Applied Linear Algebra

1 Matrices and Gaussian Elimination

1.2 The Geometry of Linear Equations	2
Problems 1–12	2
Problems 13–15	2
Problems 16-23	2
1.3 Gaussian Elimination	3
1.4 Matrix Notation and Matrix Multiplication	4
1.5 Triangular Factors and Row Exchanges	5
1.6 Inverses and Transposes	6
1.7 Special Matrices and Applications	7
1 Review	8

1 Matrices and Gaussian Elimination

1.2 The Geometry of Linear Equations

Problems 1-12

1. For the equations x + y = 4, 2x - 2y = 4, draw the row picture (two intersecting lines) and the column picture (combination of two columns equal to the column vector (4,4) on the right side).

2. Solve to find a combination of the columns that equals *b*:

$$u - v - w = b_1$$
$$v + w = b_2$$
$$w = b_3$$

- 3. Describe the intersection of the three planes u + v + w + z = 6 and u + w + z = 4 and u + w = 2 (all in four-dimensional space).
 - Is it a line or a point or an empty set?
 - What is the intersection if the fourth plane u = 1 is included?
 - $\circ\,\,$ Find a fourth equation that leaves us with no solution.

Problems 13-15

0

1.3 Gaussian Elimination

1.4 Matrix Notation and Matrix Multiplication

1.5 Triangular Factors and Row Exchanges

1.6 Inverses and Transposes

1.7 Special Matrices and Applications

1 Review