```
## Breast Cancer Detection
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# reading data set and converting them to data frame df
df = pd.read_csv("data.csv")
```

pringitn data set using head function and it will guve 5 row only , if want moew pass the integer inside head function
df.head()

→

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothr
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	M	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	M	11.42	20.38	77.58	386.1	
4	84358402	M	20.29	14.34	135.10	1297.0	

5 rows × 33 columns

df.info() # provides summary of data set

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius mean	569 non-null	float64
3	texture mean	569 non-null	float64
4	perimeter mean	569 non-null	float64
5	area mean	569 non-null	float64
6	smoothness mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
	es: float64(31), int64(1)	, object(1)	
mama	nv ucago: 1/6 8± KB		

 $\label{eq:df.isna} \mbox{ df.isna().sum() \# returns all the column with null value cnt} \\$

id 0
diagnosis 0
radius_mean 0
texture_mean 0
perimeter_mean 0

memory usage: 146.8+ KB

```
9
area_mean
smoothness_mean
                            0
compactness_mean
concavity_mean
concave points_mean
                            0
symmetry_mean
                            0
fractal_dimension_mean
radius_se
                            0
texture_se
perimeter_se
area_se
smoothness_se
compactness_se
                           0
concavity_se
concave points_se
symmetry_se
fractal_dimension_se
                            0
radius_worst
texture_worst
perimeter worst
                            0
area worst
smoothness_worst
compactness_worst
concavity_worst
concave points_worst
symmetry_worst
                            0
fractal_dimension_worst
                            0
Unnamed: 32
                          569
dtype: int64
```

df.shape # returns the no of rows and column

→ (569, 32)

df = df.dropna(axis=1)

df.shape

→ (569, 32)

df.describe()

 $\overline{\mathbf{T}}$

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothne
coun	t 5.690000e+02	569.000000	569.000000	569.000000	569.000000	569
mear	3.037183e+07	14.127292	19.289649	91.969033	654.889104	С
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	С
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	С
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	С
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	С
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	С
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	С

8 rows × 31 columns

df['diagnosis'].value_counts()

diagnosis

B 357

M 212

Name: count, dtype: int64

sns.countplot(df['diagnosis'] , label = "count")

<axes: xlabel='count', ylabel='diagnosis'>

label encoding(convert the value of M and B into 1 and 0)
from sklearn.preprocessing import LabelEncoder
labelencoder_Y = LabelEncoder()
df.iloc[:,1]=labelencoder_Y.fit_transform(df.iloc[:,1].values)

df.head()

	_	_
_	1	÷
-	7	~

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smooth
0	842302	1	17.99	10.38	122.80	1001.0	
1	842517	1	20.57	17.77	132.90	1326.0	
2	84300903	1	19.69	21.25	130.00	1203.0	
3	84348301	1	11.42	20.38	77.58	386.1	
4	84358402	1	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

sns.pairplot(df.iloc[:,1:5], hue ="diagnosis")

df.iloc[:,1:32].corr()

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_me
diagnosis	1.000000	0.730029	0.415185	0.742636	0.7089
radius_mean	0.730029	1.000000	0.323782	0.997855	0.9873
texture_mean	0.415185	0.323782	1.000000	0.329533	0.3210
perimeter_mean	0.742636	0.997855	0.329533	1.000000	0.9865
area_mean	0.708984	0.987357	0.321086	0.986507	1.0000
smoothness_mean	0.358560	0.170581	-0.023389	0.207278	0.1770
compactness_mean	0.596534	0.506124	0.236702	0.556936	0.4985
concavity_mean	0.696360	0.676764	0.302418	0.716136	0.6859
concave points_mean	0.776614	0.822529	0.293464	0.850977	0.8232
symmetry_mean	0.330499	0.147741	0.071401	0.183027	0.1512
fractal_dimension_mean	-0.012838	-0.311631	-0.076437	-0.261477	-0.2831
radius_se	0.567134	0.679090	0.275869	0.691765	0.7325
texture_se	-0.008303	-0.097317	0.386358	-0.086761	-0.0662
perimeter_se	0.556141	0.674172	0.281673	0.693135	0.7266
area_se	0.548236	0.735864	0.259845	0.744983	0.8000
smoothness_se	-0.067016	-0.222600	0.006614	-0.202694	-0.1667
compactness_se	0.292999	0.206000	0.191975	0.250744	0.2125
concavity_se	0.253730	0.194204	0.143293	0.228082	0.2076
concave points_se	0.408042	0.376169	0.163851	0.407217	0.3723
symmetry_se	-0.006522	-0.104321	0.009127	-0.081629	-0.0724
fractal_dimension_se	0.077972	-0.042641	0.054458	-0.005523	-0.0198
radius_worst	0.776454	0.969539	0.352573	0.969476	0.9627
texture_worst	0.456903	0.297008	0.912045	0.303038	0.2874
perimeter_worst	0.782914	0.965137	0.358040	0.970387	0.9591
area_worst	0.733825	0.941082	0.343546	0.941550	0.9592
smoothness_worst	0.421465	0.119616	0.077503	0.150549	0.1235
compactness_worst	0.590998	0.413463	0.277830	0.455774	0.3904
concavity_worst	0.659610	0.526911	0.301025	0.563879	0.5126
concave points_worst	0.793566	0.744214	0.295316	0.771241	0.7220
symmetry_worst	0.416294	0.163953	0.105008	0.189115	0.1435
fractal_dimension_worst	0.323872	0.007066	0.119205	0.051019	0.0037

31 rows × 31 columns

plt.figure(figsize=(10,10))

 $sns.heatmap(df.iloc[:,1:5].corr() \ , \ annot=True \ ,fmt="0%")\\$


```
\# split the data set in to x and y , x = all row and col except output
X = df.iloc[:,2:31].values
Y = df.iloc[:,1].values
print(X)
→ [[ 17.99
                10.38 122.8
                                      0.7119
                                               0.2654
                                                        0.4601]
      [ 20.57
                17.77
                        132.9
                                       0.2416
                                                0.186
                                                         0.275 ]
                                 . . .
     [ 19.69
                21.25 130.
                                       0.4504
                                               0.243
                                                         0.3613]
                                 . . .
     ...
[ 16.6
                28.08
                        108.3
                                       0.3403
                                                0.1418
                                                         0.2218]
```

. . .

#splitted the data set in to 80percent training and 20 percent testing rom sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split

0.4087]

0.2871]]

 $\label{lem:continuous} X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.2 \text{ , } random_state=0)$

0.

0.9387

0.265

0.

```
X_train = StandardScaler().fit_transform(X_train)
X_test = StandardScaler().fit_transform(X_test)

def models(X_train,Y_train):
    #logistic regression
    from sklearn.linear_model import LogisticRegression
    log=LogisticRegression(random_state=0)
    log.fit(X_train,Y_train)
    #LEAVE THIS
```

29.33

24.54

140.1

 ${\it from \ sklearn.preprocessing \ import \ StandardScaler}$

47.92

[20.6

[7.76

#Decision Tree
from sklaarn tree import DecisionTreeClassifier

```
tree=DecisionTreeClassifier(random_state=0,criterion="entropy")
        tree.fit(X_train,Y_train)
        #Random Forest
        from sklearn.ensemble import RandomForestClassifier
        forest=RandomForestClassifier(random_state=0,criterion="entropy",n_estimators=10)
        forest.fit(X_train,Y_train)
        print('[0]logistic regression accuracy:',log.score(X_train,Y_train))
        print('[1]Decision tree accuracy:',tree.score(X_train,Y_train))
        print('[2]Random forest accuracy:',forest.score(X_train,Y_train))
        return log, tree, forest
                                                                                                                     Q
                                                                                                                            Close
  Generate
                print hello world using rot13
Generate is available for a limited time for unsubscribed users. Upgrade to Colab Pro
                                                                                                                                X
# model= models(X_train, Y_train)
    [0]Logistic Regression accuracy 0.9912087912087912
     [1]Decision Tree accuracy 1.0
     [2]Random Forest accuracy 0.9978021978021978
 a slider using jupyter widgets
                                                                                                                     Q
                                                                                                                            Close
Generate is available for a limited time for unsubscribed users. Upgrade to Colab Pro
                                                                                                                                 X
def eshi(X_train, Y_train):
    # Import necessary libraries
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from \ sklearn.ensemble \ import \ Random Forest Classifier
    from sklearn.preprocessing import LabelEncoder
    # Initialize models
    log = LogisticRegression(random_state=0)
    tree = DecisionTreeClassifier(random_state=0, criterion="entropy")
    forest = RandomForestClassifier(random state=0, criterion="entropy", n estimators=10)
    # Encode the labels in Y_train
    le = LabelEncoder()
    Y_train_encoded = le.fit_transform(Y_train)
    # Fit the models
    log.fit(X_train, Y_train_encoded)
    tree.fit(X_train, Y_train_encoded)
    forest.fit(X_train, Y_train_encoded)
    # Print training accuracy
    print('[0] Logistic Regression accuracy', log.score(X_train, Y_train_encoded))
    print('[1] Decision Tree accuracy', tree.score(X_train, Y_train_encoded))
    print('[2] Random Forest accuracy', forest.score(X_train, Y_train_encoded))
    return log, tree, forest, le
# Train the models
log, tree, forest, le = eshi(X_train, Y_train)
# Encode the Y_test labels
Y_test_encoded = le.transform(Y_test)
# Import necessary metrics
from sklearn.metrics import accuracy score, classification report
```