Introduction to FIR Digital Filter Design

Advantages of FIR filters

- $\circ H(n)$ is of finite length
 - ✓ filter is always stable
- Filter structure is simple
 - √ no recursive/feedback elements)
- Can always shift filters to make it causal
- \circ If certain symmetries on H(n) exists
 - ✓ linear phase can be guaranteed

Design FIR filters using windows: Idea

- OHow to meet a specified frequency response using an FIR filter?
- Windows Method: rather than starting with a non-ideal frequency response
 - Start with a non-realizable ideal impulse response
 - ■Alter it to get a causal, stable, finite length h(n) → Get H(z) → DE

What is the time response of ideal filters?

$$x(n) = \begin{cases} \frac{\omega_c}{\pi}, & n = 0\\ \frac{\sin \omega_c n}{\pi n}, & n \neq 0 \end{cases}$$

$$x(n) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

Time response of ideal filters

How to get a causal FIR filter from ideal filters (infinite, noncausal)?

To get a causal and finite-length M impulse response from the ideal impulse response $h_{\rm d}(n)$:

- Step-1: Simply truncate and weight (may be with all ones: rectangular window) the desired response $h_{\rm d}(n)$
- Step-2: Shift right the results by $\frac{M-1}{2}$ to make it causal

Desired Ideal impulse response of a LPF (infinite and noncausal)

Step-1: Truncate and weight using a window function (may be with all ones: rectangular window) the desired response $h_{\rm d}(n)$

- \circ Truncate at $\left[-\frac{M-1}{2}, \frac{M-1}{2}\right]$
- \circ Weight each term by a window function w(n)

• Step-2: Shift right the results by $\frac{M-1}{2}$ to make it causal

$$h(n) = h_w \left(n - \frac{M-1}{2} \right)$$

Causal finite length M filter ©

FIR Filter:
$$H(z) = h(0) + h(1)z^{-1} + \dots + h(M-1)z^{-(M-1)}$$

$$H(z) = \sum_{n=0}^{M-1} h(n) z^{-n} \quad \text{Filter order } M-1$$

Windowing Effect

Windowing Effect (cont'd)

- Smearing of the desired frequency response
 - Transition region
- Rippling of the desired frequency response
 - Nonflat passband/stopband (Gibbs Phenomenon)

How to control h(n) using w(n)?

Free control parameters:

- No. of coefficients (filter length) M
- Window Type (Shape)
- 1. As the length M of the window increases, the width of the main lobe decreases, which results in a linear decrease in the transition width Δw between passbands and stop bands
 - $\triangle w = \frac{c\pi}{M}$; c depends on the window shape,
 - o i. e., c = 4 and $\Delta w = \frac{4\pi}{M}$ for a rectangular window)
- 2. The peak side-lobe amplitude is determine by the shape of the window and it is essentially independent of the window length M

How to control h(n) using w(n)?

3. If the window shape is changed to decrease side-lobe amplitude (and in turns decreasing the stopband ripples), the width of the w(n) main lobe $(\sim H(w))$ transition width) will generally increase

Type of Window	Peak Side-Lobe Amplitude (Relative)	Peak Approximation Approximate Error, Width of 20 log ₁₀ δ Main Lobe (dB)
Rectangular Bartlett Hanning Hamming Blackman	-13 -25 -31 -41 -57	$4\pi/M$ $8\pi/M$ $8\pi/M$ $8\pi/M$ $12\pi/M$ -21 -25 Transition width increases -44 -53 -74 -74 -74

For knowledge, do not keep numbers or rules.

Example:

Apply a rectangular window to design FIR LPF with cut off frequency of $\pi/3$. Use an FIR filter of length M =13

Solution

 \circ Start with an ideal Filter, $h_{d}(n)$

$$h_{d}(n) = \begin{cases} \frac{\omega_{c}}{\pi}, & n = 0\\ \frac{\sin \omega_{c} n}{\pi n}, & n \neq 0 \end{cases}$$

Given that the cut off frequency = $\pi/3$.

$$h_{J}(n) = \begin{cases} \frac{\sin(\pi/3 n)}{\pi n} & n \neq 0 \\ \frac{1}{3} & n = 0 \end{cases}$$

Given that M = 13.

Step-1: Truncate $h_d(n)$ and weight it using the rectangular window: $h_w(n) = h_d(n)$. w(n)

Apply N=13 rectangular window
$$w(n) = \begin{cases} 1 & -6 \le n \le 6 \\ 0 & \text{else} \end{cases}$$

Then $h_w(n) = \begin{cases} h_d(n) & |n| \le 6 \\ 0 & |n| > 6 \end{cases}$

• Step-2: Shift right the results by $\frac{M-1}{2}$ to make it causal

Shift Right by
$$\frac{M-1}{2} = 6$$
 to make it causal
$$h(n) = \begin{cases} \frac{\sin(\frac{\pi}{3}(n-6))}{\pi(n-6)} & 0 \le n \le 12, & n \ne 6 \\ \frac{1}{3} & 0 \le n \le 12 \end{cases}$$

$$0 \le n \le 12, & n \ne 6$$

$$0 \le n \le 12, & n \ne 6$$

$$0 \le n \le 12, & n \ne 6$$

$$0 \le n \le 12, & n \ne 6$$

$$0 \le n \le 12, & n \ne 6$$

$$0 \le n \le 12, & n \ne 6$$

Problem? Resulting frequency response is not ideal.

1) transition region (due to mainlobe of window)

2) stopband ripple (due to sidelobes of window)

We can decrease transition region by increasing M but stopband attenuation will always be bad (for rectangular window).

Solution: Use other windows which sacrifice a small transition region (wider mainlabe in window's freq. response) for less ripple (smaller sidelabes in window's freq. response)

For knowledge, do not keep anything.

 TABLE 10.1
 Window Functions for FIR Filter Design

Name of	Time-domain sequence,
window	$h(n), 0 \le n \le M-1$
Bartlett (triangular)	$1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$
Blackman	$0.42 - 0.5\cos\frac{2\pi n}{M-1} + 0.08\cos\frac{4\pi n}{M-1}$
Hamming	$0.54 - 0.46 \cos \frac{2\pi n}{M - 1}$
Hanning	$\frac{1}{2}\left(1-\cos\frac{2\pi n}{M-1}\right)$

For knowledge, do not keep anything.

TABLE 10.1 Window Functions for FIR Filter Design

IADEL 10.1	Wildow I unctions for I IIV I liter Design		
Name of	Time-domain sequence,		
window	$h(n), 0 \le n \le M-1$		
Kaiser	$I_0\left[\alpha\sqrt{\left(\frac{M-1}{2}\right)^2-\left(n-\frac{M-1}{2}\right)^2}\right]$		
	$I_0\left[lpha\left(rac{M-1}{2} ight) ight]$		
Lanczos	$\left\{ \frac{\sin\left[2\pi\left(n - \frac{M-1}{2}\right) / (M-1)\right]}{2\pi\left(n - \frac{M-1}{2}\right) / \left(\frac{M-1}{2}\right)} \right\}^{L}, L > 0$		
	$1, \left n - \frac{M-1}{2} \right \leq \alpha \frac{M-1}{2}, \qquad 0 < \alpha < 1$		
Tukey	$\frac{1}{2} \left[1 + \cos \left(\frac{n - (1+a)(M-1)/2}{(1-\alpha)(M-1)/2} \pi \right) \right]$		
	$\alpha(M-1)/2 \le \left n - \frac{M-1}{2}\right \le \frac{M-1}{2}$		

Figure 10.2.3 Shapes of several window functions.

Do not keep any numbers.

TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Peak Approximation Approximate Error, Width of $20 \log_{10} \delta$ Main Lobe (dB)
Rectangular Bartlett Hanning Hamming Blackman	-13 -25 -31 -41 -57	$4\pi/M$ $8\pi/M$ $8\pi/M$ $12\pi/M$ -21 -25 Transition width increases -44 -53 -74 -74 -74

To decrease stopband ripples: only way is to change the window

> main lobe width of increases (wider transition band) 🕾

_
Summary: FIR Filter Design Via Windowing Method
Advantages:
1) By using symmetry, we can obtain linear phase filters.
2) Easy to design highpars, bandpars, bandstop as well a lowpass filters
3) Simple procedure
4) Filter is always stable since h(n) is finite length

Disadvantages:

1) To meet same specs as an IIR filter, FIR filters require much higher orders (40-100 vs. 5-6) (Means more memory and more rounding errors)