Modelo de clasificación de hominidos

Teresa Terol Díez. Bootcamp Data Science. THE BRIDGE

Índice

- 01. Introducción
- **02.** EDA
- 03. Feature engineering
- **04.** Modelos
- **05.** Modelo final
- 06. Evaluación del modelo
- 07. Conclusiones

1.INTRODUCCIÓN

A través de la paleontología, los investigadores pueden reconstruir la historia evolutiva de diferentes especies y comprender mejor cómo ha cambiado nuestro planeta a lo largo del tiempo. Sin embargo, esta ciencia no está exenta de desafíos, especialmente cuando se trata de analizar grandes cantidades de datos y tomar decisiones basadas en la información obtenida. Es aquí donde la inteligencia artificial (IA) juega un papel fundamental, ya que puede ayudar a los paleontólogos a acelerar sus investigaciones y descubrir nuevos patrones de manera más eficiente.

Para abordar esta problemática he desplegado un modelo de clasificación donde podemos predecir el género y especie de los diferentes homínidos en función de diferentes variables que se recogen cada vez que se encuentran nuevos fósiles, como por ejemplo:

- Localización de los restos (zona, hábitat)
- Dieta
- Migración
- Tecnología y tipo de herramientas
- Características anatómicas: Altura, capacidad craneal, grado de bipedismo, forma de la mandíbula, tamaño y forma de incisivos y caninos, prognatismo, grado de protuberancia del Torus Supraorbital, verticalidad frontal, posición del Foramen Mágnum, grosor del esmalte dental, grado de dimorfismo sexual, forma de la cadera, o forma de los pies y brazos.

02. EDA:

<class 'pandas.core.frame.dataframe'=""></class>					
RangeIndex: 12000 entries, 0 to 11999					
Data columns (total 28 columns):					
# Column	Non-Null Count	Dtype			
0 Genus_&_Specie	12000 non-null	3			
1 Time	12000 non-null	float64			
2 Location	12000 non-null	object			
3 Zone	12000 non-null	object			
4 Current_Country	12000 non-null	object			
5 Habitat	12000 non-null	object			
6 Cranial_Capacity	12000 non-null	float64			
7 Height	12000 non-null	float64			
8 Incisor_Size	12000 non-null	object			
9 Jaw_Shape	12000 non-null	object			
<pre>10 Torus_Supraorbital</pre>	12000 non-null	object			
11 Prognathism	12000 non-null	object			
12 Foramen_Mágnum_Position	12000 non-null	object			
13 Canine Size	12000 non-null	object			
<pre>14 Canines_Shape</pre>	12000 non-null	object			
15 Tooth_Enamel	12000 non-null	object			
16 Tecno	12000 non-null	object			
17 Tecno_type	12000 non-null	object			
18 biped	12000 non-null	object			
19 Arms	12000 non-null	object			
26 Migrated	12000 non-null	object			
27 Skeleton	12000 non-null	object			
dtypes: float64(3), object(25)					

CORRELACIÓN ENTRE LAS VARIABLES SIN FEATURE ENGINEERING

Gráfico de correlación y distribución de nuestras variables numéricas

Podemos observar cómo a mayor antigüedad menor capacidad craneal y menor altura

Para realizar el feature engineering óptimo, he transformado a numéricas todas las variables categóricas teniendo en cuenta las características evolutivas más antiguas y y dándoles un valor mas próximo a 0 y al contrario con las características evolutivas más modernas.

He optado por usar la técnica de Mapping para las variables categóricas ordinales que quería asignar en función de su antigüedad y LableEncoder para las que eran categóricas cardinales.

Lable Encoder

Mapping

```
label_encoder = LabelEncoder()
df2['Location_encoded'] = label_encoder.fit_transform(df2['Location'])

print("Valores únicos en 'Location':", df2['Location'].unique())
print("Valores codificados numéricamente:", df2['Location_encoded'].unique())

Valores únicos en 'Location': ['Africa' 'Europa' 'Asia ']
Valores codificados numéricamente: [0 2 1]
```

```
prognathism_mapping = {
        'absent': 5,
        'reduced': 4,
        'medium': 3,
        'medium-high': 2,
        'high': 1,
        'very high': 0
}

df2['Prognathism_encoded'] = df2['Prognathism'].map(prognathism_mapping)
```

Tras convertir todas las variables a valores numéricas, vemos que la matriz de correlación de nuestras variables es mucho más compleja y se puede observar una alta multicolinealidad entre nuestras variables, sin haberlas relacionado con nuestro target.

4. MODELOS

Random Forest Classifier

- Es altamente interpretable
- Menos propenso al sobreajuste en comparación con un solo árbol de decisión.
- Capaz de manejar automáticamente las características más importantes para la clasificación.

K-Nearest Neighbors

- Es simple.
- No es tan influenciable por valores atípicos
- Tiende al overfitting cuando hay muchas características.
- Sensibilidad a la dimensionalidad.

Linear Regressor Classifier

- Es simple y eficaz, trabaja como un modelo de función sigmoide.
- Aun que es más usado como un modelo de clasificación binaria tiene parámetros para trabajar con problemas multiclase (One vs. Rest, One vs. One).

Support Vector Machine

- Más costoso computacionalmente en comparación con algunos otros algoritmos de aprendizaje supervisado.
- Modelo robusto.
- Menos sensible a datos atípicos.

Gradient Boosting Classifier

- Puede manejar automáticamente la importancia de las características.
- Modelo robusto.
- Puede ser más costoso computacionalmente y requerir más tiempo de entrenamiento .

PREPROCESADO: PCA Y ESCALADO

He incluido como pre-procesado en todos los pipelines de mis modelos el Análisis de los componentes principales (PCA) para ver si podía reducir la multicolinealidad y la dimensionalidad de mis variables.

También he incluido un paso para el escalado de los datos de manera que estén en las unidades estandarizadas para ayudar a los modelos a encontrar patrones.

RandomizeSearch para hiperparametrizar mi modelo de manera óptima.

```
steps = [
       ('scaler', StandardScaler()),
       ('pca', PCA()),
       ('classifier', RandomForestClassifier(random_state=42))
   pipeline = Pipeline(steps)
   param_dist = {
       'scaler': [None, StandardScaler(), MinMaxScaler()],
       'pca__n_components': [24,25],
       'classifier__n_estimators': [100, 500, 1000],
       'classifier__max_depth': [3,5],
       'classifier__max_leaf_nodes': [16,17,18]
   random_search = RandomizedSearchCV(pipeline, param_distributions=param_dist, cv=5, n_iter=10,n_jobs=-1, random_state=42,verbose= 2)
   rs=random_search.fit(X, y)
   best_score = random_search.best_score_
   best_params = random_search.best_params_
   print("Best Score:", best_score)
   print("Best Parameters:", best_params)
 ✓ 37.8s
Fitting 5 folds for each of 10 candidates, totalling 50 fits
Best Score: 1.0
Best Parameters: {'scaler': MinMaxScaler(), 'pca__n_components': 25, 'classifier__n_estimators': 100, 'classifier__max_leaf_nodes': 17, 'classifier__max_depth': 5}
```

5.Modelo final: Random Forest Classifier

He optado por este modelo por su buena interpretabilidad, por su relativamente bajo costo computacional, y sus buenos resultados en las métricas de evaluación.

Todos los modelos han tenido unas métricas muy altas debido a que el problema que estamos abordando es altamente determinista y el conjunto de datos es muy limpio y está bien estructurado.

Mejores parámetros:

- classifier: RandomForestClassifier
- classifier_max_depth: 5
- classifier_max_leaf_nodes: 18
- classifier_n_estimators: 500
- pca_n_components: 25
- scaler: StandardScaler()

	Feature	Component	Explained Variance Ratio
0	Time	PC1	0.568221
1	Location_encoded	PC2	0.096179
2	Zone_encoded	PC3	0.074115
3	Habitat_encoded	PC4	0.060819
4	Cranial_Capacity	PC5	0.045753
5	Height	PC6	0.034354
6	Incisor_Size_encoded	PC7	0.025444
7	Jaw_Shape_encoded	PC8	0.021881
8	Torus_Supraorbital_encoded	PC9	0.015482
9	Prognathism_encoded	PC10	0.015112
10	Foramen_encoded	PC11	0.011615
11	Canine_Size_encoded	PC12	0.007255
12	Canines_Shape_encoded	PC13	0.006075
13	Tooth_Enamel_encoded	PC14	0.003987
14	Tecno_encoded	PC15	0.003488
15	tecno_type_mapping_encoded	PC16	0.003212
16	Biped_encoded	PC17	0.002488
17	foots_encoded	PC18	0.001356
18	arms_encoded	PC19	0.001083
19	Diet_encoded	PC20	0.000897
20	Sexual_Dimorphism_encoded	PC21	0.000612
21	Hip_encoded	PC22	0.000355
22	Vertical_Front_encoded	PC23	0.000139
23	Anatomy_encoded	PC24	0.000070
24	Migrated encoded	PC25	0.000008

	Feature	Component	Explained Variance Ratio
0	Time	PC1	0.568221
1	Location_encoded	PC2	0.096179
2	Zone_encoded	PC3	0.074115
3	Habitat_encoded	PC4	0.060819
4	Cranial_Capacity	PC5	0.045753
5	Height	PC6	0.034354
6	Incisor_Size_encoded	PC7	0.025444
7	Jaw_Shape_encoded	PC8	0.021881
8	Torus_Supraorbital_encoded	PC9	0.015482
9	Prognathism_encoded	PC10	0.015112
10	Foramen_encoded	PC11	0.011615
11	Canine_Size_encoded	PC12	0.007255
12	Canines_Shape_encoded	PC13	0.006075
13	Tooth_Enamel_encoded	PC14	0.003987
14	Tecno_encoded	PC15	0.003488
15	tecno_type_mapping_encoded	PC16	0.003212
16	Biped_encoded	PC17	0.002488
17	foots_encoded	PC18	0.001356
18	arms_encoded	PC19	0.001083
19	Diet_encoded	PC20	0.000897
20	Sexual_Dimorphism_encoded	PC21	0.000612
21	Hip_encoded	PC22	0.000355
22	Vertical_Front_encoded	PC23	0.000139
23	Anatomy_encoded	PC24	0.000070
24	Migrated encoded	PC25	800000.0

6.EVALUACIÓN DEL MODELO

- **Precision**: de todas las instancias clasificadas como positivas, ¿cuántas realmente lo son?
- **Recall**: De todas las instancias que son realmente positivas, ¿Cuántas fueron identificadas correctamente por el modelo?
- Accuracy: Es la proporción de todas las predicciones que son correctas
- F1-score: Métrica de evaluación de modelos de clasificación que combina la precisión y el recall en un solo valor.

MÉTRICAS CON TODAS LAS VARIABLES:

TEST

Precision: 1.0

Recall: 1.0

F1-score: 1.0

ROC AUC score: 1.0

Accuracy 1.0

TRAIN

Precision: 1.0

Recall: 1.0

F1-score: 1.0

ROC AUC score: 1.0

Accuracy 1.0

VS

METRICAS CON 6 COMPONENTES PRINCIPALES:

TEST

Precision: 0.9706024568294211

Recall: 0.96833333333333334

F1-score: 0.96777550001036

Accuracy 0.96833333333333334

TRAIN

Precision: 0.9709938735659144

Recall: 0.9698958333333333

F1-score: 0.9690546916858926

Accuracy 0.9698958333333333

7. CONCLUSIONES

ACIERTOS

- El modelo ha conseguido unas métricas del 100% de aciertos en test.
- Es un modelo que no es muy costoso computacionalmente.
- Se puede seguir actualizando con nuevas variables fácilmente.
- Con pocas variables en función del PCA obtiene también muy buenas méticas.
- Es un modelo fácilmente interpretable

CONTRAS

- Los datos de origen deben venir bien clasificados y estructurados para que el modelo siga teniendo buenos rendimientos
- Habría que medir su rendimiento ante nuevos fósiles con características distintas a los datos de entrenamiento ya que se basa en datos muy deterministas.

Gracias

Teresa Terol Díez http://localhost:8501/

https://github.com/svalenciaromero/taller_opencv_thebridge_09_23