Exercise Sheet 3

Due: Monday, 19. Sept.

Exercise 1 (5 points). Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be non-empty open subsets. Show that if $\phi: U \to V$ is a diffeomorphism, then n = m.

In the following exercises, we make use of the following three maps.

$$\chi: B_1(0) \longrightarrow \mathbb{R}^3$$

$$x \longmapsto (x_1, y_2, \sqrt{1 - x_1^2 - x_2^2}),$$

$$\psi: (0, \pi) \times (0, 2\pi) \longrightarrow \mathbb{R}^3$$

$$(\phi, \theta) \longmapsto (\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)),$$
and
$$\sigma: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x_1, x_2) \longrightarrow \left(\frac{2x_1}{1 + x_1^2 + x_2^2}, \frac{2x_2}{1 + x_1^2 + x_2^2}, \frac{x_1^2 + x_2^2 - 1}{1 + x_1^2 + x_2^2}\right).$$

Exercise 2 (20 points). For each of the maps χ , ψ , and σ :

- 1. Argue that each map is smooth using Fact 2.12 from the notes.
- 2. Show that each map is regular on its given domain, i.e., that the Jacobian has maximal rank.

Exercise 3 (20 points).

- 1. Find the intersections of the images of the following pairs of functions
 - The functions ψ and χ
 - The functions ψ and σ .

and determine the corresponding subsets of these functions' domains.

2. Show that, where they are defined, $\sigma^{-1} \circ \psi$ and $\chi^{-1} \circ \psi$ are diffeomorphisms.

Exercise 4 (15 points). Let $\gamma:(a,b)\to\mathbb{R}^2$ be a smooth regular curve which is injective.

1. Show that the image of γ is a smooth 1-dimensional submanifold of \mathbb{R}^2 .

2. Suppose that the first coordinate of γ is always positive. Define the corresponding surface of revolution R_{γ} as follows. Say that a point $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ lies in R_{γ} precisely when the point

$$\left(\frac{\langle (x_1, x_2, x_3), (x_1, x_2, 0)\rangle}{|(x_1, x_2, 0)|}, x_3\right)$$

lies in the image of γ . Give a geometric interpretation (in words) of this condition, and draw a picture to accompany your explanation.

3. Show that R_{γ} can be equipped with the structure of a 2-dimensional submanifold of \mathbb{R}^3 .

Exercise 5 (10 points). Consider the map

$$\psi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
$$(x_1, x_2) \longmapsto (x_1^3 - x_1, x_1^2 - 1, x_2)$$

- 1. Show that ψ is smooth and regular.
- 2. Is the image of ψ a submanifold of \mathbb{R}^3 ? Explain why or why not. Draw a picture.