Homework 2

Zhen Haoyu

October 4, 2021

Problem 1

Let

$$f(x) = Ax + b.$$

If C is convex, then $\forall x, y \in f^{-1}(C)$ (i.e., $f(x), f(y) \in C$), $\forall \theta \in (0, 1)$, considering that:

$$f(\theta x + (1 - \theta)y) = \theta Ax + \theta b + (1 - \theta)Ay + (1 - \theta)b$$
$$= \theta f(x) + (1 - \theta)f(y)$$
$$\in C$$

Note that: the last line of the equation uses the property of convex set. Then $(\theta x + (1-\theta)y \in f^{-1}(C))$.

Problem 2

Trivially, C is a nonempty set.

 $\forall \boldsymbol{x}, \boldsymbol{y} \in C, \exists \boldsymbol{x}_1, \boldsymbol{y}_1 \in C_1 \land \boldsymbol{x}_2, \boldsymbol{y}_2 \in C_2, \ s.t. \ \boldsymbol{x}_1 - \boldsymbol{x}_2 = \boldsymbol{x} \land \boldsymbol{y}_1 - \boldsymbol{y}_2 = \boldsymbol{y}.$ Then $\forall \theta in(0,1)$, we have:

$$\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{y}_1 - \theta \boldsymbol{x}_2 - (1 - \theta) \boldsymbol{y}_2$$

By C_1, C_2 is convex, $\exists \boldsymbol{z}_1 \in C_1 \land \boldsymbol{z}_2 \in C_2$, $\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} = \boldsymbol{z}_1 - \boldsymbol{z}_2 \in C$, which means that C is convex.

Trivially, $\mathbf{0} \in C$. (If not, then $\exists \mathbf{x} \in C_1, C_2$, which means $C_1 \cap C_2 \neq \emptyset$)

Problem 3

(a) $\forall \boldsymbol{x}_0, \boldsymbol{y}_0 \in int \ C, \ \exists \ \varepsilon > 0,$

$$\left\{ \boldsymbol{x}|\ (\boldsymbol{x}-\boldsymbol{x}_0)^2 \leq \varepsilon^2 \right\} \subset C \wedge \left\{ \boldsymbol{y}|\ (\boldsymbol{y}-\boldsymbol{y}_0)^2 \leq \varepsilon^2 \right\} \subset C.$$

For the sake of simplicity, let X denotes $\{x | (x - x_0)^2 \le \varepsilon^2\}$, Y denotes $\{y | (y - y_0)^2 \le \varepsilon^2\}$ and z_0 denotes $\theta x_0 + (1 - \theta)y_0$.

Then $\forall \boldsymbol{z} \in \{\boldsymbol{x} | (\boldsymbol{x} - \boldsymbol{z}_0)^2 \le \varepsilon^2\}, \exists \boldsymbol{z} - \boldsymbol{z}_0 + \boldsymbol{x}_0 \in X \land \boldsymbol{z} - \boldsymbol{z}_0 + \boldsymbol{y}_0 \in Y, \text{ we have } \boldsymbol{z} \in \boldsymbol{z} \in \boldsymbol{z} \in \boldsymbol{z}$

$$z = \theta(z - z_0 + x_0) + (1 - \theta)(z - z_0 + y_0).$$

Thus, $z \in C$, which means that $\theta x_0 + (1 - \theta)y_0$ is a interior point of C.

Therefore, $\theta x_0 + (1 - \theta)y_0 \in int \ C$ and $int \ C$ is convex.

(b) $\forall x_0, y_0 \in \bar{C}$, we have 2 infinite sequence $\{x_n\}, \{y_n\}$, such that

$$\lim_{n\to\infty} \boldsymbol{x}_n = \boldsymbol{x}_0 \wedge \lim_{n\to\infty} \boldsymbol{y}_n = \boldsymbol{y}_0,$$

and

$$\boldsymbol{x}_n, \boldsymbol{y}_n \in C \ (\forall n).$$

Thus we have: $\forall \theta \in (0,1)$,

$$\lim_{n \to \infty} (\theta \boldsymbol{x}_n + (1 - \theta) \boldsymbol{y}_n) = \theta \boldsymbol{x}_0 + (1 - \theta) \boldsymbol{y}_0$$

where $\forall n, \, \theta \boldsymbol{x}_n + (1-\theta)\boldsymbol{y}_n \in C$. Thus $\theta \boldsymbol{x}_0 + (1-\theta)\boldsymbol{y}_0 \in \bar{C}$, which means that \bar{C} is convex.

Problem 4

(a) Let $\boldsymbol{\theta}_{im} \equiv (\theta_{i1}, \theta_{i2}, \dots, \theta_{im})^T$, $\boldsymbol{X}_m \equiv (\boldsymbol{x}_{i1}, \boldsymbol{x}_{i2}, \dots, \boldsymbol{x}_{im})^T$ and $\boldsymbol{Y}_n \equiv (\boldsymbol{y}_{i1}, \boldsymbol{y}_{i2}, \dots, \boldsymbol{y}_{in})^T$. $\forall \boldsymbol{x}, \boldsymbol{y} \in C, \exists \boldsymbol{\theta}_{1m}, \boldsymbol{\theta}_{2n}, \boldsymbol{X}_m, \boldsymbol{Y}_n$, such that

$$\begin{cases} \forall k \in \{1, 2, \dots, m\} : \theta_{1k} \ge 0 \land \boldsymbol{x}_{1k} \in S \\ \boldsymbol{x} = \boldsymbol{\theta}_{1m}^T \boldsymbol{X}_m \\ \forall l \in \{1, 2, \dots, n\} : \theta_{2k} \ge 0 \land \boldsymbol{y}_{2k} \in S \\ \boldsymbol{y} = \boldsymbol{\theta}_{2n}^T \boldsymbol{Y}_n \\ \sum_{k=1}^m \theta_{1k} = \sum_{l=1}^n \theta_{2l} = 1 \end{cases}$$

Then $\forall \theta \in (0,1)$:

$$m{ heta}m{x} + (1- heta)m{y} = egin{bmatrix} m{ heta}_{1m}^T & (1- heta)m{ heta}_{2n}^T \end{bmatrix} m{m{X}_m} m{Y}_n \end{bmatrix}$$

Let $\boldsymbol{\theta}_{3,m+n}$ denote $\begin{bmatrix} \boldsymbol{\theta} \boldsymbol{\theta}_{1m}^T & (1-\theta)\boldsymbol{\theta}_{2n}^T \end{bmatrix}$ and \boldsymbol{Z} denote $\begin{bmatrix} \boldsymbol{X}_m \\ \boldsymbol{Y}_n \end{bmatrix}$.

Trivially, for every row vector z_i in Z: $z_i \in S$ and for every element t in $\theta_{3,m+n}$: $t \ge 0$. Also,

$$sum(\theta_{3,m+n}) = \theta \sum_{k=1}^{m} \theta_{1k} + (1-\theta) \sum_{l=1}^{n} \theta_{2l} = 1$$

Thus $\theta x + (1 - \theta)y \in C$ and C is convex.

(b) The defination of conv S is the smallest convex set containing S.

 $\forall \boldsymbol{x} \in C$, by the defination of C, we have $\boldsymbol{x} = \sum_{i=1}^{m} \theta_{i} \boldsymbol{x}_{i}$, where $\forall i \in \{1, 2, ..., m\} : \theta_{i} > 0 \land \sum_{i=1}^{m} \theta_{i} = 1$

Then considering that

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + (1 - \theta_1) \sum_{i=2}^{m} \frac{\theta_i}{1 - \theta_1} \mathbf{x}_i$$
$$= \theta_1 \mathbf{x}_1 + (1 - \theta_1) \left[\frac{\theta_2}{1 - \theta_1} \mathbf{x}_2 + \sum_{i=3}^{m} \frac{\theta_i}{1 - \frac{\theta_2}{1 - \theta_1}} \mathbf{x}_i \right]$$

. . .

The above equation demonstrates the decomposition of \boldsymbol{x} . To prove $\boldsymbol{x} \in convS$, we could to prove $\sum_{i=2}^{m} \frac{\theta_i}{1-\theta_1} \boldsymbol{x}_i \in convS$ where $\sum_{i=2}^{m} \frac{\theta_i}{1-\theta_1} = 1$. By finite steps we could only to prove $\boldsymbol{x}_m \in convS$.

Thus we have $x \in convS$. Then $C \subset convS$.

Obviously $S \subset C$. By C is convex we have $convS \subset C$.

Therefore C = convS.

Problem 5

The defination of **Vonoroi region** is

$$V = \{ \boldsymbol{x} \in \mathbb{R} : ||\boldsymbol{x} - \boldsymbol{x}_0||_2 \le ||\boldsymbol{x} - \boldsymbol{x}_i||_2, i = 1, 2, \dots, K \}.$$

Let
$$V_i = \{ \boldsymbol{x} \in \mathbb{R} : ||\boldsymbol{x} - \boldsymbol{x}_0||_2 \le ||\boldsymbol{x} - \boldsymbol{x}_i||_2 \}$$
. Then $V = \bigcap_{i=1}^K V_i$.

Lemma 1 $||x - x_0||_2 \le ||x - x_i||_2$ if and only if $A_i(x - \frac{x_0 + x_i}{2}) \le 0$, where $A_i = (x_i - x_0)^T$.

Proof 1

$$||\boldsymbol{x} - \boldsymbol{x}_0||_2 \le ||\boldsymbol{x} - \boldsymbol{x}_i||_2$$

$$\iff (\boldsymbol{x} - \boldsymbol{x}_0)^T (\boldsymbol{x} - \boldsymbol{x}_0) \le (\boldsymbol{x} - \boldsymbol{x}_i)^T (\boldsymbol{x} - \boldsymbol{x}_i)$$

$$\iff 2(\boldsymbol{x}_i - \boldsymbol{x}_0)^T \boldsymbol{x} + \boldsymbol{x}_0^T \boldsymbol{x}_0 - \boldsymbol{x}_i^T \boldsymbol{x}_i \le 0$$

$$\iff 2(\boldsymbol{x}_i - \boldsymbol{x}_0)^T \boldsymbol{x} - (\boldsymbol{x}_i - \boldsymbol{x}_0)^T (\boldsymbol{x}_i + \boldsymbol{x}_0) \le 0$$

$$\iff (\boldsymbol{x}_i - \boldsymbol{x}_0)^T (\boldsymbol{x} - (\boldsymbol{x}_i + \boldsymbol{x}_0)/2) \le 0$$

Q.E.D.

Thus,
$$\forall \boldsymbol{x}_i, \, \exists \boldsymbol{A}_i \in \mathbb{R}^{1 \times n}, b_i \in \mathbb{R}, \, s.t. \, V_i = \{\boldsymbol{x}: \boldsymbol{A}_i \boldsymbol{x} \leq b_i\}.$$
 Then let $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_1 \\ \boldsymbol{A}_2 \\ \vdots \\ \boldsymbol{A}_n \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$

Therefore, $V = \bigcap_{i=1}^{K} V_i = \{ \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}$