МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

П. В. Кустарев, С. В. Быковский

Функциональная схемотехника

Методические указания к лабораторной работе №4

Санкт-Петербург

2019

Содержание

1	Лабораторная работа №4. «Проектирование встроенных схем самоте-					
	стир	ования»	4			
	1.1	Цель работы	4			
	1.2	Указания к выполнению работы	4			
	1.3	Порядок выполнения работы	4			
	1.4	Задания по вариантам	6			
_						
2	Tpe	бования к оформлению отчета '	7			

Лабораторная работа №4. «Проектирование встроенных схем самотестирования»

1.1 Цель работы

Получить навыки разработки встроенных схем самотестирования (BIST, built-in self-test) для цифровых устройств, реализованных на базе программируемых логических интегральных схем (ПЛИС).

1.2 Указания к выполнению работы

Лабораторная работа посвящена знакомству с особенностями разработки встроенных схем самотестирования для цифровых устройств, реализованных на базе микросхем ПЛИС. Работа выполняется в Vivado Design Suite и с использованием отладочной платы Nexys 4 DDR (новое название Nexys A7)

По результатам выполнения лабораторной работы составляется отчет в соответствии с требованиями, приведенными в разделе «Требования к оформлению отчета».

1.3 Порядок выполнения работы

- 1. Доработайте схему функционального блока, разработанного в лабораторной работе №3, в соответствии с рисунком 1.1. На рисунке данный блок обозначен как DUT (Design under Test). Необходимо добавить в схему возможность выполнять самотестирование по внешней команде - по факту нажатия кнопки. Схема самотестирования должна удовлетворять следующим требованиям:
 - (a) Вход и выход из режима самотестирования должен выполняется по факту нажатия кнопки BTN.
 - (b) Модуль «BIST control logic» должен управлять коммутацией сигналов в режиме тестирования. Данный модуль также должен хранить количество переходов в режим самотестирования с момента подачи питания на схему.

- (c) Должна быть поддержана возможность подавать вместо операндов функции значения с регистров сдвига с линейной обратной связью LFSR (Linear-Feedback Shift Register). Регистры LFSR будут выполнять функции генераторов псевдослучайный чисел. Полином, на базе которого работают регистры LFSR, задаются вариантом задания.
- (d) Значение выхода функционального блока (DUT) в режиме тестирования должно проходить через модуль расчета циклического избыточного 8-битного кода CRC8 (Cyclic Redundancy Check). По значению CRC8 в конце тестирования определяется корректность работы схемы. Использование такого подхода позволяет сэкономить память, как под запись истории тестирования, так и для списка эталонных значений на каждой итерации тестирования. Полином для CRC8 задается вариантом задания.
- (e) Результат работы блока в режиме самотестирования должен представлять собой значение кода CRC8 после 256 итераций тестирования. За одну итерацию тестирования принимается расчет результата на одной комбинации входных операндов.
- (f) В режиме тестирования на светодиоды должно выводиться значение CRC8 и количество переходов схемы в режим самотестирования с момента подачи питания на схему. В режиме нормальной работы на светодиоды выводится результат расчета функционального блока (DUT).
- 2. Разработайте тестовое окружение и проведите моделирование схемы. Определите корректное значение CRC8 в конце процесса самотестирования, то есть после 256 итераций смены входных операндов.
- 3. Проведите синтез и размещение схемы для ПЛИС XC7A100T-1CSG324C, входящей в состав отладочной платы Nexys 4 DDR.
- 4. Определите количество и тип используемых ресурсов ПЛИС после размещения схемы.
- 5. Проверьте работоспособность схемы на отладочной плате Nexys 4 DDR в нормальном режиме и режиме самотестирования.

На рисунке 1.1 интерфейсы ввода/вывода блока DUT показаны упрощенно. Блок DUT должен иметь интерфейсы, аналогичные тем, что были в лабораторной работе №3.

Рисунок 1.1: Схема сопряжения функционального блока со схемой тестирования: BTN - тактовая кнопка, LEDS - светодиоды, DUT (Design under Test) - модуль из третьей лабораторной работы, LFSR 1 и LFSR 2 (Linear-Feedback Shift Register) - регистры сдвига с линейной обратной связью, CRC8 (Cyclic Redundancy Check) - модуль расчета циклического избыточного 8-битного кода

1.4 Задания по вариантам

№ Bap.	Полином LFSR 1	Полином LFSR 2	Полином CRC8
1	$y = 1 + x + x^2 + x^4 + x^8$	-	$y = 1 + x^2 + x^3 + x^4 + x^8$
2	$y = 1 + x^2 + x^3 + x^5 + x^8$	-	$y = 1 + x^4 + x^6 + x^7 + x^8$
3	$y = 1 + x^2 + x^3 + x^5 + x^8$	$y = 1 + x^2 + x^3 + x^5 + x^8$	$y = 1 + x^4 + x^6 + x^7 + x^8$
4	$y = 1 + x^2 + x^3 + x^5 + x^8$	$y = 1 + x^2 + x^3 + x^5 + x^8$	$y = 1 + x^4 + x^6 + x^7 + x^8$
5	$y = 1 + x^2 + x^3 + x^5 + x^8$	-	$y = 1 + x^4 + x^6 + x^7 + x^8$
6	$y = 1 + x^2 + x^3 + x^5 + x^8$	-	$y = 1 + x^4 + x^6 + x^7 + x^8$
7	$y = 1 + x^2 + x^3 + x^5 + x^8$	-	$y = 1 + x^4 + x^6 + x^7 + x^8$
8	$y = 1 + x^2 + x^3 + x^5 + x^8$		$y = 1 + x^4 + x^6 + x^7 + x^8$
9	$y = 1 + x^2 + x^3 + x^5 + x^8$		$y = 1 + x^4 + x^6 + x^7 + x^8$
10	$y = 1 + x^2 + x^3 + x^5 + x^8$	-	$y = 1 + x^4 + x^6 + x^7 + x^8$

Для вариантов, у которых всего один входной операнд, указан полином только для регистра LFSR 1, так как регистра LFSR 2 нет, как нет и второго операнда.

Требования к оформлению отчета

Отчет выполняется в виде самодостаточного документа. Материал, изложенный в отчете, должен быть понятным без дополнительных комментариев со стороны исполнителей.

На защиту предоставляется только распечатанный титульный лист. Электронная версия отчета высылается на почту преподавателю.

Отчет должен содержать:

- Титульный лист, на котором указываются:
 - название университета;
 - название факультета;
 - название дисциплины;
 - номер и тема лабораторной работы;
 - вариант лабораторной работы;
 - фамилия, инициалы и номер группы каждого исполнителя;
 - фамилия и инициалы преподавателя;
 - текущий год.
- Содержание.
- Цель работы.
- Задание в соответствии с вариантом.
- Схема (рисунок) устройства блока «BIST control logic», регистров LFSR и модуля расчета CRC8.
- Результат тестирования (временные диаграммы) блока в симуляторе.
- Время моделирования режима самотестирования в симуляторе.
- График с плотностью распределения значений операндов, которые перебираются в режиме самотестирования, с указанием области допустимых значений.

- Приводится процент количества значений операндов, которые попали в область допустимых значений.
- Таблицу с используемыми ресурсами ПЛИС.

Требования к оформлению:

- отчет выполняется как текстовый документ в соответствии с ГОСТ 2.105-95;
- шрифт Times New Roman 12-14 pt, межстрочный интервал 1-1,5, поля с краев листа не менее 2 см;
- сквозная нумерация страниц;
- обязательны нумерация и подписи к рисункам и таблицам, а также ссылки на них в тексте отчета;
- схемы и временные диаграммы должны быть темными на светлом фоне; если наложение временных диаграмм нескольких сигналов мешает их однозначному восприятию, они должны разноситься на отдельные координатные сетки;
- в распечатанном отчете линии на схемах и временных диаграммах должны быть четко видны.