Projet de statistique appliquée, Ensae

Word-Embedding et sentiments des ménages avec Twitter

KIM ANTUNEZ, ROMAIN LESAUVAGE ET ALAIN

Quartier-la-Tente

encadrement : BENJAMIN MULLER (Inria)

11/06/2020

Ensae — 2019-2020

Introduction (1/2)

- word2vec = modèle de NLP développé par Google (Mikolov et al (2013)).
- Objectif = word-embedding : donner une représentation vectorielle aux mots.
 - vecteurs difficilement interprétables
 - □ tâches d'apprentissage facilitées

Introduction (1/2)

- word2vec = modèle de NLP développé par Google (Mikolov et al (2013)).
- Objectif = word-embedding : donner une représentation vectorielle aux mots.
 - vecteurs difficilement interprétables
 - o 🖬 tâches d'apprentissage facilitées
- Réseau de neurones à 2 couches permettant de traiter des grandes bases de données.
 - mots apparaissant dans un même contexte = représentations vectorielles proches

$$\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italie} = \overrightarrow{Rome}$$

Introduction (2/2)

Sommaire

- 1. Le modèle word2vec
- 1.1 L'approche Skip-gram
- 1.2 Construction de la base d'entraînement
- 1.3 softmax et negative sampling
- 2. Évaluation du modèle
- 3. Indice de sentiments

L'approche Skip-gram

Approche retenue : Skip-gram

- étant donné un mot focus quels pourraient être ses voisins (contextes)?
- les contextes dépendent d'un paramètre : la fenêtre w

L'approche Skip-gram

Approche retenue : Skip-gram

- étant donné un mot focus quels pourraient être ses voisins (contextes)?
- les contextes dépendent d'un paramètre : la fenêtre w

Exemple:

Espérons que la présentation sous Teams se passe bien

Voisins(passe, w = 1) = [se, bien] Voisins(passe, w = 2) = [Teams, se, bien]

Construction de la base d'entraînement (1/2)

À partir de couples [focus, contexte], on met itérativement à jour deux matrices W_e et W_s . Représentation vectorielle finale :

$$\frac{W_e + W_s}{2} = \underbrace{\begin{pmatrix} \text{repr\'esentation mot 1} \\ \vdots \\ \text{repr\'esentation mot } n \end{pmatrix}}_{\text{dimension } [n \times dim]}$$

Construction de la base d'entraînement (1/2)

À partir de couples [focus, contexte], on met itérativement à jour deux matrices W_e et W_s . Représentation vectorielle finale :

$$\frac{W_e + W_s}{2} = \underbrace{\begin{pmatrix} \text{repr\'esentation mot 1} \\ \vdots \\ \text{repr\'esentation mot } n \end{pmatrix}}_{\text{dimension } [n \times dim]}$$

Pour chaque phrase on :

- supprime la ponctuation, met tout en minuscule
- affecte la valeur « lowfrequency » aux mots rares.
- effectue un sous-échantillonnage des mots (subsampling)
- tire au hasard un mot focus et un mot contexte associé
- on parcourt la base *epochs* fois

Construction de la base d'entraînement (2/2)

```
Exemple avec w=2:

Espérons que la présentation sous Teams se passe bien!!!
```

on supprime la ponctuation, met tout en minuscule
 [espérons, que, la, présentation, sous, teams, se, passe, bien]

Construction de la base d'entraînement (2/2)

```
Exemple avec w = 2:
     Espérons que la présentation sous Teams se passe bien!!!
```

- on supprime la ponctuation, met tout en minuscule (espérons, que, la, présentation, sous, teams, se, passe, bien]
- on effectue un sous-échantillonnage des mots (subsampling)
 - (espérons, X, X, présentation, X, teams, se, passe, X)

Construction de la base d'entraînement (2/2)

```
Exemple avec w=2:

Espérons que la présentation sous Teams se passe bien!!!
```

- on supprime la ponctuation, met tout en minuscule
 [espérons, que, la, présentation, sous, teams, se, passe, bien]
- on effectue un sous-échantillonnage des mots (subsampling)
 [espérons, X, X, présentation, X, teams, se, passe, X]
- on tire au hasard un mot focus et un mot contexte associé
 On tire un couple au hasard parmi [présentation, teams],
 [teams, présentation], [teams, se], [teams, passe], [se, teams], ...

Actualisation de W_e et W_s

Pour chaque couple [focus, contexte] : actualisation de W_e et W_s par descente de gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} Loss(\theta^{(t)})$$

 η taux d'apprentissage et $Loss(\theta)$ fonction de perte

Actualisation de W_e et W_s

Pour chaque couple [focus, contexte] : actualisation de W_e et W_s par descente de gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} Loss(\theta^{(t)})$$

 η taux d'apprentissage et $Loss(\theta)$ fonction de perte

Deux approches :

1. *softmax* : pour un mot focus on estime la probabilité que les autres mots soient voisins (classification multiclasse)

$$\mathbb{P}(w_{contexte}|w_{focus}) = ?$$

Actualisation de W_e et W_s

Pour chaque couple [focus, contexte] : actualisation de W_e et W_s par descente de gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} Loss(\theta^{(t)})$$

 η taux d'apprentissage et $Loss(\theta)$ fonction de perte

Deux approches:

1. *softmax* : pour un mot focus on estime la probabilité que les autres mots soient voisins (classification multiclasse)

$$\mathbb{P}(w_{contexte}|w_{focus}) = ?$$

2. negative sampling : pour chaque couple [focus, mot2] on estime la probabilité que mot2 soit voisin de focus (classification binaire)

$$\mathbb{P}(D=1|w_{focus},w_{mot2})=?$$

softmax et negative sampling

Pour chaque couple [focus, contexte] :

1. softmax: on maximise

$$\mathbb{P}(w_{contexte}|w_{focus}) = \frac{\exp(W_{e,w_{focus}} \times {}^{t}W_{s,w_{contexte}})}{\sum_{i=1}^{n} \exp(W_{e,w_{focus}} \times {}^{t}W_{s,w_{i}})}$$

Complexité : $\mathcal{O}(n)$ et $n \simeq 70\,000$

softmax et negative sampling

Pour chaque couple [focus, contexte] :

1. softmax: on maximise

$$\mathbb{P}(w_{contexte}|w_{focus}) = \frac{\exp(W_{e,w_{focus}} \times {}^{t}W_{s,w_{contexte}})}{\sum_{i=1}^{n} \exp(W_{e,w_{focus}} \times {}^{t}W_{s,w_{i}})}$$

- Complexité : $\mathcal{O}(n)$ et $n \simeq 70\,000$
- 2. negative sampling : on tire K=5 mots "négatifs" $(w_{neg,\,i})_{i=1..K}$ a priori non liés à [focus, contexte]

On maximise
$$\mathbb{P}(D=1|w_{focus},w_{contexte})$$
 et $\mathbb{P}(D=0|w_{focus},w_{neg,i})$

$$\begin{cases} \mathbb{P}(D=1|\textit{w}_{\textit{focus}}, \textit{w}_{\textit{contexte}}) &= \sigma(\textit{W}_{e,\textit{w}_{\textit{focus}}}^t \textit{W}_{s,\textit{w}_{\textit{contexte}}}) \\ \mathbb{P}(D=0|\textit{w}_{\textit{focus}}, \textit{w}_{\textit{neg},\,i}) &= \sigma(-\textit{W}_{e,\textit{w}_{\textit{focus}}}^t \textit{W}_{s,\textit{w}_{\textit{neg},\,i}}) \\ \sigma(x) &= \frac{1}{1+\exp(-x)} \end{cases}$$

 \bigcirc Complexité : $\mathcal{O}(K)$

Sommaire

- 1. Le modèle word2vec
- 2. Évaluation du modèle
- 2.1 Évaluation sur un corpus fictif
- 2.2 Choix des meilleurs hyperparamètres
- 2.3 Évaluation sur le corpus de tweets
- 3. Indice de sentiments

Comment évaluer le modèle?

Les vecteurs-mots sont de grande dimension : comment juger de leur qualité et de leurs proximités ?

- ACP et t-SNE : réduire la dimension et analyser les proximités.
- **Similarité cosinus** : distance entre vecteurs-mots.
- Jugement humain : corrélations entre les proximités de nos vecteurs-mots et une base de proximités de mots construites par le jugement d'individus.
- Évaluer sur un corpus fictif puis sur l'ensemble des tweets

Évaluation sur un corpus fictif (1/2)

Idée : construire un corpus fictif pour lequel on connaît le résultat attendu.

En pratique:

- On génère 10 groupes de mots composés d'un couple de référence et de 10 autres mots contexte.
- On construit 10 000 phrases en tirant au hasard :
 - 1 des groupes de mots;
 - 1 des 2 mots « références » du groupe ;
 - 5 mots contextes;
 - o 3 mots bruits parmi une liste de 100 mots.
- On mélange les 9 mots de chaque phrase.

Évaluation sur un corpus fictif (2/2)

mot	similarité cosinus	
	avec « grand »	
longueur	0,982	
petit	0,981	
s	0,979	
:	:	
	į	
allates	-0,784	
mot	similarité cosinus	
	avec « petit »	
taille	0,987	
longueur	0,983	
grand	0,981	
	:	
allates	-0.810	
anates	-0,010	

Paramètres utilisés : ep = 50 / Ir = 0.01 / w = 5 / dim = 10.

implémentation semble validée (résultats conformes aux attendus)

Déterminer les hyperparamètres

- Word2vec se base sur différents choix d'hyperparamètres :
 - taille de la fenêtre (w)
 - o nombre d'epochs (ep)
 - o taux d'apprentissage (Ir)
 - o dimension des word-embeddings (dim)

Déterminer les hyperparamètres

- Word2vec se base sur différents choix d'hyperparamètres :
 - taille de la fenêtre (w)
 - o nombre d'epochs (*ep*)
 - taux d'apprentissage (Ir)
 - o dimension des word-embeddings (dim)
- Détermination empirique des hyperparamètres :
 - corrélation de Spearman entre nos vecteurs-mots et une base de jugement humain
 - o chronophage (il faut relancer le modèle à chaque fois).
- Utilisation complémentaire de Gensim puis validation avec notre implémentation.

Exemple : epochs, fenêtre et taux d'apprentissage

Paramètre utilisé : dim = 50

Valeurs retenues pour les hyperparamètres

- Nombre d'epochs : qualité des résultats croît avec le nombre d'epochs
 - Θ ep = 100.
- Taille de fenêtre : capte des informations sémantiques différentes selon sa valeur
- Taux d'apprentissage : 0,02 donne de meilleurs résultats
 - $rac{1}{2}$ Ir = 0,02.
- Dimension : qualité des résultats croît avec la dimension jusqu'à 300 puis décroît. Peu de différences entre 100 et 300.
 - \bigcirc dim = 100.

Évaluation sur le corpus de tweets (1/2)

« Notre » modèle

Spearman : 0.57 (p-v : 4.1 %)

bons résultats

bonjour	femme	1
(669)	(264)	(765)
⁹ (0,59)	quelle (0,49)	5 (0,55)
© (0,59)	cette (0,46)	mois (0,51)
merci (0,54)	une (0,44)	10 (0,49)
nuit (0,48)	vie (0,44)	2 (0,48)
bisous (0,47)	grippe (0,44)	top (0,48)

 $ep=80\ /\ w=4\ /\ lr=0$,02 $/\ dim=100\ /\ base$: 100 000 tweets

Évaluation sur le corpus de tweets (1/2)

« Notre » modèle

Spearman : 0.57 (p-v : 4.1 %)

bons résultats

Modèle Gensim

Spearman : 0.50 (p-v : 0.0 %)

très bons résultats

femme	1
(264)	(765)
quelle (0,49)	5 (0,55)
cette (0,46)	mois (0,51)
une (0,44)	10 (0,49)
vie (0,44)	2 (0,48)
grippe (0,44)	top (0,48)
	(264) quelle (0,49) cette (0,46) une (0,44)

 $ep = 80 \ / \ w = 4 \ / \ lr = 0.02 \ / \ dim = 100 \ / \ base : 100 \ 000 \ tweets$

bonjour	femme	1
(17 043)	(6 177)	(21 055)
bonsoir (0,85)	fille (0,86)	2 (0,65)
bjr (0,75)	copine (0,74)	3 (0,64)
hello (0,71)	meuf (0,71)	6 (0,63)
salut (0,66)	demoiselle (0,66)	4 (0,62)
coucou (0,55)	nana (0,66)	7 (0,60)

ep = 100 / w = 4 / lr = 0.02 / dim = 100 / base: ensemble des tweets

5 plus proches voisins par similarité cosinus

Évaluation sur le corpus de tweets (2/2)

ACP sur un corpus réduit de mots.

Évaluation sur le corpus de tweets (2/2)

Réduction de dimension des vecteurs-mots et (parfois) opérations sur les mots **convaincants**

Sommaire

- 1. Le modèle word2vec
- 2. Évaluation du modèle
- 3. Indice de sentiments
- 3.1 Prédire le sentiment d'un tweet
- 3.2 Sentiments des tweets et enquête de conjoncture auprès des ménages

Prédire le sentiment d'un tweet

- Idée : associer à chaque tweet un sentiment
 - o 1 s'il est positif
 - o 0 s'il est négatif
- Base de 23 000 tweets annotés sur les transports urbains :
 - o base d'entraînement : 16 000 tweets
 - o base de test : 7 000 tweets
- 2 approches:
 - Modèle lexical: utiliser l'information des tweets annotés pour construire un sentiment moyen par mot.
 - Modèle logit : utiliser les word-embeddings comme prédicteurs d'une régression logistique.

Modèle lexical : sentiment moyen des mots

Le sentiment prédit d'un tweet t composé de n mots sera :

$$S_{1,\gamma}(t) = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^n \alpha_i \geq \gamma\right\} \in \{0,1\}$$

- $\gamma \in [-1, 1]$ un seuil fixé;
- $-\alpha_i = \frac{nb_+(i)-nb_-(i)}{nb_+(i)+nb_-(i)} \in [-1,1]$ sentiment moyen du mot i calculé à partir du nombre de tweets positifs $(nb_+(i))$ et négatifs $(nb_-(i))$ dans lesquels il apparaît.

^{1.} Taux de tweets dont le sentiment est bien prédit.

Modèle logit : prédiction grâce aux word-embeddings

Le sentiment prédit d'un tweet t sera :

$$S_{2,\gamma}(t) = \mathbb{1} \{ \mathbb{P}(Y_i = 1 | X_i) \ge \gamma \}$$
 $\in \{0,1\}$

Avec:

$$Y_i = \mathbb{1}\left\{\sum_{i=1}^n \beta_i X_{i,j} + \varepsilon_i \ge 0\right\} \quad \mathbb{P}(Y_i = 1|X_i) = F_{\varepsilon}\left(\sum_{i=1}^n \beta_i X_{i,j}\right)$$

- Y_i le sentiment du tweet i;
- $-X_{i,1},\ldots,X_{i,n}$ les coordonnées de la sentence-embedding du tweet i;
- $-\varepsilon_i$ le résidu de notre modèle, de fonction de répartition F_ε qui vaudra $F_\varepsilon(x)=rac{1}{1+e^{-x}}$ dans le cas d'un modèle logit et $F_\varepsilon(x)=\Phi(x)$ (fonction de répartition d'une loi $\mathcal{N}(0,1)$) dans le cas d'un modèle probit.

Spécifications du modèle logit

Plusieurs points à traiter :

- Doit-on garder les stop-words? OUI
- Comment traiter les mots inconnus? AFFECTER LE VECTEUR-MOT LOWFREQUENCY
- Modèle probit ou logit? LOGIT

3 Accuracy = 69,8 % ($\gamma^* \simeq 0,5$).

Modèle lexical ici meilleur que le modèle logit car . . .

1. Davantage de mots inconnus dans le modèle logit (4,6 % des mots contre 1,4 % dans le modèle lexical).

Modèle lexical <u>ici</u> meilleur que le modèle logit car . . .

- 1. Davantage de mots inconnus dans le modèle logit (4,6 % des mots contre 1,4 % dans le modèle lexical).
- 2. Le processus d'annotation utilisé pour les tweets sur les transports urbains reproduit en partie par le modèle lexical?

Modèle lexical <u>ici</u> meilleur que le modèle logit car . . .

- 1. Davantage de mots inconnus dans le modèle logit (4,6 % des mots contre 1,4 % dans le modèle lexical).
- 2. Le processus d'annotation utilisé pour les tweets sur les transports urbains reproduit en partie par le modèle lexical?
- 3. Le domain shift.

Modèle lexical ici meilleur que le modèle logit car . . .

- 1. Davantage de mots inconnus dans le modèle logit (4,6 % des mots contre 1,4 % dans le modèle lexical).
- 2. Le processus d'annotation utilisé pour les tweets sur les transports urbains reproduit en partie par le modèle lexical?
- 3. Le domain shift.
- Utilisation d'une nouvelle base de test pour neutraliser certains de ces effets.

Modèle logit <u>alors</u> meilleur que le modèle lexical (*Accuracy* de 61,9 % contre 55,9 %).

Sentiments des tweets et enquête Camme

Sentiments des tweets et enquête Camme

- Indicateurs relativement éloignés de l'enquête Camme
- Similarité (DTW) avec indicateur Camme plus proche avec modèle lexical que modèle word-embedding

Sentiments des tweets et enquête Camme

- Indicateurs relativement éloignés de l'enquête Camme
- Similarité (DTW) avec indicateur Camme plus proche avec modèle lexical que modèle word-embedding
- Modèle word-embedding utile pour prévoir indicateur Camme (causalité de Granger) ≠ modèle lexical
- Modèle indicateur avancé des sentiments des ménages

Conclusion (1/2)

- Word2vec . . .
 - o capture très bien la sémantique des mots dans un texte
 - o prédit **assez bien** le sentiment d'une phrase
 - est **potentiellement utile** pour <u>prédire l'indicateur synthétique de</u> confiance des ménages de l'Insee . . .
 - o ... mais demeure très différent de cet indicateur (en évolution)

Conclusion (1/2)

- Word2vec . . .
 - o capture très bien la sémantique des mots dans un texte
 - o prédit **assez bien** le sentiment d'une phrase
 - est **potentiellement utile** pour <u>prédire l'indicateur synthétique de</u> confiance des ménages de l'Insee . . .
 - o ... mais demeure très différent de cet indicateur (en évolution)
- Pourquoi très différent?
 - Principalement en raison de leurs différentes philosophies (sujets spécifiques de Camme VS positivité ou non des tweets pour notre indice) . . .
 - ... {} mais aussi à cause des limites de la base d'entraînement de tweets annotés (domain-shift, processus d'annotation, mots inconnus)

Conclusion (2/2)

Pistes d'amélioration?

- disposer d'une base de tweets traitant de sujets divers, et bien annotés (gradation de sentiments, modèles de type BERT, analyse approfondie du contenu et des auteurs des tweets ...)
- améliorer le prétraitement des tweets (orthographe des mots, modèle à séquences d'unités de sous-mots type fasttext ...)
- utiliser des modèles d'analyse de sentiment plus élaborés (type réseaux de neurones récurrents)

Merci pour votre attention

- ARKEnsae/TweetEmbedding
- Rapport du projet

