任课教师:

姓名:

· 心 心

年级:

1000

四川大学期末考试试卷(A)

(2008-2009年第二学期)

科目:《大学数学》微积分(I)-2

适用专业年级: 数学-各专业 2008 级本科生

题号	 	Ξ		四		Ti.		六		总分
得分				•						

考 试 须 知

四川大学学生参加由学校组织或由学校承办的各类考试,必须严格执行《四川 大学考试工作管理办法》和《四川大学考场规则》.有考试违纪作弊行为的,一律照 《四川大学学生考试违纪作弊处罚条例》进行处理

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》.有违反学校有关规定的; 严格按照《四川大学教学事故认定及处理办法》进行处理

一、填空题(每小题 3 分,共 15 分)

1.设
$$f(x,y) = \sqrt{x^2 + y^2}$$
 ,则梯度 **grad** $f(1,2) =$ ______.

2.设二元函数
$$u(x,y) = 3x^2y - y^3$$
则其全微分为_____

3.级数
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$
 的和函数是______.

4.设Σ是半球面
$$z = \sqrt{1-x^2-y^2}$$
,则曲面积分 $\iint_{\Sigma} (xy+1)dS =$ _______.

5.
$$f(x) = x (-\pi \le x < \pi)$$
 的傅立叶级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,则

 $a_n =$ ____.

二、选择题 (每题 3 分, 共 15 分) (将正确选择项的字母填入括号内)

1. 旋转椭球面
$$\frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{2} = 1$$
的旋转轴是 ().

2.
$$\[orall I_1 = \iint_D [\ln(x+y)]^3 dxdy \] I_2 = \iint_D (x+y)^3 dxdy , I_3 = \iint_D [\sin(x+y)]^3 dxdy , \]$$

$$\[\text{其中 } D = \{(x,y) \mid x \ge 0, y \ge 0, \frac{1}{2} \le x+y \le 1 \} , \] \] ()$$

(A)
$$I_1 < I_2 < I_3$$
. (B) $I_1 < I_3 < I_2$. (C) $I_2 < I_1 < I_3$. (D) $I_3 < I_2 < I_1$.

3. 设
$$f(x,y)$$
 是连续函数, $R > 0$,则 $\int_{-R}^{R} dx \int_{0}^{\sqrt{R^2-x^2}} f(x^2+y^2) dy = ($)

(A)
$$\pi \int_{-R}^{R} f(\rho^2) \rho d\rho$$
. (B) $\pi \int_{0}^{R} f(\rho^2) d\rho$.

(B)
$$\pi \int_0^{\kappa} f(\rho^2) d\rho$$

(C)
$$\pi \int_0^R f(\rho) \rho d\rho$$

(C)
$$\pi \int_0^R f(\rho) \rho d\rho$$
. (D) $\pi \int_0^R f(\rho^2) \rho d\rho$.

4. 螺旋线
$$x = \cos t$$
, $y = \sin t$, $z = t$ 在点 $P(0, 1, \frac{\pi}{2})$ 处的法平面方程是 ().

(A)
$$x-z+\frac{\pi}{2}=0$$
. (B) $x+z+\frac{\pi}{2}=0$. (C) $x+z-\frac{\pi}{2}=0$. (D) $x-z-\frac{\pi}{2}=0$.

5. 设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 在点 $x=1$ 处条件收敛,则此幂级数在点 $x=-2$ 处

(A)条件收敛.(B)绝对收敛.(C)发散.(D)可能收敛,也可能发

三、计算题 (每小题 8 分, 共 24 分)

1. 求微分方程
$$y+3+\cot x \cdot \frac{dy}{dx} = 0$$
 满足条件 $y|_{x=0} = 0$ 的解

2. 设有幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^n}$. 求幂级数的收敛半径与收敛域.

3. 设 $u(x,y) = \sin(y+3z)$, 其中 z = z(x,y) 是由方程 $z^2y - xz^3 - 1 = 0$ 所确 定的隐函数,求 $\frac{\partial u}{\partial x}\Big|_{\substack{x=1\\y=0}}$.

四、解答题 (每小题 8 分, 共 16 分)

1. 设二阶可导函数 f(x) 满足方程 $f'(x)=1+\int_0^x [3e^{-t}-f(t)]dt$,且 f(0)=0.试建立 f(x) 所满足的微分方程,并求出 f(x) 的表达式.

2、 计算曲面积分 $\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$,其中 Σ 是半球面 $z = \sqrt{1-x^2-y^2}$ 和 $z = \sqrt{2-x^2-y^2}$ 及圆锥面 $z = \sqrt{x^2+y^2}$ 所围区域的整个表面的外侧.

五、应用题(本题8分,共16分)

1. 旋转抛物面 $z=1-x^2-y^2$ 与平面 z=0 所围成的立体的体积.

2. 求曲面 $z = \sqrt{1-x^2}$ 含在柱面 |x|+|y|=1 内的那部分面积.

六、证明题(本题7分,共14分)

设函数
$$f(x)$$
 在 $[0,1]$ 上连续,记 $A = \int_0^1 f(x) dx$,证明: $\int_0^1 dx \int_x^1 f(x) f(y) dy = \frac{1}{2} A^2$.

2. 证明
$$\lim_{n\to\infty}\frac{n!}{n^n}=0$$
.