WARDAYA COLLEGE - TOP UNIVERSITIES CLASS TEST 3

READ THESE INSTRUCTIONS FIRST

- 1. Write your name on all the work you hand in
- 2. Answer all the questions
- 3. The total number of marks for this paper is 100
- 1. The number of Wardaya Pandas due to birth and death in a protected bamboo environment is modelled by the differential equation $\frac{dS}{dt}=kS(k-S)$ where S is the number of pandas time t years, and k is a constant. Given that k > S, show that the differential equation has general solution $S=\frac{kC}{e^{-k^2t}+C}$ where C is an arbitrary constant

Hence, find the limiting value of the number of Wardaya Pandas in the bamboo environment, and explain the signicance of k

2. Show that the differential equation $3xy^2 \frac{dy}{dx} + y^3 - 2x = 0$ may be reduced by means of the substitution $u = xy^3$ to $\frac{du}{dx} = 2x$

Solve the differential equation, expressing y in terms of x.

Sketch the family of solution curves of the differential equation

3. If $y = \sqrt{2} \tan^{-1} \left(\frac{x\sqrt{2}}{x+3} \right)$, show that $(x^2 + 2x + 3) \frac{dy}{dx} = 2$

By further differentiation of the above result. Find the Maclaurin's series expansion for y up to and including the term in x^2

Hence, find the first three non zero terms in the expansion of $\frac{1}{x^2+2x+3}$

- 4. It is given that $y = \sqrt[4]{2 e^{2x}}$
 - (i) Show that $y \frac{d^2y}{dx^2} + 3 \left(\frac{dy}{dx}\right)^2 = 2y \frac{dy}{dx}$
 - (ii) Hence, find the Maclaurin's series for y, up to and including the term in x^2
 - (iii) Deduce that, for small $x : e^{2x}(2 e^{2x})^{-3/4} \approx 1 + \frac{7}{2}x$
- 5. It is given that $I = \int_0^{0.3} (1 + 3x^2)^{-2} dx$
 - (i) Use the trapezium rule with 3 intervals to find an approximation to I, giving the answer correct to 3 decimal places
 - (ii) For small values of x, $(1+3x^2)^{-2}\approx 1+ax^2+bx^4$. Find the values of the constant a and b

Hence, by evaluating $\int_0^{0.3} (1 + ax^2 + bx^4) dx$, find a second approximation to I, giving the answer correct to 3 decimal places

6.

In the diagram, A is a point on the circumference of a circle with center O and radius r. A circular arc with center A meets the circumference at B and C. The angle OAB is equal to x radians. The shaded region is bounded by AB, AC and the circular arc with center A joining B and C. The perimeter of the shaded region is equal to half the circumference of the circle.

- (i) Show that $x = \cos^{-1}\left(\frac{\pi}{4+4x}\right)$
- (ii) Verify by calculation that x lies between 1 and 1.5
- (iii) Use the iterative formula

$$x_{n+1} = \cos^{-1}\left(\frac{\pi}{4 + 4x_n}\right)$$

To determine the value of x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

- 7. The equation $x = \left(\frac{10}{e^{2x}-1}\right)$ has one positive real root, denoted by α .
 - (i) Show that α lies between x = 1 and x = 2.
 - (ii) Show that if a sequence of positive values given by the iterative formula

$$x_{n+1} = \frac{1}{2} \ln\left(1 + \frac{10}{x_n}\right)$$

Converges, then it converges to α

(iii) Use this iterative formula to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

8.

A tank containing water is in the form of a cone with vertex C. The axis is vertical and the semi vertical angle 60° , as shown in the diagram. At time t = 0, the tank is full and the depth of water is H. At this instant, a tap at C is opened and water begins to flow out. The volume of water in the tank decreases at a rate proportional to \sqrt{h} , where h is the depth of water at time t. The tank becomes empty when t = 60.

(i) Show that h and t satisfy a differential equation if the form

$$\frac{dh}{dt} = -Ah^{-\frac{3}{2}}$$

Where *A* is a positive constant.

- (ii) Solve the differential equation given in the part (i) and obtain an expression for t in terms of h and H
- (iii) Find the time at which the depth reaches $\frac{1}{2}H$

[The volume C of a cone of vertical height h and base radius r id given by $V = \frac{1}{3}\pi r^2 h$.]

9.

The diagram shows the region R bounded by the axes, the curve $y = (x^2 + 1)^{-\frac{3}{2}}$ and the love x = 1. Use the trapezium rule, with ordinates at x = 0, $x = \frac{1}{2}$, and x = 1, to estimate the value of

$$\int_0^1 (x^2 + 1)^{-\frac{3}{2}} dx,$$

Giving your answer correct to 2 significant figures.

10.

- i. Prove that $1 + x + x^2 + x^3 + \dots + x^n = \frac{1 x^{n+1}}{1 x}$
- ii. The graph of $y=2^x$, for $0 \le x \le 1$, is shown in the diagram. Rectangles, each of width 1/n, are drawn under the curve . Show that the total area A of all n rectangles is given by $\frac{1}{n} \left(\frac{1}{2^{1/n}-1} \right)$.

Hence find the exact value of the limit of A as $n \to \infty$

THE END OF PAPER