Professor Anil Kokaram

Anil.Kokaram@tcd.ie

5C1 Motion Picture Engineering

Digital Video Engineering
Engineering for Moving Pictures

Career

- 1986 1989 Electrical and Information Sciences @ Cambridge Uni
- 1989 1993 Ph.D Cambridge University DSP Group www-sigproc.eng.cam.ac.uk
- 1993 1997 Research Fellow Cambridge Uni and Churchill College Cambridge
- 1998 2011 Professor, <u>www.sigmedia.tv</u>, EE TCD

• ...

Research in

Digital Signal Processing
Digital Video Processing
Motion Picture Restoration

Anything to do with pictures and sound or interesting data

www.sigmedia.tv

Career

- 1986 1989 Electrical and Information Sciences @ Cambridge Uni
- 1989 1993 Ph.D Cambridge University DSP Group www-sigproc.eng.cam.ac.uk
- 1993 1997 Research Fellow Cambridge Uni and Churchill College Cambridge
- 1998 2011 Professor, www.sigmedia.tv, EE TCD
- 2007 Academy Award for Motion Estimation FX

GREEN PARROT PICTURES

Career

- 1986 1989 Electrical and Information Sciences @ Cambridge Uni
- 1989 1993 Ph.D Cambridge University DSP Group www-sigproc.eng.cam.ac.uk
- 1993 1997 Research Fellow Cambridge Uni and Churchill College Cambridge
- 1998 2011 Professor, www.sigmedia.tv, EE TCD
- 2007 Academy Award for Motion Estimation FX
- 2008 2011 CTO/CEO GreenParrotPictures
- 2011 Trinidad and Tobago Government Honor for "Science and Tech", Hollywood "Irish Top 50" Honor
- 2011 2016 Tech Lead @ Google/YouTube "Media Algorithms Group"

Career

- 1986 1989 Electrical and Information Sciences @ Cambridge Uni
- 1989 1993 Ph.D Cambridge University DSP Group www-sigproc.eng.cam.ac.uk
- 1993 1997 Research Fellow Cambridge Uni and Churchill College Cambridge
- 1998 2011 Professor, <u>www.sigmedia.tv</u>, EE TCD
- 2007 Academy Award for Motion Estimation FX
- 2008 2011 CTO/CEO GreenParrotPictures
- 2011 Trinidad and Tobago Government Honor for "Science and Tech", Hollywood "Irish Top 50" Honor
- 2011 2016 Tech Lead @ Google/YouTube "Media Algorithms Group"
- 2016 Head EE @ TCD

70%
internet is video

1 Billion hours on YouTube

40%
of the world
owns a
smartphone

The history of Video/Television

2016 was 80th anniversary Television 1999 was the 100th anniversary of the Cinema

Since 2015

Streaming Media reaches consumers through new picture tech BEFORE traditional broadcasters

More Pixels (4K, 8K)
Better Pixels (10bits, HDR)
Faster Pixels (60, 120 fps)
Deeper Pixels (RGBX)
Open Royalty Free Video Standards

Simple computational tasks are complicated at scale.

We have come full circle.

Hardware, Compression, "DSP"
Back on the agenda

Entertainment Drives Technology

Right now on

Pandemic Drives Entertainment

How Zoom defied its critics and became the go-to video conferencing app for surviving the pandemic

By Jerry Bowles January 18, 2021

7 min reading

SUMMARY: What's next for the insanely popular, death-defying video conferencing phenomenon?

Netflix crosses 200m subscriber mark in pandemic-boosted year

Covid-19 accelerated 'big shift from linear to streaming', says chief financial officer

@ Wed, Jan 20, 2021, 12:58

Updated: Wed, Jan 20, 2021, 15:19

Thanks to thousands of Motion Picture Engineers working on **Video Compression Standards, New Technologies for content** production and real time video communications The world didn't stop in March 2019. Quite a lot of people were able to continue working and Universities didn't quite close.

in a moment, but first, let's skip to the good parts.

4. Now the race is on for more content

The shutdown in film and television productions, forced by lockdowns this spring, has placed a major focus on how Netflix and its competitors will get hold of new offerings to retain their members.

Netflix's Bridgerton, featuring Claudia Jessie (left) and Irish actor Nicola Coughlan, is on track to reach 63 million households, the streamer said. Photograph: Liam Daniel/Netflix

@Netflix in Los Gatos

Pixel Pushing/Prodding

Pixel Communications

Using audio and video for content analysis

Audio

5C1: Motion Picture Engineering

- Pixel Pushing (The invisible tools for making better pictures)
- Pixel Communications (Video Streaming)
- Pixel Quality Measurement

This course considers motion pictures in 2D+Time
We don't process the images in the 3D world or do 3D modeling
We also spend a lot of time thinking about actual production and broadcast workflows.

This is not a normal image/video/computer vision course

Motion Picture Engineering Changes....

- Deep Learning is now changing everything!
- You will have to face the realities of more automation and intelligence in everything.
- The next Industrial revolution
- Affects medicine, bioengineering, mechanical engineering, civil engineering, creative technology
- See this
- In 2019 I was working on a DNN portion of this course .. That got hit in the face on March 2019 and is still on the mat.

Course Content

- Week 1 Introduction + Colour Segmentation
- Week 2 Perception and Bayesian Inference for Colour Segmentation
- Week 3 Video Processing and Motion Estimation
- Week 4 Deep learning and motion estimation
- Week 5 Applications in Video Processing
- Week 6 Another introduction to compression
- Week 8-12 Modern Video Compression and the Engineering behind YouTube and Netflix

Practical Work

- Week 1+2: NUKE for Compositing
- Week 3 : Scripts in NUKE for video processing
- Week 4 6: Writing your own script/graph for colour keying in video and writing a 4 page report
- Week 8 12 : Video Transcoding and Quality Measurement

Course Texts and Online Resources

Texts

- Video Processing, Murat Tekalp
- Markov Random Fields for Vision and Image Processing. Edited by A. Blake,
 P. Kohli and C. Rother, MIT Press,
 2011. ISBN: 978-0-262-01577-6
- The Essential Guide to Video Processing. A. Bovik, Academic Press, 2009. ISBN: 978-0-12-374456-2

Online Resources

- IEEE Explore
- Various papers I will point out
- YouTube links as we go
- Shapiro's course on "Mars to Hollywood" and Katsagellos "Video and Image Processing" are references

The technical material discussed in this course is at the bleeding edge of what is possible. Get comfortable with not being able to find a complete set of notes like you'd find in a book which you can then just learn off. The book is still being written.

		Week											
		1: Jan 24th	2 : Jan 31st	3: Feb 7th	4: Feb 14th	5: Feb 21st	6: Feb 28th	7: 7th Mar	8: 14 Mar	9: 21st Mar	10: 28 Mar	11: Apr 4	12: Apr 11
		Segmentation and Perception		Motion and Video		Denoising and Colour and Engineering Standards				-	Adaptive Streaming	DNNs for Compression	Exam Review
Monday 12 - 13:00	Lecture	Intro	Perception	Motion 1	Motion 2	Denoising	Motion		Intro and Compression	Cancel			
Monday 16 - 17:00	Lecture	Bayes	Perception	Motion	DNN	Motion	Motion		Compression	ABR DASH			
												Ioannis Talk	
Tuesday 15- 17	Lecture	Keying		Bayes NUKE	MotionNUKE	NUKE	Perception		Compresson				
	Labs	NUKE	NUKE	Ass	Ass	Ass							
Friday 11- 13:00	Lecture	Bayes	Colour		DNN	Denoising	Perception		RD Curves Lab	RD Curves Lab	ABR Bitrate Ladder Lab	ABR Bitrate Ladder Lab	ABR Bitrate Ladder Lab
	Labs	NUKE	NUKE	Ass	Ass	Ass							

Keynotes

From last year

- <u>Simon Robinson</u> (Academy Award Winner from the Foundry, London)
- Peter Hillman (Academy Award winner from Weta Digital, New Zealand)
- Peyman Milanfar (R&D Lead for Pixel Cameraphone at Google, California)
- Marta Mrak (BBC R&D, London)

TBC

Ioannis Katsavounidis (Video Infra Lead at Facebook)

Paul Wilkins (Google/Chrome)

Bullet Time

Thinking about "inbetweening"

Current

Some observations that help

When things move
They don't change colour much

Bullet Time: Mathematical modelling

$$I_{n-1}(k-dy) = I_{n+1}(k+dy)$$

Bullet Time : How to solve for dy

$$I_{n-1}(k - dy) = I_{n+1}(k + dy) - dy - 1$$

$$\Rightarrow I_{n-1}(k - dy) - I_{n+1}(k + dy) = 0$$

Tricky because we have no analytic function for I()

So change this into an "optimisation problem"

Choose dy such that it makes $(I_{n-1}(k-dy)-I_{n+1}(k+dy))^2$ as small as possible

Minimise
$$(I_{n-1}(k-dy) - I_{n+1}(k+dy))^2$$
 wrt dy

Bullet Time: The Equation is actually 2D!

$$I_{n-1}(h-dx, k-dy) = I_{n+1}(h+dx, k+dy)$$

Minimise
$$(I_{n-1}(h-dx, k-dy) - I_{n+1}(h+dx, k+dy))^2$$
 wrt (dx, dy)

Oh crap.

There is no analytic solution. We don't have an explicit form for I(x,y) And the solution is HUGE.

There is a dx and dy for EVERY PIXEL in EVERY frame! 4 Million Variables!

Brute force numerical solution: examine subset of possible pixel pairs and pick the pair which gives least "squared error"

$$E(dy) = (I_{n-1}(k - dy) - I_{n+1}(k + dy))^{2}$$

What about implementation?

```
function [new frame] = inbetween(left, right, w)
 %Inputs are left and right vectors of pixels, and w the search space
 rows = length(left);
 new frame = zeros(size(left));
   for k = w + 1 : rows - w,
     error = zeros(w*2+1,1);
     %At this pixel location "k", calculate the error
     %associated with every possible offset dy
     for dy = -w : w,
       error(dy + w + 1) = (left(k - dy) - right(k + dy))^2;
     end:
    %Select the dy that minimised the error
     [y, index] = min(error);
    estimated dy = index - w - 1;
    %Use it to calculate an interpolated value
    new frame(k) = (left(k - estimated dy) + right(k + estimated dy))/2;
  end;
```

Actually this simple "algorithm" has issues

- Search space is "integer" but the motion is "fractional"
- We need to work in colour i.e. 3 pixels at each location not one
- There is noise in real signals .. So the pixel differences will be "noisy"
 - That leads to random motion estimates
 - Which leads to "weirdly distorted" in-betweens.
- No guarantee that the motion estimates are "smooth enough"
- In real life sometimes you can't find a match because objects move behind or in front of each other. So the "mathematical model" is not right everywhere.
 - That leads to objects sticking to background
- It is too dirt slow!

So we need better modelling etc etc

ibutions for the random verice $\mathcal{N}(x|x_1,\sigma_1^2)$ and $\mathcal{N}(x|x_2,\sigma_2^2)$; with means an it can be shown in

$$\mathcal{N}(x|x_1,\sigma_1^2)\mathcal{N}(x_1x_2,\sigma_2^2)dx = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2}}\exp{-\left[\frac{(\bar{x}-x_1)^2}{2\sigma_1^2} + \frac{(\bar{x}-x_2)^2}{2\sigma_2^2}\right]}$$

 $(\sigma_2^2 + \sigma_1^2)$. See [70] for some background material on integrating Gaussians.

Goro@Welsh corgi