$$f(x) = \begin{cases} -1 & \text{se } x < -2 \\ x & \text{se } -2 \le x \le 1. \\ -x^2 + 2x + 2 & \text{se } x > 1 \end{cases}$$

- **a.** Calcola le immagini di $-3, -2, -\frac{1}{2}, 0, 1, 2$.
- **b.** Trova i valori di x per cui f(x) = -1 e quelli per cui f(x) = 2.

×4-2 V ×=-1

[a)
$$-1$$
, -2 , $-\frac{1}{2}$, 0 , 1 , 2 ; b) $x < -2 \lor x = -1 \lor x = 3 \lor x = 2$]

x = 3

Quindi
$$\frac{\sqrt{x+5}}{\sqrt{x-3}}$$
 $\sqrt{\frac{x+5}{x-3}}$ Lev sons le dans functione feather hams domining the notion of directions.

111 $y = \frac{1}{x^2 - 5x + 6} + \sqrt{x^2 - 9}$ $[x \le -3 \lor x > 3]$ domining notion to $[x^2 - 5x + 6 \ne 0]$ $[(x-3)(x-2)\ne 0]$ $[x \ne 3]$ $[x \ne -3]$ $[x$

196
$$y = \frac{x-4}{x(1-x)^2}$$

STUDIO DI FUNZIONE

- DOMINIO

- ZERI (2 anche interprioni on are 3)

- SELNO

1) DOMINIO

 $\begin{cases} x \neq 0 \\ x \neq 1 \end{cases}$

D = $\mathbb{R} \setminus \{0, 1\} = (-\infty, 0) \cup (0, 1) \cup (1, +\infty)$
 $\begin{cases} x \neq 1 \end{cases}$

2) ZERI $y = \frac{x-4}{x(1-x)^2}$
 $y = 0$
 $\begin{cases} x-4 \\ x(1-x)^2 \end{cases}$
 $\begin{cases} x-4 \\ x(1-x) \end{cases}$
 $\begin{cases} x-4$