0.1. MATHS 201 C.A 2016/2017

MATHS 201 C.A 2016/2017

1.
$$y = \tan^{-1}x$$
 then $(1 + x^2)\frac{d^2y}{dx^2} + 2r\frac{du}{dx}$
 $y = \tan^{-1}x$ $\frac{dy}{dx} = \frac{1}{1 + x^2}$
Using quotient rule $\frac{d^2y}{dx^2} = \frac{V\frac{du}{dx} - U\frac{dv}{dx}}{V^2}$
 $= \frac{(1 + x^2)(0) - 1(2x)}{(1 + x^2)^2} = \frac{-\frac{v_x}{dx}}{(1 + x^2)^2}$
 $= (1 + x^2)\frac{d^2y}{dx^2} + 2x\frac{du}{dx}$
 $= (1 + x^2)\frac{d^2y}{dx^2} + 2x\frac{du}{1 + x^2}$
 $= (1 + x^2)\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{d^2y}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{d^2y}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{d^2y}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{d^2y}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= (1 + x^2)\frac{d^2y}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{2x}{(1 + x^2)^2}$
 $= -\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{1}{4}\frac{d^2y}{dx} + 2r\cdot\frac{1}{1 + x^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{2x}{(1 + x^2)^2} + 2r\cdot\frac{1}{1 + x^2}$
 $= -\frac{1}{4}\frac{d^2y}{dx} + 2r\cdot\frac{1}{1 + x^2} = 0$ (C)
2. $y = 2xe^{-3r}$ then $\frac{d^2y}{dx} + 6\frac{dy}{dx}$
 $= -6re^{-3r} + 2r\cdot\frac{1}{1 + x^2} + e^{-3r}(2)$
 $= -6re^{-3r}$

3. $\int_0^1 \frac{dx}{\sqrt{16 - x^2}}$ from standard integral $\int_0^1 \frac{dx}{\sqrt{16 - x^2}}$

 $\int_{-1}^{1} \frac{dx}{dx}$

 $\sqrt{n^2 - r^2} = \sin^{-1}(\frac{x}{a}) + c$

 $J_0 \sqrt{16 - r^2} = \left[\sin^{-1} \frac{r}{4} \right]_0^4$

lactoring

4. $y = \tan^{-1}(\frac{\sin t}{\cos t - 1})$ then $\frac{dy}{dt}$ is Let $U = \frac{\sin t}{\cos t - 1}$ $= \left[\sin^{-1} \frac{1}{4} + c \right] - \left[\sin^{-1} \frac{0}{4} + c \right]$ $\sin^{-1} 1 - \sin^{-1} 0 = \frac{\pi}{2} \quad (C)$ from $U = \frac{\sin t}{\cos t - 1}$ using quotient rule $\frac{dy}{dx} = \frac{V \frac{du}{dx} - U \frac{dv}{dx}}{V^2}$ $y = \tan^{-1} U \frac{dy}{du} = \frac{1}{1 + U^2}$ $\cos^2 t - \cos t + \sin^2 t$ $\cos^2 t + \sin^2 t - \cos t$ 5. $x^2 + y^2 - 2x - 2y = 3$ at x = 2 $\frac{dy}{dx} = \frac{1}{1 + (\frac{\sin t}{\cos t - 1})^2} \times \frac{1}{(\cos t - 1)^2}$ $\frac{du}{dt} = \frac{(\cos t - 1)(\cos t) - (\sin t)(-\sin t)}{(\cos t - 1)^2}$ $2^{2} + y^{2} - 2(2) - 2y = 3$ $4 + y^{2} - 4 - 2y = 3$ $y^{2} - 2y - 3 = 0$ $\frac{(\cos t - 1)^{\frac{1}{t}} + \sin^2 t}{(\cos t - 1)^2} \times \frac{\cos t}{(\cos t - 1)^2}$ $(\cos t - 1)^2$ $\frac{1 + 1 - 2\cos t}{1 - \cos t} = \frac{x - \cos t}{2 - 2\cos t}$ substituting the value of x = 2 $1 - \cos t$ $(\cos t - 1)^2$ $(\cos t - 1)^2$ $(\cos t - 1)^2 + \sin^2 t = (\cos t - 1)^2$ $\frac{\cos^2 t - 2\cos t + 1 + \sin^2 t}{1 - \cos t}$ $= \frac{1}{1 + \frac{\sin^2 t}{(\cos t - 1)^2}} \times \frac{1 - \cos t}{(\cos t - 1)^2}$ $\frac{1}{2(1-\cos t)} = \frac{1}{2}$ (B) 1 - 608 + $(\cos t - 1)^2$ $1 - \cos t$ but $\cos^2 t + \sin^2 t = 1$ $(\cos l - 1)^2$ $\cos^2 t + \sin^2 t - 2\cos^2 t$

y = -1 or y = 3

(y+1)(y-3)

 $\frac{(2y - 2)\frac{dy}{dx} = -2x + 2}{\frac{dy}{dx}} = \frac{-2x + 2}{2y - 2}|_{x=2}$

 $2x + 2y\frac{dy}{dx} - 2 - 2\frac{dy}{dx} = 0$ differentiating implicitly $x^2 + y^2 - 2x - 2y = 3$ solving the gradient

 $T = \frac{-1}{N} \implies T = M$

gradient of normal

Tangent = -

 $\frac{-2(2)+2}{2(3)-2} = \frac{-4+2}{6-2} = \frac{-2}{4} = \frac{-1}{2}(M)$

 $\int 10$. If $y = \tan^{-1}(\frac{x}{2})$

 $= \frac{\sin^3 x}{3} - \frac{2}{5}\sin^5 x + \frac{\sin^7 x}{7} + C$ $\frac{1}{7}\sin^7 x - \frac{2}{5}\sin^5 x + \frac{1}{3}\sin^3 x + C \quad (B)$ integrating $= \int (\sin^2 x \cos x - 2\sin^4 x \cos x + \sin^6 x \cos x) dx$ $\int \sin^2 x \cos^5 x dx = \int \sin^2 x (\cos^4 x) \cos x dx$ $\int \sin^2 x (1 - \sin^2 x)^2 \cos x dx$ $\int \sin^2 x \cos x (1 - 2\sin^2 x + \sin^4 x) dx$ \therefore Gradient of the tangent = $\frac{-1}{2}$

9. $y = \tanh^{-1}\left(\frac{1-x}{1+x}\right)$ then $2x\frac{dy}{dx}$ is $\frac{dx}{dy} = \frac{dy}{du} \times \frac{du}{du}$ $= \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= \frac{1 - U^2}{1 - U^2} \times \frac{(1 + x)^2}{(1 + x)^2}$ $y = \tanh^{-1}(U)$ Let $U = \frac{1-x}{1-x}$ $\frac{dy}{dx} = \frac{V\frac{du}{dx} - U\frac{dv}{dx}}{}$ $\frac{du}{(1+x)(-1)} - (1-x)(1)$ $\frac{dx}{dx} = \frac{dy}{dx} = \frac{(1+x)^2}{(1+x)^2 - (1-x)^2} \times \frac{-2}{(1+x)^2}$ -1-x-(1-x) $(1+x)^2 - (1-x)^2 = \frac{1}{4x} = \frac{1}{2x}$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x}$ from the condition $2x\frac{dy}{dx} = 2x \times \frac{-1}{2x} = -1$ (B) $(1+x)^2$ -1 - x - 1 + x $(1+x)^2$ V2 using quotient rule $(1+x)^2$

 $8 \frac{dy}{dx} \text{ of } y^2 - \cos 2x = ?$ differentiating implicitly

 $2y\frac{dy}{dx} - (-2\sin 2x) = 0$ $2y\frac{dy}{dx} + 2\sin 2x = 0$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\sin 2x}{2y} \left(\frac{1}{4}, -1\right)$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2\sin 2(-1)}{2(\frac{\pi}{4})}$

 $= \frac{2\sin 2}{90} = \frac{2(\frac{\pi}{4})}{90} = 0.00077 \quad (E)$

15

 $\int_0^{\frac{\pi}{2}} x \cos x dx$ Using integral by part

 $dv = \cos x \quad v = \sin x$

 $= x \sin - \int \sin x$ $= uv - \int v du$

 $\left[\frac{1}{2}\sin\frac{\pi}{2} + \cos\frac{\pi}{2}\right] - \left[0\sin 0 + \cos 0\right]$ $\frac{\pi}{2} \times 1 + 0 - 0 - 1$

 $+0-0-1=\frac{\pi}{2}-1$ (B)

 $= x \sin x - (-\cos x) = x \sin x + \cos x \Big|_0^{\frac{\pi}{2}}$

0.2. MATHS 201 2015/2016 EXAMINATION

In questions 1 - 14, obtain the first derivative of the function indicated

MATHS 201 2015/2016 EXAMINATION

 $y = \sin^2 t \cos 2t$ (A) $2\sin 2t \cos 2t$ (B) $\sin 4t - \sin 2t$ (C) $6\sin 2t \cos 2t$ $(D)4\sin 2t - \cos 2t$

Recall, $\sin 2t = 2 \sin t \cos t$ $= -2\sin^2 t \sin t + 2\sin t \cos t \cos 2t$ $= (\sin^2 t)(-2\sin 2t) + (\cos 2t)(2\sin t \cos t)$ $\frac{dy}{dt} = Udv + Vdu$ $v = \cos 2t \quad \frac{dv}{dt} = -\sin 2t$ Let $u = \sin^2 t$ $\frac{du}{dt} = 2\sin t \cos t$

Recall, $\sin 4t = 2\sin 2t\cos 2t$ $= 2\sin 2t\cos 2t - \sin 2t$ $= \sin 2t \cos 2t - \sin 2t + \sin 2t \cos 2t$ Recall $\cos 2t = 1 - 2\sin^2 t$ $\frac{dy}{dx} = (\cos 2t - 1)\sin 2t + \sin 2t + \cos 2t$ $\frac{dy}{dt} = -2\sin^2 t \sin 2t + \sin 2t \cos 2t$ $\frac{dy}{dt} = \sin 4t - \sin 2t \quad (B)$

6. $y = e^{2t} \tan^{-1} t$ (A) $[e^{2t} (\tan 2t - 1)]^2$ (B) $e^{2t} \tan 2t (1 + 4t^2)^{-1}$ (C) $[e^{2t} (\sec^{-1} 2t)]^2$ (D) $[e^{2t} (\tan^{-1} 2t + (1 + 4t^2)^{-1})]$

Solution

Let $u = e^{2t}$ $\frac{du}{dt} = 2e^{2t}$

 $v = \tan^{-1} t \quad \frac{dv}{dt} = \frac{1}{1+t^2}$

 $\frac{dy}{dt} = Udv + Vdu$

 $= e^{2t} \left(\frac{1}{1+t^2}\right) + (\tan^{-1}t)(2e^{2t})$ $= \frac{e^{2t}}{1+t^2} + 2e^{2t}\tan^{-1}t$

 $\frac{dy}{dt} = e^{2t} (\frac{1}{1+t^2} + 2 \tan^{-1} t)$ No Ans

 $v = \tan^2 x \quad \frac{dv}{dx} = 2 \tan x \sec^2 x$ $\frac{dy}{dt} = \frac{du}{dx} \times \frac{dv}{dx}$

 $= 2 \sec^2 x (1 + \tan x)$ No Ans $= 2\sec^2 x + 2\tan x \sec^2 x$

 $y = \cos^2(\frac{a}{t}) \quad \text{(a is constant)} \quad \text{(A) } 2\sin^2(\frac{a}{t})\cos(\frac{a}{t}) \text{ (B) } -\frac{a}{t^2}\sin(\frac{2a}{t})$ $\text{(C) } \frac{1}{t^2}\sin(\frac{2a}{t}) \text{ (D) } \frac{a}{t^2}\cos(\frac{2a}{t})$

 $y = lnv \quad \frac{dy}{dv} = \frac{1}{v}$ $\frac{dy}{dx} = \frac{dy}{dv} \times \frac{dv}{du} \times \frac{du}{dx}$ y = lnv $v = \sqrt{u}$ $u = \frac{2x - 1}{2x + 1}$ $v = \sqrt{u} = u^{\frac{1}{2}}$ $\frac{du}{dx} = \frac{(2x+1)^2 - (2x-1)^2}{(2x+1)^2 - (2x-1)^2}$ $\frac{dv}{du} = \frac{1}{2}U^{-\frac{1}{2}} = \frac{1}{2\sqrt{u}}$ $(2x+1)^2$

7. $y = ln\sqrt{\frac{2x-1}{2x+1}}$ (A) $\frac{2x}{2x+1}$ (B) $\frac{x}{(2x-1)^2}$ (C) $\frac{2}{4x^2-1}$ (D) $\frac{2}{(2x+1)^2}$

Solution

 $y = v^{2} \frac{dy}{dv} = 2v$ $\frac{dy}{dt} = \frac{dy}{dv} \times \frac{dv}{du} \times \frac{du}{dt}$ $= 2v \times (-\sin u) \times (at^{-2})$

 $v = \cos u \frac{dv}{}$

 $\frac{du}{du} = -\sin u$

 $y = \cos^2 u$

 $c = \cos u \quad u = \frac{a}{t} = at^{-1}$

 $\frac{u}{t} = -at^{-2} = -\frac{a}{t^2}$

Solution

Replacing the value of v and u

2av sin u

0.2. MATHS 201 2015/2016 EXAMINATION

 $\frac{dy}{dt} = \frac{-a}{t^2} \sin(\frac{2a}{t}) \quad (B)$ $\frac{dy}{dt} = \frac{2a\cos u \sin u}{t^2} = \frac{a\sin 2u}{t^2}$

5. $y = 2\tan x + \tan^2 x$ (A) $\sec^2 x + \tan x$ (B) $\tan^4 x + 1$ (C) $\tan^2 x + 1$ $\sec^2 x$ (D) $\sec^2 x(1 + \tan x)$ Solution

Let $u = 2 \tan x$ $\frac{du}{dx} = 2 \sec^2 x$

No answer

 $\int_0^\infty \frac{x^2 e^{-\alpha x} dx}{x^2} = \frac{-x^2}{a} e^{-\alpha x} - \int \frac{-2x}{a} e^{-\alpha x}$ Let $u = x^2$ $\frac{du}{dx} = 2x$ $v = \frac{-1}{a_x}e^{-ax}$

> 0.2. MATHS 201 2015/2016 EXAMINATION $= ln \left[\frac{1 + x^2}{1 - x^2} \right] + c \quad \text{No Answer}$ 17

CONTENTS

Let $u = e^{-2x}$ $\frac{du}{du} = -2e^{-2x}$ $dx = \frac{-du}{2e^{-2x}}$ $\int 2e^{-2x} \sin u \cdot \frac{du}{-2e^{-2x}} = -\int \sin u du$ $\int 2e^{-2x}\sin(e^{-2x})dx \quad (A) - \sin e^{-2x} + c(B)\cos e^{-2x} + c(C) - 2\cos e^{-2x} + c(C)$ $=\cos e^{-2x} + c$ (B) Solution (D) $2\sin e^{-2x} + c$ \Rightarrow $-\sin u du = -[-\cos u] + c$

Solution $\int \frac{1 + e^{2x} - e^{2x}}{1 + e^{2x}} dx = \int \left(\frac{1 + e^{2x}}{1 + e^{2x}} - \frac{e^{2x}}{1 + e^{2x}} \right) dx$ $\int_{-1+e^{2x}} dx \quad (A)x + \tan^{-1}e^x + c (B)x - \ln(1+e^{2x}) + c (C)\ln(1+e^{2x})$ $= x - \frac{1}{2}ln(1+u) + c$ = $x - \frac{1}{2}ln(1+e^{2x}) + c$ Let $u = e^{2x}$, $\frac{du}{dx} = 2e^{2x}$, $dx = \frac{du}{2e^{x}}$ = $\int dx - \int \frac{e^{2x}}{1+u} \cdot \frac{du}{2e^{2x}}$ = $\int dx - \frac{1}{2} \int \frac{du}{1+u}$ $\Rightarrow x - \ln(1 + e^{2x})^{\frac{1}{2}} + C$ $= \int 1 dx - \int \left(\frac{e^{2x}}{1 + e^{2x}}\right) dx$ e^{2x}) + c (D)tan⁻¹ e^{2x} + cNo answer

Let $u = e^x$, $\frac{du}{dx} = e^x$, $dx = \frac{du}{e^x}$ $\int \frac{e^x}{\sqrt{1 - u^2}} \cdot \frac{du}{e^x} = \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u + c$ Solution $\int \frac{e^x}{\sqrt{1-e^{2x}}} dx \quad (A) \tan^{-1} e^x + c \quad (B) \sin^{-1} e^x + c \quad (C) \cos^{-1} e^x + c$ (D) $\sec^{-1} e^x + c$ $\int \frac{e^x}{\sqrt{1-e^x}} dx = \sin^{-1} e^x + c \quad (B)$

22. The first three terms in the Maclaurines expansion e^x cos r is (A)1+ $x-\frac{x^3}{2!}+---$ (B) $x+x^2-\frac{x^4}{3!}+---$ (C) $x-\frac{x^2}{2!}-\frac{6x^4}{4!}+---$ Solution Maclaurines expansion of $e^x \cos x$ is given as $(D)1 - x + \frac{x^3}{3!} + - -$ $f(x) = e^x \cos x \quad f(0) = 1$ $f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + -$ $f'(x) = e^x \cos x - e^x \sin x$ f'(0) = 1

 $\frac{dy}{dx}|_{(0.12)} = \frac{8}{12} = \frac{2}{3}$ Equation of tangent

 $e^x \cos x = 1 + 1(x) + \frac{0(x^2)}{2!} + \frac{(-2)(x^1)}{3!} + - - =1+x+0-\frac{x^3}{3}+- f'''(x) = -2(e^x \sin x + e^x \cos x)$ f'''(0) = -2 $f''(x) = e^x \cos x - 2e^x \sin x - e^x \cos x$ f''(0) = 0

23. If $y = (\tan^{-1} x)^2$, then $\frac{d^2y}{dx^2} + 4x \tan^{-1} x = (A) - 1$ (B) 2 (C) 1 Solution

25. The angles between the tangent at the point (9.12) and (4. - xi

3y - 2x + 18 = 0 No Answer

3y - 2x - 36 + 18 = 03y - 36 = 2x - 18

(y-12)3 = 2(x-9)

 $y-12=\frac{2}{3}(x-9)$

Let $u = \tan^{-1} x$ $\frac{du}{du} = \frac{1}{1+x^2}$

 $(1+x^2)^2$

and the answer should have been $(1+x^2)^2 \frac{(2-4x\tan^{-1}x)}{(1+x^2)^2} + 4x\tan^{-1}x$

24. The equation to the tangent at the point (9,12) is (A)2x - 3y -Solution 4 = 0 (B)3x + 2y + 10 = 0 (C)2x - 3y - 18 = 0 (D)3x - 2y + 72 = 0

 $\frac{2y\frac{3y}{dx} = 16}{\frac{dy}{dx}} = \frac{16}{2y} = \frac{8}{y}$ dy

 $\frac{2(1+x^2)(\frac{1}{1+x^2})-2\tan^{-1}x(2x)}{2(1+x^2)(\frac{1}{1+x^2})}$

 $\frac{d^2y}{dx^2} + 4x \tan^{-1} x = \frac{2 - 4x \tan^{-1} x}{(1 + x^2)^2}$ $-+4x \tan^{-1} x$ No An-

Given the parabola $y^2 = 16x$, answer questions 24 - 26

 $y^2 = 16x$ differentiating implicitly

 $= 2 - 4x \tan^{-1} x + 4x \tan^{-1} x = 2$ (B) If $y = (\tan^{-1} x)^2$, then $(1 + x^2)^2 \frac{d^2y}{dx^2} + 4x \tan^{-1} x$ is Note: the question should be $y = u^{2} \frac{dy}{du} = 2u$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = 2u \times \frac{1}{1+x^{2}} = \frac{2\tan^{-1}x}{1+x^{2}}$ Second derivative $2 - 4x \tan^{-1} x$ $(1+x^2)^2$

 $y^{2} = 16x \quad \frac{dy}{dx} = \frac{8}{y}$ $m_{1} = \frac{8}{12} = \frac{2}{3}$ $m_{2} = \frac{8}{-8} = -1$ Solution $\theta = \tan^{-1} 5 = 78.69^{\circ}$ $\tan \theta_2 = \frac{m_2 - m_1}{1 + m_2 m_1}$ $= \frac{3}{3} = \frac{5}{3} = \frac{-5}{3} \times \frac{3}{1} = -5$ $\implies \tan \theta = -$ Angle between the tangents is $(A)\frac{5\pi}{4}(B)\frac{\pi}{2}(C)\frac{\pi}{3}(D)\frac{\pi}{4}$ $\tan \theta_1 = 1+(\frac{2}{3})(-1)$ -(-1) $1+(-1)(\frac{2}{3})$ -1-2 $1 + m_2 m_1$ $m_2 - m_1$ No Answer

26. The volume of revolution formed by rotating the part of the $= 16\pi \int_{1}^{4} x dx = 16\pi \left[\frac{x^{2}}{2}\right]_{2}^{4} + c$ $= \frac{16\pi}{2} \left[(4^{2} + c) - (1^{2} + c) \right]$ $y^2 = 16x$ Solution (A) 5376π (B) 1536π (C) 256π (D) 72π parabola form x=1 to x=4 about the x-axis in cubic unit is $= \int_{1}^{4} \pi 16x dx$ Revolution = $\int_{x_1}^{\pi_2} \pi y^2 dx$

How lar is the particle from the origin 3 seconds later? (A) $\frac{62}{3}$ $s = \frac{1}{3}t^3 - 2t^{-1} + 3t + c$ $s = \int (t^2 + 2t^{-2} + 3)dt = \frac{t^3}{3} + \frac{2t^{-1}}{-1} + 3t + c$ $v = t^2 + 2t^{-2} + 3 = \frac{ds}{dt}$ 6 = 1 + 2 + c c = 3 $6 = 1^2 + 2(1)^{-2} + c$ $v = t^2 + 2t^{-2} + c$ at t = 1 v = 6 $v = \int a dt = \int (2t - 4t^{-3}) dt = t^2 - \frac{4t^{-2}}{-2} + c$ $\frac{dv}{dt} = (2t - \frac{4}{t^3}) = a$ Let v = 21 - 13 $2t^{-1} + 3t + 10 ----(n)$ and at that time the particle is at distance 34/3. Answer quesis increasing at the rate of $(2t - \frac{1}{t^3})$. When t=1, the velocity is 6 At time t, the velocity of a particle moving in a straight line The curve is $y = x + x^2 - x^3 + 3$ $y = x + x^2 - x^3 + c$ at (2,1) $y = \int 1 + 2x - 3x^2 dx$ =-2+ .. C=3The curve passing through (2.1) whose gradient is $1+2x-3x^2$ is $(A)x + x^2 - x^3 - 2$ $(B)x - x^2 - x^3 + 2$ $(C)x + x^2 - x^3 + 3$ =2+4-8+c $1 = 2 + 2^2 - 2^3 + c$ $\frac{dy}{dx} = 1 + 2x - 3x^2, \quad dy = 1 + 2x - 3x^2 dx$ then replace 'C' in the equation. Integration and substitute the value of x and y to get 'C' and Gradient is $1 + 2x - 3x^2$ at point (2.1) $= \frac{16\pi}{2}(16-1) = 8\pi \times 15 = 120\pi$ $t = 1 \ v = 6$ CONTENTS 0.2. MATHS 201 2015/2016 EXAMINATION 30. The equation of velocity, $v = (A)t^2 + 2t^{-2} + 3$ (B) $2t^2 - t^{-1} + 3$ 29. What is the velocity after 2 seconds? $(A)^{\frac{20}{4}}(B)^{\frac{15}{2}}(C)^{\frac{31}{4}}(D)^{\frac{25}{2}}$ 31. If $y = \frac{\sin^{-1} 2x}{1}$ at t = 3 seconds $s = \frac{3^3}{3} - 2(3)^{-1} + 3(3) + 10$ $= 9 - \frac{3}{2} + 9 + 10$ $= \frac{27 - 2 + 27 + 30}{3} = \frac{82}{3}$ No Ans $v = 4 + \frac{2}{4} + 3$ $= 7 + \frac{1}{2} = \frac{14+1}{2} = \frac{15}{2}$ at t = 2 sec $v = 2^2 + 2(-2)^{-2} + 3$ v = 7.5m/s $v = t^2 + 2t^{-2} + 3$ Let $u = \sin^{-1} 2x$ $\frac{du}{dx} = \frac{2}{\sqrt{1 - 4x^2}}$ $v = \sqrt{1 - 4x^2}$ $\frac{dv}{dx} = \frac{-8x}{2\sqrt{1 - 4x^2}}$ $v = t^2 + 2t^{-2} + 3$ (A) $v = t^2 + \frac{2}{t^2} + 3$ The equation of the velocity Solution $(C)t^2 + 3t^{-2} + 4 (D)2t^2 + 2t^{-2} + 3$ Solution $y = \frac{1}{\sqrt{1 - 4x^2}}$, simplify $\frac{dy}{dx} - 4xy$ to get (A)4x (B)2 (C)0 Solution For $\frac{dy}{dx} = \left[(\sqrt{1 - 4x^2})(\frac{2}{\sqrt{1 - 4x^2}}) + \frac{4x\sin^{-1}2x}{\sqrt{1 - 4x^2}} \right]$ $2\sqrt{1-4x^2+4x\sin^{-1}2x}$ $4x\sin^{-1}2x$ $2 + \frac{4x\sin^{-1}2x}{\sqrt{1-4x^2}}$ $2\sqrt{1-4x^2+4x\sin^{-1}2x-4x\sin^{-1}2x-4x\sin^{-1}2x-4x\sin^{-1}2}$ $\frac{dy}{dx} - 4xy$ $\left(2 + \frac{4x\sin^{-1}2x}{\sqrt{1 - 4x^2}}\right)$ $(1-4x^2)\sqrt{1-4x^2}$ (B) $\sqrt{1-4x^2}$ No Answer $4x\sin^{-1}2x$ $\div 1 - 4x^2$ $(1-4x^2)\sqrt{1-4x^2}$ $\sqrt{1-4x^2}$ $\left[\div(\sqrt{1-4x^2})^2\right]$ $\sqrt{1-4x^2}$

 $= \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= \frac{1}{1 - U^2} \times \frac{du}{(1 + x)^2}$ $= \frac{dy}{(1 + x)^2} \times \frac{(1 + x)^2}{(1 + x)^2}$ $= \frac{dy}{(1 + x)^2 - (1 - x)^2} \times \frac{-2}{(1 + x)^2}$ $= \frac{-2}{(1 + x)^2 - (1 - x)^2} = \frac{-2}{4x} = \frac{-1}{2x}$ $\frac{dy}{dx} = \frac{-1}{2x}$ from the condition $2x\frac{dy}{dx} = 2x \times \frac{-1}{2x} = -1$ (B) -1-x-(1-x)(D) 3x - 4y = 7 (E) None $(1+x)^2$ -1-x-1+x $(1+x)^2$

0.3. MATHS 201 2016/2017 EXAMINATION

CONTENTS

$$\frac{dy}{dx} = \frac{-2\sin 2(-1)}{2(\frac{\pi}{4})}$$

$$= \frac{2\sin 2}{90} = \frac{0.0698}{90} = 0.00077 = 0 \quad (C)$$

$$\frac{dy}{dx} = \frac{-2\sin 2(-1)}{2(\frac{\pi}{4})}$$

11. If
$$y = \tanh^{-1}\left(\frac{1-x}{1+x}\right)$$
, then $2x\frac{dy}{dx}$ is (A) 1 (B) -1 (C) $\frac{-1}{2}$ (D) $\frac{1}{x}$ (E) None Solution $\frac{1}{x} = \frac{1}{1-x}$

Let
$$U = \frac{1}{1+x}$$

$$y = \tanh^{-1}(U) \text{ using quotient rule}$$

$$\frac{dy}{du} = \frac{V\frac{du}{dx} - U\frac{dy}{dx}}{V^2}$$

$$\frac{dy}{(1+x)(-1) - (1-x)(1)}$$

$$\frac{dy}{du} = \frac{V\frac{du}{dx} - U\frac{dv}{dx}}{V^2} = \frac{V^2}{(1+x)(-1) - (1-x)(1)}$$

$$\begin{array}{c} (1+x)^2 \\ = \frac{-1-x-(1-x)}{(1+x)^2} \\ y = \frac{(1+x)^2}{-1-x-1+x} \\ \end{array}$$

Find the equation of normal to the parabola if $x^2 - y^2 = 7$ at the point (4, -3) (A) 3x - 4y = 24 (B) x - 4y = 24 (C) 3x + 4y = 24

Solution

differentiating implicitly

 $2y\frac{dy}{dx} - (-2\sin 2x) = 0$ $2y\frac{dy}{dx} + 2\sin 2x = 0$ $2y\frac{dy}{dx} + 2\sin 2x = 0$

28111 21

differentiating implicitly

Solution

$$2x - 2y\frac{dy}{dx} = 0$$

$$-2y\frac{dy}{dx} = -2x \implies \frac{dy}{dx} = \frac{-2x}{-2y} = \frac{x}{y} \mid (4.-3)$$

Scanned by CamScanner

can choose option 'C' (\frac{1}{6}ln\frac{3+x}{3-x})

21 Let $f(x) = \left(\frac{1+x}{1-x}\right)$, then the 3^{rd} derivative of f(x) is $f(x) = \frac{1+x}{1-x} \text{ then } \frac{dy}{dx} = f'(x) = \frac{(1-x)(1) - (1+x)(-1)}{(1-x)^2}$ $f(x) = \left(\frac{1+x}{1-x}\right)$, then the 3^{rd} derivative of f(x) is $\frac{12}{(1-x)^2}$ (B) $\frac{-12}{(1-x)^4}$ (C) $\frac{12}{(x-1)^4}$ (D) $\frac{12}{(1-x)^4}$ (E) $\frac{-12}{(1-x)^4}$ Solution

 $= \frac{1 - x - (-1 - x0)}{(1 - x)^2} = \frac{1 - x + 1 + x}{(1 - x)^2} = \frac{(1 - x)^2}{(1 - x)^2}$

 $\frac{d^2y}{dx^2} = f''(x) = 2(1-x)^{-2} = -4(1-x)^{-3} \times -1 = 4(1-x)^3$ $\frac{d^3y}{dx^3} = f'''(x) = -12(1-x)^{-4} \times -1 = \frac{12}{(1-x)^4}$ (D)

22 If $x^2 - xy + y^2 = 3$, find $\frac{dy}{dx}$ at point (1,1). (A) 0 (B) -1 (C) Solution \propto (D) I (E) none

 $\frac{dy}{dx} = \frac{-2x + y}{2y - x} |_{1,1} = \frac{-2(1) + 1}{2(1) - 1}$ $(2y - x)\frac{dy}{dx} = -2x + y$ $2x - y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$

Differentiating implicitly

23 Evaluate $\int_0^{\frac{\pi}{2}} (2\sin^3 x + 3\sin^3 x) dx$ (A) $\frac{5\pi}{4}$ (B) $\frac{3\pi}{2}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$

 $=\frac{-2+1}{2-1}=\frac{-1}{1}=-1 \quad (B)$

Picking the first one Solution $\int_0^{\frac{\pi}{2}} (2\sin^3 x + 3\sin^3 x) dx = \int_0^{\frac{\pi}{2}} 2\sin^3 x dx + \int_0^{\frac{\pi}{2}} 3\sin^3 x dx$

 $= 2 \int (\sin x - \sin x \cos^2 x) dx$ Since $\sin^2 x = 1 - \cos^2 x$ $\int_0^{\frac{\pi}{2}} 2\sin^3 x dx = 2 \int_0^{\frac{\pi}{2}} \sin x (\sin^2 x)$ $= 2 \int \sin x (1 - \cos^2 x) dx$ 2 2 sin 3 xdx

> $3\cos(0) - \frac{3\cos(0)^3}{3}$ $\int_0^{\frac{\pi}{2}} (2\sin^3 x + 3\sin^3 x) dx = -2\cos x - \frac{2\cos^3 x}{3} - 3\cos x - \frac{3\cos^3 x}{3}$ $\int \sin^3 x dx = -3\cos x - \frac{3\cos^3 x}{3} + c$ combine the answers together

Substituting the upper and lower limits $[-2\cos(\frac{\pi}{2}) - \frac{2\cos(\frac{\pi}{2})^3}{3} - 3\cos(\frac{\pi}{2}) - \frac{3\cos(\frac{\pi}{2})^3}{3}] - [-2\cos(0) - \frac{2\cos(0)^3}{3} - \cos(\frac{\pi}{2}) - \frac{3\cos(\frac{\pi}{2})^3}{3}]$

(0-2-0-1)-(-2-2-3-1)=-3+8=5 No Aliswei

24. If $x = 2 \sin t$ and $y = 3 \cos 2t$, then $\frac{d^2y}{dx^2}$ is (A) -3 (B) 3 (C) -2 $x = 2\sin t \quad \frac{dx}{dt} = 2\cos t$ Solution (D) 6 (E) -6

 $y = 3\cos 2t \quad \frac{dy}{dt} = -6\sin 2t$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-6\sin 2t}{2\cos t}$ $= \frac{-6(2\sin t \cos t)}{2\cos t} = -6\sin t$ $\frac{d^2y}{dx^2} = \frac{2\cos t}{dt}(-6\sin t)\frac{dt}{dx} = \frac{-6\cos t}{2\cos t} = -3$

25. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx$ (A) 1 (B) 2 (C) ∞ (D) 0 (E) none Solution

By Integrating $[\sin x]^{\frac{\pi}{2}} + c = [\sin \frac{\pi}{2}] - [\sin(\frac{-\pi}{2})]$ 1 - (-1) = 1 + 1 = 2 (B)

26. The volume of revolution formed by rotating the part of the Solution unit is (A) 540π (B) 120π (C) 1080π (D) 72π (E) none parabola from x = 1 to x = 4 about the x-axis in a cube $= \int_{x_1}^{x_2} \pi y^2 dx$ Revolution about the x-axis $y^2 = 16x$

0.3. MATHS 201 2016/2017 EXAMINATION

Repeat the same procedure for $\int \sin^3 x dx$

 $=-2\cos x - \frac{2\cos^3 x}{3} + c$

Scanned by CamScanner

0.3. MATHS 201 2016/2017 EXAMINATION 30. Find $\int \frac{4dx}{(1+x)^2(1-x)}$ (A) $\ln(\frac{1+x}{1-x}) + c$ (B) $\ln(\frac{1+x}{1-x}) + \frac{2}{x+1} + e$ Integrating by partial fraction $ln(\frac{1+x}{1-x}) - \frac{1}{x+1} + c$ (D) $ln(\frac{1+x}{1-x}) + \frac{1}{x+1} + c$ (E) none $\frac{d^o y}{dx^0} = \cos x \quad (B)$ When x = -1; A(0) + B(1+1) + C(0) = 4 2B = 4 then B = 2Solution $\frac{1}{(1+x)^2(1-x)} = \frac{1}{1+x^2} + \frac{1}{(1+x)^2} + \frac{1}{1-x}$ When x = 1; $A(0) + B(0) + \hat{C}(1+1)^2$ $4 = A(1+x)(1-x) + B(1-x) + C(1+x)^{2}$ $(1+x)^2(1-x) = -$ A + B + C = 4 $A(1+0)(1-0) + B(1-0) + c(1+0)^2 = 4$ When x = 0 $2\int \frac{1}{u^2} = 2\int u^{-2} = -2(\frac{1}{u}) = \frac{-2}{1+x}$ Generally, Now A = 4 - 3 = 1Solving $\int \frac{4}{(1+x)^2(1-x)} dx = \int \frac{1}{1+x} dx + \int \frac{2}{(1+x)^2} dx + \int \frac{1}{1-x} dx$ $\frac{1}{(1+x)^2}dx \quad \text{Let } u = 1+x \quad du = dx$ $(1+x)^2(1-x)dx = \ln(1+x) - \ln(1-x) - \frac{1}{2}$ $\left(\frac{1+x}{1-x}\right) - \frac{2}{x+1} + C \quad (E)$ $A(1+x)(1-x) + B(1-x) + C(1+x)^2$ $(1+x)^2$

CONTENTS

A matrix A is such that $A^2 = A$ is called (a) Idempotent (b) Symmetric (c) Triangular (d) Scalar (e) Identity

Solution (Idempotent)

(e) 4 Solution then |A| is ? (a) 1 (b) 2 (c) -1 (d) 0

The system AX = 0 will always have (a) Infinite solution (b) No solution (c) At least one solution (d) only one solution (e)

(D) only one solution

A matrix B of order n with the property that, another matrix A of order n, AB = BA = A is called? (a) Singular matrix (b) Inverse of A (c) Null matrix (d) Square matrix (e) Identity of A

(Identity of A)

If A is symmetric, then (a) $A = -A^2$ (b) $A = A^T$ (c) $A = -A^T$ (d) $A = A^2$ (e) A = -A

 $A = A^T$

The inverse of **ABC** is? (a) $A^{-1}B^{-1}C^{-1}$ (b) $C^{-1}B^{-1}A^{-1}$ (c) $A^{-1}C^{-1}B^{-1}$ (d) $A^{-1}B^{-1}$ (e) $A^{-1}C^{-1}A^{-1}$ Solution

 $E = B^{-1}C^{-1}A^{-1}$

, then use it to answer the follow-

ing questions

 $|B^{-1}|$ is? (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 B-1 The minor of B is

0.4. MATHS 207 2015/2016 EXAMINATION

CONTENTS

0 0011 $|B| = \frac{1}{5}$ 001-0

15. If $A = (a_{ij}) = B - B^{-1}$, then a_{22} is? (a) $\frac{5}{24}$ (b) $\frac{-24}{5}$ (c) $\frac{24}{5}$ (d)

Solution 5 (e) None

If B is obtained from A by performing the operation $R_j \longleftrightarrow R_i$ on A, then (a) |B| = |A| (b) |B| = k|A| (c) $|B| = \frac{1}{k}|A|$ (d) |A| = |B| = 0 (e) |B| = -|A|

Solution

 $E \quad (|B| = -|A|)$

Suppose A is of order n and the row reduced echeleon form of A(d) r - n (e) None has r non zero rows, then the rank of A is? (a) n (b) r (c) n-r

Solution

the following three questions k₂ use matrix A to answer

18. If $\theta = 4$ and $k_3 \neq 0$, then the system represented by A (a) Infinite solution (b) many solution (c) Single solution (d) solution (e) Two solutions

Solution

(No solution)

19 For what value of θ and k_3 would the system has infinite so (a) $\theta = 4$ $k_3 = 0$ (b) $\theta = -4$, $k_3 = 0$ (c) $\theta = 4$

Elementary matrix (B) matrix (d) Identity matrix (e) Row Identity is called? (a) Row matrix (b) Elementary matrix (c) Singular A matrix obtained from I_n by performing a single row (column)

then use the information to answer the following two questions Assume **A,B,C** are respectively $m \times n, n \times k$ and $k \times l$ matrices

22 $\begin{array}{cc}
C = k \times l \\
A C & (D)
\end{array}$ $B = n \times k$ $A = m \times n$ Which of the following operation is not possible (a) AB (b) BC Solution -(c) A + B if m = n = k (d) AC (e) All are possible

23. Suppose m=k, then which of the following is true (b) AB, AC (c) BC, CB (d) BC, BA (e) AB, CB

y = yAB, BA (A)

Solution

0.4. MATHS 207 2015/2016 EXAMINATION

24. A matrix in which a_{ij} are equal whenever i=j and $a_{ij}=0$ whenever $i\neq j$ is called (a) Singular matrix (b) Identity matrix (c) Null matrix (d) Square matrix (e) scalar matrix Null matrix (C)

25. A matrix A is inverse of B if (a) $A - B = I_n$ (b) AB = A (c) Solution BA = AB = 0 (d) A - B = 0 (e) $AB = BA = I_n$ $AB = BA = I_n$ (E)

tions that follow. 34 + + + 32 42 11 to answer the three ques

26. Using cramer's rule, the value of **z** is $(a)_{\sqrt{13}}^{\frac{5}{13}}$ (b) $\frac{-5}{13}$ (c) $\frac{-13}{5}$ (d) $\frac{13}{5}$ (e) 13 Solution

 $Z = \frac{|Z|}{|A|} = \frac{|-13|}{|-5|}$ $Z = \frac{13}{5} \quad (D)$ |A| = -5|Z| = 1(-6+15) - 1(12-5) + 3(-6+1)|Z| = 9 - 7 - 15 = 13|A| = 1(-4+9) - 1(8-3) + 1(-6+1) = 5 - 5 - 5

$$f_{3} = A A^{-1} = \begin{bmatrix} 0 - 4 + \frac{10}{3} & 0 + 3 - 3 & 0 + c + 1 \\ \frac{1}{2} - 8 + 5 & -\frac{1}{2} + 6 - \frac{9}{2} & \frac{1}{2} + 2c + \frac{3}{2} \\ \frac{1}{2} - 4a + \frac{5}{3} & -\frac{3}{2} + 3a - \frac{3}{2} & \frac{3}{2} + ac + \frac{1}{2} \end{bmatrix}$$

$$= \begin{pmatrix} \frac{-2}{3} & 0 & c + 1 \\ \frac{-3}{2} & 1 & \frac{1+4c}{2} \\ \frac{19-24a}{6} & -\frac{6+6a}{2} & \frac{1+\frac{3}{2}ac}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{c = -1}{2} = 1$$

$$\frac{1 + 2ac}{4 + 2ac} = 1$$

$$\frac{4 + 2ac}{4 - 2ac} = 2$$

$$\frac{4 - 2a}{2a} = 2$$

$$\frac{2a}{a} = 2$$

1. Consider the following system of equation

c = -1 and a = 1

$$\begin{array}{rcl}
 x_1 & + & x_3 & = & 5 \\
 x_1 & - & x_2 & - & x_3 & = 6 \\
 x_2 & + & x_3 & = & 7
 \end{array}$$

tions (d) None of the above with a unique solution (c) Consistent with infinitely many solu-The above system of equation is (a) Inconsistent (b) Consistent

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}$$
$$|A| = 0 - 0 + 1 = 1$$

$$\begin{pmatrix} 5 & 0 & 1 \\ 6 & -1 & -1 \\ 7 & 1 & 1 \end{pmatrix}$$
$$|x| = 5(-1+1) - 0(6+7) + 1(6+7) = 13$$

equations must be at least equal to the number of variables. It is consistent with a unique solution, because the number of

0.5. MATHS 207 2016/2017 EXAMINATION

5.
$$\begin{vmatrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0, \text{ then } x =$$
(a) $\frac{3}{2}$, $\frac{3}{11}$ (b) $\frac{3}{2}$, $\frac{11}{3}$ (c) $\frac{2}{3}$, $\frac{11}{3}$ (d) $\frac{2}{3}$, $\frac{3}{11}$

$$\begin{vmatrix} 3x - 8 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0, \text{ then } x = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3x - 8 \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 & 3 & 3x - 8 \\ 3 & 3x - 8 \end{vmatrix} = 0$$

Solution
Finding the determinant
$$\begin{array}{ll}
(3x - 8)[(3x - 8)^2 - 9] - 3[(3x - 8)(3) - 9] + 3[9 - 3(3x - 8)] \\
(3x - 8)[(3x - 8)^2 - 9] - 3[(3x - 8)(3) - 24 - 9) + 3(9 - 9x + 24) \\
(3x - 8)(9x^2 - 48x + 54 - 9) - 3(9x - 24 - 9) + 3(9 - 9x + 24) \\
(3x - 8)(9x^2 - 48x + 55) - 3(9x - 33) + 3(33 - 9x) \\
(3x - 8)(9x^2 - 48x + 55) - 3(9x - 33) + 3(33 - 9x) \\
= 27x^3 - 144x^2 + 165x - 27x^2 + 384x - 440 - 27x + 99 + 99 - 27x \\
= 27x^3 - 216x^2 + 495x - 242
\end{array}$$

Let
$$A = \begin{pmatrix} 4 & 4k & k \\ 0 & k & 4k \\ 0 & 0 & 4 \end{pmatrix}$$
 If $det(A)^2 = 16$ then $|K|$ is

(a) 1 (b) $\frac{1}{4}$ (c) 4 (d) 4^2

$$A \times A = \begin{pmatrix} 16+0+0 & 16k+4k^2+0 & 4k+16k^2+4k \\ 0+0+0 & 0+k^2+0 & 0+4k^2+16k \\ 0+0+0 & 0+0+0 & 0+0+16 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} 16 & 4k^2+16k & 16k^2+8 \\ 0 & k^2 & 4k^2+16k \\ 0 & 0 & 16 \end{pmatrix}$$

$$= 16(16k^2) - 4k^2 - 16k(0)$$

$$= k^2 = \frac{1}{16} = \frac{1}{4} \quad (B)$$

7. If the equation
$$x-2y+3z=0$$
, $-2x+3y+2z=0$ and $-8x+\lambda y=0$ have non-trivial solution then $\lambda=$ (a) 18 (b) 13 (c) -10 (d) 4 Solution

$$\begin{pmatrix} 1 & -2 & 3 \\ -2 & 3 & 2 \\ -8 & \lambda & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$