Homework Assignment 1

Due in class, Wednesday Feb 7th

SDS 384-11 Theoretical Statistics

- 1. Given densities p_n and q_n with respect to some measure μ , let X be distributed according to the distribution with density p_n . Define the likelihood ratio $L_n(X)$ as $L_n(X) = q_n(X)/p_n(X)$. For $p_n(X) > 0$, $L_n(X) = 1$, if $p_n(X) = q_n(X) = 0$ and $L_n(X) = \infty$ otherwise. Show that the likelihood ratio is a uniformly tight sequence.
- 2. Consider a sequence of iid random variables $\{X_n\}$ such that $X_i \sim Beta(\theta, 1)$, where $\theta > 0$. Let \bar{X}_n denote the sample mean. The method of moments estimator of θ is $\hat{\theta}_n = \bar{X}_n/(1-\bar{X}_n)$. Derive the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta)$.
- 3. Derive the following one sided improvement of Chebyshev's inequality for a random variable X with variance σ^2 .

$$P(X - E[X] \ge t) \le \frac{\sigma^2}{\sigma^2 + t^2} \tag{1}$$

- 4. If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?
 - (a) $g(x) = 1(x \in (0, 10))$
 - (b) $g(x) = e^{-x^2}$
 - (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.]
 - (d) g(x) = x
- 5. Consider n i.i.d random variables $\{X_n\}$ uniformly distributed on the set of n points $\{1/n, 2/n, \ldots, 1\}$. Show that $X_n \stackrel{d}{\to} X$ where $X \sim Uniform(0, 1)$. Does $X_n \stackrel{P}{\to} X$?