CS544 Module1

Suresh Kalathur

Course Outline

Module1

- Review basics in statistics
- R Data types and structures

Module2

Probability, Random variables, R – Programming constructs

Module3

Data – Univariate, Bivariate, Multivariate

Module4

Distributions – Discrete, Continuous

Module5

Central Limit Theorem, Sampling, Errors

Module6

Strings, Regular Expressions, Data Wrangling

Grading

- Programming assignments 30%
 - Six (One for each module)
- Quizzes 20%
 - First 4 modules only
- Individual Project 20%
 - Ready to start after Module3
- Final Exam 30%

Lecture 1 - Statistics

- Measures of Central Tendency
 - Mean, Median, Mode
- Measures of Variation
 - Range
 - Variance, Standard deviation
 - Quartiles
 - Inter-quartile range (IQR)

Percentiles

- Divide data into 100 equal parts
- https://dqydj.com/household-income-percentile-calculator/

Quartiles

- Divide data into 4 equal parts
 - Q1 bottom 25% from the top 75%
 - Q2 bottom 50% from the top 50% (Median)
 - Q3 bottom 75% from the top 25%

- IQR Inter Quartile Range
 - Q3 Q1
- Five Number Summary
 - Min, Q1, Q2, Q3, Max
- Variations in each quarter
 - Q1 Min, Q2 Q1, Q3 Q2, Max Q3
- Outliers
 - Outside the range
 - (Q1 1.5*IQR, Q3 + 1.5*IQR)
 - (Mean 3*SD, Mean + 3*SD)

- Population versus Sample
- Standardized Variables
 - Mean 0 and Standard Deviation 1
 - z-score for variables
 - Negative score below the mean
 - How many SD below the mean
 - Positive score above the mean
 - How many SD above the mean
 - Most values in the range -3 to 3
 - Otherwise, outliers

Z-Scores Application

Suppose we are analyzing the dataset with income and age attributes. Consider a subset of three people, say, A, B, and C, from the dataset.

Person	Income	Age
А	90000	50
В	80000	40
С	100000	20

For ML applications which involve similarity comparison (clustering, etc.), a common measure used is the distance metric. From geometry, the distance between two points (x1,y1) and (x2,y2) is

$$\sqrt{(x1-x2)^2+(y1-y2)^2}$$

Now, let us compute the distance metric between any pair of people in the dataset:

Pair	Distance
(A,B)	10000
(A,C)	10000.04
(B,C)	20000.01

If you notice, the value of the *age* is not playing any role if the calculation and the *income* with large values is entirely dominating in the calculation. If the person A is fixed, B and C are considered as equal when compared with A, i.e., (A,B) and (A,C) have the same distance measure.

Now, let us assume that the *income* attribute for the entire dataset has a mean of 60000 and standard deviation of 23000.

Similarly, let us assume that the *age* attribute for the entire dataset has a mean of 45 and standard deviation of 15.

The z-scores of the *income* and *age* attributes calculated with these means and standard deviations are as follows:

Person	Income	Age
Α	1.3043	0.3333
В	0.8696	-0.3333
С	1.7391	-1.6667

Now, let us re-compute the distance metric between any pair of people in the dataset using the z-scores:

Pair	Distance
(A,B)	0.8
(A,C)	2.0
(B,C)	1.6

With these calculations, if the person A is fixed, B and C are much different when compared with A.

Shape of Data

- Distribution of the data
 - Symmetric
 - Mean and median are the same
 - 32, 41, 50, 52, 56, 60, 64, 68, 70, 79, 88
 - Mean: 60, Median: 60
 - Left-skewed (negatively skewed)
 - An easy quiz/exam
 - Mean is less than the median
 - 12, 15, 80, 81, 84, 85, 86, 87, 88, 91, 94
 - Mean: 73, Median: 85
 - Right-skewed (positively skewed)
 - A hard quiz/exam
 - Mean is greater than the median
 - 41, 45, 48, 50, 51, 54, 57, 60, 94, 96, 97
 - Mean: 63, Median: 54

R

- A language and environment for statistical computing and graphics
- GNU General Public License
- Initially written by Robert Gentleman and Ross Ihaka (University of Auckland)
- http://www.r-project.org
- Base version of R
- Rstudio

R

- Statistical techniques
 - Linear and nonlinear modeling
 - Classical statistical tests
 - Time-series analysis
 - Classification
 - Clustering, ...
- Graphical techniques

Data in R

- Data types frequently used in R
 - numeric
 - integer
 - logical
 - character
 - complex

...Data in R

Data structures

- vector a collection of values of the same type
- factor a collection of values from a fixed set of possible values
- matrix a two-dimensional collection of values of the same type
- list a collection of any of the data structures
- data frame a collection of vectors all of the same length