DM LAB 10

BY

ENG. JOUD KHATTAB

2 TYPE OF LEARNING

Supervised Learning

Unsupervised Learning

I. Uses a known dataset to make predictions. And it includes input data and response values.

2. From it, the supervised learning algorithm builds a model to make predictions of the response values for a new dataset.

I. Draw inferences from datasets consisting of input data without labeled responses.

2. Used for exploratory data analysis to find hidden patterns or grouping in data

3 TYPE OF LEARNING

Supervised Learning

Unsupervised Learning

4 TYPE OF LEARNING

- Supervised Learning:
 - Classification.
- Unsupervised Learning:
 - Clustering.

CLASSIFICATION

6 DECISION TREES

What is Decision Trees?

- A decision tree is a tree-like structure in which internal node represents test on an attribute, each branch represents outcome of test and each leaf node represents class label (decision taken after computing all attributes).
- A path from root to leaf represents classification rules.
- A decision tree consists of 3 types of nodes: (root node, branch node, leaf node).

7 HOW TO BUILD DECISION TREES??

- Uses training data to build model.
- Tree generator determines:
 - Which variable to split at a node and what will be the value of the split.
 - Decision to stop (make a (terminal node) or split again has to be made.
 - Assign terminal nodes to a label.

8 DECISION TREE EXAMPLE

Training Data

rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<-=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

Classification Rules:

- → 1. student(no)^income(high)^age(<=30) => buys_computer(no)
- → 2. student(no)^income(high)^age(31...40) => buys_computer(yes)
- → 3. student(no)^income(medium)^CR(fair)^age(>40) => buys_computer(yes)
- → 4. student(no)^income(medium)^CR(fair)^age(<=30) => buys_computer(no)
- → 5. student(no)^income(medium)^CR(excellent)^age(>40) => buys_computer(no)
- → 6. student(no)^income(medium)^CR(excellent)^age(31..40) =>buys_computer(yes)
- → 7. student(yes)^income(low)^CR(fair) => buys_computer(yes)
- → 8. student(yes)^income(low)^CR(excellent)^age(31..40) => buys_computer(yes)
- → 9. student(yes)^income(low)^CR(excellent)^age(>40) => buys_computer(no)
- → 10. student(yes)^income(medium)=> buys_computer(yes)
- → 11. student(yes)^income(high)=> buys_computer(yes)

Classification Rules:

- → 1. income(high)^age(<=30) => buys_computer(no)
- → 2. income(high)^age(31...40) => buys_computer(yes)
- → 3. income(medium)^student(no)^age(<=30) => buys_computer(no)
- → 4. income(medium)^student(no)^age(31...40) => buys_computer(yes)
- → 5. income(medium)^student(no)^age(>40)^CR(fair) => buys_computer(yes)
- → 6. income(medium)^student(no)^age(>40)^CR(excellent) => buys_computer(no)
- → 7. income(medium)^student(yes)=> buys_computer(yes)
- → 8. income(medium)^CR(fair)=> buys_computer(yes)
- → 9. income(medium)^ CR(excellent)^age(>40)=> buys_computer(no)
- → 10. income(medium)^ CR(excellent)^age(31...40)=> buys_computer(yes)

RSTUDIO DEMO

24 IRIS DATASET

THE END