Systems Thinking for Design

Session 5

https://sites.google.com/a/iiitdm.ac.in/sudhirvs/courses/systems-thinking-for-design

Sudhir Varadarajan, PhD

Recap: Complexity=Variety

Session outline

Principles of Complex Systems

Checking Completeness of Concept Map

Principles of complex systems (1/8): Systems theory

Principles of complex systems (2/8): Systems theory

Principles of complex systems (3/8): Cybernetics

Principles of complex systems (4/8): Cybernetics

Principles of complex systems (5/8): Cybernetics

Principles of complex systems (6/8): Networks

18. In a network, the idea of boundary is less important. This is extremely useful for integrating diverse systems

19. Everything is now part of a Complex Network Boundary is now defined by the scope of study

20. The focus is on acyclic properties of networks as a whole – aided by Graph Theory

Principles of complex systems (7/8): Networks

Typical Questions (to control networks)	Local metrics	Global metrics	
How tightly are the nodes grouped together by edges?	clique, n- clique, k-core	clustering coefficient	2:
How many different influences does a node receive? (Merge) How many other nodes does it influence? (Burst)	degree, in- degree, out- degree	degree distribution	2.
How long does communication between nodes take?	shortest-path length	diameter, radius	23
Do some nodes in a network play an important role in connecting the whole network?	Centrality	degree distribution	24

Principles of complex systems (8/8): Networks

25. Random network (degree distribution is normal)

26. Scale-free networks (power-law for degree distribution)

27. Small-world networks (clustering & path length)

Session outline

Principles of Complex Systems

Checking Completeness of Concept Map

Check the matrix for completeness

- Check if the key elements and relations and ask if they can explain everything in the problem description
- Do a quick test by checking relations with other elements and refine if necessary.
 - Are you focused more on parts and sub-parts of the system?
 - Are there elements that explain the larger whole?
- Check if some elements are redundant and can be abstracted into others
- Check validity of relations and eliminate those which are indirect, very weak
 - Focus only on strong relations
- Add more elements if necessary and specify the direction of relations

Identify key properties of the network

- Count the degree of each key element
 - in-degree is the total 1s in a column
 - out-degree is the total 1s in a row
 - total degree is the sum of in-degree and outdegree for each element
- Sort the elements by their degree (in, out, total)
 - Identify the top 5 elements by each type of degree
 - Draw the degree distribution (for total degree) and check the nature of the network
 - Check if there is a bias or incompleteness and make inferences

Discover the system-of-interest

- Develop a visual map of the matrix (on a A3 sheet)
 - Identify the system, boundary and its environment
 - Identify cliques and clusters of densely connected elements
 - Identify the exchanges between the system and its environment (stimulus-response)
- Use Post-it notes

Exercise 5.1

- Check the matrix for completeness
- Identify network properties
- Develop a visual map
- Add the information to your document repository

Next session: Probe specific stakeholders and their needs

Reflect on today's session and post your questions in the FAQ sheet

