XIV. ГАРМОНИЧЕСКИЕ ФУНКЦИИ И КОНФОРМНЫЕ ОТОБРАЖЕНИЯ

s2

Задача Дирихле для уравнения Лапласа в двумерном («плоском») случае

Пусть
$$\Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$
 ;
$$G = <$$
произвольная ... > область в \mathbb{R}^2 ;

задана некоторая $\varphi(x,y) \in C(\partial G)$. Требуется найти все (вещественнозначные)

 $u(x,y)\in C^2(G)\cap C(\overline{G})$, такие, что

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{ B } G, \\[1ex] u \mid_{\partial G} = \varphi \, . \end{array} \right.$$

< ... «Классическое решение» ... >

s3

< ... Приложения ... >

< ... Подход комплексного анализа ... >

< ... Обобщения ... >

Определение. Будем говорить, что функция u(x,y) является гармонической в области G, если $u \in C^2(G)$ и $\Delta u = 0$ в G.

 $\rm s\,4$

1. Свойства гармонических функций двух переменных

$$F(z) \qquad \qquad \mapsto \qquad \mathrm{Re}\, F \equiv u(x,y)$$

$$\mid \qquad \qquad \mid$$
 аналитическая в G гармоническая в G

 $\begin{array}{ccc} u(x,y) & & ??? \\ & & & \\ & & & \\ & & & \\ \end{array}$

произвольная гармоническая в G

аналитическая в G

 $\operatorname{Re} F(z) = u(x, y)$

Теорема 14.1 (см. Q14.1). Пусть

G — односвязная область в \mathbb{R}^2 ; u(x,y) — гармоническая в G .

a(x,y) тармони ческая в G . Тогда существует аналитическая в G

функция F(z), такая, что $\operatorname{Re} F(z) = u(x,y)$.

Замечание. < ... Многосвязная область — см. Q14.2 ... >

Таким образом, любую гармоническую функцию ЛОКАЛЬНО всегда можно рассматривать как Re (или Im) некоторой аналитической функции.

 $\rm s\,7$

 $<\dots$ Бесконечная дифференцируемость гармонической функции (см. Q14.3) $\dots>$ $<\dots$ Формула среднего значения (см. Q14.4), принципы максимума, минимума, максимума модуля (см. Q14.5) $\dots>$

Теорема 14.2 (см. Q14.6). Пусть

G — ограниченная область в \mathbb{R}^2 ; u(x,y) — гармоническая в G и непрерывная в \overline{G} .

Тогда $\sup_{G} |u(x,y)| = \sup_{\partial G} |u(x,y)|.$

s8

Теорема 14.3 (см. Q14.7). Пусть G — **ограниченная** область в \mathbb{R}^2 . Тогда классическое решение задачи Дирихле для уравнения Лапласа в G единственно.

- < ... Неограниченная область (Q14.8) ... >
- < ... Существование классического решения

... >

< ... Явный вид решения ... >

s9

2. «Сохранение гармоничности» при отображениях, задаваемых аналитическими функциями

< ... >

s10

Теорема 14.4. Пусть

$$U(\xi,\eta)$$
 — гармоническая в $\mathcal G$;
$$f(z)\equiv \xi(x,y)+i\,\eta(x,y)$$
 — аналитическая в G ;
$$f(G)\subset \mathcal G$$
 .

Тогда функция

$$u(x,y) := U(\xi(x,y), \eta(x,y))$$
 (14.1)

— гармоническая в G.

Доказательство. < ... >

(см., например, Свешников – Тихонов, гл. VII, \S 1, п. 2), что отображение, задаваемое функцией f(z) и (14.1), будет сохранять гармоничность только в двух случаях:

- (а) f(z) аналитическая в G;
- (b) $\overline{f(z)}$ аналитическая в G .

s12

3. Сведе́ние исходной задачи Дирихле к задаче в области $\, \mathcal{G} \,$

< ... >

s13

$$(*)\ f: G\rightleftarrows \mathcal{G};\ \left\{\begin{array}{l} f(z)\ -\ \text{аналитическая в }G\\ f^{-1}(\zeta)\ -\ \text{аналитическая в }\mathcal{G} \end{array}\right.$$

$$(**) \ f : \overline{G} \rightleftarrows \overline{\mathcal{G}}; \ \begin{cases} f(z) \in C(\overline{G}) \\ f^{-1}(\zeta) \in C(\overline{\mathcal{G}}) \end{cases}$$

$$(***) \ f : \partial G \rightleftarrows \partial \mathcal{G}; \ \Phi(\xi, \eta) := \varphi(\xi(x, y), \eta(x, y))$$

Замечание. $(*) \Longrightarrow$

$$f'(z) \neq 0 \ \forall z \in G \tag{14.2}$$

s14

< ... Основная задача ... >

 $<\dots$ Геометрические свойства отображений (*) ... >

4. Понятие конформного отображения

а. < ... Угол между кривыми в точке ... >

s15

b. Пусть γ — некоторая кусочно-гладкая кривая в $\mathbb C$

$$z-z_0 \equiv \Delta z \neq 0$$
 — к.-л. вектор секущей γ .

Тогда $\frac{\Delta z}{|\Delta z|}$ — единичный вектор в направлении вектора секущей;

$$\exists \lim_{z \to z_0} \frac{\Delta z}{|\Delta z|} \equiv \tau \iff$$
 в точке z_0

 \exists касательная к γ и τ — «ее» единичный вектор. < ... ϕ : $\tau=e^{i\phi}$... >

s16

с. Лемма 14.5 (см. Q2.6 и Q2.7). Пусть

$$w_n \underset{n \to \infty}{\longrightarrow} w_0 \equiv a_0 \, e^{\, i \, \beta_{\, 0}}, \;\; \text{где} \;\; a_0 > 0, \;\;\; \beta_0 \in \mathbb{R} \;.$$

Тогда

$$\left\{ \begin{array}{l} |w_n| \to a_0 \,, \\ \\ \frac{w_n}{|w_n|} \to e^{i\,\beta_0}. \end{array} \right.$$

 $< \dots \text{ arg } w_n \dots >$

 \mathbf{d} . Пусть

$$\gamma \subset G$$
 — кусочно-гладкая кривая, $z_0 \in \gamma$; $\tau \equiv e^{i\phi}$ — вектор касательной в т. z_0 ; $f: G \rightleftarrows \mathcal{G}$ удовлетворяет (*) $\Gamma = f(\gamma), \quad \zeta_0 := f(z_0)$; $f'(z_0) \equiv a_0 \, e^{i\beta_0} \quad (a_0 \neq 0 \quad \text{-- см. } (14.2)).$

Тогда

$$\exists \lim_{\Gamma \ni \zeta \to \zeta_0} \frac{\Delta \zeta}{|\Delta \zeta|} = e^{i\beta_0} \tau , \qquad (14.3)$$

$$\exists \lim_{z \to z_0} \frac{|\Delta \zeta|}{|\Delta z|} = a_0.$$
 (14.4)

s18

< ... Доказательство ... >

< ... Геометрическая интерпретация:

сохранение углов (14.3) и постоянство растяжений (14.4) в точке $z_0 \in G$... >

Определение. Пусть G и \mathcal{G} — области в \mathbb{C} . Отображение $f: G \to \mathcal{G}$ будем называть конформным, если оно взаимно-однозначно и в **каждой** точке $z_0 \in G$ обладает свойством сохранения углов и постоянства растяжений.

Замечания. < ... a) граница; b) (14.4); c) конформность отображения в точке ... >

s19

Теорема 14.6. Если f(z) удовлетворяет (*), то f задает конформное отображение $G \to \mathcal{G}$.

Доказательство — см. п. d.

Замечание. Утверждение, \approx обратное Теореме 14.6 — см. Свешников – Тихонов, гл. 6, Теорема 6.2 < ... (*) – (***) и конформность ... >

s20

5. Некоторые свойства конформных отображений

- а. Отображение, обратное конформному, и композиция двух конформных отображений конформны. $< \dots (*) (***) \dots >$
- **b.** Если G односвязная область, а \mathcal{G} многосвязная, то не существует конформного отображения $G \to \mathcal{G}$.
- **с.** Теорема Римана, принцип сохранения области, принцип соответствия границ.

Теорема 14.7 (Принцип соответствия границ). Пусть

- (1) G и \mathcal{G} ограниченные односвязные области в \mathbb{C} ;
- (2) ∂G и $\partial \mathcal{G}$ кусочно-гладкие;
- (3) f(z) $\left\{\begin{array}{ll} \text{аналитическая в } G, \\ \in C(\overline{G}); \end{array}\right.$
- (4) f(z) задает отображение $\partial G \hookrightarrow \partial \mathcal{G}$, при котором сохраняется направление обхода.

Тогда f(z) задает конформное отображение $G \to \mathcal{G}.$

s22

6. Конформность отображений областей

\mathbf{B} $\overline{\mathbb{C}}$

Необходимо доопределить конформность в точке z_0 в случаях $z_0=\infty$ или/и $f(z_0)\equiv \lim_{z\to\infty} f(z)=\infty$.

Идея: отобразить окрестность бесконечно удаленной точки на окрестность нуля (аналогично определению типов изолированной особой точки $z_0 = \infty$).

s23

а. $z_0 = \infty, \quad f(\infty) \neq \infty$. Положим

$$f_1(w) := \begin{cases} f\left(\frac{1}{w}\right), & w \neq 0; \\ f(\infty), & w = 0. \end{cases}$$

Определение. Отображение $\zeta = f(z)$ будем называть конформным в точке $z_0 = \infty,$ если отображение $\zeta = f_1(w)$ конформно в точке $w_0 = 0$.

s24

 \mathbf{b} . $z_0 \neq \infty$, $f(z_0) = \infty$. Положим

$$f_2(z) := \begin{cases} \frac{1}{f(z)}, & z \neq z_0; \\ 0, & z = z_0. \end{cases}$$

Определение. < ... >

c. $z_0=\infty, \quad f(\infty)=\infty$. Положим

$$f_3(w) := \begin{cases} \frac{1}{f(1/w)}, & w \neq 0; \\ 0, & w = 0. \end{cases}$$

Определение. < ... >

Примеры.

$$f(z) = \frac{1}{z}:$$

$$< \dots \quad \mathbb{C} \quad \dots > ;$$

$$< \dots \quad \overline{\mathbb{C}} \quad \dots > .$$

$$f(z) = az + b \quad (a \neq 0):$$

$$< \dots \quad \mathbb{C} \quad \dots > ;$$

$$< \dots \quad \overline{\mathbb{C}} \quad \dots > .$$

s26

7. Отображения, задаваемые элементарными функциями

А. Дробно-линейная функция

Определение. Функцию вида

$$\zeta = f(z) := \frac{a+bz}{c+dz} \tag{14.5}$$

где

$$a,\,b,\,c,\,d\in\mathbb{C},\quad ad\neq bc,\quad d\neq 0, \qquad (14.6)$$

будем называть **дробно-линейной**, а соответствующее отображение — **дробно-линейным**.

s27

Замечание. < ... смысл ограничений ... $> (14.5) - (14.6) \iff$

$$f(z) = \frac{c_1}{z - z_0} + c_2$$
, где $z_0, c_1, c_2 \in \mathbb{C}, c_1 \neq 0$

$$\left(z_0 = -\frac{c}{d}, \ c_1 = \frac{ad - bc}{d^2}, \ c_2 = \frac{b}{d}\right).$$

Таким образом, дробно-линейное отображение — композиция трех отображений:

$$z\mapsto \zeta_1=z-z_0,\ \zeta_1\mapsto \zeta_2=\frac{1}{\zeta_1},\ \zeta_2\mapsto \zeta=c_1\zeta_2+c_1$$

s28

Теорема 14.8. Дробно-линейное отображение является конформным отображением $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$, при котором точка $z=z_0$ переходит в $\zeta=\infty$, а точка $z=\infty$ — в $\zeta=c_2$.

Замечание. < ... геом. свойства ... >

s29

Если при дробно-линейном отображении $f(\infty) \neq 0 \quad (\Leftrightarrow b \neq 0 \Leftrightarrow c_2 \neq 0)$, то f(z) приводится к виду

$$f(z) = \lambda \, rac{z - z_{01}}{z - z_{02}} \, , \, \,$$
где $\lambda
eq 0, \, \, z_{01}
eq z_{02}$

$$\left(\lambda=\frac{b}{d}\,,\;z_{01}=-\frac{a}{b}\,,\;z_{02}=-\frac{c}{d}\right)\,.$$
 При этом
$$\boxed{z_{01}\mapsto 0\,,\;z_{02}\mapsto \infty\,,\;\infty\mapsto\lambda}\;;$$
если $f(\infty)=0,\;$ то $<\dots>$

s30

а. Круговое свойство дробно-линейного отображения

$$A(x^2 + y^2) + Bx + Cy + D = 0$$
 (14.7)
 $A, B, C, D \in \mathbb{R}, A^2 + B^2 + C^2 \neq 0$ (14.8)

s31

До конца раздела XIV под **«окружностью»** будем понимать

<...>

- либо собственно окружность(= «окружность конечного радиуса»),
- либо прямую (= «окружность бесконечного радиуса», «окружность, проходящая через бесконечно удаленную точку»).

Теорема 14.9. При дробно-линейном отображении окружности переходят в окружности. $< \dots >$

s32

b. Сохранение точек, симметричных относительно окружности

(= сохранение симметрии точек относительно окружности)

- Точки $z_1, z_2 \neq \infty$ $< \dots >$
- Точки $z=z_0$ и $z=\infty$ будем считать симметричными относительно **любой** окружности с центром в точке z_0 .

s33

Теорема 14.10. При дробно-линейном отображении точки, симметричные относительно окружности, переходят точки, симметричные относительно ее образа.

Доказательство —

— Свешников А. Г., Тихонов А. Н., Т.6.11. < ... Пример ... >

s34

с. О единственности дробно-линейного отображения

Теорема 16.8. Заданием соответствия трех точек $z_1, z_2, z_3 \in \mathbb{C}$ трех точек $\zeta_1, \zeta_2, \zeta_3 \in \mathbb{C}$ дробно-линейное отображение определяется однозначно.

Доказательство —

— Свешников А. Г., Тихонов А. Н., Т.6.9.

s35

В. Степенная функция

- (1) G область однолистности;
- (2) f(z), $f^{-1}(z)$ аналитические $(\Leftarrow B G \exists f'(z) = \alpha z^{\alpha-1} \neq 0).$

Замечание. < Граница >

s36

С. Функция Жуковского

$$\zeta = f(z) := \frac{1}{2} \left(z + \frac{1}{z} \right).$$

$$G_1 := \{z : 0 < |z| < 1\}, \ G_2 := \{z : |z| > 1\}.$$

- (1) $G_{1,2}$ области однолистности (т.к. $f(z_1) = f(z_2) \iff z_1 = \frac{1}{z_2}$ или $z_1 = z_2$);
- (2) f(z), $f^{-1}(z)$ аналитические $(\Leftarrow ...).$

s37

(3) (геометрические свойства)

Окружности
$$|z| = \rho_0 \neq 1$$
: $z = \rho_0 e^{i\varphi} \implies \zeta = a \cos \varphi + i b \sin \varphi$,

где
$$a:=\frac{1}{2}\left(\rho_0+\frac{1}{\rho_0}\right), \quad b:=\frac{1}{2}\left(\rho_0-\frac{1}{\rho_0}\right).$$
 ($|z|=1$...) ($\varphi=\varphi_0$...)

Замечание.

$$\widetilde{G}_1:=\{z:\,|z|<1\}\,,\ \ \widetilde{G}_2:=\{z:\,|z|>1\}\cup\{\infty\}.$$

s38

8. Примеры

< ... Общая стратегия ... >

Замечание 1. Решение, вообще говоря, не единственно.

Замечание 2. Обобщения на случай областей с разрезами.

Замечание 3. Принцип соответствия границ будем использовать и для неограниченных областей (см. Иванов В. И., Попов В. Ю. Конформные отображения и их приложения).