

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

AY: 2025-26

Class:	TE	Semester:	T
Course Code:	CSC 5 0 4	Course Name:	Data WareHousing & mining

Name of Student:	Pranita kumbhar		
Roll No. :	70		
Assignment No.:	02		
Title of Assignment:	Introduction to Data mining, Data Exploration &		
Date of Submission:	Data Preprocessin		
Date of Correction:			

Evaluation

Performance Indicator	Max. Marks	Marks Obtained
Completeness	5	5
Demonstrated Knowledge	3	3
Legibility	2	2
Total	10	10

Performance Indicator	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
Completeness	5	3-4	1-2
Demonstrated Knowledge Legibility	3	2	1
Legibility	2	1	0

Checked by

Name of Faculty

: Ms. Neha Raut .

Signature

Date

Assignment 2.

Pi] If a dataset is normally distributed, why are
Mean, Median, and Mode approximately equal?
What does this imply in data analysis?

A normal distribution is a symmetric, bell-shaped curve with one clear peak (unimodal). Because the left and right sides mirror each other, its 'center' is uniquely defined. In such symmetric unimodal data:

- Mode lies at the peak.
- Median splits the area.
- Mean is the balance point where positive & negative deviations cancel out

Hence Mean ~ Median ~ Mode.

* Its implication in data analysis:

i] If mean ≈ median ≈ mode: The data is symmetric

- There is no strong skewness.
- Outliers are not significantly influencing dataset.
- In this case, mean is reliable measure of central tendency.

2] If Mean + Median + Mode

The data is skewed.

- The mean is distorted by extreme values.
- The median is better choice to represent 'typical'
 value of dataset.

- The mode may be useful if the analysis is about the most frequent observation.
- 3) Practical implication:
- Inhen analyzing data, always compare mean, median & mode.
- Their equality suggests normal distribution and allows you to apply many statistical models.
- If they differ widely, the dataset is skewed or contains outliers, so we should either transform the data, use robust statistics.
- 1500, 1800, 1700, 1600; 2000, 1550, 4000, 1700, 1800, 1900, 1600.

 13 Calculate mean, median, mode & midrange.

ij aj man: Ex

1500 + 1800 + 1700 + 1600 + 2000 + 1550 + 4000 + 1700 + 1800 + 1900 + 1700 + 1600

mean = 22850 = 1904.17

b] Median:

Sorted: 1500, 1550, 1600, 1600, 1700, 1700, 1700, 1800, 1800, 1900, 2000, 4000.

h = 12

median = avg of 6th & 7th value.
= 1700 + 1700

2

median = 1700

c] Mode.

Most frequent value = 1700 (appears 8 times) so it is unimodal.

d] Midrange:

= min +max

12

= 1500 + 4000

2

midrange = 2750.

Q1 = 1600

92 = 1700

Ø3 = 1900·

