Banco de Dados

Modelo Relacional

Prof. Eldane Vieira

Introdução

- Modelo relacional (MR) é um modelo lógico fundamentado em registros.
- O MR é uma fase posterior ao MER.
 - O que já foi modelado não é perdido, mas complementado.
- É feito um mapeamento do MER para MR.
 - O projeto se torna ainda mais confiável.

Introdução

- O MR foi construído com base na teoria do conjuntos.
 - Seu nome é devido à relação matemática da teoria dos conjuntos e não dos relacionamentos.
- Pode ser implementado utilizando a linguagem SQL.
 - Modelo com estruturas de tabelas.

Tabelas

- O MR é um modelo que utiliza duas estruturas sintáticas:
 - Valores: representação dos dados do mundo real.
 - Tabela (relação): onde os dados são mantidos e representam coleções de objetos, entidades e relacionamentos.

Representação da tabela utilizada no MR

endereco

Conjuntos e valores no MR

- Os valores no MR devem ser atômicos.
- Um domínio é um conjunto de valores permitidos para um atributo.
 - Ex: nomes de alunos, códigos de disciplinas.
- Os domínios são designados como tipos de dados que especificam a formação de valores.
 - Exemplos:
 - Tabela Alunos, atributo nome tem como domínio o conjunto de nomes possíveis de pessoas.
 - Tabela Alunos, atributo endereço tem como domínio o conjunto de nomes de ruas e avenidas de uma cidade.

Chaves

• O atributo-chave do MER é denominado chave primária no MR.

- No MR podemos ter uma representação das tabelas com valores.
 - Através dos valores são demostrados os relacionamentos entre as tabelas.

Representação do MR com dados

Alunos

<u>matrícula</u>	nome	endereço
1085123	Antônio	Av. das Flores, 25
1078987	Maria	R. 13 de maio, 345
1089771	Rebeca	R. Dunlop, 11
1067543	Paulo	Av. Mokarzel, 165

Cursos

<u>código</u>	nome	matrícula
AA-67	Redes	1085123
AA-89	so	1089771
CC-76	PHP	1067543

Mapeamento MER-MR

- O mapeamento é feito em etapas para não perder informações do projeto.
 - 1º passo: transformar as entidades em tabelas e os atributos em campos (colunas) da tabelas.
 - 2º passo: mapear o relacionamento obedecendo a cardinalidade.

Mapeamento - cardinalidade 1:1

Nos relacionamentos com cardinalidade 1:1 veremos duas formas possíveis de realizar o mapeamento.

Mapeamento - cardinalidade 1:1

- 1º passo: transformar entidades em tabelas e atributos em campos.
 - Professores (CPF, nome, endereço)
 - Disciplina (código, nome)
- 2º passo: mapear o relacionamento obedecendo a cardinalidade.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome, CPF_Professor)

O campo chave primária CPF da tabela Professores é representado na tabela Disciplina como chave estrangeira.

Como o CPF é chave primária em sua tabela de origem, seu papel também continua como chave primária na tabela Professores.

Mapeamento - cardinalidade 1:1

- No exemplo apresentado anteriormente ainda há outra opção de criação das tabelas.
 - Tornar a chave primária da tabela Disciplina em chave estrangeira na tabela Professores.
 - Professores (<u>CPF</u>, nome, endereço, código_disciplina)
 - Disciplina (código, nome)
 - Isto foi possível pela relação ter cardinalidade 1:1.
- É importante lembrar que, apesar de termos duas opções para realizar o mapeamento, devemos escolher uma.
 - Realizar as duas opções causa redundância.

Mapeamento - cardinalidade 1:N

Mapeamento - cardinalidade 1:N

- 1º passo: transformar entidades em tabelas e atributos em campos.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome)
- 2º passo: mapear o relacionamento obedecendo a cardinalidade.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome, CPF_Professor)

Neste caso, a chave primária do lado com cardinalidade 1 deve ser chave estrangeira no lado N.

Se o modelo apresentar atributo do relacionamento, esse atributo deve ser incluído na tabela onde inseriu a chave estrangeira, ou seja, no lado N.

Mapeamento - cardinalidade N:1

Mapeamento - cardinalidade N:1

- 1º passo: transformar entidades em tabelas e atributos em campos.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome)
- 2º passo: mapear o relacionamento obedecendo a cardinalidade.
 - Professores (<u>CPF</u>, nome, endereço, código_disciplina)
 - Disciplina (código, nome)

A chave primária do lado 1 deve ser chave estrangeira do lado N.

Mapeamento - cardinalidade N:N

Mapeamento - cardinalidade N:N

- Neste exemplo será criada a tabela Ministra para representar o relacionamento entre professores e disciplinas.
 - <u>Sugestão</u>: O nome da nova tabela pode ser o nome do relacionamento (Ministra) ou o nome das entidades envolvidas no relacionamento, Professores-Disciplinas.
- A tabela Ministra terá as chaves primárias de Professores e Disciplinas.
- Se o relacionamento tivesse um atributo, ele seria campo nessa nova tabela Ministra.
- Essa nova tabela terá uma **chave primária composta**, que é a chave primária formada por duas outras chaves as chaves primárias de Professores e Disciplinas.

Mapeamento - cardinalidade N:N

- 1º passo: transformar entidades em tabelas e atributos em campos.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome)
- 2º passo: criar uma tabela para representar o relacionamento.
 - Professores (<u>CPF</u>, nome, endereço)
 - Disciplina (código, nome)
 - Ministra (código_disciplina, CPF_professor)

Mapeamento relacionamento recursivo ou unário (1:1)

Pessoa (<u>CPF</u>, nome, CPF_cônjuge)

Mapeamento relacionamento recursivo ou unário (1:N ou N:1)

Empregado (código, nome, código_supervisor)

Mapeamento relacionamento recursivo ou unário (N:N)

disciplina (<u>código</u>, nome) pré_requisito (<u>código_disc</u>, <u>código_disc_pré_requisito</u>)

Transformando relacionamento ternário para a forma binária

 Para facilitar o mapeamento de relacionamentos ternários, pode ser feita uma conversão para a forma binária.

Transformando relacionamento ternário para a forma binária

Mapeamento de Generalização/Especialização

CPF_empregado é
chave primária em
Secretário, Técnico e
Engenheiro, e além
disso, ela é uma
chave estrangeira que
referencia a chave
CPF na tabela
Empregado.

Empregado (<u>CPF</u>, nome, endereço) Secretário (<u>CPF_empregado</u>, idioma) Técnico (<u>CPF_empregado</u>, grau_técnico) Engenheiro (<u>CPF_empregado</u>, tipo)

Mapeamento atributo composto e multivalorado

Aluno (matrícula, nome, rua, cidade, estado, CEP)

Aluno_Telefone (matrícula_Aluno, telefone)

Cria-se uma segunda tabela referente ao atributo multivalorado. Aluno_Telefone tem uma chave composta.

Mapeamento de agregação

Pessoa (<u>CPF</u>, nome) universidade (<u>código</u>, nome) Professor (<u>CPF</u>, nome) Ingressa (<u>CPF_pessoa</u>, <u>código_univ</u>, data_ingresso) Orienta (<u>CPF_pessoa</u>, <u>código_univ</u>, <u>CPF_professor</u>)

Considerações sobre as entidades

Entidade forte

- É uma entidade que possui alto grau de independência com relação a existência e identificação.
- Cada atributo da entidade forte torna-se um campo da tabela.
- O atributo-chave da entidade forte torna-se chave primária da tabela correspondente.

Entidade fraca

- É uma entidade cuja existência depende da existência de outra entidade.
- Na tabela da entidade fraca haverá os atributos da entidade e terá uma chave primária composta formada pela chave da entidade forte da qual ela depende, mais a sua chave.

Professor (<u>CPF</u>, Nome) Material (<u>CPF_Professor</u>, <u>Código</u>, Título)

Exemplo de mapeamento

Livro(<u>código</u>, Título, ano, edição, gênero, CPF_Pessoa) Pessoa(<u>CPF</u>, Nome, End.) Ler(<u>Código_Livro</u>, <u>CPF_Pessoa</u>) Pessoa telefone(<u>CPF_Pessoa</u>, telefone)

Mapeamento MER-MR

 O MER pode ter variações na representação da cardinalidade como mostra a figura a seguir. Contudo, as representações são equivalentes, não sendo possível misturá-las.

Grau do relacionamento	Notação Original de Bachman	Notação Setas
1:1		<
1:N		\
N:N	\longleftrightarrow	₩

 A notação adotada na disciplina é a numérica (Grau do relacionamento), onde colocamos o valor da cardinalidade na ligação.

 Faça o mapeamento para o modelo relacional do MER apresentado a seguir.

 Dados os esquemas a seguir, monte o MER e indique a cardinalidade.

Pessoa (CPF, nome, endereço)

Equino (registro, raça, nome, idade)

Proprietário (CPF_Pessoa, registro_equino)

 Faça o mapeamento para o modelo relacional do MER apresentado a seguir.

 Faça o mapeamento para o modelo relacional do MER apresentado a seguir.

