Листок 3. Сложность деревьев принятия решений.

СОМР2 9. Докажите, что у любой формулы размера s существует эквивалентная формула глубины $O(\log(s))$.

COMP2 10. Какие значения может принимать глубина дерева решений (decision tree) для функции $f: \{0,1\}^n \to \{0,1\}$, где все аргументы не являются фиктивными (т.е. для каждого номера i найдется вход x, что $f(x) \neq f(x^i)$).

COMP2 11. Пусть $n = k^2$. Рассмотрим функцию $f : \{0,1\}^n \to \{0,1\}$, заданную следующим образом: вход разделен на блоки по k битов, функция равно 1 тогда и только тогда, когда существует блок в котором два последовательных бита равны единице, а остальные биты равны нулю. Оцените s(f), bs(f), C(f), D(f).

СОМР2 12. Рассмотрим функцию $f = \bigvee_{i=1}^n x_i$. Докажите, что R(f) = n.

СОМР2 13. Докажите, что PCP(0, log(n)) = P.

 $oxed{ extbf{COMP2 14.}}$ Докажите, что если $SAT \in \mathbf{PCP}(o(\log(n)),1),$ то $\mathbf{P} = \mathbf{NP}.$

СОМР2 8. Покажите, что представление $\bigwedge_{i=1}^{n} x_i$ в виде полинома $\mathbb{F}_q[x_1,\ldots,x_n]$ (q — простое число) требуют степень ровно n.

СОМР2 1. Рассмотрим функцию Мај : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

- (б) монотонная схема
- (в) монотонная формула полиномиального размера, вычисляющая функцию Маj.

COMP2 2. Докажите, что для любой симметрической булевой функции (симметрическая функция зависит только от числа единиц во входе) существует вычисляющая ее

(б) монотонная схема полиномиального размера.