

Healthcare Persistency of a Drug

12th May 2023

Group Name: One

Name: Hira Fahim

Email: <u>hirashahidd26@yahoo.com</u>

Country: United Kingdom

Company: Unemployed

Specialization: Data Science

Batch Code: LISUM19

Submission Date: 12th May 2023

Submitted to: Data Glacier

Background – Healthcare – Persistency of the Drug

Problem Statement:

One of the challenge for all Pharmaceutical companies is to understand the persistency of drug as per the physician prescription. To solve this problem ABC pharma company approached an analytics company to automate this process of identification.

ML Problem:

With an objective to gather insights on the factors that are impacting the persistency, build a classification for the given dataset.

Approach

The analysis has been divided into following parts:

- Data Understanding
- Exploratory Data Analysis
- Univariate Analysis
- Bivariate Analysis
- Feature Engineering

- Feature Selection
- Model Building
- Model Evaluation
- Model Selection
- Model Deployment

Data Understanding

Dataset Information

The data is related to Pharmaceutical companies and to understand the persistency of drug as per the physician prescription. The dataset is based on demographic details of patients, provider attributes, clinical factors and disease and treatment factors.

Datatype of columns and Non-Null values

```
In [4]: # Datatypes of columns and non-null values
       d.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 3424 entries, 0 to 3423
       Data columns (total 69 columns):
        # Column
                                                                              Non-Null Count Dtype
                                                                              -----
                                                                              3424 non-null
                                                                                             object
           Persistency Flag
                                                                              3424 non-null
                                                                                             object
           Gender
                                                                              3424 non-null
                                                                                             object
           Race
                                                                              3424 non-null
                                                                                             object
           Ethnicity
                                                                              3424 non-null
                                                                                             object
                                                                              3424 non-null
                                                                                             object
            Age_Bucket
                                                                              3424 non-null
                                                                                             object
           Ntm_Speciality
                                                                             3424 non-null
                                                                                             object
        8 Ntm_Specialist_Flag
                                                                             3424 non-null
                                                                                             object
           Ntm_Speciality_Bucket
                                                                              3424 non-null
                                                                                             object
        10 Gluco_Record_Prior_Ntm
                                                                             3424 non-null
                                                                                             object
        11 Gluco_Record_During_Rx
                                                                             3424 non-null
                                                                                             object
        12 Dexa_Freq_During_Rx
                                                                              3424 non-null
                                                                                             int64
        13 Dexa_During_Rx
                                                                              3424 non-null
                                                                                             object
        14 Frag_Frac_Prior_Ntm
                                                                             3424 non-null
                                                                                             object
                                                                              3424 non-null
        15 Frag_Frac_During_Rx
                                                                                             object
        16 Risk_Segment_Prior_Ntm
                                                                              3424 non-null
                                                                                             object
        17 Tscore_Bucket_Prior_Ntm
                                                                              3424 non-null
                                                                                             object
        18 Risk_Segment_During_Rx
                                                                                             object
        19 Tscore_Bucket_During_Rx
                                                                              3424 non-null
                                                                                             object
        20 Change_T_Score
                                                                              3424 non-null
                                                                                             object
        21 Change_Risk_Segment
                                                                              3424 non-null
                                                                                             object
        22 Adherent_Flag
                                                                                             object
                                                                              3424 non-null
        23 Idn_Indicator
                                                                              3424 non-null
                                                                                             object
        24 Injectable_Experience_During_Rx
                                                                              3424 non-null
                                                                                             object
        25 Comorb_Encounter_For_Screening_For_Malignant_Neoplasms
                                                                              3424 non-null
                                                                                             object
        26 Comorb_Encounter_For_Immunization
                                                                              3424 non-null
                                                                                             object
        27 Comorb_Encntr_For_General_Exam_W_O_Complaint, Susp_Or_Reprtd_Dx
                                                                              3424 non-null
                                                                                             object
        28 Comorb_Vitamin_D_Deficiency
                                                                              3424 non-null
                                                                                             object
        29 Comorb_Other_Joint_Disorder_Not_Elsewhere_Classified
                                                                              3424 non-null
                                                                                             object
        30 Comorb Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx 3424 non-null
                                                                                             object
        31 Comorb_Long_Term_Current_Drug_Therapy
                                                                              3424 non-null
```

32	Comorb_Dorsalgia		non-null	object
33	Comorb_Personal_History_Of_Other_Diseases_And_Conditions		non-null	object
34	Comorb_Other_Disorders_Of_Bone_Density_And_Structure		non-null	object
	Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias	3424	non-null	object
36	Comorb_Osteoporosis_without_current_pathological_fracture	3424	non-null	object
37	Comorb_Personal_history_of_malignant_neoplasm		non-null	object
38	Comorb_Gastro_esophageal_reflux_disease		non-null	object
39	Concom_Cholesterol_And_Triglyceride_Regulating_Preparations		non-null	object
40	Concom_Narcotics		non-null	object
41	Concom_Systemic_Corticosteroids_Plain	3424	non-null	object
42	Concom_Anti_Depressants_And_Mood_Stabilisers		non-null	object
43	Concom_Fluoroquinolones		non-null	object
44	Concom_Cephalosporins		non-null	object
45	Concom_Macrolides_And_Similar_Types		non-null	object
46	Concom_Broad_Spectrum_Penicillins		non-null	object
47	Concom_Anaesthetics_General		non-null	object
48	Concom_Viral_Vaccines		non-null	object
49	Risk_Type_1_Insulin_Dependent_Diabetes		non-null	object
50	Risk_Osteogenesis_Imperfecta		non-null	object
51	Risk_Rheumatoid_Arthritis		non-null	object
52	Risk_Untreated_Chronic_Hyperthyroidism		non-null	object
53	Risk_Untreated_Chronic_Hypogonadism		non-null	object
54	Risk_Untreated_Early_Menopause		non-null	object
55	Risk_Patient_Parent_Fractured_Their_Hip	3424	non-null	object
56	Risk_Smoking_Tobacco		non-null	object
57	Risk_Chronic_Malnutrition_Or_Malabsorption		non-null	object
58	Risk_Chronic_Liver_Disease		non-null	object
59	Risk_Family_History_Of_Osteoporosis		non-null	object
60	Risk_Low_Calcium_Intake		non-null	object
61	Risk_Vitamin_D_Insufficiency		non-null	object
62	Risk_Poor_Health_Frailty		non-null	object
63	Risk_Excessive_Thinness		non-null	object
64	Risk_Hysterectomy_Oophorectomy		non-null	object
65	Risk_Estrogen_Deficiency		non-null	object
66	Risk_Immobilization		non-null	object
67	Risk_Recurring_Falls		non-null	object
	Count_Of_Risks	3424	non-null	int64
	es: int64(2), object(67)			
memo	ry usage: 1.8+ MB			

Data Understanding

Numerical and Categorical Features

```
In [7]: display numeric categoric feature(d)
       Numeric Features:
       Index(['Dexa_Freq_During_Rx', 'Count_Of_Risks'], dtype='object')
       ______
       Index(['Ptid', 'Persistency Flag', 'Gender', 'Race', 'Ethnicity', 'Region',
               'Age Bucket', 'Ntm Speciality', 'Ntm Specialist Flag',
              'Ntm_Speciality_Bucket', 'Gluco_Record_Prior_Ntm',
              'Gluco Record During Rx', 'Dexa During Rx', 'Frag Frac Prior Ntm',
              'Frag Frac During Rx', 'Risk Segment Prior Ntm',
              'Tscore_Bucket_Prior_Ntm', 'Risk_Segment_During_Rx',
              'Tscore Bucket During Rx', 'Change T Score', 'Change Risk Segment',
              'Adherent Flag', 'Idn Indicator', 'Injectable Experience During Rx',
              'Comorb_Encounter_For_Screening_For_Malignant_Neoplasms',
              'Comorb_Encounter_For_Immunization',
              'Comorb Encntr For General Exam W O Complaint, Susp Or Reprtd Dx',
              'Comorb Vitamin D Deficiency',
              'Comorb Other Joint Disorder Not Elsewhere Classified',
              'Comorb Encotr For Oth Sp Exam W O Complaint Suspected Or Reprtd Dx',
              'Comorb_Long_Term_Current_Drug_Therapy', 'Comorb_Dorsalgia',
              'Comorb Personal History Of Other Diseases And Conditions',
              'Comorb_Other_Disorders_Of_Bone_Density_And_Structure',
              'Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias',
              'Comorb Osteoporosis without current pathological fracture',
              'Comorb Personal history of malignant neoplasm',
              'Comorb Gastro esophageal reflux disease',
              'Concom Cholesterol And Triglyceride Regulating Preparations',
              'Concom_Narcotics', 'Concom_Systemic_Corticosteroids_Plain',
              'Concom_Anti_Depressants_And_Mood_Stabilisers',
              'Concom Fluoroquinolones', 'Concom Cephalosporins',
              'Concom Macrolides And Similar Types',
              'Concom_Broad_Spectrum_Penicillins', 'Concom_Anaesthetics_General',
              'Concom_Viral_Vaccines', 'Risk_Type_1_Insulin_Dependent_Diabetes',
              'Risk Osteogenesis Imperfecta', 'Risk Rheumatoid Arthritis',
              'Risk_Untreated_Chronic_Hyperthyroidism',
              'Risk_Untreated_Chronic_Hypogonadism', 'Risk_Untreated_Early_Menopause',
              'Risk_Patient_Parent_Fractured_Their_Hip', 'Risk_Smoking_Tobacco',
              'Risk_Chronic_Malnutrition_Or_Malabsorption',
              'Risk_Chronic_Liver_Disease', 'Risk_Family_History_Of_Osteoporosis',
              'Risk Low Calcium Intake', 'Risk Vitamin D Insufficiency',
              'Risk_Poor_Health_Frailty', 'Risk_Excessive_Thinness',
              'Risk Hysterectomy Oophorectomy', 'Risk Estrogen Deficiency',
              'Risk_Immobilization', 'Risk_Recurring_Falls'],
             dtype='object')
```

Null values

There is no null values in the dataset.

Exploratory Data Analysis

Step:1 Drop Duplicate Rows

There is no duplicate rows in the dataset.

Step:2 Drop Unnecessary Column

```
In [13]: #Drop ptid column
d.drop(columns='Ptid',axis=1,inplace=True)
```

'Ptid' has all unique values .

Univariate Analysis

Description of the data

<pre># Description of numerical columns d.describe()</pre>							
	Dexa_Freq_During_Rx	Count_Of_Risks					
count	3424.000000	3424.000000					
mean	3.016063	1.239486					
std	8.136545	1.094914					
min	0.000000	0.000000					
25%	0.000000	0.000000					
50%	0.000000	1.000000					
75%	3.000000	2.000000					
max	146.000000	7.000000					

From **description** and **boxplot**, we can see there are outliers in numerical input variables. **Histogram** shows uneven distribution and positively skewed data in both numerical variables.

Visualization (boxplot) of Numerical Attributes

Histogram for Numerical Attributes

Univariate Analysis

Visualization of Categorical Attributes

In Bar chart of categorical columns, we see uneven distribution of data in all the categorical columns.

Univariate Analysis

Visualization of Categorical Attributes

In **Bar chart** of categorical columns, we see uneven distribution of data in all the categorical columns.

Bivariate Analysis

Persistency of the drug based on Gender

Persistency of the drug based on Race

Persistency of the drug based on Ethnicity

There is no significant insight through bivariate Analysis.

Bivariate Analysis

Persistency of the drug based on Region

Persistency of the drug based on Age

There is no significant insight through bivariate Analysis.

Feature Engineering

Convert datatype of Categorical Features

```
In [35]: # Convert object to category
d[categorical_columns]=d[categorical_columns].astype("category")
```

Encode Categorical Columns into Numerical

```
In [37]: # encoding categorical features into numeric
d[categorical_columns]=d[categorical_columns].apply(lambda x: x.cat.codes)
```

Feature Selection

Divide independent variables and target variable

```
In [39]: x=d[categorical_columns].drop(columns=['Persistency_Flag'])
y=d['Persistency_Flag']
```

Categorical Feature Selection using sklearn library and chi2 and SelectKbest function.

Feature Selection

Eliminate Categorical features with less or no relationship with target variable considering the p-value> 0.05

Final dataset ready for Modelling

In [43]:	d.sam	ple(10)								
Out[43]:		Persistency_Flag	Region	Ntm_Specialist_Flag	Ntm_Speciality_Bucket	Gluco_Record_During_Rx	Dexa_Freq_During_Rx	Dexa_During_Rx	Frag_Frac_Durin	
	2632	1	0	0	1	0	0	0		
	908	1	3	1	2	0	0	0		
	723	0	0	0	1	0	0	0		
	138	0	0	0	1	0	0	0		
	2077	0	4	0	1	0	0	0		
	2008	0	3	0	1	0	0	0		
	1780	1	4	1	1	0	0	0		
	1624	1	2	0	1	0	0	0		
	3332	0	1	1	0	0	0	0		
	3013	1	0	1	2	1	8	1		
	10 rows × 53 columns									
	4 =	io ~ oo columno							•	

Model Building

- 1. The dataset is imbalance, so we will balance the dataset using SMOTE.
- 2. Divide the dataset into input variables and output variable then split the input and output into train and test sets (20% test and 80% train).
- 3. Different Machine Learning models to predict the persistency of the drug:
 - > Logistic Regression
 - > Random Forest
 - ➤ K- Nearest Neighbor
 - Gradient Boosting

Model Evaluation

Metrics of Evaluation

- 1. Accuracy, Precision, Recall and F1-Score
- 2. Scores of Test, Train and Complete dataset
- 3. Confusion Matrix
- 4. Lift and Gain
- 5. KS Statistics and ROC-AUC Score

Model Selection

Model selection based on Scores and Confusion Matrix

Model	Score	Score	Score	TN	FP	FN	TP
	All Dataset	Train Dataset	Test Dataset				
Logistic Regression	0.8022	0.785	0.774	335	83	110	326
Random Forest	0.8028	0.768	0.752	369	49	163	273
KNNC	0.837	0.8635	0.787	332	86	96	340
KNNC +	0.837	0.863	0.787	332	86	96	340
Hyperparameter							
Tuning							
Gradient Boosting	0.857	0.868	0.77	333	85	111	325
Gradient Boosting +	0.943	0.962	0.803	343	75	93	343
Hyperparameter							
Tuning							

The highest score for all dataset is of Gradient Boosting with hyperparameter tuning. But the difference between the score train dataset and test dataset is 16% which means its over fitting model. For the persistency of the drug the FN can cost a lot to the healthcare business, so it is needed to be low. KNNC and KNNC with hyperparameter tuning have low FN. KNNC is the best model. Let's check other metrics for evaluation.

Model Selection

Model selection based on Lift and Gain Curve

Cumulative gains and lift charts are visual aids for measuring model performance.

The Greater the area between the Lift / Gain and Baseline, the Better the model.

By analysing Gain and Lift Curve, Random Forest Classification Model, KNNC model and Gradient Boosting

Classification model with Hyperparameter Tuning are the best models.

Model Selection

Model selection based on Accuracy, Precision, Recall, F1 Score, KS statistics and AUC-ROC

Model	Precision	Recall	F1	Accuracy	KS Statics	AUC- ROC
			score			
Logistic Regression	0 - 0.75	0.80	0.78	0.77	0.565	0.85
	1 - 0.80	0.75	0.77			
Random Forest	0 – 0.69	0.88	0.78	0.75	0.556	0.844
	1-0.85	0.63	0.72			
KNNC	0 – 0.78	0.79	0.78	0.79	0.574	0.85
	1-0.80	0.78	0.79			
KNNC +	0 – 0.78	0.79	0.78	0.79	0.574	0.85
Hyperparameter	1-0.80	0.78	0.79			
Tuning						

The F1- Score, KS statistics and AUC-ROC metrics of KNNC model are the best. Therefore, **The best model for deployment is K- Nearest Neighbor Classification model.**

Model Deployment

Given Workflow shows K- Nearest Neighbors Classifier model is used and Flask Framework for deployment. It represents the details of how the model works from user interface till the results.

Model Deployment

- Save the model using Pickle.
- 2. Deploy the model using Flask framework.
- 3. The app.py file contains the source code including the ML code for prediction and will be execute by the Python interpreter to run the Flask web application.
- 4. The Index.html file will render a text form where a user enter the details of required fields. Index.html file will be rendered via the render_template ('index.html', prediction_text="{}".format(output)), which is inside the predict function of app.py script to display the output as per the input submitted by the user.
- 5. The URL generate by 'app.py.' Open a web browser and navigate to http://127.0.0.1:5000/ following is output of Index.html.

```
import numpy as np
from flask import Flask, request, render_template
#Create an app object using the Flask class.
app = Flask(__name___
#Load the trained model. (Pickle file)
model = pickle.load(open('models/model.pkl', 'rb'))
#Define the route to be home.
#The decorator below links the relative route of the URL to the function it is decorating.
WHere, home function is with '/', our root directory.
#Running the app sends us to index.html.
#Note that render_template means it looks for the file in the templates folder.
#use the route() decorator to tell Flask what URL should trigger our function.
@app.route('/')
def home():
 return render_template('index.html')
#You can use the methods argument of the route() decorator to handle different HTTP methods.
#GET: A GET message is send, and the server returns data
#POST: Used to send HTML form data to the server.
#Add Post method to the decorator to allow for form submission.
#Redirect to /predict page with the output
@app.route('/predict',methods=['POST'])
def predict():
    int features = [float(x) for x in request.form.values()] #Convert string inputs to float.
    features = [np.array(int features)] #Convert to the form [[a, b,c]] for input to the model
    prediction = model.predict(features) # features Must be in the form [[a, b,c]]
    output = round(prediction[0], 2)
    return render_template('index.html', prediction_text="{}".format(output))
#For now, we care about the __name__ variable.
#If we execute our code in the main program, like in our case here, it assigns
# __main__ as the name (__name__).
#So if we want to run our code right here, we can check if __name__ == __main__
#If we import this file (module) to another file then __name__ == app (which is the name of this python file).
if __name__ == "__main__":
    app.run()
```

Model Deployment

Select categorical fields as per their respective number in the given code and click the Predict button. The predicted result will be displayed at the bottom of the web page.

Model Deployment on Render (Open-Source Cloud Deployment)

> After the model has been trained and deployed locally, now it is ready for deploy on open-source cloud "Render".

Connect web service to GitHub Repository.

Click and open the application for persistency of the drug. https://persistency-of-the-drug.onrender.com

Model Deployment on Render (Open-Source Cloud Deployment)

Select categorical fields as per their respective number in the given code and click the Predict button. The predicted result will be displayed at the bottom of the web page.

Challenges

- Feature selection was a challenging task, which is done by Chi2 from sklearn.feature_selection library.
- ➤ Selection of best model was also tricky but after carefully considering all parameters and metrics of evaluation choose 'K-Nearest Neighbor Classification model' as the best model.

Thank You

