Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function	Open help page for function
% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
edit filename	Opens filename in editor
<pre>disp('text')</pre>	Print text

Defining and Changing Variables	
a = 3	Define variable a to be 3
x = [1, 2, 3]	Set x to be the row vector $[1,2,3]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]	Set A to be a $3 imes 4$ matrix
x(2) = 7	Change x from $[1,2,3]$ to $[1,7,3]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Keyboard Shortc	uts	
Win	Мас	info
F1	F1	docs for highlighted function
F5	光 + R	Run code
F9	光 + ←⊃	Run selected code
F11	F11	Run code line, enter functions
Shift + F5	Shift + F5	Leave debugger
F12	₩+ \	Insert break point
Ctrl + Pg Up/Down	Ctrl + Fn + up/down	Moves between tabs
Ctrl + shift	Ctrl + shift	Moves between components
Ctrl + C	Ctrl + C	Interrupts code
Ctrl + D	Shift +ૠ+ D	Open highlighted codes file
Ctrl + R/T	₩+ / ₩+ T	Comment/uncomment
Ctrl + N	Ctrl + N	New script
Ctrl + W	Ctrl + W	Close script
Ctrl + shift + d	Ctrl + shift + d	Docks window
Ctrl + shift + u	Ctrl + shift + u	Undocks window
Ctrl + shift + m	Ctrl + shift + m	max window

Basic Arithmetic a	asic Arithmetic and Functions	
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide	
3^7	Compute 3 ⁷	
sqrt(5)	Compute $\sqrt{5}$	
log(3)	Compute $\ln(3)$	
log10(100)	Compute $\log_{10}(100)$	
abs(-5)	Compute $ -5 $	
sin(5*pi/3)	Compute $\sin(5\pi/3)$	
floor(3.8)	Compute [3.8]	

Constructing Matrices and Vectors		
zeros(12, 5)	Make a 12×5 matrix of zeros	
ones(12, 5)	Make a 12×5 matrix of ones	
eye(5)	Make a 5×5 identity matrix	
eye(12, 5)	Make a 12×5 identity matrix	
linspace(1.4, 6.3, 1004)	Make a vector with 1004 elements evenly spaced between $1.4\ \mathrm{and}\ 6.3$	
logspace(1.4, 6.3, 1004)	Make a vector with 1004 elements where the log of the spacing is evenly increasing between $1.4\mathrm{and}~6.3$	
7:15	Row vector of $7,8,\ldots,14,15$	

Operations on Matrices and Vectors			
3 * x	Multiply every element of x by 3		
x + 2	Add 2 to every element of x		
x + y	Element-wise addition of two vectors $oldsymbol{x}$ and $oldsymbol{y}$		
A * y	Product of a matrix and vector		
A * B	Product of two matrices		
A .* B	Element-wise product of two matrices		
A ^ 3	Square matrix A to the third power		
A .^ 3	Every element of A to the third power		
cos(A)	Compute the cosine of every element of A		
abs(A)	Compute the absolute values of every element of ${\cal A}$		
Α'	Transpose of A		
inv(A)	Compute the inverse of A		
det(A)	Compute the determinant of A		
eig(A)	Compute the eigenvalues of A		
size(A)	Get the size of \boldsymbol{A}		

Entries of Ma	trices and Vectors		
x(2:12)	The $2^{ m nd}$ to the $12^{ m th}$ elements of x		
x(2:end)	The $2^{ m nd}$ to the last elements of x		
x(1:3:end)	Every third element of x from the first to last		
A(5,:)	Get the 5 th row of A		
A(:,5)	Get the $5^{ m th}$ column of A		
A(5, 1:3)	Get the first to third elements in the 5 th row		

Plotting	
plot(x,y)	Plot y versus x (must be the same length)
loglog(x,y)	Plot \boldsymbol{y} versus \boldsymbol{x} on a log-log scale (both axes have a logarithmic scale)
<pre>semilogx(x, y)</pre>	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x label')</pre>	Add a label to the x axis
<pre>ylabel('y label')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

6		
Constants		
pi	$\pi = 3.14$	1592653589793
NaN	Not a nui	mber (i.e. 0/0)
Inf	Infinity	
realmax	Largest p	ositive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest	positive floating-point number $2.2251 \cdot 10^{-308}$
Saving and	loading	files
save myfil	e.mat	Saves workspace variables in myfile.mat
load myfil	e.mat	Loads variables in myfile.mat into the current workspace
Existance of names exist some_name		
		Returns numeric code, depending on whether this name already exists and if so, also depending on it's category (built-in, user-defined, etc.)
Matrix and array commands		
repelem	Repeat co	opies of array elements
repmat	Repeat co	opies of array
repmat		opies of array opies of array
•	Repeat co	
repmat	Repeat co	opies of array
repmat length	Repeat co Length of sort array	opies of array f largest array dimension
repmat length sort	Repeat co Length of sort array	opies of array f largest array dimension y elements r of elements

	Linear algebra		
	x = A b	Solves Ax = b	
	<pre>x = linsolve(A,B)</pre>	Solves A*X = B	
	[V,D] = eig(A,B)	Diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D .	
	[U,S,V] = svd(A)	Singular value decomposition of matrix A , such that $A=U\ast S\ast V'.$	
	inv	Matrix inverse	
	realmin	Smallest positive floating-point number $2.2251 \cdot 10^{-308}$	

size(A)

Get the size of \boldsymbol{A}

For loops for k = 1:5 disp(k); end

```
While loops

k = 0;
while k < 7
    k = k + 1;
end</pre>
```

```
Logicals
a = 10; % Assign a the value of 10
a == 5 % Test if a is equal to 5
   false
a == 10 % Test if a is equal to 10
   true
a >= 5 % Test if a is greater than or equal to 5
   true
a < 11 % Test if a is less than 11
   true
a ~= 4 % Test if a is not equal to 4
    true
a > 1 && a ~= 10 % Test if a is greater than 1 AND
    false % not equal to 10
a > 1 || a ~= 10 % Test if a is greater than 1 OR
          % not equal to 10
```

```
if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```

```
functions

function output = addNumbers(x, y)
   output = x + y;
end

addNumbers(10, -5)
   5
```

```
Plotting
x = linspace(-3*pi, 3*pi, 1000);
y1 = sin(x);
y2 = cos(x);
plot(x, y1, 'k-'); % Plot sin(x) as a black line
hold on % Now we can add another curve
plot(x, y2, 'r-'); % Plot cos(x) as a red line
% Set the axis limits
axis([-3*pi, 3*pi, -1.5, 1.5])
% Add axis labels
xlabel('x'):
ylabel('y');
% Add a title
title('A plot of cos(x) and sin(x)');
% Add a legend
legend('sin(x)', 'cos(x)');
                A plot of cos(x) and sin(x)
    1.5
                                      sin(x)
                                      cos(x)
    0.5
   -0.5
```