EMW3162

Data Sheet

Embedded Wi-Fi module

V2.5 Date: 2016-03-14 NO:DS0006E

Overview

EMW3162 is a low-power embedded Wi-Fi module integrates a wireless LAN MAC/baseband /radio, and a Cortex-M3 microcontroller STM32F205 that runs a unique "self-hosted" Wi-Fi networking library and software application stack. EMW3162 has 1M bytes flash, 128k RAM and rich peripherals for your embedded Wi-Fi applications.

EMW3162 is also an **mxchipWNet**TM compatible platform; users can build their own embedded Wi-Fi applications based on **mxchipWNet**TM library which manage all of the Wi-Fi MAC and TCP/IP stack processing. We also provide several **mxchipWNet**TM firmwares to meet typical applications: wireless UART, wireless audio, wireless sensor etc.

When using **mxchipWNet**TM -DTU firmware, you can establish Wi-Fi networking for any device with a micro-controller and a UART interface. Quick development cycles enable fast time to market.

EMW3162 and EMW3280 are pin compatible.

Applications

- Building Automation / Access Control
- Smart home appliances
- Medical/Health Care
- Industrial Automation Systems
- Point Of Sale system (POS)
- Auto electronics

Product list

Module	Antenna	Note	
EMW3162-P	On-board PCB antenna	Default	
EMW3162-E	IPEX connector	optional	

Firmware/Library

Firmware/Library	Function
mxchipWNet™	Prede fined firmware
-DTU	UART/Wi-Fi conversion
mxchipWNet™	Software library used to
Library	develop custom firmware
mxchipWNet™ Library Plus	Software library based on RTOS
WICED™ Firmware development kit	WICED [™] source codes with TCP/IP, Wi-Fi MAC RTOS and GCC tool chain

Contents

1	1 INTRODUCTION	5
	1.1 Product is introduced	5
	1.2 Product appearance	5
	1.3 Hardware block diagram	5
	1.4 Features	
	1.5 LED	7
2	2 PINS	8
	2.1 Pin Designation	8
	2.2 Recommended packages	8
	2.3 Pin Arrangement	9
3	3 ELECTRICAL PARAMETERS	12
	3.1 Absolute maximum ratings:	12
	3.1.1 Voltage & Current	12
	3.2 Operating conditions	12
	3.2.1 WLAN Subsystem	
	3.2.2 Microcontroller Subsystem	14
	3.3 Digital I/O port characteristics	
	3.3.1 Output voltage levels	
	3.3.2 Output voltage levels	16
	3.3.3 nRESET pin characteristics	17
	3.4 Other MCU electrical parameters	17
	3.5 Temperature and Humidity	17
	3.6 ESD	18
	3.7 Static latch-up	18
	3.8 RF characteristics	18
	3.8.1 Basic RF characteristics	18
	3.8.2 IEEE802.11b mode	19
	3.8.3 IEEE802.11g mode	19
	3.8.4 IEEE802.11n 20MHz bandwidth mode	21
4	4 ANTENNA INFORMATION	23
	4.1 Minimizing radio interference	23
	4.2 U.F.L RF Connector	24
5	5 MECHANICAL DIMENSIONS	25
	5.1 EMW3162 Mechanical Dimensions	25
	5.2 Use guidelines (Please read carefully)	26
	5.3 The matters needing attention	28

	5.4 MSL/Storage Condition	29
	5.5 Recommended Reflow Profile	
6	REFERENCE CIRCUIT	
7	5 V UART UART - 3.3V UART CONVERSION REFERENCE CIRCUIT	
8 9	SALES INFORMATION AND TECHNICAL SUPPORT VERSION UPDATE INSTRUCTIONS	
J	VERSION OF DATE INSTRUCTIONS	55
Lis	st of Tables	
	Table 1. LED functions	
	Table 2. EMW3162 pin arrangement	9
	Table 3. Rated voltage parameters	12
	Table 4. Rated current parameters	12
	Table 5. Actual working voltage parameters	12
	Table 6. Actual working current parameters	
	Table 7. "Run Mode" general maximum current power consumption	
	Table 8. "Stop Mode" general maximum current power consumption	
	Table 9. "Stop Mode" general maximum current power consumption	
	Table 10. "Ordinary operation mode" power consumption	16
	Table 11. I/O port output voltage	16
	Table 12. I/O port input voltage	16
	Table 13. nRESET Pin parameters	17
	Table 14. Temperature and Humidity	17
	Table 15. ESD parameters	18
4	Table 16. Static latch - up parameters	18
	Table 17. RF basic attributes	18
	Table 18. EEE802.11bRF Basic attributes	19
	Table 19. IEEE802.11b RF Send properties	19
	Table 20. IEEE802.11b RF Receive properties	19
	Table 21. IEEE802.11g RF Basic attributes	19
	Table 22. IEEE802.11g RF Send properties	20

	Table 23. IEEE802.11g RF Receive properties	20
	Table 24. IEEE802.11n RF Basic attributes	21
	Table 25. IEEE802.11n RF Send properties	21
	Table 26. IEEE802.11n RF Receive properties	22
Lis	t of Figures	
	Figure 1. EMW3162-P	5
	Figure 2. EMW3162-E	
	Figure 3. EMW3162 Hardware block diagram	6
	Figure 4. LED	
	Figure 5. EMW3162: appearance and pinout	8
	Figure 6. EMW3162 Recommend DIP package diagram	8
	Figure 7. EMW3162 Recommend LGA package diagram	9
	Figure 8.	23
	Figure 9. Temperature and humidity indicator CARDS	
	Figure 10. Storage Condition	
	Figure 11 . Temperature Curve	30
	Figure 12. Power reference circuit	31
	Figure 13 . USB to serial reference circuit	31
	Figure 14. Module refer to the external interface circuit	32
	Figure 15 LIAPT LIAPT 5 V = 2.2 V conversion circuit	22

1 Introduction

1.1 Product is introduced

EMW3162 is a low-power embedded Wi-Fi module integrates a wireless LAN MAC/baseband /radio, and a Cortex-M3 microcontroller STM32F205 that runs a unique "self-hosted" Wi-Fi networking library and software application stack. EMW3162 has 1M bytes flash, 128k RAM and rich peripherals for your embedded Wi-Fi applications.

EMW3162 is also an mxchipWNetTM compatible platform; users can build their own embedded Wi-Fi applications based on mxchipWNetTM library which manage all of the Wi-Fi MAC and TCP/IP stack processing. We also provide several mxchipWNetTM firmwares to meet typical applications: wireless UART, wireless audio, wireless sensor etc.

When using mxchipWNet[™]-DTU firmware, you can establish Wi-Fi networking for any device with a micro-controller and a serial interface. Quick development cycles enable fast time to market.

EMW3162 and EMW3280 are pin compatible.

1.2 Product appearance

Figure 1. EMW3162-P

Figure 2. EMW3162-E

1.3 Hardware block diagram

As shown in figure 3, module consists of three parts:

- (1) Cortex-M3 MCU
- (2) Wi-Fi RF IC
- (3) Power management

Figure 3. EMW3162 Hardware block diagram

1.4 Features

- Single operation voltage : 3.3V
- Power consumption:
 - Only ~7mA while module is connected to access point and no data is transmitting,
 - Only ~24mA while sending data under 20kbps,
 - Only 8µA under standby mode.
- STM32F2 MCU frequency: 120MHz , flash size: 1M bytes , RAM size: 128k bytes.
- On-chip functionality Single-chip: MAC/BB/RF
- Peripherals :
 - 32 x GPIOs
 - 2 x UARTs , includes hardware flow control
 - 1 x SPI/I2S
 - 8 x ADC input channels , 2 DAC output channel
 - 1 x USB OTG, 2 x CAN
 - 1 x I2C
 - PWM/Timer input/output available on every GPIO pin
 - SWD debug interface
- Wi-Fi connectivity
 - 802.11b, 802.11g, 802.11n (single stream) on channel 1-14@2.4GHz

- WEP, WPA/WPA2 PSK/Enterprise
- Transmit power: 18.5dBm@11b , 15.5dBm@11g , 14.5dBm@11n
- MIN Receiver Sensitivity: -96 dBm
- Max Data rate: 11Mbps@11b , 54Mbps@11g , 72Mbps@11n HT20
- Wi-Fi modes : Station, Soft AP and Wi-Fi direct
- Advanced 1x1 802.11n features
 - ★ Full/Half Guard Interval
 - **★** Frame Aggregation
 - ★ Space Time Block Coding (STBC)
 - ★ Low Density Parity Check (LDPC) Encoding
- Hardware Encryption: WEP, WPA/WPA2
- WPS 2.0, EasyLink
- Multiple power save modes
- On-board chip antenna, IPEX connector for external antenna
- CE , FCC compliant
 - ★ Operating Temperature: -40°C to 85°C
 - ★ MSL level 3

1.5 LED

Figure 4. LED

Name	Color	GPIO
D1	Green	PB0
D2	Red	PB1

Table 1. LED functions

2 Pins

2.1 Pin Designation

EMW3162 has two kinds of packaging form: The first kind of DIP Package and has two groups of pins (1x15+1x15x2mm), the lead pitch is 2mm. The second kind of packaging for LAG and has 44 pins(As shown in Figure 5-red marking), PIN39-PIN44 connect to GND, Suggested that as far as possible welding.

Pinout is shown in the Figure 5, Red logo PIN are welding plate of the BOTTOM layer.

Figure 5. EMW3162: appearance and pinout

2.2 Recommended packages

Solder window and the same size of the pad. SMT Recommended steel thickness is 0.12mm-0.14mm. (Unit: mm)

Figure 6. EMW3162 Recommend DIP package diagram

Figure 7. EMW3162 Recommend LGA package diagram

2.3 Pin Arrangement

Table 2. EMW3162 pin arrangement

Pins	Name	Туре	IO level	Main function (after reset)	Alternate functions	Other functions	
1	PB6	I/O	FT	PB6	I2C1_SCL/ USART1_TX / TIM4_CH1 / CAN2_TX		
2	PB7	I/O	FT	PB7	I2C1_SDA / USART1_RX/ TIM4_CH2		
3	PA13	I/O	FT	SWDIO			
4	PC7	I/O	FT	PC7	I2S3_MCK / TIM8_CH2/ TIM3_CH2 / USART6_RX		
5	PA3	I/O	FT	PA3	TIM5_CH4 / TIM9_CH2 / TIM2_CH4 /	ADC123_IN3	
6	PA4	I/O	TT	PA4	SPI1_NSS / SPI3_NSS / I2S3_WS	ADC12_IN4 / DAC1_OUT	
7	PB3	I/O	FT	JTDO/ TRACESWO	JTDO/TRACESWO/ I2S3_SCK / TIM2_CH2 / SPI1_SCK / SPI3_SCK/		
8	PB4	I/O	FT	NJTRST	NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO/		

Pins	Name	Туре	IO level	Main function (after reset)	Alternate functions	Other functions	
9	PB5	I/O	FT	PB5	I2C1_SMBA / TIM3_CH2 / SPI1_MOSI/ SPI3_MOSI / CAN2_RX		
10	PB8	I/O	FT	PB8	TIM4_CH3 / TIM10_CH1 / I2C1_SCL / CAN1_RX		
11	PA1	I/O	FT	PA1	TIM5_CH2 / TIM2_CH2	ADC123_IN1	
12	PC2	I/O	FT	PC2		ADC123_ IN12	
13	PB14	I/O	FT	PB14	TIM1_CH2N / TIM12_CH1 / TIM8_CH2N/		
14	PC6	I/O	FT	PC6	TIM8_CH1 / TIM3_CH1 / USART6_TX		
15	GND				XS		
16	PB1	I/O		PB1	TIM3_CH4 / TIM8_CH3N/ TIM1_CH3N/	ADC12_IN9	
17	nRESET				9)		
18	PA15	I/O	FT	JTDI	JTDI/ SPI3_NSS/ I2S3_WS/ TIM2_CH1_ETR / SPI1_NSS		
19	PB11	I/O	FT	PB11	TIM2_CH4		
20	PA12	I/O	FT	PA12	USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP		
21	PA11	I/O	FT	PA11	USART1_CTS/CAN1_RX/ TIM1_CH4 / OTG_FS_DM		
22	PA9	I/O	FT	PA9	USART1_TX/ TIM1_CH2	OTG_FS_VBUS	
23	PA10	I/O	FT	PA10	USART1_RX/ TIM1_CH3/ OTG_FS_ID		
24	VCC						
25	GND						
26	NC						
27	воото	I		воото			
28	PA14	I/O		JTCK- SWCLK	JTCK-SWCLK		

Pins	Name	Туре	IO level	Main function (after reset)	Alternate functions	Other functions
29	PA0- WKUP	I/O		PA0-WKUP	PAO-WKUP TIM2_CH1_ETR/ ADC TIM5_CH1 / TIM8_ETR	
30	PB9	I/O		PB9	TIM4_CH4/ TIM11_CH1 / I2C1_SDA / CAN1_TX	
31	PA5	I/O	TT	PA5	SPI1_SCK / TIM2_CH1_ETR/ TIM8_CHIN	ADC12_IN5 /DAC2_OUT
32	PA6	I/O	FT	PA6	SPI1_MISO / TIM8_BKIN/TIM13_CH1 / TIM3_CH1 / TIM1_BKIN	ADC12_IN6
33	PA7	I/O	FT	PA7	SPI1_MOSI/ TIM8_CH1N / TIM14_CH1 TIM3_CH2/ / TIM1_CH1N	ADC12_IN7
34	PB15	I/O	FT	PB15	TIM1_CH3N / TIM8_CH3N / TIM12_CH2 /RTC_50Hz	
35	PC3	I/O	FT	PC3		ADC123_ IN13
36	PC4	I/O	FT	PC4		ADC12_IN14
37	NC					
38	NC					
39	GND					
40	GND					
41	GND					
42	GND					
43	GND					
44						

- 1. FT = 5 V tolerant; TT = 3.6 V tolerant.
- 2. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- 3. I = input, O = output, S = supply.
- 4. STM32 peripherals are not listed if they cannot be presented on current pins.

3 Electrical Parameters

3.1 Absolute maximum ratings

3.1.1 Voltage & Current

Stresses above the absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3. Rated voltage parameters

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	Voltage	-0.3	4.0	V
V _{IN}	Input voltage on five volt tolerant pin	V _{SS} -0.3	5.5	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	V _{DD} +0.3	V

Table 4. Rated current parameters

Symbol	Ratings	Max	Unit
I_{VDD}	Total current into VDD power lines (source)	320	mA
I _{VSS}	Total current out of VSS ground lines (sink)	320	mA
I _{IO}	Output current sunk by any I/O and control pin	25	mA
	Output current source by any I/O and control pin	-25	mA

3.2 Operating conditions

Voltage & Current

Table 5. Actual working voltage parameters

Symbol	Note	Conditions		Specification			
	Note	Conditions	Min.	Typical	Max.	Unit	
V _{DD}	Voltage		2.4	3.3	3.5	V	

3.2.1 WLAN Subsystem

Table 6. Actual working current parameters

Symbol	Note	Conditions	Typical	Unit
I_{Rf}	OFF ¹		2	μΑ
I_{RF}	SLEEP ⁴		200	μΑ
I_{RF}	Rx(Listen) ²		52	mA
I_{RF}	Rx(Active) ³		59	mA
I_{RF}	Power Save ^{5 6}		1.9	mA
I_{RF}	Tx CCK ⁷ 10	11 Mbps at 18.5 dBm	320	mA
I_{RF}	Tx OFDM ⁸ 10	54 Mbps at 15.5 dBm	270	mA
I_{RF}	Tx OFDM ⁹ 10	65 Mbps at 14.5 dBm	260	mA

Note 1: Power is off.

Note 2: Carrier Sense (CCA) when no carrier present

Note 3: Carrier Sense (CS) detect/Packet Rx

Note 4: Intra-beacon Sleep

Note 5: Beacon Interval = 102.4ms, DTIM = 1, Beacon duration = 1 ms @1 Mbps.

Integrated Sleep + wakeup + Beacon Rx current over 1 DTIM interval.

Note 6: In WLAN power-saving mode, the following blocks are powered down: Crystal oscillator, Baseband PLL, AFE, RF PLL, Radio

Note 7: CCK power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 8: OFDM power at chip port. Duty cycle is 100%. Includes PA contribution.

Note 9: OFDM power at chip port is 16 dBm, duty cycle is 100%, includes PA contribution.

Note 10: Absolute junction temperature limits maintained through active thermal monitoring and dynamic Tx duty cycle limiting.

3.2.2 Microcontroller Subsystem

Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM

Table 7. "Run Mode" general maximum current power consumption

Symbol	Conditions	£	Running Mode	Sleep Mode	Unit
Symbol	Conditions	f _{HCLK}	T _A =25°C	T _A =25°C	Offic
		120MHz	49	38	
		90MHz	38	30	
		60MHz	26	20	
	External clock, all	30MHz	14	11	
	peripherals enabled	25MHz	11	8	
		16MHz	8	6	
		8MHz	5	3.6	
		4MHz	3	2.4	
I _{MCU}		2MHz	2	1.9	mA
mes		120MHz	21	8	IIIA
		90MHz	17	7	
		60MHz	12	5	
	External clock, all	30MHz	7	3.5	
	peripherals disabled	25MHz	5	2.5	
		16MHz	4	2.1	
		8MHz	2.5	1.7	
		4MHz	2	1.5	
		2MHz	1.6	1.4	

Typical and maximum current consumptions in Stop mode

Table 8. "Stop Mode" general maximum current power consumption

Cumbal	Parameter	Conditions	Тур	Max	Unit
Symbol	Parameter	Conditions	T _A =25°C	T _A =25°C	Offic
	Supply current in] '		1.2	>
,	main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.5	1.2	
I _{MCU}	Supply current in	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.35	1.1	mA
	Stop mode with main regulator in Low Power mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog).	0.3	3 1.1	

Typical and maximum current consumptions in Standby mode

Table 9. "Stop Mode" general maximum current power consumption

Symbol	Parameter	Conditions	Typ T _A =25°C	Unit
		Backup SRAM ON, low-speed oscillator and RTC ON	4.0	
T	Supply current in	Backup SRAM OFF, low-speed oscillator and RTC ON	3.3	
I_{MCU}	Standby mode	Backup SRAM ON, RTC OFF	3.0	μΑ
		Backup SRAM OFF, RTC OFF	2.2	

Power consumption in typical operation modes³

Table 10. "Ordinary operation mode" power consumption

Symbol Parameter		Conditions	Min	Average	Max	Hoit
		Conditions	T _A =25°C	T _A =25°C	T _A =25°C	Unit
		No Wi-Fi data is transmitting1	2.8	7.2	73.5	mA
	Total power	Receive data in UDP mode, 20k bps1	2.8	12	262	mA
Imodule	consumption on	Send data in UDP mode, 20k bps1	3	24	280	mA
	EMW3162 module	RF off, MCU enter standby mode2	4	6	8	μΑ
		Connecting to AP	52	74	320	mA

Note1: TA=25°C, MCU frequency=120MHz, with data processing running from Flash memory (ART accelerator enabled). Firmware process TCP/IP stack and IEEE 802.11 MAC every 250 milliseconds, enter stop mode when no task is pending.

RF subsystem is connected to an access point and run under power save mode in IEEE 802.11n@14.5 dBm Tx power. AP Beacon Interval = 102.4ms, DTIM = 1.

Note2: Wi-Fi connection is disconnected.

Note3: These data may not be the same depend on different firmware functions.

3.3 Digital I/O port characteristics

3.3.1 Output voltage levels

Table 11. I/O port output voltage

Symbol	Note	Parameter	Conditions	Min.	Max.	Unit
V _{OL}		Output low level voltage	I₁₀= +8 mA		0.4	V
V _{OH}	UART& IO	Output high level voltage	2.7 V < VDD < 3.6 V	V _{DD} -0.4		V
V _{OL}	output voltage	Output low level voltage	I ₁₀ = +20 mA		1.3	V
V _{OH}		Output high level voltage	2.7 V < VDD < 3.6 V	V _{DD} -1.3		V

3.3.2 Output voltage levels

Table 12. I/O port input voltage

Symbol	Note	Parameter	Conditions	Min.	Max.	Unit
V _{IL}		Input low level voltage		-0.5	0.8	V
		Input high level voltage	TTL level	2	VDD+0.5	V
I IH	UART& IO	Input high level voltage	TIL IEVEI	2	5.5	V
	input voltage	(5V input tolerant)				
V_{IL}		Input low level voltage	CMOS level	-0.5	0.35VDD	V
V _{IH}		Input high level voltage		0.65VDD	VDD+0.5	V

3.3.3 nRESET pin characteristics

The nRESET pin input driver uses CMOS technology. EMW3162 contains RC (resistance-capacitance) reset circuit which ensures the module reset accurately when it powers up. If you need to reset manually, just connect the external control signals to the reset pins directly, but the control signal should be Open Drain Mode.

Table 13. nRESET Pin parameters

Symbol	Item	Conditions	Min.	Typical	Max.	Unit
V _{IL(NRST)}	nRESET input low level		-0.5		0.8	V
V _{IH(NRS} T)	nRESET input high level		2		VDD+0.5	V
R _{PU}	Resistor for Pulling up	V _{IN} = VSS	7.5	8	8.3	kΩ
C _{PD}	Capacitor for charging and Resetting			100	1000	рF

3.4 Other MCU electrical parameters

Please refer to STM32F215RGT6 data sheet.

3.5 Temperature and Humidity

Table 14. Temperature and Humidity

Symbol	Ratings	Max	Unit
TSTG	Storage temperature	-55 to +125	℃
TA	Working temperature	-40 to +85	$^{\circ}$
Humidity	Non condensing, relative humidity	Max. 95%	

3.6 ESD

Absolute maximum ratings: The Electromagnetic Environment Electrostatic discharge

Table 15. ESD parameters

Symbol	Ratings	Conditions	Class	Max	Unit
Vesd(HBM)	Electrostatic discharge voltage (human body model)	TA= +25 °C conforming to JESD22-A114	2	2000	V
V _{ESD} (CDM)	Electrostatic discharge voltage (charge device model)	TA = +25 °C conforming to JESD22-C101	II	500	

3.7 Static latch-up

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 16. Static latch - up parameters

Symbol	Parameter	Class	Class
LU	Static latch-up class	TA= +105 °C conforming to JESD78A	II level A

3.8 RF characteristics

3.8.1 Basic RF characteristics

Table 17. RF basic attributes

Item	Specification
Operating Frequency	2.412~2.484GHz
Wi-Fi Standard	802.11b/g/n(single stream n)
	11b: DBPSK, DQPSK,CCK for DSSS
Modulation Type	11g: BPSK, QPSK, 16QAM, 64QAM for OFDM
	11n: MCS0~7,OFDM *
	11b:1, 2, 5.5 and 11Mbps
Data Rates	11g:6, 9, 12, 18, 24, 36, 48 and 54 Mbps
	11n: MCS0~7, up to 72Mbps
Antonno turo	One U.F.L connector for external antenna
Antenna type	PCB printed ANT (Reserve)

3.8.2 IEEE802.11b mode

Table 18. EEE802.11b RF Basic attributes

Item	Specification	
Modulation Type	DSSS / CCK	
Frequency range	2400MHz~2484MHz	
Channel	CH1 to CH14	
Data rate	1, 2, 5.5, 11Mbps	

Table 19. IEEE802.11b RF Send properties

TX Characteristics	Min.	Typical	Max.	Unit
Transmitter Output Power	Transmitter Output Power			
11bTarget Power		18.5	0,	dBm
Spectrum Mask @ target power				
fc +/-11MHz to +/-22MHz		0	-30	dBr
fc > +/-22MHz			-50	dBr
Frequency Error	-20		+ 20	ppm
Constellation Error(peak EVM)@ target power				
1~11Mbps		-17	-10	

Table 20. IEEE802.11b RF Receive properties

RX Characteristics	Min.	Typical	Max.	Unit
Minimum Input Level Sensitivity				
1Mbps (FER≦8%)		-97	-83	dBm
2Mbps (FER≦8%)		-93	-80	dBm
5.5Mbps (FER≦8%)		-91	-79	dBm
11Mbps (FER≦8%)		-89	-76	dBm
Maximum Input Level (FER <u>≤</u> 8%)	-10			dBm

3.8.3 IEEE802.11g mode

Table 21. IEEE802.11g RF Basic attributes

Item	Specification
Modulation Type	OFDM
Frequency range	2400MHz~2484MHz
Channel	CH1 to CH14
Data rate	6, 9, 12, 18, 24, 36, 48, 54Mbps

Table 22. IEEE802.11g RF Send properties

TX Characteristics	Min.	Typical	Max.	Unit
Transmitter Output Power				
11gTarget Power		15.5		dBm
Spectrum Mask @ target power				
fc +/-11MHz			-20	dBr
fc +/-20MHz			-28	dBr
fc > +/-30MHz			-40	dBr
Frequency Error	-20		+ 20	ppm
Constellation Error(peak EVM)@ target power				
6Mbps			-5	dB
9Mbps		- 0	-8	dB
12Mbps		OK	-10	dB
18Mbps			-13	dB
24Mbps	XC		-16	dB
36Mbps			-19	dB
48Mbps			-22	dB
54Mbps	5	-30	-25	dB
Transmit spectrum mask				
@ 11MHz			-20	dBr
@ 20MHz			-28	dBr
@ 30MHz			-40	dBr

Table 23. IEEE802.11g RF Receive properties

RX Characteristics	Min.	Typical	Max.	Unit
Minimum Input Level Sensitivity				
6Mbps (FER≦10%)		-90	-82	dBm
9Mbps (FER≦10%)		-88	-87	dBm
12Mbps (FER≦10%)		-86	-79	dBm
18Mbps (FER≦10%)		-85	-77	dBm
24Mbps (FER≦10%)		-82	-74	dBm
36Mbps (FER≦10%)		-79	-70	dBm
48Mbps (FER≦10%)		-75	-66	dBm
54Mbps (FER≦10%)		-72	-65	dBm
Maximum Input Level (FER≤10%)	-20			dBm

3.8.4 IEEE802.11n 20MHz bandwidth mode

Table 24. IEEE802.11n RF Basic attributes

Item	Specification
Modulation Type	MIMO-OFDM
Channel	CH1 to CH14
Data rate	MCS0/1/2/3/4/5/6/7

Table 25. IEEE802.11n RF Send properties

TX Characteristics	Min.	Typical	Max.	Unit	
Transmitter Output Power	Transmitter Output Power				
11n HT20 Target Power		14.5		dBm	
Spectrum Mask @ target power		0	3		
fc +/-11MHz		V	-20	dBr	
fc +/-20MHz			-28	dBr	
fc > +/-30MHz			-45	dBr	
Frequency Error	-25	-1.2	+ 25	ppm	
Constellation Error(peak EVM)@ target power					
MCS0			-5	dBm	
MCS1			-10	dBm	
MCS2			-13	dBm	
MCS3			-16	dBm	
MCS4			-19	dBm	
MCS5			-22	dBm	
MCS6			-25	dBm	
MCS7		-32	-28	dBm	
Transmit spectrum mask					
@ 11MHz			-20	dBr	
@ 20MHz			-28	dBr	
@ 30MHz			-40	dBr	

Table 26. IEEE802.11n RF Receive properties

RX Characteristics	Min.	Typical	Max.	Unit	
Minimum Input Level Sensitivity	Minimum Input Level Sensitivity				
MCS0 (FER≦10%)		-89	-82	dBm	
MCS1 (FER≦10%)		-86	-79	dBm	
MCS2 (FER≦10%)		-84	-77	dBm	
MCS3 (FER≦10%)		-82	-74	dBm	
MCS4 (FER≦10%)		-78	-70	dBm	
MCS5 (FER≦10%)		-74	-66	dBm	
MCS6 (FER≦10%)		-72	-65	dBm	
MCS7 (FER≦10%)		-69	-64	dBm	
Maximum Input Level (FER≤10%)	-20			dBm	

4 Antenna information

There is co-layout design (C35&C32) for antenna connection. Please order your module carefully. Users can also modify the capacitor position but MXCHIP would not take any responsibility for this behavior.

EMW3280-E load the capacitor C35 (10pF/0201), it means can use U.F.L RF connector for external antenna. If want to use on-board PCB printed antenna, just need load the capacitor from C35 to C32 (EMW3280-P).

In order to get the maximum performance, strongly suggest customer use external antenna connected with U.F.L RF connector.

Figure 8. Replacement antenna diagram

4.1 Minimizing radio interference

When integrating the Wi-Fi module with on board PCB printed antenna, make sure the area around the antenna end the module protrudes at least 15mm from the mother board PCB and any metal enclosure. If this is not possible use the on board U.FL connector to route to an external antenna.

The area (6.5mmx17.3mm) under the antenna end of the module should be keep clear of metallic components, connectors, via, traces and other materials that can interfere with the radio signal.

Figure 9. Antenna minimum clearance zone

4.2 U.F.L RF Connector

This module use U.F.L type RF connector for external antenna connection.

Figure 10. An external antenna connector size diagram

5 Mechanical Dimensions

5.1 EMW3162 Mechanical Dimensions

Figure 11. EMW3162 top view(Metric units)

Figure 12 EMW3162 side view (Metric units)

Figure 13.EMW3162 bottom view (Metric units)

5.2 Use guidelines (Please read carefully)

- Stamps port Wi-Fi modules which factory from MXCHIP are welding must by SMT machine.
 - SMT need machine:
 - 1. Reflow soldering SMT machine
 - 2. The AOI detector
 - 3. 6-8 mm diameter suction nozzle
 - baking need equipment:
 - 1. Cabinet baking box
 - 2. The antistatic, high temperature resistant tray
 - 3. The antistatic high temperature resistant gloves
- Storage conditions as follows
 - Moisture bag must be stored in a temperature < 30 ° C, humidity 85% RH of the environment.
 - Dry packaging products, the guarantee period should be from 6 months from the date of packing seal.
 - Sealed packaging is equipped with humidity indicator card, as shown in Figure 13.

Humidity indicator CARDS and baking several ways as follows:

Figure 14. Temperature and humidity indicator CARDS

- When opened, if the temperature and humidity indicator CARDS read 10%, 20%, 30%,40% three color ring are blue, to continue to bake for 2 hours for module;
- When opened, if the humidity indicator CARDS read 10% color ring into pink, need to continue to bake module 4 hours;
- When opened, if the humidity indicator CARDS read into 10%, 20%, color ring into pink, need to continue to bake for 6 hours module;
- When opened, if the humidity indicator CARDS read into 10%, 20%, 30% are pink color ring, need to continue to bake for 12 hours module;
- When opened, if the humidity indicator CARDS read into 10%, 20%, 30%, 40% are pink color ring, need to continue to bake for 14 hours module;
- Baking parameters are as follows:
 - Baking temperature: 125 °C + / 5 °C;
 - Set the alarm temperature as 130 °C;
 - Under the condition of natural cooling < 36 °C, SMT placement can be made;
 - Dry times: 1 times;
- If opened the time more than 3 months, please ban the use of SMT process welding this batch module, zedoary because PCB process, more than 3 months bonding pad oxidation,

SMT is likely to cause virtual welding, welding, the resulting problems we do not assume corresponding responsibility.

- Please to ESD (static discharge, static electricity discharge) protection module before SMT;
- Please according to the SMT reflow soldering curve, peak temperature 245 °C, reflow soldering temperature curve as shown in figure 14, section 7.6;
- For the first time in order to ensure the qualified rate of reflow soldering, first SMT please extraction 10% product to visual analysis, AOI inspection, to ensure that the furnace temperature control, device adsorption method, the rationality of the put way;
 Suggestions: when batch production per hour 5-10 pieces of visual analysis, AOI test;

5.3 The matters needing attention

- In the entire production, Each station of the operator must wear anti-static gloves;
- When baking, no more than baking time;
- When roasting, it is forbidden to join explosive, flammable, corrosive substances;
- When baking, high temperature module application tray in the oven, keep the air circulation between each module, at the same time avoid direct contact with the oven wall module;
- Baking, please will bake the door is closed, the guarantee baking box sealing, prevent leakage, temperature influence the baking effect;
- Don't open the door, as far as possible when baking box running if must open, shortening the time of can open the door as far as possible;
- After baking, must be natural cooling modules to < 36 °C before wear anti-static gloves out, so as not to burn.
- Operation, forbidden module bottom touch water or dirt;
- Temperature and humidity control level for Level3, storage and baking conditions based on IPC/JEDEC J - STD - 020.

5.4 MSL/Storage Condition

Figure 15. Storage Condition

5.5 Recommended Reflow Profile

Reflow times <= 2times (Max.)

Temperature profile for evaluation of solder heat resistance of a component (at solder joint)

Figure 16. Temperature Curve

6 Reference circuit

EMW3162 user reference circuit is as follows:

Figure 16-the power reference circuit, Figure 17-USB to serial reference circuit, Figure 18-module refer to the external interface circuit.

Figure 17. Power reference circuit

Figure 18. USB to serial reference circuit

Figure 19. Module refer to the external interface circuit

7 5 V UART - 3.3V UART conversion reference circuit

EMW3162 UART is 3.3 V, if the user use UART chip is 5 V, the need to convert the voltage, can with EMW3162 UART communication, please refer to the 5 V to 3.3 V UART conversion circuit Figure 19.

Figure 20. UART 5 V - 3.3 V conversion circuit

8 Sales Information and Technical Support

If you need to get the latest information on this product or our other product information, you can visit: http://www.mxchip.com/.

If you need to get technical support, please call us during the working hours.

From Monday to Friday, morning 9:00~12:00, afternoon 13:00~18:00

Telephone: +86 (021)52655026-822

Email: support@mxchip.com

Postcode: 200333

Contact address: Room 811, Tongpu Building, No.1220, and Tongpu Road, Shanghai, China

9 Version Update Instructions

Data	Revision	Changes		
		1. Update 2.2 recommended package		
		2. Update section 4.1 antenna type		
		3. Add section 5.2 production Guide		
	2015-08-05 V2.4	(Please read carefully)		
2015-08-05		4. increased 5.3 considerations		
		5. add a 6th chapter reference circuit		
		6. Increase chapter 7 the UART 5 V - 3.3 V		
		UART conversion reference circuit		
	5			
	11/6	Update the mechanical Dimensions		
2016-3-14	V2.5			