金刚石色心载入系统研究

The Research of NV loading system

刘光成1

School of Physics and Technology Wuhan University

中国科学院精密测量科学与技术创新研究院, November 2021

目录

金刚石色心系统介绍 能级结构 特点

离子阱系统囚禁 NV 离子阱系统囚禁 NV 的优点

载入粒子系统

无水乙醇电喷雾电离法 压电转换器发射粒子法 激光诱导声学解吸法

研究计划

金刚石色心系统介绍

金刚石 NV[Nitrogen-vacancy] 色心是金刚石晶体中的一种缺陷,由一个取代碳原子的氮原子和相邻一个空位(碳原子缺失)组成。 NV 色心有六个电子,两个来自氮原子 $N_7[1s^22s^22p^2]$,三个来自与空位相邻的碳原子 $C_6[1s^22s^22p^1]$,另外一个是俘获的电子。

Figure: Nitrogen Vacancy Center Structure https://en.wikipedia.org/wiki/Nitrogen-vacancy-center

能级结构

 $3 \cap C$ 原子和 $1 \cap N$ 原子提供了四个分子轨道 a_1', a_1, e_x, e_y, NV 系统能级结构可以用 $6 \cap A$ 个电子占据这四个轨道来解释

金刚石色心系统介绍

特点

- ▶ 在室温下即可实现对量子态的制备,操控和读出
- ▶ 性质稳定
- ▶ 电子自旋可以直接用激光极化和读出
- ▶ 可以用微波进行操作

囚禁 NV 的意义

囚禁 NV 之后可以使用激光/微波对其进行一系列操作,并且相比于把 NV 固定起来利用激光操作,悬浮起来的 NV 可以研究更多性质例如 NV 的转动能级耦合等等

粒子载入系统

Figure: Penning Trap

Figure: Paul Trap

Figure: Optical Trap [1, 2]

离子阱系统囚禁 NV

离子阱系统囚禁 NV 的优点

各种纳米物体限制在离子阱中已经实现,从柱状纳米晶体^[3]、二氧化硅纳米球^[4]、含有 NV 中心的微米级金刚石簇^[5]

[3]Bell D M, Howder C R, Johnson R C, et al. Single CdSe/ZnS nanocrystals in an ion trap: charge and mass determination and photophysics evolution with changing mass, charge, and temperature[J]. ACS nano, 2014, 8. [4]Millen J, Fonseca P Z G, Mavrogordatos T, et al. Cavity cooling a single charged levitated nanosphere[J]. Physical review letters, 2015, 114(12): 123602.

粒子载入系统

使用悬浮在乙醇中的金刚石颗粒的电喷雾电离 [ESI]^[5],

Figure: Essential features of the electrospray interface

Gaskell S J. Electrospray: principles and practice[J]. Journal of mass spectrometry, 1997, 32(7): 677-688.

使用压电转换器[6]

Figure: Levitation apparatus.

LIAD[激光诱导声学解吸法]^[6, 7, 8]

Figure: Laser-induced acoustic desorption

Asenbaum P, Kuhn S, Nimmrichter S, et al. Cavity cooling of free silicon nanoparticles in high vacuum[J]. Nature communications, 2013, 4(1): 1-7.

Dow A R, Wittrig A M, Kenttämaa H I. Laser-induced acoustic desorption mass spectrometry[J]. European Journal of Mass Spectrometry, 2012, 18(2): 77-92.

研究计划

但由于上述载入粒子方法无法准确确定载入粒子数量,每次喷入的粒子利用率不高 所以在离子阱系统中如何准确的载入粒子是需要研究的^[9]

- 1. 构建一个离子阱系统用于囚禁 NV-;
- 2. 实现电喷雾电离和 LIAD 方法载入粒子;
- 3. 进一步改进载入粒子系统使其可以控制载入的粒子, 提高粒子利用率;

制备纠缠态

就上面 NV 系统类似,线性 Paul 阱以及其他的离子阱已经可以 长时间的存储粒子,例如线性 Paul 阱是使用的如下势:

$$\Phi(x, y, t) = \frac{x^2 - y^2}{2r_0^2} V_0 \cos(\Omega t)$$
 (1)

多普勒冷却/边带冷却多个粒子 **实现量子纠缠态需要两种基本门的操作**^[10]:

1. 实现旋转 [相位门]

$$R_{\Delta n}(\theta,\phi)|g,n\rangle \longrightarrow \cos\frac{\theta}{2}|g,n\rangle + ie^{i\phi}\sin\frac{\theta}{2}|e,n+\Delta n\rangle$$

$$R_{\Delta n}(\theta,\phi)|e,n+\Delta n\rangle \longrightarrow ie^{-i\phi}\sin\frac{\theta}{2}|g,n\rangle + \cos\frac{\theta}{2}|e,n+\Delta n\rangle,$$
(2)

2.CNOT 门

参考文献

- [1] https://www.thorlabs.com/.
- [2] J. C. Miller, B. D. Brown, T. Shay, E. L. Gautier, V. Jojic, A. Cohain, G. Pandey, M. Leboeuf, K. G. Elpek, J. Helft et al., "Deciphering the transcriptional network of the dendritic cell lineage," *Nature immunology*, vol. 13, no. 9, pp. 888–899, 2012.
- [3] D. M. Bell, C. R. Howder, R. C. Johnson, and S. L. Anderson, "Single cdse/zns nanocrystals in an ion trap: charge and mass determination and photophysics evolution with changing mass, charge, and temperature," ACS nano, vol. 8, no. 3, pp. 2387–2398, 2014.
- [4] J. Millen, P. Fonseca, T. Mavrogordatos, T. Monteiro, and P. Barker, "Cavity cooling a single charged levitated nanosphere," *Physical review letters*, vol. 114, no. 12, p. 123602, 2015.
- [5] A. Kuhlicke, A. W. Schell, J. Zoll, and O. Benson, "Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap," *Applied Physics Letters*, vol. 105, no. 7, p. 073101, 2014.
- [6] A. Ashkin and J. Dziedzic, "Optical levitation by radiation pressure," Applied Physics Letters, vol. 19, no. 8, pp. 283–285, 1971.
- [7] P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, "Cavity cooling of free silicon nanoparticles in high vacuum," *Nature communications*, vol. 4, no. 1, pp. 1–7, 2013.
- [8] A. R. Dow, A. M. Wittrig, and H. I. Kenttämaa, "Laser-induced acoustic desorption mass spectrometry," European Journal of Mass Spectrometry, vol. 18, no. 2, pp. 77–92, 2012.
- [9] D. S. Bykov, P. Mestres, L. Dania, L. Schmöger, and T. E. Northup, "Direct loading of nanoparticles under high vacuum into a paul trap for levitodynamical experiments," *Applied Physics Letters*, vol. 115, no. 3, p. 034101, 2019.
- [10] R. Blatt and D. Wineland, "Entangled states of trapped atomic ions," Nature, vol. 453, no. 7198, pp. 1008–1015, 2008.