

Система автоматизации проектирования Quartus II

План

- Введение
- Понятие «проект» в пакете Quartus® II, создание проекта.
 - Упражнение 1
- Ввод описания проекта.
 - Упражнение 2
- Компиляция и моделирование проекта
 - Упражнение 3

Введение

Продукция компании Altera

СБИС

- Stratix IV
- Stratix III
- Cyclone III
- Arria GX
- Stratix II GX
- Stratix II
- Cyclone II

Intellectual Property (IP)

- Signal Processing
- Communications
- Embedded Processors
 - Nios II

СБИС

- MAX® II
- MAX3000 & MAX7000
- Cyclone, Apex, ACEX, FLEX10K, FLEX6000...

Средства проектирования

- Quartus[®] II Software
- SOPC Builder
- DSP Builder
- Nios II IDE

Средства автоматизации проектирования фирмы Altera

Пакет Quartus II

- Интегрированное средство проектирования
 - Текстовые и графический способы ввода проекта
 - Синтез (Logic synthesis)
 - Трассировка СБИС (Place & route)
 - Моделирование (Simulation)
 - Анализ временных параметров и потребляемой мощности (Timing & power analysis)
 - Программирование СБИС (Device programming)

Операционные системы и лицензий

- Поддержка операционных систем:
 - Microsoft Windows XP/Vista (32 and 64 bit)
 - Red Hat Enterprise Linux 4.0 and 5.0 (32 and 64 bit)
 - SUSE Linux Enterprise 9 (32 and 64 bit)
 - Cent OS 4.0 and 5.0 (32 and 64 bit)
- Поддержка различных схем лицензирования (node-locked, network)

Менеджер пакета Quartus II

Панель инструментов

Сбросить настройки:

- 1. Tools ⇒ Customize ⇒ Toolbars ⇒ Reset All
- 2. Restart Quartus II

Отсоединяемые (Detachable) окна

 «Отсоединение» окон от менеджера пакета Quartus II (Window menu ⇒ Detach/Attach Window)

Советы и приемы (Tips & Tricks Advisor)

Настройка лицензии

Варианты реализации пакета QuartusII

Quartus II Subscription Edition

- Все выпускаемые СБИС
- Все возможности

<u>Сравнение</u> <u>Quartus II, Quartus II Web Edition</u>

Quartus II Web Edition

- Бесплатная версия
- Ограниченный набор СБИС и функциональных возможностей

Процедура проектирования

Методология проектирования СБИС ПЛ

Моделирование

- Функциональное моделирование

Синтез

- Преобразование описания проекта в схему, реализуемую на заданной элементной базе
- Оптимизация схемы с учетом ограничений по быстродействию и занимаемой площади СБИС

Трассировка СБИС

Разводка и размещение внутренних ресурсов СБИС с учетом наложенных ограничений на быстродействие и занимаемые логические ресурсы

Методология проектирования СБИС ПЛ

Временной анализ

- проверка соответствия созданной СБИС требованиям к быстродействию

Моделирование на вентильном уровне

- Временное моделирование
- проверка правильности функционирования проекта после этапов синтеза, разводки и размещения

Программирование СБИС. Тестирование и отладка СБИС в составе системы

(ISP, SignalTap II)

Создание проекта

Мастер New Project Wizard - 1

Мастер New Project Wizard – 2

К проекту можно добавить файлы следующих типов:

- Graphic (.BDF, .GDF)
- AHDL
- VHDL
- Verilog
- EDIF

Пояснения:

□Файлы, находящиеся в рабочей папке проекта, добавлять необязательно □Если имя файла и имя модуля верхнего уровня (*filename & entity name*) не совпадают, то следует добавить файл с описанием модуля верхнего уровня иерархии

Используйте эту кнопку для указания дополнительных библиотек:

- □Пользовательских библиотек
- □MegaCore®/AMPPSM libraries
- □ Pre-compiled VHDL packages

Мастер New Project Wizard - 3

Cancel

Finish

Next>

< Back

Macтер New Project Wizard - 4

Укажите подключаемое внешнее средство проектирования (EDA tools).

Мастер New Project Wizard - 5

Проверьте результаты сделанных установок и, если все верно, нажмите кнопку FINISH

Создаваемы файлы (Quartus II Project Files)

- При создании проекта автоматически создаются следующие файлы
 - Quartus II Project File (.QPF)
 - Quartus II Settings File (.QSF)

QPF файл

Quartus Project File (QPF)

- Quartus II Version
- Time Stamp
- Active Revision

```
QUARTUS_VERSION = "7.1"

DATE = "14:31:04 May 02, 2007"

# Active Revisions

PROJECT_REVISION = "filtref"
```


QSF файл

File Edit View Project Processing Tools Window

25

26 27

Quartus II - D:/altera/71/qdesigns/fir_filter/fir_filter - filtref - [filtref.qsf*]

Project-Wide Assignments

Altera recommends that you do not modify this file. This # file is updated automatically by the Quartus II software

set global assignment -name ORIGINAL QUARTUS VERSION 7.1

set global assignment -name LAST QUARTUS VERSION 7.1

set global assignment -name VERILOG FILE hvalues.v

set_global_assignment -name VERILOG_FILE mult.v set_global_assignment -name VERILOG_FILE accum.v set global assignment -name BDF FILE filtref.bdf

set global assignment -name PROJECT CREATION TIME DATE "08:37:10 APRIL 10, 2007"

Эфо

ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ

ABTOMATHKA

and any changes you make may be lost or overwritten.

Файл QSF:

- Хранит все settings & assignments
- Использует Tcl синтаксис
- Можно править в любом текстовом редакторе

Как открыть проект?

Перенос проекта MAX+PLUS II в Quartus II

- Выполните команду Edit=>Convert MAX+PLUS II Projects into Quartus II Projects
- Укажите .acf файл преобразуемого проекта
- Компилятор QuartusII создаст проект и преобразует все назначения

Компиляция проекта

Режимы компиляции

- Start Compilation
 - Performs full compilation
- Start Analysis & Elaboration
 - Checks syntax & builds database only
 - Performs initial synthesis
- Start Analysis & Synthesis
 - Synthesizes & optimizes code
- Start Fitter
 - Places & routes design
 - Generates output netlists
- Start Assembler
 - Generate programming files
- Start TimeQuest Timing Analyzer
- Start I/O Assignment Analysis
- Start Design Assistant

эфс

Окна Status & Message

Status bars показывает ход текущей компиляции

Отчет о компиляции - Compilation Report

- Окно содержащее в иерархически упорядоченном виде всю информацию о результатах компиляции
 - Используемые ресурсы Resource Usage
 - Распределение выводов Device pin-out
 - Использованные установки и ограничения Settings and constraints
 - Сообщения полученные в процессе компиляции Messages
- Открывается автоматически по окончанию процесса компиляции
- Вся отображаемая в отчете о компиляции информация доступна в текстовом виде в рабочей папке проекта:
 - Файлы: <project_name>.fit.rpt & <project_name>.map.rpt

Окно отчета о компиляции

Раздел результатов временного анализа

Максимальная тактовая частота работы СБИС

Программирование СБИС

Запуск системы программирования

Команда: Tools=> Programmer

- Средства программирования СБИС на плате
 - USB-Blaster™
 - ByteBlaster[™] II or ByteBlasterMV[™]
 - Masterblaster[™]

Инструменты системы программирования

- Запуск программирования
- Автоматическое обнаружение СБИС в JTAG цепочке
- Добавить/удалить/изменить файлы для программирования СБИС
- Добавить/удалить/изменить СБИС в JTAG цепочке

Установка средств программирования СБИС

ABTOMATHKA

Включение режима программирования

Запуск программировния

Упражнение 1 (время 15-20 минут)

Ввод описания проекта в пакете Quartus® II

Навигатор проекта «Project Navigator»

Закладка "Hierarchies" навигатора проекта

- Отображает иерархию проекта «Hierarchy View»
- Навигатор может быть использован для выполнения установок для всего проекта и индивидуальных установок для каждого из модулей проекта

Для вызова меню настройки выберите модуль проекта и щелкните правой клавишей манипулятора

Закладка «Files» навигатора проекта

- Отображает папки
 - Device Design Files (логические файлы проекта)
 - Software Files (файлы с программами)
 - Other Files (вспомогательные файлы проекта)
- Меню для работы с файлами (для вызова меню выберите файл и щелкните правой клавишей манипулятора)

Закладка «Design Units» навигатора проекта

- Отображает все компоненты проекта
- Использованный способ описания проекта и язык описания
- Файл с описанием компонента

Мегафункции пакета Quartus II

- Бесплатные, инсталлируются вместе с пакетом Quartus II
 - функции написанные на языке AHDL
 - HDL описания для моделирования инсталлируются в соответствующие библиотеки пакета Quartus II

Два типа

- Созданные фирмой Altera (Altera-specific megafunctions) начинаются с "ALT"
- Созданные по стандарту Library of parameterized modules (начинаются с LPM)
 - www.edif.org/lpmweb (EDIF.org archive)

Примеры

- Multiply-accumulate (ALTMULT_ACCUM)
- On-chip RAM/ROM (ALTSYNCRAM)
- PLL (ALTPLL)
- DDR/QDR memory interface (ALTMEMPHY)
- Counter (LPM_COUNTER)
- Comparator (LPM_COMPARE)

Помощник MegaWizard Plug-in Manager

Помощник MegaWizard Plug-in Manager

 Упрощает создание и конфигурирование Megafunctions

ABTOMATHKA

Starts the MegaWizard Plug-In Manager

Отображение временных диаграмм

- MegaWizard создает HTML file
- HTML file
 описывает
 функционирование
 выбранной
 Megafunction
- Временные диаграммы могут быть получены для
 - Subset of Memory
 - Subset of Arithmetic

Схемный ввод в пакете Quartus[®] II

Схемный ввод описания проекта

- Схемный редактор интегрирован в пакет Quartus II
- При создании схемы могут использоваться:
 - Простейшие логические элементы, триггеры, выводы и другие примитивы
 - Параметризируемые модули созданные пользователем
 - Мегафункции, созданные фирмой Altera и IP модули
 - Ранее созданные (в текстовом или графическом редакторах) компоненты

Задание опций схемного редактора

Создание схемы

Для создания схемы выполните команду: меню **File=>New** Затем укажите **Block Diagram/Schematic file**

Сохранение схемы в файле

Ввод символов в схему

Создание символа для текстового (графического) файла

Шины, цепи

Инструмент для рисования цепей (wire)

Изменение имени объекта

Преобразование BDF в HDL

Преобразование BDF в Image File

Укажите: .JPG или .BMP

Редактор файла инициализации памяти.

Редактор памяти

- Создание (редактирование) файла инициализации памяти в формате (.hex) или (.mif)
- Использование для создания СБИС
 - Если в проекте есть блок памяти (RAM, ROM, Dual-port RAM), то редактор памяти позволяет задать содержимое памяти, которое будет загружено при включении питания СБИС
- Использование для моделирования
 - Редактор памяти позволяет задать содержимое модуля памяти для проведения моделирования

Создание файла инициализации памяти

Команда: File ⇒ New

2) Размер модуля памяти

Опции отображения

■ Изменение опций отображения

команда: View ⇒

Редактирование содержимого

Использование Memory File в проекте

Назначение выводов СБИС

Назначение выводов

- Способы назначения выводов
 - Assignment Editor
 - Pin Planer
 - QSF файл

Редактор Pin Planner

Редактор Pin Planner

- Интерактивный графический редактор для назначения выводов
 - Технология назначений Drag & drop
 - Позволяет установить стандарт ввода\вывода
 - Позволяет резервировать выводы
- Окно редактора содержит 3 основные части
 - Package view
 - All Pins list
 - Groups list

Запуск редактора осуществляется командой:

Assignments Menu ⇒ **Pin Planner**

Окно редактора Pin Planner

Основные части окна редактора

Package view

- Отображает графическое представление корпуса СБИС
- Используется для задания и редактирования назначения выводов
- Отображает все выводы СБИС, а не только ввходы\выходы (т.е. power & configuration pins ...)

All pins list

- Отображает все выводы в соответствии с наложенным фильтром
 - Шины представлены цепями
- Используется для редактирования назначений и свойств выводов

Groups list

- Похож на All Pins но отображает только группы и шины
- Позволяет делать назначение сразу для всей группы (шины)
- Позволяет создавать новые (пользовательские) группы

Назначение выводов в редакторе Pin Planner

эфо

Назначение выводов в редакторе Pin Planner (2)

КОМПОНЕНТЫ

ABTOMATUKA

Назначение выводов в редакторе Pin Planner (3)

 Назначение можно выполнить в таблице выбрав вывод СБИС из списка выводов в столбце location (список имеет цветовую кодировку банков выводов СБИС)

Named:	▼ «	≫ Edit: 🗙 🗸				Filter:	Pins: all	
	Node Name	Direction	Location	I/O Bar	nk	Vref Group	I/O Standard	\Box
10	yn_out[6]	Output	■				3.3-V LVTTL (default)	
11		Output	PIN_AA17	I/O Bank 8	Column	I/O DQS13B/D0	Q2B	^
12	_	Output	PIN_AA18	I/O Bank 8	Column	I/O DQSn13B		
13		Output	PIN_AB5	I/O Bank 7	Column	I/O DQ7B		
14		Output	PIN_AB6	I/O Bank 7	Column	I/O DQ7B		
15	yn_out[1]	Output	PIN_AB7	I/O Bank 7	Column	I/O DQ9B		
16	yn_out[0]	Output	PIN_AB8	I/O Bank 7	Column	I/O DQ9B		
17	< <new node="">></new>		PIN_AB10	I/O Bank 10	Column)p	
<	•	IIII	PIN_AB13	I/O Bank 8	Column	I/O CLK4p		Y

Возможности редактора Pin Planner

Отображает

- Нумерацию выводов
- Банки выводов
- VREF группы
- Дифференциальные пары выводов
- Список обозначений для кодирования выводов
- Назначения выводов выполненные компилятором
- Назначения выводов выполненные пользователем
- Резервированные выводы…

Окно Pad View

- Плавающее окно для сопоставления выводов на корпусе с выводами на кристалле
 - Позволяет назначать выводы базируясь на их местоположении на кристалле.

Текстовый ввод назначений выводов

- Ввод назначений в QSF файл
- Ввод назначений в отдельный файл Tcl
 - Сослаться на Tcl файл с назначениями из QSF файла
 - Выполнить Tcl чтобы записать назначения в QSF файл

Проверка созданных назначений I/O Assignment Analysis

- Быстрая проверка допустимости созданных назначений
- Допустимо проводить проверку без полной компиляции проекта

Результаты проверки назначений выводов

Фиксация назначений выводов (Back-Annotation)

- Используется для фиксации назначений выводов сделанных компилятором.
 - B QSF файл копируются тип микросхемы и выводы выбранные компилятором

Упражнение 2 (время 30 минут)

Моделирование в пакете Quartus II

Задание параметров моделирования (Simulator Settings)

Команда: Assignments ⇒ Settings ⇒ Simulator

Settings - lab3 Category: General Simulator Settings Files Libraries Select simulation options Device Operating Settings and Conditions Simulation mode: Functional Compilation Process Settings Simulation input: lab3.vwf Add Multiple Files... ★ Analysis & Synthesis Settings Fitter Settings Timing Analysis Settings Simulation period Assembler Run simulation until all vector stimuli are used Design Assistant SignalTap II Logic Analyzer End simulation at: Logic Analyzer Interface Simulator Settings Glitch filtering options: Auto Simulation Verification •

Пользователь может задать:

- Режим моделирования **м**
- Файл с входными воздействиями
- Продолжительность моделирования
- Дополнительные опции системы моделирования

Режимы моделирования

Functional

- Type: RTL
- Uses pre-synthesis netlist

Timing

- Type: gate-level or post-place & route
- Uses fully compiled netlist
- Uses worst-case timing model
- Timing Using Fast Timing Model
 - Similar to Timing
 - Uses Best-Case Timing Model

Задание файла с тестовыми воздействиями

Ограничение продолжительности моделирования

Создание файла временных диаграмм

Команда File ⇒ New ⇒ Vector Waveform File

Редактор временных диаграмм

«Время моделирования» - End Time

Ввод узлов (Nodes)

Команда Edit=> Insert Node or Bus

Укажите выводы и контролируемые точки с помощью системы Node Finder

Система поиска узлов (Node Finder)

При поиске используйте групповые символы (wildcards)

Используйте программу фильтрации (Filter) для выбора отображаемых узлов

Список узлов, найденных программой фильтрации в указанном модуле и в компонентах более низкого уровня иерархии.

Выберите искомые узлы и с помощью стрелок перенесите их в правое окно (Selected Nodes)

Настройка программы фильтрации

ABTOMATUKA

Ввод временных меток (Time Bars)

- Только одна временная метка (time bar) может быть основной (master)
- Временные метки (Time bars) могут иметь абсолютную временную привязку (absolute) или относительную – относительно основной временной метки (relative to master).

Временная метка

(Time Bar)

Ввод временной диаграммы входного сигнала (Stimulus Waveform)

Ввод тактового сигнала (Clock)

Ввод тактового сигнала (Clock)

3. Укажите период тактового сигнала

Clock								
┌ Time range								
<u>S</u> tart 0	ps ▼							
End time: 2.0	us 🔻							
,								
Base waveform on								
C Clock settings:								
<u>P</u> eriod: 10.0	ns ▼							
Offset: 0.0	ns 🔻							
Duty cycle (%): 50 ♣								
ОК	Cancel							

Создание шаблона счетчика (Counting)

Создание шаблона счетчика (Counting)

3. Задайте опции

Подготовка к функциональному моделированию

- Требуется выполнить команду Generate Functional Simulation Netlist (Processing Menu)
 - Создает Pre-Synthesis Netlist

Запуск моделирования

- Для запуска системы моделирования могут использоваться следующие команды:
 - ✓ Processing =>Start Compilation & Simulation
 - ✓ Processing => Start Simulation
 - ✓ Иконка на панели инструментов

Отчет о результатах моделирования (Simulator Report)

Преобразование временной диаграммы в тест на языке HDL

 Пользователь может преобразовать файл редактора временных диаграмм в тест на языке VHDL или VerilogHDL

Создание заготовок тестов на языках HDL

 Пользователь может создать заготовку теста на языке VHDL или Verilog, в которую он может вставлять свои собственные тестовые воздействия

Упражнение 3 (время 30 минут)

Дополнительные материалы

Редактор Chip Planner

 Редактируемое графическое представление результатов трассировки СБИС

Отображает

- результаты размещения логических ресурсов СБИС
- Использованные ресурсы соединения (Routing channels) между логическими элементами СБИС
 - Позволяет отобразить внутренние цепи соединения логических блоков LABs

■ Используется для

- Отображения размещения логических ресурсов
- Отображения связи между логическими ресурсами СБИС
- Задания назначений по размещению логических ресурсов
- Анализа размещения и настройки требуемого режима размещения

Chip Planner

Bird's Eye View

- Отображает всю СБИС
- Используется для упрощения поиска требуемой зоны СБИС

Отображение Fan-In & Fan-Out

Перекрестное отображение в Chip Planner

- Выберите логический модуль в любом окне пакета Quartus II (например в окне иерархического отображения проекта):
- Project Navigator
- Compilation Report
- Design files
- ✓ RTL Viewer
- Technology Viewer
- Message window
- Pin Planner

Перекрестное отображение из Chip Planner

