

E103-W01 产品规格书

ESP8266EX 串口转 WiFi 模块

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co.,Ltd.

目录

第一章 产品概述	2
1.1 产品简介	2
1.2 特点功能	2
1.3 应用场景	2
第二章 规格参数	3
2.1 极限参数	3
2.2 工作参数	3
第三章 机械尺寸与引脚定义	4
第四章 推荐连线图	6
第五章 封装要求	6
第六章 快速入门	7
6.1 模块作为 STA 建立 TCP CLIENT 与服务器通信	7
6.1.1 网络连接	7
6.1.2 建立本地服务器	<i>8</i>
6.1.3 测试底板与模块的安装	8
6.1.4 设置模块 WIFI 模式为 Station 模式	9
6.1.5 设置模块 Socket 模式为 TCP Client 模式	
6.1.6 数据发送之指定宽度发送	
6.1.7 数据发送之透明传输	11
6.1.7 开机透传	12
6.1.8 退出透传	
6.2 模块作为 AP 建立 TCP SERVER 与客户端通信	14
6.3 智能配网的使用	16
6.4 GPIO 的使用	17
6.5 ADC 的使用	17
6.6 修改串口波特率	17
6.7 低功耗的使用	18
第七章 组网说明	18
7.1 组网角色	18
7.2 组网模型	19
第八章 AT 指令	21
第九章 硬件设计	22
第十章 常见问题	23
10.1 传输距离不理想	23
10.2 模块易损坏	23
10.3 误码率太高	23
第十一章 焊接作业指导	24
11.1 回流焊温度	24
11.2 回流焊曲线图	24
第十二章 相关型号	25
第十三章 批量包裝方式	25
修订历史	26
关于我们	26

第一章 产品概述

1.1 产品简介

E103-W01 是一款超高性价比的 100mW 串口转 Wi-Fi 模块,贴片小体积封装,工作在 2.4^2 2. 4835GHz 频段。模块可使用串口进行数据收发,降低了无线应用的门槛。

E103-W01 模块是成都亿佰特电子科技公司有限公司基于乐鑫公司的 ESP8266EX 芯片研发。模块集成了透传功能,即拿即用,支持串口 AT 指令集,服务器 AT 指令集,用户通过串口即可使用网络访问的功能,广泛应用于穿戴设备、家庭自动化、家庭安防、个人保健、智能家电、配饰与遥控器、汽车、照明、工业互联网等领域。

E103-W01 模块支持标准的 IEEE802.11b/g/n 协议和完整的 TCP/IP 协议栈,支持 STA/AP/STA+AP 工作模式、支持 SmartConfig、串口透传、IO 口控制、开机透传、AD 检测等功能,简单配置后便可以非常便利的实现网络访问功能,最大限度减少开发者的工作和项目开发时间。

1.2 特点功能

- 理想条件下,通信距离 100m;
- 最大发射功率 100mW, 软件多级可调;
- 支持全球免许可 ISM 2.4GHz 频段;
- 210ms 开机透传,掉线自动连接。
- 支持 SmartConfig Airkiss 智能配网方式。
- 支持 3.0~3.6V 供电,大于 3.3V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- PCB 板载天线,自带天线无需再外接天线。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

主要参数	性能		备注	
主安参 数	最小值	最大值	金 注	
电源电压(V)	0	3.6	超过 3.6V 永久烧毁模块	
阻塞功率 (dBm)	_	10	近距离使用烧毁概率较小	
工作温度 (℃)	-40	85	工业级	

2.2 工作参数

-) 冊 	性能			A7 334
主要参数	最小值	典型值	最大值	- <u>备注</u>
工作电压(V)	3.0	3.3	3.6	≥3.3V 可保证输出功率
通信电平(V)		3.3		使用 5V TTL 有风险烧毁
工作温度(℃)	-40	_	+85	工业级设计
工作频段(MHz)	2402	_	2483	支持 ISM 频段
最大发射功率(dBm)	19. 6	20.0	20.5	
WiFi 版本	_	802.11		b/g/n
Tx802.11b, CCK11Mbps, POUT=+17dBm	_	170	_	mA
Tx802.11g,OFDM54Mbps,POUT=+15dBm	_	140	_	mA
Tx802.11n, MCS7, POUT=+13dBm	-	120	_	mA
Rx802.11b,1024bytes 包长,-80dBm	-	20	-	mA
Rx802.11g,1024bytes 包长,-70dBm	_	56	_	mA
Rx802.11n,1024bytes 包长,-65dBm	_	56	_	mA
部分睡眠	_	15	_	mA
睡眠	_	0.9	-	mA
深度睡眠	_	10	-	uA
关机	_	0.5	-	uA

主要参数	描述	备注
参考距离	100m	晴朗空旷环境,天线增益 5dBi, 天线高度 2.5 米
AT 支持	内置智能化处理	可通过 AT 命令读取
通信接口	UART 串口	TTL 电平
封装方式	贴片式	
接口方式	2.00mm	
外形尺寸	16 * 24 mm	
天线接口	PCB 板载天线	等效阻抗约 50 Ω
八以汝口	IPX 接口	→ XX 以 30 25

第三章 机械尺寸与引脚定义

E103-W01 引脚图

E103-W01-IPX 引脚图

引脚序号	引脚定义	I/0	功能及使用说明		
1	RST	Ι	模块复位引脚,低电平复	夏位	
2	ADC	Ι	ADC 输入引脚		
3	CH_PD	I	模块使能引脚,工作模式	(和下载模式均需要上	拉引脚
4	GPI016	I	GPI016(预留深度唤醒引	脚)	
5	GPI014	10	GPI014		
6	GPI012	10	GPI012		
7	GPI013	10	GPI013		
8	VCC	ı	设备供电 VDC:3.0~3.6V	(300mA以上)	
9	GND	1	GND 引脚		
10	GPIO15	I	GPI015/启动配置引脚		
11	GPI02	I	GPI02/启动配置引脚		
12	GPI00	I	GPI00/启动配置引脚		
13	GPI04	10	GPI04		
14	GPI05	10	GPI05		
15	RXD	Ι	UART 串口输入引脚,支持 AT 指令		
16	TXD	0	UART 串口输出引脚,支持 AT 指令		
	启动配置引脚		GPI015 GPI02 GPI00		GPI00
	从 Flash 启动		0 1 1		1
	串口下载程序		0	1	0

注意: GPIO2 出厂默认为模块工作状态的 log 输出引脚 TXD1,外部并连接有 LED 输出日志的状态指示,如果用户需要 查看模块的工作日志,可通过外部串口 RXD1 连接此脚,接收日志信息,另外,模块在启动时,GPIO2 必须处于高电 平;

第四章 推荐连线图

注意:供电电源必须保证在 3.0~3.6V,为保证模块能稳定工作,建议外部选择电流大于 500mA 的 LDO。

第五章 封装要求

注意:请尽量使用产品资料包中的封装。制作 E103-W01 贴片封装时,请不要在无功能的引脚下设置焊盘!

第六章 快速入门

- E103-W01 模块具有简单易用的特点。为了让用户能快速熟悉和模块,本节将引导用户经过简单的设置实现各种模式下的配置和通信。
- 测试过程使用的均为 AT 指令,为了用户进行快速连接,我们为用户开发了**快速配置软件**。
- 本节测试均使用配置软件进行操作,模块会对当前发出的指令进行**回显**,从而使用户快速的了解 AT 指令的用法,以便用户编写自己的 AT 串口指令(注意:每个 AT 指令后都需要加换行符)。
- 当然,用户熟悉 AT 指令之后,可以不使用配置软件,而使用串口调试助手手动发送 AT 指令。也可以不使用底板而使用外部控制器(CPU)直接连模块 UART 进行 AT 指令通信。

7 静压构带(6107 直接延快外 61111 201 ht 由 7 2016				
本节将用到的码	本节将用到的硬件:			
1	E103-W01 型号 Wi-Fi 模块 1 个			
2	E103-W01 型号 Wi-Fi 模块测试底板 1 个			
3	带 Wi-Fi 功能电脑 1 台			
4	路由器 1 个(可用手机 Wi-Fi 热点代替)			
本节将用到的	本节将用到的软件(均可在官网下载)			
1	E103-W01 配置软件			
2	TCP&UDP 测试工具			
3	串口调试助手			

6.1 模块作为 STA 建立 TCP Client 与服务器通信

在进行模块初步工作前,我们需要进行如下准备工作。

6.1.1 网络连接

电脑连接到路由器,测试路由器名称为H60-L02,用户根据自己的情况进行设置,并记录当前路由器给电脑分配的IP地址。如测试的电脑IP地址为: 192.168.1.50。

6.1.2 建立本地服务器

打开 TCP&UDP 测试工具建立一个 TCP 服务器: 端口 6000。选中后点击启动服务器。此时电脑端 TCP 服务器开始侦听 6000端口,其他网络设备可以与之建立连接并通信。

6.1.3 测试底板与模块的安装

E103-W01 模块具有配套的测试底板 E103-W01-BF, 底板存在作用与意义在于让用户能够快速高效的熟悉 E103-W01 模块的使用,用户在初次使用 E103-W01 模块时,可以使用该底板进行辅助开发,E103-W01-BF 底板文档手册可在官网进行下载,的 E103-W01-BF 底板如下图所示:

将 E103-W01 模块按下图所示,插入测试底板,将 VCC 短接帽进行短接,GPI00 的短接线不用短接,如下图所示:

然后让底板接入电脑 USB 接口, 若电脑端无法识别底板, 请下载 CP2102 驱动, AP 模式是 E103-W01 模块默认的出厂状态, 该状态下相当于 Wi-Fi 路由器, 通过手机或电脑的无线网络功能即可搜索到名为 EBT_XXXXXXX (XXXXXXX 为 MAC 地址后三个字节, 出厂状态默认无密码。

6.1.4 设置模块 WIFI 模式为 Station 模式

- a. 打开 Wi-Fi 配置软件,在左下角选择端口号后,自动打开串口。
- b. 此时串口状态变为打开。单击 STATION 设置按钮,进入设置界面。
- c. 修改需要连接名称和密码,本次测试路由名称为 Ebyte,密码 e30e31e32。
- d. 然后单击: 进入 Sta 模式,将模块模式修改为 STATION。
- e. 单击连接路由器,等几秒后返回如下图所示即表示模块与路由器连接成功。 此时用户可以点击 IP 信息查询,查询 IP 信息。

6.1.5 设置模块 Socket 模式为 TCP Client 模式

单击 Client 设置,修改远端端口为 6000 (电脑 TCP 服务器端口对应),修改服务器 IP 为 192. 168. 1. 50 (服务器 IP,即电脑 IP),点击建立连接按钮。

如图: 若返回 "CONNECT OK"则表示已连接上 TCP 服务器。

此时服务器端显示当前有设备连接 IP 地址为 192. 168. 1. 70 (路由器分配给模块的 IP 地址)

6.1.6 数据发送之指定宽度发送

在上面几节中,我们已经建立好了相关的通信链路,那么现在我们就可以进行数据交互了,在数据交互中,E103-W01 支持指定宽度发送与透明传输类型,在本节,我们将演示指定宽度发送的过程。

使用 AT+CIPSEND 指令发送数据,首先发送 AT+CIPSEND=6 指定发送 6 字节长度。

待显示 ">" 符号后, 发送数据 "123456", 可以看到 TCP 服务器端接收到数据 "123456"。 数据通讯完成。

6.1.7 数据发送之透明传输

第6节中发送数据步骤是先发送数据长度再发数据,实际操作比较麻烦,因此模块提供透明传输功能,即配置完成以后 可实现模块输入数据直接传输的到 TCP 服务器端,而不需要 AT 协议参与。

具体设置方法:在连接上服务器的情况下单击"进入透传模式"(AT+CIPMODE=1),然后发送 AT+CIPSEND 即可进入透传 模式。

此时模块不再接收 AT 指令,通过串口发送的数据直接发送到服务器端。如继续发送 AT+CIPSEND,模块会把 AT+CIPSEND 当作数据直接传输到 TCP 服务器。服务器发送的数据也由模块直接输出。

6.1.7 开机透传

若用户每次开机连接都需要重复以上连接步骤,操作比较繁琐,初始化时间较长,为提升工作做效率,模块提供开机透 传功能。

使用开机透传功能之后,用户只需要配置一次路由连接和 TCP 连接,模块重启或重新上电时,将自动连接设定的路由器, 然后连接到指定的 TCP 服务器,用户只需待 TCP 连接完成以后,直接发送数据。

点击 "开机透传"选项,输入对应 Wi-Fi 名称和密码,单击开机 Wi-Fi 按钮,收到如下信息则表示 Wi-Fi 设置并连接 成功。

按实际地址输入服务器 IP 地址,端口号,选择 TCP 模式,然后单击开机透传,如下,返回 OK 表示设置成功。

最后点击重新启动按钮或模块重新上电,重启以后模块将自动连接上面步骤所设置的路由器和地址,连接上 TCP 服务器以后即可直接发送和接收数据。如图

E103-W01 产品规格书

成都亿佰特电子科技有限公司 E103-W01 产品规格书

E103-W01 开机透传模式下, 仅需 210ms 即可连接到无线网络。

6.1.8 退出透传

进入透传模式后,AT 指令失效。若要重新进入AT 模式可发送"+++"退出透传模式,退出透传模式后,若要关闭开机透传模式(下次重新启动不再进入透传)则可使用AT 指令关闭开机透传。 具体操作如下:

点击"退出透传状态"按钮(发送"+++",无换行符),此时进入AT指令模式,再单击"关闭透传",此时下面接收窗口应有回显。设置完成以后重新启动或上电将不再自动进入透传模式。

这里需要说明一下:如果模块的 Socket 模式为 TCP Server 时,是不支持透明传输的。

6.2 模块作为 AP 建立 TCP Server 与客户端通信

在上面的章节中,我们详细的介绍了模块在连接 AP,创建 Socket 的使用过程,在本章节中,我们将简述 E103-W01 作为 AP 建立 TCP Server 的通信过程。

默认出厂模式下,模块作为 AP 的 IP 地址是 192. 168. 4. 1,查看 PC 的无线网络状态,能看到下图的信息说明 PC 成功连接上模块,所以请用户务必要要对此进行确认,确保测试的成功。

若用户已更改模块相关参数,可使用恢复出厂状态 AT 指令,让模块恢复出厂状态,也可以进入 AP 设置,设置相关的参数。 在确认电脑已连接到模块的情况下,在打开"Server 设置"选项,先单击"开启多连接"(开启多连接需要退出透传模式),然后单击"建立服务器",接收信息如下则表示服务器建立完成。

电脑端使用 TCP&UDP 测试工具创建 TCP 客服端,目标 IP:192.168.4.1 端口: 1001。

点击连接按钮,此时模块应输出下图所示: "0, CONNECT" (0表示连接 ID),表示有客户端连接到模块 (最多支持 5 个)。 电脑发送数据,模块输出: "+IPD, 0, 15: XXXXXXXXX" (+IPD: 指令 0:连接 ID 15: 数据长度 XXXXXXX: 数据) 模式发送数据时需要指定连接 ID: AT+CIPSEND=0, 10表示向连接 0 发送 10 个字节数据。

6.3 智能配网的使用

E103-W01 拥有一键配网功能,用户可通过该功能使用手机 APP 配置模块,使其快速连入网络。在智能配网方式中,E103-W01 模块支持乐鑫官方的 Smartconfig 与微信的 Airkiss 协议,下面,以 Smartconfig 为例,介绍智能配网的使用。

在模块处于 STATION 模式下,发送指令 "AT+CWSTARTSMART"即可进入 Smart Config 模式,该模式下模块等待手机端进行配置。

打开下载安装好的 EspTouch APP(公司官网有提供),并进入应用软件的界面,软件会自动检测手机当前连接的 ap(热点),这个热点也就是我们的 E103-W01 即将接入的热点,在 Password 一栏填写 AP 的热点,点击确认,等待模块接入网络。

模块接入后,显示如下:

6.4 GPIO 的使用

E103-W01 Wi-Fi 模块提供 5 个 GPI0 接口: GPI04\GPI05\GPI012\GPI013\GPI014,用户可通过 AT+SYSI0 系列的指令对引脚进行相关设置,其中指令如下:

AT 指令	指令属性
AT+SYSIOSETCFG	设置 GPIO 工作模式
AT+SYSIOGETCFG	查询 GPIO 工作模式
AT+SYSGPIODIR	设置 GPIO 工作为输入输出
AT+SYSGPIOWRITE	设置 GPIO 的输出电平;
AT+SYSGPIOREAD	读取 GPIO 的电平状态;

6.5 ADC 的使用

E103-W01 Wi-Fi 模块提供 1 个 10 位精度 ADC,可检测 $0.0V\sim1.0V$ 电压,用户可通过 AT 指令(AT+SYSADC?)读取当前 ADC 值。然后通过计算获得真实电压。

输入电压=ADC 值/1024 如: 读取 ADC 值为 45, 真实电压=45/1024=0.044V。

6.6 修改串口波特率

E103-W01 Wi-Fi 模块支持 10 种标准串口波特率,用户不能将波特率设置到标准以外,如在调试时出现误操作,请重新烧录固件或联系我公司协助处理。

用户通过发送 AT+UART 系列的指令即可修改串口相应参数,如:

AT+UART_CUR=115200, 8, 1, 0, 0 (临时的设置, 重启后失效);

AT+UART_DEF=115200, 8, 1, 0, 0 (保存在 flash, 重新上电后仍然生效)

E103-W01 支持的串口属性,如下:

	0000
	9600
	19200
	38400
	57600
支持波特率	115200
	230400
	256000
	460800
	921600
	NONE, 无校验位
校验位支持	EVEN,偶校验
	ODD,奇校验
	5 位
数据位	6 位
数据 [*] U	7位
	8 位
停止位	1位
停止位	2位

6.7 低功耗的使用

目前,E103-W01 支持 modem-sleep 休眠模式与 Light-sleep 休眠模式,默认为 modem-sleep 休眠模式,要想进入这 2 种休眠,需保证模块处于 STA 模式下,并且成功连接 AP,才能正常进去休眠。

休眠模式	休眠电流	备注	
modem-sleep	15mA	STA 模式下,且连接 AP	
Light-sleep	<3mA	STA 模式下,且连接 AP	

使用 AT+SLEEP 指令设置或查询功耗相关模式,客户可以再搭配 AT+WAKEUPGPIO 设置唤醒引脚,AT 指令详情可见公司官 网《ESP8266 官方 AT 指令集》。

第七章 组网说明

7.1 组网角色

序号	备注	
1	E103-W01 模块作为物理连接角色支持 AP 模式 (相当于路由器), STATION 模式 (相当于 Wi-Fi 设备), 在 AP 模式下最多支持 8 个 Wi-Fi 设备接入。	
2	E103-W01 模块作为 Socket 角色包括 TCP Server、TCP Client 和 UDP。在 TCP Server 模式下最多支持 5 个 Socket 连接。基于 TCP 的连接机制,若需要长时间处于连接状态,请注意应使用 TCP 心跳包。	

7.2 组网模型

模块在 STATION 模式建立 TCP Client 与远端服务器连接通信 (典型应用)

该组网模型可满足家庭物联网、智能抄表、实时监控等应用,模块可实时的与网络服务器进行数据交换。用户通过与网络服务器交互可实时的对模块端进行各种操作。

模块在 STATION 模式建立 TCP Server 与 Wi-Fi 设备连接通信

该组网模型与第一种类似,不同的是模块在 STATION 模式下建立的是 TCP Server 而不是 TCP Client。该模式在联网的条件下,最多可以支持 5 个远端设备连接。

一个模块在 AP 模式建立 TCP Server, 其他模块在 STATION 模式建立 TCP Client 与之相互通信

该组网模型可简称为模块内组网,一个AP模式下的模块最多连接8个STATION,即在网内最多拥有9个模块设备。在完成 内组网完成条件下TCP Server 可建立在任意模块上,余下8个模块可使用TCP Client 与之进行通信(但同时接入TCP server 的客户端不能超过5个)。

第八章 AT 指令

	本节仅列举部分 AT 指令供用户参考, 更多 AT	指令集请参考附件中《ESP8266 官方 AT 指令集》	
	AT+SYSIOSETCFG-设置 IO 工作模式		
1	AT+SYSIOSETCFG= <pin>, <mode>, <pull-up> 响应: OK</pull-up></mode></pin>	 (pin): IO 管脚号 (mode): IO 工作模式 (pull-up) 0: 不使能上拉 1: 使能上拉 	
	AT+SYSIOSETCFG=12,3,1 //设置 GPI012 工作为 GP 注:目前 E103-W01 仅提供 GPI04\GPI05\GPI012\GP		
2	AT+SYSIOGETCFG-查询 IO 工作模式 AT+SYSIOGETCFG= <pin> 响应: +SYSIOGETCFG:<pin>, <mode>, <pull-up> OK</pull-up></mode></pin></pin>	 	
	示列: AT+SYSIOGETCFG=4		
3	AT+SYSGPIODIR-设置 GPIO 工作为输入输出 AT+SYSGPIODIR= <pin>, <dir> 响应: 如果成功,提示 OK 如果 IO 管脚不处于 GPIO 模式,则提示 NOT GPIO MODE! ERROR</dir></pin>	• <pin>: GPIO 号 • <dir>: • O: 设置 GPIO 为输入 • 1: 设置 GPIO 为输出</dir></pin>	
	示列: AT+SYSIOSETCFG=12, 3, 1 //设置 GPI012 工作为 GPI0 模式 AT+SYSGPI0DIR=12, 0 //设置 GPI012 为输入		
4	AT+SYSGPIOWRITE-设置 GPIO 的输出电平 AT+SYSGPIOWRITE= <pin>, <level>响应: 如果成功,提示 OK 如果 IO 管脚不处于输出模式,则提示 NOT OUTPUT! ERROR</level></pin>	• <pin>: GPIO 号 • <level>: • 0: 低电平 • 1: 高电平</level></pin>	
	示列: AT+SYSIOSETCFG=12, 3, 1 //设置 GPI012 工作为 GPI0 模式 AT+SYSGPIODIR=12, 1 //设置 GPI012 为输出		

	AT+SYSGPIOWRITE=12,1 //设置 GPI012 输出高电平		
	AT+SYSGPIOREAD-读取 GPIO 的电平状态		
	响应:	• <pin>: GPIO 号</pin>	
	• 如果成功,返回	• <dir>:</dir>	
	+SYSGPIOREAD: <pin>, <dir>, <level></level></dir></pin>	▶ 0: 设置 GPIO 为输入	
	OK	▶ 1: 设置 GPIO 为输出	
	• 如果 IO 管脚不处于输出模式,则提示	• <level>:</level>	
		▶ 0: 低电平	
5	ERROR	▶ 1: 高电平	
	示列:		
	AT+SYSIOSETCFG=12,3,1 //设置 GPI012 工作为 GPI0 模式		
	AT+SYSGPIODIR=12,0 //设置 GPI012 为输入		
	AT+SYSGPIOREAD=12		
	AT+SYSADC? 查询 ADC 值		
	响应:	<adc>: 查询到的 ADC 值,单位: 1/1024V</adc>	
6	+SYSADC: <adc></adc>		
	OK		
	示列: AT+SYSADC?		

第九章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以 及接收灵敏度:
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可 以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强 度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5. 1k 电阻 (不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的天 线延长线,将天线延伸至机壳外部;

天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第十章 常见问题

10.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差。
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

10.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏。
- 请检查电源稳定性, 电压不能大幅频繁波动。
- 请确保安装使用过程防静电操作,高频器件静电敏感性。
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件。
- 如果没有特殊需求不建议在过高、过低温度下使用。

10.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第十一章 焊接作业指导

11.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235°C	230−250°C
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

11.2 回流焊曲线图

第十二章 相关型号

产品型号	芯片方案	工作频率 Hz	发射功率 dBm	通信距离	通信协议	产品尺寸	通信接口	天线形式
<u>E103-W01</u>	ESP8266EX	2. 4G	20	100	802.11b/g/n	16*24	UART	PCB
<u>E103-W01-IPX</u>	ESP8266EX	2. 4G	20	100	802.11b/g/n	16*24	UART	陶瓷/IPX
E103-W02	CC3200	2. 4G	20	300	802.11b/g/n	19*27	UART	PCB/IPX
E103-W02DTU	CC3200	2. 4G	20	300	802.11b/g/n	82*62*25	232/485	SMA-K

第十三章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2017-7-1	初始版本	huaa
1.1	2018-3-12	内容更新	huaa
1.2	2018-8-7	内容更新	Huaa
1.3	2018-11-2	版本更新	Huaa
1.4	2019-3-8	错误修正	Ray

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.ebyte.com</u> 公司地址: 四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

