

- o Problem description
- ° Methodology
 - Multiplicative update algorithm
 - o Projected gradient method
- ° Projected gradient methods for NMF
 - Directly apply
 - Divide and conquer
- Solution integrity
- o Demo

Problem description

Key idea of NMF:

$$V = WH$$

(1)

(2)

 $V \in \mathbb{R}^{n \times m}, W \in \mathbb{R}^{n \times r}, H \in \mathbb{R}^{r \times m}, r < min(n, m)$

Constrain optimization problem:

$$\min_{W,H} f(W,H) = \left| |V - WH| \right|_F^2$$

$$W_{ij} \geq 0, H_{ij} \geq 0, \forall i, j$$

Gradient of objective function:

$$\nabla f(W,H) = [\nabla_W f(W,H), \nabla_H f(W,H)]$$

= [(WH - V)H^T, W^T(WH - V)] (3)

- o Problem description
- Methodology
 - o Multiplicative update algorithm
 - ° Projected gradient method
- ° Projected gradient methods for NMF
 - o Directly apply
 - Divide and conquer
- Solution integrity
- o Demo

Multiplicative update algorithm

Multiplicative update algorithm:

$$W_{ia}^{k+1} = W_{ia}^{k} \frac{\left(V(H^{k})^{T}\right)_{ia}}{\left(W^{k}H^{k}(H^{k})^{T}\right)_{ia}}, \forall i, a$$

$$H_{bj}^{k+1} = H_{bj}^{k} \frac{\left(\left(W^{k+1} \right)^{T} V \right)_{bj}}{\left(\left(W^{k+1} \right)^{T} W^{k+1} H^{k} \right)_{bj}}, \forall b, j$$

When
$$W_{ia}^{k+1} = W_{ia}^k > 0$$
, then $\left(V(H^k)^T\right)_{ia} = \left(W^k H^k (H^k)^T\right)_{ia}$, implies that $\nabla_W f(W^k, H^k)_{ia} = 0$

Projected gradients method

Projected gradients method:

$$x^{k+1} = P[x^k - \alpha^k \nabla f(x^k)]$$

Where

$$P[x_i] = \begin{cases} x_i & \text{if } l_i < x_i < u_i, \\ u_i & \text{if } x_i \ge u_i, \\ l_i & \text{if } x_i \le l_i \end{cases}$$

u and l means the boundaries.

- o Problem description
- ° Methodology
 - Multiplicative update algorithm
 - o Projected gradient method
- ° Projected gradient methods for NMF
 - Directly apply
 - o Divide and conquer
- Solution integrity
- o Demo

Directly applying projected gradients

Projected gradient method:

$$(W^{k+1}, H^{k+1}) = P\left[(W^k, H^k) - \alpha \left(\nabla_W f(W^k, H^k), \nabla_H f(W^k, H^k) \right) \right]$$

Stopping condition:

$$\left| \left| \nabla^P f(W^k, H^k) \right| \right|_F \le \epsilon \left| \left| \nabla f(W^1, H^1) \right| \right|_F$$

The projected gradient operator is define as follows:

$$\nabla^P f(x)_i = \begin{cases} \nabla f(x)_i & \text{if } l_i < x_i < u_i, \\ \min(0, \nabla f(x)_i) & \text{if } x_i = l_i, \\ \max(0, \nabla f(x)_i) & \text{if } x_i = u_i. \end{cases}$$

Divide and conquer algorithm

Alternating non-negative least squares method:

$$W^{k+1} = \underset{W \ge 0}{\operatorname{argmin}} f(W, H^k),$$

$$H^{k+1} = \underset{H \ge 0}{\operatorname{argmin}} f(W^{k+1}, H)^k.$$

In each sub-problem we have following algorithm:

Given initial point $W_{ia} \ge 0$, $H_{jb} \ge 0$,

- (S0) Fixed H^k , update $W^{k+1} = P[W^k \alpha \nabla f(W^k)]$ until convergence.
- (S1) Fixed W^{k+1} , update $H^{k+1} = P[H^k \alpha \nabla f(H^k)]$ until convergence.
- (S2) Repeat S0 and S1 until $\nabla f(W^{k+1}, H^{k+1}) \le \epsilon \nabla f(W^1, H^1)$
- (S3) Return W and H.

- ° Problem description
- ° Methodology
 - Multiplicative update algorithm
 - o Projected gradient method
- ° Projected gradient methods for NMF
 - Directly apply
 - Divide and conquer
- Solution integrity
- o Demo

Solution integrity

Karush-Kuhn-Tucker (KKT) optimality condition:

$$\begin{cases} \nabla_x L(x^*, \lambda^*) = 0 \\ C_i(x^*) = 0, \ \forall i \in \epsilon \\ C_i(x^*) \ge 0, \ \forall i \in \mathcal{I} \\ \lambda_i^* \ge 0, \ \forall i \in \mathcal{I} \\ \lambda_i^* C_i(x^*) = 0, \ \forall i \in \epsilon \cup \mathcal{I} \end{cases} \Omega = \begin{cases} x \middle| C_i(x) = 0, \ i \in \epsilon \\ C_i(x) \ge 0, \ i \in \mathcal{I} \end{cases}$$

It is equal to following conditions,

$$\begin{cases} W_{ia} \ge 0, & H_{jb} \ge 0. \\ \nabla_w f(W, H)_{ia} \ge 0, & \nabla_H f(W, H)_{jb} \ge 0 & \forall i, j, a, b \\ W_{ia} \cdot \nabla_w f(W, H)_{ia} = 0, & H_{jb} \cdot \nabla_H f(W, H)_{jb} = 0, \end{cases}$$

Solution integrity

- 1. According to Gonzales and Zhang (2005) points the flaw of multiplicative update method usually do not satisfy KKT condition.
- 2. The alternating non-negative least squares method is guarantee by corollary 2 of Grippo and Sciandrone (2000), we can claim that the result of this method is a stationary point.

We proof the KKT condition of directly apply projected gradient method with stopping condition will be elaborate in next slide.

Solution integrity

The projected gradient operator is define as follows:

$$\nabla^P f(x)_i = \begin{cases} \nabla f(x)_i & \text{if } l_i < x_i < u_i, \\ \min(0, \nabla f(x)_i) & \text{if } x_i = l_i, \\ \max(0, \nabla f(x)_i) & \text{if } x_i = u_i. \end{cases}$$

This condition is an equivalent form of the KKT condition for bounded problems.

$$l_i \le x_i \le u_i, \forall i, \qquad ||\nabla^P f(x)|| = 0.$$

Here is the recall of KKT condition for this problem.

$$\begin{cases} W_{ia} \ge 0, & H_{jb} \ge 0. \\ \nabla_w f(W, H)_{ia} \ge 0, & \nabla_H f(W, H)_{jb} \ge 0 & \forall i, j, a, b \\ W_{ia} \cdot \nabla_w f(W, H)_{ia} = 0, & H_{jb} \cdot \nabla_H f(W, H)_{jb} = 0, \end{cases}$$

- ° Problem description
- ° Methodology
 - Multiplicative update algorithm
 - ° Projected gradient method
- ° Projected gradient methods for NMF
 - o Directly apply
 - Divide and conquer
- Solution integrity
- o Demo

Complementary condition

Objective value

Condition number

Further discussion

We apply the idea of ADMM on the alternating update method. Following is the numerical result.

Conclusion

From the above numerical results, we found that the alternating non-negative least squares method is better than multiplicative update algorithm and directly apply projected gradient method to NMF.

- Multiplicative update algorithm convergence faster than directly apply projected gradient method.
- The alternating non-negative least squares method is better because the cost is lower and performance is better than multiplicative algorithm.

