

Universidade Federal da Bahia

Sistemas Operacionais

MATA58

Prof. Maycon Leone M. Peixoto

mayconleone@dcc.ufba.br

Programa

- Introdução aos Sistemas Operacionais
- Processos
- Gerência de Memória
 - Memória virtual
 - Paginação
 - Segmentação
- Sistemas de Arquivos
- Entrada/saída
- Segurança
- Exemplos de Sistemas Operacionais

- Algoritmos vistos:
 - Ótimo;
 - NRU;
 - FIFO;
 - Segunda Chance;
 - Relógio;
- Hoje:
 - LRU;
 - Working set;
 - WSClock;

- Algoritmo Least Recently Used Page Replacement (LRU) ou Menos Recentemente Usada (MRU)
 - Troca a página menos referenciada/modificada recentemente;
 - Alto custo
 - Lista encadeada com as páginas que estão na memória, com as mais recentemente utilizadas no início e as menos utilizadas no final;
 - A lista deve ser atualizada a cada referência da memória;

- Algoritmo Least Recently Used Page Replacement (LRU)
 - Pode ser implementado tanto por hardware quanto por software:
 - Hardware: MMU deve suportar a implementação LRU;
 - 1a. opção
 - Contador em hardware (64 bits) conta instruções executadas;
 - Após cada referência à memória, o valor do contador é armazenado na entrada da tabela de páginas referente à página acessada;
 - Quando ocorre falta de página, o SO examina todos os contadores e escolhe a página que tem o menor valor

- LRU Hardware 2a. Opção
 - Matriz nxn bits
 - Referencia a página k -> linha k=1 e coluna k=0

- Algoritmo Least Recently Used Page Replacement (LRU)
 - Pode ser implementado tanto por hardware quanto por software:
 - Software: duas maneiras
 - NFU (Not frequently used) ou LFU (least frequently used);
 - Aging (Envelhecimento);

- Software: NFU ou LFU (least)
 - Para cada página existe um contador □ iniciado com zero e incrementado a cada referência à pagina;
 - Página com menor valor do contador é candidata a troca;
 - Esse algoritmo não se esquece de nada
 - Problema: pode retirar páginas que estão sendo referenciadas com freqüência;
 - Compilador com vários passos: passo 1 tem mais tempo de execução que os outros passos □ páginas do passo 1 terão mais referências armazenadas;

- Software: Algoritmo aging (envelhecimento)
 - Modificação do NFU, resolvendo o problema descrito anteriormente;
 - Além de saber <u>quantas</u> <u>vezes</u> a página foi referenciada, também controla <u>quando</u> ela foi referenciada;

Algoritmo aging

Bits R para páginas 0-5

$D\iota$	Dits R para pagnas o s				
Cont	$\begin{array}{c c} clock \ tick \ 0 \\ \hline 1 \ 0 \ 1 \ 0 \ 1 \ 1 \\ \hline cadores \end{array}$	clock tick 1 1 1 0 0 1 0	clock tick 2 1 1 0 1 0 1	clock tick 3 1 0 0 0 1 0	clock tick 4 0 1 1 0 0 0
(10000000	11000000	11100000	11110000	01111000
1	00000000	10000000	11000000	01100000	10110000
2	2 10000000	01000000	00100000	00100000	10001000
(00000000	0000000	10000000	01000000	00100000
2	4 10000000	11000000	01100000	10110000	01011000
5	5 10000000	01000000	10100000	01010000	00101000
	a)	b)	c)	d)	e)

- Algoritmo Working Set (WS):
 - Paginação por demanda □ páginas são carregadas na memória somente quando são necessárias;
 - Pré-paginação □ Working set
 - Carregar um conjunto de páginas que um processo está efetivamente utilizando (referenciando) em um determinado tempo t antes de ele ser posto em execução;

- Algoritmo Working Set (WS):
 - Objetivo principal: reduzir a falta de páginas
 - Um processo só é executado quando todas as páginas necessárias no tempo testão carregadas na memória;
 - SO gerencia quais páginas estão no Working Set;
 - Para simplificar □ o working set pode ser visto como o conjunto de páginas que o processo referenciou durante os últimos t segundos de tempo;
 - Utiliza bit R e o tempo de relógio (tempo virtual) da última vez que a página foi referenciada;

Algoritmo Working Set:

Tempo virtual atual (CVT): 2204 age = CVT - TLU(Ex.: 2204-2084 = 120) $\tau = \text{múltiplos } clock \ ticks$

Percorrer as páginas examinando bit R; Se (R==1)*página foi referenciada; faz TLU da página igual ao CVT; Se (R==0 e $age > \tau$) página não está no working set; remove a página; Se (R==0 e $age \le \tau$) ** página está no working set; remove página com maior age dentro do intervalo τ ;

Algoritmo WSClock:

- Clock + Working Set;
- Lista circular de molduras de páginas formando um anel a cada página carregada na memória;
- Utiliza bit R e o tempo da última vez que a página foi referenciada;
- Bit M utilizado para agendar escrita em disco;

- Clock + Working Set
- Amplamente usado, devido à sua simplicidade e performance
- Utiliza lista circular de páginas
 - Inicialmente vazia
 - À medida que mais páginas são carregadas, entram na lista, formando um anel
 - Cada entrada contém o tempo de último uso, além dos bits R e M

Algoritmo WSClock:

- Funcionamento:
 - A cada page fault, a página da cabeça é examinada primeiro
 - Se R=1
 - A página foi usada durante o ciclo de clock corrente → não é candidata a remoção
 - Faz R = 0 e avança a cabeça à próxima página, repetindo o algoritmo para esta página

Funcionamento:

- Se R=0
 - Se a idade for maior que o tamanho do working set t e a página estiver limpa (M=0) → não está no working set e uma cópia válida existe no disco
 - A página é substituída
 - A cabeça da lista avança

- Funcionamento:
 - Se R=0
 - Se, contudo, a página estiver suja → não possui cópia válida no disco
 - Agenda uma escrita ao disco, evitando troca de processo
 - Avança a cabeça da lista, prosseguindo da página seguinte

- Se a cabeça der uma volta completa na lista sem substituir:
 - E pelo menos uma escrita no disco foi agendada
 - A cabeça continua se movendo, em busca de uma página limpa
 - Em algum momento a escrita agendada será executada, marcando a página como limpa
 - E nenhuma escrita foi agendada
 - Todas as páginas estão no working set
 - Na falta de informação adicional, substitua qualquer página limpa
 - Se nenhuma página limpa existir, escolha qualquer outra e a escreva no disco

Algoritmos de Troca de Páginas

- Algoritmos de substituição local:
 - Working Set;
 - WSClock;
 - O conceito de working set se aplica somente a um único processo
 → não há working set para a máquina como um todo

- Algoritmos de substituição local/global:
 - Ótimo;
 - NRU;
 - FIFO;
 - Segunda Chance;
 - LRU;
 - Relógio;

Gerenciamento de Memória Troca de Páginas

- Política de Substituição Local: páginas dos próprios processos são utilizadas na troca;
 - Dificuldade: definir quantas páginas cada processo pode utilizar;
- Política de Substituição Global: páginas de todos os processos são utilizadas na troca;
 - Problema: processos com menor prioridade podem ter um número muito reduzido de páginas, e com isso, acontecem muitas <u>faltas de páginas</u>;

Gerenciamento de Memória Troca de Páginas

Falta de Página no Processo A

A0	10
A1	7
A2	5
A3	4
A4	6
A5	3
B0	9
B1	4
B2	6
B3	2
B4	5
B5	6
B6	12
C1	3
C2 C3	5
C3	6
(a)	

Г	A0	
Г	A1	\neg
Г	A2	
Г	A2 A3	
Г	A4	
	(A6)	
	В0	
	B1	
	B2	
	B3	
	B4	
	B5	
	B6	0.0
	C1	
	C2 C3	
	C3	
	(b)	

A0
A1 A2 A3 A4 A5
A2
A3
A4
A5
B0
B1
B2
(A6)
B4
B5
B6
C1
C1 C2 C3
C3
(c)

Configu<u>ração</u> inicial

Alocação global

Gerenciamento de Memória Troca de Páginas

- Política de alocação local (número fixo de páginas/processo) permite somente política de substituição local de páginas
- Política de alocação global (número variável de páginas/processo) permite tanto a política de substituição de páginas local quanto global

- Algoritmos de substituição local:
 - Working Set;
 - WSClock;
- Algoritmos de substituição local/global:
 - Ótimo;
 - NRU;
 - FIFO;
 - Segunda Chance;
 - LRU;
 - Relógio;

Programa

- Introdução aos Sistemas Operacionais
- Processos
- Gerência de Memória
 - Memória virtual
 - Paginação
 - Implementação
 - Tabela de Páginas Invertida
 - Segmentação
- Sistemas de Arquivos
- Entrada/saída
- Segurança
- Exemplos de Sistemas Operacionais

Até agora, vimos somente como uma página é selecionada para remoção. Mas onde a página descartada da memória é colocada?

Memória Secundária – Disco

- A área de troca (swap area) é gerenciada como uma lista de espaços disponíveis;
- O endereço da área de troca de cada processo é mantido na tabela de processos;
 - Cálculo do endereço: MMU;

- Memória Secundária Disco
 - Possibilidade A Assim que o processo é criado, ele é copiado todo para sua área de troca no disco, sendo carregado para memória quando necessário;
 - Área de troca diferente para dados, pilha e programa, pois área de dados pode crescer e a área de pilha crescerá certamente;

- Memória Secundária Disco (cont.)
 - Possibilidade B Nada é alocado antecipadamente, espaço é alocado em disco quando a página for enviada para lá. Assim, processo na memória RAM não fica "amarrado" a uma área específica;

Como fica o disco – memória secundária

Área de troca estática

Área de troca dinâmica

- □ Geralmente, cada processo tem uma tabela de páginas associada a ele □ classificação feita pelo endereço virtual;
 - Pode consumir grande quantidade de memória;
- Alternativa: tabela de páginas invertida;
 - SO mantém uma única tabela para as molduras de páginas da memória;
 - Cada entrada consiste no endereço virtual da página armazenada naquela página real, com informações sobre o processo dono da página virtual;
 - Exemplos de sistemas: IBM System/38, IBM RISC System 6000, IBM RT e estações HP Spectrum;

- Quando uma referência de memória é realizada (página virtual), a tabela de páginas invertida é pesquisada para encontrar a moldura de página correspondente;
 - Se encontra, o endereço físico é gerado □
 <i, deslocamento>;

Tabela de páginas invertida

Endereço lógico: <id processo (pid), número página (p), deslocamento (d)>

Vantagens:

- Ocupa menos espaço;
- É mais fácil de gerenciar apenas uma tabela;

Desvantagens:

- Aumenta tempo de pesquisa na tabela, pois, apesar de ser classificada por endereços físicos, é pesquisada por endereços lógicos;
- Aliviar o problema: tabela hashing;
 - Uso da TLB (memória associativa) para manter entradas recentemente utilizadas;

- Segmentação: Visão do programador/compilador
 - Tabelas de segmentos com n linhas, cada qual apontando para um segmento de memória;
 - Vários espaços de endereçamento;
 - Endereço real

 base + deslocamento;
 - Alocação de segmentos segue os algoritmos já estudados:

```
FIRST-FIT;
```

- BEST-FIT;
- NEXT-FIT;
- WORST-FIT;
- QUICK- FIT;

Segmentação:

- Facilita proteção dos dados;
- Facilita compartilhamento de procedimentos e dados entre processos;
- MMU também é utilizada para mapeamento entre os endereços lógicos e físicos;
 - Tabela de segmentos informa qual o endereço da memória física do segmento e seu tamanho;

Segmentação:

- Problemas encontrados □ embora haja espaço na memória, não há espaço contínuo:
 - Política de relocação: um ou mais segmentos são relocados para abrir espaço contínuo;
 - Política de compactação: todos os espaços são compactados;
 - Política de bloqueio: fila de espera;
 - Política de troca: substituição de segmentos;
- Sem fragmentação interna, com fragmentação externa;

Virtual

Tarefa: Compilação

37

Tabela de Segmentos P1

	Limite	Base
0	25286	43062
1	4425	68348

Tabela de Segmentos P2

	Limite	Base
0	25286	43062
1	8850	90003

Gerenciamento de Memória Segmentação-Paginada

- Espaço lógico é formado por segmentos
 - Cada segmento é dividido em páginas lógicas;
 - Cada segmento possui uma tabela de páginas
 mapear o endereço de página lógica do segmento em endereço de página física;
 - No endereçamento, a tabela de segmentos indica, para cada segmento, onde sua respectiva tabela de páginas está;
 - Multics, Pentium

Gerenciamento de Memória Segmentação-Paginada

Gerenciamento de Memória Memória Virtual

Consideração	Paginação	Segmentação
Programador deve saber da técnica?	Não	Sim
Espaços de endereçamento existentes	1	Vários
Espaço total de endereço pode exceder memória física?	Sim	Sim
É possível distinguir procedimento de dados e protegê-los?	Não	Sim

Gerenciamento de Memória Memória Virtual

Consideração	Paginação	Segmentação
Tabelas de tamanho variável podem ser acomodadas sem problemas?	Não	Sim
Compartilhamento de procedimentos entre usuário é facilitado?	Não	Sim
Por que?	Para obter espaço de endereçamento maior sem aumentar memória física	Para permitir que programas e dados possam ser divididos em espaços de endereçamento logicamente independentes; compartilhamento e proteção

Programa

Gerência de Memória

- Gerenciamento de espaços
- Alocação de informação na memória
- Memória virtual
 - Paginação
 - Implementação
 - Tabela de Páginas Invertida
 - Segmentação

Programa

- Introdução aos Sistemas Operacionais
- Processos
- Gerência de Memória
- Sistemas de Arquivos
- Entrada/saída
- Segurança
- Exemplos de Sistemas Operacionais