Lecture 4 Support vector machine

Intellectual systems (Machine Learning) Andrey Filchenkov

27.09.2018

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM
- The presentation is prepared with materials of the K.V. Vorontsov's course "Machine Leaning".
- Slides are available online: goo.gl/BspjhF

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM

Basic idea

Basic idea: if we say that classifier is linear, what is the best way to define it?

Main idea: search for a surface that is the most distant from the classes (large margin classification).

Linearly separable case

Key hypothesis: sample is linearly separable:

$$\exists w, w_0: M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, i = 1, ..., \ell.$$

Separating lines exist, therefore a line that has maximum distance from both the classes also exists.

Separating stripe

Normalize margin:

$$\min_i M_i(w, w_0) = 1.$$

Separating stripe:

$$\{x: -1 \le \langle w, x \rangle - w_0 \le 1\}.$$

Stripe width:

Tipe width:
$$\frac{\langle x_{+} - x_{-}, w \rangle}{||w||} = \frac{(\langle x_{+}, w \rangle - w_{0}) - (\langle x_{-}, w \rangle - w_{0})}{||w||} = \frac{2}{||w||}.$$

It turns to be a minimization problem:

$$\begin{cases} ||w||^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \ge 1, i = 1, ..., \ell. \end{cases}$$

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM

Linearly inseparable case

Key hypothesis: sample is not linearly separable:

$$\forall w, w_0 \ \exists x_d : M_d(w, w_0) = y_d(\langle w, x_d \rangle - w_0) < 0$$

There is no such separating line.

We can still try to find a line with smallest margins for each object.

Linearly inseparability

In case of linearly inseparable sample:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \ge 1 - \xi_i, i = 1, \dots, \ell; \\ \xi_i \ge 0, \quad i = 1, \dots, \ell. \end{cases}$$

Equivalent unconditional optimization problem:

$$\sum_{i=1}^{\ell} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

This is the approximated empirical risk.

C effect

Non-linear programming problem

Mathematical programming problem:

$$\begin{cases} f(x) \to \min_{x} \\ g_{i}(x) \leq 0, \\ h_{j}(x) = 0. \end{cases} \qquad i = 1, \dots, m; j = 1, \dots, k.$$

Lagrangian:

$$\mathcal{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x) + \sum_{j=1}^{k} \lambda_j h_j(x)$$

Karush – Kuhn – Tucker conditions:

$$\frac{\delta \mathcal{L}}{\delta x}(x^*; \mu, \lambda) = 0.$$

$$\begin{cases} g_i(x^*) \le 0; \\ h_j(x^*) = 0; \\ \mu_i \ge 0; \\ \mu_i g_i(x^*) = 0. \end{cases}$$
 $i = 1, ..., m; j = 1, ..., k.$

SVM problem

Lagrangian

$$\mathcal{L}(w, w_0; \mu, \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{m} \mu_i (M_i(w, w_0) - 1) - \sum_{j=1}^{k} \xi_j (\mu_i + \lambda_i - C)$$

 λ_i are variables, dual for constraints $M_i \ge 1 - \xi_i$; μ_i are variables, dual for constraints $\xi_i \ge 0$.

Condition of minimum:

$$\begin{cases} \frac{\delta \mathcal{L}}{\delta w} = 0; \frac{\delta \mathcal{L}}{\delta w_0} = 0; \frac{\delta \mathcal{L}}{\delta \xi} = 0; \\ \xi_i \geq 0; \lambda_i \geq 0; \mu_i \geq 0; \\ \lambda_i = 0 \text{ or } M_i(w, w_0) = 1 - \xi_i; \\ \mu_i = 0 \text{ or } \xi_i = 0; \end{cases}$$

$$i = 1, \dots, m.$$

Support vectors

Object types:

- 1. $\lambda_i = 0$; $\mu_i = C$; $\xi_i = 0$; $M_i > 1$ peripheral objects.
- 2. $0 < \lambda_i < C$; $0 < \mu_i < C$; $\xi_i = 0$; $M_i = 1$ support boundary objects.
- 3. $\lambda_i = C$; $\mu_i = 0$; $\xi_i > 0$; $M_i < 1$ support-disturbers.

Object x_i is **support object**, if $\lambda_i \neq 0$.

Non-linear programming problem

$$-\mathcal{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle x_i, x_j \rangle \to \min_{\lambda}$$

$$\begin{cases} 0 \le \lambda_i \le C; \\ \sum_{j=1}^{\ell} \lambda_i y_i = 0. \end{cases}$$

Primal problem solution can be expressed with dual problem solution:

$$\begin{cases} w = \sum_{i=1}^{\ell} \lambda_i y_i x_i; \\ w_0 = \langle w, x_i \rangle - y_i. \end{cases} \forall i: \lambda_i > 0, M_i = 1.$$

Linear classifier:

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{\ell} \lambda_i y_i \langle x_i, x \rangle - w_0\right).$$

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM

Bad linearly inseparable case

Kernel trick

Main idea: find a mapping to a higher-dimensional space, such that the points in new space will be linearly separable.

Idea basis: let separating surface can be well approximated by a sum of functions depending on $x_1, ..., x_n$:

$$c_1x_1 + \dots + c_nx_n + f_1(x_1, \dots, x_n) + \dots + f_k(x_1, \dots, x_n)$$

If we add features $f_1(x_1, ..., x_n)$, ..., $f_k(x_1, ..., x_n)$, then we will have new space over variables $x_1, ..., x_n, x_{n+1}, ..., x_{n+k}$, points of which will be linearly separable.

Separability in higher dimension

How it looks in original space

IS (Machine learning). Lecture 4. SVM. 27.09.2018.

Resulting separating surface

Why kernels?

We can build distance-based classifier for support objects (vectors). Using a kernel function is equal to using a certain mapping.

The main problem is to find a kernel, which maps initial space into linearly separable.

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM

Kernels

Function $K: X \times X \to \mathbb{R}$ is **kernel function**, if it can be represented as $K(x, x') = \langle \psi(x), \psi(x') \rangle$ with a mapping $\psi: X \to H$, where H is a space with a scalar product.

Theorem (Mercer)

Function K(x, x') is kernel iff it is symmetrical, K(x, x') = K(x', x), and non-negatively defined on \mathbb{R} :

$$\int_X \int_X K(x, x') g(x) g(x') dx dx' \ge 0$$

for any function $g: X \to \mathbb{R}$.

Kernel examples

Quadratic:

$$K(x, x') = \langle x, x' \rangle^2$$

Polynomial with monomial degree equal to *d*

$$K(x, x') = \langle x, x' \rangle^d$$

Polynomial with monomial degree $\leq d$

$$K(x, x') = (\langle x, x' \rangle + 1)^d$$

Neural nets

$$K(x, x') = \sigma(\langle x, x' \rangle)$$

Radial-basis

$$K(x, x') = \exp(-\beta ||x - x'||^2)$$

Kernel synthesis

- $K(x, x') = \langle x, x' \rangle$ is kernel;
- constant K(x, x') = 1 is kernel;
- $K(x, x') = K_1(x, x')K_2(x, x')$ is kernel;
- $\forall \psi: X \to \mathbb{R} \ K(x, x') = \psi(x) \psi(x')$ is kernel;
- $K(x, x') = \alpha_1 K_1(x, x') + \alpha_2 K_2(x, x')$ with $\alpha_1, \alpha_2 > 0$ is kernel;
- $\forall \phi: X \to X \text{ if } K_0 \text{ is kernel, then } K(x, x') = K_0(\phi(x), \phi(x')) \text{ is kernel;}$
- if $s: X \times X \to \mathbb{R}$ is symmetric and integrable, then

$$K(x,x') = \int_X s(x,z)(x',z)dz$$
 is kernel.

SVM discussion

Advantages:

- Convex quadratic programming problem has a single solution
- Any separating surface
- Small number of support object used for learning

Disadvantages:

- Sensitive to noise
- No common rules for kernel function choice
- The constant *C* should be chosen
- No feature selection

- Linearly separable case
- Linearly inseparable case
- Kernel trick
- Kernel selection and synthesis
- Regularization for SVM

Regularization (reminder)

Key hypothesis: *w* "swings" during overfitting **Main idea**: clip *w* norm.

Add regularization penalty for weights norm:

$$Q_{\tau}(a_w, T^{\ell}) = Q(a_w, T^{\ell}) + \frac{\tau}{2} ||w||^2 \to \min_w.$$

And SVM equation is:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0)) + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$

Other penalties

Relevance vector machine:

$$\frac{1}{2} \sum_{i=1}^{\ell} \left(\ln \alpha_i + \frac{\lambda_i^2}{\alpha_i} \right)$$

LASSO SVM:

$$\mu \sum_{i=1}^{n} |w_i|$$

Support feature machine:

$$\sum_{i=1}^{n} R_{\mu}(w_i),$$

where
$$R_{\mu} = \begin{cases} 2\mu |w_i|, & \text{if } |w_i| < \mu, \\ \mu^2 + w_i^2, & \text{otherwise.} \end{cases}$$