Poll: How big is infinity?

Mark what's true.

- (A) There are more real numbers than natural numbers.
- (B) There are more rational numbers than natural numbers.
- (C) There are more integers than natural numbers.
- (D) pairs of natural numbers >> natural numbers.

How big are the reals or the integers?

Infinite!

Is one bigger or smaller?

Same Size, Poll,

Two sets are the same size?

- (A) Bijection between the sets.
- (B) Count the objects and get the same number. same size.
- (C) Counting to infinity is hard.

(A), (B). (C)?

Same size?

Same number?

Make a function f: Circles \rightarrow Squares.

f(red circle) = red square

f(blue circle) = blue square

f(circle with black border) = square with black border

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.

Onto: For all $s \in R$, $\exists c \in D$, s = f(c).

Isomorphism principle: If there is $f: D \to R$ that is one to one and onto, then, |D| = |R|.

Next up: how big is infinity.

- Countable
- Countably infinite.
- Enumeration

Isomorphism principle.

Given a function, $f: D \rightarrow R$.

One to One:

For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$.

or

 $\forall x, y \in D, f(x) = f(y) \implies x = y.$

Onto: For all $y \in R$, $\exists x \in D$, y = f(x).

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:

If there is a bijection $f: D \to R$ then |D| = |R|.

Countable.

How to count?

0, 1, 2, 3, ...

The Counting numbers.

The natural numbers! N

Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.

More large sets.

E - Even natural numbers?

 $f:\mathbb{N}\to E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y . \equiv f(x) \neq f(y)$

Evens are countably infinite.

Evens are same size as all natural numbers.

Where's 0?

Which is bigger?

The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} .

Natural numbers. 0,1,2,3,....

Positive integers. 1,2,3,....

Where's 0?

More natural numbers!

Consider f(z) = z - 1.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for z = n + 1, f(z) = (n + 1) - 1 = n.

Onto for \mathbb{N}

 $\text{Bijection!} \implies |\mathbb{Z}^+| = |\mathbb{N}|.$

But., but Where's zero? "Comes from 1."

All integers?

What about Integers, Z?

Define $f: N \to Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if n odd.} \end{cases}$$

One-to-one: For $x \neq y$

if x is even and y is odd,

then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$

if x is even and y is even,

then $x/2 \neq y/2 \implies f(x) \neq f(y)$

. . . .

Onto: For any $z \in Z$,

if $z \ge 0$, f(2z) = z and $2z \in N$.

if z < 0, f(2|z| - 1) = z and $2|z| + 1 \in N$.

Integers and naturals have same size!

A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well.

$$f(n) = n + 1.0 \rightarrow 1, 1 \rightarrow 2, ...$$

Bijection from A to $B \Longrightarrow$ a bijection from B to A.

Inverse function!

Can prove equivalence either way.

Bijection to or from natural numbers implies countably infinite.

Listings..

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if n odd.} \end{cases}$$

Another View:

n	f(n)
0	0
1	-1
2	1
3	-2
4	2

Notice that: A listing "is" a bijection with a subset of natural numbers.

Function = "Position in list."

If finite: bijection with $\{0, \dots, |S|-1\}$

If infinite: bijection with N.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

"Output element of S".

"Output next element of S"

Any element x of S has specific, finite position in list.

 $Z = \{0, 1, -1, 2, -2, \ldots\}$

 $Z = \{\{0, 1, 2, \dots, \} \text{ and then } \{-1, -2, \dots\}\}$

When do you get to -1? at infinity?

Need to be careful.

 $61A \equiv streams!$ Not Sp20/Fa20.

More fractions?

Enumerate the rational numbers in order...

0,...,1/2,..

Where is 1/2 in list?

After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:

any two fractions has another fraction between it.

Can't even get to "next" fraction!

Can't list in "order".

Countably infinite subsets.

Enumerating a set implies countable.

Corollary: Any subset *T* of a countable set *S* is countable.

Enumerate T as follows:

Get next element, x, of S,

output only if $x \in T$.

Implications:

 Z^{+} is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.

So it is countably infinite.

All countably infinite sets have the same cardinality.

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$

E.g.: (1,2), (100,30), etc.

For finite sets S_1 and S_2 ,

then $S_1 \times S_2$

has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite squared ???

Enumeration example.

All binary strings.

 $B = \{0, 1\}^*$.

 $B = {\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \dots}.$

 ϕ is empty string.

For any string, it appears at some position in the list.

If *n* bits, it will appear before position 2^{n+1} .

Should be careful here.

 $B = {\phi; 0,00,000,0000,...}$

Never get to 1.

Pairs of natural numbers.

Enumerate in list:

 $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\ldots$

The pair (a,b), is in first $\approx (a+b+1)(a+b)/2$ elements of list! (i.e., "triangle").

Countably infinite.

Same size as the natural numbers!!

Poll.

Enumeration to get bijection with naturals?

- (A) Integers: First all negatives, then positives.
- (B) Integers: By absolute value, break ties however.
- (C) Pairs of naturals: by sum of values, break ties however.
- (D) Pairs of naturals: by value of first element.
- (E) Pairs of integers: by sum of values, break ties.
- (F) Pairs of integers: by sum of absolute values, break ties.
- (B),(C), (F).

The reals.

Are the set of reals countable?

Lets consider the reals [0,1].

Each real has a decimal representation.

.500000000... (1/2) .785398162... $\pi/4$

.367879441... 1/e

.632120558... 1 – 1/e

.345212312... Some real number

Rationals?

Positive rational number.

Lowest terms: a/b

 $a, b \in N$

with gcd(a,b) = 1.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.

Interleave Streams in 61A

The rationals are countably infinite.

Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...

1: .7<mark>8</mark>5398162...

2: .367879441...

3: .632<mark>1</mark>20558...

4: .3452<mark>1</mark>2312...

- :

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7

and 6 otherwise.

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset [0, 1] is not countable!!

Real numbers...

Real numbers are same size as integers?

All reals?

Subset [0,1] is not countable!!

What about all reals?

No.

Any subset of a countable set is countable.

If reals are countable then so is [0,1].

Diagonalization.

- 1. Assume that a set S can be enumerated.
- 2. Consider an arbitrary list of all the elements of S.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that t is different from all elements in the list $\implies t$ is not in the list.
- 5. Show that *t* is in *S*.
- 6. Contradiction.

Poll: diagonalization Proof.

Mark parts of proof.

- (A) Integers are larger than naturals cuz obviously.
- (B) Integers are countable cuz, interleaving bijection.
- (C) Reals are uncountable cuz obviously!
- (D) Reals can't be in a list: diagonal number not on list.
- (E) Powerset in list: diagonal set not in list.
- (B), (C)?, (D), (E)

Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}, \{0,...,7\},$ evens, odds, primes,

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

Define a diagonal set, D:

If *i*th set in *L* does not contain i, $i \in D$.

otherwise $i \notin D$.

D is different from *i*th set in L for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the **powerset** of N.)

The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals. First of Hilbert's problems!

Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

"Diagonal number construction" requires an infinite number of digits.

Cardinalities of uncountable sets?

Cardinality of [0,1] smaller than all the reals?

 $f: \mathbb{R}^+ \to [0,1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$

One to one. $x \neq y$

If both in [0,1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0,1/2] a division $\implies f(x) \neq f(y)$.

If one is in [0,1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$.

Bijection!

[0,1] is same cardinality as nonnegative reals!

Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

The powerset of a set is the set of all subsets.

Resolution of hypothesis?

Gödel. 1940.

Can't use math!

If math doesn't contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....