NAME:	SECTION:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

1. An object initially at rest begins to rotate with constant angular acceleration α . If the object rotates through an angle θ in time t, through what angle does it rotate in the time $\frac{1}{2}t$?

- a) $\frac{1}{2}\theta$.
- **b**) $\frac{1}{4}\theta$.
- c) θ .
- **d**) 2*θ*.
- e) 4θ .

2. A cylinder with moment of inertia 4 kgm^2 is initially rotating at 80 radians per second. A constant torque is applied to slow it down to 40 radians per second. If it takes 10 seconds to slow down, what is the magnitude of the applied torque?

- a) 80 Nm.
- **b)** 40 Nm.
- c) 32 Nm.
- **d)** 16 Nm.
- e) 8 Nm.

3. What is the change in rotational kinetic energy of the cylinder from question 2?

- **a)** 9600 J.
- **b)** -9600 J.
- **c)** 19200 J.
- **d)** -19200 J.
- **e**) 0 J.

- **4.** Two people sitting on a see-saw have masses m_1 and m_2 and distances r_1 and r_2 from the center. At what distance r_1 should person 1 sit so that the see-saw remains level (parallel to the ground)?
- a) $\frac{m_2}{m_1}r_2$
- **b**) $\frac{m_1}{m_2}r_2$.
- c) r_2 .
- d) $\frac{m_1}{m_1+m_2}r_2$.
- e) $\frac{m_2}{m_1+m_2}r_2$.

Bonus.

Let $\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$ and $\mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$. Calculate $\mathbf{A} \times \mathbf{B}$.