UNIDAD DIDÁCTICA 3

CONCEPTOS BÁSICOS DE CÁLCULO DE PROBABILIDADES

OBJETIVO

Introducir los conceptos básicos de operaciones con sucesos, probabilidad (concepto y propiedades), probabilidad condicional e independencia de sucesos, teoremas de la probabilidad total y de Bayes.

Contenidos

- 1. Operaciones con sucesos
- 2. Probabilidad: concepto y propiedades
- 3. Probabilidad de la suma de sucesos
- 4. Probabilidad condicional
- 5. Teorema de la probabilidad total
- 6. Independencia de sucesos
- 7. Teorema de Bayes

Sucesos

Ejemplo 1:

Población = Todos los lanzamientos de un dado.

 $E = \{1, 2, 3, 4, 5, 6\}$

Suceso: "obtener número par" A ={2, 4, 6}

A dicho suceso le corresponde en la población el subconjunto de todos los lanzamientos, en los que el resultado sea un número par (pertenece a A).

Sucesos

Ejemplo 2:

Población = Todos los jóvenes españoles.

Variable aleatoria = ESTATURA (en cms)

E: Números reales positivos

Suceso: "ESTATURA > 180" A = (180,....)

A este suceso A le corresponde en la población el subconjunto de jóvenes con estatura superior a 180 cm.

Sucesos

 Suceso seguro: todo E. Se cumple en toda la población.

 Suceso imposible: Φ. No contiene ningún valor de E. Ningún elemento de la población lo cumple.

Suma o unión de dos sucesos:

$$C = A + B \circ C = A \cup B$$

A C le corresponde en la población el subconjunto de elementos que cumplen A o B, o ambos.

Producto o intersección de dos sucesos:

o
$$C = A \cdot B \Rightarrow C = AB$$

C: le corresponde el subconjunto de la población que verifica A y B.

Si $A \cap B = \Phi \Rightarrow A$ y B son excluyentes.

Suceso contrario o complementario a A:
 asociado a los elementos en que no se presenta
 A.

Suceso contrario de A: A

Ejemplo 3: En la población de jóvenes españoles

A: ESTATURA mayor que 175 cms

B: SEXO ="chicas"

a) Define con palabras los subconjuntos de individuos de la población asociados a:

A+B; AB; $\overline{A}.\overline{B}$; $\overline{A}+\overline{B}$

b) ¿Cuál es el suceso complementario de A + B? ¿Y el de A.B? (Leyes de Morgan)

RESPUESTA:

a)

A+B

Chicos con ESTATURA > 175

Chicas con ESTATURA > 175

Chicas con ESTATURA ≤ 175

AB

Chicas con ESTATURA > 175

RESPUESTA:

 $\overline{A}.\overline{B}$

Chicos con ESTATURA ≤ 175

 $\overline{A} + \overline{B}$

Chicas con ESTATURA ≤ 175

Chicos con ESTATURA ≤ 175

Chicos con ESTATURA > 175

RESPUESTA:

b)¿Cuál es el suceso complementario de A+B? ¿Y el de AB? (leyes de Morgan) $\overline{A+B}$

Chicos con ESTATURA ≤ 175 = A.B

 $A.B = \overline{A} + \overline{B}$

Chicas con ESTATURA ≤ 175

Chicos con ESTATURA ≤ 175

Chicos con ESTATURA > 175

- **Ejemplo 4:** Un dispositivo se fabrica a partir de dos componentes C₁ y C₂. Sean los sucesos:
- C₁: la componente C₁ funciona más de 5000 horas sin fallar
- C₂: la componente C₂ funciona más de 5000 horas sin fallar
- D: el dispositivo conjunto funciona más de 5000 horas sin fallar.

Si las dos componentes C₁ y C₂ se conectan en serie (de forma que el dispositivo falla cuando lo hace una cualquiera de las dos componentes) ¿Qué relación existe entre el suceso D y los sucesos C₁ y C₂?

RESPUESTA: C₁ C₂

 $D=C_1 \cdot C_2$

Si C₁ y C₂ se conectan en paralelo (de forma que el dispositivo funciona mientras funcione al menos una cualquiera de las dos componentes)

¿Qué relación hay entre el suceso D y los sucesos C₁ y C₂?

RESPUESTA:

$$D = C_1 + C_2$$

Todo suceso tiene una probabilidad: proporción de elementos de la población que lo verifican.

En el ejemplo 1

probabilidad del suceso "resulta par": proporción de veces que se obtiene un número par en la población de lanzamientos que se pueden realizar con el dado.

En el ejemplo 2

probabilidad del suceso "estatura > 175": proporción de jóvenes en la población que tienen una estatura en ese rango.

Caso particular:

Si el <u>conjunto de valores</u> E que puede tomar una variable aleatoria, es <u>finito</u> (como en el caso del dado)

y además por <u>razones de simetría</u>, <u>la probabilidad es la misma para cada uno de dichos valores</u> (la proporción de elementos en la población para cada valor es la misma)

Probabilidad de un suceso: cociente entre el número de valores asociados a dicho suceso y el número de valores de E.

EJERCICIO 1: Si un dado es simétrico ¿cuál es la probabilidad de obtener un número par al lanzarlo?

RESPUESTA: 3/6

¿Por qué? A:"obtener número par" A{2,4,6} 3 valores favorables al suceso E{1,2,3,4,5,6} 6 valores posibles

Propiedades de la Probabilidad

La probabilidad de un suceso A : P(A)

1. $P(A) \ge 0$ por ser una proporción.

2.
$$P(E) = 1$$

Propiedades de la Probabilidad

3. Si A y B son excluyentes

$$P(A + B) = P(A) + P(B)$$

el número de elementos que verifican

A+B, es la suma de los que presentan A más los que presentan B

Propiedades de la Probabilidad

4.
$$P(\overline{A}) = 1 - P(A)$$

6.
$$P(\Phi)=0$$

Probabilidad de la suma de sucesos

Si A y B no son excluyentes

$$P(A + B) = P(A) + P(B) - P(AB)$$

Probabilidad de la suma de sucesos

EJERCICIO 2: En el lanzamiento simultáneamente de dos dados simétricos.

¿Cuánto vale la probabilidad del suceso A "en el primer dado se obtiene un 6" y la del suceso B "en el segundo dado se obtiene un 6"?

$$P(A)=1/6$$
 $P(B)=1/6$

¿A y B son excluyentes?

No

¿Cuál es el suceso A+B?

A+B= "En al menos un dado sale 6"

¿Su probabilidad es mayor, menor o igual a 2/6?

Menor

¿Por qué?

Sumando 1/6+1/6 se incluye dos veces la intersección AB.

P(A+B)=1/6+1/6-1/36 < 2/6

Probabilidad de la suma de 3 sucesos

EJERCICIO 3:

$$P(A+B+C) = P(A)+P(B)+P(C)-P(AB)-P(AC)$$
$$-P(BC)+P(ABC)$$

Dados A y B, donde P(B)>0, Probabilidad de A condicionado a B : la probabilidad de que se presente A en el subconjunto de la población que verifica B.

Se simboliza como P(A/B)

EJERCICIO 4: ¿cuál es la probabilidad de que al lanzar un dado simétrico, salga un número mayor que 3 (suceso A) sabiendo que el número que ha salido ha sido par (suceso B)?

RESPUESTA:

$$A=\{4,5,6\}$$
 $B=\{2,4,6\}$ $P(A/B)=2/3$

P(A/B)

Se calcula como el cociente entre el número de individuos que verifican tanto A como B (o sea que verifican AB), dividido por el número de individuos que verifican B:

$$P(A/B)=P(AB)/P(B)$$

Probabilidad del suceso producto

De la definición de probabilidad condicional:

$$P(AB) = P(B) \times P(A/B)$$

o también:

$$P(AB) = P(A) \times P(B/A)$$

EJERCICIO 5:

Población:131 alumnos de la UPV

(datos curs8990.sf3)

Calcula en dicha población

- a)Probabilidad del suceso CHICA?
- b)Probabilidad del suceso PESO ≤ 55?
- c)Probabilidad del suceso (PESO≤55)/CHICA
- d)Probabilidad del suceso CHICA/(PESO≤55)

RESPUESTA:

	CHICA	CHICO	
PESO≤55	26	0	26
PESO>55	16	89	105
	42	89	131

P(CHICA)=42/131=0,3206 $P(PESO \le 55)=26/131=0,1985$ $P(PESO \le 55/CHICA)=26/42=0,619$ $P(CHICA/PESO \le 55)=26/26=1$

Probabilidad del suceso producto

EJERCICIO 6:

Al seleccionar al azar un individuo de la población del ejercicio 5

¿Cuál es la probabilidad de que sea una chica de peso ≤ 55 kgs?

 $P(chica\ y\ peso\ ≤55)=26/131=0,1985$

¿Resulta igual al producto de la probabilidad de que sea chica por la probabilidad de que el peso sea ≤ 55?

NO

 $P(chica).P(peso \le 55) = (42/131)(26/131) \ne 0,1985$

Probabilidad del suceso producto EJERCICIO 7:

```
Comprobar las dos expresiones de la
 probabilidad del suceso producto en el
 ejemplo manejado en el ejercicio 5.
P(chica\ y\ peso\ \le 55)=26/131=0,1985
P(chica y peso≤55)=
 =P(peso \le 55)xP(chica/(peso \le 55))=
 =(26/131)x(26/26)=26/131=0,1985
P(chica y peso ≤55)=
 P(chica)xP((peso≤55)/chica)=
 (42/131)x(26/42)=26/131=0,1985
```

Probabilidad condicional y del producto

EJERCICIO 8

Se detectó un virus en el sistema operativo de teléfonos móviles que afecta a aparatos de tres modelos distintos A, B y C.

Se han analizado los teléfonos móviles de los viajeros presentes en la sala de espera de la terminal de un aeropuerto, con los siguientes resultados:

El 50% de los teléfonos son del modelo A y el 30% del modelo B, y el resto del C.

EJERCICIO 8

- Del total de teléfonos analizados, un 20% son del modelo A y no están infectados.
- Un 40% de los teléfonos del modelo B ha contraído el virus.
- Un 1% de los teléfonos es del modelo C y no está infectado.

- a) Si elegimos al azar un teléfono y resulta ser del modelo A, ¿qué probabilidad hay de que tenga el virus?
- b) ¿Qué porcentaje de los teléfonos del modelo C analizados no está afectado por el virus?

RESPUESTA:

SUCESOS:

- A: el teléfono es del modelo A
- B: el teléfono es del modelo B
- C: el teléfono es del modelo C
- V: el teléfono está afectado por el virus (está infectado)

PROBABILIDADES:

$$P(A)=0.5$$
 $P(B)=0.3$ $P(C)=1-0.5-0.3=0.2$ $P(A \cap V)=0.2$ $P(V/B)=0.4$ $P(C \cap V)=0.01$

a)P(V/A)=1-P(
$$\overline{V}$$
/A)=1-[P(A \overline{V})/P(A)]=
=1-(0,2/0,5)=0,6

b)
$$P(V/C) = P(C \cap V)/P(C) = 0.01/0.2 = 0.05$$

 Suceso B que se presenta asociado a cada uno de los n sucesos A₁, A₂,..., An excluyentes. E= A₁∪A₂∪...∪ An

Se conocen
$$P(A_i)$$
 y $P(B/A_i)$ $P(B)$?

Como

$$B = A_1B + A_2B + ... + A_nB$$

$$P(B)=P(A_1B)+P(A_2B)+...+P(A_nB)=$$

$$= P(A_1) P(B/A_1) +P(A_2) P(B/A_2) +...+P(A_n) P(B/A_n)$$

EJERCICIO 9:

En una fábrica se dispone de dos líneas para producir pantallas. En la primera hay un 1% de defectuosas. La segunda tiene el doble de capacidad productiva que la primera, y en ella hay un 2% de defectuosas.

- a)¿A qué probabilidades condicionales corresponden los valores 1% y 2%?
 - b)¿Cuál es el porcentaje de pantallas defectuosas producidas en total?

RESPUESTA:

```
a)
```

A₁: pantalla procede de línea 1

A₂: pantalla procede de línea 2

B: defectuosa

$$1\% = P(B/A_1)$$
 y $2\% = P(B/A_2)$

Otros datos:

$$P(A_1)=1/3$$
 y $P(A_2)=2/3$ b)

$$P(B)=P(A_1). P(B/A_1)+P(A_2). P(B/A_2)=$$

=(1/3) x 0,01 + (2/3) x 0,02= 0,017 \Rightarrow 1,7 %

Teorema de la probabilidad total *EJERCICIO 10*

Con los datos del ejercicio 8,

¿Qué probabilidad hay de que un teléfono tenga el virus?

RESPUESTA:

$$P(V)=P(V/A)P(A)+P(V/B)P(B)+P(V/C)P(C)=$$

=0,6x0,5+0,4x0,3+(1-0,05)x0,2=0,61

Dos sucesos **A** y **B** se dice que son independientes si:

$$1-P(A/B)=P(A)$$

2-
$$P(A/B) = P(A/\overline{B})$$

$$3-P(B/A) = P(B)$$

$$4-P(B/A)=P(B/\overline{A})$$

$$5-P(AB) = P(A)P(B)$$

6-
$$P(\overline{A}\overline{B}) = P(\overline{A})P(\overline{B})$$

7-
$$P(AB) = P(A)P(B)$$

$$8-P(AB)=P(A)P(B)$$

EJERCICIO 11:

En una baraja española (40 cartas, 10 de cada palo) sea el experimento aleatorio sacar una carta al azar y considérense los sucesos siguientes:

A = sacar un as

B = sacar un oro

Si se trata de adivinar si ha salido un as ¿sirve para algo saber que ha salido un oro? ¿por qué?

RESPUESTA:

No.

 $P(A) = P(sacar\ as) = 4/40 = 0,1$

P(A/B) = P(sacar as/ha salido un oro) = 1/10=0,1

Son dos sucesos independientes

EJERCICIO 12

Una empresa de venta por correo considera tres posibles errores al enviarse un pedido:

A: el artículo enviado no es el solicitado

B: el artículo se extravía

C: el artículo sufre desperfectos en el transporte

El suceso A es independiente de los sucesos B y C.

Los sucesos B y C son mutuamente excluyentes.

Las probabilidades de los sucesos individuales son P(A)=0,02, P(B)=0,01 y P(C)=0,04.

Calcula la probabilidad de que ocurra alguno de estos errores para un pedido escogido al azar.

RESPUESTA:

SUCESOS Y PROBABILIDADES:

A: el artículo enviado no es el solicitado \rightarrow P(A) = 0,02

B: el artículo se extravía \rightarrow P(B) = 0,01

C: el artículo sufre desperf. en el transporte \rightarrow P(C) = 0,04

- [1] A independiente de B y C
- [2] By C mutuamente excluyentes

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) =$$

=
$$P(A) + P(B) + P(C) - P(A)xP(B)^{1} - P(A)xP(C)^{1} - P(\Phi) + (0.02x0) = 0.069$$

EJERCICIO 13

El dispositivo de la figura esta formado por 4 componentes (A, B, C, D) montados de la siguiente forma:

La fiabilidad de los componentes A es del 95% a las 1000 horas, y la de B, C y D del 80% a las 1000 horas.

¿Cuál es la fiabilidad del dispositivo a las 1000 horas?

SOLUCIÓN

SUCESOS:

- A: duración del componente A ≥ 1000 h
- B: duración del componente B ≥ 1000 h
- C: duración del componente C ≥ 1000 h
- D: duración del componente D ≥ 1000 h
- Disp: duración del dispositivo ≥ 1000 h
- Por la naturaleza de los elementos que intervienen en el problema sabemos que A, B, C y D son independientes.

PROBABILIDADES:

- Fiabilidad de A \rightarrow P(A) = 0,95
- Fiabilidad de B \rightarrow P(B) = 0,8
- Fiabilidad de C \rightarrow P(C) = 0,8
- Fiabilidad de D \rightarrow P(D) = 0,8
- Fiabilidad de Disp → P(Disp) ?

$$\begin{aligned} & \mathsf{Disp} = \ \mathsf{A} \cap \big(\mathsf{B} \cup \mathsf{C} \cup \mathsf{D}\big) \\ & \mathsf{P}(\mathsf{Disp}) = \ \mathsf{P}\big(\mathsf{A} \cap \big(\mathsf{B} \cup \mathsf{C} \cup \mathsf{D}\big)\big) = \mathsf{P}(\mathsf{A}) \mathsf{x} \mathsf{P}\big(\mathsf{B} \cup \mathsf{C} \cup \mathsf{D}\big); \end{aligned}$$

$$P\big(B \cup C \cup D\big) = 1 - P\big(\overline{B \cup C \cup D}\big) = 1 - P\big(\overline{B} \cap \overline{C} \cap \overline{D}\big) = 1 - P(\overline{B}) \times P(\overline{C}) \times P(\overline{D}) = 1 - [0,2]^3 = 0,992$$

$$P(Disp) = P(A)xP(B \cup C \cup D) = 0.95 \times 0.992 = 0.9424$$

 Suceso B asociado a cada uno de los n sucesos A₁, A₂,..., A_n excluyentes.

 $E: A_1 \cup A_2 \cup ... \cup A_n$

Se conocen
$$P(A_k)$$
 y $P(B/A_k)$ $\dot{P}(A_k/B)$?

$$P(\mathbf{A}_{k}/\mathbf{B}) = \frac{P(\mathbf{A}_{k}\mathbf{B})}{P(\mathbf{B})} = \frac{P(\mathbf{A}_{k})P(\mathbf{B}/\mathbf{A}_{k})}{P(\mathbf{B})}$$

Por el Teorema de la Probabilidad Total:

$$P(\mathbf{B}) = P(\mathbf{A}_1)P(\mathbf{B}/\mathbf{A}_1) + P(\mathbf{A}_2)P(\mathbf{B}/\mathbf{A}_2) + \dots + P(\mathbf{A}_n)P(\mathbf{B}/\mathbf{A}_n)$$

Sustituyendo esta expresión en el denominador anterior se obtiene el resultado conocido como Teorema de Bayes

$$P(\mathbf{A}_{k}/\mathbf{B}) = \frac{P(\mathbf{A}_{k})P(\mathbf{B}/\mathbf{A}_{k})}{\sum_{i=1}^{n} P(\mathbf{A}_{i})P(\mathbf{B}/\mathbf{A}_{i})}$$

Ejemplo:

En un proceso se fabrican circuitos en dos líneas distintas (Estos son los dos sucesos A_1 y A_2 en los que se particiona toda la población de circuitos fabricados). La primera línea tiene el doble de capacidad de producción que la segunda. El suceso B es que un circuito fabricado sea defectuosos.

La primera línea produce 0.5% de circuitos defectuosos. La segunda línea produce 0.3% de circuitos defectuosos. (Estas son las probabilidades condicionales $P(B/A_i)$)

EJERCICIO 14:

En el proceso se detecta un circuito defectuoso. ¿Cuánto vale la probabilidad de que proceda de la segunda línea?. (O sea cuánto vale $P(A_2/B)$)

Calcula aplicando el Teorema de Bayes la probabilidad solicitada.

RESPUESTA:

Datos: $P(A_1)=2/3$ $P(A_2)=1/3$ $P(B/A_1)=0,005$ $P(B/A_2)=0,003$ Teorema de Bayes:

$$P(\mathbf{A}_{2}/\mathbf{B}) = \frac{P(\mathbf{A}_{2})P(\mathbf{B}/\mathbf{A}_{2})}{\sum_{i=1}^{2} P(\mathbf{A}_{i})P(\mathbf{B}/\mathbf{A}_{i})} \Rightarrow$$

$$P(\mathbf{A}_{2}/\mathbf{B}) = \frac{(1/3)x0,003}{(2/3)x0,005 + (1/3)x0,003} = 0,23$$

Ejercicios evaluación

- 1.- En un proceso productivo se fabrican componentes electrónicos en tres líneas distintas. La primera línea produce el 35%, con un 0,1% de componentes defectuosos. La segunda línea fabrica el 40% con un 0,5% de componentes defectuosos. En la tercera línea hay un 0,7% de componentes defectuosos.
- Si se extrae al azar un componente de la producción total ¿Cuánto vale la probabilidad de que sea defectuoso?
- En un determinado instante, el proceso detecta un componente defectuoso. ¿Cuál es la probabilidad de que dicho componente proceda de la primera línea?.

Ejercicios evaluación

2- El dispositivo de la figura esta formado por seis componentes (CA, CB, CC, CD, CE, CF) montados de la siguiente forma:

Ejercicios evaluación

Sean los sucesos:

- A= [Componente CA funciona correctamente al menos 5000 horas]
- B= [Componente CB funciona correctamente al menos 5000 horas]
- C= [Componente CC funciona correctamente al menos 5000 horas]
- D= [Componente CD funciona correctamente al menos 5000 horas]
- E= [Componente CE funciona correctamente al menos 5000 horas]
- F= [Componente CF funciona correctamente al menos 5000 horas]
 - a) Expresar el suceso DI= [Dispositivo sigue funcionando al cabo de 5000 horas] a partir de los sucesos A, B, C, D, E, F. ¿Sobre qué población esta definido dicho suceso?.
 - b) La fiabilidad de los componentes CA, CB y CC es del 95% a las 5000 horas, y la de CD, CE y CF del 80% a las 5000 horas. ¿Cuál es la fiabilidad del dispositivo a las 5000 horas (P(DI))?.