Topics to discuss

Aggregate Analysis. Example 2: Incrementing a binary number.

There are three most common techniques used in amortized analysis.

- i) Aggregate Analysis / Aggregate Method
- ii) Accounting Method.

 iii) Potential Method.

Aggregate Analysis / Aggregate Method:

In aggregate analysis, we show that for all n, a sequence of n operations takes worst-case time T(n) in total.

In the worst case, the average cost, or amortized cost, per operation is therefore T(n)/n.

This amortized

This amore fized cost applies to each operation, even when there are several types of operations in the sequence.

Example 2. Incrementing a binary number

Considered the problem of implementing a k-bit

binary counter that counts upward from 0.

Pseudo code:

TNCREMENT (A)

	THURUITO		
! >	i=0	and Asi]	= = <u>1</u>
2>	i=0 while i < A. length	WILLOW , , , , ,	
3>	A[i] = 0	i=D	1 151=51
4)	i = i + 1	0 < 4	and A[o]==:
5,1	If i < A. length A[i] = 1		and T -> T
6)	イレリーエ		A [0] = 0
	70,		1=1
			1<4→T
			AT17 - 1

Countes value	A [3]	A[2]	A [J]	AU
0	0	0	0	0
1	0	0	0	2
2	O	0	1	0
3	٥	0	1	1

Countes	A [3]	A [2]	A [J]	AW	Cost	Total
0	0	0	0	0	0	0
1	0	0	0	1	1	0+1=1
2	O	0	1	0	2	1+2=3
3	٥	0	1	1	1	3+1=4
4	0	1	0	0	3	4+3=7
5	0	1	0	1	1	7+1=8
6	0	1	1	0	2	8+2=10
7	0	1	1	1	1	(0411:11
8	1	0	0	0	4	11+4=15

4 bit binary counter as its value goes from 0 to 8 by a sequence of 8 in crement operation.

Total cost is always less than twice the total number of in exement operations.

15 < 2 × 8

Asymptotic Analysis:

we observe some operations only flip one bit. and some operations flip more than one bit. A single execution of INCREMENT takes time O(K) in the worst case.

Thus a sequence of n INCREMENT operations on an initially zero counter takes time O(nk) in the worst-case.

Aggregate Analysis or Amortized Analysis

We can observe that not all the bits flip each time INCREMENT.

A[0] blip each time INCREMENT.

A[I] flips only every other time i.e., A[I] to flip n time.

A[2] flips every fourth time on $\frac{n}{4}$ time in a sequence of n INCREMENT operations.

In general, for i=0,1,... K-1, A[i] flips $\frac{n}{2}$ times A[2] flips $\frac{n}{2^2}$ times So, bit A[i] flips no times for i ZK, bit A[i] does not exist, and so it cannot flip. The total no. of flip in the sequence is thus,

The worst case complexity for a sequence of n increment operations on an initially zero counter is therefore O(n).

The average cost of each operation, or amortized cost per operation is O(n)/n = O(1).

Follow Now

Start Practicing

i._am._arfin

Arfin Parween