1. Что такое операции свертки в сверточных нейронных сетях?

Свертка — прохождение частей изображения через слой одинаковых нейронов. Результат записывается в новое изображение, называющееся картой признаков.

2. Можно ли для задачи регрессии в качестве метрики использовать бинарную кроссэнтропию?

Нельзя, т.к. задача регрессии — предсказание какого-то вещественного значения на основе начальных данных, бинарная кроссэнтропия же применяется для задач бинарной классификации, где нужно предсказать, к какой из заранее заданных групп принадлежит каждый элемент.

3. Что такое коэффициент регуляризации?

Регуляризация используется в нейронных сетях для борьбы со слишком большими весами сети и переобучением. Для этого вводится регуляризатор:

$$\|w\|^2 = \sum_{i=1}^d w_i^2$$
 или $\|w\| = \sum_{i=1}^d |w_i|$. И тогда вместо задачи $Q(w,X)$ — \rightarrow min будем решать задачу $Q(w,X) + \alpha R(w)$ — \rightarrow min, где $R(w)$ — регуляризатор, α — коэфициент регуляризации. При этом необходимо найти такое α , чтобы модель не получилось слишком сложной (снова переобучение) или слишком простой (тогда от весов не будет смысла).

4. Гарантируется ли, что для данной задачи при одной и той же архитектуре сети, переобучение будет наблюдаться при 18 эпохах?

Нет, т.к. данная архитектура может оказаться слишком сложной или слишком простой для других данных.

5. Какая функция позволяет применить к модели новые данные?

Функция fit позволяет обучить нашу модель. При этом, если мы вызовем эту функцию на уже обученную модель, то обучение продолжиться с той точки, на которой закончилось, таким образом можно добавлять новые данные в уже обученную сеть.

6. Имеет ли смысл применять проверку по k блокам при большом размере датасета?

Скорее не имеет, т.к. кросс—валидация и хороша тем, что может на небольшом размере датасета получать более лучшее качество обучения. Если же размер датасета будет большим, то качество результата не будет стоить затраченных на него вычислительных мощностей.

7. Почему обучение идет на основании mse, но анализируется mae?

Функция потерь mse используется Keras'ом для оптимизации модели во время обучения и это она минимизируется моделью. mae же здесь — метрика, которая используется для оценки производительности. mae удобней для анализа т.к. является по сути разницей между истинным и прогнозируемым значением; по mae легче судить о точности обученной модели.