Master 1 Data-Science -INPHB

Analyse des données Mory Ouattara

Exercice 1

On considère le tableau K suivant où a est un entier non nul :

I/J	j_1	j_2	j_3	j_4	j_5
i_1	a	a	a	0	0
i_2	a	a	0	a	0
i_3	0	a	0	a	a

On pose:

 $I = \{i_1; i_2; i_3\}$ et $J = \{j_1; j_2; j_3; j_4; j_5\}$

On effectue l'analyse factorielle des corresponsdances (AFC) de K.

- 1-) Déterminer les centres de gravité des nuages N(I) et N(J)
- 2-) Déterminer la matrice des profils colonnes F_1 ainsi que la matrice des profils lignes F_2 de K.
 - 3-) Calculer le produit F_1F_2
 - 4-) Quel est l'influence du réel a sur l'AFC de ce tableau.
 - 5-) Quel est l'axe factoriel trivial, à quelle valeur propre est-il associé?
 - 6-) Quelle est l'inertie du nuage N(J).
 - 7-) On pose

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{ et } w_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Montrer que w_1 et w_2 sont des vecteurs propres de F_1F_2 , en déduire les axes factoriels non triviaux u_1 et u_2 ainsi que les valeurs propres associés. On choisira u_1 de manière que la première coordonnée soit positive, de même pour u_2 .

- 8-) Calculer $\varphi_{\alpha}(i)$ l'abscisse de la projection du profil de la ligne i sur le α avec la contrainte $\varphi_{\alpha}(i_1)\geq 0$
- 9-) Calculer à l'aide des formules de transition, ψ^j_α l'abscisse de la projection du profil de la colonne j sur le α ème axe factoriel.
- 10-) Représenter les deux nuages N(I) et N(J) simultanément dans le plan factoriel 1-2.
- 11-) Calculer la contribution de i_1 a chacun des axes factoriels non triviaux ainsi que la qualité de représentation de i_1 dans le plan factoriel 1-2 c'est-à-dire $COR1(i_1) + COR2(i_1)$.

Exercice 2

On considère le tableau de données, noté *X*, et défini par :

		j_1	j ₂	j ₃	j_4	<i>j</i> 5	j ₆
X =	i_1	1	1	2	0	3	1
	i_2	0	1	2	1	1	3
	i_3	1	2	2 2 4	1	4	4

où la i ème ligne désigne la variable x_i et la j ème colonne désigne l'individu x^j . Par la suite, on considère les résultats de l'ACP sur matrice variance du tableau X.

- 1 Calculer les coordonnées du centre de gravité g du nuage $\mathcal M$ constitué des vecteurs colonnes de X (munis du même poids 1/6), et en déduire le tableau Y centré qui est associé à X. On présentera Y sous la forme $Y=\frac{1}{3}Y_1$ où Y_1 est une matrice à coefficients entiers.
- 2 Soit V la matrice variance du tableau X. Compléter les valeurs manquantes dans l'expression de la matrice V ci-dessous :

$$V = \frac{1}{18} \left(\begin{array}{ccc} 16 & 1 & 17 \\ 1 & 16 & ? \\ 17 & ? & ? \end{array} \right).$$

- 3 Expliquer pourquoi le nombre d'axes factoriels non triviaux est égal à 2.
- 4 Calculer l'inertie totale du nuage étudié.
- 5 Montrer que $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ est un vecteur directeur d'un axe factoriel non trivial.
- 6 Calculer le pourcentage d'inertie expliquée par l'axe factoriel déterminé à la question 5. Cet axe est-il le premier ou le second axe factoriel?
- 7 Déterminer les coordonnées du premier vecteur axial factoriel, noté u^1 (on choisira sa première coordonnée de façon à ce qu'elle soit positive).
- 8 Calculer la première composante principale de l'individu j_2 , notée $\Psi_1^{j_2}$.
- 9 Calculer la contribution de l'individu j_2 à l'inertie du premier axe, notée $CTR_1(j_2)$.
- 10 Calculer la qualité de représentation de l'individu j_2 sur le premier axe, notée $COR_1(j_2)$.
- 11 Calculer la contribution de la variable i_1 à l'inertie du premier axe, notée $CTR_1(i_1)$.