Month of Topology & Abstract Algebra - IITG Topology - Definitions, Propositions, Theorems & Proofs

Animesh Renanse

January 2, 2021

Target: Reach Topological Manifolds

1 Topological Spaces & Continuity

Moving forward from the basic notion of Open & Closed Sets, Continuity & Completeness in Metric Spaces. Most of the prerequisites are from point-set topology background in Functional Analysis.

1.1 Basic Topological Constructions

ightharpoonup **Definition 1.** (*Topological Space*) Let M be a set. Then a subset $\mathcal{M} \subseteq 2^M$ of the power set of M is called a topology if it satisfies the following properties:

- 1. The empty set Φ and M are in \mathcal{M} .
- 2. If $\{O_i\}_{i\in I}$ with $O_i \in \mathcal{M}$ is an **arbitrary** collection of elements in \mathcal{M} , then union of all such sets should also be in \mathcal{M} . That is

$$\bigcup_{i\in I} O_i \in \mathcal{M}$$

3. If $O_1, O_2, \ldots, O_n \in \mathcal{M}$ are finitely many elements in \mathcal{M} , then there intersection should also be in \mathcal{M} . That is

$$O_1 \cap O_2 \cap \cdots \cap O_n \in \mathcal{M}$$

Remark. • A set M together with a topology $\mathcal{M} \subseteq 2^M$ is called a topological space (M, \mathcal{M}) . The sets O are called the **open** subsets of (M, \mathcal{M}) .

- The power set $\mathcal{M} = 2^M$ is called the **Finest Topology of** M.
- If one takes topology to be $\mathcal{M} = \{\Phi, M\}$, it is called the **Coarsest** or **Trivial Topology of** M.
- The collection $\mathcal{M}_{\text{cofinite}} \subseteq 2^M$ of all those subsets which have finite complements and Φ is called the **Cofinite Topology** on M.

✓ **Proposition 1.** If $\{M_i\}_{i\in I}$ are topologies on M, then

$$\mathcal{M} = \bigcap_{i \in I} \mathcal{M}_i$$

is also a topology on M.

The following distinction of topologies helps in comparing them.

Definition 3. (Finer & Coarser) Let $\mathcal{M}_1, \mathcal{M}_2 \subseteq 2^M$ be topologies on M. Then \mathcal{M}_1 is called finer than \mathcal{M}_2 if $\mathcal{M}_2 \subseteq \mathcal{M}_1$. In this case, \mathcal{M}_2 is called coarser than \mathcal{M}_1 .

The coarsest topology containing open subsets.

- ✓ **Proposition 2.** Let $S \subseteq 2^M$ be a subset of the power set of M containing Φ and M. Then,
 - 1. There exists a unique topology $\mathcal{M}(S)$ which is coarser than every other topology containing S.
 - 2. This topology $\mathcal{M}(S)$ can be obtained by the following two step procedure:
 - (a) Take all finite intersections of subsets in S.
 - (b) Then take unions of all the resulting subsets.
- \star **Definition 4.** (Basis & Subbasis) Let (M, \mathcal{M}) be a topological space and let $\mathcal{S}, \mathcal{B} \subseteq \mathcal{M}$ be subsets containing Φ and M. Then,
 - 1. The set \mathcal{B} is called a *basis* of \mathcal{M} if every open subset in \mathcal{M} is a union of subsets from \mathcal{B} .
 - 2. The set \mathcal{S} is called a *subbasis* of \mathcal{M} if the collection of all finite intersections of sets from \mathcal{S} forms a basis of \mathcal{M} .
- **Definition 5.** (Subspace Topology) Let (M, \mathcal{M}) be a topological space and $N \subseteq M$ a subset. Then $\mathcal{M}|_N$ defined by, $\mathcal{M}|_N = \{O \cap N | O \in \mathcal{M}\} \subseteq 2^N$

is a topology for N.

1.2 Neighborhoods, Interiors and Closures

To define the neighborhood system of a point for a topological space in the same way as we know for metric space.

- \star **Definition 6.** (Neighborhood) Let (M, \mathcal{M}) be a topological space and $p \in M$. Then,
 - 1. A subset $U \subseteq M$ is called neighborhood of p if there exists an open subset $O \subseteq M$ with $p \in O \subseteq U$.
 - 2. The collection of all neighborhoods of p is called the **neighborhood system** (or neighborhood filter) of p, denoted by $\mathfrak{U}(p)$.

_____Basic properties of Neighborhoods in Topology. _____

- ✓ **Proposition 3.** Let (M, \mathcal{M}) be a topological space and $p \in M$. Then,
 - 1. A subset $O \subseteq M$ is a neighborhood of all of it's points if and only if O is open.
 - 2. For $U \in \mathfrak{U}(p)$ and $U \subseteq U'$ then we trivially have $U' \in \mathfrak{U}(p)$.
 - 3. For $U_1, \ldots, U_n \in \mathfrak{U}(p)$, we have $U_1 \cap \cdots \cap U_n \in \mathfrak{U}(p)$.
 - 4. For $U \in \mathfrak{U}(p)$ we have $p \in U$.
 - 5. For $U \in \mathfrak{U}(p)$ there exists a $V \in \mathfrak{U}(p)$ with $V \subseteq U$ and $V \in \mathfrak{U}(q)$ for all $q \in V$.
- **Definition 7.** (Neighborhood Basis) Let (M, \mathcal{M}) be a topological space and $p \in M$. Then, a subset $\mathfrak{B}(p) \subseteq \mathfrak{U}(p)$ of neighborhoods of $p \in M$ is called a neighborhood basis of p if for every $U \in \mathfrak{U}(p)$, there is a $B \in \mathfrak{B}(p)$ with $B \subseteq U$.
 - ____To capture the phenomenon of having different size of neighborhood bases, we have the following construction. ___
- ightharpoonup Definition 8. (First & Second Countability) Let (M, \mathcal{M}) be a topological space.
 - 1. The space M is called first countable (at $p \in M$) if every point (the point p) has a countable neighborhood basis.
 - 2. The space M is called second countable if \mathcal{M} has a countable basis.

_Constructing	more subsets	of M	given	an	arbitrary	\boldsymbol{A}	$\subset M$	
Constructing	more adosetta	OI IVI	given	α{11}	arbitary	2 I	_ 1V1	•

\star Definition 9. (Interior, Closure & Boundary) Let (M, \mathcal{M}) be a topological space and $A \subseteq M$.

- 1. A point $p \in M$ is called **inner point** of A if $A \in \mathfrak{U}(p)$.
- 2. The **interior** A° of A is the set of all inner points of A.
- 3. A point $p \in M$ is called **boundary point** of A if for every neighborhood $U \in \mathfrak{U}(p)$, we have

$$A \cap U \neq \Phi \neq (M / A) \cap U$$

- 4. The **boundary** ∂A of A is the set of all boundary points of A.
- 5. The closure A^{cl} of A is the set of all points $p \in M$ such that all $U \in \mathfrak{U}(p)$ satisfy

$$U\cap A\neq \Phi$$

____Alternative characterizations of Interior, Closure & Boundary.

- ✓ **Proposition 4.** Let (M, \mathcal{M}) be a topological space and $A \subseteq M$. Then,
 - 1. The interior A° of A is the largest open subset inside A.
 - 2. The closure A^{cl} of A is the smallest closed subset containing A.
 - 3. The boundary ∂A of A is closed and $\partial A = A^{\rm cl} / A^{\circ}$.

__The maximum and minimum sizes of subsets. ____

\star Definition 10. (Dense & Nowhere Dense) Let (M, \mathcal{M}) be a topological space. Then,

- 1. A subset $A \subseteq M$ is called dense if $A^{cl} = M$.
- 2. A subset $A \subseteq M$ is called nowhere dense if $(A^{cl})^{\circ} = \Phi$.

____Properties of Closures, Open Interiors & Boundaries with respect to unions, intersections and complements. ____

- ✓ **Proposition 5.** Let (M, \mathcal{M}) be a topological space and let $A, B \subseteq M$ be subsets. Then, one has,
 - 1. $\Phi^{\circ} = \Phi = \Phi^{\text{cl}}$ and $M^{\circ} = M = M^{\text{cl}}$ as well as $\partial \Phi = \Phi = \partial M$.

Proof. Since $\Phi \in \mathfrak{U}(\Phi)$, thus, $\Phi^{\circ} = \Phi$ and similarly for the closure. For boundary of Φ , note that for $p \in \partial \Phi$, $U \in \mathfrak{U}(p)$ should be such that $U \cap \Phi \neq \Phi \neq (M / \Phi) \cap U$. Since $U \cap \Phi \neq \Phi \implies U = \Phi$. Also, for $q \in \partial M$, $U \in \mathfrak{U}(q)$ should be such that $U \cap M \neq \Phi \neq U \cap (M / M) = U \cap \Phi \implies U = \Phi$.

2. $A^{\circ} \subseteq A \subseteq A^{\operatorname{cl}}$ and

$$(A^{\operatorname{cl}})^{\operatorname{cl}} = A^{\operatorname{cl}} \;, \;\; (A^{\circ})^{\circ} = A^{\circ} \;, \;\; \partial(\partial A) \subseteq \partial A$$

Proof. For any $p \in A^{\circ}$, we have $p \in A \in \mathfrak{U}(p)$, thus, $A^{\circ} \subseteq A$. The A is necessarily in A^{cl} as for any point $p \in A$ and any $U \in \mathfrak{U}(p)$ have $\{p\}$ in common. Thus $A^{\circ} \subseteq A \subseteq A^{\operatorname{cl}}$. Since A° is the largest open set in A, then $(A^{\circ})^{\circ}$ is also the largest open set in A° . Thus $(A^{\circ})^{\circ} = A^{\circ}$. Similarly for closure. For boundary, using Proposition 4, we see that ∂A is closed with $\partial A = A^{\operatorname{cl}} / A^{\circ}$. Therefore, $\partial(\partial A) = (\partial A)^{\operatorname{cl}} / (\partial A)^{\circ} = \partial A / (\partial A)^{\circ} \subseteq \partial A$.

3. For $A \subseteq B$,

$$A^{\circ} \subseteq B^{\circ}$$
, $A^{\operatorname{cl}} \subseteq B^{\operatorname{cl}}$

- 4. $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$, $\partial (A \cup B) \subset \partial A \cup \partial B$, $A^{\operatorname{cl}} \cup B^{\operatorname{cl}} = (A \cup B)^{\operatorname{cl}}$.
- 5. $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$, $(A \cap B)^{\operatorname{cl}} \subseteq A^{\operatorname{cl}} \cap B^{\operatorname{cl}}$.

Proof. Note that $A^{\circ} \subseteq A$, $B^{\circ} \subseteq B$ and $A \cap B \subseteq A$, B, thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$ and $A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$ hence proving the first part. For second part, note that $A \cap B \subseteq A$, B, thus $(A \cap B)^{\operatorname{cl}} \subseteq A^{\operatorname{cl}} \cap B^{\operatorname{cl}}$.

6. $(M/A)^{\circ} = M/A^{cl}$, $\partial (M/A) = \partial A$, $(M/A)^{cl} = M/A^{\circ}$.

Proof. Note that the boundary points have a symmetric definition (Definition 9) w.r.t. A or M / A, hence $\partial(M$ / A) = ∂A . Now, let $p \in M$ / A° . Since $p \notin A^{\circ}$, thus, $A \notin \mathfrak{U}(p)$, that is for all $U \in \mathfrak{U}(p)$, $U \cap (M$ / A) $\neq \Phi$. This means that $p \in (M$ / A)^{cl}, hence showing (M / A)^{cl} = M / A° . We can use this to show the last part in the following way,

$$M / (M / A)^{\circ} = (M / (M / A)^{\circ})^{cl}$$

= A^{cl}
 $\Longrightarrow M / A^{cl} = M / (M / (M / A)^{\circ})$
= $(M / A)^{\circ}$

Hence Proved.

1.3 Continuous Maps

Definition of continuous maps between topological spaces is derived in the same way as we learned for Metric Spaces.

 \star Definition 11. (Continuity) Let $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ be a map between topological spaces.

- 1. The map f is called continuous at $p \in M$ if for every neighborhood $U \in \mathfrak{U}(f(p))$ of f(p) the $f^{-1}(U)$ is a neighborhood of p.
- 2. The map f is called continuous if the pre-image of every open subset of N is open in M.
- 3. The set of continuous maps is denoted by

$$\mathscr{C}(M,N) = \{f : M \longrightarrow N \mid f \text{ is continuous}\}.$$

_Basic results of continuity. _

✓ **Proposition 6.** Let $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ be a map between topological spaces. Then the following statements are equivalent:

- 1. The map f is continuous at every point.
- 2. The map f is continuous.
- 3. The subset $f^{-1}(A) \subseteq M$ is closed for every closed $A \subseteq N$.
- 4. The subset $f^{-1}(O)$ is open for every $O \in \mathcal{S}$ in a subbasis \mathcal{S} of N.

Proof. For $1. \to 2$.: Let $O \subseteq N$ be open. Let $p \in f^{-1}(O)$, therefore $f(p) \in O$. Thus, $O \in \mathfrak{U}(f(p))$ and $f^{-1}(O) \in \mathfrak{U}(p)$. Since this is true for all $p \in f^{-1}(O)$, we thus have $f^{-1}(O)$ that is open.

For $2. \to 1$.: Let $U \in \mathfrak{U}(f(p))$, thus there is an open set $O \subseteq U$ with $f(p) \in O$. Since f is continuous, so $f^{-1}(O)$ is open. Hence, $f^{-1}(O) \subseteq f^{-1}(U)$, that is, $f^{-1}(U) \in \mathfrak{U}(p)$. Hence proved.

For $2. \to 3$.: Let A be an open set in N. Since f is continuous at every point in M, therefore $f^{-1}(A)$ is open. This implies that if B = N / A is closed then $f^{-1}(B)$ is closed.

_Composition of maps. _____

- \checkmark Proposition 7. Let $f:(M,\mathcal{M})\longrightarrow (N,\mathcal{N})$ and $g:(N,\mathcal{N})\longrightarrow (K,\mathcal{K})$ be maps between topological spaces.
 - 1. If f is continuous at $p \in M$ and g is continuous at $f(p) \in N$ then $g \circ f$ is continuous at p.
 - 2. If f and g are continuous then $g \circ f$ is continuous.

Proof. First note that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. Therefore, for any point $p \in K$ and it's neighborhood $U \in \mathfrak{U}(p)$, $(g \circ f)^{-1}(U) \in \mathfrak{U}(f^{-1}(g^{-1})(U))$ as f and g are continuous.

____Additional features of maps. ___

 \star Definition 12. (Open & Closed Maps) Let $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ be a map between topological spaces.

- 1. The map f is called open if $f(O) \subseteq N$ is open for all open $O \subseteq M$.
- 2. The map f is called closed if $f(A) \subseteq N$ is closed for all closed $A \subseteq M$.

Note that these three notions (continuous, open and closed) of maps are not mutually exclusive, that is, a map which is open is not generally not closed and/or continuous.

 $_Isomorphism$ between topological spaces. $_$

 \star **Definition 13.** (Homeomorphism) Let $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ be a map between topological spaces.

- 1. The map f is called homeomorphism if f is bijective, continuous and if f^{-1} is also continuous.
- 2. If there is a homeomorphism $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ then the spaces (M,\mathcal{M}) and (N,\mathcal{N}) are called **homeomorphic**.
- 3. The map f is called an **embedding** if f is injective and if

$$f: (M, \mathcal{M}) \longrightarrow \left(f(M), \mathcal{N}|_{f(M)} \right)$$

is a homeomorphism.

	Equivalent characterizations of	homeomorphisms	
Proposition 8 Let $f \cdot (M, M)$	$\longrightarrow (N, N)$ be a map between t	conological spaces	Then the following statements are

1. The map f is a homeomorphism.

equivalent:

- 2. The map f is continuous, bijective and open.
- 3. The map f is continuous, bijective and closed.
- 4. The map f is continuous and there exists a continuous map $g: N \longrightarrow M$ with $g \circ f = \mathrm{id}_M$ and $f \circ g = \mathrm{id}_N$ where $\mathrm{id}_M: M \to M$ is the identity map.

Proof. From 1. \to 2. : Map f is trivially continuous and bijective. Consider an open subset $O \subseteq M$. Now since f^{-1} is continuous, therefore $(f^{-1})^{-1}(O) = f(O) \subseteq N$ is open, so f is open.

From $1. \rightarrow 3.$: Using Proposition 6, we can proceed as above.

From $2. \to 1$.: We just need to show that f^{-1} is also continuous. We also have that for any open $O \subseteq M$, $f(O) \subseteq N$ is open and for any open $O \subseteq N$, $f^{-1}(O) \subseteq M$ is open. We need that for any open subset $O \subseteq M$, $(f^{-1})^{-1}(O) \subseteq N$ is open, which is trivial to see now as $(f^{-1})^{-1}$ is f.

From $3. \rightarrow 1.$: Using Proposition 6, we can proceed as above.

From 1. \rightarrow 4. : Simply let $g = f^{-1}$.

1.4 Connectedness

Let's further discuss more properties of Topological spaces, especially of connectedness and path-connectedness.

Motivation for definition of Connectedness.

 \checkmark Proposition 9. Consider the closed interval M = [0,1] with it's usual topology. Suppose we have two open subsets $O_1, O_2 ⊆ [0,1]$ with $O_1 ∪ O_2 = [0,1]$ and $O_1 ∩ O_2 = Φ$. Then necessarily O_1 and O_2 are just [0,1] and Φ.

Definition 14. (Connectedness) Let (M, \mathcal{M}) be a topological space. Then M is called connected if there are no two open, disjoint subsets $O_1, O_2 \subseteq M$ with $O_1 \cup O_2 = M$ beside M and Φ . A subset $A \subseteq M$ is called connected if $(A, \mathcal{M}|_A)$ is connected.

Remark. It's easy to see now that the unit interval [0, 1] is connected.

✓ **Proposition 10.** Let $A \subseteq \mathbb{R}$ and $a, b \in A$. If A is connected, then $[a, b] \subseteq A$.

Proof. Assume $z \in [a,b]$ such that $z \notin A$. Clearly, $(-\infty,z)$ and (z,∞) are open subsets of \mathbb{R} . Using the definition of subspace topology, it implies that $(-\infty,z) \cap A$ and $(z,\infty) \cap A$ are open in A. Note that since A is connected and $((-\infty,z) \cap A) \cup ((z,\infty) \cap A) = A$ and both are disjoint, therefore, $(-\infty,z) \cap A$ and $(z,\infty) \cap A$ are A and A. But if $(-\infty,z) \cap A$ is A and A and A and A are A and A and A are A are A and A are A are A and A are A and A are A are A and A are A are A are A and A are A ar

_Continuity obeys Connectedness. .

✓ **Proposition 11.** Let $f:(M,\mathcal{M}) \longrightarrow (N,\mathcal{N})$ be a continuous map between topological spaces. If M is connected then f(M) is connected too.

Proof. Suppose f(M) is not connected even after M being connected and let $O_1, O_2 \subseteq f(M)$ be open and disjoint such that $O_1 \cup O_2 = f(M)$. Clearly, $U_1 = f^{-1}(O_1) \subseteq M$ and $U_2 = f^{-1}(O_2) \subseteq M$ are both open as well due to continuity of f. Since $M = f^{-1}(f(M)) = f^{-1}(O_1 \cup O_2) = f^{-1}(O_1) \cup f^{-1}(O_2) = U_1 \cup U_2$ and $\Phi = f^{-1}(\Phi) = f^{-1}(O_1 \cap O_2) = f^{-1}(O_1) \cap f^{-1}(O_2) = U_1 \cap U_2$, hence we have a contradiction to connectedness of M.

___Motivated from Proposition 10, we have the Topological Intermediate Value Theorem as the following corollary. ___

 \to Corollary 1. (Intermediate Value Theorem) Let $f:(M,\mathcal{M}) \to \mathbb{R}$ be a continuous function on a connected topological space M. If $a,b \in f(M)$ then also $[a,b] \subseteq f(M)$.

_Connectedness from continuous joining of two points. _

 \star **Definition 15.** (Path - Connectedness) Let (M, \mathcal{M}) be a topological space.

1. A path in M is a continuous map γ from interval [0, 1] to M,

$$\gamma:[0,1]\longrightarrow M$$

2. The space M is called **path-connected** if for any $p, q \in M$ one finds a path γ with

$$\gamma(0) = p$$
 and $\gamma(1) = q$

 $_$ Path-connectedness \implies Connectedness. $_$

 \checkmark Proposition 12. Let (M,\mathcal{M}) be a path-connected topological space. Then M is connected too.

Proof. Suppose M is not connected. Let $O_1, O_2 \subseteq M$ be open, disjoint and such that $O_1 \cup O_2 = M$. Let $p \in O_1$ and $q \in O_2$ and them being connected by the continuous path $\gamma : [0,1] \longrightarrow M$ such that $\gamma(0) = p$ and $\gamma(1) = q$. Since γ is continuous, so $\gamma^{-1}(O_1)$ and $\gamma^{-1}(O_2)$ are open, disjoint and non-empty. Also $[0,1] = \gamma^{-1}(M) = \gamma^{-1}(O_1 \cup O_2) = \gamma^{-1}(O_1) \cup \gamma^{-1}(O_2)$. Hence, we have a contradiction to the connectedness of [0,1]. Therefore, our assumption that when M is not connected then (M, \mathcal{M}) would be path-connected is wrong.

Remark. Path-connectedness is a stronger property than connectedness.

Even if (M, \mathcal{M}) is not path connected, we can talk about the largest subset containing a given point $p \in M$ which is path-connected.

- ✓ **Proposition 13.** Let (M, \mathcal{M}) be a topological space.
 - 1. If $\{C_i\}_{i\in I}$ is a family of path-connected subsets of M such that $\bigcap_{i\in I} C_i \neq \Phi$ then

$$\bigcup_{i\in I} C_i$$

is again path-connected.

- 2. If $A \subseteq B \subseteq A^{cl} \subseteq M$ and A is a connected subset then B is connected as well. In particular, if A is connected, then A^{cl} is connected too.
- 3. The union of all connected subsets of M which contain p is connected and closed and is denoted by $\mathfrak{C}(p)$.
- 4. The union of all path-connected subsets of M which contain p is denoted by $\Pi(p)$ which is path-connected and

$$\Pi(p) \subseteq \mathfrak{C}(p)$$
.

Proof. First write $C = \bigcup_{i \in I} C_i$ and let $O_1, O_2 \subseteq M$ such that $(O_1 \cap C) \cap (O_2 \cap C) = \Phi$ and $C \subseteq O_1 \cup O_2$, that is, we are referring to the subspace topology of C. Now, since $C \subseteq O_1 \cup O_2$, therefore $C_i \subseteq O_1 \cup O_2$ for all $i \in I$. Since C_i is connected for each i, therefore we have that either $C_i \cap O_1$ or $C_i \cap O_2$ as Φ . WLOG, let us assume $C_i \cap O_1 = \Phi$ and since $C_i \subseteq O_1 \cup O_2$, therefore $C_i \subseteq O_2 \cap C_i$ for all $i \in I$. Hence $C \subseteq O_2 \cap C$, hence for any open set in the subspace topology $\mathcal{M}|_{C}$, the only one which covers whole of C is C and Φ itself. Hence proved the connectedness of C. The proof for path-connectedness is much simpler

The general logical technique used here (part 2) is the following: Prove the contrapositive by contradiction. That is, for statements P and Q such that $P \to Q$, it is equivalent to $\neg Q \to \neg P$ and prove this by contradiction, that is assume negation and derive contradiction, more simply since for any statements A and B we have that $\neg(B \to A) \Leftrightarrow B \land \neg A$, in our case, we hence assume that $\neg(\neg Q \to \neg P) \Leftrightarrow \neg Q \land P$ is true and derive a contradiction.

For our case, let $A \subseteq B \subseteq A^{\operatorname{cl}} \subseteq M$ and A is connected but B is not connected. Hence we can find two open subsets $O_1, O_2 \subseteq M$ such that $B \subseteq O_1 \cup O_2$ and $(B \cap O_1) \cap (B \cap O_2) = \Phi$ and each intersection being non-empty themselves. Since $A \subseteq B$, then $A \subseteq O_1 \cup O_2$ and $(A \cap O_1) \cap (A \cap O_2) = \Phi$. We still need to show that $A \cap O_k$ is not empty to establish the contradiction to completeness of A. For that, since $B \subseteq A^{\operatorname{cl}}$, thus for any element $p \in B$, $p \in A^{\operatorname{cl}}$ and hence there exists open $U \in \mathfrak{U}(p)$ such that $U \cap A \neq \Phi$. Hence, choosing $b_1 \in B \cap O_1$ and $b_2 \in B \cap O_2$, we first note that $O_1 \in \mathfrak{U}(b_1)$ and $O_2 \in \mathfrak{U}(b_2)$, hence $O_1 \cap A \neq \Phi \neq O_2 \cap A$. Hence the contradiction.

Part 3 and 4 follows from 1 and 2.

Properties of $\mathfrak{C}(p)$ and $\Pi(p)$.					

- \star Definition 16. (Connected Components) Let (M, \mathcal{M}) be a topological space and $p \in M$.
 - 1. The subset $\mathfrak{C}(p)$ is called the **connected component** of p.
 - 2. The subset $\Pi(p)$ is called the **path-connected component** of p.

Equivalence of being in same connected component of M.

- \checkmark **Proposition 14.** Let (M, \mathcal{M}) be a topological space. Then,
 - 1. $q \in \mathfrak{C}(p)$ holds if and only if $p \in \mathfrak{C}(q)$.
 - 2. If $q \in \mathfrak{C}(p)$ and $x \in \mathfrak{C}(q)$, then $x \in \mathfrak{C}(p)$.
 - 3. Hence, belonging in same connected component is an **equivalence relation**. Similarly for path-connected component too.

Proof. It's trivial to see Part 1 (symmetric) as since $q \in \mathfrak{C}(p)$, therefore $\mathfrak{C}(p) \subseteq \mathfrak{C}(q)$. Hence $p \in \mathfrak{C}(q)$. For part 2 (transitive), since $q \in \mathfrak{C}(x)$ (Part 1) therefore $\mathfrak{C}(x) \subseteq \mathfrak{C}(q)$. Similarly, since $p \in \mathfrak{C}(q)$, hence $\mathfrak{C}(q) \subseteq \mathfrak{C}(p)$. Hence we get that $\mathfrak{C}(x) \subseteq \mathfrak{C}(q) \subseteq \mathfrak{C}(p) \implies x \in \mathfrak{C}(p)$.

_Easing the constraint of Global Connectedness. ___

- \star Definition 17. (Local Connectedness & Total Disconnectedness) Let (M, \mathcal{M}) be a topological space.
 - 1. If for every point $p \in M$, every neighborhood $U \in \mathfrak{U}(p)$ contains a (path-)connected neighborhood of p then (M, \mathcal{M}) is called **Locally (Path-)Connected**.
 - 2. If $\mathfrak{C}(p) = \{p\}$ for all $p \in M$ then (M, \mathcal{M}) is called **Totally Disconnected**.
- ✓ **Proposition 15.** Let (M, \mathcal{M}) be a topological space.
 - 1. If M is locally connected then the connected component $\mathfrak{C}(p)$ of $p \in M$ is open.
 - 2. The space M is locally connected if and only if the connected open subsets form a basis of the topology.
 - 3. If M is locally path-connected then for all $p \in M$ we have

$$\mathfrak{C}(p) = \Pi(p).$$

4. Suppose M is locally path-connected. Then M is connected if and only if M is path-connected.

Proof. Let $p, q \in M$ such that $q \in \mathfrak{C}(p)$. Since M is locally connected therefore the connected neighborhood $U \in \mathfrak{U}(q)$ is such that $U \cap \mathfrak{C}(p) \neq \Phi$. Now note that by Proposition 13, we have that $U \cup \mathfrak{C}(p)$ is again connected and contains p. Hence $U \subseteq U \cup \mathfrak{C}(p) \subseteq \mathfrak{C}(p)$, that is $\mathfrak{C}(p) \in \mathfrak{U}(q)$. Since q is arbitrary in $\mathfrak{C}(p)$, therefore by Proposition 3, $\mathfrak{C}(p)$ is open.

For 2, if the space M is locally connected then for each point, every nieghborhood has a connected neighborhood, which forms a neighborhood basis, hence it forms a basis for the whole topology. Similarly for the converse.

For 3, let M be locally path-connected, hence locally connected. From Proposition 13, we know that $\Pi(p) \subseteq \mathfrak{C}(p)$. Now suppose that $q \in \mathfrak{C}(p) \setminus \Pi(p)$. Clearly, $\Pi(q) \subseteq \mathfrak{C}(q) \subseteq \mathfrak{C}(p) \setminus \Pi(p)$. This means that

$$\mathfrak{C}(p) \setminus \Pi(p) = \bigcup_{q \in \mathfrak{C}(p) \setminus \Pi(p)} \Pi(q)$$

hence $q \in \mathfrak{C}(p) \setminus \Pi(p)$ is open as $\Pi(q)$ is open by extension of part 1. Hence we have a decomposition of $\mathfrak{C}(p)$ into disjoint subsets $\mathfrak{C}(p) \setminus \Pi(p)$ and $\Pi(p)$. Since $\mathfrak{C}(p)$ is connected, therefore one of these has to be empty but since $p \in \Pi(p)$ hence $\mathfrak{C}(p) \setminus \Pi(p) = \Phi$. The 4^{th} now follows as 3rd is true for all $p \in M$.

1.5 Separation Properties

We now discuss the axioms which collect features of how points in a topological space can be separated from each other.

\star Definition 18. (Separation Properties) Let (M, \mathcal{M}) be a topological space.

- 1. The space M is called a T_0 -space if for each pair of two different points $p \neq q$ in M, we find an open subset which contains only one of them.
- 2. The space M is called a T_1 -space if for each pair of two different point $p \neq q$ in M, we find open subsets O_1 and O_2 with $p \in O_1$ and $q \in O_2$ but $p \notin O_2$ and $q \notin O_1$.
- 3. The space M is called a T_2 -space or a **Hausdorff space** if for each pair of two different points $p \neq q$ in M, we find disjoint open subsets O_1 and O_2 with $p \in O_1$ and $q \in O_2$.
- 4. The space M is called a T_3 -space if for every closed subset $A \subseteq M$ and every $p \in M \setminus A$, there are disjoint open subsets O_1 and O_2 with $A \subseteq O_1$ and $p \in O_2$.
- 5. The space M is called a T_4 -space if for two disjoint closed subsets $A_1, A_2 \subseteq M$, there are disjoint open subsets O_1 and O_2 with $A_1 \subseteq O_1$ and $A_2 \subseteq O_2$.

Remark. It should be noted that $T_0 \implies T_1$ but $T_1 \implies T_0$, $T_1 \implies T_2$ but $T_2 \implies T_1$.

_Basic Implications between axioms. ____

✓ **Proposition 16.** A topological space (M, \mathcal{M}) is a T_1 -space if and only if every point $p \in M$ gives a closed subset $\{p\} \subseteq M$.

Proof. It's trivial to see that since $M \setminus \{p\}$ is neighborhood of all of it's points as M is T_1 , hence $M \setminus \{p\}$ is open and hence $\{p\}$ is closed. Converse can be seen from this argument too.

✓ **Proposition 17.** A topological space (M, \mathcal{M}) is a T_3 -space if and only if for every $p \in M$ and every open neighborhood $O \in \mathfrak{U}(p)$ one finds an open $U \in \mathfrak{U}(p)$ with

$$p \in U \subseteq U^{\operatorname{cl}} \subseteq O$$
.

This means that there is a neighborhood basis of closed subsets for each point $p \in M$.

Proof. Let (M, \mathcal{M}) be a T_3 -space and $O \in \mathfrak{U}(p)$ be open. Clearly, $M \setminus O$ is closed, hence $p \in O$. Now since (M, \mathcal{M}) is T_3 , hence there exists open O_1 and O_2 such that $M \setminus O \subseteq O_1$ and $p \in O_2$ and $O_1 \cap O_2 = \Phi$. Hence it is clear to see that now $M \setminus O_1 \subseteq O$ where trivially $M \setminus O_1$ is closed and since O_1 and O_2 are disjoint hence we get $O_2 \subseteq M \setminus O_1 \subseteq O$. Since O_2^{cl} is the smallest closed subset containing O_2 , hence we get the desired result.

✓ **Proposition 18.** A topological space (M, \mathcal{M}) is a T_4 -space if and only if for every closed subset $A \subseteq M$ and every open $O \subseteq M$ with $A \subseteq O$, we have an open $U \subseteq M$ with

$$A \subseteq U \subseteq U^{\operatorname{cl}} \subseteq O$$

Proof. Let (M, \mathcal{M}) be a T_4 -space and $A \subseteq M$ be a closed subset with $A \subseteq O$ where O is an open subset in M. Now we have that $M \setminus O$ and A are closed. Using the T_4 criterion, we have two open, disjoint subsets U and V such that $M \setminus O \subseteq U$ and $A \subseteq V$. Clearly, $M \setminus U \subseteq O$ and since U is open so $M \setminus U$ is closed. Since U and V are disjoint so $V \subseteq M \setminus U \subseteq O$.

_____Motivated from unrelated nature of T_1, T_2 and T_3, T_4 axioms, we get the following definitions. _____

- \rightarrow Definition 19. (Regular & Normal Spaces) Let (M, \mathcal{M}) be a topological space.
 - 1. The space (M, \mathcal{M}) is called **regular** if it is T_1 and T_3 .
 - 2. The space (M, \mathcal{M}) is called **normal** if it is T_1 and T_4 .

 \checkmark Proposition 19. A regular space is Hausdorff (T_2) and a normal space is regular.

Proof. Let (M, \mathcal{M}) be a regular space. So it is T_1 and T_3 by definition. Also let $p \neq q$ in M, hence $\{p\}, \{q\} \subseteq M$ are closed subsets by Proposition 16. Hence T_3 implies T_4 trivially.

For (M, \mathcal{M}) being a normal space, we have that it is T_1 and T_4 . By T_1 , a point is closed, therefore T_4 implies T_3 by definition.

Remark. Note the following:

- $T_1 + T_3 \implies T_2$.
- $T_1 + T_4 \implies T_1 + T_3$.
- Hence, $T_1 + T_4 \implies T_1 + T_2 + T_3 + T_4$.
- This proposition shows the importance of T_2 -space, hence the special name (Hausdorff) given to it.

_Metric Spaces are Normal! _

✓ **Proposition 20.** A metric space is normal and hence it is $T_1, T_2, T_3 \& T_4$.

Proof. Let M be a metric space with distance function $d(\cdot,\cdot)$. Consider two points $p,q \in M$. Let r = d(p,q). Clearly, $q \notin B_{r/2}(p)$ and $p \notin B_{r/2}(q)$, hence M is T_1 .

For proving T_4 , consider two closed disjoint subsets $A, B \subseteq M$. For any $p \in A$, we have a r_p such that $B_{r_p}(p) \cap B = \Phi$. Note that $p \in M \setminus B$ and $M \setminus B$ is open. Similarly for $q \in B$ we have r_q such that $B_{r_q}(q) \cap A = \Phi$. Then we consider the following open sets

$$U = \bigcup_{p \in A} B_{r_p/2}(p)$$
 and $V = \bigcup_{q \in B} B_{r_q/2}(q)$

Then, we have that $A \subseteq U$ and $B \subseteq V$. To show U and V are disjoint, we just need to show that every intersection $B_{r_p/2}(p) \cap B_{r_q/2}(q) = \Phi$, which trivially follows by triangle inequality.

 \checkmark **Proposition 21.** Let $f, g: (M, \mathcal{M}) \longrightarrow (N, \mathcal{N})$ be a continuous maps between topological spaces and assume that (N, \mathcal{N}) is Hausdorff. Then,

- 1. The coincidence set $\{p \in M \mid f(p) = g(p)\} \subseteq M$ is **closed**.
- 2. If $U \subseteq M$ is dense then $f|_{U} = g|_{U}$ implies f = g.

Proof. Consider $A = \{p \in M \mid f(p) = g(p)\}$, then $M \setminus A = \{q \in M \mid f(q) \neq g(q)\}$. Now take any point $p \in M \setminus A$ so that $f(p) \neq g(p)$. Since f and g are continuous, therefore $\forall U \in \mathfrak{U}(f(p)) \& \forall V \in \mathfrak{U}(g(p)), f^{-1}(U)$ and $g^{-1}(V)$ are open neighborhoods of p. Moreover, since (N, \mathcal{N}) is Hausdorff, therefore there exists disjoint open sets O_1 and O_2 such that $f(p) \in O_1$ and $g(p) \in O_2$. Hence $f^{-1}(O_1), g^{-1}(O_2) \in \mathfrak{U}(p)$. Now since $p \in U := f^{-1}(O_1) \cup g^{-1}(O_2) \subseteq M \setminus A$ is open, hence $U \in \mathfrak{U}(p)$. Therefore $M \setminus A \in \mathfrak{U}(p)$ for all $p \in M \setminus A$ so $M \setminus A$ is open and A is closed.

In the second part, $f|_U = \{f(p) \mid p \in U \subseteq M\}$, similarly for $g|_U$. If $f|_U = g|_U$, then the incidence set $\{p \in U \mid f(p) = g(p)\}$ is the whole of U. Since incidence set is closed, so is the U^{cl} . But $U^{\text{cl}} = M$ since U is dense, hence f = g for all points in (M, \mathcal{M}) .

2 Construction of To	pological Spaces
----------------------	------------------