	\geq 2 non-zero terms correct eg \div 4: M0
-	= 2(.0)	Al	
	$(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4 $ (= 5)	MI	≥ 2 non-zero terms correct $\div 4$: M0
	$\left -2^{2} \right $	M1	Indep, ft their u. Dep +ve result
-	= 1	Al	macp, at them pin z op
		5	$(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4 : M2$
			$\geq 2 \text{ non-0 correct: M1} \qquad \div 4: \text{ M0}$
Total		5	2 Mon o Contest. 1411
2	UK Fr Ru Po Ca	3	
2	1 2 3 4 5 or 5 4 3 2 1	M1	attempt rank RCFUP
	4 3 1 5 2 2 3 5 1 4	Al	35214 31452
		l .	other judge 12345 54321
	Σd^2	M1	
	(= 24)		A11 5 12 10 11 1 D
	$r_s = 1 - \frac{6 \times \text{"24"}}{5 \times (5^2 - 1)}$	M1	All 5 d^2 attempted & added. Dep ranks
			att'd
	$=-\frac{1}{5}$ or -0.2	A1	43 – 15 ² /5
		5	Dep 2 nd M1 $\sqrt{((55-15^2/5)(55-15^2/5))}$
			Corr sub in ≥ 2 S's M1 All correct: M1
			All correct.
Total		5	
3i	¹⁵ C ₇ or ^{15!} / _{7!8!}	M1	
	6435	Al	
		2	
ii	${}^{6}C_{3} \times {}^{9}C_{4} \text{ or } {}^{6!}/_{3!3!} \times {}^{9!}/_{4!5!}$	M1	Alone except allow $\pm {}^{15}C_7$
			$Or^{6}P_{3} \times {}^{9}P_{4} \text{ or } {}^{6!}/_{3!} \times {}^{9!}/_{5!} Allow \div {}^{15}P_{7}$
			NB not ${}^{6!}/_{3!} \times {}^{9!}/_{4!}$
	2520	Al	362880
		2	
Total		4	
4ia	$^{1}/_{3}$ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1
b	P(BB) + P(WB) attempted	M1	$Or^{4}/_{10} \times {}^{3}/_{9} OR^{-6}/_{10} \times {}^{4}/_{9} correct$
	$= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9} \text{or } \frac{2}{15} + \frac{4}{15}$	M1	
	$= \frac{2}{5}$ oe	A1	$NB^{4}/_{10} \times {}^{4}/_{10} + {}^{6}/_{10} \times {}^{4}/_{10} = {}^{2}/_{5}$: M1M0A0
		3	
С	Denoms 9 & 8 seen or implied	B1	Or ² / ₁₅ as numerator
	$\frac{3}{9} \times \frac{2}{8} + \frac{6}{9} \times \frac{3}{8}$	M1	Or $\frac{2}{15}$ Or $\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} + \frac{4}{10} \times \frac{2}{9} \times \frac{2}{8}$
			Or $\frac{\frac{2}{1_{5}}}{\frac{4}{1_{10}}}$ or $\frac{\frac{4}{1_{10}}x^{8}f_{9}x^{3}f_{8} + \frac{4}{1_{10}}x^{3}f_{9}x^{2}f_{8}}{above + \frac{8}{1_{10}}x^{3}f_{9}x^{4}f_{8} + \frac{8}{1_{10}}x^{4}f_{9}x^{3}f_{8}}$
			10 10 10 10 10
	$= \frac{1}{3}$ oe	Al	May not see wking
	,,	3	The second string
ii	P(Blue) not constant or discs not indep,		Prob changes as discs removed
**	so no	B1 1	Limit to no. of discs. Fixed no. of discs
	SO HO	ו וען	Discs will run out
			ł control de la control de
			Context essential: "disc" or "blue"
			NOT fixed no. of trials
70			NOT because without repl Ignore extra
Total		8	

5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits 100 to 110
		2	
iia	Median = 29 to 29.9	В1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77%: SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

6ia	Correct subst in \geq two S formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8} \qquad \text{or } \frac{227}{\sqrt{698}\sqrt{162}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$	MI		All correct. Or $\frac{767-8x7.5x9}{/((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for r
	= 0.675 (3 sfs)	<u>A1</u>	3	
b	y always increases with x or ranks same	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because y still increasing with x oe	BI BI	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same.
iii	13.8 to 14.0	Bl	1	
iv	(iii) or graph or diag or my est Takes account of curve	B1 B1	2	Must be clear which est. Can be implied. "This est" probably ⇒ using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT 1 – 0.9857 = 0.0143 (see (iii))
iii	(1-0.9857) = 0.014(3) (2 sfs)	B1ft		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10 ⁻³ (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ ($a + b = 11$) or ${}^{11}C_6$ dep B1
Total		9		

8i	/0.04 (= 0.2)	M1	
01	$(1 - \text{their } /0.04)^2$	M1	
	= 0.64	A1 3	
ii		BI	
11	$\begin{vmatrix} 1-p & \text{seen} \\ 2p(1-p) = 0.42 & \text{or } p(1-p) = 0.21 & \text{oe} \end{vmatrix}$	M1	2pq = 0.42 or pq = 0.21 Allow pq = 0.42
	$2p^2 - 2p + 0.42(=0)$ or $p^2 - p + 0.21(=0)$	M1	or opp signs, correct terms any order $(=0)$
	$2\pm /((-2)^2 - 4 \times 0.42)$ or $1\pm /((-1)^2 - 4 \times 0.21)$,
	$\frac{2 \pm \sqrt{((-2)^2 - 4 \times 0.42)}}{2 \times 2} \text{ or } \frac{1 \pm \sqrt{((-1)^2 - 4 \times 0.21)}}{2 \times 1}$		oe Correct
	or $(p-0.7)(p-0.3)=0$ or $(10p-7)(10p-3)=0$	M1	Dep B1M1M1 Any corr subst'n or fact'n
	p = 0.7 or 0.3	A1 5	1
			Omit 2 in 2 nd line: max B1M1M0M0A0
			One corr ans with no or inadeq wking: SC1
			eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6
			$p^2 + 2pq + q^2 = 1$ B1
			$p^2 + q^2 = 0.58$ }
			p = 0.21/q
			$p^4 - 0.58p^2 + 0.0441 = 0 \qquad M1$
			corr subst'n or fact'n M1
			5.
			1-p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21 M1$
			$p^2 - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p-0.5)^2 - 0.25 = -0.21$ oe }
			$(p - 0.5)^2 = 0.04$ M1
			$(p-0.5) = \pm 0.02$
			p = 0.3 or 0.7 A1
Tr. 4-1	1	0	
Total	1/1/	8 M1	
Total 9ia	1	M1	
9ia	= 5	M1 A1 2	
	$=5$ $(4/5)^3 \times 1/5$	M1 A1 2 M1	
9ia b	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^3 \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 (3 \text{ sfs}) $	M1 A1 2 M1 A1 2	or $\frac{1}{2} \left(\frac{1}{2} + \frac{4}{2} \left(\times \frac{1}{2} + \left(\frac{4}{2} \right)^2 \times \frac{1}{2} + \left(\frac{4}{2} \right)^3 \times \frac{1}{2} \right) \right)$
9ia	$=5$ $(4/5)^3 \times 1/5$	M1 A1 2 M1	or 1- $(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + (\frac{4}{5})^2 \times \frac{1}{5} + (\frac{4}{5})^3 \times \frac{1}{5})$ NOT 1 - $(\frac{4}{5})^4$
9ia b	$ \begin{vmatrix} = 5 \\ (^{4}/_{5})^{3} \times ^{1}/_{5} \\ = {^{64}}/_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ (^{4}/_{5})^{4} \end{vmatrix} $	M1 A1 2 M1 A1 2 M1	or 1- $({}^{1}/_{5} + {}^{4}/_{5} \times {}^{1}/_{5} + ({}^{4}/_{5})^{2} \times {}^{1}/_{5} + ({}^{4}/_{5})^{3} \times {}^{1}/_{5})$ NOT 1 - $({}^{4}/_{5})^{4}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2	NOT 1 - $(^4/_5)^4$
9ia b	$ \begin{vmatrix} = 5 \\ (^{4}/_{5})^{3} \times ^{1}/_{5} \\ = {^{64}}/_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ (^{4}/_{5})^{4} \end{vmatrix} $	M1 A1 2 M1 A1 2 M1	NOT 1 - $({}^{4}/_{5})^{4}$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $({}^{4}/_{5})^{4}$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$ $p, p(1-p)^{2}, p(1-p)^{4}$ $q^{1-1}, q^{3-1}, q^{5-1}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $({}^{4}/_{5})^{4}$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^{2}p+q^{4}p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT $1 - {4 \choose 5}^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT $1 - {4 \choose 5}^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ "
9ia b c	$= 5$ $({}^{4}/_{5})^{3} \times {}^{1}/_{5}$ $= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)}$ $({}^{4}/_{5})^{4}$ $= {}^{256}/_{625} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT $1 - {4 \choose 5}^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
9ia b c		M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$= 5$ $({}^{4}/_{5})^{3} \times {}^{1}/_{5}$ $= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)}$ $({}^{4}/_{5})^{4}$ $= {}^{256}/_{625} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41$ $P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p$	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$ = 5 $ $ \frac{{\binom{4}{5}}^3 \times {\binom{1}{5}}}{{\binom{4}{5}}^3 \times {\binom{1}{5}}} = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{{\binom{4}{5}}^4}{{\binom{4}{5}}^4} = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$
9ia b c	$ = 5 $ $ \frac{{\binom{4}{5}}^3 \times {\binom{1}{5}}}{{\binom{4}{5}}^3 \times {\binom{1}{5}}} = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{{\binom{4}{5}}^4}{{\binom{4}{5}}^4} = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^3 \times \binom{1}{5}}{= \frac{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{\binom{4}{5}^3}{= \frac{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ S_x = \frac{p}{1-q^2} \text{ or } \frac{p}{1-(1-p)^2} $ $ P(\text{odd}) = \frac{1-q}{1-q^2} $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^3 \times \binom{1}{5}}{= \frac{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{\binom{4}{5}^3}{= \frac{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ S_x = \frac{p}{1-q^2} \text{ or } \frac{p}{1-(1-p)^2} $ $ P(\text{odd}) = \frac{1-q}{1-q^2} $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$
9ia b c	$ = 5 $ $ \frac{{\binom{4}{5}}^3 \times {\binom{1}{5}}}{{\binom{4}{5}}^3 \times {\binom{1}{5}}} = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{{\binom{4}{5}}^4}{{\binom{4}{5}}^4} = {\binom{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^2 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=5) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p $ $ P(Y=1) = q^4 p, P(Y=1) = q^4 $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$
9ia b c	$ = 5 $ $ \frac{(^{4}/_{5})^{3} \times ^{1}/_{5}}{= ^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} } $ $ \frac{(^{4}/_{5})^{4}}{= ^{256}/_{625} \text{ or } a.r.t 0.410 \text{ (3 sfs)} \text{ or } 0.41 } $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}} $ $ P(\text{odd}) = \frac{1-q}{1-q^{2}} $ $ = \frac{1-q}{(1-q)(1+q)} \text{ Must see this step for A1} $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^3 \times \binom{1}{5}}{= \frac{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $ $ \frac{\binom{4}{5}^3}{= \frac{256}{625}} \text{ or } \text{ a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^2 p, P(Y=5) = q^4 p $ $ S_x = \frac{p}{1-q^2} \text{ or } \frac{p}{1-(1-p)^2} $ $ P(\text{odd}) = \frac{1-q}{1-q^2} $	M1 A1 2 M1 A1 2 M1 A1 2 M1 A1 1	NOT $1 - (^4/_5)^4$ $P(Y=1) + P(Y=3) + P(Y=5) = p + q^2p + q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2p/p$