单管交流放大电路

一. 实验目的

- 1. 掌握单管放大器静态工作点的调整及电压放大倍数的测量方法。
- 2. 研究静态工作点和负载电阻对电压放大倍数的影响,进一步理解静态工作点对放大器工作的意义。
- 3. 观察放大器输出波形的非线性失真。
- 4. 熟悉低频信号发生器、示波器及晶体管毫伏表的使用方法。

二. 电路原理简述

单管放大器是放大器中最基本的一类,本实验采用固定偏置式放大电路,如图 3-1 所示。其中 R_{B1} =100K Ω , R_{C1} =2K Ω , R_{L1} =100 Ω , R_{W1} =1M Ω , R_{W3} =2. 2k Ω , C1=C2=10 μ F/15V , T_1 为 9013 (β =160-200)。

为保证放大器正常工作,即不失真地放大信号,首先必须适当取代静态工作点。工作点太高将使输出信号产生饱和失真;太低则产生截止失真,因而工作点的选取,直接影响在不失真前提下的输出电压的大小,也就影响电压放大倍数($A_v=V_o/V_i$)的大小。当晶体管和电源电压 $V_{cc}=12V$ 选定之后,电压放大倍数还与集电极总负载电阻 R_i '(R_i '= $R_c//R_i$)有关,改变 R_c 或 R_i ,则电压放大倍数将改变。

在晶体管、电源电压 V_{cc} 及电路其他参数(如 R_c 等)确定之后,静态工作点主要取决于 I_B 的选择。因此,调整工作点主要是调节偏置电阻的数值(本实验通过调节 R_{cc} 电位器来实现),进而可以观察工作点对输出电压波形的影响。

三. 实验设备

	名称	数量	型号
1.	直流稳压电源	1台	MC1095
2.	函数信号发生器	1台	学校自备
3.	示波器	1台	学校自备
4.	晶体管毫伏表	1 只	学校自备
5.	万用表	1 只	学校自备
6.	电阻	3 只	$100 \Omega *1 \qquad 2k \Omega *1$

100 k Ω *1 2 只 7. 电位器 2. 2 k Ω *1 1M Ω *1 2 只 8. 电容 $10 \, \mu \, F/15V*2$ 9. 三极管 1 只 9013*1 10. 短接桥和连接导线 若干 P8-1 和 50148 11. 实验用9孔插件方板 $297 \text{mm} \times 300 \text{mm}$

四. 实验内容与步骤

1. 调整静态工作点

实验电路见 9 孔插件方板上的"单管交流放大电路"单元,如下图 3-2 所示。方板上的直流稳压电源的输入电压为+12V,用导线将电源输出分别接入方板上的"单管交流放大电路"的+12V 和地端,将图 3-2 中 J_1 、 J_2 用一短线相连, J_3 、 J_4 相连(即 Rc_1 =2k Ω), J_5 、 J_6 相连,并将 R_{w3} 放在最大位置(即负载电阻 R_L = R_{L1} + R_{w3} =2. 7k Ω 左右),检查无误后接通电源。

使用万用表测量晶体管电压 V_{CE} ,同时调节电位器 R_{WI} ,使 V_{CE} =5V 左右,从而使静态工作点位于负载线的中点。

为了校验放大器的工作点是否合适,把信号发生器输出的 f=1kHz 的信号加到放大器的输入端,从零逐渐增加信号 υ_1 的幅值,用示波器观察放大器的输出电压 υ_0 的波形。若放大器工作点调整合适,则放大器的截止失真和饱和失真应该同时出现,若不是同时出现,只要稍微改变 R_{ul} 的阻值便可得到合适的工作点。

此时把信号 V_i 移出,即使 V_i =0,使用万用表,分别测量晶体管各点对地电压 V_C 、 V_B 和 V_E ,填入表 3-1 中,然后按下式计算静态工作点。

$$I_c = \frac{V_{CC} - V_C}{R_{C1}}$$
 $I_B \approx \frac{I_C}{\beta}$, β 值为给定的

*或者量出 R_B $(R_B=R_{W1}+R_{B1})$,再由 $I_B=\frac{V_{CC}-V_B}{R_B}$ 得出 I_B ,式中 $V_B\approx 0.7$ V, $V_{CE}=V_C$ 。注:测量 R_B 阻值时,务必断开电源。同时应断开 J_4 、 J_2 间的连线。

表 3-1

测量值			计算值				
$V_{\rm c}$	$V_{\scriptscriptstyle B}$	$V_{\scriptscriptstyle E}$	$I_{\scriptscriptstyle B}$	I_c	V_{CE}	β	
3.33V	0.680V	OV	0.027mA	4.335mA	3.33V	160	

2. 测量放大器的电压放大倍数,观察 Rc 和 RL对放大倍数的影响。

在步骤 1 的基础上,将信号发生器调至 f=1kHz、输出为 5mV。随后接入单级放大电路的输入端,即 $V_i=5mV$,观察输出端 v_o 的波形,并在不失真的情况下分两种情况用晶体管毫伏表测量输出电压 V_o '值和 V_o 值:

「带负载 R_L,即 J₅、J₅相连,测 V₀'值

【不带负载 R₁,即 J₅、J。不连,测 V。值。

再将 R_{c_1} 放在 $2k\Omega$ 位置,仍分以上两种情况测取输出电压 V_0 '和 V_0 值,并将所有测量结果填入表 3-2 中。

采用下式求取其电压放大倍数:

带负载
$$R_L$$
时, $A_v' = \frac{V_0'}{V_i}$

不带负载
$$R_L$$
时, $A_V = \frac{V_0}{V_i}$

表 3-2

$R_{c_1} = 2k \Omega$	测量值			计算值	
K _{Cl} ZK 32	V _i	V _o	V ₀ '	A_{v}	A _v '
$R_L = \infty$	5mV	0.707V		141.4	
$R_L=2.36k \Omega$	5mV		395.9mV		79. 18

五. 分析与讨论

1. 解释 Av随 Rv变化的原因。

变化为 R_L 变大 A_v变大。

原因: Av=-βRL'/rbe, RL'=Rc//RL, 所以 RL 越大, RL'也越大, 在β和rbe不变的情况下, Av 增大。

2. 静态工作点对放大器输出波形的影响如何?

静态工作点设置不当(太高或太低)可能会导致放大器进入饱和或截止状态,输出波形失真。