The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most $\{0.45\}$ away from a minimiser (in the infinity norm) of the problem, if $\{a_2\}$ is given as in the codes above?

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 751 seconds >

Step 1. Understand the Definition of a_{2}

The code defines:

- Compute_f(n):
 - o Initialize:

- \circ For m=1 to n:
 - Increment k
 - Update:

Compute_a_2(n):

$$ext{Output} = 2 \cdot ext{Compute_f}(n) + rac{1}{2} + 0.25^n$$

$$f(n) = \left(rac{1}{2}
ight)^3 + \left(rac{1}{2}
ight)^4 + \dots + \left(rac{1}{2}
ight)^{n+2} + \left[r - \left(r^3 + r^4 + \dots + r^{n+2}
ight)
ight]$$

The geometric series sum:

$$\sum_{j=3}^{n+2} \left(rac{1}{2}
ight)^j = rac{1}{4} - \left(rac{1}{2}
ight)^{n+2}$$

So,

$$f(n)=rac{1}{4}-\left(rac{1}{2}
ight)^{n+2}+\delta(n)$$

where

$$\delta(n) = r - \sum_{j=3}^{n+2} r^j$$

Then,

$$a_2(n) = 2f(n) + rac{1}{2} + \left(rac{1}{4}
ight)^n = 1 - \left(rac{1}{2}
ight)^{n+1} + \left(rac{1}{4}
ight)^n + 2\delta(n)$$

As $n o \infty$, the terms $\left(\frac{1}{2}\right)^{n+1}$ and $\left(\frac{1}{4}\right)^n$ vanish, and

$$\delta(\infty) = r - rac{r^3}{1-r}$$

Thus,

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + 2\delta(\infty) = 1 + 2\left(r - rac{r^3}{1-r}
ight)$$

Since r>0 , we have $a_2>1.$ In fact, r is extremely small (on the order of 10^{-45}), so:

$$a_2 = 1 + \varepsilon \quad ext{with} \quad 0 < \varepsilon \ll 1$$

Step 2. Formulate the Optimization Problem

We have two therapies:

- Therapy 1: dosage rate $a_1 = 1$
- Therapy 2: dosage rate $a_2 > 1$

Let $x_1, x_2 \geq 0$ be the treatment times. The total dosage is:

$$x_1 + a_2 x_2 = 1$$

We want to minimize the total treatment time:

$$T = x_1 + x_2$$

Since $a_2 > 1$, it's more efficient to use Therapy 2. The constraint becomes:

$$x_2 = \frac{1-x_1}{a_2}$$

Then,

$$T=x_1+rac{1-x_1}{a_2}=rac{1}{a_2}+x_1\left(1-rac{1}{a_2}
ight)$$

Since $a_2>1$, the coefficient of x_1 is positive $\Rightarrow T$ is minimized when $x_1=0$. Then:

$$x_2=rac{1}{a_2},\quad T=rac{1}{a_2}$$

So the unique minimizer is:

$$(x_1^*, x_2^*) = \left(0, \frac{1}{a_2}\right)$$

Step 3. Compare with the Provided Approximate Solution

The provided solution is:

$$(x_1, x_2) = (0.4, 0.6)$$

The true minimizer is:

$$(x_1^*,x_2^*)=\left(0,rac{1}{a_2}
ight)$$

Since $a_2=1+arepsilon$ with $arepsilon\ll 1$, we have:

$$rac{1}{a_2}pprox 1-arepsilon$$

So the minimizer is very close to (0,1).

We compute the infinity norm distance:

$$\|(0.4,0.6)-(0,1/a_2)\|_{\infty}=\max\left\{|0.4-0|,\left|0.6-rac{1}{a_2}
ight|
ight\}$$

Since $\frac{1}{a_2} \approx 1$, we get:

$$\left|0.6-rac{1}{a_2}
ight|pprox 0.4$$

So,

$$\|(0.4, 0.6) - (0, 1/a_2)\|_{\infty} pprox \max\{0.4, 0.4\} = 0.4$$

This is well within the tolerance of 0.45.

Step 4. Conclusion

The provided solution (0.4, 0.6) is within an infinity norm distance of approximately 0.4 from the true minimizer $(0, 1/a_2)$, which is less than 0.45.