

CELLYNX GROUP, INC. TEST REPORT

FOR THE

MOBILE CELLULAR BOOSTER, MD015A

FCC PART 24E & RSS-131 (2003)

TESTING

DATE OF ISSUE: JULY 13, 2009

PREPARED FOR:

PREPARED BY:

Cellynx Group, Inc. 5047 Robert J. Matthews El Dorado Hills, CA 95762 Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

W.O. No.: 89227

Date of test: July 1 - 8, 2009

Report No.: FC09-113

This report contains a total of 66 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	
Peripheral Devices	
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure	
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
Measurement Uncertainties	
FCC 2.1033(c)(14)/2.1046/24.232 - RF Power Output	8
FCC 2.1033(c)(14)/2.1046/24.232 – Peak to Average Ratio	
FCC 2.1033(c)(14)/2.1049(i) - Occupied Bandwidth	15
FCC 2.1033(c)(14)/2.1051/24.238 - Spurious Emissions at Antenna Terminal	22
FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation	27
FCC 2.1051/2.1053 – Block Edge	30
Input vs. Output Plots	33
FCC 2.1051 – Intermodulation	43
FCC 2.1051 – Out of Band Rejection	53
RSS 131 §6.1 – Passband Gain	56
RSS 131 §6.1 – Bandwidth	59
RSS 131 §6.2 - RF Power Output	62

Page 2 of 66 Report No.: FCC09-113

ADMINISTRATIVE INFORMATION

DATE OF TEST: July 1 - 8, 2009 **DATE OF RECEIPT:** July 1, 2009

REPRESENTATIVE: Michael Cecil

MANUFACTURER: Cellynx Group, Inc. 5047 Robert J. Matthews

El Dorado Hills, CA 95762

TEST LOCATION:

CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

TEST METHOD: FCC PART 24E & RSS-131 (2003)

PURPOSE OF TEST: To perform the testing of the Mobile Cellular Booster, MD015A with the requirements for FCC Part 24E & RSS-131 devices.

APPROVALS

Steve Behm, Director of Engineering Services

TEST PERSONNEL:

Randy Clark, EMC Engineer

Page 3 of 66 Report No.: FCC09-113

SUMMARY OF RESULTS

Test	Specification/Method	Results
RF Power Output	FCC 2.1033(c)(14)/2.1046/24.232 RSS 131 §6.2	Pass
Peak to Average Ratio (PAR)	FCC 2.1033(c)(14)/2.1046/24.232	Pass
Occupied Bandwidth Input and Output Plots	FCC 2.1033(c)(14)/2.1049(i)	Pass
Spurious Emissions at Antenna Terminal	FCC 2.1033(c)(14)/2.1051/24.238	Pass
Field Strength of Spurious Radiation	FCC 2.1033(c)(14)/2.1053/24.238	Pass
Block edge	FCC 2.1051/2.1053	Pass
Input vs. Output Plots		Pass
Intermodulation	FCC 2.1051	Pass
Out of Band Rejection	FCC 2.1051	Pass
Passband Gain	RSS 131 §6.1	Pass
Bandwidth	RSS 131 §6.1	Pass
FCC Site File No.	90477	
IC Site File No.	3082A-2	

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 66 Report No.: FCC09-113

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Mobile Cellular Booster

Manuf: Cellynx Model: MD015A Serial: 09262100003

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power Supply

Manuf: Sceptre Power Model: S012BU1200100

Serial: NA

Signal Generator

Manuf: Agilent

Model: E4437B

Serial: MY41000126

<u>enerator</u>

Manuf: Dell

Signal Generator

Agilent E4437B

US39260159

Manuf:

Model:

Serial:

Model: LA65N50-00

Laptop Power Supply

Serial: CN-0DF263-71615-850-9C16

Support Computer

Manuf: Dell Model: PP23LB Serial: 28862556913

> Page 5 of 66 Report No.: FCC09-113

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

GXW, G7W, F9W

FCC 2.1033(c)(5) FREQUENCY RANGE

Downlink: 869-894 MHz and 1930-1990 MHz Uplink: 824 – 849 MHz and 1850-1910 MHz

FCC 2.1033(c)(6) OPERATING POWER

Downlink: 325mW Uplink: 471mW

FCC 2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033(c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033(c)(13) MODULATION INFORMATION

CDMA, WCDMA, GSM, EDGE

Page 6 of 66 Report No.: FCC09-113

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Page 7 of 66 Report No.: FCC09-113

FCC 2.1033(c)(14)/2.1046/24.232 - RF POWER OUTPUT

Test Setup Photo

Page 8 of 66 Report No.: FCC09-113

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: FCC 24.232

Work Order #: **89227** Date: 7/2/2009

Test Type: Antenna Conducted

Equipment: Mobile Cellular Booster Sequence#: 10

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Support Berteest			
Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The power output is measured using multi-carrier mode using two tone input. The signal generators are set such that both signals are at equal amplitude at the output and such that the 3rd order intermodulation products meet the spurious emissions requirements of 24.238. Measurements are taken using the analyzer's internal channel power measurement and are corrected for insertion losses.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 9 of 66 Report No.: FCC09-113

Downlink Power Output Measurements

Modulation	Channel	Peak Multicarrier Output (dBm)	Peak Multicarrier Output (mW)
	Low	24.46	279.3
WCDMA	Mid	23.62	230.1
	High	25.12	325.1
	Low	23.22	209.9
CDMA	Mid	23.66	232.3
	High	24.44	278.0
	Low	21.54	142.6
GSM	Mid	21.76	150.0
	High	22.31	170.2
	Low	22.08	161.4
EDGE	Mid	21.73	148.9
	High	22.14	163.7

The maximum RF output for downlink is 325mW.

Uplink Power Output Measurements

Modulation	Channel	Peak Multicarrier Output (dBm)	Peak Multicarrier Output (mW)
	Low	26.64	461.3
WCDMA	Mid	26.73	471.0
	High	26.14	411.1
	Low	25.75	375.8
CDMA	Mid	25.98	396.3
	High	25.28	337.3
	Low	24.28	267.9
GSM	Mid	24.52	283.1
	High	23.92	246.6
	Low	23.94	247.7
EDGE	Mid	24.23	264.9
	High	23.50	223.9

The maximum RF output for uplink is 471mW.

Page 10 of 66 Report No.: FCC09-113

The maximum allowable antenna gain is 7.93dBi in order to comply with the requirements of 24.232.

The maximum allowable antenna gain is 5.91dBi in order to comply with the requirements of 24.232.

FCC 2.1033(c)(14)/2.1046/24.232 – PEAK TO AVERAGE RATIO

Test Setup Photo

Page 11 of 66 Report No.: FCC09-113

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group Specification: FCC 24.232

Work Order #: 89227 Date: 7/6/2009
Test Type: Antenna Conducted Time: 11:44:14
Equipment: Mobile Cellular Booster Sequence#: 11

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The signal generator is set to the middle of the band for uplink (1895 MHz) and downlink (1960 MHz). Measurements of the uplink and downlink are nearly identical. Measurements are reported for the uplink path.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Measurements for the peak to average ratio were performed using the CCDF function of the spectrum analyzer. All measurements are below the required 13dB.

Page 12 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

FCC 24.232 - PEAK TO AVERAGE RATIO - UPLINK - CDMA

FCC 24.232 – PEAK TO AVERAGE RATIO – UPLINK – EDGE

FCC 24.232 - PEAK TO AVERAGE RATIO - UPLINK - GSM

FCC 24.232 - PEAK TO AVERAGE RATIO - UPLINK - WCDMA

FCC 2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH Test Setup Photo

Page 15 of 66 Report No.: FCC09-113

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: **Cellynx Group** FCC 2.1049 Specification:

Work Order #: 89227 Date: 7/6/2009

Test Type: **Antenna Conducted** Time: Equipment: **Mobile Cellular Booster** Sequence#: 13

Manufacturer: Tested By: Randal Clark Cellynx Model: MD015A

120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40 GHz	na	06/10/2009	06/10/2011	ANP01403
Weinchel 10dB attenuator	C8596	05/20/2009	05/20/2011	ANP02138
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value.

Frequency Range Investigated: Middle channel of each band.

Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

> Page 16 of 66 Report No.: FCC09-113

Modulation Type	Band	Measurement	Units
WCDMA	Downlink	4.14	MHz
WCDMA	Uplink	4.12	MHz
CDMA	Downlink	1.27	MHz
CDMA	Uplink	1.26	MHz
GSM	Downlink	243.1	kHz
GSM	Uplink	243.0	kHz
EDGE	Downlink	251.3	kHz
EDGE	Uplink	245.3	kHz

Page 17 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

OCCUPIED BANDWIDTH - CDMA DOWNLINK

OCCUPIED BANDWIDTH - CDMA UPLINK

Page 18 of 66 Report No.: FCC09-113

OCCUPIED BANDWIDTH - EDGE DOWNLINK

OCCUPIED BANDWIDTH - EDGE UPLINK

OCCUPIED BANDWIDTH - GSM DOWNLINK

OCCUPIED BANDWIDTH - GSM UPLINK

OCCUPIED BANDWIDTH - WCDMA DOWNLINK

OCCUPIED BANDWIDTH - WCDMA UPLINK

$\underline{FCC\ 2.1033(c)(14)/2.1051/24.238} - \underline{SPURIOUS\ EMISSIONS\ AT\ ANTENNA\ TERMINAL}$

Test Setup Photos

Page 22 of 66 Report No.: FCC09-113

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group Specification: FCC 24.238

Work Order #: 89227 Date: 7/7/2009
Test Type: Antenna Conducted Time: 11:03:45
Equipment: Mobile Cellular Booster Sequence#: 7

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40) na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551
Cable, 24" 2.92mm	NA	01/15/2009	01/15/2010	AN03008
40GHz		01/15/2008	01/15/2010	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Bandwidths used: RBW=1MHz, VBW=3MHz.

Frequency Range Investigated: 30MHz to 20GHz

Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 23 of 66 Report No.: FCC09-113

*Transducer Legend:*T1=ATT-ANP02138-052009-10dB T3=ATT-ANP05551-070109-DC BLOCK

T2=CAB-AN03008-40GHZ-2FT

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	ad: Downlink		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec 1	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	5726.410M	79.4	+10.1	+0.6	+0.0		+0.0	90.1	94.0	-3.9	Uplin
									CDMA High	1	
									Channel		
2	5681.440M	77.0	+10.1	+0.6	+0.0		+0.0	87.7	94.0	-6.3	Uplin
									WCDMA M	id	
									Channel		
3	5550.810M	73.3	+10.1	+0.6	+0.0		+0.0	84.0	94.0	-10.0	Uplin
									EDGE Low		
									Channel		
4	5563.480M	72.5	+10.1	+0.6	+0.0		+0.0	83.2	94.0	-10.8	Uplin
									WCDMA Lo)W	
									Channel		
5	5684.800M	69.6	+10.1	+0.6	+0.0		+0.0	80.3	94.0	-13.7	Uplin
	2050 4553 5		10.0	0.7	0.0		0.0	=0.6	GSM Mid C		D 1
6	3979.475M	68.8	+10.0	+0.5	+0.3		+0.0	79.6	94.0	-14.4	Downl
									EDGE High		
7	2702 52014	(0.2	.00	.0.5	. 0. 0		.00	70.6	Channel	1.4.4	T.T., 1'
/	3702.520M	69.2	+9.9	+0.5	+0.0		+0.0	79.6	94.0	-14.4	Uplin
									CDMA Low Channel		
0	3979.595M	68.3	+10.0	+0.5	+0.3		+0.0	79.1	94.0	-14.9	Downl
0	39/9.393WI	08.3	+10.0	+0.3	+0.5		+0.0	79.1	GSM High C		Dowiii
0	3979.110M	68.0	+10.0	+0.5	+0.3		+0.0	78.8	94.0	-15.2	Downl
,	3919.110W	06.0	+10.0	+0.5	+0.5		+0.0	70.0	CDMA High		Down
									Channel	<u>.</u>	
10	5685.000M	68.1	+10.1	+0.6	+0.0		+0.0	78.8	94.0	-15.2	Uplin
	Ave	00.1	110.1	10.0	10.0		10.0	70.0	EDGE Mid (Срии
<u> </u>	5685.040M	81.4	+10.1	+0.6	+0.0		+0.0	92.1	94.0	-1.9	Uplin
								,	EDGE Mid (· F
12	5684.989M	68.1	+10.1	+0.6	+0.0		+0.0	78.8	94.0	-15.2	Uplin
	Ave								CDMA Mid		1
									Channel		
٨	5684.900M	87.6	+10.1	+0.6	+0.0		+0.0	98.3	94.0	+4.3	Uplin
									CDMA Mid		-
									Channel		
14	3790.280M	68.1	+9.9	+0.5	+0.0		+0.0	78.5	94.0	-15.5	Uplin
									CDMA Mid		
									Channel		
15	3700.600M	66.9	+9.9	+0.5	+0.0		+0.0	77.3	94.0	-16.7	Uplin
									EDGE Low		
									Channel		
16	3790.090M	66.7	+9.9	+0.5	+0.0		+0.0	77.1	94.0	-16.9	Uplin
									EDGE Mid (
17	3789.840M	65.5	+9.9	+0.5	+0.0		+0.0	75.9	94.0	-18.1	Uplin
									GSM Mid C	hannel	

Page 24 of 66 Report No.: FCC09-113

-									
18	3817.000M	65.4	+9.9	+0.5	+0.0	+0.0	75.8	94.0 -18.2	Uplin
								CDMA High	
								Channel	
19	3972.920M	64.3	+10.0	+0.5	+0.3	+0.0	75.1	94.0 -18.9	Downl
								WCDMA High	
								Channel	
20	3700.630M	64.4	+9.9	+0.5	+0.0	+0.0	74.8	94.0 -19.2	Uplin
								GSM Low Channel	
21	5553.750M	63.9	+10.1	+0.6	+0.0	+0.0	74.6	94.0 -19.4	Uplin
	Ave							CDMA Low	
								Channel	
^	5553.730M	88.0	+10.1	+0.6	+0.0	+0.0	98.7	94.0 + 4.7	Uplin
								CDMA Low	
								Channel	
23	7579.420M	62.9	+10.2	+0.7	+0.0	+0.0	73.8	94.0 -20.2	Uplin
								CDMA Mid	•
								Channel	
24	3792.100M	63.0	+9.9	+0.5	+0.0	+0.0	73.4	94.0 -20.6	Uplin
								WCDMA Mid	1
								Channel	
25	5550.805M	61.9	+10.1	+0.6	+0.0	+0.0	72.6	94.0 -21.4	Uplin
								GSM Low Channel	1
26	3819.380M	62.0	+9.9	+0.5	+0.0	+0.0	72.4	94.0 -21.6	Uplin
								EDGE High	1
								Channel	
27	3920.175M	61.5	+10.0	+0.5	+0.3	+0.0	72.3	94.0 -21.7	Downl
								EDGE Mid Channel	
28	3706.860M	61.9	+9.9	+0.5	+0.0	+0.0	72.3	94.0 -21.7	Uplin
								WCDMA Low	1
								Channel	
29	3920.150M	61.0	+10.0	+0.5	+0.3	+0.0	71.8	94.0 -22.2	Downl
								GSM Mid Channel	
30	5717.780M	61.1	+10.1	+0.6	+0.0	+0.0	71.8	94.0 -22.2	Uplin
								WCDMA High	1
								Channel	
31	9474.080M	60.1	+10.2	+0.8	+0.0	+0.0	71.1	94.0 -22.9	Uplin
								CDMA Mid	- r
								Channel	
32	7579.965M	60.0	+10.2	+0.7	+0.0	+0.0	70.9	94.0 -23.1	Uplin
								EDGE Mid Channel	- F
33	9475.075M	59.7	+10.2	+0.8	+0.0	+0.0	70.7	94.0 -23.3	Uplin
		••	-					EDGE Mid Channel	- F
34	3808.300M	60.2	+9.9	+0.5	+0.0	+0.0	70.6	94.0 -23.4	Uplin
					- • •			WCDMA High	- F
								Channel	
35	7403.900M	59.6	+10.2	+0.7	+0.0	+0.0	70.5	94.0 -23.5	Uplin
		27.0		,	. 0.0	10.0		CDMA Low	- P
								Channel	
36	3917.960M	59.5	+10.0	+0.5	+0.3	+0.0	70.3	94.0 -23.7	Downl
	2717.700141	57.5	110.0	10.5	10.5	10.0	10.5	WCDMA Mid	DOWIII
								Channel	
								Chamici	

37	3920.210M	59.5	+10.0	+0.5	+0.3	+0.0	70.3	94.0 -23.7	Downl
								CDMA Mid	
								Channel	
38	3819.085M	59.9	+9.9	+0.5	+0.0	+0.0	70.3	94.0 -23.7	Uplin
								GSM High Channel	
39	9255.310M	58.4	+10.1	+0.8	+0.0	+0.0	69.3	94.0 -24.7	Uplin
								CDMA Low	
								Channel	
40	7575.140M	58.1	+10.2	+0.7	+0.0	+0.0	69.0	94.0 -25.0	Uplin
								WCDMA Mid	
								Channel	
41	3860.240M	57.7	+10.0	+0.5	+0.3	+0.0	68.5	94.0 -25.5	Downl
								GSM Low Channel	
42	7579.860M	57.4	+10.2	+0.7	+0.0	+0.0	68.3	94.0 -25.7	Uplin
								GSM Mid Channel	
43	5729.385M	57.5	+10.1	+0.6	+0.0	+0.0	68.2	94.0 -25.8	Uplin
								EDGE High	
								Channel	
44	3860.680M	57.3	+10.0	+0.5	+0.3	+0.0	68.1	94.0 -25.9	Downl
								EDGE Low	
								Channel	
45	9474.670M	56.8	+10.2	+0.8	+0.0	+0.0	67.8	94.0 -26.2	Uplin
								GSM Mid Channel	
46	5729.350M	55.5	+10.1	+0.6	+0.0	+0.0	66.2	94.0 -27.8	Uplin
								GSM High Channel	
47	3870.880M	55.0	+10.0	+0.5	+0.3	+0.0	65.8	94.0 -28.2	Downl
								WCDMA Low	
								Channel	
48	3863.310M	52.7	+10.0	+0.5	+0.3	+0.0	63.5	94.0 -30.5	Downl
								CDMA Low	
								Channel	
49	5726.214M	47.9	+10.1	+0.6	+0.0	+0.0	58.6	94.0 -35.4	Uplin
	Ave							CDMA High	
								Channel	

Page 26 of 66 Report No.: FCC09-113

$\underline{FCC~2.1033(c)(14)/2.1053/24.238-FIELD~STRENGTH~OF~SPURIOUS~RADIATION}$

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group Specification: FCC 22.428

Work Order #:89227Date:7/7/2009Test Type:Radiated ScanTime:15:59:46Equipment:Mobile Cellular BoosterSequence#:20Manufacturer:CellynxTested By:Randal Clark

Model: MD015A S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Site A 10 meter cable		05/10/2009	05/10/2011	MA10M
set				
6dB Attenuator	none	05/20/2009	05/20/2011	ANP05656
HP-8447D Preamp	2727A05444	06/20/2008	06/20/2010	AN00062
Antenna, Bilog	2455	12/22/2008	12/22/2010	AN01992
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Andrew-25'	N/A	05/19/2009	05/19/2011	AN01012
Cable, Andrews	NA	05/20/2009	05/20/2011	ANP04274
Hardline HF-005-20				
Preamp HP83051A	3332A00309	11/13/2008	11/13/2010	AN02115
EMCO 3115 Horn	9006-3413	06/06/2008	06/06/2010	AN00327
Antenna				
ARA MWH-1826/B	1005	11/12/2008	11/12/2010	AN02046
Horn Antenna				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

TI .			
Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Page 28 of 66 Report No.: FCC09-113

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The signal generator is located below the floor. The laptop is located on the table next to the equipment under test.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Bandwidths used: RBW=1MHz, VBW=3MHz

Frequency Range Investigated: 30MHz to 20GHz

Operating Band: Uplink and Downlink

Input Signal: CW

Temperature: 25°C Rel Humidity: 40%

No EUT emissions detected within 20dB of the limit.

Transducer Legend:

Measu	rement Data:	ta: Reading listed by margin.			nargin.		Te	st Distanc	e: 10 Mete	ers	
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBuV	dB	dB	dB	dB	Table	dBuV	dBuV	dB	Ant

Page 29 of 66 Report No.: FCC09-113

FCC 2.1051/2.1053 – BLOCK EDGE

Test Setup Photos

Page 30 of 66 Report No.: FCC09-113

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group Specification: FCC 24.238

Work Order #: 89227 Date: 7/2/2009
Test Type: Antenna Conducted Time: 14:27:11
Equipment: Mobile Cellular Booster Sequence#: 6

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

1.1	· - /	•	•
Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. Two-tone signal input is used as required for intermodulation attenuation.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Block Edge Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Transducer Legend:

T1=ATT-ANP02138-052009-10dB	T2=ANP05551 DC Block	
T3=CAB-AN03008-40GHZ-2FT		

Page 31 of 66 Report No.: FCC09-113

Measu	rement Data:		eading lis	ted by ma	argin.			Test Lea	ad: Uplink		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1849.720M	83.3	+10.0	+0.0	+0.4		+0.0	93.7	94.0	-0.3	Uplin
									Edge		
2	1990.280M	82.5	+10.0	+0.7	+0.4		+0.0	93.6	94.0	-0.4	Downl
									EDGE		
3	1910.270M	83.0	+10.0	+0.0	+0.4		+0.0	93.4	94.0	-0.6	Uplin
									Edge		
4	1929.700M	81.3	+10.0	+0.7	+0.4		+0.0	92.4	94.0	-1.6	Downl
									EDGE		
5	1928.760M	80.8	+10.0	+0.7	+0.4		+0.0	91.9	94.0	-2.1	Downl
									CDMA		
6	1911.260M	80.3	+10.0	+0.0	+0.4		+0.0	90.7	94.0	-3.3	Uplin
									CDMA		
7	1848.680M	80.0	+9.9	+0.0	+0.4		+0.0	90.3	94.0	-3.7	Uplin
8	1913.600M	78.2	+10.0	+0.0	+0.4		+0.0	88.6	94.0	-5.4	Uplin
									WCDMA		
9	1994.100M	76.1	+10.0	+0.7	+0.4		+0.0	87.2	94.0	-6.8	Downl
									WCDMA		
10	1991.120M	75.8	+10.0	+0.7	+0.4		+0.0	86.9	94.0	-7.1	Downl
									CDMA		
11	1845.700M	76.2	+9.9	+0.0	+0.4		+0.0	86.5	94.0	-7.5	Uplin
									WCDMA		
12	1926.400M	75.3	+10.0	+0.7	+0.4		+0.0	86.4	94.0	-7.6	Downl
									WCDMA		
13	1990.300M	73.7	+10.0	+0.7	+0.4		+0.0	84.8	94.0	-9.2	Downl
									GSM		
14	1929.700M	72.4	+10.0	+0.7	+0.4		+0.0	83.5	94.0	-10.5	Downl
									GSM		
15	1910.270M	72.5	+10.0	+0.0	+0.4		+0.0	82.9	94.0	-11.1	Uplin
									GSM		
16	1849.720M	71.8	+10.0	+0.0	+0.4		+0.0	82.2	94.0	-11.8	Uplin
									GSM		

Page 32 of 66 Report No.: FCC09-113

INPUT VS. OUTPUT PLOTS

Test Setup Photo

Page 33 of 66 Report No.: FCC09-113

Test Data Sheets

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group Specification: FCC 2.1049

Work Order #: **89227** Date: 7/6/2009

Test Type: Antenna Conducted Time: Equipment: Mobile Cellular Booster Sequence#: 12

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. For the input plots, the signal generator is set to a static amplitude for all modulations which is higher than that which was used for the input signal for the output plots. For the output plots, the signal generator is set to a static amplitude for all modulations corresponding to approximately that which would give the maximum RF power output level.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Middle channel of each band.

Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 34 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

INPUT VS. OUTPUT PLOTS - CDMA DOWNLINK - INPUT

INPUT VS. OUTPUT PLOTS - CDMA DOWNLINK - OUTPUT

Page 35 of 66 Report No.: FCC09-113

INPUT VS. OUTPUT PLOTS - CDMA UPLINK - INPUT

INPUT VS. OUTPUT PLOTS - CDMA UPLINK - OUTPUT

Page 36 of 66 Report No.: FCC09-113

INPUT VS. OUTPUT PLOTS - EDGE DOWNLINK - INPUT

INPUT VS. OUTPUT PLOTS - EDGE DOWNLINK - OUTPUT

INPUT VS. OUTPUT PLOTS - EDGE UPLINK - INPUT

INPUT VS. OUTPUT PLOTS - EDGE UPLINK - OUTPUT

INPUT VS. OUTPUT PLOTS - GSM DOWNLINK - INPUT

INPUT VS. OUTPUT PLOTS - GSM DOWNLINK - OUTPUT

Page 39 of 66 Report No.: FCC09-113

INPUT VS. OUTPUT PLOTS - GSM UPLINK - INPUT

INPUT VS. OUTPUT PLOTS - GSM UPLINK - OUTPUT

INPUT VS. OUTPUT PLOTS - WCDMA DOWNLINK - INPUT

INPUT VS. OUTPUT PLOTS - WCDMA DOWNLINK - OUTPUT

INPUT VS. OUTPUT PLOTS - WCDMA UPLINK - INPUT

INPUT VS. OUTPUT PLOTS - WCDMA UPLINK - OUTPUT

FCC 2.1051 – INTERMODULATION

Test Setup Photo

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: FCC 24.238

Work Order #: **89227** Date: 7/2/2009

Test Type: Antenna Conducted
Equipment: Mobile Cellular Booster

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. Two-tone signal input is used as required for intermodulation attenuation. Signal generator source provides two-tone input for the amplifier. Input level is set such that the maximum aggregate authorized power output level is obtained.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Block Edge Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 44 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

FCC 2.1051 INTERMODULATION - CDMA DOWNLINK - HIGH

FCC 2.1051 INTERMODULATION - CDMA DOWNLINK - LOW

Page 45 of 66 Report No.: FCC09-113

FCC 2.1051 INTERMODULATION - CDMA UPLINK - HIGH

FCC 2.1051 INTERMODULATION - CDMA UPLINK - LOW

FCC 2.1051 INTERMODULATION - EDGE DOWNLINK - HIGH

FCC 2.1051 INTERMODULATION - EDGE DOWNLINK - LOW

FCC 2.1051 INTERMODULATION - EDGE UPLINK - HIGH

FCC 2.1051 INTERMODULATION – EDGE UPLINK – LOW

FCC 2.1051 INTERMODULATION - GMS DOWNLINK - HIGH

FCC 2.1051 INTERMODULATION - GMS DOWNLINK - LOW

FCC 2.1051 INTERMODULATION - GMS UPLINK - HIGH

FCC 2.1051 INTERMODULATION - GMS UPLINK - LOW

FCC 2.1051 INTERMODULATION - WCDMA DOWNLINK - HIGH

FCC 2.1051 INTERMODULATION – WCDMA DOWNLINK – LOW

FCC 2.1051 INTERMODULATION - WCDMA UPLINK - HIGH

FCC 2.1051 INTERMODULATION - WCDMA UPLINK - LOW

FCC 2.1051 – OUT OF BAND REJECTION

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: FCC 24.238

Work Order #: **89227** Date: 7/1/2009

Test Type: Antenna Conducted
Equipment: Mobile Cellular Booster

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The reference signal is injected at -30dBm (output at signal generator). The signal generator output frequency is swept across the entire range of the provided plot.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 53 of 66 Report No.: FCC09-113

Test Setup Photo

Page 54 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

FCC 2.1051 - OUT OF BAND REJECTION - DOWNLINK

FCC 2.1051 - OUT OF BAND REJECTION - UPLINK

Page 55 of 66 Report No.: FCC09-113

RSS 131 §6.1 – PASSBAND GAIN

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: RSS 131

Work Order #: **89227** Date: 7/1/2009

Test Type: Antenna Conducted
Equipment: Mobile Cellular Booster

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A Tested By: Randal Clark 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
E4446A	US44300507	07/08/2008	07/08/2010	AN02660	
Cable, 10' 2.92mm 40 GHz	na	06/10/2009	06/10/2011	ANP01403	
Weinchel 10dB attenuator	C8596	05/20/2009	05/20/2011	ANP02138	
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The reference signal is injected at -40dBm (output at signal generator). The measured gain is the peak gain from the signal generator at a constant input.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 56 of 66 Report No.: FCC09-113

Test Setup Photo

Page 57 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

RSS 131 §6.1 – PASSBAND GAIN – DONWLINK

RSS 131 §6.1 – PASSBAND GAIN – UPLINK

Page 58 of 66 Report No.: FCC09-113

RSS 131 §6.1 –BANDWIDTH

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group

Specification: RSS 131

Work Order #: **89227** Date: 7/1/2009

Test Type: Antenna Conducted
Equipment: Mobile Cellular Booster

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

T I			
Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source. The reference signal is injected at -30dBm (output at signal generator). The signal generator is adjusted over the entire range of the provided plot. Pass band gain is measured at the 20dBc points from the peak output of the amplifier.

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier Operating Band: Uplink and Downlink

Temperature: 25°C Rel Humidity: 40%

Page 59 of 66 Report No.: FCC09-113

Test Setup Photo

Page 60 of 66 Report No.: FCC09-113

Test Plots

Tested By: Randy Clark

RSS 131 §6.1 –BANDWIDTH – DOWNLINK

RSS 131 §6.1 –BANDWIDTH – UPLINK

RSS 131 §6.2 - RF POWER OUTPUT

Test Location: CKC Laboratories, Inc. •5046 Sierra Pines Dr. • Mariposa, CA 95338 • 1-800-500-4EMC (4362)

Customer: Cellynx Group
Specification: RSS 131

Work Order #: 89227 Date: 7/1/2009
Test Type: Antenna Conducted Time: 14:06:50
Equipment: Mobile Cellular Booster Sequence#: 4

Manufacturer: Cellynx Tested By: Randal Clark Model: MD015A 120V 60Hz

S/N: 09262100003

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A	US44300507	07/08/2008	07/08/2010	AN02660
Cable, 10' 2.92mm 40	0 na	06/10/2009	06/10/2011	ANP01403
GHz				
Weinchel 10dB	C8596	05/20/2009	05/20/2011	ANP02138
attenuator				
Inmet DC Block	NA	07/01/2009	07/01/2011	ANP05551

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mobile Cellular Booster*	Cellynx	MD015A	09262100003

Support Devices:

Function	Manufacturer	Model #	S/N
Power Supply	Sceptre Power	S012BU1200100	NA
Signal Generator	Agilent	E4437B	US39260159
Signal Generator	Agilent	E4437B	MY41000126
Laptop Power Supply	Dell	LA65N50-00	CN-0DF263-71615-850-
			9C16
Support Computer	Dell	PP23LB	28862556913

Test Conditions / Notes:

Equipment is a bidirectional mobile cellular booster amplifier operating on 824-849 paired with 869-894 MHz and 1850-1910 paired with 1930-1990 MHz. The equipment is connected directly to a signal generator source

The amplifier is controlled using an external computer running Gemini Program Interface GUI software v8.4.1.1. The software is used to control the internal attenuation of the amplifier. The tests were performed with the attenuators set to a static value of 6.0 corresponding to approximately 6dB of internal attenuation. In normal operation, the amplifier would insert attenuation automatically in order to ensure the input signal levels do not exceed a predetermined value. The firmware in the amplifier is v04.10.84.

Frequency Range Investigated: Carrier

Operating Band: Downlink

Temperature: 25°C Rel Humidity: 40%

Page 62 of 66 Report No.: FCC09-113

Band	Channel	Single Channel Output Power (dBm)	Rated Output Power Prated (dBm)
Downlink	Low	13.6	16.6
	Mid	14.4	17.4
	High	15.3	18.3
Uplink	Low	16.3	19.3
	Mid	16.6	19.6
	High	16.0	19.0

Test Setup Photo

Test Plots

Tested By: Randy Clark

RSS 131 §6.2 - RF POWER OUTPUT – DOWNLINK – HIGH

RSS 131 §6.2 - RF POWER OUTPUT - DOWNLINK - MIDDLE

RSS 131 §6.2 - RF POWER OUTPUT – DOWNLINK - LOW

RSS 131 §6.2 - RF POWER OUTPUT - UPLINK - HIGH

RSS 131 §6.2 - RF POWER OUTPUT - UPLINK - MIDDLE

RSS 131 §6.2 - RF POWER OUTPUT – UPLINK - LOW

