Price Customization

Asim Ansari

Agenda

- Price Structures
- ■B2B Pricing Context
- Logistic Regression
- Application

Price Structure

- Architecture around which the firm's pricing mix is designed
- Used to leverage heterogeneity in price sensitivities arising from different dimensions
 - Preferences for product attributes
 - Timing of the purchase
 - Number of units bought

B2B Buying & Decision Process

Data

- Many observations (purchase events) per customer
- We observe:
 - Time of purchase event
 - Quantity requested
 - Quote request or direct order
 - Quote acceptance/rejection
 - Price

Objective

- Determine what factors influence a customer to accept our bid
- How can we price our bid so that we have a higher chance of winning?

Modeling Framework

Modeling Bids

- Dependent Variable: Won or Not (0 /1)
- Possible Independent Variables (Continuous)
 - Price
 - Time since last contact
 - Quantity

Modeling Bids

Customer	Bid Won	Time	Quantity	Price/lb	Cost/lb
1	0	9.000	3.500	2.126	1.585
1	0	0.071	1.150	3.247	1.780
1	0	6.286	0.205	2.400	1.534
1	0	10.000	1.025	2.100	1.750
1	1	0.286	0.232	2.603	1.920
1	0	0.714	1.058	2.948	2.130
2	0	0.429	0.536	2.593	1.731
2	0	9.714	1.371	2.540	1.846
2	1	19.429	0.126	2.532	1.699

Continuous Dependent Variable: Regression Analysis

A simple regression equation is given by

$$y_i = \alpha + \beta x_i + e_i$$

This is the same as

$$y_i = E(y_i \mid x_i) + e_i$$

■ The expectation (mean) is assumed to be linear. i.e.,

$$E(y_i | x_i) = \alpha + \beta x_i$$

Regression Analysis

Modeling Bids: Discrete Choice Model

- The dependent variable *Y* is discrete, i.e., it is Bernoulli
- The variable *Y* is distributed Bernoulli means that
 - $y_i = 1$ with probability p_i
 - y_i =0 with probability 1- p_i

The mean of the Bernoulli distribution is given by p, i.e., $E(y_i | x_i) = p(x_i)$

Modeling Bids

Can we write

$$E(y_i | x_i) = p(x_i) = \alpha + \beta x_i$$

- The left side is a probability, i.e., it is restricted to be between 0 and 1.
- The right side, however, is unbounded
- A logistic regression can be useful in modeling this

Logistic Regression

• We assume that the logit of the probability is linear, i.e.,

$$\ln(\frac{p(x_i)}{1-p(x_i)}) = \alpha + \beta x_i$$

This means that the probability of success can be written as

$$p(x_i) = \frac{\exp(\alpha + \beta x_i)}{1 + \exp(\alpha + \beta x_i)}$$

Logistic Regression

Multiple Logistic Regression

We can do similarly when we have more than one independent variable

$$p_{i} = \frac{\exp(\alpha + \beta_{1}Price_{i} + \beta_{2}Feature_{i})}{1 + \exp(\alpha + \beta_{1}Price_{i} + \beta_{2}Feature_{i})}$$

• We need to find the values of the model parameters, i.e., α , β_1 , β_2 which are most consistent with the data

Multiple Logistic Regression

- We can use Maximum Likelihood Estimation to obtain the values of the parameters
- Maximum Likelihood Estimates (MLE's) are those values of the parameters, that maximize the probability (Likelihood) of observing our dataset
- We can use the R software to compute the parameter Estimates

Logistic Regression of B2B Data

- Dependent variable (Bid Won)
- Independent Variables
 - Price /lb
 - Quantity sought
 - Time since last purchase event

Logistic Regression Estimates

LogisticRegTrain (7,5)	Constant	Time	Quantity	PricePerLb
Coefficients	0.646	-0.031	-0.486	-0.194
Std error	0.055	0.003	0.025	0.015
p-value	8.56E-32	3.27E-33	1.23E-82	1.8238E-37
Log-likelihood	-10351.2			
Number valid obs	15887			
Total obs	15887			

Prospect Theory and Framing

Behavioral Approach: Prospect Theory

- Value is judged relative to a reference point
- Losses loom larger than gains (estimates range from 2.0x-2.5x)
- Diminishing sensitivity in both directions

Concepts from Prospect Theory

- Loss aversion
- Hedonic Framing
- Mental Accounting

How do these affect <u>pricing</u>? (And how can you make use 9 of them as a manager?)

Loss Aversion

- Consider the following situation:
 - Station A sells gasoline for \$3.60 per gallon but gives a discount of \$0.10 per gallon if you pay cash
 - Station B sells gasoline for \$3.50 per gallon but charges a surcharge of \$0.10 per gallon if you pay by a credit card

Which station would a buyer using a credit card be more likely to prefer?

Reference Prices

- Transaction utility measures perceived value of the 'deal', defined as the difference between price and the 'reference price'
 - Have you ever bought a piece of clothing primarily because it was heavily discounted and then barely worn it?

Reference Prices

- How are reference prices formed?
 - Last price?
 - Quantity weighted or recency weighted past prices?
- How long does a given reference price last?
 - Depends upon the purchase cycle
 - Importance of the product category

Behavioral Effects

- Bid Acceptance could depend upon Reference prices
- The price last paid can be considered the Reference price
- Prospect theory suggests that reference price effects are asymmetric, i.e.,
 - Losses loom larger than gains

Asymmetric Reference Price Effects

Gain

$$gain_{i} = \begin{cases} referencePrice_{i} - price_{i}, & \text{If } price_{i} < referencePrice_{i}, \\ 0, & \text{Otherwise.} \end{cases}$$

LOSS $loss_{i} = \begin{cases} price_{i} - referencePrice_{i}, & \text{If } price_{i} > referencePrice_{i}, \\ 0, & \text{Otherwise.} \end{cases}$

Model with Reference Prices

LogisticRegTrain (7,8)	Constant	Time	Quantity	Gain	Loss	Qgain	Qloss
Coefficients	0.132	-0.032	-0.502	0.106	-0.324	0.055	-0.138
Std error	0.028	0.003	0.031	0.021	0.025	0.018	0.074
p-value	2E-06	2E-35	8E-60	5E-07	6E-38	2E-03	6E-02
Log-likelihood	-10237.3						

Model Selection

- How do we choose among different models?
- Need to balance goodness of fit against model complexity
- Bayesian Information Criterion (BIC) can be used to select models, where,
 - k is the number of model parameters
 - n is the number of observations
- The model with the lower BIC is preferred

$$BIC = -2 Max Log Like + k ln(n)$$

Dynamic Targeted Optimal Pricing Policy

- Given the firm's cost structure, what should the optimal pricing be for each buyer at each purchase event?
- Given a potential order, and given the model parameters, one can use the profit function to set the price that maximizes expected profit

Optimization Based on Model 1

Optimization								
Imagine that you a	ire facing a quo	te request which	ch involves the	following scena	rio, where	you need	to set the p	orice per lb
You need to select	the price that i	maximizes the ϵ	expected profit	We can use So	lver to con	npute the o	optimal pri	ce
Time	Quantity	PricePerLb	LagPrice	CostPerLb				
9.000	3.500	7.094	2.200	1.585				
Prob(Win)	Expected Profi	t						
0.062581441	1.206602976							

Optimization based on Model 2

Model 2 gives lower optimal price

Time	Quantity	Loss	Gain	Qloss	Qgain	PricePerLb	LagPrice	CostPerLb
9.000	3.500	0.726	0.000	2.541	0.000	2.926	2.200	1.585
Prob(Win)	Expected Profi	t						
0.075591633	0.354782403							

Summary

- Discrete choice data can be modeled using
 - Logistic regression (binary choices)
 - Multinomial Logit model (choice among many brands)
- Customer-level choices are governed by behavioral effects such as Reference prices
- Statistical estimates can be used to maximize expected profits
- Quality of Optimal Prices depends upon the quality of your response model