Pesquisa Operacional / Programação Matemática

Método Simplex em tabelas

Método simplex em tabelas

- Maneira prática de se trabalhar.
- Interessante para compreensão do método
- Não é eficiente computacionalmente
 - □ Simplex revisado

Método simplex em tabelas

Minimizar
$$f(\mathbf{x}) = \mathbf{c}\mathbf{x}$$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$.

Todos os parâmetros necessários para resolução aparecem na tabela abaixo:

Tabela 2.18
Coeficientes de um problema de otimização linear.

x_1	$x_2 \dots x_n$	—— variáveis	
c_1	$c_2 \dots c_n f$	coeficientes da função objetivo	
\mathbf{a}_{l}	a ₂ a _n b ◀	coeficientes das restrições	

Exemplo

Minimizar
$$f(x_1, x_2) = -x_1 - 2x_2$$

 $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

Na forma padrão, temos:

Matriz básica (Sempre será a identidade, no método por tabelas)

x_1	\mathbf{x}_2	x ₃ /	x_4	\mathcal{X}_{5}	b
-1	-2	0 /	0	0	f
1	1	1	0	0	6
1	-1	0	1	0	4
-1	1	0	0	1	4

Sabemos que podemos escrever as variáveis básicas em função das variáveis não-básicas (no caso, x_1 e x_2). Como B=I, isso é feito muito facilmente:

$$\begin{split} x_3 &= b_1 - a_{11} x_1 - a_{12} x_2 = 6 - x_1 - x_2 \\ x_4 &= b_2 - a_{21} x_1 - a_{22} x_2 = 4 - x_1 + x_2 \\ x_5 &= b_3 - a_{13} x_1 - a_{32} x_2 = 4 + x_1 - x_2. \end{split}$$

x_1	x_2	$x_3^{}$	x_4	x_{5}	b
-1	-2	0	0	0	f
1	1	1	0	0	6
1	-1	0	1	0	4
-1	1	0	0	1	4

- ■Vemos que a solução não é ótima. Aumentando x_1 ou x_2 , a função objetivo diminui.
- ■Aumentar x₂ diminui a f. objetivo com uma taxa -2

x_1	x_2	x_3	x_4	x_{5}	b
-1	-2	0	0	0	f
1	1	1	0	0	6
1	-1	0	1	0	4
-1	1	0	0	1	4

Ao aumentar x_2 , o que tem que acontecer com as variáveis básicas ?

$$\begin{array}{lllll} x_3 = b_1 - a_{12} x_2 = 6 - x_2 \geq 0 & (a_{12} > 0) & \longrightarrow & x_2 \leq 6 \\ x_4 = b_2 - a_{22} x_2 = 4 + x_2 \geq 0 & (a_{22} < 0) \\ x_5 = b_3 - a_{32} x_2 = 4 - x_2 \geq 0 & (a_{32} > 0). & \longrightarrow & x_2 \leq 4 \end{array}$$

Devemos nos preocupar apenas com x₃ e x₅

x_1	x_2	x_3	x_4	x_{5}	b
-1	- 2	0	0	0	f
1	1	1	0	0	6
1	-1	0	1	0	4
-1	1	0	0	1	4

þΑ

Solução ótima ilimitada

■ Se, no caso anterior, tivéssemos:

x_1	x_2	x_3	x_4	x_5	b
-1	-2	0	0	0	f
1	-1	1	0	0	6
1	-1	0	1	0	4
-1	-1	0	0	1	4

$$\begin{split} x_3 &= b_1 - a_{12} x_2 = 6 + x_2 \ge 0 & (a_{12} > 0) \\ x_4 &= b_2 - a_{22} x_2 = 4 + x_2 \ge 0 & (a_{22} < 0) \\ x_5 &= b_3 - a_{32} x_2 = 4 + x_2 \ge 0 & (a_{32} > 0). \end{split}$$

solução ilimitada!

Ao aumentar x_2 , o que tem que acontecer com as variáveis básicas ?

$$x_{3} = b_{1} - a_{12}x_{2} = 6 - x_{2} \ge 0 \qquad (a_{12} > 0) \longrightarrow x_{2} \le 6$$

$$x_{4} = b_{2} - a_{22}x_{2} = 4 + x_{2} \ge 0 \qquad (a_{22} < 0)$$

$$x_{5} = b_{3} - a_{32}x_{2} = 4 - x_{2} \ge 0 \qquad (a_{32} > 0).$$

$$x_{2} \le 4$$

Para $x_2 = 4$, x_5 se anula. f vale -8.

Logo, antes tínhamos: B=[3,4,5] NB=[1,2]

Agora, temos: B=[3,4,2] NB=[1,5]

(x₂ entra na base, x₅ saí da base)

- Nova base: B=[3,4,2] NB=[1,5]
- As colunas da base devem formar uma identidade

x_1	x_2	$x_3^{}$	x_{4}	x_{5}	Ь
-1	-2	0	0	0	f
1	$\sqrt{1}$	1	0	0	6
1	-1	0	1	0	4
-1	1	0	0	1	4

Efetuar um pivoteamento!

variável que entra na base

x_1	x_2	x_3	x_4	\mathcal{X}_{5}	b	
-1	-2	0	0	0	f	
1	1	1	0	0	6	
1	-1	0	1	0	4	
-1	1	0	0	1	4	-

pivô

restrição atingida

	x_1	x_2	x_3	x_4	x_{5}	b
VB	-1	-2↓	0	0	0	f
x_3	1	1	1	0	0	6
x_4	1	-1	0	1	0	4
$\leftarrow x_5$	-1	1	0	0	1	4

novo pivô!

custos reduzidos das variáveis não-básicas!

	x_1	x_2	x_3	x_4	x_5	b	
VB	_3 \	0	0	0	2	f+8	
x_3	2	0	1	0	-1	2	→ .
x_4	0	0	0	1	1	8	x ₃ sa1
x_2	-1	1	0	0	1	4	– ICMC/USP

	x_1	x_2	x_3	x_4	x_5	b
VB	-3	0	0	0	2	f+8
x_3	2	0	1	0	-1	2
x_4	0	0	0	1	1	8
x_2	-1	1	0	0	1	4

condição de otimalidade atingida: solução $x_1=1$, $x_2=5$, f=11

	x_1	x_2	x_3	x_4	x_5	b
VB	0	0	$\left(\frac{3}{2}\right)$	0	$\left(\frac{3}{2}\right)$	f+11
\boldsymbol{x}_1	1	0	$\frac{1}{2}$	0	$-\frac{1}{2}$	1
x_4	0	0	0	1	1	8
x_2	0	1	$\frac{1}{2}$	0	1/2	5

CMC/USP

Algoritmo simplex em tabelas

Fase I: Determine uma tabela simplex inicial, isto é,

- a matriz dos coeficientes contém uma matriz identidade *m*×*m* (*m* é o número de equações)
 e o vetor independente b ≥ 0;
- a função objetivo é escrita em termos das variáveis não-básicas, isto é, os coeficientes das variáveis básicas são nulos.

Fase II:

- 1. Determine o menor dos custos relativos: $c_k = \min\{c_i \text{ para toda variável não-básica}\}$.
- **2.** Se $c_k \ge 0$, então pare (a solução básica na iteração é ótima). Se não, a variável x_k entra na base.
- **3.** Se $a_{ik} \le 0$, i = 1, ..., m, então pare (não existe solução ótima finita). Se não, determine: $\frac{b_{\ell}}{a_{\ell k}} = \min\{\frac{b_i}{a_{ik}} \text{ tal que } a_{ik} > 0, i = 1, \cdots, m\}$ (a variável básica da linha ℓ sai da base).
- **4.** Atualize a tabela simplex (pivotamento no elemento (ℓ, k)). A variável x_k passa a ser a variável básica na linha ℓ . Faça iteração = iteração + 1 e retorne ao passo 1.