

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年3月25日 (25.03.2004)

PCT

(10)国際公開番号
WO 2004/024968 A1

(51)国際特許分類:

C22C 33/02

(71)出願人(米国を除く全ての指定国について): 核燃料サイクル開発機構 (JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE) [JP/JP]; 〒319-1184 茨城県那珂郡東海村 村松4番地49 Ibaraki (JP).

(21)国際出願番号:

PCT/JP2003/010082

(22)国際出願日:

2003年8月7日 (07.08.2003)

(25)国際出願の言語:

日本語

(26)国際公開の言語:

日本語

(30)優先権データ:

特願2002-231781 2002年8月8日 (08.08.2002) JP

(72)発明者; および

(75)発明者/出願人(米国についてのみ): 大塚智史 (OHTSUKA,Satoshi) [JP/JP]; 〒311-1313 茨城県東茨城郡大洗町成田町4002 核燃料サイクル開発機構大洗工学センター内 Ibaraki (JP). 鶴飼重治 (UKAI,Shigeharu) [JP/JP]; 〒311-1313 茨城県東茨城郡大洗町成田町4002 核燃料サイクル開発機構大洗工学センター内 Ibaraki (JP). 皆藤威二 (KAITO,Takeji) [JP/JP]; 〒

[続葉有]

(54) Title: METHOD FOR PRODUCING DISPERSED OXIDE REINFORCED FERRITIC STEEL HAVING COARSE GRAIN STRUCTURE AND BEING EXCELLENT IN HIGH TEMPERATURE CREEP STRENGTH

(54)発明の名称: 粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法

heat treatment and the production of a dispersed oxide reinforced ferritic steel which has a coarse and equiaxed grain structure being effective for improving the high temperature creep strength thereof.

(57)要約: 元素粉末または合金粉末とY₂O₃粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理としてA_c₃変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下の除冷熱処理を施すことにより、質量%で、Cが0.05~

(57) Abstract: A method for producing a dispersed oxide reinforced ferritic steel having a chemical composition in mass %: C: 0.05 to 0.25 %, Cr: 8.0 to 12.0 %, W: 0.1 to 4.0 %, Ti: 0.1 to 1.0 %, Y₂O₃: 0.1 to 0.5 %, and the balance: Fe and inevitable impurities and containing Y₂O₃ particles dispersed therein, wherein an element powder or an alloy powder is mixed with Y₂O₃ powder, the resultant mixture is subjected to mechanical alloying, the product is solidified through hot extruding, and then, as a final heat treatment, is heated to and kept at a temperature of its A_c₃ transformation temperature or higher, followed by slow cooling, which comprises using a TiO₂ powder as the element powder of a Ti component to be mixed prior to the mechanical alloying, or adding a Fe₂O₃ powder additionally, to thereby suppress the bonding of Ti with C and prevent the reduction of the C concentration in the matrix. The method allows the securement of the $\alpha \rightarrow \gamma$ transformation during

[続葉有]

BEST AVAILABLE COPY

WO 2004/024968 A1

311-1313 茨城県 東茨城郡大洗町 成田町 4002 核燃料サイクル開発機構 大洗工学センター 内 Ibaraki (JP).
藤原 優行 (FUJIWARA, Masayuki) [JP/JP]; 〒651-2271
兵庫県 神戸市西区高塚台 1 丁目 5-5 株式会社コベルコ科研 内 Hyogo (JP).

(74) 代理人: 清水 千春, 外 (SHIMIZU, Chiharu et al.); 〒104-0061 東京都中央区銀座 8 丁目 16 番 13 号 中銀・城山ビル 4 階 Tokyo (JP).

(81) 指定国 (国内): CN, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:
— 國際調査報告書

2 文字コード及び他の略語については、定期発行される各 PCT ガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

O. 25%、Cr が 8.0 ~ 12.0%、W が 0.1 ~ 4.0%、Ti が 0.1 ~ 1.0%、Y₂O₃ が 0.1 ~ 0.5%、残部が Fe および不可避不純物からなる Y₂O₃ 粒子を分散させたフェライト系酸化物分散強化型鋼を製造するに際して、機械的合金化処理で混合する Ti 成分の元素粉末として TiO₂ 粉末を使用するか、あるいは、Fe₂O₃ 粉末を追加的に添加することにより、Ti と C との結合を抑制してマトリックス中の C 濃度が低下しないようにする。これにより、熱処理時の $\alpha \rightarrow \gamma$ 変態を確保し、高温クリープ強度の改善に有効な粗大化かつ等軸化した結晶粒組織を有するフェライト系酸化物分散強化型鋼が製造できる。

明 紹 田 書

粗大結晶粒組織を有する高温クリープ強度に優れた フェライト系酸化物分散強化型鋼の製造方法

技術分野

本発明は、高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法に関し、さらに詳しくは、鋼中の過剰酸素量を調整して粗大結晶粒組織をもたらすことにより、優れた高温クリープ強度を付与することができるフェライト系酸化物分散強化型鋼の製造方法に関するものである。

本発明のフェライト系酸化物分散強化型鋼は、特に高温での強度が求められる高速増殖炉燃料被覆管用材料、核融合炉第一壁材料、火力発電用材料等に好ましく利用できる。

背景技術

優れた高温強度と耐中性子照射特性が要求される原子炉、特に高速炉の構成部材には、従来よりオーステナイト系ステンレス鋼が用いられてきたが、耐スエリング特性などの耐照射特性に限界がある。一方、フェライト系ステンレス鋼は耐照射特性に優れるものの、高温強度が低い欠点がある。

そこで、耐照射特性と高温強度特性に優れた材料として、フェライト系鋼中に微細な酸化物粒子を分散させたフェライト系酸化物分散強化型鋼が提案されている。またこのフェライト系酸化物分散強化型鋼の強度を向上させるためには、鋼中にTiを添加して酸化物分散粒子をさらに微細分散化することが有効であることも知られている。

特に、フェライト系酸化物分散強化型鋼の高温クリープ強度の改善には、粒界すべりを抑制するため結晶粒の大粒径化および等軸晶化を図ることが有効である。かような粗大結晶粒組織を得る方法として、 A_{c_3} 変態点以上に加熱保持する焼ならし熱処理により十分な $\alpha \rightarrow \gamma$ 変態量を確保して α 相から γ 相へ相変態させることによりオーステナイト化し、その後に、 γ 相から α 相へ相変態させてフェライト組織が得られるよう十分遅い速度、すなわちフェライト形成臨界速度以下で除冷する方法が提案されている（例えば特開平11-343526号公報参照）。

しかしながら、フェライト系酸化物分散強化型鋼にTiを添加した場合には、Tiがマトリックス中のCと結合して炭化物を形成する結果、マトリックス中のC濃度が低下し、焼ならし熱処理時に十分な $\alpha \rightarrow \gamma$ 変態量が確保できないという問題がある。

すなわち、上述したように、粗大結晶粒組織を得るためのフェライト系酸化物分散強化型鋼の熱処理は、 A_{c_3} 変態点以上に加熱保持する焼ならし熱処理を施すことによって γ 相とした後、フェライト形成臨界速度以下で除冷するものであるが、Tiはマトリックス中の γ 相生成元素であるCと親和力が強いため、TiとCとが結合して炭化物を形成し、その結果マトリックス中のC濃度が低下すると、 A_{c_3} 変態点以上で熱処理しても γ 相の単相とならず、未変態の α 相が残留する。そのため、 γ 相からフェライト形成臨界速度以下、例えば100°C/時間以下で除冷しても残留 α 相の存在により γ 相から変態した α 相は細粒組織となってしまう。かのような細粒組織は、高温強度の改善には寄与しない。

発明の開示

そこで本発明は、フェライト系酸化物分散強化型鋼にTiを添加した場合でも、TiとCとの結合を抑制してマトリックス中のC濃度を維持

し熱処理時に十分な $\alpha \rightarrow \gamma$ 変態を確保することにより、高温クリープ強度の改善に有効な粗大化した結晶粒組織を有するフェライト系酸化物分散強化型鋼を製造できる方法を提供することを目的とする。

すなわち本発明は、元素粉末または合金粉末と Y_2O_3 粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理として A_{c3} 変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下の除冷熱処理を施すことにより、質量%で、Cが0.05～0.25%、Crが8.0～12.0%、Wが0.1～4.0%、Tiが0.1～1.0%、 Y_2O_3 が0.1～0.5%、残部がFeおよび不可避不純物からなる Y_2O_3 粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、機械的合金化処理に際して混合するTi成分の元素粉末として TiO_2 粉末を使用することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法である。（なお、以下の本明細書中の記載において「%」はいずれも「質量%」を表すものとする。）

上述したごとき本発明によれば、原料粉末として金属Ti粉末に代えて酸化物である TiO_2 粉末を使用することにより、TiがCと結合して炭化物を形成するのを予め阻止することができるため、マトリックス中のC濃度を低下させることができない。この結果、 A_{c3} 変態点以上の熱処理時に十分な $\alpha \rightarrow \gamma$ 変態が生じて γ 単相とすることができます、さらにそれに続くフェライト形成臨界速度以下で除冷する熱処理を行うことにより粗大化結晶粒組織を有する α 相を形成することができ、高温クリープ強度の向上をもたらすことができる。

さらに本発明は、元素粉末または合金粉末と Y_2O_3 粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理として A_{c3} 変態点以上への加熱保持とそれに続くフェライト形成臨界

速度以下での除冷熱処理を施すことにより、Cが0.05～0.25%、Crが8.0～12.0%、Wが0.1～4.0%、Tiが0.1～1.0%、 Y_2O_3 が0.1～0.5%、残部がFeおよび不可避不純物からなる Y_2O_3 粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、鋼中の過剰酸素量（鋼中の酸素量から Y_2O_3 中の酸素量を差し引いた値）が

$$0.67\text{Ti} - 2.7\text{C} + 0.45 > \text{Ex.0} > 0.67\text{Ti} - 2.7\text{C} + 0.35$$

（式中、Ex.0：鋼中の過剰酸素量、質量%）

Ti：鋼中のTi含有量、質量%

C：鋼中のC含有量、質量%）

となるように機械的合金化処理に際して混合する原料粉末として Fe_2O_3 粉末を追加的に添加することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法である。

上述したごとき本発明によれば、原料粉末として不安定酸化物である Fe_2O_3 粉末を追加的に添加して鋼中の過剰酸素量を所定の範囲とすることにより、TiはCと結合して炭化物を形成せずに、過剰酸素と結合して酸化物を形成するため、マトリックス中のC濃度を低下させることができない。この結果、 Ac_3 変態点以上での熱処理時に十分な $\alpha \rightarrow \gamma$ 変態が生じて γ 単相とすることができます、さらにそれに続くフェライト形成臨界速度以下で除冷する熱処理を行うことにより粗大化結晶粒組織を有する α 相を形成することができ、高温クリープ強度の向上をもたらすことができる。

図面の簡単な説明

図1は、試作材T14、MM13、T3、T4の光学顕微鏡金相写真

である。

図2は、試作材T5、T6、T7の光学顕微鏡金相写真である。

図3は、各試作材のTi含有量と過剰酸素量(Ex.O)との関係を示すグラフである。

図4は、図3のグラフに結晶粗大化の条件式を満たす領域を斜線部分で示したグラフである。

図5は、試作材T14、T3、T7の700°Cにおける高温クリープ破断試験を示すグラフである。

発明を実施するための最良の形態

以下に本発明のフェライト系酸化物分散強化型鋼の化学成分およびその限定理由について説明する。

Crは、耐食性の確保に重要な元素であり、8.0%未満となると耐食性の悪化が著しくなる。また12.0%を超えると、韌性および延性的低下が懸念される。この理由から、Cr含有量は8.0~12.0%とする。

Cの含有量は以下の理由から決定される。本発明は、一旦Ac₃変態点以上の熱処理を施すことによるα→γ変態とそれに続く除冷熱処理により、等軸かつ粗大な結晶粒組織を得るものである。すなわち、等方的かつ粗大な結晶粒組織を得るためには、熱処理によりα→γ変態を生じさせることが不可欠である。

Cr含有量が8.0~12.0%の場合に、α→γ変態を生じさせるためには、Cを0.05%以上含有させる必要がある。このα→γ変態は1000~1150°C×0.5~1時間の熱処理により生じる。C含有量が高くなるほど炭化物(M₂₃C₆、M₆C等)の析出量が多くなり高温強度が高くなるが、0.25%より多量に含有すると加工性が悪く

なる。この理由から、C含有量は0.05～0.25%とする。

Wは、合金中に固溶し高温強度を向上させる重要な元素であり、0.1%以上添加する。W含有量を多くすれば、固溶強化作用、炭化物(M₂₃C₆、M₆C等)析出強化作用、金属間化合物析出強化作用により、クリープ破断強度が向上するが、4.0%を超えるとδフェライト量が多くなり、かえって強度も低下する。この理由から、W含有量は0.1～4.0%とする。

Tiは、Y₂O₃の分散強化に重要な役割を果たし、Y₂O₃と反応してY₂Ti₂O₇またはY₂TiO₅という複合酸化物を形成して、酸化物粒子を微細化させる働きがある。この作用はTi含有量が1.0%を超えると飽和する傾向があり、0.1%未満では微細化作用が小さい。この理由から、Ti含有量は0.1～1.0%とする。

Y₂O₃は、分散強化により高温強度を向上させる重要な添加物である。この含有量が0.1%未満の場合には、分散強化の効果が小さく強度が低い。一方、0.5%を超えて含有すると、硬化が著しく加工性に問題が生じる。この理由から、Y₂O₃の含有量は0.1～0.5%とする。

本発明によるフェライト系酸化物分散強化型鋼の製造方法は、金属元素粉末または合金粉末さらには酸化物粉末といった原料粉末を目標組成となるように調合し、いわゆる機械的合金化処理(メカニカルアロイング)によって合金化する。この合金化粉末を押出用カプセルに充填した後、脱気、密封して熱間押出しを行って固化し、例えば押出棒材とする。

得られた熱間押出棒材は、最終熱処理として、A_c₃変態点以上の加熱保持とそれに続くフェライト形成臨界速度以下の除冷熱処理を施す。除冷熱処理は通常は炉内で徐々に冷却する炉冷熱処理とすることが可能、フェライト形成臨界速度以下の冷却速度は、一般的には100℃

／時間以下、好ましくは 50℃／時間以下とすることができます。

本発明のフェライト系酸化物分散強化型鋼の場合、 Ac_3 変態点は約 900～1200℃程度であり、C量が 0.13% の場合には Ac_3 変態点は約 950℃である。

本発明においては、鋼中の Ti が C と結合して炭化物を形成し、マトリックス中の C濃度が低下しないようにする手段として、機械的合金化処理に際して混合する原料粉末として、金属 Ti 粉末に代えて TiO_2 粉末を使用する方法が採用できる。この場合、 TiO_2 は Ti のように C と結合することではなく、その結果、マトリックス中の C濃度の低下を抑制することができる。 TiO_2 粉末の混合量は、Ti 含有量として 0.1～1.0% の範囲内となるようにすればよい。

さらに本発明においては、鋼中の Ti が C と結合して炭化物を形成し、マトリックス中の C濃度が低下しないようにする手段として、機械的合金化処理に際して混合する原料粉末として、不安定酸化物である Fe_2O_3 粉末を追加的に混合して鋼中の過剰酸素量を増加させる方法も採用することができる。この場合、Ti は Fe_2O_3 由来の鋼中の過剰酸素と結合して酸化物を形成し、C と結合して炭化物を形成することができないから、マトリックス中の C濃度の低下を抑制することができる。

Fe_2O_3 粉末の混合量は、鋼中の過剰酸素量が

$$0.67\text{Ti} - 2.7\text{C} + 0.45 > \text{Ex. 0} > 0.67\text{Ti} - 2.7\text{C} + 0.35$$

(式中、Ex. 0 : 鋼中の過剰酸素量 (%))

Ti : 鋼中の Ti 含有量 (%)

C : 鋼中の C 含有量 (%)

となるようにする。かような過剰酸素量の上限および下限の設定理由を以下に説明する。

表 1 は、フェライト系酸化物分散強化型鋼試作材の目標組成と成分の

特徴をまとめて示している。

【表 1】

試作材番号	目標組成	成分の特徴
MM13	0.13C-9Cr-2W-0.20Ti-0.35Y ₂ O ₃	基本組成
T14	0.13C-9Cr-2W-0.20Ti-0.35Y ₂ O ₃	基本組成
T3	0.13C-9Cr-2W-0.20Ti-0.35Y ₂ O ₃ -0.17Fe ₂ O ₃	Fe ₂ O ₃ 添加
T4	0.13C-9Cr-2W-0.50Ti-0.35Y ₂ O ₃	Ti増加
T5	0.13C-9Cr-2W-0.50Ti-0.35Y ₂ O ₃ -0.33Fe ₂ O ₃	Ti増加 Fe ₂ O ₃ 添加
T6	0.13C-9Cr-2W-0.125TiO ₂ -0.35Y ₂ O ₃	TiO ₂ 添加 TiO ₂ /Y ₂ O ₃ =1/1
T7	0.13C-9Cr-2W-0.25TiO ₂ -0.35Y ₂ O ₃	TiO ₂ 添加 TiO ₂ /Y ₂ O ₃ =2/1

各試作材とも、元素粉末あるいは合金粉末と酸化物粉末を目標組成に調合し、高エネルギーアトライター中に装入後、99.99%のAr雰囲気中で攪拌して機械的合金化処理を行った。アトライターの回転数は約220 rpm、攪拌時間は約48 hrとした。得られた合金化粉末を軟鋼製カプセルに充填後、高温真空脱気して約1150～1200°C、7～8:1の押出比で熱間押出しを行い、熱間押出棒材を得た。

表1中、試作材MM13とT14が基本組成であり、T3はT14の組成にFe₂O₃を添加することにより過剰酸素量を増加させた試料、T4はTi添加量を増加させた試料、T5はTi添加量を増加するとともにFe₂O₃を添加して過剰酸素量を増加させた試料、T6とT7はT14の組成におけるTiを化学的に安定な酸化物(TiO₂)の形態でそれぞれ0.125Ti、0.25Ti添加して過剰酸素量を増加させた試料である。

上記で得られた各試作材（熱間押出棒材）の成分分析結果を表2にまとめて示す。

ここで、過剰酸素量とは、化学成分の分析結果における試作材中の酸素量から分散酸化物（ Y_2O_3 ）中の酸素量を差し引いた値である。

【表 2】

區別	化學成分 (wt%)												
	C	S i	Mn	P	S	N i	Cr	W	T i	Y	O	N	A r
基本組成	0.11	~	<0.20	<0.20	<0.02	<0.20	8.5	1.8	0.18	0.26	0.15	~	<0.07
目標範囲	0.15						9.5	2.2	0.22	0.29	0.25		
目標值	0.13	--	--	--	--	9.00	2.00	0.20	0.275	0.20	--	--	
MM 1 3	0.14	<0.005	<0.01	0.001	0.003	0.01	8.82	1.94	0.20	0.27	0.21	0.0093	0.005
T 1 4	0.14	<0.005	<0.01	0.002	0.003	0.04	8.80	1.96	0.21	0.26	0.18	0.013	0.005
T 3	0.13	<0.005	<0.01	0.002	0.003	0.01	8.75	1.93	0.21	0.27	0.22	0.012	0.005
T 4	0.13	<0.005	<0.01	0.002	0.003	0.01	8.72	1.93	0.46	0.27	0.18	0.009	0.005
T 5	0.13	<0.005	<0.01	0.002	0.003	0.01	8.75	1.93	0.46	0.27	0.24	0.011	0.005
T 6	0.14	<0.005	<0.01	0.002	0.003	0.01	8.54	1.87	0.09	0.27	0.24	0.011	0.005
T 7	0.14	<0.005	<0.01	0.003	0.003	0.01	8.50	1.90	0.14	0.27	0.29	0.014	0.006

これらの試作材について、最終熱処理として、焼ならし熱処理（A c₃ 変態点以上での加熱保持：1050°C × 1 h r）とそれに続く炉冷熱処理（フェライト形成臨界速度以下の除冷熱処理：37°C/h r の速度で1050°Cから600°Cまで除冷）を施した。

熱処理後の各試作材の金相組織の光学顕微鏡写真を図1（T14、M13、T3、T4）と図2（T5、T6、T7）に示す。これらを観察してわかるように、炉冷熱処理により結晶粒が十分成長している試料と成長していない試料がある。結晶粒成長が生じているT3、T6、T7は、基本組成にFe₂O₃を添加した試料（T3）、およびTiに代えてTiO₂を添加した試料（T6、T7）である。これらの試料においては、鋼中のTiと化学結合する過剰酸素量が十分に存在するため（T3）、あるいはTiではなくTiO₂として存在するため（T6、T7）、炭化物TiCの形成によるマトリックス中のC濃度の減少を抑えられる結果、熱処理時における $\alpha \rightarrow \gamma$ 変態、その後の炉冷熱処理での結晶粒成長が効果的に生じると考えられる。

一方、結晶粒成長の少ないT4とT5は、基本組成よりTi添加量を增量させた試料（T4）、およびFe₂O₃を添加しているがTi添加量も增量させた試料（T5）である。これらの試料においては、多量のTiがCと化学結合して炭化物を形成するためマトリックス中のC濃度が極度に減少してしまう（T4）、あるいはFe₂O₃を添加しても多量のTiとCとの化学結合を阻止するほどに十分の過剰酸素量が存在していない（T5）と考えられる。

なお、M13とT14はいずれも基本組成であり組成的には同等のものであるが、M13（過剰酸素量：0.137%）は結晶粒が成長しており、T14（過剰酸素量：0.110%）は結晶粒成長が少なくなっている。この理由は、組成が同じであっても機械的合金化処理やそ

の後の熱処理等の過程で、鋼中に混入する酸素量が微妙に相違し、MM13は鋼中のTiと化学結合するに十分な過剰酸素量が存在したためと考えられる。

図3のグラフは、各試作材のTi含有量と過剰酸素量との関係を示している。このグラフから、Ex. O' > 0.61 Ti' [Ex. O' : 過剰酸素量(%)、Ti' : 鋼中のTi含有量(%)] の関係を満たしている試作材MM13、T3、T6、T7については、炉冷熱処理により結晶粒の粗大化が生じていることがわかる。

以上の結果はすべて鋼中の炭素量が約0.13%の場合の結果である。上記のEx. O' > 0.61 Ti' をモル量に単位換算すると

$$\text{Ex. O}' (\text{mol/g}) > 1.86 \text{ Ti}' \equiv 2 \text{ Ti}' (\text{mol/g})$$

となり、鋼中のすべてのTiがTiO₂を形成できるだけの過剰酸素量が存在した場合(マトリックス中の残存C量が0.13%以上の場合)には、結晶粒の粗大化が生じると考えられる。

上述の結果から、本発明のフェライト系酸化物分散強化型鋼では、TiO₂およびTiCの形成を考慮したマトリックス中の残存C量が0.13% ($1.08 \times 10^{-4} \text{ mol/g}$) 以上であれば、熱処理時に十分な $\alpha \rightarrow \gamma$ 変態が生じて炉冷熱処理により結晶粒の粗大化が生じると考えられる。TiO₂およびTiCの形成を考慮したマトリックス中の残存C量(C'r mol/g)は次式のように表わされる。

$$C'r = C' - (Ti' - 0.5 Ex. O')$$

ここで、C'r (mol/g) : TiO₂およびTiCの形成を考慮したマトリックス中の残存C量

C' (mol/g) : 鋼中のTi含有量

Ti' (mol/g) : 鋼中のC含有量

Ex. O' (mol/g) : 鋼中の過剰酸素量

である。

よって、結晶粒粗大化の条件式は下式となる。

$$C'_{\text{r}} = C' - (Ti' - 0.5 \times Ex. O') \geq 1.08 \times 10^{-4}$$

単位を mol/g から % に変換して整理すると上式は

$$Ex. O > 0.67 Ti - 2.7 C + 0.35$$

となる。

過剰酸素は金属 Ti、 Y_2O_3 と結合して微細な複合酸化物を形成するとともに、マトリックス中の C と Ti の結合を抑制して、マトリック中に十分な C 量を確保する重要な元素である。しかし、 $0.67 Ti - 2.7 C + 0.45$ 以上の過剰酸素は、分散粒子の微細高密度化を著しく阻害する。また、過剰な酸素の混入は韌性の著しい低下を引き起こすとともに、少量の Si、Mn 等と介在物を形成しやすくなるため、過剰酸素量の上限値を $0.67 Ti - 2.7 C + 0.45$ とする。

図 4 のグラフは、上述した結晶粒粗大化の条件式の上限と下限の範囲を斜線部分で表し、各試作材の実測値をプロットしたものである。条件式は C 量を 0.13% として計算しているが、結晶粒が成長した試作材 MM13、T3、T6、T7 はすべて斜線範囲内に位置し、結晶粒が成長しなかった試作材 T14、T5、T4 はすべて斜線範囲外に位置しており、この条件式が妥当であることを示している。なお、図 4 のグラフ中で試作材番号が記されていないプロットについても、斜線範囲内に位置する試作材では結晶粒の粗大化が生じており、斜線範囲外に位置するものでは結晶粒の粗大化が生じていないことが確認されている。

以上詳述した理由により、本発明において、機械的合金化処理に際して混合する原料粉末として Fe_2O_3 粉末を追加的に混合して鋼中の過剰酸素量を増加させ場合には、鋼中の過剰酸素量が結晶粗大化の条件式

$$0.67 Ti - 2.7 C + 0.45 > Ex. O > 0.67 Ti - 2.7 C + 0.35$$

となるように Fe_2O_3 粉末を添加する。

試験例

〈高温クリープ破断試験〉

試作材 T 3 と T 7 に対して、本発明による熱処理、すなわち、焼ならし熱処理 (A_c₃ 変態点以上での加熱保持: 1050°C × 1 h r) とそれに続く炉冷熱処理 (フェライト形成臨界速度以下の除冷熱処理: 37°C/h r の速度で 1050°C から 600°C まで除冷) を施して、結晶粒を粗大化させた試料 (T 3 (F C 材)、T 7 (F C 材)) を準備した。

これとは別に、試作材 T 1' 4, T 3, T 7 に対して、焼ならし熱処理 (1050°C × 1 h r・空冷(AC)) とそれに続く焼戻し熱処理 (780°C × 1 h r・空冷(AC)) を施して、結晶粒が微細となっている試料 (T 1' 4 (N T 材)、T 3 (N T 材)、T 7 (N T 材)) を準備した。

これらの試料について、試験温度 700°C で単軸クリープ破断試験を行った結果を図 5 のグラフに示す。 Fe_2O_3 粉末を追加的に混合して過剰酸素量を増加させるとともに、炉冷熱処理で結晶粒を粗大化させた T 3 (F C 材) と、金属 Ti 粉末に代えて TiO_2 を粉末を使用するとともに、炉冷熱処理で結晶粒を増大させた T 7 (F C 材) が、その他の試作材に比べて高温クリープ強度が向上していることが図 5 のグラフからわかる。

産業上の利用可能性

以上説明したところからわかるように本発明によれば、フェライト系酸化物分散強化型鋼に Ti を添加した場合でも、Ti と C との結合を抑制してマトリックス中の C 濃度を維持し熱処理時に十分な $\alpha \rightarrow \gamma$ 変態を確保することができ、これにより粗大化した結晶粒を生成できる結果、

優れた高温クリープ強度を有するフェライト系酸化物分散強化型鋼を得
ることができる。

請求の範囲

1. 元素粉末または合金粉末と Y_2O_3 粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理として A_{C_3} 変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下の除冷熱処理を施すことにより、質量%で、Cが0.05~0.25%、Crが8.0~12.0%、Wが0.1~4.0%、Tiが0.1~1.0%、 Y_2O_3 が0.1~0.5%、残部がFeおよび不可避不純物からなる Y_2O_3 粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、機械的合金化処理に際して混合するTi成分の元素粉末として TiO_2 粉末を使用することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法。

2. 元素粉末または合金粉末と Y_2O_3 粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理として A_{C_3} 変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下の除冷熱処理を施すことにより、質量%で、Cが0.05~0.25%、Crが8.0~12.0%、Wが0.1~4.0%、Tiが0.1~1.0%、 Y_2O_3 が0.1~0.5%、残部がFeおよび不可避不純物からなる Y_2O_3 粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、鋼中の過剰酸素量（鋼中の酸素量から Y_2O_3 中の酸素量を差し引いた値）が

$$0.67\text{Ti} - 2.7\text{C} + 0.45 > \text{Ex.0} > 0.67\text{Ti} - 2.7\text{C} + 0.35$$

（式中、Ex.0：鋼中の過剰酸素量、質量%

Ti：鋼中のTi含有量、質量%

C : 鋼中のC含有量、質量%)

となるように機械的合金化処理に際して混合する原料粉末としてFe₂O₃粉末を追加的に添加することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法。

FIG. 1

T1.4

MM1.3

T3

T4

FIG. 2

T6

T5

T7

FIG. 3

FIG. 4

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/10082

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C22C33/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C22C33/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-1996	Toroku Jitsuyo Shinan Koho	1994-2002
Kokai Jitsuyo Shinan Koho	1971-2002	Jitsuyo Shinan Toroku Koho	1996-2002

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0949346 A1 (COMMISSARIAT A L'ENERGIE ATOMIQUE), 13 October, 1999 (13.10.99), & JP 11-343526 A	1-2
Y	US 4963200 A (Doryokuro Kakunenryo Kaihatsu Jigyodan), 16 October, 1990 (16.10.90), & JP 01-272746 A	1-2

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier document but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
26 September, 2003 (26.09.03)Date of mailing of the international search report
07 October, 2003 (07.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

THIS PAGE BLANK (USPTO)

国際調査報告

国際出願番号 PCT/JP 03/10082

A. 発明の属する分野の分類(国際特許分類(IPC))

Int C17 C22C33/02

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int C17 C22C33/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年
 日本国公開実用新案公報 1971-2002年
 日本国登録実用新案公報 1994-2002年
 日本国実用新案登録公報 1996-2002年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	次頁参照	

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

26.09.03

国際調査報告の発送日

07.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

山本 一正

(印)

4K

7454

電話番号 03-3581-1101 内線 6729

国際調査報告

国際出願番号 PCT/JP 03/10082

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	E P 0 9 4 9 3 4 6 A 1 (COMMISSARIAT A L' ENERGIE ATOMIQUE E) 1999.10.13 & J P 1 1 - 3 4 3 5 2 6 A	1 - 2
Y	U S 4 9 6 3 2 0 0 A (Doryokuro Kakunenryo Kaihatsu Jigyodan) 1990.10.16 & J P 0 1 - 2 7 2 7 4 6 A	1 - 2

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)