ARJUNA (NEET)

States of Matter

DPP-5

- 1. The numerical value of N/n (Where N is the number of molecules in a given sample of the gas and n is the number of moles of the gas) is
 - (A) 8.314
 - (B) 1.66×10^{-19}
 - (C) 6.023×10^{23}
 - (D) 0.082
- 2. Which one of the following is not correct about universal gas constant R?
 - (A) $R = 0.0821 \text{ m}^3 \text{ atm. } K^{-1} \text{ mol}^{-1}$
 - (B) $R = 8.314 \text{ kJ.K}^{-1} \text{ mol}^{-1}$
 - (C) $R = 1.987 \text{ k.cal } ^{\circ}\text{C}^{-1} \text{ mol}^{-1}$
 - (D) All of these
- 3. Which one is correct?

- (A) $p_1 > p_2$
- (B) $p_1 < p_2$
- (C) $p_1 = p_2$
- (D) All of these
- 4. The partial pressure of a dry gas is
 - (A) Less than that of wet gas
 - (B) Greater than that of wet gas
 - (C) Equal to that of wet gas
 - (D) None of these
- 5. A cylinder was filled with gaseous mixture containing CO and N₂ (equal masses). The ratio of their partial pressure in cylinder are
 - (A) 1:1
- (B) 1:2
- (C) 2:1
- (D) 1:3

- 6. A gas in an open container is heated from 27°C to 127°C. The fraction of the original amount of gas remaining in the container will be
 - (A) $\frac{3}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{8}$
- 7. Absolute zero is
 - (A) -273° C
 - (B) zero K
 - (C) Temperature at which no substance exists in gaseous state
 - (D) All of these
- 8. A gas occupies 20 litre of volume under STP. What will be its volume if the pressure is increased four times, keeping the temperature constant?
 - (A) 20 L
- (B) 80 L
- (C) 5 L
- (D) 4 L
- 9. Density of a gas at 300 K and 210 torr is 0.434 gL⁻¹. What is its molar mass?
 - (A) 14.78 g/mol
- (B) 73.43 g/mol
- (C) 38.68 g/mol
- (D) 43.28 g/mol
- 10. 400 mL of CO₂ gas at 0.892 bar pressure and 800 mL CH₄ gas at 0.921 bar pressure are put into a 2 L flask. Calculate the total pressure of the mixture, assuming temperature is kept constant.
 - (A) 0.546 bar
- (B) 2.0 bar
- (C) 3.8 bar
- (D) 4.9 bar

ANSWERS KEY

1. **(C)**

2. **(D)**

3. (B)

4. (A)

5. (A)

6. (A)

7. **(D)**

8. (C)

9. (C)

10. (A)

Note - If you have any query/issue

Mail us at support@physicswallah.org

