

Máster Smart Energy

INTRODUCCIÓN A MACHINE LEARNING

Postgrado de DIGITAL ENERGY Curso 2022/2023

Sesión 2 – Introducción a Python

Información Personal

- Nombre: Marc Jené Vinuesa
 - https://www.linkedin.com/in/marcjene/
- Centro: CITCEA-UPC (ETSEIB)
- **Email**: marc.jene@upc.edu
- Oficina 23.08 Edificio G, ETSEIB Departamento de Ingeniería Eléctrica.
- Campos de investigación: Inteligencia artificial aplicada a los sistemas energéticos, detección de fraude en redes de distribución, mantenimiento predictivo, gestión de la demanda.

Calendario

Lunes	Martes	Miércoles	Jueves
10	11	S1 – Introducción a Machine Learning	13
S2 – Introducción a Python	18	19 S3 – Estadística descriptiva	20
24 S4 – Modelos de aprendizaje supervisado (I): Clasificación	25	26 S5 – Modelos de aprendizaje supervisado (II): Regresión	27
1	2	S6 – Aplicación de AI en el sector eléctrico: Odit-e	4
8 S7 – Modelos de aprendizaje no supervisado	9	S8 – Examen final	

Sara Barja: sara.barja@upc.edu

Marc Jené: marc.jene@upc.edu

MAYO

Digital Energy

Machine Learning

Objetivos de la sesión

- Introducción a la programación en Python con enfoque en data science
- 2. Familiarizarse con los conceptos básicos de Machine Learning
- 3. Enfoque generalista y práctico al Machine Learning
- 4. Proporcionar conocimientos para crear un modelo de Machine Learning, desde la obtención de los datos hasta escoger el modelo y los mecanismos de validación según el tipo de problema
- Suministrar herramientas y información adicional para profundizar en la temática sin necesidad de empezar de cero

Contenidos de la sesión

- Introducción
- Configuración python, entornos, IDEs...
 - Módulos, packages y librerías
- Variables y tipos de variables
 - Floats, Ints, Strings, Bools, Complejos
 - Listas, diccionarios y tuplas
 - Operadores
 - Slicing
- Listas y loops
 - Crear y modificar listas
 - Loops "for" (enumerate)
 - Loops while
 - List comprehensions
- Estructuras condicionales
 - if, elif

Digital Energy

Machine Learning

Contenidos de la sesión

- Funciones avanzadas
 - Lambda functions
 - Map, filter, reduce
- Diccionarios y tablas de frecuencia
 - Crear un diccionario
 - Actualizar un diccionario
 - Crear tablas de frecuencia
- Funciones
 - Funciones con más de un parámetro de entrada/salida
 - Argumentos por defecto
- Lenguaje orientado a objetos
 - Classes
 - Objetos
 - Métodos

Digital Energy

Machine Learning

Contenidos de la sesión

- Introducción a NumPy
 - Arrays operation
 - Boolean indexing
- Introducción a Pandas
 - Abrir archivos y crear DataFrames
 - Combinar y transformar datos en pandas
 - Lectura/escritura de archivos de texto (e.g. csv, excel)
- Creación de gráficos
 - Matplotlib
 - Line charts, Bar charts, histograms, Scatter Plots, Box Plots, etc.

Digital Energy Machine Learning

Ranking anual de IEEE Spectrum 2021

Introducción

¿Por qué Python?

- Intuitivo y simple
- Portable a cualquier plataforma
- Open source
- Gran cantidad de bibliotecas disponibles

"...Python's popularity is driven in no small part by the vast number of specialized libraries available for it, particularly in the domain of artificial intelligence..."

Rank	Language	Туре			ı	Score
1	Python~	Туре		Ç	0	100.0
2	Javav	#	0	Ç		95.4
3	C~		0	Ç	0	94.7
4	C++~		0	Ç	0	92.4
5	JavaScript _{>}	#				88.1
6	C#~	#		Ģ	0	82.4
7	R-v			Ç		81.7
8	Gov	#		Ç		77.7
9	HTML~	#				75.4
10	Swift _~			Ģ		70.4
11	Arduinov				0	68.4
12	Matlab _V			Ç		68.3
13	PHP~	#				68.0
14	Dart v	#				67.7
15	SQL√			Ţ		65.0

Digital Energy

Machine Learning

¿Por qué Python?

Python IDEs

 Herramienta para crear, testear y debugar un código en Python

Visual Studio Code

Spyder

JuPyter

Eclipse

Eric Python

Wing

WINGSTHON

PyScripter

Pyzo

Thonny

Environments

 La creación de enviroments en Anaconda es útil para organizar las librerías instaladas.

Instalar Python

En Windows:

www.python.org/downloads

Repositorio de GitHub del Módulo Big Data y Machine Learning

https://github.com/sbarja/smart-energy-22-23

Digital Energy

Machine Learning

Repositorio de GitHub del Módulo Big Data y Machine Learning

Digital Energy

Machine Learning

Repositorio de GitHub del Módulo Big Data y Machine Learning

Para saber más...

- http://python.org
- www.kaggle.com/learn/python
- www.learnpython.org

https://practice.geeksforgeeks.org/courses/Python-

Foundation

