CSC3511: TCP Wireshark

Name:							
1. HTTP Packet Analysis							
 Fire up Wireshark and start capturing. Browse to a webpage (e.g. http://httpvshttps.com). Filter with the http filter and select the first packet in the request. Turn off auto-scroll. Now clear the http filter and press ENTER — the same packet should remain selected. If helpful, right-click on the packet and select Follow → TCP Stream to isolate packets for that connection. You may also use a filter like: 							
ip.addr == 45.33.7.16							
a. TCP Ports Identify where the TCP source and destination ports appear within the hexadecimal shorthand packet data. Look at a TCP connection to a web server.							
Write the destination port (on the server) in: - Decimal: 80 - Hexadecimal: 0x50							
b. (If you have time) TCP Sequence and Acknowledgement Numbers							
Identify the \mathbf{TCP} sequence number and acknowledgement number in your packet.							
Write these numbers (in hexadecimal only): - Sequence number: 0 - Acknowledgement number: 0							
c. (If you have time) Maximum TCP Source Port							
Determine the maximum value of the TCP source port.							

Answer: 65535

Source

d. (If you have time) Maximum TCP Sequence Number Determine, approximately, the maximum value of the TCP sequence number. **Answer:** 4,294,967,295 = $(2^{32} - 1)$ 2. SYN and ACK Messages a. Identify the **SYN** packet sent from the client to the server. Sequence number: 0 b. (If you have time) Identify the SYN packet sent from the server to the client in response. Does the packet have the SYN value you expect? **Answer:** Yes. The server replied with SYN + ACK (0x012) c. (If you have time) Identify the second packet from the client to the server. Does it have the SYN and ACK values you expect? Answer: Yes. The second packet from the client has only the ACK flag set (0x010), which is expected. This confirms the final step of the TCP three-way handshake — the client acknowledges the server's SYN + ACK. d. (If you have time) Identify the SYN and ACK fields within the TCP header. Repeat the above exercises considering the actual values rather than Wireshark's interpreted ones. Answer: e. (If you have time) Can you see any other **TCP packets** to the same server? **Answer:** Yes, there is one HTTP GET request, an ACK to that request, one

HTTP GET response, and one ACK to that response.

```
Frame 5523: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on
Ethernet II, Src: Cisco_56:b7:d1 (6c:03:09:56:b7:d1), Dst: ASUSTekCOMPU_t
Internet Protocol Version 4, Src: 45.33.7.16, Dst: 10.108.100.157
Transmission Control Protocol, Src Port: 80, Dst Port: 44301, Seq: 0, Ack
   Source Port: 80
   Destination Port: 44301
   [Stream index: 47]
   [Stream Packet Number: 2]
 ▶ [Conversation completeness: Incomplete, DATA (15)]
   [TCP Segment Len: 0]
   Sequence Number: 0
                        (relative sequence number)
   Sequence Number (raw): 1575217945
   [Next Sequence Number: 1 (relative sequence number)]
   Acknowledgment Number: 1
                              (relative ack number)
   Acknowledgment number (raw): 2192435735
   1000 .... = Header Length: 32 bytes (8)
  Flags: 0x012 (SYN, ACK)
   Window: 32120
   [Calculated window size: 32120]
   Checksum: 0xeb2e [unverified]
   [Checksum Status: Unverified]
   Urgent Pointer: 0
 ▶ Options: (12 bytes), Maximum segment size, No-Operation (NOP), No-Oper
   [Timestamps]
   [SEQ/ACK analysis]
```

Figure 1: image

```
Frame 5524: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on
Ethernet II, Src: ASUSTekCOMPU_b3:51:8d (10:7c:61:b3:51:8d), Dst: Cisco_5
▶ Internet Protocol Version 4, Src: 10.108.100.157, Dst: 45.33.7.16
▼ Transmission Control Protocol, Src Port: 44301, Dst Port: 80, Seq: 1, Ack
    Source Port: 44301
    Destination Port: 80
     [Stream index: 47]
     [Stream Packet Number: 3]
  ▶ [Conversation completeness: Incomplete, DATA (15)]
     [TCP Segment Len: 0]
     Sequence Number: 1
                           (relative sequence number)
     Sequence Number (raw): 2192435735
     [Next Sequence Number: 1
                               (relative sequence number)]
     Acknowledgment Number: 1
                               (relative ack number)
     Acknowledgment number (raw): 1575217946
     0101 .... = Header Length: 20 bytes (5)
  ▶ Flags: 0x010 (ACK)
     Window: 1026
     [Calculated window size: 262656]
     [Window size scaling factor: 256]
     Checksum: 0xa577 [unverified]
     [Checksum Status: Unverified]
    Urgent Pointer: 0
  ▶ [Timestamps]
  | [SEQ/ACK analysis]
```

Figure 2: image

```
▼ Flags: 0x012 (SYN, ACK)

000. ... = Reserved: Not set

...0 ... = Accurate ECN: Not set

...0. ... = Congestion Window Reduced: Not set

...0. ... = ECN-Echo: Not set

...0. ... = Urgent: Not set

...1 ... = Acknowledgment: Set

...0. = Push: Not set

...0. = Reset: Not set

...0. = Reset: Not set
```

Figure 3: image

N							Protocol Length	
	551	3 13.396019	10.108.100.157	44301	45.33.7.16	80	TCP	66 44301 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
	552	3 13.419665	45.33.7.16	88	10.108.100.157	44301	TCP	66 80 → 44301 [SYN, ACK] Seq=0 Ack=1 Win=32120 Len=0 MSS=1460 SACK_PERM WS=128
	552	4 13.419697	10.108.100.157	44301	45.33.7.16	80	TCP	54 44301 → 80 [ACK] Seq=1 Ack=1 Win=262656 Len=0
	552	7 13.419850	10.108.100.157	44301	45.33.7.16	80	HTTP	484 GET / HTTP/1.1
	553	5 13.443577	45.33.7.16	80	10.108.100.157	44301	TCP	60 80 → 44301 [ACK] Seq=1 Ack=431 Win=31872 Len=0
	553	6 13.443951	45.33.7.16	88	10.108.100.157	44301	HTTP	411 HTTP/1.1 301 Moved Permanently (text/html)
	554	8 13 483735	10.108.100.157	44391	45.33.7.16	80	TCP	54 44391 → 89 [ACK] Seq=431 Ack=358 Win=262499 Len=9

Figure 4: image

f. (If you have time)

Explore the **other fields** in the packet.

Questions you have about them:

- What are the other flags? (Reserved, Accurate, Urgent, etc)

3. TCP with Stop-and-Wait

Fill in the blanks in the following TCP stream. (The numbers are above the arrows they describe.)

5. TCP with Pipelined Sliding Window

Fill in the blanks below.

(The numbers are above the arrows they describe.)

Figure 5: image

Figure 6: image