Heuristic Search

Last week: Basic Search

- We have seen how to formalise a problem (state, action, transition)
- We have seen some basic search methods
 - Do you remember what are the methods?
 - How they differ from each other?
- Basic search methods
 - Sometimes powerful (see the reading materials of last lecture)
 - Sometimes stupid (video BFS v.s. DFS of last lecture)
- When branching factor is high...
 - Chess: 35
 - Game Go: 250

Uninformed Search -> Informed Search

- Basic search methods
 - Sometimes powerful (see the reading materials of last lecture)
 - Sometimes stupid (video BFS v.s. DFS of last lecture)
 - I want to spend less time to travel to the airport, but DFS does not care 🗵
 - I want to spend get a higher score in my game (collecting items before ending the game), but BFS does not understand (a)
 - Why? Because NO priori knowledge/information is used!!! -> Uninformed
- Question: Can I make use of the problem-specific knowledge?

Outline

- Heuristic Functions
- Heuristic Search Methods
- Further Studies on Heuristics

I. Heuristic Functions

- Evaluation Function & Heuristic Function
- Admissible Heuristics

From Basic Search to Heuristic Search

- Basic search (uninformed): use NO domain knowledge.
 - Have no bias in the search space & have to look everywhere to find the answer.
 - Time complexity is intractable for complex tasks.
- Heuristic search (informed): use domain knowledge.
 - Question: What is 'domain knowledge'?
 - Answer: Help direct/bias the search & which part of the search space to explore.
 - Can lead to drastic speed up.

Example: Route Planning

What do you care more?

- Faster?
- Shorter distance?
- Cheaper?

 Can you use some information (distance, cost, traffic, reward, etc.) to bias the search?

Evaluation Function

- Example: Best-First Search, by name, visit the "best" node first.
- To determine "best" or not, an evaluation function is needed.
 - The evaluation function, f(s), estimates the cost at node s (state).
 - Several evaluation function can be designed for one single problem.
 - Best-First Search expands the node with lowest cost first.
- The meaning of cost is generalised.
 - In the route planning example, the "cost" can refer to the total distance, total time, or total expenses for traveling. -> Decided by the customers!
 - The "cost" can be a combination of different types of cost. People are greedy, we always want to travel faster while spending less money! -> Trade-off!

[Question] Difference(s) between Best-First Search and Uniform Cost Search? [Answer] Not given right now. We will see the answer later in this lecture!

Heuristic Function

- Question: How to encode/represent domain knowledge into search?
- Answer: Heuristic function h(s) at node s (state).
- \triangleright Heuristic function h(s) estimates the lowest cost from s to Goal.
- In this part, we consider a narrow case:
 - \triangleright (1) h(s) = 0 if s is the goal node;
 - > (2) nonnegative;
 - > (3) problem-specific / application-dependent.
- Good h equipes search methods with some intelligence \rightarrow A little AI now.

[Question] What is the difference between an evaluation function and a heuristic function?

[Answer] Heuristic is a component of an evaluation function. / Evaluation function consists of heuristic(s).

Evaluation Function and Heuristic Search

- Evaluation function f(s): a cost estimate & node s with the lowest f(s) is expanded first.
- Heuristic methods have h(s) as a component of f(s).
- The choice of *f* determines the search strategy.
 - Example: shortest V.S. fastest route from SUSTech to Shekou

Example: Route planning

- $h_0(s) = 0$.
- $h^*(s)$ = the true cost from s to the goal.
- $h_{SLD}(s) = \text{straight-line distance from node } s$ to the goal.
- $h_{SLD}(s) + 20\%$: usually better than $h_{SLD}(s)$.

Find a 'good' h: problem-specific & a serious research problem.

Example: 8-puzzle

- Possible heuristics:
 - $h_1(s)$ = the number of misplaced tiles
 - $h_2(s)$ = the sum of the distances of the tiles from their goal positions -> also called *city block distance* or *Manhattan distance*
- [Question] Can you tell the
 - *h*_1(*StartState*) -> 8
 - $h_2(StartState)$ -> 18
 - and true solution cost? -> 26

Start State

Goal State

'Good' Heuristics

• A heuristic can be powerful only if it is of a 'good' quality.

• A 'good' heuristic should be admissible.

Admissible Heuristics

- Admissible heuristic: h(s) never overestimates the cheapest (optimal) cost from s to the goal:
 - $\forall s \to h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from s to the goal.

Admissible heuristics are optimistic.

Admissible Heuristics: Examples

Two extreme cases:

- 1. The trivial $h_0(s) = 0$: No help for searching.
- 2. The perfect $h^*(s)$ = the true cost from s to the goal: lead directly to the best path, but unknown in practice.

Admissible Heuristics: Examples

For route planning:

- $h_{SLD}(s)$: Admissible, since a straight line is the shortest distance between two points.
- $h_{SLD}(s) + 20\%$: Not always admissible, since some may surpass the true distance to the goal.

Admissible Heuristics: Examples

For 8-puzzle:

- $h_{mis}(s) = \# misplaced tiles \in [0,8]$: Admissible.
- $h_{1stp}(s) = \#(1\text{-step move})$ to reach the goal: Admissible.
- \triangleright Fact: $h_{1stp}(s) \ge h_{mis}(s)$
- Question: which is 'better'?
- Guess: $h_{1stp}(s)$ is 'better'.
- But: what does 'better' point to? and Why?

Recap: Heuristic Search and Heuristics

- Basic search uses no domain knowledge.
- Heuristic search uses domain knowledge by a heuristic function.

- Good heuristics
 - can drastically reduce search cost;
 - should be admissible.

II. Heuristic Search Methods

- Greedy Best-First Search
- A* Search

Greedy Best-first Search

Core Idea

• Idea: Expand the node that seems closest to the Goal.

• Expand node s that has the minimal f(s) = h(s).

Recall: what guide the search order of uniform-cost search?

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
二号门	1000
三号门	888

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

1号门 1200

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

Core Idea Revisit

Idea: Expand the node that seems closest to the Goal.

• Expand node s that has the minimal f(s) = h(s).

Greedy Search: Performance Metrics

Complete? No, can stuck in loops.

- b maximum # successors of any node in search tree.
- d depth of the least-cost solution.
- *m* maximum length of any path in the state space.
- E.g. Oradea as the goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt $\rightarrow \cdots$
- Complete in the finite space with repeated-state checking.
- Optimal? No.
- Time? $O(b^m)$, but good heuristics can give drastic improvement.
- Space? $O(b^m)$, keep all nodes in memory.
- Memory requirement is the biggest handicaps.

A* Search

Core Idea

- Idea: avoid expanding paths that are already expensive.
- Expand the node s that has the minimal f(s) = h(s) + g(s)
 - g(s): cost from *Start* to s.
 - h(s): estimated cost from s to Goal.
 - $\succ f(s)$: estimated total cost of path from Start through s to Goal.
- Recall: what guide the search order of uniform-cost search?

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
二号门	1000
三号门	888

Node	SLD to 创园		
创园	0		
第一科研楼	962		
第四科研楼	1080		
西门	1300		
1号门	1200		
图书馆	960		
行政楼	1100		
教工餐厅	374		
2号门	1000		
3号门	888		

1号门 1200=0+1200

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

Node	SLD to 创园		
创园	0		
第一科研楼	962		
第四科研楼	1080		
西门	1300		
1号门	1200		
图书馆	960		
行政楼	1100		
教工餐厅	374		
2号门	1000		
3号门	888		

1号门 1200=0+1200

西门 1809=508+1300

> 图书馆 1664=346+ 358+960

2号门 1346=346+1000

> 教工餐厅 1720=346+ 1000+374

1号门 1892=346+ 346+1200

3号门 1655=346+ 421+888

Node	SLD to 创园
创园	0
第一科研楼	962
第四科研楼	1080
西门	1300
1号门	1200
图书馆	960
行政楼	1100
教工餐厅	374
2号门	1000
3号门	888

1号门 1200=0+1200

西门 1809=508+1300

> 图书馆 1664=346+ 358+960

2号门 1346=346+1000

> 教工餐厅 1720=346+ 1000+374

2号门 2188=346+421+ 421+1000 1号门 1892=346+ 346+1200

3号门 1655=346+ 421+888

教工餐厅 1653=346+ 421+512+374

Node 创园	SLD to 创园 0	1号门 1200=0+12	200	
第一科研楼	962	西门	2号门	1号门
第四科研楼	1080	1809=508+1300	1346=346+1000	1892=346+
西门	1300			346+1200
1号门	1200	图书馆	教工餐厅 1720=346+	3号门 1655=346+
图书馆	960	1664=346+ 358+960	1000+374	421+888
行政楼	1100	572	2号门	教工餐厅
教工餐厅	374	1400 数工	2188=346+421	1653=346+
2号门	1000	图书馆 1000 512 3号门	+421+1000	421+512+374
3号门	888	2号门 421	创园 1653=346+	•••
		Artificial Intelligence: Heuristic Search	421+512+374	

Straight-line distance			
to Bucharest			
Arad	366		
Bucharest	0		
Craiova	160		
Dobreta	242		
Eforie	161		
Fagaras	178		
Giurgiu	77		
Hirsova	151		
Iasi	226		
Lugoj	244		
Mehadia	241		
Neamt	234		
Oradea	380		
Pitesti	98		
Rimnicu Vilcea	193		
Sibiu	253		
Timisoara	329		
Urziceni	80		
Vaslui	199		
Zerind	374		

A*: Pseudo-code

return FAILURE

```
function A-STAR-SEARCH(initialState, goalTest)
returns Success or Failure: /* Cost f(n) = g(n) + h(n) */
frontier = Heap.new(initialState)
explored = Set.new()
while not frontier.isEmpty():
     state = frontier.deleteMin()
     explored.add(state)
     if goalTest(state):
          return Success(state)
     for neighbor in state.neighbors():
          if neighbor not in frontier \cup explored:
                frontier.insert(neighbor)
           else if neighbor in frontier:
                frontier.decreaseKey(neighbor)
```

Recap: Core Idea

- Idea: avoid expanding paths that are already expensive.
- Expand the node s that has the minimal f(s) = h(s) + g(s)
 - g(s): cost from Start to s.
 - h(s): estimated cost from s to Goal.
 - $\succ f(s)$: estimated total cost of path from Start through s to Goal.

Optimality of A*

- Theorem: A* with h is optimal if h is admissible.
- Proof:
 - Notation: S start, G goal, S a node on optimal path, S' non-optimal goal, C^* cost of optimal path.
 - To show: A* always pick s over $s' \Leftrightarrow f(s) < f(s')$.
 - **Known**: h is admissible $\Rightarrow h(s) < c^*(s, G)$.
 - Deduce:
 - 1) $f(s') = g(s') + h(s') = g(s') + 0 > c^*$ (s' is the goal node & c^* the smallest).
 - 2) $f(s) = g(s) + h(s) < g(s) + c^*(s, G) = c^*(S, s) + c^*(s, G) = c^*$.
 - Conclude: combine (1)&(2) \Rightarrow f(s) < f(s')

A*: Performance Metrics

- Complete? Yes.
- Optimal? Yes*, if h is admissible.
- Time? $O(b^d)$.
- Space? $O(b^d)$, keep every node in memory.
- > If a solution exists, A* will find the best.
- > Memory is the major problem for A*.

- b maximum # successors of any node in search tree.
- *d* depth of the least-cost solution.
- m maximum length of any path in the state space.

A*: Example

• Super Mario played by a path-finding algorithm A*. The bot won the Mario Al competitions in 2009 (https://youtu.be/DlkMs4ZHHr8).

Brief Summary

Summary: Heuristic Search

- Core idea: expand the path that seems most promising.
- Node s with lowest $f(s) \rightarrow$ the most promising.
- Usually f(s) = h(s) + ?.

- Greedy: Incomplete & Not always optimal
- A*: Complete & Optimal

Summary: Search Methods with f(s)

The choice of f determines the search methods.

- Uniform-cost search: f(s) = g(s).
- Greedy best-first search: f(s) = h(s).
- A* search: f(s) = g(s) + h(s).
- g(s): the path cost from Start to node s.
- h(s): the <u>estimated</u> cost from node s to Goal.

III. Further Studies on Heuristics

- Search Efficiency of Heuristics
- Generate Admissible Heuristics

III.1 Search Efficiency of Heuristics

Recall: Heuristics for 8-puzzle Problem

- $h_{mis}(s) = \# misplaced tiles \in [0,8]$: Admissible.
- $h_{1stp}(s) = \#(1\text{-step move})$ to reach the goal configuration: Admissible.

 $> h_{1stp}(s) \ge h_{mis}(s) \Rightarrow h_{1stp}(s)$ is 'better' than $h_{mis}(s)$.

What does 'better' mean?

Dominance

- For admissible h_1 and h_2 , if $h_1(s) \ge h_2(s)$ for $\forall s$ $\Rightarrow h_1$ dominates h_2 and is more efficient for search.
- Theorem: For any admissible heuristics h_1 and h_2 , define $h(s) = \max\{h_1(s), h_2(s)\}$

h(s) is admissible and dominates both h_1 and h_2 .

> 'Better' heuristic = dominance = better search efficiency.

Even Better Dominance

• Question: Which one to choose from a collection of admissible heuristics h_1, \dots, h_m & none dominates any other?

• Answer: $h(s) = \max\{h_1(s), \dots, h_m(s)\}$ dominates all the others.

Effect of Heuristic Accuracy on Performance

- Quality indicator of an heuristic:
 - Effective branching factor b*
 - N = total number of nodes
 - d =solution depth
 - Then, $N + 1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$
 - A well designed heuristic would have a b* close to 1, allowing to solve a large problem at reasonable cost.

Quantify Search Efficiency

- Effective Branching Factor b^* : For a solution from A*, calculate b^* satisfying: $N = b^* + (b^*)^2 + \cdots + (b^*)^d$
 - *N*: #nodes of the solution,
 - *d*: depth of the solution tree.
- E.g., A* finds a solution at depth 5 using 52 nodes $\Rightarrow b^* = 1.92$.
- Good heuristics have b^* close to 1 \rightarrow large problems solved at reasonable computational cost.
- $\succ b^*$ quantifies search efficiency of heuristics.

Empirical: Factor b^* for Search Efficiency

- Aim: Compare h_1 and h_2 regarding the search efficiency.
- Setting: Generate 1200 random problems with $d = \{2, \dots, 24\}$ and solve them with IDS and A* with $h_1 \& h_2$.
- Note: IDS a baseline.

Empirical: Factor b^* for Search Efficiency

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Artificial Intelligence: Heuristic Search

Empirical: Factor b^* for Search Efficiency

	Search Cost (nodes generated)			Effective Branching Factor			
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$	
2	10	6	6	2.45	1.79	1.79	
6	$\succ h_2$ is 'better' than h_1 regarding search efficiency.						
8 10	\triangleright This goodness is reflected by b^* being closer to 1.						
12	• A* with h_2 performs much better than IDS.						
14 16	_	1301	211	_	1.45	1.25	
18	_	3056	363	_	1.46	1.26	
20	_	7276	676	_	1.47	1.27	
22	_	18094	1219	_	1.48	1.28	
24	_	39135	1641	_	1.48	1.26	

Artificial Intelligence: Heuristic Search

III.2 Generate Admissible Heuristics

We Know about Heuristics ...

- We know:
 - How to judge their admissibility.
 - How to compare their goodness regarding searching efficiency.

Question: How to produce such 'good' heuristics?

(1) Generate from Relaxed Problems

Where are h_{mis} & h_{1stp} from?

For 8-puzzle problem:

- Real Rule: A tile can only move to the adjacent empty square.
- Relaxed rules: h_{mis} and h_{1stp} are admissible
 - R1: A tile can move anywhere $\Rightarrow h_{mis}(s) = \#(\text{misplaced tiles}).$
 - R2: A tile can move one step in any direction regardless of an occupied neighbour $\Rightarrow h_{1stp}(s) = \#(1\text{-step move})$ to reach goal.
- ➤Optimal solutions to problems with R1, R2 are easier to find.

Relaxed Problem

- Relaxed problem: a problem with relaxed rules on the action.
- E.g. 8-puzzle problems with R1 and R2.

- Theorem: The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- \blacktriangleright No wonder h_{mis} and h_{1stp} are admissible.

(2) Generate from Sub-problems

Subproblem

- Subproblem
 - Task: get tiles 1, 2, 3 and 4 into their correct positions.
 - Relaxation: move them disregarding the others.
- Theory: cost*(subproblem)<cost*(original).
 - cost*(subproblem): the cost of the optimal solution of this subproblem.

Fig.1. A subproblem of 8-puzzle.

Subproblem and Admissible Heuristics

- Admissible $h_{sub}^*(s)$: estimate the cost from s to the subproblem goal.
 - E.g. $h_{sub}^{(1,2,3,4)}$ is the cost to solve the 1-2-3-4 subproblem.
- $h_{sub}(s)$ dominates $h_{1stp}(s)$
 - $h_{sub}(s) = max\{h_{sub}^{(1,2,3,4)}(s), h_{sub}^{(2,3,4,5)}(s), \cdots\}.$

Disjoint Subproblems

- Question: Will the addition of heuristics from subproblem (1-2-3-4) and (5-6-7-8) give an admissible heuristic, considering the two subproblems are not overlapped?
- Answer: No, since they always share some moves.

- Question: What if not count those shared moves?
- Answer: $h_{sub}^{(1,2,3,4)}(s) + h_{sub}^{(5,6,7,8)}(s) \le c^*(s) \Rightarrow \text{admissible.}$
 - Disjoint pattern database

(3) Generate from Experiences

'Experience' Formulation

For 8-puzzle problem:

- Solve many 8-puzzles to obtain many examples.
- Each example consists of a state from the solution path and the actual cost of the solution from that point.
- > These examples are our 'experience' for this problem.

• Question: How to learn h(s) from these experience?

Learn Heuristics from Experience

- Question: What are the good experience features?
- Answer: Relevant to predicting the states' cost to Goal, e.g.
 - $x_1(s)$: #(displaced tiles).
 - $x_2(s)$: #(pairs of adjacent tiles) that are not adjacent in Goal state.
- Question: How to learn h from those relevant experience features?
- Answer: (e.g.) Construct model as

$$h(s) = w_1 x_1(s) + w_2 x_2(s),$$

where w_1, w_2 are model parameters to learn from training data by a learning method such as neural networks and decision trees.

Brief Summary

Summary: Search Methods

- Uninformed Search: Use no domain knowledge.
 - Other names: basic search, blind search
 - BFS, UCS, DFS, DLS and IDS
- Informed Search: Use heuristics to encode domain knowledge.
 - Other name: heuristic search
 - Greedy search and A* search.

Summary: Heuristics

- Heuristic h(s): estimate the cost from s to Goal.
 - (1) h(s) = 0 if s is Goal. (2) nonnegative. (3) problem-specific.
- Admissibility: h(s) never overestimates cheapest cost from s to Goal.
- Effective branching factor b^* : quantify the search efficiency of $h(\cdot)$.
- Generate admissible heuristics:
 - (1) from relaxed problems.
 - (2) from sub-problem.
 - (3) from experience.

Example: Robot Navigation

- Move along the line or diagonal.
- $h_{SLD}(s)$: straight-line distance from n to the goal.
- cost of a horizontal/vertical move = 1
- cost of one diagonal move = $\sqrt{2}$.

Question: find the optimal path from Red to Green by (1) greedy search and (2) A* search.

Reading Materials for This Lecture

- AI textbook (3rd edition)
 - Chapter II.3: Solving Problems by Searching (pages 92-108)
 - Al-book codes: https://github.com/aimacode
- Algorithms textbook
 - 24: Single-Source Shortest Paths (pages 644-683)
- Articles
 - [1] Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004, May). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In *International Conference on Research in Networking* (pp. 989-999). Springer, Berlin, Heidelberg.
 - [2] Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., & Jurišica, L. (2014). *Path planning with modified a star algorithm for a mobile robot*. Procedia Engineering, 96, 59-69.

Demos:

- http://www.cnblogs.com/0zcl/p/6242790.html
- http://ashblue.github.io/javascript-pathfinding/
- https://github.com/bgrins/javascript-astar
- https://www.mathworks.com/matlabcentral/fileexchange/66461-astar-demo