7. Мощность множеств (углублённое введение)

Опр. Множество A называется равномощным множеству B, если существует биекция $f:A\leftrightarrow B$ **Обоз.** $A\sim B$

- ullet Из равномощности A и B следует, что $\exists f^{-1}: B \leftrightarrow A$
- Из определения равномощности и свойств биекции следует, что $A\sim A$
- Равномощность рефлексивна, симметрична и транзитивна, то есть относится к классу эквивалентности
- Равномощность это не то же самое, что равенство множеств
- Если обозначить класс эквивалентности |A| по отношению равномощности, то получим мощность множества A

Опр. Мощность множества A - класс эквивалентности по отношению равномощности

- ullet Если |A|=|B|, $A=\{a_1,\ldots,a_n\}$, и $B=\{b_1,\ldots,b_m\}$, то m=n
- Если множество конечно, оно не будет равномощно ни одному своему собственному подмножеству

Теорема. Если A - некоторое множество и имеет место инъекция из A в A, то она является сюръекцией и биекцией.

На примере счётных множеств:

Опр. Любое множество, равномощное множеству $\mathbb N$ называется счётным

Опр. Биекцию множества M с множеством $\mathbb N$ называют нумерацией: $\varphi:M\leftrightarrow\mathbb N$