On my honor, I have not given, nor received, nor witnessed any unauthorized assistance on this work.

Print name and sign:

Question:	1	2	3	4	5	6	Total
Points:	6	5	8	4	5	2	30
Score:							

- 1. Given the statement "If there is a hurricane, then it is raining" find the following:
 - (a) (2 points) Give the original statement in formal propositional notation (i.e. define p, q, and the appropriate logical connectives).

Solution: Let p be the statement "there is a hurricane" and q be the statement "it is raining". Then $p \to q$.

(b) (2 points) The converse of the statement in propositional logic and English

Solution: $q \rightarrow p$

If it is raining, then there is a hurricane.

(c) (2 points) The contrapositive of the statement in propositional logic and English.

Solution: $\neg q \rightarrow \neg p$

If it is not raining, then there is no hurricane.

2. (5 points) Show (via truth tables) that $(p \leftrightarrow q) \rightarrow (p \rightarrow q)$ is a tautology.

	p	q	$p \leftrightarrow q$	$p \rightarrow q$	$(p \leftrightarrow q) \to (p \to q)$
	0	0	1	1	1
Solution:	0	1	0	1	1
	1	0	0	0	1
	1	1	1	1	1

For full credit, you MUST show the two intermediate column in the truth table. Showing only the final result (all trues) is worth 1 point of credit only.

- 3. Let $A = \{w, x, y, z\}$ and $B = \{a, y\}$.
 - (a) (1 point) Is $x \in A$? ______
 - (b) (1 point) Is $\{a\} \in B$? _____
 - (c) (1 point) Is $y \subseteq B$? _____
 - (d) (1 point) Is $\{z\} \subseteq A$? _______
 - (e) (2 points) Give the power set of B.

Solution: $\{\emptyset, \{a\}, \{y\}, \{a, y\}\}$

(f) (2 points) Show $A \times B$.

Solution: $\{(w, a), (w, y), (x, a), (x, y), (y, a), (y, y), (z, a), (z, y)\}$

- 4. Conversions:
 - (a) (2 points) Convert 42 (base 10) to 8-bit binary (base 2).

Solution: 00101010

(b) (2 points) Convert 10011101 (8-bit binary, base 2) to hexadecimal (base 16)

Solution: 0x9D

- 5. Let $A = \{0, 2, 4, 6, 8, 10\}B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find:
 - (a) (2 points) $(A \cup B) \cap C$

Solution: $A \sqcup B = \{0, 1, 2, 3, 4, 5\}$

```
A \cup B = \{0, 1, 2, 3, 4, 5, 6, 8, 10\} (A \cup B) \cap C = \{0, 1, 2, 3, 4, 5, 6, 8, 10\} \cap C = \{0, 1, 2, 3, 4, 5, 6, 8, 10\} \cap \{4, 5, 6, 7, 8, 9, 10\} = \{4, 5, 6, 8, 10\}
```

(b) (3 points) Draw a Venn diagram representing the three sets.

6. (2 points) You are given the code:

```
if(x > 4) {
    x = 0;
}
```

Represent this code as formal propositional logic – that is, define propositions and the connectives to represent the above code.

Solution: Let p be the proposition x > 4 and q be the proposition x = 0. Then our representation is $p \to q$

Standard Sets:

- \mathbb{R} : set of real numbers
- \mathbb{Q} : set of rational numbers $\{a/b : a \in \mathbb{Z} \text{ and } b \in \mathbb{Z} \text{ and } b \neq 0\}$
- \mathbb{N} : set of natural numbers $\{0, 1, 2, 3\}$
- \mathbb{Z} : set of all integers $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{Z}+:$ set of positive integers $\{1, 2, 3, ...\}$

Set Symbols:

- \bullet \subseteq : "is a subset of"
- \bullet \subset : "is a proper subset of"
- \in : "is an element of"

Identity Laws:	$p \wedge T \equiv p$
dentity Laws.	1
	$p \vee F \equiv p$
Domination Laws:	$p \lor T \equiv T$
	$p \wedge F \equiv F$
Idempotent Laws:	$p \lor p \equiv p$
	$p \wedge p \equiv p$
Double negation Law:	$\neg(\neg p) \equiv p$
Commutative Laws:	$p \vee q \equiv q \vee p$
	$p \wedge q \equiv q \wedge p$
Associative Laws:	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
Distributive Laws:	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
DeMorgan's Laws:	$\neg (p \land q) \equiv \neg p \lor \neg q$
	$\neg (p \lor q) \equiv \neg p \land \neg q$
Absorption Laws:	$p \lor (p \land q) \equiv p$
	$p \land (p \lor q) \equiv p$
Negation Laws:	$p \vee \neg p \equiv T$
	$p \land \neg p \equiv F$