Universidade de Brasília Instituto de Química Plano de Ensino

Engenharia de Reatores Químicos — IQD0048 Turma T01, Período 2023/1

Professor	Alexandre Perez Umpierre
Sala do professor	IQD B1 53/3
Semestre Semestre	De 28/03/2023 a 25/07/2023
Horário e local	35T34, BSA S BT 41/13
Atendimento aos	Presencialmente durante as aulas ou por agendamento, ou pelo email <u>aumpierre@unb.br</u> .
alunos	Trescheramiente durante as autas ou por agendamento, ou pero eman <u>aumpierretagano.or</u> .
Objetivo	Apresentar os fundamentos da engenharia de reações químicas, com ênfase em elementos de cinética química,
Objetivo	influência de variáveis de processo sobre taxa de reação, balanços de massa e energia, reatores ideais e desvios
	de idealidade.
Metodologia	Aulas expositivas com exemplos e exercícios.
Programa	Módulo 1 – Reatores Batelada: Balanços materiais e entálpico, determinação da taxa de reação.
1106141114	Módulo 2 – Reatores Tubulares: Balanços material e entálpico, reatores com refluxo, arranjos seriais e
	paralelos, reação em fase gasosa, reator catalítico, reatores de leito empacotado e de leito fluidizado.
	Módulo 3 – Reatores Contínuos de Tanque Agitado: Balanços material e entálpico, arranjos seriais e paralelos,
	partida, parada e mudança de set-point, multiplicidade de estados estacionários.
	Módulo 4 – Desvios de Idealidade: distribuição de tempo de residência, modelos de segregação e de mistura
	completa, cascata de tanques, de reatores em série, de volume morto e by-pass e de volume de troca.
Avaliação	Ao longo do período serão realizados quatro testes T_1 , T_2 , T_3 , T_4 , versando sobre os respectivos módulos do
	programa, e dois trabalhos, HW_1 , versando sobre o primeiro e o segundo módulos, e HW_2 , versando sobre o
	terceiro e o quarto módulos. Os trabalhos serão realizados em horário extraclasse. Os trabalhos podem ser
	resolvidos individualmente ou em duplas. O prazo para realização dos trabalhos é de 48 horas. Todas as
	avaliações serão corrigidas em uma escala de 0 a 10. A nota final NF é a soma de 50 % da média aritmética
	dos trabalhos e de 50 % da média aritmética dos testes,
	$NF = 50\% \frac{HW_1 + HW_2}{2} + 50\% \frac{T_1 + T_2 + T_3 + T_4}{4}$
	2 13070 4
	O desenvolvimento das respostas é critério fundamental de avaliação. O desenvolvimento deve estar
	diretamente relacionado à obtenção da resposta final e deve seguir uma sequência lógica e consistente com os
	modelos aceitos pela literatura da área da disciplina. Afirmações não relacionadas ao desenvolvimento serão
	desconsideradas, independentemente de seus valores.
	As avaliações devem ser elaboradas sobre o template
	https://github.com/aumpierre-unb/ERQ0120231/raw/main/template_ERQ.doc_ou
	https://github.com/aumpierre-unb/ERQ0120231/raw/main/template_ERQ.odt
	e entregues em formato .pdf por apenas um dos autores, intituladas de acordo com o exemplo:
	ERQ_20231_T01_HW1_20230905_matriculasonumeros.pdf
	A inobservância dessas regras pode incorrer em descontos nas notas das avaliações.
	Datas das avaliações:
	$HW_1 - 09/05/2023$
	$HW_2 - 06/07/2023$
	$T_1 - \frac{13}{04} \frac{2023}{2023}$
	$T_2 - 02/05/2023$
	$T_3 - 01/06/2023$
	$T_4 - 27/06/2023$
Bibliografia	Bibliografia básica:
	Fogler, S. H., Essentials of Chemical Reaction Engineering, Prentice Hall, 1st edition, 2011.
	Gilbert F. Froment, Kenneth B. Bischoff, Juray de Wilde, Chemical Reactor Analysis and Design, Wiley, 3rd.
	edição, 2010 .
	Levenspiel, O., Chemical Reaction Engineering. John Wiley & Sons, Inc. 1998.
	Bibliografia complementar:
	Carberry, J. J., Chemical and Catalytic Reaction Engineering. Dover Publications, 2001.
	Metcalfe, I. S., Chemical Reaction Engineering: A First Course, Oxford University Press. 1997.

Brasília, 28 de março de 2023.

https://aumpierre-unb.github.io/ERQ0120231/

Universidade de Brasília Instituto de Química Plano de Ensino

Engenharia de Reatores Químicos — IQD0048 Turma T01, Período 2023/1

Lista de Tópicos

■ Plano de Ensino & Revisão

Módulo 1 - Reator Batelada

- Balanço material (volume constante)
- Balanço entálpico (volume constante)
- Determinação da expressão da taxa de reação (volume constante)
- Balanço material (concentração constante)
- \circ T_1
- Correção do *T*₁

Módulo 2 - Reatores Tubulares

- Balanços material e entálpico (meio incompressível)
- Arranjos serial e paralelo (meio incompressível)
- Reator com refluxo (meio incompressível)
- Balanços material (meio compressível)
- Reator de leito empacotado
- Reator de leito fluidizado
- $\circ T_2$
- Correção do *T*₂
- Aula de dúvidas
- \circ HW_1
- Correção do *HW*₁

Módulo 3 – Reator Contínuo de Tanque Agitado

- Balanços material e entálpico
- Arranjos serial e paralelo
- Partida, parada e mudança de set-point
- Multiplicidade de estados estacionários
- \circ T_3
- Correção do T₃

Módulo 4 – Desvios de Idealidade

- Modelo de volume morto e by-pass
- Modelo de volume de troca
- Modelo de reatores em série
- Modelo de cascata de tanques
- Distribuição de tempo de residência
- Modelo de segregação
- Modelo de mistura completa
- \circ T_{4}
- Correção do *T*₄
- Aula de dúvidas
- \circ HW_2
- Correção do HW₂

