Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

Zenke et al. 2015

Ankur Sinha @ UoB 16/11/2016

1/19

Notes

\$whoami? | Copy | Copy

http://biocomputation.herts.ac.uk Memory research? Functional effects of structural plasticity in a balanced spiking neural network

...where the function we're interested in is memory

lotes	
lotes	
rotes	
lotes	

Zenke et al. 2015

Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

5/19

Zenke et al. 2015

...a well-orchestrated combination of a plausible Hebbian plasticity model together with non-Hebbian forms of plasticity, and globally modulated inhibitory plasticity leads to the formation of cell assemblies

6/19

Hebbian plasticity

Figure 1: Classic asymmetric STDP learning rule¹.

7/19

8/19

Hebbian plasticity

Figure 2: Triplet STDP learning rule used in this paper ²

Ν	otes	

Notes

_			_

Notes

¹ Guo-qiang Bi and Mu-ming Poo. "Synaptic modifications in cultured hippocampal neurons: dependence on spike

 $^{^2}$ Jean-Pascal Pfister and Wulfram Gerstner. "Triplets of spikes in a model of spike timing-dependent plasticity". In Journal of Neuroscience 26.38 (2006), pp. 9673–9682

Effect of Hebbian plasticity

Figure 2: Cell assembly

9/19

Effect of Hebbian plasticity

$$\frac{d}{dt}w_{ij}(t) = H(\ldots) \tag{1} \label{eq:1}$$

10/19

Effect of Hebbian plasticity: recall

11/19

12/19

Effect of Hebbian plasticity: dynamics

Figure 5: Network (top) and synaptic (bottom) dynamics—uncontrolled increase in synaptic weights at higher firing rates—in the presence of Hebbian plasticity in isolation.

Notes

Notes

Notes

_				
_				

Addition of non-Hebbian plasticity I: heterosynaptic plastic-

 $\textbf{Figure 6:} \ Synaptic \ dynamics \ vary \ depending \ on \ their \ relation \ to \ the \ reference \ weight-preventing \ unlimited \ potentiation$

13/19

Addition of non-Hebbian plasticity I: heterosynaptic plasticity

$$\frac{\mathrm{d}}{\mathrm{d}t}w_{ij}(t) = \mathsf{H}(\ldots) \\ - \mathsf{G}(\ldots)$$
 (2)

14/19

Addition of non-Hebbian plasticity II: transmitter induced plasticity

$$\begin{split} \frac{d}{dt}w_{ij}(t) &= H(\ldots) \\ &- G(\ldots) \\ &+ T(S_{pre}) \end{split} \tag{3} \label{eq:3}$$

15/19

16/19

Resultant dynamics

Figure 7: The combination of Hebbian and non Hebbian synaptic mechanisms permits a stable firing of neuron irrespective of initial condition

N	\cap t	69	

_			
_			

Notes

Notes

Global inhibition further stabilises network Notes ³TP Vogels et al. "Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks". In: \$Gence 334.6062 (2011), pp. 1569-1573, URL: http://www.sciencemag.org/content/334/6062/1569.short ⁴Melanie A Woodin, Karunesh Ganguly, and Mu-ming Poo. "Coincident pre-and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in CI-transporter activity". In: Neuron 39.5 (2003), pp. 807-820 17/19 **Resultant behaviours** Notes • Successful assembly formation and (in most cases) recall. • The network retained the ability to form more assemblies after initial sets. • Inactive memories (memory ensembles that were not stimulated for recall) decayed slightly, but no change was observed in active memories implying that the memories stored are stable over time. 18/19 Takeaway: requirements for memory formation and recall Notes • Multiple plasticity mechanisms: • of different types (Hebbian, non-Hebbian, homosynaptic, $heterosynaptic,\,transmitter\hbox{-}induced,\,global\,secretion$ induced) • at different time scales (fast Hebbian matched by fast non-Hebbian, slow compensatory) 19/19