Analyse numérique avec python

Yehor Korotenko

February 2, 2025

Contents

1	Equ	nations Différentielles	2
	1.1	Modèles discrètes	2
		1.1.1 Modèle de croissance géomètrique	2
	1.2	Modèles continues	3
		1.2.1 Modèle de Malthus	3
		1.2.2 Modèle Verhulst	4
	1.3	Modèle de croissance logistique	5
	1.4	Notion de champ de vecteurs associée à une EDO	5
		1.4.1 Généralités et définitions	5
		1.4.2 Dessins de champs de vecteurs	8
		1.4.3 Recherche de solution approchée de modèles sous python	8
	1.5	Modèle de prédateur prose (lotka-voltena (1931))	9
2	Inte	erpolation polynomiale	10
	2.1	Rappels sur les nuts numériques	
		Vitesse (ordre) de convergence	
		valeur ajoutée par itérations	11
		2.1.1 Valeur ajoutée par l'itération	
		2.1.2 Obtenir numériquement la vitesse de convergence	

Chapter 1

Équations Différentielles

1.1 Modèles discrètes

On diésigne par N(t) la population d'individus à l'instant t. Équation du modèle discret:

$$\underbrace{N(t + \Delta t) - N(t)}_{\text{variation de la population}} = \underbrace{n}_{\text{nombre de naissances}} - \underbrace{m}_{\text{nombre de décès}} + \underbrace{i}_{\text{immigration}} - \underbrace{e}_{\text{immigration}}$$

1.1.1 Modèle de croissance géomètrique

- hypothèse:
 - solde migration nul: i.e i e = 0
 - nombre de croissance proportionnel à la taille de la population $\underbrace{n = \lambda \Delta t N(t)}_{\text{taux de natalité}}$
 - -Idem pour le mobre de décès: $\underline{m = \mu \Delta t N(t)}_{\rm taux~de~mortalit\'e}$
- Modèle: On pose $N_n = N(t_n)$ la taille de la population à l'instant t_n .

$$N_{n+1} - N_n = \lambda \Delta t N_n - \mu \delta t N_n$$

on pose $r = \lambda - \mu$

$$N_{n+1} = (1 + r\Delta t)N_n, \qquad n = 0$$
(1.1)

- Solution: $N_n = (1 + r\Delta t)^n N_0, \quad n \in \mathbb{N}$
- <u>Visualisation</u>: Δt fixé

(a) Natalité supérieure à la mortalité

- (b) Natalité égale à la mortalité
- (c) Natalité inférieure à la mortalité

Property. .

• Lorsque $t \to 0$, la population semble tendre vers une courbe $N(t) = N_0 e^{rt}$, solution de $\begin{cases} N'(t) = rN(t) \\ N(0) = N_0 \end{cases}$

• Si r > 0, la population croît indéfiniment

• Si r < 0, il y a extinction de l'éspèce.

Inconvenients:

1. Une croissance infinie n'est pas réaliste

2. Pour être rigoureux, on devrait écrire $E(rN_n)$ i.e partie entière.

1.2 Modèles continues

Motivation: L'observation qui prend Δt proche de 0 aura beaucoup plus d'information.

Remark 1.1. Le modèle de croissance géomètrique

$$\begin{split} N(t + \Delta t) - N(t) &= \lambda \Delta t N(t) - \mu \Delta t N(t) \\ \Rightarrow & \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lambda N(t) - \mu N(t) \end{split}$$

en faisant $\Delta t \to 0$

$$N'(t) = \lambda N(t) - \mu N(t)$$

D'où l'équation des modèles continues:

$$\underbrace{N'(t)}_{\text{vitesse de variation}} = \underbrace{n(t)}_{\text{vitesse de naissance}} - \underbrace{m(t)}_{\text{vitesse de décès}} + \underbrace{i(t)}_{\text{vitesse d'immigration}} - \underbrace{e(t)}_{\text{vitesse d'émigration}}$$

1.2.1 Modèle de Malthus

• hypothèse:

- solde migration nul: i(t) - e(t) = 0

- vitesse de naissance proportionnel à la population à l'instant t: $n(t) = \lambda N(t)$

- vitesse de décès: $m(t) = \mu N(t)$

• Modèle: $\begin{cases} N'(t) = (\lambda - \mu)N(t) \\ N(0) = N_0 \end{cases}$

• Solution: $N(t) = N_0 e^{(\lambda - \mu)t}$

Property. – Il peut être si comme limite du modèle de croissance géomètrique.

– Lorsque $r = \lambda - \mu > 0$ croissance est proportionnel.

– Lorsque $r = \lambda - \mu = 0$ la population n'évolue pas.

- Lorsque $r = \lambda - \mu < 0$ la population tend vers 0.

• <u>Inconvenients</u>:

- croissance exponentielle pas réaliste. Il faut prendre en compte:

* la limitation des ressources

* l'interaction avec l'environnement

1.2.2 Modèle Verhulst

Corrige le modèle de Malthus en prennant en compte la limitation de ressources.

 \bullet <u>Idée</u>: limiter la croissance à un seuil K appelé capacité biotique

Figure 1.2: Modèle de Malthus

Figure 1.3: Modèle de Verhulst

- hypothèse: Sole de migration nul
 - -taux de natalité fonction afiine décroissante de la population $\lambda \approx \lambda(1-\frac{N(t)}{K})$
 - -taux de mortalité fonction affine croissante de la population $\mu \approx -\mu(1-\frac{N(t)}{K})$

• Modèle:
$$\begin{cases} N'(t) = rN(t)(1 - \frac{N(t)}{K}) \\ N(0) = N_0 \end{cases}$$

- Solutions: $N(t) = \frac{K}{1 + (\frac{K}{N_0} 1)e^{-rt}}$ t > 0
- <u>Visualisation</u>:

Figure 1.4: Verhulst solution

Property. Si r > 0, on a:

- si $N_0 = 0$ $N_0 = K$ on a: $N(t) = N_0 \,\forall t > 0$
- $\sin 0 < N_0 < K, N$ croissante
- si $N_0 > K$, N décroissante
- $-\ N$ possède une limite si $N_0>0$

$$\lim_{t \to \infty} N(t) = K$$

1.3 Modèle de croissance logistique

C'est un modèle discrét

- <u>hypothèse</u>: i.e = 0 n-m est une fonction affine de la population, i.e $n-m=r\Delta t N(t)(1-\frac{N(t)}{K})$
- Modèle: On suppose $\Delta t = 1$: On pose $N_n = N(t_n)$

On a:
$$\begin{cases} N_{n+1} - N_n = r N_n (1 - \frac{N_n}{K}) \\ N_0 \text{ donné} \end{cases}$$

Property. (À vérifier numeriquement)

- si r < 2, la suite converge vers K
- $\sin 2 < r < 2.449$, la suite converge vers un cycle
- si 2.449 < r < 2.57, la suite est encore un cycle mais plus complèxe
- $-\sin r > 2.57$, la suite devient chaotique

1.4 Notion de champ de vecteurs associée à une EDO

1.4.1 Généralités et définitions

Les modèles continus de la dynamique de populations sont des problèmes de Cauchy pour les EDO.

(EDO)
$$\begin{cases} y'(x) = f(t, y(t)) & t \in]0, \pi[\\ y(0) = y_0 & \end{cases}$$

Оù

$$y:[0,\pi]\longrightarrow \mathbb{R}$$

 $t\longmapsto y(t).$

$$f:]0, \pi[\times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(t, x) \longmapsto f(t, x).$

- Si l'on sait résoudre analytiquement l'EDO (i.e donner l'expression de $t\mapsto y(y)$) alors c'est terminé car il suffit d'étudier la fonction $t\mapsto y(t)$
- Si l'on ne sait pas détérminer la solution analytique, on peut:
 - 1. s'assurer de **l'éxistence** et **l'unicité** de la solution et de sa **stabilité** vis à vis des données du problème.
 - 2. Puis analyser les propriétés qualitatives de cette solution pour simple analyse de f(t,x)

C'est ici qu'intervient les champs de vecteurs.

Illustations.

1. Prenons le modèle de Malthus

$$\begin{cases} N'(t) = rN(t), & t \in]0, \pi[\\ N(0) = N_0 \end{cases}$$

On sait que $N(t) = N_0 e^{rt}$

2. Voici ce que fait python pour traiter N.

Figure 1.5: Ce que fait python

- 3. Traitons les vecteurs tangents à la courbe $t \mapsto N(t)$ aux points t_n , n = 0
- 4. Si l'on connaît les valeurs minimals et maximales de la solutions on peut avoir l'allure de la solution.

Figure 1.6: Une courbe sur des champs de vecteurs

Analysons ce que represente le vecteurs tangent:

- pour une courbe y = g(x)
- python et tout autre logiciel procède ainsi

Figure 1.7: Ce que represente vecteur

Le vecteur tangent à la courbe:

$$\vec{v} = (1, g'(x)) = (1, \frac{dy}{dx}) = (1, \frac{\frac{dy}{dt}}{\frac{dy}{dt}})$$

$$= \frac{1}{\frac{dy}{dt}} (\frac{dx}{dt}, \frac{dy}{dt}) = \frac{1}{\dot{x}(t)} \underbrace{(\dot{x}(t), \dot{y}(t))}_{\text{vecteur tangent}}$$

$$\vec{v} = (\dot{x}(t), \dot{y}(t))$$

Càd \vec{v} est le vecteur vitesse au points M(x(t),y(t)) a la courbe parametrée $t\mapsto \begin{cases} x(t)=t\\ y(t)=g(t) \end{cases}$. On a le résultat.

Proposition 1.2.

```
(y obtient solution de l'EDO y'(t) = f(t, y(t)))

$\psi$ (vecteur vitesse de la courbe parametrée t \mapsto (x(t), y(t)) au point M(t_0) = (t_0, y(t_0)) si le vecteur (1, f(t_0, y(t_0))))
```

Proposition 1.3.

$$V:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

$$(t,y)\longmapsto V((t,y)).$$
 (si le champ de vecteur associé à l'EDO $y'(t)=f(t,y(t)))\Leftrightarrow V(t,y)=(1,f(t,y))$

1.4.2 Dessins de champs de vecteurs

Principe:

À chaque points $P = (p_x, p_y)$ on trace le vecteur $\varepsilon V(P)$ où ε est une constance positive choisi pour écrire les vecteurs trop longs.

Avec python on écrit $quiver(P_x, P_y, V_x, V_y, angles='xy')$ RQ 1: Cette fonction est vectorielle, i.e P_x, P_y, V_x, V_y , sont des numpy array de taille n. RQ 2: On peut ajouter un paramètre pour controles la longeur des vecteurs:

plt.quiver
$$(P_x, P_y, V_x, V_y, angles='xy', sacle=1)$$

Par conséquent, il faut normaliser les vecteurs (i.e le champ de vecteur)

Example 1.4. Champ de vecteur du modèle de Verhulst:

```
def f(t, y):
    return r * y * (1 - y/k)
```

la grille:

```
lt = np.linspace(tmin, tmax, N+1)
ly = np.linspace(ymin, ymax, M+1)
T, Y = np.meshgrid(lx, ly)
```

Construire les vecteurs:

```
Y = 1 + 0 * T
V = f(T, Y)
norm = np.sqrt(U*U + V*V)
U = U/norm
V = V/norm
```

On place les points:

```
plt.scatter(T, Y, marker='+', alpha = 0.5)
```

On place les vecteurs

```
plt.quiver(T, Y, U, V, angles='xy', scale=N)
```

1.4.3 Recherche de solution approchée de modèles sous python

On cherche une solution approchée de

$$\begin{cases} y'(t) = f(t, y(t)) & t \in]t_0, t_0 + T[\\ y(t_0) = y_0 \end{cases}$$

avec python. Pour cela il suffit de dire **en quels points** on veut cette solution. On se donne:

- une liste des instants $[t_0, t_1, \ldots, t_N]$
- t_0, y_0
- Puis, on appelle la fonction <u>odeint</u> du module scipy.integrate de python.
- On obtient une liste $[y_0, y_1, \dots, y_N]$

Example 1.5. Cas du modèle du Verhulst

• EDO:

```
def f(t, y):
return \ldots
```

• Instants

```
t0, tf = a, b
N = 100
t = np.linspace(t0, tf, N)
```

• On appelle odeint

```
from scipy.integrate import odeint
yapp = odeint(f, t, y), rtol=None, atol=None, tfloat=False)
plt.plot(t, yapp, \ldots)
```

1.5 Modèle de prédateur prose (lotka-voltena (1931))

H(t): population de sardins P(t): pupulation de reguins

$$\frac{H'(t)}{H(t)} = \text{taux de variation de sardins} = \underbrace{a}_{\text{taux de croissance}} - \underbrace{bP(t)}_{\text{taux de mortalit\'e}}$$

$$\frac{P'(t)}{P(t)} = \text{taux d'arriv\'e des requetes} = \underbrace{-c}_{\text{taux de d\'ec\`es}} + \underbrace{dH(t)}_{\text{taux de croissance}}$$

D'où le modèle:

$$\begin{cases} H'(t) = H(t)(a - bP(t)) & t > 0 \\ P'(t) = P(t)(-c + dH(t)) \\ H(0) = H_0, & P(0) = P_0 \end{cases}$$

Si l'on désigne par $p \ge 0$ la proportion des requêtes en sardines pêchés

$$\begin{cases} H'(t) = H(t)(a - p - bP(t)) & t > 0 \\ P'(t) = P(t)(-c - p - dH(t)) \\ H(0) = H_0 \\ P(0) = P_0 \end{cases}$$

Chapter 2

Interpolation polynomiale

On va essayer de construire des polynôms qui passent par un ensemble (nuages) de points donnés. Si ces points sont les valeurs d'une fonction, on amerait:

- savoir si le polynôme construit est d'autant plus proche de la fonction que le nombre de point est grand. C'est-à-dre, est-ce que nute des "erreurs" tend vers zero lorsque le nombre de points tend vers l'infini.
- Si oui, comment quantifier cette convergence? C'est-à-dire, quelle est la vitesse (ordre) de cette convergence.

Figure 2.1: evolution-de-population-en-annee

- 1. Approche 1: approximation linéaire.
 - Polynôme de degré 1
- 2. Approche 2:
 - $\bullet\,$ polynôme de degré $2\,$
 - approximation quadratique
- 3. Approche 3: prise en compre d'Historique

2.1 Rappels sur les nuts numériques Vitesse (ordre) de convergence valeur ajoutée par itérations

Definition 2.1. Soit $(x_n)_n \subset \mathbb{R}^n$ une suite qui converge vers $x^* \in \mathbb{R}^n$, pour une norme $\| \| \|$ de \mathbb{R}^n

- Si $k_1 = \lim_{x \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|}$ existe et $k_1 \in]-1,1[\setminus \{0\}]$. On dit que la suite convere <u>linéairement</u> vers x^* ou que la convergence est d'ordre 1.
- Si $k_1 = 0$, $k_2 = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^2}$ existe et non nul. On dit que la suite coverge <u>quadratiquement</u> vers x^* , ou que la convergence est <u>d'ordre 2</u>.
- Si $k_q = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^q}$ existe et $\neq 0$ la convergence est <u>d'ordre q</u>. La constante K_q est appelée constante asymptotique d'erreur.

Example 2.2. 1. $x_n = (0.2)^n$

- On a $\lim_{n\to\infty} x_n = 0$. La convergence vers $x^* = 0$.
- $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} \frac{(0.2)^{n+1}}{(0.2)^n} = 0.2 \in]-1,1[\setminus\{0\}]$

D'où

- x_n converge à <u>l'ordre 1</u>
- Sa constante asymptotique est $k_1 = 0.2$
- 2. $I_n = (0.2)^{2^n}$. On a $\lim_{n \to \infty} I_n = 0$ On a:

$$I_{n+1} = (0.2)^{2^{n+1}} = (0.2)^{2^{n} \cdot 2}$$
$$= ((0.2)^{2^{n}})^{2}$$
$$= (I_{n})^{2}$$

D'où $\lim_{n\to\infty}\frac{I_{n+1}}{(I_n)^2}=\lim_{n\to\infty}\frac{(I_n)^2}{(I_n)^2}=1$ D'où

- convergence d'ordre 2
- de constante $k_2 = 1$

En pratique, on ne dispose pas de K_q

Definition 2.3.

La convergence est au moins d'ordre q si et seulement si on a (deuxieme partie d'équation)

2.1.1 Valeur ajoutée par l'itération

Il est question de comparer 2 suites qui ont la même vitesse de convergence.

Remark 2.4. Si $|x_n - x^*| = 4 \cdot 10^{-8} = 0.\underbrace{0000000}_{\text{7 chiffres}} 4$. On dira que x_n et x^* ont 7 chiffres exactes apres la

virgule.

$$\log_{10}|x_n - x^*| = \log_{10} 4 - 8\log_{10}(10)$$
$$\frac{\log|x_n - x^*|}{\log 10} = \frac{\log 4}{\log 10} - 8$$

i.e $d_n = -\log_{10}|x_n - x^*|$ mesure de nombre de chiffres décimales entre x_n et x^* qui coincident.

$$\lim_{n \to \infty} \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} = K_q \Rightarrow K_q \approx \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q}$$

$$d_{n+1} + \frac{\log_{10} K_q}{1-q} \approx q(d_n + \frac{\log_{10} K_q}{1-q})$$

Donc, le nombre de chiffres significatives est multiplié par qu

Proposition 2.6. Si x_n converge à l'ordre 1 vers x^* de constante asymptotique K_1 , alors le nombre d'itérations nécessaires pour gagner un chiffre exacte est la partié enitère de $-\frac{1}{\log_{10} K_1}$

Proof. Soit m le nombre d'itérations pour gegner un chiffre. Comme $d_{n+1} - d_n = -\log_{10} K_1$, en partant de d_n , après m itérations on aura

$$d_{n+m} - d_n = -m\log_{10}K_1$$

D'où on aura gagné 1 chiffre si $d_{n+m} - d_n = 1$, i.e

$$1 = -m \log_{10} K_1 \Rightarrow m = \left(-\frac{1}{\log_{10} K_1}\right)$$

2.1.2 Obtenir numériquement la vitesse de convergence

On cherche qtq: $\lim_{n\to\infty}\frac{\|x_{n+1}-x^*\|}{\|x_n-x^*\|^q}=K_q\in\mathbb{R}^*$

Remark 2.7.

$$\frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} \approx K_q \Rightarrow$$

$$\underbrace{\log \|x_{n+1} - x^*\|}_{V} - \underbrace{q \log \|x_n - x^*\|}_{V} = \log K_q$$

i.e Y = aX + b. Conclusion: pour détérminer q:

- raiter la courbe $\log ||x_n x^*|| \mapsto \log ||x_{n+1} x^*||$
- Détérminer q comme la parte de la droite passant par le maximum de points.

$$x_n = x_0, x_1, \dots, x_N$$

$$x_n - x^* = x_0 - x^*, x_1 - x^*, \dots, x_N - x^*$$

$$x_{n+1} - x^* = x_1 - x^*, x_2 - x^*, \dots, x_{N+1} - x^*$$

En python:

```
xn = np.array([x0, ..., xN])
e = np.log(np.abs(xn - x^*))
```

```
ex = e[0:-1] #de premier a avant dernier
ey = e[1:] #de deuxieme au dernier

plt.scatter(ex, ey, label="miage")
a,b = np.polyfit(ex, ey, 1)
plt.plot(ex, b + a * ex, label=f"$x \mapsto {b:32f} + {a:32f}x$")
```