Задания к лабораторным работам для группы №119154

дата генерации документа 26 февраля 2021 г.

Содержание

Лабораторная работа \mathbb{N} 2 «Регрессионный анализ, методы аппроксимации»

Вариант 1

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

•
$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{0.3} + a_1 \frac{1}{x} + a_2 x$$

$$y(x) = \frac{Ax^B}{C+x}$$

• параболический сплайн

у
-96.37
-520.86
-886.38
-1769.58
-3610.62
-4051.54
-6301.45
-7681.06
-6968.90
-8068.60

Задание 2 Используя данные из справочника теплофизических свойств описать удельный объем жидкого н-октана при p=150 атм н-октана. В качестве аппроксимирующей функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре удельный объем жидкого н-октана при p=150 атм равна $1.5\cdot 10^{-3}\frac{\mathrm{M}^3}{\mathrm{Kr}}$.

τ , c	с, моль/л
0.00	13.63
0.69	10.72
1.38	7.15
2.08	6.40
2.77	4.51
3.46	3.46
4.15	2.91
4.84	2.09
5.54	1.57
6.23	1.39
6.92	0.98
7.61	0.78
8.31	0.58
9.00	0.45
9.69	0.33
10.38	0.26

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 \frac{x}{1+x} + a_2 \frac{x^{2.4}}{1+x^2}$
- $y(x) = \frac{B + x^C}{A + x}$
- параболический сплайн

X	У
8.00	110.92
8.90	313.38
9.80	399.96
10.70	868.39
11.60	1815.88
12.50	2369.95
13.40	4104.98
14.30	6993.25
15.20	7882.51
16.10	10856.88

Задание 2 Используя данные из справочника теплофизических свойств описать удельный объем изобутана при p=1 атм изобутана. В качестве аппроксимирующей функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре удельный объем изобутана при p=1 атм равна $734.3 \frac{дм^3}{\kappa r}$.

τ , c	с, моль/л
0.00	17.38
0.97	11.21
1.94	7.34
2.91	5.52
3.88	4.13
4.85	2.91
5.82	1.94
6.79	1.56
7.76	1.10
8.73	0.84
9.69	0.73
10.66	0.57
11.63	0.39
12.60	0.30
13.57	0.25

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{1.2} + a_1 \frac{1}{x} + a_2 x^{0.3}$
- $y(x) = \frac{Ax^B}{C+x}$
- кубический сплайн

X	У
9.60	217.09
18.40	413.50
27.20	919.53
36.00	1659.13
44.80	2136.08
53.60	3194.49
62.40	3604.30
71.20	4662.92
80.00	5761.31
88.80	7662.46

Задание 2 Используя данные из справочника теплофизических свойств описать теплопроводность н-гексаана при p=40 бар н-гексана. В качестве аппроксимирующей функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре теплопроводность н-гексаана при p=40 бар равна $123.3 \cdot 10^{-3} \frac{BT}{M-TPAR}$.

с, моль/л
17.06
13.74
11.69
9.41
7.70
6.04
4.60
3.65
2.28
1.48
0.96
0.52

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0\sqrt{x} + a_1x^{3.7} + a_2x$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$
- параболический сплайн

У
0.50
-84.13
-193.95
-263.95
-533.30
-488.80
-255.94
73.61
609.77
1791.56

Задание 2 Используя данные из справочника теплофизических свойств описать вязкость жидкой фазы на линии насыщения метана. В качестве аппроксимирующей функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре вязкость жидкой фазы на линии насыщения равна $29.0 \cdot 10^{-6} \Pi a \cdot c$.

τ , c	с, моль/л
0.00	16.11
0.91	5.00
1.81	2.86
2.72	1.77
3.62	1.27
4.53	0.88
5.43	0.78
6.34	0.59
7.24	0.47
8.15	0.40
9.05	0.37
9.96	0.32
10.86	0.32
11.77	0.26
12.67	0.22
13.58	0.22

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{0.3} + a_1 \sqrt{x} + a_2 x^{3.7}$
- $y(x) = \frac{B + x^C}{A + x}$
- кубический сплайн

X	У
3.60	71.80
7.10	146.69
10.60	266.71
14.10	453.69
17.60	528.94
21.10	697.74
24.60	796.44
28.10	1162.66
31.60	947.00
35.10	1138.00

Задание 2 Используя данные из справочника теплофизических свойств описать удельный объем жидкого н-гексана при p=90 атм н-гексана. В качестве аппроксимирующей

функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре удельный объем жидкого н-гексана при p=90 атм равна $1.8\cdot 10^{-3}\frac{M^3}{K\Gamma}$.

с, моль/л
18.42
1.61
0.87
0.77
0.60
0.50
0.49
0.39
0.35
0.31
0.28
0.24
0.25
0.25
0.21
0.19

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x + a_1 \frac{1}{x} + a_2 x^{1.2}$$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

• параболический сплайн

X	У
0.80	-3.18
5.70	-9.26
10.60	66.16
15.50	278.61
20.40	647.52
25.30	1463.70
30.20	2407.91
35.10	2995.30
40.00	5388.13
44.90	8372.87

Задание 2 Используя данные из справочника теплофизических свойств описать вязкость газообразного изобутана при p=1 бар изобутана. В качестве аппроксимирующей функции может выступать любое выражение, однако максимальное отклонение не должно превышать 10%. Определить, при какой температуре вязкость газообразного изобутана при p=1 бар равна $86.0 \cdot 10^{-7} \Pi a \cdot c$.

τ , c	с, моль/л
0.00	12.02
3.40	11.44
6.80	9.57
10.20	9.22
13.60	7.75
17.00	5.97
20.40	5.18
23.79	3.56
27.19	2.99
30.59	2.94
33.99	1.80
37.39	1.50
40.79	0.85
44.19	0.67
47.59	0.38