

CSC4253- FREE AND OPEN SOURCE SOFTWARE B.Tech – III Semester

Dr. V. Rajalakshmi
Assistant Professor (SG)
School of Computing Sciences,
Department of Computer Science and Engineering

GITHUB Introduction - Need

- Developers need a web/cloud based code hosting platform
- Useful for version control
- Enables effective collaboration
- Download projects and files in one go
- Easy evaluation of each other's work

GITHUB Competitors

Code hosting services that lets you manage repositories

GITHUB Introduction

But what makes GitHub so popular?

Immensely powerful community

The largest shared repository

Easy version control

Secure cloud storage

What is GITHUB?

Web-based Git repository hosting service

Easy Management of code

Open-source software for Version control

Effective collaboration

Bug tracker

GITHUB Introduction

Git is a revision control system, a tool to manage your source code history

Installed and maintained in your local system

Git is the tool

GitHub is a hosting service for Git repositories

Exclusively cloud-based

GitHub is the service for projects that use
Git

GITHUB Introduction –Works with GiT

GITHUB Introduction –Works with GiT

GITHUB getting started

GITHUB – Sign up Procedure

GITHUB – Sign in Procedure

GITHUB - Dashboard

GITHUB Dashboard Features

- Search bar is used to look for profiles, keywords, any projects that are publicly available in GitHub
- Repository bar lists all the personal repositories and files that are created and present in our account
- Explore tab displays the trending discussions and repositories in the GitHub world. It helps to have the social networking between the developers.

GITHUB Dashboard Features

Used to manage notifications for the work done with our repository. Includes options like Inbox, Saved, Done

Create a new repository or new project and to work on them

The pixelated icon at the end shows the profile details and the history of repositories we are working on

GITHUB Repository

- Storage space for your project
- GitHub is a very popular central repository that allows you to share your files
- Push your local repo into GitHub and share it with other collaborators via the central repo

GITHUB Creating a Repository

GITHUB Code Option

- The HTTPs link shown is used to connect GiT with GitHub
- Download ZIP option downloads the repository files as a single ZIP file

GITHUB – Commit

- Records changes to one or more files in your branch
- Git assigns each commit a unique ID, called a SHA or hash, that identifies: The specific changes

GITHUB - Branching

- Branches allow you to work on other features
- They can be included with the main line of your project
- The main branch the one where all changes eventually get merged back into, and is called master

GITHUB – Control in Master Branch

GITHUB – Open and Merge Pull Requests

GITHUB – Create a Branch

GITHUB – Pull requests

GITHUB – Create a Pull requests

GITHUB – Merge the Branch

GITHUB – Pull requests status after merging

GITHUB – Steps in Branching

- Create a branch with a <newname>
- Perform creation or updating of files
- Create pull requests
- Compare the contents of files before and after branching
- Check the merging status
- If compatible merge the branches

GITHUB – Collaborative work

GITHUB with Git Commands for collaborative work

GITHUB for collaborative work

There generally are at least three copies of a project on your workstation.

- One copy is your own repository with your own commit history (the already saved one).
- The second copy is your working copy where you are editing and building (not committed yet to your repo).
- The third copy is your local "cached" copy of a remote repository (probably the original from where you cloned yours).

GITHUB with Git Commands

git remote add origin https://github.com/Rajalakshmi16/Case-Study-in-FOSS.git

→ Connects our local git with github account

git remote –v

origin https://github.com/Rajalakshmi16/Case-Study-in-

FOSS.git (fetch)

origin https://github.com/Rajalakshmi16/Case-Study-in-

FOSS.git (push)

→ Displays the links which are connected to out local repository

GITHUB with Git Commands

\$ git push origin master

Enumerating objects: 14, done.

Counting objects: 100% (14/14), done. Delta compression using up to 4 threads Compressing objects: 100% (9/9), done.

Writing objects: 100% (14/14), 1.16 KiB | 394.00 KiB/s, done.

Total 14 (delta 5), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (5/5), done.

To https://github.com/Rajalakshmi16/newrepo.git

* [new branch] master -> master

> Pushes the contents of all the files in master branch of local repository to the origin (Alias name of central repository) branch of central repository

GITHUB with Git Commands [Pull and Fetch operations]

- git fetch is the command that tells your local git to retrieve the latest meta-data info from the original (yet doesn't do any file transferring. It's more like just checking to see if there are any changes available).
- git fetch helps to know the changes done in the remote repo/branch since your last pull.
- This is useful to allow for checking before doing an actual pull, which could change files in your current branch and working copy

GITHUB with Git Commands

 git pull on the other hand does that AND brings (copy) those changes from the remote repository.

git pull origin master-

 The git pull command is used to fetch and download content from a remote repository and immediately update the local repository to match that content.

GITHUB with Git Commands

git remote remove origin – Removes the already mapped remote origin and a new remote repository can be mapped

rm -rf .git → Removes all the log and branches of the local repository. Should re- initialize using git init and start a new repository for any new project

