學號:B03902096 系級: 資工四 姓名:陳柏屹

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 **9** 小時內的污染源 **feature** 的一次項**(**加 **bias)**
- (2) 抽全部 **9** 小時內 **pm2.5** 的一次項當作 **feature(**加 **bias)** 備註:
 - a. NR 請皆設為 0. 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

以下數據皆是以初始參數固定下經過 3 次重跑,並使用 SGD 下訓練出的新模型所得到的平均分數,而 iteration 次數為 2,000。

- (1) 全部 feature 一次項: 5.81918 (private) + 7.67668(public) = 13.49585
- (2) 只取 pm 2.5 一次項: 5.63538 (private) + 7.53421(public) = 13.16959

可以看到在抽取 9 小時的前提下,只取 pm2.5 一次項的成績會些微地比抽取全部 feature 的成績來的要好。我想這是因為全部的 feature 之中存在著許多跟預測 pm2.5 較無關緊要的項,因此將這些項目加入到模型的 training 中反而導致過多額外干擾而造成更多誤差。但其實兩者分數僅有些微差距,很有可能只是因為 testing set 只有各 120 筆所造成的偏差,並不一定能夠表示哪個模型一定較適合預測 PM2.5。

- 2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時, 討論其變化以下數據皆是以初始參數固定下經過 3 次重跑,並使用 SGD 下訓練出的新模型所得到的平均分數,而 iteration 次數為 2,000。
 - (1) 全部 feature 一次項: 5.60888 (private) + 7.59261(public) = 13.20148
- (2) 只取 pm 2.5 一次項: 5.80159 (private) + 7.64643(public) = 13.44802 可以看到在抽取 5 小時的前提下,抽取全部 feature 的成績會些微地比只取 pm2.5 一次項的成績來的要好。我想這是因為單單只有前 5 個小時的 pm2.5 的資訊量太少了,因此這時把全部 feature 都參考進去後,讓其他有用的 feature 諸如 pm10, NO2 等等都得以納入計算。但同樣地和第一題一樣,兩者分數僅有些微差距,並不一定能夠表示哪個模型一定較適合預測 PM2.5。

3. (1%)Regularization on all the weight with $\lambda \text{=}0.1$ 、0.01、0.001、0.0001、 並作圖

	0.1	0.01	0.001	0.0001
All-private	5.68775	5.87429	5.70559	5.63344
All-public	7.55832	7.42741	7.48199	7.56263
All-Sum	13.24607	13.3017	13.18758	13.19607
PM2.5-private	5.68552	5.71298	5.93108	5.64455
PM2.5-public	7.53259	7.58125	7.31063	7.5952
PM2.5-Sum	13.21811	13.29423	13.24171	13.23975

從圖表中線條們緊密交錯的狀況可以推測 λ 的大小對於這次預測 PM2.5 的模型影響並不大,我想是因為如此簡單的模型在資料充足的狀態下比較沒有 Over Fitting 的問題,所以 Regularization 自然也不會有顯著的幫助。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}$ $(y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\ \mathbf{x}^2\ ...\ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\ \mathbf{y}^2\ ...\ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

(c)
$$(X^TX)^{-1}X^Ty$$

Let
$$y = wX$$

 $w = X^{-1}y$
 $= X^{-1}((X^T)^{-1}X^T)y$
 $= X^{-1}(X^T)^{-1}X^Ty$
 $= (X^TX)^{-1}X^Ty$