Key ID: 008

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	139	127	120	142	119	142
sample 2:	111	98	94	81	67	125

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

. (a)				5	. 0	0	0
(b)				2	. 5	7	0
((c)				9	. 5	3	2
(d)		-	6	0	. 4	9	7
(e)		-	1	1	. 5	0	3
	(f)				3	. 7	7	7
(g)				0	. 0	1	0
(h)				0	. 0	2	0

(i) yes

Key ID: 008

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 132$$

$$\overline{X_2} = 96$$

$$s_1 = 10.8$$

$$s_2 = 20.7$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.57$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(10.8)^2}{6} + \frac{(20.7)^2}{6}} = 9.532$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-60.497, -11.503)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(96 - 132) - 0}{9.532} = -3.78$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.78$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 5
- (b) 2.57
- (c) 9.532
- (d) -60.497
- (e) -11.503
- (f) 3.777
- (g) 0.01
- (h) 0.02
- (i) yes