Week 3: Vectors

SI LEADER: Stephen Iota (siota001@ucr.edu)

Course: Physics 40A (Winter 2019), Prof. John Ellison

Date: 23 January 2019

Review: Motion in 1D with Constant Acceleration

$$v(t) = v_i + at \tag{1}$$

$$x(t) = x_i + v_i t + \frac{1}{2}at \tag{2}$$

$$v(t)^{2} = v_{i}^{2} + 2a(x(t) - x_{i})$$
(3)

$$x(t) = x_i + \frac{1}{2}(v_i + v(t))t \tag{4}$$

$$x(t) = x_i + v(t)t - \frac{1}{2}at^2$$
 (5)

Note: $x_i = x_0 = x(t = 0)$; similarly $v_f = v(t = t_f)$.

1 Optimize Throwing Distance.

I'd like to throw a ball as far as I can in the \hat{x} direction. At what angle ϕ should I "launch" the ball to maximize its distance traveled? Use v_0 as the magnitude of the ball's initial velocity.

HINT: Use eq 2 to write down the ball's motion in both the \hat{x} and \hat{y} direction. Then solve for the ball's time of flight as a function of your launch angle, i.e. $t_f(\phi)$.