You should work carefully on all problems. However you only have to hand in solutions to problems 6 and 7. This assignment is due on <u>Thursday</u>, November 17 in class and will be the last graded assignment for this course.

Exercise 1. Using the " ε - δ definitions" of limits of functions, show that

(1)
$$\lim_{x \to a} \frac{x}{1+x} = \frac{a}{1+a}$$

$$(2) \lim_{x \to +\infty} \frac{x}{1+x} = 1$$

(3)
$$\lim_{x \to -1^+} \frac{x}{1+x} = -\infty$$

(4)
$$\lim_{x \to -1^{-}} \frac{x}{1+x} = +\infty$$

Exercise 2. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined as

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Show that

- $(1) \lim_{x \to 0} f(x) = 0$
- (2) $\lim_{x \to a}^{x \to 0} f(x)$ does not exist for all $a \neq 0$.

Exercise 3. Let $A \subseteq \mathbb{R}$, $l \in \mathbb{R}$, c be a cluster point of A, and $f: A \to \mathbb{R}$ be a function. Show that

$$\lim_{x \to c} f(x) = l \quad \Longleftrightarrow \quad \lim_{x \to c} |f(x) - l| = 0 \quad \Longleftrightarrow \quad \lim_{x \to 0} f(x + c) = l.$$

Exercise 4. Let $A \subseteq \mathbb{R}$, c be a cluster point of A, and $f, g : A \to \mathbb{R}$ be two functions such that $\lim_{x \to c} g(x) = 0$ and f is bounded on a neighborhood of c, namely such that there exists $M, \delta > 0$ such that |f(x)| < M for all $x \in (c - \delta, c + \delta)$. Show that $\lim_{x \to c} (f(x)g(x)) = 0$.

Exercise 5. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to +\infty} f(x) = l \in \mathbb{R}$ and f is periodic, namely such that there exists T > 0 such that f(x + T) = f(x) for all $x \in \mathbb{R}$. Show that f is constant.

Exercise 6. [10 points] Determine at which numbers $x \in \mathbb{R}$ the function $f : \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$ is continuous.

Exercise 7. [10 points] Show that the function $f:[0,1] \to [0,1]$ defined as

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \cap (0, 1] \setminus \{1/2\} \\ 1 - x & \text{if } x \in (0, 1) \setminus \mathbb{Q} \\ 0 & \text{if } x = 1/2 \\ 1/2 & \text{if } x = 0. \end{cases}$$

is bijective but not continuous at any point of the interval [0,1].