INTERROGATION N. 6

NOM: PRÉNOM:

Exercise 1 - Dans \mathcal{S}_5 on pose $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$ et $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix}$. Donner la décomposition en produit de cycles à supports disjoints de σ , σ^2 et $\tau^2\sigma$.

Exercice 2 - Soit un entier $n \ge 3$. Déterminer $Z(\mathcal{S}_n)$.

 $\frac{\sigma^2 = (135)^2(24)^2}{= (153)}$ (des cycles à Supports disjoint Exercice 1: T= (135)(24). (des sycles à supports disjointe commutant) $T = (15)(23), \quad z^2 = (15)^2(23)^2$

F= 0 = (153) (24)

Par l'absurde on suppose qu'il existe T & Z[J] \{Id}.

Soit $i \in \{1, ..., m\}$ alons:

 $\sigma(\lambda) + \lambda \implies (\lambda \sigma(\lambda)) \sigma = \sigma(\lambda \sigma(\lambda))$

(on appliquant à i). Puisque $\sigma \neq Ta$ il existe $i \in \{1, ..., m\}$ tel que $i \neq \sigma L^i$).

Puisque m >, 3 il existe j' \(\{1,...,m\}\) tel que j \(\{1',\sigma(\)}\).

Aimoi, le 3-cycle (1' σ (1') j) est bien définie et (1' σ (1) j') $\sigma = \sigma$ (1' σ (2) j'). En appliquant à 1' on en déduit $j = \sigma^2(i) = 1'$. C'est abourde. Donc $Z(J_m) \subseteq \{Id\}$. $Gr Z(J_m) < J_m$. Donc $Z(J_m) = \{Id\}$.