Deep Learning and Neural Networks

Topic 2:

Shallow Networks

Ricardo Abel Espinosa Loera, McS

Researcher in DL & Computer Vision

A model of a real neuorn

- Connected to others
- Represents simple computation
- Has inhibition and excitation connections
- Has a state
- Outputs spikes

A model of an artificial neuron

$$\sum_{i=1}^{d} \mathbf{w}_i \mathbf{x}_i + \mathbf{b}$$

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i \quad \mathbf{x}_0 := 1$$

- Easy to compose
- Represents simple computation
- Has inhibition and excitation connections
- Is stateless wrt. time
- Outputs real values

A model of an artificial neuron

- Easy to compose
- Represents simple computation
- Has inhibition and excitation connections
- ls stateless wrt. time
- Outputs real values

A linear layer

Single layer neural networks

$$h(\mathbf{x}, \mathbf{w}, \mathbf{b}) = \langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{b}$$

$$f_{\text{linear}}(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b}$$

- Easy to compose
- Collection of artificial neurons
- Can be efficiently vectorised
- Fits highly optimised hardware (GPU/TPU)

In Machine Learning linear really means <u>affine</u>. Neurons in a layer are often called <u>units</u>. Parameters are often called <u>weights</u>.

NEURAL NETWORKSA linear layer

Single layer neural networks

NEURAL NETWORKSSigmoid activation function

- Introduces non-linear behaviour
- Produces probability estimate
- Has simple derivatives
- Saturates
- Derivatives vanish

Activation functions are often called non-linearities. Activation functions are applied point-wise

Cross Entropy Loss Function

- Encodes negation of logarithm of probability of correct classification
- Composable with sigmoid
- Numerically unstable

The simplest "neural" network classifier

Cross entropy loss is also called negative log likelihood or logistic loss. Being additive over samples allows for efficient learning.

- Encodes negation of logarithm of probability of entirely correct classification
- Equivalent to logistic regression model
- Numerically unstable

NEURAL NETWORKS Softmax

$$f_{\text{sm}}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_{j}}}$$
$$f_{\text{sm}}([x, 0]) = \left[\frac{e^{x}}{e^{x} + e^{0}}, \frac{e^{0}}{e^{x} + e^{0}}\right]$$
$$= [f_{\sigma}(x), 1 - f_{\sigma}(x)]$$

- Multi-dimensional generalisation of sigmoid
- Produces probability estimate
- Has simple derivatives
- Saturates
- Derivatives vanish

Softmax is the most commonly used final activation in classification. It can also be used to have a smooth version of maximum.

Softmax + Cross-entropy

- Encodes negation of logarithm of probability of entirely correct classification
- Equivalent to multinomial logistic regression model
- Numerically stable combination

Widely used not only in classification but also in RL. Cannot represent sparse outputs (sparsemax)

Limitations -> The XOR problem

NEURAL NETWORKS Limitations -> The XOR problem

Limitations -> The XOR problem

$$\mathbf{W} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

1 Hidden Layer Neural Network vs the XOR

- With just 2 hidden neurons we solve XOR
- Hidden layer allows us to bent and twist input space
- We use linear model on top, to do the classification

$$\mathbf{W} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

Neural Network Playground

http://playground.tensorflow.org/ by Daniel Smilkov and Shan Carter

Neural Network Playground

NEURAL NETWORKSRepresentation Learning

- Methods that allow a machine to be fed with raw data to automatically discover. representations needed for detection or classification
- Deep Learning methods are Representation Learning Methods
- Use multiple levels of representation
- Composing simple but non-linear modules that transform representation at one level (starting with raw input) into a representation at a higher slightly more abstract level
- Complex functions can be learned

what are they?

what are they?

what are they?

How are they trained?

THE LEARNING PROCESS

NEURAL N

Mathematical Intuitions

THE "NEURON"

LEARNED

$$w=2$$
 $b=6$
 $2 \times 18 + 6 = 42 \rightarrow tanh (42) = 1$
 $-2.79 \rightarrow 2 \times (-279) + 6 = .042 \rightarrow tanh (.042) = .03969$
 $-10 \rightarrow 2 \times (-10) + 6 = -14 \rightarrow tanh (-14) = -1$

NEURAL NETWORKSMathematical Intuitions

$$z(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

$$f(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x} + b)$$

 $\mathbf{x}, f(\mathbf{x})$ input and output

Z(**x**) pre-activation

w,*b* weights and bias

g activation function

NEURAL NETWORKSMathematical Intuitions

$$\mathbf{f}(\mathbf{x}) = g(\mathbf{z}(\mathbf{x})) = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

W,**b** now matrix and vector

- $ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\bullet \ \mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h\mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\bullet \ \mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $ullet \mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\bullet \ \mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

- $ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h \mathbf{x} + \mathbf{b}^h$
- $\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x} + \mathbf{b}^h)$
- $\mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$
- $\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$

Mathematical Intuitions

Keras Implementation

```
model = Sequential()
model.add(Dense(H, input_dim=N))  # weight matrix dim [N * H]
model.add(Activation("tanh"))
model.add(Dense(K))  # weight matrix dim [H x K]
model.add(Activation("softmax"))
```

Activation Functions

Activation Functions

NEURAL NETWORKS Activation Functions

Largest difference between simple ML models and neural networks is:

Nonlinearity of neural network causes interesting loss functions to be non-convex

Logistic Regression Loss:

$$\begin{aligned} &\text{Linear Regression with Basis Functions:} \\ &E_{_{\mathcal{D}}}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{^{N}} \left\{ \ t_{_{n}} - \mathbf{w}^{^{T}} \varphi(x_{_{n}}) \ \right\}^{^{2}} \end{aligned}$$

$$J(oldsymbol{ heta}) = -E_{oldsymbol{x}, oldsymbol{y} \sim \hat{p}_{ extit{data}}} \log p_{ exttt{model}}(oldsymbol{y} \,|\, oldsymbol{x})$$

Use iterative gradient-based optimizers that merely drives cost to low value, rather than

- Exact linear equation solvers used for linear regression or
- convex optimization algorithms used for logistic regression or SVMs