武汉大学计算机学院

2021-2022 学年第二学期 2020 级弘毅班

《计算机系统基础 2》期末考试试卷(A卷)答案

姓名_____ 学号__

(注:①闭卷考试;②考试时间为120分钟;③所有解答必须写在答题纸上。)

学号	班级	姓名	成绩

注意: 所有答题内容必须写在答题纸上, 凡写在试题或草稿纸上的一律无效。

本考试使用的 RISC-V 核心指令格式如下:

	31 2	27 26 2	5 24	20	19	15	14	12	11	7	6	0
R	func	t7	r	s2	rs	1	fun	ct3	rd		opcode	•
I	imm[11:0]			rs1		funct3		rd		opcode	e	
\mathbf{S}	imm[1	1:5]	r	s2	rs	1	fun	ct3	imm[4:0	0]	opcode	е
SB	imm[12	[10:5]	r	s2	rs	1	fun	ct3	imm[4:1]	и]	opcode	9
U	imm[31:12]					rd		opcode	e			
$\mathbf{U}\mathbf{J}$	imm[20 10:1 11 19:12]						rd		opcode	e		

一、 单项选择题 (每小题 2 分, 共 20 分)

1-5 CBDCB

6-10 B C B B C

二、性能计算(每小题5分,共10分)

(1)

总执行周期 = $10 \times 2 + 30 \times 20 + 35 \times 10 + 15 \times 4 = 1030$

改进 A 周期 = 10×1 + 30×20 + 35×10 + 15×4 = 1020

加速比 = 1030/1020 = 1.01

改进 B 周期 = 10×2+30×15+35×10+15×4=880

加速比 = 1030/880 = 1.17

改进 C 周期 = 10×2+30×20+35×3+15×4=785

加速比 = 1030/785 = 1.31

改进 D 周期 = $10 \times 2 + 30 \times 20 + 35 \times 10 + 15 \times 1 = 985$

加速比 = 1030/985 = 1.05

加快经常性事件

(2)

总执行周期 = $10 \times 1 + 30 \times 15 + 35 \times 3 + 15 \times 1 = 580$ 加速比 = 1030/580 = 1.776

三、指令系统(共15分)

(1)(8分,每空1分)

function:

addi x2, x2, -16 sd x1, 0(x2)

```
add x5, (x12), x13

sd x5, (8(x2))

jal x1, (leaf)

ld x11, (8(x2))

jal x1, (leaf)

ld x1, (0(x2))

addi x2, x2, (16)

(jalr) x0, x1
```

(2) (7分)

0x7fffffc

0x7ffffff4 x5

0x7ffffec x1(或者 function 的返回地址)

0x7fffffc

0x7ffffff4 x5

0x7ffffec x1(或者 function 的返回地址)

0x7ffffe4 x1(或者 leaf 的返回地址)

四、运算器(10分)

3, 32

1+1/16

times2: addi a0, a0, 0b00010000 (00010000B)

五、CPU (25分)

1、(共15分)

(1) (7分)

RegWrite	ALUSrc	ALUOp	PCSrc	MemWrite	MemRead	MemtoReg
1	1	00/Add	0	0	1	1

(2)(6分)

寄存器 1 号读地址输入	0x16
寄存器 2 号读地址输入	0x8
寄存器写地址输入	0x9
寄存器写数据输入	未知
ImmGen 的输入	0x008B3483

0x008B3483, 0000 0000 1000 1011 0011 0100 1000 0011

(3)(2分)

分支中的 Add 产生输出但不会被用到,数据存储器的读端口不产生输出。

2、(共10分,每个周期2分)

时钟周期	Clk4	Clk5	Clk6	Clk7	Clk8
IF/ID.Rs1	10	10	12	12	12
IF/ID.Rs2		11	10	10	10
ID/EX.RegWrite	0	1	1	0	0
ID/EX.Rd	0	10	10	0	0
EX/MEM.RegWrite	0	0	1	1	0
EX/MEM.Rd	0	0	10	10	0
IF/IDWrite	1	1	0	0	1
PCWrite	1	1	0	0	- 1
ID/EXFlush	0	0	1	1	0

六、存储系统(20分)

1、(10分)

- (1)(3分)主存块大小为 $64B = 2^6$ 字节,所以主存地址低6位为块内地址,Cache 组数为 $32KB/(64B\times8)=64=2^6$,故主存地址中间6位为 Cache 组号,主存地址中高32-6-6=20位为标记,采用8路组相联映射,故每行中的LRU位占3位,采用直写方式,故没有修改位。
- (2)(4分)008000C0H = 000000000100000000000011000000B, 主存地址的低 6 位为块内地址,为全 0,故 s位于一个主存块的开始处,占 1024×4B/64B=64个主存块;在执行程序段的过程中,每个主存块中的64B/4B=16个数组元素依次读、写 1次,因而对每个主存块,总是第一次访问缺失,此时会将整个主存块调入 Cache,之后每次都命中。综上,数组 s 的数据 Cache 访问缺失次数为64次。
- (3) (3分) 0001 0003H = 0000 0000 0000 0001 0000 000000 000011B,根据主存地址划分可知,组索引为 0,故该地址所在主存块被映射到指令 Cache 的第 0 组;因为 Cache 初始为空,所有 Cache 行的有效位均为 0,所以 Cache 访问缺失。此时,将该主存块取出后存入指令 Cache 的第 0 组的任意一行,并将主存地址高 20位(00010H)填入该行标记字段,设置有效位,修改 LRU 位,最后根据块内地址 000011B 从该行中取出相应的内容。

2、(10分)

(1)(4分)

虚页号 4 对应的 TLB 表项被替换。因为虚页号 10、12、16、7、26、4、12 和 20 映射到 TLB 组号依次是 2、4、0、7、2、4、4、4,只有映射到 4 号组的虚页号数量大于 2,相应虚页号依次是 12、4、12 和 20,根据 LRU,当访问第 20 页时,虚页号 4 对应的 TLB 表项被替换出来。

(2)(6分)

O793: 虚拟页号: 0, 页内偏移地址: 793 物理地址: 4889或者 0x001319

9048: 虚拟页号: 2, 页内偏移地址: 856 物理地址: -

12862: 虚拟页号: 3,页内偏移地址: 574 物理地址: 574 或者 0x00023e