$a_i y_i$ can be expressed as a linear combination of (u_1, \ldots, u_m) . If we let $a = a_1 \ldots a_n$, then $a_1 \ldots a_n y_i \in Au_1 \oplus \cdots \oplus Au_m$ for $i = 1, \ldots, n$, which shows that

$$aM \subseteq Au_1 \oplus \cdots \oplus Au_m$$
.

Now, A is an integral domain, and since $a_i \neq 0$ for i = 1, ..., n, we have $a = a_1 ... a_n \neq 0$, and because M is torsion-free, the map $x \mapsto ax$ is injective. It follows that M is isomorphic to a submodule of the free module $Au_1 \oplus \cdots \oplus Au_m$. By Proposition 35.5, this submodule if free, and thus, M is free.

Although we will obtain this result as a corollary of the structure theorem for finitely generated modules over a PID, we are in the position to give a quick proof of the following theorem.

Theorem 35.7. Let M be a finitely generated module over a PID. Then $M/M_{\rm tor}$ is free, and there exit a free submodule F of M such that M is the direct sum

$$M = M_{\text{tor}} \oplus F$$
.

The dimension of F is uniquely determined.

Proof. By Proposition 35.4 $M/M_{\rm tor}$ is torsion-free, and since M is finitely generated, it is also finitely generated. By Proposition 35.6, $M/M_{\rm tor}$ is free. We have the quotient linear map $\pi: M \to M/M_{\rm tor}$, which is surjective, and $M/M_{\rm tor}$ is free, so by Proposition 35.2, there is a free module F isomorphic to $M/M_{\rm tor}$ such that

$$M = \operatorname{Ker}(\pi) \oplus F = M_{\operatorname{tor}} \oplus F.$$

Since F is isomorphic to $M/M_{\rm tor}$, the dimension of F is uniquely determined.

Theorem 35.7 reduces the study of finitely generated module over a PID to the study of finitely generated torsion modules. This is the path followed by Lang [109] (Chapter III, section 7).

35.2 Finite Presentations of Modules

Since modules are generally not free, it is natural to look for techniques for dealing with nonfree modules. The hint is that if M is an A-module and if $(u_i)_{i\in I}$ is any set of generators for M, then we know that there is a surjective homomorphism $\varphi \colon A^{(I)} \to M$ from the free module $A^{(I)}$ generated by I onto M. Furthermore M is isomorphic to $A^{(I)}/\mathrm{Ker}(\varphi)$. Then, we can pick a set of generators $(v_j)_{j\in J}$ for $\mathrm{Ker}(\varphi)$, and again there is a surjective map $\psi \colon A^{(J)} \to \mathrm{Ker}(\varphi)$ from the free module $A^{(J)}$ generated by J onto $\mathrm{Ker}(\varphi)$. The map ψ can be viewed a linear map from $A^{(J)}$ to $A^{(I)}$, we have

$$\operatorname{Im}(\psi) = \operatorname{Ker}(\varphi),$$