NAME

CUTEST_csgreh – CUTEst tool to evaluate the constraint gradients, the Lagrangian Hessian in finite element format and the gradient of either the objective/Lagrangian in sparse format.

SYNOPSIS

CALL CUTEST_csgreh(status, n, m, X, Y, grlagf, nnzj, lj, J_val, J_var, J_fun, ne, lhe_ptr, HE_row_ptr, HE_val_ptr, lhe_row, HE_row, lhe_val, HE_val_byrows)

For real rather than double precision arguments, instead

CALL CUTEST_csgreh_s(...)

and for quadruple precision arguments, when available,

CALL CUTEST_csgreh_q(...)

DESCRIPTION

The CUTEST_csgreh subroutine evaluates both the gradients of the general constraint functions and the Hessian matrix of the Lagrangian function $l(x, y) = f(x) + y^T c(x)$ for the problem decoded into OUTS-DIF.d at the point (x, y) = (X, Y). This Hessian matrix is stored as a sparse matrix in finite element format

$$H = \sum_{e=1}^{ne} H_{e,}$$

where each square symmetric element H_e involves a small subset of the rows of the Hessian matrix. The subroutine also obtains the gradient of either the objective function or the Lagrangian function, stored in a sparse format.

The problem under consideration consists in minimizing (or maximizing) an objective function f(x) o ver all $x \in R^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l \le c_i(x) \le c_i^u$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_csgreh are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

 \mathbf{n} [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

Y [in] - real/double precision

an array which gives the Lagrange multipliers,

grlagf [in] - logical

a logical variable which should be set .TRUE. if the gradient of the Lagrangian function is required and .FALSE. if the gradient of the objective function is sought,

nnzj [out] - integer

the number of nonzeros in J_val,

HE row [out] - integer

an array which holds a list of the row indices involved which each element. Those for element i directly preced those for element i+1, i=1, ..., ne-1. Since the elements are symmetric, HE_row is also the list of column indices involved with each element.

lj [in] - integer

the actual declared dimensions of J_val, J_var and J_fun,

J_val [out] - real/double precision

an array which gives the values of the nonzeros of the gradients of the objective, or Lagrangian, and general constraint functions evaluated at X and Y. The i-th entry of J_val gives the value of the derivative with respect to variable J_var(i) of function J_fun(i),

J_var [out] - integer

an array whose i-th component is the index of the variable with respect to which J_val(i) is the derivative,

J_fun [out] - integer

an array whose i-th component is the index of the problem function whose value $J_{val}(i)$ is the derivative. $J_{fun}(i) = 0$ indicates the objective function whenever grlagf is .FALSE. or the Lagrangian function when grlagf is .TRUE., while $J_{fun}(i) = j > 0$ indicates the j-th general constraint function.

ne [out] - integer

the number, ne, of "finite-elements" used,

lhe_ptr [in] - integer

the actual declared dimensions of HE_row_ptr and HE_val_ptr,

HE_row_ptr [out] - integer

HE_row_ptr(i) points to the position in HE_row of the first row index involved with element number e: the row indices of element number e are stored in HE_row between the indices HE_row_ptr(e) and HE_row_ptr(e+1)-1. HE_row_ptr(ne+1) points to the first empty location in HE_row,

HE_val_ptr [out] - integer

HE_val_ptr(i) points to the position in HE_val of the first nonzero involved with element number i: the values involved in element number e are stored in HE_val between the indices HE_val_ptr(e) and HE_val_ptr(e+1)-1. HE_val_ptr(ne+1) points to the first empty location in HE_val,

lhe_row [in] - integer

the actual declared dimension of HE_row,

HE_row [out] - integer

an array which holds a list of the row indices involved which each element. Those for element e directly preced those for element e+1, e = 1, ..., ne-1. Since the elements are symmetric, HE_row is also the list of column indices involved with each element.

lhe_val [in] - integer

the actual declared dimension of HE_val,

HE_val [out] - real/double precision

an array of the nonzeros in the upper triangle of H_e , evaluated at X and stored by rows, or by columns. Those for element e directly proceed those for element, e+1, i=1, ..., ne-1. Element number e contains the values stored between

HE_val(HE_val_ptr(e)) and HE_val(HE_val_ptr(e+1)-1)

and involves the rows/columns stored between

```
HE_row( HE_row_ptr(e) ) and HE_row( HE_row_ptr(e+1)-1 ).
```

byrows [in] - logical

must be set to .TRUE. if the upper triangle of each H_i is to be stored by rows, and to .FALSE. if it is to be stored by columns.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications 60:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment,

I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,

ACM TOMS, 21:1, pp.123-160, 1995.

cutest_ugreh(3M), sifdecoder(1).