- 58. Justifique que \mathbb{Z}_3 não é subanel de \mathbb{Z}_9 .
- 59. Prove que o centro Z(A) de um anel A, definido por

$$Z(A) = \{x \in A : (\forall y \in A) \ xy = yx\},\$$

 $\acute{\mathrm{e}}$ um subanel de A.

- 60. Sejam A um anel e $N = \{n \in \mathbb{Z} : na = 0_A, \forall a \in A\}.$
 - (a) Mostre que N é um ideal do anel \mathbb{Z} .
 - (b) Determine N, sabendo que:
 - i. $A=\mathbb{Z}_5$;
 - ii. A é um anel com identidade 1_A e $o(1_A) = \infty$.
 - (c) Dê um exemplo de um anel A para o qual \mathbb{Z}/N é corpo.
- 61. Mostre que um subanel de um anel A não é necessariamente um ideal de A.
- 62. Seja A um anel comutativo com identidade e $a \in A \setminus \{0_A\}$. Prove que $R_a = \{x \in A \mid xa = 0_A\}$ é um ideal próprio de A
- 63. Sejam X e Y dois subconjuntos de um anel A. Defina soma de X com Y, X+Y, e produto de X por Y, XY, respetivamente por

$$X + Y = \{x + y \in A : x \in X \text{ e } y \in Y\}$$

е

$$XY = \left\{ \sum_{i=1}^{n} x_i y_i \in A : n \in \mathbb{N}, x_i \in X, y_i \in Y (i \in \{1, 2, ..., n\}) \right\}.$$

- (a) Mostre que a soma de dois subanéis de A não é necessariamente um subanel de A.
- (b) Mostre que o produto de dois subanéis B e C de A é subanel de A se BC = CB.
- 64. Sejam A um anel, B um subanel de A e I e J ideais de A. Prove que:
 - (a) B + I é um subanel de A;
 - (b) I + J é um ideal de A;
 - (c) IJ é um ideal de A tal que $IJ \subseteq I + J$.
- 65. Seja A um anel comutativo com identidade. Mostre que se I e I' são ideais de A tais que A = I + I' então $II' = I \cap I'$.