MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE L'INNOVATION

SECRÉTARIAT GÉNÉRALE

INSTITUT NATIONAL SUPÉRIEUR DES SCIENCES ET TECHNIQUES D'ABÉCHÉ

DÉPARTEMENT DE GÉNIE INFORMATIQUE

وزارة التعليم لعالي والبث لعامي والابتكار

امالة للعام

المعهد الوطني العالي للعلوم والتقنيات باشه

قسم هند سبة الحاسوب *******

RAPPORT DES TRAVAUX PRATUIQUES D'ELECTRONIQUE NUMERIQUE

Réaliser par :

1. ABAKAR MAHAMAT BRAHIM

Chargé du cours : M. ABDELKERIM

ANNÉE ACADÉMIQUE: 2024-2025

TRAVEAUX PRATIQUES, BASCULE RS & D

TP1 PORTES LOGIQUES D'UN SIMULATEUR

- 1. Rappelons l'expression algébrique ainsi que la table de vérité de chacune des portes de porte simulateur
- a) Porte OUI

Table de vérité

A	S=A
0	0
1	1

Expression Algébrique

$$A=S$$

b) Porte NOT

Table de vérité

A	$S=ar{A}$
0	1
1	0

Expression Algébrique		
$S=ar{A}$		

c) Porte AND

Table de vérité

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Expression Algébrique
$$S = A.B$$

d) Porte OR

Table de vérité

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Expression Algébrique S = A + B

e) Porte NOR

Table de vérité

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Expression Algébrique
$$S = \overline{A + B}$$

f) Porte NAND

Table de vérité

A	В	S

Expression Algébrique $S = \overline{A \cdot B}$

0	0	1
0	1	1
1	0	1
1	1	0

g) Porte XOR

Table de vérité

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Expression Algébrique
$$S = A \oplus B$$

g) Pore XNOR

Table de vérité

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Expression Algébrique
$S = A \odot B \text{ ou } \overline{A \oplus B}$

- 2. Câblons chacune des portes logiques puis vérifier leur table de vérité. Pour cela nous utilisons un bloc des interrupteurs pour commander et le LED sur la sortie de chaque porte pour visualiser leurs états.
 - a) L'opérateur logique NOT (NON)

<u>TV</u>

A	$S=ar{A}$
0	1
1	0

b) L'opérateur logique OR (OU)

A	В	S
0	0	0
0	1	1
1	0	1
1	1	1

c) L'opérateur logique AND (ET)

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

d) L'opérateur logique NOR (NON_OU)

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

e) L'opérateur logique XOR (OU_Exclusif)

f)	L'opérateur	logique	XNOR
----	-------------	---------	-------------

A	В	S
0	0	0
0	1	1
1	0	1
1	1	0

U1:A	-green
28 4177	<u>-</u>

g) L'opérateur logique NAND

A	В	S
0	0	1
0	1	0
1	0	0
1	1	1

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

h) Porte logique OUI

A	S=A
0	0
1	1

TP2 BASCULES RS ASYNCHROME

1- Rappelons l'expression algébrique et ainsi que la table de verte de la bascule RS Asynchrone.

$$Q_n{+}1 = S + \overline{R} \ Q_n$$

TABLE DE VERITE

R	S	Q+	
0	0	Q	Mémoire
0	1	1	Mise à 0
1	0	0	Mise à 1
1	1	Ø	interdit

- 2- Câblons la bascule RS et vérifier sa table de vérité. Pour cela, vous utilisez un bloc des interrupteurs pour commander les entrées et des LED (protégées par des résistances $\geq 100\Omega$) sur les sorties Q et Q' pour visualiser leurs états
- Câblage a l'aide de porte NOR

R	S	Q+
0	0	0
0	1	1
1	0	0
1	1	Ø

TP3 Bascule RSH

1) Proposons un montage permettant d'avoir une entrée d'horloge

2) Câblons cette bascule et vérifions son fonctionnement quand H=0 et H=1. Nous utilisons pour l'horloge une commande d'interrupteur

Si H = 0

<u>Tableau de vérité</u>

R	S	Н	Q
0	0	0	?
0	1	0	?
1	0	0	?
0	0	1	?
0	1	1	0
1	0	1	1
1	1	1	1

3) Pourquoi cette bascule n'est pas, à strictement parler, une bascule synchrone ?

Cette bascule RSH n'est pas à strictement parler d'une bascule synchrone, parce que, si on attribue une valeur 0 à l'horloge, la bascule se fait comme une bascule asynchrone.

4) Modifions notre montage pour obtenir une Bascule D. Vérifions sa table de vérité.

Matériels utilisés

- Simulateur logique
- Fil TH de connexion
- Résistances ≥100Ω

Table de vérité

D	Н	Q n+ 1
0	0	Q _n
1	0	0
1	1	1

TRAVEAUX PRATIQUES ELECTRONIQUES NUMERIQUES 2

Réalisons sur Proteus les bascules et compteurs suivants et établissons la table de vérité de différents schémas.

1- Bascule RS à l'aide de porte NOR

Tableau de vérité

R	S	Q	Q
0	0	Q	$ar{Q}$
0	1	1	0
1	0	0	1
1	1	Interdit	Interdit

2- Bascule D

D	Е	Q	$ar{Q}$
0	0	Q	\bar{Q}
1	0	0	1
1	1	1	0

3- Bascule D synchrone

TABLE DE VERITE

R	S	Q	Q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	1

4- Compteur asynchrone par 16 de référence 7493. Le comptage par 16 est obtenu en connectant la sortie du compteur par 2 (Q A) avec l'entrée B du

compteur par 8 On a représenté sur la Figure ci-dessous le schéma d'un compteur par 16 standards (référence7493). Ces compteurs sont simples et leur mise en série est immédiate. Ils sont constitués d'un compteur par 2 (entrée A, sortie Q A) et d'un compteur par 8 (entrée B, sorties Q B Q C Q D) dont la mise en série (B = Q A) donne un compteur par 16. De la même façon, on obtient un compteur par 256 en connectant la sortie QD sur l'entrée A d'un second compteur par 16 identique.

COMPTEUR ET DECOMPTEUR

Réalisons un compteur qui compte cinq(5)

Compteur de 0 à 5

Décompteur de 0 à 5

