

Niels Henrik Abels matematikkonkurranse 2008–2009. *Løsninger*

Første runde 6. november 2008

Oppgave 1. Hvis Pål spiser x pannekaker, spiser Per $2x$ og Kari $4x$ pannekaker – til sammen $7x=21$, og $x=3$. Så Pål spiser 3 pannekaker og Per 6 – til sammen 9
Oppgave 2. Første bokstav kan velges på 4 måter. For hver av disse måtene kan vi velge andre bokstav på 2 måter (en av de to vokalene hvis første bokstav var konsonant, og en av de to konsonantene hvis første bokstav var vokal) – til sammen kan de to første bokstavene velges på 8 måter. For de to siste bokstavene har vi ikke noe valg
Oppgave 3. Summen av omkretsene av de tre ytre trekantene er lik summen av omkretsen av den store trekanten og omkretsen av den indre trekanten. $16 + 24 + 27 - 24 = 43$.
Oppgave 4. Siste siffer i antall drops er 1 eller 6, fordi det blir 1 til overs når de deles på 5. Men antallet er delelig på 4, og da kan ikke siste siffer være 1 (et oddetall er ikke delelig på et partall). Tallene under 60 med 6 som siste siffer og som er delelig på 4, er 16, 36 og 56. Av disse er det bare 16 som gir 1 til overs når vi deler på 3. Hvis 16 deles på 7, blir det 2 til overs
Oppgave 5. Trekantens høyde møter midten av grunnlinja, slik at høyden er $\sqrt{2^2-1^2}=\sqrt{3}$, og trekantens areal er $2\sqrt{3}/2=\sqrt{3}$. Områdene som fjernes, er tre seksdels sirkler, hver med areal $\pi 1^2/6=\pi/6$. Totalt fjernes $3\pi/6=\pi/2$, og arealet av det gjenværende området er $\sqrt{3}-\pi/2$
Oppgave 6. Per sykler $15 \text{ m/s} \cdot 50 \text{ s} = 750 \text{ m}$ på de 50 sekundene . Pål sykler 200 m kortere, så han sykler med farten $550 \text{ m/50 s} = 11 \text{ m/s}$
Oppgave 7. La én banan og to epler koste x kr, og la én pære koste p kr. Opplysningene i oppgaven gir at $2x+3p=70$ og $3x+p=63$. Så $7x=3(3x+p)-(2x+3p)=3\cdot 63-70$, og $x=3\cdot 9-10=17$
Oppgave 8. La trekanten EBD ha grunnlinje g og høyde h . Trekantene FDC og EBD er formlike, så det fins et tall k (det lineære forholdstallet) som er slik

at trekanten FDC har grunnlinje kg og høyde kh. Forholdet mellom arealene av FDC og EBD er $4/9 = kg \cdot kh/(gh) = k^2$, slik at k = 2/3. Grunnlinja i trekanten AEF er like lang som grunnlinja i FDC og høyden den samme som høyden i EBD, og arealet er dermed $kg \cdot h/2 = k \cdot gh/2 = k \cdot 9 = 6$. c

Oppgave 10. La x være lengden av den korteste kateten. Da har hypotenusen lengde 2x, og den lengste kateten har lengde $\sqrt{(2x)^2 - x^2} = \sqrt{3}x$ ved Pytagoras' læresetning. Oppgaven sier at det fins et punkt som er slik at de tre normalene fra punktet til sidene alle har lengde 1. Dann tre trekanter ved å trekke linjestykker mellom

hvert hjørne i trekanten til dette punktet. De tre normalene er høyder i disse trekantene. Summen av arealene av disse tre småtrekantene er $\sqrt{3}x/2 + x/2 + 2x/2 = (\sqrt{3} + 3)x/2$. Men summen av arealene er også lik arealet av den opprinnelige trekanten, $\sqrt{3}x \cdot x/2$. Så $(\sqrt{3} + 3)x/2 = \sqrt{3}x^2/2$, som gir $x = 1 + \sqrt{3}$. Arealet av den store trekanten er dermed $(\sqrt{3} + 3)(1 + \sqrt{3})/2 = 3 + 2\sqrt{3}$.

Oppgave 11. Ved Pytagoras' setning har AC lengde $\sqrt{13^2-12^2}=5$. La h være lengden av AD og g lengden av CD. Trekantene ABC og DAC er formlike, så g/5=5/13 og h/5=12/13. Arealet av trekanten ADC er $gh/2=1/2\cdot 5\cdot 5/13\cdot 5\cdot 12/13=$

Oppgave 12. Antall nuller bakerst i tallet er største k som er slik at tallet er delelig på 10^k , altså den minste av multiplisiteten (antall ganger et tall forekommer som primfaktor) av 2 og multiplisiteten av 5 som primfaktorer til tallet. Multiplisiteten av 5 er 12 (5 er primfaktor i de ti tallene 5, 10, ..., 50, og har multiplisitet 2 som primfaktor i 25 og i 50), mens multiplisiteten av 2 er større (det er 26 partall i produktet i oppgaven). \mathbf{E}

Oppgave 13. Antall par (x, y) av hele tall, der x og y er fra og med 1 til og med 20, er 20^2 . I 20 av disse er x = y. Vi krever $x \le y$, og må se bort fra

halvparten av de øvrige 20^2-20 parene. Antallet er $20+(20^2-20)/2=210$
Oppgave 14. Fordi a, b, c og d er heltall, gjelder $a+b+c \le 47, \ b+c-d \ge 21$ og $a+c+d \ge 37$. Da er $a+b+2c = (b+c-d)+(a+c+d) \ge 21+37=58$, og $c=(a+b+2c)-(a+b+c) \ge 58-47=11$. Så $c \ge 11$. Og 11 er en mulig verdi for c – ulikhetene er oppfylt hvis $(a,b,c,d)=(26,10,11,0)$ c
Oppgave 15. De fire tallene er fire av tallene 1, 2, 4, 8, 251, 502, 1004 og 2008, som er de positive heltallene som går opp i 2008. Det største av de fire tallene er høyst 251, for 502 sammen med de tre minste -1 , 2 og 4 $-$ gir et for stort produkt. Det største tallet kan ikke være 8 eller mindre, for da blir produktet for lite. Så det største tallet er 251. De tre andre er tre tall blant 1, 2, 4 og 8 som har produkt 8, altså 1, 2 og 4. Summen er $1+2+4+251=258$.
Oppgave 16. Vi har de ti mulighetene 20, $10+10$, $10+5+5$, $10+5+1+\cdots+1$, $10+1+\cdots+1$, $5+5+5+5+5+5+1+\cdots+1$, $5+1+\cdots+1$ og $1+\cdots+1$.
Oppgave 17. $(x+1)(x+y) = x^2 + xy + x + y = 143 = 11 \cdot 13$, så $x+1 = 11$ og $x+y = 13$ (andre muligheter er utelukket, siden $2 \le x+1 \le x+y$), altså $x = 10$ og $y = 3$, så $x-y = 7$
Oppgave 18. $12n + 100 = 3(4n + 1) + 97$. Fordi $4n + 1$ går opp i $12n + 100$, går $4n + 1$ også opp i 97. Men 97 er et primtall, så den eneste muligheten når n skal være et positivt heltall, er $4n + 1 = 97$, altså $n = 24$
Oppgave 19. Skriv de to tallene som $28 - x$ og $28 + x$. Vi krever $28^2 - x^2 = (28 - x)(28 + x) > 650$, det vil si $x^2 < 28^2 - 650 = 134$. Fordi $11^2 = 121 < 134$, mens $12^2 = 144 > 134$, er ulikheten oppfylt når $-11 \le x \le 11$. De 23 mulige

Oppgave 20. På figuren er tallet i punkt (x, y) i 4×2 rutenettet antall måter vi kan oppnå stillingen x poeng til Kari og y poeng til Per på. Antall måter vi kan oppnå en stilling der Kari eller Per har 0 poeng på, er én (Kari har vunnet alle rundene eller Per har vunnet alle rundene). Hvis vi starter med disse enerne, som er markert på aksene,

Abelkonkurransen 2008-2009

Første runde

Løsninger

Side 4 av 4

Fasit

1	В	11	Α
2	D	12	E
3	Α	13	С
4	В	14	С
5	Α	15	Α
6	E	16	С
7	D	17	В
8	С	18	Α
9	D	19	D
10	Α	20	D

Hvis denne sida kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.