Aprendizaje Reforzado

Maestría en Ciencia de Datos, DC - UBA

Julián Martínez Javier Kreiner

Sarsa

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

S,A Misma idea que TD pero para función de acción-valor. ∞

acción-valor.

R
$$\sum_{t=0}^{\infty} \sum_{t=0}^{\infty} \sum_{t=0}^{\infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Control (improvement) on-policy con Sarsa

On policy: Tomo acciones con la misma política que estoy mejorando

Sarsa - pseudocódigo

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'$: $A \leftarrow A'$: until S is terminal

Gridworld con viento

Apredizaje off-policy

Utilizo una política *exploratoria* $\mu(a|s)$ para mejorar la política *óptima* $\pi(a|s)$.

Aprendo observando la experiencia de otros agentes.

¿Cómo mezclar las dos experiencias?

Importance Sampling - Off-policy MC

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t^{\pi/\mu}}{T} - V(S_t) \right)$$

Q-learning

Los episodios los genero con μ pero la estimación del retorno esperado la calculo con una acción tomada con π .

$$A_{t+1} \sim \mu(\cdot|S_t)$$

 $A' \sim \pi(\cdot|S_t)$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Off-Policy, Q-learning

Dada $Q^k(s,a)$:

$$\pi_{k+1}(s) = \arg\max_{a'} Q^k(S_t, a'), \qquad \mu_{k+1}(a|s) = \pi_{k+1}^{\varepsilon}.$$

$$Q^{k+1}(S, A) = Q^{k}(S, A) + \alpha(R + \gamma \max_{a'} Q^{k}(S', a') - Q^{k}(S, A))$$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

 $S \leftarrow S'$

until S is terminal

Diferencias Temporales (programación)

- Predicción TD
- Sarsa
- Q-learning

Problema (programación)

• Implementar expected-Sarsa, Sutton sección 6.6, es igual Q-learning, pero la ecuación de update es, usarlo para resolver Windy Gridworld y Cliff Environment :

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{t} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right],$$