Control Systems

G V V Sharma*

CONTENTS

1 Shunt		ek Voltage Amplifier: Series-	1
2 Series		ek Current Amplifier: Shunt-	1
	2.1 2.2	Ideal Case	1 1

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/feedback/codes

- 1 FEEDBACK VOLTAGE AMPLIFIER: SERIES-SHUNT
- 1.0.1. A series-shunt feedback amplifier employs a basic amplifier with input and output resistances each of $2K\Omega$ and gain G = 1000V/V. The feedback factor H = 0.1V/V. Find the input resistance R_{if} , output resistance R_{of} and gain of the closed-loop amplifier.

Solution: For given data, see Table:1.0.1. For feedback-amplifier circuit and equivalent circuit, see fig:1.0.1.1 and 1.0.1.2 Closed-loop gain,

$$T = \frac{G}{1 + GH} = 9.9 \tag{1.0.1.1}$$

Input resistance,

$$R_{if} = (1 + GH)R_i = 202K\Omega$$
 (1.0.1.2)

Output resistance,

$$R_{of} = \frac{R_o}{1 + GH} = 19.802\Omega \tag{1.0.1.3}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Parame- ters	Definition	For given circuit
Open	G	1000
loop gain		
Feedback	Н	0.1
factor		
Open-	R_i	$2K\Omega$
loop input		
resistance		
Open-	R_o	$2K\Omega$
loop		
output		
resistance		

TABLE 1.0.1

Fig. 1.0.1.1: Ideal structure

- 2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES
- 2.1 Ideal Case
- 2.2 Practical Case

Fig. 1.0.1.2: Equivalent circuit