Record Management

Shan-Hung Wu & DataLab CS, NTHU

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager

Where?

VanillaCore

Data Access Layers

Record Management

- Main interface: RecordFile
 - An iterator of records in a file
 - One instance per TableScan
 - Via VanillaDb.catalogMgr().
 getTableInfo(tblName, tx).open()
 - Thread local

Responsibilities of RecordFile

- To decide how records are stored in a file
- To decide which block to pin
 - To save the cost of buffer access
- To work with the recovery and concurrency managers
 - To ensure tx ACID
 - Discussed later

Logical Schema vs. Physical Schema

 Record manager converts (logical) schema to physical schema

Design Considerations for Physical Schema

- Should all records of a table be stored in the same file?
- Should a record be placed entirely within one block?
- Should all fields of a record to be stored next to each other?
- Should a field be represented as a fixed number of bytes?
- How to manage free space?

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager

Should all records of a table be stored in the same file?

Homogeneous vs. Heterogeneous Files

- A file is *homogeneous* if all of its records come from the same table
 - Makes single-table queries easy to answer
- Allow heterogeneous files or not?

Tradeoff: Efficiency vs. Flexibility

- Query: SELECT s-name FROM students, departments WHERE d-id = major-id
- Homogeneous file
 - The disk drive has to seek back and forth between the blocks of two files

Tradeoff: Efficiency vs. Flexibility

- Query: SELECT s-name FROM students, departments WHERE d-id = major-id
- Nonhomogeneous file
 - Stores the students and departments records in the same file
 - Records are clustered on department id
 - Requires fewer block accesses to answer this join query

Homogeneous vs. Nonhomogeneous Files

Nonhomogeneous file

— Pros

 Clustering improves the efficiency of queries that join the clustered tables

Cons

- Single-table queries become less efficient
- Join queries on non-clustered field will also be less efficient
- Suits only for schemas with hierarchy

Should each record be placed entirely within one block?

Spanned vs. Unspanned Records

 A spanned record is a record whose values span two or more blocks

Spanned vs. Unspanned Records

- Spanned record
 - Pros
 - No disk space is wasted
 - Record size is not limited by block size
 - Cons
 - Reading one record may require multiple blocks access and reconstruction

Is each field in a record represented as a fixed number of bytes?

Fixed-Length vs. Variable-Length Fields

- Field types supported by SQL
 - int, varchar(n), text, etc.
- Most of types are naturally fixed-length
 - All numeric and data/time types
- A fixed-length field representation uses the same number of bytes to hold each value of the field
 - Integer can be stored as 4-bytes binary value
- How about those fields with variable-length types?
 - varchar(n),clob(n), etc.

Fixed-Length vs. Variable-Length Fields

- Consider a field "d-name" defined as type varchar(20) using the variable-length representation
- Modifying this field may require rearrange other records

Storing Variable-Length Fields

- Three different ways to store a varchar(n)
 - Variable-length representation

 Indexed representation, which stores the string value in a separate location

 Fixed-length representation, which allocates same amount of space for this field in each records

Pros & Cons

- Variable-length representation
 - Space-efficient
 - Costly record rearrangement is possible
- Indexed representation
 - Space-efficient (although with overhead of index)
 - Extra index access for each record read/write
 - Suits for text, clob(n)
- Fixed-length representation
 - Easy implementation of random access
 - Wastes space

Should all fields of a record to be stored next to each other?

Column-Store vs. Row-Store

- Row-oriented store
 - Row-by-row sequentially on disk
 - (s-id, s-name, major-id, grad-year)

```
1 joe 10 2015 | 2 kay 20 2013 | 4 rob 20 2011 | 5 tom 10 2013 | 6 bob 20 2016 | 9 jim 20 2011
```

- How about storing the values of a single column contiguously on disk?
 - Sorted by s-id

[]				_
124569	joe kay rob tom bob jim	10 20 20 10 20 20	2015 2013 2011 2013 2016 2011	

Pros & Cons

- Row-oriented store
 - Accessing a single row is more efficiently
 - Write-optimized
 - For OLTP workloads
- Column-oriented store
 - Efficient column read
 - Efficient column calculation (e.g., group by and aggregation)
 - Better comparison
 - For OLAP workloads

Design Considerations for Record Manager

- How to choose a proper record file structure?
- Several factors that should be taken into account
 - Workload
 - Supported SQL types
 - Schema

Implementing a File of Records

- A simple implementation for OLTP workloads:
 - Homogeneous files
 - Unspanned records
 - Fixed-length records
 - Row-oriented store
- Treats each file as a sequence of blocks and treats each block as an array of records
 - We call such a block a record page

Record Page

- Divides a block into slots, where each slot is large enough to hold a record plus one additional integer
 - This integer is a flag that denotes the slot usage
 - 0 means "empty" and 1 means "in use"

Table Information

- The table information stores
 - The record length
 - The name, type, length, and offset of each field of a record
- The table information allows the record manager to determine where values are located within the block

Table Information

- Table information of students table
 - Record length: 76 bytes

– Fields information:

students (s ra. rnt,
s-name:varchar(20),

etudente (e-id·int

major-id:int,

grad-year:long)

Field Name	Туре	Max Size (in byte)	Offset
s-id	int	4	0
s-name	varchar(20)	60	4
major-id	int	4	64
grad-year	long	8	68

Accessing The Record Page

- To insert a new record
 - The record manager finds a slot with empty flag
 - Updates the flag as in use
 - Returns the slot number
 - If all flag values are "1", then the block is full

Accessing The Record Page

- To delete the value of the record in slot k
 - The record manager simply sets the flat at that slot to 0 as empty
- To modify a field value of the record in slot k
 - The record manager determines the location of that field, and writes the value to that location
- Each record in a page has an ID. When the records are fixed-length, the ID can be its slot number

- What changes to make when we want to support variable-length fields?
 - The field offsets in a record are no longer fixed
 - The records of same table can have different lengths
 - The record position cannot be calculated by multiplying its slot number by slot size
 - Modifying a field value can cause a record's length to change

- If the record's length changes
 - We need to shift the records after modified record
 - The shifted records may spill out of the block
 - Move to overflow block
- The original block and overflow block form a single large record page

Modify the s-name of second record in original block

- How to delete a record?
 - Only set the flag to empty
 - Record size is variable, this empty space may not be reuse

- Reclaim the empty space
 - Dissociate the record's ID from slot

- The record manager cannot random access a record in a page, because it has no position information
 - We need a different page layout

Implementing Variable-Length Fields

- There is a header at the beginning of each record page containing following information
 - Number of records
 - The end of free space in that page
 - IDs and pointers to each record and size of each record
- The records are placed at the other end of page

End of Free Space

Implementing Variable-Length Fields

- When a modification on a record requires more spaces, the record manager will find a continuous free space within that page
- Rearranging the record page when record's length changes can eliminate the fragmentation
 - VACUUM command

Managing the Free Space Within a Record File

- Each record page in a file has different amount of free spaces
 - The fixed-length field implementation

The variable-length field implementation with id table

M1: Chaining

- When the client wants to insert a new record, the record manager needs to find continuous unused bytes for it
- How to manage the free space within a file?
- Chaining the free spaces

 For variable-length records, it may access many blocks to find out a large enough free space

M2: Meta-Pages

- Using special pages to track the usage of record pages
 - Allocates one free space page for N record pages
 - Free space page uses one byte to track the size of unused space size for each following page

Microsoft SQL Server approach

M3: Meta-File

- Using additional file to track the location and size all free spaces
 - PostgreSQL approach

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager
 - How records are stored?
 - Which blocks to pin
 - Working with the recovery and concurrency manager to ensure tx ACID

Responsibilities of RecordFile

- To decide how records are stored in a file
- To decide which block to pin (to save the cost of buffer access)
- To work with the recovery and concurrency manager to ensure tx ACID

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager
 - How records are stored?
 - Which blocks to pin?
 - Working with the recovery and concurrency manager to ensure tx ACID

How Records are Stored?

• Choices:

- Un-spanned record
- Homogeneous file
- Row-oriented store
- Fixed-length field
- Chained free space: O(1) search time
- RecordPage: lays out records in a page
- FileHeaderPage: header of free-space chain

Using the Table Information

- The VanillaCore record manager needs to know the table information
- The classes storage.metadata.TableInfo and sql.Schema manage the table information
- The record manager can get this information from metadata manager

TableInfo + TableInfo(tblname : String, schema : Schema) + fileName() : String + tableName() : String + schema() : Schema + open(tx : Transaction) : RecordFile

Schema: Serializable + Schema() + addField(fldName: String, type: Type) + add(fldName: String, sch: Schema) + addAll(sch: Schema) + fields(): SortedSet<String> + hasField(fldName: String): boolean + type(fldname: String): Type + toString(): String + equals(obj: Object): boolean + hashCode(): int

Using the Table Information

Sample code of constructing table information

```
Schema sch = new Schema();
sch.addField("s-id", Type.INTEGER);
sch.addField("s-name", Type.VARCHAR(20));
sch.addField("major-id", Type.INTEGER);
sch.addField("grad-year", Type.BIGINT);

TableInfo ti = new TableInfo("students", sch);
```

Managing the Records in a Page

- Implements the record page as following layout
 - Minimal slot size: 4+4+8 bytes (flag, pointer to next deleted slot)

- The RecordPage manages the records within a page
- The RecordId denotes the identifier of each record

RecordId

- Identifier of a record
 - id is equal to *slot number* because of fixed-length implementation

RecordId + RecordId(blk : BlockId, id : int) + block() : BlockId + id() : int + equals(obj : Object) : boolean + toString() : String + hashCode() : int

RecordPage

- Extends the interface Record
- Manages a buffer for the currently opened data block
- Calls the concurrency control manager to ensure the isolation property

RecordPage

```
RecordPage: Record
+ offsetMap(sch: Schema) : Map<String, Integer>
+ recordSize(sch: Schema): int
+ slotSize(sch: Schema): int
+ RecordPage(blk : BlockId, ti : TableInfo , tx : Transaction,
doLog: boolean)
+ close()
+ next(): boolean
+ getVal(fldName : String) : Constant
+ setVal(fldName : String, val : Constant)
+ delete(nextDeletedSlot : RecordId)
+ insertIntoNextEmptySlot(): boolean
+ insertIntoDeletedSlot(): RecordId
+ moveTold(id : int)
+ currentld(): int
+ currentBlk(): BlockId
```

Accessing Records in a Record Page

Sample code of using a record page

```
Transaction tx = VanillaDb.txMqr().transaction(
            Connection. TRANSACTION SERIALIZABLE, false);
TableInfo ti = VanillaDb.catalogMqr().getTableInfo(tableName, tx);
String fileName = ti.fileName();
RecordId lastDeletedRid = ...;
BlockId blk = new BlockId(fileName, 235);
RecordPage rp = new RecordPage(blk, ti, tx, true); // pin the buffer
// Part1: read and delete
while (rp.next()) {
     Constant sid = rp.getVal("s-id");
      if (sid.equals(new IntegerConstant(50))) {
            rp.delete(lastDeletedRid);
            lastDeletedRid = new RecordId(rp.currentBlk(), rp.currentId());
// Part 2: insert into empty slot if exist
rp.moveToId(-1); // point before the first record
boolean hasFreeSlot = rp.insertIntoNextEmptySlot();
if (hasFreeSlot) {
      rp.setVal("s-id", new IntegerConstant(65));
rp.close(); // unpin the buffer
tx.commit();
```

Formatting Record Page

- A record page has a specific structure
 - Partitioned into slot, with the value of the first integer in each slot as usage flag
- Formatting the record page before it can be used
- The class RecordFormatter performs this service, via its method format

RecordFormatter : PageFormatter
+ RecordFormatter(ti : TableInfo) + format(page : Page)

File Header

- The class FileHeaderPage manages the header
 - The pointer to the deleted slot chain
 - The tail slot

FileHeaderPage + FileHeaderPage(fileName : String, tx : Transaction) + close() + hasDataRecords() : boolean + hasDeletedSlots() : boolean + getLastDeletedSlot() : RecordId + getTailSlot() : RecordId + setLastDeletedSlot(rid : RecordId) + setTailSlot(rid : RecordId)

Managing the Records in a File

- A record file consists of several record pages
 - Data access API is similar to record pages
- Record file manages the file properties
 - File header, file size
 - Appends new block at the end of file
 - Maintains the current position in a file and uses the data manipulation methods of the record page

RecordFile

- Manages a file of records and calls the concurrency manager to ensure isolation property
- Provides methods for iterating through the records and accessing their contents

RecordFile

```
RecordFile: Record
+ formatFileHeader(fileName : String, tx : Transaction)
+ RecordFile(ti: TableInfo, tx: Transaction, doLog:
boolean)
+ close()
+ beforeFirst()
+ next(): boolean
+ getVal(fldName : String) : Constant
+ setVal(fldName : String, val : Constant)
+ delete()
+ insert()
+ moveToRecordId(rid : RecordId)
+ currentRecordId(): RecordId
+ fileSize(): long
```

Accessing Records in a Record File

Sample code of using a record file

```
Transaction tx = VanillaDb.txMgr().transaction(
           Connection. TRANSACTION SERIALIZABLE, false);
TableInfo ti = ...;
RecordFile rf = ti.open(tx, true);
rf.beforeFirst();
// Part 1: reads records and delete records
while (rf.next())
     if (rf.getVal("s-id").equals(new IntegerConstant(50)))
           rf.delete();
rf.close();
// Part 2: insert new record
rf = ti.open(tx, true);
for (int id = 0; id < 100; id++) {
     rf.insert();
     rf.setVal("s-id", new IntegerConstant(id));
     rf.setVal("s-name", new VarcharConstant("student" + id));
     rf.setVal("major-id", new IntegerConstant((id % 3 + 1) * 10));
     rf.setVal("grad-year", new BigIntConstant(2016));
            Caution:
rf.close();
```

When inserting a new record, all the fields should have inserted values.

Otherwise, the user might read some unpredictable value

59

Recap of Data Access Layers

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager
 - How records are stored?
 - Which blocks to pin?
 - Working with the recovery and concurrency manager to ensure tx ACID

Which Block to Pin?

- Each RecordFile instance pins only two pages:
 - RecordPage corresponding to the current position
 - FileHeaderPage
- Unpin upon close()
 - This is why a JDBC user should close a ResultSet as soon as possible

Outline

- Overview
- Design Considerations for Record Manager
- The VanillaCore Record Manager
 - How records are stored?
 - Which blocks to pin?
 - Working with the recovery and concurrency manager to ensure tx ACID

Tx Support

- C and I by working with ConcurrencyManager
 - All read/write from/to files and blocks must obtain appropriate locks first via concurrencyMgr.read/modifyXxx()
- A and D by working with RecoveryManager
 - All set values are logged via recoveryMgr.logXxx()
 - By virtue of WAL implementation in memorymanagement layer

References

- Database page layout of PostgreSQL.
 http://www.postgresql.org/docs/8.0/static/storage-page-layout.html
- Microsoft SQL Server page structure. <u>http://msdn.microsoft.com/en-us/library/ms190969(v=sql.105).aspx</u>
- Database Design and Implementation, chapter 15.
 Edward Sciore.
- Database system concepts 6/e, chapter 10.
 Silberschatz.