

Rd.,Ling 8, Shan-Tong Li, Chung-Li Dist., Taoyuan City 320, Taiwan (R.O.C.)

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 1 of 35 Date: Jul. 02, 2015

Product Name:

Wireless Communication Product

Model No .:

NP-14

Applicant:

8th FL., No. 56, LE-QUN 3rd Road, Taipei 104, Taiwan

Date of Receipt:

Jun. 24, 2015

Finished date of Test: Jun. 29, 2015

Applicable Standards:

47 CFR Part 2

47 CFR Part 90 ANSI C 63.4:2003

TIA/EIA 603-D

We, Spectrum Research & Testing Laboratory Inc., hereby certify that one sample of the above was tested in our laboratory with positive results according to the above-mentioned standards. The records in the report are an accurate account of the results. Details of the results are given in the subsequent pages of this report.

Tested By :

(Boris Lin)

Date:

Approved By:

(Johnson Ho, Director)

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 2 of 35 Date: Jul.02, 2015

Revisions History

Report No.	Issue Date	Revisions	
FCCA15062402	Jul. 02, 2015	Initial issue	
		- Part 15 data and references removed	
		- Applicable Standards : TIA/EIA 603-D version	
	Jul. 13, 2015	indicated	
		- Emissions Designator revised	
		- Photos of Testing removed	
	Jul. 16, 2015	- External Photos removed on page 7	
		- Emissions Designator revised to correct format on	
		page 9	

Rd.,Ling 8, Shan-Tong Li, Chung-Li Dist., Taoyuan City 320, Taiwan (R.O.C.)

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 3 of 35 Date: Jul.02, 2015

Table of Contents

1.	DOC	UMEN	IT POLICY AND TEST STATEMENT	5
	1.1	DOC	JMENT POLICY	5
	1.2	TEST	STATEMENT	5
	1.3		MODIFICATION	
2.	DES	CRIPT	ION OF EUT AND TEST MODE	6
	2.1	GENE	ERAL DESCRIPTION OF EUT	6
	2.2	DESC	CRIPTION OF EUT INTERNAL DEVICE	6
	2.3		OPERATING CONDITION	
	2.4	DESC	CRIPTION OF TEST MODE	7
	2.5	DESC	CRIPTION OF SUPPORT UNIT	7
3.	DES	CRIPT	ION OF APPLIED STANDARDS	8
	3.1	SUMN	MARY OF TEST RESULTS	8
4.	EMIS	SIONS	S DESIGNATOR	9
5.	MOD	ULATI	ION CHARACTERISTICS (PART 2.1047)	10
6.	RF F	OWER	R OUTPUT (PART 2.1046, 90.205)	11
	6.2	TEST	EQUIPMENT	14
	6.3	TEST	SETUP	14
	6.4	TEST	PROCEDURE	14
	6.5	TEST	RESULT	15
7.	OCC	UPIED) BANDWIDTH (PART 2.1049)	16
	7.1			
	7.2	TEST	EQUIPMENT	17
	7.3	TEST	SETUP	18
	7.4	TEST	PROCEDURE	18
	7.5		RESULT	
8.	TRA	NSIEN	T FREQUENCY BEHAVIOR (PART 90.214)	19
	8.1			
	8.2	TEST	EQUIPMENT	21
	8.3		SETUP	
	8.4		PROCEDURE	
	8.5	TEST	RESULT	22
		8.5.1	WHEN TEH TRANSMITTER OUTPUT POWER IS SWITCHED ON	٧
				22
		8.5.2	WHEN TEH TRANSMITTER OUTPUT POWER IS SWITCHED OF	FF
9.	FIEL	D STR	ENGTH OF SPURIOUS RADIATION (PART 90.210)	24
	9.1			
	9.2		EQUIPMENT	
	9.3		SETUP	
	9.4		PROCEDURE	
	-		RESULT	
10.			S EMISSIONS AT ANTENNA TERMINALS (PART 2.1051, 90.210)	
	10.1		T	
				-

Spectrum Research &

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 4 of 35 Date: Jul.02, 2015

	10.2	TEST EQUIPMENT	27
	10.3	TEST SETUP	27
	10.4	TEST PROCEDURE	27
	10.5	TEST RESULT	28
11.	FRE	QUENCY STABILITY (PART 2.1055, 90.213)	29
	11.1	LIMIT	29
	11.2	TEST EQUIPMENT	32
	_	TEST SETUP	
	11.4	TEST PROCEDURE	33
	_	TEST RESULT	
12.	TER	MS OF ABBREVIATION	35

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 5 of 35 Date: Jul.02, 2015

1. DOCUMENT POLICY AND TEST STATEMENT

1.1 DOCUMENT POLICY

 The report shall not be reproduced except in full, without the written approval of SRT Lab, Inc.

1.2 TEST STATEMENT

- The test results in the report apply only to the unit tested by SRT Lab.
- There was no deviation from the requirements of test standards during the test.
- AC 120V/60Hz was supplied during the test.

1.3 EUT MODIFICATION

- No modification in SRT Lab.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 6 of 35 Date: Jul.02, 2015

2. DESCRIPTION OF EUT AND TEST MODE

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Wireless Communication Product
MODEL NO.	NP-14
DOWED GUDDI V	AC power source from AC adapter: Brand: Dee Van Enterprise Co., Ltd.
POWER SUPPLY	Model: DSA-0421S-12 2 Input: 100 ~ 240 V, 50 ~60 Hz 1.2 A Max. Output: +12 V, 2.0 A
FREQUENCY BAND	450 ~ 470 MHz (§90.267)
CARRIER FREQUENCY	457.575
NUMBER OF CHANNEL	1
FREQUENCY DEVIATION	2.5 kHz
CHANNEL SPACING	12.5 kHz
RATED RF OUTPUT POWER	34.14 dBm (2590 mW)
MODULATION TYPE	NFSK
MODE of OPERATION	Simplex
ANTENNA TYPE	External
ANTENNA GAIN	2 dBi
OPERATING TEMPERATURE RANGE	-30 ~ 50°C

NOTE: For more detailed information, please refer to the EUT's specification or user's manual provided by manufacturer.

2.2 DESCRIPTION OF EUT INTERNAL DEVICE

DEVICE	BRAND / MAKER	MODEL#	FCC ID / DOC	REMARK
N/A	N/A	N/A	N/A	N/A

2.3 EUT OPERATING CONDITION

- 1. Setup the EUT and all peripheral devices .
- 2. Turn on the power of all equipment and EUT.
- 3. Set the EUT under continuous transmission condition, and standby mode.
- 4. The EUT was set to the highest available power level.

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 7 of 35 Date: Jul.02, 2015

2.4 DESCRIPTION OF TEST MODE

There is only 1 channel for this device; therefore CH01 is chosen for the following test modes.

Test modes for each configuration are as shown below:

	Test Mode			Frequency(MHz)
1	Transmitter, Continuous Transmission Mode	Tx	01	457.575
2	Transmitter, Standby Mode	Standby	N/A	N/A

NOTE:

- 1. Tests conducted for channel 1 below 1 GHz were pre-tested in chamber, and the worst test results were chosen for conducted and radiated emission tests
- 2. Tests for CH01 were conducted individually

., .		– .
X axis:	Y axis:	Z axis:
Λαλίδ.	ι αλίδ.	Δ αλίδ.

NOTE:

1. Axis X,Y and Z were evaluated in the chamber, and we determine that the X axis has the worst results.

2.5 DESCRIPTION OF SUPPORT UNIT

The EUT was configured by the requirement of ANSI C63.4:2003. All interface ports were connected to the appropriate support units via specific cables. The support units and cables are listed below.

NO	DEVICE	BRAND	MODEL#	FCC ID/DoC	CABLE / DESCRIPTION	
1	Dual Directional	A.R.	DC6080	DoC	40dB±0.5dB	
'	Coupler	A.K.	DC6060	DoC	400B±0.50B	
2	Coaxial Weinschel	DC-18GHz				
2	Termination	Engineering	M 1418	DOC	10W AVG / 1kW PK	
3	Terminator	N/A	11593A	DoC	50Ω	

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 8 of 35 Date: Jul.02, 2015

3. DESCRIPTION OF APPLIED STANDARDS

The EUT is a wireless product. According to the specifications provided by the applicant, it must comply with the requirements of the following standards:

47 CFR Part 2

47 CFR Part 90

All tests have been performed and recorded as the above standards.

3.1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

STANDARD SECTION	TEST TYPE AND LIMIT RESULTS	RESULTS
PART 2.1047	Modulation Characteristics	PASS
Part 2.1046, Part 90.267	RF Power Output	PASS
Part 2.1049 Part 90.210	Occupied Bandwidth	PASS
Part 90.214	Transient Frequency Behavior	PASS
Part 90.210	Field Strength of Spurious Radiation	PASS
Part 2.1051 Part 90.210	Spurious Emissions at Antenna Terminals	PASS
Part 2.1055 Part 90.213	Frequency Stability	PASS

NOTE: The radiated emission testing was performed according to the procedures of ANSI C 63.4:2003; TIA/EIA 603-D.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 9 of 35 Date: Jul.02, 2015

4. EMISSIONS DESIGNATOR

Referencing Part 2.201 and 2.202 of the FCC Rules and Regulation and using the following formula the Emissions Designator(s) and Necessary Bandwidths were calculated.

Necessary Bandwidth:

B = 2M + 2DK

Frequency deviation (D) = 2.5 kHz

Baud rate = 12500 baud

M = Baud / 2 = 6250 / 2 = 3125

D = 2.5 kHz and using K = 1

For the 2.5 KHz deviation:

B = 2 (3125) + (2) (2500) (1) = 11250, so Emissions Designator = 11K3F1D

Referencing Part 90.209(b)5 Subnote 3:

³ Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013, unless the operations meet the efficiency standard of §90.203(j)(3).

Necessary Bandwidth for a 12.5 kHz channel bandwidth is 11.25 kHz

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 10 of 35 Date: Jul.02, 2015

5. MODULATION CHARACTERISTICS (PART 2.1047)

The test procedure is in accordance of TIA/EIA 603-D §2.2.3

The device is set to 2.5KHz deviation as default value. It can be tuned up to a 4.5KHz deviation. This change can not be made by end user. Also, the modulation description as Section 2.1033(C)(13) requested was attached.

There is no specific requirement for digital modulation; therefore modulation characteristic is not presented.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 11 of 35 Date: Jul.02, 2015

6. RF POWER OUTPUT (PART 2.1046, 90.205)

6.1 LIMIT

§90.267 Assignment and use of frequencies in the 450-470 MHz band for low power use.

- (b) Group A1 Frequencies. The Industrial/Business Pool frequencies in Group A1 are available on a coordinated basis, pursuant to §§90.35(b)(2) and 90.175(b), as follows:
- (2) Within 80 kilometers (50 miles) of the specified coordinates of the top 100 urban areas listed in §90.741 of this chapter ("80 km circles") only low power operation will be authorized. The coordinates of an operational fixed or base station and the geographic center (latitude and longitude) of a mobile area of operation determine whether a station is within an "80 km circle."

(i) The maximum ERP for low power operation on Group A1 frequencies is as follows:

Operation	Low side of frequency pair (watts)	High side of frequency pair (watts)
Operational Fixed or Base	20	6
Mobile	6	6
Portable	2	2

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 12 of 35 Date: Jul.02, 2015

(4) The Industrial/Business Pool Group A1 Low Power Frequencies are as follows:

· /		<u>'</u>	
451/456.18125	451/456.58125	452/457.10625	452/457.70625
451/456.1875	451/456.5875	452/457.1125	452/457.7125
451/456.19375	451/456.59375	452/457.11875	452/457.71875
451/456.28125	451/456.60625	452/457.13125	452/457.78125
451/456.2875	451/456.6125	452/457.1375	452/457.7875
451/456.29375	451/456.61875	452/457.14375	452/457.79375
451/456.30625	451/456.65625	452/457.15625	452/457.80625
451/456.3125	451/456.6625	452/457.1625	452/457.8125
451/456.31875	451/456.66875	452/457.16875	452/457.81875
451/456.35625	451/456.68125	452/457.18125	452/457.83125
451/456.3625	451/456.6875	452/457.1875	452/457.8375
451/456.36875	451/456.69375	452/457.19375	452/457.84375
451/456.38125	451/456.70625	452/457.28125	452/457.88125
451/456.3875	451/456.7125	452/457.2875	452/457.8875
451/456.39375	451/456.71875	452/457.29375	452/457.89375
451/456.40625	451/456.73125	452/457.48125	452/457.98125
451/456.4125	451/456.7375	452/457.4875	452/457.9875
451/456.41875	451/456.74375	452/457.49375	452/457.99375
451/456.45625	451/456.75625	452.53125 (unpaired)	462/467.18125
451/456.4625	451/456.7625	452.5375 (unpaired)	462/467.1875
451/456.46875	451/456.76875	452.54375 (unpaired)	462/467.19375
451/456.48125	452/457.03125	452/457.63125	462/467.45625
451/456.4875	452/457.0375	452/457.6375	462/467.4625
451/456.49375	452/457.04375	452/457.64375	462/467.46875
451/456.50625	452/457.05625	452/457.65625	462/467.48125

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 13 of 35 Date: Jul.02, 2015

451/456.5125	452/457.0625	452/457.6625	462/467.4875
451/456.51875	452/457.06875	452/457.66875	462/467.49375
451/456.55625	452/457.08125	452/457.68125	462/467.50625
451/456.5625	452/457.0875	452/457.6875	462/467.5125
451/456.56875	452/457.09375	452/457.69375	462/467.51875

Carrier Frequency (MHz)	Side of Frequency Pair (Low / High)	Limit (watts)
	, ,,,	(watts)
457.575	High	б

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 14 of 35 Date: Jul.02, 2015

6.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
EMITEST RECEIVER (INCLUDE SPECTRUM ANALYZER)	9 KHz ~ 6 GHz	ROHDE & SCHWARZ	ESL/100176	MAR. 28, 2016 ETC
POWER METER	N/A	BOONTON	4232A / 105302	OCT. 25, 2015 ETC
POWER SENSOR	N/A	BOONTON	51011-EMC / 31181	OCT. 25, 2015 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

6.3 TEST SETUP

As required by 47 CFR 2.1046, *RF power output measurements* were made at the RF output terminals using a Directional Coupler through a Spectrum Analyzer and Power Meter.

6.4 TEST PROCEDURE

- Antenna was replaced with a short connector which was connected with a directional coupler as an attenuator.
- The spectrum offset was adjusted to compensate the attenuator and losses caused by the connection.

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 15 of 35 Date: Jul.02, 2015

6.5 TEST RESULT

Carrier Frequency (MHz)	RF Output Power (dBm)	RF Output Power (mW)	Frequency Deviation (kHz)	Limit (watts)	Test Resut
457.575	34.14	2590	2.5	6	Pass

2.5 kHz

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 16 of 35 Date: Jul.02, 2015

7. OCCUPIED BANDWIDTH (PART 2.1049)

7.1 LIMIT

Applicable Emission Masks

Frequency band (MHz)	Mask for equipment with audio low pass filter	Mask for equipment without audio low pass filter
Below 251	A or B	A or C
25-50	В	С
72-76	В	С
150-1742	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-5122 5	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854	В	Н
809-824/854-8693 5	В	G
896-901/935-940	I	J
902-928	K	K
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-59254		
All other bands	В	С

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 17 of 35 Date: Jul.02, 2015

1. Equipment using single sideband J3E emission must meet the requirements of Emission Mask A. Equipment using other emissions must meet the requirements of Emission Mask B or C, as applicable.

2. Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

Emissions shall be attenuated below the mean output power of the transmitter as follows:

Carrier Frequency (MHz)	Channel Spacing (kHz)	Maximum Authorized BW (kHz)	Recommended Frequency Deviation (kHz)	FCC Applicable Mask
457.575	12.5	11.25	2.5	Mask D – Data

7.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE oF CAL. & CAL. CENTER
EMITEST RECEIVER (INCLUDE SPECTRUM ANALYZER)	9 KHz ~ 6 GHz	ROHDE & SCHWARZ	ESL/100176	MAR. 28, 2016 ETC
POWER METER	N/A	BOONTON	4232A / 105302	OCT. 25, 2015 ETC
POWER SENSOR	N/A	BOONTON	51011-EMC / 31181	OCT. 25, 2015 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 18 of 35 Date: Jul.02, 2015

7.3 TEST SETUP

As required by 47 CFR 2.1046, *Occupied Bandwidth measurements* were made at the RF output terminals using a Directional Coupler through a Spectrum Analyzer and Power Meter.

7.4 TEST PROCEDURE

- Antenna was replaced with a short connector which was connected with a directional coupler as an attenuator.
- The spectrum offset was adjusted to compensate the attenuator and losses caused by the connection.

7.5 TEST RESULT

Carrier Frequency (MHz)	Occupied Bandwidth (kHz)	Frequency Deviation (kHz)	Channel Spacing (kHz)	Limit (kHz)	Test Result
457.575	8.4830	2.5	12.5	11.25	Pass

2.5KHz

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 19 of 35 Date: Jul.02, 2015

8. TRANSIENT FREQUENCY BEHAVIOR (PART 90.214)

8.1 LIMIT

Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

	Maximum	All equ	ipment	
Time intervals 1. 2.	Frequency difference 3.	150 to 174 MHz	421 to 512 MHz	
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels				
t1 4.	±25.0 kHz	5.0 ms	10.0 ms	
t2	±12.5 kHz	20.0 ms	25.0 ms	
t3 4.	±25.0 kHz	5.0 ms	10.0 ms	
Transient Frequency Beh	avior for Equipme	ent Designed to Opera	te on 12.5 kHz	
t1 4.	±12.5 kHz	5.0 ms	10.0 ms	
t2	±6.25 kHz	20.0 ms	25.0 ms	
t3 4.	±12.5 kHz	5.0 ms	10.0 ms	
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels				
t1 4.	±6.25 kHz	5.0 ms	10.0 ms	
t2	±3.125 kHz	20.0 ms	25.0 ms	
t3 4.	±6.25 kHz	5.0 ms	10.0ms	

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 20 of 35 Date: Jul.02, 2015

1. on is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

t1 is the time period immediately following ton.

t2 is the time period immediately following t1.

t3 is the time period from the instant when the transmitter is turned off until toff. toff is the instant when the 1 kHz test signal starts to rise.

- 2. During the time from the end of t2 to the beginning of t3, the frequency difference must not exceed the limits specified in §90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 21 of 35 Date: Jul.02, 2015

8.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE oF CAL. & CAL. CENTER
Signal Generator	100 KHz ~ 1 GHz	HP	3636A02776	SEP. 18, 2015 ETC
EMITEST RECEIVER (INCLUDE SPECTRUM ANALYZER)	9 KHz ~ 6 GHz	ROHDE & SCHWARZ	ESL/100176	MAR. 28, 2016 ETC
Oscilloscope	500Mhz	HP	US39150351	NOV. 16, 2015 ETC
POWER METER	N/A	BOONTON	4232A / 105302	OCT. 25, 2015 ETC
POWER SENSOR	N/A	BOONTON	51011-EMC / 31181	OCT. 25, 2015 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

8.3 TEST SETUP

As required by 47 CFR 2.1046, *Transient Behavior measurements* were made at the RF output terminals using a Directional Coupler through a Spectrum Analyzer and Power Meter. Setup meets the requirements of TIA/EIA 603-D §2.2.19

8.4 TEST PROCEDURE

- EUT antenna was replaced with a short connector which was connected with a directional coupler as an attenuator.
- Connect the Signal Generator output and the EUT output VIA a combiner to the EMITEST Receiver input.
- Connect the audio output of the EMITEST Receiver to the Oscilloscope input.
- Set Signal Generator to match the EUT's carrier wave frequency, and then set the Signal Generator to output a 12.5 kHz signal with a 1 kHz standard FM modulated signal continuously as the test limit.
- Set the Oscilloscope trigger accordingly to capture the proper switch on and switch off test signals
- Capture and record the graphical test data

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 22 of 35 Date: Jul.02, 2015

8.5 TEST RESULT

Deviation		Frequency Band : 4	21 ~ 512 MHz @ 2.5 kHz
Time Intervals		Max Frequency Difference	Test Result
t1	10ms	±12.5 kHz	Pass
t2	25ms	±6.25 kHz	Pass
t3	10ms	±12.5 kHz	Pass

8.5.1 WHEN TEH TRANSMITTER OUTPUT POWER IS SWITCHED ON

457.575 MHz @ 12.5K

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 23 of 35 Date: Jul.02, 2015

8.5.2 WHEN TEH TRANSMITTER OUTPUT POWER IS SWITCHED OFF

457.575 MHz @ 12.5K

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 24 of 35 Date: Jul.02, 2015

9. FIELD STRENGTH OF SPURIOUS RADIATION (Part 90.210)

9.1 LIMIT

(1) 25kHz Channel Spacing: At least 43 + 10 log (P) dB12.5kHz Channel Spacing: At least 50 + 10 log (P) dB

Where P = <u>2.59</u> W

Carrier Frequency (MHz)	Channel Spacing (kHz)	Limit (Minimum dBc)
457.575	12.5	54.13

NOTE: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned per 30MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA / EIA STANDARD 603-D using the substitution method.

9.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
SPECTRUM ANALYZER	9 kHz ~ 7GHz	ROHDE & SCHWARZ	FSP7 / 100289	APR. 12, 2016 ETC
Signal Generator	100 KHz ~ 1 GHz	HP	3636A02776	SEP. 18, 2015 ETC
BI-LOG ANTENNA	30 MHz ~ 2 GHz	SCHAFFNER	CBL6141A / 4181	JUN. 25, 2016 ETC
HORN ANTENNA	1 GHz ~ 18 GHz	EMCO	3115/ 9602-4681	DEC. 21, 2015 ETC
HORN ANTENNA	18 ~ 40 GHZ	ETS-LINDGREN	3116 /00032255	JAN. 07, 2016 ETC
ANECHOIC CHAMBER	3 M MEASUREMENT	SRT	A01 / SRT001	MAY. 13, 2016 SRT
COAXIAL CABLE	30 M	TIMES	LMR-400 / #30M	MAY. 21, 2016 ETC
FILTER	2 LINE, 30 A	FIL.COIL	FC-943 / 869	NCR
K-TYPE CABLE	UP TO 40 GHz, 3 m	HUBER+SUHNER	SF102-46/2*11S K252 /MY2611/2	MAR. 07, 2016 ETC
K-TYPE CABLE	UP TO 40 GHz, 1 m	HUBER+SUHNER	SF 102-40/2*11 /23934/2	MAY. 24, 2016 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 25 of 35 Date: Jul.02, 2015

9.3 TEST SETUP

9.4 TEST PROCEDURE

Test method and setup followed by TIA/EIA 603-D 2.2.12 (Substitution Method)

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 26 of 35 Date: Jul.02, 2015

9.5 TEST RESULT

Antenna Polarization: Horizontal Channel Spacing: 12.5K

	Frequency (MHz)	Frequency Power (dBµV/m)	Db Below Carrier Frequency (dBc)	Limit Minimum (dBc)	Test Result
Foundation	457.58	129.77	0	N/A	N/A
1 st Harmonics	915.16	38.96	90.81		Pass
2 nd Harmonics	1372.74	53.42	76.35		Pass
3 rd Harmonics	1830.32	50.88	78.89		Pass
4 th Harmonics	2287.90	53.24	76.53		Pass
5 th Harmonics	2745.48	48.00	81.77	54.13	Pass
6 th Harmonics	3203.06	53.01	76.76		Pass
7 th Harmonics	3660.64	51.17	78.60		Pass
8 th Harmonics	4118.22	45.50	84.27		Pass
9 th Harmonics	4575.80	45.85	83.92		Pass

Antenna Polarization: Vertical Channel Spacing: 12.5K

	Frequency (MHz)	Frequency Power (dBµV/m)	Db Below Carrier Frequency (dBc)	Limit Minimum (dBc)	Test Result
Foundation	457.58	125.92	0	N/A	N/A
1 st Harmonics	915.16	38.28	87.64		Pass
2 nd Harmonics	1372.74	53.45	72.47		Pass
3 rd Harmonics	1830.32	51.10	74.82		Pass
4 th Harmonics	2287.90	51.85	74.07		Pass
5 th Harmonics	2745.48	46.84	79.08	54.13	Pass
6 th Harmonics	3203.06	53.19	72.73		Pass
7 th Harmonics	3660.64	50.67	75.25		Pass
8 th Harmonics	4118.22	47.42	78.50		Pass
9 th Harmonics	4575.80	45.43	80.49		Pass

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 27 of 35 Date: Jul.02, 2015

10. SPURIOUS EMISSIONS AT ANTENNA TERMINALS (Part 2.1051, 90.210)

10.1 LIMIT

(1) 25kHz Channel Spacing: At least 43 + 10 log (P) dB12.5kHz Channel Spacing: At least 50 + 10 log (P) dB

Where P = <u>2.59</u> W

Carrier Frequency (MHz)	Channel Spacing (kHz)	Limit (Minimum dBc)
457.575	12.5	54.13

NOTE: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned per 30MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA / EIA STANDARD 603-D using the substitution method.

10.2 TEST EQUIPMENT

The following test equipment was used during the radiated emission test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE OF CAL. & CAL. CENTER
SPECTRUM ANALYZER	9 kHz ~ 7GHz	ROHDE & SCHWARZ	FSP7 / 100289	APR. 12, 2016 ETC
POWER METER	N/A	BOONTON	4232A / 105302	OCT. 25, 2015 ETC
POWER SENSOR	N/A	BOONTON	51011-EMC / 31181	OCT. 25, 2015 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

10.3 TEST SETUP

As required by 47 CFR 2.1046, *Spurious Emissions at Antenna Terminals measurements* were made at the RF output terminals using a Directional Coupler through a Spectrum Analyzer and Power Meter.

10.4 TEST PROCEDURE

- Antenna was replaced with a short connector which was connected with a directional coupler as an attenuator.
- The spectrum offset was adjusted to compensate the attenuator and losses caused by the connection.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 28 of 35 Date: Jul.02, 2015

10.5 TEST RESULT

	Frequency (MHz)	Frequency Power (dBm)	Db Below Carrier Frequency (dBc)	Limit Minimum (dBc)	Test Result
Foundation	457.58	33.84	0	N/A	N/A
1 st Harmonics	915.16	-24.24	58.08		Pass
2 nd Harmonics	1372.74	-23.58	57.42		Pass
3 rd Harmonics	1830.32	-22.18	56.02		Pass
4 th Harmonics	2287.90	-22.03	55.87		Pass
5 th Harmonics	2745.48	-22.96	56.80	54.13	Pass
6 th Harmonics	3203.06	-22.90	56.74		Pass
7 th Harmonics	3660.64	-21.51	55.35		Pass
8 th Harmonics	4118.22	-22.63	56.47		Pass
9 th Harmonics	4575.80	-22.45	56.29		Pass

NOTE: The spectrum was scanned per 30MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA / EIA STANDARD 603-D using the substitution method.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 29 of 35 Date: Jul.02, 2015

11. FREQUENCY STABILITY (Part 2.1055, 90.213)

11.1 **LIMIT**

a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability

[Parts per million (ppm)]

_		Mobile	stations
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
Below 25	¹²³ 100	100	200
25-50	20	20	50
72-76	5		50
150-174	^{5 11} 5	65	⁴ 650
216-220	1.0		1.0
220-22212	0.1	1.5	1.5
421-512	^{7 11 14} 2.5	85	85
806-809	¹⁴ 1.0	1.5	1.5
809-824	¹⁴ 1.5	2.5	2.5
851-854	1.0	1.5	1.5
854-869	1.5	2.5	2.5
896-901	¹⁴ 0.1	1.5	1.5
902-928	2.5	2.5	2.5
902-92813	2.5	2.5	2.5
929-930	1.5		
935-940	0.1	1.5	1.5
1427-1435	9300	300	300
Above 245010			

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 30 of 35 Date: Jul.02, 2015

¹ Fixed and base stations with over 200 watts transmitter power must have a frequency stability of 50 ppm except for equipment used in the Public Safety Pool where the frequency stability is 100 ppm.

- ² For single sideband operations below 25 MHz, the carrier frequency must be maintained within 50 Hz of the authorized carrier frequency.
- ³ Travelers information station transmitters operating from 530-1700 kHz and transmitters exceeding 200 watts peak envelope power used for disaster communications and long distance circuit operations pursuant to §§90.242 and 90.264 must maintain the carrier frequency to within 20 Hz of the authorized frequency.
- ⁴ Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- ⁵ In the 150-174 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- ⁶ In the 150-174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.
- ⁷ In the 421-512 MHz band, fixed and base stations with a 12.5 kHz channel bandwidth must have a frequency stability of 1.5 ppm. Fixed and base stations with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.
- ⁸ In the 421-512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.
- ⁹ Fixed stations with output powers above 120 watts and necessary bandwidth less than 3 kHz must operate with a frequency stability of 100 ppm. Fixed stations with output powers less than 120 watts and using time-division multiplex, must operate with a frequency stability of 500 ppm.
- ¹⁰ Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part.
- ¹¹ Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 31 of 35 Date: Jul.02, 2015

¹² Mobile units may utilize synchronizing signals from associated base stations to achieve the specified carrier stability.

- ¹³ Fixed non-multilateration transmitters with an authorized bandwidth that is more than 40 kHz from the band edge, intermittently operated hand-held readers, and mobile transponders are not subject to frequency tolerance restrictions.
- ¹⁴ Control stations may operate with the frequency tolerance specified for associated mobile frequencies.
- (b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

Туре	Carrier Frequency (MHz)	Limit (PPM)
Fixed and base Stations	457.575	2.5

TEST REPORT

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 32 of 35 Date: Jul.02, 2015

11.2 TEST EQUIPMENT

The following test equipment was used during the test:

EQUIPMENT/ FACILITIES	SPECIFICATIONS	MANUFACTURER	MODEL#/ SERIAL#	DUE DATE oF CAL. & CAL. CENTER
EMITEST RECEIVER (INCLUDE SPECTRUM ANALYZER)	9 KHz ~ 6 GHz	ROHDE & SCHWARZ	ESL/100176	MAR. 28, 2016 ETC
TEMPERATURE & HUMIDITY CHAMBER	-40 to 150°C 20 to 95%	KSON	THS-D4C-180-LN2 / 3324	OCT. 24, 2015 ETC
Oscilloscope	500MHz	HP	US39150351	NOV. 16, 2015 ETC
POWER METER	N/A	BOONTON	4232A / 105302	OCT. 25, 2015 ETC
POWER SENSOR	N/A	BOONTON	51011-EMC / 31181	OCT. 25, 2015 ETC

NOTE: The calibration interval of the above test equipment is one year and the calibrations are traceable to NML/ROC and NIST/USA.

11.3 TEST SETUP

As required by 47 CFR 2.1046, *Frequency Stability measurements* were made at the RF output terminals using a Directional Coupler through a Spectrum Analyzer and Power Meter.

The tested unit was stayed in a Temperature & Humidity chamber and supplied with a power source for extreme condition (see configure below). It was adjusted to the maximum output power during the test.

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 33 of 35 Date: Jul.02, 2015

11.4 TEST PROCEDURE

- Antenna was replaced with a short connector which was connected with a directional coupler as an attenuator.
- The spectrum offset was adjusted to compensate the attenuator and losses caused by the connection.
- Conducted measurement method was performed.
- A wide band power meter with a matched thermocouple detector was used to directly measure the output power from the RF output port of the EUT.
- The EIRP = A+G+10*log (1/x), where A is the average power measured in (1), G is the gain of the antenna of the EUT in dBi and x is the duty cycle of the EUT.

Frequency Stability VS Temperature

Reference Frequency	Ambient Temperature	Temperature Range
(MHz)	(℃)	(℃)
457.575	25	-30 ~ 50

Frequency Stability VS Voltage

Reference Frequency (MHz)	Nominal Power (V AC)	Voltage Variation of Nominal Power Range (%)
457.575	110 / 60 Hz	85% ~ 115%

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 34 of 35 Date: Jul.02, 2015

11.5 TEST RESULT Frequency Stability VS Temperature

		Measured	Frequency	LIMIT
Reference Frequency (MHz)	Chamber Temperature (°C)	Frequency	Stability	(1.14 kHz or
(IVITIZ)	remperature (C)	(MHz)	(PPM)	2.5 PPM)
	50	457.575013	0.0284	
	45	457.575028	0.0612	
	40	457.575008	0.0175	
	35	457.575082	0.1792	
	30	457.575031	0.0677	
	25	457.574909	-0.1989	
	20	457.574911	-0.1945	
	15	457.574965	-0.0765	
457.575	10	457.574978	-0.0481	2.5
	5	457.574986	-0.0306	
	0	457.575007	0.0153	
	-5	457.574998	-0.0044	
	-10	457.575018	0.0393	
	-15	457.575290	0.6338	
	-20	457.574962	-0.0830	
	-25	457.574938	-0.1355	
	-30	457.574910	-0.1967	

Frequency Stability VS Voltage

Reference Frequency (MHz)	Chamber Temperature (°C)	Supplied Voltage (V AC / 60 Hz)	Voltage Variation (%)	Measured Frequency (MHz)	Frequency Stability (PPM)
		102.00	85	457.574891	-0.2382
457.575	25	120.00	100	457.575093	0.2032
		138.00	115	457.575204	0.4458

Reference No.: A15062402 Report No.: FCCA15062402

FCC ID: 2ABL6-NP14

Page: 35 of 35 Date: Jul.02, 2015

12. TERMS OF ABBREVIATION

AV.	Average detection
AZ(°)	Turn table azimuth
Correct.	Correction
EL(m)	Antenna height (meter)
EUT	Equipment Under Test
Horiz.	Horizontal direction
LISN	Line Impedance Stabilization Network
NSA	Normalized Site Attenuation
Q.P.	Quasi-peak detection
SRT Lab	Spectrum Research & Testing Laboratory, Inc.
Vert.	Vertical direction