Section 3 Invariant Ensembles Consider the density function of an invariant ensemble as P(H) dH = = = exp(-PNTr V(H)) dH For GOE/GEU, $V(H) = \frac{1}{2}H^2$. In this case, this model is called a β -ensemble B=1 for GOE; B=2 for GUE; B=4 for GSE. symplectic (Ganssian quaternion ensemble) For general B, it does not correspond to any Wigner seen ensembles. 1 Probability density for B-ensemble For invariant ensembles, their eigenvectors are uniformly distributed on the unit sphere. So people mainly focus on their eigenvalues. We will integrate out the eigenvectors in IP(H) dH and show the following result. Theorem 3.1 The joint probability density of the eigenvalues of H is given by (*) 1, (\(\lambda_1, \lambda_2, \lambda_1, \lambda_N) = \frac{1}{Z_N} \frac{1}{i \cdot j} \frac{1}{A_i - \lambda_j \frac{1}{B}} e^{-\frac{1}{2}N \frac{1}{2}V(\lambda_i)} Rmk¹: Recall that $\Delta(\lambda) = TT(\lambda_i - \lambda_j)$ is the Vandermonde determinant. $\frac{R_{mk}^2}{\ln the}$ above formula, we neglect the ordering of the eigenvalues. This can be done by multiplying a $\frac{1}{n!}$ factor when calculating various probabilities. links. We can rewrite 1x1 as: property by Mithe the Rmk3: When $|\lambda_i| = -\lambda_i = 0$, this indicates a repulsion between different eigenvalues. $\frac{p_m k \, 4}{1}$: The eigenvalues are strongly correlated. It is useful to think of p_m as a Gibbs measure on N "particles" $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$: $p_N(\vec{\lambda}) d\vec{\lambda} = \exp\left[-\beta N \mathcal{H}(\vec{\lambda})\right] \frac{1}{Z_N}$ $fl(\vec{\lambda}) := \frac{1}{2} \sum_{i=1}^{N} V(\lambda_i) - \frac{1}{N} \sum_{i < j} |og|\lambda_i - \lambda_j|$. [The two turns have the same order "N".] A confining potential. A logarithmic potential giving repulsions between particles. This gives an important statistical mechanical system, called the "log-Conlomb gas".

To prove the Thm 3.1, we need to show that integrating out the eigenvectors gives the Vandermonde determinant.

Let $H = UDU^*$ be an eigenvalue decomposition of H, where $D = diag(\lambda_1, \lambda_2, \cdots, \lambda_N)$ with $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ and ν is an orthogonal / with unitary matrix. We consider the nitary case. Then U is Haar distributed on U(N) from the unitary invariance of IP(H)dH, we see that after conditioning on D, the eigenmatrix il is drawn from the Haar measure on U(n). In particular, U and D can be taken to be independent: IP (H - WDA-TAH) = IP (H - (V W) B(W*V*) + dH) for any VE UIND P(UEB, DEA) = IP(UEB | DEA) IP(DEA) = IP (UEB) IP (DEA) Proof of Theorem 3.1: Fix a diagonal matrix Do = diag(\(\lambda_i, \ldots, \lambda_n\), \(\lambda_i \in \ldots \in \lambda_n\). let E>0 be arbitrarily small. We now compute the probability that HN lies in an E-ball around Do in the H-S norm (Frobenius norm): P(II HN - DO IIF (E) The Euclidean morm Them to Sen on so the space of nun matrices. I. the The simpler direction: The probability density of Mn is $\alpha \exp(-\frac{\beta}{\Sigma}N \sum_{i}V(\hat{\lambda}_{i}^{i}))$. The telement volume of the ϵ -ball is $C_{N} \epsilon^{N^{2}}$. So (1) IP(11HN - DO 11 = (E) = (CN + o(1)) EN exp(- BN IV(N;)) OE(1) -> 0 as E-> 0 when N is fixed The harder direction: Let's calculate IP(IIHN-Doll F SE) in a different way. Weyl's inequality: Given two hermitian matrices A and B with eigenvalues $\lambda_i(A) \leq \cdots \leq \lambda_N(A), \quad \lambda_i(B) \leq \cdots \leq \lambda_N(B).$ Then, $\forall i$, $\lambda i(A) + \lambda_1(B) \leq \lambda i(A+B) \leq \lambda i(A) + \lambda_1(B)$ In particular, if B is a small perturbation with 11811 EE, then λ:(A) - € ≤ λ:(A+8) ≤ λ;(A) + €. Thus, for HN = UDU*, we have ID-Doll = E when II HN - Doll = E Monover, uDa* = Do + O(E) = D + O(E) = > UD - 10 Du = O(E) = Now, we make the ansatz Ales ediagonal de unitam sie D= Po 1 EE, U= exp(ES) , PROCESTO where E is a diagonal matrix and S is a skew-adjoint matrix. with two diagonals Note that un* = exp(ES) exp(ES*) = exp(ES) exp(-ES) = I] Note that 51-2 exples) has a non-degenerate Jacobian in the small 6-ball, so the inverse function than applied to specify I from U. (Formally, 5= 2 log U.)

```
Whose, suppose all it are different (other this holds a.s.) -
Thus, we make the ansatz: D= Do + & E, E is diagonal bounded.
 Note, the eigenvalues of Do are non-zero and non-degenerate almost surely. Moreover,
 we have UDN^* = D_0 + O(E) = UD_0N^* = D_0 + O(E) = UD_0 - D_0N = O(E). (*)
 The only unitary matrices that commute with Do are diagonal unitary matrices
                      R= (r1, r2, ..., rN), |r1-12=1.
  From (*), we can make the ansatz: U= exp(ES)R,
  Where S is a bounded skew-adjoint (S*=-S) matrix with zero diagonal. (The diagonal
  parts can be included into R. )
   We can check that uu* = exp(ES) exp(ES*) = I,
   UDO - DON = exp(ES) RDO - DO exp(ES) R = RDO - DOR + O(E) = O(E).
   It is easy to check that (R,s) >> exp(ES) R has a non-degenerate Jacobian, so
  with the inverse function thm, we can uniquely determine R and S from U in the som
   small &-ball around Do.
   Now with the ansatz: D=Do+EE, U=exp(ES)R, we get
                    HN = UDU* = exp(ES) R (Do+EE) R* exp(-ES)
                                  = Do + EE + ESRDOR* - ER DOR*S + O(E2)
                                   = Do + EE + E(SDo - Dos) + O(E2)
   Thus, IP ( | 1HN - Poll = EE) = IP ( | 1E + (5Do - Dos) | 1 < 1+ O(E)). (+)

Since U is Haar distributed on U(N), S is locally as Cherry at Chenter
    times the lebesgue measure on the space of skew-adjoint matrices with 0 diagonal.
    on the other hand, E is distributed as (PN(x0) + 012)) EN times the
     Lebesgue measure on the space of diagonal matrices. Thus we can calculate (t) as:
                      CN ENT (PN(30) +012))
                                         11E + SDO - DOS 11F < 1+0(E)
   Consider the map S -> SD. -Dos, where (SD. - Dos)ij = (1, - 1i) Sij.
    In other words, the map dilates the (i,j) th entry of s by 1; -1; Hence, the
   Jacobian of this map is TT |\lambda_i^0 - \lambda_i^0| = TT |\lambda_i^1 - \lambda_i^0|^2.
   Applying the change of variable, we get
                      ||E + SD_0 - D_0S||_{F} \le |+O(E)|
                                                                   11E+10511 = (1+0(E)
                                                    = \frac{\Gamma''}{\Ti} |\lambda'' - \lambda'' |^2
```

In sum, we have found that IP(11 HN - DOll= (E) = (CN + 012)) EN2 exp[- EN I V(x:)] $= \frac{C_N}{\pi} \frac{1}{15icisN} \left[P_N(\vec{\lambda}^\circ) + o(L) \right] \epsilon^{N^2}$ => PN(30) = = = N TT 13: - 1:12 exp[- = N N V(1:)] Mean field approximation of semicircle law PNは) RX(な)= = exp[-BN4(な)], 4(な)= = = ドV(ス;) - かに log 12:-3 Intuitively, it is plausible that the spectrum should concentrate around the maximum of PN(x) (2008. as N-> +00. It is equivalent to study the minimum of H(x). approximated by a continuous probability measure f(x) dx (-) this is reasonable for GOE/GUE at least with & P=Psc.) Then, we expect that H(x) is approximately given by HIP) = I VIXIAX H(p) = \frac{1}{2} \int V(x) p(x) dx + \int \int \frac{1}{1R} \int P should minimize this functional. Now, we derive the Euler - Lagrange equation for LP(p): consider p+ &p, where p is the minimizer. We should have $\frac{\delta \mathcal{H}(\rho)}{\delta \rho} = 0$, because $\mathcal{H}(\rho + \delta \rho) \geq \mathcal{H}(\rho) \forall \delta \rho$. We have $\delta H(p) = \frac{1}{2} \int V(x) \, \delta p(x) \, dx + \int \int (\delta p(x)) p(y) \log \frac{1}{|x-y|} \, dx \, dy$ + S S P(x) (8 Ply)) log 1/x-y1 dx dy $\Rightarrow \frac{1}{2} \int_{\mathbb{R}} V(x) \, \delta p(x) \, dx + 2 \int_{\mathbb{R}} \left(\int_{\mathbb{R}} p(y) \, \log \frac{1}{1 \times y}, \, dy \right) \, \delta p(x) \, dx = 0$ Since of is arbitrary, we ought to have \frac{1}{2} v(x) + 2 \int \rightarrow \rightarrow \limits \rightarrow \text{lx} \quad \quad \text{lx} \quad \text{lx} \quad \quad \text{lx} \quad \text{lx} \quad \quad \text{lx} \quad \quad \text{lx} \quad \quad \q

*IR (since p+6p should be a prob. density). This is the E-L equation for p

Solving the E-L equation, we get a density $\rho(x)$, which should be the limiting ESD of IP(H) dH = = xxp[-ENTLV(H)] dH let's solve it for GUE with VIXI= x2. We need to solve +x2 + 2 \in Piy) log txy dy = C => x + 2 ps \frac{P(y)}{y-x} dy =0 (*) Here, $\int_{a}^{\frac{p(y)}{y-x}} dy$ should be formally understood as a principal value = a lim Re Sp(x+in) = : ReSp (x + i0+) On the other hand, recall p(x) = in Im Sp (x+10+) Then the equation (x) reads: $x + 2 \text{Re Sp}(x + i0^{\dagger}) = 0$ =) x 1m sp (x+io+) + 2 [Re sp (x+io+)] [Im sp (x+io+)] =0 =) Im[xspix+10+) + sp2(x+10+)]=0 Define function fil) = 35/3) + 50/3). The above function means we can make an ahalytic continuation from ItC+ -> C by making a reflection along IR: f(3) = f(3) for & 600 C-. On the other hand, since $S(1) = \frac{-(+o(1))}{3}$ as $3 \to \infty$ ∞ , $f \to -1$ as $3 \to +\infty$ By Liouville's theorem, f is a constant and f(2) = lim [2 Sp(2) + Sp2 (2)] = - 1 This gives the familiar self-consistent equation: Sp(2) + 3 Sp(2) +1 =0 => Sp(2) = msc(2) => P= Psc. The above arguments can be made rigorous for general B ensembles as long as we impose some conditions on V (in particular, need certain condition on its growth at 00) 3 Bulk eigenvalue distribution of GUE and orthogonal polynomials