Regressão Descontinuada

Inferência Causal (MI628A)

Marília Rocha Thiago Paulichen Tiago Amorim IMECC - Unicamp

25 de Junho de 2024

A Regressão Descontinuada (*Regression Discontinuity Design* - RDD) é utilizada quando a atribuição do tratamento depende deterministicamente de uma covariável. Quando essa atribuição é exata, o processo de seleção é totalmente conhecido e pode ser modelado para produzir uma inferência causal não-viesada.

Adaptado de: Waiting for Life to Arrive
THOMAS D COOK

Sumário

Histórico

Linha do Tempo Dificuldades e Ressurgimento

Regressão Descontinuada

Sharp RD

Fuzzy RD

Estimadores Locais

Teste de Densidade de McCrary

Exemplos

Toy Problem

Medicare

Pacotes disponíveis

Referências

Linha do Tempo

Levantamento de Cook [2008]

Dificuldades e Ressurgimento

Impasses:

- Preconceito da comunidade estatística por um tema desenvolvido pelas ciências sociais;
- Desenvolvimento inicial restrito ao grupo da Northwestern;
- Papers usavam diferentes termos para RDD.

Razões para o ressurgimento:

- Desenvolvimento por economistas renomados em diversas instituições;
- Nova gama de aplicações.

Fonte: Cunningham [2021]

5/31

Maiores detalhes em Cook [2008].

Descontinuidade Sharp e Fuzzy

Sharp: a atribuição de tratamento segue uma regra determinista:

$$Z_i = egin{cases} 1 & ext{se } x_i \geq c \ 0 & ext{c.c.} \end{cases}$$

Fuzzy: a probabilidade de atribuição de tratamento é descontínua em um ponto de corte conhecido:

$$\mathbb{P}(Z_i = 1 \mid x_i) = egin{cases} g_1(x_i) & ext{se } x_i \geq c \ g_0(x_i) & ext{c.c.} \end{cases}$$

Fonte: Cunningham [2021]

Descontinuidade Sharp e Fuzzy

Sharp: a atribuição de tratamento segue uma regra determinista:

$$Z_i = egin{cases} 1 & ext{se } x_i \geq c \ 0 & ext{c.c.} \end{cases}$$

Fuzzy: a probabilidade de atribuição de tratamento é descontínua em um ponto de corte conhecido:

$$\mathbb{P}(Z_i = 1 \mid x_i) = egin{cases} g_1(x_i) & ext{se } x_i \geq c \ g_0(x_i) & ext{c.c.} \end{cases}$$

Exemplos:

- S Droga administrada a pacientes com uma taxa acima de certo limite.
- S Aulas de recuperação obrigatória para alunos com média abaixo de certo valor.
- F Programa da saúde suplementar oferecido à famílias que se enquadram em determinado critério de renda.

Descontinuidade *Sharp* e *Fuzzy*

Sharp RD

Tratamento é determinado como $Z_i = \mathbb{I}[X_i \geq c]$, onde X_i é a variável de atribuição e c é o ponto de corte.

Suposições:

- **(A1)** $\mathbb{E}(Y_i(0) \mid X_i)$ é contínuo em $X_i = c$;
- **(A2)** $\mathbb{E}(Y_i(1) \mid X_i)$ é contínua em $X_i = c$;
- **(A3)** $\mathbb{E}(Y_i(1) Y_i(0) \mid X_i)$ é contínua em $X_i = c$;

Um design RD foca no ponto de corte na estimação do efeito causal:

$$\tau_c := \mathbb{E}(\tau_i \mid X_i = c) = \mathbb{E}(Y_i(1) - Y_i(0) \mid X_i = c),$$

e considera principalmente amostras localmente próximas ao ponto de corte.

Sharp RD

Dado $\varepsilon > 0$ e as suposições **(A1)**, **(A2)** e **(A3)**, podemos tomar os limites laterais ao longo do ponto de corte c, obtendo:

$$\mathbb{E}(Y_i(1) \mid X_i = c) = \lim_{\varepsilon \to 0} \mathbb{E}(Y_i(1) \mid X_i = c + \varepsilon)$$

$$= \lim_{\varepsilon \to 0} \mathbb{E}(Y_i(1) \mid Z_i = 1, X_i = c + \varepsilon)$$

$$= \lim_{\varepsilon \to 0} \mathbb{E}(Y_i \mid X_i = c + \varepsilon).$$

Similarmente:

$$\mathbb{E}(Y_i(0) \mid X_i = c) = \lim_{\varepsilon \to 0} \mathbb{E}(Y_i \mid X_i = c - \varepsilon).$$

Dessa forma temos que:

$$\tau_{c} = \lim_{\varepsilon \to 0} \left[\mathbb{E}(Y_{i} \mid X_{i} = c + \varepsilon) - \mathbb{E}(Y_{i} \mid X_{i} = c - \varepsilon) \right].$$

Fuzzy RD

A probabilidade condicional do tratamento $\mathbb{P}(Z_i = 1 \mid X_i)$, não pula de 0 para 1 no ponto de corte. $\mathbb{P}(Z_i = 1 \mid X_i)$ é descontínua em c e o tamanho dessa descontinuidade está entre 0 e 1.

Suposição adicional:

(A4)
$$Y_i(0), Y_i(1) \perp Z_i \mid X_i$$
 (ignorabilidade).

Com isso, para um $\varepsilon > 0$ dado, temos:

$$\begin{split} \mathbb{E}(Y_i \mid X_i = c + \varepsilon) - \mathbb{E}(Y_i \mid X_i = c - \varepsilon) \\ &= \mathbb{E}(Y_i(0) + Z_i\tau_i \mid X_i = c + \varepsilon) - \mathbb{E}(Y_i(0) + Z_i\tau_i \mid X_i = c - \varepsilon) \\ \textbf{(A4)} &= \mathbb{E}(Y_i(0) \mid X_i = c + \varepsilon) + \mathbb{E}(Z_i \mid X_i = c + \varepsilon) \mathbb{E}(\tau_i \mid X_i = c + \varepsilon) - \mathbb{E}(Y_i(0) \mid X_i = c - \varepsilon) \\ &- \mathbb{E}(Z_i \mid X_i = c - \varepsilon) \mathbb{E}(\tau_i \mid X_i = c - \varepsilon). \end{split}$$

Fuzzy RD

Fazendo o limite $\varepsilon \to 0$, segue que:

$$\lim_{\varepsilon \to 0} \left[\mathbb{E}(Y_i \mid X_i = c + \varepsilon) - \mathbb{E}(Y_i \mid X_i = c - \varepsilon) \right] = \left(\lim_{\varepsilon \to 0} \left[\mathbb{E}(Z_i \mid X_i = c + \varepsilon) - \mathbb{E}(Z_i \mid X_i = c - \varepsilon) \right] \right) \tau_c$$

isto é:

$$\tau_{c} = \lim_{\varepsilon \to 0} \left[\frac{\mathbb{E}(Y_{i} \mid X_{i} = c + \varepsilon) - \mathbb{E}(Y_{i} \mid X_{i} = c - \varepsilon)}{\mathbb{E}(Z_{i} \mid X_{i} = c + \varepsilon) - \mathbb{E}(Z_{i} \mid X_{i} = c - \varepsilon)} \right].$$

Observe que o caso *Sharp* pode ser visto como um caso particular do *Fuzzy*, uma vez que neste caso:

$$\lim_{\varepsilon \to 0} \left[\mathbb{E}(Z_i \mid X_i = c + \varepsilon) - \mathbb{E}(Z_i \mid X_i = c - \varepsilon) \right] = 1.$$

Estimadores Locais

Estimador local não-paramétrico:

$$\hat{\tau}_{c} = \frac{\sum_{i:c \leq X_{i} < c+h} Y_{i} K\left(\frac{X_{i}-c}{h}\right)}{\sum_{i:c \leq X_{i} < c+h} K\left(\frac{X_{i}-c}{h}\right)} - \frac{\sum_{i:c-h < X_{i} < c} Y_{i} K\left(\frac{X_{i}-c}{h}\right)}{\sum_{i:c-h < X_{i} < c} K\left(\frac{X_{i}-c}{h}\right)},$$

onde K(u) é um kernel com $\int_{-1}^{1} K(u) du = 1$. É viesado em $\mathcal{O}(h)$.

Estimador local linear (Sharp RD):

$$\hat{\tau}_c = \hat{\beta}_0^+ - \hat{\beta}_0^-$$

onde $\hat{\beta}_0^+$ e $\hat{\beta}_0^-$ vem do ajuste de Y_i por mínimos quadrados:

$$\min_{\beta^+} \sum_{i:c \leq X_i < c+h} (Y_i - \beta_0^+ - \beta_x^+ (X_i - c))^2 \quad \text{e} \quad \min_{\beta^-} \sum_{i:c-h < X_i < c} (Y_i - \beta_0^- - \beta_x^- (X_i - c))^2.$$

Viés com regressão é em geral $\mathcal{O}(h^2)$.

Estimadores Locais

Estimador local linear (Fuzzy RD):

$$\hat{\tau}_{c} = \frac{\hat{\tau}_{y}}{\hat{\tau}_{z}} = \frac{\hat{\beta}_{0}^{+} - \hat{\beta}_{0}^{-}}{\hat{\alpha}_{0}^{+} - \hat{\alpha}_{0}^{-}}$$

onde $\hat{\beta}_0^+$ e $\hat{\beta}_0^-$ seguem fórmula para descontinuidade *sharp* e $\hat{\alpha}_0^+$ e $\hat{\alpha}_0^-$ vem do ajuste de Z_i por mínimos quadrados:

$$\min_{\alpha^+} \sum_{i:c \leq X_i < c+h} (Z_i - \alpha_0^+ - \alpha_X^+ (X_i - c))^2$$

$$\min_{\alpha^-} \sum_{i:c-h < X_i < c} (Z_i - \alpha_0^- - \alpha_x^- (X_i - c))^2.$$

Imbens and Lemieux [2008] sugerem **fortemente** fazer regressão.

É sugerido usar $h \propto N^{-\delta}$, com $1/5 < \delta < 2/5$. h ótimo estimado com validação cruzada.

É preciso tomar cuidado para não confundir descontinuidade com não-linearidade!

Fonte: Cunningham [2021]

Estimador da Variância

Distribuição assintótica:

$$\sqrt{\mathit{Nh}}(\hat{ au}- au)
ightarrow \mathcal{N}\left(0, rac{1}{ au_{z}^{2}} \emph{V}_{ au_{y}} + rac{ au_{y}^{2}}{ au_{z}^{4}} \emph{V}_{ au_{z}} - 2rac{ au_{y}}{ au_{z}^{3}} \emph{C}_{ au_{y} au_{z}}
ight).$$

Um estimador *pluggin* é estimar os termos da equação acima.

$$ullet \ \hat{V}_{ au_y} = rac{4}{\hat{f}_{x}(c)}(\hat{\sigma}_{y^+}^2 + \hat{\sigma}_{y^-}^2)$$

•
$$\hat{V}_{\tau_z} = \frac{4}{\hat{t}_{\tau}(c)} (\hat{\sigma}_{z^+}^2 + \hat{\sigma}_{z^-}^2)$$

$$ullet$$
 $\hat{C}_{ au_{oldsymbol{\mathcal{I}}_{oldsymbol{\mathcal{I}}_{oldsymbol{\mathcal{I}}}-oldsymbol{\mathcal{I}}}} = rac{4}{\hat{f}_{oldsymbol{\mathcal{I}}_{oldsymbol{\mathcal{I}}}-oldsymbol{\mathcal{I}}}} (\hat{C}_{oldsymbol{\mathcal{I}}oldsymbol{\mathcal{I}}^+} + \hat{C}_{oldsymbol{\mathcal{I}}oldsymbol{\mathcal{I}}^-})$

$$\bullet \hat{f}_X(x) = \frac{N_{h^+} + N_{h^-}}{2Nh}$$

•
$$\hat{\sigma}_{y^+}^2 = \frac{1}{N_{h^+}} \sum_{i:c \leq X_i < c+h} (Y_i - \hat{Y}(X_i))^2$$

•
$$\hat{\sigma}_{z^+}^2 = \frac{1}{N_{h^+}} \sum_{i:c \le X_i < c+h} (Z_i - \hat{Z}(X_i))^2$$

•
$$\hat{C}_{yz^+} = \frac{1}{N_{h^+}} \sum_{i:c \leq X_i < c+h} (Y_i - \hat{Y}(X_i))(Z_i - \hat{Z}(X_i))$$

15/31

Os termos *negativos* tem somatório em $\{i: c-h < X_i < c\}$, e usam N_{h-} .

Pode-se substituir pelo estimador robusto de um TSLS para RD Fuzzy e de OLS para RD Sharp.

Teste de Densidade de McCrary

O teste de densidade de McCrary [2008] ajuda a avaliar a validade dos dados. Avaliação envolve o uso de polinômios locais para estimar densidade.

Função geradora dos dados:

$$Y_i = 50 - X_i + 0.02X_i^2 + 10 \mathbb{I}(X_i > 0) + \mathcal{N}(0, 5)$$

Avaliação da densidade de pontos.

Não foi encontrado código pronto em Python para cálculo da densidade local.

Em R: rddensity.

Largura da banda sugerida: *h* equivalente a 20 a 40% dos pontos de cada lado.

Otimização feita com validação cruzada com 50% dos de cada lado.

$$CV(h) = \frac{1}{N} \sum_{i} (Y_i - \hat{Y}_h(X_i))^2$$

 $h^* = \operatorname{argmin} CV(h)$

Estimador não-paramétrico local: retângulo em [c-h,c+h].

$$\hat{\tau}_{c} = \frac{\sum_{i=1}^{N} Y_{i} \mathbb{I}(c \leq X_{i} < c + h)}{\sum_{i=1}^{N} \mathbb{I}(c \leq X_{i} < c + h)} - \frac{\sum_{i=1}^{N} Y_{i} \mathbb{I}(c - h < X_{i} < c)}{\sum_{i=1}^{N} \mathbb{I}(c - h < X_{i} < c)}.$$

Para utilizar mínimos quadrados é construída uma aproximação conjunta dos dois lados:

$$\min_{\beta} \sum_{i: c-h < X_i < c+h} (Y_i - \beta_0 - \beta_x^+ (X_i - c) \mathbb{I}(c \le X_i < c+h) - \beta_x^- (X_i - c) \mathbb{I}(c-h < X_i < c) - \beta_\tau Z_i)^2$$

Medicare

Objetivo: Avaliar o impacto do plano de saúde na utilização de cuidados médicos. (Card et al. [2008])

Limitações: Heterogeneidade de cobertura, viés de seleção - oferta e procura dependem da saúde inicial, confundindo comparações observacionais.

Solução: Abordagem de regressão descontinuada para comparar o estado de saúde entre pessoas imediatamente antes e imediatamente após os 65 anos de idade (elegibilidade para o programa *Medicare*):

- Mudanças no número de consultas médicas recentes e nas internações hospitalares;
- Efeitos em diferentes subgrupos;
- Quantificar até que ponto o início da elegibilidade ao Medicare reduz ou aumenta as disparidades no uso de diferentes tipos de serviços.

Medicare: Definição do modelo

Modelo:

$$y_{ija} = X_{ija}\alpha + f_j(\alpha; \beta) + \sum_k C_{ija}^k \gamma^k + u_{ija}$$

- y_{ija} : uso de cuidados de saúde para o indivíduo i no grupo socioeconômico j na idade a;
- X_{ija}: conjunto de covariáveis (por exemplo, gênero e região);
- $f_j(\alpha; \beta)$: função suavizada representando o perfil de idade do resultado y para o grupo j;
- C^k_{ija}: características da cobertura de seguro mantida pelo indivíduo;
- u_{ija}: componente de erro não observado.

Medicare: Definição do modelo

Problema na estimação (Cobertura do seguro é endógena): a elegibilidade ao programa está associada a uma redução das diferenças de cobertura entre os grupos demográficos, mas há um aumento nessas diferenças quando olhamos para coberturas com mais benefícios.

Figura: Cobertura por qualquer seguro e por duas ou mais apólices, por idade e grupo demográfico.

Fonte: Card et al. [2008]

Medicare: Definição do modelo

Solução: Definir um modelo de probabilidade para as variáveis indicadoras C_{ija}^1 (qualquer cobertura) e C_{iia}^2 (plano com maior cobertura e com mais benefícios):

$$C_{ija}^1 = X_{ija}\beta_j^1 + g_j^1(a) + D_a\pi_j^1 + \nu_{ija}^1,$$

 $C_{ija}^2 = X_{ija}\beta_i^2 + g_i^2(a) + D_a\pi_i^2 + \nu_{ija}^2,$

onde β_j^1 e β_j^2 são coeficientes dos grupos socioeconômicos, $g_j^1(a)$ e $g_j^2(a)$ são perfis de idade destes grupos, e D_a uma indicadora para ter 65 anos ou mais. Supondo que os perfis sejam contínuos aos 65 anos, qualquer descontinuidade em y pode ser atribuída a descontinuidades no seguro.

Medicare: Resultados

Outras mudanças aos 65 anos (aposentadoria):

- A continuidade exige que todos os outros fatores que possam afetar o resultado tenham mudanças suaves aos 65 anos.
- Todos os perfis possuem comportamento suave aos 65 anos em relação à empregabilidade.

Medicare: Resultados

	1997–2003 NHIS				1992-2003 NHIS			
	Delayed care last year		Did not get care last year		Saw doctor last year		Hospital stay last year	
	Age 63-64 (1)	RD at 65 (2)	Age 63-64 (3)	RD at 65 (4)	Age 63-64 (5)	RD at 65 (6)	Age 63-64	RD at 65 (8)
Overall sample	7.2	-1.8 (0.4)	4.9	-1.3 (0.3)	84.8	1.3	11.8	1.2
Classified by ethnicity and ea	lucation:							
White non-Hispanic:								
High school dropout	(11.6)	-1.5	(7.9)	-0.2	81.7	3.1	(14.4)	1.6
		(1.1)	_	(1.0)		(1.3)	$\overline{}$	(1.3)
High school graduate	7.1	0.3	5.5	-1.3	85.1	-0.4	12.0	0.3
		(2.8)		(2.8)		(1.5)		(0.7)
At least some college	6.0	-1.5	3.7	-1.4	87.6	0.0	9.8	(2.1)
		(0.4)		(0.3)		(1.3)		(0.7)
Minority:								
High school dropout	(13.6)	-5.3	(11.7)	(-4.2)	(80.2)	(5.0)	(14.5)	0.0
	_	(1.0)		(0.9)	_	(2.2)	_	(1.4)
High school graduate	4.3	-3.8	1.2	1.5	84.8	1.9	11.4	(1.8)
		(3.2)		(3.7)		(2.7)		(1.4)
At least some college	5.4	-0.6	4.8	-0.2	85.0	3.7	9.5	0.7
		(1.1)		(0.8)		(3.9)		(2.0)
Classified by ethnicity only:								
White non-Hispanic	6.9	-1.6	4.4	-1.2	85.3	0.6	11.6	1.3
		(0.4)		(0.3)		(0.8)		(0.5)
Black non-Hispanic (all)	7.3	-1.9	6.4	-0.3	84.2	3.6	(14.4)	0.5
	-	(1.1)	_	(1.1)	_	(1.9)	\sim	(1.1)
Hispanic (all)	(11.1)	(-4.9)	9.3	=3.8	79.4	(8.2)	11.8	1.0
		(0.8)		(0.7)		(0.8)		(1.6)

Tabela: Medidas de acesso aos cuidados de saúde pouco antes dos 65 anos e descontinuidade estimadas.

Medicare: Resultados

Mudanças no acesso e utilização de cuidados médicos:

- 7% das pessoas relataram atrasar os cuidados e 5% relataram não receber cuidados, com taxas mais elevadas para as minorias com menor escolaridade e hispânicos. As estimativas implicam redução aos 65 anos em ambas as medidas;
- Os grupos com menor escolaridade e minoritários têm menor probabilidade de ter uma consulta de rotina, mas são mais propensos a ter passado por um período hospitalar;
- As estimativas sugerem que o limiar dos 65 anos está associado a um aumento nas consultas médicas de rotina, com ganhos maiores para os grupos com taxas mais baixas antes dos 65;
- No geral, há um aumento grande nas taxas de hospitalização aos 65 anos (da ordem dos 10%), mas os ganhos são maiores para os brancos com melhor escolaridade do que para outros grupos.

Pacotes - Linguagem R

- rddtools
- rdd
- rdrobust
- rddensity

Referências (1)

- Joshua D Angrist and Jörn-Steffen Pischke. *Mostly harmless econometrics: An empiricist's companion*. Princeton university press, 2009.
- David Card, Carlos Dobkin, and Nicole Maestas. The impact of nearly universal insurance coverage on health care utilization: evidence from medicare. *American Economic Review*, 98 (5):2242–2258, 2008.
- Thomas D Cook. "waiting for life to arrive": a history of the regression-discontinuity design in psychology, statistics and economics. *Journal of Econometrics*, 142(2):636–654, 2008.
- Scott Cunningham. *Causal inference: The mixtape*. Yale university press, 2021. URL https://mixtape.scunning.com/06-regression_discontinuity. Acessado: 18/06/2024.
- Michael O Finkelstein, Bruce Levin, and Herbert Robbins. Clinical and prophylactic trials with assured new treatment for those at greater risk: I. a design proposal. *American Journal of Public Health*, 86(5):691–695, 1996.
- Arthur S Goldberger. Selection bias in evaluating treatment effects: Some formal illustrations. Manuscrito não publicado, 1972a.

Referências (2)

- Arthur S Goldberger. Selection bias in evaluating treatment effects: the case of interaction. Manuscrito não publicado, 1972b.
- Guido W Imbens and Thomas Lemieux. Regression discontinuity designs: A guide to practice. *Journal of econometrics*, 142(2):615–635, 2008.
- David S Lee and Thomas Lemieux. Regression discontinuity designs in economics. *Journal of economic literature*, 48(2):281–355, 2010.
- Justin McCrary. Manipulation of the running variable in the regression discontinuity design: A density test. *Journal of econometrics*, 142(2):698–714, 2008.
- Donald B Rubin. Assignment to treatment group on the basis of a covariate. *Journal of educational Statistics*, 2(1):1–26, 1977.
- Donald L Thistlethwaite and Donald T Campbell. Regression-discontinuity analysis: An alternative to the ex post facto experiment. *Journal of Educational psychology*, 51(6):309, 1960.
- William MK Trochim. Research design for program evaluation: The regression-discontinuity approach, volume 6. SAGE Publications, Incorporated, 1984.

Perguntas?

