

Anomaly Detection from Sensor Data

Mohammad Poul Doust, Andrei Mardale, Laetitia Couge, Bognan Etienne Ekpo

> Msc Machine Learning and Data Mining (MLDM) Jean Monnet University

> > January 13th, 2020

Introduction

Problem Context: Similar to previous pitch:

- Training: 1677 sequences, All normal!
- Validation: 600 sequences
- \bullet Test: ~ 2000 sequences
- Each sequence ~ 60000 points

Goal: Use this data to learn the true representation of normal samples and use it to detect Abnormalities.

Challenges

- Large feature vectors ~ 60 k
- No Labels in training
- Learn the true representation of Normal
- Anomalies in the final test data different from validation.
- When an anomaly is detected on one flight, all sequences of this flight are labelled as abnormal
- ,,,

Effectively reduces the dimension. BUT, Loses temporal information and it is Linear

Solutions: Large Dimensionality

- Moving Average: Sliding window that consider the average of each window as a representative.
- Window of size 1000 (one second) \Rightarrow the new signal of size 60.

Effectively reduces the dimension. BUT, Choosing window size is tricky and average suffers from compensation

Solutions: Large Dimensionality

- Creating new dataset: Splitting each sequence into K new sub sequences and treat each one as a new dataset instance
- $\bullet \Rightarrow$ Increase dataset size, Decrease feature vectors.
- $\bullet \Rightarrow \text{Less prone to overfitting.}$
- $K = 12 \Rightarrow$ each sample will give 12 new instances, each of size 5000

Effectively reduces the dimension and give more samples. BUT, needs to tune K and extra processing when classifying

Solutions: Large Dimensionality, Learn Representation

- Metric Learning: Learn a metric that assigns small (resp. large) distance to pairs of examples that are semantically similar (resp. dissimilar)¹.
- Lower Dimension
- Better Representation
- Needs some Label!
- Linear, but could be Kernelized!

Results

Rank	Team	University	F1-Score	Precision	Recall	Method
2	The-h-star	Universite Jean Monnet Saint Etienne	0.99	0.98	1.0	Metric Learning
40	The-h-star	Universite Jean Monnet Saint Etienne	0.93	1.0	0.88	${\bf Autoencoders+OCSVM+Splitting}$
80	The-h-star	Universite Jean Monnet Saint Etienne	0.89	1.0	0.80	PCA + OCSVM

Table 1: Ranking at Nov. 29, 2019

Conclusion

- Anomaly detection could be very tricky
- Dimensionality Reduction highly impact model performance and accuracy
- Metric Learning is effective tool to learn better data representation, but needs labels
- Autoencoders also effective to learn better representation (No need for labels)