NOTES ON PORTFOLIO OPTIMIZATION

ASHWIN RAO

1. A SIMPLE DP FORMULATION FOR ONE RISKY AND ONE RISKLESS ASSET

Assume we have T discrete time steps labeled as t = 0, 1, ..., T. Wealth at time step t is denoted as W_t . We start with wealth W_0 . The utility of wealth consumption at final time T is given as $U(W_T) = -\frac{e^{-\gamma W_T}}{\gamma}$ for some $\gamma > 0$. Let the one-step rate of return of the riskless asset be r and let the one-step rate of return of the risky asset be the random variable $R \sim N(\mu, \sigma^2)$. Let the single-time-step discount factor for wealth be ρ .

State will be represented as (t, W_t) . Assume our decision (action) at any time step t is given by the quantity of investment in the risky asset at time step t for all $0 \le t \le T-1$ and is denoted by x_t (hence, quantity of investment in the riskless asset at time t will be $W_t - x_t$). We denote the policy as π , so $\pi((t, W_t)) = x_t$.

$$W_{t+1} = x_t(1+R) + (W_t - x_t)(1+r)$$

Denote excess return of the risk asset (over riskless return) as S = R - r. So,

$$W_{t+1} = x_t S + W_t (1+r)$$

Value function for a given policy is denoted as $V^{\pi}(t,W_t) = E_{\pi}[\rho^{T-t} \cdot U(W_T)|(t,W_t)] = E_{\pi}[-\rho^{T-t} \cdot \frac{e^{-\gamma W_T}}{\gamma}|(t,W_t)]$. Optimal Value function will be denoted as $V^*(t,W_t) = \max_{\pi} V^{\pi}(t,W_t) = \max_{\pi} E_{\pi}[\rho^{T-t} \cdot U(W_T)|(t,W_t)] = \max_{\pi} E_{\pi}[-\rho^{T-t} \cdot \frac{e^{-\gamma W_T}}{\gamma}|(t,W_t)]$. Assume $V^*(t,W_t)$ has the form $-a_t e^{-b_t W_t}$. Since $V^*(T,W_T) = -\frac{e^{-\gamma W_T}}{\gamma}$, $a_T = \frac{1}{\gamma}$, $b_T = \gamma$.

The Bellman optimality equation is:

$$V^*(t, W_t) = \max_{x_t} (E_{R \sim N(\mu, \sigma^2)} [\rho \cdot V^*(t+1, W_{t+1})])$$

$$= \max_{x_t} (E_{R \sim N(\mu, \sigma^2)} [-\rho \cdot a_{t+1} e^{-b_{t+1}(x_t S + W_t(1+r))}])$$

$$= \max_{x_t} (-\rho \cdot a_{t+1} e^{-b_{t+1} W_t(1+r) - b_{t+1} x_t(\mu-r) + \frac{\sigma^2}{2} b_{t+1}^2 x_t^2})$$

$$\frac{\partial V^*(t, W_t)}{\partial x_t} = 0 \text{ yields:}$$

$$-b_{t+1}(\mu - r) + \sigma^2 b_{t+1}^2 x_t^* = 0$$

$$x_t^* = \frac{\mu - r}{\sigma^2 b_{t+1}}$$

Plugging in x_t^* in the above equation for $V^*(t, W_t)$ gives:

$$V^*(t, W_t) = -\rho \cdot a_{t+1} e^{-b_{t+1}W_t(1+r) - \frac{(\mu-r)^2}{2\sigma^2}}$$

But since,

$$V^*(t, W_t) = -a_t e^{-b_t W_t}$$

, we can write the following recursive equations for a_t and b_t .

$$a_{t} = \rho \cdot a_{t+1} e^{-\frac{(\mu - r)^{2}}{2\sigma^{2}}}$$
$$b_{t} = b_{t+1}(1 + r)$$

Since we know that $a_T = \frac{1}{\gamma}, b_T = \gamma$,

$$a_t = \frac{\rho^{T-t}}{\gamma} e^{-\frac{(\mu-r)^2 \cdot (T-t)}{2\sigma^2}}$$
$$b_t = \gamma \cdot (1+r)^{T-t}$$

Hence,

$$x_t^* = \frac{\mu - r}{\sigma^2 \gamma (1 + r)^{T - t - 1}}$$

$$V^*(t, W_t) = -\frac{\rho^{T - t}}{\gamma} e^{-\frac{(\mu - r)^2 \cdot (T - t)}{2\sigma^2}} \cdot e^{-\gamma \cdot (1 + r)^{T - t} \cdot W_t}$$

As extensions of this problem, consider:

- Discrete Amounts of shares to hold and discrete quantities of trades
- Transaction costs
- Locked-out days for trading
- Non-stationary/arbitrary distributions
- Borrowing rate changing/uncertain future borrowing rate