Choice

Instructor: Xiaokuai Shao

shaoxiaokuai@bfsu edu cn

Outline

- Utility maximization and Mashallian demand
 - Lagrangian and interior solutions
 - Corner solutions
- Expenditure minimization and Hicksian demand
- Slutsky equation
 - Duality
 - Decomposition: substitution & income effects
- Envelop theorem
 - Rov's identity
 - Shephard's lemma

Review

- In the last lecture, we have discussed about two important elements in consumer theory:
 - utility
 - budget
- There are two ways of measuring the "optimal choice" of a consumer.
 - **1** Given prices and income, what is the optimal amount x and ythat should be bought to maximize your utility?
 - 2 Fixing a particular level of utility, what is the optimal amount of x and y that should be bought to minimize your expenditure?

Duality & Slutsky Identity

- The optimization problem of the first question, is called "utility maximization problem" (效用最大化), or UMP.
 - The solutions of UMP, denoted as (x^*, y^*) , are "Marshallian" demand" for x and y.

Duality & Slutsky Identity

- The optimization problem of the second question, is called "expenditure minimization problem" (支出最小化), or EMP.
 - The solutions of EMP, denoted as (h_x, h_y) , are "Hicksian" demand" for x and y.

Utility maximization problem (效用最大化问题, UMP)

- Assume that the utility function is $U = x^a y^b$ where a = b = 1/2
- The budget set is $p_x x + p_y y \leq I$ where $p_x = p_y = 1$ and I = 5.

UMP

- The consumption bundle along the indifference curve $3 = \sqrt{xy}$ is not feasible.
- You could achieve a utility level at $2 = \sqrt{xy}$, but you can do better.
- The optimal choice: the tangent point.

A simple approach of UMP

The UMP is formally written as

$$\max_{x,y} U(x,y)$$
 subjected to $p_x x + p_y y \leq I$

Duality & Slutsky Identity

 Observe that: all the money should be spent, i.e., the choice should be made somewhere along the budget line.

$$p_x x + p_y y = I.$$

The budget line can be expressed as $y = -\frac{p_x}{p_y}x + \frac{1}{p_y}$.

Plug the budget line into the utility, then you solve

$$\max_{x} U\left(x, -\frac{p_x}{p_y}x + \frac{I}{p_y}\right)$$

$$\max_{x} U\left(x, -\frac{p_x}{p_y}x + \frac{I}{p_y}\right)$$

Duality & Slutsky Identity

with respect to x, gives

$$U'_x + U'_y \cdot \left(-\frac{p_x}{p_y}\right) = 0 \Rightarrow \frac{U'_x}{U'_y} = \frac{p_x}{p_y}$$

- There is only one variable x in the above equation: $x^*(p_x, p_y, I)$
- Plug $x^*(p_x, p_y, I)$ back into the budget line $p_x x^* + p_y y = I$, you can solve $y^*(p_x, p_y, I)$.
- Recall the definition of $MRS = \frac{U_x'}{U'}$:

Theorem

IIMP

At optimum, the marginal rate of substitution is equal to the relative prices:

$$MRS = \frac{U_x'(x^*, y^*)}{U_y'(x^*, y^*)} = \frac{p_x}{p_y}$$

Example $(U = \sqrt{xy})$

- The budget line: $y = -\frac{p_x}{p_y}x + \frac{1}{p_y}$.
- Choose x to maximize $U = \sqrt{xy} = \sqrt{x\left(-\frac{p_x}{p_y}x + \frac{I}{p_y}\right)}$.

•
$$\frac{dU}{dx} = \frac{-2\frac{p_x}{p_y}x + \frac{I}{p_y}}{2\sqrt{x\left(-\frac{p_x}{p_y}x + \frac{I}{p_y}\right)}} = 0 \Rightarrow x = \frac{I}{2p_x}$$

• Plug $x = \frac{I}{2p_x}$ into the budget line: $y = -\frac{p_x}{p_y} \cdot \frac{I}{2p_x} + \frac{I}{p_y} = \frac{I}{2p_y}$.

You can confirm that

$$MRS = \frac{U_x'}{U_y'}\bigg|_{x = \frac{I}{2p_x}, y = \frac{I}{2p_y}} = \frac{\frac{\sqrt{y}}{2\sqrt{x}}}{\frac{\sqrt{x}}{2\sqrt{y}}}\bigg|_{x = \frac{I}{2p_x}, y = \frac{I}{2p_y}} = \frac{p_x}{p_y}.$$

The Lagrangian (拉格朗日) Approach

- Mathematically, if we want to maximize U(x,y) subjected to the constraint $p_x x + p_y y \leq I$, we can use the "Lagrangian approach," i.e., constraint optimization (带有约束条件的最优化).
- The Lagrangian is

$$\mathcal{L}(x, y, \lambda) = U(x, y) + \lambda (I - p_x x - p_y y)$$

Duality & Slutsky Identity

where λ is called "multiplier," i.e., the marginal value of an additional unit of money.

We maximize \mathcal{L} with three variables: x, y, λ . The first-order conditions are

$$\frac{\partial \mathcal{L}}{\partial x} = U_x' - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = U_y' - \lambda p_y = 0 \qquad \Rightarrow x, y, \lambda$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = I - p_x x - p_y y = 0$$

Three unknowns (x, y, λ) are determined by three equations.

Second-order conditions

UMP

• By so far, we have obtained the solutions (x^*, y^*, λ^*) through the first-order conditions

$$\frac{\partial \mathcal{L}}{\partial x} = 0, \frac{\partial \mathcal{L}}{\partial y} = 0, \frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

- We need to verify whether they are maximum or minimum, by using the second-order conditions.
- In a constrained optimization, the second-order matrix, is called "boarded Hessian"

$$H_{b} = \begin{bmatrix} 0 & \mathcal{L}''_{\lambda x} & \mathcal{L}''_{\lambda y} \\ \mathcal{L}''_{\lambda x} & \mathcal{L}''_{x x} & \mathcal{L}''_{x y} \\ \mathcal{L}''_{\lambda y} & \mathcal{L}''_{y x} & \mathcal{L}''_{y y} \end{bmatrix} = \begin{bmatrix} 0 & -p_{x} & -p_{y} \\ -p_{x} & U''_{x x} & U''_{x y} \\ -p_{y} & U''_{y x} & U''_{y y} \end{bmatrix}$$

- Maximization: $(-1)H_b$ is negative semidefinite
- Minimization: $(-1)H_b$ is positive semidefinite

$$H_{b} = \begin{bmatrix} 0 & \mathcal{L}''_{\lambda x} & \mathcal{L}''_{\lambda y} \\ \mathcal{L}''_{\lambda x} & \mathcal{L}''_{x x} & \mathcal{L}''_{x y} \\ \mathcal{L}''_{\lambda y} & \mathcal{L}''_{y x} & \mathcal{L}''_{y y} \end{bmatrix} = \begin{bmatrix} 0 & -p_{x} & -p_{y} \\ -p_{x} & U''_{x x} & U''_{x y} \\ -p_{y} & U''_{y x} & U''_{y y} \end{bmatrix}$$

Duality & Slutsky Identity

Maximization: $(-1)H_b$ is negative semidefinite: starting from the second minor of H_b , the signs of the determinants are -, +, -, +, ...

$$\det \begin{bmatrix} 0 & -p_x \\ -p_x & U_{xx}^{"} \end{bmatrix} = -p_x^2 < 0, \ \det(H_b) \ge 0.$$

- Minimization: $(-1)H_b$ is positive semidefinite: starting from the second minor of H_b , the signs of the determinants are negative (or non-positive).
 - Clearly, UMP is associated with maximization. We will see a positive semidefinite $(-1)H_b$ in the expenditure minimization problem.

IIMP

Example: $U = \sqrt{xy}$

The Lagrangian for UMP is

$$\mathcal{L}(x, y, \lambda) = \sqrt{xy} + \lambda(I - p_x x - p_y y)$$

Duality & Slutsky Identity

The first-order conditions:

$$\mathcal{L}_x' = \frac{\sqrt{y}}{2\sqrt{x}} - \lambda p_x = 0$$

$$\mathcal{L}_y' = \frac{\sqrt{x}}{2\sqrt{y}} - \lambda p_y = 0 \Rightarrow x^* = \frac{I}{2p_x}, \ y^* = \frac{I}{2p_y}, \ \lambda = \frac{U_x'}{p_x} = \frac{U_y'}{p_y}$$

$$\text{Example: } p_x = p_y = 1, I = 5, \text{ then } x^* = y^* = 2.5.$$

$$\mathcal{L}_\lambda' = I - p_x x - p_y y = 0$$

The boarded-Hessian for second-order derivatives:

$$H_b = \begin{bmatrix} 0 & -p_x & -p_y \\ -p_x & -\frac{1}{4}x^{-3/2}y^{1/2} & \frac{1}{4}x^{-1/2}y^{-1/2} \\ -p_y & \frac{1}{4}x^{-1/2}y^{-1/2} & -\frac{1}{4}x^{1/2}y^{-3/2} \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & -\frac{1}{10} & \frac{1}{10} \\ -1 & \frac{1}{10} & -\frac{1}{10} \end{bmatrix}$$

(You should verify that $(-1)H_b$ is negative semidefinite)

Interior & Corner Solutions (内点解与角点解)

- In the previous example, the solution of the UMP is obtained by "first-order conditions." We call such solutions "interior solutions."
- However, for some utility functions, we cannot use derivatives to solve the optimum.

Duality & Slutsky Identity

- Except the Cobb-Douglas utility, you should be cautious with respect to the following three types of utilities:
 - Perfect substitutes
 - Perfect complements
 - Quasi-linear utility
- For perfect substitutes and complements, the indifference curves are "straight lines."
 - You should plot graphs first, and then check the point that maximize the utility.
- For quasi-linear utility:
 - Under certain conditions, the optimum corresponds to interior solutions
 - Under some other conditions, the optimum corresponds to corner solutions.

Perfect Substitutes

- Utility function: U(x,y)=ax+by. The indifference curve is a straight line.
- Budget line: $p_x x + p_y y = I$.
- The optimum is determined by the relative slopes of the two straight lines.

UMP

Fixing a particular utility level u_0 , the indifference curve is

$$y(x) = \underbrace{-\frac{a}{b}}_{\text{slope}} x + \underbrace{\frac{u_0}{b}}_{\text{intercept}}$$

Duality & Slutsky Identity

The budget line is

$$y = \underbrace{-\frac{p_x}{p_y}}_{\text{slope}} x + \frac{I}{p_y}$$

- Recall that $MRS = \frac{U'_x}{U'} = \frac{a}{h}$.
- If $MRS = \frac{a}{b} > \frac{p_x}{p_x}$, you should spend all your money on x and buy zero y. Plug $y^* = 0$ into the budget line: $p_x x = I \Rightarrow x^* = \frac{I}{n_x}$.
- If $MRS = \frac{a}{b} < \frac{p_x}{p_y}$, you should buy zero x and spend all your money on y. Plug $x^* = 0$ into the budget line: $p_y y = I \Rightarrow y^* = \frac{I}{n_y}$

Example

$$\max_{x,y} 1.5x + y$$

$$s.t. \ x + y < 5$$

The slope of indifference curve: $MRS = \frac{1.5}{1}$. The slope of the budget line: $-rac{p_x}{p_y}=1$. Then you should spend all your money on x: $y^* = 0 \Rightarrow x + 0 = 5 \Rightarrow x^* = 5$

Example

UMP

$$\max_{x,y} 0.5x + y$$

$$s.t. \ x + y < 5$$

The slope of indifference curve: $MRS = \frac{0.5}{1}$. The slope of the budget line: $-\frac{p_x}{p_y}=1$. Then you should spend all your money on y: $x^* = 0 \Rightarrow 0 + y = 5 \Rightarrow y^* = 5$

Perfect Complements

UMP

- Utility function: $U(x,y) = \min\{ax, by\}$
- Budget line: $p_x x + p_y y = I$
 - If you buy some amount of x and y such that ax > by, then you obtain utility $U = \min\{ax, by\} = by$. You should not buy too many x that is greater than $x > \frac{b}{a}y$ because you have to pay for what you buy, without obtaining additional utility.
 - Similarly, if you choose ax < by, then you obtain U = ax. Then you should reduce the amount of y such that ax = by because you need to pay for the additional y that brings no additional benefits.
 - Therefore, the optimal choice is ax = by
- Plug ax = by into your budget line: $p_x x + p_y y = I$:

$$p_x x + p_y \left(\frac{a}{b}x\right) = I \Rightarrow x^* = \frac{bI}{bp_x + ap_y}, y^* = \frac{aI}{bp_x + ap_y}$$

UMP

$$\max_{x,y} \min\{x, y\}$$

$$s.t. \ x + y \le 5$$

The optimal choice is x = y. Plug x = y into the budget line: $x + y = 5 \Rightarrow 2x = 5 \Rightarrow x^* = y^* = 2.5.$

Quasi-linear Utility

• Utility function: U(x,y) = u(x) + y, i.e., concave in x while linear in y.

Duality & Slutsky Identity

- Sometimes we implicitly assume that $u'(0) \to +\infty$.
- Budget: $p_x x + p_y y < I$.
- You should be careful about quasi-linear because it is possible that
 - The UMP gives an interior solution if $MRS = \frac{U_x'}{U_-^{\prime\prime}} = u'(x) = \frac{p_x}{n_o}$.
 - The UMP gives a corner solution if $MRS = \frac{U'_x}{U'} = u'(x) > \frac{p_x}{p_0}$.
- There are two ways to specify whether the solution is interior or corner:
 - 1 Use the first-order condition to solve x^* , and check whether $u'(x^*) = \text{or} > \frac{p_x}{n_y}$
 - 2 Use the first-order condition to solve x^* , and plug x^* into your budget line and check whether $y^* > 0$ or $y^* < 0$.

Example

$$\max_{x,y} 3\sqrt{x} + y$$

$$s.t. \ x + y \le 5$$

- Because x + y = 5, then y = 5 x. Plug y = 5 x into your objective.
- You maximize $U(x,y) = 3\sqrt{x} + 5 x$
- The first-order condition is $U'_x = 3\frac{1}{2\sqrt{x}} 1 = 0 \Rightarrow x^* = 9/4$
 - Check: $MRS = u'(x^*) = \frac{3}{2\sqrt{x^*}} = 1 = \frac{p_x}{p_x} = \frac{1}{1}$
 - Check: $x^* + y = 5 \Rightarrow y = 5 9/4 > 0$.
- Therefore, the interior solution is $(x^*, y^*) = (9/4, 11/4)$

Interior Solution for Quasi-linear Utility

Example

IIMP

$$\max_{x,y} 6\sqrt{x} + y$$

$$s.t. \ x + y \le 5$$

- Plug y = 5 x into your objective.
- Maximize $U(x,y) = 6\sqrt{x} + 5 x$
- $U'_x = \frac{6}{2\sqrt{x}} 1 = 0 \Rightarrow x = 9$
- However, if you plug x = 9 back into the budget: y = 5 9 < 0. You cannot buy a negative amount of y.
- Essentially, at current prices $p_x/p_y=1$, because you prefer x "much more" than y, then you buy zero unit of y, i.e., $x + 0 = 5 \Rightarrow x = 5$. Evaluated at x=5, $MRS=u'(x)=\frac{3}{\sqrt{5}}>1=p_x/p_y$.
 - Even you buy zero y and spend all your money buying 5 units of x, if you are provided with an additional unit of x, the additional utility obtained from an additional unit of x is still greater than the relative prices p_x/p_y .

Corner Solution for Quasi-linear Utility

You do not buy y. Hence $y^* = 0 \Rightarrow x^* = 5 - y = 5$. The slope of the indifference curve $MRS = U_x' = \frac{3}{\sqrt{5}}$ is steeper than the budget line (not tangent).

Expenditure Minimization Problem (支出最小化, EMP)

• Previously, we have discussed the question: given prices ${\bf p}$ and income I, the optimal choice of (x^*,y^*) that maximizes the utility:

$$\max_{x,y} U(x,y)$$
s.t. $p_x x + p_y y \le I$ $\Rightarrow (x^*, y^*)$

The solution (x^*, y^*) is called "Marshallian demand" (马歇尔需求).

• Now, let's "reverse" the problem: given a particular utility level u, the optimal choice of (x,y) that minimizes the total expenditure. The solution of this problem, denoted as (h_x,h_y) , is "Hicksian demand." (希克斯需求)

$$\min_{x,y} p_x x + p_y y$$
s.t. $U(x,y) \ge u$ $\Rightarrow (h_x, h_y)$

- The process of EMP is similar to UMP.
- The Lagrangian is

$$\mathcal{L}(x, y, \lambda) = p_x x + p_y y + \lambda \left[u - U(x, y) \right]$$

- The three unknowns (x, y, λ) are solved from the three FOCs:
 - $\mathcal{L}'_x = p_x \lambda U'_x = 0$
 - $\mathcal{L}'_{n} = p_{n} \lambda U'_{n} = 0$
 - $\mathcal{L}'_{\lambda} = u U(x, y) = 0$
- The Hicksian demand for x and y is

$$h_x(p_x, p_y, u), h_y(p_x, p_y, u)$$

Example (Cobb-Douglas $U(x,y) = \sqrt{xy}$)

$$\min_{x,y} p_x x + p_y y$$
$$s.t. \sqrt{xy} \ge u$$

Duality & Slutsky Identity

The Lagrangian is

$$\mathcal{L} = p_x x + p_y y + \lambda (u - \sqrt{xy})$$

•
$$\mathcal{L}'_x = p_x - \lambda \frac{\sqrt{y}}{2\sqrt{x}} = 0$$

•
$$\mathcal{L}'_y = p_y - \lambda \frac{\sqrt{x}}{2\sqrt{y}} = 0$$

•
$$\mathcal{L}'_{\lambda} = u - \sqrt{xy} = 0$$

The Hicksian demand is

$$h_x = \sqrt{\frac{p_y}{p_x}}u, \ h_y = \sqrt{\frac{p_x}{p_y}}u.$$

$$h_x = h_y = 2.5$$

Duality & Slutsky Identity

Check the second-order Hessian*:

$$H_b = \begin{bmatrix} 0 & \mathcal{L}_{\lambda x}'' & \mathcal{L}_{\lambda y}'' \\ \mathcal{L}_{\lambda x}'' & \mathcal{L}_{x x}'' & \mathcal{L}_{x y}'' \\ \mathcal{L}_{\lambda y}'' & \mathcal{L}_{y x}'' & \mathcal{L}_{y y}'' \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{2} & -\frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

 We can verify that all the determinants of the principal minors of H_b are negative, and hence $(-1)H_b$ is positive definite, i.e., (h_x, h_y) is a minimum.

UMP & EMP

- Now let's consider the relationship between UMP and EMP.
- For UMP:
 - We maximize U(x,y) subjected to $p_x x + p_y y = I$, which gives the solution (x^*, y^*)

Duality & Slutsky Identity

•000000000000

- Plug (x^*, y^*) into the objective, the maximized utility $U(x^*, y^*)$, is called "indirect utility" or the "value function," denoted by V.
- (x^*, y^*) are functions of p_x, p_y, I , so V is a function of p_x, p_y, I .
- For FMP:
 - We minimize $p_x x + p_y y$ subjected to U(x,y) = u, which gives the solution (h_x, h_y)
 - Plug (h_x, h_y) into the objective, the minimized expenditure $p_x h_x + p_y h_y$, is called "expenditure function, denoted by E.
 - (h_x, h_y) are functions of p_x, p_y, u , so E is a function of p_x, p_y, u .

Duality (对偶性)

• For UMP, the solutions are $x^*(p_x, p_y, I)$ and $y^*(p_x, p_y, I)$ with indirect utility $V(p_x, p_y, I) = U(x^*, y^*)$.

Duality & Slutsky Identity

0000000000000

- For EMP, the solutions are $h_x(p_x, p_y, u)$ and $h_y(p_x, p_y, u)$ with expenditure function $E(p_x, p_y, u)$.
- Then the following conditions hold:
 - $E(p_x, p_y, u)|_{u=V(p_x, p_y, I)} = I$
 - $V(p_x, p_y, I)|_{I=E(p_x, p_y, u)} = u$
 - $x^*(p_x, p_y, I)|_{I=E(p_x, p_y, u)} = h_x(p_x, p_y, u)$
 - $h_x(p_x, p_y, u)|_{u=V(p_x, p_y, I)} = x^*(p_x, p_y, I)$

For the UMP where I=5, we have solved that

$$x^*(p_x, p_y, I) = \frac{I}{2p_x} = 2.5, \ y^* = (p_x, p_y, I) = \frac{I}{2p_x} = 2.5$$

Duality & Slutsky Identity

0000000000000

Hence
$$V(p_x, p_y, I) = \sqrt{x^*y^*} = \frac{I}{2\sqrt{p_x p_y}} = 2.5$$
.

• For the EMP where u = 2.5 (= V), we have solved that

$$h_x(p_x, p_y, u) = \sqrt{\frac{p_y}{p_x}}u = 2.5, \ h_y(p_x, p_y, u) = \sqrt{\frac{p_x}{p_y}}u = 2.5.$$

Hence
$$E(p_x, p_y, u) = p_x h_x + p_y h_y = 2\sqrt{p_x p_y} u = 5$$

Comparative Statics

- Let's consider the effect of a marginal change in p_x on the optimal choice of x.
- By duality, we know that: fixing a particular utility level u, the Marshallian demand is equivalent with the Hicksian demand:

$$x^* [p_x, p_y, E(p_x, p_y, u)] = h_x(p_x, p_y, u)$$

Differentiate the equation of both sides with respect to p_x :

$$\frac{\partial x^*}{\partial p_x} + \frac{\partial x^*}{\partial I} \frac{\partial E}{\partial p_x} = \frac{\partial h_x}{\partial p_x}$$

Recall that in calculus, if we want to differentiate a function $z = F(x_1(t), x_2(t))$ with respect to t:

$$\frac{dz}{dt} = F'_{x_1}x'_1(t) + F'_{x_2}x'_2(t)$$

Here $z = h_x$, $F = x^*$, $t = p_x$, $x_1(t) = t = p_x$, $x_2(t) = E$.

The Effect of Price Changes

- Recall the previous example: $U(x,y) = \sqrt{xy}$, $p_x = p_y = 1$ and I = 5
 - UMP gives $(x^*, y^*) = (2.5, 2.5)$.
- Consider that the price of good x increases, from $p_x = 1$ to $p_x = 2$.
 - UMP gives $(x^*, y^*) = (1.25, 1.25)$
- The consumption of x is reduced from 2.5 to 1.25.

The Decomposition of Price Changes

- Due to a price increase, the consumption of x is reduced by 2.5 - 1.25 = 1.25.
 - We say -1.25 is the **total effect** due to an increase in p_x .
- We want to go one step further, by decomposing total effect into two types of effects:
 - ① substitution effect (替代效应): since x is more expensive relative to y, hence if you want to keep your original utility (before price change) unchanged, you should reduce the consumption of xwhereby increase the consumption of y at the new price levels the rate of exchange between the two goods is changed.

Duality & Slutsky Identity

0000000000000

- ② income effect (收入效应): the purchase power is reduced, and hence you should decrease your consumption on x.
- Total effect = substitution effect + income effect
- We have solved total effect. How to compute substitution and income effects?

Slutsky Identity (斯勒茨基恒等式)

- Recall the duality: $x^*(p_x, p_y, E(p_x, p_y, u)) = h_x(p_x, p_y, u)$
- Differentiate both sides with respect to p_x : $\frac{\partial x^*}{\partial p_x} + \frac{\partial x^*}{\partial I} \frac{\partial E}{\partial p_x} = \frac{\partial h_x}{\partial p_x}$. Rearranging, the equation becomes **Slutsky Identity** (斯勒茨基恒等式)

$$\frac{\partial x^*}{\partial p_x} = \frac{\partial h_x}{\partial p_x}\Big|_{u=\mathrm{const}} - \frac{\partial x^*}{\partial I} \frac{\partial E}{\partial p_x}\Big|_{z=\infty} \chi^{\star}$$
otal effect substitution effect income effect

- Our definition of "substitution effect" is: after the price change, the amount of x that shall be changed to keep the original utility unchanged.
 - The original utility is the indirect utility V=2.5
 - At the new price $p_x = 2$, you should choose an amount of x "optimally" to keep your utility unchanged at u=5.
 - That is, you solve an EMP, where the price is $p_x = 2$, and the constraint is $\sqrt{xy} = 2.5$.
 - The Hicksian demand you obtained from EMP, is h_x . The difference between the original $x^*(p_x = 1, p_y = 1, I = 5)$, and $h_x(p_x=2,p_y=1,u=2.5)$ is the substitution effect.

Example: Compute Substitution Effect

• Before price change $(p_x = p_y = 1, I = 5)$:

$$\max_{x,y} \sqrt{xy}$$

$$\Rightarrow x^* = 2.5, V = 2.5.$$

$$s.t. \ x + y = I = 5$$

• After the price change $(p_x = 2, p_y = 1)$, solve the optimal x that minimize your expenditure, while keeping your utility at u=5, i.e.,

$$\min_{x,y} 2x + y$$

$$s.t. \sqrt{xy} = u = 2.5$$

$$\Rightarrow h_x = \frac{5}{4}\sqrt{2} \approx 1.77$$

• Therefore, when p_x increases from 1 to 2, the substitution effect is $h_x - x^* = 1.77 - 2.5 = -0.73$, i.e., you decrease your consumption on x by 0.73 to keep your utility unchanged at the original level V=2.5.

Total effect = substitution effect + income effect

- Total effect: $x^* \to x^*$
- Substitution effect: $x^* \to h_x$
- Income effect: $h_x \to x^*$

 In the above example, we compute total, substitution and income effects by considering a price change that jumps from 1 to 2.

Duality & Slutsky Identity

000000000000000

- Now let's compute those effects by considering a locally, marginal increase in p_x .
- The UMP before price change:

$$\max_{x,y} \sqrt{xy}$$

$$s.t. \ p_x x + p_y y = I \Rightarrow x^*(p_x, p_y, I) = \frac{I}{2p_x}, V = \frac{I}{2\sqrt{p_x p_y}}.$$

Total effect of p_x on x^* is $\frac{\partial x^*}{\partial p_x} = -\frac{I}{2p_x^2}$.

• To obtain substitution effect, we need to solve EMP:

$$\begin{split} & \min_{x,y} p_x x + p_y y \\ s.t. & \sqrt{xy} = u \end{split} \Rightarrow h_x(p_x, p_y, u) = \sqrt{\frac{p_y}{p_x}} u, E = 2\sqrt{p_x p_y} u. \end{split}$$

Fixing the utility level u, $\frac{\partial h_x}{\partial p_x} = -\frac{1}{2} \frac{\sqrt{p_y}}{p_x \sqrt{p_x}} u$.

• $\frac{\partial h_x}{\partial n_x} = -\frac{1}{2} \frac{\sqrt{p_y}}{n_x \sqrt{n_x}} u$. Plug $u = V = \frac{I}{2\sqrt{n_x}n_y}$ into $\frac{\partial h_x}{\partial n_x}$, then the substitution effect is

$$\left. \frac{\partial h_x}{\partial p_x} \right|_{u=V} = -\frac{I}{4p_x^2}.$$

Duality & Slutsky Identity

000000000000000

• The income effect is $-\frac{\partial x^*}{\partial I}\frac{\partial E}{\partial x}$.

•
$$E = 2\sqrt{p_x p_y} u$$
, $\frac{\partial E}{\partial p_x} = \frac{\sqrt{p_y} u}{\sqrt{p_x}}$.

$$\begin{array}{l} \bullet \quad \text{Using } u = V = \frac{I}{2\sqrt{p_x p_y}}, \text{ then} \\ -\frac{\partial x^*}{\partial I} \frac{\partial E}{\partial p_x} = -\frac{1}{2p_x} \cdot \frac{\sqrt{p_y}}{\sqrt{p_x}} \frac{I}{2\sqrt{p_x p_y}} = -\frac{I}{4p_x^2} \end{array}$$

• That is, total effect $\frac{\partial x^*}{\partial p_x} = -\frac{I}{2n^2}$ is the sum of substitution effect

$$\left. \frac{\partial h_x}{\partial p_x} \right|_{x=V} = -\frac{I}{4p_x^2}$$
 and the income effect $-\frac{\partial x^*}{\partial I} \frac{\partial E}{\partial p_x} = -\frac{I}{4p_x^2}$.

Example: Perfect Substitutes

- Utility function is U(x,y) = ax + by
- Budget line is $p_x x + p_y y = I$
- Assume that $\frac{a}{b} > \frac{p_x}{p_y}$ hence

$$\mathsf{UMP} \Rightarrow y^* = 0, x^* = \frac{I}{p_x}, \ V = \frac{aI}{p_x}$$

- Consider a **locally marginal** increase in p_x (the relative slopes between the budget and the indifference curve is unchanged such that y = 0).
- Total effect on x: $\frac{\partial x^*}{\partial n_-} = -\frac{I}{n^2}$.
- To obtain substitution effect, we need to solve EMP

$$\mathsf{EMP} \Rightarrow y = 0 \Rightarrow h_x = \frac{u}{a} \Rightarrow \frac{\partial h_x}{\partial p_x} = 0, E = \frac{p_x u}{a}$$

Therefore, there is no substitution effect.

• Income effect:
$$-\frac{\partial x^*}{\partial I}\frac{\partial E}{\partial p_x}=-\frac{1}{p_x}\frac{u}{a}\bigg|_{u=V=rac{aI}{p_x}}=-rac{I^2}{p_x}=$$
 total effect.

Example: Perfect Complements

- Utility function is $U(x,y) = \{ax, by\}$
- Budget line is $p_x x + p_y y = I$

$$\mathsf{UMP} \Rightarrow x^* = \frac{bI}{bp_x + ap_y}, \ V = \frac{abI}{bp_x + ap_y}$$

- Consider a locally marginal increase in p_x
- Total effect on x: $\frac{\partial x^*}{\partial x} = -\frac{b^2 I}{(bx + ax)^2}$.
- To obtain substitution effect, we need to solve EMP

$$\mathsf{EMP} \Rightarrow h_x = \frac{u}{a} \Rightarrow \frac{\partial h_x}{\partial p_x} = 0, \ E = p_x \frac{u}{a}$$

Therefore, there is no substitution effect.

Income effect is

$$-\frac{\partial x^*}{\partial I}\frac{\partial E}{\partial p_x} = -\frac{b}{bp_x + ap_y} \cdot \frac{u}{a} \bigg|_{u = V = \frac{abI}{bp_x + ap_y}} = -\frac{b^2I}{(bp_x + ap_y)^2} = \text{total effect}.$$

Example: Quasi-linear Utility (Interior Case)

- Utility function is U(x,y) = u(x) + y, where u''(x) < 0.
- Budget line is $p_x x + p_y y = I$, or $y = -\frac{p_x}{p_y} x + \frac{I}{p_y}$
- Let's consider the interior solution:

$$\mathsf{UMP} \Rightarrow u'(x^*) = \frac{p_x}{p_y}.$$

Notice that x^* is not a function of I!

- Consider a locally marginal increase in p_x
- Total effect on x: $u''(x^*) \frac{dx^*}{dx_-} = \frac{1}{2\pi}$.
- To obtain substitution effect, we need to solve EMP

$$\mathsf{EMP} \Rightarrow u'(h_x) = \frac{p_x}{p_y}$$

$$u''(h_x)\frac{dh_x}{dp_x} = \frac{1}{p_y}.$$

- For the interior solution of quasi-linear utility, total effect = substitution effect, while there is no income effect.
 - The above argument is valid only for the interior solution!

Roy's Identity (罗伊恒等式)

- There are some useful results you should keep in mind.
- Recall the Marshallian demand $x^*(p_x, p_y, I)$ obtained from UMP.
- Alternatively, $x^*(p_x, p_y, I)$ can be expressed as

$$x^*(p_x, p_y, I) = -\frac{\frac{\partial V(p_x, p_y, I)}{\partial p_x}}{\frac{\partial V(p_x, p_y, I)}{\partial I}}$$

The above equation is called "Roy's identity."

• If you know $V(p_x, p_y, I)$ already, you can obtain x^* directly by using Roy's identity.

Duality & Slutsky Identity

Proof of Roy's identity

 The solution x* is obtained from the Lagrangian $\mathcal{L} = U(x,y) + \lambda(I - p_x x - p_y y)$, where the FOCs imply

$$U_x' = \lambda p_x, \ U_y' = \lambda p_y$$

• Evaluated at the optimal choices (x^*, y^*) , the optimal point on the budget line is $p_x x^* + p_y y^* = I$. Differentiate both sides with respect to p_x , and I, respectively:

$$x^* + p_x \frac{\partial x^*}{\partial p_x} + p_y \frac{\partial y^*}{\partial p_x} = 0, \ p_x \frac{\partial x^*}{\partial I} + p_y \frac{\partial x^*}{\partial I} = 1$$

• Evaluated at (x^*, y^*) , the indirect utility is $V = U(x^*, y^*)$. Differentiate V with respect to p_x , and I:

$$\frac{\partial V}{\partial p_x} = \underbrace{U_x'}_{=\lambda p_x} \frac{\partial x^*}{\partial p_x} + \underbrace{U_y'}_{=\lambda p_y} \frac{\partial y^*}{\partial p_x} = \lambda \left(p_x \frac{\partial x^*}{\partial p_x} + p_y \frac{\partial y^*}{\partial p_x} \right) = \lambda (-x^*)$$

$$\frac{\partial V}{\partial I} = \underbrace{U_x'}_{=\lambda p_x} \frac{\partial x^*}{\partial I} + \underbrace{U_y'}_{=\lambda p_x} \frac{\partial y^*}{\partial I} = \lambda \left(p_x \frac{\partial x^*}{\partial I} + p_y \frac{\partial \mathbf{x}^*}{\partial I} \right) = \lambda \cdot 1$$

Shephard's Lemma (谢泼德引理)

- Recall the Hicksian demand $h_x(p_x, p_y, u)$ and $h_y(p_x, p_y, I)$ obtained from EMP.
- The expenditure function is $E(p_x, p_y, u) = p_x h_x + p_y h_y$.
- We can show that

$$\frac{\partial E}{\partial p_x} = h_x$$

Proof of Shephard's Lemma

Differentiate $E = p_x h_x(p_x, p_y, u) + p_y h_y(p_x, p_y, u)$ with respect to p_x :

$$\frac{\partial E}{\partial p_x} = h_x + p_x \frac{\partial h_x}{\partial p_x} + p_y \frac{\partial h_y}{\partial p_x}$$

The solution h_x and h_y are obtained from EMP using Lagrangian:

$$\mathcal{L} = p_x x + p_y y + \lambda \left(u - U(x, y) \right)$$

where the FOCs imply

$$p_x = \lambda U_x', \ p_y = \lambda U_y'$$

Because you minimize the expenditure evaluated at a particular utility level u, hence at optimum,

$$U(h_x, h_y) = u$$

Differentiate the above equation with respect to p_x on both sides:

$$\underbrace{U_x'}_{=p_x/\lambda}\frac{\partial h_x}{\partial p_x} + \underbrace{U_y'}_{=p_y/\lambda}\frac{\partial h_y}{\partial p_x} = 0 \Rightarrow \frac{1}{\lambda}\left(p_x\frac{\partial h_x}{\partial p_x} + p_y\frac{\partial h_y}{\partial p_x}\right) = 0.$$

Envelop Theorem*(包络定理)

- The Roy's identity, and Shephard's Lemma, are two examples of the "Envelop Theorem."
- Assume that we are choosing x to maximize y = f(x, a), with a parameter a:

$$\max_{x} f(x, a)$$

- The first-order condition gives $\frac{dy}{dx} = f'_x(x,a) = 0$. The solution is $x^*(a)$.
- Plug the optimal $x^*(a)$ into y, we have the maximized y, denoted as y^* :

$$y^* = f(x^*(a), a)$$

Now consider we want to see the effect from a change of a on the optimized y:

$$\frac{dy^*}{da} = f_x' \frac{dx^*}{da} + f_a'$$

Since x^* is obtained by condition $f'_x = 0$, the above equation can be simplified as $\frac{dy^*}{dz} = f'_a$.

