AUDIÓMETRO

Electrónica Digital II – 2022 Universidad Favaloro

Melanie Geonas, Victoria Guarnieri, Manuela Velloso, Mailén Zino

INTRODUCCIÓN: Audiometría

Cifrar las alteraciones de la audición en relación a los estímulos acústicos recibidos por los nervios del oído interno.

Motivación y Objetivos

Diseñar un dispositivo útil para realizar una audiometría

- Generar sonido a determinadas frecuencias del espectro audible
- Registrar las que el paciente sea capaz de escuchar

Materiales

Microcontrolador PIC16F1827 Display LCD LMO16L (16x2)Demultiplexor 4051 Resistencias (10k, 7k, 6k, 5k, 4k, 3k, 2k) Botones Parlante Fuentes de tensión continua Terminal Virtual

TMR0-TMR1

Se utilizaron ambos timers con el fin de manejar interrupciones:

- TMRO: para generar la señal cuadrada para determinada frecuencia
- TMR1: para la espera de los 3 segundos.

$$TMR0 = 256 - \frac{T \cdot 4000000}{4 \cdot 256},$$
 (1)
 $TMR1 = T_{max} - \frac{T \cdot 4000000}{4 \cdot 8} \cdot \frac{1}{10}$ (2)


```
void Menu()
  signed char x0= 16; signed char x1= 16; signed char x3=16;
  while(input(PIN_A6)) //mientras no se presione el boton MENU
    if(x0>=-24)
    Lcd gotoxy(x0,1);
    printf(lcd putc, "Frecuencias a registrar: ");
    delay_ms(100);
    x0=x0-1;
    if(x0<-24 && x1>=-47) {
    printf(lcd_putc,"\f");
    Lcd_gotoxy(x1,2);
    printf(lcd_putc, "125, 250, 500, 750, 1K, 1K5, 2K, 3K, 4K, 6K, 8K \n");
    delay_ms(100);
    x1=x1-1;
    // = para "Pulse el boton para comenzar"
    if(x1<-47)
     printf(lcd putc,"\f");
     Lcd gotoxy(x3,1);
     printf(lcd_putc, "Pulse el boton para comenzar");
     delay ms(100);
     x3=x3-1;
    if(x3<-28) ...
```

```
printf(lcd_putc, "\ffrec=%ld vol=%d",lista[pos_frec].freq,lista[pos_frec].dB);
```


- MENU
- Visualización y registro de audición manual.

DEMUX 4051

- Permite el aumento de volumen.
- A mayor resistencia, menor volumen (por la atenuación).
- Los pines AO, A1 y A2 funcionaban como la llave selectora del DEMUX,

COMUNICACIÓN

- Fue necesario modificar el pin de transmisión.
- Se conecto el PIC a la virtual terminal, por donde se mandó la lista con los datos obtenidos.

#use RS232(BAUD=1200, XMIT=PIN_A3, parity=N)

Virtual Terminal

```
istening: 1
recuencia: 125
 ecuencia: 250
istenina: 1
recuencia: 500
istening: 1
recuencia: 750
istening: 1
recuencia: 1000
istening: 1
recuencia: 1500
istening: 1
recuencia: 2000
istening: 1
istening: 1
 ecuencia: 4000
istening: 1.
recuencia: 6000
recuencia: 8000
```


AFUTURO

- Emplear auriculares en lugar de un parlante.
- Procesar los datos enviados a la PC y generar un gráfico para armar los resultados

Conclusión

Se alcanzó el objetivo planteado: se emplearon todos los conocimientos adquiridos en la materia Electrónica Digital 2 para generar un dispositivo médico.

¡Muchas gracias!

¿PREGUNTAS?