MAT. DISCRETA 7

INDUZIONE

Cos'è l'induzione (in parole semplici)**

L'induzione è un modo per dimostrare che una proprietà P(n) è vera per tutti gli interi $n \ge n_0$. Si fanno due cose:

- 1. Base: dimostrare che $P(n_0)$ è vera (di solito $n_0=1$).
- 2. **Passo induttivo**: assumere che P(n) sia vera per un generico n (questa è l'**ipotesi induttiva**) e usare questa ipotesi per dimostrare P(n+1).

Se riesci, allora la proprietà vale per n_0 , per n_0+1 , per n_0+2 , ecc. — cioè per tutti.

Esercizio: Dimostrare per induzione che per ogni $n \in \mathbb{N}, n \geq 1,$ $\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2.$

Approccio

Si riconosce la nota identità $\sum k^3 = \left(\sum k\right)^2 : infatti \sum_{k=1}^n k = \frac{n(n+1)}{2}$ e elevando al quadrato si ottiene la formula. Qui però chiedono *per induzione* quindi si fa il classico passo base + passo induttivo.

Calcoliamo per piccoli n per vedere la relazione.

- n=1: sinistra =1 3 = 1. Destra $\frac{1}{4}\cdot 1^2\cdot 2^2=\frac{1}{4}\cdot 1\cdot 4=1$. OK.
- n=2: sinistra =1 $^3+2^3=1+8=9$. Destra $-\frac{1}{4}\cdot 2^2\cdot 3^2=\frac{1}{4}\cdot 4\cdot 9=9$ OK.
- n=3: sinistra =1+8+27=36. Destra $\frac{1}{4} \cdot 9 \cdot 16 = \frac{144}{4} = 36$. OK.

Passo 1 — Base (n=1)**

Per n=1:

$$\sum_{k=1}^{1} k^3 = 1^3 = 1,$$
 $\frac{1}{4} \cdot 1^2 \cdot (1+1)^2 = \frac{1}{4} \cdot 1 \cdot 2^2 = \frac{1}{4} \cdot 4 = 1.$

Quindi P(1) è vera.

Passo 2 — Ipotesi induttiva

Supponiamo che per un generico $n \ge 1$ valga

$$\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$$
.

Questa è la nostra **ipotesi**: la usiamo per ricavare la formula per n+1.

Passo 3 — Dimostrare P(n+1)

Scriviamo la somma fino a n+1 come somma fino a n più l'ultimo termine:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k^3\right) + (n+1)^3.$$

Scriviamo la somma fino a n+1 come somma fino a n più l'ultimo termine:

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k^3\right) + (n+1)^3.$$

Ora sostituiamo l'ipotesi induttiva (la prima parte) con la sua espressione:

$$\sum_{k=1}^{n+1} k^3 = \frac{1}{4} n^2 (n+1)^2 + (n+1)^3.$$

Adesso dobbiamo trasformare questa espressione nella forma prevista con n+1: desideriamo ottenere $\frac{1}{4}(n+1)^2(n+2)^2$.

Procediamo con i passaggi algebrici, uno per volta:

Metti in evidenza il fattore comune $(n+1)^2$ (compare in entrambe le addendi, perché $(n+1)^3=(n+1)^2\cdot(n+1)$):

$$\frac{1}{4} n^2 (n+1)^2 + (n+1)^3 = (n+1)^2\left(\frac{1}{4}n^2 + (n+1)\right).$$

Sommiamo dentro la parentesi i termini $\frac{1}{4}n^2en+1$. Per sommarli, portiamo n+1 allo stesso denominatore (4):

$$n+1=rac{4(n+1)}{4}=rac{4n+4}{4}$$
.

Osserva che n^2+4n+4 è un quadrato perfetto:

$$n^2 + 4n + 4 = (n+2)^2$$
.

Quindi

$$\frac{n^2 + 4n + 4}{4} = \frac{(n+2)^2}{4}.$$

4. Sostituisci questo nella fattorizzazione:

$$\sum_{k=1}^{n+1} k^3 = (n+1)^2 \cdot \frac{(n+2)^2}{4} = \frac{1}{4} (n+1)^2 (n+2)^2.$$

Questo è esattamente la formula P(n+1). Quindi, a partire dall'ipotesi induttiva, abbiamo ottenuto la formula per n+1.

Conclusione

Abbiamo verificato la base P(1), e abbiamo mostrato che $P(n) \Rightarrow P(n+1)$. Per il principio di induzione, la formula è vera per ogni $n \ge 1$.

Esempio di traccia Fornito da dott. Milo:

"WhatsApp Image 2025-09-15 at 20.00.10.jpeg" could not be found.

MAT. DISCRETA 7

"WhatsApp Image 2025-09-15 at 20.00.15.jpeg" could not be found.