				_			7						
		2	3	4	5	ا ما	7	8	9	טן	TOTAL	-	
	0/5	115	3/5	2/5	7/10	6/10	5/5	115	1/5	3/10	79/70		
	Math 331: HW 04 Liliana Kershner												
e 7	1. Looking at a unit circle, we see that if $x < \frac{\pi}{2}$, then $\sin x$ will always be less than $\frac{\pi}{2}$. Namely, the sine function is equal to 1 when $x = \frac{\pi}{2}$, and $\frac{\pi}{2}$ is approximately equal to 1.6. Therefore it is true that if $x < \frac{\pi}{2}$, $\sin x < x$. In the point of the inequality, if $x > 0$, then $\sin x > 0$ because at $x = 0$ is the only time in the interval $[0, \frac{\pi}{2}]$ that $\sin x$ will equal 0. Then, if $0 < x < \frac{\pi}{2}$, $0 < \sin x < \frac{\pi}{2}$. In the solution of the inequality is $x > 0$, then $x > 0$ because at $x = 0$ is the only time in the interval $x > 0$. Then, if $x > 0$ is the solution of the inequality is $x > 0$. Then, if $x > 0$ is the solution of the inequality is $x > 0$. Then, if $x > 0$ is $x < \frac{\pi}{2}$. The solution of the inequality is $x > 0$. Then, if $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is the only time in the interval $x > 0$ is the solution of the inequality is $x > 0$. Then, if $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is the only time in the interval $x > 0$ is the solution of the inequality is $x > 0$. Then, if $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x > 0$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$. The solution is $x < \frac{\pi}{2}$ is $x < \frac{\pi}{2}$.												
2 6 1 8	2. Suppose the limit of $f(g(t))$ exists at b call this L . We will first prove $\lim_{x\to a} f(x)$ exists and equals L . By the definition of a limit, there then exists some interval B containing b s.t. if $t \in I$, $ f(g(t)) - L < \varepsilon$, $\forall \varepsilon > 0$. Imagine if the infimum or supremum of the set given by the function $g(t)$ is equal to b . Then we can define a smaller, closed subinterval of B , call it B_1 , s.t. $g(b) = a$ is either the supremum or the infimum of B_1 , and by previous class theorems, we know that g is continuous on B_1 .												
]. N	Let the range of g in B_1 be the closed interval B_2 . Then there $\exists x \in B_2$ s.t. $g(t) = x$, and since $B_2 \subset B_1 \subset B$, $ f(x) - L = f(g(t)) - L < \varepsilon$. So the limit of $f(x)$ exists. Now, knowing that $\lim_{x\to a} f(x)$ exists, we will prove the limit of $\lim_{t\to b} f(g(t))$ exists and is equal to L . Let $a, x \in A$ s.t. $ f(x) - L < \varepsilon$. We know $g(t)$ is continuous at b , and if $t \in B$, then $g(t) \in A$, from which we know $ f(g(t)) - L < \varepsilon$. So $\lim_{x\to a} f(x) = \lim_{t\to b} f(g(t))$.												
3. Let $f:[a,b] \to \mathbb{R}$. We know from the problem statement that f is continuous on $[a,b]$, so by definition $f(x)$ is uniformly continuous. So $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall x,y \in D, x-y < \delta \Longrightarrow f(x)-f(y) < \varepsilon$. We then construct a sequence. Define x_1 as the rational number which sits between $(x-1,x+1)$, by the density of rational numbers this is true. Define x_2 as the rational number which sits between $(x-\frac{1}{2},x+\frac{1}{2})$. By the same property this is true. We then have a sequence $\{x_1,x_2,x_3,x_n\}$ of rational numbers such that													
—x f □	$c_n \in (x - f(x_n)) \to f(x_n)$ Therefore	f(x) = f(x) = f(x) the line	δ) and a $0 \to 0$. The initial of the second seco	$x_n \to x$. \nearrow ?? \nearrow is sequence.	We kno	ow that n appro	$f(x) \text{ is }$ eaches \circ	s equal to $(100)^{-1}$ $(100)^{-1}$ $(100)^{-1}$ $(100)^{-1}$ $(100)^{-1}$	50 0, so = 0 not	by const (2)	ruction, if $x_n \to x$ and $f(x) = 0$, then Lo You old the steps in the wrong order. Since $x_n \in \mathcal{Q}$, $f(x_n) = 0$	٠, ٥	
'n	oetween t	them a	rationa	I numbe	$\mathbf{r} x$. Sin	ce the s	subsequ	ence of	rationa.	l number	rs converges to 0, the sequence of $f(x_n) = 0$	sfod)	
i: i: t	v , and a reference $[u, v]$ by the same the interverse $c \in [u, v]$,	minimulation the interest every every substitution of the interest every ever	im, definiterval [i] by elemented property [i], there i	ne this u , v] \in [a] ent of [a] nen, kno exists a a \in $f(m)$.	[u, within u, b]. Sin $[u, v]$ is in wing f maxim. Since the	the interest the second $[a,b]$. It is continum of the value	terval [a] set $[u, v]$ Define to nuous of he set, a s of $f(x)$	[a,b]. Or $[a,b]$ is a such the the end of the erecall it $[a,b]$ will a	that f best of term η arire integrals, and a lways be	$f(u) \le f(a,b]$ the $f(a,b)$ the erval of minimum between	b), f will have a maximum, define this $(c) \leq f(v)$ for some $c \in [a, b]$. There are elements in $[a, b]$ which are not $\{[u, v]\}$ with $\eta \leq f(u)$. The for some $[a, b]$ and is therefore continuous on $[a, b]$ and is therefore continuous on $[a, b]$ and $[a, b]$ and $[a, b]$ the value of $[a, b]$ the v	gues hy nun It =0.	
а	and f is a	continu	ous at a	all $x \in \mathbb{R}$	2.						Say How to you know thow is flow is $f(a) = 1 \forall x$) that $f(a) \geq n$? The prove that f is continuous at 0 related [a,b]?	to!	
a	$\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2$	$\rightarrow 0$, the d limits	ne left-h s exists	and limand is 0	it exists . And,	due to $f(0+0)$	the cor $f(0) = f(0)$	$\begin{array}{l} \text{ntinuity} \\ + f(0) \end{array}$	of f . W $= 0$.	e see thi	(h). We know that $f(c)$ is continuous, is limit is 0, and further that the		
											f(h). The limit at 0 exists and so the s fixed, so the limit as h goes to 0 of		

the left-hand side exists. Since the limit of f(h) as $h \to 0$ is 0, then $\lim_{h \to 0} f(x+h) = f(x)$. So f is continuous for

b) We know then from part a that f is continuous on \mathbb{R} . Let f(1) = k. We will then prove that $f(x) = kx, \forall x \in \mathbb{R}$ by induction.

Set the base case as x=0. For x=0 we have from the previous proof that f(0)=0. $0 \cdot k=0$ so we see this is true. We check the x + 1 case. We know then that f(1) + f(x) = f(x + 1) and f(1) = f(x + 1) - f(x) which, by our assumption, is equal to k. Then f(x+1) = f(x) + k.

If f(x) = kx, then we have f(x+1) = kx + k = k(x+1) which follows the assumption. Therefore this is true for all $x \in \mathbb{R}$. You proved that f(x) = kx then we have f(x+1) = kx + k = k(x+1) which follows the assumption.

 $\lim_{2 \to 0} x \sin \frac{1}{x} = 0$ even though $\lim_{x \to 0} \frac{1}{x}$

1/5

6. a) $\lim_{x\to x_0} f(x) = \sin(\frac{1}{x})$ when $x_0 = 0$. So we find $\lim_{x\to 0} \sin(\frac{1}{x})$. By lecture notes, we can then take the limit of the inside function as $x_0 \to 0$.

So $\lim_{x\to 0} \frac{1}{x}$. This function diverges because the left-side limit and the right-side limit are not equal. b) Using the squeeze theorem:

We know that for any value of $\sin(x)$, it must be between [-1, 1]. So the limit as $x \to 0$ is in the same interval. Then $-1 \le \sin\left(\frac{1}{x}\right) \le 1$. And

$$\lim_{x \to 0} -x \le \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \le \lim_{x \to 0} x.$$

So $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$ must also go to 0.

7. We will find the value of $\lim_{x\to c} f(x) = \lim_{x\to c} ((f(x))^2 - f(x) - 3)$.

$$\lim_{x \to c} f(x) = \lim_{x \to c} ((f(x))^2 - f(x) - 3)$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (f(x))^2 - \lim_{x \to c} f(x) - \lim_{x \to c} 3$$

$$0 = \lim_{x \to c} (f(x))^2 - 2(\lim_{x \to c} f(x)) - 3.$$

Solving the quadratic, we find the roots are -1 and 3, so the limit must equal either -1 or 3. Since f(x) > 0 from the problem statement, $\lim_{x\to c} f(x) = 3$.

8. Notice that for positive x, we have a sequence of positive, rational numbers x, however for negative x, we have a sequence of negative, irrational numbers. We then construct two sequences: let $x_1, x_2, x_3, ... x_n$ be defined as the positive domain of f and $y_1, y_2, y_3, ... y_n$ be defined as the negative domain of f.

To prove discontinuity, it would be sufficient to show that $\lim_{x\to x_n} f(x) \neq \lim_{y\to y_n} f(y)$ since the left and right

To prove discontinuity, it would be hard limits must be the same.

We have that $\lim_{x\to x_n} f(x)$ will always be positive, because there are no negative values of x in the set. Meanwhile, (?? $\int_{-1}^{2\pi} \int_{-1}^{2\pi} \int_$ of the limits will not be the same, so f is discontinuous at every point in \mathbb{R} except for 0.

To confirm continuity at 0, when x = 0 is is neither positive nor negative, so the right and left hand limits will exist in the same set.

9. If $p(x) = x^2 + 2$ then the function is only decreasing for $x \in [1, 0]$ Find the inverse: on too, 0).

$$y = x^{2} + 2$$

$$x = y^{2} + 2$$

$$x - 2 = y^{2}$$

$$\sqrt{x - 2} = y$$

and left hand minus...

Use sequences.

If $x \in R \setminus \{0\}$, take

two sequences ($x_{(n)} \setminus \{y_{(n)}\}$)

of $x_{(n)} \in Q$, $x_{(n)} \in X$ of $x_{(n)} \in Q$, $y_{(n)} \in X$ Now $f(x_{(n)}) = x_{(n)} \to x$ If $y_{(n)} = y_{(n)} \to x$ $x_{(n)} = x_{(n)} \to x$

10. a) We rewrite $p(x) = ax^3 + bx^2 + cx + d$ as $p(x) = x^3(a + \frac{b}{x} + \frac{c}{x^2} + \frac{d}{x^3})$. Taking the limits and applying the sum rule and product rule, we have

$$\lim_{x \to \infty} p(x) = \lim_{x \to \infty} x^3 (\lim_{x \to \infty} a + \lim_{x \to \infty} \frac{b}{x} + \lim_{x \to \infty} \frac{c}{x^2} + \lim_{x \to \infty} \frac{d}{x^3}).$$
Prove ingorously the definite of this polynomial is a by a previous proof in lecture.

Regardless of the value of a, b, c, d, so long as a > 0 the limit of this polynomial is a by a previous proof in lecture. Then, we have

$$\lim_{x \to \infty} x^3 (a + 0 + 0 + 0)$$

$$(\infty)(a)$$

Same comment

Regardless of the value of a, it can never overcome the value of infinity. b) We take a similar approach. Again factor p(x) as $x^3(a + \frac{b}{x} + \frac{c}{x^2} + \frac{d}{x^3})$. Then we take the limits:

$$\lim_{x\to -\infty} p(x) = \lim_{x\to -\infty} x^3 (\lim_{x\to -\infty} a + \lim_{x\to -\infty} \frac{b}{x} + \lim_{x\to -\infty} \frac{c}{x^2} + \lim_{x\to -\infty} \frac{d}{x^3}).$$

We know already that again, by a previous proof, the limits of the form $\frac{1}{x}$ will go to 0. However, since our polynomial has an odd power, the sign of the limit is determined by the odd power. So:

$$\lim_{x \to -\infty} x^3 (a+0+0+0)$$

$$(-\infty)(a)$$

c) Since p(x) is continuous on $(-\infty, \infty)$, which means the polynomial is defined at 0. So there is at least one root which exists.

this is not the JUT.