

Proiect IS Partea 1

Cuprins

- Descrierea problemei
- Soluţia aleasă
- Descrierea aproximatorului și a procedurii
- Descrierea aproximatorului și a procedurii
- Caracteristici esențiale ale soluției
- Rezultate de acordare
- Rezultate experimentale pentru m(gradul) optim
- Concluzie

Descrierea problemei

Modelarea comportamentul unei funcții necunoscute

Soluția aleasă

Dezvoltarea unui model pentru o funcție necunoscută neliniară și statică, cu ieșirea afectată de zgomot, pe baza unui set de date intrareieșire, folosind un aproximator polinomial

Descrierea aproximatorului și a procedurii

Găsirea valorilor pentru θ astfel încât variabila dependentă aproximată yhat(k) = $\phi T(k)\theta$ să fie cât mai apropiată de y(k) pentru orice k, astfel încât eroarea medie pătratică să fie cât mai mică.

$$\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} \varphi_1(1) & \varphi_2(1) & \dots & \varphi_n(1) \\ \varphi_1(2) & \varphi_2(2) & \dots & \varphi_n(2) \\ \dots & \dots & \dots & \dots \\ \varphi_1(N) & \varphi_2(N) & \dots & \varphi_n(N) \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \dots \\ \theta_n \end{bmatrix}$$
 Aproximatorului polinomial în formă matriciala

$$Y = \Phi \theta$$

Caracteristici esențiale ale soluției

Matricea de pornire conține de la început polinomul de grad 0, ca după să fie populată cu termenii lipsă pentru fiecare polinom de grad mai mare. Această soluție este mai rapidă din punct de vedere al timpului de execuție, deoarece matricea nu este resetată de fiecare dată când gradul polinomului se schimbă, din potrivă adaugăm termenii noi pentru polinomul curent.

Rezultate de acordare

	mse_val	<													
	1x30 double														
	1	_	_		_										
	l l	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	2.7541e+04	1.3383e+03	3 1.3374e+03		5 362.2061	-	7 348.5675	8 349.2227	9 353.1606	10 352.0123	11 358.9423	12 366.1695	13 372.4643	14 374	

Rezultate experimentale pentru m optim

Concluzie

Având în vedere datele furnizate, 6 este gradul pentru care polinomul de aproximare este optim. Alegerea de a folosi regresia liniară împreună cu algoritmul pe care l-am creat, ne-au ajutat să opținem un rezultat aproximativ, împreună cu un set de performanțe optime pentru descrierea comportamentului funcției în raport cu domeniul timpului.