第二十七节: MGR之group_replication_consistency性能测试----实战篇

1.概述

group_replication_consistency是MySQL 8.0.14为解决MGR中一致性读提供的参数,分为以下5种可选值:

- EVENTUAL:开启该级别的事务(T2),事务执行前不会等待先序事务(T1)的回放完成,也不会影响后序事务等待该事务回放完成
- before: 开启了该级别的事务(T2), 在开始前首先要等待先序事务(T1)的回放完成, 确保此事务将在最新的数据上执行。
- AFTER: 开启该级别的事务(T1), 只有等该事务回放完成。其他后序事务(T2)才开始执行, 这样所有后序事务都会读取包含其更改的数据库状态,而不管它们在哪个成员上执行
- BEFORE_AND_AFTER: 开启该级别等事务(T2),需要等待前序事务的回放完成(T1);同时后序事务(T3)等待该事务的回放完成
- BEFORE_ON_PRIMARY_FAILOVER: 在发生切换时,连到新主的事务会被阻塞,等待先序提交的事务回放完成;这样确保在故障切换时客户端都能读取到主服务器上的最新数据,保证了一致性

为了测试改参数对实际MGR集群性能的影响,进行了不同模式下的标准压测,由于本次测试MGR集群是Multi-master模式,因此,没有测试BEFORE_ON_PRIMARY_FAILOVER(针对Single-primary模式起作用)

二、测试

测试说明:

MGR集群: 3节点 Multi-Master模式

8C16G

普通SATA盘, IOPS在1000出头点

ibp: 11.5G 测试表数: 40

表数据量: 1000000

三、测试数据及结果

1、TPS

TPS					
eventual	4	8	16	32	64
round1	297.59	442.66	687.74	925.17	1087.81
round2	279.07	415.01	649.26	894.63	1062.3
round3	262.34	399.24	624.44	858.73	1021.35
avg	279.6	418.97	653.81	892.84	1057.15
before					
round1	255.98	383.64	586.46	816.65	995.46
round2	244.88	405.05	565.72	789.98	973.5
round3	242.01	369.55	547.06	756.24	934.34
avg	247.62	386.08	566.41	787.62	967.76
after					
round1	175.96	199.72	199.05	195.37	196.1
round2	178.16	197.37	194.3	196.46	194.19
round3	175.29	189.99	194.3	194.17	192.67
avg	176.47	195.69	195.88	195.33	192.67
before and	d after				
round1	178.35	194.67	191.18	194.05	190.36
round2	172.98	181.67	194.95	178.45	187.74
round3	170.66	183.71	176.2	203.19	191.51
avg	173.99	186.68	187.44	191.89	189.87

consistency_TPS

2、QPS

QPS					
eventual	4	8	16	32	64
round1	5951.85	8853.19	13754.89	18503.5	21756.23
round2	5581.35	8300.2	12985.24	17892.64	21246.03
round3	5246.88	7984.77	12488.84	17174.58	20426.94
avg	5593.36	8379.38	13076.32	17856.9	21143.06
before					
round1	5119.66	7672.85	11729.17	16332.95	19909.13
round2	4897.55	8101.01	11314.35	15799.55	19470.1
round3	4840.25	7391.1	10941.28	15124.82	18686.81
avg	4952.48	7721.65	11328.26	15752.44	19355.34
after					
round1	3519.29	3994.35	3981.06	3907.41	3921.92
round2	3563.17	3947.5	3886.02	3929.15	3883.7
round3	3505.9	3799.82	3885.93	3883.3	3853.35
avg	3529.45	3913.89	3917.67	3906.62	3886.32
before and	after				
round1	3567.08	3893.43	3823.51	3880.98	3807.11
round2	3459.6	3633.31	3898.91	3569.05	3754.8
round3	3413.26	3674.23	3524.06	4063.82	3830.15
avg	3479.98	3733.65	3748.82	3837.95	3797.35

consistency_QPS

3、95%rt

95%响应时	间				
eventual	4	8	16	32	64
round1	23.1	34.95	41.85	53.85	92.42
round2	27.66	36.89	43.39	53.85	92.42
round3	29.19	37.56	43.39	55.82	94.1
avg	26.65	36.46	42.87	54.5	92.98
before					
round1	31.37	38.25	44.98	57.87	97.55
round2	32.53	38.25	44.98	59.99	97.55
round3	33.12	38.94	46.63	61.08	99.33
avg	32.34	38.48	45.53	59.64	98.14
after					
round1	50.11	94.1	179.94	277.21	427.07
round2	49.21	92.42	167.44	308.84	427.07
round3	49.21	97.55	158.63	253.35	404.61
avg	49.51	94.69	168.67	279.8	419.58
before and after					
round1	51.94	95.81	167.44	257.95	442.73
round2	51.94	95.81	170.48	297.92	411.96
round3	50.11	95.81	170.48	267.41	411.96
avg	51.33	95.81	169.46	274.42	422.21

consistency_%95rt

四、结论

从测试结果上来看,默认eventual的性能是最好的,这也是可以预知的,因为该模式下,后续事务不需要管前面事务是否应用,也不需要在所有节点apply以后再提交,只需要在超过半数节点冲突检测通过以后即可提交

before模式下,在不同线程下,性能均有小幅下降,相比eventual模式下降约10%左右

而after模式下,MGR性能下降非常严重,并且在8线程以后基本达到上限,而且随着线程数的加大,响应时间也随之加大,在64线程下,after模式性能基本为eventual模式的1/5不到,可见性能下降非常严重

before_and_after模式性能基本与after模式持平

因此,在生产环境中,需要在数据一致性跟性能之间做好权衡,在数据一致性高的场景下可以设置 session级别的group_replication_consistency,而无需设置全局