MATH 524 - Lecture 30 (12/07/2023)

Today: * relative cohomology on Möbius strip

2. Möbius strip modulo its edge.

Relative 1- and 2-cochains:

$$f_i^*$$
 ($i=0,...,5$) are all relative Q -cochains. They are all relative Q -cocycles (frivially).

 $f_0^*,...,f_s^*$ form a basis for $Z^2(K,K_0)$.

Similarly, et, ..., et are relative 1-eochains.

et,..., et form a basis for C'(K, Ko).

It is convenient to use f_0^* , $f_i^* - f_{in}^*$, i = 0,..., 4 as a basis for $Z^2(K_1K_0)$, and e_0^* , ..., e_1^* , $e_0^* + ... + e_5^*$ as a basis for $C^1(K_1K_0)$. Then

 $Se_{i}^{*} = f_{i}^{*} - f_{in}^{*}, \quad \hat{i} = 0,..., 4, \quad \text{and}$

 $S(e_0^*+\cdots+e_s^*)=2f_0^*$ for is not a coboundary, But $2f_0^*$ is!

 \Rightarrow $H^2(K,K_0) \simeq \mathbb{Z}/2$, f_0^* is a generator.

 $H'(K,K_0)=0$, as there are no relative 1-cocycles (Sei ± 0 Hi).

Poincaré duality Let X be a compact triangulated homology n-manifold. If X is orientable, then for each p there exists an isomorphism

$$H^{p}(X;G) \sim H_{n-p}(X;G)$$

where G1 is an arbitrary coefficient group.

If X is nonovientable, then for each p, there exists an isomorphism

 $H^{p}(X; \mathbb{Z}_{2}) \sim H_{n-p}(X; \mathbb{Z}_{2}).$

Mexander duality \$71 in [m]

Let A be a propor nonempty subset of S^n . Suppose (S^n, A) is triangulable. Then there is an isomorphism

$$H^{k}(A) \simeq H_{n-k-1}(S^{n}-A)$$