PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 27: Kinematics of rotation | Newton's 2nd law about rotation

Chapter 10: Rotation

- Learning objectives
 - Kinematics of rotation
 - Dynamics of rotation

Learning goals for today

- Kinematics of rotation
- Moment of inertia
- Torque

Point particle vs. object with a finite volume

Previously

A point particle

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Object with a finite volume

Translation & rotation

- Kinds of motion
 - Translational
 - All points have equal linear velocities, \vec{v}

- Rotational
 - All points have equal angular velocity, $\overrightarrow{\omega}$, about a fixed axis of rotation

Translational

Rotational

1. Angular velocity

- Angular velocity: $\vec{\omega}$
 - Magnitude (angular speed): / My
 - Angle per unit time:
 - Unit: rad s⁻¹ or s⁻¹ or rpm: $1 \frac{rev}{min} = \frac{2\pi}{60} \text{ s}^{-1}$

- Direction: right-hand rule (RHR)
 - Points along "axle" of rotation

Clicker question 1

RHR

The record rotates **clockwise**. What is the direction of the **angular velocity** $(\vec{\omega})$ at the red dot?

Down along the axle

Down along the axle

To the right

To the left

2. Angular acceleration, $\vec{\alpha}$

• Accelerated rotation: When angular velocity, $\vec{\omega}$, changes over time

Accelerated rotation

Decelerated rotation

• Angular acceleration: Rate of change of angular velocity: $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$

Angular acceleration, $\vec{\alpha}$

- Definition: $\vec{\alpha}$ is the rate of change of angular velocity: $\vec{\alpha} = \frac{d\omega}{dt}$
- Magnitude (Unit: rad s⁻² or s⁻²):

 - <u>Average</u> angular acceleration: $|\vec{\alpha}| = |\frac{\Delta \vec{\omega}}{\Delta t}|$ <u>Instantaneous</u> angular acceleration: $|\vec{\alpha}| = |\frac{d\vec{\omega}}{dt}|$
- Direction: if spinning faster, same as $\vec{\omega}$

OR if spinning slower, opposite to $\vec{\omega}$

Clicker question 2 If spinning faster then same as then same as the source of the sou

Point out of the screen

Demo: A constant angular acceleration, $\vec{\alpha}$

3. Kinematics of rotation with a constant angular acceleration

• If the angular acceleration, $\vec{\alpha}$, is a constant, and $t_0 = 0s$:

- Angular velocity:
$$\vec{\omega} = \vec{\omega}_0 + \vec{\alpha}t$$
Initial angular velocity Time duration

- Angle: $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ Initial angle

Analogy between 1D kinematics of linear motion and angular kinematics

Linear	Angular
$v = v_{o} + at$	$\omega = \omega_{\rm o} + \alpha t$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$\theta = \theta_{\rm o} + \omega_{\rm o}t + \frac{1}{2}\alpha t^2$

Clicker question 3: microwave

Given: Wo, Dit Goal. W

A plate rotates in a microwave. The plate accelerates from rest at 0.87 rad/s² for 0.50 s. What is the final angular speed?

Which principle to use?

Given:

Goal:

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \omega_0 + \alpha t$$

Clicker question 4: microwave

Goal;

• A plate rotates in a microwave. The plate accelerates from rest at an angular acceleration of 0.87 rad/s² for 0.50 s. The initial angle θ_0 =0. How many revolutions does it make?

Which principle to use?

Given:

Goal:

B

$$\theta = \omega_0 t$$

http://www.youtube.com/watch?kg=ExSKW1bwBq8

Analogy: Translational/linear motion and rotational motion

Linear motion	Rotational motion
Velocity, \vec{v}	Angular velocity, $\vec{\omega}$
Acceleration, \vec{a}	Angular acceleration, $\vec{\alpha}$
Mass, m	Moment of inertia, I
Force, \vec{F}	Torque, $\vec{\tau}$
Newton's 2 nd law: $\vec{F}_{net} = m\vec{a}$	Newton's 2 nd law for rotation: ?

4. Moment of inertia: Rotational analogy of mass

- Moment of inertia (Unit: kg m²): Resistance for rotation
 - For a point mass:

$$I = mr_{\perp}^{2}$$
 Distance from the point to the rotation axis

- For a continuous object:

$$I = \int r_{\perp}^{2} dm = \int \rho r_{\perp}^{2} dV$$

$$Mass density$$

Clicker question 5.1

• The moment of inertia of an object does *NOT* depend on:

- The mass of the object
- The spatial distribution of the mass
- The location and orientation of the rotation axis
- The angular speed

Clicker question 5.2

 Which of the following has a larger moment of inertia w.r.t. the axis specified? Both have same mass M.

Table of moment of inertia for axes through center of mass (com)

I Com

Parallel axis theorem

• If you know the moment of inertia about an axis, z, passing through the center of mass, then the moment of inertia about some parallel axis, z', is

Example 1

Given: M, L, z, I com = 1/2 ML, 2/2

Goal: I

• The rod of mass M=1.0 kg and length of L=1.0 m rotates with respect to the axis perpendicular to the rod at the end of the rod. Please find the moment of inertia of the rod w.r.t. the axis. (*Hint*: Moment of inertia of a uniform thin rod of length L with respect to its center of

mass is $\frac{1}{12}ML^2$) Stept: Parallel axis theorem; I = I com + Mb $\frac{1}{2} \frac{1}{12} \frac{$ $=\frac{5}{3}\times1.00\times9\times(1.00)^2\approx0.33\times9m^2$ Stap 2:

5. Torque

• Torque: $\vec{\tau}$, rotational analog of force

• Torque is a vector: $\vec{\tau} = \vec{\mathbf{r}} \times \vec{\mathbf{F}}$

Displacement from the rotation axis to the point

Angle between \vec{r} and \vec{F}

- Magnitude: $|\vec{\tau}| = |\vec{r}| |\vec{F}| |\sin\theta|$
- Direction: right-hand rule
- Units: m•N[NOT J; torque is not energy!]

Recap: Cross product

Cross product (geometric understanding):

Torque examples

- Tools: screwdrivers and wrenches
- Knobs & handles

Clicker question 6

 You are using the same wrench to loosen a rusty nut. Which of the following arrangement will be more effective in loosening the nut?

6. Newton's 2nd law for rotation

Newton's 2nd law for rotation:

Example 2

Given: Y, M, F, F2
Goal: X

+z: out of screen

• The figure shows a uniform disk that can rotate around its center. The disk has a radius of r = 2.0 cm and a mass of m = 20 grams and is initially at rest. Starting at time t = 0, two forces are to be applied tangentially to the rim as indicated. Force \vec{F}_1 has a magnitude of 0.10 N, and magnitude \vec{F}_2 is 0.20N. What is the angular acceleration of the disk? (Hint: The

moment of inertia of the disk w.r.t. the central axis is $I = \frac{1}{2}mr^2$.

Stop 1: Newtins 2 m (an) for Rot. Stop 3: $d = \frac{2(|F_2| - F_1)}{m r} (z = \frac{2(0.2N - 0.1N)}{0.02 kg \cdot 0.02 kg \cdot 0.02 kg}$