

Praktikum upravljanja električnim strojevima

Zadaci za vježbu

ASINKRONI STROJEVI

2. ciklus

autor: V. Ćosić

1 Zadaci

Zadatak 1

Trofazni asinkroni dvopolni motor priključen na napon frekvencije 50 Hz rotira brzinom 2900 min $^{-1}$. Kolika je frekvencija rotorskih struja, te koliko iznose:

- (a) brzina vrtnje okretnog protjecanja rotora u odnosu na rotor,
- (b) brzina vrtnje okretnog protjecanja rotora u odnosu na stator,
- (c) brzina vrtnje rotorskog protjecanja u odnosu na statorsko?

Zadatak 2

Kolike su moguće sinkrone brzine vrtnje okretnih magnetskih polja:

- (a) za frekvenciju industrijske mreže 50 Hz (Europa),
- (b) za frekvenciju industrijske mreže 60 Hz (Amerika)?

Zadatak 3

Okretno polje trofaznog asinkronog motora na mreži $50~{\rm Hz}$ rotira brzinom $600~{\rm min^{-1}}$. Izračunajte broj polova motora.

Zadatak 4

Izmjereni napon rotora u mirovanju trofaznog asinkronog motora je 160 V. Motor je priključen na mrežu frekvencije 50 Hz. Koliki bi se napon pojavio u rotoru pri njegovoj nazivnoj brzini od 1485 min^{-1} i kolika bi bila njegova frekvencija?

Zadatak 5

Na trofaznom asinkronom motoru namoti se mogu spojiti u zvijezdu ili trokut. Na natpisnoj pločici motora stoji podatak 400/690 V.

- (a) Kako treba spojiti namote motora ako ga želimo priključiti na napon 690 V?
- (b) Da li snaga konkretnog motora ovisi o iznosu priključenog napona (400/690 V) uz pretpostavku ispravnog izbora spoja namota?
- (c) Skicirati spoj namota statora u zvijezdu i trokut te za oba spoja označite stezaljke motora prema IEC normi.

Zadatak 6

Trofazni asinkroni kavezni motor $400~\rm{V}$, spoj zvijezda, $5~\rm{kW}$, $13.6~\rm{A}$, prespojen je u trokut i priključen na trofaznu mrežu $230~\rm{V}$.

- (a) Koliki će struju uzimati iz mreže kod opterećenja 5 kW?
- (b) Objasniti hoće li pri tome doći do pregrijavanja namota?
- (c) Koliko bi iznosila nazivna snaga motora prespojenog u trokut?

Zadatak 7

8-polni asinkroni stroj na mreži frekvencije 50 Hz vrti se brzinom 825 min⁻¹.

- (a) U kakvom je režimu stroj (motor, generator ili kočnica)?
- (b) Koliko je klizanje?
- (c) Kolika je frekvencija rotorskih struja?

Zadatak 8

Trofazni asinkroni motor 45 kW, 400 V, 50 Hz, 87 A, 1465 min⁻¹, $\cos \varphi = 0.87$ kod nazivnog opterećenja ima gubitke trenja i ventilacije 1.3 kW. Odredite za nazivno opterećenje:

- (a) snagu okretnog magnetskog polja,
- (b) gubitke u namotu rotora,
- (c) moment na osovini,
- (d) snagu koju motor uzima iz mreže,
- (e) korisnost.

Zadatak 9

Trofaznom 8-polnom asinkronom motoru priključenom na napon 400 V, 50 Hz, frekvencija rotorskih struja je 60 Hz, a snaga okretnog magnetskog polja je 2.6 kW.

- (a) Koje je to pogonsko stanje stroja?
- (b) Koliko je klizanje?
- (c) Koliki su gubici u rotorskom krugu?
- (d) Odakle se sve namiruju gubici izračunati pod c)?

Zadatak 10

Trofazni asinkroni motor 55 kW, 980 min⁻¹, 400 V, 102 A, 50 Hz spojen u trokut uzima kod pokretanja struju iz mreže 6 puta veću od nazivne i razvija potezni moment 1.8 puta veći od nazivnog. Ako motor prespojimo u zvijezdu i priključimo na istu mrežu:

- (a) koliku struju (u A) će povući iz mreže pri pokretanju,
- (b) koliki potezni moment će razviti (u Nm)?

Zadatak 11

Asinkroni 6-polni kolutni motor ima otpor rotora po fazi 0.1Ω . U mirovanju je uz dignute četkice izmjeren napon između kolutova 350 V. Trofazni namot rotora spojen je u zvijezdu. Potrebno je izračunati:

- (a) struju faze rotora pri klizanju 5% (zanemariti rasipnu reaktanciju rotora),
- (b) gubitke u rotorskom namotu pri klizanju 5%,
- (c) mehaničku snagu koju razvija motor,
- (d) snagu okretnog polja,
- (e) korisnost,

uz pretpostavku jednakih gubitaka u namotu rotora i statora, uz gubitke u željezu $2000~\rm{W}$, te gubitke trenja i ventilacije $1500~\rm{W}$.

Zadatak 12

Trofazni asinkroni kavezni motor ima nazivne podatke: 11 kW, 400 V, 50 Hz, 27 A, $\cos \varphi = 0.72$, 1425 min⁻¹, gubici trenja i ventilacije 480 W. Koliki su za nazivnu radnu točku:

- (a) klizanje,
- (b) moment na osovini,
- (c) gubici u rotorskom krugu,
- (d) ukupni statorski gubici,
- (e) korisnost?

Skicirati karakteristiku ovisnosti momenta motora o klizanju, označiti koordinatne osi (fizikalne veličine i pripadajuće jedinice) i nazivnu radnu točku na karakteristici.

Zadatak 13

Trofaznom asinkronom motoru $400~\rm{V},~50~\rm{Hz},~2p=6$ izmjeren je moment kod nazivnog opterećenja $\rm{M}_n=163~\rm{Nm},~a$ moment trenja i ventilacije iznosi $5~\rm{Nm}.~\rm{Kod}$ nazivnog opterećenja motora i narinutih $400~\rm{V},~50~\rm{Hz}$ ukupni gubici u statoru iznose $750~\rm{W},~a$ frekvencija rotorskih struja $\rm{f}_r=1.5~\rm{Hz}.~\rm{Izračunajte}$ snagu motora na osovini i faktor korisnosti.

Zadatak 14

Trofazni kolutni asinkroni 6-polni motor ima podatke: statorski i rotorski namot su spojeni u zvijezdu, otpor između kliznih koluta rotora u toplom stanju iznosi $R_{st}=0.032\Omega$, a rasipna reaktancija faze rotorskog namota $X_{\sigma r0}=0.265\Omega$. U slučaju priključenja statorskog namota na napon 400 V, 50 Hz, uz zakočen rotor, na otvorenim kliznim kolutima rotora izmjeren je napon 217 V. Motor je opterećen i vrti se brzinom 950 min $^{-1}$. Ukupni statorski gubici iznose 2.2 kW, a gubici trenja i ventilacije su 1.2 kW. Treba izračunati:

- (a) klizanje s u %,
- (b) frekvenciju rotorskih struja,
- (c) iznos struje rotora,
- (d) gubitke u namotu rotora,
- (e) snagu okretnog polja,
- (f) razvijeni elektromagnetski moment,
- (g) razvijenu snagu na osovini,
- (h) moment na osovini,
- (i) snagu koju motor uzima iz mreže,
- (j) korisnost motora.

Zadatak 15

Trofaznom kolutnom asinkronom motoru poznati su podaci: 1250 kW, 6000 V, 50 Hz, 1480 min⁻¹, $\cos \varphi = 0.91$, $\eta = 0.96$. Napon među kolutima rotora spojenog u zvijezdu iznosi 865

V u mirovanju. Maksimalni moment je 2.7 puta veći od nazivnog. Izračunajte:

- (a) gubitke u bakru rotora kod nazivnog opterećenja,
- (b) klizanje kod kojeg motor razvija maksimalni moment,
- (c) struju rotora kod nazivnog opterećenja,
- (d) struju statora kod nazivnog opterećenja.

Zanemariti mehaničke gubitke i pad napona na impedanciji statora.

Zadatak 16

Koliko se smanji potezna struja u namotima trofaznog asinkronog motora, a koliko u dovodima iz mreže do motora, ako motor predviđen za stalni pogon u spoju trokut prespojimo u spoj zvijezda pri pokretanju i priključimo na istu mrežu? Skicirati spoj u trokut i spoj u zvijezdu trofaznog asinkronog motora.

Zadatak 17

Kolika će biti struja pokretanja trofaznog asinkronog motora priključenog na mrežu $400~\rm V,\,50~\rm Hz$ preklopkom Y/ Δ (dakle u spoju Y), ako je pokusom kratkog spoja pri naponu $0.5~\rm U_n$ i u spoju Δ motor uzimao iz mreže $120~\rm A?$ Podaci s natpisne pločice motora su: $20~\rm kW,\,400~\rm V,\,50~\rm Hz,\,\cos\varphi=0.8,\,\eta=0.88$, spoj namota Δ . Koliko iznosi nazivna struja motora i koliki bi bio omjer nazivne i potezne struje pri direktnom pokretanju motora?

Zadatak 18

Pri nazivnom naponu 400 V, 50 Hz, potezni moment kaveznog asinkronog motora M_k je 170% nazivnog momenta, a potezna struja I_k (struja kratkog spoja) 600% nazivne. Koliki bi bili potezni moment i potezna struja ako bi napon snizili na 80% nazivne vrijednosti?

Zadatak 19

Trofazni kavezni asinkroni motor ima nazivne podatke 22 kW, 400 V, 50 Hz, 2970 min⁻¹. Motor je opterećen momentom iznosa neovisnog o brzini vrtnje. Pri nazivnom naponu i frekvenciji brzina vrtnje opterećenog motora iznosi 2985 min⁻¹. Izračunajte nazivni moment i nazivno klizanje motora te moment kojim je opterećen motor. Skicirajte karakteristiku momenta trofaznog asinkronog motora u ovisnosti o brzini vrtnje i označite tri karakteristične točke. Zanemarite mehaničke gubitke zbog trenja i ventilacije te pretpostavite da se u području malih klizanja karakteristika momenta motora može nadomjestiti pravcem.

Zadatak 20

Skicirati karakteristiku momenta trofaznog asinkronog motora u ovisnosti o brzini vrtnje i označite potezni i prekretni moment za nazivni napon i frekvenciju. U isti dijagram nacrtati karakteristiku za slučaj da se napon smanji na 50% nazivne vrijednosti a frekvencija ostaje nepromijenjena.

Zadatak 21

Skicirati promjenu momentne karakteristike klizno-kolutnog asinkronog motora kojemu se u rotor doda:

- (a) otpor jednak dvostrukom otporu faze rotora,
- (b) otpor jednak peterostrukom otporu faze rotora.

Označiti koordinatne osi (fizikalne veličine i pripadajuće jedinice) i tri karakteristične radne točke na momentnoj karakteristici stroja.

Zadatak 22

Trofazni 4-polni asinkroni motor priključen na mrežu $50~{\rm Hz}$ i opterećen konstantnim momentom vrti se brzinom $1425~{\rm min^{-1}}$ i uzima iz mreže struju $10~{\rm A}$. Ako se u rotorske strujne krugove dodaju vanjski otpori, tako da ukupni otpor po fazi bude 6 puta veći, kojom brzinom će se vrtjeti motor i koliku struju će uzimati?

Zadatak 23

Trofazni klizno-kolutni asinkroni motor razvija prekretni moment 300 Nm pri klizanju 15%. Otpor po fazi rotora iznosi 0.2Ω . Odrediti:

- (a) koliki otpor po fazi treba dodati u rotorski krug da se postigne prekretni moment pri pokretanju,
- (b) koliki bi maksimalni moment motor postigao uz 5% sniženi napon, nepromijenjene frekvencije.

Zadatak 24

Asinkroni kolutni motor 20 kW, 400 V, 50 Hz, 1465 min $^{-1}$, $\cos\varphi=0.72$, otpor rotora po fazi 0.6Ω , opterećen je mehanizmom čiji je moment neovisan o brzini vrtnje, a jednak je nazivnom momentu motora.

- (a) Kolika je najveća vrijednost dodatnog otpora u rotorskom krugu po fazi s kojim motor još može pokrenuti mehanizam?
- (b) Skicirati i objasniti promjenu momentne karakteristike s dodavanjem otpora u rotorski krug.

Zadatak 25

Trofazni asinkroni motor s klizno-kolutnim rotorom, opterećen nazivnim momentom, vrti se brzinom 1410 min^{-1} . Pri tome gubici u namotu rotora iznose 940 W. Ako dodavanjem otpora, pri istom momentu opterećenja, smanjimo brzinu vrtnje na 960 min^{-1} , koliki će biti:

- (a) ukupni električni gubici u rotoru,
- (b) gubici u namotu rotora,
- (c) gubici u dodatnom otporniku?

Skicirati i objasniti promjenu momentne karakteristike s dodavanjem otpora u rotorski krug.

Zadatak 26

Trofazni kavezni asinkroni motor ima nazivne podatke 1000 kW, 6300 V, 50 Hz, 2970 min^{-1} . Brzina vrtnje motora se regulira pretvaračem napona i frekvencije. Koristi se skalarna regulacija pri čemu je omjer napona i frekvencije konstantan. Motor je opterećen momentom konstantnog iznosa neovisnog o brzini vrtnje.

- (a) Izračunati nazivni moment i nazivno klizanje motora.
- (b) Ako je sinkrona brzina vrtnje okretnog polja motora 1920 min^{-1} , koliki je napon na stezaljkama motora i kolika je frekvencija tog napona?
- (c) Ako brzina vrtnje motora uz napon i frekvenciju prema b) dijelu zadatka iznosi 1900 min^{-1} , izračunati kolikim momentom je opterećen motor. Skicirati momentne karakteristike motora pri nazivnoj frekvenciji i frekvenciji iz b), te karakteristiku momenta tereta.
- (d) Koliko iznose gubici u namotu rotora pri momentu tereta iz c) i nazivnoj frekvenciji 50 Hz, a koliko pri istom momentu, brzini vrtnje 1900 min^{-1} i frekvenciji izračunatoj u b)? Zanemariti mehaničke gubitke zbog trenja i ventilacije.

Zadatak 27

Centrifugalnu pumpu s karakteristikom momenta $\mathrm{M}_p=0.95~\mathrm{M}_n\left(\frac{n}{n_n}\right)+0.05~\mathrm{M}_n$, pokreće trofazni kolutni asinkroni motor s podacima $8~\mathrm{kW},~400~\mathrm{V},~50~\mathrm{Hz},~\mathrm{spoj}$ zvijezda, $18~\mathrm{A},~1435~\mathrm{min}^{-1}$ i otpora po fazi rotora u toplom stanju $\mathrm{R}_r=0.65\Omega$. Nazivni moment i broj okretaja pumpe jednaki su odgovarajućim nazivnim vrijednostima motora. Potrebno je odrediti vrijednost otpora koji treba dodati po fazi rotora da bi se dobila brzina vrtnje agregata pumpa-motor $1200~\mathrm{min}^{-1}$.

Zadatak 28

Trofazni kolutni četveropolni asinkroni motor za $50~\rm Hz$ radi u režimu protustrujnog kočenja s brzinom vrtnje $375~\rm min^{-1}$ i razvija kočni moment $295~\rm Nm$. Motor ima gubitke u bakru i željezu statora iznosa $5~\rm kW$. Zanemariti gubitke u željezu rotora i mehaničke gubitke. Izračunati:

- (a) snagu kočenja na osovini motora,
- (b) snagu okretnog polja,
- (c) snagu koju motor uzima iz mreže,
- (d) gubitke u bakru rotora.

Zadatak 29

Trofazni asinkroni motor 100 kW, 50 Hz, 970 min^{-1} diže teret brzinom 1.2 m/s kod čega ima brzinu vrtnje 983 min^{-1} . Kojom brzinom motor spušta isti teret u generatorskom režimu rada? Motor prelazi u generatorski režim rada tako da se zamijene dvije faze.

Zadatak 30

Trofazni kolutni asinkroni motor radi u režimu asinkronog generatora. U rotorski krug dodan je omski otpor tako da brzina vrtnje generatora iznosi 1250 min^{-1} , a kočni moment na osovini je

196 Nm. Motor je 6-polni, frekvencija mreže je 50 Hz, a gubici u bakru i željezu statora iznose 5 kW. Mehaničke gubitke, kao i gubitke u željezu rotora, zanemariti. Potrebno je izračunati:

- (a) snagu kočenja na osovini motora,
- (b) klizanje,
- (c) snagu okretnog polja,
- (d) gubitke u rotoru,
- (e) snagu koju generator predaje mreži.

Zadatak 31

Trofazni asinkroni motor 100 kW, 50 Hz, 970 min^{-1} diže preko prijenosa teret brzinom 1.2 m/s, kod čega ima brzinu vrtnje 983 min^{-1} . Vlastiti gubici trenja iznose 1800 W, a gubici u prijenosu 4200 W, sve kod nazivnog rada. Kojom brzinom stroj spušta isti teret u generatorskom režimu rada? Pretpostaviti da su gubici prijenosa i trenja u oba pogonska slučaja isti kao u slučaju nazivnog rada.

Zadatak 32

Trofazni asinkroni motor 55 kW, 380 V, 50 Hz, 970 min $^{-1}$ ima prekretni moment $\mathrm{M}_{pr}=2.3$ M_n i radni otpor faze rotora 0.2Ω . Motor diže preko prijenosa teret brzinom 1 m/s, kod čega ima brzinu vrtnje 980 min $^{-1}$. Vlastiti gubici trenja iznose 1015 W, a gubici u prijenosu 3000 W, sve kod nazivnog rada. Kojom brzinom stroj spušta isti teret u režimu protustrujnog kočenja ako mu u rotor ukopčamo radni otpor 25Ω po fazi? Pretpostaviti da su gubici prijenosa i trenja u oba pogonska slučaja isti kao u slučaju nazivnog rada.

Zadatak 33

Pri nazivnom naponu 400 V, 50 Hz, potezni moment trofaznog kaveznog asinkronog motora iznosi 170% nazivnog momenta, a potezna je struja 6 puta veća od nazivne. Koliki bi bili potezni moment i potezna struja ako bi:

- (a) motor pokretali s naponom sniženim na 340 V, 50 Hz,
- (b) motor pokretali zvijezda trokut preklopkom.
- (c) motor pokretali iz pretvarača frekvencije s 200 V, 25 Hz?

Zadatak 34

Trofazni kolutni asinkroni motor $12.5~\rm kW$, $400~\rm V$, $50~\rm Hz$, $1430~\rm min^{-1}$ u dizaličnom pogonu spušta teret u generatorskom režimu rada tako da je na osovini opterećen momentom iznosa $83.47~\rm Nm$. Kolikom brzinom vrtnje se spušta teret ako zanemarimo gubitke trenja i ventilacije, te pretpostavimo linearnost karakteristike momenta motora u području klizanja od 0 do s $_{pr}$?

Zadatak 35

Skicirajte karakteristiku momenta trofaznog asinkronog motora priključenog na napon 400 V, 50 Hz. Potezni moment je jednak 100% nazivnog, a maksimalni dvostrukom nazivnom

momentu. Motor je napajan iz pretvarača napona i frekvencije uz skalarnu regulaciju brzine vrtnje. U isti dijagram skicirajte karakteristike momenta za slučaj:

- (a) da se napon i frekvencija smanje na 60% nazivnih vrijednosti, tj. 240 V, 30 Hz,
- (b) da se frekvencija poveća za 20%, tj. na 60 Hz, a napon ostane jednak nazivnom.