1.2 Lapangan [F, Appendix C]

Misaikan If suatu himpunan tak kosong yg terfutup thop dua operasi, yaity $+ : \mathbb{F}^2 \to \mathbb{F}, \qquad (\alpha, \beta) \mapsto \alpha + \beta$

yg disebut operasi penjumlahan (tidak harus operasi pen-jumlahan bil real) dan

 $\bullet: \mathbb{F}^2 \to \mathbb{F},$ (α,β) +> dβ

yg disebut <u>operasi perkahan</u> (tidak harus operasi perkali-an bil real). Artinya :

- (LOa) Uff setiap α, β EFF berlaku α+β EFF. (Ketertutupan Hhd penjumlahan)
- (LOb) Ufk setiap a B Eff Berlaku & B Eff. (Ketertutupan Hhd perkalian)

Jika sifat benikut terpenuhi :

(L1) Ufk setiap $\alpha, \beta, \gamma \in \mathbb{F}$ berlaku $(\alpha + \beta) + \gamma = \alpha + (\beta + \delta)$. (Asosiatif penjumlahan)

maka untuk setiap $\alpha, \beta, \gamma \in F$, kita dpt menuhiskan a+B+8 tompa menimbulkan keambiguan.

Selanjutnya jika kedua sifat berikut terpenuhi:

(L2) Utk setiap $\alpha, \beta \in \mathbb{F}$ berlaku $\alpha + \beta = \beta + \alpha$. (Komutatif penjumlahan)

(L3) Ada $0 \in F$ shg utk setiap $x \in F$ berlaku x + 0 = x. (Adanya identitas pensiumlahan)

maka kita dapat membuktikan bahwa identitas penjumlahan tsb tunggal:

Bukti Misalkan ada dua identitas penjumlahan 0,02 EFF. Karena O_1 identifous penjumlahan, maka $O_2 + O_1 = O_2$.

Karena 0_2 identitas penjumlahan, maka $0_1 + 0_2 = 0_1$.

Berdasarkan sifat komutatif penjumlahan, $0_1 + 0_2 = 0_1$

 $O_2 + O_1$, artinga $O_1 = O_2$.

Jika sifat benikut juga terpenuhi:

(L4) Untuk setiap $\alpha \in \mathbb{F}$ ada $-\alpha \in \mathbb{F}$ shy $\alpha + (-\alpha) = 0$. (Adanya invers penjumlahan)

maka kita dpt membuktikan bahwa setiap anggota # memiliki invers penjumlahan yg tunggal:

Bukti Ambil a e Ff. Misalkan ada dva invers penjumlahan dari α , yaitu $(-\alpha)$, $(-\alpha)_2 \in \mathbb{F}$, maka

$$(-\alpha)_1 = (-\alpha)_1 + 0$$
, krn 0 identitas penjmlhan
$$= (-\alpha)_1 + \left[\alpha + (-\alpha)_2\right], \text{ km } (-\alpha)_2 \text{ invers}$$

$$= (-\alpha)_1 + \left[\alpha + (-\alpha)_2\right], \text{ dari sifat asosiatif penjmlhan (L1)}$$

= $0 + (-\alpha)_2$, km $(-\alpha)_1$ invers penjimlhan darih = (-d)2, krn o identitas penjmlhan. (L3)

Selanjutnya misalkan sifat serupa utk perkalian juga terpenuhi:

- (45) Utk setiap $\alpha, \beta, \gamma \in F$ berlaku $(\alpha, \beta) \gamma = \alpha(\beta, \gamma)$.

 (Asosiatif perkalian)
- (L6) Utk setiap & pet beriaku & p= Bd.

 (Komutatif perkalian)
- (L7) Ada 1 € # \ {o} sehingga uff setiap α € F berlaku α1 = α. (Adanya identitas perkaliam)
- (L8) UHK settap $\alpha \in \mathbb{F} \setminus \{0\}$ ada $\alpha^{-1} \in \mathbb{F}$ shy $\alpha \alpha^{-1} = 1$. (Adanya invers perkahian)

maka, utk setiap x, p, T & F, kita dot menulis do T tanpa menimbulkan keambiguan, dan kita dopt membuktikan bahwa identitas perkalian itu tunggal (latihan) dan setiap anggota F (EoZ memiliki invers perkalian yg tunggal (latihan).

Terakhir, misalkan:

- (L9) Utk setiap <, B, 7 = TF berlaku <pre> (Pistributif)
- Definisi Tigaan terurut (F,+,·), dengan F,+,· sebagaimana terdefinisi di atas (khususnya memenuhi (LOa) dan (LOb)), yg memenuhi sifat (aksioma)

(L1) - (L9) disebut (apangan.

N.B.

- DKL, (F, +, ·) merupakan (apangan jika semua Sifat berikut terpenuhi : asosiatif, komutatif, identitas, dan invers (baik dan + maupun ·) serta distributif.
- Jika kedua operasi tsb jelas dari konteks, cukup dikatakan bahwa # merupakan lapangan.

Contoh Himpunan? Q dan R tertutup thd operasi penjmihan dan perkalian bil real, serta merupakan lapangan; demikian pula C thdp operasi penjumlahan dan perkalian bil kompleks.

Diberikan Suatu himp tak kosong IF, suatu operasi penjmlhan, dan operasi perkalian. Utk membukti kan bahwa:

- IF lapangan, buktikan (atau sebutkan bila jelas) bahwa IF fertutup thdp kedwa operasi tsb, dan buktikan (L1)—(L9).
- F bukan lapangan, buktikan dengan contoh penyangkal bahwa F tidak tertutup thap salah satu operasi atau tidak memenuhi salah satu dari (4) - (19).

Contoh Buktikan bahwa himpunan $\mathbb{Q}[\sqrt{z}] := \{ d_1 + d_2 \sqrt{z} : d_1, d_2 \in \mathbb{Q} \}$ tertutup thdp operasi penjumlahan dan perkalian bil real, serta merupakan lapangan.

```
Jawab
 Akan dibuktikan ketertutupannya dulu. Ambil a, \beta \in \mathbb{Q}[\sqrt{2}]. Tulis \alpha = \alpha_1 + \alpha_2 \sqrt{2} dan \beta = \beta_1 + \beta_2 \sqrt{2} untuk
  svatu \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{Q}. Perhatikan
             \alpha + \beta = (\alpha_1 + \alpha_2 \sqrt{2}) + (\beta_1 + \beta_2 \sqrt{2})
                         = (\alpha_1 + \beta_1) + (\alpha_2 + \beta_2)\sqrt{2} \in \mathbb{Q}[\sqrt{2}]
  Kourena \alpha_1 + \beta_1, \alpha_2 + \beta_2 \in \mathbb{Q}, dan
              \Delta\beta = (\alpha_1 + \alpha_2 \sqrt{2})(\beta_1 + \beta_2 \sqrt{2})
= (\alpha_1\beta_1 + 2\alpha_2\beta_2) + (\alpha_1\beta_2 + \alpha_2\beta_1) \sqrt{2} \in \mathbb{Q}[\sqrt{2}] Kovena \alpha_1\beta_1 + 2\alpha_2\beta_2, \alpha_1\beta_2 + \alpha_2\beta_1 \in \mathbb{Q}.

Jadi, \mathbb{Q}[\sqrt{2}] tertutup thop operasi penjumlahan dan
 perkahàun bil real.
 Adb Q[VZ] memenuhi (L1)-(L9).
 (L1) Ambil \alpha, \beta, \mathcal{T} \in \mathbb{Q}[\sqrt{2}]. Tulis \alpha = \alpha_1 + \alpha_2\sqrt{2}, \beta = \beta_1 + \beta_2\sqrt{2}, \mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2\sqrt{2} untuk svatu \alpha_1, \alpha_2, \beta_1, \beta_2, \mathcal{T}_1, \mathcal{T}_2 \in \mathbb{Q}. Perhatikan
                     (\alpha + \beta) + \gamma = ((\alpha_1 + \alpha_2 \sqrt{2}) + (\beta_1 + \beta_2 \sqrt{2})) + (\gamma_1 + \gamma_2 \sqrt{2})
                                                   = ((\alpha_1 + \beta_1) + (\alpha_2 + \beta_2)\sqrt{2}) + (\Im_1 + \Im_2\sqrt{2})
                                                  = ((\alpha_1 + \beta_1) + \Upsilon_1) + ((\alpha_2 + \beta_2) + \Upsilon_2)\sqrt{2}
                                                  = \left( \alpha_1 + (\beta_1 + \theta_1) \right) + \left( \alpha_2 + (\beta_2 + \theta_2) \right) \sqrt{2}
                                                   = (\alpha_1 + \alpha_2 \sqrt{2}) + ((\beta_1 + \sigma_1) + (\beta_2 + \sigma_2)\sqrt{2})
```

$$= (d_1 + d_2 \sqrt{2}) + ((\beta_1 + \beta_2 \sqrt{2}) + (\eta_1 + \eta_2 \sqrt{2}))$$

$$= (d_1 + d_2 \sqrt{2}) + ((\beta_1 + \beta_2 \sqrt{2}) + (\eta_1 + \eta_2 \sqrt{2}))$$

$$= (d_1 + d_2 \sqrt{2}) + ((\beta_1 + \beta_2 \sqrt{2}) + (\eta_1 + \eta_2 \sqrt{2}))$$

(L2) (atihan

(L3) Pilih
$$0 = 0 + 0\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$$
. Ambil $x \in \mathbb{Q}[\sqrt{2}]$. Tulis $x = x_1 + x_2\sqrt{2}$ utk suatu $x_1, x_2 \in \mathbb{Q}$. Perhatikan $x + 0 = (x_1 + x_2\sqrt{2}) + (0 + 0\sqrt{2})$

$$= (x_1 + x_2\sqrt{2}) + (x_2 + x_2\sqrt{2})$$

$$= (x_1 + x_2\sqrt{2})$$

$$= x_1 + x_2\sqrt{2}$$

$$= x_1 + x_2\sqrt{2}$$

$$= x_1 + x_2\sqrt{2}$$

(L4) Ambil
$$\alpha \in \mathbb{Q}[Vi]$$
. Tuh's $\alpha = \alpha_1 + \alpha_2 \sqrt{2}$ wtk sowth $\alpha_1, \alpha_2 \in \mathbb{Q}$. Pilih $-\alpha = (-\alpha_1) + (-\alpha_2)\sqrt{2} \in \mathbb{Q}[Vi]$.

Perhatikan
$$\alpha + (-\alpha) = (\alpha_1 + \alpha_2 \sqrt{2}) + ((-\alpha_1) + (-\alpha_2)\sqrt{2})$$

$$= (\alpha_1 + (-\alpha_1)) + (\alpha_2 + (-\alpha_2))\sqrt{2}$$

$$= 0 + 0\sqrt{2}$$

$$= 0$$

(L5) (atihan

(L6) latihan

(LF) Pilih $1 = 1 + OVZ \in Q[VZ] \setminus \{0\}$ ____ (latihan)

(L8) Ambil α ∈ Q[V2]\{0}. Tulis α = α, + & E wtk suatu

$$\alpha_{1}, \alpha_{2} \in \mathbb{Q}$$
 yg tidak kedwanya nol. Pilih

 $\alpha^{-1} = \frac{\alpha_{1}}{\alpha_{1}^{2} - 2\alpha_{2}^{2}} + \frac{(-\alpha_{2})}{\alpha_{1}^{2} - 2\alpha_{2}^{2}} \sqrt{2} \in \mathbb{Q}[\sqrt{2}].$

(Perhatikan bahwa $\alpha_{1}^{2} - 2\alpha_{2}^{2} \neq 0$, Sebab jika $\alpha_{1}^{2} - 2\alpha_{2}^{2} = 0$

maka $\alpha_{1} \pm \alpha_{2}\sqrt{2} = 0 = 0 + 0\sqrt{2}$, shg $\alpha_{1} = \alpha_{2} = 0$, kontradiksi.)

Perhatikan

 $\alpha_{1}^{2} = (\alpha_{1}^{2} + \alpha_{2}\sqrt{2}) \left(\frac{\alpha_{1}^{2} - 2\alpha_{2}^{2}}{\alpha_{1}^{2} - 2\alpha_{2}^{2}} + \frac{(-\alpha_{2})}{\alpha_{1}^{2} - 2\alpha_{2}^{2}} \sqrt{2}\right)$

$$= (\alpha_{1}^{2} + \alpha_{2}\sqrt{2}) \left(\alpha_{1} - \alpha_{2}\sqrt{2}\right) \frac{1}{\alpha_{1}^{2} - 2\alpha_{2}^{2}}$$

$$= (\alpha_{1}^{2} - 2\alpha_{2}^{2}) \frac{1}{\alpha_{1}^{2} - 2\alpha_{2}^{2}}$$

$$= 1.$$

(L9) latihan.

Jadi, Q [VZ] merupakan lapangan.

Contoh Buktikan bahwa himpunani berikut Hhdp operasi penjinihan dan perkahian bil real bukan lapangan:

Jawab

- a) Karena identitas penjumlahan bil real yaitu 0 ₹ N maka N bukan lapangan.
- (b) Pilih $2 \in \mathbb{Z} \setminus \{0\}$. Jelas bahwa ufk setion $\beta \in \mathbb{Z}$

berlaku $2\beta \neq 1$. Jadi, 2 tidak memiliki invers perkahian, shg \mathbb{Z} bukan lapangan.

E) Pilih $2 \in \mathbb{Z}[V2] \setminus \{0\}$. Jelas bahwa utk setiap $\beta \in \mathbb{Z}[V2]$ berlaku $2\beta \neq 1$. Jadi, 2 tidak memiliki invers perkalian, shg $\mathbb{Z}[V2]$ bukan lapangan.

Contoh Buftikan bahwa himpunan semua matriks real invertibel 2X2 Hhdp operasi penjumlahan dan perkahian matriks bukan lapangan.

Bukti

Karena (°°) (yaifu identitas penjmlhan matriks

zxz) tidak fermuat di himpunan fsb maka himpunan tsb bukan lapangan.

Teorema [F, hlm 555] Mis IF suatu lapangan, maka (i) Utk setiap $\alpha \in \mathbb{F}$ berlaku $\alpha 0 = 0$.

(ii) Utk setiap $\alpha, \beta \in \mathbb{F}$ berlaku $(-\alpha)\beta = \alpha(-\beta) = -(\alpha\beta)$. (iii) Utk setiap $\alpha, \beta \in \mathbb{F}$ berlaku $(-\alpha)(-\beta) = \alpha\beta$.

Bukti

(i) Ambil a = IF. Karena O = IF identitas penjumlahan, maka

0+0=0. Kalikan kedua ruas dgn \propto dari kiri, diperoleh

 $\alpha(0 \neq 0) = \alpha 0.$

Tambahkan kedua ruas dengan — (x0) dari kanan,

diperoleh $(\times 0 + \times 0) + (-(\times 0)) = \times 0 + (-(\times 0)).$ Sifat asosiatif penjumlahan memberikan 40 + (40 + (-(40))) = 40 + (-(40)).

Sifat invers penjumlahan memberikan d0+0=0.Sifat identitas penjumlahan memberikan d0 = 0

Ambil $\alpha, \beta \in \mathbb{F}$. Adb dulu bahwa $(-\alpha)\beta = -(\alpha\beta)$. Sifat invers penjumlahan memberikan $\alpha + (-\alpha) = 0.$

Kalikan kedua ruas dgn ß dari kanan, diperoleh

 $[a+(-a)]\beta=0\beta$. Sifat komutatif perkalian dan distributif memberikan $\alpha\beta + (-\alpha)\beta = \beta0.$ Butir (i) memberikan

 $\alpha\beta+(-\alpha)\beta=0.$

Ketunggalan invers penjumlahan memberikan (-a) β = -(a β). Selanjutnya harus dibuktikan bahwa $\alpha(-\beta) = -(\alpha\beta)$; caranya serupa (latihan).

(iii) Ambil a, B∈ F. Dengan menggunakan (ii) dua kali diperoleh $(-\alpha)(-\beta) = -(\alpha(-\beta)) = -(-(\alpha\beta)) = \alpha\beta.$