WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL AT LICITION TO BEIN		
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/3764
C12N 15/12, C07K 14/47, C12N 5/10, C07K 16/18, C12N 15/62, C12Q 1/68, G01N 33/50, 33/53, A61K 38/02, 48/00	A2	(43) International Publication Date: 29 June 2000 (29.06.0
(21) International Application Number: PCT/US9 (22) International Filing Date: 23 December 1999 (2)		Medina, WA 98039 (US), YUQIU, Jiang [CN/US]; 50
(30) Priority Data:		(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, Su 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).
09/221,298 23 December 1998 (23.12.98 09/347,496 2 July 1999 (02.07.99) 09/401,064 22 September 1999 (22.09.99 09/444,242 19 November 1999 (19.11.99 09/454,150 2 December 1999 (02.12.99) (71) Applicant (for all designated States except US): CORPORATION [US/US]; Suite 200, 1124 CStreet, Seattle, WA 98104 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): XU, Jiangchun 15805 SE 43rd Place, Bellevue, WA 98006 (US). Michael, J. [US/US]; 9223 – 36th Avenue SW.	(US/US/LODE	US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, K LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (Al AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (A BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, L MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CI S, GA, GN, GW, ML, MR, NE, SN, TD, TG).
WA 98126 (US). SECRIST, Heather [US/US]; 35th Avenue West, Seattle, WA 98199 (US). B Darin, R. [US/US]; 723 N. 48th Street, Seat 98104 (US). MEAGHER, Madeleine, Joy [US/U Interlake Avenue N. Seattle, WA 98103 (US).	3844 ENSO ttle, W [S]; 38	N, Published Without international search report and to be republish upon receipt of that report.

(54) Title: COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF COLON CANCER AND METHODS FOR THEIR USE

Interlake Avenue N., Seattle, WA 98103 (US). STOLK, John [US/US]; 7436 NE 144th Place, Bothell, WA 98011

(57) Abstract

Compositions and methods for the therapy and diagnosis of cancer, such as colon cancer, are disclosed. Compositions may comprise one or more colon tumor proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a colon tumor protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as colon cancer. Diagnostic methods based on detecting a colon tumor protein, or mRNA encoding such a protein, in a sample are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		DC.	Si-	LS	Lesotho	SI	Slovenia
AL	Albania	ES	Spain	LT	Lithuania	SK	Slovakia
AM	Armenia	FI	Finland	LU	Luxembourg	SN	Senegal
AT	Austria	FR	France		Latvia	SZ	Swaziland
ΑU	Australia	GA ·	Gabon	LV	Monaco	TD	Chad .
AZ	Azerbaijan	GB	United Kingdom	MC	•	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TJ	Tajikistan
BB	Barbados	GH ·	Ghana	MG	Madagascar	TM ·	Turkmenistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TR	Turkey
BF	Burkina Faso	GR	Greece		Republic of Macedonia		Trinidad and Tobago
BG	Bulgaria	HU	Hungary	ML	Mali	TT	
BJ	Benin	IE	Ireland	MN	· Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS ·	Iceland	· MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	. KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO.	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF COLON CANCER AND METHODS FOR THEIR USE

TECHNICAL FIELD

10

15

20

25

30

The present invention relates generally to therapy and diagnosis of cancer, such as colon cancer. The invention is more specifically related to polypeptides comprising at least a portion of a colon tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for prevention and treatment of colon cancer, and for the diagnosis and monitoring of such cancers.

BACKGROUND OF THE INVENTION

Cancer is a significant health problem throughout the world. Although advances have been made in detection and therapy of cancer, no vaccine or other universally successful method for prevention or treatment is currently available. Current therapies, which are generally based on a combination of chemotherapy or surgery and radiation, continue to prove inadequate in many patients.

Colon cancer is the second most frequently diagnosed malignancy in the United States as well as the second most common cause of cancer death. An estimated 95,600 new cases of colon cancer will be diagnosed in 1998, with an estimated 47,700 deaths. The five-year survival rate for patients with colorectal cancer detected in an early localized stage is 92%; unfortunately, only 37% of colorectal cancer is diagnosed at this stage. The survival rate drops to 64% if the cancer is allowed to spread to adjacent organs or lymph nodes, and to 7% in patients with distant metastases.

The prognosis of colon cancer is directly related to the degree of penetration of the tumor through the bowel wall and the presence or absence of nodal involvement, consequently, early detection and treatment are especially important. Currently, diagnosis is aided by the use of screening assays for fecal occult blood, sigmoidoscopy, colonoscopy and double contrast barium enemas. Treatment regimens are determined by the type and stage of the cancer, and include surgery, radiation therapy and/or chemotherapy. Recurrence following surgery (the most common form of therapy) is a major problem and is often the

ultimate cause of death. In spite of considerable research into therapies for the disease, colon cancer remains difficult to diagnose and treat. In spite of considerable research into therapies for these and other cancers, colon cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

5

10

15

20

25

Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as colon cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a colon tumor protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises a sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-121, 123-197 and 205-486; (b) variants of a sequence recited in SEQ ID NO: 1-121, 123-197 and 205-486; and (c) complements of a sequence of (a) or (b).

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a colon tumor protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, vaccines are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a colon tumor protein; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.

Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.

10

15

20

25

30

Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a colon tumor protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a colon tumor protein, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under

conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a colon tumor protein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expresses such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

10

15

20

25

30

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be colon cancer.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a)

contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached figures. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

SEQUENCE IDENTIFIERS

10

15

20

25

30

SEQ ID NO: 1 is a first determined cDNA sequence for Contig 1, showing homology to Neutrophil Gelatinase Associated Lipocalin.

15

20

25

30

SEQ ID NO: 2 is the determined cDNA sequence for Contig 2, showing no significant homology to any known genes.

SEQ ID NO: 3 is the determined cDNA sequence for Contig 4, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 4 is the determined cDNA sequence for Contig 5, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 5 is the determined cDNA sequence for Contig 9, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 6 is the determined cDNA sequence for Contig 52, showing homology to Carcinoembryonic antigen.

SEQ ID NO: 7 is the determined cDNA sequence for Contig 6, showing homology to Villin.

SEQ ID NO: 8 is the determined cDNA sequence for Contig 8, showing no significant homology to any known genes.

SEQ ID NO: 9 is the determined cDNA sequence for Contig 10, showing homology to Transforming Growth Factor (BIGH3).

SEQ ID NO: 10 is the determined cDNA sequence for Contig 19, showing homology to Transforming Growth Factor (BIGH3).

SEQ ID NO: 11 is the determined cDNA sequence for Contig 21, showing homology to Transforming Growth Factor (BIGH3).

SEQ ID NO: 12 is the determined cDNA sequence for Contig 11, showing homology to CO-029.

SEQ ID NO: 13 is the determined cDNA sequence for Contig 55, showing homology to CO-029.

SEQ ID NO: 14 is the determined cDNA sequence for Contig 12, showing homology to Chromosome 17, clone hRPC.1171_I_10, also referred to as C798P.

SEQ ID NO: 15 is the determined cDNA sequence for Contig 13, showing no significant homology to any known gene.

SEQ ID NO: 16 is the determined cDNA sequence for Contig 14, also referred to as 14261, showing no significant homology to any known gene.

15

20

25

30

SEQ ID NO: 17 is the determined cDNA sequence for Contig 15, showing homology to Ets-Related Transcription Factor (ERT).

SEQ ID NO: 18 is the determined cDNA sequence for Contig 16, showing homology to Chromosome 5, PAC clone 228g9 (LBNL H142).

SEQ ID NO: 19 is the determined cDNA sequence for Contig 24, showing homology to Chromosome 5, PAC clone 228g9 (LBNL H142).

SEQ ID NO: 20 is the determined cDNA sequence for Contig 17, showing homology to Cytokeratin.

SEQ ID NO: 21 is the determined cDNA sequence for Contig 18, showing homology to L1-Cadherin.

SEQ ID NO: 22 is the determined cDNA sequence for Contig 20, showing no significant homology to any known gene.

SEQ ID NO: 23 is the determined cDNA sequence for Contig 22, showing homology to Burnetanide-sensitive Na-K-Cl cotransporter (NKCCl).

SEQ ID NO: 24 is the determined cDNA sequence for Contig 23, showing no significant homology to any known gene.

SEQ ID NO: 25 is the determined cDNA sequence for Contig 25, showing homology to Macrophage Inflammatory Protein 3 alpha.

SEQ ID NO: 26 is the determined cDNA sequence for Contig 26, showing homology to Laminin.

SEQ ID NO: 27 is the determined cDNA sequence for Contig 48, showing homology to Laminin.

SEQ ID NO: 28 is the determined cDNA sequence for Contig 27, showing homology to Mytobularin (MTM1).

SEQ ID NO: 29 is the determined cDNA sequence for Contig 28, showing homology to Chromosome 16 BAC clone CIT987SK-A-363E6.

SEQ ID NO: 30 is the determined cDNA sequence for Contig 29, also referred to as C751P and 14247, showing no significant homology to any known gene, but partial homology to Rat GSK-3β-interacting protein Axil homolog.

SEQ ID NO: 31 is the determined cDNA sequence for Contig 30, showing homology to Zinc Finger Transcription Factor (ZNF207).

15

20

25

SEQ ID NO: 32 is the determined cDNA sequence for Contig 31, showing no significant homology to any known gene, but partial homology to Mus musculus GOB-4 homolog.

SEQ ID NO: 33 is the determined cDNA sequence for Contig 35, showing no significant homology to any known gene, but partial homology to Mus musculus GOB-4 homolog.

SEQ ID NO: 34 is the determined cDNA sequence for Contig 32, showing no significant homology to any known gene.

SEQ ID NO: 35 is the determined cDNA sequence for Contig 34, showing homology to Desmoglein 2.

SEQ ID NO: 36 is the determined cDNA sequence for Contig 36, showing no significant homology to any known gene.

SEQ ID NO: 37 is the determined cDNA sequence for Contig 37, showing homology to Putative Transmembrane Protein.

SEQ ID NO: 38 is the determined cDNA sequence for Contig 38, also referred to as C796P and 14219, showing no significant homology to any known gene.

SEQ ID NO: 39 is the determined cDNA sequence for Contig 40, showing homology to Nonspecific Cross-reacting Antigen.

SEQ ID NO: 40 is the determined cDNA sequence for Contig 41, also referred to as C799P and 14308, showing no significant homology to any known gene.

SEQ ID NO: 41 is the determined cDNA sequence for Contig 42, also referred to as C794P and 14309, showing no significant homology to any known gene.

SEQ ID NO: 42 is the determined cDNA sequence for Contig 43, showing homology to Chromosome 1 specific transcript KIAA0487.

SEQ ID NO: 43 is the determined cDNA sequence for Contig 45, showing homology to hMCM2.

SEQ ID NO: 44 is the determined cDNA sequence for Contig 46, showing homology to ETS2.

SEQ ID NO: 45 is the determined cDNA sequence for Contig 49, showing homology to Pump-1.

15

20

25

SEQ ID NO: 46 is the determined cDNA sequence for Contig 50, also referred to as C792P and 18323, showing no significant homology to any known gene.

SEQ ID NO: 47 is the determined cDNA sequence for Contig 51, also referred to as C795P and 14317, showing no significant homology to any known gene.

SEQ ID NO: 48 is the determined cDNA sequence for 11092, showing no significant homology to any known gene.

SEQ ID NO: 49 is the determined cDNA sequence for 11093, showing no significant homology to any known gene.

SEQ ID NO: 50 is the determined cDNA sequence for 11094, showing homology Human Putative Enterocyte Differentiation Protein.

SEQ ID NO: 51 is the determined cDNA sequence for 11095, showing homology to Human Transcriptional Corepressor hKAP1/TIF1B mRNA.

SEQ ID NO: 52 is the determined cDNA sequence for 11096, showing no significant homology to any known gene.

SEQ ID NO: 53 is the determined cDNA sequence for 11097, showing homology to Human Nonspecific Antigen.

SEQ ID NO: 54 is the determined cDNA sequence for 11098, showing no significant homology to any known gene.

SEQ ID NO: 55 is the determined cDNA sequence for 11099, showing homology to Human Pancreatic Secretory Inhibitor (PST) mRNA.

SEQ ID NO: 56 is the determined cDNA sequence for 11186, showing homology to Human Pancreatic Secretory Inhibitor (PST) mRNA.

SEQ ID NO: 57 is the determined cDNA sequence for 11101, showing homology to Human Chromosome X.

SEQ ID NO: 58 is the determined cDNA sequence for 11102, showing homology to Human Chromosome X.

SEQ ID NO: 59 is the determined cDNA sequence for 11103, showing no significant homology to any known gene.

SEQ ID NO: 60 is the determined cDNA sequence for 11174, showing no significant homology to any known gene.

SEQ ID NO: 61 is the determined cDNA sequence for 11104, showing homology to Human mRNA for KIAA0154.

SEQ ID NO: 62 is the determined cDNA sequence for 11105, showing homology to Human Apurinic/Apyrimidinic Endonuclease (hap1)mRNA.

SEQ ID NO: 63 is the determined cDNA sequence for 11106, showing homology toHuman Chromosome 12p13.

SEQ ID NO: 64 is the determined cDNA sequence for 11107, showing homology to Human 90 kDa Heat Shock Protein.

SEQ ID NO: 65 is the determined cDNA sequence for 11108, showing no significant homology to any known gene.

10

15

20

25

SEQ ID NO: 66 is the determined cDNA sequence for 11112, showing no significant homology to any known gene.

SEQ ID NO: 67 is the determined cDNA sequence for 11115, showing no significant homology to any known gene.

SEQ ID NO: 68 is the determined cDNA sequence for 11117, showing no significant homology to any known gene.

SEQ ID NO: 69 is the determined cDNA sequence for 11118, showing no significant homology to any known gene.

SEQ ID NO: 70 is the determined cDNA sequence for 11119, showing homology to Human Elongation Factor 1-alpha.

SEQ ID NO: 71 is the determined cDNA sequence for 11121, showing homology to Human Lamin B Receptor (LBR) mRNA.

SEQ ID NO: 72 is the determined cDNA sequence for 11122, showing homology to H. sapiens mRNA for Novel Glucocorticoid.

SEQ ID NO: 73 is the determined cDNA sequence for 11123, showing homology to H. sapiens mRNA for snRNP protein B.

SEQ ID NO: 74 is the determined cDNA sequence for 11124, showing homology to Human Cisplatin Resistance Associated Beta-protein.

SEQ ID NO: 75 is the determined cDNA sequence for 11127, showing homology to M. musculus Calumenin mRNA.

15

20

25

SEQ ID NO: 76 is the determined cDNA sequence for 11128, showing homology to Human ras-related small GTP binding protein.

SEQ ID NO: 77 is the determined cDNA sequence for 11130, showing homology to Human Cosmid U169d2.

SEQ ID NO: 78 is the determined cDNA sequence for 11131, showing homology to H. sapiens mRNA for protein homologous to Elongation 1-g.

SEQ ID NO: 79 is the determined cDNA sequence for 11134, showing no significant homology to any known gene.

SEQ ID NO: 80 is the determined cDNA sequence for 11135, showing homology to H. sapiens Nieman-Pick (NPC1) mRNA.

SEQ ID NO: 81 is the determined cDNA sequence for 11137, showing homology to H. sapiens mRNA for Niecin b-chain.

SEQ ID NO: 82 is the determined cDNA sequence for 11138, showing homology to Human Endogenous Retroviral Protease mRNA.

SEQ ID NO: 83 is the determined cDNA sequence for 11139, showing homology to H. sapiens mRNA for DMBT1 protein.

SEQ ID NO: 84 is the determined cDNA sequence for 11140, showing homology to H. sapiens ras GTPase activating-like protein.

SEQ ID NO: 85 is the determined cDNA sequence for 11143, showing homology to Human Acidic Ribosomal Phosphoprotein PO mRNA.

SEQ ID NO: 86 is the determined cDNA sequence for 11144, showing homology to H. sapiens U21 mRNA.

SEQ ID NO: 87 is the determined cDNA sequence for 11145, showing homology to Human GTP-binding protein.

SEQ ID NO: 88 is the determined cDNA sequence for 11148, showing homology to H. sapiens U21 mRNA.

SEQ ID NO: 89 is the determined cDNA sequence for 11151, showing no significant homology to any known gene.

SEQ ID NO: 90 is the determined cDNA sequence for 11154, showing no significant homology to any known gene.

SEQ ID NO: 91 is the determined cDNA sequence for 11156, showing homology to H. sapiens Ribosomal Protein L27.

SEQ ID NO: 92 is the determined cDNA sequence for 11157, showing homology to H. sapiens Ribosomal Protein L27.

SEQ ID NO: 93 is the determined cDNA sequence for 11158, showing no significant homology to any known gene.

SEQ ID NO: 94 is the determined cDNA sequence for 11162, showing homology to Ag-X antigen.

SEQ ID NO: 95 is the determined cDNA sequence for 11164, showing homology to H. sapiens mRNA for Signal Recognition Protein sub14.

10

15

20

25

SEQ ID NO: 96 is the determined cDNA sequence for 11165, showing homology to Human PAC 204e5/127h14.

SEQ ID NO: 97 is the determined cDNA sequence for 11166, showing homology to Human mRNA for KIAA0108.

SEQ ID NO: 98 is the determined cDNA sequence for 11167, showing homology to H. sapiens mRNA for Neutrophil Gelatinase assct. Lipocalin.

SEQ ID NO: 99 is the determined cDNA sequence for 11168, showing no significant homology to any known gene.

SEQ ID NO: 100 is the determined cDNA sequence for 11172, showing no significant homology to any known gene.

SEQ ID NO: 101 is the determined cDNA sequence for 11175, showing no significant homology to any known gene.

SEQ ID NO: 102 is the determined cDNA sequence for 11176, showing homology to Human maspin mRNA.

SEQ ID NO: 103 is the determined cDNA sequence for 11177, showing homology to Human Carcinoembryonic Antigen.

SEQ ID NO: 104 is the determined cDNA sequence for 11178, showing homology to Human A-Tubulin mRNA.

SEQ ID NO: 105 is the determined cDNA sequence for 11179, showing homology to Human mRNA for proton-ATPase-like protein.

20

25

30

SEQ ID NO: 106 is the determined cDNA sequence for 11180, showing homology to Human HepG2 3' region cDNA clone hmd.

SEQ ID NO: 107 is the determined cDNA sequence for 11182, showing homology to Human MHC homologous to Chicken B-Complex Protein.

SEQ ID NO: 108 is the determined cDNA sequence for 11183, showing homology to Human High Mobility Group Box (SSRP1) mRNA.

SEQ ID NO: 109 is the determined cDNA sequence for 11184, showing no significant homology to any known gene.

SEQ ID NO: 110 is the determined cDNA sequence for 11185, showing no significant homology to any known gene.

SEQ ID NO: 111 is the determined cDNA sequence for 11187, showing no significant homology to any known gene.

SEQ ID NO: 112 is the determined cDNA sequence for 11190, showing homology to Human Replication Protein A 70kDa.

SEQ ID NO: 113 is the determined cDNA sequence for Contig 47, also referred to as C797P, showing homology to Human Chromosome X clone bWXD342.

SEQ ID NO: 114 is the determined cDNA sequence for Contig 7, showing homology to Equilibrative Nucleoside Transporter 2 (ent2).

SEQ ID NO: 115 is the determined cDNA sequence for 14235.1, also referred to as C791P, showing homology to H. sapiens chromosome 21 derived BAC containing ets-2 gene.

SEQ ID NO: 116 is the determined cDNA sequence for 14287.2, showing no significant homology to any known gene, but some degree of homology to Putative Transmembrane Protein.

SEQ ID NO: 117 is the determined cDNA sequence for 14233.1, also referred to as Contig 48, showing no significant homology to any known gene.

SEQ ID NO: 118 is the determined cDNA sequence for 14298.2, also referred to as C793P, showing no significant homology to any known gene.

SEQ ID NO: 119 is the determined cDNA sequence for 14372, also referred to as Contig 44, showing no significant homology to any known gene.

10

15

20

SEQ ID NO: 120 is the determined cDNA sequence for 14295, showing homology to secreted cement gland protein XAG-2 homolog.

SEQ ID NO: 121 is the determined full-length cDNA sequence for a clone showing homology to Beta IG-H3.

SEQ ID NO: 122 is the predicted amino acid sequence for the clone of SEQ ID NO: 121.

SEQ ID NO: 123 is a longer determined cDNA sequence for C751P.

SEQ ID NO: 124 is a longer determined cDNA sequence for C791P.

SEQ ID NO: 125 is a longer determined cDNA sequence for C792P.

SEQ ID NO: 126 is a longer determined cDNA sequence for C793P.

SEQ ID NO: 127 is a longer determined cDNA sequence for C794P.

SEQ ID NO: 128 is a longer determined cDNA sequence for C795P.

SEQ ID NO: 129 is a longer determined cDNA sequence for C796P.

SEQ ID NO: 130 is a longer determined cDNA sequence for C797P.

SEQ ID NO: 131 is a longer determined cDNA sequence for C798P.

SEQ ID NO: 132 is a longer determined cDNA sequence for C799P.

SEQ ID NO: 133 is a first partial determined cDNA sequence for CoSub-3 (also known as 23569).

SEQ ID NO: 134 is a second partial determined cDNA sequence for CoSub-3 (also known as 23569).

SEQ ID NO: 135 is a first partial determined cDNA sequence for CoSub-13 (also known as 23579).

SEQ ID NO: 136 is a second partial determined cDNA sequence for CoSub-13 (also known as 23579).

SEQ ID NO: 137 is the determined cDNA sequence for CoSub-17 (also known as 23583).

SEQ ID NO: 138 is the determined cDNA sequence for CoSub-19 (also known as 23585).

SEQ ID NO: 139 is the determined cDNA sequence for CoSub-22 (also known as 23714).

. 5

10

- 15

25

30

SEQ ID NO: 140 is the determined cDNA sequence for CoSub-23 (also known as 23715).

SEQ ID NO: 141 is the determined cDNA sequence for CoSub-26 (also known as 23717).

SEQ ID NO: 142 is the determined cDNA sequence for CoSub-33 (also known as 23724).

SEQ ID NO: 143 is the determined cDNA sequence for CoSub-34 (also known as 23725).

SEQ ID NO: 144 is the determined cDNA sequence for CoSub-35 (also known as 23726).

SEQ ID NO: 145 is the determined cDNA sequence for CoSub-37 (also known as 23728).

SEQ ID NO: 146 is the determined cDNA sequence for CoSub-39 (also known as 23730).

SEQ ID NO: 147 is the determined cDNA sequence for CoSub-42 (also known as 23766).

SEQ ID NO: 148 is the determined cDNA sequence for CoSub-44 (also known as 23768).

SEQ ID NO: 149 is the determined cDNA sequence for CoSub-47 (also known as 20 23771).

SEQ ID NO: 150 is the determined cDNA sequence for CoSub-54 (also known as 23778).

SEQ ID NO: 151 is the determined cDNA sequence for CoSub-55 (also known as 23779).

SEQ ID NO: 152 is the determined cDNA sequence for CT1 (also known as 24099).

SEQ ID NO: 153 is the determined cDNA sequence for CT2 (also known as 24100).

SEQ ID NO: 154 is the determined cDNA sequence for CT3 (also known as 24101).

SEQ ID NO: 155 is the determined cDNA sequence for CT6 (also known as 24104).

SEQ ID NO: 156 is the determined cDNA sequence for CT7 (also known as 24105).

SEQ ID NO: 157 is the determined cDNA sequence for CT12 (also known as 24110).

SEQ ID NO: 158 is the determined cDNA sequence for CT13 (also known as 24111).

SEQ ID NO: 159 is the determined cDNA sequence for CT14 (also known as 24112). SEQ ID NO: 160 is the determined cDNA sequence for CT15 (also known as 24113). SEQ ID NO: 161 is the determined cDNA sequence for CT17 (also known as 24115). SEQ ID NO: 162 is the determined cDNA sequence for CT18 (also known as 24116). SEQ ID NO: 163 is the determined cDNA sequence for CT22 (also known as 23848). SEQ ID NO: 164 is the determined cDNA sequence for CT24 (also known as 23849). SEQ ID NO: 165 is the determined cDNA sequence for CT31 (also known as 23854). SEQ ID NO: 166 is the determined cDNA sequence for CT34 (also known as 23856). SEQ ID NO: 167 is the determined cDNA sequence for CT37 (also known as 23859). SEQ ID NO: 168 is the determined cDNA sequence for CT39 (also known as 23860). SEQ ID NO: 169 is the determined cDNA sequence for CT40 (also known as 23861). SEQ ID NO: 170 is the determined cDNA sequence for CT51 (also known as 24130). SEQ ID NO: 171 is the determined cDNA sequence for CT53 (also known as 24132). SEO ID NO: 172 is the determined cDNA sequence for CT63 (also known as 24595). SEQ ID NO: 173 is the determined cDNA sequence for CT88 (also known as 24608). SEO ID NO: 174 is the determined cDNA sequence for CT92 (also known as 24800). SEQ ID NO: 175 is the determined cDNA sequence for CT94 (also known as 24802). SEQ ID NO: 176 is the determined cDNA sequence for CT102 (also known as 24805).

10

15

20

25

30

SEQ ID NO: 177 is the determined cDNA sequence for CT103 (also known as 24806).

SEQ ID NO: 178 is the determined cDNA sequence for CT111 (also known as 25520).

SEQ ID NO: 179 is the determined cDNA sequence for CT118 (also known as 25522).

SEQ ID NO: 180 is the determined cDNA sequence for CT121 (also known as 25523).

SEQ ID NO: 181 is the determined cDNA sequence for CT126 (also known as 25527).

SEQ ID NO: 182 is the determined cDNA sequence for CT135 (also known as 25534).

WO 00/37643

- SEQ ID NO: 183 is the determined cDNA sequence for CT140 (also known as 25537).
- SEQ ID NO: 184 is the determined cDNA sequence for CT145 (also known as 25542).
- SEQ ID NO: 185 is the determined cDNA sequence for CT147 (also known as 25543).
 - SEQ ID NO: 186 is the determined cDNA sequence for CT148 (also known as 25544).
- SEQ ID NO: 187 is the determined cDNA sequence for CT502 (also known as 10 26420).
 - SEQ ID NO: 188 is the determined cDNA sequence for CT507 (also known as 26425).
 - SEQ ID NO: 189 is the determined cDNA sequence for CT521 (also known as 27366).
- SEQ ID NO: 190 is the determined cDNA sequence for CT544 (also known as 27375).
 - SEQ ID NO: 191 is the determined cDNA sequence for CT577 (also known as 27385).
- SEQ ID NO: 192 is the determined cDNA sequence for CT580 (also known as 20 27387).
 - SEQ ID NO: 193 is the determined cDNA sequence for CT594 (also known as 27540).
 - SEQ ID NO: 194 is the determined cDNA sequence for CT606 (also known as 27547).
- SEQ ID NO: 195 is the determined cDNA sequence for CT607 (also known as 27548).
 - SEQ ID NO: 196 is the determined cDNA sequence for CT599 (also known as 27903).
- SEQ ID NO: 197 is the determined cDNA sequence for CT632 (also known as 27922).
 - SEQ ID NO: 198 is the predicted amino acid sequence for CT502 (SEQ ID NO: 187).

SEQ ID NO: 199 is the predicted amino acid sequence for CT507 (SEQ ID NO: 188). SEQ ID NO: 200 is the predicted amino acid sequence for CT521 (SEQ ID NO: 189). SEQ ID NO: 201 is the predicted amino acid sequence for CT544 (SEQ ID NO: 190). SEQ ID NO: 202 is the predicted amino acid sequence for CT606 (SEQ ID NO: 194). SEQ ID NO: 203 is the predicted amino acid sequence for CT607 (SEQ ID NO: 195). SEQ ID NO: 204 is the predicted amino acid sequence for CT632 (SEQ ID NO: 197). SEQ ID NO: 205 is the determined cDNA sequence for clone 25244. SEQ ID NO: 206 is the determined cDNA sequence for clone 25245. SEQ ID NO: 207 is the determined cDNA sequence for clone 25246. SEQ ID NO: 208 is the determined cDNA sequence for clone 25248. 10 SEQ ID NO: 209 is the determined cDNA sequence for clone 25249. SEQ ID NO: 210 is the determined cDNA sequence for clone 25250. SEQ ID NO: 211 is the determined cDNA sequence for clone 25251. SEQ ID NO: 212 is the determined cDNA sequence for clone 25252. SEQ ID NO: 213 is the determined cDNA sequence for clone 25253. 15 SEQ ID NO: 214 is the determined cDNA sequence for clone 25254. SEQ ID NO: 215 is the determined cDNA sequence for clone 25255. SEQ ID NO: 216 is the determined cDNA sequence for clone 25256. SEQ ID NO: 217 is the determined cDNA sequence for clone 25257. SEQ ID NO: 218 is the determined cDNA sequence for clone 25259. 20 SEQ ID NO: 219 is the determined cDNA sequence for clone 25260. SEQ ID NO: 220 is the determined cDNA sequence for clone 25261. SEQ ID NO: 221 is the determined cDNA sequence for clone 25262. SEQ ID NO: 222 is the determined cDNA sequence for clone 25263. SEQ ID NO: 223 is the determined cDNA sequence for clone 25264. 25 SEQ ID NO: 224 is the determined cDNA sequence for clone 25265. SEQ ID NO: 225 is the determined cDNA sequence for clone 25266. SEQ ID NO: 226 is the determined cDNA sequence for clone 25267. SEQ ID NO: 227 is the determined cDNA sequence for clone 25268. SEQ ID NO: 228 is the determined cDNA sequence for clone 25269. 30 SEQ ID NO: 229 is the determined cDNA sequence for clone 25271.

15

20

25

SEQ ID NO: 230 is the determined cDNA sequence for clone 25272. SEQ ID NO: 231 is the determined cDNA sequence for clone 25273. SEQ ID NO: 232 is the determined cDNA sequence for clone 25274. SEQ ID NO: 233 is the determined cDNA sequence for clone 25275. SEQ ID NO: 234 is the determined cDNA sequence for clone 25276. SEQ ID NO: 235 is the determined cDNA sequence for clone 25277. SEQ ID NO: 236 is the determined cDNA sequence for clone 25278. SEQ ID NO: 237 is the determined cDNA sequence for clone 25280. SEQ ID NO: 238 is the determined cDNA sequence for clone 25281. SEQ ID NO: 239 is the determined cDNA sequence for clone 25282. SEQ ID NO: 240 is the determined cDNA sequence for clone 25283. SEQ ID NO: 241 is the determined cDNA sequence for clone 25284. SEQ ID NO: 242 is the determined cDNA sequence for clone 25285. SEQ ID NO: 243 is the determined cDNA sequence for clone 25286. SEQ ID NO: 244 is the determined cDNA sequence for clone 25287. SEQ ID NO: 245 is the determined cDNA sequence for clone 25288. SEQ ID NO: 246 is the determined cDNA sequence for clone 25289. SEQ ID NO: 247 is the determined cDNA sequence for clone 25290. SEQ ID NO: 248 is the determined cDNA sequence for clone 25291. SEQ ID NO: 249 is the determined cDNA sequence for clone 25292. SEQ ID NO: 250 is the determined cDNA sequence for clone 25293. SEQ ID NO: 251 is the determined cDNA sequence for clone 25294. SEQ ID NO: 252 is the determined cDNA sequence for clone 25295. SEQ ID NO: 253 is the determined cDNA sequence for clone 25296. SEQ ID NO: 254 is the determined cDNA sequence for clone 25297. SEQ ID NO: 255 is the determined cDNA sequence for clone 25418. SEQ ID NO: 256 is the determined cDNA sequence for clone 25419. SEQ ID NO: 257 is the determined cDNA sequence for clone 25420. SEQ ID NO: 258 is the determined cDNA sequence for clone 25421. SEQ ID NO: 259 is the determined cDNA sequence for clone 25422. 30 SEQ ID NO: 260 is the determined cDNA sequence for clone 25423.

SEQ ID NO: 261 is the determined cDNA sequence for clone 25424. SEQ ID NO: 262 is the determined cDNA sequence for clone 25426. SEQ ID NO: 263 is the determined cDNA sequence for clone 25427. SEQ ID NO: 264 is the determined cDNA sequence for clone 25428. SEQ ID NO: 265 is the determined cDNA sequence for clone 25429. SEQ ID NO: 266 is the determined cDNA sequence for clone 25430. SEQ ID NO: 267 is the determined cDNA sequence for clone 25431. SEQ ID NO: 268 is the determined cDNA sequence for clone 25432. SEQ ID NO: 269 is the determined cDNA sequence for clone 25433. SEQ ID NO: 270 is the determined cDNA sequence for clone 25434. 10 SEQ ID NO: 271 is the determined cDNA sequence for clone 25435. SEQ ID NO: 272 is the determined cDNA sequence for clone 25436. SEQ ID NO: 273 is the determined cDNA sequence for clone 25437. SEQ ID NO: 274 is the determined cDNA sequence for clone 25438. SEQ ID NO: 275 is the determined cDNA sequence for clone 25439. 15 SEQ ID NO: 276 is the determined cDNA sequence for clone 25440. SEQ ID NO: 277 is the determined cDNA sequence for clone 25441. SEQ ID NO: 278 is the determined cDNA sequence for clone 25442. SEQ ID NO: 279 is the determined cDNA sequence for clone 25443. SEQ ID NO: 280 is the determined cDNA sequence for clone 25444. 20 SEQ ID NO: 281 is the determined cDNA sequence for clone 25445. SEQ ID NO: 282 is the determined cDNA sequence for clone 25446. SEQ ID NO: 283 is the determined cDNA sequence for clone 25447. SEQ ID NO: 284 is the determined cDNA sequence for clone 25448. SEQ ID NO: 285 is the determined cDNA sequence for clone 25844. 25 SEQ ID NO: 286 is the determined cDNA sequence for clone 25845. SEQ ID NO: 287 is the determined cDNA sequence for clone 25846. SEQ ID NO: 288 is the determined cDNA sequence for clone 25847. SEQ ID NO: 289 is the determined cDNA sequence for clone 25848. SEQ ID NO: 290 is the determined cDNA sequence for clone 25850. 30 SEQ ID NO: 291 is the determined cDNA sequence for clone 25851.

SEO ID NO: 292 is the determined cDNA sequence for clone 25852. SEQ ID NO: 293 is the determined cDNA sequence for clone 25853. SEQ ID NO: 294 is the determined cDNA sequence for clone 25854. SEQ ID NO: 295 is the determined cDNA sequence for clone 25855. SEQ ID NO: 296 is the determined cDNA sequence for clone 25856. 5 SEQ ID NO: 297 is the determined cDNA sequence for clone 25857. SEO ID NO: 298 is the determined cDNA sequence for clone 25858. SEQ ID NO: 299 is the determined cDNA sequence for clone 25859. SEQ ID NO: 300 is the determined cDNA sequence for clone 25860. SEQ ID NO: 301 is the determined cDNA sequence for clone 25861. 10 SEO ID NO: 302 is the determined cDNA sequence for clone 25862. SEQ ID NO: 303 is the determined cDNA sequence for clone 25863. SEQ ID NO: 304 is the determined cDNA sequence for clone 25864. SEQ ID NO: 305 is the determined cDNA sequence for clone 25865. SEQ ID NO: 306 is the determined cDNA sequence for clone 25866. 15 SEQ ID NO: 307 is the determined cDNA sequence for clone 25867. SEQ ID NO: 308 is the determined cDNA sequence for clone 25868. SEQ ID NO: 309 is the determined cDNA sequence for clone 25869. SEQ ID NO: 310 is the determined cDNA sequence for clone 25870. SEQ ID NO: 311 is the determined cDNA sequence for clone 25871. 20 SEQ ID NO: 312 is the determined cDNA sequence for clone 25872. SEQ ID NO: 313 is the determined cDNA sequence for clone 25873. SEO ID NO: 314 is the determined cDNA sequence for clone 25875. SEQ ID NO: 315 is the determined cDNA sequence for clone 25876. SEO ID NO: 316 is the determined cDNA sequence for clone 25877. 25 SEQ ID NO: 317 is the determined cDNA sequence for clone 25878. SEQ ID NO: 318 is the determined cDNA sequence for clone 25879. SEQ ID NO: 319 is the determined cDNA sequence for clone 25880. SEQ ID NO: 320 is the determined cDNA sequence for clone 25881. SEQ ID NO: 321 is the determined cDNA sequence for clone 25882. 30 SEQ ID NO: 322 is the determined cDNA sequence for clone 25883.

SEQ ID NO: 323 is the determined cDNA sequence for clone 25884. SEQ ID NO: 324 is the determined cDNA sequence for clone 25885. SEQ ID NO: 325 is the determined cDNA sequence for clone 25886. SEQ ID NO: 326 is the determined cDNA sequence for clone 25887. SEQ ID NO: 327 is the determined cDNA sequence for clone 25888. SEQ ID NO: 328 is the determined cDNA sequence for clone 25889. SEQ ID NO: 329 is the determined cDNA sequence for clone 25890. SEQ ID NO: 330 is the determined cDNA sequence for clone 25892. SEQ ID NO: 331 is the determined cDNA sequence for clone 25894. SEQ ID NO: 332 is the determined cDNA sequence for clone 25895. 10 SEQ ID NO: 333 is the determined cDNA sequence for clone 25896. SEQ ID NO: 334 is the determined cDNA sequence for clone 25897. SEQ ID NO: 335 is the determined cDNA sequence for clone 25899. SEQ ID NO: 336 is the determined cDNA sequence for clone 25900. SEQ ID NO: 337 is the determined cDNA sequence for clone 25901. 15 SEQ ID NO: 338 is the determined cDNA sequence for clone 25902. SEQ ID NO: 339 is the determined cDNA sequence for clone 25903. SEQ ID NO: 340 is the determined cDNA sequence for clone 25904. SEQ ID NO: 341 is the determined cDNA sequence for clone 25906. SEQ ID NO: 342 is the determined cDNA sequence for clone 25907. 20 SEQ ID NO: 343 is the determined cDNA sequence for clone 25908. SEQ ID NO: 344 is the determined cDNA sequence for clone 25909. SEQ ID NO: 345 is the determined cDNA sequence for clone 25910. SEQ ID NO: 346 is the determined cDNA sequence for clone 25911. 25 SEQ ID NO: 347 is the determined cDNA sequence for clone 25912. SEQ ID NO: 348 is the determined cDNA sequence for clone 25913. SEQ ID NO: 349 is the determined cDNA sequence for clone 25914. SEQ ID NO: 350 is the determined cDNA sequence for clone 25915. SEQ ID NO: 351 is the determined cDNA sequence for clone 25916. SEQ ID NO: 352 is the determined cDNA sequence for clone 25917. 30 SEQ ID NO: 353 is the determined cDNA sequence for clone 25918.

SEQ ID NO: 354 is the determined cDNA sequence for clone 25919. SEQ ID NO: 355 is the determined cDNA sequence for clone 25920. SEO ID NO: 356 is the determined cDNA sequence for clone 25921. SEQ ID NO: 357 is the determined cDNA sequence for clone 25922. SEQ ID NO: 358 is the determined cDNA sequence for clone 25924. SEO ID NO: 359 is the determined cDNA sequence for clone 25925. SEQ ID NO: 360 is the determined cDNA sequence for clone 25926. SEO ID NO: 361 is the determined cDNA sequence for clone 25927. SEQ ID NO: 362 is the determined cDNA sequence for clone 25928. SEQ ID NO: 363 is the determined cDNA sequence for clone 25929. SEQ ID NO: 364 is the determined cDNA sequence for clone 25930. SEO ID NO: 365 is the determined cDNA sequence for clone 25931. SEQ ID NO: 366 is the determined cDNA sequence for clone 25932. SEQ ID NO: 367 is the determined cDNA sequence for clone 25933. SEQ ID NO: 368 is the determined cDNA sequence for clone 25934. SEQ ID NO: 369 is the determined cDNA sequence for clone 25935. SEO ID NO: 370 is the determined cDNA sequence for clone 25936. SEQ ID NO: 371 is the determined cDNA sequence for clone 25939. SEQ ID NO: 372 is the determined cDNA sequence for clone 32016. SEQ ID NO: 373 is the determined cDNA sequence for clone 32021. SEO ID NO: 374 is the determined cDNA sequence for clone 31993. SEQ ID NO: 375 is the determined cDNA sequence for clone 31997. SEQ ID NO: 376 is the determined cDNA sequence for clone 31942. SEQ ID NO: 377 is the determined cDNA sequence for clone 31937. SEO ID NO: 378 is the determined cDNA sequence for clone 31952. SEQ ID NO: 379 is the determined cDNA sequence for clone 31992. SEQ ID NO: 380 is the determined cDNA sequence for clone 31961. SEQ ID NO: 381 is the determined cDNA sequence for clone 31964. SEQ ID NO: 382 is the determined cDNA sequence for clone 32005. SEQ ID NO: 383 is the determined cDNA sequence for clone 31980. SEO ID NO: 384 is the determined cDNA sequence for clone 31940.

10

15

20

25

30

SEQ ID NO: 385 is the determined cDNA sequence for clone 32004. SEQ ID NO: 386 is the determined cDNA sequence for clone 31956. SEQ ID NO: 387 is the determined cDNA sequence for clone 31934. SEQ ID NO: 388 is the determined cDNA sequence for clone 31998. SEQ ID NO: 389 is the determined cDNA sequence for clone 31973. SEQ ID NO: 390 is the determined cDNA sequence for clone 31976. SEQ ID NO: 391 is the determined cDNA sequence for clone 31988. SEQ ID NO: 392 is the determined cDNA sequence for clone 31948. SEQ ID NO: 393 is the determined cDNA sequence for clone 32013. SEQ ID NO: 394 is the determined cDNA sequence for clone 31986. 10 SEQ ID NO: 395 is the determined cDNA sequence for clone 31954. SEO ID NO: 396 is the determined cDNA sequence for clone 31987. SEQ ID NO: 397 is the determined cDNA sequence for clone 32029. SEQ ID NO: 398 is the determined cDNA sequence for clone 32028. SEQ ID NO: 399 is the determined cDNA sequence for clone 32012. 15 SEQ ID NO: 400 is the determined cDNA sequence for clone 31959. SEQ ID NO: 401 is the determined cDNA sequence for clone 32027. SEQ ID NO: 402 is the determined cDNA sequence for clone 31957. SEO ID NO: 403 is the determined cDNA sequence for clone 31950. SEQ ID NO: 404 is the determined cDNA sequence for clone 32011. 20 SEQ ID NO: 405 is the determined cDNA sequence for clone 32022. SEO ID NO: 406 is the determined cDNA sequence for clone 32014. SEQ ID NO: 407 is the determined cDNA sequence for clone 31963. SEO ID NO: 408 is the determined cDNA sequence for clone 31989. SEQ ID NO: 409 is the determined cDNA sequence for clone 32015. 25 SEQ ID NO: 410 is the determined cDNA sequence for clone 32002. SEO ID NO: 411 is the determined cDNA sequence for clone 31939. SEQ ID NO: 412 is the determined cDNA sequence for clone 32003. SEQ ID NO: 413 is the determined cDNA sequence for clone 31936. SEQ ID NO: 414 is the determined cDNA sequence for clone 32007. 30 SEO ID NO: 415 is the determined cDNA sequence for clone 31965.

SEO ID NO: 416 is the determined cDNA sequence for clone 31935. SEO ID NO: 417 is the determined cDNA sequence for clone 32008. SEO ID NO: 418 is the determined cDNA sequence for clone 31966. SEQ ID NO: 419 is the determined cDNA sequence for clone 32020. SEO ID NO: 420 is the determined cDNA sequence for clone 31971. SEO ID NO: 421 is the determined cDNA sequence for clone 31977. SEQ ID NO: 422 is the determined cDNA sequence for clone 31985. SEQ ID NO: 423 is the determined cDNA sequence for clone 32023. SEO ID NO: 424 is the determined cDNA sequence for clone 31981. SEQ ID NO: 425 is the determined cDNA sequence for clone 32006. 10 SEQ ID NO: 426 is the determined cDNA sequence for clone 31991. SEQ ID NO: 427 is the determined cDNA sequence for clone 31995. SEQ ID NO: 428 is the determined cDNA sequence for clone 32000. SEQ ID NO: 429 is the determined cDNA sequence for clone 31990. SEQ ID NO: 430 is the determined cDNA sequence for clone 31946. 15 SEQ ID NO: 431 is the determined cDNA sequence for clone 31938. SEQ ID NO: 432 is the determined cDNA sequence for clone 31941. SEQ ID NO: 433 is the determined cDNA sequence for clone 31982. SEO ID NO: 434 is the determined cDNA sequence for clone 31996. SEQ ID NO: 435 is the determined cDNA sequence for clone 32010. 20 SEQ ID NO: 436 is the determined cDNA sequence for clone 31974. SEQ ID NO: 437 is the determined cDNA sequence for clone 31983. SEQ ID NO: 438 is the determined cDNA sequence for clone 31999. SEQ ID NO: 439 is the determined cDNA sequence for clone 31949. SEQ ID NO: 440 is the determined cDNA sequence for clone 31947. 25 SEQ ID NO: 441 is the determined cDNA sequence for clone 31994. SEQ ID NO: 442 is the determined cDNA sequence for clone 31958. SEQ ID NO: 443 is the determined cDNA sequence for clone 31975. SEQ ID NO: 444 is the determined cDNA sequence for clone 31984. SEQ ID NO: 445 is the determined cDNA sequence for clone 32024. 30 SEQ ID NO: 446 is the determined cDNA sequence for clone 31972.

15

20

25

30

SEQ ID NO: 447 is the determined cDNA sequence for clone 31943. SEQ ID NO: 448 is the determined cDNA sequence for clone 32018. SEQ ID NO: 449 is the determined cDNA sequence for clone 32026. SEO ID NO: 450 is the determined cDNA sequence for clone 32009. SEQ ID NO: 451 is the determined cDNA sequence for clone 32019. SEQ ID NO: 452 is the determined cDNA sequence for clone 32025. SEQ ID NO: 453 is the determined cDNA sequence for clone 31967. SEQ ID NO: 454 is the determined cDNA sequence for clone 31968. SEQ ID NO: 455 is the determined cDNA sequence for clone 31955. SEQ ID NO: 456 is the determined cDNA sequence for clone 31951. SEQ ID NO: 457 is the determined cDNA sequence for clone 31970. SEQ ID NO: 458 is the determined cDNA sequence for clone 31962. SEQ ID NO: 459 is the determined cDNA sequence for clone 32001. SEQ ID NO: 460 is the determined cDNA sequence for clone 31953. SEQ ID NO: 461 is the determined cDNA sequence for clone 31944. SEQ ID NO: 462 is the determined cDNA sequence for clone 31825. SEQ ID NO: 463 is the determined cDNA sequence for clone 31828. SEQ ID NO: 464 is the determined cDNA sequence for clone 31830. SEQ ID NO: 465 is the determined cDNA sequence for clone 31841. SEQ ID NO: 466 is the determined cDNA sequence for clone 31847. SEQ ID NO: 467 is the determined cDNA sequence for clone 31850. SEQ ID NO: 468 is the determined cDNA sequence for clone 31852. SEQ ID NO: 469 is the determined cDNA sequence for clone 31855. SEQ ID NO: 470 is the determined cDNA sequence for clone 31858. SEQ ID NO: 471 is the determined cDNA sequence for clone 31861. SEQ ID NO: 472 is the determined cDNA sequence for clone 31868. SEQ ID NO: 473 is the determined cDNA sequence for clone 31870. SEQ ID NO: 474 is the determined cDNA sequence for clone 31872. SEQ ID NO: 475 is the determined cDNA sequence for clone 31873. SEQ ID NO: 476 is the determined cDNA sequence for clone 31877. SEQ ID NO: 477 is the determined cDNA sequence for clone 31878.

SEQ ID NO: 478 is the determined cDNA sequence for clone 31885.

SEQ ID NO: 479 is the determined cDNA sequence for clone 31888.

SEQ ID NO: 480 is the determined cDNA sequence for clone 31890.

SEQ ID NO: 481 is the determined cDNA sequence for clone 31893.

SEQ ID NO: 482 is the determined cDNA sequence for clone 31898.

SEQ ID NO: 483 is the determined cDNA sequence for clone 31901.

SEQ ID NO: 484 is the determined cDNA sequence for clone 31909.

SEQ ID NO: 485 is the determined cDNA sequence for clone 31910.

SEQ ID NO: 486 is the determined cDNA sequence for clone 31914.

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as colon cancer. The compositions described herein may include colon tumor polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells). Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a colon tumor protein or a variant thereof. A "colon tumor protein" is a protein that is expressed in colon tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a normal tissue, as determined using a representative assay provided herein. Certain colon tumor proteins are tumor proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with colon cancer. Polynucleotides of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to a polypeptide as described above. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as described above.

The present invention is based on the discovery of human colon tumor proteins. Sequences of polynucleotides encoding specific tumor proteins are provided in SEQ ID NO: 1-121, 123-197 and 205-486.

5 COLON TUMOR PROTEIN POLYNUCLEOTIDES

10

15

20

25

30

Any polynucleotide that encodes a colon tumor protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a colon tumor protein. More preferably, a polynucleotide encodes an immunogenic portion of a colon tumor protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a colon tumor protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native tumor protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native colon tumor protein or a portion thereof.

Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and

compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

20

25

30

Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of

hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native colon tumor protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

10

15

20

25

30

Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (i.e., expression that is at least two fold greater in a colon tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as colon tumor cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a colon tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide

probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

5 -

10 -

15

20

25

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by

32 PCT/US99/30909 WO 00/37643

amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al., Nucl. Acids Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

10

15

20

25

30

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.

Certain nucleic acid sequences of cDNA molecules encoding portions of colon tumor proteins are provided in SEQ ID NO: 1-121, 123-197 and 205-486. These polynucleotides were isolated from colon tumor cDNA libraries using conventional and/or PCR-based subtraction techniques, as described below.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., DNA 2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a colon tumor protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting

antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a colon tumor polypeptide, and administering the transfected cells to the patient).

A portion of a sequence complementary to a coding sequence (i.e., an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a tumor protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr, Molecular and Immunologic Approaches, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.

10

15

20

25

30

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In

general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

COLON TUMOR POLYPEPTIDES

10

15

20

25

30

Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a colon tumor protein or a variant thereof, as described herein. As noted above, a "colon tumor protein" is a protein that is expressed by colon tumor cells. Proteins that are colon tumor proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with colon cancer. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or

heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

An "immunogenic portion," as used herein is a portion of a protein that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a colon tumor protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

10

15

20

25

30

Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native colon tumor protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, 125I-labeled Protein A.

As noted above, a composition may comprise a variant of a native colon tumor protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native colon tumor protein in one or more substitutions, deletions, additions and/or insertions, such

that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.

5

15

30

Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described above) to the identified polypeptides.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain non-conservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

10

15

20

25

30

Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein. A

fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

15

20

25

30

A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene 40*:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA 83*:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and

second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

10

15

20

25

30

Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; Gene 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E. coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid

proteins containing the C-LYTA fragment at the amino terminus has been described (see Biotechnology 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

BINDING AGENTS

15

20

25

The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a colon tumor protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a colon tumor protein if it reacts at a detectable level (within, for example, an ELISA) with a colon tumor protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a cancer, such as colon cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a colon tumor protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies

this requirement, biological samples (e.g., blood, sera, sputum, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

10

15

20

25

30

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example,

from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

10

15

20

25

30

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid.

Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

10

15

20

25

30

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

10

15

20

25

30.

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

T CELLS

Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for a colon tumor protein. Such cells may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the ISOLEXTM system, available from

Nexell Therapeutics Inc., Irvine, CA. Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a colon tumor polypeptide, polynucleotide encoding a colon tumor polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, a colon tumor polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

10

15

20

25

30

T cells are considered to be specific for a colon tumor polypeptide if the T cells kill target cells coated with the polypeptide or expressing a gene encoding the T cell specificity may be evaluated using any of a variety of standard polypeptide. techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a colon tumor polypeptide (100 ng/ml - 100 μg/ml, preferably 200 ng/ml - 25 μg/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-γ) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. 1, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a colon tumor polypeptide, polynucleotide or polypeptide-expressing APC may be CD4+ and/or CD8+. Colon tumor protein-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a colon tumor polypeptide, polynucleotide or APC can be expanded in number either *in vitro*

or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a colon tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a colon tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of a colon tumor protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

PHARMACEUTICAL COMPOSITIONS AND VACCINES

10

15

20

25

30

Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (*i.e.*, vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (*e.g.*, polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the

necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., Proc. Natl. Acad. Sci. USA 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219, 1994; Kass-Eisler et al., Proc. Natl. Acad. Sci. USA 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

10

15

20

25

30

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and

5,075,109.

10

15

20

25

30

Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, TNFα, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.

10

20

25

30

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT) (see US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical

compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

5

10

20

30

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature 392*:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (*see* Timmerman and Levy, *Ann. Rev. Med. 50*:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency, and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (*see Zitvogel et al.*, *Nature Med. 4:*594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

10

20

25

30

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a colon tumor protein (or portion or other variant thereof) such that the colon tumor polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the colon tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a nonconjugated immunological partner, separately or in the presence of the polypeptide.

CANCER THERAPY

In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as colon cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or

may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the in vivo stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).

10

15

20

25

30

Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8+ cytotoxic T lymphocytes and CD4⁺ T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast and/or B cells, may be pulsed with immunoreactive

polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term *in vivo*. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated ex vivo for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.

10

15

20

25

30

Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to nonvaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a colon tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

METHODS FOR DETECTING CANCER

10

15

20

25

- 30

In general, a cancer may be detected in a patient based on the presence of one or more colon tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, sputum, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as colon cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, a colon tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of

the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length colon tumor proteins and portions thereof to which the binding agent binds, as described above.

10

15

20

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 μg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

10

15

20

25

30

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with colon cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

. 5

10

. 15

20

25

30

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of a cancer, such as colon cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered

10

15

20

25

30

positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of Concentration of second binding agent at the area of immobilized binding agent. immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use colon tumor polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such colon tumor protein specific antibodies may correlate with the presence of a cancer.

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a colon tumor protein in a biological sample. Within certain methods, a biological sample comprising CD4⁺ and/or CD8⁺ T cells isolated from a patient is incubated with a colon tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with one or more representative polypeptides (e.g., 5 - 25 μg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of colon tumor polypeptide to serve as a control. For CD4* T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8⁺ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

10

15

20

25

30

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a colon tumor protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a colon tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the colon tumor protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a colon tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a colon tumor protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will

10

15

20

25

30

hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ ID NO: 1-121, 123-197 and 205-486. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may

also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple colon tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

10

15

20

25

DIAGNOSTIC KITS

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a colon tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a colon tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a colon tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a colon tumor protein.

The following Examples are offered by way of illustration and not by way of limitation.

10

15

20

25

30

EXAMPLES

Example 1

ISOLATION AND CHARACTERIZATION OF COLON TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION AND MICROARRAY ANALYSIS

A cDNA library was constructed in the PCR2.1 vector (Invitrogen, Carlsbad, CA) by subtracting a pool of three colon tumors with a pool of normal colon, spleen, brain, liver, kidney, lung, stomach and small intestine using PCR subtraction methodologies (Clontech, Palo Alto, CA). The subtraction was performed using a PCR-based protocol, which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (MluI, MscI, PvuII, SalI and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with RsaI according to the Clontech protocol. This modification did not affect the subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs, and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.

The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not

hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are over-expressed in colon tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

5

20

25

To characterize the complexity and redundancy of the subtracted library, 96 clones were randomly picked and 65 were sequenced, as previously described. These sequences were further characterized by comparison with the most recent Genbank database (April, 1998) to determine their degree of novelty. No significant homologies were found to 21 of these clones, hereinafter referred to as 11092, 11093, 11096, 11098, 11103, 11174, 11108, 11112, 11115, 11117, 11118, 11134, 11151, 11154, 11158, 11168, 11172, 11175, 11184, 11185 and 11187. The determined cDNA sequences for these clones are provided in SEQ ID NO: 48, 49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101 and 109-111, respectively.

Two-thousand clones from the above mentioned cDNA subtraction library were randomly picked and submitted to a round of PCR amplification. Briefly, 0.5 μl of glycerol stock solution was added to 99.5 μl of pcr MIX (80 μl H₂0, 10 μl 10X PCR Buffer, 6 μl 25 mM MgCl₂, 1 μl 10 mM dNTPs, 1 μl 100 mM M13 forward primer (CACGACGTTGTAAAACGACGG), 1 μl 100 mM M13 reverse primer (CACAGGAAACAGCTATGACC)), and 0.5 μl 5 u/ml Taq polymerase (primers provided by (Operon Technologies, Alameda, CA). The PCR amplification was run for thirty cycles under the following conditions: 95°C for 5 min., 92°C for 30 sec., 57°C for 40 sec., 75°C for 2 min. and 75°C for 5 minutes.

mRNA expression levels for representative clones were determined using microarray technology (Synteni, Palo Alto, CA) in colon tumor tissues (n=25), normal colon tissues (n=6), kidney, lung, liver, brain, heart, esophagus, small intestine, stomach, pancreas, adrenal gland, salivary gland, resting PBMC, activated PBMC, bone marrow, dendritic cells, spinal cord, blood vessels, skeletal muscle, skin, breast and fetal tissues. The number of tissue samples tested in each case was one (n=1), except where specifically noted above; additionally, all the above-mentioned tissues were derived from humans. The PCR

amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, and fluorescent-labeled cDNA probes were generated by reverse transcription according to the protocol provided by Synteni. The microarrays were probed with the labeled cDNA probes, the slides scanned, and fluorescence intensity was measured. This intensity correlates with the hybridization intensity.

One hundred and forty nine clones showed two or more fold over-expression in the colon tumor probe group as compared to the normal tissue probe group. These cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A and/or Model 377 (Foster City, CA). These sequences were compared to known sequences in the most recent GenBank database. No significant homologies to human gene sequences were found in forty nine of these clones, represented by the following sixteen cDNA consensus sequences: SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46 and 47, hereinafter referred to as Contig 2, 8, 13, 14, 20, 23, 29, 31, 35, 32, 36, 38, 41, 42, 50 and 51, respectively). Contig 29 (SEQ ID NO: 30) was found to be a Rat GSK-3-β-interacting protein Axil homolog. Also, Contigs 31 and 35 (SEQ ID NO: 32 and 33, respectively) were found to be a Mus musculus GOB-4 homolog. The determined cDNA sequences of SEQ ID NO: 1, 3-7, 9-14, 17-21, 23, 25-29, 31, 35, 37, 39, 42-45, 50, 51, 53, 55-58, 61-64, 70-78, 80-88, 91, 92, 94-98, 102-108 and 112 were found to show some homology to previously identified genes sequences.

10

20

25

30

Microarray analysis demonstrated Contig 2 (SEQ ID NO: 2) showed over-expression in 34% of colon tumors tested, as well as increased expression in normal pancreatic tissue, with no over-expression in normal colon tissues. Upon further analysis, Contigs 2, 8 and 23 were found to share homology to the known gene GW112. Contigs 4, 5, 9 and 52 showed homology to carcinoembryonic antigen (SEQ ID NO: 3, 4, 5 and 6, respectively). A representative sampling of these fragments showed over-expression in 85% of colon tumors, with over-expression in normal bone marrow and 3/6 normal colon tissues. Contig 6 (SEQ ID NO: 7), showing homology to the known gene sequence for villin, and was over-expressed in about half of all colon tumors tested, with a limited degree of low level over-expression in normal colon. Contig 12 (SEQ ID NO: 14), showing homology to Chromosome 17, clone hRPC.1171_I_10, also referred to as C798P, was over-expressed in

approximately 70% of colon tumors tested, with low over-expression in 1/6 normal colon samples. Contig 14, also referred to as 14261 (SEQ ID NO: 16), showing no significant homology to any known gene, showed over-expression in 44% of colon tumors tested, with low level expression in half of normal colon tissues, as well as small intestine and pancreatic tissue. Contig 18 (SEQ ID NO: 21), showing homology to the known gene for L1-cadherin, showed over-expression in approximately half of colon tumors and low level over-expression in 3/6 normal colon tissues tested. Contig 22 (SEQ ID NO: 23), showing homology to Bumetanide-sensitive Na-K-Cl cotransporter was over-expressed in 70% of colon tumors and no over-expression in all normal tissues tested. Contig 25 (SEQ ID NO: 25), showing homology to macrophage inflammatory protein-3α, was over-expressed in over 40% of colon tumors and in activated PBMC. Contigs 26 and 48 (SEQ ID NOS: 25 and 26), showing homology to the sequence for laminin, was over-expressed in 48% of colon tumors and with low over-expression in stomach tissue. Contig 28 (SEQ ID NO: 29), showing homology to the known gene sequence for Chromosome 16 BAC clone CIT987SK-A-363E6, was overexpressed in 33% of colon tumors tested with normal stomach and 2/6 normal colon tissues showing low level over-expression. Contigs 29, 31 and 35 (SEQ ID NOS: 30, 32 and 33, respetively), also referred to as C751P, an unknown sequence showing limited and partial homology to Rat GSK-3β-interacting protein Axil homolog.and Mus musculus GOB-4 homolog, was over-expressed in 74% of colon tumors and no over-expression in all normal tissues tested. Contig 34 (SEQ ID NO: 35), showing homology to the known sequence for desmoglein 2, was over-expressed in 56% of colon tumors and showed low level overexpression in 1/6 normal colon tissues. Contig 36 (SEQ ID NO: 36), an unknown sequence also referred to as C793P, showed over-expression in 30% of colon tumor tissues tested. Contig 37 and 14287.2 (SEQ ID NOS: 37 and 116), an unknown sequence, but with limited (89%) homology to the known sequence for putative transmembrane protein was over-25 expressed in 70% of colon tumors, as well as in normal lung tissue and 3/6 normal colon tissues tested. Contig 38, also referred to as C796P and 14219 (SEQ ID NO: 38), showing no significant homology to any known gene, was over-expressed in 38% in colon tumors and no elevated over-expression in any normal tissues. Contig 41 (SEQ ID NO: 40), also referred to as C799P and 14308, an unknown sequence showing no significant homology to any known 30 gene, was over-expressed in 22% of colon tumors. Contig 42, (SEQ ID NO: 41), also

10

15

20

referred to as C794P and 14309, an unknown sequence with no significant homology to any known gene, was over-expressed in 63% of colon tumors tested, as well as in 3/6 normal colon tissues. Contig 43 (SEQ ID NO: 42), showing homology to the known sequence for Chromosome 1 specific transcript KIAA0487 was over-expressed in 85% of colon tumors tested and in normal lung and 4/6 normal colon tissues. Contig 49 (SEQ ID NO: 45), showing homology to the known sequence for pump-1, was over-expressed in 44% of colon tumors and no over-expression in all normal tissues tested. Contig 50 (SEQ ID NO: 46), also referred to as C792P and 18323, showing no significant homology to any known gene, was over-expressed in 33% of colon tumors with no detectable over-expression in any normal tissues tested. Contig 51 (SEQ ID NO: 47), also referred to as C795P and 14317 was over-expressed in 11% of colon tumors.

10

15

20

25

30

Additional microarray analysis yielded seven clones showing two or more fold overexpression in the colon tumor probe group as compared to the normal tissue probe group. Three of these clones demonstrated particularly good colon tumor specificity, and are represented by SEQ ID NO: 115, 116 and 120. Specifically, SEQ ID NO: 115, referred to as C791P or 14235, which shows homology to the known gene sequence for H. sapiens chromosome 21 derived BAC containing ets-2 gene, was over-expressed in 89% of colon tumors tested and in 5/6 normal colon tissues, as well as over-expressed at low levels in normal lung and activated PBMC. Microarray analysis for SEQ ID NO: 116 is discussed above. SEQ ID NO: 120, referred to as 14295, showing homology to the known gene sequence for secreted cement gland protein XAG-2 homolog, was over-expressed in 70% of colon tumors and in 5/6 normal colon tissues, as well as low level over-expression in normal small intestine, stomach and lung. All clones showing over-expression in colon tumor were sequenced and these sequences compared to the most recent Genbank database (February 12, 1999). Of the seven clones, three contained sequences that did not share significant homology to any known gene sequences, represented by SEQ ID NO: 116, 117 and 119. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in colon. The determined cDNA sequences of the remaining clones (SEQ ID NO: 113-115 and 120) were found to show some homology to previously identified genes.

Further analysis identified a clone which was recovered several times by PCR subtraction and by expression screening using a mouse anti-scid antiserum. The determined

full length cDNA sequence for this clone is provided in SEQ ID NO: 121, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 122. This clone is homologous with the known gene Beta IG-H3, as disclosed in U.S. Patent No. 5,444,164. Microarray analysis demonstrated this clone to be over-expressed in 75 to 80% of colon tumors tested (n=27), with no over-expression in normal colon samples (n=6), but with some low level over-expression in other normal tissues tested.

Further analysis of the PCR-subtraction library described above led to the isolation of longer cDNA sequences for the clones of SEQ ID NO: 30, 115, 46, 118, 41, 47, 38, 113, 14 and 40 (known as C751P, C791P, C792P, C793P, C794P, C795P, C796P, C797P, C798P and C799P, respectively). These determined cDNA sequences are provided in SEQ ID NO: 123-132, respectively.

10

20

25

30

Using PCR subtraction methodology described above with minor modifications, transcripts from a pool of three moderately differentiated colon adenocarcinoma samples were subtracted with a set of transcripts from normal brain, pancreas, bone marrow, liver, heart, lung, stomach and small intestine. Modifications of the above protocol were included at the cDNA digestion steps and in the tester to drive hybridization ratios. In a first subtraction, the restriction enzymes PvuII, DraI, MscI and StuI were used to digest cDNAs, and the tester to driver ratio was 1:40, as suggested by Clontech. In a second subtraction, Dral, MscI and Stul were used for cDNA digestion and a tester to driver ratio of 1:76 was used. Following the PCR amplification steps, the cDNAs were clones into pCR2.1 plasmid vector. The determined cDNA sequences of 167 isolated clones are provided in SEQ ID NO: 205-371. These sequences were compared to sequences in the public databases as described above. The sequences of SEQ ID NO: 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369 and 371 were found to show some homology to previously identified ESTs. The remaining sequences were found to show some homology to previously identified genes.

Using the PCR subtraction technology described above, a cDNA library from a pool of primary colon tumors was subtracted with a cDNA library prepared from normal tissues, including brain, bone marrow, kidney, heart, lung, liver, pancreas, small intestine,

WO 00/37643

stomach and trachea. The determined cDNA sequences for 90 clones isolated in this subtraction are provided in SEQ ID NO: 372-461. Comparison of these sequences with those in the public databases as described above, revealed no homologies to the sequences of SEQ ID NO: 426, 445 and 453. The sequences of SEQ ID NO: 372-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455 and 457-461 showed some homology to previously identified genes, while the sequences of SEQ ID NO: 379, 405, 407, 408, 418, 424, 430-432, 437, 442, 444, 452 and 456 showed some homology to previously isolated ESTs.

68

10

15

20

25

30

Example 2 ISOLATION OF TUMOR POLYPEPTIDES USING SCID-PASSAGED TUMOR RNA

Human colon tumor antigens were obtained using SCID mouse passaged colon tumor RNA as follows. Human colon tumor was implanted in SCID mice and harvested, as described in Patent Application Serial No. 08/556,659 filed 11/13/95, U.S. Patent No. 5,986,170. First strand cDNA was synthesized from poly A+ RNA from three SCID mouse-passaged colon tumors using a Lambda ZAP Express cDNA synthesis kit (Stratagene). The reactions were pooled and digested with RNase A, T1 and H to cleave the RNA and then treated with NaOH to degrade the RNA. The resulting cDNA was annealed with biotinylated (Vector Labs, Inc., Burlingame, CA) cDNA from a normal resting PBMC plasmid library (constructed from Superscript plasmid System, Gibco BRL), and subtracted with streptavidin by phenol/chloroform extraction. Second strand cDNA was synthesized from the subtracted first strand cDNA and digested with S1 nuclease (Gibco BRL). The cDNA was blunted with Pfu polymerase and EcoRI adaptors (Stratagene) were ligated to the The cDNA was phosphorylated with T4 polynucleotide kinase, digested with restriction endonuclease XhoI, and size selected with Sephacryl S-400 (Sigma). Fractions were pooled, ligated to Lambda ZAP Express arms (Stratagene) and packaged with Gigapack Gold III extract (Stratagene). Random plaques were picked, phagemid was excised, transformed into XLOLR cells (Stratagene) and resulting plasmid DNA (Qiagen Inc., Valencia, CA) was sequenced as described above. The determined cDNA sequences for 17

clones isolated as described above are provided in SEQ ID NO: 133-151, wherein 133 and 134 represent partial sequences of a clone referred to as CoSub-3 and SEQ ID NO: 135 and 136 represent partial sequences of a clone referred to as CoSub-13. These sequences were compared with those in the public databases as described above. The sequences of SEQ ID NO: 139 and 149 showed no significant homologies to any previously identified sequences. The sequences of SEQ ID NO: 138, 140, 141, 142, 143, 148 and 149 showed some homology to previously isolated expressed sequence tags (ESTs). The sequences of SEQ ID NO: 133-137, 144-147, 150 and 151 showed some homology to previously isolated gene sequences.

10

15

20

Example 3

USE OF MOUSE ANTISERA TO IDENTIFY DNA SEQUENCES ENCODING COLON TUMOR ANTIGENS

This example illustrates the isolation of cDNA sequences encoding colon tumor antigens by screening of colon tumor cDNA libraries with mouse anti-tumor sera.

A cDNA expression library was prepared from SCID mouse-passaged human colon tumor poly A+ RNA using a Stratagene (La Jolla, CA) Lambda ZAP Express kit, following the manufacturer's instructions. Sera was obtained from the colon tumor-bearing SCID mouse. This serum was injected into normal mice to produce anti-colon tumor serum. Approximately 600,000 PFUs were screened from the unamplified library using this antiserum. Using a goat anti-mouse IgG-A-M (H+L) alkaline phosphatase second antibody developed with NBT/BCIP (BRL Labs.), positive plaques were identified. Phage was purified and phagemid excised for several clones with inserts in a pBK-CMV vector for expression in prokaryotic or eukaryotic cells.

25

30

The determined cDNA sequences for 46 of the isolated clones are provided in SEQ ID NO: 152-197. The predicted amino acid sequences for the cDNA sequences of SEQ ID NO: 187, 188, 189, 190, 194, 195 and 197 are provided in SEQ ID NO: 198-204, respectively. The determined cDNA sequences were compared with those in the public database as described above. The sequences of SEQ ID NO: 156, 168, 184, 189, 192 and 196 showed some homology to previously isolated ESTs. The sequences of SEQ ID NO: 152-

10

15

20

25

30

155, 157-167, 169-182, 183, 185-188, 190, 194, 195 and 197 showed some homology to previously identified genes.

Example 4

ISOLATION AND CHARACTERIZATION OF COLON TUMOR POLYPEPTIDES BY CONVENTIONAL SUBTRACTION

Two cDNA libraries were constructed and used to create a subtracted cDNA library as follows.

Using the GibcoBRL Superscript Plasmid System with minor modifications, two cDNA libraries were created. The first library, referred to as CTCL, was prepared from a pool of mRNA samples from three colon adenocarcinoma tissue samples. Two of the samples were described as Duke's stage C and one as Duke's stage B. All three samples were grade III in histological status. A second library (referred to as DriverLibpcDNA3.1+) was prepared from a pool of normal tissues, namely liver, pancreas, skin, bone marrow, resting PBMC, stomach and brain. Both libraries were prepared using the manufacturer's instructions with the following modifications: an EcoRI-Notl 5' cDNA adapter was used instead of the provided reagent; the vector pCDNA3.1(+) (Invitrogen) was substituted for the pSPORT vector; and the ligated DNA molecules were transformed into ElectroMaxDH10B electrocompetent cells. Clones from the libraries were analyzed by restriction digest and sequencing to determine average insert size, quality of the library and complexity of the library. DNA was prepared from each library and digested.

The driver DNA was biotinylated and hybridized with the colon library tester DNA at a ratio of 10:1. After two rounds of hybridizations, streptavidin incubations and extractions, the remaining colon cDNAs were size-selected by column chromatography and cloned into the pCMV-Script vector from Stratagene. Clones from this subtracted library (referred to as CTCL-S1) were characterized as described above for the unsubtracted libraries.

The determined cDNA sequences for 18 clones isolated from the CTCL-S1 library are provided in SEQ ID NO: 462-479. Comparison of these sequences with those in the public databases, as described above, revealed no significant homologies to the sequences

of SEQ ID NO: 476, 477 and 479. The remaining sequences showed some homology to previously identified genes.

In further studies, a cDNA library was prepared from a pool of mRNA from three metastatic colon adenocarcinomas derived from liver tissue samples. All samples were described as Duke's stage D. Conventional subtraction was performed as described above, using the DriverLibpcDNA3.1+ library described above as the driver. The resulting subtracted library (referred to as CMCL-S1) was characterized by isolating a set of clones for restriction analysis and sequencing.

The determined cDNA sequences for 7 clones isolated from the CMCL-S1 library are provided in SEQ ID NO: 480-486. Comparison of these sequences with those in the public databases revealed no significant homologies to the sequence of SEQ ID NO: 483. The sequences of SEQ ID NO: 480-482 and 484-486 were found to show some homology to previously identified genes.

Example 5

15

20

30

SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems Division 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

72 PCT/US99/30909

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

20

25

30

CLAIMS

- 1. An isolated polypeptide comprising at least an immunogenic portion of a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
 - (a) sequences recited in SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483;
 - (b) sequences that hybridize to a sequence of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 under moderately stringent conditions; and
 - (c) a complement of a sequence of (a) or (b).
- 2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168,

WO 00/37643 74 PCT/US99/30909

170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 or a complement of any of the foregoing polynucleotide sequences.

- 3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 122 and 198-204.
- An isolated polynucleotide encoding at least 15 amino acid residues of 10 a colon tumor protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 15 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 20 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 or a complement of any of the foregoing sequences.
- 5. An isolated polynucleotide encoding a colon tumor protein, or a variant thereof, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303,

310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 or a complement of any of the foregoing sequences.

- 6. An isolated polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483.
- 7. An isolated polynucleotide comprising a sequence that hybridizes to a sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 under moderately stringent conditions.
- 8. An isolated polynucleotide complementary to a polynucleotide 25 according to any one of claims 4-7.
 - 9. An expression vector comprising a polynucleotide according to any one of claims claim 4-8.
- 30 10. A host cell transformed or transfected with an expression vector according to claim 9.

20

- 11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a colon tumor protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 2, 8, 15, 16, 22, 24, 30, 32-34, 36, 38, 40, 41, 46-49, 52, 54, 59, 60, 65-69, 79, 89, 90, 93, 99-101, 109-111, 116-119, 123-132, 138-142, 143, 148, 149, 156, 168, 170-182, 184, 189, 191-193, 196, 205, 207, 210-212, 214, 215, 218, 224-226, 228, 233, 234, 236, 238, 241, 242, 245, 246, 248, 250, 253, 254, 256, 259, 260, 262, 263, 266, 267, 270-273, 279, 282, 291, 293, 294, 298, 300, 302, 303, 310-313, 315, 317, 320, 322, 324, 332-335, 345, 347, 356, 358, 361, 362, 366, 369, 371-378, 380-404, 406, 409-417, 419-423, 425, 427-429, 433-436, 438-441, 443, 446-451, 454, 455, 457-461, 476, 477, 479 and 483 or a complement of any of the foregoing polynucleotide sequences.
- 12. A fusion protein comprising at least one polypeptide according to claim 1.
 - 13. A fusion protein according to claim 12, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.
 - 14. A fusion protein according to claim 12, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.
 - 15. A fusion protein according to claim 12, wherein the fusion protein comprises an affinity tag.
 - 16. An isolated polynucleotide encoding a fusion protein according to claim 12.
- 17. A pharmaceutical composition comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:

15

- (a) a polypeptide according to claim 1;
- (b) a polynucleotide according to claim 4;
- (c) an antibody according to claim 11;
- (d) a fusion protein according to claim 12; and
- (e) a polynucleotide according to claim 16.
- 18. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:
 - (a) a polypeptide according to claim 1;
 - (b) a polynucleotide according to claim 4;
 - (c) an antibody according to claim 11;
 - (d) a fusion protein according to claim 12; and
 - (e) a polynucleotide according to claim 16.
- 19. A vaccine according to claim 18, wherein the immunostimulant is an adjuvant.
- 20. A vaccine according to any claim 18, wherein the immunostimulant induces a predominantly Type I response.
- 21. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 17.
- 25 22. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to claim 20.
- 23. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.

15

20

25

- 24. A pharmaceutical composition according to claim 23, wherein the antigen presenting cell is a dendritic cell or a macrophage.
- 25. A vaccine comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with an immunostimulant.
 - 26. A vaccine according to claim 25, wherein the immunostimulant is an adjuvant.
 - 27. A vaccine according to claim 25, wherein the immunostimulant induces a predominantly Type I response.
 - 28. A vaccine according to claim 25, wherein the antigen-presenting cell is a dendritic cell.
 - 29. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide encoded by a polynucleotide recited in any one of SEQ ID NO: 1-121, 123-197 and 205-486, and thereby inhibiting the development of a cancer in the patient.
 - 30. A method according to claim 29, wherein the antigen-presenting cell is a dendritic cell.
 - 31. A method according to any one of claims 21, 22 and 29, wherein the cancer is colon cancer.
 - 32. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
 - (i) polynucleotides recited in any one of SEQ ID NO: 1-121, 123-

30

197 and 205-486; and

- (ii) complements of the foregoing polynucleotides;
- wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the antigen from the sample.
- 33. A method according to claim 32, wherein the biological sample is blood or a fraction thereof.
- 34. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 50.
- 35. A method for stimulating and/or expanding T cells specific for a colon tumor protein, comprising contacting T cells with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
 - (ii) a polypeptide encoded by a polynucleotide comprising a sequence provided in any one of SEQ ID NO: 1-121, 123-197 and 205-486;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and
 - (iv) an antigen presenting cell that expresses a polypeptide of (i) or (ii), under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.
- 36. An isolated T cell population, comprising T cells prepared according to the method of claim 35.
 - 37. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 36.
 - 38. A method for inhibiting the development of a cancer in a patient,

comprising the steps of:

- (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
 - (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-121, 123-197 and 205-486;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and
 - (iv) an antigen-presenting cell that expresses a polypeptide of (i) or

10 (ii);

15

20

such that T cells proliferate; and

- (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.
- 39. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
 - (a) incubating CD4⁺ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
 - (i) a polypeptide according to claim 1;
 - (ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-121, 123-197 and 205-486;
 - (iii) a polynucleotide encoding a polypeptide of (i) or (ii); and
 - (iii) an antigen-presenting cell that expresses a polypeptide of (i) or

25 (ii);

30

such that T cells proliferate;

- (b) cloning at least one proliferated cell to provide cloned T cells; and
- (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.
 - 40. A method for determining the presence or absence of a cancer in a

10

15

20

25

30

patient, comprising the steps of:

- (a) contacting a biological sample obtained from a patient with a binding agent that binds to a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
- (i) polynucleotides recited in any one of SEQ ID NO: 1-121, 123-197 and 205-486; and
 - (ii) complements of the foregoing polynucleotides;
- (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and
- (c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
- 41. A method according to claim 40, wherein the binding agent is an antibody.
- 42. A method according to claim 43, wherein the antibody is a monoclonal antibody.
 - 43. A method according to claim 40, wherein the cancer is colon cancer.
- 44. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
- (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 1-121, 123-197 and 205-486 or a complement of any of the foregoing polynucleotides;
- (b) detecting in the sample an amount of polypeptide that binds to the binding agent;
- (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and

15

20

25

- (d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
- 45. A method according to claim 44, wherein the binding agent is an antibody.
 - 46. A method according to claim 45, wherein the antibody is a monoclonal antibody.
 - 47. A method according to claim 44, wherein the cancer is a colon cancer.
 - 48. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
 - (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a colon tumor protein, wherein the tumor protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 1-121, 123-197 and 205-486 or a complement of any of the foregoing polynucleotides;
 - (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and
 - (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
 - 49. A method according to claim 48, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
 - 50. A method according to claim 48, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
 - 51. A method for monitoring the progression of a cancer in a patient,

<213> Homo sapien

<400> 419	60
	120
acttetttga ccaaggaata ccacagacae ectacegata garactee tgaccetaet tgaacaetee ettgeteetg ettacgaagt atteccaate actggteate tgaccetaet tgaacaetee ettgeteetg ettacgaagt attectataa	180
cttgctcctg cttacgaagt attcccaatc actggtcate tgaetata acttctataa tgaacagtca tgtttttaa aatcttcctt tatatcaagt cagagagtat acttctataa tgaacagtca tgtttttaa gaaatctagt carcttccct gtgattgccc tgttaagtat	240
tgaacagtca tgttttttaa aatcttcctt tatatcaagt tagaggget tgttaagtat atttcactca tggatgttag gaaatctagt catcttcct gtgattgccc tgttaagtat	297
attroactca tggatgttag gaaatctagt dattrocct gagatas tcagtta ttaaacatag ctatcatgtg tttcccaaat cttctctaga ttaaatatct tcagtta	
<210> 420	•
<211> 418	
<212> DNA	
<213> Homo sapien	
<400> 420 acgagaggaa ccgcaggttc agacatttgg tgtatgtcct atcaatagga gctgtatttg	60
acgagaggaa ccgcaggttc agacatttgg tgtatgtttt deductagg ccatcatagg aggctreatt cactgatttc ccctattetc aggctacacc ctagaccaaa ccatcatagg aggctreatt cactgattt tcatcggcgt agatctaact ttetteccac	120
ccatcatagg aggetreatt cactgattte cectatette aggetactaact ttetteecac cctaegecaa aateeattte getateatat teateggegt aaatetaact ttetteecac cctaegecaa aateeattte getateatat gaagttaete ggaetaecec gatacataca	180
cctacgccaa aatccatttc gctatcatat tcatcggcgt dada-	240
aacactttct cggcctatcc ggaatgcccc gatgttactc symmetric gaatattaa ccacatgaaa tatcctatca tctgtaggct cattcatttc tctaacagca gtaatattaa ccacatgaaa tatcctatca gaattcgctt cgaagggaaa agtcctaata gtagaagaac	300 360
ccacatgaaa tatcctatca tetgtagget catteatte tetaabagaa g taatttteat gatttgagaa geettegett egaagegaaa agteetaata gtagaagaac	418
taattttcat gatttgagaa gccttcgctt tgaagegada es cctccataaa cctggagtga ctatatggat gccccccacc ctaccacaca ttcgaaga	410
CCECCAEAAA CCEGGAGGA GOODANGSS	
<210> 421	
<211> 304	
<212> DNA	
<213> Homo sapien	
<400> 421	60
	120
tgaggagetg egggtgattg aagagattes organization creetggaet etgtttatag	180
cgaaattatt ggagtcaaga gctaggaaga Tatactacat tctagaaatt actcaattta	240
coatcition gacotycita agaacatagy strongarti tigitgitig gggtgtgtgt	300
ccatcttcct gacctgctgt agaacatagg galactgcat totaggetttg gggtgtgtgt gtggcagggt ggttttttaa ttttcttctg tttctgattt ttgttgtttg gggtgtgtgt	304
gtgt	
<210> 422	
<211> 578	
<212> DNA <213> Homo sapien	
5213> Homo papaga	
<400> 422	. 60
	120
actgtgcagg cagattcaca gggtggtggt adagcateca tacaggt tecttttcca ggatcacact tgaaggggct ctcagacaaa gttgtattca tgcaactgat tecttttcca	180
ggatcacact tgaaggggct ctcagacaaa gttgtattea tggttttaat aatatcaatg ttcgttttct tagtcactaa tgctttccaa tggtcatgag tgcttttaat aatatcaatg	240
ttegttttet tagteactaa tgettteeaa tggteatgag egoatetetgg tttteeatea geaaagteet tatettaaa ttetgeatta aaegeaaaet cattttetgg tttteeacegt	300
gcaaagtcct tatctttaaa ttctgcatta aacgcaaact catcacagg tttcagccgt ggaaccttat accttctaaa ccagtccaca gtagcttcta agtagccagg tttcagcagt	360
ggaaccttat accttctaaa ccagtccaca gtagcttcta agos ttgacatcat tgatatcatt ataattggct gcatcaggat catccacatt aatggcaatg ttgacatcat tgatatcatt ataattggct atagccaata tgcctagaac tttcaattat	420
ttgacatcat tgatatcatt ataattggct gcatcaggat datetagaac tttcaattat actttccagt cggtttcccc ttcgtcaatc atagccaata tgcctagaac tttcaattat	480
actiticage eggittecce tregicalic atayteadd eggitatig gggteattgt tratticace terigeacat acettgette caatiticaca cacateaatt gggteattgt tratticaec terigeacat acettgette caatiticaea cacateaatt gggteattgt	540
	578
caccatagtt ccagatatat cetttatacg ggaacaaa	

<210> 423 <211> 327