Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 2

Clase 2

Funciones computables Tiempo de cómputo Codificación de máquinas Variantes de máquinas

Funciones computables

Clase 2

Funciones computables

Tiempo de cómputo Codificación de máquinas Variantes de máquinas

Función computada por una máquina

Definición

Sean $f: \Gamma^* \to \Gamma^*$ y $M = (\Gamma', Q, \delta)$ una máquina. Decimos que M computa f si para todo $x \in \Gamma^*$, hay un cómputo C_0, \ldots, C_ℓ de M a partir de x y en C_ℓ la cinta de salida tiene escrito f(x) seguido de blancos.

En este caso, notamos M(x) para representar f(x). Decimos que f es **computable** si existe una máquina que la computa.

Máquinas representadas como autómatas

Podemos representar las máquinas como autómatas.

- los nodos del autómata son los estados
- las transiciones representan δ así:

$$\delta(q,1,\square) = (L,1,R,0,s) = 0$$

5

Ejemplo entrada ▷ 1 0 1 1 · · · trabajo ▷

salida D

estado q₀

Dados $x, y \in \{0, 1\}^n$, con entrada $x \square y$, devuelve x + y, si representamos los números en binario con el dígito menos significativo a la izquierda.

Función parcial

Definición

Una **función parcial** es una función que puede indefinirse en algunos puntos. Notamos

- $f(x) \uparrow$ cuando f está indefinida en x
- $f(x) \downarrow$ cuando f está definida en x

Llamamos dominio de f al conjunto

$$dom f = \{x \colon f(x) \downarrow \}.$$

Notación: función parcial

A las funciones parciales f las vamos a notar $f:\subseteq\Gamma\to\Gamma$ para marcar que el dominio de f no necesariamente es Γ .

En general, como las máquinas pueden **colgarse** (es decir, no terminar), van a computar funciones *parciales*.

Función parcial computada por una máquina

Definición

Sean $f: \subseteq \Gamma^* \to \Gamma^*$ una función parcial y $M = (\Gamma', Q, \delta)$ una máquina. Decimos que M computa f si para todo $x \in \Gamma^*$:

- si $f(x) \downarrow$ entonces hay un cómputo C_0, \ldots, C_ℓ de M a partir de x y en C_ℓ la cinta de salida tiene escrito f(x) seguido de blancos. Decimos que $M(x) \downarrow$.
- si $f(x) \uparrow$ entonces hay una secuencia infinita de configuraciones C_0, C_1, \ldots tal que C_0 es inicial C_{i+1} es la evolución de C_i en un paso y ningún C_i es final
 - ullet es decir no hay cómputo de M a partir de x
 - ullet M 'se cuelga' con entrada x

Decimos que f es **parcial computable** si existe una máquina que la computa.

Funciones totales vs funciones parciales

- las máquinas pueden 'colgarse' a partir de cierta entrada, es decir no llegar nunca a una configuración final
- en general las máquinas computan funciones parciales
- pero en la Teoría de la Complejidad estamos interesados en funciones (estándar), no en funciones parciales

Notación: función parcial

- 'función' es un mapeo (estándar) de *toda* entrada a una salida
 - las notamos como siempre: $f: \Gamma^* \to \Gamma^*$
- 'función parcial' es un mapeo posiblemente incompleto
 - también las notamos $f: \subseteq \Gamma^* \to \Gamma^*$ para reforzar que el dominio no necesariamente es Γ^*
- a veces, para reforzar, llamamos 'función total' a las primeras (las estándar)

Infinitas máquinas para la misma función

Para una función fija $f:\Gamma^*\to\Gamma^*$ computable, existen infinitas máquinas que la computan

• si existe M tal que computa f, podemos definir otra máquina que agrega estados a los de M y transiciones espurias de modo que no modifique la función que computa

Tamaño de la entrada

Sea $x \in \Gamma^*$.

Vamos a prestar especial atención a la cantidad de celdas que se necesitan para representar x en la cinta de entrada.

Recordar que el **tamaño** de x, notado |x|, es la cantidad de símbolos de x.

Tiempo de cómputo

Clase 2

Funciones computables **Tiempo de cómputo** Codificación de máquinas Variantes de máquinas

Tiempo de cómputo

Definición

Sean $f:\Gamma^* \to \Gamma^*,\, T:\mathbb{N} \to \mathbb{N}$ y $M=(\Gamma',Q,\delta)$ una máquina.

- M corre en tiempo T(n) si para todo $x \in \Gamma^*$ hay un cómputo de M a partir de x de longitud $\leq T(|x|)$ (en particular, M no se cuelga nunca).
- M computa f en tiempo T(n) si M corre en tiempo T(n) y M computa f.

Notación de 'O grande'

Definición

Sean $f, g: \mathbb{N} \to \mathbb{N}$. Decimos que f = O(g) si existe c tal que para todo n suficientemente grande tenemos

$$f(n) \le c \cdot g(n).$$

Notación de 'O grande'

Definición

Sean $f, g : \mathbb{N} \to \mathbb{N}$. Decimos que f = O(g) si existe c tal que para todo n suficientemente grande tenemos

$$f(n) \le c \cdot g(n)$$
.

Ejemplos

- 4(n+2) = O(n)
- 1000000n + 1000000 = O(n)
- $n \log n = O(n^2)$
- $5n^2 + 3n + 1 = O(n^2)$
- $2^n \neq O(n^k)$ para ningún k

Siempre que sea necesario, usaremos $\log n$ como abreviatura de $\lceil \log n \rceil$.

Cómputo en tiempo O(T(n)) y tiempo polinomial

Definición

M corre en tiempo O(T(n)) si existe una constante c tal que para todo $x \in \Gamma^*$, salvo finitos, hay un cómputo de M a partir de x de longitud a lo sumo $c \cdot T(|x|)$.

Definición

M corre en tiempo polinomial si existe un polinomio p tal que M corre en tiempo O(p):

Es equivalente a decir:

existe constante c tal que M corre en tiempo $O(n^c)$

Funciones computables en tiempo O(T(n)) / polinomial

Definición

Una función $f: \Gamma^* \to \Gamma^*$ es computable en tiempo T(n) [en tiempo O(T(n))] si existe una máquina $M = (\Gamma', Q, \delta)$ tal que

- ullet M computa f y
- M corre en tiempo T(n) [en tiempo O(T(n))].

Definición

Una función $f: \Gamma^* \to \Gamma^*$ es **computable en tiempo polinomial** si existe una máquina $M = (\Gamma', Q, \delta)$ tal que

- \bullet M computa f y
- M corre en tiempo polinomial.

Definición

Decimos que un lenguaje \mathcal{L} es **decidible** en tiempo T(n), O(T(n)), polinomial, si $\chi_{\mathcal{L}}$ es computable en tiempo T(n), O(T), polinomial.

Múltiples parámetros

Buscamos computar funciones de varios parámetros, por ejemplo

$$f: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$$

No podemos codificar la entrada (σ,τ) como $\sigma\tau$ porque no se entiende dónde termina σ y dónde empieza τ

• podemos usar 3 símbolos: usar los blancos de la cinta de entrada y representar (σ, τ) como $\triangleright \sigma \square \tau \square \square \square \cdots$, o sea

• podemos usar solo 2 símbolos (0 y 1) y usar codificaciones autodelimintantes sobre $\{0,1\}^*$

Elegimos la segunda por comodidad de notación.

Funciones construibles en tiempo

Definición

Una función $T: \mathbb{N} \to \mathbb{N}$ es construible en tiempo si

- $T(n) \geq n$
- la función $1^n \mapsto [T(n)]$ es computable en tiempo O(T(n))

Funciones construibles en tiempo

Definición

Una función $T: \mathbb{N} \to \mathbb{N}$ es construible en tiempo si

- $T(n) \geq n$
- la función $1^n \mapsto [T(n)]$ es computable en tiempo O(T(n))

Ejemplos de funciones construibles en tiempo

- $n \log n$
- n
- n^2
- 2ⁿ

Notación: f, T

A partir de ahora

- f siempre va a ser una función $\{0,1\}^* \to \{0,1\}^*$
- $T: \mathbb{N} \to \mathbb{N}$ siempre va a ser una función construible en tiempo

(salvo que se diga lo contrario)

Clase 2

Funciones computables Tiempo de cómputo Codificación de máquinas Variantes de máquinas

Recordar que una máquina M con k cintas $(k \geq 3)$ es una tripla (Σ, Q, δ) , donde

- Q es un conjunto finito de estados
- Σ es el alfabeto (siempre finito)
- la función de transición es

$$\delta: Q \times \Sigma^{k-1} \to \underbrace{\{L, R, S\}}_{\text{entrada}} \times \underbrace{\Sigma^{k-2} \times \{L, R, S\}^{k-2}}_{\text{trabajo}} \times \underbrace{(\Sigma \cup \{S\})}_{\text{salida}} \times Q$$

Queremos representar máquinas con palabras en $\{0,1\}^*$.

• nos restringimos al alfabeto estándar $\Sigma = \{0, 1, \triangleright, \square\}$ pero se puede hacer con cualquier alfabeto.

Codificación de estados, movimientos y símbolos

Numeramos los estados de Q desde 0 hasta |Q|-1 y representamos cada estado n con [n]

- reservamos el 0 para q_0
- reservamos el 1 para q_f

Codificamos cada símbolo de $\Sigma \cup \{L, R, S\}$ con

•
$$[0] = 000$$

•
$$[\Box] = 010$$

•
$$[1] = 001$$

•
$$[\triangleright] = 011$$

•
$$[L] = 100$$

•
$$[R] = 101$$

•
$$[S] = 110$$

Codificación de δ

Codificamos una tupla

$$\vec{v} = (E, t_1, \dots, t_{k-2}, T_1, \dots, T_{k-2}, Z, q) \in \underbrace{\{L, R, S\}}_{\text{entrada}} \times \underbrace{\Sigma^{k-2} \times \{L, R, S\}^{k-2}}_{\text{trabajo}} \times \underbrace{(\Sigma \cup \{S\})}_{\text{salida}} \times Q$$

con

$$\langle \vec{v} \rangle = \langle [E], [t_1], \dots, [t_{k-2}], [T_1], \dots, [T_{k-2}], [Z], [q] \rangle \in \{0, 1\}^*$$

Codificación de δ

Codificamos una tupla

$$\vec{v} = (E, t_1, \dots, t_{k-2}, T_1, \dots, T_{k-2}, Z, q) \in \underbrace{\{L, R, S\}}_{\text{entrada}} \times \underbrace{\Sigma^{k-2} \times \{L, R, S\}^{k-2}}_{\text{trabajo}} \times \underbrace{(\Sigma \cup \{S\})}_{\text{salida}} \times Q$$

con

$$\langle \vec{v} \rangle = \langle [E], [t_1], \dots, [t_{k-2}], [T_1], \dots, [T_{k-2}], [Z], [q] \rangle \in \{0, 1\}^*$$

Codificamos

$$\delta: Q \times \Sigma^{k-1} \to \underbrace{\{L,R,S\}}_{\text{entrada}} \times \underbrace{\Sigma^{k-2} \times \{L,R,S\}^{k-2}}_{\text{trabajo}} \times \underbrace{(\Sigma \cup \{S\})}_{\text{salida}} \times Q$$

$$con \langle \delta \rangle = \langle \{ \langle [q], [a_1], \dots, [a_{k-1}], \langle \delta(q, a_1, \dots, a_{k-1}) \rangle \rangle \colon q \in Q, a_1, \dots, a_{k-1} \in \Sigma \} \rangle$$

$$\in \{0, 1\}^*$$

Máquinas \longleftrightarrow palabras en binario

Codificamos $M = (\Sigma, Q, \delta)$ con k cintas $(k \ge 3)$ con

$$\langle M \rangle = \langle [|Q|], [k], \langle \delta \rangle \rangle \in \{0, 1\}^*$$

- \bullet toda palabra $x \in \{0,1\}^*$ representa alguna máquina
 - si x no respeta el patrón $\langle M \rangle$ para alguna $M = (\Sigma, Q, \delta)$, entonces suponemos que representa una máquina trivial fija cualquiera (por ejemplo una que termina ni bien empieza y devuelve la palabra vacía)
- identificamos máquinas con palabras $x \in \{0, 1\}^*$; hablamos de 'la máquina x' o 'la x-ésima máquina' para referirnos a la única máquina M tal que $\langle M \rangle = x$
- toda máquina representa una función parcial
- para toda función parcial existen infinitas máquinas que la computan
- toda función parcial se codifica con infinitas palabras

Numerables máquinas, numerables funciones computables

- hay una cantidad numerable de máquinas
- hay una cantidad numerable de funciones $\{0,1\}^* \to \{0,1\}$ computables
- hay una cantidad no numerable de funciones $\{0,1\}^* \to \{0,1\}$
- por lo tanto, debe haber funciones $\{0,1\}^* \to \{0,1\}$ no computables
- ¿qué ejemplo concreto conocemos?

Variantes de máquinas

Clase 2

Funciones computables Tiempo de cómputo Codificación de máquinas

Variantes de máquinas

Máquinas sobre alfabetos no estándar

Proposición

Sea Γ un alfabeto. Si f es computable en tiempo T(n) por una máquina $M = (\Gamma, Q, \delta)$, entonces f es computable en tiempo $O(\log |\Gamma| \cdot T(n))$ por una máquina $M' = (\Sigma, Q', \delta')$ donde $\Sigma = \{0, 1, \triangleright, \square\}.$

Máquinas sobre alfabetos no estándar

Proposición

Sea Γ un alfabeto. Si f es computable en tiempo T(n) por una máquina $M=(\Gamma,Q,\delta)$, entonces f es computable en tiempo $O(\log |\Gamma| \cdot T(n))$ por una máquina $M'=(\Sigma,Q',\delta')$ donde $\Sigma=\{0,1,\triangleright,\square\}.$

Idea de la prueba.

Podemos codificar cada símbolo de Γ en binario usando $\lceil \log |\Gamma| \rceil$ celdas. \square

Máquinas de cinta única

Máquinas de cinta única: tienen una sola cinta con una cabeza de lectura y escritura. Para estas máquinas, la función de transición es

$$\delta: Q \times \Sigma \to \Sigma \times \{L, R, S\} \times Q$$

(con restricciones para no pasarse del comienzo de cinta).

Máquinas de cinta única

Máquinas de cinta única: tienen una sola cinta con una cabeza de lectura y escritura. Para estas máquinas, la función de transición es

$$\delta: Q \times \Sigma \to \Sigma \times \{L, R, S\} \times Q$$

(con restricciones para no pasarse del comienzo de cinta).

Proposición

Si f es computable en tiempo T(n) por una máquina estándar de $k \geq 3$ cintas (entrada, salida y k-2 cintas de trabajo), entonces f es computable en tiempo $O(T(n)^2)$ por una máquina de cinta única.

Idea de la prueba.

Codificamos las cintas de la máquina M que computa f (alfabeto estándar $\Sigma = \{0, 1, \triangleright, \square\}$)

con k cintas en una máquina M' de cinta única con alfabeto $\Gamma = \{>, 0, 1, \square, >, 0, 1, \square, \triangleleft\}.$

Símbolo subrayado indica la posición de la cabeza.

M recorre en tiempo T(n), entonces a lo sumo usa T(n) celdas de cada una de sus cintas.

M' codifica toda la información en las primeras $k \cdot T(n)$ celdas. No usa más que eso.

Cada vez que M hace esto:

 M^{\prime} barre de izquierda a derecha y de derecha a izquierda.

M' con entrada x hace esto:

- Obtiene |x| = n y calcula T(n). Mueve la cabeza hasta la posición $k \cdot T(n) + 1$ y escribe \triangleleft . Esto le va a servir para marcar la parte de la cinta única que va a usar. Luego vuelve a la primera posición.
- Codifica la configuración inicial de M con entrada x en su cinta (esto incluye a x) usando exactamente $k \cdot T(n)$ celdas.
- \bullet Maneja el estado de M internamente, sin usar la cinta
- Repite lo siguiente hasta que M llegue a el estado final:
 - Barre la cinta de izquierda a derecha obteniendo los símbolos leídos por cada cabeza (subrayados)
 - Dependiendo de qué hace la función de transición de M con esa información, elige qué hacer con cada cabeza.
 - Barre la cinta de derecha a izquierda volcando esa nueva información (cambia a lo sumo 1 símbolo por cada cinta, las posiciones de las cabezas y el estado).
- Borra todo lo que hay en su cinta salvo la información de la salida de M(x)

M' corre en tiempo $O(T(n)^2)$ y calcula f. Luego simular M' con otra máquina sobre el alfabeto estándar.

Máquinas oblivious

Oblivious = que no se da cuenta, ajena, inconsciente

Definición

Una máquina M es **oblivious** si para cada entrada x y para cada $i \in \mathbb{N}$,

- la posición de las cabezas de las cintas de entrada y trabajo en el i-ésimo paso del cómputo de M con entrada x solo depende de i y de |x| (pero no de x), y
- las funciones que computan esas posiciones a partir de i, |x| son computables en tiempo polinomial.

Máquinas oblivious

Oblivious = que no se da cuenta, ajena, inconsciente

Definición

Una máquina M es oblivious si para cada entrada x y para cada $i \in \mathbb{N},$

- la posición de las cabezas de las cintas de entrada y trabajo en el i-ésimo paso del cómputo de M con entrada x solo depende de i y de |x| (pero no de x), y
- las funciones que computan esas posiciones a partir de i, |x| son computables en tiempo polinomial.

Proposición

Si f es computable en tiempo T(n) por una máquina estándar entonces hay una máquina oblivious que computa f en tiempo $O(T(n)^2)$.

Demostración.

La idea de la prueba anterior: M' es oblivious.

Máquinas con cintas bi-infinitas

Máquinas con cintas bi-infinitas: tienen cintas infinitas en ambas direcciones en lugar de ser infinitas a derecha.

Proposición

Si f es computable por una máquina con cintas bi-infinitas en tiempo T(n), entonces f es computable por una máquina estándar en tiempo O(T(n)).

Máquinas con cintas bi-infinitas

Máquinas con cintas bi-infinitas: tienen cintas infinitas en ambas direcciones en lugar de ser infinitas a derecha.

Proposición

Si f es computable por una máquina con cintas bi-infinitas en tiempo T(n), entonces f es computable por una máquina estándar en tiempo O(T(n)).

Idea de la prueba.

Podemos 'plegar' cada cinta: convertir

en

sobre un alfabeto $\{\triangleright\} \cup \{0,1,\square\}^2$. Según qué porción de la cinta bi-infinita esté procesando, usar primer o segundo símbolo de 00,01,10,11. Luego, traducir al alfabeto estándar.