Strong Normalisation for System F

Thomas Waring

July 13, 2021

Contents

1	System F	1
2	Reducibility Candidates	2
3	Strong Normalisation	5

1 System F

We mostly presume familiarity with System F, or polymorphic lambda calculus: the primary reference is Girard's (who else's?) [GLT93], chapter 11 (for definitions) and chapter 14 (for normalisation).

A quick refresher. In what follows, the substitution a[b/c] denotes replacing all free occurences of the variable c in a with b. Also, note that terms are considered up to α -equivalence: changing the names of bound variables. For more detail see [Sel08] chapter 8, noting slight differences of notation.

Types are defined inductively, starting from an infinite sequence X, Y, Z, \ldots of type variables, and with three rules.

- 1. Type variables are types (which are *free* in the resulting type).
- 2. If U and V are types, then $U \to V$ is a type.
- 3. If V is a type, and X is a type variable, then $\Pi X.V$ is a type. Any previously free occurrence of X in V is now bound.

From this, there are five ways to form terms.

- 1. Variables: an infinite sequence x^T, y^T, z^T, \dots for each type T.
- 2. Application: if t and u are terms of type $U \to V$ and U, then tu is a term of type V.
- 3. λ -abstraction: if x^U is a variable of type U, and v is a term of type V then $\lambda x^U.v$ is a term of type $U \to V$. As before, occurrences of x^U in v are bound in $\lambda x^U.v$.
- 4. Universal application (or extraction): if t is a term of type $\Pi X.V$ and U is type, then tU is a term of type V[U/X].
- 5. Universal abstraction: if v is a term of type V, then $\Lambda X.v$ is a term of type $\Pi X.V$, so long as X is not free in the type of any free variable of v.

The restriction in the last point is to avoid terms like $\lambda x^{(-)}\Pi X.x^X$, which doesn't have a well-defined type. Note also that the term tU has type V[U/X], not $(\Pi X.V)U$ — as such, the reduction steps outlined below happen only at the level of terms, not within the type.

There are two "reduction" operations on terms. The first familiar is familiar (as β -reduction) from simply typed lambda calculus:

$$(\lambda x^U.v)u \leadsto v[u/x].$$

The second is its equivalent for universal abstraction / application:

$$(\Lambda X.v)U \leadsto v[U/X].$$

Observe that in both cases the reducts have the same type as the original term.

We note without proof that these reduction rules satisfy the *Church-Rosser* property, also known as confluence. Loosely, if $u \leadsto u'$ and $u \leadsto u''$ then there is a term v and sequences of reduction steps, starting at u' and u'', and ending at v. See [Gal90], §10 for a proof.

Finally some terminology. For a given term u, define $\nu(u)$ to be the longest sequence of reductions starting with u (which a priori might be infinite). For example:

$$(\Lambda X.\lambda x^X.x)Vv^V \leadsto (\lambda x^V.x)v^V \leadsto v^V$$

so $\nu((\Lambda X.\lambda x^X.x)Vv^V) = 2$ (if v is a variable, so atomic), as in each case there was a single possible reduction (a single redex). The primary goal of these notes is to show that $\nu(u)$ is finite for every term u. This property is identified with "strongly normalising", as by confluence if a normal form (a reduct with no redexes) exists, it is unique.

A term is called *neutral* if it is of the form x, tu or tU. That is, if it does not start with an abstraction of either type.

2 Reducibility Candidates

Definition 2.1. A reducibility candidate of type U is a set \mathcal{R} of terms of type U, such that:

- (CR1) If $t \in \mathcal{R}$, then t is strongly normalising.
- (CR2) $t \in \mathcal{R}$ and $t \leadsto t'$, then $t' \in \mathcal{R}$.
- (CR3) t is neutral, and whenever we convert a redex in t we obtain a term $t' \in \mathcal{R}$, then $t \in \mathcal{R}$ also.

By (CR3), any term which is neutal and normal belongs to every reducibility candidate of the appropriate type. In particular, all variables belong to every reducibility candidate of the appropriate type.

Lemma 2.2. The set SN_U of strongly normalising terms of type U is a reducibility candidate.

Proof. (CR1) is tautological. If $t \leadsto t'$, then $\nu(t') < \nu(t)$, so t' is also strongly normalising. If there were an infinite path of reductions starting from t, then the t' in the second step would also not be strong normalising, so $t' \notin \mathcal{SN}_U$.

Lemma 2.3. Given reducibility candidates \mathcal{R} and \mathcal{S} of types U and V, the set $\mathcal{R} \to \mathcal{S}$ of terms of type $U \to V$ is defined by:

$$t \in \mathcal{R} \to \mathcal{S} \iff \forall u(u \in \mathcal{R} \implies tu \in \mathcal{S})$$

is a reducibility candidate.

Proof. (CR1) Given $t \in \mathcal{R} \to \mathcal{S}$ and any u of type U, $\nu(t) \leq \nu(tu)$, so t is strongly normalising (noting that \mathcal{R} is nonempty).

(CR2) Let some $t \in \mathcal{R} \to \mathcal{S}$ be given, and t' such that $t \leadsto t'$. For any $u \in \mathcal{R}$, $tu \leadsto t'u$, so $t'u \in \mathcal{S}$ (by CR2). This implies $t' \in \mathcal{R} \to \mathcal{S}$.

(CR3) Let some $u \in \mathcal{R}$ and neutral t as in (CR3) be given. As t does not begin with an abstraction, the only possible one-step reductions beginning with tu are $tu \rightsquigarrow t'u$ and $tu \rightsquigarrow tu'$, where $t \rightsquigarrow t'$ and $u \rightsquigarrow u'$ are one-step reductions. By assumption, $t' \in \mathcal{R} \to \mathcal{S}$, which means that $t'u \in \mathcal{S}$. For the other case, we induct on $\nu(u)$, which is finite. $u' \in \mathcal{R}$ by (CR2), and $\nu(u') < \nu(u)$, which implies, by induction, that $tu' \in \mathcal{S}$. Therefore, by (CR3) applied to \mathcal{S} , $tu \in \mathcal{S}$, and so $t \in \mathcal{R} \to \mathcal{S}$.

The following proposition lays out the key definition. Its proof can be skipped (especially on first reading), but is included in case anyone is suspicious of it.

Proposition 2.4. Let T be a type, and suppose the sequence $\underline{X} = X_1, X_2, \ldots$ is assumed to contain all free (type) variables of T. With a sequence \underline{U} of types, we may define a type $T[\underline{U}/\underline{X}]$ by simultaneous substitution. Let \underline{R} be a sequence of reducibility candidates, with R_i of type U_i . Then we can define a set $RED_T[\underline{R}/\underline{X}]$ of terms of type $T[\underline{U}/\underline{X}]$ inductively by the following.

- If $T = X_i$ then $RED_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$.
- If $T = V \to W$, then $RED_T[\mathcal{R}/\underline{X}] = RED_V[\mathcal{R}/\underline{X}] \to RED_W[\mathcal{R}/\underline{X}]$.
- If $T = \Pi Y.W$, then $RED_T[\underline{\mathcal{R}}/\underline{X}]$ is the set of terms t of type $T[\underline{U}/\underline{X}]$ such that, for every type V and reducibility candidate S of this type, $tV \in RED_W[\underline{\mathcal{R}}/\underline{X}, S/Y]$.

Proof. As we will see later, this definition is remarkably circular as $\text{RED}_T[\mathcal{R}/X]$ is itself a reducibility candidate. As such, we make the definition extra precise. We conceive of this definition as a function, assigning to a type T, and substitution as defined, a set of terms of type $T[\underline{U}/\underline{X}]$. Note that, entirely separate from this definition, we have for each type U a family \mathcal{C}_U of reducibility candidates of this type: this is defined by comprehension on definition 2.1. The complexity c(T) of a type T is defined in the obvious way, counting the number of Λ or \to symbols.

We seek to define a function for each type T, assigning a valid substitution (one including all free variables) to the set $\text{RED}_T[\mathcal{R}/\underline{X}]$. In excruiciating detail, let \mathcal{X} be the set of all type variables, and Sub the set of partial functions:

$$\mathcal{X} \to \coprod_{U \in \mathcal{U}} \mathcal{C}_U$$

with finite domain. Then for a given type T the domain $\Delta(T)$ of our function is the subset:

$$\Delta(T) = \{ \eta \in \text{Sub} \mid \text{dom}(\eta) \supset \text{FV}_{\text{type}}(T) \}$$

Let Σ be the set of System F terms. To induct, we need to prove that for any $n \in \mathbb{N}$, if we are given the set:

$$\{ \text{RED}_T : \Delta(T) \to \mathcal{P}\Sigma \mid c(T) < n \}$$
 (1)

then there is a unique choice of set:

$$\{ \text{RED}_T : \Delta(T) \to \mathcal{P}\Sigma \mid c(T) < n+1 \}$$

corresponding to the above definition. From this perspective, the fact that $\text{RED}_T[\mathcal{R}/\underline{X}]$ is a set of terms of a particular type has been glossed over, so this must be part of the induction.

By the disjoint union, each η determines an assignment $\mathcal{X} \to \mathcal{U}$, for each free varibale. Abusing our notation slightly we denote $T[\eta] = T[\underline{U}/\underline{X}]$, where $\eta(X_i)$ is a reducibility candidate of type U_i .

For n = 0, T must be a variable X, so we assign $\text{RED}_T[\eta] = \eta(X)$. If $\eta(X)$ is a reducibility candidate of type U, then $\text{RED}_T[\eta]$ is a set of terms of type $U = T[\eta]$.

For n > 0, T is either an arrow or universal abstraction. If $T = V \to W$ then for any given η we may construct the set as usual, noting that the free type variables of V and W are each at most those of T. Also, by the inductive hypothesis, the members of $\text{RED}_T[\eta]$ will terms of type:

$$V[\eta] \to W[\eta] = T[\eta]$$

Finally, suppose $T = \Pi Y.W$. For any $\eta : \Delta(W) \to \coprod_{U \in \mathcal{U}} \mathcal{C}_U$ and reducibility candidate \mathcal{S} of type V, define:

$$(\eta + S/Y)(X) = \begin{cases} S & X = Y \\ \eta(X) & \text{else} \end{cases}$$

Then we define $\text{RED}_T[\eta]$ to be the set of terms of type $\Pi Y.W[\eta]$, such that for any type V and reducibility candidate S of that type, $tV \in \text{RED}_W[\eta + S/Y]$.

This constructs $\text{RED}_T[\eta]$ for any T of complexity n, and $\eta \in \Delta(T)$, so by induction our construction uniquely determines the sets as claimed.

Remark 2.5. Observe that the notation $\text{RED}_T[\mathcal{R}/X]$ does not explicitly include the substitutions U_i/X_i , which are nonetheless necessary to choose the right \mathcal{R}_i (see [Gal90] p.38).

Example 2.6. If $T = \Pi X.X \to X$, then (with \underline{X} empty), $\text{RED}_T[-]$ is the set of terms t with type T, such that for every type V and reducibility candidate S:

$$tV \in \text{RED}_{X \to X}[S/X] = S \to S.$$

We need a couple of facts about these sets.

Lemma 2.7. $RED_T[\mathcal{R}/\underline{X}]$ is a reducibility candidate of type $T[\underline{U}/\underline{X}]$.

Proof. By induction on T. The only case we need verify is $T = \Pi Y.W.$

(CR1) Let some $t \in \text{RED}_T[\mathcal{R}/X]$ be given. With an arbitrary type V, and arbitrary reducibility candidate \mathcal{S} , tV is strongly normalising, by inductively applying (CR1) to $\text{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$. As $\nu(t) \leq \nu(tV)$, t is also strongly normalising.

(CR2) If $t \leadsto t'$, then for any type V, $tV \leadsto t'V$. Given a reducibility candidate S of this type, by induction:

$$t'V \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$$

so $t' \in \text{RED}_T[\mathcal{R}/X]$.

(CR3) Suppose that t is neutral, and every term t' one step from t belongs to $\text{RED}_T[\mathcal{R}/X]$. Then for any type V, the only one-step reductions of tV are of the form t'V, as t is neutral. Since $t' \in \text{RED}_T[\mathcal{R}/X]$, $t'V \in \text{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$ for every candidate \mathcal{S} . By (CR3), this means $t \in \text{RED}_T[\mathcal{R}/X]$.

Lemma 2.8. $RED_{T[V/Y]}[\mathcal{R}/\bar{X}] = RED_T[\mathcal{R}/\bar{X}, RED_V[\mathcal{R}/\bar{X}]/Y]$

Proof. Again, induction on T. First, if T is a variable, then $T = X_i$ or T = Y. In the first case, T[V/Y] = T, and both sides are \mathcal{R}_i by definition. In the latter case, both sides are $\text{RED}_V[\underline{\mathcal{R}}/\underline{X}]$.

If $T = W_1 \rightarrow W_2$, then the left-hand side is:

$$\operatorname{RED}_{W_1\lceil V/Y \rceil \to W_2\lceil V/Y \rceil} [\mathcal{R}/\underline{X}] = \operatorname{RED}_{W_1\lceil V/Y \rceil} [\mathcal{R}/\underline{X}] \to \operatorname{RED}_{W_2\lceil V/Y \rceil} [\mathcal{R}/\underline{X}]$$

The right-hand side is

$$\operatorname{RED}_{W_1}[\mathcal{R}/\mathcal{X}, \operatorname{RED}_V[\mathcal{R}/\mathcal{X}]/Y] \to \operatorname{RED}_{W_2}[\mathcal{R}/\mathcal{X}, \operatorname{RED}_V[\mathcal{R}/\mathcal{X}]/Y]$$

By induction $\text{RED}_{W_i[V/Y]}[\mathcal{R}/\underline{X}] = \text{RED}_{W_i}[\mathcal{R}/\underline{X}, \text{RED}_V[\mathcal{R}/\underline{X}]/Y]$, for i = 1, 2, so the two expressions agree.

Finally, let $T = \Pi Z.W$. Then $T[V/Y] = \Pi Z.(W[V/Y])$, so the equality is clear by applying the inductive hypothesis to W.

3 Strong Normalisation

We can now state the statement we will prove; general strong normalisation will pop out as a corollary.

Theorem 3.1. Let t be any term of type T, with free variables among x_1, \ldots, x_n , of types U_1, \ldots, U_n . Suppose also that the free type variables of T, U_1, \ldots, U_n are among X_1, \ldots, X_m . Let $\mathcal{R}_1, \ldots, \mathcal{R}_m$ be reducibility candidates of types V_1, \ldots, V_m , and u_1, \ldots, u_n terms of types $U_1[Y/X], \ldots, U_n[Y/X]$, each in $RED_{U_1}[\mathcal{R}/X], \ldots, RED_{U_n}[\mathcal{R}/X]$. Then:

$$t[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in RED_T[\underline{\mathcal{R}}/\underline{X}]$$

The variable and application cases are (by Girard's standards) fairly straightfoward, and for the other three the facts we need are the following.

Lemma 3.2 (λ -abstraction). Take some term w of type W. If, for every $v \in RED_V[\mathcal{R}/X]$, the term $w[v/y] \in RED_W[\mathcal{R}/X]$, then $\lambda y^V.w \in RED_{V\to W}[\mathcal{R}/X]$.

Proof. We need to show that $(\lambda y^V.w)v \in \text{RED}_W[\mathcal{R}/X]$ for every $v \in \text{RED}_V[\mathcal{R}/X]$. Let such a v be given. Noting that by assumption (with v = y), w is strongly normalising, we induct on $\nu(v) + \nu(w)$. Considering one-step reductions from $(\lambda y^V.w)v$, there are three cases. In each, they belong to $\text{RED}_W[\mathcal{R}/X]$.

- $(\lambda y^V.w)v'$ with $v \leadsto v'$ in one step. Then $\nu(v') < \nu(v)$.
- $(\lambda y^V.w')v$ with $w \leadsto w'$ in one step. Then $\nu(w') < \nu(w)$.
- $w[v/y] \in \text{RED}_W[\mathcal{R}/X]$ by assumption.

As we are dealing with an application, (CR3) implies that $(\lambda y^V.w)v \in \text{RED}_W[\mathcal{R}/X]$, which implies the result.

Lemma 3.3 (Universal application). If $t \in RED_{\Pi Y,W}[\mathcal{R}/X]$, then $tV \in RED_{W[V/Y]}[\mathcal{R}/X]$.

Proof. By assumption, for any reducibility candidate S of type V, $tV \in \text{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$. Taking $S = \text{RED}_V[\mathcal{R}/X]$ and using Lemma 2.8 the result is immediate.

Lemma 3.4 (Universal abstraction). Take, again, a term w of type W. If for every type V and candidate S of that type, $w[V/Y] \in RED_W[\mathcal{R}/X, \mathcal{S}/Y]$, then $\Lambda Y.w \in RED_{\Pi Y.W}[\mathcal{R}/X]$.

Proof. Given a type V and candidate S, we must show that $(\Lambda Y.w)V \in \text{RED}_W[\underline{\mathcal{R}}/\underline{X}, S/Y]$. This is entirely analogous to the λ -abstraction case, now we induct on $\nu(w)$. Converting a redex in $(\Lambda Y.w)V$ gives two cases:

- $(\Lambda Y.w)V \rightsquigarrow (\Lambda Y.w')V$, where $\nu(w') < \nu(w)$.
- $(\Lambda Y.w)V \leadsto w[V/Y] \in \text{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$ by assumption.

Applying (CR3) and the definition of $\text{RED}_{\Pi Y.W}[\mathcal{R}/\underline{X}]$ the result follows.

Right then, in we jump.

Proof of Theorem 3.1. We induct on the construction of t. If t is a variable, say x_i , then $T[Y/X] = U_i[Y/X]$, and $t[Y/X][u/x] = u_i \in \text{RED}_{U_i}[\mathcal{R}/X] = \text{RED}_T[\mathcal{R}/X]$.

If t = vw, then both $v[Y/X][\underline{u}/x]$ and $w[Y/X][\underline{u}/x]$ belong to the appropriate set by induction. By definition, this implies that:

$$v[\underline{V}/\underline{X}][\underline{u}/\underline{x}](w[\underline{V}/\underline{X}][\underline{u}/\underline{x}]) = t[\underline{V}/\underline{X}][\underline{u}/\underline{x}]$$

belongs to $\text{RED}_T[\mathcal{R}/\underline{X}]$.

Let $t = \lambda y^V \cdot w$ of type $V \to W$. By the inductive hypothesis

$$w[Y/X][u/x, v/y] \in RED_W[\mathcal{R}/X]$$

for every v of type $V[\underline{V}/\underline{X}]$. Then by Lemma 3.2 we have that:

$$\lambda y^{V[\underline{V}/\underline{X}]}.w[\underline{V}/\underline{X}][\underline{u}/\underline{x}] = t[\underline{V}/\underline{X}][\underline{u}/\underline{x}]$$

belongs to our reducible set.

If t = t'V, with t' of type $\Pi Y.T'$, making T = T'[V/Y]. By the inductive hypothesis,

$$t'[Y/X][\underline{u}/\underline{x}] \in \text{RED}_{\Pi Y:T'}[\mathcal{R}/X]$$

Applying Lemma 3.3 implies the result.

The final case is $t = \Lambda Y.w$. Again, using the inductive hypothesis, for any type V and reducibility candidate S of this type:

$$w[V/X, V/Y][u/x] \in \text{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$$

We apply Lemma 3.4 which implies the result.

Corollary 3.5. Every term of System F is strongly normalising.

Proof. Apply the above, with $V_i = X_i$ and $u_j = x_j$, making each substitution the identity. Any sequence \mathcal{R}_i of reducibility candidates works, for example the sets \mathcal{SN}_i of strongly normalising terms of type X_i . Then (CR1) implies that every term is strongly normalising.

References

[Gal90] Jean Gallier. On girards candidats de reductibilite. 01 1990.

[GLT93] Jean-Yves Girard, Yves Lafont, and Paul Taylor. *Proofs and types*. Cambridge Univ. Press, 1993.

[Sel08] Peter Selinger. Lecture notes on the lambda calculus. CoRR, abs/0804.3434, 2008.