principal Component Analysis (PCA)

principal Component Analysu, of PCA is a dimensionality reduction melbod that is after used to reduce the dimensionality of large dala sels by transfirming a large set of voriables ento a smaller one that istill contains most of the information in the large set.

Slepl: Standardization

The aim of the slep is to slandardize the range of continuous initial variables so that each one of them. Contibules equally to the analysis we compute mean of feature variables a sy

Slépz: Covariance matrix Computation

The Covariance matrix is a nxn symmetric matrix (where ness the number of dimensions) that has an entries the Covariance associated with all possible pairs of the initial variables

for example for a 2 dimensional data set with a variables xiy. The Covariance matrix

cs a 2×2 matrix of this fam

y (Cov(y,x) (ov(y,y))

Selp 3: Compulé lhe Eigen values and Eigen vectre of Covariance matrix to identify the principal Components

Principal Components are Constructed in such a monnes that the first principal Component accounts on the

largest possible variance in the data set.

By Ranking our Eigenvectmin older of their eigen valuer, highest to lowest, we get the principal · Components ui oldes of Significance.

En: let us suppose that our data set is a 2 dimensional with 2 variables xiy and that the eigen vectors and eigen values of the Covoriance motion as

7 = 1.2840 $V_{1} = \begin{pmatrix} 0.6778 \\ 0.7351 \end{pmatrix}$

 $V_2 = \begin{pmatrix} -0.7351 \\ 0.6778 \end{pmatrix} \qquad T_2 = 0.049$

If we rank the eigen values in descending order. we get 7, > 72. which means that the eigen Vector that corresponds to the first principal Component (pc 1) is V, and the one that corresponds to the Second Component (PCZ) UVZ

 $v_1 = \frac{T_1}{T_1 + T_2} = \frac{1.2840}{(1+2840+0.049)} = 96\% \text{ (information)}$

 $V_2 = \frac{7_2}{7_1+7_2} = \frac{(0.049)}{(1+2840+0.049)} = 4\%.$ of Variance of the dalar

The feature vector is simply a matrix that has as Columna lie eigen victes of the Components that we decide to keep.

final dala Set = fealure vector x (Standardized original data Set-) T

Given the following data use pea (principal (amponent Analysis) to reduce the dimension from 2 to 1.

Fealure	E rample	Example 2	Example 3	Example
Х	4	8	13	7
y	11	4	5	14

Dala Sel-Step_1

Daia	361			
Feature	ex·I	Ex.2	Ex3	Ex 4
' -x	4	8	13	7
y	11	4	5	14

Number of feature 7 = 2 Number of Samples N=4

Slép 2: Compulation of Mean of Variables $\bar{x} = \frac{4+8+13+7}{4} = \frac{32}{4} = 8$

$$\dot{y} = \frac{11 + 4 + 5 + 14}{4} = \frac{34}{4} = 8.5$$

Slép 3: Computation of Covariance matria

we need to write ordered pairs (x,x) (x,y), (y,x), (y,y).

Covariance of all the ordered pairs

$$(ov(x,x) = \frac{1}{(N-1)} \sum_{k=1}^{N} (x_{ik} - \overline{x_i}) (x_{jk} - x_{j})$$

$$= \frac{1}{(N-1)} \sum_{k=1}^{N} (x_{ik} - \overline{x_i}) (x_{jk} - x_{j})$$

$$= \frac{1}{(N-1)} \sum_{k=1}^{N} (x_{ik} - \overline{x_i}) (x_{jk} - x_{j})$$

$$\frac{(8-8)^{2}}{(8-8)^{2}+(13-8)^{2}+(7-8)^{2}} = \frac{(4-8)^{2}+(8-8)^{2}+(13-8)^{2}+(7-8)^{2}}{(4-1)} = \frac{1}{3}(16+0+25+1) = \frac{1}{3}(42) = 14$$

$$(\circ V(x,y)) = \frac{1}{(4-1)} \left((4-8)(11-85) + (8-6)(4-8-5) + (13-8)(5-65) + (17-8)(14-85) \right)$$

$$x 4 8 13 7 + (13-8)(5-65) + (17-8)(14-85) + (11-8)(14-85) + (11-8)(14-85) + (11-8)(14-85) + (11-8)(14-8)$$

$$\begin{pmatrix}
(14-7_{1}) & -11 & 0 & 0 & 0 \\
-11 & 23-7_{1} & 0 & 0 & 0 \\
(14-7_{1}) & 0_{1} & -11 & 0_{2} & = 0 \\
-11 & 0_{1} & + (23-7_{1}) & 0_{2} & = 0
\end{pmatrix}$$

$$\frac{U_{1}}{11} = \frac{U_{2}}{14-7_{1}} = t = t = t = 1, \quad U_{1} = 11 \\
U_{2} = 14-7_{1}$$
Eigen Vector of $T_{1} = \begin{bmatrix} 11 & 11 & 0 \\ 14-7_{1} & 0 & 3849 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ -16\cdot3849 \end{bmatrix}$

Normalize the Eigen Vector
$$q = \frac{U_{1}}{11} = \frac{1}{\sqrt{(11)^{2}+(-16\cdot3849)}} \times \begin{pmatrix} 11 & 0 & 0 \\ -16\cdot3849 \end{pmatrix} = \begin{pmatrix} 0.5579 \\ -0.8303 \end{pmatrix}$$
Unit Eigen vector
$$unit \text{ Eigen Vector}$$

$$11 & 2 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
11 & 3 & 0 & 0 & 0 & 0 \\
12 & 0 & 0 & 0 & 0 & 0 \\
13 & 0 & 0 & 0 & 0 & 0 \\
14 & 0 & 0 & 0 & 0 & 0 \\
15 & 0 & 0 & 0 & 0 & 0 \\
16 & 0 & 0 & 0 & 0 & 0 \\
17 & 0 & 0 & 0 & 0 & 0 \\
18 & 0 & 0 & 0 & 0 & 0 \\
18 & 0 & 0 & 0 & 0 & 0 \\
19 & 0 & 0 & 0 & 0 & 0 \\
10 & 0 & 0 & 0 & 0 & 0 \\
10 & 0 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 & 0 \\
12 & 0 & 0 & 0 & 0 & 0 \\
13 & 0 & 0 & 0 & 0 & 0 \\
14 & 0 & 0 & 0 & 0 & 0 \\
15 & 0 & 0 & 0 & 0 & 0 \\
17 & 0 & 0 & 0 & 0 & 0 \\
18 & 0 & 0 & 0 & 0 & 0 \\
19 & 0 & 0 & 0 & 0 & 0 \\
10 & 0 & 0 &$$

1) Given the following data use (principal component-Analysis) to reduce the dimension from 2 to 1.

1:	fealure	E nample	example	e xoarmple 3	exampy
-	6 × 0	2	7.	O	-)
	и	4	3	,	0.5

1 9		4	A CONTRACT OF THE PARTY OF THE	aplication understand an extension obtained an extension of the contract of th	- a	E . 10-	
<u> </u>		Sken	2 x = 2	0.5 9	= 0	5 . 2.125	
Table:	ч	(スレーズ)	(5,35)		A~	Br	
-	7	1.5	1.875	2.8125	8.25	3.5156	
J	4	0.5	0.875	0.1375	0.25	0.07562	
	3			0.5625	0.25	1.2656	
0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0.5	-1.125			2.6406	
-1	0.5	-1.5	-1.625	8.4375	α . ω	7 1,43.	+
			C + 5.5	6.25	5	7.4974	
2	8.5						

$$Slip 3: (ov(x,x) =) \left(\sum_{i=1}^{n} (x-xi)(y_i-y_i) = (ov(x,y))\right)$$

$$Cov(y,y) = \frac{\sum_{i=1}^{n} (x-\bar{x}i)^{2}}{(n-i)} = \frac{\sum_{i=1}^{n} A^{2}}{3} = \frac{5}{3} = 1.67 - 45$$

$$Cov(y,y) = \frac{\sum_{i=1}^{n} (y-\bar{y}i)^{2}}{(n-i)} = \frac{\sum_{i=1}^{n} B^{2}}{3} = \frac{7.4974}{3} = \frac{2.499}{3} = \frac{2.499}{3}$$

$$(ov(x,y)) = \sum_{i=1}^{n} \frac{(x-x_i)(y\cdot y_i)}{(n-i)} = \sum_{i=1}^{n} \frac{AB}{3} = \frac{6\cdot 26}{3} = 2\cdot 06$$

$$Cov(y,x) = \begin{cases} 8.083 \\ S = Covariana \end{cases} \text{ matrix } \begin{cases} x & y \\ (x,x) & (x,y) \end{cases}$$

$$= \begin{bmatrix} 1.67 & 2.083 \\ 2.083 & 2.49. \end{bmatrix}$$

$$= S = \begin{bmatrix} 1.67 & 8.08 \\ 2.08 & 2.49 \end{bmatrix}$$

Characturshe Equation (15-17) = 1.67-7 2.08 = 0 = 2.08 2.49-7 (1.67-7) (2.49-7)-(2.08) = 0 72-4.167-0.1681=0 (7+0.04) (7-4.420)) =0 The Eigen values of the matrix A are given by r = -0.04, $r_2 = 4.20$ The Eigen vector of >=420 is $(A-\Sigma Y) \times = 0 \quad \delta \quad (S-iY) \times = 0$ $\begin{pmatrix} 1.67 - 4.20 & 2.08 \\ 2.08 & 2.45 - 4.20 \end{pmatrix} X = \begin{pmatrix} -2.53 & 2.08 \\ 2.08 & -1.71 \end{pmatrix} \begin{pmatrix} 24 \\ 22 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ R2-) R2(2-53)+(2-05)Ry Solving this $V_1 = \begin{pmatrix} 0.8221 \\ 1 \end{pmatrix}$ the Eigen vector for 7 = -0.04 6 w 901-(3-E7) × = 0 $\begin{pmatrix} 1-71 & 8.08 \\ 8.08 & 8.53 \end{pmatrix} \begin{pmatrix} 74 \\ 72 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad R_{27} \quad 1.71R_{2} - 2.68R_{1}$ on solving this we get Eigen Vecta V2= (-1.2163)

or Konsimal Vector
$$eq = \frac{V_1}{1|V_1|} = \frac{1}{\sqrt{1+(0.8221)^{V}}} \begin{pmatrix} 0.8221 \\ 1 \end{pmatrix} = \frac{0.7724}{\sqrt{1.6758}} \begin{pmatrix} 0.8221 \\ 1 \end{pmatrix} = \frac{0.6350}{0.7724} \\
= \begin{pmatrix} 0.6350 \\ 0.7724 \end{pmatrix} \\
= \frac{1}{\sqrt{1+(0.2163)^{V}}} \begin{pmatrix} -1.2163 \\ 1 \end{pmatrix} = 1.5745 \begin{pmatrix} -1.2163 \\ 1 \end{pmatrix} \\
= \frac{1}{\sqrt{2.4793}} \begin{pmatrix} -1.2163 \\ 1 \end{pmatrix} = 1.5745 \begin{pmatrix} -1.2163 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1.5945 \\ 1.5945 \end{pmatrix}$$
Slep 5: Derive the new data set

First principal p_{ii} Component

Component
$$P(1) = e_1 + \left(\begin{array}{c} x - \overline{x} \\ y - \overline{y} \end{array} \right) = \left(\begin{array}{c} 06350 & 0.7724 \end{array} \right) \left(\begin{array}{c} 1.5 \\ 1.85 \end{array} \right) = 2.3814$$

$$P(1) = \left(\begin{array}{c} y - \overline{y} \\ 1 \end{array} \right) = \left(\begin{array}{c} 06350 & 0.7724 \end{array} \right) \left(\begin{array}{c} 0.5 \\ 0.5 \end{array} \right) = 9.7464$$

$$P_{11} = e_{1} \left(\begin{array}{c} y-y \\ 1 \end{array} \right) = \left(\begin{array}{c} 0.6350 \text{ o.7124} \\ 0.275 \end{array} \right) = \left(\begin{array}{c} 0.5 \\ 0.275 \end{array} \right) = \left(\begin{array}{c} 0.6350 \text{ o.7124} \\ 0.275 \end{array} \right) = \left(\begin{array}{c} 0.6350 \text{ o.7124} \\ 0.275 \end{array} \right) = -1.1767$$

$$P_{12} = e_1 T \begin{pmatrix} x_2 - \bar{x} \\ y_2 - \bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.7724 \end{pmatrix} \begin{pmatrix} -0.5 \\ -1.125 \end{pmatrix} = -1.1767$$

$$P_{13} = q^{T} \begin{pmatrix} x_3 - \bar{x} \\ y_3 - \bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.7724 \end{pmatrix} \begin{pmatrix} -1.5 \\ -1.125 \end{pmatrix} = -2.2076$$

$$P_{13} = q^{T} \begin{pmatrix} 33-2 \\ y_{3}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{14} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{15} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$P_{15} = q^{T} \begin{pmatrix} 24-\bar{x} \\ y_{4}-\bar{y} \end{pmatrix} = \begin{pmatrix} 0.6350 & 0.774 \\ -1.625 \end{pmatrix} = -2.20767$$

$$e_{2} = \begin{pmatrix} 0.63 \\ 0.79 \end{pmatrix}$$

$$e_{2} = \begin{pmatrix} -1.91 \\ 1.57 \end{pmatrix}$$

$$(\bar{z}, \bar{y}) = \begin{pmatrix} 0.8, 2.215 \end{pmatrix}$$

$$\frac{2}{1.5} + \frac{1.5}{2.5} = \frac{1.5}{2.5}$$

$$\frac{1}{1.5} + \frac{1.5}{2.5} = \frac{1.5}{2.5}$$