Environmental monitoring in parks

IoT (Internet of Things)-based environmental monitoring in parks leverages sensor technologies and network connectivity to collect real-time data on various environmental parameters. Here's how it can be implementd:

- 1. **Sensor Deployment:** Install IoT sensors strategically throughout the park to monitor different environmental factors. These sensors can include weather stations, water quality sensors, air quality sensors, and wildlife tracking devices.
- 2. **Data Collection:** The sensors continuously collect data on parameters such as temperature, humidity, air quality (including pollutants like CO2, NO2, and particulate matter), water quality (pH, turbidity, dissolved oxygen), and wildlife movement.
- 3. Wireless Connectivity: IoT devices use wireless communication technologies like Wi-Fi, LoRa, or cellular networks to transmit data to a central server or cloudbased platform.
- 4. **Data Storage:** The data is stored in a cloud-based database, making it accessible from anywhere. It can be securely archived for historical analysis.
- 5. **Real-time Monitoring:** Park authorities can access real-time data through web-based dashboards and mobile apps. This allows for immediate responses to any emerging environmental issues or hazards.
- 6. **Alerts and Notifications:** Implement alert systems that trigger notifications when specific environmental thresholds are breached. For example, if air quality deteriorates beyond a certain level, an alert is sent to park management for action.
- 7. **Data Analysis:** Historical data can be analyzed to identify trends, seasonal patterns, or long-term changes. This information can inform decision-making and conservation efforts.
- 8. **Visitor Engagement:** Some parks provide real-time environmental data to park visitors through kiosks, mobile apps, or websites, creating awareness and educating the public about the park's ecology.
- 9. **Energy Efficiency:** IoT sensors can be powered by renewable energy sources, such as solar panels, to reduce the environmental impact of monitoring systems.
- 10. **Cost Savings:** By providing real-time data and early warning of environmental issues, IoT-based monitoring can help park authorities make cost-effective decisions and reduce operational expenses.
- II. Wildlife Conservation: IoT sensors can be used for wildlife tracking and research. For example, GPS collars on animals can provide data on their movements and behaviors.

12. **Research Collaboration:** Data collected through IoT can be shared with researchers and environmental organizations, contributing to broader conservation efforts.

Python program for connecting mobile app with environmental monitoring in parks IOT project:

```
Import time
Import random
# Simulated environmental data collection
Def collect_environmental_data():
  Temperature = random.uniform(10, 30)
  Humidity = random.uniform(20, 80)
  Air_quality = random.randint(1, 100)
  Return temperature, humidity, air_quality
# Data processing and analysis
Def analyze_environmental_data(data):
  Temperature, humidity, air_quality = data
  # Perform analysis or set thresholds for alerts
  If temperature > 25:
    Print("High temperature alert!")
  If air_quality > 70:
    Print("Poor air quality alert!")
# Main monitoring loop
```

While True:

Environmental_data = collect_environmental_data()

Analyze_environmental_data(environmental_data)

Time.sleep(3600) # Simulate data collection every hour

To connect a mobile app with environmental monitoring systems in parks, you'll need to establish communication between the app and the monitoring infrastructure. Here are the steps involved in connecting a mobile app to an environmental monitoring system in parks:

1. Define App Objectives and Features:

• Clearly define the goals of the mobile app and the features it should offer, such as real-time data visualization, alert notifications, historical data access, and user engagement elements.

2. IoT Sensor Deployment:

• Ensure that IoT sensors are strategically deployed throughout the park to collect environmental data. These sensors should transmit data to a central server or cloud platform.

3. Cloud-Based Data Management:

• Implement a cloud-based platform to store and manage the data collected by IoT sensors. Services like AWS IoT, Azure IoT, or Google Cloud IoT can be used for this purpose.

4. API Development:

• Create APIs that enable communication between the mobile app and the cloud-based IoT platform. These APIs should allow the app to retrieve real-time and historical environmental data.

5. Mobile App Development:

• Develop the mobile app for both iOS and Android platforms. Consider using a cross-platform framework like React Native, Flutter, or Xamarin to streamline development

CIRCUIT DIAGRAM FOR ENVIRONMENTAL MONITORING IN PARKS:

