

PomoRobotics Handover Documentation - Runbook

Document Information

Project name:	PomoRobotics DriverlessTruck
Date:	24/09/2024
Author:	Keval S/Chris F
Document code:	001
Version:	V1.0

Approval

Date	Name	Title
24 th September	Keval S/Chris F	Solutions Architect
24 th September	Graham B	Presales/Account manager
24 th September	Gordon S	СТО

Introduction

This handover document provides a seamless transition of ownership and knowledge for the recently completed running Machine Learning Workload on AWS . It contains essential information about the system architecture and functionalities, technical specifications, and other relevant details.

Our goal has been to align our expertise with your business objectives, delivering a tailored IT solution to meet your specific needs. This document serves as a valuable resource, empowering you to effectively maintain and enhance the system. Should you require any assistance during this transition phase, our team is available to support you.

Project Outline

PomoRobotics have engaged transACT Cloud Services as their consulting partner to propose a design for architecting their Infrastructure in AWS for running ML workloads. Main goal was to Setup basic Infrastructure within AWS making sure that the environment is resilient/available/scalable/secured and setup as per AWS best practices.

Project Board:

Role	Person(s)	Responsibilities
Project Manager	Graham B	Responsible for the entire Project
Solutions Architect	Keval Sheth	Design and Architecture of the system
Solutions Architect	Chris F	Creation & configuration of all infrastructure

Service Level Agreements (SLA's)

As per AWS transACT Business Support SLA's

System Resources

Add all AWS services and third-party applications used in the application here.

- EC2
- ECR
- S3

- Lambda
- CloudFormation
- Identity & Access Management (IAM)
 - o Roles
 - o Policies
- SNS
- CloudWatch
- EBC
- Virtual Private Cloud (VPC)
 - o Virtual Network
 - o Subnets
 - o Route Tables
 - o Security Groups (SGs)
 - o Flow Logs

System Information

Add or remove tables/columns here to represent all core infrastructure

Compute

Name	Туре	OS	Quantity	Storage	AMI ID
Linux Bastion	EC2	Amazon Linux	1 – t3.micro	EBS 8	Amazon Linux 3
Host				GB	
ML Instance	Ec2	Windows 2022	2 – p3.8xlarge	EBS1-	Amazon Linux 3
				100 GB	
				EBS2 -	
				10 GB	

Storage

Name	Туре	Storage	Multi-AZ
\$3	Object Storage	Scalable	Yes

Network

VPC

Name	CIDR Range	Flow Logs Enabled	NAT & Internet Gateway Attached	Number of Subnets
vpc- 0d1d9e408da2655ca	10.00.0/16	False	True	4

This VPC Was designed with expansion in mind, so there is space within the network for further subnets.

Ec2

Instance Name	Instance Id	Instance Type	Instance State	Private IP Address	Public IP Address
Linux- BastionHost	i-06233a7a04053eea2	t2.micro	running	10.0.3.192	35.176.37.95
Production ML Instance	i-0101d8a519cd695af	p3.8xlarge	stopped	10.0.1.103	N/A

Subnets

SubnetName	AvailabilityZone	CidrBlock	RouteTableId
prod-privateSubnet2	eu-west-2b	10.0.2.0/24	rtb-0b100557e4c931f46
prod-privateSubnet1	eu-west-2a	10.0.1.0/24	rtb-0b100557e4c931f46
prod-publicSubnet2	eu-west-2b	10.0.4.0/24	rtb-01d5d9e7e7553b106
prod-publicSubnet1	eu-west-2a	10.0.3.0/24	rtb-01d5d9e7e7553b106

Endpoints

In order to facilitate connectivity to S3 bucket and ECR, endpoints have been created which provides seamless access to service privately

Stacks:

Stack Name	Description
prod-ml-ec2	CloudFormation Template to create an EC2 instance with two EBS volumes (300GB and 100GB).
ICO-Roles	transACT IAM Control Roles
prod-s3	CloudFormation Template to create an S3 bucket with lifecycle rules for the raw-data folder.

prod-s3-monitoring	CloudFormation template for S3 bucket monitoring and alerting
	CloudFormation Template to create a VPC for PomoRobotics, 4 subnets (2 private and 2 public), IGW, NAT
prod-network	Gateway, and S3 Gateway Endpoint.

Disaster Recovery

No DR and Backup have been enabled at the moment since it was not decided as part of SoW. However, please go through the following Link and/OR let us know and we will be happy to guide you

Patching

Patching and updating OS will be PomoRobotic's responsibility.

IAM Control

To understand user access management and create new users, please refer to the IAM Control document that would have been provided to you during the handover.

Access EC2 Hosts

If you need to connect to the ML EC2 instance, please note that since it resides in a private subnet, your initial point of access will be the Bastion Host. From there, you can access other instances within the private subnet.

Configuring ssh-agent on Windows

In Windows, you can connect to Linux VPC instances using PuTTY. To get SSH agent functionality, you can use Pageant, which is available from the PuTTY <u>download page</u>. When Pageant is installed, you can use the agent forwarding option in PuTTY to connect to instances in private subnets.

To use Pageant, you need to convert your private key from PEM format to PuTTY format using PuTTYGen (available from the PuTTY <u>download page</u>).

Private Key can be obtained from Secrets Manager in PEM format: Prod-lhr-keypair

In PuTTYGen, choose Conversions > Import Key and select your PEM-formatted private key. Enter a passphrase and then click Save private key, as shown in the following screenshot. Save the key as a .ppk file.

After you convert the private key, open Pageant, which runs as a Windows service. To import the PuTTY-formatted key into Pageant, double-click the Pageant icon in the notification area and then click Add Key. When you select the .ppk file, you're prompted to enter the passphrase you chose when you converted the key, as shown in the following screenshot.

After you add the key, close the Pageant Key List window.

Finally, when you are configuring the connections for SSH in PuTTY, check the Allow agent forwarding box and leave the Private key file for authentication field empty.

When you use Putty to connect to the public IP address of your bastion, you will see that the Pageant Putty component provides the SSH key for authentication, as shown in the following screenshot.

With agent forwarding enabled in the PuTTY configuration, you can connect from the bastion to any other instance in the VPC without having the SSH private key on the bastion. To connect to other instances, use the following command:

ssh user@<instance-IP-address of ML Ec2 or DNS-entry>

As long as the matching private key for the instance is loaded into Pageant, the connection will be successful,

Architecture Diagrams

Pomorobotics AWS Architecture

