МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

отчёт ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Тестирование программного обеспечения» Вариант №4616

Выполнил: Студент группы Р3314 Минкова Алина Андреевна Преподаватель: Харитонова Анастасия Евгеньевна

Санкт-Петербург, 2025

Оглавление

Задание	3
UML-диаграмма классов разработанного приложения	4
Описание тестового покрытия	5
Графики, построенные csv-выгрузкам, полученные в процессе интеграции	
приложения	7
Вывод	8

Задание

Лабораторная работа #2

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

Введите вариант: $\begin{cases} \left(\left(\left(\left(\cot(x) \cdot \cos(x) \right) + \sin(x) \right) - \tan(x) \right) - \left(\cot(x) \cdot \sin(x) \right) \right) + \left(\cos(x)^3 \right) \right) & \text{if} \quad x \leq 0 \\ \left(\left(\left(\frac{\frac{\log_5(x) \cdot \log_{10}(x)}{\log_2(x)}}{\log_2(x)} \right) - \left(\left(\ln(x) \cdot \ln(x) \right) + \log_{10}(x) \right) \right) + \log_{10}(x) \right) & \text{if} \quad x > 0 \\ x <= 0 : \left(\left(\left(\left(\cot(x) \cdot \cos(x) \right) + \sin(x) \right) - \tan(x) \right) - \left(\cot(x) \cdot \sin(x) \right) + \left(\cos(x) \cdot 3 \right) \right) \\ x > 0 : \left(\left(\left(\left(\log_5(x) \cdot \log_{10}(x) \right) + \log_2(x) \right) / \log_2(x) \right) - \left(\left(\ln(x) \cdot \ln(x) \right) + \log_1(0(x) \right) \right) + \log_1(0(x)) \right) \end{cases}$

Правила выполнения работы:

- 1. Все составляющие систему функции (как тригонометрические, так и логарифмические) должны быть выражены через базовые (тригонометрическая зависит от варианта; логарифмическая натуральный логарифм).
- 2. Структура приложения, тестируемого в рамках лабораторной работы, должна выглядеть следующим образом (пример приведён для базовой тригонометрической функции sin(x)):

- 3. Обе "базовые" функции (в примере выше sin(x) и ln(x)) должны быть реализованы при помощи разложения в ряд с задаваемой погрешностью. Использовать тригонометрические / логарифмические преобразования для упрощения функций ЗАПРЕШЕНО.
- 4. Для КАЖДОГО модуля должны быть реализованы табличные заглушки. При этом, необходимо найти область допустимых значений функций, и, при необходимости, определить взаимозависимые точки в модулях.
- 5. Разработанное приложение должно позволять выводить значения, выдаваемое любым модулем системы, в csv файл вида «X, Результаты модуля (X)», позволяющее произвольно менять шаг наращивания X. Разделитель в файле csv можно использовать произвольный.

Порядок выполнения работы:

- 1. Разработать приложение, руководствуясь приведёнными выше правилами.
- 2. С помощью JUNIT4 разработать тестовое покрытие системы функций, проведя анализ эквивалентности и учитывая особенности системы функций. Для анализа особенностей системы функций и составляющих ее частей можно использовать сайт https://www.wolframalpha.com/.
- 3. Собрать приложение, состоящее из заглушек. Провести интеграцию приложения по 1 модулю, с обоснованием стратегии интеграции, проведением интеграционных тестов и контролем тестового покрытия системы функций.

UML-диаграмма классов разработанного приложения

Исходный код:

https://github.com/aulouu/tpo_lab2

Описание тестового покрытия

Тестовое покрытие для данной системы включает модульные и интеграционные тесты, проверяющие корректность работы математических функций и их взаимодействие.

Модульные тесты:

- 1. Тестирование функции Sin:
 - о testSinZero(): Проверяет вычисление синуса для 0 (ожидается 0.0)
 - о testSinPiDivTwo(): Проверяет вычисление синуса для $\pi/2$ (ожидается 1.0)
 - о testSinPi(): Проверяет вычисление синуса для π (ожидается 0.0)
 - о testSinInvalidEpsilon(): Проверяет обработку недопустимого значения эпсилон (отрицательное)
- 2. Тестирование функции Cos (с моком Sin):
 - \circ testCosUsingSin(): Проверяет вычисление косинуса через синус $(\cos(x) = \sin(\pi/2 x))$
- 3. Тестирование функции Tan (с моками Sin и Cos):
 - testCotUsingSinAndCos(): Проверяет вычисление тангенса как отношение sin/cos
- 4. Тестирование функции Cot (с моками Sin и Cos):
 - o testCotUsingSinAndCos(): Проверяет вычисление котангенса как отношение cos/sin
- 5. Тестирование функции Ln:
 - \circ testLnOne(): Проверяет ln(1) = 0
 - \circ testLnE(): Проверяет ln(e) = 1
 - о testLnLessThanOne(): Проверяет вычисление для значений < 1
 - о testLnGreaterThanOne(): Проверяет вычисление для значений > 1
 - о testLnZero(): Проверяет обработку нулевого аргумента
 - о testLnNegative(): Проверяет обработку отрицательного аргумента
 - o testLnInvalidEpsilon(): Проверяет обработку недопустимого эпсилон
- 6. Тестирование функции Log (с моком Ln):
 - o testLogUsingLn(): Проверяет вычисление логарифма через натуральный логарифм

Интеграционные тесты:

- 1. Тестирование FunctionSystem для $x \le 0$:
 - о Проверяет комбинацию тригонометрических функций

- о Использует моки для всех зависимостей
- о Проверяет корректность вычисления составного выражения
- 2. Тестирование FunctionSystem для x > 0:
 - о Проверяет комбинацию логарифмических функций
 - о Использует моки для всех зависимостей
 - о Проверяет корректность вычисления составного выражения

Тесты покрывают:

- Все основные математические функции (sin, cos, tan, cot, ln, log)
- Граничные случаи (нулевые и отрицательные значения)
- Обработку ошибок (недопустимые параметры)
- Взаимодействие между функциями в системе
- Разделение поведения для положительных и отрицательных х

Графики, построенные csv-выгрузкам, полученные в процессе интеграции приложения

Исходная функция:

Вывод

В ходе выполнения лабораторной работы было разработано приложение, реализующее систему математических функций (тригонометрических и логарифмических) через базовые разложения в ряд (sin(x) и ln(x)), с соблюдением требований: запрета использования упрощающих преобразований, создания табличных заглушек для каждого модуля, обработки областей допустимых значений и взаимозависимых точек, а также поддержки вывода результатов в CSV-файл с настраиваемым шагом. Тестовое покрытие на JUnit4, включающее модульные и интеграционные тесты с анализом эквивалентности, подтвердило корректность работы системы как отдельных компонентов, так и их взаимодействия, что было верифицировано поэтапной интеграцией модулей с контролем покрытия. Результаты демонстрируют соответствие реализации заданным правилам и надежность системы при обработке различных входных данных.