Neighborhood Mixture Model for Knowledge Base Completion

Dat Quoc Nguyen

Joint work with Kairit Sirts, Lizhen Qu and Mark Johnson

Department of Computing Macquarie University Sydney, Australia

August 2016

Introduction

- Knowledge bases (KBs) of real-world triple facts (head entity, relation, tail entity) are useful resources for NLP tasks
- Issue: large KBs are still far from complete
- So it is useful to perform link prediction in KBs or knowledge base completion (KBC): predict which triples not in a knowledge base are likely to be true

Figure extracted from "Jason Weston and Antoine Bordes. 2014. Embedding Methods for NLP. *EMNLP 2014 tutorial.*"

Introduction

- Embedding models for KBC:
 - Associate entities and/or relations with dense feature vectors or matrices
 - Obtain SOTA performance and generalize to large KBs
- Most embedding models for KBC learn only from triples
- Recent works show that the relation paths between entities in KBs provide useful information and improve KBC

```
(\mathsf{Harrison}\ \mathsf{Ford}, \mathbf{born\_in\_hospital}/r_1, \mathsf{Swedish}\ \mathsf{Covenant}\ \mathsf{Hospital})
```

- \Rightarrow (Swedish Covenant Hospital, **located_in_city**/ r_2 , Chicago)
- \Rightarrow (Chicago, city_in_country/r₃, United States)

Relation path $p=\{r_1,r_2,r_3\}$ is useful for predicting the relationship "nationality" between Harrison Ford and United States

Introduction

• **Our motivation**: neighborhoods could provide lots of useful information for predicting the relationship between the entities

Ben Affleck

$$=\omega_{r,1}(ext{Violet_Anne, child_of}) \ +\omega_{r,2}(ext{male, gender}^{-1}) \ +\omega_{r,3}(ext{Los_Angeles, live_in}^{-1}) \ +\omega_{r,4}(ext{Oscar_award, won}^{-1})$$

Our approach: Neighbor-based entity representation

```
\begin{split} \mathcal{E} &= \{ \mathsf{Ben\_Affleck}, \mathsf{Los\_Angeles}, ... \} \\ \mathcal{R} &= \{ \mathsf{live\_in}, \mathsf{won}, \mathsf{child\_of}, \mathsf{gender}, ... \} \\ \mathcal{G} &= \{ (\mathsf{Violet\_Anne}, \mathsf{child\_of}, \mathsf{Ben\_Affleck}), \\ &\quad (\mathsf{Ben\_Affleck}, \mathsf{won}, \mathsf{Oscar\_award}), \\ &\quad (\mathsf{Ben\_Affleck}, \mathsf{live\_in}, \mathsf{Los\_Angeles}), ... \} \end{split}
```

 \mathcal{N}_{e} is the set of all entity and relation pairs that are neighbors for entity e $\mathcal{N}_{\mathsf{Ben_Affleck}} = \{(\mathsf{Violet_Anne}, \mathsf{child_of}),$

 $(male, gender^{-1}),$

(Los_Angeles, live_in $^{-1}$),

 $(Oscar_award, won^{-1})$

Violet Anne

lecturer

Our approach: Neighbor-based entity representation

- $\mathbf{v}_e \in \mathbb{R}^k$: k-dimensional base vector associated with entity e
- $\mathbf{u}_{e,r} \in \mathbb{R}^k$: relation-specific entity vector, $e \in \mathcal{E}, r \in \mathcal{R} \cup \mathcal{R}^{-1}$
- The neighborhood-based entity representation $\vartheta_{e,r}$ for an entity e for predicting the relation r is defined as follows:

$$\vartheta_{e,r} = a_e \mathbf{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \mathbf{u}_{e',r'}$$
(1)

 a_e and $b_{r,r'}$ are the mixture weights that are constrained to sum to 1:

$$a_e \propto \delta + \exp \alpha_e$$
 (2)

$$b_{r,r'} \propto \exp \beta_{r,r'} \tag{3}$$

 $\delta \geqslant$ 0: hyper-parameter α_{e} , $\beta_{r,r'}$: learnable exponential mixture parameters

Our approach: Neighbor-based entity representation

$$\boldsymbol{\vartheta}_{e,r} = \boldsymbol{a}_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} \boldsymbol{b}_{r,r'} \boldsymbol{u}_{e',r'}$$
 Violet Anne child of
$$\boldsymbol{e} = \text{Ben_Affleck}$$

$$\boldsymbol{r} = \text{occupation}$$

$$\mathcal{N}_e = \{ (\text{Violet_Anne}, \text{child_of}),$$

$$(\text{male}, \text{gender}^{-1}),$$

$$(\text{Los_Angeles}, \text{live_in}^{-1}),$$

$$(\text{Oscar_award}, \text{won}^{-1}) \}$$

e = Ben Affleck

r = occupation

Our approach: Applying neighborhood mixtures to TransE

- Embedding models define for each triple $(h, r, t) \in \mathcal{G}$, a score function f(h, r, t) that measures its implausibility
- **Goal**: choose f such that the score f(h, r, t) of a plausible triple (h, r, t) is smaller than the score f(h', r', t') of an implausible triple (h', r', t').
- Entity e and relation r are represented with vectors $\mathbf{v}_e \in \mathbb{R}^k$ and $\mathbf{v}_r \in \mathbb{R}^k$

$$f(h,r,t)_{\mathsf{TransE}} = \| \boldsymbol{v}_h + \boldsymbol{v}_r - \boldsymbol{v}_t \|_{\ell_{1/2}}$$

The score function of our new model TransE-NMM is defined as follows:

$$f(h,r,t) = \|\vartheta_{h,r} + \mathbf{v}_r - \vartheta_{t,r^{-1}}\|_{\ell_{1/2}}$$
 (4)

$$artheta_{e,r} = a_e oldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} oldsymbol{u}_{e',r'}$$

$$\boldsymbol{u}_{e,r} = \boldsymbol{v}_e + \boldsymbol{v}_r \tag{5}$$

$$\mathbf{v}_{r-1} = -\mathbf{v}_r \tag{6}$$

Our approach: Parameter optimization

- Model parameters:
 - Entity vectors v_e
 - ► Relation type vectors **v**_r
 - $\alpha = \{\alpha_e | e \in \mathcal{E}\}$: entity-specific weights
 - ▶ $\beta = \{\beta_{r,r'} | r, r' \in \mathcal{R} \cup \mathcal{R}^{-1} \}$: relation-specific weights
- Minimize the L₂-regularized margin-based objective function:

$$\mathcal{L} = \sum_{\substack{(h,r,t) \in \mathcal{G} \\ (h',r,t') \in \mathcal{G}'_{(h,r,t)}}} [\gamma + f(h,r,t) - f(h',r,t')]_{+} + \frac{\lambda}{2} (\|\alpha\|_{2}^{2} + \|\beta\|_{2}^{2})$$

$$\mathcal{G}'_{(h,r,t)} = \{(h',r,t) \mid h' \in \mathcal{E}, (h',r,t) \notin \mathcal{G}\}$$

$$\cup \{(h,r,t') \mid t' \in \mathcal{E}, (h,r,t') \notin \mathcal{G}\}$$

- $[x]_+ = \max(0,x)$
- $ightharpoonup \gamma$: the margin hyper-parameter
- \triangleright λ : the L_2 regularization parameter
- ▶ Impose constraints during training with RMSProp: $\|\mathbf{v}_e\|_2 \leq 1$, $\|\mathbf{v}_r\|_2 \leq 1$

Related work

Model	Score function $f(h, r, t)$
STransE	$\ \mathbf{W}_{r,1}\mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_{r,2}\mathbf{v}_t\ _{\ell_{1/2}} ; \mathbf{W}_{r,1}, \mathbf{W}_{r,2} \in \mathbb{R}^{k \times k}; \mathbf{v}_r \in \mathbb{R}^k$
TransE	$\ \mathbf{v}_h + \mathbf{v}_r - \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{v}_r \in \mathbb{R}^k$
TransH	$\ (\mathbf{I} - \mathbf{r}_{\rho}\mathbf{r}_{\rho}^{\top})\mathbf{v}_{h} + \mathbf{v}_{r} - (\mathbf{I} - \mathbf{r}_{\rho}\mathbf{r}_{\rho}^{\top})\mathbf{v}_{t}\ _{\ell_{1/2}}$
11411311	$m{r}_{p}, m{v}_{r} \in \mathbb{R}^{k} ; m{l}$: Identity matrix size $k imes k$
TransD	$\ (\mathbf{I} + \mathbf{r}_p \mathbf{h}_p^{\top}) \mathbf{v}_h + \mathbf{v}_r - (\mathbf{I} + \mathbf{r}_p \mathbf{t}_p^{\top}) \mathbf{v}_t \ _{\ell_{1/2}}$
	$m{r}_p, m{v}_r \in \mathbb{R}^n \; ; m{h}_p, m{t}_p \in \mathbb{R}^k \; ; m{l} \colon Identity \; matrix \; size \; n imes k$
TransR	$\ \mathbf{W}_r \mathbf{v}_h + \mathbf{v}_r - \mathbf{W}_r \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{W}_r \in \mathbb{R}^{n \times k}$; $\mathbf{v}_r \in \mathbb{R}^n$
NTN	$\mathbf{v}_r^{ op} tanh(\mathbf{v}_h^{ op} \mathbf{M}_r \mathbf{v}_t + \mathbf{W}_{r,1} \mathbf{v}_h + \mathbf{W}_{r,2} \mathbf{v}_t + \mathbf{b}_r)$
14 1 14	$\mathbf{v}_r, \mathbf{b}_r \in \mathbb{R}^n; \mathbf{M}_r \in \mathbb{R}^{k imes k imes n}; \mathbf{W}_{r,1}, \mathbf{W}_{r,2} \in \mathbb{R}^{n imes k}$
DISTMULT	$oldsymbol{v}_h^{ op} oldsymbol{W}_r oldsymbol{v}_t$; $oldsymbol{W}_r$ is a diagonal matrix $\in \mathbb{R}^{k imes k}$
Bilinear-COMP	$\mathbf{v}_h^{T} \mathbf{W}_{r_1} \mathbf{W}_{r_2} \mathbf{W}_{r_m} \mathbf{v}_t ; \mathbf{W}_{r_1}, \mathbf{W}_{r_2},, \mathbf{W}_{r_m} \in \mathbb{R}^{k \times k}$
TransE-COMP	$\ \mathbf{v}_h + \mathbf{v}_{r_1} + \mathbf{v}_{r_2} + + \mathbf{v}_{r_m} - \mathbf{v}_t\ _{\ell_{1/2}}$; $\mathbf{v}_{r_1}, \mathbf{v}_{r_2},, \mathbf{v}_{r_m} \in \mathbb{R}^k$
TransE-NMM	$\ \boldsymbol{\vartheta}_{h,r} + \boldsymbol{v}_r - \boldsymbol{\vartheta}_{t,r^{-1}}\ _{\ell_{1/2}}$

Evaluation: experimental setup

Dataset:	WN11	FB13	NELL186
#R	11	13	186
#E	38,696	75,043	14,463
#Train	112,581	316,232	31,134
#Valid	2,609	5,908	5,000
#Test	10,544	23,733	5,000

- #E: number of entities
- #R: number of relation types
- #Train, #Valid and #Test are the numbers of correct triples in the training, validation, and test sets, respectively
- Each validation and test set also contains the same number of incorrect triples as the number of correct triples

Triple classification task:

- Predict whether a triple (h, r, t) is correct or not
- Set a relation-specific threshold θ_r for each relation type r
- For an unseen test triple (h, r, t), if f(h, r, t) is smaller than θ_r then the triple will be classified as correct, otherwise incorrect
- The relation-specific thresholds are determined by maximizing the micro-averaged accuracy on the validation set

Evaluation: experimental setup

Entity prediction task:

- ▶ Predict h given (?, r, t) or predict t given (h, r, ?) where ? denotes the missing element
- ▶ Corrupt each correct test triple (h, r, t) by replacing either h or t by each of the possible entities in turn
- Rank these candidates in ascending order of their implausibility value computed by the score function
- "Raw" and "Filtered" setting protocols in which "Filtered" setting is to filter out before ranking any corrupted triples that appear in the KB
- ▶ Metrics: mean rank (MR), mean reciprocal rank (MRR) and Hits@10 (H10)

Relation prediction task:

- ▶ Predict r given (h,?,t) where ? denotes the missing element
- Corrupt each correct test triple (h, r, t) by replacing r by each of the possible relations in turn

Evaluation: quantitative results

Data Method		Triple class.		Entity prediction			Relation prediction			
		Mic.	Mac.	MR	MRR	H@10	MR	MRR	H@10	
	R	TransE	85.21	82.53	4324	0.102	19.21	2.37	0.679	99.93
WN11	11	TransE-NMM	86.82	84.37	3466	0.123	20.59	2.14	0.687	99.92
AAIATT	F	TransE			4304	0.122	21.86	2.37	0.679	99.93
	'	TransE-NMM			3447	0.137	23.03	2.14	0.687	99.92
	R	TransE	87.57	86.66	9037	0.204	35.39	1.01	0.996	99.99
FB13	К	TransE-NMM	88.58	87.99	8289	0.258	35.53	1.01	0.996	100.0
1 013	F	TransE			5600	0.213	36.28	1.01	0.996	99.99
	TransE-NMM			5018	0.267	36.36	1.01	0.996	100.0	
R NELL186	TransE	92.13	88.96	309	0.192	36.55	8.43	0.580	77.18	
	TransE-NMM	94.57	90.95	238	0.221	37.55	6.15	0.677	82.16	
INLLLIOU	F	TransE			279	0.268	47.13	8.32	0.602	77.26
-	TransE-NMM			214	0.292	47.82	6.08	0.690	82.20	

- Mic.: Micro-averaged accuracy; Mac.: Macro-averaged accuracy
- "R" and "F" denote the "Raw" and "Filtered" settings used in the entity prediction and relation prediction tasks, respectively
- Better results are in bold

Evaluation: quantitative results

Madaad	W11	Г12
Method	AATI	F13
TransR	85.9	82.5
CTransR	85.7	-
TransD	<u>86.4</u>	89.1
TranSparse-S	<u>86.4</u>	88.2
TranSparse-US	86.8	87.5
NTN	70.6	87.2
TransH	78.8	83.3
SLogAn	75.3	85.3
KG2E	85.4	85.3
Bilinear-COMP	77.6	86.1
TransE-COMP	80.3	87.6
TransE	85.2	87.6
TransE-NMM	86.8	88.6

Micro-averaged accuracy for triple classification on WN11 and FB13

Results on the NELL186 test set:

Method	Triple	class.	Entity pred.		
Method	Mic.	Mac.	MR	H@10	
TransE-LLE	90.08	84.50	535	20.02	
SME-LLE	93.64	89.39	<u>253</u>	37.14	
SE-LLE	<u>93.95</u>	88.54	447	31.55	
TransE-SkipG	85.33	80.06	385	30.52	
SME-SkipG	92.86	89.65	293	39.70	
SE-SkipG	93.07	87.98	412	31.12	
TransE	92.13	88.96	309	36.55	
TransE-NMM	94.57	90.95	238	37.55	

The entity prediction results are in the "Raw" setting

Evaluation: qualitative results

- Take the relation-specific mixture weights from the learned TransE-NMM
- Extract neighbor relations with the largest mixture weights given a relation

Relation	Top 3-neighbor relations
has instance	type_of
nas_mstance	subordinate_instance_of
(WN11)	domain_topic
nationality	place_of_birth
пацопанц	place_of_death
(FB13)	location
CEOof	WorksFor
CEOOI	TopMemberOfOrganization
(NELL186)	PersonLeadsOrganization

Conclusions and future work

- We introduced a neighborhood mixture model for knowledge base completion by constructing neighbor-based vector representations for entities
- We demonstrated its effect by extending TransE with our neighborhood mixture model
- Our model significantly improves TransE and obtains better results than the other state-of-the-art embedding models on three evaluation tasks
- We plan to apply the neighborhood mixture model to the relation path models to combine the useful information from both relation paths and entity neighborhoods

Thank you for your attention!

e = Ben Affleck

r = occupation

$$\boldsymbol{\vartheta}_{e,r} = a_e \boldsymbol{v}_e + \sum_{(e',r') \in \mathcal{N}_e} b_{r,r'} \boldsymbol{u}_{e',r'}$$
 Violet Anne child of
$$\boldsymbol{e} = \text{Ben_Affleck}$$

$$\boldsymbol{r} = \text{occupation}$$

$$\mathcal{N}_e = \{ (\text{Violet_Anne, child_of}), \\ (\text{male, gender}^{-1}), \\ (\text{Los_Angeles, live_in}^{-1}), \\ (\text{Oscar_award, won}^{-1}) \}$$

