Learning Objectives

In this chapter, you learn:

- The basic principles of hypothesis testing
- How to use hypothesis testing to test a mean
- The assumptions of each hypothesis-testing procedure, how to evaluate them, and the consequences if they are seriously violated

What is a Hypothesis?

 A hypothesis is a claim (assertion) about a population parameter:

population mean

Example: The mean monthly cell phone bill in this city is $\mu = 42

The Null Hypothesis, H₀

DCOVA

States the claim or assertion to be tested

Example: The mean diameter of a

manufactured bolt is 30mm ($H_0: \mu = 30$)

 Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 30$$

The Null Hypothesis, H₀

DCOVA (continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo or historical value
- Always contains "=", or "≤", or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average diameter of a manufactured bolt is not equal to 30mm (H₁: µ ≠ 30)
- Challenges the status quo
- Never contains the "=", or "≤", or "≥" sign
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

The Hypothesis Testing Process

DCOVA

- Claim: The population mean age is 50.
 - H_0 : $\mu = 50$, H_1 : $\mu \neq 50$
- Sample the population and find sample mean.

The Hypothesis Testing Process

DCOV<u>A</u> (continued)

- Suppose the sample mean age was $\overline{X} = 20$.
- This is significantly lower than the claimed mean population age of 50.
- If the null hypothesis were true, the probability of getting such a different sample mean would be very small, so you reject the null hypothesis.
- In other words, getting a sample mean of 20 is so unlikely if the population mean was 50, you conclude that the population mean must not be 50.

The Test Statistic and Critical Values

Sampling Distribution of the test statistic

Possible Errors in Hypothesis Test Decision Making | DCOVA (continued)

Possible Hypothesis Test Outcomes			
	Actual Situation		
Decision	H ₀ True	H ₀ False	
Do Not	No Error	Type II Error	
Reject H ₀	Probability 1 - α	Probability β	
Reject H ₀	Type I Error Probability α	No Error Power 1 - β	

Possible Errors in Hypothesis Test Decision Making DCOVA (continued)

- The confidence coefficient (1-α) is the probability of not rejecting H₀ when it is true.
- The confidence level of a hypothesis test is (1-α)*100%.
- The power of a statistical test (1-β) is the probability of rejecting H₀ when it is false.

Type I & II Error Relationship

- Type I and Type II errors cannot happen at the same time
 - A Type I error can only occur if H₀ is true
 - A Type II error can only occur if H₀ is false

If Type I error probability (α) \uparrow , then Type II error probability (β)

Level of Significance and the Rejection Region

This is a two-tail test because there is a rejection region in both tails

Hypothesis Tests for the Mean

Z Test of Hypothesis for the Mean (σ Known)

DCOVA

• Convert sample statistic (\overline{X}) to a Z_{STAT} test statistic

Hypothesis Tests for μ

σ Known (Z test)

The test statistic is:

$$Z_{STAT} = \frac{\overline{X} - \mu}{\sigma}$$

$$\sqrt{n}$$

σ Unknown (t test)

Critical Value Approach to Testing

- For a two-tail test for the mean, σ known:
- Convert sample statistic (X) to test statistic
 (Z_{STAT})
- Determine the critical Z values for a specified level of significance α from a table or computer
- Decision Rule: If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Two-Tail Tests

 There are two cutoff values (critical values), defining the regions of rejection

Test the claim that the true mean diameter of a manufactured bolt is 30mm.

(Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 30$ H_1 : $\mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

3. Determine the appropriate technique

(continued)

- 4. Determine the critical values
 - For α = 0.05 the critical Z values are ±1.96

σ is assumed known so this is a Z test.

- 5. Collect the data and compute the test statistic
 - Suppose the sample results are
 n = 100, X = 29.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$Z_{STAT} = \frac{\overline{X} - \mu}{\sqrt{100}} = \frac{29.84 - 30}{0.08} = -2.0$$

DCOV/(continued)

6. Is the test statistic in the rejection region?

Reject H_0 if $Z_{STAT} < -1.96$ or $Z_{STAT} > 1.96$; otherwise do not reject H_0

DCOVA

(continued)

6 (continued). Reach a decision and interpret the result

Since $Z_{STAT} = -2.0 < -1.96$, reject the null hypothesis and conclude there is sufficient evidence that the mean diameter of a manufactured bolt is not equal to 30

p-Value Approach to Testing

 p-value: Probability of obtaining a test statistic equal to or more extreme than the observed sample value given H₀ is true

- The p-value is also called the observed level of significance
- It is the smallest value of α for which H_0 can be rejected

p-Value Approach to Testing: Interpreting the p-value

- Compare the p-value with α
 - If p-value $< \alpha$, reject H_0
 - If p-value $\geq \alpha$, do not reject H_0

- Remember
 - If the p-value is low then H₀ must go

The 5 Step p-value approach to Hypothesis Testing DCOVA

- State the null hypothesis, H₀ and the alternative hypothesis, H₁
- 2. Choose the level of significance, α , and the sample size, n
- Determine the appropriate test statistic and sampling distribution
- Collect data and compute the value of the test statistic and the p-value
- 5. Make the statistical decision and state the managerial conclusion. If the p-value is < α then reject H₀, otherwise do not reject H₀. State the managerial conclusion in the context of the problem

p-value Hypothesis Testing Example

Test the claim that the true mean diameter of a manufactured bolt is 30mm. (Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 30$ H_1 : $\mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

p-value Hypothesis Testing Example

- 3. Determine the appropriate technique
 - σ is assumed known so this is a Z test.
- 4. Collect the data, compute the test statistic and the p-value
 - Suppose the sample results are n = 100, X = 29.84 ($\sigma = 0.8$ is assumed known)

So the test statistic is:

$$Z_{STAT} = \frac{\overline{X} - \mu}{\overline{X}} = \frac{29.84 - 30}{\sqrt{0.8}} = \frac{-0.16}{0.08} = -2.0$$

p-Value Hypothesis Testing Example: Calculating the p-value

DCOVA

- 4. (continued) Calculate the p-value.
 - How likely is it to get a Z_{STAT} of -2 (or something further from the mean (0), in either direction) if H₀ is true?

p-value Hypothesis Testing Example

- 5. Is the p-value < α?
 - Since p-value = $0.0456 < \alpha = 0.05$ Reject H₀
- 5. (continued) State the managerial conclusion in the context of the situation.
 - There is sufficient evidence to conclude the average diameter of a manufactured bolt is not equal to 30mm.

Connection Between Two Tail Tests and Confidence Intervals

• For X = 29.84, $\sigma = 0.8$ and n = 100, the 95% confidence interval is:

$$29.84 - (1.96) \frac{0.8}{\sqrt{100}} \text{ to } 29.84 + (1.96) \frac{0.8}{\sqrt{100}}$$

$$29.6832 \le \mu \le 29.9968$$

• Since this interval does not contain the hypothesized mean (30), we reject the null hypothesis at α = 0.05

Do You Ever Truly Know σ?

- Probably not!
- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ.)
- If you truly know µ there would be no need to gather a sample to estimate it.

Hypothesis Testing: σ Unknown

- If the population standard deviation is unknown, you instead use the sample standard deviation S.
- Because of this change, you use the t distribution instead of the Z distribution to test the null hypothesis about the mean.
- When using the t distribution you must assume the population you are sampling from follows a normal distribution.
- All other steps, concepts, and conclusions are the same.

t Test of Hypothesis for the Mean (σ Unknown)

Convert sample statistic (X) to a t_{STAT} test statistic

Example: Two-Tail Test (or Unknown)

DCOVA

The average cost of a hotel room in New York is said to be \$168 per night. To determine if this is true, a random sample of 25 hotels is taken and resulted in an \times of \$172.50 and an S of \$15.40. Test the appropriate hypotheses at $\alpha = 0.05$.

(Assume the population distribution is normal)

$$H_0$$
: $\mu = 168$

$$H_1$$
: $\mu \neq 168$

Example Solution: Two-Tail t Test

DCOVA

$$H_0$$
: $\mu = 168$

$$H_1$$
: µ ≠ 168

•
$$\alpha = 0.05$$

- σ is unknown, so use a t statistic
- Critical Value:

$$\pm t_{24,0.025} = \pm 2.0639$$

$$t_{STAT} = \frac{X - \mu}{S} = \frac{172.50 - 168}{15.40} = 1.46$$

$$\frac{\sqrt{n}}{\sqrt{s}} = \frac{172.50 - 168}{\sqrt{25}} = 1.46$$

Do not reject H₀: insufficient evidence that true mean cost is different from \$168

Example Two-Tail t Test Using A p-value from Excel

"Do not reject null hypothesis")

- Since this is a t-test we cannot calculate the p-value without some calculation aid.
- The Excel output below does this:

t Test for the Hypothesis of the Mean

Data				
Null Hypothesis µ=	\$	168.00		
Level of Significance		0.05		
Sample Size		25		
Sample Mean		172.50		
Sample Standard Deviation		15.40		

Intermediate Calculations
Standard Error of the Mean \$ 3.08 =B8/SQRT(B6)
Degrees of Freedom 24 =B6-1

t test statistic 1.46 =(B7-B4)/B11

Two-Tail Test

Lower Critical Value

Upper Critical Value

-2.0639 =-TINV(B5,B12)

2.0639 =TINV(B5,B12)

p-value

Do Not Reject Null Hypothesis

| Comparison of the compariso

p-value > α So do not reject H₀

Connection of Two Tail Tests to Confidence Intervals

OCOV<u>A</u>

For X = 172.5, S = 15.40 and n = 25, the 95% confidence interval for μ is:

 $166.14 \le \mu \le 178.86$

• Since this interval contains the Hypothesized mean (168), we do not reject the null hypothesis at α = 0.05

One-Tail Tests

 In many cases, the alternative hypothesis focuses on a particular direction

$$H_0$$
: μ ≥ 3 H_1 : μ < 3

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

$$H_0$$
: $\mu \le 3$
 H_1 : $\mu > 3$

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

Lower-Tail Tests

There is only one critical value, since the rejection area is in only one tail

Critical value

Upper-Tail Tests

Example: Upper-Tail t Test for Mean (σ unknown)

A phone industry manager thinks that customer monthly cell phone bills have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume a normal population)

Form hypothesis test:

H₀: $\mu \le 52$ the average is not over \$52 per month

H₁: $\mu > 52$ the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

DCOVA (continued)

 Suppose that α = 0.10 is chosen for this test and n = 25.

Example: Test Statistic

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 25, x = 53.1, and x = 10

Then the test statistic is:

Example: Decision

Reach a decision and interpret the result:

Do not reject H_0 since $t_{STAT} = 0.55 \le 1.318$

there is not sufficient evidence that the mean bill is over \$52

Example: Utilizing The p-value for The Test

 Calculate the p-value and compare to α (p-value below calculated using excel spreadsheet on next page)

Do not reject H_0 since p-value = .2937 > α = .10

Excel Spreadsheet Calculating The p-value for An Upper Tail t Test

4	A	В	
1	t Test for the Hypothesis of the Mean		
2			
3	Data		
4	Null Hypothesis µ=	184.2	
5	Level of Significance	0.05	
6	Sample Size	25	
7	Sample Mean	170.8	
8	Sample Standard Deviation	21.3	
9			
10	Intermediate Calculati	ions	
11	Standard Error of the Mean	4.2600	-B8/SQRT(B6)
12	Degrees of Freedom	24	=B6 - 1
13	t Test Statistic	-3.1455	=(D7 - D4)/D11
14		- 8	
15	Lower fail fest		
16	Lower Critical Value	-1.7109	T.INV.2T(2 * B5, B12)
17	p-Value 0.0022		-IF(B13 < 0, E11, E12)
18	Reject the null hypothesis		=IF(B17 < B5,"Reject the null hypothesis",
			"Do not reject the null hypothesis")
	∡ D	E	
	10 One Tail Calc	culations	
	11 LDIST.RT value	0.0022	=1.DIS1.RI(ABS(B13), B12)
	12 1-T.DIST.RT value	0.9978	-1 - E11

The Power Of A Test Is An Important Part Of Planning

 The power of a hypothesis test is included as an on-line topic

Online Topic

Power of a Test

The Power of a Test

 The power of the test is the probability of correctly rejecting a false H₀

Suppose we correctly reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu = 50$

Type II Error

Suppose we do not reject H₀: μ ≥ 52 when in fact the true mean is μ = 50

Type II Error

• Suppose we do not reject H_0 : $\mu \ge 52$ when in fact the true mean is $\mu = 50$

Calculating B

DCOVA

• Suppose n = 64 , σ = 6 , and α = .05

Calculating β and Power of the test

• Suppose n = 64 , σ = 6 , and α = 0.05

Power of the Test

Conclusions regarding the power of the test:

- A one-tail test is more powerful than a twotail test
- An increase in the level of significance (α) results in an increase in power
- An increase in the sample size results in an increase in power