ECE222 Spring 2017

Lab 1 SPICE Simulation

Due 2/14/17 before class

In this lab, we will set up the HSPICE simulation environment, and use it to characterize some devices and a simple diode circuits. The device models can be found in a library sedra_lib.lib, which is from our textbook, *Microelectronic Circuits* by Sedra & Smith. You can download this library from Blackboard under Course Materials.

Set Up and Run HSPICE

Please see the handouts "Using HSPICE" on Blackboard for detailed instructions. If you are new to Linux, read "Basic Linux Commands". There are also HSPICE manuals for your reference.

Characterize Diodes

- 1) Find the I-V characteristics (I_D vs. V_D) of a discrete diode D1N4148 using DC sweep.
- 2) Find the saturation current I_S of the diode using .MEASURE command. Assume the effect of its series resistance R_S can be neglected. Compare to the value specified in the model.
- 3) Find the small-signal diode capacitance C_D for V_D=1V using AC analysis.

Characterize MOSFETs:

- 1) Find the I-V characteristics (I_D vs. V_{DS}) of an NMOS transistor NMOS0P5 with a size of W=20 μ m, L=0.6 μ m, AS=AD=(W*1 μ m), PS=PD=(W+2 μ m). Note that you need to bias the body of the NMOSFET to ground. Sweep V_{GS} from 0 to 3V in steps of 0.2 volts, and V_{DS} from 0 to 3V.
- 2) Find the values of V_{DS} for which I_D enters the pinch-off region.
- 3) Find f_T of the transistor for $V_{GS}=1V$ and 2V, $V_{DS}=0$ to 3V. Note: use the same circuit as in the textbook when defining f_T , i.e., to measure the current gain when the drain is AC short-circuited to ground.
- 4) Repeat the steps above for a PMOS transistor PMOS0P5 with a size of W=20μm, L=0.6μm, AS=AD=(W*1μm), PS=PD=(W+2μm). Note that the source and bulk of PMOSFET needs to be connected to V_{DD}.

Voltage Doubler Circuit:

Simulate the following voltage doubler circuit (Fig.1). Plot the transient behavior of the voltage V₂ and V_{out}. This is the problem from Section 4.6.3 in the textbook Sedra & Smith 6th edition. Use the subcircuit in the library sedra_lib.lib

Figure 1. Voltage doubler from Sedra & Smith Exercise 4..6.3.

Tips:

Here is a tip for HSPICE commands useful for this lab:

DC sweep:

.DC Vin1 0 3 0.2 Vin2 0 3 0.2

This command will change Vin1 from 0 to 3 with 0.2 increments for each value of Vin2 (from 0 to 3V). NOTE that you should not run two .DC commands one after another, which will run two separate simulations.

Lab Report:

Draw the schematic of all circuits with clear component names and values. Explain your design. Report simulation results except waveforms. Attach printouts of the SPICE netlists and simulation results including waveforms with clear explanations. Discuss any discrepancy from your expectation. **Submit all SPICE netlist files to TA by email.** Note that your SPICE syntax should follow the conventions in the lecture.