PROVA (PARTE 2)

Universidade Federal de Jataí (UFJ) Bacharelado em Ciência da Computação Linguagens Formais e Autômatos Esdras Lins Bispo Jr.

07 de dezembro de 2018

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro mini-testes (MT), uma prova final (PF), exercícios-bônus (EB) e exercícios aplicados em sala de aula pelo método de Instrução pelos Colegas (IpC);
- A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

$$S = \left[\left(\sum_{i=1}^{4} max(MT_i, SMT_i) + PF\right].0, 2 + EB + IpC\right]$$

em que

- -S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Autômatos Finitos Não-determinísticos, (4) Expressões Regulares, (5) Linguagens não-regulares, (6) Gramáticas Livres-do-Contexto, (7) Autômatos com Pilha, e (8) Linguagens Não-Livresdo-Contexto.

Nome:		
-------	--	--

Mini-Teste 3

- 1. (5,0 pt) [Sipser 1.20] Para cada uma das seguintes linguagens, dê duas cadeias que são membros e duas cadeias que não são membros um total de quatro cadeias para cada linguagem. Assuma que o alfabeto é $\Sigma = \{a,b\}$ em todos os casos.
 - (a) $(2,0 \text{ pt}) aba \cup bab$

Resposta: Membros - aba e bab / Não-membros - ϵ e a.

(b) $(3,0 \text{ pt}) (a \cup ba \cup bb) \Sigma^*$

Resposta: Membros - a e ba / Não-membros - ϵ e b.

2. (5,0 pt) [Sipser 1.29 (b)] Use o lema do bombeamento para mostrar que $A = \{\omega\omega\omega \mid \omega \in \{a,b\}^*\}$ não é regular.

Resposta: Vamos supor, por um momento, que A seja regular. Seja p o comprimento do bombeamento dado pelo lema do bombeamento. Escolha s como a cadeia $a^pba^pba^pb$. Como s é um membro de A e s tem comprimento maior do que p, o lema do bombeamento garante que s pode ser dividida em três partes, s=xyz, satisfazendo as três condições do lema. Mostramos que isso é impossível.

A condição 3 é crucial, pois sem ela poderíamos bombear s se fizéssemos x e z iguais a cadeia vazia. Com a condição 3, a prova se concretiza, visto que y pode conter apenas as, logo $xyyz \notin A$. Logo A não é regular

Mini-Teste 4

- 3. (5,0 pt) [Sipser 2.4] Dê gramáticas livres-do-contexto que gerem as seguintes linguagens. Em todos os itens o alfabeto Σ é $\{0,1\}$.
 - (a) $(2,5 \text{ pt}) \{ \omega \mid \text{o comprimento de } \omega \text{ \'e impar } \}$

Resposta:

$$\begin{split} S &\to 0T \ | \ 1T \\ T &\to 0S \ | \ 1S \ | \epsilon \end{split}$$

(b) (2,5 pt) O conjunto vazio.

Resposta:

$$S \rightarrow 0S \mid 1S$$

4. (5,0 pt) [IpC - Q079] Qual das cadeias abaixo este AP $\underline{\text{n}}\underline{\text{a}}\underline{\text{o}}$ aceita? Justifique todas as alternativas incorretas.

- (a) ϵ Resposta: Aceita, pois q_1 é estado final.
- (b) 00

Resposta: Aceita. A computação de um dos ramos do AP que aceita 00 é descrita a seguir:

- i. Em q_1 , o AP empilha o \$ e vai para q_2 ;
- ii. Em q_2 , o AP lê 0, empilha 0, e vai para q_3 ;
- iii. Em q_3 , o AP lê 0, desempilha 0, e continua em q_3 ;
- iv. Em q_3 , o AP desempilha o \$, e vai para q_4 , aceitando a cadeia.
- (c) 11

Resposta: Aceita. A computação de um dos ramos do AP que aceita 11 é descrita a seguir:

- i. Em q_1 , o AP empilha o \$ e vai para q_2 ;
- ii. Em q_2 , o AP lê 1, empilha 1, e vai para q_3 ;
- iii. Em q_3 , o AP lê 1, desempilha 1, e continua em q_3 ;
- iv. Em q_3 , o AP desempilha o \$, e vai para q_4 , aceitando a cadeia.
- (d) 010 **Resposta:** Não aceita.