CS 188: Artificial Intelligence

Decision Networks and Value of Information

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today's Topics

Decision Networks

Value of Information

(Briefly) Partially Observable MDPs

Maximum Expected Utility (MEU):

choose the action which maximizes the expected utility given the evidence

- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Action Selection in Decision Networks

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Example: Decision Networks

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$
$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

Optimal decision = leave

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

W	P(W)	
sun	0.7	
rain	0.3	

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What's changed?

Example: Decision Networks

A	W	U(A,W)
,,	• • •	(, ,,,,,,
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Example: Decision Networks

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$

$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$

$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

Video of Demo Ghostbusters with Probability

Ghostbusters Decision Network

Today's Topics

Decision Networks

Value of Information

(Briefly) Partially Observable MDPs

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: picking a box with a prize
 - Two boxes **a** and **b**, exactly one has prize, worth k
 - You can pick one box
 - Prior prize probabilities 0.5 each, & mutually exclusive
 - Picking either **a** or **b** has EU = k/2, MEU = k/2

- Value of knowing which of a or b has prize
- Value is expected gain in MEU from new info
- Survey may say "prize in **a**" or "prize in **b**", prob 0.5 each
- If we know PrizeLoc, MEU is k (either way)
- Gain in MEU from knowing PrizeLoc?
- VPI(PrizeLoc) = k k/2 = k/2
- Fair price of information: k/2

VPI Example: Weather

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution

F	P(F)	
good	0.59	
		,

$$0.59 \cdot (95) + 0.41 \cdot (53) - 70$$
$$77.8 - 70 = 7.8$$

$$VPI(E'|e) = \left(\sum_{e'} P(e'|e)MEU(e,e')\right) - MEU(e)$$

А	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Value of Information

Assume we have evidence E=e. Value if we act now:

$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$

• Assume we see that E' = e'. Value if we act then:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$

VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive

(think of observing E_i twice)

$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

Value of Information

$$\begin{aligned} \mathsf{MEU}(e, E') &= \sum_{e'} P(e'|e) \mathsf{MEU}(e, e') \\ &= \sum_{e'} P(e'|e) \max_{a} \sum_{s} P(s|e, e') U(s, a) \end{aligned}$$

$$\begin{aligned} \mathsf{MEU}(e) &= \max_{a} \sum_{s} P(s|e) \ U(s,a) \\ &= \max_{a} \sum_{e'} \sum_{s} P(s,e'|e) U(s,a) \\ &= \max_{a} \sum_{e'} P(e|e) \sum_{s} P(s|e,e') U(s,a) \end{aligned}$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
 - Not valuable / slightly valuable / highly valuable?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
 - Not valuable / slightly valuable / highly valuable?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?
 - Not valuable / slightly valuable / highly valuable?

VPI Question

- VPI(PrizeLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?

Generally:

If Parents(U) \parallel Z | CurrentEvidence Then VPI(Z | CurrentEvidence) = 0

Today's Topics

Decision Networks

Value of Information

(Briefly) Partially Observable MDPs

Partially Observable MDPs (POMDPs)

POMDPs

MDPs have:

- States S
- Actions A
- Transition function P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s')

POMDPs add:

- Observations O
- Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)

We'll be able to say more in a few lectures

Example: Ghostbusters

In (static) Ghostbusters:

- Belief state determined by evidence to date {e}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!

Video of Demo Ghostbusters with VPI

Next Time: Dynamic Models