Distribution of inputs per layer and per sun shade

Each variable needs to be distributed per layer and per sunlit and shaded leaves

O3 at each layer calculated through O3 deposition

Upscaling of Outputs per layer and per sun shade

Each output neds to be scalled back up to layer and canopy distributions

Gsto calculated per layer per sun shade. Then integrated(Sum) to get whole canopy g_sto Whole canopy → Layer Value used for next hour calcs g_sto_shade g_sto_sun Layer Value used for next hour calcs m^2 g_sto_shade g_sto_sun — → ayer Value used for next hour calcs *LAI_sun g_sto_shade g_sto_sun

A_n calculated per layer per sun shade. Then f_O3_d calculated per layer per sun shade. Then integrated(Sum) to get averaged per layer whole canopy A_n Whole canopy _ X → Layer Value used for next hour calcs A_n_shade fO3_d_sun fO3_d_shade A_n_sun Layer Value used for _ X next hour calcs A_n_shade fO3_d_sun fO3_d_shade A_n_sun →ayer Value used for _ X next hour calcs fO3_d_shade A_n_shade A_n_sun fO3_d_sun

Calc Photosynthesis Stomatal Conductance (Ewert Method)

Ewert Inputs(Highlight sun/shade difference)

<u>Config</u>
t_lse_constant
gamma_1
gamma_2
gamma_3
g_sto_0
m
Lm
previous state
t_l_estimate
t_lem
t_lma
t_lep
t_lse
V_cmax_25
J_max_25
PARsun
PARshade
LAI
D_0
g_bv
td_dd
td_dd_prev
fO3_d_prev
O3up_prev
O3up_acc_prev
uh
external data
Tleaf_C
O3_nmol
eact
sinB
c_a
is_daylight

Ewert Outputs

Tleaf_C

g_sv

A_n

A_c

A_j

A_p

A_n_limit_factor

R_d

O3up_out

O3up_acc_out

fO3_h_out

fO3_d_out

c_i

Canopy_A_n

Combined GSTO, An, fO3_d

Average of sun and shade output

Sum of sun and shade output

??

Thuy Notes on Ewert upscaling implementaion

Yes, the integration can be done via the "depth or layer" of the canopy. They can be three-point or five points (five "depths/layers") Gaussian integration. We estimate separately the photosynthesis for sunlit and shaded leaves at each point (depth/layer) then integrates (summing) them to the whole canopy for each time step (hourly).