중복PCR에 의한 송이버섯균의 소나무뿌리감염확인방법

김은혁, 남걸, 조수경

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《축산을 적극 발전시키고 온실남새와 버섯재배를 대대적으로 하여 더 많은 고기와 남 새, 버섯이 인민들에게 차례지도록 하여야 합니다.》

인민들에게 여러가지 버섯을 정상적으로 공급하자면 그 재배를 공업화하여야 한다.

송이버섯균을 소나무뿌리에 감염시켜서 키울 때 그 감염정확성을 명확히 확인하는것 은 송이버섯을 인공적으로 재배하는데서 나서는 중요한 문제이다.

야생소나무의 새 뿌리에 송이버섯종균을 감염시키면 겉보기에는 감염되였다고 보는 2 분가지상이 생겨나지만 이것이 송이버섯균에 의한 감염인지 아니면 토양의 다른 균뿌리균 에 의한 감염인지를 정확히 알수 없다.[1]

버섯일반프라이머와 송이버섯특이프라이머를 리용하면 중복PCR(Nested-PCR)법으로 균뿌리시료에서 송이버섯균을 확인할수 있다.[3, 5]

이로부터 우리는 송이버섯특이프라이머를 리용하여 중복PCR로 송이버섯균의 소나무 뿌리감염을 확인하기 위한 연구를 하였다.

재료와 방법

재료로는 자연송이버섯활성균권뿌리, 송이버섯종균을 감염시킨 인공감염뿌리를 썼다. 시약으로는 페놀, 클로로포름, 이소프로파놀, 에타놀, β—메르캅토에타놀, BSA, PVP, dNTPs(dATP, dTTP, dCTP, dGTP), Taq DNA폴리메라제, 25mmol/L MgCl₂, DNA분자크기표식 자(DL 2000), 아가로즈, Tris-HCl, 빙초산, CTAB, EtBr(에티디움브로미드), EDTA, TE용액 (2mol/L Tris-HCL(pH 7.5) 2.5mL, 0.5mol/L EDTA(pH 8.0) 1mL, 증류수로 500mL 되게 맞춘것.), TAE완충액(Tris-HCl 96g, CH₃COONa·3H₂O 32.8g, EDTA 12.3g을 증류수에 풀고 1L 되게 맞춘 것, pH 7.8), NaOH, 사탕, 브롬페놀청, 멸균재증류수를 썼다.

기구로는 함식저온원심분리기(《HERMLE2383》), PCR장치(《DB80240-33》), UV검출기(《GDS-8000》), 전기영동장치(《DYY-Ⅲ》)를 리용하였다.

1) 소나무뿌리시료에서 염색체DNA추출

CTAB법[2, 4]을 편리상 조금 수정하여 리용하였다.

겉보기에 균뿌리균이 감염되였다고 볼수 있는 2분가지상의 뿌리로부터 15mg정도의 시료 (2분가지상만)를 뗴내여 멸균한 증류수로 3번 세척하고 물기를 깨끗이 없앤 다음 극동시켰다가 균마하였다. 여기에 400μL의 추출액(2% CTAB, 100mmol/L Tris-HCl(pH 8.0), 20mmol/L EDTA(pH 8.0), 1.4mol/L NaCl, 2% β—메르캅토에타놀, 1% PVP)을 첨가하였다. 65°C의 수욕조에서 45min동안 가열하고 포화폐놀 및 클로로포름/이소프로파놀(24:1)로 두번 추출하였다. 다음같은 체적의 미리 랭각시킨 이소프로파놀을 첨가하고 -20°C에서 DNA를 침전시켰다. 12 000r/min에서 15min동안 원심분리하여 DNA침전물을 수집하고 자연상태에서 건조시켰다. 100μL의 TE용액에 DNA를 용해시켰다. 1U의 RNase를 첨가하고 37°C에서 45min동안 반응시킨 다음 클

로로포름으로 1~2번 추출하였다. 260 및 280nm에서 흡광도를 측정하여 DNA농도와 순도를 결정한 다음 전기영동상에서 DNA분획유무를 검사하고 −20℃에 보관하고 리용하였다.

2) 버섯일반프라이머를 리용한 1차PCR

시료핵산속에 있는 PCR방해물질들을 효과적으로 억제하기 위하여 1% BSA용액의 첨가량을 0, 0.2, 0.4, 0.6, 0.8 1.0 μ L로 하고 재증류수로 총체적을 같이 맞춘 다음 영동효과가가장 좋은 첨가량을 결정하였다.

버섯일반프라이머(PF, PR)를 다음과 같이 설계 및 합성하여 리용하였다.

PF: 5'-TCCGTAGGTGAACCTGCGG-3'

PR: 5'-TCCTCCGCTTATTGATATGC-3'

버섯일반프라이머를 리용한 PCR는 유전자증폭장치(《C1000 Touch™ Thermal Cycler》) 를 리용하여 다음의 조건에서 진행하였다.

> 예비변성 94℃에서 10min→변성 94℃에서 40s, 아닐링 55℃에서 40s, 연장 72℃에서 1min, 순환 35회→최종연장 72℃에서 10min.

PCR산물을 TAE완충액, 50V, 0.8% 아가로즈겔에서 60min동안 전기영동하고 EtBr로 염색한 다음 UV검출기에서 확인하였다.

3) 송이버섯특이프라이머를 리용한 2차PCR

송이버섯특이프라이머(TmF, TmR)는 다음과 같이 설계 및 합성하여 리용하였다.

TmF: 5'-CATTTTATTATACACTCGGT-3'

TmR: 5'-GACGATTAGAAGCCGACCTA-3'

송이버섯특이프라이머를 리용한 PCR는 유전자증폭장치(《C1000 TouchTM Thermal Cycler》)를 리용하여 다음의 조건에서 진행하였다.

예비변성 95℃에서 10min→변성 95℃에서 40s, 아닐링 55℃에서 40s, 연장 72℃에서 1min, 순환 35회,→최종연장 72℃에서 10min.

PCR산물을 TAE완충액, 50V, 0.8% 아가로즈겔에서 60min동안 전기영동하고 EtBr로 염색하고 UV검출기에서 확인하였다.

결과 및 론의

1) PCR방법에 ILC는 송이버섯염색체DNA의 검출효과 균뿌리시료에서 송이버섯균의 유무를 확인하기 위하여 CTAB법으로 분리한 핵산을 송이버섯특이프라이머를 리용한 PCR와 버섯일반프라이머와 송이버섯특이프라이머를 리용한 중복PCR를 진행한 다음 1% 아가로즈겔에서 전기영동하였다.(그림 1)

그림 1에서 보는바와 같이 송이버섯원균은 PCR와 중 복PCR에서 모두 특이띠가 나타났지만 송이버섯자연균권 시료는 중복PCR에서만 특이띠가 나타났다. 이로부터 감 염된 뿌리에서 송이버섯균의 유무를 확정하기 위하여서 는 중복PCR법을 리용하여야 한다는것을 알수 있다.

2) 시료량에 따르는 송이버섯염색체DNA의 검출효과 10, 15, 20, 25mg의 각이한 시료를 CTAB법으로 핵산

그림 1. PCR방법에 따르는 송이버섯 염색체DNA증폭산물의 전기영동상 1-DNA분자크기표식자(DL 2000), 2-송이버섯원균PCR산물, 3-송이 버섯원균증복PCR산물, 4-자연균권 PCR산물, 5-자연균권증복PCR산물

을 추출하여 중복PCR를 진행한 다음 1% 아가로즈겔에서 전기영동하여 확인한 결과는 그림 2와 같다.

그림 2에서 보는바와 같이 시료량을 15mg이상으로 할 때 분리된 핵산의 중복PCR산물에서 송이버섯특이띠가 확인되였다.

3) BSA첨가량에 따르는 PCR증폭효과

PCR에 영향을 주는 방해물질들을 억제하기 위하여 BSA첨가량에 따르는 PCR증폭효과를 보았다. 1% BSA용액의 첨가량을 변화시키면서 버섯일반프라이머를 리용하여 PCR를 진행한 다음 1% 아가로즈겔에서 전기영동한 결과는 그림 3과 같다.

그림 2. 시료량에 따르는 송이버섯염색체 DNA증폭산물의 전기영동상 1-DNA분자크기표식자(DL 2000), 2-6은 시료량이 각각 0, 10, 15, 20, 25mg일 때의 PCR산물

그림 3. BSA첨가량에 따르는 PCR증폭산물의 전기영동상 1-DNA분자크기표식자(DL 2000), 2-7은 1% BSA용액의 첨가량이 각각 0, 0.2, 0.4, 0.6, 0.8, 1.0µL일 때의 PCR산물

그림 3에서 보는바와 같이 0.2, 0.4, 0.6 μ L의 1% BSA용액을 첨가한 구들에서 버섯프라이머에 해당되는 증폭띠가 관찰되였다. 그가운데서 0.2, 0.6 μ L의 1% BSA용액을 첨가한 구

에서는 증폭띠가 거의나 알아보기 힘들 정도로 매우 약하게 나타났으나 0.4μ L의 1% BSA용액을 첨가한 구에서는 증폭띠가 뚜렷하게 나타났다. 이것은 1% BSA의 첨가량을 0.4μ L로 할 때 PCR방해물질들이 효과적으로 억제되여 DNA증폭에 적합하다는것을 보여준다.

4) 1차PCR산물농도에 따르는 송이버섯염색체DNA 의 검출효과

최종적으로 송이버섯균확인을 위하여 버섯일반프라이머를 리용하여 증폭한 1차PCR산물을 각이한 농도로 희석한 다음 송이버섯특이프라이머로 2차PCR를 진행하였는데 그 결과는 그림 4와 같다.

그림 4에서 보는바와 같이 1차PCR산물을 20배 희석하여도 증폭효률은 달라지지 않는다는것을 알수 있다.

5) 중복PCR에 의한인공감염뿌리에서 송이버섯균확인 자연균권뿌리와 인공감염뿌리에서 송이버섯균의 감 염을 확인하기 위하여 CTAB법으로 분리한 핵산을 가

그림 4. 1차PCR산물농도에 따르는 송이버섯염색체DNA증폭산물의 전기영동상

1-DNA분자크기표식자(DL 2000), 2-5는 1차PCR산물을 각각 1, 10, 20, 30배로 희석하였을 때(분석시료량 1μL)의 PCR산물 지고 버섯일반프라이머와 송이버섯특이프라이머를 리용한 중복PCR를 진행한 다음 1% 아가로즈겔에서 전기영동하였다.(그림 5)

그림 5. 송이버섯균의 확인을 위한 중복PCR산물의 전기영동상 1-DNA분자크기표식자(DL 2000), 2-자연균권뿌리시료의 중복PCR 산물, 3-인공감염균권뿌리 시료의 중복PCR산물

그림 5에서 보는바와 같이 송이버섯종균을 소나무의 새 뿌리에 인공적으로 감염시킨 실험구에서 중복PCR를 진행한 결과 자연균권뿌리실험구에서와 마찬가지로 증폭띠가 나타났다.

맺 는 말

- 1) 균뿌리시료에서 버섯일반프라이머와 송이버섯특이프라이머를 리용한 중복PCR법으로 송이버섯균을 확인할수 있는데 이때 시료량이 15mg이상 되여야 한다. 그리고 버섯일반프라이머를 리용한 1차PCR에서 PCR반응물질들을 억제하기 위하여 0.4μL의 1% BSA용액을 첨가하는것이 가장 좋았다.
- 2) 송이버섯특이프라이머를 리용한 2차PCR는 1차PCR 산물을 그대로 주형으로 리용하는것이 좋았다.
- 이와 같은 방법으로 송이버섯종균을 인공적으로 감염시킨 소나무뿌리시료와 송이버섯활성균권속의 소나무뿌리에서 송이버섯균이 각각 검출되였다.

참 고 문 헌

- [1] I. H. Chapela et al.; Mycologia, 96, 730, 2004.
- [2] Daniel Janowski et al.; Forests, 10, 218, 1, 2019.
- [3] Elizabeth Bent et al.; Journal of Microbiological Methods, 80, 206, 2010.
- [4] K. Kikuch et al.; Mycol. Res., 104, 1427, 2000.
- [5] J. S. Lee et al.; J. Kor. For. Soc., 93, 121, 2004.

주체110(2021)년 1월 5일 원고접수

Confirmation Method of Roots of Pine Infected with Tricholoma matsutake Using Nested-PCR

Kim Un Hyok, Nam Kol and Jo Su Gyong

When the newly-generated roots of pine are inoculated with *T. matsutake* spawn in field condition, it seems to be infected due to dichotomous root tips. However, it is not clear whether it is from *T. matsutake* or soil mycorrhizal fungi. We developed the nested-PCR method for detection of *T. matsutake* from its mycorrhizal sample with mushroom-universal primers and *T. matsutake* -specific primers.

Keywords: T. matsutake, artificial culture, pine, Pinus densiflora