Protokoll Übung 5

Elektrische Messtechnik Gruppe K 06.01.2020

Dennis Claußner | Matrikelnr: 890270

Alexander Alekseev | Matrikelnr: 891165

Paul Opitz | Matrikelnr: 893933

Moez Rjiba | Matrikelnr: 837903

Aufgabe 1 - Impedanz

$$R = 10 \Omega$$
, $C = 318 \mu F$, $f = 50Hz$

Bestimmung Scheinwiderstand:

a) mit Hilfe eines Zeigerdiagramms (zeichnerisch)

$$\underline{Z} = a + jb = 10\Omega - j10\Omega$$

$$\underline{Z} = \underline{|Z|} = e^{j\varphi} = 14.14\Omega e^{-j45^{\circ}}$$

Der Scheinwiderstand und Winkel lassen sich graphisch durch den Betrag |Z| berechnen.

b) rechnerisch in Komponenten- und Exponentialform

$$\underline{Z} = a + jb = \sqrt{a^2 + b^2} \cdot e^{j \cdot \arctan\left(\frac{a}{b}\right)} = \underline{|Z|} \cdot e^{j\varphi z}$$

$$\underline{Z} = \underline{|Z|} = \sqrt{R^2 + (\frac{1}{\omega C})^2} \varphi z = \arctan(-\frac{1}{\omega RC})$$

Aufgabe 2 - Komplexer Spannungsteiler

$$\underline{Z}1 = 100\Omega + j50\Omega$$

 $\underline{Z}2 = 80\Omega - j110\Omega$
 $f = 50$ Hz
 $U0 = 220V.e^{j0^{\circ}}$

Berechnung Teilspannung

$$\underline{U}2 = \underline{U}0.\frac{\underline{Z}2}{\underline{Z}1 + \underline{Z}2}$$

Nach
$$\underline{Z} = a + jb = \sqrt{a^2 + b^2} \cdot e^{j \cdot \arctan{(\frac{a}{b})}} = \underline{|Z|} \cdot e^{j\varphi z}$$

$$\underline{Z}2 = 80\Omega - j.110\Omega = \frac{136\Omega}{-54,0^{\circ}}$$

$$\underline{Z}1 + \underline{Z}2 = 180\Omega - \text{j.} 60\Omega = \frac{189,7\Omega}{-18,43^{\circ}}$$

$$\underline{U}2 = 157,7V.e^{-j35,6^{\circ}}$$

Aufgabe 3 - Bodediagramm

$$R1 = 10 k\Omega$$
, $R2 = 2.2 k\Omega$

$$C1 = 2.2 nF$$
, $C2 = 68 nF$

$$f = 1 \ kHz, \ U1 = 4V. \ e^{j0^{\circ}}$$

a) Berechnung von <u>U</u>2 nach Betrag und Phase

$$\underline{U}2 = \underline{U}1.\frac{\underline{Z}2}{\underline{Z}1 + \underline{Z}2}$$

$$\underline{Z}1 = \frac{Ri.\frac{1}{\omega C1}}{R1 + \frac{1}{\omega C1}} = \frac{R1}{1 + j\omega \tau 1} = \frac{R1}{1 + (\omega \tau 1)^2} - j.\frac{\omega \tau 1}{1 + (\omega \tau 1)^2} \text{ mit } \tau 1 = R1.C1$$

$$Z1 = 9.818\Omega - j.1.356\Omega; \ \tau 1 = 22 \ \mu s$$

$$\underline{Z}2 = 1,168\Omega - j.1,098\Omega; \ \tau 1 = 150 \ \mu s$$

$$\frac{\underline{Z}2}{\underline{Z}1 + \underline{Z}2} = \frac{1,168\Omega - \text{j. } 1,098\Omega}{10,891\Omega - \text{j. } 2,454\Omega} = \frac{1,603/-43,2^{\circ}}{11,252/-12,6^{\circ}}$$

$$\underline{U}2 = \underline{U}1.\frac{\underline{Z}2}{\underline{Z}1 + \underline{Z}2} = 4V.\frac{1,603/-43,2^{\circ}}{11,252/-12,6^{\circ}} = 0,57V.e^{-j.31^{\circ}}$$

$$\frac{\underline{U}1}{\underline{U}2} = \frac{\underline{Z}1 + \underline{Z}2}{\underline{Z}2} = 1 + \frac{\underline{Z}1}{\underline{Z}2} \ mit \ \underline{Z}1 = \frac{R1 * \frac{1}{\omega C1}}{R1 + \frac{1}{\omega C1}} = \frac{R1}{1 + j\omega\tau 1}$$

$$\frac{\underline{U1}}{\underline{U2}} = 1 + \frac{\frac{R1}{1 + j\omega\tau 1}}{\frac{R2}{1 + j\omega\tau 2'}} = 1 + \frac{R1.(1 + j\omega\tau 2')}{R2.(1 + j\omega\tau 1)} mit \ \tau 2' = R2.C2'$$

Frequenzunabhängig wenn $\tau 1 = \tau 2' = \frac{C2'}{C1} = (R1.R2) = C2' = 10 nF$

$$R1 = \frac{10k}{C1} = 2.2 \, nF = > \tau = 22 \, \mu s$$

$$R2 = \frac{2,2k}{C2} = 10 \ nF => \tau = 22 \ \mu s$$

$$\frac{\underline{U}2}{\underline{U}1} = \frac{\underline{Z}2}{\underline{Z}1 + \underline{Z}2} = \frac{\frac{R2}{1 + j\omega\tau^2}}{\frac{R1}{1 + j\omega\tau^1} + \frac{R2}{1 + j\omega\tau^2}}$$

$$\frac{\underline{U}^2}{U1} = \frac{R2.(1+j\omega\tau 1)}{R1.(1+j\omega\tau 2) + R2.(1+j\omega\tau 1)}$$

$$\frac{\underline{U2}}{U1} = \frac{R2.(1+j\omega\tau 1)}{R1+R2+j\omega\tau 2R1+j\omega\tau 1R2}$$

$$\frac{\underline{U2}}{\underline{U1}} = \frac{R2}{R1 + R2} * \frac{1 + j\omega\tau 1}{j\omega * \frac{\tau 2R1 + \tau 1R2}{R1 + R2}}$$

$$\tau 1 = 22 \ \mu s = 7,23 \ kHz \ und \ \frac{\tau 2R1 + \tau 1R2}{R1 + R2} = 126 \ \mu s = 1,26 \ kHz$$

Messschaltung:

d) Messwerte

 $C2 = 68 \, nF$

f/Hz	T/μs	Tdiv/μs	Ue/mV	Ua/mV	V	V'/dB	Δt/μs	φ/°
100	10000	1000	3894	707	0,18	-14,82	-140	-5,04
200	5000	500	3566	688	0,19	-14,29	-160	-11,52
500	2000	200	3897	603	0,15	-16,21	-150	-27,00
1000	1000	100	3863	453	0,12	-18,62	-112	-40,32
2000	500	50	3895	284	0,07	-22,74	-70	-50,40
5000	200	20	3955	145	0,04	-28,72	-25	-45,00
10000	100	10	3884	100	0,03	-31,79	-8	-28,80
20000	50	5	3900	87	0,02	-33,03	-2	-14,40
50000	20	2	3901	83	0,02	-33,44	-0,112	-2,02
100000	10	1	3969	84	0,02	-33,49	0,1	3,60

C2 = 10 nF

f/Hz	T/μs	Tdiv/μs	Ue/mV	Ua/mV	V	V'/dB	Δt/μs	φ/°
100	10000	1000	3922	717	0,18	-14,76	48	1,73
200	5000	500	3901	703	0,18	-14,88	20	1,44
500	2000	200	3895	698	0,18	-14,93	22	3,96
1000	1000	100	3863	696	0,18	-14,89	0	0,00
2000	500	50	3908	699	0,18	-14,95	-0,6	-0,43
5000	200	20	3922	679	0,17	-15,23	-0,8	-1,44
10000	100	10	3909	654	0,17	-15,53	-0,3	-1,08
20000	50	5	3927	640	0,16	-15,76	0	0,00
50000	20	2	3937	638	0,16	-15,81	0,07	1,26
100000	10	1	3981	652	0,16	-15,71	0,05	1,80

e) Graphische Darstellung der Bodediagramme

