Section 2 Binary Operations, p25 7,9,11,17,19,21,23

In Exercises 7 through 11, determine whether the binary operation * defined is commutative and whether * is associative.

7. * defined on \mathbb{Z} by letting a * b = a - b

- * is neither commutative nor associative.
- (a) Commutative: Consider 1 and 2. $1-2=-1\neq 2-1=1$. Thus * is not commutative.
- (b) Associative: Consider $1 (4 3) = 0 \neq (1 3) 3 = -5$. Thus * is not commutative.

- **9.** * defined on \mathbb{Q} by letting a * b = ab/2
 - * is both commutative and associative.
 - (a) Commutative: $a*b = \frac{ab}{2} = \frac{ba}{2} = b*a$. Thus * is commutative.
 - (b) Associative: Consider a, b, c.

$$a * (b * c) = a * \frac{bc}{2} = \frac{a\frac{bc}{2}}{2} = \frac{1}{4} \cdot abc$$

$$(a*b)*c = \frac{ab}{2}*c = \frac{\frac{ab}{2}c}{2} = \frac{1}{4} \cdot abc$$

Thus, * is associative.

11. * defined on \mathbb{Z}^+ by letting $a * b = a^b$

* is neither commutative nor associative.

- (a) Commutative: $2*3=2^3=8\neq 3*2=3^2=9$. Thus * is not commutative.
- (b) Associative: Consider 2, 3, 3.

$$2*(3*3) = 2*9 = 2^9 = 512$$

$$(2*3)*3 = 6*3 = 6^3 = 216$$

Thus * is not associative.

In Exercises 17 through 22, determine whether the definition of * does give a binary operation on the set. In the event that * is not a binary operation, state whether condition 1 (uniquely defined), condition 2 (closed), or both of these conditions are violated.

17. On \mathbb{Z}^+ , define * by letting a * b = a - b.

* is not a binary operation on \mathbb{Z}^+ . Consider a=1 and b=2: $1*2=1-2=-1\notin\mathbb{Z}^+$. Thus \mathbb{Z}^+ is not closed under *. It is, however, uniquely defined for all $a, b \in \mathbb{Z}^+$.

19. On \mathbb{R} , define * by letting a * b = a - b.

* is a binary operation on \mathbb{R} .

21. On \mathbb{Z}^+ , define * by letting a * b = c, where c is at least 5 more than a + b.

* is not a binary operation on \mathbb{Z}^+ . Consider a=1 and b=1: 1*1=7 and 8. Thus * is not uniquely defined. It is, however, closed.

23 Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under

a. matrix addition?

Consider $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ and $\begin{bmatrix} c & -d \\ d & c \end{bmatrix}$.

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$

Since this take the form of H, H is closed under matrix addition.

b. matrix multiplication?

Consider $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ and $\begin{bmatrix} c & -d \\ d & c \end{bmatrix}$.

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac-bd & -ad-bc \\ bc+ad & -bd+ac \end{bmatrix} = \begin{bmatrix} ac-bd & -(ad+bc) \\ ad+bc & ac-bd \end{bmatrix}$$

Since this takes the form of H, H is closed under matrix multiplication.