SCHOOL OF ARCHITECTURE UNIVERSITY OF FLORIDA

MACHINE LEARNING FOR ARCHITECTS

COURSE NUMBER: ARC 6XXX

TERM: FALL 2024

NUMBER OF CREDIT HOURS: 3

The built environment's planning, design, and construction are on the verge of a fundamental transformation. A key element of this transformation is a radical shift in paradigm from planning and design representations of unconnected data to practices with an overwhelming amount of information-rich data. Artificial intelligence (AI), particularly machine learning (ML), designers with new models and methods engage in these data-heavy processes to synthesize meaningful information for all areas of their practice. This course provides architecture students an opportunity to learn about the application of AI in their discipline.

CLASS LOCATION: ARCH 231F

CLASS MEETING TIMES: Tuesday 10:40

INSTRUCTORS SPRING: Dr. Karla Saldana Ochoa

OFFICE HOURS: Tuesday at 9:00 by appointment

COURSE WEBSITE: http://elearning.ufl.edu

COURSE DESCRIPTION:

An introduction to Artificial Intelligence (AI) and its applications to real-world problems in planning, designing, and constructing the built environment. Includes application in professional practice in architecture, construction management, interior design, landscape architecture, sustainability and the built environment, and urban and regional planning.

COURSE OBJECTIVES:

- Understand how AI technologies can guide the built environment's planning, design, and construction.
- Apply existing AI models in architecture, construction management, interior design, landscape architecture, sustainability and the built environment, and urban and regional planning disciplines.
- Build a simple Machine Learning model.
- Understand the current limitations of machine learning technologies.

INSTRUCTIONAL METHODS:

The class meets three lecture hours per week.

COURSE POLICIES:

ATTENDANCE POLICY:

Attendance and participation in class activities are required. Attendance and participation grades will be computed in proportion to the number of presences on the days the rolls were taken and participation on a given topic in the class forum. Requirements for class attendance and make-up quizzes, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

COURSE EVALUATION

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at https://gatorevals.aa.ufl.edu/students/. Students will be notified when the evaluation period opens, and can complete evaluations through the email they receive from GatorEvals, in their Canvas course menu under GatorEvals. Summaries of course evaluation results are available to students at https://gatorevals.aa.ufl.edu/public-results/

UF POLICIES:

UNIVERSITY POLICY ON ACCOMMODATING STUDENTS WITH DISABILITIES:

Students requesting accommodation for disabilities must first register with the Dean of Students Office (https://disability.ufl.edu/). The Dean of Students Office will provide documentation to the student who must then provide this documentation to the instructor when requesting accommodation. You must submit this documentation prior to submitting assignments or taking the quizzes or exams. Accommodations are not retroactive, therefore, students should contact the office as soon as possible in the term for which they are seeking accommodations

UNIVERSITY POLICY ON ACADEMIC MISCONDUCT:

Academic honesty and integrity are fundamental values of the University community. Students should be sure that they understand the UF Student Honor Code at https://sccr.dso.ufl.edu/policies/student-honor-code-student-conduct-code/. Although joint work on assignments may be acceptable in some cases, duplication of an assignment, both manually or by computer will be considered an act of academic dishonesty and dealt with accordingly. On all work submitted for credit by students at the university, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

GETTING HELP:

For issues with technical difficulties for E-learning in Canvas, please contact the UF Help Desk:

- Learning-support@ufl.edu
- (352) 392-HELP select option 2
- https://lss.at.ufl.edu/help.shtml

GRADING POLICIES:

Assignments	Percentage
Module Assignments (6 total@10% each)	60%
Final Group Project	30%
Attendance and Participation	10%
Total	100%

GRADING SCALE:

Grades will be computed according to the following scale:

```
A=93-100; A-=90-92.9; B+=87-89.9; B=83-86.9; B-=80-82.9; C+=77-79.9; C=73-76.9; C=70-72.9; D+=67-69.9; D=63-66.9; D-=60-62.9; E<60.
```

- The attendance grade will be computed in proportion to the number of presences on the days the rolls were taken, and the participation grade is based on responding to a given discussion topic in the class forum.
- At the end of each module, an assignment that covers topics discussed in that module will be given. Specific evaluation criteria will be provided with each assignment.
- A final group project will be assigned that requires implementing existing AI algorithms in a project in the built environment to facilitate planning, design, and construction strategies.

Reading Materials:

- Mario Carpo, The Second Digital Turn Design Beyond Intelligence, Cambridge, MIT Press, 2017 AI
 & Architecture: An Experimental Perspective
- Stanislas Chaillou, Harvard Graduate School of Design | Feb. 24th, 2019 https://towardsdatascience.com/ai-architecture-f9d78c6958e0
- Rajagopal, A., & Tetrick, C. (2017). The rise of AI and machine learning in construction. Autodesk
 Universityhttps://www.autodesk.com/autodesk-university/article/Rise-AI-and-Machine-Learning-Construction-2018
- Blanco, J. L., Fuchs, S., Parsons, M., & Ribeirinho, M. J. (2018). Artificial intelligence: Construction technology's next frontier | McKinsey.https://www.mckinsey.com/business-functions/operations/our-insights/artificial-intelligence-construction-technologys-next-frontier#
- Tan, P. N., Steinbach, M., & Kumar, V. (2016). *Introduction to Data Mining*. Pearson Education India, Chapter 2: "Data" and Chapter 3 "Exploring Data."
- Book: Bradley E Cantrell, Justine Holzman; Responsive Landscapes: Strategies for Responsive
 Technologies in Landscape Architecture; Routledge, 2016

 https://www.routledge.com/Responsive-Landscapes-Strategies-for-Responsive-Technologies-in
- Landscape/Cantrell-Holzman/p/book/9781138796652
- Article: Mimi Zeiger; "Live and Learn"; Landscape Architecture Magazine, vol. 109, Iss. 2, Feb 2019, pp. 78-89
- Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104
- Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y

Software / Language: Python, Google Colab Notebooks

Al Category: Use-Al

Use & Apply AI: Applying AI knowledge, concepts and applications in different scenarios. AI course content is over 50%

AI Student Learning Outcomes

Know and Understand

SLO2. Recognize, identify, describe, define and/or explain applications of AI in multiple domains. Lecture Weeks 01, 02, 03, 04, 06, 08, 10

Use and Apply

SLO3. Select and/or utilize AI tools and techniques appropriate to a specific context and application. Assignments: A1, A2, A3, A4, Final Project

COURSE SCHEDULE:

<u>Week</u>	<u>Disciplines</u>	Contact hours	Applications in DCP	<u>Classes</u>	<u>Assignments</u>
Week				Introduction to AI (SLO2). Lecture on	-
01				Machine Learning, Neural Networks, Deep	
01	AI/ML	3	-	Learning, Back propagation, and examples of	
				application in the Built Environment Practice	
Week				Collecting Data (SLO2). Lecture on crawlers,	A1 (SLO3):
02 -				scrapers, API keys. Run python code to use	Collect Data from existing
03	Data	6	_	crawlers and API keys to systematically collect	websites using the materials
03	Collection,	O		images and text from web databases based on	taught in class and preprocess
				specific context and application.	the collected data.
Week				•	15 points
				Data Visualization (SLO2). Lecture on feature	15 points
04 -	Visualization, &			vectors and data visualization methods. Run	
05	Coding	6	-	python code to apply data procession techniques:	
				Word: Word Frequency and Word Embeddings.	
				Images: RGB encoding and Edge Detection	
Week			Unsupervised	, Remote sensing, SLAM, and Point clouds	
06 -	Self-Organizing	3	learning for		A2 (SLO3):
07	Maps	3	data		Apply Computer vision
			exploration		algorithms. Run notebook and
Week				Computer vision (SLO2). Lecture on CNNs	Q1: recognize objects on
08	Commutar			overview and theory. Explanation of Image	collected images.
	Computer	3		analysis. Run python Code to apply CNNs for	Q2. Segment objects on
	vision			Object Detection and Image Segmentation on	collected images.
				images	15 points
Week		6		Generative Algorithms (SLO2). Lecture on	·
09				Generative algorithms, overview, and theory.	A3 (SLO3):
03				Explanation of GANs, Diffusion models and	Conduct a study on how
				examples in computational design.	different attributes modify the
Week	-			Generative Algorithms. Lecture on training data	final output from sketch to
10	Generative		Generative	for Image Generative algorithms (GA), Use AI to	rendering application on
10	Models		design	conduct forensic analysis on generated images	architecture context with
				conduct forensic analysis on generated images	generative algorithms. And
					create a pipeline to identify Al
					generated context
					•
\A/o = I-				Al woods to al lite I get use an unlest and the	15 points
Week		6		Al ready tool kits. Lecture on what are the	AA (C) CC)
11				available AI tools already in the market for	A4 (SLO3):
	· Canalal Taulis			architects	Run python code exercise using
Week	Special Topics		-	Al tool kit exploration. Apply This lecture will	BERT (a transformer) as a base
12				invite students to interact with the tools and	model to perform text
				define	classification.
					15 points
Week		9	-	Final Project and Presentations	Final project (SLO3): specific
12-15					application based on students'
	-				interest.
					40 points

<u>Disclaimer:</u> This syllabus represents the current plans and objectives. As we go through the semester, those plans may need to change to enhance the class learning opportunity. Such changes, communicated clearly, are not unusual and should be expected.