Data Processing, Visualization & ML on Real-World Dataset

1. Visualization:

 Please rerun the Jupyter Notebook I uploaded (Chapter 2). Apply slight modifications to the parameters and understand different visualization techniques.

2. Dataset Exploration:

- o Dataset: Load Breast cancer wisconsin dataset (classification task).
- Task: Summarize the structure of the dataset, including the number of rows, columns, and data types. Identify the target variable and provide a brief description of the dataset's purpose.

3. One-Hot Encoding and Transformation:

- Encoding: Perform one-hot encoding on the categorical features of your dataset.
- Transformation: After encoding, apply a transformation to address skewed numerical features. Explain how the transformation improves data distribution.

4. Test on the Initial Data:

- a. Model Training: Use the given dataset, split it, and train any machine learning model (for e.g SVM).
- Evaluation: Evaluate the model on the test data and check its performance.

5. Handling Missing Data:

- Missing Values: Identify any missing values in your dataset (I have provided an example of missing data).
- Method: Apply two different methods to handle the missing data (e.g., mean/mode imputation or removal). Discuss how each method affects the dataset.

6. Outlier Detection and Removal:

Method: Use the IsolationForest method from the scikit-learn library.

7. Feature Scaling:

Method: You can use the min-max or standardization function as per your requirements.

8. Data Splitting:

Task: Split your dataset into training and testing sets. If needed, create a validation set.
 Discuss how the size of each split impacts model performance.

9. Test on Pre-processed Data (to observe improvement):

- Method: Now, use the same machine learning model (SVM) again as specified above.
- Evaluation: evaluate performance metrics and observe the change in performance.

10. Data Visualization:

 Task: Create 5 different types of plots (e.g., bar chart, scatter plot, heat map, histogram, violin plot) using your dataset. Explain how each plot helps understand different aspects of the dataset.

11. Dimensionality Reduction technique:

- t-SNE: Visualize the 2D scatter plot and interpret any clusters. What insights do the clusters provide regarding the classification problem?
- PCA: Plot the explained variance for each component and visualize the first two principal components.
- ICA: Visualize the independent components and explain how ICA extracts statistically independent features that other methods like PCA may not capture.
- SVD: Apply Singular Value Decomposition (SVD) and visualize the singular values.
 Discuss how SVD aids in reducing dimensionality while preserving relevant information.
- 12. Try the ROC-AUC plot (optional).

Helpful code for question 4 & 9: SVM model training, testing, and performance evaluation

```
from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix, recall_score, precision_score ## Split the dataset train_df, test_df = train_test_split(df.dropna(), test_size=0.4, random_state=42)
```

Training

```
model = SVC()
feats_cols = list(range(2, 32, 1))
x_train = train_df[feats_cols].values
y_train = train_df[[1]].values
model.fit(x_train, y_train)
```

Testing

```
feats_cols = list(range(2, 32, 1))
x_test = test_df[feats_cols].values
y_test = test_df[[1]].values
```

Evaluation

```
y_pred = model.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy * 100:.2f}%")
recall = recall_score(y_test, y_pred)
print(f"Model Recall: {recall * 100:.2f}%")
precision = precision_score(y_test, y_pred)
print(f"Model Precision: {precision * 100:.2f}%")
```