

Comparing More than Two Observations

Dmitriy Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

The Closest Observation to a Pair

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
- Is 3 is closest to group 1,4?

Linkage Criteria: Complete

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
 - max(D(2,1), D(2,4)) = **20.6**
- Is 3 is closest to group 1,4?
 - max(D(3,1), D(3,4)) = **16.8**

Hierarchical Clustering

Complete Linkage: maximum distance between two sets

Linkage Criteria

Complete Linkage: maximum distance between two sets

Single Linkage: minimum distance between two sets

Average Linkage: average distance between two sets

Let's practice!

Capturing K Clusters

Dmitriy Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Hierarchical Clustering in R

Extracting K Clusters

```
cluster assignments <- cutree(hc players, k = 2)</pre>
print(cluster_assignments)
[1] 1 1 1 1 2 2
library(dplyr)
players clustered <- mutate(players, cluster = cluster assignments)</pre>
print(players_clustered)
        y cluster
  <dbl> <dbl> <int>
```

Visualizing K-Clusters

```
library(ggplot2)
ggplot(players_clustered, aes(x = x, y = y, color = factor(cluster))) +
   geom_point()
```


Let's practice!

Visualizing the Dendrogram

Dmitriy Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Building the Dendrogram

Cluster Dendrogram

hclust (*, "complete")

Building the Dendrogram

Cluster Dendrogram

hclust (*, "complete")

Building the Dendrogram

Cluster Dendrogram

hclust (*, "complete")

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Cluster Dendrogram

Plotting the Dendrogram

plot(hc_players)

Let's practice!

Cutting the Tree

Dmitriy Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Cluster Dendrogram

hclust (*, "complete")

Cluster Dendrogram

Cluster Dendrogram

Coloring the Dendrogram - Height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>
```


Coloring the Dendrogram - Height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>
```


Coloring the Dendrogram - Height

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 10)
plot(dend_colored)</pre>
```


Coloring the Dendrogram - K

```
library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, k = 2)
plot(dend_colored)</pre>
```


cutree() using height

```
cluster assignments <- cutree(hc players, h = 15)</pre>
print(cluster_assignments)
[1] 1 1 1 1 2 2
library(dplyr)
players clustered <- mutate(players, cluster = cluster assignments)</pre>
print(players_clustered)
        y cluster
  <dbl> <dbl> <int>
```


Let's practice!

Making Sense of the Clusters

Dmitriy Gorenshteyn
Sr. Data Scientist,
Memorial Sloan Kettering Cancer Center

Wholesale Dataset

- 45 observations
- 3 features:
 - Milk Spending
 - Grocery Spending
 - Frozen Food Spending

Wholesale Dataset

```
print(customers_spend)
   Milk Grocery Frozen
  11103
          12469
                   902
   2013
          6550
                  909
   1897
         5234
                 417
   1304
          3643
                  3045
   3199
           6986
                  1455
```


Exploring More Than 2 Dimensions

- Plot 2 dimensions at a time
- Visualize using PCA
- Summary statistics by feature

Segment the Customers