From Treelike $\operatorname{Res}(\oplus)$ to \mathbb{F}_2 -Nullstellensatz

S. Bianco

May 26, 2024

Contents

1	The $\frac{1}{3}, \frac{2}{3}$ lemma	2
2	Nullstellensatz	3
3	Treelike Res and Nullstellensatz	7
4	Treelike $Res(\oplus)$ and Nullstellensatz	8
5	Bibliography	10

1 The $\frac{1}{3}$, $\frac{2}{3}$ lemma

Definition 1. Given a tree T and a node v, we denote as T_v the subtree of T having v as its radix.

Lemma 1 (Lewis' $\frac{1}{3}$, $\frac{2}{3}$ lemma [LSH65]). If T is a binary tree of size s > 1 then there is a node v such that the subtree T_v has size between $\left\lfloor \frac{1}{3}s \right\rfloor$ and $\left\lceil \frac{2}{3}s \right\rceil$.

Proof. Let r be the radix of T and let ℓ be a leaf of T with the longest possible path $r \to \ell$. Let v_1, \ldots, v_k be the nodes of such path, where $r = v_1$ and $\ell = v_k$. For each index i such that $1 \le i \le k$, let $a_i b_i$ be the two children of v_i .

Claim 1.1. For any index i, if T_{v_i} has size at least $\lfloor \frac{1}{3}s \rfloor$ then for some index j, where $i \leq j \leq k$, it holds that T_{v_j} has size between $\lfloor \frac{1}{3}s \rfloor$ and $\lceil \frac{2}{3}s \rceil$.

Proof of the claim. If T_{v_i} has also size less than $\lceil \frac{2}{3}s \rceil$ then we are done. Otherwise, since $T_{v_i} = \{v_i\} \cup T_{a_i} \cup T_{b_i}$, one between the subtrees T_{a_i}, T_{b_i} must have size at least $\frac{1}{2} \lceil 2 \rceil 3s - 1$, meaning that it has size at least $\lfloor \frac{1}{3}s \rfloor$. If this subtree has also a size at most $\lceil \frac{2}{3}s \rceil$ then we are done. Instead, if this doesn't hold for both subtrees, we can repeat the process (assuming that $v_{i+1} := a_i$ without loss of generality) since we know that $T_{v_{i+1}}$ has size greater than $\lfloor \frac{1}{3}s \rfloor$.

By way of contradiction, suppose that this process never finds a subtree with size at most $\lceil \frac{2}{3}s \rceil$. Then, this would mean that it also holds for $v_k = \ell$. However, since ℓ is a leaf, we know that T_{v_ℓ} must have size 1, which is definitely at most $\lceil \frac{2}{3}s \rceil$ for any value of s, giving a contradiction. Thus, there must be a node that terminates the process.

Since $T_{v_1} = \{r\} \cup T_{a_1} \cup T_{b_1}$, we know that for both of these subtrees must have at least $\lfloor \frac{1}{3}s \rfloor$. Thus, assuming that $a_1 = v_2$, the claim directly concludes the proof.

2 Nullstellensatz

Definitions taken from [DMN+21]

Definition 2 (Hilbert's Nullstellensatz). Given the polynomials $p_1, \ldots, p_m \in \mathbb{F}[x_1, \ldots, x_n]$, the equation $p_1 = \ldots = p_m = 0$ is unsolvable if and only if $\exists g_1, \ldots, g_m \in \mathbb{F}[x_1, \ldots, x_n]$ such that $\sum_{i=1}^m g_i p_i = 1$.

Hilbert's Nullstellensatz can be used to define the following proof system:

Definition 3 (Nullstellensatz Refutation). Given the set of polynomial equations $P = \{p_1 = 0, \dots, p_m = 0\}$ over $\mathbb{F}[x_1, \dots, x_n]$, where \mathbb{F} is any field, a Nullstellensatz refutation is a set of polynomials $\pi = \{g_1, \dots, g_n\} \subseteq \mathbb{F}[x_1, \dots, x_n]$ such that $\sum_{i=1}^m g_i p_i = 1$.

The set of polynomials $P = \{p_1, \ldots, p_n\}$ is called the axiom set and the set $\pi = \{g_1, \ldots, g_n, h_1, \ldots, h_m\}$ is called proof of P.

By also adding the polynomial equations $x_1^2 - x_1 = 0, \dots, x_n^2 - x_n = 0$ to the set of axioms, the NS proof system is sound and complete for the set of unsatisfiable CNF formulas. Thus, in general, given the set of axioms $P = \{p_1 = 0, \dots, p_m = 0, x_1^2 - x_1 = 0, \dots, x_n^2 - x_n = 0\}$, we say that $\pi = \{g_1, \dots, g_m, h_1, \dots, h_n\}$ is a CNF proof of P if:

$$\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} h_j (x_j^2 - x_j) = 1$$

For any proof $\pi = \{g_1, \dots, g_n, h_1, \dots, h_m\}$ of the axioms $P = \{p_1, \dots, p_n\}$, we define the *degree of* π as:

$$\deg(\pi) = \max\{\deg(g_i p_i), \deg(h_j) + 2 \mid 1 \le i \le n, 1 \le j \le m\}$$

If P has a proof π of degree $\deg(\pi) = d$ then we say that $P \vdash_d^{\mathsf{NS}} 1$.

Proposition 1. Given a set of axioms P, if $P \vdash_d^{NS} q$ then $P, 1 - q \vdash_d^{NS} 1$

Proof. Since $P \vdash_d^{\mathsf{NS}} q$, we know that $\exists g_1, \ldots, g_m, h_1, \ldots, h_n \in \mathbb{F}[x_1, \ldots, x_n]$ such that:

$$\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} h_j (x_j^2 - x_j) = q$$

where deg(q) = d.

Let $p_{m+1} := 1 - q$ and $P' = P \cup \{p_{m+1} = 0\}$. We define $g'_1, \dots, g'_m, g'_{m+1}$ as:

$$g_i' = \begin{cases} 1 & \text{if } i = m+1 \\ g_i & \text{otherwise} \end{cases}$$

With simple algebra we get that:

$$\sum_{i=1}^{m+1} g_i' p_i + \sum_{j=1}^n h_j(x_j^2 - x_j) = g_{m+1}' p_{m+1} + \sum_{i=1}^m g_i' p_i + \sum_{j=1}^n h_j(x_j^2 - x_j) = (1-q) + q = 1$$

thus $\pi = \{g'_1, \dots, g'_{m+1}, h_1, \dots, h_n\}$ is a proof of P. Moreover, since $\deg(q) = d$ implies that $\deg(g'_{m+1}p_{m+1}) = d$, it's easy to see that $\deg(\pi) = d$ holds, concluding that $P, 1 - q \vdash_d^{\mathsf{NS}} 1$

Lemma 2. Given two disjoint axiom sets P_1, P_2 , if $P_1, p \vdash_{d_1}^{NS} 1$ and $P_2, 1 - p \vdash_{d_2}^{NS} 1$ then $P_1, P_2 \vdash_{d_1+d_2}^{NS} 1$.

Proof. Suppose that $P_1 = \{p_1, \ldots, p_m\}$ and $P_2 = \{q_1, \ldots, q_k\}$. Let $p_{m+1} = p$ and let $q_{k+1} = 1 - p$. By hypothesis, we know that

$$\sum_{i=1}^{m+1} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j) = 1$$

for some $g_1, \ldots, g_{m+1}, a_1, \ldots, a_n$, implying that:

$$\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j) = 1 - g_{m+1} p_{m+1} = 1 - g_{m+1} p$$

Likewise, we know that:

$$\sum_{i=1}^{k+1} r_i p_i + \sum_{j=1}^{n} b_j (x_j^2 - x_j) = 1$$

for some $r_1, \ldots, r_{k+1}, b_1, \ldots, b_n$, implying that:

$$\sum_{i=1}^{k} r_i p_i + \sum_{j=1}^{n} b_j (x_j^2 - x_j) = 1 - r_{k+1} q_{k+1} = 1 - r_{k+1} (1 - p)$$

We notice that:

$$(1-p)\left(\sum_{i=1}^{m} g_i p_i + \sum_{j=1}^{n} a_j (x_j^2 - x_j)\right) = (1-p)(1-g_{m+1}p)$$

$$= 1 - g_{m+1}p - p + g_{m+1}p^2$$

$$= 1 - p$$

In the last step, we used the fact that, due to multilinearity, it holds that $p^2 = p$. Proceeding the same way, we find that:

$$p\left(\sum_{i=1}^{k} r_i p_i + \sum_{j=1}^{n} b_j (x_j^2 - x_j)\right) = p\left(1 - r_{k+1}(1 - p)\right)$$

$$= p\left(1 - r_{k+1} + r_{k+1}p\right)$$

$$= p - r_{k+1}p + r_{k+1}p^2$$

$$= p$$

Now, we define s_1, \ldots, s_{m+k}

$$s_i = \begin{cases} g_i \cdot (1-p) & \text{if } 1 \le i \le m \\ r_i \cdot p & \text{if } m+1 \le i \le k \end{cases}$$

and $h_1, ..., h_n$ as $h_j = a_j \cdot (1 - p) + b_j \cdot p$.

At this point, through simple algebra we get that:

$$\sum_{i=1}^{m+k} s_i p_i + \sum_{j=1}^n h_j (x_j^2 - x_j) =$$

$$(1-p) \left(\sum_{i=1}^m g_i p_i + \sum_{j=1}^n a_j (x_j^2 - x_j) \right) + p \left(\sum_{i=1}^k r_i p_i + \sum_{j=1}^n b_j (x_j^2 - x_j) \right) =$$

$$(1-p)(1-g_{m+1}p) + p (1-r_{k+1}(1-p)) = p+1-p=1$$

concluding that $\pi_3 = \{s_1, \ldots, s_{m+k}, h_1, \ldots, h_n\}$ is a proof of $P_1 \cup P_2$. Furthermore, we notice that:

$$\deg((1-p)(1-g_{m+1}p)) = \deg(1-p) + \deg(1-g_{m+1}p) = d_1 + d_2$$

and that:

$$\deg(p(1 - r_{k+1}(1-p))) = \deg(p) + \deg(1 - r_{k+1}(1-p)) = d_2 + d_1$$

Finally, we get that:

$$\deg(\pi_3) = \max(\deg((1-p)(1-g_{m+1}p)), \deg(p(1-r_{k+1}(1-p)))) = d_1 + d_2$$
 concluding that $P_1, P_2 \vdash_{d_1+d_2}^{\mathsf{NS}} 1$.

3 Treelike Res and Nullstellensatz

Definition 4 (\mathbb{F}_2 -NS encoding of Res). Given a Res linear clause $C = \bigvee_{i=0}^{k_1} x_i \vee$

$$\bigvee_{j=0}^{k_2} \overline{x_j}, \text{ the } \mathbb{F}_2\text{-NS encoding of } C \text{ is defined as } \operatorname{enc}(C) := \prod_{i=0}^{k_1} x_i \cdot \prod_{j=0}^{k_2} (1-x_j).$$

In general, a $\mathsf{Res}(\oplus)$ formula $F = C_1 \wedge \ldots \wedge C_m$ defined on the variables x_1, \ldots, x_n gets encoded in \mathbb{F}_2 -NS as the set of axioms $P_F = \{ \mathrm{enc}(C_i) = 0 \mid 1 \leq i \leq m \} \cup \{ x_j^2 - x_j = 0 \mid 1 \leq j \leq n \}.$

Theorem 1. Let F be an unsatisfiable CNF. If T is $Res(\oplus)$ refutation of F of size s then there is NS refutation of F of degree $O(\log(s))$.

Proof. Let $F = C_1 \wedge \cdots \wedge C_n$. We proceed by strong induction on the size s.

If s=1 then the T contains only the empty clause \bot , meaning that it also is one of the starting clauses and thus one of the axioms. We notice that $\operatorname{enc}(\bot)=1$, which easily concludes that $\bot \vdash_0^{\mathsf{NS}} 1$.

Suppose now that s > 1. Let \mathcal{L} be axioms of T. Since T is a binary tree, by Lemma 1 we know that there is a clause C_k , i.e. a node, of T such that T_{C_k} has size between $\left\lfloor \frac{1}{3}s \right\rfloor$ and $\left\lceil \frac{2}{3}s \right\rceil$.

Let $T' = (T - T_{C_k}) \cup \{C_k\}$. Due to the size of T_{C_k} , we get that T' has size between $\lfloor \frac{1}{3}s \rfloor + 1$ and $\lceil \frac{2}{3}s \rceil + 1$. Moreover, we notice that since T is a treelike refutation it holds that T_{C_k} and T' work with different clauses (except C_k), thus their axioms are disjoint. Let $\mathcal{L}_1, \mathcal{L}_2$ be the two sets of axioms respectively used by T_{C_k} and T'.

By construction, we notice that T_{C_k} derives the clause C_k using the axioms \mathcal{L}_1 , while T_{C_k} derives the clause \bot using the axioms \mathcal{L}_2, C_k . Thus, since T_{C_k} and T' have size lower than s, by induction hypothesis we get that $\operatorname{enc}(\mathcal{L}_1) \vdash_{c_1 \cdot \log s}^{\mathsf{NS}} \operatorname{enc}(C_k)$ and $\operatorname{enc}(\mathcal{L}_2), \operatorname{enc}(C_k) \vdash_{c_2 \cdot \log s}^{\mathsf{NS}} 1$ for some constants c_1, c_2 . By Proposition 1 we easily conclude that $\operatorname{enc}(\mathcal{L}_1), (1 - \operatorname{enc}(C_k)) \vdash_{c_1 \cdot \log s}^{\mathsf{NS}} 1$ and, by Lemma 2, that $\operatorname{enc}(\mathcal{L}_1), \operatorname{enc}(\mathcal{L}_2) \vdash_{(c_1+c_2) \cdot \log s}^{\mathsf{NS}} 1$. Finally, since $\mathcal{L}_1 \cup \mathcal{L}_2 = \mathcal{L}$, we get that $\operatorname{enc}(\mathcal{L}) \vdash_{(c_1+c_2) \cdot \log s}^{\mathsf{NS}} 1$, meaning that \mathcal{L} has a NS refutation of degree $O(\log s)$.

4 Treelike $Res(\oplus)$ and Nullstellensatz

Definition 5 (\mathbb{F}_2 -NS encoding of Res). Given a Res(\oplus) linear clause $C = \bigvee_{i=0}^k (\ell_i = \alpha_i)$, the \mathbb{F}_2 -NS encoding of C is defined as $\operatorname{enc}_{\oplus}(C) := \prod_{i=0}^k (\alpha - \ell_i)$.

In general, a $\mathsf{Res}(\oplus)$ formula $F = C_1 \wedge \ldots \wedge C_m$ defined on the variables x_1, \ldots, x_n gets encoded in \mathbb{F}_2 -NS as the set of axioms $P_F = \{ \mathrm{enc}_{\oplus}(C_i) = 0 \mid 1 \leq i \leq m \} \cup \{ x_j^2 - x_j = 0 \mid 1 \leq j \leq n \}.$

Theorem 2 ([IS20]).

- 1. Every tree-like $Res(\oplus)$ proof of an unsatisfiable formula F may be translated to a parity decision tree for F without increasing the size of the tree.
- 2. Every parity decision tree for an unsatisfiable linear CNF may be translated into a tree-like Res(⊕) proof and the size of the resulting proof is at most twice the size of the parity decision tree (and where the weakening is applied only to the axioms).

Corollary 1. Every tree-like $Res(\oplus)$ proof of an unsatisfiable formula F can be converted to a tree-like $Res(\oplus)$ proof of at most double the size and with weakening applied only to the axioms.

Idea: l'idea che mi è venuta per risolvere il problema del weakening che accennavo nell'email parte da un presupposto molto semplice. Siccome per definizione del weakening sappiamo che $C \vdash D$ se $C \Longrightarrow D$, ciò non implica anche che in NS valga che $\mathrm{enc}_{\oplus}(C) \vdash^{\mathsf{NS}} \mathrm{enc}_{\oplus}(D)$? Se ciò fosse vero, cosa che in teoria possiamo stabilire anche solo per induzione su un albero di size 2 composto solo da queste due clausole (immagino andrebbe dimostrato il caso base), avremmo risolto il problema visto che a quel punto potremmo rimpiazzare ogni clausola weakened con l'assioma che la deriva:

- 1. Sia \widehat{C}_i il weakening dell'assioma C_i
- 2. Per induzione dimostriamo che $\operatorname{enc}_{\oplus}(\widehat{C}_1), \ldots, \operatorname{enc}_{\oplus}(\widehat{C}_n) \vdash_{c \cdot \log s}^{\mathsf{NS}} 1$. Questo ci implica che il grado di ogni traduzione dei weakening debba avere degree $\leq c \cdot \log s$

- 3. Se $\operatorname{enc}_{\oplus}(C_i) \vdash^{\mathsf{NS}} \operatorname{enc}_{\oplus}(\widehat{C}_i)$ allora ciò è possibile solo se $\operatorname{enc}_{\oplus}(C_i) \vdash^{\mathsf{NS}}_{c \cdot \log s}$ $\operatorname{enc}_{\oplus}(\widehat{C}_i)$ visto che altrimenti avremmo che $\operatorname{deg}(\operatorname{enc}_{\oplus}(\widehat{C}_i)) > c \cdot \log s$.
- 4. Per Proposition 1 vale che $\mathrm{enc}_{\oplus}(C_i), (1 \mathrm{enc}_{\oplus}(\widehat{C}_i)) \vdash_{c \cdot \log s}^{\mathsf{NS}} 1$
- 5. Per il Lemma 2 vale che $\mathrm{enc}_{\oplus}(C_1), \mathrm{enc}_{\oplus}(\widehat{C_2}), \ldots, \mathrm{enc}_{\oplus}(\widehat{C_n}) \vdash_{c \cdot \log s}^{\mathsf{NS}} 1$
- 6. Ripetendo per ogni weakening otteniamo che $\mathrm{enc}_{\oplus}(F) \vdash^{\sf NS}_{c \cdot \log s} 1.$

L'unico punto critico di questa idea sarebbe dunque stabilire che $\operatorname{enc}_{\oplus}(C_i) \vdash^{\mathsf{NS}} \operatorname{enc}_{\oplus}(\widehat{C}_i)$ valga effettivamente. Sinceramente credo valga anche solo perche intuitivamente si tratta di trovare un polinomio che moltiplicato a $\operatorname{enc}_{\oplus}(C_i)$ generi qualcosa che "contiene" $\operatorname{enc}_{\oplus}(C_i)$, ma ovviamente non è detto che l'intuizione sia effettivamente vera.

5 Bibliography

References

- [DMN+21] Susanna F. De Rezende, Or Meir, Jakob Nordström, et al. "Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling". In: Comput. Complex. 30.1 (June 2021). ISSN: 1016-3328. DOI: 10.1007/s00037-020-00201-y. URL: https://doi.org/10.1007/s00037-020-00201-y.
- [IS20] Dmitry Itsykson and Dmitry Sokolov. "Resolution over linear equations modulo two". In: Annals of Pure and Applied Logic 171.1 (2020), p. 102722. ISSN: 0168-0072. DOI: https://doi.org/10.1016/j.apal.2019.102722. URL: https://www.sciencedirect.com/science/article/pii/S0168007219300855.
- [LSH65] P. M. Lewis, R. E. Stearns, and J. Hartmanis. "Memory bounds for recognition of context-free and context-sensitive languages". In: 6th Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1965). 1965, pp. 191–202. DOI: 10.1109/FOCS.1965.14.