Review
Queues and Stacks
Sorting
Lower Bound

Massive Data Algorithmics

Lecture 2: Sorting

Hierarchical Memory

- Modern machines have complicated memory hierarchy
 - Levels get larger and slower further away from CPU
 - Data moved between levels using large blocks

Slow IO

ullet Disk access is 10^6 times slower than main memory access

- Disk systems try to amortize large access time transferring large contiguous blocks of data (8-16Kbytes)
- Important to store/access data to take advantage of blocks (locality)

Scalability Problems

- Most programs developed in RAM-model. Run on large datasets because OS moves blocks as needed
- Moderns OS utilizes sophisticated paging and prefetching strategies. But if program makes scattered accesses even good OS cannot take advantage of block access

External Memory Model(Cache-Aware Model)

N=# of items in the problem instance

B=# of items per disk block

M=# of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that $M > B^2$

Fundamental Bounds

```
\begin{array}{c|cccc} & & & & & & & & & \\ Scanning & N & & N/B & & \\ Sorting & N \log N & N/B \log_{M/B} N/B & & \\ Permuting & N & & \min(N,N/B \log_{M/B} N/B) & \\ Searching & \log N & & \log_B N & \\ \end{array}
```

Note:

- Linear I/O: *O*(*N*/*B*)
- Permuting not linear
- Permuting and sorting bounds are equal in all practical cases
- B factor VERY important: $N/B < (N/B) \log_{M/B}(N/B) << N$

Scalability Problems: Block Access Matters

- Example: Reading an array from disk
 - Array size N = 10 elements
 - Disk block size B = 2 elements
 - Main memory size M = 4 elements (2 blocks)

- Difference between N and N/B large since block size is large
 - Example: N=256x106, B=8000, 1ms disk access time $\Rightarrow N$ I/Os take 256×103 sec =4266 min =71 hr $\Rightarrow N/B$ I/Os take 256/8 sec =32 sec

Queues and Stacks

- Queue
 - -Maintain push and pop blocks in main memory

- O(1/B) Push/Pop operations
- Stack
 - -Maintain push/pop block in main memory

O(1/B) Push/Pop operations

Sorting

ullet < M/B sorted lists (queues) can be merged in O(N/B) I/Os

• M/B blocks in main memory

• Unsorted list (queue) can be distributed using < M/B split elements in O(N/B) I/Os

Merge Sort

- Create N/M memory sized sorted lists
- Repeatedly merge lists together T(M/B) at a time

• $\Rightarrow O(\log_{M/B} N/M)$ phases using O(N/B) I/Os each $\Rightarrow O(N/B \log_{M/B} N/B)$ I/Os

Distribution Sort (Multiway Quicksort)

- Compute $\Theta(M/B)$ splitting elements
- Distribute unsorted list into Θ(M/B) unsorted lists of equal size
- Recursively split lists until fit in memory

ullet \Rightarrow $O(\log_{M/B} N/M)$ phases \Rightarrow $O(N/B \log_{M/B} N/B)$ I/Os if splitting elements computed in O(N/B) I/Os

- In internal memory (deterministic) quicksort split element (median) found using linear time selection
- Selection algorithm: Finding ith element in sorted order
 - 1) Select median of every group of 5 elements
 - 2) Recursively select median of $\sim N/5$ selected elements
 - 3) Distribute elements into two lists using computed median
 - 4) Recursively select in one of two lists
- Analysis:
 - Step 1 and 3 performed in O(N/B) I/Os.
 - Step 4 recursion on at most $\sim (7/10)N$ elements
 - T(N) = O(N/B) + T(N/5) + T(7N/10) = O(N/B) I/Os

Distribution Sort (Multiway Quicksort)

Distribution sort

- Computing splitting elements:
 - $\Theta(M/B)$ times linear I/O selection $\Rightarrow O(NM/B^2)$ I/O algorithm
 - But can use selection algorithm to compute $\sqrt{M/B}$ splitting elements in O(N/B) I/Os, partitioning into lists of size $<3/2(N/\sqrt{M/B})$
 - $\Rightarrow O(\log_{\sqrt{M/B}} N/M) = O(\log_{M/B} N/M)$ phases $\Rightarrow O(N/B \log_{M/B} N/B)$

- 1) Sample $4N/\sqrt{M/B}$ elements:
 - Create N/M memory sized sorted lists
 - Pick every $1/4\sqrt{M/B}$ th element from each sorted list
- 2) Choose $\sqrt{M/B}$ split elements from sample:
 - Use selection algorithm $\sqrt{M/B}$ times to find every 4N/(M/B) th element

- 1) Sample $4N/\sqrt{M/B}$ elements:
 - Create N/M memory sized sorted lists
 - Pick every $1/4\sqrt{M/B}$ th element from each sorted list
- 2) Choose $\sqrt{M/B}$ split elements from sample:
 - Use selection algorithm $\sqrt{M/B}$ times to find every 4N/(M/B) th element

- 1) Sample $4N/\sqrt{M/B}$ elements:
 - Create N/M memory sized sorted lists
 - Pick every $1/4\sqrt{M/B}$ th element from each sorted list
- 2) Choose $\sqrt{M/B}$ split elements from sample:
 - Use selection algorithm $\sqrt{M/B}$ times to find every 4N/(M/B) th element

- Elements in range R defined by consecutive split elements
 - Sampled elements in R: 4N/(M/B) 1
 - Between sampled elements in R: $(4N/(M/B) 1)(1/4\sqrt{M/B} 1)$

_

 N_{M} = 0.000 - 0.

- Elements in range *R* defined by consecutive split elements
 - Sampled elements in R: 4N/(M/B) 1
 - Between sampled elements in R: $(4N/(M/B) 1)(1/4\sqrt{M/B} 1)$
 - Between sampled element in R and outside R: $2(N/M)(1/4\sqrt{M/B}-1)$

- Elements in range R defined by consecutive split elements
 - Sampled elements in R: 4N/(M/B) 1
 - Between sampled elements in R: $(4N/(M/B)-1)(1/4\sqrt{M/B}-1)$
 - Between sampled element in R and outside R: $2(N/M)(1/4\sqrt{M/B}-1)$

$$-4N/(M/B) + N/\sqrt{M/B} - 4N/(M/B) + N/(2B\sqrt{M/B}) < (3/2)N/\sqrt{M/B}$$

Sorting lower bound

- ullet Sorting N elements takes $\Omega(N/B\log_{M/B}N/B)$ I/Os in comparison model
- Proof:
 - Initially N elements stored in N/B first blocks on disk
 - Initially all N! possible orderings consistent with out knowledge
 - After t I/Os?

Sorting lower bound

- Consider one input assuming:
 - S consistent orderings before input
 - Compute total order of elements in memory
 - Adversary choose worst outcome of comparisons done

- possible orderings of M B old and B new elements in memory
- Adversary can choose outcome such that still consistent orderings
- Only get B! term N/B times
- consistent orderings after t I/Os

References

- Input/Output Complexity of Sorting and Related Problems
 - A. Aggarwal and J.S. Vitter. CACM 31(9), 1998
- External partition element finding
 Lecture notes by L. Arge and M. G. Lagoudakis.