Applications linéaires

Dans ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et E, F et G sont des \mathbb{K} -espaces vectoriels.

I. Définitions et premières propriétés

Définition. Une application f de E dans F est dite linéaire si

$$- \forall (x,y) \in E^2, \quad f(x+y) = f(x) + f(y),$$

$$- \forall x \in E, \ \forall \lambda \in \mathbb{K}, \quad f(\lambda x) = \lambda f(x).$$

ce qui est équivalent à :

$$\forall (x,y) \in E^2, \ \forall \lambda \in \mathbb{K}, \quad f(\lambda x + y) = \lambda f(x) + f(y)$$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Exemple. $I: \mathcal{C}([a,b],\mathbb{K}) \to \mathbb{K}, f \mapsto \int_a^b f$.

Exemple. $\phi: \mathcal{C}^2(\mathbb{R}, \mathbb{K}) \to \mathcal{C}^0(\mathbb{R}, \mathbb{K}), \ f \mapsto af'' + bf' + cf \ avec \ (a, b, c) \in \mathbb{K}^3.$

Définition. Une application linéaire de E dans E est appelée un endomorphisme.

On note $\mathcal{L}(E)$ plutôt que $\mathcal{L}(E,E)$ l'ensemble des endomorphismes de E.

Une application linéaire bijective est appelée un isomorphisme.

Un endomorphisme bijectif est appelé un automorphisme.

On note GL(E) l'ensemble des automorphismes de E.

Définition. On dit que deux espaces vectoriels E et F sont isomorphes s'il existe un isomorphismes de E dans F.

Exemple. Soient u et v deux vecteurs non colinéaires, alors le plan P = Vect(u, v) et \mathbb{R}^2 sont isomorphes car $\mathbb{R}^2 \to P$, $(\lambda, \mu) \mapsto \lambda u + \mu v$ est une application linéaire bijective.

Exemple. \mathbb{R}^2 et $S = \{ f \in \mathbb{C}^2 : f'' = af' + bf \}$ sont isomorphes car $S \to \mathbb{R}^2$, $f \mapsto (f(1), f'(1))$ est une application linéaire bijective d'après le théorème de Cauchy.

Définition. On appelle homothétie toute application linéaire de la forme λId_E avec $\lambda \in \mathbb{K}$.

Proposition. Soit $f \in \mathcal{L}(E, F)$ alors

$$f(0_E) = 0_E$$
 et $\forall x \in E, f(-x) = -f(x)$

Proposition. Soient $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E, F)$ alors

$$\forall (x_1, ..., x_n) \in E^n, \ \forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \quad f\left(\sum_{k=1}^n \lambda_k x_k\right) = \sum_{k=1}^n \lambda_k f(x_k)$$

Proposition. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ alors $g \circ f \in \mathcal{L}(E, G)$

Proposition. Soit $(f, g) \in \mathcal{L}(E, F) \times \mathcal{L}(F, G)$ alors

$$\forall (g_1, g_2) \in \mathcal{L}(F, G)^2, \ \forall (\lambda_1, \lambda_2) \in \mathbb{K}^2, \quad (\lambda_1 g_1 + \lambda_2 g_2) \circ f = \lambda_1 \ g_1 \circ f + \lambda_2 \ g_2 \circ f$$

et

$$\forall (f_1,f_2) \in \mathcal{L}(F,G)^2, \ \forall (\lambda_1,\lambda_2) \in \mathbb{K}^2, \quad g \circ (\lambda_1 f_1 + \lambda_2 f_2) = \lambda_1 \ g \circ f_1 + \lambda_2 \ g \circ f_2$$

Proposition. Soit $f \in \mathcal{L}(E, F)$. Si f est bijective alors $f^{-1} \in \mathcal{L}(F, E)$.

II. Structures

Théorème. Soient E et F deux \mathbb{K} -espaces vectoriels alors $\mathcal{L}(E,F)$ est un sous-espace vectoriel de $\mathcal{F}(E,F)$.

Théorème. $(\mathcal{L}(E), +, \circ)$ est un anneau

Corollaire. L'ensemble des automorphismes de E noté GL(E) est un groupe pour la loi \circ .

Corollaire. (Binôme de Newton et formule de Bernoulli) Soit $(f,g) \in \mathcal{L}(E)^2$ tels que $f \circ g = g \circ f$ alors pour tout entier n,

$$(f+g)^n = \sum_{k=0}^n \binom{n}{k} f^k \circ g^{n-k}$$
 et $f^n - g^n = (f-g) \circ \left(\sum_{k=0}^{n-1} f^k \circ g^{n-1-k}\right)$

où pour tout entier k, f^k représente Id_E si k = 0 et $\underbrace{f \circ ... \circ f}_{k \ fois}$ sinon.

III. Applications linéaires et espaces vectoriels

Théorème. Soit $f \in \mathcal{L}(E, F)$.

- Si H est un sous-espace vectoriel de E alors f(H) est un sous-espace vectoriel de F,
- Si H est un sous-espace vectoriel de F alors $f^{-1}(H)$ est un sous-espace vectoriel de E.

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E, F)$. On appelle image de f et on note $\mathrm{Im} f$ le sous-espace vectoriel de F, f(E). On appelle noyau de f et on note $\mathrm{Ker} f$ le sous-espace vectoriel de E, $f^{-1}(\{0_F\})$.

Proposition. Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E, F)$ alors

- f est surjective si et seulement si $F = \operatorname{Im} f$ si, et seulement si, $F \subset \operatorname{Im} f$,
- f est injective si et seulement si Ker $f = \{0_E\}$ si, et seulement si, Ker $f \subset \{0_E\}$.

Remarque : La caractérisation de la surjectivité n'utilise pas la linéarité de f contrairement à la caractérisation de l'injectivité.

Théorème. Soient $f \in \mathcal{L}(E, F)$ et $A \in \mathcal{P}(E)$ alors f(VectA) = Vect(f(A)). En particulier, si A est une partie génératrice alors f(A) engendre l'image de f.

IV. Applications linéaires et familles de vecteurs

Théorème. Soit $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in I}$ une famille de vecteurs de E.

- Si $(x_i)_{i\in I}$ est libre et si f est injective, alors $(f(x_i))_{i\in I}$ est libre.
- Si $(x_i)_{i\in I}$ engendre E et si f est surjective, alors $(f(x_i))_{i\in I}$ engendre F.
- $Si(x_i)_{i\in I}$ est une base de E et $Si(x_i)_{i\in I}$ est une base de $Si(x_i)_{i\in I}$

Proposition. Soit $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in I}$ une famille de vecteurs de E. Si $(x_i)_{i \in I}$ est génératrice de E alors $(f(x_i))_{i \in I}$ est génératrice de $\operatorname{Im} f$

Exercice. Soit $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in I}$ une famille de vecteurs de E.

- $Si(f(x_i))_{i\in I}$ engendre F, alors f est surjective.
- $Si(f(x_i))_{i\in I}$ est libre, alors la famille $(x_i)_{i\in I}$ est libre.

Exercice. Soit $f \in \mathcal{L}(E, F)$.

- f est surjective si, et seulement si, pour toute famille $(x_i)_{i\in I}$ génératrice de E, la famille $(f(x_i))_{i\in I}$ engendre F.
- f est injective si, et seulement si, pour toute famille $(x_i)_{i\in I}$ de E libre, la famille $(f(x_i))_{i\in I}$ est libre.

— f est bijective si, et seulement si, pour toute base $(x_i)_{i\in I}$ de E, la famille $(f(x_i))_{i\in I}$ est une base de F.

Théorème. Soient $f \in \mathcal{L}(E, F)$ et $(x_i)_{i \in I} \in E^I$ une base de E alors

- f est surjective si et seulement si la famille $(f(x_i))_{i\in I}$ est génératrice de F,
- f est injective si et seulement si la famille $(f(x_i))_{i\in I}$ est libre,
- f est bijective si et seulement si la famille $(f(x_i))_{i\in I}$ est une base de F,

Proposition. Soit $(e_i)_{i\in I} \in E^I$ une base de E et $(f,g) \in \mathcal{L}(E,F)^2$. Alors

$$f = g \iff \forall i \in I, \ f(e_i) = g(e_i)$$

Remarque: Le résultat est conservé si $(e_i)_{i\in I}$ est une famille génératrice de E.

Théorème. Soit $(e_i)_{i\in I} \in E^I$ une base de E et $(y_i)_{i\in I} \in F^I$ alors il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que $\forall i \in I$, $u(e_i) = f_i$.

On dit qu'une application linéaire est entièrement caractérisée par l'image d'une base.

V. Projections et symétries

Définition. Soient F et G deux sous-espaces vectoriels supplémentaires de E. Tout élément x de E se décompose donc de façon unique sous la forme $x = x_F + x_G$ avec $x_F \in F$ et $x_g \in G$. On appelle projection sur F parallèlement à G l'application de E dans E qui à tout vecteur x de E associe x_F .

Théorème. Soient F et G deux sous-espaces vectoriels supplémentaires de E et p la projection sur F parallèlement à G alors

- p est linéaire
- $-\operatorname{Im} p = \operatorname{Ker}(p Id) = F$
- $\operatorname{Ker} p = G$
- $-p \circ p = p$

Définition. On dit que p est une projection vectorielle de E s'il existe F et G deux sous-espaces vectoriels supplémentaires de E tel que p soit la projection sur F parallèlement à G

Théorème. Soit $p \in \mathcal{L}(E)$ alors p est une projection si et seulement si $p \circ p = p$. Dans ce cas, p est la projection sur Imp parallèlement à Kerp.

Définition. Soient F et G deux sous-espaces vectoriels supplémentaires de E. Tout élément x de E se décompose de façon unique sous la forme $x = x_F + x_G$ avec $x_F \in F$ et $x_g \in G$. On appelle symétrie par rapport à F parallèlement à G l'application de E dans E qui à tout vecteur x de E associe $x_F - x_G$.

Théorème. Soient F et G deux sous-espaces vectoriels supplémentaires de E et s la symétrie par rapport à F parallèlement à G alors

- s est linéaire et bijective
- $\operatorname{Ker}(s Id) = F$
- $\operatorname{Ker}(s + Id) = G$
- $-s \circ s = Id$

Définition. On dit que s est une symétrie vectorielle de E s'il existe F et G deux sous-espaces vectoriels supplémentaires de E tel que s soit symétrie par rapport à F parallèlement à G.

Théorème. Soit $s \in \mathcal{L}(E)$ alors s est une symétrie si et seulement si $s \circ s = Id$. Dans ce cas, s est la symétrie par rapport à $\operatorname{Ker}(s - Id)$ parallèlement à $\operatorname{Ker}(s + Id)$

VI. Formes linéaires et hyperplans

Définition. On appelle hyperplan de E tout sev F de E admettant pour supplémentaire une droite vectorielle i.e. H est un hyperplan si, et seulement si,

$$\exists a \in E \setminus \{0\} : E = H \oplus \mathbb{K}a$$

Exemple. Les hyperplans de \mathbb{R}^2 sont les droites vectorielles, les hyperplans de \mathbb{R}^3 sont les plans vectoriels.

Exemple. $\{(x,y,z) \in \mathbb{R}^3 : x+y+2z=0\}$ est un hyperplan de \mathbb{R}^3

Exemple. Soit a un réel, $\{f \in \mathcal{F}(I,\mathbb{K}) : f(a) = 0\}$ est un hyperplan de $\mathcal{F}(I,\mathbb{K})$ dont un supplémentaire est l'ensemble des fonctions constantes de I dans \mathbb{R} .

Proposition. Soit H un hyperplan. Si $a \notin H$, alors $E = H \oplus \mathbb{K}a$.

Proposition. Si H et H' sont deux hyperplans de E tels que $H \subset H'$, alors H = H'.

Proposition. Si H est un hyperplan et F un sev de E tels que $H \subset F$, alors F = H ou F = E.

Définition. On appelle forme linéaire sur E tout élément de $\mathcal{L}(E, \mathbb{K})$.

Proposition. Si E possède une base $(e_1,...,e_n)$, alors $\mathcal{L}(E,\mathbb{K})$ et E sont isomorphes.

Théorème. Un sev de E est un hyperplan de E si, et seulement si, H est le noyau d'une forme linéaire non nulle.

Proposition. Soient ϕ et ψ deux formes linéaires non nulles. Alors

$$\operatorname{Ker} \phi = \operatorname{Ker} \psi \iff \exists \lambda \in \mathbb{K}^* : \phi = \lambda \psi$$

Exercice. Soient ϕ et ψ deux formes linéaires. Alors

$$\operatorname{Ker} \phi \subset \operatorname{Ker} \psi \Leftrightarrow \exists \lambda \in \mathbb{K} : \psi = \lambda \phi$$