# Проект по Вероятност и Статистика

летен семестър, 2019/2020

### Изготвил:

Иван Арабаджийски, ФН: 81631, 3 курс, 2 поток, 5 група

# 1. Описание на данните

Днаните са взети от проучване с участието на специалисти от Секция/Клиника по ендокринология и болести на обмяната при УМБАЛ "Св. Георги" ЕАД, МУ-Пловдив и Катедра по клинична лаборатория към МУ-Пловдив.

Дизайнът на проучването включва изследване на 80 жени, в репродуктивна възраст, подписали доброволно писмено информирано съгласие за участие в проучването. Те са разделени в четири групи: жени с новодиагностициран ПКОС (n=29), жени с новодиагностициран захарен диабет тип 2 (n=10), жени с новодиагностициран метаболитен синдром (n=18) и съответни по възраст клинично здрави жени (n=26).

Жените, включени в проучването ще бъдат набирани сред хоспитализираните и амбулаторни пациентки на Клиниката по ендокринология към УМБАЛ "Св. Георги" ЕАД.

Предвижда се определяне на показателите малондиалдехид, супероксидна дисмутаза и глутатионова пероксидаза, LH, FSH, имунореактивен инсулин, общ холестерол, HDL-холестерол, триглицериди, като проява на оксидативен стрес при пациенти с инсулинова резистентност – сднократно.

### 1.1 Основни въпроси, на които се отговаря чрез анализа на данните:

- 1. Съществува ли статистически значима разлика между серумната концентрация на глюкозата в групата на клинично здравите и в групата на диабетиците?
- 2. Съществува ли статистически значима разлика между серумната концентрация на холестерола в групата на клинично здравите и в групата на диабетиците?
- 3. Какво можем да кажем за серумната концентрация на глюкоза в останалите групи спрямо групата на диабетиците?
- 4. Има ли връзка между глюкоза и холестерол в глупата на клинично здравите?
- 5. Има ли връзка между глюкоза и холестерол в глупата на диабетиците?
- 6. Има ли връзка между триглицеридите и глюкозата в глупата на клинично здравите?
- 7. Има ли връзка между триглицеридите и глюкозата в глупата на новодиагностицираните с ПКОС?
- 8. Има ли връзка между триглицеридите и холестерола в глупата на клинично здравите?
- 9. Има ли връзка между триглицеридите и холестерола в глупата на новодиагностицираните с ПКОС?

#### 1.2 Променливи, чрез които са представени данните:

- → Горепосочените групи жени за по-кратко група 1, 2, 3, 4
- → GLUC кръвна захар
- → CHOL общ холестерол
- → Tg триглицериди

#### 1.3 Използвани статистически методи:

• Описателна (дескриптивна) статистика, включваща изчисляване на средна стойност, медиана, мода, стандартно отклонение и вариация (дисперсия). Тъй като в стандартния пакет на R няма метод за изчисление на мода, е имплементирана допълнителна функция:

```
getMode <- function(values) {
  uniqueValues <- unique(values)
  uniqueValues[which.max(tabulate(match(values,
  uniqueValues)))]
}</pre>
```

- Представяне на данните графично посредством хистограми Определяне типа на всяко едно от изследваните разпределения на данните с цел последващ избор на статистически тест за сравняване на данните. Приложен е тест на Shapiro-Wilcoxon с нулева хипотеза Н0 "Разпределението е нормално" и алтернативна хипотеза "Разпределението не е нормално" с равнище на значимост р = 0/05.
- Поставените задачи за изследване изискват сравнение на независими извадки. В случай на нормалност на двете сравнявани разпределения използваме едностранен t-test за сравнение на средните стойности. В случай, че поне едно от разпределенията на сравняваните извадки не е нормално, използваме непараметричния тест на Mann-Whitney-Wilcoxon.
- Приложен е корелационен анализ за установяване на зависимостта между нивата на холестерол и глюкоза, холестерол и триглицериди и глюкоза и триглицериди на клинично здравите и диабетиците.

# 2. Дескриптивни статистики

За целите на изследването данните са разделени в няколко отделни dataframe-ове, както следва:

- 1. group1CHOL холестеролът на клинично здравата група
- 2. group2CHOL холестеролът на новодиагностицираните с ПКОС
- 3. group3CHOL холестеролът на новодиагностицираните с метаболитен синдром
- 4. group4CHOL холестеролът на новодиагностицираните със захарен диабет тип 2
- 5. group1GLUC Глюкозата на клинично здравата група
- 6. group2GLUC Глюкозата на новодиагностицираните с ПКОС
- 7. group3GLUC Глюкозата на новодиагностицираните с метаболитен синдром
- 8. group4GLUC Глюкозата на новодиагностицираните със захарен диабет тип 2
- 9. group1Tg Триглицеридите на клинично здравата група
- 10. group2Tg Триглицеридите на новодиагностицираните с ПКОС
- 11. group3Tg Триглицеридите на новодиагностицираните с метаболитен синдром
- 12. group4Tg Триглицеридите на новодиагностицираните със захарен диабет тип 2

В следващите таблици са представени дескриптивните статистики за всеки един от горепосочените dataframe-ose.

| Извадка    | Средна<br>стойност | Медиана | Мода | Стандартно<br>отклонение | Дисперсия  |
|------------|--------------------|---------|------|--------------------------|------------|
| group1CHOL | 4.468              | 4.715   | 4.9  | 0.7483085                | 0.5599655  |
| group2CHOL | 4.344              | 4.140   | 3.9  | 0.6939916                | 0.4816244  |
| group3CHOL | 4.688              | 4.500   | 3.9  | 0.766261                 | 0.5871559  |
| group4CHOL | 4.673              | 4.900   | 5.3  | 0.9705331                | 0.9419344  |
| group1GLUC | 4.965              | 4.900   | 4.8  | 0.4267574                | 0.1821218  |
| group2GLUC | 4.893              | 5.000   | 5.3  | 0.4956461                | 0.245665   |
| group3GLUC | 5.744              | 5.850   | 5.9  | 0.3257972                | 0.1061438  |
| group4GLUC | 6.850              | 6.700   | 6.7  | 0.5835714                | 0.3405556  |
| group1Tg   | 0.7038             | 0.6800  | 0.7  | 0.2368979                | 0.05612062 |
| group2Tg   | 0.7166             | 0.6500  | 0.8  | 0.242447                 | 0.05878054 |
| group3Tg   | 1.026              | 0.920   | 1.38 | 0.3862523                | 0.1491908  |
| group4Tg   | 1.501              | 1.280   | 0.9  | 0.6883547                | 0.4738322  |

# 3. Графично представяне

























# 4. Определяне вида на разпределенията

| Извадка    | p-value: | Нормално ли е<br>разпределението? |
|------------|----------|-----------------------------------|
| group1CHOL | 0.02293  | не                                |
| group2CHOL | 0.2117   | да                                |
| group3CHOL | 0.344    | да                                |
| group4CHOL | 0.1965   | да                                |
| group1GLUC | 0.2761   | да                                |
| group2GLUC | 0.04414  | не                                |
| group3GLUC | 0.2576   | да                                |
| group4GLUC | 0.0194   | не                                |
| group1Tg   | 0.1082   | да                                |
| group2Tg   | 0.01227  | не                                |
| group3Tg   | 0.05004  | да                                |
| group4Tg   | 0.050002 | да                                |

# 5. Сравняване на данните

### 5.1 Сравняване на числовите данни по групи

Тъй като имаме 4 групи ще изпозлваме теста на Крускал за да определим дали има статистически значима разлика между четирите групи.

| Данни:        | p-value: | Заключение:                          |
|---------------|----------|--------------------------------------|
| GLUC vs Group | ~0       | Има статистически значима разлика    |
| CHOL vs Group | 0.3941   | Няма статистически значима разлика   |
| Tg vs Group   | ~0       | Има статистически значима<br>разлика |

### Подрепяме с boxplots:



5.2 Търсим зависимост между кръвната захар и холестеролът в групата на клинично здравите и групата на диабетиците.

| Извадка                  | Корелация   |
|--------------------------|-------------|
| Group1CHOL vs group1GLUC | -0.05635747 |
| Group4CHOL vs group4GLUC | -0.07317209 |
| Group2GLUC vs group2Tg   | -0.09456148 |
| Group2CHOL vs group2Tg   | 0.3254389   |
| Group2CHOL vs group2Tg   | 0.5453993   |

### Подрепяме с dotplots:





GLUC / Tg Group 1



CHOL / Tg Group 2



CHOL / Tg Group 1



# 6.Отговори на някои важни въпроси

1. Съществува ли статистически значима разлика между серумната концентрация на глюкозата в групата на клинично здравите и в групата на диабетиците?

Разпределението в група 1 е нормално, но в група 4 не е, следователно ще приложим непараметричен тест за сравняване на независими извадки на Mann-Whitney-Wilcoxon. Използваме вградената функция wilcox.test(). Резултатът е:

2. Съществува ли статистически значима разлика между серумната концентрация на холестерола в групата на клинично здравите и в групата на диабетиците?

По подобни на горните съображения прилагаме теста на Mann-Whitney-Wilcoxon и получаваме резултат:

```
> wilcox.test(groups.group1$CHOL.mmol.l, groups.group4$CHOL.mmol.l)

Wilcoxon rank sum test with continuity correction

data: groups.group1$CHOL.mmol.l and groups.group4$CHOL.mmol.l

W = 108, p-value = 0.4469

alternative hypothesis: true location shift is not equal to 0

p-value > 0.05 и заключаваме, че статистически значима разлика няма.
```

3. Сега ще анализираме данни между две групи с различни заболявания и ще видим съществува ли статистически значима разлика между серумните концентрации на глюкозата в групата на жените с новодиагностициран ПКОС и в групата на жените със захарен диабет тип 2.

```
> wilcox.test(groups.group2$GLUC.mmol.l, groups.group4$GLUC.mmol.l)

Wilcoxon rank sum test with continuity correction

data: groups.group2$GLUC.mmol.l and groups.group4$GLUC.mmol.l

W = 0, p-value = 3.256e-06
alternative hypothesis: true location shift is not equal to 0
p-value <= 0.05
Правим заключение, че има статистически значима разлика.
Последно правим същото сравнение между група 3 и 4.

> wilcox.test(groups.group3$GLUC.mmol.l, groups.group4$GLUC.mmol.l)
```

```
data: groups.group3$GLUC.mmol.l and groups.group4$GLUC.mmol.l W=0, p-value = 1.663e-05 alternative hypothesis: true location shift is not equal to 0
```

и отново се оказва, че има статистически значима разлика. Така откриваме, че заболелите от диабет имат статистически значима разлика в изследванията си за кръвна захар не само спрямо контролната група на здравите, но и спрямо останалите групи.

4. Има ли връзка между серумните нива на гл/коза и холестерол в глупата на клинично здравите?

```
> cor(groups.group1$GLUC.mmol.l, groups.group1$CHOL.mmol.l, method = "spearman")
[1] -0.05635747
```

От това можем да заключим, че кимаме слаба отрицателна корелация между двете величини.

5. Има ли връзка между серумните нива на гл/коза и холестерол в глупата на диабетиците?

```
> cor(groups.group4$GLUC.mmol.l, groups.group4$CHOL.mmol.l, method = "spearman")
[1] -0.07317209
```

От това можем да заключим, че имаме слаба отрицателна корелация между двете величини.

6. Има ли връзка между серумните нива на триглицеридите и глюкозата в глупата на клинично здравите?

```
> cor(groups.group2$GLUC.mmol.l, groups.group2$Tg.mmol.l, method = "spearman")
[1] -0.09456148
```

От това можем да заключим, че имаме слаба отрицателна корелация между двете величини.

7. Има ли връзка между серумните нива на триглицеридите и глюкозата в глупата на жените с новодиагностициран ПКОС ?

```
> cor(groups.group1$GLUC.mmol.l, groups.group1$Tg.mmol.l, method = "spearman")
[1] 0.1631255
```

От това можем да заключим, че корелацията е слаба.

8. Има ли връзка между серумните нива на триглицеридите и холестерола в глупата на клинично здравите ?

```
> cor(groups.group1$CHOL.mmol.l, groups.group1$Tg.mmol.l, method = "spearman")
[1] 0.3254389
```

От това можем да заключим, че корелацията е умерена.

9. Има ли връзка между триглицеридите и холестерола в глупата на жените с новодиагностициран ПКОС ?

```
> cor(groups.group2$CHOL.mmol.l, groups.group2$Tg.mmol.l, method = "spearman")
[1] 0.5453993
```

От това можем да заключим, че корелацията е значителна.