CONVOLUTION AND APPROXIMATE IDENTITIES

SIMON GRÜNING

2. Examples of Topological Groups

Definition 2.1. Topological Group

Definition 2.2. Locally Compact

Definition 2.3. Haar Measure

Example 2.1. $\mathbb{R}^n, \mathbb{Z}^n, \mathbb{T}^n$

Example 2.2. dx/|x|

Example 2.3. Heisenberg Group \mathbb{H}^n

3. Convolution

Definition 3.1. Let $f, g \in L^1(G)$. Define the convolution f * g by

$$(f * g)(x) = \int_{G} f(y)g(y^{-1}x)d\lambda(y)$$

$$\tag{1}$$

4. Basic Convolution Inequalities

Theorem 4.1. Minkowskis Inequality, triangle inequality for Lp spaces

Theorem 4.2. Youngs Inequality

Theorem 4.3. Youngs Inequality for Weak Type Spaces ouch proof

5. Approximate Identities

Approximation of dirac delta function, identity element of convolutions

DEFINITION 5.1. An approximate identity (as $\varepsilon \to 0$) is a family of $L^1(G)$ functions k_{ε} with the following three properties:

- (i) There exists a constant c > 0 such that $||k_{\varepsilon}||_{L^{1}(G)} \leq c$ for all $\varepsilon > 0$.
- (ii) $\int_G k_{\varepsilon}(x) d\lambda(x) = 1$ for all $\varepsilon > 0$.
- (iii) For any neighborhood V of the identity element e of the group G we have $\int_{V^c} |k_{\varepsilon}(x)| d\lambda(x) \to 0$ as $\varepsilon \to 0$.

Example 5.1.

(Simon Grüning) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: simon.gruening@uzh.ch.

FIGURE 1. Fejer Kernel

Theorem 5.1. approx. id. on locally compact group G with left Haar measure Theorem 5.2. ke family of funcs on loc compact group G with properties...

6. Required Stuff

- (1) hausdorf topological space
- (2) counting measure

- (3) area of intersecting circles
- (4) banach algebra
- (5) hoelders inequality
- (6) fubini
- (7) chebyschevs inequality
- (8) lebesgue dominated conv. thm.
- (9) measure theoretic support

chapter 1 stuff:

- (1) Lp norms and other defs etc.
- (2) distr. functions