Introduction

Codes de Goppa

Notations

Définition

Matrice de parité

Décodage

Mc Eliece

Clefs

Principe

Mise en œuvre

P00

Berlekamp-Hensel

- $f \in L(\mathbb{F}^k, \mathbb{F}^n)$ avec k < n
- G = Mat(f) matrice génératrice $n \times k$
- Ker(H) = Im(f) matrice de parité $k \times n$
- $S_y: y \in \mathbb{F}^n o Hy \in \mathbb{F}^k$ syndrome
- $\omega: y \in \mathbb{F}^n o Card(i/y_i \neq 0)$ poids de Hamming
- d la distance minimale du code

- g polynôme de $\mathbb{F}_{2^m}[X]$ irréductible
- L = $(\alpha_1,..,\alpha_n) \in \mathbb{F}_{2^m}^n$ le support

On définit un code de Goppa par son syndrome

$$S_{y}(x) = \sum_{i=1}^{n} \frac{y_{i}}{x - \alpha_{i}} \mod g(x)$$

En pratique on prendra $n = 2^m$

$$\frac{1}{x - \alpha_i} = \frac{1}{g(\alpha_i)} \sum_{k=0}^{t-1} x^k \sum_{j=k+1}^t g_j \alpha_i^{j-1-k}$$

De là on déduit une expression d'une matrice de parité.

$$\begin{pmatrix} \frac{1}{g(\alpha_1)} & \frac{1}{g(\alpha_2)} & \cdots & \frac{1}{g(\alpha_n)} \\ \frac{1}{g(\alpha_1)} g_t \alpha_1 & \frac{1}{g(\alpha_2)} g_t \alpha_2 & \cdots & \frac{1}{g(\alpha_n)} g_t \alpha_n \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{g(\alpha_1)} g_t \alpha_1^{t-1} & \frac{1}{g(\alpha_2)} g_t \alpha_2^{t-1} & \cdots & \frac{1}{g(\alpha_n)} g_t \alpha_n^{t-1} \end{pmatrix}$$

Décodage

Soit le polynôme localisateur d'erreurs σ

$$\sigma_{y}(x) = \prod \epsilon_{i}(x - \alpha_{i})$$

Il faut résoudre l'équation clef suivante :

$$\omega_y(x) = S_y(x)\sigma_y(x) \mod g$$

On montre son unicité. On explicite une solution avec l'algorithme d'Euclide étendu.

Clefs

Clef privée

- G matrice génératrice, ainsi que L et g
- P matrice de permutation $n \times n$
- $Q \in GL_k(\mathbb{F})$

Clef publique

- \bullet G' = PGQ
- capacité de correction

Principe

- $x \in \mathbb{F}^k$ le message a envoyer
- $G'x + \epsilon = PGQx + \epsilon$ message envoyé
- $GQ + P^{-1}\epsilon$ peut être corrigé
- Connaissant Q on déduit x le message initial

Sécurité par 2 problèmes de théorie des codes :

- Indistinguabilité d'un code de Goppa
- Décodage par syndrome NP-complet

Programmation Orientée objet

Rédaction de classes :

- Corps de galois \mathbb{F}_{p^m}
- Optimisation en binaire pour p=2
- Matrices
- Polynomes
- Clefs publiques et clefs privées

Algorithme de Berlekamp-Hensel

Teste l'irréductibilité de $g \in \mathbb{F}_{2^m}[X]$

$$\exists P/1 < deg(P) < deg(g)$$
 et $P^{2^m} - P = 0$ mod $g \Leftrightarrow g$ reductible

Par le morphisme de Frobenius, on regarde le noyau de l'application linéaire :

$$P \leftarrow P^{2^m} - P$$