

$$J = \frac{1}{2}$$

μ MASS (atomic mass units u)

The muon's mass is obtained from the muon-electron mass ratio as determined from the measurement of Zeeman transition frequencies in muonium (μ^+e^- atom). Since the electron's mass is most accurately known in u, the muon's mass is also most accurately known in u. The conversion factor to MeV has approximately the same relative uncertainty as the mass of the muon in u. In this datablock we give the result in u, and in the following datablock in MeV.

VALUE (u)	DOCUMENT ID		TECN	COMMENT		
$0.1134289257 \pm 0.0000000025$	MOHR	16	RVUE	2014 CODATA value		
 • • We do not use the following data for averages, fits, limits, etc. 						
$0.1134289267 \pm 0.0000000029$	MOHR	12	RVUE	2010 CODATA value		
$0.1134289256 \pm 0.0000000029$	MOHR	80	RVUE	2006 CODATA value		
$0.1134289264 \pm 0.0000000030$	MOHR	05	RVUE	2002 CODATA value		
$0.1134289168 \pm 0.0000000034$	¹ MOHR	99	RVUE	1998 CODATA value		
$0.113428913 \pm 0.000000017$	² COHEN	87	RVUE	1986 CODATA value		

¹ MOHR 99 make use of other 1998 CODATA entries below.

μ MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494 061 (21). Earlier values use the then-current conversion factor. The conversion error contributes significantly to the uncertainty of the masses given below.

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
$105.6583745 \pm 0.0000024$	MOHR	16	RVUE		2014 CODATA value
• • • We do not use the fol	lowing data for ave	erages,	fits, limi	ts, etc	. • • •
$105.6583715 \pm 0.0000035$	MOHR	12	RVUE		2010 CODATA value
$105.6583668 \pm 0.0000038$	MOHR	80	RVUE		2006 CODATA value
$105.6583692 \pm 0.0000094$	MOHR	05	RVUE		2002 CODATA value
$105.6583568 \pm 0.0000052$	MOHR	99	RVUE		1998 CODATA value
105.658353 ± 0.000016	¹ COHEN	87	RVUE		1986 CODATA value
105.658386 ± 0.000044	² MARIAM	82	CNTR	+	
105.65836 ± 0.00026	³ CROWE	72	CNTR		
105.65865 ± 0.00044	⁴ CRANE	71	CNTR		
-					

 $^{^1}$ Converted to MeV using the 1998 CODATA value of the conversion constant, 931.494013 \pm 0.000037 MeV/u.

²COHEN 87 make use of other 1986 CODATA entries below.

² MARIAM 82 give $m_{\mu}/m_{e} = 206.768259(62)$.

³ CROWE 72 give $m_{\mu}/m_e = 206.7682(5)$.

⁴ CRANE 71 give $m_{\mu}/m_e = 206.76878(85)$.

μ MEAN LIFE au

Measurements with an error $> 0.001 \times 10^{-6} \, \text{s}$ have been omitted.

<u>VALUE</u> (10^{-6} s)	DOCUMENT ID		TECN	CHG	COMMENT		
2.1969811±0.0000022 OUR AVERA							
$2.1969803 \pm 0.0000021 \pm 0.0000007$	TISHCHENKO	13	CNTR	+	Surface μ^+ at PSI		
$2.197083 \pm 0.000032 \pm 0.000015$	-			·	Muons from π^+ decay at rest		
$2.197013 \pm 0.000021 \pm 0.000011$	CHITWOOD	07	CNTR	+	Surface μ^+ at PSI		
2.197078 ± 0.000073	BARDIN	84	CNTR	+			
2.197025 ± 0.000155	BARDIN	84	CNTR	_			
2.19695 ± 0.00006	GIOVANETTI	84	CNTR	+			
2.19711 ± 0.00008	BALANDIN	74	CNTR	+			
2.1973 ± 0.0003	DUCLOS	73	CNTR	+			
 • We do not use the following data for averages, fits, limits, etc. 							
2.1969803 ± 0.0000022					Surface μ^+ at PSI		
1 TISHCHENKO 13 uses 1.6×10^{-1}	$^{12}~\mu^+$ events ar	nd sup	ersedes	WEE	BBER 11.		

au_{μ^+}/ au_{μ^-} MEAN LIFE RATIO

A test of CPT invariance.

VALUE		DOCUMENT II)	TECN	COMMENT	
1.00002	4±0.000078	BARDIN	84	CNTR		
• • • We do not use the following data for averages, fits, limits, etc. • •						
1.0008	± 0.0010	BAILEY	79	CNTR	Storage ring	
1.000	± 0.001	MEYER	63	CNTR	Mean life $\mu^+/~\mu^-$	

$$(au_{\mu^+} - au_{\mu^-}) / au_{ ext{average}}$$

A test of CPT invariance. Calculated from the mean-life ratio, above.

VALUE <u>DOCUMENT ID</u>

 $(2\pm 8)\times 10^{-5}$ OUR EVALUATION

μ/p MAGNETIC MOMENT RATIO

This ratio is used to obtain a precise value of the muon mass and to reduce experimental muon Larmor frequency measurements to the muon magnetic moment anomaly. Measurements with an error > 0.00001 have been omitted. By convention, the minus sign on this ratio is omitted. CODATA values were fitted using their selection of data, plus other data from multiparameter fits.

<u>VALUE</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
$3.183345142 \pm 0.000000071$	MOHR	16	RVUE		2014 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

3.18334510	7 ± 0.000000084	MOHR	12	RVUE	2010 CODATA value
3.18334513	7 ± 0.000000085	MOHR	80	RVUE	2006 CODATA value
3.18334511	8 ± 0.000000089	MOHR	05	RVUE	2002 CODATA value
3.18334513	± 0.00000039	LIU	99	CNTR +	HFS in muonium
3.18334539	± 0.0000010	MOHR	99	RVUE	1998 CODATA value
3.18334547	± 0.00000047	COHEN	87	RVUE	1986 CODATA value
3.1833441	± 0.0000017	KLEMPT	82	CNTR +	Precession strob
3.1833461	± 0.0000011	MARIAM	82	CNTR +	HFS splitting
3.1833448	± 0.0000029	CAMANI	78	CNTR +	See KLEMPT 82
3.1833403	± 0.0000044	CASPERSON	77	CNTR +	HFS splitting
3.1833402	± 0.0000072	COHEN	73	RVUE	1973 CODATA value
3.1833467	± 0.0000082	CROWE	72	CNTR +	Precession phase

A REVIEW GOES HERE - Check our WWW List of Reviews

μ MAGNETIC MOMENT ANOMALY

The parity-violating decay of muons in a storage ring is observed. The difference frequency ω_a between the muon spin precision and the orbital angular frequency $(e/m_\mu c)\langle B\rangle$ is measured, as is the free proton NMR frequency ω_p , thus determining the ratio $R{=}\omega_a/\omega_p$. Given the magnetic moment ratio $\lambda{=}\mu_\mu/\mu_p$ (from hyperfine structure in muonium), $(g{-}2)/2$ = $R/(\lambda{-}R)$.

$\mu_{\mu}/(e\hbar/2m_{\mu})-1=(g_{\mu}-2)/2$

VALUE (units 10^{-1}	.0)	DOCUMENT ID		TECN CHG	COMMENT
11659208.9 \pm	5.4±3.3	$^{ m 1}$ BENNETT	06	MUG2	Average μ^+ and μ^-
• • • We do no	C. ● ● ●				
11659208 \pm	6	BENNETT	04	MUG2	Average μ^+ and μ^-
11659214 \pm	8 ± 3	BENNETT	04	MUG2 -	Storage ring
$11659203 \pm$	6 ± 5	BENNETT	04	MUG2 +	Storage ring
$11659204 \pm$	7 ± 5	BENNETT	02	MUG2 +	Storage ring
$11659202 \pm$	14 ± 6	BROWN	01	MUG2 +	Storage ring
$11659191 \pm$	59	BROWN	00	MUG2 +	
11659100 ± 1	10	² BAILEY	79	CNTR +	Storage ring
11659360 ± 13	20	² BAILEY	79	CNTR -	Storage ring
$11659230 \pm $	85	² BAILEY	79	CNTR \pm	Storage ring
11620000 ± 50	00	CHARPAK	62	CNTR +	

 $^{^1}$ BENNETT 06 reports (g_ μ -2)/2 = (11659208.0 \pm 5.4 \pm 3.3) \times 10 $^{-10}$. We rescaled this value using μ/p magnetic moment ratio of 3.183345137(85) from MOHR 08.

 $^{^2}$ BAILEY 79 values recalculated by HUGHES 99 using the COHEN 87 μ/p magnetic moment. The improved MOHR 99 value does not change the result.

$$(g_{\mu^+} - g_{\mu^-}) / g_{\text{average}}$$

A test of CPT invariance.

<i>VALUE</i> (units 10^{-8})	DOCUMENT ID		TECN
-0.11 ± 0.12	BENNETT	04	MUG2
• • • We do not use the following of	data for averages	s, fits,	limits, etc. • • •
-2.6 ± 1.6	BAILEY	79	CNTR

μ ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

$VALUE (10^{-19} ecm)$	DOCUMENT ID		TECN CHG	COMMENT
-0.1 ± 0.9	$^{ m 1}$ BENNETT	09	MUG2 \pm	Storage ring
• • • We do not use the follow	ing data for average	es, fits,	limits, etc. $ullet$	• •
$-0.1\!\pm\!1.0$	BENNETT	09	MUG2 +	Storage ring
-0.1 ± 0.7	BENNETT	09	MUG2 -	Storage ring
-3.7 ± 3.4	² BAILEY	78	CNTR \pm	Storage ring
8.6 ± 4.5	BAILEY	78	CNTR +	Storage ring
0.8 ± 4.3	BAILEY	78	CNTR -	Storage ring

 $^{^1}$ This is the combination of the two BENNETT 09 results quoted here separately for μ^+ and $\mu^-.$ BENNETT 09 uses the convention d = 1/2 \cdot (d $_{\mu^-}$ – d $_{\mu^+}$).

MUON-ELECTRON CHARGE RATIO ANOMALY $q_{\mu^+}/q_{e^-}+1$

<u>VALUE</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>CHG</u>	<u>COMMENT</u>
$(1.1\pm2.1)\times10^{-9}$	¹ MEYER	00	CNTR	+	1s-2s muonium interval

 $^{^1}$ MEYER 00 measure the 1s–2s muonium interval, and then interpret the result in terms of muon-electron charge ratio q_{μ^+}/q_{e^-} .

μ^- DECAY MODES

 μ^+ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$e^-\overline{ u}_e u_\mu$	pprox 100%	_
Γ_2	$e^-\overline{ u}_e^{} u_\mu\gamma$	[a] $(6.0\pm0.5)\times10^{-8}$	
Γ_3	$e^-\overline{ u}_e u_\mue^+e^-$	[b] $(3.4\pm0.4)\times10^{-5}$	

 $^{^2}$ This is the combination of the two BAILEY 78 results quoted here separately for μ^+ and μ^- . BAILEY 78 uses the convention d = 1/2 \cdot (d $_{\mu^+}$ – d $_{\mu^-}$) and reports 3.7 \pm 3.4. We convert their result to use the same convention as BENNETT 09.

Lepton Family number (LF) violating modes

Γ_4	$e^- u_e\overline{ u}_\mu$	LF	[c] < 1.2	%	90%
Γ_5	$e^-\gamma$	LF	< 4.2	$\times10^{-13}$	90%
Γ_6	$e^-e^+e^-$	LF	< 1.0	$\times 10^{-12}$	90%
Γ_7	$e^- 2\gamma$	LF	< 7.2	$ imes$ 10 $^{-11}$	90%

- [a] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [b] See the Particle Listings below for the energy limits used in this measurement.
- [c] A test of additive vs. multiplicative lepton family number conservation.

μ^- BRANCHING RATIOS

$\Gamma(e^-\overline{ u}_e u_\mu\gamma)$	$/\Gamma_{ ext{total}}$					Γ_2/Γ		
VALUE		EVTS	DOCUMENT ID		TECN	COMMENT		
$(6.03\pm0.14\pm0.$	$53) \times 10^{-8}$	13k	¹ BALDINI	16A	SPEC	$\gamma~{ m KE} >$ 40 MeV		
• • • We do no	• • • We do not use the following data for averages, fits, limits, etc. • •							
		862	BOGART	67	CNTR	$\gamma~{ m KE} > 14.5~{ m MeV}$		
(3.3 ± 1.3)	$) \times 10^{-3}$ $) \times 10^{-2}$		CRITTENDEN	61	CNTR	γ KE $>$ 20 MeV		
(1.4 ± 0.4)	$) \times 10^{-2}$		CRITTENDEN	61	CNTR	$\gamma~{ m KE} >$ 10 MeV		
		27	ASHKIN	59	CNTR			

 $^{^{1}}$ BALDINI 16 measurement refers to $\mu^{+}\rightarrow e^{+}\nu\overline{\nu}\gamma$ decay and requires energy of $e^{+}>$ 45 MeV and energy γ > 40 MeV.

TECN CHG

SPEC +

COMMENT

Created: 5/30/2017 17:22

$\Gamma(e^-\overline{\nu}_e\,\nu_\mu\,e^+\,e^-)/\Gamma_{\rm total}$

VALUE (units 10^{-5})

 $3.4 \pm 0.2 \pm 0.3$

 Γ_3/Γ

• • • We do not us	se the follow	wing data for avera	ages,	fits, limit	s, etc.	• • •
$2.2 \!\pm\! 1.5$	7	² CRITTENDEN	61	HLBC	+	$E(e^+e^-) > 10 \text{ MeV}$
2		³ GUREVICH				
$1.5 \!\pm\! 1.0$	3	⁴ LEE	59	HBC	+	

¹ BERTL

 $^{^{1}\,\}mathrm{BERTL}$ 85 has transverse momentum cut $p_{T} > 17\,\,\mathrm{MeV}/c.$ Systematic error was increased by us.

² CRITTENDEN 61 count only those decays where total energy of either (e^+, e^-) combination is >10 MeV.

 $^{^3}$ GUREVICH 60 interpret their event as either virtual or real photon conversion. e^+ and e^- energies not measured.

⁴ In the three LEE 59 events, the sum of energies $E(e^+) + E(e^-) + E(e^+)$ was 51 MeV, 55 MeV, and 33 MeV.

 $\Gamma(e^-\nu_e\overline{\nu}_\mu)/\Gamma_{\rm total}$ Forbidden by the additive conservation law for lepton family number. A multiplicative

law predicts this branching ratio to be 1/2. For a review see NEMETHY 81.

VAL	UE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
<	0.012	90	¹ FREEDMAN	93	CNTR	+	u oscillation search
• •	• We do not use t	he followir	ng data for averag	ges, fi	ts, limits	, etc.	• • •
<	0.018	90	KRAKAUER	91 B	CALO	+	
<	0.05	90	² BERGSMA	83	CALO		$\overline{ u}_{\mu} e \rightarrow \mu^{-} \overline{\nu}_{e}$
<	0.09	90	JONKER	80	CALO		See BERGSMA 83
-	-0.001 ± 0.061		WILLIS	80	CNTR	+	
	0.13 ± 0.15		BLIETSCHAU	78	HLBC	\pm	Avg. of 4 values
<	0.25	90	EICHTEN	73	HLBC	+	

 $^{^1}$ FREEDMAN 93 limit on $\overline{
u}_e$ observation is here interpreted as a limit on lepton family

 $\Gamma(e^-\gamma)/\Gamma_{ ext{total}}$ Forbidden by lepton family number conservation. Γ_5/Γ

3	. ,					
$VALUE$ (units 10^{-11})	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 0.042	90	BALDINI	16	SPEC	+	MEG at PSI
ullet $ullet$ We do not use	the followin	g data for average	es, fits,	limits, e	tc. •	• •
< 0.057	90	ADAM	13 B	SPEC	+	MEG at PSI
< 0.24	90	ADAM	11	SPEC	+	MEG at PSI
< 2.8	90	ADAM	10	SPEC	+	MEG at PSI
< 1.2	90	AHMED	02	SPEC	+	MEGA
< 1.2	90	BROOKS	99	SPEC	+	LAMPF
< 4.9	90	BOLTON	88	CBOX	+	LAMPF
<100	90	AZUELOS	83	CNTR	+	TRIUMF
< 17	90	KINNISON	82	SPEC	+	LAMPF
<100	90	SCHAAF	80	FLFC	_	SIN

 $\Gamma(e^-e^+e^-)/\Gamma_{\text{total}}$ Γ_6/Γ Forbidden by lepton family number conservation.

VALUE (units 10^{-12})	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
< 1.0	90	$^{ m 1}$ BELLGARDT	88	SPEC	+	SINDRUM
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. •	• •
< 36	90	BARANOV	91	SPEC	+	ARES
< 35	90	BOLTON	88	CBOX	+	LAMPF
< 2.4	90	$^{ m 1}$ BERTL	85	SPEC	+	SINDRUM
<160	90	$^{ m 1}$ BERTL	84	SPEC	+	SINDRUM
<130	90	¹ BOLTON	84	CNTR		LAMPE

¹These experiments assume a constant matrix element.

 $^{^2}$ BERGSMA 83 gives a limit on the inverse muon decay cross-section ratio $\sigma(\overline{
u}_{\mu}e^-
ightarrow$ $\mu^-\overline{\nu}_e)/\sigma(\nu_\mu e^- \to \mu^-\nu_e) \text{, which is essentially equivalent to } \Gamma(e^-\nu_e\overline{\nu}_\mu)/\Gamma_{\text{total}} \text{ for small values like that quoted.}$

 $\Gamma(e^-2\gamma)/\Gamma_{\text{total}}$ Γ_7/Γ

Forbidden by lepton family number conservation.

<i>VALUE</i> (units 10^{-1}	¹) <i>CL%</i>	DOCUMENT ID		TECN	CHG	COMMENT
< 7.2	90	BOLTON	88	CBOX	+	LAMPF
• • • We do no	t use the foll	owing data for av	erages	, fits, lim	its, et	C. ● ● ●
< 840	90	¹ AZUELOS	83	CNTR	+	TRIUMF
< 5000	90	² BOWMAN	78	CNTR		DEPOMMIER 77 data

¹AZUELOS 83 uses the phase space distribution of BOWMAN 78.

LIMIT ON $\mu^- \rightarrow e^-$ CONVERSION

Forbidden by lepton family number conservation.

$\sigma(\mu^{-32}S \to e^{-32}S) / \sigma(\mu^{-32}S \to \nu_{\mu}^{32}P^*)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 7 \times 10^{-11}$	90	BADERT	80	STRC	SIN
• • • We do not use the	following o	lata for averages	s, fits,	limits, e	etc. • • •

 $<4 \times 10^{-10}$ 90 BADERT... 77 STRC SIN

$\sigma(\mu^- Cu \rightarrow e^- Cu) / \sigma(\mu^- Cu \rightarrow capture)$

<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • $<1.6 \times 10^{-8}$ 90 BRYMAN 72 SPEC

 $\sigma(u^- \text{Ti} \rightarrow e^- \text{Ti}) / \sigma(u^- \text{Ti} \rightarrow \text{capture})$

$\sigma(\mu = 11)$	υ (μ	, captaic)			
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<4.3 \times 10^{-12}$	90	$^{ m 1}$ DOHMEN	93	SPEC	SINDRUM II
● ● We do not use the	e following	data for average	s, fits,	, limits, e	etc. • • •
$< 4.6 \times 10^{-12}$	90	AHMAD	88	TPC	TRIUMF
$< 1.6 \times 10^{-11}$	90	BRYMAN	85	TPC	TRIUMF

¹ DOHMEN 93 assumes $\mu^- \rightarrow e^-$ conversion leaves the nucleus in its ground state, a process enhanced by coherence and expected to dominate.

$\sigma(\mu^- \text{Pb} \rightarrow e^- \text{Pb}) / \sigma(\mu^- \text{Pb} \rightarrow \text{capture})$

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.6 \times 10^{-11}$	90	HONECKER	96	SPEC	SINDRUM II
• • • We do not use the	following d	lata for averages	, fits,	limits, e	etc. • • •
$< 4.9 \times 10^{-10}$	90	AHMAD	88	TPC	TRIUMF

$\sigma(\mu^- Au \rightarrow e^- Au) / \sigma(\mu^- Au \rightarrow capture)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
$< 7 \times 10^{-13}$	90	BERTL	06	SPEC	_	SINDRUM II

 $^{^2}$ BOWMAN 78 assumes an interaction Lagrangian local on the scale of the inverse μ mass.

LIMIT ON $\mu^- \rightarrow e^+$ CONVERSION

Forbidden by total lepton number conservation.

$$\sigma(\mu^{-32}\mathsf{S}\to\ e^{+\,32}\mathsf{Si}^*)\ /\ \sigma(\mu^{-\,32}\mathsf{S}\to\ \nu_\mu^{\,32}\mathsf{P}^*)$$

<u>VALUE CL% DOCUMENT ID TECN COMMENT</u> **<9 × 10^{−10}** 90 BADERT... 80 STRC SIN

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $<1.5\times10^{-9}$ 90 BADERT... 78 STRC SIN

$\sigma(\mu^{-127}I \rightarrow e^{+127}Sb^*) / \sigma(\mu^{-127}I \rightarrow anything)$

VALUECL%DOCUMENT IDTECNCOMMENT $<3 \times 10^{-10}$ 901 ABELA80CNTRRadiochemical tech.

$\sigma(\mu^- Cu \rightarrow e^+ Co) / \sigma(\mu^- Cu \rightarrow \nu_{\mu} Ni)$

VALUE CL% DOCUMENT ID TECN

• • We do not use the following data for averages, fits, limits, etc. • •

 $<2.6 \times 10^{-8}$ 90 BRYMAN 72 SPEC $<2.2 \times 10^{-7}$ 90 CONFORTO 62 OSPK

$\sigma(\mu^- \text{Ti} \rightarrow e^+ \text{Ca}) / \sigma(\mu^- \text{Ti} \rightarrow \text{capture})$

<u>VALUE</u>	CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$< 3.6 \times 10^{-11}$	90	1	1,2 KAULARD	98	SPEC	_	SINDRUM II

• • • We do not use the following data for averages, fits, limits, etc. • •

$< 1.7 \times 10^{-12}$	90	1	^{2,3} KAULARD	98	SPEC	_	SINDRUM II	
$< 4.3 \times 10^{-12}$	90		³ DOHMEN	93	SPEC		SINDRUM II	
$< 8.9 \times 10^{-11}$	90		$^{ m 1}$ DOHMEN	93	SPEC		SINDRUM II	
$< 1.7 \times 10^{-10}$	90		⁴ AHMAD	88	TPC		TRIUMF	

¹ This limit assumes a giant resonance excitation of the daughter Ca nucleus (mean energy and width both 20 MeV).

LIMIT ON MUONIUM → ANTIMUONIUM CONVERSION

Forbidden by lepton family number conservation.

$$R_{\mathbf{g}} = G_{\mathbf{C}} / G_{\mathbf{F}}$$

The effective Lagrangian for the $\mu^+e^- \rightarrow \mu^-e^+$ conversion is assumed to be

$$\mathcal{L} = 2^{-1/2} \ \textit{G}_{\textit{C}} \ [\overline{\psi}_{\mu} \gamma_{\lambda} \ (1-\gamma_{5}) \ \psi_{e}] \ [\overline{\psi}_{\mu} \gamma_{\lambda} \ (1-\gamma_{5}) \ \psi_{e}] + \text{h.c.}$$

The experimental result is then an upper limit on $G_{\mathbb{C}}/G_{\mathbb{F}}$, where $G_{\mathbb{F}}$ is the Fermi coupling constant.

VALUE	CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
< 0.0030	90	1	¹ WILLMANN	99	SPEC	+	μ^+ at 26 GeV/ c

HTTP://PDG.LBL.GOV Page 8 Created: 5/30/2017 17:22

 $^{^1}$ ABELA 80 is upper limit for $\mu^-\,e^+$ conversion leading to particle-stable states of 127 Sb. Limit for total conversion rate is higher by a factor less than 4 (G. Backenstoss, private communication).

² KAULARD 98 obtained these same limits using the unified classical analysis of FELD-MAN 98.

This limit assumes the daughter Ca nucleus is left in the ground state. However, the probability of this is unknown.

⁴ Assuming a giant-resonance-excitation model.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.14	90	1	² GORDEEV	97	SPEC +	JINR phasotron
< 0.018	90	0	³ ABELA	96	SPEC +	μ^+ at 24 MeV
< 6.9	90		NI	93	CBOX	LAMPF
< 0.16	90		MATTHIAS	91	SPEC	LAMPF
< 0.29	90		HUBER	90 B	CNTR	TRIUMF
<20	95		BEER	86	CNTR	TRIUMF
<42	95		MARSHALL	82	CNTR	

 $^{^1}$ WILLMANN 99 quote both probability $P_{M\overline{M}} < 8.3 \times 10^{-11}$ at 90%CL in a 0.1 T field and $R_{\rm g} = G_{C}/G_{F}$.

A REVIEW GOES HERE – Check our WWW List of Reviews

μ DECAY PARAMETERS

ρ PARAMETER

(V-A) theory predicts $\rho = 0.75$.

VALUE	EVIS	DOCUMENT ID		TECN	CHG	COMMENT	
0.74979±0.00026 OUR AVE	RAGE						
$0.74977\!\pm\!0.00012\!\pm\!0.00023$		¹ BAYES	11	TWST	+	Surface μ^+	
0.7518 ± 0.0026		DERENZO	69	RVUE			
• • • We do not use the following	owing dat	a for averages, fi	ts, lin	nits, etc.	• •	•	
		•					

0.7501/	1 + 0 00017	±0.00045		² MACDONALD	08 TW/ST ±	Surface u+
		± 0.00043		³ MUSSER		,
			OG			,
• –	± 0.06					Liquid Ar TPC
0.762	± 0.008		170k	⁴ FRYBERGER		
0.760	±0.009		280k	⁴ SHERWOOD	67 ASPK +	25–53 MeV <i>e</i> +
0.7503	± 0.0026		800k	⁴ PEOPLES	66 ASPK +	20–53 MeV e^+

¹ The quoted systematic error includes a contribution of 0.00013 (added in quadrature) from uncertainties on radiative corrections and on the Michel parameter η .

η PARAMETER

(V-A) theory predicts $\eta = 0$.

VALUE			<u>EVTS</u>	DOCUMENT ID	TECN	CHG	COMMENT
0.057	± 0.034	OUR AV	'ERAGE				
0.071	±0.037	±0.005	30M	DANNEBERG	05 CNTR	+	7–53 MeV e^+
0.011	± 0.081	±0.026	5.3M	¹ BURKARD	85BCNTR	+	9–53 MeV e^+
-0.12	± 0.21		6346	DERENZO	69 HBC	+	1.6–6.8 MeV e ⁺

 $^{^2}$ GORDEEV 97 quote limits on both $f=G_{MM}/GF$ and the probability $W_{MM}<4.7\times10^{-7}$ (90% CL).

³ ABELA 96 quote both probability $P_{M\overline{M}} < 8 \times 10^{-9}$ at 90% CL and $R_g = G_C/G_F$.

 $^{^2}$ The quoted systematic error includes a contribution of 0.00011 (added in quadrature) from the dependence on the Michel parameter $\eta.$

 $^{^3}$ The quoted systematic error includes a contribution of 0.00023 (added in quadrature) from the dependence on the Michel parameter $\eta.$

 $^{^4\}eta$ constrained = 0. These values incorporated into a two parameter fit to ρ and η by DERENZO 69.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-0.0021 \pm 0.0070 \pm 0.0010$	30M	² DANNEBERG	05 CNTR +	7–53 MeV e^+
$-0.012\ \pm0.015\ \pm0.003$	5.3M	² BURKARD	85BCNTR +	9–53 MeV <i>e</i> ⁺
-0.007 ± 0.013	5.3M	³ BURKARD	85 B FIT +	9–53 MeV <i>e</i> ⁺
-0.7 ± 0.5	170k	⁴ FRYBERGER	68 ASPK +	25–53 MeV e ⁺
-0.7 ± 0.6	280k	⁴ SHERWOOD	67 ASPK +	25–53 MeV <i>e</i> ⁺
0.05 ± 0.5	800k		66 ASPK +	20–53 MeV <i>e</i> ⁺
-2.0 ± 0.9	9213	⁵ PLANO	60 HBC +	Whole spectrum

 $^{^{}m 1}$ Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement.

δ PARAMETER

(V-A) theory predicts $\delta = 0.75$.

VALUE	EVTS	DOCUMENT ID	TECN	CHC	COMMENT				
0.75047±0.00034 OUR AVERAGE									
$0.75049 \pm 0.00021 \pm 0.00027$		¹ BAYES			Surface μ^+				
$0.7486 \pm 0.0026 \pm 0.0028$		² BALKE	88 SPEC	+	Surface μ^+				
• • • We do not use the following data for averages, fits, limits, etc. • • •									
$0.75067 \pm 0.00030 \pm 0.00067$		MACDONALD	08 TWST	+	Surface μ^+				
$0.74964 \pm 0.00066 \pm 0.00112$	6G	GAPONENKO	05 TWST	+	Surface μ^+				
		³ VOSSLER	69						
0.752 ± 0.009	490k	FRYBERGER	68 ASPK	+	25–53 MeV e^+				
0.782 ± 0.031		KRUGER	61						
0.78 ± 0.05	8354	PLANO	60 HBC	+	Whole spectrum				

 $^{^1}$ The quoted systematic error includes a contribution of 0.00006 (added in quadrature) from uncertainties on radiative corrections and on the Michel parameter $\eta.$

$|(\xi \text{ PARAMETER}) \times (\mu \text{ LONGITUDINAL POLARIZATION})|$

(V-A) theory predicts $\xi = 1$, longitudinal polarization = 1. TECN CHG COMMENT

$1.0009 \begin{array}{l} +0.0016 \\[-4pt] -0.0007\end{array}$ **OUR AVERAGE**

$1.00084 \!\pm\! 0.00029 \!+\! 0.00165 \\ -\! 0.00063$	BUENO	11	TWST	Surface μ^+ beam
$1.0027\ \pm0.0079\ \pm0.0030$	BELTRAMI	87	CNTR	SIN, π decay in flight
• • • We do not use the follo	wing data for aver	ages,	fits, limits, etc	C. • • •
$1.0003 \pm 0.0006 \pm 0.0038$	JAMIESON	06	TWST +	surface μ^+ beam
$1.0013 \pm 0.0030 \pm 0.0053$	$^{ m 1}$ IMAZATO	92	SPEC +	$K^+ ightarrow \ \mu^+ u_{\mu}$
0.975 ± 0.015	AKHMANOV	68	EMUL	140 kG
0.975 ± 0.030	GUREVICH	64	EMUL	See AKHMANOV 68
0.903 ± 0.027	² ALI-ZADE	61	EMUL +	27 kG

 ± 0.06

 ± 0.05

0.93

0.97

HBC

CNTR

8.8 kG

Bromoform target

Created: 5/30/2017 17:22

PLANO

BARDON

 $^{2\}alpha = \alpha' = 0$ assumed.

³Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B. $^4\rho$ constrained = 0.75.

⁵ Two parameter fit to ρ and η ; PLANO 60 discounts value for η .

 $^{^{2}}$ BALKE 88 uses $ho = 0.752 \pm 0.003$.

 $^{^3}$ VOSSLER 69 has measured the asymmetry below 10 MeV. See comments about radiative corrections in VOSSLER 69.

² Depolarization by medium not known sufficiently well.

$\xi \times (\mu \text{ LONGITUDINAL POLARIZATION}) \times \delta / \rho$

VALUE	CL%	DOCUMENT ID		TECN CHG	COMMENT
$1.00179 {+0.00156\atop -0.00071}$		¹ BAYES	11	TWST +	Surface μ^+ beam
ullet $ullet$ We do not use th	e following	g data for average	s, fits,	limits, etc. •	• •
>0.99682	90	² JODIDIO	86	SPEC +	TRIUMF
>0.9966	90	³ STOKER	85	SPEC +	μ -spin rotation
>0.9959	90	CARR	83	SPEC +	11 kG

 $^{^1}$ BAYES 11 obtains the limit > 0.99909 (90% CL) with the constraint that $\xi\times(\mu$ LONGITUDINAL POLARIZATION) $\times\,\delta/\rho~\leq~1.0.$

$\xi' = \text{LONGITUDINAL POLARIZATION OF } e^+$

(V-A) theory predicts the longitudinal polarization $=\pm 1$ for e^{\pm} , respectively. We have flipped the sign for e^- so our programs can average.

<u>VALUE</u>	<u> </u>	DOCUMENT ID		TECN C	CHG	COMMENT
1.00 ±0.04 OU	RAVERAGE					
$0.998 \!\pm\! 0.045$	1M	BURKARD	85	CNTR +	+	Bhabha + annihil
0.89 ± 0.28	29k	SCHWARTZ	67	OSPK -	_	Moller scattering
0.94 ± 0.38		BLOOM	64	CNTR +	+	Brems. transmiss.
1.04 ± 0.18		DUCLOS	64	CNTR +	+	Bhabha scattering
1.05 ± 0.30		BUHLER	63	CNTR +	+	Annihilation

ξ" PARAMETER

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT			
0.98 ±0.04 OUR AVI	ERAGE								
$0.981 \pm 0.045 \pm 0.003$	3.87M	PRIEELS	14	CNTR	+	Bhabha + annihil			
0.65 ± 0.36	326k	¹ BURKARD	85	CNTR	+	Bhabha + annihil			
1 BURKARD 85 measure $(\xi''$ - $\xi\xi')/\xi$ and ξ' and set $\xi=1$.									

TRANSVERSE e^+ POLARIZATION IN PLANE OF μ SPIN, e^+ MOMENTUM

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
7 ± 8 OUR AVE	ERAGE					
$6.3 \pm 7.7 \pm 3.4$	30M	DANNEBERG	05	CNTR	+	7–53 MeV e^+
16 ± 21 ± 10	5.3M	BURKARD	85 B	CNTR	+	Annihil 9-53 MeV

TRANSVERSE e^+ POLARIZATION NORMAL TO PLANE OF μ SPIN, e^+ MOMENTUM

Zero if T invariance holds.

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-2 ± 8 OUR A	VERAGE					
$-3.7\pm\ 7.7\pm3.4$	30M	DANNEBERG	05	CNTR	+	7–53 MeV e^+
$7 \pm 22 \pm 7$	5.3M	BURKARD	85 B	CNTR	+	Annihil 9-53 MeV
HTTP://PDG.LE	BL.GOV	Page 11		Crea	ated:	5/30/2017 17:22

¹ The corresponding 90% confidence limit from IMAZATO 92 is $|\xi P_{\mu}| > 0.990$. This measurement is of K^+ decay, not π^+ decay, so we do not include it in an average, nor do we yet set up a separate data block for K results.

² JODIDIO 86 includes data from CARR 83 and STOKER 85. The value here is from the

³ STOKER 85 find $(\xi P_{\mu} \delta/\rho) > 0.9955$ and >0.9966, where the first limit is from new μ spin-rotation data and the second is from combination with CARR 83 data. In V-A theory, $(\delta/\rho) = 1.0$.

α/A

• • We do not use the following data for averages, fits, limits, etc. • •

15 \pm 50 \pm 14 5.3M BURKARD 85B CNTR + 9–53 MeV e⁺

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

α'/A

Zero if T invariance holds.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN CHG	COMMENT			
-10 ±20 OUR AVERAGE							
$-3.4\pm21.3\pm4.9$	30M	DANNEBERG 05	CNTR +	7–53 MeV e^+			
-47 ± 50 ± 14	5.3M	¹ BURKARD 85B	CNTR +	9–53 MeV e^+			
• • • We do not use	the followin	g data for averages, fits,	limits, etc. ●	• •			
- 02+ 43		² BURKARD 85B	FIT				

 1 Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^+ polarizations ${\rm P}_{T_1}$ and ${\rm P}_{T_2}$ versus e^+ energy.

²Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

β/A

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCHGCOMMENT3.9 \pm 6.21 BURKARD85BFIT

• • We do not use the following data for averages, fits, limits, etc.

2 ± 17 ± 6 5.3M BURKARD 85B CNTR + 9–53 MeV e^+

β'/A

Zero if T invariance holds.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN CHG	COMMENT
2 ± 7 OUR AV	/ERAGE				
$-\ 0.5 \pm\ 7.8 \pm 1.8$	30M	DANNEBERG			
$17 \pm 17 \pm 6$	5.3M	¹ BURKARD	85 B	CNTR +	9–53 MeV e^+
ullet $ullet$ We do not use	the followin	g data for averages,	fits,	limits, etc. $ullet$	• •
$-\ 1.3\pm\ 3.5\pm0.6$	30M	² DANNEBERG			7–53 MeV e^+
1.5 ± 6.3		³ BURKARD	85B	FIT	

 1 Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^+ polarizations ${\rm P}_{T_1}$ and ${\rm P}_{T_2}$ versus e^+ energy.

and ${\rm P}_{T_2}$ versus e^+ energy ${}^2\alpha=\alpha'=0$ assumed.

¹ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

³Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

a/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) CL% DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BURKARD 90 85B FIT <15.9

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

a'/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BURKARD 85B FIT 5.3 ± 4.1

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

(b'+b)/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) CL%DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BURKARD < 1.04 85B FIT

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

c/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) DOCUMENT ID CL%

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ BURKARD < 6.4 90 85B FIT

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

c'/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • •

¹ BURKARD 85B FIT 3.5 ± 2.0

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

$\overline{\eta}$ PARAMETER

(V-A) theory predicts $\overline{\eta}=0$. $\overline{\eta}$ affects spectrum of radiative muon decay.

()	,				· · · · · J		
VALUE	DOCUMENT ID		TECN	CHG	COMMENT		
0.02 ± 0.08 OUR AVERAGE							
-0.014 ± 0.090	EICHENBER 8	34	ELEC	+	ho free		
$+0.09 \pm 0.14$	BOGART 6	57	CNTR	+			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$-0.035\!\pm\!0.098$	EICHENBER 8	34	ELEC	+	$ ho{=}0.75$ assumed		

μ REFERENCES

BALDINI	16	EPJ C76 434	A.M. Baldini et al.	(MEG Collab.)
BALDINI	16A	EPJ C76 108	A.M. Baldini et al.	(MEG Collab.)
MOHR	16	PMP 88 035009	P.J. Mohr, D.B. Newell, B.I	N. Taylor (NIST)
PRIEELS	14	PR D90 112003	R. Prieels et al.	(LOUV, ETH, `PSI+)
ADAM	13B	PRL 110 201801	J. Adam et al.	` (MEG Collab.)
TISHCHENKO	13	PR D87 052003	V. Tishchenko et al.	(MuLan Collab.)
MOHR	12	RMP 84 1527	P.J. Mohr, B.N. Taylor, D.I	
ADAM	11	PRL 107 171801	J. Adam <i>et al.</i>	(MEG Collab.)
BAYES	11	PRL 106 041804	R. Bayes <i>et al.</i>	(TWIST Collab.)
Also		PR D85 092013	A. Hillairet <i>et al.</i>	(TWIST Collab.)
BUENO	11	PR D84 032005	J.F. Bueno <i>et al.</i>	(TWIST Collab.)
Also		PR D85 039908 (errat.)	J.F. Bueno <i>et al.</i>	(TWIST Collab.)
WEBBER	11	PRL 106 041803	D.M. Webber <i>et al.</i>	(MuLan Collab.)
Also	11	PRL 106 079901 (errat.)		(MuLan Collab.)
ADAM	10	NP B834 1	J. Adam <i>et al.</i>	(MEG Collab.)
	09	PR D80 052008	G.W. Bennett <i>et al.</i>	,
BENNETT				(MUG-2 Collab.)
BARCZYK	80	PL B663 172	A. Barczyk et al.	(FAST Collab.)
MACDONALD		PR D78 032010	R.P. MacDonald et al.	(TWIST Collab.)
MOHR	80	RMP 80 633	P.J. Mohr, B.N. Taylor, D.I	
CHITWOOD	07	PRL 99 032001	D.B. Chitwood et al.	(MULAN Collab.)
BENNETT	06	PR D73 072003	G.W. Bennett et al.	(MUG-2 Collab.)
BERTL	06	EPJ C47 337	W. Bertl et al.	(SINDRUM II Collab.)
JAMIESON	06	PR D74 072007	B. Jamieson <i>et al.</i>	(TWIST Collab.)
DANNEBERG	05	PRL 94 021802	N. Danneberg <i>et al.</i>	$(ETH,\ JAGL,\ PSI+)$
GAPONENKO	05	PR D71 071101	A. Gaponenko <i>et al.</i>	(TWIST Collab.)
MOHR	05	RMP 77 1	P.J. Mohr, B.N. Taylor	(NIST)
MUSSER	05	PRL 94 101805	J.R. Musser <i>et al.</i>	(TWIST Collab.)
AMORUSO	04	EPJ C33 233	S. Amoruso et al.	(ICARUS Collab.)
BENNETT	04	PRL 92 161802	G.W. Bennett et al.	(Muon(g-2) Collab.)
AHMED	02	PR D65 112002	M. Ahmed et al.	(MEGA Collab.)
BENNETT	02	PRL 89 101804	G.W. Bennett et al.	(Muon(g-2) Collab.)
BROWN	01	PRL 86 2227	H.N. Brown et al.	(Muon(g-2) Collab.)
BROWN	00	PR D62 091101	H.N. Brown et al.	(BNL/G-2 Collab.)
MEYER	00	PRL 84 1136	V. Meyer et al.	,
BROOKS	99	PRL 83 1521	M.L. Brooks et al.	(MEGA/LAMPF Collab.)
HUGHES	99	RMP 71 S133	V.W. Hughes, T. Kinoshita	(***=***/=*****************************
LIU	99	PRL 82 711	W. Liu et al.	(LAMPF Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	(NIST)
Also	33	RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
WILLMANN	99	PRL 82 49	L. Willmann et al.	(14151)
FELDMAN	98	PR D57 3873	G.J. Feldman, R.D. Cousins	
KAULARD	98	PL B422 334	J. Kaulard <i>et al.</i>	(SINDRUM-II Collab.)
GORDEEV	97	PAN 60 1164	V.A. Gordeev <i>et al.</i>	(SINDROW-II COIIID.) (PNPI)
GONDLLV	91	Translated from YAF 60		(1 141 1)
ABELA	96	PRL 77 1950	R. Abela <i>et al.</i>	(PSI, ZURI, HEIDH, TBIL+)
HONECKER	96	PRL 76 200	W. Honecker et al.	(SINDRUM II Collab.)
DOHMEN	93	PL B317 631	C. Dohmen et al.	(PSI SINDRUM-II Collab.)
FREEDMAN	93 93	PR D47 811	S.J. Freedman <i>et al.</i>	(LAMPF E645 Collab.)
NI	93 93	PR D48 1976	B. Ni et al.	(LAMPF Crystal-Box Collab.)
IMAZATO	93 92	PRL 69 877	J. Imazato <i>et al.</i>	(KEK, INUS, TOKY+)
BARANOV	92	SJNP 53 802	V.A. Baranov <i>et al.</i>	
DARANUV	91	Translated from YAF 53		(JINR)
		Translated HOIII TAF 53.	1302.	

KRAKAUER	91B	PL B263 534	D.A. Krakauer <i>et al.</i>	(UMD, UCI, LANL)
MATTHIAS	91	PRL 66 2716	B.E. Matthias <i>et al.</i>	(YALE, HEIDP, WILL+)
Also		PRL 67 932 (erratum)	B.E. Matthias et al.	(YALE, HEIDP, WILL+)
HUBER	90B	PR D41 2709	T.M. Huber <i>et al.</i>	
-				(WYOM, VICT, ARIZ+)
AHMAD	88	PR D38 2102	S. Ahmad <i>et al.</i>	(TRIU, VICT, VPI, BRCO+)
Also		PRL 59 970	S. Ahmad <i>et al.</i>	(TRIU, VPI, VICT, BRCO+)
BALKE	88	PR D37 587	B. Balke <i>et al.</i>	(LBL, UCB, COLO, NWES+)
BELLGARDT	88	NP B299 1	U. Bellgardt <i>et al.</i>	(SINDRUM Collab.)
			<u> </u>	
BOLTON	88	PR D38 2077	R.D. Bolton et al.	(LANL, STAN, CHIC+)
Also		PRL 56 2461	R.D. Bolton <i>et al.</i>	(LANL, STAN, CHIC+)
Also		PRL 57 3241	D. Grosnick <i>et al.</i>	(CHIC, LANL, STAN+)
BELTRAMI	87	PL B194 326	I. Beltrami <i>et al.</i>	(ETH, SIN, MANZ)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
BEER	86	PRL 57 671	G.A. Beer <i>et al.</i>	(VICT, TRIU, WYOM)
JODIDIO	86	PR D34 1967	A. Jodidio <i>et al.</i>	(LBL, NWES, TRIU)
Also		PR D37 237 (erratum)	A. Jodidio et al.	(LBL, NWES, TRIU)
BERTL	85	NP B260 1 ` ´	W. Bertl et al.	`(SINDRUM Collab.)
BRYMAN	85	PRL 55 465	D.A. Bryman et al.	(TRIU, CNRC, BRCO+)
BURKARD	85	PL 150B 242	H. Burkhardt <i>et al.</i>	(ETH, SIN, MANZ)
BURKARD	85B	PL 160B 343	H. Burkhardt <i>et al.</i>	(ETH, SIN, MANZ)
Also		PR D24 2004	F. Corriveau et al.	(ETH, SIN, MANZ)
Also		PL 129B 260	F. Corriveau et al.	(ETH, SIN, MANZ)
	OF			
STOKER	85	PRL 54 1887	D.P. Stoker <i>et al.</i>	(LBL, NWES, TRIU)
BARDIN	84	PL 137B 135	G. Bardin <i>et al.</i>	(SACL, CERN, BGNA, FIRZ)
BERTL	84	PL 140B 299	W. Bertl <i>et al.</i>	(SINDRUM Collab.)
BOLTON	84	PRL 53 1415	R.D. Bolton et al.	(LANL, CHIC, STAN $+$)
EICHENBER	84	NP A412 523	W. Eichenberger, R. Engfe	
GIOVANETTI	84	PR D29 343	K.L. Giovanetti <i>et al.</i>	(WILL)
AZUELOS	83	PRL 51 164	G. Azuelos <i>et al.</i>	(MONT, TRIU, BRCO)
Also		PRL 39 1113	P. Depommier et al.	(MONT, BRCO, TRIU+)
BERGSMA	83	PL 122B 465	F. Bergsma <i>et al.</i>	(CHARM Collab.)
CARR	83	PRL 51 627	J. Carr <i>et al.</i>	(LBL, NWES, TRIU)
KINNISON	82	PR D25 2846	W.W. Kinnison <i>et al.</i>	(EFI, STAN, LANL)
Also		PRL 42 556	J.D. Bowman <i>et al.</i>	(LASL, EFI, STAN)
KLEMPT	82	PR D25 652	E. Klempt <i>et al.</i>	` (MANZ, ETH)
MARIAM	82	PRL 49 993	F.G. Mariam <i>et al.</i>	(YALE, HEIDH, BERN)
				`
MARSHALL	82	PR D25 1174	G.M. Marshall et al.	(BRCO)
NEMETHY	81	CNPP 10 147	P. Nemethy, V.W. Hughes	(LBL, YALE)
ABELA	80	PL 95B 318	R. Abela <i>et al.</i>	(BASL, KARLK, KARLE)
BADERT	80	LNC 28 401	A. Badertscher et al.	(BERN)
Also	00		A. Badertscher <i>et al.</i>	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
	00	NP A377 406		(BERN)
JONKER	80	PL 93B 203	M. Jonker <i>et al.</i>	(CHARM Collab.)
SCHAAF	80	NP A340 249	A. van der Schaaf <i>et al.</i>	(ZURI, ETH+)
Also		PL 72B 183	H.P. Povel et al.	(ZURI, ETH, SIN)
WILLIS	80	PRL 44 522	S.E. Willis et al.	(YALE, LBL, LASL+)
	00			
Also		PRL 45 1370	S.E. Willis et al.	(YALE, LBL, LASL+)
BAILEY	79	NP B150 1	J.M. Bailey	(CERN, DARE, MANZ)
BADERT	78	PL 79B 371	A. Badertscher et al.	(BERN)
BAILEY	78	JP G4 345	J.M. Bailey (DARE, B	ERN, SHEF, MANZ, RMCS+)
Also		NP B150 1	J.M. Bailey	(CERN, DARE, MANZ)
	70			
BLIETSCHAU	78	NP B133 205	J. Blietschau <i>et al.</i>	(Gargamelle Collab.)
BOWMAN	78	PRL 41 442	J.D. Bowman <i>et al.</i>	(LASL, IAS, CMU+)
CAMANI	78	PL 77B 326	M. Camani et al.	(ETH, MANZ)
BADERT	77	PRL 39 1385	A. Badertscher et al.	` (BERN)
CASPERSON				(BERN, HEIDH, LASL+)
	77	PRL 38 956	D.E. Casperson <i>et al.</i>	
DEPOMMIER	77	PRL 39 1113	P. Depommier <i>et al.</i>	(MONT, BRCO, $TRIU+$)
BALANDIN	74	JETP 40 811	M.P. Balandin et al.	(JINR)
		Translated from ZETF 6	7 1631.	, ,
COHEN	73	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
DUCLOS	73	PL 47B 491	J. Duclos, A. Magnon, J.	
				, <u>\</u> (
EICHTEN	73	PL 46B 281	T. Eichten <i>et al.</i>	(Gargamelle Collab.)
BRYMAN	72	PRL 28 1469	D.A. Bryman <i>et al.</i>	(VPI)
CROWE	72	PR D5 2145	K.M. Crowe et al.	(LBL, WASH)
CRANE	71	PRL 27 474	T. Crane et al.	` (YALE)
DERENZO	69	PR 181 1854	S.E. Derenzo	(EFI)
				` '
VOSSLER	69	NC 63A 423	C. Vossler	(EFI)
AKHMANOV	68	SJNP 6 230	V.V. Akhmanov <i>et al.</i>	(KIAE)
		Translated from YAF 6 3	316.	

FRYBERGER	68	PR 166 1379	D. Fryberger	(EFI)
BOGART	67	PR 156 1405	E. Bogart <i>et al.</i>	(COLU)
SCHWARTZ	67	PR 162 1306	D.M. Schwartz	(EFI)
SHERWOOD	67	PR 156 1475	B.A. Sherwood	(EFI)
PEOPLES	66	Nevis 147 unpub.	J. Peoples	(CÓLU)
BLOOM	64	PL 8 87	S. Bloom et al.	(CERN)
DUCLOS	64	PL 9 62	J. Duclos et al.	(CERN)
GUREVICH	64	PL 11 185	I.I. Gurevich et al.	(KIAE)
BUHLER	63	PL 7 368	A. Buhler-Broglin et al.	(ČERN)
MEYER	63	PR 132 2693	S.L. Meyer et al.	(COLU)
CHARPAK	62	PL 1 16	G. Charpak et al.	(CERN)
CONFORTO	62	NC 26 261	G. Conforto et al. (1	NFN, ROMA, CERN)
ALI-ZADE	61	JETP 13 313	S.A. Ali-Zade, I.I. Gurevich, B.A. N	ikolsky
		Translated from ZETF 40	452.	•
CRITTENDEN	61	PR 121 1823	R.R. Crittenden, W.D. Walker, J. B	Sallam (WISC+)
KRUGER	61	UCRL 9322 unpub.	H. Kruger	(LRL)
GUREVICH	60	JETP 10 225	I.I. Gurevich, B.A. Nikolsky, L.V. St	ırkova (İTEP)
		Translated from ZETF 37		, ,
PLANO	60	PR 119 1400	R.J. Plano	(COLU)
ASHKIN	59	NC 14 1266	J. Ashkin <i>et al.</i>	(CERN)
BARDON	59	PRL 2 56	M. Bardon, D. Berley, L.M. Lederm	an (COLU)
LEE	59	PRL 3 55	J. Lee, N.P. Samios	(COLU)