Semester			Course Code	Course Title	Category
Semester –			BSC105	Mathematics (for Computer Science & Engg. students)	Basic Science Course
Scheme and Credits				Course contents	
L	T	P	Credits	Paper – 1 Calculus and Linear Algebra	
3	1	0	4		

Paper-1 Calculus and Linear Algebra

Detailed contents:

Module 1: Calculus: (6 lectures)

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Module 2: Calculus: (6 lectures)

Rolle's theorem, Mean value theorems, Taylor's and Maclaurin theorems with remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima.

Module 3: Matrices (in case vector spaces is to be taught) (8 lectures)

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination.

Module 4: Vector spaces (Prerequisite Module 3-Matrices) (10 hours)

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank-nullity theorem, composition of linear maps, Matrix associated with a linear map.

Module 5: Vector spaces (Prerequisite Module 3 – Matrices & Module-4 Vector spaces) (10 lectures) Eigenvalues, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, eigenbases. Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.

Suggested Text/Reference Books

- (i) G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Ed, Pearson, Reprint, 2002.
 (ii) Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- (iii) D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- (iv) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- (v) Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- (vi) N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 2010.
- (vii) B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- (viii) V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East-West press, Reprint 2005.

Course Outcomes

The objective of this course is to familiarize the prospective engineers with techniques in basic calculus and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.

The students will learn:

To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from various applications, they will have a basic understanding of

Beta and Gamma functions.

The essential tools of matrices and linear algebra including linear transformations, eigenvalues, diagonalization and orthogonalization.