B03902052 顏廷宇 資工二

SP_HW4 Report

	100	10000	1000000	10000000
n/1	R: 0.07sec	R: 0.67sec	R: 1.54sec	R: 8.90sec
	U:0.000sec	U:0.008sec	U:0.706sec	U:5.704sec
	S:0.000sec	S:0.004sec	S:0.016sec	S:0.116sec
n/2	R: 0.06sec	R: 0.39sec	R: 2.90sec	R: 10.70sec
	U:0.000sec	U:0.000sec	U:0.752sec	U:7.244sec
	S:0.000sec	S:0.008sec	S:0.024sec	S:0.212sec
n/5	R: 0.06sec	R: 0.18sec	R: 1.51sec	R: 13.21sec
	U:0.000sec	U:0.016sec	U:1.120sec	U:10.076sec
	S:0.000sec	S:0.004sec	S:0.064sec	S:0.396sec
n/10	R: 0.07sec	R: 0.34sec	R: 2.10sec	R: 15.19sec
	U:0.000sec	U:0.016sec	U:1.204sec	U:11.376sec
	S:0.000sec	S:0.000sec	S:0.044sec	S:0.480sec
n/25	R: 0.06sec	R: 0.12sec	R: 2.00sec	R: 19.86sec
	U:0.000sec	U:0.008sec	U:1.560sec	U:13.488sec
	S:0.004sec	S:0.008sec	S:0.080sec	S:0.544sec
n/100	R: 0.06sec	R: 0.21sec	R: 2.79sec	R: 20.03sec
	U:0.000sec	U:0.044sec	U:0.112sec	U:17.140sec
	S:0.012sec	S:0.000sec	S:1.904sec	S:0.620sec

- 1. Real time 分析: 照理來說, real time 應該會因 segment size 從 n/1 到 n/100 而成正比變多,但實驗結果顯示,時間是變多了,但不成正比,只有成長一點點,這就是因為用 multithread,平行化讓整體運算時間變少了。
- 2. User time 分析: user time 是 amount of CPU time spent in user-mode. 所以當test data 小的時候, user time 自然就很小。但當測資大,且 segment size 越小時(ex:n/100), user time + sys time 就越趨近於 real time, 甚至,在(10000000, n/100)時, user time + sys time > real time, 而這就是 multithread的好處,讓程式平行化加快,但也會讓 CPU 的 loading 變重。

B03902052 顏廷宇 資工二

*這是我做的另一份實驗,我把 segment size 設很小

	100	10000	1000000	10000000
100	R: 0.05sec	R: 0.21sec	R: 6.53sec	R: 71.34sec
	U:0.000sec	U:0.036sec	U:3.992sec	U:48.876sec
	S:0.000sec	S:0.008sec	S:1.380sec	S:14.856sec
25	R: 0.13sec	R: 0.31sec	R: 10.21sec	R: 121.55sec
	U:0.000sec	U:0.048sec	U:5.276sec	U:64.492sec
	S:0.000sec	S:0.068sec	S:4.752sec	S:48.196sec
10	R: 0.29sec	R: 0.43sec	R: 19.01sec	R: 236.83sec
	U:0.000sec	U:0.064sec	U:7.728sec	U:91.892sec
	S:0.004sec	S:0.132sec	S:11.488sec	S:125.728sec
5	R: 0.11sec	R: 0.50sec	R: 29.91sec	R: 347.94sec
	U:0.000sec	U:0.060sec	U:10.832sec	U:116.036sec
	S:0.004sec	S:0.280sec	S:21.704sec	S:227.932sec
2	R: 0.11sec	R: 0.76sec	R: 57.49sec	R: 403.01sec
	U:0.000sec	U:0.152sec	U:18.944sec	U:165.220sec
	S:0.008sec	S:0.588sec	S:53.684sec	S:410.680sec
1	R: 0.12sec	R: 1.75sec	R: 122.76sec	R: 972.78sec
	U:0.004sec	U:0.276sec	U:33.492sec	U:306.180sec
	S:0.020sec	S:1.208sec	S:107.896sec	S:971.448sec

- 1. Real time 分析:若固定 segment size,看 segment size = 1 的時候,real time 成長的比例跟 test data 成正比;但在 segment size = 100 時,real time 成長的幅度卻不大明顯。這是因為 segment size 小的時候,要進行運算的 segment 數就會變多,所以,用 multithread 就可以讓運算速度有線性的成長;但 segment size 數大,test data 數也很小時,所需要的 segment 數也跟著變少,multithread 就浪費了他平行化的功能了,沒有成功加快運算速度。
- 2. User time 分析:在 segment size = 100 時,user time + sys time < real time, 這代表 multithread 沒有很大的幫助,這是因為當 segment size 大時,跑的 segment 數就少,讓 multithread 無用武之地。而當 segment size = 1 時, user time + sys time > real time, 這就是因為 multithread,讓程式在 CPU 跑的 時間會比真實時間多,multithread 這時對程式的加速就幫助很大。
- 3. Sys time 分析: 我的 sys time 會這麼久的原因是因為我的程式裡面用了大量的 malloc,才會導致 sys time 上升。