Date: Mar 13 Made by Eric

Definitions and Theorems

Definition 1. Let G be a group, X be a G-set, and $x \in X$

We call $O_x = \{gx | g \in G\}$ the **orbit** containing x

Definition 2. $G_x = \{g \in G | gx = x\}$

Definition 3. $X_g = \{x \in X | gx = x\}$

Definition 4. $X_G = \{x \in X | \forall g \in G, gx = x\}$

Definition 5. Let $H, K \leq G$, $H \vee K$ is the smallest subgroup L satisfying $H \leq L$ and $K \leq L$

Definition 6. A group G is a **p-group** if $\forall g \in G, ord(g) = p^q, \exists q \in \mathbb{N}$

Lemma 1. G_x is a subgroup and $|O_x| = (G:G_x)$

Proof. We now prove G_x is a subgroup

 $\forall g, h \in G_x, (gh)x = g(hx) = gx = x \implies gh \in G_x G_x \text{ is closed under}$

 $ex = x \implies e \in G_x$ Identity

 $g \in G_x \implies gx = x \implies g^{-1}x = g^{-1}(gx) = (g^{-1}g)x = ex = x \implies g^{-1} \in G_x$ Inverses

We now prove If the two elements n, r are in the same left coset of G_x , nx = rx

$$n^{-1}r \in G_x \iff n^{-1}rx = x \iff nx = rx \text{ done}$$

Let $S=\{gG_x|g\in G\}$ be the set of left cosets of H in G. By definition, $|S|=(G:G_x)$

We now prove the equation:

$$|O_x| = |S| = (G:G_x)$$

Let $\psi: O_x \to S$ be defined by $\psi(gx) = gH$ mapping

$$\psi(nx) = \psi(rx) \implies nH = rH \implies nx = rx \text{ one-to-one}$$

$$\forall gH \in S, \psi(gx) = gH \text{ onto}$$

Corollary 1.1. Let G be a finite group, and X be a finite G-set.

$$|O_x| = \frac{|G|}{|G_x|}$$

Theorem 2. Every p-group G have a non-trivial center.

Proof.
$$|G| = |Z(G)| + \sum_{|O_x| > 1} |O_x|$$

Let $n \in \mathbb{N}$, satisfy $p^n = |G|$

Because $\forall g \in G, ge = eg$, we know $e \in Z(G)$

Assume Z(G) is trivial

$$|Z(G)| = 1 \implies \sum_{|O_x| > 1} |O_x| = |G| - 1 = p^n - 1$$

$$\forall x : |O_x| > 1, |O_x| = \frac{|G|}{|G_x|} = p^k$$
, where $k > 0$

Express $\sum_{|O_x|>1} |O_x|$ by polynomial $c_{n-1}p^{n-1}+c_{n-2}p^{n-2}+\cdots+c_1p^1$

We see
$$p \not | p^n - 1$$
, yet $p | \sum_{|O_x| > 1} |O_x| = |G| - 1 = p^n - 1$ CaC

Theorem 3. (Second Isomorphism Theorem) Let $N \subseteq G$, and $H \subseteq G$. $HN/N \simeq H/(H \cap N)$

Lemma 4. Let
$$H \subseteq G$$
 and $K \subseteq G$. Let $H \cap K = \{e\}$ and $H \vee K = G$
$$G \simeq H \times K$$

Proof. We now prove $H \vee K = HK$

$$\forall hk \in HK, h \in H \text{ and } k \in K \implies hk \in H \vee K \implies HK \subseteq H \vee K$$

We now prove HK is a subgroup

Because $H \subseteq G$, so $\forall h_1 k_1, h_2 k_2 \in HK$, $\exists h_3 \in H, (h_1 k_1)(h_2 k_2) = h_1(h_3 k_1(k_2 \in HK))$

$$e=ee\in HK$$

$$\forall hk \in HK, (hk)[(k^{-1}h^{-1}k^{-1})k] = e \text{ (done)}$$

$$\forall h \in H, h = he \in HK$$
, and $\forall k \in K, k = ek \in HK \implies H, K \in HK$

Because $H \vee K$ is the samllest subgroup of G containing H, K, so $H \vee K \subseteq HK$ (done)

By **Second Isomorphism Theorem**, we have $HK/K \simeq H/(H\cap K)$ and $HK/H \simeq K \simeq H/(H\cap K)$

Substituting $H \cap K = \{e\}$ and $HK = H \vee K = G$

We have $G/K\simeq H/\{e\}\simeq H$ and $G/H\simeq K/\{e\}\simeq K,$ which give us $H\times K\simeq G/K\times G/H$

Now we prove $G \simeq G/K \times G/H \simeq H \times K$

Let $\phi: G \to G/K \times G/H$ be defined by $\phi(g) = (gK, gH)$

$$\forall g_1, g_2 \in G, \phi(g_1)\phi(g_2) = (g_1K, g_1H)(g_2K, g_2H) = (g_1g_2K, g_1g_2H) = \phi(g_1g_2)$$

$$\phi(g_1) = \phi(g_2) \implies (g_1K, g_1H) = (g_2K, g_2H) \implies g_2^{-1}g_1K = K \text{ and } g_2^{-1}g_1H = H \implies g_2^{-1}g_1 \in K \cap H = \{e\} \implies g_2^{-1}g_1 = e \implies g_1 = g_2$$

$$HK = G \Longrightarrow \forall g \in G, \exists h \in H, \exists k \in K, hk = g \Longrightarrow \forall g \in G, \exists k \in K, \exists h \in H, gh = k$$

Let $g_1, g_2 \in G$, and $g = g_2g_1^{-1}$. We pick $h \in H, k \in K$, such that gh = k

$$g_1(g_1^{-1}h) \in H$$

$$g_2(g_1^{-1}h) = gh = k \in K$$

So
$$\forall g_1, g_2 \in G, \exists g_3 \in G, g_1g_3 \in H, g_2g_3 \in K$$

Then
$$\forall g_1,g_2\in G,\exists g_3\in G,g_1^{-1}g_3\in H\implies g_1H=g_3H \text{ and }g_2^{-1}g_3\in K\implies g_3K=g_2K$$

So
$$\forall g_2 K \in G/K, \forall g_1 H \in G/H, \exists g_3 \in G, \phi(g_3) = (g_3 K, g_3 H) = (g_2 K, g_1 H)$$
 (done)

Theorem 5. Let p be a prime

If a group G is of the order p^2 , then G is abelian.

Proof. We split into two cases.

case 1:
$$\exists a \in G, \langle a \rangle = G$$

$$G = \langle a \rangle \implies G$$
 is cyclic $\implies G$ is abelian.

case 2:
$$\forall a \in G, \langle a \rangle \subset G$$

Arbitrarily pick non-trivial $a \in G$, and let $b \in G \setminus \langle a \rangle$

Assume $a \in \langle b \rangle$

So,
$$\langle b \rangle = \langle a, b \rangle \subset G \implies |\langle b \rangle| = p$$

Because $\forall a \in G, \langle a \rangle \subset G, |\langle a \rangle| = p = |\langle b \rangle|$, which give us $\langle a \rangle = \langle b \rangle$, since $a \in \langle b \rangle \implies \langle a \rangle \subseteq \langle b \rangle$

This CaC since we let $b \in G \setminus \langle a \rangle$, so $a \notin \langle b \rangle$

Let
$$S = \{a^n b^r | 1 \le n \le p, 1 \le r \le p\}$$

We prove $\forall a^n b^r, a^{n'} b^{r'} \in S, a^n b^r = a^{n'} b^{r'} \implies n = n' \text{ and } r = r'$

If
$$r = r'$$
, then $a^n b^r = a^{n'} b^{r'} \implies a^n b^r = a^{n'} b^r \implies a^n = a^{n'} \implies n = n'$

Assume $r \neq r'$

Pick
$$q \in \mathbb{N} : q(r'-r) \equiv_p 1$$

$$\forall a^n b^r, a^{n'} b^{r'} \in S, a^n b^r = a^{n'} b^{r'} \implies a^{n-n'} = b^{r'-r}$$

We see
$$a^{(n-n')q} = (b^{r'-r})^q = b^{q(r'-r)} = b$$

This give us $b \in \langle a \rangle$ CaC to $b \in G \setminus \langle a \rangle$ (done)

BLUE enable us to count $|S| = p^2 = |G|$, where $S \subseteq G$. So S = G

$$G = S \subseteq \langle a, b \rangle \subseteq G \implies \langle a, b \rangle = G$$

By Theorem of Lagrange, $|\langle a \rangle|=1$ or p or p^2 , and also by Theorem of Lagrange, $|\langle b \rangle|=1$ or p or p^2

$$|\langle a \rangle| = 1 \implies \langle a \rangle = \{e\} \implies a = e \implies a \in \langle b \rangle \text{ CaC, so } |\langle a \rangle| \neq 1$$

$$|\langle a \rangle| = p^2 = |G| \implies \langle a \rangle = G \text{ CaC, so } |\langle a \rangle| = p$$

Then by First Sylow Theorem, we know $\exists H \leq G, \langle a \rangle \leq H$ and $|H| = p^2$

$$|H|=p^2$$
 and $H\leq G\implies H=G$, so $\langle a\rangle \leq G$

$$|\langle b \rangle| = 1 \implies \langle b \rangle = \{e\} \implies b = e \implies b \in \langle a \rangle \text{ CaC, so } |\langle b \rangle| \neq 1$$

$$|\langle b \rangle| = p^2 = |G| \implies \langle b \rangle = G \text{ CaC, so } |\langle b \rangle| = p$$

Then by First Sylow Theorem, we know $\exists H \leq G, \langle b \rangle \leq H$ and $|H| = p^2$

$$|H| = p^2$$
 and $H \le G \implies H = G$, so $\langle b \rangle \le G$

Assume $\langle a \rangle \cap \langle b \rangle \neq \{e\}$, so $\exists 1 \leq n, r < p, a^n = b^r$

Pick $q \in \mathbb{N} : qr \equiv_p 1$

$$a^n = (b^r)^q = b^q r = b \implies b \in \langle a \rangle \text{ CaC}$$

Notice, in summary $\langle a \rangle \cap \langle b \rangle = \{e\}$, $G = S = \langle a \rangle \langle b \rangle$, $\langle a \rangle \subseteq G$, and $\langle b \rangle \subseteq G$

By Lemma 4, $G = \langle a \rangle \times \langle b \rangle = \mathbb{Z}_p \times \mathbb{Z}_p$, is abelian.

Theorem 6. Let p and q be distinct primes with p < q, and G be a group with |G| = pq

$$\exists H \leq G, |H| = q \text{ and } H \leq G. \text{ Also } q \not\equiv_p 1 \implies G \text{ is cyclic}$$

Proof. Let k denote the number of Sylow q-subgroup of G

By Third Sylow Theorem, $k \equiv_q 1$ and k|pq = |G|

$$k|pq \implies k = 1 \text{ or } p \text{ or } q \text{ or } pq$$

$$k \equiv_q 1 \implies k = 1$$

Let H denote the only Sylow q-subgroup.

By Second Sylow Theorem, $\forall g \in G, gHg^{-1} = H \implies H \trianglelefteq G$ Let r denote the number of Sylow p-subgroup of G

By Third Sylow Theorem, $r \equiv_p 1$ and r|pq = |G|

$$r|pq \implies r = 1 \text{ or } p \text{ or } q \text{ or } pq$$

$$r \equiv_p 1 \implies r = 1 \text{ or } q$$

If
$$q \not\equiv_p 1$$
, then $r \equiv_p 1$

Let H' denote the only Sylow p-subgroup.

By Second Sylow Theorem, $\forall g \in G, gH'g^{-1} \implies H' \leq G$

Let
$$H = \langle a \rangle$$
 and $H' = \langle b \rangle$

Assume $H \cap H' \neq \{e\}$, so $\exists e \neq g \in G, g \in H \cap H'$

$$g \in H \cap H' \implies n, r \in \mathbb{N} : g = a^n = b^r$$

Pick
$$x \in \mathbb{N} : xr \equiv_p 1$$

 $a^{xn}=(a^n)^x=g^x=b^{rx}=b\implies b\in\langle a\rangle\implies\langle b\rangle\leq\langle a\rangle$, where $|\langle a\rangle|=q$ and $|\langle b\rangle|$ CaC to Theorem of Lagrange.

Let
$$S = \{a^r b^n | 1 \le r \le q, 1 \le n \le p\}$$

We now prove $\forall a^nb^r, a^{n'}b^{r'} \in S, a^nb^r = a^{n'}b^{r'} \implies n = n' \text{ and } r = r'$

Assume $r \neq r'$

$$a^{n-n'} = b^{r'-r}$$

Pick $x \in \mathbb{N} : x(r'-r) \equiv_p 1$

$$a^{x(n-n')} = (b^{r'-r})^x = b^{x(r'-r)} = b \implies b \in \langle a \rangle$$
 CaC

$$r = r' \implies a^n = a^{n'} \implies n = n'$$

BLUE enable us to count |S| = pq = |G|

$$S \subseteq G \implies G = S$$

To sum up, $\langle a \rangle \trianglelefteq G$, $\langle b \rangle \trianglelefteq G$, $\langle a \rangle \cap \langle b \rangle = \{e\}$ and $G = \langle a \rangle \langle b \rangle$

By Lemma 4, this give us $G=\langle a \rangle imes \langle b \rangle = \mathbb{Z}_q imes \mathbb{Z}_p = \mathbb{Z}_{pq}$

Theorem 7. Let H and K be two finite subgroup of a group G

$$|HK| = \frac{(|H|)(|K|)}{|H \cap K|}$$

Proof. Let $t = |H \cap K|$

In $H \times K$, we let $(h, k) \sim (h', k')$ if hk = h'k'

We now prove \sim is an equivalence relation

Clearly, $\forall (h, k) \in H \times K, (h, k) \sim (h, k)$

$$(h,k) \sim (h',k') \implies hk = h'k' \implies (h',k') \sim (h,k)$$

$$(h,k)\sim (h',k')$$
 and $(h',k')\sim (h'',k'')\Longrightarrow hk=h'k'$ and $h'k'=h''k''\Longrightarrow hk=h''k''\Longrightarrow (h,k)\sim (h'',k'')$ (done)

Let $\psi: HK \to H \times K/\sim$, defined by $\psi(hk) = [(h,k)]$

 ψ is well defined since $hk = h'k' \implies (h,k) \sim (h',k')$

 ψ is one-to-one, since $\psi(hk)=\psi(h'k')\implies (h,k)\sim (h',k')\implies hk=h'k'$ ψ is clearly onto.

So $\psi: HK \to H \times K/\sim$ is one-to-one and onto.

We now prove $\forall h_1k_1 \in HK, \exists !\{h_1,\ldots,h_t\}, \{k_1,\ldots,k_t\}, |\{h_1,\ldots,h_t\}| = t = |\{k_1,\ldots,k_t\}| \text{ and } h_1k_1 = h_2k_2 = \cdots = h_tk_t, \text{ which tell us in each equivalent classes of } H \times K, \text{ there is exactly } t \text{ number amount of elements.}$

Let
$$\{e = a_1, \dots, a_t\} = H \cap K$$

For each $1 \leq i \leq t$, we pick $h_i = h_1 a_i$ and $k_i = a_i^{-1} k_1$

Assume there exists $h_{t+1}k_{t+1} = h_1k_1$

$$h_1^{-1}h_{t+1} = k_1k_{t+1}^{-1} \in H \cap K \implies \exists a_i \in H \cap K, h_{t+1} = h_1a_i \text{ and } k_{t+1} = a_i^{-1}k_1 \implies h_{t+1} = h_i \text{ and } k_{t+1} = k_i \text{ CaC (done)}$$

Then
$$|HK| = |H \times K/ \sim | = \frac{|H||K|}{t} = \frac{|H||K|}{|H \cap K|}$$

Theorem 8. No group of order 30 is simple

Proof. Let G be a group of order 30

By Sylow First Theorem, we know there exists at least a Sylow 3-subgroup and a Sylow 5-subgroup of ${\cal G}$

Let S_3 be the set of all Sylow 3-subgroup, and S_5 be the set of all Sylow 5-subgroup

By Sylow Third Theorem, we know $|S_3| \equiv_3 1$ and $|S_3|$ divides 30, which give us $|S_3| = 1$ or 10

By Sylow Third Theorem, we know $|S_5| \equiv_5 1$ and $|S_5|$ divides 30, which give us $|S_5| = 1$ or 6

Assume $|S_3| = 10$ and $|S_5| = 6$

We now prove $\forall H, K \in S_3, H \neq K \implies H \cap K = \{e\}$

Write $H = \langle a \rangle$, and $K = \langle b \rangle$

Assume $\exists i \neq 0, b^i \in \langle a \rangle$

Notice $\forall i \neq 0, \langle b \rangle = \langle b^i \rangle$, since $|\langle b \rangle| = 3$, which is a prime

For each
$$i \neq 0$$
, $b^i \in \langle a \rangle \Longrightarrow \langle b^i \rangle \in \langle a \rangle \Longrightarrow \langle b \rangle \in \langle a \rangle$, where $|\langle b \rangle| = 3 = |\langle a \rangle|$, so $H = \langle b \rangle = \langle a \rangle = K$ CaC

So
$$\forall i \neq 0, b^i \notin \langle a \rangle = H$$

Every element in $H \cap K$ is in K, so we can express each element in $H \cap K$ in the form of $b^i, \exists i \in \mathbb{Z}$

This give us $b^i \in K \cap H \implies i = 0 \implies b^i = e$ (done)

So we see $\bigcup S_3$ contains 2 * 10 distinct elements of G of order 3

We now prove $\forall H, K \in S_5, H \neq K \implies H \cap K$

Write $H = \langle a \rangle$, and $K = \langle b \rangle$

Assume $\exists i \neq 0, b^i \in \langle a \rangle$

Notice $\forall i \neq 0, \langle b \rangle = \langle b^i \rangle$, since $|\langle b \rangle| = 5$, which is a prime

For each $i \neq 0$, $b^i \in \langle a \rangle \Longrightarrow \langle b^i \rangle \in \langle a \rangle \Longrightarrow \langle b \rangle \in \langle a \rangle$, where $|\langle b \rangle| = 5 = |\langle a \rangle|$, so $H = \langle b \rangle = \langle a \rangle = K$ CaC

So $\forall i \neq 0, b^i \notin \langle a \rangle = H$

Every element in $H \cap K$ is in K, so we can express each element in $H \cap K$ in the form of $b^i, \exists i \in \mathbb{Z}$

This give us $b^i \in K \cap H \implies i = 0 \implies b^i = e$ (done)

So we see $\bigcup S_5$ contains 4 * 6 distinct elements of G of order 5

The 20 distinct elements of order 3 in $\bigcup S_3$ and the 24 distinct element of order 5 in $\bigcup S_5$ are all distinct, because an element can not be both order 3 and 5

So there exists at least 44 distinct elements of order 3 or 5, in a group of order 30 CaC

So $|S_3| = 1$ or $|S_5| = 1$

 $|S_3|=1$ or $|S_5|$ indicate there exists only one Sylow 3-subgroup, or there exists only one Sylow 5-subgroup

By Second Sylow Theorem, we know if there exists only one Sylow p-subgroup H of G, then $\forall q \in G, qHq^{-1} = H$, which give us $H \subseteq G$

Theorem 9. No group of order 48 is simple

Proof. Let G be a group of order 48

Assume G is simple, that is, G have no normal subgroups

By First Sylow Theorem, we know there exists a Sylow 2-subgroup of ${\cal G}$ of order 16

Let S_{16} be the set of all Sylow 2-subgroup

By Third Sylow Theorem, we know $|S_{16}| \equiv_2 1$ and $|S_{16}|$ divides 48

So
$$|S_{16}| = 1$$
 or 3

Assume $|S_{16}| = 1$

Let $S_{16} = \{H\}$

$$\forall g \in G, gHg^{-1} \in S_{16} \implies \forall g \in G, gHg^{-1} = H \implies H \unlhd G \overset{\textstyle \mathsf{CaC}}{}$$

So $|S_{16}| = 3$

Write $S = \{H, K, L\}$

We now prove $H \cap K \leq G$

$$H \cap K \leq H \implies |H \cap K| = 1, 2, 4, 8, 16$$

Assume $|H \cap K| = 1$ or 2 or 4

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{16^2}{1,2,4} > 48 = |G|$$
 CaC

Assume $|H \cap K| = 16$

$$|H| = |K| = |H \cap K| = 16 \implies H = K \operatorname{CaC}$$

So $|H \cap K| = 8$

This give us $(H: H \cap K) = 2 = (K: H \cap K)$

So $H \cap K \leq H$ and $H \cap K \leq K$

So $H \leq N[H \cap K]$

This give us $|N[H \cap K]| = 16$ or 48

Assume $|N[H \cap K]| = 16$

Then $H \leq N[H \cap K] \implies N[H \cap K] = H$ CaC to $H \cap K \leq K$, since we can pick an element in K, that is not in H, but is in $N[H \cap K]$

So
$$|N[H \cap K]| = 48 = |G|$$
, which give us $N[H \cap K] = G$ (done)

Theorem 10. No group of order 36 is simple

Proof. Let G be a group of order 36

Assume *G* is simple

By Sylow First Theorem, we know there exists some 3-subgroup of order 9

Let S_9 be the set of all Sylow 3-subgroup

By Sylow Third Theorem, we know $|S_9| \equiv_3 1$ and $|S_9|$ divides 36

So
$$|S_9| = 1$$
 or 4

Assume $|S_9| = 1$

The only element, here we denote H_0 , of S_9 is a normal subgroup of G, since by Sylow Second Theorem, $\forall g \in G, gH_0g^{-1} \in S_9 \implies gH_0g^{-1} = H_0$ CaC

So
$$|S_9| = 4$$

Write
$$\{S_9\} = \{H, K, L, M\}$$

We now prove $|H \cap K| = 3$

Because $H \cap K \leq H$, where |H| = 9, $|H \cap K| = 1$ or 3 or 9

Assume $|H \cap K| = 1$

$$|HK| = \frac{|H||K|}{|H \cap K|} = 81 > 36 = |G|$$
 CaC

Assume $|H \cap K| = 9$

$$|H \cap K| = 9 = |H| \implies H \cap K = H \implies H \subseteq K$$
 CaC (done)

We now prove $|N[H\cap K]|=9$ or 18 or 36

$$|H \cap K| = 3 \implies H \cap K$$
 is a 3-group

So we have $(N[H \cap K] : H \cap K) \equiv_3 (G : H \cap K) = 12 \equiv_3 0$

Then
$$3\left|\frac{|N[H\cap K]|}{|H\cap K|}\right|$$

So 9 divides $|N[H \cap K]|$

This give us $|N[H \cap K]| = 9$ or 18 or 36 (done)

We now prove $|N[H \cap K]| = 18$ or 36

Assume $|N[H \cap K]| = 9$

Notice $|H|=|K|=9=3^2$, by Theorem 5, indicate that H and K are all abelian groups, so $H\cap K \unlhd H$ and K

Then,
$$H \cup K \subseteq N[H \cap K]$$
, so $N[H \cap K] \ge 9 + 9 - 3 = 15 > 9$ CaC (done)

If
$$|N[H \cap K]| = 18$$
, $(G : N[H \cap K]) = 2$, which give us $N[H \cap K] \leq G$

If
$$|N[H \cap K]| = 36 = |G|$$
, then $N[H \cap K] = G$, which give us $H \cap K \leq G$

Theorem 11. If a group G is of order (3)(5)(17), then $G \simeq \mathbb{Z}_{(3)(5)(17)}$

Proof. We now prove there exists a subgroup H of G of order 17, such that G/H is abelian and cyclic

By First Sylow Theorem, we know there exists some 17-subgroup of G of order 17

Let S_{17} be the set of all Sylow 17-subgroup of G

By Third Sylow Theorem, we know $|S_{17}| \equiv_{17} 1$ and $|S_{17}|$ divides (3)(5)(17)

This give us $|S_{17}| = 1$

We write $S_{17} = \{H\}$

So $H \leq G$, and we see |G/H| = (3)(5), where $5 \not\equiv_3 1$

By Theorem 6, G/H is abelian and cyclic (done)

Let C be the commutator subgroup of G

We now prove G/N is abelian $\iff C \leq N$

 $\forall aN, bN \in G/N, aNbN = bNaN \iff abN = baN \iff a^{-1}b^{-1}abN = N \iff a^{-1}b^{-1}ab \in N \text{ (done)}$

So we know $C \leq H$, where |H| = 17

This give us |C| = 1 or 17

We now prove |C| = 1

By First Sylow Theorem, we know there exists some 3-subgroup of G of order 3

Let S_3 be the set of all Sylow 3-subgroup of G

By Third Sylow Theorem, we know $|S_3| \equiv_3 1$ and $|S_5|$ divides (3)(5)(17)

This give us $|S_3| = 1$

We write $S_3 = \{H_1\}$

So $H_1 \subseteq G$, and we see $|G/H_1| = (5)(17)$, where $17 \not\equiv_5 1$

By Theorem 6, G/H_1 is abelian and cyclic

So $C \leq H_1$, where $|H_1| = 3$, which give us |C| = 3 or 1 (done)

So $C = \{e\}$, which give us $G \simeq G/C$ is abelian , since $C \leq C$

Exercises

4.

Prove that every group G of order (5)(7)(47) is abelian and cyclic

Proof. We first prove There exist a 5-subgroup H of G, of order 5 and a 7-subgroup K of G, of order 7, where $H \subseteq G$, and $K \subseteq G$

By First Sylow Theorem, there exists some 5-subgroups of order 5

Let S_5 be the set of all Sylow 5-subgroup of G

By Third Sylow Theorem, $|S_5| \equiv_5 1$ and $|S_5|$ divides (5)(7)(47)

$$7 \equiv_5 2 \equiv_5 47 \text{ so } |S_5| = 1$$

Write $S_5 = \{H\}$

By Second Sylow Theorem, $\forall g \in G, gHg^{-1} \in S_5$, so $\forall g \in G, gHg^{-1} = H$, which give us $H \subseteq G$

By First Sylow Theorem, there exists some 7-subgroups of order 7

Let S_7 be the set of all Sylow 7-subgroup of G

By Third Sylow Theorem, $|S_7| \equiv_5 7$ and $|S_7|$ divides (5)(7)(47)

$$5 \not\equiv_7 1$$
 and $47 \equiv_7 5 \not\equiv_7 1$ and $(5)(47) \equiv_7 4 \not\equiv_7 1$ so $|S_7| = 1$

Write $S_7 = \{K\}$

By Second Sylow Theorem, $\forall g \in G, gKg^{-1} \in S_5$, so $\forall g \in G, gKg^{-1} = K$, which give us $K \subseteq G$ (done)

Let C be the commutator subgroup of G

We prove $C \leq H$ and $C \leq K$

|G/H| = (7)(47), where $47 \not\equiv_7 1$, give us G/H is abelian

So $C \leq H$

|G/K| = (5)(47), where $47 \not\equiv_5 1$, give us G/K is abelian

So $C \leq K$ (done)

Because |H| = 5 is co-prime to |K| = 7

So |C| can only be 1, which give us $C=\{e\}$

Then $G \simeq G/C$ is abelian

So
$$G \simeq \mathbb{Z}_5 \times \mathbb{Z}_7 \times \mathbb{Z}_{47} \simeq \mathbb{Z}_{(5)(7)(47)}$$

5.

Prove that no group of order 96 is simple

Proof. Let G be a group of order 96

Assume G is simple

$$96 = (32)(3)$$

By First Sylow Theorem, there exists some Sylow 2-subgroup of order $32\,$

Let S_2 be the set of all Sylow 2-subgroup

By Third Sylow Theorem, $|S_2| \equiv_2 1$ and $|S_2|$ divides 96

So
$$|S_2| = 1$$
 or 3

Assume $|S_2| = 1$

Write
$$S_2 = \{H\}$$

By Second Sylow Theorem, $\forall g \in G, gHg^{-1} \in S_2$, so $\forall g \in G, gHg^{-1} = H$ CaC

So
$$|S_2| = 3$$

Write
$$S_2 = \{H, K, L\}$$

$$H \cap K \leq H \implies |H \cap K| = 1 \text{ or } 2 \text{ or } 4 \text{ or } 8 \text{ or } 16 \text{ or } 32$$

Assume $|H \cap K| \le 8$

$$|HK| = \frac{|H||K|}{|H \cap K|} \ge (32)(4) > 96 = |G|$$
CaC

Assume $|H \cap K| = 32$

 $H \cap K \leq H$, where $|H \cap K| = 32 = |H|$, give us $H \cap K = H$

So $H \subseteq K$ CaC

$$|H\cap K|=16 \implies (H:H\cap K)=2=(K:H\cap K) \implies H\cap K \trianglelefteq H$$
 and $H\cap K \trianglelefteq K$

So $H \cup K \subseteq N[H \cap K]$, and $H \leq N[H \cap K]$

$$H \leq N[H \cap K] \implies |N[H \cap K]|$$
 is divided by $|H|$

So
$$|N[H \cap K]| = 32$$
 or 96

Assume $|N[H \cap K]| = 32$

$$H \leq N[H \cap K]$$
, where $|H| = 32 = |N[H \cap K]|$, give us $N[H \cap K] = H$

Then $K \subseteq N[H \cap K] = H$, given by $H \cap K \subseteq K$ CaC

Then
$$|N[H \cap K]| = 96 = |G|$$

So $N[H \cap K] = G$, which give us $H \cap K \subseteq G$ CaC

6.

Prove that no group of order 160 is simple

Proof. Let G be a group of order 160

Assume *G* is simple

We now prove there is 32 distinct Sylow 5-subgroup

$$160 = (32)(5)$$

By First Sylow Theorem, there exists some Sylow 5-subgroup of order $5\,$

Let S_5 be the set of all Sylow 5-subgroup

By Third Sylow Theorem, $|S_5| \equiv_5 1$ and $|S_5|$ divides |G| = 160

This give us $|S_5| = 1$ or 32

Assume $|S_5| = 1$

Write $S_5 = \{H_0\}$

By Second Sylow Theorem, $\forall g \in G, gH_0g^{-1} \in S_5$

So $\forall g \in G, gH_0g^{-1} = H_0$ CaC (done)

We now prove there exists 5 distinct Sylow 2-subgroup of order 32

By First Sylow Theorem, there exists some Sylow 2-subgroup of order 32

Let S_2 be the set of all Sylow 2-subgroup

By Third Sylow Theorem, we know $|S_2| \equiv_2 1$ and $|S_2|$ divides 160 = |G|

So $|S_2| = 1$ or 5

Assume $|S_2| = 1$

Write $S_2 = \{H_1\}$

By Third Sylow Theorem, we know $\forall g \in G, gH_1g^{-1} \in S_2$

So $\forall g \in G, gH_1g^{-1} = H_1 \text{ CaC (done)}$

Notice there are 32 distinct Sylow 5-subgroup of order 5

This tell us that there are 4*32 distinct element of order 5

which lead us to that there are only 32=160-32*4 elements can consist only one distinct Sylow 2-subgroup of order 32 CaC