

Data Structures and Algorithms

Balancing Act

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Dr. Steven Halim for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

Recording of modifications

 Currently, there are no modification on these contents.

Outline

Binary Search Tree (BST): A Quick Revision

The Importance of a **Balanced** BST

To keep h = O(log n)

Adelson-Velskii Landis (AVL) Tree

- Principle of "Height-Balanced"
- Keeping AVL Tree balanced via rotations
- Code is shown but not given (try this during PS2)

Relation with CS2010 PS2: "The Baby Names Problem"

Reference in CP3 book: Page 43-47 + 380-382

Binary Search Trees: Quick Review

- Vertex x has two children: x.left, x.right and one parent: x.parent
 - x.left/x.right/x.parent can be null for some vertices
- Vertex x has a key: x.key
- BST Property: all keys in left sub-tree < x.key < all keys in right sub-tree

BST Web-based Review

http://visualgo.net/bst.html

More BST Attributes: Height and Size

Two more attributes at each BST vertex: Height and Size

Height: #edges on the path from this vertex to deepest leaf

Size: #vertices of the subtree rooted at this vertex

These values can be computed recursively:

```
x.height = -1 (if x is an empty tree)
```

x.height = max(x.left.height, x.right.height) + 1 (all other cases)

x.size = 0 (if x is an empty tree)

x.size = x.left.size + x.right.size + 1 (all other cases)

The height of the BST is thus: root.height

The size of the BST is thus: root.size

Binary Search Trees: Height (h)

Binary Search Trees: Size (s)

The height of this tree is?

- 1. 2
- 2. 4
- 3. 5
- 4. 6
- 5. 7
- 6. 42

The size of this tree is?

- 1. 10
- 2. 11
- 3. 12
- 4. 13
- 5. 14
- 6. 15

Binary Search Tree: Summary

Operations that modify the BST (dynamic data structure):

- insert: O(h)
- delete: O(h)

Query operations (the BST structure remains the same):

- search: O(h)
- findMin, findMax: O(h)
- predecessor, successor: O(h)
- inorder traversal: O(n) the only one that does not depend on h
 - PS: We also have preorder and postorder traversals for tree structure (discussed in tutorial)
- select/rank: ? (we have not discuss this yet)

Most operations take O(h) time $2^0 = 1$ 41 Lower bound: $\mathbf{h} > \log_2(\mathbf{n})$ 21=2 65 20 $2^2 = 4$ 50 29 $2^3 = 8$ 72 52 32

$$\leq 2^0 + 2^1 + 2^2 + ... + 2^h < 2^{h+1}$$
 (sum of geometric progression)

$$\log_2(n) < \log_2(2^{h+1}) \rightarrow \log_2(n) < (h+1) * \log_2(2) \rightarrow h > \log_2(n) - 1$$

$$\rightarrow$$
 h > \log_2 (n)

 $n \le 1 + 2 + 4 + ... + 2^h$

Most operations take O(h) time

Upper bound: $h \le n-1 \rightarrow h < n$

Most operations take O(h) time

Combined bound: $log_2(\mathbf{n}) < \mathbf{h} < \mathbf{n}$

log₂(**n**) versus **n** in picture (revisited with <u>larger numbers</u>):

We say a BST is <u>balanced</u> if $\mathbf{h} = O(\log \mathbf{n})$, i.e. $O(\mathbf{c}^* \log \mathbf{n})$

On a balanced BST, all operations run in O(log n) time

Example of a perfectly balanced BST:

This is hard to achieve though...

How to get a balanced tree:

- Define a good property of a tree
- Show that if the good property holds, then the tree is balanced
- After every insert/delete, make sure the good property still holds
 - If not, fix it!

Adelson-Velskii & Landis, 1962 (~53 years ago...:O)

Can be a little bit frustrating if you are not comfortable with recursion Hang on...

AVL TREES

AVL Trees [Adelson-Velskii & Landis 1962]

Step 1: Augment (i.e. add more information)

In every vertex x, we also store its height: x.height

(Note that x already has: x.left, x.right, x.parent, and x.key)

During insertion and deletion, we also update **height**:

```
insert(x, v)
  // ... same as before ...
  x.height = max(x.left.height, x.right.height) + 1
// update height during deletion too (same as above)
```

Binary Search Trees

Height of empty trees are ignored in this illustration (all -1)

Height information during insertion/deletion is not shown in VisuAlgo (yet)

Binary Search Trees

insert(27)

Binary Search Trees

insert(27)

Notice that only vertices along the insertion path may have their height attribute updated...

AVL Trees [Adelson-Velskii & Landis 1962]

Step 2: Define Invariant (something that will not change)

A vertex x is said to be <u>height-balanced</u> if: $|x.left.height - x.right.height| \le 1$

An binary search tree is said to be <u>height balanced</u> if: every vertex in the tree is height-balanced

Is this tree height-balanced according to AVL?

Is this tree height-balanced according to AVL?

Claim:

A height-balanced tree with \mathbf{n} vertices has height $\mathbf{h} < 2 * \log_2(\mathbf{n})$

Proof (do **not** be scared):

Let n_h be the minimum number of vertices in a height-balanced tree of height h

Proof:

Let **n**_h be the minimum number of vertices in a height-balanced tree of height h

Proof:

Let **n**_h be the minimum number of vertices in a height-balanced tree of height h

$$n_h = 1 + n_{h-1} + n_{h-2}$$

 $n_h > 1 + 2n_{h-2}$

$$n_h > 2n_{h-2}$$
= $4n_{h-4}$
= $8n_{h-6}$

As each step we reduce h by 2, Then we need to do this step h/2 times to reduce h (assume h is even) to 0

Base case:
$$\mathfrak{p}=1$$

$$n_h > 2^{h/2} n_0$$

 $n_h > 2^{h/2}$

Claim:

```
A height-balanced tree is balanced,
   i.e. has height h = O(log(n))
We have shown that: n_h > 2^{h/2} and n \ge n_h
   n \ge n_h > 2^{h/2}
   n > 2^{h/2}
   \log_2(\mathbf{n}) > \log_2(2^{h/2}) (\log_2 on both side)
   log_2(\mathbf{n}) > \mathbf{h}/2 (formula simplification)
   2 * log_2(\mathbf{n}) > \mathbf{h} \text{ or } \mathbf{h} < 2 * log_2(\mathbf{n})
   \mathbf{h} = O(\log(\mathbf{n}))
```


AVL Trees [Adelson-Velskii & Landis 1962]

Step 3: Show how to maintain height-balance

Insertion to an AVL Tree

insert(37)

Initially balanced

But no longer balanced after Inserting 37

Need to rebalance!

But how?

"Infinite more" examples in VisuAlgo...

Tree Rotations

Rotations maintain ordering of keys

 \Rightarrow Maintains BST property (see vertex B where $P \le B \le Q$) rotateRight requires a left child rotateLeft requires a right child

Tree Rotations Pseudo Code \rightarrow O(1)

```
BSTVertex rotateLeft (BSTVertex T)
                                       // pre-req: T.right != null
    BSTVertex w = T.right
                                             rotateRight is the mirrored
                                             version of this pseudocode
    w.parent = T.parent
    T.parent = w
    T.right = w.left
    if (w.left != null) w.left.parent = T
    w.left = T
    // Update the height of T and then w
    return w
                                                                      W
                          W
                                                                 Q
This slide is
can be
confusing
without the
animation
```

Balance Factor (bf(x))

Four Possible Cases

$$bf(x) = -2$$
 and $bf(x.right) = -1$
leftRotate(x)

Rebalancing (1)

"Infinite more" examples in VisuAlgo...

Rebalancing (2)

"Infinite more" examples in VisuAlgo AVL Tree Visualization

Insertion to an AVL Tree

Summary:

- Just insert the key as in normal BST
- Walk up the AVL tree from the insertion point to root:
 - At every step, update height & check balance factor
 - If a certain vertex is out-of-balance (+2 or -2), use rotations to rebalance
 - During insertion to an AVL tree, you can only trigger
 one of the four possible rebalancing cases as shown earlier

Deletion from an AVL Tree

Deletion is quite similar to Insertion:

- Just delete the key as in normal BST
- Walk up the AVL tree from the deletion point to root:
 - At every step, update height & check balance factor
 - If a certain vertex is out-of-balance (+2 or -2), use rotations to rebalance
 - The main difference compared to insertion into AVL tree is that you may trigger one of the four possible rebalancing cases several times, up to h = log n times :O, see this example (next slide)

AVL Tree Web-based Review

Try: http://visualgo.net/bst.html?mode=AVL&create=8,6,16,3,7,13,19,2,11,15,18,10

Try **Remove (Delete)** vertex 7, it triggers **two (more than one)** rebalancing actions

Then try various **Insert operations** and notice that at most it will only trigger one (out of the four cases) of rebalancing actions

The Implementation

Let's look briefly at AVLDemo.java

The code is **NOT** given, it is asked in PS2 ©

So, I will only flash them

Introducing Java Inheritance and Polymorphism

Q: Do we have to use such long code every time we need a balanced BST ☺?

A: Fortunately no ②, we can use Java API Details during your lab demo on Week 04

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
 - Discussed in this lecture...
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)

Red-Black Trees

- Every vertex is colored red or black
- All leaves are black
- A red vertex has only black children
- Every path from a vertex to any leaf contains the same number of black vertices.
- Rebalance using rotations on insert/delete

Skip Lists and Treaps

- Randomized data structures
- Random insertions → balanced tree
- Use randomness on insertion to maintain balance

Splay Trees

- On access (search or insert),
 move vertex to root (via rotations)
- Height can be linear!
- On average, O(log n) per operation (amortized)

Optimality?

- Cannot do better than O(log n) worst-case
- What about for specific access patterns (e.g., 10 searches in a row for value x)?

Now, after we learn <u>balanced</u> BST

No	Operation	Unsorted Array	Sorted Array	BBST
1	Search(age)	O(n)	O(log n)	O(log n)
2	Insert(age)	O(1)	O(n)	O(log n)
3	FindOldest()	O(n)	O(1)	O(log n)
4	ListSortedAges()	O(n log n)	O(n)	O(n)
5	NextOlder(age)	O(n)	O(log n)	O(log n)
6	Remove(age)	O(n)	O(n)	O(log n)
7	GetMedian()	O(n log n)	O(1)	O(log n)
8	NumYounger(age)	O(n log n)	O(log n)	????

NumYounger(age) = rank(age)-1

Now, how to get rank(v) efficiently?

This has not been discussed before and will be revealed during the live lecture

Balanced BST

Summary:

- The Importance of Being Balanced
- Height Balanced Trees
- Tree Rotations
- AVL trees

Next Lecture:

- ADT Priority Queues
- Binary Heaps

CS2010R first meeting

- Tomorrow, Thu, 03 Sep 15, 6.00-6.30pm
- Note: venue TBA
- All R students must come
- Those who wants to get PS2E AC can also come ☺
- TA: Myself ©