Math 504

Cuong Ly

January 2022

Question 1 1

From the definition of norm, any function is called a norm if it satisfies three properties: positivity, scaling and triangle inequality.

Firstly, we will prove that the dual norm is greater than or equal to 0

If $||x||_* = 0$, we must have x = 0. Thus, if $x \neq 0$, $||x||_* \neq 0$

 $||x||_* = \max_{||z|| \le 1} z^T x$ and taking $z = \frac{x}{|x|}$, we have $||x||_* \ge \frac{||x||_2^2}{||x||} > 0$ Thus, the dual norm is greater than 0, the first property is satisfied.

Secondly, the scaling $||x\alpha||_* = max_{||z||<1}|z^Tx\alpha| = max_{||z||<1}|\alpha||z^Tx| =$ $|\alpha| max_{||z|| \le 1} |z^T x| = |\alpha| ||x||_*$

Thus, the second property is satisfied.

Thirdly, triangle inequality From the Cauchy-Schawartz Inequality definition, $z^T x \leq ||z||_2 \cdot ||x||_2$. Thus, $z^T x \leq ||z|| \cdot ||x||_*$. The third property holds. Dual norm is indeed a norm

2 Question 2

$$B_1(1) = \{ a \in \mathbb{R}^2 \ |||x||_{\infty} \le 1 \}$$

$$= \max\{|a_1|, |a_2|\} = 1$$

Divide this to two cases, $\max\{|a_1|\}=1$ and $\max\{,|a_2|\}=1$

In the first case, $\max\{|a_1|\} = 1$, so $a_1 = 1,-1$

Likewise, $\max\{|a_2|\} = 1$, so $a_2 = 1$,-1

Therefore, we have a square at 4 points (1,1),(1,-1),(-1,1),(-1,-1)

3 Question 3

 $||x+y||_2^2=< x+y, x+y>=< x, x>+< x, y>+< x, y>+< y, y>= ||x||_2^2+2< x, y>+||y||_2^2\leq ||x||_2^2+2||x||_2||y||_2+||y||_2$ (using Cauchy-Schwarz inequality) = $(||x||_2+||y||_2)^2$ Square root both sides, we have $||x+y||_2\leq ||x||_2+||y||_2$

4 Question 4

 $(A^TA)^T = A^T(A^T)^T = A^TA$ By the definition of symmetry, A^TA is symmetric.