

Tópicos de Física Moderna Exame de Recurso – parte 2 Licenciatura em Engenharia Informática

4 de julho de 2012 - 14h00 Duração - 2h00

	NOME:	nº:				
	O teste é constituído por oito questões. As questões de escolha múltipla só são consideradas corretas					
	se forem assinaladas todas as opções corretas q	ue lhes correspondem. Nos espaços livres deve				
	apresentar os cálculos que justifiquem as opçõe	es assinaladas.				
2val	Q1. Uma lâmpada de incandescência de 100 W radia devido ao aquecimento do seu filamento à temperatura de 3864 K.					
	 a) Se apenas 8% da potência total emitida pela lâmpada se situar na região do visível (considere λ(médio do visível) = 550nm), o número (N) de fotões do visível emitidos por segundo é N = 0.22 × 10²⁰ fotões/s N = 13.3 × 10¹⁸ fotões/s N = 2.2 × 10¹⁹ fotões/s N = 1.33 × 10¹⁹ fotões/s 	b) Assumindo que radia como um corpo negro ideal, o máximo no seu espetro de energia radiada ocorre para $\begin{array}{c} \square \lambda_{\text{max}} = 1000 \text{ nm}; \nu_{\text{max}} = 4.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 750 \text{ nm}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 750 \text{ nm}; \nu_{\text{max}} = 4.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 1000 \text{ nm}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{14} \text{ Hz} \\ \square \lambda_{\text{max}} = 7.5 \times 10^{-7} \text{ m}; \nu_{\text{max}} = 3.0 \times 10^{-7} \text{ m}; $				
2val	Q2. O trabalho de extração de uma certa liga metálica é de 3.545 eV ($1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$)					
	a) O maior comprimento de onda (λ_{max}) da radiação incidente no metal que ainda provoca emissão de fotoeletrões é	b) Se radiação de 189 nm (ultra-violeta) incidir sobre a placa metálica, o potencial de travagem (V _c) dos fotoeletrões emitidos é				
	$\begin{array}{c} \square \lambda_{max} = 350 \; nm \\ \square \lambda_{max} = 294 \; nm \end{array}$					
	$\lambda_{\text{max}} = 3.50 \times 10^{-7} \text{ m}$ $\lambda_{\text{max}} = 2.94 \times 10^{-7} \text{ m}$					
3val	Q3. Das seguintes afirmações assinale as que são verdadeiras (V) e as que são falsa (F)					
	a) No efeito fotoelétrico					
	Se o comprimento de onda da radiação incidente no cátodo aumenta, aumenta o potencial de corte.					
	Se a frequência da radiação incidente no cátoo	lo aumenta, aumenta o potencial de corte.				

	Se o comprimento de onda da radiaçã fotocorrente medida e aumenta o pote		enta, aumenta a int	tensidade da		
	Se o comprimento de onda da radiaç		minui, aumenta o j	potencial de		
	corte.		-	-		
	Se a intensidade da radiação mono potencial de corte.	ocromática que incide no	cátodo aumenta,	aumenta o		
	Se a intensidade da radiação mono intensidade da fotocorrente medida mas o	•		aumenta a		
	b) Considere o efeito fotoelét Compton	rico, a experiência de	Franck-Hertz e o	o efeito de		
	No efeito de Compton radiação mon com os eletrões de um metal e é difundida	<u> </u>	a (raios-X ou raios	γ) interage		
	O efeito de Compton é uma prova experimental direta da existência de níveis eletrónicos discretos nos átomos.					
	Para explicar quer o efeito fotoelétrico quer o efeito de Compton é assumida a natureza corpuscular da radiação e a noção de fotão.					
	A experiência de Franck-Hertz foi a primeira prova experimental direta da existência de níveis eletrónicos discretos nos átomos.					
	No efeito fotoelétrico radiação monocromática de alta energia (raios-X ou raios γ) interage com os eletrões de um metal e é difundida em todas as direções.					
	No efeito fotoelétrico radiação monoca energia de ligação dos eletrões no meta uma corrente elétrica.			-		
1val	Q4. Associe corretamente os modelos características (coluna da direita)	atómicos (coluna da esqu	erda) com as sua	s principais		
	1 – Modelo atómico de Rutherford	A – Nos átomos existem B – O átomo é indivisível	-	antificadas.		
	2 – Modelo atómico de Dalton	C – O átomo é uma discarga positiva com eletro	•			
	3 – Modelo atómico de Bohr	D – O átomo é formado pequeno, onde está locali	-			
	4 – Modelo atómico de Thomson	estão sujeitas apenas à int	teração de Coulomb	0.		
4val	Q5. Átomos de hidrogénio encontram-se num estado excitado em que a energia de ligação é $-2.42\times10^{-19}\mathrm{J}$.					
a) O número quântico n correspondente a esse estado excitado é $\boxed{\mathbf{n} = }$						
b) Quando estes átomos passam ao estado fundamental são emitidos fotões com três comprimento						
	de onda diferentes, λ_1 , λ_2 , λ_3 . Calcul $\lambda_1 =$	nm; $\lambda_2 =$	nm; $\lambda_3 =$	nm		

	c) Identifique as regiões espetrais (ultravioleta,	visível ou infravermelho) correspondentes.	
	d) Qual é o valor da energia de ionização para e		
4val		•	;).
	Usando o modelo atómico de Bohr determi		
	a) A massa reduzida do sistema $\mu =$	kg	
	b) A constante de Rydberg para este "átomo" (R = m	
	c) A energia de ligação do estado fundamental	deste "átomo" $E_1 = J$	
	d) O maior e o menor comprimento de onda da	série de Lyman deste "átom $\lambda_{max} = m;$ $\lambda_{min} = m;$	
3val	Q7. Considere um protão ($m_p = 1.673 \times 10^{-27} \text{ k}$ GeV.	eg) dum raio cósmico com energia cinética igual a $(1G=1\times 10)$	
	a) A velocidade deste protão é	b) O comprimento de onda de de Broglie de protão é	este
		$\square \lambda = 1.42 \times 10^{-15} \text{ m}$	
	$\square v = 1.02 \times 10^9 \text{ km/h}$	$\square \lambda = 1.32 \times 10^{-15} \text{ m}$	
	$\nabla = 2.84 \times 10^7 \text{m/s}$		
	$\square v = 6.25 \times 10^8 \text{ m/s}$		
		\square $\lambda = 0.446 \text{ fm } (1 \text{ fm} = 1 \times 10^{-15} \text{ m})$	

1val Q8. Usando as regras que aprendeu, princípio da energia mínima e princípio de exclusão de Pauli, faça a distribuição eletrónica dos 25 eletrões do átomo de manganês.