#### Επίλυση Τριδιάστατου Πλαισίου

Γκέσος Παύλος Χατζίκος Ευστράτιος Κρικέλης Γεώργιος

2100 γραμμές κώδικα!

# Δείγματα





#### Φόρτωση και Προ-επεξεργασία

- Φόρτωση του φορέα από αρχείο XML για το οποίο έχει καθοριστεί πλήρως η διαμόρφωση. Τεκμηρίωση της διαμόρφωσης στο αρχείο input\_file\_explanation.xml. Το αρχείο, το επιλέγει ο χρήστης με διάλογο.
- Υπολογισμός των σταθερών των διατομών (A,  $a_z$ ,  $a_y$ ,  $I_t$  (= $I_t^P$ ),  $I_y$ ,  $I_z$ ,  $C_s$ ,  $I_t^S$ ) από τα γεωμετρικά τους μήκη. Υποστηρίζονται 2 ειδών διατομές:
  - Τύπου Ο με εσωτερική και εξωτερική διάμετρο.
  - Γενικευμένη, η οποία περιγράφεται από τις προαναφερθείσες σταθερές.
- Υπολογισμός τοπικού και καθολικού μητρώου δυσκαμψίας και επικόμβιων δράσεων για κάθε μέλος.
- Από τους ενεργούς βαθμούς ελευθερίας των μελών, ενεργοποιούνται οι αντίστοιχοι των κόμβων. Οπότε ένας κόμβος ενδέχεται να μην έχει όλους τους βαθμούς ελευθερίας.

#### Μέλη

- Υποστηρίζονται τα παρακάτω μέλη:
  - Ράβδος δικτυώματος
  - Δοκός (επόμενη διαφάνεια)
  - Ελατήριο στροφικό με ένα κόμβο (στήριξη) ή δύο κόμβους
  - Ελατήριο γραμμικό με ένα κόμβο (στήριξη) ή δύο κόμβους

#### Μέλη: Δοκός

- Απεριόριστα τραπεζοειδώς κατανεμημένα φορτία δυνάμεων και ροπών. Όχι όμως σημειακά.
- Θεωρία κάμψης διάτμησης Timoshenko
- Θεωρία κάμψης Euler Bernoulli
- Θεωρία ομοιόμορφης στρέψης Saint Venant
- Θεωρία ανομοιόμορφης στρέψης στρέβλωσης
- Θεωρία ανομοιόμορφης στρέψης στρέβλωσης με δευτερογενείς στρεπτικές παραμορφώσεις
- Αυτόματα επιλέγεται η καλύτερη θεωρία
- Αν παραλείπονται στοιχεία επιλέγεται μέθοδος που δεν τα απαιτεί (π.χ. αν δε δοθεί  $a_z$  επιλέγεται κάμψη Euler-Bernoulli). Εκδίδεται προειδοποίηση (warning).
- Αν παραλείπονται στοιχεία, η δυσκαμψία μηδενίζεται (π.χ. χωρίς Ι, δεν υπάρχει δυστρεψία).
  Εκδίδεται προειδοποίηση.
- Είναι δυνατή η συμπύκνωση της στρέβλωσης, οπότε οι βαθμοί ελευθερίας από 14 γίνονται 12.
- Οι διαφορικές εξισώσεις επιλύονται αναλυτικά και όχι με συναρτήσεις παρεμβολής, οπότε υπάρχει πλήρης αναλυτική ακρίβεια μόνο με 2 κόμβους.

#### Δεσμεύσεις

- Οι στηρίξεις μετατρέπονται στη γενικευμένη εκδοχή που είναι οι δεσμεύσεις (δημιουργούνται εξισώσεις).
- Δημιουργούνται οι δεσμεύσεις βαθμών ελευθερίας στερεού σώματος.
  - Αν υπάρχουν στροφικοί βαθμοί ελευθερίας μαζί με μετακινησιακούς, οι στροφές είναι ίσες αλλά μετατρέπονται και σε μετακινήσεις αν οι κόμβοι στροφής μετακίνησης δεν συμπίπτουν.
  - Μια εσωτερική ελευθέρωση, είναι δέσμευση, μεταξύ η κόμβων που συμπίπτουν, όλων των βαθμών ελευθερίας που δεν είναι ελευθερωμένοι.

#### Δεσμεύσεις

- Αν έχουμε δέσμευση μεταξύ η βαθμών ελευθερίας με m εξισώσεις:
  - Έχουμε 2η αγνώστους που είναι οι βαθμοί ελευθερίας και οι αντιδράσεις λόγω της δέσμευσης.
  - Αν n=m τότε έχουμε παγίωση των βαθμών ελευθερίας, οπότε λύνουμε το σύστημα και οι άγνωστοι είναι μόνο οι n αντιδράσεις που προκύπτουν από το μητρώο στιβαρότητας του φορέα.
    - Στην περίπτωση αυτή, οι βαθμοί ελευθερίας σημαίνονται ως «δεσμευμένοι» στους αντίστοιχους κόμβους.
  - Αν m=0 τότε έχουμε n μηδενικές αντιδράσεις και n άγνωστους ελεύθερους βαθμούς ελευθερίας, που προκύπτουν από το μητρώο στιβαρότητας του φορέα (αυτό δεν είναι δέσμευση, απλά σχολιάζεται).
  - Αν n>m (επόμενη διαφάνεια)

#### Δεσμεύσεις

- Αν έχουμε δέσμευση μεταξύ η βαθμών ελευθερίας με m εξισώσεις:
  - Aν n>m τότε:
    - Οι σχέσεις που συνδέουν τους βαθμούς ελευθερίας είναι ένας διανυσματικός <u>υποχώρος</u> Α του διανυσματικού χώρου R<sup>n</sup>.
    - Υπολογίζουμε έναν <u>οποιοδήποτε</u> συμπληρωματικό διανυσματικό υποχώρο Β του υποχώρου Α.
    - Οι εξισώσεις του υποχώρου Β, συνδέουν τις αντιδράσεις εξαιτίας της δέσμευσης.
- Μετά την αναδιάταξη, ΘΑ τοποθετήσουμε τους όρους των εξισώσεων...
  - μετατοπίσεων και
  - αντιδράσεων επί τις αντίστοιχες γραμμές του μητρώου στιβαρότητας του φορέα...
  - ...στο μητρώο στιβαρότητας του φορέα (σαν επιπλέον γραμμοστήλες).

#### Αναδιάταξη

- Τα μέλη ήδη έχουν ενημερώσει τους κόμβους για το ποιοι βαθμοί ελευθερίας υπάρχουν.
- Οι δεσμεύσεις ήδη έχουν ενημερώσει τους κόμβους για το ποιοι βαθμοί ελευθερίας είναι δεσμευμένοι, καθώς και ότι υπάρχουν Λ εξισώσεις Lagrange.
- Απαριθμώντας ΟΛΟΥΣ τους βαθμούς ελευθερίας ΟΛΩΝ των κόμβων, δίνουμε έναν αύξοντα αριθμό 1, 2, 3, ..., n για κάθε ελεύθερο και -1, -2, -3, ..., m για κάθε δεσμευμένο κόμβο.
- Οι Α/Α i=1, 2, 3, ... είναι δείκτες i στο μητρώο στιβαρότητας του φορέα.
- Οι Α/Α j=-1, -2, -3, ... είναι δείκτες n+Λ-j στο μητρώο στιβαρότητας του φορέα.
- Κατόπιν μεταφέρουμε από κόμβους (επικόμβια φορτία, παγιωμένους βαθμούς ελευθερίας), μέλη (στοιχεία δυσκαμψίας) και δεσμεύσεις (σχέσεις πολλαπλασιαστών Lagrange) δεδομένα στη μητρωική εξίσωση, με βάση τους δείκτες που αναφέρθηκαν.

### Μητρώο Στιβαρότητας

 $P_1$ ,  $\delta_2$ : γνωστά

Ρ<sub>2</sub>, δ<sub>1</sub>: άγνωστα

 $(L_1 \ 0 \ L_2)$ : Σχέσεις πολλαπλασιαστών Lagrange

λ: Πολλαπλασιαστές Lagrange

#### Επίλυση

- Αν οι άγνωστοι βαθμοί ελευθερίας είναι μέχρι 50, επιλύεται με πυκνούς πίνακες, με τη μέθοδο Κ / Ρ.
- Αν δεν υπάρχουν εξισώσεις Lagrange τότε K=grad(grad(E)) και επειδή έχουμε ελαχιστοποίηση ενέργειας εκεί που ισορροπεί ο φορέας, ο Κ είναι θετικά ορισμένος. Επιπλέον είναι συμμετρικός λόγω δράσης αντίδρασης, οπότε χρησιμοποιούμε την επαναλυπτική μέθοδο Conjugate Gradient.
- Αν υπάρχουν εξισώσεις Lagrange τότε ο πίνακας Κ είναι απλά συμμετρικός, οπότε δεν μπορεί να χρησιμοποιηθεί η μέθοδος Conjugate Gradient και χρησιμοποιείται η Conjugate Residual.

#### Μετά-επεξεργασία

- Με τους αναφερθέντες δείκτες λαμβάνουμε τις επικόμβιες μετατοπίσεις και τις αντιδράσεις των δεσμεύσεων (και στηρίξεων).
- Από τις επικόμβιες μετακινήσεις και τα κατανεμημένα φορτία υπολογίζουμε τις συναρτήσεις των μελών. Υπολογίζονται αναλυτικά προκειμένου να έχουμε ακρίβεια. Με πεπερασμένα στοιχεία δε θα είχαμε ακρίβεια, ειδικά με δοκούς 2 κόμβων (και τραπεζοειδώς κατανεμημένα φορτία).
- Για ράβδους υπολογίζονται Δx, N, σ<sub>x</sub>, σ<sub>vonMises</sub>
- Για στροφικά ελατήρια υπολογίζονται Μ, Δθ
- Για γραμμικά ελατήρια υπολογίζονται Ν, Δχ
- Για δοκούς:
  - Υπολογίζονται: N,  $V_y$ ,  $V_z$ ,  $M_t$ ,  $M_y$ ,  $M_z$
  - Δεν υπολογίζονται, επειδή δεν προλάβαμε και επειδή οι αναλυτικοί τύποι ήταν 2 με 4 σελίδες, ο καθένας:  $u_x$ ,  $u_y$ ,  $u_z$ ,  $\theta_x$ ,  $\theta_y$ ,  $\theta_z$ ,  $M_w$ ,  $\sigma_{xx,max}$ ,  $\sigma_{xy,max}$ ,  $\sigma_{xz,max}$ ,  $\sigma_{yy,max}$ ,  $\sigma_{yz,max}$ ,  $\sigma_{zz,max}$ ,  $\sigma_{yy,max}$ ,  $\sigma_{yz,max}$ ,  $\sigma_{zz,max}$ ,  $\sigma_{yz,max}$ ,

## Εξαγωγή

- Η εξαγωγή των αποτελεσμάτων πραγματοποιείται σε διαμορφωμένο αρχείο HTML. Το όνομα αρχείου το επιλέγει ο χρήστης με διάλογο.
- Εξάγονται:
  - Οι επικόμβιες μετακινήσεις, φορτία και αντιδράσεις
  - Οι συναρτήσεις των μελών που αναφέρθηκαν στην μεταεπεξεργασία.
    - Για δοκούς, αυθαίρετα επιλέχθηκε να διακριτοποιούνται σε 50 τμήματα (51 δειγματοληψίες)
    - Για τα υπόλοιπα στοιχεία, δε χρειάζεται διακριτοποίηση (μια δειγματοληψία)

## Σφάλματα

- Το πρόγραμμα κάνει όλους τους απαιτούμενους ελέγχους ορθότητας των δεδομένων (ποτέ κανείς δεν είναι σίγουρος για το <u>όλους</u>).
- Συνολικά εκτοξεύει 89 διαφορετικούς τύπους σφαλμάτων και 12 διαφορετικούς τύπους προειδοποιήσεων (ενδεχόμενα σφάλματα π.χ. απουσία δυστρεψίας σε μια δοκό δεν είναι σφάλμα όταν έχουμε μορφώσει δι-διάστατο φορέα).
- Τα σφάλματα εμφανίζονται με διάλογο και η εκτέλεση τερματίζει ενώ οι προειδοποιήσεις απλά καταγράφονται στο τερματικό.