The entailment is true. The truth table is as follows:

α	$\boldsymbol{\beta}$	γ	$\phi_1(lpha,eta,\gamma)$	$\phi_2(lpha,eta,\gamma)$	$\phi(lpha,eta,\gamma)$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	1	1	1

Tell whether the following propositional formula is valid:

$$\phi(A,B) = (A \land B) \lor (\neg A \land \neg B)$$

FALSE. The truth table is as follows:

A	В	$\phi(A, B)$
0	0	1
0	1	0
1	0	0
1	1	1

- (1) $(Study \land Work) \Rightarrow Happy$ correct
- (2) $Study \wedge Work \wedge Happy$ incorrect
- (3) $\neg Study \lor \neg Work \lor Happy$ correct, logically equivalent to 1. Why?
- (4) $(Study \lor Work) \Rightarrow Happy$ incorrect

Recall: A knowledge base is consistent if it admits at least one model.

The knowledge base is **consistent** because there are two models:

$$\{A,B,C,D\}$$
 and $\{A,C,D\}$

The new knowledge base written in CNF is as follows:

$$A \lor B$$

$$\neg B \lor A$$

$$\neg A \lor C$$

$$\neg A \lor D$$

 $A \lor B$ is **NOT** a Horn clause, because it has more than one positive literal.

Derive $A \wedge C \wedge D$ using Resolution

Clausal form including the negated thesis:

$$\{A \lor B\}_1, \{\neg B \lor A\}_2, \{\neg A \lor C\}_3, \{\neg A \lor D\}_4, \{\neg A \lor \neg C \lor \neg D\}_5$$

Proof by **resolution**

```
From (1) and (2) \Rightarrow \{A\}_6
```

From (3) and (6)
$$\Rightarrow$$
 { C }₇

From (4) and (6)
$$\Rightarrow$$
 { D }₈

From (5) and (6)
$$\Rightarrow \{\neg C \lor \neg D\}_9$$

From (7) and (9)
$$\Rightarrow \{\neg D\}_{10}$$

From (8) and (10)
$$\Rightarrow$$
 {}

$$\Gamma = \{\{(L \wedge V) \Rightarrow H\}, \{L \Rightarrow V\}, \{L\}\} \vdash_R (V \wedge H)$$

Negate the thesis:

Transform into clausal form:

$$\{\neg L, \neg V, H\}_1, \{\neg L, V\}_2, \{L\}_3, \{\neg V, \neg H\}_4$$

From (1) and (2)
$$\Rightarrow \{\neg L, H\}_5$$

From (3) and (5)
$$\Rightarrow$$
 { H }₆

From (4) and (6)
$$\Rightarrow \{\neg V\}_7$$

From (2) and (7)
$$\Rightarrow \{\neg L\}_8$$

From (3) and (8)
$$\Rightarrow$$
 {}