

SEQUENCE LISTING

<110> Waldman, Scott A.
Park, Jason
Schulz, Stephanie

<120> Compositions And Methods For Identifying And Targeting Cancer Cells Of Alimentary Canal Origin

<130> TJU2414

<150> 60/192,229
<151> 2000-03-27

<160> 2

<170> PatentIn version 3.0

<210> 1
<211> 1699
<212> DNA
<213> Homo sapiens

<400> 1
aggtaagcgg ttgctcgtcg tcggggcggc cggcagcggc ggctccaggg cccagcatgc 60
gggggggacc ccgcggccac catgtatgtg ggctatgtgc tggacaagga ttgcggcgtg 120
taccccccggcc cagccaggcc agccagcctc ggcctgggcc cgcaagccta cggccccccg 180
gtcccccccccc cggcgcccccc gcagtacccc gacttctcca qctactctca cgtggagccg 240
ggcccccgcc ccccgacggc ctggggggcg cccttccctg cgcccaagga cgactgggcc 300
ggccgcctacg gcccgggccc cgccggccct gccgcagcc cagttcgtc ggcattcggg 360
ccccctccag acttttagccc ggtgccggcg cccccctggc cggggccggg cctcctggcg 420
cagccccctcg ggggccccggg cacaccgtcc tcgccccggag cgccagaggcc gacgcctac 480
gaaatggatgc ggccgcagcgt ggcggccggga ggcggcgggtg gcagcggtaa gactcggacc 540
aaaggacaagt accgcgttgtt ctacaccgac caccaacgccc tggagctggaa gaaggagttt 600
cattacagcc gttacatcac aatccggcgg aaatcagagc tggctgccaa tctggggctc 660
actgaacggc aggtgaagat ctggttccaa aaccggcggg caaaggagcg caaatgtaac 720
aagaagaaac agcagcagca acagccccca cagccgcccga tggcccacga catcacggcc 780
acccccagccg ggcacatccct ggggggcctg tgtcccagca acaccagcct cctggccacc 840
tcctctccaa tgcctgtgaa agaggagttt ctgccccatgc cccatgcccac ggcctgtgcgc 900
cgggggaccc ggggactcgg gtgctggag tgtggctcct gtggggccag gagggtcggt 960
ccgagatctca gcccgtaccc tctggacat ggtggacagt cacctatcca ccctctgcat 1020
cccccttgcc catctgtgca gtaaggctgt tggataaaga cttccagct cctgtgttct 1080
agacaccttgg gggataaggg agtccaggggt ggtatgtctc aatctccctgt gggcatctca 1140
agccccaaat ggttggggga ggggcctaga caaggctcca gggccacccct cctccctccat 1200
acgttcagag gtgcagctgg aggctgctgt ggggaccaca ctgatcctgg agaaaaggga 1260

tggagctgaa aaagatggaa tgcttcaga gcatgacctg aggagggagg aacgtggta	1320
actcacacct gcctttcct gcagcctcac ttctacctgc ccccatcata agggcactga	1380
gcccttcca ggctggatac taagcacaaa gcccatagca ctgggctctg atggctgctc	1440
cactgggta cagaatcaca gcccctatga tcatttcag tgagggctct ggattgagag	1500
ggaggccctg ggaggagaga agggggcaga gtctcccta ccaggtttct acaccccg	1560
caggctgccc atcagggccc agggagcccc cagaggactt tattcggacc aagcagagct	1620
cacagctgga caggtgttgt atatacgttg gaatctttt gatgcagctt caagaataaa	1680
tttttcttctt cttttcaaa	1699

<210> 2
<211> 265
<212> PRT
<213> Homo sapiens

<400> 2

Met Tyr Val Gly Tyr Val Leu Asp Lys Asp Ser Pro Val Tyr Pro Gly	
1 5 10 15	
Pro Ala Arg Pro Ala Ser Leu Gly Leu Gly Pro Gln Ala Tyr Gly Pro	
20 25 30	
Pro Ala Pro Pro Pro Ala Pro Pro Gln Tyr Pro Asp Phe Ser Ser Tyr	
35 40 45	
Ser His Val Glu Pro Ala Pro Ala Pro Pro Thr Ala Trp Gly Ala Pro	
50 55 60	
Phe Pro Ala Pro Lys Asp Asp Trp Ala Ala Tyr Gly Pro Gly Pro	
65 70 75 80	
Ala Ala Pro Ala Ala Ser Pro Ala Ser Leu Ala Phe Gly Pro Pro Pro	
85 90 95	
Asp Phe Ser Pro Val Pro Ala Pro Pro Gly Pro Gly Pro Gly Leu Leu	
100 105 110	
Ala Gln Pro Leu Gly Gly Pro Gly Thr Pro Ser Ser Pro Gly Ala Gln	
115 120 125	
Arg Pro Thr Pro Tyr Glu Trp Met Arg Arg Ser Val Ala Ala Gly Gly	
130 135 140	
Gly Gly Gly Ser Gly Lys Thr Arg Thr Lys Asp Lys Tyr Arg Val Val	
145 150 155 160	
Tyr Thr Asp His Gln Arg Leu Glu Leu Glu Lys Glu Phe His Tyr Ser	
165 170 175	
Arg Tyr Ile Thr Ile Arg Arg Lys Ser Glu Leu Ala Ala Asn Leu Gly	
180 185 190	
Leu Thr Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys	
195 200 205	
Glu Arg Lys Val Asn Lys Lys Gln Gln Gln Gln Pro Pro Gln	

2414.ST25

210

215

220

Pro Pro Met Ala His Asp Ile Thr Ala Thr Pro Ala Gly Pro Ser Leu
225 230 235 240

Gly Gly Leu Cys Pro Ser Asn Thr Ser Leu Leu Ala Thr Ser Ser Pro
245 250 255

Met Pro Val Lys Glu Glu Phe Leu Pro
260 265