

Measurement of the K⁰_s meson lifetime with ALICE

Analysis motivation

- Hypernucleus: nucleus that contains at least one hyperon in addition to nucleons
 - Hypertriton: bound state of proton, neutron and lambda
- Analysis to check possible presence of systematic biases in the hypertriton lifetime measurement
- •K⁰_s chosen because:
 - High production rate
 - Well known lifetime

V0 finding selections

• standard values of the cuts for V0 analyses

Topological Variable	Cut
V0 tranv. Decay radius	> 0.50 cm
DCA Negative Track to PV	> 0.06 cm
DCA Positive Track to PV	> 0.06 cm
V0 Cosine of Pointing Angle	> 0.97
DCA V0 Daughters	< 1.0 σ
Rapidity Interval y	< 0.5
Daughter Track Pseudorapidity Interval	η < 0.8
Daughter Track Ncrossedrows	≥ 70

Monte Carlo: ct resolution

- Lifetime analyzed counting K⁰ production in ct intervals
 - Intervals have to be chosen considering our reconstruction performance

 Marginal distribution over every ct bin is calculated to get its own standard deviation • Resolution obtained studying :

$$\Delta ct = ct_{K0sreconstructed} - ct_{K0sgenerated}$$

as function of K_{s}^{0} generated ct

Monte Carlo: ct resolution

- lower standard deviation because of the SPD high resolution
- bin widths have been chosen to be six times the resolution
- highest ct considered: 20 cm. Above that value no sufficient statistics

MC: K⁰_s secondary from material

 \bullet K 0 _s can also be produced by interaction of other particles with detectors, a study is performed on the Monte Carlo

- Analysis valid only for primary K⁰_s
- It's not possible to distinguish primary from secondary, data **fitted where secondary particles are less important**

• Every pair of $\pi^+\pi^-$ forms a K^0_s candidate

•
$$m_{inv} c^2 = \sqrt{\left(\sum_{daughters} E_i\right)^2 - \left\|\sum_{daugheters} c \vec{P}_i\right\|^2}$$

daughters daugheters
 Background is given by wrong associations

- The peak is fitted by a **gaussian**
 - Extraction will be done $[\mu-4\sigma, \mu+4\sigma]$

•Entries removed from invariant mass spectra inside the integration interval

Background is fit by an exponential

Giacomo Alocco 28/11/18

ullet The number of K^0_s is given by : **histogram integral - background function integral**

Giacomo Alocco 28/11/18

K⁰_s counting

• the signal extraction is made for every marginal distribution over ct bins

- The dN/dct is obtained dividing the K⁰_s counts by the bin width of ct
- The lower counting of the first bin due to a low efficiency

Monte Carlo: efficiency x acceptance

• In the Monte Carlo simulation, K_s are transported through the detector and reconstructed like in real data

efficiency x acceptance =
$$\frac{\#K_s^0 \text{ recontructed}}{\#K_s^0 \text{ generated}}$$

Given the dramatic change in efficiency between bin1 and bin2, bin 1 will not be considered for lifetime estimation

Corrected K⁰ counting

- Dividing the calculated dN/dct by the efficiency x acceptance
- The data are fitted by an 등 **exponential**:

$$\frac{dN}{dct} = C \cdot \exp\left(\frac{-x}{c \tau}\right)$$

- •τ is the lifetime
- Low statistical uncertainties
- Systematic uncertainties will be dominant

Systematic: signal extraction range

- Signal extraction has been repeated changing the range of integration
- The systematic uncertainty for each bin is the **standard deviation** of the counting at different range in that bin

- Uncertainties seem to be correlated
 - Counts increase as the extraction range increase
 - The influence of the uncertainties on the determination of cτ is limited

Influence of crossed material

- to know if the K⁰_s lifetime obtained depends on the material crossed the analysis has been repeated cutting on the distance from decay vertex to the beam line
- every cut corresponds to a layer of detectors

 the efficiency x acceptance increases with looser cuts

Influence of crossed material: lifetimes

plateau for high radius, no evident dependence from crossed material

- contrary to what expected cutting at low distance lifetime decrease
- possible discrepancy between data and Monte Carlo

Conclusions

- K_s lifetime measured to be **compatible** within the uncertainties with that quoted in the PDG
 - Indication that the measure of hypertriton lifetime is reliable
- First evaluation of the signal extraction systematic uncertainty
 - Mostly correlated uncertainty that affects only marginally the K⁰_s lifetime determination
- Strict cuts on the decay radius can affect the measurement
 - Data/MC agreement to be assessed
 - Tight radius cuts are not used in the lifetime determination analysis

Next steps:

- Analysis of the full data sample
- Complete study of the systematic uncertainties

Giacomo Alocco 28/11/18

K⁰_s reconstruction and analysis

- Neutral particle like K₀ can not be detected directly by ITS and TPC:
 - Study on $\pi^+\pi^-$ decay channel
 - decay channel with neutral particles excluded to improve precision
- Decay vertex and momentum reconstructed by tracking daughter particles
- Lifetime extracted by measuring K⁰_s
 production as function of ct:
- ct is obtained measuring :
 - L: distance between primary and decay vertices
 - P: total momentum of K⁰_s
 - $m : K_0^s$ mass

$$ct = \frac{c \cdot L}{P} \cdot m$$

