Appendix A - Rigid Body Motion in 3D

Mikica B Kocic

The Physics of Virtual Environments, 2012-04-25

Definitions

```
Get[ "Quat.m", Path -> { NotebookDirectory [] } ];
```

Parameters

▼ Frame of reference

The flag frameOfRef indicates whether angular velocity ω , angular momentum L and moment of inertia tensor \mathcal{J} are given with coordinates either in **inertial** (also called **space** or **world**) frame of reference or in **non-inertial** (also called **body-fixed** or **rotating**) frame of reference.

```
frameOfRef := BodyFixed;

Inertial =. (* inertial (or world) frame of reference *)

BodyFixed =. (* non-inertial (or rotating) frame of reference *)
```

Other physical quantities like position, velocity, forces or torque, are always given in inertial frame of reference.

▼ Gyroscopic effects

The flag gyroEffects indicates whether to *include* or *ignore* gyroscopic effect when calculating the time derivative of the angular momentum.

```
gyroEffects := Include;
Include =. (* include gyroscopic effects *)
Ignore =. (* don't account gyroscopic effects *)
```

▼ Physical constants

Gravitational acceleration \mathbf{g}_n , kg m s⁻²

```
gn = \{ 0, 0, -9.81 \};
```

Characteristic dimension ℓ of the system, m

```
/ = 10;
```

▼ Rigid body parameters

Rigid body is defined by its mass m, a graphics complex $\{body\$v,body\$i\}$ with centroid coordinates of the body vertices in the body-fixed frame of reference, and principal moment of inertia tensor \mathcal{J}_0 and its inverse $\mathcal{J}_{0,\text{inv}} = \mathcal{J}_0^{-1}$.

For more info about graphics complex, see: http://reference.wolfram.com/mathematica/ref/Graphics-Complex.html

```
setupBodyShape[mass_, { width_, height_, depth_}, type_] :=
Module
  { faces },
  (* Body mass, kg *)
  m = mass;
  (* Body dimensions, m *)
  { a, b, c } = { width, height, depth };
  (* Get graphic complex of the body *)
  { faces } = PolyhedronData[ type, "Faces"];
  (* Rescale graphic complex according to specified dimensions *)
  bodyv = ( # \{a, b, c\}) & /@ faces[[1]];
  body$i = faces[[2]];
  (* Moment of inertia and its inverse *)
 \mathcal{J}0 = \frac{m}{12} \begin{pmatrix} b^2 + c^2 & 0 & 0 \\ 0 & a^2 + c^2 & 0 \\ 0 & 0 & a^2 + b^2 \end{pmatrix} //N;
  \mathcal{J}0inv = Inverse[\mathcal{J}0];
```

Now define initial rigid body (a cube having 1 kg mass)

```
setupBodyShape[ 1, { 1, 1, 1}, "Cuboid" ];
```

Initial state variables: position, orientation, linear and angular velocity. All variables, except angular velocity, are given in inertial (world) frame of reference. Angular velocity frame of reference depends on the frameOfRef flag.

```
x0 = {0, 0, 0};
Q0 = Q[0, 0, 0, 0];
V0 = {0, 0, 0};
\omega 0 = \{ 0, 0, 0 \};
```

▼ Integration parameters

Integration method, either rk4\$stepper or semiImplicitEuler\$stepper

```
odeIntegrator := rk4$stepper
```

Time-step length, s

```
h = 0.01;
```

Final time, s

```
tf = 4;
```

• Runge-Kutta 4th order method (rk4\$stepper)

Classical implementation of the 4th order Runge-Kutta integrator. See http://mathworld.wolfram.com/Runge-KuttaMethod.html

```
rk4\$stepper[y_, h_, f_] := Module[\{k\},
   k_1 = h f[y];
   \mathbf{k}_2 = \mathbf{h} \, \mathbf{f} \left[ \, \mathbf{y} + \frac{1}{2} \, \mathbf{k}_1 \, \right];
   \mathbf{k}_3 = \mathbf{h} \mathbf{f} \left[ \mathbf{y} + \frac{1}{2} \mathbf{k}_2 \right];
   k_4 = h f[y + k_3];
   y + \frac{1}{6} (k_1 + 2 k_2 + 2 k_3 + k_4) // N
```

Semi-implicit Euler method (semiImplicitEuler\$stepper)

The implementation bellow is demonstrative but very inefficient since it calls ODE function f twice. The implemented algorithm also requires that the state vector y has a special structure: 1) y_1 contains a time variable, 2) the time variable is followed by the ordinary state variables in the bottom-half and 3) the ordinary state variables are followed by their time derivatives in the top-half, i.e. the y should look like $y = \{t, x, \dot{x}\}$ and its derivative (the ODE function f) should return $\dot{\mathbf{y}} = \{1, \dot{\mathbf{x}}, \ddot{\mathbf{x}}\}.$

```
semiImplicitEuler\$stepper[\ y\_,\ h\_,\ f\_\ ]\ :=\ Module[\ \{\ n,\ X,\ Xdot,\ y2\ \},
  n = 1 + (Length[y] - 1) / 2; (* Split y into bottom- and top-halves *)
  Xdot = hf[y]; (* Solve velocities only *)
  Xdot<sub>[1;n]</sub> = 0;
                    (* disregarding position and time solutions. *)
  y2 = y + Xdot;
  X = h f[y2]; (* Now, solve position and time only *)
 X_{[n+1; j]} = 0;
                 (* disregarding velocity solution. *)
  y + X + X dot
```

Animation Functions

ζ T: Transforms coordinates from body-fixed to inertial frame of reference

Transformations from non-inertial body-fixed (rotational) frame to intertial (world) frame of reference are based on global orientation quaternion q (variable Q) and position vector \mathbf{x} : (variable X)

```
GT[{x_, y_, z_}] := X + Im[Q **Q[0, x, y, z] **Q^*]

\zeta \mathbf{T}[\{\}] := \{\};

\[ \text{T[points_?MatrixQ]} := \( \text{T/@ points} \)
\]

\zeta T[points_{-}?VectorQ] := \zeta T/@ { Sequence[points] }
```

▼ getAnimationData: Gets coordinates of graphic primitives to be animated

Transforms body shape, orientation vectors and angular components into the inertial frame of reference

```
getAnimationData[]:= {
  (* 1 *) \( T \) body\( v \) , (* body shape *)
  (* 2 *) body$i,
  (*\ 3\ *)\ \zeta T[\ \{0,\ 0,\ 0\}\ ,\ \{a/2,\ 0,\ 0\}\ ]\ ,\ (*\ el\ axis\ *)
  (*\ 4\ *)\ \zeta T[\ \{0,\ 0,\ 0\}\ ,\ \{0,\ b/2,\ 0\}\ ],\ (*\ e2\ axis\ *)
  (* 5 *) \zeta T[\{0, 0, 0\}, \{0, 0, c/2\}], (* e3 axis *)
  (* 6 *) If[frameOfRef === Inertial, { \{0, 0, 0\}, \omega/\omegaScale },
         (* else in body-fixed *) \zeta T[\{0, 0, 0\}, \omega/\omega Scale]],
  (* 7 *) If[frameOfRef === Inertial, { {0, 0, 0}, L/LScale},
         (* else in body-fixed *) \( \Gamma T[\{0, 0, 0\}, L/LScale\] \],
  (* 8 *)\omegaTrack (* angular velocity trajectory *)
```

▼ showAnimation: Renders 3D objects from animation data

Displays 3D graphics dynamically retrived by getAnimationData function.

```
showAnimation[] := Show[
  (* rigid body *)
  Graphics3D[{ Yellow, Opacity[.2],
    GraphicsComplex[Dynamic[aData[1]], Dynamic[aData[2]]]]],
  (* \hat{e}_1 \text{ axis } *)
  Graphics3D[{ Red, Thick, Line[Dynamic[ aData[3]] }],
  (* \hat{e}_2 \text{ axis } *)
  {\tt Graphics3D[\{Green,\,Thick,\,Line[Dynamic[\,aData_{\llbracket 4\rrbracket}]\,]\,\}]\,,}
  (* \hat{e}_3 \text{ axis } *)
  Graphics3D[{ Blue, Thick, Line[Dynamic[ aData[5]] ]] }],
  (* Angular velocity \omega *)
  Graphics3D[{ Black, Thick, Line[Dynamic[ aData[6]] ]] }],
  (* Angular momentum L *)
  Graphics3D[{ Gray, Thick, Line[Dynamic[ aData[7]] ]] }],
  (* Angular velocity \omega trajectory *)
  Graphics3D[{Pink, Thick, Line[Dynamic[aData_{[8]}]]}],
  (* Axes and plot range *)
  Boxed → True,
  (* Axes\rightarrowTrue, AxesLabel\rightarrow{ "x/m", "y/m", "z/m"},
  LabelStyle→Directive[ FontSize→12 ], *)
  ViewPoint → Front, ImageSize → Scaled[0.9],
  PlotRange \rightarrow Dynamic@ { \{-\ell, \ell\}, \{-\ell, \ell\}, \{-\ell, \ell\}\} }
```

▼ snapshotVars: Gets a verbose snapshot of state variables

Dumps all variables for debugging purposes. Usage: evaluate expression Dynamic@snapshotVars[] to get real-time update.

```
snapshotVars[] := TableForm[{
             {"Parameters", ..., ...},
             { " Frame of Reference: " <> ToString@frameOfRef, ..., ...},
             { " Gyroscopic Effects: " <> ToString@gyroEffects, ..., ...},
             {"Integrator", ..., ...},
             { Switch[ odeIntegrator,
                    rk4$stepper, " Runge-Kutta 4",
                    semiImplicitEuler$stepper, " Semi-Implicit Euler",
                     _, "?"], ..., ...},
             { " h", "=", h},
             { "Energy", ..., ... },
             \{ " E_k", "=", Ek // N \},
             \{ " E_p", "=", Ep // N \},
             { " E<sub>tot</sub>", "=", Etot // N },
             { "Linear momentum, velocity and position", \cdots, \cdots },
             \{ |\vec{p}| |, |\vec{p}|, 
             { " p ', "=", P // N },
             \{ " | \vec{v} | ", "=", Norm[V] // N \},
             \{ " \vec{v} ", "=", V//N \},
             \{ " \vec{x}", "=", X//N \},
             { "Angular momentum, velocity and orientation", \cdots, \cdots},
             \{ |\vec{L}| | \vec{L}| | , |\vec{L}| | , |\vec{L}| | , |\vec{L}| \},
             \{ " | \vec{\omega} | ", "=", Norm[\omega] // N \},
             \{ \ " \ \overrightarrow{\omega}", \ "=", \ \omega // N \},
            { " |q|", "=", Abs[Q] // N },
             { " q", "=", Q//QForm // N},
             { "Moment of inertia", \cdots, \cdots },
            \{ " \| \mathcal{J} \| ", "=", Det[\mathcal{J}] // N \}
         }, TableDepth → 2 ]
```

Equations of Motion

▼ rigidBodyEquations: Gets time derivatives of state variables

Equations of motion are depend on the chosen frame of reference and wheter gyroscopic effects are neglected or not. Thus, the moment of inertia \mathcal{L} , torque τ , angular momentum L and orientation time derivative \dot{q} are given as piece-wise functions depending on the flags frameOfRef and gyroEffects.

```
rigidBodyEquations[{t_, X_, Q_, P_, L_}] := Module
  { Pdot, Ldot, Xdot, Qdot, F, Fext, \tau, R, \mathcal{J}inv, \omega},
  (* Calculate total force *)
  Fext = mgn; (* Sum up all external forces *)
  (* Calculate linear momentum time derivative *)
  Pdot = Fext + Fint;
  (* Moment of inertia *)
  R = { RotationMatrix[Q] frameOfRef === Inertial;
  \mathcal{J}inv = \begin{cases} R. \mathcal{J}0inv. R^{T} & \text{frameOfRef === Inertial} \\ \mathcal{J}0inv & \text{frameOfRef === BodyFixed} \end{cases};
  (* Derive angular velocity from angular momentum *)
  \omega = \mathcal{J}inv.L;
  (* Calculate total torque, depending on frame of reference *)
                    frameOfRef === Inertial
  \tau = \left\{ \begin{array}{ll} \text{rint} & \text{frameOfRef === Inertial} \\ \text{Im} \left[ \ Q^* \ ** \ \text{rint ** } \ Q \ \right] & \text{frameOfRef === BodyFixed} \end{array} \right.
  (* Calculate angular momentum time derivative *)
            [ τ + ω×L frameOfRef === Inertial / gyroEffects === Ignore
  t - ω×L frameOfRef === BodyFixed ∧ gyroEffects === Include
  (* Calculate position time derivative (velocity) *)
  Xdot = m^{-1} P;
  (* Calculate orientation time derivative *)
  Qdot = \begin{cases} \frac{1}{2} \omega **Q & frameOfRef === Inertial \\ \frac{1}{2} Q **\omega & frameOfRef === BodyFixed \end{cases};
  (* Return time derivatives of t, X, Q, P and L *)
  { 1, Xdot, Qdot, Pdot, Ldot }
```

ODE Solver

▼ solverInit: Initializes state variables and computes derived quantities

```
solverInit[] := Module
  {R, scalef},
  (* Stop any running simulations *)
  runSimulation = False;
  (* Initial time *)
  t = 0;
  (* Initial position and orientation, in inertial frame *)
  Q = Sign[Q0]; (* Normalize orientation to a versor *)
  (* Moment of inertia, frame dependent *)
  R = { RotationMatrix[Q] frameOfRef === Inertial;
  \mathcal{J} = \begin{cases} \mathbf{R}.\mathcal{J}\mathbf{0}.\mathbf{R}^{\mathsf{T}} & \text{frameOfRef === Inertial} \\ \mathcal{J}\mathbf{0} & \text{frameOfRef === BodyFixed} \end{cases}
               frameOfRef === BodyFixed
  \mathcal{J}inv = \begin{cases} R.\mathcal{J}0inv.R' & frameOfRef === Inertial \\ \mathcal{J}0inv & frameOfRef === BodyFixed \end{cases}
  (* Velocity and linear momentum, in inertial frame *)
  V = V0; (* Velocity *)
  P = m V; (* Linear momentum *)
  (* Initial angular velocity is always in body-fixed frame *)
  \omega = \begin{cases} Im[Q**\omega0**Q^*] & frameOfRef === Inertial \\ \omega0 & frameOfRef === BodvFixed \end{cases}
                                frameOfRef === BodyFixed
  (* Angular momentum, frame dependent *)
  L = \mathcal{J} \cdot \omega; (* Angular momentum *)
  (* Internal forces and torque *)
  Fint = { 0, 0, 0 };
  tint = {0, 0, 0};
  (* Derived quantities *)
  Ek = \frac{1}{2} P.V + \frac{1}{2} L.\omega; \text{ (* Kinetic energy *)}
  Ep = -m gn.X; (* Potential energy *)
  Etot = Ek + Ep; (* Total energy *)
  (* Keep track of angular velocity *)
  \omegaTrack = {};
  (* Angular velocity and angular momentum scale factors *)
  scalef = 0.8 Max[Abs[body$v], 0.9?];
  \omegaScale = Norm[\omega] /scalef // N; If[\omegaScale == 0, \omegaScale = 1];
  LScale = Norm[L]/scalef //N; If[LScale == 0, LScale = 1];
  (* Update animation data *)
  aData = getAnimationData[];
```

solverStep: Solves equations and recalculates derived quantities

Function calls repeatedly chosen ODE integrator, normalizes orientation gaternion to a versor and calculates derived quantities (like energy). (It saves also head of the angular velocity vector in an array to visualize precession and nutation.)

```
solverStep[count_:1] := Module
  {R},
  Do [If[¬runSimulation, Break[]];
         (* Solve equations using specified integrator *)
         { t, X, Q, P, L } = odeIntegrator[ { t, X, Q, P, L },
                h, rigidBodyEquations];
        Q = Sign[Q]; (* Keep orientation as versor *)
         (* Update moment of inertia, but only if in inertial frame *)
        R = { RotationMatrix[Q] frameOfRef === Inertial;
        \mathcal{J} = \begin{cases} R.\mathcal{J}0.R^{T} & \text{frameOfRef === Inertial} \\ \mathcal{J}0 & \text{frameOfRef === BodyFixed} \end{cases};
        \mathcal{J}inv = \begin{cases} R.\mathcal{J}0inv.R^{T} & frameOfRef === Inertial \\ \mathcal{J}0inv & frameOfRef === BodyFixed \end{cases}
         (* Calculate derived quantities *)
        V = m^{-1} P; (* Linear velocity from linear momentum *)
        \omega = \mathcal{J}inv.L; (* Angular velocity from angular momentum *)
        Ek = \frac{1}{2} P.V + \frac{1}{2} L.\omega; (* Kinetic energy *)
        Ep = -m gn.X; (* Potential energy *)
        Etot = Ek + Ep; (* Total energy *)
         (* Keep track of angular velocity *)
         AppendTo[ωTrack,
               If[frameOfRef === Inertial, \omega, \zetaT[\omega]] / \omegaScale
         ],
   {count}
  |;
  (* Update animation data *)
  aData = getAnimationData[];
```

▼ solverRun: Runs simulation until stopped

Creates the animation cell (if it does not exist) and evaluates solverStep function until runSimulation flag is reset to False.

```
solverRun[locateCell_: False] := Module[
  { nb = EvaluationNotebook[], noAnimationCell },
  (* Locate and evaulate cell containing solverRun[] *)
 If[locateCell,
  NotebookFind[nb, "RUNSIMULATION", Next, CellTags, AutoScroll → False];
  SelectionEvaluateCreateCell[ nb ];
  Return []
 ];
  (* Recreate animation cell, if it does not exist *)
  If[$Failed === NotebookFind[nb, "ANIMATION", Next, CellTags, AutoScroll → False],
      CellPrint[ ExpressionCell[ showAnimation [], CellTags → "ANIMATION" ] ];
      {\tt NotebookFind[nb, "ANIMATION", Next, CellTags, AutoScroll \rightarrow False];}
       SetOptions[NotebookSelection[nb], CellAutoOverwrite → False]
 ];
 NotebookFind[nb, "RUNSIMULATION", Next, CellTags, AutoScroll → False];
 SelectionMove[nb, After, CellContents];
  (* Run simulation, until cancelled *)
 runSimulation = True;
 While[runSimulation \land t < tf, solverStep[]];
 runSimulation = False;
1
```

Initialize Simulation

Default parameters are conviniently modified here before running simulation.

```
l = 3.5; gn = \{0, 0, 0\}; tf = 4;
setupBodyShape[ 10, { 4, 5, 2}, "Cuboid" ];
X0 = { 0, 0, 0 }; (* in inertial frame *)
Q0 = N@ToQ$AngleAxis[0.1, {1,0,0.5}]; (* in inertial frame *)
V0 = { 0, 0, 0 }; (* in inertial frame *)
\omega 0 = \{-1, -3, 2\}; (* in body-fixed (!) frame *)
solverInit[];
```

Simulation

solverRun[]

