# NP-Vollständigkeit ausgewählter Zahlprobleme

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Dezember 2011

## Das SUBSET-SUM-Problem

## Problem (SUBSET-SUM)

Eingabe:  $a_1, \ldots, a_N \in \mathbb{N}$ ,  $b \in \mathbb{N}$ 

Frage: Gibt es  $K \subseteq \{1, ..., N\}$  mit  $\sum_{i \in K} a_i = b$ ?

Das SUBSET-SUM-Problem ist in NP enthalten, denn die Lösung  $\mathcal{K}$  kann als Zertifikat verwendet werden, das in polynomieller Zeit verifiziert werden kann.

## NP-vollständigkeit des SUBSET-SUM-Problems

#### Satz

SUBSET-SUM ist NP-vollständig.

#### Beweis:

Um die NP-Härte des Problems nachzuweisen, beschreiben wir eine Polynomialzeitreduktion von 3SAT.

Gegeben sei eine Formel  $\phi$  in 3KNF. Diese Formel bestehe aus M Klauseln  $c_1, \ldots, c_M$  über N Variablen  $x_1, \ldots, x_N$ .

Für 
$$i \in \{1, \dots, N\}$$
 sei

$$S(i) = \{j \in \{1, ..., M\} \mid \mathsf{Klausel}\ c_j \ \mathsf{enthält}\ \mathsf{Literal}\ x_i\}$$

$$S'(i) = \{j \in \{1,\ldots,M\} \mid \mathsf{Klausel}\ c_j \ \mathsf{enthält}\ \mathsf{Literal}\ ar{x}_i\}$$
 .



Aus der Formel  $\phi$  in 3KNF erzeugen wir verschiedene Zahlen mit jeweils N + M Dezimalziffern.

Die k-te Ziffer einer Zahl a bezeichnen wir dabei mit a(k).

Für jede boolesche Variable  $x_i$ ,  $i \in \{1, ..., N\}$  erzeugen wir zwei Zahlen  $a_i$  und  $a'_i$ , deren Ziffern wie folgt definiert sind

$$egin{aligned} a_i(i) &= 1 \quad ext{und} \quad orall j \in S(i): a_i(N+j) = 1 \ , \ a_i'(i) &= 1 \quad ext{und} \quad orall j \in S'(i): a_i'(N+j) = 1 \ . \end{aligned}$$

Alle anderen Ziffern setzen wir auf den Wert 0.

Diese Zahlen bezeichnen wir als a-Zahlen.



## Beispiel:

Gegeben sei die Formel

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$$
.

Aus dieser Formel werden folgende a-Zahlen erzeugt:

$$a_1 = 100010$$
 $a'_1 = 100000$ 
 $a_2 = 010011$ 
 $a'_2 = 010000$ 
 $a_3 = 001010$ 
 $a'_3 = 001001$ 
 $a_4 = 000100$ 
 $a'_4 = 000101$ 

Zusätzlich erzeugen wir zwei sogenannte h-Zahlen  $h_j$  und  $h_j'$  für jede Klausel j, die nur an Ziffernposition N+j eine 1 haben, alle anderen Ziffern sind 0.

Den *Summenwert b* definieren wir folgendermaßen: Wir setzen b(k) = 1 für  $1 \le k \le N$  und b(k) = 3 für  $N + 1 \le k \le N + M$ .

### Fortsetzung des Beispiels:

Die h-Zahlen und der Summenwert lauten

 $h_1 = 000010$   $h'_1 = 000010$   $h_2 = 000001$   $h'_2 = 000001$ h = 111133

Für eine Formel aus N Variablen und M Klauseln ergeben sich beispielsweise die folgenden Zahlen:

|                   | 1 | 2 | 3 |       | Ν | N + 1 | N + 2 |       | N + M |
|-------------------|---|---|---|-------|---|-------|-------|-------|-------|
| $a_1$             | 1 | 0 | 0 |       | 0 | 1     | 0     |       |       |
| $a_1'$            | 1 | 0 | 0 |       | 0 | 0     | 0     |       |       |
| $a_2$             | 0 | 1 | 0 |       | 0 | 0     | 1     |       |       |
| $a_2'$            | 0 | 1 | 0 |       | 0 | 1     | 0     |       |       |
| a <sub>3</sub>    | 0 | 0 | 1 |       | 0 | 1     | 1     |       |       |
| :                 | : | : | : | :     | : | :     | :     | :     | :     |
| a <sub>N</sub>    | 0 | 0 | 0 |       | 1 | 0     | 0     |       |       |
| $a'_N$            | 0 | 0 | 0 |       | 1 | 0     | 1     |       |       |
| $h_1$             | 0 | 0 | 0 |       | 0 | 1     | 0     |       | 0     |
| $h'_1$            | 0 | 0 | 0 |       | 0 | 1     | 0     | • • • | 0     |
| :                 | : | : | : | :     | : | i i   | :     | :     | :     |
| $h_{\mathcal{M}}$ | 0 | 0 | 0 |       | 0 | 0     | 0     |       | 1     |
| $h'_{M}$          | 0 | 0 | 0 | • • • | 0 | 0     | 0     | • • • | 1     |
| Ь                 | 1 | 1 | 1 |       | 1 | 3     | 3     |       | 3     |

## Beobachtung 1:

Die Eingabezahlen zu SUBSET-SUM können in polynomieller Zeit erzeugt werden (obwohl die Zahlenwerte exponentiell groß sind).

### Beobachtung 1:

Die Eingabezahlen zu SUBSET-SUM können in polynomieller Zeit erzeugt werden (obwohl die Zahlenwerte exponentiell groß sind).

### Beobachtung 2:

Bei der Addition einer beliebigen Teilmenge der Variablen- und der Füllzahlen gibt es keinen Additionsübertrag von Ziffer zu Ziffer, weil höchstens fünf Ziffern pro Spalte den Wert 1 haben.

### Beobachtung 1:

Die Eingabezahlen zu SUBSET-SUM können in polynomieller Zeit erzeugt werden (obwohl die Zahlenwerte exponentiell groß sind).

### Beobachtung 2:

Bei der Addition einer beliebigen Teilmenge der Variablen- und der Füllzahlen gibt es keinen Additionsübertrag von Ziffer zu Ziffer, weil höchstens fünf Ziffern pro Spalte den Wert 1 haben.

Anmerkung: Beobachtung 2 beruht darauf, dass wir mit Dezimalziffern rechnen, d.h. zur Basis 10 rechnen. De facto wäre es auch ausreichend, wenn wir zur Basis 6 rechnen würden.

**zu zeigen:**  $\phi$  erfüllbar  $\Rightarrow \exists$  Teilmenge der a- und h-Zahlen, deren Summe gleich b ist

Angenommen es gibt eine erfüllende Belegung  $x^*$  für  $\phi$ .

**zu zeigen:**  $\phi$  erfüllbar  $\Rightarrow \exists$  Teilmenge der *a*- und *h*-Zahlen, deren Summe gleich b ist

Angenommen es gibt eine erfüllende Belegung  $x^*$  für  $\phi$ .

- Falls  $x_i^* = 1$ , so wähle  $a_i$  aus, ansonsten wähle  $a_i'$ .
- Sei A die Summe der ausgewählten a-Zahlen.
- Da für jedes  $i \in \{1, ..., N\}$  entweder  $a_i$  oder  $a_i'$  ausgewählt wurde, gilt A(i) = 1.

**zu zeigen:**  $\phi$  erfüllbar  $\Rightarrow \exists$  Teilmenge der a- und h-Zahlen, deren Summe gleich b ist

Angenommen es gibt eine erfüllende Belegung  $x^*$  für  $\phi$ .

- Falls  $x_i^* = 1$ , so wähle  $a_i$  aus, ansonsten wähle  $a_i'$ .
- Sei A die Summe der ausgewählten a-Zahlen.
- Da für jedes  $i \in \{1, ..., N\}$  entweder  $a_i$  oder  $a_i'$  ausgewählt wurde, gilt A(i) = 1.
- Zudem gilt  $A(N+j) \in \{1,2,3\}$  für  $1 \le j \le M$ , weil in jeder Klausel mindestens ein und höchstens drei Literale erfüllt werden.

**zu zeigen:**  $\phi$  erfüllbar  $\Rightarrow \exists$  Teilmenge der *a*- und *h*-Zahlen, deren Summe gleich b ist

Angenommen es gibt eine erfüllende Belegung  $x^*$  für  $\phi$ .

- Falls  $x_i^* = 1$ , so wähle  $a_i$  aus, ansonsten wähle  $a_i'$ .
- Sei A die Summe der ausgewählten a-Zahlen.
- Da für jedes  $i \in \{1, ..., N\}$  entweder  $a_i$  oder  $a_i'$  ausgewählt wurde, gilt A(i) = 1.
- Zudem gilt  $A(N+i) \in \{1,2,3\}$  für  $1 \le i \le M$ , weil in jeder Klausel mindestens ein und höchstens drei Literale erfüllt werden.
- Falls A(N+j) < 3 so können wir zusätzlich  $h_i$  oder  $h_i$  und  $h'_i$ auswählen um exakt den geforderten Wert 3 an Ziffernposition N + i der Summe zu erhalten.

Also gibt es eine Teilmenge mit Summenwert b.



**zu zeigen:**  $\exists$  Teilsumme mit Wert  $b \Rightarrow \phi$  erfüllbar

Sei A die Summe einer Teilmenge der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In A wird für jedes  $i \in \{1, ..., N\}$  genau eine der Variablenzahlen  $a_i$  oder  $a_i'$  aufsummiert, denn ansonsten wäre  $A(i) \neq 1$ .

**zu zeigen:**  $\exists$  Teilsumme mit Wert  $b \Rightarrow \phi$  erfüllbar

Sei A die Summe einer Teilmenge der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In A wird für jedes  $i \in \{1, ..., N\}$  genau eine der Variablenzahlen  $a_i$  oder  $a_i'$  aufsummiert, denn ansonsten wäre  $A(i) \neq 1$ .

Setze  $x_i = 1$ , falls  $a_i$  in A aufsummiert wird; und  $x_i = 0$ , sonst.

**zu zeigen:**  $\exists$  Teilsumme mit Wert  $b \Rightarrow \phi$  erfüllbar

Sei A die Summe einer Teilmenge der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In A wird für jedes  $i \in \{1, ..., N\}$  genau eine der Variablenzahlen  $a_i$  oder  $a_i'$  aufsummiert, denn ansonsten wäre  $A(i) \neq 1$ .

Setze  $x_i = 1$ , falls  $a_i$  in A aufsummiert wird; und  $x_i = 0$ , sonst.

zu zeigen: x ist eine erfüllende Belegung für  $\phi$ 

**zu zeigen:**  $\exists$  Teilsumme mit Wert  $b \Rightarrow \phi$  erfüllbar

Sei A die Summe einer Teilmenge der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In A wird für jedes  $i \in \{1, ..., N\}$  genau eine der Variablenzahlen  $a_i$  oder  $a_i'$  aufsummiert, denn ansonsten wäre  $A(i) \neq 1$ .

Setze  $x_i = 1$ , falls  $a_i$  in A aufsummiert wird; und  $x_i = 0$ , sonst.

## zu zeigen: x ist eine erfüllende Belegung für $\phi$

• Es gilt  $A(N+j) \ge 1$  für  $1 \le j \le M$ , denn ansonsten wäre A(N+j) + H(N+j) < 3.

**zu zeigen:**  $\exists$  Teilsumme mit Wert  $b \Rightarrow \phi$  erfüllbar

Sei A die Summe einer Teilmenge der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In A wird für jedes  $i \in \{1, ..., N\}$  genau eine der Variablenzahlen  $a_i$  oder  $a_i'$  aufsummiert, denn ansonsten wäre  $A(i) \neq 1$ .

Setze  $x_i = 1$ , falls  $a_i$  in A aufsummiert wird; und  $x_i = 0$ , sonst.

## zu zeigen: x ist eine erfüllende Belegung für $\phi$

- Es gilt  $A(N+j) \ge 1$  für  $1 \le j \le M$ , denn ansonsten wäre A(N+j) + H(N+j) < 3.
- Dadurch ist sichergestellt, dass in jeder Klausel mindestens eines der Literale den Wert 1 hat, so dass  $\phi$  erfüllt ist.

Damit ist die Korrektheit der Reduktion nachgewiesen.



# NP-Vollständigkeit von PARTITION

## Problem (PARTITION)

Eingabe:  $a_1,\ldots,a_N\in\mathbb{N}$ 

Frage: Gibt es  $K \subseteq \{1, ..., N\}$  mit  $\sum_{i \in K} a_i = \sum_{i \in \{1, ..., N\} \setminus K} a_i$ ?

PARTITION ist ein Spezialfall von SUBSET-SUM, da die gestellte Frage äquivalent zur Frage ist, ob es eine Teilmenge K mit Summenwert  $\frac{1}{2}\sum_{i=1}^{N}a_i$  gibt.

# NP-Vollständigkeit von PARTITION

#### Satz

PARTITION ist NP-vollständig.

#### **Beweis:**

PARTITION ist offensichtlich  $\in$  NP, weil es ein Spezialfall von SUBSET-SUM ist.

Um zu zeigen, dass PARTITION NP-hart ist, zeigen wir SUBSET-SUM  $\leq_p$  PARTITION.

Die Eingabe von SUBSET-SUM sei  $a_1, \ldots, a_N \in \mathbb{N}$  und  $b \in \mathbb{N}$ .

Es sei 
$$A = \sum_{i=1}^{N} a_i$$
.

Wir bilden diese Eingabe für SUBSET-SUM auf eine Eingabe für PARTITION ab, die aus den N+2 Zahlen  $a'_1, \ldots, a'_{N+2}$  bestehe.

Die Eingabe von SUBSET-SUM sei  $a_1, \ldots, a_N \in \mathbb{N}$  und  $b \in \mathbb{N}$ .

Es sei 
$$A = \sum_{i=1}^{N} a_i$$
.

Wir bilden diese Eingabe für SUBSET-SUM auf eine Eingabe für PARTITION ab, die aus den N+2 Zahlen  $a'_1, \ldots, a'_{N+2}$  bestehe.

#### Dazu setzen wir

- $a'_i = a_i$  für  $1 \le i \le N$ ,
- $a'_{N+1} = 2A b$ , und
- $a'_{N+2} = A + b$ .

Die Eingabe von SUBSET-SUM sei  $a_1, \ldots, a_N \in \mathbb{N}$  und  $b \in \mathbb{N}$ .

Es sei 
$$A = \sum_{i=1}^{N} a_i$$
.

Wir bilden diese Eingabe für SUBSET-SUM auf eine Eingabe für PARTITION ab, die aus den N+2 Zahlen  $a'_1, \ldots, a'_{N+2}$  bestehe.

#### Dazu setzen wir

- $a'_i = a_i$  für  $1 \le i \le N$ ,
- $a'_{N+1} = 2A b$ , und
- $a'_{N+2} = A + b$ .

In der Summe ergeben diese N + 2 Zahlen den Wert 4A.

PARTITION fragt also danach, ob es eine Teilmenge der Zahlen  $a'_1, \ldots, a'_{N+2}$  mit Summenwert 2A gibt.



Die Reduktion ist in polynomieller Zeit berechenbar.

## zeige: $\exists$ Lösung für PARTITION $\Rightarrow$ $\exists$ Lösung für SUBSET-SUM

• Wenn es eine geeignete Aufteilung der Eingabezahlen für PARTITION gibt, so können  $a'_{N+1}$  und  $a'_{N+2}$  dabei nicht in derselben Teilmenge sein, denn  $a'_{N+1} + a'_{N+2} = 3A$ .

Die Reduktion ist in polynomieller Zeit berechenbar.

## zeige: $\exists$ Lösung für PARTITION $\Rightarrow$ $\exists$ Lösung für SUBSET-SUM

- Wenn es eine geeignete Aufteilung der Eingabezahlen für PARTITION gibt, so können  $a'_{N+1}$  und  $a'_{N+2}$  dabei nicht in derselben Teilmenge sein, denn  $a'_{N+1} + a'_{N+2} = 3A$ .
- Deshalb ergibt sich auch eine Lösung für SUBSET-SUM, denn diejenigen Zahlen aus  $a'_1, \ldots, a'_N$ , die sich in derselben Teilmenge wie  $a'_{N+1}$  befinden, summieren sich auf zu  $2A a'_{N+1} = b$ .

### zeige: ∃ Lösung für SUBSET-SUM ⇒ ∃ Lösung für PARTITION

 Wenn es eine Teilmenge der Zahlen a<sub>1</sub>,..., a<sub>N</sub> mit Summenwert b gibt, so gibt es auch eine Teilmenge der Zahlen a'<sub>1</sub>,..., a'<sub>N</sub> mit diesem Summenwert.

### zeige: ∃ Lösung für SUBSET-SUM ⇒ ∃ Lösung für PARTITION

- Wenn es eine Teilmenge der Zahlen a<sub>1</sub>,..., a<sub>N</sub> mit Summenwert b gibt, so gibt es auch eine Teilmenge der Zahlen a'<sub>1</sub>,..., a'<sub>N</sub> mit diesem Summenwert.
- Wir können die Zahl  $a'_{N+1} = 2A b$  zu dieser Teilmenge hinzufügen, und erhalten dadurch eine Teilmenge mit Summenwert 2A



### Problem (Bin Packing Problem - BPP)

**Eingabe:**  $b \in \mathbb{N}$ ,  $w_1, ..., w_N \in \{1, ..., b\}$ 

zulässige Lösungen:  $k \in \mathbb{N}$  und Fkt  $f : \{1, \dots, N\} \rightarrow \{1, \dots, k\}$ ,

so dass 
$$\forall i \in \{1, \ldots, k\} : \sum_{j \in f^{-1}(i)} w_j \leq b$$

**Zielfunktion:** *Minimiere k (= Anzahl Behälter)* 

### Problem (Bin Packing Problem - BPP)

**Eingabe:**  $b \in \mathbb{N}$ ,  $w_1, \ldots, w_N \in \{1, \ldots, b\}$ 

**zulässige Lösungen:**  $k \in \mathbb{N}$  und Fkt  $f : \{1, \dots, N\} \rightarrow \{1, \dots, k\}$ ,

so dass 
$$\forall i \in \{1, \ldots, k\} : \sum_{j \in f^{-1}(i)} w_j \leq b$$

**Zielfunktion:** *Minimiere k (= Anzahl Behälter)* 

**Entscheidungsvariante (BPP-E):**  $k \in \mathbb{N}$  ist gegeben. Passen die Objekte in k Behälter?

#### Satz

BPP-E ist NP-vollständig.

#### **Beweis:**

 $BPP-E \in NP$  haben wir bereits gezeigt.

Die NP-Härte ergibt sich durch eine triviale Reduktion von PARTITION:

Setze 
$$k = 2$$
,  $w_i = a_i$  für  $1 \le i \le N$  und  $b = \left\lfloor \frac{1}{2} \sum_{i=1}^{N} w_i \right\rfloor$ .

<ロ > < 部 > < き > くき > くき > き の < ♡

17 / 19

Wir sagen ein Optimierungsproblem  $\Pi$  ist NP-hart, wenn ein effizienter Algorithmus für  $\Pi$  einen effizienten Algorithmus für ein NP-hartes Entscheidungsproblem liefert.

Wir sagen ein Optimierungsproblem  $\Pi$  ist NP-hart, wenn ein effizienter Algorithmus für Π einen effizienten Algorithmus für ein NP-hartes Entscheidungsproblem liefert.

Aus einem effizienten Algorithmus für BPP ergibt sich ein effizienter Algorithmus für BPP-E. Wir haben gezeigt, dass BPP-E NP-hart ist. Es folgt

#### Korollar

BPP ist NP-hart.

## Härte des Rucksackproblems

## Problem (Entscheidungsvariante des Rucksackproblems – KP-E)

**Eingabe:**  $B, P \in \mathbb{N}$ ,  $w_1, \ldots, w_N \in \{1, \ldots, B\}$ ,  $p_1, \ldots, p_N \in \mathbb{N}$ 

**Frage:** Gibt es  $K \subseteq \{1, ..., N\}$  mit  $\sum_{i \in K} w_i \leq B$  und

 $\sum_{i\in K} p_i \geq P$ 

### Korollar

KP-E ist NP-vollständig.

Beweis durch einfache Reduktion von SUBSET-SUM (Wie?)