Développont Sout 2 E E, 2 ER <u(x),x>+ d<u(e), x>+ d<u(x),e>+ d²<u(e),e> < 17 (112112 + 22 < x, e) + 22 Helle $\Pi \|x\|^2 - \langle u(x), x \rangle + \lambda \left(2\Pi \langle x, e \rangle - \langle u(e), x \rangle - \langle u(x), e \rangle \right)$

Ceriest vnou pour route $d \in \mathbb{R}$, donc $2\pi \langle z, e \rangle - \langle u(e), z \rangle - \langle u(u), e \rangle = 0$ $\langle z, 2\pi e - u(e) - u^*(e) \rangle = 0$

Lew est mai pour hout & E E, donc

21.e-u(e)-u*(e)=0 ou en core $\sqrt{\frac{u+u^*}{2}}(e) = \Pi.e$ $\left(\forall u \in \mathcal{L}(E)\right)$

Ja: u=u on obtient u(e)= 17.e.

Bilan: on a montré que si T= Max <u(x), 27 = <u(e), e> xt S où 11e11=1

alors u(e) = 17. e.

Démontration du Présiène spectral Feuclidian, n=dim(E) Sour u & L(E), (u=u) = [] (e1-en) EEn Base prhonormee!

3 (21-24) EIN, TRECTIND, u(ex) = dx.ex (=) dija fail (=) Parrémerence sur n = dim (E)

* (Affilhrous: sin = 1, E = R.e pour bout $e \neq 0E$.

on prend $e_1 = \frac{1}{\|e_1\|} \cdot e$ de i base orthonormée $u(e_1) \in E$, i exilte $d_i \in R$, $u(e_i) = d_i \cdot e_i$

* Sayposon (IIIn) vraie pour un n EM. Sort E, dom(E) n+1, a E & (E), at le S= > x, ||2|(=1) (Posont (= ((u(x), x)) = < u(e), e> $e_1 = e_1 \quad u(e_1) = \pi \cdot e_1 \quad donc \quad \lambda_1 = \pi$ E = IR.e, ⊕ (R.e,)¹ (dimension finie). (8) dum E < ta, 8 El seur-espace vertissel de E, E= El O E, 1) u (1R.e1) C R.e1 danc (proposition technique) (Sa marche en core 81' du Ez+00, dim E1 (+00) u* ((Rei)1.) C (M.e) 1. u ((Rei)1.) donc (Rei) 1. est stoble par u.

et
$$x_1 : (x_1 y) \in (\mathbb{R}^{e_1})^{\perp}$$
.

($u_1 : (x_1) y = (u_1 x_1) y = (x_1 u_1 y) = (x_1 u_1 y)^{\perp}$.

 $u_1 \in \mathcal{F}((\mathbb{R}^{e_1})^{\perp}) \text{ et dum } ((\mathbb{R}^{e_1})^{\perp}) = N$

d'agrèr l'hypother (th): $(e_1 - e_{n+1}) \text{ base or Honorne'}$

de $(\mathbb{R}^{e_1})^{\perp}$.

et $u_1 : u_1 = u_1 y = (u_1 u_1 y)^{\perp}$

et $u_2 : u_1 = u_2 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_2 : u_1 = u_2 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

et $u_1 : u_2 = u_1 y = (u_1 u_2 y)^{\perp}$

YKE[12, n+i] u(ex) = dk-ex

 $u_{i} = u \left(\frac{(R \cdot e_{i})^{\perp}}{(R \cdot e_{i})^{\perp}} \cdot \left(\frac{w}{u} - u \right) \left(\frac{(R \cdot e_{i})^{\perp}}{u} \right) \right)$

On a trouvé (en en en la base ordonormée de E et (di - done) & 172 tel pue FRETI, ntill, u(ex) = dx. ex. Les choses importantes de cette dément, ation 1) Mithode de dédoublement des termes

> 21 Récurrence sur din (E) 31 Proposition technique: Si El sour-espace vectoriel de E

> 3) Proposition technique: Si El sour-espace vectoriel de E
>
> [u (El) CEI] (EL) CEL.]

4) Chercher un objet (ru'ei) assome un maximum.

2.2 Endomorphismes auto-adjoints

Définition 2.1 – Endomorphisme auto-adjoint d'un espace euclidien

Soit E un espace vectoriel euclidien et soit $f \in \mathcal{L}(E)$, on dit que f est auto-adjoint ou symétrique si $f^* = f$. On a donc

$$\forall (x,y) \in E^2, \langle f(x), y \rangle = \langle x, f(y) \rangle$$

On note

$$\mathscr{S}(E) = \{ f \in \mathscr{L}(E), \ f^* = f \}$$

C'est clairement un sous-espace vectoriel de $\mathcal{L}(E)$.

Exemple 2.2 – Endomorphismes autoadjoints

1. Les projecteurs orthogonaux sont les projecteurs auto-adjoints. Dans une base orthonormée (e_1, \ldots, e_n) adaptée à la somme directe orthogonale

$$E = \operatorname{Ker}(f) \stackrel{\perp}{\oplus} \operatorname{Im}(f)$$

en notant $p = \dim \operatorname{Ker}(f)$, on a

$$\forall k \in [1, p], \ f(e_k) = 0_E \text{ et } \forall k \in [p + 1, n], \ f(e_k) = e_k$$

2. Plus généralement, si (e_1, \ldots, e_n) est une base orthonormée de E et s'il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$, tels que

$$\forall k \in [1, n], \ f(e_k) = \lambda_k . e_k$$

alors f est auto-adjoint.

Théorème 2.1 – de réduction des endomorphismes auto-adjoints

Soit E un espace euclidien et $f \in \mathcal{S}(E)$, alors il existe une base orthonormée (e_1, \ldots, e_n) de E et il existe des scalaires $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$, tels que

$$\forall k \in [1, n], \ f(e_k) = \lambda_k . e_k$$

On dit que f se diagonalise en base orthonormée. Les vecteurs e_k s'appellent des vecteurs propres de f et les réels λ_k s'appellent des valeurs propres de f.

Démonstration

(Plan) La démonstration se fait par récurrence sur la dimension de E.

- 1. On trouve un vecteur unitaire e_1 et un scalaire λ_1 tel que $f(e_1) = \lambda_1.e_1$.
- 2. On décompose E sous la forme

$$E = \mathbb{R}.e_1 \stackrel{\perp}{\oplus} \underbrace{(\mathbb{R}.e_1)^{\perp}}_{-E_1}$$

et on montre que l'on peut appliquer la récurrence à l'espace vectoriel E_1 et à l'endomorphisme

$$f_1 = f \Big|_{E_1}^{E_1}$$

(Récurrence)

— (Initialisation) Le résultat est clairement vrai pour $n = \dim(E) = 1$, car, si $\{e\}$ est une base orthonormée de E de dimension 1, tout endomorphisme vérifie

$$\exists \lambda \in \mathbb{R}, \ f(e) = \lambda.e$$

- 1. Cherchons un vecteur unitaire e_1 et un scalaire λ_1 tels que $f(e_1) = \lambda_1.e_1$.
- (Analyse) Si la base orthonormée (e_1, \ldots, e_{p+1}) existe, on a

$$\langle x, f(x) \rangle = \sum_{k=1}^{p+1} \lambda_k \langle e_k, x \rangle^2$$

en supposant de plus les valeurs propres ordonnées $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_{p+1}$, il vient

$$\langle x, f(x) \rangle \leqslant \lambda_1 \left(\sum_{k=1}^{p+1} \langle e_k, x \rangle^2 \right) = \lambda_1 \|x\|^2$$

De plus, il y a égalité si $x = e_1$. Cette étape s'appelle caractérisation géométrique de (e_1, λ_1) .

ightharpoonup (Synthèse) Posons

$$S = \{x \in E, ||x|| = 1\}$$
 (la sphère unité)

Et considérons l'application

$$\varphi : \begin{cases} S \to \mathbb{R} \\ x \mapsto \langle x, f(x) \rangle \end{cases}$$

Nous allons montrer successivement que a

- (a) φ est bornée et les bornes sont atteintes.
- (b) La borne supérieure est la plus grande valeur propre λ_1 cherchée.
 - $(\varphi \ est \ born\'ee)$ En effet

$$|\varphi(x)| \leq ||x|| \, ||f(x)||$$
, d'après Cauchy-Schwarz

Ici, ||x|| = 1, mais que peut-on dire de ||f(x)||? Soit (b_1, \ldots, b_{p+1}) une base orthonormée quelconque de E, alors

$$f(x) = f\left(\sum_{k=1}^{p+1} \langle b_k, x \rangle . b_k\right) = \sum_{k=1}^{p+1} \langle b_k, x \rangle . f(b_k)$$

$$||f(x)|| \le \sum_{k=1}^{p+1} \underbrace{|\langle b_k, x \rangle|}_{\le ||x||=1} ||f(b_k)|| \le \sum_{k=1}^{p+1} ||f(b_k)||$$

▶ (Les bornes sont atteintes) Posons

$$\lambda_1 = \sup_{x \in S} \varphi(x)$$

Par discrétisation, on peut trouver une suite $(x_n)_{n\in\mathbb{N}}\in S^{\mathbb{N}}$ telle que

$$\varphi(x_n) \xrightarrow[n \to +\infty]{} \lambda_1$$

On a alors

$$\forall n \in \mathbb{N}, \ \|x_n\| = 1 \text{ et } x_n = \sum_{k=1}^{p+1} \langle b_k, x_n \rangle . b_k$$

De la suite $(\langle b_1, x_n \rangle)_{n \in \mathbb{N}}$ bornée on peut extraire une suite $(\langle b_1, x_{\psi_1(n)} \rangle)_{n \in \mathbb{N}}$ convergente vers α_1 , puis de la suite $(\langle b_2, x_{\psi_1(n)} \rangle)_{n \in \mathbb{N}}$ bornée, on peut extraire une sous-suite $(\langle b_2, x_{\psi_2(n)} \rangle)_{n \in \mathbb{N}}$ convergente vers α_2 , etc. jusqu'à $(\langle b_{p+1}, x_{\psi_{p+1}(n)} \rangle)_{n \in \mathbb{N}}$ convergente vers α_{p+1} . Finalement, b

$$x_{\psi_{p+1}(n)} \xrightarrow[n \to +\infty]{} \sum_{k=1}^{p+1} \alpha_k . b_k \quad \text{et } \varphi(e_1) = \lambda_1$$

$$e_1 \text{ tel que } \|e_1\| = 1$$

• (On a bien trouvé un vecteur propre de f de valeur propre λ_1 .) De plus, on a

$$\forall x \in E, \langle x, f(x) \rangle \leq \lambda_1 ||x||^2$$

Soit $x \in E$ et $\mu \in \mathbb{R}$, on a alors

$$\forall \mu \in \mathbb{R}, \ \forall x \in E, \ \varphi(e_1 + \mu.x) = \langle e_1 + \mu.x, f(e_1) + \mu.f(x) \rangle \leq \lambda_1 \|e_1 + \mu.x\|^2$$

C'est une équation du second degré en μ qui garde un signe ≥ 0 , donc

$$\forall x \in E, \ \langle f(e_1) - \lambda_1.e_1, x \rangle = 0$$

soit, finalement

$$f(e_1) = \lambda_1.e_1$$

2. On écrit alors

$$E = \mathbb{R}.e_1 \oplus \underbrace{\left(\mathbb{R}.e_1\right)^{\perp}}_{E_1}$$

et on a

$$f(E_1) = f^{\star}(E_1) \subset E_1$$

En appliquant l'hypothèse de récurrence à l'espace vectoriel E_1 (toujours euclidien, avec le même produit scalaire) et l'endomorphisme $f \Big|_{E_1}^{E_1}$ (toujours auto-adjoint), on en déduit le résultat cherché.

a. Dans le cours de topologie, il s'agit d'une fonction continue sur un compact, à valeurs dans \mathbb{R} , elle est bornée et les bornes sont atteintes (ce sont donc un maximum et un minimum).

b. Si $(y_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ et $l\in E$, sont tels que

$$||y_n-l|| \xrightarrow[n\to+\infty]{} 0$$
, on écrira $y_n \xrightarrow[n\to+\infty]{} l$

Plusieurs aspects de cette démonstration sont intéressants à noter

1. La récurrence sur n qui permet de diminuer la dimension de l'espace euclidien concerné. Si E est un espace euclidien, de produit scalaire ϕ , alors, si E_1 est un sous-espace vectoriel de E, $\phi \big|_{E_1 \times E_1}$ est un produit scalaire sur E_1 .

- '2. On a utilisé la proposition 2.2, page 30, qui est simple, mais très importante. On part de $\mathbb{R}.e_1$ stable, par f, donc E_1 est stable par $f^* = f$. Et $f \Big|_{E_1}^{E_1}$ est dans $\mathscr{S}(E)$.
 - . La caract'erisation g'eom'etrique de la plus grande valeur propre comme une valeur extr\'emale (la plus petite peut aussi être caract\'eris\'ee d'une manière semblable).

$$\lambda_1 = \max_{x \in S} \langle x, f(x)
angle = \max_{x
eq 0_E} rac{\langle x, f(x)
angle}{\|x\|^2}$$

- 4. Dans S, on a pu extraire une sous-suite convergente, en utilisant une succession d'extractions coordonnées par co \mathcal{O} -données. Plus généralement, si $(x_n)_{n\in\mathbb{N}}$ est une suite bornée (c'est-à-dire que $(\|x_n\|)_{n\in\mathbb{N}}$ est bornée), on peut extraire une sous-suite convergente, car nous sommes en dimension finie!
- 5. La technique utilisée pour montrer que e_1 est un vecteur propre de f (associé à la valeur propre λ_1) s'appelle la méthode f de dédoublement des termes. Elle fonctionne ainsi
 - Si on a une propriété d'égalité sur des normes (ou quelque chose qui y ressemble), on peut passer au produit scalaire en l'appliquant à x+y.
 - Si on a une propriété d'inégalité sur des normes (ou quelque chose qui y ressemble), on peut passer au produit scalaire en l'appliquant à $x + \mu.y$, $\mu \in \mathbb{R}$.

Exemple 2.3

- (a) Supposons que $f \in \mathcal{L}(E)$ vérifie
- $\forall x \in E, \langle x, f(x) \rangle = 0$ regalité over du x alors, en l'appliquant à x + y quelconques de E, il vient

alors, en l'appriquant la
$$x+y$$
 difféconques de E , il vient
$$\forall (x,y) \in E^2, \ \langle x,f(y)\rangle + \langle f(x),y\rangle = 0 \ \mathrm{donc} \ f^\star = -f$$

- (b) Supposons que $f \in \mathcal{L}(E)$ vérifie
- alors, en l'appliquant à $x + \mu y$, (x et y quelconques dans E et μ dans \mathbb{R}), il vient

$$\forall (x,y) \in E^2, \ \left\langle x, \frac{f+f^\star}{2}(y) \right\rangle^2 \leqslant \left\langle x, f(x) \right\rangle \langle y, f(y) \rangle$$
 qui peut nous rappeler une inégalité de Cauchy-Schwarz... N'est-ce pas avec ce type de méthode que

 $\forall x \in E, \langle x, f(x) \rangle \geqslant 0$ Initalité aux.

qui peut nous rappeler une inégalité de Cauchy-Schwarz... N'est-ce pas avec ce type de méthode que nous avions obtenu l'inégalité de Cauchy-Schwarz?

Propriété 2.2 $\mathscr{S}(E)$ est u

$$\mathscr{S}(E)$$
 est un sous-espace vectoriel de $\mathscr{L}(E)$ de dimension

$$\frac{n(n+1)}{2} \text{ où } n = \dim(E)$$

Si E earlidien, si (PI - Ph) base or Honormei

Elo Què

Wynu

se déduit

Connaître f revient à connaître les $f(e_i)_{i \in [\![1,n]\!]}$ où (e_1,\ldots,e_n) est une base orthonormée de E, et donc, connaître les $(\langle e_i,f(e_j)\rangle)_{(i,j)\in [\![1,n]\!]^2}$. Or, on a

$$\forall (i,j) \in [\![1,n]\!]^2, \ \langle e_i,f(e_j)\rangle = \underbrace{\langle f(e_i),e_j\rangle}_{\text{car }f \text{ est auto-adjoint }} = \underbrace{\langle e_j,f(e_i)\rangle}_{\text{par symétrie du produit scalaire}}$$

$$+2+\cdots+\infty = \underbrace{\langle e_j,f(e_i)\rangle}_{\text{par }l}$$

Propriété 2.3

Soit $f \in \mathcal{S}(E)$, on dit que f est un endomorphisme auto-adjoint positif s'il vérifie de plus

$$\forall x \in E, \langle x, f(x) \rangle \ge 0$$

ou, si l'on connaît une base de vecteurs propres (e_1,\ldots,e_n) associée à des valeurs propres $(\lambda_1,\ldots,\lambda_n)$, alors

$$\forall k \in [1, n], \ \lambda_k \in \mathbb{R}_+$$

On note $\mathscr{S}^+(E)$ l'ensemble des endomorphismes auto-adjoints positifs. Ce n'est pas un sous-espace vectoriel de $\mathscr{L}(E)$. C'est un cône positif de $\mathscr{L}(E)$.

Définition: Soit Eenchidien, u ∈ J(E).

& ∀x € E, < u(x), n> >0

* On our que u est défini posstib Sn' Yx E E 1 20E}, <u(x), x>>0.

(ces espacer verifient.

J+(E)= {u & J(E), u pontif}

J++(E)= {u \ J(E), u defini positif } Yuey+(E), YaeRx, aucy+(E)

Remarphe: Si
$$u \in \mathcal{Y}(E)$$
, $(e_1 - e_n)$ base ordense med

 $(d_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - e_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $\forall K \in [[i,n]]$, $u(e_K) = d_K \cdot e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$, $e_1 - e_K$
 $(e_1 - d_n) \in \mathbb{R}^n$
 $(e_1$

Consépuence: Soit u + 9 (E) E[u+y++LE] =>[x+E[i,n], dx>o] Pourpuoi on sintéresse à 5t (E) et 5t (E) ? Kemarpue: Sout Eeuclideen, ut L(E), alors

et si u & YY(E) (u byechif), uou & Y++(E).

(SOU REE, < nou(x), x> = < u(x), u(x)> = ||u(x)||² ≥0 et de plur $\langle u \circ u (x), z \rangle = 0$, alors $\|u(x)\|^2 = 0$ donc u(x) = 0Si u injectif (donc dinannon finie + endonorphisme (u injuisse le théorème du rong) en $(e \text{ Car}, \forall x \text{ EE}) (0 \text{E}) (u \text{ Su}(x), x) > 0)$ Remarque: Sour $A \in \Pi_u(R)$, $u \in \mathcal{L}(R^n)$, $\Pi \text{ar}(u, e^n) = A$ 1) Si AE Sn (IR), et si IRⁿ est mani du produit scalaure Canonipue ((CI - Ch) orthonomeri) (H=A)

alors ut y (R") l'existe une base orthonormie (e1, -, en) de Rn. et der réelr (di-dn) EIRM, YKE[I,n], u (PR)=dr.en That $(u, \mathcal{E}) = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_m \end{bmatrix}$ Si PEPen E GLy (IR), P. A.P = /d/o/ (Comme & of & orthonormer, onverse que P= EP) 2) A E Th (IR), FA.A E Sn (R) l'existe PEGLICIR), Pi'tA.A.P. diagonale.

3) A & Mn, p (IR). LA-AEYp (IR) (et A-FAEYm (IR)).

(. Math pour IA: plain d'applications · Cotchipur:

Démonstration

— (\Rightarrow) On prend la base (e_1,\ldots,e_n) de vecteurs propres de f, il vient, pour $k\in [\![1,n]\!]$

$$\lambda_k = \langle e_k, f(e_k) \rangle \geqslant 0$$

— (\Leftarrow) Soit $x \in E$, alors

$$x = \sum_{k=1}^{n} \langle e_k, x \rangle . e_k$$
, donc $f(x) = \sum_{k=1}^{n} \langle e_k, x \rangle \lambda_k . e_k$

et, finalement

$$\langle x, f(x) \rangle = \sum_{k=1}^{n} \lambda_k \langle e_k, x \rangle^2 \geqslant 0$$

Propriété 2.4

De même, on définit les endomorphismes définis positifs par

$$f \in \mathcal{S}(E)$$
 et $\underbrace{\forall x \in E \setminus \{0_E\}, \langle x, f(x) \rangle > 0}_{\iff \forall k \in [\![1,n]\!], \ \lambda_k > 0}$

On note $\mathscr{S}^{++}(E)$ l'ensemble des endomorphismes auto-adjoints définis positifs. C'est toujours un cône positif.

Démonstration

Il suffit de remplacer les inégalités larges par des inégalités strictes dans la démonstration précédente (en faisant attention au fait que $x \neq 0_E$).

Remarque 2.2

Si
$$f \in \mathcal{S}^+(E)$$
 et si $\varepsilon > 0$, alors

Soit $x \in E$, on a

$$\left\langle x,\left(f+\varepsilon.\operatorname{id}_{E}\right)\left(x\right)\right\rangle = \underbrace{\left\langle x,f(x)\right\rangle}_{\geqslant 0} + \varepsilon\left\|x\right\|^{2}$$

abile en topologie

Propriété 2.5

$$\forall f \in \mathcal{L}(E), \ f^{\star} \circ f \in \mathcal{S}^{+}(E) \text{ et, de même } f \circ f^{\star} \in \mathcal{S}^{+}(E)$$

De même, on a

$$\forall f \in \mathscr{L}(E), \ \left[f^{\star} \circ f \in \mathscr{S}^{++}(E) \right] \iff \left[f \in \mathscr{GL}(E) \right]$$

$$\forall f \in \mathcal{L}(E), \ \operatorname{Ker}(f^{\star} \circ f) = \operatorname{Ker}(f) \ \operatorname{et} \ \operatorname{Im}(f^{\star} \circ f) = \operatorname{Im}(f^{\star}) = (\operatorname{Ker}(f))^{\perp}.$$

 $\langle f \circ f(a), u \rangle = || f(a)||^2$ RE L (E) Demontration xe E Ker(fof) = Kor(f) Eyène: double inclusion et Ker (8) (Ker (808) (Ker (308)) Ker(8)) (). Sour a & Ker (Pof)

> alors $f \circ f(x) = 0e$ donc B(x)=OE, donc donc < 8 % f(x), x>= 0

[[8(x)]]² Im (() = Im () (= (Ker &) .).

ze Eker(f)

(Yg E & (E) * Im(P*) > Im(P*) In (gof) (In (g)) * Soit x & In (gA). dexute y EE, x= f*(y) Or E= Im(B) & Im(B) I, lexotize E LEIMBJ. y = b(2) + t11 Ker (fx) 2= f*(y)= f*(3)+ f*(t) = 05 donc 2 + Im (fof).

Démonstration

1. $(f^{\star} \circ f \in \mathcal{S}^+(E))$ Clairement $f^{\star} \circ f \in \mathcal{S}(E)$ car

$$(f^{\star} \circ f)^{\star} = f^{\star} \circ (f^{\star})^{\star} = f^{\star} \circ f$$

De plus, si $x \in E$

$$\langle f^{\star} \circ f(x), x \rangle = \langle f(x), f(x) \rangle = \|f(x)\|^2 \geqslant 0$$
 (2.1)

- 2. $(f \circ f^* \in \mathcal{S}^+(E))$ On applique la question précédente à f^* .
- 3. Cas où f est un automorphisme
 - (\Rightarrow) Supposons que $f^* \circ f \in \mathcal{S}^{++}(E)$, alors si $x \neq 0_E$, on a

$$0 < \langle f^{\star} \circ f(x), x \rangle = ||f(x)||^2$$
 d'après l'équation 2.1, de la présente page

donc, en particulier $f(x) \neq 0_E$. Ce qui montre que f est injective, mais comme c'est un endomorphisme et que nous sommes en dimension finie (par application du théorème du rang), nous pouvons conclure que f est bijective.

— (\Leftarrow) Si $x \neq 0_E$, d'après l'équation 2.1, de la présente page, on a

$$\langle f^{\star} \circ f(x), x \rangle = ||f(x)||^2 > 0$$

 $\operatorname{car} f(x) \neq 0_E.$

4. $(\operatorname{Ker}(f^* \circ f) = \operatorname{Ker}(f))$ On a une inclusion toujours vérifiée

$$\operatorname{Ker}(f) \subset \operatorname{Ker}(f^{\star} \circ f)$$

mais, si $x \in \text{Ker}(f^* \circ f)$, en appliquant l'équation 2.1, de la présente page, on a

$$0 = \langle f^{\star} \circ f(x), x \rangle = ||f(x)||^2$$

donc $f(x) = 0_E$ et $x \in \text{Ker}(f)$.

Proposition 2.3

Soit $f \in \mathcal{S}^+(E)$, alors il existe un unique endomorphisme $g \in \mathcal{S}^+(E)$ tel que ^a

$$f=g\circ g$$

a. C'est une sorte de « racine carrée » de f.

Démonstration

— (Existence) Si $f \in \mathcal{S}^+(E)$, alors on sait qu'il existe une base orthonormée (e_1, \ldots, e_n) de vecteurs propres, et il existe $(\lambda_1, \ldots, \lambda_n)$ des réels ≥ 0 , tels que

$$\forall k \in [1, n], f(e_k) = \lambda_k . e_k$$

Si on définit l'endomorphisme g par

$$\forall k \in [1, n], \ g(e_k) = \sqrt{\lambda_k}.e_k$$

Alors g est un endomorphisme auto-adjoint (il possède une base orthonormée de vecteurs propres), positif car les $\sqrt{\lambda_k}$ sont positifs. Et, clairement, $f = g \circ g$.

— (*Unicité*) Soit $g \in \mathcal{S}^+(E)$ tel que $f = g \circ g$, alors,

$$\forall k \in [1, n], \ f(g(e_k)) = g(f(e_k)) = g(\lambda_k . e_k) = \lambda_k . g(e_k)$$

donc $g(e_k) \in \text{Ker}(f - \lambda_k. \text{id}_E)$. Malheureusement, cet espace peut-être très grand, cela ne nous assure pas que $g(e_k)$ soit colinéaire à e_k . Mais, si l'on pose $E_1 = \text{Ker}(f - \lambda_k. \text{id}_E)$, on a par le même raisonnement

$$g(E_1) \subset E_1 \text{ et } g_1 = g \Big|_{E_1}^{E_1} \in \mathscr{S}^+(E_1)$$

Proposition: Sort $u \in \mathcal{G}^+(E)$, alors clexiste un unique $v \in \mathcal{G}^+(E)$, $u = vov \cdot \left(\frac{vor}{E}v^2\right)$ Le'monstration WOY E 1 Existence, il existe (e, -en) bouse orthonormee de E (di - dn) ERM, TRETIND, u(ex)=dx.ex (theorems spectral) Tax (u, E) = [d, o] (ex YKET, W, du = o) POSONE NE YTCE), TOK (V, E) = VA O

On a immodiatement $\pi(atr(vov, E) = \pi(atr(v, E))$ donc vov = u et $v \in \mathcal{S}^{t}(E)$ car sa motrice donr une base ordhonormée

est synotripu (diegonale).

Kemarpue: si on n'empse pour reposité.

abes tour ler repui ont une matrice de la forme

1 ± 1/21 0 verefreront vor= u.

iute:

Analyse: 80 v & Jr(E) existe et verifie vov = U. abos elevite (bi-bn) base or honor med er (lu-lun) E Rt, YRETIND, N(bx)=Ux.bx. Sour KE [Im], Now (bx) = Mx. bx = u(bx). (On a (e,-en) base orthonormie, (d,-dn) FR+. Y - ([In] u(eg) = dj.eg.) { Question Victor: pourpuoi pent. on chouse (b, -bn) = (e, -en)! pour bundi (Indi: penser à la proposition technique).