ONLINE MASTERS IN **DATA SCIENCE**

DSC 255 - MACHINE LEARNING FUNDAMENTALS

DISTANCE METRICS

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Metric Spaces

Let \mathcal{X} be the space in which data lie.

A distance function $d: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$ is a **metric** if it satisfies these properties:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

Example 1

$$\mathcal{X} = \mathbb{R}^{\mathbf{m}}$$
 and $d(x, y) = \|x - y\|_{p}$

Check:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

Example 2

 \mathcal{X} = {strings over some alphabet} and d=edit distance

Check:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

A non-metric distance function

Let p, q be probability distributions on some set \mathcal{X} .

The Kullback-Leibler divergence or relative entropy between p, q is:

$$d(p,q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$