Groups

Based on Lectures and "Algebra and Geometry"

 $\theta\omega\theta$

Not in University of Cambridge skipped some takes irrelevant to contents

 $E ext{-}mail:$ not telling you

Contents

Ι	Groups and Permutations	1
1	Definition of Groups	1
2	2 Properties of Groups	1
3	3 Homomorphisms	3
	3.1 Definition and basic properties	3
	3.2 Images and Kernels	\$
4	Direct product of groups	4
5	6 Important Examples	5
	5.1 Cyclic groups	Ę
	5.2 Dihedral Groups	(
	5.3 Presentation	(
	5.4 Permutation groups	7
6	6 Möbius group	10
7	Lagrange's Theorem	12
	7.1 Cosets	12
	7.2 An application in Number Theory	13
	7.3 Exploring groups using Lagrange theorem	14
	7.4 Studying small groups using Lagrange's Theorem	14
8	3 Quotient groups	15
	8.1 Normal subgroups	15
	8.2 Quotients	16

1 Definition of Groups

Definition 1.1 (Group). A group is a set G together with a binary operation $*: G \times G \to G$ that

- 1. (Closure) $\forall g, h \in G, g * h$,
- 2. (Identity) $\exists e \in G, \forall g \in G, e * g = g * e = g$,
- 3. (Inverse) $\forall g \in G, \exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e$,
- 4. (Associativity) $\forall g, h, k \in G, (g * h) * k = g * (h * k)$.

Remark. The inverse of g is unique, for if there are two g', g'', both are inverses of g, we have

$$g' = g'' * g * g' = g''.$$

Example. (1) $G = \{e\}$, the trivial group,

- (2) $G = \{\text{symmetries of } \Delta\},\$
- $(3) (\mathbb{Z}, +),$
- $(4) (\mathbb{R}, +), (\mathbb{Q}, +), (\mathbb{C}, +),$
- (5) $\mathbb{R}^* = \mathbb{R} \setminus \{0\}; (\mathbb{R}^*, \times),$
- (6) $(\mathbb{Z}_n, + \pmod{n}), \mathbb{Z}_n = \{0, 1, \dots, n-1\},\$
- (7) Vector spaces with addition of vectors,
- (8) $(GL_2(\mathbb{R}), \text{ matrix multiplication})$, set of invertible 2×2 matrices,

Example (non-examples). (1) $(\mathbb{Z}_n, +)$, since it is not closed,

- (2) (\mathbb{Z}, \times) , since some inverses do not exist,
- (3) $(\mathbb{R},*)$, where $r*s=r^2s$, since there is no identity,
- (4) $(\mathbb{N}, *), n * m = |n m|$. Associativity fails.

2 Properties of Groups

Proposition 2.1. Let G be a group, then we have

- 1. The identity is unique.
- 2. THe inverse is unique.
- 3. $gh = g \wedge hg = g \Rightarrow h = e$.
- 4. $gh = e \Rightarrow hg = e, h = g^{-1}$.

Here \mathbb{N} is the set of all positive numbers, and it remains this definition unless specified otherwise.

Properties of Groups 2

5.
$$(g^{-1})^{-1} = g$$
.

Definition 2.1. A group G is called abelian if $\forall g, h \in G, gh = hg$.

Definition 2.2. G is said to be *finite* if it has finitely may elements. Denote |G| as its number of elements.

Definition 2.3. Let (G,*) be a group. A subset $H \subseteq G$ is called a *subgroup* of G if (H,*) is a group, written as $H \subseteq G$.

Remark. To check $H \leq G$, simply check closure, identity, and inverses. Associativity is inherited.

Proposition 2.2. Let e_H, e_G be the identities in H and G respectively, then $e_H = e_G$.

Example. (1) $\{e\} \leqslant G$.

- (2) $G \leqslant G$.
- (3) $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$.

Lemma 2.1 (subgroup test). Let G be a group, then $H \leqslant G \Leftrightarrow H \neq \emptyset \land \forall a,b \in H, ab^{-1} \in H$.

Proof. Since $gg^{-1} = e \in H$, identity is satisfied. Since $\forall a, b \in H, a(b^{-1})^{-1} = ab \in H$, closure is satisfied. $\forall g \in H, eg^{-1} = g^{-1} \in H$, inverse is satisfied. \square

Proposition 2.3. The subgroups of $(\mathbb{Z}, +)$ are precisely $(n\mathbb{Z}, +)$.

Proved by considering the minimal element.

Usual laws:

Proposition 2.4. (1) Let H, K be subgroups of G then $H \cap K \leq G$.

- (2) $K \leqslant H \land H \leqslant G \Rightarrow K \leqslant G$.
- (3) $K \subseteq H, H \leqslant G, K \leqslant G \Rightarrow K \leqslant H$.

Definition 2.4. If $X \neq \emptyset$ is a subset of group G, the subgroup *generated* by X, written as $\langle X \rangle$, is the intersection of all subgroups containing X.

 $\textbf{Remark.} \qquad \bullet \ e \in \langle X \rangle.$

- $X \subseteq \langle X \rangle$.
- $\langle X \rangle$ contains all possible products of elements of X and their inverses.

Proposition 2.5. Let $\emptyset \neq X \subseteq G$. Then $\langle X \rangle$ is the set of elements of G of the form

$$x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{r_k}, \quad x_i \in X, \alpha_i \in \{-1, 1\}, k \geqslant 0.$$

Proof. Let T be such a set. Then by definition $T \subseteq \langle X \rangle$. On the other hand, $X \subseteq T \Rightarrow \langle X \rangle \subseteq T$ since T clearly forms a subgroup. Hence $T = \langle X \rangle$.

HOMOMORPHISMS 3

3 Homomorphisms

3.1 Definition and basic properties

Definition 3.1. Let $(G, *_G), (H, *_H)$ be groups. A function $\varphi : H \to G$ is a homomorphism if

$$\forall a, b \in H, \varphi(a *_H B) = \varphi(a) *_G \varphi(b).$$

It is called an *isomorphism* if it is bijective.

Proposition 3.1. Let $\varphi: H \to G$ be a homomorphism.

- (1) $\varphi(e_H) = e_G$.
- (2) $\varphi(h^{-1}) = \varphi(h)^{-1}$.
- (3) If $\psi: G \to K$ is also a homomorphism, then $\psi \varphi: H \to K$ is a homomorphism.

Proposition 3.2. Let $\varphi: H \to G$ be an isomorphism. Then φ^{-1} is also an isomorphism and this implies that

$$G \cong H \iff H \cong G$$
.

3.2 Images and Kernels

Definition 3.2. The *image* of a homomorphism $\varphi: H \to G$ is

Lecture 4.

$$\operatorname{Im}(\varphi) = \{g \in G : \exists h \in H, \varphi(h) = g\}.$$

The kernel of φ is

$$\ker(\varphi) = \{ h \in H : \varphi(h) = e_G \}.$$

We have two immediate consequences:

Proposition 3.3. $\operatorname{Im}(\varphi), \ker(\varphi)$ are subgroups of G, H respectively.

Proof. Take $\operatorname{Im}(\varphi)$ as an example. Use lemma 2.1: $\operatorname{Im}(\varphi)$ is non-empty since $\varphi(e_H) = e_G$. For any $a, b \in \operatorname{Im}(\varphi)$, we have $a = \varphi(h), b = \varphi(h')$ for $h, h' \in H$. Hence

$$ab^{-1} = \varphi(h)\varphi(h')^{-1} = \varphi(hh'^{-1}) \in \operatorname{Im}(\varphi).$$

Hence $\operatorname{Im}(\varphi)$ is a subgroup. It is similar for $\ker(\varphi)$.

Example. (0) Let $\varphi: H \to G$ be the trivial homomorphism, i.e. $\varphi(h) \equiv e_G$. Then $\operatorname{Im}(\varphi) = \{e_G\}$ and $\ker(\varphi) = H$.

- (1) Let $\iota: H \to G$, where $H \leq G$, be the inclusion map. Then $\operatorname{Im}(\iota) = H, \ker(\iota) = \{e_H\}.$
- (2) $\varphi : \mathbb{Z} \to \mathbb{Z}_n, \varphi(k) = k \pmod{n}$. $\operatorname{Im}(\varphi) = \mathbb{Z}_n, \ker(\varphi) = n\mathbb{Z}$.

Proposition 3.4. Let $\varphi: H \to G$ be a homomorphism.

- (1) φ is surjective if and only if $\operatorname{Im} \varphi = G$,
- (2) φ is injective if and only if $\ker \varphi = \{e\}$.

DIRECT PRODUCT OF GROUPS 4

Proof. By definition, (1) holds.

Suppose φ is injective. Take $h \in \ker \varphi$. Then $\varphi(h) = \varphi(e) = e_G \Leftrightarrow h = e$. Conversely suppose $\ker \varphi = \{e\}$. Take a, b such that $\varphi(a) = \varphi(b)$. We have

$$\varphi(ab_{-1}) = \varphi(a)\varphi(b)^{-1} = e_G.$$

Thus $ab^{-1} = e_G \Leftrightarrow a = b$ and φ is injective.

4 Direct product of groups

Definition 4.1. The *direct product* of two groups G, H is the set $G \times H$ with the operation of component-wise composition:

$$(g_1, h_1) * (g_2, h_2) := (g_1 *_G g_2, h_1 *_H h_2).$$

Closure and identity are easily verified. The inverse is component-wise and associativity is inherited from G, H.

Remark. $G \times H$ contains subgroups isomorphic to G and H, i.e., $G \times \{e_H\}$ and $\{e_G\} \times H$.

Example. $\mathbb{Z} \times \{-1,1\}$ has elements $(n,\pm 1), n \in \mathbb{Z}$ with (n,-1)*(m,-1) = (n+m,(-1)(-1)) = (n+m,1), etc. Addition in the first component and multiplication in the second.

The identity of $\mathbb{Z} \times \{-1, 1\}$ is (0, 1).

Remark. In $G \times H$, everything in (the isomorphic copy of) G commutes with everything in (the isomorphic copy of) H. That is to say,

$$\forall (g, e_H), (e_G, h), (g, e_H) * (e_G, h) = (e_G, h) * (g, e_H) = (g, h).$$

Theorem 4.1 (Direct Product Theorem). Let $H, K \leq G$ such that

- (1) $H \cap K = \{e\}$: they are disjoint,
- (2) $\forall h, k, hk = kh$: they are commutative,
- (3) $\forall g \in G, \exists h \in H, k \in K, g = hk: G = HK.$

Then $G \cong H \times K$.

Proof. Consider the function $\varphi: H \times K \to G$ defined by $\varphi(h,k) = hk$. Note that

$$\varphi(h,k) * \varphi(h',k') = hkh'k' = hh'kk' = \varphi(hh',kk') = \varphi((h,k) * (h',k')),$$

so φ is a homomorphism. From (3) we know that φ is surjective. Let $\varphi(h,k)=e$, then $hk=e \Leftrightarrow h=k^{-1}$. Hence $h,k^{-1}\in H\cap K$ so h=k=e. Hence it is injective. Thus φ is an isomorphism and $G\cong H\times K$.

This gives us two ways to think about direct products:

- Given two groups H, K, one can form their direct products $H \times K$ and view H, K as subgroups via $H \times \{e_K\}$ and $\{e_H\} \times K$.
- Given a group G with subgroups H, K that satisfy these conditions, then we are equivalently dealing with $H \times K$.

By convention, we can simply regard $H \times \{e_K\}, \{e_H\} \times K$ as H, K.

IMPORTANT EXAMPLES 5

5 **Important Examples**

Cyclic groups 5.1

Definition 5.1. Let G be a group and let $X \subseteq G, X \neq \emptyset$. If $\langle X \rangle = G$, then X is called a generating set^1 of G.

G is cyclic if $\exists a \in G$ such that $\langle a \rangle = G$. In this case, $\forall b \in G, \exists k \in \mathbb{Z}, b = a^k$. a is called a generator of G.

¹ It is not necessary unique.

Example. (0) Trivial group $\{e\} = \langle e \rangle$.

(1)
$$(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle$$
.

(2)
$$(\mathbb{Z}_n, +_n) = \langle 1 \rangle = \langle k \rangle$$
, where $(k, n) = 1$.

$$(3) \ E = \left(\left\{e^{\frac{2\pi i k}{n}}: 0 \leqslant k \leqslant n-1\right\}, \cdot\right) = \langle e^{\frac{2\pi i m}{n}} \rangle, \text{ where } (m,n) = 1.$$

(4) $\{e, a, a^2, \dots, a^{n-1}\}$ with

$$a^k * a^j = \begin{cases} a^{k+j} & \text{if } k+j < n, \\ a^{k+j-n} & \text{if } k+j \geqslant n. \end{cases}$$

Again, it is isomorphic to \mathbb{Z}_n .

Write $C_n = \{e, a, a^2, \dots, a^{n-1}\}$. Then every cyclic group is isomorphic to C_n and we can write all cyclic groups in this form, or $\cong \mathbb{Z}$, which is the infinite case.

Lecture 5

Hence, $E \cong \mathbb{Z}_n$.

Theorem 5.1. A cyclic group G is isomorphic to \mathbb{Z} or C_n for some $n \in \mathbb{N}$.

Proof. Let $G = \langle b \rangle$. Suppose that $\exists n, b^n = e$. Take the smallest n. Define $\varphi : C_n = e$ $\{e, a, a^2, \dots, a^{n-1}\} \to G \text{ by } \varphi(a^k) = b^k (0 \le k \le n-1). \text{ Then } \forall a^j, a^k \in C_n, j, k < n,$ we have

$$\varphi(a^j \cdot a^k) = \varphi(a^{j+k}) = b^{j+k} = b^j * b^k = \varphi(a^j) * \varphi(a^k).$$

If $j + k \ge n$,

$$\varphi(a^j \cdot a^k) = \varphi(a^{j+k-n}) = b^{j+k-n} = b^{j+k} * (b^n)^{-1} = b^{j+k} = \varphi(a^j) * \varphi(a^k).$$

Hence φ is a homomorphism. Since $b^n = e$, φ is surjective. Suppose $\varphi(a^k) = e \Leftrightarrow$ $b^k = e \Leftrightarrow k = 0$, since $0 \leqslant k \leqslant n - 1$. Otherwise # to minimality of n.

If no such n exists, then define $\varphi: \mathbb{Z} \to G$ ny $\varphi(k) = b^k$. Note that

$$\varphi(k+m) = b^{k+m} = b^k * b^m = \varphi(k) * \varphi(m).$$

Also $\forall b^k \in G = \langle b \rangle, \varphi(k) = b^k$, and if $m \in \ker \varphi$, then $\varphi(m) = e = b^m \wedge \varphi(-m) = e$. If $m \neq 0$, then # to the assumption that $\nexists n, b^n = e$.

Therefore, $G \cong \mathbb{Z} \vee G \cong C_n$.

Definition 5.2. The order of an element $g \in G$ is the smallest $n \in \mathbb{N}$ that $g^n = e$. If no such n exists, we say g has and *infinite order*. The order of g is written as ord g.

Proposition 5.1. If $g^m = e, m > 0$, then ord g|m.

Therefore we often write \mathbb{Z} or C_n for a cyclic group, regardless of its description.

Proof. If not, then $m=q\operatorname{ord} g+r$ for some $q,r\in\mathbb{N}$ such that $0\leqslant r\leqslant\operatorname{ord} g-1,$ #.

Remark. Given $g \in G$, the subgroup $\langle g \rangle \cong C_n$ if ord g = n, and $\cong \mathbb{Z}$ if ord $g = \infty$. Hence ord $g = |\langle g \rangle|$.

Proposition 5.2. Cyclic groups are abelian.

5.2 Dihedral Groups

Definition 5.3. The *dihedral group* D_{2n} is the group of symmetries of a regular n-gon, the operation is composition of symmetries.

Example. $D_6 = \text{symmetries of } \triangle$.

What are the elements of D_{2n} ?

Clearly we have n rotations of angles

$$\frac{2\pi k}{n}, \quad 0 \leqslant k < n.$$

- ullet When n is odd, we have n reflections in axes through the centre and each of the vertices.
- When n is even, we have n/2 reflections in axes through centre and pairs of opposite vertices. Another n/2 reflections in axes through pairs of opposite mid-points of edges.

Assert that these are all the elements of D_{2n} . Indeed, let $g \in D_{2n}$. Since g is a symmetry, then g must send vertices to vertices, e.g., $g(v_1) = v_i$. g must also send edges to edges, so v_2, v_n must be sent to $\{v_{i-1}, v_{i+1}\}$. Note that once we know where $g(v_1), g(v_2)$, then $g(v_n)$ is determined. Inductively, all other $g(v_j)$ are determined, and hence g is known. Since there are n choices for v_1 and 2 choices for v_2 , so we have 2n elements in total. Hence there are no other elements.

It can be checked easily that D_{2n} is a group.

Remark. Can generate D_{2n} by a rotation and a reflection. Let r be the rotation $\frac{2\pi}{n}$ and s be the reflection in axis through v_1 and centre, then r^k give all rotations. Consider $r^i s r^{-i}$:

$$r^{i}sr^{-i}: v_{i+1} \mapsto v_{1} \mapsto v_{1} \mapsto v_{i+1},$$

$$v_{i+2} \mapsto v_{2} \mapsto v_{n} \mapsto v_{i},$$

$$v_{i} \mapsto v_{n} \mapsto v_{2} \mapsto v_{i+2} \mapsto v_{i+2}.$$

We get reflection in axis through v_{i+1} and centre. If n is even, consider

$$r^{i+1}sr^{-i}:v_{i+1}\mapsto v_1\mapsto v_1\mapsto v_{i+2},$$

$$v_{i+2}\mapsto v_2\mapsto v_n\mapsto v_{i+1}.$$

Hence they give all symmetries and $D_{2n} = \langle r, s \rangle$ and $rs = sr^{-1}$, so it is not abelian.

5.3 Presentation

One way to write groups is via a presentation:

(generators|relation between generators).

For example, $C_n = \langle a | a^n = e \rangle$, and $D_{2n} = \langle r, s | r^n = e, s^2 = e, rs = sr^{-1} \rangle$.

The form $r^i s r^{-i}$ is called *conjugation* and allows us to change the axis of operation.

6

7

Should be able to deduce all the properties in the group from the relatios in the presentation. In general it is not easy to write down a presentation for a given group, or to determine the group from a given presentation. E.g.,

$$\langle a, b, c | aba^{-1}b^{-1} = b, bcb^{-1}c^{-1} = c, cac^{-1}a^{-1} = a \rangle$$

$$\langle a, b, c, d | aba^{-1}b^{-1} = b, bcb^{-1}c^{-1} = c, cdc^{-1}d^{-1} = d, dad^{-1}a^{-1} = a \rangle$$

The first group is simply $\{e\}$ but the second group, known as Higman group, is very non-trivial.

5.4 Permutation groups

Definition 5.4. Given a set X, a *permutation* of X is a bijective function $\sigma: X \to X$. The set of all permutations of X is denoted by $\operatorname{Sym} X$.

Of course we have

Theorem 5.2. Sym X forms a group wrt compositions.

Definition 5.5. If |X| = n, we write S_n for (the isomorphism class of) Sym X. S_n is called *symmetric group* on n elements.

Remark. $|S_n| = n!$. Usually use $X = \{1, 2, ..., n\}$ to study S_n .

One way to write permutations is using a two-row notation. For example, consider $\sigma \in S_3$ such that $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$ can be represented as

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

In general, write $\sigma \in S_n$ as

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}.$$

Given a permutation that "cycles" some elements $a_1, \ldots, a_k \in \{1, 2, \ldots, n\}$ and leaves the other unchanged, then we can write as

$$(a_1 a_2 \dots a_k) = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_k \\ \sigma(a_1) & \sigma(a_2) & \sigma(a_3) & \dots & \sigma(a_k) \end{pmatrix}.$$

So in general,

$$(a_1 \dots a_k)(x) = \begin{cases} a_{i+1} & \text{if } x = a_i (i < k) \\ a_1 & \text{if } x = a_k \\ x & \text{otherwise.} \end{cases}$$

Note that $(a_1 ... a_k) = (a_2 ... a_k a_1) = \cdots$.

Definition 5.6. A permutation of the form $\sigma = (a_1 \dots a_k)$ is called a *k-cycle*. If k = 2 then it is called a *transposition*.

Example. (1). Consider (1234)(324). $1 \mapsto 2, 2 \mapsto 1, 3 \mapsto 3, 4 \mapsto 4$. Hence

$$(1234)(324) = (12).$$

(2). In S_5 , (254)(534) = (1)(253)(4) = (253).

Remark. (1). The inverse of $(a_1 \dots a_k)$ is $(a_k a_{k-1} \dots a_1)$.

(2). $S_3 = D_6$, but in general $D_{2n} \leqslant S_n$.

Definition 5.7. (1). Two cycles are *disjoint* if no element appears in both of them.

(2). $g, h \in G$ are commute if gh = hg in G.

Lemma 5.3. Disjoint cycles commute.

Note that S_n is non-abelian for $n \ge 3$.

Proof. Let $\sigma, \tau \in S_n$ such that σ, τ are disjoint. Let $x \in \{1, 2, ..., n\}$. If x is in neither of σ , τ , then $\sigma\tau(x) = \tau\sigma(x)$. If $x \in \tau$ but not in σ , then $\tau(x) \in \tau \notin \sigma$, so $\sigma \tau(x) = \tau \sigma(x) = \tau(x)$. Similar for $x \in \sigma, x \notin \tau$.

Theorem 5.4. Any $\sigma \in S_n$ can be written as a composition of disjoint cycles, and this representation is unique up to reordering cycles, and "cycling" of cycles.

Take $\sigma \in S_n$ and consider $1, \sigma(1), \sigma^2(1), \ldots$ Since $\{1, 2, \ldots, n\}$ is finite, $\exists a > b, \ \sigma^a(1) = \sigma^b(1), \ \text{so that} \ \sigma^{a,b}(1) = 1.$ Let k be the smallest integer that $\sigma^k(1) = 1$. Then $\forall l > m \in [0, k]$, if $\sigma^l(1) = \sigma^m(1)$ then $\sigma^{l-m} = 1$, contradicting with the minimality of k, so $1, \sigma(1), \ldots, \sigma^{k-1}(1)$ are distinct. This cycle

$$\left(1 \ \sigma(1) \ \sigma^2(x) \ \cdots \ \sigma^{k-1}(1)\right)$$

is the first cycle in decomposition. We can repeat this with the next number in $\{1, 2, \ldots, n\}$ that has not already appeared.

Since σ is a bijection, no number can reappear. Continue with this we exhaust $\{1, 2, \ldots, n\}$ and we get

$$(1 \ \sigma(1) \ \cdots \ \sigma^{k-1}(1)) (a \ \sigma(a) \ \cdots \ \sigma^{k-1}(a)) \cdots$$

Hence it exists. To show it is unique, suppose we have to decompositions:

$$\sigma = (a_1 \cdots a_{k_1}) (a_{k_2} \cdots a_{k_3}) \cdots (a_{k_{n-1}} \cdots a_{k_n})$$
$$= (b_1 \cdots b_{l_1}) (b_{l_2} \cdots b_{l_3}) \cdots (b_{l_{s-1}} \cdots b_{l_s}),$$

so each $j \in \{1, 2, ..., n\}$ appears exactly once in both. Then we have $a_1 = b_t$ for some t, and the other numbers appearing in the cycle of b_t are uniquely determined by $\sigma(a_1), \sigma^2(a_1), \ldots$ So

$$(a_1 \cdots a_{k_1}) \cdots = (b_t \cdots) \cdots$$

since disjoint cycles commute and we can cycle cycles. Continue in this way, we see that all other cycles match.

Definition 5.8. The set of cycle lengths of the disjoint cycle decomposition of σ is its cycle type of σ .

Lecture 7

Example. (123)(56) has cycle type 3,2(or 2,3).

Theorem 5.5. The order of $\sigma \in S_n$ is the lcm of the cycle length in its cycle type.

Proof. Firstly note that the order of a k-cycle is k. Suppose $\sigma = \tau_1 \tau_2 \cdots \tau_r$, where τ_i are disjoint cycles, we have

$$\sigma^m = \tau_1^m \tau_2^m \cdots \tau_r^m,$$

since disjoint cycles commute. Let each τ_i be a k_i -cycle, then if $\sigma^m = e$, we have $\tau_1^m, \tau_2^m, \ldots, \tau_r^m = e$, and so $\tau_1^m = \tau_2^{-m} \tau_3^{-m} \cdots \tau_r^{-m}$. The numbers permuted by LHS and RHS are disjoint since τ_i are disjoint, so LHS, RHS must be e. So $\tau_1^m = e$ and $k_1|m$.

This holds for any k_i and $k_i|m$, so $l = \text{lcm}(k_1, \ldots, k_r)| \text{ ord}(\sigma)$. But if we take

$$\sigma^l = \tau_1^l \tau_2^l \cdots \tau_r^l = \prod_{i=1}^r (\tau^{k_i})^{l/k_i} = e.$$

So $\operatorname{ord}(\sigma) = \operatorname{lcm}(k_1, \dots, k_r)$.

Remark. Disjoint cycle notation allows us to quickly compare elements of S_n , and to read off their orders.

Disjoint cycle notation is just one useful way to express elements of S_n . Another is as a product of transpositions:

Proposition 5.3. Let $\sigma \in S_n$, then σ is a product of transpositions.

Proof. By theorem 5.4, it's enough to do this for a cycle. We observe that

$$(a_1a_2a_3\cdots a_k)=(a_1a_2)(a_2a_3)\cdots (a_{k-1}a_k).$$

Remark. This is not unique. e.g., (1234)=(12)(23)(34)=(12)(23)(12)(34)(12). But the *parity* of the numbers of transpositions is well-defined..

Theorem 5.6. Writing $\sigma \in S_n$ as a product of transpositions in different ways, σ is either always a product of an even number of transpositions, or always a product of an odd number of transpositions.

Proof. Write $\#(\sigma)$ for the number of cycles in σ in disjoint cycle decompositions, including any one-cycles. For example, #((12)(34)) = #((123)) = 2, #(e) = 4. Let's see what happens to $\#(\sigma)$ if we multiply σ by a transposition $\tau = (cd)$.

- This will not affect any cycles not including c or d.
- If c,d are in the same cycle in (disjoint cycle decomposition) of σ , say $(ca_2a_3\cdots a_{k-1}da_{k+1}\cdots a_l)$, then

$$(ca_2a_3\cdots a_{k-1}da_{k+1}\cdots a_l)(cd) = (ca_{k+1}a_{k+2}\cdots a_l)(da_2\cdots a_{k-1}),$$

MÖBIUS GROUP

so
$$\#(\sigma\tau) = \#(\sigma) + 1$$
.

- If c, d are in different cycles (possibly 1-cycle),

$$(ca_2 \cdots a_k)(db_2 \cdots b_l)(cd) = (cdb_2 \cdots b_l dca_2 \cdots a_k).$$

So
$$\#(\sigma\tau) = \#(\sigma) - 1$$
.

So far any σ and any transposition τ , $\#(\sigma) \equiv \#(\sigma\tau) + 1 \pmod{2}$. Now suppose σ is written as 2 different products of transpositions

$$\sigma = \tau_1 \cdots \tau_k = \tau'_1 \dots \tau'_l$$
.

We know by the previous theorem that $\#(\sigma)$ is uniquely determined by σ . Also we have

$$\sigma = e \cdot \tau_1 \cdots \tau_k = e \cdot \tau_1' \dots \tau_l',$$

and so applying the above several times, we get

$$\#(\sigma) \equiv \#(e) + k \equiv n + k \pmod{2}; \#(\sigma) \equiv \#(e) + l \equiv n + l \pmod{2}.$$

So $n + k \equiv n + 2 \pmod{2} \Leftrightarrow k \equiv l \pmod{2}$. Hence k, l has the same parity. \square

Definition 5.9. Writing $\sigma \in S_n$ as a product of transositions, $\sigma = \tau_1 \cdots \tau_k$, the *sign* of σ is defined as $\epsilon(\sigma) = (-1)^k$. If $\epsilon(\sigma) = 1$, we say σ is an *even* permutation, and odd permutation if $\epsilon(\sigma) = -1$.

Theorem 5.7. For $n \ge 2$, the sign function $\epsilon: S_n \to \langle -1 \rangle$ is a surjective homomorphism.

Proof. If σ, σ' can be written as k, l transpositions respectively, then $\sigma\sigma'$ can be written as a product of k + l transpositions and $\epsilon(\sigma\sigma') = (-1)^{k+l} = (-1)^k \cdot (-1)^l = \epsilon(\sigma) \cdot \epsilon(\sigma')$. To see it is surjective, since $n \ge 2$, $\epsilon(e) = 1$ and $\epsilon(12) = -1$, so it is. \square

Definition 5.10. The *kernel* of the homomorphism ϵ is called the *alternating group*, $A_n \leq S_n$.

Proposition 5.4. $\sigma \in S_n$ is even if and only if its disjoint cycle decomposition contains an *even number* of *even* cycles.

Here "even cycle" means a cycle of even number of elements.

Proof. Write

$$\sigma = \delta_1 \delta_2 \cdots \delta_k \chi_1 \chi_2 \cdots \chi_l,$$

where δ are even cycles, and χ are odd cycles. Then $\epsilon(\sigma)=(-1)^k$ and the result follows.

6 Möbius group

The study of permutations of an infinite object, the functions $\mathbb{C} \to \mathbb{C}$. Since \mathbb{C} has geometry Lecture 8 unlike $\{1, 2, \ldots, n\}$, need to restrict to functions that interact well with this geometry.

More precisely, we want to study functions of the form

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = \frac{az+b}{cz+d}, \quad a, b, c, d, \in \mathbb{C}$$

MÖBIUS GROUP

such that $ad - bc \neq 0$.

Note that

$$f(z)-f(w) = \frac{(ad - bc)(z - w)}{(cw + d)(cz + d)},$$

so f(z) = f(w) and f would be constant. However we need invertible functions, so we do need $ad - bc \neq 0$.

f is undefined at point -d/c, to fix this, we introduce a new point ∞ to \mathbb{C} , forming the extended complex plane $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Can visualise using stereographic projection.

Definition 6.1. A Möbius map is a function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$f(z) = \frac{az+b}{cz+d}, a, b, c, d \in \mathbb{C}, ad-bc \neq 0, f\left(\frac{-d}{c}\right) = \infty,$$

with

$$f(\infty) = \begin{cases} \frac{a}{c} & \text{if } c \neq 0, \\ \infty & \text{if } c = 0. \end{cases}$$

Lemma 6.1. Möbius maps are bijections $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

Proof. Note that for $f(z) = \frac{az+b}{cz+d}$

$$f^{-1}(z) = \frac{dz - b}{-cz + a},$$

which could be checked by doing some algebras.

Theorem 6.2. The set of Möbius maps form a group M wrt composition.

Proof. Note that the identity is $z \mapsto z = \frac{1z+0}{0z+1}$, and by lemma they are invertible. Associativity is inherited from the structure of functions in \mathbb{C} .

Remark. M is not abelian. e.g. take $f_1(z)=z+1, f_2(z)=2z$. In dealing with Möbius maps in $\hat{\mathbb{C}}$, we use the convention $\frac{1}{\infty}=0, \frac{1}{0}=\infty, \frac{a\infty}{c\infty}=\frac{a}{c}$.

Proposition 6.1. Every Möbius group can be written as a composition of maps of the following forms:

- (1) $f(z) = az(a \neq 0)$, a dilation/rotation.
- (2) f(z) = z + b, translation.
- (3) $f(z) = \frac{1}{z}$, inversion.

Proof. Let

$$f(z) = \frac{az+b}{cz+d}.$$

If $c \neq 0$, then f(z) is the composition

$$z\mapsto z+\frac{d}{c}\mapsto \frac{1}{z+\frac{d}{c}}\mapsto \frac{(-ad+bc)c^{-2}}{z+\frac{d}{c}}\mapsto \frac{a}{c}+\frac{(-ad+bc)c^{-2}}{z+\frac{d}{c}}\mapsto \frac{az+b}{cz+d}.$$

If
$$c = 0$$
, $z \mapsto \frac{a}{d}z \mapsto \frac{a}{d}z + \frac{b}{d}$.

In particular, the set S of all dilations/rotations, translations, and inversions generate M. i.e., $\langle S \rangle = M$.

Lagrange's Theorem 12

7 Lagrange's Theorem

This result allows us to study the internal structure of a group wrt a subgroup.

7.1 Cosets

Definition 7.1. Let $H \leq G$ and $g \in G$. Let $gH = \{gh : h \in H\}$, then gH is called a left coset of H in G. Right coset is defined similarly.

Cosets can be thought as a "translated copy" of H that may no longer be a subgroup.

Example. (1) Let $H = 2\mathbb{Z} \leq \mathbb{Z}$, then some cosets are:

 $0 + 2\mathbb{Z} = 2\mathbb{Z}$, all even integers,

 $1+2\mathbb{Z}$ is all odd integers. Note that

$$n + 2\mathbb{Z} = \begin{cases} 2\mathbb{Z} & \text{if } n \text{ is even,} \\ 1 + 2\mathbb{Z} & \text{if } n \text{ is odd.} \end{cases}$$

Hence these are the only cosets of $2\mathbb{Z}$.

(2) Let $H = \{e, (12)\} \leq S_3$. Then eH = H, (12)H = H, $(13)H = \{(13), (123)\}$.

Somethings to notice from example (2):

- \bullet eH = H.
- hH = H whenever $h \in H$.
- |H| = |qH|.
- $\bigcup gH = G$.

In fact, Lecture 9

Theorem 7.1 (Lagrange). Let $H \leq G$ where G is finite, then

- 1. |H| = |gH| for any $g \in G$.
- 2. If $g_1, g_2 \in G$, then either $g_1H = g_2H$ or $g_1H \cap g_2H = \emptyset$.
- $3. \quad \bigcup gH = G.$

In particular, define the index of H in G to be the number of distinct cosets of H in G, denoted by |G:H|. Then we have

$$|G| = |G:H||H|.$$

Proof.

- 1. The function $\varphi: H \to gH$ defined by $\varphi(h) = gh$ for $h \in H$, is a bijection between H and gH. Surjection is obvious since every $gh = \varphi(h) \in gH$. To show its injectivity, note that $\varphi(h_1) = \varphi(h_2) \Rightarrow gh_1 = gh_2 \Rightarrow h_1 = h_2$. Therefore, |H| = |gH|.
- 2. Suppose $g_1H \cap g_2H \neq \emptyset$. Then $\exists g \in g_1H \cap g_2H \Rightarrow g = g_1h_1 = g_2h_2$, where $h_1, h_2 \in H$. This means that $g_1 = g_2 h_2 h_1^{-1}$, and so $\forall h \in H, g_1 h = g_2 h_2 h_1^{-1} h \in H$

Cosets pave the group.

 $g_2H \Rightarrow g_1H \subseteq g_2H$. Similarly $g_2H \subseteq g_1H$, and so they are identical.

3. Given $g \in G$, then $g \in gH$ so $g \in \bigcup_{g \in G} gH \Rightarrow G \subseteq \bigcup_{g \in G} gH$. Certainly $\bigcup_{g \in G} gH \subseteq G$ since all are subsets. Hence

$$\bigcup_{g \in G} gH = G.$$

Since G is the distinct union of distinct cosets of H, |G| = |G:H||H|.

Remark. Right cosets also works, using the same arguments. However, $gH \neq Hg$ in general, since a group needs not to be abelian. For example, if $H = \{e, (12)\} \leq S_3$, the coset $(13)H = \{(13), (123)\}$ while $H(13) = \{(13), (132)\}$. Another fact to notice from this is that the set of cosets are not necessarily the same wrt left/right. H is particularly special and interesting if gH = Hg.

Proposition 7.1. $g_1H = g_2H \iff g_1^{-1}g_2 \in H$.

Proof. If $g_1H = g_2H$, then $g_1 = g_2h$ for some $h \in H$. Hence $g_1^{-1}g_2 = h^{-1} \in H$. Conversely if $g_1^{-1}g_2 \in H$, $g_1g_1^{-1}g_2 \in g_1H \Rightarrow g_2 \in g_1H$. By Lagrange's theorem, they are identical.

Take $g_1, g_2, \ldots, g_{|G:H|}$ from each disjoint coset of H in G. Then we have

$$G = \bigsqcup_{i=1}^{|G:H|} g_i H,$$

where \bigsqcup is the disjoint union notation. The g_i are called *coset representation* of H in G.

Corollary 7.2. Let G be a finite group and $g \in G$, then $\operatorname{ord}(g)||G|$.

Proof. Let $H = \langle g \rangle$, then $\operatorname{ord}(g) = |H|$ and thus $\operatorname{ord}(g)||G|$ by Lagrange's theorem.

Corollary 7.3. Let G be a finite group. If $g \in G$, then $g^{|G|} = e$.

Proof. $q^{|G|} = q^{\operatorname{ord}(g)n} = e^n = e$.

Corollary 7.4. If |G| is prime, then G is cyclic, and is generated by any non-identity element.

Proof. Since |G| = p, p is prime, then $|\langle g \rangle| ||G|$ by Lagrange. Since p is prime, then $|\langle g \rangle| = 1$ or p. Hence if $g \neq e$, then $g, e \in \langle g \rangle$ so $|\langle g \rangle| = p$, and thus $\langle g \rangle = G$.

7.2 An application in Number Theory

Consider $(\mathbb{Z}_n, +_n)$. Define $a * b = ab \pmod{n}$. This is well-defined since $a_1 \equiv a_2 \pmod{n} \land b_1 \equiv b_2 \pmod{n} \Rightarrow a_1b_1 \equiv a_2b_2 \pmod{n}$. $(\mathbb{Z}_n, *)$ is not a group since 0 has no inverse.

Let $\mathbb{Z}_n^* \subseteq \mathbb{Z}_n$ be the subset of elements of \mathbb{Z}_n that have inverses. In fact, we have

Proposition 7.2. $\mathbb{Z}_n^* = \{ a \in \mathbb{Z}^n : (a, n) = 1 \}.$

Proof. Let $a \in \mathbb{Z}_n$ such that a, n are coprime. Then $\exists b, m, ba + mn = 1 \Rightarrow b$ is the inverse of a and $\{a \in \mathbb{Z}^n : (a, n) = 1\} \subseteq \mathbb{Z}_n^*$.

Conversely if a has an inverse in \mathbb{Z}_n , then $\exists b, ab \equiv 1 \pmod{n} \Rightarrow \exists m, ab + mn = 1 \Rightarrow (a, n) = 1$. Hence $\mathbb{Z}_n^* \subseteq \{a \in \mathbb{Z}^n : (a, n) = 1\}$.

Obviosuly $1 \in \mathbb{Z}_n^*$. By defintion every revertible element and its inverse is in \mathbb{Z}_n^* . Any product of two invertible elements is invertible, so \mathbb{Z}_n^* is closed under *. Associativity is inherited from \mathbb{Z}_n , so \mathbb{Z}_n^* is a *subgroup* of \mathbb{Z}_n .

Definition 7.2 (Euler totient function). $\phi(n) = |\mathbb{Z}_n^*|$.

Theorem 7.5 (Fermat-Euler). Let $n \ge 1$, $N \in \mathbb{Z}$, (N, n) = 1, then

$$N^{\phi(n)} \equiv 1 \pmod{n}$$
.

Proof. Let $a \in \mathbb{Z}_n$ such that $N \equiv a \pmod{n}$. Then $a \in \mathbb{Z}_n^*$ and thus $a^{|\mathbb{Z}_n^*|} = a^{\phi(n)} \equiv 1 \pmod{n}$. Since N = a + kn,

$$N^{\phi(n)} = (a + kn)^{\phi(n)} \equiv a^{\phi(n)} \equiv 1 \pmod{n}.$$

Take n = p, we get $N^{p-1} \equiv 1 \pmod{p}$ for (N, p) = 1.

7.3 Exploring groups using Lagrange theorem

Lagrange tells us what the possible orders of subgroups can be.

Remark. Not all possible orders have to appear.

Example. For D_{10} , the sizes of subgroups can be 1,2,5,10. We have $|\{e\}| = 1$, $|\{e,g\}| = 2$, where g has order 2. This can be done since we have 5 reflections. For subgroups of order 5, they must be cyclic by corollary 7.4. We have $|\langle r \rangle| = 5$, where r is a rotation. Obviously $|D_{10}| = 10$.

7.4 Studying small groups using Lagrange's Theorem

Example. • $|G| = 1 \Rightarrow G = \{e\}$.

Lecture 10

- $|G| = 2 \Rightarrow G \cong C_2$ since 2 is prime.
- $|G|=3\Rightarrow G\cong C_3$.
- |G| = 4, then $G \cong C_4$ or $G \cong C_2 \times C_2$.

proof. By Lagrange, the possible orders of subgroups of G is $1(\{e\})$, $2(C_2)$, and 4. If $\exists g \in G$, ord g = 4, then $G = \{e, g, g^2, g^3\}$ and thus $G \cong C_4$. If no element has order 4, then all non-identity elements have order 2. Claim that G is abelian. Indeed, let $h, g \in G$, $h, g \neq e$, then ord $g = \operatorname{ord} h = 2$ and we have

$$gh = h^2ghg^2 = h(hg)^2g = hg.$$

Take $b \neq c \in G$ such that ord b = ord c = 2. Since $(\langle b \rangle \cap \langle c \rangle = \{e\}) \wedge (\forall b' \in \langle b \rangle, c' \in \langle c \rangle, b'c' = c'b') \wedge (bc \neq b \wedge bc \neq c \Rightarrow \forall g \in G, g = b'c', b \in \langle b \rangle, c' \in \langle c \rangle)$, we have $G \cong \langle b \rangle \times \langle c \rangle$ and thus $G \cong C_2 \times C_2$.

• |G| = 5 then $G \cong C_5$. We need more tools to study groups of order ≥ 6 .

QUOTIENT GROUPS 15

8 Quotient groups

8.1 Normal subgroups

Definition 8.1. A subgroup N of G is normal if $\forall g \in G, gN = Ng$. Written as $N \leq G$.

Proposition 8.1. The followings are equivalent:

- (1) $\forall g \in G, gN = Ng$.
- (2) $\forall g \in G, \forall n \in N, g^{-1}ng \in N.$
- $(3) \ \forall g \in G, g^{-1}Ng = N.$

Proof. (1) \Rightarrow (2). If gN = Ng, we have $\forall n \in N, ng \in Ng = gN \Rightarrow ng = gn'$ for some $n \in N$. Hence $g^{-1}ng = g^{-1}gn' = n \in N$.

(2) \Rightarrow (3). From (2) we know that $g^{-1}Ng \subseteq N$. Suppose $n \in N$ and let $n' = gng^{-1}$, then $n = g^{-1}n'g \in g^{-1}Ng \Rightarrow g^{-1}Ng = N$.

$$(3) \Rightarrow (1)$$
. Trivial.

Example. (1) $\{e\}$ and G are always normal.

- (2) $n\mathbb{Z} \leq \mathbb{Z}$.
- (3) $A_3 \leq S_3$, recall that A_3 is the alternating group. We have

$$A_3 = \{e, (123), (132)\}.$$

Obviously we have $eA_3 = A_3e$. We also have $(123)A_3 = A_3(123)$. Consider a transposition

$$(12)A_3 = \{(12), (23), (1)\}.$$

Similar for (13) or (23).

Proposition 8.2. (1) Any subgroup of an abelian group is normal.

(2) Any subgroup of index 2 is normal.

Proof. If G is abelian, we have $g^{-1}ng = n \in N$.

If $H \leq G$ with |G:H|=2, then there are exactly two cosets in G. Obviously H itself is a coset, so by Lagrange the other coset is $G \setminus H$. This is true for both left and right cosets.

Proposition 8.3. If $\varphi: G \to H$ is a homomorphism, then $\ker \varphi \subseteq G$.

Proof. We already know that $\ker \varphi$ is a subgroup of G. Let $k \in \ker \varphi$ and $g \in G$. Consider $g^{-1}kg$:

$$\varphi(q^{-1}kq) = \varphi(q)^{-1}\varphi(k)\varphi(q) = e.$$

Hence $g^{-1}kg \in \ker \varphi$. Hence $\ker \varphi \leq G$.

Example. (1) Consider $SL_2(\mathbb{R}) \leq GL_2(\mathbb{R})$, where $SL_2(\mathbb{R})$ is the set of all 2×2 matrices of determinant 1. Note that $SL_2(\mathbb{R}) = \ker \det$, so $SL_2(\mathbb{R}) \leq GL_2(\mathbb{R})$.

(2) $A_n \leq S_n$. Note that A_n can be defined as the kernel of the sign homomorphism.

Quotient groups Quotients 16

Also note that $|S_n:A_n|=2$.

(3) $n\mathbb{Z} \leq \mathbb{Z}$. We can view it as $\ker \varphi : \mathbb{Z} \to \mathbb{Z}_n$, where $\varphi(k) = k \mod n$.(Or since \mathbb{Z} is abelian.)

We can use this to study groups of small orders.

Proposition 8.4. If |G| = 6, then $G \cong C_6 \vee G \cong D_6$.

Proof. By Lagrange, the possible orders of elements are 1, 2, 3, 6. If \exists an element g of order 6, then $G = \langle g \rangle \cong C_6$. If there does not exist such an element, then there must exist an element r of order 3, since otherwise $|G| = 2^n$. So $|\langle r \rangle| = 3$ and $|G:\langle r \rangle| = 2$, so $\langle r \rangle \subseteq G$. We also have an element s of order 2 since |G| is even. By previous result, $s^{-1}rs \in \langle r \rangle$. If $s^{-1}rs = e$, then r = e, #. If $s^{-1}rs = r$, then sr = rs, and ord sr = 6 since $(sr)^n = s^nr^n$, which means that n = lcm(2,3) = 6. #. Hence the only possibility is $s^{-1}rs = r^2$. Hence $G = \langle r, s | r^3 = s^2 = e, sr = r^2s = r^{-1}s \rangle$. Hence $G \cong D_6$.

8.2 Quotients

Consider $n\mathbb{Z} \subseteq \mathbb{Z}$. The cosets are

$$0+n\mathbb{Z}, 1+n\mathbb{Z}, 2+n\mathbb{Z}, \ldots, (n-1)+n\mathbb{Z}.$$

Although they are subsets of \mathbb{Z} , they behave like elements of \mathbb{Z}_n if we define addition to be

$$(k+n\mathbb{Z}) + (m+n\mathbb{Z}) = (k+m) + n\mathbb{Z}$$

which works similarly to $+_n$.

For $H \leq G$, define

$$g_1H \cdot g_2H := g_1g_2H.$$

This may not be well-defined as it may depend on choice of coset representatives g_1, g_2 . To make it well-defined, we need

$$g_1'H = g_1H, g_2'H = g_2H \Longrightarrow g_1'g_2'H = g_1g_2H.$$

Note that $g_1' = g_1 h_1$ for some $h_1 \in H$, $g_2' = g_2 h_2$ for some $h_2 \in H$. So

$$g_1'g_2'H = g_1h_1g_2h_2H = g_1h_1g_2H.$$

Hence it is well-defined if and only if $g_1h_1g_2H = g_1g_2H$ for any $g_1, g_2 \in G, h_1 \in H$. i.e., $g_2^{-1}h_1g_2H = H \Leftrightarrow g_2^{-1}h_1g_2 \in H, \forall g_1, g_2, h_1$, by proposition 7.1. Therefore, by proposition 8.1, multiplication is well-defined if and only if $H \subseteq G$.

Proposition 8.5. Let $N \subseteq G$. The set of (left) cosets of N in G form a group under the operation $g_1N \cdot g_2N = g_1g_2N$.

Proof. By above arguments, it is well-defined. Closure is obviously satisfied. eN = N so e is the identity. We have $(qN)^{-1} = q^{-1}N$. Associativity is from G since

$$(g_1N \cdot g_2N) \cdot g_3N = (g_1g_2N) \cdot g_3N = g_1g_2g_3N = g_1N \cdot (g_2N \cdot g_3N).$$

17

Definition 8.2. If $N \triangleleft G$, the group of (left) cosets of N in G is called the *quotient* group of G by N, written as G/N.

1. $\mathbb{Z}/n\mathbb{Z}$ is a group behaves like \mathbb{Z}_n . In fact, $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$. These are the only quotients of \mathbb{Z} since the only subgroups are $n\mathbb{Z}$.

2. Consider $A_3 \leq S_3$. This gives S_3/A_3 , which has only two elements since $|S_3|$: $A_3|=2$. We must have $S_3/A_3\cong C_2$. Indeed, take a non-trivial coset $(12)A_3$, then

$$(12)A_3 \cdot (12)A_3 = (12)^2 A_3 = A_3.$$

In general, |G/N| = |G:N|.

- 3. If $G = H \times K$, then $H \subseteq G \wedge K \subseteq G$. We have $G/H \cong K \wedge G/K \cong H$.(exercise)
- 4. Consider $N = \langle r^2 \rangle \leqslant D_8$. It is normal since $r^{-1}r^2r \in N \wedge s^{-1}r^2s = r^{-2} = r^2 \in I$ N. Since $\langle r, s \rangle = D_8$, $q^{-1}nq \in N, \forall q \in D_8$ (exercise)

|N| = 2, so $|D_8/N| = |D_8| \cdot |N| = |D_8|/|N| = 4$ by Lagrange. By section 7.4, $D_8/N \cong C_2 \times C_2$ or C_4 . Since $D_8/N = \{N, sN, rN, srN\}$, we have $(sN)^2 =$ $N, (rN)^2 = N$ since $N = \langle r^2 \rangle$. Also, $(srN)^2 = N$ by previous result, so ord $D_8/N = 2$ so $D_8/N \cong C_2 \times C_2$.

5. (Non-example) Consider $H = \langle (12) \rangle \leqslant S_3$. H is not normal since (123)H = $\{(123),(13)\} \neq \{(123),(23)\} = H(123)$. Cosets are H,(123)H,(132)H. If we impose product on them:

$$(123)H \cdot (132)H = (123) \cdot (132)H = H,$$

but $(13)H \cdot (132)(H) = (13)(132)H = (23)H \neq H.$

Hence we cannot form the quotient.

Remark. • Some properties of G pass from G to its quotients. e.g., being abelian or finite.

- Quotients are not subgroups. They may not even be isomorphic to subgroups.
- Need to specify in which group is a subgroup normal. e.g., if $K \leq N \leq$ $G \wedge K \leq G$, it is not true in general that $K \leq G$, even it is true that $N \leq G$. Thus, normality is not transitive.
- However if $N \leq H \leq G \wedge N \triangleleft G$, then $N \triangleleft H$.

Theorem 8.1. Given $N \subseteq G$, the function $\pi: G \to G/N$ that

$$\pi(g) = gN$$

is a surjective homomorphism. It is called the *quotient map*. In particular, We have $\ker \pi = N$.

Proof. $\pi(g) \cdot \pi(h) = gN \cdot hN = ghN = \pi(gh)$, so it is a homomorphism. Clearly π is surjective since $\forall gN \in G/N, \pi(g) = gN$. Also $\pi(g) = gN = N$ if and only if $g \in N$, so $\ker \pi = N$.

QUOTIENT GROUPS Quotients 18

Together with proposition 8.3: Normal subgroups are exactly kernels of homomorphisms.

Theorem 8.2. Let $\varphi:G\to H$ be a homomorphism, then $G/\ker\varphi\cong\operatorname{Im}\varphi.$