Вопрос №1

Дифференцирование функций

Разностное отношение в точке

Пусть имеется функция f(x), $x \in D_f$, и точка $x_0 \in D_f$.

Определение. Для всех $x\in D_f, x\neq x_0$, частное $\frac{f(x)-f(x_0)}{x-x_0}=\frac{f(x_0+h)-f(x_0)}{h}$, где $h=x-x_0$, называется разностным отношением функции f в точке x_0 с шагом h.

Определение производной

Определение. Если существует предел разностного отношения: $\frac{1}{h}\Delta f(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$ при $h\to 0$, то этот предел называется производной функции f в точке x_0 , обозначается $f'(x_0)$, $f'(x_0) = \lim_{h\to 0} \frac{\Delta f(x)}{h}$.

Может оказаться, что такого предела не существует, но при этом имеются односторонние пределы при $h \to +0$ или $h \to -0$. Эти односторонние пределы называются правой и левой производными функции. Обозначения:

$$f'^{+}(x_0) = \lim_{h \to +0} \frac{\Delta f(x_0)}{h}.$$
 (правая)

$$f'^{-}(x_0) = \lim_{h \to -0} \frac{\Delta f(x_0)}{h}.$$
 (левая)

О производной в точке x_0 можно говорить тогда и только тогда, когда x_0 является предельной точкой D_f . Обычно предполагается, что точка x_0 является внутренней точкой множества D_f . То есть f определена в некоторой окрестности точки x_0 . Функция определена в некоторой окрестности точки x_0 , имеет производную в этой точке тогда и только тогда, когда f имеет односторонние равные друг другу производные.

Когда говорят о производной, чаще имеют в виду конечную. Случай бесконечных производных обговаривается отдельно.

Определение. Функция f называется дифференцируемой в точке x_0 , если f определена в окрестности этой точки и имеет при этом конечную производную в x_0 .

Вместо x_0 пишут x, шаг h обозначают Δx и называют приращением независимой переменной. Разность $\Delta f(x) = f(x + \Delta x) - f(x)$ называют приращением функции.

При этом производная переписывается в виде: $y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

Определение. Таким образом, Производной называется предел отношения приращения функции к приращению независимой переменной при стремлении приращения аргумента к нулю.

Нахождение производной – дифференцирование.

Определение. Оператор, сопоставляющий данной функции y=f(x) ее производную y', называется оператором дифференцирования и обозначается $\frac{d}{dx}$ или $\frac{d}{dx}$: $y \to y'$.

Основные правила дифференцирования

- 1. Производная константы равна нулю: (C)' = 0.
- 2. Константу можно вынести за знак производной: (Cf(x))' = C(f(x))'.
- 3. Производная суммы/разности функций равна сумме/разности производных: $(f(x) \pm g(x))' = (f(x))' \pm (g(x))'$.
- 4. Дифференцирование произведения функций выполняется по формуле: $(f(x) \cdot g(x))' = (f(x))' \cdot g(x) = f(x) \cdot (g(x))', (u \cdot v \cdot w)' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot w'.$
- 5. Дифференцирование частного двух функций выполняется по формуле: $(\frac{f(x)}{g(x)})' = \frac{(f(x))' \cdot g(x) f(x) \cdot (g(x))'}{(g(x))^2}$.

Примеры:

- $1.\ y=c,$ где c константа. Тогда $\Delta y=0$ в любой точке x и поэтому $\frac{\Delta y}{\Delta x}=0.$
- 2. $y(x) = \sin(x) \Rightarrow \Delta y = \sin(x + \Delta x) \sin(x) = 2\sin(\frac{\Delta x}{2})\cos(x + \frac{\Delta x}{2}) \Rightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \cos(x + \frac{\Delta x}{2}) = 1 \cdot \cos(x).$
- 3. $y(x) = \cos(x) \Rightarrow \Delta y = \cos(x + \Delta x) \cos(x) = -2\sin(\frac{\Delta x}{2})\sin(x + \frac{\Delta x}{2}) \Rightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \sin(x + \frac{\Delta x}{2}) = -\sin(x).$
- 4. $y = a^x$, $y' = a^x \ln a$.

5. $y(x) = \text{abs}\{x\}$, При x > 0: y(x) = x, y(x+h) = x+h. $\frac{\Delta y}{\Delta x} = \frac{x+h-x}{h} = 1$. В точке $x_0 = 0$ имеем $y(x_0) = 0$, $y(x_0+h) \Rightarrow y'^+(0) = 1$ и $y'^-(0) = -1$. В точке x_0 функция не является дифференцируемой, а при $x \neq 0$, |x|' = sgn(x).

Метод логарифмического дифференцирования

Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей: $\ln y = \ln f(x)$. Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x. $(\ln y)' = (\ln f(x))' \Rightarrow \frac{1}{y}y'(x) = (\ln f(x))'$. Отсюда видно, что искомая производная равна $y' = y(\ln f(x))' = f(x)(\ln f(x))'$.

Такая производная от логарифма функции называется логарифмической производной.

Данный метод позволяет также эффективно вычислять производные показательно-степенных функций, то есть функций вида $y=u(x)^{v(x)}$, где u(x) и v(x) - дифференцируемые функции от x.

Пример: $y = x^{\cos x}, x > 0.$

Решение. Логарифмируем заданную функцию: $\ln y = \ln (x^{\cos x}) \Rightarrow \ln y = \cos x \ln x$. Дифференцируя последнее равенство по x, получаем: $(\ln y)' = (\cos x \ln x)' \Rightarrow \frac{1}{y} \cdot y' = (\cos x)' \ln x + \cos x (\ln x)' \Rightarrow \frac{y'}{y} = (-\sin x) \cdot \ln x + \cos x \cdot \frac{1}{x} \Rightarrow \frac{y'}{y} = -\sin x \ln x + \frac{\cos x}{x} \Rightarrow y' = y(\frac{\cos x}{x} - \sin x \ln x)$. Подставляем в правые части вместо y исходную функцию: $y' = x^{\cos x}(\frac{\cos x}{x} - \sin x \ln x)$, где x > 0.

Уравнение касательной и нормали к заданной кривой

Уравнение касательной к кривой y = f(x) в точке $M(x_0, y_0)$ имеет вид: $y - y(x_0) = y'(x_0)(x - x_0)$.

Уравнение нормали к кривойу в точке $M(x_0,y_0)$ имеет вид: $y-y(x_0)=-\frac{1}{y'(x_0)}(x-x_0)$.

Нормаль к кривой - это перпендикуляр к касательной, проведенный через точку касания.

Пример: составить уравнение касательной и нормали к кривой в точке M(1,-1): $x^2 + 2xy^2 + 3y^4 = 6$.

Решение. Найдем производную, дифференцируя функцию y(x) по переменной x: $(x^2)_{x'} + (2xy^2)_{x'} + (3y^4)_{x'} = (6)_{x'}$. Учитывая, что y^2 и y^4

сложные функции продолжаем: $2x + 2y^2 + 4xyy' + 12y^3y' = 0$. Выражаем y' из полученного уравнения: $4xyy' + 12y^3y' = -2x - 2y^2$. Выносим y'за скобки: $y'(4xy+12y^3)=-2x-2y^2$. Делим обе части уравнения на выражение $4xy+12y^3$: $y'=-\frac{2x+2y^2}{4xy+12y^3}=-\frac{x+y^2}{2xy+6y^3}$. Теперь вычисляем значение y': $y'=-\frac{1+(-1)^2}{2\cdot 1\cdot (-1)+6\cdot (-1)^3}=\frac{-2}{-8}=\frac{1}{4}$. Зная, что $y'=\frac{1}{4}$ и $y(x_0)=y(1)=-1$, составляем уравнения касатель-

ной и нормали к кривой в точке M(1,-1)

- Уравнение касательной: $y (-1) = \frac{1}{4}(x 1)$, или $y = \frac{1}{4}x \frac{3}{4}$.
- Уравнение нормали: $y-(-1)=-\frac{1}{\frac{1}{4}}(x-1)$, или y=-4x+3.

Приближенные вычисления с использованием дифференциала

Формула для приближенного вычисления с помощью дифференциала: $f(x_0+x) \approx f(x_0) + d[f(x_0)]$, где дифференциал в точке находится по формуле $d[f(x_0)] = f'(x_0) \cdot \Delta x$.

Конечная формула выглядит так: $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$.

Вопрос №2

Общее уравнение плоскости

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:

$$Ax + By + Cz + D = 0 (1)$$

где A, B, C, D - некоторые постоянные, причем хотя бы один из элементов A, B или C отличен от нуля.

Теорема. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением 1. Обратно, каждое линейное уравнение 1 в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Так как числа A, B и C одновременно не равны нулю, то существует точка $M_0(x_0,y_0,z_0)$, координаты которой удовлетворяют уравнению Ax+By+Cz+d=0, то есть, справедливо равенство $Ax_0+By_0+Cz_0=0$. Отнимем левую и правую части полученного равенства соответственно от левой и правой частей уравнения Ax+By+Cz+D=0, при этом получим уравнение вида $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ эквивалентное исходному уравнению Ax+By+Cz+D=0.

Равенство $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ представляет собой необходимое и достаточное условие перпендикулярности векторов $\vec{n}=(A,B,C)$ и $M_0M=(x-x_0,y-y_0,z-z_0)$. Иными словами, координаты плавающей точки M(x,y,z) удовлетворяют уравнению $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ тогда и только тогда, когда перпендикулярны векторы $\vec{n}=(A,B,C)$ и $M_0M=(x-x_0,y-y_0,z-z_0)$. Тогда мы можем утверждать, что если справедливо равенство $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, то множество точек M(x,y,z) определяет плоскость, нормальным вектором которой является $\vec{n}=(A,B,C)$, причем эта плоскость проходит через точку $M_0(x_0,y_0,z_0)$. Другими словами, уравнение $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ определяет в прямоугольной системе координат Oxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнение Ax+By+Cz+D=0 определяет эту же плоскость.

Пусть нам дана плоскость, проходящая через точку $M_0(x_0,y_0,z_0)$, нормальным вектором которой является $\vec{n}=(A,B,C)$. Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида Ax+By+Cz+D=0.

Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет M(x,y,z). Тогда векторы $\vec{n}=(A,B,C)$ и $\vec{M_0M}=(x-x_0,y-y_0,z-z_0)$ будут перпендикулярны, следовательно, их скалярное произведение будет равно нулю: $(\vec{n},\vec{M_0M})=A(x-x_0)+B(y-y_0)+C(z-z_0)=Ax+By+Cz-(Ax_0+By_0+Cz_0)=0$. Принимая во внимание $D=-(Ax_0+By_0+Cz_0)$, уравнение примет вид Ax+By+Cz+D=0.

Разные уравнения одной плоскости

Если уравнения $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$ определяют одну и ту же плоскость, то найдётся такое число λ , что выполнены равенства: $A_2=A_1\lambda,\ B_2=B_1\lambda,\ C_2=C_1\lambda,\ D_2=D_1\lambda.$

Уравнение плоскости, проходящей через три данные точки

способ нахождения уравнения плоскости, проходящей через три заданные точки $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$.

Очевидно, что множество точек M(x,y,z) определяет в прямоугольной системе координат Oxyz в трехмерном пространстве плоскость, проходящую через три различные и не лежащие на одной прямой точки $M_1(x_1,y_1,z_1),\,M_2(x_2,y_2,z_2),\,M_3(x_3,y_3,z_3),\,$ тогда и только тогда, когда три вектора $\overrightarrow{M_1M}=(x-x_1,y-y_1,z-z_1),\,M_1\overrightarrow{M}_2=(x_2-x_1,y_2-y_1,z_2-z_1)$ и $M_1\overrightarrow{M}_3=(x_3-x_1,y_3-y_1,z_3-z_1)$ компланарны.

Следовательно, должно выполняться условие компланарности трех векторов $M_1M = (x-x_1,y-y_1,z-z_1),\ M_1M_2 = (x_2-x_1,y_2-y_1,z_2-z_1)$ и $M_1M_3 = (x_3-x_1,y_3-y_1,z_3-z_1)$, то есть, смешанное произведение векторов M_1M , M_1M_2 , M_1M_3 должно быть равно нулю: $M_1M \cdot M_1M_2 \cdot M_1M_3 = 0$. Это равенство в координатной форме имеет вид $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$. Оно, после вычисления определителя, пред-

ставляет собой общее уравнение плоскости, проходящей через три заданные точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), M_3(x_3, y_3, z_3).$

Примеры:

1. Напишите уравнение плоскости, которая проходит через три заданные точки $M_1(-3,2,-1)$, $M_2(-1,2,4)$, $M_3(3,3,-1)$.

Решение

(a) **Первый способ решения.** По координатам заданных точек вычисляем координаты векторов $\vec{M_1M_2}$ и $\vec{M_1M_3}$:

$$\vec{M_1 M_2} = (-1 - (-3), 2 - 2, 4 - (-1)) \Leftrightarrow \vec{M_1 M_2} = (2, 0, 5)$$

 $\vec{M_1 M_3} = (3 - (-3), 3 - 2, -1 - (-1)) \Leftrightarrow \vec{M_1 M_3} = (6, 1, 0)$

Найдем векторное произведение векторов $\vec{M_1M_2} = (2,0,5)$ и $\vec{M_1M_3} = (6,1,0)$:

$$\vec{n} = [\vec{M_1}\vec{M_2} \times \vec{M_1}\vec{M_3}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix} = -5 \cdot \vec{i} + 30 \cdot \vec{j} + 2 \cdot \vec{k}.$$

Следовательно, нормальным вектором плоскости, проходящей через три заданные точки, является вектор $\vec{n} = (-5, 30, 2)$.

Теперь записываем уравнение плоскости, проходящей через точку $M_1(-3,2,-1)$ (можно взять точку M_2 или M_3) и имеющей нормальный вектор $\vec{n}=(-5,30,2)$. Оно имеет вид $-5\cdot(x-(-3))+30\cdot(y-2)+2\cdot(z-(-1))=0\Leftrightarrow -5x+30y+2z-73=0$. Так мы получили общее уравнение плоскости, проходящей через три заданные точки.

(b) Второй способ решения. Уравнение плоскости, проходящей через три заданные точки $M_1(x_1,y_1,z_1),\,M_2(x_2,y_2,z_2),\,M_3(x_3,y_3,z_3),$

записывается как $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1\\ x_2-x_1 & y_2-y_1 & z_2-z_1\\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}=0. \ \text{Из условия}$ задачи имеем $x_1=-3,\ y_1=2,\ z_1=-1,\ x_2=-1,\ y_2=2,\ z_2=4,$ $x_3=3,\ y_3=3,\ z_3=-1.$ Тогда

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = \begin{vmatrix} x - (-3) & y - 2 & z - (-1) \\ -1 - (-3) & 2 - 2 & 4 - (-1) \\ 3 - (-3) & 3 - 2 & -1 - (-1) \end{vmatrix} = \begin{vmatrix} x + 3 & y - 2 & z + 1 \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix} = \begin{vmatrix} x + 3 & y - 2 & z + 1 \\ 2 & 0 & 5 \\ 6 & 1 & 0 \end{vmatrix}$$

Следовательно, уравнение плоскости, проходящей через три заданные точки, имеет вид -5x+30y+2z-73=0.

2. В прямоугольной системе координат Oxyz в трехмерном пространстве заданы три точки $M_1(5,-8,-2), M_2(1,-2,0), M_3(-1,1,1)$. Составьте уравнение плоскости, проходящей через три заданные точки.

Решение

(а) **Первый способ решения.** Вычисляем координаты векторов $M_1\vec{M}_2$ и $M_1\vec{M}_3$: $M_1\vec{M}_2=(-4,6,2),\ M_1\vec{M}_3=(-6,9,3).$ Находим векторное произведение векторов $M_1\vec{M}_2$ и $M_1\vec{M}_3$: $[M_1\vec{M}_2\times$

$$M_{1}\vec{M}_{3}] = \begin{vmatrix} i & j & k \\ -4 & -6 & 2 \\ -6 & 9 & 3 \end{vmatrix} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k} = 0.$$

Так как $[M_1\vec{M}_2 \times M_1\vec{M}_3] = \vec{0}$, то векторы $M_1\vec{M}_2$ и $M_1\vec{M}_3$ коллинеарны, следовательно, заданные точки $M_1(5, -8, -2), M_2(1, -2, 0),$

 $M_3(-1,1,1)$ лежат на одной прямой. Таким образом, поставленная задача имеет бесконечное множество решений, так как любая плоскость, содержащая прямую, на которой лежат точки M_1, M_2, M_3 , является решением задачи.

Мы приходим к тождеству, из которого можно заключить, что заданные точки $M_1(5,-8,-2)$, $M_2(1,-2,0)$, $M_3(-1,1,1)$ лежат на одной прямой.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть P(x,y,z) – произвольная точка пространства. Точка P принадлежит плоскости тогда и только тогда, когда вектор $MP = \{x - x_0, y - y_0, z - z_0\}$ ортогонален вектору $n = \{A, B, C\}$.

Написав условие ортогональности этих векторов (n, MP) = 0 в координатной форме, получим:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
(2)

Это и есть искомое уравнение. Вектор $n = \{A, B, C\}$ называется нормальным вектором плоскости.

Таким образом, чтобы написать уравнение плоскости, нужно знать нормальный вектор плоскости и какую-нибудь точку, принадлежащую плоскости.

Если теперь в уравнении 2 раскрыть скобки и привести подобные члены, получим общее уравнение плоскости:

$$Ax + By + Cz + D = 0 (3)$$

где
$$D = -Ax_0 - By_0 - Cz_0$$
.

Уравнение прямой, проходящей через 2 точки

Необходимо составить уравнение прямой a, проходящей через две несовпадающие точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющим вид $\frac{x-x_1}{a_x}=\frac{y-y_1}{a_y}$, задается прямоугольная система координат Oxy с прямой, которая пересекается с ней в точке с координатами $M_1(x_1,y_1)$ с направляющим вектором $a=(a_x,a_y)$

Прямая a имеет направляющий вектор M_1M_2 с координатами (x_2-x_1,y_2-y_1) , так как пересекает точки M_1 и M_2 . Преобразуя каноническое уравнение с координатами направляющего вектора $M_1M_2=(x_2-x_1,y_2-y_1)$ и координатами лежащих на них точек $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, получим уравнение вида $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ или $\frac{x-x_2}{x_2-x_1}=\frac{y-y_2}{y_2-y_1}$. Запишем параметрические уравнения прямой на плоскости, которая

Запишем параметрические уравнения прямой на плоскости, которая проходит через две точки с координатами $M_1(x_1, y_1)$ и $M_2(x_2, y_2)$. Полу-

чим уравнение вида
$$\begin{cases} x = x_1 + (x_2 - x_1) \cdot \lambda \\ y = y_1 + (y_2 - y_1) \cdot \lambda \end{cases}$$
 или
$$\begin{cases} x = x_2 + (x_2 - x_1) \cdot \lambda \\ y = y_2 + (y_2 - y_1) \cdot \lambda \end{cases}$$

Уравнение прямой, проходящей через данную точку параллельно данному вектору

Пусть прямая проходит через точку $M_0(x_0, y_0, z_0)$ параллельно вектору $\vec{a} = \{l; m; n\}.$

точка M(x,y,z) лежит на прямой тогда и только тогда, когда векторы $\vec{a}=\{l;m;n\}$ и $\vec{M_0M}=\{x-x_0;y-y_0;z-z_0\}$ коллинеарны. Векторы $\vec{a}=\{l;m;n\}$ и $\vec{M_0M}=\{x-x_0;y-y_0;z-z_0\}$ коллинеарны тогда и только тогда, когда их координаты пропорциональны, то есть

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}. (4)$$

Полученная система уравнений задает искомую прямую и называется каноническими уравнениями прямой в пространстве.

Условия параллельности и перпендикулярности прямой и плоскости

- 1. Для параллельности прямой a, не лежащей в плоскости α , и плоскости α необходимо и достаточно, чтобы направляющий вектор прямой a был перпендикулярен нормальному вектору плоскости α .
 - Следовательно, необходимое и достаточное условие параллельности прямой a и плоскости α (a не лежит в плоскости α) примет вид $(\vec{a}, \vec{n}) = a_x \cdot A + a_y \cdot B + a_z \cdot C = 0$, где $\vec{a} = (a_x, a_y, a_z)$ - направляющий вектор прямой $a, \vec{n} = (A, B, C)$ - нормальный вектор плоскости α .
- 2. Для перпендикулярности прямой a и плоскости γ необходимо и достаточно, чтобы направляющий вектор прямой a и нормальный вектор плоскости γ были коллинеарны.

Для перпендикулярности прямой a и плоскости γ необходимо и достаточно, чтобы выполнялось условие коллинеарности векторов

$$\vec{a}=(a_x,a_y,a_z)$$
 и $\vec{n}=(n_x,n_y,n_z)$: $\vec{a}=t\cdot\vec{n}\Leftrightarrow egin{cases} a_x=t\cdot n_x\ a_y=t\cdot n_y\ a_z=t\cdot n_z \end{cases}$, где t -

некоторое действительное число.

Вычисление расстояния от данной точки до данной плоскости

Определение. Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из данной точки на данную плоскость.

Расстояние от точки A_0 с координатами (x_0, y_0, z_0) до плоскости α , заданной уравнением ax + by + cz + d = 0 вычисляется следующим образом.

Пусть A с координатами (x,y,z) - точка плоскости α , $\vec{n}=(A,B,C)$ -

вектор нормали. Тогда $\cos\phi=\frac{\vec{n}\cdot\vec{A}\vec{A}_0}{|\vec{n}|\cdot|A\vec{A}_0}=\frac{a(x_0-x)+b(y_0-y)+c(z_0-z)}{\sqrt{a^2+b^2+c^2}\cdot|A\vec{A}_0|}.$ Учитывая, что -ax-by-cz=d и то, что искомое расстояние $h=|\vec{A}\vec{A}_0|\cdot\cos\phi$, получаем $h=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}.$