Langtian Qin

📞 +1 9492664056 💟 langtiq@uci.edu 🜎 My Github 🎓 My Google Scholar

EDUCATION

University of California, Irvine

Ph.D. in Computer Science

Sep. 2024 - Now Irvine, CA

University of Science and Technology of China (USTC)

Sep. 2021 - Jun. 2024

M.S. in Electrical Engineering

Hefei, China

• GPA:3.78/4.3 - Rank: 4/71

Sep. 2017 - Jun. 2021

B.E. in Information Engineering • GPA:3.8/4.0 - Rank: 3/156 Xi'an, China

RESEARCH EXPERIENCE

Intelligent and Autonomous Systems Lab, UC Irvine, CA

Apr. 2024 – Now

Research Assistant

Xidian University

- Title: Hierarchical Semantic Communications for Distributed Dynamic Sensor Fusion
- Proposed a hierarchical semantic communication framework for distributed dynamic sensor fusion for autonomous vehicles.
- Developed a semantic encoder/decoder to extract the semantic features of sensor data via dynamic neural networks (Resnet-18/50/101).
- Designed a semantic channel encoder/decoder to transmit the sensor features via hierarchical modulation.
- Designed an optimization framework to minimize the delay and energy consumption under accuracy constraints. Implemented Rainbow Deep Q-learning (Rainbow-DQN) to obtain the dynamic sensor fusion and transmission strategy.

Center for Wireless Communications, UC San Diego, CA

Sep. 2023 - Dec. 2023

Graduate Visiting Student

- Title: Bridging the Sim-to-real Gap in AI-Driven Networks Using Hybrid Simulation
- Implemented a mmWave mesh network testbed based on 802.11ad 60GHz radios. Collected various performance trace data such as per-beam received signal strength (RSS) and throughput based on the testbed.
- Designed a deep reinforcement learning (DRL)-enhanced wireless network simulator to fill the sim-to-real gap between simulation and actual network implementation.
- Designed DRL models like deep Q-learning (DQN) and twin delayed deep deterministic policy gradient algorithm (TD3) to configure the network simulator based on the testbed data.
- Implemented the DRL-enhanced simulator to two use cases for evaluation, i.e., interference-aware link scheduling and base station association. The proposed hybrid simulation can generate the throughput traces that are most similar to the testbed.

Broadband Communications Lab, UC Santa Cruz, CA

Jun. 2022 - Sep. 2022

Summer Research Intern

- Title: Adaptive Deep Neural Network for Dynamic Wireless Channel Estimation
- Designed deep learning (DL)-based channel estimators with different training methods or data inputs. Verified the channel estimation mean square error (MSE) and bit error rate (BER) performance of the system.
- Designed an online DL-based channel estimator that can use existing detected packets to continuously update the weights, which can be implemented in the unseen dynamic wireless channel.

Information Network Lab, USTC, China

Sep. 2021 - Jun. 2024

Research Assistant

- Title: Task Offloading and Resource Allocation in User-Centric Mobile Edge Computing
- Designed a task offloading and resource allocation algorithm in edge computing-enabled cell-free multiple-input multiple-output (MIMO) using DRL. The total energy consumption and average delay can be reduced by at most 67.48% and 48.1%.
- Proposed a joint user access, grouping, power control, and computing resource allocation algorithm in non-orthogonal multiple access (NOMA)-assisted edge computing systems using matching game theory and graph theory. The average uplink rate and average delay can be improved by at most 79.1% and 92.43%.
- Designed a joint service caching and base station clustering algorithm in cell-free MIMO systems using generalized Benders decomposition (GBD) and alternating direction method of multipliers (ADMM) optimization methods. The long-term delay and caching cost can be reduced by at most 93.75% and 53.12%.

SELECTED PUBLICATIONS

- [J1] L. Qin, H. Lu, Y. Chen, B. Chong and F. Wu, "Towards Decentralized Task Offloading and Resource Allocation in User-Centric Mobile Edge Computing," in *IEEE Transactions on Mobile Computing*, 2024.
- [J2] L. Qin, H. Lu, Y. Chen, Z. Gu, D. Zhao and F. Wu, "Energy-Efficient Blockchain-enabled User-Centric Mobile Edge Computing," in *IEEE Transactions on Cognitive Communications and Networking*, vol. 10, no. 4, pp. 1452-1466, Aug. 2024.
- [J3] L. Qin, H. Lu, Y. Chen, B. Chong and F. Guo, "Joint Transmission and Resource Optimization in NOMA-assisted IoVT with Mobile Edge Computing," in *IEEE Transactions on Vehicular Technology*, vol. 73, no. 7, pp. 9984-9999, Jul. 2024.
- [J4] L. Qin, H. Lu, Y. Lu, C. Zhang and F. Wu, "Joint Optimization of Base Station Clustering and Service Caching in User-Centric MEC," in *IEEE Transactions on Mobile Computing*, vol. 23, no. 5, pp. 6455-6469, May 2024.
- [J5] L. Qin, H. Lu and F. Wu, "When the User-Centric Network Meets Mobile Edge Computing: Challenges and Optimization," in *IEEE Communications Magazine*, vol. 61, no. 1, pp. 114-120, Jan. 2023.
- [J6] B. Chong, F. Guo, H. Lu and L. Qin, "On the Distribution of SINR for Cell-Free Massive MIMO Systems," in IEEE Transactions on Communications," in *IEEE Transactions on Communications*, 2024.
- [J7] B. Chong, H. Lu, L. Qin, Z. Xue and F. Guo and F. Guo, "Performance Optimization on Cell-Free Massive MIMO-Aided URLLC Systems With User Grouping," in *IEEE Transactions on Wireless Communications*, vol. 23, no. 10, pp. 13977-13992, Oct. 2024.
- [J8] Y. Chen, H. Lu, L. Qin, C. Zhang and C. Chen, "Statistical QoS Provisioning Analysis and Performance Optimization in xURLLC-enabled Massive MU-MIMO Networks: A Stochastic Network Calculus Perspective," in *IEEE Transactions on Wireless Communications*, vol. 23, no. 7, pp. 8044-8058, Jul. 2024.
- [J9] C. Wu, H. Lu, Y Chen and L. Qin, "Cross-Layer Optimization for Statistical QoS Provision in C-RAN with Finite-Length Coding," in *IEEE Transactions on Communications*, vol. 72, no. 6, pp. 3393-3407, Jun. 2024.
- [J10] Y. Chen, H. Lu, L. Qin, Y. Deng and A. Nallanathan, "When xURLLC Meets NOMA: A Stochastic Network Calculus Perspective," in *IEEE Communications Magazine*, vol. 62, no. 6, pp. 90-96, Jun. 2024.

AWARDS & HONORS

- 2023 National Scholarship (Awarded to 1% of 1100+ students)
- 2022 First Class Scholarship of University of Science and Technology of China
- 2021 First Class Scholarship of University of Science and Technology of China
- 2020 National Scholarship (Awarded to 1% of 156 students)
- 2020 Meritorious Winner of The Interdisciplinary Contest in Modeling (ICM) (Awarded to 8% of 7199 teams over the world)
- 2019 National Scholarship (Awarded to 1% of 156 students)
- Provincial Second Prize in National Mathematical Modeling Contest, 2019
- Provincial Second Prize in Chinese Mathematics Competition, 2019

SKILLS

Languages: MATLAB, Python, C/C++, Java, JavaScript, Solidity

Developer Tools: Pycharm, VS Code, WebStorm, Eclipse, Keil, Remix, CORE, Mininet

Technologies/Frameworks: Linux, GitHub, Git, Tensorflow, Pytorch, Cesium