

## Tina Linux V85X 方案 FAQ

版本号: 1.0

发布日期: 2022.02.11





#### 版本历史

| 版本号 | 日期         | 制/修订人   | 内容描述        |
|-----|------------|---------|-------------|
| 1.0 | 2022.02.11 | AWA0892 | V85X 方案 FAQ |







## 目 录

| 1 | V85        | SX 方案应用常见问题                              | 1  |
|---|------------|------------------------------------------|----|
|   | 1.1        | 概述                                       | 1  |
|   | 1.2        | 系统相关                                     | 1  |
|   |            | 1.2.1 V85x 是否已支持 RTOS 系统                 | 1  |
|   |            | 1.2.2 异构系统中,RISC-V 如何与 A7 通信?            | 1  |
|   |            | 1.2.3 是否能独立于 Tina 构建系统打包                 | 2  |
|   |            | 1.2.4 关于打包失败问题                           | 2  |
|   |            | 1.2.5 V85x 方案原厂提供哪些算法                    | 3  |
|   |            | 1.2.6 V853/V853S/V851/V851SE 芯片平台主要有哪些差异 | 3  |
|   |            | 1.2.7 如何获取物料支持列表                         | 3  |
|   |            | 1.2.8 温控设置                               | 4  |
|   |            | 1.2.9 如何查看 CPU 当前频率、如何修改 CPU 主频          | 5  |
|   |            | 1.2.9.1 查看 CPU 频率和策略                     | 5  |
|   |            | 1.2.9.2 CPU 调频                           | 5  |
|   |            | 1.2.10 如何在串口或者 ADB 登录时,增加登录密码            | 6  |
|   |            | 1.2.10.1 ADB 权限功能                        | 6  |
|   |            | 1.2.10.2 串口登录设置密码                        | 6  |
|   |            | 1.2.11 是否有 package 包对应的 License 说明       | 7  |
|   |            | 1.2.12 支持休眠唤醒                            |    |
|   |            | 1.2.13 产品要通过绑定 chipid 来授权,需要获取唯一的 chipid | 8  |
|   |            | 1.2.14 如何提高内核的打印等级                       |    |
|   |            | 1.2.14.1 printk 的打印级别                    |    |
|   |            | 1.2.14.2 查看内核启动初期的打印                     |    |
|   | 1.3        | DRAM                                     |    |
|   |            | 1.3.1 V85x 平台支持的 DDR3/DDR3L 的电压          |    |
|   |            | 1.3.2 如何导入 DRAM 物料                       |    |
|   |            | 1.3.3 IPC 或 CDR 场景下内存评估                  |    |
|   | 1.4        | 时钟相关                                     |    |
|   |            | 1.4.1 如何查看各模块时钟频率                        |    |
|   |            | 1.4.2 如何修改 uart 的波特率                     |    |
|   | 1.5        | 存储相关                                     | 13 |
|   |            | 1.5.1 为何 SPI Nand 存储可用空间比标称要小            | 13 |
|   |            | 1.5.2 存储切换方法                             | 13 |
|   |            | 1.5.2.1 spinor 切换 spinand                | 13 |
|   |            | 1.5.2.2 spinand 切换 spinor                | 14 |
|   |            | 1.5.2.3 spinor 切换 emmc                   | 15 |
|   |            | 1.5.2.4 spinor 切换 sdnand                 | 16 |
|   | <b>a</b> = | 1.5.3 是否支持 SPI Slave 模式                  | 17 |
|   | 1.6        | NPU 相关                                   | 17 |
|   |            | 1.6.1 NPU 问题: NPU 是否支持算子级别的接口            | 17 |
|   |            | 1.6.2 NPU 的资料如何获取,是否有 License 问题         | 17 |









## 插图

| 1-1  | E907-openamp                                        | 2 |
|------|-----------------------------------------------------|---|
| 1-2  | E907-openamp-client                                 | 2 |
| 1-3  | V85x-feature                                        | 3 |
| 1-4  | V85x-clk-summary                                    | 0 |
| 1-5  | $V85x\text{-uart-boadrate} \ \ldots \ \ldots \ \ 1$ | 0 |
| 1-6  | V85x-clk-tree                                       | 1 |
| 1-7  | V85X-clk-tree-module  .  .  .  .  .  1              | 2 |
| 1-8  | sunxi-pinctrl 1                                     | 9 |
| 1-9  | xr829-0 2                                           | 2 |
| 1-10 | ) xr829-1                                           | 3 |





## 1 V85X 方案应用常见问题

## 1.1 概述

本文主要记录在 V85x 等系列芯片在方案应用上,客户端常见的问题解答。适用于 V851、V853、V853s 和 V851se 等芯片及衍生平台。

## 1.2 系统相关

## 1.2.1 V85x 是否已支持 RTOS 系统



## 1.2.2 异构系统中, RISC-V 如何与 A7 通信?

物理上,A7 与 E907 通过硬件 msgbox 进行通信,软件框架上,A7 上基于 Linux 标准的 rpmsg 驱动框架,E907 基于 openamp 异构通信框架。

A7 端: 包含 remoteproc 驱动和 rpmsg 驱动; E907 端: 包含 msgbox 通信和 openamp 通信;

其中 openamp 的框架如下:





图 1-1: E907-openamp



图 1-2: E907-openamp-client

## 1.2.3 是否能独立于 Tina 构建系统打包

可独立打包,可通过 Aservice 提交需求单独提供参考范例。

## 1.2.4 关于打包失败问题

pack 打包时出现ERROR: merge full img failed





修改device/config/chips/v853/configs/perf1/linux/sys\_partition.fex或者sys\_partition\_nor.fex对应分区的大小。

## 1.2.5 V85x 方案原厂提供哪些算法

#### 音频类:

- 支持 EQ/DRC 算法、音效组件及 PC 端工具
- 单 MIC 降噪和回声消除算法

#### 图像类:

• 移动侦测算法、人形检测算法、区域入侵检测算法

## 1.2.6 V853/V853S/V851/V851SE 芯片平台主要有哪些差异

|           | _        |                     |                     |                     |                      |
|-----------|----------|---------------------|---------------------|---------------------|----------------------|
|           |          |                     | 智慧                  | 机觉                  |                      |
|           | 芯片型号     | V851                | V851SE              | V853                | V853S                |
|           | 分档       | 4M插值5M              | 4M插值5M              | 5M(3072x1721)       | 5M(3072x1721)        |
| Al        | 算力       | 0.5T                | 0.5T                | 1T                  | 1T                   |
| 封装        | 封装尺寸     | 9x9                 | 9x9                 | 12X12               | 12X12                |
| 土丁农       | 到表代的     | QFN88-0.35mm        | QFN88-0.35mm        | BGA318-0.65mm       | BGA318-0.65mm        |
| CPU       | core     | A7-900Mhz           | A7-900Mhz           | A7-1.2GHz           | A7-1.2GHz            |
| CPU       | core     | E906-600MHz         | E906-600MHz         | E907-600MHz         | E907-600MHz          |
| DDR       | A46 2011 | SIP-64MB-DDR2       | SIP-64MB-DDR2       | 外挂DDR               | SIP 128MB DDR3/DDR3L |
| DDR       | 类型       | (1.5V)              | (1.5V)              | が狂いい                |                      |
| VE        | H264编码能力 | 5M @20fps/4M @30fps | 5M @20fps/4M @30fps | 5M @25fps/4M @30fps | 5M @25fps/4M @30fps  |
| VE        | H265编码能力 | 5M @20fps/4M @30fps | 5M @20fps/4M @30fps | 5M @25fps4M @30fps  | 5M @25fps/4M @30fps  |
| ISP       | 性能       | 4M                  | 4M                  | 5M                  | 5M                   |
|           |          | 1x8bit LCD输出        | 1x8bit LCD输出        | 1x18bit LCD输出       | 1x18bit LCD输出        |
| Video out | 接口类型     | 1xBT656输出           | 1xBT656输出           | 1xBT1120输出          | 1xBT1120输出           |
| 7,400 041 |          | 1xMIPI-DSI 2lane    | 1xMIPI-DSI 2lane    | 1xMIPI-DSI 4lane    | 1xMIPI-DSI 4lane     |
|           |          | 1xMIPI-CSI 4lane    | 1xMIPI-CSI 4lane    | 1xMIPI-CSI 4lane    | 1xMIPI-CSI 4lane     |
|           | 接口类型     | 可拆分2x2lane          | 可拆分2x2lane          | 可拆分2x2lane          | 可拆分2x2lane           |
| Video in  | 以口大王     | 1x10/并口CSI(复用)      | 1x10/并口CSI (复用)     | 1x8/10/12并口CSI      | 1x8/10/12并口CSI       |
|           |          |                     |                     | 1xBT1120输入          | 1xBT1120输入           |
|           | 分辨率      | 4M @30FPS           | 4M @30FPS           | 5M @30FPS           | 5M @30FPS            |
|           | 网口       | RMII                | SIP EPHY            | RMII接口(或SIP EPHY)   | RMII接口(或SIP EPHY)    |

图 1-3: V85x-feature

## 1.2.7 如何获取物料支持列表

一号通->文档中心->V85x/V85x-IPC/Hardware硬件类文档/硬件物料清单/

文档密级: 秘密



#### 1.2.8 温控设置

V85x 芯片的 ARM、NPU、VE、E907 RISC-V 有温控传感器,可以实时监控这几个核的温度,并通过算法来控制 cpu 频率从而控制 cpu 的温度。每个产品的硬件设计和模具不同对应的散

热情况也不同,可以通过 dts 中的如下配置进行适当的调整温控参数来适配产品:设置温控开启的温度:

• dts 的文件为:lichee/linux-4.9/arch/arm/boot/dts/sun8iw21p1.dtsi

```
thermal-zones {
        cpu_thermal_zone {
           polling-delay-passive = <500>;
           polling-delay = <1000>;
           thermal-sensors = <&ths 2>;
                                              sustainable-power = <68>;
           cpu_trips: trips {
               cpu_threshold: trip-point@0 {
                   temperature = <70000>;
                   type = "passive";
                   hysteresis = <0>;
               cpu target: trip-point@1 {
                    temperature = <90000>;
                   type = "passive";
                   hysteresis = <0>;
               cpu_crit: cpu_crit@0 {
                   temperature = <110000>;
                   type = "critical";
                   hysteresis = <0>;
           };
           cooling-maps {
               map0 {
                   trip = <&cpu_target>;
                   cooling-device = <&cpu0
                   THERMAL_NO_LIMIT
                   THERMAL_NO_LIMIT>;
                   contribution = <1024>;
               };
           };
       };
        npu_thermal_zone {
           polling-delay-passive = <0>;
           polling-delay = <0>;
           thermal-sensors = <&ths 0>;
        ve_thermal_zone {
           polling-delay-passive = <0>;
           polling-delay = <0>;
           thermal-sensors = <&ths 1>;
```



```
};
};
```

• 可以通过此节点查看各个核的 sensor 温度

```
root@TinaLinux:/sys/class/thermal# cat /sys/class/thermal/*/type
thermal-cpufreq-0
cpu_thermal_zone
npu_thermal_zone
ve_thermal_zone
battery
root@TinaLinux:/sys/class/thermal# cat /sys/class/thermal/*/temp
30380 /* 温度单位为mc,就是30.380度*/
30520
30590
0
root@TinaLinux:/sys/class/thermal#
```

## 1.2.9 如何查看 CPU 当前频率、如何修改 CPU 主频

#### 1.2.9.1 查看 CPU 频率和策略

查看cpu当前频率: cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo\_cur\_freq

查看cpu调频策略: cat /sys/devices/system/cpu/cpu0/cpufreq/scaling\_governor performance

表示当前调频策略为 performance, 它会以当前最大频率运行。其他常用的调频策略,如 interactive, 会根据实际负载调节频率。一般常用的就是这两种,如果想了解其他调频策略,可以查看内核源码中 Documentation/cpu-freq/governors.txt 该文档,或者网上资料。

#### 1.2.9.2 CPU 调频

```
#设置用户调频模式
echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

#查看可调频率
cd /sys/devices/system/cpu/cpu0/cpufreq/
cat scaling_available_frequencies

eg: 720000 816000 912000 960000 1008000 1200000 1320000 1440000 1512000

#设置CPU频率:
echo 720000 > scaling_setspeed #设置CPU主频为720M
echo 1200000 > scaling_setspeed #设置CPU主频为1200M
```





#### 1.2.10 如何在串口或者 ADB 登录时,增加登录密码

#### 1.2.10.1 ADB 权限功能

ADB 的用法可参考—号通->文档中心->V85X->V85X IPC->Software软件类文档->基础组件开发指南->《Tina\_Linux\_USB\_开发指南.pdf》

该功能主要用于权限管理,只有经过公私钥认证后才能进行 adb 通信。

#### **1.2.10.1.1** 配置 ADB 使用前需要 make menuconfig 选中对应功能:

```
      Allwinner --->

      <*> adb...... adb for Tina Linux

      <*> adbd_auth_service..... adb auth service for Tina Linux
```

默认开机就会使能该功能,执行 adb 命令时会进行公私钥校验。



#### 1.2.10.1.2 公钥的安装:

默认允许安装所有公钥,可以通过修改tina/package/utils/adb/auth/aw\_adb\_auth\_service.c 取消下面注释

/\*aw\_adbd\_install\_pubkey\_detector(publickey\_detector); \*/ 然后在publickey\_detector函数中判断是否安装公钥,返回false则不安装

公钥的安装路径: /mnt/UDISK/adb keys

如果/mnt/UDISK/adb\_keys 下面没有对应的公钥,并且不允许安装新公约,这时候 adb 功能就不能使用。

#### **1.2.10.1.3** 注意事项: 1.Windows 下面公私钥的路径:

```
%USERPROFILE%\.android\adbkey   // 私钥
%USERPROFILE%\.android\adbkey.pub // 公钥
```

#### 2.Ubuntu 下面公私钥的路径:

| 用户目录/.android/adbkey     | // 私钥 |  |
|--------------------------|-------|--|
| 用户目录/.android/adbkey.pub | // 公钥 |  |

#### 1.2.10.2 串口登录设置密码

#### 1.2.10.2.1 配置 busybox



#### make menuconfig选择

Base system ->
<\*> busybox ······

- [\*] Customize busybox optionLogin/Password Management Utilities —>
- [\*] login (NEW)

#### 1.2.10.2.2 修改启动脚本 package/base-files/files/etc/inittab

vim /etc/inittab

::askconsole:/bin/ash -login

改为

::askconsole:/bin/login

#### 1.2.10.2.3 或修改 vi target/allwinner/v853-xxx/xx/etc/inittab

ttyMSM0::askfirst:/bin/login

inittab 一般在方案目录下都会有,例如 v853-perf1 方案:

target/allwinner/v853-perf1/busybox-init-base-files/etc/inittab

#### 1.2.10.2.4 root 密码默认设置

package/base-files/files/etc/shadow 默认密码配置为tina, 对应/etc/shadow

root:91rMiZzGliXHM:1:0:99999:7:::

## 1.2.11 是否有 package 包对应的 License 说明

Allwinner 有整理 pacakage 包对应的 License 声明,如需要可通过 Aservice 索取。

## 1.2.12 支持休眠唤醒

可支持 super standby 和 Normal standby。

super standby 唤醒源支持: RTC、USB 插入/拔出、Gesensor、按键。

Normal Standby 唤醒源支持: Wifi ping 唤醒、RTC、USB 插入/拔出、Gesensor、按键、GPIO。



## 1.2.13 产品要通过绑定 chipid 来授权,需要获取唯一的 chipid

cat /sys/class/sunxi info/sys info 读取 sunxi serial, sunxi serial 具有唯一性。

#### 1.2.14 如何提高内核的打印等级

可通过读写/proc/sys/kernel/printk 文件,读取和修改控制台的日志级别

```
echo 8 > /proc/sys/kernel/printk
```

或修改 env.cfg 将 loglevel 置成 8。

#### 1.2.14.1 printk 的打印级别

```
#define KERN EMERG
                        "<0>" /* system is unusable */
                        "<1>" /* action must be taken immediately
#define KERN_ALERT
                        "<2>" /* critical conditions */
#define KERN_CRIT
                        "<3>" /* error conditions */
#define KERN_ERR
#define KERN WARNING
                        "<4>" /* warning conditions */
                        "<5>" /* normal but significant condition *,
#define KERN NOTICE
                         "<6>" /* informational */
#define KERN_INFO
                        "<7>" /* debug-level messages */
#define KERN DEBUG
```

#### 1.2.14.2 查看内核启动初期的打印

```
make kernel_menuconfig
Kernel hacking ---> Kernel low-level debugging functions -->Early printk
```

## **1.3 DRAM**

## 1.3.1 V85x 平台支持的 DDR3/DDR3L 的电压

DDR3 是 1.5V 的, DDR3L 是 1.35V, LPDDR3 是 1.2V, 不过 V853 只支持 16bit DDR, LPDDR3 是 32bit, 不支持 LPDDR3。

## 1.3.2 如何导入 DRAM 物料

需求导入: 通过 Aservice 系统提交物料调试需求



- 上传 DRAM 相关的 SPEC
- 邮寄相关物料及平台(4pcs + 4pcs board)

验证: 稳定性和可靠性测试原厂提供更新的 dram 驱动后,客户需要按照 —号通->文档中心->V85X-> V85X IPC->Software软件类文档->基础组件开发指南->《全志R&V系列Tina DRAM物料兼容性测试操作指南V1.0》进行可靠性 和稳定性验证,通过后反馈给原厂加入支持列表中。

## 1.3.3 IPC 或 CDR 场景下内存评估

有参考版本,可通过 Aservice 提交需求单独提供。

## 1.4 时钟相关

## 1.4.1 如何查看各模块时钟频率

mount -t debugfs none /sys/kernel/debug cat /sys/kernel/debug/clk/clk\_summary

如示例:





| oot@TinaLinux:/# cat /sys<br>clock | enable_cnt       | prepare_cnt           | rate     | accuracy phase |
|------------------------------------|------------------|-----------------------|----------|----------------|
| osc48m                             | 0                | 0                     | 48000000 | 0 0            |
| osc48md4                           | 0                | 0                     | 12000000 |                |
| usbohci0_12m                       | Ŏ                | 0                     | 12000000 | 0 0            |
| noscdiv32k                         | 0                | 0<br>0<br>9<br>0      | 32768    |                |
| hosc32k                            | 0                | 0                     | 32768    |                |
| ios c                              | 8<br>0<br>0      | 9                     | 24000000 | 0 0            |
| sdmmc1_mod                         | 0                | 0                     | 200000   | 0 0            |
| csi_master0                        | 0                | 0                     | 24000000 |                |
| sdmmc0_mod                         | 0<br>1<br>0<br>1 | 0<br>1<br>0<br>1      | 800000   | 0 0            |
| cpurapbs0                          | 1                | 1                     | 24000000 | 0 0            |
| cpurcpus                           | 0                | 0                     | 24000000 |                |
| сригрри                            | 1                | 1                     | 24000000 | 0 0            |
| cpurtwd                            | 0<br>0           | 0<br>0                | 24000000 | 0 0            |
| cpurahbs                           | 0                | 0                     | 24000000 | 0 0            |
| rtc_spi                            | 0                | Ō                     | 1200000  | 0 0            |
| cpurrtc                            | 0<br>0<br>0      | 0<br>0                | 24000000 | 0 0            |
| fanout_24m                         | 0                | 0                     | 24000000 | 0 0            |
| e907                               | 0                | 0                     | 24000000 | 0 0            |
| e907_axi                           | 0                | 0                     | 12000000 | 0 0            |
| isp                                | 0                | 0                     | 24000000 | 0 0            |
| csi_master2                        | 0<br>0<br>1      | 0                     | 24000000 | 0 0            |
| csi_master1                        | 0                | 0<br>1<br>1<br>0<br>0 | 24000000 | 0 0            |
| usbphy0                            |                  | 1                     | 24000000 | 0 0            |
| gpadc                              | 1                | 1                     | 24000000 | 0 0            |
| spif                               | ō                | 0                     | 24000000 | 0 0            |
| spi2                               | ŏ                | 0                     | 24000000 | 0 0            |
| spi1                               | 0<br>0           | ŏ                     | 24000000 | 0 0            |
| sdmmc2_rst                         | 0                | 0                     | 24000000 | 0 0            |
| sdmmc2_bus                         | Ŏ                | 0                     | 24000000 | 0 0            |
| sdmmc2_mod                         | 0<br>0           | 0                     | 24000000 | 0 0            |
| sdmmc1_rst                         | 0                | 0                     | 24000000 | 0 0            |
| sdmmc1_bus                         | 0                | Ō                     | 24000000 | 0 0            |
| sdmmc0_rst                         | 0                | Ö                     | 24000000 | 0 0            |
| sdmmc0_bus                         | 0                | 0                     | 24000000 | 0 0            |
| dbgsys                             | 0                | 0                     | 24000000 | 0 0            |
| avs                                | 0<br>3<br>1      | 0<br>3<br>1           | 24000000 | 0 0            |
| apb1                               | 3                | 3                     | 24000000 | 0 0            |
| twi4                               |                  |                       | 24000000 | 0 0            |
| twi3                               | 0                | 0                     | 24000000 | 0 0            |
| twi2                               | 0                | 0                     | 24000000 | 0 0            |
| twi1                               | 0                | 0                     | 24000000 | 0 0            |

图 1-4: V85x-clk-summary

## 1.4.2 如何修改 uart 的波特率

V85x 串口默认波特率为 115200, 某些场景下需要使用其它波特率进行数据传输,如蓝牙播放音乐的场景通常需要将波特率设置为 1500000。uart 内核驱动(lichee/linux-4.9/drivers/tty/serial/sunxi-uart.c)提供了以下的提示信息:



图 1-5: V85x-uart-boadrate

从上述注释,可了解到 uart 波特率与时钟配置的关系,apbclk 横轴为 apb 各个频率,纵轴为该



时钟支持的波特率。默认时钟为 24M,由此可见,在不修改时钟配置的前提下,我们可使用最大的波特率为 1.5M。

#### • 修改时 uart 钟源



图 1-6: V85x-clk-tree





图 1-7: V85X-clk-tree-module

上图为时钟源和时钟树,根据目标时钟修改 DTS 中 UART 的时钟源,其中需要注意:

Clocks 需要按照芯片 spec 配置 (或者查看 clk 代码),第一个参数为 uart clk, 第二个为 apb2 clk, 第三个为 apb2 的时钟源 pll periph0。这里可配置的时钟源不同平台有可能有差异

Clock-frequency 并不是任意频率均可以设置,它是由时钟源 pll\_periph0 分频得到,其中分频系数需要查看 spec, 例如 sun8iw15 的,factor N:1,2,4,8, 而 factor M:1~4, 因此 50M 可以由 N=4,M=3 获取得到:600/4/3=50

如果设置的频率无法准确分频得到,则会设置附近的一个值,例如 30M,实际分频: N=4,M=4,600/4/4=37.5M

这种修改方法,是在内核初始化 uart 的时候才生效,如果想提前,得改动 uboot, 或者 boot0 的代码 (主要就是设置 apb2 的时钟源,及分频系数)

文档密级: 秘密



## 1.5 存储相关

## 1.5.1 为何 SPI Nand 存储可用空间比标称要小

如 Nand flash 总大小是 128M Bytes, Nand 驱动本身会保留 1/8 到 1/10 左右的空间,包括用于 Nand 管理、预留给 Boot0/uboot 的空间,如果 nand 存在坏块,空间也将相应的减小;

#### 1.5.2 存储切换方法

SDK 切换存储介质需要修改 board.dts、sys\_config.fex、内核配置、TINA 系统配置。另外,在 spinor 存储介质下,通过 u-boot-sun8iw21p1.bin 进行烧录,u-boot-spinor-sun8iw21p1.bin 启动,使用 sys\_partition\_nor.fex 作为分区表。在非 spinor 介质 (spinand、emmc、sdnand),通过 u-boot-sun8iw21p1.bin 进行烧录和启动,使用 sys\_partition.fex 作为分区表。SUN8IW21 的各份 SDK 默认使用 spinor 作为存储介质,下文将介绍 spinor 切换 spinand、spinand 切换 spinor、spinor 切换 emmc、spinor 切换 sdnand 四种切换方式。

• sys\_config.fex 中只要关注 storage\_type 选项,这个选项决定使用哪一种存储介质,配置后在 pack 过程,会自动打包对应介质的二进制文件。

#### [target]

storage\_type = xxx 其中 storage\_type | 0:nand | 1:sd | 2:emmc | 3:spinor | 4:emmc3 | 5:spinand | 6:sd1 |

#### 1.5.2.1 spinor 切换 spinand

#### 1.5.2.1.1 sys\_config.fex 修改

```
[target]
- storage_type = 3
+ storage_type = 5
```

#### 1.5.2.1.2 board.dts/uboot-board.dts 修改

```
&spi0 {
- status = "disabled";
+ status = "okay";
    spi-nand@0 {
- status="disabled";
+ status="okay";
    };
};
```

文档密级: 秘密



#### 1.5.2.1.3 uboot 编译

```
编译u-boot-sun8iw21p1.bin, spinand使用u-boot-sun8iw21p1.bin进行烧录、启动。
cboot切换到uboot目录,编辑configs/sun8iw21p1_defconfig
CONFIG_SUNXI_UBIFS=y
                    //SDK发布默认已选上
                     //编译
执行mboot
确保device/config/chips/vxxx/bin/u-boot-sun8iw21p1.bin已更新
```

#### 1.5.2.1.4 内核配置

```
make kernel_menuconfig 层层选中
内核驱动配置
Device Driver --->
  Memory Technology Device (MTD) support --->
     sunxi-nand --->
        <*> AWNAND CHOICE (Allwinner MTD SPINAND Device Support) --->
         Enable UBI - Unsorted block images --->
        [*] Read-only block devices on top of UBI volumes
内核文件系统配置
File systems --->
   [*] Miscellaneous filesystems --->
                                                 MET
          UBIFS file system support
```

#### 1.5.2.1.5 TINA 环境配置

```
make menuconfig 层层选中
Target Images --->
  Boot (SD Card) Kernel format (boot.img) ---> //默认选中
   [ ] For storage less than 32M, enable this when using ota //取消勾选
Global build settings --->
   [*] Strip unnecessary functions from libraries //取消勾选
Utilities --->
   <*> mtd-utils --->
          mtd-utils-mkfs.ubifs
```

#### 1.5.2.2 spinand 切换 spinor

#### 1.5.2.2.1 sys\_config.fex 修改

```
[target]
- storage_type = 5
+ storage_type = 3
```

#### 1.5.2.2.2 board.dts/uboot-board.dts 修改

```
&spi0 {
    status = "okay";
    status = "disabled";
    spi-nand@0 {
```

文档密级:秘密



```
- status="okay";
+ status="disabled";
};
};
```

#### 1.5.2.2.3 内核配置

```
make kernel_menuconfig 层层选中
内核驱动配置
Device Driver --->
    Memory Technology Device (MTD) support --->
    sunxi-nand ---> //取消勾选
Self-contained MTD device drivers --->
    <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...) //确认已选中
    <*> SPI-NOR device support --->
    内核文件系统配置
File systems --->
    [*] Miscellaneous filesystems --->
    <*> Journalling Flash File System v2 (JFFS2) support
```

#### 1.5.2.2.4 TINA 环境配置

```
make menuconfig 层层选中
Target Images --->
[*] For storage less than 32M, enable this when using ota //选中
Global build settings --->
[*] Strip unnecessary functions from libraries //选中
Utilities --->
<*> mtd-utils
<*> mtd-utils-mkfs.jffs2 //选中
```

## 1.5.2.3 spinor 切换 emmc

#### 1.5.2.3.1 sys\_config.fex 修改

```
[target]
- storage_type = 3
+ storage_type = 2
```

#### 1.5.2.3.2 内核配置

```
make kernel_menuconfig 层层选中

[*] Enable the block layer --->

[*] Support for large (2TB+) block devices and files

[*] Block layer SG support v4

Device Drivers --->

< > Memory Technology Device (MTD) support ---> //取消勾选

[*] Block devices ---> //确认勾选

File systems --->

<*> The Extended 4 (ext4) filesystem
```



#### 1.5.2.3.3 TINA 环境配置

```
make menuconfig 层层选中
Target Images --->
  Boot (SD Card) Kernel format (boot.img) ---> //默认选中
   [ ] For storage less than 32M, enable this when using ota //取消勾选
Global build settings --->
   [ ] Strip unnecessary functions from libraries //取消勾选
Utilities --->
  Filesystem --->
     <*> e2fsprogs //选中
```

#### 1.5.2.4 spinor 切换 sdnand

#### 1.5.2.4.1 sys\_config.fex 修改

```
[target]
- storage_type = 3
+ storage_type = 1
```

#### 1.5.2.4.2 board.dts 修改

```
LIMINE
&sdc2 {
    non-removable;
    bus-width = <8>;
    mmc-ddr-1_8v;
    mmc-hs200-1_8v;
    mmc-hs400-1_8v;
    no-sdio;
   no-sd;
   //no-sd;
    ctl-spec-caps = <0x308>;
    cap-mmc-highspeed;
    sunxi-power-save-mode;
    sunxi-dis-signal-vol-sw;
    max-frequency = <1000000000>;
    vmmc-supply = <&reg_dcdc1>;
    /*emmc io vol 3.3v*/
    vqmmc-supply = <&reg bldo1>;
    /*emmc io vol 1.8v*/
    /*vqmmc-supply = <&reg eldo1>;*/
    status = "disabled";
```

#### 1.5.2.4.3 内核配置

```
make kernel menuconfig 层层选中
[*] Enable the block layer --->
        Support for large (2TB+) block devices and files
   [*]
        Block layer SG support v4
Device Drivers --->
   < > Memory Technology Device (MTD) support ---> //取消勾选
```

文档密级: 秘密



```
[*] Block devices ---> //确认勾选
File systems --->
   <*> The Extended 4 (ext4) filesystem
```

#### 1.5.2.4.4 TINA 环境配置

```
make menuconfig 层层选中
Target Images --->
  Boot (SD Card) Kernel format (boot.img) ---> //默认选中
   [ ] For storage less than 32M, enable this when using ota //取消勾选
Global build settings --->
   [ ] Strip unnecessary functions from libraries //取消勾选
Utilities --->
  Filesystem --->
     <*> e2fsprogs //选中
```

## 1.5.3 是否支持 SPI Slave 模式

支持,驱动位于lichee/linux-4.9/drivers/spi/spi-sunxi.c

## 1.6 NPU 相关

# ER NPU 是否支持算子级别的接口 1.6.1 NPU 问题:

当前只支持模型级别,尚不支持算子级别。

## 1.6.2 NPU 的资料如何获取,是否有 License 问题

资料获取: 一号通->文档中心->V85X->V85X IPC->Tool工具类文档->工具使用指南 需要通过邮件申请 License, 具体参照—号通->文档中心->V85X->V85X IPC->Software软件类文档->基础组件开发指南->《Tina\_Linux\_NPU开发简介. pdf》和《Tina\_Linux\_NPU部署工具安装指导.pdf》

## 1.7 编码相关

## 1.7.1 编解码相关问题

待补充。



## 1.8 Camera&&ISP 相关

## 1.8.1 双摄像头如何配置

待补充。

### 1.8.2 ISP 设置区域曝光

调用接口 AW\_MPI\_ISP\_SetLocalExposureArea()

## 1.9 显示相关

## 1.9.1 如何替换开机 Logo

准备好待替换的 bmp 图片,重命名成 bootlogo.fex 替换 \${Tina\_SDK}/device/config/chips/v853/configs/perf1/linux/bootlogo.fex

## 1.9.2 如何确认 LCD 屏本身工作是否正常

可打开 LCD 屏自测模式,测试 colorbar 输出是否正常。命令: echo 1 > /sys/class/disp/disp/attr/colorbar

## 1.10 GPIO 类(驱动能力设置)

## 1.10.1 芯片内部的 GPIO 是否带上下拉电阻

芯片设计时, GPIO 是有带上下拉电阻,约为 100K,精度为 20%.

## 1.10.2 GPIO 的驱动能力如何配置

#### 1.10.2.1 pinctrl 调试





#### 1.10.2.1.1 查看引脚信息

```
mount -t debugfs none /sys/kernel/debugfs
cd /sys/kernel/debug/sunxi_pinctrl
```

#### 查看命令:

```
echo PIN_NAME > sunxi_pin (例: echo PB2 > sunxi_pin)
cat sunxi_pin_configure

其中PIN_NAME是由(pin-group + pin-number)组成, pin-group为A, B, ...G的分组; pin-number为0, 1,
...9的标号,以驱动中的B组第2号引脚为例,pin-name为: PB2。
```

#### **1.10.2.1.2 更改引脚属性** 每个引脚都有四种属性:

| data     | 电平    |  |  |  |  |
|----------|-------|--|--|--|--|
| dlevel   | 驱动能力  |  |  |  |  |
| pull     | 上拉/下拉 |  |  |  |  |
| function | 功能选择  |  |  |  |  |



更改属性命令: echo PIN\_NAME value > 属性如果改变 PB2 引脚的 data 属性为 1. echo PB2 1 > data 其他属性操作类似相关属性的默认值由 sys config 或 dts 配置确定;

```
/sys/kernel/debug/sunxi_pinctrl
/sys/kernel/debug/sunxi_pinctrl # echo PB2 > sunxi_pin
/sys/kernel/debug/sunxi_pinctrl # cat sunxi_pin_configure
pin[PB2] funciton: 7
pin[PB2] data: 0
pin[PB2] dlevel: 1
pin[PB2] pull: 0
/sys/kernel/debug/sunxi_pinctrl # echo PB2 1 > function
/sys/kernel/debug/sunxi_pinctrl # echo PB2 2 > dlevel
/sys/kernel/debug/sunxi_pinctrl # echo PB2 1 > pull
/sys/kernel/debug/sunxi_pinctrl # cat sunxi_pin_configure
pin[PB2] funciton: 1
pin[PB2] data: 1
pin[PB2] dlevel: 2
pin[PB2] pull: 1
/sys/kernel/debug/sunxi_pinctrl # |
```

图 1-8: sunxi-pinctrl

#### 1.10.2.2 Linux 标准 GPIO 调试

确认系统中有"/sys/class/gpio"这级目录,如果没有,在编译内核的时候加入





#### Device Drivers

-> GPIO Support

-> /sys/class/gpio/… (sysfs interface)

#### /sys/class/gpio使用说明:

- 1. 通过/sys/文件接口操作IO端口,即GPIO到文件系统的映射;
- 2. 控制GPIO的目录位于/sys/class/gpio;
- 3. /sys/class/gpio/export文件,用于通知系统需要导出控制的GPIO引脚编号;
- 4. /sys/class/gpio/unexport文件, 用于通知系统取消导出;
- 5. /sys/class/gpio/gpiochipX目录保存系统中GPIO寄存器的信息,包括每个寄存器控制引脚的起始编号base,寄存器名称,引脚总数 导出一个引脚的操作步骤
- 首先计算此引脚编号引脚编号 = 控制引脚的寄存器基数 + 控制引脚寄存器位数举例(具体 GPIO 参考数据手册),如想控制 PB2 引脚,那么引脚编号就等于 1 x 32 + 2 = 34;
- export 引脚向/sys/class/gpio/export 写入此编号,比如 34 号引脚,在 shell 中可以通过以下命令实现: echo 34 > /sys/class/gpio/export 命令成功后生成 /sys/class/gpio/gpio34 目录,如果没有出现相应目录,说明此引脚不可导出。
- 定义输入输出 direction 文件,定义输入输入方向,可以通过下面命令定义为输出。echo out > /sys/class/gpio/gpio34/direction direction 接受的参数可以是: in、out、high、low。 其中参数 high / low 在设置方向为输出的同时,将 value 设置为相应的 1 / 0。
- 设置 value 值 value 文件是端口的数值,为 1 或 0,通过下面命令将 gpio34 设置为高电平。
   echo 1 > /sys/class/gpio/gpio34/value

## 1.11 PMU 相关

## 1.11.1 PMU 调试命令

• virtual regulator 调试节点

此节点为直接控制调节各路电压的输出,使用方法如下,shell 命令设置 regulator 电压:

#### shell命令设置regulator电压。

virtual设备存在于axp2101主设备结点下面,因此设备路径为主设备下面的从设备。以AXP2101的设备举例。 /sys/devices/platform/soc/twi4/i2c-4/4-0034/regulator/regulator.1/reg-virt-consomer.1-dcdc1

通过此路径下面的max\_microvolts和min\_microvolts设备结点进行写操作,用来完成对设备电源的控制,此例为: echo 3000000 > max\_microvolts echo 3000000 > min\_microvolts

设置电压为3000000uV, 3000mV, 3V。

• 查看设备引用 regulator



| root@(none):/sys/kernel/deb<br>regulator |   |   |   | voltage |     | min    | max    |
|------------------------------------------|---|---|---|---------|-----|--------|--------|
| regulator-dummy                          | 0 | 4 | 0 | 0mV     | 0mA | 0mV    | 0mV    |
| uart0                                    |   |   |   |         |     | 0mV    | 0mV    |
| twi4                                     |   |   |   |         |     | 0mV    | 0mV    |
| twi1                                     |   |   |   |         |     | 0mV    | 0mV    |
| twi0                                     |   |   |   |         |     | 0mV    | 0mV    |
| axp2101-dcdc1                            | 0 | 5 | 0 | 3300mV  | 0mA | 1500mV | 3400mV |
| sdc0                                     |   |   |   |         |     | 0mV    | 0mV    |
| sdc0                                     |   |   |   |         |     | 0mV    | 0mV    |
| sdc0                                     |   |   |   |         |     | 0mV    | 0mV    |
| reg-virt-consumer.1                      |   |   |   |         |     | 0mV    | 0mV    |
| spi0                                     |   |   |   |         |     | 0mV    | 0mV    |
| axp2101-dcdc2                            | 0 | 1 | 0 | 900mV   | 0mA | 500mV  | 1540mV |
| reg-virt-consumer.2                      |   |   |   |         |     | 0mV    | 0mV    |
| axp2101-dcdc3                            | 0 | 2 | 0 | 900mV   | 0mA | 500mV  | 3400mV |
| cpu0                                     |   |   |   |         |     | 900mV  | 900mV  |
| reg-virt-consumer.3                      |   |   |   |         |     | 0mV    | 0mV    |
| axp2101-dcdc4                            | 0 | 1 | 0 | 1500mV  | 0mA | 500mV  | 1840mV |
| reg-virt-consumer.4                      |   |   |   |         |     | 0mV    | 0mV    |
| axp2101-dcdc5                            | 0 | 2 | 0 | 1200mV  | 0mA | 1200mV | 3700mV |
| sensor0                                  |   |   |   |         |     | 1200mV | 3300mV |
| reg-virt-consumer.5                      |   |   |   |         |     | 0mV    | OmV    |
| axp2101-rtcldo                           | 0 | 0 | 0 | 1800mV  | 0mA | 1800mV | 1800mV |
| axp2101-rtcldo1                          | 0 | 0 | 0 | 1800mV  | 0mA | 1800mV | 1800mV |
| axp2101-aldo1                            | 0 | 1 | 0 | 1800mV  | 0mA | 500mV  | 3500mV |

- regmap registers 打印 PMU 的所有的寄存器值
- 需要先挂载 debugfs 节点, shell 操作命令如下:

```
mount -t debugfs none /sys/kernel/debug
```

• 写寄存器操作, 往寄存器 oxff 写入 0x01

```
echo 0xff 0x01 > /sys/kernel/debug/regmap/4-0034/registers
```

• 读寄存器, 读取所有的 PMIC 的寄存器值

```
cat /sys/kernel/debug/regmap/4-0034/registers
```

- 通过/sys/class/axp 节点修改 PMIC 寄存器的值
- 读寄存器值:

```
echo 0x68 > /sys/class/axp/axp_reg;
cat /sys/class/axp/axp_reg
```

• 写寄存器: reg:0x68 写 0x01

```
echo 0x6801 > /sys/class/axp/axp_reg
```

• sys config.fex 修改电压只对 uboot 阶段起作用,到 kernel 阶段有的模块会修改电压。



## 1.12 硬件信号测试相关

## 1.12.1 wifi 相关问题: XR819/XR829 调大发射功率

为了满足某些测试需求,需要对最大发射功率进行调整,但强烈建议不要轻易的修改发射功率,否则可能导致性能较差或者无法通过认证机构的认证。具体修改方法可使用 SddEditor(一号通可获取)工具进行修改,操作步骤如下图 xr829-0,打开 sdd\_xr829.bin 文件,点击 Min/-Max Power For Modulations, 会弹出图 xr829-1 的窗口,根据需要修改的各速率的发射功率后点击 OK 按钮返回第一级界面,继续点击 OK 按钮保存修改到 sdd\_xr829.bin 文件,然后把 sdd xr829.bin 文件更新到设备即可。



图 1-9: xr829-0





## 1.12.2 如何将 WIFI 的 MAC 地址固件下来(XR819/XR829)

XR 系列 wifi 芯片:通过 DragonSN 烧号工具,将 MAC 地址烧录到 Flash 上的 private 分区,系统挂载的时候将 private 分区挂载,然后读取 mac 地址,设置到系统中 Realtek 芯片:通过烧写 wifi 模组的 efuse 区域将 MAC 地址固定;



## 1.12.3 EMI 相关问题: SDIO 展频、mipi-csi 展频、LCD 展频

#### 1.12.3.1 DRAM 展频操作

• 通过设置 dram 的参数 dram\_tpr13 相应的位数即可,如下:

展频开关使能由bit23控制:

0:disable 1:enable

展频系数由bit[22:20]设置: 1-5: 对应展频系数0.1-0.5 others:展频系数0.4

#### 1.12.3.2 SDIO 展频

8

因 SDIO 接口的 PLL 只用 PLL PERI,因为只要对 PLL PER1 进行展频即可。

#### 1.12.3.2.1 展频设计

• 配置 PLL\_CTRL 寄存器: 0x02001020 =0xc9216310

PLL\_CTRL 的寄存器为: 0x02001020, 通过 echo 0x02001020 > /sys/class/sunxi\_dum/dump && cat /sys/class/sunxi dump/dump 读出寄存器的值

- 可通过设置 N 和 M1 的值来设置 PLL\_PERI 的频率,不过目前频率已设置好。
  PLL\_PERI = 0x02001040 = 0xc9216310(N=bit[15:8]+1=100 M1=bit1+1=1 P0=bit[18:16]+1=2)PLL PER1 = 24 \* N / M1/P0 = 1200MHz
- 配置 bit24: SDM Enabe 为 1, 使能展频功能
- 配置 PLL\_Pattern 寄存器:0x02001120 =0xd1303333

通过 echo 0x02001120 > /sys/class/sunxi\_dum/dump && cat /sys/class/sunxi\_dump/dump 此寄存器是用来对时钟进行展频幅度调整,涉及两个参数 SDM\_bot 和 Wave\_step 的值,计算 加下:

比如展频设置为 1.6%, 即上下展频 0.8%, 范围为:  $1190.4 \text{MHz} (360 * 0.992) \sim 1209.6 \text{MHz} (368 * 1.008)$ 

X1 = (1190.4 - (N\*24/M1/P0)) / 24 = -0.4(负数不符合展频范围, 取 0 即可)

x2 = (1209.6 - (N\*24/M1/p0)) / 24 = 0.4

文档密级: 秘密



- 展频基频选择由 PLL Pattern 寄存器的 bit[18:17] 位选择,FREQ 默认选择 31.5KHz 即可
- PLL Pattern 寄存器寄存器的值计算:

```
SMD_bot[16:0] = 2^17 * X1 = 0 Wave_step[28:20] = 2^17 * (X2 - X1) / (24MHz/FREQ) * 2 = 0x8A
```

PLL Pattern = 0xC8600000

● 通过串口直接写寄存器开启展频

#### 1.12.3.3 mipi-csi 展频

csi 的展频可参考 SDIO 或者 LCD,本意有可能是针对 sonsor,也有可能是针对 VIN 本身模块,都是要找到对应的 PLL 时钟,然后对齐进行时钟展频,如对 csi\_top 时钟进行展频,先查看 CSI\_TOP 挂载哪路 PLL 时钟:

|                 | 1   |   |            |     |
|-----------------|-----|---|------------|-----|
| pll_periph0x2   | / 1 | 1 | 1200000000 | 0 0 |
| pll_periph0400m | 0   | 0 | 400000000  | 0 0 |
| ce              | 0   | 0 | 400000000  | 0 0 |
| pll_periph0200m | Θ   | 0 | 200000000  | 0 0 |
| pll_periph0600m | 3   | 3 | 600000000  | 0 0 |
| apb0            | 5   | 5 | 100000000  | 0 0 |
| fanout_pclk     | 0   | 0 | 100000000  | 0 0 |
| wiegand         | 1   | 1 | 100000000  | 0 0 |
| ths             | 1   | 1 | 100000000  | 0 0 |
| pwm             | 1   | 1 | 100000000  | 0 0 |
| ahb             | 6   | 6 | 200000000  | 0 0 |
| dpss_top        | 1   | 1 | 200000000  | 0 0 |
| usbotg          | 1   | 1 | 200000000  | 0 0 |
| usbehci0        | 0   | 0 | 200000000  | 0 0 |
| usbohci0        | 0   | 0 | 200000000  | 0 0 |
| gmac            | 0   | 0 | 200000000  | 0 0 |
| iommu           | 1   | 1 | 200000000  | 0 0 |
| hstimer         | 0   | 0 | 200000000  | 0 0 |
| spinlock        | 1   | 1 | 200000000  | 0 0 |
| msgbox1         | 0   | 0 | 200000000  | 0 0 |
| msgbox0         | 1   | 1 | 200000000  | 0 0 |
| dma             | 1   | 1 | 200000000  | 0 0 |
| pll_periph0300m | 3   | 4 | 30000000   | 0 0 |
| csi_top         |     |   |            |     |

版权所有 © 珠海全志科技股份有限公司。保留一切权利



可以看出来 csi\_top 的时钟是挂到了 pll\_periph0x2—>pll\_periph0300m—>csi\_top 的时钟上面,只要对进行 pll periph0x2 展频即可,也即对 PLL PEREI 进行展频。

直接参考 SDIO 的展频即可,如果挂载其他的 PLL 上,如 PLL\_VIDEO0/PLL\_CSI 等,按照相同的原理去计算,然后展频即可。

#### 1.12.3.4 mipi-dsi 展频 && CPU 接口的 LCD 展频

不管是 MIPI 接口还是 CPU 接口,其原理都是对父时钟进行展频,如 V85x-dsi, 在屏幕点亮的情况下,可通过此命令查看屏幕的 clk 关系,如下:

```
mount -t debugfs none /sys/kerner/debugfs
cat /sys/kernel/debug/clk/clk_summary
    pll_video0x4
                                           1
                                                         2
                                                             360000000
                                                                                 0 0
                                                             360000000
                                                                                 0 0
       tcon_lcd
                                           1
                                                         1
       pll_video0
                                           0
                                                              90000000
                                                                                 0 0
                                                         1
                                                                             ® 0 0
       pll video0x2
                                           0
                                                             180000000
```

可以看出来 tcon\_lcd 的时钟是挂到了 pll\_videox4 的时钟上面,只要对 pll\_videox4 进行展频即可,因为 pll\_video0 和 pll\_videox2 是由 pll\_videox4 经过 4 分频和 2 分频得到,在对 pll videox4 进行展频是要考虑使用了 video0 和 videox2 为时钟源的模块是否有影响。

#### 1.12.3.4.1 展频设计

• 配置 PLL CTRL 寄存器: 0x02001040 = 0xc9001d03

pll\_vide0x4的寄存器为: 0x02001040, 通过 echo 0x02001040 > /sys/class/sunxi\_dum/dump && cat /sys/class/sunxi dump/dump 读出寄存器的值

- 可通过设置 N 和 M1 的值来设置 pll\_videox4 的频率,不过目前频率已设置好。
   VIDOE0\_PLL\_REG = 0x02001040 = 0xc9001d03 (N=0x1d+1=30 M1=bit1+1=2 M0=bit0+1=2) pll video0x4 = 24 \* N / M1 = 360MHz
- 配置 bit24: SDM Enabe 为 1, 使能展频功能
- 配置 PLL Pattern 寄存器:0x02001140 = 0xd1303333

通过 echo 0x02001140 > /sys/class/sunxi\_dum/dump && cat /sys/class/sunxi\_dump/dump 此寄存器是用来对时钟进行展频幅度调整,涉及两个参数 SDM\_bot 和 Wave\_step 的值,计算如下:

比如展频设置为 1.6%, 即上下展频 0.8%, 范围为: 357.12(360 \* 0.992) ~ 362.88MHz(368 \* 1.008)



X1 = (357.12 - (N\*24/M1)) / 24 = -0.12(负数不符合展频范围, 取 0 即可)

x2 = (362.88 - (N\*24/M1)) / 24 = 0.12

- 展频基频选择由 PLL Pattern 寄存器的 bit[18:17] 位选择,FREQ 默认选择 31.5KHz 即可
- PLL Pattern 寄存器寄存器的值计算:

```
SMD_bot[16:0] = 2^17 * X1 = 0 Wave_step[28:20] = 2^17 * (X2 - X1) / (24MHz/FREQ)
* 2 = 0x29
```

PLL Pattern = 0xC2900000

• 通过串口直接写寄存器开启展频

```
echo 0x02001040 0xc0001d03 > /sys/class/sunxi_dump/write; /* 先disable PLL_OUTPUT[bit30] 0: disable 1:enable

* 和PLL_SDM[bit24] 0:disable 1: enable*/
echo 0x02001140 0xC2900000 > /sys/class/sunxi_dump/write; /*设置pattern0*/ ② echo 0x02001040 0xc1001d03 > /sys/class/sunxi_dump/write; /*enable PLL_SDM_ENABLE展频使能位*/echo 0x02001040 0xc9001d03 > /sys/class/sunxi_dump/write; /*enable PLL_OUTPUT*/
```

## 1.12.4 如何进入 USB 眼图测试

#### 1.12.4.1 USB0 OTG Device 眼图测试:

#### 手动切换Device模式:

cat /sys/devices/platform/soc/usbc0/usb\_device

每个芯片平台的节点路径会有些差异,请通过find命令确认:

find /sys -name otg\_ed\_test

#### 眼图测试命令:

echo test\_pack > /sys/devices/platform/soc/5100000.udc-controller/otg\_ed\_test

#### 1.12.4.2 USB0 OTG Host 眼图测试:

#### 手动切换Host模式:

 $\verb|cat /sys/devices/platform/soc/usbc0/usb_host|\\$ 

每个芯片平台的节点路径会有些差异,请通过find命令确认(注意选择带有ehci0的路径): find /sys -name ed\_test

#### 眼图测试命令:

echo test\_pack > /sys/devices/platform/soc/5101000.ehci0-controller/ed\_test



## 1.13 工具类

## 1.13.1 如何获取量产工具二次开发 SDK 包

说明: 当前支持二次开发的工具包括 LiveProc 二次开发 SDK、DragonSN 二次开发 SDK、DragonMAT 二次开发 SDK 和 USBProproc 开发 SDK。

申请流程 1、客户端通过 Aservice 发起工具申请。2、FAE 或产品经理在-号通->工具管理->量产工具 <math>-%T +%T +





#### 著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

#### 商标声明



举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

#### 免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。