

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

UNIDAD DE APRENDIZAJE:

Control de sistemas mecatrónicos

NIVEL:

IV

PROPOSITO DE LA UNIDAD DE APRENDIZAJE:

Diseña esquemas de control de sistemas mecatrónicos con base en las herramientas de la teoría de control.

CONTENIDOS:

Análisis de sistemas en variables de estado. l.

Diseño de sistemas de control en espacio de estados H

Introducción a sistemas de control digital III.

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en el método de casos. El (la) facilitador(a) aplicará los métodos analítico, analógico y deductivo. Las técnicas y actividades de aprendizaje que auxiliarán a la estrategia seleccionada serán las siguientes: análisis y solución de problemas, realización de prácticas de laboratorio, búsqueda y manejo de información, organizadores gráficos, y modelado de dispositivos mecatrónicos.

EVALUACIÓN Y ACREDITACIÓN:

La presente unidad de aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación diagnóstica, evaluación formativa, sumativa y rubricas de autoevaluación, coevaluación y heteroevaluación.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los lineamientos establecidos por la Academia.
- Acreditación en otra Unidad Académica del IPN u otra institución educativa externa al Instituto Nacional ó internacional previo convenio establecido.

BIBLIOGRAFÍA:

- Dorf, R. C. & Bishop, R. H. (2008). Modern Control Systems (10th Edition). Canada: Pearson Education, Inc. ISBN: 0-13-206710-2-978-0-13-206710-2
- Nise, N. S. (2010). Control Systems Engineering (6th Edition). USA: Wiley . ISBN: 978-0470547564.
- Ogata, K. (2010), Ingeniería de Control Moderna (5ª Edición). España: Pearson. ISBN: 978-84-8322-955-
- Ogata, K. (1996). Sistemas de Control en Tiempo Discreto. México: Prentice Hail. ISBN: 968-880-539-4.
- Wilamowski, B. M. & Irwin, J.D. (2011), The Industrial Electronics Handbooks Control and Mechatronics (2nd Edition). USA: CRC Press. ISBN: 978-1-4398-0287-8.

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y TECNOLOGÍAS AVANZADA.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

SALIDA LATERAL: N/A

ÁREA DE FORMACIÓN: Profesional

MODALIDAD: Escolarizada

UNIDAD DE APRENDIZAJE: Control de sistemas

mecatrónicos

TIPO DE UNIDAD DE APRENDIZAJE:

Teórico – práctica / Obligatoria

VIGENCIA: Agosto 2013

NIVEL: IV

CRÉDITOS: 6 Tepic - 4.25 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye con el perfil de egreso del Ingeniero en Mecatrónica debido a que mediante la aplicación de herramientas computacionales formula criterios para el análisis y la síntesis de dispositivos mecatrónicos, así como su respectiva validación. Asimismo, favorece las siguientes competencias: habilidad para el planteamiento y solución de problemas ingenieriles, el trabajo en equipo y la interpretación de resultados. Además, fomenta y desarrolla la comunicación asertiva, la creatividad, el pensamiento analítico y responsabilidad.

Las unidades de aprendizaje precedentes son: análisis de señales y sistemas, modelado y simulación de sistemas mecatrónicos, control clásico, control distribuido y las consecuentes son: control de sistemas robóticos, control de máquinas eléctricas, control de procesos industriales, control inteligente.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Diseña esquemas de control de sistemas mecatrónicos con base en las herramientas de la teoría de control.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 1.5

HORAS PRÁCTICA/SEMANA: 3.0.

HORAS TEORÍA/SEMESTRE: 27

HORAS PRÁCTICA/SEMESTRE:54

HORAS TOTALES/SEMESTRE: 81

UNIDAD DE APRENDIZAJE DISEÑADA POR: La Academia de Mecatrónica.

REVISADA POR: Subdirección Académica

APROBADA POR: () Secolar.

INSTITUTO POLITECHICO MACIONAL Uninas profesional memiscoplinama En ingeniena y Teg. Ayanzasas Dirego Cidn

M. en C. Arodi Rafael Carvallo Dominguez Presidente del CTCE.

5 de julio de 2013

AUTORIZADO POR:

Comisión de Programas Académicos del Consejo General Consultivo del IPN.

E EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN

Dr. Emmanus Sejandro Merchan Cruz (O

Secretario Técnico de la Comisión de Programas Académicos. 7 de agosto de 2013

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Control de sistemas mecatrónicos

HOJA: 3

8

Nº UNIDAD TEMÁTICA: I

NOMBRE: Análisis de sistemas en variables de estado

UNIDAD DE COMPETENCIA

Determina la solución de ecuaciones en espacio de estados con base en las herramientas de algebra lineal, ecuaciones diferenciales y la teoría básica de control moderno

ecuaciones	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
		Т	Р	Ŧ	P	
1.1	Introducción: diferencia entre sistemas lineales y no lineales.	0.5		0.5		5B,6B,8C
1.2	Transformaciones de similitud.	1.0		2.0	0.5	
1.3	Observabilidad y controlabilidad	0.5		2.0	0.5	
1.4	Solución de ecuaciones en espacio de estados	1.0	0.5	5.5		
	Subtotales	: 3.0	0.5	10.0	1.0	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso y formación de equipos de trabajo.

La presente unidad se abordará mediante la estrategia de aprendizaje basado en el método de casos. El (la) facilitador(a) aplicará los métodos analítico y deductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: análisis y resolución de problemas, indagación documental, manejo de información, organizadores gráficos y la realización de las prácticas 1, 2 y 3.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica

Portafolio de evidencias:

15% Problemarios resueltos 25% Reportes de prácticas 10% Organizadores gráficos 50% Evaluación escrita

Autoevaluación (rúbrica) Coevaluación (rúbrica)

SECRE IARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Control de sistemas mecatrónicos

HOJA: 4

8

N° UNIDAD TEMÁTICA: II

NOMBRE: Diseño de sistemas de control en espacio de estados

UNIDAD DE COMPETENCIA

Analiza esquemas de control en sistemas lineales e invariantes en el tiempo con base en la teoría del control moderno

	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
		Т	P	Т	P	
2.1	Ubicación de polos	0.5	l)	1.0	2.0	2B,5B,6B,1C
2.2	Diseño de observadores de estado	0.5	0.5	1.5	3.0	
2.3	Retroalimentación de estado estática	0.5	0.5	1.5	5.0	
2.4	Análisis de estabilidad de Lyapunov	0.5	2.0	2.0	5.0	La Company of the Com
	Subtotales	2.0	3.0	6.0	15.0	

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará mediante la estrategia de aprendizaje basado en el método de casos. El (la) facilitador(a) aplicará los métodos analítico, analógico y deductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: análisis y resolución de problemas y realización de las prácticas de laboratorio 4, 5, 6, 7, 8, 9 y 10.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Problemarios resueltos

25%

Reportes de prácticas

40%

Evaluación escrita

35%

Autoevaluación (rúbrica) Coevaluación (rúbrica)

SECRETARIA

DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Control de sistemas mecatrónicos

HOJA: 5

8

N° UNIDAD TEMÁTICA: III

NOMBRE: Introducción a sistemas de control digital

UNIDAD DE COMPETENCIA

Simula controladores discretos con base en las herramientas de la teoría de control y de sistemas digitales

	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
		T	Р	Т	P	
3.1	Sistemas muestreados retroalimentados		1.5	1.0	5.0	7B,3C,4C,8C
3.2	Técnicas de diseño de controladores de sistemas digitales (e. g., root locus)	0.5	1.0	1.0	5.0	
3.3	Consideraciones sobre la Implementación de controladores de sistemas digitales	0.5	1.0	0.5	5.0	
3.4	Análisis de Sistemas Digitales MIMO en espacio de estados	0.5	1.0	1.0	5.0	
3.5	Técnicas de diseño de controladores digitales (e. g., ubicación de polos, observadores, compensadores).	0.5	1.0	0.5	9.0	
	Subtotales:		5.5	4.0	29.0	

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará mediante la estrategia de aprendizaje basado en el método de casos. El (la) facilitador(a) aplicará los métodos analítico, analógico y deductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: análisis y resolución de problemas y realización de las prácticas de laboratorio 11, 12, 13, 14 y 15.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Problemarios resueltos

25%

Reportes de prácticas

50%

Evaluación escrita

25%

Autoevaluación (rúbrica) Coevaluación (rúbrica)

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL

DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Control de sistemas mecatrónicos

HOJA: 6

8

	RELACIÓN DE	PRÁCTICAS		
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Cálculo de la exponencial de una matriz	1	0.5	
2	Determinación de la observabilidad y controlabilidad de un sistema LTI. Solución de una ecuación diferencial lineal	1	0.5	
3	de segundo orden	1	0.5	
4	Ubicación de los polos de un sistema mediante distintos métodos	ni.	2.0	
5	Diseño de observadores de estado para diferentes sistemas LTI	11	3.5	
6	Retroalimentación de estado proporcional (P)	И	1.0	
7	Retroalimentación de estado proporcional- derivativo (PD)	Н	1.5	
8	Retroalimentación de estado proporcional- integral (PI)		1.5	Sala de cómputo
9	Retroalimentación de estado proporcional- integral-derivativo (PID)	N N	1.5	
10	Análisis de la estabilidad de Lyapunov en lazo cerrado de varios sistemas LTI	11	7.0	
11	Simulación de sistemas discretizados LTI con retroalimentación Diseño de un controlador digital mediante	111	6.5	UNIDOS
12	root locus.	m	6.0	Sov ⁴ 3 th
13	Práctica guiada de la implementación de un controlador digital	m	6.0	
14	Análisis de Sistemas Digitales MIMO en espacio de estados Diseño y simulación de controladores	188	6.0	SECRETARÍA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN
15	digitales	411	10.0	DE EDUCACIÓN SUPERIOR
		TOTAL DE HORAS	54.0	

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas se consideran requisito indispensable para acreditar esta unidad de aprendizaje. Las prácticas aportan el 41% de la calificación de la unidad de aprendizaje, en la unidad temática I su valor es del 25%, en la unidad temática II es el 40% y en la unidad temática III es de 50%, lo cual está considerado dentro de la evaluación continua.

UNIDAD DE APRENDIZAJE:

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA ACADÉMICA

Control de sistemas mecatrónicos HOJA:

PERÍODO	UNIDAD		PROCEDIMIENTO DE EVALUACIÓN	SUN POS No
1			50% 50%	
2	11	Evaluación continua 6: Evaluación escrita 3		SECRETARIA
3	H	Evaluación continua Evaluación escrita	75% 25%	DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR
		final son: La unidad I aporta el La unidad II aporta el	os que cada unidad temática contribuye 20% de la calificación final. 40% de la calificación final. 40% de la calificación final.	en a la evaluación
		 Evaluación d lineamientos q Acreditación e 	dizaje también se puede acreditar med le saberes previamente adquiridos que establezca la Academia. en otra Unidad Académica del IPN u otr tituto Nacional ó internacional previo co	con base en los a institución educativa

CLAVE	В	C	BIBLIOGRAFÍA
1		X	D'Andrea-Novel, B. & De Lara, M. (2013) Control Theory for Engineers. USA: Springer-Verlag. ISBN 978-3-642-34323-0.
2	X		Dorf, R. C. & Bishop, R. H. (2008). Modern Control Systems (10 th Edition). Canada: Pearson Education, Inc. ISBN: 0-13-206710-2-978-0-13-206710-2.
3		X	Engelberg, S. (2005) A mathematical Introduction to Control Theory. U. K.: Imperial College Press. ISBN: 1-86094-570-8.
4		X	Landau, I. D. & Zito, G. (2006) Digital Control Systems: Design, Identification and Implementation. Germany: Springer-Verlag. ISBN 978-1-84628-055-9.
5	X		Nise, N. S. (2010). Control Systems Engineering (6 th Edition). USA: Wiley. ISBN: 978-0470547564.
6	X		Ogata, K. (2010), Ingeniería de Control Moderna (5ª Edición). España: Pearson. ISBN: 978-84-8322-955-2.
7	X		Ogata, K. (1996). Sistemas de Control en Tiempo Discreto (2ª Edición). México: Prentice Hall. ISBN: 968-880-539-4.
8		Х	Wilamowski, B. M. & Irwin, J.D. (2011), The Industrial Electronics Handbook: Control and Mechatronics (2 nd Edition). USA: CRC Press. ISBN: 978-1-4398-0287-8.

SECRETARÍA ACADÉMICA

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

1. DATOS GENERALES

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERIA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO:

Ingeniería Mecatrónica

NIVEL IV

ÁREA DE FORMACIÓN:

Institucional

Científica Básica

Profesional

Terminal v de Integración

ACADEMIA: Mecatrónica

UNIDAD DE APRENDIZAJE: Control de sistemas

mecatrónicos

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

Doctorado o Maestría en Mecatrónica o afín

2. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE: Diseña esquemas de control de sistemas mecatrónicos con base en las herramientas de la teoría de control.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
Control Clásico. Modelado y simulación de sistemas físicos. Cálculo diferencial e integral. Álgebra Lineal. Transformada de Laplace. Ecuaciones diferenciales. Control Moderno. Control Digital Clásico y Moderno. Modelo Educativo Institucional (MEI)	Dos años de experiencia mínima profesional y de docencia en el campo de la ingeniería de control automático o área afín. SECRETARÍA DE EDUCACIÓN PÚBLICA TO POLITÉCNICO NACIONAL DIRECCIÓN	Dominio de la asignatura Manejo de grupo. Capacidad de análisis y síntesis. Comunicación asertiva. Habilidad didáctica y pedagógica. Uso de laboratorio Aplicar el MEI Manejo de las Tecnologías de la Información y Comunicación (TIC)	Vocación por la docencia Honestidad Critica fundamentada Respeto (relación maestro- alumno) Ética profesional y personal Responsabilidad Científica Trabajo en equipo Superación docente y profesional Compromiso social y ambiental Compromiso Institucional Puntualidad

ELABORÓ

Leonel Germán Corona Ramírez Presidente de Academia

M. en C. Jorge Fonseca Gampos Subdirector Académicos ser annual

EN INSPIRITANTA Y TRANSLESSAS AMARANA MANAGEMENT PROPERTY AND ADDRESS OF THE PARTY A

M. en C. Arodi Rafael Carvallo Domínguez Director de la Unidad Académica

DIRECCION