Ονοματεπώνυμο: Παντελεήμων Μαλέκας

A.M: 1115201600268

1.1

Η υλοποίηση της σχετικής μεθόδου είναι στο αρχείο syndyasmos_D_NR.m

1.2

Η υλοποίηση του ερωτήματος είναι στο αρχείο main.m

	[a,b]	x0	xn	n
f1 (ρίζα -1)	[-1.375, -0.75]	-1.06250	-1.0	29
f1 (ρίζα 2)	[1.9998, 2.0004]	2.0001	2.0	3
f2	[1.3086, 1.3281]	1.3184	1.3191	3

Τα αρχικά διαστήματα ήταν: για την f1 με ρίζα -1 το [-2, 0.5], για την f1 με ρίζα 2 το [1, 6] και για την f2 το [-5, 5].

1.3

Η υλοποίηση του ερωτήματος είναι στο αρχείο main.m

f1 με ρίζα -1

n	e_n	e_n/e_n-1
1	0.06250000000	-
2	0.04180743243	0.66891891892
3	0.02793517631	0.66818684356
4	0.01865199917	0.66768861469
5	0.01244744526	0.66735180183
6	0.00830400374	0.66712514676
7	0.00553854705	0.66697309145
8	0.00369349804	0.66687129433
9	0.00246283645	0.66680323870
10	0.00164211537	0.66675778310
11	0.00109484338	0.66672744140
12	0.00072993996	0.66670719670
13	0.00048664637	0.66669369271
14	0.00032443968	0.66668468671
15	0.00021629702	0.66667868122
16	0.00014419975	0.66667467690
17	0.00009613393	0.66667200706

18	0.00006408963	0.66667022703
19	0.00004272657	0.66666904029
20	0.00002848445	0.66666824910
21	0.00001898966	0.66666772163
22	0.00001265979	0.66666736998
23	0.00000843987	0.66666713555
24	0.00000562658	0.66666697926
25	0.00000375105	0.66666687505
26	0.00000250070	0.66666680558
27	0.00000166714	0.66666675931
28	0.00000111142	0.66666672847
29	0.00000074095	_

f1 με ρίζα 2

n	e_n	e_n/e_n-1
1	0.00006	-
2	0.00000	0.00006
3	0.00000	_

• f2

H	e_n	e_n/e_n-i
1	0.00071	-
2	0.00000	0.78878
3	0.00000	_

1.4

Παρατηρούμε ότι ο λόγος e_n/e_n-1 είναι ίσος με $f''(\xi)$ / 2 $f'(\xi)$. Συμφωνα με την θεωρία επιβεβαιώνεται δηλαδή ότι αριθμητικά η ασυμπτωτική σταθερά σφάλματος της N-R είναι ίση με $c = f''(\xi)$ / 2 $f'(\xi)$, που είναι μικρότερο του 1.

Η τάξη σύγκλισης είναι γραμμικη, όπως περιμέναμε, μιας και, πχ για την ρίζα -1, είναι πολλαπλότητας 3, για αυτό ισχύει και c < 1.

Η υλοποίηση του ερωτήματος είναι στο αρχείο syndyasmos_D_T.m και main.m

Πινακάκι τελικών αποτελεσμάτων

	[a,b]	x0	xn	n
f1 (ρίζα -1)	[-1.375, -0.75]	-1.06250	-1.0	41
f1 (ρίζα 2)	[1.9998, 2.0004]	2.0001	2.0	4
f2	[1.3086, 1.3281]	1.3184	1.3191	5

Τα αρχικά διαστήματα ήταν: για την f1 με ρίζα -1 το [-2, 0.5], για την f1 με ρίζα 2 το [1, 6] και για την f2 το [-5, 5].

Πινακάκια σφαλμάτων

f1 με ρίζα -1

n	e_n	e_n/e_n-1
1	0.00000	0.00000
2	0.00000	0.00000
3	0.05716	Inf
4	0.03991	3.88831
5	0.03108	5.38055
6	0.02322	5.99614
7	0.01762	7.25573
8	0.01329	8.50707
9	0.01004	10.09883
10	0.00758	11.93380
11	0.00573	14.12935
12	0.00432	16.71856
13.	0.00326	19.78882
14	0.00246	23.42161
15.	0.00186	27.72342
16.	0.00140	32.81573
17.	0.00106	38.84445
18	0.00080	45.98135
19.	0.00060	54.43020
20.	0.00046	64.43205
21.	0.00034	76.27232
22	0.00026	90.28886
23	0.00020	106.88163
24	0.00015	126.52409

25	0.00011	149.77673
26	0.00008	177.30303
27	0.00006	209.88845
28	0.00005	248.46278
29	0.00004	294.12669
30	0.00003	348.18316
31	0.00002	412.17465
32	0.00002	487.92708
33	0.00001	577.60196
34	0.00001	683.75810
35	0.00001	809.42452
36	0.00001	958.18701
37	0.00000	1134.29034
38	0.00000	1342.75943
39	0.00000	1589.54273
40	0.00000	1881.68195
41	0.00000	2227.51296

f1 με ρίζα 2

n	e_n	e_n/e_n-1
1	0.00000	0.00000
2	0.00000	0.00000
3	0.00000	Inf
4	0.00000	2.37711

• f2

n	e_n	e_n/e_n-1
1	0.00000	0.00000
2	0.00000	0.00000
3	0.00907	Inf
4	0.00907	16.81593
5	0.00907	16.80079

Σχολιασμός αποτελεσμάτων

Βλέπουμε αρχικά ότι η μέθοδος της τέμνουσας κάνει 41 επαναλήψεις για να βρει την ρίζα -1. Είναι δηλαδή πιο αργή από την N-R, αλλά αυτό είναι αναμενόμενο καθώς έχει p=1 τάξη σύγκλισης, μιας και η ρίζα είναι πολλαπλή.

Βλέπουμε επίσης ότι όσο προχωρούν οι επαναλήψεις το απόλυτο σφάλμα ανεβαίνει άρα είναι τετραγωνικής μορφής. Αυτό φαίνεται πιο εύκολα στην περίπτωση της f1 με ρίζα -1, όπου έχουμε περισσότερες επαναλήψεις.

Για την περίπτωση της f1 με ρίζα 2, δεν είναι εύκολο να βγάλουμε κάποιο συμπέρασμα για την σύγκλιση της συνάρτησης. Ακόμη και εκεί βέβαια βλέπουμε ότι η N-R έκανε λιγότερες επαναλήψεις. Το ίδιο μπορούμε να πούμε και για την f2.

Μπορούμε να σημειώσουμε επίσης ότι η μέθοδος της τέμνουσας χρειάζεται λιγότερο χρόνο για τον υπολογισμό της προσεγγιστικής ρίζας καθώς για την μέθοδο της Newton-Raphson χρειαζόμαστε περισσότερους υπολογισμούς της συνάρτησης επειδή υπάρχει η πρώτη παράγωγος στον τύπο σε αντίθεση με τον τύπο της τέμνουσας που υπάρχει μόνο η συνάρτηση.

Ωστόσο, η Newton Raphson και η Τέμνουσα έχουν τάξη σύγκλισης γραμμική για την ρίζα -1. Παρατηρούμε όμως ότι η μέθοδο της Τέμνουσας χρειάζεται σχεδόν τις διπλάσιες επαναλήψεις από την Newton-Raphson για να βρει την ρίζα -1, το οποίο επαληθεύει το θεώρημα της σύγκλισης από τις διαφάνειες.

Εκτέλεση και προγράμματα

Το πρόγραμμα εκτελείται με το όνομα κυρίου αρχείου, main. Ο χρήστης μπορεί να επιλέξει μεταξύ των επιλογών 1 (για τον συνδυασμο διχοτόμησης και NR), 2 (για τον συνδυασμο διχοτόμησης και τέμνουσας) και 3 (γραφήματα των συναρτήσεων)

Υλοποιήθηκαν τα αρχεία main.m, syndyasmos_D_NR.m, syndyasmos_D_T.m και graph.m. Τα αρχεία bisect_m.m, rf_newton2.m και temnousa.m χρησιμοποίηθηκαν έτοιμα από το e-class, ορισμένα με ελάχιστες τροποποιήσεις. Τέλος, όλα τα αρχεία αναπτύχθηκαν και εκτελέστηκαν με την χρήση του GNU Octave.