Relatório 2 O Pêndulo Físico

Autores:

Arthur Augusto Cândido Luércio (251818) Marcos Ferreira Semolini (204339) Pedro Henrique Segnini Ortolan (258610) Renato Moraes Ferreira Sene (238248) Gustavo Guimarães de Carvalho (258492)

Setembro, 2023

Resumo

Introdução

Em nosso experimento, construiremos um pêndulo caseiro para analisar e comparar dois modelos de sistemas: o pêndulo físico e o pêndulo simples. No nosso pêndulo caseiro, representado na Figura 1, temos uma massa, um tubo de papelão, conectada a um eixo de rotação, um arame, que atravessa o tubo em furos paralelos a diferentes distâncias do centro de massa. O tubo é deslocado do ponto de equilíbrio e, quando liberado do repouso, inicia oscilações. A cada ciclo de oscilação, o período diminui gradualmente até a parada.

Figura 1: Foto da construção do pêndulo caseiro.

Objetivo

Os objetivos deste experimento incluem a obtenção dos valores da gravidade local (g) e do raio de giração do pêndulo (k) por meio da análise dos dados experimentais. Com base nos resultados, determinaremos qual modelo, o pêndulo simples ou o pêndulo físico, descreve melhor nosso experimento. Além disso, buscaremos identificar possíveis erros sistemáticos no experimento.

Modelo

Tomando o ponto de centro de massa como referência, podemos escrever uma lei equivalente a segunda lei de Newton, só que para Torques. Assim, podemos escrever que:

$$\sum \tau_i = I \cdot \alpha \tag{1}$$

De onde, para o nosso sistema, segue que:

$$I \cdot \frac{d^2\theta}{dt^2} = -mg \cdot sen(\theta) \tag{2}$$

Realizando a *suposição* de que a oscilação se dá para pequenos ângulos ($\theta \leq 10^o$), podemos aproximar $sen(\theta)$ para θ em radianos. O que resulta na equação (3):

$$I \cdot \frac{d^2\theta}{dt^2} = -mgD \cdot \theta \tag{3}$$

(E.D.O. de 2° ordem, Linear e Homogêna)

Supondo que a solução é do tipo $\theta=e^{\lambda t}$, desenvolvendo a equação, encontrando as raizes complexas. Obtemos que:

$$\theta(t) = \theta_0 \cdot \cos(\phi_0 + \omega \cdot t), \text{ com } \omega = \sqrt{\frac{\text{mgD}}{\text{I}}}$$
 (4)

Por fim, como $T = \frac{2\pi}{\omega}$. Obtemos que:

$$T = 2\pi \sqrt{\frac{I}{\text{mgD}}}$$
 (5)

Note que a equação (5) é uma generalização para qualquer tipo de pêndulo, entretanto trabalharemos com duas hipóteses:

$$T=2\pi\sqrt{\frac{\mathsf{D}+\frac{K^2}{\mathsf{D}}}{\mathsf{g}}}, \;\; \mathsf{P\hat{e}ndulo}\; \mathsf{F}\mathsf{isico}$$
 (6) $T=2\pi\sqrt{\frac{\mathsf{D}}{\mathsf{g}}}, \;\;\; \mathsf{P\hat{e}ndulo}\; \mathsf{Simples}$ (7)

$$T = 2\pi \sqrt{\frac{\mathsf{D}}{\mathsf{g}}},$$
 Pêndulo Simples (7)

Suposições

- No modelo, consideramos que o ângulo é pequeno o bastante para considerar a aproximação:
- O movimento está contido em um único plano;
- · As forças dissipativas, que atuam no sistema, dentro de um curto espaço de tempo, são desprezíveis;

Procedimento experimental

Para a realização do experimento devemos sempre considerar os possíveis erros sistemáticos que surgem devido a montagem do experimento. Neste caso, os erros principais surgem do desalinhamento do eixo de rotação e da precisão do local considerado como o centro de massa.

Em relação ao erro do desalinhamento, devemos furar o tubo de papel levando em consideração que o os furos devem estar o mais paralelos possível para minimizar potenciais erros sistemáticos. Para isso usamos a seguinte estratégia: Primeiro, enrolamos o tubo em uma folha de papel sulfite, deixando-a o mais justa possível no tubo. Então, retiramos a folha - que agora está no formato cilíndrico e nas dimensões do tubo - e a dobramos nela mesma. Com a folha dobrada podemos marcar com o auxílio de uma régua os locais para os furos de forma com que figuem quase perfeitamente paralelos. Enrolamos novamente o papel no tubo e furamos nos locais marcados. Realizaremos 7 pares de furos paralelos.

Agora, em relação ao erro do centro de massa, podemos usar um método simples para determinar com precisão suficiente o centro de massa do tubo. Para isso, equilibramos a lateral do tubo em qualquer pequena superfície plana e observa-mos em que ponto o tubo se mantém equilibrado.

Para determinar as distâncias onde faremos os furos, primeiro calculamos a inércia teórica do nosso pêndulo usando o site de referência (1). Para isso, medimos a massa do tubo de papel com uma balança digital obtendo o valor de 21.3±0.1 g. Inserindo os dados no site obtemos um resultado de $I_{CM} = 2,45*10^{-4} kg*m^2$. A partir desse valor, calculamos o raio de rotação teórico usando a fórmula $I_{CM} = m * k^2$, o que nos dá um valor de k = 10,7cm.

Com isso, plotamos o gráfico de T em função de D, conforme mostrado na Figura 2a, utilizando a equação (6) com g = 9,81 m/s² e k = 10,7 cm. Identificamos que o ponto de mínimo coincidia com o valor de k. Em seguida, selecionamos 7 pontos de interesse que abrangeriam nosso experimento, (4.7), (6.2), (7.7), (9.2), (10.7), (12.2) e (13.7), como ilustrado na Figura 2b.

(a) Gráfico de T em função de D.

(b) Escolha do intervalo de pontos.

Montamos o pêndulo atravessando os furos com um arame e realizamos o experimento. Nosso objetivo é determinar o período do pêndulo através da filmagem de seu movimento. Filmamos cada par de furos três vezes, resultando em um total de 21 vídeos. Esses vídeos serão posteriormente analisados utilizando o software Tracker. É importante observar que, devido às suposições dos modelos, soltamos o tubo de ângulos pequenos (< 10 °) para permitir a análise posterior.

Utilizando do software Tracker, fomos capaz de construir um gráfico do angulo com a vertical (θ) em função do tempo t. Ainda no mesmo programa, fomos capazes de selecionar o conjunto de pontos iniciais e ajustar uma curva do tipo $\theta(t) = Asen(Bt+C)$, onde A é a fase inicial do movimento, B a velocidade angular e C a diferença de fase inicial. Apartir dessa regressão, obter os valores de ω para os vídeos gravados. Com esses valores em mãos, calculamos o periodo e construimos a regressão linear

Figura 3: Exemplo de dados da posição (θ em Rad) por tempo (t em segundos). Por cima, em vermelho, está a regressão senoidal.

Resultado

Para cada vídeo gravado extraímos um valor de periodo, estimado através da regressão senoidal. Então, ainda com os dados brtuos e suas incertezas, construimos um gráfico de Periodo (T em segundos) por Comprimento (D em metros). Nele, também, encontram-se duas funções, refrentes às equações (6) e (7), substituindo a gravidade local, obtida através de um estudo que correlaciona latitude, altura e a gravidade local [2], além do valor de k previamente calculado em nossas estimativas. O gráfico comparativo é representado pela figura 4.

Após isso, ajeitamos os valores das grandezas para realizar a nossa regressão linear e assim construimos o gráfico $(T^2D\times D^2)$, respeitando a equação: $D^2=\frac{g}{4\pi^2}T^2D-k^2$ (8) ,que é um tratamento matemático que possibilida linerarizar a equação (6), conforme mostra a Figura 5. A partir do coeficiente angular, estimado pelo ajuste feito no ScyDavis, encontramos o valor de $g=9,91\pm0,04~m/s^2$. Já apartir do coeficiente linear encontramos o valor de $k=0,093\pm0,002~m$

Figura 4: Gráfico de $T \times D$ onde é possível ver os pontos coletados em preto, e as equações modelo (6) em azul a cima da equação (7) em vermelho. Note que os pontos são melhor representados pela equação do pêndulo físico, como já previamos em nossas hipóteses.

Figura 5: Relação entre os dados linearizados, de acordo com a equação (8) proposta no texto. Em vermelho encontra-se o Ajuste linear, cujo os coeficiente se encontram na Tabela 1

Tabela 1:

Linoarização V	D^2 q T^2D L^2
Linearização: $Y = \alpha x + \beta$	$D^2 = \frac{g}{4\pi^2} T^2 D - k^2$
	(2.71
Coeficiente angular: α	$(2,51\pm0,01)10^{-1} \ m/s^2$
Coeficiente angular: β	$(8,69\pm0,08)10^{-3} m^2$
Aceleração da gravidade	$(9,91\pm0,04)\ m/s^2$
Experimental	(0,01 = 0,01),
Raio de giração	$(9,3\pm 0,2)\ cm$
riaio ao giragao	(3, 5 ± 0, 2) em

Discussão:

Conclusão:

Referências:

1. Momento de inércia do cilindro: https://amesweb.info/inertia/hollow-cylinder-moment-of-inertia.aspx

Apêndice A: Dados experimentais e incertezas