

DEPARTEMEN TEKNIK INFORMATIKA

Support Vector Machine

Kecerdasan Komputasional

Dini Adni Navastara

Capaian Pembelajaran

Mahasiswa mampu menjelaskan konsep klasifier dengan fungsi diskriminan linear maupun non-linear

f(x,w,b) = sign(w. x - b)

Classifiers Margin

Ide dasar SVM: memaksimalkan distance (jarak) antara hyperplane dan titik sampel terdekat

Definisikan margin/batas linear classifier sebagai lebarnya dimana batas tersebut dapat dimaksimalkan mencapai titik data terdekat

• •

Linear SVM secara Matematis

$$w \cdot x^+ + b = +1$$

$$w \cdot x^{-} + b = -1$$

$$w \cdot (x^+-x^-) = 2$$

$$M = \frac{(x^+ - x^-) \cdot w}{|w|} = \frac{2}{|w|}$$

Dimana,

M: Margin

w: bobot

x*: support vector kelas +1 x: support vector kelas -1

Problem Optimasi

- $\{x_1,...,x_n\}$ adalah data set dan $y_i \in \{1,-1\}$ adalah kelas label dari x_i
- Batas keputusan harus dapat mengklasifikasi semua titik dengan benar

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1, \quad \forall i$$

Problem optimasi terbatas

$$\text{meminimalkan } \frac{1}{2}||\mathbf{w}||^2$$

dimana
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1$$
 $\forall i$

Problem Optimasi

Kita dapat mengubah problem menjadi bentuk dual

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

dimana
$$\alpha_i \ge 0, \sum_{i=1}^n \alpha_i y_i = 0$$

- Problem quadratic programming (QP)
 - Global maximum pada α_i dapat selalu ditemukan
- \boldsymbol{w} dapat diperbaiki menjadi $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

Karakteristik Solusi

- Kebanyakan nilai α_i adalah nol
- x_i dengan nilai α_i positif disebut sebagai support vectors (SV)
 - Batas keputusan ditentukan oleh SV
 - Diketahui t_i (j=1, ..., s) adalah indeks dari SV

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

- Untuk testing dengan data baru (z)
 - Hitung $\mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^s \alpha_{t_j} y_{t_j} (\mathbf{x}_{t_j}^T \mathbf{z}) + b$
 - Dan klasifikasikan z sebagai kelas 1 jika jumlahnya positif, selain itu diklasifikasikan sebagai kelas 2

Interpretasi Geometri

Tidak dapat Dipisahkan secara Linier?

• Memperbolehkan adanya *error* (ξ) pada klasifikasi

Bagaimana jika titik sampel tidak dapat dipisahkan secara linier?

Soft Margin Hyperplane

- Definisikan ξ_i =0 jika tidak ada error untuk x_i
 - ξ_{i} adalah variabel untuk mendefinisikan nilai error

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- Minimalkan $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$
 - C: tradeoff parameter antara error dan margin
- Problem optimasi menjadi

meminimalkan
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$
 dimana $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Soft Margin Hyperplane

- Menemukan nilai yang tepat untuk C menjadi salah satu masalah dalam SVM

Nilai **C** berperan dalam mengontrol *overfitting*.

- C besar → lebih sedikit sampel training yang berada di posisi yang tidak ideal (artinya lebih sedikit error, sehingga berdampak positif pada kinerja classifier) → C terlalu besar menyebabkan overfitting
- C kecil → lebih banyak sampel training yang tidak berada pada posisi ideal (artinya akan banyak error training sehingga berdampak negatif pada kinerja classifier) → C terlalu kecil menyebabkan underfitting

Permasalahan Non-linear

- Ide: transformasi x_i ke ruang berdimensi lebih tinggi untuk memudahkan perhitungan
 - Ruang Input : ruang x_i
 - Ruang Fitur: ruang $\phi(x_i)$ setelah transformasi
- Mengapa perlu transformasi?
 - Operasi linear pada ruang fitur ekivalen dengan operasi non-linear pada ruang input
 - Proses klasifikasi lebih mudah dilakukan dengan transformasi.

Contoh: XOR

Dimensi Tinggi

 Proyeksikan data ke ruang berdimensi tinggi agar data-data tersebut dapat dipisahkan secara linear dan dapat menggunakan linear SVM – (Using Kernels)

Data dari R¹ ditransformasi ke R²

Problem XOR

Permasalahan Non-linear

- Kemungkinan problem transformasi
 - Komputasi yang tinggi dan sulit memperoleh estimasi bagus
- SVM menyelesaikan masalah ini secara bersamaan
 - Kernel tricks untuk komputasi yang efisien
 - Meminimalkan $||w||^2$ dapat menghasilkan classifier yang baik

Kernel Trick

- Hubungan antara fungsi kernel K dan mapping $\phi(.)$ $K(x,y) = \langle \phi(x), \phi(y) \rangle$
 - Disebut sebagai kernel trick
- Secara intuitif, K(x,y) merepresentasikan kemiripan antara data x dan y, dan ini diperoleh dari pengetahuan sebelumnya

Jenis-jenis Fungsi Kernel

No	Nama Kernel	Definisi Fungsi
1	Linier	K(x,y) = x.y
2	Polinomial of degree d	$K(x,y) = (x.y)^d$
3	Polinomial of degree up to d	$K(x,y) = (x.y + c)^d$
4	Gaussian RBF	$K(x,y) = \exp\left(\frac{-\ x-y\ ^2}{2\sigma^2}\right)$
5	Sigmoid (Tanh Hiperbolik)	$K(x,y) = tanh(\sigma(x.y)+c)$

• Contoh SVM Linier pada dataset berikut :

Tentukan Hyperplanenya!

x ₁	x ₂	Kelas (y)
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

• Bentuk Visualisasi data:

• Contoh SVM Linier:

x ₁	x ₂	Kelas (y)
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

- Karena ada dua fitur $(x_1 dan x_2)$, maka w juga akan memiliki 2 fitur $(w_1 dan w_2)$.
- Formulasi yang digunakan adalah sebagai berikut :
 - Meminimalkan nilai : $\frac{1}{2} ||w||^2 = \frac{1}{2} (w_1^2 + w_2^2)$
 - Syarat:

$$y_i(w. x_i + b) \ge 1,$$
 $i = 1,2,3,....,N$

- Karena ada dua fitur $(x_1 \operatorname{dan} x_2)$, maka w juga akan memiliki 2 fitur $(w_1 \operatorname{dan} w_2)$.
- Formulasi yang digunakan adalah sebagai berikut :
 - Meminimalkan nilai margin:

$$\frac{1}{2}||w||^2 = \frac{1}{2}(w_1^2 + w_2^2)$$

• Syarat:

$$y_i(w.x_i + b) \ge 1$$
, dimana $i = 1,2,3,...,N$
 $y_i(w_1.x_1 + w_2.x_2 + b) \ge 1$

x ₁	X ₂	Kelas (y)
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Sehingga didapatkan beberapa persamaan berikut :

$$1.(w_1 + w_2 + b) \ge 1$$
, untuk $y_1 = 1$, $x_1 = 1$, $x_2 = 1$

$$2.(-w_1 + w_2 - b) \ge 1$$
, untuk $y_2 = -1$, $x_1 = 1$, $x_2 = -1$

$$3.(w_1 - w_2 - b) \ge 1$$
, $untuk y_3 = -1$, $x_1 = -1$, $x_2 = 1$

$$4. (w_1 + w_2 - b) \ge 1, untuk y_4 = -1, x_1 = -1, x_2 = -1$$

• Dari 4 persamaan berikut, carilah nilai w_1 , w_2 dan b

$$1.(w_1 + w_2 + b) \ge 1$$

$$2.(-w_1 + w_2 - b) \ge 1$$

$$3.(w_1 - w_2 - b) \ge 1$$

$$4.(w_1 + w_2 - b) \ge 1$$

Tahap 4: didapatkan persamaan hyperplane

$$w_1.x_1 + w_2.x_2 + b = 0$$

$$x_1 + x_2 + 1 = 0$$

$$x_2 = 1 - x_1$$

Tahap 1: Jumlahkan persamaan (1) dan (2)

$$(w_1 + w_2 + b) \ge 1$$

 $(-w_1 + w_2 - b) \ge 1$

-----+

$$2w_2 = 2$$

Maka $w_2 = 1$

Tahap 2: Jumlahkan persamaan (1) dan (3):

$$(w_1+w_2+b)\geq 1$$

$$(w_1 - w_2 - b) \ge 1$$

$$2w_1 = 2$$

Maka
$$w_1 = 1$$

Tahap 3: Jumlahkan persamaan (2) dan (3):

$$(-w_1+w_2-b)\geq 1$$

$$(w_1 - w_2 - b) \ge 1$$

$$-2b = 2$$

Maka
$$b = -1$$

Visualisası garis hyperplane (sebagai fungsi klasifikasi) :

$$w_1x_1 + w_2x_2 + b = 0$$

 $x_1 + x_2 - 1 = 0$

$$x_2 = 1 - x_1$$

\mathbf{x}_{1}	$x_2 = 1 - x_1$
-2	3
-1	2
0	1
1	0
2	-1

• •

Misalkan diketahui data uji/ data testing berikut :

Diketahui : $f(x) = x_1 + x_2 - 1$

Kelas = sign(f(x))

No	Data Uji		Hasil Klasifikasi
NO	x ₁	x ₂	<u>Kelas</u> = sign(x ₁ + x ₂ - 1)
1	1	5	sign $(1 + 5 - 1) = +1$
2	-1	4	sign (-1 + 4 - 1) = +1
3	0	7	sign $(0 + 7 - 1) = +1$
4	-9	0	sign (-9 + 0 - 1) = -1
5	2	-2	sign (2 - 2 - 1) = -1

• •

Kelebihan dan Kekurangan

sebagai input ke SVM, bukan vektor fitur

www.its.ac.id

INSTITUT TEKNOLOGI SEPULUH NOPEMBER, Surabaya - Indonesia

SVM vs Neural Networks

•

