Concurrence theorems in Euclidean geometry

Now we explore when three lines meet at a point.

After answering the following questions, students should be able to:

- State and prove facts about the ratio of sides and areas of triangles
- State and prove Ceva's theorem

Let's look at a some *concurrence* theorems. Concurrence theorems deal with situations when three or more lines (or curves) pass through the same point.

Problem 1 Denote the measure or area of a triangle $\triangle ABC$ as $|\triangle ABC|$. Show that, in the diagram below,

$$\frac{|AF|}{|FB|} = \frac{|\triangle AFC|}{|\triangle CFB|} = \frac{|\triangle AFX|}{|\triangle XFB|}$$

Hint: Mark the height of the relevant triangles.

Hint: Video for the first equality is at https://youtu.be/nALZ_REZV74 with notes at https://osu.instructure.com/courses/84670/files/23758741.

Learning outcomes: Author(s):

Concurrence theorems in Euclidean geometry

Problem 2 Use the previous problem to show using only algebra that

$$\frac{|AF|}{|FB|} = \frac{|\triangle AXC|}{|\triangle CXB|}.$$

Now we will present, and you will prove, Ceva's Theorem.

Historical note: The following fact was proved in the 1000s by Yusuf al-Mu'taman ibn-H \bar{u} d, the Muslim king of Zaragoza in Spain. But we call it Ceva's theorem. Giovanni Ceva (*CHEH-vah*) was an Italian mathematician who proved this theorem in the 1600s. In fact, it

Theorem 1 (Ceva's Theorem). Three segments \overline{AD} , \overline{BE} , and \overline{CF}

are concurrent if and only if

$$\frac{|AF|}{|FB|} \cdot \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} = 1.$$

Problem 3 Prove the Ceva's theorem:

(a) For three concurrent segments \overline{AD} , \overline{BE} and \overline{CF}

show that

$$\frac{|AF|}{|FB|} \cdot \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} = 1.$$

Hint: Use the previous problem repeatedly. Video for finding $\frac{|BD|}{|CD|}$ is at https://youtu.be/nALZ_REZV74?t=249 with notes at https://osu.instructure.com/courses/84670/files/23758741.

Interactive demonstration is at https://www.geogebra.org/m/s7m8xVDu.

(b) Prove the reverse direction of Ceva's Theorem: If

$$\frac{|AF|}{|FB|} \cdot \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} = 1$$

then the lines AD, BE, and CF pass through a common point.

Hint: Suppose that they do not pass through a common point.

Hint: Notice that if, for example, F moves along the segment \overline{AB} from A to B, then $\frac{|AF|}{|FB|}$ is a strictly increasing function of |AF|. Now use a previous problem to determine a position F' for F along the segment \overline{AB} at which

$$\frac{|AF'|}{|F'B|} \cdot \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} = 1.$$

Hint: Video showing F moving from A to B is at https://youtu.be/nALZ_REZV74?t=496 with notes at https://osu.instructure.com/courses/84670/files/23758741.

Interactive demonstration is at https://www.geogebra.org/m/s7m8xVDu.

Problem 4 A **median** of a triangle is a line segment from a vertex to the midpoint of the opposite side. Show that the medians of any triangle meet in a common point.

Hint: Use Ceva's Theorem.

Definition 1. An altitude of a triangle is a line segment originating at a vertex of the triangle that meets the line containing the opposite side at a right angle.

Problem 5 Use Ceva's theorem to show that the three lines containing altitudes of a triangle are concurrent.

Hint: Use all three similarities of the form $\triangle CEB \sim \triangle CDA$ and then apply Ceva's theorem.

Problem 6 Summarize the results from this section. In particular, indicate which results follow from the others.