ALGEBRA Y ALGEBRA LINEAL 520142 Listado 3 (Inducción)

1. Pruebe por inducción que $\forall n \in \mathbb{N}$:

(En práctica d))

a)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(4n^2 - 1).$$

b)
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2).$$

c)
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}$$
.

d)
$$2 \cdot 4 + 4 \cdot 6 + 6 \cdot 8 + \dots + 2n \cdot (2n+2) = \frac{4n(n+1)(n+2)}{3}$$
.

2. Sea $a_0, a_1, a_2, \cdots, a_n, \cdots$, una sucesión de números reales y d una constante real positiva, tales que:

$$a_0 = 0,$$

 $a_n = a_{n-1} + d \cdot n,$ cuando $n \ge 1.$

Demuestre, usando inducción, que $\forall n \in \mathbb{N} \cup \{0\}, a_n \leq d \cdot n^2$.

3. Sea $u_1, u_2, \dots, u_n, \dots$, una sucesión de números reales, llamada sucesión de Fibonacci, tales que:

$$u_1 = 1, u_2 = 1,$$

 $u_n = u_{n-1} + u_{n-2},$ cuando $n \ge 3.$

Demuestre por inducción que $\forall n \in \mathbb{N}$:

(En práctica c))

a)
$$\sum_{i=1}^{n} u_i = u_{n+2} - 1$$
b)
$$\sum_{i=1}^{n} u_{2i} = u_{2n+1} - 1$$
c)
$$\sum_{i=1}^{n} u_{2i-1} = u_{2n}$$
d)
$$\sum_{i=1}^{n} u_i^2 = u_n \cdot u_{n+1}$$

$$c) \quad \sum_{i=1}^{n} u_{2i-1} = u_{2n}$$

$$b) \quad \sum_{i=1}^{n} u_{2i} = u_{2n+1} - 1$$

$$d) \quad \sum_{i=1}^{n} u_i^2 = u_n \cdot u_{n+1}$$

4. Aplique la propiedad telescópica para probar que $\forall n \in \mathbb{N}$:

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
.

b)
$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$$
. (En práctica b))

5. Considere la identidad $(k+1)^3 - k^3 = 3k^2 + 3k + 1$, y deduzca una fórmula para $\sum_{k=0}^{\infty} k^2$, con $n \in \mathbb{N}$ arbitrario. (En práctica)

1

6. (mire, vea, conjeture). Considere las siguientes identidades:

En general, para $n \in \mathbb{N}$, ¿Qué identidad escribiría Ud.? Demuestre su conjetura utilizando el principio de inducción y las identidades vistas en clases.

7. Demuestre por inducción que

- a) $\forall n \in \mathbb{N} : n^5 n$ es divisible por 5. (En práctica a))
- b) $\forall n \in \mathbb{N}$: $3^{2n} + 7$ es múltiplo de 8. c) $\forall n \in \mathbb{N}$: $n^3 + 2n$ es divisible por 3.
- d) $\forall n \in \mathbb{N}$: $3^{2n+1} + 2^{n+2}$ es divisible por 7.
- e) $\forall n \in \mathbb{N}$: $\forall x \ge -1, (1+x)^n \ge 1 + nx$.
- 8. Pruebe por inducción que $\forall n \in \mathbb{N}$: $n^2 + n$ es divisible por 2, y use este resultado para demostrar que $\forall n \in \mathbb{N} : n^3 + 11n$ es divisible por 6.
- 9. Encuentre el mínimo valor de $m \in \mathbb{N}$ para el cual se verifica que $\forall n \geq m, 2^n > n^2$. (En práctica) Demuéstrelo por inducción.

10. Encuentre: (En práctica d))

- a) el cuarto término en el desarrollo de $(x+5)^{11}$.
- b) el término constante (si existe) en el desarrollo de $\left(x^2 \frac{1}{x}\right)^{10}$.
- c) los términos centrales del desarrollo de $\left(y + \frac{1}{n^{1/2}}\right)^{15}$.
- d) los términos que contienen $\frac{x^2}{y^3}$ y $\frac{x}{y}$ (si existen) en el desarrollo de $\left(x^2y \frac{x}{y}\right)^{16}$.
- a) Pruebe que: $\forall n \in \mathbb{N}, \ \forall k \in \{0, 1, ..., n\}, \ \binom{n}{k} \le \frac{n^k}{k!}$ 11. (En práctica a))
 - b) Use a) para probar que: $\forall n \in \mathbb{N}, \ \forall k \in \{0, 1, ..., n\}, \ \left(1 + \frac{1}{n}\right)^n \leq \sum_{k=0}^n \frac{1}{k!}$
- 12. Demuestre que $\forall n \in \mathbb{N}$: (En práctica b))

a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
, b) $\sum_{k=1}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$, c) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

RRS/RNG/JMS/AGS/LNB/JSA/BBM/LRS/ags semestre otoño 2006.