Zero Knowledge Succinct Noninteractive ARguments of Knowledge

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 15, 2019

zkSNARKs

- Arguments
 - ZK proofs where soundness guarantee is required only against PPT provers
- Noninteractive
 - Proof consists of a single message from prover to verifier
- Succinct
 - Proof size is O(1)
 - Requires a trusted setup to generate a common reference string
 - CRS size is linear in size of assertion being proved

Bilinear Pairings

- Let G and G_T be two cyclic groups of prime order p
- In practice, G is an elliptic curve group and G_T is subgroup of $\mathbb{F}_{r^n}^*$ where r is a prime
- Let $G = \langle g \rangle$, i.e. $G = \{g^{\alpha} \mid \alpha \in \mathbb{Z}_p\}$
- A symmetric **pairing** is a efficient map $e: G \times G \mapsto G_T$ satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_p$, we have $e(g^{\alpha}, g^{\beta}) = e(g, g)^{\alpha\beta}$
 - 2. **Non-degeneracy**: e(g,g) is not the identity in G_T
- Finding discrete logs is assumed to be difficult in both groups
- Pairings enable multiplication of secrets

Computational Diffie-Hellman Problem

- The CDH experiment CDH_{A,G}(n):
 - 1. Run $\mathcal{G}(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n), and a generator $g \in G$.
 - 2. Choose a uniform $x_1, x_2 \in \mathbb{Z}_q$ and compute $h_1 = g^{x_1}, h_2 = g^{x_2}$.
 - 3. A is given G, q, g, h_1, h_2 and it outputs $h \in \mathbb{Z}_q$.
 - 4. Experiment output is 1 if $h = g^{x_1 \cdot x_2}$ and 0 otherwise.
- Definition: We say that the CDH problem is hard relative to G
 if for every PPT adversary A there is a negligible function negl
 such that

$$\Pr[CDH_{\mathcal{A},\mathcal{G}}(n)=1] \leq \operatorname{negl}(n).$$

Decisional Diffie-Hellman Problem

- The DDH experiment DDH_{A,G}(n):
 - 1. Run $\mathcal{G}(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n), and a generator $q \in G$.
 - 2. Choose a uniform $x, y, z \in \mathbb{Z}_q$ and compute $u = g^x, v = g^y$
 - 3. Choose a bit $b \stackrel{\$}{\leftarrow} \{0,1\}$ and compute $w = q^{bz+(1-b)xy}$
 - 4. Give the triple u, v, w to the adversary A
 - 5. \mathcal{A} outputs a bit $b' = \mathcal{A}(G, q, g, u, v, w)$
- Definition: We say that the DDH problem is hard relative to G if for all PPT adversaries A there is a negligible function negl such that

$$\left| \mathsf{Pr} \left[\mathcal{A} \left(G, q, g, g^{\mathsf{x}}, g^{\mathsf{y}}, g^{\mathsf{z}} \right) = 1 \right] - \mathsf{Pr} \left[\mathcal{A} \left(G, q, g, g^{\mathsf{x}}, g^{\mathsf{y}}, g^{\mathsf{x} \mathsf{y}} \right) = 1 \right] \right| \leq \mathsf{negl}(\textit{n})$$

• If G has a pairing, then DDH problem is easy in G

Some Exercises on Pairings

- A symmetric **pairing** is a efficient map *e* : *G* × *G* → *G_T* ⊂ *F*^{*}_{rⁿ} satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_p$, we have $e(g^{\alpha}, g^{\beta}) = e(g, g)^{\alpha\beta}$
 - 2. Non-degeneracy: e(g,g) is not the identity in G_T
- · Reduce the following expressions
 - $e(g^a, g) e(g, g^b)$
 - $e(g, g^a) e(g^b, g)$
 - $e(g^a, g^{-b}) e(u, v) e(g, g)^c$
 - $\prod_{i=1}^{m} e(g, g^{a_i})^{b_i}$
- Show that if e(u, v) = 1 then u = 1 or v = 1

Applications of Pairings

- Three-party Diffie Hellman key agreement
 - Three parties Alice, Bob, Carol have private-public key pairs $(a, g^a), (b, g^b), (c, g^c)$ where $G = \langle g \rangle$
 - Alice sends g^a to the other two
 - Bob sends g^b to the other two
 - Carol sends g^c to the other two
 - Each party can compute common key $K = e(g,g)^{abc} = e(g^b,g^c)^a = e(g^a,g^c)^b = e(g^a,g^b)^c$
- BLS Signature Scheme
 - Suppose $H: \{0,1\}^* \mapsto G$ is a hash function
 - Let (x, g^x) be a private-public key pair
 - BLS signature on message m is $\sigma = (H(m))^x$
 - Verifier checks that e(g, σ) = e(g^x, H(m))

Knowledge of Exponent Assumptions

Knowledge of Exponent Assumption (KEA)

- Let G be a cyclic group of prime order p with generator g and let $\alpha \in \mathbb{Z}_p$
- Given g,g^{α} , suppose a PPT adversary can output c,\hat{c} such that $\hat{c}=c^{\alpha}$
- The only way he can do so is by choosing some β ∈ Z_p and setting c = q^β and ĉ = (q^α)^β

q-Power Knowledge of Exponent (q-PKE) Assumption

- Let G be a cyclic group of prime order p with a pairing e: G × G → G_T
- Let $G = \langle g \rangle$ and α, s be randomly chosen from \mathbb{Z}_p^*
- Given $g, g^s, g^{s^2}, \dots, g^{s^q}, g^{\alpha}, g^{\alpha s}, g^{\alpha s^2}, \dots, g^{\alpha s^q}$, suppose a PPT adversary can output c, \hat{c} such that $\hat{c} = c^{\alpha}$
- The only way he can do so is by choosing some $a_0, a_1, \ldots, a_q \in \mathbb{Z}_p$ and setting $c = \Pi_{i=0}^q \left(g^{s^i}\right)^{a_i}$ and $\hat{c} = \Pi_{i=0}^q \left(g^{\alpha s^i}\right)^{a_i}$

Checking Polynomial Evaluation

- Prover knows a polynomial $p(x) \in \mathbb{F}_p[x]$ of degree d
- Verifier wants to check that prover computes $g^{p(s)}$ for some randomly chosen $s \in \mathbb{F}_p$
- Verifier does not care which p(x) is used but cares about the evaluation point s
- Verifier sends g^{s^i} , i = 0, 1, 2, ..., d to prover
- If $p(x) = \sum_{i=0}^{d} p_i x^i$, prover can compute $g^{p(s)}$ as

$$g^{p(s)} = \Pi_{i=0}^d \left(g^{s^i}
ight)^{p_i}$$

- But prover could have computed $g^{p(t)}$ for some $t \neq s$
- Verifier also sends $g^{\alpha s^i}$, $i=0,1,2,\ldots,d$ for some randomly chosen $\alpha\in\mathbb{F}_p^*$
- Prover can now compute $g^{\alpha p(s)}$
- Anyone can check that $e(g^{\alpha}, g^{p(s)}) = e(g^{\alpha p(s)}, g)$
- But why can't the prover cheat by returning $g^{p(t)}$ and $g^{\alpha p(t)}$?

Schwartz-Zippel Lemma

Lemma

Let \mathbb{F} be any field. For any nonzero polynomial $f \in \mathbb{F}[x]$ of degree d and any finite subset S of \mathbb{F} ,

$$\Pr\left[f(s)=0\right] \leq \frac{d}{|S|}$$

when s is chosen uniformly from S.

- Suppose \mathbb{F} is a finite field of order $\approx 2^{256}$
- If s is chosen uniformly from F, then it is unlikely to be a root of low-degree polynomials
- Equality of polynomials can be checked by evaluating them at the same random point
- Application: Suppose prover wants to prover that he knows a secret polynomial
 p(x) which is divisible by another public polynomial t(x)
 - Verifier sends $g^{s^i}, g^{\alpha s^i}, i = 0, 1, 2, \dots, d$ to prover
 - Prover computes $h(x) = \frac{p(x)}{t(x)} = \sum_{i=0}^{d} h_i x^i$ and calculates $g^{h(s)}$ using the coefficients h_i
 - Verifier gets $g^{p(s)}, g^{h(s)}, g^{\alpha p(s)}, g^{\alpha h(s)}$ and checks

$$egin{aligned} e\left(g,g^{p(s)}
ight) &= e\left(g^{h(s)},g^{t(s)}
ight) \ e\left(g^{lpha},g^{p(s)}
ight) &= e\left(g^{lpha p(s)},g
ight), \quad e\left(g^{lpha},g^{h(s)}
ight) &= e\left(g^{lpha h(s)},g
ight) \end{aligned}$$

Arithmetic Circuits

Circuits consisting of additions and multiplications modulo p

Quadratic Arithmetic Programs

Definition

A QAP Q over a field \mathbb{F} contains three sets of polynomials $\mathcal{V} = \{v_k(x)\}$, $\mathcal{W} = \{w_k(x)\}$, $\mathcal{Y} = \{y_k(x)\}$, for $k \in \{0, 1, ..., m\}$, and a target polynomial t(x).

Suppose $f: \mathbb{F}^n \mapsto \mathbb{F}^{n'}$ having input variables with labels $1, 2, \ldots, n$ and output variables with labels $m - n' + 1, \ldots, m$. We say that Q computes f if:

 $(a_1, a_2, \ldots, a_n, a_{m-n'+1}, \ldots, a_n) \in \mathbb{F}^{n+n'}$ is a valid assignment of f's inputs and outputs, if and only if there exist $(a_{n+1}, \ldots, a_{m-n'})$ such that t(x) divides p(x) where

$$p(x) = \left(v_0(x) + \sum_{k=1}^m a_k v_k(x)\right) \cdot \left(w_0(x) + \sum_{k=1}^m a_k w_k(x)\right) - \left(y_0(x) + \sum_{k=1}^m a_k y_k(x)\right).$$

So there must exist polynomial h(x) such that h(x)t(x) = p(x).

Arithmetic circuits can be mapped to QAPs efficiently

QAP for an Arithmetic Circuit

- $a_5 = (a_1 + 7a_2)(a_2 2a_3)$ and $a_6 = (a_2 2a_3)a_4$
- Choose distinct $r_5, r_6 \in \mathbb{F}$ and $t(x) = (x r_5)(x r_6)$
- Choose polynomials $\{v_k(x)\}, \{w_k(x)\}, \{y_k(x)\}, k = 0, 1, \dots, m \text{ such that }$

$$\sum_{k=0}^{6} a_k v_k(r_5) = a_1 + 7a_2, \quad \sum_{k=0}^{6} a_k w_k(r_5) = a_2 - 2a_3, \quad \sum_{k=0}^{6} a_k y_k(r_5) = a_5,$$

$$\sum_{k=0}^{6} a_k v_k(r_6) = a_2 - 2a_3, \quad \sum_{k=0}^{6} a_k w_k(r_6) = a_4, \quad \sum_{k=0}^{6} a_k y_k(r_6) = a_6.$$

SNARK from QAP

- Let $R = \{(u, w)\} \subset \mathbb{F}^{n'} \times F^{n-n'}$ be a relation where $u \in \mathbb{F}^{n'}$ is the statement and $w \in \mathbb{F}^{n-n'}$ is
- Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic function f such that f(u, w) = 1 iff (u, w) ∈ R
- A QAP for f is derived
- Prover has to show he knows (a_1, \ldots, a_n) such that t(x) divides v(x)w(x) y(x)
- Common Reference String Generation
 - For $\alpha, s \stackrel{\$}{\leftarrow} \mathbb{F}^*$ and upper bound d, $\{g^{s^i}, g^{\alpha s^i} \mid i = 0, 1, 2, \dots, d\}$
 - Let \mathcal{I}_{in} be input-related indices and \mathcal{I}_{mid} be the non-input-related indices in $\{1,2,\ldots,m\}$. Let $[m]=\{0,1,2,\ldots,m\}$
 - Generate $\{g^{v_k(s)}\}_{k\in[m]}, \{g^{w_k(s)}\}_{k\in[m]}, \{g^{y_k(s)}\}_{k\in[m]}, g^{t(s)}$
 - Generate $\{g^{\alpha v_k(s)}\}_{k\in[m]}, \{g^{\alpha w_k(s)}\}_{k\in[m]}, \{g^{\alpha y_k(s)}\}_{k\in[m]}$
 - Generate $\{g^{\beta_{V}v_{k}(s)}\}_{k\in\mathcal{I}_{mid}}, \{g^{\beta_{W}w_{k}(s)}\}_{k\in[m]}, \{g^{\beta_{y}y_{k}(s)}\}_{k\in[m]}$ where $\beta_{V}, \beta_{W}, \beta_{V} \xleftarrow{\$} \mathbb{F}^{*}$
 - Choose $\gamma \xleftarrow{\$} \mathbb{F}^*$ and generate $g^{\gamma}, g^{\beta_{\mathbf{v}}\gamma}, g^{\beta_{\mathbf{w}}\gamma}, g^{\beta_{\mathbf{y}}\gamma}$

SNARK from QAP

Proof generation

- Prover will prove that $(u, w) \in R$ by showing that f(u, w) = 1
- Prover computes QAP coefficients (a_1, \ldots, a_m) such that

$$h(x)t(x) = \left(v_0(x) + \sum_{k=1}^m a_k v_k(x)\right) \cdot \left(w_0(x) + \sum_{k=1}^m a_k w_k(x)\right) - \left(y_0(x) + \sum_{k=1}^m a_k y_k(x)\right).$$

• For $v_{mid}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k v_k(x)$, $w(x) = \sum_{k \in [m]} a_k w_k(x)$, and $y(x) = \sum_{k \in [m]} a_k y_k(x)$ the prover outputs the proof π $q^{v_{mid}(s)}, q^{w(s)}, q^{y(s)}, q^{h(s)}, q^{\alpha v_{mid}(s)}, q^{\alpha w_{mid}(s)}, q^{\alpha v_{mid}(s)}, q^{\alpha v_{$

Proof verifier

- Let V_{mid} , W, Y, H, V'_{mid} , W', Y', H', Z be the proof
- Verifier computes $g^{v_{in}(s)}$ for $v_{in}(s) = \sum_{k \in \mathcal{I}_{in}} a_k v_k(s)$
- · Using pairing operations, the verifier confirms that

$$\begin{aligned} & (v_0(s) + v_{in}(s) + V_{mid}) \left(w_0(s) + W \right) - \left(y_0(s) + Y \right) - H \cdot t(s) = 0 \\ & V'_{mid} - \alpha V_{mid} = 0, W' - \alpha W = 0, Y' - \alpha Y = 0, H' - \alpha H = 0, \\ & \gamma Z - \left(\beta_V \gamma \right) V_{mid} - \left(\beta_W \gamma \right) W - \left(\beta_V \gamma \right) Y = 0 \end{aligned}$$

References

- Pairing-Based Cryptographic Protocols: A Survey https://eprint.iacr.org/2004/064.pdf
- DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/ EE720/2019/notes/lecture-21.pdf
- Jens Groth's lecture in the 9th BIU Winter School on Cryptography
 - https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
 - NIZKs from Pairings https://cyber.biu.ac.il/wp-content/uploads/2019/02/BarIlan2019.pdf
 - NIZKs from Pairings https://www.youtube.com/watch?v=_mAKh7LFPOU
- Sections 7, 8 of Quadratic Span Programs and Succinct NIZKs without PCPs, GGPR13 https://eprint.iacr.org/2012/215