

Model Based Experimentation on UI Prototypes

Using Task Based Usability Testing

Rakshit Bhat

Supervisor: Dr. Enes Yigitbas Prof. Dr. Gregor Engels

Department of Computer Science Universität Paderborn / Paderborn University

Master of Science

October 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures.

Rakshit Bhat October 2022

Acknowledgements

And I would like to acknowledge ...

Abstract

This is where you write your abstract ...

Table of contents

Li	List of figures v				
List of tables					
1	Intr	oduction	1		
	1.1	Motivation	1		
	1.2	Problem Statement	2		
	1.3	Research Approach	3		
	1.4	Solution Approach	4		
2	Bac	kground	6		
	2.1	Short title	6		
	2.2	Low Code / No Code	6		
	2.3	Model Based Software Engineering	6		
	2.4	Task based Usability Testing	6		
	2.5	Experimental Product Design	6		
	2.6	Crowdsourcing	6		
3	Rela	ated Work	11		
	3.1	State of the Art Research	11		
	3.2	Comparison	11		
Re	eferen	aces	13		
Aį	pend	lix A How to install LATEX	15		
Δ1	nend	liv B Installing the CUED class file	19		

List of figures

1.1	Design Science Research Cycle [1]	3
1.2	LEAN Development technique	4
2.1	Minion	7

List of tables

3.1	A badly formatted table	12
3.2	Even better looking table using booktabs	12

Chapter 1

Introduction

This chapter motivates the readers about the topic (see section 1.1), explains the problems faced by the companies during software development (see section 1.2), our research approach (see section 1.3), and finally, our solution approach (see section 1.4).

1.1 Motivation

Over the last decade, software development had a tremendous impact with increasing customer demand and requirements [2], which increases product complexity and ambiguity, significantly impacting software development. Therefore, the developers have come up with different techniques to meet this requirement criteria. Early user feedback from potential customers in the industry is crucial for creating successful software products because of the growing market uncertainties, and consumers' desire to receive integrated solutions to their issues rather than unique software developments [3]. With the increasing complexity of products, it becomes challenging to determine user requirements making it more difficult for developers to assess their opinions. As a result, the developers of these products are biased toward some requirements and can ignore what the user wants. So, the developers must detect the user's needs and requirements to reduce these risks early. Giving users a "partially functioning" system is the most excellent method to determine their requirements and suggestions [4]. This ensures that the developers with high uncertainties in the early product development phase can improve the product by testing the underlying assumptions [5]. Developers can use this feedback to validate the most critical assumptions about the software product. This validation can decide whether to add, remove or update a feature [6]. This process of determining the best fit for the product through user feedback is called experimentation. There has been an increase in interest in the types of experimentation that can take place in product development. Software products have shown the benefits

1.2 Problem Statement 2

of conducting experiments in many use cases with incremental product improvement [7]. In experimentation, the product designers design different UI variants (e.g., buttons with different colors), and the developer integrates these variants and assigns them to a distinct group of users. As per some evaluation criteria (e.g., more clicks on the button), the variant with better results is deployed for the entire set of users. So, an experiment can be valuable when it improves the software products. Hence, for experiments to be successful, they should offer one or more solutions that will benefit users.

1.2 Problem Statement

The motivation section shows some gaps in software development between the developers and the designers. This section explains the problems and determines their research and solution approach.

Problem 1: Product designers create many UI prototypes, and the developers implement them. To determine the best variant, the developers create experiments with the users [6]. This concrete implementation of designs uses a lot of resources and time for the developers. Therefore, the product designers need to be integrated into the development process so that they would be able to create experiments independent of the developers.

Problem 2: When the product designers develop the prototypes, testing them with many users is difficult as the product is still not developed. Therefore, it is not easy to conclude a "winner" variant with a small amount of data as it is statistically difficult to prove one of the variants outperforms the others [8]. Therefore, it is necessary to develop an idea that the designers can use to determine the best prototype or variant with a small group of users.

Problem 3: Most often, the software application collects data from the experiments. Some data is used in qualitative analysis, while others are in quantitative analysis. Many companies fail to reap the benefits of using both qualitative and quantitative analysis. Similarly, not all the data is used in the analysis phase reducing the software applications to improve based on customer feedback [9]. Therefore, finding a solution that combines qualitative and quantitative data analysis is necessary.

Fig. 1.1 Design Science Research Cycle [1]

1.3 Research Approach

The process of creating experiments and testing their variants is usually not systematically arranged, creating anomalies, and leading to unsuccessful experiments. Therefore, this section identifies the research question (RQ) and defines an approach to answer the question.

RQ: How to develop a platform suitable for product designers to conduct experiments on UI prototypes, increasing its usability and, simultaneously, independent of developers?

We will conduct a design science research (DSR) study to answer our research question and obtain abstract design knowledge and an implementation tool. From the abstracted knowledge, we will obtain some Design Principles (DPs) defined for the whole process of experimentation [1]. In this design, the product designers will iteratively validate their prototypes with the users (or the crowds). Here, DPs capture and codify that knowledge by focusing on the implementer, the aim, the user, the context, the mechanism, the enactors, and the rationale [10]. The DPs explain the design information that develops features for software applications. We propose to use the variation of the cycle of Kuechler and Vaishnavi [1] consisting of five iteratively conducted steps (see figure 1.1). Therefore through the use of DSR, a group of issues is resolved by concentrating on a single issue and abstracting the consequences of the resolution.

1.4 Solution Approach

To solve the problems mentioned above, the designers should be able to create UI prototypes and experiments on their own on a set of users. Since we do not have a large set of users for testing the prototypes, we use supervised task-based usability testing [11]. The fundamental principle of task-based usability testing is to have the users attempt to use the prototypes to do certain activities or tasks (e.g., Locate a movie M1) and get feedback (e.g., the time required for the task to be completed by the user). We propose to use Low-code or No-Code approach to achieve this. This approach helps to have a UI for the designers to understand, develop, and create experiments and tasks with the software prototypes [12]. So, the designers would be able to create the UI prototypes and their variants, assign them to the users in an experiment, get feedback from the users and decide on the best prototype. At the same time, the low-code has become more accessible for Model-driven development [13]. Therefore, we plan to create models for the UI prototypes and have the feasibility for creating experiments and tasks. Because of using the models, it is easier to store the prototypes in the database and conduct experiments with the users.

Fig. 1.2 LEAN Development technique

In our solution, we use the LEAN development technique (see figure 1.2) for development as it is used to develop customers friendly products [14]. Using LEAN, the company creates a Minimum Viable Product (MVP) throughout development, tests it with potential customers, and leverages their input to make incremental changes. While this technique can be used for every product, there are also approaches specific to software products. LEAN development

5

technique can be divided into a Build, Measure, and Learn cycle. In the (1) Build phase, we plan to create the UI Prototypes, Models, Experiments, and Tasks for the users. In the (2) Measure phase, we plan to assign the Experiments and Tasks to the users and measure the Task and the Experiment measurements and perform some analysis on the data received. And finally, in the (3) Learn phase, we display the Analyses results, Tune our models to decide the better variant among the others, and Modify the prototype. As per the figure 1.2, we complete one cycle of iteration and start a new one with the updated prototype.

Chapter 2

Background

- 2.1 UI Prototyping
- 2.2 Low Code / No Code
- 2.3 Model Based Software Engineering
 - 1. The first topic is dull
 - 2. The second topic is duller
 - (a) The first subtopic is silly
 - (b) The second subtopic is stupid
 - 3. The third topic is the dullest
- 2.4 Task based Usability Testing
- 2.5 Experimental Product Design
- 2.6 Crowdsourcing
 - The first topic is dull
 - The second topic is duller
 - The first subtopic is silly

2.6 Crowdsourcing 7

Fig. 2.1 This is just a long figure caption for the minion in Despicable Me from Pixar

2.6 Crowdsourcing 8

- The second subtopic is stupid
- The third topic is the dullest

Description

The first topic is dull

The second topic is duller

The first subtopic is silly

The second subtopic is stupid

The third topic is the dullest

2.7 Hidden section 9

2.7 Hidden section

2.7 Hidden section 10

Chapter 3

Related Work

3.1 State of the Art Research

3.2 Comparison

3. Do not use 'ditto' signs or any other such convention to repeat a previous value. In many circumstances a blank will serve just as well. If it won't, then repeat the value.

3.2 Comparison 12

Table 3.1 A badly formatted table

	Species I		Species II	
Dental measurement	mean	SD	mean	SD
I1MD	6.23	0.91	5.2	0.7
I1LL	7.48	0.56	8.7	0.71
I2MD	3.99	0.63	4.22	0.54
I2LL	6.81	0.02	6.66	0.01
CMD	13.47	0.09	10.55	0.05
CBL	11.88	0.05	13.11	0.04

Table 3.2 Even better looking table using booktabs

Dental measurement	Species I		Species II	
	mean	SD	mean	SD
I1MD	6.23	0.91	5.2	0.7
I1LL	7.48	0.56	8.7	0.71
I2MD	3.99	0.63	4.22	0.54
I2LL	6.81	0.02	6.66	0.01
CMD	13.47	0.09	10.55	0.05
CBL	11.88	0.05	13.11	0.04

References

- [1] William L. Kuechler and Vijay K. Vaishnavi. On theory development in design science research: anatomy of a research project. *European Journal of Information Systems*, 17:489–504, 2008.
- [2] Faheem Ahmed, Luiz Fernando Capretz, and Piers Campbell. Evaluating the demand for soft skills in software development. *IT Professional*, 14(1):44–49, 2012.
- [3] David J Teece. Business models, business strategy and innovation. *Long range planning*, 43(2-3):172–194, 2010.
- [4] Alan M. Davis. Software prototyping. volume 40 of *Advances in Computers*, pages 39–63. Elsevier, 1995.
- [5] Steve Blank. Why the lean start-up changes everything. https://hbr.org/2013/05/why-the-lean-start-up-changes-everything, May 2013.
- [6] Eveliina Lindgren and Jürgen Münch. Raising the odds of success: the current state of experimentation in product development. *Information and Software Technology*, 77:80–91, September 2016.
- [7] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch. The benefits of controlled experimentation at scale. In 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pages 18–26, 2017.
- [8] Kathryn Whitenton. But you tested with only 5 users!: Responding to skepticism about findings from small studies. https://www.nngroup.com/articles/responding-skepticism-small-usability-tests/, 2019.
- [9] Brian L. Smith, William T. Scherer, Trisha A. Hauser, and Byungkyu Brian Park. Data—driven methodology for signal timing plan development: A computational approach. *Computer-Aided Civil and Infrastructure Engineering*, 17, 2002.
- [10] Shirley Gregor, David Jones, et al. The anatomy of a design theory. Association for Information Systems, 2007.
- [11] Jasmin Jahić, Thomas Kuhn, Matthias Jung, and Norbert Wehn. Supervised testing of concurrent software in embedded systems. In 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pages 233–238, 2017.

References 14

[12] Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. Challenges and opportunities in low-code testing. In *Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings*, MODELS '20, New York, NY, USA, 2020. Association for Computing Machinery.

- [13] Jordi Cabot. Positioning of the low-code movement within the field of model-driven engineering. In *Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings*, MODELS '20, New York, NY, USA, 2020. Association for Computing Machinery.
- [14] Mark A Hart. The lean startup: How today's entrepreneurs use continuous innovation to create radically successful businesses eric ries. new york: Crown business, 2011. 320 pages. us\$26.00. *Journal of Product Innovation Management*, 29(3):508–509, 2012.

Appendix A

How to install LATEX

Windows OS

TeXLive package - full version

- 1. Download the TeXLive ISO (2.2GB) from https://www.tug.org/texlive/
- 2. Download WinCDEmu (if you don't have a virtual drive) from http://wincdemu.sysprogs.org/download/
- 3. To install Windows CD Emulator follow the instructions at http://wincdemu.sysprogs.org/tutorials/install/
- 4. Right click the iso and mount it using the WinCDEmu as shown in http://wincdemu.sysprogs.org/tutorials/mount/
- 5. Open your virtual drive and run setup.pl

or

Basic MikTeX - TEX distribution

- Download Basic-MiKTEX(32bit or 64bit) from http://miktex.org/download
- 2. Run the installer
- 3. To add a new package go to Start » All Programs » MikTex » Maintenance (Admin) and choose Package Manager

4. Select or search for packages to install

TexStudio - TeX editor

- Download TexStudio from http://texstudio.sourceforge.net/#downloads
- 2. Run the installer

Mac OS X

MacTeX - TEX distribution

- Download the file from https://www.tug.org/mactex/
- 2. Extract and double click to run the installer. It does the entire configuration, sit back and relax.

TexStudio - TEX editor

- Download TexStudio from http://texstudio.sourceforge.net/#downloads
- 2. Extract and Start

Unix/Linux

TeXLive - T_EX distribution

Getting the distribution:

- 1. TexLive can be downloaded from http://www.tug.org/texlive/acquire-netinstall.html.
- 2. TexLive is provided by most operating system you can use (rpm,apt-get or yum) to get TexLive distributions

Installation

1. Mount the ISO file in the mnt directory

```
mount -t iso9660 -o ro,loop,noauto /your/texlive###.iso /mnt
```

- 2. Install wget on your OS (use rpm, apt-get or yum install)
- 3. Run the installer script install-tl.

```
cd /your/download/directory
./install-tl
```

- 4. Enter command 'i' for installation
- 5. Post-Installation configuration: http://www.tug.org/texlive/doc/texlive-en/texlive-en.html#x1-320003.4.1
- 6. Set the path for the directory of TexLive binaries in your .bashrc file

For 32bit OS

For Bourne-compatible shells such as bash, and using Intel x86 GNU/Linux and a default directory setup as an example, the file to edit might be

```
edit $~/.bashrc file and add following lines
PATH=/usr/local/texlive/2011/bin/i386-linux:$PATH;
export PATH
MANPATH=/usr/local/texlive/2011/texmf/doc/man:$MANPATH;
export MANPATH
INFOPATH=/usr/local/texlive/2011/texmf/doc/info:$INFOPATH;
export INFOPATH
```

For 64bit OS

```
edit $~/.bashrc file and add following lines
PATH=/usr/local/texlive/2011/bin/x86_64-linux:$PATH;
export PATH
MANPATH=/usr/local/texlive/2011/texmf/doc/man:$MANPATH;
export MANPATH
```

INFOPATH=/usr/local/texlive/2011/texmf/doc/info:\$INFOPATH;
export INFOPATH

Fedora/RedHat/CentOS:

```
sudo yum install texlive
sudo yum install psutils
```

SUSE:

sudo zypper install texlive

Debian/Ubuntu:

sudo apt-get install texlive texlive-latex-extra
sudo apt-get install psutils

Appendix B

Installing the CUED class file

LATEX.cls files can be accessed system-wide when they are placed in the <texmf>/tex/latex directory, where <texmf> is the root directory of the user's TeXinstallation. On systems that have a local texmf tree (<texmflocal>), which may be named "texmf-local" or "localtexmf", it may be advisable to install packages in <texmflocal>, rather than <texmf> as the contents of the former, unlike that of the latter, are preserved after the LATeXsystem is reinstalled and/or upgraded.

It is recommended that the user create a subdirectory <texmf>/tex/latex/CUED for all CUED related LATeXclass and package files. On some LATeXsystems, the directory look-up tables will need to be refreshed after making additions or deletions to the system files. For TeXLive systems this is accomplished via executing "texhash" as root. MIKTeXusers can run "initexmf -u" to accomplish the same thing.

Users not willing or able to install the files system-wide can install them in their personal directories, but will then have to provide the path (full or relative) in addition to the filename when referring to them in LATEX.