Элементы статистической физики. Распределение Больцмана.

Задачи: 8.11,8.28,8.56,8.52

ЗАДАНИЕ: 8.15, 8.25, 8.70, 8.61

Распределение Больцмана.

8.11. Атмосфера планеты, на поверхности которой сила тяжести равна земной, состоит только из гелия и азота ($N_{\rm r}/N_{\rm as}=7$, где N —

полное число соответствующих молекул в атмосфере). Найти скорость звука у поверхности такой планеты. Атмосферу считать изотермической с температурой $T=200~{
m K}$, изменением ускорения свободного падения с высотой пренебречь.

Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).

Распространение звуковой волны процесс адиабатический, т.е. идущий при постоянной энтропии.

$$C_s = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_s}$$

Для идеальных газов скорость звука вычисляется по формулам:

$$C_s = \sqrt{\gamma \frac{P}{\rho}} = \sqrt{\frac{\gamma kT}{m}} = \sqrt{\frac{\gamma RT}{\mu}} = \alpha \sqrt{T} = \sqrt{\frac{\gamma}{3}} < v >;$$

где γ - показатель адиабаты: 5/3 для одноатомных газов,7/5 для двухатомных и для воздуха, 4/3 для многоатомных, k - постоянная Больцмана, R - газовая постоянная, m - молекулярная масса, μ - молярная масса, < v> - средняя скорость теплового движения частиц газа, $\alpha = \sqrt{\frac{\gamma R}{M}}$;

Для смеси газов:

$$\gamma = \frac{\nu_1 C_{p1} + \nu_2 C_{p2}}{\nu_1 C_{v1} + \nu_2 C_{v2}}$$

$$M = rac{
u_1 \mu_1 +
u_2 \mu_2}{
u_1 +
u_2}$$
. Тогда

$$V_s = \sqrt{\frac{(\nu_1 C_{p1} + \nu_2 C_{p2})(\nu_1 + \nu_2)RT}{(\nu_1 C_{v1} + \nu_2 C_{v2})(\nu_1 \mu_1 + \nu_2 \mu_2)}}$$

где $\mu_1=4, mu_2=28, \nu_1=7, \nu_2=1,$ т.к. число молей соотносится также как число частиц 7 к 1, поскольку число молей равно числу частиц деленному на число Авогадро.

Гелий Не - одноатомный газ ($C_v=3/2, C_p=5/2$), азот N_2 двухатомный ($C_v=5/2, C_p=7/2$)

Подставляя эти значения в C_s , получим значение скорости звука.

8.28. Измеряется распределение концентрации молекул белка в растворе, помещенном в центрифугу. На некотором расстоянии от оси центрифуги напряженность центробежных сил составляет G=100g, а относительный градиент концентрации в этом месте оказывается равным $\alpha=\frac{1}{n}\frac{dn}{dr}=10$ см $^{-1}$. Плотность белка $\rho=1,1$ г/см 3 ,

растворителя — $\rho_0=0.9~{\rm r/cm^3}$, температура $t=20\,{\rm ^{\circ}C}$. Найти молярную массу белка μ .

1)
$$\mu = m_{ch} N_A$$

Однако в центрифуге используется эффективная масса m, получаемая с учетом силы Архимеда, которая действует против центробежной силы. За счет этого масса частиц уменьшается на массу растворителя:

$$m = m_{ch} - m_r = m_{ch} \left(1 - \frac{\rho_r}{\rho_{ch}} \right)$$
, откуда $m_{ch} = m \frac{\rho_{ch}}{\rho_{ch} - \rho_r}$;

 $(2)m_{ch}$ надо выразить через параметры данные в условиях.

Из условий задачи даны значения β и $G=\omega^2 r;$ Распределение Больцмана $n=n_0\exp(-\frac{E_{pot}}{kT})$

В случае центрифуги $F=m\omega^2 r$ и потенциальная энергия для частиц на расстоянии r от оси вращения

$$\begin{split} E_{pot} &= -\int\limits_{R}^{r} m \omega^2 r dr = \frac{1}{2} m \omega^2 (R^2 - r^2), \text{ тогда} \\ \beta &= \frac{1}{n} \frac{dn}{dr} = \frac{m \omega^2 r}{kT} \text{ и } \frac{\beta}{G} = \frac{m}{kT} = \frac{m_{ch}}{kT} \frac{\rho_{ch} - \rho_r}{\rho_{ch}} \\ m_{ch} &= \frac{\beta kT}{G} \frac{\rho_{ch}}{\rho_{ch} - \rho_r} \\ \mu &= m_{ch} N_A = \frac{\beta RT}{G} \frac{\rho_{ch}}{\rho_{ch} - \rho_r}. \end{split}$$

8.56. Вычислить молярную теплоемкость идеального газа, в котором каждая молекула кроме трех поступательных степеней свободы имеет два внутренних дискретных уровня энергии $\mathcal{E}_1=0$ и $\mathcal{E}_2=\varepsilon$. Температура газа такова, что $kT=\varepsilon$. Вращение молекул не учитывать.

$$C_V = \frac{d < E >}{dT}$$

Пусть n_0 молекул имеют нулевую энергию и n_1 энергию Е. Всего в моле молекул $N_A = n_0 + n_1$

Доля молекул с разной энергией определяется распределением Больцмана:

$$n_0 = N_A e^{-\frac{0}{kT}} = N_A, \ n_1 = N_A e^{-\frac{E}{kT}} = n_0 e^{-\frac{E}{kT}}$$

Тогда средняя энергия моля газа равна поступательной энергии всех молекул $+ E n_1$

молекул
$$+ En_1$$
 $< E >= N_A \left(\frac{3}{2}kT + E \frac{n_1}{n_0 + n_1} \right)$

$$\frac{n_1}{n_0 + n_1} = \frac{1}{1 + \frac{n_0}{n_1}} = \frac{1}{1 + e^{\frac{E}{kT}}}$$

$$\langle E \rangle = N_A \left(\frac{3}{2}kT + \frac{E}{1 + e^{\frac{E}{kT}}} \right)$$

$$C_V = N_A \left[\frac{3}{2}k + \frac{E^2}{kT^2} e^{\frac{E}{kT}} \left(1 + e^{\frac{E}{kT}} \right)^{-2} \right]$$

8.52. Найти значения средней колебательной энергии теплового движения для двух различных атомных осцилляторов при температуре $T=300~\rm K$. Частота колебаний осцилляторов $\nu_1=10^{13}~\rm \Gamma u$ и $\nu_2=10^{14}~\rm \Gamma u$. Сравнить полученные значения с соответствующим классическим значением. Найти колебательную теплоемкость C_V одного моля газа таких осцилляторов для случая $\nu=4,7\cdot10^{13}~\rm \Gamma u$ (кислород O_2).

Колебания атомов описываются с помощью модели квантовых осцилляторов (КО), введенной в физику Планком. Корректное решение задачи об энергетических уровнях КО было получено Шоедингером

 $E_n = h \nu (n + \frac{1}{2}),$ где h - постоянная Планка, ν - частота колебаний, n=0.1.2...

Вероятность колебаний с энергией E_n определяется распределением Больцмана

 $P_n=Ae^{-rac{E_n}{kT}},$ где константа A определяется из условия нормировки $\sum\limits_{n=0}^{\infty}P_n=1\Rightarrow$

$$P_n = \frac{e^{-\frac{E_n}{kT}}}{\sum\limits_{r=0}^{\infty} e^{-\frac{E_n}{kT}}} = \frac{e^{-\frac{nE_0}{kT}}}{\sum\limits_{r=0}^{\infty} e^{-\frac{nE_0}{kT}}}$$

где $E_0 = h \nu$. Тогда для средней энергии выражение

$$\langle E \rangle = \sum_{n=0}^{\infty} P_n E_n = \frac{E_0 \sum_{n=0}^{\infty} n e^{-\frac{nE_0}{kT}}}{\sum_{n=0}^{\infty} e^{-\frac{nE_0}{kT}}}$$

Знаменатель представляет бесконечную геометрическую прогрессию, которую, делая замену $x=\frac{E_0}{kT}$, можно представить в виде:

$$\sum_{n=0}^{\infty} e^{-nx} = \frac{1}{1 - e^{-x}}.$$

Выражение для числителя можно получить дифференциируя это выражение:

$$\sum_{n=0}^{\infty} ne^{-nx} = \frac{e^{-x}}{(1-e^{-x})^2}.$$

 Π одставляя эти значения, получаем

$$< E> = \frac{E_0 e^{-x}}{1 - e^{-x}} = \frac{E_0}{e^x - 1} = \frac{h\nu}{e^{\frac{h\nu}{kT}} - 1}$$

$$C_V = \frac{d < E >}{dT} = ke^{\frac{h\nu}{kT}} \left(\frac{h\nu}{kT(e^{\frac{h\nu}{kT}} - 1)} \right)^2$$