ДЕЯКІ ЧИСЛОВІ ТА АЛГЕБРАЇЧНІ ВИРАЗИ

В межах двох відсотків

$$(2\pi)^{1/2} \approx 2.5$$
; $\pi^2 \approx 10$; $e^3 \approx 20$; $2^{10} \approx 10^3$;

Гама функція $\Gamma(x+1) = x\Gamma(x)$

$$\Gamma(1/6) = 5.5663 \qquad \Gamma(3/5) = 1.4892$$

$$\Gamma(1/5) = 4.5908 \qquad \Gamma(2/3) = 1.3541$$

$$\Gamma(1/4) = 3.6256 \qquad \Gamma(3/4) = 1.2254$$

$$\Gamma(1/3) = 2.6789 \qquad \Gamma(4/5) = 1.1642$$

$$\Gamma(2/5) = 2.2182 \qquad \Gamma(5/6) = 1.1288$$

$$\Gamma(1/2) = 1.7725 = \sqrt{\pi} \qquad \Gamma(1) = 1$$

Біноміальна теорема (справджується для |x| < 1 або коли α – додатне число):

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k} \equiv 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots$$

ВЕКТОРНІ ТОТОЖНОСТІ

Позначення: f, g — скаляри; \vec{A} , \vec{B} — вектори; T — тензор, знак вектора над оператором набла опущено.

1)
$$\vec{A} \cdot \vec{B} \times \vec{C} = \vec{A} \times \vec{B} \cdot \vec{C} = \vec{B} \cdot \vec{C} \times \vec{A} = \vec{B} \times \vec{C} \cdot \vec{A} = \vec{C} \cdot \vec{A} \times \vec{B} = \vec{C} \times \vec{A} \cdot \vec{B}$$

2)
$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{C} \times \vec{B}) \times \vec{A} = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \cdot \vec{C}$$

3)
$$\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = 0$$

4)
$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$$

5)
$$(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D}) = (\vec{A} \times \vec{B} \cdot \vec{D}) \vec{C} - (\vec{A} \times \vec{B} \cdot \vec{C}) \vec{D}$$

6)
$$\nabla (fg) = \nabla (gf) = f \nabla g + g \nabla f$$

7)
$$\nabla \cdot (f\vec{A}) = f \nabla \cdot \vec{A} + \vec{A} \cdot \nabla f$$

8)
$$\nabla \times (f\vec{A}) = f\nabla \times \vec{A} + \nabla f \times \vec{A}$$

9)
$$\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot \nabla \times \vec{A} - \vec{A} \cdot \nabla \times \vec{B}$$

10)
$$\nabla \times (\vec{A} \times \vec{B}) = \vec{A}(\nabla \cdot \vec{B}) - \vec{B}(\nabla \cdot \vec{A}) + (\vec{B} \cdot \nabla)\vec{A} - (\vec{A} \cdot \nabla)\vec{B}$$

11)
$$\vec{A} \times (\nabla \times \vec{B}) = (\nabla \vec{B}) \cdot \vec{A} - (\vec{A} \cdot \nabla) \vec{B}$$

12)
$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + \vec{B} \times (\nabla \times \vec{A}) + (\vec{A} \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla)\vec{A}$$

13)
$$\nabla^2 f = \nabla \cdot \nabla f$$

14)
$$\nabla^2 \vec{A} = \nabla(\nabla \cdot \vec{A}) - \nabla \times \nabla \times \vec{A}$$

15)
$$\nabla \times \nabla f = 0$$

16)
$$\nabla \cdot \nabla \times \vec{A} = 0$$

Якщо e_1 , e_2 , e_3 — ортонормовані одиничні вектори, тензор другого порядку T може бути записаний у формі

17)
$$T = \sum_{i,j} T_{ij} e_i e_j$$

У декартових координатах дивергенція тензора — вектор з компонентами

18)
$$(\nabla \cdot T)_i = \sum_j (\partial T_{ji} / \partial x_j)$$

19)
$$\nabla \cdot (\vec{A}\vec{B}) = (\nabla \cdot \vec{A})\vec{B} + (\vec{A} \cdot \nabla)\vec{B}$$

20)
$$\nabla \cdot (fT) = \nabla f \cdot T + f \nabla \cdot T$$

Нехай $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ — радіус-вектор величини r, від початку координат до точки x, y, z. Тоді

21)
$$\nabla \cdot \vec{r} = 3$$

22)
$$\nabla \times \vec{r} = 0$$

23)
$$\nabla r = \vec{r}/r$$

24)
$$\nabla (1/r) = -\vec{r}/r^3$$

25)
$$\nabla \cdot (\vec{r}/r^3) = 4\pi \delta(\vec{r})$$

26)
$$\nabla \vec{r} = I$$

Якщо V — об'єм, обмежений поверхнею S та $d\vec{S} = \vec{n}dS$, де \vec{n} — одиничний вектор, спрямований назовні від V,

$$27) \int_{V} dV \nabla f = \int_{S} d\vec{S} f$$

28)
$$\int_{V} dV \nabla \cdot \vec{A} = \int_{S} d\vec{S} \cdot \vec{A}$$

29)
$$\int_{V} dV \nabla \cdot T = \int_{S} d\vec{S} \cdot T$$

30)
$$\int_{V} dV \nabla \times \vec{A} = \int_{S} d\vec{S} \times \vec{A}$$

31)
$$\int_{V} dV (f \nabla^{2} g - g \nabla^{2} f) = \int_{S} d\vec{S} \cdot (f \nabla g - g \nabla f)$$

32)
$$\int_{V} dV (\vec{A} \cdot \nabla \times \nabla \times \vec{B} - \vec{B} \cdot \nabla \times \nabla \times \vec{A}) = \int_{S} d\vec{S} \cdot (\vec{B} \times \nabla \times \vec{A} - \vec{A} \times \nabla \times \vec{B})$$

Якщо S — відкрита поверхня, обмежена контуром C, елемент довжини якої $d\vec{l}$

33)
$$\int_{S} d\vec{S} \times \nabla f = \oint_{C} d\vec{l} f$$

34)
$$\int_{S} d\vec{S} \cdot \nabla \times \vec{A} = \oint_{S} d\vec{l} \cdot \vec{A}$$

35)
$$\int_{S} (d\vec{S} \times \nabla) \times \vec{A} = \oint_{C} d\vec{l} \times \vec{A}$$

36)
$$\int_{S} d\vec{S} \cdot (\nabla f \times \nabla g) = \oint_{C} f \ dg = - \oint_{C} g \ df$$

ДИФЕРЕНЦІАЛЬНІ ОПЕРАТОРИ В КРИВОЛІНІЙНИХ КООРДИНАТАХ

Циліндричні координати

Дивергенція
$$\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

Градієнт
$$(\nabla f)_r = \frac{\partial f}{\partial r}; \ (\nabla f)_\phi = \frac{1}{r} \frac{\partial f}{\partial \phi}; \ (\nabla f)_z = \frac{\partial f}{\partial z}$$

$$Pomop~(\nabla \times \vec{A})_r = \frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \, ; ~(\nabla \times \vec{A})_\phi = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \, ;$$

$$(\nabla \times \vec{A})_z = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\phi}) - \frac{1}{r} \frac{\partial A_r}{\partial \phi}$$

Лапласіан
$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

Лапласіан вектора
$$(\nabla^2 \vec{A})_r = \nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_\phi}{\partial \phi} - \frac{A_r}{r^2}$$
;

$$(\nabla^2 \vec{A})_{\phi} = \nabla^2 A_{\phi} + \frac{2}{r^2} \frac{\partial A_r}{\partial \phi} - \frac{A_{\phi}}{r^2}; (\nabla^2 \vec{A})_z = \nabla^2 A_z$$

Компоненти $(\vec{A} \cdot \nabla) \vec{B}$

$$(\vec{A} \cdot \nabla \vec{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\phi}{r} \frac{\partial B_r}{\partial \phi} + A_z \frac{\partial B_r}{\partial z} - \frac{A_\phi B_\phi}{r}$$
$$(\vec{A} \cdot \nabla \vec{B})_\phi = A_r \frac{\partial B_\phi}{\partial r} + \frac{A_\phi}{r} \frac{\partial B_\phi}{\partial \phi} + A_z \frac{\partial B_\phi}{\partial z} + \frac{A_\phi B_r}{r}$$
$$(\vec{A} \cdot \nabla \vec{B})_z = A_r \frac{\partial B_z}{\partial r} + \frac{A_\phi}{r} \frac{\partial B_z}{\partial \phi} + A_z \frac{\partial B_z}{\partial z}$$

Дивергенція тензора

$$(\nabla \cdot T)_{r} = \frac{1}{r} \frac{\partial}{\partial r} (rT_{rr}) + \frac{1}{r} \frac{\partial T_{\phi r}}{\partial \phi} + \frac{\partial T_{zr}}{\partial z} - \frac{T_{\phi \phi}}{r}$$
$$(\nabla \cdot T)_{\phi} = \frac{1}{r} \frac{\partial}{\partial r} (rT_{r\phi}) + \frac{1}{r} \frac{\partial T_{\phi \phi}}{\partial \phi} + \frac{\partial T_{z\phi}}{\partial z} + \frac{T_{\phi r}}{r}$$

$$(\nabla \cdot T)_z = \frac{1}{r} \frac{\partial}{\partial r} (rT_{rz}) + \frac{1}{r} \frac{\partial T_{\phi z}}{\partial \phi} + \frac{\partial T_{zz}}{\partial z}$$

Сферичні координати

Дивергенція

$$\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Градієнт

$$(\nabla f)_r = \frac{\partial f}{\partial r}; \ (\nabla f)_\theta = \frac{1}{r} \frac{\partial f}{\partial \theta}; \ (\nabla f)_\phi = \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}$$

Pomop

$$(\nabla \times \vec{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

$$(\nabla \times \vec{A})_{\theta} = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (rA_{\phi})$$

$$(\nabla \times \vec{A})_{\phi} = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\theta}) - \frac{1}{r} \frac{\partial A_{r}}{\partial \theta}$$

Лапласіан

$$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial f}{\partial \theta}) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}$$

Лапласіан вектора

$$(\nabla^{2}\vec{A})_{r} = \nabla^{2}A_{r} - \frac{2A_{r}}{r^{2}} - \frac{2}{r^{2}}\frac{\partial A_{\theta}}{\partial \theta} - \frac{2\operatorname{ctg}\theta A_{\theta}}{r^{2}} - \frac{2}{r^{2}\sin\theta}\frac{\partial A_{\phi}}{\partial \phi}$$
$$(\nabla^{2}\vec{A})_{\theta} = \nabla^{2}A_{\theta} + \frac{2}{r^{2}}\frac{\partial A_{r}}{\partial \theta} - \frac{A_{\theta}}{r^{2}\sin^{2}\theta} - \frac{2\cos\theta}{r^{2}\sin^{2}\theta}\frac{\partial A_{\phi}}{\partial \phi}$$

$$(\nabla^2 \vec{A})_{\phi} = \nabla^2 A_{\phi} - \frac{A_{\phi}}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

Компоненти $(\vec{A} \cdot \nabla)\vec{B}$

$$(\vec{A} \cdot \nabla \vec{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_r}{\partial \phi} - \frac{A_\theta B_\theta + A_\phi B_\phi}{r}$$

$$\begin{split} (\vec{A} \cdot \nabla \vec{B})_{\theta} &= A_r \frac{\partial B_{\theta}}{\partial r} + \frac{A_{\theta}}{r} \frac{\partial B_{\theta}}{\partial \theta} + \frac{A_{\phi}}{r \sin \theta} \frac{\partial B_{\theta}}{\partial \phi} + \frac{A_{\theta} B_r}{r} - \frac{\text{ctg} \theta A_{\phi} B_{\phi}}{r} \\ (\vec{A} \cdot \nabla \vec{B})_{\phi} &= A \frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\theta}}{r} \frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\phi}}{r} \frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\phi} B_r}{r} + \frac{\text{ctg} \theta A_{\phi} B_{\theta}}{r} \end{split}$$

$$(\vec{A}\cdot\nabla\vec{B})_{\phi} = A_{r}\frac{\partial B_{\phi}}{\partial r} + \frac{A_{\theta}}{r}\frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\phi}}{r\sin\theta}\frac{\partial B_{\phi}}{\partial \phi} + \frac{A_{\phi}B_{r}}{r} + \frac{\mathrm{ctg}\theta\,A_{\phi}B_{\theta}}{r}$$

Дивергенція тензора

$$(\nabla \cdot T)_{r} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} T_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta r}) + \frac{1}{r \sin \theta} \frac{\partial T_{\phi r}}{\partial \phi} - \frac{T_{\theta \theta} + T_{\phi \phi}}{r}$$
$$(\nabla \cdot T)_{\theta} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} T_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta \theta}) + \frac{1}{r \sin \theta} \frac{\partial T_{\phi \theta}}{\partial \phi} + \frac{T_{\theta r}}{r} - \frac{\operatorname{ctg} \theta T_{\phi \phi}}{r}$$

$$(\nabla \cdot T)_{\phi} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta\phi}) + \frac{1}{r \sin \theta} \frac{\partial T_{\phi\phi}}{\partial \phi} + \frac{T_{\phi r}}{r} + \frac{\text{ctg} \theta T_{\phi\theta}}{r}$$

РОЗМІРНОСТІ Й ОДИНИЦІ

Щоб одержати значення величини в гаусових одиницях, необхідно помножити значення, виражене в одиницях СІ, на перевідний множник.

Фізична величина	Розл	мірність	Одиниці СІ	Пере- відний	Гаусові одиниці
	CI	Гаусова		множ- ник	
Ємність	$\frac{t^2q^2}{ml^2}$	l	Фарад	9×10 ¹¹	CM
Заряд	q	$\frac{m^{1/2}l^{3/2}}{t}$	Кулон	3×10°	статкулон
Густина заряду	$\frac{q}{l^3}$	$\frac{m^{1/2}}{l^{3/2}t}$	Кулон/м ³	3×10 ³	статкулон/см ³
Провідність	$\frac{tq^2}{ml^2}$	$\frac{l}{t}$	Сіменс	9×10 ¹¹	см/сек
Питома провідність	$\frac{tq^2}{ml^3}$	$\frac{1}{t}$	Сіменс/м	9×10°	сек-1
Струм	$\frac{q}{t}$	$\frac{m^{1/2}l^{3/2}}{t^2}$	Ампер	3×10°	статампер
Густина струму	$\frac{q}{l^2t}$	$\frac{m^{1/2}}{l^{1/2}t^2}$	Ампер/м ²	3×10 ⁵	статампер/см ²
Густина	$\frac{m}{l^3}$	$\frac{m}{l^3}$	кг/м ³	10 ⁻³	г/см ³
Зміщення електричного поля	$\frac{q}{l^2}$	$\frac{m^{1/2}}{l^{1/2}t}$	Кулон/м ²	$12\pi \times 10^5$	статкулон/см ²
Напруженість електричного поля	$\frac{ml}{t^2q}$	$\frac{m^{1/2}}{l^{1/2}t}$	Вольт/м	$\frac{1}{3} \times 10^{-4}$	статвольт/см

Фізична величина	Розл	лірність	Одиниці СІ	Пере- відний	Гаусові одиниці
	CI	Гаусова		множ- ник	
EPC	$\frac{ml^2}{t^2q}$	$\frac{m^{1/2}l^{1/2}}{t}$	Вольт	$\frac{1}{3} \times 10^{-2}$	статвольт
Енергія	$\frac{ml^2}{t^2}$	$\frac{ml^2}{t^2}$	Джоуль	107	ерг
Густина енергії	$\frac{m}{lt^2}$	$\frac{m}{lt^2}$	Джоуль/м ³	10	ерг/см ³
Сила	$\frac{ml}{t^2}$	$\frac{ml}{t^2}$	Ньютон	105	дин
Частота	$\frac{1}{t}$		Герц	1	Герц
Імпеданс, опір	$\frac{ml^2}{tq^2}$	$\frac{\frac{1}{t}}{\frac{t}{l}}$	Ом	$\frac{1}{9} \times 10^{-11}$	сек/см
Індукція	$\frac{ml^2}{q^2}$	$\frac{t^2}{l}$	Генрі	$\frac{1}{9} \times 10^{-11}$	сек²/см
Довжина	l	l	метр (м)	10^{2}	СМ
Напруженість магнітного поля	$\frac{q}{lt}$	$\frac{m^{1/2}}{l^{1/2}t}$	Ампер/м	$4\pi \times 10^{-3}$	
Магнітний потік	$\frac{ml^2}{tq}$	$\frac{m^{1/2}l^{3/2}}{t}$	Вебер	10^{8}	Максвел
Магнітна індукція	$\frac{m}{tq}$	$\frac{m^{1/2}}{l^{1/2}t}$	Тесла	10 ⁴	Гаус

Фізична величина	Розл	мірність	Одиниці СІ	Пере- відний	Гаусові одиниці
	CI	Гаусова		множ- ник	
Магнітний момент	$\frac{l^2q}{t}$	$\frac{m^{1/2}l^{5/2}}{t}$	Ампер · м ²	10 ³	Ерстед · см ³
Намагніченість	$\frac{q}{lt}$	$\frac{m^{1/2}}{l^{1/2}t}$	Ампер/м	10^{-3}	Ерстед
Магніторушійна сила	$\frac{q}{t}$	$\frac{m^{1/2}l^{1/2}}{t^2}$	Ампер	$\frac{4\pi}{10}$	Гільберт
Маса	m	m	кілограм (кг)	10^3	грам (г)
Імпульс	$\frac{ml}{t}$	$\frac{ml}{t}$	кг · м/с	10 ⁵	г · см/сек
Густина імпульсу	$\frac{m}{l^2t}$	$\frac{m}{l^2t}$	кг/(м ² · c)	10 ⁻¹	г/(см ² · сек)
Магнітна проникність	$\frac{ml}{q^2}$	1	Генрі/м	$\frac{1}{4\pi} \times 10^7$	
Діелектрична проникність	$\frac{t^2q^2}{ml^3}$	1	Фарад/м	$36\pi \times 10^9$	_
Поляризація	$\frac{q}{l^2}$	$\frac{m^{1/2}}{l^{1/2}t}$	Кулон/м ²	3×10 ⁵	статкулон/см ²
Потенціал	$\frac{ml^2}{t^2q}$	$\frac{m^{1/2}l^{1/2}}{t}$	Вольт	$\frac{1}{3} \times 10^{-2}$	статвольт
Потужність	$\frac{ml^2}{t^3}$	$\frac{ml^2}{t^3}$	Ват	10 ⁷	ерг/сек

Фізична величина	Розл	мірність	Одиниці СІ	Пере- відний	Гаусові одиниці
	CI	Гаусова		множ- ник	·
Густина енергії	$\frac{m}{lt^3}$	$\frac{m}{lt^3}$	Ват/м ³	10	ерг/(см ³ ·сек)
Тиск	$\frac{m}{lt^2}$	$\frac{m}{lt^2}$	Паскаль	10	дин/см ²
Магнітний опір	$\frac{u}{q^2}$ ml^2	$\frac{1}{l}$	Ампер/ Вебер	$4\pi \times 10^{-9}$	cm ⁻¹
Питомий опір	$\frac{ml^3}{tq^2}$	t	Ом·м	$\frac{1}{9} \times 10^{-9}$	сек
Питома теплопровідність	$\frac{ml}{t^3}$	$\frac{ml}{t^3}$	Ват/(м· град(К))	105	ерг/(см·сек· град(К))
Час	t	t	секунда (c)	1	секунда (сек)
Векторний потенціал	$\frac{ml}{tq}$	$\frac{m^{1/2}l^{1/2}}{t}$	Вебер/м	10 ⁶	Гаус-см
Швидкість	$\frac{l}{t}$	$\frac{l}{t}$	M/C	10 ²	см/сек
В'язкість	$\frac{m}{lt}$	$\frac{m}{lt}$	кг/(м·с)	10	пуаз
Завихреність (ротор)	$\frac{1}{t}$	$\frac{1}{t}$	c-1	1	сек-1
Робота	$\frac{ml^2}{t^2}$	$\frac{ml^2}{t^2}$	Джоуль	107	ерг

МІЖНАРОДНА СИСТЕМА (СІ) ПОЗНАЧЕНЬ

Фізична величина	Назва одиниці	Позна- чення оди- ниці	Фізична величина	Назва одиниці	Поз- наче ння оди- ниці
* довжина	метр	M	Електричний потенціал	вольт	В
* маса	кілограм	КГ	Електричний опір	ОМ	Ом
* час	секунда	С	Електрична провідність	сіменс	См
* струм	ампер	A	Електрична ємність	фарад	Φ
* темпера- тура	кельвін	K	Магнітний потік	вебер	Вб
* кількість речовини	моль	МОЛЬ	Магнітна індукція	генрі	Гн
* сила світла	кандела	кд			
† плоский кут	радіан	рад	напруженість магнітного	тесла	T
† тілесний кут	стерадіан	ср	поля		
частота	герц	Гц	Світловий потік	люмен	ЛМ
енергія	джоуль	Дж	освітленість	люкс	ЛК
сила	ньютон	Н	Активність	бекерель	Бк
тиск	паскаль	Па	(радіоактивно го джерела.)		
потужність	ват	Вт	Поглинена	грей	Гр
ел. заряд	кулон	Кл	доза (іонізуюча радіація)		

^{*} основні одиниці СІ, † допоміжні одиниці

МЕТРИЧНІ ПРЕФІКСИ

Множник	Префікс	Символ	Множник	Префікс	Символ
10^{-1}	деци	Д	10	дека	да
10^{-2}	санти	c	10^{2}	гекто	Γ
10^{-3}	мілі	M	10^{3}	кіло	К
10^{-6}	мікро	МК	10^{6}	мега	M
10^{-9}	нано	Н	10°	гіга	Γ
10^{-12}	піко	П	10^{12}	тера	T
10^{-15}	фемто	ф	10 ¹⁵	пета	П
10^{-18}	атто	a	10 ¹⁸	екса	Е

ФІЗИЧНІ КОНСТАНТИ (СІ)

Фізична величина	Позначення	Значення	Одиниця
Стала Больцмана	k	1.3807×10^{-23}	Дж·К ⁻¹
Елементарний заряд	e	1.6022×10 ⁻¹⁹	Кл
Маса електрона	m_e	9.1094×10^{-31}	КГ
Маса протона	m_p	1.6726×10 ⁻²⁷	КГ
Гравітаційна стала	G	6.6726×10^{-11}	м ³ ·с ⁻² ·кг ⁻¹
Стала Планка	h	6.6261×10^{-34}	Дж∙с
	$\hbar = h/2\pi$	1.0546 x 10 ⁻³⁴	Дж∙с
Швидкість світла у	c	2.9979×10^{8}	м·с-1
вакуумі			
Діелектрична	\mathcal{E}_0	8.8542×10^{-12}	Ф·м-1
проникність вакууму			
Магнітна проникність	μ_0	$4\pi \times 10^{-7}$	Гн·м ⁻¹
вакууму			
Відношення мас	m_p / m_e	1.8362×10^3	
протона/електрона			
Відношення заряд/маса	e/m _e	1.7588×10^{11}	Кл·кг ⁻¹
електрона			
Стала Рідберга	$R_{\infty} = me^4 / 8\varepsilon_0^2 ch^3$	1.0974×10^7	M ⁻¹
Радіус Бора	$a_0 = \varepsilon_0 h^2 / \pi m e^2$	5.2918×10 ⁻¹¹	M

Фізична величина	Позначення	Значення	Одиниця
Атомний переріз	πa_0^2	8.7974×10^{-21}	\mathbf{M}^2
взаємодії			
Класичний радіус	$r_e = e^2/4\pi\varepsilon_0 m c^2$	2.8179×10^{-15}	M
електрона			
Томпсонівський	$(8\pi/3)r_e^2$	6.6525×10^{-29}	M^2
переріз взаємодії	, ,		
Комптонівська	$h/m_e c$	2.4263×10^{-12}	M
довжина хвилі	$\hbar/m_{_{e}}c$	3.8616×10^{-13}	M
електрона			
Стала тонкої структури	$\alpha = e^2 / 2\varepsilon_0 h c$	7.2974×10^{-3}	
	$lpha^{-1}$	137.04	
1-а радіаційна стала	$c_1 = 2\pi h c^2$	3.7418×10^{-16}	Вт·м²
2-а радіаційна стала	$c_2 = hc/k$	1.4388×10^{-2}	м·К
Стала Стефана-	σ	5.6705×10^{-8}	Вт·м-2·К-4
Больцмана		0.07001120	
Довжина хвилі,	$\lambda_0 = hc/e$	1.2398×10^{-6}	M
пов'язана з 1 еВ	,		
Частота, пов'язана	$v_0 = e/h$	2.4180×10^{14}	Гц
з 1 eB			
Хвильове число,	$k_0 = e/hc$	8.0655×10^{5}	M ⁻¹
пов'язане з 1 еВ	· ·		
Енергія, пов'язана	hv_0	1.6022×10^{-19}	Дж
з 1 eB			
Енергія, пов'язана з 1	$me^3/8\varepsilon_0^2h^2$	13.606	eB
Рідбергом	, ,		
Енергія пов'язана з 1	k/e	8.6174×10^{-5}	eB
Кельвіном	e/k	4	K
Температура пов'язана	e/K	1.1604×10^4	K
3 1 eB	N_A		моль ⁻¹
Число Авогадро		6.0221×10^{23}	
Стала Фарадея	$F = N_A e$	9.6485×10^4	Кл·моль-1
Газова стала	$R = N_A k$	8.3145	Дж·К ⁻¹ ·
	А		моль ⁻¹
Число Лошмідта	n_0	2.6868×10^{25}	M ⁻³
Атомна одиниця маси	m_u	1.6605×10^{-27}	КΓ

Фізична величина	Позначення	Значення	Одиниця
Стандартна	T_o	273.15	K
температура			
Атмосферний тиск	$p_0 = n_0 k T_0$	1.0133×10 ⁵	Па
Тиск 1мм Hg (1 torr)		1.3332×10^2	Па
Молярний об'єм при	$V_0 = RT_0/p_0$	2.2414×10^{-2}	\mathbf{M}^3
н.у.	0 0710		
Молярна маса повітря	M_{air}	2.8971×10 ⁻²	КГ
Калорія (cal)		4.1868	Дж
Прискорення вільного	g	9.8067	M⋅c-2
падіння			

ФІЗИЧНІ КОНСТАНТИ (СГС)

Фізична величина	Позначення	Значення	Одиниця
Стала Больцмана	k	1.3807×10^{-16}	ерг/град (К)
Елементарний	e	4.8032×10^{-10}	статкулон
заряд			
Маса електрона	m_e	9.1094×10^{-28}	Γ
Маса протона	m_p	1.6726×10^{-24}	Γ
Гравітаційна стала	G	6.6726×10^{-8}	дин \cdot см $^2/\Gamma^2$
Стала Планка	h	6.6261×10 ⁻²⁷	ерг-сек
	$\hbar = h/2\pi$	1.0546×10^{-27}	ерг-сек
Швидкість світла у	c	2.9979×10^{10}	см/сек
вакуумі			
Відношення мас	m_p / m_e	1.8362×10^3	
протона/електрона			
Відношення	e/m_e	5.2728×10^{17}	статкулон/г
заряд/маса			
електрона			
Стала Рідберга	$R_{\infty} = \frac{2\pi^2 m e^4}{ch^3}$	1.0974×10 ⁵	CM ⁻¹
Радіус Бора	$a_0 = \hbar^2 / me^2$	5.2918×10 ⁻⁹	СМ
Атомний переріз	πa_0^2	8.7974×10^{-17}	cm ²

Фізична величина	Позначення	Значення	Одиниця
Класичний радіус	$r_e = e^2/mc^2$	2.8179×10^{-13}	СМ
електрона	ε /		
Томпсонівський переріз	$(8\pi/3)r_e^2$	6.6525×10^{-25}	cm ²
Комптонівська	1 /	2 42 62 4 0 - 10	on t
	$h/m_e^{} c$	2.4263×10^{-10}	CM
довжина хвилі електрона	$\hbar/m_e c$	3.8616×10^{-11}	СМ
Стала тонкої	$\alpha = e^2/\hbar c$	7.2974×10^{-3}	
структури	α^{-1}	137.04	
1-а радіаційна стала	$c_1 = 2\pi h c^2$	3.7418×10^{-5}	ерг·см²/сек
2-а радіаційна стала	$c_2 = hc/k$	1.4388	см · град(К)
Стала Стефана- Больцмана	σ	5.6705×10^{-5}	$epr/(cm^2 \cdot cek \cdot град^4)$
· · · · · · · · · · · · · · · · · · ·	2	1.000 10.1	211
Довжина хвилі, пов'язана з 1 eB	λ_{0}	1.2398×10^{-4}	СМ
Частота, пов'язана	v_0	2.4180×10^{14}	Гц
з 1 eB	. 0	2.1100 × 10	
Хвильове число,	k_0	8.0655×10^3	cm ⁻¹
пов'язане з 1 еВ	.0	0.0055710	
Енергія, пов'язана		1.6022×10^{-12}	ерг
з 1 eB			
Енергія, пов'язана з		13.606	eB
1 Рідбергом			
Енергія пов'язана з		8.6174×10^{-5}	eB
1 Кельвіном			
Температура		1.1604×10^4	град(К)
пов'язана з 1 еВ			
Число Авогадро	N_A	6.0221×10^{23}	моль ⁻¹
Стала Фарадея	$F = N_A e$	2.8925×10 ¹⁴	статкулон/моль
Газова стала	$R = N_A k$	8.3145×10^7	ерг/(град моль)
Число Лошмідта	n_0	2.6868×10 ¹⁹	CM ⁻³
Атомна одиниця	m_u	1.6605×10^{-24}	Γ
маси			

Фізична величина	Позначення	Значення	Одиниця
Стандартна	T_o	273.15	град(К)
температура			
Атмосферний тиск	$p_0 = n_0 k T_0$	1.0133×10^6	дин/см ²
Тиск 1мм Нд (1		1.3332×10^3	дин/см ²
torr)			
Молярний об'єм	$V_0 = RT_0/p_0$	2.2414×10^4	cm ³
при н.у.	0 0/10		
Молярна маса	M_{air}	28.971	Γ
повітря			
Калорія (cal)		4.1868×10 ⁷	ерг
Прискорення	g	980.67	см/сек2
вільного падіння			

ФОРМУЛИ ПЕРЕТВОРЕННЯ

використано позначення $\alpha = 10^2 \text{ см/м}$. В даному пункті $eta = 10^7 \,\, \mathrm{epr}/\mathrm{Дж} \;, \qquad \varepsilon_0 = 8.8542 \times 10^{-12} \,\, \Phi/\mathrm{M} \;, \qquad \mu_0 = 4\pi \times 10^{-12} \,\,\, \Gamma_\mathrm{H/M} \,,$ $c = (\varepsilon_0 \mu_0)^{-1/2} = 2.9979 \times 10^8 \text{ m/c}$ i $\hbar = 1.0546 \times 10^{-34} \text{ Дж/сек}$. одержати коректну по розмірності формулу в системі одиниць СІ з виразу, записаного в гаусових одиницях, потрібно замінити кожну величину згідно з $\overline{Q}=\overline{k}Q$, де \overline{k} — коефіцієнт у другому стовпчику таблиці, що відповідає Q. Так, для прикладу, формула $\overline{a}_0=\overline{\hbar}^2/\overline{m}\overline{e}^2$ для борівського радіуса стає $\alpha a_0 = (\hbar \beta)^2 / \left[\left(m \beta / \alpha^2 \right) \left(e^2 \alpha \beta / 4 \pi \varepsilon_0 \right) \right]$ abo $a_0 = \varepsilon_0 h^2 / \pi m e^2$. перейти від СІ до природних величин, у яких $\hbar = c = 1$, потрібно використати формулу $Q = \hat{k}^{-1}\hat{Q}$, де \hat{k} – коефіцієнт, що відповідає Q у третьому чином, $\hat{a}_0 = 4\pi \varepsilon_0 \hbar^2 / \Big[\Big(\hat{m}\hbar/c \Big) \Big(\hat{e}^2 \varepsilon_0 \hbar c \Big) \Big] = 4\pi / \hat{m}\hat{e}^2$. (У перетворенні від одиниць CI не замінюйте ε_0 , μ_0 або c).

Фізична величина	Гаусові одиниці до CI	Природні одиниці до СІ
Ємність	$lpha/4\piarepsilon_0$	ε_0^{-1}
Заряд	$(\alpha \beta / 4\pi \varepsilon_0)^{1/2}$	$(arepsilon_0\hbar c)^{-1/2}$
Густина заряду	$(\beta/4\pi\alpha^5\varepsilon_0)^{1/2}$	$(arepsilon_0\hbar c)^{-1/2}$
Струм	$(\alpha \beta / 4\pi \varepsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Густина струму	$(\beta/4\pi\alpha^3\varepsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Електричне поле	$(4\pi\beta\varepsilon_0/\alpha^3)^{1/2}$	$(\varepsilon_0/\hbar c)^{1/2}$
Електричний потенціал	$(4\pi\beta\varepsilon_0/\alpha)^{1/2}$	$(\varepsilon_0/\hbar c)^{1/2}$
Електропровідність	$(4\piarepsilon_0)^{-1}$ eta	${oldsymbol{arepsilon}_0}^{-1}$
Енергія	β	$(\hbar c)^{-1}$
Густина енергії	β/α^3	$(\hbar c)^{-1}$
Сила	eta/lpha	$(\hbar c)^{-1}$
Частота	1	c^{-1}
Індуктивність	$4\piarepsilon_0/lpha$	μ_0^{-1}
Довжина	α	1
Магнітна індукція	$(4\pi\beta/\alpha^3\mu_0)^{1/2}$	$(\mu_0 \hbar c)^{-1/2}$
Напруженість магн. поля	$(4\pi\mu_0\beta/\alpha^3)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Maca	β/α^2	c/\hbar
Імпульс	eta/lpha eta	\hbar^{-1}
Потужність	β	$(\hbar c^2)^{-1}$
Тиск	β/α^3	$(\hbar c)^{-1}$
Опір	$4\piarepsilon_0/lpha$	$(arepsilon_0/\mu_0)^{1/2}$
Час	1	c
Швидкість	α	c c^{-1}

РІВНЯННЯ МАКСВЕЛА

Назва або опис	CI	Гаусові
Закон Фарадея	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
Закон Ампера	$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$	$\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t} + \frac{4\pi}{c} \vec{J}$ $\nabla \cdot \vec{D} = 4\pi \rho$
Рівняння Пуассона	$\nabla \cdot \vec{D} = \rho$	$\nabla \cdot \vec{D} = 4\pi \rho$
Відсутність магнітних монополів	$\nabla \cdot \vec{B} = 0$	$\nabla \cdot \vec{B} = 0$
Сила Лоренца на заряд <i>q</i>	$q(\vec{E} + \vec{\upsilon} \times \vec{B})$	$q\left(\vec{E} + \frac{1}{c}\vec{\upsilon} \times \vec{B}\right)$
Матеріальні	$\vec{D} = \varepsilon \vec{E}$	$\vec{D} = \varepsilon \vec{E}$
(невід'ємні) співвідношення	$\vec{B} = \mu \vec{H}$	$\vec{B} = \mu \vec{H}$

плазмі $\mu \approx \mu_0 = 4\pi \times 10^{-7} \ \Gamma \text{H} \times \text{M}^{-1}$ (Гаусові одиниці: $\mu \approx 1$). Діелектрична задовольня€ співвідношенню $arepsilon pprox arepsilon_0 = 8.8542 imes 10^{-12} \ \Phi/{
m M}$ (в Гаусових одиницях: arepsilon pprox 1) за умови, що весь заряд розглядається як вільний. Використовуючи дрейфову $\vec{\upsilon}_{\perp} = \vec{E} \times \vec{B} / B^2$, можна апроксимацію розрахувати густину поляризаційного знайти діелектричну $K \equiv \varepsilon/\varepsilon_0 = 1 + 36\pi \times 10^9 \, \rho/B^2$ (CI), $K \equiv \varepsilon/\varepsilon_0 = 1 + 4\pi\rho c^2/B^2$ (CFC), ge р – масова густина.

Електромагнітна енергія в об'ємі V задається співвідношенням:

$$\hat{W} = \frac{1}{2} \int_{V} dV \left(\vec{H} \cdot \vec{B} + \vec{E} \cdot \vec{D} \right) \text{ (CI)}, \ \hat{W} = \frac{1}{8\pi} \int_{V} dV \left(\vec{H} \cdot \vec{B} + \vec{E} \cdot \vec{D} \right) \text{ (C\GammaC)}.$$

Теорема Пойнтінга:

$$\frac{\partial \hat{W}}{\partial t} + \int_{S} \vec{N} \cdot d\vec{S} = -\int_{V} dV \vec{J} \cdot \vec{E} ,$$

де S — замкнута поверхня, що обмежує об'єм V, та вектор Пойнтінга (енергетичний потік через S) задається формулою $\vec{N} = \vec{E} \times \vec{H}$ (CI) або $\vec{N} = c\vec{E} \times \vec{H}/4\pi$ (Гаусова).

ЕЛЕКТРИКА ТА МАГНЕТИЗМ

В даному підпункті, ε — дієлектрична проникність, μ — проникність провідника, μ' — проникність навколишнього середовища, σ — питома провідність, $f=\omega/2\pi$ — частота випромінювання. Всі одиниці подано в СІ, якщо інше не зазначено.

Діелектрична постійна вакууму	$\varepsilon_0 = 8.8542 \times 10^{-12} \Phi/M$
Магнітна проникність вакууму	$\mu_0 = 4\pi \times 10^{-7} \Gamma\text{H/M} =$
	$=1.2566\times10^{-6}\ \Gamma_{H/M}$
Опір вакууму	$R_0 = (\mu_0/\varepsilon_0)^{1/2} = 376.73 \text{ Om}$
Eмність паралельних пластин площею A , розташованих на відстані d	$C = \varepsilon A/d$
Смність концентричного циліндра довжиною <i>l</i> , радіусом <i>a</i> , <i>b</i>	$C = 2\pi\varepsilon l / \ln(b/a)$
Ємність концентричної сфери радіусом <i>а, b</i>	$C = 4\pi\varepsilon ab/(b-a)$
Коефіцієнт самоіндукції провідника довжиною <i>l</i> , по якому тече однорідний струм	$L = \mu l$
Взаємоїндуктивність паралельних провідників довжиною l , радіуса a , розташованих на відстані d	$L = (\mu'l/4\pi) \left[1 + 4\ln(d/a) \right]$
Індуктивність круглого витка радіусом <i>b</i> , зробленого із провідника радіуса <i>a</i> , по якому тече однорідний струм	$L = b \left\{ \mu' \left[\ln \left(8b/a \right) - 2 \right] + \mu/4 \right\}$
Час релаксації в середовищі із втратами	$ au = \varepsilon/\sigma$
Глибина поверхневого шару в середовищі із втратами	$\delta = (2/\omega\mu\sigma)^{1/2} = (\pi f \mu\sigma)^{-1/2}$
Хвильовий опір у середовищі із втратами	$Z = \left[\mu / (\varepsilon + i\sigma/\omega) \right]^{1/2}$
Поле на відстані r від прямого провідника, по якому тече струм I (амперів)	$B_{\theta} = \mu I/2\pi r$ T, $B_{\theta} = 0.2I/r$ Γc
Поле на відстані z уздовж осі від круглого витка радіуса a , по якому тече струм I	$B_z = \mu a^2 I / \left[2(a^2 + z^2)^{3/2} \right]$

ЕЛЕКТРОМАГНІТНА ЧАСТОТА / ДІАПАЗОН ДОВЖИН ХВИЛЬ

П*	Частотний діапазон		Діапазон довжин хвиль		
Позначення*	Нижній	Верхній	Нижній	Верхній	
ULF**		30 Гц	10 Мм		
VF**	30 Гц	300 Гц	1 Мм	10 Мм	
ELF	300 Гц	3 кГц	100 км	1 Мм	
VLF	3 кГц	30 кГц	10 км	100 км	
LF	30 кГц	300 кГц	1 км	10 км	
MF	300 кГц	3 МГц	100 м	1 км	
HF	3 МГц	30 МГц	10 м	100 м	
VHF	30 МГц	300 МГц	1 м	10 м	
UHF	300 МГц	3 ГГц	10 см	1 м	
SHF	3 ГГц	30 ГГц	1 см	10 см	
S	2.6	3.95	7.6	11.5	
G	3.95	5.85	5.1	7.6	
J	5.3	8.2	3.7	5.7	
Н	7.05	10.0	3.0	4.25	
X	8.2	12.4	2.4	3.7	
M	10.0	15.0	2.0	3.0	
P	12.4	18.0	1.67	2.4	
K	18.0	26.5	1.1	1.67	
R	26.5	40.0	0.75	1.1	
EHF	30 ГГц	300 ГГц	1 мм	1 см	
Субміліметровий діапазон	300 ГГц	3 ТГц	100 мкм	1 мм	
Інфрачервоний діапазон	3 ТГц	430 ТГц	700 нм	100 мкм	

Позначення	Частотний діапазон		Діапазон довжин хвиль		
позначення	Нижній	Верхній	Нижній	Верхній	
Видимий діапазон	430 ТГц	750 ТГц	400 нм	700 нм	
Ультрафіоле- товий діапазон	750 ТГц	30 ПГц	10 нм	400 нм	
Рентген	30 ПГц	3 ЕГц	100 пм	10 нм	
Гамма- випромінювання	3 ЕГц			100 пм	

^{*}ULF — ультранизькі частоти (УНЧ), VF — голосові частоти (ГЧ), ELF — крайні низькі частоти (КНЧ), VLF — дуже низькі частоти (ДНЧ), LF — низькі частоти (НЧ), MF — середні частоти (СЧ), HF — високі частоти (ВЧ), VHF — дуже високі частоти (ДВЧ), UHF — ультрависокі частоти (УВЧ), SHF — надвисокі частоти (НВЧ), EHF — крайні високі частоти (КВЧ).

ФУНДАМЕНТАЛЬНІ ПЛАЗМОВІ ПАРАМЕТРИ

Всі величини подано в гаусових (СГС) одиницях, крім температури (T, T_e , T_i), вираженої в еВ, маси іона (m_i), вираженої в одиницях маси протона, $\mu = m_i / m_p$; Z — значення заряду; k — стала Больцмана; K — хвильове число: γ — адіабатичний показник; $\ln \Lambda$ — Кулонівський логарифм.

Частоти

Електронна гірочастота	$f_{ce} = \omega_{ce}/2\pi = 2.80 \times 10^6 B$, Гц $\omega_{ce} = eB/m_e c = 1.76 \times 10^7 \cdot B$, рад/сек
Іонна гірочастота	$f_{ci} = \omega_{ci}/2\pi = 1.52 \times 10^3 Z \mu^{-1} \cdot B$, Гц $\omega_{ci} = ZeB/m_i c = 9.58 \times 10^3 Z \mu^{-1} \times B$, рад/сек
Електронна плазмова частота	$f_{pe} = \omega_{pe}/2\pi = 8.98 \times 10^3 n_e^{1/2}$, Гц $\omega_{pe} = \left(4\pi n_e e^2/m_e\right)^{1/2} = 5.64 \times 10^4 n_e^{1/2}$, рад/сек

^{**}Границя між УНЧ і ГЧ задається по-різному.

Іонна плазмова частота	$f_{pi} = \omega_{pi} / 2\pi = 2.10 \times 10^2 Z \mu^{-1/2} n_i^{1/2}$, Гц $\omega_{pi} = \left(4\pi n_i Z^2 e^2 / m_i\right)^{1/2} = 1.32 \times 10^3 Z \mu^{-1/2} n_i^{1/2}$, рад/сек
Частота захоплених електронів	$v_{Te} = (eKE/m_e)^{1/2} = 7.26 \times 10^8 K^{1/2} E^{1/2}, \text{ cek}^{-1}$
Частота захоплених іонів	$v_{Ti} = (ZeKE/m_i)^{1/2} = 1.69 \times 10^7 Z^{1/2} K^{1/2} E^{1/2} \mu^{-1/2}, \text{ cek}^{-1}$
Частота зіткнень електронів	$v_e = 2.91 \times 10^{-6} n_e \ln \Lambda T_e^{-3/2}, \text{ cek}^{-1}$
Частота зіткнень іонів	$v_i = 4.80 \times 10^{-8} Z^4 \mu^{-1/2} n_i \ln \Lambda T_i^{-3/2}, \text{ cek}^{-1}$

Довжини

Електронна	$\hbar = \hbar/(m_e k T_e)^{1/2} = 2.76 \times 10^{-8} T_e^{-1/2}$, cm
довжина	$(m_e m_e) = 2.70 \times 10^{-1} e^{-1}$, cm
де Бройля	
Класична	$e^2/kT = 1.44 \times 10^{-7} T^{-1}$, cm
відстань	c / WI III / NIO I , OM
мінімального	
зближення	
Гірорадіус	$r_e = v_{T_e}/\omega_{ce} = 2.38T_e^{-1/2}B^{-1}$, cm
електрона	$r_e = O_{Te}/\omega_{ce} = 2.50T_e$ D , CM
Гірорадіус іона	$r_i = \upsilon_{Ti} / \omega_{ci} = 1.02 \mu^{1/2} Z^{-1} T_i^{-1/2} B^{-1}$, см
Плазмова	$c/\omega_{ne} = 5.31 \times 10^5 n_e^{-1/2}$, cm
глибина	pe eterrione, sur
поверхневого	
шару	
Дебаївська	$\lambda_D = (kT/4\pi ne^2)^{1/2} = 7.43 \times 10^2 T^{1/2} n^{-1/2}, \text{ cm}$
довжина	$\lambda_D = (\kappa I / 4\pi ne) = 7.43 \times 10 I \cdot h \cdot , \text{ cm}$

Швидкості

Електронна	$v_{T_o} = (kT_o/m_o)^{1/2} = 4.19 \times 10^7 T_o^{1/2}, \text{ cm/cek}$
теплова	1
швидкість	
Іонна теплова	$\upsilon_{T_i} = (kT_i/m_i)^{1/2} = 9.79 \times 10^5 \mu^{-1/2} T_i^{1/2}, \text{cm/cek}$
швидкість	$\sigma_{Ti} \left(m_i \right) = \sigma_{Ti} \left(m_i \right)$
Іонна швидкість	$C_s = (\gamma Z k T_e / m_i)^{1/2} = 9.79 \times 10^5 (\gamma Z T_e / \mu)^{1/2}, \text{ cm/cek}$
звуку	$C_s = (\gamma E M_e/M_i)^{-1} = 3.73 \times 10^{-1} (\gamma E I_e/\mu)^{-1}$, emptor
Альфвенівська	$\upsilon_A = B/(4\pi n_i m_i)^{1/2} = 2.18 \times 10^{11} \mu^{-1/2} n_i^{-1/2} B$, cm/cek
швидкість	$O_A - D_I \left(4\pi n_i m_i \right) = 2.10 \times 10^{\circ} \mu n_i D, \text{ cm}_I \text{ cc}$

Безрозмірні

(Відношення мас електрона/протона) ^{1/2}	$(m_e/m_p)^{1/2} = 2.33 \times 10^{-2} = 1/42.9$
Число частинок у сфері Дебая	$(4\pi/3)n\lambda_D^3 = 1.72 \times 10^9 T^{3/2} n^{-1/2}$
Альфвенівська швидкість/ швидкість світла	$v_A/c = 7.28 \mu^{-1/2} n_i^{-1/2} B$
Відношення електронної плазмової	$\omega_{pe}/\omega_{ce} = 3.21 \times 10^{-3} n_e^{-1/2} B^{-1}$
частоти/гірочастоти	
Відношення іонної плазмової частоти/гірочастоти	$\omega_{pi}/\omega_{ci} = 0.137 \mu^{1/2} n_i^{1/2} B^{-1}$
Теплове/магнітне енергетичне відношення	$\beta = 8\pi nkT/B^2 = 4.03 \times 10^{-11} nTB^{-2}$
Магнітне/іонне відношення енергії спокою	$B^2/8\pi n_i m_i c^2 = 26.5 \mu^{-1} n_i^{-1} B^2$

ІОНОСФЕРНІ ПАРАМЕТРИ

Наступна таблиця дає середні нічні значення. Де приведено два значення, перше стосується нижньої області шару, а друге — верхньої границі.

Величина	Е область	<i>F</i> область	
Висота (км)	90-160	160 – 500	
Густина (м-3)	$1.5 \times 10^{10} - 5 \times 10^{10}$	$5 \times 10^{10} - 2 \times 10^{11}$	
Проінтегрована по висоті густина (м ⁻²)	9×10^{14}	4.5×10^{15}	
Частота зіткнень іонів з нейтральними частинками (с -1)	$2 \times 10^3 - 10^2$	0.5 - 0.05	
Відношення гірочастоти іонів до частоти зіткнень	0.09 - 2.0	$4.6 \times 10^2 - 5.0 \times 10^3$	
Частота зіткнень електронів з нейтральними частинками	$1.5 \times 10^4 - 9.0 \times 10^2$	80 – 10	
Відношення гірочастоти електронів до частоти зіткнень	$4.1 \times 10^2 - 6.9 \times 10^3$	$7.8 \times 10^4 - 6.2 \times 10^5$	
Середня молекулярна маса	28 – 26	22 – 16	
Іонна гірочастота (с -1)	180 – 190	230 – 300	
Нейтральний дифузійний коефіцієнт (м²/c)	$30-5\times10^3$	10 ⁵	

Магнітне поле Землі в нижніх шарах іоносфери в екваторіальних широтах — приблизно $B_0=0.35\times 10^{-4}$ Тл. Радіус Землі — $R_E=6371\,\mathrm{km}$.

ПРИБЛИЗНІ ВЕЛИЧИНИ В ДЕЯКИХ ТИПОВИХ ПЛАЗМАХ

Тип	<i>п,</i> см ⁻³	<i>T</i> ,	$\omega_{pe},~{ m c}^{{\scriptscriptstyle -1}}$	λ_D , cm	$n\lambda_D^{3}$	v_{ei}, c^{-1}
плазми	CM ³	eВ	1			
Міжзоряний	1	1	6×10^{4}	7×10^{2}	4×10^8	7×10^{-5}
газ	1	1	0 × 10	/ × 10	4×10	/ ^ 10
Газоподібна	10^{3}	1	2×10^{6}	20	8×10^{6}	6×10^{-2}
туманність	10	1	2×10	20	8×10	0×10
Сонячна	1.09	1.02	2 109	2 10-1	0 106	(0)
корона	10^{9}	10^{2}	2×10^{9}	2×10^{-1}	8×10^6	60
Дифузійна	12		10	2	-	
гаряча плазма	10^{12}	10^{2}	6×10^{10}	7×10^{-3}	4×10^{5}	40
Сонячна						
атмосфера,	10^{14}	1	6×10^{11}	7×10^{-5}	40	2×10^{9}
газовий			07.10	,		210
розряд						
Тепла плазма	10^{14}	10	6×10^{11}	2×10^{-4}	8×10^2	10^{7}
Гаряча	10^{14}	10^{2}	(10]]	7 10-4	4 104	4 106
плазма	10	10	6×10^{11}	7×10^{-4}	4×10^{4}	4×10^6
Термоядерна	4 0 15	101	12	2	6	4
плазма	10^{15}	10^{4}	2×10^{12}	2×10^{-3}	8×10^{6}	5×10^4
	1016	1.02	6 1012	7 10-5	4 103	2 108
Тета-пінч	10^{16}	10^{2}	6×10^{12}	7×10^{-5}	4×10^{3}	3×10^8
Щільна	10^{18}	10^{2}	C. 10 ¹³	710-6	4102	21010
гаряча плазма	10	10	6×10^{13}	7×10^{-6}	4×10^2	2×10^{10}
Лазерна	1.020	102	5 4 5 1 1	- 10-7	4.0	• • • • • • •
плазма	10^{20}	10^{2}	6×10^{14}	7×10^{-7}	40	2×10^{12}
mana						

ПАРАМЕТРИ СОНЯЧНОЇ ФІЗИКИ

Параметр	Символ	Значення	Одиниця
Повна маса	M_{\odot}	1.99×10^{33}	Γ
Радіус	R_{\odot}	6.96×10^{10}	СМ
Прискорення сили тяжіння на поверхні	g_{\odot}	2.74×10 ⁴	см·с-2
Швидкість витоку	$ u_{_{\infty}}$	6.18×10 ⁷	см·с-1
Спрямований вгору потік маси в спікулах	ı	1.6×10 ⁻⁹	г·см ² ·с-1
Вертикально проінтегрована атмосферна густина	ı	4.28	г·см-2
Напруженість магнітного поля сонячної плями	$B_{\rm max}$	2500 – 3500	Гс
Ефективна температура поверхні	T_0	5770	К
Потужність випромінювання	L_{\odot}	3.83×10^{33}	ерг·с-1
Густина променевого потоку	F	6.28×10 ¹⁰	ерг·см-2·с-1
Оптична глибина на довжині хвилі 500 нм, що виміряна від фотосфери	$ au_{5}$	0.99	_
Астрономічна одиниця (радіус земної орбіти)	AU	1.50×10 ¹³	СМ
Сонячна стала на орбіті Землі	f	1.36×10^6	ерг·см ⁻² ·с ⁻¹

хромосфера та корона

Параметр (одиниці)	Спокійне Сонце	Корональні діри	Активна область
Хромосферні променеві втрати (ерг·см-2·с-1)			
Низька хромосфера	2×10 ⁶	2×10 ⁶	≥10 ⁷
Середня хромосфера	2×10 ⁶	2×10 ⁶	10 ⁷
Верхня хромосфера	3×10 ⁵	3×10 ⁵	2×10 ⁶
Всього	4×10 ⁶	4×10 ⁶	$\geq 2 \times 10^7$
Тиск перехідного шару (дин·см-2)	0.2	0.07	2
Температура корони (K) на відстані $1.1~R_{\odot}$	1.1-1.6×10 ⁶	10^{6}	2,5×10 ⁶
Втрати енергії корони (ерг·см-2·с-1)			
Провідність	2×10 ⁵	6×10 ⁴	$10^5 - 10^7$
Випромінювання	10 ⁵	10 ⁴	5×10 ⁶
Сонячний вітер	≤5×10 ⁴	7×10 ⁵	< 10 ⁵
Всього	3×10 ⁵	8×10 ⁵	10 ⁷
Втрата маси за рахунок сонячного вітру (г·см-²-с-1)	≤ 2×10 ⁻¹¹	2×10 ⁻¹⁰	< 4×10 ⁻¹¹