

Ishan Ranade and Salaar Kohari

Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid Nuttapong Chentanez and Matthias Muller NVIDIA PhysX Research

Beta

- Renders fluid simulation with sphere marching
- Blinn-Phong shading with normal approximation
- CUDA and algorithm optimizations

Rendering

Rendering

Rendering

Problem Areas

- Hierarchical multigrid pressure solver since Conjugate Gradient Method is too slow
- May try CPU solver instead until we get it working

Remaining Work

Tall Cells

- Adaptive MAC grid with tall cells to reduce computation below the surface
- Transition cells between regular and tall depending on distance to surface

Figure 1: A MAC grid cell. Velocity components, u_x , u_y and u_z , are stored on the minimal faces of the cell. Pressure, p, is stored at the cell center.

Textures

 Use water/wave textures with modification depending on surface deformation and velocity

Clustering

 Use marker particle clusters to reduce cost of sphere marching

Scalability

- Allow for real-time water simulation in a larger environment
- Blend fake/simple simulation with main simulation

