Álgebra/Álgebra II Clase 06 - Álgebra de matrices 1

FAMAF / UNC

04 de abril de 2024

Resumen

Los objetivos de esta clase son:

- Familiarizarse con la notación de subíndices para las entradas de matrices.
- Mostrar algunas matrices notables y algunos tipos de matrices importantes en la teoría.
- Definir la suma y multiplicación de matrices y la multiplicación de matrices por escalares.
- Estudiar las propiedades más importantes de la suma y multiplicación de matrices y de la multiplicación de matrices por escalares. .

El tema de esta clase es esencialmente el contenido de de las secciones 3.1 y 3.2 del apunte de clase "Álgebra II / Álgebra - Notas del teórico".

Matrices

Recordemos: sea \mathbb{K} cuerpo.

• Una matriz A es un elemento de $(\mathbb{K}^n)^m$ que se escribe con m-filas y n columnas

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A cada elemento de la matriz la llamamos entrada o coeficiente.
- Si A es una matriz $m \times n$, denotamos $[A]_{ij}$ la entrada que se ubica en la fila i y la columna j. En la matriz de arriba $[A]_{ij} = a_{ij}$.
- Al conjunto de matrices de orden $m \times n$ con entradas en \mathbb{K} lo denotamos $\mathbb{K}^{m \times n}$, o $M_{m \times n}(\mathbb{K})$, o simplemente $M_{m \times n}$.

Matriz cuadrada

Una matriz $A \in \mathbb{K}^{n \times n}$ se dice *cuadrada de orden n* porque tiene igual cantidad de filas que de columnas.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Los elementos de la diagonal principal son a_{ii} con $1 \le i \le n$

Matriz cuadrada: ejemplos

$$A = \begin{bmatrix} 5 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 1 & -2 & 7 & 5 \\ -1 & 2 & 128 & -20 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 3 & 4 \\ 0 & 0 & 0 \\ 1 & 7 & 5 \end{bmatrix}$$

$$C = [1]$$

Matriz diagonal

Una matriz cuadrada D de orden n se dice diagonal si todas las entradas fuera de la diagonal son nulas.

$$D = \begin{bmatrix} d_1 & 0 & \cdots & & & & 0 \\ 0 & d_2 & 0 & \cdots & & & 0 \\ \vdots & 0 & \ddots & & & \vdots & & \\ \vdots & & & & & & \ddots & 0 \\ 0 & 0 & \cdots & & & 0 & d_n \end{bmatrix}$$

Las entradas de D se pueden describir como sigue

$$[D]_{ij} = \begin{cases} d_i & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Matriz diagonal: ejemplos

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & -20 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

$$C = [1]$$

Matriz escalar

Una matriz cuadrada E de orden n se dice escalar si es diagonal y todos los elementos de la diagonal son iguales, por ejemplo, en el caso 4×4 las matrices escalares son

$$E = \begin{bmatrix} c & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & c \end{bmatrix},$$

con $c \in \mathbb{K}$.

Las entradas de E se pueden describir como sigue

$$[E]_{ij} = \begin{cases} c & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Matriz escalar: ejemplos

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$C = [1]$$

Matriz identidad

La matriz diagonal de orden n con todos unos en la diagonal se llama matriz identidad de orden n y se denota Id_n .

$$\mathsf{Id}_n = \begin{bmatrix} 1 & 0 & \cdots & & 0 \\ 0 & 1 & \cdots & & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ & & & & & \\ 0 & 0 & \cdots & & 1 \end{bmatrix}$$

Las entradas de Id_n se pueden describir como sigue

$$[\mathrm{Id}_n]_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

A veces escribiremos simplemente Id, omitiendo el subíndice n.

Matriz nula

La matriz nula de orden $m \times n$ es la matriz cuyas entradas son todas ceros. Se la denota 0.

$$0 = \begin{bmatrix} 0 & 0 & \cdots & & & 0 \\ 0 & 0 & \cdots & & & 0 \\ \vdots & \vdots & \ddots & & & \vdots \\ & & & & & & 0 \end{bmatrix}$$

Las entradas de 0 se pueden describir como sigue

$$[0]_{ij} = 0 \quad \forall i, j$$

Matriz triangular superior

Una matriz cuadrada cuyas entradas por debajo de la diagonal principal son cero se llama *matriz triangular superior*.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & & & a_{1n} \\ 0 & a_{22} & \cdots & & & a_{2n} \\ \vdots & 0 & \ddots & & \vdots \\ & \vdots & & & & & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

En fórmula, A es triangular superior si $a_{ii} = 0$ para todo i > j.

Matriz triangular superior: ejemplos

$$A = \begin{bmatrix} 2 & 1 & 0 & 7 \\ 0 & -1 & -4 & 5 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$C = [1]$$

Matriz triangular inferior

Una matriz cuadrada cuyas entradas por encima de la diagonal principal son cero se llama *matriz triangular inferior*.

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & & & 0 \\ a_{21} & a_{22} & 0 & \cdots & & 0 \\ \vdots & \vdots & \ddots & & & \vdots \\ & & & \ddots & & \vdots \\ a_{n1} & a_{n2} & \cdots & & \cdots & a_{nn} \end{bmatrix}$$

En fórmula, A es triangular inferior si $a_{ij} = 0$ para todo i < j.

Suma de matrices

Definición

Sean $A, B \in \mathbb{K}^{m \times n}$, la suma A + B es la matriz que resulta de sumar "coordenada a coordenada" las matrices A y B.

En símbolos,

$$A + B \in \mathbb{K}^{m \times n}$$
 con $[A + B]_{ij} = [A]_{ij} + [B]_{ij}$.

Ejemplo

Si
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 y $B = \begin{bmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{bmatrix}$ entonces
$$A + B = \begin{bmatrix} 1+10 & 2+20 & 3+30 \\ 4+40 & 5+50 & 6+60 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \\ 44 & 55 & 66 \end{bmatrix}$$

Podemos visualizar la suma de matrices así:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Propiedades de la suma de matrices

La suma de matrices satisface las mismas propiedades que la suma de números reales y complejos (y enteros).

Proposición

Si A, B, C son matrices $m \times n$, entonces

S1.
$$A + B = B + A$$
 (conmutatividad de la suma)

S2.
$$A + (B + C) = (A + B) + C$$
 (asociatividad de la suma)
S3. $A + 0 = A$ (elemento neutro)
S4. $A + (-A) = 0$ (existencia de opuesto)

S3.
$$A+0=A$$
 (elemento neutro

S4.
$$A + (-A) = 0$$
 (existencia de opuesto)

donde

$$-A = \begin{bmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{bmatrix}$$

Notacion

 Debido a la propiedad asociativa podemos eliminar los paréntesis en una suma, es decir, denotaremos

$$A + B + C := A + (B + C) = (A + B) + C.$$

Usualmente denotaremos

$$A - B := A + (-B),$$

 $-A + B := (-A) + B$

La demostración de las propiedades anteriores se deduce de que las mismas propiedades valen coordenada a coordenada en \mathbb{K} .

Demostraremos la asociatividad y las otras propiedades se dejan a cargo del lector.

Demostración de la asociatividad

Queremos ver que las matrices A + (B + C) y (A + B) + C son iguales. O sea, que cada una de sus coordenadas son iguales. Esto es cierto por lo siguiente:

$$[A + (B + C)]_{ij} = [A]_{ij} + [B + C]_{ij} = [A]_{ij} + ([B]_{ij} + [C]_{ij})$$
$$= ([A]_{ij} + [B]_{ij}) + [C]_{ij} = [A + B]_{ij} + [C]_{ij} = [(A + B) + C]_{ij}$$

Producto de matrices

Definición

Sean $A \in \mathbb{K}^{m \times n}$ y $B \in \mathbb{K}^{n \times p}$.

El producto $A \cdot B$ es una matriz de orden $m \times p$ cuyas entradas son definidas por la siguiente fórmula

$$[A \cdot B]_{ij} = \sum_{k=1}^{n} [A]_{ik} \cdot [B]_{kj}.$$

Podemos visualizar la multiplicación así:

$$\begin{bmatrix} \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \end{bmatrix} \cdot \begin{bmatrix} \cdots & b_{1j} & \cdots \\ \cdots & b_{2j} & \cdots \\ \vdots & \vdots & & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & & \vdots \\ \cdots & \sum_{k=1}^{n} a_{ik} \cdot b_{kj} & \cdots \end{bmatrix}$$

Es muy importante recalcar que por la definición, se puede multiplicar una matriz $m \times n$ por una matriz $r \times p$, sólo si n = r y en ese caso, la multiplicación resulta ser una matriz $m \times p$.

Ejemplo

Si

$$A = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & -1 & 2 \\ 15 & 4 & 8 \end{bmatrix},$$

como A es 2×2 y B es 2×3 , la matriz AB será 2×3 . Obtenemos:

$$AB = \begin{bmatrix} 1 \cdot 5 + 0 \cdot 15 & 1 \cdot (-1) + 0 \cdot 4 & 1 \cdot 2 + 0 \cdot 8 \\ -3 \cdot 5 + 1 \cdot 15 & -3 \cdot (-1) + 1 \cdot 4 & -3 \cdot 2 + 1 \cdot 8 \end{bmatrix} = \begin{bmatrix} 5 & -1 & 2 \\ 0 & 7 & 2 \end{bmatrix}.$$

Observemos que, debido a nuestra definición, no es posible multiplicar B por A, pues no está definido multiplicar una matriz 2×3 por una 2×2 .

Ejemplo

Si
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 y $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ entonces

$$A \cdot B = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 & 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6 \\ 4 \cdot 1 + 5 \cdot 3 + 6 \cdot 5 & 4 \cdot 2 + 5 \cdot 4 + 6 \cdot 6 \end{bmatrix} = \begin{bmatrix} 22 & 28 \\ 49 & 64 \end{bmatrix}$$

En este caso:

$$[A \cdot B]_{12} = \sum_{k=1}^{n} [A]_{1k} \cdot [B]_{k2}$$

$$= [A]_{11} \cdot [B]_{12} + [A]_{12} \cdot [B]_{22} + [A]_{13} \cdot [B]_{32}$$

$$= 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6$$

$$= 28$$

Observación

Sean $A = [a_{ij}]$ matriz $m \times n$ y $B = [b_{ij}]$ matriz $n \times p$, entonces si multiplicamos la matriz que se forma con la fila i de A por la matriz que determina la columna j de B, obtenemos el coeficiente ij de AB. Esquemáticamente

$$\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \sum_{k=1}^n a_{ik} b_{kj} = c_{ij}.$$

Por lo tanto diremos a veces, que el coeficiente ij de la matriz AB es la fila i de A por la columna j de B. O, con abuso de notación,

$$F_i(A) \cdot C_j(B) = \langle F_i(A), C_j(B) \rangle$$

(producto escalar).

Propiedades del producto de matrices

Las propiedades más básicas del producto de matrices son las siguientes.

Proposición

1. Si $A \in \mathbb{K}^{m \times n}$, entonces

$$A \cdot Id_n = Id_m \cdot A = A.$$
 (elemento neutro)

2. Si $A \in \mathbb{K}^{m \times n}$, $B \in \mathbb{K}^{n \times p}$ y $C \in \mathbb{K}^{p \times q}$ entonces

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C.$$

3. Si $A \in \mathbb{K}^{m \times n}$ y $B, C \in \mathbb{K}^{n \times p}$ entonces

$$A \cdot (B + C) = A \cdot B + A \cdot C.$$
 (distributiva)

4. Si $A, B \in \mathbb{K}^{m \times n}$ y $C \in \mathbb{K}^{n \times p}$ entonces

$$(A+B)\cdot C = A\cdot C + B\cdot C.$$
 (distributiva)

(asociativa)

La demostraciones de estas propiedades son rutinarias. Probaremos la ley asociativa y la propiedad de existencia de elemento neutro. Las leyes distributivas las dejamos a cargo del lector.

Demostración: 1 - Id es el elemento neutro del producto

Notemos que las entradas de la matriz Id_k son determinadas de la siguiente manera

$$[\mathsf{Id}_k]_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

porque son todas ceros salvo en la diagonal (donde el número de fila y columna coinciden). Entonces

$$\begin{split} [A \cdot \mathsf{Id}_n]_{ij} &= \sum_{k=1}^n [A]_{ik} \cdot [\mathsf{Id}_n]_{kj} = [A]_{ij} \cdot 1 = [A]_{ij} \\ [\mathsf{Id}_m \cdot A]_{ij} &= \sum_{m} [\mathsf{Id}_n]_{ik} \cdot [A]_{kj} = 1 \cdot [A]_{ij} = [A]_{ij} \end{split}$$

Demostración: 2 - ley asociativa

Para probar ver la asociatividad tenemos que verificar que todas las entradas de $A \cdot (B \cdot C)$ y $(A \cdot B) \cdot C$ son iguales.

$$[A \cdot (B \cdot C)]_{ij} = \sum_{k=1}^{n} [A]_{ik} \cdot [B \cdot C]_{kj} = \sum_{k=1}^{n} [A]_{ik} \cdot \left(\sum_{l=1}^{p} [B]_{kl} \cdot [C]_{lj}\right)$$

$$= \sum_{k=1}^{n} \sum_{l=1}^{p} [A]_{ik} \cdot [B]_{kl} \cdot [C]_{lj} = \sum_{l=1}^{p} \sum_{k=1}^{n} [A]_{ik} \cdot [B]_{kl} \cdot [C]_{lj} =$$

$$= \sum_{l=1}^{p} \left(\sum_{k=1}^{n} [A]_{ik} \cdot [B]_{kl}\right) \cdot [C]_{lj} = \sum_{l=1}^{p} [A \cdot B]_{il} \cdot [C]_{lj} = [(A \cdot B) \cdot C]_{ij}$$

Propiedades que no valen en general

Veamos ahora algunas propiedades que no valen *en general* cuando multiplicamos matrices. Es decir, daremos contraejemplos.

El producto no es conmutativo (en general)

$$\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right] \neq \left[\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right] \cdot \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right]$$

Multiplicar matrices no nulas puede dar cero

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right] \cdot \left[\begin{array}{cc} -1 & -1 \\ 1 & 1 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

Observación

Cuando las matrices son cuadradas podemos multiplicarlas por si mismas y definimos, de forma análoga a lo que ocurre en los productos de números, la potencia de una matriz: sea A matriz $m \times m$, y sea $k \in \mathbb{N}$ entonces

$$A^0 = \operatorname{Id}_m, \quad A^k = A^{k-1}A,$$

es decir A^k es multiplicar A consigo mismo k-veces.

Elevar al cuadrado u otra potencia puede dar cero

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]^2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \cdot \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

.

No se cumple la propiedad cancelativa

Si $A \neq 0$ y AB = AC no necesariamente se cumple que B = C. Por ejemplo,

$$\begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 8 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 5 & 3 \end{bmatrix}$$

No se cumple la fórmula del binomio

Sean A, B matrices $m \times m$, entonces

$$(A + B)^2 = (A + B)(A + B)$$

= $A(A + B) + B(A + B)$
= $AA + AB + BA + BB$
= $A^2 + AB + BA + B^2$,

y esta última expresión puede no ser igual a $A^2 + 2AB + B^2$ ya que el producto de matrices no es conmutativo (en general).

Multiplicación por la matriz 0

La multiplicación por la matriz nula resulta en otra matriz nula.

Es decir, $0 \cdot A = A \cdot 0 = 0$ para toda matriz A:

$$[0 \cdot A]_{ij} = \sum_{k} [0]_{ik} \cdot [A]_{kj} = \sum_{k} 0 \cdot [A]_{kj} = 0$$
$$[A \cdot 0]_{ij} = \sum_{k} [A]_{ik} \cdot [0]_{kj} = \sum_{k} [A]_{ik} \cdot 0 = 0$$

Multiplicación por matrices diagonales

Sea
$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & d_m \end{bmatrix}$$
 y $A = [a_{ij}] \in \mathbb{K}^{m \times m}$ entonces

$$[DA]_{ij} = \sum_{k=1}^{m} [D]_{ik} \cdot [A]_{kj} = [D]_{ii} [A]_{ij} = d_i a_{ij}$$

y por lo tanto
$$\mathit{DA} = (\mathit{d}_i \mathit{a}_{ij}) \in \mathbb{K}^{m \times n}, \Rightarrow$$

$$DA = \begin{bmatrix} d_1 F_1 \\ d_2 F_2 \\ \vdots \\ d_m F_m \end{bmatrix}$$

La anterior es la multiplicación a izquierda por una matriz diagonal.

La multiplicación *a derecha* viene dada por: si $A = [a_{ij}] \in \mathbb{K}^{n \times m}$, entonces

$$[AD]_{ij} = \sum_{k=1}^{m} [A]_{ik} \cdot [D]_{kj} = [A]_{ij} [D]_{jj} = d_j a_{ij}$$

y por lo tanto $AD = [d_j a_{ij}] \in \mathbb{K}^{n imes m}$, \Rightarrow

$$AD = \begin{bmatrix} d_1C_1 & d_2C_2 & \cdots & d_mC_m \end{bmatrix}$$

Sea E la matriz $n \times n$ escalar con $c \in \mathbb{K}$ en la diagonal, es decir

$$E = \left[\begin{array}{cccc} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c \end{array} \right],$$

y sea $A = [a_{ij}]$ una matriz $n \times n$, entonces por lo dicho en la página anterior

$$EA = [ca_{ij}] = AE$$
.

En particular,

$$\operatorname{Id}_n A = A \operatorname{Id}_n = A.$$

Multiplicación de una matriz por un escalar

Sea $A \in \mathbb{K}^{m \times n}$ y $c \in \mathbb{K}$. La matriz cA es la matriz que se obtiene multiplicando todas las entradas de A por c. En símbolos,

$$cA \in \mathbb{K}^{m \times n}$$
 con $[cA]_{ij} = c[A]_{ij}$

Ejemplo

Si
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 y $c = 10$ entonces

$$10A = \left[\begin{array}{ccc} 10 & 20 & 30 \\ 40 & 50 & 60 \end{array} \right]$$

En este caso: $[cA]_{12} = 10[A]_{12} = 20$.

Observación

Observar que multiplicar por c una matriz $m \times n$, es lo mismo que multiplicar por la matriz escalar $m \times m$ con los coeficientes de la diagonal iguales a c.

Observación

Debido a la observación anterior y a las propiedades del producto de matrices, se cumple: s

- **P1.** 1.A = A,
- **P2.** (cd)A = c(dA),
- **D1.** c(A+B) = cA + cB, (propiedad distributiva)
- **D2.** (c+d)A = cA + dA. (propiedad distributiva)

El hecho de que para $A, B, C \in \mathbb{K}^{m \times n}$, y $c, d \in \mathbb{K}$ se satisfagan las propiedades:

S1.
$$A + B = B + A$$
 (conmutatividad de la suma)

S2.
$$A + (B + C) = (A + B) + C$$
 (asociatividad de la suma)

S3.
$$A + 0 = A$$
 (elemento neutro)

S4.
$$A + (-A) = 0$$
 (existencia de opuesto)

- **P1.** 1.A = A,
- $P2. \quad (cd)A = c(dA),$
- **D1**. c(A + B) = cA + cB, (propiedad distributiva)
- **D2.** (c+d)A = cA + dA. (propiedad distributiva)

nos dice que $\mathbb{K}^{m \times n}$ es un *espacio vectorial*.

Estudiaremos más adelante los espacios vectoriales y sus propiedades, tema central de la materia.

Observar que $\mathbb{K}^{n\times n}$ (las matrices *cuadradas* $n\times n$) satisface las siguientes propiedades: si $A,B,C\in\mathbb{K}^{n\times n}$ y $c,d\in\mathbb{K}$, entonces

S1.
$$A + B = B + A$$
 (conmutatividad de la suma)

S2.
$$A + (B + C) = (A + B) + C$$
 (asociatividad de la suma)

S3.
$$A + 0 = A$$
 (elemento neutro)

S4.
$$A + (-A) = 0$$
 (existencia de opuesto)

P1.
$$1.A = A$$
,

$$P2. \quad (cd)A = c(dA),$$

P3.
$$Id \cdot A = A = A \cdot Id$$
, (elemento neutro)

P4.
$$c(AB) = (cA)B = A(cB)$$
, (conmutatividad × escalares)

P5.
$$A(BC) = (AB)C$$
, (asociatividad)

D1.
$$c(A + B) = cA + cB$$
, (propiedad distributiva)

D2.
$$(c+d)A = cA + dA$$
. (propiedad distributiva)

D3.
$$C(A+B) = CA + CB$$
, (distributividad)

D4.
$$(A+B)C = AB + AC$$
. (distributividad)

Estas propiedades nos dicen que $\mathbb{K}^{n\times n}$ es una \mathbb{K} -álgebra asociativa con unidad.