

	estimate Rating 1
	Estimate Rating done by users for moviel
-3-6	, DATE DATE
3.16	2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	1 -2.6 0 -0.6 0 ? 1.4 0 0 1.4 0 0.4 0 2 0 0 1.84 0.84 0 0.84 0 0 0 0-1.16 -2.16 -0.16 4 0 -1.4 0.6 0 1.6 0 0 0 0 1 0 2 0 5 0 0 0.7 -0.3 0.7 -1.3 0 0 0 0 -1.4 0 6 -1.6 0 0.4 0 0.4 0 0 0 0 -1.3 1.7
0	Sim (MI, other Movies, Rated by user 5) = ?. 2 movies with (15) = ? (15) =
	Sim(mi, m5) = -0.31 fare weighted Args living these
	Sim(m1, m6) = -0.59 Sim(m1, m1) = 1
	8im(m1, m2) = -0.18. Ratings for [?] => 0.41 *2 + 0.59 *3 = 2.6. 0.41+0-59
	classmate PAGE PAGE

> Recommender -> Recommendation user preferences future (predicting Explicit inflicit Content Based: Collaborative: Considers terrefuser fature users like Similar things. itens itens war war bedong movie gerre age, gender spoken language director, prod? house. 1. Content Based Is Heoring. user vs feature Matrix # Feature vs Movie Comedy, Action Comedy, Action user vs Movie. features come directly. 2. Collaborate le Based & Héring. user vs movie with ?

User vs feature & Feature vs Movie

User vs movie W/o ?/to fill? you keep guessing values for both Matrixs until you get closest Matrix Multipl? product Sare a form where a started. Applications of Recommend? system: News | Songs | . -. Eg. Synthetic Control. What I be Effect of "Gunlanted" classmapolicies if Implemented? you check for Countries is to you that already Implemented any

experience.

carrying out various tasks based on what you learnt. You might have heard about Bloom's Taxonomy. Bloom's You, as a reader or student of a particular course, learn something and then become equipped or capable of Taxonomy is a classification of the different objectives and skills that learners could achieve out of a particular

Fig. 1.1.1: Bloom's Taxonomy

the self-remember alone	Table 1.	1.2	Kinda II. Salah Marajak
Comparison Attributes	Structured Data	Semi-structured Data	Unstructured Data
Volume of Data	Low	Medium	High
Processing Complexity	Low	Medium	High
Data generated by	Humans and Machines	Machines	Humans
Data usually stored in	Relational Databases	Textual files	Binary files
Patterns and Schema	Fixed	Flexible	Random
pecialised Tools	Not required	Not required	Required

Table 1.1.3

		4010		
Comparison Attribute	Descriptive Analytics	Diagnostic Analytics	Predictive Analytics	Prescriptive Analytics
Complexity	Least	Medium	High	Highest
Time requirement to produce results	Low	Medium	High	Very High
Value of results	Short Term	Medium Term	Long Term	Very long term
Data enrichment level	Data	Information	Knowledge	Wisdom
Analytics Frequency	Most Common	Frequent	Not often	Rare

	Table 1.2.1	
Comparison Attribute	Supervised Learning	Unsupervised Learning
Training Dataset Contains	Both input and output	Only input
Used for	Classification and Prediction	Finding patterns and understanding data
Training Data	Is Labelled	Not labelled
Number of targets	Known beforehand	Not known
Feedback from user	Provided	Not provided
Complexity	High	Low

Table 1.2.2 Subset of #1

Comparison Attribute	Machine Learning	Artificial Intelligence
Focus	Learn from data	Solve complex problems
Complexity	Low	High
Scope	Narrow	Broad
Human interaction	Minimal	High

Comparison Attribute	Machine Learning	Data Mining
Building a trained model	Required	Not required
Human effort required	Only for building model	For extracting information from data
Use of specific algorithms	Frequent	Rare
Accuracy	High	Low
Tasks carried out by	Machines	Humans
Self-learning	Yes	No

Challenges in Machine Learning 1. Data Labelling 2. Shortage of Experts 3. Obtaining massive training data sets 4. Hard to explain problems and results 5. Limited possibilities to reuse a model 6. Bias in data and algorithm

Fig. 1.3.1 : Challenges in Machine Learning not everything is correct

Algorithm Name	Bias	Variance
Linear Regression	High	Low
Decision Tree	Low	High
Bagging	Low	High
Random Forest	Low	High

1.6.5 Characteristics (Detection) of a High Bias Model

Characteristics of a high bias model are as following.

- 1. Failure to capture proper data trends
- 2. Low training accuracy
- Potential towards underfitting 4. More generalised or overly simplified

(Copyright No. L-98904/2021)

8. High error rate

1.6.6 Characteristics (Detection) of a High Variance Model

Characteristics of a high variance model are as following.

- 1. Noise in the data set
- 2. Low testing accuracy
- 3. Potential towards overfitting
- 4. Complex models
- 5. Trying to put all data points as close as possible

Simple linear regression	multiple linear regression
1 independent variable (X) 1 dependent variable (Y)	n independent variable (X1, X2,) 1 dependent variable (Y)
Y=mX+c	$y = b_0 + b_1^* x_1 + b_2^* x_2 + + b_n^* x_n$
only one relationship (X,Y)	more than 1 relationship. between (X1,Y); (X2,Y) between dependent & independent & X1,X2; X1,X3 between 2 independent.
 Y increases by factor of m if X increases by 1 Y = c or intercept if X=0 	 Y increases by factor of b1 if X1 increases by 1 keeping X2 constant Y increases by factor of b2 if X2 increases by 1 keeping X1 constant Y = a or b0 if all independent variables are 0

- Adding more independent variables to a multiple regression procedure does not mean the regression will be "better" or offer better predictions; in fact it can make things worse. This is called OVERFITTING.
- The addition of more independent variables creates more relationships among them. So not only are the independent variables potentially related to the dependent variable, they are also potentially related to each other. When this happens, it is called MULTICOLLINEARITY.
- The ideal is for all of the independent variables to be correlated with the dependent variable but NOT with each other.

Multiple Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon$$
linear parameters error

Multiple Regression Equation

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

error term assumed to be zero

一日 一	Idair	
A Ademikuto	Logistic Regression	NAS
Comparison Atmibus		il in and non linear dank
Cood for	Linear classification	Both linear and non-linear classification
G000 101		
Decision houndary	Multiple	One (best one)
Decision boardary		
Annroach	Statistical	Geometrical
	Comparatively higher	Comparatively Lower
Errors		

As in case of SVM, consider the two decision boundaries and a hyperplane. Your objective is to consider the po that are within the decision boundary line. The best fit line (or regression line) is the hyperplane that he maximum number of points. Assume that the decision boundaries are at any distance, say 'a', from the hyperp So, these are the lines that you draw at distance '+a' and '-a' from the hyperplane. Based on SVM, the equation the hyperplane is as following.

$$Y = wx - b$$

$$wx - b = a$$

$$wx - b = -a$$

Thus, any hyperplane that satisfies SVR should satisfy $-a \le wx - b \le a$ Your goal is to decide a decision boundary at 'a' distance from the original hyperplane such that data closest to the hyperplane or the support vectors are within that boundary line.

Table 4.6.1

Comparison Attribute	One vs One (OvO)	One vs Rest (OvR)
Speed	Slower than OvR	Faster than OvO
Computation Complexity	High	Low
Suitable for	Algorithms that don't scale	Algorithms that scale
No. of binary datasets or models for C classes	<u>C × (C - 1)</u> 2	C
Interpretability	Low	High
Used	Less commonly	More Commonly

Table 3.1.1

Bagging	Boosting
Parallelly	Sequentially
Equal weight	Adjusted weights
Variance	Bias
Addressed	Not addressed
Same type	Different types
	Parallelly Equal weight Variance Addressed

CA.5 GAIN RATIO= GAIN/ SPLIT INFO

CART .. GINI INDEX

CHANGE IN PIS MEN DATA FIS CHANGE

E LINK ■ The distance matrix is, AVG[dist(P3,P6),P1]

$$dist((P3,P6),P1) = \frac{1}{2} (dist(P3,P1) + dist(P6,P)$$

$$= \frac{1}{2} (0.22 + 0.23)$$

$$= \frac{1}{2} (0.45)$$

$$= 0.23$$

www.anuradhabhatia.com

Single Linkage	This is the distance between members of the two clusters.
Complete Linkage	This is the distance between that are farthest apart.
Average Linkage	This method involves loo distances between all pairs a all of these distances. This i UPGMA - Unweighted Pair Averaging.

