PIZZA SALES USING SQL

A COMPREHENSIVE DATA ANALYSIS PROJECT

AUTHOR: HIMANI D B

INTRODUCTION

Objective:

• To provide actionable insights into pizza sales trends and performance metrics.

Project Overview:

- This project analyzes pizza sales data to derive insights on orders, revenue, popular items, and more.
- Utilizes SQL queries to extract and analyze data from various tables.

Dataset Description

Tables Used:

- Orders: Contains order details including order ID, order time, and order date.
- Order_Details: Includes details of each order such as quantity and pizza ID.
- Pizzas: Provides information about pizza types and prices.
- Pizza_Types: Describes the category and size of each pizza.

Schema Diagram

Retrieve the total number of orders placed.

```
SELECT

COUNT(order_id) Total_orders

FROM

orders;
```


Calculate the total revenue generated from pizza sales.

```
SELECT
    ROUND(SUM(price * quantity), 2) Total_pizza_revenue
FROM
    pizzas
        NATURAL JOIN
    order_details;
```


Identify the highest-priced pizza.

```
SELECT
    name, price
FROM
    pizzas
        NATURAL JOIN
    pizza_types
WHERE
    price = (SELECT
            MAX(price)
        FROM
            pizzas);
```


Identify the most common pizza size ordered.

```
SELECT
    size, COUNT(quantity) count
FROM
    order_details
        NATURAL JOIN
    pizzas
GROUP BY size
ORDER BY count DESC
LIMIT 1;
```


List the top 5 most ordered pizza types along with their quantities.

```
SELECT
    name, sum(quantity) quantity
FROM
    order_details
        NATURAL JOIN
    pizzas
        NATURAL JOIN
    pizza types
GROUP BY name
ORDER BY quantity DESC
LIMIT 5;
```

Result Grid			
	name	quantity	
•	The Classic Deluxe Pizza	2453	
	The Barbecue Chicken Pizza	2432	
	The Hawaiian Pizza	2422	
	The Pepperoni Pizza	2418	
	The Thai Chicken Pizza	2371	

Join the necessary tables to find the total quantity of each pizza category ordered.

```
SELECT
    category, SUM(quantity) count
FROM
    pizza_types
        NATURAL JOIN
    pizzas
        NATURAL JOIN
    order_details
GROUP BY category;
```

Result Grid				
	category	count		
•	Classic	14888		
	Veggie	11649		
	Supreme	11987		
	Chicken	11050		

Determine the distribution of orders by hour of the day.

```
SELECT

HOUR(order_time) hour, COUNT(order_id) quantity

FROM

orders

GROUP BY hour;
```

	hour	quantity	
•	11	1231	
	12	2520	
	13	2455	
	14	1472	
	15	1468	
	16	1920	
	17	2336	
	18	2399	
	19	2009	
	20	1642	
	21	1198	
	22	663	
	23	28	
	10	8	
	9	1	

Join relevant tables to find the category-wise distribution of pizzas.

```
SELECT
    category, COUNT(*) quantity
FROM
    pizza_types
GROUP BY category;
```

Re	sult Grid	() F	ilter Rows:
	category	quantity	
•	Chicken	6	
	Classic	8	
	Supreme	9	
	Veggie	9	

Group the orders by date and calculate the average number of pizzas ordered per day.

```
SELECT

ROUND(AVG(quantity), 0) avg_no_of_pizzas_per_day

FROM

(SELECT

order_date, SUM(quantity) quantity

FROM

orders

NATURAL JOIN order_details

GROUP BY order_date) dt;
```


Determine the top 3 most ordered pizza types based on revenue.

```
SELECT
    name, ROUND(SUM(price * quantity), 2) revenue
FROM
    order_details
        NATURAL JOIN
    pizzas
        NATURAL JOIN
    pizza_types
GROUP BY name
ORDER BY SUM(price) DESC
LIMIT 3;
```


Calculate the percentage contribution of each pizza type to total revenue.

```
SELECT
    category,
    ROUND(SUM(price * quantity) / (SELECT
                    SUM(price * quantity)
                FROM
                    pizzas
                         NATURAL JOIN
                    order details) * 100,
            4) contribution
FROM
    pizza_types
        NATURAL JOIN
    pizzas
        NATURAL JOIN
    order details
GROUP BY category;
```

Result Grid 1			
	category	contribution	
>	Classic	26.906	
	Veggie	23.6826	
	Supreme	25.4563	
	Chicken	23.9551	
	_		

Analyze the cumulative revenue generated over time.

```
SELECT
    order_date,
    ROUND(SUM(revenue) OVER (ORDER BY order_date),2) cum_revenue
FROM

○ (SELECT
    order_date,
    SUM(quantity*price) revenue
FROM
    orders
    NATURAL JOIN
    order_details
    NATURAL JOIN pizzas
GROUP BY order_date) dt;
```

Re	sult Grid	Filter Rows:
	order_date	cum_revenue
•	2015-01-01	2713.85
	2015-01-02	5445.75
	2015-01-03	8108.15
	2015-01-04	9863.6
	2015-01-05	11929.55

Determine the top 3 most ordered pizza types based on revenue for each pizza category.

```
SELECT
    category, name, revenue
FROM
    (SELECT
        category, name, revenue, RANK() OVER(PARTITION BY category ORDER BY revenue DESC) rn
    FROM
        (SELECT
            category, name, SUM(quantity*price) revenue
        FROM
            order_details
                NATURAL JOIN
            pizzas
                NATURAL JOIN
            pizza types
        GROUP BY category, name) dt ) dt2
WHERE rn<=3;
```

Re	sult Grid	🙀 Filter Rows:	Export:
	category	name	revenue
•	Chicken	The Thai Chicken Pizza	43434.25
	Chicken	The Barbecue Chicken Pizza	42768
	Chicken	The California Chicken Pizza	41409.5
	Classic	The Classic Deluxe Pizza	38180.5
	Classic	The Hawaiian Pizza	32273.25
	Classic	The Pepperoni Pizza	30161.75
	Supreme	The Spicy Italian Pizza	34831.25
	Supreme	The Italian Supreme Pizza	33476.75
	Supreme	The Sicilian Pizza	30940.5
	Veggie	The Four Cheese Pizza	32265.70000000065
	Veggie	The Mexicana Pizza	26780.75
	Veggie	The Five Cheese Pizza	26066.5

CONCLUSION

Summary of Findings:

- Total orders and revenue insights.
- Popular pizza types and sizes.
- Category-wise performance and revenue contributions.

Implications:

• Insights can help optimize inventory, pricing, and marketing strategies.

Future Work:

• Further analysis could include customer demographics, seasonal trends, and promotional impacts.

References

https://github.com/Ayushi0214/pizza-sales---SQL

