Yuxuan Zhang (yuxuan 28)

University of Illinois

Spring 2020

CS 446/ECE 449 Machine Learning

Homework 4: Multiclass Logistic Regression

Due on Thursday February 27 2020, noon Central Time

1. [16 points] Multiclass Logistic Regression

We are given a dataset
$$\mathcal{D} = \left\{ \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, 0 \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, 1 \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, 2 \end{pmatrix} \right\}$$
 containing three pairs (x, y) , where each $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ denotes a 2-dimensional point and $y \in \{0, 1, 2\}$.

We want to train by minimizing the negative log-likelihood the parameters w (includes bias) of a multi-class logistic regression classifier using

$$\min_{w} - \sum_{(x,y)\in\mathcal{D}} \log p(y|x) \quad \text{where} \quad p(y|x) = \frac{\exp w_y^{\top} \begin{bmatrix} x \\ 1 \end{bmatrix}}{\sum_{\hat{y}\in\{0,1,2\}} \exp w_{\hat{y}}^{\top} \begin{bmatrix} x \\ 1 \end{bmatrix}}.$$
 (1)

(a) (2 points) How many parameters do we train, *i.e.*, what's the domain of w? Explain what w_y means and how it relates to w?

(b) (2 points) Alternatively, we can use the equivalent probability model

$$p(y|x) = \frac{\exp w^{\top} \psi(x, y)}{\sum_{\hat{y} \in \{0, 1, 2\}} \exp w^{\top} \psi(x, \hat{y})}.$$

Explain how we need to construct $\psi(x,y)$ such that $w^{\top}\psi(x,y)=w_y^{\top}\left[\begin{array}{c}x\\1\end{array}\right]$ $\forall y\in\{0,1,2\}.$

Yuxuan Zhang

(c) (3 points) Alternatively, we can use the equivalent probability model

$$p(y|x) = \frac{\exp F(y, w, x)}{\sum_{\hat{y} \in \{0,1,2\}} \exp F(\hat{y}, w, x)} \quad \text{with} \quad F(y, w, x) = \left[\mathbf{W}x + b\right]_{y},$$

where **W** is a matrix of weights and b is a vector of biases. The notation $[a]_y$ extracts the y-th entry from vector a. What are the dimensions of **W** and b and how does **W** and b related to the originally introduced w?

Your answer: $\chi: 2x \mid$ $b: 3x \mid$. $W: 3x \mid$ $W = \begin{pmatrix} W_0 \\ W_1 \\ W^2 \end{pmatrix}$ b is the third elements of W_0 , W_1 . W_2 W_1 W_2 W_3 : every row of W is the first and second element of W_4 . W the concataonation of W_4 first two elements

(d) (6 points) Assume we are given $\mathbf{W} = \begin{bmatrix} 3 & 0.5 \\ 0 & 1 \\ -1.5 & -1.5 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 0 \\ 1.5 \end{bmatrix}$. Draw the

datapoints, and the lines $[\mathbf{W}x + b]_y = 0 \ \forall y \in \{0, 1, 2\}$ in x_1 - x_2 -space and explain whether these weights result in correct prediction for all datapoints in \mathcal{D} ?

Your answer: Mark the axis $\mathcal{W} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}, \quad y=0.$ $\mathcal{W} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + b = \begin{pmatrix} 0.5 \\ 1 \\ 0 \end{pmatrix} \quad y=1$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=1$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad y=2$ $\mathcal{W} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + b = \begin{pmatrix} 0 \\ 0 \\$

Those weights can result in correct prediction for all datapoints

Yuxuan Zhang.

(e) (3 points) Complete A4_Multiclass.py. After optimizing, what values do you obtain for \mathbf{W} , b and what probability estimates $p(\hat{y}|x)$ do you obtain for all points $x \in \mathcal{D}$ in the dataset and for all classes $\hat{y} \in \{0, 1, 2\}$. (Hint: a total of nine probability estimates are required.)

Your answer:

$$W = \begin{cases} 8.7387 & -1.6501 \\ -1.9086 & 9.0514 \\ -7.2685 & -6.9575 \end{cases}$$

$$b = \begin{cases} -2.5121 \\ -2.5121 \\ 5.3407 \end{cases}$$

$$P(\hat{y}|X) = \begin{pmatrix} 9.9969 e - 0.1 & 3.363e - 0.6 & 2.8741e - 0.4 \\ 22595e - 0.5 & 9.9969e - 0.1 & 2.8805e - 0.4 \\ 3.8835e - 0.4 & 3.8680e - 0.4 & 9.9903e - 0.1 \end{pmatrix}$$