

Úloha č. 1 (Termín odovzdania 15.11.2019)

Uvažujme operáciu \circ definovanú nasledovne: $L_1 \circ L_2 = L_1 \cup \overline{L_2}$. S využitím uzáverových vlastností dokážte alebo vyvráťte nasledujúce vzťahy:

- (a) $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_3$
- (b) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2^D$
- (c) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2$

 \mathcal{L}_2^D značí triedu deterministických bezkontextových jazykov, \mathcal{L}_2 triedu bezkontextových jazykov a \mathcal{L}_3 triedu regulárnych jazykov.

(10 bodov)

Riešenie

- (a) Podľa vety 3.23^1 trieda regulárnych jazykov tvorí množinovú Booleovu algebru z ktorej mimo iné plynie aj uzavretosť voči doplnku. Teda ak $L_2 \in \mathcal{L}_3$ potom aj $\overline{L_2} \in \mathcal{L}_3$. Ďalej podľa vety 3.22^1 je trieda regulárnych jazykov uzavretá aj voči operácii \cup (zjednotenie) a teda ak $L_1 \in \mathcal{L}_3$ (zo zadania) a zároveň $\overline{L_2} \in \mathcal{L}_3$ potom aj $L_1 \cup \overline{L_2} \in \mathcal{L}_3$. Zadaný vzťah **platí**.
- (b) Operáciu $L_1 \circ L_2$ je možné aplikáciou DeMorganových zákonov prepísať na tvar $\overline{L_1} \cap L_2$. V tomto tvare sa nachádza doplnok regulárneho jazyka L_1 , ktorý je podľa vety 3.23^1 taktiež regulárny jazyk. Ďalej veta 4.27^1 hovorí, že deterministické bezkontextové jazyky sú uzatvorené voči prieniku s regulárnymi jazykmi. Preto ak $\overline{L_1} \in \mathcal{L}_3$ a $L_2 \in \mathcal{L}_2^D$ potom aj $\overline{L_1} \cap L_2 \in \mathcal{L}_2^D$. Veta 4.27^1 taktiež hovorí, že deterministické bezkontextové jazyky sú uzatvorené aj voči doplnku a preto $\overline{L_1} \cap L_2 \in \mathcal{L}_2^D$ Zadaný vzťah **platí**.
- (c) Veta 4.24^1 mimo iné hovo<u>rí aj o</u> tom, že bezkontextové jazyky nie sú uzatvorené voči doplnku. Keďže tvar $\overline{L_1} \cap L_2$ obsahuje doplnok bezkontextového jazyka, je táto uzáverová vlastnosť porušená.

Na vyvrátenie tvrdenia (c) použijeme dôkaz sporom:

Predpokladajme že zadaný vzťah platí. Nech L_1 a L_2 sú ľubovoľné jazyky nad abecedou Σ . Za L_1 zvolíme jazyk \emptyset . Keďže \emptyset je regulárna množina nad Σ , potom aj jazyk, ktorý značí (v našom prípade L_1) je regulárny. Po dosadení L_1 do overovaného vzťahu získame výraz $\overline{L_2}$. Keďže podľa vety 4.24^1 doplnok bezkontextového jazyka nieje bezkontextový jazyk, potom $\overline{L_2} \notin \mathcal{L}_2$ a teda ani $\overline{L_1} \cap L_2 \notin \mathcal{L}_2$.

Zadaný vzťah neplatí.

¹https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf

Majme jazyk L nad abecedou $\{a, b, \#\}$ definovaný nasledovne:

$$L = \{a^i b^j \# a^k b^l | i + 2j = 2k + l\}$$

Zostrojte deterministický zásobníkový automat M_L taký, že $L(M_L) = L$.

(10 bodov)

Riešenie

$$M_L = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b, \#\}, \{a, b, Z\}, \delta, q_0, Z, \{q_5\})$$

kde

$$\delta(q_0, a, \varepsilon) = (q_0, a)$$

$$\delta(q_0, b, \varepsilon) = (q_1, b)$$

$$\delta(q_0, b, \varepsilon) = (q_1, b)$$

$$\delta(q_0, \#, \varepsilon) = (q_2, \varepsilon)$$

$$\delta(q_1, \#, \varepsilon) = (q_2, \varepsilon)$$

$$\delta(q_1, \#, \varepsilon) = (q_2, \varepsilon)$$

$$\delta(q_2, a, b) = (q_4, b)$$

$$\delta(q_2, a, b) = (q_4, b)$$

$$\delta(q_2, a, b) = (q_4, b)$$

$$\delta(q_2, b, \varepsilon) = (q_3, \varepsilon)$$

$$\delta(q_2, \varepsilon, Z) = (q_5, \varepsilon)$$

$$\delta(q_2, \varepsilon, Z) = (q_5, \varepsilon)$$

$$\delta(q_3, \varepsilon, a) = (q_2, \varepsilon)$$

$$\delta(q_4, \varepsilon, a) = (q_2, \varepsilon)$$

$$\delta(q_4, \varepsilon, b) = (q_2, \varepsilon)$$

Dokážte, že jazyk L z predchádzajúceho príkladu nieje regulárny.

(10 bodov)

Riešenie

Predpokladajme, že jazyk L je regulárny jazyk. Potom podľa vety 3.18^2 existuje celočíselná konštanta p>0 taká, že veta $\boldsymbol{a^pb^p\#a^pb^p}$ môže byť zapísaná v tvare $xyz=a^pb^p\#a^pb^p$, $y\neq\varepsilon \land |xy|\leq p \land \forall i\geq 0: xy^iz\in L$

Pri hľadaní podreťazca y môže vďaka podmienke $|xy| \le p$ nastať iba jedna možnosť:

$$a\underbrace{aa\dots a}_{y}bbb\dots b\#aaa\dots abbb\dots b$$

$$y \in \{a^+\}$$

Reťazec xyz tak bude vyzerať nasledovne:

$$x = a^{k}$$

$$y = a^{l}$$

$$z = a^{p-k-l}b^{p}\#a^{p}b^{p}$$

$$k + l \le p$$

Potom ak za tzv. pumpovaciu konštantu zvolíme napríklad i=2 dostaneme reťazec:

$$xy^2z = a^ka^{2l}a^{p-k-l}b^p\#a^pb^p = a^{p+l}b^p\#a^pb^p \notin L$$

Vzniknutý reťazec ale nepatrí do jazyka L, keďže $p+l+2p\neq 2p+p$. Tým pádom došlo k sporu, čím sme vyvrátili predpoklad, že jazyk L je regulárny.

²https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf

Navrhnite algoritmus, ktorý pre daný nedeterministický konečný automat $A=(Q,\Sigma,\delta,q_0,F)$ rozhodne či $\forall w\in L(A): |w|\geq 5$.

Ďalej demonštrujte beh tohto algoritmu na automate $A = (\{q_0, q_1, q_2, q_3, q_4\}, \{a\}, \delta, q_0, \{q_4\}),$ kde δ je definovaná ako

$$\begin{split} &\delta(q_0,a) = \{q_1,q_0\}, \ \delta(q_1,a) = \{q_1,q_2\} \\ &\delta(q_2,a) = \{q_0,q_3\}, \ \delta(q_3,a) = \{q_0,q_4\} \\ &\delta(q_4,a) = \{q_0\} \end{split}$$

(10 bodov)

Riešenie

```
Algoritmus 1 Rozhodne či v jazyku L(A) prijímanom NKA platí \forall w \in L(A) : |w| \geq 5

Vstup: nedeterministický konečný automat A = (Q, \Sigma, \delta, q_0, F)

Výstup: \exists w \in L(A) : |w| < 5 \Rightarrow False, \forall w \in L(A) : |w| \geq 5 \Rightarrow True

1: Zavedieme reláciu R_1 \subseteq Q \times Q takú že \forall q_i, q_j \in Q : q_i R_1 q_j \stackrel{\text{def}}{\Longleftrightarrow} (\exists a \in \Sigma : q_j \in \delta(q_i, a))

2: for i \leftarrow 1 to 4 do

3: if \exists q_j \in F : q_0 R_i q_j then

4: return False \Rightarrow \exists w \in L(A) : |w| = i

5: end if

6: R_{i+1} \leftarrow R_i \circ R_1

7: end for

8: return True
```

Myšlienka algoritmu je založená na postupnom skladaní relácií. Relácia R_i v i-tej iterácií udáva, či medzi dvoma stavmi v automate existuje cesta dĺžky i. Napríklad ak sú vo vzťahu stavy q_0, q_2 v relácii R_2 ($q_0R_2q_2$), tak musí existovať nejaký stav q_1 do ktorého vedie cesta dĺžky 1 z q_0 a z ktorého vedie cesta dĺžky 1 do q_2 :

$$q_0(R_1 \circ R_1)q_2 \Leftrightarrow \exists q_1(q_0R_1q_1 \wedge q_1R_1q_2)$$

Na to aby sme zistili či pre všetky vety v jazyku prijímanom daným automatom platí že ich dĺžka je aspoň 5, tak potrebujeme aspoň 4 iterácie nášho algoritmu. V každej iterácii následne testujeme či existuje nejaký koncový stav automatu, ktorý by bol vo vzťahu s počiatočným stavom.

Demonštrácia algoritmu na zadanom automate:

1. Vytvorená relácia R_1 :

$$R_1 = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 & q_4 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix}$$

2. $i \leftarrow 1; \forall q_j \in F : q_0 \not R_1 q_j :$

$$R_2 = R_1 \circ R_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

3. $i \leftarrow 2; \forall q_j \in F : q_0 \not R_2 q_j :$

$$R_3 = R_2 \circ R_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix} \begin{array}{c} q_0 \\ q_1 \\ q_2 \\ q_3 \\ 1 \end{array}$$

4. $i \leftarrow 3$; $\forall q_j \in F : q_0 \not R_3 q_j :$

5. $i \leftarrow 4$; $\exists q_j \in F : q_0 R_4 q_j \ (q_j = q_4) :$

return False

Existuje cesta dĺžky 4 z počiatočného stavu q_0 do koncového stavu q_4 .

Dokážte, že jazyk $L=\{w\in\{a,b\}^*\mid \#_a(w)\ mod\ 2\neq 0\land \#_b(w)\leq 2\}$ je regulárny. Postupujte nasledovne:

- (a) Definujte \sim_L pre jazyk L.
- (b) Zapíšte rozklad Σ^*/\sim_L a určite počet tried tohto rozkladu.
- (c) Ukážte, že L je zjednotením niektorých tried rozkladu Σ^*/\sim_L .

(10 bodov)

Riešenie

(a)
$$u \sim_L v \stackrel{\text{def}}{\iff} [(\#_a(u) \mod 2 = \#_a(v) \mod 2) \land (\#_b(u) = \#_b(v) \land 0 \le \#_b(u), \#_b(v) \le 2)] \lor (\#_b(u) > 2 \land \#_b(v) > 2)$$

(b) Σ^*/\sim_L :

$$\begin{split} L_1 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 0 \ \land \ \#_b(w) = 0 \} \\ L_2 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 0 \ \land \ \#_b(w) = 1 \} \\ L_3 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 0 \ \land \ \#_b(w) = 2 \} \\ L_4 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 1 \ \land \ \#_b(w) = 0 \} \\ L_5 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 1 \ \land \ \#_b(w) = 1 \} \\ L_6 &= \{ w \in \Sigma^* \mid \#_a(w) \bmod 2 = 1 \ \land \ \#_b(w) = 2 \} \\ L_7 &= \{ w \in \Sigma^* \mid \#_b(w) > 2 \} \end{split}$$

(c) $L = L_4 \cup L_5 \cup L_6$

Relácia \sim_L má konečný index (7) a L je zjednotením niektorých tried rozkladu (L_4, L_5, L_6) . Podľa Myhill-Nerodovej vety (veta 3.20^3) je potom ekvivalentným tvrdením, že jazyk L je prijímaný DKA. A keďže jazyk L je prijímaný DKA potom je jazyk L regulárny.

https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf