KonukhinaOV 26122024-165338

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний и частотой 5980 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус $164~{\rm дБh/\Gamma}$ ц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1750 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки $500~{\rm \Gamma}$ ц, если с доступная мощность на выходе источника равна $-3.5~{\rm дБм}$?

- 1) -159.3 дБн/ Γ ц
- (2) -159.8 дБн/ Γ ц
- 3)-160.3 дБн/Гц
- 4) -160.8 дБн/Гц
- 5) -161.3 дБн/Гц
- 6) -161.8 дБн/Гц
- 7) -162.3 дБн/Гц
- 8) -162.8 дБн/Гц
- 9) -163.3 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10^{-1} , а крутизна характеристики управления частотой ГУН равна 0.6 МГц/В. Частота колебаний опорного генератора (ОГ) 220 МГц. Частота колебаний ГУН 870 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 1.3 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки $161 \text{ к}\Gamma$ ц на 1.1 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 1 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 2.03 B/рад
- 2) 2.70 В/рад
- 3) 3.37 В/рад
- 4) 4.04 В/рад
- 5) 4.71 В/рад
- 6) 5.38 В/рад
- 7) 6.05 В/рад
- 8) 6.72 В/рад
- 9) 7.39 В/рад

Если цепь на рисунке 2 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки $2.124~\rm k\Gamma$ ц больше на $3.2~\rm дБ$, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ меньше на $1~\rm дБ$, чем вклад ГУН. Известно, что $C=20.4~\rm h\Phi$, а $R_2=3370~\rm Om$. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 2 – Электрическая схема цепи обратной связи

- 1) 1578 O_M
- 2) 1877 Om
- 3) 2176 Ом
- $4)2475\,\mathrm{Om}$
- 5) 2774 Om
- 6) 3073 O_M
- $7)3372\,\mathrm{Om}$
- 8) 3671 O_M
- 9) 3970 Om

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 20 МГц. Частота колебаний ГУН 1010 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 143.1 дБн/Гц для ОГ и минус 13.3 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=10.7045, \tau=79.4536$ мкс.

Крутизна характеристики управления частотой ГУН равна 0.6 MГц/В. Крутизна характеристики фазового детектора 0.7 B/рад.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 35 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 0.4 дБ
- 2) на минус 0 дБ
- на минус 0.4 дБ
- 4) на минус 0.8 дБ
- на минус 1.2 дБ
- 6) на минус 1.6 дБ
- 7) на минус 2 дБ
- на минус 2.4 дБ
- 9) на минус 2.8 дБ

Источник колебаний с доступной мощностью 2.4 дБм и частотой 4590 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 123 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 4589.995 МГц, если спектральная плотность мощности его собственных шумов равна минус 129 дБм/Гц, а полоса пропускания ПЧ установлена в положение 1000 Гц?

- 1)-84.7 дБм
- 2) -86.4 дБм
- 3)-88.1 дБм
- 4) -89.8 дБм
- 5) -91.5 дБм
- 6) -93.2 дБм
- 7) -94.9 дБм
- 8) -96.6 дБм
- 9) -98.3 дБм

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 6490 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 128 дБн/ Γ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 124 дБн/ Γ ц, а частота его равна 10290 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше когерентном синтезе?

- 1)-135.7 дБн/Гц
- 2) -132.6 дБн/Гц
- 3) -129.6 дБн/Гц
- 4) -129.2 дБн/Гц
- 5) -126.2 дБн/Гц
- 6) -125.6 дБн/Гц
- 7) -123.2 дБн/ Γ ц
- 8) -122.8 дБн/Гц
- 9) -122.5 дБн/Гц