Calculo diferencial e integral tomo 1 $_{\mbox{\tiny Nikolai Piskunov}}$

Resolución de problemas por FODE

Índice general

L.	Funciones	3
	1.1. Las funciones y sus gráficas	3
	1.1. Ejercicios	4

1

Funciones

1.1. Las funciones y sus gráficas

Definición 1.1 Una función f de un conjunto D a un conjunto Y es una regla que asigna a cada elemento $x \in D$ un solo o único elemento $f(x) \in Y$

Definición 1.2 Cuando definimos una función y = f(x) mediante una fórmula, y el dominio no se establece de forma explícita o se restringe por el contexto, se supondrá que el dominio será el mayor conjunto de números reales x para los cuales la fórmula proporciona valores reales para y, el llamado dominio natural.

Cuando el rango de una función es un subconjunto de números reales, se dice que la función tiene valores reales (o que es real valuada)

Definición 1.3 (Valor absoluto)
$$f(x) = \begin{cases} x & si \quad x \geq 0 \\ -x & si \quad x < 0 \end{cases}$$

Definición 1.4 Sea una funcion definida en un intervalo I y sean x_1 y x_2 cualesquiera dos puntos en I

- 1. Si $f(x_2) > f(x_1)$, siempre que $x_1 < x_2$ entonces se dice que f es creciente en I.
- 2. Si $f(x_2) < f(x_1)$, siempre que $x_1 < x_2$ entonces se dice que f es **decreciente** en I.

Definición 1.5 Una función y = f(x) es una

- 1. Función par de x si f(-x) = f(x).
- 2. Función impar de x si f(-x) = -f(x).

Para toda x en el dominio de la función.

(Los nombres par e impar provienen de las potencias de x).

Definición 1.6 Dos variables x e y son **proporcionales** (una con respecto a la otra) si una siempre es un múltiplo constante de la otra; esto es, si y = kx para alguna constante k distinta de 0.

Si la variable y es proporcional al recíproco 1/x, entonces algunas veces se dice que y es **inversamente proporcional** a x (puesto que 1/x es el inverso multiplicativo de x).

1.1. Ejercicios

1. $f(x) = 1 + x^2$

Respuesta.- Al evaluar $1+x^2$ vemos que x se cumple para todos los reales, por lo tanto $f_D=\{x/; \forall \ x\in \mathbb{R}\}$. Luego el rango viene dado por $f_R=\{y=f(x)/y\geq 1\}$

2. $f(x) = 1 - \sqrt{x}$

Respuesta.- El dominio viene dado por $f_D=\{x/x\geq 0\}$. Y el rango viene dado por $f_R=\{y=f(x)/y\leq 1\}$.

3. $F(x) = \sqrt{5x+10}$

Respuesta.- Sea $5x + 10 \ge 0$ ya que una raíz par no puede ser no negativo, entonces $x \ge 2$, por lo tanto el dominio viene dado por $f_D = \{x/x \ge -2\}$. Luego el rango viene dado por $f_R = \{y = f(x)/y \ge 0\}$.

4. $g(x) = \sqrt{x^2 - 3x}$

Respuesta.- De igual forma al anterior ejercicio, evaluaremos $x^2 - 3x \ge 0$, de donde $x(x-3) \ge 0$, por lo tanto el dominio es $f_D = \{x/\le x \le 0 \cup x \ge 3\}$. Luego el rango viene definido por $f_R = \{y = f(x)/y \ge 0\}$.

5. $f(t) = \frac{4}{3-t}$

Respuesta.- Sabemos que no se puede dividir un número por 0. Por lo tanto para hallar el dominio de la función debemos evaluar 3-t=0, de donde t=3, así $f_D=\{t/t\neq 3\}$. Luego el rango viene dado por $f_R=\{y=f(x)/y\neq 0\}$.

6.
$$G(t) = \frac{2}{t^2 - 16}$$

Respuesta.- De igual forma al anterior ejercicio evaluamos $t^2-16=0$, de donde (t-4)(t+4)=0, por lo tanto el dominio de la función viene dado por $f_D=\{t/t\neq 4 \land t\neq -4\}$. Luego el rango viene dado por $f_R=\{y=f(x)/0 < y \leq -\frac{1}{8}\}$ ya que al despejar x nos queda $x=\sqrt{\frac{2}{y}+16}$ de donde se debe evaluar por un lado $\frac{2}{y}$ y por otro $\frac{2}{y}-16\geq 0$.