

Universidade Federal do Paraná

Setor: Tecnologia

Departamento: Engenharia Química

Propriedades dos fluídos e Lei de Newton da viscosidade

Prof^a. Dra. Alessandra Cristina Pedro

Definições

Fluído: Toda substância que se deforma sob a ação de uma tensão de cisalhamento.

$$au = rac{F}{A}$$

Líquidos versus Gases

Sistema de unidades

Nome	Comprimento	Tempo	Massa	Força	Temp	eratura
Comuns nos EUA	pé	segundo	slug*	libra	Rankine	Fahrenheit
FPS	pé	S	$\left(\frac{\mathrm{lb}\cdot\mathrm{s}^2}{\mathrm{p\acute{e}}}\right)$	lb	°R	°F
Sistema Internacional de Unidades	metro	segundo	quilograma	Newton*	Kelvin	Celsius
SI	m	S	kg	$\left(\frac{kg \cdot m}{s^2}\right)$	K	°C

1 lbm = 0,4536 kg

 $1 N = 1 kg \cdot m/s^2$

1 p'e = 0.3048 m

1 lbf = 32,174 lbm . $pés/s^2$

Propriedades dos fluídos

Principais variáveis de escoamento:

Massa específica ou densidade absoluta (ρ - rô)

Densidade relativa (δ - delta)

Peso específico (γ - gama)

Volume específico (υ - uípslon)

Viscosidade dinâmica (μ - mi) e cinemática (ν - ni)

Propriedades dos fluídos

Propriedade	MK*S	SI	CGS
Densidade	kgf.s ² /m ⁴	$Ns^2/m^4 = kg/m^3$	$dina.s^2/cm^4 = g/cm^3$
Peso específico	kgf/m³	N/m³	dina/cm³
Viscosidade	kgf.s/m²	N.s/m²	dina.s/cm ² = poise
Viscosidade cinemática	m^2/s	m^2/s	$cm^2/s = stoke (St)$

Sabemos que um fluido é corresponde a uma substância que se deforma sob ação de uma tensão de cisalhamento.

A tensão de cisalhamento pode ser definida como: $\tau = \frac{\tau}{2}$

Agora vamos considerar a seguinte situação:

Em t = 0 uma força é aplicada sobre a placa superior na direção x.

A placa então se move com velocidade v_x na direção x.

$$Fx \propto \frac{Adv_x}{dy}$$

$$Fx \propto \frac{Adv_x}{dy} \qquad \qquad Fx = \mu A \frac{dv_x}{dy}$$

A tensão de cisalhamento causada pela força na direção x, em uma área perpendicular ao eixo y é dada por:

$$\frac{Fx}{A} = au = \mu \frac{dv_x}{dy}$$
 Gradiente de velocidade

Lei da viscosidade de Newton

A viscosidade é fortemente influenciada pela temperatura:

Viscosidade cinética ou cinemática (v)

$$v = \frac{\mu}{\rho}$$

- Ciência que estuda o escoamento e as deformações dos sólidos e fluidos quando submetidos às forças mecânicas;
- Como os materiais respondem a aplicação de tensões ou deformações;

Reometria: permite medir as propriedades reológicas dos materiais de interesse nos distintos campos da indústria. Obtenção de modelos matemáticos que correlacionam a tensão aplicada com a deformação resultante apresentada pelo material.

Reologia Reologia

- Operações de concentração, evaporação, pasteurização, bombeamento;
- Dimensionamento de bombas e tubulações, evaporadores;
- Consumo de energia no bombeamento;
- Afeta as operações de transferência de quantidade movimento, calor e massa;
- Caracterização física de alimentos sólidos, líquidos ou pastosos;
- Desenvolvimento de novos produtos;
- Controle de qualidade de produtos finais ou intermediários;
- Avaliação sensorial da textura.

Onde se aplica a reologia?

Absorção na pele e fluidez na utilização

Estabilidade de emulsões

Fluídos newtonianos

Não Newtonianos — seguem a lei da potência

$$\tau = K \left(\frac{\partial v_x}{\partial y} \right)^n$$

K = índice de consistência,

n = índice de comportamento, *indicativo do* comportamento do fluido.

Viscosidade aparente

- Conceito utilizado na indústria para controle de qualidade: fornece um valor para comparação em determinada situação de teste.
- Para fluidos que seguem a lei da potência:

$$\mu_{ap} = K \left(\frac{\partial v_x}{\partial y} \right)^{n-1}$$

Fluídos não-newtonianos

Fluido dilatante: a resistência aumenta com o aumento da tensão aplicada, ou seja, a viscosidade aumenta com o aumento da tensão de cisalhamento.

Exemplo: mistura de areia com água, suspensões de amido, ingredientes de bala, alguns tipos de méis.

Fluídos não-newtonianos

Fluido pseudoplástico: diminuiu a resistência com o aumento da tensão aplicada. O aumento da velocidade ocasiona diminuição da viscosidade aparente.

Exemplos: suspensão de celulose em água, soluções de polímeros, tintas a base de polímeros, concentrado de tomate, polpas de frutas, soluções de pectina, <u>catchup</u>.

Fluídos não-newtonianos

Plástico de Bingham: caso limite de uma substância plástica. Somente escoam se aplicarmos sobre eles uma tensão que supere um determinado valor. Se comporta como newtoniano após exceder o limite da tensão de cisalhamento.

Exemplos: creme dental, concreto, purê de batata.

Reometria: técnicas experimentais para medir as propriedades reológicas dos fluidos.

Equipamentos:

- Viscosímetros de tubo capilar e de tubo U.
 - Capilar: 0,1 a 4 mm
 - Tubo: 12 a 32 mm.
 - Tubo capilar opera em altas pressões e altas taxas de cisalhamento;
 - Viscosímetro tubo em U se baseia na medição do tempo necessário para o escoamento.

Copo Ford

Reômetro rotacional:

- É composto por um cilindro interno e um externo;
- Um deles é forçado a girar e o torque é transferido ao cilindro em repouso;
- Viscosidade: razão entre o torque e a velocidade angular;
- Aplicado para géis até produtos semisólidos.

• Reômetro com geometria cone e placa:

- Consiste em uma placa circular e um cone que quase toca a superfície da placa, com a amostra preenchendo o espeço entre o cone e a placa.
- O cone rotaciona a uma velocidade conhecida resultante em um torque medido pela placa.

- Para determinar o comportamento reológico de um fluido é necessário construir a sua curva de fluxo: reograma ou diagrama reológico:
 - Tensão de cisalhamento versus Taxa de cisalhamento (deformação).
 - Permite que o comportamento do fluido seja identificado: newtoniano e não newtoniano
 - Permite cálculo dos parâmetros de modelo que melhor se ajustarem aos dados calculados.
- Cada tipo de Reômetro requer um equacionamento para relacionar a tensão com a taxa de cisalhamento.