高等微積分

Exercise 1 (Chapter 1)

- 1. Let a and b be two real numbers. If $a \le b + \epsilon$ for any $\epsilon > 0$, then $a \le b$.
- 2. (a) If $r, s \in \mathbb{Q}$, then r + s and rs are rational.
 - (b) If $r \in \mathbb{Q}$ with $r \neq 0$ and $x \in \mathbb{R} \setminus \mathbb{Q}$, then r + x and rx are irrational.
- 3. Let $f: X \to Y$ be a function. If $B \subseteq Y$, we denote by $f^{-1}(B)$ the largest subset of X which f maps into B. That is,

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}$$

The set $f^{-1}(B)$ is called the **inverse image** of B under f. Prove the following for arbitrary $A, A_1, A_2 \subseteq X$ and $B, B_1, B_2 \subseteq Y$.

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$. Given an example such that the inclusion is strict.
- (c) $A \subseteq f^{-1}[f(A)]$ and $f[f^{-1}(B)] \subseteq B$. Given an example such that the inclusion is strict.
- (d) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ and $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- 4. Let E be a nonempty subset of an order set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.
- 5. Let A, B be two nonempty sets of \mathbb{R} .
 - (a) If $A \subseteq B$, then $\sup A \leq \sup B$ and $\inf A \geq \inf B$.
 - (b) Show that $\inf A < \sup A$.
 - (c) Show that $\inf(-A) = -\sup A$ and $\sup(-A) = -\inf(A)$, where $-A = \{-a \mid a \in A\}$.
 - (d) Show that $\sup(A+B) = \sup A + \sup B$ and $\inf(A+B) = \inf A + \inf B$, where $A+B = \{a+b \mid a \in A, b \in B\}$, the **Minkowski sum** of A and B.
 - (e) If A, B be two sets of positive numbers which is bounded above. Let $a = \sup A$, $b = \sup B$ and $C = \{ab \mid a \in A, b \in B\}$. Prove that $\sup C = ab$.
- 6. Prove or disprove the following statement by given a counterexample:
 - (a) $\sup(A \cap B) \le \inf\{\sup A, \sup B\}.$
 - (b) $\sup(A \cap B) = \inf\{\sup A, \sup B\}.$
 - (c) $\sup(A \cap B) \ge \sup\{\sup A, \sup B\}.$
 - (d) $\sup(A \cap B) = \sup\{\sup A, \sup B\}.$
- 7. Let $A, B \subseteq \mathbb{R}$ such that $\sup A = \sup B$ and $\inf A = \inf B$. Does A = B?
- 8. Fix b > 1.
 - (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence, it makes sense to define $b^r = (b^m)^{1/n}$.

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \le x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence, it make sense to define

$$b^x = \sup B(x)$$

for every real x.

- (d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.
- 9. Prove that no order can be defined in the complex field that turns it into an ordered field.
- 10. Suppose z = a + ib, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a *dictionary order*, or *lexicographic order*, for obvious reasons) Does this ordered set have the least-upper-bound property?
- 11. Suppose z = a + bi, w = u + iv and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \ b = \left(\frac{|w| - u}{2}\right)^{1/2}$$

Prove that $z^2=w$ if $v\geq 0$ and that $(\overline{z})^2=w$ if $v\leq 0$. Conclude that every complex number (with one exception!) has two complex square roots.

12. Under what conditions does equality hold in the Cauchy-Schwartz inequality?