

Diagonalisierung und polynomielle Hierarchie

Corvin Paul, Matthias Schimek

Institut für Theoretische Informatik - Algorithmik I

Karkruher Institut für Technologi

Diagonalisierung: Was ist das eigentlich?

Karkruher Institut für Technologie

Eine Hierarchie von Komplexitätsklassen

Karkruher Institut für Technologie

P oder NPC : gibt es noch mehr in NP?

P oder NPC : gibt es noch mehr in NP?

Grenzen der Diagonalisierung

- Orakelmaschinen und die P, NP Frage
- Polynomial Hierarchy : Eine Verallgemeinerung von P, NP

Grenzen der Diagonalisierung

- Orakelmaschinen und die P, NP Frage
- Polynomial Hierarchy: Eine Verallgemeinerung von P, NP

Gliederung

Diagonalisierung

Einleitung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Satz von Ladner

Orakelmaschinen - Grenzen der Diagonalisierung

Die polynomielle Hierarchie

Einleitung

Die Klasse PH

- \blacksquare Cantors Diagonalargument zur Überabzählbarkeit von $\mathbb R$
- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet
- Diagonalisierung nicht immer "schön" zu sehen

- Cantors Diagonalargument zur Überabzählbarkeit von \mathbb{R}
- Unentscheidbarkeit des Halteproblems

- Cantors Diagonalargument zur Überabzählbarkeit von \mathbb{R}
- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet

- \blacksquare Cantors Diagonalargument zur Überabzählbarkeit von $\mathbb R$
- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet
- Diagonalisierung nicht immer "schön" zu sehen

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

 Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

- Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)
- Die F\u00e4higkeit eine andere TM mit geringem zus\u00e4tzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieber
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Universelle TM

Vorraussetzungen

TM M_i läuft bei Eingabe x in $\mathcal{O}(f(n)) \Rightarrow$ TM U läuft bei Eingabe i, x in $\mathcal{O}(f(n)log(fn))$

Vorraussetzungen

Definition Time-constructible functions

Wir nennen eine Funktion f time-constructible, falls gilt : f(n) ist in $\mathcal{O}(f(n))$ berechenbar.

Definition DTIME

DTIME $(f(n)) = \{ L \mid \exists \text{ deterministische Turingmaschine }, \text{ die } L \text{ in } \mathcal{O}(f(n)) \text{ entscheidet } \}$

Vorraussetzungen

Definition Time-constructible functions

Wir nennen eine Funktion f time-constructible, falls gilt: f(n) ist in $\mathcal{O}(f(n))$ berechenbar.

Definition DTIME

DTIME $(f(n)) = \{ L \mid \exists \text{ deterministische Turingmaschine }, \text{ die } L \text{ in } \}$ $\mathcal{O}(f(n))$ entscheidet }

Deterministische Time Hierarchy

Satz: Time Hierarchy Theorem, 65

Seien f,g time-constructible mit $f(n)\log(f(n))\in o(g(n))$, dann gilt $\mathsf{DTIME}(f(n))\subsetneq\mathsf{DTIME}(g(n))$

Frage : Warum brauchen wir den Faktor log(f(n)) ?

Deterministische Time Hierarchy

Satz: Time Hierarchy Theorem, 65

Seien f,g time-constructible mit $f(n)\log(f(n))\in o(g(n))$, dann gilt $\mathsf{DTIME}(f(n))\subsetneq \mathsf{DTIME}(g(n))$

Frage : Warum brauchen wir den Faktor log(f(n)) ?

Beweis det. Time Hierarchy

Wir zeigen **DTIME** $(n) \subseteq \mathbf{DTIME}(n^{1.5})$

$$D(x) = \begin{cases} \overline{M_{X}(x)} & \text{falls die Simulation eine Ausgabe hatte} \\ 0 & \text{sonst} \end{cases}$$

Beweis det. Time Hierarchy

Wir zeigen **DTIME** $(n) \subseteq \mathbf{DTIME}(n^{1.5})$

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe folgendes aus :

$$D(x) = \begin{cases} \overline{M_X(x)} & \text{falls die Simulation eine Ausgabe hatte} \\ 0 & \text{sonst} \end{cases}$$

Sei $L = \{x | D(x) = 1\}$ die von D erzeugte Sprache

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5})$ und $L \notin \mathbf{DTIME}(n)$

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5})$ und $L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer i mit $M_i = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5}) \text{ und } L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x| Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer i mit $M_i = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5})$ und $L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x| Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch, indem wir D eine Gödelnummer i mit M_i = M als Eingabe geben.

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x| \log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = N$
- Damit läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragba

- Wollen dieses *i* groß genug, dass D für *M_i* eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$

Karkruher Institut für Technologie

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = N_0$
- **Damit** läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall üb

Karkruher Institut für Technologie

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = M$
- **Damit** läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragba

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = M$
- Damit läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = M$
- Damit läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$

- Wollen dieses i groß genug, dass D für M_i eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = M$
- Damit läuft M_i in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragbar

Frage : Gibt es **NP** Probleme , die nicht **NP**-vollständig sind , aber auch nicht in **P** liegen?

Satz von Ladner NP-intermediate Probleme

Mögliche Kandidaten:

- Graphisomorphie (kommt in Vortrag 7)
- Faktorisierungsproblem
- Kein "natürliches" Problem bekannt aber,

Behauptung

Existenz einer NP-intermediate Sprache, Ladner, 75

Wenn $P \neq NP$ dann gilt :

Es existiert eine Sprache $L \in \mathbf{NP} \setminus \mathbf{P}$ die nicht \mathbf{NP} -vollständig ist

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in ${\bf NP}$ - intermediate ist, falls ${\bf P} \neq {\bf NP}$:

Die Sprache SAT_H

Für eine Funktion
$$H: \mathbb{N} \to \mathbb{N}$$
 definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

Beispiel für SAT_H

Für
$$H(n) = n - 1$$
 und $\psi = a \wedge b$ gilt : $(a \wedge b)01^{3^2} = (a \wedge b)011111111111 \in SAT_H$

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in **NP** - intermediate ist, falls **P** \neq **NP** :

Die Sprache SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$

$$\mathbf{SAI}_H = \{\psi \mathbf{0} \mathbf{1} : \psi \in \mathbf{SAI} \text{ und } H = |\psi|\}$$

 $(a \wedge b)01^{3^2} = (a \wedge b)01111111111 \in SAT_H$

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in ${\bf NP}$ - intermediate ist, falls ${\bf P} \neq {\bf NP}$:

Die Sprache SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

Beispiel für SAT_H

Für H(n) = n - 1 und $\psi = a \wedge b$ gilt : $(a \wedge b)01^{3^2} = (a \wedge b)011111111111 \in SAT_H$

Beweis: Wahl von H

Wir müssen nun also H geschickt konstruieren!

Beweis: Wahl von H

Wir müssen nun also H geschickt konstruieren!

Definition von H

H(n) ist die kleinste Gödelnummer $i < \log(\log(n))$ so dass für alle $x \in \{0,1\}^*$ mit $|x| \leq \log(n)$ die Turing Maschine M_i genau $SAT_H(x)$ in $i|x|^i$ Schritten berechnet. Falls dieses i nicht existiert setzen wir $H(n) = \log(\log(n))$

Beweis: Wahl von H

Wir müssen nun also *H* geschickt konstruieren!

Definition von H

H(n) ist die kleinste Gödelnummer $i < \log(\log(n))$ so dass für alle $x \in \{0,1\}^*$ mit $|x| \leq \log(n)$ die Turing Maschine M_i genau $\mathbf{SAT}_H(x)$ in $i|x|^i$ Schritten berechnet. Falls dieses i nicht existiert setzen wir $H(n) = \log(\log(n))$

Eigenschaft, die wir von H wollen

 $\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1)$ (also $H(n) \leq C$ für alle n) und damit insbesondere $\lim_{n \to \infty} H(n) = \infty$ für $\mathbf{SAT}_H \notin \mathbf{P}$

- H erfüllt diese und ist polynomiell berechenbar
- (ohne Beweis)

Beweis: Wahl von H

Wir müssen nun also H geschickt konstruieren!

Definition von H

H(n) ist die kleinste Gödelnummer $i < \log(\log(n))$ so dass für alle $x \in \{0,1\}^*$ mit $|x| \leq \log(n)$ die Turing Maschine M_i genau $SAT_H(x)$ in $i|x|^{i}$ Schritten berechnet. Falls dieses i nicht existiert setzen wir $H(n) = \log(\log(n))$

Eigenschaft, die wir von H wollen

 $SAT_H \in P \Leftrightarrow H(n) \in O(1)$ (also $H(n) \leq C$ für alle n) und damit insbesondere $\lim_{n\to\infty} H(n) = \infty$ für $SAT_H \notin P$

- H erfüllt diese und ist polynomiell berechenbar.
- (ohne Beweis)

 SAT_H weder in P noch NP-complete

Definiton von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{P} \Rightarrow H(n) \leq C, \ C$ Konstante wegen des gerade bewiesenen Lemmas
- lacksquare SAT $_H$ ist also SAT mit höchsten $n^{\mathcal{O}}$ angehänten 1er
- **SAT** kann somit durch dieselbe TM gelöst werden \Rightarrow **P** = **NF**

 SAT_H weder in P noch NP-complete

Definiton von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{ \psi \mathbf{01}^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi| \}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{P} \Rightarrow H(n) \leq C$, C Konstante wegen des gerade bewiesenen Lemmas
- **SAT**_H ist also **SAT** mit höchsten n^C angehänten 1er
- **SAT** kann somit durch dieselbe TM gelöst werden \Rightarrow **P** = **NP**

 SAT_H weder in P noch NP-complete

Definiton von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{ \psi \mathbf{01}^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi| \}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{P} \Rightarrow H(n) \leq C$, C Konstante wegen des gerade bewiesenen Lemmas
- **SAT**_H ist also **SAT** mit höchsten n^C angehänten 1en
- **SAT** kann somit durch dieselbe TM gelöst werden \Rightarrow **P** = **NP**

 SAT_H weder in P noch NP-complete

Definiton von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{ \psi \mathbf{01}^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi| \}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{P} \Rightarrow H(n) \leq C$, C Konstante wegen des gerade bewiesenen Lemmas
- **SAT**_H ist also **SAT** mit höchsten n^C angehänten 1en
- **SAT** kann somit durch dieselbe TM gelöst werden \Rightarrow **P** = **NP**

SAT_H weder in P noch NP-complete

Definiton von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$

SAT_H weder in P noch NP-complete

Definition von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir :

 $\mathsf{SAT}_H = \{\psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \ \mathsf{und} \ n = |\psi|\}$

- Angenommen $SAT_H \in NP complete \Rightarrow$ es existiert poly. Reduktion f von SAT auf SAT_H in $\mathcal{O}(n^i)$
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf **SAT**_H-Instanz der Form ψ 01 $^{n^{H(n)}}$ abgebildet und mit $f \in \mathcal{O}(n^i)$ folgt $|\psi| + |\psi|^{H(|\psi|)}$ und damit $|\psi| \in o(n)$
- Wegen $\psi | \in o(n)$ existiert dann ein Polynomialzeitalgorithmus für **SAT** und damit **P** = **NP** \Rightarrow Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir :

 $\mathsf{SAT}_H = \{\psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \ \mathsf{und} \ n = |\psi|\}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{NP} complete \Rightarrow$ es existiert poly. Reduktion f von \mathbf{SAT} auf \mathbf{SAT}_H in $\mathcal{O}(n^i)$
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf \mathbf{SAT}_H -Instanz der Form $\psi 01^{n^{H(n)}}$ abgebildet und mit $f \in \mathcal{O}(n^i)$ folgt $|\psi| + |\psi|^{H(|\psi|)}$ und damit $|\psi| \in o(n)$
- Wegen $\psi | \in o(n)$ existiert dann ein Polynomialzeitalgorithmus für **SAT** und damit **P** = **NP** \Rightarrow Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

- Angenommen $\mathbf{SAT}_H \in \mathbf{NP} complete \Rightarrow$ es existiert poly. Reduktion f von \mathbf{SAT} auf \mathbf{SAT}_H in $\mathcal{O}(n^i)$
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf **SAT**_H-Instanz der Form ψ 01 $^{nH(n)}$ abgebildet und mit $f \in \mathcal{O}(n^i)$ folgt $|\psi| + |\psi|^{H(|\psi|)}$ und damit $|\psi| \in o(n)$
- Wegen $\psi | \in o(n)$ existiert dann ein Polynomialzeitalgorithmus für **SAT** und damit **P** = **NP** \Rightarrow Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

- Angenommen SAT_H ∈ NP − complete ⇒ es existiert poly. Reduktion f von **SAT** auf **SAT**_H in $\mathcal{O}(n^i)$
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf SAT_H -Instanz der Form ψ 01 $^{nH(n)}$ abgebildet und mit $f \in \mathcal{O}(n^i)$ folgt $|\psi| + |\psi|^{H(|\psi|)}$ und damit $|\psi| \in o(n)$
- Wegen $\psi \mid \in o(n)$ existiert dann ein Polynomialzeitalgorithmus für **SAT** und damit $P = NP \Rightarrow$ Widerspruch!

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

 Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

- Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)
- Die F\u00e4higkeit eine andere TM mit geringem zus\u00e4tzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Definition von Orakelmschinen

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .

ein Orakel $\mathcal{O}\subset\{0,1\}^*$

Wenn M den Zustand q_{query} betritt, ist der Folgezustand

 q_{yes} , wenn für Inhalt s des Orakelbands gilt $s \in O$ und

 q_{no} , wenn $s \notin C$

Das Orakel liefert die Antwor

Definition von Orakelmschinen

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .

```
ein Orakel O \subset \{0, 1\}^*
```

Wenn M den Zustand q_{query} betritt, ist der Folgezustand

```
q_{yes}, wenn fur Inhalt s des Orakelbands gilt s \in O und q_{no}, wenn s \notin O
```

Das Orakel liefert die Antwor

Definition von Orakelmschinen

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände qquery, qyes, qno.
- ein Orakel O ⊂ {0, 1}*

Definition von Orakelmschinen

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .
- ein Orakel $O \subset \{0, 1\}^*$
- Wenn M den Zustand qquery betritt, ist der Folgezustand
 - $lacksquare q_{yes},$ wenn für Inhalt s des Orakelbands gilt $s\in O$ und
 - q_{no} , wenn $s \notin O$

Das Orakel liefert die Antworf

Definition von Orakelmschinen

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query}, q_{yes}, q_{no}.
- ein Orakel $O \subset \{0, 1\}^*$
- Wenn M den Zustand q_{query} betritt, ist der Folgezustand
 - $lacksquare q_{yes},$ wenn für Inhalt s des Orakelbands gilt $s\in O$ und
 - q_{no} , wenn $s \notin O$
- Das Orakel liefert die Antwort in einem Berechnungsschritt

Defintion von Orakelmaschinen

Komplexitätsklassen von Orakelmaschinen

Für jedes $0 \in \{0,1\}^*$ ist \mathbf{P}^O die Menge aller Sprachen, die eine det. Orakel-TM mit Orakel O entscheiden kann. \mathbf{NP}^O analog für nichtdet. Orakel-TM.

Beispiele für Orakelmaschinen

SAT

- Für \overline{SAT} , Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{SAT}$.

Beispiele für Orakelmaschinen

SAT

- Für \overline{SAT} , Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{SAT}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

EXPCOM

- Sei EXPCOM folgende Sprache:
 - $\{(M,x,1^n): M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten} \}$
 - Dann gilt PEXPCOM = NPEXPCOM = EXP
- Wegen Orakel aus EXP ⇒ EXP ⊆ P^{EXPCOM}
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM

Beispiele für Orakelmaschinen

SAT

- Für **SAT**, Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{\mathbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in \mathbf{SAT}$ und gegenteilige Antwort ausgeben.

Beispiele für Orakelmaschinen

SAT

- Für \overline{SAT} , Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{SAT}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in \mathbf{SAT}$ und gegenteilige Antwort ausgeben.

EXPCOM

Sei **EXPCOM** folgende Sprache:

 $\{(M, x, 1^n): M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

Dann gilt $P^{EXPCOM} = NP^{EXPCOM} = EXP$.

- Wegen Orakel aus EXP ⇒ EXP ⊂ PEXPCOM

 \Rightarrow EXP \subset PEXPCOM \subset NPEXPCOM \subset EXP

Beispiele für Orakelmaschinen

SAT

- Für $\overline{\textbf{SAT}}$, Sprache der nicht erfüllbaren Formeln, gilt $\overline{\textit{SAT}} \in \textbf{P}^{\textbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

EXPCOM

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM
 - Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- \Rightarrow EXP \subseteq PEXPCOM \subseteq NPEXPCOM \subseteq EXP

Beispiele für Orakelmaschinen

SAT

- Für **SAT**, Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{\mathbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in \mathbf{SAT}$ und gegenteilige Antwort ausgeben.

EXPCOM

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n): M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

- Wegen Orakel aus EXP ⇒ EXP ⊂ PEXPCOM
- Außerdem: M eine nichtdet TM mit Orakel EXPCOM:

 - Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- \Rightarrow EXP \subset PEXPCOM \subset NPEXPCOM \subset EXP

Beispiele für Orakelmaschinen

SAT

- Für **SAT**, Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P}^{\mathbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in \mathbf{SAT}$ und gegenteilige Antwort ausgeben.

EXPCOM

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n): M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

- Wegen Orakel aus EXP ⇒ EXP ⊂ PEXPCOM
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM:
 - Ausführung von M det. in Exponentialzeit simulieren
- \Rightarrow EXP \subset PEXPCOM \subset NPEXPCOM \subset EXP

Beispiele für Orakelmaschinen

SAT

- Für $\overline{\textbf{SAT}}$, Sprache der nicht erfüllbaren Formeln, gilt $\overline{\textit{SAT}} \in \textbf{P}^{\textbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

EXPCOM

Sei EXPCOM folgende Sprache:

 $\{(M,x,1^n): M \text{ berechnet 1 bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM:
 - Ausführung von M det. in Exponentialzeit simulieren
 - Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)

Beispiele für Orakelmaschinen

SAT

- Für \overline{SAT} , Sprache der nicht erfüllbaren Formeln, gilt $\overline{SAT} \in \mathbf{P^{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

EXPCOM

Sei EXPCOM folgende Sprache:

 $\{(M,x,1^n): M \text{ berechnet 1 bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

Dann gilt $P^{EXPCOM} = NP^{EXPCOM} = EXP$.

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM:
 - Ausführung von M det. in Exponentialzeit simulieren
 - Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- ightharpoonup \Rightarrow EXP \subseteq P^{EXPCOM} \subseteq NP^{EXPCOM} \subseteq EXP

Satz (Baker, Gill, Solovay, 75)

Satz von Baker-Gill-Solovay

Es existieren Orakel A, B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

Satz von Baker-Gill-Solovay

Satz (Baker, Gill, Solovay, 75)

Es existieren Orakel A, B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

relativierende Beweise

Wir nennen einen Beweis, der auch für TM mit Orakel gilt, einen relativierenden Beweis

- Diagonalisierung ist relativierend und kann damit nicht für die P – NP Frage genutzt werden.
- ⇒ ein Beweis für die P NP Frage muss ein nicht relativierendes Verfahren nutzen I

Satz von Baker-Gill-Solovay

Satz (Baker, Gill, Solovay, 75)

Es existieren Orakel A. B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

relativierende Beweise

Wir nennen einen Beweis, der auch für TM mit Orakel gilt, einen relativierenden Beweis

- Diagonalisierung ist relativierend und kann damit nicht für die $\mathbf{P} - \mathbf{NP}$ Frage genutzt werden.
- \Rightarrow ein Beweis für die **P NP** Frage muss ein nicht relativierendes Verfahren nutzen !

Beweis : $P^A = NP^A$

- $\mathbf{P}^A = \mathbf{NP}^A$ haben wir gerade schon gesehen: Nutze einfach das Orakel A = **EXPCOM**
- B zu konstruieren ist schwieriger (und interessanter!)

Beweis : $P^A = NP^A$

- $\mathbf{P}^A = \mathbf{NP}^A$ haben wir gerade schon gesehen: Nutze einfach das Orakel A = **EXPCOM**
- B zu konstruieren ist schwieriger (und interessanter!)

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_B

Für eine Sprache B sei $U_B = \{1^n : Es gibt einen String der Länge n in B \}$

- Wir sehen sofort ein : $U_B \in \mathbf{NP}^{\scriptscriptstyle D}$, da eine nicht det. TM einn Zertifikat raten kann
- Müssen also nur noch B so konstruieren, dass $U_B \notin \mathbf{P}^b$

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_B

Für eine Sprache B sei $U_B = \{1^n : Es gibt einen String der Länge n in B \}$

- Wir sehen sofort ein : $U_B \in \mathbf{NP}^B$, da eine nicht det. TM ein Zertifikat raten kann
- Müssen also nur noch B so konstruieren, dass $U_B \notin \mathbf{P}^B$

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_B

Für eine Sprache B sei $U_B = \{1^n : Es gibt einen String der Länge n in B \}$

- Wir sehen sofort ein : $U_B \in \mathbf{NP}^B$, da eine nicht det. TM ein Zertifikat raten kann
- Müssen also nur noch B so konstruieren, dass $U_B \notin \mathbf{P}^B$

Wir konstruieren eine Folge von Sprachen $(B_i)_{i\in\mathbb{N}}$ so , dass $B=\lim_{n\to\infty}B_i$

- Wie stellen wir sicher, dass alle Turing Maschinen U_B nicht in polynomieller Zeit entscheiden können?
- Tipp: Die Menge aller Turing Maschinen ist abzählbar

Wir konstruieren eine Folge von Sprachen $(B_i)_{i\in\mathbb{N}}$ so , dass $B=\lim_{n\to\infty}B_i$

- Wie stellen wir sicher, dass alle Turing Maschinen U_B nicht in polynomieller Zeit entscheiden können?
- Tipp: Die Menge aller Turing Maschinen ist abzählbar

Konstruktion von B

- Genau : Wir iterieren über alle Turing Maschinen M_i und stellen sicher, dass M_i nicht in polynomieller Zeit U_B entscheiden kann
- Nutze dabei, dass die Anzahl der Wörter exponentiell in der Eingabelänge wächst

- Genau: Wir iterieren über alle Turing Maschinen M_i und stellen sicher, dass M_i nicht in polynomieller Zeit U_R entscheiden kann
- Nutze dabei, dass die Anzahl der Wörter exponentiell in der Eingabelänge wächst

Wir fangen an mit $B_0 = \emptyset$. Konstruktion fr B_i :

- Wähle n so, dass n größer als alle Strings in B_{i-1}
- Lasse M_i auf Eingabe 1ⁿ genau 2ⁿ/10 Schritte laufer (Beachte, dass M_i das Orakel B hat!)

Wir fangen an mit $B_0 = \emptyset$. Konstruktion fr B_i :

- lacktriangle Wähle n so , dass n größer als alle Strings in B_{i-1}
- Lasse M_i auf Eingabe 1ⁿ genau 2ⁿ/10 Schritte laufen (Beachte, dass M_i das Orakel B hat!)

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

Orakel

Turing Maschine M_i

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

Orakel

B

Turing Maschine

 Das Orakel antwortet konsistent auf dem bisherigen B_i

Wir merken uns alle Strings der Länge n, die M_i an fragt!

 M_i

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

Orakel B

Turing Maschine M_i

- Das Orakel antwortet konsistent auf dem bisherigen B_i
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :
 - M_i akzeptiert 1": Wir definieren, dass kein String der Länge n in B ist
 - M_i lehnt ab : Wähle $x \in \{0,1\}$ ", welches nicht von M_i an gefragt wurde und satza $P_i = P_i \cup \{x\}$
 - warum existiert dieses x?

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :
 - M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B isi
 - M; lennt ab: Wanle $x \in \{0, 1\}^n$, welches nicht von M_i an getragt wurdt
 - warum existiert dieses x?

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :

Konstruktion von B

- M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
- M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
- warum existiert dieses x?

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :
 - lacktriangle M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
 - M_i lehnt ab : Wähle $x \in \{0, 1\}''$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
 - warum existiert dieses x'

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten:
 - M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
 - M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten:

Konstruktion von B

- M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
- M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
- warum existiert dieses x?

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass
 - $M = M_i$

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

Grenzen der Diagonalisierung **Beweis Schluss**

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass
 - $M = M_i$
 - M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
 - und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

Grenzen der Diagonalisierung **Beweis Schluss**

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i.so dass
 - $M = M_i$
 - M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
 - und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i.so dass
 - $M = M_i$

- M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
- und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

Einleitung Verallgemeinerung

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden
- Verallgemeinerung ist die "polynomielle Hierarchie" PH

Einleitung Verallgemeinerung

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden
- Verallgemeinerung ist die "polynomielle Hierarchie" PH

Einleitung Verallgemeinerung

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden

Einleitung Verallgemeinerung

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden
- Verallgemeinerung ist die "polynomielle Hierarchie" PH

Beispiele

Definition INDSET

Sei **INDSET** = $\{\langle G, k \rangle : \text{Graph } G \text{ hat ein independent set , welches Größe k hat }$

Bekannt : INDSET ∈ NPC

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das größte independent set in G hat Größe genau k} \}$

= $\{\langle G, k \rangle : \exists \text{ independent set der Größe k in } G \text{ und } \forall \text{ independent sets in } G \text{ haben Größe} < k \}$

Beispiele

Definition INDSET

Sei **INDSET** = $\{\langle G, k \rangle : Graph G \text{ hat ein independent set }, \text{ welches Größe k hat } \}$

Bekannt : INDSET ∈ NPC

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das größte independent set in G hat Größe genau k} \}$

= $\{\langle G, k \rangle : \exists \text{ independent set der Größe k in } G \text{ und } \forall \text{ independent sets in } G \text{ haben Größe} < k \}$

Beispiele

Definition INDSET

Sei **INDSET** = $\{\langle G, k \rangle : \text{Graph } G \text{ hat ein independent set , welches Größe k hat }$

Bekannt : INDSET ∈ NPC

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das gr\"{o}Bte} \text{ independent set in G hat Gr\"{o}Be genau k}\}$

={ $\langle G, k \rangle$: \exists independent set der Größe k in G und \forall independent sets in G haben Größe $\leq k$ }

Die Klasse Σ_2^p

INDSET

Sei **INDSET** = $\{\langle G, k \rangle : \exists$ independent set in G, welches Größe k hat $\}$

Wiederholung NP

NP ist die Menge aller Sprachen L für die gilt :

Es gibt eine deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} M(x,u) = 1$$

Die Klasse \sum_{2}^{p}

EXACTINDSET

Sei **INDSET** = $\{\langle G, k \rangle : \exists$ independent set in G, welches Größe k hat und \forall independent sets in G haben Größe $\leq k \}$

Definition \sum_{2}^{p}

 \sum_{2}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt eine deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ M(x,u,v) = 1$$

Einleitung Noch mehr Quantoren?

Definition von PH

Definition \sum_{i}^{p}

 \sum_{i}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_i) = 1$$

wobei Q_i entweder \forall oder \exists beschreibt, abhängig davon ob i gerade oder ungerade ist

Definition von PH

Definition \sum_{i}^{p}

 \sum_{i}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_i) = 1$$

wobei \mathcal{Q}_i entweder \forall oder \exists beschreibt, abhängig davon ob i gerade oder ungerade ist

Definition PH

Die polynomielle Hierarchie ist $\mathbf{PH} = \bigcup_{i \in \mathbb{N}} \sum_{i=1}^{p} \sum_{j=1}^{p} \mathbf{P}_{i}$

Definition von PH

Definition \sum_{i}^{p}

 \sum_{i}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_i) = 1$$

wobei \mathcal{Q}_i entweder \forall oder \exists beschreibt, abhängig davon ob i gerade oder ungerade ist

- Man sieht : $\sum_{1}^{p} = \mathbf{NP}$
- $\Pi_i^{\rho} := co \sum_i^{\rho}$

- Vermutung: $P \neq NP$ und $NP \neq coNP$

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Eigenschaften von PH

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i+1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Satz Kollaps von PH und Auswirkungen auf P – NP

1. Für alle
$$i \ge 0$$
 gilt: $\sum_{i=1}^{p} = \prod_{i=1}^{p} \Rightarrow \mathbf{PH} = \sum_{i=1}^{p} \mathbf{PH}$

Eigenschaften von PH

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i+1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Satz Kollaps von PH und Auswirkungen auf P – NP

- 1. Für alle $i \geq 0$ gilt: $\sum_{i}^{p} = \prod_{i}^{p} \Rightarrow \mathbf{PH} = \sum_{i}^{p}$
- 2. Wenn P = NP, dann folgt PH = P

Beweis

Beweis von $P = NP \Rightarrow PH = P$

- Sei $\mathbf{P} = \mathbf{NP}$, beweisen über Induktion $\sum_{i=1}^{p} \prod_{j=1}^{p} \subseteq \mathbf{P}$ für alle i
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter IV.

Beweis von
$$P = NP \Rightarrow PH = P$$

- Sei $\mathbf{P} = \mathbf{NP}$, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle i
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter IV.

Beweis von
$$P = NP \Rightarrow PH = P$$

- **Sei P** = **NP**, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle *i*
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter

Beweis

Beweis von $P = NP \Rightarrow PH = P$

- **Sei P** = **NP**, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle *i*
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter IV.

Beweis

■ IS: Sei $L \in \sum_{i=1}^{p}$, dann ex. TM M und Polynom q so, dass

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} ... \ Q_i u_i \in \{0,1\}^{q(|x|)}$$

 $M(x, u_1, u_2, ..., u_i) = 1 (Definition)$

gilt

Definiere Sprache L^t

$$(x, u_1) \in L' \Leftrightarrow \forall u_2 \in \{0, 1\}^{q(|x|)} \dots Q_i u_i \in \{0, 1\}^{q(|x|)}$$

 $M(x, u_1, u_2, \dots u_i) = 1$

Beweis

■ IS: Sei $L \in \sum_{i=1}^{p}$, dann ex. TM M und Polynom q so, dass

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} ... \ Q_i u_i \in \{0,1\}^{q(|x|)} \ M(x,u_1,u_2,...,u_i) = 1 (\textit{Definition})$$

gilt

Definiere Sprache L'

$$(x, u_1) \in L' \Leftrightarrow \forall u_2 \in \{0, 1\}^{q(|x|)} \dots Q_i u_i \in \{0, 1\}^{q(|x|)}$$

 $M(x, u_1, u_2, \dots u_i) = 1$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbb{NP}$ und da $\mathbb{P} = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbb{NP}$ und da $P = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- Damit ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbb{NP}$ und da $P = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- Damit ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- Damit ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbf{NP}$ und da $\mathbf{P} = \mathbf{NP}$ vorausgesetzt, folgt $L \in \mathbf{P}$

PH Vollständigkeit

Wir definieren **PH** Vollständigkeit analog zur **NP** Vollständigkeit und erhalten damit :

Überlegung zur PH Vollständigkeit

Wenn eine **PH**-vollständige Sprache L existiert dann existiert ein i so dass **PH** = \sum_{i}^{p}

- Da PH = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i$ so dass $L \in \sum_{i=1}^{p} \exists i$
- Können durch PH Vollständigkeit jedes L' ∈ PH in pol. Zeit auf L reduzieren
- und damit also auch $L' \in \Sigma_+^p$

PH Vollständigkeit

Wir definieren **PH** Vollständigkeit analog zur **NP** Vollständigkeit und erhalten damit :

Überlegung zur PH Vollständigkeit

Wenn eine **PH**-vollständige Sprache L existiert dann existiert ein i so dass **PH** = \sum_{i}^{p}

- Da $\mathbf{PH} = \bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i \text{ so dass } L \in \sum_{i$
- Können durch PH Vollständigkeit jedes L' ∈ PH in pol. Zeit auf L reduzieren
- \blacksquare und damit also auch $L' \in \Sigma^p$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine PH-vollständige Sprache L existiert dann existiert ein i so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i \text{ so dass } L \in \sum_{i=1}^$
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine **PH**-vollständige Sprache L existiert dann existiert ein *i* so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i$ so dass $L \in \sum_{i=1}^{p} \exists i$
- **N** Können durch **PH** Vollständigkeit jedes $L' \in \mathbf{PH}$ in pol. Zeit auf L reduzieren
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine PH-vollständige Sprache L existiert dann existiert ein i so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i \text{ so dass } L \in \sum_{i=1}^$
- **N** Können durch **PH** Vollständigkeit jedes $L' \in \mathbf{PH}$ in pol. Zeit auf L reduzieren
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$