

Introduction

Privacy-sensitive Objects Pixelation for Live Video Streaming

Privacy-sensitive Objects - Pixelation - Live Video Streaming

Problem Scope (Privacy-sensitive Objects)

- Objects expose/leak privacy-sensitive information
 - Faces, phone number, car plates, erotic images, trademarks, etc.
 - But also depends on the scenes.

Problem Scope (Pixelation)

• The process of allocating mosaics on sensitive objects.

Problem Scope (Live Video Streaming)

- Broadcast real-life scenes instantly through phone camera and mobile networks (outdoor live).
- Live platforms:

- Live videos vs. Conventional videos:
 - Video resolution after multiple compressions.
 - Single or a few shots.
 - Camera shakes.

Problem Scope (Live Video Streaming)

Problem Scope(Direct Solution)

Related Methods

- Only offline trackers
 - YouTube Creator Studio
 - Microsoft Azure
 - Other, mainly Adobe Photoshop
- Tracking-by-Detection Structure is adopted by above all.

Related Methods (Tracking-by-Detection)

- Tracking heavily relies on detection.
 - 1. Adaptive Tracker: Particle Filter, Correlation Filter, TDL, etc.
 - Prior: The bounding box (position) of every objects in their **initial** frame.
 - Method: Tracking through gradually adapting filters or online learning.
 - Pros: Finding the most discriminative features for an object.
 - 2. Tracking-by-Detection: Pol tracker, IoU tracker, Eco, etc.
 - Prior: Objects detection results on every frame → tracklets.
 - Method: Associate the detection through learning (appearance, color, motion, etc., features).
 - Pros: More accurate.

Related Methods (Tracking-by-Detection)

- For pixelation tasks:
 - Tacking-by-Detection assembles a privacy-sensitive object detector ahead of a tacker.
 - Contains the detector and tracker independently.
- The privacy-sensitive object detector generate tracklets for tackers.
- Can we migrate the online Tracking-by-Detection algorithms for use?

Related Methods (Tracking-by-Detection)

Related Methods (Privacy-sensitive Objects detector)

In kemdet

tection se the

Related Methods (Privacy-sensitive Objects detector)

- Image-based, end-to-end objects detectors are not accurate at all!
 - Lacks comprehension for video context
 - Cannot specify what are the sensitive objects in a certain scene and vice versa
 - Inadequate training samples regarding videos
 - Massive false positives and false negatives under live frames
 - > solve by feeding live video frames as training data?

Related Methods (over-pixelation)

• Trackers insist on generating puzzling and unnecessary mosaics for un-identifiable privacy-sensitive objects.

Proposed Method

- So we propose a brand-new framework of Privacy-sensitive Objects Pixelation (PsOP) to address:
 - Detection inaccuracies (both context comprehension and detection errors)
 - Over-pixelation

PsOP (Framework)

PsOP (DPO and IPO)

- Detection Comprehension:
 - Indiscriminating Pixelation Objects
 - Contexts-irrelevant, including erotic images, trademarks, phone numbers or car plate numbers, etc.
 - Pixelation on detection
 - Discriminating Pixelation Objects
 - Context relevant, including faces and texts
 - Pixelation settings shall be discriminately imposed on every instance of DPOs
 - Embedding networks
 - IPO is prioritized if IPO and DPO overlapped
 - Phone number is also a kind of text

PsOP (IPO)

- Detected and then smoothed
 - Relatively easy and more accurate in detection
 - No need for discriminate pixelation → smoothing
- For smoothing, we build a buffer section at the beginning of the live to accumulate some time and enable Gaussian smoothing.

PsOP (DPO)

- Ground on detection → avoid over-pixelation
- False negative in Detection:
 - Lower detection threshold → more false positives
 - Slight smoothing
- False positives in Detection:
 - Embedded into higher level abstraction
 - Positioned Incremental Affinity Propagation (PIAP) Clustering (unsupervised learning strategy)

Psop (PIAP)

- Affinity Propagation (AP):
 - Fred and Deck, 2008
 - Finding exemplars that suitable for all data nodes
 - Affinity: Similarities between data nodes
 - Propagation: Message passing between data nodes to reach consensus

$$R(i,k) \leftarrow S(i,k) - \max_{k',s.t.k' \neq k} \{A(i,k') + S(i,k')\} \qquad A(k,k) \leftarrow \sum_{i',s.t.i' \neq k} \max\{0, R(i',k)\}$$

$$A(i,k) \leftarrow \min\{0, R(k,k) + \sum_{i',i' \notin \{i,k\}} \max\{0, R(i',k)\}\} \qquad C(i,k) \leftarrow R(i,k) + A(i,k)$$

Psop (PIAP)

- The problems shall be handled during clustering
 - 1. High dimensional features after embedding (FC, DBSCAN, AP)
 - 2. III-defined cluster number (AP)
 - 3. Unbalanced sample size (AP)
 - 4. Noise (PAP)
 - 5. Time-costs (IAP)
- PIAP inherits the ability of handling 1-3 from AP, and we endow AP with noises-resistance and time-saving merits through positioned affinities and incremental clustering.

Psop (PIAP)

Algorithm 1 Positioned Incremental Affinity Propagation

Input: $R_{t-t'}$, $A_{t-t'}$, $C_{t-t'}$, Z_t

Output: R_t, A_t, C_t

- 1: while (t-t') not contain the end of a live-streaming do
- 2: Compute similarity matrix for every z_t^{pq} according to (5).
- if the first video segment of a live-stream then
- Assign zeros to all responsibilities and availabilities.
- 5: else
- Assign responsibilities and availabilities for all $z_{t-t'}^{pq}$ by extending $R_{t-t'}$ to R_t , $A_{t-t'}$ to A_t according to equation (8), (9), (10) and (11).
- 7: end if
- 8: Message-passing according to equation (1), (6) and (3) till run δ; then, exclude outliers according to (7).
- Continue message-passing till convergence; compute exemplars and clustering results C_t as equation (4).
- 10: end while

Experiments

- Dataset
 - Collected 20 videos from the live platforms with various categories.
 - Dense annotation on the objects.
 - Divided into sub-datasets according to resolution and complexity.

Dataset	Quantity of videos	Category	Resolution	People occurred	Frames	Privacy-sensitive objects Labels*	IPOs Labels*	DPOs Lables*
HS	4	a,b,c,d	720p/1080p	≫ 2	4133	27337	6255	21082
LS	8	a,b,c,d	360p/480p	≫ 2	4680	23869	3975	19894
LN	4	a,b,c,d	360p/480p	≤2	5692	16994	7946	9048
HN	4	a,b,c,d	720p	≤2	4867	16061	10805	5256

- Parameters
 - Buffering Section
 - User defined setting, log effect on the results, higher the better but will decrease quickly. Not set to a very low value (like 60 frames).
 - Superparameteres
 - Consistent effects cross videos, so we find the optimal value in our test. But not a huge deal if just set to a meaningful value.

- Metrics
 - 1. Borrowed from tracking for basic accuracy and precision evaluation.
 - Sensitive Objects Pixelation Precision: SOPP.

$$SOPP = \frac{\sum_{i,t} d_{i,t}}{\sum_{t} c_{t}}$$

• Sensitive Objects Pixelation Accuracy: SOPA.

$$SOPA = 1 - \frac{\sum_{t} (m_t + f p_t + m m_t)}{\sum_{t} q_t}$$

- 2. Customized for pixelation including over-pixelation and mosaics. drifting
 - Most (consecutively, correctly) Pixelated Frame Length: MP.
 - Over Pixelation Ration: OPR.

$$OPR = \sum_{t} (fp_t) / \sum_{t} c_t$$

Method	SOPA↑	SOPA↑	SOPA↑	SOPA↑	SOPP↑	SOPP↑	SOPP↑	SOPP↑	Entire Dataset	
Method	(HS)	(LS)	(HN)	(LN)	(HS)	(LS)	(HN)	(LN)	MP↑ (frames)	OPR↓
YouTube [12]	0.45	0.42	0.56	0.49	0.53	0.47	0.77	0.63	238	0.56
Azure [16]	0.43	0.47	0.54	0.53	0.50	0.53	0.70	0.68	203	0.54
KCF [13]	0.35	0.32	0.38	0.31	0.41	0.40	0.44	0.40	113	0.64
ECO [5]	0.27	0.28	0.34	0.31	0.37	0.39	0.41	0.40	148	0.59
PsOP	0.63	0.60	0.71	0.66	0.80	0.77	0.86	0.85	362	0.34
PsOP with Advanced CNNs*	0.63	0.62	0.71	0.65	0.80	0.79	0.86	0.85	349	0.34

Advanced CNNs* substitutes the base model with PrimidBox [25]+ArcFace [6], and Tesserat [22]+BERT [7]

Dataset	Method	Purity↑	Cluster nubmer (Clustered/Truth)	Time(s)↓
	AP*	0.61	59/47	1.82
HS	PAP	0.83	44/47	1.80
	PIAP	0.83	44/47	0.07
	AP*	0.52	117/91	3.05
LS	PAP	0.84	80/91	3.05
	PIAP	0.83	80/91	0.13
	AP*	0.66	19/16	0.80
HN	PAP	0.89	16/16	0.76
	PIAP	0.89	16/16	0.04
	AP*	0.70	23/17	0.80
LN	PAP	0.82	16/17	0.80
	PIAP	0.81	16/17	0.04

Raw

YouTube

• KCF

• PsOP

YouTube

• PsOP

YouTube

• PsOP

Conclusion

- A novel framework of Privacy-sensitive Objects Pixelation (PsOP) is proposed.
- Future works:
 - PsOP is still not very robust to low-resolution scenes.
 - PsOP is not efficient enough if there are too many privacy-sensitive objects in the frames (30+ more).

Publications

- J. Zhou, C.-M. Pun and Y. Tong, "Privacy-sensitive Objects Pixelation for Live Video Streaming," Proceedings of the 28th ACM International Conference on Multimedia (MM), 2020.
- J. Zhou and C.-M. Pun, "Personal Privacy Protection via Irrelevant Faces Tracking and Pixelation in Video Live Streaming," IEEE Transactions on Information Forensics and Security (TIFS), In Press, 2020.

Q&A

• Thank You!