

FUNCTION GROWTH RATES

Why

We want to discuss how quickly a function grows.¹

Definition

Let $f: \mathbb{R} \to \mathbb{R}$. The lower growth class of f is the set of all functions $g: \mathbb{R} \to \mathbb{R}$ for which there exists C, M > 0 so that $|g(x)| \leq C|f(x)|$ for all x > M. The intuition is that if h is in the lower growth class of f, h does not grow faster than f.

The upper growth class of f is the set of all functions g: $\mathbb{R} \to \mathbb{R}$ for which there exists C, M > 0 so that $|g(x)| \geq C|f(x)|$ for all x > M. The intuition is that if h is in the upper growth class of f, h grows at least as fast as f.

The exact growth class (or growth class) of f is the set of all functions $g: \mathbb{R} \to \mathbb{R}$ for which there exists C_1, C_2, M so that $C_1 |f(x)| \leq |g(x)| \leq C_2 |f(x)|$ for all x > M. The intuition is that if h is in the growth class of f, then h and f grow at the same rate.

If a function $h: \mathbb{R} \to \mathbb{R}$ is in the upper growth class of f we say that h grows at order f.

Notation

We denote the upper, lower and exact growth classes of a function $f: \mathbb{R} \to \mathbb{R}$ by of f by O(f). We read the notation O(f)

¹Future editions will expand.

as "order at most f," we read $\Omega(f)$ as "order at least f," and $\Theta(f)$ as order exactly f.

The letter O, therefore, is a nice mnemonic for order. zfrom use in Taylor approximations near zero. In this case of |x| < 1, $|x^p| < |x^q|$ if q < p. So higher order terms are "smaller" and "negligible." This notation is sometimes called $Big\ O\ notation$ or Laundau's symbol.

