

A COMBINED FIT TO THE HIGGS BRANCHING RATIOS AT 250 GEV

3rd FCC-France / Higgs & ElectroWeak Factory Workshop, Annecy

OUTLINE

Event selection

 $Z \to \mu^+ \mu^-, e^+ e^-$. Cut-based. All Higgs decays, only uses the Z.

Higgs classes

Handcrafted. E.g. (btag1 > 0.9) & (btag2 > 0.9) & (no IsoLepton).

Higgs BRs

Obtain $\mathcal B$ and correlations from fit. Matrix from large MC samples per Higgs decay and background.

EVENT

Selection only on information from decay of the primary Z boson.

Step 0: Find a lepton pair.

Jonas Kunath - Combined Higgs fit

EVENT SELECTION

Step 0: Find a lepton pair.

EVENT SELECTION

step 1: $(M_7 > 86.19) & (M_7 < 96.19)$ step 2: $(M_{cool} > 123) & (M_{cool} < 130)$ 1750 2f leptonic 1500 4f leptonio 4f semilentonic 1250 other higgs 1000 Mrecoil 3000 2000 1000 step 3: $|\cos\theta_Z| < 0.9$ 7000 6000 5000 cosθ₂ 4000 3000 2000 1000

Step 0: Find a lepton pair.

SELECTION

step 1: $(M_7 > 86.19) & (M_7 < 96.19)$ step 2: $(M_{cool} > 123) & (M_{cool} < 130)$ 1750 2f leptonic 1500 4f leptonio 4f semilentonic 1250 other higgs 1000 Mrecoil 3000 2000 1000 125 130 135 140 step 3: $|\cos\theta_Z| < 0.9$ step 4: $|\cos\theta_{miss}| < 0.9$ 7000 200 6000 5000 cosθ₂ 4000 3000 2000 1000 -1.0

Step 0: Find a lepton pair.

EVENT SELECTION

Step 0: Find a lepton pair.

ANALYSIS GOAL

Production mode

- He⁺e[−] ✓✓
- $H\mu^{+}\mu^{-}$
- $H\tau^+\tau^-$
- Hνν̄ ✓?
- Hqq̄ ✓

Decay mode

- *H* → *WW* ✓
- $H \rightarrow gg \checkmark$
- $H \rightarrow \tau \tau \checkmark$
- $H \rightarrow cc \checkmark$
- $H \rightarrow ZZ \checkmark$

- $H \rightarrow \gamma \gamma \checkmark$
- $H \rightarrow \gamma Z \checkmark$
- $H \rightarrow \mu\mu \checkmark \checkmark$
- $H \rightarrow inv. \checkmark$
- *H* → ... ✓

This analysis does not replace standard analyses. But it is a powerful tool for the production modes that it can tackle.

OUTLINE

Event selection

 $Z \to \mu^+ \mu^-, e^+ e^-$. Cut-based. All Higgs decays, only uses the Z.

Higgs classes

Handcrafted. E.g. (btag1 > 0.9) & (btag2 > 0.9) & (no IsoLepton).

Higgs BRs

Obtain $\mathcal B$ and correlations from fit. Matrix from large MC samples per Higgs decay and background.

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- Construct categories to separate the decay modes (& background) as well as possible
- 3. Fit the Higgs branching ratios to the observed category counts.

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- 2. Construct categories to separate the decay modes (& background) as well as possible.
- Fit the Higgs branching ratios to the observed category counts.

1% Higgs invisible

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- 2. Construct categories to separate the decay modes (& background) as well as possible.
- 3. Fit the Higgs branching ratios to the observed category counts.

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- 2. Construct categories to separate the decay modes (& background) as well as possible.
- 3. Fit the Higgs branching ratios to the observed category counts.

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- 2. Construct categories to separate the decay modes (& background) as well as possible.
- 3. Fit the Higgs branching ratios to the observed category counts.

- 1. Build samples with all Higgs decay modes (Higgsstrahlung, $Z \rightarrow (e^+e^-, \mu^+\mu^-)$).
- 2. Construct categories to separate the decay modes (& background) as well as possible.
- 3. Fit the Higgs branching ratios to the observed category counts.

IMPLEMENTATION WITHIN ILC

Reconstructed events from $\sqrt{s} = 250$ GeV MC2020 ILD mass production.

- $\sqrt{s} = 250$ GeV ideal for the Higgsstrahlung process.
 - $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$ as signal channels.
 - $\geq 400 k$ simulated events/Standard Model decay mode.
- Considered backgrounds: Standard model processes with 2 or 4 fermions in the final state.
- For FCC Workshop: Unpolarized beams.
- 2000 fb⁻¹ integrated luminosity.

OUTLINE

Event selection

 $Z \to \mu^+ \mu^-, e^+ e^-$. Cut-based. All Higgs decays, only uses the Z.

Higgs classes

Handcrafted. E.g. (btag1 > 0.9) & (btag2 > 0.9) & (no IsoLepton).

Higgs BRs

Obtain $\mathcal B$ and correlations from fit. Matrix from large MC samples per Higgs decay and background.

OPTIMIZATION - SETUP

FIT

BRs from minimization through MINUIT/iminuit.

- MC2: Will be replaced by the detector data.
- $\vec{S} = M \cdot \vec{B} = \vec{f}(\vec{B})$, with
 - \vec{S} : The signal counts per category (S = data bkg). MC2.
 - M: The matrix built from simulated events, as outlined above. MC1.
 - \vec{B} : The target. Use e.g. the Standard Model BRs as fit starting values.
- The cost function: Multinomial log-likelihood.
 - $-\ln\mathcal{L} = -N_{\mathrm{data}} \sum_{i} S_{i} \ln \left(\sum_{j} M_{ij} B_{j} \right)$.
 - $B_{H \to ZZ^*} = 1 \sum_{i \neq H \to ZZ^*} B_i$.

OPTIMIZATION - RESULTS

The fitted BR^{min} reproduces BR^{true} within its uncertainties. $\sigma_{B_{H\to ZZ^*}}$ through uncertainty propagation.

FIT

FIT IN A NON-SM SCENARIO

FIT

POLARIZATION AND BACKGROUND LEVEL

POLARIZATION AND BACKGROUND LEVEL

CONCLUSIONS

Table – Results of a fit on the expected event counts. In percent, ILD preliminary.

- More work needed:
 - Better categories.
 - Exotic Higgs decays.
- + Extraction of major branching ratios from single analysis.
 - \rightarrow Correlation matrix.
- + Independent of σ_{ZH} and $\sigma_{\text{VV-fusion}}$.
- + Can automatically adapt to BR scenarios drastically different from SM.

	SM BR	$\sigma_{ m stat}$
H o bb	57.72	1.06
$H \to WW$	21.76	1.48
H o gg	8.55	0.88
H o au au	6.20	0.72
$H \to cc$	2.72	0.71
H o ZZ	2.62	2.09
$H \to \gamma \gamma$	0.24	0.21
$H o \gamma Z$	0.17	0.36
$H \to \mu\mu$	0.03	0.12
$H \rightarrow inv$.	0.00	0.44

6 BACK-UP

OPTIMIZATION - VALIDITY CHECK

BACK-UP

Toy study: Draw from multinomial (N_{data} fixed).

Shown: 2 of the toy fit distributions for multinomial $\ln \mathcal{L}$ with [0, 1] boundaries.

FIT IN A NON-SM SCENARIO

Jonas Kunath - Combined Higgs fit

EXPECTED COUNTS PER (CATEGORY, BR) PAIR

BR CORRELATIONS WITH THE CURRENT CATEGORIES

Higher correlations motivate improvements in the category definition. Needed to include the results in a global fit. Also needed for the last BR:

$$B_{ZZ^*} = 1 - \sum_{i \neq ZZ^*} B_i \Rightarrow \sigma_{ZZ^*}^2 = \sum_{i \neq ZZ^*} \sum_{j \neq ZZ^*} \rho_{ij} \sigma_i \sigma_j$$

THE INTERNATIONAL LINEAR COLLIDER (ILC)

BACK-UP

- Linear e^+e^- collider.
- Polarized beams.
- Initial stage $\sqrt{s} = 250$ GeV (considered here).
- Upgradable (350 GeV, 500 GeV, 1 TeV).

ILC Technical Design Report (2013)

The International Linear Collider: A Global Project: arXiv:1903.01629

THE INTERNATIONAL LARGE DETECTOR (ILD)

BACK-UP

HCAL

ECAL

Based on the Particle Flow approach.

ReamCAL LHCAL LumiCAL FTD/SIT

Interim Design Report: arXiv:2003.01116

COMPARISON WITH GLOBAL COUPLING FITS

- [1], [2] use existing analyses and combine them to extract a combined sensitivity for the Higgs boson couplings.
- [1] scaled to the H-20 ILC250 scenario.
- This fit is our approach.
 - A single analysis directly fitting the branching ratios to data.
 - So far only $Z \to e^+e^-$, $Z \to \mu^+\mu^-$.
 - Only statistical uncertainty.

- [1] J. Tian, K. Fujii Measurement of Higgs boson couplings at the International Linear Collider.
- [2] SFitter Measuring Higgs Couplings at a Linear Collider.

HIGGSSTRAHLUNG

- $Z \to \mu^+ \mu^-, Z \to e^+ e^-$:
 - IsolatedLeptonTagger : Lepton pair with same type and opposite charge.
 - Final state radiation : Add photons with $\cos \theta_{1\gamma} > 0.99$.

Golden channels due to recoil mass method, $M_{\text{recoil}}^2 = s + M_Z^2 - 2\sqrt{s} \cdot E_Z$.

• Higgs:

Event selection that keeps events with all Higgs decays.

HIGGSSTRAHLUNG

• $Z \to \mu^+ \mu^-, Z \to e^+ e^-$:

Golden channels due to recoil mass method, $M_{\text{recoil}}^2 = s + M_Z^2 - 2\sqrt{s} \cdot E_Z$.

• $Z \rightarrow \tau^+ \tau^-$:

Event tagging on the τ is complicated.

- Large τ decay opening angle (low E_{τ}).
- Divers environment from the Higgs decay.
- $Z \rightarrow \nu \bar{\nu}$:
 - Significant WW-fusion contribution in $\nu \bar{\nu} H$.
 - Cannot tag event on ν .
 - + Only Higgs boson (and beam overlay) in event.
 - + 6× higher cross section.
- $Z \to q\bar{q}$:
 - + Hightest cross section.
 - Hard to identify the traces from the Z decay without making assumptions on the Higgs decay.