Assignment 1 CSCI-6390

Yiqing(Alice) Guo

September 21, 2017

For all part that all results have precision of 8

read me

python version: 2.7.11

sample command line input: assign1.py airfoil_self_noise.dat 8 0.0001 out.txt

python file, data file, precision, epsilon, output file

all print text result are save in out.txt

if there are no 5 argument then the output will print in the command windows. sample command line input with 4 arguments: assign1.py airfoil_self_noise.dat $8\ 0.0001$

if less than 4 argument then the code will using the defualt value.

 $4~{\rm figure~are~saved~as~most_correlated.png},$ anti_correlated.png, least_correlated.png, eigenvectors.png

1 Part 1

Compute the mean vector μ for the 6-dimensional data matrix, and then compute the total variance var(D)

The mean vector μ :

 $\begin{bmatrix} 2886.38057219 & 6.78230206 & 0.13654824 & 50.86074518 & 0.01113988 & 124.83594278 \end{bmatrix}$

Total variance var(D): 9932429.7172

Compute the sample covariance matrix Σ as inner products between the attributes of the centered data matrix. Next compute the sample covariance matrix as sum of the outer products between the centered points

Inner products:

\[9932104.79728063	-5085.67250617	-1.07878216	6557.77175899	-9.53323084	-8491.74115188
-5085.67250617	35.00093761	-0.27930199	5.41178032	0.05859369	-6.36918252
-1.07878216	-0.27930199	0.00874405	0.00551227	-0.00027147	-0.1522949
6557.77175899	5.41178032	0.00551227	242.35026212	-0.00081328	13.43101346
-9.53323084	0.05859369	-0.00027147	-0.00081328	0.00017281	-0.02834618
-8491.74115188	-6.36918252	-0.1522949	13.43101346	-0.02834618	47.55979887

Outer products:

9932104.79728063	-5085.67250617	-1.07878216	6557.77175899	-9.53323084	-8491.74115188
-5085.67250617	35.00093761	-0.27930199	5.41178032	0.05859369	-6.36918252
-1.07878216	-0.27930199	0.00874405	0.00551227	-0.00027147	-0.1522949
6557.77175899	5.41178032	0.00551227	242.35026212	-0.00081328	13.43101346
-9.53323084	0.05859369	-0.00027147	-0.00081328	0.00017281	-0.02834618
-8491.74115188	-6.36918252	-0.1522949	13.43101346	-0.02834618	47.55979887

Compute the correlation matrix for this dataset using the formula for the cosine between centered attribute vectors. Which attributes are the most correlated, the most anti-correlated, and least correlated? Create the scatter plots for these interesting pairs using matplotlib and visually confirm the trends, i.e., describe how each of the three cases results in a particular type of plot.

Colume	Colume	$cos(\theta)$	Degree
1	1	1.000000	0.00
1	2	-0.272765	105.83
1	3	-0.003661	90.21
1	4	0.133664	82.32
1	5	-0.230107	103.30
1	6	-0.390711	113.00
2	2	1.000000	0.00
2	3	-0.504868	120.32
2	4	0.058760	86.63
2	5	0.753394	41.11
2	6	-0.156108	98.98
3	3	1.000000	0.00
3	4	0.003787	89.78
3	5	-0.220842	102.76
3	6	-0.236162	103.66
4	4	1.000000	0.00
4	5	-0.003974	90.23
4	6	0.125103	82.81
5	5	1.000000	0.00
5	6	-0.312670	108.22
6	6	1.000000	0.00

The most correlated is col: $(2,\,5)$, $\cos(\theta)$ is 0.753394, and the degree is 41.11

In this we see that one variable increases, the other tends to also increase. we could see a positive relation ship between the two attribute.

The most anti-correlated is col: $(2,\,3)$, $\cos(\theta)$ is -0.504868, and the degree is 120.32

In this we see that one variable increases, the other tends to decrease.

The least correlated is col: (1, 3) , $cos(\theta)$ is -0.003661, and the degree is 90.21

There is really weak correlation in this figure, compare with the figures above we cannot see a relation in this plot.

2 Part 2

Eigenvectors u_1 and $u_2(\epsilon = 0.0001)$:

$$u_1 = \begin{bmatrix} 1.00070832 \\ -0.00051241 \\ -0.00000011 \\ 0.00066074 \\ -0.00000096 \\ -0.00085559 \end{bmatrix} u_2 = \begin{bmatrix} -0.00049678 \\ 0.0331156 \\ -0.00006833 \\ 0.8849192 \\ 0.00001509 \\ 0.08251522 \end{bmatrix}$$

