Differentiation and It's application:

Differentiation:

It is a process of finding a function that outputs the rate of change of one variable with respect to another variable.

Standard formulae of derivatives:

	Function $f(x)$		Derivative $f'(x)$
1.	$\frac{d}{dx}(k)$, constant		0
2.	$\frac{d}{dx}(x)^n \ (n\epsilon \mathbb{R})$	-	$n \cdot x^{n-1}$
3.	$\frac{d}{dx}(logx)$		$\frac{1}{x}$
4.	$\frac{d}{dx}(e^x)$		e^x
<i>5.</i>	$\frac{d}{dx}(a^x)$		$a^x \log_e a$
	$\frac{d}{dx}(\sin x)$	→	cosx
7.	$\frac{d}{dx}(\cos x)$		-sinx
8.	$\frac{d}{dx}(tanx)$		sec^2x
	$\frac{d}{dx}$ (cosecx)		-cosecx cotx

Function f(x)

Derivative f'(x)

 $-cosec^2x$

10. $\frac{d}{dx}(secx)$

$$\longrightarrow$$
 secx tanx

11. $\frac{d}{dx}$ (cotx)

$$\frac{1}{c}$$
 (cotx)

12.
$$\frac{d}{dx} \left(\frac{1}{x}\right)$$

13.
$$\frac{d}{dx}(\sqrt{x})$$

$$-\frac{1}{u^2}$$

Note: Formulae 12 and 13 are the particular cases of x^n .

14. $\frac{d}{dx}(\sin^{-1}x)$

15.
$$\frac{d}{dx} (\cos^{-1} x)$$

$$16. \ \frac{d}{dx}(\tan^{-1}x)$$

$$17. \ \frac{d}{dx}(\cot^{-1}x)$$

$$18. \, \frac{d}{dx} (\sec^{-1} x)$$

$$19. \ \frac{d}{dx}(\csc^{-1}x)$$

$$\implies \frac{1}{\sqrt{1-x^2}}, |x| < 1$$

$$\Rightarrow \frac{-1}{\sqrt{1-x^2}}, |x| < 1$$

$$\Rightarrow \frac{1}{1+x^2}, x \in \mathbb{R}$$

$$\Rightarrow \frac{-1}{1+x^2}, x \in \mathbb{R}$$

$$\Rightarrow \frac{1}{|x|\sqrt{x^2-1}}, x \in \mathbb{R} - (-1,1)$$

$$\frac{-1}{|x|\sqrt{x^2-1}}, x \in \mathbb{R} - (-1,1)$$

Working rules of differentiation:

1) Derivative of Sum and Difference:

If u and v are functions of x and $y = u \pm v$, then

$$\frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

e.g.
$$y = e^x + x^e + e^e$$

Sol.
$$\frac{dy}{dx} = \frac{d}{dx}e^x + \frac{d}{dx}x^e + \frac{d}{dx}e^e$$

= $e^x + ex^{e-1} + 0 = e^x + ex^{e-1}$

2) Derivative of Product:

If u and v are functions of x and y = uv, then $\frac{dy}{dx}$

$$\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

e.g.
$$y = \log x \cdot tanx$$

Sol.
$$y = logx \cdot tanx$$

$$\frac{dy}{dx} = \log x \frac{d}{dx}(tanx) + tanx \frac{d}{dx}\log(x) \cdots \text{ (using product rule)}$$
$$= \log x \cdot \sec^2 x + tanx \cdot \frac{1}{x}$$

Corollary 1: If y = uvw, then

$$\frac{dy}{dx} = uv \cdot \frac{dw}{dx} + vw \cdot \frac{du}{dx} + wu \cdot \frac{dv}{dx}$$

Corollary 2: If y = ku, then

$$\frac{dy}{dx} = k \cdot \frac{du}{dx}$$

3) Derivative of a quotient:

If u and v are functions of x and $y = \frac{u}{v}$, then

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} , (v \neq 0)$$

e.g.
$$y = \frac{\log x}{x}$$

Sol.
$$y = \frac{\log x}{x}$$

take
$$u = log x$$
 and $v = \frac{1}{x}$

$$\therefore \frac{du}{dx} = \frac{1}{x} \text{ and } \frac{dv}{dx} = 1$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\therefore \frac{dy}{dx} = \frac{x \cdot \frac{d}{dx}(\log x) - \log x \cdot \frac{d}{dx}(x)}{x^2}$$

$$= \frac{x \cdot \frac{1}{x} - \log x \cdot 1}{x^2}$$

$$= \frac{1 - \log x}{x^2}$$

Differentiation of a composite function:

If y is a function of u and u is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

This rule is known as **Chain rule** and it is useful for finding derivatives of composite function.

The chain rule can be generalized as follows.

i. If y is a function of u, u is a function of v, v is a function of w and w is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx}$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dt} \cdots \frac{dz}{dx}$$

e.g.
$$y = \log \cdot (\log x)$$

Sol.
$$y = \log(\log x) = \log u$$

where
$$u = logx : \frac{du}{dx} = \frac{1}{x}$$

Now,
$$y = logu : \frac{dy}{dx} = \frac{1}{u} = \frac{1}{logx}$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{\log x} \cdot \frac{1}{x}$$

$$\therefore \frac{dy}{dx} = \frac{1}{x \log x}$$

Differentiation of parametric function:

When the variables x and y are expressed in terms of some other variable (called parameter) t or θ , the functions are called parametric functions. e.g. $x = rcos\theta$ and $y = rsin\theta$.

If x = f(t) and y = g(t), where t is a parameter, then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$
, where $f'(t) \neq 0.0$

e.
$$g. x = at^2$$
, $y = 2at$,
Sol. $x = at^2$ $\therefore \frac{dx}{dt} = 2at$,
 $y = 2at$ $\therefore \frac{dy}{dt} = 2a$
Now $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t} (t \neq 0)$

Differentiation of Implicit functions:

Let $\Phi(x, y) = 0$ be the equation defining y implicitly as a function of x i.e. in the equation $\Phi(x, y) = 0$, x and y are related in such a way that y cannot conveniently be expressed directly as a function of x like y = f(x).

e.g.
$$x^2 + y^2 = xy$$

$$Sol. x^2 + y^2 = xy$$

Differentiating on both sides w.r.t. x,

we get
$$2x + 2y \frac{dy}{dx} = x \frac{dy}{dx} + y \cdot 1$$

$$\therefore 2x - y = (x - 2y) \frac{dy}{dx} \therefore \frac{dy}{dx} = \frac{2x - y}{x - 2y}$$

Logarithmic differentiation:

When a function f(x) is raised to a power, which itself is a function of x, say $\Phi(x)$ i.e. it is of the form $[f(x)]^{\Phi(x)}$, in that case neither the formula for x^n not that for a^x is applicable. In such a types, we have to take logarithms first then differentiate. This method of differentiation is called logarithmic differentiation.

e.g.
$$y = x^x$$

Sol.
$$y = x^x$$

Now take a log with base e on both sides.

$$\therefore \log y = x \log x$$

Differentiating on both sides w.r.t. x, we get

$$\frac{1}{y}\frac{dy}{dx} = x \cdot \frac{1}{x} + (\log x) \cdot 1 = (1 + \log x)$$

$$\therefore \frac{dy}{dx} = y (1 + log x) = x^{x} (1 + log x)$$

Successive Differentiation:

We have denoted the first derivative of y = f(x) by f'(x) or $\frac{dy}{dx}$. This derivative is called the first derivative of the function f and it is a function of x. This first derivative can again be differentiated with respect to x and the result is called the second derivatives of the function f. It is denoted by f''(x) or $\frac{d^2y}{dx^2}$.

e.g.
$$y = 4e^{3x} + 2^x$$

$$Sol.y = 4e^{3x} + 2^x$$

$$\therefore \frac{dy}{dx} = 4 (3 e^{3x}) + 2^x \log 2 = 12e^{3x} + 2^x \log 2$$

$$\frac{d^2y}{dx^2} = 12 (3e^{3x}) + log 2 (2^x log 2)$$
$$= 36 e^{3x} + 2^x (log 2)^2$$

Velocity and Acceleration:

Velocity: Velocity is a vector measurement of the rate of motion of an object and the direction in which it is moving.

$$V = \frac{ds}{dt} = f'(t)$$

Acceleration: The rate of change of velocity is called acceleration.

The acceleration a of a particle at time t is given by $a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d^2s}{dt^2}$

e.g. The equation of motion of a particle is $s = t^3 - 3t^2 + 4t + 3$. Find its velocity and Acceleration.

Sol. Here
$$s = t^3 - 3t^2 + 4t + 3$$
.

Velocity
$$V = \frac{ds}{dt} = 3t^2 - 6t + 4$$

and Acceleration
$$a = \frac{dV}{dt} = 6t - 6$$