EI 10c M

MATHEMATIK

 $(a+b)^2$

2009-10

Binomische Formeln

Nur die für die Arbeit relevanten Teile werden besprochen. Die binomische Formel dritten Grades sollte man wohl auch kennen, sie kommt aber jetzt noch nicht dran!

ÜBUNGEN*:

Berechne diese Binome zweiten Grades:

i)
$$(1+4)^2$$

ii)
$$(2+x)^2$$

iii)
$$(2-x)^2$$

iv)
$$(x-2)^2$$

$$(x+b)^2$$

i)
$$(1+4)^2$$
 ii) $(2+x)^2$ iii) $(2-x)^2$ iv) $(x-2)^2$ v) $(x+b)^2$ vi) $(x-(-3))^2$ vii) $(x+4)^2$ viii) $(x+0)^2$

vii)
$$(x+4)^2$$

viii)
$$(x+0)^2$$

- $1^2+2\cdot1\cdot4+4^2=1+8+16=25$, stimmt, denn 1+4=5 und $5^2=25$... i)
- ii) $2^2+2\cdot 2\cdot x+x^2=4+4x+x^2$, was im Übrigen dasselbe ist wie $(x+2)^2$!
- $2^{2}+2\cdot 2\cdot (-x)+(-x)^{2}=4-4x+x^{2}$, was im Übrigen dasselbe ist wie $(x-2)^{2}!$ iii)
- siehe iii), nur die Reihenfolge ist umgekehrt! iv)
- $x^2+2\cdot x \cdot b + b^2$ v)
- Eigentlich ist das einfach (x+3)², aber wir rechnen der Übung wegen mit der Formel vi) $(a+b)^2=a^2-2\cdot a\cdot b+b^2...$ $x^2-2\cdot x\cdot (-3)+(-3)^2=x^2+6\cdot x+9$
- vii) $x^2+2\cdot x\cdot 4+16=x^2+8x+16$
- ist ja eigentlich einfach x^2 , aber: $x^2+2\cdot x\cdot 0+0^2=x^2$. viii)

*: LEICHT **: MITTEL ***: SCHWER