Diffusion Model Review

CAO Hanqun

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

Diffusion Model is Striking Right Now!

Stable Midjourney

Diffusion

Explosive Growth of Diffusion Model

Denoising diffusion probabilistic models

```
J Ho, A Jain, P Abbeel - Advances in neural information ..., 2020 - proceedings.neurips.cc ... This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model (which we will call a "diffusion model" for brevity) is a parameterized Markov chain ... ☆ 保存 切引用 被引用次数: 3640 相关文章 所有 6 个版本 导入BibTeX ≫
```

Score-based generative modeling through stochastic differential equations Y Song, J Sohl-Dickstein, DP Kingma, A Kumar... - arXiv preprint arXiv ..., 2020 - arxiv.org ... Figure 1: Solving a reversetime SDE yields a score-based generative model. Transforming ... a continuous-time SDE. This SDE can be reversed if we know the score of the distribution at ...

```
☆ 保存 500 引用 被引用次数: 1580 相关文章 所有 5 个版本 导入BibTeX >>>
```

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithm
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

From Generative Model to Diffusion Model

Given data x, generating samples following distribution p(x)

From VAE to NF, to Diffusion Model

How to accurate and efficiently express the distribution remains to be a challenge

VAE suffers from an information loss when conducting encoding

From VAE to NF, to Diffusion Model

Normalizing Flow (NF) suffers from complicated modeling and training

From VAE to NF, to Diffusion Model

No information loss -> equal-dimension transformation

Efficient Modeling -> Markovian process

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithms
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

Basic Definitions

reverse step

Forward Process

 \mathbf{x}_T

reverse step

 \mathbf{x}_0

reverse step

Figure 2: The directed graphical model considered in this work.

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: **until** converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return x_0

Obtaining distributions by estimating its gradients

Score

$$\mathbf{s}_{ heta}(\mathbf{x}) = \boxed{
abla_{\mathbf{x}} \log p_{ heta}(\mathbf{x}) = -
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}) - \underbrace{
abla_{\mathbf{x}} \log Z_{ heta}}_{=0} = -
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}). }$$

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \; \mathbf{z}_i, \quad i = 0, 1, \cdots, K,$$

Landmark Works: From discrete to Continuous

Consider the limit of many small steps:

Landmark Works: ScoreSDE

Consider the limit of many small steps:

Landmark Works: ScoreSDE

Landmark Works: Differential Equation Views

$$p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) = \begin{cases} \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0), [\sigma^{2}(t) - \sigma^{2}(0)]\mathbf{I}), & (\text{VE SDE}) \\ \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0)e^{-\frac{1}{2}\int_{0}^{t}\beta(s)\mathrm{d}s}, \mathbf{I} - \mathbf{I}e^{-\int_{0}^{t}\beta(s)\mathrm{d}s}) & (\text{VP SDE}) \\ \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0)e^{-\frac{1}{2}\int_{0}^{t}\beta(s)\mathrm{d}s}, [1 - e^{-\int_{0}^{t}\beta(s)\mathrm{d}s}]^{2}\mathbf{I}) & (\text{sub-VP SDE}) \end{cases}$$

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\text{max}}^2 \mathbf{I})$	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$
2: $\mathbf{for} \ i = N - 1 \ \mathbf{to} \ 0 \ \mathbf{do}$	2: $\mathbf{for} \ i = N - 1 \mathbf{to} \ 0 \mathbf{do}$
3: $\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$	3: $\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta}*(\mathbf{x}_{i+1}, i+1)$
4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$	4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$
5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}} \mathbf{z}$	5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor
6: for $j = 1$ to M do	6: for $j = 1$ to M do Corrector
7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$	7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$
8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta^*}(\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$
9: return x ₀	9: return x ₀

-- Sampling along the reverse trajectory is actually finding the numerical solution of differential equations.

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithms
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

Stochastic or Deterministic?

- SDE: Higher Performance
- ODE: Higher Speed

Stochastic or Deterministic?

- SDE: Higher Performance
- ODE: Higher Speed

Stochastic or Deterministic?

- Deterministic sampling is not equivalent to no diversity
 - -> there are infinite random points which can be sampled from prior distributions
- Why ODEs are faster?
 - -> no randomness leads to larger steps
 - -> but the error would accumulate
- Regarding SDE
 - -> small steps leads to more steps
 - -> random noise for each steps brings less error

Label Conditional Diffusion

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) p(x_t \mid x_{t+1}, y) = \frac{p(x_t \mid x_{t+1})p(y \mid x_t, x_{t+1})}{p(y \mid x_t, x_{t+1})} for all t from T to 1 do  \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) \\ x_{t-1} \leftarrow \text{sample from } \frac{\mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y \mid x_t), \Sigma)}{p(y \mid x_t)} = \frac{p(x_t \mid x_{t+1})p(y \mid x_t, x_{t+1})}{p(y \mid x_t)},  end for return x_0
```

Data Conditional Diffusion

Outlines

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithms
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

Diffusion Needs Improvements

Sampling

Gaussian-based diffusion sampler takes thousands of steps to sample.

Training Scheme

Training-Free Sampling

3. Model Merging

4. Knowledge Distillation

Diffusion Needs Improvements

- 1. Slow sampling
- 2. High-Dimensional Space
- 3. Conditional sampling
- 4. Wide range data application

- Sampling Acceleration
- New Forward Process
- Likelihood Optimization
- Bridging Diffusion

Training-Free Sampling: Distillation

Training Scheme: Diffusion Scheme Learning

Incomplete forward and sampling process → Non-Gaussian noise but a starting distribution from other distribution

Forward Path

Efficient Noise

$$SNR(t) := \alpha_t^2/\beta_t^2 = exp(\gamma_{\eta}(t)), \quad \sigma_t^2 = \text{sigmoid}(\gamma_{\eta}(t)) \quad (16)$$

$$\mathcal{L}_T(\mathbf{x}) = \frac{T}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\mathbf{I})} \left[(SNR(s) - SNR(t)) \| \mathbf{x} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t;t) \|_2^2 \right]$$

$$\mathcal{L}_{\infty}(\mathbf{x}) = \frac{1}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\mathbf{I})} \int_{SNR_{min}}^{SNR_{max}} \| \mathbf{x} - \tilde{\mathbf{x}}_{\theta}(\mathbf{z}_v, v) \|_2^2 dv \quad (17)$$

Training Scheme: Diffusion Scheme Learning

Incomplete forward and sampling process → From intermediate states generated by other fast generative models (such as GAN and VAE)

Training Scheme: Noise Scale Design

FastDPM: link noise with time t with bijective map

$$\mathcal{R}(t) = (\Delta \beta)^{\frac{t}{2}} \Gamma \left(\hat{\beta} + 1 \right)^{\frac{1}{2}} \Gamma \left(\hat{\beta} - t + 1 \right)^{-\frac{1}{2}}.$$

VDM: link noise with time t with bijective map

$$\sigma_t^2 = \operatorname{sigmoid}(\gamma_{\eta}(t))$$
 $\alpha_t^2 = \operatorname{sigmoid}(-\gamma_{\eta}(t))$

Algorithm 2 Sampling

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2: **for** t = T, ..., 1 **do**

3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

5: end for

6: return x_0

guide the training with SNR: $SNR(t) = exp(-\gamma_{\eta}(t))$

$$\mathcal{L}_{T}(\mathbf{x}) = \frac{T}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0,\mathbf{I}), i \sim U\{1,T\}} \left[\left(\text{SNR}(s) - \text{SNR}(t) \right) ||\mathbf{x} - \hat{\mathbf{x}}_{\boldsymbol{\theta}}(\mathbf{z}_{t};t)||_{2}^{2} \right],$$

$$\mathcal{L}_{\infty}(\mathbf{x}) = \frac{1}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0,\mathbf{I})} \int_{\text{SNR}_{\text{min}}}^{\text{SNR}_{\text{max}}} ||\mathbf{x} - \tilde{\mathbf{x}}_{\boldsymbol{\theta}}(\mathbf{z}_{v}, v)||_{2}^{2} dv,$$

• Improved DDPM: learn noise scale by new loss function

$$L_{\text{hybrid}} = L_{\text{simple}} + \lambda L_{\text{vlb}}$$

Training-Free Sampling: DE In General

- Differential equation based samplers are actually numerical solvers for differential equations. Network's output is actually the step gradient for each steps
- The number of sampling steps depends on the errors during sampling

```
-> Euler Method: y_{n+1} = y_n + hf(t_n + y_n)
```

- -> h: step size
- \rightarrow f(t_n + y_n): estimated gradient
- Advanced sampler means advanced numerical solvers
 - -> higher-order solvers: more accurate gradient -> larger step -> faster sampling
 - -> multi-step solvers: multi-step results -> accurate predictions -> faster sampling

Training-Free Sampling: Other Techniques

Analytic Solvers

- Analytical DPM: Start from vlb
 optimization to explore analytical solutions
- Extended Analytical DPM: Suppose that reverse mean is independent of reverse noise, finding optimal mean and noise

Theorem 1. (Score representation of the optimal solution to Eq. (4), proof in Appendix A.2)

The optimal solution $\mu_n^*(x_n)$ and σ_n^{*2} to Eq. (4) are

$$\mu_n^*(\boldsymbol{x}_n) = \tilde{\mu}_n \left(\boldsymbol{x}_n, \frac{1}{\sqrt{\overline{\alpha}_n}} (\boldsymbol{x}_n + \overline{\beta}_n \nabla_{\boldsymbol{x}_n} \log q_n(\boldsymbol{x}_n)) \right),$$

$$\sigma_n^{*2} = \lambda_n^2 + \left(\sqrt{\frac{\overline{\beta}_n}{\alpha_n}} - \sqrt{\overline{\beta}_{n-1} - \lambda_n^2}\right)^2 \left(1 - \overline{\beta}_n \mathbb{E}_{q_n(\boldsymbol{x}_n)} \frac{||\nabla_{\boldsymbol{x}_n} \log q_n(\boldsymbol{x}_n)||^2}{d}\right),$$

Dynamic Programming

 Construct a refinement path composed of K sampling steps according to the loglikelihood losses.

Model Merging: Acceleration

Diffusion Needs Improvements

Designing advanced process for wider application, including: diverse data types, cross-modality generation, cross distribution

Diffusion Process Design: Latent Space

Latent Diffusion: Conducting diffusion process on latent space

- Faster convergence
- Mutli-condition guidance
- Prior knowledge from Encoders
 & Decoders

Diffusion Process Design: Wider Range

Vector-Quantized: Cross modality

Diffusion Process Design: Advanced Forward

Physics-inspired forward process

Self-designed sampling space

Diffusion Needs Improvements

Enhance the continuous diffusion training from the perspective of

- Directly optimizing the likelihood instead of
- Minimizing the lower bound of log-likelihood

Likelihood Optimization: Advanced ELBO

Score Connection:

Represent ELBO based on score-matching loss

Theorem 3. Let $p_{0t}(\mathbf{x}' \mid \mathbf{x})$ denote the transition distribution from $p_0(\mathbf{x})$ to $p_t(\mathbf{x})$ for the SDE in Eq. (1). With the same notations and conditions in Theorem 1, we have

$$-\log p_{\theta}^{SDE}(\mathbf{x}) \leq \mathcal{L}_{\theta}^{SM}(\mathbf{x}) = \mathcal{L}_{\theta}^{DSM}(\mathbf{x}),$$
 (11)

where $\mathcal{L}_{\theta}^{SM}(\mathbf{x})$ is defined as

$$-\mathbb{E}_{p_{0T}(\mathbf{x}'|\mathbf{x})}[\log \pi(\mathbf{x}')] + \frac{1}{2} \int_{0}^{T} \mathbb{E}_{p_{0t}(\mathbf{x}'|\mathbf{x})} \left[2g(t)^{2} \nabla_{\mathbf{x}'} \cdot \boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x}',t) + g(t)^{2} \left\| \boldsymbol{s}_{\boldsymbol{\theta}}(\mathbf{x}',t) \right\|_{2}^{2} - 2 \nabla_{\mathbf{x}'} \cdot \boldsymbol{f}(\mathbf{x}',t) \right] dt,$$

and $\mathcal{L}_{\theta}^{DSM}(\mathbf{x})$ is given by

$$-\mathbb{E}_{p_{0T}(\mathbf{x}'|\mathbf{x})}[\log \pi(\mathbf{x}')] + \frac{1}{2} \int_{0}^{T} \mathbb{E}_{p_{0t}(\mathbf{x}'|\mathbf{x})} \left[g(t)^{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}',t) - \nabla_{\mathbf{x}'} \log p_{0t}(\mathbf{x}' \mid \mathbf{x}) \right\|_{2}^{2} \right] dt \\ - \frac{1}{2} \int_{0}^{T} \mathbb{E}_{p_{0t}(\mathbf{x}'|\mathbf{x})} \left[g(t)^{2} \left\| \nabla_{\mathbf{x}'} \log p_{0t}(\mathbf{x}' \mid \mathbf{x}) \right\|_{2}^{2} + 2\nabla_{\mathbf{x}'} \cdot \boldsymbol{f}(\mathbf{x}',t) \right] dt.$$

$$L_{\text{hybrid}} = L_{\text{simple}} + \lambda L_{\text{vlb}}$$

$$\mathcal{L}_{T}(\mathbf{x}) = \frac{T}{2} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), i \sim U\{1, T\}} \left[\left(\frac{\mathsf{SNR}(s) - \mathsf{SNR}(t)}{\mathsf{SNR}(s)} \right) ||\mathbf{x} - \hat{\mathbf{x}}_{\boldsymbol{\theta}}(\mathbf{z}_{t}; t)||_{2}^{2} \right],$$

$$\mathcal{L}_{\infty}(\mathbf{x}) = \frac{1}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \int_{\text{SNR}_{\text{max}}}^{\text{SNR}_{\text{max}}} \|\mathbf{x} - \tilde{\mathbf{x}}_{\theta}(\mathbf{z}_{v}, v)\|_{2}^{2} dv,$$

Re-Design:

Design vlb loss from a different perspective to obtain better convergence

Diffusion Needs Improvements

Bridging
Distributionsα-blending [126]/Recfied Flow [52]/I2SB [87]Stochastic interpolant [53]/DDIB [88]

From one-direction translation to bi-directional translation:

- Image-to-image translation
- Cell distribution transportation

Bridging Distributions: Multi-directional

Connecting two distributions:

- Design transportation maps based on score-matching objective
- Apply Schrodinger bridge for the connection

Schrodinger Bridge

Outlines

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithms
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

Diffusion Applications

- Mechanisms behind the better performance
- 2. Key-point technique in the implementation
- 3. Current challenges and future directions

Low-Level Vision

High-Level Vision

High-Level Vision

Detection

(a) Overall pipeline.

(b) Details of the detection decoder/head.

3D Vision

Unconditional Generation

(a) The autoencoder encodes a mesh to features at the sparse latent points and decodes it back to a mesh.

Latent Point Diffusion Process

Latent Feature Diffusion Process

Latent Point Denoise Process
(b) The DDPM learns the distribution of the sparse latent points.

Latent Feature Denoise Process
(c) The DDPM learns the distribution of features at latent points.

Completion

Multi-Conditional Generation

Video Modeling

Medical Image Processing: Single Distribution

Classification

Medical Image Processing: I2I Translation

Data Conversion

Medical Image Processing: Applications

Synthesis

Multi-Modal System

(b) Pipeline for PMC-VQA generation

(a) Overall architecture of MedVInT

Medical GPT

Sequence Modeling: NLP

Figure 1: Bit Diffusion: modeling discrete data using continuous diffusion models with analog bits.

Sequence Modeling: Time Series

Geographic Observed Interpolated information information values Observed values Observed values Imputed values information Conditional Feature $p_{\theta}(\widetilde{X}^{t-1}|\widetilde{X}^{t}, \mathcal{X}, A)$ **Imputation** Extraction Spatiotemporal Encoder Imputed values Gaussian noise Imputed values Gaussian noise PriSTI (Ours) GRIN **CSDI**

Forward | Reverse $\nabla log p(h_1^s|h_0^0)$ $\nabla log p(\hat{h}_1^s|\hat{h}_0^0)$ $Vlogp(h_{t-1}^{5}|h_{t-2}^{0})$ $\nabla log p(\hat{h}_{t-1}^{N}|\hat{h}_{t-2}^{0})$ Generation h_{t-1}^{0} \hat{h}_{t-1}^0 Decoder Encoder $\nabla \log p(h_t^s|h_{t-1}^0)$ $\nabla \log p(\hat{h}_t^s|\hat{h}_{t-1}^0)$ $\nabla \log p(h_T^s|h_{T-1}^0)$ $\nabla \log p(\hat{h}_{T}^{\varepsilon}|\hat{h}_{T-1}^{0})$ Conditional Score Network

Graph Modeling: Graph

Graph Modeling: Molecular Generation

Monomer Design

Outlines

- Brief Introduction to diffusion model
- Viewing diffusion model through generative model development
- Diffusion model basic algorithms
- Enhancing Understanding from multi-view
- Algorithm improvement
- Applications
- Further Directions and Discussions

How to equip diffusion Model?

Choose your framework

- → ODE: fast, deterministic & controllable generation
- → SDE: slow, high-fidelity and diverse sampling, unconditional generation

Data format & Model Architecture

- →Image / Discrete: UNet
- → Sequential data: Transformer, LSTM, RNN
- → Graph data: Invariant / Equivariant GNNs

How to equip diffusion Model?

Data Amount

→Not enough: Latent diffusion, Data Augmentation, other types of generative model

Sampling Techniques

- →Unconditional: depend on the training loss (fast solver or traditional)
- →Conditional: classifier-based, pixel-level, latent space

Other Techniques

→ Domain distribution shift, early stop, distillation

Further Directions (Oct 2022):

- Attention on diffusion model class:
 - -- Prior distribution, transition kernel, sampling algorithm, and diffusion schemes
- Training objective & evaluation metric:
 - -- Evaluation mismatch, Improved objective for MLE
- Application and inductive bias:
 - -- Inductive bias, more practice

Further Directions (Oct 2023):

- Generation Quality & Speed:
 - -- Advanced distillation on ODE & SDE solvers
- Combined with Large Pre-trained Models:
 - -- Act as a re-generator for more diverse samples
- Cross-Modality Generation:
 - -- Aligning latent features from multiple modalities

Further Directions (Oct 2023):

- AIGC Era:
 - -- Generating highly reliable data for training enhancement
 - -- Generating Out-Of-Distribution samples for exploration and attack-defense
- Combined with other fields of ML:
 - -- Semi-supervised learning: generated data w./w.o labels,
 - -- Reinforcement learning: reinforcement-guided sampling
 - -- Domain Transfer: cross-domain generation

Useful Resources

• Paper source:

https://github.com/diff-usion/Awesome-Diffusion-Models

Codebases on huggingface:

https://huggingface.co/docs/diffusers/index

• Chinese version of detailed introduction:

https://spaces.ac.cn/author/1/5/

Great Labs:

https://scholar.google.com/citations?user=axsP38wAAAAJ&hl=zh-CN https://scholar.google.com/citations?user=Ao4gtsYAAAAJ&hl=en https://scholar.google.co.uk/citations?user=o_J2CroAAAAJ&hl=en

Finally: Thanks for listening

Paper: https://arxiv.org/abs/2209.02646

GitHub: https://github.com/chq1155/A-Survey-on-Generative-Diffusion-Model

Be a contributor, Involve in diffusion research, conduct diffusion applications!

Thanks for listening and discussion!