

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

Vicerrectoría de Investigación, Postgrado y Extensión

Maestría en Analítica de Datos

Modelos Predictivos

PROYECTO FINAL Predicción de Aprobados y No Aprobados en Otoño y Primavera 2024 en la Universidad de Illinois

Presentado a: Dr. Juan Castillo

Por: Fabiola Montero 8-845-228

Septiembre, 2024

Tabla de Contenido

Int	roc	du	cción4
1.	S	Sel	ección del Dataset
2.	E	хр	oloración Inicial de los datos
3.	F	Rev	visión de los datos
4.	Δ	۱ná	álisis de términos académicos para la aplicación de modelos predictivos 17
5.	Δ	۱pl	icación de modelos predictivos
1)	(Otoño (Fall) Aprobados
	а	۱.	Promedio Móvil
	b).	Suavizado Exponencial
	C	: .	Holt
	d	l.	Winter
2	2)	(Otoño (Fall) No Aprobados
	а	۱.	Promedio Móvil
	b).	Suavizado Exponencial
	C	: .	Holt
	d	l.	Winter
3	3)	ı	Primavera (Spring) Aprobados
	а	۱.	Promedio Móvil
	b).	Suavizado Exponencial
	C	: .	Holt
	d	l.	Winter
4	!)	ı	Primavera (Spring) No Aprobados
	а	۱.	Promedio Móvil
	b).	Suavizado Exponencial
	C	: .	Holt
	d	l.	Winter
6.	F	Res	sumen de la aplicación de modelos predictivos
1)	(Otoño (Fall) Aprobados
2	2)	(Otoño (Fall) No Aprobados
3	3)	ı	Primavera (Spring) Aprobados

4	.)	Primavera (Spring) No Aprobados	. 37
7.		Selección de modelos para predicción	. 38
1)	Otoño (Fall) Aprobados	. 38
2	2)	Otoño (Fall) No Aprobados	. 38
3	3)	Primavera (Spring) Aprobados	. 39
4	.)	Primavera (Spring) No Aprobados	. 39
8.		Predicción de Aprobados y No Aprobados para 2024	. 40
1)	Otoño (Fall) Aprobados	. 40
2	2)	Otoño (Fall) No Aprobados	. 40
3	3)	Primavera (Spring) Aprobados	. 41
4	.)	Primavera (Spring) No Aprobados	. 41
9.		Resultados	. 42
Cor	n	nclusiones	. 43
Bib	li	liografía	. 44

Introducción

En el ámbito académico, prever el rendimiento estudiantil es fundamental para la planificación estratégica de recursos, la toma de decisiones administrativas y la implementación de programas de apoyo que mejoren el éxito académico. La predicción del número de estudiantes aprobados y no aprobados ofrece a las instituciones educativas una oportunidad para anticiparse a los desafíos, optimizando la asignación de recursos y desarrollando intervenciones dirigidas a mejorar el desempeño estudiantil.

Este proyecto se centra en la aplicación de modelos predictivos para estimar la cantidad de estudiantes aprobados y no aprobados en los términos académicos regulares de otoño (Fall) y primavera (Spring) del año 2024 en la Universidad de Illinois, usando datos extraídos de la plataforma Kaggle. El proceso incluyó una exploración y análisis inicial de los datos, tras lo cual se definió el enfoque basado en los periodos académicos regulares. Posteriormente, se presenta la evaluación de varios modelos predictivos, como el Promedio Móvil, Suavización Exponencial, Holt y Winter. Los modelos fueron seleccionados según indicadores de precisión como el MAD, MAPE, el Tracking Signal y la Desviación Estándar, eligiendo aquellos que mostraron mayor eficiencia para realizar las predicciones.

El objetivo principal de este estudio es identificar los modelos predictivos más precisos para cada grupo de estudiantes (aprobados y no aprobados) en los términos seleccionados, proporcionando a la universidad una herramienta útil para la planificación académica y la optimización de la experiencia educativa. Estas predicciones permiten a la Universidad anticiparse a las necesidades específicas de los estudiantes, ajustando la oferta de cursos, la distribución del personal docente y desarrollando programas de apoyo oportunos.

En este informe, describe de desarrollo del proceso, desde la selección del dataset hasta la aplicación y evaluación de los modelos predictivos, además de un análisis de los resultados obtenidos y su interpretación.

PROYECTO FINAL

Predicción de Aprobados y No Aprobados en Otoño y Primavera 2024 en la Universidad de Illinois

1. Selección del Dataset

Para el proyecto final, se seleccionó un dataset proporcionado por Kaggle que contiene un extenso conjunto de registros académicos de la Universidad de Illinois, abarcando el período 2010-2023. Este dataset permite realizar análisis detallados y predicciones precisas. Los campos incluidos en el dataset son:

- Year (Año Académico): Indica el año en que se registraron las calificaciones.
- **Term (Período):** Especifica el período académico correspondiente, dividido en cuatro términos: Fall (otoño), Spring (primavera), Summer (verano) y Winter (invierno).
- Subject (Abreviatura del Curso): Código que identifica la asignatura.
- Number (Número del Curso): Número asociado a la asignatura.
- Course Title (Nombre del Curso): Descripción completa del curso.
- Sched Type (Modalidad del Curso): Tipo de modalidad en que se imparte el curso (en línea, conferencia, conferencia-debate, etc.).
- **Recuento de Calificaciones**: Distribución de las calificaciones obtenidas por los estudiantes, desde A+ hasta F.
- W (Retiros del Curso): Número de estudiantes que se retiraron del curso.
- Primary Instructor (Instructor Principal): Nombre del docente encargado del curso.

Enlace del dataset: Dataset Kaggle.

2. Exploración Inicial de los datos

La exploración inicial de los datos se realizó utilizando un cuaderno de Google Colab, el cual está disponible para consulta en el siguiente enlace: <u>Cuaderno de Google Colab.</u> Durante esta esta fase exploratoria, se llevaron a cabo las siguientes acciones:

1. Importación de librerías: Se importó la librería pandas, fundamental para el manejo y análisis de datos en Python.

```
import pandas as pd
```

2. Carga del Dataset: Se cargó el dataset en el entorno de trabajo para su posterior análisis.

```
dataset = pd.read_csv('sample_data/UIGrades.csv', sep=",")
```

3. Visualización Preliminar: Se realizó una visualización rápida de los datos para confirmar que se cargaron correctamente y para obtener una primera impresión de la estructura y contenido.

4. Inspección del dataset: Se extrajo información básica sobre el dataset, como el número de filas, columnas y tipos de datos.

```
dataset.info()
   <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 69069 entries, 0 to 69068 Data columns (total 22 columns):
                                 Non-Null Count Dtype
             Year
                                 69069 non-null
                                 69069 non-null
             Term
             YearTerm
                                 69069 non-null
             Subject
                                 69069 non-null
                                                  object
                                 69069 non-null
             Number
                                                  int64
             Course Title
                                 69069 non-null
                                                  object
             Sched Type
                                 59016 non-null
                                 69069 non-null
                                                  int64
                                 69069 non-null
                                                  int64
         10 B+
                                 69069 non-null
                                                  int64
                                 69069 non-null
         11
                                                  int64
                                                  int64
                                  69069 non-null
                                 69069 non-null
                                                  int64
                                 69069 non-null
                                                  int64
                                 69069 non-null
                                                  int64
                                 69069 non-null
                                                  int64
            D
                                  69069 non-null
                                                  int64
         18 D-
                                 69069 non-null
                                                  int64
        19
                                 69069 non-null
                                                  int64
                                  69069 non-null
                                                  int64
        21 Primary Instructor 68892 non-null
        dtypes: int64(16), object(6)
        memory usage: 11.6+ MB
```

5. Estadística descriptiva: Se calcularon estadísticas descriptivas de los datos numéricos, lo que permitió identificar patrones generales y valores atípicos.

6. Verificación de Valores Nulos: Se comprobó la existencia de valores nulos en el dataset, lo cual es crucial para asegurar la integridad de los análisis posteriores.

3. Revisión de los datos

Tras una exploración inicial del dataset, se procedió a la revisión de los datos en Excel. Se añadió una columna denominada Aprobados y otra No Aprobados. Para la columna de Aprobados, se realizó la suma de las calificaciones de A+, A, A-, B+, B, B-, C+,C, C-, D+,D,D-, mientras que para la columna de No Aprobados, se consideraron los estudiantes que obtuvieron F.

Esta clasificación se basa en el sistema de calificaciones de la Universidad de Illinois, que utiliza la siguiente escala: Excelente (A+, A, A-); Bueno (B+, B, B-); Aceptable (C+, C, C-); Malo (D+, D, D-) (calificación mínima para aprobar) y Reprobado (F). (Junta Directiva de la Universidad de Illinois, 2024)

El objetivo inicial del proyecto fue predecir la cantidad de estudiantes aprobados y no aprobados para el año 2024, utilizando los datos de 14 periodos comprendidos entre 2010 y 2023. Para visualizar los totales por periodo, se generó una tabla dinámica, presentada a continuación:

Tabla 1. Tabla Dinámica inicial

Etiquetas de fila 🔻	Suma de Aprobados	Suma de No Aprobados
2010	266,560	4,511
2011	405,697	7,389
2012	148,996	2,681
2013	271,574	4,895
2014	272,117	5,380
2015	290,176	5,572
2016	278,966	5,800
2017	290,684	6,161
2018	299,674	6,251
2019	312,430	6,914
2020	323,740	6,106
2021	334,786	9,004
2022	349,052	8,074
2023	154,542	2,768
Total general	3,998,994	81,506

(Fuente: Elaboración propia)

A continuación, se generó un gráfico para facilitar la visualización de la distribución de aprobados y no aprobados, que muestra una diferencia significativa entre ambas categorías:

Suma de Aprobados Suma de No Aprobados Aprobados vs No Aprobados 450,000 400,000 350,000 300,000 250,000 Valores 200,000 150,000 ■ Sum a de Aprobados 100,000 ■ Sum a de No Aprobados 50,000 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Año Year ▼

Gráfico 1. Aprobados Vs No Aprobados

(Fuente: Elaboración propia)

El Gráfico 1 revela una gran diferencia entre los estudiantes aprobados y no aprobados. Es evidente que hay más estudiantes que aprueban en comparación con aquellos que no lo logran.

Posteriormente, se tomaron los valores de Aprobados por periodo, obteniendo la siguiente tabla:

Tabla 2. Aprobados por periodo (2010-2023)

Año	Periodo	Aprobados
2010	1	266,560
2011	2	405,697
2012	3	148,996
2013	4	271,574
2014	5	272,117
2015	6	290,176
2016	7	278,966
2017	8	290,684

2018	9	299,674
2019	10	312,430
2020	11	323,740
2021	12	334,786
2022	13	349,052
2023	14	154,542

Para comprender el comportamiento de los datos, se generó un gráfico de dispersión:

Gráfico 2. Aprobados

(Fuente: Elaboración propia)

El Gráfico 2 muestra fluctuaciones significativas, con un aumento drástico en 2011 (Periodo 2) y una caída pronunciada en 2012 (Periodo 3) y 2023 (Periodo 14). Se observó que algunos años carecen de información completa sobre los cuatro términos académicos:

- o Periodo 2 (2011): Datos incompletos; falta el término de invierno.
- o Periodo 3 (2012): Similar situación, falta el término de invierno.
- o **Periodo 14 (2023):** Solo presenta datos de primavera y verano.

Del mismo modo, se tomó la información de los No Aprobados por periodo:

Tabla 3. No Aprobados por periodo (2010-2023)

		No
Año	Periodo	Aprobados
2010	1	4,511
2011	2	7,389
2012	3	2,681
2013	4	4,895
2014	5	5,380
2015	6	5,572
2016	7	5,800
2017	8	6,161
2018	9	6,251
2019	10	6,914
2020	11	6,106
2021	12	9,004
2022	13	8,074
2023	14	2,768

(Fuente: Elaboración propia)

Se generó un gráfico de dispersión para visualizar los datos de No Aprobados:

Gráfico 3. No Aprobados

(Fuente: Elaboración propia)

El Gráfico 3 destaca picos en el periodo 2 (2011) y en el periodo 12 (2021), seguidos de una disminución en el periodo 3 (2012) y el periodo 14 (2023). Al igual que en los Aprobados, se observó que algunos periodos carecen de información completa de los cuatro términos.

Dado que no todos los años contienen información de los cuatro términos, se decidió cambiar el enfoque del análisis. En lugar de trabajar con datos anuales, se optó por analizar cada término académico de forma individual (otoño, primavera, verano e invierno). Esta decisión permite un análisis más preciso al evitar inconsistencias en la composición de los datos.

A continuación, se presentan las tablas dinámicas y los gráficos generados a partir de los datos obtenidos, con el fin de visualizar la comparación entre estudiantes aprobados y no aprobados en los diferentes términos académicos:

Tabla 4. Tabla Dinámica Aprobados y No Aprobados para Fall (Otoño)

Etiquetas de fila	Suma de Aprobados	Suma de No Aprobados
2010-fa	137,645	2,406
2011-fa	141,384	2,638
2012-fa	135,946	2,409
2013-fa	140,797	2,495
2014-fa	139,452	2,802
2015-fa	145,254	2,625
2016-fa	149,215	3,278
2017-fa	151,058	3,150
2018-fa	156,073	3,378
2019-fa	161,725	3,503
2020-fa	154,876	3,402
2021-fa	171,245	4,900
2022-fa	176,902	3,746
Total general	1,961,572	40,732

(Fuente: Elaboración propia)

La tabla 4, muestra la distribución de los estudiantes aprobados y no aprobados durante el término de otoño, un periodo regular que concentra una gran cantidad de datos.

Suma de Aprobados Suma de No Aprobados Aprobados Vs No Aprobados Fall (Otoño) 200,000 180,000 160,000 140,000 120,000 Valores 100,000 80,000 Sum a de Aprobados 60,000 Sum a de No Aprobados 40,000 20,000 YearTerm →▼

Gráfico 4. Aprobados Vs No Aprobados para Fall (Otoño)

El gráfico 4, permite visualizar la relación entre aprobados y no aprobados en el término de otoño, destacando las diferencias en el rendimiento académico durante este periodo.

Tabla 5. Tabla Dinámica Aprobados y No Aprobados para Spring (Primavera)

Etiquetas de fila	▼ Suma de Aprobados	Suma de No Aprobados
2010-sp	122,662	2,012
2011-sp	122,929	2,113
2012-sp	6,525	136
2013-sp	123,692	2,236
2014-sp	124,755	2,378
2015-sp	125,061	2,414
2016-sp	127,873	2,484
2017-sp	129,841	2,730
2018-sp	133,033	2,585
2019-sp	137,783	2,938
2020-sp	135,618	2,060
2021-sp	144,694	3,648
2022-sp	155,135	3,943
2023-sp	153,530	2,735
Total general	1,743,131	34,412

La tabla 5, detalla la distribución de aprobados y no aprobados durante el término de primavera, otro semestre regular con un volumen de datos similar al de otoño.

Gráfico 5. Aprobados Vs No Aprobados para Spring (Primavera)

(Fuente: Elaboración propia)

El gráfico 5, ofrece una representación visual del rendimiento académico en primavera, mostrando cómo se comportan los datos de aprobados y no aprobados en este periodo.

Tabla 6. Tabla Dinámica Aprobados y No Aprobados para Summer (Verano)

Etiquetas de fila 🗷	Suma de Aprobados	Suma de No Aprobados
2010-su	6,253	93
2011-su	141,384	2,638
2012-su	6,525	136
2013-su	7,085	164
2014-su	7,166	183
2015-su	18,616	516
2016-su	457	6
2017-su	8,391	239
2018-su	9,360	248
2019-su	11,714	433
2020-su	16,623	322
2021-su	16,982	402
2022-su	15,057	340
2023-su	1,012	33
Total general	266,625	5,753

La tabla 6, ilustra la distribución de aprobados y no aprobados en el término de verano, un periodo corto que presenta un menor volumen de datos en comparación con los semestres regulares.

Gráfico 6. Aprobados Vs No Aprobados para Summer (Verano)

(Fuente: Elaboración propia)

El gráfico 6, muestra la diferencia entre aprobados y no aprobados en el término de verano, proporcionando una representación clara de los datos disponibles en este periodo.

Tabla 7. Tabla Dinámica Aprobados y No Aprobados para Winter (Invierno)

Etiquetas de fila 🗐	Suma de Aprobados	Suma de No Aprobados
2014-wi	744	17
2015-wi	1,245	17
2016-wi	1,421	32
2017-wi	1,394	42
2018-wi	1,208	40
2019-wi	1,208	40
2020-wi	16,623	322
2021-wi	1,865	54
2022-wi	1,958	45
Total general	27666	609

(Fuente: Elaboración propia)

En esta tabla se presenta la distribución de los estudiantes aprobados y no aprobados durante el término de invierno, otro periodo corto con un volumen de datos más reducido.

Gráfico 7. Aprobados Vs No Aprobados para para Winter (Invierno)

(Fuente: Elaboración propia)

El gráfico 7, refleja la relación entre aprobados y no aprobados en el término de invierno, destacando las variaciones en comparación con los periodos regulares.

4. Análisis de términos académicos para la aplicación de modelos predictivos

Después de la visualización de datos, se confirma que el número de estudiantes aprobados es considerablemente mayor que el de no aprobados, tal como se identificó en el análisis preliminar. Esta diferencia en el volumen de datos indica que el conjunto de aprobados es más robusto para la aplicación de modelos predictivos. En contraste, el menor número de casos de no aprobados podría afectar la precisión de los modelos, ya que una muestra más pequeña tiende a generar predicciones menos confiables.

Además, se observa que los términos regulares del año académico, como otoño (Fall) y Primavera (Spring), concentran la mayor cantidad de datos en ambos grupos, tanto en aprobados como en no aprobados, debido a que la mayoría de los estudiantes se matriculan en estos periodos. En cambio, los términos de verano (Summer) e invierno (Winter) presentan volúmenes de datos más reducidos y, en algunos años, valores mínimos. Esto podría limitar la capacidad de generar predicciones precisas en estos periodos, ya que, tradicionalmente, el verano es un término más corto con una oferta de cursos limitada, mientras que el invierno tiene una duración y oferta más variable, siendo opcional para los estudiantes que desean adelantar o tomar asignaturas específicas.

Este análisis se fundamenta en las disposiciones de la Universidad de Illinois y su calendario académico, que establece a los periodos de primavera (Spring) y otoño (Fall) como semestres regulares, mientras que los de verano (Summer) e invierno (Winter) se consideran periodos cortos e irregulares. (University of Illinois Board of Trustees, 2024)

Por consiguiente, se ha decidido aplicar los modelos predictivos tanto para aprobados como para no aprobados en los términos de otoño y primavera, ya que, además de ser periodos académicos regulares, ofrecen un volumen de datos más consistente y adecuado para predicciones confiables.

5. Aplicación de modelos predictivos

Se aplicaron los siguientes modelos predictivos: promedio móvil, suavizado exponencial, Holt y Winter, para los grupos de aprobados y no aprobados en los periodos académicos de otoño (Fall) y primavera (Spring).

A continuación, se presentan los resultados:

1) Otoño (Fall) Aprobados

a. Promedio Móvil

Periodo	Aprobados	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
1	137,645									
2	141,384									
3	135,946									
4	140,797	138,943								
5	139,452	139,395	138,943	-509	509	259,081	509	0	0	-1
6	145,254	140,362	139,395	-5,859	5,859	17,294,946	3,184	4	2	-2
7	149,215	143,680	140,362	-8,853	8,853	37,653,691	5,074	6	3	-3
8	151,058	146,245	143,680	-7,379	7,379	41,850,834	5,650	5	4	-4
9	156,073	150,400	146,245	-9,828	9,828	52,799,567	6,486	6	4	-5
10	161,725	154,518	150,400	-11,325	11,325	65,375,577	7,292	7	5	-6
11	154,876	155,933	154,518	-358	358	56,054,543	6,302	0	4	-7
12	171,245	160,980	155,933	-15,312	15,312	78,354,893	7,428	9	5	-8
13	176,902	166,187	160,980	-15,922	15,922	97,817,466	8,372	9	5	-9

b. Suavizado Exponencial

Periodo	APROBADOS	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
0		150,890								
1	137,645	149,566	150,890	13,245	13,245	175,434,100	13,245	10	10	1.00
2	141,384	148,747	149,566	8,182	8,182	121,186,654	10,713	6	8	2.00
3	135,946	147,467	148,747	12,801	12,801	135,417,020	11,409	9	8	3.00
4	140,797	146,800	147,467	6,670	6,670	112,686,081	10,225	5	7	4.00
5	139,452	146,065	146,800	7,348	7,348	100,948,351	9,649	5	7	5.00
6	145,254	145,984	146,065	811	811	84,233,372	8,176	1	6	6.00
7	149,215	146,307	145,984	-3,231	3,231	73,691,076	7,470	2	5	6.14
8	151,058	146,782	146,307	-4,751	4,751	67,300,733	7,130	3	5	5.76
9	156,073	147,712	146,782	-9,291	9,291	69,413,358	7,370	6	5	4.31
10	161,725	149,113	147,712	-14,013	14,013	82,109,831	8,034	9	6	2.21
11	154,876	149,689	149,113	-5,763	5,763	77,664,743	7,828	4	5	1.53
12	171,245	151,845	149,689	-21,556	21,556	109,913,841	8,972	13	6	-1.06
13	176,902	154,350	151,845	-25,057	25,057	149,756,294	10,209	14	7	-3.39
14					10,209					

c. Holt

Periodo	APROBADOS	Lt	Tt	FT	Et	At	MSE	MAD	%Error	MAPE	TSt
0		129259.5	3090.09341								
1	137,645	132,879	3,196	132,350	-5,295	5,295	28,041,331	5,295	3.8	3.8	-1.00
2	141,384	136,606	3,302	136,075	-5,309	5,309	28,112,686	5,302	3.8	3.8	-2.00
3	135,946	139,512	3,223	139,908	3,962	3,962	23,974,803	4,855	2.9	3.5	-1.37
4	140,797	142,541	3,184	142,735	1,938	1,938	18,919,981	4,126	1.4	3.0	-1.14
5	139,452	145,098	3,059	145,725	6,273	6,273	23,006,845	4,556	4.5	3.3	0.34
6	145,254	147,866	3,001	148,157	2,903	2,903	20,576,630	4,280	2.0	3.1	1.04
7	149,215	150,702	2,968	150,867	1,652	1,652	18,027,016	3,905	1.1	2.8	1.57
8	151,058	153,408	2,915	153,669	2,611	2,611	16,626,117	3,743	1.7	2.7	2.33
9	156,073	156,299	2,910	156,324	251	251	14,785,755	3,355	0.2	2.4	2.68
10	161,725	159,461	2,961	159,209	-2,516	2,516	13,940,197	3,271	1.6	2.3	1.98
11	154,876	161,667	2,810	162,421	7,545	7,545	17,848,510	3,660	4.9	2.5	3.83
12	171,245	165,153	2,945	164,477	-6,768	6,768	20,178,782	3,919	4.0	2.6	1.85
13	176,902	168,979	3,121	168,099	-8,803	8,803	24,588,151	4,294	5.0	2.8	-0.36
14				172,100							

d. Winter

Periodo	Dt	Lt	Tt	St	Pronóstico	Et	At	MSE	Error cuadratico	%Error	MAPE	TSt
0		127490.501	3121.62292									
1	137,645	131172.394	3233.67703	1.01	131983.47	-5661.5305	5661.5305	32052927.6	5662	4	4.1	-1
2	141,384	134783.223	3309.10747	1.02	137524.96	-3859.04	3859.04	23472558.7	4760	3	3.4	-2
3	135,946	138110.25	3312.69124	0.98	135769.825	-176.175004	176.175004	15658718.3	3232	0	2.3	-3
4	140,797	141198.882	3267.87943	1.01	143063.583	2266.58333	2266.58333	13028388.7	2991	2	2.1	-2.48
5	139,452	143767.544	3128.03589	1.01	146544.752	7092.75189	7092.75189	20484136.9	3811	5	2.7	-0.09
6	145,254	146366.343	3022.18858	1.03	150682.812	5428.81208	5428.81208	21982114.2	4081	4	2.9	1.25
7	149,215	149624.657	3069.41359	0.98	146893.191	-2321.80889	2321.80889	19611925.9	3830	2	2.7	0.72
8	151,058	152378.587	3006.31704	1.01	154244.869	3186.86873	3186.86873	18429951.7	3749	2	2.6	1.59
9	156,073	155300.047	2989.3456	1.01	156930.01	857.009773	857.009773	16463786.6	3428	1	2.4	1.99
10	161,725	158277.951	2987.05727	1.02	161841.984	116.984463	116.984463	14818776.5	3097	0	2.2	2.24
11	154,876	160866.863	2907.42825	0.98	158796.507	3920.50651	3920.50651	14868921.5	3172	3	2.2	3.42
12	171,245	164380.838	3028.73743	1.01	165129.356	-6115.64436	6115.64436	16746603.5	3417	4	2.3	1.39
13	176,902	168193.261	3185.47462	1.01	168991.105	-7910.89482	7910.89482	20272423	3763	4	2.5	-0.84
15				1.02	175213.7							

2) Otoño (Fall) No Aprobados

a. Promedio Móvil

Periodo	NO Aprobados	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
1	2,406									
2	2,638									
3	2,409									
4	2,495	2,487								
5	2,802	2,586	2,487	-315	315	99,225	315	11	11	-1.00
6	2,625	2,583	2,586	-39	39	50,373	177	1	6	-2.00
7	3,278	2,800	2,583	-695	695	194,706	350	21	11	-3.00
8	3,150	2,964	2,800	-350	350	176,655	350	11	11	-4.00
9	3,378	3,108	2,964	-414	414	175,644	363	12	11	-5.00
10	3,503	3,327	3,108	-395	395	172,407	368	11	11	-6.00
11	3,402	3,358	3,327	-75	75	148,576	326	2	10	-7.00
12	4,900	3,796	3,358	-1,542	1,542	427,128	478	31	13	-8.00
13	3,746	3,888	3,796	50	50	379,944	431	1	12	-8.77

b. Suavizado Exponencial

Periodo	NO APROBADOS	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
0		3,133								
1	2,406	3,061	3,133	727	727	528,865	727	30	30	1.00
2	2,638	3,018	3,061	423	423	353,689	575	16	23	2.00
3	2,409	2,957	3,018	609	609	359,524	586	25	24	3.00
4	2,495	2,911	2,957	462	462	323,080	555	19	23	4.00
5	2,802	2,900	2,911	109	109	260,845	466	4	19	5.00
6	2,625	2,873	2,900	275	275	229,992	434	10	17	6.00
7	3,278	2,913	2,873	-405	405	220,606	430	12	17	5.12
8	3,150	2,937	2,913	-237	237	200,040	406	8	16	4.84
9	3,378	2,981	2,937	-441	441	199,434	410	13	15	3.71
10	3,503	3,033	2,981	-522	522	206,739	421	15	15	2.38
11	3,402	3,070	3,033	-369	369	200,310	416	11	15	1.52
12	4,900	3,253	3,070	-1,830	1,830	462,670	534	37	17	-2.24
13	3,746	3,302	3,253	-493	493	445,771	531	13	16	-3.19
14					531					

c. Holt

Periodo	APROBADOS	Lt	Tt	FT	Et	At	MSE	MAD	%Error	MAPE	TSt
0		2055.42308	153.972527								
1	2,406	2,229	158	2,209	-197	197	38,653	197	8.2	8	-1.00
2	2,638	2,412	163	2,387	-251	251	50,837	224	9.5	9	-2.00
3	2,409	2,558	160	2,575	166	166	43,076	205	6.9	8	-1.38
4	2,495	2,696	155	2,718	223	223	44,739	209	8.9	8	-0.28
5	2,802	2,846	154	2,851	49	49	36,268	177	1.7	7	-0.06
6	2,625	2,963	147	3,000	375	375	53,677	210	14.3	8	1.74
7	3,278	3,126	150	3,109	-169	169	50,075	204	5.1	8	0.96
8	3,150	3,264	148	3,276	126	126	45,806	194	4.0	7	1.66
9	3,378	3,408	147	3,411	33	33	40,838	177	1.0	7	2.02
10	3,503	3,549	146	3,555	52	52	37,021	164	1.5	6	2.48
11	3,402	3,666	140	3,695	293	293	41,476	176	8.6	6	4.0
12	4,900	3,915	162	3,806	-1,094	1,094	137,770	252	22.3	8	-1.56
13	3,746	4,044	155	4,077	331	331	135,609	258	8.8	8	-0.24
14				4,199							

d. Winter

Periodo	Dt	Lt	Tt	St	Pronóstico	Et	At	MSE	Error cuadratico	%Error	MAPE	TSt
0		1931.08472	163.954167									
1	2,406	2114.05374	167.757137	1.05	2206	-200.20124	200.20124	40080.5366	200	8	8.3	-1
2	2,638	2313.15535	174.026031	1.02	2319	-318.607191	318.607191	70795.5395	259	12	10.2	-2
3	2,409	2481.80457	172.95067	0.99	2462	53.22864	53.22864	48141.4557	191	2	7.5	-2.44
4	2,495	2623.71608	166.742837	1.06	2825	330.335761	330.335761	63386.5206	226	13	9.0	-0.60
5	2,802	2775.40629	163.732312	1.06	2962	159.76716	159.76716	55814.3255	212	6	8.3	0.12
6	2,625	2900.35987	155.976565	1.03	3024	398.981409	398.981409	73042.9654	244	15	9.5	1.74
7	3,278	3082.47168	161.203615	0.99	3020	-258.225958	258.225958	72134.0626	246	8	9.2	0.67
8	3,150	3218.47484	156.163523	1.05	3415	265.341515	265.341515	71918.0697	248	8	9.1	1.74
9	3,378	3356.99734	152.635319	1.06	3564	186.326202	186.326202	67784.6679	241	6	8.7	2.56
10	3,503	3503.28804	151.366395	1.02	3567	64.4921472	64.4921472	61422.1248	224	2	8.0	3.05
11	3,402	3630.90049	146.615605	1.00	3638	236.48879	236.48879	60922.5633	225	7	7.9	4.1
12	4,900	3868.4382	164.800027	1.05	3949	-950.5938	950.5938	131148.064	285	19	8.9	-0.11
13	3,746	3986.26414	155.405209	1.05	4240	493.798438	493.798438	139816.436	301	13	9.2	1.53
14				1.01	4203							

3) Primavera (Spring) Aprobados

a. Promedio Móvil

Periodo	Aprobados	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
1	122,662									
2	122,929									
3	6,525									
4	123,692	93,952								
5	124,755	94,475	93,952	-30,803	30,803	948,824,809	30,803	25	25	-1
6	125,061	95,008	94,475	-30,586	30,586	942,156,456	30,694	24	25	-2
7	127,873	125,345	95,008	-32,865	32,865	988,134,902	31,418	26	25	-3
8	129,841	126,883	125,345	-4,496	4,496	746,154,118	24,687	3	20	-4
9	133,033	128,952	126,883	-6,151	6,151	604,489,025	20,980	5	17	-5
10	137,783	132,133	128,952	-8,831	8,831	516,738,614	18,955	6	15	-6
11	135,618	134,069	132,133	-3,486	3,486	444,654,342	16,745	3	13	-7
12	144,694	137,782	134,069	-10,625	10,625	403,184,541	15,980	7	12	-8
13	155,135	143,308	137,782	-17,353	17,353	391,844,771	16,133	11	12	-9
14	153,530	147,244	143,308	-10,223	10,223	363,110,245	15,542	7	12	-10

b. Suavizado Exponencial

Periodo	APROBADOS	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
0		124,509								
1	122,662	124,325	124,509	1,847	1,847	3,412,728	1,847	2	2	1.00
2	122,929	124,185	124,325	1,396	1,396	2,680,244	1,621	1	1	2.00
3	6,525	112,419	124,185	117,660	117,660	4,616,416,680	40,301	1,803	602	3.00
4	123,692	113,546	112,419	-11,273	11,273	3,494,082,341	33,044	9	454	3.32
5	124,755	114,667	113,546	-11,209	11,209	2,820,392,649	28,677	9	365	3.43
6	125,061	115,707	114,667	-10,394	10,394	2,368,332,341	25,630	8	305	3.43
7	127,873	116,923	115,707	-12,166	12,166	2,051,145,076	23,706	10	263	3.20
8	129,841	118,215	116,923	-12,918	12,918	1,815,610,531	22,358	10	231	2.82
9	133,033	119,697	118,215	-14,818	14,818	1,638,273,010	21,520	11	207	2.24
10	137,783	121,505	119,697	-18,086	18,086	1,507,156,741	21,177	13	188	1.42
11	135,618	122,917	121,505	-14,113	14,113	1,388,248,374	20,534	10	171	0.78
12	144,694	125,094	122,917	-21,777	21,777	1,312,081,964	20,638	15	158	-0.28
13	155,135	128,098	125,094	-30,041	30,041	1,280,570,787	21,361	19	148	-1.68
14	153,530	130,642	128,098	-25,432	25,432	1,235,298,765	21,652	17	138	-2.83
15]				21,652					

c. Holt

Periodo	APROBADOS	Lt	Tt	FT	Et	At	MSE	MAD	%Error	MAPE	TSt
0		88681.1648	4777.09231								
1	122,662	96,379	5,361	93,458	-29,204	29,204	852,858,597	29,204	23.8	23.8	-1.00
2	122,929	103,859	5,785	101,740	-21,189	21,189	650,920,427	25,196	17.2	20.5	-2.00
3	6,525	99,332	3,723	109,644	103,119	103,119	3,978,433,647	51,171	1,580.4	540.5	1.03
4	123,692	105,118	4,135	103,054	-20,638	20,638	3,090,303,067	43,537	16.7	409.5	0.74
5	124,755	110,804	4,445	109,253	-15,502	15,502	2,520,301,923	37,930	12.4	330.1	0.44
6	125,061	116,230	4,642	115,249	-9,812	9,812	2,116,297,538	33,244	7.8	276.4	0.20
7	127,873	121,572	4,782	120,872	-7,001	7,001	1,820,971,741	29,495	5.5	237.7	-0.01
8	129,841	126,702	4,851	126,354	-3,487	3,487	1,594,870,575	26,244	2.7	208.3	-0.14
9	133,033	131,702	4,881	131,554	-1,479	1,479	1,417,905,895	23,492	1.1	185.3	-0.22
10	137,783	136,703	4,905	136,583	-1,200	1,200	1,276,259,413	21,263	0.9	166.9	-0.30
11	135,618	141,009	4,785	141,608	5,990	5,990	1,163,497,186	19,875	4.4	152.1	-0.02
12	144,694	145,684	4,763	145,794	1,100	1,100	1,066,639,882	18,310	8.0	139.5	0.04
13	155,135	150,916	4,857	150,447	-4,688	4,688	986,281,230	17,262	3.0	129.0	-0.23
14	153,530	155,548	4,812	155,773	2,243	2,243	916,191,847	16,189	1.5	119.9	-0.11
15				160,630							

d. Winter

Periodo	Dt	Lt	Tt	St	Pronóstico	Et	At	MSE	Error cuadratico	%Error	MAPE	TSt
0		79574.1306	5985.85833									
1	122,662	87312.2536	6336.31127	1.19	101811.127	-20850.8727	20850.8727	434758894	20851	17	17.0	-1
2	122,929	95086.3431	6623.86692	1.14	106567.747	-16361.2531	16361.2531	351224748	18606	13	15.2	-2
3	6,525	92493.0556	4780.43604	0.68	69575.6757	63050.6757	63050.6757	1559279068	33421	966	332.2	0.77
4	123,692	99254.8164	5176.70099	1.06	102761.02	-20930.9804	20930.9804	1278985786	30298	17	253.4	0.16
5	124,755	104286.515	5147.70051	1.21	126511.604	1756.60437	1756.60437	1023805761	24590	1	203.0	0.27
6	125,061	109333.231	5127.50364	1.15	126225.794	1164.79398	1164.79398	853397591	20686	1	169.3	0.38
7	127,873	123549.689	6945.29456	0.62	71275.4688	-56597.5312	56597.5312	1189095155	25816	44	151.4	-1.89
8	129,841	129519.307	6750.15926	1.08	140333.354	10492.3542	10492.3542	1054219448	23901	8	133.5	-1.60
9	133,033	133637.753	6223.81643	1.21	164874.512	31841.512	31841.512	1049737497	24783	24	121.3	-0.26
10	137,783	137830.749	5817.65245	1.15	161187.816	23404.8157	23404.8157	999542287	24645	17	110.9	0.69
11	135,618	149709.949	7029.96202	0.66	95373.2441	-40244.7559	40244.7559	1055914840	26063	30	103.5	-0.89
12	144,694	154612.756	6604.53098	1.07	167414.183	22720.1834	22720.1834	1010939165	25785	16	96.2	-0.02
13	155,135	158148.882	5990.85002	1.19	191602.108	36467.1083	36467.1083	1035470766	26606	24	90.6	1.35
14	153,530	161226.482	5408.19998	1.14	186659.433	33129.4332	33129.4332	1039905664	27072	22	85.7	2.55
15				0.69	114666.146							

4) Primavera (Spring) No Aprobados

a. Promedio Móvil

Periodo	Aprobados	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
1	2,012									
2	2,113									
3	136									
4	2,236	1,624								
5	2,378	1,716	1,624	-754	754	568,139	754	32	32	-1.00
6	2,414	1,791	1,716	-698	698	527,846	726	29	30	-2.00
7	2,484	2,378	1,791	-693	693	511,980	715	28	30	-3.00
8	2,730	2,502	2,378	-352	352	414,961	624	13	25	-4.00
9	2,585	2,553	2,502	-84	84	333,363	516	3	21	-5.00
10	2,938	2,684	2,553	-385	385	302,475	494	13	20	-6.00
11	2,060	2,578	2,684	624	624	314,934	513	30	21	-4.57
12	3,648	2,808	2,578	-1,070	1,070	418,613	582	29	22	-5.86
13	3,943	3,147	2,808	-1,135	1,135	515,300	644	29	23	-7.06
14	2,735	3,097	3,147	412	412	480,765	621	15	22	-6.66

b. Suavizado Exponencial

Periodo	APROBADOS	Lt	Ft	Et	At	MSE	MAD	%Error	MAPE	TSt
0		2,458								
1	2,012	2,413	2,458	446	446	198,916	446	22	22	1.00
2	2,113	2,383	2,413	300	300	144,578	373	14	18	2.00
3	136	2,159	2,383	2,247	2,247	1,779,928	998	1,652	563	3.00
4	2,236	2,166	2,159	-77	77	1,336,443	768	3	423	3.80
5	2,378	2,188	2,166	-212	212	1,078,112	657	9	340	4.12
6	2,414	2,210	2,188	-226	226	906,975	585	9	285	4.24
7	2,484	2,238	2,210	-274	274	788,119	540	11	246	4.08
8	2,730	2,287	2,238	-492	492	719,917	534	18	217	3.20
9	2,585	2,317	2,287	-298	298	649,806	508	12	195	2.78
10	2,938	2,379	2,317	-621	621	623,437	520	21	177	1.53
11	2,060	2,347	2,379	319	319	575,998	501	15	163	2.22
12	3,648	2,477	2,347	-1,301	1,301	669,074	568	36	152	-0.33
13	3,943	2,624	2,477	-1,466	1,466	782,928	637	37	143	-2.60
14	2,735	2,635	2,624	-111	111	727,891	599	4	133	-2.95
15					599					

c. Holt

Periodo	APROBADOS	Lt	Tt	FT	Et	At	MSE	MAD	%Error	MAPE	TSt
0		1411.89011	139.481319								
1	2,012	1,597	149	1,551	-461	461	212,179	461	22.9	22.9	-1.00
2	2,113	1,783	156	1,746	-367	367	173,387	414	17.4	20.1	-2.00
3	136	1,759	120	1,939	1,803	1,803	1,199,010	877	1,325.6	455.3	1.11
4	2,236	1,914	127	1,879	-357	357	931,203	747	16.0	345.5	0.83
5	2,378	2,075	134	2,041	-337	337	767,621	665	14.2	279.2	0.42
6	2,414	2,229	138	2,209	-205	205	646,694	588	8.5	234.1	0.13
7	2,484	2,379	140	2,367	-117	117	556,252	521	4.7	201.3	-0.08
8	2,730	2,540	145	2,519	-211	211	492,268	482	7.7	177.1	-0.52
9	2,585	2,675	143	2,685	100	100	438,680	440	3.9	157.9	-0.34
10	2,938	2,829	145	2,817	-121	121	396,266	408	4.1	142.5	-0.67
11	2,060	2,883	127	2,974	914	914	436,252	454	44.4	133.6	1.42
12	3,648	3,073	139	3,010	-638	638	433,863	469	17.5	123.9	0.01
13	3,943	3,286	154	3,213	-730	730	441,501	489	18.5	115.8	-1.48
14	2,735	3,369	140	3,440	705	705	445,451	505	25.8	109.4	-0.04
15				3,594							·

d. Winter

Periodo	Dt	Lt	Tt	St	Pronóstico	Et	At	MSE	Error cuadratico	%Error	MAPE	TSt
0		1289.78403	155.35625									
1	2,012	1472.85511	160.899217	1.17	1688.23167	-323.76833	323.76833	104825.932	324	16	16.1	-1
2	2,113	1654.65474	165.079299	1.15	1873.34537	-239.654634	239.654634	81130.1377	282	11	13.7	-2
3	136	1660.31065	133.194621	0.60	1097.48862	961.488617	961.488617	362240.212	508	707	244.8	0.78
4	2,236	1811.18958	136.731483	1.13	2035.31405	-200.685955	200.685955	281748.872	431	9	185.8	0.46
5	2,378	1953.29779	137.806829	1.19	2314.12464	-63.8753618	63.8753618	226215.11	358	3	149.2	0.37
6	2,414	2090.15397	137.616699	1.16	2425.02451	11.0245136	11.0245136	188532.848	300	0	124.4	0.48
7	2,484	2455.82281	183.227127	0.55	1227.46758	-1256.53242	1256.53242	387152.974	437	51	113.9	-2.55
8	2,730	2613.61518	178.140174	1.14	3021.17642	291.176422	291.176422	349356.816	419	11	101.0	-1.96
9	2,585	2729.6352	165.716145	1.19	3324.81381	739.81381	739.81381	371353.222	454	29	92.9	-0.18
10	2,938	2859.26443	158.498761	1.16	3356.32366	418.323658	418.323658	351717.368	451	14	85.1	0.75
11	2,060	3061.02607	167.151338	0.60	1801.70602	-258.293977	258.293977	325808.133	433	13	78.5	0.18
12	3,648	3226.83442	166.88274	1.13	3663.23988	15.2398825	15.2398825	298676.81	398	0	72.0	0.24
13	3,943	3392.35139	166.609586	1.17	3958.93235	15.9323457	15.9323457	275721.197	369	0	66.5	0.30
14	2,735	3441.71196	143.159783	1.15	4078.72503	1343.72503	1343.72503	384998.037	439	49	65.2	3.32
15				0.60	2167.5136							

6. Resumen de la aplicación de modelos predictivos

Posteriormente, se realizaron comparaciones entre los indicadores MAD, MAPE, rango TS inferior, rango TS superior y la desviación estándar.

A continuación, se presentan los resúmenes:

1) Otoño (Fall) Aprobados

ESTIMACIONES DE ERROR DE LOS PRONÓSTICOS-APROBADOS Otoño (Fall)

Método	MAD	MAPE	Rango TS inf	Rango TS sup	Desv. Est.
Promedio Móvil	8372	5	-9.00	-1.00	10465
Suavización Expo	10209	7	-3.39	6.14	12762
Holt	4294	3	-2.00	3.8	5368
Winter	3763	2	-3.00	3.4	4703

Análisis de los indicadores:

- MAD (Error Absoluto Medio): El MAD más bajo es el del modelo Winter, lo que indica que, en promedio, los errores absolutos son menores con este modelo.
- MAPE (Error Absoluto Medio Porcentual): El modelo Winter también tiene el MAPE más bajo, lo que indica que, en términos porcentuales, es el modelo que mejor se ajusta a los datos históricos.
- Rango de Tracking Signal (TS): Winter y Holt tienen rangos de TS dentro de los límites aceptables de -6 a +6, lo que indica que no tienen un sesgo significativo. El Promedio Móvil, en cambio, tiene un rango inferior de -9.00, que excede el límite inferior de -6, lo que lo descarta como una opción viable.
- **Desviación Estándar:** La Desviación Estándar más baja también pertenece al modelo Winter, lo que sugiere que sus predicciones son más consistentes y menos dispersas.

Por lo anterior, el **modelo Winter** es el mejor modelo para la proyección de estudiantes aprobados en el término de otoño para el 2024.

2) Otoño (Fall) No Aprobados

ESTIMACIONES DE ERROR DE LOS PRONÓSTICOS-NO APROBADOS Otoño (Fall)

Método	MAD	MAPE	Rango TS inf	Rango TS sup	Desv. Est.
Promedio Móvil	431	12	-8.77	-1.00	538
Suavización Expo	531	16	-3.19	6.00	664
Holt	258	8	-2.00	4.0	323
Winter	301	9	-2.44	4.1	377

Análisis de los indicadores:

- MAD (Error Absoluto Medio): El MAD más bajo lo tiene el modelo Holt, lo que sugiere que este modelo tiene los errores absolutos más pequeños en promedio.
- MAPE (Error Absoluto Medio Porcentual): El modelo Holt también tiene el MAPE más bajo, lo que indica que, en términos porcentuales, es el modelo más preciso en relación con los datos históricos.
- Rango de Tracking Signal (TS): Tanto Holt como Winter tienen rangos de TS dentro del rango aceptable de -6 a +6, lo que significa que no presentan sesgos significativos. El Promedio Móvil tiene un rango inferior fuera del límite aceptable, por lo que no es una buena opción.
- **Desviación Estándar:** La Desviación Estándar más baja corresponde también al modelo Holt, lo que indica que sus predicciones son las más consistentes y menos dispersas.

Por lo anterior, el **modelo Holt** es el mejor modelo para la proyección de estudiantes no aprobados en el término de otoño para el 2024.

3) Primavera (Spring) Aprobados

ESTIMACIONES DE ERROR DE LOS PRONÓSTICOS-APROBADOS Primavera (Spring)

Método	MAD	MAPE	Rango TS inf	Rango TS sup	Desv. Est.
Promedio Móvil	15542	12	-10.00	-1.00	19427
Suavización Expo	21652	138	-2.83	3.43	27065
Holt	16189	120	-2.00	1.0	20237
Winter	27072	86	-2.00	2.6	33840

Análisis de los indicadores:

- MAD(Error Absoluto Medio): El Promedio Móvil tiene el MAD más bajo, lo que indica que tiene los errores absolutos más pequeños en promedio.
- MAPE (Error Absoluto Medio Porcentual): El Promedio Móvil es el que tiene el MAPE más bajo, lo que sugiere que es el más preciso en términos porcentuales. El MAPE de los otros modelos es significativamente más alto, lo que indica menos precisión.
- Rango de Tracking Signal (TS): Aunque el Promedio Móvil tiene el MAD y MAPE más bajos, su rango TS está fuera del rango aceptable (-6 a +6), lo que indica un sesgo significativo. Los modelos Holt, Winter y Suavización Exponencial tienen rangos de TS aceptables, sin sesgo sistémico.
- **Desviación Estándar:** El Promedio Móvil tiene la desviación estándar más baja, lo que sugiere que sus predicciones son más consistentes, aunque Holt le sigue de cerca.

Por lo anterior, aunque el Promedio móvil tiene el MAD y MAPE más bajo, su rango Ts está fuera de los límites aceptables. Por lo que, el **modelo Holt** es la mejor opción para la proyección de estudiantes aprobados en primavera (Spring) para el año 2024, debido a su balance entre precisión y consistencia, sin sesgo significativo.

4) Primavera (Spring) No Aprobados

ESTIMACIONES DE ERROR DE LOS PRONÓSTICOS-NO APROBADOS Primavera (Spring)

Método	MAD	MAPE	Rango TS inf	Rango TS sup	Desv. Est.
Promedio Móvil	621	22	-7.06	-1.00	776
Suavización Expo	599	133	-2.95	4.24	749
Holt	505	109	-2.00	1.4	631
Winter	439	65	-2.55	3.3	548

Análisis de los indicadores:

- MAD (Error Absoluto Medio): El modelo Winter tiene el MAD más bajo, lo que indica que tiene el menor error absoluto promedio.
- MAPE (Error Absoluto Medio Porcentual): Aunque el Promedio Móvil tiene el MAPE más bajo, el modelo Winter es el siguiente con un MAPE del 65%, lo que lo hace más preciso que Holt y Suavización Exponencial en términos porcentuales.
- Rango de Tracking Signal (TS): El Promedio Móvil nuevamente queda descartado debido a que su rango TS está fuera de los límites aceptables de -6 a +6. Los modelos Winter, Holt y Suavización Exponencial tienen rangos de TS dentro de los límites aceptables, lo que indica que no tienen un sesgo significativo.
- **Desviación Estándar:** El modelo Winter tiene la desviación estándar más baja, lo que indica que sus predicciones son más consistentes y menos variables.

Por lo anterior, el **modelo Winter** es el mejor para la proyección de estudiantes no aprobados en primavera (Spring) para 2024.

7. Selección de modelos para predicción

1) Otoño (Fall) Aprobados

El **modelo Winter** es claramente el mejor modelo para la proyección de estudiantes aprobados en otoño de 2024, debido a las siguientes razones:

- El MAD (Error Absoluto Medio) y MAPE (Error Absoluto Medio Porcentual) más bajos, lo que refleja una mayor precisión tanto en términos absolutos como porcentuales.
- El rango de Tracking Signal (TS) está dentro de los límites aceptables, lo que indica la ausencia de sesgo sistemático en las predicciones.
- Tiene la desviación estándar más baja, lo que indica predicciones más consistentes y confiables.

Aunque el modelo Holt también es una opción razonable, **Winter** se destaca por su mayor precisión y consistencia en las predicciones.

2) Otoño (Fall) No Aprobados

El **modelo Holt** resulta ser el más adecuado para la proyección de estudiantes no aprobados en otoño de 2024, debido a las siguientes razones:

- El MAD y MAPE más bajos, lo que indica una mayor precisión tanto en términos absolutos como porcentuales.
- Un rango de TS dentro de los límites aceptables, lo que sugiere que no hay sesgo sistemático.
- La desviación estándar más baja, lo que garantiza mayor consistencia en las predicciones.

Aunque el modelo Winter también es una opción válida, **Holt** se destaca como el más confiable en términos de precisión y consistencia.

Modelos para predicción de Otoño (Fall)				
Periodo o Término	Modelo			
Otoño (Fall) Aprobados	Winter			
Otoño (Fall) No Aprobados	Holt			

Tabla resumen

3) Primavera (Spring) Aprobados

Aunque el Promedio Móvil tiene el MAD y MAPE más bajos, su rango TS fuera de los límites aceptables lo descarta como una opción confiable. El **modelo Holt**, se posiciona como la mejor opción debido a su buen equilibrio en los siguientes aspectos:

- MAD moderadamente bajo,
- MAPE más bajo en comparación con Suavización Exponencial y Winter,
- Rango de TS dentro de los límites aceptables,
- Desviación estándar baja, que aporta mayor consistencia.

Por tanto, el **modelo Holt** es el modelo más adecuado para la predicción de estudiantes aprobados en primavera de 2024, ofreciendo una precisión confiable y sin sesgos significativos.

4) Primavera (Spring) No Aprobados

El **modelo Winter** es la opción más adecuada para predecir la cantidad de estudiantes no aprobados en primavera de 2024, destacándose por:

- El MAD más bajo, lo que indica un menor error absoluto promedio,
- Un MAPE moderadamente bajo,
- Rango TS dentro de los límites aceptables, lo que indica la ausencia de sesgo en las predicciones,
- La desviación estándar más baja, asegurando mayor consistencia en las predicciones.

Aunque el Promedio Móvil tiene un MAPE ligeramente más bajo, su rango de TS fuera de los límites lo descalifica. **Winter** ofrece un equilibrio óptimo entre precisión, consistencia y ausencia de sesgo en las predicciones.

Modelos para predicción de Primavera (Spring)				
Periodo o Término	Modelo			
Primavera (Spring) Aprobados	Holt			
Primavera (Spring) No Aprobados	Winter			

8. Predicción de Aprobados y No Aprobados para 2024

Se realizaron predicciones de los estudiantes aprobados y no aprobados en el término de otoño (Fall) y primavera (Spring) para el año 2024, aplicando los modelos predictivos seleccionados: promedio móvil, suavizado exponencial, Holt y Winter.

A continuación, se presentan los resultados:

1) Otoño (Fall) Aprobados

APROBADOS Otoño (Fall)

Modelo	Predicción 2024
Promedio Móvil	160,980
Suavización Expo	151,845
Holt	172,100
Winter	175,214

El cuadro muestra las predicciones generadas por cada modelo para los estudiantes aprobados en otoño (Fall) de 2024. Se observa que el modelo de Winter predice el mayor número de aprobados, seguido de Holt. En contraste, los modelos de promedio móvil y suavización exponencial predicen valores ligeramente inferiores.

2) Otoño (Fall) No Aprobados

NO APROBADOS Otoño (Fall)

Modelo	Predicción 2024
Promedio Móvil	3,796
Suavización Expo	3,253
Holt	4,199
Winter	4,203

El cuadro muestra las predicciones de no aprobados para el término de otoño en 2024. Al analizar los resultados, se observa que los modelos de Holt y Winter generan las estimaciones más altas, con valores muy similares entre sí, mientras que el modelo de suavización exponencial predice el menor número de no aprobados. El modelo de promedio móvil se sitúa entre estos, indicando una predicción moderada.

3) Primavera (Spring) Aprobados

APROBADOS Primavera (Spring)

Modelo	Predicción 2024
Promedio Móvil	143,308
Suavización Expo	128,098
Holt	160,630
Winter	114,666

El cuadro muestra las estimaciones de aprobados para primavera en 2024 según cada modelo predictivo. El modelo de Holt proporciona la predicción más alta, sugiriendo un incremento significativo en el número de aprobados en comparación con otros modelos. El modelo de promedio móvil también predice un número elevado de aprobados, aunque inferior al de Holt. En contraste, la suavización exponencial y el modelo Winter proyectan números más bajos, con Winter proporcionando la estimación más baja.

4) Primavera (Spring) No Aprobados

NO APROBADOS Primavera (Spring)

	D 1: :/ 0004		
Modelo	Predicción 2024		
Promedio Móvil	3,147		
Suavización Expo	2,624		
Holt	3,594		
Winter	2,168		

El cuadro muestra las estimaciones de no aprobados para primavera en 2024 según cada modelo predictivo. El modelo de Holt predice el mayor número de no aprobados, indicando una posible tendencia hacia un aumento en los casos de no aprobación. El modelo de promedio móvil ofrece una predicción intermedia, mientras que el modelo de suavización exponencial y el modelo Winter proyectan números más bajos, con Winter proporcionando la estimación más baja.

9. Resultados

A continuación, se presenta un resumen de los resultados obtenidos para proyectar el número de estudiantes aprobados y no aprobados en los términos de otoño (Fall) y primavera (Spring) para el año 2024. Los modelos predictivos más adecuados fueron seleccionados en función de los indicadores de precisión y consistencia analizados.

Tabla resumen:

Término	Modelo seleccionado	Predicciones 2024
Otoño (Fall) - Aprobados	Winter	175,214
Otoño (Fall) No Aprobados	Holt	4,199
Primavera (Spring) Aprobados	Holt	160,630
Primavera (Spring) No Aprobados	Winter	2,168

En el término otoño (Fall), el modelo Winter fue seleccionado para predecir los aprobados, con una estimación de 175,214 estudiantes. En cuanto a los no aprobados, el modelo Holt resultó ser el más adecuado, con una proyección de 4,199 estudiantes.

Para el término primavera (Spring), el modelo Holt se seleccionó para predecir los aprobados, con una estimación de 160,630 estudiantes, mientras que el modelo Winter se utilizó para proyectar los no aprobados, con una estimación de 2,168 estudiantes.

Este resumen proporciona una visión general del rendimiento de los modelos predictivos seleccionados y las estimaciones resultantes para los estudiantes en los términos académicos más importantes del año 2024 en la Universidad de Illinois.

Asimismo, al comparar los términos de otoño (Fall) y primavera (Spring), se proyecta un mayor número de estudiantes aprobados en otoño (175,214) en comparación con primavera (160,630). Igualmente, el número de no aprobados en otoño (4,199) supera al de primavera (2,168). Estas diferencias sugieren que los estudiantes suelen tener un mejor desempeño académico o enfrentan menos dificultades durante el término de primavera, lo que proporciona información clave para ajustar los recursos y estrategias académicas en cada periodo.

Conclusiones

El análisis predictivo realizado sobre el comportamiento de los estudiantes aprobados y no aprobados en los términos regulares de otoño (Fall) y primavera (Spring) para el año 2024 proporciona valiosos hallazgos para la Universidad de Illinois. La selección de los modelos más adecuados, como Winter y Holt, asegura predicciones con alta precisión y consistencia, ofreciendo una base sólida para la planificación académica y administrativa.

En el término de otoño (Fall), se estima que 175,214 estudiantes aprobarán según el modelo Winter, mientras que 4,199 estudiantes no aprobarán de acuerdo con las proyecciones del modelo Holt. Para el término de primavera (Spring), se proyecta que 160,630 estudiantes aprobarán utilizando el modelo Holt, y 2,168 no aprobarán basándose en el modelo Winter.

Estas predicciones no solo permiten a la universidad anticipar la cantidad de estudiantes que completarán exitosamente sus cursos, sino que también destacan desafíos que enfrentan aquellos que no aprueban. Disponer de datos precisos sobre ambos es importante para optimizar los recursos educativos, diseñar estrategias de apoyo académico, ajustar la oferta de cursos y personal docente, y asegurar que se cubran adecuadamente las necesidades de los estudiantes durante los periodos regulares del año académico.

Además, estas predicciones ofrecen una base para desarrollar programas de intervención enfocados en reducir la tasa de no aprobados, concentrando esfuerzos en los periodos donde se prevén mayores dificultades. De este modo, la universidad no solo mejora su eficiencia operativa, sino que también refuerza el acompañamiento estudiantil, con el potencial impactar positivamente en las tasas de retención y éxito académico a largo plazo.

Al comparar los periodos de otoño (Fall) y primavera (Spring), se observa que el término de otoño proyecta un mayor número de estudiantes aprobados (175,214) en comparación con la primavera (160,630). De igual forma, el número de no aprobados en otoño (4,199) también es superior al de la primavera (2,168). Estas diferencias sugieren que los estudiantes tienden a tener un mejor desempeño o enfrentan menos dificultades durante el término de primavera. Para la universidad, esta información es clave, ya que le permite ajustar la distribución de recursos académicos, la asignación de docentes y la planificación de programas de apoyo en los periodos donde se anticipa una mayor cantidad de estudiantes, tanto aprobados como no aprobados. Esta previsión, contribuye a la toma de decisiones estratégicas que optimicen la experiencia educativa y mejoren el rendimiento académico.

Bibliografía

- Chopra, S., & Meindl, P. (2013). *Administración de la cadena de suministro* (Quinta ed.). México.
- Junta Directiva de la Universidad de Illinois. (2024). *University of Illinois Urbana-Champaign*.

 Recuperado el 5 de Septiembre de 2024, de https://studentcode.illinois.edu/article3/part1/3-102
- University of Illinois Board of Trustees. (2024). *UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN*. Recuperado el 6 de Septiembre de 2024, de https://senate.illinois.edu/a_calendar.asp
- Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). *Probabilidad y estadística para ingeniería y ciencias* (Novena ed.). México: PEARSON EDUCACIÓN.