Internet of Things

Uma rede LoRa para envio de imagens

Victor E. Almeida Marco A. Guerra

UNIOESTE

29 de julho de 2022

Conteúdo

Definições

- Definições
- Materiais e métodos
 - Algoritmos utilizados
 - Dispositivos utilizados
- Proposta de arquitetura
- 4 Implementação
- Resultados
- 6 Conclusão

Conclusão

Implementação

Definições I

LPWAN: Low Power Wide Area Network, são redes que alcançam longas distâncias gastando pouca energia, normalmente utilizadas para enviar poucos dados. Dentre as tecnologias mais utilizadas estão SigFox e LoRa.

Definições II

Definições III

Internet das coisas: *Internet of things (IoT)*, uma rede que conecta diversas "coisas" a internet, através de software, com o objetivo de trocar informações, tais "coisas" são dispositivos físicos ou lógicos, podem ser sensores, microcontroladores ou até mesmo objetos que nunca imaginamos tais como geladeiras, televisores, entre outros.

Definições IV

LoRa: Long Range, é uma tecnologia que atua na camada física para o envio e recebimento de dados. Criado e mantido de forma proprietária pela empresa Semtech, o mesmo utiliza comunicação através de ondas na frequência de radio (*Chirp Spread Spectrum*), para codificar o envio de dados focando em abarcar longas distância a um baixo custo energético.

Algoritmo detecção de erros: CRC 16 bits

```
uint16_t computeCRC(uint8_t* data_in, uint16_t length) {
1
        uint8_t bitbang, j;
2
        uint16_t i, crc_calc = INIT;
3
       for (i = 0; i < length; i++)
4
            crc_calc = (((uint16_t)data_in[i]) & 0x00FF);
5
           for (j = 0; j < 8; j++)
                bitbang = crc_calc;
7
                crc calc >>= 1:
                if (bitbang & 1) crc_calc ^= POLY;
9
       return (crc_calc & 0xFFFF);
13
```


Controle de fluxo: Stop and Wait

Dispositivos utilizados

Arquitetura

End points

/lora_img

- Objetivo: Mostrar no dispositivo do usuário uma imagem JPEG com a última foto salva no dispositivo;
- Método: GET;
- Retorna: image/jpeg
- /req_img/{}
 - Objetivo: Fazer com que o LoRa mestre envie uma mensagem pedindo ao dispositivo que tire uma foto e envie;
 - Parâmetros na url: o id do chip LoRa que vai enviar a imagem;
 - Método: GET;
 - Retorna: text/plain, indicando se foi possível ou não fazer a requisicão.

Fluxograma Sender

Fluxograma Receiver

Estruturas de dados enviadas I

Para enviar mensagens utilizando o chip LoRa, é preciso seguir o formato:

ID	Command	Payload	CRC
2 bytes	1 byte	1 - 231 bytes	2 bytes

Estruturas de dados enviadas II

Payload					
Type	ID	Part	Total	Message	
1 byte	1 byte	1 byte	1 byte	1 - 227 byte	

- Type: campo que indica como os próximos bytes devem ser interpretados, podendo ser um ACK, ou uma parte de imagem.
- ID: identificador único da imagem;
- Part: qual a parte da imagem que está nessa mensagem;
- Total: a quantidade total de partes da imagem;
- Message: os bytes da imagem

Implementação em código

```
struct _payload {
1
        uint8_t byte_array [MAX_PAYLOAD_SIZE];
2
        uint8_t size;
3
    };
5
    struct _fields {
        uint8_t type, id, part, last_part;
8
9
   union ImagePart {
10
        _fields fields:
11
        _payload payload;
12
13
```


Teste de Velocidade de transmissão

- Envia e recebe a resposta em 2 segundos, timeout = 3 segundos;
- Máximo descrito na documentação = 21875 bits por segundo.
- Máximo utilizando stop and wait = 232 * 8 = 1856 bits por segundo

Os testes seguiram os seguintes critérios:

- 3 fotos por resolução escolhendo sempre a mediana.
- Fotos tiradas do mesmo local na mesma posição;
- Imagens em escala de cinsa;

Testes no tamanho da imagem II

Compressão constante em 0

Resolução (pixels)	Tamanho (bytes)
640×480	73260
480×320	39139
400×296	35916
320×240	23510
240×176	14242
176×144	9147

Tabela 1: Mudança de resolução afetando o tamanho da imagem

Testes no tamanho da imagem III

Resolução constante em 480x320

Qualidade (0-63)	Tamanho (bytes)	
0	39139	
10	8456	
20	6371	
30	5613	
40	5161	
50	4842	
60	4665	
63	4616	

Tabela 2: Mudança de qualidade da imagem afetando o tamanho

Agradecimentos

Definições

Perguntas?

Obrigado pela atenção

Página 22 de 22