Théorie des langages rationnels : THLR CM 9

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- 5 Langages reconnaissables, minimisation

Propriétés de clôture

Propriétés de clôture

Théorème

Les langages rationnels sont clos par

- union, concaténation, étoile,
- préfixe, suffixe, facteur,
- intersection et complémentation.

Propriétés de clôture

Théorème

Les langages rationnels sont clos par

- union, concaténation, étoile,
- préfixe, suffixe, facteur,
- intersection et complémentation.

V

/

,

✓

Clôture par préfixe etc.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors Pref(L), Suff(L) et Fact(L) sont rationnels aussi.

- **①** Soit A un automate fini tel que L = L(A).
- ② Notons $A = (\Sigma, Q, Q_0, F, \delta)$.

Clôture par préfixe etc.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors Pref(L), Suff(L) et Fact(L) sont rationnels aussi.

- **①** Soit A un automate fini tel que L = L(A).
- O Notons $A = (\Sigma, Q, Q_0, F, \delta)$.
- Soient
 - $\operatorname{pref}(A) = (\Sigma, Q, Q_0, \frac{Q}{Q}, \delta),$
 - suff(A) = (Σ , Q, Q, F, δ),
 - $fact(A) = (\Sigma, Q, Q, Q, \delta)$.
- Alors $L(\operatorname{pref}(A)) = \operatorname{Pref}(L(A))$, $L(\operatorname{suff}(A)) = \operatorname{Suff}(L(A))$ et $L(\operatorname{fact}(A)) = \operatorname{Fact}(L(A))$.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

Démonstration.

Soit A un automate fini

tel que
$$L = L(A)$$
.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

Démonstration.

① Soit A un automate fini déterministe complet tel que L = L(A).

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

- **①** Soit A un automate fini déterministe complet tel que L = L(A).
- **2** Notons $A = (\Sigma, Q, q_0, F, \delta)$.

Lemme

Soit $L \subseteq \Sigma^*$ un langage rationnel, alors $\overline{L} = \Sigma^* \setminus L$ est rationnel aussi.

- **①** Soit A un automate fini déterministe complet tel que L = L(A).
- ② Notons $A = (\Sigma, Q, q_0, F, \delta)$.

Clôture par intersection

Corollaire

Soient L_1 et L_2 des langages rationnels, alors $L_1 \cap L_2$ l'est aussi.

Démonstration.

Par la loi de de Morgan,

Clôture par intersection

Corollaire

Soient L_1 et L_2 des langages rationnels, alors $L_1 \cap L_2$ l'est aussi.

Démonstration.

Par la loi de de Morgan, $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.

 aussi, construction directe par produit d'automates finis déterministes complets

Minimisation

Minimisation

Soit L un langage rationnel. On s'intéresse aux questions d'existence et unicité d'un automate fini minimal qui reconnait L.

- très compliqué pour des automates non-déterministes
- p.ex. [Brzozowski, Tamm : Theory of átomata. Theor. Comput. Sci. 539 : 13-27 (2014)]
- mais pour des automates finis déterministes :

Théorème

Pour tout langage rationnel L il existe un unique automate fini déterministe complet A avec nombre d'états minimal t.q. L = L(A).

Indistinguabilité

Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini.

• on note L_q , pour tout $q \in Q$, le langage reconnu par A depuis état initial q

Définition

Deux états $q_1, q_2 \in Q$ sont indistinguables si $L_{q_1} = L_{q_2}$.

- si deux états sont indistinguables, on peut les identifier
- écrivons $q_1 \sim q_2$ si q_1 et q_2 sont indistinguables : une relation d'équivalence dans Q

Théorème

Si A est déterministe complet, alors l'automate quotient $A_{/\sim}$ est l'automate fini déterministe complet minimal pour L(A).

L'automate quotient

Définition

Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini et $R \subseteq Q \times Q$ une relation d'équivalence. L'automate quotient de A sur R est

 $A_{/R} = (\Sigma, Q', Q'_0, F', \delta')$ defini comme suite :

- $Q' = Q_{/R} = \{[q]_R \mid q \in Q\}$, l'ensemble de classes d'équivalence de R
- $Q_0' = \{ [q_0]_R \mid q_0 \in Q_0 \}$
- $F' = \{ [q_f]_R \mid q_f \in F \}$
- $\delta' = \{([p]_R, a, [q]_R) \mid (p, a, q) \in \delta\}$

Exemple (sur tableau)

Démonstration

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Théorème (rappel)

Soit A un automate fini déterministe complet, alors $A_{/\sim}$ est l'unique automate fini déterministe complet minimal pour L(A).

Démonstration.

- **1** $A_{/\sim}$ est déterministe complet et $L(A_{/\sim})=L(A)$. (Pourquoi ?)
- 2 On finit la démonstration par le lemme suivant.

Lemme

Si A et A' sont deux automates finis déterministes complets avec L(A) = L(A'), alors $A_{/\sim}$ et $A'_{/\sim}$ sont isomorphes.

- Qu'est-ce que c'est « isomorphe »?
- Pourquoi le lemme démontre-t-il le théorème?

Démonstration, suite

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Lemme (rappel)

Si A et A' sont deux automates finis déterministes complets avec L(A) = L(A'), alors $A_{/\sim}$ et $A'_{/\sim}$ sont isomorphes.

- ① On note $A_{/\sim} = (\Sigma, Q, q_0, F, \delta)$ et $A'_{/\sim} = (\Sigma, Q', q'_0, F', \delta')$.
- **②** Soit $R \subseteq Q \times Q'$ la relation défini par q R q' ssi $L_q = L_{q'}$.
- $L_{q_0} = L(A/_{\sim}) = L(A) = L(A') = L(A'/_{\sim}) = L_{q_0'}$, alors $q_0 R q_0'$

- o alors R est une bijection.
- Est-ce qu'on a fini?

Myhill-Nerode

• même chose qu'avant, sans passer par un automate :

Définition

Soit $L \subseteq \Sigma^*$ et $u, v \in \Sigma^*$, alors u et v sont indistinguables dans L si pour tout $w \in \Sigma^*$, $uw \in L \iff vw \in L$.

• écrivons $u \equiv_L v$ si u et v sont indistinguables dans L : une relation d'équivalence dans Σ^*

Théorème (Myhill-Nerode)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi le nombre n de classes d'équivalence de \equiv_L est fini. Dans ce cas, n est aussi le nombre d'états de l'automate fini déterministe complet minimal reconnaissant L.

- voir le poly pour une démonstration
- l'automate a comme états les classes d'équivalence de ≡₁

Algorithme de minimisation

Soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate fini déterministe complet.

ullet rappel : $q_1 \sim q_2$ ssi $L_{q_1} = L_{q_2}$

Théorème (rappel)

 $A_{/\sim}$ est l'unique automate fini déterministe complet minimal pour L(A).

Algorithme

- ① Initialiser avec deux classes d'équivalence : F et $Q \setminus F$
- 2 Itérer jusqu'à stabilisation :
 - pour tout $p, q \in Q$ dans une même classe d'équivalence C :
 - s'il existe $p \stackrel{a}{\longrightarrow} p'$ et $q \stackrel{a}{\longrightarrow} q'$ tel que p' et q' ne sont pas dans la même classe :
 - séparer C en classes $C_1 \ni p$ et $C_2 \ni q$

Exemple (sur tableau)

Égalité est décidable

Corollaire

Il existe un algorithme qui, pour automates finis A_1 et A_2 , décide si $L(A_1) = L(A_2)$.

- Convertir A₁ et A₂ en automates finis déterministes complets minimaux.
- ② Décider si A_1 et A_2 sont isomorphes.

