CLAIMS

- 5 1. A single layer anti-reflective hard-coat.
 - 2. A single layer anti-reflective hard-coat according to claim 1 that comprises a structured surface, preferably a nano-structured surface.
 - 3. A hard-coat according to claim 1 or 2, comprising a material with a hardness above 0.5 GPa, preferably above 0.7 GPa and most preferably above 1.0 GPa as measured by nano-indentation.
 - 4. A hard-coat according to claims 1 to 3 comprising a material with a reduced tensile modulus above 3 GPa, preferably above 8.5 GPa or 20 GPa, most preferably above 40 GPa as measured by nano-indentation.
- 5. A hard-coat according to claims 1 to 4 comprising a material with a scratch resistance above 5 mJ μm⁻³, preferably above 15 or 30 mJ μm⁻³, preferably above 60 mJ μm⁻³ as measured by nano-indentation.
 - 6. A hard-coat according to claims 1 to 5 containing an amount of inorganic nano-particles from 5 to 75 weight %, preferably from 15 to 50 weight %.
- 7. A single layer hard-coat wherein the hard-coat exhibits a refractive index
 20 gradient normal to the substrate that decreases from that of the material of the hard-coat to that of air over a spatial length scale.
 - A single layer hard-coat according to claim 7 wherein the spatial length scale of the refractive index gradient is between 10 and 1000 nm.
- 9. A single layer hard-coat according to claim 8 wherein the spatial length scale of the refractive index gradient is between 100 and 200 nm.
 - 10. A single layer hard-coat according to any preceding claim wherein the critical wave vector of the radial fourier density transformation for an uncorrelated density distribution is below 2 pi / 600 nm.
- A single layer hard-coat according to claim 10 wherein the critical wave vector of the radial fourier density transformation for an uncorrelated density distribution is below 2 pi / 400 nm.
 - 12. A single layer hard-coat according to any preceding claim wherein the hard-coat increases the optical transmission of a substrate in at least a range of wavelengths of the electromagnetic spectrum.

35

10

	13.	A process for preparing a single layer nard-coat, comprising the steps of
		a) applying a mixture on a substrate, which mixture comprises
		 at least a first material which does not crosslink under the conditions
		chosen in step b)
5		ii. at least a second material which does crosslink under the conditions
		chosen in step b)
		iii. nano-particles, and
		iv. optionally at least one solvent
		 b) inducing crosslinking in the mixture applied to the substrate,
10		subsequently removing at least part of the first material.
	14.	A process according to claim 13 wherein the mixture is homogenous prior to
		crosslinking
	15.	A process according to claims 13 or 14 wherein at least part of the nano-
		particles have organic groups on their surface.
15	16.	A process according to claims 13 to 15, wherein the nano-particles are
		inorganic nano-particles.
	17.	A process according to any one of claims 13-16, wherein the monomer or
		oligomer present in the second material has at least two and preferably three
		or more reactive / polymerizable or crosslinkable groups per monomer or
20		oligomer molecule
	18.	A process according to claim 13 to 17 wherein the majority of the nano-
		particles have a diameter of less than 400 nm and preferably less than 50 nm.
	19.	A hard-coat obtainable by the process according to any one of claims 13 to
		18.
25	20.	Shaped articles comprising a hard-coat according to claims 1 to 12 or claim
		19.