ECONOMETRIA Regressão linear sim rentação formal da esperança co $= \alpha + \beta X_i$ e regressão representa rança condicional d $(\alpha + \beta X_i)$ ≥ An INTRODUÇÃO À **ECONOMETRIA** Market Ma **ABORDAGEM MODER** N DA 4ª EDIÇÃO NORTE-AM

Econometria **Vieses**

OU

Inclusão Inapropriada de Variáveis: Acontece quando variáveis que não deveriam estar no modelo são incluídas, levando a distorções nas estimativas dos outros coeficientes.

Erro de Medição: Ocorre quando as variáveis são medidas imprecisamente, afetando tanto as variáveis independentes quanto a dependente, levando a estimativas de coeficientes tendenciosas e inconsistentes.

Vieses

Endogeneidade: Surge quando uma ou mais variáveis explicativas estão correlacionadas com o termo de erro. Isso pode ser devido a variáveis omitidas, erro de medição ou simultaneidade. Multicolinearidade:
Embora tecnicamente não seja um viés, ocorre quando as variáveis independentes estão altamente correlacionadas, inflando os erros padrão das estimativas dos coeficientes e levando a inferências estatísticas menos precisas.

Viés de Variável Omitida:
Ocorre quando o modelo
de regressão não inclui
uma ou mais variáveis
relevantes que
influenciam a variável
dependente.

Erro de especificação: excluir variáveis relevantes

- ☐ Considere que o modelo populacional verdadeiro seja:
- $\Box Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i,$
- ☐ Mas por algum motivo o modelo estimado foi:
- $\square Y_i = \tilde{\beta}_0 + \tilde{\beta}_1 X_{i1}$, em vez de se estimar:
- $\Box Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2}.$
- ☐ Ao se estimar um modelo com erro de especificação, se tem parâmetro viesado e o viés é dado por:
- $\square \tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta},$

Erro de especificação: excluir variáveis relevantes

Considere:

lacktriangle Em que, δ é o coeficiente de inclinação da regressão simples entre X_{i1} e X_{i2} , formalmente:

$$X_{i1} = \tilde{\alpha} + \tilde{\delta}X_{i2}.$$

- \square O Tamanho do viés vai depender de quão X_{i1} se correlaciona com X_{i2} .
- ☐ Isso é facilmente demostrado aplicando o operador de esperança em ambos os lados de:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}$$
:

 \square $E(\tilde{\beta}_1) = E(\hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta})$, como: $E(\hat{\beta}_1) = \beta_1$; $E(\hat{\beta}_2) = \beta_2$, temos:

$$\mathrm{E}(\tilde{\beta}_1) = \beta_1 + \tilde{\delta}\beta_2$$
; então: $\mathrm{E}(\tilde{\beta}_1) - \beta_1 = \tilde{\delta}\beta_2$

- \square Assim, o viés $(\tilde{\beta}_1) = E(\tilde{\beta}_1) \beta_1$
- \square Portanto, o viés $(\tilde{\beta}_1) = \tilde{\delta}\beta_2$.
- \square Na prática, não se sabe o sinal de β_2 , já que X_{i2} é desconhecido, mas, teoricamente, pode-se discutir e sustentar o tipo de correlação existente entre X_{i1} e X_{i2} .

Erro de especificação: excluir variáveis relevantes

	$Corr(X_1, X_2) > 0$	$Corr(X_1, X_2) < 0$
$\beta_2 > 0$	Viés positivo	Viés negativo
$\beta_2 < 0$	Viés negativo	Viés positivo

Exercício

- ☐ Utilize o arquivo: wage1:
- ☐ Considere como um modelo populacional verdadeiro a seguinte especificação:

$$Wage_i = \beta_0 + \beta_1 E duc_i + \beta_2 E x p_i + u_i,$$

 \Box Para efeito didático, estime o modelo a seguir com erro de especificação e calcule o viés na estimativa de β_1 :

$$Wage_i = \tilde{\beta}_0 + \tilde{\beta}_1 E duc_i + \tilde{u}_i$$

Obrigado!

