

Base de données (86 FT)

...ix_2016-12-13.110815_cC6jHg_input.tab_1

Base de données (86 FT)

- Alignement Local Smith-Waterman

- Plusieurs métriques :

Pearson correlation coefficient (PCC)
$$PCC(X,Y) = \frac{\sum_{b=A}^{T} (f_X(b) - \bar{f_X}) \cdot (f_Y(b) - \bar{f_Y})}{\sqrt{\sum_{b=A}^{T} (f_X(b) - \bar{f_X})^2 \cdot \sum_{b=A}^{T} (f_Y(b) - \bar{f_Y})^2}}$$
Chi square (pCS)

Chi-square (pCS) (1—p-value of)

$$\chi_3^2(X,Y) = \sum_{K = \{X,Y\}} \sum_{b=A}^T \frac{(n_K(b) - n_K^e(b))^2}{n_K^e(b)}$$

Average Kullback–Leibler (AKL) $AKL(X,Y) = 10 - \frac{\sum_{b=A}^{T} f_X(b) \cdot log \frac{f_X(b)}{f_Y(b)} + \sum_{b=A}^{T} f_Y(b) \cdot log \frac{f_Y(b)}{f_X(b)}}{2}$

Sum of squared distances (SSD)

$$SSD(X,Y) = 2 - \sum_{b=A}^{T} (f_X(b) - f_Y(b))^2$$

Average log-likelihood ratio (ALLR)
$$ALLR(X,Y) = \frac{\displaystyle\sum_{b=A}^{T} n_X(b) \cdot log \frac{f_Y(b)}{p_{ref}(b)^+} \displaystyle\sum_{b=A}^{T} n_Y(b) \cdot log \frac{f_X(b)}{p_{ref}(b)}}{\displaystyle\sum_{b=A}^{T} (n_X(b) + n_Y(b))}$$

ALLR with lower limit (ALLR_LL)

Same as above, but a lower limit of -2 is imposed on the score (see text)

Analyse de signaux

Base de données (304 PSSMs)

Matrice d`affinite

Methode de clustering : Affinity propagation

Analyse de signaux

16 clusters

PhoB dans le meme cluster que PhoA, PhoX, PhoD, ArgR, Lrp, IHF, GadE, GcvA

Similarite de signaux

Conservation de signaux

Merci de votre attention