MTH101: Lecture 10

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

October 12, 2017

Power series representation of Analytic functions

Theorem

Suppose that the function f(z) is given by the sum of a power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

with radius of convergence R > 0. Then

- f(z) is analytic in the set $\{z \in \mathbb{C} : |z z_0| < R\}$.
- Its derivative, f'(z), can be represented by a power series

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1},$$

which converges in the set $\{z \in \mathbb{C} : |z - z_0| < R\}$.

Theorem (Cont.)

• The anti-derivative F (that is, F'(z) = f(z)) can be represented by a power series

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1},$$

which converges in the set $\{z \in \mathbb{C} : |z - z_0| < R\}$.

Operations on Power series

Termwise addition or substraction: If we have two power series with radii of convergence R_1 and R_2 , $R_1 < R_2$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $|z| < R_1$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, $|z| < R_2$,

then

$$f(z) \pm g(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n$$
, $|z| < R_1$ (the smaller one)

Termwise Multiplication: If we have two power series with radii of convergence R_1 and R_2 , $R_1 < R_2$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $|z| < R_1$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, $|z| < R_2$,

Then the product f(z)g(z) is convergent in the smaller disk $|z| < R_1$, but (!!)

$$f(z)g(z) \neq \sum_{n=0}^{\infty} (a_n b_n) z^n.$$

Taylor Series

Theorem

Let f(z) be an analytic function, given by the power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

which is convergent in the set $\{z \in \mathbb{C} : |z - z_0| < R\}$, R > 0. Then

$$a_n = \frac{1}{n!} f^{(n)}(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz,$$

where the function f(z) is analytic in a Simply Connected Domain containing the closed, simple, counterclockwise oriented path γ which encloses the point z_0 .

The power series is called **Taylor Series** of f(z), while if $z_0 = 0$ it is called **McLaurin Series** of f(z).

Taylors Theorem

Theorem

Let f(z) be an **Analytic function** in the domain D and let $z_0 \in D$. Then, the **Taylor series** of f(z) converges to f(z), that is

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n.$$

in the largest open disc with center in z_0

$$\{z \in \mathbb{C} : |z - z_0| < R\},\$$

in which f(z) is analytic.

Moreover, if we set $M(r) = \max_{|z-z_0|=r} |f(z)|$, then

$$|f^{(n)}(z_0)| \leq \frac{n!}{r^n} M(r), \quad \text{with } 0 < r < R.$$

Remark

If R is the largest number such that the function f(z) is analytic in

$$\{z \in \mathbb{C} : |z - z_0| < R\},\$$

then there exists at least one point, z^* , on

$$\{z\in\mathbb{C}:|z-z_0|=R\},$$

at which f(z) is not Analytic.

Remark

Fix a point z_0 and consider the **Taylor Series with center** z_0 of a function f(z).

Then its Radius of Convergence is given by

$$R = |z_0 - \tilde{z}|,$$

where \tilde{z} is the nearest point to z_0 , at which f(z) is **not Analytic.** We call \tilde{z} a Singular Point.

The Geometric Series

$$f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
, if $|z| < 1$.

Then the **Radius of Convergence** is R = 1, $z_0 = 0$ and $a_n = 1$ for all n.

There is a Singular point $z^*=1$, since f(z) is Analytic in $\mathbb{C}\setminus\{1\}$, observe that $R=|z_0-z^*|=1$.

The Exponential Series

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$
, for all $z \in \mathbb{C}$.

The function f(z) is Analytic in the whole Complex Plane (that is, f(z) is **Entire**) then

$$R=+\infty$$
.

Here we have $z_0 = 0$ and $a_n = \frac{1}{n!}$ for all n.

The Logarithm (Principal Value)

The function $\operatorname{Ln}\left(1+z\right)$ is Analytic in the set

$$\mathbb{C}\setminus\{\mathsf{Im}(z+1)=0,\mathsf{Re}(z+1)<0\}.$$

We have infinitely many **Singular points** on the half-line $\{z = x + iy \in \mathbb{C} : y = 0, x \le -1\}.$

Then if we chose $z_0 = 0$ as the center of the **Taylor Series** we have that $z^* = -1$ is the nearest point to $z_0 = 0$ at which the function is not Analytic.

Then the Radius of Convergence is

$$R = |z_0 - z^*| = |0 - 1| = 1,$$

and the **Taylor Series** of f(z) converges to f(z) for $|z - z_0| < R$, that is for |z| < 1:

Ln
$$(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$$
, for $|z| < 1$.

Trigonometric series

The functions $\cos z$ and $\sin z$ are **Entire functions** then their **Taylor Series** converges for all $z \in \mathbb{C}$, that is their **Radius of Convergence** is $R = +\infty$ for any fixed $z_0 \in \mathbb{C}$.

Then for $z_0 = 0$ we have

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, \quad \text{for all } z \in \mathbb{C},$$

and

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}, \text{ for all } z \in \mathbb{C}.$$

Hyperbolic Series

The functions $\cosh z$ and $\sinh z$ are **Entire functions** then their **Taylor Series** converges for all $z \in \mathbb{C}$, that is their **Radius of Convergence** is $R = +\infty$ for any fixed $z_0 \in \mathbb{C}$.

Then for $z_0 = 0$ we have

$$\cosh z = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n}, \quad \text{ for all } z \in \mathbb{C},$$

and

$$\sinh z = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1}, \quad \text{for all } z \in \mathbb{C}.$$

Remark

In general it is very difficult to write the Taylor Series of a function f(z) using the definition, that is computing the coefficients

$$a_n=\frac{f^{(n)}(z_0)}{n!}.$$

The Idea is to manipulate the well known series of a function f(z) to obtain the Taylor Series of a different function.

Example (Substitution)

Write the Taylor Series with center $z_0 = 0$ of the function

$$f(z)=\frac{1}{2+z^2},$$

and find its Radius of Convergence.

Solution

The function $f(z) = \frac{1}{2+z^2}$ is similar to the sum of the **Geometric**

Series

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

which converges for |z| < 1.

The Idea is to manipulate the function f(z):

$$\frac{1}{2+z^2} = \frac{1}{2} \left(\frac{1}{1+\frac{z^2}{2}} \right) = \frac{1}{2} \left(\frac{1}{1-\left(-\frac{z^2}{2}\right)} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{z^2}{2} \right)^n$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} z^{2n}$$

which converges for $\left|-\frac{z^2}{2}\right| < 1$.

Then

$$f(z) = \frac{1}{2+z^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^{2n}, \text{ for } |z| < \sqrt{2},$$

and its **Radius of Convergence** is $R = \sqrt{2}$.

We observe that f(z) is not Analytic at the Singular Points $z_1 = \sqrt{2}i$ and at $z_2 = -\sqrt{2}i$, then both z_1 and z_2 are the nearest point to z_0 at which the function f(z) is **not Analytic**.

Then the **Radius of Convergence** of the Taylor Series with center z_0 is

$$R = |z_0 - z_1| = |0 - \sqrt{2}i| = \sqrt{2},$$

and we get the same result obtained by the previous computation.

Example (Shift)

Write the Taylor Series with center $z_0 = 3$ of the Function

$$f(z) = e^z$$

and find its Radius of Convergence.

The function f(z) is **Entire** then for any z_0 the **Radius of Convergence** of the Taylor Series with center z_0 is $R = +\infty$, that is the Taylor Series converges for all $z \in \mathbb{C}$. We already know that if z = 0 then

$$e^{\mathbf{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{z}^n$$
, for all $z \in \mathbb{C}$.

In this case $z_0 = 3$, so we need to manipulate the function f(z):

$$e^{z} = e^{z-3+3} = e^{3}e^{z-3} = e^{3}\sum_{n=0}^{\infty} \frac{1}{n!}(z-3)^{n}$$
$$= \sum_{n=0}^{\infty} \frac{e^{3}}{n!}(z-3)^{n}, \quad \text{for all } z \in \mathbb{C}.$$

Observe that the Taylor Series must be in powers of $(z - z_0)$.

Example (Integration)

Find the Maclaurin series (Taylor series centered at 0) of $f(z) = \arctan z$

Solution: We have $f'(z) = \frac{1}{1+z^2}$, thus by the geometric series

$$f'(z) = \frac{1}{1 - (-z^2)} = \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n}$$

where $|-z^2| < 1 \implies |z| < 1$.

By termwise integration,

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1}$$
, for all $|z| < 1$.

Example (Differentiation)

Find the Maclaurin series of $f(z) = \frac{1}{(z+1)^2}$.

Solution: We note that

$$f(z) = \left[-\frac{1}{1+z}\right]' = \left[-\sum_{n=0}^{\infty} (-z)^n\right]'$$
 for all $|z| < 1$.

Then by termwise differentiation,

$$f(z) = \sum_{n=1}^{\infty} (-1)^{n+1} n \cdot z^{n-1}$$
 for all $|z| < 1$.

Bibliography

1 *Kreyszig, E.* **Advanced Engineering Mathematics**. Wiley, 9th Edition.