Hung-yi Lee 李宏毅

You have learned a lot about ML. Training a classifier is not a big deal for you. ©

The results are from: http://proceedings.mlr.press/v37/ganin15.pdf

Domain shift: Training and testing data have different distributions.

Domain adaptation

Transfer learning: https://youtu.be/qD6iD4TFsdQ

Domain Shift

Source Domain (with labeled data)

- Idea: training a model by source data,
 then fine-tune the model by target data
- Challenge: only limited target data, so be careful about overfitting

Source Domain (with labeled data)

Basic Idea Learn to ignore colors

Domain Adversarial Training

Domain Adversarial Training

若讓Ld越小越好,則意味著希望把source domain的圖片分成target domain 把target domain分成source domain。但這樣還是把兩個domain的圖分開了

- Feature extractor: Learn to "fool" domain classifier
- Also need to support label predictor

Discriminator

Domain Adversarial Training

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Метнор	SOURCE	MNIST	SYN NUMBERS	SVHN	SYN SIGNS
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
SOURCE ONLY		.5749	.8665	.5919	.7400
proposed approach		.8149	.9048		
TRAIN ON TARGET		.9891	.9244	.9951	.9987

Limitation

- class 1 (source)
- class 2 (source)
- Target data (class unknown)

.....

Decision boundaries learned from source domain

Source and target data are aligned, but

Target data (unlabeled far from boundary)

Considering Decision Boundary

Used in Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T)

https://arxiv.org/abs/1802.08735

Maximum Classifier Discrepancy

https://arxiv.org/abs/1712.02560

Outlook

Partial DA

Open Set DA (Busto et al. 2017)

Open Set DA (Saito et al. 2018)

https://openaccess.thecvf.com/content_CVPR_2019/html/You_Universal_Domain_Adaptation_CVPR_2019_paper.html

Universal DA

Source Domain Label Set

Source Domain (with labeled data)

Source Domain (with labeled data)

Domain Generalization

https://ieeexplore.ieee.org/document/8578664

Training

Testing

Training

Testing

https://arxiv.org/abs/2003.13216

Concluding Remarks

Source Domain (with labeled data)

