Online Game Security

Part I. Network Security

- 네트워크와 패킷 공격을 방어
- 공격 형태

 - 패킷 누락 (Packet Drop)
 패킷 삽입 (Packet Insertion)
 - 패킷 변경 (Packet Modification)
 - 패킷 도청 (Eavesdropping)
 - 패킷 생성 (Packet Generation / Replay)
- 서버 공격
 - DDoS
 - SYN Flooding
 - Teardrop Attacks
 - Application layer floods
 - 서버 해킹
 - 장비에 들어가기
 - 다양한 방법
 - Network Engineer들과 퍼블리셔의 역할

패킷 공격

- 논클라 봇
 - Non-Client Bots
 - C9 게임 플레이
 - MU 클라이언트 + 오토 플레이 + 핵 기능
- 아이템 복제
 - MU 상점 거래와 서버 이동을 패킷을 빠르게 전송하여 공격
- 패킷 변경
 - 메모리 상에서 패킷으로 만들기 전에 주로 이루어짐
 - 따라서, 메모리 조작을 포함해서 생각해야 함

패킷 보호

- 체크섬 (Checksum)
 - 복잡하면 성능 이슈가 있고 간단하면 조작할 수 있다.
 - 따라서, 체크섬에 의존하기는 어렵다.
- 암호화 (Encryption)
 - CryptoPP (C++)
 - 뮤2 안드로이드 빌드 이슈로 인해 제거되어 있는 상태
- 순서 체크 (Sequence Check)
 - Drop / Insertion 방지

암호화

- 키 형태에 따른 분류
 - 대칭 키 (Symmetric Key) 알고리즘
 - TEA, DES, 3DES 등등 매우 많음
 - 공개 키 (Public Key) 알고리즘
 - RSA / DSA
 - 키 배포에 주로 사용
 - 공인인증서
- 게임에서 암호화
 - 지키려는 사람이 깨려고 함
 - 게임의 고유한 특성
 - 키 기반 암호화를 무력화 시킴
 - 따라서, 난독화 / 동적인 변경이 필요

게임 패킷의 암호화

- 성능(암호화 속도와 CPU 사용량)이 중요
- 사용자 마다 다른 키 / 알고리즘 사용
- 동적으로 키 / 알고리즘을 변경
- 추가적으로 분석하기 힘들고 변경이 잦은 암호화 필요
- 선택들
 - 통신 데이터에 따라 주기적으로 키 / 알고리즘을 선택
 - 많은 알고리즘들 중 빠른 것은 오래 사용하고 느린 것은 잠깐 사용
 - 많은 패킷들 중 이동과 같이 잦은 것들은 제외

암호화

- http://math.scu.edu/~eschaefe/book.pdf
 - 기본적인 소개
- Transposition (위치) / Substitution (교체)
- TEA
 - Feistel Cipher 계열
 - 여러 번 (Round) 키 / 데이터 변환

Packet Twister

- 단순한 아이디어
 - 추가적으로 분석하기 힘들고 변경이 잦은 암호화 필요
 - 변환 단위를 Op (Operation)으로 하고
 - 이들을 섞어서 변환을 만듦
 - 패킷 타잎 별로 생성된 코드 고정
 - 그래서, 단순하다

Packet Twister

- 개선 방향
 - Op 추가
 - 좀 더 많은 Transposition과 Substitution 추가
 - Feistel Cipher의 개념 차용
 - Rotation shift
 - XOR data table
 - Rounds (적용 횟수)
 - 변경 부위 확장
 - 현재는 앞 쪽에만 적용
 - 패킷 접기
 - 동적인 변화
 - 암호화 구현의 아이디어 차용
 - 패킷 타잎 별로 동적인 변화
 - 함수 변경