Table 1: Categorical data from the Massachusetts Travel Survey

Mod	le	Income		Purpose	Gender		
Bin	N	Bin	N	Bin	N	Bin	N
Rail Drive Bus Subway Taxi	728 9,086 1,844 2,429 72	$\begin{array}{c} \text{; } 25,000 \\ 25,000\text{-}49,999 \\ 50,000\text{-}74,999 \\ 75,000\text{-}99,999 \\ 100,000\text{-}149,999 \\ \geq 150,000 \end{array}$	1,838 1,813 2,222 2,150 2,860 3,276	Other Recreation Shopping/errands Work/school	1,699 2,137 4,079 6,244	Female Male	7,800 6,359

Table 2: Discrete bins of continuous data from the Massachusetts Travel Survey

	Age (years))	Dia	stance (mi	les)	Time-of-day	
Bin	Median	N	Bin	Median	N	Bin	N
16-20	17	368	; 0.5	0.46	1,178	AM (06:00-9:59)	2,578
20 - 29	25	1,186	0.5 - 1	0.83	2,447	Midday (10:00-15:59)	5,758
30 - 39	35	2,069	1-2	1.56	3,603	PM (16:00-18:59)	3,800
40-49	45	3,321	2-4	2.96	3,365	Night (19:00-5:59)	2,023
50-59	54	4,069	4-8	5.73	2,645		
60-69	63	2,322	8-12	10.14	725		
≥ 70	75	824	≥ 12	13.91	196		

Table 3: Multinomial model results

	Taxi			Bus				Sub	way	Rail		
Variable	β	SE	p-value	β	SE	p-value	β	SE	p-value	β	SE	p-value
Intercept	-1.33	0.88	1.3e-01	-4.35	1.13	1.1e-04 ***	13.03	2340.50	1.0e+00	5.86	0.81	5.2e-13 ***
Age	-0.01	0.01	6.2e-01	-0.03	0.00	< 2.2e-16 ****	-0.03	0.00	< 2.2e-16 ***	-0.02	0.01	4.2e-03 **
Cost	-0.58	0.05	< 2.2e-16 ***	6.21	0.75	2.2e-16 ***	-4.58	1170.25	1.0e+00	0.30	0.08	1.3e-04 ***
Gender	-0.17	0.33	6.1e-01	-0.04	0.09	6.6e-01	0.17	0.10	7.9e-02	-0.21	0.18	2.5e-01
Income - 25,000-49,999	-2.14	0.59	2.7e-04 ***	-2.46	0.15	< 2.2e-16 ****	-0.78	0.19	4.4e-05 ***	-2.23	0.36	4.9e-10 ***
Income - 50,000-74,999	-2.13	0.53	6.1e-05 ***	-2.82	0.15	< 2.2e-16 ****	-0.74	0.19	7.1e-05 ***	-1.93	0.34	1.1e-08 ***
Income - 75,000-99,999	-3.46	0.74	2.8e-06 ***	-3.41	0.17	< 2.2e-16 ****	-0.85	0.19	7.9e-06 ***	-1.85	0.33	3.3e-08 ***
Income - 100,000-149,999	-2.53	0.53	1.7e-06 ***	-3.81	0.16	< 2.2e-16 ****	-1.39	0.18	2.6e-14 ***	-2.33	0.30	1.3e-14 ***
Income - $\geq 150,000$	-1.98	0.44	7.5e-06 ***	-3.96	0.17	< 2.2e-16 ****	-1.55	0.18	< 2.2e-16 ***	-2.28	0.30	4.2e-14 ***
Trip duration	0.65	0.05	< 2.2e-16 ***	-0.16	0.00	< 2.2e-16 ***	-0.17	0.00	< 2.2e-16 ***	-0.25	0.01	< 2.2e-16 ***
Trip purpose - Recreation	-0.19	0.63	7.7e-01	2.14	0.25	< 2.2e-16 ****	2.14	0.32	2.8e-11 ***	1.93	0.71	6.7e-03 **
Trip purpose - Shopping/errands	0.13	0.57	8.2e-01	2.05	0.23	< 2.2e-16 ****	1.74	0.32	4.5e-08 ***	1.73	0.69	1.3e-02 *
Trip purpose - Work/school	0.76	0.56	1.7e-01	3.92	0.23	< 2.2e-16 ****	3.72	0.30	< 2.2e-16 ***	3.76	0.66	1.5e-08 ***
Time of day - Midday	0.03	0.50	9.6e-01	-1.11	0.13	< 2.2e-16 ****	-0.88	0.15	1.1e-08 ***	-1.28	0.28	4.6e-06 ***
Time of day - Night	1.27	0.53	1.6e-02 *	0.57	0.20	3.9e-03 **	-0.63	0.17	2.4e-04 ***	-0.22	0.31	4.8e-01
Time of day - PM	-1.92	0.70	6.2e-03 **	-0.63	0.14	3.7e-06 ***	-0.54	0.14	1.5e-04 ***	0.04	0.25	8.7e-01

McFadden $R^2 = 0.75$

 $^{^*}$ Significance level codes: '***' 99.99%, '**' 99%, '*' 95%

Table 4: Summary statistics for joint VOT error

			Value of	time error				
Model	Minimum	First Quantile	Median	Mean	Third Quantile	Maximum	McFadden R^2	Significant variables
Age×Trip purpose	4.98	17.59	25.03	132.78	41.07	1395.32	0.56	55 of 60
Age×Time of day	4.24	13.78	26.41	72.43	52.73	615.02	0.55	55 of 60
$Distance \times Age$	1.96	19.95	36.22	275.93	412.00	2463.84	0.57	76 of 102
Distance×Trip purpose	2.45	15.76	25.84	307.83	515.06	2582.28	0.58	52 of 60
Distance×Time of day	5.76	11.81	40.62	1550.21	193.05	36577.78	0.56	51 of 60
$Gender \times Age$	7.41	16.53	19.00	34.70	22.56	238.32	0.54	31 of 32
$Gender \times Income$	7.15	11.40	15.23	16.64	19.48	32.61	0.55	28 of 28
$Gender \times Distance$	7.19	9.33	16.08	130.11	90.80	998.04	0.55	30 of 32
Gender×Trip purpose	9.99	12.15	17.90	17.95	23.79	26.53	0.55	20 of 20
Gender×Time of day	4.00	11.70	15.98	22.33	26.36	65.54	0.53	20 of 20
$Income \times Age$	7.19	15.96	26.47	93.19	41.43	710.53	0.56	80 of 88
$Income \times Distance$	7.87	17.91	35.77	622.37	190.09	19865.73	0.58	75 of 88
Income×Trip Purpose	3.48	15.42	24.34	30.63	40.98	76.47	0.58	52 of 52
Income×Time of day	3.81	13.04	17.74	65.33	39.46	927.82	0.56	51 of 52
Trip purpose \times Time of day	4.56	11.26	22.08	36.25	49.09	184.68	0.56	36 of 36

Table 5: Summary of individual variable model estimation results

			T	ravel time			Т	ravel cost	
Variable	VOT	β	SE	z-value	p-value	β	SE	z-value	p-value
Age model, McFad	$den R^2 =$	= 0.54							
16-20	14.2	-0.09	5.58e-03	-16.66	< 2.2e-16 ***	-0.39	8.62e-02	-4.55	5.5e-06 ***
20-29	82.8	-0.10	3.48e-03	-28.98	< 2.2e-16 ***	-0.07	1.93e-02	-3.80	1.5e-04 ***
30-39	39.1	-0.15	4.10e-03	-35.97	< 2.2e-16 ***	-0.23	2.49e-02	-9.09	< 2.2e-16 ***
40-49	50.9	-0.16	3.70e-03	-43.49	< 2.2e-16 ***	-0.19	1.80e-02	-10.54	< 2.2e-16 ***
50-59	58.6	-0.16	3.29e-03	-47.33	< 2.2e-16 ***	-0.16	1.43e-02	-11.16	< 2.2e-16 ***
60-69	56.0	-0.15	3.96e-03	-38.51	< 2.2e-16 ****	-0.16	1.85e-02	-8.82	< 2.2e-16 ***
≥ 70	35.4	-0.17	7.00e-03	-24.17	< 2.2e-16 ***	-0.29	4.27e-02	-6.71	1.9e-11 ***
${\bf Gender},\ McFadden$	$R^2 = 0.$	53							
Female	50.4	-0.14	2.45e-03	-58.68	< 2.2e-16 ***	-0.17	1.20e-02	-14.34	< 2.2e-16 ***
Male	48.1	-0.15	2.66e-03	-54.65	< 2.2e-16 ***	-0.18	1.26e-02	-14.39	< 2.2e-16 ***
Income model, Mc	Fadden	$R^2 = 0.5$	55						
; 25,000	26.9	-0.09	2.62e-03	-35.56	< 2.2e-16 ***	-0.21	3.15e-02	-6.59	4.5e-11 ***
25,000-49,999	33.2	-0.14	4.14e-03	-34.37	< 2.2e-16 ***	-0.26	3.21e-02	-7.99	1.3e-15 ***
50,000-74,999	42.2	-0.15	4.11e-03	-37.19	< 2.2e-16 ***	-0.22	2.52e-02	-8.61	< 2.2e-16 ***
75,000-99,999	32.3	-0.16	4.46e-03	-36.36	< 2.2e-16 ***	-0.30	2.90e-02	-10.38	< 2.2e-16 ***
100,000-149,999	50.1	-0.18	4.48e-03	-39.41	< 2.2e-16 ***	-0.21	1.86e-02	-11.36	< 2.2e-16 ***
$\geq 150,000$	71.7	-0.18	4.14e-03	-42.63	< 2.2e-16 ***	-0.15	1.27e-02	-11.64	< 2.2e-16 ***
Mode model, McFe	$adden R^{2}$	$^{2} = 0.65$							
Rail	10.4	-0.18	6.48e-03	-28.51	< 2.2e-16 ***	-1.07	6.66e-02	-16.04	< 2.2e-16 ***
Drive	4.0	0.05	5.30e-03	8.85	< 2.2e-16 ***	0.71	1.98e-02	35.73	< 2.2e-16 ***
Bus	5.9	-0.16	3.68e-03	-42.25	< 2.2e-16 ***	-1.57	5.55 e-02	-28.27	< 2.2e-16 ***
Subway	6.6	-0.17	3.96e-03	-43.66	< 2.2e-16 ***	-1.57	5.01e-02	-31.28	< 2.2e-16 ***
Taxi	52.2	0.99	3.93e-02	25.13	< 2.2e-16 ***	1.14	3.78e-02	30.03	< 2.2e-16 ***
Travel distance mo	del, Ma	Fadden	$R^2 = 0.55$						
; 0.5	28.0	-0.25	1.05e-02	-23.54	< 2.2e-16 ***	-0.53	6.24e-02	-8.45	< 2.2e-16 ***
0.5-1	25.5	-0.19	5.59e-03	-34.71	< 2.2e-16 ***	-0.46	4.39e-02	-10.43	< 2.2e-16 ***
1-2	34.1	-0.16	3.44e-03	-46.37	< 2.2e-16 ***	-0.28	2.79e-02	-10.08	< 2.2e-16 ***
2-4	32.6	-0.13	2.75e-03	-47.50	< 2.2e-16 ***	-0.24	2.50e-02	-9.61	< 2.2e-16 ***
4-8	57.1	-0.13	3.47e-03	-38.36	< 2.2e-16 ***	-0.14	1.38e-02	-10.16	< 2.2e-16 ***
8-12	157.8	-0.11	5.22e-03	-21.42	< 2.2e-16 ***	-0.04	9.95e-03	-4.27	2.0e-05 ***
≥ 12	291.3	-0.10	8.36e-03	-11.54	< 2.2e-16 ***	-0.02	1.11e-02	-1.80	7.2e-02
Trip purpose mode	el, McFa	adden R	$^2 = 0.55$						
Other	41.5	-0.28	1.03e-02	-26.72	< 2.2e-16 ***	-0.40	4.08e-02	-9.79	< 2.2e-16 ***
Recreation	54.6	-0.16	4.30e-03	-37.08	< 2.2e-16 ***	-0.17	1.97e-02	-8.86	< 2.2e-16 ***
Shopping/errands	42.2	-0.16	3.35 e-03	-48.09	< 2.2e-16 ***	-0.23	1.93e-02	-11.83	< 2.2e-16 ***
Work/school	70.2	-0.12	2.27e-03	-54.59	< 2.2e-16 ****	-0.11	9.86e-03	-10.73	< 2.2e-16 ***
Time-of-day model	, McFa	$dden R^2$	= 0.53						
AM	17.2	-0.14	3.79e-03	-36.60	< 2.2e-16 ***	-0.48	3.27e-02	-14.79	< 2.2e-16 ***
Midday	53.3	-0.15	2.88e-03	-53.32	< 2.2e-16 ***	-0.17	1.41e-02	-12.26	< 2.2e-16 ***
PM	57.5	-0.15	3.22e-03	-45.51	< 2.2e-16 ***	-0.15	1.56 e-02	-9.83	< 2.2e-16 ***
Night	91.8	-0.12	3.24e-03	-37.99	< 2.2e-16 ***	-0.08	1.24e-02	-6.52	7.2e-11 ***

Significance level codes: '***' 99.99%, '**' 99%, '*' 95%

Table 6: Summary of parametric fitting results

Model					Parameter	`s		
Variable	Unit	Function	α	β	b	μ	σ	\mathbb{R}^2
Income	\$10,000	$VOT(x) = e^{\alpha + \beta x}$	3.232	0.051				0.741
Travel distance	Miles	$VOT(x) = e^{\alpha + \beta x}$	3.124	0.183				0.984
Age	Years	$VOT(x) = \frac{b}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$			3235.246	54.077	22.466	0.999

Table 7: Joint multinomial model results

		Travel	cost		Trave	time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
Age×Trip purpose, McFadden	$R^2 = 0.5$	6				
Rail (intercept)	1.51	0.07	< 2.2e-16 ***			
Bus (intercept)	1.52	0.04	< 2.2e-16 ***			
Subway (intercept)	1.74	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.43	0.17	< 2.2e-16 ***			
$16-20\times Other$	-4.48	1672.93	1.0e + 00	-1.27	194.96	9.9e-01
$20-29\times Other$	-0.77	0.22	5.5e-04 ***	-0.27	0.05	7.7e-09 ***
$30-39\times Other$	-0.41	0.13	9.6e-04 ***	-0.25	0.02	< 2.2e-16 **
$40-49 \times Other$	-0.42	0.07	2.0e-09 ***	-0.3	0.02	< 2.2e-16 **
$50-59 \times Other$	-0.34	0.06	4.1e-08 ***	-0.27	0.02	< 2.2e-16 *
$60-69\times Other$	-1.2	0.29	4.0e-05 ***	-0.31	0.04	1.3e-14 ***
$> 70 \times \text{Other}$	-0.05	0.06	4.5e-01	-0.23	0.05	1.2e-06 ***
16-20×Recreation	-1.66	0.48	5.5e-04 ***	-0.13	0.02	1.1e-07 ***
20-29×Recreation	-0.07	0.03	3.5e-02 *	-0.13	0.01	< 2.2e-16 *
30-39×Recreation	-0.2	0.06	7.4e-04 ***	-0.16	0.01	< 2.2e-16 *
40-49×Recreation	-0.13	0.03	1.4e-05 ***	-0.18	0.01	< 2.2e-16 *
50-59×Recreation		0.03	2.0e-05 ***			< 2.2e-10 *
60-69×Recreation	-0.19		3.2e-06 ***	-0.16	0.01	< 2.2e-16 *
	-0.28	0.06		-0.16	0.01	
$\geq 70 \times \text{Recreation}$	-0.32	0.09	3.2e-04 ***	-0.18	0.01	< 2.2e-16 *
16-20×Shopping/errands	-0.73	0.31	1.9e-02 *	-0.1	0.02	2.8e-11 ***
20-29×Shopping/errands	-0.07	0.05	1.3e-01	-0.12	0.01	< 2.2e-16 *
30-39×Shopping/errands	-0.42	0.08	5.0e-07 ***	-0.16	0.01	< 2.2e-16 *
40-49×Shopping/errands	-0.3	0.05	3.0e-11 ***	-0.18	0.01	< 2.2e-16 *
50-59×Shopping/errands	-0.16	0.03	3.3e-10 ***	-0.17	0.01	< 2.2e-16 *
60-69×Shopping/errands	-0.18	0.03	1.5e-09 ***	-0.16	0.01	< 2.2e-16 *
$\geq 70 \times \text{Shopping/errands}$	-0.57	0.11	6.7e-08 ***	-0.18	0.01	< 2.2e-16 *
16-20×Work/school	-0.26	0.09	4.8e-03 **	-0.08	0.01	< 2.2e-16 *
$20-29 \times Work/school$	-0.06	0.02	2.0e-02 *	-0.09	0	< 2.2e-16 *
30-39×Work/school	-0.14	0.03	7.9e-08 ***	-0.13	0	< 2.2e-16 *
$40-49 \times Work/school$	-0.1	0.02	4.4e-08 ***	-0.13	0	< 2.2e-16 *
50-59×Work/school	-0.12	0.02	2.1e-12 ***	-0.14	0	< 2.2e-16 *
60-69×Work/school	-0.1	0.02	2.5e-06 ***	-0.14	0.01	< 2.2e-16 *
≥ 70×Work/school	-0.05	0.06	3.7e-01	-0.13	0.02	< 2.2e-16 *
$\mathbf{Age} \times \mathbf{Time}$ of day, McFadden R	$x^2 = 0.55$					
Rail (intercept)	1.4	0.07	< 2.2e-16 ***			
Bus (intercept)	1.38	0.04	< 2.2e-16 ***			
Subway (intercept)	1.62	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.49	0.16	< 2.2e-16 ***			
16-20×AM	-0.54	0.3	7.4e-02	-0.09	0.01	2.9e-09 ***
20-29×AM	-0.63	0.12	8.2e-08 ***	-0.11	0.01	< 2.2e-16 *
30-39×AM	-0.44	0.07	4.6e-10 ***	-0.11		< 2.2e-16 *
			3.1e-12 ***	-0.14		< 2.2e-16 *
40-49×AM	-0.45	0.06	< 2.2e-16 ***		0.01	< 2.2e-10 *
50-59×AM	-0.67	0.07		-0.15	0.01	< 2.2e-16 *
60-69×AM	-0.41	0.1	3.1e-05 ***	-0.14	0.01	< 2.2e-16 *
$\geq 70 \times \text{AM}$	-0.03	0.08	7.0e-01	-0.15	0.02	< 2.2e-16 *
16-20×Midday	-0.28	0.12	1.5e-02 *	-0.1	0.01	< 2.2e-16 *
20-29×Midday	-0.05	0.03	1.1e-01	-0.1	0.01	< 2.2e-16 *
$30-39 \times Midday$	-0.16	0.04	1.5e-05 ***	-0.15	0.01	< 2.2e-16 *
$40\text{-}49 \times \text{Midday}$	-0.27	0.03	9.8e-15 ***	-0.18	0.01	< 2.2e-16 *
$50-59 \times Midday$	-0.14	0.02	2.5e-12 ***	-0.16	0	< 2.2e-16 *
$60-69 \times Midday$	-0.14	0.02	1.9e-09 ***	-0.15	0.01	< 2.2e-16 *
$\geq 70 \times Midday$	-0.42	0.08	5.7e-08 ***	-0.18	0.01	< 2.2e-16 *
$16-20 \times Night$	-0.47	0.17	7.2e-03 **	-0.09	0.01	3.1e-15 ***
$20-29 \times Night$	0	0.02	8.4e-01	-0.09	0.01	< 2.2e-16 *
30-39×Night	-0.13	0.04	6.1e-04 ***	-0.13	0.01	< 2.2e-16 *
$40-49 \times Night$	-0.05	0.02	6.7e-03 **	-0.12	0.01	< 2.2e-16 *
50-59×Night	-0.1	0.02	3.2e-05 ***	-0.14	0.01	< 2.2e-16 *
60-69×Night	-0.19	0.06	8.4e-04 ***	-0.14	0.01	< 2.2e-16 *
$\geq 70 \times \text{Night}$	-0.19	0.00 0.24	5.1e-02	-0.13	0.01	4.8e-08 ***
			2.0e-02 *			1.1e-15 ***
16-20×PM	-0.48	0.2		-0.08	0.01	
20-29×PM	-0.13	0.06	2.2e-02 *	-0.11	0.01	< 2.2e-16 *
30-39×PM	-0.29	0.06	5.2e-07 ***	-0.15	0.01	< 2.2e-16 *
$40\text{-}49\times\text{PM}$	-0.2	0.04	5.9e-08 ***	-0.17	0.01	< 2.2e-16 *
FO FO. DM	0 - 0	0.00				
50-59×PM 60-69×PM	-0.12 -0.12	$0.02 \\ 0.03$	3.6e-08 *** 9.4e-05 ***	-0.15 -0.16	$0.01 \\ 0.01$	< 2.2e-16 * < 2.2e-16 *

Table 7: Joint multinomial model results (continued)

		Travel	cost		Travel	time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
$\geq 70 \times PM$	-0.15	0.07	5.0e-02 *	-0.16	0.02	< 2.2e-16 **
$\mathbf{Distance} \times \mathbf{Age}, \ \mathbf{McFadden} \ R^2 =$	0.57					
Rail (intercept)	1.57	0.07	< 2.2e-16 ***			
Bus (intercept)	1.8	0.05	< 2.2e-16 ***			
Subway (intercept)	1.85	0.05	< 2.2e-16 ***			
Taxi (intercept)	-4.2	0.21	< 2.2e-16 ***			
$< 0.5 \times 16 - 20$	-0.39	0.4	3.3e-01	-0.14	0.04	1.3e-03 **
$0.5\text{-}1\times16\text{-}20$	-0.57	0.41	1.7e-01	-0.13	0.03	4.3e-05 ***
$1-2 \times 16-20$	-0.12	0.11	2.6e-01	-0.12	0.01	< 2.2e-16 **
$2\text{-}4\times16\text{-}20$	-2.54	0.62	4.6e-05 ***	-0.11	0.01	< 2.2e-16 **
$4-8 \times 16-20$	-0.17	0.16	2.9e-01	-0.06	0.01	2.5e-09 ***
$8-12 \times 16-20$	-32.8	3976.68	9.9e-01	-6.28	760.52	9.9e-01
$\geq 12 \times 16 - 20$	-0.58	3035.51	1.0e+00	-0.74	1418.32	1.0e+00
$< 0.5 \times 20 - 29$	0.1	0.07	2.0e-01	-0.32	0.04	2.0e-14 ***
$0.5 \text{-} 1 \times 20 \text{-} 29$	-0.09	0.13	4.6e-01	-0.12	0.01	< 2.2e-16 **
$1-2 \times 20-29$	-0.01	0.06	8.8e-01	-0.12	0.01	< 2.2e-16 **
$2-4 \times 20-29$	-0.15	0.07	2.2e-02 *	-0.1	0.01	< 2.2e-16 *
$4-8 \times 20-29$	-0.03	0.02	1.6e-01	-0.1	0.01	< 2.2e-16 **
$8-12 \times 20-29$	-0.15	0.07	2.7e-02 *	-0.12	0.02	7.9e-11 ***
$\geq 12 \times 20 - 29$	0	0.03	8.9e-01	-0.05	0.01	5.4e-06 ***
$< 0.5 \times 30 - 39$	-0.15	0.12	2.1e-01	-0.26	0.02	< 2.2e-16 **
$0.5 \text{-} 1 \times 30 \text{-} 39$	-0.33	0.09	2.5e-04 ***	-0.2	0.01	< 2.2e-16 **
$1-2\times30-39$	-0.54	0.11	1.7e-06 ***	-0.17	0.01	< 2.2e-16 **
$2\text{-}4\times30\text{-}39$	-0.41	0.1	3.8e-05 ***	-0.13	0.01	< 2.2e-16 *
$4-8 \times 30-39$	-0.42	0.09	2.6e-06 ***	-0.17	0.01	< 2.2e-16 *
8-12×30-39	-0.04	0.03	1.3e-01	-0.11	0.01	6.7e-16 ***
> 12×30-39	-0.04	0.04	2.6e-01	-0.16	0.05	5.3e-04 ***
$< 0.5 \times 40-49$	-1.02	0.18	5.4e-09 ***	-0.27	0.03	< 2.2e-16 **
$0.5 - 1 \times 40 - 49$	-0.51	0.09	3.5e-09 ***	-0.25	0.01	< 2.2e-16 **
$1-2 \times 40-49$	-0.22	0.05	2.4e-06 ***	-0.18	0.01	< 2.2e-16 *
$2 - 4 \times 40 - 49$	-0.14	0.03	2.9e-05 ***	-0.14	0.01	< 2.2e-16 **
$4-8 \times 40-49$	-0.12	0.03	7.7e-06 ***	-0.13	0.01	< 2.2e-16 **
$8-12\times40-49$	-0.03	0.02	1.2e-01	-0.12	0.01	< 2.2e-16 **
$\geq 12 \times 40 - 49$	-0.01	0.02	5.6e-01	-0.09	0.02	3.1e-09 ***
$< 0.5 \times 50-59$	-0.54	0.12	6.1e-06 ***	-0.27	0.02	< 2.2e-16 **
$0.5 - 1 \times 50 - 59$	-0.37	0.07	5.1e-08 ***	-0.21	0.01	< 2.2e-16 *
$1-2 \times 50-59$	-0.31	0.06	2.2e-07 ***	-0.17	0.01	< 2.2e-16 *
$2 - 4 \times 50 - 59$	-0.2	0.04	2.5e-06 ***	-0.14	0.01	< 2.2e-16 **
$4-8 \times 50-59$	-0.19	0.03	4.0e-11 ***	-0.16	0.01	< 2.2e-16 *
8-12×50-59	-0.02	0.01	1.4e-01	-0.11	0.01	< 2.2e-16 *
$\geq 12 \times 50-59$	-0.11	0.04	1.6e-02 *	-0.2	0.05	1.6e-05 ***
- < 0.5×60-69	-0.55	0.17	1.3e-03 **	-0.22	0.02	< 2.2e-16 *
$0.5 \text{-} 1 \times 60 \text{-} 69$	-0.91	0.16	1.7e-08 ***	-0.15	0.01	< 2.2e-16 *
$1-2 \times 60-69$	-0.27	0.06	4.3e-06 ***	-0.17	0.01	< 2.2e-16 *
$2-4 \times 60-69$	-0.29	0.07	8.7e-05 ***	-0.15	0.01	< 2.2e-16 *
4-8×60-69	-0.12	0.03	9.0e-06 ***	-0.14	0.01	< 2.2e-16 *
8-12×60-69	-0.05	0.03	9.2e-02	-0.11	0.01	3.1e-14 ***
$\geq 12 \times 60 - 69$	0.02	0.02	2.0e-01	-0.09	0.02	4.1e-06 ***
$< 0.5 \times \ge 70$	-2.13	0.29	3.7e-13 ***	-0.11	0.03	1.2e-03 **
$0.5-1 \times > 70$	-0.54	0.22	1.2e-02 *	-0.22	0.03	< 2.2e-16 *
$1-2\times \geq 70$	-0.29	0.08	2.4e-04 ***	-0.18	0.01	< 2.2e-16 *
$2-4\times \geq 70$	-0.28	0.1	6.9e-03 **	-0.16	0.01	< 2.2e-16 *
$4-8\times > 70$	-0.08	0.04	7.6e-02	-0.13	0.02	< 2.2e-16 *
$8-12\times\geq 70$	-0.83	0.77	2.8e-01	-0.47	0.34	1.7e-01
$\geq 12 \times \geq 70$	-1.18	5663.96	1.0e+00	-0.58	928.72	1.0e + 00
Distance×Trip purpose, McFad						
Rail (intercept)	1.62	$\frac{=0.58}{0.07}$	< 2.2e-16 ***			
Bus (intercept)						
	1.89	0.05	< 2.2e-16 ***			
Subway (intercept)	1.88	0.05	< 2.2e-16 ***			
Taxi (intercept)	-4.04	0.21	< 2.2e-16 ***	0.00	0.00	0.0.00*
$< 0.5 \times Other$	-3.3	0.66	5.3e-07 ***	-0.22	0.09	2.0e-02 *
		0.38	2.8e-13 ***	-0.16	0.03	1.6e-06 ***
$0.5\text{-}1\times\text{Other}$	-2.8					. 0 0 10 1
$0.5\text{-}1\times\text{Other}$ $1\text{-}2\times\text{Other}$	-1.09	0.37	3.2e-03 **	-0.29	0.03	< 2.2e-16 *
$0.5\text{-}1\times\text{Other}$						< 2.2e-16 ** < 2.2e-16 ** 9.8e-12 ***

Table 7: Joint multinomial model results (continued)

		Trave	l cost		Trave	l time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
$\geq 12 \times \text{Other}$	-0.11	0.14	4.2e-01	-0.21	0.09	1.6e-02 *
$< 0.5 \times \text{Recreation}$	-1.79	0.21	< 2.2e-16 ****	-0.17	0.03	2.5e-09 ***
$0.5\text{-}1\times\text{Recreation}$	-0.41	0.08	9.7e-07 ***	-0.23	0.01	< 2.2e-16 ***
1-2×Recreation	-0.3	0.07	4.4e-06 ***	-0.18	0.01	< 2.2e-16 ***
2-4×Recreation	-0.24	0.06	9.0e-05 ***	-0.14	0.01	< 2.2e-16 ***
4-8×Recreation	-0.13	0.03	8.4e-05 ***	-0.14	0.01	< 2.2e-16 ***
8-12×Recreation > 12×Recreation	-0.02	$0.02 \\ 0.03$	2.6e-01	-0.11	$0.01 \\ 0.02$	1.1e-15 *** 1.8e-04 ***
< 0.5×Shopping/errands	-0.01 -1.13	$0.03 \\ 0.17$	8.3e-01 6.8e-11 ***	-0.09 -0.19	0.02 0.02	< 2.2e-16 ***
0.5-1×Shopping/errands	-0.97	0.14	9.1e-13 ***	-0.16	0.02	< 2.2e-16 **
1-2×Shopping/errands	-0.4	0.06	1.8e-10 ***	-0.17	0.01	< 2.2e-16 **
2-4×Shopping/errands	-0.29	0.05	2.4e-08 ***	-0.15	0.01	< 2.2e-16 **
4-8×Shopping/errands	-0.15	0.03	7.7e-08 ***	-0.15	0.01	< 2.2e-16 **
8-12×Shopping/errands	-0.03	0.02	1.4e-01	-0.12	0.01	< 2.2e-16 **
$\geq 12 \times \text{Shopping/errands}$	0	0.02	8.6e-01	-0.11	0.02	3.6e-06 ***
$< 0.5 \times Work/school$	0.02	0.06	7.7e-01	-0.25	0.02	< 2.2e-16 **
$0.5\text{-}1\times\text{Work/school}$	-0.19	0.05	1.3e-04 ***	-0.18	0.01	< 2.2e-16 **
$1-2 \times Work/school$	-0.11	0.03	1.9e-04 ***	-0.14	0	< 2.2e-16 **
$2-4 \times \text{Work/school}$	-0.15	0.03	1.6e-07 ***	-0.12	0	< 2.2e-16 **
4-8×Work/school	-0.12	0.02	1.6e-12 ***	-0.13	0	< 2.2e-16 **
8-12×Work/school	-0.05	0.01	2.7e-04 ***	-0.12	0.01	< 2.2e-16 **
$\geq 12 \times \text{Work/school}$	-0.02	0.02	1.7e-01	-0.09	0.01	< 2.2e-16 **
Distance×Time of day, McFadd			. 0 0 10 444			
Rail (intercept)	1.49	0.07	< 2.2e-16 ***			
Bus (intercept)	1.73	0.05	< 2.2e-16 ***			
Subway (intercept)	1.75 - 4.27	$0.05 \\ 0.21$	< 2.2e-16 *** < 2.2e-16 ***			
Taxi (intercept) $< 0.5 \times AM$	-4.27 -0.38	0.21 0.12	2.5e-03 **	-0.29	0.02	< 2.2e-16 **
0.5-1×AM	-0.55	0.12 0.11	1.0e-06 ***	-0.29	0.02	< 2.2e-16 **
1-2×AM	-0.32	0.11	1.9e-06 ***	-0.2 -0.15	0.01	< 2.2e-16 **
$2-4\times AM$	-0.55	0.1	1.1e-08 ***	-0.11	0.01	< 2.2e-16 **
4-8×AM	-0.55	0.08	6.4e-11 ***	-0.14	0.01	< 2.2e-16 **
$8-12\times AM$	-0.03	0.03	3.8e-01	-0.07	0.01	2.5e-12 ***
$\geq 12 \times AM$	-0.37	248.07	1.0e+00	-0.55	73.09	9.9e-01
$< 0.5 \times Midday$	-0.61	0.11	2.2e-08 ***	-0.25	0.02	< 2.2e-16 **
$0.5\text{-}1\times\text{Midday}$	-0.5	0.07	1.1e-11 ***	-0.2	0.01	< 2.2e-16 **
$1-2 \times Midday$	-0.36	0.05	8.0e-13 ***	-0.16	0	< 2.2e-16 **
$2-4 \times Midday$	-0.39	0.06	1.2e-10 ***	-0.15	0	< 2.2e-16 **
$4-8 \times Midday$	-0.1	0.02	1.4e-08 ***	-0.14	0.01	< 2.2e-16 **
8-12×Midday	-0.06	0.02	1.4e-03 **	-0.14	0.01	< 2.2e-16 **
$\geq 12 \times \text{Midday}$	0.01	0.01	6.7e-01	-0.09	0.01	6.7e-16 ***
< 0.5×Night	-0.8	0.22	3.0e-04 ***	-0.14	0.02	9.3e-10 ***
0.5-1×Night	-0.08	0.06	1.6e-01	-0.17	0.01	< 2.2e-16 **
1-2×Night	-0.11	0.04	6.3e-03 **	-0.15	0.01	< 2.2e-16 **
$2-4 \times Night$ $4-8 \times Night$	-0.1 -0.07	$0.03 \\ 0.02$	3.5e-03 ** 2.8e-03 **	-0.12 -0.12	$0.01 \\ 0.01$	< 2.2e-16 ** < 2.2e-16 **
8-12×Night	-0.07	0.02 0.02	3.1e-01	-0.12 -0.1	0.01	< 2.2e-16 ** < 2.2e-16 **
$> 12 \times \text{Night}$	-0.02	0.02 0.02	1.8e-01	-0.1	0.01	2.2e-10 2.0e-10 ***
< 0.5×PM	-0.03	0.02	1.5e-01 1.5e-02 *	-0.28	0.01	< 2.2e-16 **
0.5-1×PM	-0.68	0.11	1.6e-10 ***	-0.18	0.01	< 2.2e-16 **
1-2×PM	-0.18	0.04	6.4e-05 ***	-0.17	0.01	< 2.2e-16 **
2-4×PM	-0.12	0.03	2.2e-04 ***	-0.13	0	< 2.2e-16 **
$4-8 \times PM$	-0.16	0.03	1.1e-08 ***	-0.14	0.01	< 2.2e-16 **
$8-12\times\mathrm{PM}$	-0.03	0.02	9.4e-02	-0.12	0.01	< 2.2e-16 **
$\geq 12 \times PM$	-0.05	0.04	2.6e-01	-0.14	0.04	1.5e-04 ***
$Gender \times Age, McFadden R^2 = 0$.54					
Rail (intercept)	1.44	0.07	< 2.2e-16 ***			
Bus (intercept)	1.36	0.04	< 2.2e-16 ***			
	1.65	0.04	< 2.2e-16 ****			
Subway (intercept)		0.16	< 2.2e-16 ***			
Subway (intercept) Taxi (intercept)	-4.33	0.16				
Subway (intercept) Taxi (intercept) Female×16-20	-0.27	0.11	1.1e-02 *	-0.1	0.01	
Subway (intercept) Taxi (intercept) Female×16-20 Male×16-20	-0.27 -0.49	$0.11 \\ 0.12$	1.1e-02 * 4.7e-05 ***	-0.09	0.01	< 2.2e-16 **
Subway (intercept) Taxi (intercept) Female×16-20 Male×16-20 Female×20-29	-0.27 -0.49 -0.04	0.11 0.12 0.02	1.1e-02 * 4.7e-05 *** 5.7e-02	-0.09 -0.1	$0.01 \\ 0$	< 2.2e-16 ** < 2.2e-16 **
Subway (intercept) Taxi (intercept) Female×16-20 Male×16-20	-0.27 -0.49	$0.11 \\ 0.12$	1.1e-02 * 4.7e-05 ***	-0.09	0.01	< 2.2e-16 **

Table 7: Joint multinomial model results (continued)

		Trav	el cost		Trav	el time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
$Female \times 40-49$	-0.18	0.02	3.1e-15 ***	-0.16	0	< 2.2e-16 **
$Male \times 40-49$	-0.2	0.03	1.2e-13 ***	-0.16	0.01	< 2.2e-16 **
Female×50-59	-0.16	0.02	2.2e-16 ***	-0.15	0	< 2.2e-16 **
Male×50-59	-0.16	0.02	2.2e-16 ***	-0.16	0	< 2.2e-16 **
$Female \times 60-69$ $Male \times 60-69$	-0.17 -0.16	$0.03 \\ 0.02$	1.1e-10 *** 1.8e-10 ***	-0.15 -0.16	$0.01 \\ 0.01$	< 2.2e-16 ** < 2.2e-16 **
Female×> 70	-0.10	0.02	2.9e-06 ***	-0.17	0.01	< 2.2e-16 ** < 2.2e-16 **
$Male \times \geq 70$	-0.29	0.06	9.8e-07 ***	-0.17	0.01	< 2.2e-16 **
$\mathbf{Gender} imes \mathbf{Income}, \ \mathbf{McFadden} \ \mathit{H}$	$R^2 = 0.55$					
Rail (intercept)	1.49	0.07	< 2.2e-16 ***			
Bus (intercept)	1.37	0.04	< 2.2e-16 ***			
Subway (intercept)	1.66	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.29	0.16	< 2.2e-16 *** 1.9e-05 ***	-0.09	0	< 0.0° 16 *
$Female \times < 25,000$ $Male \times < 25,000$	-0.17 -0.27	$0.04 \\ 0.05$	1.6e-07 ***	-0.09 -0.1	0	< 2.2e-16 ** < 2.2e-16 **
Female × 25,000 Female × 25,000-49,999	-0.27	0.03	2.0e-06 ***	-0.14	0.01	< 2.2e-16 **
Male×25,000-49,999	-0.48	0.07	9.9e-12 ***	-0.15	0.01	< 2.2e-16 **
Female × 50,000-74,999	-0.17	0.03	6.4e-10 ***	-0.16	0.01	< 2.2e-16 **
$Male \times 50,000-74,999$	-0.3	0.05	9.0e-11 ***	-0.15	0.01	< 2.2e-16 *
$Female \times 75,000-99,999$	-0.26	0.04	4.1e-13 ***	-0.17	0.01	< 2.2e-16 *
$Male \times 75,000-99,999$	-0.35	0.05	3.0e-14 ***	-0.16	0.01	< 2.2e-16 *
Female×100,000-149,999	-0.2	0.02	6.7e-16 ***	-0.18	0.01	< 2.2e-16 **
Male×100,000-149,999	-0.22	0.03	2.2e-16 ***	-0.18	0.01	< 2.2e-16 *
$Female \times \ge 150,000$ $Male \times > 150,000$	-0.2 -0.11	$0.02 \\ 0.01$	< 2.2e-16 *** 5.4e-13 ***	-0.19 -0.17	$0.01 \\ 0.01$	< 2.2e-16 * < 2.2e-16 *
$\text{Gender} \times \text{Distance, McFadden}$			5.46-15	-0.17	0.01	< 2.2e-10
Rail (intercept)	$\frac{R = 0.55}{1.52}$	0.07	< 2.2e-16 ***			
Bus (intercept)	1.71	0.05	< 2.2e-16 ***			
Subway (intercept)	1.77	0.05	< 2.2e-16 ***			
Taxi (intercept)	-3.9	0.21	< 2.2e-16 ***			
Female $\times < 0.5$	-0.64	0.09	2.8e-13 ***	-0.24	0.01	< 2.2e-16 *
$Male \times < 0.5$	-0.39	0.08	3.6e-06 ***	-0.25	0.02	< 2.2 e-16 *
Female $\times 0.5$ -1	-0.48	0.06	3.6e-15 ***	-0.19	0.01	< 2.2e-16 *
$Male \times 0.5-1$	-0.42	0.06	8.3e-13 ***	-0.2	0.01	< 2.2e-16 *
Female×1-2	-0.22	0.03	5.3e-12 ***	-0.15	0	< 2.2e-16 *
$Male \times 1-2$ Female $\times 2-4$	-0.38 -0.18	$0.05 \\ 0.03$	4.0e-15 *** 1.1e-11 ***	-0.17 -0.13	0.01	< 2.2e-16 * < 2.2e-16 *
Male×2-4	-0.18	0.03	6.7e-12 ***	-0.13	0	< 2.2e-10 *
Female×4-8	-0.4	0.00	4.6e-13 ***	-0.13	0	< 2.2e-16 *
Male×4-8	-0.16	0.02	1.2e-13 ***	-0.13	0	< 2.2e-16 *
Female×8-12	-0.05	0.01	1.1e-03 **	-0.11	0.01	< 2.2e-16 *
$Male \times 8-12$	-0.03	0.01	5.4e-03 **	-0.11	0.01	< 2.2e-16 *
$\text{Female} \times \geq 12$	-0.01	0.01	6.2e-01	-0.08	0.01	6.7e-16 ***
$Male \times \geq 12$	-0.03	0.02	5.7e-02	-0.11	0.01	< 2.2e-16 *
${f Gender} imes{f Trip}$ purpose, McFac						
Rail (intercept)	1.48	0.07	< 2.2e-16 ***			
Bus (intercept)	1.47	0.04	< 2.2e-16 ***			
Subway (intercept)	1.7	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.31	0.16	< 2.2e-16 ***	0.00	0.00	< 0.0 - 10 *
Female×Other Male×Other	-0.67	0.09	9.6e-13 ***	-0.28	0.02	< 2.2e-16 * < 2.2e-16 *
Female×Recreation	-0.28 -0.15	$0.04 \\ 0.02$	2.3e-11 *** 4.8e-10 ***	-0.26 -0.16	$0.01 \\ 0.01$	< 2.2e-16 *
Male×Recreation	-0.13	0.02	1.1e-11 ***	-0.16	0.01	< 2.2e-16 *
Female×Shopping/errands	-0.22	0.03	< 2.2e-16 ***	-0.16	0.01	< 2.2e-16 *
Male×Shopping/errands	-0.29	0.03	< 2.2e-16 ***	-0.17	0.01	< 2.2e-16 *
Female×Work/school	-0.1	0.01	1.6e-13 ***	-0.12	0	< 2.2e-16 *
Male×Work/school	-0.11	0.01	< 2.2e-16 ****	-0.13	0	< 2.2e-16 *
${f Gender}{ imes Time}$ of day, McFado		0.53				
Rail (intercept)	1.36	0.07	< 2.2e-16 ***			
Bus (intercept)	1.32	0.04	< 2.2e-16 ***			
Subway (intercept)	1.58	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.39	0.16	< 2.2e-16 ***	0.14	0	∠ 0 0 - 10 *:
Female×AM	-0.51 -0.45	$0.04 \\ 0.05$	< 2.2e-16 *** < 2.2e-16 ***	-0.14 -0.14	$0 \\ 0.01$	< 2.2e-16 ** < 2.2e-16 **
$Male \times AM$						

Table 7: Joint multinomial model results (continued)

		Trav	el cost		Trav	rel time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
Male×Midday	-0.19	0.02	< 2.2e-16 ***	-0.16	0	< 2.2e-16 ***
$Female \times Night$	-0.06	0.02	2.0e-05 ***	-0.12	0	< 2.2e-16 ***
Male×Night	-0.1	0.02	2.6e-07 ***	-0.12	0	< 2.2e-16 ***
Female×PM	-0.17	0.02	2.8e-14 ***	-0.15	0 0	< 2.2e-16 *** < 2.2e-16 ***
Male×PM Rail (intercept)	-0.14 1.54	$0.02 \\ 0.07$	8.9e-11 *** < 2.2e-16 ***	-0.14	U	< 2.2e-16
Bus (intercept)	1.48	0.04	< 2.2e-16 ***			
Subway (intercept)	1.75	0.05	< 2.2e-16 ***			
Taxi (intercept)	-4.47	0.17	< 2.2e-16 ***			
< 25,000×16-20	-0.66	0.37	7.0e-02	-0.06	0.01	1.6e-09 ***
$25,000-49,999 \times 16-20$	-0.77	0.3	9.2e-03 **	-0.1	0.02	3.2e-10 ***
$50,000-74,999 \times 16-20$	-0.9	0.41	2.7e-02 *	-0.1	0.02	1.4e-09 ***
$75,000-99,999 \times 16-20$	-0.62	0.24	1.0e-02 *	-0.08	0.01	3.8e-10 ***
100,000-149,999×16-20	-0.08	0.13	5.0e-01	-0.1	0.01	9.5e-12 ***
$\geq 150,000 \times 16-20$	-0.41	0.14	5.0e-03 **	-0.19	0.03	1.5e-11 ***
$< 25,000 \times 20-29$ $25,000-49,999 \times 20-29$	-0.04 0.01	$0.05 \\ 0.03$	4.2e-01 5.8e-01	-0.08 -0.09	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
50,000-74,999×20-29	-0.08	0.05	1.2e-01	-0.09	0.01	< 2.2e-16 ***
75,000-74,999×20-29	-0.03	0.06	1.1e-01	-0.11	0.01	< 2.2e-16 ***
100,000-149,999×20-29	-0.21	0.06	1.5e-03 **	-0.03	0.01	< 2.2e-16 ***
$\geq 150,000 \times 20-29$	-0.08	0.04	4.3e-02 *	-0.13	0.01	< 2.2e-16 ***
< 25,000×30-39	-0.56	0.15	2.0e-04 ***	-0.09	0.01	< 2.2e-16 ***
25,000-49,999×30-39	-0.28	0.09	1.9e-03 **	-0.16	0.01	< 2.2e-16 ***
$50,000-74,999\times30-39$	-0.1	0.04	9.1e-03 **	-0.15	0.01	< 2.2e-16 ***
$75,000-99,999 \times 30-39$	-0.4	0.1	2.3e-05 ***	-0.16	0.01	< 2.2e-16 ***
$100,000-149,999 \times 30-39$	-0.24	0.05	4.8e-06 ***	-0.17	0.01	< 2.2e-16 ***
$\geq 150,000 \times 30-39$	-0.26	0.05	1.3e-08 ***	-0.18	0.01	< 2.2e-16 ***
< 25,000×40-49	-0.42	0.09	3.4e-06 ***	-0.09	0.01	< 2.2e-16 ***
25,000-49,999×40-49	-0.32	0.08	5.1e-05 ***	-0.14	0.01	< 2.2e-16 ***
50,000-74,999×40-49	-0.26	$0.06 \\ 0.05$	4.1e-06 *** 7.4e-07 ***	-0.17 -0.19	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
75,000-99,999×40-49 100,000-149,999×40-49	-0.22 -0.31	0.05	6.7e-09 ***	-0.19	0.01	< 2.2e-16 *** < 2.2e-16 ***
$\geq 150,000 \times 40-49$	-0.15	0.03	7.4e-14 ***	-0.22	0.01	< 2.2e-16 ***
< 25,000×40-45 < 25,000×50-59	-0.17	0.06	4.3e-03 **	-0.22	0.01	< 2.2e-16 ***
25,000-49,999×50-59	-0.31	0.07	1.3e-05 ***	-0.16	0.01	< 2.2e-16 ***
50,000-74,999×50-59	-0.21	0.05	4.1e-05 ***	-0.17	0.01	< 2.2e-16 ***
$75,000-99,999 \times 50-59$	-0.43	0.07	1.3e-10 ***	-0.21	0.01	< 2.2e-16 ***
$100,000-149,999 \times 50-59$	-0.18	0.03	5.8e-12 ***	-0.19	0.01	< 2.2e-16 ***
$\geq 150,000 \times 50-59$	-0.12	0.02	2.7e-10 ***	-0.18	0.01	< 2.2e-16 ***
$< 25,000 \times 60-69$	-0.02	0.04	5.5e-01	-0.09	0.01	< 2.2e-16 ***
$25,000-49,999 \times 60-69$	-0.36	0.1	4.9e-04 ***	-0.17	0.01	< 2.2e-16 ***
50,000-74,999×60-69	-0.39	0.09	1.9e-05 ***	-0.16	0.01	< 2.2e-16 ***
75,000-99,999×60-69	-0.33	0.07	4.1e-06 ***	-0.21	0.01	< 2.2e-16 ***
100,000-149,999×60-69	-0.24	0.05	1.8e-06 ***	-0.19	0.01	< 2.2e-16 *** < 2.2e-16 ***
$\geq 150,000 \times 60-69$ $< 25,000 \times \geq 70$	-0.14 -0.56	$0.03 \\ 0.15$	9.2e-07 *** 2.1e-04 ***	-0.19 -0.13	$0.01 \\ 0.01$	< 2.2e-16 ***
$25,000 \times 270$ $25,000-49,999 \times > 70$	-0.33	0.13	2.6e-03 **	-0.13	0.01	< 2.2e-16 ***
$50,000-43,933\times \ge 70$ $50,000-74,999\times > 70$	-0.48	0.12	8.3e-05 ***	-0.25	0.02	< 2.2e-16 ***
$75,000-99,999 \times \geq 70$	-0.27	0.1	6.3e-03 **	-0.19	0.02	< 2.2e-16 ***
$100,000-149,999 \times \geq 70$	-0.05	0.07	4.9e-01	-0.18	0.02	6.9e-15 ***
≥ 150,000×≥ 70	-1.22	0.4	2.2e-03 **	-0.15	0.02	6.0e-12 ***
Rail (intercept)	1.61	0.07	< 2.2e-16 ***			
Bus (intercept)	1.83	0.05	< 2.2e-16 ****			
Subway (intercept)	1.88	0.05	< 2.2e-16 ****			
Taxi (intercept)	-4.37	0.21	< 2.2e-16 ***			
$< 25,000 \times < 0.5$	-0.44	0.18	1.5e-02 *	-0.14	0.02	1.5e-14 ***
$25,000-49,999 \times < 0.5$	-0.4	0.16	1.2e-02 *	-0.27	0.03	< 2.2e-16 ***
$50,000-74,999\times < 0.5$	-0.03	0.08	7.2e-01	-0.28	0.02	< 2.2e-16 ***
75,000-99,999×< 0.5	-1.05	0.22	2.4e-06 ***	-0.32	0.04	1.3e-12 ***
$100,000-149,999 \times < 0.5$	-1.02	0.19	4.2e-08 ***	-0.31	0.03	< 2.2e-16 ***
$\geq 150,000 \times < 0.5$ $< 25,000 \times 0.5 - 1$	-0.68 -0.52	$0.15 \\ 0.13$	2.9e-06 *** 5.1e-05 ***	-0.31 -0.1	$0.03 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
< 25,000×0.5-1 25,000-49,999×0.5-1	-0.52 -0.31	0.13 0.1	1.8e-03 **	-0.1 -0.21	0.01	< 2.2e-16 ***
$50,000-49,999\times0.5-1$	-0.31	0.1	2.0e-04 ***	-0.21	0.01	< 2.2e-16 ***
$75,000-74,999\times0.5-1$	-0.81	0.17	1.7e-06 ***	-0.25	0.01	< 2.2e-16 ***
, ,	0.01			- · - -	- · · · · -	·

Table 7: Joint multinomial model results (continued)

		Trav	rel cost		Trav	vel time
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
≥ 150,000×0.5-1	-0.31	0.06	8.7e-08 ***	-0.26	0.01	< 2.2e-16 ***
< 25,000×1-2	-0.11	0.06	6.8e-02	-0.11	0	< 2.2e-16 ***
25,000-49,999×1-2	-0.67	0.15	1.4e-05 ***	-0.15	0.01	< 2.2e-16 *** < 2.2e-16 ***
$50,000-74,999\times1-2$ $75,000-99,999\times1-2$	-0.43 -0.19	$0.11 \\ 0.05$	1.8e-04 *** 1.1e-04 ***	-0.18 -0.19	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
100,000-149,999×1-2	-0.23	0.05	2.7e-06 ***	-0.21	0.01	< 2.2e-16 ***
$\geq 150,000 \times 1-2$	-0.29	0.05	4.8e-08 ***	-0.2	0.01	< 2.2e-16 ****
< 25,000×2-4	-0.41	0.13	1.2e-03 **	-0.09	0	< 2.2e-16 ***
25,000-49,999×2-4	-0.17 -0.23	$0.06 \\ 0.06$	4.4e-03 ** 2.9e-04 ***	-0.13 -0.13	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
$50,000-74,999\times2-4$ $75,000-99,999\times2-4$	-0.23 -0.2	0.06	1.6e-04 ***	-0.15 -0.15	0.01	< 2.2e-16 *** < 2.2e-16 ***
100,000-149,999×2-4	-0.2	0.07	3.6e-06 ***	-0.16	0.01	< 2.2e-16 ***
$\geq 150,000 \times 2-4$	-0.18	0.04	1.7e-06 ***	-0.16	0.01	< 2.2e-16 ***
$< 25,000 \times 4-8$	-0.57	0.13	1.2e-05 ***	-0.12	0.01	< 2.2e-16 ***
25,000-49,999×4-8	-0.07	0.03	3.3e-02 *	-0.11	0.01	< 2.2e-16 ***
50,000-74,999×4-8 75,000-99,999×4-8	-0.15 -0.11	$0.03 \\ 0.03$	7.9e-06 *** 6.8e-04 ***	-0.16 -0.12	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
100,000-149,999×4-8	-0.11	0.03	6.0e-07 ***	-0.12	0.01	< 2.2e-16 ***
≥ 150,000×4-8	-0.14	0.02	1.4e-08 ***	-0.16	0.01	< 2.2e-16 ***
$< 25,000 \times 8-12$	-0.13	0.11	2.2e-01	-0.1	0.02	1.6e-07 ***
25,000-49,999×8-12	-0.06	0.04	2.1e-01	-0.12	0.02	7.2e-09 ***
50,000-74,999×8-12	-0.02	0.03	4.5e-01 5.5e-02	-0.09	0.01	< 2.2e-16 *** 2.8e-10 ***
$75,000-99,999\times8-12$ $100,000-149,999\times8-12$	-0.16 -0.04	$0.09 \\ 0.02$	4.4e-02 *	-0.16 -0.13	$0.03 \\ 0.01$	< 2.2e-16 ***
≥ 150,000×8-12	-0.01	0.01	3.3e-01	-0.13	0.01	< 2.2e-16 ***
$< 25,000 \times \ge 12$	0.05	0.02	6.9e-03 **	-0.06	0.02	1.7e-04 ***
$25,000-49,999 \times \geq 12$	-0.85	1.26	5.0e-01	-0.57	0.63	3.7e-01
$50,000-74,999 \times \geq 12$	-0.32	0.19	9.9e-02	-0.47	0.22	3.7e-02 *
$75,000-99,999 \times \geq 12$ $100,000-149,999 \times \geq 12$	-0.02 -0.01	$0.04 \\ 0.02$	6.2e-01 7.5e-01	-0.08 -0.09	$0.02 \\ 0.02$	3.1e-07 *** 1.9e-08 ***
$\geq 150,000 \times \geq 12$	-0.01	0.02	6.8e-01	-0.03	0.02	9.7e-09 ***
Rail (intercept)	1.59	0.07	< 2.2e-16 ***	0.11	0.02	01,000
Bus (intercept)	1.6	0.05	< 2.2e-16 ***			
Subway (intercept)	1.8	0.05	< 2.2e-16 ***			
Taxi (intercept)	-4.6	0.17	< 2.2e-16 ***	0.15	0.00	< 0.0 - 1 <i>C</i> ***
$< 25,000 \times \text{Other}$ 25,000-49,999 $\times \text{Other}$	-0.9 -1.42	$0.27 \\ 0.46$	8.3e-04 *** 2.3e-03 **	-0.15 -0.34	$0.02 \\ 0.05$	< 2.2e-16 *** 1.0e-11 ***
50,000-74,999×Other	-0.56	0.13	3.6e-05 ***	-0.31	0.03	< 2.2e-16 ***
$75,000-99,999 \times Other$	-1	0.19	1.2e-07 ***	-0.28	0.03	< 2.2e-16 ***
$100,000-149,999 \times Other$	-0.51	0.09	2.1e-08 ***	-0.35	0.03	< 2.2e-16 ***
≥ 150,000×Other	-0.25	0.05	4.9e-08 ***	-0.3	0.02	< 2.2e-16 ***
$< 25,000 \times \text{Recreation}$ 25,000-49,999 $\times \text{Recreation}$	-0.73 -0.22	$0.1 \\ 0.09$	8.9e-13 *** 1.9e-02 *	-0.1 -0.15	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
50,000-74,999×Recreation	-0.22	0.09	1.9e-02 1.9e-04 ***	-0.19	0.01	< 2.2e-16 ***
75,000-99,999×Recreation	-0.2	0.05	1.7e-04 ***	-0.19	0.01	< 2.2e-16 ***
$100,\!000\text{-}149,\!999\!\times\!\text{Recreation}$	-0.23	0.04	2.2e-08 ***	-0.22	0.02	< 2.2e-16 ***
$\geq 150,000 \times \text{Recreation}$	-0.14	0.03	2.9e-08 ***	-0.22	0.01	< 2.2e-16 ***
< 25,000 × Shopping/errands	-0.08	0.04	1.7e-02 *	-0.1	0	< 2.2e-16 ***
25,000-49,999×Shopping/errands 50,000-74,999×Shopping/errands	-0.58 -0.37	$0.1 \\ 0.06$	4.8e-09 *** 6.1e-09 ***	-0.2 -0.21	$0.01 \\ 0.01$	< 2.2e-16 *** < 2.2e-16 ***
75,000-99,999×Shopping/errands	-0.36	0.07	1.3e-07 ***	-0.25	0.01	< 2.2e-16 ***
100,000-149,999×Shopping/errands	-0.26	0.04	1.7e-12 ***	-0.24	0.01	< 2.2e-16 ***
$\geq 150,000 \times \text{Shopping/errands}$	-0.33	0.04	< 2.2e-16 ****	-0.24	0.01	< 2.2e-16 ***
< 25,000×Work/school	-0.14	0.05	9.6e-03 **	-0.09	0.01	< 2.2e-16 ***
25,000-49,999×Work/school	-0.09	0.03	5.6e-03 ** 6.0e-05 ***	-0.12	0	< 2.2e-16 ***
50,000-74,999×Work/school 75,000-99,999×Work/school	-0.11 -0.2	$0.03 \\ 0.03$	8.6e-09 ***	-0.12 -0.13	0 0	< 2.2e-16 *** < 2.2e-16 ***
100,000-149,999×Work/school	-0.14	0.02	2.2e-10 ***	-0.15	0	< 2.2e-16 ***
$\geq 150,000 \times \text{Work/school}$	-0.07	0.01	4.1e-08 ***	-0.14	0	< 2.2e-16 ***
Rail (intercept)	1.46	0.07	< 2.2e-16 ***			
Bus (intercept)	1.43	0.04	< 2.2e-16 ***			
Subway (intercept) Taxi (intercept)	1.65 - 4.57	$0.05 \\ 0.17$	< 2.2e-16 *** < 2.2e-16 ***			
$< 25,000 \times AM$	-4.57 -0.36	$0.17 \\ 0.12$	2.3e-03 **	-0.09	0.01	< 2.2e-16 ***
25,000-49,999×AM	-0.96	0.13	9.4e-13 ***	-0.14	0.01	< 2.2e-16 ***
20,000 10,000 / 11111						< 2.2e-16 ***

Table 7: Joint multinomial model results (continued)

	Travel cost			Travel time		
Variables	β_C	SE_C	$\operatorname{p-value}_C$	β_T	SE_T	$\operatorname{p-value}_T$
75,000-99,999×AM	-0.69	0.1	1.0e-12 ***	-0.16	0.01	< 2.2e-16 ***
$100,000-149,999 \times AM$	-0.53	0.07	4.9e-15 ***	-0.16	0.01	< 2.2e-16 ***
$\geq 150,000 \times AM$	-0.41	0.06	6.3e-12 ***	-0.17	0.01	< 2.2e-16 ***
$< 25,000 \times Midday$	-0.18	0.04	4.0e-05 ***	-0.09	0	< 2.2e-16 ***
$25,000-49,999 \times Midday$	-0.28	0.05	3.6e-08 ***	-0.16	0.01	< 2.2e-16 ***
$50,000-74,999 \times Midday$	-0.19	0.03	9.0e-09 ***	-0.18	0.01	< 2.2e-16 ***
$75,000-99,999 \times Midday$	-0.21	0.03	8.6e-10 ***	-0.2	0.01	< 2.2e-16 ***
100,000-149,999×Midday	-0.27	0.03	2.4e-15 ***	-0.22	0.01	< 2.2e-16 ***
$\geq 150,000 \times Midday$	-0.19	0.02	6.7e-16 ***	-0.21	0.01	< 2.2e-16 ***
$< 25,000 \times Night$	-0.14	0.07	4.6e-02 *	-0.09	0.01	< 2.2e-16 ***
$25,000-49,999 \times Night$	-0.03	0.02	2.0e-01	-0.11	0.01	< 2.2e-16 ***
$50,000-74,999 \times Night$	-0.12	0.04	8.9e-03 **	-0.12	0.01	< 2.2e-16 ***
$75,000-99,999 \times Night$	-0.18	0.05	5.5e-04 ***	-0.13	0.01	< 2.2e-16 ***
100,000-149,999×Night	-0.07	0.02	2.5e-03 **	-0.13	0.01	< 2.2e-16 ***
$> 150,000 \times \text{Night}$	-0.09	0.02	8.5e-06 ***	-0.15	0.01	< 2.2e-16 ***
< 25,000×PM	-0.27	0.08	7.3e-04 ***	-0.1	0.01	< 2.2e-16 ***
25,000-49,999×PM	-0.44	0.09	1.2e-06 ***	-0.14	0.01	< 2.2e-16 ***
$50,000-74,999 \times PM$	-0.32	0.07	1.1e-06 ***	-0.16	0.01	< 2.2e-16 ***
$75,000-99,999 \times PM$	-0.42	0.06	8.7e-11 ***	-0.15	0.01	< 2.2e-16 ***
$100,000-149,999 \times PM$	-0.16	0.03	1.5e-08 ***	-0.18	0.01	< 2.2e-16 ***
> 150,000×PM	-0.09	0.02	2.5e-07 ***	-0.17	0.01	< 2.2e-16 ***
Rail (intercept)	1.44	0.07	< 2.2e-16 ***			
Bus (intercept)	1.49	0.04	< 2.2e-16 ***			
Subway (intercept)	1.69	0.04	< 2.2e-16 ***			
Taxi (intercept)	-4.65	0.17	< 2.2e-16 ***			
$Other \times AM$	-0.26	0.05	6.0e-08 ***	-0.28	0.02	< 2.2e-16 ***
$Recreation \times AM$	-0.63	0.16	1.1e-04 ***	-0.15	0.01	< 2.2e-16 ***
Shopping/errands×AM	-0.36	0.1	2.4e-04 ***	-0.17	0.01	< 2.2e-16 ***
Work/school×AM	-0.4	0.04	< 2.2e-16 ***	-0.11	0	< 2.2e-16 ***
$Other \times Midday$	-0.39	0.07	1.4e-07 ***	-0.27	0.02	< 2.2e-16 ***
Recreation×Midday	-0.31	0.05	6.3e-12 ***	-0.16	0.01	< 2.2e-16 ***
Shopping/errands×Midday	-0.23	0.03	< 2.2e-16 ***	-0.16	0	< 2.2e-16 ***
Work/school×Midday	-0.09	0.01	2.7e-11 ***	-0.15	0	< 2.2e-16 ***
$Other \times Night$	-0.27	0.09	2.3e-03 **	-0.23	0.02	< 2.2e-16 ***
Recreation×Night	-0.09	0.02	4.0e-07 ***	-0.16	0.01	< 2.2e-16 ***
Shopping/errands×Night	-0.12	0.03	2.8e-04 ***	-0.15	0.01	< 2.2e-16 ***
Work/school×Night	-0.04	0.02	2.6e-02 *	-0.09	0	< 2.2e-16 ***
Other×PM	-0.89	0.15	2.6e-09 ***	-0.33	0.03	< 2.2e-16 ***
Recreation×PM	-0.7	0.1	5.7e-12 ***	-0.15	0.01	< 2.2e-16 ***
Shopping/errands×PM	-0.22	0.04	2.8e-08 ***	-0.18	0.01	< 2.2e-16 ***
Work/school×PM	-0.07	0.01	3.2e-07 ***	-0.13	0	< 2.2e-16 ***
	-0.07	0.01	0.20 01	0.10	Ü	< 2.20-10

^{*} Significance level codes: '***' 99.99%, '**' 99%, '*' 95%