A proof that McMullen's $\Omega_1 E_D$ are closed invariant subsets under SL(2,R) action

Denote $\Gamma = SP(4, \mathbb{Z})$, here we let the sympletic form be diag(J, J), $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. $\Gamma \subset GL(4, \mathbb{C})$ induces a right action of Γ on \mathbb{C}^4 .

Proposition 1: for all $v = (a_1, b_1, a_2, b_2) \in \mathbb{C}^4$, the followings are equivalent:

- a) For any element $g \in \Gamma$, let $(a'_1, b'_1, a'_2, b'_2) = vg$, there exists a integer matrix $P \in M(2, \mathbb{Z})$ with positive determinant, positive real number λ , such that $\lambda(a'_1, b'_1) = (a'_2, b'_2)P$.
 - b) For two different elements $g_1, g_2 \in \Gamma$ the assumption in a) is satisfied.
- c) There exists integers d, e, positive real number λ and 2-by-2 integer matrix P, such that $\lambda^2 = e\lambda + d$, d = det(P) > 0 and $\lambda(a_1, b_1) = (a_2, b_2)P$. If P is also primitive, then we call $D = 4d + e^2$ the discriminant.
- d) For any element $g \in \Gamma$, $(a'_1, b'_1, a'_2, b'_2) = vg$ satisfies all conditions in c) with a fixed discriminant D not depend on g.

Sketch of Proof: $d \Rightarrow a \Rightarrow b$ are trivial.

 $c)\Rightarrow d$): Let $B\in M(2,\mathbb{Z})$ such that $JB^t=PJ$, denote $T=\begin{pmatrix}0&B\\P&eI\end{pmatrix}\in M(4,\mathbb{Z})$ which is (1)primitive, (2)self-adjoint with respect to the bilinear form diag(J,J), (3) $vT=\lambda v$ and (4) $T^2=eT+d$. For any $g\in\Lambda$, $g^{-1}Tg$ satisfies (1)-(4). By the proof of [M] Theorem 8.3 $g^{-1}Tg=\begin{pmatrix}f'I&B'\\P'&e'I\end{pmatrix}$. Denote $T'=g^{-1}Tg-f'I$, then T' satisfies (1), (2) and (3') $vgT'=\lambda'vg$ and (4') $T'^2=e'T+d'$. By the construction of T' $e'^2+4d'=e^2+d$, and by (3') and the fact that T' is of the form $\begin{pmatrix}0&B'\\P'&(e'-f')I\end{pmatrix}$ we know vg,e',d',λ',P' also satisfy all the conditions in c), i.e. d) holds.

b) \Rightarrow c): If one of the λ is rational, then c) is evident.

If otherwise, without losing generality suppose $\lambda(a_1, b_1) = (a_2, b_2)P$, $\lambda'(a_1', b_1') = (a_2', b_2')P'$, $(a_1', b_1', a_2', b_2') = vg \neq v$, and P, P' are both primitive.

We define the action of $SL(2,\mathbb{R})$ on \mathbb{C}^4 as acting diagonally on all for components as the standard action on $\mathbb{R}^2 = \mathbb{C}$. Consider the homology affine group $Aff = \{\Psi \in SP(4,\mathbb{Z}) | \exists \psi \in SL(2,\mathbb{R}), v\Psi = \psi v\}$. Because a_1, b_1, a_2, b_2 are \mathbb{Q} -linear independent it is natually isomorphic to the group $G = \{\psi\} \subset SL(2,\mathbb{R})$, because $g^{-1}Affg \subset Aff$, G is larger than $SL(2,\mathbb{Z})$, hence there is $\Psi_0 \in Aff$ such that its corresponded element $\psi_0 \in G$ has non-rational trace. By [M] Theorem 5.3 its trace must be in a integer in a quadratic field, hence $\Psi_0 + \Psi_0^{-1}$ divided by some integer if needed satisfies (1)-(3) in the previous proof. Because $\psi_0 + \psi_0^{-1}$ satisfies (4) and Aff is bijectively identified with G it also satisfies (4), hence G0 holds by the proof above. G1

Proposition 2: Let the set L_D consisting of complex vector (a_1, b_1, a_2, b_2) such that (a_1, b_1, a_2, b_2) satisfies a)-d) in Proposition 1 with discriminant D, and $\frac{\sqrt{-1}}{2}(a_1\bar{b_1} - b_1\bar{a_1} + b_1\bar{a_2})$

 $a_2\bar{b_2} - b_2\bar{a_2} = 1$, then they are closed in manifold $U = \{(a_1, b_1, a_2, b_2) \in \mathbb{C}^4 | \frac{\sqrt{-1}}{2} (a_1\bar{b_1} - b_1\bar{a_1} + a_2\bar{b_2} - b_2\bar{a_2}) = 1\}$.

Proof: for any M > 0, let $U_M = \{(a_1, b_1, a_2, b_2) \in \mathbb{C}^4 | |a_1| \leq M, |b_1| \leq M, |a_2| \leq M, |b_2| \leq M, \frac{\sqrt{-1}}{2}(a_1\bar{b_1} - b_1\bar{a_1} + a_2\bar{b_2} - b_2\bar{a_2}) = 1\}$, then we only need to show $L_D \cap U_M$ is closed for any M.

 L_D is the union of countably many connected components indexed by (λ, P) , each of which is a embedded submanifold of U, so we only need to show that only finitely many of them have non-empty intersection with U_M . Firstly, fixing D there are only finitely many choices of λ, d . Fixing a pair λ, d , we have $\frac{\sqrt{-1}}{2}(a_2\bar{b_2}-b_2\bar{a_2})=\frac{\lambda^2}{d+\lambda^2}$, i.e. the parallelogram formed by a_2, b_2 has fixed area, similarly so does the parallelogram spanned by a_1, b_1 . Therefore, if a point in a component indexed by (λ, P) also lies in U_M , because $|a_2|, |b_2|$ are bounded by M and the parallelogram formed by $a_2, b_2|$ has fixed area, the sin of the angle between a_2, b_2 must satisfy a lower bound depended on M, and $|a_2|, |b_2|$ are also bounded below. On the other hand, $|a_1|, |b_1|$ are bounded above by M, hence from $\lambda(a_1,b_1)=(a_2,b_2)P$ we have an upper bound on ||P|| by M,λ,d . Hence, there can only be finitely many P for each $\lambda.\Box$

For any genus-2 translation surface M, let $(\alpha_1, \beta_1, \alpha_2, \beta_2)$ be a bases of $H_1(M; \mathbb{Z})$ with intersection form diag(J, J).

Let $\Omega_1 E_D$ be the set of translation surface whose absolute periods with regard to $(\alpha_1, \beta_1, \alpha_2, \beta_2)$ lies in L_D . By proposition 1 $\Omega_1 E_D$ are well-defined and $SL(2, \mathbb{R})$ -invariant, and by proposition 2 they are closed in the moduli space of all translation surfaces with area normalized to 1.

In general, for genus g > 1, let $U = \{(a_1, \ldots, a_g, b_1, \ldots, b_g) \in \mathbb{C}^{2g} | \prod a_i \prod b_i \neq 0, \frac{\sqrt{-1}}{2} \sum (a_i \bar{b}_i - b_i \bar{a}_i) = 1\}$, $GL(2,\mathbb{R})$ and $SP(2g,\mathbb{Z})$ both acts on it as described above, and if we can find a closed subset $V \subset U$ invariant under both group actions then the set of genus-g translation surface whose absolute period under a sympletic bases of H_1 lies in V would be a well-defined, closed $SL(2,\mathbb{R})$ -invariant subset in the moduli space of all translation surfaces of genus g.

[M]McMullen, Curtis. Dynamics of $SL^2(\mathbb{R})$ over moduli space in genus two