Suites arithmétiques et suites géométriques

Exercice 1

Compléter les suites logiques de nombres pour obtenir les 8 premiers termes de chacune d'elles :

- 4 7 10 13 ...
- 6 12 24 ...
- 20 19 17 14 ...
- 5 7 11 17 ...
- 1 4 9 16 ...

Exercice 2

On considère les deux procédés d'obtention suivant de nombres:

Procédure A

On multiplie le nombre donné par 3

Procédure B

Au nombre donné, on lui soustrait 2.

Pour chaque question, donner les six premiers termes obtenus en répétant les consignes autant de fois que nécessaire.

- 1. Le nombre de départ est 3 et on répète la procédure A;
- 2. Le nombre de départ est 11 et on répète la procédure B.

Exercice 3

- Trouver les coefficients multiplicatifs représentant chacune des évolutions suivantes :
 - a. +10%
 - b. +2.5%
- c. +115%
- d. -22%
- e. -10.7% f. -65%
- 2. Pour chaque coefficient multiplicateur, retrouver l'évolution associée et le pourcentage correspondant :
 - a. 1,02
- b. 1,375
- c. 2,1

- d. 0,15
- e. 0,85
- f. 0,912

Exercice 4

Des scientifiques étudient une culture de bactéries contenant deux souches qu'on nommera A et B.

Au début de l'expérience (au temps "0"), on dénombre 200 de bactéries de souches A et 300 bactéries de souches B.

Les scientifiques relèvent les évoluations suivantes : à chaque minute, la population des bactéries A augmente de 10 %, alors que celle de la souche B diminue de 20 bactéries.

- a. Au temps "0 min", quel est le pourcentage représenté par les bactéries de la souche A par rapport à l'ensemble des bactéries?
 - b. Au temps "1 min", quel est le pourcentage représenté par les bactéries de la souche A par rapport à l'ensemble des bactéries?
 - c. Compléter le tableau ci-dessous :

	A	В	C	D
1	Temps	Population de la souche A	Population de la souche B	Population totale
2	0	200	300	
3				
4				
5				
6				
7				

2. n désigne un nombre entier naturel $(n \in \mathbb{R})$.

On note a_n la population de bactéries de la souche A au temps "n min"; ainsi, $a_0 = 200$.

On note b_n la population de bactéries de la souche B au temps " $n \min$ "; ainsi $b_0 = 300$.

Compléter les pointillés ci-dessous :

$$a_1 = a_0 \dots$$

$$a_2 = a_1 \dots$$

$$a_3 = a_2 \dots$$

$$a_4 = a_3 \dots$$

$$b_1 = b_0 \dots$$

$$b_2 = b_1 \dots \dots$$

$$b_3 = b_2 \dots \dots$$

$$b_4 = b_3 \dots \dots$$

On généralise par :

$$a_{n+1} = a_n \dots$$

$$b_{n+1} = b_n \dots$$

3. Compléter les deux diagrammes ci-dessous :

4. Compléter les pointillées :

$$a_1 = a_0 \dots$$

$$a_2 = a_0 \dots$$

$$a_3 = a_0 \dots$$

$$a_4 = a_0 \dots \dots$$

$$b_1 = b_0 \dots \dots$$

$$b_2 = b_0 \dots$$

$$b_3 = b_0 \dots \dots$$

$$b_4 = b_0 \dots \dots$$

On généralise par :

$$a_n = a_0 \dots$$

$$b_n = b_0 \dots$$

Exercice 5

1. On considère la suite de nombres ci-dessous :

- a. Dans cette suite, quel est le terme qui succède à 12?
- b. Dans cette suite, quel est le terme qui précède 8?
- c. Dans cette suite quel est le rang du terme ayant 2 pour valeur?
- d. Dans cette suite quel est le rang du terme ayant 17 pour valeur?
- 2. De manière générale, on indique les termes d'une suite en utilisant en index la position du terme dans la suite (on commence l'indéxation à 0):

$$u_0$$
 ; u_1 ; u_2 ; u_3 ; \cdots ; u_{n-1} ; u_n ; u_{n+1}

- a. Quel est le terme succésseur de u_2 ?
- b. Quel est le terme prédécesseur de u_4 ?
- c. Quel est le terme succésseur de u_n ?
- d. Quel est le terme succésseur de u_{n+2} ?
- e. Quel est le terme prédécesseur de u_n ?
- f. Quel est le terme prédécesseur de u_{n+2} ?

Exercice 6

On considère les suites de nombres ci-dessous :

b.
$$1 ; -2 ; 4 ; -8 ; 16 ; -32 ; 64 \dots$$

Associer à chacune de cette suite une relation ci-dessous qui permet d'obtenir un terme en fonction de ses prédédecesseurs:

1.
$$u_n + u_{n+1} = u_{n+2}$$

1.
$$u_n + u_{n+1} = u_{n+2}$$
 2. $\frac{2}{u_n} = u_{n+1}$

3.
$$u_n + n = u_{n+1}$$

3.
$$u_n + n = u_{n+1}$$
 4. $-2 \times u_n = u_{n+1}$

5.
$$u_n + 3 = u_{n+1}$$

6.
$$u_n = n$$

Exercice 7

On considère une suite (u_n) dont on connait la valeur de ses cinq premiers termes:

$$u_0 = 0$$
 ; $u_1 = 11$; $u_2 = 20$; $u_3 = 27$; $u_4 = 32$

Parmi les expressions de suites ci-dessous, lesquelles permettent d'obtenir ces mêmes cinq premiers termes?

a.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n + n + 11 \text{ pour tout } n \in \mathbb{N} \end{cases}$$

b.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = -u_n + 3n + 11 \text{ pour tout } n \in \mathbb{N} \end{cases}$$

c.
$$\begin{cases} u_0 = 0 \\ u_{n+1} = u_n - 2n + 11 \quad \text{pour tout } n \in \mathbb{N} \end{cases}$$

d.
$$u_n = 13 \cdot n - 2 \cdot n^2$$
 e. $u_n = -n^2 + 12 \cdot n$

f.
$$u_n = 2 \cdot n^2 + 9 \cdot n$$

Exercice 8

- 1. On considère la suite (u_n) arithmétique de premier terme 2 et de raison -3. Déterminer les quatre premiers termes de la suite (u_n) .
- 2. On considère la suite (v_n) géométrique de premier terme 54 et de raison $\frac{1}{3}$. Déterminer les quatre premiers termes de la suite (v_n) .

Exercice 9

- 1. Déterminer les cinq premiers termes de la suite (u_n) arithmétique de premier terme 2 et de raison 3.
- 2. Déterminer les cinq premiers termes de la suite (v_n) arithmétique de premier terme 3 et de raison $-\frac{3}{2}$.

Exercice 10

On considère les deux suites de nombres ci-dessous dont on donne les sept premiers termes :

Pour chacune des questions, peut-on conjecturer que la suite est une suite arithmétique?

Si oui, donner le premier terme et la raison. Si non, justifier votre rejet de cette affirmation.

Exercice 11

Soit (u_n) une suite arithmétique de raison r. Compléter les expressions suivantes:

a.
$$u_{12} = u_5 + \dots$$

a.
$$u_{12} = u_5 + \dots$$
 b. $u_{57} = u_{38} + \dots$

c.
$$u_3 = u_8 + \dots$$
 d. $u_{23} = u_{38} + \dots$

d.
$$u_{23} = u_{38} + \dots$$

Exercice 12

On considère la suite $(u_n)_{n\in\mathbb{N}}$ arithmétique de premier terme 3 et de raison -2.

- 1. Déterminer la valeur des termes u_{12} et u_{43} .
- 2. Déterminer la valeur du rang n réalisant les égalités :

a.
$$u_n = -21$$
 b. $u_n = -57$

b.
$$u_n = -5$$

Exercice 13

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 ; $u_{n+1} = \frac{(n+2) \cdot u_n + 1}{n+1}$ pour tout $n \in \mathbb{N}$

- 1. Déterminer les quatre premiers termes de la suite (u_n) .
- 2. Conjecturer la nature de la suite (u_n) en justifiant votre démarche.

Exercice 14

- 1. Déterminer les quatre premiers termes de la suite (u_n) géométrique de premier terme 2 et de raison 3.
- 2. Déterminer les quatre premiers termes de la suite (v_n) géométrique de premier terme 3 et de raison $-\frac{3}{2}$.

Exercice 15

On considère les deux suites de nombres ci-dessous où sont donnés les six premiers termes :

a. 8 ; 4 ; 2 ; 1 ;
$$\frac{1}{2}$$
 ; $\frac{1}{4}$

Pour chacune des questions, peut-on conjecturer que la suite est une suite géométrique?

Si oui, préciser le premier terme et la raison. Sinon, justifier votre rejet de la conjecture.

Exercice 16

Soit (v_n) une suite géométrique de raison q. Compléter les expressions suivantes:

a.
$$u_7 = u_3 \times ...$$

a.
$$u_7 = u_3 \times \dots$$
 b. $u_{25} = u_{11} \times \dots$

c.
$$u_3 = u_8 \times \dots$$

c.
$$u_3 = u_8 \times \dots$$
 d. $u_{15} = u_{23} \times \dots$

Exercice 17

On considère la suite $(u_n)_{n\in\mathbb{N}}$ géométrique de premier terme $\frac{2^4}{3}$ et de raison $\frac{3}{2}$.

- Déterminer la valeur des termes u_{11} et u_{28} .
- Pour chaque question, déterminer le rang n réalisant l'égalité:

a.
$$u_n = \frac{3^8}{2^5}$$

a.
$$u_n = \frac{3^8}{2^5}$$
 b. $u_n = \frac{3^{19}}{2^{16}}$

Exercice 18

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0 = \frac{3}{8}$ et de raison 2. Déterminer les six premiers termes
- 2. Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q.
 - a. Pour passer du terme v_{11} au terme v_{14} , par combien de fois multiplie-t-on par la raison?
 - b. A partir des valeurs des deux termes suivants :

$$v_{11} = \frac{4}{7}$$
 ; $v_{14} = \frac{27}{14}$

 $v_{11}=\frac{4}{7} \quad ; \quad v_{14}=\frac{27}{14}$ Déterminer la valeur du premier terme et de la raison de la suite (v_n) .

3. Dans chacun des cas ci-dessous, la suite $(w_n)_{n\in\mathbb{N}}$ est une suite géométrique, déterminer son premier terme et sa raison:

a.
$$w_0 = 5$$
; $w_3 = 40$

a.
$$w_0 = 5$$
; $w_3 = 40$ b. $w_3 = \frac{3}{8}$; $w_6 = -\frac{3}{64}$

c.
$$w_{124} = 2 \times 10^{-4}$$
; $w_{128} = \frac{1}{8}$

Exercice 19

Soit $\left(u_n\right)_{n\in\mathbb{N}}$ une suite dont on connait la valeur des deux termes suivants : $u_6=36\quad;\quad u_{10}=\frac{9}{4}$

$$u_6 = 36$$
 ; $u_{10} = \frac{9}{4}$

Montrer qu'il existe au moins deux suites géométriques vérifiant ces conditions.

Exercice 20

Ci-dessous sont représentés les six premiers "flocons de Helge Von Koch" représentant un des fractales les plus simples:

Pour passer d'une construction à la suivante, on réalise la manipulation suivante sur chaque segment:

Chaque segment est partagé en trois parties égales (étape 1). On construit un triangle équilatéral sur le segment du milieu (étape 2). On efface le segment du milieu (étape 3).

- a. Le passage de l'étape n°0 à l'étape n°1 fait apparaitre un triangle équilatéral. Surligner ce triangle en rouge.
 - b. Combien de segment comprend la figure de l'étape ${\bf n}^o 1$? Combien de triangles équilatéral apparaitront à l'étape $n^o 2$? Surligner ces triangles en rouge.
- 2. On note (u_n) la suite numérique dont le terme de rang nest le nombre de segments composant la figure à l'étape $n^{i\grave{e}me}$:
 - a. Justifier par une phrase que la suite (u_n) vérifie la re $u_{n+1} = 4 \cdot u_n$
 - b. Exprimer le terme u_n en fonction de son rang n.
 - c. Combien de segments comprend la figure de l'étape $n^{o}5$?
- 3. On suppose que le segment [AB] initial a pour longueur 1. On note (v_n) la suite numérique dont le terme de rang n est la longueur de la ligne polygone formant la figure à l'étape n^{ième}:
 - a. Justifier par une phrase que la suite (v_n) vérifie la re $v_{n+1} = \frac{4}{2} \cdot v_n$
 - b. Exprimer le terme v_n en fonction de son rang n.

Exercice 21

On considère la suite (u_n) définie par :

$$u_0 = 3$$
 ; $u_{n+1} = 9 \times 2^n - u_n$

- 1. Déterminer la valeur des quatre premiers termes de la suite (u_n) .
- Conjecturer la nature de la suite (u_n) en justifiant votre démarche.

Exercice 22

1. Justifier brièvement que les premiers termes de la suite (u_n) présentés ci-dessous peuvent être les termes d'une suite aritmétique dont on précisera la raison :

 $u_0 = 2$; $u_1 = \frac{9}{2}$; $u_2 = 7$; $u_3 = \frac{19}{2}$

Justifier brièvement que les premiers termes de la suite (v_n) présentés ci-dessous peuvent être les termes d'une suite géométrique dont on précisera la raison :

 $v_0 = 24$; $v_1 = 6$; $v_2 = \frac{3}{2}$; $v_3 = \frac{3}{8}$

Justifier brièvement que les premiers termes de la suite (w_n) ne représentent ni les premiers termes d'une suite arithmétique, ni les premiers termes d'une suite géomé-

 $w_0 = 1$; $w_1 = 2$; $w_2 = 4$; $w_3 = 16$

Exercice 23

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique dont on connait deux termes :

 $u_4 = 12$; $u_{22} = -24$

Donner, en justifiant votre démarche, les éléments caractéristiques de cette suite.

Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique dont on connait deux

 $v_4 = 8 \quad ; \quad v_7 = \frac{64}{27}$

Donner, en justifiant votre démarche, les éléments caractéristiques de cette suite.

Exercice 24

1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ arithmétique dont on connait les valeurs des deux termes suivants :

 $u_{10} = 5$; $u_{16} = 14$

Déterminer le premier terme u_0 et la raison de cette suite.

On considère la suite $(v_n)_{n\in\mathbb{N}}$ géométrique dont on connait les valeurs des deux termes suivants :

 $v_4 = 96$; $v_7 = \frac{3}{2}$

Déterminer le premier terme v_0 et la raison de cette suite.

Exercice 25

1. On considère la suite (u_n) définie par : $u_n = n^2 + n + 2$ pour tout entier $n \in \mathbb{N}$

Etablir que la suite (u_n) n'est pas une suite géométrique.

2. On considère la suite (v_n) définie par :

 $v_n = \frac{1}{n^2 + 2}$ pour tout entier $n \in \mathbb{N}$

Etablir que la suite (v_n) n'est pas une suite arithmétique.

Exercice 26

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation : $u_0=8 \quad ; \quad u_{n+1}=\frac{1}{2}u_n-5 \quad \text{pour tout entier naturel } n.$

- 1. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par : $v_n=u_n+10$ pour tout $n\in\mathbb{N}$
 - a. Montrer que la suite (v_n) vérifie la relation suivante pour tout entier naturel n:

 $v_{n+1} = \frac{1}{2} \cdot v_n$

- b. Donner la nature de la suite (v_n) ainsi que ses éléments caractéristiques.
- c. Donner la formule explicite donnant l'expression du terme v_n en fonction de son rang n.
- 2. Déduire des questions précédentes, la formule explicite de la suite (u_n) .

Exercice 27

Soit (u_n) définie par son premier terme u_0 et, pour tout entier naturel n, par la relation :

 $u_{n+1} = a \cdot u_n + b$ (a et b réels non nuls tels que $a \neq 1$)

On pose, pour tout entier naturel $n: v_n = u_n - \frac{b}{1-a}$

Démontrer que, la suite (v_n) est géométrique de raison a.

Exercice 28

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie : $u_0=4 \quad ; \quad u_{n+1}=\frac{-u_n+6}{u_n-2} \quad \text{pour tout entier naturel } n.$

- 1. Déterminer les trois premiers termes de la suite (u_n) .
- 2. Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par la relation :

 $v_n = \frac{u_n + 2}{u_n - 3}$ pour tout entier naturel n.

a. Déterminer les trois premiers termes de cette suite.

b. Montrer que : $\frac{v_{n+1}}{v_n} = -\frac{1}{4}$

- c. En déduire la nature de la suite (v_n) ainsi que la formule explicite déterminant le terme de rang n en fonction de n.
- 3. a. Déterminer l'expression du terme u_n en fonction du terme v_n .
 - b. En déduire la formule explicite définissant les termes de (u_n) en fonction de n.

Exercice 29

On considère les constructions suivantes :

On note (u_n) la suite numérique définie sur \mathbb{N}^* où u_n représente le nombre d'allumettes nécessaire à la construction de la $n^{\text{ième}}$ étape.

Conjecturer une relation de récurrence entre un terme de la suite (u_n) et de son prédécesseur.