# 自动控制原理实验报告

实验二 系统的动态性能与稳态的研究

实验三 高阶系统的稳定性分析



# 实验二 系统的动态性能与稳态的研究

## 一、实验目的

- 1、掌握二阶系统性能指标的测试技术;
- 2、研究二阶系统的阻尼比ζ 和无阻尼自振荡频率 ω 对系统动态性能的影响;
- 3、分析系统在不同输入信号作用下的稳态误差;
- 4、观察系统稳定和不稳定的运行状态,研究开环放大系数及时间常数对系统稳定性的影响。

## 二、实验仪器及设备

- 1、STAR ACT教学模拟机
- 2、数字示波器

## 三、实验内容及步骤

1、断开电源,按图1的模拟电路组成二阶系统(自行选择放大器)



2、检查连线,确诊无误后闭合电源,按以下步骤进行实验记录。使 K3=10(A1 放大器的放大系数),并保持输入矩形波幅值不变,依下表所列( $\alpha=R/100k$ )的变化值逐次改变,记录表内  $\sigma$ %, tp, ts 数据(见下表)

注意:  $\alpha = 0$  情况下的意思是内反馈不接入电路

| 参数              |     | ωn   | ξ     | $\omega d$ | $\sigma(V)$ | tp(ms) | ts(ms) |
|-----------------|-----|------|-------|------------|-------------|--------|--------|
| $\alpha = 0$    | 计算值 | 31.6 |       |            | 4.02        | 99.167 | 50.6   |
|                 | 实验值 |      |       |            | ——          |        |        |
| $\alpha = 0.13$ | 计算值 | 31.6 | 0.212 | 30.89      | 0.36        | 101.72 | 463.3  |
|                 | 实验值 |      |       |            | 0.42        | 102.36 | 458.7  |
| $\alpha = 0.33$ | 计算值 | 31.6 | 0.532 | 26.98      | 0.15        | 116.45 | 191.2  |
|                 | 实验值 |      |       |            | 0.09        | 117.38 | 204.6  |
| $\alpha = 0.44$ | 计算值 | 31.6 | 0.701 | 22.72      | 0.105       | 138.56 | 151.02 |
|                 | 实验值 |      |       |            | 0.082       | 143.9  | 134.6  |
| $\alpha = 0.63$ | 计算值 | 31.6 | 0.99  | 2.78       | 0           |        | 171.2  |
|                 | 实验值 |      |       |            | 0           |        | 172.8  |

- 3. 断开电源依次按图所示的模拟电路组成0型,I型,II型系统,按实验内容进行实验观察(R 使用D5区阻容元件,R≥100K)
- 4. 分别改变0, I型系统的放大系数(即改变电位器的电阻值),观察0, I型系统在阶跃信号和斜波信号输入时的稳态误差有何变化,并记录(阶跃信号可以使用矩形波信号代替)。

| 稳态误差 | $e_{ss0}$ | $e_{ss1}$ |
|------|-----------|-----------|
| 阶跃信号 | 减小        | 0         |
| 斜坡信号 | 无穷大       | 增大        |



图 4 - II 型系统



0型系统, R=100K, 阶跃输入



0型系统, R=100K, 斜坡输入



I型系统, R=200K, 阶跃输入



I型系统, R=200K, 斜坡输入

## 四、实验报告要求:

- 1. 认真整理实验数据,记录实验曲线和实验现象;
- 2. 分析二阶系统的  $\xi$  和  $\omega_n$  对系统动态性能的影响;
- 3. 分析系统的结构和参数对稳态误差的影响;
- 4. 提出实验中出现的问题,体会和建议。

#### 答: 2.

- (1) t<sub>r</sub> 上升时间
- 当  $\xi$  一定时,  $\omega_n$  越大;  $t_r$  越小
- 当  $\omega_n$  一定时,  $\xi$  越小,  $t_r$  越小
- $(2) t_p$  峰值时间
- 当  $\xi$  一定时,  $\omega_n$  越大,  $t_n$  越小
- 当  $\omega_n$  一定时,  $\xi$  越小,  $t_p$  越小
- (3) σ<sub>p</sub> 超调量
- $\xi$  越小,超调量越大
- (4) t<sub>s</sub> (调节时间)
- 当  $\xi$  一定时,  $\omega_n$  越大,  $t_s$  越小
- 当  $ω_n$  一定时, ξ 越大,  $t_s$  越小

#### 3.

- (1) 0型系统
- a、阶跃输入时,R越大,稳态误差越小;
- b、斜坡输入时,与R无关,稳态误差无穷大;
- (2) I型系统,
- a、阶跃输入时,与R无关,稳态误差为0;
- b、斜坡输入时,R越大,稳态误差越小

## 实验三 高阶系统的稳定性分析

## 一、实验目的:

- 1. 了解和掌握典型三阶系统模拟电路构成方法及I型三阶系统的传递函数表达式;
- 2. 熟悉ROUTH判据,应用ROUTH判据观察和分析I型三阶系统在阶跃信号(实验时请使用矩形波信号)输入时,系统的稳定,临界稳定,不稳定三种瞬态响应;
- 3. 观察系统稳定和不稳定的运动状态,研究开环放大系数及时间常数对系统稳定性的影响

## 二、实验仪器及设备:

- 1、STAR ACT教学模拟机
- 2、数字示波器

## 三、实验内容及步骤:

I 型三阶系统的开环传递函数:  $G(S) = \frac{K}{S(0.1S+1)(0.5S+1)}$ 



断开电源, 按下图的模拟电路组成三阶系统



- 2. 调整矩形波信号的幅值为2V;
- 3. 实验测出使系统为稳定、临界和不稳定状态时的R,记录阶跃响应曲线;测出临界K值时的无阻尼自激振荡频率。
- 4. 改变时间常数(分别改变A1, A4的反馈电容C), 重新测出临界K值, 画出响应曲线。



K=12, R=27.6K, 不稳定



K=12, R=44K, 临界稳定



K=12, R=98K, 稳定

4.



稳定, A1=2u, R=173K



不稳定, A1=2u, R=53K



临界稳定, A1=2u, R=73K

## 四、实验报告要求:

- 1. 画出实验电路图,认真整理实验数据,记录实验曲线和实验现象。
- 2. 将实验结果与理论计算进行比较,分析产生误差的原因。
- 3. 分析系统开环放大系数及时间常数对系统稳定性的影响。
- 4. 提出实验中出现的问题,体会和建议。

答:

2.

分析产生误差的原因:

- a) 电阻和电容数值上有误差且有导线电阻的影响
- b) 放大器与理想放大器有差异
- 3. 系统开环放大系数越大,系统临界稳定的电阻值就越小,系统的稳定性越差;时间常数越大,系统的稳定性就越好。

## 五、思考题

1、三阶系统的各时间常数怎样组合时,系统稳定性能较好?答:

按倍数关系递增时, 倍数越大系统的稳定性越好