华中农业大学本科课程期末考试试卷 B 卷答案

考试课程:概率论与数理统计 学年学期:2005-2006-1 考试日期:2006-1-18

一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在 】内。答案错选或未选者,该题不得分。每小题2分,共10分。)

1. 设 A 和 B 是任意两个概率不为 0 的互不相容事件,则下列结论中肯定正确的是

(d).

- (a) $\overline{A} = \overline{B}$ 不相容; (b) $\overline{A} = \overline{B}$ 相容; (c) P(AB) = P(A)P(B); (d) P(A-B) = P(A).
- 2. 设随机变量序列 X 服从 $N(\mu, 16)$, Y 服从 $N(\mu, 2.5)$, 记 $p_1=P\{X<\mu-4\}$,

- (a)对任何实数 μ ,都有 $p_1 = p_2$; (b) 对任何实数 μ ,都有 $p_1 < p_2$;
- (c) 对个别实数 μ , 才有 $p_1 = p_2$; (d) 对任何实数 μ , 都有 $p_1 > p_2$.
- 3. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 μ 未知 , σ^2 已知 , X_1, X_2, X_3 是总体 X 的
 - 一个简单随机样本,则下列表达式中不是统计量的是______((d))____.
 - (a) $X_1 + X_2 + X_3$; (b) $min(X_1, X_2, X_3)$; (c) $\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$; (d) $X + 2\mu$.

4. 在线性回归分析中,以下命题中,错误的是____【(d)】__.

- (a) SSR 越大, SSE 越小; (b) SSE 越小, 回归效果越好;
- (c) | r | 越大,回归效果越好; (d) | r | 越小, SSR 越大.

 λ_1 的值可为___【(a)】_.

(a) $F_{\frac{\alpha}{2}}(n,m)$; (b) $F_{\frac{\alpha}{2}}(m,n)$; (c) $\left[F_{\frac{\alpha}{2}}(n,m)\right]^{-1}$; (d) $\left[F_{\frac{\alpha}{2}}(m,n)\right]^{-1}$;

摐

犹

二、填空题(将答案写在该题横线上。答案错选或未选者,该题不得分。每小题 2 分,共 10 分。)
1. 一射手对同一目标射击 4 次,假设每次是否命中使相互独立的,已知至少命中一次的概率为 $80/81$,则该射手的命中率为 $2/3$.
$2.$ 设θ服从[$-\pi$, π]上的均匀分布,又 $X=sin\theta$, $Y=cos\theta$,则 X 与 Y 的相关系数ρ $_{XY}=\underline{ 0}$.
3. 数理统计的目的是通过 <u>样本</u> 推断总体。
4. 在单因素方差分析中,试验因素 A 的 r 个水平的样本总容量为 n ,则当原假设 \mathbf{H}_0 成立时,
SSA/ σ^2 服从 $x^2(r-1)$ 分布,MSA/MSE 服从 $F(r-1, n-r)$ 分布.
5. 在线性回归模型 $y = \mathbf{b}_0 + \mathbf{b}_1 x + \mathbf{e}$ 中,如果 b_1 为 β_1 的最小二乘估计,则 $Eb_1 = \underline{\beta_1}$.
三、(10分,要求写清步骤及结果)证明下列命题:
1. 若 $P(A/B) > P(A)$,则 $P(B/A) > P(B)$; 2. 若 $P(A) > P(A/B)$,则 $P(A) < P(A/\overline{B})$.
证明: 1. 由 $P(A/B) > P(A)$, 得 $P(AB)/P(B) > P(A)$,(2分)
进而有 $P(AB)/P(A) > P(B)$; 即 $P(B/A) > P(B)$ (3分)
2. 1. 由 $P(A) > P(A/B)$,得 $P(A)P(B) > P(AB)$,(1分)
进而有-P(A)P(B) < -P(AB);(2分)
两边加上 $P(B)$,得 $P(A)P(\overline{B}) < P(A\overline{B})$,即 $P(A) < P(A/\overline{B})$ (2分)
四、(10 分,要求写清步骤及结果)一个复杂的系统,由 n 个相互独立的部件所组成,
每个部件的可靠性为 0.9, 且必须至少有 80%的部件工作才能使整个系统工作,问:
n 至少为多少才能使系统以 0.95 的概率工作?
(附: (1.64)=0.95, (1.96)=0.975,其中 (x)是标准正态分布函数。)
解。 设 X 表示 n 个相互独立的部件正常工作的个数,则 X~B(n,0.9),
EX=0.9n, DX=0.09n(3分)

由中心极限定理知:
$$\frac{X-0.9n}{\sqrt{0.01n}} \sim N(0,1)$$
.(3分)

則:
$$P\{n \ge X \ge 0.8n\} = P\left\{\frac{n - 0.9n}{\sqrt{0.01n}} \ge \frac{X - 0.9n}{\sqrt{0.01n}} \ge \frac{0.8n - 0.9n}{\sqrt{0.01n}}\right\}$$

= $P\left\{\frac{\sqrt{n}}{3} \ge \frac{X - 0.9n}{\sqrt{0.01n}} \ge -\frac{\sqrt{n}}{3}\right\} = 0.95$ (2分)

得到:
$$2\Phi\left(\frac{\sqrt{n}}{3}\right) - 1 = 0.95$$
 , n=35.(2 分)

五、(12 分 , 要求写清步骤及结果) 设总体 X 服从(0,q)上的均匀分布,取容量为 6 的样本观测值为:1.3 , 0.6 , 1.7 , 2.2 , 0.3 , 1.1 , 求:总体参数q的矩估计以及极大似然估计值.

解: 由 EX=
$$\theta/2$$
, 得矩估计: $\hat{q} = 2x = 2.4$ (6分)

极大似然估计为:
$$\hat{q} = \max\{x_i, i=1,...,6\} = 2.2$$
(6分)

六、(15 分 ,要求写清步骤及结果) 随机抽取了甲地 10 户与乙地 8 户居民的月收入如下表: $(\mathbf{a} = 0.05)$.

		行平均值
甲(元)	473 260 324 653 518 558 373 443 578 373	455.3
乙(元)	234 251 198 167 198 360 233 373	251.75

试问:1.两地居民的月收入方差是否有显著差异?

2. 两地居民的月收入平均值是否有显著差异?

(
$$\not M f: F_{0.975}$$
 (9,7) =4.82, $F_{0.975}$ (7,9) =4.2, $t_{0.975}$ (16)=2.12)

 \mathbf{M} : 设两地居民的月收入分别是 X = Y,

$$X \sim N(\mathbf{m}_1, \mathbf{s}_1^2), Y \sim N(\mathbf{m}_2, \mathbf{s}_1^2),$$
且两者独立。

(1) 先作方差的检验:
$$H_0: \mathbf{S}_1^2 = \mathbf{S}_2^2, H_1: \mathbf{S}_1^2 \neq \mathbf{S}_2^2$$
.(1分)

检验统计量 $F = S_X^{*2} \big/ S_Y^{*2}$,当 H_0 为真时 ,因为 $F \sim F(n-1,m-1)$,

(2) 再检验均值:因为(1)中已经检验了 $s_1^2 = s_2^2$,但未知方差值。

$$H_0: \mathbf{m}_1 = \mathbf{m}_2, \quad H_1: \mathbf{m}_1 \neq \mathbf{m}_2$$
 ,

检验统计量
$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{1/n + 1/m}}$$
, 其中 $S_w^2 = \frac{ssx + ssy}{n + m - 2}$,

当 H_0 为真时,因为 $T \sim t(n+m-2)$,

所以拒绝域是:
$$|t| \ge t_{1-0.5a}(n+m-2)$$
(5 分)

计算得:t = 4.07,而 $t_{0.975}(16)=2.12$, 落入拒绝域,

从而有理由认为两品种的观测值 显著性的差异。(2分)

七、(15 分,要求写清步骤及结果) 某消防队要考察 4 种不同型号冒烟报警器的反应时间(单位:秒), 今将每种型号的 5 种报警器安装在同一条烟道中, 当烟道均匀时观测报警器的反应时间, 得数据如下

报警	反	应 时	间			$\overline{X_{i}}$
A ₁ (甲型)	5.2	6.3	4.9	3.2	6.8	5.28
A2(乙型)	7.4	8.1	5.9	6.5	4.9	6.56
A3(丙型)	3.9	6.4	7.9	9.2	4.1	6.30
A4(丁型)	12.3	9.4	7.8	10.8	8.5	9.76

试问:(1)各种型号报警器的反应时间有无显著差异?(α=0.01)

- (2)请列出方差分析表.
- (3)如果各种型号报警器的反应时间有显著差异,那么何种最优?

$$(\beta / \pi) : \alpha = 0.01, F_{0.99}(3.16) = 5.324$$

$$\mathbf{m}:(1)H_0$$
:各个总体的 \mathbf{m} 相同.(2分)

$$SSA = \sum_{i} \frac{T_{i}^{2}}{n_{i}} - C = 56.2855$$
, $SSE = SST - SSA = 48.7720$; $F_{0.99}(3.16) = 5.324$,

 $F > F_{0.99}(3,12)$.故四种种型号报警器的反应时间有显著差异.(5分)

(2) r-1=3, n-r=16. 列表:

方差来源	平方和	自由度	均方和	F值	显著性
因素 A	56.2855	3	18.76	6.15	* *
误差	48.7720	16	3.048		
总和	105.0575	15			

.....(5 分)

(3)
$$\hat{\mathbf{m}}_1 = \overline{x}_1 = 5.280$$
, $\hat{\mathbf{m}}_2 = \overline{x}_2 = 6.56$, $\hat{\mathbf{m}}_3 = \overline{x}_3 = 6.30$, $\hat{\mathbf{m}}_4 = \overline{x}_4 = 9.76$.
甲型型号报警器最优.(3分)

八、(18分,要求写清步骤及结果)某种物质在不同温度下可以吸附另一种物质,如果温度x(单位:)与吸附重量y(单位: mg)的观测值如下表所示:

			行和
温度x _i	1.5 1.8	2.4 3.0 3.5 3.9 4.4 4.8 5.0	30.3
重量 y _i	4.8 5.7	7.0 8.3 10.9 12.4 13.1 13.6 15.3	91.11

(1) 试求线性回归方程;(2) 对线性回归方程显著性检验;(3) 若 x_0 =2, 求: Y_0 的 0.99 预测区间.

(附:
$$t_{0.995}(7) = 3.499$$
 , $r_{0.01}(7) = 0.7977$, $F_{0.99}(1,7) = 12.2$)

(提示: 预测公式
$$t = (y_0 - \hat{y_0}) / \sqrt{\frac{SSE}{n-2} \cdot [1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}] \sim t(n-2)$$
)

解:(1) 建模:
$$y_i = b_0 + b_1 x_i + e_i \sim N(b_0 + b_1 x_i, s^2) \mathbf{i} = 1, \Lambda, n.$$
 (1分)

$$\sum_i x_i = 30.3, \sum_i y_i = 91.11, \overline{x} = 3.367, \overline{y} = 10.122, \sum_i x_i^2 = 115.11, \sum_i x_i y_i = 345.09,$$

$$\sum_i y_i^2 = 1036.65, 1_{xx} = 13.100, 1_{xy} = 38.387, 1_{yy} = 114.516, n = 9,$$

$$b = l_{xy}/l_{xx} = 2.9303$$
, $a = \overline{y} - b\overline{x} = 0.2569$,(5 分)

所求的经验线性回归方程为: = 0.2569 + 2.9303x;.....(3分) (2) 对 $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$ 的检验, a = 0.05. (任选一种方法都可以) F检验法: $SST = l_{yy} = 114.516$, $SSR = bl_{xy} = 112.485$, $SSE = SST - bl_{xy} = 2.031$, n-2 = 7, $F_{0.99}(1,7) = 12.2$, $F = \frac{SSR}{SSE/(n-2)} = 387.69$,所以回归方程极显著; t 检验法: $|t| = |b| \sqrt{\frac{1_{xx}}{SSE/(n-2)}} = 19.69, t_{0.995}(7) = 3.499,$ 所以回归方程极显著; r 检验法: $r^2 = \frac{1_{xy}^2}{1_{xx}1_{yy}} = 0.9823$, r = 0.9911 , $r_{0.01}(7) = 0.7977$,(6分) 所以回归方程极显著;

(3) 预测区间

当 $x_0 = 2$ 时, Y_0 的点估计为 $\hat{y}_0 = 6.12$;

$$\Delta(x_0) = t_{1-\alpha/2} \sqrt{\text{MSE}} \cdot (1 + 1/n + (x_0 - \overline{x})^2 / 1_{xx}) = 2.03 \text{ , } Y_0$$
的 0.95 预测区间为 $(4.09, 8.15)$(4 分)