

AÑO: Cuarto

2025

TRABAJO DE LABORATORIO Nº 3

Configuración básica de Routers para el funcionamiento de IP en Capa 3

ACTIVIDAD DE FORMACION PRACTICA

1. Formación experimental (laboratorio).

OBJETIVOS

- Comprender el funcionamiento de la conmutación de capa 3 en redes TCP/IP, mediante la experiencia de observar los componentes, interfaces, direccionamiento y enrutamiento en dispositivos *routers*, en un entorno WAN.
- 2. Incorporar habilidades para configurar dispositivos *routers*, implementando una red WAN que conecte dos redes LAN.
- 3. Extender las habilidades de configuración para el acceso telnet, enrutamiento dinámico, debugging y enrutamiento entre dominios sin clase CIDR (Classless Inter-Domain Routing), verificando el correcto funcionamiento de la red.
- 4. Comenzar a aplicar la configuración de subredes con Subnetting Mask y Variable Length Subnet Mask.
- 5. Implementar controles básicos para seguridad de tráfico IP, mediante listas de control de acceso (ACL estándar).

CONOCIMIENTOS PREVIOS

- Estudiar fundamentos teóricos de: Conmutación en Capa 3 Enrutamiento en Capa 3 -Protocolos IP, RIP, IGRP, EIGRP y BGP - Subnetting básico - Subnetting con VLSM -Enrutamiento entre dominios sin clase CIDR - Firewall basado en filtros de paquetes IP con ACL estándar.
- 2. Conocer los comandos y niveles de configuración de routers Cisco (**0a. Modos y Comandos** / **0b. Otros comandos**).
- 3. Estudiar de manera práctica VLSM y enrutamiento sin clase (apoyar el estudio mediante los archivos 1. IP_Subnetting.pdf y 2. VLSM_CIDR.pdf).
- Comprender, en general, el funcionamiento de los modelos y protocolos de enrutamiento y, en detalle, el enrutamiento dinámico con RIP y enrutamiento entre dominios CIDR (apoyar el estudio mediante los archivos 3. Enrutamiento 1.pdf y 4. Enrutamiento 2.pdf).
- 5. Analizar la configuración de filtros de paquetes IP con ACL estándar, en base al archivo **5. ACL.pdf**.
- 6. EJERCICIOS RESUELTOS DE LAS GUÍAS DE EJERCICIOS DE ESCRITORIO (GEE):

AÑO: Cuarto

5.4.1. , .2, .4, .5, .7, .8, .10 y .12	Configuración
<mark>5.8.1. a 5.8.8.</mark>	Configuración

MATERIAL NECESARIO

Una PC de escritorio con el simulador Packet Tracert (versión instalada en laboratorio).

TAREAS PREVIAS (ANTES DE CLASE)

Resolver en la <u>Tabla IP</u> (Pag 3) los requerimientos de direccionamiento IP (*classless*), para la red Local y los enlaces WAN y LANs remotas 1 y 2 del escenario dado. Los requerimientos de los segmentos 3, podrán ser resueltos por el alumno aplicando *subnetting* con VLSM.

LA RESOLUCIÓN DEL DIRECCIONAMIENTO IP PODRÁ SER REQUERIDO POR EL DOCENTE, PARA SER CONSIDERADO COMO EVALUACIÓN PARCIAL.

SE ENTREGARÁ EN UN ARCHIVO EN WORD, <u>ANTES DEL DESARROLLO DEL TRABAJO DE LABORATORIO</u>.

DESCRIPCION

El trabajo de laboratorio se desarrollará mediante el simulador y será realizado de manera individual.

1. Caso de Estudio

AÑO: Cuarto

Los alumnos trabajarán en clase con la red Local (192.168.2.0/24) y los enlaces WAN y LANs remotas 1 y 2.

Los docentes podrán modificar el direccionamiento IP, si lo consideran necesario.

El enlace y segmento 3 se desarrollarán como actividad de integración con VLSM.

2. Tareas de configuración

PRIMERA PARTE. IMPLEMENTACIÓN DE LA TOPOLOGÍA DEL LABORATORIO Y DIRECCIONAMIENTO

 a. Verificar el resultado del direccionamiento (TAREAS PREVIAS) para los dispositivos de red, en la planilla siguiente:

Tabla IP

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway predeterminado
Local1	Fa0/0			N/C
	S0/0/0			N/C
Local2	Fa0/0			N/C
	S0/0/0			N/C
Local3	Fa0/0			N/C
	S0/0/0			N/C
Remoto1	Fa0/0			N/C
	S0/0/0			N/C
Remoto2	Fa0/0			N/C
	S0/0/0			N/C
Remoto3	Fa0/0			N/C
	S0/0/0			N/C
Admin1	NIC			
Admin2	NIC			
Admin3	NIC			
Admin0	NIC			

- b. Conectar los dispositivos y realizar el direccionamiento.
 - 1) Conectar los routers (Router-PT) y switch (2950-24), de acuerdo con el diagrama.

AÑO: Cuarto

2) Es importante determinar qué INTERFAZ de los enlaces WAN se configura en el router respectivo como interfaz DCE (ETCD). Para este escenario, se conectará el cable DCE y se configurará la señal de clocking en la interfaz SERIAL que tiene asignada la IP más ALTA del segmento WAN.

c. Configuración de los routers.

- Iniciar sesión mediante Hyperterminal; si aparece el mensaje para entrar al modo de configuración inicial, ingresar NO.
- 2) Pasar del modo de ejecución de usuario al modo privilegiado

Router> enable

3) Listar la configuración activa

Router# show running-config

4) Mostrar el estado de las interfaces fastEthernet 0/0 y serial 0/0.

Router# show interface [fastEthernet 0/0 | serial 0/0]

- 5) Registre el estado de la interface y del protocolo de enlace (line protcol)
- 6) Mostrar la tabla de enrutamiento

Router# show ip route

¿Existe alguna entrada en la tabla de enrutamiento?

7) Ingresar al modo de configuración global

Router# configure terminal

8) Configurar un nombre para el router

Router(config)# hostname {localx / remotox}

remotox(config)# enable secret utn

9) Configure la opción de acceso remoto para el modo SSH versión 2.0 para UN SOLO USUARIO REMOTO, por similitud al TL1.

remotox(config)#ip domain-name tl3.com

remotox(config)#crypto key generate rsa

remotox(config)#ip ssh version 2

remotox(config)#line vty 0

remotox(config-line)#transport input ssh

remotox(config-line)#login local

remotox(config)# username redes privilege 15 password cisco

10) Desactive el acceso remoto en las restantes líneas Vty.

UTN - FRBA
Departamento de Sistemas

MATERIA: Redes de Información

AÑO: Cuarto

remotox(config)# line vty 1 15

remotox(config-line)# transport input none

remotox(config-line)# exit

11)Configure la interface **fastEthernet**, asignándole una dirección ip y levantando la interface

remotox(config)# interface fastEthernet 0/0

remotox(config-if)# ip address <IP> <máscara>

remotox(config-if)# no shutdown

remotox(config-if)# exit

12) Configure la interfaz **serial 0/0**, asignándole una dirección IP (la velocidad de reloj sólo en el router con el cable DCE) y levantar la interfaz.

remotox(config)# interface serial 0/0

remotox(config-if)# encapsulation ppp

remotox(config-if)# ip address <IP> <máscara>

remotox(config-if)# clock rate 2000000

remotox(config-if)# no shutdown

remotox(config-if)# exit

- 13)Regrese al modo ejecución y verifique el estado de las interfaces y de la tabla de enrutamiento con los comandos utilizados anteriormente.
- 14) Ejecute el comando *ping* desde un router a las IP del otro para probar la conectividad.

d. Configuración de las estaciones de trabajo y prueba de la red.

- Configure una estación de trabajo conectada a la LAN de cada router con una dirección IP, máscara y puerta de enlace congruentes con la configuración del router
- 2) Verifique la configuración con *IPCONFIG* /all.
- 3) Haga ping desde la PC a las interfaces de ambos routers y a la PC de la otra red. Justifique por qué no hay respuesta desde determinadas IP.
- 4) Intente una conexión TELNET al router remoto.
- 5) Realice una sesión TELNET al router de su LAN y, desde éste, al router remoto. Evalúe los resultados obtenidos.

e. Configuración de enrutamiento dinámico.

El docente explicará los conceptos básicos de enrutamiento dinámico, estático y por defecto. Señalará las diferencias principales entre los protocolos RIP,

AÑO: Cuarto

IGRP y EIGRP. Orientará el estudio más profundo de dichos protocolos para el TL 4, considerando las particularidades de configuración de IGRP y EIGRP.

1) Desde el modo de configuración global ingrese:

remotox(config)# router rip

remotox(config-router)# version 2

remotox(config-router)# network w.x.y.z (1)

remotox(config-router)# network w.x.y.z

remotox(config-router)# exit

- (1) w.x.y.z es la dirección de red con clase (IP CLASSFULL) correspondiente a las IP de las interfaces.
- (2) Desactive en las LAN remotas el tráfico generado por RIP para evitar las publicaciones **RIP** en dichas redes

remotox(config-router)#passive-interface fastEthernet 0/0

(3) Establezca en los routers remotos rutas sumarizadas CIDR (explicar el concepto)

remotox(config)# ip route 192.168.1.0 255.255.252.0 fastEthernet 0/0

Analice: ¿qué otras direcciones IP con la misma máscara se podrían declarar en reemplazo de la anterior y producirían el mismo efecto con el comando anterior?

remotox(config-router)# redistribute static

f. Configuración del router local y de los restantes routers de todo el sistema. Repita la configuración en el router localx, en base a los comandos indicados para el router remotox respectivo.

Extienda las configuraciones en los restantes routers *localx* y *remotox*, a fin de alcanzar la convergencia del enrutamiento dinámico de todo el sistema.

- g. Verificación de la configuración y funcionamiento del enrutamiento.
 - Desde el modo de ejecución privilegiado, mostrar la tabla de enrutamiento remotox# show ip route
- h. Ajustes de la configuración para observar el efecto de NO sumarizar rutas.
 - 2) Deshabilitar la sumarización

remotox(config-router)# no auto-summary

- 3) Verificar nuevamente las entradas de la tabla de enrutamiento con **show ip route**.
- 4) Verificar los parámetros del protocolo de enrutamiento.

remotox# show ip protocol

AÑO: Cuarto

5) Verificar la configuración realizada

remotox# show runnig-config

- 6) De los datos obtenidos documentar: distancia administrativa de RIP, métrica, tiempos de actualización, inválido y purga. **Investigue qué representan estos valores**.
- 7) Desde la línea de comandos de la PC:
 - a) Intente una conexión **TELNET** entre routers remotos.
 - b) Haga tracert entre las PC conectadas a las LAN de los routers remotos, capturando el tráfico generado. Verifique el TTL de los mensajes ICMP enviados y las respuestas recibidas.
- i. Verificación de la actividad del enrutamiento dinámico.
 - 1) Desde el modo de ejecución privilegiado, activar el debug del protocolo RIP.

remotox# debug ip rip

2) Desconectar la interface **ethernet** en el router remoto, esperar UN minuto, volver a conectarla, esperar UN minuto y finalizar la captura.

Parar desactivar el debug, ejecute:

remotox# no debug ip rip

j. Configuración de medidas de seguridad básicas para controlar el tráfico saliente de las LANs remotas.

El docente explicará el concepto de filtros de paquetes y su implementación con ACL.

Además, orientará el estudio del diseño e implementación de ACL extendidas para el TL4.

- 1) En modo de configuración global creamos una ACL estándar.
 - remotox(config)# access-list 1 permit 192.168.1.0 0.0.0.127
- 2) Activamos la ACL sobre la interfaz fastEthernet correspondiente. remotox(config-if)# *ip access-group 1 in*
- 3) Verificamos la ACL configurada, utilizando los comandos **show access-lists** y **show running-config**.

TIEMPO ASIGNADO: 120 minutos

CRITERIO DE EVALUACION: se aprobará el TLab mediante un práctico a realizar en el simulador; para el mismo, se podrá contar con una lista de comandos y el material de consulta sobre el TL y documentos técnicos del fabricante.