

R-P1: (M5127605) Refractory Ceramic Coatings of Hydrogen Reformer Unit F-1901 (radiant section)

Present to VAC | Date: 22 DEC 2020

Presenters:

Project Engineer : Wachira Put <TP-PP-PB>
Process Engineer : Kanyaporn L <R-P1-TE/1563>
Project Initiator : Kanyaporn L <R-P1-TE/1563>

Strictly Confidential: Internal Use Only

Summary

Project MoC No: R-P1-2018/121 Information

Project No.: CP-1011-19006

Project Title: (M5127605) Refractory Ceramic Coatings of Hydrogen Reformer Unit F-1901 (radiant section)

Project Location: R-P1

Plan Gate1: 5 Sep 2018

Actual Gate1: 9 Nov 2018

Current Status

We are here

MEETINGS

Phase IV

NEXT:

PASSED:

□ VAC 22 DEC 2020 ☐ PIC 15 JAN 2021

Phase II Phase III Phase I

Gate 2 Plan Gate3: 12 Dec 2018 Actual Gate3: 27 Dec 2018

Gate 3 Plan Gate4: 22 Dec 2020

Actual Gate4: On Process

Gate 4

Current Phase: Phase IV

✓ e-MOC Status : Completed

✓ SAP Status: Technically completed ✓ Execution Lookback Status: Published

Skip

Today's Objective

Project request **PIC** to endorse as following details.

Gate 1

Proposal for: **Performance Lookback**

Investment Type: **Sustain Core** (Energy Saving)

Performance Lookback Information:

Evaluating items	Estimated	Actual	
Budget (MTHB)	11.6	8.8	
Schedule	Dec 2018 - Nov 2019	Dec 2018 – Oct 2019	
Benefit (MTHB/Year)	8.75	4.65	Not Achieve
IRR (%)	77.04	55.25	Not Achieve
Payback (Year)	2.08	2.59	Not Achieve

Not achieve both estimated benefit and IRR

Agenda

- 1. Introduction
- 2. Project Background, Objectives & Scope
- 3. Project Benefit & Justification Evaluation
- 4. Gap Identification
- **5. Project Lessons Learned**

1. Introduction

MOM: PIC monthly meeting 27 Dec 2018

R-P1 Refractory Ceramic Coatings of Hydrogen Reformer Unit F-1901 (radiant	Wachira Pu.	Nov 2019
section) project	and Team	
Project request PIC to endorse Gate 3 (±10%)		
Project budget: 11.6M THB		
Investment type: Sustain Core (Energy Saving)		
Benefit: 8.75M THB/Year		
IRR: 77%		
Payback: 2.08 Year		
Project Schedule: Dec 2018 - Nov 2019 (T/A REF 2019)		
PIC endorsed Gate 3 to use MAX infinity budget with comment.		
Comment:		
 Project team consider heat recovery efficiency of HMU unit by refer to stack temperature. 		
2. Project team to re-check guarantee period (8 years) from other refinery plant in PTT for		
reference. Done, Historical Data checked Refinery (F1501/2/3/4) guarantee 8 years		
3. During bidding state, the cost comparison shall be considered by area unit with		
separate cost of guarantee. Done, comparison in proposal for award		
4. Project budget shall be used MAX infinity budget. Done, Used MAX infinity budget		
in Project Budget shall be used Pizzk illinity Budget. Done, Used WAX infinity budget		

1. Introduction

Ceramic coating had implemented in T/A2019

Before

After

2. Project Background, Objectives & Scope

Project Background:

- F-1901 is hydrogen reformer furnace.
- Reforming reaction is conduced at high temperature and is highly endothermic.
- Heat of reaction is supplied by firing externally to catalyst packed tube in radiant section of the reforming furnace.
- Therefore, the heater needs keeping the desired temperature by using huge amount of heat.
- F-1901 is running at average firing rate 124 tSRF/d since HMU turndown.
- To apply refractory ceramic coating to reduction of fuel (RFG) consumption.

Project Objectives:

• To improve fuel efficiency of F-1901. Coat F-1901 refractory with high emissivity coating to reduce fuel consumption by 2.7%.

Project Scope:

- Refractory coating by high emissivity material.
- Scaffolding and lighting will be responsible by T-TA-TD during TA2019.

HMU production 65 T/d **Before**

After

Before implement **After implement** Start 31/7/2019 13:00 19/12/2019 12:30 End 1/8/2019 13:00 20/12/2019 12:30 **Process side** Tag **UOM** Value Value 18FR102.MEAS T/D 61.87 58.97 **Hydrogen Production Rate NG Flow Rate** 19FR040.MEAS T/D 179.97 178.07 Temp in F1901 degC 525.76 522.38 19TI028.PNT Temp out F1901 19TRCA033.MEAS degC 809.88 810.36 **Bridge Wall Temperature 19TRCA044.MEAS** degC 867.18 852.76 **Stack Temperature:** 19TI056.PNT degC 183.48 179.57 **Draft** 19PRCA019.MEAs mbar -3.50 -3.50**RFG** TSRF/D 19FRC031.MEAS 99.85 91.20 Offgas TSRF/D 50.29 19Y019 49.96 TSRF/D 150.13 141.16 Firing rate Cal **Steam Boiler: Flow** 19FT016.MEAS T/hr 63.62 60.09 **Steam Boiler: Pressure** 121.81 19PRA027.PNT Barg 121.57 **Steam Boiler: Temperature** 19TI067.PNT degC 324.48 324.23

High emissivity coating → Increase radiant heat transfer efficiency

- **Fuel gas consumption decrease**
- Flue gas at bridge wall temperature decrease

VPS product from convection section of furnace is reduced

HMU test max capacity in Jul-20 (after ceramic coating)

At max capacity H2 production 121 t/d, VPS production 90-91 t/d (boiler register = 91.73 t/d)

Economic Evaluation:

Information during project was approved

		2019	2020	2021	2022	2023	2024	2025	2026	2027
NG industrial (LHV)	THB/MMBTU		332.9	333.0	351.3	377.6	385.1	389.7	396.8	401.8
Total saving	MTHB/Year		11.03	10.99	10.15	12.47	12.75	11.26	13.10	13.27

- Benefit from coating with higher emissivity in HMU furnace and result in NG saving 2.7% from base case
- Total furnace firing = 14186 tSRF/d at H2 production =70 t/d.
- Benefit calculation take at 70% because of guarantee.
- Project life 8 years from ceramic coating life.
- VPS loss from fuel saving is calculating by Fuel saving x 70% guarantee x 26% convection eff x 50% boiler eff.
- Investment cost = 11.6 MTHB

		MUSD/year	MTHB/year
Avg EBITDA, M\$/yr	(Avg 2020-2027)	0.36	11.6
Avg Net Income, M\$/yr	(Avg 2020-2027)	0.27	8.7
IRR @	8 years	77.04%	
NPV @	9.72%	0.74	24.0
Payback	years	2.08	
(including construction period 0.8			
yrs)			

Actual Information during stable operation

		2019	2020	2021	2022	2023	2024	2025	2026	2027
NG industrial (LHV)	THB/MMBTU		242.7	252.1	255.3	262.2	270.5	281.9	286.8	290.2
Total saving	MTHB/Year	_	5.95	6.18	6.26	6.42	6.63	6.91	7.03	7.11

- VPS production decrease from ceramic project more than target (average 3.9 t/hr).
- Average NG price Jan20 to Sep20 (LHV) = 242.674 Baht/MMBTU
- Investment cost = 8.8 MTHB

		MUSD/year	MTHB/year
Avg EBITDA, M\$/yr	(Avg 2020-2027)	0.20	6.3
Avg Net Income, M\$/yr	(Avg 2020-2027)	0.14	4.65
IRR @	8 years	55.25%	
NPV @	9.72%	0.27	8.8
Payback	years	2.59	
(including construction period 0.8			
yrs)			

Benefit Clarification:

4. Gap Identification

All gaps are identified and explained as table below.

Benefit Items	Gap (MTHB/Year)	Reason of Deviation	Mitigation or Suggestion
1. VPS production		 VPS production loss from ceramic coating is higher than estimate VPS loss from fuel saving is calculating by Fuel saving x 70% guarantee x 26% convection eff x 50% boiler eff = 6 t/d Actual VPS loss = 3.9 t/hr 	VPS decrease at HMU can be produced at HRSG.

5. Project Lessons Learned

Detail of Lessons Learned and Recommendation for next project

Technical	 Benefit calculation should be considered effect from downstream e.g VPS production decrease because vendor did not consider. Furnace eff is calculated from multivariable and there are a lot of parameter impact to furnace eff i.e. fuel composition, furnace feed characteristic, operating condition of the furnace. It is difficult to control the furnace at the same basis of above mention parameters
Price	NG assumption price vs actual price are different.
Volume	• -
Other (if any)	 Execution phase, Ceramic (for coating) be so stained with scaffolding therefore there were additional scope of cleaning with scaffolding vendor. To protect this problem for next project, 1) include scope of scaffolding to Main Contractor (Ceramic Coating Contractor) 2) During execution, make sure the protection are covered and scope of cleaning are clarified.

Thank You

