Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Comunicações Curso de Engenharia de Telecomunicações

Disciplina: DCO1008- Processamento Digital de Sinais Professor: Dr. Luiz Gonzaga de Queiroz Silveira Júnior

Primeira Lista de Exercícios da Unidade III

Data: 26/06/2022. Semestre 2022.1

1. Utilize o método da função janela para projetar um filtro FIR com fase linear de ordem M=24que aproxime a seguinte magnitude da resposta em frequência ideal: (Obs.: Utilize a função janela retangular)

$$|H_d(e^{j\omega})| = \begin{cases} 1, & |\omega| \le 0, 2\pi \\ 0, & 0, 2\pi < |\omega| \le \pi. \end{cases}$$

Resposta: $h[n] = \frac{\sin[0,2\pi(n-12)]}{\pi(n-12)}, \quad 0 \le n \le 24.$

2. Dada uma resposta em freqüência $H_d(e^{j\omega})$, mostre que o projeto de um filtro FIR que aproxima $H_d(e^{j\omega})$ pelo método da função janela retangular minimiza o erro médio quadrático dado por:

$$\epsilon = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_d(e^{j\omega}) - H(e^{j\omega})|^2 d\omega.$$

Resposta: $\epsilon = \sum_{n=-\infty}^{\infty} |h_d[n] - h[n]|^2 = \sum_{n=0}^{N} |h_d[n] - h[n]|^2 + \sum_{n=-\infty}^{-1} |h_d[n]|^2 + \sum_{n=N+1}^{\infty} |h_d[n]|^2$. Os dois últimos termos não dependem de h[n] e o erro é minimizado com a minimização do primeiro termo, o que é conseguido com o projeto por janela retangular.

3. Considere a seguinte especificação para um filtro passa-baixa:

$$|0,99 \le |H(e^{j\omega})| \le 1,01$$
 $0 \le |\omega| \le 0,3\pi$
 $|H(e^{j\omega})| \le 0,01$ $0,35\pi \le |\omega| \le \pi$

Projete um filtro FIR com fase linear que satisfaça essas especificações usando o método da função

Resposta:
$$h[n] = \frac{\sin[0,325\pi(n-62)]}{\pi(n-62)} \left[0,5-0,5\cos\left(\frac{2\pi n}{124}\right)\right] \quad 0 \le n \le 124.$$

4. Considere a seguinte especificação para um filtro passa-faixa:

$$\begin{split} |H(e^{j\omega})| &\leq 0,01 & 0 \leq |\omega| \leq 0,2\pi \\ 0,95 &\leq |H(e^{j\omega})| \leq 1,05 & 0,3\pi \leq |\omega| \leq 0,7\pi \\ |H(e^{j\omega})| &\leq 0,02 & 0,8\pi \leq |\omega| \leq \pi \end{split}$$

Projete um filtro FIR com fase linear que atenda essas especificações usando uma janela Blackman.

Resposta:
$$h[n] = \left[\frac{\sin[0.75\pi(n-55)]}{\pi(n-55)} - \frac{\sin[0.25\pi(n-55)]}{\pi(n-55)}\right] [W_{Blackman}] \quad 0 \le n \le 110$$

5. Utilize uma janela de Kaiser para projetar um filtro passa-alta com uma frequência de rejeição $\omega_s=$ $0,22\pi,$ uma freqüência de passagem $\omega_p=0,28\pi,$ e uma ondulação máxima na banda de rejeição $\delta_s = 0,003.$

Resposta:
$$h[n] = \left[\delta[n-50] - \frac{\sin[0,25\pi(n-50)]}{\pi(n-50)}\right][W_{Kaiser}] \quad 0 \le n \le 100.$$
 Em que W_{Kaiser} tem parâmetros $M=100$ e $\beta=4,6$.

6. Deseja-se projetar um filtro FIR com fase linear pelo método da janela de Kaiser que satisfaça as seguintes especificações:

$$\begin{aligned} |H(e^{j\omega})| &\leq 0,01 & 0 \leq |\omega| \leq 0,25\pi \\ 0,95 &\leq |H(e^{j\omega})| \leq 1,05 & 0,35\pi \leq |\omega| \leq 0,6\pi \\ |H(e^{j\omega})| &\leq 0,01 & 0,65\pi \leq |\omega| \leq \pi \end{aligned}$$

1

- (a) Determine o comprimento mínimo (M+1) da resposta ao impulso e o valor do parâmetro β da janela de Kaiser que satisfaça as especificações do projeto.
- (b) Qual é o atraso do filtro?
- (c) Determine a resposta ao impulso ideal $h_d[n]$ sobre a qual a janela de Kaiser deve ser aplicada.

Respostas:

- (a) N = (M+1) = 91, $\beta = 3,395$.
- (b) $\tau = M/2 = 45$ amostras.

(c)
$$h[n] = \left[\frac{\sin[0.625\pi(n-45)]}{\pi(n-45)} - \frac{\sin[0.325\pi(n-45)]}{\pi(n-45)}\right], \quad 0 \le n \le 90.$$

7. Deseja-se projetar um filtro FIR passa-baixa que satisfaça as especificações

$$\begin{array}{ll} 0,98 < |H(e^{j\omega})| < 1,02 & 0 \le |\omega| \le 0,63\pi \\ -0,15 < |H(e^{j\omega})| < 0,15 & 0,65\pi \le |\omega| \le \pi \end{array}$$

através da aplicação de uma janela de Kaiser à resposta ao impulso $h_d[n]$ de um filtro ideal passa-baixa com freqüência de corte $\omega_c = 0,64\pi$. Encontre os valores de β e M que satisfaçam as especificações do projeto.

Resposta: A janela tem parâmetros $M\approx 182$ e $\beta=2,6524$.

8. Projete um filtro passa-baixa Butterworth que tenha uma freqüência de corte de $1,5~\mathrm{kHz}$ e uma atenuação de $40~\mathrm{dB}$ em $3,0~\mathrm{kHz}$.

Resposta: $H(s) = \frac{(3000\pi)^7}{(s-s_1)...(s-s_7)}$. Em que: $S_k = 3000\pi e^{\pm j\frac{\pi}{14}(2k+8)}$, k = 0, 1, 2 e 3.

9. Projete um filtro digital passa-baixa de primeira ordem com uma freqüência de corte (3 dB) $\omega_c = 0,25\pi$ aplicando a transformação bilinear ao filtro Butterworth analógico dado por:

$$H_d(s) = \frac{1}{1 + s/\Omega_c}.$$

Resposta: $H(z) = \frac{1}{1 + \frac{1}{0,414} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} = \frac{0.293(1+z^{-1})}{1 - 0.414z^{-1}}.$

10. Projete um filtro IIR pelo método da invariância ao impulso a partir de um protótipo com função de transferência

$$H_a(s) = \frac{s+a}{(s+(a+jb))(s+(a-jb))}.$$

Resposta: $H(z) = \frac{1/2}{1 - e^{-(a+jb)T}z^{-1}} + \frac{1/2}{1 - e^{-(a-jb)T}z^{-1}}.$

11. Suponha que foi projetado um filtro discreto usando o método de invariância ao impulso sobre um filtro passa-baixa ideal analógico (protótipo). O filtro protótipo tem uma freqüência de corte $\Omega_c = 2\pi(1000)$ rad/s, e a transformação por invariância ao impulso utilizou T = 0, 2 ms. Qual é a freqüência de corte ω_c do filtro discreto resultante?

Resposta: $w_c = 0, 4\pi$ rad.

12. Suponha que foi projetado um filtro discreto passa-baixa usando o método da transformação bilinear sobre um filtro passa-baixa ideal analógico (protótipo). O filtro protótipo tem uma freqüência de corte $\Omega_c = 2\pi (2000) \text{ rad/s}$, e a transformação bilinear utilizou T = 0, 4 ms. Qual é a freqüência de corte ω_c do filtro discreto resultante?

2

Resposta: $w_c = 2,384$ rad.