Promoter Sequence Classification

using CNN, GRU, BERT based models

2019-13773 2018-18574 2018-12018

Kyungjin Kim Junyoung Park Sungmin Song

- 1. Motivation
- 2. Idea
- 3. Experiments
- 4. Results
- 5. Conclusion

- 1. Motivation
- 2. Idea
- 3. Experiments
- 4. Results
- 5. Conclusion

Motivation

Central Dogma

Promoter Gene

- DNA, especially the non-coding region, indeed exhibits great similarity to human language, ranging from alphabets and lexicons to grammar and phonetics
- We chose promoter gene classification as a sample task

- 1. Motivation
- 2. Idea
- 3. Experiments
- 4. Results
- 5. Conclusion

Idea

Task: Classifying the sequence whether it is a promoter gene

Models: CNN+GRU(baseline), CNN, GRU and BERT ... (+some variations)

Goal 1: To improve the accuracy by implementing other appropriate model

Goal 2: To practice applying various machine learning models into bioinformatic task

Dataset

- Sequences: same length (about 300)
- Label: 1: promotor gene, 0: non-promotor gene

- 1. Motivation
- 2. Idea
- 3. Experiments
 - a. Baseline (CNN + GRU)
 - b. CNN
 - c. GRU
 - d. DNABERT + fine-tuning
- 4. Results
- 5. Conclusion

Baseline: CNN+GRU

- 2 CNN + 1 bidirectional GRU + 5 Linear
- Train 115 epoch with 100 minutes
 - Accuracy: 87.6%
 - o Precision: 86%
 - o Recall:89%

- 1. Motivation
- 2. Idea
- 3. Experiments
 - a. Baseline (CNN + GRU)
 - b. CNN
 - c. GRU
 - d. DNABERT + fine-tuning
- 4. Results
- 5. Conclusion

CNN

- Check the contribution of CNN part in Baseline
- Use only CNN layers and one more dense layer

- 1. Motivation
- 2. Idea
- 3. Experiments
 - a. Baseline (CNN + GRU)
 - b. CNN
 - c. GRU
 - d. DNABERT + fine-tuning
- 4. Results
- 5. Conclusion

GRU: only GRU

- Check the contribution of GRU part in Baseline
- Use only Bidirectional GRU and Linear Layers

GRU: Window + GRU

- Idea of DNABERT
 - Window-based tokenization
- Wanted to replace CNN by
 Window-based tokenization

GRU: Result

- Slow Train Speed
 - Limitation of RNN architecture
 - Long Input Sequence
 - only 40 epochs with 120 minutes
- Low Performance
 - only GRU accuracy: 82%
 - Window + GRU accuracy : 73%

- 1. Motivation
- 2. Idea
- 3. Experiments
 - a. Baseline (CNN + GRU)
 - b. CNN
 - c. GRU
 - d. DNABERT + fine-tuning
- 4. Results
- 5. Conclusion

DNABERT finetuning

- BERT pretrained with DNA sequences
- SOTA in DNA classification Area
- MLM with window-based tokenization

DNABERT + 1 Classification Layer

- BERT + 1 Linear layer
- Finetuning with 5 epoch
 - o take about 180 minutes
- Good Performance, but Unstable

DNABERT + 2 Classification Layer

- BERT + 2 Linear layer
- Better Performance
- Best Result
 - Accuracy: 90%

- 1. Motivation
- 2. Idea
- 3. Experiments
- 4. Results
- 5. Conclusion

Accuracy

- DNABERT + 2 layers had the best result
- DNABERT + 1 layer also outperformed CNN + GRU
- Only CNN had slightly low performance than CNN+GRU

Model Size

Model	Parameters
CNN+GRU	158,207
CNN	377,784
GRU	149,298
Window GRU	151,602
DNABERT + 1 layer	89,192,450
DNABERT + 2 layer	89,388,290

- DNABERT >> Others
- CNN > CNN+GRU > GRU

Training time

- Training time
 - DNABERTs: 30min/epoch
 - CNN+GRU: 40s/epoch
 - GRUs: 3min/epoch
 - o CNN: 20s/epoch
- DNABERT models can be improved with more epochs

- 1. Motivation
- 2. Idea
- 3. Experiments
- 4. Results
- 5. Conclusion

Conclusion

- Pretrained Language Model can be applied on Promoter classification
 - Outperformed the baseline, and possibility for better results
- CNN itself has a nice performance
 - Good choice for limited computation source
- RNN structure is inappropriate
 - Slow training + Low performance
 - Low merit for combining with CNN

