Gestion de la mémoire

ARO

2 - Instructions

Definition

TBD

Table des matières

1. Types d'instruction	2
2. Format d'une instruction	2
2.1. Opcode	2
2.2. Opérande(s)	
2.3. Exemple(s)	
2.3.1. 1 opérande	2
2.3.2. 2 opérandes	2
2.3.3. 3 opérandes	2
3. Execution d'une instruction	3
4. Modes d'adressage	3
4.1. Adressage immédiat	

Guillaume T. 04-2024

1. Types d'instruction

Il existe 3 types d'instructions que nous allons voir.

- 1. instructions de calcul/traitement \rightarrow (arithmétique et logique)
- 2. instructions de transfert de donnée
 - interne \rightarrow interne
 - interne \rightarrow externe
- 3. instructions de branchement (saut)

2. Format d'une instruction

2.1. Opcode

Le champ «opcode» est l'identificateur de l'instruction est permet donc de définir ce que doit celle-ci va devoir faire.

2.2. Opérande(s)

- Les champs opérandes spécifient la destination et les deux opérandes pour le traitement
 - ▶ Le nombre d'opérandes peut varier de 1 à 3.
 - · Ci-dessous exemple avec le cas général

2.3. Exemple(s)

2.3.1. 1 opérande

INC rl

Incrément de r1 de 1.

2.3.2. 2 opérandes

ADD r1, r2

Addition de r1 et r2 puis stockage dans r1.

2.3.3. 3 opérandes

ADD r1, r2, r3

opcode	opérande	opérande	opérande	
	1			

3. Execution d'une instruction

Un processeur effectue sans arrêt une boucle composée de trois phases:

- FETCH → recherche de l'instruction : dans un premier temps le processeur va chercher l'instruction à éxécuter en récupèrant l'instruction pointée par le PC (Program Counter). Cette instruction sera stockée dans un autre registre du processeur, le IR (Instruction Register).
- 2. DECODE → décodage de l'instruction : dans un deuxième temps, chaque instruction est identifiée, grâce à un code (opcode). En fonction de ce code, le processeur choisit la tâche à exécuter, c'est-àdire la séquence de micro-instructions à exécuter.
- 3. **EXECUTE** → exécution de l'instruction : finalement on exécute l'instruction puis revenons à la première.

Deux étapes suplémentaires seront vue dans la suite du cours qui permetteront de compléter ce que fait un procésseur, soit **MEMORY** et **WRITE BACK**.

4. Modes d'adressage

Le mode d'adressage correspond à la méthode d'accès au données. En fonction de l'instruction à exécuter, la donnée à utiliser peutêtre différente. Nous pouvons imaginer quelques cas:

- Valeur immédiat: opérande = donnée
- Valeur dans un registre: opérande = no registre
- Valeur en mémoire: opérande = adresse
 - nombreuses variantes pour ce dernier cas

4.1. Adressage immédiat