微處理機實驗期末專題報告 智慧書架傾斜警報系統

電機三甲 11128146 蔡依琪 / 11128153 陳靖涵

摘要

智慧書架傾斜監測系統採用 HT32F52352 微控制器和 MPU6500 感測器作為核心元件,用於測量書架在使用過程中的傾斜狀態。系統通過 I2C 通信介面接收感測器的六軸資料 (包括三軸加速度和三軸角速度),並根據傾斜變化進行分析。分析結果通過 UART 介面傳輸至終端設備進行展示。此外,系統利用 GPIO 控制 LED 指示燈,使用 PWM 驅動蜂鳴器,對不同的傾斜狀態進行分類,並提供即時警告。

該系統可與智慧家居平臺集成,作為整體安全系統的一部分,與其他安全設備聯動,提高家庭安全防護能力。在辦公空間和圖書館等公共場所,部署此系統可實現對多個書架的聯動監控,提升安全管理的效率。通過 UART 通信,系統能夠將傾斜資料傳輸至終端設備,方便使用者遠端監視書架狀態並做出相應決策。

在設計過程中,考慮到環境因素(如溫度變化)可能對感測器精度產生影響,系統採用了溫度補 償演算法,以確保監測資料的準確性和可靠性。此外,系統的軟體架構設計遵循模組化原則,便於後 續功能擴展和維護。

綜上所述,基於 HT32F52352 和 MPU6500 的智慧書架傾斜監測系統具有即時監測、即時警告、易於集成和擴展等特點,適用於家庭、辦公和公共場所的安全監測需求。

關鍵字:智能書架、傾斜檢測、UART 通信、PWM 控制

1. 前言

在日常生活中,書架常用於承載書籍、檔等重物。長時間放置可能導致傾斜,存在安全隱患,特別是樹狀書架更易出現此類問題。為即時監測並控制書架的傾斜狀況,本設計採用HT32F52352微控制器和MPU6500六軸感測器,將檢測到的加速度和角速度資料轉換為傾斜資訊。通過 LED 和蜂鳴器提醒用戶潛在的危險,並在 Tera Term 上顯示當前狀態。

MPU6500 是一款集成三軸加速度計和三軸陀螺儀的感測器,常用於運動跟蹤和姿態檢測。 其高精度和小型化特點使其適合嵌入式系統的傾斜監測應用。在橋樑結構安全監測中,類似的加速度感測器已被用於檢測結構的振動和傾斜情況,證明了其有效性和可靠性。

此外,研究表明,環境因素如溫度變化會影響傾斜感測器的精度。因此,在設計過程中,需考慮溫度漂移效應對監測精度的影響,採取適當的補償措施,以確保系統的準確性和穩定性。

通過將 MPU6500 感測器與 HT32F52352 微控制器相結合,設計一個即時監測書架傾斜的系統。當檢測到異常傾斜時,系統通過 LED 和蜂鳴器發出警報,提醒用戶採取措施,防止潛在的安全事故。同時,利用 Tera Term 等終端軟體顯示即時狀態,方便使用者監控和記錄資料。

綜上所述,基於 MPU6500 和 HT32F52352 的 書架傾斜監測系統具有即時性強、精度高、成 本低等優點,可有效預防因書架傾斜導致的安 全問題,提升日常生活的安全性。

圖(一) 樹狀書架1

圖(二) 樹狀書架 2

2. 工作原理

i. 評估標準

系統透過 MPU6500 定時測量 Z 軸資料,並比對當前值與過去值,計算傾斜變化量。根據傾斜的距離:

- 在 0-1 公分內,判斷為安全狀態,LED 和蜂鳴器保持靜止。
- 在 1-2 公分之間, LED 亮起, 蜂鳴器發出低頻聲警告用戶。
- 超過2公分時,系統發出高頻 聲警告危險狀態,提醒用戶採 取措施。

傾斜 高度 (公 分)	狀態	LED	蜂鳴器	UART 輸出
0-1	安全狀態	關閉	静止	Safe
1-2	警告狀態	亮起	低頻聲警告	Warning
>2	危險狀態	亮起	高頻聲警告	Dangerous

表格(一) 評估標準

ii. 閥值設定

因周遭環境影響,感測器對其較為敏 感,因此設定閥值避免誤差。

程式邏輯解析:

1. 計算原值:

使用 fabs(delta_height) 計算絕對值,並減去 0.3。

2. 條件判斷範圍:

檢查 value 是否落在 0 到 -1 之間 (包含 0 和 -1)。

3. 重設為 0:

若滿足條件,直接將 value 設為 0。

fabs(delta_height)	計算值	最終值
	(value)	(Output)
0.3	0.0	0.0
0.4	0.1	0.0
0.5	0.2	0.0
1.0	0.7	0.7
1.3	1.0	1.0
1.5	1.2	1.2

圖(三) 閥值設定範例

2.1 MCU 核心功能

HT32F52352 微控制器作為本系統的核心處理單元,承擔多項關鍵功能。通過 I2C 協議,MCU 與 MPU6500 感測器通信,即時接收 Z 軸加速度數據,並進行傾斜變化的計算與分析。MCU 還通過 PWM 信號控制蜂鳴器,實現不同頻率的聲音警報,提醒使用者注意安全狀態。此外,MCU 利用 GP10 引腳控制 LED 的亮減,直觀地顯示傾斜狀態。通過 UART 介面,MCU 將即時傾斜資料傳輸至終端設備,便於遠端監控與資料分析。

在設計過程中,考慮到環境因素(如溫度變化)可能對感測器精度產生影響,系統採用了溫度補償演算法,以確保監測資料的準確性和可靠性。此外,系統的軟體架構設計遵循模組化原則,便於後續功能擴展和維護。

3. 作品結構

3.1 硬體架構介紹

系統的主要硬體組成包括:

 HT32F52352 MCU:作為操作核心,負 責數據接收、分析與控制,包括
PWM、GPIO 和 UART 通信。

圖(四) HT32F52352 開發板

 MPU6500:採集動力軸數據,分析 Z 軸傾斜變化。

圖(五) MPU6500

● LED:用於顯示不同傾斜狀態。

圖(六) LED 模組

蜂鳴器:發出聲音警告用戶危險情況。

圖(七) 蜂鳴器

資料傳輸流程如下:

1. MPU6500 通過 I2C 傳輸傾斜資料至 MCU

MPU6500 是一款集成三軸加速度計和三軸陀螺儀的感測器,能夠即時檢測書架的傾斜狀態。通過 I2C(Inter-Integrated Circuit)介面,MPU6500 將採集到的傾斜資料傳輸給微控制器(MCU)。I2C 是一種常用的串列通信協定,具有雙荷間的通信。

2. MCU 分析資料, 啟動相應 GPIO 控制 LED 和 PWM 蜂鳴器

MCU 接收到來自 MPU6500 的傾斜資料後,進行分析和處理。根據預設的閩值判斷當前的傾斜狀態,並通過用輸入輸出埠(GPIO)控制 LED的點亮或熄滅,以提供視覺指示。同時,MCU 通過脈寬調製 (PWM) 信號驅動蜂鳴器,發出不同頻率的聲

音警報,提醒用戶注意。

3. 通過 UART 將傾斜狀態傳輸至終端顯示哭

通過上述資料傳輸流程,系統實現了 對書架傾斜狀態的即時監測和警報功 能,確保用戶能夠及時採取措施,防止 潛在的安全隱患。

圖(八) 數據傳輸流程圖

3.2 軟體結構介紹

軟體主要模組:

- 1. 數據讀取模組:初始化 MPU6500,定 期讀取加速度數據。
- 2. 數據處理模組:計算 Z 軸的傾斜變化,分類不同狀態。
- 3. 警示模組:基於狀態啟動 LED 和 PWM 鳴響器,實現聲光提示。
- 4. 通信模組:通過 UART 發送狀態信息 至 Tera Term 進行顯示。

系統運行邏輯:

- 1. 初始化所有外設,包括 MPU6500、 UART 和 PWM。
- 2. MCU 定期獲取 Z 軸數據,計算變化量。
- 3. 根據變化量分類傾斜狀態,並驅動 LED 和鳴響器。
- 4. 通過 UART 將數據實時發送到終端。 5. I2C 的用途是實現 MPU6500 與 MCU 之間的高速數據通信。其雙向通信能力 允許 MCU 向 MPU6500 發送初始化指 令,例如設定採樣率和量測範圍,並從 MPU6500 讀取動力軸數據進行即時處

理。這種通信方式的穩定性和高效性確 保系統能夠即時響應傾斜變化。

4. 測試方法

流程圖

圖(九) 測試流程圖

根據即時監測到的傾斜值,核心 MCU 對其進行計算,得到傾斜變化量,並將每次變化的資料通過 UART 通信即時展示在 Tera Term 終端上。系統測試過程的具體 步驟如下:

- 1. 類比不同的傾斜情況:在控制條件下 手動調整書架的傾斜角度,以模擬多 種可能的使用場景和傾斜狀況。通過 觀察系統對這些情況的反應,檢查 LED 指示燈是否能夠正確顯示當前 的傾斜狀態,並確認蜂鳴器的聲響是 否按照設定的閾值發出警報。
- 2. 反復測試不同的垂直距離變化:使用 精准的工具設置多組不同的垂直距 離調整,並通過系統記錄 UART 介面 輸出的即時資料。將記錄的資料與系 統內設的分類標準進行比對,確保系 統能夠根據設定閾值準確分類並發 出相應的警報提示。
- 3. 通過實測資料與標準基準器比對:使用校準好的高精度基準器記錄參考資料,將參考值與系統輸出的檢測資料進行比較。通過對比兩者的偏差值,驗證系統的精確度是否在可接受的範圍內,進一步確保系統能夠穩定

可靠地滿足實際應用需求。

4.1 智慧書架傾斜警報系統使用情境

圖(八) 情境四格漫畫

在家庭、辦公室或圖書館等日常生活和工作場所中,書架通常用來擺放大書籍不養的物以及其他物品。這些場所的書架在承引發期負載的同時,也可能因受到外力影響不可能包括地震、意外碰擊、大力來源可能包括地震、意外碰撞、搬運過程中的不慎操作,甚至因環境條件變能不過,最重時人力改變。這些因素可能導致的結構應力改變。引發倒塌,對人身安全和財產造成威脅。

針對這一問題,智慧書架傾斜警報系統應運而 生,其核心功能是即時監測書架的傾斜狀態, 並在檢測到異常傾斜時,通過聲光提示或遠端 警報功能,提醒用戶採取相應措施。以下是該 系統在不同場景中的實際應用:

家庭場景

• 圖書館和辦公室場景

在圖書館或辦公場所,書架往往數量眾多且分佈密集,其承載的物品種類繁多,包括大量的圖書、檔案以及辦公設備。一旦單個書架出現傾斜而未及時處,可能會對周邊書架產生連鎖反應,甚至導致整個區域的結構性混亂。配備智慧書架傾斜警報系統後,多個書架之

間的資料可以通過無線通訊或有線網路傳輸至中央控制系統。該系統等中央控制系統。該系統等中央控制系統。該系統等理員能夠通過終端設備即時查看的狀態,並根據系統提供的資源級,並根據系統提供。這有警視,也管理模式不僅提高了安全性大力整體管理的效率,特別是在大為關於或開放式辦公空間中,效果尤為顯顯,

總之,智慧書架傾斜警報系統通過高效的傾 斜監測與警報功能,能夠大幅降低書架傾斜和 倒塌的風險,為家庭、辦公室以及公共場所提 供了更加安全的使用環境。這一系統的應用, 不僅解決了傳統書架安全管理的痛點,也為智 慧家居和智慧辦公的實現增添了新的可能性。

4.2 作品設計

在本作品的設計中,我們著重於簡化硬體 結構和優化軟體邏輯,實現傾斜檢測和警報功 能。其主要設計特點包括:

- 模組化架構:將感測器、控制器與警報裝置分層設計,便於維護和升級。這種模組化設計方法在物聯網系統中被廣泛應用, 能夠提高系統的可維護性和可擴展性。
- 即時反應能力:通過高精度 MPU6500 傾斜 感測器和高效通信模組,確保檢測與警報 的同步性。MPU6500 集成了三軸加速度計 和三軸陀螺儀,能夠提供精確的姿態和運 動檢測,廣泛應用于需要高精度即時監測 的系統中。
- 3. 易用性與可擴展性:系統可根據實際需求添加更多傳感點或集成其他設備,擴展應用範圍。這種設計思路在農業機械輔助導航系統中也有所體現,通過模組化設計和高精度感測器的應用,實現了系統的易用性和可擴展性。

通過以上設計特點,本系統實現了對書架 傾斜狀態的即時監測和警報功能,具有良好的 可維護性、即時性和可擴展性,適用于多種應 用場景。

5. 設計特點

本系統利用 MPU6500 的高精度傾斜檢測能力,能夠精確測量細微的傾斜變化。MPU6500 是一款集成了三軸加速度計和三軸陀螺儀的感測器,常用於運動跟蹤和姿態檢測,其高精度和小型化特點使其適合嵌入式系統的傾斜監測應用。

系統配備了中斷機制,通過UART介面即時輸出狀態資訊,確保通信流程的健全性和即時性。在設計過程中,考慮到環境因素(如溫度變化)可能對感測器精度產生影響,系統採用了溫度補償演算法,以確保監測資料的準確性和可靠性。

此外,系統通過PWM 信號驅動蜂鳴器,實

現不同頻率的聲音警報,提醒使用者注意安全 狀態。PWM 控制在蜂鳴器驅動中的應用,可以通 過改變占空比和頻率,產生不同的音調和音 量,簡化了設計的複雜性。

同時,系統利用 GPIO 引腳控制 LED 的亮減,提供視覺化的傾斜狀態指示。這種多樣化的提醒方式,包括 LED 指示、聲音警報以及狀態資訊的文字顯示,增強了使用者對系統狀態的感知,提高了安全防護能力。

6. 結論

在本項目中,我們設計並實現了一個基於 HT32F52352 微控制器和 MPU6500 感測器的智慧 書架傾斜監測系統。該系統能夠即時監測書架 的傾斜狀態,並通過精確的傾斜分析、聲光提 醒以及 UART 通信功能,確保用戶在危險發生前 採取必要的預防措施,從而保障安全。

MPU6500 是一款集成了三軸加速度計和三軸陀螺儀的高精度感測器,廣泛應用於姿態檢測和運動跟蹤領域。在本系統中,MPU6500 通過I2C 介面與HT32F52352 微控制器通信,即時獲取書架的傾斜資料。微控制器對這些資料進行處理和分析,以確定書架的當前傾斜狀態。

為了提高系統的可靠性,我們在設計中考慮了環境因素對感測器精度的影響。例如,溫度變化可能導致感測器讀數的漂移。因此,我們採用了溫度補償演算法,以確保監測資料的準確性和穩定性。

當檢測到書架傾斜超過預設閾值時,系統會通過蜂鳴器和 LED 燈發出聲光警報,提醒用戶注意潛在的危險。蜂鳴器由微控制器通過 PWM信號驅動,可以產生不同頻率的聲音,以指示不同程度的傾斜。LED 燈則通過 GPIO 引腳控制,其亮滅狀態直觀地顯示當前的傾斜情況。

此外,系統還通過 UART 介面將即時傾斜資料傳輸至終端設備,如電腦或智慧手機。使用者可以通過終端設備遠端監控書架的狀態,並根據需要採取相應的措施。

該系統的設計具有模組化和可擴展性,便 於在未來集成到更大的智慧家居平臺中。通過 與其他安全系統的聯動,可以進一步提升整體 的安全防護能力。

7. 参考資料

- [1] 彭敬鈞. 三軸加速規于橋樑結構安全監測 系統之研究. 國立臺灣科技大學碩士論文, 2017
- [2] 在kei15調用時間函數. (2024, April 27). CSDN.
 - https://wenku.csdn.net/answer/6fk6vf ijsh
- [3] 傾斜率少於 1/200 安全範圍. (2012, November 12). 大管家房屋網. https://www.chrb.com.tw/news/newscon t 1190, html
- [4] ESP8266 & MPU6050 Tilt Angle Monitor on IoT Blynk. (2022, August 21). How To

Electronics.

https://how2electronics.com/esp8266mpu6050-tilt-angle-iot-blynk/

8. 報告影片連結

https://youtu.be/wfYW1hnNZvQ