## Hypothesis Testing

Chaklam Silpasuwanchai

Asian Institute of Technology chaklam@ait.asia

#### Overview

Analysis of variance

One-way with 2 levels One-way with 4 levels Between-subjects Two-way

2 Assumption check

Normality check Homogeneity of variances

3 Non-parametric tests

#### Sources

- Mackenzie, Chapter 6, Hypothesis Testing, Human Computer Interaction: An Empirical Research Perspective, 1st ed. (2013)
- Yatani, Advanced Topics in Human-Computer Interaction, http://yatani.jp/teaching/doku.php?id=2016hci:start

1 Analysis of variance One-way with 2 levels One-way with 4 levels

Between-subjects

Two-way

Assumption check Normality check Homogeneity of variances

3 Non-parametric tests

# Analysis of Variance

- ANOVA, or F-test, is the main statistical test for factorial experiment
- T test is similar but only two levels
- The main motivation to use statistical test is to check that the difference in mean occur by chance or is significant?
- Some definition: Null hypothesis is an assumption of no difference in mean. One-way ANOVA refers to one factor; two-way ANOVA to two factors, etc.

## Why test?

## Example: One-way with 2 levels



Difference in task completion time (in seconds) across two test conditions, Method A and Method B. Two hypothetical outcomes are shown: (a) The difference is statistically significant. (b) The difference is not statistically significant.

Figure: Source: Fg. 6.2 (Mackenzie)

## Example: One-way with 2 levels

| a) [ | Portioinant | Method |      |  |
|------|-------------|--------|------|--|
| - 1  | Participant | Α      | В    |  |
|      | 1           | 5.3    | 5.7  |  |
|      | 2           | 3.6    | 4.8  |  |
|      | 3           | 5.2    | 5.1  |  |
|      | 4           | 3.6    | 4.5  |  |
|      | 5           | 4.6    | 6.0  |  |
|      | 6           | 4.1    | 6.8  |  |
|      | 7           | 4.0    | 6.0  |  |
|      | 8           | 4.8    | 4.6  |  |
|      | 9           | 5.2    | 5.5  |  |
|      | 10          | 5.1    | 5.6  |  |
|      | Mean        | 4.5    | 5.5  |  |
|      | SD          | 0.68   | 0.72 |  |



#### FIGURE 6.3

(a) Data for simulation in Figure 6.2a. (b) Bar chart with error bars showing ±1 standard deviation.

Figure: Source: Fg. 6.3 (Mackenzie)

## Example: One-way with 2 levels with sign

#### ANOVA Table for Task Completion Time (s)

|                  | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Pow er |
|------------------|----|----------------|-------------|---------|---------|--------|--------|
| Subject          | 9  | 5.080          | .564        |         |         |        |        |
| Method           | 1  | 4.232          | 4.232       | 9.796   | .0121   | 9.796  | .804   |
| Method * Subject | 9  | 3.888          | .432        |         |         |        |        |
|                  |    |                |             |         |         |        |        |

FIGURE 6.4

Analysis of variance table for data in Figure 6.3a.

Figure: Source: Fg. 6.4 (Mackenzie): P-value of 0.0121 means that there is less than 2% that the difference occurs by chance. By convention requires less than 0.05 to reject null hypothesis

> The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ( $F_{1.9} = 9.80$ , p < .05).

#### FIGURE 6.5

Example of how to report the results of an analysis of variance in a research paper.

Figure: Source: Fg. 6.5 (Mackenzie): F-value is calculated = between-group variances / within-group variances = 4.232 / .432

# Example: One-way with 2 levels with sig

#### Reporting format (APA):

- If significant, use threshold set .05, .01, .005, .001, .0005, .0001. p is cited as p < .05 instead of p = .0121.
- If not significant though, say "n.s." instead
- If very close to significant, report exact value.
- Plot with standard error bars
- Report mean and std (same unit)
- Common nowadays to report effect size
  - **Effect size** measures how "strong" is the significance. SPSS reports **Partial Eta Squared**  $(\eta_p^2)$  - .02 means that the factor X by itself accounted for only 2% of the overall (effect + error) variance. Usually around > 0.09 is considered moderate, while > 0.25 is large.

#### Wide format

Since we are doing a within-subject design, this is also sometimes called **Repeated Measures ANOVA.** In RP ANOVA, it uses wide format data structure.

| Α   | В   |
|-----|-----|
| 5.3 | 5.7 |
| 3.6 | 4.8 |
| 5.2 | 5.1 |
| 3.6 | 4.5 |
| 4.6 | 6   |
| 4.1 | 6.8 |
| 4   | 6   |
| 4.8 | 4.6 |
| 5.2 | 5.5 |
| 5.1 | 5.6 |

Figure: Wide format structure: Cols depicting possible combinations

#### Long format

Between-subject ANOVA (or ANOVA) uses long format.

| A   | 3.6<br>5.2<br>3.6<br>4.6 |
|-----|--------------------------|
| Α : | 3.6<br>4.6               |
|     | 4.6                      |
|     | _                        |
| A   |                          |
| Α   | 4.1                      |
| Α   | 4                        |
| Α   | 4.8                      |
| Α   | 5.2                      |
| Α   | 5.1                      |
| В . | 5.7                      |
| В   | 4.8                      |
| В . | 5.1                      |
| В   | 4.5                      |
| В   | 6                        |
| В   | 6.8                      |
| В   | 6                        |
| В   | 4.6                      |
| В   | 5.5                      |
| В   | 5.6                      |

Figure: Long format structure: one col for each factor

# Example: One-way with 2 levels with no sig

| (a) | Porticipant | Method |      |  |
|-----|-------------|--------|------|--|
|     | Participant | Α      | В    |  |
|     | 1           | 2.4    | 6.9  |  |
|     | 2           | 2.7    | 7.2  |  |
|     | 3           | 3.4    | 2.6  |  |
|     | 4           | 6.1    | 1.8  |  |
|     | 5           | 6.4    | 7.8  |  |
|     | 6           | 5.4    | 9.2  |  |
|     | 7           | 7.9    | 4.4  |  |
|     | 8           | 1.2    | 6.6  |  |
|     | 9           | 3.0    | 4.8  |  |
|     | 10          | 6.6    | 3.1  |  |
|     | Mean        | 4.5    | 5.5  |  |
|     | SD          | 2.23   | 2.45 |  |



#### FIGURE 6.6

(a) Data for simulation in Figure 6.2b. (b) Bar chart with error bars showing ±1 standard deviation.

Figure: Source: Fg. 6.6 (Mackenzie)

## Example: One-way with 2 levels with no sign

#### ANOVA Table for Task Completion Time (s)

|                  | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Pow er |
|------------------|----|----------------|-------------|---------|---------|--------|--------|
| Subject          | 9  | 37.372         | 4.152       |         |         |        |        |
| Method           | 1  | 4.324          | 4.324       | .626    | .4491   | .626   | .107   |
| Method * Subject | 9  | 62.140         | 6.904       |         |         |        |        |
|                  |    |                |             |         |         |        |        |

#### FIGURE 6.7

Analysis of variance for data in Figure 6.3b.

Figure: Source: Fg. 6.7 (Mackenzie). F = 4.324/6.904 = .626. Given p-value of .4491, there is around 45% that the difference occurs by chance.

> The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variances  $(F_{1,0} = 0.626, ns).$

#### FIGURE 6.8

Reporting a non-significant ANOVA result.

Figure: Source: Fg. 6.8 (Mackenzie). It means that we have not enough evidence to reject null hypothesis, but it does not mean that null hypothesis is true either.

# Example: One-way with 4 levels

| Dortisinant |         | Test Condition |       |       |  |  |  |  |
|-------------|---------|----------------|-------|-------|--|--|--|--|
| Participant | Α       | В              | С     | D     |  |  |  |  |
| 1           | 11      | 11             | 21    | 16    |  |  |  |  |
| 2           | 18      | 11             | 22    | 15    |  |  |  |  |
| 3           | 17      | 10             | 18    | 13    |  |  |  |  |
| 4           | 19      | 15             | 21    | 20    |  |  |  |  |
| 5           | 13      | 17             | 23    | 10    |  |  |  |  |
| 6           | 10      | 15             | 15    | 20    |  |  |  |  |
| 7           | 14      | 14             | 15    | 13    |  |  |  |  |
| 8           | 13      | 14             | 19    | 18    |  |  |  |  |
| 9           | 19      | 18             | 16    | 12    |  |  |  |  |
| 10          | 10      | 17             | 21    | 18    |  |  |  |  |
| 11          | 11 10 1 |                | 22    | 13    |  |  |  |  |
| 12          | 16      | 14             | 18    | 20    |  |  |  |  |
| 13          | 10      | 20             | 17    | 19    |  |  |  |  |
| 14          | 10      | 13             | 21    | 18    |  |  |  |  |
| 15          | 20      | 17             | 14    | 18    |  |  |  |  |
| 16          | 18      | 17             | 17    | 14    |  |  |  |  |
| Mean        | 14.25   | 15.13          | 18.75 | 16.06 |  |  |  |  |
| SD          | 3.84    | 2.94           | 2.89  | 3.23  |  |  |  |  |

Figure: Source: Fg. 6.9a (Mackenzie)

# Example: One-way with 4 levels



Figure: Source: Fg. 6.9b (Mackenzie)

#### ANOVA Table for Dependent Variable (units)

|                          | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Pow er |  |
|--------------------------|----|----------------|-------------|---------|---------|--------|--------|--|
| Subject                  | 15 | 81.109         | 5.407       |         |         |        |        |  |
| Test Condition           | 3  | 182.172        | 60.724      | 4.954   | .0047   | 14.862 | .896   |  |
| Test Condition * Subject | 45 | 551.578        | 12.257      |         |         |        |        |  |

Figure: Source: Fg. 6.9c (Mackenzie)



#### Example: One-way with 4 levels

After ANOVA, to determine exactly which condition is different with which condition, a posthoc analysis is required - either Tukey's test or pairwise comparison with the Bonferroni correction

Scheffe for Dependent Variable (units)

**Effect: Test Condition** Significance Level: 5 %

|      | Mean Diff. | Crit. Diff. | P-Value |   |
|------|------------|-------------|---------|---|
| A, B | 875        | 3.302       | .9003   |   |
| A, C | -4.500     | 3.302       | .0032   | s |
| A, D | -1.813     | 3.302       | .4822   |   |
| B, C | -3.625     | 3.302       | .0256   | s |
| B, D | 938        | 3.302       | .8806   |   |
| C, D | 2.688      | 3.302       | .1520   |   |

Figure: Source: Fg. 6.11 (Mackenzie)

## Example: Between-subjects designs

To check whether handedness has a effect on task completion time.



Figure: Source: Fg. 6.12 (Mackenzie)

#### ANOVA Table for Task Completion Time (s)

|            | DF | Sum of Squares | Mean Square | F-V alue | P-Value | Lambda | Pow er |  |
|------------|----|----------------|-------------|----------|---------|--------|--------|--|
| Handedness | 1  | 18.063         | 18.063      | 3.781    | .0722   | 3.781  | .429   |  |
| Residual   | 14 | 66.875         | 4.777       |          |         |        |        |  |

Figure: Source: Fg. 6.13 (Mackenzie)

## Two-way ANOVA

- Experiments with two IVs (factors) is called a two-way design
- Analysis of variance of two-way design will give us main effects of each factor and interaction effect
- Interaction effect indicates a relational effect between the IV on the DV

#### Interaction effects



Figure: Source: Yatani's post-hoc tests

#### Example: 3 x 2 within-subjects design

Let's take both factors as within-subjects, the first factor is device with 3 levels - mouse, trackball, and stylus, and second factor is task with 2 levels - point-select and drag-select. We called this a  $3 \times 2$  within-subjects design.



Figure: Source: Fg. 6.14 (Mackenzie)

#### Example: 3 x 2 within-subjects design

Three effects were observed - the main effect of device and task, and the interaction effect between device and task.

#### ANOVA Table for Task Completion Time (s)

|                         | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Pow er |
|-------------------------|----|----------------|-------------|---------|---------|--------|--------|
| Subject                 | 11 | 134.778        | 12.253      |         |         |        |        |
| Device                  | 2  | 121.028        | 60.514      | 5.865   | .0091   | 11.731 | .831   |
| Device * Subject        | 22 | 226.972        | 10.317      |         |         |        |        |
| Task                    | 1  | .889           | .889        | .076    | .7875   | .076   | .057   |
| Task * Subject          | 11 | 128.111        | 11.646      |         |         |        |        |
| Device * Task           | 2  | 121.028        | 60.514      | 5.435   | .0121   | 10.869 | .798   |
| Device * Task * Subject | 22 | 244.972        | 11.135      |         |         |        |        |

Figure: Source: Fg. 6.15 (Mackenzie)

#### Example: 3 x 2 within-subjects design

#### Reporting:

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ( $F_{2,22} = 5.865$ , p <.01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant  $(F_{1,11} = 0.076, \text{ ns})$ . The results by device and task are shown in Figure x. There was a significant Device × Task interaction effect  $(F_{2.22} = 5.435, p < .05)$ , which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Figure: Source: Fg. 6.16 (Mackenzie)

• Analysis of variance One-way with 2 levels One-way with 4 levels Between-subjects Two-way

Assumption check Normality check Homogeneity of variances

3 Non-parametric tests

#### Assumption check

 To decide whether we can use ANOVA (also called parametric tests), we check the assumption of normality and homogenity of variances.

# Normality check

First easy way is to use histogram to check skewness



# Normality check

Another way is to use Q-Q plot.



# Normality check

- Two common tests for normality is Shapiro Wilk and Kolmogorov-Smirnov test
- Shapiro-Wilk is more appropriate for small sample sizes (< 50)</li>
- For example, the null hypothesis of Shapiro-Wilk is that samples are taken from a normal distribution. Here, the p-value is larger than .05, thus is safe to say it's normal. The null hypothesis is same for Kolmogorov-Smirnov

#### **Tests of Normality**

|      | Course       | Kolmogorov-Smirnov <sup>a</sup> |    |       | Shapiro-Wilk |    |      |  |
|------|--------------|---------------------------------|----|-------|--------------|----|------|--|
|      |              | Statistic                       | df | Sig.  | Statistic    | df | Sig. |  |
| Time | Beginner     | .177                            | 10 | .200* | .964         | 10 | .827 |  |
| 1    | Intermediate | .166                            | 10 | .200* | .969         | 10 | .882 |  |
|      | Advanced     | .151                            | 10 | .200* | .965         | 10 | .837 |  |

- a. Lilliefors Significance Correction
- \*. This is a lower bound of the true significance.



## Homogeneity of variances

- t-test and ANOVA can handle differences in variances up to 4 times between smallest and largest (Howell, 2007)
- In a between-subject experiment, tests that can be use is Levene's test and Bartlett's test (p-value over 0.05 means that the variances are equal)
- In a repeated measures experiment, Sphericity test is used instead (p-value over .05 means that sphericity has not been violated). Note that in sphericity test, factors must have more than 2 levels.

Analysis of variance

One-way with 2 levels One-way with 4 levels Between-subjects Two-way

Assumption check

Normality check Homogeneity of variances

3 Non-parametric tests

#### Non-parametric tests for ordinal data

- Non-parametric tests make no assumptions for probability distribution
- Downsides of non-parametric tests are loss of information
- For example, 49, 81, 82 are transformed to 1, 2, 3
- In HCI, non-parametric tests are often used for **questionnaires data** (e.g., using Likert scale) since they are **ordinal** data.

#### Non-parametric tests for ordinal data

Four most common non-parametric procedures that work based on the number of conditions and design

| Danima                                 | Conditions           |                |  |
|----------------------------------------|----------------------|----------------|--|
| Design                                 | 2                    | 3 or more      |  |
| Between-subjects (independent samples) | Mann-Whitney U       | Kruskal-Wallis |  |
| Within-subjects (correlated samples)   | Wilcoxon Signed-Rank | Friedman       |  |

Figure: Source: Fg. 6.29 (Mackenzie)

# Example: Mann-Whitney U

10 Mac users and 10 PC users are interviewed about their political views on a 10-point linear scale (1 = very left, 2 = very right). Turns out PC users are a little more "right-leaning"!

| Mac Users | PC Users |
|-----------|----------|
| 2         | 4        |
| 3         | 6        |
| 2         | 5        |
| 4         | 4        |
| 9         | 8        |
| 2         | 3        |
| 5         | 4        |
| 3         | 2        |
| 4         | 4        |
| 3         | 5        |

Figure: Source: Fg. 6.30 (Mackenzie)

# Example: Mann-Whitney U

- Given 2 levels and between subject designs, Mann-Whitney U is suitable
- Here we found that p = .1418, thus we conclude that no differences were found.

| (a)                         |           |                    |  |
|-----------------------------|-----------|--------------------|--|
| Mann-Whitney U for Response |           |                    |  |
| <b>Grouping Vari</b>        | able: Cat | egory for Response |  |
| U                           | 31.000    |                    |  |
| U Prime                     | 69.000    |                    |  |
| Z-Value                     | -1.436    |                    |  |
| P-Value                     | .1509     |                    |  |
| Tied Z-Value                | -1.469    |                    |  |
| Tied P-Value                | .1418     |                    |  |
| # Ties                      | 4         |                    |  |

Figure: Source: Fg. 6.31 (Mackenzie)

# Example: Wilcoxon Signed-Rank

10 users rated the design of two media players on a 10-point linear scale (1 = not cool, 10 = really cool). Which test should we use?

| Mac Users | PC Users |  |
|-----------|----------|--|
| 2         | 4        |  |
| 3         | 6        |  |
| 2         | 5        |  |
| 4         | 4        |  |
| 9         | 8        |  |
| 2         | 3        |  |
| 5         | 4        |  |
| 3         | 2        |  |
| 4         | 4        |  |
| 3         | 5        |  |

Figure: Source: Fg. 6.32 (Mackenzie)

# Example: Wilcoxon Signed-Rank

The Wilcoxon Signed-Rank test found that p = .0242, thus we conclude that no differences were found.

(a)

#### Wilcoxon Signed Rank Test for MPA, MPB

| #0 Differences | 2      |
|----------------|--------|
| # Ties         | 2      |
| Z-Value        | -2.240 |
| P-Value        | .0251  |
| Tied Z-Value   | -2.254 |
| Tied P-Value   | .0242  |

Figure: Source: Fg. 6.33 (Mackenzie)

## Example: Kruskal-Wallis

#### Is it significant?

| A20-29 | A30-39 | A40-49 |  |
|--------|--------|--------|--|
| 9      | 7      | 4      |  |
| 9      | 3      | 5      |  |
| 4      | 5      | 5      |  |
| 9      | 3      | 2      |  |
| 6      | 2      | 2      |  |
| 3      | 1      | 1      |  |
| 8      | 4      | 2      |  |
| 9      | 7 2    |        |  |

(a)

Kruskal-Wallis Test for Acceptability Grouping Variable: Category for Preference

DF # Groups # Ties Н 9.421 .0090 P-Value H corrected for ties Tied P-Value .0082

9.605

Figure: Source: Fg. 6-34 (Mackenzie).

Figure: Source: Fg. 6-35 (Mackenzie).

## Example: Kruskal-Wallis

Since there are three conditions, we can further run post-hoc tests to find out the differences in pair. Here, we found the difference between group 1 and 3.

```
book>java KruskalWallis kruskalwallis-ex1.txt -ph
H = 9,421, p = 0.0090
H' = 9.605, p' = 0.0082
----- Multiple Comparisons Test (alpha = .05) -----
Pair 1:2 -> 7.4375 >= 7.6103 ? - |
Pair 1:3 -> 10.5625 >= 7.6103 ? - |
Pair 2:3 -> 3.1250 >= 7.6103 ? - |
book>______
```

Figure: Source: Fg. 6.36 (Mackenzie)

#### Example: Friedman Test

#### So, what's the conclusion?

| Participant | Α  | В  | С  | D  |
|-------------|----|----|----|----|
| 1           | 66 | 80 | 67 | 73 |
| 2           | 79 | 64 | 61 | 66 |
| 3           | 67 | 58 | 61 | 67 |
| 4           | 71 | 73 | 54 | 75 |
| 5           | 72 | 66 | 59 | 78 |
| 6           | 68 | 67 | 57 | 69 |
| 7           | 71 | 68 | 59 | 64 |
| 8           | 74 | 69 | 69 | 66 |

# Friedman Test for 4 Variables DF 3 # Groups 4 # Ties 2 Chi Square 8.475

Chi Square corrected for ties

P-Value

Tied P-Value



Figure: Source: Fg. 6-(37-39) (Mackenzie).

.0372

8.692

.0337

#### What's next

- Couple of workshops for ANOVA. Please take a look at the Tutorials folder before coming to the class. Make sure you have JASP installed.
- After we finish ANOVA, we gonna work on interaction and modeling, download GoFitts.jar from the Download folder and make sure you can run it (you need Java).

# Questions