Министерство науки и высшего образования Российской Федерации НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НГУ)

Физический факультет

Кафедра общей физики

Лабораторная работа №2.4

Наблюдение фазовых переходов «жидкость – газ» и определение критической температуры Фреона-13

Руководитель: Ассистент Художитков В. Э. Старший преподаватель Кравцова А. Ю. Работу выполнил: Высоцкий М. Ю. гр. 24301

1 Теоретическое введение

Цель работы: знакомство с фазовыми переходами, определение линии равновесия «жидкость – пар» в **Tv**-координатах, наблюдение критического состояния вещества.

Оборудование: ампулы с исследуемым веществом, термостат, ртутный термометр.

Фазовый переход – это скачкообразный переход вещества из одной фазы в другую при непрерывном изменении внешних условий – температуры, давления, магнитных и электрических полей и др. Фазовые переходы – широко распространенное в природе явление. К ним относятся испарение и конденсация (переход «жидкость – газ»), плавление и затвердевание (переход «твердое тело – жидкость»), сублимация и конденсация в твердую фазу (переход «твердое тело – газ»), а также некоторые структурные переходы в твердых телах.

Критическая точка – точка температуры и давления на фазовой диаграмме, где жидкая и газообразная фазы вещества сливаются в одну фазу. В данной точке фазы теряют качественные различия.

Метастабильное состояние - состояние системы, при котором его стабильность хорошо сохраняется при малых возмущениях.

Уравнение Менделеева-Клапейрона (уравнение состояние газа):

$$Pv\mu - RT = 0$$

Ниже приведена схема установки.

Рис. 1: Схема установки.

Рис. 2: Определение кривой равновесия «жидкость – пар» в Ту-плоскости.

1.1 Ход эксперимента

Ниже приведены данные эксперимента.

№	Исчезн. , С	Исчезн., К	Появл. , С	Появл. , К	Уд. Объем, cm^3/Γ
1	25	298	25	298	0,9
2	27,75	300,75	28,65	301,65	1,328
3	28,55	301,55	28,95	301,95	1,364
4	29,25	302,25	29,15	302,15	1,59
5	28	301	29,35	302,35	2
6	27,45	300,45	26,35	299,35	2,45

Таблица 1: Данные эксперимента.

Далее по данным был построен график с аппроксимацией.

График появления и исчезновения менисков и аппроксимация

Рис. 3: Появление и исчезновение менисков.

Из аппроксимации (полиномиальной) получены следующие данные:

	$T_{\mathrm{\kappa p}}, \mathrm{K},$	$K T_{\kappa p}, C$	$v, \text{cm}^3/\Gamma$	$\rho_{\mathrm{Kp}},\ \mathrm{K}\Gamma/\mathrm{M}^3$
Нагрев	302,73	29,73	1,81	552,49
Охлад	302,04	29,04	1,74	574,71

Таблица 2: Критическкие температуры и удельные объемы.

2 Вывод

Были найдены критические температуры для охлаждения и нагрева Фреона-13, а также их критические удельные объёмы.

$$T_{\text{кр(охл.)}} = 29,04^{\circ}C$$
 $T_{\text{кр(нагр.)}} = 29,73^{\circ}C$
 $v_{\text{кр(охл.)}} = 1,74\text{см}^{3}/\Gamma$
 $v_{\text{кр(нагр.)}} = 1,81\text{см}^{3}/\Gamma$