Глава 5

Неопределенный интеграл

§ 5.1 Неопределенный интеграл и его свойства

Рассмотрим следующую задачу.

Скорость свободного падения тяжелой материальной точки в момент времени t задается формулой v=gt (сопротивление среды не учитывается). Требуется найти пройденный за это время путь s=s(t).

В данном случае нужно по заданной функции v найти ту функцию s=s(t), для которой производной будет v.

Непосредственным дифференцированием проверяется, что для функции $s(t)=\frac{gt^2}{2}+C$, где C – произвольная постоянная, производной будет заданная функция v. При различных значениях C мы будем получать различные значения пути в один и тот же момент времени, то есть имеющихся у нас данных недостаточно для полного решения задачи. Чтобы получить вполне определенное решение задачи, достаточно знать величину пути в какой-нибудь момент времени. Предположим, что в момент времени t=0 путь s=0. Подставим эти значения в полученное выражение для пути s(0)=C, то есть C=0. Теперь решение задачи принимает вид $s(t)=\frac{gt^2}{2}$.

Как мы видим, сложность решения этой задачи заключалась в восстановлении функции s=s(t) по ее производной, или, другими словами, в нахождении первообразной для функции v=v(t).

 Π усть X – конечный или бесконечный промежуток числовой оси. **Определение 5.1.** Функция F называется первообразной функцией (или, короче, первообразной) функции f на промежутке X, если F дифференцируема на X и в каждой точке этого промежутка производная функции F равна значению функции f:

$$F'(x) = f(x), x \in X.$$

Функция, имеющая в данной точке производную, непрерывна в этой точке, поэтому первообразная F функции f непрерывна на промежутке X.

Теорема 5.1. Две дифференцируемые на промежутке X функции F и Φ являются первообразными одной и той же функции в том и только том случае, когда они отличаются на постоянную:

$$F(x) = \Phi(x) + C, \ x \in X, \ C = const.$$
 (5.1)

Доказательство. Если имеет место (5.1), то $F' = (\Phi + C)' = \Phi'$, то есть функции F и Φ являются первообразными одной и той же функции.

Пусть, наоборот, F и Φ являются первообразными одной и той же функции f, то есть $F'=\Phi'=f$. Обозначим $\varphi(x)=F(x)-\Phi(x)$. Выберем на промежутке X произвольно точки x_1 и x_2 так, что $x_1 < x_2$; тогда, очевидно, функция φ является непрерывной на отрезке $[x_1, x_2]$ и дифференцируемой на интервале (x_1, x_2) . Поэтому по теореме Лагранжа

$$(5.2)$$
 $F(y) = Q(x) t$

 $F(x) - \emptyset(x) = C$

$$\varphi(x_2) - \varphi(x_1) \equiv \varphi'(\xi)(x_2, x_1), \ x_1 < \xi < x_2.$$
 (5.2)

 $\varphi(x_2) - \varphi(x_1) = \varphi'(\xi)(x_2 - x_1), \quad x_1 < \xi < x_2.$ Отметим, что $\varphi'(x) = F'(x) - \Phi'(x) = 0$ на (x_1, x_2) , в частности, $\varphi'(\xi) = 0$, так как $\xi \in (x_1, x_2)$. Таким образом, из формулы (5.2) следует, что $\varphi(x_1)=\varphi(x_2),$ а поскольку x_1 и x_2 – произвольные точки рассматриваемого промежутка, то это и означает, что функция φ постоянна на этом промежутке.

Определение 5.2. Совокупность всех первообразных функции f на промежутке Х называется неопределенным интегралом от функции f и обозначается $\int f(x)dx$.

Если F – какая-либо первообразная функции f на X, то записы-

$$\int f(x)dx = F(x) + C.$$

3:[ab]= 1 3:[ab]= 1

y = g(x) d(g(x)dx) = d(f(x)+c)= =d(f(x)+c)dx== f'(x)dx=g(x)dx f(x) называется подынтегральной функцией, а f(x)dx – подынтегральным выражением.

Основные свойства неопределенного интеграла

I. Дифференциал от неопределенного интеграла равен подынтегральному выражению:

$$d\left(\int f(x)dx\right) = f(x)dx. \tag{5.3}$$

Отметим, что в этом равенстве под $\int f(x)dx$ понимается произвольная первообразная F функции f. Поэтому равенство (5.3) можно записать в виде

$$dF(x) = f(x)dx,$$

а справедливость последнего равенства следует из того, что F – первообразная f.

II. Производная от неопределенного интеграла равна подынтегральной функции:

$$\left(\int f(x)dx\right)' = f(x).$$

Это следует из свойства I.

III. Неопределенный интеграл от производной функции равен самой функции плюс произвольная постоянная:

$$\int \overline{F'(x)}dx = F(x) + C,$$

что может быть переписано так:

$$\int dF(x) = F(x) + C.$$

Это сразу следует из определения неопределенного интеграла как совокупности всех дифференцируемых функций, дифференциал которых стоит под знаком интеграла.

IV. Постоянный множитель можно выносить за знак интеграла, то есть если $a=const\,(a\neq 0),$ то

$$\int af(x)dx = a \int f(x)dx. \tag{5.4}$$

Доказательство. Пусть F – первообразная функции f на X, то есть F'(x) = f(x), $x \in X$. Тогда функция aF является первообразной функции af на промежутке X при любом $a \in \mathbb{R}$, так как $(aF(x))' = aF'(x) = af(x), x \in X$. Поэтому интеграл $\int af(x)dx$ состоит из всевозможных функций вида aF + C, а интеграл $a \int f(x)dx$ – из всевозможных функций a(F+C) = aF + aC. В силу произвольности постоянной C, при условии $a \neq 0$, обе совокупности функций совпадают. Это и означает справедливость равенства (5.4). V. Неопределенный интеграл от суммы функций равен сумме их ин-

C1-60 MUDINDEN:

\(\langle \langle \lan

 $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx.$ = Q $\int X dx dx dx$ $\int (J_1(x) + J_2(x))^{-1} dx$ $\int J_1(x) dx dx = \int J_2(x)^{-1} dx$ $\int J_2(x)^{-1} dx dx = \int J_2(x)^{-1} dx dx$ венства $F_1'(x) = f_1(x), \ F_2'(x) = f_2(x).$ Положим $F(x) = F_1(x) + F_2(x);$ тогда функция F является первообразной функции $f_1 + f_2$, так как

$$F'(x) = F'_1(x) + F'_2(x) = f_1(x) + f_2(x), x \in X.$$

Следовательно, интеграл $\int (f_1(x) + f_2(x)) dx$ состоит из функций $F(x) + C = F_1(x) + F_2(x) + C$, а сумма интегралов

$$\int f_1(x)dx + \int f_2(x)dx = F_1(x) + C_1 + F_2(x) + C_2 = -1 \left(\chi \right) + -1 \left(\chi \right) - 1 \left(\chi \right)$$

Поскольку C, C_1 и C_2 – произвольные постоянные, оба эти множества, то есть левая и правая части равенства (5.5), совпадают.

Таблица основных неопределенных интегралов

1.
$$\int 0 dx = \langle \zeta \rangle = \int \langle \zeta \rangle + \langle \zeta \rangle = \langle \zeta \rangle$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1.$$

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C, \qquad \int e^x dx = e^x + C.$$

$$5. \int \sin x dx = -\cos x + C.$$

1 7= px 1 x>0 2) y= En(-x), x<0 $\sqrt{-\frac{1}{1}} = \frac{1}{x}$ Le=1

(5.5)

[af(x)] =

= aF(x)+c

6.
$$\int \cos x dx = \sin x + C.$$
7.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$
8.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C.$$
9.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C.$$
10.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C.$$
11.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C.$$
12.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln |x + \sqrt{x^2 \pm a^2}| + C.$$
13.
$$\int \operatorname{sh} x dx = \operatorname{ch} x + C.$$
14.
$$\int \operatorname{ch} x dx = \operatorname{sh} x + C.$$
15.
$$\int \frac{dx}{\operatorname{sh}^2 x} = -\operatorname{cth} x + C.$$
16.
$$\int \frac{dx}{\operatorname{ch}^2 x} = \operatorname{th} x + C.$$

§ 5.2 Интегрирование подстановкой (за-Сиу) мена переменной)

Теорема 5.2. Пусть функции f(x) и $\varphi(t)$ определены на промежутках X и T соответственно, причем $\varphi(T) \subset X$. Если функция f имеет на X первообразную F(x) и, следовательно,

$$\int f(x)dx = F(x) + C, \tag{5.6}$$

а функция φ дифференцируема на T, то функция $f(\varphi(t))\varphi'(t)$ имеет на T первообразную $F(\varphi(t))$ и

$$\int f(\varphi(t))\varphi'(t) dt = \int f(x) dx \bigg|_{x=\varphi(t)}.$$
 (5.7)

Доказательство. Функции f и F определены на промежутке X, и так как, по условию теоремы, справедливо включение $\varphi(T) \subset X$, то имеют смысл сложные функции $f(\varphi(t))$ и $F(\varphi(t))$. При этом так как

$$F'(x) = f(x), \ x \in X,$$

то по правилу дифференцирования сложной функции получим

$$\frac{d}{dt}F(\varphi(t)) = \frac{dF}{dx}\bigg|_{x=\varphi(t)} \cdot \frac{d\varphi(t)}{dt} = f(\varphi(t))\varphi'(t), \ t \in T.$$

Это и означает, что функция $f(\varphi(t))\varphi'(t)$ имеет в качестве одной из своих первообразных функцию $F(\varphi(t))$. Отсюда, согласно определению интеграла, следует, что

$$\int \underline{f(\varphi(t))\varphi'(t)}dt = \underline{F(\varphi(t))} + C. \tag{5.8}$$

Подставив же в формулу (5.6) $x = \varphi(t)$, получим

$$\int f(x) dx \Big|_{x=\varphi(t)} = F(\varphi(t)) + C.$$

В формулах (5.8) и (5.9) равны правые части, значит, равны и левые, то есть имеет место равенство (5.7).

Формула (5.7) называется формулой интегрирования подстановкой, а именно подстановкой $\varphi(t) = x$. Это название объясняется тем, что если формулу (5.7) записать в виде

$$\int f(\varphi(t))d\varphi(t) = \int f(x) dx \, \bigg|_{x = \varphi(t)},$$

то будет видно, что, для того чтобы вычислить интеграл $\int f(\varphi(t))\varphi'(t)dt = \int f(\varphi(t))d\varphi(t)$, можно сделать подстановку $\varphi(t)=x$, вычислить интеграл $\int f(x)\,dx$ и затем вернуться к переменной t, положив $x=\varphi(t)$.

Отметим, что формулу (5.7) бывает целесообразно использовать и в обратном порядке, то есть справа налево. А именно иногда удобно вычисление интеграла $\int f(x) dx$ с помощью соответствующей замены переменного $x = \varphi(t)$ свести к вычислению интеграла $\int f(\varphi(t))\varphi'(t)dt$ (если этот интеграл в каком-то смысле «проще» исходного).

=F(44)+1

4/H) dA = dp(H)

 $\int f(x) dx = \int f(\gamma |t|) \gamma'(t) dy \Big|_{t=\varphi^{-1}|x|}$ x = |Y(t)| $\int g(x) dx = \int f(x) dx = \int f(x)$

 $\frac{dx = \frac{1}{3}dt}{d(5x) = 9t}$

В случае, когда функция φ имеет обратную φ^{-1} , перейдя в обен частях формулы (5.7) к переменной x с помощью подстановки $t=\varphi^{-1}(x)$ и поменяв местами стороны равенства, получим

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t)dt \bigg|_{t=\varphi^{-1}(x)}.$$

Эта формула обычно называется формулой интегрирования заменой переменной.

Для того чтобы существовала функция φ^{-1} , обратная φ , в дополнение к условиям теоремы 5.2 достаточно, например, потребовать, чтобы на рассматриваемом промежутке T функция φ была строго монотонной. В этом случае, как известно, существует однозначная обратная функция φ^{-1} .

Пример 5.1. Вычислить интеграл $\int x\sqrt{x^2+1}\,dx$. Пусть $t=x^2+1$. Тогда $dt=d(x^2+1)$, то есть dt=2xdx, или $xdx=\frac{dt}{2}$. Следовательно,

$$\int x\sqrt{x^2+1}\,dx = \frac{1}{2}\int \sqrt{t}\,dt = \frac{1}{2}\cdot\frac{2}{3}t^{\frac{3}{2}} + C = \frac{1}{3}t^{\frac{3}{2}} + C = \frac{1}{3}(x^2+1)^{\frac{3}{2}} + C.$$

Пример 5.2. Вычислить интеграл $\int \operatorname{ctg} x \, dx$.

Учитывая, что $\cot x = \frac{\cos x}{\sin x}$ и $\cos x dx = d(\sin x)$, положим $t = \sin x$. Тогда

$$\int \operatorname{ctg} x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{dt}{t} = \ln|t| + C = \ln|\sin x| + C.$$

Пример 5.3. Вычислить интеграл $\int \sqrt{1-x^2} \, dx$.

Пусть
$$x = \sin t$$
, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.

Tогда $dx = \cos t \, dt$ и

$$\int \sqrt{1-x^2} \, dx = \int \sqrt{\cos^2 t} \cos t \, dt = \int \cos^2 t \, dt = \int \frac{1+\cos 2t}{2} \, dt =$$

$$= \frac{1}{2} \int dt + \frac{1}{2} \int \cos 2t \, dt = \frac{t}{2} + \frac{1}{4} \sin 2t + C =$$

$$= \frac{1}{2}\arcsin x + \frac{1}{4}\sin(2\arcsin x) + C.$$

Отметим, что

 $\sin(2\arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x) =$

$$=2x\sqrt{1-\sin^2\left(\arcsin x\right)}=2x\sqrt{1-x^2}.$$

Таким образом,

$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin x + \frac{x}{2} \sqrt{1 - x^2} + C.$$

Пример 5.4. Вычислить интеграл $\int \frac{dx}{\sin x}$.

Учитывая, что $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$, получаем

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \int \frac{d\left(\frac{x}{2}\right)}{\sin\frac{x}{2}\cos\frac{x}{2}} = \int \frac{dt}{\sin t \cos t} =$$

$$= \int \frac{dt}{\cos^2 t \cdot \operatorname{tg} t} = \int \frac{d(\operatorname{tg} t)}{\operatorname{tg} t} = \int \frac{du}{u} = \ln|u| + C = \ln|\operatorname{tg} \frac{x}{2}| + C.$$

§ 5.3 Интегрирование по частям

Теорема 5.3. Если функции u(x) и v(x) дифференцируемы на промежутке X и на этом промежутке существует интеграл $\int v du$, то на нем существует и интеграл $\int u dv$, причем

$$\int udv = uv - \int vdu. \tag{5.10}$$

Доказательство. Пусть функции u и v дифференцируемы на промежутке X; тогда

$$d(uv) = vdu + udv.$$

поэтому

$$udv = d(uv) - vdu.$$

Judy = Jaluy) - Judy
HECTBYET, TAK KAK,

PUM CYMS. Интеграл от каждого слагаемого правой части существует, так как, согласно свойству III неопределенного интеграла,

$$\int d(uv) = uv + C,$$

(x) b(x) V).

а интеграл $\int v du$ существует по условию теоремы. Поэтому на основании свойств IV и V неопределенного интеграла существует и интеграл $\int u dv$, причем

 $\int udv = \int d(uv) - \int vdu.$

Подставляя в правую часть (5.11) uv + C вместо $\int d(uv)$ и относя произвольную постоянную C к интегралу $\int v du$, получим формулу (5.10).

Пример 5.5. Найти интеграл

 $\int \frac{x \sin x dx}{dx}$

Положим $\underline{u} = x$, $dv = \sin x dx$; тогда du = dx, $v = -\cos x$. Следова тельно,

$$\int x \sin x dx = x(-\cos x) - \int (-\cos x) dx =$$

$$= -x \cos x + \int \cos x dx = -x \cos x + \sin x + C$$

$$= -x \cos x + \int \cos x dx = -x \cos x + \sin x + C$$

Пример 5.6. Найти интеграл

$$\int_{\mathbb{R}^2} x^2 e^{3x} dx.$$

= sinx xL / > Cosxche

x cos xdx

Положим $u=x^2$, $dv=e^{3x}dx$; тогда $du=2xdx,\,v=\frac{1}{3}e^{3x}$. Следова-

$$\int x^2 e^{3x} dx = x^2 \frac{1}{3} e^{3x} - \int \frac{1}{3} e^{3x} 2x dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \underbrace{\int x e^{3x} dx}. \underbrace{\int \underbrace{\sum in }_{X} \underbrace{\chi dx}}$$

К полученному интегралу снова применим формулу интегрирования по частям, полагая $u_1 = x$, $dv_1 = e^{3x} dx$. В этом случае

Тогда
$$\frac{1}{3}e^{3x}$$
.

$$\int xe^{3x}dx = x\frac{1}{3}e^{3x} - \int \frac{1}{3}e^{3x}dx = \frac{x}{3}e^{3x} - \frac{1}{3}\int e^{3x}dx = \frac{x}{3}e^{3x} - \frac{1}{9}e^{3x} + C.$$

Окончательно получаем

$$\int x^2 e^{3x} dx = \frac{x^2}{3} e^{3x} - \frac{2}{3} \left(\frac{x}{3} e^{3x} - \frac{1}{9} e^{3x} \right) + C = e^{3x} \left(\frac{x^2}{3} - \frac{2x}{9} + \frac{2}{27} \right) + C.$$

Пример 5.7. Найти интеграл

$$\int e^x \cos x \, dx.$$

Пусть $u=e^x,\,dv=\cos x dx;\,\,$ тогда $du=e^x dx,\,v=\sin x.$ Следовательно,

$$\int e^x \cos x dx = e^x \sin x - \int e^x \sin x dx.$$

Для вычисления полученного интеграла еще раз воспользуемся формулой интегрирования по частям. Положив $u_1=e^x,\,dv_1=\sin x dx,$ найдем $du_1=e^x dx,\,v_1=-\cos x.$ Тогда

$$\int e^x \sin x dx = -e^x \cos x + \int e^x \cos x dx$$

И

$$\int e^x \cos x dx = e^x (\sin x + \cos x) - \int e^x \cos x dx,$$

т.е.

$$2\int e^x \cos x dx = e^x (\sin x + \cos x) + C.$$

Таким образом,

$$\int e^x \cos x dx = \frac{e^x}{2} (\sin x + \cos x) + C.$$

§ 5.4 Интегрирование рациональных дробей

Пусть P(x) и Q(x) – многочлены.

Определение 5.3. Рациональная дробь

$$R(x) = \frac{P(x)}{Q(x)}$$

называется правильной, если степень многочлена P(x) меньше степени многочлена Q(x), и неправильной, если степень многочлена P(x) не меньше степени многочлена Q(x).