Seat	
No.	

Total No. of Pages: 3

First Year B. Tech. (All Branches) Semester - I&II) (New) (CBCS) Examination, November - 2019 ENGINEERING PHYSICS

Sub. Code: 71811

Day and Date: Saturday, 30 - 11 - 2019 Total Marks: 70

Time: 2.30 p.m. to 5.00 p.m.

Instructions: 1) Attempt any three questions from each question.

2) Figures to the right indicate full marks.

3) Given:- Avogadro's number =6.02×10²⁶/kg.atom Planck's constant h=6.626×10⁻³⁴ J.s Electronic charge e=1.6 × 10⁻¹⁹ C Electron mass m=9.1×10⁻³¹ kg

SECTION-I

- Q1) Answer the following questions.
 - a) Discuss the theory of plane diffraction grating for normal incidence. [6]
 - b) i) How many orders will be visible if the wavelength of incident light is 5000A° and number of lines per inch on the grating is 2620. [3]
 - ii) Calculate the specific rotation, if the plane of polarization is turned through 26.25° travelling 20 cm length of 20% sugar solution. [3]
- Q2) Answer the following questions.
 - a) What is laser? Explain construction and working of ruby laser with necessary diagram.
 - b) What are the important applications of laser?

Q3) Answer the following questions.

- a) Mention the basic requirements of acoustically good auditorium. [5]
- b) i) Define:- Reverberation, reverberation time and absorption coefficient.
 [3]
 - ii) A picture hall has a volume of 8000 m³. It is required to have reverberation time of 1.5 sec. What should be the total absorption in the hall? [3]

P.T.O.

[5]

- Q4) Answer any two from the following questions.
 - a) Define specific rotation. Describe construction of Laurent's half shade polarimeter. Explain how you will use it to determine the specific rotation of sugar solution.
 - b) Draw block diagram of fibre optic communication system and explain function of each block.
 - c) Give an account of the bad acoustical properties of some hall. Discuss the methods for remedying these defects. [6]

SECTION-II

- Q5) Answer the following questions.
 - a) Discuss the parameters (axial lengths, interfacial angles, Bravais lattices and example) of any three crystal systems with diagrams.
 - b) Derive Bragg's relation for X-ray diffraction with necessary diagram. [6]
- Q6) Answer the following questions.
 - a) Explain construction and working of Atomic Force Microscope. [6]
 - b) Define the nanoscience. Explain in detail Colloidal technique used for synthesis of nanomaterial.
 [5]
- Q7) Answer the following questions.
 - X-rays of wavelength 0.02 A° are scattered form a block of graphite.
 The scattered X-rays are observed at an angle of 45° to the incident beam.
 - i) Calculate wavelength and energy of the scattered x-rays at this angle.
 - ii) Compute the energy of a recoiled electron.
 - b) Discuss the De-Broglie's concept of matter wave. Obtain the formula for wavelength of matter wave in terms of potential difference 'V' used to accelerate the particle.

Q8) Answer any two from the following questions.

- a) Sodium crystallizers in a cubic lattice. The edge of the unit cell is 4.3 A°. The density of Na is 963 kg/m³, its atomic weight is 23. How many atoms are contained in one unit cell? What type of cubic unit cell does Na form? Find the atomic radius.
- b) State and discuss any three properties of nanomaterials. [6]
- c) State and explain Heisenberg's uncertainty principle for position and momentum of the particle. [6]

