This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

TATUU/U1368

BUNDESREPUBLIK DEUTSCHLAND

EP00/1368

Bescheinigung

09/913631

Die Theragene Biomedical Laboratories GmbH in Martinsried/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Hormone-Hormone Receptor Complexes and Nucleic Acid Constructs and Their Use in Gene Therapy"

am 19. Februar 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 H, C 12 N und A 61 K der Internationalen Patentklassifikation erhalten.

ktenzeichen: <u>199 07 099.7</u>

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

München, den 20. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Dzierzon

The invention provides a composition of matter comprising a nucleotide sequence comprising at least one hormone responsive element (HRE), said hormone responsive element being coupled to a hormone-hormone receptor complex and further provides nucleic acid constructs comprising at least one hormone responsive element (HRE), wherein the hormone responsive element regulates a gene encoding a human blood-clotting factor, the invention having applications in gene therapy, and particularly, in the treatment of human blood clotting disorders, such as hemophilia.

:::

Hormone –Hormone Receptor Complexes and Nucleic Acid Constructs and Their Use in Gene Therapy

Background of the Invention

5

10

15

20

25

1. Object of the Invention

The invention provides a composition of matter comprising a nucleotide sequence comprising at least one hormone responsive element (HRE), said hormone responsive element being coupled to a hormone-hormone receptor complex. It further relates to nucleic acid constructs comprising at least one hormone responsive element and vectors comprising such constructs, wherein the hormone responsive element regulates a gene encoding a human blood-clotting factor. The nucleic acid constructs, plasmids, and compositions of matter of the invention have applications in gene therapy, particularly in the treatment of human blood clotting disorders, such as hemophilia. They may also be used to up- or down-regulate target genes and for the delivery of vaccines.

2. Summary of the Related Art

Gene therapy is a method that holds great promise for many diseases and disorders. In general, it involves the transfer of recombinant genes or transgenes into somatic cells to replace proteins with a genetic defect or to interfere with the pathological process of an illness. In principle, gene therapy is a simple method. In practice, many disadvantages must still be overcome.

Research in gene therapy has concentrated on ways to most effectively incorporate DNA into cells of a patient. Viral vectors are currently the widely used vehicles in clinical gene therapy approaches. In terms of efficacy in gene expression, the

viral delivery systems have major advantages over techniques using DNA-lipid formulations as delivery vehicles or over mechanical methods, such as the gene gun. Although there are a variety of viral systems tested for gene therapeutical strategies, retroviral vectors and adenoviral vectors are presently the most widely used vehicles (Salmons, B. and Gunzburg, W. H., Hum. Gene Ther., Vol. 4, 129, 1993; Kasahara, N. A., et al., Science, Vol. 266, 1373, 1994; Ali, M., et al., Gene Ther., Vol. 1, 367, 1994.). Still, these systems have major disadvantages, such as potential viral contamination. Other safety concerns continue to hamper the development of clinical application of gene therapy using these viral systems. For example, recombinant retroviruses have the disadvantage of random chromosomal integration, which may lead to activation of oncogenes or inactivation of tumor-suppressor genes. Also, repetitive use of recombinant adenoviruses has caused severe immunological problems (Elkon, K. B. et al., Proc. Natl. Acad. Sci. USA, Vol. 94, 9814, 1997). The humoral response resulted in the production of antibodies to adenovirus proteins preventing subsequent infection. Immunosuppressive drugs may ameliorate these effects, but they place an additional burden on the patient (Dai, Y., et al., Proc. Natl. Acad. Sci. USA, Vol. 92, 1401, 1995).

Yet another viral delivery system involves adenoassociated virus (AAV). The AAV requires coinfection with an unrelated helper virus. Although such recombinant AAV virions have proven useful for introducing several small gene sequences into host cells, gene delivery systems based on those particles are limited by the relative small size of AAV particles. This feature greatly reduces the range of appropriate gene protocols. Moreover, the need to also use a helper virus adds a complicating factor to this delivery system (Muzyczka, N., Curr. Top. Microbiol. Immunol., Vol. 158, 97, 1992).

Though safer, non-viral gene therapy approaches are also unsatisfactory. Problems with inefficient gene delivery or poor sustained expression are major drawbacks. Yet methods such as the direct injection of DNA into cellular compartments to mixtures of DNA with cationic lipids or polylysine allowing the transgene to cross the cell membrane more easily, have not overcome these hurdles (Felgner, P., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 84, 7413, 1987; Behr, J.-P., *Bioconjugate Chemistry*, Vol. 5, 382, 1994).

5

10

15

20

25

3 .

With the introduction of naked DNA (polynucleotide) sequences (including antisense DNA) into vertebrates, controlled expression of a protein is possible. The administration of the polynucleotide sequences is reported to be achieved by injection into tissues such as muscles, brain or skin or by introduction into the blood circulation (Wolff, J. A., et al., Science, Vol. 247, 1990; Lin, H., et al., Circulation, Vol. 82, 2217, 1990; Schwartz, B., et al., Gene Ther., Vol. 3, 405, 1996). Also, a direct gene transfer into mammals has been reported for formulations of DNA encapsulated in liposomes and DNA entrapped in proteoliposomes containing receptor proteins. Although injected naked DNA leads to transgene expression, the efficiency is by far not comparable to viral-based DNA delivery systems. Nevertheless, naked DNA has the advantage of being without possible pathogenic effects. A limitation of the method of naked DNA injection is the fact that transgene expression is dose-dependent. The gene expression is saturable, and an increase in the amount of DNA injected leads to decreased protein production per plasmid. Thus, protein expression can dramatically decrease, if the amount of DNA injected is above a certain threshold.

Among the genetic disorders that the skilled artisan has sought to overcome using these prior art methods are those relating to blood clotting disorders, and in particular, hemophilia (Lozier, J. N. and Brinkhous, K. M., JAMA, Vol.271, 1994; Hoeben, R. C., Biologicals, Vol. 23, 27, 1995). For example, Hemophilia A and B are X-linked, recessive bleeding disorders caused by deficiencies of clotting Factors VIII and IX, respectively (Sadler, J. E. et al., in: The Molecular Basis of Blood Diseases, 575, 1987). The incidence of hemophilia is about 1 in 5,000 male births. Hemophiliacs suffer from excessive bleeding due to the lack of clotting at the site of wounds. The inability to clot properly causes damage to joints and internal tissues as well as posing risks to the proper treatment of cuts.

Treatment of Hemophilia A is possible by the administration of the blood clotting Factor VIII. Until recently, Factor VIII preparations had to be prepared by concentrating blood from donors, posing the risk of contamination by infectious agents, such as HIV and hepatitis. The gene for Factor VIII has been cloned (e.g., Vehar et al., *Nature* Vol. 312, 337 1984) allowing for the production of a recombinant product. Although recombinant methods provide Factor VIII of higher purity than blood concentrates, the

10

15

25

30

exogenous supply of Factor VIII to a patient still requires repeated doses throughout the lifetime of the patient, an inconvenient and expensive solution. Other forms of hemophilia include Hemophilia B, caused by a defect in the gene coding for Factor IX. The gene therapy systems described above have been attempted for the treatment of Hemophilia A and B with Factors VIII and IX, respectively. (See e.g., WO 94/29471). However, these systems have the disadvantages already discussed above.

The classical model of the action of hormones is based on the concept of binding interaction of the hormone to an intracellular receptor, located in the cytoplasm or the nucleus (Evans, R., Science, Vol. 240, 889, 1988). These intracellular receptors remain latent until exposed to their target hormone. When so exposed, the hormone receptor changes its conformation after the hormone is bound and translocates in the activated form into the cell nucleus where it binds as a dimer to hormone-responsive-elements (HRE) in the promoter region of hormone-regulated genes (Beato, M., Cell, Vol. 56, 335, 1989; O'Malley, B., et al., Biol. Reprod., Vol. 46, 163, 1992). The HRE are enhancer elements usually located in the 5' flanking region of the specific hormone-induced gene.

An example of such intracellular receptors is the steroid receptor. Steroid receptors belong to a superfamily of ligand-dependent transcription factors characterized by a unique molecular structure. The centrally located highly conserved DNA-binding domain defines this superfamily. The second important and relatively invariant region is the COOH-terminal ligand-binding domain. An example of such a receptor is the progesterone receptor mediated by the steroid progesterone. At the progesterone receptor, progesterone acts as a natural agonist whereas it displays potent antimineralocorticoid properties both at the molecular and the systemic level. Besides classical effects on the uterus, antiepileptic, anxiolytic, hypnotic and anesthetic properties have been attributed to progesterone according to numerous studies.

Methods have been proposed for the use of mutant receptors, including mutant steroid receptors for gene therapy. For example, such methods are disclosed in WO 93/23431, WO 98/18925, WO 96/40911. WO 98/33903 discloses a genetic construct

10

15

25

comprising a steroid responsive element from a tissue specific gene, a coding sequence, and an SV40 enhancer.

Brief Description of the Invention

The object of the present invention is to overcome the disadvantages of the previous gene therapy delivery systems. The delivery system of the present invention is a composition of matter comprising a nucleic acid comprising at least one hormone responsive element (HRE), said hormone responsive element being coupled to a hormone-hormone receptor complex. A preferred embodiment of the composition of matter of the invention is one where the hormone responsive element is a steroid responsive element (SRE), and the receptor is a steroid receptor. Most preferably, the hormone responsive element is a progesterone responsive element (PRE), and the receptor is a progesterone receptor.

The present invention provides a delivery system for gene therapy that should overcome the prior art disadvantages. The presence of the hormone responsive element together with the nucleic acid encoding a gene of interest stimulates and enhances gene expression and, more importantly, encourages the binding of a hormone-hormone receptor complex. One hormone responsive element is preferably present as a nucleic acid dimer sequence or nucleic acid multimer sequence. Even an inverse orientation of the hormone responsive element will exert its proper function. The hormone-hormone receptor complex contains a hormone receptor that becomes activated after binding of its specific hormone. The hormone receptor in the activated state is able to recognize and bind to its specific hormone responsive element, which in the present invention is combined with a nucleic acid encoding the desired gene, e.g., a human blood-clotting factor.

Another aspect of the present invention is a nucleic acid construct comprising at least one hormone responsive element (HRE), and in particular, comprising at least one hormone responsive element for regulating the expression of a gene encoding a human blood clotting factor. A preferred embodiment is one where the hormone responsive

5

10

15

20

element is a steroid responsive element (SRE). Most preferably, the hormone responsive element is a progesterone responsive element (PRE).

Another aspect of the present invention are vectors comprising the nucleic acid constructs of the present invention. Embodiments of the invention further include transfected and transformed cells comprising these vectors and/or nucleic acids.

A further embodiment of the present invention is pharmaceutical compositions comprising a therapeutically effective dose of the nucleic acid constructs of the invention and a hormone. The hormone is preferably a steroid, and most preferably, progesterone. Another aspect of the invention is the use of the compositions of matter and nucleic acid constructs as medicaments against genetic disorders or diseases, such as hemophilia, as well as the use of the compositions of matter and nucleic acid constructs for the manufacture of a medicament against genetic disorders and diseases, such as hemophilia.

The invention further includes a method of introducing into a cell a nucleic acid construct encoding a gene of interest, e.g., a human blood-clotting factor, to express the gene of interest in the cell. This method incorporates a nucleic acid into the cell (via, for example, a vector) so that the cell expresses the gene encoded by the foreign nucleic acid. In this method, the nucleic acid encoding the gene, e.g., a human blood-clotting factor, is combined with a nucleic acid construct comprising at least one hormone responsive element (HRE), preferably a progesterone responsive element. The presence of the hormone responsive element together with the nucleic acid encoding the gene, e.g., a human blood-clotting factor, stimulates and enhances gene expression and encourages the binding of a hormone-hormone receptor complex in the target cell.

Another aspect of the invention is a method of treating a blood clotting disorder by administering a therapeutically effective amount of the composition of matter of the invention to an organism.

According to the method of the invention vaccination is another aspect of the embodiment. Introducing a nucleic acid construct or composition of matter of the invention comprising a gene for an antigen or containing viral sequence into a cell (DNA)

15

10

5

20

or mRNA vaccines) using the method mentioned above may also provide a way to stimulate the cellular immune response.

Brief Description of the Drawings

Figure 1 is a diagram of the vector pTGFG1.

Figure 2 is a diagram of the vector pTGFG4.

Figure 3 is a diagram of the vector pTGFG5.

Figure 4 is a diagram of the vector pTGFG6.

Figure 5 is a diagram of the vector pTGFG7.

Figure 6 is a diagram of the vector pTGFG8.

Figure 7 is a diagram of the vector pTGFG9.

Figure 8 is a diagram of the vector pTGFG10.

Figure 9 is a diagram of the vector pTGFG11.

Figure 10 is a diagram of the vector pTGFG13.

Figure 11 is a diagram of the vector pTGFG14.

Figure 12 is a diagram of the vector pTGFG15.

Figure 13 is a diagram of the vector pTGFG16.

Figure 14 is a diagram of the vector pTGFG18.

Figure 15 is a diagram of the vector pTGFG19.

Figure 16 is a diagram of the vector pTGFG20.

Figure 17 is a diagram of the vector pTGFG21.

10

15

Figure 18 is a diagram of the vector pTGFG22.

Figure 19 is a diagram of the vector pTGFG23.

Figure 20 is a diagram of the vector pTGFG24.

Figure 21 is a diagram of the vector pTGFG25.

Figure 22 is a diagram of the vector pTGFG26.

Figure 23 is a diagram of the vector pTGFG27.

Figure 24 is a diagram of the vector pTGFG28.

Figure 25 is a diagram of the vector pTGFG29.

Figure 26 is a diagram of the vector pTGFG30.

Figure 27 is a diagram of the vector pTGFG31.

Figure 28 is a diagram of the vector pTGFG32.

Figure 29 is a diagram of the vector pTGFG33.

Figure 30 is a diagram of the vector pTGFG2.

Figure 31 is a diagram of the vector pTGFG34.

Figure 32 is a diagram of the vector pTGFG35.

Figure 33 is a diagram of the vector pTGFG36.

Figure 34 is a diagram of the vector pTGFG37.

Figure 35 is a diagram of the vector pTGFG38.

Figure 36 is a diagram of the vector pTGFG53.

Figure 37 is a diagram of the vector pTGFG64.

5

10

15

Figure 38 is a diagram of the vector pTGFG0.

Figure 39 is a diagram of the vector pTGFG66.

Figure 40 is a diagram of the vector pTGFG67.

Figure 41 is a diagram of the vector pTGFG68.

Figure 42 is a diagram of the vector pTGFG69.

Figure 43 is a diagram of the vector pTGFG82.

Figure 44 is a diagram of the vector pTGFG95.

Figure 45 is the DNA sequence of vector pTGFG36 (SEQ ID No. 1).

Figure 46 is the DNA sequence of vector pTGFG67 (SEQ ID No. 2).

Figure 47 shows a GFP concentration curve for cell homogenates after transfection with pTGFG5 and pTGFG20, respectively.

Figure 48 shows corresponding light (a and c) and fluorescent (b and d) micrographs of HeLa cells transfected with pTGFG5 (a and b) and pTGFG20 (c and d), respectively.

Detailed Description of the Invention

1. Definitions

"Nucleic acid" means DNA, cDNA, mRNA, tRNA. The nucleic acid may be linear or circular, double-stranded or single-stranded.

"Nucleic acid construct" refers to a composite of nucleic acid elements in relation to one another. The nucleic acid elements of the construct may be incorporated into a

5

10

vector in such an orientation that a desired gene may be transcribed, and if desired, a desired protein may be expressed.

"Hormone responsive element" (HRE) refers to regions of nucleic acids, and in particular, DNA, which regulate transcription of genes in response to hormone activation. HREs are typically about 10-40 nucleotides in length, and more usually, about 13-20 nucleotides in length. As explained above, HREs become activated when a hormone binds to its corresponding intracellular receptor causing a conformational change, so that the receptor has increased affinity for the HRE and binds to it. The HRE, in turn, stimulates transcription. A "steroid responsive element" (SRE) is an HRE that regulates transcription of genes in response to steroid activation. A "progesterone responsive element" (PRE) is an HRE/SRE that regulates transcription of genes in response to progesterone activation.

A "hormone receptor" refers to a receptor which binds to or is activated by a hormone. A "steroid receptor" refers to a receptor which binds to or is activated by a steroid hormone. A "progesterone receptor" is a receptor which binds to or is activated by the steroid hormone progesterone.

"Gene" refers to DNA involved in expressing a polypeptide, optionally including leader and trailer sequences and introns and exons.

"Vector" refers to any genetic construct, such as a plasmid, phage, cosmid, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. The term includes cloning and expression vehicles.

"Promoter" refers to a region of regulatory DNA sequences for the control of transcription of a gene to which RNA polymerase binds. The promoter forms an initiation complex with RNA polymerase to initiate and drive transcription activity. "Enhancers" may activate the complex or "silencers" may inhibit the complex. A "tissue-specific promoter" is a promoter found in the DNA of tissue for transcription of genes expressed in specific tissue.

5

10

15

20

"Therapeutically effective dose" of the products of the invention refers to a dose effective for treatment or prophylaxis, for example, a dose that yields effective treatment or reduction of the symptoms of hemophilia. It is also a dose that measurably activates expression of a target gene as determined by measurements of target protein levels, or a dose that is predictable to be effective for treatment or prophylaxis by extrapolating from in vitro or in vivo data. The determination of a therapeutically effective dose is within the purview of one skilled in the art.

10

"Encodes" or "encoding" refers to a nucleic acid sequence transcribed (in case of DNA) or translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of appropriate regulatory sequences.

For the purposes of this application, "express", "expressing" or "expression" shall refer to transcription and translation of a gene encoding a protein.

2. Detailed Description and Examples

15

20

5

As stated above, an object of the present invention is to provide a new and improved delivery system for gene therapy. The invention thus provides in one embodiment a composition of matter comprising a nucleic acid comprising at least one hormone responsive element (HRE), said hormone responsive element being coupled to a hormone-hormone receptor complex. A preferred embodiment of the composition of matter of the invention is one where the hormone responsive element is a steroid responsive element (SRE), and the receptor is a steroid receptor. Most preferably, the hormone responsive element is a progesterone responsive element (PRE), and the receptor is a progesterone receptor.

25

Potential HREs for use in the present invention have been previously described. For example, GREs (Scheidereit, C., et al., *Nature*, Vol. 304, 749, 1983; von der Ahe, D., et al., *Proc. Natl. Acad. Sci. USA*, Vol. 83, 2817, 1986), EREs or PREs (Chambon, P., et al., *Rec. Prog. Horm. Res.*, Vol., 40, 1, 1984; Klock, G., et al., *Nature*, Vol. 329, 734, 1987). As already stated above, the most preferred HRE for the invention is a PRE.

Specifically, the preferred PRE is described in Example I. The nucleic acid for use in the invention comprises at least one hormone responsive element. Preferred is a nucleic acid comprising one HRE, but it may comprise more than one HRE. For example, the nucleic acid may comprise three or five HREs. The most preferred embodiment is a nucleic acid comprising one PRE.

Potential hormone receptors for use in the present invention are, for example, estrogen receptors, mineralocorticoid receptors, glucocorticoid receptors, retinoic acid receptors, androgen, calcitriol, thyroid hormone or progesterone receptors and orphan receptors. Such receptors have been previously described. (Green, S., et al., Nature, Vol. 320, 134, 1986; Green, G. L., et al., Science, Vol. 231, 1150, 1986; Arriza, J. L., et al., Science, Vol. 237, 268, 1987; Hollenberg, S. M., et al., Nature, Vol. 318, 635, 1985; Petkovitch, M., et al., Nature, Vol. 330, 444, 1987; Giguere, V., et al., Nature, Vol. 330, 624, 1987; Tilley, W., et al., Proc. Natl. Acad. Sci. USA, Vol. 86, 327, 1989; Baker, A. R., et al., Proc. Natl. Acad. Sci. USA, Vol. 85, 3294, 1988; Weinberger, C., et al., Nature, Vol. 324, 641, 1986; Sap, J., et al., Nature, Vol. 324, 635, 1086; Misrahi, M., et al., Biochem. Biophys. Res. Commun., Vol. 143, 740, 1987; Kastner, P., et al., Cell, Vol. 83, 859, 1995). These receptors may be from human or other mammalian sources, although human is preferred. Nucleotide and/or amino acid sequences of human steroid receptors are available in the GenBank: mineralocorticoid receptor: M16801; glucocorticoid receptor a: M10901; glucocorticoid receptor a2: U01351; glucocorticoid receptor β: M11050; retinoic acid receptor α: AF088888 (exon 1), AF088889 (exon 2), AF088890 (exon 3), AF088891 (exon 4), AF088892 (exon 5 and 6), AF088893 (exon 7), AF088894 (exon 8), AF088895 (exon 9 and complete cDNA); retinoic acid receptor γ: M24857; androgen receptor: M27423 (exon 1), M27424 (exon 2), M27425 (exon 3), M27436 (exon 4), M27427 (exon 5), M27428 (exon 6), M27429 (exon 7), M27430 (exon 8); thyroid hormone receptor α_1 : M24748, thyroid hormone receptor α_2 : J03239; progesterone receptor: AF016381; somatotropin receptor: J00148; vitamin D receptor (calcitriol receptor): J03258.

The skilled person will understand that expression of the receptor proteins can be achieved by standard methods, e.g. via PCR-cloning of the known cDNAs from cDNA libraries and overexpression of the corresponding proteins in suitable expression vectors,

5

10

15

25

30

such as, for example, the vectors of the present invention, in suitable host cells, e.g., COS cells. Accordingly, subsequent purification of the cytosolic fraction can be achieved by routine methods such as affinity chromatography purification. For this purpose, various suitable antibodies against the desired receptor are commercially available. For example, polyclonal antibodies against the mouse progesterone receptor that have a sufficiently high cross-reactivity for the human protein are available from Dianova (Hamburg, Germany). Likewise, further purification can be achieved by standard methods, e.g., chromatographical methods such as ion-exchange chromatography and/or FPLC.

10

15

20

5

The most preferred receptor is the progesterone receptor. Preferably, the receptor is a human progesterone receptor. Such a human progesterone receptor (from T47D human breast cancer cells) is disclosed in US Patent No. 4,742,000, and cells expressing this receptor have been deposited (ATCC deposit number HTB, 133). As already described above, it would be routine to purify such a receptor from the cytosol using receptor specific antibodies. In addition, US Patent No. 4,742,000 discloses a method for purification of the human progesterone receptor using a specific steroid affinity resin (cf. Grandics et al., Endocrinology, Vol. 110, 1088, 1982). Briefly, the cytosolic fraction of the T47D cells is passed over Sterogel, a commercial preparation of deoxycorticosterone coupled to Sepharose 2B that selectively binds the progesterone receptor. After washing with loading buffer, the bound receptor is eluted with a buffer containing progesterone. The eluted steroid-receptor complex is then chromatographed on DEAE-Biogel and eluted stepwise with a buffer containing 0.2M NaCl. Subsequently, the bound progesterone can be readily exchanged. As described above, further purification can be achieved by routine methods well-known to the skilled person.

25 ·

Mutated versions of these receptors and derivatives thereof, that still retain the function of the receptors to bind a ligand and thereby become activated and bind DNA and regulate transcription, may also be employed in the invention. Such derivative may be a chemical derivative, variant, chimera, hybrid, analog, or fusion.

The hormone in the composition of matter may include synthetic and natural hormones, such as estrogen, testosterone, glucocorticoid, androgen, thyroid hormone, and progesterone or derivatives thereof. These are widely available. Progesterone is most preferred. For example, natural micronized progesterone has been marketed in France under the trademark of UTROGESTAN® since 1980. Its properties are similar to the endogenous progesterone, in particular, it has antiestrogen, gestagen, slightly antiandrogen and antimineralocorticoid properties.

Micronized progesterone has advantages that make it a suitable carrier for genes or nucleic acid constructs to target cells. Specifically, the synergistic effect of the double process of micronization and suspension in long-chain fatty acids results in increasing progesterone absorption. It has been demonstrated that after oral administration of 100 mg of UTROGESTAN®, peak plasma progesterone levels were obtained after 1-4 hours in most cases (Padwick, M. L., et al., Fertil. Steril., Vol. 46, 402, 1986). Later on, the levels declined substantially, although they were still elevated at 12 hours. Even at 84 hours the levels were slightly higher than baseline. A U.S. kinetic study confirmed earlier work demonstrating the bioavailability of oral micronized progesterone. They showed a peak effect at 2 hours followed by rapid decrease in plasma progesterone level (Simon, J. A., et al., Fertil., Steril., Vol., 60, 26, 1993).

A further advantage of using progesterone as a carrier is the low level of disadvantageous side effects. Orally administered progesterone adversely affects neither plasma lipids (Jensen, J. et al., Am. J. Obstet. Gynecol., Vol. 156, 66, 1987) nor carbohydrate metabolism (Mosnier-Pudar, H. et al., Arch. Mal. Coeur, Vol 84, 1111, 1991). Further, progesterone does not affect liver enzymes (ASAT, ALAT, AFOS), sexhormone binding-globulin (SHBG) synthesis or HDL-cholesterol levels at daily doses of 200 mg and 300 mg. Although the plasma levels of deoxycorticosterone may increase substantially during UTROGESTAN® treatment, there are strong indications that the mineralocorticoid effects of this progesterone metabolite are completely counteracted by the anti-mineralocorticoid effects of progesterone itself. This is apparent from a comparative study (Corvol, P., et al., In: Progesterone and progestins. Raven Press, New York, 179, 1983) in which oral UTROGESTAN® was capable of antagonizing the mineralocorticoid effects of 9-alpha-fluorohydrocortisone.

The skilled artisan will appreciate that the composition may contain other components capable of assisting in introducing the nucleic acid into a cell for the purpose of gene therapy. Specifically, the composition may further contain β-cyclodextrine, glycerin, lecithin or corn oil. For example, the composition of hormone-hormone receptor nucleic acid complex of the invention may be provided orally to humans or animals as a gelatin capsule. Progesterone therein could be present in a concentration of 200 –300 mg dissolved in a 35 % or 40 % β-cyclodextrin solution or in cornoil or gycerol with peanut oil together with lecithin.

Another aspect of the present invention is a nucleic acid construct comprising at least one hormone responsive element (HRE), and in particular, comprising at least one hormone responsive element for regulating the expression of a gene, such as, for example, a gene encoding a human blood clotting factor. A preferred embodiment is one where the hormone responsive element is a steroid responsive element (SRE). Most preferably, the hormone responsive element is a progesterone responsive element (PRE). This nucleic acid construct may be used as the nucleic acid in the composition of matter of the first aspect of the invention.

Aside from the HREs, SREs, or PREs already disclosed above, the nucleic acid in the present invention may further contain promoter, enhancer, or silencer sequences. The promoter may be ubiquitous or tissue-specific. Of the ubiquitous promoters, the CMV promoter is most preferred. However, a tissue-specific promoter is preferred over a ubiquitous promoter. For example, the tissue-specific promoters envisioned for the instant invention include alpha₁-antitrypsin. The nucleic acid construct may further comprise additional sequences such as the ampicillin resistance gene. Other reporter sequences known to the skilled artisan may also be included, such as, for example, the green fluorescent protein (GFP), luciferase, \(\beta\)-galactosidase or chloramphenicyltransferase (CAT). As an enhancer sequence, the SV40 intron and SV40 Poly A are most preferred. A preferred nucleic acid construct contains sequentially from the 5' to the 3' end: a PRE, a CMV promoter, a gene of interest, SV40 Intron and SV40 poly A enhancer sequence, and an ampicillin resistant gene.

The gene of interest may be chosen from those encoding proteins lacking in a variety of genetic disorders or involved in conditions related to inappropriate responses to hormones, for example, hormone-dependent cancers such as breast, ovarian, and endometrial cancers and prostrate cancer. The gene of interest may also be used to replace a defective gene resulting in such genetic disorders as hemophilia, von Willebrand disease, and cystic fibrosis. The gene of interest includes mutations of such gene or a gene encoding a fusion product. The nucleic acid construct of the present invention may comprise more than one gene of interest.

In particular, the gene of interest may replace genes for a blood clotting factor, and preferably a human blood-clotting factor. The genes encoding Factor VIII and Factor IX, involved in Hemophilia A and B, respectively, are good candidates for the invention. Other candidates include the gene encoding von Willebrand factor, Factor IV, Factor X, or protein C.

Other useful genes include, but are not limited to, hormone genes such as the genes encoding for insulin, parathyroid hormone, luteinizing hormone releasing factor (LHRH), alpha and beta seminal inhibins and human growth hormone; hormone receptor genes such as the glucocorticoid receptor, the estrogen receptor, the progesterone receptor, the retinoic acid receptor; growth factors such as vascular endothelial growth factor (VEGF), nerve growth factor, epidermal growth factor; enzyme genes; genes encoding cytokines or lymphokines such as interferons, granulocytic macrophage colony stimulating factor (GM-CSF), colony stimulating factor-1 (CSF-1), tumor necrosis factor (TNF), and erythropoietin (EPO); genes encoding inhibitor substances such as alpha₁-antitrypsin, and genes encoding substances that function as drugs, e. g., genes encoding the diphteria and cholera toxins, ricin or cobra venom factor. Also, antisense sequences may be administered as genetic material.

Another aspect of the present invention is vectors comprising the nucleic acid constructs of the present invention. These vectors may be used in the composition matter of the present invention. Preferably, however, the nucleic acid sequence for use in the invention is linear rather than circular. The vectors may be capable of expressing

15

10

20

the nucleic acid in the nucleic acid construct transiently, permanently, or episomally. As noted above, the nucleic acid construct therein may further contain additional elements.

Embodiments of the invention further include transfected and transformed cells comprising these vectors and/or nucleic acid constructs. Within the scope of this invention, a transfected cell is one in which foreign DNA has been incorporated. Methods of transfection may include microinjection, CaPO₄ precipitation, electroporation, liposome fusion, or by gene gun. Most preferably, transfection is achieved by electroporation.

Transformation refers to introducing genetic material into a cell, such as the vectors or nucleic acid constructs of the invention, rendering the cell transiently, stably, or permanently altered so that the cell expresses a specific gene product or is otherwise altered in its expression. Transformation may be achieved by *in vivo* or *in vitro* techniques, although *in vivo* transformation is preferred.

A further embodiment of the present invention is pharmaceutical compositions comprising a therapeutically effective dose of the nucleic acid constructs of the invention and a hormone. The hormone is preferably a steroid, and most preferably, progesterone, as described above. The dose is dependent on the condition to be treated, the characteristics of the patient, and the result sought to be achieved. Determining dosage is within the realm of the skilled artisan.

The pharmaceutical composition (or, alternatively, the composition of matter, the nucleic acid construct, or the vector) of the present invention may be administered orally, intravenously, intramuscularly, subcutaneously, topically, or by gene gun. Oral administration with micronized hormone is preferred. Delivery may be systemic or directed at certain tissue.

The invention further includes a method of introducing into a cell a nucleic acid construct encoding a gene of interest, e.g., a human blood-clotting factor, to express the blood-clotting factor in the cell. In this method, the nucleic acid encoding a human blood-clotting factor is combined with a nucleic acid construct comprising at least one hormone responsive element (HRE), preferably a progesterone responsive element.

5

10

15

20

The mixture of nucleic acid bound to the hormone-hormone receptor complex together with an excess of hormone, preferably progesterone, will be used to introduce the nucleic acid into a cell by various methods known to the skilled artisan and outlined above. The cell-uptake will be stimulated by the interaction of the hormone at the cell membrane level. The hormone or steroid interacts with the lipid bilayer of the cell membrane not only through membrane perturbation but also through activation of certain hormone- or steroid-sensitive membrane receptors. This has been demonstrated for progesterone and other steroids. Last but not least, it is known that hormones are able to cross the cell membrane by diffusion. In the present invention, the nucleic acid bound to the hormone-hormone receptor complex should be transported through the membrane during the process of diffusion.

Another aspect of the invention is a method of treating a blood clotting disorder by administering a therapeutically effective amount of the composition of matter of the invention to an organism. This method involves the administration and dosage considerations already discussed.

Experiments have been performed to illustrate the technical aspects of the present invention. These experiments are described in Examples II-IV.

The following are examples of the present invention. The skilled artisan will be readily recognize that the invention is not limited to these examples.

Example I: Construction of Vectors

Production of the vector pTGFG1

The vector pUC19 (MBI Fermentas) was digested with XbaI, treated with Klenow-Enzyme and religated. This XbaI deleted vector was then digested with EcoRI, treated with Klenow-Enzyme and religated in order to delete the EcoRI site. For insertion of a XbaI site in the SacI site of this vector it was digested with SacI, treated

15

5

20

with T4-Polymerase, dephosphorylated with Alkaline Phosphatase and ligated with the XbaI-linker CTCTAGAG (Biolabs #1032). Another XbaI-site was inserted by digesting the newly produced vector with HindIII, treating it with Klenow, dephosphorylating it with Alkaline Phosphatase and ligating it with the XbaI-linker CTCTAGAG (Biolabs #1032). This vector was named pUC19/X.

In order to destroy the XbaI-site present in the vector phGFP-S65T (Clontech) this vector was digested with XbaI, treated with Klenow-Enzyme and religated resulting in the vector pGFP/0. A 2.3 kb fragment containing the GFP-Gene was isolated after digesting pGFP/0 with MluI, treating it with Klenow-Enzyme and digesting it with BamHI. This fragment was inserted into the multiple cloning site of the vector pUC19/X which was digested with SaII, treated with Klenow-Enzyme and digested with BamHI. The resulting vector was named pTGFG1 (Figure 1).

Production of the insert PRE(ds)

The Oligonucleotides (Metabion) PRE-S (5'-GGG GTA CCA GCT TCG TAG CTA GAA CAT CAT GTT CTG GGA TAT CAG CTT CGT AGC TAG AAC ATC ATG TTC TGG TAC CCC-3') (SEQ ID No. 3) and PRE-AS (5'-GGG GTA CCA GAA CAT GAT GTT CTA GCT ACG AAG CTG ATA TCC CAG AAC ATG ATG TTC TAG CTA CGA AGC TGG TAC CCC-3') (SEQ. ID No. 4) were hybridized and phosphorylated by kinase reaction, resulting in the inserts PRE(ds).

20 Production of the vector pTGFG4

The vector pTGFG1 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG4 (Figure 2).

Production of the vector pTGFG5

The vector pTGFG1 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG5 (Figure 3).

5

10

15

The vector pTGFG1 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG6 (Figure 4).

5 Production of the vector pTGFG7

The vector pTGFG1 was digested with KpnI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG7 (Figure 5).

Production of the vector pTGFG8

The vector pTGFG7 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG8 (Figure 6).

Production of the vector pTGFG9

The vector pTGFG7 was digested with SapI, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG9 (Figure 7).

Production of the vector pTGFG10

The vector pTGFG7 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG10 (Figure 8).

Production of the vector pTGFG11

The vector pTGFG7 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG11. (Figure 9).

15

The vector pTGFG6 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG13 (Figure 10).

5 Production of the vector pTGFG14

The vector pTGFG6 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG14 (Figure 11).

Production of the vector pTGFG15

The vector pTGFG5 was digested with SapI, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG15 (Figure 12).

Production of the vector pTGFG16

The vector pTGFG5 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG16 (Figure 13).

Production of the vector pTGFG18

The vector pTGFG9 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG18 (Figure 14).

Production of the vector pTGFG19

The vector pTGFG10 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG19 (Figure 15).

10

15

The vector pTGFG11 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG20 (Figure 16).

5 Production of the vector pTGFG21

The vector pTGFG15 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG21 (Figure 17).

Production of the vector pTGFG22

The vector pTGFG14 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG22 (Figure 18).

Production of the vector pTGFG23

The vector pTGFG11 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG23 (Figure 19).

Production of the vector pTGFG24

The vector pTGFG9 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG24 (Figure 20).

Production of the vector pTGFG25

The vector pTGFG14 was digested with SapI, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG25 (Figure 21).

10

15

The vector pTGFG16 was digested with SapI, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG26 (Figure 22).

5 Production of the vector pTGFG27

The vector pTGFG9 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG27 (Figure 23).

Production of the vector pTGFG28

The vector pTGFG18 was digested with EheI and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG28 (Figure 24).

Production of the vector pTGFG29

The vector pTGFG25 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG29 (Figure 25).

Production of the vector pTGFG30

The vector pTGFG27 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG30 (Figure 26).

Production of the vector pTGFG31

The vector pTGFG24 was digested with EcoO109I, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG31 (Figure 27).

10

15

The vector pTGFG19 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG32 (Figure 28).

5 Production of the vector pTGFG33

The vector pTGFG28 was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. It was then ligated with the PRE(ds) insert, resulting in the vector pTGFG33 (Figure 29).

Production of the vector pTGFG2

The vector pUC19 (MBI Fermentas) was digested with Sall, treated with Klenow-Enzyme and dephosphorylated with Alkaline Phosphatase. It was ligated to the NotI-linker GCGGCCGC (Biolabs # 1045), resulting in the vector pUC19/N.

A 1.4 kb fragment containing the open reading frame of the human clotting factor IX, isolated from a human cDNA library, was inserted into the PstI-site of the vector pUC19/N which was digested with PstI, treated with T4-Polymerase and dephosphorylated with Alkaline Phosphatase. From the resulting vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG1. The resulting vector was named pTGFG2 (Figure 30).

Production of the vector pTGFG34

From the vector pUC19/N-FIX, a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with HindIII and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG3 resulting in the vector pTGFG34 (Figure 31).

10

15

20

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with HindIII and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG4 resulting in the vector pTGFG35 (Figure 32).

Production of the vector pTGFG36

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG5 resulting in the vector pTGFG36 (Figure 33). This vector is a preferred one for delivery of Factor IX into the cell, and its DNA sequence is provided in Figure 46.

Production of the vector pTGFG37

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with HindIII and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG6 resulting in the vector pTGFG37 (Figure 35).

Production of the vector pTGFG38

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG7 resulting in the vector pTGFG38 (Figure 35).

Production of the vector pTGFG53

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG20 resulting in the vector pTGFG53 (Figure 36).

5

10

15

:::<u>:</u>

26

Production of the vector pTGFG64

From the vector pUC19/N-FIX a 1.4 kb fragment containing the open reading frame of the human clotting factor IX was cut out by double-digestion with Hind III and NotI. This fragment was ligated to the 4.3 kb fragment of the HindIII and NotI double-digested vector pTGFG33 resulting in the vector pTGFG64 (Figure 37).

Production of the insert ALLG(ds)

The Oligonucleotides (Metabion) ALLG1/1 (5'-AGC TTG ACC TCG AGC AAG C-3') (SEQ. ID NO: 6) and ALLG2 (5'-GGC CGC TTG CTC GAG GTC A-3') (SEQ. ID NO: 7) were hybridized and phosphorylated by kinase reaction, resulting in the inserts ALLG(ds). The insert ALLG (ds) was constructed to introduce into the vector of choice a sequence with a multiple cloning site for the possible introduction of other transgenes.

Production of the vector pTGFG0

The vector pTGFG1 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG0 (Figure 38).

Production of the vector pTGFG66

The vector pTGFG4 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG66 (Figure 39).

Production of the vector pTGFG67

The vector pTGFG5 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG67 (Figure 40). This vector is preferred for the delivery of any gene inserted into the cloning site, and its DNA sequence is provided in Figure 47.

10

Production of the vector pTGFG68

The vector pTGFG6 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG68 (Figure 41).

5 Production of the vector pTGFG69

The vector pTGFG7 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG69 (Figure 42).

Production of the vector pTGFG82

The vector pTGFG20 was double-digested with HindIII and NotI. The 4.3 kb fragment was ligated with the insert ALLG(ds), resulting in the vector pTGFG82 (Figure 43).

Production of the vector pTGFG95

The vector pTGFG33 was double-digested with HindIII and NotI. The 4.3 kb fragment was litigated with the insert ALLG(ds), resulting in the vector pTGFG95.

(Figure 44)

Example II: Isolation of Human Factor IX cDNA

Factor IX cDNA was amplified from human liver cDNA (Clontech) using two primers overlapping the start and termination codon of the factor IX open reading frame resulting in a 1387 bp fragment containing the entire open reading frame. Restriction sites for EcoRI (upstream) and BamHI (downstream) were included at the end of each primer to facilitate cloning. Amplification was performed with Pwo Polymerase (Boehringer Mannheim) in 50 μl reaction volume [10 mM Tris HCl pH 8.85, 25 mM KCl, 5 mM (NH₄)₂SO₄, 2 mM MgSO₄] with 30 incubation cycles 96° C 1 min., 60° C 1 min., 72° C 2 min., followed by a final extension step at 72° C 10 min.

10

15

20

Reaction products were ligated into the EcoRI- and BamHI-sites of pUC19 and transformed into *E. coli* DH5-a. Positive clones were selected. Sequences were confirmed by cycle sequencing (Amersham) from both ends with labeled primers (IR-700) and automated analysis on the LiCor sequencing system (MWG, Biotech).

The following primers were used:

gGAATTCcgcaaaggtt<u>ATGCAGCGCGTGAACATGATCATGGC</u>(upstream)(SEQ. ID NO:8)

cgcGGATCCATTAAGTGAGCTTTGTTTTTTCCTTAATCC (downstream)(SEQ. ID NO:9)

Example III: Expression and Quantification of the Marker Protein GFP ("Green Fluorescent Protein")

HeLa cells were transfected by electroporation with plasmids pTGFG5 or pTGFG20. Transfected cells were harvested, and the cell pellets were homogenized and lysated in a buffer containing phosphate-buffered saline (pH 7.5) and 10 mM PMSF. The concentration of green fluorescent protein (GFP) in the cell homogenate was determined by competitive ELISA.

For this purpose, GFP was coated in a defined concentration on microtiter plates. Then, GFP samples were added in presence of anti-GFP antibody. After several washing steps, a labeled secondary antibody was added in order to trace the first antibody. The colorimetric reaction was measured photometrically (extinction). Generally, the more GFP was added, the less antibody was left to bind the coated GFP. Thus, reduction of extinction corresponded to higher GFP concentration in the sample.

A concentration curve of GFP was determined by linear regression (Figure 47) using bovine serum albumin (BSA) as a reference. A mean value of 2.4 µg GFP/ml for pTGFG5 (1 PRE) and 5.2 µg GFP/ml for pTGFG20 (3PREs) was found.

5

10

15

20

Figures 48 a-d show micrographs of HeLa cell cultures transfected with pTGFG5 (Fig. 48 a and b) and pTGFG20 (Fig. 48 c and d), respectively. Figures 46 a and c represent light microscopic views as controls, and Fig. 48 b and d show the corresponding cell patches in the fluorescent mode. Routinely, more than 50% of the cells expressed GFP, indicating very efficient expression, the presence of only one PRE showing more efficient expression.

Example IV: Human Factor IX Quantification by ELISA Assay

HeLa cells were transfected either by electroporation or using liposome reagent DOTAP (Boehringer Mannheim) with plasmids pTGFG36, pTGFG53 and pTGFG64. These plasmids contain the cDNA of human clotting factor IX. Recombinant human factor IX was secreted into the supernatant of the cell culture and quantified using a sandwich ELISA method.

0.11 M sodium citrate and 10 mM PMSF were added in order to prevent degradation of human factor IX. The enzyme-immunological in vitro assay "Asserachrom IX:AG" from Boehringer-Mannheim was used in order to determine the concentration of expressed human clotting factor IX. The factor IX-standard from Octapharma AG was used as a standard in aqueous solutions of 28 IU/ml.

In six different transfection experiments, in which HeLa cells with plasmids containing human factor IX-cDNA (pTGFG36, 53 and 64) were transfected using either electroporation or lipid-transfection reagent (DOTAP, Boehringer Mannheim), a concentration range of 3-25 ng/ml human clotting factor IX was reached.

5

15

Claims:

- 1. A composition of matter comprising a nucleic acid comprising a hormone responsive element (HRE), said hormone responsive element being coupled to a hormone-hormone receptor complex.
- The composition of matter of claim 1, wherein the nucleic acid further comprises a gene encoding a blood clotting factor.
 - 3. The composition of matter of claim 2, wherein the human blood clotting factor is selected from the group consisting of Factor VIII, Factor IX, and von Willebrand Factor (vWF).
- The composition of matter of claim 2, wherein the hormone responsive element is a steroid responsive element (SRE).
 - 5. The composition of matter of claim 4, wherein the steroid responsive element (SRE) is a progesterone responsive element (PRE).
- 6. The composition of matter of claim 1, wherein the complex is a steroid-steroid receptor complex.
 - 7. The composition of matter of claim 6, wherein the receptor is a progesterone receptor and the steroid is progesterone.
 - 8. The composition of matter of claim 3, where the human blood clotting factor is Factor IX.
- 20 9. The composition of matter of claim 7, where the human blood clotting factor is Factor IX.
 - 10. A nucleic acid construct comprising at least one hormone responsive element (HRE) for regulating the expression of a gene encoding a human blood clotting factor.

::: ::::

- 11. The nucleic acid construct of claim 10, wherein the hormone responsive element is a steroid responsive element (SRE).
- 12. The nucleic acid construct of claim 11, wherein the steroid responsive element is a progesterone responsive element (PRE).
- 5 13. The nucleic acid construct of claim 10, wherein the human blood clotting factor is selected from the group consisting of Factor VIII, Factor IX, and von Willebrand Factor (vWF).
 - 14. The nucleic acid construct of claim 10, which further comprises a tissue-specific promoter.
- 15. The nucleic acid construct of claim 10, wherein the hormone responsive element (HRE) is a progesterone responsive element (PRE) and the blood clotting factor is Factor IX.
 - 16. The nucleic acid construct of claim 15, which further comprises a tissue-specific promoter.
- 15 17. A vector comprising the nucleic acid construct of claim 10.
 - 18. A vector comprising the nucleic acid construct of claim 11.
 - 19. A vector comprising the nucleic acid construct of claim 12.
 - 20. A vector comprising the nucleic acid construct of claim 13.
 - 21. A vector comprising the nucleic acid construct of claim 14.
- 20 22. A vector comprising the nucleic acid construct of claim 15.
 - 23. A vector comprising the nucleic acid construct of claim 16.
 - 24. A cell transfected with the nucleic acid construct of claim 10.
 - 25. A cell transformed by the nucleic acid construct of claim 10.

- 26. A pharmaceutical composition comprising a therapeutically effective dose of the nucleic acid construct of claim 10 and a hormone.
- 27. A pharmaceutical composition comprising a therapeutically effective dose of the nucleic acid construct of claim 15 and progesterone.
- A pharmaceutical composition comprising a therapeutically effective dose of the composition of matter of claim 1.
 - 29. A pharmaceutical composition comprising a therapeutically effective dose of the composition of matter of claim 9.
 - 30. A method of delivering into a cell a nucleic acid encoding a gene to be expressed in the cell comprising providing the composition of matter of claim 1 to an organism so that the hormone in the composition crosses the cell membrane by diffusion and transports the nucleic acid that is coupled to the hormone-hormone receptor complex across the membrane and into the cell.
- 31. The method of claim 30, wherein a nucleic acid encoding human Factor IX is delivered into the cell.

- 32. A method of treating a blood clotting disorder comprising administering a therapeutically effective amount of the composition of matter of claim 1 to an organism.
- A method of treating hemophilia B, comprising administering a therapeutically effective amount of the composition of matter of claim 9 to an organism.

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 23

Figure 25

Figure 27

Figure 28

Figure 30

Figure 31

Figure 33

...... ...••

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

ente ente

Figure 42

Figure 43

..... 23

			4				,
Se	aguer	z pTGFG	36 13.12.	998 20:16	Uhr	0.000	, • • °
			960				
1	seq	pTGFG36	GGAAGCAGTA	TGTTGATGG	A GATCAGTGTG	AGTCCAATCC	ATGTTTAAAT
			101	0 10	20 103 	0 1040	1050
1	seq	pTGFG36	GGCGGCAGTT	GCAAGGATG	A CATTAATTCC	TATGAATGTT	GGTGTCCCTT
1		-	106	0 10	70 108	1090	1100
I	seq	pTGFG36	TGGATTTGAA	GGAAAGAAC	r gtgaattaga	TGTAACATGT	AACATTAAGA
			111	0 11	20 113	10 . 1140	1150
I	seq	pTGFG36	ATGGCAGATG	CGAGCAGTT	T TGTAAAAATA	GTGCTGATAA	CAAGGTGGTT
			116	11	70 118	10 1190	1200
庫	seq	pTGFG36	TGCTCCTGTA	CTGAGGGAT	A TCGACTTGCA	GAAAACCAGA	AGTCCTGTGA
			121	.0 12	20 123	10 - 1240	0 1250
Ī	seq	pTGFG36	ACCAGCAGTG	CCATTTCCA	r gtggaagagt	TTCTGTTTCA	CAAACTTCTA
			126	io- 12	70 128	129) - 1300
ī	se	FG36	AGCTCACCCG	TGCTGAGAC	F GTTTTTCCTG	ATGTGGACTA	TGTAAATTCT
			13,1	.0 1.3	20 133	1340	0 1350
巨	seq	pTGFG36	ACTGAAGCTG	AAACCATTT	r GGATAACATC	ACTCAAAGCA	CCCAATCATT
			136	50 13	70 138	30 139	0 1400
i 上	seq	pTGFG36	TAATGACTTC	ACTCGGGTT	TTGGTGGAGA	AGATGCCAAA	CCAGGTCAAT
			141	.0 14	20 143	30 144	0 1450
Ē	seq	pTGFG36	TCCCTTGGCA	GGTTGTTTTY	G AATGGTAAAG	TTGATGCATT	CTGTGGAGGC
ŀ			146	50 14	.70 148	30 149	0 1500
Ī	seq	pTGFG36	TCTATCGTTA	•		GCTGCCCACT	GTGTTGAAAC
			151	10 15	20 15:	30 154	0 1550
1		pTGFG36	TGGTGTTAAA	ATTACAGTT	J-TCGCAGGTGA	ACATAATATT	GAGGAGACAG
			156	50 15	70 158	30 159	0 1600
į.	sec	≥IGFG36	AACATACAGA	GCAAAAGCG	A AATGTGATTC	GAATTATTCC	TCACCACAAC
_			16:	LO 16	20 16. 	30 164	0 1650
1	seq	pTGFG36	TACAATGCAG	CTATTAATA	A GTACAACCAT	GACATIGCCC	TTCTGGAACT
_		:	160	50 16	70 168	30 169	0 1700
1	seq	pTGFG36	GGACGAACCC	TTAGTGCTA	A ACAGCTACGI	TACACCTATT	TGCATTGCTG
_		·	17:		20 17: 	<u></u>	
1.	seq	pTGFG3	ACAAGGAATA	CACGAACAT	C TTCCTCAAA1	TTGGATCTGG	CTATGTAAGT
_			178	50 17	70 178 	30 179	0 1800
L	seq	pTGFG36	GGCTGGGGAA	GAGTCTTCC	A CAAAGGGAGA	TCAGCTTTAG	TTCTTCAGTA
_			18:		20 18: 	<u> </u>	
L	seq	pTGFG36	CCTTAGAGTI	CCACTIGITY	G ACCGAGCCAC	ATGTCTTCGA	TCTACAAAGT
_			186		70 188 L l		
-	seq	pTGFG3	TCACCATCTA	TAACAACAT	G TTCTGTGCTC	GCTTCCATGA	AGGAGGTAGA

Sequenz pTGFG36 13.12.1998 20:16 Uhr L seg pTGFG36GATTCATGTC AAGGAGATAG TGGGGGACCC CATGTTACTG AAGTGGAAGG L seq pTGFG36GACCAGTTTC TTAACTGGAA TTATTAGCTG GGGTGAAGAG TGTGCAATGA L seq pTGFG36AAGGCAAATA TGGAATATAT ACCAAGGTAT CCCGGTATGT CAACTGGATT L seg pTGFG36AAGGAAAAAA CAAAGCTCAC TTAATGGGAT CGGTCGAGCG GCCGCGACTC L seq pTGFG36 TACTAGAGGA TCTTTGTGAA GGAACCTTAC TTCTGTGGTG TGACATAATT pTGFG3 GGACAAACTA CCTACAGAGA TTTAAAGCTC TAAGGTAAAT ATAAAATTTT G36 TAAGTGTATA ATGTGTTAAA CTACTGATTC TAATTGTTTG TGTATTTTAG seq pTGFG36ATTCCAACCT ATGGAACTGA TGAATGGGAG CAGTGGTGGA ATGCCTTTAA seq pTGFG3dTGAGGAAAAC CTGTTTTGCT CAGAAGAAAT GCCATCTAGT GATGATGAGG seq pTGFG36CTACTGCTGA CTCTCAACAT TCTACTCCTC CAAAAAAGAA GAGAAAGGTA seq pTGFG36GAAGACCCCA AGGACTTTCC TTCAGAATTG CTAAGTTTTT TGAGTCATGC 2470 -PTGFG36 TGTGTTTAGT AATAGAACTC-TTGCTTGCTT TGCTATTTAC ACCACAAAGG seq pTGFG36AAAAAGCTGC ACTGCTATAC AAGAAAATTA TGGAAAAATA TTCTGTAACC 2590 . - seq pTGFG36TTTATAAGTA GGCATAACAG TTATAATCAT AACATACTGT TTTTTCTTAC - seq pTGFG36TCCACACAGG CATAGAGTGT CTGCTATTAA TAACTATGCT CAAAAATTGT . seq pTGFG36GTACCTTTAG CTTTTTAATT TGTAAAGGG TTAATAAGGA ATATTTGATG seq pTGFG36TATAGTGCCT TGACTAGAGA TCATAATCAG CCATACCACA TTTGTAGAGG seq pTGFG36TTTTACTTGC TTTAAAAAAC CTCCCACACC TCCCCCTGAA CCTGAAACAT seq pTGFG36AAAATGAATG CAATTGTTGT TGTTAACTTG TTTATTGCAG CTTATAATGG

13.12.1998 20:16 Uhr Sequenz pTGFG36 1 seq pTGFG3@TTACAAATAA AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT 1 seg pTGFG36CACTGCATTC TAGTTGTGGT TTGTCCAAAC TCATCAATGT ATCTTATCAT 1 seg pTGFG36GTCTGGATCC CCGGGTACCC TCTAGAGCGA ATTAATTCAC TGGCCGTCGT 1 seq pTGFG3 TTTACAACGT CGTGACTGGG AAAACCCTGG CGTTACCCAA CTTAATCGCC 1 seg pTGFG36TTGCAGCACA TCCCCCTTTC GCCAGCTGGC GTAATAGCGA AGAGGCCCGC 1 seq pTGFG36ACCGATCGCC CTTCCCAACA GTTGCGCAGC CTGAATGGCG AATGGCGCCT 3160. FG36GATGCGGTAT TTTCTCCTTA CGCATCTGTG CGGTATTTCA CACCGCATAT l seq pTGFG3 GGTGCACTCT CAGTACAATC TGCTCTGATG CCGCATAGTT AAGCCAGCCC L seq pTGFG36CGACACCCGC CAACACCCGC TGACGCGCCC TGACGGGCTT GTCTGCTCCC 33,10 L seq pTGFG3 GGCATCCGCT TACAGACAAG CTGTGACCGT CTCCGGGAGC TGCATGTGTC L seq pTGFG36AGAGGTTTTC ACCGTCATCA CCGAAACGCG CGAGACGAAA GGGGGGGTAC PTGFG36CAGCTTCGTA GCTAGAACAT CATGTTCTGG GATATCAGCT TCGTAGCTAG seq pigfg36 AACATCATGT TCTGGTACCC CCCTCGTGAT ACGCCTATTT TTATAGGTTA seq pTGFG36ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA - seq pTGFG3 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT seq pTGFG36GTATCCGCTC ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA . seq pTGFG36 AAAGGAAGAG TATGAGTATT CAACATTTCC GTGTCGCCCT TATTCCCTTT seq pTGFG36 TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACCCAGAAA CGCTGGTGAA seq pTGFG36 AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT TACATCGAAC

13.12.1998 20:16 Uhr Sequenz pTGFG36 L seq pTGFG3 TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT L seq pTGFG3 TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC L seq pTGFG3 CCGTATTGAC GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC L seq pTGFG36AGAATGACTT GGTTGAGTAC TCACCAGTCA CAGAAAAGCA TCTTACGGAT L seq pTGFG3 GGCATGACAG TAAGAGAATT ATGCAGTGCT GCCATAACCA TGAGTGATAA L seq pTGFG3 CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG AAGGAGCTAA 4110--FG3 CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG seq pTGFG36GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT 1 seq pTGFG36GCCTGTAGCA ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC 1 seq pTGFG36TTACTCTAGC TTCCCGGCAA CAATTAATAG ACTGGATGGA GGCGGATAAA 1 seq pTGFG3 GTTGCAGGAC CACTTCTGCG CTCGGCCCTT CCGGCTGGCT GGTTTATTGC PTGFG3 TGATAAATCT GGAGCCGGTG: AGCGTGGGTC TCGCGGTATC ATTGCAGCAC GFG36 TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG L seq pTGFG36AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC L seq pTGFG36CTCACTGATT AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC seq pTGFG36TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG seq pTGFG36ATCCTTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT seq pTGFG36CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT TCTTGAGATC seq pTGFG36CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAA ACCACCGCTA

•	~	17 2TYEC	36 : 13 12	98 20-16	<u>Uhr</u> 70 478		0 • 0 0 • 0 0 0 0 0 0	٠
	<u>quer</u>	12 01010	476	0 47	70 478	10 479	0 480	0
ī	seq	pTGFG36	CCAGCGGTGG	TTTGTTTGCC	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	
			481	.0 4.8	20 483	10 484	0 485	ia
<u></u>	sea	pTGFG36	GGTAACTGGC	TTCAGCAGAC	CGCAGATACC	AAATACTGTT	CTTCTAGTGT	
		2	486	•	70 488			
-	Sec	pTGEG36	ACCCCTACTT			CTGTAGCACC		_
	sed	pidrajo	491				0 495	
			l i			GCTGCCAGTG	1	
T	seq	p.r.G.F.G.3.c						
			496				L	
1	seq	pTGFG36				GTTACCGGAT		
		<u>-</u>	501 		20 50. L l		l	
1	seq	pTGFG36	i		*	AGCCCAGCTT		
-			1		70 508 			
L	seq	FG36				GAGCTATGAG		
			511		20 51. 	<u>-</u>		
Ĺ	seq	pTGFG36	GCTTCCCGAA			TCCGGTAAGC		
			518	50 51	70 513 	80 519	520	30
Ĺ	seq	pTGFG36	GAACAGGAGA	GCGCACGAG	G GAGCTTCCAC	GGGGAAACGC	CTGGTATCTT	
			52	10 52	.20 52. 	30 524 	10 525	50
Ĺ	seq	pTGFG3	TATAGTCCTC	TCGGGTTTC	G CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG	;
			52	60 52	.70 52 	80 529 	530	00
-	seq	pTGFG3	ATGCTCGTCA	CGGGGGGGG	A GCCTATGGAP	AAACGCCAGC	AACGCGGCCT	
			53	10 53	20 53	30 534 LL	10 535	50
-		pTGFG3	TTTTACGGT	CCTGGCCTT	T-TGCTGGCCT	TTGCTCACAT	GTTCTTTCCT	ר
			53		70 53	L		
-	sec	.GFG3	GCGTTATCCC	CTGATTCTG	T GGATAACCGT	r ATTACCGCCT	TIGAGTGAGC	3
_			54		120 54 I		· , [50
	seq	pTGFG3	TGATACCGCT	r CGCCGCAGC	C GAACGACCG	A GCGCAGCGAG		3
			54			80 549 		
	seq	pTGFG3	6 AGGAAGCGG	A AGAGCGCCC	A ATACGCAAAG	CGCCTCTCCC	CGCGCGTTGC	3
			55			30 · 554		
•	seq	pTGFG3	CCGATTCAT	r AATGCAGCT	G GCACGACAGO	G TTTCCCGACT	GGAAAGCGGC	3
			55	60 59 I	570 SS	80 559 I I	90 56	00
	seq	pTGFG3	CAGTGAGCG	AACGCAATT	A ATGTGAGTT	A GCTCACTCAT	TAGGCACCC	2
			56	10 50	520 56 	30 56	40 56	50
	sec	PTGFG3	AGGCTTTAC	A CTTTATGCT	T CCGGCTCGT	A TGTTGTGTGC	AATTGTGAGO	Ī
			56	60 5	570 56 I	80 56	30 57	00
	sec	pTGFG3	GGATAACAA	r TTCACACAG	G AAACAGCTA	r GACCATGATI	ACGCCAAGC	r
			F					

4

| Sequenz pTGFG36 13.12.1998 20:16 Uhr | 5710 5720 5730 5740 5750 | 1 seq pTGFG36 CTCTAGAGCT CTAGAGCTCT AGAGCTCTAG AGAGCTTGCA TGCCTGCAGG 5760 5770 5780 5790 5800 | 1 seq pTGFG36 TCG

Sequenz pTGFG67 13.12.1998 21:02 Uhr L seq pTGFG67ACTCTCAACA TTCTACTCCT CCAAAAAAGA AGAGAAGGT AGAAGACCCC L seq pTGFG67AAGGACTTTC CTTCAGAATT GCTAAGTTTT TTGAGTCATG CTGTGTTTAG L seq pTGFG67TAATAGAACT CTTGCTTGCT TTGCTATTTA CACCACAAAG GAAAAAGCTG L seq pTGFG67 CACTGCTATA CAAGAAAATT ATGGAAAAAT ATTCTGTAAC CTTTATAAGT L seq pTGFG67AGGCATAACA GTTATAATCA TAACATACTG TTTTTTCTTA CTCCACACAG seq pTGFG67GCATAGAGTG TCTGCTATTA ATAACTATGC TCAAAAATTG TGTACCTTTA GFG67GCTTTTAAT TTGTAAAGGG GTTAATAAGG AATATTTGAT GTATAGTGCC 1 seq pTGFG67 TTGACTAGAG ATCATAATCA GCCATACCAC ATTTGTAGAG GTTTTACTTG 1 seq pTGFG67CTTTAAAAAA CCTCCCACAC CTCCCCCTGA ACCTGAAACA TAAAATGAAT 1 seq pTGFG67GCAATTGTTG TTGTTAACTT GTTTATTGCA GCTTATAATG GTTACAAATA L seq pTGFG67AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT TCACTGCATT PQ PTGFG67 CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA TGTCTGGATC TGFG67 CCCGGGTACC CTCTAGAGCG AATTAATTCA CTGGCCGTCG TTTTACAACG 1 seq pTGFG67TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC CTTGCAGCAC 1 seq pTGFG67ATCCCCCTTT CGCCAGCTGG CGTAATAGCG AAGAGGCCCG CACCGATCGC 1 seq pTGFG67 CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGCGCC TGATGCGGTA 1 seq pTGFG67 TTTTCTCCTT ACGCATCTGT GCGGTATTTC ACACCGCATA TGGTGCACTC 1 seq pTGFG67TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGCC CCGACACCCG L seq pTGFG67 CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC

2.00

13.1 Sequenz pTGFG67 998 21:02 Uhr ••• •1930 ·· •••• L seq pTGFG67TTACAGACAA GCTGTGACCG TCTCCGGGAG CTGCATGTGT CAGAGGTTTT 1 seq pTGFG67 CACCGTCATC ACCGAAACGC GCGAGACGAA AGGGGGGGTA CCAGCTTCGT 1 seq pTGFG67 AGCTAGAACA TCATGTTCTG GGATATCAGC TTCGTAGCTA GAACATCATG 1 seq pTGFG67TTCTGGTACC CCCCTCGTGA TACGCCTATT TTTATAGGTT AATGTCATGA 1 seq pTGFG67TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTTCGGGG AAATGTGCGC seq pTGFG67GGAACCCCTA TTTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT 221-0 GFG67CATGAGACAA TAACCCTGAT AAATGCTTCA ATAATATTGA AAAAGGAAGA 1 seq pTGFG67GTATGAGTAT TCAACATTTC CGTGTCGCCC TTATTCCCTT TTTTGCGGCA 1 seq pTGFG67TTTTGCCTTC CTGTTTTTGC TCACCCAGAA ACGCTGGTGA AAGTAAAAGA 1 seq pTGFG67 TGCTGAAGAT CAGTTGGGTG CACGAGTGGG TTACATCGAA CTGGATCTCA 1 seq pTGFG67ACAGCGGTAA GATCCTTGAG AGTTTTCGCC CCGAAGAACG TTTTCCAATG 1 seq pTGFG67ATGAGCACTT TTAAAGTTCT GCTATGTGGC GCGGTATTAT CCCGTATTGA GFG67CGCCGGCAA GAGCAACTCG GTCGCCGCAT ACACTATTCT CAGAATGACT 1 seq pTGFG67TGGTTGAGTA CTCACCAGTC ACAGAAAAGC ATCTTACGGA TGGCATGACA L seq pTGFG67GTAAGAGAAT TATGCAGTGC TGCCATAACC ATGAGTGATA ACACTGCGGC 1 seq pTGFG67 CAACTTACTT CTGACAACGA TCGGAGGACC GAAGGAGCTA ACCGCTTTTT 1 seq pTGFG67TGCACAACAT GGGGGATCAT GTAACTCGCC TTGATCGTTG GGAACCGGAG seq pTGFG67CTGAATGAAG CCATACCAAA CGACGAGCGT GACACCACGA TGCCTGTAGC seq pTGFG67 AATGGCAACA ACGTTGCGCA AACTATTAAC TGGCGAACTA CTTACTCTAG

_

: 10

are arii arii

Sam	· ·	C67 12 12	1008 21 0	• • • • • • • • • • • • • • • • • • • •		0 0	
ا ا	deliz bigr	G67 13.12.	1998 21:0	2 Unr • • • • • • • • • • • • • • • • • • •	80 2	。。 * 。 。° 890 290	00
Î s	eq pTGFG6	7 CTTCCCGGCA	ACAATTAAT			L AGTTGCAGGA	1
		291		20 29		940 299	
1 s	eq pTGFG6	CCACTTCTGC	GCTCGGCCC	T TCCGGCTGGC	TGGTTTATT	G CTGATAAATC	
	•	29,6				990 300	_
1 s	eq pTGFG6	TGGAGCCGGT	GAGCGTGGG	I CTCGCGGTAT	CATTGCAGC	L [
	•	30,1		20 30		040 305	
1 s	eq pTGFG6	ATGGTAAGCC	CTCCCGTAT	C GTAGTTATCI		G GAGTCAGGCA	
		30,6		70 30		190 310	
1 5	eq pTGFG6	7 ACTATGGATG		1 1	GAGATAGGT	G CCTCACTGAT	
		31,1		20 31		L40 315	
1 s	eq pTGFG6	TAAGCATTGG	TAACTGTCA	G ACCAAGTTTA	CTCATATAT	A CTTTAGATTG	
		316		70 31		L90 . 320	
1 50	GFG6	ATTTAAAACT	TCATTTTTA	A TTTAAAAGGA	TCTAGGTGA	A GATCCTTTT	,
		321			·	240 325	
1 56	eq pTGFG6	GATAATCTCA	TGACCAAAA	r cccttaacgt	GAGTTTTCG	T TCCACTGAGC	_
1.		326	0 32	70 328	30 32	90 330	00
1 se	ed blele.	GTCAGACCCC	GTAGAAAG	TCAAAGGATC	TTCTTGAGA	T CCTTTTTTC	
		331		[-		40 335	
l se	eq pTGFG6	TGCGCGTAAT	CTGCTGCTT	CAAACAAAAA	AACCACCGC	T ACCAGCGGTG	
	 	336				1	
l se	eq pTGFG6	GTTTGTTTGC	CGGATCAAG	GCTACCAACT	CTTTTTCCG	A AGGTAACTGG	
		341		_		40 345	
	or prefect	1	•	•	TCTTCTAGT	G TAGCCGTAGT	- .
		346		70 348		90 350 L l	-
LS	IGFG6	1				A CCTCGCTCTG	
1 50	מ מוניבר בי	351	ĺ	,-			
	PIGEGO	356				CGTGTCTTAC	
I se	a pTGFG67	1	· ·	. [90 360 L L G CGGTCGGGCT	
	7 220200	361		20 363	•		
1 se	eq pTGFG67				/	GACCTACACC	-
		3666		70 368			n
1 se	q pTGFG67	GAACTGAGAT	3			CGCTTCCCGA	
		3710					
1 se	q pTGFG67	AGGGAGAAAG	GCGGACAGGT	1	_ · I	GGAACAGGAG	_
		37,60					0
1 se	q pTGFG67	AGCGCACGAG	GGAGCTTCCA	GGGGAAACG	CCTGGTATCT	TTATAGTCCT	-
L		l				*	

	G67 13.12 98	21-02 lThr			
iqueitz pidro	3810	3820	••• 3830 30 30 30 30 30 30 30 30 30 30 30 30 3	3840	3850
seq pTGFG6	GTCGGGTTTC GCC	ACCTCTG ACTT	GAGCGT CGAT	TTTTGT GATG	CTCGTC
	3860	3870	3880	3890	3900
seq pTGFG6	AGGGGGGGG AGC	CTATGGA AAAA	CGCCAG CAAC	GCGGCC TTTT	TACGGT
	3910	3920	3930	3940	3950
seq pTGFG6	TCCTGGCCTT TTG	CTGGCCT TTTG	CTCACA TGT	CTTTCC TGCG	TTATCC
	3960	3970	39,80	•	4000
seg pTGFG6	CCTGATTCTG TGG	ATAACCG TATI	ACCGCC TTTC	GAGTGAG CTGA	TACCGC
	4010	4020	4030	4040	4050
seg pTGFG6	7 TCGCCGCAGC CGA	ACGACCG AGCC	CAGCGA GTC	AGTGAGC GAGG	AAGCGG
	4060	4070	4080	4090	4100
seq pTGFG6	7 AAGAGCGCCC AAI	LACGCAAA CCGC	CTCTCC CCGC	CGCGTTG GCCG	ATTCAT
	4110				4150
se GFG6	7 TAATGCAGCT GGC	ACGACAG GTT	CCCGAC TGG	AAAGCGG GCAG	TGAGCG
	4160	4170	4180	4190	4200
seq pTGFG6	7 CAACGCAATT AAT	GTGAGTT AGCT	CACTCA TTAC	GCACCC CAGO	CTTTAC
	4210	4220	4230		
seq pTGFG6	7ACTTTATGCT TCC	GGCTCGT ATG	TGTGTG GAA	TTGTGAG CGGA	TAACAA
	4260	4270	4280	4290	4300
seq pTGFG6	TTTCACACAG GAZ	ACAGCTA TGAG	CATGAT TAC	GCCAAGC TCTC	TAGAGC
•	4310	4320	4330	4340 	4350
seq pTGFG6	TCTAGAGCTC TAG	SAGCTCTA GAG	AGCTTGC ATG	CCTGCAG GTCC	3
		i.			
	·				
					~.
				•	
		•			
					•
				•	

Concentration of Expressed Marker Gene "Green Fluorescent Protein" (GFP) versus "Bovine Serum Albumin" (BSA)

Figure 48

Figure 48a

Figure 48b

Figure 48c

Figure 48d

Corresponding light (a and c) and fluorescent (b and d) microscopic views of HeLa cells transfected with pTGFG5 (a and b) and pTGFG20 (c and d) respectively.

THIS PAGE BLANK (USPTO)