

## ระบบแสดงผลการใช้พลังงานไฟฟ้าแบบเวลาจริง (Real Time Energy Monitoring)

นายอำนวย ที่จันทึก หัวหน้าโครงการ นายประพล จาระตะคุ ผู้ร่วมโครงการ นายนพดล เสียงใหม่ ผู้ร่วมโครงการ รองศาสตราจารย์ ดร. เผด็จ เผ่าละออ ที่ปรึกษา



## ความเป็นมาและความสำคัญของปัญหา



### ความเป็นมาและความสำคัญของปัญหา

โดยปกติมหาวิทยาลัย ๆ มีการตรวจสอบการการใช้พลังงานไฟฟ้าของแต่ละ อาคารในช่วงสิ้นเดือนทุก ๆ เดือน เพื่อเก็บข้อมูลและนำไปใช้ในการบริหารจัดการพลังงาน ไฟฟ้า จากการดำเนินการที่ผ่านมาจะวิเคราะห์และบริหารจัดการพลังงานไฟฟ้าไม่รวดเร็ว และไม่สามารถตรวจสอบการใช้พลังงานไฟฟ้าย้อนหลังแบบรายวันได้ อันจะส่งผลกระทบ ต่อค่าใช้จ่ายด้านไฟฟ้าของมหาวิทยาลัยโดยตรง





## วัตถุประสงค์

- ่ พัฒนาอุปกรณ์ดึงค่าการพลังงานไฟฟ้าจากเครื่องวัดพลังงานไฟฟ้า (Power meter) และส่งข้อมูลผ่านเครื่อข่าย @SUT-IoT ไปจัดเก็บที่ Server แบบข้อมูลอนุกรมเวลา (Time Series data)
- ☐นำ IoT Platform มาประยุกต์ใช้สำหรับการแสดงข้อมูลจากเครื่องวัดพลังงานไฟฟ้า แบบเวลาจริง



คึกษาการใช้งานเครื่องวัดพลังงานไฟฟ้า ■ศึกษาการค่านค่าจากเครื่องวัดพลังงานไฟฟ้าด้วยไมโครคอนโทรลเลอร์ 🗆 ศึกษาการใช้งาน Dashboard Server พัฒนาระบบส่งข้อมูลไปที่ Dashboard Server ด้วยไมโครคอนโทรลเลอร์ พัฒนาระบบแสดงผลแบบเวลาจริงใน Dashboard Server ทุกสอบและปรับปรุง สรุปและแนวทางการนำไปใช้ประโยชน์



(โครงสร้างของระบบ)



Power meter

## A CONTRACT OF TEMPORAL PROPERTY OF TEMPORATION PROPERTY OF TEMPORAL PROPERTY OF TEMPORATION PROPERTY OF TEMPORATION PROPERTY OF TEMPORA

### (ศึกษาการใช้งานเครื่องวัดพลังงานไฟฟ้า)













# AMARIAN OF TECHNOLOGY

## (ศึกษาการอ่านค่าจากเครื่องวัดพลังงานไฟฟ้าด้วยไมโครคอนโทรลเลอร์)



| Metering - | Power                  |      |       |
|------------|------------------------|------|-------|
| W          | Active Power, Total    | 3903 | Float |
| W1         | Active Power, phase1   | 3919 | Float |
| W2         | Active Power, phase2   | 3933 | Float |
| W3         | Active Power, phase3   | 3947 | Float |
| VAR        | Reactive Power, Total  | 3905 | Float |
| VAR1       | Reactive Power, phase1 | 3921 | Float |
| VAR2       | Reactive Power, phase2 | 3935 | Float |
| VAR3       | Reactive Power, phase3 | 3949 | Float |
| VA         | Apparent Power, Total  | 3901 | Float |
| VA1        | Apparent Power, phase1 | 3917 | Float |
| VA2        | Apparent Power, phase2 | 3931 | Float |
| VA3        | Apparent Power, phase3 | 3945 | Float |
| Metering – | Power Factor           |      |       |
| PF         | Power factor average   | 3907 | Float |
| PF1        | Power factor, phase1   | 3923 | Float |
| PF2        | Power factor, phase2   | 3937 | Float |
| PF3        | Power factor, phase3   | 3951 | Float |
| Metering - | Frequency              |      |       |
| F          | Frequency, Hz          | 3915 | Float |

| Energy      |                                    |      |       |  |  |
|-------------|------------------------------------|------|-------|--|--|
| FwdVAh      | Forward Apparent Energy            | 3959 | Float |  |  |
| FwdWh       | Forward Active Energy              | 3961 | Float |  |  |
| FwdVARh     | Forward Reactive Inductive Energy  | 3963 | Float |  |  |
| FwdVARh     | Forward Reactive Capacitive Energy | 3965 | Float |  |  |
| RevVAh      | Reverse Apparent Energy            | 3967 | Float |  |  |
| RevWh       | Reverse Active Energy              | 3969 | Float |  |  |
| RevVARh     | Reverse Reactive Inductive Energy  | 3971 | Float |  |  |
| RevVARh     | Reverse Reactive Capacitive Energy | 3973 | Float |  |  |
| On hrs      | On hours                           | 3993 | Long  |  |  |
| FwdRun secs | Forward Run seconds                | 3995 | Long  |  |  |
| RevRun secs | Reverse Run seconds                | 3997 | Long  |  |  |
| Intr        | Number of power interruption       | 3999 | Long  |  |  |

ESP32

# A CONTRACT OF TOMORY

#### (ศึกษาการใช้งาน Dashboard Server)





## (พัฒนาระบบส่งข้อมูลไปที่ Dashboard Server ด้วยไมโครคอนโทรลเลอร์ )





# RATE OF TOTAL OF TOTA

### (อาคารที่สามารถดูข้อมูลการใช้พลังงานไฟฟ้า)



# A MANUAL CONTROL TO TEMPOR

#### (ข้อมูลการใช้พลังงานไฟฟ้าแบบเวลาจริง)



# A THE RIVERSITY OF TECHNOLOGY

### (รายละเอียดเพิ่มเติม)



# A CONVERSITY OF TECHNOLOGY

#### (ข้อมูลการใช้พลังงาน)



# AND CONTROL OF TECHNOLOGY

### (ข้อมูลการใช้พลังไฟฟ้ารายวัน)



# MARIAN OF TESTINGS

## (การใช้ไฟฟ้าในรอบหนึ่งวัน)





#### (แสดงข้อมูลการใช้ไฟฟ้า ณ เวลาปัจจุบัน)

#### ጤ สรุปการใช้งาน





#### (เปรียบเทียบการใช้พลังไฟฟ้าเดือนก่อนกับเดือนปัจจุบัน)





#### (เปรียบเทียบการ Balance Phase ของโหลด)





## ประโยชน์ที่คาดว่าจะได้รับ

#### \_\_\_\_\_ด้านเทคนิค

- ตรวจสอบการใช้พลังงานไฟฟ้าได้อย่างถูกต้องแม่นตรง
- สามารถตรวจสอบข้อมูลการใช้ไฟฟ้าผ่านเครือข่ายที่มีอินเตอร์เน็ตแบบเวลาจริง
- ช่วยลดข้อผิดพลาดเรื่องการจดหน่วยการใช้พลังงานไฟฟ้า
- สามารถนำข้อมูลการใช้พลังงานไฟฟ้าไปวิเคราะห์และบริหารจัดการได้อย่างมี ประสิทธิภาพ



## ประโยชน์ที่คาดว่าจะได้รับ

## ด้านรณรงค์ประชาสัมพันธ์

- เพื่อสร้างจิตสำนึกให้กับผู้ใช้อาคารนั้น ๆ ได้ตระหนักถึงความจำเป็นในการลดการใช้ พลังงาน
- เพื่อสร้างการมีส่วนร่วมผู้ใช้อาคารที่ใช้พลังงานสูง ๆ
- เพื่อประชาสัมพันธ์กิจกรรมรณรงค์ลดการใช้พลังงานและเผยแพร่ความรู้ด้านพลังงานให้ เกิดการรับรู้ถึงความสำคัญของการสูญเสียพลังงานในพฤติกรรมการใช้ไฟฟ้าที่ไม่เหมาะสม
- เพื่อเกิดแรงจูงใจให้แก่บุคลากรและนักศึกษา ได้เข้าร่วมกิจกรรมนำใช้ประหยัดพลังงานไป ใช้จนติดเป็นนิสัย
- เพื่อให้บุคลากรและนักศึกษา มีทัศนคติและสร้างค่านิยมที่ดีต่อการอนุรักษ์พลังงาน



#### จบการนำเสนอ