

~~XXXI~~ NASA CR-177349

NASA-CR-177349
19850022702

A Reproduced Copy
OF

NASA CR-177349

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

LIBRARY COPY

APR 13 1987

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

FFNo 672 Aug 65

NF01720

NASA CONTRACTOR REPORT 177349

(NASA-CR-177349) FUSELAGE UPWASH EFFECTS ON
RSRA ROTOR SYSTEMS (Boeing Vertol Co.,
Philadelphia, Pa.) 256 p HC A12/MF AJ1

CSCL 01A

N85-31015

Unclass

G3/02 24913

FUSELAGE UPWASH EFFECTS ON
RSRA ROTOR SYSTEMS

J. Cowan
L. Dadone

CONTRACT NAS2-11307

August 1985

NASA

N85-31015 #

NASA CONTRACTOR REPORT 177349

FUSELAGE UPWASH EFFECTS ON
RSRA ROTOR SYSTEMS

J. Cowan
L. Dadone
Boeing Vertol Company
Philadelphia, Pennsylvania

Prepared for
Ames Research Center
under Contract NAS2-11307

August 1985

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

TABLE OF CONTENTS

	<u>Page</u>
LIST OF FIGURES	iii
LIST OF TABLES	viii
LIST OF SYMBOLS	ix
1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 A GENERAL DESCRIPTION OF FUSELAGE/WING/ENGINE UPWASH EFFECTS AND OF THEIR MODELING	4
4.0 DESCRIPTION OF THE CODES USED	7
4.1 The B-65 Rotor Performance Analysis	
4.2 The C-60 Dynamics Loads Analysis	
4.3 The B-21 Rotor/Wake/Fuselage Interaction Processor	
4.4 The TEA-230 Potential Flow Analysis	
5.0 DESCRIPTION OF RSRA CONFIGURATIONS AND FLIGHT CONDITIONS	12
6.0 POTENTIAL FLOW MODELS OF THE RSRA	17
7.0 DESCRIPTION OF MAIN ROTOR CHARACTERISTICS	26
8.0 DISCUSSION OF THE EFFECTS OF FUSELAGE/WING/ ENGINE UPWASH ON THE PERFORMANCE AND LOADS OF THE RSRA ROTOR	27
9.0 CONCLUSIONS AND RECOMMENDATIONS	74
10.0 REFERENCES	75
11.0 APPENDICES	76
APPENDIX A Potential Flow Model Coordinates	77
APPENDIX B Tabulation of Upwash Values	179
APPENDIX C Supplementary Loads Analysis Comparisons	207
APPENDIX D Surface Plots	240

LIST OF FIGURES

<u>Figure Number</u>		<u>Page</u>
3-1	Single-Rotor Upwash Calculation Procedure	5
4-1	Comparison of Measured and Calculated Rotor Performance	9
4-2	Comparison of Measured and Calculated Lift per Unit Span	10
6-1	Potential Flow Model of the RSRA Fuselage	18
6-2	Potential Flow Model of the RSRA Fuselage. Top and Side Views	19
6-3	Potential Flow Model of the RSRA Fuselage with Auxiliary Wings	20
6-4	Potential Flow Model of the RSRA Fuselage with Auxiliary Wings. Top and Side Views	21
6-5	Potential Flow Model of the RSRA Fuselage with Auxiliary Engines	22
6-6	Potential Flow Model of the RSRA Fuselage with Auxiliary Engines. Top and Side Views	23
6-7	Potential Flow Model of Complete RSRA Configuration	24
6-8	Potential Flow Model of Complete RSRA Configuration. Top and Side Views	25
8-1	Effect of RSRA Upwash on Calculated Rotor Power . . .	33
8-2	Effect of RSRA Upwash on the Calculated Equivalent Lift to Drag Ratio	34
8-3	Effect of RSRA Upwash on the Calculated Elastic Twist Deflection at the Tip - Vibratory Component	35
8-4	Effect of RSRA Upwash on the Calculated Fourth and Eight Harmonics of Rotor Thrust	36
8-5	Effect of RSRA Upwash on the Calculated Fourth and Eight Harmonics of the Rotor Torque	37

LIST OF FIGURES

<u>Figure Number</u>		<u>Page</u>
8-6	Variation of Equivalent Lift to Drag Ratio with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius are Held Constant.	38
8-7	Variation of Pitch Link Load Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius are Held Constant.	39
8-8	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius are Held Constant.	40
8-9	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius are Held Constant.	41
8-10	Variation of Equivalent Lift to Drag Ratio with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius are Held Constant.	42
8-11	Variation of Pitch Link Load Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius are Held Constant.	43
8-12	Variation of Flap Hinge Vertical Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius are Held Constant.	44
8-13	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius are Held Constant.	45
8-14	Variation of Equivalent Lift to Drag Ratio with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area are Held Constant.	46
8-15	Variation of Pitch Link Load Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area are Held Constant.	47

LIST OF FIGURES

<u>Figure Number</u>		<u>Page</u>
8-16	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area are Held Constant.	48
8-17	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area are Held Constant.	49
8-18	Variation of Equivalent Lift to Drag Ratio with Disk Loading from Loads Analysis. Flight Velocity and Rotor Radius are Held Constant.	50
8-19	Variation of Pitch Link Load Vibratory Amplitude with Disk Loading from Loads Analysis. Flight Velocity and Rotor Radius are Held Constant.	51
8-20	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Disk Loading from Loads Analysis. Flight Velocity and Rotor Radius are Held Constant.	52
8-21	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Disk Loading from Loads Analysis. Flight Velocity and Rotor Radius are Held constant.	53
8-22	Variation of Equivalent Lift to Drag Ratio with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	54
8-23	Variation of Pitch Link Load Vibratory Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	55
8-24	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	56
8-25	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	57

LIST OF FIGURES

<u>Figure Number</u>	<u>Page</u>	
8-26	Variation of Equivalent Lift to Drag Ratio with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity are Held Constant.	58
8-27	Variation of Pitch Link Load Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity are Held Constant.	59
8-28	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity are Held Constant.	60
8-29	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity are Held Constant.	61
8-30	Variation of Equivalent Lift to Drag Ratio with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity are Held Constant.	62
8-31	Variation of Pitch Link Load Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity are Held Constant.	63
8-32	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity are Held Constant.	64
8-33	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity are Held Constant.	65
8-34	Variation of Equivalent Lift to Drag Ratio with Flat Plate Area for Auxiliary Thrust and Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	66

LIST OF FIGURES

<u>Figure Number</u>		<u>Page</u>
8-35	Variation of Pitch Link Load Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust and Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	67
8-36	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Flat Plate Area for Auxiliary Thrust and Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	68
8-37	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust and Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius are Held Constant.	69
8-38	Variation of Equivalent Lift to Drag Ratio with Rotor Radius from Loads Analysis. Flight Velocity and Disk Loading are Held Constant.	70
8-39	Variation of Pitch Link Load Vibratory Amplitude with Rotor Radius from Loads Analysis. Flight Velocity and Disk Loading are Held Constant.	71
8-40	Variation of Flap Hinge Vertical Shear Vibratory Amplitude with Rotor Radius from Loads Analysis. Flight Velocity and Disk Loading are Held Constant.	72
8-41	Variation of Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity and Disk Loading are Held Constant.	73

LIST OF TABLES

<u>Table Number</u>		<u>Page</u>
I	RSRA Upwash Study Flight Conditions	14
II	RSRA Upwash Study Definition of Key Parameter Variation	15
III	Values of Key Parameters.	16
IV	Flight Conditions and Potential Flows Models for Loads Analysis Illustrated Comparisons.	30

LIST OF SYMBOLS

C_d	Blade element drag coefficient, drag/qc
C_l	Blade element lift coefficient, lift/qc
C_m	Blade element pitching moment coefficient about the quarter chord, moment/qc ²
D	Rotor diameter, ft
DE	Rotor equivalent drag, rotor power/V-X, pounds
fe	Flat plate equivalent area, ft ²
FZF	Vertical hub force fourth harmonic amplitude, lbs
GW	Gross Weight, pounds
L	Wing lift, pounds
M	Mach number
P	Auxiliary thrust, pounds
PLL	Pitch link vibratory load, lbs
q	Dynamic pressure, $\frac{1}{2}\rho V_\infty^2$
Q_n	nth harmonic of rotor torque, ft-pounds
Q_o	Steady or average rotor torque, ft-pounds
R	Blade radius, ft
T	Vertical component of rotor thrust, pounds
T_n	nth harmonic of rotor thrust, pounds Also, particular value of T in Tables II and III, pounds
T_o	Steady or average rotor thrust, pounds
UP	Nondimensional difference between out-of-disk velocity component in the presence of fuselage/wings/engines and out-of-disk velocity component in the absence of fuselage/wings/engines
UT	Nondimensional difference between in-disk chordwise velocity component in the presence of fuselage/wings/engines and in-disk chordwise velocity component in the absence of fuselage/wings/engines

LIST OF SYMBOLS
(Continued)

- V Flight velocity, ft/sec or knots
V_T Rotor tip speed, ft/sec
x Fuselage station in fuselage coordinate system, in
X Rotor propulsive force, pounds
 \bar{X} Nondimensional rotor propulsive force, $X/qD^2\sigma$
y Buttline in fuselage coordinate system, in
z Waterline in fuselage coordinate system, in
 α_s Rotor shaft angle, degrees
 ΔU_p Same as UP but not nondimensionalized by rotor tip speed, ft/sec
 ΔU_T Same as UT but not nondimensionalized by rotor tip speed, ft/sec
 μ' Nondimensional flight velocity, V/V_T
 σ Rotor solidity
 ψ Blade azimuth angle, degrees

1.0 SUMMARY

The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis methods.

Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were:

- 1) Fuselage alone (conventional helicopter)
- 2) Fuselage with auxiliary propulsion
- 3) Fuselage with wings (auxiliary lift)
- 4) Fuselage with both auxiliary lift and propulsion

The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects.

The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented.

The plethora of data resulting from this study reflected the existence of complicated flow interactions and did not lend itself to straightforward interpretation in all cases. More often than not though, neglecting fuselage upwash causes an underestimation of performance and an underestimation of loads.

The appendices contain potential flow model coordinates, upwash value tabulations, loads analysis comparisons supplementary to those shown in figures, and examples of surface plots.

2.0 INTRODUCTION

The proximity of the fuselage to the rotor of a helicopter has a significant effect on the flow environment at the rotor. Recent flight tests (particularly the YUH-61A flight test experience) have shown that rotor/fuselage separation is one of the dominant parameters in determining rotor-induced vibratory loads, with associated detrimental effects ranging from pilot/passenger discomfort to reduced fatigue life of blades and control system, and to a possible degradation of performance and rotor limits. The fuselage proximity effects would be further magnified on helicopters utilizing auxiliary means of lift and propulsion because of the additional flow changes introduced by wings and fans.

The Rotor System Research Aircraft (RSRA) is the ideal system to explore combinations of rotors with auxiliary lift and auxiliary propulsion devices, but the understanding of the results of a flight test program would be strongly influenced by the degree to which mutual interference effects between helicopter components can be quantified.

The analytical methods necessary to assess fuselage, wing, and propulsion system effects on the flow field have been sufficiently improved to allow calculations of this nature to be carried out on computers having an adequate capacity. At the same time rotor loads and performance analysis methods have been developed which successfully predict the characteristics of helicopter rotors at all but the more extreme flight conditions.

The combination of three-dimensional potential flow and rotor loads/performance analysis methods has been the subject of research during recent years. The preliminary results have been encouraging, and data handling procedures have been developed which have considerably reduced the interface problems between potential flow and rotor analysis codes.

During this study, an approximation to the effects of fuselage/wing/engine proximity was determined by the coupling of a three-dimensional potential flow program with rotor loads and performance analyses. The approximation was made in order to assess the character of these effects on loads and performance. A close approximation would have involved an iterative process - determining the influence of fuselage/wing/engine proximity on loads and performance, determining the influence of rotor-induced downwash on the potential flow about the structures, and repeating the cycle. This study was limited to using only the first step, determining the initial influence of structural proximity on the rotor environment. The iterative process was outside the scope of the present study.

Previous efforts to determine the effects of fuselage proximity on rotor loads and performance were limited by the crudeness of the potential flow models or the rotor analyses. Two of these efforts were reported by Rahnema (Reference 1) and by Bain and Landgrebe (Reference 2). Rahnema investigated the alleviation of rotor loads with calculations that used only a single point source in a uniform free stream to model the flow about a fuselage. Bain and Landgrebe used a lifting line for the wing of a compound helicopter. The present study, by contrast, uses a fully three-dimensional panel method with wing vorticity distributed chordwise to model the flow about aerodynamic bodies.

3.0 A GENERAL DESCRIPTION OF FUSELAGE/WING/ENGINE UPWASH EFFECTS AND OF THEIR MODELING

Although isolated rotor tests and calculations are most often employed in the definition of advanced rotor systems, it is understood that the final success of a rotor system depends on its integration with fuselage components. In particular, test and theory have shown that the placement of the rotor with respect to the fuselage of a helicopter introduces changes in the rotor flow field which must be accounted for to determine realistic load and performance levels.

The presence of substantial lifting elements on the fuselage and the effect of auxiliary propulsion devices is very likely to increase the influence of the fuselage upwash on rotor performance and loads, making it even more critical that well documented rotor placement guidelines be established. Establishing these guidelines is outside the scope of the present study, but such establishing must be based on analyses such as those reported herein or data gathered from tests.

The overall effects of fuselage/wing/engine upwash on a rotor were the object of this investigation. Considering only a single blade element, the structure induces an increment to the velocity component normal to the local free stream which would exist if no other structures were near the rotor. This increment changes the local angle of attack and, therefore, the airloads, flapping, and stresses.

The flow about three-dimensional bodies can be evaluated by computational potential flow methods, as well as methods involving more fundamental, and therefore more complex and expensive, approaches. In particular, the singularity panel methods are the simplest and least expensive for 3-D flow. They are adequate for the present purpose, since the effects of viscosity and vorticity, neglected by such methods, are significant only close to the fuselage/wings/engines, not in the off-body region where the rotor blades are located.

To obtain a 3-D potential flow solution with TEA-230 (Reference 3), a panel method, the surface of a body is approximated by a number of flat, or nearly flat surfaces (panels), where the size of the panels is dictated by the local surface curvature and by the need for accuracy in the calculated surface velocities. A potential flow solution for a given body is then obtained by prescribing, among other conditions, the requirement that there be no flow through the panels. Local velocities are then estimated at the centroid of each panel and at any required point off the body.

Figure 3-1 illustrates the overall logic in carrying out rotor/fuselage upwash interaction calculations. The rotor analysis program shown in the diagram is the B-65 performance code, Reference 4. The C-60 loads analysis, Reference 5, can be introduced in the same way.

Figure 3-1. Single Rotor Upwash Calculation Procedure

The process is started with isolated rotor trim conditions. The initial blade flapping schedule is used by the B-21 processor code to calculate the coordinates of blade computation points in the fuselage coordinate system. The off-body point coordinates are then input into the 3-D analysis (TEA-230) and off-body velocities are calculated. The B-21 code converts the off-body velocities into incremental rotor velocities which are introduced into B-65 or C-60. Finally, B-65 or C-60 is run until a solution is obtained which satisfies the required trim in the presence of the fuselage upwash velocities at the blade computation points. The process is repeated only if substantial changes in blade flapping angles take place.

The manipulation of output from one program into input for another is performed automatically by the B-21 code. The only manual operations necessary are entering some of the B-65 or C-60 output into B-21 input, merging the B-21 output into TEA-230, and merging some of the TEA-230 output into the final B-21 input.

4.0 DESCRIPTION OF THE CODES USED

4.1 The B-65 Rotor Performance Analysis

The Rotor Performance Analysis, B-65, is described in Reference 4. The code was developed at Boeing Vertol. The basis for the code is a model of the wake trailed by each blade, which wake is represented by groups of straight vortex segments with linearly varying vorticity from one end to the other of each segment. A root and a tip vortex are rolled up after a fixed azimuthal interval (1/8th of a revolution) at a radial location which is determined from the instantaneous spanwise blade loading (Betz criteria). The vortex sheet trailed by each blade is modeled by a system of vortices identified as the near-wake, attached to the blade quarter chord line and trailed 1/24th of a revolution ($\Delta\psi = 15^\circ$), and a mid-wake, which extends for two additional time intervals ($\Delta\psi = 30^\circ$) beyond the near-wake.

As the B-65 code subdivides a rotor blade into 13 spanwise segments of equal length, cutout to tip, the vortex sheet trailed by each blade is represented by 13 horseshoe vortices. Except for the initial Betz rollup criteria which set the spanwise location of the tip vortices, the wake model is otherwise rigid, and its displacement is a combination of flight kinematics with a uniform induced downwash velocity.

Blade elastic properties are represented by a modal approach. Two flap bending and one torsion mode are used to model the elastic properties. The aerodynamic formulation, based on a lifting line system, includes an approximation of unsteady effects, dynamic stall delay, radial flow, reverse flow, and three-dimensional tip relief effects.

The sectional characteristics are obtained by look-up and interpolation of tables of two-dimensional airfoil data compiled from experimental or analytical sources. The tabulated airfoil characteristics are listed in the following sequence:

- (a) Lift Coefficient, C_L . Presented as a function of angle of attack at fixed Mach number levels, for angles from 0° to 20° , and from -20° (340°) back to 0° (360°), for Mach numbers from $M = 0.0$ to $M = 1.0$. Lift data from 20° to 340° is simulated by equations based on test data for the NACA 0012 airfoil, Reference 4. These equations are independent of Mach number as they are meant to approximate the high angle-of-attack flow conditions inside the reverse flow circle.
- (b) Drag Coefficient, C_d . Drag is presented as a function of Mach number, for $M = 0.0$ to $M = 1.0$, at constant angle of attack levels over an angle of attack range which can be specified in the input. Outside of the specified angle of attack range the drag is approximated by equations independent of Mach number and based on NACA 0012 test data.

- (c) Pitching Moment Coefficient, C_m . Pitching moments are tabulated as a function of Mach number, from $M = 0.0$ to $M = 1.0$, for angles of attack from 0° to 16° , and from -16° (344°) to 0° (360°). Equations based on NACA 0012 data cover the rest of the high angle of attack range.

B-65 output consists of airload and power distributions across the blades at 24 azimuthal locations. It also includes the distribution of elastic twist and deflections at those locations. Flapping angle is output in harmonic form and the other distributions can be harmonically analyzed. No specific number of harmonics is modeled because flapping is determined by solving a differential equation for flapping angle instead of simply finding the Fourier coefficients of an assumed harmonic behavior.

The accuracy of this code is reflected in Figure 4-1. In this figure, "Configuration 6" designates a particular blade planform, "BVWT" means Boeing Vertol Wind Tunnel, "BVWT 256" is a particular wind tunnel test, and "WOZ" means "wind-off zero."

4.2 The C-60 Dynamics Loads Analysis

The Dynamics Loads Analysis was developed at Boeing Vertol by the Rotor Dynamics Group. A detailed description of C-60 can be found in Reference 5.

C-60 uses a lumped-mass representation of a rotor blade, including up to 25 masses. The elastic properties are represented by elastic, massless rods connecting the masses. The airloads are evaluated on a relatively coarse radial and azimuthal grid from which dense airload distributions can be generated by interpolation and harmonic analysis.

Although C-60 has provisions for a trailed vortex sheet, satisfactory airloads have been calculated by means of induced velocities from the root and tip vortices only.

Without the limitations of the modal approach of B-65, the C-60 analysis can evaluate the motions and deflections of a rotor blade in whatever complexity the dynamics and aerodynamics of the problem dictate. Blade and control loads can be then defined and analyzed in detail with the harmonic content.

C-60 output consists of airload and internal load distributions across the blades at 24 azimuthal locations. It also includes pitch link and hub loads. Ten harmonics of the blade can be and were modeled, in order to obtain the highest definition of the above distributions. The accuracy of this code is reflected in Figure 4-2.

Figure 4-1. Comparison of Measured and Calculated Rotor Performance

H-34 ROTOR
 $\alpha_s = -5^\circ$
THRUST = 8486 LB
X = 629 LB
V = 150 KNOTS
NACA 0012 AIRFOIL
16.4-INCH CHORD

Figure 4-2. Comparison of Measured and Calculated Lift per Unit Span

4.3 The B-21 Rotor/Wake/Fuselage Interaction Processor

The B-21 Rotor/Wake/Fuselage Interaction Code was developed at Boeing Vertol. This code carries out all interface calculations necessary to couple a 3-D potential flow analysis, in particular TEA-230, with a rotor performance or loads analysis.

B-21 takes the flapping angle Fourier coefficients from B-65 output plus the rotor geometry and finds from these the coordinates in the fuselage coordinate system of all blade computational points at all azimuths. These computational points are output from B-21 in exactly the format required for off-body velocity computation by TEA-230. They are then simply merged with the on-body geometry of TEA-230 input. The off-body velocities as they appear in TEA-230 output then serve as another B-21 input without manipulation.

4.4 The TEA-230 Potential Flow Analysis

The three-dimensional potential flow analysis, TEA-230 (Boeing/Seattle), can simulate lifting and non-lifting bodies and engine flow. The code has provisions for on-body and off-body velocity calculations. To obtain a 3-D potential flow solution the surfaces of the body are approximated, as mentioned in Section 3, by a number of flat, or nearly flat surfaces (panels). A potential flow solution on the surface of a given body is then obtained by prescribing, among other conditions, the requirement that there be no flow through the panels. Local velocities and therefore pressures are then estimated at the centroid of each panel and at any required point off the body.

The TEA-230 analysis used in this study is described in detail in Reference 3.

5.0 DESCRIPTION OF RSRA CONFIGURATION AND FLIGHT CONDITIONS

A potential flow model of the RSRA fuselage was defined with provisions to combine the following components:

- A. The body of the fuselage, including the tail boom, but no tail surfaces.
- B. Wings and wing/fuselage fairing areas.
- C. Engines providing auxiliary propulsion.
- D. An approximate model of separated regions behind the fuselage and engines.

The individual and combined elements of the potential flow model were processed through diagnostic programs to verify the quality of the paneling. Computer-generated plots were provided to document the mathematical models.

The fuselage model was only as detailed as necessary to evaluated upwash velocities at the main rotor.

The matrix of operating conditions with and without auxiliary lift, and with and without auxiliary propulsion, were defined. The fuselage and rotor configurations were limited to:

- A. The basic fuselage.
- B. The basic fuselage with one set of wings.
- C. The basic fuselage with auxiliary propulsion.
- D. The basic fuselage with wings and auxiliary propulsion.
- E. Three rotor diameters at one hub position.

Fuselage upwash and rotor performance calculations were carried out for three rotor diameters, three gross weight levels, two auxiliary lift levels, four auxiliary propulsion levels, and combinations of both auxiliary lift and propulsion. All three rotors were set at the same height above the fuselage and, for the purposes of the current study, this height was not varied from the current RSRA configuration since such variation would require redesign of the RSRA.

A summary of the computation conditions is presented in Table I. The relationships of the parameters defining the flight conditions to the gross weights and flight velocities selected are shown in Table II, along with identification of the effects illustrated by various comparisons among the flight conditions. Table II is read in the following way: The numbers labeled "CONDITION" refer to the 27 flight conditions. The numbers opposite the key parameters GW, T, etc., refer to specific values; e.g., "1" in the row opposite "GW" means the gross weight is GW_1 (flight conditions 1, 2, 5, 6, etc.). The "2" in the

row opposite "T" means the vertical component of rotor thrust is T_2 (flight conditions 3, 4, 5, 6, etc.). These key parameter values are defined in Table II.

The conditions shown in Table I were based on the relationships shown in Table II plus both the necessity of not letting the thrusts, gross weights, and velocities be unrealistic for the RSRA, and the desirability of not letting the different values of those same parameters be too close together, thus making the effects of the differences difficult to detect. These conflicting requirements left little room for arbitrariness in the choices of computational conditions.

TABLE I

RSRA UPWASH STUDY FLIGHT CONDITIONS

<u>CONDITION</u>	<u>GROSS WEIGHT (POUNDS)</u>	<u>VERTICAL COMPONENT OF ROTOR THRUST (POUNDS)</u>	<u>FLIGHT VELOCITY (KNOTS)</u>	<u>WING LIFT (POUNDS)</u>	<u>AUXILIARY THRUST (POUNDS)</u>	<u>ROTOR DIAMETER (FEET)</u>
1	26,400	26,400	112.5	0	0	60
2	26,400	26,400	162.5	0	0	60
3	18,333.3	18,333.3	112.5	0	0	60
4	18,333.3	18,333.3	162.5	0	0	60
5	26,400	18,333.3	112.5	8,066.7	0	60
6	26,400	18,333.3	162.5	8,066.7	0	60
7	18,333.3	18,333.3	112.5	0	983	60
8	18,333.3	18,333.3	162.5	0	2,051	60
9	26,400	18,333.3	112.5	8,066.7	983	60
10	26,400	18,333.3	162.5	8,066.7	2,051	60
11	18,333.3	18,333.3	112.5	0	0	50
12	18,333.3	18,333.3	162.5	0	0	50
13	18,333.3	18,333.3	112.5	0	983	50
14	18,333.3	18,333.3	162.5	0	2,051	50
15	26,400	18,333.3	112.5	8,066.7	0	50
16	26,400	18,333.3	162.5	8,066.7	0	50
17	26,400	18,333.3	112.5	8,066.7	983	50
18	26,400	18,333.3	162.5	8,066.7	2,051	50
19	22,366.7	22,366.7	162.5	0	0	60
20	22,366.7	18,333.3	162.5	4,033.3	0	60
21	22,366.7	18,333.3	162.5	4,033.3	2,051	60
22	18,333.3	18,333.3	162.5	0	1,025.5	60
23	22,366.7	18,333.3	162.5	4,033.3	1,025.5	60
24	22,366.7	22,366.7	162.5	0	0	55.2
25	26,400	26,400	137.5	0	0	60
26	26,400	18,333.3	137.5	8,066.7	0	60
27	18,333.3	18,333.3	137.5	0	1,468.5	60

TABLE II. RSRA UPWASH STUDY

DEFINITION OF KEY PARAMETER VARIATION

$$GW_1 = T_1; GW_2 = T_2; GW_3 = \frac{GW_1 + GW_2}{2}; GW_1 > GW_2$$

$$V_2 > V_1 \quad V_3 = (V_1 + V_2)/2$$

$$L_1 = GW_1 - T_2; L_2 = L_{1/2} = GW_3 - T_2$$

$$D_2 = D_1 \sqrt{\frac{GW_2}{GW_1}}; D_3 = D_1 \sqrt{\frac{GW_3}{GW_1}}$$

$$P_1 = f_0 q_1, P_2 = f_0 q_2, P_3 = \frac{f_0 q_2}{2}, P_4 = f_0 q_3$$

CONDITION VARIABLE	LARGE DIAMETER										SMALL DIAMETER								LINEARITY CHECK									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
GW	1	1	2	2	1	1	2	2	1	1	2	2	2	2	1	1	1	1	3	3	3	2	3	3	3	1	1	2
T	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	3	1	2	2	
V	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	2	2	2	2	2	2	2	2	3	3	3	
L	—	—	—	—	1	1	—	—	1	1	—	—	—	—	1	1	1	1	—	2	2	—	2	—	—	1	—	
P	—	—	—	—	—	—	1	2	1	2	—	—	1	2	—	—	1	2	—	2	3	3	—	—	—	4		
DIA	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	1	1	1	1	3	1	1	1		
EFFECT OF VELOCITY	○	—	○	—	○	—	○	—	○	—	○	—	○	—	○	—	○	—	—	—	—	—	—	○	—	○		
EFFECT OF DISK LOAD	○	—	○	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—		
EFFECT OF WING LIFT			○	—	○	—					○	—	○	—	○	—	○	—	X=0	○	—	—	—	—	—	—		
EFFECT OF PROP FORCE			○	—	○	—					○	—	○	—	○	—	○	—	—	—	—	—	—	—	—	WITH LIFT		
EFFECT OF LIFT & PROP F			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	—	—	—	—	—	—	—			
EFFECT OF DIAMETER			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	DISK LOAD = CONST									
			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	GW = CONST									
			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	GW = CONST & X = 0									
			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	GW&L = CONST									
			○	—	—	—	—	—	—	—	○	—	—	—	—	—	—	—	GW&L = CONST & X = 0									

TABLE III
VALUES OF KEY PARAMETERS

GW_1	=	26,400	pounds
GW_2	=	18,333.3	pounds
GW_3	=	22,366.7	pounds
T_1	=	26,400	pounds
T_2	=	18,333.3	pounds
T_3	=	22,366.7	pounds
V_1	=	112.5	knots
V_2	=	162.5	knots
V_3	=	137.5	knots
L_1	=	8,066.7	pounds
L_2	=	4,033.3	pounds
D_1	=	60	feet
D_2	=	50	feet
D_3	=	55.2	feet
P_1	=	983	pounds
P_2	=	2,051	pounds
P_3	=	1,025.5	pounds
P_4	=	1,468.5	pounds

6.0 POTENTIAL FLOW MODELS OF THE RSRA

There were four significantly different potential flow models used in this study: the RSRA fuselage (Figures 6-1 and 6-2), the fuselage with auxiliary propulsion engines (Figures 6-3 and 6-4), the fuselage with auxiliary wings (Figures 6-5 and 6-6), and the fuselage with both auxiliary wings and auxiliary engines (Figures 6-7 and 6-8). Two more combinations of fuselage and auxiliary wings, one with and one without auxiliary engines, were used. The wings of these were at different incidence angles. They strongly resembled the combinations in Figures 6-5 and 6-7.

In all of these models the tail surfaces and engine supports were omitted. The cylindrical tube behind each truncated fuselage is used to represent, in rough approximation, the aft fuselage, fuselage boundary layer, and fuselage wake. The cylindrical tubes behind the engines are used to approximate the exhaust jets.

ORIGINAL PAGE IS
OF POOR QUALITY.

Figure 6-1. Potential Flow Model of the RSRA Fuselage.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6-2. Potential Flow Model of the RSRA Fuselage. Top and Side Views.

Figure 6-3. Potential Flow Model of the RSRA Fuselage with Auxiliary Wings.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6-4. Potential Flow Model of the RSRA Fuselage with Auxiliary Wings.
Top and Side Views.

Figure 6-5. Potential Flow Model of the RSRA Fuselage with Auxiliary Engines.

ORIGINAL PAGE
OF POOR QUALITY

Figure 6-6. Potential Flow Model of the RSRA Fuselage with Auxiliary Engines.
Top and Side Views.

ORIGINAL PAGE
OF POOR QUALITY

Figure 6-7. Potential Flow Model of Complete RSRA Configuration.

Figure 6-8. Potential Flow Model of Complete RSRA Configuration. Top and Side Views.

7.0 DESCRIPTION OF MAIN ROTOR CHARACTERISTICS

The rotor used in this study is identical to a CH-47D front rotor except that it has four instead of three blades. The radius of this rotor is 30 feet and the chord 32 inches. The airfoil, from the cutout at 21% of the radius to 85% of the radius, is the Boeing Vertol VR-7. At the tip, the airfoil is the VR-8. The airfoil of the last 15% of the blade is a linear transition between these two. The VR-7 is 12% thick, the VR-8 is 8%. The planform of the blade is rectangular. The twist is linear, decreasing 7.63° between the cutout and 85% of the radius and another 0.7° between the 85% point and the tip. For some of the flight conditions, a 25-foot Mach-scaled version of the same rotor is used, and, for condition 24, a 27.61 foot rotor, also Mach-scaled, as defined in Table II. Mach scaling here means that velocities (and therefore Mach numbers) and densities are conserved as lengths are changed in the scaling process. Therefore, airfoil shapes, disk loadings, twist angles, pressures, thicknesses as fractions of chord, and moduli of elasticity are conserved, but masses, lengths, forces, areas, volumes, and accelerations are not. Masses are proportional to the cube of the rotor radius, while lengths are proportional to the radius itself. Forces, except for weight, which is not scaled correctly, are proportional to the square of the radius. Areas and volumes are proportional to the second and third powers of the radius, while accelerations are inversely proportional to the first power. In particular, the 25-foot radius rotor has a 26.67-inch chord, while the 27.61-foot rotor has a 29.45-inch chord.

8.0 DISCUSSION OF THE EFFECTS OF FUSELAGE/WING/ENGINE UPWASH ON THE PERFORMANCE AND LOADS OF THE RSRA ROTOR

The effects of upwash on performance is shown in Figures 8-1 through 8-5.

Figure 8-1 displays the values of required rotor horsepower determined by B-65 for the 27 flight conditions shown in Table II. To keep from splitting hairs too finely, it was deemed necessary to consider an influence due to fuselage/wing/engine upwash which changed the rotor power by less than 400 horsepower to be questionable. Considering only consequential influences, it appears that for only Flight Conditions 2, 8, 16, and 21 does fuselage/wing/engine upwash increase the required rotor power, while for only Flight Conditions 7, 13, 14, 22, and 23 does the upwash decrease that power. From these observations one can conclude that, at least in general, fuselage/wing/engine upwash increases required rotor power at high flight velocities when the sum of rotor and wing lift is high, while auxiliary engine upwash without wing upwash decreases the required power.

Figure 8-2 displays the values of equivalent lift-to-drag ratio determined by B-65. If one considers here that differences in L/DE of less than 0.6 are not significant, one finds that fuselage/wing/engine upwash significantly increases L/DE for Flight Conditions 7, 13, 14, 22, 23, and 27 and significantly decreases L/DE for Flight Conditions 8 and 21. From these observations one can conclude that, in general, engine upwash can significantly influence L/DE in the presence of little or no wing upwash. One can conclude also that the engine upwash increases L/DE except possibly when auxiliary thrust is high.

In comparing Figures 8-1 and 8-2 and while noting that the only quantity contributing to L/DE which should change due to fuselage/wing/engine upwash is the rotor power, one should expect changes in L/DE due to fuselage/wing/engine upwash to be opposite changes in rotor horsepower. This indeed is the case, except for Flight Conditions 2 and 4, where the changes in power are slight and are offset by the changes in lift and X allowed by the convergence tolerances.

Figure 8-3 displays the vibratory component of the blade tip elastic twist deflection as calculated by B-65. If one decides that differences in $\Delta\theta_{EL}$ less than 0.016 radians are questionable one finds fuselage/wing/engine upwash significantly decreases $\Delta\theta_{EL}$ for Flight Conditions 2, 12, 14, 19, and 27 but never significantly increases $\Delta\theta_{EL}$. It is somewhat difficult to find commonality in these five flight conditions, although they all involve high flight velocities or auxiliary propulsion. None involve wing lift. Most of these conditions involve reasonably high disk loading.

Figure 8-4 displays the normalized magnitudes of the fourth and eighth harmonics of rotor thrust as determined by B-65. If one considers differences in T_4/T_0 less than 0.014 to be insignificant, one finds that fuselage/wing/engine upwash significantly increases T_4/T_0 for Flight Conditions 21 and 22 and significantly decreases it for Flight Conditions 2, 4, 6, 12, 24, and 26. These Flight Conditions are at medium and high flight velocities and usually involve disk loadings that are not high. In particular, the two flight conditions for which fuselage/wing/engine upwash increases T_4/T_0 involve a high flight velocity and reasonably low disk loadings. But these are the only flight conditions among the eight significant ones which involve auxiliary propulsion. The other six flight conditions involve no auxiliary propulsion and experience decreases in T_4/T_0 due to fuselage/wing upwash.

If one uses 0.014 as also the lower limit of significant differences in T_8/T_0 , one finds that fuselage/wing/engine upwash significantly increases T_8/T_0 for Flight Conditions 5, 8, 13, 19, 21, 22, and 23 and significantly decreases it for Flight Conditions 2, 6, 14, 16, 18, 24, and 25. These 14 flight conditions have little in common except that most of them involve the highest flight velocity. Why fuselage/wing/engine upwash increases or decreases T_8/T_0 is not clear at all.

Figure 8-5 displays the normalized magnitudes of the fourth and eighth harmonics of rotor torque as determined by B-65. A comparison of differences in Q_4/Q_0 due to fuselage/wing/upwash show little correlation with the key parameters of the flight conditions or the RSRA potential flow models, except that the largest differences occur at high flight velocity. If one considers differences in Q_8/Q_0 less than 0.022 to be insignificant, one finds that fuselage/wing/engine upwash significantly increases Q_8/Q_0 for Flight Conditions 7, 9, 13, and 17 and significantly decreases it for Flight Condition 22. The flight conditions for which Q_8/Q_0 is significantly increased are all at the lowest flight velocity and all use auxiliary propulsion. Flight condition 22, by contrast, uses the highest flight velocity and, by comparison, also uses auxiliary propulsion. However, other flight conditions using auxiliary propulsion and high flight velocity do not experience significant changes in Q_8/Q_0 due to fuselage/wing/engine upwash.

The effects of upwash on loads is shown in Figures 8-6 through 8-41. In each figure, the solid curve indicates the isolated rotor, the dashed curve the rotor influenced by upwash induced by fuselage and/or auxiliary wings and/or auxiliary engines.

The figures are grouped according to the independent variable and the constant parameters. Figures 8-6 through 8-9 show functions of flight velocity in which the upwash (if any) is caused by only the RSRA fuselage. Figures 8-10 though 8-13 are similar except that the influence of the wings has been added.

Figures 8-14 through 8-17 are like Figures 8-6 through 8-9 except that the influence of the auxiliary engines has been added. Figures 8-18 through 8-21 show functions of disk loading in which the upwash is caused by only the fuselage. Figures 8-22 through 8-25 show functions of wing lift. Figures 8-26 through 8-29 show functions of the flat plate area for the thrust from the auxiliary engines. Figures 8-30 through 8-33 are similar but with wing lift added. Figures 8-34 through 8-37 show functions of auxiliary engine flat plate area and wing lift as both increase together. Finally, Figures 8-38 through 8-41 show functions of rotor size at a constant disk loading. Table IV lists the flight conditions and potential flow models for each of the above groups of figures.

Another grouping can be considered in which the figures of each group display the same dependent, as opposed to independent, variable. Figures 8-6, 8-10, 8-14, 8-18, 8-22, 8-26, 8-30, 8-34, and 8-38 display the variation of equivalent lift-to-drag ratio with several different parameters and at many different flight conditions. Figures 8-7, 8-11, 8-15, 8-19, 8-23, 8-27, 8-31, 8-35, and 8-39 display the variation of pitch link load vibratory amplitude with the same parameters and at the same flight conditions. Figures 8-8, 8-12, 8-16, 8-20, 8-24, 8-28, 8-32, 8-36, and 8-40 display the variation of flap hinge vertical shear vibratory amplitude while Figures 8-9, 8-13, 8-17, 8-21, 8-25, 8-29, 8-33, 8-37, and 8-41 display the variation of FZF, the vertical hub force fourth harmonic amplitude.

It will be most instructive to discuss these figures according to this last grouping, beginning with the equivalent lift-to-drag ratio.

Fuselage upwash alone generally slightly increases L/DE regardless of flight velocity (Figure 8-6) or disk loading (Figure 8-18). Wing plus fuselage upwash slightly decreases L/DE regardless of flight velocity (Figure 8-10), but generally increases it at low values of wing lift (Figure 8-22). There is a significant increase in L/DE due to the upwash of the fuselage and auxiliary engines for all flight velocities (Figure 8-14) and for all values of the flat plate area opposing the auxiliary engines (Figure 8-26). The upwash of fuselage, wing, and auxiliary engines generally increases L/DE despite variation in flat plate area (Figures 8-30 and 8-34) or wing lift (Figure 8-34). There appears to be little effect due to fuselage upwash alone if the rotor size varies but disk loading remains constant (Figure 8-38).

These results are not identical to those determined by B-65. The primary reason for the differences is probably the fact that the C-60 loads analysis performs calculations considerably different from those in the B-65 performance analysis. The differences in these calculations were outlined in Sections 4.1 and 4.2.

TABLE IV
FLIGHT CONDITIONS AND POTENTIAL FLOW MODELS
FOR LOAD ANALYSIS ILLUSTRATED COMPARISONS

FIGURES	FLIGHT CONDITIONS			POTENTIAL FLOW MODEL
8-6 through 8-9	1	2	25	Fuselage only
8-10 through 8-13	5	6	26	Fuselage and wing
8-14 through 8-13	7	8	27	Fuselage and engines
8-18 through 8-21	2	4	19	Fuselage only
8-22 through 8-25	4*	6	20	Fuselage and wing
8-26 through 8-29	4*	8	22	Fuselage and engines
8-30 through 8-33	6**	10	23	Fuselage, wing, and engines
8-34 through 8-37	4*	10	23	Fuselage, wing, and engines
8-38 through 8-41	2	12	24	Fuselage only

*Fuselage only

**Fuselage and wing only

In contrast to its effect on L/DE, fuselage upwash alone increases the pitch link load vibratory amplitude significantly at high flight velocities (Figures 8-7 and 8-19). The fuselage and engine upwash together produce the same result if the engines are providing most of the forward thrust (Figures 8-15 and 8-27). The fuselage-plus-wing upwash increases the PLL amplitude at all flight velocities (Figure 8-11), and the addition of the engines does not generally change this result (Figure 8-31). The fuselage-plus-wing upwash alone increases the PLL amplitude at all values of wing lift (Figure 8-23). The addition of engines has the same effect, generally, if the wing lift and engine thrust increase together (Figure 8-35). With the fuselage alone causing upwash, the PLL amplitude increases quickly with rotor size (Figure 8-39).

The effects of upwash on the vertical shear vibratory amplitude at the flap hinge are somewhat similar to the effects on L/DE. The fuselage upwash alone increases the vibratory amplitude at all flight velocities (Figure 8-8), all disk loadings (Figure 8-20), and all rotor sizes (Figure 8-40). The addition of upwash from the wing decreases the amplitude at all flight velocities (Figure 8-12) and all rotor if the wing lift is high, but not otherwise (Figure 8-24). The fuselage-plus-engine upwash generally increases the amplitude at high but not at low velocities (Figure 8-16) and then only when the auxiliary thrust is large (Figure 8-28). The upwash from the complete RSRA configuration generally increases the flap hinge vertical shear vibratory amplitude (Figures 8-32 and 8-36), at least at high values of auxiliary thrust.

The vertical hub force fourth harmonic amplitude (FZF) is decreased by fuselage upwash at high flight velocities (Figure 8-9). When wing upwash is added FZF is increased at all flight velocities (Figure 8-13) but not all values of wing lift (Figure 8-25). The fuselage-plus-engine upwash decreases FZF at all flight velocities (Figure 8-17) and all values of auxiliary thrust (Figure 8-29). The upwash from the fuselage alone decreases FZF for all values of disk loading (Figure 8-21) and for all rotor sizes (Figure 8-41). The upwash from the complete configuration decreases FZF at high values of auxiliary thrust when the wing lift is also high (Figures 8-33 and 8-37).

It should be noted at this point that the flight conditions labeled "LINEARITY CHECK" in Table II show that the results in Figures 8-6 through 8-41 are, in general, highly nonlinear. This nonlinearity is most prominent in the variation of flap hinge vertical shear vibratory amplitude. In fact, the vertical shear vibratory amplitude appears to be lowest at these "LINEARITY CHECK" flight conditions.

Although curve crossings have not been specifically mentioned as such, they appear in most of the figures which display loads analysis results. They are prominent in those figures which involve variations in flat plate equivalent area for auxiliary thrust. Most of these figures which display loads indicate that, in general, loads are decreased by fuselage/wing/engine upwash at low values of f_e , but are increased at high values of f_e .

Figure 8-1. Effect of RSRA Upwash on Calculated Rotor Power

ROTOR ANALYSIS: B-65
UPWASH PROCESSOR: B-21
3-D POTENTIAL FLOW: A-230

Figure 8-2. Effect of RSRA Upwash on Calculated Equivalent Lift-to-Drag Ratio

Figure 8-3. Effect of RSRA Upwash on the Calculated Elastic Twist Deflection at the Tip - Vibratory Component

Figure 8-4. Effect of RSRA Upwash on the Calculated Fourth and Eighth Harmonics of Rotor Thrust

Figure 8-5. Effect of RSRA Upwash on the Calculated Fourth and Eighth Harmonics of Rotor Torque

Figure 8-6. Variation of Equivalent Lift-to-Drag Ratio With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-7 Variation of Pitch Link Load Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

GROSS WEIGHT = 26,400 LB
ROTOR LIFT = 26,400 LB
ROTOR RADIUS = 30 FT

WITHOUT UPWASH —————
WITH UPWASH - - - - -

Figure 8-8. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-9. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-10. Variation of Equivalent Lift-to-Drag Ratio With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-11. Variation of Pitch Link Load Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-12. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-13. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, Wing Lift, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

GROSS WEIGHT = 18,333 LB
ROTOR LIFT = 18,333 LB
FLAT PLATE AREA = 22.9 FT²

WITHOUT UPWASH ——————
WITH UPWASH - - - - -

Figure 8-14. Variation of Equivalent Lift-to-Drag Ratio With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-15. Variation of Pitch Link Load Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-16. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area Are Constant. Numerals Near Symbols Indicate Flight Condition.

GROSS WEIGHT = 18,333 LB
ROTOR LIFT = 18,333 LB
FLAT PLATE AREA = 22.9 FT²

Figure 8-17. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flight Velocity From Loads Analysis. Rotor Lift, Gross Weight, and Equivalent Flat Plate Area Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-18. Variation of Equivalent Lift-to-Drag Ratio With Disk Loading From Loads Analysis. Flight Velocity and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-19. Variation of Pitch Link Load Vibratory Amplitude With Disk Loading From Loads Analysis. Flight Velocity and Rotor Radius Are Held Constant.
Numerals Near Symbols Indicate Flight Condition.

Figure 8-20. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Disk Loading From Loads Analysis. Flight Velocity and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-21. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Disk Loading From Loads Analysis. Flight Velocity and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-22. Variation of Equivalent Lift-to-Drag Ratio With Wing Lift From Load Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-23. Variation of Pitch Link Load Vibratory Amplitude With Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-24. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-25. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-26. Variation of Equivalent Lift-to-Drag Ratio With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-27. Variation of Pitch Link Load Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-28. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-29. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-30. Variation of Equivalent Lift-to-Drag Ratio With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-31. Variation of Pitch Link Load Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-32. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

ROTOR LIFT = 18,333 LB
FLIGHT VELOCITY = 162.5 KN
ROTOR RADIUS = 30 FT

WITHOUT UPWASH —————
WITH UPWASH - - -

Figure 8-33. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flat Plate Area for Auxiliary Thrust From Loads Analysis. Rotor Radius, Rotor Lift, and Flight Velocity Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

ROTOR LIFT = 18,333 LB
FLIGHT VELOCITY = 162.5 KN
ROTOR RADIUS = 30 FT

Figure 8-34. Variation of Equivalent Lift-to-Drag Ratio With Flat Plate Area for Auxiliary Thrust and Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-35. Variation of Pitch Link Load Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust and Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-36. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Flat Plate Area for Auxiliary Thrust and Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-37. Variation of Vertical Hub Force Fourth Harmonic Amplitude With Flat Plate Area for Auxiliary Thrust and Wing Lift From Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-38. Variation of Equivalent Lift-to-Drag Ratio With Rotor Radius From Loads Analysis. Flight Velocity and Disk Loading Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-39. Variation of Pitch Link Load Vibratory Amplitude With Rotor Radius From Loads Analysis. Flight Velocity and Disk Loading Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-40. Variation of Flap Hinge Vertical Shear Vibratory Amplitude With Rotor Radius From Loads Analysis. Flight Velocity and Disk Loading Are Held Constant. Numerals Near Symbols Indicate Flight Condition.

Figure 8-41. Variation of Vertical Hub Force F_{ZF} fourth Harmonic Amplitude With Rotor Radius From Loads Analysis. Flight Velocity and Disk Loading Are Held Constant. Numerals Near Symbols indicate Flight Condition.

9.0 CONCLUSIONS AND RECOMMENDATIONS

It is obvious from the discussion and figures in Section 8.0 that the effects of upwash on the fuselage, wings, and/or engines of the RSRA reflect complicated flow interactions, not always lending themselves to simple or straightforward interpretation.

At any rate some generalizations can be stated. Upwash from the fuselage and auxiliary engines decreases the required rotor power and increases L/DE and the flap hinge vertical shear vibratory amplitude. The tip elastic twist deflection is most influenced by fuselage/wing/engine upwash at high as opposed to low flight velocities. Wing upwash decreases T_4/T_0 and Q_4/Q_0 . Fuselage/wing/engine upwash changes T_8/T_0 mainly at high flight velocities and decreases Q_8/Q_0 mainly at low flight velocities. The PLL amplitude is increased by fuselage/wing/engine upwash. Fuselage/wing upwash increases FZF, while fuselage or fuselage/engine upwash decreases it.

It is recommended that follow-on work focus on the interpretation of these effects.

10.0 REFERENCES

1. Rahnema, M., "Alleviation of Helicopter Fuselage-Induced Rotor Unsteady Loads through Deterministic Variation of the Individual Blade Pitch," NASA CR-166234, May 1981.
2. Bain, L., and A. Landgrebe, "Investigation of Compound Helicopter Aerodynamic Interference Effects," USAAVLABS Technical Report 67-44, November 1967.
3. Saaris, G.R., and N.R. Vandevender, "TEA-230 User's Manual - TEA-230 Computer Program for Solving Potential Flow About Arbitrary Configurations and Supporting Computer Programs," BCAC, Document No. D6-41081, Renton, Washington, November 1973.
4. Sewell, R., S. Lee, and T. Fukushima, "Rotor Airlcads and Performance Analysis with Non-Uniform Induced Inflow." Boeing Doc. D8-0312 - Original Release December 1967.
5. Tarzanin, F., and J. Ranieri, "Aeroelastic Rotor Analysis Program C-50," Boeing Report D210-10371, Philadelphia, Pa. Revised 1978.
6. Dadone, L., "U.S. Army Helicopter Design Datcom, Volume I, Airfoils," USAAMRDL CR 76-2 (NASA CR-153247), September 1976.

~~DISCUSSIONS~~ APPENDICES

11.0 APPENDICES

APPENDIX A

Potential Flow Model Coordinates

This appendix contains the point coordinates which define the fuselage, wings, engines, fuselage wake, and engine exhausts as they occur in the six potential flow models used in this study. The point coordinates are contained in the input data sets used by the potential flow program, TEA-230, to determine the velocities induced by the fuselage/wings/engines at the rotor blade locations. The six input data sets, one for each potential flow model, are reproduced in this appendix.

The title in the second line of each data set identifies the potential flow model involved. Those models involving wings will have a wing incidence of 0° unless another incidence is indicated in this line.

The first line of each data set contains the word "CASE." The ninth line contains the first of the sets of point coordinates. These coordinates are, in order, station, hullline, waterline. They are all in inches and they define, for purposes of the potential flow program, the corners of quadrilaterals from which source panels are made. The product of the first two numbers in the eighth line indicates the number of sets of coordinate points that follow before another line similar to the eighth line is encountered. The number of groups indicated by lines similar to the eighth line is designated by the number in the seventh line. The totality of point coordinates defining the corners of quadrilaterals from which source panels are made is followed by another word, either "END" or "MULT." Most data following either of these words refer to vortices or reference dimensions.

CASE
 RSRA FUSELAGE ONLY
 J D COWAN BOEING VERTOL ORG 7440 X7834 M/S P32-74
 GEOM
 3.0000 288.0 1. -1.
 SOUR

	6.0	
	7.00	4.00
36.00000	0.0	95.89999
36.00000	0.0	95.89999
36.00000	0.0	95.89999
36.00000	0.0	95.89999
36.00000	0.0	95.89999
36.00000	0.0	95.89999
36.00000	0.0	95.89999
58.79999	0.0	110.20000
58.79999	16.89999	108.09999
58.79999	22.50000	106.00000
58.79999	22.50000	96.20000
58.79999	22.50000	86.39999
58.79999	16.89999	82.29999
58.79999	0.0	82.29999
81.50000	0.0	119.89999
81.50000	22.09999	116.39999
81.50000	29.50000	113.00000
81.50000	29.50000	99.00000
81.50000	29.50000	85.00000
81.50000	22.09999	78.09999
81.50000	0.0	78.09999
120.89999	0.0	147.59999
120.89999	28.39999	136.70000
120.89999	37.79999	125.89999
120.89999	37.79999	108.00000
120.89999	37.79999	90.70000
120.89999	28.39999	74.79999
120.89999	0.0	74.79999
	7.00	13.00
120.89999	0.0	147.59999
120.89999	28.39999	136.70000
120.89999	37.79999	125.89999
120.89999	37.79999	108.00000
120.89999	37.79999	90.70000
120.89999	28.39999	74.79999
120.89999	0.0	74.79999
133.00000	0.0	148.89999
133.00000	29.20000	148.89999
133.00000	38.89999	129.89999
133.00000	38.89999	110.79999
133.00000	38.89999	91.79999
133.00000	29.20000	72.79999
133.00000	0.0	72.79999
175.29999	12.10000	148.89999
175.29999	29.20000	148.89999
175.29999	38.89999	129.89999
175.29999	38.89999	110.79999
175.29999	38.89999	91.79999

175.29999	29.20000	72.79999
175.29999	0.0	72.79999
209.29999	21.89999	148.89999
209.29999	29.20000	148.89999
209.29999	38.89999	129.89999
209.29999	38.89999	110.79999
209.29999	38.89999	91.79999
209.29999	29.20000	72.79999
209.29999	0.0	72.79999
222.29999	22.70000	148.89999
222.29999	29.20000	148.89999
222.29999	38.89999	129.89999
222.29999	38.89999	110.79999
222.29999	38.89999	91.79999
222.29999	29.20000	72.79999
222.29999	0.0	72.79999
271.00000	22.70000	148.89999
271.00000	29.20000	148.89999
271.00000	38.89999	129.89999
271.00000	38.89999	110.79999
271.00000	38.89999	91.79999
271.00000	29.20000	72.79999
271.00000	0.0	72.79999
300.00000	22.70000	148.89999
300.00000	29.20000	148.89999
300.00000	38.89999	129.89999
300.00000	38.89999	110.79999
300.00000	38.89999	91.79999
300.00000	29.20000	72.79999
300.00000	0.0	72.79999
376.59985	17.79999	148.89999
376.59985	29.20000	148.89999
376.59985	38.89999	129.89999
376.59985	38.89999	110.79999
376.59985	38.89999	91.79999
376.59985	29.20000	72.79999
376.59985	0.0	72.79999
391.69995	15.70000	147.29999
391.69995	28.00000	147.29999
391.69995	37.29999	129.00000
391.69995	37.29999	110.79999
391.69995	37.29999	92.59999
391.69995	28.00000	74.39999
391.69995	0.0	74.39999
445.69995	7.87174	143.45999
445.69995	24.50000	143.45999
445.69995	32.70000	127.20000
445.69995	32.70000	110.79999
445.69995	32.70000	94.39999
445.69995	24.50000	77.79999
445.69995	0.0	77.79999
500.00000	0.0	139.59999
500.00000	21.00000	139.59999
500.00000	28.00000	125.39999
500.00000	28.00000	110.79999
500.00000	28.00000	96.20000
500.00000	21.00000	81.29999
500.00000	0.0	81.29999
600.00000	0.0	131.00000
600.00000	13.50000	121.00000

600.00000	18.00000	120.89999
600.00000	18.00000	110.79999
600.00000	18.00000	100.39999
600.00000	13.50000	89.89999
600.00000	0.0	89.89999
1000.00000	0.0	131.00000
1000.00000	13.50000	131.00000
1000.00000	18.00000	120.89999
1000.00000	18.00000	110.79999
1000.00000	18.00000	100.39999
1000.00000	13.50000	89.89999
1000.00000	0.0	89.89999
	7.00	10.00
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
175.29999	0.0	165.89999
175.29999	8.10000	165.89999
175.29999	11.70000	163.59999
175.29999	12.10000	161.39999
175.29999	12.10000	157.39999
175.29999	12.10000	153.79999
175.29999	12.10000	148.89999
209.29999	0.0	179.70000
209.29999	14.60000	179.70000
209.29999	21.09999	175.50000
209.29999	22.00000	171.59999
209.29999	22.00000	164.29999
209.29999	20.20000	157.77999
209.29999	21.89999	148.89999
222.29999	0.0	181.29999
222.29999	19.59999	181.29999
222.29999	22.70000	181.29999
222.29999	22.70000	174.79999
222.29999	22.70000	166.39999
222.29999	22.70000	158.89999
222.29999	22.70000	148.89999
271.00000	0.0	189.20000
271.00000	19.59999	189.20000
271.00000	22.70000	189.20000
271.00000	22.70000	181.09999
271.00000	22.70000	171.70000
271.00000	22.70000	161.39999
271.00000	22.70000	148.89999
300.00000	0.0	193.79999
300.00000	19.59999	193.79999
300.00000	22.70000	193.79999
300.00000	22.70000	184.79999
300.00000	22.70000	173.29999
300.00000	22.70000	163.00000
300.00000	22.70000	148.89999
348.59985	0.0	196.39999
348.59985	16.89999	196.39999
348.59985	19.59109	196.39999
348.59985	19.59109	186.89999
348.59985	19.59109	174.59999

133.00000 0.0 72.79999
133.00000 -29.20000 72.79999
133.00000 -38.89999 91.79999
133.00000 -38.89999 110.79999
133.00000 -38.89999 129.89999
133.00000 -29.20000 148.89999
133.00000 0.0 148.89999
175.29999 0.0 72.79999
175.29999 -29.20000 72.79999
175.29999 -38.89999 91.79999
175.29999 -38.89999 110.79999
175.29999 -38.89999 129.89999
175.29999 -29.20000 148.89999
175.29999 -12.10000 148.89999
209.29999 0.0 72.79999
209.29999 -29.20000 72.79999
209.29999 -38.89999 91.79999
209.29999 -38.89999 110.79999
209.29999 -38.89999 129.89999
209.29999 -29.20000 148.89999
209.29999 -21.89999 148.89999
222.29999 0.0 72.79999
222.29999 -29.20000 72.79999
222.29999 -38.89999 91.79999
222.29999 -38.89999 110.79999
222.29999 -38.89999 129.89999
222.29999 -29.20000 148.89999
222.29999 -22.70000 148.89999
271.00000 0.0 72.79999
271.00000 -29.20000 72.79999
271.00000 -38.89999 91.79999
271.00000 -38.89999 110.79999
271.00000 -38.89999 129.89999
271.00000 -29.20000 148.89999
271.00000 -22.70000 148.89999
300.00000 0.0 72.79999
300.00000 -29.20000 72.79999
300.00000 -38.89999 91.79999
300.00000 -38.89999 110.79999
300.00000 -38.89999 129.89999
300.00000 -29.20000 148.89999
300.00000 -22.70000 148.89999
376.60010 0.0 72.79999
376.60010 -29.20000 72.79999
376.60010 -38.89999 91.79999
376.60010 -38.89999 110.79999
376.60010 -38.89999 129.89999
376.60010 -29.20000 148.89999
376.60010 -17.79999 148.89999
391.69995 0.0 74.39999
391.69995 -28.00000 74.39999
391.69995 -37.29999 92.59999
391.69995 -37.29999 110.79999
391.69995 -37.29999 129.30000
391.69995 -28.00000 147.29999
391.69995 -15.70000 147.29999
445.69995 0.0 77.79999
445.69995 -24.50000 77.79999
445.69995 -32.70000 94.39999
445.69995 -32.70000 110.79999

445.69995	-32.0000	127.20000
445.69995	-24.50000	143.45999
445.69995	-7.87174	143.45999
500.00000	0.0	81.29999
500.00000	-21.00000	81.29999
500.00000	-23.00000	96.20000
500.00000	-28.00000	110.79999
500.00000	-28.00000	125.39999
500.00000	-21.00000	139.59999
500.00000	0.0	139.59999
600.00000	0.0	89.89999
600.00000	-13.50000	89.89999
600.00000	-18.00000	100.39999
600.00000	-18.00000	110.79999
600.00000	-18.00000	120.89999
600.00000	-13.50000	131.00000
600.00000	0.0	131.00000
1000.00000	0.0	89.89999
1000.00000	-13.50000	89.89999
1000.00000	-18.00000	100.39999
1000.00000	-18.00000	110.79999
1000.00000	-18.00000	120.89999
1000.00000	-13.50000	131.00000
1000.00000	0.0	131.00000
7.00	10.00	
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.39999
133.00000	0.0	148.89999
133.00000	0.0	148.39999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
175.29999	-12.10000	148.89999
175.29999	-12.10000	153.79999
175.29999	-12.10000	157.39999
175.29999	-12.10000	161.39999
175.29999	-11.70000	163.59999
175.29999	-8.10000	165.89999
175.29999	0.0	165.89999
209.29999	-21.89999	148.39999
209.29999	-20.20000	157.79999
209.29999	-22.00000	164.29999
209.29999	-22.00000	171.59999
209.29999	-21.09999	175.50000
209.29999	-14.60000	179.70000
209.29999	0.0	179.70000
222.29999	-22.70000	148.39999
222.29999	-22.70000	158.89999
222.29999	-22.70000	166.39999
222.29999	-22.70000	174.79999
222.29999	-22.70000	181.29999
222.29999	-19.59999	181.29999
222.29999	0.0	181.29999
271.00000	-22.70000	148.89999
271.00000	-22.70000	161.39999
271.00000	-22.70000	170.70000
271.00000	-22.70000	181.09999
271.00000	-22.70000	189.20000
271.00000	-19.59999	189.20000
271.00000	0.0	189.20000

300.00000 -22.70000 148.89999
300.00000 -22.70000 163.00000
300.00000 -22.70000 173.29999
300.00000 -22.70000 184.79999
300.00000 -22.70000 193.79999
300.00000 -19.59999 193.79999
300.00000 0.0 193.79999
348.60010 -19.59109 148.89999
348.60010 -19.59109 163.59999
348.60010 -19.59109 174.59999
348.60010 -19.59109 186.89999
348.60010 -19.59109 196.39999
348.60010 -16.89999 196.39999
348.60010 0.0 196.39999
376.60010 -17.79999 148.89999
376.60010 -17.79999 161.00000
376.60010 -17.79999 170.09999
376.60010 -17.79999 180.29999
376.60010 -17.79999 188.09999
376.60010 -15.30000 188.09999
376.60010 0.0 188.09999
391.69995 -15.70000 147.29999
391.69995 -15.70000 158.29999
391.69995 -15.70000 166.50000
391.69995 -15.70000 175.79999
391.69995 -15.70000 182.89999
391.69995 -13.50000 182.89999
391.69995 0.0 182.89999
500.00000 0.0 139.59999
500.00000 0.0 139.59999
500.00000 0.0 139.59999
500.00000 0.0 139.59999
500.00000 0.0 139.59999
500.00000 0.0 139.59999
500.00000 0.0 139.59999

END

AERO

0. 0. 0.

FORC

307.5

0.

75.52

52112.

98.1

531.2

0.

END

CASE
RSRA FUSELAGE AND WINGS
J D COWAN AERO RESEARCH ORGN 7440 EXT 3871

GEOM

3. 634. 1. -1.

SOUR

16.

7. 4.

36.	0.	95.9
36.	0.	95.9
36.	0.0	95.9
36.	0.0	95.9
36.	0.0	95.9
36.	0.0	95.9
36.	0.0	95.9
58.8	0.0	110.2
58.8	16.9	108.1
58.8	22.5	106.
58.8	22.5	96.2
58.8	22.5	86.4
58.8	16.9	82.3
58.8	0.0	82.3
81.5	0.0	119.9
81.5	22.1	116.4
81.5	29.5	113.
81.5	29.5	99.
81.5	29.5	85.
81.5	22.1	78.1
81.5	0.0	78.1
120.9	0.	147.6
120.9	28.4	136.7
120.9	37.8	125.9
120.9	77.8	108.
120.9	37.8	90.7
120.9	28.4	74.8
120.9	0.	74.8
7.	6.	
120.9	0.	147.6
120.9	28.4	136.7
120.9	37.8	125.9
120.9	37.8	108.
120.9	37.8	90.7
120.9	28.4	74.8
120.9		74.8
133.		148.9
133.	.2	148.9
133.		129.9
133.		10.8
133.		91.
133.		72.8
133.		72.8
175.3	12.1	148.9
175.3	29.2	148.9
175.3	31.9	129.9
175.3	38.9	110.8
175.3	38.9	91.3

ORIGINAL PAGE
OF POOR QUALITY

175.3	29.2	72.8
175.3	0.	72.8
209.3	21.9	148.9
209.3	23.2	148.9
209.3	38.9	129.9
209.3	38.9	110.8
209.3	38.9	91.8
209.3	29.2	72.8
209.3	0.	72.8
222.3	22.7	148.9
222.3	29.2	148.9
222.3	38.9	129.9
222.3	38.9	110.8
222.3	38.9	91.8
222.3	29.2	72.8
222.3	0.	72.8
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
271.	0.	72.8
6.	4.	
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
300.	22.7	148.9
300.	29.2	148.9
300.	38.9	129.9
300.	38.9	110.8
300.	38.9	91.8
300.	38.9	85.
376.6	17.8	148.9
376.6	27.2	148.9
376.6	38.9	129.9
376.6	38.9	110.8
376.6	38.9	91.8
376.6	38.9	85.
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	71.4
391.7	5.	
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	76.4
391.7	0.	76.4
445.7	7.871745	143.46
445.7	24.5	143.46
445.7	32.7	12.2
445.7	32.7	110.8

445.7	32.7	94.4
445.7	24.5	77.8
445.7	0.	77.8
500.	0.	139.6
500.	21.	139.6
500.	28.	125.4
500.	28.	110.8
500.	28.	96.2
500.	21.	81.3
500.	0.	81.3
600.	0.	131.
600.	13.5	131.
600.	18.	120.9
600.	18.	110.8
600.	18.	100.4
600.	13.5	89.9
600.	0.	89.9
1000.	0.	131.
1000.	13.5	131.
1000.	18.	120.9
1000.	18.	110.8
1000.	18.	100.4
1000.	13.5	89.9
1000.	0.	89.9
7.	10.	
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
175.3	0.	165.9
175.3	8.1	165.9
175.3	11.7	163.6
175.3	12.1	161.4
175.3	12.1	157.4
175.3	12.1	153.8
175.3	12.1	148.9
209.3	0.	179.7
209.3	14.6	179.7
209.3	21.1	175.5
209.3	22.	171.6
209.3	22.	164.3
209.3	20.2	157.8
209.3	21.9	148.9
222.3	0.	181.3
222.3	19.6	181.3
222.3	22.7	181.3
222.3	22.7	174.8
222.3	22.7	166.4
222.3	22.7	158.9
222.3	22.7	148.9
271.	0.	189.2
271.	19.6	189.2
271.	22.7	189.2
271.	22.7	181.1
271.	22.7	170.7
271.	22.7	161.4
271.	22.7	148.9

300.	0.	193.8
300.	19.6	193.8
300.	22.7	193.8
300.	22.7	184.8
300.	22.7	173.3
300.	22.7	163.
300.	22.7	148.9
348.6	0.	196.4
348.6	16.9	196.4
348.6	19.5911	196.4
348.6	19.5911	186.9
348.6	19.5911	174.6
348.6	19.5911	163.6
348.6	19.5911	148.9
376.6	0.	188.1
376.6	15.3	188.1
376.6	17.8	188.1
376.6	17.8	180.3
376.6	17.8	170.1
376.6	17.8	161.0
376.6	17.8	148.9
391.7	0.	182.9
391.7	13.5	182.9
391.7	15.7	182.9
391.7	15.7	175.8
391.7	15.7	166.5
391.7	15.7	158.3
391.7	15.7	147.3
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
7.0	4.0	
36.	0.	95.9
36.	0.	95.9
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
58.8000	-0.0000	82.3000
58.8	-16.9	82.3
58.8000	-22.5000	86.4000
58.8000	-22.5000	96.2000
58.8000	-22.5000	106.0000
58.8	-16.9	108.1
58.8000	-0.0000	110.2000
81.5000	-0.0000	78.1000
81.5	-22.1	78.1
81.5000	-29.5000	85.0000
81.5000	-29.5000	99.0000
81.5000	-29.5000	113.0000
81.5	-22.1	116.4
81.5000	-0.0000	119.9000
120.3000	-0.0000	74.8000
120.9	-28.4	74.8
120.9000	-37.8000	90.7000

ORIGINAL PAGE IS
OF POOR QUALITY

120.9000	-37.8000	108.
120.9000	-37.8000	125.9000
120.9	-28.4	136.7
120.9000	-0.0000	147.6000
	7.0	6.
120.9000	-0.0000	74.8000
120.9000	-28.4000	74.8000
120.9000	-37.8000	90.7000
120.9000	-37.8000	108.
120.9000	-37.3000	125.9000
120.9000	-28.4000	136.7000
120.9000	-0.0000	147.6000
133.0000	-0.0000	72.8000
133.0000	-29.2000	72.8000
133.0000	-35.9000	91.8000
133.0000	-38.9000	110.8000
133.0000	-38.9000	129.9000
133.0000	-29.2000	148.9000
133.0000	-0.0000	148.9000
175.3000	-0.0000	72.8000
175.3000	-29.2000	72.8000
175.3000	-38.9000	91.8000
175.3000	-38.9000	110.8000
175.3000	-38.9000	129.9000
175.3000	-29.2000	148.9000
175.3000	-12.1000	148.9000
209.3000	-0.0000	72.8000
209.3000	-29.2000	72.8000
209.3000	-38.9000	91.8000
209.3000	-38.9000	110.8000
209.3000	-38.9000	129.9000
209.3000	-29.2000	148.9000
209.3000	-21.9000	148.9000
222.3000	-0.0000	72.8000
222.3000	-29.2000	72.8000
222.3000	-38.9000	91.8000
222.3000	-38.9000	110.8000
222.3000	-38.9000	129.9000
222.3000	-29.2000	148.9000
222.3000	-1.9.2000	148.9000
222.3000	-22.7000	148.9000
271.0000	-0.0000	72.8000
271.0000	-29.2000	72.8000
271.0000	-38.9000	91.8000
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.	-22.7	148.9000
	6.	4.
271.0000	-29.2000	72.8
271.0000	-38.9000	91.8
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.0000	-22.7000	148.9000
300.	-38.9	85.
300.	-38.9	91.8
300.	-38.9	110.8
300.	-38.9	129.9
300.	-29.2	148.9
300.	-22.7	148.9

376.6	-38.9	85.
376.6	-38.9	91.8
376.6	-38.9	110.8
376.6	-38.9	129.9
376.6	-29.2	148.9
376.6	-17.8	148.9
391.7	-28.	74.4
391.7	-37.3	92.6
391.7	-37.3	110.8
391.7	-37.3	129.
391.7	-28.	147.3
391.7	-15.7	147.3
7.	5.	
391.7000	-0.0000	74.4000
391.7000	-28.0000	74.4000
391.7000	-37.3000	92.6000
391.7000	-37.3000	110.8000
391.7000	-37.3000	129.0000
391.7000	-28.0000	147.3000
391.7000	-15.7000	147.3000
445.7000	-0.0000	77.8000
445.7000	-24.5000	77.8000
445.7000	-32.7000	94.4000
445.7000	-32.7000	110.8000
445.7000	-32.7000	127.2000
445.7000	-24.5000	143.4600
445.7000-7.871745		143.4600
500.0000	-0.0000	81.3000
500.0000	-21.0000	81.3000
500.0000	-28.0000	96.2000
500.0000	-28.0000	110.8000
500.0000	-28.0000	125.4000
500.0000	-21.0000	139.6000
500.0000	-0.0000	139.6000
600.0000	-0.0000	89.9000
600.0000	-13.5000	89.9000
600.0000	-18.0000	100.4000
600.0000	-18.0000	110.8000
600.0000	-18.0000	120.9000
600.0000	-13.5000	131.0000
600.0000	-0.0000	131.0000
1000.0000	-0.0000	89.9000
1000.0000	-13.5000	89.9000
1000.0000	-18.0000	100.4000
1000.0000	-18.0000	110.8000
1000.0000	-18.0000	120.9000
1000.0000	-13.5000	131.0000
1000.0000	-0.0000	131.0000
7.0	10.0	
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
175.3000	-12.1000	148.9000
175.3000	-12.1000	153.8000
175.3000	-12.1000	157.4000
175.3000	-12.1000	161.4000

ORIGINAL PAGE IS
OF POOR QUALITY

175.3000	-11.7000	163.6000
175.3000	-8.1000	165.9000
175.3000	-0.0000	165.9000
209.3000	-21.9000	148.9000
209.3000	-20.2000	157.8000
209.3000	-22.0000	164.3000
209.3000	-22.0000	171.6000
209.3000	-21.1000	175.5000
209.3000	-14.6000	179.7000
209.3000	-0.0000	179.7000
222.3000	-22.7000	148.3000
222.3000	-22.7000	153.9000
222.3000	-22.7000	166.4000
222.3000	-22.7000	174.8000
222.3000	-22.7000	181.3000
222.3000	-19.6000	181.3000
222.3000	-0.0000	181.3000
271.0000	-22.7000	148.9000
271.0000	-22.7000	161.4000
271.0000	-22.7000	170.7000
271.0000	-22.7000	181.1000
271.0000	-22.7000	189.2000
271.0000	-19.6000	189.2000
271.0000	-0.0000	189.2000
300.0000	-22.7000	148.9000
300.0000	-22.7000	163.0000
300.0000	-22.7000	173.3000
300.0000	-22.7000	184.8000
300.0000	-22.7000	193.8000
300.0000	-19.6000	193.8000
300.0000	-0.0000	193.8000
348.6001	-19.5911	148.9000
348.6001	-19.5911	163.6000
348.6001	-19.5911	174.6000
348.6001	-19.5911	186.9000
348.6001	-19.5911	196.4000
348.6001	-16.9000	196.4000
348.6001	-0.0000	196.4000
376.6001	-17.8000	148.9000
376.6001	-17.8000	161.0000
376.6001	-17.8000	170.1000
376.6001	-17.8000	180.3000
376.6001	-17.8000	188.1000
376.6001	-15.3000	188.1000
376.6001	-0.0000	188.1000
391.7000	-15.7000	147.3000
391.7000	-15.7000	158.3000
391.7000	-15.7000	166.5000
391.7000	-15.7000	175.8000
391.7000	-15.7000	182.9000
391.7000	-13.5000	182.9000
391.7000	-0.0000	182.9000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6
500.	-0.0000	139.6
500.	-0.0000	139.6000
500.	-0.0000	139.6000

17. 10.

391.36	56.65	71.07
369.4	56.17	75.35
347.29	55.71	79.4
325.04	55.47	81.52
308.31	55.55	80.88
297.19	55.74	79.13
288.89	56.	76.84
283.43	56.29	74.32
280.98	56.64	71.21
284.09	56.93	68.64
289.67	56.1	67.16
297.92	57.23	65.97
308.87	57.32	65.2
325.25	57.3	65.32
347.14	57.06	67.44
369.18	56.74	70.29
391.36	56.65	71.07
389.72	79.71	73.68
368.48	79.24	77.81
347.11	78.8	81.73
325.59	78.57	83.78
309.41	78.64	83.16
298.65	78.83	81.47
290.63	79.08	79.26
285.35	79.35	76.82
282.98	79.69	73.81
285.99	79.97	71.32
291.38	80.13	69.9
299.36	80.26	68.74
309.95	80.35	67.99
325.79	80.33	68.12
346.96	80.1	70.17
368.27	79.79	72.92
389.72	79.71	73.68
388.08	102.76	76.28
367.57	102.31	80.28
346.92	101.88	84.06
326.13	101.66	86.04
310.51	101.73	85.44
300.12	101.91	83.81
292.37	102.15	81.67
287.27	102.42	79.32
284.98	102.75	76.41
287.89	103.02	74.01
293.09	103.17	72.63
300.8	103.3	71.51
311.03	103.38	70.79
326.33	103.37	70.91
346.78	103.14	72.89
367.36	102.84	75.55
388.08	102.76	76.28
386.44	125.81	78.89
366.65	125.38	82.74
346.73	124.97	86.39
326.68	124.75	88.3
311.61	124.82	87.72
301.59	124.99	86.15
294.11	125.23	84.09
289.19	125.48	81.82
286.98	125.8	79.01

289.79	126.06	76.69
294.81	126.21	75.36
302.25	126.33	74.29
312.11	126.41	73.59
326.87	126.4	73.71
346.59	126.18	75.62
366.45	125.89	78.18
386.44	125.81	78.89
384.8	148.87	81.49
365.74	148.45	85.2
346.55	148.05	88.72
327.23	147.84	90.56
312.71	147.91	90.
303.05	148.08	88.49
295.85	148.3	86.5
291.11	148.55	84.31
288.98	148.85	81.61
291.68	149.11	79.38
296.52	149.25	78.1
303.69	149.37	77.06
313.19	149.44	76.39
327.41	149.43	76.5
346.41	149.22	78.34
365.54	148.94	80.81
384.8	148.87	81.49
383.16	171.92	84.1
364.82	171.52	87.67
346.36	171.13	91.05
327.78	170.93	92.82
313.81	171.	92.28
304.52	171.16	90.82
297.59	171.38	88.91
293.03	171.61	86.81
290.99	171.91	84.21
293.58	172.15	82.06
298.24	172.29	80.83
305.13	172.4	79.83
314.27	172.47	79.19
327.95	172.46	79.29
346.23	172.26	81.06
364.63	171.99	83.44
383.16	171.92	84.1
381.52	194.97	86.7
363.91	194.59	90.13
346.17	194.22	93.38
328.32	194.03	95.08
314.91	194.09	94.56
305.98	194.24	93.16
299.33	194.45	91.33
294.95	194.68	89.31
292.99	194.96	86.81
295.48	195.19	84.75
299.95	195.33	83.56
306.57	195.44	82.6
315.35	195.51	81.52
328.49	195.49	82.09
346.05	195.3	83.79
363.73	195.04	86.07
381.52	194.97	86.7
379.83	218.03	89.3

362.99	217.66	92.59
345.99	217.3	95.71
328.87	217.12	97.34
316.01	217.18	96.84
307.45	217.33	95.5
301.07	217.53	93.74
296.87	217.74	91.8
294.99	218.02	89.41
297.38	218.24	87.43
301.67	218.37	86.3
308.01	218.47	85.38
316.43	218.54	84.78
329.03	218.53	84.88
345.87	218.34	86.51
362.82	218.10	88.7
379.88	218.03	89.3
378.24	241.08	91.91
362.07	240.72	95.06
345.8	240.39	98.04
329.42	240.21	99.6
317.11	240.27	99.13
308.92	240.41	97.84
302.81	240.6	96.15
298.79	240.81	94.3
296.99	240.07	92.01
299.28	241.28	90.12
303.38	241.41	89.03
309.45	241.5	88.15
317.51	241.57	87.58
329.57	241.56	87.68
345.69	241.38	89.23
361.91	241.15	91.33
378.24	241.08	91.91
376.6	264.13	94.51
361.16	263.79	97.52
345.61	263.47	100.37
329.97	263.3	101.86
318.21	263.35	101.41
310.38	263.49	100.18
304.55	263.68	98.57
300.71	263.83	96.8
298.99	264.12	94.61
301.17	264.33	92.8
305.09	264.44	91.76
310.9	264.54	90.92
318.59	264.6	90.38
330.11	264.59	90.47
345.51	264.42	91.96
361.	264.2	93.96
376.6	264.13	94.51
17.0	10.0	
391.3601	-56.6500	71.0700
369.1799	-56.7400	70.2900
347.1399	-57.0600	67.4400
325.2500	-57.3000	65.3200
308.8701	-57.3200	65.2000
297.9199	-57.2300	65.9700
289.6699	-56.1000	67.1600
284.0901	-56.9300	68.6400
280.9800	-56.6400	71.2100

ORIGINAL PAGE IS
OF POOR QUALITY

283.4299	-56.2900	74.3200
288.8899	-56.0000	76.8400
297.1899	-55.7400	79.1300
308.3101	-55.5500	80.8800
325.0400	-55.4700	81.5200
347.2900	-55.7100	79.4000
369.3999	-56.1700	75.3500
391.3601	-56.6500	71.0700
389.7200	-79.7100	73.6800
368.2700	-79.7900	72.9200
346.9600	-80.1000	70.1700
325.7900	-80.3300	68.1200
309.9500	-80.3500	67.9900
299.3601	-80.2600	68.7400
291.3799	-80.1300	69.9000
285.9900	-79.9700	71.3200
282.9800	-79.6900	73.8100
285.3501	-79.3500	76.8200
290.6299	-79.0800	79.2600
298.6499	-78.8300	81.4700
309.4099	-78.6400	83.1600
325.5901	-78.5700	83.7800
347.1101	-78.8000	81.7300
368.4300	-79.2400	77.8100
389.7200	-79.7100	73.6800
388.0801	-102.7600	76.2800
367.3601	-102.8400	75.5500
346.7800	-103.1400	72.8900
326.3301	-103.3700	70.9100
311.0300	-103.3800	70.7900
300.8000	-103.3000	71.5100
293.0901	-103.1700	72.6300
287.8899	-103.0200	74.0100
284.9200	-102.7500	76.4100
287.2700	-102.4200	79.3200
292.3701	-102.1500	81.6700
300.1201	-101.9100	83.8100
310.5100	-101.7300	85.4400
326.1299	-101.6600	86.0400
346.9199	-101.8800	84.0600
367.5701	-102.3100	80.2800
388.0801	-102.7600	76.2800
386.4399	-125.8100	78.8900
366.4500	-125.8900	78.1800
346.5901	-126.1800	75.6200
326.8701	-126.4000	73.7100
312.1101	-126.4100	73.5900
302.2500	-126.3300	74.2900
294.8101	-126.2100	75.3600
289.7900	-126.0600	76.6900
286.9800	-125.8000	79.0100
289.1899	-125.4800	81.8200
294.1101	-125.2300	84.0900
301.5901	-124.9900	86.1500
311.6101	-124.8200	87.7200
326.6799	-124.7500	88.3000
346.7300	-124.9700	86.3900
366.6499	-125.3300	82.7400
386.4399	-125.8100	78.8900
384.8000	-148.8700	81.4900

365.5400	-148.9400	80.8100
346.4099	-149.2200	78.3400
327.4099	-149.4300	76.5000
313.1899	-149.4400	76.3900
303.6899	-149.3700	77.0600
296.5200	-149.2500	78.1000
291.6799	-149.1100	79.3800
288.9300	-148.8500	81.6100
291.1101	-148.5500	84.3100
295.8501	-148.3000	86.5000
303.0500	-148.0200	88.4900
312.7100	-147.9100	90.0000
327.2300	-147.8400	90.5600
346.5500	-148.0500	88.7200
365.7400	-148.4500	85.2000
384.8000	-148.8700	81.4900
383.1599	-171.9200	84.1000
364.6299	-171.9900	83.4400
346.2300	-172.2600	81.0600
327.9500	-172.4600	79.2900
314.2700	-172.4700	79.1900
305.1199	-172.4000	79.8300
298.3400	-172.2900	80.8300
293.5001	-172.1500	82.0600
290.9900	-171.9100	84.2100
293.0300	-171.6100	86.8100
297.5901	-171.3300	88.9100
304.5200	-171.1600	90.8200
313.8101	-171.0000	92.2300
327.7300	-170.9300	92.8200
346.3601	-171.1300	91.0500
364.8201	-171.5200	87.6700
383.1599	-171.9200	84.1000
381.5200	-194.9700	86.7000
363.7300	-195.0400	86.0700
346.0500	-195.3000	83.7900
323.4900	-195.4900	82.0900
315.3501	-195.5100	81.9800
306.5701	-195.4400	82.6000
299.9500	-195.3300	83.5600
295.4800	-195.1900	84.7500
292.9900	-194.9600	86.8100
294.9500	-194.6800	89.3100
299.3301	-194.4500	91.3300
305.9800	-194.2400	93.1600
314.9099	-194.0900	94.5600
328.3201	-194.0300	95.0800
346.1699	-194.2200	93.3800
363.9099	-194.5900	90.1300
381.5200	-194.9700	86.7000
379.8799	-218.0300	89.3000
362.8201	-218.1000	88.7000
345.8701	-218.3400	86.5100
329.0300	-218.5300	84.8800
316.4299	-218.5400	84.7800
308.0100	-218.4700	85.3800
301.6699	-218.3700	86.3000
297.3799	-218.2400	87.4300
294.9900	-218.0200	89.4100
296.8701	-217.7400	91.8000

ORIGINAL PAGE IS
OF POOR QUALITY

301.0701	-217.5300	93.7400
307.4500	-217.3300	95.5000
316.0100	-217.1800	96.8400
328.8701	-217.1200	97.3400
345.9900	-217.3000	95.7100
362.9900	-217.6600	92.5900
379.8799	-218.0300	89.3000
378.2400	-241.0800	91.9100
361.9099	-241.1500	91.3300
345.6899	-241.3800	89.2300
329.5701	-241.5600	87.6800
317.5100	-241.5700	87.5800
309.4500	-241.5000	88.1500
303.3799	-241.4100	89.0300
299.2300	-241.2800	90.1200
296.9900	-240.0700	92.0100
298.7900	-240.8100	94.3000
302.8101	-240.6000	96.1500
308.9199	-240.4100	97.8400
317.1101	-240.2700	99.1300
329.4199	-240.2100	99.6000
345.8000	-240.3900	98.0400
362.0701	-240.7200	95.0600
378.2400	-241.0800	91.9100
376.6001	-264.1299	94.5100
361.0000	-264.2000	93.9600
345.5100	-264.4199	91.9600
330.1101	-264.5901	90.4700
318.5901	-264.6001	90.3300
310.8999	-264.5400	90.9200
305.0901	-264.4399	91.7600
301.1699	-264.3301	92.8000
298.9900	-264.1201	94.6100
300.7100	-263.8799	96.8000
304.5500	-263.6799	98.5700
310.3799	-263.4900	100.1800
318.2100	-263.3501	101.4100
329.9700	-263.3000	101.8600
345.6101	-263.4700	100.3700
361.1599	-263.7900	97.5200
376.6001	-264.1299	94.5100

8. 2.

271.	0.	72.8
284.09	0.	68.64
289.67	0.	67.16
297.92	0.	65.97
308.87	0.	65.2
325.25	0.	65.32
347.14	0.	67.44
391.7	0.	74.4
271.	29.2	72.8
284.09	29.2	68.64
289.67	29.2	67.16
297.92	29.2	65.97
308.87	29.2	65.2
325.25	29.2	65.32
347.14	29.2	67.44
391.7	28.	74.4

8.0 2.0
391.7 -0.0000 74.4

347.1399	-0.0000	67.4400
325.2500	-0.0000	65.3200
308.8701	-0.0000	65.2000
297.9199	-0.0000	65.9700
289.6699	-0.0000	67.1600
284.0901	-0.0000	68.6400
271.0000	-0.0000	72.8000
391.7	-28.	74.4
347.1399	-29.2000	67.4400
325.2500	-29.2000	65.3200
308.8701	-29.2000	65.2000
297.9199	-29.2000	65.9700
289.6699	-29.2000	67.1600
284.0901	-29.2000	68.6400
271.0000	-29.2000	72.8000
17.	2.	
391.7	28.	74.4
376.6	38.9	85.
347.29	38.9	85.
325.04	38.9	85.
308.31	38.9	85.
300.	38.9	85.
289.	35.22069	80.37241
282.	32.87931	77.42759
271.	29.2	72.8
284.09	29.2	68.64
289.67	29.2	67.16
297.92	29.2	65.97
308.87	29.2	65.2
325.25	29.2	65.32
347.14	29.2	67.44
369.18	28.60646	70.88251
391.7	28.	74.4
391.36	56.65	71.07
369.4	56.17	75.35
347.29	55.71	79.4
325.04	55.47	81.52
308.31	55.55	80.88
297.19	55.74	79.13
288.89	56.	76.84
283.43	56.29	74.32
280.98	56.6	71.21
284.09	56.93	68.64
289.67	56.1	67.16
297.92	57.23	65.97
308.87	57.32	65.2
325.25	57.3	65.32
347.14	57.06	67.44
369.18	56.74	70.29
391.36	56.65	71.07
17.0	2.0	
391.7000	-28.0000	74.4000
369.1799	-28.6065	70.8825
347.1399	-29.2000	67.4400
325.2500	-29.2000	65.3200
308.8701	-29.2000	65.2000
297.9199	-29.2000	65.9700
289.6699	-29.2000	67.1600
284.0901	-29.2000	68.6400
271.0000	-29.2000	72.8000

ORIGINAL PAGE IS
OF POOR QUALITY

282.0000	-32.8793	77.4276
289.0000	-35.2207	80.3724
300.0000	-38.9000	85.0000
308.3101	-38.9000	85.0000
325.0400	-38.9000	85.0000
347.2900	-38.9000	85.0000
376.6001	-38.9000	85.0000
391.7000	-28.0000	74.4000
391.3601	-56.6500	71.0700
369.1799	-56.7400	70.2900
347.1599	-57.0600	67.4400
325.2500	-57.3000	65.3200
308.8701	-57.3200	65.2000
297.9199	-57.2300	65.9700
289.6699	-56.1000	57.1600
284.0901	-56.9300	68.6400
280.9800	-56.6400	71.2100
283.4299	-56.2900	74.3200
288.8899	-56.0000	76.8400
297.1899	-55.7400	79.1300
308.3101	-55.5500	80.8800
325.0400	-55.4700	81.5200
347.2900	-55.7100	79.4000
369.3999	-56.1700	75.3500
391.3601	-56.6500	71.0700

MULT

2.	11.	9.	7.	1.	10.	0.
285.35	79.63	74.34				
290.63	79.59	74.63				
298.65	79.54	75.16				
309.41	79.49	75.6				
325.59	79.45	75.95				
347.11	79.45	75.96				
368.48	79.52	74.37				
389.72	73.71	73.68				
411.29	79.71	71.98				
454.51	79.71	69.72				
9000.	79.71	-165.62				
287.27	102.69	76.92				
292.37	102.65	77.25				
300.12	102.6	77.71				
310.51	102.55	78.13				
326.13	102.51	78.48				
346.92	102.51	78.49				
367.57	102.53	77.92				
388.08	102.76	76.28				
408.92	102.76	74.64				
450.66	102.76	72.46				
9000.	102.76	-162.88				
289.19	125.74	79.5				
294.11	125.71	79.82				
301.59	125.66	80.26				
311.61	125.61	80.67				
326.68	125.57	81.				
346.73	125.57	81.01				
366.65	125.64	80.46				
386.44	125.81	78.89				
406.54	125.81	77.31				
446.81	125.81	75.2				

9000.	125.81	-160.15
291.11	148.3	82.08
295.85	148.77	82.39
303.05	148.72	82.82
312.71	148.67	83.21
327.23	148.64	83.53
346.55	148.64	83.54
365.74	148.7	83.01
384.8	148.87	81.49
404.17	148.87	79.97
442.96	148.87	77.94
9000.	148.27	-157.41
293.03	171.86	84.67
297.59	171.82	84.96
304.52	171.78	85.7
313.81	171.73	85.75
327.78	171.7	86.06
346.36	171.7	86.07
364.82	171.76	85.56
383.16	171.92	84.1
401.79	171.92	82.63
439.11	171.92	80.68
9000.	171.92	-154.67
294.95	194.91	87.25
299.53	194.88	87.53
305.98	194.84	87.93
314.91	194.79	88.29
328.32	194.76	88.58
346.17	194.76	88.59
363.91	194.82	88.1
381.52	194.97	86.7
399.41	194.97	85.29
435.26	194.97	83.41
9000.	194.97	-151.93
296.87	217.97	89.83
301.07	217.94	90.1
307.45	217.89	90.48
316.01	217.35	90.83
328.87	217.82	91.11
345.99	217.82	91.12
362.99	217.87	90.65
379.88	218.03	89.3
397.04	218.03	87.95
431.41	218.03	86.15
9000.	218.03	-149.19
298.79	241.02	92.41
302.81	240.99	92.67
308.92	240.95	93.03
317.11	240.92	93.37
329.42	240.89	93.64
345.8	240.88	93.64
362.07	240.93	93.2
378.24	241.08	91.91
394.66	241.08	90.62
427.56	241.08	88.89
9000.	241.08	-146.45
300.51	261.77	94.73
304.37	261.75	94.98
310.24	261.71	95.33
318.1	261.67	95.65

329.91	261.64	95.91			
345.63	261.64	95.92			
361.25	261.69	95.49			
376.76	261.83	94.25			
392.52	261.83	93.01			
424.1	261.83	91.36			
9000.	261.83	-143.98			
.050192	.085453	.120618	.172921	.242018	.219928
.10887					
388.93	91.17	74.97	.07889	-.10536	.99119
387.29	114.22	77.58	.07889	-.10536	.99119
385.64	137.27	80.18	.07889	-.10536	.99119
384.	160.32	82.78	.07889	-.10536	.99119
382.36	183.37	85.39	.07889	-.10536	.99119
380.72	206.42	87.99	.07889	-.10536	.99119
379.08	229.47	90.59	.07889	-.10536	.99119
377.44	252.52	93.2	.07889	-.10536	.99119
11.	9.	7.	1.	10.	0.
285.35	-79.63	74.34			
290.63	-79.59	74.68			
298.65	-79.54	75.16			
309.41	-79.49	75.6			
325.59	-79.45	75.95			
347.11	-79.45	75.96			
368.48	-79.52	74.37			
389.72	-79.71	73.68			
411.29	-79.71	71.98			
454.51	-79.71	69.72			
9000.	-79.71	-165.62			
287.27	-102.69	76.92			
292.37	-102.65	77.25			
300.12	-102.6	77.71			
310.51	-102.55	78.13			
326.13	-102.51	78.48			
346.92	-102.51	78.49			
367.57	-102.58	77.92			
388.08	-102.76	76.28			
408.72	-102.76	74.64			
450.66	-102.76	72.46			
9000.	-102.76	-162.88			
289.19	-125.74	79.5			
294.11	-125.71	79.82			
301.59	-125.66	80.26			
311.61	-125.61	80.67			
326.68	-125.57	81.			
346.73	-125.57	81.01			
366.65	-125.64	80.46			
386.44	-125.81	78.89			
406.54	-125.81	77.31			
446.81	-125.81	75.2			
9000.	-125.81	-160.15			
291.11	-148.8	82.08			
295.85	-148.77	82.39			
303.05	-148.2	82.82			
312.71	-148.67	83.21			
327.23	-148.64	83.53			
346.55	-148.64	83.54			
365.74	-148.7	83.01			
384.8	-148.87	81.49			
404.17	-148.87	79.97			

442.96	-148.87	77.94			
9000.	-148.87	-157.41			
293.03	-171.86	84.67			
297.59	-171.82	84.96			
304.52	-171.78	85.37			
313.31	-171.73	85.75			
327.78	-171.7	86.06			
346.36	-171.7	86.07			
364.82	-171.76	85.56			
383.16	-171.92	84.1			
401.79	-171.92	82.63			
439.11	-171.92	80.68			
9000.	-171.92	-154.67			
294.95	-194.91	87.25			
299.33	-194.88	87.53			
305.98	-194.84	87.93			
314.91	-194.79	88.29			
328.32	-194.76	88.58			
346.17	-194.76	88.59			
363.91	-194.82	88.1			
381.52	-194.97	86.7			
399.41	-194.97	85.29			
435.26	-194.97	83.41			
9000.	-194.97	-151.93			
296.87	-217.97	89.83			
301.07	-217.94	90.1			
307.45	-217.89	90.48			
316.01	-217.85	90.83			
328.87	-217.82	91.11			
345.99	-217.82	91.12			
362.99	-217.87	90.65			
379.88	-218.03	89.3			
397.04	-218.03	87.95			
431.41	-218.03	86.15			
9000.	-218.03	-149.19			
298.79	-241.02	92.41			
302.81	-240.99	92.67			
308.92	-240.95	93.03			
317.11	-240.92	93.37			
329.42	-240.89	93.64			
345.8	-240.88	93.64			
362.07	-240.93	93.2			
378.24	-241.08	91.91			
394.66	-241.08	90.62			
427.56	-241.08	88.89			
9000.	-241.08	-146.45			
300.51	-261.77	94.73			
304.37	-261.75	94.98			
310.24	-261.71	95.33			
318.1	-261.67	95.65			
329.91	-261.64	95.91			
345.63	-261.64	95.92			
361.25	-261.69	95.49			
376.76	-261.83	94.25			
392.52	-261.83	93.01			
424.1	-261.83	91.36			
9000.	-261.83	-143.98			
.050192	.085453	.120618	.172921	.242618	.219928
.10887					
388.93	-91.17	74.97	.07889	.10636	.99119

ORIGINAL PRICE
OR POOR QUALITY

387.29	-114.22	77.58	.07889	.10636	.99119
385.64	-137.27	80.18	.07889	.10636	.99119
339.	-160.32	82.78	.07889	.10636	.99119
382.36	-183.37	85.39	.07889	.10636	.99119
380.72	-206.42	87.99	.07889	.10636	.99119
379.08	-229.47	90.59	.07889	.10636	.99119
377.44	-252.52	93.2	.07889	.10636	.99119
B-MU					
2.					
11.	3.	7.	1.	10.	0.
283.43	0.	71.76			
288.89	0.	72.11			
297.19	0.	72.6			
308.31	0.	73.06			
325.04	0.	73.42			
347.29	0.	73.43			
369.4	0.	76.			
392.0323	0.	77.65445			
413.67	0.	100.			
458.36	0.	120.			
9000.	0.	-115.3426			
283.43	56.58	71.76			
288.89	56.54	72.11			
297.19	56.48	72.6			
308.31	56.43	73.06			
325.04	56.39	73.42			
347.29	56.39	73.43			
369.4	56.46	72.82			
391.36	56.65	71.07			
413.67	56.65	69.32			
458.36	56.65	66.93			
9000.	56.65	-168.36			
285.35	79.63	74.34			
290.63	79.59	74.68			
298.65	79.54	75.16			
309.41	79.49	75.6			
325.59	79.41	75.95			
347.11	79.45	75.96			
368.48	79.52	75.37			
389.72	79.71	73.68			
411.29	79.71	71.98			
454.51	79.71	69.72			
9000.	79.71	-165.62			
.050192	.085453	.120618	.172921	.242018	.219928
.10387					
390.57	68.12	72.37	.07889	.10636	.99119
11.	3.	7.	1.	10.	0.
283.43	0.	71.76			
288.89	0.	72.11			
297.19	0.	72.6			
308.31	0.	73.06			
325.04	0.	73.42			
347.29	0.	73.43			
369.4	0.	76.			
392.0323	0.	77.65445			
413.67	0.	100.			
458.36	0.	120.			
9000.	0.	-115.3426			
283.43	-56.58	71.76			
288.89	-56.54	72.11			

PRINTED BY COMPUTER

297.19	-56.48	72.6			
308.31	-56.43	73.06			
325.04	-56.39	73.42			
347.29	-56.39	73.43			
369.4	-56.46	72.82			
391.36	-56.65	71.07			
413.67	-56.65	69.32			
458.36	-56.65	66.98			
9000.	-56.65	-168.36			
285.35	-79.63	74.34			
290.63	-79.59	74.68			
298.65	-79.54	75.16			
309.41	-79.49	75.6			
325.59	-79.45	75.95			
347.11	-79.45	75.96			
368.43	-79.52	75.37			
389.72	-79.71	73.68			
411.29	-79.71	71.98			
454.51	-79.71	69.72			
9000.	-79.71	-165.62			
.050192	.085453	.120618	.172921	.242018	.219928
.10887					
390.57	-68.12	72.37	.07889	.10636	.99119
END					
AERO					
5.	0.	0.			
FORC					
307.5	0.	75.52	52112.	98.1	531.2
END					0.

ORIGINAL PAGE IS
OF POOR QUALITY

CASE
RSRA FUSELAGE AND ENGINES
J D COWAN BOEING VERTOL ORG 7440 X7834 M/S P32-74
GEOM
3.00000 400. 1. -1. 0.
SOUR

	8.0	7.00	4.00
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
36.00000	0.0	95.89999	
58.79999	0.0	110.20000	
58.79999	16.89999	108.09999	
58.79999	22.50000	106.00000	
58.79999	22.50000	96.20000	
58.79999	22.50000	86.39999	
58.79999	16.89999	82.29999	
58.79999	0.0	82.29999	
81.50000	0.0	119.89999	
81.50000	22.09999	116.39999	
81.50000	29.50000	113.00000	
81.50000	29.50000	99.00000	
81.50000	29.50000	85.00000	
81.50000	22.09999	78.09999	
81.50000	0.0	78.09999	
120.89999	0.0	147.59999	
120.89999	28.39999	136.70000	
120.89999	37.79999	125.89999	
120.89999	37.79999	108.00000	
120.89999	37.79999	90.70000	
120.89999	28.39999	74.79999	
120.89999	0.0	74.79999	
120.89999	7.00	13.00	
120.89999	0.0	147.59999	
120.89999	28.39999	136.70000	
120.89999	37.79999	125.89999	
120.89999	37.79999	108.00000	
120.89999	37.79999	90.70000	
120.89999	28.39999	74.79999	
120.89999	0.0	74.79999	
133.00000	0.0	148.89999	
133.00000	29.20000	148.89999	
133.00000	38.89999	129.89999	
133.00000	38.89999	110.79999	
133.00000	38.89999	91.79999	
133.00000	29.20000	72.79999	
133.00000	0.0	72.79999	
175.29999	12.10000	148.89999	
175.29999	29.20000	148.89999	
175.29999	38.89999	129.89999	
175.29999	38.89999	110.79999	
175.29999	38.89999	91.79999	

175.29999	29.20000	72.79999
175.29999	0.0	72.79999
209.29999	21.89999	148.89999
209.29999	29.20000	148.89999
209.29999	38.89999	129.89999
209.29999	38.89999	110.79999
209.29999	38.89999	91.79999
209.29999	29.20000	72.79999
209.29999	0.0	72.79999
222.29999	22.70000	148.89999
222.29999	29.20000	148.89999
222.29999	38.89999	129.89999
222.29999	38.89999	110.79999
222.29999	38.89999	91.79999
222.29999	29.20000	72.79999
222.29999	0.0	72.79999
271.00000	22.70000	148.89999
271.00000	29.20000	148.89999
271.00000	38.89999	129.89999
271.00000	38.89999	110.79999
271.00000	38.89999	91.79999
271.00000	29.20000	72.79999
271.00000	0.0	72.79999
300.00000	22.70000	148.89999
300.00000	29.20000	148.89999
300.00000	38.89999	129.89999
300.00000	38.89999	110.79999
300.00000	38.89999	91.79999
300.00000	29.20000	72.79999
300.00000	0.0	72.79999
376.59985	17.79999	148.89999
376.59985	29.20000	148.89999
376.59985	38.89999	129.89999
376.59985	38.89999	110.79999
376.59985	38.89999	91.79999
376.59985	29.20000	72.79999
376.59985	0.0	72.79999
391.69995	11.70000	147.29999
391.69995	28.00000	147.29999
391.69995	37.29999	129.00000
391.69995	37.29999	110.79999
391.69995	37.29999	92.59999
391.69995	28.00000	74.39999
391.69995	0.0	74.39999
445.69995	7.87174	143.45999
445.69995	24.50000	143.45999
445.69995	32.70000	127.20000
445.69995	32.70000	110.79999
445.69995	32.70000	94.39999
445.69995	24.50000	77.79999
445.69995	0.0	77.79999
500.00000	0.0	139.59999
500.00000	21.00000	139.59999
500.00000	23.00000	125.39999
500.00000	24.00000	110.79999
500.00000	23.00000	96.20000
500.00000	21.00000	81.29999
500.00000	0.0	81.29999
600.00000	0.0	131.00000
600.00000	13.50000	131.00000

ORIGINAL PATTERN
OF FOUR CHANNEL

600.00000	18.00000	120.89999
600.00000	18.00000	110.79999
600.00000	18.00000	100.39999
600.00000	13.50000	89.89999
600.00000	0.0	89.89999
1000.00000	0.0	131.00000
1000.00000	13.50000	131.00000
1000.00000	18.00000	120.89999
1000.00000	18.00000	110.79999
1000.00000	18.00000	100.39999
1000.00000	13.50000	89.89999
1000.00000	0.0	89.89999
	7.00	10.00
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
175.29999	0.0	165.89999
175.29999	8.10000	165.89999
175.29999	11.70000	163.59999
175.29999	12.10000	161.39999
175.29999	12.10000	157.39999
175.29999	12.10000	153.79999
175.29999	12.10000	148.89999
209.29999	0.0	179.70000
209.29999	14.60000	179.70000
209.29999	21.09999	175.50000
209.29999	22.00000	171.59999
209.29999	22.00000	164.29999
209.29999	20.20000	157.79999
209.29999	21.89999	148.89999
222.29999	0.0	181.29999
222.29999	19.59999	181.29999
222.29999	22.70000	181.29999
222.29999	22.70000	174.79999
222.29999	22.70000	166.39999
222.29999	22.70000	158.89999
222.29999	22.70000	148.89999
271.00000	0.0	189.20000
271.00000	19.59999	189.20000
271.00000	22.70000	189.20000
271.00000	22.70000	181.09999
271.00000	22.70000	170.70000
271.00000	22.70000	161.39999
271.00000	22.70000	148.89999
300.00000	0.0	193.79999
300.00000	19.59999	193.79999
300.00000	22.70000	193.79999
300.00000	22.70000	184.79999
300.00000	22.70000	173.29999
300.00000	22.70000	163.00000
300.00000	22.70000	148.89999
348.59985	0.0	196.39999
348.59985	16.89999	196.39999
348.59985	19.59109	196.39999
348.59985	19.59109	186.89999
348.59985	19.59109	174.59999

ORIGINAL PAGE IS
OF POOR QUALITY

133.00000	0.0	72.79999
133.00000	-29.20000	72.79999
133.00000	-38.89999	91.79999
133.00000	-38.89999	110.79999
133.00000	-38.89999	129.89999
133.00000	-29.20000	148.89999
133.00000	0.0	148.89999
175.29999	0.0	72.79999
175.29999	-29.20000	72.79999
175.29999	-38.89999	91.79999
175.29999	-38.89999	110.79999
175.29999	-38.89999	129.89999
175.29999	-29.20000	148.89999
175.29999	-12.10000	148.89999
209.29999	0.0	72.79999
209.29999	-29.20000	72.79999
209.29999	-38.89999	91.79999
209.29999	-38.89999	110.79999
209.29999	-38.89999	129.89999
209.29999	-29.20000	148.89999
209.29999	-21.89999	148.89999
222.29999	0.0	72.79999
222.29999	-29.20000	72.79999
222.29999	-38.89999	91.79999
222.29999	-38.89999	110.79999
222.29999	-38.89999	129.89999
222.29999	-29.20000	148.89999
222.29999	-22.70000	148.89999
271.00000	0.0	72.79999
271.00000	-29.20000	72.79999
271.00000	-38.89999	91.79999
271.00000	-38.39999	110.79999
271.00000	-38.89999	129.89999
271.00000	-29.20000	148.89999
271.00000	-22.70000	148.89999
300.00010	0.0	72.79999
300.00000	-29.20000	72.79999
300.00000	-38.89999	91.79999
300.00000	-38.89999	110.79999
300.00000	-38.89999	129.89999
300.00000	-29.20000	148.89999
300.00000	-22.70000	148.89999
376.60010	0.0	72.79999
376.60010	-29.20000	72.79999
376.60010	-38.89999	91.79999
376.60010	-38.89999	110.79999
376.60010	-38.89999	129.89999
376.60010	-29.20000	148.89999
376.60010	-17.79999	148.89999
391.69995	0.0	74.39999
391.69995	-28.00000	74.39999
391.69995	-37.29999	92.59999
391.69995	-37.29999	110.79999
391.69995	-37.29999	129.00000
391.69995	-23.00000	147.29999
391.69995	-15.70000	147.29999
445.69995	0.0	77.79999
445.69995	-24.50000	77.79999
445.69995	-32.70000	94.39999
445.69995	-32.70000	110.79999

445.69995	-32.70000	127.26000
445.69995	-24.50000	143.45999
445.69995	-7.87174	143.45999
500.00000	0.0	81.29999
500.00000	-21.00000	81.29999
500.00000	-28.00000	96.20000
500.00000	-28.00000	110.79999
500.00000	-28.00000	125.39999
500.00000	-21.00000	139.59999
500.00000	0.0	139.59999
600.00000	0.0	89.89999
600.00000	-13.50000	89.89999
600.00000	-18.00000	100.39999
600.00000	-18.00000	110.79999
600.00000	-18.00000	120.89999
600.00000	-13.50000	131.00000
600.00000	0.0	131.00000
1000.00000	0.0	89.89999
1000.00000	-13.50000	89.89999
1000.00000	-18.00000	100.39999
1000.00000	-18.00000	110.79999
1000.00000	-18.00000	120.89999
1000.00000	-13.50000	131.00000
1000.00000	0.0	131.00000
	7.00	10.00
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
133.00000	0.0	148.89999
175.29999	-12.10000	148.89999
175.29999	-12.10000	153.79999
175.29999	-12.10000	157.39999
175.29999	-12.10000	161.39999
175.29999	-11.70000	163.59999
175.29999	-8.10000	165.89999
175.29999	0.0	165.89999
209.29999	-21.89999	148.89999
209.29999	-20.20000	157.79999
209.29999	-22.00000	164.29999
209.29999	-22.00000	171.59999
209.29999	-21.09999	175.50000
209.29999	-14.60000	179.70000
209.29999	0.0	179.70000
222.29999	-22.70000	148.89999
222.29999	-22.70000	158.89999
222.29999	-22.70000	166.39999
222.29999	-22.70000	174.79999
222.29999	-22.70000	181.29999
222.29999	-19.59999	181.29999
222.29999	0.0	181.29999
271.00000	-22.70000	148.89999
271.00000	-22.70000	161.39999
271.00000	-22.70000	170.70000
271.00000	-22.70000	181.09999
271.00000	-22.70000	189.20000
271.00000	-19.59999	189.20000
271.00000	0.0	189.20000

ORIGINAL PAGE IS
OF POOR QUALITY.

300.00000	-22.70000	148.89999
300.00000	-22.70000	163.00000
300.00000	-22.70000	173.29999
300.00000	-22.70000	184.79999
300.00000	-22.70000	193.79999
300.00000	-19.59999	193.79999
300.00000	0.0	193.79999
348.60010	-19.59109	148.89999
348.60010	-19.59109	163.59999
348.60010	-19.59109	174.59999
348.60010	-19.59109	186.89999
348.60010	-19.59109	196.39999
348.60010	-16.89999	196.39999
348.60010	0.0	196.39999
376.60010	-17.79999	148.89999
376.60010	-17.79999	161.00000
376.60010	-17.79999	170.09999
376.60010	-17.79999	180.29999
376.60010	-17.79999	188.09999
376.60010	-15.30000	188.09999
376.60010	0.0	188.09999
391.69995	-15.70000	147.29999
391.69995	-15.70000	158.29999
391.69995	-15.70000	166.50000
391.69995	-15.70000	175.79999
391.69995	-15.70000	182.89999
391.69995	-13.50000	182.89999
391.69995	0.0	182.89999
500.00000	0.0	139.59999
500.00000	0.0	139.59999
500.00000	0.0	139.59999
500.00000	0.0	139.59999
500.00000	0.0	139.59999
500.00000	0.0	139.59999
500.00000	0.0	139.59999

9.	8.	
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
211.9	79.9	101.5
211.5	64.8	107.7
210.4	58.6	122.8
202.3	64.8	137.8
208.9	79.9	144.0
209.3	95.0	137.8
210.4	101.2	122.8
211.5	95.0	107.7
211.9	79.9	101.5
225.9	79.9	98.3
225.3	61.9	105.7
224.6	54.4	123.7
222.8	61.9	141.7
222.2	79.9	149.2
222.8	97.9	141.7

224.0	105.4	123.7
225.3	97.9	105.7
225.9	79.9	98.3
248.4	79.9	99.4
247.9	61.5	107.0
246.6	53.9	125.3
245.3	61.5	143.7
244.7	79.9	151.3
245.3	98.3	143.7
246.6	105.9	125.3
247.9	98.3	107.0
248.4	79.9	99.4
267.1	79.9	102.4
266.6	62.6	109.5
265.3	55.5	126.7
264.1	62.6	143.9
263.6	79.9	151.0
264.1	97.2	143.9
265.3	104.3	126.7
266.6	97.2	109.5
267.1	79.9	102.4
299.3	79.9	104.7
298.8	62.6	111.8
297.6	55.5	129.0
296.3	62.6	146.2
295.8	79.9	153.3
296.3	97.2	146.2
297.6	104.3	129.0
298.8	97.2	111.8
299.3	79.9	104.7
700.7	79.9	133.4
700.2	62.6	140.6
699.0	55.5	157.8
697.7	62.6	175.0
697.2	79.9	182.1
697.7	97.2	175.0
699.0	104.3	157.8
700.2	97.2	140.6
700.7	79.9	133.4
1000.	79.9	133.4
1000.	62.6	140.6
1000.	55.5	157.8
1000.	62.6	175.0
1000.	79.9	182.1
1000.	97.2	175.0
1000.	104.3	157.8
1000.	97.2	140.6
1000.	79.9	133.4

9. 8.

175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
211.90	-79.90	101.50
211.50	-95.00	107.70

210.40	-101.20	122.80
209.30	-95.00	137.80
208.90	-79.90	144.00
209.30	-64.80	137.80
210.40	-58.60	122.80
211.50	-64.80	107.70
211.90	-79.90	101.50
225.90	-79.90	98.30
225.30	-97.90	105.70
224.00	-105.40	123.70
222.20	-97.90	141.70
222.20	-79.90	149.20
222.80	-61.90	141.70
224.00	-54.40	123.70
225.30	-61.90	115.70
225.90	-79.90	98.30
248.40	-79.90	99.40
247.90	-98.30	107.00
246.60	-105.90	125.30
245.30	-98.30	143.70
244.70	-79.90	151.30
245.30	-61.50	143.70
246.60	-53.90	125.30
247.90	-61.50	107.00
248.40	-79.90	99.40
267.10	-79.90	102.40
266.60	-97.20	109.50
265.30	-104.30	126.70
264.10	-97.20	143.90
263.60	-79.90	151.00
264.10	-62.60	143.90
265.30	-55.50	126.70
266.60	-62.60	109.50
267.10	-79.90	102.40
299.30	-79.90	194.70
298.80	-97.20	111.80
297.60	-104.30	129.00
296.30	-97.20	146.20
295.80	-79.90	153.30
296.30	-62.60	146.20
297.60	-55.50	129.00
298.80	-62.60	111.80
299.30	-79.90	104.70
700.70	-79.90	133.40
700.20	-97.20	140.60
699.00	-104.30	157.80
697.70	-97.20	175.00
697.20	-79.90	182.10
697.70	-62.60	175.00
699.00	-55.50	157.80
700.20	-62.60	140.60
700.70	-79.90	133.40
1000.00	-79.90	133.40
1000.00	-97.20	140.60
1000.00	-104.30	157.80
1000.00	-97.20	175.00
1000.00	-79.90	182.10
1000.00	-62.60	175.00
1000.00	-55.50	157.80
1000.00	-62.60	140.60

1000.00 -79.90 133.40
END
AERO
0. 0.0 0.0
FORC
307.5 0. 75.52 52112. 98.1 531.2 0.
END

ORIGINAL PAGE IS
OF POOR QUALITY

CASE
RSRA FUSELAGE, WINGS AND ENGINES
J D COWAN AERO RESEARCH ORGN 7440 EXT 7834
GEOM
3. 746. 1. -1.
SOUR
18.
7. 4.
36. 0. 95.9
36. 0. 95.9
36. 0.0 95.9
36. 0.0 95.9
36. 0.0 95.9
36. 0.0 95.9
36. 0.0 95.9
58.8 0.0 110.2
58.8 16.9 108.1
58.8 22.5 106.
58.8 22.5 96.2
59.8 22.5 86.4
58.8 16.9 82.3
58.8 0.0 82.3
81.5 0.0 119.9
81.5 22.1 116.4
81.5 29.5 113.
81.5 29.5 99.
81.5 29.5 85.
81.5 22.1 78.1
81.5 0.0 78.1
120.9 0. 147.6
120.9 28.4 136.7
120.9 37.8 125.9
120.9 37.8 108.
120.9 37.8 90.7
120.9 28.4 74.8
120.9 0. 74.8
7. 6.
120.9 0. 147.6
120.9 28.4 136.7
120.9 37.8 125.9
120.9 37.8 108.
120.9 37.8 90.7
120.9 28.4 74.8
120.9 0. 74.8
133. 0. 148.9
133. 29.2 148.9
133. 38.9 129.9
133. 38.9 110.8
133. 38.9 91.8
133. 29.2 72.8
133. 0. 72.8
175.3 12.1 148.9
175.3 29.2 148.9
175.3 38.9 129.9
175.3 38.9 110.8
175.3 38.9 91.8

175.3	29.2	72.8
175.3	0.	72.8
209.3	21.9	148.9
209.3	29.2	148.9
209.3	38.9	129.9
209.3	38.9	110.8
209.3	38.9	91.8
209.3	29.2	72.8
209.3	0.	72.8
222.3	22.7	148.9
222.3	29.2	148.9
222.3	38.9	129.9
222.3	38.9	110.8
222.3	32.9	91.8
222.3	29.2	72.8
222.3	0.	72.8
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
271.	0.	72.8
6.	4.	
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
300.	22.7	148.9
300.	29.2	148.9
300.	38.9	129.9
300.	38.9	110.8
300.	38.9	91.8
300.	38.9	85.
376.6	17.8	148.9
376.6	29.2	148.9
376.6	38.9	129.9
376.6	38.9	110.8
376.6	38.9	91.8
376.6	38.9	85.
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	74.4
7.	5.	
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	74.4
391.7	0.	74.4
445.7	7.871745	143.46
445.7	24.5	143.46
445.7	32.7	127.2
445.7	32.7	110.8

445.7	32.7	94.4
445.7	24.5	77.8
445.7	0.	77.8
500.	0.	139.6
500.	21.	139.6
500.	28.	125.4
500.	28.	110.8
500.	28.	96.2
500.	21.	81.3
500.	0.	81.3
600.	0.	131.
600.	13.5	131.
600.	18.	120.9
600.	18.	110.8
600.	18.	100.4
600.	13.5	89.9
600.	0.	89.9
1000.	0.	131.
1000.	13.5	131.
1000.	18.	120.9
1000.	18.	110.8
1000.	18.	100.4
1000.	13.5	89.9
1000.	0.	89.9
7.	10.	
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
175.3	0.	165.9
175.3	8.1	165.9
175.3	11.7	163.6
175.3	12.1	161.4
175.3	12.1	157.4
175.3	12.1	153.8
175.3	12.1	148.9
209.3	0.	179.7
209.3	14.6	179.7
209.3	21.1	175.5
209.3	22.	171.6
209.3	22.	164.3
209.3	20.2	157.8
209.3	21.9	148.9
222.3	0.	181.3
222.3	19.6	181.3
222.3	22.7	181.3
222.3	22.7	174.8
222.3	22.7	166.4
222.3	22.7	158.9
222.3	22.7	148.9
271.	0.	189.2
271.	19.6	189.2
271.	22.7	189.2
271.	22.7	181.1
271.	22.7	170.7
271.	22.7	161.4
271.	22.7	148.9

300.	0.	193.8
300.	19.6	193.8
300.	22.7	193.8
300.	22.7	184.8
300.	22.7	173.3
300.	22.7	163.
300.	22.7	148.9
348.6	0.	196.4
348.6	16.9	196.4
348.6	19.5911	196.4
348.6	19.5911	186.9
348.6	19.5911	174.6
348.6	19.5911	163.6
348.6	19.5911	148.9
376.6	0.	188.1
376.6	15.3	188.1
376.6	17.8	188.1
376.6	17.8	180.3
376.6	17.8	170.1
376.6	17.8	161.0
376.6	17.8	148.9
391.7	0.	182.9
391.7	13.5	182.9
391.7	15.7	182.9
391.7	15.7	175.8
391.7	15.7	166.5
391.7	15.7	158.3
391.7	15.7	147.3
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
	7.0	4.0
36.	0.	95.9
36.	0.	95.9
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
58.8000	-0.0000	82.3000
58.8	-16.9	82.3
58.8000	-22.5000	86.4000
58.8000	-22.5000	96.2000
58.8000	-22.5000	106.0000
58.8	-16.9	108.1
58.8000	-0.0000	110.2000
81.5000	-0.0000	78.1000
81.5	-22.1	78.1
81.5000	-29.5000	85.0000
81.5000	-29.5000	99.0000
81.5000	-29.5000	113.0000
81.5	-22.1	116.4
81.5000	-0.0000	119.9000
120.9000	-0.0000	74.8000
120.9	-28.4	74.8
120.9000	-37.8000	90.7000

120.9000	-37.8000	108.
120.9000	-37.8000	125.9000
120.9	-28.4	136.7
120.9000	-0.0000	147.6000
7.0	6.	
120.9000	-0.0000	74.8000
120.9000	-28.4000	74.8000
120.9000	-37.8000	90.7000
120.9000	-37.8000	108.
120.9000	-37.8000	125.9000
120.9000	-28.4000	136.7000
120.9000	-0.0000	147.6000
133.0000	-0.0000	72.8000
133.0000	-29.2000	72.8000
133.0000	-38.9000	91.8000
133.0000	-38.9000	110.8000
133.0000	-38.9000	129.9000
133.0000	-29.2000	148.9000
133.0000	-0.0000	148.9000
175.3000	-0.0000	72.8000
175.3000	-29.2000	72.8000
175.3000	-38.9000	91.8000
175.3000	-38.9000	110.8000
175.3000	-38.9000	129.9000
175.3000	-29.2000	148.9000
175.3000	-12.1000	148.9000
209.3000	-0.0000	72.8000
209.3000	-29.2000	72.8000
209.3000	-38.9000	91.8000
209.3000	-38.9000	110.8000
209.3000	-38.9000	129.9000
209.3000	-29.2000	148.9000
209.3000	-21.9000	148.9000
222.3000	-0.0000	72.8000
222.3000	-29.2000	72.8000
222.3000	-38.9000	91.8000
222.3000	-38.9000	110.8000
222.3000	-38.9000	129.9000
222.3000	-29.2000	148.9000
222.3000	-22.7000	148.9000
271.0000	-0.0000	72.8000
271.0000	-29.2000	72.8000
271.0000	-38.9000	91.8000
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.	-22.7	148.9000
6.	4.	
271.0000	-29.2000	72.8
271.0000	-38.9000	91.8
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.0000	-22.7000	148.9000
300.	-38.9	85.
300.	-38.9	91.8
300.	-38.9	110.8
300.	-38.9	129.9
300.	-29.2	148.9
300.	-22.7	148.9

376.6	-38.9	85.
376.6	-38.9	91.8
376.6	-38.9	110.8
376.6	-38.9	129.9
376.6	-29.2	148.9
376.6	-17.5	148.9
391.7	-28.	74.4
391.7	-37.3	92.6
391.7	-37.3	110.8
391.7	-37.3	129.
391.7	-28.	147.3
391.7	-15.7	147.3
7.	5.	
391.7000	-0.0000	74.4000
391.7000	-28.0000	74.4000
391.7000	-37.3000	92.6000
391.7000	-37.3000	110.8000
391.7000	-37.3000	129.0000
391.7000	-28.0000	147.3000
391.7000	-15.7000	147.3000
445.7000	-0.0000	77.8000
445.7000	-24.5000	77.8000
445.7000	-32.7000	94.4000
445.7000	-32.7000	110.8000
445.7000	-32.7000	127.2000
445.7000	-24.5000	143.4600
445.7000-7.871745		143.4600
500.0000	-0.0000	81.3000
500.0000	-21.0000	81.3000
500.0000	-28.0000	96.2000
500.0000	-28.0000	110.8000
500.0000	-28.0000	125.4000
500.0000	-21.0000	139.6000
500.0000	-0.0000	139.6000
600.0000	-0.0000	89.9000
600.0000	-13.5000	89.9000
600.0000	-18.0000	100.4000
600.0000	-18.0000	110.8000
600.0000	-18.0000	120.9000
600.0000	-13.5000	131.0000
600.0000	-0.0000	131.0000
1000.0000	-0.0000	89.9000
1000.0000	-13.5000	89.9000
1000.0000	-18.0000	100.4000
1000.0000	-18.0000	110.8000
1000.0000	-18.0000	120.9000
1000.0000	-13.5000	131.0000
1000.0000	-0.0000	131.0000
7.0	10.0	
133.0000	-0.0000	148.9000
133.0000	-0.0000	143.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
175.3000	-12.1000	148.9000
175.3000	-12.1000	153.8000
175.3000	-12.1000	157.4000
175.3000	-12.1000	161.4000

ORIGINAL PAGE IS
OF POOR QUALITY

175.3000	-11.7000	163.6000
175.3000	-8.1000	165.9000
175.3000	-0.0000	165.9000
209.3000	-21.9000	148.9000
209.3000	-20.2000	157.8000
209.3000	-22.0000	164.3000
209.3000	-22.0000	171.6000
209.3000	-21.1000	175.5000
209.3000	-14.6000	179.7000
209.3000	-0.0000	179.7000
222.3000	-22.7000	148.9000
222.3000	-22.7000	158.9000
222.3000	-22.7000	166.4000
222.3000	-22.7000	174.8000
222.3000	-22.7000	181.3000
222.3000	-19.6000	181.3000
222.3000	-0.0000	181.3000
271.0000	-22.7000	148.9000
271.0000	-22.7000	161.4000
271.0000	-22.7000	170.7000
271.0000	-22.7000	181.1000
271.0000	-22.7000	189.2000
271.0000	-19.6000	189.2000
271.0000	-0.0000	189.2000
300.0000	-22.7000	148.9000
300.0000	-22.7000	163.0000
300.0000	-22.7000	173.3000
300.0000	-22.7000	184.8000
300.0000	-22.7000	193.8000
300.0000	-19.6000	193.8000
300.0000	-0.0000	193.8000
348.6001	-19.5911	148.9000
348.6001	-19.5911	163.6000
348.6001	-19.5911	174.6000
348.6001	-19.5911	186.9000
348.6001	-19.5911	195.4000
348.6001	-16.9000	196.4000
348.6001	-0.0000	196.4000
376.6001	-17.8000	148.9000
376.6001	-17.8000	161.0000
376.6001	-17.8000	170.1000
376.6001	-17.8000	180.3000
376.6001	-17.8000	188.1000
376.6001	-15.3000	188.1000
376.6001	-0.0000	188.1000
391.7000	-15.7000	147.3000
391.7000	-15.7000	158.3000
391.7000	-15.7000	166.5000
391.7000	-15.7000	175.8000
391.7000	-15.7000	182.9000
391.7000	-13.5000	182.9000
391.7000	-0.0000	182.9000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6
500.	-0.0000	139.6
500.	-0.0000	139.6000
500.	-0.0000	139.6000

17. 10.

391.36	56.65	71.07
369.4	56.17	75.35
347.29	55.71	79.4
325.04	55.47	81.52
308.31	55.55	80.88
297.19	55.74	79.13
288.89	56.	76.84
283.43	56.29	74.32
280.98	56.64	71.21
284.09	56.93	68.64
289.67	56.1	67.16
297.92	57.23	65.97
308.87	57.32	65.2
325.25	57.3	65.32
347.14	57.06	67.44
369.18	56.74	70.29
391.36	56.65	71.07
389.72	79.71	73.68
368.48	79.24	77.81
347.11	78.8	81.73
325.59	78.57	83.78
309.41	78.64	83.16
298.65	78.83	81.47
290.63	79.08	79.26
285.35	79.35	76.82
282.98	79.69	73.81
285.99	79.97	71.32
291.38	80.13	69.9
299.36	80.26	68.74
309.95	80.35	67.99
325.79	80.33	68.12
346.96	80.1	70.17
368.27	79.79	72.92
389.72	79.71	73.68
388.08	102.76	76.28
367.57	102.31	80.28
346.92	101.83	84.06
326.13	101.66	86.04
310.51	101.73	85.44
300.12	101.91	83.81
292.37	102.15	81.67
287.27	102.42	79.32
284.98	102.75	76.41
287.89	103.02	74.01
293.09	103.17	72.63
300.8	103.3	71.51
311.03	103.38	70.79
326.33	103.37	70.91
346.78	103.14	72.89
367.36	102.84	75.55
388.08	102.76	76.28
386.44	125.81	78.89
366.65	125.38	82.74
346.73	124.97	86.39
326.68	124.75	88.3
311.61	124.82	87.72
301.59	124.99	86.15
294.11	125.23	84.09
289.19	125.48	81.82
286.98	125.8	79.01

ORIGINAL PAGE IS
OF POOR QUALITY

289.79	126.06	76.69
294.81	126.21	75.36
302.25	126.33	74.29
312.11	126.41	73.59
326.87	126.4	73.71
346.59	126.18	75.62
366.45	125.89	78.18
386.44	125.81	78.89
384.8	148.87	81.49
365.74	148.45	85.2
346.55	148.05	88.72
327.23	147.84	90.56
312.71	147.91	90.
303.05	148.08	88.49
295.85	148.3	86.5
291.11	148.55	84.31
288.98	148.85	81.61
291.68	149.11	79.38
296.52	149.25	78.1
303.69	149.37	77.06
313.19	149.44	76.39
327.41	149.43	76.5
346.41	149.22	78.34
365.54	148.94	80.81
384.8	148.87	81.49
383.16	171.92	84.1
364.82	171.52	87.67
346.36	171.13	91.05
327.78	170.93	92.82
313.81	171.	92.28
304.52	171.16	90.82
297.59	171.38	88.91
293.03	171.61	86.81
290.99	171.91	84.21
293.58	172.15	82.06
298.24	172.29	80.83
305.13	172.4	79.83
314.27	172.47	79.19
327.95	172.46	79.29
346.23	172.26	81.46
364.63	171.99	83.44
383.16	171.92	84.1
381.52	194.97	86.7
363.91	194.59	90.13
346.17	194.22	93.38
328.32	194.03	95.08
314.91	194.09	94.56
305.98	194.24	93.16
299.33	194.45	91.33
294.95	194.68	89.31
292.99	194.96	86.81
295.48	195.19	84.75
299.95	195.33	83.56
306.57	195.44	82.6
315.35	195.51	81.98
328.49	195.49	82.09
346.05	195.3	83.79
363.73	195.04	86.07
381.52	194.97	86.7
379.88	218.03	89.3

362.99	217.66	92.59
345.99	217.3	95.71
328.87	217.12	97.34
316.01	217.18	96.84
307.45	217.33	95.5
301.07	217.53	93.74
296.87	217.74	91.8
294.99	218.02	89.41
297.38	218.24	87.43
301.67	218.37	86.3
308.01	218.47	85.38
316.43	218.54	84.78
329.03	218.53	84.83
345.87	218.34	86.51
362.82	218.10	88.7
379.88	218.03	89.3
378.24	241.08	91.91
302.07	240.72	95.06
345.8	240.39	98.04
329.42	240.21	99.6
317.11	240.27	99.13
308.92	240.41	97.84
302.81	240.6	96.15
298.79	240.81	94.3
296.99	240.07	92.01
299.28	241.28	90.12
303.38	241.41	89.03
309.45	241.5	88.15
317.51	241.57	87.58
329.57	241.56	87.68
345.69	241.38	89.23
361.91	241.15	91.33
378.24	241.08	91.91
376.6	264.13	94.51
361.16	263.79	97.52
345.61	263.47	100.37
329.97	263.3	101.86
318.21	263.35	101.41
310.38	263.49	100.18
304.55	263.68	98.57
300.71	263.88	96.8
298.99	264.12	94.61
301.17	264.33	92.8
305.09	264.44	91.76
310.9	264.54	90.92
318.59	264.6	90.38
330.11	264.59	90.47
345.51	264.42	91.96
361.	264.2	93.96
376.6	264.13	94.51
17.0	10.0	
391.3601	-56.9500	71.0700
369.1799	-56.7400	70.2900
347.1399	-57.0600	67.4400
325.2500	-57.3000	65.3200
308.8701	-57.3200	65.2000
297.9199	-57.2300	65.9700
289.6699	-56.1000	67.1600
284.0901	-56.9300	68.6400
280.9800	-56.6400	71.2100

ORIGINAL PAGE IS
OF POOR QUALITY

283.4299	-56.2900	74.3200
288.8899	-56.0000	76.8400
297.1899	-55.7400	79.1300
308.3101	-55.5500	80.8800
325.0400	-55.4700	81.5200
347.2900	-55.7100	79.4000
369.3999	-56.1700	75.3500
391.3601	-56.6500	71.0700
389.7200	-79.7100	73.6800
368.2700	-79.7900	72.9200
346.9600	-80.1000	70.1700
325.7900	-80.3300	68.1200
309.9500	-80.3500	67.9900
299.3601	-80.2600	68.7400
291.3799	-80.1300	69.9000
285.9900	-79.9700	71.3200
282.9800	-79.6900	73.8100
285.3501	-79.3500	76.8200
290.6299	-79.0800	79.2600
298.6499	-78.8300	81.4700
309.6099	-78.6400	83.1600
325.5901	-78.5700	83.7800
347.1101	-78.8000	81.7300
368.4800	-79.2400	77.8100
389.7200	-79.7100	73.6800
388.0801	-102.7600	76.2800
367.3601	-102.8400	75.5500
346.7800	-103.1400	72.8900
326.3301	-103.3700	70.9100
311.0300	-103.3800	70.7900
300.8000	-103.3000	71.5100
293.0901	-103.1700	72.6300
287.8899	-103.0200	74.0100
284.9800	-102.7500	76.4100
287.2700	-102.4200	79.3200
292.3701	-102.1500	81.6700
300.1201	-101.9100	83.8100
310.5100	-101.7300	85.4400
326.1299	-101.6600	86.0400
346.9199	-101.8800	84.0600
367.5701	-102.3100	80.2800
388.0801	-102.7600	76.2800
386.4399	-125.8100	78.8900
366.4500	-125.8900	78.1800
346.5901	-126.1800	75.6200
326.8701	-126.4000	73.7100
312.1101	-126.4100	73.5900
302.2500	-126.3300	74.2900
294.8101	-126.2100	75.3600
289.7900	-126.0600	76.6900
286.9800	-125.8000	79.0100
289.1899	-125.4800	81.8200
294.1101	-125.2300	84.0900
301.5901	-124.9900	86.1500
311.6101	-124.8200	87.7200
326.6799	-124.7500	88.3300
346.7300	-124.9700	86.3900
366.6499	-125.3800	82.7400
386.4399	-125.3100	78.8900
384.8000	-148.8700	81.4900

365.5400	-148.9400	80.8100
346.4099	-149.2200	78.3400
327.4099	-149.4300	76.5000
313.1899	-149.4400	76.3900
303.6899	-149.3700	77.0600
296.5200	-149.2500	78.1000
291.6799	-149.1100	79.3800
288.9800	-148.8500	81.6100
291.1101	-148.5500	84.3100
295.8501	-148.3000	86.5000
303.0500	-148.0800	88.4900
312.7100	-147.9100	90.0000
327.2300	-147.8400	90.5600
346.5500	-148.0500	88.7200
365.7400	-148.4500	85.2000
384.8000	-148.8700	81.4900
383.1599	-171.9200	84.1000
364.6299	-171.9900	83.4400
346.2300	-172.2600	81.0600
327.9500	-172.4600	79.2900
314.2700	-172.4700	79.1900
305.1299	-172.4000	79.8300
298.2400	-172.2900	80.8300
293.5801	-172.1500	82.0600
290.9900	-171.9100	84.2100
293.0300	-171.6100	86.8100
297.5901	-171.3800	88.9100
304.5200	-171.1600	90.8200
313.8101	-171.0000	92.2800
327.7800	-170.9300	92.8200
346.3601	-171.1300	91.0500
364.8201	-171.5200	87.6700
383.1599	-171.9200	84.1000
381.5200	-194.9700	86.7000
363.7300	-195.0400	86.0700
346.0500	-195.3000	83.7900
328.4900	-195.4900	82.0900
315.3501	-195.5100	81.9800
306.5701	-195.4400	82.6000
299.9500	-195.3300	83.5600
295.4800	-195.1900	84.7500
292.9900	-194.9600	86.8100
294.9500	-194.6800	89.3100
299.3301	-194.4500	91.3300
305.9800	-194.2400	93.1600
314.9099	-194.0900	94.5600
328.3201	-194.0300	95.0800
346.1699	-194.2200	93.3800
363.9699	-194.5900	90.1300
381.5200	-194.9700	86.7000
379.8799	-218.0300	89.3000
362.8201	-218.1000	88.7000
345.8701	-218.3400	86.5100
329.0300	-213.5300	84.8800
316.4299	-218.5400	84.7800
308.0100	-218.4700	85.3800
301.6699	-218.3700	86.3000
297.3799	-213.2400	87.4300
294.9900	-213.0200	89.4100
296.8701	-217.7400	91.8000

ORIGINAL PAGES
OF POOR QUALITY

301.0701	-217.5300	93.7400
307.4500	-217.3300	95.5000
316.0100	-217.1800	96.8400
328.8701	-217.1200	97.3400
345.9900	-217.3000	95.7100
362.9900	-217.6600	92.5900
379.8799	-218.0300	99.3000
378.2400	-241.0800	91.9100
361.9099	-241.1500	91.3300
345.6899	-241.3800	89.2300
329.5701	-241.5600	87.6800
317.5100	-241.5700	87.5800
309.4500	-241.5000	88.1500
313.3799	-241.4100	89.0300
299.2800	-241.2800	90.1200
296.9900	-240.0700	92.0100
298.7900	-240.8100	94.3000
302.8101	-240.6000	96.1500
308.9199	-240.4100	97.8400
317.1101	-240.2700	99.1300
329.4199	-240.2100	99.6000
345.8000	-240.3900	98.0400
362.0701	-240.7200	95.0600
378.2400	-241.0800	91.9100
376.6001	-264.1299	94.5100
361.0000	-264.2000	93.9600
345.5100	-264.4199	91.9600
330.1101	-264.5901	90.4700
318.5901	-264.6001	90.3800
310.8999	-264.5400	90.9200
305.0901	-264.4399	91.7600
301.1699	-264.3301	92.8000
298.9900	-264.1201	94.6100
300.7100	-263.8799	96.8000
304.5500	-263.6799	98.5700
310.3799	-263.4900	100.1800
318.2100	-263.3501	101.4100
329.9700	-263.3000	101.8600
345.6101	-263.4700	100.3700
361.1599	-263.7900	97.5200
376.6001	-264.1299	94.5100

8.	2.	
271.	0.	72.8
284.09	0.	68.64
289.67	0.	67.16
297.92	0.	65.97
308.87	0.	65.2
325.25	0.	65.32
347.14	0.	67.44
391.7	0.	74.4
271.	29.2	72.8
284.09	29.2	68.64
289.67	29.2	67.16
297.92	29.2	65.97
308.87	29.2	65.2
325.25	29.2	65.32
347.14	29.2	67.44
391.7	28.	74.4

8.0 2.0
391.7 -0.0000 74.4

347.1399	-0.0000	67.4400
325.2500	-0.0000	65.3200
308.8701	-0.0000	65.2000
297.9199	-0.0000	65.9700
289.6699	-0.0000	67.1600
284.0901	-0.0000	68.6400
271.0000	-0.0000	72.8000
391.7	-28.	74.4
347.1399	-29.2000	67.4400
325.2500	-29.2000	65.3200
308.8701	-29.2000	65.2000
297.9199	-29.2000	65.9700
289.6699	-29.2000	67.1600
284.0901	-29.2000	68.6400
271.0000	-29.2000	72.8000
17.	2.	
391.7	28.	74.4
376.6	38.9	85.
347.29	38.9	85.
325.04	38.9	85.
308.31	38.9	85.
330.	38.9	85.
289.	35.22069	80.37241
282.	32.87931	77.42759
271.	29.2	72.8
284.09	29.2	68.64
289.67	29.2	67.16
297.92	29.2	65.97
308.87	29.2	65.2
325.25	29.2	65.32
347.14	29.2	67.44
369.18	28.60646	70.88251
391.7	28.	74.4
391.36	56.65	71.07
369.4	56.17	75.35
347.29	55.71	79.4
325.04	55.47	81.52
308.31	55.55	80.88
297.19	55.74	79.13
288.89	56.	76.84
283.43	56.29	74.32
280.98	56.64	71.21
284.09	56.93	68.64
289.67	56.1	67.16
297.92	57.23	65.97
308.87	57.32	65.2
325.25	57.3	65.32
347.14	57.06	67.44
369.18	56.74	70.29
391.36	56.65	71.07
17.0	2.0	
391.7000	-28.0000	74.4000
369.1799	-28.6065	70.8825
347.1399	-29.2000	67.4400
325.2500	-29.2000	65.3200
308.8701	-29.2000	65.2000
297.9199	-29.2000	65.9700
289.6699	-29.2000	67.1600
284.0901	-29.2000	68.6400
271.0000	-29.2000	72.8000

282.0900	-32.8793	77.4276
289.0000	-35.2207	80.374
300.0000	-38.9000	85.0000
308.3101	-38.9000	85.0000
325.0400	-38.9000	85.0000
347.2500	-38.9000	85.0000
376.6001	-38.9000	85.0000
391.7000	-28.0000	74.4000
391.3601	-56.6500	71.0700
369.1799	-56.7400	70.2900
347.1399	-57.0600	67.4400
325.2500	-57.3000	65.3200
308.8701	-57.3200	65.2000
297.9199	-57.2300	65.9700
289.6699	-56.1000	67.1600
284.0901	-56.9300	68.6400
280.9800	-56.6400	71.2100
283.4299	-56.2900	74.3200
288.8899	-56.0000	76.8400
297.1899	-55.7400	79.1300
308.3101	-55.5500	80.8803
325.0400	-55.4700	81.5200
347.2900	-55.7100	79.4000
369.3999	-56.1700	75.3500
391.3601	-56.6500	71.0700

9.	8.	
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
175.6	79.9	120.3
211.9	79.9	101.5
211.5	64.8	107.7
210.4	58.6	122.8
209.3	64.8	137.8
208.9	79.9	144.0
209.3	95.0	137.8
210.4	101.2	122.8
211.5	95.0	107.7
211.9	79.9	101.5
225.9	79.9	98.3
225.3	61.9	105.7
224.0	54.4	123.7
222.8	61.9	141.7
222.2	79.9	149.2
222.8	97.9	141.7
224.0	105.4	123.7
225.3	97.9	105.7
225.9	79.9	98.3
248.4	79.9	99.4
247.9	61.5	107.0
246.6	53.9	125.3
245.3	61.5	143.7
244.7	79.9	151.3
245.3	98.3	143.7
246.6	105.9	125.3

247.9	98.3	107.0
248.4	79.9	99.4
267.1	79.9	102.4
266.6	62.6	109.5
265.3	55.5	126.7
264.1	62.6	143.9
263.6	79.9	151.0
264.1	97.2	143.9
265.3	104.3	126.7
266.6	97.2	109.5
267.1	79.9	102.4
299.3	79.9	104.7
298.8	62.6	111.8
297.6	55.5	129.0
296.3	62.6	146.2
295.8	79.9	153.3
296.3	97.2	146.2
297.6	104.3	129.0
298.8	97.2	111.8
299.3	79.9	104.7
700.7	79.9	133.4
700.2	62.6	140.6
699.0	55.5	157.8
697.7	62.6	175.0
697.2	79.9	182.1
697.7	97.2	175.0
699.0	104.3	157.8
700.2	97.2	140.6
700.7	79.9	133.4
1000.	79.9	133.4
1000.	62.6	140.6
1000.	55.5	157.8
1000.	62.6	175.0
1000.	79.9	182.1
1000.	97.2	175.0
1000.	104.3	157.8
1000.	97.2	140.6
1000.	79.9	133.4
9.	8.	
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
175.60	-79.90	120.30
211.90	-79.90	101.50
211.50	-95.00	107.70
210.40	-101.20	122.80
209.30	-95.00	137.80
208.90	-79.90	144.00
209.30	-64.80	137.80
210.40	-58.60	122.80
211.50	-64.80	107.70
211.90	-79.90	101.50
225.90	-79.90	98.30
225.30	-97.90	105.70
224.00	-105.40	123.70

ORIGINAL DOCUMENT
OF POOR QUALITY

222.80	-97.90	141.70
222.20	-79.90	149.20
222.80	-61.90	141.70
224.00	-54.40	123.70
225.30	-61.90	105.70
225.90	-79.90	98.30
248.40	-79.90	99.40
247.90	-98.30	107.00
246.60	-105.90	125.30
245.30	-98.30	143.70
244.70	-79.90	151.30
245.30	-61.50	143.70
246.60	-53.90	125.30
247.90	-61.50	107.00
248.40	-79.90	99.40
267.10	-79.90	102.40
266.60	-97.20	109.50
265.30	-104.30	126.70
264.10	-97.20	143.90
263.60	-79.90	151.00
264.10	-62.60	143.90
265.30	-55.50	126.70
266.60	-62.60	109.50
267.10	-79.90	102.40
299.30	-79.90	104.70
298.80	-97.20	111.80
297.60	-104.30	129.00
296.30	-97.20	146.20
295.80	-79.90	153.30
296.30	-62.60	146.20
297.60	-55.50	129.00
298.80	-62.60	111.80
299.30	-79.90	104.70
700.70	-79.90	133.40
700.20	-97.20	140.60
699.00	-104.30	157.80
697.70	-97.20	175.00
697.20	-79.90	182.10
697.70	-62.60	175.00
699.00	-55.50	157.80
700.20	-62.60	140.60
700.70	-79.90	133.40
1000.00	-79.90	133.40
1000.00	-97.20	140.60
1000.00	-104.30	157.80
1002.10	-97.20	175.00
1000.00	-79.90	162.10
1000.00	-62.60	175.00
1000.00	-55.50	157.80
1000.00	-62.60	140.60
1000.00	-79.90	133.40

MULT

2.

11.	9.	7.	1.	10.	0.
285.35	79.63	74.34			
290.63	79.59	74.68			
298.65	79.54	75.16			
309.41	79.49	75.6			
325.59	79.45	75.95			
347.11	79.45	75.96			

368.48	79.52	74.37
389.72	79.71	73.68
411.29	79.71	71.98
454.51	79.71	69.72
9010.	79.71	-165.62
287.27	102.69	76.92
292.37	102.65	77.25
300.12	102.6	77.71
310.51	102.55	78.13
326.13	102.51	78.48
346.92	102.51	78.49
367.57	102.58	77.92
388.08	102.76	76.28
408.92	102.76	74.64
450.66	102.76	72.46
9000.	102.76	-162.88
289.19	125.74	79.5
294.11	125.71	79.82
301.59	125.66	80.26
311.61	125.61	80.67
326.68	125.57	81.
346.73	125.57	81.01
366.65	125.64	80.46
386.44	125.81	78.89
406.54	125.81	77.31
446.81	125.81	75.2
9000.	125.81	-160.15
291.11	148.8	82.08
295.85	148.77	82.39
303.05	148.72	82.82
312.71	148.67	83.21
327.23	148.64	83.53
346.55	148.64	83.54
365.74	148.7	83.01
384.8	148.87	81.49
404.17	148.87	79.97
442.96	148.87	77.94
9000.	148.87	-157.41
293.03	171.86	84.67
297.59	171.82	84.96
304.52	171.78	85.37
313.81	171.73	85.75
327.78	171.7	86.06
346.36	171.7	86.07
364.82	171.76	85.56
383.16	171.92	84.1
401.79	171.92	82.63
439.11	171.92	80.68
9000.	171.92	-154.67
294.95	194.91	87.25
299.33	194.88	87.53
305.98	194.84	87.93
314.91	194.79	88.29
328.32	194.76	88.58
346.17	194.76	88.59
363.91	194.82	88.1
381.52	194.97	86.7
399.41	194.97	85.29
435.26	194.97	83.41
9000.	194.97	-151.93

ORIGINAL RECORDS
OF POOR CIVIL 87

296.87	217.97	89.83			
301.07	217.94	90.1			
307.45	217.89	90.48			
316.01	217.85	90.83			
328.87	217.82	91.11			
345.99	217.82	91.12			
362.99	217.87	90.65			
379.88	218.03	89.3			
397.04	218.03	87.95			
431.41	218.03	86.15			
9000.	218.03	-149.19			
298.79	241.02	92.41			
302.81	240.99	92.67			
308.92	240.95	93.03			
317.11	240.92	93.37			
329.42	240.89	93.64			
345.8	240.88	93.64			
362.07	240.93	93.2			
378.24	241.08	91.91			
394.66	241.08	90.62			
427.56	241.08	88.89			
9000.	241.08	-146.45			
300.51	261.77	94.73			
304.37	261.75	94.98			
310.24	261.71	95.33			
318.1	261.67	95.65			
329.91	261.64	95.91			
345.63	261.64	95.92			
361.25	261.69	95.49			
376.76	261.83	94.25			
392.52	261.83	93.01			
424.1	261.83	91.36			
9000.	261.83	-143.98			
.050192	.085453	.120618	.172921	.242018	.219928
10887					
388.93	91.17	74.97	.07889	-.10636	.99119
387.29	114.22	77.58	.07889	-.10636	.99119
385.64	137.27	80.18	.07889	-.10636	.99119
384.	160.32	82.78	.07889	-.10636	.99119
382.36	183.37	85.39	.07889	-.10636	.99119
380.72	206.42	87.99	.07889	-.10636	.99119
379.08	229.47	90.59	.07889	-.10636	.99119
377.44	252.52	93.2	.07889	-.10636	.99119
11.	9.	7.	1.	10.	0.
285.35	-79.63	74.34			
290.63	-79.59	74.68			
298.65	-79.54	75.16			
309.41	-79.49	75.6			
325.59	-79.45	75.95			
347.11	-79.45	75.96			
366.48	-79.52	74.37			
389.72	-79.71	73.68			
411.29	-79.71	71.98			
454.51	-79.71	69.72			
9000.	-79.71	-165.62			
287.27	-102.69	76.92			
292.37	-102.65	77.25			
300.12	-102.6	77.71			
310.51	-102.55	78.13			
326.13	-102.51	78.48			

346.92	-102.51	78.49
367.57	-102.58	77.92
383.08	-102.76	76.28
408.92	-102.76	74.64
450.66	-102.76	72.46
9000.	-102.76	-162.83
289.19	-125.74	79.5
294.11	-125.71	79.82
301.59	-125.66	80.26
311.61	-125.61	80.67
326.68	-125.57	81.
346.73	-125.57	81.01
366.65	-125.64	80.46
386.44	-125.81	78.89
406.54	-125.81	77.31
446.81	-125.81	75.2
9000.	-125.81	-160.15
291.11	-148.8	82.08
295.85	-148.77	82.39
303.05	-148.72	82.82
312.71	-148.67	83.21
327.23	-148.64	83.53
346.55	-148.64	83.54
365.74	-148.7	83.01
384.8	-148.87	81.49
404.17	-148.87	79.97
442.96	-148.87	77.94
9000.	-148.87	-157.41
293.03	-171.86	84.67
297.59	-171.82	84.96
304.52	-171.78	85.37
313.81	-171.73	85.75
327.78	-171.7	86.06
346.36	-171.7	86.07
364.82	-171.76	85.56
383.16	-171.92	84.1
401.79	-171.92	82.63
439.11	-171.92	80.68
9000.	-171.92	-154.67
294.95	-194.91	87.25
299.33	-194.88	87.53
305.98	-194.84	87.93
314.91	-194.79	88.29
328.32	-194.76	88.58
346.17	-194.76	88.59
363.91	-194.82	88.1
381.52	-194.97	86.7
399.41	-194.97	85.29
435.26	-194.97	83.41
9000.	-194.97	-151.93
296.87	-217.97	89.83
301.07	-217.99	90.1
307.45	-217.89	90.48
316.01	-217.85	90.83
328.87	-217.82	91.11
345.99	-217.82	91.12
362.99	-217.87	90.65
379.88	-213.03	89.3
397.04	-213.03	87.95
431.41	-213.03	86.15

9000.	-218.03	-149.19			
298.79	-241.02	92.41			
302.81	-240.99	92.67			
308.92	-240.95	93.02			
317.11	-240.92	93.37			
329.42	-240.89	93.64			
345.8	-240.88	93.64			
362.07	-240.93	93.2			
378.24	-241.08	91.91			
394.66	-241.08	90.62			
427.56	-241.08	88.89			
9000.	-241.08	-146.45			
300.51	-261.77	94.73			
304.37	-261.75	94.98			
310.24	-261.71	95.33			
318.1	-261.67	95.65			
329.91	-261.64	95.91			
345.63	-261.64	95.92			
361.25	-261.69	95.49			
376.76	-261.83	94.25			
392.52	-261.83	93.01			
424.1	-261.83	91.36			
9000.	-261.83	-143.98			
.050192	.0825453	.120618	.172921	.242018	.219928
.10887					
368.93	-91.17	74.97	.07889	.10636	.99119
387.29	-114.22	77.58	.07889	.10636	.99119
385.64	-137.27	80.18	.07889	.10636	.99119
384.	-160.32	82.78	.07889	.10636	.99119
382.36	-183.37	85.39	.07889	.10636	.99119
380.72	-206.42	87.99	.07889	.10636	.99119
379.08	-229.47	90.59	.07889	.10636	.99119
377.44	-252.52	93.2	.07889	.10636	.99119
B-MU					
2.					
11.	3.	7.	1.	10.	0.
283.43	0.	71.76			
288.89	0.	72.11			
297.19	0.	72.6			
308.31	0.	73.06			
325.04	0.	73.42			
347.29	0.	73.43			
369.4	0.	76.			
392.0323	0.	77.65445			
413.67	0.	100.			
458.36	0.	120.			
9000.	0.	-115.3426			
283.43	56.58	71.76			
288.89	56.54	72.11			
297.19	56.48	72.6			
308.31	56.43	73.06			
325.04	56.39	73.42			
347.29	56.39	73.43			
369.4	56.46	72.82			
391.36	56.65	71.07			
413.67	56.65	69.32			
458.36	56.65	66.98			
9000.	56.65	-168.36			
285.35	79.63	74.34			
290.63	79.59	74.68			

298.65	79.54	75.16			
309.41	79.49	75.6			
325.59	79.45	75.95			
347.11	79.45	75.96			
368.48	79.52	75.37			
389.72	79.71	73.68			
411.29	79.71	71.98			
454.51	79.71	69.72			
9000.	79.71	-165.62			
.050192	.085453	.120618	.172921	.242018	.219928
.10887					
390.57	68.12	72.37	.07889	-.10636	.99119
11.	3.	7.	1.	10.	0.
283.43	0.	71.76			
288.89	0.	72.11			
297.19	0.	72.6			
308.31	0.	73.06			
325.04	0.	73.42			
347.29	0.	73.43			
369.4	0.	76.			
392.0323	0.	77.65445			
413.67	0.	100.			
458.36	0.	120.			
9000.	0.	-115.3426			
283.43	-56.58	71.76			
288.89	-56.54	72.11			
297.19	-56.48	72.6			
308.31	-56.43	73.06			
325.04	-56.39	73.42			
347.29	-56.39	73.43			
369.4	-56.46	72.82			
391.36	-56.65	71.07			
413.67	-56.65	69.32			
458.36	-56.65	66.98			
9000.	-56.65	-168.36			
285.35	-79.63	74.34			
290.63	-79.59	74.68			
298.65	-79.54	75.16			
309.41	-79.49	75.6			
325.59	-79.45	75.95			
347.11	-79.45	75.96			
368.48	-79.52	75.37			
389.72	-79.71	73.68			
411.29	-79.71	71.98			
454.51	-79.71	69.72			
9000.	-79.71	-165.62			
.050192	.085453	.120618	.172921	.242018	.219928
.10887					
390.57	-68.12	72.37	.07889	.10636	.99119
END					
AERO					
0.	0.	0.			
FORC					
307.5	0.	75.52	52112.	98.1	531.2
END					0.

CASE
 RSRA FUSELAGE AND WINGS. WING INCIDENCE 5.52 DEGREES
 J D COWAN AERO RESEARCH ORGN 7440 EXT 7834
 GEOM
 3. 634. 1. -1.
 SOUR
 16.
 7. 4.
 36. 0. 95.9
 36. 0. 95.9
 36. 0.0 95.9
 36. 0.0 95.9
 36. 0.0 95.9
 36. 0.0 95.9
 36. 0.0 95.9
 36. 0.0 95.9
 58.8 0.0 110.2
 58.8 16.9 108.1
 58.8 22.5 106.
 58.8 22.5 96.2
 58.8 22.5 86.4
 58.8 16.9 82.3
 58.8 0.0 82.3
 81.5 0.0 119.9
 81.5 22.1 116.4
 81.5 29.5 113.
 81.5 29.5 99.
 81.5 29.5 85.
 81.5 22.1 78.1
 81.5 0.0 78.1
 120.9 0. 147.6
 120.9 28.4 136.7
 120.9 37.8 125.9
 120.9 37.8 108.
 120.9 37.8 90.7
 120.9 28.4 74.8
 120.9 0. 74.8
 7. 6.
 120.9 0. 147.6
 120.9 28.4 136.7
 120.9 37.8 125.9
 120.9 37.8 108.
 120.9 37.8 90.7
 120.9 28.4 74.8
 120.9 0. 74.8
 133. 0. 148.9
 133. 29.2 148.9
 133. 38.9 129.9
 133. 38.9 110.8
 133. 38.9 91.8
 133. 29.2 72.8
 133. 0. 72.8
 175.3 12.1 148.9
 175.3 29.2 148.9
 175.3 38.9 129.9
 175.3 38.9 110.8
 175.3 38.9 91.8

175.3	29.2	72.8
175.3	0.	72.8
209.3	21.9	148.9
209.3	29.2	148.9
209.3	38.9	129.9
209.3	38.9	110.8
209.3	38.9	91.8
209.3	29.2	72.8
209.3	0.	72.8
222.3	22.7	148.9
222.3	29.2	148.9
222.3	38.9	129.9
222.3	38.9	110.8
222.3	38.9	91.8
222.3	29.2	72.8
222.3	0.	72.8
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
271.	0.	72.8
6.	4.	
271.	22.7	148.9
271.	29.2	148.9
271.	38.9	129.9
271.	38.9	110.8
271.	38.9	91.8
271.	29.2	72.8
300.	22.7	148.9
300.	29.2	148.9
300.	38.9	129.9
300.	38.9	110.8
300.	38.9	91.8
300.	38.9	85.
376.6	17.8	148.9
376.6	29.2	148.9
376.6	38.9	129.9
376.6	38.9	110.8
376.6	38.9	91.8
376.6	38.9	85.
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	74.4
7.	5.	
391.7	15.7	147.3
391.7	28.	147.3
391.7	37.3	129.
391.7	37.3	110.8
391.7	37.3	92.6
391.7	28.	74.4
391.7	0.	74.4
445.7	7.871745	143.46
445.7	24.5	143.46
445.7	32.7	127.2
445.7	32.7	110.8

ORIGINAL PAGE IS
OF POOR QUALITY

445.7	32.7	94.4
445.7	24.5	77.8
445.7	0.	77.8
500.	0.	139.6
500.	21.	139.6
500.	28.	125.4
500.	28.	110.8
500.	28.	96.2
500.	21.	81.3
500.	0.	81.3
600.	0.	131.
600.	13.5	131.
600.	18.	120.9
600.	18.	110.8
600.	18.	100.4
600.	13.5	89.9
600.	0.	89.9
1000.	0.	131.
1000.	13.5	131.
1000.	18.	120.9
1000.	18.	110.8
1000.	18.	100.4
1000.	13.5	89.9
1000.	0.	89.9
7.	10.	
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
133.	0.	148.9
175.3	0.	165.9
175.3	8.1	165.9
175.3	11.7	163.6
175.3	12.1	161.4
175.3	12.1	157.4
175.3	12.1	153.8
175.3	12.1	148.9
209.3	0.	179.7
209.3	14.6	179.7
209.3	21.1	175.5
209.3	22.	171.6
209.3	22.	164.3
209.3	20.2	157.8
209.3	21.9	148.9
222.3	0.	181.3
222.3	19.6	181.3
222.3	22.7	181.3
222.3	22.7	174.8
222.3	22.7	166.4
222.3	22.7	158.9
222.3	22.7	148.9
271.	0.	189.2
271.	19.6	189.2
271.	22.7	189.2
271.	22.7	181.1
271.	22.7	170.7
271.	22.7	161.4
271.	22.7	148.9

300.	0.	193.8
300.	19.6	193.8
300.	22.7	193.8
300.	22.7	184.8
300.	22.7	173.3
300.	22.7	148.9
348.6	0.	196.4
348.6	16.9	196.4
348.6	19.5911	196.4
348.6	19.5911	186.9
348.6	19.5911	174.6
348.6	19.5911	163.6
348.6	19.5911	148.9
376.6	0.	188.1
376.6	15.3	188.1
376.6	17.8	188.1
376.6	17.8	180.3
376.6	17.8	170.1
376.6	17.8	161.0
376.6	17.8	148.9
391.7	0.	182.9
391.7	13.5	182.9
391.7	15.7	182.9
391.7	15.7	175.8
391.7	15.7	166.5
391.7	15.7	158.3
391.7	15.7	147.3
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
500.	0.	139.6
	7.0	4.0
36.	0.	95.9
36.	0.	95.9
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
36.0000	-0.0000	95.9000
58.8000	-0.0000	82.3000
58.8	-16.9	82.3
58.8000	-22.5000	86.4000
58.8000	-22.5000	96.2000
58.8000	-22.5000	106.0000
58.8	-16.9	108.1
58.8000	-0.0000	110.2000
81.5000	-0.0000	78.1000
81.5	-22.1	78.1
81.5000	-29.5000	85.0000
81.5000	-29.5000	99.0000
81.5000	-29.5000	113.0000
81.5	-22.1	116.4
81.5000	-0.0000	119.9000
120.9000	-0.0000	74.8000
120.9	-28.4	74.8
120.9000	-37.8000	90.7000

120.9000	-37.8000	108.
120.9000	-37.8000	125.9000
120.9	-28.4	136.7
120.9000	-0.0000	147.6000
	7.0	6.
120.9000	-0.0000	74.8000
120.9000	-28.4000	74.8000
120.9000	-37.8000	90.7000
120.9000	-37.8000	108.
120.9000	-37.8000	125.9000
120.9000	-28.4000	136.7000
120.9000	-0.0000	147.6000
133.0000	-0.0000	72.8000
133.0000	-29.2000	72.8000
133.0000	-38.9000	91.8000
133.0000	-38.9000	110.8000
133.0000	-38.9000	129.9000
133.0000	-29.2000	148.9000
133.0000	-0.0000	148.9000
175.3000	-0.0000	72.8000
175.3000	-29.2000	72.8000
175.3000	-38.9000	91.8000
175.3000	-38.9000	110.8000
175.3000	-38.9000	129.9000
175.3000	-29.2000	148.9000
175.3000	-12.1000	148.9000
209.3000	-0.0000	72.8000
209.3000	-29.2000	72.8000
209.3000	-38.9000	91.8000
209.3000	-38.9000	110.8000
209.3000	-38.9000	129.9000
209.3000	-29.2000	148.9000
209.3000	-21.9000	148.9000
222.3000	-0.0000	72.8000
222.3000	-29.2000	72.8000
222.3000	-38.9000	91.8000
222.3000	-38.9000	110.8000
222.3000	-38.9000	129.9000
222.3000	-29.2000	148.9000
222.3000	-22.7000	148.9000
271.0000	-0.0000	72.8000
271.0000	-29.2000	72.8000
271.0000	-38.9000	91.8000
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.	-22.7	148.9000
	6.	4.
271.0000	-29.2000	72.8
271.0000	-38.9000	91.8
271.0000	-38.9000	110.8000
271.0000	-38.9000	129.9000
271.0000	-29.2000	148.9000
271.0000	-22.7000	148.9000
300.	-38.9	85.
300.	-38.9	91.8
300.	-38.9	110.8
300.	-38.9	129.9
300.	-29.2	148.9
300.	-22.7	148.9

376.6	-38.9	85.
376.6	-38.9	91.8
376.6	-38.9	110.8
376.6	-38.9	129.9
376.6	-29.2	148.9
376.6	-17.8	148.9
391.7	-28.	74.4
391.7	-37.3	92.6
391.7	-37.3	110.8
391.7	-37.3	129.
391.7	-28.	147.3
391.7	-15.7	147.3
7.	5.	
391.7000	-0.0000	74.4000
391.7000	-28.0000	74.4000
391.7000	-37.3000	92.6000
391.7000	-37.3000	110.8000
391.7000	-37.3000	129.0000
391.7000	-28.0000	147.3000
391.7000	-15.7000	147.3000
445.7000	-0.0000	77.8000
445.7000	-24.5000	77.8000
445.7000	-32.7000	94.4000
445.7000	-32.7000	110.8000
445.7000	-32.7000	127.2000
445.7000	-24.5000	143.4600
445.7000-7.871745		143.4600
500.0000	-0.0000	81.3000
500.0000	-21.0000	81.3000
500.0000	-28.0000	96.2000
500.0000	-28.0000	110.8000
500.0000	-28.0000	125.4000
500.0000	-21.0000	139.6000
500.0000	-0.0000	139.6000
600.0000	-0.0000	89.9000
600.0000	-13.5000	89.9000
600.0000	-18.0000	100.4000
600.0000	-18.0000	110.8000
600.0000	-18.0000	120.9000
600.0000	-13.5000	131.0000
600.0000	-0.0000	131.0000
1000.0000	-0.0000	89.9000
1000.0000	-13.5000	89.9000
1000.0000	-18.0000	100.4000
1000.0000	-18.0000	110.8000
1000.0000	-18.0000	120.9000
1000.0000	-13.5000	131.0000
1000.0000	-0.0000	131.0000
7.0	10.0	
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
133.0000	-0.0000	148.9000
175.3000	-12.1000	148.9000
175.3000	-12.1000	153.8000
175.3000	-12.1000	157.4000
175.3000	-12.1000	161.4000

175.3000	-11.7000	163.6000
175.3000	-5.1000	165.9000
175.3000	-0.0000	165.9000
209.3000	-21.9000	148.9000
209.3000	-20.2000	157.8000
209.3000	-22.0000	164.3000
209.3000	-22.0000	171.6000
209.3000	-21.1000	175.5000
209.3000	-14.6000	179.7000
209.3000	-0.0000	179.7000
222.3000	-22.7000	148.9000
222.3000	-22.7000	158.9000
222.3000	-22.7000	166.4000
222.3000	-22.7000	174.8000
222.3000	-22.7000	181.3000
222.3000	-19.6000	181.3000
222.3000	-0.0000	181.3000
271.0000	-22.7000	148.9000
271.0000	-22.7000	161.4000
271.0000	-22.7000	170.7000
271.0000	-22.7000	181.1000
271.0000	-22.7000	189.2000
271.0000	-19.6000	189.2000
271.0000	-0.0000	189.2000
300.0000	-22.7000	148.9000
300.0000	-22.7000	163.0000
300.0000	-22.7000	173.3000
300.0000	-22.7000	184.8000
300.0000	-22.7000	193.8000
300.0000	-19.6000	193.8000
300.0000	-0.0000	193.8000
348.6001	-19.5911	148.9000
348.6001	-19.5911	163.6000
348.6001	-19.5911	174.6000
348.6001	-19.5911	186.9000
348.6001	-19.5911	196.4000
348.6001	-16.9000	196.4000
348.6001	-0.0000	196.4000
376.6001	-17.8000	148.9000
376.6001	-17.8000	161.0000
376.6001	-17.8000	170.1000
376.6001	-17.8000	180.3000
376.6001	-17.8000	188.1000
376.6001	-15.3000	188.1000
376.6001	-0.0000	188.1000
391.7000	-15.7000	147.3000
391.7000	-15.7000	158.3000
391.7000	-15.7000	166.5000
391.7000	-15.7000	175.8000
391.7000	-15.7000	182.9000
391.7000	-13.5000	182.9000
391.7000	-0.0000	182.9000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6000
500.	-0.0000	139.6
500.	-0.0000	139.6
500.	-0.0000	139.6000
500.	-0.0000	139.6000

17. 10.

391.17400	57.08647	67.24026
369.73042	56.36848	73.59626
348.11788	55.67416	79.74264
326.17203	55.19565	83.97866
309.46237	55.08731	84.93768
298.21946	55.16361	84.26228
289.73515	55.33131	82.77772
284.05489	55.55556	80.79251
281.32157	55.87912	77.92827
284.16805	56.20197	75.07025
289.57370	56.42300	73.06931
297.67233	56.65164	71.08961
303.49333	56.85676	69.27374
324.81283	57.01911	67.83657
346.80632	57.01725	67.85307
369.01630	56.93522	68.57924
391.17400	57.08647	67.24026
389.54160	80.12214	70.00121
368.80529	79.42783	76.14757
347.90560	78.75641	82.09122
326.68364	78.29368	86.18752
310.52507	78.18892	87.11492
299.65298	78.26270	86.46179
291.44849	78.42487	85.02619
285.95560	78.64173	83.10646
283.31244	78.95461	80.33670
286.06502	79.26681	77.57294
291.29238	79.48539	75.63800
299.12390	79.70165	73.72359
309.58799	79.90001	71.96761
325.36922	80.05700	70.57785
346.63730	80.05520	70.59381
368.11473	79.97587	71.29602
389.54160	80.12214	70.00121
387.90921	103.15781	72.76215
367.88017	102.48718	78.69388
347.69332	101.83866	84.43980
327.19520	101.39171	88.39638
311.58777	101.29053	89.29215
301.08651	101.36179	88.66130
293.16185	101.51843	87.27467
287.85631	101.72789	85.42042
285.30330	102.03010	82.74512
287.96200	102.33165	80.07563
293.01107	102.54278	78.20669
300.57596	102.75166	76.35757
310.68265	102.94325	74.66149
325.92561	103.09489	73.31912
346.46829	103.09315	73.33454
367.21316	103.01653	74.01280
387.90921	103.15781	72.76215
386.27631	126.19348	75.52310
366.95505	125.54653	81.25018
347.48105	124.92092	86.78838
327.70676	124.48975	90.60525
312.65046	124.39213	91.46938
302.52063	124.46033	90.86081
294.87521	124.61199	89.52314
289.75702	124.81405	87.73437
287.29416	125.10559	85.15354

289.85898	125.39650	82.57832
294.72975	125.60016	80.77537
302.02703	125.80167	78.99155
311.77731	125.98650	77.35536
326.48201	126.13278	76.06040
346.29927	126.13110	76.07527
366.31159	126.05719	76.72958
386.27681	126.19348	75.52310
389.64442	149.22915	78.28404
366.02993	148.60588	83.80149
347.26877	148.00317	89.13696
328.21833	147.58778	92.81411
313.71316	147.49376	93.64661
303.95355	147.55997	93.06032
296.58057	147.70555	91.77162
291.65773	147.90022	90.04832
289.28503	148.18108	87.56196
291.75596	148.46134	85.08101
296.44843	148.65755	83.34406
303.47860	148.85168	81.62554
312.87197	149.02975	80.04924
327.03840	149.17067	78.80168
346.13025	149.16906	78.81601
365.41002	149.09785	79.44636
389.64442	149.22915	78.28404
383.01202	172.26482	81.04499
365.10481	171.66523	86.35279
347.05650	171.03542	91.48554
328.72989	170.68582	95.02297
314.77586	170.59535	95.82384
305.38707	170.65906	95.25983
298.30193	170.79911	94.02009
293.55844	170.98638	92.36227
291.27589	171.25657	89.97030
293.65294	171.52618	87.58370
298.16712	171.71494	85.91274
304.93017	171.90169	84.25952
313.96662	172.07299	82.74311
327.59479	172.20857	81.54296
345.96123	172.20701	81.55674
364.50846	172.13851	82.16315
383.01202	172.26482	81.04499
381.37963	195.30049	83.80593
364.17968	194.72458	88.90410
346.89422	194.16767	93.83412
329.24145	193.78385	97.23184
315.83855	193.69696	98.00108
306.82059	193.75815	97.45934
300.01529	193.89267	96.26856
295.45916	194.07254	94.67622
293.26676	194.33207	92.37881
295.54997	194.59103	93.08639
299.88580	194.77233	88.48143
306.38173	194.95171	86.89350
315.06128	195.11624	85.43699
328.15119	195.24646	84.28423
345.79222	195.24496	84.29747
363.60683	195.17917	84.87993
381.37963	195.30049	83.80593
379.74723	218.33616	86.56688

363.25456	217.78393	91.45540
346.63194	217.24992	96.18270
329.75301	216.88189	99.44070
316.90125	216.79856	100.17831
308.25411	216.85724	99.65885
301.72865	216.98623	98.51704
297.35987	217.15871	96.99018
295.25762	217.40756	94.78723
297.44690	217.65587	92.58908
301.60449	217.82972	91.05012
307.83330	218.00172	89.52748
316.15594	218.15948	88.13086
328.70756	218.28435	87.02551
345.62320	218.28291	87.03820
362.70532	218.21982	87.59671
379.74723	218.33616	86.56688
378.11484	241.37183	89.32783
362.32944	240.84328	94.00671
346.41967	240.33217	98.53128
330.26457	239.97992	101.64957
317.96395	239.90017	102.35554
309.68763	239.95634	101.85835
303.44201	240.07979	100.73551
299.26058	240.24487	99.30413
297.24848	240.48305	97.19566
299.34388	240.72071	95.09177
303.32317	240.88710	93.61880
309.28487	241.05173	92.16147
317.25060	241.20273	90.82474
329.26397	241.32224	89.76679
345.45418	241.32087	89.77894
361.80375	241.26048	90.31349
378.11484	241.37183	89.32783
376.48244	264.40750	92.08877
361.40432	263.90263	96.55802
346.20739	263.41443	100.87986
330.77613	263.07796	103.85843
319.02664	263.00178	104.53277
311.12115	263.05543	104.05786
305.15537	263.17335	103.01399
301.16129	263.33103	101.61808
299.23935	263.55854	99.60408
301.24085	263.78555	97.59446
305.04186	263.94449	96.18749
310.73643	264.10174	94.79545
318.34526	264.24598	93.51862
329.82037	264.36013	92.50807
345.28517	264.35882	92.51967
360.90218	264.30114	93.03028
376.48244	264.40750	92.08877
	17.0	10.0
391.17	-57.09	67.24
369.02	-56.94	68.58
346.81	-57.02	57.85
324.81	-57.02	67.84
308.49	-56.86	69.27
297.67	-56.65	71.09
289.57	-56.43	73.07
284.17	-56.20	75.07
281.32	-55.88	77.93

ORIGINAL PAPER
OF POOR QUALITY

284.05	-55.56	80.79
289.74	-55.33	82.78
298.22	-55.16	84.26
309.46	-55.09	84.94
326.17	-55.20	83.98
348.12	-55.67	79.74
369.73	-56.37	73.50
391.17	-57.09	67.24
389.54	-80.12	70.00
368.11	-79.98	71.30
346.64	-80.06	70.59
325.37	-80.06	70.58
309.59	-79.90	71.97
299.12	-79.70	73.72
291.27	-79.49	75.64
286.06	-79.27	77.57
283.31	-78.95	80.34
285.96	-78.64	83.11
291.45	-78.42	85.03
299.65	-78.26	86.46
310.53	-78.19	87.11
326.68	-78.29	86.19
347.91	-78.76	82.09
368.81	-79.43	76.15
389.54	-80.12	70.00
387.91	-103.16	72.76
367.21	-103.02	74.01
346.47	-103.09	73.33
325.93	-103.09	73.32
310.68	-102.94	74.66
300.58	-102.75	76.36
293.01	-102.54	78.21
287.96	-102.33	80.08
285.30	-102.03	82.75
267.86	-101.73	85.42
293.16	-101.52	87.27
301.09	-101.36	88.66
311.59	-101.29	89.29
327.20	-101.39	88.40
347.69	-101.84	84.44
367.88	-102.49	72.70
387.91	-103.16	72.76
386.28	-126.19	75.52
366.31	-126.06	76.73
346.30	-126.13	76.08
326.48	-126.13	76.06
311.78	-125.99	77.36
302.03	-125.80	78.99
294.73	-125.60	80.78
289.86	-125.40	82.58
287.29	-125.11	85.15
289.76	-124.81	87.73
294.88	-124.61	89.52
302.52	-124.46	90.86
312.65	-124.39	91.47
327.71	-124.49	90.61
347.48	-124.92	86.79
366.96	-125.55	81.25
386.28	-126.19	75.52
384.64	-149.23	78.28

365.41	-149.10	79.45
346.13	-149.17	78.82
327.04	-149.17	78.80
312.87	-149.03	80.05
303.48	-148.85	81.63
296.45	-148.66	83.34
291.76	-148.46	85.08
289.28	-148.18	87.56
291.66	-147.90	90.05
296.59	-147.71	91.77
303.95	-147.56	93.06
313.71	-147.49	93.65
328.22	-147.59	92.81
347.27	-148.00	89.14
366.03	-148.61	83.80
384.64	-149.23	73.28
383.01	-172.26	81.04
364.51	-172.14	82.16
345.96	-172.21	81.56
327.59	-172.21	81.54
313.97	-172.37	82.74
304.93	-171.90	84.26
298.17	-171.71	85.91
293.65	-171.53	87.58
291.28	-171.26	89.97
293.56	-170.99	92.36
298.30	-170.80	94.02
305.39	-170.66	95.26
314.78	-170.60	95.82
328.73	-170.69	95.02
347.06	-171.09	91.49
365.10	-171.67	86.35
383.01	-172.26	81.04
381.38	-195.30	83.81
363.61	-195.18	84.88
345.79	-195.24	84.30
328.15	-195.25	84.28
315.06	-195.12	85.44
306.38	-194.95	86.89
299.89	-194.77	88.48
295.55	-194.59	90.09
293.27	-194.33	92.38
295.46	-194.07	94.68
300.02	-193.89	96.27
306.82	-193.76	97.46
315.84	-193.70	98.00
329.24	-193.78	97.23
346.84	-194.17	93.83
364.18	-194.72	88.90
381.38	-195.30	83.81
379.75	-218.34	86.57
362.71	-218.22	87.60
345.62	-218.28	87.04
328.71	-218.28	87.03
316.16	-218.16	88.13
307.63	-218.00	89.53
301.60	-217.83	91.05
297.45	-217.66	92.59
295.26	-217.41	94.79
297.36	-217.16	96.99

301.73	-216.99	98.52
308.25	-216.86	99.66
316.90	-216.80	100.18
329.75	-216.88	99.44
346.63	-217.25	96.18
363.25	-217.78	91.46
379.75	-218.34	86.57
378.11	-241.37	89.33
361.80	-241.26	90.31
345.45	-241.32	89.78
329.26	-241.32	89.77
317.25	-241.20	90.82
309.28	-241.05	92.16
303.32	-240.89	93.62
299.34	-240.72	95.09
297.25	-240.48	97.20
299.26	-240.24	99.30
303.44	-240.08	100.77
309.69	-239.96	101.86
317.96	-239.90	102.36
330.26	-239.98	101.65
346.42	-240.33	98.53
362.33	-240.84	94.01
378.11	-241.37	89.33
376.48	-264.41	92.39
360.90	-264.30	93.03
345.29	-264.36	92.52
329.82	-264.36	92.51
318.35	-264.25	93.52
310.74	-264.10	94.80
305.04	-263.94	96.19
301.24	-263.79	97.59
299.24	-263.56	99.60
301.16	-263.33	101.62
305.16	-263.17	103.01
311.12	-263.06	104.06
319.03	-263.00	104.53
330.78	-263.08	103.86
346.21	-263.41	100.88
361.40	-263.90	96.56
376.48	-264.41	92.09

8.	2.	
271.	0.	72.8
284.09	0.	68.64
289.67	0.	67.16
297.92	0.	65.97
308.87	0.	65.2
325.25	0.	65.32
347.14	0.	67.44
391.7	0.	74.4
271.	29.2	72.8
284.09	29.2	68.64
289.67	29.2	67.16
297.92	29.2	65.97
308.87	29.2	65.2
325.25	29.2	65.32
347.14	29.2	67.44
391.7	28.	74.4
	8.0	2.0
391.7	-0.0000	74.4

UP VALUES FROM RNOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.240	0.301	0.352	0.423	0.483	0.544	0.603	0.664	0.727	0.787	0.848	0.909	0.970
0.0	-0.81681	-0.81319	-0.82838	-0.82423	-0.82120	-0.81892	-0.81670	-0.81428	-0.81167	-0.81235	-0.81167	-0.81036	-0.80972
15.0	-0.91556	-0.82603	-0.92458	-0.92166	-0.91949	-0.91770	-0.91622	-0.91493	-0.91356	-0.91282	-0.91203	-0.91161	-0.91099
30.0	-0.92715	-0.92527	-0.91945	-0.91729	-0.91552	-0.91452	-0.91352	-0.91269	-0.91199	-0.91166	-0.91139	-0.91061	-0.90972
45.0	-0.91580	-0.91577	-0.91574	-0.91489	-0.91372	-0.91283	-0.91163	-0.90995	-0.90897	-0.90822	-0.90753	-0.90631	-0.90526
60.0	-0.91135	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134	-0.91134
75.0	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111	-0.90111
90.0	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094	-0.90094
105.0	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082	-0.90082
120.0	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074	-0.90074
135.0	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064	-0.90064
150.0	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054	-0.90054
165.0	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284	-0.90284
180.0	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169	-0.90169
195.0	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249	-0.90249
210.0	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115	-0.90115
225.0	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016	-0.90016
240.0	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032	-0.90032
255.0	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051	-0.90051
270.0	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029	-0.90029
285.0	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130	-0.90130
300.0	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127	-0.90127
315.0	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274	-0.90274
330.0	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265	-0.90265
345.0	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214	-0.90214

Flight Condition 5

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

$X/R = 0.248$	0.361	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI											
0.0	-0.06619	-0.01786	-0.01365	-0.02518	-0.01222	-0.01432	-0.01628	-0.01456	-0.01216	-0.01073	-0.00964
15.0	-0.01526	-0.01056	-0.01259	-0.01256	-0.01135	-0.01135	-0.01159	-0.01159	-0.01162	-0.01162	-0.00875
30.0	-0.01524	-0.01208	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01472	-0.01472	-0.00890
45.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
60.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
75.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
90.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
105.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
120.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
135.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
150.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
165.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
180.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
195.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
210.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
225.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
240.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
255.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
270.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
285.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
300.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
315.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
330.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890
345.0	-0.01524	-0.01435	-0.01531	-0.01531	-0.01435	-0.01435	-0.01459	-0.01459	-0.01476	-0.01476	-0.00890

Flight Condition 6

(F) 6

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	0.248	0.161	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.788	0.908	0.978
0.0	-0.01496	-0.02565	-0.01931	-0.01683	-0.01172	-0.00947	-0.00784	-0.00658	-0.00558	-0.00454	-0.00354	-0.00223
15.0	-0.01802	-0.01803	-0.01321	-0.01053	-0.00793	-0.00593	-0.00419	-0.00308	-0.00244	-0.00178	-0.00110	-0.00065
30.0	-0.01820	-0.01821	-0.01362	-0.01062	-0.00721	-0.00516	-0.00336	-0.00231	-0.00156	-0.00105	-0.00063	-0.00035
45.0	-0.01842	-0.01842	-0.0137	-0.01068	-0.00712	-0.00502	-0.00321	-0.00221	-0.00145	-0.00097	-0.00061	-0.00035
60.0	-0.01866	-0.01866	-0.01372	-0.01074	-0.00707	-0.00502	-0.00316	-0.00212	-0.00135	-0.00091	-0.00061	-0.00035
75.0	-0.01892	-0.01892	-0.01377	-0.01079	-0.00702	-0.00502	-0.00316	-0.00215	-0.00135	-0.00091	-0.00061	-0.00035
90.0	-0.01916	-0.01916	-0.01382	-0.01084	-0.00707	-0.00506	-0.00321	-0.00221	-0.00135	-0.00091	-0.00061	-0.00035
105.0	-0.01939	-0.01939	-0.01388	-0.01089	-0.00712	-0.00511	-0.00326	-0.00226	-0.00135	-0.00091	-0.00061	-0.00035
120.0	-0.01961	-0.01961	-0.01394	-0.01094	-0.00717	-0.00516	-0.00331	-0.00231	-0.00135	-0.00091	-0.00061	-0.00035
135.0	-0.01984	-0.01984	-0.01399	-0.01099	-0.00722	-0.00521	-0.00336	-0.00236	-0.00135	-0.00091	-0.00061	-0.00035
150.0	-0.02006	-0.02006	-0.01405	-0.01104	-0.00727	-0.00526	-0.00341	-0.00241	-0.00135	-0.00091	-0.00061	-0.00035
165.0	-0.02028	-0.02028	-0.01411	-0.01109	-0.00732	-0.00531	-0.00346	-0.00246	-0.00135	-0.00091	-0.00061	-0.00035
180.0	-0.02050	-0.02050	-0.01417	-0.01114	-0.00737	-0.00536	-0.00351	-0.00251	-0.00135	-0.00091	-0.00061	-0.00035
195.0	-0.02072	-0.02072	-0.01423	-0.01119	-0.00742	-0.00541	-0.00356	-0.00256	-0.00135	-0.00091	-0.00061	-0.00035
210.0	-0.02094	-0.02094	-0.01429	-0.01124	-0.00747	-0.00546	-0.00361	-0.00261	-0.00135	-0.00091	-0.00061	-0.00035
225.0	-0.02116	-0.02116	-0.01435	-0.01129	-0.00752	-0.00551	-0.00366	-0.00266	-0.00135	-0.00091	-0.00061	-0.00035
240.0	-0.02138	-0.02138	-0.01441	-0.01134	-0.00757	-0.00556	-0.00371	-0.00271	-0.00135	-0.00091	-0.00061	-0.00035
255.0	-0.02160	-0.02160	-0.01447	-0.01139	-0.00762	-0.00561	-0.00376	-0.00276	-0.00135	-0.00091	-0.00061	-0.00035
270.0	-0.02182	-0.02182	-0.01453	-0.01144	-0.00767	-0.00566	-0.00381	-0.00281	-0.00135	-0.00091	-0.00061	-0.00035
285.0	-0.02204	-0.02204	-0.01459	-0.01149	-0.00772	-0.00571	-0.00386	-0.00286	-0.00135	-0.00091	-0.00061	-0.00035
300.0	-0.02226	-0.02226	-0.01465	-0.01154	-0.00777	-0.00576	-0.00391	-0.00291	-0.00135	-0.00091	-0.00061	-0.00035
315.0	-0.02248	-0.02248	-0.01471	-0.01159	-0.00782	-0.00581	-0.00396	-0.00296	-0.00135	-0.00091	-0.00061	-0.00035
330.0	-0.02270	-0.02270	-0.01477	-0.01164	-0.00787	-0.00586	-0.00401	-0.00301	-0.00135	-0.00091	-0.00061	-0.00035
345.0	-0.02292	-0.02292	-0.01483	-0.01169	-0.00792	-0.00591	-0.00406	-0.00306	-0.00135	-0.00091	-0.00061	-0.00035
360.0	-0.02314	-0.02314	-0.01489	-0.01174	-0.00797	-0.00596	-0.00411	-0.00311	-0.00135	-0.00091	-0.00061	-0.00035
375.0	-0.02336	-0.02336	-0.01495	-0.01179	-0.00802	-0.00601	-0.00416	-0.00316	-0.00135	-0.00091	-0.00061	-0.00035
390.0	-0.02358	-0.02358	-0.01501	-0.01184	-0.00807	-0.00606	-0.00421	-0.00321	-0.00135	-0.00091	-0.00061	-0.00035
405.0	-0.02380	-0.02380	-0.01507	-0.01188	-0.00812	-0.00611	-0.00426	-0.00326	-0.00135	-0.00091	-0.00061	-0.00035
420.0	-0.02402	-0.02402	-0.01513	-0.01193	-0.00817	-0.00616	-0.00431	-0.00331	-0.00135	-0.00091	-0.00061	-0.00035
435.0	-0.02424	-0.02424	-0.01519	-0.01198	-0.00822	-0.00621	-0.00436	-0.00336	-0.00135	-0.00091	-0.00061	-0.00035
450.0	-0.02446	-0.02446	-0.01525	-0.01203	-0.00827	-0.00626	-0.00441	-0.00341	-0.00135	-0.00091	-0.00061	-0.00035
465.0	-0.02468	-0.02468	-0.01531	-0.01208	-0.00832	-0.00631	-0.00446	-0.00346	-0.00135	-0.00091	-0.00061	-0.00035
480.0	-0.02490	-0.02490	-0.01537	-0.01213	-0.00837	-0.00636	-0.00451	-0.00351	-0.00135	-0.00091	-0.00061	-0.00035
495.0	-0.02512	-0.02512	-0.01543	-0.01218	-0.00842	-0.00641	-0.00456	-0.00356	-0.00135	-0.00091	-0.00061	-0.00035
510.0	-0.02534	-0.02534	-0.01549	-0.01223	-0.00847	-0.00646	-0.00461	-0.00361	-0.00135	-0.00091	-0.00061	-0.00035
525.0	-0.02556	-0.02556	-0.01555	-0.01228	-0.00852	-0.00651	-0.00466	-0.00366	-0.00135	-0.00091	-0.00061	-0.00035
540.0	-0.02578	-0.02578	-0.01561	-0.01233	-0.00857	-0.00656	-0.00471	-0.00371	-0.00135	-0.00091	-0.00061	-0.00035
555.0	-0.02599	-0.02599	-0.01567	-0.01238	-0.00862	-0.00661	-0.00476	-0.00376	-0.00135	-0.00091	-0.00061	-0.00035
570.0	-0.02621	-0.02621	-0.01573	-0.01243	-0.00867	-0.00666	-0.00481	-0.00381	-0.00135	-0.00091	-0.00061	-0.00035
585.0	-0.02643	-0.02643	-0.01579	-0.01248	-0.00872	-0.00671	-0.00486	-0.00386	-0.00135	-0.00091	-0.00061	-0.00035
600.0	-0.02665	-0.02665	-0.01585	-0.01253	-0.00877	-0.00676	-0.00491	-0.00391	-0.00135	-0.00091	-0.00061	-0.00035
615.0	-0.02687	-0.02687	-0.01591	-0.01258	-0.00882	-0.00681	-0.00496	-0.00396	-0.00135	-0.00091	-0.00061	-0.00035
630.0	-0.02709	-0.02709	-0.01597	-0.01263	-0.00887	-0.00686	-0.00501	-0.00401	-0.00135	-0.00091	-0.00061	-0.00035
645.0	-0.02731	-0.02731	-0.01603	-0.01268	-0.00892	-0.00691	-0.00506	-0.00406	-0.00135	-0.00091	-0.00061	-0.00035
660.0	-0.02753	-0.02753	-0.01609	-0.01273	-0.00897	-0.00696	-0.00511	-0.00411	-0.00135	-0.00091	-0.00061	-0.00035
675.0	-0.02775	-0.02775	-0.01615	-0.01278	-0.00902	-0.00701	-0.00516	-0.00416	-0.00135	-0.00091	-0.00061	-0.00035
690.0	-0.02797	-0.02797	-0.01621	-0.01283	-0.00907	-0.00706	-0.00521	-0.00421	-0.00135	-0.00091	-0.00061	-0.00035
705.0	-0.02819	-0.02819	-0.01627	-0.01288	-0.00912	-0.00711	-0.00526	-0.00426	-0.00135	-0.00091	-0.00061	-0.00035
720.0	-0.02841	-0.02841	-0.01633	-0.01293	-0.00917	-0.00716	-0.00531	-0.00431	-0.00135	-0.00091	-0.00061	-0.00035
735.0	-0.02863	-0.02863	-0.01639	-0.01298	-0.00922	-0.00721	-0.00536	-0.00436	-0.00135	-0.00091	-0.00061	-0.00035
750.0	-0.02885	-0.02885	-0.01645	-0.01303	-0.00927	-0.00726	-0.00541	-0.00441	-0.00135	-0.00091	-0.00061	-0.00035
765.0	-0.02907	-0.02907	-0.01651	-0.01308	-0.00932	-0.00731	-0.00546	-0.00446	-0.00135	-0.00091	-0.00061	-0.00035
780.0	-0.02929	-0.02929	-0.01657	-0.01313	-0.00937	-0.00736	-0.00551	-0.00451	-0.00135	-0.00091	-0.00061	-0.00035
795.0	-0.02951	-0.02951	-0.01663	-0.01318	-0.00942	-0.00741	-0.00556	-0.00456	-0.00135	-0.00091	-0.00061	-0.00035
810.0	-0.02973	-0.02973	-0.01669	-0.01323	-0.00947	-0.00746	-0.00561	-0.00461	-0.00135	-0.00091	-0.00061	-0.00035
825.0	-0.02995	-0.02995	-0.01675	-0.01328	-0.00952	-0.00751	-0.00566	-0.00466	-0.00135	-0.00091	-0.00061	-0.00035
840.0	-0.03017	-0.03017	-0.01681	-0.01333	-0.00957	-0.00756	-0.00571	-0.00471	-0.00135	-0.00091	-0.00061	-0.00035
855.0	-0.03039	-0.03039	-0.01687	-0.01338	-0.00962	-0.00761	-0.00576	-0.00476	-0.00135	-0.00091	-0.00061	-0.00035
870.0	-0.03061	-0.03061	-0.01693	-0.01343	-0.00967	-0.00766	-0.00581	-0.00481	-0.00135	-0.00091	-0.00061	-0.00035
885.0	-0.03083	-0.03083	-0.01699	-0.01348	-0.00972	-0.00771	-0.00586	-0.00486	-0.00135	-0.00091	-0.00061	-0.00035
900.0	-0.03105	-0.03105	-0.01705	-0.01353	-0.00977	-0.00776	-0.00591	-0.00491	-0.00135	-0.00091	-0.00061	-0.00035
915.0	-0.03127	-0.03127	-0.01711	-0.01358	-0.00982	-0.00781	-0.00596	-0.00496	-0.00135	-0.00091	-0.00061	-0.00035
930.0	-0.03149	-0.03149	-0.01717	-0.01363	-0.00987	-0.00786	-0.00601	-0.00501	-0.00135	-0.00091	-0.00061	-0.00035
945.0	-0.03171	-0.03171	-0.01723	-0.01368	-0.00992	-0.00791	-0.00606	-0.00506	-0.00135	-0.00091	-0.00061	-0.00035
960.0	-0.03193	-0.03193	-0.01729	-0.01373	-0.00997	-0.00796	-0.00611	-0.00511	-0.00135	-0.00091	-0.00061	-0.00035
975.0	-0.03215	-0.03215	-0.01735	-0.01378	-0.01002	-0.00801	-0.00616	-0.00516	-0.00135	-0.00091	-0.00061	-0.00035
990.0	-0.03237	-0.03237	-0.01741	-0.01383	-0.01007	-0.00806	-0.00621	-0.00521	-0.00135	-0.00091	-0.00061	-0.00035
1005.0	-0.03259	-0.03259	-0.01747	-0.01388	-0.01012	-0.00811	-0.00626	-0.00526	-0.00135	-0.00091	-0.00061	-0.00035
1020.0	-0.03281	-0.03281	-0.01753	-0.01393	-0.01017	-0.00816	-0.00631	-0.00531	-0.00135	-0.00091	-0.00061</	

CHAPTER II OF POOR QUALITY

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

Flight Condition 8

UP VALUES FROM 2001 TO 2011 AT ALL ANNUAL STATIONS

X/R	0.248	0.381	0.483	0.564	0.605	0.466	0.727	0.787	0.848	0.989	0.977
Psi	-0.06166	-0.03818	-0.02123	-0.01422	-0.00921	-0.00443	-0.00207	-0.00097	-0.00043	-0.00017	-0.00005
15	-0.06223	-0.03845	-0.02143	-0.01442	-0.00921	-0.00443	-0.00213	-0.00095	-0.00045	-0.00018	-0.00006
45	-0.06240	-0.03852	-0.02150	-0.01450	-0.00925	-0.00445	-0.00215	-0.00096	-0.00046	-0.00019	-0.00007
90	-0.06248	-0.03856	-0.02153	-0.01452	-0.00926	-0.00446	-0.00216	-0.00097	-0.00047	-0.00020	-0.00008
135	-0.06250	-0.03857	-0.02154	-0.01453	-0.00927	-0.00447	-0.00217	-0.00098	-0.00048	-0.00021	-0.00008
180	-0.06248	-0.03856	-0.02153	-0.01452	-0.00926	-0.00446	-0.00216	-0.00097	-0.00047	-0.00020	-0.00008
225	-0.06240	-0.03852	-0.02150	-0.01450	-0.00925	-0.00445	-0.00215	-0.00096	-0.00046	-0.00019	-0.00007
270	-0.06223	-0.03845	-0.02143	-0.01442	-0.00921	-0.00443	-0.00213	-0.00095	-0.00045	-0.00018	-0.00006
315	-0.06206	-0.03835	-0.02133	-0.01432	-0.00911	-0.00433	-0.00203	-0.00091	-0.00041	-0.00015	-0.00005
360	-0.06189	-0.03823	-0.02123	-0.01422	-0.00901	-0.00423	-0.00193	-0.00081	-0.00031	-0.00012	-0.00004
405	-0.06172	-0.03810	-0.02113	-0.01412	-0.00891	-0.00413	-0.00183	-0.00071	-0.00021	-0.00011	-0.00004
450	-0.06155	-0.03797	-0.02103	-0.01402	-0.00881	-0.00403	-0.00173	-0.00061	-0.00011	-0.00004	-0.00002
495	-0.06138	-0.03784	-0.02093	-0.01392	-0.00871	-0.00393	-0.00163	-0.00051	-0.00011	-0.00002	-0.00001
540	-0.06121	-0.03770	-0.02083	-0.01382	-0.00861	-0.00383	-0.00153	-0.00041	-0.00011	-0.00002	-0.00001
585	-0.06104	-0.03756	-0.02073	-0.01372	-0.00851	-0.00373	-0.00143	-0.00031	-0.00011	-0.00002	-0.00001
630	-0.06087	-0.03742	-0.02063	-0.01362	-0.00841	-0.00363	-0.00133	-0.00021	-0.00011	-0.00002	-0.00001
675	-0.06070	-0.03728	-0.02053	-0.01352	-0.00831	-0.00353	-0.00123	-0.00011	-0.00011	-0.00002	-0.00001
720	-0.06053	-0.03714	-0.02043	-0.01342	-0.00821	-0.00343	-0.00113	-0.00011	-0.00011	-0.00002	-0.00001
765	-0.06036	-0.03699	-0.02033	-0.01332	-0.00811	-0.00333	-0.00103	-0.00011	-0.00011	-0.00002	-0.00001
810	-0.06019	-0.03685	-0.02023	-0.01322	-0.00801	-0.00323	-0.00093	-0.00011	-0.00011	-0.00002	-0.00001
855	-0.06002	-0.03670	-0.02013	-0.01312	-0.00791	-0.00313	-0.00083	-0.00011	-0.00011	-0.00002	-0.00001
900	-0.05985	-0.03656	-0.02003	-0.01302	-0.00781	-0.00303	-0.00073	-0.00011	-0.00011	-0.00002	-0.00001
945	-0.05968	-0.03641	-0.01993	-0.01292	-0.00771	-0.00293	-0.00063	-0.00011	-0.00011	-0.00002	-0.00001
990	-0.05951	-0.03627	-0.01983	-0.01282	-0.00761	-0.00283	-0.00053	-0.00011	-0.00011	-0.00002	-0.00001
1035	-0.05934	-0.03612	-0.01973	-0.01272	-0.00751	-0.00273	-0.00043	-0.00011	-0.00011	-0.00002	-0.00001
1080	-0.05917	-0.03598	-0.01963	-0.01262	-0.00741	-0.00263	-0.00033	-0.00011	-0.00011	-0.00002	-0.00001
1125	-0.05900	-0.03583	-0.01953	-0.01252	-0.00731	-0.00253	-0.00023	-0.00011	-0.00011	-0.00002	-0.00001
1170	-0.05883	-0.03568	-0.01943	-0.01242	-0.00721	-0.00243	-0.00013	-0.00011	-0.00011	-0.00002	-0.00001
1215	-0.05866	-0.03553	-0.01933	-0.01232	-0.00711	-0.00233	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1260	-0.05849	-0.03538	-0.01923	-0.01222	-0.00701	-0.00223	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1305	-0.05832	-0.03523	-0.01913	-0.01212	-0.00691	-0.00213	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1350	-0.05815	-0.03508	-0.01903	-0.01202	-0.00681	-0.00203	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1395	-0.05798	-0.03493	-0.01893	-0.01192	-0.00671	-0.00193	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1440	-0.05781	-0.03478	-0.01883	-0.01182	-0.00661	-0.00183	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1485	-0.05764	-0.03463	-0.01873	-0.01172	-0.00651	-0.00173	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1530	-0.05747	-0.03448	-0.01863	-0.01162	-0.00641	-0.00163	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1575	-0.05730	-0.03433	-0.01853	-0.01152	-0.00631	-0.00153	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1620	-0.05713	-0.03418	-0.01843	-0.01142	-0.00621	-0.00143	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1665	-0.05696	-0.03403	-0.01833	-0.01132	-0.00611	-0.00133	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1710	-0.05679	-0.03388	-0.01823	-0.01122	-0.00601	-0.00123	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1755	-0.05662	-0.03373	-0.01813	-0.01112	-0.00591	-0.00113	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1800	-0.05645	-0.03358	-0.01803	-0.01102	-0.00581	-0.00103	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1845	-0.05628	-0.03343	-0.01793	-0.01092	-0.00571	-0.00093	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1890	-0.05611	-0.03328	-0.01783	-0.01082	-0.00561	-0.00083	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1935	-0.05594	-0.03313	-0.01773	-0.01072	-0.00551	-0.00073	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
1980	-0.05577	-0.03298	-0.01763	-0.01062	-0.00541	-0.00063	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2025	-0.05560	-0.03283	-0.01753	-0.01052	-0.00531	-0.00053	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2070	-0.05543	-0.03268	-0.01743	-0.01042	-0.00521	-0.00043	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2115	-0.05526	-0.03253	-0.01733	-0.01032	-0.00511	-0.00033	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2160	-0.05509	-0.03238	-0.01723	-0.01022	-0.00501	-0.00023	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2205	-0.05492	-0.03223	-0.01713	-0.01012	-0.00491	-0.00013	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2250	-0.05475	-0.03208	-0.01703	-0.01002	-0.00481	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2295	-0.05458	-0.03193	-0.01693	-0.00992	-0.00471	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2340	-0.05441	-0.03178	-0.01683	-0.00982	-0.00461	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2385	-0.05424	-0.03163	-0.01673	-0.00972	-0.00451	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2430	-0.05407	-0.03148	-0.01663	-0.00962	-0.00441	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2475	-0.05390	-0.03133	-0.01653	-0.00952	-0.00431	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2520	-0.05373	-0.03118	-0.01643	-0.00942	-0.00421	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2565	-0.05356	-0.03103	-0.01633	-0.00932	-0.00411	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2610	-0.05339	-0.03088	-0.01623	-0.00922	-0.00401	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2655	-0.05322	-0.03073	-0.01613	-0.00912	-0.00391	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2700	-0.05305	-0.03058	-0.01603	-0.00902	-0.00381	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2745	-0.05288	-0.03043	-0.01593	-0.00892	-0.00371	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2790	-0.05271	-0.03028	-0.01583	-0.00882	-0.00361	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2835	-0.05254	-0.03013	-0.01573	-0.00872	-0.00351	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2880	-0.05237	-0.02998	-0.01563	-0.00862	-0.00341	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2925	-0.05220	-0.02983	-0.01553	-0.00852	-0.00331	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
2970	-0.05203	-0.02968	-0.01543	-0.00842	-0.00321	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3015	-0.05186	-0.02953	-0.01533	-0.00832	-0.00311	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3060	-0.05169	-0.02938	-0.01523	-0.00822	-0.00301	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3105	-0.05152	-0.02923	-0.01513	-0.00812	-0.00291	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3150	-0.05135	-0.02908	-0.01503	-0.00802	-0.00281	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3195	-0.05118	-0.02893	-0.01493	-0.00792	-0.00271	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3240	-0.05101	-0.02878	-0.01483	-0.00782	-0.00261	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3285	-0.05084	-0.02863	-0.01473	-0.00772	-0.00251	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3330	-0.05067	-0.02848	-0.01463	-0.00762	-0.00241	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3375	-0.05050	-0.02833	-0.01453	-0.00752	-0.00231	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3420	-0.05033	-0.02818	-0.01443	-0.00742	-0.00221	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3465	-0.05016	-0.02803	-0.01433	-0.00732	-0.00211	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3510	-0.05000	-0.02788	-0.01423	-0.00722	-0.00201	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3555	-0.04983	-0.02773	-0.01413	-0.00712	-0.00191	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3600	-0.04966	-0.02758	-0.01403	-0.00702	-0.00181	-0.00003	-0.00003	-0.00011	-0.00011	-0.00002	-0.00001
3645	-0.04949	-0.02743	-0.01393	-0.006							

Flight Condition 9

CONTINUE PAGE 14
OF POOR QUALITY

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	X/R 0.240	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
6.0	-0.06023	-0.04837	-0.05936	-0.05282	-0.05814	-0.02469	-0.02216	-0.02014	-0.01839	-0.01679	-0.01526	-0.01393	-0.01279
15.6	-0.04443	-0.03673	-0.03083	-0.02605	-0.02213	-0.01771	-0.01450	-0.01173	-0.01076	-0.00968	-0.00868	-0.00769	-0.00657
30.6	-0.02427	-0.02119	-0.01773	-0.01450	-0.01203	-0.00913	-0.00613	-0.00397	-0.00314	-0.00213	-0.00123	-0.00065	-0.00023
45.0	-0.01103	-0.00851	-0.00612	-0.00402	-0.00269	-0.00162	-0.00097	-0.00046	-0.00023	-0.00012	-0.00042	-0.00021	-0.00012
60.0	-0.00519	-0.00351	-0.00212	-0.00126	-0.00065	-0.00027	-0.00012	-0.00005	-0.00002	-0.00001	-0.00005	-0.00003	-0.00001
75.0	-0.00264	-0.00165	-0.00092	-0.00052	-0.00034	-0.00019	-0.00007	-0.00002	-0.00001	-0.00001	-0.00004	-0.00001	-0.00001
93.0	-0.00149	-0.00083	-0.00048	-0.00028	-0.00016	-0.00007	-0.00003	-0.00001	-0.00001	-0.00001	-0.00004	-0.00001	-0.00001
105.0	-0.000739	-0.000498	-0.000235	-0.000126	-0.000068	-0.000032	-0.000012	-0.000005	-0.000002	-0.000001	-0.00001	-0.000003	-0.000001
123.0	-0.000355	-0.000192	-0.000113	-0.000058	-0.000032	-0.000014	-0.000006	-0.000003	-0.000001	-0.000001	-0.000002	-0.000001	-0.000001
135.0	-0.0001793	-0.0001205	-0.0000621	-0.0000314	-0.0000166	-0.0000076	-0.0000036	-0.0000015	-0.0000006	-0.0000003	-0.000001	-0.0000005	-0.0000003
150.0	-0.0001256	-0.0000621	-0.0000325	-0.0000165	-0.0000081	-0.0000041	-0.0000019	-0.0000007	-0.0000003	-0.0000001	-0.0000004	-0.0000002	-0.0000001
165.0	-0.000114	-0.0000503	-0.0000253	-0.0000122	-0.0000061	-0.0000033	-0.0000015	-0.0000006	-0.0000003	-0.0000001	-0.0000004	-0.0000002	-0.0000001
185.0	-0.0001159	-0.0000554	-0.0000282	-0.0000141	-0.0000074	-0.0000037	-0.0000017	-0.0000007	-0.0000003	-0.0000001	-0.0000005	-0.0000003	-0.0000001
195.0	-0.0001044	-0.0000513	-0.0000260	-0.0000130	-0.0000066	-0.0000030	-0.0000014	-0.0000006	-0.0000003	-0.0000001	-0.0000005	-0.0000003	-0.0000001
210.0	-0.0001227	-0.0000679	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
225.0	-0.0001227	-0.0000664	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
240.0	-0.0001227	-0.0000629	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
255.0	-0.0001227	-0.0000672	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
270.0	-0.0001227	-0.0000635	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
285.0	-0.0001227	-0.0000662	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
300.0	-0.0001227	-0.0000662	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
315.0	-0.0001227	-0.0000612	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
330.0	-0.0001227	-0.0000624	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002
345.0	-0.0001227	-0.0000636	-0.0000308	-0.0000168	-0.0000080	-0.0000042	-0.0000018	-0.0000008	-0.0000004	-0.0000002	-0.0000006	-0.0000004	-0.0000002

Flight Condition 10

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.248	0.381	0.362	0.423	0.483	0.544	0.465	0.666	0.727	0.787	0.848	0.909	0.970
P91	-0.01481	-0.02858	-0.02243	-0.01751	-0.01185	-0.0106	-0.01124	-0.01658	-0.00902	-0.00814	-0.00629	-0.00442	-0.00368
15.0	-0.02113	-0.02692	-0.01650	-0.01252	-0.00812	-0.00652	-0.00512	-0.00452	-0.00320	-0.00295	-0.00247	-0.00173	-0.00145
30.0	-0.01985	-0.02532	-0.01611	-0.01252	-0.00812	-0.00652	-0.00512	-0.00452	-0.00320	-0.00295	-0.00247	-0.00173	-0.00145
45.0	-0.01632	-0.01611	-0.01252	-0.00812	-0.00652	-0.00512	-0.00452	-0.00320	-0.00295	-0.00247	-0.00173	-0.00145	-0.00084
60.0	-0.01446	-0.01274	-0.01216	-0.00812	-0.00652	-0.00512	-0.00452	-0.00320	-0.00295	-0.00247	-0.00173	-0.00145	-0.00059
75.0	-0.01225	-0.01111	-0.00805	-0.00807	-0.00801	-0.00803	-0.00805	-0.00807	-0.00801	-0.00803	-0.00805	-0.00807	-0.00801
90.0	-0.00959	-0.00917	-0.00817	-0.00812	-0.00805	-0.00803	-0.00805	-0.00807	-0.00801	-0.00803	-0.00805	-0.00807	-0.00801
105.0	-0.00838	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805	-0.00805
120.0	-0.00718	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686	-0.00686
135.0	-0.00605	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568	-0.00568
150.0	-0.00502	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462	-0.00462
165.0	-0.00407	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374	-0.00374
180.0	-0.00324	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294	-0.00294
195.0	-0.00254	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224	-0.00224
210.0	-0.00205	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175	-0.00175
225.0	-0.00166	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136	-0.00136
240.0	-0.00136	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106
255.0	-0.00116	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086	-0.00086
270.0	-0.00102	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072	-0.00072
285.0	-0.00092	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062	-0.00062
300.0	-0.00085	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055	-0.00055
315.0	-0.00079	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049	-0.00049
330.0	-0.00073	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043	-0.00043
345.0	-0.00068	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039	-0.00039

Flight Condition 11

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	X/R 0.216	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
15	-0.34122	-0.33597	-0.32199	-0.31727	-0.31366	-0.30997	-0.30635	-0.30273	-0.30012	-0.29748	-0.29483	-0.29211	-0.28938
30	-0.33223	-0.32653	-0.32127	-0.3173	-0.31316	-0.30949	-0.30575	-0.30212	-0.30021	-0.29754	-0.29479	-0.29206	-0.28932
45	-0.31672	-0.31424	-0.31283	-0.3115	-0.30919	-0.30645	-0.30376	-0.30121	-0.29921	-0.29652	-0.29373	-0.29106	-0.28834
60	-0.30913	-0.30826	-0.30722	-0.30611	-0.30522	-0.30439	-0.30352	-0.30261	-0.30169	-0.30117	-0.30051	-0.29915	-0.29775
75	-0.30352	-0.30312	-0.30289	-0.30252	-0.30232	-0.30215	-0.30182	-0.30152	-0.30113	-0.30097	-0.30063	-0.30022	-0.29902
90	-0.30032	-0.30012	-0.30002	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001	-0.30001
105	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853	-0.29853
120	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716	-0.29716
135	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616	-0.29616
150	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553	-0.29553
165	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515	-0.29515
180	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
195	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
210	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
225	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
240	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
255	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
270	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
285	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
300	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
315	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
330	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
345	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495
360	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495	-0.29495

Flight Condition 12

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	G-240	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
15	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
45	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
90	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
135	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
180	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
225	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
270	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
315	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696
360	-0.04677	-0.12195	-0.22589	-0.32068	-0.41651	-0.51148	-0.59661	-0.67174	-0.73686	-0.79196	-0.83696	-0.87196	-0.90696

Flight Condition 13

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	X/R 0.248	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
0.0	-0.35924	-0.04840	-0.03803	-0.03008	-0.02424	-0.01980	-0.01644	-0.01388	-0.01186	-0.01023	-0.00880	-0.00752	-0.00638
15.0	-0.05452	-0.03517	-0.02797	-0.02243	-0.01816	-0.01471	-0.01193	-0.00967	-0.00779	-0.00621	-0.00481	-0.00360	-0.00256
30.0	-0.02110	-0.01764	-0.01399	-0.01086	-0.00821	-0.00602	-0.00436	-0.00317	-0.00235	-0.00181	-0.00162	-0.00115	-0.00095
45.0	-0.01065	-0.00801	-0.00566	-0.00387	-0.00273	-0.00206	-0.00170	-0.00147	-0.00130	-0.00115	-0.00101	-0.00088	-0.00076
60.0	-0.00498	-0.00282	-0.00147	-0.00087	-0.00072	-0.00071	-0.00070	-0.00067	-0.00062	-0.00056	-0.00049	-0.00042	-0.00037
75.0	-0.00136	0.00015	0.00070	0.00065	0.00043	0.00026	0.00011	0.00004	0.00000	-0.00001	-0.00002	-0.00002	-0.00002
90.0	0.00128	0.00227	0.00236	0.00203	0.00165	0.00130	0.00104	0.00084	0.00068	0.00056	0.00057	0.00039	0.00033
105.0	0.00377	0.00653	0.00668	0.00626	0.00369	0.00309	0.00253	0.00206	0.00167	0.00137	0.00112	0.00093	0.00078
120.0	0.00692	0.00856	0.00920	0.00930	0.00804	0.00668	0.00535	0.00521	0.00532	0.00265	0.00213	0.00173	0.00162
135.0	0.01123	0.01405	0.01606	0.01630	0.01472	0.01215	0.00959	0.00747	0.00584	0.00463	0.00369	0.00298	0.00243
150.0	0.01859	0.02125	0.02285	0.02223	0.02018	0.01738	0.01453	0.01204	0.00989	0.00810	0.00658	0.00532	0.00431
165.0	0.03179	0.03604	0.03609	0.03205	0.02846	0.02633	0.02465	0.02231	0.01928	0.01609	0.01303	0.01035	0.00814
180.0	0.03894	0.04607	0.04824	0.04252	0.03746	0.03534	0.03420	0.03165	0.02754	0.02293	0.01841	0.01442	0.01111
195.0	0.033132	0.03489	0.03467	0.03097	0.02761	0.02537	0.02346	0.02107	0.01817	0.01519	0.01235	0.00957	0.00781
210.0	0.01896	0.02125	0.02205	0.02101	0.01888	0.01630	0.01379	0.01151	0.00952	0.00765	0.00661	0.00522	0.00426
225.0	0.01209	0.01403	0.01506	0.01467	0.01308	0.01092	0.00881	0.00703	0.00561	0.00452	0.00366	0.00299	0.00246
240.0	0.00752	0.00856	0.00885	0.00838	0.00739	0.00617	0.00501	0.00402	0.00323	0.00261	0.00213	0.00173	0.00145
255.0	0.00410	0.00568	0.00561	0.00417	0.00360	0.00301	0.00248	0.00203	0.00166	0.00137	0.00113	0.00094	0.00079
270.0	0.00134	0.00209	0.00215	0.00188	0.00156	0.00127	0.00102	0.00083	0.00068	0.00056	0.00057	0.00039	0.00033
285.0	-0.00146	-0.00019	0.00010	0.00035	0.00024	0.00013	0.00006	0.00001	-0.00092	-0.00093	-0.00063	-0.00003	-0.00003
300.0	-0.00514	-0.00319	-0.00196	-0.00133	-0.00105	-0.00092	-0.00082	-0.00076	-0.00066	-0.00058	-0.00051	-0.00044	-0.00038
315.0	-0.01082	-0.00818	-0.00596	-0.00429	-0.00317	-0.00245	-0.00197	-0.00165	-0.00140	-0.00121	-0.00104	-0.00090	-0.00077
330.0	-0.02166	-0.01716	-0.01365	-0.01061	-0.00814	-0.00615	-0.00462	-0.00349	-0.00267	-0.00209	-0.00165	-0.00133	-0.00108
345.0	-0.04253	-0.03371	-0.02677	-0.02142	-0.01730	-0.01399	-0.01134	-0.00919	-0.00742	-0.00595	-0.00467	-0.00357	-0.00264

Flight Condition 14

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.240	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970	
PSI														
0.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
15.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
30.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
45.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
60.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
75.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
90.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
105.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
120.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
135.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
150.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
165.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
180.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
195.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
210.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
225.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
240.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
255.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
270.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
285.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
300.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
315.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
330.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	
345.0	-0.14268	-0.07756	-0.03224	-0.02162	-0.0174	-0.0161	-0.0156	-0.0152	-0.0143	-0.0131	-0.0121	-0.0113	-0.0106	

Flight Condition 15

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

	X/R 0.240	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
Psi	-0.04616	-0.04113	-0.03665	-0.02889	-0.02434	-0.02074	-0.01798	-0.01588	-0.01427	-0.01297	-0.01183	-0.01079	-0.01022
13.0	-0.03102	-0.02556	-0.02219	-0.02132	-0.02028	-0.01876	-0.01777	-0.01677	-0.01578	-0.01478	-0.01378	-0.01262	-0.01175
35.0	-0.02266	-0.02251	-0.02174	-0.02135	-0.02123	-0.02160	-0.02151	-0.02151	-0.02151	-0.02151	-0.02151	-0.02151	-0.02151
65.0	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593	-0.01593
75.0	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949	-0.00949
90.0	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604	-0.00604
100.0	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436	-0.00436
110.0	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356	-0.00356
120.0	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297	-0.00297
130.0	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251	-0.00251
140.0	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219	-0.00219
150.0	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196	-0.00196
160.0	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178	-0.00178
170.0	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162	-0.00162
180.0	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150	-0.00150
190.0	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141	-0.00141
200.0	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134	-0.00134
210.0	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129	-0.00129
220.0	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125	-0.00125
230.0	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122	-0.00122
240.0	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119	-0.00119
250.0	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117	-0.00117
260.0	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115	-0.00115
270.0	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113	-0.00113
280.0	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112	-0.00112
290.0	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111	-0.00111
300.0	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110	-0.00110
310.0	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109	-0.00109
320.0	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108	-0.00108
330.0	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107	-0.00107
340.0	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106	-0.00106
350.0	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105	-0.00105

Flight Condition 16

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.240	0.302	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI	-0.04935	-0.04224	-0.03693	-0.03223	-0.02759	-0.02469	-0.02237	-0.02034	-0.01841	-0.01644	-0.01447	-0.01257	-0.01142
15.0	-0.04010	-0.03483	-0.02942	-0.02490	-0.02053	-0.01661	-0.01367	-0.01129	-0.00912	-0.00714	-0.00516	-0.00315	-0.00135
30.0	-0.02539	-0.02136	-0.01621	-0.01219	-0.00812	-0.00473	-0.00237	-0.00123	-0.00059	-0.00029	-0.00013	-0.00005	-0.00001
45.0	-0.01661	-0.01357	-0.01062	-0.00762	-0.00462	-0.00219	-0.00094	-0.00041	-0.00016	-0.00006	-0.00002	-0.00001	-0.00000
60.0	-0.01057	-0.00819	-0.00614	-0.00416	-0.00219	-0.00105	-0.00046	-0.00016	-0.00005	-0.00002	-0.00001	-0.00000	-0.00000
75.0	-0.00575	-0.00417	-0.00273	-0.00192	-0.00119	-0.00061	-0.00022	-0.00007	-0.00003	-0.00001	-0.00000	-0.00000	-0.00000
90.0	-0.00307	-0.00235	-0.00152	-0.00102	-0.00064	-0.00032	-0.00012	-0.00004	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000
105.0	-0.00192	-0.00147	-0.00097	-0.00062	-0.00039	-0.00024	-0.00010	-0.00004	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000
120.0	-0.00116	-0.00075	-0.00052	-0.00035	-0.00023	-0.00014	-0.00006	-0.00003	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000
135.0	-0.00075	-0.00049	-0.00032	-0.00021	-0.00014	-0.00008	-0.00004	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000
150.0	-0.00049	-0.00032	-0.00021	-0.00014	-0.00008	-0.00005	-0.00003	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000
165.0	-0.00032	-0.00021	-0.00014	-0.00008	-0.00005	-0.00003	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
180.0	-0.00021	-0.00014	-0.00008	-0.00005	-0.00003	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
195.0	-0.00014	-0.00008	-0.00005	-0.00003	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
210.0	-0.00008	-0.00005	-0.00003	-0.00002	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
225.0	-0.00005	-0.00003	-0.00002	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
240.0	-0.00003	-0.00002	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
255.0	-0.00002	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
270.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
285.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
300.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
315.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
330.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
345.0	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000

Flight Condition 17

ORIGINAL PAGE IS
OF POOR QUALITY

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	X/R 0.248	0.301	0.362	0.423	0.483	0.544	0.603	0.664	0.727	0.787	0.848	0.909	0.970
0.0	-0.86532	-0.85918	-0.84637	-0.83921	-0.83366	-0.82721	-0.82294	-0.82036	-0.81733	-0.81433	-0.81136	-0.80827	-0.80519
1.0	-0.84986	-0.84216	-0.83613	-0.83105	-0.82614	-0.82151	-0.81732	-0.81417	-0.81131	-0.80835	-0.80531	-0.80235	-0.80021
2.0	-0.82658	-0.82271	-0.81914	-0.81515	-0.81151	-0.80721	-0.80351	-0.80071	-0.79814	-0.79552	-0.79292	-0.78932	-0.78571
3.0	-0.81446	-0.81211	-0.80916	-0.80651	-0.80361	-0.80071	-0.79784	-0.79504	-0.79224	-0.78944	-0.78664	-0.78384	-0.78104
4.0	-0.80356	-0.80154	-0.79954	-0.79751	-0.79551	-0.79251	-0.78951	-0.78651	-0.78372	-0.78092	-0.77812	-0.77532	-0.77252
5.0	-0.79355	-0.79152	-0.78952	-0.78752	-0.78552	-0.78252	-0.77952	-0.77652	-0.77373	-0.77093	-0.76813	-0.76532	-0.76252
6.0	-0.78454	-0.78252	-0.78052	-0.77852	-0.77652	-0.77352	-0.77052	-0.76752	-0.76473	-0.76193	-0.75913	-0.75632	-0.75352
7.0	-0.77653	-0.77451	-0.77251	-0.77051	-0.76851	-0.76651	-0.76451	-0.76251	-0.76072	-0.75892	-0.75712	-0.75532	-0.75352
8.0	-0.76952	-0.76751	-0.76551	-0.76351	-0.76151	-0.75951	-0.75751	-0.75551	-0.75372	-0.75212	-0.75052	-0.74892	-0.74732
9.0	-0.76351	-0.76150	-0.75950	-0.75750	-0.75550	-0.75350	-0.75150	-0.74950	-0.74771	-0.74611	-0.74451	-0.74311	-0.74171
10.0	-0.75850	-0.75650	-0.75450	-0.75250	-0.75050	-0.74850	-0.74650	-0.74450	-0.74271	-0.74111	-0.73951	-0.73811	-0.73671
11.0	-0.75350	-0.75150	-0.74950	-0.74750	-0.74550	-0.74350	-0.74150	-0.73950	-0.73771	-0.73611	-0.73451	-0.73311	-0.73171
12.0	-0.74850	-0.74650	-0.74450	-0.74250	-0.74050	-0.73850	-0.73650	-0.73450	-0.73271	-0.73111	-0.72951	-0.72811	-0.72671
13.0	-0.74350	-0.74150	-0.73950	-0.73750	-0.73550	-0.73350	-0.73150	-0.72950	-0.72771	-0.72611	-0.72451	-0.72311	-0.72171
14.0	-0.73850	-0.73650	-0.73450	-0.73250	-0.73050	-0.72850	-0.72650	-0.72450	-0.72271	-0.72111	-0.71951	-0.71811	-0.71671
15.0	-0.73350	-0.73150	-0.72950	-0.72750	-0.72550	-0.72350	-0.72150	-0.71950	-0.71771	-0.71611	-0.71451	-0.71311	-0.71171
16.0	-0.72850	-0.72650	-0.72450	-0.72250	-0.72050	-0.71850	-0.71650	-0.71450	-0.71271	-0.71111	-0.70951	-0.70811	-0.70671
17.0	-0.72350	-0.72150	-0.71950	-0.71750	-0.71550	-0.71350	-0.71150	-0.70950	-0.70771	-0.70611	-0.70451	-0.70311	-0.70171
18.0	-0.71850	-0.71650	-0.71450	-0.71250	-0.71050	-0.70850	-0.70650	-0.70450	-0.70271	-0.70111	-0.69951	-0.69811	-0.69671
19.0	-0.71350	-0.71150	-0.70950	-0.70750	-0.70550	-0.70350	-0.70150	-0.69950	-0.69771	-0.69611	-0.69451	-0.69311	-0.69171
20.0	-0.70850	-0.70650	-0.70450	-0.70250	-0.70050	-0.69850	-0.69650	-0.69450	-0.69271	-0.69111	-0.68951	-0.68811	-0.68671
21.0	-0.70350	-0.70150	-0.69950	-0.69750	-0.69550	-0.69350	-0.69150	-0.68950	-0.68771	-0.68611	-0.68451	-0.68311	-0.68171
22.0	-0.69850	-0.69650	-0.69450	-0.69250	-0.69050	-0.68850	-0.68650	-0.68450	-0.68271	-0.68111	-0.67951	-0.67811	-0.67671
23.0	-0.69350	-0.69150	-0.68950	-0.68750	-0.68550	-0.68350	-0.68150	-0.67950	-0.67771	-0.67611	-0.67451	-0.67311	-0.67171
24.0	-0.68850	-0.68650	-0.68450	-0.68250	-0.68050	-0.67850	-0.67650	-0.67450	-0.67271	-0.67111	-0.66951	-0.66811	-0.66671
25.0	-0.68350	-0.68150	-0.67950	-0.67750	-0.67550	-0.67350	-0.67150	-0.66950	-0.66771	-0.66611	-0.66451	-0.66311	-0.66171
26.0	-0.67850	-0.67650	-0.67450	-0.67250	-0.67050	-0.66850	-0.66650	-0.66450	-0.66271	-0.66111	-0.65951	-0.65811	-0.65671
27.0	-0.67350	-0.67150	-0.66950	-0.66750	-0.66550	-0.66350	-0.66150	-0.65950	-0.65771	-0.65611	-0.65451	-0.65311	-0.65171
28.0	-0.66850	-0.66650	-0.66450	-0.66250	-0.66050	-0.65850	-0.65650	-0.65450	-0.65271	-0.65111	-0.64951	-0.64811	-0.64671
29.0	-0.66350	-0.66150	-0.65950	-0.65750	-0.65550	-0.65350	-0.65150	-0.64950	-0.64771	-0.64611	-0.64451	-0.64311	-0.64171
30.0	-0.65850	-0.65650	-0.65450	-0.65250	-0.65050	-0.64850	-0.64650	-0.64450	-0.64271	-0.64111	-0.63951	-0.63811	-0.63671
31.0	-0.65350	-0.65150	-0.64950	-0.64750	-0.64550	-0.64350	-0.64150	-0.63950	-0.63771	-0.63611	-0.63451	-0.63311	-0.63171
32.0	-0.64850	-0.64650	-0.64450	-0.64250	-0.64050	-0.63850	-0.63650	-0.63450	-0.63271	-0.63111	-0.62951	-0.62811	-0.62671
33.0	-0.64350	-0.64150	-0.63950	-0.63750	-0.63550	-0.63350	-0.63150	-0.62950	-0.62771	-0.62611	-0.62451	-0.62311	-0.62171
34.0	-0.63850	-0.63650	-0.63450	-0.63250	-0.63050	-0.62850	-0.62650	-0.62450	-0.62271	-0.62111	-0.61951	-0.61811	-0.61671
35.0	-0.63350	-0.63150	-0.62950	-0.62750	-0.62550	-0.62350	-0.62150	-0.61950	-0.61771	-0.61611	-0.61451	-0.61311	-0.61171

Flight Condition 18

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.248	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970	
0.0	-0.01619	-0.01558	-0.01505	-0.01454	-0.01405	-0.01357	-0.01310	-0.01264	-0.01220	-0.01177	-0.01135	-0.01094	-0.01054	-0.01016
1.5	-0.01619	-0.01556	-0.01503	-0.01452	-0.01403	-0.01354	-0.01307	-0.01261	-0.01217	-0.01174	-0.01132	-0.01091	-0.01051	-0.01013
3.0	-0.01619	-0.01554	-0.01501	-0.01450	-0.01401	-0.01352	-0.01305	-0.01259	-0.01215	-0.01172	-0.01130	-0.01089	-0.01049	-0.01011
4.5	-0.01619	-0.01552	-0.01500	-0.01449	-0.01399	-0.01349	-0.01293	-0.01247	-0.01203	-0.01160	-0.01118	-0.01077	-0.01036	-0.01097
6.0	-0.01619	-0.01550	-0.01498	-0.01447	-0.01397	-0.01347	-0.01291	-0.01245	-0.01199	-0.01156	-0.01114	-0.01073	-0.01032	-0.01093
7.5	-0.01619	-0.01548	-0.01496	-0.01445	-0.01395	-0.01345	-0.01289	-0.01243	-0.01197	-0.01154	-0.01112	-0.01071	-0.01030	-0.01091
9.0	-0.01619	-0.01546	-0.01494	-0.01443	-0.01393	-0.01343	-0.01287	-0.01241	-0.01195	-0.01152	-0.01110	-0.01069	-0.01028	-0.01089
10.5	-0.01619	-0.01544	-0.01492	-0.01441	-0.01391	-0.01341	-0.01285	-0.01239	-0.01193	-0.01150	-0.01108	-0.01067	-0.01026	-0.01087
12.0	-0.01619	-0.01542	-0.01489	-0.01438	-0.01387	-0.01337	-0.01281	-0.01235	-0.01189	-0.01146	-0.01104	-0.01063	-0.01022	-0.01083
13.5	-0.01619	-0.01540	-0.01487	-0.01436	-0.01385	-0.01335	-0.01279	-0.01233	-0.01187	-0.01144	-0.01102	-0.01061	-0.01020	-0.01081
15.0	-0.01619	-0.01538	-0.01485	-0.01434	-0.01383	-0.01333	-0.01277	-0.01231	-0.01185	-0.01142	-0.01099	-0.01058	-0.01017	-0.01078
16.5	-0.01619	-0.01536	-0.01483	-0.01432	-0.01381	-0.01331	-0.01275	-0.01229	-0.01183	-0.01140	-0.01097	-0.01056	-0.01015	-0.01076
18.0	-0.01619	-0.01534	-0.01481	-0.01430	-0.01379	-0.01329	-0.01273	-0.01227	-0.01181	-0.01138	-0.01095	-0.01054	-0.01013	-0.01074
19.5	-0.01619	-0.01532	-0.01479	-0.01428	-0.01377	-0.01327	-0.01271	-0.01225	-0.01179	-0.01136	-0.01093	-0.01052	-0.01011	-0.01072
21.0	-0.01619	-0.01530	-0.01477	-0.01426	-0.01375	-0.01325	-0.01269	-0.01223	-0.01177	-0.01134	-0.01091	-0.01050	-0.01009	-0.01069
22.5	-0.01619	-0.01528	-0.01475	-0.01424	-0.01373	-0.01323	-0.01267	-0.01221	-0.01175	-0.01132	-0.01089	-0.01048	-0.01007	-0.01067
24.0	-0.01619	-0.01526	-0.01473	-0.01422	-0.01371	-0.01321	-0.01265	-0.01219	-0.01173	-0.01130	-0.01087	-0.01046	-0.01005	-0.01065
25.5	-0.01619	-0.01524	-0.01471	-0.01420	-0.01369	-0.01319	-0.01263	-0.01217	-0.01171	-0.01128	-0.01085	-0.01044	-0.01003	-0.01063
27.0	-0.01619	-0.01522	-0.01469	-0.01418	-0.01367	-0.01317	-0.01261	-0.01215	-0.01169	-0.01126	-0.01083	-0.01042	-0.01001	-0.01061
28.5	-0.01619	-0.01520	-0.01467	-0.01416	-0.01365	-0.01315	-0.01259	-0.01213	-0.01167	-0.01224	-0.01081	-0.01040	-0.01099	-0.01058
30.0	-0.01619	-0.01518	-0.01465	-0.01414	-0.01363	-0.01313	-0.01257	-0.01211	-0.01165	-0.01222	-0.01079	-0.01038	-0.01097	-0.01056
31.5	-0.01619	-0.01516	-0.01463	-0.01412	-0.01361	-0.01311	-0.01255	-0.01209	-0.01163	-0.01220	-0.01077	-0.01036	-0.01095	-0.01054
33.0	-0.01619	-0.01514	-0.01461	-0.01410	-0.01359	-0.01309	-0.01253	-0.01207	-0.01161	-0.01218	-0.01075	-0.01034	-0.01094	-0.01053
34.5	-0.01619	-0.01512	-0.01459	-0.01408	-0.01357	-0.01307	-0.01251	-0.01205	-0.01159	-0.01216	-0.01073	-0.01032	-0.01092	-0.01051

Flight Condition 18

Characteristics OF POOR QUALITY

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH SITUATIONS

Flight Condition 20

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.248	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.969	
PSI														
15.0	-0.05229	-0.04573	-0.03139	-0.02169	-0.01691	-0.01316	-0.01069	-0.01055	-0.01072	-0.01112	-0.01162	-0.01216	-0.01252	
15.0	-0.04611	-0.04675	-0.02645	-0.02551	-0.01558	-0.01119	-0.01117	-0.01117	-0.01117	-0.01117	-0.01117	-0.01117	-0.01117	
15.0	-0.04222	-0.01912	-0.01111	-0.01121	-0.01029	-0.00936	-0.00935	-0.00935	-0.00935	-0.00935	-0.00935	-0.00935	-0.00935	
45.0	-0.04124	-0.04001	-0.03036	-0.02817	-0.01619	-0.01469	-0.01468	-0.01468	-0.01468	-0.01468	-0.01468	-0.01468	-0.01468	
60.0	-0.04056	-0.04042	-0.03017	-0.02817	-0.01617	-0.01467	-0.01466	-0.01466	-0.01466	-0.01466	-0.01466	-0.01466	-0.01466	
75.0	-0.04003	-0.03993	-0.03026	-0.02816	-0.01616	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
90.0	-0.03993	-0.03983	-0.03018	-0.02818	-0.01618	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
105.0	-0.03983	-0.03973	-0.03012	-0.02812	-0.01614	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
120.0	-0.03973	-0.03963	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
135.0	-0.03963	-0.03953	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
150.0	-0.03953	-0.03943	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
165.0	-0.03943	-0.03933	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
180.0	-0.03933	-0.03923	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
195.0	-0.03923	-0.03913	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
210.0	-0.03913	-0.03903	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
225.0	-0.03903	-0.03893	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
240.0	-0.03893	-0.03883	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
255.0	-0.03883	-0.03873	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
270.0	-0.03873	-0.03863	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
285.0	-0.03863	-0.03853	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
300.0	-0.03853	-0.03843	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
315.0	-0.03843	-0.03833	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
330.0	-0.03833	-0.03823	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	
345.0	-0.03823	-0.03813	-0.03012	-0.02812	-0.01612	-0.01466	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	-0.01465	

Flight Condition 21

Flight Condition 22

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.246	0.361	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI	-0.04014	-0.03624	-0.02928	-0.01916	-0.01435	-0.01136	-0.00819	-0.00545	-0.00310	-0.00163	-0.00053	-0.00017	-0.00003
15.0	-0.03419	-0.02536	-0.01105	-0.00535	-0.00322	-0.00196	-0.00120	-0.00068	-0.00034	-0.00017	-0.00007	-0.00002	-0.00001
30.0	-0.01537	-0.00641	-0.00212	-0.00114	-0.00054	-0.00022	-0.00012	-0.00005	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000
45.0	-0.00449	-0.00124	-0.00032	-0.00012	-0.00004	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
60.0	-0.00165	-0.00036	-0.00012	-0.00003	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
75.0	-0.00037	-0.00017	-0.00005	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
90.0	-0.00014	-0.00006	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
105.0	-0.00006	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
120.0	-0.00002	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
135.0	-0.00001	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
150.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
165.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
180.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
195.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
210.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
225.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
240.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
255.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
270.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
285.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
300.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
315.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
330.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
345.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

PSI	X/R 0.248	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
0.0	-0.01943	-0.03326	-0.03132	-0.02550	-0.02132	-0.01823	-0.01595	-0.01613	-0.01256	-0.01114	-0.00902	-0.00866	-0.00769
15.0	-0.01676	-0.02978	-0.02413	-0.01962	-0.01597	-0.01287	-0.01024	-0.00796	-0.00598	-0.00431	-0.00295	-0.00195	-0.00138
30.0	-0.01835	-0.01568	-0.01239	-0.00937	-0.00730	-0.00608	-0.00552	-0.00510	-0.00516	-0.00497	-0.00470	-0.00437	-0.00398
45.0	-0.00839	-0.00645	-0.00564	-0.00589	-0.00641	-0.00665	-0.00667	-0.00596	-0.00527	-0.00453	-0.00376	-0.00303	-0.00217
60.0	-0.00153	-0.00146	-0.00214	-0.00451	-0.00536	-0.00550	-0.00516	-0.00452	-0.00374	-0.00294	-0.00217	-0.00151	-0.00097
75.0	0.00322	0.00226	0.00024	-0.00125	-0.00200	-0.00225	-0.00220	-0.00195	-0.00157	-0.00115	-0.00073	-0.00038	-0.00012
90.0	0.00688	0.00579	0.00512	0.00301	0.00242	0.00211	0.00188	0.00167	0.00144	0.00121	0.00101	0.00085	0.00073
105.0	0.01021	0.00944	0.00795	0.00663	0.00561	0.00475	0.00401	0.00334	0.00274	0.00222	0.00179	0.00144	0.00118
120.0	0.01435	0.01475	0.01361	0.01107	0.00870	0.00671	0.00519	0.00405	0.00319	0.00255	0.00225	0.00167	0.00137
135.0	0.01975	0.02212	0.02136	0.01765	0.01335	0.00970	0.00726	0.00547	0.00421	0.00311	0.00263	0.00211	0.00172
150.0	0.02711	0.02900	0.02718	0.02296	0.01842	0.01444	0.0123	0.00871	0.00673	0.00522	0.00466	0.00317	0.00250
165.0	0.04621	0.05564	0.03866	0.03346	0.03074	0.02768	0.02287	0.01797	0.01359	0.01011	0.00741	0.00546	0.00403
180.0	0.05985	0.06424	0.05385	0.04669	0.04501	0.04197	0.03532	0.02757	0.02048	0.01677	0.01040	0.00730	0.00519
195.0	0.04532	0.04447	0.03787	0.03282	0.02987	0.02647	0.02199	0.01732	0.01317	0.00986	0.00728	0.00539	0.00402
210.0	0.02736	0.02836	0.02616	0.02207	0.01785	0.01511	0.0107	0.00863	0.00671	0.00524	0.00409	0.00322	0.00255
225.0	0.01971	0.02103	0.01970	0.01627	0.01252	0.00950	0.00722	0.00542	0.00422	0.00335	0.00267	0.00216	0.00176
240.0	0.01413	0.01406	0.01257	0.01036	0.00821	0.00639	0.00499	0.00392	0.00312	0.00251	0.00203	0.00166	0.00137
255.0	0.00978	0.00892	0.00750	0.00622	0.00519	0.00433	0.00362	0.00308	0.00263	0.00202	0.00164	0.00134	0.00111
270.0	0.00619	0.00515	0.00374	0.00273	0.00216	0.00180	0.00155	0.00134	0.00115	0.00098	0.00054	0.00073	0.00064
285.0	0.00241	0.00156	0.00003	-0.00111	-0.00154	-0.00186	-0.00179	-0.00156	-0.00125	-0.00093	-0.00061	-0.00035	-0.00014
300.0	-0.00224	-0.00214	-0.00317	-0.00421	-0.00474	-0.00576	-0.00461	-0.00306	-0.00321	-0.00256	-0.00196	-0.00141	-0.00097
315.0	-0.00872	-0.00695	-0.00611	-0.00636	-0.00616	-0.00512	-0.00582	-0.00531	-0.00468	-0.00403	-0.00337	-0.00276	-0.00220
330.0	-0.01878	-0.01553	-0.01222	-0.00956	-0.00766	-0.00443	-0.00570	-0.00525	-0.00491	-0.00460	-0.00426	-0.00391	-0.00356
345.0	-0.03562	-0.02875	-0.02330	-0.01891	-0.01539	-0.01244	-0.00998	-0.00739	-0.00610	-0.00463	-0.00343	-0.00256	-0.00204

Flight Condition 23

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.240	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI													
0.0	-0.01559	-0.01373	-0.01253	-0.01159	-0.01053	-0.00959	-0.00863	-0.00771	-0.00683	-0.00593	-0.00503	-0.00414	-0.00324
15.0	-0.01395	-0.01276	-0.01155	-0.01050	-0.00949	-0.00848	-0.00747	-0.00646	-0.00545	-0.00444	-0.00343	-0.00242	-0.00141
30.0	-0.01276	-0.01155	-0.01035	-0.00930	-0.00829	-0.00728	-0.00627	-0.00526	-0.00425	-0.00324	-0.00223	-0.00122	-0.00021
45.0	-0.01155	-0.01034	-0.00914	-0.00809	-0.00708	-0.00607	-0.00506	-0.00405	-0.00304	-0.00203	-0.00102	-0.00001	-0.00000
60.0	-0.01034	-0.00913	-0.00802	-0.00691	-0.00580	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000
75.0	-0.00913	-0.00802	-0.00691	-0.00580	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000
90.0	-0.00802	-0.00691	-0.00580	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
105.0	-0.00691	-0.00580	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
120.0	-0.00580	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
135.0	-0.00469	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
150.0	-0.00358	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
165.0	-0.00247	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
180.0	-0.00136	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
195.0	-0.00025	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
210.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
225.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
240.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
255.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
270.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
285.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
300.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
315.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
330.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000
345.0	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000

4

Flight Condition 25

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.248	0.391	0.362	0.423	0.483	0.544	0.495	0.666	0.727	0.787	0.646	0.599	0.978
PSI	-0.3715	-0.32786	-0.32353	-0.31567	-0.31218	-0.30785	-0.30639	-0.30508	-0.30452	-0.30351	-0.30257	-0.30217	-0.30156
15.0	-0.122719	-0.111112	-0.11113	-0.11114	-0.11115	-0.11116	-0.11117	-0.11118	-0.11119	-0.11119	-0.11119	-0.11119	-0.11119
30.0	-0.097712	-0.096324	-0.095024	-0.094609	-0.094231	-0.09321	-0.09257	-0.09207	-0.09152	-0.09116	-0.09075	-0.09027	-0.09022
45.0	-0.084619	-0.083169	-0.08228	-0.081231	-0.080231	-0.07915	-0.07815	-0.07715	-0.07615	-0.07515	-0.07415	-0.07315	-0.07215
60.0	-0.07216	-0.070216	-0.068216	-0.066216	-0.064216	-0.062216	-0.060216	-0.058216	-0.056216	-0.054216	-0.052216	-0.050216	-0.048216
75.0	-0.060216	-0.058216	-0.056216	-0.054216	-0.052216	-0.050216	-0.048216	-0.046216	-0.044216	-0.042216	-0.040216	-0.038216	-0.036216
90.0	-0.048216	-0.046216	-0.044216	-0.042216	-0.040216	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216
105.0	-0.046216	-0.044216	-0.042216	-0.040216	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216
120.0	-0.044216	-0.042216	-0.040216	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216
135.0	-0.042216	-0.040216	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216
150.0	-0.040216	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216
165.0	-0.038216	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216
180.0	-0.036216	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216
195.0	-0.034216	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216
210.0	-0.032216	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216
225.0	-0.030216	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216
240.0	-0.028216	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216
255.0	-0.026216	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216
270.0	-0.024216	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216
285.0	-0.022216	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216	0.000216
300.0	-0.020216	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216	0.000216	0.002216
315.0	-0.018216	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216	0.000216	0.002216	0.004216
330.0	-0.016216	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216	0.000216	0.002216	0.004216	0.006216
345.0	-0.014216	-0.012216	-0.010216	-0.008216	-0.006216	-0.004216	-0.002216	-0.000216	0.000216	0.002216	0.004216	0.006216	0.008216

UP VALUES FROM ROCI TO TIP AT ALL AZIMUTH STATIONS

Flight Condition 26

Flight Condition 27

UP VALUES FROM ROOT TO TIP AT ALL AZIMUTH STATIONS

X/R	0.248	0.301	0.362	0.423	0.483	0.544	0.605	0.666	0.727	0.787	0.848	0.909	0.970
PSI	-0.1947	-0.3741	-0.2812	-0.2159	-0.1718	-0.1396	-0.1180	-0.1070	-0.0963	-0.0861	-0.0763	-0.0662	-0.0561
15.0	-0.1165	-0.2605	-0.1846	-0.1421	-0.1092	-0.0858	-0.0693	-0.0543	-0.0443	-0.0343	-0.0243	-0.0143	-0.0043
30.0	-0.0916	-0.2045	-0.1485	-0.1099	-0.0828	-0.0633	-0.0463	-0.0316	-0.0215	-0.0115	-0.0015	-0.0015	-0.0015
45.0	-0.0716	-0.1525	-0.1112	-0.0879	-0.0653	-0.0476	-0.0317	-0.0167	-0.0077	-0.0017	-0.0017	-0.0017	-0.0017
60.0	-0.0517	-0.1125	-0.0802	-0.0618	-0.0447	-0.0325	-0.0215	-0.0115	-0.0057	-0.0017	-0.0017	-0.0017	-0.0017
75.0	-0.0317	-0.0779	-0.0592	-0.0448	-0.0315	-0.0217	-0.0137	-0.0077	-0.0037	-0.0017	-0.0017	-0.0017	-0.0017
90.0	-0.0117	-0.0426	-0.0316	-0.0246	-0.0179	-0.0117	-0.0079	-0.0047	-0.0027	-0.0017	-0.0017	-0.0017	-0.0017
105.0	0.0117	-0.0173	-0.0126	-0.0093	-0.0061	-0.0041	-0.0025	-0.0015	-0.0007	-0.0003	-0.0003	-0.0003	-0.0003
120.0	0.0227	0.0153	0.0115	0.0084	0.0058	0.0041	0.0028	0.0015	0.0007	0.0003	0.0003	0.0003	0.0003
135.0	0.0327	0.0228	0.0165	0.0115	0.0084	0.0058	0.0041	0.0028	0.0015	0.0007	0.0003	0.0003	0.0003
150.0	0.0427	0.0327	0.0234	0.0173	0.0117	0.0073	0.0041	0.0021	0.0011	0.0005	0.0002	0.0002	0.0002
165.0	0.0527	0.0428	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041	0.0021	0.0011	0.0005	0.0002	0.0002
180.0	0.0627	0.0528	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041	0.0021	0.0011	0.0005	0.0002
195.0	0.0727	0.0628	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041	0.0021	0.0011	0.0005
210.0	0.0827	0.0728	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041	0.0021	0.0011
225.0	0.0927	0.0828	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041	0.0021
240.0	0.1027	0.0928	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073	0.0041
255.0	0.1127	0.1028	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117	0.0073
270.0	0.1227	0.1128	0.1023	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172	0.0117
285.0	0.1327	0.1228	0.1124	0.1023	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228	0.0172
300.0	0.1427	0.1328	0.1225	0.1124	0.1023	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316	0.0228
315.0	0.1527	0.1428	0.1326	0.1225	0.1124	0.1023	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417	0.0316
330.0	0.1627	0.1528	0.1427	0.1326	0.1225	0.1124	0.1023	0.0922	0.0821	0.0720	0.0619	0.0518	0.0417
345.0	0.1727	0.1628	0.1527	0.1426	0.1325	0.1224	0.1123	0.1022	0.0921	0.0820	0.0719	0.0618	0.0517

APPENDIX C

Supplementary Loads Analysis Comparisons

To supplement the loads analysis results shown in Figures 8-6 through 8-41, this appendix contains several additional comparisons in tabular form.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	7.80	8.21
L/DE (with upwash)	7.91	8.53
PLL Amplitude-lbs (without upwash)	305	929
PLL Amplitude-lbs (with upwash)	435	1014
Vertical Shear Amplitude-lbs (without upwash)	1897	3476
Vertical Shear Amplitude-lbs (with upwash)	1410	4106
FZF-lbs (without upwash)	1182	1686
FZF-lbs (with upwash)	1219	1557
Flight Condition	3	4

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	7.45	7.29
L/DE (with upwash)	7.26	7.65
PLL Amplitude-lbs (without upwash)	407	735
PLL Amplitude-lbs (with upwash)	546	927
Vertical Shear Amplitude-lbs (without upwash)	5386	3306
Vertical Shear Amplitude-lbs (with upwash)	5220	4694
FZF-lbs (without upwash)	1733	2685
FZF-lbs (with upwash)	1594	2444
Flight Condition	9	10

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Wing Lift, Gross Weight, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	6.96	8.94
L/DE (with upwash)	7.10	9.06
PLL Amplitude-lbs (without upwash)	551	1019
PLL Amplitude-lbs (with upwash)	519	1044
Vertical Shear Amplitude-lbs (without upwash)	1102	2270
Vertical Shear Amplitude-lbs (with upwash)	1288	2815
FZF-lbs (without upwash)	682	1223
FZF-lbs (with upwash)	706	1005
Flight Condition	11	12

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, and Rotor Radius Are Held Constant.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	7.23	8.06
L/DE (with upwash)	7.66	8.99
PLL Amplitude-lbs (without upwash)	321	825
PLL Amplitude-lbs (with upwash)	485	1154
Vertical Shear Amplitude-lbs (without upwash)	1449	2598
Vertical Shear Amplitude-lbs (with upwash)	1912	3449
FZF-lbs (without upwash)	754	1446
FZF-lbs (with upwash)	682	1503
Flight Condition	13	14

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Gross Weight, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	7.09	8.93
L/DE (with upwash)	6.63	8.72
PLL Amplitude-lbs (without upwash)	483	1025
PLL Amplitude-lbs (with upwash)	532	1052
Vertical Shear Amplitude-lbs (without upwash)	897	2556
Vertical Shear Amplitude-lbs (with upwash)	1431	3436
FZF-lbs (without upwash)	720	1362
FZF-lbs (with upwash)	795	1194
Flight Condition	15	16

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Wing Lift, Gross Weight, and Rotor Radius Are Held Constant.

Flight Velocity - Knots	112.5	162.5
L/DE (without upwash)	7.27	8.04
L/DE (with upwash)	7.18	8.57
PLL Amplitude-lbs (without upwash)	261	869
PLL Amplitude-lbs (with upwash)	429	905
Vertical Shear Amplitude-lbs (without upwash)	3124	3234
Vertical Shear Amplitude-lbs (with upwash)	3138	4630
FZF-lbs (without upwash)	765	1559
FZF-lbs (with upwash)	655	1521
Flight Condition	17	18

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flight Velocity from Loads Analysis. Rotor Lift, Wing Lift, Gross Weight, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

$T \cos \alpha_s / \pi R^2 - \text{psf}$	6.48	9.34
L/DE (without upwash)	7.80	7.21
L/DE (with upwash)	7.91	7.38
PLL Amplitude-lbs (without upwash)	305	756
PLL Amplitude-lbs (with upwash)	435	776
Vertical Shear Amplitude-lbs (without upwash)	1897	2270
Vertical Shear Amplitude-lbs (with upwash)	1410	2360
FZF-lbs (without upwash)	1182	1253
FZF-lbs (with upwash)	1219	1344
Flight Condition	3	1

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Vertical Component of Disk Loading from Loads Analysis. Flight Velocity and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	7.80	7.83
L/DE (with upwash)	7.91	7.30
PLL Amplitude-lbs (without upwash)	305	293
PLL Amplitude-lbs (with upwash)	435	493
Vertical Shear Amplitude-lbs (without upwash)	1897	2336
Vertical Shear Amplitude-lbs (with upwash)	1410	1820
FZF-lbs (without upwash)	1182	1173
FZF-lbs (with upwash)	1219	1386
Flight Condition	3	5

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	6.96	7.09
L/DE (with upwash)	7.10	6.63
PLL Amplitude-lbs (without upwash)	551	483
PLL Amplitude-lbs (with upwash)	519	532
Vertical Shear Amplitude-lbs (without upwash)	1102	897
Vertical Shear Amplitude-lbs (with upwash)	1288	1431
FZF-lbs (without upwash)	682	720
FZF-lbs (with upwash)	706	795
Flight Condition	11	15

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	8.94	8.93
L/DE (with upwash)	9.06	8.72
PLL Amplitude-lbs (without upwash)	1019	1025
PLL Amplitude-lbs (with upwash)	1044	1052
Vertical Shear Amplitude-lbs (without upwash)	2270	2556
Vertical Shear Amplitude-lbs (with upwash)	2815	3436
FZF-lbs (without upwash)	1223	1362
FZF-lbs (with upwash)	1005	1194
Flight Condition	12	16

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	7.44	7.45
L/DE (with upwash)	7.85	7.26
PLL Amplitude-lbs (without upwash)	419	407
PLL Amplitude-lbs (with upwash)	460	546
Vertical Shear Amplitude-lbs (without upwash)	2905	5386
Vertical Shear Amplitude-lbs (with upwash)	2877	5220
FZF-lbs (without upwash)	1629	1733
FZF-lbs (with upwash)	1561	1594
Flight Condition	7	9

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

Lift-lbs	0	4033.3	8066.7
L/DE (without upwash)	7.40	7.34	7.29
L/DE (with upwash)	8.14	7.80	7.65
PLL Amplitude-lbs (without upwash)	734	688	735
PLL Amplitude-lbs (with upwash)	916	882	927
Vertical Shear Amplitude-lbs (without upwash)	3766	3873	3306
Vertical Shear Amplitude-lbs (with upwash)	4359	4830	4694
FZF-lbs (without upwash)	2736	2693	2685
FZF-lbs (with upwash)	2507	2402	2444
Flight Condition	8	21	10

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	7.23	7.27
L/DE (with upwash)	7.66	7.18
PLL Amplitude-lbs (without upwash)	321	261
PLL Amplitude-lbs (with upwash)	485	429
Vertical Shear Amplitude-lbs (without upwash)	1449	3124
Vertical Shear Amplitude-lbs (with upwash)	1912	3138
FZF-lbs (without upwash)	754	765
FZF-lbs (with upwash)	682	655
Flight Condition	13	17

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

Lift-lbs	0	8066.7
L/DE (without upwash)	8.06	8.04
L/DE (with upwash)	8.99	8.57
PLL Amplitude-lbs (without upwash)	825	869
PLL Amplitude-lbs (with upwash)	1154	905
Vertical Shear Amplitude-lbs (without upwash)	2598	3234
Vertical Shear Amplitude-lbs (with upwash)	3449	4630
FZF-lbs (without upwash)	1446	1559
FZF-lbs (with upwash)	1503	1521
Flight Condition	14	18

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, Flat Plate Area for Auxiliary Thrust, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	7.80	7.44
L/DE (with upwash)	7.91	7.85
PLL Amplitude-lbs (without upwash)	305	419
PLL Amplitude-lbs (with upwash)	435	460
Vertical Shear Amplitude-lbs (without upwash)	1897	2905
Vertical Shear Amplitude-lbs (with upwash)	1410	2877
FZF-lbs (without upwash)	1182	1629
FZF-lbs (with upwash)	1219	1561
Flight Condition	3	7

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	6.96	7.23
L/DE (with upwash)	7.10	7.66
PLL Amplitude-lbs (without upwash)	551	321
PLL Amplitude-lbs (with upwash)	519	485
Vertical Shear Amplitude-lbs (without upwash)	1102	1449
Vertical Shear Amplitude-lbs (with upwash)	1288	1912
FZF-lbs (without upwash)	682	754
FZF-lbs (with upwash)	706	682
Flight Condition	11	13

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Radius, Rotor Lift, Gross Weight, and Flight Velocity Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	8.94	8.06
L/DE (with upwash)	9.06	8.99
PLL Amplitude-lbs (without upwash)	1019	825
PLL Amplitude-lbs (with upwash)	1044	1154
Vertical Shear Amplitude-lbs (without upwash)	2270	2598
Vertical Shear Amplitude-lbs (with upwash)	2815	3449
FZF-lbs (without upwash)	1223	1446
FZF-lbs (with upwash)	1005	1503
Flight Condition	12	14

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Lift, Gross Weight, Flight Velocity, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	7.83	7.45
L/DE (with upwash)	7.30	7.26
PLL Amplitude-lbs (without upwash)	293	407
PLL Amplitude-lbs (with upwash)	493	546
Vertical Shear Amplitude-lbs (without upwash)	2336	5386
Vertical Shear Amplitude-lbs (with upwash)	1820	5220
FZF-lbs (without upwash)	1173	1733
FZF-lbs (with upwash)	1386	1594
Flight Condition	5	9

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Lift, Gross Weight, Flight Velocity, Wing Lift, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	7.09	7.27
L/DE (with upwash)	6.63	7.18
PLL Amplitude-lbs (without upwash)	483	261
PLL Amplitude-lbs (with upwash)	532	429
Vertical Shear Amplitude-lbs (without upwash)	897	3124
Vertical Shear Amplitude-lbs (with upwash)	1431	3138
FZF-lbs (without upwash)	720	765
FZF-lbs (with upwash)	795	655
Flight Condition	15	17

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Lift, Gross Weight, Flight Velocity, Wing Lift, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
L/DE (without upwash)	8.93	8.04
L/DE (with upwash)	8.72	8.57
PLL Amplitude-lbs (without upwash)	1025	869
PLL Amplitude-lbs (with upwash)	1052	905
Vertical Shear Amplitude-lbs (without upwash)	2556	3234
Vertical Shear Amplitude-lbs (with upwash)	3436	4630
FZF-lbs (without upwash)	1362	1559
FZF-lbs (with upwash)	1194	1521
Flight Condition	16	18

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Lcads Analysis. Rotor Lift, Gross Weight, Flight Velocity, Wing Lift, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
Lift-lbs	0	8066.7
L/DE (without upwash)	7.80	7.45
L/DE (with upwash)	7.91	7.26
PLL Amplitude-lbs (without upwash)	305	407
PLL Amplitude-lbs (with upwash)	435	546
Vertical Shear Amplitude-lbs (without upwash)	1897	5386
Vertical Shear Amplitude-lbs (with upwash)	1410	5220
FZF-lbs (without upwash)	1182	1733
FZF-lbs (with upwash)	1219	1594
Flight Condition	3	9

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust and Wing Lift from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
Lift-lbs	0	8066.7
L/DE (without upwash)	6.96	7.27
L/DE (with upwash)	7.10	7.18
PLL Amplitude-lbs (without upwash)	551	261
PLL Amplitude-lbs (with upwash)	519	429
Vertical Shear Amplitude-lbs (without upwash)	1102	3124
Vertical Shear Amplitude-lbs (with upwash)	1288	3138
FZF-lbs (without upwash)	682	765
FZF-lbs (with upwash)	706	655
Flight Condition	11	17

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

fe-sq ft	0	22.9
Lift-lbs	0	8066.7
L/DE (without upwash)	8.94	8.04
L/DE (with upwash)	9.06	8.57
PLL Amplitude-lbs (without upwash)	1019	869
PLL Amplitude-lbs (with upwash)	1044	905
Vertical Shear Amplitude-lbs (without upwash)	2270	3234
Vertical Shear Amplitude-lbs (with upwash)	2815	4630
FZF-lbs (without upwash)	1223	1559
FZF-lbs (with upwash)	1005	1521
Flight Condition	12	18

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Flat Plate Area for Auxiliary Thrust from Loads Analysis. Rotor Lift, Flight Velocity, and Rotor Radius Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	6.96	7.21
L/DE (with upwash)	7.10	7.38
PLL Amplitude-lbs (without upwash)	551	756
PLL Amplitude-lbs (with upwash)	519	776
Vertical Shear Amplitude-lbs (without upwash)	1102	2270
Vertical Shear Amplitude-lbs (with upwash)	1288	2360
FZF-lbs (without upwash)	682	1253
FZF-lbs (with upwash)	706	1344
Flight Condition	11	1

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity and Disk Loading Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	6.96	7.80
L/DE (with upwash)	7.10	7.91
PLL Amplitude-lbs (without upwash)	551	305
PLL Amplitude-lbs (with upwash)	519	435
Vertical Shear Amplitude-lbs (without upwash)	1102	1897
Vertical Shear Amplitude-lbs (with upwash)	1288	1410
FZF-lbs (without upwash)	682	1182
FZF-lbs (with upwash)	706	1219
Flight Condition	11	3

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, and Gross Weight Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	8.94	8.21
L/DE (with upwash)	9.06	8.53
PLL Amplitude-lbs (without upwash)	1019	929
PLL Amplitude-lbs (with upwash)	1044	1014
Vertical Shear Amplitude-lbs (without upwash)	2270	3476
Vertical Shear Amplitude-lbs (with upwash)	2815	4106
FZF-lbs (without upwash)	1223	1686
FZF-lbs (with upwash)	1005	1557
Flight Condition	12	4

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, and Gross Weight Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	7.23	7.44
L/DE (with upwash)	7.66	7.85
PLL Amplitude-lbs (without upwash)	321	419
PLL Amplitude-lbs (with upwash)	485	460
Vertical Shear Amplitude-lbs (without upwash)	1449	2905
Vertical Shear Amplitude-lbs (with upwash)	1912	2877
FZF-lbs (without upwash)	754	1629
FZF-lbs (with upwash)	682	1561
Flight Condition	13	7

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Gross Weight, and Flat Plate Area for Auxiliary Thrust Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	8.06	7.40
L/DE (with upwash)	8.99	8.14
PLL Amplitude-lbs (without upwash)	825	734
PLL Amplitude-lbs (with upwash)	1154	916
Vertical Shear Amplitude-lbs (without upwash)	2598	3766
Vertical Shear Amplitude-lbs (with upwash)	3449	4359
FZF-lbs (without upwash)	1446	2736
FZF-lbs (with upwash)	1503	2507
Flight Condition	14	8

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Gross Weight, and Flat Plate Area for Auxiliary Thrust Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	7.09	7.83
L/DE (with upwash)	6.63	7.30
PLL Amplitude-lbs (without upwash)	483	293
PLL Amplitude-lbs (with upwash)	532	493
Vertical Shear Amplitude-lbs (without upwash)	897	2336
Vertical Shear Amplitude-lbs (with upwash)	1431	1820
FZF-lbs (without upwash)	720	1173
FZF-lbs (with upwash)	795	1386
Flight Condition	15	5

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Wing Lift, and Gross Weight Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	8.93	8.21
L/DE (with upwash)	8.72	8.01
PLL Amplitude-lbs (without upwash)	1025	873
PLL Amplitude-lbs (with upwash)	1052	987
Vertical Shear Amplitude-lbs (without upwash)	2556	3431
Vertical Shear Amplitude-lbs (with upwash)	3436	3188
FZF-lbs (without upwash)	1362	1730
FZF-lbs (with upwash)	1194	1795
Flight Condition	16	6

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Wing Lift, and Gross Weight Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	7.27	7.45
L/DE (with upwash)	7.18	7.26
PLL Amplitude-lbs (without upwash)	261	407
PLL Amplitude-lbs (with upwash)	429	546
Vertical Shear Amplitude-lbs (without upwash)	3124	5386
Vertical Shear Amplitude-lbs (with upwash)	3138	5220
FZF-lbs (without upwash)	765	1733
FZF-lbs (with upwash)	655	1594
Flight Condition	17	9

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Wing Lift, Gross Weight, and Flat Plate Area for Auxiliary Thrust Are Held Constant.

Rotor Radius-ft	25	30
L/DE (without upwash)	8.04	7.29
L/DE (with upwash)	8.57	7.65
PLL Amplitude-lbs (without upwash)	869	735
PLL Amplitude-lbs (with upwash)	905	927
Vertical Shear Amplitude-lbs (without upwash)	3234	3306
Vertical Shear Amplitude-lbs (with upwash)	4630	4694
FZF-lbs (without upwash)	1559	2685
FZF-lbs (with upwash)	1521	2444
Flight Condition	18	10

Variation of Equivalent Lift-to-Drag Ratio, Flap Hinge Vertical Shear Vibratory Amplitude, Pitch Link Load Vibratory Amplitude, and Vertical Hub Force Fourth Harmonic Amplitude with Rotor Radius from Loads Analysis. Flight Velocity, Rotor Lift, Wing Lift, Gross Weight, and Flat Plate Area for Auxiliary Thrust Are Held Constant.

APPENDIX D

Surface Plots

This appendix contains a few surface plots of upwash values, UP, the steady value and first ten harmonics of the blade loading, and the same blade loading with the steady value and first two harmonics removed. The blade loading is from B-65. The upwash values in this appendix are not nondimensionalized by rotor tip speed. They have units of ft/sec. The blade loading is in lb/in. These surface plots are examples only. They show that the effects of fuselage/wing/engine upwash on blade loading distribution is not dramatic.

ORIGINAL TAKEN
OF POOR QUALITY

UPWASH VELOCITY, NORMAL COMPONENT,
UP FUSELAGE (11/1961)

BLADE LOADING LIB/INT
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING LIB/INT
HARMONICS 3 TO 10

BLADE LOADING (lb/in²)
HARMONICS 3 TO 10

Flight Condition 3

ISOLATED ROTOR

ORIGINAL PLOTS
OF POOR QUALITY

FUSELAGE UPWASH

UPWASH VELOCITY, NORMAL COMPONENT,
△ UP FUSELAGE (11/800)

UPWASH VELOCITY, NORMAL COMPONENT,
△ UP FUSELAGE (11/800)

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

Flight Condition 5

ORIGINAL PLOT IS
OF POOR QUALITY

ISOLATED ROTOR

FUSELAGE UPWASH

UPWASH VELOCITY, NORMAL COMPONENT,
Δ_{UP} FUSELAGE (ft/sec)

UPWASH VELOCITY, NORMAL COMPONENT,
Δ_{UP} FUSELAGE (ft/sec)

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 8 TO 10

BLADE LOADING (lb/in)
HARMONICS 8 TO 10

Flight Condition 7

ORIGINAL PAGE IS
OF POOR QUALITY.

ISOLATED ROTOR

FUSELAGE UPWASH

UPWASH VELOCITY, NORMAL COMPONENT,
AHEAD FUSELAGE (ft/sec)

UPWASH VELOCITY, NORMAL COMPONENT,
AHEAD FUSELAGE (ft/sec)

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 0 TO 10

BLADE LOADING (lb/in)
HARMONICS 5 TO 10

Flight Condition 9

1. Report No. CR# 177349	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle FUSELAGE UPWASH EFFECTS ON RSRA ROTOR SYSTEMS		5. Report Date August 1985 6. Performing Organization Code
7. Author(s) J. Cowan, L. Dadone		8. Performing Organization Report No. D210-12359-1 9. Work Unit No.
9. Performing Organization Name and Address Boeing Vertol Company P.O. Box 16858 Philadelphia, PA 19142		10. Contract or Grant No. NAS2-11307 11. Type of Report and Period Covered Contractor Report
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		13. Sponsoring Agency Code RTOP 505-42-51
15. Supplementary Notes Point of Contact: Jeffrey L. Cross, Ames Research Center, Moffett Field, CA 94035 Phone #: (415) 694-6571 FTS 464-6571 M/S 237-3		
16. Abstract The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis. Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were: (1) Fuselage alone (conventional helicopter) (2) Fuselage with auxiliary propulsion (3) Fuselage with wings (auxiliary lift) (4) Fuselage with both auxiliary lift and propulsion The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects. The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented. The plethora of data resulting from this study reflected the existence of complicated flow interactions and did not lend itself to straightforward interpretation in all cases. More often than not though, neglecting fuselage upwash causes an underestimation of performance and an underestimation of loads.		
17. Key Words (Suggested by Author(s)) Helicopter rotor Interactional aerodynamics Compound helicopters Rotor performance RSRA		18. Distribution Statement Unlimited Subject Category 02
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 244
22. Price* *For sale by the National Technical Information Service, Springfield, Virginia 22161		

END

DATE

FILMED

SEP 27 1985

End of Document