Reinforcement Learning Cheat Sheet

Notation

In general, random variables are upper case and the values of the random variable are lower case. Matrices are bold.

Symbol	Meaning
t	a discrete time
S_t	state at time t
A_t	action at time t
R_t	reward at time t
${\mathcal S}$	set of all non-terminal states
$\mathcal A$	set of all actions
${\cal R}$	set of all rewards
÷	definition equal

Problem setup: Markov decision processes

Figure 1: Actor-critic relation

In a Markov decision process (MDP) shown in Figure 1, a game agent interacts with an environment to achieve a certain goal. The interaction happens at every discrete time t=1,2,3,.... The agent observes certain state of the environment $S_t \in \mathcal{S}$, selects some action $A_t \in \mathcal{A}$ and then receives certain reward $R_{t+1} \in \mathcal{R}$. In a finite MDP, $p(s',r|s,a) = Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$. The expected reward can be computed by $r(s,a) = \mathbb{E}[R_t|S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$.

The goal of a game is typically to maximize the return. The discounted reward can be framed by:

$$G_t \doteq R_{t+1} + \gamma R_{t+1} + \dots + \gamma^2 R_{t+2} \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

 $\gamma \in [0,1]$ is the discount factor.

Actor-critic

Figure 2: Actor-critic relation

Actor-critic (AC) methods lay between value-based and policy gradient methods as shown in figure 2. They both estimate the policy and state-action functions, whereas value-based methods only estimate state-value functions and have an implicit ϵ -greedy policy, and policy gradient methods do not have value function and only estimates the policy.

Variation of Parameters

$$F(x) = y'' + y'$$

$$y_h = b_1 y_1(x) + b_2 y_2(x), y_1 y_2 \text{ are L.I.}$$

$$y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$$

$$u_1 = \int_0^t -\frac{y_2 F(t) dt}{w[y_1, y_2](t)}$$

$$u_2 = \int_0^t \frac{y_1 F(t) dt}{w[y_1, y_2](t)}$$

$$y = y_h + y_p$$

ODEs

Use integrating factor,
$I = e^{\int P(x)dx}$
$\int P(y)dy/dx = \int Q(x)$
dy/dx = f(x,y) = f(xt,yt)
sub $y = xV$ solve, then sub
V = y/x
If $M(x,y) + N(x,y)dy/dx =$
0 and $M_y = N_x$ i.e.
$\langle M, N \rangle = \nabla F$ then $\int_x M +$
$\int_{\mathcal{U}} N = F$
Let $v = dy/dx$ then check
other types
If purely a function of y,
$\frac{dv}{dx} = v\frac{dv}{dy}$
When $y'' + a_1 y' + a_2 y = F(x)$
F contains $\ln x$, $\sec x$, $\tan x$,
÷
$y' + P(x)y = Q(x)y^n$
$\div y^n$
$y^{-n}y' + P(x)y^{1-n} = Q(x)$
Let $U(x) = y^{1-n}(x)$
$\frac{dU}{dx} = (1 - n)y^{-n}\frac{dy}{dx}$ $\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
$\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
$\frac{solve \ as \ a \ 1st \ order}{x^n y^n + a_1 x^{n-1} y^{n-1} + \dots +}$
$x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \cdots +$
$a_{n-1}y^{n-2} + a_n y = 0$
guess $y = x^r$
r_1 , r_2
$y = ax^{r_1} + bx^{r_2}$
$y = Ax^r + y_2$
Guess $y_2 = x^r u(x)$
Solve for $u(x)$ and choose
one $(A = 1, C = 0)$
$y = B_1 x^a \cos(b \ln x) + B_2 x^a \sin(b \ln x)$
$D_2x \sin(\theta \ln x)$

Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
Guess $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$

$$\frac{e^x \sum_{n=0}^{\infty} x^n / n!}{\sin x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}}$$

$$\cos x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$\mathbf{Systems}$ $\vec{x}' = A\vec{x}$ $\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \dots + a_n e^{\lambda_n t} \vec{v_n}$ $A\ is\ diagonalizable$ $\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1})$ A is not diagonalizable where $(A - \lambda I)\vec{w} = \vec{v}$ \vec{v} is an Eigenvector w/ value i.e. \vec{w} is a generalized Eigen- $\vec{x}' = A\vec{x} + \vec{B}$ Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$ $\vec{X} = [\vec{x_1}, \vec{x_2}]$ $\vec{X}\vec{u}' = \vec{B}$ $y_p = \vec{X}\vec{u}$ $y = y_h + y_p$

Matrix Exponentiation

$$A^n = SD^nS^{-1}$$

D is the diagonalization of A

Laplace Transforms

$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \ constant \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \ constant \qquad F(s) = \frac{b}{s^2 + b^2}, s > 0$$

$$f(t) = \cos bt, b \ constant \qquad F(s) = \frac{s}{s^2 + b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t - a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2 L[f] - sf(0) - f'(0)$$

$$L[e^{at} f(t)] \qquad L[f](s - a)$$

$$L[f](s - a)$$

$$L[f](s - a)$$

If $\vec{w_1} = \vec{u(t)} + i\vec{v(t)}$ is a so-

lution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$

are solutions

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi}^n}{\sqrt{\det A}}$$

Complex Numbers Systems of equations