Термализация неупругой тёмной материи в Солнце

Товстун А.А.

25 июня 2025 г.

WIMP

- WIMP частицы тёмной материи с возможной массой МэВ ТэВ
- для термального рождения Тёмная Материя должена иметь сечение аннигилляции

$$\langle \sigma_{ann} v \rangle \sim 10^{26} {
m cm}^3 {
m c}^{-1}$$

 Методы поиска: прямые (подземные эксперименты по поиску отдачи ядер), косвенные (измерение продуктов аннигиляции), коллайдерные.

WIMP

Наиболее сильные ограничения на сечение столкновения с нуклоном $\sigma_{\chi p}$ дают прямые эксперименты.

Рис.: Ограничения на $\sigma_{\gamma\rho}^{SI}$ (PDG)

Неупругая тёмная материя

- Неупругая тёмная материя позволяет ослабить ограничения благодаря кинематике.
- Состоит из 2 компонент: χ с массой \emph{m}_{χ} и χ^* с массой $\emph{m}_{\chi} + \delta$
- Столкновения с ядрами происходят преимущественно неупругим образом.

Неупругая тёмная материя

Неупругая тёмная материя может естественно возникать в различных теориях.

 Простейший пример — дираковский фермиона малой майорановской массой

$$\mathcal{L} \subset \overline{\chi} (i \gamma^{\mu} \partial_{\mu} - m) \chi + \frac{\delta}{4} \overline{\chi} \chi^{C} + \frac{\delta}{4} \overline{\chi^{C}} \chi$$

Массовыми состояниями являются

$$\chi_1 = \frac{\chi - \chi^C}{\sqrt{2}i}, \chi_2 = \frac{\chi + \chi^C}{\sqrt{2}}$$

с массами
$$m_1=m-rac{\delta}{2}$$
 и $m_2=m+rac{\delta}{2}$

Неупругая тёмная материя

 Взаимодействие векторного типа приводит к неупругому рассеянию.

$$g\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma^{\mu}q = i\frac{g}{2}\left[\bar{\chi_2}\gamma^{\mu}\chi_1 - \bar{\chi_1}\gamma^{\mu}\chi_2\right]\bar{q}\gamma^{\mu}q$$

- Данный механизм встречается в секторе хиггсино в SUSY расширениях и в некоторых моделях с тёмными фотонами.
- Похожий механизм со скалярными комплексными полями встречается в секторе снейтрино.

Взаимодействие с веществом

• Взаимодействие тёмной материи представляется в виде линейной комбинации операторов $\hat{O}_1 - \hat{O}_{15}$, возникающие из релятивистких операторов. Например:

$$\begin{split} &\bar{\chi}\gamma^{\mu}\chi\bar{n}\gamma_{\mu}n\rightarrow \quad \hat{O}_{1} &= 1\\ &\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{n}\gamma_{\mu}\gamma^{5}n\rightarrow \quad -4\hat{O}_{4} &= -4\vec{S}_{\chi}\cdot\vec{S}_{n} \end{split}$$

 Для нахождения сечения рассеяния на ядре находят в оболочечной модели ядра матричные элементы потенциала взаимодействия.

$$iV = \langle \chi k', Np' | \sum_{i} \hat{V}(r_{\chi} - r_{i}) | \chi k, Np \rangle$$

Взаимодействие с веществом

- Рассеяние бывает спин-независимое *SI* и спин-зависимое *SD*.
- В первом случае когерентное рассеяние на А нуклонах в ядре приводит росту сечения на А⁴

$$\sigma_{\chi N}(\hat{O}_1) = \sigma_{\chi p} \cdot A^4 \left(\frac{m_\chi + m_p}{m_\chi + m_N} \right)^2 (q^2 \to 0)$$

• В SD случае сечение растет только как A^2 , из-за чего ограничения на сечение рассеяния слабее.

 Тёмная материя захватывается и аннигилирует в Солнце. Этим процессы описывают уравнением баланса

$$\frac{dN}{dt} = C - aN^2$$

решение которого имеет вид:

$$N = \sqrt{\frac{C}{a}} \operatorname{th}\left[\sqrt{at^2C}\right], A = C \operatorname{th}^2\left[\sqrt{at^2C}\right]$$

$$aT_{\odot}^2 = 9 \cdot 10^{-23} \text{s} \left(\frac{\langle \sigma_a v \rangle}{3 \cdot 10^{-26} \text{cm}^2 \text{s}^{-1}} \right) \left(\frac{m_{\chi}}{\text{GeV}} \right)^{3/2}$$

- В упругом случае как правило $aT_{\odot}^{2}C >> 1$ и A = C.
- В неупругом сценарии a зависит от сечения рассения $\sigma_{\chi p}$, модели и времени.
- Величина *а* находится с помощью численного расчета линейного уравнения Больцмана.
- Учитывая изотропность задачи, фазовое пространство — плоскость *E* — *L* и уравнение эволюции выглядит следующим образом:

$$\frac{\partial f(E,L)}{\partial t} = C(E,L) +$$

$$+ \int dE'dL'[S(E,L,E',L')f(E',L') - S(E',L',E,L)f(E,L)]$$

• Для численного решение фазовое пространство разбивается на интервалы по переменным E и I

$$E = \left(\frac{1}{2}v_{\chi}^{2} + \phi(r)\right) \cdot \left(\frac{1}{2}v_{esc}^{2}\right)^{-1}$$

$$L = \frac{|\vec{r} \times \vec{v}|}{R_{\odot}v_{esc}}, I = \frac{L}{L_{max}(E)}$$

• Решается уравнение на количество частиц в *i-*том итервале:

$$rac{\partial N_i}{\partial t} = rac{1}{T_{\chi p}} \left(N_{\odot} c_i + \sum_j \left[s_{ij} N_j - s_{ji} N_i \right] - e_i N_i
ight)$$

Мы решаем однородное уравнение на величину $C_i(t)=\frac{\partial N}{\partial t}$, которое описывает эволюцию частиц, захватившихся за единицу времени в момент t=0.

Рис.: Распределение захваченных частиц для $m_\chi=100\,\mathrm{GeV}$, $\delta=100\,\mathrm{keV}$.

Рис.: Начальное и конечное распределение частиц тёмной материи в Солнце $m_{\chi}=100{
m GeV}$

Можно ли найти aT_{\odot}^2 решая лишь линейное уравнение?

Рис.: Зависимость от δ захвата и аннигиляции при линейной и нелинейной эволюции для $m_\chi = 100 {
m GeV}$

Условие равновесия

Нам нужно знать при каких m и δ наступает равновесие между аннигиляцией и захватьм а при каких нет.

Рис.: Область параметров при которых наступает равновесие между A и C

Внешняя аннигилляция

Интерес представляет также та часть частиц, которая остается снаружи Солнца и может давать больший аннигиляционный сигнал.

Коэффициент аннигилляции

Рис.: Коэффициент аннигиляции для $\emph{m}_{\chi}=$ 100GeV

Что еще

- Что если включить малое упругое взаимодействие?
- Что если включить саморассеяние тёмной материи $\chi + \chi \to \chi + \chi$?