当代杰出青年科学文库

等离子体隐身技术

庄钊文 袁乃昌 刘少斌 莫锦军 著

斜 学 出 版 社 北 京

内容简介

本书主要从理论层面阐述等离子体隐身技术的效用,包括作者近几年 从事等离子体隐身技术研究的成果、体会以及国内外同行的最新研究进 展,但不涉及该技术的工程实现。全书共八章。第一、二章介绍等离子体 物理学的基础知识和等离子体隐身技术的概念、优缺点等;第三、四章分 别用射线理论和 WKB 方法分析等离子体的折射隐身和吸收隐身机理;第 五、六章探讨数值计算方法在电磁波与等离子体相互作用研究中的应用, 主要运用了几种时域有限差分方法的变形;第七、八章给出几个等离子体 覆盖目标隐身特性的分析实例。

本书可供从事雷达系统、电子对抗、目标与环境特性、隐身与反隐身、计算电磁学等领域研究的科技人员及对等离子体隐身技术感兴趣的各行业读者参考。

图书在版编目(CIP)数据

等离子体隐身技术/庄钊文,袁乃昌,刘少斌等著.—北京:科学出版社,2005

(当代杰出青年科学文库)

ISBN 7-03-014939-4

I. 等··· Ⅱ. ①庄··· ②袁··· ③刘··· Ⅲ. 等离子体物理学-研究 Ⅳ. 053

中国版本图书馆 CIP 数据核字(2005)第 012243 号

责任编辑:李锋胡凯/责任校对:包志虹责任印制:钱玉芬/封面设计:王浩

科学出版社出版

北京东黄城根北街 16 号 邮政编码: 100717 http://www.sciencep.com

中国科学院印刷厂 印刷

科学出版社发行 各地新华书店经销

*

2005年7月第 一 版 开本: **B**5(720×1000)

2005年7月第一次印刷 印张: 16 1/4

印数: 1-2 000 字数: 307 000

定价: 48.00元

(如有印装质量问题,我社负责调换〈新欣〉)

前 言

等离子体隐身技术是一种新概念、新原理的隐身技术;近几年来,受到世界各军事强国的广泛关注,成为隐身技术研究中一个十分活跃的分支。由于等离子体隐身具有不改变飞行器外形、吸波频带宽、吸收效率高、使用和维护方便、价格低等优点,在军事和空间技术领域上具有很高的学术价值和应用价值。

等离子体隐身技术的研究最早可以追溯到1957年。前苏联发射第一颗人造卫星"斯普特尼克1号"时,有关科学家就注意到球形人造卫星的电磁散射特性与普通金属球差别很大,分析表明这源于卫星穿越大气层时在体表形成的等离子体层的影响。1962年,Swarner首次发表了等离子体覆盖导体目标RCS的研究文章。20世纪冷战期间,美国和前苏联进行的多次高空核爆试验证明,在高空中进行大当量(百位吨级)核爆炸,能形成完全阻断电波传播的数百公里等离子体区,当时曾有在这些等离子体区的掩护下实现大批量导弹突防的设想。但直到20世纪八九十年代以后,等离子体隐身技术的研究才有长足的进展,形成大量的研究成果。特别是最近几年,随着国外的部分研究进入工程应用阶段,等离子体隐身技术研究引起了国内外学者的极大关注,进入飞速发展阶段。我们撰写本书的目的是将近几年从事等离子体隐身技术研究的成果、体会以及国内外同行的最新研究汇编成册,供从事雷达系统、电子对抗、目标与环境特性、隐身与反隐身、计算电磁学等领域研究的科技人员及对等离子体隐身技术感兴趣的各行业读者参考。

全书共分八章。第一章是等离子体物理学的基础知识和基本概念;第二章简要介绍隐身与反隐身设计的主要手段,以及等离子体隐身技术的概念、优缺点和发展史;第三章给出等离子体内的射线理论,并据此分析等离子体的折射隐身特点;第四章用解析方法研究电磁波在等离子体中的传播特性,基于 WKB 方法研究了各种等离子体中等离子体参数、电磁波频率与碰撞吸收间的关系;第五、六章探讨数值计算方法在电磁波与等离子体相互作用研究中的应用,主要运用了几种时域有限差分方法的变形(第五章针对呈现色散性的非磁化等离子体,第六章针对各向异性的磁化等离子体);第七、八章分别给出多个等离子体覆盖目标隐身特性的研究实例,并对结果进行了讨论(第七章针对简单的一维目标,第八章针对复杂的二维、三维目标)。附录是一个被广为引用的等离子体隐身实验,冗列于后,以供参考。

本书是作者所在课题组多年科研积累的结晶,其中的数值仿真实例主要取材于作者之一刘少斌的博士学位论文。在此我们要向先后与我们一道工作过的众多同事和研究生们表示衷心的感谢。感谢国防科学技术大学电子科学与工程学院、

南昌大学理学院在本书的撰写和出版过程中给予的帮助。感谢一切协助本书出版的人们。

等离子体隐身技术作为一门新兴学科,发展是日新月异的,加上作者水平有限,书中错漏之处难免,请读者不吝指正。

作 者 2004年9月于长沙

目 录

前言

第一章	等离子体物理学基础	• 1
1.1	等离子体的几个基本参数	• 1
	1.1.1 等离子体判据和德拜长度	• 2
	1.1.2 等离子体频率	• 3
	1.1.3 回旋频率	• 4
1.2	等离子体的流体近似	• 5
	1. 2. 1 时域麦克斯韦方程组	• 5
	1. 2. 2 频域麦克斯韦方程组	• 6
	1.2.3 流体近似下的等离子体方程	
	1.2.4 等离子体的极化模型和极化率	
	1.2.5 等离子体的导电模型和导电率	10
1.3	冷等离子体中电磁波的传播	11
1.4	磁等离子体中平行于磁场传播的电磁波	14
	1.4.1 无碰撞磁等离子体中平行于磁场传播的电磁波	14
	1.4.2 碰撞对磁等离子体中平行于磁场传播电磁波的影响	17
1.5	磁等离子体中垂直于磁场传播的电磁波	18
	1.5.1 无碰撞磁等离子体中垂直于磁场传播的电磁波	18
	1.5.2 碰撞对磁等离子体中垂直于磁场传播电磁波的影响	20
第二章	隐身、反隐身与等离子体隐身技术基础	22
2.1	常规隐身技术简介	22
	2.1.1 目标的雷达特征	23
	2.1.2 常见的隐身技术	25
2.2	常规反隐身技术简介	33
	2. 2. 1 反隐身技术的研究成效	33
	2. 2. 2 反隐身措施及手段	35
2.3	等离子体隐身技术简介	44
2.4	等离子体隐身技术的 W KB 方法基础	47
2.5	等离子体的 FDTD 方法进展	48
2.6	产生隐身等离子体的方法简介	49

第三章	等离子体内的射线理论与折射隐身	53
3.1	各向同性介质中的射线方程	53
3.2	各向异性介质中的射线方程	55
3.3	费马原理	60
3.4	不均匀等离子体球的电波轨迹方程	61
	3.4.1 不均匀等离子体球的电波轨迹方程	61
	3.4.2 不均匀等离子体球的电波轨迹	62
3.5	不均匀等离子体球的返转点	63
3.6	折射对目标 RCS 的缩减	65
第四章	电磁波在等离子体中传播的 WKB 方法	67
4.1	电磁波在缓变介质中传播的 W KB 方法	67
	4.1.1 电磁波垂直入射时的 WKB解	67
	- Dient West 15 4544 - 4 114 - 11 === 141	71
	2 - 1 - Breef 0/2 H4 /2 1/ 1/1/ 1/1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	73
4.2	TTT 1/4/4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75
	4.2.1 等离子体电子密度分布与雷达频率的关系	75
	4.2.2 非磁化等离子体对垂直入射电磁波的碰撞吸收的 WKB 方法 ···········	76
	4.2.3 数值结果	77
4.3	4 1 × 444 × 4 11 1 4 4 11 1 11 4 5 100 0 100 100 100 100 100 100 100 100	85
	777 11 12 12 77 77 12 12 12 77 12 12 12 12 12 12 12 12 12 12 12 12 12	85
	The state of the s	87
4.4	磁化等离子体对右、左旋极化电磁波的碰撞吸收	
	4.4.1 不均匀磁化等离子体对右、左旋极化电磁波的吸收特性	
	4.4.2 数值计算结果	
4.5	不均匀磁化等离子体对异常模式电磁波的吸收特性 1	
	4.5.1 不均匀磁化等离子体片对异常模式电磁波的吸收	
	4. 5. 2 数值计算结果	
4.6	Lead 10 of 14 of 11 v. a 12 lead the for 12 lead 12 le	109
4.7	P. 1997 (%) [2] 4 7 4 11 1 114 1 7 4 11	
	4.7.1 时变等离子体隐身的基本方程	
	4.7.2 快速产生的时变等离子体对入射电磁波的吸收及频率上移 1	
	4.7.3 快速产生的等离子体对入射电磁波的碰撞吸收	
	4.7.4 快速产生的等离子体对入射电磁波的反射	. 16
第五章	电磁波在非磁化等离子体中传播的 FDTD 方法	. 20
5. 1	非磁化等离子体 FDTD 質法的稳定条件 1	21

!	5.2	各向同性色散媒质的递归卷积 FDTD 算法	122
		5. 2. 1 RC-FDTD 算法的基本方程及原理	122
		5. 2. 2 算法的有效性与实例	124
!	5.3	各向同性色散媒质的分段线性递归卷积 FDTD 算法	127
		5.3.1 PLRC-FDTD 算法的基本原理和公式 ····································	127
		5.3.2 几种色散媒质的递归卷积项迭代公式	128
		5. 3. 3 PLRC-FDTD 方法的有效性和精度 ····································	130
!	5.4	各向同性色散媒质的电流密度卷积 FDTD 算法	132
		5. 4. 1 JEC 算法 ···································	132
		5. 4. 2 JEC 方法和 RC 方法的关系	133
		5. 4. 3 JEC 方法的有效性和精度 ····································	135
!	5.5	各向同性色散媒质的分段线性电流密度卷积 FDTD 算法	136
		5. 5. 1 PLJERC-FDTD 算法 ·······	
		5. 5. 2 PLJERC-FDTD 算法的有效性和精度 ····································	137
		5. 5. 3 非磁化等离子体 PLJERC-FDTD 算法的算例 ····································	139
!	5.6	等离子体媒质的 Young 氏直接积分 FDTD 算法 ···································	141
		5. 6. 1 等离子体 Young 氏直接积分 FDTD 算法 ···································	142
		5. 6. 2 无碰撞等离子体的高阶 FDTD 算法 ···································	144
		5. 6. 3 碰撞等离子体的高阶 FDTD 算法 ···································	149
!	5.7	几种色散媒质算法的数值色散和耗散误差比较	152
		5.7.1 一维情况	
		5.7.2 二维情况	158
!	5.8	等离子体的方向交替隐式时域有限差分法	162
		5. 8. 1 等离子体的 ADI-FDTD 公式 ···································	
		5. 8. 2 等离子体 ADI-FDTD 公式的稳定性分析	165
笙 六 ·	音	电磁波在磁化等离子体中传播的 FDTD 方法	168
(6.1	磁等离子体的递归卷积 FDTD 算法	
		6.1.1 基本方程及原理	
		6.1.2 算法的有效性与实例	
(6.2	磁等离子体的分段线性递归卷积 FDTD 算法	
		6. 2. 1 基本方程及原理	
		6. 2. 2 算法的有效性与实例 · · · · · · · · · · · · · · · · · · ·	
(6.3	磁等离子体的电流密度卷积 FDTD 算法	
		6.3.1 基本方程及原理	
		6.3.2 算法的有效性和精度	
(6.4	磁等离子体的辅助方程 FDTD 算法	185

	6.4.1 基本方程及原理	185
	6.4.2 算法的有效性和精度	186
6.5	磁等离子体的分段线性电流密度递归卷积 FDTD 算法	187
	6.5.1 基本方程及原理	
	6.5.2 算法的有效性和精度	190
6.6	磁等离子体的 Young 氏直接积分法	192
6.7	时变磁等离子体的直接积分法	
	6.7.1 FDTD 算法 ···································	193
	6.7.2 算法的有效性	197
第七章	一维目标等离子体隐身的 FDTD 计算	200
7.1	非磁化等离子体覆盖目标的电磁反射的 FDTD 分析	201
	7.1.1 麦克斯韦基本方程及 FDTD 算法	201
	7.1.2 计算结果和讨论	202
7.2	时变等离子体覆盖目标的电磁反射的 FDTD 分析	207
	7. 2. 1 FDTD 算法 ···································	208
	7.2.2 计算结果与讨论	209
7.3	磁等离子体覆盖目标的电磁反射的 FDTD 分析	214
第八章	高维目标等离子体隐身的 FDTD 计算	218
8.1	不均匀非磁化等离子体覆盖导体圆柱的双站散射特性	218
8.2	不均匀等离子体覆盖导体柱的宽带后向散射特性	221
8.3	时变等离子体覆盖导体圆柱的双站散射特性	
	8. 3. 1 FDTD 算法 ···································	
	8. 3. 2 计算结果与讨论	223
8.4	等离子体覆盖三维简单目标的电磁散射特性	226
	8.4.1 等离子体对电磁脉冲的响应	
	8.4.2 等离子体覆盖立方体的双站散射特性	228
8.5	不均匀非磁化等离子体覆盖复杂三维目标的 RCS	230
参考文献	ŧ	237
附录 A	D-A250710 报告的等离子体隐身实验 ····································	245
. 15 -54 18	A TAY THE DAY AT LEVEN TO LEVEN A TELEVISION OF THE CONTRACT OF THE CO	

第一章 等离子体物理学基础

【摘要】 本章简要介绍了等离子体物理学基础,对等离子体的性质进行了简要的叙述。给出了等离子体常用的几个参数,介绍了等离子体流体近似及其对应的麦克斯韦方程组。对电磁波在非磁化等离子体和磁化等离子体中的传播进行了简单的介绍和讨论。

1.1 等离子体的几个基本参数

等离子体(plasma)是由大量带电粒子组成的非束缚态宏观体系,它包含自由电子、自由离子,也可能存在中性粒子;是物质三种形态固体、液体、气体之后的第四种物质形态,其广泛存在于自然界中。任何不带电的普通气体在受到外界高能作用后(如对气体施加高能粒子轰击、强激光照射、高压气体放电、热致电离等方法),部分原子中电子吸收的能量超过原子电离能后脱离原子核的束缚而成为自由电子;同时原子因失去电子而成为带正电的离子。这样原中性气体因电离将转变成由大量自由电子、正电离子和部分中性原子组成的与原气体具有不同性质的物质,这种物质就称为等离子体。但并非所有的自由电子、正电离子和部分中性原子组成的物质都是等离子体,只有具有足够高的电离度的电离气体才具有等离子体的性质,才能称为等离子体。粗略地说,等离子体是带电的,具有"电性",而普通气体是不带电的,具有"中性"。当体系中"电性"比"中性"更重要时,这一体系可以称为等离子体。

等离子体具有数密度近似相等的自由电子和正离子,在整体上呈电中性,并表现出显著的集体行为;等离子体的运动主要受电磁场力的作用与支配,对电磁波的传播有很大的影响;等离子体具有良好的导电性。如果普通气体中有 0.1% 的气体被电离,这种气体就有显著的集体行为,具有很好的等离子体性质。如果电离气体增加到 1%,这样的等离子体便成为导电率很大的理想导电体。在军事上,核爆炸,放射性同位素的射线,高超音速飞行器的激波,燃料中掺有铯、钾、钠等易电离成分的火箭和喷气式飞机的射流,都可以形成弱电离等离子体。进入大气层的物体也可在其四周形成等离子体。

处于热力学平衡态的气体总会产生一定程度的电离,其电离度由萨哈(Sa-ha)方程给出

$$\frac{n}{n_0} \approx 3 \times 10^{15} \frac{T^{3/2}}{n_0} \exp(-E_i/T)$$
 (1.1)

其中, n, m 分别为离子和原子的密度; T 为温度; E 为电离能。式 (1.1)

中,温度的单位为电子伏特(eV),与开尔文(K)的换算关系为

$$1eV = 11600K$$
 (1.2)

在室温下,系统的电离度很低。例如,T=300 K 时,空气的离子和原子密度之比(电离度)为: $n/n \approx 10^{-122}$ 。显然,在室温下由于电离度太低,体系的"中性"比"电性"更加重要,体系不具有等离子体性质,为气体。随着体系温度的逐步升高,系统的电离度越来越大,系统将由气体逐步向等离子体过渡。

下面我们讨论等离子体判据和几个等离子体参数。

1.1.1 等离子体判据和德拜长度

如果无特别声明,本书讨论的等离子体由电子和一价正电荷离子组成。

等离子体行为的一个基本特征是它具有屏蔽掉作用于它上面的电势的能力。假定在等离子体内插入一个带电球体,带电球体会吸引带相反电荷的粒子,在带电球的周围形成电荷云(这里,我们假定带电球的表面有介电层阻止了电荷在带电球表面的复合)。对冷等离子体,不考虑电子的热运动,则电荷云中的电荷与带电球的电荷刚好相同。因此,这种屏蔽是完全的,即电荷云外不再存在电场。另一方面,如果等离子体的温度是有限的,则处于电荷云边缘(此处的电场较弱)的那些粒子就有足够的热能逃逸出静电势阱。此时,电荷云边缘出现在势能近似等于粒子热能的半径上,这时屏蔽是不完全的,带电球体将在等离子体中引起有限的电场(其电势的量级为 Te/e, Te 是等离子体中电子温度),这种屏蔽称为德拜屏蔽。下面对静态的德拜屏蔽做一个简要的分析。静电场满足泊松(Poisson)方程

$$\Delta^{2} \varphi = -\frac{e}{\epsilon_{0}} (n_{0} - n_{e}) \tag{1.3}$$

这里, n, n。分别为离子和电子的数密度。

在热平衡状态下,电子满足玻尔兹曼分布,离子被认为不动,构成密度均匀的背景,则有

$$n = n$$
, $n_e = n \exp(-e\varphi/kT_e)$ (1.4)

 $k=1.38\times10^{-23}$ J/K 是玻尔兹曼常数; n_0 是未受影响时 ($\varphi=0$ 处) 等离子体中离子的密度。

从上式可以看出,当 $\mid e\varphi/kT_{e}\mid \ll 1$ 时, $n_{e}\gg n$,即电子被大量俘获,这些电子屏蔽掉大部分的电势。对满足 $\mid e\varphi/kT_{e}\mid \ll 1$ 的空间,将式(1.11)代入式(1.10),并用泰勒级数展开,有

$$\Delta^{2} \varphi = \left(\frac{n_{0} e^{2}}{\epsilon_{0} k T_{e}}\right) \varphi \approx \frac{1}{\lambda_{0}^{2}} \varphi \tag{1.5}$$

上式定义了等离子体的另一个重要参数: 德拜长度 (Debye length), 用 lo 表示。

它是屏蔽距离或鞘层厚度的量度,用下式表示

$$\lambda_{\rm D} = \left(\frac{\varepsilon_{\rm c} k T_{\rm e}}{n_{\rm D} e^2}\right)^{1/2} \tag{1.6}$$

代入边界条件: $r \to \infty$ 时, $\varphi \to 0$; $r \to 0$ 时, $\varphi \to e/4\pi s_0 r$ (点电荷电势), 式 (1.12) 的解可写为

$$\varphi(r) = \frac{e}{4\pi s_{I}} \exp\left[-\frac{r}{\lambda_{D}}\right]$$
 (1.7)

上式中, φ 称为德拜势,它等于点电荷的库仑势乘以衰减因子 $\exp(-r\lambda)$ 。因而它比点电荷的库仑势衰减得快很多,这是因为电荷屏蔽引起的。由上式可以看出,德拜长度的物理意义是电势下降到库仑势的 1/e时的空间长度(半径)。

一团电离气体,只有当它们表现出显著的集体行为时,才能称为等离子体。要使电离气体成为"表现出显著的集体行为"的等离子体,那么电离气体必须满足以下三个条件:

第一, 电离气体的系统线度 L 必须远远大于德拜长度 λ_D 。即

$$L \gg \lambda_0$$
 (1.8)

第二,仅仅当电荷云中有足够多的粒子时,德拜屏蔽的图像才是正确的。因为德拜屏蔽是一个统计上的概念。"德拜球"中的粒子数 $N_0 = n \frac{4}{3}\pi\lambda^3$,该条件为

$$N_{\rm D} \gg 1$$
 (1.9)

第三个条件与等离子体碰撞有关。例如,喷管尾气中的弱电离气体,并不能看成等离子体,因为带电粒子和中性原子的碰撞非常频繁,使得带电粒子的运动受普通流体动力学的力支配,而不是受电磁力支配。如果典型的等离子体频率用 ω_e 表示,带电粒子与中性原子碰撞的平均时间用 τ表示,则气体的行为像等离子体而不是中性气体的条件是

$$\omega_{\text{pe}} \tau > 1 \tag{1.10}$$

1.1.2 等离子体频率

设在等离子体中存在电子的扰动 (使电子与离子本底有个位移),这将在等离子体中形成电子的振荡。这个振荡频率就是等离子体的一个重要参数:等离子体电子振荡频率,用 ω_ν。表示。由于篇幅有限,等离子体电子振荡频率的推导过程不再给出,请参考有关的书籍。等离子体电子振荡频率可写为

$$\omega_{\rm pe} = (n_{\rm e} e^2 / m_{\rm e} \varepsilon_0)^{1/2} \tag{1.11}$$

这里, n_e 是等离子体自由电子密度; e_r m_e 分别是电子电量和质量 ($e=-1.60 \times 10^{-19}$ C, $m_e=9.11 \times 10^{-31}$ kg); $\epsilon_0=8.854 \times 10^{-12}$ F/m, 是真空中的介电常数。

一个有用的近似公式是

$$f_{\rm pe} = \frac{\omega}{2\pi} \approx 9000 \sqrt{n_{\rm e}} \tag{1.12}$$

这个频率仅取决于等离子体电子密度,它是等离子体的基本特征之一。由于电子质量较小,等离子体电子振荡频率通常是较高的。例如,在等离子体密度 $n=10^{18}\,\mathrm{m}^{-3}$ 时,等离子体电子振荡频率 $f_{\mathrm{pe}}\approx 10\,\mathrm{GHz}$ 。

等离子体离子振荡频率用 ωμ 表示

$$\omega_{\rm pi} = (n_{\rm i} e^2 / m_{\rm i} s_{\rm i})^{1/2} \tag{1.13}$$

通常,离子的质量远大于电子的质量,因而离子振荡频率通常是较低的。属于低 频振荡。

等离子体频率 (plasma frequency) 也称为朗缪尔频率,其定义是

$$\omega_{\rm p}^2 = \omega_{\rm pe}^2 + \omega_{\rm pi}^2 \tag{1.14}$$

考虑到离子的质量远大于电子的质量,等离子体频率通常近似地认为

$$\omega_{\rm p} = \omega_{\rm pe} \tag{1.15}$$

如果考虑到等离子体的热运动时,等离子体振荡将在等离子体中传播。这时,我们称之为等离子体波。

1.1.3 回旋频率

等离子体在磁场中的运动是非常复杂的。该领域有许多世界级的研究课题,例如磁约束受控核聚变等。下面我们讨论磁化等离子体的一个基本的物理量——回旋频率。

假定有一个不随时间和空间变化的均匀磁场,那么等离子体中的带电粒子在磁场中运动时就会受到洛伦兹力的作用,产生一个简单的回旋回转(cyclotron gyration)或叫拉莫尔(Larmor)运动。电子对应的频率称为电子回旋频率 ω (electron cyclotron frequency),对应的回转半径称为拉莫尔半径 n 。

$$\omega_{le} = eB/m_e, \qquad r_{le} = \frac{m_e v_e}{eB} \qquad (1.16)$$

其中,B为磁感应强度;v 为电子的运动速度。离子对应的频率称为离子回旋频率 $\omega_{\mathbb{R}}$ (ion cyclotron frequency),对应的回转半径称为拉莫尔半径 n 。

$$\omega_{li} = eB/m_i, \qquad r_{li} = \frac{m_i v_i}{eB} \qquad (1.17)$$

此处设离子带一个电荷。显然,对于每一个确定的带电粒子,其回旋频率只与磁感应强度 B有关,磁感应强度 B越大,回旋频率 ω 越高。而对具有一定速度的

带电粒子而言,磁感应强度 B 越大,拉莫尔半径 n_{α} 越小 (α 代表粒子种类)。

如果带电粒子的初始速度并不垂直于磁场,那么可将速度分解为两个分量,即垂直于磁场方向的分量 v_{\perp} 与平行于磁场方向的分量 v_{\parallel} 。这样,粒子的运动就是由两部分合成的,即沿磁场方向的匀速直线运动和垂直磁场方向的匀速圆周运动两部分合成。其结果是带电粒子沿着以磁场方向为轴的螺旋轨迹运动。

1.2 等离子体的流体近似

众所周知,典型的等离子体密度可以达到 10¹⁸ m⁻³。因此,要详细地描述每一个粒子的轨迹是不太可能的,也是不必要的。在等离子体物理学中,经常要采用各种近似。本节我们要给出等离子体的流体模型,在这里,将忽略个别粒子的本性,而只考虑流体元的运动。与流体力学相比不同之处在于:等离子体流体元中包含电荷。

为了讨论电磁波在等离子体中的传播,必须将麦克斯韦方程与等离子体满足的方程相结合。这些方程不仅包括波的时变特性,而且也包括等离子体中由电磁波感应的电荷密度 ρ 和电流密度 J。

1.2.1 时域麦克斯韦方程组

等离子体首先是一种介质,但是它又不是一种普通的介质。对等离子体介质,除了时间色散以外,还必须引入空间色散。换句话说,等离子体中的介电张量不仅依赖于频率 ω ,而且也与波矢 k密切相关。

在等离子体内,电磁波要引起带电粒子的运动,带电粒子的运动又要产生电磁波。这种电磁波与等离子体的相互作用和相互影响形成了等离子体内电磁波的特色。等离子体作为一种介质,在场的作用下,其中会出现感应电荷和感应电流,它们之间满足麦克斯韦方程组

$$\Delta \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \tag{1.18}$$

$$\Delta \cdot \mathbf{E} = \frac{(\rho + \rho_0)}{\varepsilon_0} \tag{1.19}$$

$$\Delta \times \mathbf{H} = \mathbf{e} \frac{\partial \mathbf{E}}{\partial t} + (\mathbf{J} + \mathbf{J}_{b})$$
 (1.20)

$$\Delta \cdot \mathbf{H} = 0 \tag{1.21}$$

式中的 ρ 和 J_0 分别是外场源的电荷密度和极化电流密度,E 是电场强度,H 是 磁场强度, ρ = 8. ρ 854× ρ 10⁻¹² ρ F/m, ρ = 4 ρ 4 ρ 7 H/m,分别为真空中的介电常数和磁导率。

1.2.2 频域麦克斯韦方程组

时域稳态电磁场问题可以通过傅里叶变换变为频域内的问题。时域内的场可写为 E(r, t), H(r, t),是实数矢量,而频域的场可写为 $E(r, \omega)$, $H(r, \omega)$ 则为复数矢量。把以上的时域麦克斯韦方程变换到频域有

$$\Delta \times \mathbf{E}(\mathbf{r}, \omega) = -i \mu_0 \omega \mathbf{H} \tag{1.22}$$

$$\Delta \cdot \mathbf{E}(\mathbf{r}, \omega) = \left[\rho(\mathbf{r}, \omega) + \rho_0(\mathbf{r}, \omega) \right] / \varepsilon_0$$
 (1.23)

$$\Delta \times \boldsymbol{H}(\boldsymbol{r}, \omega) = \mathrm{i} \, \boldsymbol{\varepsilon} \, \omega \boldsymbol{E}(\boldsymbol{r}, \omega) + \left[\boldsymbol{J}(\boldsymbol{r}, \omega) + \boldsymbol{J}_{0}(\boldsymbol{r}, \omega) \right]$$
 (1.24)

$$\Delta \cdot \mathbf{H}(\mathbf{r}, \mathbf{\omega}) = 0 \tag{1.25}$$

1.2.3 流体近似下的等离子体方程

流体近似是等离子体物理学中最常用的近似之一。在宏观分析时,流体的质点或微分体积元的线度 l 要大于德拜长度 $(l > \lambda > n^{-1/3})$; 同时,又要小于等离子体内波动的波长 $(l < \lambda)$ 。在满足这些条件时,诸多物理量(如电场 E、磁场 H、质点的漂移速度 v等)才有意义。

在流体近似中,等离子体被认为是由两种或两种以上的流体组成(等离子体中每一种带电粒子被认为是一种流体)。在最简单的情况下,等离子体由两种粒子组成,其中正离子由于其较大的质量而认为是不动的,因此,我们只需要给出负离子满足的流体方程。在部分电离的等离子体中,我们还需要给出中性原子满足的流体方程。

1. 连续性方程

由物质的守恒定律可知,通过闭合曲面 S (包围的体积为 V) 的粒子净流量等于体积 V 中粒子数的增量。由于粒子数的通量密度为 nv (n 为粒子密度,v 为粒子运动速度),由斯托克斯定理得

$$\frac{\partial N}{\partial t} = \int_{V} \frac{\partial x}{\partial t} dV = -\oint n\mathbf{v} \cdot dS = -\int_{V} \Delta \cdot (n\mathbf{v}) dV \qquad (1.26)$$

式中,N 为总粒子数。由于上式对任何体积V 均成立,所以由被积函数相等得连续性方程(equation of continuity)

$$\frac{\partial n}{\partial t} + \Delta \cdot (n\mathbf{v}) = 0 \tag{1.27}$$

同理, 电子和离子的连续性方程为

$$\frac{\partial n_e}{\partial t} + \Delta \cdot (n_e v_e) = 0 \tag{1.28}$$

$$\frac{\partial n_i}{\partial t} + \Delta \cdot (n \, \mathbf{v}_i) = 0 \tag{1.29}$$

式中,n,n分别为电子密度和离子密度; ν , ν 分别为电子和离子运动速度。

对电子和离子的连续性方程做线性近似,可得 ρ 和 J_0 以及感应的电荷密度 ρ_0 和电流密度 J 之间应满足电荷连续性方程

$$\frac{\partial \rho_q}{\partial t} + \Delta \cdot \mathbf{J} = 0 \tag{1.30}$$

$$\frac{\partial \rho_0}{\partial t} + \Delta \cdot \boldsymbol{J}_0 = 0 \tag{1.31}$$

2. 流体运动方程

推导等离子体流体运动方程,要用等离子体分布函数来求。为了节省篇幅,本书将不给出具体的推导过程,详细的推导可以参见有关书籍。

考虑粒子的热运动(考虑压力张量)、粒子之间的碰撞,应用流体近似,可以得到每种流体的运动方程为

$$m_{\alpha}n_{\alpha}\left[\frac{\partial}{\partial t}+\boldsymbol{v}_{\alpha}\cdot\Delta\right]\boldsymbol{v}_{\alpha}=n_{\alpha}\left[q_{\alpha}\boldsymbol{E}+q_{\alpha}\boldsymbol{v}_{\alpha}\times\boldsymbol{B}\right]+n_{\alpha}m_{\alpha}\boldsymbol{g}-\Delta p_{\alpha}+\nu_{\alpha}n_{\alpha}m_{\alpha}\boldsymbol{v}_{\alpha}$$

$$(1.32)$$

式中, $n_{\alpha}q_{\alpha}\mathbf{E}$ 为库仑力; $n_{\alpha}q_{\alpha}\mathbf{v}_{\alpha}\times\mathbf{B}$ 为洛伦兹力; $n_{\alpha}m_{\alpha}\mathbf{g}$ 为粒子的重力; p_{α} 是带电粒子的压力引起的热压力; p_{α} 为带电粒子的气压; $\nu_{\alpha}n_{\alpha}m_{\alpha}\mathbf{v}_{\alpha}$ 为碰撞引起的有效摩擦阻力。其中, α 代表流体的种类。

如果流体有稳定的流速 👢 和恒定的外磁场 B。,则物理量有如下关系

总速度 =
$$\mathbf{v}_{\alpha 0} + \mathbf{v}_{\alpha}$$
 (1.33)

总磁场 =
$$\mathbf{B} + \mathbf{B}$$
 (1.34)

现在的 ν_{α} 就是相对于恒定速度 ν_{α} 的偏差,B就是相对于恒定速度 B_0 的偏差。将上式代入式 (1.32),并忽略非线性项,得每种粒子的漂移运动方程为

$$m_{\alpha}n_{\alpha}\left[\frac{\partial}{\partial t} + \mathbf{v}_{\alpha 0} \cdot \Delta\right]\mathbf{v}_{\alpha} = n_{\alpha}q_{\alpha}\left[\mathbf{E} + \mathbf{v}_{\alpha 0} \times \mathbf{B}_{0} + \mathbf{v}_{\alpha} \times \mathbf{B}_{0} + \mathbf{v}_{\alpha 0} \times \mathbf{B}\right] + n_{\alpha}m_{\alpha}\mathbf{g} - \Delta p_{\alpha} + \nu_{\alpha}n_{\alpha}m_{\alpha}\mathbf{v}_{\alpha}$$
(1.35)

恒定的漂移速度往往并不重要,此时有 $\mathbf{v}_{\alpha} = 0$ 。于是,每种粒子的漂移运动方程可以简化为

$$m_{\alpha} n_{\alpha} \frac{\partial \mathbf{v}_{\alpha}}{\partial t} = n_{\alpha} q_{\alpha} [\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}_{0}] + n_{\alpha} m_{\alpha} \mathbf{g} - \Delta p_{\alpha} + \nu_{\alpha} n_{\alpha} m_{\alpha} \mathbf{v}_{\alpha}$$
(1.36)

此外,每一种流体还需要一个状态条件或其他条件。如热平衡时的等温条件: $T_i = T_e$, $p_e = n_e k T_e$, $p_e = n_e k T_e$ 。

3. 单流体方程

假定等离子体只有两种粒子. 电子和离子。

双流体理论所描述的两种流团的物理量,例如速度、密度、压强等,实际上也是难于观测的。因此,在研究甚大尺度和低频现象情况下,我们需要把双流体合并起来变成一种简单的单流体。引进单流体的质量密度、质心速度、电流密度

以及电荷密度如下:

质量密度为

$$\rho = m_e n_e + m_i n_i \tag{1.37}$$

质心速度为

$$\mathbf{v} = (m_e \, n_e \, \mathbf{v}_e + m_i \, n_i \, \mathbf{v}) / \rho \tag{1.38}$$

电流密度为

$$\boldsymbol{J} = n_{e} q_{e} \boldsymbol{v}_{e} + n_{e} q \boldsymbol{v} \tag{1.39}$$

电荷密度为

$$\rho_q = q_e n_e + q n_i \tag{1.40}$$

将式(1.32)的离子和电子的运动方程合并起来,得到单流体运动方程

$$\rho \left[\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \Delta \right] \boldsymbol{v} = \rho_{l} \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B} + \rho \boldsymbol{g} - \Delta \boldsymbol{p}$$
 (1.41)

将式(1.28)和(1.29)的离子和电子的质量连续方程合并起来,得到单流体质量连续方程

$$\frac{\partial \rho}{\partial t} + \Delta \cdot (\rho \mathbf{v}) = 0 \tag{1.42}$$

1.2.4 等离子体的极化模型和极化率

如图 1.1 所示,设想一个宏观上为电中性的等离子体空间内,某一点上有一

个带电粒子 q_a 离开其原来的位置产生了一个小距离的位移,必然出现一个偶极子,设 n 为原来的位置, r_a 为后来的位置,则电偶极矩为 $q_a(r_a-r_b)$ 。单位体积内电偶极矩的总和就是极化强度 P_a

$$\boldsymbol{P}_{\alpha} = n_0 \, q_{\alpha} (\boldsymbol{r}_{\alpha} - \boldsymbol{r}_{0}) \qquad (1.43)$$

图 1.1 带电粒子 位移图

$$\frac{\partial}{\partial t} \boldsymbol{P}_{\alpha} = n_0 q_{\alpha} \frac{\partial}{\partial t} (\boldsymbol{r}_{\alpha} - \boldsymbol{r}_{0}) = n_0 q_{\alpha} \boldsymbol{v}_{\alpha} = \boldsymbol{J}_{\alpha} \qquad (1.44)$$

由于式 (1.36) 的各个变量均比例于 $\exp(j\omega t)$,将式 (1.44) 代入式 (1.36) 并忽略重力和碰撞,有

$$-\omega^{2} \mathbf{P}_{\alpha} = \varepsilon_{0} \omega_{p\alpha}^{2} \mathbf{E} + j \omega_{1\alpha} \omega \mathbf{P}_{\alpha} \times \mathbf{B}_{0} / B_{0} - j \nu_{\alpha} \omega \mathbf{P}_{\alpha}$$
 (1.45)

1. 非磁化等离子体的介电常数

对非磁化等离子体,即 $B_0=0$,式 (1.45)可写为

对上式求导有

$$-\omega^2 \mathbf{P}_{\alpha} = \omega_{\mathbf{p}\alpha}^2 \mathbf{E} - \mathrm{i} \mathbf{v}_{\alpha} \omega \mathbf{P}_{\alpha} \qquad (1.46)$$

进一步写为

$$\boldsymbol{P}_{\alpha} = \varepsilon \chi_{\alpha} \boldsymbol{E} = -\varepsilon \frac{\omega_{p\alpha}^{2}}{\omega^{2}} \left[1 - j \frac{\lambda_{\alpha}}{\omega} \right] \boldsymbol{E}$$
 (1.47)

非磁化等离子体的极化率为

$$\chi_{\alpha} = -\frac{\omega_{p\alpha}^2}{\omega^2} \left[1 - j \frac{\nu_{\alpha}}{\omega} \right] = -\frac{\omega_{p\alpha}^2}{\omega^2 + \nu_{\alpha}^2} - j \frac{\nu_{\alpha}}{\omega} \frac{\omega_{p\alpha}^2}{\omega^2 + \nu_{\alpha}^2}$$
(1.48)

同理, 非磁化等离子体的相对介电常数为

$$\varepsilon = 1 + \sum_{\alpha} \chi_{\alpha} = 1 - \sum_{\alpha} \frac{\omega_{p\alpha}^{2}}{\omega^{2} + \nu_{\alpha}^{2}} - j \sum_{\alpha} \left(\frac{\nu_{\alpha}}{\omega} \frac{\omega_{p\alpha}^{2}}{\omega^{2} + \nu_{\alpha}^{2}} \right)$$
(1.49)

非磁化等离子体的介电常数则为 $\varepsilon = \varepsilon_0 \varepsilon_0$ 。显然,非磁化等离子体的极化率和介电常数都是复数。而且,其实部和虚部都是频率的函数,也就是说:非磁化等离子体是有损耗的色散介质。

2. 磁化等离子体的介电张量

$$\Leftrightarrow U_{\alpha} = \left[1 - j \frac{\nu_{\alpha}}{\omega}\right], \quad X_{\alpha} = \frac{\omega_{p \alpha}^2}{\omega^2}, \quad Y_{\alpha} = -\frac{\omega_{1 \alpha}}{\omega} \boldsymbol{b}_0, \quad 这里 \boldsymbol{b}_0 = \boldsymbol{B}_0 / B_0 \quad 为磁场方向上$$

的单位矢量。如果磁场不为零,则方程(1.45)可写为

$$-\varepsilon_{0} X_{\alpha} \mathbf{E} = U_{\alpha} \mathbf{P}_{\alpha} + \mathbf{j} \mathbf{Y}_{\alpha} \times \mathbf{P}_{\alpha}$$
 (1.50)

设外磁场 $\mathbf{B} = \mathbf{B}_0 \mathbf{k}$ (沿 z轴正方向),则 $\mathbf{Y}_a = \mathbf{Y}_a \mathbf{k}$,代入式 (1.50) 并在直角 坐标系中展开,可得到

$$- \varepsilon_0 X_{\alpha} E_x = U_{\alpha} P_{\alpha x} - j Y_{\alpha} P_{\alpha y} \qquad (1.51a)$$

$$- \in X_{\alpha} E_{\gamma} = U_{\alpha} P_{\alpha \gamma} + j Y_{\alpha} P_{\alpha x}$$
 (1.51b)

$$- \varepsilon_0 X_{\alpha} E_z = U_{\alpha} P_{\alpha z} \tag{1.51c}$$

将式(1.51)写成逆张量的形式

$$\mathbf{E} = \mathbf{X}_{\alpha}^{-1} \cdot \mathbf{P}_{\alpha} \tag{1.52}$$

式中, X_{α}^{-1} 为磁化等离子体极化率张量的逆张量

$$\boldsymbol{X}_{\alpha}^{-1} = -\frac{1}{X_{\alpha}} \begin{bmatrix} U_{\alpha} & -\mathbf{j}Y_{\alpha} & 0\\ \mathbf{j}Y_{\alpha} & U_{\alpha} & 0\\ 0 & 0 & U_{\alpha} \end{bmatrix}$$
 (1.53)

由上式可求出磁化等离子体的极化张量

$$\boldsymbol{X}_{\alpha} = -\frac{\boldsymbol{X}_{\alpha}}{\boldsymbol{U}_{\alpha}(\boldsymbol{U}_{\alpha}^{2} - \boldsymbol{Y}_{\alpha}^{2})} \begin{bmatrix} \boldsymbol{U}_{\alpha}^{2} & \mathbf{j}\boldsymbol{Y}_{\alpha}\boldsymbol{U}_{\alpha} & 0\\ -\mathbf{j}\boldsymbol{Y}_{\alpha}\boldsymbol{U}_{\alpha} & \boldsymbol{U}_{\alpha}^{2} & 0\\ 0 & 0 & \boldsymbol{U}_{\alpha}^{2} - \boldsymbol{Y}_{\alpha}^{2} \end{bmatrix}$$
(1.54)

磁化等离子体的相对介电张量

$$\boldsymbol{\varepsilon} = \boldsymbol{I} + \sum_{\alpha} \boldsymbol{X}_{\alpha} \tag{1.55}$$

式中,I为单位张量,磁化等离子体的介电张量则为 $\varepsilon = \varepsilon_0 \varepsilon_0$ 。将式 (1.55) 代入即可求得相对介电张量。例如,无碰撞磁化等离子体的相对介电张量可写为

$$\mathbf{\varepsilon}_{\mathbf{r}} = \begin{bmatrix}
1 - \sum_{\alpha} \frac{X_{\alpha}}{1 - Y_{\alpha}^{2}} & -j \sum_{\alpha} \frac{X_{\alpha} Y_{\alpha}}{1 - Y_{\alpha}^{2}} & 0 \\
j \sum_{\alpha} \frac{X_{\alpha} Y_{\alpha}}{1 - Y_{\alpha}^{2}} & 1 - \sum_{\alpha} \frac{X_{\alpha}}{1 - Y_{\alpha}^{2}} & 0 \\
0 & 0 & 1 - \sum_{\alpha} X_{\alpha}
\end{bmatrix}$$
(1.56)

一般情况下,极化率张量和介电张量的每一个元素均为复数,而且也与频率有关,即磁化等离子体既有损耗、又有色散。同时,从等离子体介电张量的表达式(1.56)可以看到,磁化等离子体又是各向异性的介质,在与磁场垂直及平行方向上等离子体的响应特性并不相同。当磁场趋于零时,介电张量退化成对角张量,并且三个对角项相等,等离子体于是恢复其各向同性的特征。

3. 等离子体介质模型的频域麦克斯韦方程组

将等离子体看作电介质时,在频域内电流密度和极化强度的关系有 $J=j\omega P$,代入频域麦克斯韦方程组化简可得如下形式的介质的麦克斯韦方程组

$$\Delta \times \mathbf{E} = -\mathbf{j} \mu \omega \mathbf{H} \tag{1.57a}$$

$$\Delta \times \mathbf{H} = \mathbf{j} \, \varepsilon \omega \mathbf{E} \tag{1.57b}$$

$$\Delta \cdot \mathbf{H} = 0, \qquad \Delta \cdot (\varepsilon \mathbf{E}) = 0$$
 (1.57c)

本书的大部分问题的分析基本上均建立在上述方程组上。

1.2.5 等离子体的导电模型和导电率

在频率较低的时候, 把等离子体等效成一种导电媒质是很合适的。

注意到 $J_{\alpha} = n_{\alpha 0} q_{\alpha} v_{\alpha}$, 忽略重力和热压力后,流体运动方程 (1.36) 可写为

$$rac{\partial}{\partial m{t}}m{J}_{lpha}=\,$$
 6 $m{\omega}_{
m p\,lpha}^2m{E}+\,m{\omega}_{
m llpha}m{J}_{lpha} imesm{B}_{
m l}\,/\,B_{
m l}-\,$ Va $m{J}_{lpha}$

由于上式 J_{α} 比例于 $\exp(j\omega t)$, 可将上式变换到频域

$$j\omega \boldsymbol{J}_{\alpha} = \varepsilon_{0} \,\omega_{p\alpha}^{2} \boldsymbol{E} + \omega_{1\alpha} \boldsymbol{J}_{\alpha} \times \boldsymbol{B}_{0} / B_{0} - \nu_{\alpha} \boldsymbol{J}_{\alpha} \qquad (1.58)$$

进一步可写为

$$-j \varepsilon_{\alpha} \omega X_{\alpha} \mathbf{E} = U_{\alpha} \mathbf{J}_{\alpha} - j \mathbf{Y}_{\alpha} \times \mathbf{J}_{\alpha}$$
 (1.59)

1. 非磁化等离子体的电导率

对非磁化等离子体,即 $B_0 = 0$, $Y_a = 0$,式 (1.59) 可简化为

$$-j \, \epsilon \, \omega X_{\alpha} \boldsymbol{E} = U_{\alpha} \boldsymbol{J}_{\alpha} \tag{1.60}$$

由于电流密度与电导率的关系为 $J_{\alpha} = \alpha E$,所以有

$$\sigma_{\alpha} = -j \varepsilon_{0} \omega X_{\alpha} / U_{\alpha} = \frac{\varepsilon_{0} \varkappa_{\alpha} \omega_{p \alpha}^{2}}{\omega^{2} + \varkappa_{b}^{2}} - j \frac{\varepsilon_{0} \omega \omega_{p \alpha}^{2}}{\omega^{2} + \varkappa_{b}^{2}}$$
(1.61)

其实部和虚部分别为: $\frac{\varepsilon_0 u_0 \omega_{p\alpha}^2}{\omega^2 + u^2}$, $\frac{\varepsilon_0 \omega \omega_{p\alpha}^2}{\omega^2 + u^2}$.

电导率与极化率的关系为

$$\chi_{\alpha} = \sigma_{\alpha}/j \, s_{\alpha} \, \omega \tag{1.62}$$

2. 磁化等离子体的电导率张量

设外磁场沿z轴正方向,即 $B = B_0 k$, $Y_\alpha = Y_\alpha k$,代入式 (1.59) 并在直角 坐标系中展开,可得到

$$- j \varepsilon_0 \omega X_{\alpha} E_x = U_{\alpha} J_{\alpha x} + j Y_{\alpha} J_{\alpha y} \qquad (1.63a)$$

$$-j\varepsilon_0 \omega X_{\alpha} E_y = U_{\alpha} J_{\alpha y} - j Y_{\alpha} J_{\alpha x} \qquad (1.63b)$$

$$- j \varepsilon \omega X_{\alpha} E_{z} = U_{\alpha} J_{\alpha z} \qquad (1.63c)$$

将式(1.63)写成张量的形式,可求出电导率张量

$$\sigma_{\alpha} = \begin{bmatrix}
-j\varepsilon_{0} \omega \frac{X_{\alpha} U_{\alpha}}{U_{\alpha} - Y_{\alpha}^{2}} & -\varepsilon_{0} \omega \frac{X_{\alpha} Y_{\alpha}}{U_{\alpha} - Y_{\alpha}^{2}} & 0 \\
\varepsilon_{0} \omega \frac{X_{\alpha} Y_{\alpha}}{U_{\alpha} - Y_{\alpha}^{2}} & -j\varepsilon_{0} \omega \frac{X_{\alpha} U_{\alpha}}{U_{\alpha} - Y_{\alpha}^{2}} & 0 \\
0 & 0 & -j\varepsilon_{0} \omega \frac{X_{\alpha}}{U_{\alpha}}
\end{bmatrix} (1.64)$$

电导率张量和极化率张量的关系与式(1.62)类似

$$\sigma_{\alpha} = j \epsilon_{\alpha} \omega \chi_{\alpha}$$
 (1.65)

3. 等离子体导电模型的频域麦克斯韦方程组

将等离子体看作导电媒质时,在频域内电流密度和电导率的关系有 $J = \sigma E$,代入频域麦克斯韦方程组,并考虑到位移电流在低频时可以忽略,化简可得如下形式的介质的麦克斯韦方程组

$$\Delta \times \mathbf{E} = -i \mu \omega \mathbf{H} \tag{1.66a}$$

$$\Delta \times \mathbf{H} = \sigma \mathbf{E} \tag{1.66b}$$

$$\Delta \cdot \mathbf{H} = 0, \qquad \Delta \cdot (\sigma \mathbf{E}) = 0$$
 (1.66c)

本书的个别问题的分析基本上均建立在上述方程组上。

1.3 冷等离子体中电磁波的传播

等离子体中的电子振荡频率和离子振荡频率的平方分别为: $\omega_{pe}^2 = n_e e^2 / m_e s$, $\omega_{pi}^2 = n_e e^2 / m_e s$ 。由于离子的质量远大于电子的质量,故电子振荡频率也远大于离子振荡频率。若忽略离子的影响,非磁化等离子体的相对介电常数可写为

$$\varepsilon_{r} = 1 - \frac{\omega_{p}^{2}}{\omega(\omega - j\nu)} = 1 - \frac{\omega_{p}^{2}}{\omega^{2} + \nu^{2}} - j \frac{\nu}{\omega} \frac{\omega_{p}^{2}}{\omega^{2} + \nu^{2}}$$
(1.67)

这里, $\omega_p^2 \approx \omega_p^2$ 为等离子体频率; ν 为电子与中性粒子的碰撞频率。

通常将相对介电常数写为实部和虚部的叠加,则实部和虚部可写为

$$\varepsilon_{\rm r} = \varepsilon_{\rm r}' - \varepsilon_{\rm r}''$$
 (1.68a)

其中

$$\varepsilon_{\rm r}' = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + \gamma^2}, \qquad \varepsilon_{\rm r}'' = j \frac{\nu}{\omega} \frac{\omega_{\rm p}^2}{\omega^2 + \gamma^2}$$
(1.68b)

下面我们讨论平面电磁波在非磁化等离子体中的传播。平面电磁波是麦克斯 韦方程的最重要的基本解,其指数函数形式为

$$\exp j(\omega t - \mathbf{k} \cdot \mathbf{r}) \tag{1.69}$$

k称为平面波的传播矢量,其方向为电磁波的传播方向。

将式(1.69)代入介质麦克斯韦方程组(1.57)可得

$$\mathbf{k} \times \mathbf{E} = \mu_0 \, \omega \mathbf{H} \tag{1.70}$$

$$\mathbf{k} \times \mathbf{H} = -\varepsilon \omega \mathbf{E} \tag{1.71}$$

$$\mathbf{k} \cdot \mathbf{H} = 0 \tag{1.72}$$

$$\mathbf{s}_{\mathbf{k}} \mathbf{s}_{\mathbf{k}} \cdot \mathbf{E} = 0 \tag{1.73}$$

从式 $(1.70)^{\sim}(1.72)$ 中消去磁场 H, 有

$$(\mathbf{k} \cdot \mathbf{E}) \mathbf{k} - k^2 \mathbf{E} = -\varepsilon_r \left(\frac{\omega}{c}\right)^2 \mathbf{E}$$
 (1.74)

在碰撞等离子体中,传播矢量是一个复矢量。令传播矢量 $\mathbf{k} = (\beta - \mathbf{j}\alpha) \mathbf{l}$, \mathbf{l} 为传播方向的单位矢量, β 称为相位常数, α 称为衰减常数。

指数形式的波函数变为

$$\exp(\mathrm{i}\omega t - \alpha \mathbf{l}^0 \cdot \mathbf{r} - \mathrm{i}\beta \mathbf{l}^0 \cdot \mathbf{r}) \tag{1.75}$$

从式 (1.68) 可知介电常数的实部和虚部不为零,即有 $k \cdot E = 0$ 。因此,式 (1.74) 可写为

$$(\beta - j\alpha)^{2} \mathbf{E} = \left(\frac{\omega}{c}\right)^{2} (\epsilon_{r}' - j\epsilon_{r}'') \mathbf{E}$$
(1.76)

上式的非零解的色散方程为

$$(\beta - j\alpha)^{2} = k_{0}^{2} (\epsilon_{r}' - j\epsilon_{r}'')$$
 (1.77)

这里, $k = \omega/c$ 为真空中的波数。

上式的解为

$$\beta = k_0 \left\{ \frac{1}{2} \left[\epsilon'_r + \left[\epsilon''_r^2 + \epsilon''_r^2 \right]^{1/2} \right] \right\}^{1/2}$$
 (1.78)

$$\alpha = k_0 \left\{ \frac{1}{2} \left[-\epsilon_r' + \left[\epsilon_r'^2 + \epsilon_r''^2 \right]^{1/2} \right] \right\}^{1/2}$$
 (1.79)

对无损耗 (无碰撞) 等离子体,介电常数的实部 $\epsilon'=1-\omega_s^2/\omega^2$,虚部 $\epsilon''=0$,则相位常数 $\beta=k_0(\epsilon')^{1/2}$,衰减常数 $\alpha=0$ 。假定电磁波沿 z 轴传播,指数形式的波函数变为

$$\exp\left[-c^{-1}\left(\omega_{P}^{2}-\omega^{2}\right)^{1/2}z\right]\exp(j\omega t) \tag{1.80}$$

我们定义等离子体的折射率 $n=\beta c/\omega$,无损耗等离子体的折射率为 $n=(1-\omega_p^2/\omega^2)^{1/2}$ 。等离子体沿 z轴的相速 $v_p=c/n=c(1-\omega_p^2/\omega^2)^{-1/2}$ 。可以看出,等离子体是色散的。当 $\omega_p>\omega$ 时,电磁波沿 z 方向按指数规律衰减,衰减常数为 $c^{-1}(\omega_p^2-\omega^2)^{1/2}$ 。我们称入射电磁波的振幅衰减到原值 1/e 倍时的厚度为反射趋肤深度,用 δ 表示

$$\delta = 1/\alpha = c(\omega_{P}^{2} - \omega^{2})^{-1/2}$$
 (1.81)

对频率低于等离子体频率的电磁波,无碰撞等离子体对电磁波完全反射。该频段为阻带。当ω_ν <ω时,衰减常数为零,电磁波可以无损耗地通过(假设等离子体与电磁波无相互作用),该频段为通带。等离子体的这种性质可以称为高通滤波器。等离子体的这种传播特性如图 1.2 所示。

对损耗(有碰撞)等离子体,将式(1.68) 代入式(1.78)和(1.79)后,相位常数和衰减常数分别为

图 1.2 非磁化等离子体色散特性

$$\beta = k_0 \left\{ \frac{1}{2} \left[\left[1 - \frac{\omega_p^2}{\omega^2 + \nu^2} \right] + \left[\left[1 - \frac{\omega_p^2}{\omega^2 + \nu^2} \right]^2 + \left[j \frac{\nu}{\omega} \frac{\omega_p^2}{\omega^2 + \nu^2} \right]^2 \right]^{1/2} \right] \right\}^{1/2}$$

$$\alpha = k_0 \left\{ \frac{1}{2} \left[- \left[1 - \frac{\omega_p^2}{\omega^2 + \nu^2} \right] + \left[\left[1 - \frac{\omega_p^2}{\omega^2 + \nu^2} \right]^2 + \left[j \frac{\nu}{\omega} \frac{\omega_p^2}{\omega^2 + \nu^2} \right]^2 \right]^{1/2} \right] \right\}^{1/2}$$

$$(1.82)$$

$$(1.83)$$

α描述等离子体对电磁波的碰撞吸收。当频率大于等离子体频率的电磁波入射到等离子体内部时,等离子体通过碰撞吸收大部分入射波的能量。其作用机理是:电磁波的电场对自由电子做功,把一部分能量传给电子,而电场自身的能量被衰减,电子通过与其他粒子的有效碰撞,把能量转化为无规则运动的能量,并按自由度均分。β描述电磁波在等离子体中的传播情况,其相速度为 $V=\omega/\beta$ 。

下面对相位常数和衰减常数进行简单的估算。在高频情况下, $\omega \gg \nu$, ω_P , 则有

$$\beta \approx k_0 (1 - \omega_p^2 / \omega^2)^{1/2} \tag{1.84}$$

$$\alpha \approx k_0 \frac{\nu \omega_p^2}{2 \omega^3} (1 - \omega_p^2 / \omega^2)^{-1/2}$$
 (1.85)

显然,相位常数几乎与碰撞频率无关,即折射率几乎与碰撞频率无关。而衰减常数在一般情况下,有β≫α,等离子体变成一种损耗较低的介质。其物理机制是:电磁波的电场变化太快,使得等离子体中的电子来不及响应电场的变化,因而碰

$$\sigma = \frac{\varepsilon_0 \ \omega_{pe}^2}{\nu_e} + \frac{\varepsilon_0 \ \omega_{pi}^2}{\nu} \tag{1.86}$$

在一级近似下,有

$$\beta \approx k_0 \left(\frac{\omega_p^2}{2\omega \nu} \right)^{1/2} \left(1 - \frac{\omega}{2\nu} \right) \tag{1.87}$$

$$\alpha \approx k \left[\frac{\omega_p^2}{2\omega\nu} \right]^{1/2} \left[1 + \frac{\omega}{2\nu} \right]$$
 (1.88)

从以上两式可以看出,相位常数和衰减常数近似相等。此时电磁波在等离子体中的传播与在导体中的传播相似,也存在趋肤效应。穿透深度(也称为衰减长度)同样可用 δ表示

$$\delta = \left(\frac{2}{c\alpha\sigma}\right)^{1/2} \tag{1.89}$$

1.4 磁等离子体中平行于磁场传播的电磁波

1.4.1 无碰撞磁等离子体中平行于磁场传播的电磁波

在磁化等离子体中,外加磁场使得等离子体成为各向异性的介质,磁场的方向是空间的特殊方向,等离子体对扰动的响应在磁场方向上有别于与磁场垂直的方向。设磁场沿 z 轴方向,并设磁化等离子体是无界的、无碰撞的。电磁波传播时,电磁波的传播满足方程(1.74)。令

$$\varepsilon_{xx} = \varepsilon_{yy} = 1 - \frac{\omega_{pe}^2}{\omega^2 + \omega_{le}^2} - \frac{\omega_{pi}^2}{\omega^2 + \omega_{li}^2}$$
(1.90)

$$\varepsilon_{xy} = -j \frac{1}{\omega} \left[\frac{\omega_{pe}^2 \omega_{le}}{\omega - \omega_{le}^2} - \frac{\omega_{pi}^2 \omega_{li}}{\omega - \omega_{li}^2} \right]$$
(1.91)

$$\varepsilon_{z} = 1 - \frac{\omega_{pe}^{2}}{\omega^{2}} - \frac{\omega_{pi}^{2}}{\omega^{2}}$$
 (1.92)

将式 (1.74) 展开有

$$\begin{bmatrix}
\mathbf{n}^{2} - \mathbf{\varepsilon}_{xx} & -\mathbf{\varepsilon}_{xy} & 0 \\
\mathbf{\varepsilon}_{xy} & \mathbf{n}^{2} - \mathbf{\varepsilon}_{xx} & 0 \\
0 & 0 & -\mathbf{\varepsilon}_{zz}
\end{bmatrix} \begin{bmatrix}
\mathbf{E}_{x} \\
\mathbf{E}_{y} \\
\mathbf{E}_{z}
\end{bmatrix} = 0$$
(1.93)

上式的第一个非零解为

$$\varepsilon_z = 1 - \frac{\omega_{\text{pe}}^2}{\omega^2} - \frac{\omega_{\text{pi}}^2}{\omega^2} = 0 \tag{1.94}$$

此时,磁场为零,电场为无旋场,等离子体中没有电磁波的传播,为电场的自由振荡。电场 E_z 的极化方向与外磁场的方向一致,电子的运动不受外磁场的影响,因此与非磁化等离子体中的自由振荡完全相同。因 $\omega_{pe} \gg \omega_{pi}$,所以自由振荡的频率为 $\omega = \omega_{pe}$ 。

第二个非零解的色散关系

$$(n^2 - \epsilon_{xx})(n^2 - \epsilon_{xx}) + \epsilon_{xy}^2 = 0$$
 (1.95)

即

$$n^2 = \varepsilon_{xx} \pm j\varepsilon_{xy} \tag{1.96}$$

令 n_{R} , n_{L} 为两个特征非零解的折射率,将式 (1.90) 和 (1.91) 代入上式,则有两个平行磁场传播的特征波的色散关系是

$$n_{\rm L}^2 = \varepsilon_{xx} + j\varepsilon_{xy} = 1 - \frac{\omega_{\rm pe}^2}{\omega(\omega + \omega_{\rm le})} - \frac{\omega_{\rm pi}^2}{\omega(\omega - \omega_{\rm li})}$$
(1.97)

$$n_{\mathbb{R}}^{2} = \varepsilon_{xx} - j\varepsilon_{xy} = 1 - \frac{\omega_{pe}^{2}}{\omega(\omega - \omega_{le})} - \frac{\omega_{pi}^{2}}{\omega(\omega + \omega_{li})}$$
(1.98)

把式 (1.97) 代入式 (1.93), 可求得

$$\frac{E_x}{E_y} = \frac{\mathrm{j}\,\varepsilon_{xy} + \varepsilon_{xy}}{\mathrm{j}\,\varepsilon_{xy} - \varepsilon_{xy}} = -\mathrm{j}$$

即折射率为 n_L 的特征波是左旋圆极化的纯横波。同样我们可以证明,对折射率为 n_R 的特征波有: $E_x/E_y=i$,是右旋圆极化的纯横波。

1. 圆极化波的截止与共振

下面我们分析左、右旋圆极化的截止与共振。

将式 (1.97) 和 (1.98) 进一步化简得

$$n_{\rm L}^2 = 1 - \frac{\omega_{\rm p}^2}{(\omega + \omega_{\rm le})(\omega - \omega_{\rm li})}$$
 (1.99)

$$n_{\rm R}^2 = 1 - \frac{\omega_{\rm p}^2}{(\omega - \omega_{\rm le})(\omega + \omega_{\rm li})}$$
 (1.100)

这里, $\omega_p^2 = \omega_{pe}^2 + \omega_{pi}^2$ 。右、左旋圆极化的截止条件分别为 $n_R^2 = 0$, $n_L^2 = 0$,所以右、左旋圆极化的截止频率 ω_R , ω_L 分别为

$$\omega_{L} = \left[\omega_{P}^{2} + \frac{(\omega_{Ie} + \omega_{Ii})^{2}}{4} \right]^{1/2} - \frac{\omega_{Ie} - \omega_{Ii}}{2} = \left[\omega_{P}^{2} + \frac{(\omega_{Ie})^{2}}{4} \right]^{1/2} - \frac{\omega_{Ie}}{2} (1.101)$$

$$\omega_{R} = \left[\omega_{P}^{2} + \frac{(\omega_{le} + \omega_{li})^{2}}{4} \right]^{1/2} + \frac{\omega_{le} - \omega_{li}}{2} = \left[\omega_{P}^{2} + \frac{(\omega_{le})^{2}}{4} \right]^{1/2} + \frac{\omega_{le}}{2} (1.102)$$

右、左旋圆极化的共振条件分别为 $n_R^2 = \infty$, $n_L^2 = \infty$, 所以右、左旋圆极化的共振频率 ω_R^∞ , ω_L^∞ 分别为

$$\omega_{\rm R}^{\infty} = \omega_{\rm le} \tag{1.103}$$

$$\omega_{\rm L}^{\circ\circ} = \omega_{\rm li} \tag{1.104}$$

右旋波的电场旋转方向与电子回旋运动一致,当波的频率与电子回旋频率相等时,对电子来说,波动的电场几乎是不变的,可以持续地对电子施加作用,产生共振。在微波波段,利用电子回旋共振加速电子,实现气体放电产生等离子体是一种常用的手段,由此产生的等离子体称为电子回旋共振等离子体,简称ECR等离子体。

下面根据色散关系式(1.99)和(1.100)进一步分析圆极化波的传播性质。 右、左旋圆极化波的色散关系如图 1.3 和 1.4 所示。

图 1.3 右旋圆极化波的色散关系

图 1.4 左旋圆极化波的色散关系

- (1) 当 $\omega \gg \omega_e$ 时, $\vec{n} = \vec{n}_R^2 = 1$,即此时电磁波在等离子体中传播的相速度为c,即与真空中相同。这是由于电磁波的频率太高,使得等离子体中粒子的响应跟不上电磁场的变化。
- (2) 对右旋圆极化电磁波有两个通带: $\omega > \omega_R$ 和 $\omega < \omega_l$ 。的区域。一个阻带: $\omega_l < \omega < \omega_R$ 的区域。
- (3) 对左旋圆极化电磁波也有两个通带: $\omega > \omega_L$ 和 $\omega < \omega_L$ 的区域。一个阻带: $\omega_L < \omega < \omega_L$ 的区域。

值得指出的是:磁化等离子体为入射的电磁波开辟了多个窗口,导致频率较低的电磁波也能在等离子体中传播。而非磁化等离子体则有"高通滤波器"的性质,只有高频电磁波才能传播。

2. 法拉第旋转

下面我们分析法拉第旋转。

一个线偏振的电磁波平行于磁场方向入射到磁化等离子体后,由于传播速度不同 $[v_L = c/n_L = c/(\varepsilon_{xx} + j\varepsilon_{xy})^{1/2}, v_R = c/n_R = c/(\varepsilon_{xx} - j\varepsilon_{xy})^{1/2}]$,线偏振的电磁波将被分解为左旋和右旋圆极化波,其偏振面将以磁场方向为轴旋转。也就是说,线偏振波沿着磁场方向传播过程中,其极化方向会产生旋转,这种现象称为法拉第(Faraday)旋转。

由式(1.93)可以解出左旋和右旋圆极化波的电场

$$\mathbf{E}_{L} = (\mathbf{e}_{x} - \mathbf{j}\mathbf{e}_{y}) E_{L} \exp \mathbf{j} (k_{L} z - \omega t)$$
 (1.105)

$$\mathbf{E}_{R} = (\mathbf{e}_{x} + \mathbf{j}\mathbf{e}_{y}) E_{R} \exp \mathbf{j} (k_{R} z - \omega t)$$
 (1.106)

这里, E_L , E_R 分别为左旋和右旋圆极化波的电场; $k_L = \omega n_L/c$, $k_R = \omega n_R/c$ 分别为左旋和右旋圆极化波的波数。合成后线偏振电磁波的总电场为

$$\mathbf{E} = \mathbf{E}_{L} + \mathbf{E}_{R} = \{ \mathbf{e}_{x} [E_{L} \exp(j k_{L} z) + E_{R} \exp(j k_{R} z)]$$

$$- j \mathbf{e}_{y} [E_{L} \exp(j k_{L} z) - E_{R} \exp(j k_{R} z)] \} \exp(-j \omega t)$$
(1. 107)

设该线偏振波的极化方向与 x 轴的夹角为 γ,则有

$$\gamma = \operatorname{arccot} \frac{E_{x}}{E_{y}} = \operatorname{arccot} \left\{ -j \frac{1 + \exp[j(k_{L} - k_{R})z]}{1 - \exp[j(k_{L} - k_{R})z]} \right\} = \frac{k_{L} - k_{R}}{2} z$$
 (1.108)

上式已设 $E_{\rm c}/E_{\rm c}=1$ 。由此可见,在磁化等离子体中,沿磁场方向传播的线偏振波的偏振面绕磁场旋转。旋转角的大小决定于传播距离和左右旋圆极化波的波数差。而波数差又由等离子体密度和磁场强度的大小决定。偏振面是随着传播的进行不断旋转的。因此,传播距离越远,偏振面旋转的角度也越大。

法拉第旋转可以用来测量等离子体的密度。当入射电磁波的频率远大于等离子体频率和电子回旋频率时,法拉第旋转的角度为

$$\gamma = \frac{e^{3} B_{0}}{2 \varepsilon_{0} c m_{e} \omega^{2}} n_{e} z \qquad (1.109)$$

其中,n, m 分别为电子密度和质量; B 为磁感应强度。如果等离子体密度沿传播方向是不均匀的,磁感应强度也是 z 的函数,则上式变为

$$\gamma = \frac{e^{\frac{3}{2}}}{2 \operatorname{sc} m_e \, \omega^2} \int B_0(z) \, n_e(z) \, \mathrm{d}z \qquad (1.110)$$

式 (1.109) 和 (1.110) 中法拉第旋转角的单位为弧度 (rad)。

1.4.2 碰撞对磁等离子体中平行于磁场传播电磁波的影响

本节考虑电子的碰撞,而忽略离子的碰撞。与 1.4.1 小节相同,设磁场沿 z 轴方向,并设磁化等离子体是无界的、有碰撞的。电磁波传播时,电磁波的传播应满足方程 (1.74)。写成矩阵形式则变为式 (1.93)

$$\begin{pmatrix} \mathbf{n}^{2} - \mathbf{\varepsilon}_{xx} & -\mathbf{\varepsilon}_{xy} & 0 \\ \mathbf{\varepsilon}_{xy} & \mathbf{n}^{2} - \mathbf{\varepsilon}_{xx} & 0 \\ 0 & 0 & -\mathbf{\varepsilon}_{zz} \end{pmatrix} \begin{pmatrix} \mathbf{E}_{x} \\ \mathbf{E}_{y} \\ \mathbf{E}_{z} \end{pmatrix} = 0$$

考虑电子碰撞的影响,忽略离子的影响。则式(1.93)中

$$\varepsilon_{xx} = \varepsilon_{yy} = 1 + \frac{X}{[Z+j(1-Y)][Z+j(1+Y)]}$$
 (1.111)

$$\varepsilon_{xy} = j \frac{XY}{[Z+j(1-Y)][Z+j(1+Y)]}$$
 (1.112)

$$\varepsilon_{zz} = 1 - \frac{X}{1 - \mathrm{i}Z} \tag{1.113}$$

式中, $X = \omega_P^2 / \omega^2$, $Y = \omega_I / \omega$, $Z = \nu / \omega$ 。其中, $\omega_I = \omega_I$ 。为电子回旋频率。

上式的第一个非零解的色散关系在有碰撞时变为

$$\varepsilon_{zz} = 1 - \frac{\omega_{pe}^2}{\omega(\omega - j\nu)} = 1 - \frac{\omega_p^2}{\omega^2 + \nu^2} - j\frac{\nu}{\omega}\frac{\omega_p^2}{\omega^2 + \nu^2}$$
(1.114)

此时,由于等离子体的碰撞,使得该特征波的介电常数出现虚部。同时,由于电场 *E*。的极化方向与外磁场的方向一致,电子的运动不受外磁场的影响。此特征波与非磁化等离子体中的电磁波完全相同。其衰减常数和相位常数参见式(1.82)和(1.83)。

第二个非零解为圆极化波,在有碰撞时色散关系依然为

$$n^2 = \varepsilon_{xx} \pm i \varepsilon_{xy} \tag{1.115}$$

不同之处为 ε_{xx} , ε_{xy} 由式 (1.111) 和 (1.112) 给出。在忽略离子的作用后,这两个平行于磁场传播的特征波的色散关系是

$$n_{\text{R.L}}^2 = \varepsilon_{xx} \mp j \varepsilon_{xy} = 1 - \frac{\omega_{\text{pe}}^2}{\omega^2 \left[\left(1 - j \frac{\nu}{\omega} \right) \mp \frac{\omega_{\text{le}}}{\omega} \right]}$$
(1.116)

分母中的正负号取负时对应右旋极化波,取正时对应左旋极化波。式 (1.116) 中复介电常数的实部和虚部分别为

$$\operatorname{Re}(n_{\mathbb{R},L}^{2}) = 1 - \frac{\omega_{\text{pe}}^{2}(\omega \mp \omega_{\text{le}})}{\omega[(\omega \mp \omega_{\text{le}})^{2} + \nu^{2}]}$$
(1.117a)

$$\operatorname{Im}(n_{\mathbb{R},L}^{2}) = -\frac{\gamma_{e} \omega_{pe}^{2}}{\omega[(\omega \mp \omega_{le})^{2} + \nu^{2}]}$$
(1.117b)

式中上面的符号对应右旋极化波,下面的符号对应左旋极化波。

令 $k=\beta-j\alpha$, β 称为相位常数, α 称为衰减常数。则有

$$\beta = \frac{\omega}{c} \operatorname{Re}(n_{R,L}) \tag{1.118a}$$

$$\alpha = -\frac{\omega}{c} \operatorname{Im}(n_{R,L}) \tag{1.118b}$$

显然,由于衰减常数 α不为零,左、右旋圆极化波在磁化等离子体中传播时,电 场能量会被衰减。对具体的计算结果将在以后的章节进行讨论。

1.5 磁等离子体中垂直干磁场传播的电磁波

1.5.1 无碰撞磁等离子体中垂直于磁场传播的电磁波

设磁场沿 z 轴方向, 并设磁化等离子体是无界的、无碰撞的。电磁波沿 x 轴

传播, 电磁波传播满足的波动方程为

$$\begin{pmatrix}
-\mathbf{\varepsilon}_{xx} & -\mathbf{\varepsilon}_{xy} & 0 \\
\mathbf{\varepsilon}_{xy} & \mathbf{n}^2 - \mathbf{\varepsilon}_{xx} & 0 \\
0 & 0 & \mathbf{n}^2 - \mathbf{\varepsilon}_{zz}
\end{pmatrix}
\begin{pmatrix}
\mathbf{E}_x \\
\mathbf{E}_y \\
\mathbf{E}_z
\end{pmatrix} = 0$$
(1.119)

式中, ε_{xx} , ε_{xy} , ε_{zz} 满足式 $(1.90)^{\sim}(1.92)$

显然,上式的第一个非零解的色散关系为 $n^2 - \epsilon_{zz} = 0$,即折射率可写为

$$n^2 = 1 - \frac{\omega_p^2}{\omega^2}$$
 (1.120)

该特征波的电场沿 z 轴与磁场方向一致, 磁场对 z 轴方向的电子运动没有任何影响。也就是说这个波在等离子体中的传播与非磁化等离子体的特性完全相同。所以, 这个特征波称为寻常波(O波)。

寻常波只有一个截止频率 ω_{P} , 不存在共振频率, 其传播区间为 $\omega > \omega_{P}$, 其色散关系曲线与图 1. 2 相同。

寻常波在等离子体频率之下截止这一事实我们早已知道。无线电波的短波可以很方便地实现全球通讯,就是利用了电离层的反射,其反射层就是寻常波的截止层。若等离子体的等密度面是平面,当电磁波正入射时,电磁波可以到达截止层所在的平面,在截止面处产生全反射;但对于斜入射的情况,电磁波在到达截止面之前就会产生偏转,最终的出射方向为径向反射方向。

第二个非零解的色散关系为
$$\varepsilon_{xy}^2 - \varepsilon_{xx} (n^2 - \varepsilon_{xx}) = 0$$
,即折射率可写为
$$n^2 = (\varepsilon_{xy}^2 + \varepsilon_{xx}^2)/\varepsilon_{xx}$$
 (1.121)

因为左、右旋圆极化波折射率的平方分别为 $n_{k}^{2} = \varepsilon_{xx} + j\varepsilon_{xy}$, $n_{k}^{2} = \varepsilon_{xx} - j\varepsilon_{xy}$, 因此,上式可写为

$$n^{2} = \frac{2 n_{L}^{2} n_{R}^{2}}{n_{L}^{2} + n_{R}^{2}} = 1 - \frac{\omega_{pe}^{2} (\omega^{2} - \omega_{pe}^{2} - \omega_{le} \omega_{li})}{(\omega^{2} - \omega_{le}^{2})(\omega^{2} - \omega_{li}^{2}) - \omega_{pe}^{2} (\omega^{2} - \omega_{le} \omega_{li})}$$
(1.122a)

实际上,上式可以改写为

$$n^{2} = \frac{\left[\left(\omega + \omega_{le}\right)\left(\omega - \omega_{li}\right) - \omega_{p}^{2}\right]\left[\left(\omega - \omega_{le}\right)\left(\omega + \omega_{li}\right) - \omega_{p}^{2}\right]}{\left(\omega^{2} - \omega_{le}^{2}\right)\left(\omega^{2} - \omega_{li}^{2}\right) - \omega_{p}^{2}\left(\omega^{2} - \omega_{le}\omega_{li}\right)} \quad (1.122b)$$

上式已利用了 $\omega_p^2 = \omega_{pe}^2 + \omega_{pi}^2$ 和 $\omega_{pe}^2 \omega_{li} = \omega_{pi}^2 \omega_{le}$ 两个关系式。该特征波的电场与磁场方向垂直,位于垂直于磁场的平面上。由纵向分量 E_x 和横向分量 E_y 组成,因此该特征波由纵波与横波组成,故称为混杂波,也称为非常波(X 波)。

下面根据色散关系式(1.122)进一步分析非常波的传播性质。非常波的色散关系曲线如图 1.5 所示。

当电磁波的频率较高,忽略离子的运动,即 $\omega^{\sim}\omega_{e}\gg\omega_{i}$ 时,非常波的色散关系可以近似地写为

$$n^{2} = \frac{(\omega^{2} - \omega_{R}^{2})(\omega^{2} - \omega_{L}^{2})}{\omega^{2}(\omega^{2} - \omega_{H}^{2})}$$
(1.123)

图 1.5 非常波的色散关系

上式中, ω_R , ω_L 分别为右、左旋圆极化波的截止频率; $\omega_R^2 = \omega_{pe}^2 + \omega_e^2$ 称为上混杂频率。显然,非常波有两个截止频率 ω_R , ω_L 和一个共振频率 ω_R 。

下面对式(1.123)进行进一步的讨论:

- (1) 当 $\omega \gg \omega_H$ 时, $n^2 = 1$,即此时电磁波在等离子体中传播的相速度为 c,即与真空中相同。这是由于电磁波的频率太高,使得等离子体中粒子的响应跟不上电磁场的变化。
- (2) 在 $\omega > \omega_R$ 和 $\omega_L < \omega < \omega_H$ 区域, $n^2 > 0$ 为电磁波的通带;在 $\omega < \omega_L$ 和 $\omega_H < \omega < \omega_R$ 区域, $n^2 < 0$ 为电磁波的阻带。

当电磁波的频率较低,离子的运动起重要作用,电磁波频率满足 ω≪ωω时, 非常波的色散关系可以近似地写为

$$n^{2} = \frac{\omega_{le}^{2} \left(\omega_{li}^{2} - \omega^{2}\right) \left(\varepsilon_{l}^{2} - \varepsilon_{l}^{2}\right)}{\omega_{H}^{2} \left(\omega^{2} - \omega_{le} \omega_{li} \frac{\omega_{pe}^{2} + \omega_{le} \omega_{li}}{\omega_{pe}^{2} + \omega_{le}^{2}}\right)}$$
(1.124)

由此可见, 在低频区域, 非常波的共振频率为

$$\omega \approx \omega_{\text{LH}} = (\omega_{\text{le}} \omega_{\text{li}})^{1/2} \tag{1.125}$$

ωι 称为下混杂频率。此时,电磁波只有一个通带:ω<ωι 的区域。

1.5.2 碰撞对磁等离子体中垂直于磁场传播电磁波的影响

本节考虑电子的碰撞,而忽略离子的碰撞。设外加磁场沿 z 轴方向,并设磁化等离子体是无界的、有碰撞的。电磁波垂直于磁场方向传播时,电磁波的传播依然满足方程(1.119)

$$\begin{pmatrix}
-\mathbf{e}_{xx} & -\mathbf{e}_{xy} & 0 \\
\mathbf{e}_{xy} & \mathbf{n}^2 - \mathbf{e}_{xx} & 0 \\
0 & 0 & \mathbf{n}^2 - \mathbf{e}_{zz}
\end{pmatrix}
\begin{pmatrix}
\mathbf{E}_x \\
\mathbf{E}_y \\
\mathbf{E}_z
\end{pmatrix} = 0$$

不同的是 ε_{xx} , ε_{xy} , ε_{xz}分别满足式 (1.111)~(1.113)。

上式的第一个非零解的色散关系为 $n^2 - \epsilon_{zz} = 0$, 在考虑电子碰撞时, 折射率可写为

$$n^{2} = 1 - \frac{\omega_{pe}^{2}}{\omega(\omega - j\nu)} = 1 - \frac{\omega_{p}^{2}}{\omega^{2} + \nu^{2}} - j\frac{\nu}{\omega}\frac{\omega_{p}^{2}}{\omega^{2} + \nu^{2}}$$
(1.126)

寻常波的电场沿 z 轴,磁场对 z 轴方向的电子运动没有任何影响。即寻常波在磁等离子体中的传播特性与在非磁等离子体中完全相同。其衰减常数和相位常数由式 (1.82) 和 (1.83) 给出。与无碰撞等离子体相比,式 (1.126) 出现虚部。寻常波因被等离子体中的电子碰撞而衰减。衰减的大小由衰减常数决定,也就是由上式的虚部决定。

第二个非零解为非常模,其色散关系依然可写为

$$n^{2} = (\varepsilon_{xy}^{2} + \varepsilon_{xx}^{2})/\varepsilon_{xx}$$
 (1.127)

其中, ε_{xx} , ε_{xy} 分别由式(1.111)和(1.112)给出。在忽略离子的作用后,这两个垂直于磁场传播的非常波的色散关系是

$$n^{2} = 1 - \frac{\omega_{pe}^{2}/\omega^{2}}{1 - j\frac{\nu}{\omega} - \frac{\omega_{le}^{2}/\omega^{2}}{1 - \omega_{pe}^{2}/\omega^{2} - j\nu/\omega}}$$
(1.128)

其实部和虚部分别为

$$\operatorname{Re}(\hat{n}^{2}) = 1 - \frac{\frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]} - \frac{\frac{\omega_{\text{le}}^{2}}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}} \left[1 + \frac{\omega_{\text{le}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]}$$

$$\operatorname{Im}(\hat{n}^{2}) = - \frac{\frac{\nu}{\omega^{2}} \left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]}$$

$$(1.129)$$

$$\operatorname{Im}(\hat{n}^{2}) = - \frac{\left[\frac{\omega_{\text{le}}^{2}}{\omega^{2}} \right] + \frac{\nu^{2}}{\omega^{2}} \right]}{\left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} + \frac{\nu^{2}}{\omega^{2}} \right]} + \frac{\nu^{2}}{\omega^{2}} \left[1 - \frac{\omega_{\text{pe}}^{2}}{\omega^{2}} \right]^{2} + \frac{\nu^{2}}{\omega^{2}}} \right]$$

$$(1.130)$$

式(1.129)和(1.130)给出了折射率平方(即介电常数)的实部和虚部。它在以后的章节用WKB方法计算等离子体对电磁波的碰撞吸收时将是很有用的。

第二章 隐身、反隐身与等离子体隐身技术基础

【摘要】 简要叙述了隐身、反隐身技术和等离子体隐身技术的理论基础。第一部分首先介绍隐身技术的发展现状、隐身技术的主要技术手段及其原理;然后,介绍了反隐身技术的国内外的发展现状、原理、常采用的主要手段及其理论依据。第二部分介绍了等离子体对电磁波折射隐身机理和碰撞吸收隐身基本原理,对等离子体隐身的研究背景及发展历史进行了回顾,说明了等离子体隐身的重要性和意义,对等离子体隐身的可行性进行了分析。

2.1 常规隐身技术简介

在海湾战争中,F-117A 隐身战斗机大约执行了 1270 架次空袭任务,摧毁了巴格达 95%的目标,而自己无一伤亡。在 F-117A 隐身战斗机的出色表现和令人吃惊战果的启发和刺激下,隐身技术受到世界各军事强国的重视。许多国家投入大量的人力、物力和财力研究隐身技术和隐身武器系统。短短几年的时间,隐身技术的研究及其应用又获得了突破性进展,已装备或正在研制中的隐身兵器有:隐身战斗机、隐身轰炸机、隐身直升机、隐身巡航导弹等,并已涉及水雷、机车、工事、战车、大炮等领域。这些新型兵器将在现代战争中发挥越来越重要的作用。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁多维一体的立体化现代战争中最重要、最有效的突防战术技术手段,目前世界各国对此相当重视。

在制造不同用途的隐身目标的实践中,对各种方法的研究表明,将隐身技术问题划分为普通隐身与深度隐身是合理的。其中,每一种隐身技术都采用各自的一套分析、计算方法,对其中的每一种技术确定了降低雷达能见度的不同的极限水平。采用了一套方法和设施,用来降低目标上强反射结构及其功能元件的雷达能见度。普通隐身技术只能使目标的有效散射面积平均降低一个数量级的水平。为了使有效散射面积降低到更高的水平(几百分之一),必须采用深度隐身技术,将目标强反射的结构和功能元件的有效散射面积降低到弱反射的水平。深度隐身技术是隐身技术方法发展的下一步。这时,进一步降低目标的有效散射面积,就要求彻底改变它的结构,这也就是深度隐身技术的课题。例如,B-2型飞机,按深度隐身技术规则制造成"飞翼"形式,发动机的进气道不是在机翼的下面,而是在上面;因此,在从地面观测的危险扇形区中,得以躲避进气道的反射,因为在这种情况下,进气道被机翼的平面屏蔽着。完全相同的方法,解决了降低机首雷达天线和驾驶舱的有效散射面积的问题。而对于机翼前缘无法排除的反射,则