

Adventures in Bayesian Structural Time Series Part 2: Structural Time Series

Andrew Bates, Josh Gloyd, Tyler Tucker

Structural Time Series Models:

- Structural Time Series Models:

- Structural Time Series Models:
 - Local level model
 - Local linear trend model

- Structural Time Series Models:
 - Local level model
 - Local linear trend model
 - Models with seasonal component

- Structural Time Series Models:
 - Local level model
 - Local linear trend model
 - Models with seasonal component
 - Models with regression component

♠ Also called State Space Models

- ♠ Also called State Space Models
- Data comes from unobserved variable called the **state** space

- ♠ Also called State Space Models
- Data comes from unobserved variable called the **state** space
- We model the state space instead of the observed data directly

Local Level Model

- \otimes y_t : observed data
- $\otimes \mu_t$: unobserved state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$
 $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\varepsilon}^2)$

Local Level Model

will have plot here

Local Linear Trend Model

- $\Leftrightarrow y_t, \mu_t$: same as before
- $\otimes \nu_t$: slope (additional state component)

$$y_{t} = \mu_{t} + \varepsilon_{t} \qquad \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t+1} = \mu_{t} + \nu_{t} + \xi_{t} \qquad \qquad \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$\nu_{t+1} = \nu_{t} + \zeta_{t} \qquad \qquad \zeta_{t} \sim N(0, \sigma_{\zeta}^{2})$$

Local Linear Trend Model

will have picture here

Local Trend With Seasonality

- $\otimes \mu_t$: local linear trend
- $\otimes \tau_t$: seasonal component

$$y_t = \mu_t + \tau_t + \varepsilon_t$$
 $\zeta_t \sim N(0, \sigma_{\varepsilon}^2)$ $\tau_t = \sum_{t=1}^{S-1} \tau_{t-s} + \omega_t$ $\tau_t \sim N(0, \sigma_{\omega}^2)$

Local Trend With Seasonality SAN DIEGO STATE UNIVERSITY

will have picture here

Local Trend With Regression

- $\otimes \mu_t$: local linear trend
- $\otimes \tau_t$: seasonal component
- $\otimes \beta_t^T x_t$: regression component

$$y_t = \mu_t + \tau_t + \beta_t^T x_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$

- \otimes (2): transition equation

General Form

- \otimes y_t : data
- $\otimes \alpha_t$: state component

$$y_t = Z_t' \alpha_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, H_t)$ (1)

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t \qquad \eta_t \sim N(0, Q_t)$$
 (2)