Solving PDEs Associated with Economic Models

MATTHIEU GOMEZ *

May 10, 2019

• Used in EconPDEs

- The Jacobian corresponding to a second-order PDE $F(f, f_x, f_{xx})$ with first-order finite difference scheme a Triangular Matrix of size n_x
- The Jacboain corresponding to a system of second-order PDE $F(f^1, f_x^1, f_{xx}^1, \dots, f^J, f_x^J, f_{xx}^J)$ with first-order finite difference scheme is a Sparse Matrix of size $n_x \times J$ with non zeros subdiagonal at $i \times n_x 1, i \times n_x, i \times n_x + 1$ for $i \in [[-J, J]]$.

Alternatively, it can be written as a Block Triangular Matrix where blocks are dense of size $J \times J$ by writing the system as $f^1(x_1), f^1(x_2), \dots f^J(x_1)$, etc

- The Jacobian corresponding to the system $F(f, \nabla f, f_{x_2}, f_{x_1x_1}, f_{x)y}, f_{yy})$ with first-order finite difference scheme is a Block Triangular Matrix of size $n_x \times n_y$ where each block is itself a Triangular Matrix. Alternatively, it can be written as a Block Triangular Matrix where blocks are dense of size 2×2

In summary, EconPDEs would benefit from specialization on Triangular Matrix and Block Triangular Matrix (with blocks either dense or Triangular themselves).

A package that wants to solve PDEs using high-order finite difference scheme would benefit from specialization on BandedMatrix / Block Banded Matrix

• Used by Jesse Perla

– Some problems in economics have the form of a system $F(f, f_x, f_{xx})$, and $\int f(x)g(x) = 1$. where g is known. IN this case, the Jacobian is a Triangular matrix + dense row.

• Others

 $-F(f, f_x, f_{xx})$ with n-th order finite difference scheme a Banded Matrix with band size n.

^{*}I thank Valentin Haddad, Ben Moll, and Dejanir Silva for useful discussions.