BST 140.752 Midterm exam

printed name

Assumptions

- $Y = \alpha + X_1\beta_1 + X_2\beta_2 + \epsilon = X\beta + \epsilon$ where $X = [J \ X_1 \ X_2]$ and J is a vector of ones.
- Y is $n \times 1$.
- X_1 is a full column rank $n \times p_1$ matrix.
- X_2 is a full column rank $n \times p_2$ matrix.
- $\epsilon \sim N(0, \sigma^2 I)$.
- $\bullet \ \, X_1'X_2=0 \,\, {\rm and} \,\, X_1'J=X_2'J=0.$

Questions

- 1. Argue that the empirical correlation between any column of X_1 and any column of X_2 is 0 and that the mean of the columns of X_1 are zero.
- 2. Show that $\hat{\alpha}$, $\hat{\beta}_1$ and $\hat{\beta}_2$ are all independent of one and another and derive their variances.
- 3. Assume that σ^2 is known. Derive a Chi-squared test that $\beta_1=0$. Show that it doesn't depend on X_2 .
- 4. An ellipse centered at the point $v \in \mathbb{R}^k$ is defined as the solutions $x \in \mathbb{R}^k$ to the equation

$$(x - v)'A^{-1}(x - v) = 1$$

The eigenvalues of A determine the length of the axes, by the way. Use the F-test of the general linear hypothesis $H_0: K\beta_1 = m$ to derive a confidence ellipse for β_1 .

- 5. Suppose that you had a full rank design matrix $W=[J\ W_1\ W_2]$ where W_1 and W_2 are $n\times p_1$ and $n\times p_2$ respectively. Derive a linear transformation that gets you from W to a design matrix satisfying all of the qualities of X. Specifically that $X_1'J=X_2'J=0$ and $X_1'X_2=0$.
- 6. Give a setting where, by virtue of the design of an experiment, that X_1 would be exactly or nearly uncorrelated with X_2 .