/snr_ser:

/direct: 存放了不同情况下通过 ruo_main.m 跑出来的 snr 和 ser。

/direct/11.16: 存放了经过信道发送数据补正后的 snr-ser, (见/vol save/11.12 test)。

/direct/11.23: 存放了在更正传输错误前后的 snr-ser

/direct/11.25: 存放了用来 debug 的数据,见 ruo_debug.m。

/direct/12.1: 将两次接收信号(补正信号和被补正信号)重新同步后,跑出来的 snr-ser。

/direct/12.2: 在发送信号幅度很大时 ser 会上升,因此储存下来一些数据用来看 ser 上升的原因,对应程序 ruo debug。

/direct/12.3: 在发送信号前加了一段幅度很大的导频用来定位同步点,并且将两次接收信号(补正信号和被补正信号)重新同步,跑出来的 snr-ser。

/vol_save:

/11.4: 每个 /amp 下有三个文件: errnum_save.txt、signal_ori_save.mat、signal_received_save.mat, 两个.mat 文件中存放了均衡错误数量超过 50 的 400 组 signal_ori 发送数据和 150M 采样率的 signal_received, .txt 中存放了这四百组的均衡错误数量。对应程序: ruo_main_vol.m。

/11.9_test: 每个/amp/mat_location 下存放了在该 amp 下,取/11.4 文件中对应 /amp 中的 signal_ori_save.mat, 取对应的 signal_ori_save_mat_location 作为发送信号,每个发送五次,并记录 signal_demod_ls、signal_downsample、signal_fin

和 signal_ori_save_mat_location 存放在 signal_demod_save_amp40_loc10.mat、 signal_downsample_save_amp40_loc10.mat、 signal_fin_save_amp40_loc10.mat、 signal_save_ori_amp40_loc10.mat 中,errlocation_save_amp40_loc10.mat 里面存 放了这五次的均衡错误位置,err_number_amp40_loc10.txt 里面存放了这五次的均衡错误数量,对应程序: ruo_main_voltest.m。

/11.4_test_2:每个/amp 下有一个.txt 文件,存放了以/11.4 中对应/amp 中的 signal_received_save.mat 里的数据作为程序中的 signal_received,进行速率转换、同步、均衡,再与/11.4 中的 signal_ori_save.mat 进行比对,看看错误数量和/11.4 中是不是大致接近,对应程序: ruo_main_voltest2.m。

11.11_test: 1路信道为实验组, 4路为对照组, 两路信道发送同样的数据。尝试通过对比实验组和对照组, 来删除通过 1路信道的 160M 信号中出错的点。其中, 1路信道发送两次同样的数据, 分为实验组和实验组 1。如果对照组无法删除实验组的全部错误点, 那么尝试通过实验组 1来对实验组进行补正。

unquit_num_amp40_loc10.txt 中存放的是对照组的长度、两个实验组的长度以及两个实验组中未能删除点的个数,以及两个实验组重合的错误点的个数,最后一行是 20 次 exp_time 中有多少次两个实验组重合的错误点的个数,最后一行是 20 次 exp_time 中有多少次两个实验组有重合点。corrindex_save_amp40_loc10.mat 中存放的是两个实验组重合点的坐标。errloc_save_amp40_loc10.mat 中存放的是实验组中未删除点在 160M 数据中的位置。errloc_save1_amp40_loc10.mat 中存放的是实验组1中未删除点在 160M 数据中的位置。对应程序: ruo_test.m。

11.12_test、2、5: 与 11.11_test 相同, 三个文件夹对应的发送数据长度不同。txt 文件里存放了发送错误的数量以及未能补正的数量, 以及实验组 1 和 2 相关错

误点的数量。

ruo calculate ser.m: 集合了计算 snr、均衡、计算错误点个数的功能。

ruo_channel_coefficient.m: 用于仿真生成信道参数。

ruo_debug.m: 用于往 mat 里存用来 debug 的数据。

ruo_debug2.m: 用于从 mat 里读数据,并用这些数据 debug。

ruo_debug3.m: 现在这个 m 文件里写程序,没问题再放进 main2.m 中。

ruo_filter_gen.m: 如果 origin_rate 为不规则的速率(如 1.17e6),那么在速率转换时会因为公倍数过大而占满计算机内存。为了解决此问题,编写了ruo_filter_gen程序。在该程序中,假如 origin_rate 设为 1.23456e6,那么会通过计算,将该速率转换为相差不超过一定范围的新的 origin_rate,新的速率的公倍数不会很大,规避占满内存。

ruo_load_data.m: 用来从 mat 里加载数据,用在 ruo_plot.m 里。

ruo_main.m: 主程序,用于在平台上发送数据、接收数据、速率转换、更正传输错误、同步、均衡。

ruo main2.m: ruo main.m 的备份,和 ruo main.m 功能一样。

ruo_main_vol.m: 用于生成/vol_save/11.4 中的数据。

ruo_main_voltest: 用于生成/vol_save/11.9_test 中的数据。

ruo_main_voltest2: 用于生成/vol_save/11.4_test2 中的数据。

ruo pam4 send.m: 用于发送 4pam 数据。

ruo_pam4_send_correct.m: 用于在1路信道发送补正数据,即 11.11_test 中的实

验组1。

ruo_pam4_testsend.m: 用于 ruo_test.m。

ruo_pam4_testsend2.m: 用于 ruo_test.m。

ruo_pam4_volsend.m: 用于发送从.mat 中导出的数据,用在 ruo_main_voltest.m

里。

ruo_pilot_gen.m: 用于生成导频。

ruo_sam_rate_con.m: 用于速率转换。

ruo_signal_equal.m: 用于均衡。

ruo_signal_equal_ls.m: 用于进行 ls 均衡,和 ruo_signal_equal.m 中不同的是,

equal.m 需要的参数是粗同步点, equal_ls.m 需要的参数是精同步点。

ruo_signal_syn.m: 用于同步。

ruo_signal_syn_recorrect.m: 信道 1 两次发送的信号进行精同步的时候会有一两个相位点的差距,用这个程序来修正这个差距,让这两个信号的图像可以完全重叠。

ruo_test.m: 用于生成/vol_save/11.12_test 中的数据。