

modern college of arts, science & commerce

A PROJECT REPORT ON

A STATISTICAL ANALYSIS OF POULTRY FARMING

Submitted To
SAVITRIBAI PHULE PUNE UNIVERSITY

UNDER THE GUIDANCE OF

Dr P. G. DIXIT
HEAD OF DEPARMENT, STATISTICS
MODERN COLLEGE PUNE-05

BY

1934

MISS. SHEWALE VAIBHAVI CHANDRAKANT
MISS. MUSALE MOHINI DATTATRAY
MR. RAMOSHI MANGESH CHANDRAKANT
MR. BORGE AKSHAY SHIVAJI
MR. SHENDAGE SANDIP VILAS

ı

CERTIFICATE

This is to certify that the project work entitled "A STATISTICAL ANALYSIS OF POULTRY FARMING" is a bonafide project work carried out by MISS. SHEWALE VAIBHAVI, MISS. MUSALE MOHINI, MR. RAMOSHI MANGESH, MR. BORGE AKSHAY, MR. SHENDAGE SANDIP Students of T.Y.BSC. (Statistics), MODERN COLLEGE PUNE-05. This original work is submitted for the partial fulfillment of B.Sc. degree of Savitribai Phule Pune University, Pune.

DR P. G. DIXIT,

HEAD OF DEPARMENT, STATISTICS,
MODERN COLLEGE PUNE-05.

Date:

Place: Modern college pune-05.

ACKNOWLEDGEMENTS

We are very glad to present the project report on "STATISTICAL ANALYSIS OF POULTRY FARMING" which is prepared as a part of final year of graduation in science.

With the belief guidance of Dr. P.G. DIXIT sir, Head of department of Statistics, MODERN COLLEGE OF ARTS COMMERCE AND SCIENCE, PUNE-05. He has enacted important role in our project.

A project of such thinking could not happen without the systematic guidance of our guide and other teachers. Also we would like to thank all teachers of our department for all possible help.

We would also like to thank all the people who has help us to collect the raw data. Last but not the least we would like to thank our family, friends and all others who were directly or indirectly related for giving suggestions and all possible help.

Thank you Everyone!!!

Abstract:

In our project "STATISTICAL ANALYSIS OF POULTRY FARMING". We have collected primary data from a poultry farm. The data is of three seasons on chick deaths and their feeding over a period of 42 days for each batch. The statistical analysis is carried out to study variations in chick death rates, body weight gains of chicks in different seasons

INDEX

Chapter	Particulars	Page. no.
l.	Introduction	6
II.	Identification of Problem	7
III.	Objectives	8
IV.	Methodology	9
V.	Key Words & tool use	10
VI.	Questionnaire	11
VII.	Statistical Analysis	14
	1. Statistical quality control.	14
	2. Survival function.	19
	3. Regression Analysis.	22
	4. Analysis of Variance (ANOVA)	27
10	5. Testing of Hypothesis.	29
VIII.	Conclusions	37
IX.	Limitations 334	38
X.	Scope	39
XI.	References	40

INTRODUCTION

Poultry is one of fast growing segment of agriculture sector and contributes major share in term of protein supplementation from egg and meat. It has originated from the agricultural era. Chickens nurtured for eggs are known as layers, while chickens nurtured for meat are called broilers.

Poultry farm is farm that feed the chicks for business. There are approximately 4500 chicks in per batch of farm for period of 42-45 days.

In poultry there are different causes for deaths of chicks, like excess heat, lack of facilities, unhealthy atmosphere etc. We analysed poultry farming data in various seasons.

<u>IDENTIFICATION OF PROBLEM</u>

• IN SIMPLE LANGUAGE:

- 1) To check mortality rate of chicks in different seasons?
- 2) To check is there any effect of seasons on survival rate of chicks?
- 3) To find relation between food consumed on body weight gain?
- 4) To check the effect of different type of feed on weight gain by chicks?
- 5) To check the effect of different seasons on weight gain by chicks?
- 6) To check data is randomly occurs?

• IN STATISTICAL LANGUAGE:

- 1) To check whether mortality rate of chicks is within statistical control or not using "Statistical Quality Control"?
- 2) To estimate survival rate of chicks using "Survival Function"?
- 3) To fit "Regression Line" of food consumption on body weight gain?
- 4) To check the effect of different type of feed on weight gain by chicks using "Analysis of variance"
- 5) To check the effect of different seasons on weight gain by chicks using "Analysis of variance"
- 6) To check randomness using run test.

OBJECTIVES

- 1.To study if chick death rates change according to seasons.
- 2.To find the effect of feeding on chick body weight gain in different seasons.
- 3.To estimate parameters of survival function.
- 4. To study the assignable causes of variation in death rates.
- 5. To study occurrence of death is random.

METHODOLOGY

We used control chart to check whether the deaths are in statistical control. We used survival function to estimate survival rate. We used analysis of variance technique to check the impact of season and feed on body weight gain. We used regression analysis technique to check effect of feed on body weight gain. We used testing of hypothesis technique to test randomness of data.

KEYWORD & TOOLS USED

- Keywords:
 - 1. F.C.R.- Feed Conversion Ratio.
 - 2. Mortality rate= $\frac{number\ of\ deaths}{number\ of\ chicks}$
 - 3. C.L.- Control Limit
 - 4. L.C.L.- Lower Control Limit
 - 5. U.C.L.- Upper Control Limit
- Tools Used:
 - 1. Microsoft Excel
 - 2. Microsoft Word
 - 3. R Software

QUESTIONNAIRE

• Poultry Information:

Name of owner: Suryawanshi Dinesh

Address of poultry: At. Post karjgavan, tal. Malegaon, Dist. Nashik.

ुरानमयो भ

Date of establishment of poultry: Oct. 2014

Capacity of poultry: 5200

Breed: cock 300

Distributor: Ananda Agro

Sr. No.	title	prices
1.	Price of per chick	Rs. 20-25
2.	Total feeding bags	400-450 bags
3.	Cost per feeding bag	Rs. 31 per Kg.
4.	Expenditure on Medicine	Rs. 2.5 per chick

Sr. No.	Rating (1-strongly bad, 5-strongly good)	Rating
1.	Poultry litter	4.0
2.	Water supply	5.0
3.	Temperature maintain	3.0
4.	Cleanliness	4.0
5.	Storage capacity and place	4.0
	Overall performance	4.0

1934

Sr. No.	1	How Much Time	Tir	ming
		JOE L'SIO	morning	evening
1.	Feeding	2	1	1
2.	Water	2	1	1
3.	Medicine	1 vaccine Per week	-	-

• Broiler Record:

> This data collected from 17/April/2020 to 28/May/2020. (Summer data)

	Cou	Count Cumulative feed in grams		Body weight in gram		F.C.R.		
Interval (days)	No. of chicks	Total deaths	Stand.	Actual	Stand.	Actual	Stand.	Actual
1-3	4931	14	53	34	104	90	0.51	0.38
4-6	4917	24	143	123	169	150	0.85	0.82
7-9	4893	48	254	229	264	210	0.96	1.09
10-12	4845	16	407	406	376	300	1.08	1.35
13-15	4829	22	591	514	507	400	1.17	1.29
16-18	4807	40	821	585	679	500	1.21	1.17
19-21	4767	21	1095	798	850	750	1.29	1.06
22-24	4746	28	1418	976	1086	900	1.31	1.08
25-27	4718	29	1787	1474	1321	1150	1.35	1.28
28-30	4689	76	2200	1598	1540	1250	1.43	1.28
31-33	4613	69	2630	1975	1814	1380	1.45	1.43
34-36	4544	27	3087	2412	2060	1500	1.50	1.61
37-39	4517	- 33	3574	2887	2350	1850	1.52	1.56
40-42	4484	42	4088	3328	2575	2200	1.59	1.51

> This data collected from 28/June/2020 to 8/august/2020. (rainy data)

	Count		Count cumulative feed grams		Body weight in gram		F.C.R.	
Interval Days	No. of chicks	total deaths	Stand.	Actual	Stand.	Actual	Stand.	Actual
1-3	4585	27	53	87	104	100	0.51	0.87
4-6	4558	17	143	140	169	155	0.85	0.90
7-9	4541	10	254	264	264	240	0.96	1.10
10-12	4531	7	407	406	376	310	1.08	1.31
13-15	4524	2	591	566	507	410	1.17	1.38
16-18	4522	8	821	797	679	480	1.21	1.66
19-21	4514	6	1095	1011	850	520	1.29	1.94
22-24	4508	15	1418	1317	1086	680	1.31	1.94
25-27	4493	20	1787	1591	1321	820	1.35	1.94
28-30	4473	26	2200	1924	1540	1300	1.43	1.48
31-33	4447	37	2630	2303	1814	1567	1.45	1.47
34-36	4410	29	3087	2593	2060	1758	1.50	1.47
37-39	4381	90	3574	3094	2350	1940	1.52	1.59
40-42	4291	73	4088	3195	2575	2500	1.59	1.28

> This data is collected from 23/December/2020 to 2/February/2021. (winter data)

	Count		Count Cumulative feed in grams		Body weight in gram		F.C.R.	
Interval (days)	No. of chicks	Total deaths	Stand.	Actual	Stand.	Actual	Stand.	Actual
1-3	4491	19	53	70	104	100	0.51	0.70
4-6	4472	20	143	178	169	150	0.85	1.19
7-9	4452	13	254	289	264	240	0.96	1.20
10-12	4439	7	407	469	376	310	1.08	1.51
13-15	4432	7	591	563	507	390	1.17	1.44
16-18	4425	6	821	690	679	520	1.21	1.33
19-21	4419	2	1095	1094	850	640	1.29	1.71
22-24	4417	10	1418	1332	1086	800	1.31	1.67
25-27	4407	11	1787	1792	1321	1200	1.35	1.49
28-30	4396	1	2200	2177	1540	1300	1.43	1.67
31-33	4395	/ _5	2630	2620	1814	1610	1.45	1.63
34-36	4390	10	3087	2952	2060	1850	1.50	1.60
37-39	4380	15	3574	3457	2350	2180	1.52	1.59
40-42	4365	20	4088	4196	2575	2335	1.59	1.80

Statistical Analysis

1. Statistical quality control.

For all three seasons we analysed the data in quality control charts (p-chart) to find out whether the death rates are within control or not.

Statistical quality control (SQC) involves the application of statistical techniques in controlling the process to prevent excessive defects.

- a) Graphs showing if sample results are within statistical control limits.
- b) Control limits are the upper and lower boundaries of a control chart.
- c) A process is " in control " if
 - 1. No sample point lies outside the control limits.
 - 2. Most points fall near the process average. Few of them are close to the control limits.

राजनासा वर

- 3. Approximately equal numbers of points occur above and below the process average.
- 4. The points are randomly distributed around the process average.

Formulae for calculation to draw p chart:

Mortality rate $(p_i) = \frac{number\ of\ deaths}{number\ of\ chicks}$

$$\hat{p} = \frac{\sum_{i=1}^{k} d_i}{\sum_{i=1}^{k} n_i} \quad \text{------ where k=14}$$

$$C.L = \hat{p}$$

$$LCL = \hat{p} - 3\sqrt{\frac{\hat{p} * \hat{q}}{n_i}}$$

$$UCL = \hat{p} + 3\sqrt{\frac{\hat{p} * \hat{q}}{n_i}}$$

Data for Summer Season:

Interval (days)	Number of chicks (n_i)	No. of deaths (d_i)	Mortality rate (p_i)	L.C.L.	C.L.	U.C.L.
1-3	4931	14	0.002839	0.00372	0.007376	0.01103
4-6	4917	24	0.004881	0.00372	0.007376	0.01104
7-9	4893	48	0.00981	0.00371	0.007376	0.01105
10-12	4845	16	0.003302	0.00369	0.007376	0.01106
13-15	4829	22	0.004556	0.00368	0.007376	0.01107
16-18	4807	40	0.008321	0.00367	0.007376	0.01108
19-21	4767	21	0.004405	0.00366	0.007376	0.01109
22-24	4746	28	0.0059	0.00365	0.007376	0.0111
25-27	4718	29	0.006147	0.00364	0.007376	0.01111
28-30	4689	76	0.016208	0.00363	0.007376	0.01112
31-33	4613	69	0.014958	0.0036	0.007376	0.01116
34-36	4544	27	0.005942	0.00357	0.007376	0.01118
37-39	4517	33	0.007306	0.00356	0.007376	0.0112
40-42	4484	42	0.009367	0.00354	0.007376	0.01121
Total	66300	489	0.103941			

 \hat{p} = 0.007376 and \hat{q} = 0.992624

From these table values we plot p chart

Chart 1:

In this p chart, point no 10 and 11 lies above the UCL so the process is not under statistical control. That is death rates are not in control. Assignable cause is excess heat.

Data for rainy season:

Interval	Number	Number	Mortality			
(days)	of	of deaths	rate	L.C.L.	C.L.	U.C.L.
	chicks	(d_i)	(p_i)			
1-3	4585	27	0.005889	0.00247	0.005846	0.00922
4-6	4558	17	0.003730	0.00246	0.005846	0.00923
7-9	4541	10	0.002202	0.00245	0.005846	0.00924
10-12	4531	7	0.001545	0.00245	0.005846	0.00924
13-15	4524	2	0.000442	0.00245	0.005846	0.00925
16-18	4522	8	0.001769	0.00244	0.005846	0.00925
19-21	4514	6	0.001329	0.00244	0.005846	0.00925
22-24	4508	15	0.003327	0.00244	0.005846	0.00925
25-27	4493	20	0.004451	0.00243	0.005846	0.00926
28-30	4473	26	0.005813	0.00243	0.005846	0.00927
31-33	4447	37	0.008320	0.00242	0.005846	0.00928
34-36	4410	29	0.006576	0.0024	0.005846	0.00929
37-39	4381	90	0.020543	0.00239	0.005846	0.0093
40-42	4291	73	0.017012	0.00235	0.005846	0.00934
Total	62778	367	11	BALLY V	1	

$$\hat{p}$$
= 0.005846 and \hat{q} = 0.99415

From above table we plot this p chart

Chart 2:

In this p chart, points 13 and 14 lie above UCL, so the process is not under statistical control. Assignable cause is cloudy atmosphere.

Data for winter season:

Interval (days)	Number of chicks	Number of deaths (d_i)	Mortality rate (p_i)	L.C.L.	C.L.	U.C.L.
1-3	4491	19	0.004231	0.000190	0.002359	0.004530
4-6	4472	20	0.004472	0.000180	0.002359	0.004540
7-9	4452	13	0.002920	0.000180	0.002359	0.004540
10-12	4439	7	0.001577	0.000170	0.002359	0.004540
13-15	4432	7	0.001579	0.000170	0.002359	0.004550
16-18	4425	6	0.001356	0.000170	0.002359	0.004550
19-21	4419	2	0.000453	0.000170	0.002359	0.004550
22-24	4417	10	0.002264	0.000170	0.002359	0.004550
25-27	4407	11	0.002496	0.000170	0.002359	0.004550
28-30	4396	1)	0.000228	0.000160	0.002359	0.004550
31-33	4395	/5	0.001138	0.000160	0.002359	0.004550
34-36	4390	10	0.002278	0.000160	0.002359	0.004560
37-39	4380	15	0.003425	0.000160	0.002359	0.004560
40-42	4365	20	0.004582	0.000160	0.002359	0.004560
total	61880	146	0.0023594	800	river in the second	

 \hat{p} = 0.002359 and \hat{q} = 0.997641

From these table values we plot p chart

Chart 3:

In this p chart, nearly all points are in control limits so we can say that the process is under statistical control.

Interpretation:

Seasons	ĝ	q̂
Summer	0.007376	0.992624
Rainy	0.005846	0.99415
Winter	0.002359	0.997641

The average proportion of deaths (\hat{p}) is highest in summer season and lowest in winter season.

Conclusion:

From above three p-charts we concluded that the winter season is best for the chicks in the poultry as compare to summer and rainy season. And we can also say that only last 2 or 3 interval shows deaths rates are not in control.

2. Survival function.

We used survival analysis to estimate life-span of population understudy. We used non-parametric method to estimate survival function called "Actuarial estimator of survival function" with its standard error.

 x_i : i^{th} interval of days.

 d_i : deaths of chickens in i^{th} interval of days.

 n_i : chickens alive at beginning of i^{th} interval.

$$Pi=\left(1-\frac{d_i}{n_i}\right)$$
 ----- probability of surviving through i^{th} interval.

$$S(x)=\prod_{i=1}^k \left(1-\frac{d_i}{n_i}\right)$$
 ----- survival function.

$$SE(S(x)) = S(x)^* \sqrt{\sum_{i=1}^k \frac{d_i}{n_i(n_{i-d_i})}} \quad ----- Standard error of estimator.$$

Data for summer season:

Days (x)	No. of chicks at beginning of interval (n_i)	No. of death during interval (d_i)		Survival function s(x)	S.E. (s(x))
1-3	4931	14	0.997161	0.997161	0.001000
4-6	4917	24	0.995119	0.992294	0.001414
7-9	4893	48	0.990190	0.982559	0.001732
10-12	4845	16	0.996698	0.979315	0.002000
13-15	4829	22	0.995444	0.974853	0.002236
16-18	4807	40	0.991679	0.966741	0.002646
19-21	4767	21	0.995595	0.962482	0.002646
22-24	4746	28	0.994100	0.956804	0.002828
25-27	4718	29	0.993853	0.950923	0.003000
28-30	4689	76	0.983792	0.935510	0.003464
31-33	4613	69	0.985042	0.921517	0.003873
34-36	4544	27	0.994058	0.916041	0.004000
37-39	4517	33	0.992694	0.909349	0.004123
40-42	4484	42	0.990633	0.900831	0.004243

Data for Rainy season:

Days	No. of chicks at beginning of interval	No. of death during interval		Survival function	
(x)	(n_i)	(d_i)	$oldsymbol{p_i}$	s(x)	SE (s(x))
1-3	4585	27	0.994111	0.994111	0.001000
4-6	4558	17	0.996270	0.990403	0.001414
7-9	4541	10	0.997798	0.988222	0.001732
10-12	4531	7	0.998455	0.986696	0.001732
13-15	4524	2	0.999558	0.986260	0.001732
16-18	4522	8	0.998231	0.984515	0.001732
19-21	4514	6	0.998671	0.983206	0.002000
22-24	4508	15	0.996673	0.979935	0.002000
25-27	4493	20	0.995549	0.975573	0.002236
28-30	4473	26	0.994187	0.969902	0.002449
31-33	4447	37	0.991680	0.961832	0.002828
34-36	4410	29	0.993424	0.955507	0.003000
37-39	4381	90	0.979457	0.935878	0.003606
40-42	4291	73	0.982988	0.919956	0.004000

Data for Winter season:

Days	No. of chicks at beginning of interval	No. of death during interval		Survival function	
(x)	(n_i)	(d_i)	$93p_i$	s(x)	SE (s(x))
1-3	4491	19	0.995769	0.995769	0.001000
4-6	4472	20	0.995528	0.991316	0.001414
7-9	4452	13	0.997080	0.988421	0.001732
10-12	4439	7	0.998423	0.986863	0.001732
13-15	4432	7	0.998421	0.985304	0.001732
16-18	4425	6	0.998644	0.983968	0.002000
19-21	4419	2	0.999547	0.983523	0.002000
22-24	4417	10	0.997736	0.981296	0.002000
25-27	4407	11	0.997504	0.978847	0.002236
28-30	4396	1	0.999773	0.978624	0.002236
31-33	4395	5	0.998862	0.977511	0.002236
34-36	4390	10	0.997722	0.975284	0.002236
37-39	4380	15	0.996575	0.971944	0.002449
40-42	4365	20	0.995418	0.967491	0.002646

3. Regression Analysis.

We used regression analysis to find the relation between the amount of feeding and weight gain of chicks in different seasons.

Y= Body weight gain by chicks in grams.

X= Cumulative feed consumed by chicks in grams.

Data for summer season:

	In grams	
Interval	body	cumulative
(days)	weight (y)	feed (x)
1-3	90	34
4-6	150	123
7-9	210	229
10-12	300	406
13-15	400	514
16-18	500	585
19-21	750	798
22-24	900	976
25-27	1150	1474
28-30	1250	1598
31-33	1380	1975
34-36	1500	2412
37-39	1850	2887
40-42	2200	3328

Graph:

Summary:

Regression Statistics	
Multiple R	0.990421
R Square	0.980934
Adjusted R Square	0.979345
Standard Error	96.448551
Observations	14

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	130.878765	40.34723	3.243810	0.007037
X Variable 1	0.622740	0.025062	24.847867	1.09E-11

Regression equation: y= 130.878765+(0.622740*x)

1gram feed help to increase approximately 0.6 gram of weight. Because in summer chicks eat less. Weight gain is high compared to feeding.

Data for Rainy season:

	100		
	In grams		
Interval	body	cumulative	
(days)	weight (y)	feed (x)	
1-3	100	87	
4-6	155	140	
7-9	240	264	
10-12	310	406	
13-15	410	566	
16-18	480	797	
19-21	520	1011	
22-24	680	1317	
25-27	820	1591	
28-30	1300	1924	
31-33	1567	2303	
34-36	1758	2593	
37-39	1940	3094	
40-42	2500	3195	

Graph:

Summary:

3136	CONTRACTOR NO. 1			
Regression Statistics				
Multiple R	0.981147			
R Square	0.962649			
Adjusted R Square	0.959536			
Standard Error	153.548517			
Observations	14			

	K.D.	Standard	TOR	5 .7.
	Coefficients	Error	t Stat	P-value
Intercept	-33.875418	67.691594	-0.500437	0.6258184
X Variable 1	0.687176	0.039074	17.586235	6.2259E-10

Regression equation: y = -33.875418 + (0.687176*x)

1gram feed help to increase approximately 0.7 gram of weight.

Data for Winter season:

	ln į		
Interval	Body	Cumulative	
(days)	weight (y)	feed (x)	
1-3	100	70	
4-6	150	178	
7-9	240	289	
10-12	310	469	
13-15	390	563	
16-18	520	690	
19-21	640	1094	
22-24	800	1332	CH OTER
25-27	1200	1792	
28-30	1300	2177	12
31-33	1610	2620	4117
34-36	1850	2952	HIK
37-39	2180	3457	M
40-42	2335	4196	1073

Graph:

Summary:

Regression Statistics	
Multiple R	0.995880
R Square	0.991776
Adjusted R Square	0.991091
Standard Error	72.865205
Observations	14

	Coefficients	Standard Error	t Stat	P-value
Intercept	V 1 100	30.709214	2.276374	1.1
X Variable 1	0.578012	0.015194	38.042315	0.000000

Regression equation: y = 69.905651 + (0.578012*x)

1gram feed help to increase approximately 0.6 gram of weight.

Interpretation:

Season	Weight	gain per	gram
Summer		0.6	10
Rainy	1	0.7	
Winter		0.6	74

Conclusion:

All three season have linear relation between body weight gain and feeding

1934

- 1) The rainy season has the highest body weight gain per gram of food consumed.
- 2) The winter and summer season has the lowest body weight gain per gram of food consumed.

3. Analysis of Variance (ANOVA):

We compare different type of feeds of chicks using F.C.R. Therefore we use "ANOVA" for comparison of feeds in different stages of growths with seasonal effect.

	Summer	Rainy	Winter
Feed 1	1.35	1.31	1.51
Feed 2	1.17	1.66	1.33
Feed 3	1.28	1.48	1.67
Feed 4	1.51	1.28	1.80

 H_{01} : Different types of feeds do not have same FCR.

 H_{11} : Different types of feeds have same FCR.

 H_{02} : Different seasons do not have same FCR.

 H_{21} : Different seasons have same FCR.

SUMMARY	Count	Sum	Average	Variance
Feed 1	3	4.175914	1.391971	0.011445
Feed 2	3	4.15734	1.38578	0.062725
Feed 3	3	4.433015	1.477672	0.039251
Feed 4	3	4.587729	1.529243	0.067545
	G-31	/ -		
Summer	4	5.314461	1.328615	0.02073
Rainy	4	5.728094	1.432024	0.031052
Winter	4	6.311444	1.577861	0.041525

ANOVA Table:

Source of						
Variation	SS	df	MS	F	P-value	F tab.
Feeds	0.043434	3	0.014478	0.367329	0.779625	4.757063
seasons	0.125447	2	0.062724	1.591394	0.278952	5.143253
Error	0.236485	6	0.039414			
Total	0.405366	11				

- 1. Since the p value for feed is 0.779625 we accept H_{01} at 5% Level of Significance.
- 2. Since the p value for season is 0.278952 we accept $\rm H_{01}$ at 5% Level of Significance.

Conclusion:

- 1) Different type of feeds have same FCR.
- 2) Different seasons have same FCR.

TESTING OF HYPOTHESIS

Run test for randomness.

1.For F.C.R.

There are ups and downs observed F.C.R as compared to standard F.C.R.

We want to check whether these ups and downs are random.

We use run test for random.

If F.C.R observed less than standard replace by – sign

If F.C.R observed greater than standard replace by + sign

1) Data for summer season:

Standard F.C.R.	Observed F.C.R.
0.51	0.38
0.85	0.82
0.96	1.09
1.08	1.35
1.17	1.29
1.21	7-1.17
1.29	1.06
1.31	1.08
1.35	1.28
1.43	1.28
1.45	1.43
1.50	1.61
1.52	1.56
1.59	1.51

H₀: changes in F.C.R. are random in nature.

H₁: changes in F.C.R. are not random in nature.

Sequence:

- - + + +- - - - - + + -

Number of runs =R= 5

 n_1 : number of + sign = 5

 n_2 : number of - sign = 9

Critical value of r in the run test:

R_o: 3 R₁: 11

 $R_1 \ge R \ge R_o$

Interpretation:

Accept H₀ at 5% level of significance.

Therefore, changes in F.C.R. are random in nature.

2) Data for rainy season:

Standard F.C.R.	Observed F.C.R.
0.51	0.87
0.85	0.90
0.96	1.10
1.08	1.31
1.17	1.38
1.21	1.66
1.29	1.94
1.31	-1.94
1.35	1.94554
1.43	1.48
1.45	1.47
1.50	1.47
1.52	1.59
1.59	1.28

H₀: changes in F.C.R. are random in nature.

H₁: changes in F.C.R. are not random in nature.

Sequence:

++++++++++-+-

Number of runs =R= 4

 n_1 : number of + sign = 12

 n_2 : number of - sign = 2

Critical value of r in the run test:

R_o: 2 R₁: 9

 $R_1 \ge R \ge R_o$

Interpretation:

Accept H₀ at 5% level of significance.

Therefore, changes in F.C.R. are random in nature.

3) Data for winter season:

Standard F.C.R.	Observed F.C.R.
0.51	0.70
0.85	1.19
0.96	1.20
1.08	1.51
1.17	1.44
1.21	1.33
1.29	4.71
1.31	1.67
1.35	1.49
1.43	C E 1.675 \ U
1.45	1.63
1.50	1.60
1.52	1.59
1.59	1.80

H₀: changes are random in nature.

H₁: changes are not random in nature.

Sequence:

+++++++++++++

Number of runs =R= 1

 n_1 : number of + sign = 14

 n_2 : number of - sign = 0

Critical value of r in the run test:

R_o: 2

 $R \leq R_o$

Interpretation:

Reject H₀ at 5% level of significance.

Therefore, changes in F.C.R. are not random in nature.

2. For Deaths of Chicks:

We would like to check number of deaths are random in nature or is there any pattern (increasing or decreasing). We used run test to test randomness.

1) Data for summer season:

Interval of days	Total deaths
1/7	1 (14) /
2	24
3	E 48 5
4	16
5	22
6	40
7	21
8	28
9	29
10	76
11	69
12	27
13	33
14	42

H₀: Number of deaths are random in nature.

H₁: Number of deaths are not random in nature.

Ascending order:

Median =
$$\frac{7^{th} \text{ observation} + 8^{th} \text{ observation}}{2}$$
$$= \frac{28+29}{2}$$
$$= 28.5$$

Sequence is: --+--+++++

Number of runs =R= 8

 n_1 : number of + sign = 7

 n_2 : number of - sign = 7

Critical value of r in the run test:

R_o:3 R₁:13

 $R_1 \ge R \ge R_o$

Interpretation:

Accept H₀ at 5% level of significance.

Therefore, Number of deaths are random in nature.

2) Data for Rainy season:

Interval of Days	Total deaths	
1	27	
2	17	
3	10	
4	7	
5	2	
6	8	
7	6	
8	15	
9	20	
10	26	
11	37	
12	29	
13	90	
14	73	

H_o: Number of deaths are random in nature.

H₁: Number of deaths are not random in nature.

Ascending order:

Median =
$$\frac{7^{th} \text{ observation} + 8^{th} \text{ observation}}{2}$$
$$= \frac{17 + 20}{2}$$

Sequence is:

+----+++++

=18.5

Number of runs =R= 3

 n_1 : number of + sign = 7

 n_2 : number of - sign = 7

Critical value of r in the run test:

R_o: 3 R₁: 13

 $R_1 \ge R \ge R_o$

Interpretation:

Accept H₀ at 5% level of significance.

Therefore, Number of deaths are random in nature.

3) Data for winter season:

Interval of Days	Total deaths
1	19
2	20
3 (\)	13
4 //	77
5/	< \J\VI
6	6
7	2
8	10
9	11 5
10	1 576
11	5 754
12	U 10 /W
13	15
14	20

Ho: Number of deaths are random in nature.

H₁: Number of deaths are not random in nature.

Ascending order:

Median =
$$7^{th}+8^{th}$$
obs /2
=10+10/2

=10

Sequence is:

+ + + - - - - + + - - + + +

Number of runs =R= 5

 n_1 : number of + sign = 8

 n_2 : number of - sign = 6

Critical value of r in the run test:

R_o: 3 R₁: 12

 $R_1 \ge R \ge R_o$

Interpretation:

Accept H₀ at 5% level of significance.

Therefore, Number of deaths are random in nature.

Conclusion:

1. In summer and rainy season there is significant difference between standard values and observed values of F.C.R. & in winter season there is no significant difference between standard values and observed values of F.C.R. It is one of the main cause of increased death rates of chicks in summer and rainy season.

2. In all three seasons, number of deaths are random in nature. There is no any specific pattern (increasing or decreasing).

Conclusions

- 1. In summer season, body weight gain per gram is moderate as compared to other seasons. But death rate is high in "summer season".
- 2. In rainy season, body weight gain per gram is high as compared to other seasons. Death rate is moderate.
- 3. In winter season, death rate is low as compared to Summer and rainy season. F.C.R. is close to standard values in this season.
 - 4. In winter, observed value of F.C.R always higher than actual value.
- 5. In all three seasons, number of deaths are random in nature. There is no any specific pattern (increasing or decreasing).
- 6. From above analysis we conclude that the "winter season" is best season for poultry framing as compared to other two season.

Limitations

- 1.Inference drawn in this project report is only valid for Nashik district.
- 2. This project report is concerned with the breed of chickens "COCK 300" so this inference is only valid for this particular breed.

Scope

We have done the analysis of poultry farming for which we have taken the poultry from Nasik district, Malegaon but we can do this type of analysis for any region. In this analysis we have considered the breed "COCK 300", we can do the analysis for any breed.

References

- 1. Montgomery, D. C. (1983). Statistical Quality Control, John Wiley and Sons, Inc., New York.
- 2. Deshpande, J.V. and Purohit S.G. (2005). Life Time Data: Statistical Models and Methods, Word Scientific
- 3. Gupta S.C and Kapoor V.K: (2006). Fundamental Mathematical Statistics, Sultan Chand and Sons, 88, Daryaganj, New Delhi.
- 4. www.google.com
- 5. https://en.wikipedia.org/wiki/Poultry_farming.

