Week 14: Whole-cell models; Digital evolution

- Genome-scale metabolic models
 - Reconstruction
 - Flux balance analysis
- Artificial life

Flux balance analysis (FBA)

FBA: metabolic network \rightarrow linear programming optimization problem.

The main constraints in FBA: steady-state mass conservation of metabolites.

- Relies on balancing metabolic fluxes
- Is based on the fundamental law of mass conservation
- Is performed under steady-state conditions (an example of constraint...)
- Requires information only about:
 - a. the stoichiometry of metabolic pathways,
 - b. metabolic demands, and
 - c. a few strain specific parameters
- Does NOT require enzymatic kinetic data

The results of FBA on a metabolic network of the top six reactions of glycolysis.

- The predicted flux through each reaction is proportional to the width of the line.
- **Red springy arrow**: Objective function; **Red bars**: Constraints on α -D-glucose and β -D-glucose import.

Non-lethal gene deletion in a metabolic network.

 Flux through the objective function is halved but is still present.

Lethal gene deletion in a metabolic network.

 No flux through the objective function → pathway is no longer functional.

1. Reaction network formalism

Chemical reactions

<u>Internal</u>	Exchange		
$R1: -1 A \rightarrow 1 B$	R4: 1 A		
$R2: -1 B \rightarrow 1 C$	<i>R</i> 5: −1 B		
$R3: -1 C \rightarrow 1 B$	R6: −1 C		
	<i>R</i> 7: 1 C		

	<i>R</i> 1	R2	R3	R4	R5	R6	R7
Α	-1	0	0	1	0	0	0
В	1	-1	1	0	-1	0	0
С	0	1	-1	0	0	-1	1

1. Reaction network formalism

	_ <i>R</i> 1	R2	R3	R4	R5	R6	R7 _
Α	-1	0	0	1	0	0	0 0 1
В	1	-1	1	0	-1	0	0
С	0	1	-1	0	0	-1	1]

2. FBA formulation

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \mathbf{S}\mathbf{v}$$

Concentration

: Time

Stoichiometric matrix

: Flux vector

$$Sv = 0$$

LP formulation

Objective: $\max Z = \mathbf{c} \cdot \mathbf{v}$

Constraints:

Lee (2006) Brief. Bioinfo.

Flux balance analysis: Objective function

Objective function: Physiologically-meaningful or design-based objective for the interrogation or exploitation of a given system.

Examples:

- Maximizing...
 - biomass or cell growth
 - maximizing ATP production
 - maximizing the rate of synthesis of a particular product
- Minimizing...
 - ATP production
 - o nutrient uptake (both to determine conditions of optimal metabolic energy efficiency)

Flux balance analysis: Constraints

No. of equations (one per reactant) << no. of unknown variables (reaction fluxes).

- An under-determined set of linear equations.
- Therefore, optimize fluxes given cellular objective given a bunch of constraints.
- Principal constraint: mass balance
- Additional constraints:
 - physico-chemical constraints
 - spatial or topological constraints
 - o condition dependent environmental constraints
 - regulatory constraints
- All constraints together represent a set of linear equations.

II. FBA formulation

Dynamic mass balance

$$\frac{dC}{dt} = S^{1}$$

Concentration

Stoichiometric matrix

Flux vector

I. Reaction network formalism

Steady-state assumption

$$Sv = 0$$

LP formulation

Objective: max $Z = \mathbf{c} \cdot \mathbf{v}$

Constraints:

Lee (2006) Brief, Bioinfo.

FBA is a formalism that defines the metabolic network as a linear programming optimization problem. The main constraints in FBA are imposed by the steady-state mass conservation of metabolites.

II. FBA formulation

Preparing the first six reactions in glycolysis for FBA:

- Addition of an objective function (red).
- Import & export of nutrients (ATP, ADP, BDG, ADG) across the system boundary (dashed green line).

Constraint-based modeling

- 1. No constraints: flux may lie at any point in solution space.
- 2. Mass balance constraints (imposed by the stoichiometry) and capacity constraints (imposed by the lower and upper bounds: $a_i \& b_i$): defines allowable solution space.
 - a. Any flux distribution within this space is allowable; Points outside this space are denied
- 3. Optimization of an objective function: A single optimal flux distribution that lies on the edge of the allowable solution space.

Constraint-based modeling

Linear programming

- Feasible solution space:
 - shaded area and solid lines
 - defined by: 0
 - flux capacities,
 - stoichiometric relationships, and
 - design specification (e.g. gene deletions).
- Objective function: dotted line
- Optimal solution: circular dot

$$\max_{1} v_{1} + v_{2}$$
s.t. $v_{1} + 2v_{2} \le 8$

$$0 \le v_{1}, v_{2} \le 8$$

Constraint-based modeling

- Mixed Integer LP (MILP):
 - Integer variables are involved in a linear programming problem (e.g. binary variable formulation for gene deletion).
- Quadratic programming (QP):
 - Quadratic objective function subject to linear constraints.
 - This technique is generally used for finding the closest point to a specified point.
- Nonlinear programming (NLP):
 - Nonlinear objectives or constraints.
 - Generally difficult to solve for global optimal solution because of its non-convexity.

Lee (2006) Brief. Bioinfo.

I. Reaction network formalism

	R1	R2	R3	R4	R5	R6	R7
Α	-1	0	0	1	0	0	0
В	1	-1	1	0	-1	0	0
С	0	1	-1	0	0	-1	1

II. FBA formulation

Dynamic mass balance

$$\frac{dC}{dt} = Sv$$

C: Concentration

t : Time

S: Stoichiometric matrix

v : Flux vector

Steady-state assumption

$$Sv = 0$$

LP formulation

Objective: $\max Z = v_5$

$$\begin{bmatrix}
R1 & R2 & R3 & R4 & R5 & R6 & R7 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
v_1 \\ \vdots \\ v_7
\end{bmatrix} = \mathbf{0}$$

III. Hypothetical flux distribution at steady-state

$$\mathbf{v} = [6.67 \ 3.33 \ 6.67 \ 6.6710.0 \ 3.33 \ 6.67]^{\mathsf{T}}$$

FBA is a formalism that defines the metabolic network as a linear programming optimization problem. The main constraints in FBA are imposed by the steady-state mass conservation of metabolites.

Genome-scale metabolic network reconstruction & model

Organism	Strain	Genes	Version	GR	Mets	Rxns	Comp
Bacillus subtilis		4,225	model_v3	844	988	1,020	2 (c,e)
Escherichia coli	K12 MG1655	4,405	iAF1260	1,260	1,039	2,077	3 (c,e,p)
Helicobacter pylori	26695	1,632	iIT341	341	485	476	2 (c,e)
Pseudomonas putida	KT2440	5,350	iNJ746	746	911	950	3 (c,p,e)
Pseudomonas putida	KT2440	5,350	iJP815	815	886	877	2 (c,e)
Pseudomonas aeruginosa	PA01	5,640	iM01056	1,056	760	883	2 (c,e)
Mycoplasma genitalium	G-37	521	iPS189	189	274	262	2 (c,e)
Lactobacillus plantarum	WCFS1	3,009		721	531	643	2 (c,e)
Streptomyces coelicolor	A3(2)	8,042		700	500	700	2 (c,e)
Leishmania major	Friedlin	8,370	iAC560	560	1,101	1,112	8 (a,f,y,c,e,m,r,n)
Saccharomyces cerevisiae	Sc288	6,183	iMM904	904	713	1,412	8 (c,e,m,x,n,r,v,g)
Homo sapiens		28,783	Recon 1	1,496	2,766	3,311	8 (c,e,m,x,n,r,v,g)

Conversion of reconstruction into a model

- 3. Conversion of reconstruction into computable format
- 38l Initialize the COBRA toolbox.
- 39l Load reconstruction into Matlab.
- 40l Verify S matrix.
- 41 Set objective function.
- 42l Set simulation constraints.

Conversion of reconstruction into a model

Mathematical representation

By definition:

- Substrates have negative coefficients (i.e., they are consumed)
- Products have positive coefficients (i.e., they are produced)

v is a vector of reaction fluxes

Conservation of mass: All steady states can be described by $\mathbf{Sv} = \mathbf{0}$

Conversion of reconstruction into a model

Definition of system boundaries

Exchange reactions

Intracellular

metabolite pool

Demand/sink reactions

e.g., Biotin demand: 1 Biotin[c]
ed by $\mathbf{S}\mathbf{v} = 0$

Constraints:

- Mass conservation: all steady states can be described by $\mathbf{S}\mathbf{v} = \mathbf{0}$
- Thermodynamics (reaction directionality)
- Enzyme capacity or regulation (i.e., presence/absence of an enzyme)

Thiele & Palsson (2010) Nat. Protoc.

e.g., Biotin sink: 1 Biotin[c]

Sink

Network evaluation × Debugging

4. Network evaluation

- 43–44l Test if network is mass-and charge balanced.
- 45l Identify metabolic dead-ends.
- 46–48l Perform gap analysis.
- 49l Add missing exchange reactions to model.
- 50l Set exchange constraints for a simulation condition.
- 51-58l Test for stoichiometrically balanced cycles.
- 59l Re-compute gap list.
- 60–65l Test if biomass precursors can be produced in standard medium.
- 66l Test if biomass precursors can be produced in other growth media.
- 67–75l Test if the model can produce known secretion products.
- 76–78 Check for blocked reactions.
- 79-80l Compute single gene deletion phenotypes.
- 81–82l Test for known incapabilites of the organism.
- 83l Compare predicted physiological properties with known properties.
- 84–87l Test if the model can grow fast enough.
- 88–94l Test if the model grows too fast.

Network evaluation ≈ Debugging

Analysis of biomass precursors synthesis

- -Biomass precursors = cellular growth requirements
- -Pathways to synthesize precursors must be complete (i.e., functional) for the network to simulate growth
- -Testing synthesis of each separate biomass precursor is part of the

Analysis of growth in minimal medium

- -Minimal medium is defined for many organisms and can be found in primary literature
- -Contains at least 1 C-, N-, S- and P-source
- -Auxotrophs may require the presence of addition metabolites

Test for growth on known carbon sources

- -Exchange reactions define medium and environment
- -Transport reactions allow network to consume carbon sources
- -Biodegradative pathways that are required for carbon utilization

Secretion capability

- -Transport and exchange reactions are required in reconstruction to enable secretion
- -Secretion may only occur under certain circumstances (e.g., D-lactic acid formation under anoxic conditions)
- -Comparison with known secretion pattern of multiple metabolites (e.g., secretion of a certain ratio of CO₂ and acetate)

Dead end

Network evaluation ≈ Debugging

Identifying gaps

Connectivity based (topology):

Functionality based (computation)

Network evaluation ≈ Debugging

Gene essentiality

Procedure to iteratively reconstruct metabolic networks.

- Iterate stages 2-4 are continuously...
- ...until model predictions
 are similar to the
 phenotypic characteristics
 of the target organism
 and/or all experimental
 data for comparison are
 exhausted.

1. Draft reconstruction

- 11 Obtain genome annotation.
- 21 Identify candidate metabolic functions.
- 3l Obtain candidate metabolic reactions.
- 4l Assemble draft reconstruction.
- 5 Collect experimental data.

2. Refinement of reconstruction

- 6l Determine and verify substrate and cofactor usage.
- 7l Obtain neutral formula for each metabolite.
- 8l Determine the charged formula.
- 9l Calculate reaction stoichiometry.
- 10l Determine reaction directionality.
- 11 Add information for gene and reaction localization.
- 12l Add subsystems information.
- 13l Verify gene-protein-reaction association.
- 14l Add metabolite identifier.
- 15l Determine and add confidence score.
- 16l Add references and notes.
- 17l Flag information from other organisms.
- 18l Repeat Steps 6 to 17 for all genes.
- 19l Add spontaneous reactions to the reconstruction.
- 20l Add extracellular and periplasmic transport reactions.
- 21 Add exchange reactions.
- 22l Add intracellular transport reactions.
- 23l Draw metabolic map (optional).
- 24-32l Determine biomass composition.
- 33l Add biomass reaction.
- 34l Add ATP-maintenance reaction (ATPM).
- 35l Add demand reactions.
- 36l Add sink reactions.
- 37l Determine growth medium requirements.

Data assembly and dissemination

95l Print Matlab model content.

96l Add gap information to the reconstruction output.

4. Network evaluation

43-44l Test if network is mass-and charge balanced.

- 45l Identify metabolic dead-ends.
- 46-48l Perform gap analysis.
- 49l Add missing exchange reactions to model.
- 50l Set exchange constraints for a simulation condition.
- 51-58l Test for stoichiometrically balanced cycles.
- 59l Re-compute gap list.
- 60-65l Test if biomass precursors can be produced in standard medium.
- 66l Test if biomass precursors can be produced in other growth media.
- 67-75l Test if the model can produce known secretion products.
- 76-78l Check for blocked reactions.
- 79-80l Compute single gene deletion phenotypes.
- 81-82l Test for known incapabilites of the organism.
- 83l Compare predicted physiological properties with known properties.
- 84-87l Test if the model can grow fast enough.
- 88-94l Test if the model grows too fast.

3. Conversion of reconstruction into computable format

- 38I Initialize the COBRA toolbox.
- 39l Load reconstruction into Matlab.
- 40l Verify S matrix.
- 41l Set objective function.
- 42l Set simulation constraints.

Genome-scale metabolic network reconstruction & model

1. Contextualization of HT data

Several studies have overlaid gene microarray data on a metabolic GENRE to determine condition-dependent cell phenotypes. Metabolic GENREs have also been used to interpret metabolomic data, 13C flux data, and to link multiple data types.

4. Interrogation of multi-species relationships

A dual-species metabolic model was built to study Interactions between the syntrophic bacteria, *D. vulgaris* and *M. maripaludis*. Metabolic models have also been used in comparisons of multiple species, such as an analysis of pathway differences between four halophilic bacteria.

2. Guidance of metabolic engineering

Metabolic GENREs guided efforts to engineer malate and succinate producing strains of *S. cerevisiae* and *M. succiniciproducens*. GENREs have also helped determine ways to increase the respiration rate of *G. sulfurreducens* and scale-up vaccine production against *N. meningitides*.

5. Network property discovery

Metabolic GENREs have been used to study metabolite connectivity, and pathway redundancy *in silico*. Pathway-analysis tools have also spawned techniques such as flux coupling analysis, which has helped identify novel drug targets in *M. tuberculosis*.

3. Directing hypothesis-driven discovery

A Metabolic GENRE aided in determining pathway usage and discovering a novel citramalate synthase gene in *G. sulfurreducens*. GENREs have also helped study the effects of transposons on downstream genes, and identify transc riptional timing patterns in *S. cerevisiae*.

