

Computer Security and Cryptography

CS381

来学嘉

计算机科学与工程系 电院3-423室

34205440 1356 4100825 laix@sjtu.edu.cn

2016-04

Organization

- Week 1 to week 16 (2016-02-24 to 2016-06-08)
- 东上院502
- Monday 3-4节; week 9-16
- Wednesday 3-4节; week 1-16
- lecture 10 + exercise 40 + random tests 40 + other 10
- · Ask questions in class counted as points
- Turn ON your mobile phone (after lecture)
- · Slides and papers:
 - http://202.120.38.185/CS381
 - computer-security
 - http://202.120.38.185/references
- TA: '薛伟佳' xue_wei_jia@163.com, '黄格仕' <huang.ge.shi@foxmail.com>
- · Send homework to: laix@sjtu.edu.cn and to TAs

Rule: do not disturb others!

Ruie. do not disturb others:

Contents

- Introduction -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions/MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking

Network security

SSL IPSEC Firewall VPN

Computer security

Access control Malware DDos Intrusion

Examples

Bitcoin Hardware Wireless

3

References

- W. Stallings, Cryptography and network security principles and practice, Prentice Hall.
- W. Stallings, 密码学与网络安全: 原理与实践(第4版), 刘玉珍等译, 电子工业出版社, 2006
- Lidong Chen, Guang Gong, *Communication and System Security*, CRC Press, 2012.
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, *Handbook of Applied Cryptography*. CRC Press, 1997, ISBN: 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/index.html
- B. Schneier, *Applied cryptography*. John Wiley & Sons, 1995, 2nd edition.
- 裴定一,徐祥,信息安全数学基础, ISBN 978-7-115-15662-4, 人民邮电出版社,2007.

4

contents

- Public-key cryptosystems:
 - RSA factorization
 - DH, ElGamal -discrete logarithm
 - ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms

Group

- a set G, and : $G \times G \rightarrow G$ be a binary operation, satisfying
 - closed: for $a,b \in G$, $a \cdot b \in G$;
 - associative: for $a,b,c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
 - (identity) There is an element $e \in G$, such that for any $a \in G$, $e \cdot a = a \cdot e = a$
 - (Inverse) For any $a \in G$, there exists an element $b \in G$, such that, $a \cdot b = b \cdot a = e$.

Then (G, \bullet) is called to be a group.

Eample.

- $(Z, +), (Q, +), (R, +); (Z_m, +)$
- $?(Z^*=Z\setminus\{0\}, \bullet), (Z_{P}^*, \bullet)$

6

Cyclic group

- Order of an element: for $a \in G$, compute $\{a, a^2, ..., a^m = 1\}$, the least positive integer m such that $a^m = 1$ is called to be the order of a.
- $\{1,a,a^2,...,a^{m-1}\}$ is a cyclic group with order m. a is called the generator of the cyclic group.
- Lemma: if the order of a is m and if $a^n=1$, then m|n.
- Lemma: if the order of a is m, then the order of a^k is $m/\gcd(k,m)$.
- Theorem: if the order of group G is n, then for any subgroup of G, the order of subgroup divides n.
- Cyclic subgroups of (Z₇*, •)

- 1 ⁰ =1	{1}
- 2 ⁰ =1, 2 ¹ =2, 2 ² =4, 2 ³ =1	{1,2,4}
-30=1, 31=3, 32=2, 33=6, 34=4, 35=5, 36=1	{1,3,2,6,4,5}
- 4 ⁰ =1, 4 ¹ =4, 4 ² =2, 4 ³ =1	{1,2,4}
$-5^{0}=1, 5^{1}=5, 5^{2}=4, 5^{3}=6, 5^{4}=2, 5^{5}=3, 5^{6}=1$	{1,5,4,6,2,3}
-60=1, 61=6, 62=1	{1,6}

,

Field

- Let F be a set, and and + are binary operations defined over F, satisfying
 - -(F,+) is an Abel additive group with identity 0;
 - $(F\setminus\{0\}, \bullet)$ is a multiplicative group, with identity 1;
 - Distribution law holds for multiplication and addition.

 $(F,+,\bullet)$ is called to be a field.

Example: let p be a prime, then $(Z_p, +, \bullet)$ is a field, called Galois Field, denoted as $GF(P) = F_p$.

1811~1832

8

Discrete logarithm

- For any 0<x<p in GF(p).
 - Given x and g, compute $y \equiv g^x \pmod{p}$ is called modular exponentiation,
 - Given g and y, to find x such that $y \equiv g^x \pmod{p}$ is called discrete logarithm, written as $x = \log_g y \pmod{p}$
- exponentiation is relatively easy, with computation complexity $O(\log_2(p))_{\circ}$
- finding discrete logarithms is generally a hard problem

9

Diffie-Hellman Key Agreement

W.Diffie and M.E.Hellman, "New Directions in Cryptography", IEEE Transaction on Information Theory, V.IT-22.No.6, Nov 1976, PP.644-654

Parameters: p, g

gab is the secrete key shared by Alice and Bob

10

2016/4/12 5

EIGamal encryption algorithm

- Set up: GF(p), and g the primitive element.
- Users' key generation:
 - user U randomly chooses $x_U \in GF(p)$ *as his private key.
 - Compute $y_U \equiv g^{x_U} \pmod{p}$ as his public key.
- Encryption: suppose that Alice wants to send Bob a message m∈GF(p). She uses Bob's public key y_B,
 - Alice randomly chooses an integer r, and compute $R = g^r$
 - Alice computes $S=m \cdot y_b^r \pmod{p}$;
- Alice sends (R,S) to Bob
- Decryption: Bob uses his own private key to decrypt m from (R,S): $m = \frac{S/R^{x_b}}{(m \cdot y_b^r)/(g^r)^{x_b}}$

11

EIGamal encryption algorithm

Alice sends Bob a message $m \in GF(p)$. Using Bob's public key

Parameters: p, g

```
Alice SK_A = (x_A) Bob SK_B = (x_B) PK_A = (y_A) = (g^{xA} \mod p) PK_B = (y_B) = (g^{xB} \mod p) PK_B = (y_B) = (g^{xB} \mod p) Compute R = g^r \mod p PK_B = (m \cdot y_b^r)/(g^r)^{x_b}
```

Compute $m=S/R^{xB} \mod p$

12

EIGamal Signature Algorithm

- Parameters are chosen as in encryption algorithm.
 - Alice's private key is x_a , and public key is $y_a = g^{x_a}$
 - Bob's private key is x_b , and public key is $y_b = g^{x_b}$
- Signing
 - Alice randomly chooses an integer r, that gcd(r, p-1)=1, and gets $R=g^r$
 - Alice uses her own private key x_a to compute

$$S=r^{-1}(m-x_aR) \pmod{p-1}$$

- Alice sends (m, R, S) to Bob
- Verification
 - Bob verifies $g^m = y_a^R R^S \pmod{p}$

2016/4/12

13

ElGamal Signature Algorithm


```
Parameters: p, g
```

```
Alice SK_A = x_A
PK_A = y_A = (g^{xA} \mod p)
Choose r, such that gcd(r, p-1)=1
Compute R = g^r \mod p
Compute <math>S = r^1(m - x_A R) \mod p - 1
(m, R, S)
```

Bob $SK_B = x_B$ $PK_B = y_B = (g^{xB} \mod p)$

Verify $g^m = y_A^R R^S \mod p$

14

Complexity of Dlog

 Similar to factoring large number n, for discrete logarithm, the complexity of currently known algorithms is about

```
\exp(b^{1/3} \log^{2/3}(b)) b=\log(p) (number field sieve)
```

- The size of p should be at least 1024-bit
- Use strong prime: p-1 has large factors.

15

Attack when p-1 consists of small primes

- Suppose $p-1=2^n$, g is a generator of Z_p^*
- Given $C=g^x \mod p$, to compute x=?

```
- Let x=2^{n-1}x_{n-1}+\ldots+2x_1+x_0
```

- If $C^{2^{n-1}}=1$, then $x_0=0$; if $C^{2^{n-1}}=-1$, then $x_0=1$.
- Compute $C_1 = C/g^{x_0}$
- If $C_1^{2^{n-2}}=1$, then $x_1=0$, if $C_1^{2^{n-2}}=-1$, then $x_1=1$.
- Compute $C_2 = C_1/g^{2x_1}$

– ...

- If $C_{n-1}=1$, then $x_{n-1}=0$, if $C_{n-1}=0$ then $x_{n-1}=1$

[sqrt(1)=1 or -1]

2016/4/12

16

8

Attack when p-1 consists of small primes

- When $p-1=p_1^{e_1}p_2^{e_2}...p_r^{e_r}$
- Given C=g^x mod p, compute x=?
 - -Compute $x=x_1 \mod p_1^{e_1}$
 - -Compute $x=x_2 \mod p_2^{e_2}$
 - **—...**
 - -Compute $x=x_r \mod p_r^{e_r}$
 - -From Chinese remainder theorem
 x=x (mod p-1)

17

Chinese Remainder Theorem

- Find a number x that leaves
 - a remainder of 2 when divided by 3,
 - a remainder of 3 when divided by 5,
 - a remainder of 4 when divided by 7.
- If
- $x \equiv 2 \pmod{3}$
- $x \equiv 3 \pmod{5}$
- $x \equiv 4 \pmod{7}$
- x=?

18

Chinese Remainder Theorem

- Let $(m_1, m_2,...,m_k)$ be pairwise relatively prime positive integers. Then the system of congruence
 - $-x \equiv b_1 \pmod{m_1}$
 - $-x\equiv b_2 \pmod{m_2}$
 - **.....**
 - $-x \equiv b_k \pmod{m_k}$

has a unique solution (modulo $m_1m_2...m_k$)

Solution

```
M = m_1 m_2 ... m_k, M_i = M/m_i, M_i' = M_i^{-1} \pmod{m_i}

x = b_1 M_1 M_1' + b_2 M_2 M_2' + ... + b_k M_k M_k'
```

19

Primality Testing

- · often we need to find large prime numbers
- traditionally sieve using trial division
 - i.e. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property
- can use a slower deterministic primality test

Miller Rabin Algorithm

- based on Fermat's Theorem: $a^{p-1} = 1 \pmod{p}$
- TEST (n):
 - 1. Find integers k, q, k > 0, q odd, so that $(n-1) = 2^k q$
 - 2. Select a random integer a, 1 < a < n-1
 - 3. **if** $a^q \mod n = 1$ **then** return ("maybe prime");
 - 4. **for** j = 0 **to** k 1 **do**
 - 5. if $(a^{2^{j_q}} \mod n = n-1)$ then return("maybe prime")
 - 6. return ("composite")
- Prob(n maybe prime but not prime) < ½
 - repeat test with different random a
 - Prob(n is prime after t tests) = 1-4-t (0.99999 for t=10)

Primitive Roots

- from Euler's theorem have ag(n) mod n=1
- consider $a^m=1 \pmod{n}$, GCD (a,n)=1
 - must exist for $m = \emptyset(n)$ but may be smaller
 - once powers reach m, cycle will repeat
- if smallest is m = Ø(n) then a is called a primitive root
- if p is prime, then successive powers of a "generate" the group $mod\ p$
- · these are useful but relatively hard to find

Exercise 8 - PKC

- 1. If $x=2 \pmod{3}$ $x=3 \pmod{5}$ $x=4 \pmod{7}$, what is x?
- 2. Compute $\phi(24)=\#\{?\}$, and $\phi(n)$ for $n=p_1^{e1} p_2^{e2} p_3^{e3}$
- 3. Prove: in ElGamal Signature Algorithm, the Verification test $g^m = y_a^R R^S \pmod{p}$ is valid.
- 4. ElGamal scheme uses a random integer *r* for each message,
 - A) what will happen if r is used twice in encryption?
 - B) what will happen if r is used twice in signature?
- 5. Is it possible to achieve confidentiality with DH key exchange? Is it possible to achieve authenticity with DH key exchange?
 - Deadline: 1 day before next lecture

Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- · consider a cubic elliptic curve of form
 - $y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - define zero point O(x,∞)
- · have addition operation for elliptic curve
 - geometrically sum of Q+R is reflection of intersection R

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- · have two families commonly used:
 - prime curves E_p (a,b) defined over Z_p
 - · use integers modulo a prime
 - · best in software
 - binary curves $E_{2m}(a,b)$ defined over $GF(2^n)$
 - · use polynomials with binary coefficients
 - best in hardware

Elliptic Curve Discrete Logarithm Problem (ECDLP)

k	kP	s	Y ₀	
1	(2,4)	3	9	
2	(5,9)	9	8	
1 2 3 4	(8,8)	8	10	
4	(10,9)	2	0	
5	(3,5)	1	2	
6	(7,2)	4	7	
7	(7,9)	1	2	
8	(3,6)	2	0	
9	(10,2)	8	10	
10	(8,3)	9	8	
11	(5,2)	3	9	
12	(2,7)	œ	-	
13	0	œ	-	

Given an elliptic curve

 $y^2 = x^3 + ax + b \mod p$

and a basis point P, we can compute Q = kP

through k-1 iterative point additions. Fast algorithms for this task exist (double and add).

Question: Is it possible to compute k when the point Q is known?

Answer: This is a hard problem known

as the Elliptic Curve Discrete

Logarithm.

ECC Diffie-Hellman

Diffie-Hellman: Basis g and prime p

$$A = g^{a} \mod p$$

$$B = g^{b} \mod p$$

$$Secret:$$

$$S = A^{b} = B^{a} = g^{ab} \mod p$$

Elliptic Curve Cryptosystem: ECC, basis point P and prime p

$$Q_A = aP$$

$$Q_B = bP$$

$$Secret:$$

$$S = bQ_A = aQ_B = abP$$

ECC Encryption/Decryption

- Setup
 - encode message M as a point on the EC over $P_{\rm m}$
 - select suitable curve & point G as in D-H
- · Key generation
 - each user chooses private key $n_A < n$
 - and computes public key $P_A = n_A G$
- En/Decryption
 - encrypt P_m : $C_m = \{kG, P_m + kP_b\}$, k random
 - decrypt C_m : $P_m + kP_b n_B(kG) = P_m + k(n_BG) n_B(kG) = P_m$

ECC Security

- · based on elliptic curve logarithm problem
- fastest method is "Pollard's rho method",
- compared with factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers computational advantages

Pollard's rho method

- F: G -> G
- F(x), $F^2(x)$, $F^3(x)$,...
- Exist i,j, $F^i(x) = F^j(x)$

- to find x s.t. $y \equiv g^x \pmod{p}$
 - $\{g^i\}$ and $\{y^j\}$ have common element , with $p^{1/2}$ computations
 - $-g^i=y^j=g^{xj}$ i=xj mod p-1
- Same for EC Dlog

36

Comparable Key Sizes for Equivalent Security (NIST)

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA/Elg (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

New: RSA should be longer, ECC can be shorter

4	The Digital Signature Algorithm (DSA)			
	Global Public-Key Components			
p	A prime number of L bits where L is a multiple of 64 and 512 ≤ L ≤ 1024			
q	A 160-bit prime factor of p-1			
g	= $h^{(p-1)/q}$ mod p , where h is any integer with 1< h < p -1, such that $(h^{(p-1)/q}$ mod $p)$ >1			
	User's Private Key			
X	A random or pseudorandom integer with 0 <x<q< td=""><td></td></x<q<>			
	User's Public Key			
y	$= g^x \mod p$			
	User's Per-Message Secret Number			
k	A random or pseudorandom integer with 0< <i>k</i> < <i>q</i>			
	Signing	_		
	$r = (g^k \mod p) \mod q$ $s = [k^1 (H(M) = xr)] \mod q$ Signature = (r, s)			
	Verifying			
	$w = (s')^{-1} \mod q$ $u_1 = [H(M')w] \mod q$ $u_2 = (r')w \mod q$ $v = [(g^{u_1}y^{u_2}) \mod p] \mod q$ Test: $v = r'$			

Summary

- Public-key cryptosystems:
 - RSA factorization
 - DH, ElGamal -discrete logarithm
 - ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms

2016/4/12 20