2015年数据仓库与知识发现试题

- 1. 数据仓库及其实现技术。
 - a) 试采用 BITMAP 索引方式对图 1 中的维度表进行索引。
 - b) 试采用 Join Index 对图 1 中的事实表和维表进行索引。

- 1	PID	SKU	TYPE	PRICE
1	01	BK-657	в ВООК	High
10	12	5W-876	SOFTWARE	High
03	3 /	BK-7651	воок	Middle
04	10	D-3413	CD	Middle
05	10	D-6573	CD	Free
6	5 SW-9871		SOFTWARE	Middle

SIC	Manager	TYPE
01	Bob	General
02	John	Exclusive
03	Smith	General

PID	SID	TID	Quantity
03	03	T100	3
01	01	T200	7
04	02	T300	5
02	03	T400	1
04	02	T500	2
05	01	T600	4
01	03	T700	6
05	02	Т900	1
06	01	Т900	6
01	02	T100	00 3

图 1 产品维度表(左上)、商店维度表(左下)和销售事实表(右

2 特性 给定圈 2 中的目标集 (DOG) 和对比集 (CAT),使用信息增益计 给定圈 2 中的目标集 (DOG) 和对比集 (CAT),使用信息增益计 给定圈 2 中的目标集 (DOG) 和对比集 (CAT),使用信息增益计 价定圈 2 中的目标集 (DOG) 和对比集 (CAT),使用信息增益计 价度 2 中的目标集 (DOG) 和对比集 (CAT),使用信息增益计 价值 3 种类的概念描述任务之间的相关性。并采用 T=0.1 作为间 值,对属性进行筛选。

Gender	Tail	Weight	Count	
M	Long	5-10	2	
M	Middle	0-5	3	
A Control of	Long	5-10	3	
M	Middle	10-15	1	
M	Short	10-15	3	
and the second	Long	15-20	3	

Gender	Tail	Weight	Count
M	Long	0-5	2
F	Middle	5-10	1
F	Short	0-5	2
F	Long	5-10	2
M	Middle	0-5	1
F	Short	5-10	2

图 2 目标集 DOG (左)、对比集 CAT (右)

3. 关联

a) 针对图 3 的交易事务数据,采用 FP 增长算法求取频繁项集, 假设最小支持度为≥30%

事务ID	购	买项		
1	{a,	b,	d,	e}
2	{b,	c.	d}	
3	{a,	b,	d,	e}
4	{a,	Ç,	d,	e}
5	{b.	С,	d,	e}
6	{b,	d,	e}	
7	{c,	d}		
8	{a,	b,	c}	
9	{a,	d,	e}	
10	{b,	d}		

图 3 交易率勞数据

- 4. 数据预处理与分类(25分)
 - a) 针对图 4 中训练数据集进行离散化处理。要求采用等宽分桶的方式将 age 和 incoming 属性离散到 3 个区间。
- b) 依据训练集,采用朴素 贝叶斯方法分类未知 元组(24,75000,yes),

对 分 类 属 性 Class:buys_MP 进行预

测。

ID	age	income	student	Cla	ss:buys_MP
1	23	68000	no	-	000
2	49	36000	no	10	002000
3	55	22000	no	10	002000
4	34	30000	yes	<1	1000
	38	15000	yes	<	1000
	57	75000	no	>	2000
	21	52000	no	1	10002000
	31	45000	yes	1	10002000
1	66	58000	no	1	10002000
0	34	12000	yes		<1000
1	40	40000	yes		10002000
T	50	78000	no		>2000
	29	20000	yes		10002000
1	25	70000	no	AE C	<1000
1	51	55000	no		>2000
1	15	65000	no		>2000

图 4 训练数据集

5. 聚类 (25 分)

- a) 针对图 5 中的数据,采用曼哈顿距离作为距离函数, 给出对应的相异矩阵。
- 的 采用凝聚式层次式方法对该数据集进行聚类, 聚类间 的距离使用聚类中数据之间的最大距离进行度量。

ID	X	A
1	3	8
2	2	7
3	4	8
4	3	14
5	1	5
-		

图5聚类数