

ATTORNEY DOCKET NUMBER: 2002834-0043 (CIP4)

Af

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appellant:

Bannon, et al.

Examiner:

Huynh, P.

Serial No.:

09/141,220

Art Unit:

1644

Filed:

August 27, 1998

For:

METHODS AND REAGENTS FOR DECREASING CLINICAL REACTIONS TO

ALLERGY

Mail Stop Appeal Brief - Patents Commissioner for Patents

P.O. Box 1450

U.S.S.N. 09/141,220

3771324_1.DOC

Alexandria, VA 22313-1450

Sir:

Certificate of Mailing

I certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class Mail in an envelope addressed to Mail Stop Appeal Brief – Patents, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Novembe 22, 2004 Date

Signature

Signature

Kathy Hart Gagnon

Typed or Printed Name of person signing certificate

AMENDED APPEAL BRIEF UNDER 37 C.F.R. § 1.192

Appellant appeals to the Board of Patent Appeals and Interferences (the "Board") from the Examiner's rejection of claims 37-54 and 57-62. A Notice to this effect was filed pursuant to 37 C.F.R. § 1.191(a) on December 5, 2003. The Advisory Action mailed January 6, 2004 indicates that the Notice was received by the Patent and Trademark Office on December 8, 2003. An original Appeal Brief (the "Original Brief") was filed on July 8, 2004 along with a Petition under 37 C.F.R. § 1.136 for a five (5) month extension of time, from February 8, 2004, up to and including July 8, 2004. That filing also included checks to cover the \$1005.00 fee under 37 C.F.R. § 1.17(a)(5) for the Petition and the \$165.00 fee under 37 C.F.R. § 1.17(c) for the Appeal Brief.

A Notification of Non-Compliance with 37 C.F.R. § 1.192(c) was mailed by the Patent Office on September 22, 2004. Applicant is hereby filing an amended Appeal Brief (the "Amended Brief") that corrects the items identified in the Notification. Since the Original Brief was filed before September 13, 2004 when the new rules under 37 C.F.R. § 41.37(c) came into effect it is Applicant's understanding that this Amended Brief need only comply with the requirements of 37 C.F.R. § 1.192. Pursuant to 37 C.F.R. § 1.192(a), this Amended Brief is being filed in triplicate. A Petition under 37 C.F.R. § 1.136 for a one (1) month extension of time, from October 22, 2004, up to and including November 22, 2004 is also enclosed with a check to cover the \$55.00 fee under 37 C.F.R. § 1.17(a)(1). Please charge any additional fees, to our Deposit Account 03-1721.

Real Parties in Interest

As a result of assignments by the inventors, the real parties in interest in this application are the University of Arkansas ("UArk"), SEER Pharmaceuticals LLC (f/k/a Panacea Pharmaceuticals, LLC), and the Mt. Sinai School of Medicine of the City University of New York ("Mt Sinai"). An assignment from inventors Garry Bannon and Wesley Burks to UArk was recorded in the Patent and Trademark Office on April 23, 1999 at Reel 010065, Frame 0008. An assignment from inventor Howard Sosin to Panacea Pharmaceuticals, LLC was recorded in the Patent and Trademark Office on August 26, 1999 at Reel 010190, Frame 0516. A Certificate of Amendment changing the name of Panacea Pharmaceuticals, LLC to SEER Pharmaceuticals, LLC was filed with the Secretary of State of the State of Delaware on October 25, 2002. A copy of this Certificate was filed for recordation with the Patent and Trademark Office on October 16, 2003. An assignment from inventor Hugh Sampson to Mt Sinai was recorded in the Patent and Trademark Office on October 22, 1998 at Reel 009539, Frame 0550.

Related Appeals and Interferences

Appellant has filed Appeal Briefs for co-pending applications U.S. Serial No. 09/455,294; U.S. Serial No. 09/478,668; U.S. Serial No. 09/494,096; and U.S. Serial No. 09/731,375 addressing some issues that overlap with the issues presented here. No other pending appeals or interferences are known to Appellant's legal representative, or Appellant's assignee that will directly affect or be directly affected by the Board's decision in this appeal. Similarly, no other pending appeals or interferences are known that may have a bearing on the Board's decision in this appeal.

Status of Claims

The application was filed with claims 1-36. Claims 1-36 were the subject of a Restriction Requirement mailed June 22, 1999; claims 1-13 were elected. Claims 1-13 were examined in an Office Action mailed April 11, 2000. Claims 14-36 were canceled in an Amendment filed September 11, 2000; claim 8 was amended. Claims 1-13 were canceled in an Amendment filed August 22, 2002; claims 37-62 were added. Claims 37-62 were finally rejected in an Office Action mailed October 3, 2003. A Notice appealing the rejection of claims 37-62 was filed December 5, 2003. An Amendment canceling claims 55-56 and amending claims 57-62 was filed with the Notice. An Advisory Action was mailed January 2, 2004 indicating that the Amendment had been entered. Thus, claims 37-54 and 57-62 are pending and stand rejected. The rejection of claims 37-54 and 57-

62 is hereby appealed. A listing of pending claims 37-54 and 57-62 is provided as Attachment I.

Status of Amendments

An Amendment was filed with the Original Brief that amended independent claims 37 and 52 to clarify that the modified allergen is derived from a natural allergen. This Amendment also amended claim 43 in order to clarify its scope, in particular to clarify that the portion of the allergen includes all of the one or more IgE binding sites of the natural allergen. An Advisory Action mailed by the Patent Office on September 20, 2004 indicated that this Amendment would not be entered. Thus the pending claim remain as listed in Attachment I.

Summary of Invention

The present invention is directed to a method of preparing modified protein allergens that have a reduced ability to bind IgE antibodies (page 4, lines 2-14). The modified protein allergens are useful in treating allergies and in particular anaphylactic allergies (page 5, lines 5-9 and page 7, line 15 to page 9, line 15). The modified protein allergens are prepared by identifying one or more IgE binding sites in a natural protein allergen; modifying the protein allergen by mutating at least one amino acid in one or more IgE binding sites; screening for IgE binding to the modified protein allergen using serum IgE from an individual that is allergic to the protein allergen; and selecting the modified protein allergens which have decreased binding to IgE as compared to the unmodified protein allergen (page 7, lines 16-25; page 9, line 16 to page 12, line 7 and page 16, line 4 to page 29, line 23). Claims 52-54 and 57-62 recite methods of preparing modified food allergens (page 7, line 26 to page 8, line 16). The present specification includes data and working examples demonstrating the method as applied to peanut allergens Ara h 1, Ara h 2 and Ara h 3 (see Examples 1-2 on pages 16-27). In vitro (see Examples 3-4 on page 28) and in vivo (see Example 5 on page 29) experiments that were performed with a modified Ara h 2 protein are also discussed. The specification also describes other known protein allergens, including a range of food allergens, that can be modified according to the methods of the invention (page 7, line 26 to page 8, line 16).

Page 3 of 17

<u>Issues</u>

The issues on appeal are (referring to §§ 4-20 of Office Action mailed October 3, 2003):

- (1) Are the pending claims invalid for lack of written description? Specifically, can the written description requirement ever be satisfied for claims relating to proteins without an explicit recitation in the specification of every sequence encompassed by the claims (§ 4)?
 - (2) Are claims 57-61 invalid for containing new matter (§ 5)?
- (3) Are claims 37-39 indefinite for reciting the term "substantially" (§ 6)? Appellant notes that the term "substantially" is not used in claim 37. Thus the rejection presumably only applies to claims 38-39.
 - (4) Are claims 37, 39-43, 46-47, 49-51 and 57-62 anticipated by Aki et al. (§ 9)?
- (5) Are claims 37-38, 41-43, 45-47, 49-51 and 57-62 anticipated by U.S. Pat. 5,547,669 (§ 10)?
 - (6) Are claims 37, 40-43, 48-53 and 57-62 anticipated by Burks et al. (§ 12)?
 - (7) Are claims 37, 40-43, 48-53 and 57-62 anticipated by Stanley et al. (§ 13)?
 - (8) Are claims 37-38 and 49 obvious in light of Aki et al. and WO 94/11512 (§ 16)?
 - (9) Are claims 37 and 44 obvious in light of Aki et al. and U.S. Pat. 6,207,646 (§ 17)?
- (10) Are claims 37, 48 and 52-54 obvious in light of Aki et al. in view of Burks et al., Stanley et al. or U.S. Pat. 5,449,669 (§ 18)?
- (11) Are claims 37, 39-40 and 44 obvious in light of U.S. Pat. 5,547,669 in view of Aki et al. and U.S. Pat. 6,207,646 (§ 19)?
- (12) Are claims 37, 48 and 52-54 obvious in light of U.S. Pat. 5,547,669 in view of Burks et al., Stanley et al. or U.S. Pat. 5,449,669 (§ 20)?

Grouping of Claims

For ease of discussion, Appellant defines the following groups of claims (A)-(B):

- (A) Claims 37-51 and 57-62 as dependent from claim 37 that recite a method of making a modified protein allergen.
- (B) Claims 52-54 and 57-62 as dependent from claim 52 that recite a method of making a modified food allergen.

Attorney Docket No.: 2002834-0043 Client Reference: CIP4

U.S.S.N. 09/141,220 3771324_1.DOC The claims stand or fall together for issues numbered (1)-(12) above, as indicated below:

- (1) The claims of Group A stand or fall together and the claims of Group B stand or fall together.
 - (2) Claims 57-61 stand or fall together.
 - (3) Claim 37 stands or falls alone; claims 38-39 stand or fall together.
 - (4) Claims 37, 39-43, 46-47, 49-51 and 57-62 stand or fall together.
 - (5) Claims 37-38, 41-43, 45-47, 49-51 and 57-62 stand or fall together.
 - (6) Claims 37, 40-43, 48-53 and 57-62 stand or fall together.
 - (7) Claims 37, 40-43, 48-53 and 57-62 stand or fall together.
 - (8) Claims 37-38 and 49 stand or fall together.
 - (9) Claims 37 and 44 stand or fall together.
 - (10) Claims 37, 48 and 52-54 stand or fall together.
 - (11) Claims 37, 39-40 and 44 stand or fall together.
 - (12) Claims 37, 48 and 52-54 stand or fall together.

Argument

ISSUE 1: The pending claims are not invalid for lack of written description

The pending claims stand rejected for lack of written description (see § 4 of Office Action mailed October 3, 2003). With respect to this rejection, the claims of Group A stand or fall together and the claims of Group B stand or fall together. By definition, claim groups that cover species of different scope require a separate written description and/or different levels of written description. Since claim groups A and B cover species of different scope (i.e., methods of making modified protein allergens vs. methods of making modified food allergens), these claim groups must be considered separately and stand or fall separately for purposes of this rejection. The written description requirements for claim Groups A and B are discussed separately below.

The written description requirement imposes a duty on patent Appellants to notify the public of the scope and content of their inventions. The requirement is satisfied if one skilled in the art would reasonably conclude that the inventors were in possession of the claimed invention at the time the patent application was filed. *Vas-Cath, Inc. v. Mahurkar*, 935 F.2d 1555 (Fed. Cir. 1991). Furthermore, there is a strong presumption that claims submitted with an application are adequately

Attorney Docket No.: 2002834-0043 Client Reference: CIP4

U.S.S.N. 09/141,220 3771324_1.DOC described by the application. *In re Wertheim* 541 F.2d 257 (Fed. Cir. 1993). Claims 37-50 were present in substantially the same form as claims 1-13 in the application as originally filed. Claim 51 is a dependent claim that recites limitations found on page 4, lines 10-13 and page 9, line 17 to page 10, line 3 of the specification as filed. Claims 52-54 parallel the language of claim 37 and are of narrower scope (i.e., they are simply limited to food allergens that are described on page 8 and in the Examples). Claims 57-61 recite the limitations found in original claim 14 and the data of Table 6 of the specification as filed (see discussion under Issue 2 below). Claims 62 and 70 recite a limitation found in the section spanning pages 24-25 of the specification as filed. The burden is therefore on the Examiner to overcome the strong presumption of descriptive support with evidence or reasons why persons skilled in the art would not recognize in the disclosure a description of the invention defined by the claims. The Examiner has not, and cannot meet this burden; the claimed invention is appropriately described in the specification.

Both in her written rejections and in an in-person interview, the Examiner has indicated that, in her view, the written description requirement can never be satisfied for a claim that involves a nucleic acid or protein unless the complete sequence of every nucleic acid or protein to which the claim relates is explicitly set forth in the specification and recited in the claim by way of a SEQ ID NO. The same Examiner is responsible for the prosecution of a large number of related cases; we are unable to move prosecution forward without first resolving the question of whether the written description requirement can ever be satisfied without recitation of a SEQ ID NO. in the claim.

In the present case, the Examiner is taking the position that the written description cannot be satisfied for a *method of making* a modified protein allergen unless the sequence of every modified protein allergen that can be made by the method is recited. This is not the law. The legal standard for the written description requirement was most recently articulated in *University of Rochester v*. *G.D. Searle & Co.*, 358 F.3d 916 (Fed. Cir. 2004). In that case, the specification described the cloning of cyclooxygenase-2 (or "COX-2") and methods of identifying selective inhibitors of COX-2. The *only* description of the inhibitors themselves consisted of the following two sentences (see column 27, lines 29-35 of U.S. Pat. No. 6,048,850):

"The compounds identified in the screen will demonstrate the ability to selectively modulate the expression of [COX-2]. These compounds include but are not limited to nucleic acid encoding [COX-2] and homologues, analogues, and deletions thereof, as well as antisense, ribozyme, triple helix, antibody, and polypeptide molecules and small inorganic molecules."

The Patent Office issued claims to methods of selectively inhibiting COX-2 in a host by administration of such inhibitors (see claims 1-8 of U.S. Pat. No. 6,048,850). In *Rochester*, the court held that U.S. Pat. No. 6,048,850 did not include a written description of the selective inhibitors. *Id.* at 926-27. The court further held that methods of *using* the inhibitors could not be described without a written description of inhibitors and thus that the issued claims were invalid. *Id.* at 927. However, the court also held that methods of *identifying* the same inhibitors *were* adequately described and were therefore valid (these were claimed in U.S. Pat. No. 5,837,479). *Id.* at 928. Here, the pending method of *making* claims are most analogous to methods of *identifying*, not methods of *using*. Moreover, in the present case, the specification *does* contain extensive description of modified protein allergens that can be prepared according to the claimed methods. If the description was sufficient in *Rochester* then it must be adequate in the present case.

The absurdity of the Examiner's position is demonstrated by considering her rejection of the method of making modified peanut allergens that are explicitly exemplified in the specification. According to the Examiner, the written description is not satisfied in this case for *any* nucleotide molecules other than those encoding peanut allergens that have been modified by substitution with *alanine* or *methionine* at those *specific locations* listed in Tables 4, 5 and 6. This is clearly not the law nor should it be. The proper legal question is not "did Appellant *reduce to practice* and *explicitly recite* a method of making every modified peanut allergen that falls within the scope of the claims?" Instead, the question is "would a skilled person recognize that Appellant was in *possession* of the method of making modified peanut allergens that fall within the scope of the claims?"

The present specification sets forth the complete amino acid sequences of Ara h 1, 2, and 3 (SEQ ID NOs. 2, 4 and 6), and also the nucleotide sequences of genes that encode them (SEQ ID NOs. 1, 3 and 5). The specification further sets out the amino acid sequences of each of 23 IgE epitopes mapped in the Ara h 1 protein (Table 1), the amino acid sequence of each of 10 IgE epitopes mapped in the Ara h 2 protein (Table 2), and the amino acid sequence of each of 4 epitopes mapped in the Ara h 3 protein (Table 3). The specification further describes particular alanine or methionine substitutions that were introduced into the mapped IgE binding sites, and shows that some of these substitutions result in decreased IgE binding (Tables 4-6). In discussing these data, the specification states (see page 25, lines 11-23):

"The results discussed above for Ara h 1, Ara h 2, and Ara h 3 demonstrate that once an IgE binding site has been identified, it is possible to reduce IgE binding to this site by altering a single amino acid of the epitope. [...] Besides finding that many epitopes contained more than one residue critical for IgE binding, it was also determined that more than one residue type (ala or met) could be substituted at certain positions in an epitope with similar results. This allows for the design of a hypoallergenic protein that would be effective at blunting allergic reactions for a population of peanut sensitive individuals."

Thus, the specification specifically highlights that substitutions at different positions, and with different amino acids, achieved comparable results.

The Examiner is correct that the specification does not explicitly set forth the sequences of all possible disruptions to Ara h 1, Ara h 2, and Ara h 3 IgE sites. However, a skilled person, reading the specification, would understand, indeed would explicitly be told, that the presented substitutions were merely exemplary and others would work as well. A skilled artisan would appreciate that the techniques described in the specification would successfully identify all such substitutions. That is, a skilled person would understand that the inventors were in *possession* of the invention to the full scope of the claims.

A claim limited to the particular substitutions that the inventors happened to have made prior to filing their patent application is virtually useless. Anybody of ordinary skill in the art could make a modified peanut allergen that falls outside the scope of such a claim but still embodies the spirit, scope, and teachings of Appellant's contribution. If the legal standard of written description in fact required verbatim recitation of every possible useful sequence, as asserted by the Examiner, patent applicants would be forced to perform useless and wasteful experiments (potentially endlessly) merely to ensure that they could protect their contributions, or alternatively would be motivated to include endless lists of sequences in their patent applications merely to ensure that all contemplated embodiments are "described". Such a result would have no beneficial purpose.

Turning to the specifically rejected claims, claim 52, the only independent claim in Group B, recites:

"A method of making a modified food allergen which is less reactive with IgE comprising:

(b) modifying the food allergen by mutating at least one amino acid in one or more IgE binding sites;

⁽a) identifying one or more IgE binding sites in a food allergen, the one or more IgE binding sites being ones that are recognized when the food allergen is contacted with serum IgE from an individual that is allergic to the food allergen;

- (c) screening for IgE binding to the modified food allergen using serum IgE from an individual that is allergic to the food allergen; and
- (d) selecting the modified food allergens which have decreased binding to IgE as compared to the unmodified food allergen."

The specification explicitly sets out the sequence of several examples of methods of preparing modified peanut allergens. These modified peanut allergens are described as "exemplary" of the inventive principles. For example, the specification recites that "Peanut allergens (Ara h 1, Ara h 2, and Ara h 3) have been used in the examples to demonstrate alteration of IgE binding sites while retaining binding to IgG and activation of T cells" (page 4, lines 15-17). The specification also points to several other common food allergens (see page 8, lines 1-3: "Examples of common food allergens include proteins from peanuts, milk, grains such as wheat and barley, soybeans, eggs, fish, crustaceans, and mollusks."). Moreover, the specification provides references for food allergens whose IgE epitopes had already been identified (see page 8, lines 4-13). The specification also describes techniques for modifying sequences within IgE sites (see, for example, page 10, lines 3-6 and Examples 2-3), and for identifying those modifications that reduce IgE binding (see, for example, page 4, lines 24-28 and Examples 1-2) in accordance with claim 52.

And, of course, the specification provides evidence that the inventive strategy successfully produced modified peanut allergens with reduced IgE reactivity. The teachings and guidance provided by this success are far-reaching. As discussed above and in the specification, peanut allergy is one of the most potent allergies. Indeed, as noted in the specification (see page 16, lines 4-11):

"Peanut allergy is one of the most common and serious of the immediate hypersensitivity reactions to foods in terms of persistence and severity of reaction. [...] The majority of cases of fatal food-induced anaphylaxis involve ingestion of peanuts [...]."

A person of ordinary skill in the art would immediately understand the exciting implications of the inventive exemplification of reduced-allergenicity peanut allergens: if it works for peanuts, it will work for other food allergens.

Modified food allergens produced according to the claimed methods are all proteins; sensitized individuals are exposed to them all by the same route (i.e., ingestion); they are all readily modified according to the same techniques, and those with reduced allergenicity are identified in the same manner. Reading the present specification, those of ordinary skill in the art will immediately appreciate that modified food allergens with reduced allergenicity, according to the present claims,

exist, and can readily be made according to the teachings of the specification. In other words, those of ordinary skill in the art will immediately appreciate that the inventors were *in possession of* the claimed invention. Denial of claims to methods of making modified food allergens would deprive the present inventors of protection commensurate in scope with their contribution, and would create silly incentives disruptive to science, the patent process, and commerce. For all of these reasons, the Examiner's rejection of claims in Group B for lack of written description, should be removed.

The rejection for lack of written description should also be removed for the claims of Group A, which stand or fall together for the purposes of this rejection. These claims are broader than those of Group B in that they do not limit the category of protein allergen whose IgE epitopes are modified. Although the claims are broad, there is no failure of written description.

The specification makes clear that the inventive principles are applicable to *any* allergen (see, for example, page 4, lines 2-14; page 7, line 26 to page 9, line 15; and page 29, lines 18-20). The specification also specifically lists a variety of relevant allergens (see, for example, page 8, lines 13-16: "Other allergens include proteins from insects such as flea, tick, mite, fire ant, cockroach, and bee as well as molds, dust, grasses, trees, weeds, and proteins from mammals including horses, dogs, cats, etc."). The specification includes extensive discussion of latex allergens, in particular, and provides references reporting IgE epitopes within these allergens (see, for example, page 8, line 19-page 9, line 15). The specification further recites methods of screening for the properties of claims 38-39 and 45 (e.g., see page 4, lines 8-14 and 26-28) and methods for performing the specific modifications of claims 40-43 (e.g., see page 4, lines 17-23 and the Examples). The specification also specifically points to the use of adjuvants having the characteristics recited in claim 44 (e.g., see page 15, lines 19-20) and to the preparation of recombinantly modified allergens as recited in claims 46-47 (e.g., see page 12 and Example 3). Likewise, the specification specifically recites relevant subsets of antigens recited in claims 48-49 (e.g., pages 7-9 and the Examples).

All of this information explicitly set forth in the specification, combined with the potent demonstration of success with the most challenging allergens, clearly put the public on notice that the inventors were in possession of the invention to the full scope of the present claims.

Appellant appreciates that certain court decisions, including *University of California v. Eli*Lilly and Co. have been interpreted to stand for the proposition that, in certain cases, nucleic acid or protein molecules cannot be properly described in a patent specification without explicit recitation of sequence information. However, this is not such a case. First, significant sequence information is

provided for this case. Second, as noted in the introduction to this heading, the pending claims relate to a method, not to the nucleic acids or proteins themselves. Furthermore, a determination of whether the written description requirement is satisfied requires reading the disclosure in light of the knowledge possessed by those skilled in the art at the time that the invention was filed. In re Alton, 76 F.3d 1168 (Fed. Cir. 1996). In University of California v. Eli Lilly and Co., the patent applications in issue were filed in 1977 and 1979; the present application was filed 20 years later. A lot happened in the intervening 20 years. Automated sequencing and synthesis technologies were developed; PCR was invented; a variety of techniques for disrupting or otherwise mutagenizing a nucleic acid sequence were standardized. Mechanical application of a "Sequence Listing or bust" rule vitiates the very purpose of the Lily ruling, which was to ensure that the scope of patent claims was commensurate in scope with the contribution. The present specification describes the invention of a method for making modified protein allergens for a wide variety of allergens; the pending claims are of appropriate scope.

ISSUE 2: Claims 57-61 are not invalid for containing new matter

The Examiner has questioned the support for the recitation in claims 57-61 of a step of "modifying at least 1-6, 1-5, 1-4, 1-3 or 1-2 amino acids in at least one IgE epitope of the allergen" (see § 5 of Office Action mailed October 3, 2003). With respect to this rejection claims 57-61 stand or fall together.

Appellant respectfully submits that these claims are fully supported by the specification and claims as originally filed. In particular, original claim 1 recites a step of "modifying the allergen by mutating at least one amino acid in an IgE binding site [...]". Original claim 1 therefore makes it perfectly clear that the present invention encompasses methods that include a step of modifying more than one amino acid residue within an IgE epitope. The specification as filed further teaches IgE epitopes that include 1, 2, 3, 4, 5 or 6 amino acid residues that, when altered, lead to a reduction in IgE binding (e.g., see epitopes 5, 7, 8, 9, 18 in Table 4 and epitope 4 in Table 6, respectively). The specification and claims as originally filed therefore clearly support the language of pending claims 57-61.

ISSUE 3: Claims 37-39 are not indefinite for reciting the term "substantially"

The Examiner has taken the position that claims 37-39 are indefinite under 35 U.S.C. § 112, second paragraph for reciting the term "substantially" without providing a definition of the term in

the specification (see § 6 of Office Action mailed October 3, 2003). Appellant notes that the term "substantially" is not used in claim 37. Thus the rejection presumably only applies to claims 38-39. With respect to this rejection claim 37 stands or falls alone and claims 38-39 stand or fall together.

Appellant respectfully disagrees with this rejection. The courts have clearly stated that expressions such as "substantially" may be used in patent claims when warranted by the nature of invention, in order to accommodate the minor variations that may be appropriate to secure the invention. Verve LLC v. Crane Cams, 311 F.3d 1116 (Fed. Cir. 2002). The nature of the presently claimed invention is such that the selection of modified allergens that exhibit minor variations in Tcell activation (claim 38) or IgG binding (claim 39) as compared to an unmodified allergen could be made without losing the benefit of the present invention. One skilled in the art, upon reading the present specification, would readily recognize such trivial variations. No more is required. In fact, as noted in Judge Hand's opinion in Musher Foundation v. Alba Trading Co., 326 U.S. 770 (1945):

> 'Substantially' is not of itself fatal to a claim [...] indeed, it must always be implied in every claim, even when not introduced, and adds nothing when it is. Were this not true, few patents could be given any protection, for some departures from the precise disclosure are nearly always possible without losing the benefit of the invention.

For all of these reasons, withdrawal of the rejection is earnestly requested.

ISSUE 4: Claims 37, 39-43, 46-47, 49-51 and 57-62 are not anticipated by Aki et al.

The Examiner has rejected claims 37, 39-43, 46-47, 49-51 and 57-62 under 35 U.S.C. § 102(b) as being anticipated by Aki et al. (Int. Arch. Allergy Immunol. 103:357-364, 1994) (see § 9 of Office Action mailed October 3, 2003). This rejection is respectfully traversed; with respect to this rejection claims 37, 39-43, 46-47, 49-51 and 57-62 stand or fall together.

In order to anticipate a claim, a reference must teach every element of the claim. MPEP § 2131. Appellant submits that Aki et al. cannot anticipate the claimed invention because it does not teach all of the steps in the presently claimed method. In particular, Aki et al. does not teach at least steps (b)-(d) of claim 37.

The Examiner suggests that Aki et al. teaches a method that includes a step of modifying an allergen by "mutating at least one amino acid in the center of IgE binding sites" (see page 4 of Office Action mailed October 3, 2003). In this context, the Examiner points to pages 360-361 of Aki et al. Appellant disagrees and respectfully submits that Aki et al. never teaches the modification of a

Attorney Docket No.: 2002834-0043

Page 12 of 17 Client Reference: CIP4 natural allergen as claimed herein. Instead, Aki et al. teaches the preparation and modification of a wholly artificial β-galactosidase-Mag1-E2 fusion protein (e.g., see p. 359, column 2, last sentence and pp. 360-361). Mag1-E2 is an isolated IgE epitope that corresponds to amino acids 104-115 of the dust mite allergen Mag 1. β-galactosidase is a large enzyme (1024 amino acids and 116 kDa) that catalyzes the hydrolysis of terminal, non-reducing β-d-galactose residues in beta-galactosides. Thus, this artificial fusion protein is not a natural allergen that falls within the scope of claim 37. Certainly its sequence and physical properties bear no resemblance whatsoever to those of the natural 39 kDa dust mite allergen Mag 1 taught by Aki et al. Nor is the fusion protein a "portion of a natural allergen that includes all of the IgE binding sites of the natural allergen" as defined in claim 43.

Since Aki et al. does not teach each and every step of the claimed methods, it cannot anticipate or render obvious claims 37, 39-43, 46-47, 49-51 and 57-62. Withdrawal of the rejection is earnestly requested.

ISSUE 5: Claims 37-38, 41-43, 45-47, 49-51 and 57-62 are not anticipated by U.S. Pat. 5,547,669

The Examiner has rejected claims 37-38, 41-43, 45-47, 49-51 and 57-62 under 35 U.S.C. § 102(b) as being anticipated by U.S. Pat. 5,547,669 (see § 10 of Office Action mailed October 3, 2003). This rejection is respectfully traversed; with respect to this rejection claims 37-38, 41-43, 45-47, 49-51 and 57-62 stand or fall together.

As noted *supra*, in order to anticipate a claim, a reference must teach every element of the claim. MPEP § 2131. Appellant submits that U.S. Pat. 5,547,669 cannot anticipate the claimed invention because it does not teach all of the steps in the presently claimed method. In particular, U.S. Pat. 5,547,669 does not teach a method that includes steps of identifying and then mutating at least one amino acid in one or more IgE binding sites of an allergen, i.e., steps (a)-(b) of claim 37.

As noted by the Examiner, U.S. Pat. 5,547,669 teaches methods of preparing so-called "recombitope peptides" that are designed to stimulate T-cell activity (e.g., see Abstract). These peptides are essentially prepared by identifying T-cell epitopes within one or more natural protein antigens and then extracting, rearranging and pasting these together to produce wholly artificial peptides (e.g., see column 6, lines 59 to column 7, line 62).

The Examiner seems to take the position that U.S. Pat. 5,547,669 also teaches a step of identifying and mutating IgE binding sites. In this context, the Examiner points to column 15, lines 1-5 and 15-17. Appellant does not see how this section of U.S. Pat. 5,547,669 teaches the

modification of IgE binding sites. Indeed, while column 15 discusses "modified recombitopes" that include an amino acid substitution, deletion or addition, there is no teaching or suggestion that these mutations should be located within IgE epitopes. In fact, U.S. Pat. 5,547,669 explicitly teaches that the mutations should be located within T-cell epitopes of the recombitopes (see column 15, lines 6-14 that was omitted from the Examiner's citation) or should disrupt disulfide bridges in order to minimize dimerization (see column 15, lines 15-19). Further, U.S. Pat. 5,547,669 specifically teaches that in order to reduce the likelihood of IgE binding, IgE epitopes are preferably excluded from the amino acid sequences of recombitopes altogether:

> "Those peptide regions found to bind immunoglobulin E and cause the release of mediators from mast cell or basophils in greater than approximately 10-15% of the allergic sera tested are preferably not included in the peptide regions arranged to form recombitope peptides". (e.g., see column 8, lines 5-9, emphasis added)

If recombitope peptides lack IgE epitopes it is presumably undisputed that their preparation cannot involve a step of "mutating at least one amino acid in one or more IgE binding sites of an allergen".

The Examiner also makes reference to column 15, lines 59-62 that describes the introduction of canonical protease sites (e.g., KK or RR) within a recombitope peptide. Again, Appellant notes that there is no teaching of locating such sites within IgE epitopes. We are only taught that they should be located between regions that comprise "at least one T-cell epitope" (see column 15, lines 59-62). We are further taught that these sites can "potentially aid proper antigen processing of T-cell epitopes within a recombitope peptide" and/or "result in an increase in solubility of the recombitope peptide" (see column 15, lines 55-56 and 65-67). IgE binding and IgE epitopes are never discussed in this context.

Since U.S. Pat. 5,547,669 does not teach each and every step of the claimed methods, it cannot anticipate or render obvious claims 37-38, 41-43, 45-47, 49-51 and 57-62. Withdrawal of the rejection is earnestly requested.

ISSUE 6: Claims 37, 40-43, 48-53 and 57-62 are not anticipated by Burks et al.

The Examiner has rejected claims 37, 40-43, 48-53 and 55-62 under 35 U.S.C. § 102(a) as being anticipated by Burks et al. (Eur. J. Biochem. 245:334-339, 1997) (see § 12 of Office Action

Attorney Docket No.: 2002834-0043

Page 14 of 17 U.S.S.N. 09/141,220 Client Reference: CIP4 3771324 1.DOC

mailed October 3, 2003). Claims 55-56 and 57-62 (as dependent from claim 55) have been cancelled. With respect to this rejection claims 37, 40-43, 48-53 and 57-62 stand or fall together.

This rejection should be removed quite simply because Burks et al. is not prior art. The relevant teachings of Burks et al. were included near *verbatim* in U.S. Serial No. 08/717,933 filed September 23, 1996 (see pp. 133-155 and the Figures referred to therein). The 1996 filing was made by Appellant in part to protect the teachings of Burks et al. The present application properly claims priority to this 1996 filing. Burks et al. was published after this priority date and cannot therefore be used as prior art under 35 U.S.C. § 102(a). Withdrawal of the rejection is earnestly requested.

ISSUE 7: Claims 37, 40-43, 48-53 and 57-62 are not anticipated by Stanley et al.

The Examiner has rejected claims 37, 40-43, 48-53 and 55-62 under 35 U.S.C. § 102(a) as being anticipated by Stanley et al. (*Archives of Biochemistry and Biophysics* 342(2):244-253, 1997) (see § 13 of Office Action mailed October 3, 2003). Claims 55-56 and 57-62 (as dependent from claim 55) have been cancelled. With respect to this rejection claims 37, 40-43, 48-53 and 57-62 stand or fall together.

This rejection should also be removed quite simply because Stanley et al. is not prior art. The relevant teachings of Stanley et al. were included near *verbatim* in U.S. Serial No. 08/717,933 filed September 23, 1996 (see pp. 156-174 and 176-180). The 1996 filing was made by Appellant in part to protect the teachings of Stanley et al. The present application properly claims priority to this 1996 filing. Stanley et al. was published after this priority date and cannot therefore be used as prior art under 35 U.S.C. § 102(a). Withdrawal of the rejection is earnestly requested.

ISSUE 8: Claims 37-38 and 49 are not obvious in light of Aki et al. and WO 94/11512

The Examiner has rejected claims 37-38 and 49 under 35 U.S.C. § 103(a) as being unpatentable over Aki et al. in view of WO 94/11512 (see § 16 of Office Action mailed October 3, 2003). With respect to this rejection claims 37-38 and 49 stand or fall together.

The teachings of Aki et al. and its deficiencies with regards to claim 37 have been discussed supra. WO 94/11512 is a secondary reference that is cited solely as teaching limitations that are found in dependent claims 38 and 49, namely a step of screening for activation of T-cells and the use of an allergen from trees. The Examiner points to no teaching or suggestion in WO 94/11512 that could overcome the aforementioned deficiencies of Aki et al. Withdrawal of the rejection is earnestly requested.

ISSUE 9: Claims 37 and 44 are not obvious in light of Aki et al. and U.S. Pat. 6,207,646

The Examiner has rejected claims 37 and 44 under 35 U.S.C. § 103(a) as being unpatentable over Aki et al. in view of U.S. Pat. 6,207,646 (see § 17 of Office Action mailed October 3, 2003). With respect to this rejection claims 37 and 44 stand or fall together.

The teachings of Aki et al. and its deficiencies with regards to claim 37 have been discussed supra. U.S. Pat. 6,207,646 is a secondary reference that is cited solely as teaching limitations that are found in dependent claim 44, namely a step of formulating the modified allergen with a specific adjuvant. The Examiner points to no teaching or suggestion in U.S. Pat. 6,207,646 that could overcome the aforementioned deficiencies of Aki et al. Withdrawal of the rejection is earnestly requested.

ISSUE 10: Claims 37, 48 and 52-54 are not obvious in light of Aki et al. in view of Burks et al., Stanley et al. or U.S. Pat. 5,449,669

The Examiner has rejected claims 37, 48, 52-56 under 35 U.S.C. § 103(a) as being unpatentable over Aki et al. in view of Burks et al., Stanley et al. or U.S. Pat. 5,449,669 (see § 18 of Office Action mailed October 23, 2003). Claims 55-56 have been cancelled. With respect to this rejection claims 37, 48 and 52-54 stand or fall together.

The teachings of Aki et al. and its lackings have been discussed *supra*. As discussed *supra*, Burks et al. and Stanley et al. are not available as prior art under 35 U.S.C. § 103(a). U.S. Pat. No. 5,449,669 is cited solely as teaching an unmodified protein allergen, namely shrimp tropomyosin, and its two IgE binding epitopes. The Examiner points to no teaching or suggestion in U.S. Pat. 5,449,669 that could overcome the deficiencies of Aki et al. Withdrawal of the rejection is earnestly requested.

ISSUE 11: Claims 37, 39-40 and 44 are not obvious in light of U.S. Pat. 5,547,669 in view of Aki et al. and U.S. Pat. 6,207,646

The Examiner has rejected claims 37, 39-40 and 44 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Pat. 5,547,669 in view of Aki et al. and U.S. Pat. 6,207,646 (see § 19 of Office Action mailed October 23, 2003). With respect to this rejection claims 37, 39-40 and 44 stand or fall together.

The teachings of U.S. Pat. 5,547,669 and its lackings have been discussed *supra*. Aki et al. is cited as limitations that are found in dependent claims 39 and 40, namely a step of screening for IgG

binding and mutating the allergen in the center of an IgE binding site. Additional teachings of Aki et al. are discussed *supra*. U.S. Pat. 6,207,646 is cited solely as teaching limitations that are found in dependent claim 44, namely a step of formulating the modified allergen with a specific adjuvant. The Examiner points to no teaching or suggestion in Aki et al. or U.S. Pat. 5,449,669 that could overcome the deficiencies of U.S. Pat. 5,547,669. Withdrawal of the rejection is earnestly requested.

ISSUE 12: Claims 37, 48 and 52-54 are not obvious in light of U.S. Pat. 5,547,669 in view of Burks et al., Stanley et al. or U.S. Pat. 5,449,669

The Examiner has rejected claims 37, 48, 52-56 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Pat. 5,547,669 in view of Aki et al. and U.S. Pat. 6,207,646 (see § 19 of Office Action mailed October 23, 2003). Claims 55-56 have been cancelled. With respect to this rejection claims 37, 48 and 52-54 stand or fall together.

The teachings of U.S. Pat. 5,547,669 and its lackings have been discussed *supra*. As discussed *supra*, Burks et al. and Stanley et al. are not available as prior art under 35 U.S.C. § 103(a). U.S. Pat. No. 5,449,669 is cited solely as teaching an unmodified protein allergen, namely shrimp tropomyosin, and its two IgE binding epitopes. The Examiner points to no teaching or suggestion in U.S. Pat. 5,449,669 that could overcome the deficiencies of U.S. Pat. 5,547,669. Withdrawal of the rejection is earnestly requested.

Conclusion

Appellant again concludes with the belief that claims 37-54 and 57-62 are fully supported by the specification as filed and allowable over the art of record. Allowance of these claims is earnestly requested.

Respectfully submitted,

Charles E. Lyon, D.Phil.

Limited Recognition Under 37 C.F.R. § 10.9(b)

PATENT DEPARTMENT CHOATE, HALL & STEWART Exchange Place 53 State Street Boston, MA 02109

Telephone: (617) 248-5000 Facsimile: (617) 248-4000

Page 17 of 17 Attorney Docket No.: 2002834-0043 Client Reference: CIP4

Attachment I

to

Appeal Brief under 37 C.F.R. § 1.192

Claims Pending

Claims Pending

1-36. (Canceled)

- 37. (Previously presented) A method of making a modified allergen which is less reactive with IgE comprising:
- (a) identifying one or more IgE binding sites in an allergen, the one or more IgE binding sites being ones that are recognized when the allergen is contacted with serum IgE from an individual that is allergic to the allergen;
- (b) modifying the allergen by mutating at least one amino acid in one or more IgE binding sites;
- (c) screening for IgE binding to the modified allergen using serum IgE from an individual that is allergic to the allergen; and
- (d) selecting the modified allergens which have decreased binding to IgE as compared to the unmodified allergen.
- 38. (**Previously presented**) The method of claim 37 further comprising screening for activation of T cells that have been cultured from an individual that is allergic to the allergen and selecting the modified allergens which activate the T cells in substantially the same way as the unmodified allergen.
- 39. (**Previously presented**) The method of claim 37 further comprising screening for binding of the modified allergen to IgG using serum IgG from an individual that is allergic to the allergen and selecting the modified allergens which bind IgG in substantially the same way as the unmodified allergen.
- 40. (**Previously presented**) The method of claim 37 wherein the modified allergen is mutated in the center of one or more of the IgE binding sites.
- 41. (**Previously presented**) The method of claim 37 wherein the modified allergen is mutated by substitution.

- 42. (**Previously presented**) The method of claim 41 wherein the modified allergen is mutated by substituting a hydrophobic amino acid in the center of one or more of the IgE binding sites with a neutral or hydrophilic amino acid.
- 43. (**Previously presented**) The method of claim 37 wherein the modified allergen is a portion of the allergen.
- 44. (**Previously presented**) The method of claim 37 wherein the modified allergen is formulated with an adjuvant selected from the group consisting of IL-12, IL-16, IL-18, IFNγ and immune stimulatory oligodeoxynucleotide sequences containing unmethylated CpG motifs which cause brisk activation and skew the immune response to a Th1-type response.
- 45. (**Previously presented**) The method of claim 37 wherein the modified allergen is screened for initiation of a T cell helper 1 response.
- 46. (**Previously presented**) The method of claim 37 wherein the modified allergen is made in a recombinant host selected from the group consisting of plants, animals, bacteria, yeast, fungi, and insect cells.
- 47. (Previously presented) The method of claim 37 wherein the modified allergen is made in cells using site specific mutation.
- 48. (Previously presented) The method of claim 37 wherein the modified allergen is made from a peanut allergen selected from the group consisting of Ara h 1, Ara h 2, and Ara h 3.
- 49. (**Previously presented**) The method of claim 37 wherein the modified allergen is based on a protein obtained from a source selected from the group consisting of legumes, milks, grains, eggs, fish, crustaceans, mollusks, insects, molds, dust, grasses, trees, weeds, mammals, birds, and natural latexes.

- 50. (**Previously presented**) The method of claim 37, wherein the step of modifying includes mutating at least one amino acid in all the IgE epitopes of the allergen.
- 51. (Previously presented) The method of claim 37, wherein the at least one IgE epitope is one that is recognized when the allergen is contacted with a pool of sera IgE taken from a group of at least two individuals that are allergic to the allergen.
- 52. (**Previously presented**) A method of making a modified food allergen which is less reactive with IgE comprising:
- (a) identifying one or more IgE binding sites in a food allergen, the one or more IgE binding sites being ones that are recognized when the food allergen is contacted with serum IgE from an individual that is allergic to the food allergen;
- (b) modifying the food allergen by mutating at least one amino acid in one or more IgE binding sites;
- (c) screening for IgE binding to the modified food allergen using serum IgE from an individual that is allergic to the food allergen; and
- (d) selecting the modified food allergens which have decreased binding to IgE as compared to the unmodified food allergen.
- 53. (Previously presented) The method of claim 52 wherein the modified allergen is based on a protein obtained from a source selected from the group consisting of legumes, milks, grains, eggs, fish, crustaceans, and mollusks.
- 54. (**Previously presented**) The method of claim 53 wherein the modified allergen is based on a protein obtained from a source selected from the group consisting of wheat, barley, cow milk, egg, codfish, hazel nut, soybean, and shrimp.

55-56. (Canceled)

57. (Previously presented) The method of claim 37 or 52 wherein the step of modifying includes modifying at least 1-6 amino acids in at least one IgE epitope of the allergen.

- 58. (Previously presented) The method of claim 37 or 52 wherein the step of modifying includes modifying at least 1-5 amino acids in at least one IgE epitope of the allergen.
- 59. (Previously presented) The method of claim 37 or 52 wherein the step of modifying includes modifying at least 1-4 amino acids in at least one IgE epitope of the allergen.
- 60. (Previously presented) The method of claim 37 or 52 wherein the step of modifying includes modifying at least 1-3 amino acids in at least one IgE epitope of the allergen.
- 61. (Previously presented) The method of claim 37 or 52 wherein the step of modifying includes modifying at least 1-2 amino acids in at least one IgE epitope of the allergen.
- 62. (Previously presented) The method of claim 37 or 52 wherein the step of selecting includes selecting the modified allergens which bind to IgE at levels that are less than about 1% of those observed with the unmodified allergen.

Attachment II

to

Appeal Brief under 37 C.F.R. § 1.192

"Official list of allergens" maintained by the IUIS Allergen Nomenclature Subcommittee

printed on June 8, 2003 from ftp://biobase.dk/pub/who-iuis/allergen.list

Official list of allergens
IUIS Allergen Nomenclature Subjective
ftp://biobase.dk/pub/who-iuis/allergen.list

2000.03.01 Jorgen Nedergaard Larsen and Henning Lowenstein,
ALK-Abello, Boge Alle 6-8, DK-2970 Horsholm, Denmark
Please report changes, additions or comments to jnlarsen@inet.uni2.dk

Legends: MW determined by reducing SDS-PAGE; asterisk: MW deduced from sequence; C: cDNA seq; P: peptide seq;

Allergen source			quence	
	original names			References
A. Weed pollens Asterales				
Ambrosia artemisiif	olia	•		
(short ragweed)	Amb a 1; antigen E	38	C	•
-	Amb a 2; antigen K	38	С	•
	Amb a 3; Ra3	11	C	22
	Amb a 5; Ra5	5	С	
	Amb a 6; Ra6	10	С	24,25
	Amb a 7; Ra7	12	P	26
	Amb a ?	11	С	27
Ambrosia trifida				
(giant ragweed)	Amb t 5; Ra5G	4.4	С	9,10,28
Artemisia vulgaris				
(mugwort)	Art v 1;	27-29	C	28A
	Art v 2;	35	P	29
Helianthus annuus				
(sunflower)	Hel a 1;	34	-	29a
	Hel a 2; profilin	15.7	С	Y15210
Mercurialis annua				
	Mer a 1; profilin	14-15	С	Y13271
B. Grass pollens				
Poales				
Cynodon dactylon				
(Bermuda grass)	Cyn d 1;	32	C	
	Cyn d 7;		C	•
	Cyn d 12; profilin	14	С	31a,Y08390
Dactylis glomerata				
(orchard grass)	Dac g 1; AgDg1	32	P	32
-	Dac g 2;	11	С	33,S45354
	Dac g 3;		С	33a,U25343
	Dac g 5;	31	P	34
Holcus lanatus				
(velvet grass)	Hol 1 1;		С	Z27084,Z68893

Lolium perenne				
(rye grass)	Lol p 1; group I	27	C	35,36
	Lol p 2; group II	11	C	•
	Lol p 3; group III	11	C C	38
	Lol p 5; Lol p IX, Lol p Ib	31/35	C	34,39 39a
	Lol p 11; trypsin inh. Related	. 16		39a
Phalaris aquatica				
(canary grass)	Pha a 1;		С	40,S80654
Phleum pratense				
(timothy)	Phl p 1;	27	C	X78813
	Phl p 2;		C	41,X75925
	Phl p 4;		P	41A
	Phl p 5; Ag25	32	C	42
	Phl p 6;		C	43,Z27082
	Phl p 12; profilin		C	44,X77583
	Phl p 13; polygalacturonase	55-60	С	AJ238848
Poa pratensis				
(Kentucky blue	Poa p 1; group I	33	P	46
grass)	Poa p 5;	31/34	C	34,47
Sorghum halepense				
(Johnson grass)	Sor h 1;		С	48
C. Tree pollens				
Fagales:				
Alnus glutinosa				
(alder)	Aln g 1;	17	С	S50892
Betula verrucosa	,			
(birch)	Bet v 1;	17	C	see iso-list
,,	Bet v 2; profilin	15	С	M65179
	Bet v 3;		С	X79267
	Bet v 4;	8	C	X87153/S54819
	Bet v 6; isoflavone reductase		_	20125127
	homologue		C	AF135127
	Bet v 7; cyclophilin	18	P	P81531
Carpinus betulus				
(hornbeam)	Car b 1;	17	С	see iso-list
Castanea sativa				
(chestnut)	Cas s 1; Bet v 1 homologue	22	P	52
,-	Cas s 5; chitinase			
Corylus avellana				
(hazel)	Cor a 1;	17	С	see iso-list
(,	•			
Quercus alba		17	г.	54
(white oak)	Que a 1;	17	P	34

Lamiales:

Oleaceae:

Fraxinus excelsior (ash)	Fra e 1;	20	P	58A
Ligustrum vulgare (privet)	Lig v 1;	20	P	58A
Olea europea (olive)	Ole e 1; Ole e 2; profilin Ole e 3; Ole e 4; Ole e 5; superoxide dismutase Ole e 6; Ole e 7;	16 15-18 9.2 32 16 10	C C P P C	59,60 60A 60B P80741 P80740 U86342 P81430
Syringa vulgaris (lilac)	Syr v 1;	20	P	58A
Plantaginaceae:				
Plantago lanceolata (English plantain)	Pla l 1;	18	P	P842242
Pinales:				
Cryptomeria japonica (sugi)	Cry j 1; Cry j 2;	41-45	c c	55,56 57, D29772
Cupressus arizonica (cypress)	Cup a 1;	43	С	A1243570
Juniperus ashei (mountain cedar)	Jun a 1; Jun a 3;	43 30	P P	P81294 P81295
Juniperus oxycedrus (prickly juniper)	Jun o 2; calmodulin-like	29	С	AF031471
Juniperus sabinoides (mountain cedar)	Jun s 1;	50	P	58
Juniperus virginiana (eastern red cedar)	Jun v 1;	43	P	P81825
D. Mites Acarus siro (mite)	Aca s 13; fatty acid-bind.pro	c.14*	С	AJ006774
Blomia tropicalis (mite)	Blo t 5; Blo t 12; Btlla Blo t 13; Bt6 fatty acid-bind	ing prot	с с . с	U59102 U27479 U58106

```
Dermatophagoides pteronyssinus
                                                                       61
                                                          25
                                                                  C
                        Der p 1; antigen P1
(mite)
                                                                       62
                                                                  С
                                                          14
                        Der p 2;
                                                                  С
                                                                       63
                                                          28/30
                        Der p 3; trypsin
                                                                  Р
                                                                       64
                        Der p 4; amylase
                                                          60
                                                                  C
                                                                       65
                                                          14
                        Der p 5;
                                                          25
                                                                  P
                                                                       66
                        Der p 6; chymotrypsin
                                                          22-28
                                                                  C
                                                                       67
                        Der p 7;
                        Der p 8; glutathione transferase
                                                                  C
                                                                       67A
                        Der p 9; collagenolytic serine prot.
                                                                  P
                                                                       67B
                                                                  C
                                                                       Y14906
                        Der p 10; tropomyosin
                                                                  C
                                                                       Epton p.c.
                        Der p 14; apolipophorin like p.
Dermatophagoides microceras
                                                                       68
                                                          25
                                                                  P
                        Der m 1;
(mite)
Dermatophagoides farinae
                                                                  С
                                                                       69
                                                          25
                        Der f 1;
(mite)
                                                                  С
                                                                       70,71
                                                          14
                        Der f 2;
                                                                  C
                                                          30
                                                                       63
                        Der f 3;
                                                                       72
                                                                  C
                        Der f 10; tropomyosin
                                                                       72a
                                                                  С
                                                          98
                        Der f 11; paramyosin
                                                                       D17686
                                                                  C
                        Der f 14; Mag3, apolipophorin
Euroglyphus maynei
                                                                       AF149827
                        Eur m 14; apolipophorin
                                                         177
                                                                  С
(mite)
Lepidoglyphus destructor
                                                                       73,74,75
                                                                  С
                                                          15
                        Lep d 2.0101;
(storage mite)
                                                                       75
                                                          15
                                                                  C
                        Lep d 2.0102;
  Animals
Bos domesticus
                                                                       76,L42867
                        Bos d 2; Ag3, lipocalin
                                                          20
                                                                  C.
(domestic cattle)
                                                                       M18780
                                                           14.2
                                                                  C
                        Bos d 4; alpha-lactalbumin
(see also foods)
                        Bos d 5; beta-lactoglobulin
                                                          18.3
                                                                  C
                                                                       X14712
                                                          67
                                                                       M73993
                        Bos d 6; serum albumin
                                                         160
                                                                       77
                        Bos d 7; immunoglobulin
                                                          20-30
                                                                       77
                        Bos d 8; caseins
Canis familiaris
                                                                       78,79
                                                                  С
                                                           25
                        Can f 1;
(Canis domesticus)
                                                           27
                                                                  С
                                                                       78,79
                        Can f 2;
 (dog)
                                                                  С
                                                                       S72946
                        Can f ?; albumin
Equus caballus
                                                                  C
                                                                       U70823
                                                           25
(domestic horse)
                        Equ c 1; lipocalin
                                                                       79A, 79B
                                                                  Ρ
                                                           18.5
                        Equ c 2; lipocalin
Felis domesticus
                                                                  C
                                                                       15
                                                           38
                        Fel d 1; cat-1
(cat saliva)
Mus musculus
                                                                        80,81
                                                           19
                                                                  C
                        Mus m 1; MUP
(mouse urine)
```

```
Rattus norvegius
                                                                         82,83
                                                            17
                                                                   С
  (rat urine)
                          Rat n 1
F. Fungi
1. Ascomycota
1.1 Dothidiales
  Alternaria alternata
                                                            28
                                                                   C
                                                                        U82633
                          Alt a 1;
                                                                   C
                                                            25
                          Alt a 2;
                                                                        U87807, U87808
                                                                   С
                          Alt a 3; heat shock prot. 70
                          Alt a 4; prot.disulfidisomerase 57
                                                                   C
                                                                         X84217
                                                                        X78222, U87806
                                                                   C
                          Alt a 6; acid.ribosomal prot P2 11
                                                                   С
                                                                        X78225
                          Alt a 7; YCP4 protein
                                                            22
                                                                   C
                                                                         X78227, P42041
                                                            53
                          Alt a 10; aldehyde dehydrogen.
                                                                   С
                                                            45
                                                                         U82437
                          Alt a 11; enolase
                                                                   C
                                                                        X84216
                          Alt a 12; acid.ribosomal prot P1 11
  Cladosporium herbarum
                                                                         83a, 83b
                                                            13
                          Cla h 1;
                                                                         83a, 83b
                          Cla h 2;
                                                                         X78228
                          Cla h 3; aldehyde dehydrogenase 53
                                                                   C
                                                                   C
                                                                         X78223
                          Cla h 4; acid.ribosomal prot P2 11
                                                                   C
                                                            22
                                                                         X78224
                          Cla h 5; YCP4 protein
                                                            46
                                                                   C
                                                                         X78226
                          Cla h 6; enolase
                          Cla h 12; acid.ribosomal prot P1 11
                                                                   C
                                                                         X85180
1.2 Eurotiales
  Aspergillus flavus
                          Asp fl 13; alkaline serine
                                               proteinase
                                                                         84
                                                            34
  Aspergillus fumigatus
                                                                         M83781,S39330
                                                            18
                                                                   C
                          Asp f 1;
                                                                   C
                                                                         U56938
                                                            37
                          Asp f 2;
                                                                         U20722
                                                                   C
                                                            19
                          Asp f 3; peroxisomal protein
                                                            30
                                                                   C
                                                                         AJ001732
                          Asp f 4;
                                                                   ·C
                                                                         Z30424
                          Asp f 5; metalloprotease
                                                            42
                                                                   С
                          Asp f 6; Mn superoxide dismutase26.5
                                                                         U53561
                                                                   С
                                                                         AJ223315
                                                            12
                          Asp f 7;
                                                                    C
                                                                         AJ224333
                          Asp f 8; ribosomal protein P2
                                                            11
                                                                    С
                                                                         AJ223327
                                                            34
                          Asp f 9;
                                                                         X85092
                                                            34
                                                                    C
                          Asp f 10; aspartic protease
                                                                         84a
                          Asp f 11; peptidyl-prolyl isom
                                                            24
                                                                         85
                                                                    C
                          Asp f 12; heat shock prot. P90
                          Asp f 13; alkaline serine
                                                                         84b
                                               proteinase
                                                            34
                                                                   C
                                                                         AJ002026
                                                            16
                          Asp f 15;
                                                                    С
                                                                         g3643813
                          Asp f 16;
                                                            43
                                                                    C
                                                                         AJ224865
                          Asp f 17;
                          Asp f 18; vacuolar serine
                                                                         84c
                                               proteinase
```

Aspergillus niger				
	Asp n 14; beta-xylosidase Asp n 18; vacuolar serine	105	С	AF108944
	proteinase	34	С	
	Asp n ?;	85	C	Z84377
Aspergillus oryzae	Asp o 13; alkaline serine			
	proteinase	34	С	X17561
	Asp o 21; TAKA-amylase A	53	C	D00434,M33218
	2			
Penicillium brevicompa				
	Pen b 13; alkaline serine			0.65
	Proteinase	: 33		86a
Penicillium citrinum				
Penicilitum Cicilinum	Pen c 3; peroxisomal membrane			
	protein	18		86b
	Pen c 13; alkaline serine			
	proteinase			86a
	Pen c 19; heat shock prot. P70	70	C	U64207
Penicillium notatum				
Peniciliam nocacam	Pen n 13; alkaline serine			
	proteinase	34		89
	Pen n 18; vacuolar serine			
	proteinase	32		89
	Pen n 20; N-acetyl			87
	glucosaminidase	: 68		67
Penicillium oxalicum				
Tenretiriam omarioam	Pen o 18; vacuolar serine			
	proteinase	34		89
1.3 Onygenales				
Trichophyton rubrum	m-: - 2.		С	90
	Tri r 2; Tri r 4; serine protease		C	90
	III I 4, bollmo processo			
Trichophyton tonsurans				
	Tri t 1;	30	P	91
	Tri t 4; serine protease	83	С	90
1 4 0				
1.4 Saccharomycetales				
Candida albicans				
	Cand a 1;	40	C	88
Candida boidinii	- 11 0	20	С	J04984, J04985
	Cand b 2;	20	C	004964, 004965
2 Basidiomycota				
2 DasidiomyCoca				
2.1 Basidiolelastomycete	es			
_				
Malassezia furfur	w 1. 6 1			91 a
	Mala f 1;			JIQ

	Mala f 2; MF1 peroxisomal membrane pr	21	С	AB011804
	Mala f 3; MF2 peroxisomal membrane pr	20	С	AB011805
	Mala f 4; Mala f 5; Mala f 6; cyclophilin homologue	35 18* 17*	С С С	Takesako,p.c. AJ011955 AJ011956
D. D. David Adamson has				
2.2 Basidiomycetes				
Psilocybe cubensis	Psi c 1; Psi c 2; cyclophilin	16		91b
Coprinus comatus (shaggy cap)	Cop c 1; leucine zipper prot. Cop c 2; Cop c 3; Cop c 5; Cop c 7;	11	С	AJ132235 Brander,p.c. Brander,p.c. Brander,p.c. Brander,p.c.
G. Insects				
Aedes aegyptii (mosquito)	Aed a 1; apyrase Aed a 2;	68 37	C C	L12389 M33157
Apis mellifera				
(honey bee)	Api m 1; phospholipase A2	16 44	C	92 93
	Api m 2; hyaluronidase Api m 4; melittin	3	C	94
	Api m 6;	7-8	P	Kettner,p.c.
Bombus pennsylvanicus				
(bumble bee)	Bom p 1; phospholipase Bom p 4; protease	16	P P	95 95
Blattella germanica				
(German cockroach)	Bla g 1; Bd90k	36	C	96
	Bla g 2; aspartic protease Bla g 4; calycin	21	C	97
	Bla g 5; glutathione transf.	22	C	98
	Bla g 6; troponin C	27	С	98
Periplaneta americana				
(American cockroach)	Per a 1; Cr-PII		C	
	Per a 3; Cr-PI Per a 7; tropomyosin	72-78 37	C	98A Y14854
			-	
Chironomus thummi thum		16	C	99
(midges)	Chi t 1-9; hemoglobin Chi t 1.01; component III	16 16	C C	P02229
	Chi t 1.02; component IV	16	C	P02230
	Chi t 2.0101; component I	16	C	P02221
	Chi t 2.0102; component IA	16	C	P02221
	Chi t 3; component II-beta	16	C	P02222
	Chi t 4; component IIIA	16	С	P02231

	Chi t 5; component VI Chi t 6.01; component VIIA Chi t 6.02; component IX Chi t 7; component VIIB Chi t 8; component VIII Chi t 9; component X	16 16 16 16 16	00000	P02224 P02226 P02223 P02225 P02227 P02228
Dolichovespula maculat (white face hornet)	a Dol m 1; phospholipase A1 Dol m 2; hyaluronidase Dol m 5; antigen 5	35 44 23	C C	100 101 102,103
Dolichovespula arenari (yellow hornet)	a Dol a 5; antigen 5	23	С	104
Polistes annularies (wasp)	Pol a 1; phospholipase A1 Pol a 2; hyaluronidase Pol a 5; antigen 5	35 44 23	P P C	105 105 104
Polistes dominulus (Mediterranean paper w	asp) Pol d 1; Pol d 4; serine protease Pol d 5;	32-34	С	DR Hoffman DR Hoffman P81656
Polistes exclamans (wasp)	Pol e 1; phospholipase Al Pol e 5; antigen 5	34 23	P C	107 104
Polistes fuscatus (wasp)	Pol f 5; antigen 5	23	С	106
Polistes metricus (wasp)	Pol m 5; antigen 5	23	P	106
Vespa crabo (European hornet)	Vesp c 1; phospholipase Vesp c 5.0101; antigen 5 Vesp c 5.0102; antigen 5	34 23 23	P C C	107 106 106
Vespa mandarina (giant asian hornet)	Vesp m 1.01; Vesp m 1.02; Vesp m 5;			DR Hoffman DR Hoffman P81657
Vespula flavopilosa (yellowjacket)	Ves f 5; antigen 5	23	С	106
Vespula germanica (yellowjacket)	Ves g 5; antigen 5	23	С	106
Vespula maculifrons (yellowjacket)	Ves m 1; phospholipase Al Ves m 2; hyaluronidase Ves m 5; antigen 5	33.5 44 23	C P C	108 109 104

Vespula pennsylvanica (yellowjacket)	Ves p 5;	antigen 5	23	С	106
Vespula squamosa (yellowjacket)	Ves s 5;	antigen 5	23	С	106
Vespula vidua (wasp)	Ves vi 5	;	23	С	106
Vespula vulgaris (yellowjacket)	Ves v 2;	phopholipase Al hyaluronidase antigen 5	35 44 23	C P C	105A 105A 104
Myrmecia pilosula (Australian jumper ant)Myr p 1; Myr p 2;			C C	X70256 S81785
Solenopsis geminata (tropical fire ant)	Sol g 2; Sol g 4;				DR Hoffman DR Hoffman
Solenopsis invicta (fire ant)	Sol i 2; Sol i 3; Sol i 4;		13 24 13	C C	110,111 110 110
Solenopsis saevissima (brazilian fire ant)	Sol s 2;				DR Hoffman
H. Foods Gadus callarias (cod)	Gad c 1;	allergen M	12	С	112,113
Salmo salar (Atlantic salmon)	Sal s 1;	parvalbumin	12	С	X97824 X97825
Bos domesticus (domestic cattle) (milk) (see also animals)	Bos d 5; Bos d 6;	alpha-lactalbumin beta-lactoglobulin serum albumin immunoglobulin caseins	14.2 18.3 67 160 20-30	C C	M18780 X14712 M73993 77
Gallus domesticus (chicken)	Gal d 2; Gal d 3; Gal d 4;	ovomucoid ovalbumin conalbumin (Ag22) lysozyme serum albumin	28 44 78 14 69	0 0 0	114,115 114,115 114,115 114,115 X60688
Metapenaeus ensis (shrimp)	Met e 1;	tropomyosin		С	U08008
Penaeus aztecus (shrimp)	Pen a 1;	tropomyosin	36	P	116

Penaeus indicus (shrimp)	Pen i 1; tropomyosin	34	С	117
Todarodes pacificus (squid)	Tod p 1; tropomyosin	38	P	117A
Haliotis Midae (abalone)	Hal m 1	49	-	117B
Apium graveolens (celery)	Api g 1; Bet v 1 homologue Api g 4; profilin	16*	С	Z48967 AF129423
	Api g 5;	55/58	P	P81943
Brassica juncea (oriental mustard)	Bra j 1; 2S albumin	14	С	118
Brassica rapa (turnip)	Bra r 2; prohevein-like protein	25	?	P81729
Hordeum vulgare (barley)	Hor v 15; BMAI-1	15	С	119
Zea mays (maize, corn)	Zea m 14; lipid transfer prot.	9	P	P19656
Oryza sativa (rice)	Ory s 1;		С	U31771
Corylus avellana (hazelnut)	Cor a 1.0401; Bet v 1 homologue	17	С	AF136945
Malus domestica (apple)	Mal d 1; Bet v 1 homologue Mal d 2; thaumatin homologue		C	X83672 AJ243427
	Mal d 3; lipid transfer protein	9	·C	Pastorello
Pyrus communis				
(pear)	Pyr c 1; Bet v 1 homologue	18	C	AF05730
	Pyr c 4; profilin Pyr c 5; isoflavone reductase	14	С	AF129424
	homologue	33.5	C	AF071477
Persea americana				
(avocado)	Pers a 1; endochitinase	32	С	Z78202
Prunus armeniaca				
(apricot)	Pru ar 1; Bet v 1 homologue Pru ar 3; lipid transfer protein	n 9	C P	U93165
	Fid al 3, lipid clambiel process		_	
Prunus avium (sweet cherry)	Pru av 1; Bet v 1 homologue		С	U66076
(sweet cherry)	Pru av 2; thaumatin homologue		C	U32440
	Pru av 4; profilin	15	С	AF129425
Prunus persica (peach)	Pru p 3;lipid transfer protein	10	P	P81402

Sinapis alba (yellow mustard)	Sin a 1; 2S albumin	14	С	120
Glycine max (soybean)	Gly m 1.0101; HPS	7.5	P	121
	Gly m 1.0102; HPS	7	P	121
	Gly m 2	8	P	A57106
	Gly m 3; profilin	14	С	AJ223982
Arachis hypogaea	Ara h 1; vicilin	63.5	С	L34402
(Peanut)	Ara h 2; conglutin	17	C	L77197
	Ara h 3; glycinin	60	C	AF093541
	Ara h 4; glycinin	37	C	AF086821
	Ara h 5; profilin	15	C	
	Ara h 6; conglutin homolog	15	C	
	Ara h 7; conglutin homolog	15	C	AF091737
Actinidia chinensis (kiwi)	Act c 1; cysteine protease	30	P	P00785
Solanum tuberosum (potato)	Sola t 1; patatin	43	P	P15 4 76
Bertholletia excelsa (Brazil nut)	Ber e 1; 2S albumin	9	С	P04403,M17146
Juglans regia				
(English walnut)	Jug r 1; 2S albumin		С	U66866
(Bligithi warnae)	Jug r 2; vicilin	44	C	AF066055
Ricinus communis (Castor bean)	Ric c 1; 2S albumin		С	P01089
I. Others				
Anisakis simplex				
(nematode)	Ani s 1;	24	P	A59069
(Commerce and)	Ani s 2; paramyosin	97	С	AF173004
Ascaris suum (worm)	Asc s 1;	10	P	122
Den n				oud-nules mo
(red coral)	Den n 1;			Onizuka, p.c.
Hevea brasiliensis			_	100 104
(rubber)	Hev b 1; elongation factor	58	P	123,124
	Hev b 2; (1,3-glucanase	34/36	C	125
	Hev b 3	24	P	126,127
	Hev b 4; component of	00/110/11		120
	microhelix protein complex 1			128 U42640
	Hev b 5	16 20	C	M36986/p02877
	Hev b 6.01 hevein precursor	20 5	C	M36986/p02877
	Hev b 6.02 hevein	5	_	1430300/ p020//

```
M36986/p02877
                                                               С
                       Hev b 6.03 C-terminal fragment
                                                        14
                                                                С
                                                                     U80598
                       Hev b 7; patatin homologue
                                                        46
                                                                С
                                                                     Y15042
                       Hev b 8; profilin
                                                        14
                                                        51
                                                                C
                                                                     AJ132580/
                       Hev b 9; enolase
                                                                     AJ132581
                                                                     AJ249148
                       Hev b 10; Mn-superoxide dismut. 26
                                                                C
Ctenocephalides felis felis
                       Cte f 1;
(cat flea)
                       Cte f 2; M1b
                                                        27
                                                                     AF231352
Homo sapiens
                                                        73*
                                                                С
                                                                     Y14314
(human autoallergens)
                       Hom s 1;
                                                               C
                                                                     X80909
                                                        10.3*
                       Hom s 2;
                                                        20.1*
                                                               C
                                                                     X89985
                       Hom s 3;
                                                        36*
                                                                C
                                                                     Y17711
                       Hom s 4;
                                                                     P02538
                                                        42.6* C
                       Hom s 5;
```

- 1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, Baltimore, MD, Edition 1.0.
- 2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-Mills. 1986. Allergen nomenclature. Bull WHO 64:767-770.
- 3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.
- 4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.
- 5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum. Allergy 35:206-207.
- 6. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.
- 7. Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B. Mach, S. G. E. Marsh, W. R. Mayr, P. Parham, T. Sasuki, G. M. Th. Schreuder, J. L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991. Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.
- 8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96:296-304.
- 9. Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D. G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.
- 10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and L. Mueller. 1992. Solution structures of ragweed allergen Amb t V. Biochemistry 31:5117-5127.
- 11. Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller. 1992. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy. Biochemistry 31:8697-8705.

- 12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King. 1979. Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.
- 13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass pollens. Mol. Immunol. 19:1527-1534.
- 14. Ansari, A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J. Allergy Clin. Immunol. 80:229-235.
- 15. Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D. Chapman, and M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 88:9690-9694.
- 16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 113:263-268.
- 17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem. Physiol. 83B:321-324.
- 18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42:464-470.
- 19. Stanworth, D. R., K. J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner. 1990. Nomenclature for synthetic peptides representative of immunoglobulin chain sequences. Bulletin WHO 68:109-111.
- 20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.G. Klapper. 1991. Cloning of Amb a I (Antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem. 266: 1229-1236.
- 21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A.W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991. Complete sequence of the allergen Amb a II: recombinant expression and reactivity with T cells from ragweed allergic patients. J. Immunol. 147:2547-2552.
- 22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence of ragweed allergen Ra3. Biochemistry 19:5729-5734.
- 23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.
- 24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131:706-711.
- Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.
- 26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.

- 27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, complete sequence, and recombinant expression of a novel allergen from short ragweed pollen (abst). J. Allergy Clin. Immunol. 91:339.
- 28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J. DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-906.
- 28A. Breitenbach M, pers. comm.
- Nilsen, B. M., K. Sletten, M. O'Neill, B. Smestead Paulsen, and H. van Halbeek. 1991. Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia vulgaris). J. Biol. Chem. 266:2660-2668.
- Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, Palacios R 1994. Sensitization to sunflower pollen: only an occupational allergy? Int Arch Allergy Immunol 105:297-307.
- 30. Smith, P.M., Suphioglu, C., Griffith, I.J., Theriault, K., Knox, R.B. and Singh, M.B. 1996. Cloning and expression in yeast Pichia pastoris of a biologically active form of Cynd 1, the major allergen of Bermuda grass pollen. J. Allergy Clin. Immunol. 98:331-343.
- 31. Suphioglu, C., Ferreira, F. and Knox, R.B. 1997. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 402:167-172.
- 31a. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, and Palacios R. 1997. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cyn d 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy 27:1307-1313.
- Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch. Allergy Appl. Immunol. 78:283-289.
- 33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993. Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/Orchard grass (Dactylis glomerata), Dac g II. Allergy 48:615-623.
- 33a. Guerin-Marchand, C., Senechal, H., Bouin, A.P., Leduc-Brodard, V., Taudou, G., Weyer, A., Peltre, G. and David, B. 1996. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol. Immunol. 33:797-806.
- 34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group V allergens in grass pollen IV. Similarities in amino acid compositions and amino terminal sequences of the group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.
- 35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210-16215.
- 36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox. 1991. Cloning

- and sequencing of Lol p I, the major allergenic protein of rye-grass pollen. FEBS Letters 279:210-215.
- 37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J. Biol. Chem. 264:11181-11185.
- 37a. Sidoli, A., Tamborini, E., Giuntini, I., Levi, S., Volonte, G., Paini, C., De Lalla, C., Siccardi, A.G., Baralle, F.E., Galliani, S. and Arosio, P. 1993. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J. Biol. Chem. 268:21819-21825.
- 38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28:8665-8670.
- 39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M. Smith, P. Taylor, R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B. Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad. Sci. 88:1384-1388.
- 39a. van Ree R, Hoffman DR, van Dijk W, Brodard V, Mahieu K, Koeleman CA, Grande M, van Leeuwen WA, Aalberse RC. 1995. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol 95:970-978.
- 40. Suphioglu, C. and Singh, M.B. 1995. Cloning, sequencing and expression in Escherichia coli of Pha a 1 and four isoforms of Pha a 5, the major allergens of canary grass pollen. Clin. Exp. Allergy 25:853-865.
- 41. Dolecek, C., Vrtala, S., Laffer, S., Steinberger, P., Kraft, D., Scheiner, O. and Valenta, R. 1993. Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Lett. 335:299-304.
- 41A. Fischer S, Grote M, Fahlbusch B, Muller WD, Kraft D, Valenta R. 1996. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189-198.
- 42. Matthiesen, F., and H. Lowenstein. 1991. Group V allergens in grass pollens. I. Purification and characterization of the group V allergen from Phleum pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.
- Petersen, A., Bufe, A., Schramm, G., Schlaak, M. and Becker, W.M. 1995. Characterization of the allergen group VI in timothy grass pollen (Phl p 6). II. cDNA cloning of Phl p 6 and structural comparison to grass group V. Int. Arch. Allergy Immunol. 108:55-59.
- Valenta, R., Ball, T., Vrtala, S., Duchene, M., Kraft, D. and Scheiner, O. 1994. cDNA cloning and expression of timothy grass (Phleum pratense) pollen profilin in Escherichia coli: comparison with birch pollen profilin. Biochem. Biophys. Res. Commun. 199:106-118.
- 46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26:557-561.
- Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S. Mohapatra. 1991. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.

- 48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass Lol p I (abst). J. Allergy Clin. Immunol. 91:340.
- 52. Kos T, Hoffmann-Sommergruber K, Ferreira F, Hirschwehr R, Ahorn H, Horak F, Jager S, Sperr W, Kraft D, Scheiner O. 1993. Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen--Cas s 1. Biochem Biophys Res Commun 196:1086-92.
- 54. Ipsen, H., and B.C. Hansen. 1991. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens. Mol. Immunol. 28:1279-1288.
- 55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and T. Matuhasi. 1988. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j I). FEBS Lett. 239:329-332.
- 56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock. 1993. The cDNA cloning of Cry j I, the major allergen of Cryptomeria japonica (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.
- 57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M. Usui, and T. Matuhasi. 1990. Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309-312.
- Gross GN, Zimburean JM, Capra JD 1978. Isolation and partial characterization of the allergen in mountain cedar pollen. Scand J Immunol 8:437-41
- Obispo TM, Melero JA, Carpizo JA, Carreira J, Lombardero M 1993. The main allergen of Olea europaea (Ole e I) is also present in other species of the oleaceae family. Clin Exp Allergy 23:311-316.
- 59. Cardaba, B., D. Hernandez, E. Martin, B. de Andres, V. del Pozo, S. Gallardo, J.C. Fernandez, R. Rodriguez, M. Villalba, P. Palomino, A. Basomba, and C. Lahoz. 1993. Antibody response to olive pollen antigens: association between HLA class II genes and IgE response to Ole e I (abst). J. Allergy Clin. Immunol. 91:338.
- 60. Villalba, M., E. Batanero, C. Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M.A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence of Ole e I, the major allergen from olive tree pollen (Olea europaea). Europ.J. Biochem. 216:863-869.
- 60A. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, Palacios R 1997. Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J Allergy Clin Immunol 100:365-372.
- 60B. Batanero E, Villalba M, Ledesma A Puente XS, Rodriguez R. 1996. Ole e 3, an olivetree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241: 772-778.
- 61. Chua, K. Y., G. A. Stewart, and W. R. Thomas. 1988. Sequence analysisof cDNA encoding for a major house dust mite allergen, Der p I. J. Exp. Med. 167:175-182.
- 62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int. Arch. Allergy Appl. Immunol. 91:118-123.

- 63. Smith WA, Thomas WR. 1996. Comparative analysis of the genes encoding group 3 allergens from Dermatophagoides pteronyssinus and Dermatophagoides farinae. Int Arch Allergy Immunol 109: 133-40.
- 64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart. 1991. House dust mite-derived amylase: Allergenicity and physicochemical characterisation. J. Allergy Clin. Immunol. 87:1035-1042.
- 65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo. 1989. Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J. Exp. Med. 170:1457-1462.
- 66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991. Allergenic and proteolytic properties of fourth allergens from Dermatophagoides mites. In: "Dust Mite Allergens and Asthma. Report of the 2nd international workshop" A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.
- 67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993. Molecular cloning of a house dust mite allergen with common antibody binding specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.
- 67A. O'Neil GM, Donovan GR, Baldo BA. 1994. Cloning and charaterisation of a major allergen of the house dust mite Dermatophagoides pteronyssinus, homologous with glutathione S-transferase. Biochim Biophys Acta, 1219:521-528.
- 67B. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. 1996. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739-47.
- 68. Lind P, Hansen OC, Horn N. 1988. The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I of D. pteronyssinus. J. Immunol. 140:4256-4262.
- 69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis of cDNA coding for a mojor house dust allergn Der f I. Clin. Exp. Allergy 21:25-32.
- 70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993. Determination of three disulfide bonds in a major house dust mite allergen, Der f II. Int. Arch. Allergy Immunol. 101:159-166.
- 71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the major dust mite allergen Der f II. Clin. Exp. Allergy 21:33-38.
- 72. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. 1995. Immunochemical characteristion of recombinant and native tropomyosins as a new allergen from the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 96:74-83.
- 72a. Tsai L, Sun Y, Chao P, Ng H, Hung M, Hsieh K, Liaw S, Chua K, 1999. Sequence analysis and expression of a cDNA clone encoding a 98-kDa allergen in Dermatophagoides farinae. Clin Exp Allergy 29:1606-1613.
- 73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall, B. Harfast, and S.G.O. Johansson. 1993. N-terminal amino acid sequence of major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin. Immunol. 91:353.

- 74. Varela J, Ventas P, Carreira J, Barbas JA, Gimenez-Gallego G, Polo F. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen. Eur J Biochem 225:93-98, 1994.
- 75. Schmidt M, van der Ploeg I, Olsson S, van Hage Hamsten M. The complete cDNA encoding the Lepidoglyphus destructor major allergen Lep d 1. FEBS Lett 370:11-14, 1995.
- 76. Rautiainen J, Rytkonen M, Pelkonen J, Pentikainen J, Perola O, Virtanen T, Zeiler T, Mantyjarvi R. BDA20, a major bovine dander allergen characterized at the sequence level is Bos d 2. Submitted.
- 77. Gjesing B, Lowenstein H. Immunochemistry of food antigens. Ann Allergy 53:602, 1984.
- 78. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991. Affinity purification of a major and a minor allergen from dog extract: Serologic activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin. Immunol. 87:1056-1065.
- 79. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.
- 79A. Bulone, V. 1998. Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem 253:202-211.
- 79B. Swiss-Prot acc. P81216, P81217.
- 80. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988. A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.
- 81. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984. Structure of mouse urinary protein genes: differential splicing configurations in the 3'-non-coding region. EMBO J 3:1045-1052.
- 82. Longbottom, J. L. 1983. Chracterization of allergens from the urines of experimental animals. McMillan Press, London, pp. 525-529.
- 83. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue-specific control of alpha 2u globulin gene expression: constitutive synthesis in submaxillary gland. Cell 32:453-460.
- 83A. Aukrust L, Borch SM. 1979. Partial purification and characterization of two Cladosporium herbarum allergens. Int Arch Allergy Appl Immunol 60:68-79.
- 83B. Sward-Nordmo M, Paulsen BS, Wold JK. 1988. The glycoprotein allergen Ag-54 (Cla h II) from Cladosporium herbarum. Structural studies of the carbohydrate moiety. Int Arch Allergy Appl Immunol 85:288-294.
- 84. Shen, et al. J. Allergy Clin. Immunol. 103:S157, 1999.
- 84A. Crameri R. Epidemiology and molecular basis of the involvement of Aspergillus fumigatus in allergic diseases. Contrib. Microbiol. Vol. 2, Karger, Basel (in press).
- 84B. Shen, et al. (manuscript submitted), 1999

- 84C. Shen HD, Ling WL, Tan MF, Wang SR, Chou H, Han SIH. Vacuolar serine proteinase: A major allergen of Aspergillus fumigatus. 10th International Congress of Immunology, Abstract, 1998.
- 85. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J. Allergy Clin. Immunol. 91:1024-1030.
- 86A. Shen HD, Lin WL, Tsai JJ, Liaw SF, Han SH. 1996. Allergenic components in three different species of Penicillium: crossreactivity among major allergens. Clin Exp Allergy 26:444-451.
- 86B. Shen, et al. Abstract; The XVIII Congress of the European Academy of Allergology and Clinical Immunology, Brussels, Belgium, 3-7 July 1999.
- 87. Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH. 1995. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350-356.
- 88. Shen, H.D., K.B. Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 21:675-681.
- 89. Shen, et al. Clin. Exp. Allergy (in press), 1999.
- 90. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA.1998. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 273:29489-96.
- 91. Deuell, B., L.K. Arruda, M.L. Hayden, M.D. Chapman and T.A.E. Platts-Mills. 1991. Trichophyton tonsurans Allergen I. J. Immunol. 147:96-101.
- 91A. Schmidt M, Zargari A, Holt P, Lindbom L, Hellman U, Whitley P, van der Ploeg I, Harfast B, Scheynius A. 1997. The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185.
- 91B. Horner WE, Reese G, Lehrer SB. 1995. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int Arch Allergy Immunol 107:298-300.
- 92. Kuchler, K., M. Gmachl, M. J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honey bee venom glands: The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184:249-254.
- 93. Gmachl, M., and G. Kreil. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 90:3569-3573.
- 94. Habermann, E. 1972. Bee and wasp venoms. Science 177:314-322.
- 95. Jacobson, R.S., and D.R. Hoffman. 1993. Characterization of bumblebee venom allergens (abst). J. Allergy Clin. Immunol. 91:187.
- 96. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Hayden ML, Chapman MD. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 270:19563-19568, 1995.

- 97. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270:31196-31201, 1995.
- 98. Arruda LK, Vailes LD, Benjamin DC, Chapman MD. Molecular cloning of German Cockroach (Blattella germanica) allergens. Int Arch Allergy Immunol 107:295-297, 1995.
- 98A. Wu CH, Lee MF, Liao SC. 1995. Isolation and preliminary characterization of cDNA encoding American cockroach allergens. J Allergy Clin Immunol 96: 352-9.
- 99. Mazur, G., X. Baur, and V. Liebers. 1990. Hypersensitivity to hemoglobins of the Diptera family Chironomidae: Structural and functional studies of their immunogenic/allergenic sites. Monog. Allergy 28:121-137.
- 100. Soldatova, L., L. Kochoumian, and T.P. King. 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Letters 320:145-149.
- 101. Lu, G., L. Kochoumian and T.P. King. Whiteface hornet venom allergen hyaluronidase: cloning and its sequence similarity with other proteins (abst.). 1994. J. Allergy Clin. Immunol. 93:224.
- 102. Fang, K. S. F., M. Vitale, P. Fehlner, and T. P. King. 1988. cDNA cloning and primary structure of a white-faced hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci., USA 85:895-899.
- 103. King, T. P., D. C. Moran, D. F. Wang, L. Kochoumian, and B.T. Chait. 1990. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Prot. Seq. Data Anal. 3:263-266.
- 104. Lu, G., M. Villalba, M.R. Coscia, D.R. Hoffman, and T.P. King. 1993. Sequence analysis and antigen cross reactivity of a venom allergen antigen 5 from hornets, wasps and yellowjackets. J. Immunol. 150: 2823-2830.
- 105. King, T. P. and Lu, G. 1997. Unpublished data.
- 105A. King TP, Lu G, Gonzalez M, Qian N and Soldatova L. 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98:588-600.
- 106. Hoffman, D.R. 1993. Allergens in hymenoptera venom XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92:707-716.
- 107. Hoffman, D.R. 1992. Unpublished data.
- 108. Hoffman, D. R. 1993. The complete amino acid sequence of a yellowjacket venom phospholipase (abst). J. Allergy Clin. Immunol. 91:187.
- 109. Jacobson, R.S., D.R. Hoffman, and D.M. Kemeny. 1992. The cross-reactivity between bee and vespid hyaluronidases has a structural basis (abst). J. Allergy Clin. Immunol. 89:292.
- 110. Hoffman, D.R. 1993. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 91:71-78.

- 111. Schmidt, M., R.B. Walker, D.R. Hoffman, and T.J. McConnell. 1993. Nucleotide sequence of cDNA encoding the fire ant venom protein Sol i II. FEBS Letters 319:138-140.
- 112. Elsayed S, Bennich H. The primary structure of Allergen M from cod. Scand J Immunol 3:683-686, 1974.
- 113. Elsayed S, Aas K, Sletten K, Johansson SGO. Tryptic cleavage of a homogeneous cod fish allergen and isolation of two active polypeptide fragments. Immunochemistry 9:647-661, 1972.
- 114. Hoffman, D. R. 1983. Immunochemical identification of the allergens in egg white. J. Allergy Clin. Immunol. 71:481-486.
- 115. Langeland, T. 1983. A clinical and immunological study of allergy to hen's egg white. IV. specific IgE antibodies to individual allergens in hen's egg white related to clinical and immunolgical parameters in egg-allergic patients. Allergy 38:493-500.
- 116. Daul, C.B., M. Slattery, J.E. Morgan, and S.B. Lehrer. 1993. Common crustacea allergens: identification of B cell epitopes with the shrimp specific monoclonal antibodies. In: "Molecular Biology and Immunology of Allergens" (D. Kraft and A. Sehon, eds.). CRC Press, Boca Raton. pp. 291-293.
- 117. K.N. Shanti, B.M. Martin, S. Nagpal, D.D. Metcalfe, P.V. Subba Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 151:5354-5363.
- 117A. M. Miyazawa, H. Fukamachi, Y. Inagaki, G. Reese, C.B. Daul, S.B. Lehrer, S. Inouye, M. Sakaguchi. 1996. Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin. Immunol. 98:948-953.
- 117B A. Lopata et al. 1997. Characteristics of hypersensitivity reactions and identification of a uniques 49 kDa IgE binding protein (Hal-m-1) in Abalone (Haliotis midae). J.Allergy Clin. Immunol. Submitted
- 118. Monsalve, R.I., M.A. Gonzalez de la Pena, L. Menendez-Arias, C. Lopez-Otin, M. Villalba, and R. Rodriguez. 1993. Characterization of a new mustard allergen, Bra j IE. Detection of an allergenic epitope. Biochem. J. 293:625-632.
- 119. Mena, M., R. Sanchez-Monge, L. Gomez, G. Salcedo, and P. Carbonero. 1992. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. Plant Molec. Biol. 20:451-458.
- 120. Menendez-Arias, L., I. Moneo, J. Dominguez, and R. Rodriguez. 1988. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J. Biochem. 177:159-166.
- 121. Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48-49, 1995.
- 122. Christie, J. F., B. Dunbar, I. Davidson, and M. W. Kennedy. 1990. N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum and MHC-restricted IqE responses to it. Immunology 69:596-602.

- 123. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, Baur X. The rubber elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J Allergy Clin Immunol 92:690-697, 1993.
- 124. Attanayaka DPSTG, Kekwick RGO, Franklin FCH. 1991. Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from hevea brasiliensis. Plant Mol Biol 16:1079-1081.
- 125. Chye ML, Cheung KY. 1995. (1,3-glucanase is highly expressed in Laticifers of Hevea brasiliensis. Plant Mol Biol 26:397-402.
- 126. Alenius H, Palosuo T, Kelly K, Kurup V, Reunala T, Makinen-Kiljunen S, Turjanmaa K Fink J. 1993. IgE reactivity to 14-kD and 27-kD natural rubber proteins in Latex-allergic children with Spina bifida and other congenital anomalies. Int Arch Allergy Immunol 102:61-66.
- 127. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, Hamilton RG, Cardosa MJ. 1996. The 14.6 kD (REF, Hev b 1) and 24 kD (Hev b 3) rubber particle proteins are recognized by IgE from Spina Bifida patients with Latex allergy. J Allerg Clin Immunol in press.
- 128. Sunderasan E, Hamzah S, Hamid S, Ward MA, Yeang HY, Cardosa MJ. 1995. Latex B-serum (-1,3-glucanase (Hev b 2) and a component of the microhelix (Hev b 4) are major Latex allergens. J nat Rubb Res 10:82-99.

NOV 2 4 2004 STATE OF A LEGISLA IN THE TRANSPORTER OF A LEGISL

Official list of allergens IUIS Allergen Nomenclature Subcommittee ftp://biobase.dk/pub/who-iuis/allergen.list

2000.03.01 Jorgen Nedergaard Larsen and Henning Lowenstein,
ALK-Abello, Boge Alle 6-8, DK-2970 Horsholm, Denmark
Please report changes, additions or comments to jnlarsen@inet.uni2.dk

Legends: MW determined by reducing SDS-PAGE; asterisk: MW deduced from sequence; C: cDNA seq; P: peptide seq;

		MW		Accession #
Allergen source	Systematic and	se	quence	or
•	original names	kDa o	lata	References
A. Weed pollens				
Asterales	7.1.			
Ambrosia artemisiifo		2.0	~	0.00
(short ragweed)	Amb a 1; antigen E	38	C	<u>-</u>
	Amb a 2; antigen K	38	C	•
	Amb a 3; Ra3	11	C	22
	Amb a 5; Ra5	5	C	•
	Amb a 6; Ra6	10	C	24,25
	Amb a 7; Ra7	12	P	
	Amb a ?	11	С	27
Ambrosia trifida				
(giant ragweed)	Amb t 5; Ra5G	4.4	С	9,10,28
, 5				
Artemisia vulgaris				
(mugwort)	Art v 1;	27-29	С	
	Art v 2;	35	P	29
Helianthus annuus				
(sunflower)	Hel a 1;	34	_	29a
(Sullitowel)	Hel a 2; profilin	15.7		Y15210
	Hei a 2; profiffi	15.7	C	11,210
Mercurialis annua				
	Mer a 1; profilin	14-15	С	Y13271
B. Grass pollens				
Poales				
Cynodon dactylon			_	
(Bermuda grass)	Cyn d 1;	32	C	
	Cyn d 7;		C	31,X91256
	Cyn d 12; profilin	14	С	31a,Y08390
Dactylis glomerata				
(orchard grass)	Dac g 1; AgDg1	32	P	32
(,	Dac g 2;	11	С	33,S45354
	Dac g 3;		С	33a,U25343
	Dac g 5;	31	P	34
		- -	_	
Holcus lanatus				
(velvet grass)	Hol l 1;		С	Z27084,Z68893
_				

Lolium perenne							
(rye grass)	Lol	p	1;	group I	27	C	35,36
	Lol	p	2;	group II	11	C	37,37a,X73363
	Lol	p	3;	group III	11	С	38
				Lol p IX, Lol p Ib		С	34,39
	Lol	р	11;	trypsin inh. Related	16		39a
Phalaris aquatica							
(canary grass)	Pha	a	1;			С	40,S80654
Phleum pratense							
(timothy)	Phl				27	С	X78813
	Phl					C	41,X75925
	Phl					P	41A
				Ag25	32	С	42
	Phl					С	43,227082
				profilin		C	44,X77583
	Phl	р	13;	polygalacturonase	55-60	С	AJ238848
Poa pratensis							
(Kentucky blue				group I	33	P	46
grass)	Poa	р	5;		31/34	C	34,47
Sorghum halepense							
(Johnson grass)	Sor	h	1;			С	48
C. Tree pollens							
Fagales:							
Alnus glutinosa							
(alder)	Aln	g	1;		17	C	S50892
Betula verrucosa							
(birch)	Bet	v	1:		17	С	see iso-list
(2110)				profilin	15	С	M65179
	Bet			F		C	X79267
	Bet				8	С	X87153/S54819
	Bet	v	6;	isoflavone reductase			
				homologue	33.5	C	AF135127
	Bet	v	7;	cyclophilin	18	P	P81531
Carpinus betulus							
(hornbeam)	Car	b	1;		17	С	see iso-list
Castanea sativa							
(chestnut)	Cas	_	٦.	Bet v 1 homologue	22	P	52
(cheschuc)				chitinase		-	
Complus arrallana							
Corylus avellana (hazel)	Cor	2	1.		17	С	see iso-list
(11a2C1)	COI	a	Ψ,		<i></i>	_	
Quercus alba					•	_	
(white oak)	Que	а	1;		17	P	54

Lamiales:

01	00	~~	20	

Fraxinus excelsior (ash)	Fra e 1;	20	P	58A
Ligustrum vulgare (privet)	Lig v 1;	20	P	58A
Olea europea (olive)	Ole e 1; Ole e 2; profilin Ole e 3; Ole e 4;	16 15-18 9.2 32	C C	
	Ole e 5; superoxide dismutase Ole e 6; Ole e 7;	16 10 ?	P C P	
Syringa vulgaris (lilac)	Syr v 1;	20	P	58A
Plantaginaceae:				
Plantago lanceolata (English plantain)	Pla l 1;	18	P	P842242
Pinales:				
Cryptomeria japonica (sugi)	Cry j 1; Cry j 2;	41-45	C C	55,56 57, D29772
Cupressus arizonica (cypress)	Cup a 1;	43	С	A1243570
Juniperus ashei (mountain cedar)	Jun a 1; Jun a 3;	43 30	P P	P81294 P81295
Juniperus oxycedrus (prickly juniper)	Jun o 2; calmodulin-like	29	С	AF031471
Juniperus sabinoides (mountain cedar)	Jun s 1;	50	р	58
Juniperus virginiana (eastern red cedar)	Jun v 1;	43	P	P81825
D. Mites Acarus siro (mite)	Aca s 13; fatty acid-bind.prot	.14*	С	AJ006774
Blomia tropicalis (mite)	Blo t 5; Blo t 12; Bt11a Blo t 13; Bt6 fatty acid-bindi	ng prot.	C C	U59102 U27479 U58106

Dermotenheroides ato	manus a i nus		
Dermatophagoides pte:		С 6	1
(mite)	201 p 1,		52
	Der p 2; 14	= :	
	Der p 3; trypsin 28/		3
	Der p 4; amylase 60	_	4
	Der p 5; 14	C 6	55
	Der p 6; chymotrypsin 25	P 6	6
	Der p 7; 22-	28 C 6	7
	Der p 8; glutathione transferase	C 6	7 A
	Der p 9; collagenolytic serine prot	. P 6	7B
	Der p 10; tropomyosin 36		14906
	Der p 14; apolipophorin like p.		pton p.c.
	ber p 14, aportpophorin rine p.	-	poon p.o.
Dermatophagoides mic	roceras		
(mite)	Der m 1; 25	P 6	8
Dermatophagoides far:		_	
(mite)	Der f 1 ; 25		9
	Der f 2 ; 14		0,71
	Der f 3 ; 30	C 6	3
	Der f 10; tropomyosin	C 7	2
	Der f 11; paramyosin 98	C 7	2a
	Der f 14; Mag3, apolipophorin		17686
	Don I do, sange, apolipepare		
Euroglyphus maynei			
(mite)	Eur m 14; apolipophorin 177	C A	F149827
(111100)			
Lepidoglyphus destruc	ctor		
(storage mite)	Lep d 2.0101; 15	C 7	3,74,75
(200230200,	Lep d 2.0102; 15		5
	20p a 20020,		
E. Animals			
Bos domesticus			
	Bos d 2; Ag3, lipocalin 20	C 7	6,L42867
(domestic cattle)			118780
(see also foods)			
	Bos d 5; beta-lactoglobulin 18.	-	14712
	Bos d 6; serum albumin 67	-	173993
	Bos d 7; immunoglobulin 160		7
	Bos d 8; caseins 20-	30 7	7
_ ,			
Canis familiaris	G	2 2	20.70
(Canis domesticus)	Can f 1; 25		8,79
(dog)	Can f 2; 27		8,79
	Can f ?; albumin	c s	72946
Equus caballus			
(domestic horse)	Equ c 1; lipocalin 25	C U	70823
	Equ c 2; lipocalin 18.	5 P 7	9A, 79B
	_		
Felis domesticus			
(cat saliva)	Fel d 1; cat-1 38	C 1	.5
Mus musculus			
(mouse urine)	Mus m 1; MUP 19	C 8	0,81
,	•		-

```
Rattus norvegius
                                                            17
                                                                   С
                                                                         82,83
  (rat urine)
                          Rat n 1
F. Fungi
1. Ascomycota
1.1 Dothidiales
  Alternaria alternata
                                                            28
                                                                   C
                                                                        U82633
                          Alt a 1;
                                                                   C
                                                            25
                          Alt a 2;
                                                                         U87807, U87808
                                                                   C
                          Alt a 3; heat shock prot. 70
                          Alt a 4; prot.disulfidisomerase 57
                                                                   C
                                                                        X84217
                                                                        X78222, U87806
                          Alt a 6; acid.ribosomal prot P2 11
                                                                   C
                                                                   С
                          Alt a 7; YCP4 protein
                                                            22
                                                                        X78225
                                                                   С
                          Alt a 10; aldehyde dehydrogen.
                                                            53
                                                                        X78227, P42041
                                                                   С
                          Alt a 11; enolase
                                                            45
                                                                        U82437
                                                                   С
                                                                        X84216
                          Alt a 12; acid.ribosomal prot P1 11
  Cladosporium herbarum
                                                                         83a, 83b
                          Cla h 1;
                                                            13
                          Cla h 2;
                                                                         83a, 83b
                                                                        X78228
                          Cla h 3; aldehyde dehydrogenase 53
                                                                   C
                                                                   С
                                                                        X78223
                          Cla h 4; acid.ribosomal prot P2 11
                          Cla h 5; YCP4 protein
                                                            22
                                                                   С
                                                                        X78224
                          Cla h 6; enolase
                                                            46
                                                                   С
                                                                        X78226
                          Cla h 12; acid.ribosomal prot P1 11
                                                                        X85180
1.2 Eurotiales
  Aspergillus flavus
                          Asp fl 13; alkaline serine
                                               proteinase
                                                            34
  Aspergillus fumigatus
                          Asp f 1;
                                                            18
                                                                   С
                                                                        M83781,S39330
                                                            37
                                                                   С
                                                                        U56938
                          Asp f 2;
                          Asp f 3; peroxisomal protein
                                                                   C
                                                                        U20722
                                                            19
                                                                   C
                                                            30
                                                                        AJ001732
                          Asp f 4;
                                                                   С
                                                                         Z30424
                          Asp f 5; metalloprotease
                                                            42
                                                                   C
                                                                        U53561
                          Asp f 6; Mn superoxide dismutase26.5
                                                                   С
                                                                        AJ223315
                          Asp f 7;
                                                            12
                          Asp f 8; ribosomal protein P2
                                                            11
                                                                   С
                                                                        AJ224333
                                                            34
                                                                   С
                                                                        AJ223327
                          Asp f 9;
                                                                   С
                                                                        X85092
                          Asp f 10; aspartic protease
                                                            34
                          Asp f 11; peptidyl-prolyl isom
                                                                         84a
                                                                   C
                          Asp f 12; heat shock prot. P90
                          Asp f 13; alkaline serine
                                                            34
                                                                         84b
                                               proteinase
                                                                   С
                                                                        AJ002026
                          Asp f 15;
                                                            16
                          Asp f 16;
                                                            43
                                                                   C
                                                                         g3643813
                          Asp f 17;
                                                                   С
                                                                         AJ224865
                          Asp f 18; vacuolar serine
                                                                         84c
                                               proteinase
                                                           34
```

Aspergillus niger				
	Asp n 14; beta-xylosidase Asp n 18; vacuolar serine	105	С	AF108944
	proteinase	34	C	84b
	Asp n ?;	85	C	Z84377
Aspergillus oryzae	Asp o 13; alkaline serine			
	proteinase	34	С	X17561
	Asp o 21; TAKA-amylase A	53	Ċ	D00434,M33218
	112p C 12, 111111 am/ 11111 1			,
Penicillium brevicompa				
	Pen b 13; alkaline serine			
	Proteinase	33		86a
Penicillium citrinum				
rementalitum cicilinum	Pen c 3; peroxisomal membrane			
	protein	. 18		86b
	Pen c 13; alkaline serine			
	proteinase		_	86a
	Pen c 19; heat shock prot. P70	70	С	U64207
Penicillium notatum				
Penicilium nocacum	Pen n 13; alkaline serine			
	proteinase	34		89
	Pen n 18; vacuolar serine			
	proteinase	32		89
	Pen n 20; N-acetyl			0.77
	glucosaminidase	68		87
Penicillium oxalicum				
TONICITIES CHARLOS	Pen o 18; vacuolar serine			
	proteinase	34		89
1.3 Onygenales				
Trichophyton rubrum	Tri r 2;		С	90
	Tri r 4; serine protease		C	90
	III I I, beline processe			
Trichophyton tonsurans	:			
	Tri t 1;	30	P	91
	Tri t 4; serine protease	83	С	90
1.4 Saccharomycetales				
1.4 Saccharomycetares				
Candida albicans				
	Cand a 1;	40	С	88
Candida boidinii	a 13-0	20		T04004 T0400E
	Cand b 2;	20	С	J04984, J04985
2 Basidiomycota				
2.1 Basidiolelastomycete	s			
Malassezia furfur				
alabbella lullul	Mala f 1;			91a
	•			

	Mala f 2; MF1 peroxisomal membrane p	21 rotein	С	AB011804
	Mala f 3; MF2 peroxisomal membrane p	20	С	AB011805
	Mala f 4; Mala f 5;	35 18*	C C	Takesako,p.c. AJ011955
	Mala f 6; cyclophilin homologue	17*	C	AJ011956
2.2 Basidiomycetes				
Psilocybe cubensis	Psi c 1; Psi c 2; cyclophilin	16		91b
Garaniana aranahara				
Coprinus comatus (shaggy cap)	Cop c 1; leucine zipper prot. Cop c 2; Cop c 3; Cop c 5; Cop c 7;	11	С	AJ132235 Brander,p.c. Brander,p.c. Brander,p.c. Brander,p.c.
G. Insects				
Aedes aegyptii (mosquito)	Aed a 1; apyrase Aed a 2;	68 37	C C	L12389 M33157
Apis mellifera				
(honey bee)	Api m 1; phospholipase A2 Api m 2; hyaluronidase	16 44	C C	92 93
	Api m 4; melittin	3	C	94
	Api m 6;	7 - 8	P	Kettner,p.c.
Bombus pennsylvanicus		1.0	D	0.5
(bumble bee)	Bom p 1; phospholipase Bom p 4; protease	16	P P	95 95
Blattella germanica				
(German cockroach)	Bla g 1; Bd90k Bla g 2; aspartic protease	36	C C	96
	Bla g 4; calycin	21	C	97
	Bla g 5; glutathione transf.	22	С	98
	Bla g 6; troponin C	27	С	98
Periplaneta americana				
(American cockroach)	Per a 1; Cr-PII	72-78	C C	98A
	Per a 3; Cr-PI Per a 7; tropomyosin	37	C	Y14854
Chironomus thummi thum	ni			
(midges)	Chi t 1-9; hemoglobin	16	С	99
	Chi t 1.01; component III	16	C	P02229
	Chi t 1.02; component IV	16	C	P02230
	Chi t 2.0101; component I	16 16	C C	P02221 P02221
	Chi t 2.0102; component IA Chi t 3; component II-beta	16	C	P02221 P02222
	Chi t 4; component IIIA	16	C	P02231

	Chi t 5; component VI Chi t 6.01; component VIIA Chi t 6.02; component IX Chi t 7; component VIIB Chi t 8; component VIII Chi t 9; component X	16 16 16 16 16	0 0 0 0 0	P02224 P02226 P02223 P02225 P02227 P02228
Dolichovespula maculat (white face hornet)	Dol m 1; phospholipase Al Dol m 2; hyaluronidase Dol m 5; antigen 5	35 44 23	C C	100 101 102,103
Dolichovespula arenari (yellow hornet)	a Dol a 5; antigen 5	23	С	104
Polistes annularies (wasp)	Pol a 1; phospholipase A1 Pol a 2; hyaluronidase Pol a 5; antigen 5	35 44 23	P P C	105 105 104
Polistes dominulus (Mediterranean paper w	vasp) Pol d 1; Pol d 4; serine protease Pol d 5;	32-34	С	DR Hoffman DR Hoffman P81656
Polistes exclamans (wasp)	Pol e 1; phospholipase Al Pol e 5; antigen 5	34 23	P C	107 104
Polistes fuscatus (wasp)	Pol f 5; antigen 5	23	С	106
Polistes metricus (wasp)	Pol m 5; antigen 5	23	P	106
Vespa crabo (European hornet)	Vesp c 1; phospholipase Vesp c 5.0101; antigen 5 Vesp c 5.0102; antigen 5	34 23 23	P C C	107 106 106
Vespa mandarina (giant asian hornet)	Vesp m 1.01; Vesp m 1.02; Vesp m 5;			DR Hoffman DR Hoffman P81657
Vespula flavopilosa (yellowjacket)	Ves f 5; antigen 5	23	С	106
Vespula germanica (yellowjacket)	Ves g 5; antigen 5	23	С	106
Vespula maculifrons (yellowjacket)	Ves m 1; phospholipase A1 Ves m 2; hyaluronidase Ves m 5; antigen 5	33.5 44 23	C P C	108 109 104

Vespula pennsylvanica (yellowjacket)	Ves p 5;	antigen 5	23	С	106
Vespula squamosa (yellowjacket)	Ves s 5;	antigen 5	23	С	106
Vespula vidua (wasp)	Ves vi 5	;	23	С	106
Vespula vulgaris (yellowjacket)	Ves v 2;	phopholipase Al hyaluronidase antigen 5	35 44 23	C P C	105A 105A 104
Myrmecia pilosula (Australian jumper ant)Myr p 1; Myr p 2;			C C	X70256 S81785
Solenopsis geminata (tropical fire ant)	Sol g 2; Sol g 4;				DR Hoffman DR Hoffman
Solenopsis invicta (fire ant)	Sol i 2; Sol i 3; Sol i 4;		13 24 13	C C	110,111 110 110
Solenopsis saevissima (brazilian fire ant)	Sol s 2;				DR Hoffman
H. Foods Gadus callarias (cod)	Gad c 1;	allergen M	12	С	112,113
Salmo salar (Atlantic salmon)	Sal s 1;	parvalbumin	12	С	X97824 X97825
Bos domesticus (domestic cattle) (milk) (see also animals)	Bos d 5; Bos d 6;	alpha-lactalbumin beta-lactoglobulin serum albumin immunoglobulin caseins	14.2 18.3 67 160 20-30	c c c	M18780 X14712 M73993 77
Gallus domesticus (chicken)	Gal d 2; Gal d 3; Gal d 4;	ovomucoid ovalbumin conalbumin (Ag22) lysozyme serum albumin	28 44 78 14 69	с с с с	114,115 114,115 114,115 114,115 X60688
Metapenaeus ensis (shrimp)	Met e 1;	tropomyosin		С	U08008
Penaeus aztecus (shrimp)	Pen a 1;	tropomyosin	36	P	116

Penaeus indicus (shrimp)	Pen i 1; tropomyosin	34	С	117
Todarodes pacificus (squid)	Tod p 1; tropomyosin	38	P	117A
Haliotis Midae (abalone)	Hal m 1	49	-	117B
Apium graveolens (celery)	Api g 1; Bet v 1 homologue Api g 4; profilin	16*	С	Z48967 AF129423
	Api g 5;	55/58	P	P81943
Brassica juncea (oriental mustard)	Bra j 1; 2S albumin	14	С	118
Brassica rapa (turnip)	Bra r 2; prohevein-like protein	25	?	P81729
Hordeum vulgare (barley)	Hor v 15; BMAI-1	15	С	119
Zea mays (maize, corn)	Zea m 14; lipid transfer prot.	9	P	P19656
Oryza sativa (rice)	Ory s 1;		С	U31771
Corylus avellana (hazelnut)	Cor a 1.0401; Bet v 1 homologue	17	С	AF136945
Malus domestica (apple)	Mal d 1; Bet v 1 homologue Mal d 2; thaumatin homologue		C C	X83672 AJ243427
	Mal d 3; lipid transfer protein	9	·C	Pastorello
Pyrus communis				
(pear)	Pyr c 1; Bet v 1 homologue Pyr c 4; profilin	18 14	C C	AF05730 AF129424
	Pyr c 5; isoflavone reductase homologue	33.5	С	AF071477
Persea americana	_			
(avocado)	Pers a 1; endochitinase	32	С	Z78202
Prunus armeniaca			~	H02165
(apricot)	Pru ar 1; Bet v 1 homologue Pru ar 3; lipid transfer protein	n 9	C P	U93165
Prunus avium				
(sweet cherry)	Pru av 1; Bet v 1 homologue Pru av 2; thaumatin homologue		C	U66076 U32440
	Pru av 4; profilin	15	C	AF129425
Prunus persica (peach)	Pru p 3;lipid transfer protein	10	P	P81402

Sinapis alba				
(yellow mustard)	Sin a 1; 2S albumin	14	С	120
(2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Glycine max			_	
(soybean)	Gly m 1.0101; HPS	7.5	P	121
	Gly m 1.0102; HPS	7	P	121
	Gly m 2	8	P	A57106
	Gly m 3; profilin	14	С	AJ223982
Arachis hypogaea				
(Peanut)	Ara h 1; vicilin	63.5	С	L34402
(Feanut)	Ara h 2; conglutin	17	Ċ	L77197
	Ara h 3; glycinin	60	C	AF093541
	Ara h 4; glycinin	37	C	
	Ara h 5; profilin	15	C	
	Ara h 6; conglutin homolog	15	C	
	Ara h 6; conglutin homolog Ara h 7; conglutin homolog	15	C	AF091737
	Ara h /; conglutin nomolog	15	C	AF 051757
Actinidia chinensis				
(kiwi)	Act c 1; cysteine protease	30	P	P00785
Solanum tuberosum				
(potato)	Sola t 1; patatin	43	P	P15476
Bertholletia excelsa		_	~	D04402 W17146
(Brazil nut)	Ber e 1; 2S albumin	9	С	P04403,M17146
Juglans regia	Town 1 OG albumin		С	U66866
(English walnut)	Jug r 1; 2S albumin	4.4	C	AF066055
	Jug r 2; vicilin	44	C	Arudouss
Ricinus communis				
(Castor bean)	Ric c 1; 2S albumin		С	P01089
(Castor Dean)	Rie e i, 25 aibamin		•	
I. Others				
Anisakis simplex		0.4	_	750000
(nematode)	Ani s 1;	24	P	A59069
	Ani s 2; paramyosin	97	С	AF173004
3				
Ascaris suum	Acc c 1.	10	P	122
(worm)	Asc s 1;	10	-	122
Den n				
(red coral)	Den n 1;			Onizuka, p.c.
(104 00141)	200 0 2,			_
Hevea brasiliensis				
(rubber)	Hev b 1; elongation factor	58	P	123,124
• • • • •	Hev b 2; (1,3-glucanase	34/36	С	125
	Hev b 3	24	P	126,127
	Hev b 4; component of			
	microhelix protein complex 1	00/110/115	P	128
	Hev b 5	16	С	U42640
	Hev b 6.01 hevein precursor	20	C	M36986/p02877
	Hev b 6.02 hevein	5	C	M36986/p02877

```
С
                                                                    M36986/p02877
                       Hev b 6.03 C-terminal fragment 14
                                                               С
                                                                    U80598
                       Hev b 7; patatin homologue
                                                        46
                       Hev b 8; profilin
                                                               С
                                                        14
                                                                    Y15042
                                                               С
                       Hev b 9; enolase
                                                        51
                                                                    AJ132580/
                                                                    AJ132581
                       Hev b 10; Mn-superoxide dismut. 26
                                                               С
                                                                    AJ249148
Ctenocephalides felis felis
(cat flea)
                       Cte f 1;
                       Cte f 2; M1b
                                                        27
                                                               C
                                                                    AF231352
Homo sapiens
                                                        73*
                                                               С
                                                                    Y14314
(human autoallergens)
                       Hom s 1;
                                                               С
                                                                    X80909
                       Hom s 2;
                                                        10.3*
                                                        20.1*
                                                               С
                                                                    X89985
                       Hom s 3;
                                                        36*
                                                               C
                                                                    Y17711
                       Hom s 4;
                                                               С
                                                                     P02538
                                                        42.6*
                       Hom s 5;
```

- 1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, Baltimore, MD, Edition 1.0.
- 2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-Mills. 1986. Allergen nomenclature. Bull WHO 64:767-770.
- 3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.
- 4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.
- 5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum. Allergy 35:206-207.
- 6. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.
- 7. Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B. Mach, S. G. E. Marsh, W. R. Mayr, P. Parham, T. Sasuki, G. M. Th. Schreuder, J. L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991. Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.
- 8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96:296-304.
- 9. Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D. G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.
- 10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and L. Mueller. 1992. Solution structures of ragweed allergen Amb t V. Biochemistry 31:5117-5127.
- 11. Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller. 1992. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy. Biochemistry 31:8697-8705.

- 12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King. 1979. Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.
- 13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass pollens. Mol. Immunol. 19:1527-1534.
- 14. Ansari, A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J. Allergy Clin. Immunol. 80:229-235.
- 15. Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D. Chapman, and M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 88:9690-9694.
- 16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 113:263-268.
- 17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem. Physiol. 83B:321-324.
- 18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42:464-470.
- 19. Stanworth, D. R., K. J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner. 1990. Nomenclature for synthetic peptides representative of immunoglobulin chain sequences. Bulletin WHO 68:109-111.
- 20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.G. Klapper. 1991. Cloning of Amb a I (Antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem. 266: 1229-1236.
- 21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A.W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991. Complete sequence of the allergen Amb a II: recombinant expression and reactivity with T cells from ragweed allergic patients. J. Immunol. 147:2547-2552.
- 22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence of ragweed allergen Ra3. Biochemistry 19:5729-5734.
- 23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.
- 24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131:706-711.
- 25. Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.
- 26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.

- 27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, complete sequence, and recombinant expression of a novel allergen from short ragweed pollen (abst). J. Allergy Clin. Immunol. 91:339.
- 28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J. DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-906.
- 28A. Breitenbach M, pers. comm.
- 29. Nilsen, B. M., K. Sletten, M. O'Neill, B. Smestead Paulsen, and H. van Halbeek. 1991. Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia vulgaris). J. Biol. Chem. 266:2660-2668.
- Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, Palacios R 1994. Sensitization to sunflower pollen: only an occupational allergy? Int Arch Allergy Immunol 105:297-307.
- 30. Smith, P.M., Suphioglu, C., Griffith, I.J., Theriault, K., Knox, R.B. and Singh, M.B. 1996. Cloning and expression in yeast Pichia pastoris of a biologically active form of Cynd 1, the major allergen of Bermuda grass pollen. J. Allergy Clin. Immunol. 98:331-343.
- 31. Suphioglu, C., Ferreira, F. and Knox, R.B. 1997. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 402:167-172.
- 31a. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, and Palacios R. 1997. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cyn d 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy 27:1307-1313.
- 32. Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch. Allergy Appl. Immunol. 78:283-289.
- 33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993. Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/Orchard grass (Dactylis glomerata), Dac g II. Allergy 48:615-623.
- 33a. Guerin-Marchand, C., Senechal, H., Bouin, A.P., Leduc-Brodard, V., Taudou, G., Weyer, A., Peltre, G. and David, B. 1996. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol. Immunol. 33:797-806.
- 34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group V allergens in grass pollen IV. Similarities in amino acid compositions and amino terminal sequences of the group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.
- 35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210-16215.
- 36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox. 1991. Cloning

- and sequencing of Lol p I, the major allergenic protein of rye-grass pollen. FEBS Letters 279:210-215.
- 37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J. Biol. Chem. 264:11181-11185.
- 37a. Sidoli, A., Tamborini, E., Giuntini, I., Levi, S., Volonte, G., Paini, C., De Lalla, C., Siccardi, A.G., Baralle, F.E., Galliani, S. and Arosio, P. 1993. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J. Biol. Chem. 268:21819-21825.
- 38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28:8665-8670.
- 39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M. Smith, P. Taylor, R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B. Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad. Sci. 88:1384-1388.
- 39a. van Ree R, Hoffman DR, van Dijk W, Brodard V, Mahieu K, Koeleman CA, Grande M, van Leeuwen WA, Aalberse RC. 1995. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol 95:970-978.
- 40. Suphioglu, C. and Singh, M.B. 1995. Cloning, sequencing and expression in Escherichia coli of Pha a 1 and four isoforms of Pha a 5, the major allergens of canary grass pollen. Clin. Exp. Allergy 25:853-865.
- 41. Dolecek, C., Vrtala, S., Laffer, S., Steinberger, P., Kraft, D., Scheiner, O. and Valenta, R. 1993. Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Lett. 335:299-304.
- 41A. Fischer S, Grote M, Fahlbusch B, Muller WD, Kraft D, Valenta R. 1996. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189-198.
- 42. Matthiesen, F., and H. Lowenstein. 1991. Group V allergens in grass pollens. I. Purification and characterization of the group V allergen from Phleum pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.
- Petersen, A., Bufe, A., Schramm, G., Schlaak, M. and Becker, W.M. 1995. Characterization of the allergen group VI in timothy grass pollen (Phl p 6). II. cDNA cloning of Phl p 6 and structural comparison to grass group V. Int. Arch. Allergy Immunol. 108:55-59.
- Valenta, R., Ball, T., Vrtala, S., Duchene, M., Kraft, D. and Scheiner, O. 1994. cDNA cloning and expression of timothy grass (Phleum pratense) pollen profilin in Escherichia coli: comparison with birch pollen profilin. Biochem. Biophys. Res. Commun. 199:106-118.
- 46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26:557-561.
- 47. Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S. Mohapatra. 1991. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.

- 48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass Lol p I (abst). J. Allergy Clin. Immunol. 91:340.
- 52. Kos T, Hoffmann-Sommergruber K, Ferreira F, Hirschwehr R, Ahorn H, Horak F, Jager S, Sperr W, Kraft D, Scheiner O. 1993. Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen--Cas s 1. Biochem Biophys Res Commun 196:1086-92.
- 54. Ipsen, H., and B.C. Hansen. 1991. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens. Mol. Immunol. 28:1279-1288.
- 55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and T. Matuhasi. 1988. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j I). FEBS Lett. 239:329-332.
- 56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock. 1993. The cDNA cloning of Cry j I, the major allergen of Cryptomeria japonica (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.
- 57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M. Usui, and T. Matuhasi. 1990. Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309-312.
- Gross GN, Zimburean JM, Capra JD 1978. Isolation and partial characterization of the allergen in mountain cedar pollen. Scand J Immunol 8:437-41
- Obispo TM, Melero JA, Carpizo JA, Carreira J, Lombardero M 1993. The main allergen of Olea europaea (Ole e I) is also present in other species of the oleaceae family. Clin Exp Allergy 23:311-316.
- 59. Cardaba, B., D. Hernandez, E. Martin, B. de Andres, V. del Pozo, S. Gallardo, J.C. Fernandez, R. Rodriguez, M. Villalba, P. Palomino, A. Basomba, and C. Lahoz. 1993. Antibody response to olive pollen antigens: association between HLA class II genes and IgE response to Ole e I (abst). J. Allergy Clin. Immunol. 91:338.
- 60. Villalba, M., E. Batanero, C. Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M.A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence of Ole e I, the major allergen from olive tree pollen (Olea europaea). Europ.J. Biochem. 216:863-869.
- 60A. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, Palacios R 1997. Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J Allergy Clin Immunol 100:365-372.
- 60B. Batanero E, Villalba M, Ledesma A Puente XS, Rodriguez R. 1996. Ole e 3, an olivetree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241: 772-778.
- 61. Chua, K. Y., G. A. Stewart, and W. R. Thomas. 1988. Sequence analysisof cDNA encoding for a major house dust mite allergen, Der p I. J. Exp. Med. 167:175-182.
- 62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int. Arch. Allergy Appl. Immunol. 91:118-123.

- 63. Smith WA, Thomas WR. 1996. Comparative analysis of the genes encoding group 3 allergens from Dermatophagoides pteronyssinus and Dermatophagoides farinae. Int Arch Allergy Immunol 109: 133-40.
- 64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart. 1991. House dust mite-derived amylase: Allergenicity and physicochemical characterisation. J. Allergy Clin. Immunol. 87:1035-1042.
- 65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo. 1989. Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J. Exp. Med. 170:1457-1462.
- 66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991. Allergenic and proteolytic properties of fourth allergens from Dermatophagoides mites. In: "Dust Mite Allergens and Asthma. Report of the 2nd international workshop" A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.
- 67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993. Molecular cloning of a house dust mite allergen with common antibody binding specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.
- 67A. O'Neil GM, Donovan GR, Baldo BA. 1994. Cloning and charaterisation of a major allergen of the house dust mite Dermatophagoides pteronyssinus, homologous with glutathione S-transferase. Biochim Biophys Acta, 1219:521-528.
- 67B. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. 1996. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739-47.
- 68. Lind P, Hansen OC, Horn N. 1988. The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I of D. pteronyssinus. J. Immunol. 140:4256-4262.
- 69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis of cDNA coding for a mojor house dust allergn Der f I. Clin. Exp. Allergy 21:25-32.
- 70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993. Determination of three disulfide bonds in a major house dust mite allergen, Der f II. Int. Arch. Allergy Immunol. 101:159-166.
- 71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the major dust mite allergen Der f II. Clin. Exp. Allergy 21:33-38.
- 72. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. 1995. Immunochemical characteristion of recombinant and native tropomyosins as a new allergen from the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 96:74-83.
- 72a. Tsai L, Sun Y, Chao P, Ng H, Hung M, Hsieh K, Liaw S, Chua K, 1999. Sequence analysis and expression of a cDNA clone encoding a 98-kDa allergen in Dermatophagoides farinae. Clin Exp Allergy 29:1606-1613.
- 73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall, B. Harfast, and S.G.O. Johansson. 1993. N-terminal amino acid sequence of major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin. Immunol. 91:353.

- 74. Varela J, Ventas P, Carreira J, Barbas JA, Gimenez-Gallego G, Polo F. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen. Eur J Biochem 225:93-98, 1994.
- 75. Schmidt M, van der Ploeg I, Olsson S, van Hage Hamsten M. The complete cDNA encoding the Lepidoglyphus destructor major allergen Lep d 1. FEBS Lett 370:11-14, 1995.
- 76. Rautiainen J, Rytkonen M, Pelkonen J, Pentikainen J, Perola O, Virtanen T, Zeiler T, Mantyjarvi R. BDA20, a major bovine dander allergen characterized at the sequence level is Bos d 2. Submitted.
- 77. Gjesing B, Lowenstein H. Immunochemistry of food antigens. Ann Allergy 53:602, 1984.
- 78. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991. Affinity purification of a major and a minor allergen from dog extract: Serologic activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin. Immunol. 87:1056-1065.
- 79. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.
- 79A. Bulone, V. 1998. Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem 253:202-211.
- 79B. Swiss-Prot acc. P81216, P81217.
- 80. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988. A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.
- 81. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984. Structure of mouse urinary protein genes: differential splicing configurations in the 3'-non-coding region. EMBO J 3:1045-1052.
- 82. Longbottom, J. L. 1983. Chracterization of allergens from the urines of experimental animals. McMillan Press, London, pp. 525-529.
- 83. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue-specific control of alpha 2u globulin gene expression: constitutive synthesis in submaxillary gland. Cell 32:453-460.
- 83A. Aukrust L, Borch SM. 1979. Partial purification and characterization of two Cladosporium herbarum allergens. Int Arch Allergy Appl Immunol 60:68-79.
- 83B. Sward-Nordmo M, Paulsen BS, Wold JK. 1988. The glycoprotein allergen Ag-54 (Cla h II) from Cladosporium herbarum. Structural studies of the carbohydrate moiety. Int Arch Allergy Appl Immunol 85:288-294.
- 84. Shen, et al. J. Allergy Clin. Immunol. 103:S157, 1999.
- 84A. Crameri R. Epidemiology and molecular basis of the involvement of Aspergillus fumigatus in allergic diseases. Contrib. Microbiol. Vol. 2, Karger, Basel (in press).
- 84B. Shen, et al. (manuscript submitted), 1999

- 84C. Shen HD, Ling WL, Tan MF, Wang SR, Chou H, Han SIH. Vacuolar serine proteinase: A major allergen of Aspergillus fumigatus. 10th International Congress of Immunology, Abstract, 1998.
- 85. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J. Allergy Clin. Immunol. 91:1024-1030.
- 86A. Shen HD, Lin WL, Tsai JJ, Liaw SF, Han SH. 1996. Allergenic components in three different species of Penicillium: crossreactivity among major allergens. Clin Exp Allergy 26:444-451.
- 86B. Shen, et al. Abstract; The XVIII Congress of the European Academy of Allergology and Clinical Immunology, Brussels, Belgium, 3-7 July 1999.
- 87. Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH. 1995. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350-356.
- 88. Shen, H.D., K.B. Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 21:675-681.
- 89. Shen, et al. Clin. Exp. Allergy (in press), 1999.
- 90. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA.1998. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 273:29489-96.
- 91. Deuell, B., L.K. Arruda, M.L. Hayden, M.D. Chapman and T.A.E. Platts-Mills. 1991. Trichophyton tonsurans Allergen I. J. Immunol. 147:96-101.
- 91A. Schmidt M, Zargari A, Holt P, Lindbom L, Hellman U, Whitley P, van der Ploeg I, Harfast B, Scheynius A. 1997. The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185.
- 91B. Horner WE, Reese G, Lehrer SB. 1995. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int Arch Allergy Immunol 107:298-300.
- 92. Kuchler, K., M. Gmachl, M. J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honey bee venom glands: The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184:249-254.
- 93. Gmachl, M., and G. Kreil. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 90:3569-3573.
- 94. Habermann, E. 1972. Bee and wasp venoms. Science 177:314-322.
- 95. Jacobson, R.S., and D.R. Hoffman. 1993. Characterization of bumblebee venom allergens (abst). J. Allergy Clin. Immunol. 91:187.
- 96. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Hayden ML, Chapman MD. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 270:19563-19568, 1995.

- 97. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270:31196-31201, 1995.
- 98. Arruda LK, Vailes LD, Benjamin DC, Chapman MD. Molecular cloning of German Cockroach (Blattella germanica) allergens. Int Arch Allergy Immunol 107:295-297, 1995.
- 98A. Wu CH, Lee MF, Liao SC. 1995. Isolation and preliminary characterization of cDNA encoding American cockroach allergens. J Allergy Clin Immunol 96: 352-9.
- 99. Mazur, G., X. Baur, and V. Liebers. 1990. Hypersensitivity to hemoglobins of the Diptera family Chironomidae: Structural and functional studies of their immunogenic/allergenic sites. Monog. Allergy 28:121-137.
- 100. Soldatova, L., L. Kochoumian, and T.P. King. 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Letters 320:145-149.
- 101. Lu, G., L. Kochoumian and T.P. King. Whiteface hornet venom allergen hyaluronidase: cloning and its sequence similarity with other proteins (abst.). 1994. J. Allergy Clin. Immunol. 93:224.
- 102. Fang, K. S. F., M. Vitale, P. Fehlner, and T. P. King. 1988. cDNA cloning and primary structure of a white-faced hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci., USA 85:895-899.
- 103. King, T. P., D. C. Moran, D. F. Wang, L. Kochoumian, and B.T. Chait. 1990. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Prot. Seq. Data Anal. 3:263-266.
- 104. Lu, G., M. Villalba, M.R. Coscia, D.R. Hoffman, and T.P. King. 1993. Sequence analysis and antigen cross reactivity of a venom allergen antigen 5 from hornets, wasps and yellowjackets. J. Immunol. 150: 2823-2830.
- 105. King, T. P. and Lu, G. 1997. Unpublished data.
- 105A. King TP, Lu G, Gonzalez M, Qian N and Soldatova L. 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98:588-600.
- 106. Hoffman, D.R. 1993. Allergens in hymenoptera venom XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92:707-716.
- 107. Hoffman, D.R. 1992. Unpublished data.
- 108. Hoffman, D. R. 1993. The complete amino acid sequence of a yellowjacket venom phospholipase (abst). J. Allergy Clin. Immunol. 91:187.
- 109. Jacobson, R.S., D.R. Hoffman, and D.M. Kemeny. 1992. The cross-reactivity between bee and vespid hyaluronidases has a structural basis (abst). J. Allergy Clin. Immunol. 89:292.
- 110. Hoffman, D.R. 1993. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 91:71-78.

- 111. Schmidt, M., R.B. Walker, D.R. Hoffman, and T.J. McConnell. 1993. Nucleotide sequence of cDNA encoding the fire ant venom protein Sol i II. FEBS Letters 319:138-140.
- 112. Elsayed S, Bennich H. The primary structure of Allergen M from cod. Scand J Immunol 3:683-686, 1974.
- 113. Elsayed S, Aas K, Sletten K, Johansson SGO. Tryptic cleavage of a homogeneous cod fish allergen and isolation of two active polypeptide fragments. Immunochemistry 9:647-661, 1972.
- 114. Hoffman, D. R. 1983. Immunochemical identification of the allergens in egg white. J. Allergy Clin. Immunol. 71:481-486.
- 115. Langeland, T. 1983. A clinical and immunological study of allergy to hen's egg white. IV. specific IgE antibodies to individual allergens in hen's egg white related to clinical and immunolgical parameters in egg-allergic patients. Allergy 38:493-500.
- 116. Daul, C.B., M. Slattery, J.E. Morgan, and S.B. Lehrer. 1993. Common crustacea allergens: identification of B cell epitopes with the shrimp specific monoclonal antibodies. In: "Molecular Biology and Immunology of Allergens" (D. Kraft and A. Sehon, eds.). CRC Press, Boca Raton. pp. 291-293.
- 117. K.N. Shanti, B.M. Martin, S. Nagpal, D.D. Metcalfe, P.V. Subba Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J. Immunol. 151:5354-5363.
- 117A. M. Miyazawa, H. Fukamachi, Y. Inagaki, G. Reese, C.B. Daul, S.B. Lehrer, S. Inouye, M. Sakaguchi. 1996. Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin. Immunol. 98:948-953.
- 117B A. Lopata et al. 1997. Characteristics of hypersensitivity reactions and identification of a uniques 49 kDa IgE binding protein (Hal-m-1) in Abalone (Haliotis midae). J.Allergy Clin. Immunol. Submitted
- 118. Monsalve, R.I., M.A. Gonzalez de la Pena, L. Menendez-Arias, C. Lopez-Otin, M. Villalba, and R. Rodriguez. 1993. Characterization of a new mustard allergen, Bra j IE. Detection of an allergenic epitope. Biochem. J. 293:625-632.
- 119. Mena, M., R. Sanchez-Monge, L. Gomez, G. Salcedo, and P. Carbonero. 1992. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. Plant Molec. Biol. 20:451-458.
- 120. Menendez-Arias, L., I. Moneo, J. Dominguez, and R. Rodriguez. 1988. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J. Biochem. 177:159-166.
- 121. Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48-49, 1995.
- 122. Christie, J. F., B. Dunbar, I. Davidson, and M. W. Kennedy. 1990. N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum and MHC-restricted IgE responses to it. Immunology 69:596-602.

- 123. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, Baur X. The rubber elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J Allergy Clin Immunol 92:690-697, 1993.
- 124. Attanayaka DPSTG, Kekwick RGO, Franklin FCH. 1991. Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from hevea brasiliensis. Plant Mol Biol 16:1079-1081.
- 125. Chye ML, Cheung KY. 1995. (1,3-glucanase is highly expressed in Laticifers of Hevea brasiliensis. Plant Mol Biol 26:397-402.
- 126. Alenius H, Palosuo T, Kelly K, Kurup V, Reunala T, Makinen-Kiljunen S, Turjanmaa K Fink J. 1993. IgE reactivity to 14-kD and 27-kD natural rubber proteins in Latex-allergic children with Spina bifida and other congenital anomalies. Int Arch Allergy Immunol 102:61-66.
- 127. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, Hamilton RG, Cardosa MJ. 1996. The 14.6 kD (REF, Hev b 1) and 24 kD (Hev b 3) rubber particle proteins are recognized by IgE from Spina Bifida patients with Latex allergy. J Allerg Clin Immunol in press.
- 128. Sunderasan E, Hamzah S, Hamid S, Ward MA, Yeang HY, Cardosa MJ. 1995. Latex B-serum (-1,3-glucanase (Hev b 2) and a component of the microhelix (Hev b 4) are major Latex allergens. J nat Rubb Res 10:82-99.

ATTORNEY DOCKET NUMBER: 2002834-0043 (CIP4)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appellant:

Bannon, et al.

Examiner:

Huynh, P.

Serial No.:

09/141,220

Art Unit:

1644

Filed:

August 27, 1998

For:

METHODS AND REAGENTS FOR DECREASING CLINICAL REACTIONS

TO ALLERGY

Mail Stop Appeal Brief - Patents Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

Certificate of Mailing

I certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class Mail in an envelope addressed to Mail Stop Appeal Brief - Patents, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

November 22 2004 Date

Kathy Hart Gagnon

Typed or Printed Name of person signing certificate

TRANSMITTAL LETTER

Enclosed herewith are the following:

- Amended Appeal Brief Under 37 C.F.R. § 1.192 (45 pp.) in triplicate, including 1.
 - a) Attachment I, Claims Pending (5 pp.);
 - b) Attachment II, Allergens listed in the "Official list of allergens" maintained by the IUIS Allergen Nomenclature Subcommittee (23 pp);
- 2. Petition for Extension of Time (1 month) (1 pg.);
- Check in the amount of \$55.00 for Petition (small entity); 3.
- Statement of Limited Recognition Under 37 C.F.R. § 10.9(b) (1 pg.); and 4.
- 5. Return postcard.

Please charge any other fees that may be associated with this matter, or credit any overpayments, to our Deposit Account No. 03-1721.

Respectfully submitted,

Charles E. Lyon, D.Phil.

Limited Recognition Under 37 C.F.R. § 10.9(b)

PATENT DEPARTMENT CHOATE, HALL, & STEWART Exchange Place 53 State Street Boston MA 02109 Telephone: 617-248-5000

Facsimile: 617-248-4000

3721269_1.DOC

2 of 2 Attorney Docket No.: 2002834-0043 Client Reference: CIP4