

CHANGE

Agenda

- Identifying The Problem
- Threat Forecasting
- Threat Intelligence Feeds
- Community Sharing
- Connecting The Dots

Singapore | 22-24 July | Marina Bay Sands

Identifying The Problem

Identifying The Problem

- Reviewing only historical threat reporting
 - Discusses what happened in the past
 - May have predictions about expected trends however these are expectations
 - A snapshot in time, not what is happening right now
- This doesn't mean to NOT look at these reports as they contain valuable trend data
 - Verizon DBIR (highly quoted)
 - Many vendors also produce reports(examples include Cisco, Mandiant)

Identifying The Problem

Security product limitations / effectiveness

	All Programs	Anti-Virus	Network Firewall	Web App Firewall	Network IPS	IPSec VPN	SSL VPN	Custom Testing	
Percentage of products that attain certification in the first cycle of testing	4%	27%	2%	0%	0%	0%	0%	0%	
Percentage of products that eventually attain certification	82%	92%	86%	100%	29%	90%	91%	87%	
Number of testing cycles typically required before products attain certification	Typically 2-4 cycles								

96% of product fail their first time to meet all testing requirements

Certification Testing Passing Rate

Source - ICSA Labs Product Assurance Report

Identifying The Problem

Security product limitations / effectiveness

	All Programs	Anti-Virus	Network Firewall	Web App Firewall	Network IPS	IPSec VPN	SSL VPN	Custom Testing
Percentage of products that exhibit violations during post-certification testing	36%	30%	18%	50%	93%	24%	27%	11%
Percentage of products that lose certification	13%	13%	3%	20%	43%	6%	9%	0%

Over 60% of products fail to meet all testing requirements when retested

Results For Post-Certification Testing

Source - ICSA Labs Product Assurance Report

Singapore | 22-24 July | Marina Bay Sands

Threat Forecasting

Threat Forecasting

- Apply real-world threat intellegence with data collected within your organization to identify patterns or trends "in-the-wild" that may impact your organization
- How does it work?
 - Identify knowledge elements within your data and collect for tracking / reporting
 - Subscribe to threat intellegence feeds to get a holistic view of the greater threat landscape
 - Combine all datasets togther and use identified trends to determine high risk elements and provide protection to needed areas prior to attack / breach

Threat Forecasting

Threat Forecasting

- Leverages your data for better accuracy to your organization
- Leverages third party intelligence to provide a holistic view of the entire threat landscape
- Shows what it happening today in the realworld (even within your industry vertical)
- Can help you improve your security posture prior to an attack or a data breach

Historical Threat Reporting

- Overview of what happened within the period of time the report covers
- Sometimes provides predictions based on the upcoming year based on previous year trends
- Static report generated on a fixed schedule (usually once a year)
- No ongoing updates about how your organization maps to the threats occurring "in-the-wild"

Threat Forecasting

Knowledge Elements

- Indicators of Compromise (IOCs)
 - IP address
 - URL (potentially FQDN + path)
 - MD5 Hash of a file
 - File
 - Win Registry Key
 - Win Driver

- Indicators of Interest (IOIs)
 - HTTP session
 - DNS Query
 - X509 Certificate
 - User account
 - Country of operation
 - Packet capture

Singapore | 22-24 July | Marina Bay Sands

Threat Intelligence Feeds

- Community Driven and Commercial Offerings Available
- Most use industry accepted content formats
 - Data driven frameworks in XML, JSON, etc.
- Items to consider when choosing intelligence feeds
 - Update Frequency
 - Source of feed is within industry vertical
 - Quality of the intelligence feed
 - Popularity within the Information Security community
 - Ease of integration into tools already in use by IT / Ops Team

The Open Indictors Of Compromise Framework (OpenIOC)

- Open source framework developed by Mandiant (now FireEye)
- Started as internal project to help Mandiant rapidly search through security intelligence
- Goals of framework were to express
 - Components of an attack
 - Attack methodology
 - Evidence of a compromise

- Built as an extensible XML schema
 - To provide a way to share/digest threat intelligence as quickly as possible.
 - Easily machine-digestible for faster dissemination into the community.
- Resources
 - OpenIOC Framework http://www.openioc.org

OpenIOC - Create and Refine IOCs

Source - White Paper: An Introduction to OpenIOC, OpenIOC Framework (Mandiant, Inc.)

Trusted Automated eXchange of Indicator Information (TAXII)

- Initially launched in 2013
- Current Specifications v1.1
- XML structured framework
- Designed to run over HTTP (HTTPS)
- Design to deliver threat intelligence
 - Leveraged by other threat intelligence feeds and included within TAXII as a "payload"

- Resources
 - TAXII website https://taxii.mitre.org
 - TAXII Community –
 http://taxii.mitre.org/community/
 - TAXII GitHub Repository http://taxiiproject.github.io

Structured Threat Information Expression (STIX)

- Initially launched in 2012
- Current Specifications v1.1.1
- XML structured framework
- Leverages TAXII for delivery

- Founded with six guiding principles
- Provide coverage across the entire cyber security domain
- Integrate, either directly or loosely, with other threat intelligence expression languages
- Provide as much flexibility as possible in reporting knowledge elements
- Supporting automation through maximizing structure and consistency
- Needs to be human-readable as well

Structured Threat Information Expression (STIX)

- Other threat intelligence expression languages supported
 - Cyber Observable eXpression (CybOX)
 - Common Attack Pattern Enumeration and Classification (CAPEC)
 - Malware Attribute Enumeration and Characterization (MAEC)

- Resources
 - STIX website http://stix.mitre.org
 - STIX Community –
 http://stix.mitre.org/community/
 - STIX GitHub Repository –
 https://github.com/STIXProject/

Cyber Observable eXpression (CybOX)

- Observable set of characteristics that express the observation of an event
- Initially launched in 2011
- Current Specifications v2.1
- XML structured framework
 - Includes pre-defined object representations
- Leveraged by STIX for cyber indicators

- Resources
 - CybOX website http://cybox.mitre.org
 - CybOX Community –
 http://cybox.mitre.org/community/
 - CybOX GitHub Repository –
 https://github.com/CybOXProject/

- Commercial Offerings
 - Different types available today
 - Before choosing a commercial offering, ask yourself
 - Is industry specific threat intelligence important?
 - What is provided within the commercial offering? Will it be easy to automate processing of?
 - Do you want an end-to-end solution that may not integrate with other solutions easily?
 - This may be the right choice for your organization depending on the size of your team

Singapore | 22-24 July | Marina Bay Sands

Community Sharing

Community Sharing

Typical Sharing Model

- Producers
 - Generate knowledge elements
 - Publish them onto the threat intelligence feed

- Consumers
 - Subscribe to the threat intelligence feed
 - Consume new knowledge elements as they are published

Community members need to be both for Community Sharing to be successful

Community Sharing

- Disadvantages (Misconceptions)
 - Exposing attack data to potential threat actors
 - Someone with nefarious goals may be subscribed and now has access to data they didn't have before
 - Needing to sanitize data to protect yourself
 - Don't want to publish data about enterprise network infrastructure or application versioning
 - Time to publish new content to the community
 - Need to delay publishing the content until I have resolved all of my issues so I don't get re-hacked

Community Sharing

- Advantages
 - Sharing data means getting data
 - Some community driven feeds require participation to receive content
 - Expanding your knowledge base to include a larger dataset
 - Telemetry data outside your immediate dataset will help improve your overall threat modeling
 - Assisting others within your same industry vertical
 - Threat actors can (and sometimes do) stay within the same industry vertical
 - Learn about an attack before it reaches you!

Knowledge is power!

Singapore | 22-24 July | Marina Bay Sands

Connecting The Dots...

Connecting The Dots...

Use Case: Anthem BC/BS Data Breach (2014)

- Insurance company that serves over forty million customers
 - 1 in 9 Americans according to Anthem's website
- Discovered breach January 29, 2014
 - Breach believed to have started weeks prior
- Expected costs over their \$100M insurance Policy

- Data accessed / stolen included:
 - Names
 - Dates of birth
 - Social Security numbers
 - Health care ID numbers
 - Home addresses
 - Email addresses
 - Work information like income data

Connecting The Dots...

Use Case: Anthem BC/BS Data Breach (2014)

- National Healthcare Information Sharing and Analysis Center (NH-ISAC)
 - Anthem, along with other major healthcare organizations, are members
 - Built the National Health Cybersecurity Intelligence System
 - Provides automated access, via STIX AND TAXII, to security intelligence and alert advisories

- Using community sharing, NH-ISAC was able to determine within 60 minutes the impact to its remaining members
- NH-ISAC also provided the IOCs to other ISACs within other verticals to measure larger cross-industry impact

Connecting The Dots...

Leverage existing tools within your organization

Splice App for Splunk

Apply What You Learned Today

- Next week
 - Identify weaknesses in your organization's security practices
 - Research included threat intelligence feeds or check within your organization's vertical
 - Look at internal software tools used today (i.e., SIEM) and see if any will incorporate threat intelligence feeds
- Within the next four weeks
 - Begin working with your own data to make it sharable knowledge elements
 - Incorporate at least one community driven threat intelligence feed into your threat modeling
- Over the next three months
 - Begin to contribute knowledge elements into the threat intelligence community
 - ◆ Build threat modeling for your organization off of proactive data driven by big data analysis

Singapore | 22-24 July | Marina Bay Sands

Thank You!

@david_desanto

https://www.linkedin.com/in/ddesanto

