1 2-Universal Hashing

Let \mathcal{H} be a class of hash functions in which each $h \in \mathcal{H}$ maps the universe \mathcal{U} of keys to $\{0, 1, \ldots, m-1\}$. Recall that \mathcal{H} is universal if for any $x \neq y \in \mathcal{U}$, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \leq 1/m$.

We say that \mathcal{H} is 2-universal if, for every fixed pair (x,y) of keys where $x \neq y$, and for any h chosen uniformly at random from \mathcal{H} , the pair (h(x), h(y)) is equally likely to be any of the m^2 pairs of elements from $\{0, 1, \ldots, m-1\}$. (The probability is taken only over the random choice of the hash function.)

- (a) Show that, if \mathcal{H} is 2-universal, then it is universal.
- (b) Suppose that you choose a hash function $h \in \mathcal{H}$ uniformly at random. Your friend, who does not know which hash function you picked, tells you a key x, and you tell her h(x). Can your friend tell you $y \neq x$ such that h(x) = h(y) with probability greater than 1/m (over your choice of h) if:
 - (i) \mathcal{H} is universal?
 - (ii) \mathcal{H} is 2-universal?

In each case, either give a choice of \mathcal{H} which allows your friend to find a collision, or prove that they cannot for any choice of \mathcal{H} .

Solution:

(a) If \mathcal{H} is 2-universal, then for every pair of distinct keys x and y, and for every $i \in \{0, 1, \ldots, m-1\}$,

$$\Pr_{h \in \mathcal{H}}[\langle h(x), h(y) \rangle = \langle i, i \rangle] = \frac{1}{m^2}$$

There are exactly m possible ways for us to have x and y collide, i.e., h(x) = h(y) = i for $i \in \{0, 1, ..., m-1\}$. Thus,

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \sum_{i=0}^{m-1} \left(\Pr_{h \in \mathcal{H}}[\langle h(x), h(y) \rangle = \langle i, i \rangle] \right) = \frac{m}{m^2} = \frac{1}{m}$$

Therefore, by definition, \mathcal{H} is universal.

(b) (i) We can construct a scenario where the adversary can force a collision. On a universe $\mathcal{U} = \{x, y, z\}$, consider the following family \mathcal{H} :

	\boldsymbol{x}	y	z
h_1	0	0	1
h_2	1	0	1

 \mathcal{H} is a universal hash family: x and y collide with probability 1/2, x and z collide with probability 1/2, and y and z collide with probability 0 < 1/2.

The adversary can determine whether we have selected h_1 or h_2 by giving us x to hash. If h(x) = 0, then we have chosen h_1 , and the adversary then gives us y. Otherwise, if h(x) = 1, we have chosen h_2 and the adversary gives us z.

(ii) Suppose that your friend uses the function $f: \mathcal{U} \times \{0, \dots m-1\} \to \mathcal{U}$ to find a collision. We can assume that $f(x,i) \neq x$ for all x,i. The probability that your friend wins is then

$$\Pr_{h \in \mathcal{H}}[h(x) = h(f(x, h(x)))] = \sum_{i=0}^{m-1} \Pr_{h \in \mathcal{H}}[(h(x), h(f(x, i)) = (i, i)] = \frac{1}{m} .$$