

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2002-158972
(43)Date of publication of application: 31.05.2002
(51)Int.Cl. H04N 5/92 H04N 5/85 H04N 5/91 H04N 5/93
(21)Application number: 2001-091830 (71)Applicant: SONY CORP (22)Date of filing: 28.03.2001 (72)Inventor: KATO MOTOKI HAMADA TOSHIYA
(30)Priority Priority number: 2000183771 2000271552 Priority date: 21.04.2000 07.09.2000 Priority country: JP JP
(54) INFORMATION PROCESSOR AND PROCESSING METHOD, AND RE

(54) INFORMATION PROCESSOR AND PROCESSING METHOD, AND RECORDING MEDIUM THEREFOR, AND PROGRAM AND ITS RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To enable to manage commonly AV stream data recorded by analyzing the position of an I picture and AV stream data recorded without analyzing the position of the I picture.

SOLUTION: CPI-type is described in PlayList(). The CPI type includes EP map type and TU map type. The EP map is used when the position of an I picture can be analyzed, and the TU map is used when the position of the I picture cannot be analyzed.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]An information processor which records AV stream data on a recording medium, comprising:

A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

The 1st creating means that generates the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it.

A selecting means which chooses either said 1st table or said 2nd table according to a record method.

The 1st recording device that records said selected table on said recording medium with said AV stream data.

[Claim 2]The information processor according to claim 1, wherein said 1st table is EP_map and said 2nd table is TU_map.

[Claim 3] The information processor according to claim 1, wherein said selecting means chooses said 2nd table in the case of non cog NIZANTO record.

[Claim 4]An information processor given in a statement at claim 1, wherein said selecting means chooses said 1st table in the case of self encoding record.

[Claim 5]An information processor given in a statement at claim 1, wherein said selecting means chooses said 1st table in the case of cog NIZANTO record.

[Claim 6]An information processor given in a statement at claim 1 characterized by comprising the following.

The 2nd creating means that generates reproduction specification information that reproduction of said AV stream data is specified.

Have further the 2nd recording device that records said reproduction specification information generated by said 2nd creating means on said recording medium, and said reproduction specification information, Type information which shows whether a hour entry of a reproducing section of said AV stream data is expressed in presentation time base, or it expresses in arrival time base.

[Claim 7]When said 1st table is recorded with said AV stream data, said reproduction specification information, A hour entry of a reproducing section of said AV stream data is expressed in presentation time base, An information processor given in a statement at claim 6 when said 2nd table is recorded with said AV stream data, wherein said reproduction specification information expresses a hour entry of a reproducing section of said AV stream data in arrival time base.

[Claim 8]An information processing method of an information processor which records AV stream data on a recording medium characterized by comprising the following. A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A generation step which generates the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it.

A selection step which chooses either said 1st table or said 2nd table according to a record method.

A record step which records said selected table on said recording medium with said AV stream data.

[Claim 9]A program of an information processor which records AV stream data on a recording medium characterized by comprising the following.

A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A generation step which generates the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it.

A selection step which chooses either said 1st table or said 2nd table according to a record method.

A record step which records said selected table on said recording medium with said AV stream data.

[Claim 10] To a computer to control, an information processor which records AV stream data on a recording medium A presentation time stamp, The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, A generation step which generates the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it, A program which performs a selection step which chooses either said 1st table or said 2nd table according to a record method, and a record step which

records said selected table on said recording medium with said AV stream data. [Claim 11]An information processor which reproduces AV stream data from a recording medium, comprising:

A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A reproduction means in which one side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it reproduces either said 1st table or said 2nd table from said recording medium currently recorded according to a record method.

A control means which controls an output of said AV stream data based on said reproduced table.

[Claim 12]An information processing method of an information processor which reproduces AV stream data from a recording medium characterized by comprising the following.

A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

Regeneration steps in which one side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it reproduces either said 1st table or said 2nd table from said recording medium currently recorded according to a record method.

A control step which controls an output of said AV stream data based on said reproduced table.

[Claim 13]A program of an information processor which reproduces AV stream data from a recording medium characterized by comprising the following.

A presentation time stamp.

The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

Regeneration steps in which one side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet

corresponding to it reproduces either said 1st table or said 2nd table from said recording medium currently recorded according to a record method.

A control step which controls an output of said AV stream data based on said reproduced table.

[Claim 14] To a computer to control, an information processor which reproduces AV stream data from a recording medium A presentation time stamp, The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, One side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it, A program which performs regeneration steps which reproduce either said 1st table or said 2nd table, and a control step which controls an output of said AV stream data based on said reproduced table from said recording medium currently recorded according to a record method.

[Claim 15]AV stream data in a recording medium currently recorded A presentation time stamp, The 1st table that describes a correspondence relation with an address in said AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, A recording medium, wherein one side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it is recorded according to a record method.

[Claim 16]An information processor which records AV stream data on a recording medium, comprising:

The 1st information that shows the main reproduction paths.

A creating means which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths.

A recording device which records said AV stream data and said reproduction specification information on said recording medium.

[Claim 17] The information processor according to claim 16, wherein a reproduction path of said ** is a path for after recording of audio information.

[Claim 18] The information processor according to claim 16, wherein said 1st information is Main_path and said 2nd information is Sub_path.

[Claim 19]A file name of said AV stream in which type information showing a type of a

reproduction path of said ** and a reproduction path of said ** refer to said 2nd information, The information processor according to claim 16 containing time on said main paths which a yne point of said AV stream of a reproduction path of said **, an out point, and a yne point of said reproduction path synchronize and start on a time-axis of said main paths.

[Claim 20]An information processing method of an information processor which records AV stream data on a recording medium characterized by comprising the following.

The 1st information that shows the main reproduction paths.

A generation step which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths.

A record step which records said AV stream data and said reproduction specification information on said recording medium.

[Claim 21]A program of an information processor which records AV stream data on a recording medium characterized by comprising the following.

The 1st information that shows the main reproduction paths.

A generation step which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths.

A record step which records said AV stream data and said reproduction specification information on said recording medium.

[Claim 22] The 1st information that shows the main reproduction paths to a computer which controls an information processor which records AV stream data on a recording medium, A program which performs a generation step which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths, and said AV stream data and a record step which records said reproduction specification information on said recording medium.

[Claim 23]An information processor which reproduces AV stream data from a recording medium, comprising:

The 1st information that shows the main reproduction paths.

A reproduction means which reproduces reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced

synchronizing with said main reproduction paths from said recording medium.

A control means which controls an output of said AV stream data based on said reproduced reproduction specification information.

[Claim 24]An information processing method of an information processor which reproduces AV stream data from a recording medium characterized by comprising the following.

The 1st information that shows the main reproduction paths.

Regeneration steps which reproduce reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths from said recording medium.

A control step which controls an output of said AV stream data based on said reproduced reproduction specification information.

[Claim 25]A program of an information processor which reproduces AV stream data from a recording medium characterized by comprising the following.

The 1st information that shows the main reproduction paths.

Regeneration steps which reproduce reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths from said recording medium.

A control step which controls an output of said AV stream data based on said reproduced reproduction specification information.

[Claim 26] The 1st information that shows the main reproduction paths to a computer which controls an information processor which reproduces AV stream data from a recording medium, Regeneration steps which reproduce reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths from said recording medium, A program which performs a control step which controls an output of said AV stream data based on said reproduced reproduction specification information.

[Claim 27] A recording medium, wherein reproduction specification information constituted in a recording medium with which AV stream data is recorded by the 1st information that shows the main reproduction paths, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths is recorded.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention about an information processor, a regeneration method, a recording medium, a program, and a recording medium, The information which carries out an informative label to GUI etc. especially, the information on the main salvage pathways, the information on the salvage pathway of **, It is related with the information processor, the regeneration method, the recording medium, program, and recording medium which record a file including information, including the initial entry between each reproducing sections which constitute the main salvage pathways, the bookmark set to the scene for which the user asked, the information on resume points, etc.

[0002]

[Description of the Prior Art]In recent years, various kinds of optical discs are being proposed as a dismountable disk type recording medium from a recording and reproducing device. The optical disc in which such record is possible is proposed as several gigabytes of mass media.

The expectation as media which record AV (Audio Visual) signals, such as a video

signal, is high.

As sauce (supply source) of the digital AV signal recorded on the optical disc in which this record is possible, there are CS digital satellite broadcasting and BS digital broadcasting, and the terrestrial television broadcasting of the digital system, etc. are proposed in the future.

[0003]Here, as for the digital video signal supplied from these sauce, it is common that graphical data compression is usually carried out by MPEG(Moving Picture Experts Group) 2 method. The recording rate peculiar to the device is provided in the recorder. By the conventional noncommercial image storage medium, if it is an analog recording method when recording the digital video signal of digital broadcasting origin, after decoding a digital video signal, a band limit will be carried out and it will record. Or if it is digital recording systems including MPEG1 Video, MPEG 2 Video, and DV method, after being decoded once, with a recording rate and a coding mode peculiar to the device, it will be re-encoded and will be recorded.

[0004] However, such a record method decodes the supplied bit stream once, and it is accompanied by degradation of image quality in order to record by performing band limit and re-encoding after that. When the transmission rate of the digital signal inputted when the digital signal by which graphical data compression was carried out was recorded does not exceed the recording rate of a recording and reproducing device, decoding and the method of recording as it is, without re-encoding have least degradation of image quality in the supplied bit stream. However, when the transmission rate of the digital signal by which graphical data compression was carried out exceeds the recording rate of the disk as a recording medium, it is necessary to carry out re-encoding and to record so that a transmission rate may become below a maximum of the recording rate of a disk after decoding with a recording and reproducing device.

[0005]When the bit rate of the input digital signal is transmitted by the variable rate method fluctuated by time, Since a rotary head is fixed number of rotations, a recording rate stores data in a buffer once compared with the tape recording system which becomes a fixed rate, and the disc recording device for which record can be done burstily can use the capacity of a recording medium without futility.

[0006]As mentioned above, in the future which becomes in use, digital broadcasting is predicted that decoding and the recording and reproducing device which recorded without re-encoding and uses a disk as recording media are asked for a broadcasting signal like a data streamer with a digital signal.

[0007]

[Problem(s) to be Solved by the Invention] By the way, when recording AV stream data on a recording medium with a recorder which was mentioned above, in order for fast reproduction to be possible, for example, A stream data are analyzed, the position of I picture may be detected, and A stream data may not be analyzed as the case where it records on it as I picture can be accessed, but it may record as it is.

[0008] In such a case, an application program for exclusive use is prepared former, respectively, and it is alike, respectively and he was trying to record an AV stream on a recording medium more as an AV stream (the AV stream in which fast reproduction is possible, or an impossible AV stream) of a different format. As a result, the technical problem which requires expense and time for development of an application program occurred. Since the AV stream recorded by each application program was with a different thing of the format, mutual compatibility was lost and the technical problem it becomes impossible to reproduce with a common device occurred.

[0009]In the conventional recorder, the technical problem that what is called a thing postrecording was difficult occurred audio information, for example.

[0010] This invention is made in view of such a situation, and the 1st purpose is enabling it to manage in common the AV stream in which fast reproduction is possible, and an impossible AV stream.

[0011] The 2nd purpose is to postrecord possible.

[0012]

[Means for Solving the Problem] This invention is characterized by the 1st information processor comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

The 1st creating means that generates the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it. A selecting means which chooses either the 1st table or the 2nd table according to a record method, and the 1st recording device that records a selected table on a recording medium with AV stream data.

[0013] Said 1st table is EP_map and the 2nd table can be made into TU_map.

[0014] Said selecting means can choose the 2nd table in the case of non cog NIZANTO record.

[0015] Said selecting means can choose the 1st table in the case of self encoding

record.

[0016]Said selecting means can choose the 1st table in the case of cog NIZANTO record.

[0017] The 2nd creating means that generates reproduction specification information that reproduction of said AV stream data is specified, Have further the 2nd recording device that records reproduction specification information generated by the 2nd creating means on a recording medium, and reproduction specification information, Type information which shows whether a hour entry of a reproducing section of AV stream data is expressed in presentation time base or it expresses in arrival time base can be included.

[0018] When the 1st table is recorded with said AV stream data, reproduction specification information, A hour entry of a reproducing section of AV stream data is expressed in presentation time base, When the 2nd table is recorded with AV stream data, the reproduction specification information can express a hour entry of a reproducing section of AV stream data in arrival time base.

[0019] This invention is characterized by the 1st information processing method comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A generation step which generates the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it. A selection step which chooses either the 1st table or the 2nd table according to a record method, and a record step which records a selected table on a recording medium with AV stream data.

[0020] This invention is characterized by a program of the 1st recording medium comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A generation step which generates the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it. A selection step which chooses either the 1st table or the 2nd table according to a

record method, and a record step which records a selected table on a recording medium with AV stream data.

[0021] The 1st program of this invention A presentation time stamp, The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, A generation step which generates the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it, A selection step which chooses either the 1st table or the 2nd table according to a record method, and a record step which records a selected table on a recording medium with AV stream data are performed.

[0022] This invention is characterized by the 2nd information processor comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

A reproduction means in which one side of the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it reproduces either the 1st table or the 2nd table from a recording medium currently recorded according to a record method.

A control means which controls an output of AV stream data based on a reproduced table.

[0023] This invention is characterized by the 2nd information processing method comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

Regeneration steps in which one side of the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it reproduces either the 1st table or the 2nd table from a recording medium currently recorded according to a record method.

A control step which controls an output of AV stream data based on a reproduced table.

[0024] This invention is characterized by a program of the 2nd recording medium comprising the following.

Presentation time stamp.

The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, or an arrival time stamp based on the arrival time of a transport packet.

Regeneration steps in which one side of the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it reproduces either the 1st table or the 2nd table from a recording medium currently recorded according to a record method.

A control step which controls an output of AV stream data based on a reproduced table.

[0025] The 2nd program of this invention A presentation time stamp, The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, One side of the 2nd table that describes a correspondence relation with an address in AV stream data of a transport packet corresponding to it, A program which performs regeneration steps which reproduce either the 1st table or the 2nd table, and a control step which controls an output of AV stream data based on a reproduced table from a recording medium currently recorded according to a record method.

[0026] The 1st recording medium of this invention A presentation time stamp, The 1st table that describes a correspondence relation with an address in AV stream data of an access unit corresponding to it, Or one side of the 2nd table that describes correspondence relation between an arrival time stamp based on the arrival time of a transport packet and an address in AV stream data of a transport packet corresponding to it is recorded according to a record method.

[0027] This invention is characterized by the 3rd information processor comprising the following.

The 1st information that shows the main reproduction paths.

A creating means which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths.

A recording device which records AV stream data and reproduction specification

information on a recording medium.

[0028]A reproduction path of said ** can be considered as a path for after recording of audio information.

[0029]Said 1st information is Main_path and the 2nd information can be made into Sub path.

[0030]A file name of an AV stream in which type information and a reproduction path of ** showing a type of a reproduction path of ** refer to said 2nd information, Time on the main paths which a yne point of an AV stream of a reproduction path of **, an out point, and a yne point of a reproduction path synchronize and start on a time-axis of the main paths can be included.

[0031] This invention is characterized by the 3rd information processing method comprising the following.

The 1st information that shows the main reproduction paths.

A generation step which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths.

A record step which records AV stream data and reproduction specification information on a recording medium.

[0032] This invention is characterized by a program of the 3rd recording medium comprising the following.

The 1st information that shows the main reproduction paths.

A generation step which generates reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths.

A record step which records AV stream data and reproduction specification information on a recording medium.

[0033]A generation step which generates reproduction specification information constituted by the 1st information that shows the reproduction paths with the 3rd main program of this invention, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths, AV stream data and a record step which records reproduction specification information on a recording medium are performed.

[0034] Said 4th this invention is characterized by an information processor comprising

the following.

The 1st information that shows the main reproduction paths.

A reproduction means which reproduces reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths from said recording medium.

A control means which controls an output of said AV stream data based on said reproduced reproduction specification information.

[0035] This invention is characterized by the 4th information processing method comprising the following.

The 1st information that shows the main reproduction paths.

Regeneration steps which reproduce reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths from a recording medium.

A control step which controls an output of AV stream data based on reproduced reproduction specification information.

[0036] This invention is characterized by a program of the 4th recording medium comprising the following.

The 1st information that shows the main reproduction paths.

Regeneration steps which reproduce reproduction specification information constituted by the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths from a recording medium.

A control step which controls an output of AV stream data based on reproduced reproduction specification information.

[0037]Regeneration steps which reproduce reproduction specification information constituted by the 1st information that shows the reproduction paths with the 4th main program of this invention, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths from a recording medium, Based on reproduced reproduction specification information, a control step which controls an output of AV stream data is performed.

[0038]Reproduction specification information constituted by the 1st information that shows the reproduction paths with the 2nd main recording medium of this invention, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with the main reproduction paths is recorded.

[0039]In a program of the 1st information processor of this invention and a method, and a recording medium, a program, and a recording medium, The 1st table that describes correspondence relation between a presentation time stamp and an address in said AV stream data of an access unit corresponding to it, Or one side of the 2nd table that describes correspondence relation between an arrival time stamp based on the arrival time of a transport packet and an address in said AV stream data of a transport packet corresponding to it is recorded according to a record method.

[0040]In a program of the 2nd information processor of this invention and a method, and a recording medium, and a program, The 1st table that describes correspondence relation between a presentation time stamp and an address in said AV stream data of an access unit corresponding to it, Or an arrival time stamp based on the arrival time of a transport packet, From a recording medium with which one side of the 2nd table that describes a correspondence relation with an address in said AV stream data of a transport packet corresponding to it is recorded according to a record method, the table is reproduced and an output is controlled based on it.

[0041]In a program of the 3rd information processor of this invention and a method, and a recording medium, a program, and the 2nd recording medium, reproduction specification information constituted by the 1st information that shows the main reproduction paths, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths is recorded.

[0042]In a program of the 4th information processor of this invention and a method, and a recording medium, and a program, Reproduction specification information constituted by the 1st information that shows the main reproduction paths, and the 2nd information that shows a reproduction path of ** reproduced synchronizing with said main reproduction paths is reproduced from a recording medium, and an output is controlled based on it.

[0043]

[Embodiment of the Invention]Below, an embodiment of the invention is described with reference to drawings. <u>Drawing 1</u> is a figure showing the example of an internal configuration of the recording and reproducing device 1 which applied this invention. First, the composition of the portion which performs operation which records the signal inputted from the outside on a recording medium is explained. The recording and reproducing device 1 is considered as the composition which can input analog data or digital data and can be recorded.

[0044] The video signal of an analog is inputted into the terminal 11, and the audio signal of an analog is inputted into the terminal 12, respectively. The video signal

inputted into the terminal 11 is outputted to the analyzing parts 14 and the AV encoder 15, respectively. The audio signal inputted into the terminal 12 is outputted to the AV encoder 15. The analyzing parts 14 extract the focus, such as a scene change, from the inputted video signal.

[0045] The AV encoder 15 codes the video signal and audio signal which were inputted, respectively, and outputs system information (S), such as coding video stream (V), a coding audio stream (A), and AV synchronization, to the multiplexer 16.

[0046]A coding video stream is a video stream coded by MPEG(Moving Picture Expert Group) 2 method, for example, Coding audio streams are the audio stream coded by MPEG1 method, an audio stream coded by Dolbey AC3 method, etc., for example. The multiplexer 16 multiplexes the stream of the inputted video and an audio based on input system information, and outputs it to the multiplexed stream analyzing parts 18 and saw spa KETTAIZA 19 via the switch 17.

[0047]Multiplexed streams are an MPEG2 transport stream and an MPEG 2 program stream, for example. Saw spa KETTAIZA 19 codes the AV stream which comprises a source packet in the inputted multiplexed stream according to the application format of the recording medium 100 on which the stream is made to record. Predetermined processing is performed by the ECC (error correction) coding part 20 and the modulation part 21, and an AV stream is outputted to the writing part 22. The writing part 22 writes an AV stream file in the recording medium 100 based on the control signal outputted from the control section 23 (it records).

[0048] Transport streams, such as digital television broadcasting inputted from a digital interface or a digital television tuner, are inputted into the terminal 13. They are a method which records those with two kind, and them on a transparent at the recording method of a transport stream inputted into the terminal 13, and a method recorded after carrying out re-encoding for the purposes, such as lowering a recording bit rate. The directions information on a recording method is inputted into the control section 23 from the terminal 24 as a user interface.

[0049]When recording an input transport stream on a transparent, the transport stream inputted into the terminal 13 is outputted to the multiplexed stream analyzing parts 18 and saw spa KETTAIZA 19. Since processing until an AV stream is recorded on the recording medium 100 after this is the same processing as the case where above-mentioned input audio osmosis and a video signal are coded and recorded, the explanation is omitted.

[0050]When recording after re-encoding an input transport stream, the transport stream inputted into the terminal 13 is inputted into the demultiplexer 26. The

demultiplexer 26 performs demultiplex processing to the inputted transport stream, and extracts video stream (V), an audio stream (A), and system information (S).

[0051]A video stream is outputted to AV decoder 27 among the streams (information) extracted by the demultiplexer 26, and an audio stream and system information are outputted to the multiplexer 16, respectively. AV decoder 27 decodes the inputted video stream, and outputs the reproduced video signal to the AV encoder 15. The AV encoder 15 codes an input video signal, and outputs coding video stream (V) to the multiplexer 16.

[0052] The audio stream which was outputted from the demultiplexer 26 and inputted into the multiplexer 16 on the other hand, and system information, And the video stream outputted from the AV encoder 15 is multiplexed based on input system information, and is outputted to the multiplexed stream analyzing parts 18 and source packet TAIZA 19 via the switch 17 as a multiplexed stream. Since processing until an AV stream is recorded on the recording medium 100 after this is the same processing as the case where an above-mentioned input audio signal and video signal are coded and recorded, the explanation is omitted.

[0053] The recording and reproducing device 1 of this embodiment records the file of an AV stream on the recording medium 100, and it also records the application data base information explaining the file. Application data base information is created by the control section 23. The input to the control section 23 is the characteristic information of the video from the analyzing parts 14, the characteristic information of the AV stream from the multiplexed stream analyzing parts 18, and directions information from a user that it is inputted from the terminal 24.

[0054] The characteristic information of the video supplied from the analyzing parts 14, It is the information related to the characteristic picture in an input dynamic image signal, for example, is specification information (mark), including the starting point of a program, a scene change point, a start, an end point of commercials (CM), etc., and the information on the thumbnail image of the picture of the designation location is also included.

[0055] The characteristic information of the AV stream from the multiplexed stream analyzing parts 18, It is the information related to the encoded information of the AV stream recorded. For example, they are the change point information of the address information of I picture in an AV stream, the encoding parameter of an AV stream, and the encoding parameter in an AV stream, the information (mark) related to the characteristic picture in a video stream, etc.

[0056] The directions information of the user from the terminal 24 is a bookmark,

information on resume points, etc. which the character character and user explaining the specification information on the reproducing section specified by the user in an AV stream and the contents of the reproducing section set to a favorite scene.

[0057]Based on the above-mentioned input, the control section 23 The database of an AV stream (Clip), The management information (info.dvr) of the database of what (PlayList) carried out grouping of the reproducing section (PlayItem) of an AV stream, and the contents of record of the recording medium 100, and the information on a thumbnail image are created. Like an AV stream, the application data base information which comprises these information is processed by the ECC code-ized part 20 and the modulation part 21, and is inputted into the writing part 22. The writing part 22 records a database file on the recording medium 100 based on the control signal outputted from the control section 23.

[0058] The details about the application data base information mentioned above are mentioned later.

[0059] Thus, the AV stream file (file of image data and voice data) recorded on the recording medium 100, When application data base information is reproduced, the control section 23 directs to read application data base information from the recording medium 100 to the read section 28 first. And the read section 28 reads application data base information from the recording medium 100, and the application data base information is inputted into the control section 23 through processing of the demodulation section 29 and the ECC decoding part 30.

[0060] The control section 23 outputs the list of PlayList currently recorded on the recording medium 100 to the user interface of the terminal 24 based on application data base information. A user chooses PlayList to reproduce from the list of PlayList, and the information about PlayList which had reproduction specified is inputted into the control section 23. The control section 23 directs read—out of an AV stream file required for reproduction of the PlayList to the read section 28. The read section 28 reads an AV stream corresponding from the recording medium 100 according to the directions, and outputs it to the demodulation section 29. It gets over by performing predetermined processing, and the AV stream inputted into the demodulation section 29 is further outputted sauce DEPAKETTAIZA 31 through processing of the ECC decoding part 30.

[0061]Sauce DEPAKETTAIZA 31 is read from the recording medium 100, and is changed into the stream which can output the AV stream of an application format to which predetermined processing was performed to the demultiplexer 26. The demultiplexer 26 outputs system information (S), such as video stream (V) which

constitutes the reproducing section (PlayItem) of an AV stream specified by the control section 23, an audio stream (A), and AV synchronization, to AV decoder 27. AV decoder 27 decodes a video stream and an audio stream, and outputs a reproduced video signal and a reproduced audio signal from the terminal 32 corresponding, respectively and the terminal 33.

[0062]When the information which directs random access reproduction and special reproduction is inputted from the terminal 24 as a user interface, the control section 23, Based on the contents of the database (Clip) of an AV stream, the reading position of the AV stream from the storage 100 is determined, and read—out of the AV stream is directed to the read section 28. For example, when reproducing PlayList with the selected user from predetermined time, the control section 23 directs to read the data with the time stamp nearest to the specified time from I picture to the read section 28.

[0063]When fast reproduction (Fast-forward playback) is directed by the user, the control section 23, Based on the database (Clip) of an AV stream, it directs to read I-picture data in an AV stream continuously one by one to the read section 28.

[0064] The read section 28 reads the data of an AV stream from the specified random access point, and the read data is reproduced through processing of latter each part. [0065] Next, a user explains the case where the AV stream currently recorded on the recording medium 100 is edited. When a user wants to specify the reproducing section of the AV stream currently recorded on the recording medium 100, and to create new salvage pathway, For example, from the popular music show of the program A, reproduce the singer's A portion and it continues after that, The information on the starting point (yne point) of a reproducing section and an end point (out point) is inputted into the control section 23 from the terminal 24 as a user interface to create the salvage pathway of liking to reproduce the portion of the singer A of the popular music show of the program B. The control section 23 creates the database of what (PlayList) carried out grouping of the reproducing section (PlayItem) of an AV stream. [0066] When a user wants to eliminate a part of AV stream currently recorded on the recording medium 100, the information on the yne point of the elimination section and an out point is inputted into the control section 23 from the terminal 24 as a user interface. The control section 23 changes the database of PlayList so that only a required AV stream portion may be referred to. It directs to the writing part 22 so that the unnecessary stream portion of an AV stream may be eliminated.

[0067]It is a case where a user wants to specify the reproducing section of the AV stream currently recorded on the recording medium 100, and to create new salvage

pathway, and the case where he would like to connect each reproducing section seamlessly is explained. In such a case, the control section 23 creates the database of what (PlayList) carried out grouping of the reproducing section (PlayItem) of an AV stream, and performs partial re-encoding and re-multiplex-izing of a reproducing section of the video stream near a node further.

[0068] First, the information on the picture of the yne point of a reproducing section and the information on the picture of an out point are inputted into the control section 23 from the terminal 24. The control section 23 directs read-out of data required in order to reproduce the yne point side picture and the picture by the side of an out point to the read section 28. And the read section 28 reads data from the recording medium 100, and the data is outputted to the demultiplexer 26 through the demodulation section 29, the ECC decoding part 30, and sauce DEPAKETTAIZA 31. [0069] The control section 23 analyzes the data inputted into the demultiplexer 26, A re multiplex-ized method is determined as the re-encoding method (change of picture_coding_type, assignment of the re-encoded encoding bit amount) of a video stream, and the method is supplied to the AV encoder 15 and the multiplexer 16. [0070] Next, the demultiplexer 26 divides the inputted stream into video stream (V), an audio stream (A), and system information (S). A video stream has "data inputted into AV decoder 27", and "the data inputted into the multiplexer 16." It is data required in order to re-encode the former data, and this is decoded by AV decoder 27, and the decoded picture is re-encoded with the AV encoder 15, and is made into a video stream. The latter data is data copied from an original stream without carrying out re-encoding. About an audio stream and system information, it is directly inputted into

[0071]Based on the information inputted from the control section 23, the multiplexer 16 multiplexes an input stream and outputs a multiplexed stream. A multiplexed stream is processed by the ECC code-ized part 20 and the modulation part 21, and is inputted into the writing part 22. The writing part 22 records an AV stream on the recording medium 100 based on the control signal supplied from the control section 23. [0072]Explanation about operation of the reproduction and edit based on application data base information and its information is given to below. Drawing 2 is a figure explaining the structure of an application format. An application format has two layers, PlayList and Clip, for management of an AV stream. Volume Information carries out management of all the Clip(s) and PlayList(s) in a disk. Here, the pair of one AV stream and its attached information is considered to be one object, and it is called Clip. An AV stream file calls Clip AV stream file, and the attached information is called Clip

the multiplexer 16.

Informationfile.

[0073]One Clip AV stream file stores the data which has arranged the MPEG2 transport stream in the structure in which it is specified by application format. Generally, although a file is treated as a sequence of bytes, the contents of Clip AV stream file are developed on a time-axis, and the entry point in Clip is mainly specified in a hourly base. When the time stamp of the access point to predetermined Clip is given, Clip Information file is useful in order to find the address information which should start read-out of data in Clip AV stream file.

[0074]PlayList is explained with reference to <u>drawing 3</u>. PlayList chooses from Clip(s) the reproducing section which a user wants to see, and it is provided in order to be able to edit it easily. One PlayList is a meeting of the reproducing section in Clip. One reproducing section in predetermined Clip is called PlayItem, and it is expressed with the pair of the yne point (IN) on a time-axis, and an out point (OUT). Therefore, PlayList is constituted when two or more PlayItem(s) gather.

[0075] There are two types of PlayList(s). One is Real PlayList and another is Virtual PlayList. Real PlayList is sharing the stream portion of Clip which it is referring to. That is, when Real PlayList occupies in a disk the data volume equivalent to the stream portion of Clip which is referring to it and Real PlayList is eliminated, data is eliminated also for the stream portion of Clip which it is referring to.

[0076] Virtual PlayList is not sharing the data of Clip. Therefore, even if Virtual PlayList is changed or eliminated, by the contents of Clip, change does not arise at all. [0077] Next, edit of Real PlayList is explained. <u>Drawing 4 (A)</u> is a figure about the creation (create: creation) of Real PlayList, and when an AV stream is recorded as new Clip, it is operation in which Real PlayList which refers to the whole Clip is newly created.

[0078] Drawing 4 (B) is a figure about the divide (divide: division) of Real PlayList, and is operation in which Real PlayList is divided at a point [****] and divided into two Real PlayList. For example in one clip managed by one PlayList, when two programs are managed, in registration (record), a user does the operation of this division again as each program, and it is performed at the time of being ***************. There is nothing for which the contents of Clip are changed by this operation (the Clip itself is divided).

 There is nothing for which Clip is changed by this operation (the Clip itself is set to one).

[0080] <u>Drawing 5</u> (A) is a figure about deletion (delete: deletion) of whole Real PlayList, When operation which eliminates whole predetermined Real PlayList is carried out, the stream portion to which Clip which deleted Real PlayList refers to corresponds is also deleted.

[0081] <u>Drawing 5</u> (B) is a figure about partial deletion of Real PlayList, and when a portion [**** / Real PlayList] is deleted, it is changed so that corresponding PlayItem may refer to only the stream portion of required Clip. And the stream portion to which Clip corresponds is deleted.

[0082] <u>Drawing 5</u> (C) is a figure about minimization (Minimize: minimization) of Real PlayList, It is operation of referring to only the stream portion of Clip required for Virtual PlayList for PlayItem corresponding to Real PlayList. The stream portion to which Clip unnecessary for Virtual PlayList corresponds is deleted.

[0083]Real PlayList is changed by the operation which was mentioned above, When the stream portion of Clip which the Real PlayList refers to is deleted, Virtual PlayList which is using the deleted Clip may exist, and a problem may arise by deleted Clip in the Virtual PlayList.

[0084]As opposed to operation of [so that such a thing may not arise] deletion to a user, "If Virtual PlayList which is referring to the stream portion of Clip which the Real PlayList is referring to exists and the Real PlayList is eliminated, although the Virtual PlayList will also be eliminated, is it still good? processing of the deletion with a user's directions after urging a check (warning) by displaying the message " etc. — execution — or it cancels. Or operation of minimization is made to be performed instead of deleting VirtualPlayList to Real PlayList.

[0085]Next, the operation to Virtual PlayList is explained. The contents of Clip are not changed even if operation is performed to Virtual PlayList. <u>Drawing 6</u> is assembling (Assemble). Edit (IN-OUT edit) It is a related figure and is operation of making PlayItem of the reproducing section for which it asked when the user wanted to see, and creating Virtual PlayList. The seamless connection between PlayItem(s) is supported by the application format (after-mentioned).

[0086]As shown in drawing 6 (A), two Real PlayList1 and 2, When Clip1 corresponding to each RealPlayList and 2 exist, A user points to the predetermined section (section-layItem1 to In1 thru/or Out1) in Real PlayList1 as a reproducing section, and as the section reproduced continuously, When it points to the predetermined section (section-layItem2 to In2 thru/or Out2) in Real PlayList2 as a reproducing section, As

shown in <u>drawing 6</u> (B), one Virtual PlayList which comprises PlayItem1 and PlayItem2 is created.

[0087]Next, the reorganization collection (Re-editing) of Virtual PlayList is explained. In a reorganization collection, change of the yne point in Virtual PlayList, and an out point, There are insertion (insert) of new PlayItem to Virtual PlayList, an addition (append), deletion of PlayItem in Virtual PlayList, etc. Virtual PlayList itself can also be deleted.

[0088] <u>Drawing 7</u> is a figure about postrecording (Audio dubbing (post recording)) of the audio to Virtual PlayList, and is operation which registers postrecording of the audio to VirtualPlayList as a sub path. Postrecording of this audio is supported by the application format. An additional audio stream is added to the AV stream of the main path of Virtual PlayList as a sub path.

[0089]As operation common to Real PlayList and Virtual PlayList, there is change (Moving) of the reproduction sequence of PlayList as shown in <u>drawing 8</u>. This operation is change of the reproduction sequence of PlayList in the inside of a disk (volume), and is supported by Table Of PlayList (with reference to <u>drawing 20</u> etc., it mentions later) defined in an application format. The contents of Clip are not changed by this operation.

[0090]Next, the mark (Mark) is explained. The mark is provided in order to specify the highlight in Clip and PlayList, and characteristic time. Specify the characteristic scene resulting from the contents of the AV stream, for example, the mark added to Clip is a scene change point etc. When reproducing PlayList, it can be used with reference to the mark of Clip which the PlayList refers to.

[0091]Are mainly set by the user, for example, the marks added to PlayList are a bookmark, resume points, etc. Setting a mark to Clip or PlayList is performed by adding the time stamp in which the time of a mark is shown to a mark list. Deleting a mark is removing the time stamp of the mark out of a mark list. Therefore, as for an AV stream, a change of what is not made by setting out or deletion of a mark, either. [0092]Next, a thumbnail is explained. A thumbnail is a still picture added to Volume, PlayList, and Clip. There are two kinds of thumbnails and one is a thumbnail as representation drawing showing the contents. This is used by the menu screen for choosing the thing a user mainly wants to operate and look at cursor (un-illustrating) etc. Another is a picture showing the scene which the mark has pointed out.

[0093] Volume and each Playlist need to enable it to have representation drawing. The representation drawing of Volume is a disk (the recording medium 100 presupposes that it is a disk-like thing, and the recording medium 100 and the following). suitably —

a disk — describing — when it sets to the predetermined place of the recording and reproducing device 1, it assumes being used when displaying the still picture showing the contents of the disk first. In the menu screen which chooses Playlist, the representation drawing of Playlist assumes being used as a still picture for expressing the contents of Playlist.

[0095]It can be necessary to strike two or more marks, and in order to know the contents of the mark position, it is necessary to enable it to see the picture of a marking point easily to Clip and Playlist on the other hand. The picture showing such a marking point is called the mark thumbnail (Mark Thumbnails). Therefore, the picture which becomes the origin of a thumbnail becomes more nearly main [what extracted the picture of the marking point] than the picture captured from the exterior.

[0096] Drawing 11 is a mark attached to PlayList, and a figure showing the relation of the mark thumbnail, and drawing 12 is a mark attached to Clip, and a figure showing the relation of the mark thumbnail. Since a mark thumbnail is used with a sub menu etc. when the details of Playlist are expressed unlike a menu thumbnail, what it is read in short access time is not required. Therefore, whenever a thumbnail is needed, the recording and reproducing device 1 opens a file, and it does not become a problem even if it takes time somewhat by reading a part of the file.

[0097]In order to reduce the number of files which exists in volume, all the mark thumbnails are good to store in one file. Although Playlist can have one menu thumbnail and two or more mark thumbnails, since Clip does not have the necessity that a direct user chooses (it usually specifies via Playlist), it does not need to provide a menu thumbnail.

[0098] Drawing 13 is a figure showing the relation of the menu thumbnail at the time of taking having mentioned above into consideration, a mark thumbnail, PlayList, and Clip. The menu thumbnail provided in the menu thumbnail file for every PlayList is filed. The

volume thumbnail representing the contents of the data currently recorded on the disk is contained in the menu thumbnail file. The thumbnail by which the mark thumbnail file was created for every PlayList and every Clip is filed.

[0099]Next, CPI (Characteristic Point Information) is explained. CPI is data contained in Clip information files, When the time stamp of the access point to Clip is given, it is mainly used in order to find the data address which should start read-out of data in Clip AV stream file. According to this embodiment, two kinds of CPI(s) are used. One is EP_map and another is TU_map.

[0100]EP_map is a list of entry point (EP) data, and it is extracted from an elementary stream and a transport stream. This has the address information for finding the place of the entry point which should start decoding in an AV stream. One EP data comprises a pair of the data address in the AV stream of a presentation time stamp (PTS) and the access unit corresponding to the PTS.

[0101]EP_map is mainly used for two purposes. It is used in order to find the data address in the AV stream of the access unit referred to [1st] with a presentation time stamp in PlayList. It is used for the 2nd for first forward reproduction or first reverse reproduction. When the recording and reproducing device 1 records an input AV stream and the syntax of the stream can be analyzed, EP_map is created and it is recorded on a disk.

[0102]TU_map has a list of the time unit (TU) data based on the arrival time of the transport packet inputted through a digital interface. This gives the relation between the time of an arrival time base, and the data address in an AV stream. When the recording and reproducing device 1 records an input AV stream and the syntax of the stream cannot be analyzed, TU_map is created and it is recorded on a disk.

[0103]STCInfo stores the discontinuous dot data of STC in the AV stream file which is storing the MPEG2 transport stream. When an AV stream has a break point of STC, PTS of the same value may appear in the AV stream file. Therefore, when pointing out a certain time on an AV stream on a PTS basis, just PTS of an access point is insufficient in order to specify the point. The index of the STC section [****] containing the PTS is required. The STC section [****] is called STC-sequence in this format, and that index is called STC-sequence-id. The information on STC-sequence is defined by STCInfo of Clip Information file. STC-sequence-id is an option in the AV stream file which uses it by an AV stream file with EP_map, and has TU_map.

[0104]A program is a meeting of elementalist ream and shares only one system time base for the synchronous reproduction of these streams. What the contents of the AV

stream understand in advance of decoding of an AV stream for playback equipment (recording and reproducing device 1 of <u>drawing 1</u>) is useful. For example, they are information, including the value of PID of the transport packet which transmits the elementary stream of video or an audio, video, the component kind of audio, etc., (for example, the videos of HDTV, the audio streams of MPEG-2AAC, etc.). This information is useful although the menu screen which explains to a user the contents of PlayList which refers to an AV stream is created, and, In advance of decoding of an AV stream, it is useful in order to set the AV decoder of playback equipment, and the initial state of a demultiplexer. For this reason, Clip Information file has ProgramInfo for explaining the contents of the program.

[0105]In the AV stream file which is storing the MPEG2 transport stream, the contents of a program may change in a file. For example, it is that PID of the transport packet which transmits a video elementary stream changes, or the component kind of video stream changes from SDTV to HDTV etc.

[0106]ProgramInfo stores the information on the change point of the contents of a program in the inside of an AV stream file. In an AV stream file, the contents of a program defined in this format call the fixed section Program-sequence. Program-sequence is an option in the AV stream file which uses it by an AV stream file with EP_map, and has TU_map.

[0107] This embodiment defines the stream format (SESF) of self encoding. SESF is used when coding to an MPEG2 transport stream, after decoding the purpose of coding an analog input signal, and a digital input signal (for example, DV).

[0108]SESF defines coding restrictions of the elementary stream about MPEG-2 transport stream and an AV stream. When the recording and reproducing device 1 encodes and records a SESF stream, EP_map is created and it is recorded on a disk. [0109]Either of the methods shown below is used and the stream of digital broadcasting is recorded on the recording medium 100. First, transformer coding of the stream of digital broadcasting is carried out at a SESF stream. In this case, the recorded stream must be based on SESF. In this case, EP_map must be created and it must be recorded on a disk.

[0110]Or transformer coding is carried out at new elementalist ream, and the elementary stream which constitutes a digital broadcasting stream is re-multiplex-ized to the new transport stream based on the stream format which the standardization organization of the digital broadcasting stream defines. In this case, EP_map must be created and it must be recorded on a disk.

[0111] For example, an input stream is MPEG-2 transport stream of ISDB (standard

name of digital BS broadcasting of Japan) conformity, and suppose that it contains a HDTV video stream and a MPEG AAC audio stream. Transformer coding of the HDTV video stream is carried out at a SDTV video stream, and the SDTV video stream and an original AAC audio stream are re-multiplex-ized to TS. Both the transport streams recorded as a SDTV stream must be based on an ISDB format.

[0112] The stream of digital broadcasting as other methods at the time of being recorded on the recording medium 100, It is a case (it records without changing any input transport streams) where an input transport stream is recorded on a transparent, and EP_map is then created and it is recorded on a disk.

[0113]Or it is a case (it records without changing any input transport streams) where an input transport stream is recorded on a transparent, and TU_map is then created and it is recorded on a disk.

[0114]Next, a directory and a file are explained. Hereafter, the recording and reproducing device 1 is suitably described to be DVR (Digital Video Recording). Drawing 14 is a figure showing an example of the directory structure on a disk. A directory required on the disk of DVR, As shown in drawing 14, they are a root directory including a "DVR" directory, a "PLAYLIST" directory, a "CLIPINF" directory, and a "DVR" directory including an "M2TS" directory and "DATA" directory. Although directories other than these may be made to be created under a root directory, they presuppose that it is ignored in the application format of this embodiment.

[0115]All the files and directories which are specified by DVR application format under a "DVR" directory are stored. A "DVR" directory includes four directories. Under a "PLAYLIST" directory, the database file of Real PlayList and Virtual PlayList is placed. This directory exists, even if one does not have PlayList.

[0116] The database of Clip is placed under a "CLIPINF" directory. This directory also exists, even if one does not have Clip. An AV stream file is placed under an "M2TS" directory. This directory exists, even if one does not have an AV stream file. In the "DATA" directory, the file of data broadcasting, such as digital TV broadcasting, is stored.

[0117]A "DVR" directory stores the file shown below. It is made under a "info.dvr" file and a DVR directory, and the overall information on an application layer is stored. Only one info.dvr must be under a DVR directory. A file name presupposes that it is fixed to info.dvr. A "menu.thmb" file stores the information relevant to a menu thumbnail image. Zero or one menu thumbnail must be under a DVR directory. A file name presupposes that it is fixed to memu.thmb. When one does not have a menu thumbnail

image, this file does not need to exist.

[0118]A "mark.thmb" file stores the information relevant to a mark thumbnail image. Zero or one mark thumbnail must be under a DVR directory. A file name presupposes that it is fixed to mark.thmb. When one does not have a menu thumbnail image, this file does not need to exist.

[0119]A "PLAYLIST" directory stores two kinds of PlayList files, and they are Real PlayList and Virtual PlayList. "xxxxx.rpls" A file stores the information relevant to one Real PlayList. One file is made for every Real PlayList. A file name is "xxxxxx.rpls." Here, "xxxxx" is a number to five 0 thru/or 9. A file extension child presupposes that it must be "rpls".

[0120]A "yyyyy.vpls" file stores the information relevant to one Virtual PlayList. One file is made for every Virtual PlayList. A file name is "yyyyy.vpls." Here, "yyyyy" is a number to five 0 thru/or 9. A file extension child presupposes that it must be "vpls". [0121]A "CLIPINF" directory stores one file corresponding to each AV stream file. "zzzzz.clpi" A file is Clip Information file corresponding to one AV stream file (Clip AV stream file or Bridge-Clip AV stream file). A file name is "zzzzzz.clpi" and "zzzzz" is a number to five 0 thru/or 9. A file extension child presupposes that it must be "clpi". [0122]An "M2TS" directory stores the file of an AV stream. A "zzzzzz.m2ts" file is an AV stream file treated by a DVR system. This is Clip AV stream file or Bridge-Clip AV stream. A file name is "zzzzzz.m2ts" and "zzzzz" is a number to five 0 thru/or 9. A file extension child presupposes that it must be "m2ts."

[0123]The "DATA" directory stores the data transmitted from data broadcasting, and data is XML file, an MHEG file, etc., for example.

[0124]Next, the syntax and semantics of each directory (file) are explained. First, a "info.dvr" file is explained. Drawing 15 is a figure showing the syntax of a "info.dvr" file. A "info.dvr" file comprises three objects and they are DVRVolume(), TableOfPlayLists(), and MakerPrivateData().

[0125]To explain the syntax of info.dvr shown in <u>drawing 15</u> TableOfPlayLists_Start_address, The start address of TableOfPlayList() is shown by making the relative number of bytes from the byte of the head of an info.dvr file into a unit. A relative number of bytes is counted from zero.

[0126]MakerPrivateData_Start_address shows the start address of MakerPrivateData() by making the relative number of bytes from the byte of the head of an info.dvr file into a unit. A relative number of bytes is counted from zero. padding_word (padding word) is inserted according to the syntax of info.dvr. N1 and N2 are zero or arbitrary positive integers. It may be made for each padding word to take

any value.

[0127]DVRVolume() stores the information which describes the contents of volume (disk). <u>Drawing 16</u> is a figure showing the syntax of DVRVolume(). version_number shows four character characters which show the version number of this DVRVolume() for explaining the syntax of DVR Volume() shown in <u>drawing 16</u>. version_number is coded with "0045" according to ISO 646.

[0128]length is expressed with the 32-bit unsigned integer which shows the number of bytes of DVRVolume() from immediately after this length field to the last of DVRVolume().

[0129]ResumeVolume() has memorized the file name of Real PlayList reproduced at the end in volume, or Virtual PlayList. However, when a user interrupts reproduction of Real PlayList or Virtual PlayList, a playback position is stored in resume-mark defined in PlayListMark().

[0130] <u>Drawing 17</u> is a figure showing the syntax of ResumeVolume(). The syntax of ResumeVolume() shown in <u>drawing 17</u> to explain valid_flag, When it is shown that the resume_PlayList_name field is effective when this 1-bit flag is set to 1 and this flag is set to 0, it is shown that the resume_PlayList_name field is invalid.

[0131]10 bytes of field of resume_PlayList_name shows the file name of Real PlayList by which resume should be carried out, or Virtual PlayList.

[0132]UIAppInfoVolume in the syntax of DVRVolume() shown in <u>drawing 16</u> stores the parameter of the user interface application about volume. <u>Drawing 18</u> is a figure showing the syntax of UIAppInfoVolume, and the 8-bit field of character_set shows the encoding method of the character character coded in the Volume_name field for explaining the semantics. The encoding method corresponds to the value shown in drawing 19.

[0133]Eight bit fields of name_length show the byte length of the volume name shown in the Volume_name field. The field of Volume_name shows the name of volume. The number of bytes of the left in this field to a name_length number is an effective character character, and it shows the name of volume. In the Volume_name field, what kind of value may be [value after these effective character character] contained.

[0134] Volume_protect_flag is a flag which shows whether the contents in volume may be shown without restricting to a user. Only when this flag is set to 1 and a user is able to input an PIN number (password) correctly, showing a user the contents of that volume (reproduced) is permitted. When this flag is set to 0, even if a user does not input an PIN number, showing a user the contents of that volume is permitted.

[0135] First, when a user inserts a disk in a player. [whether this flag is set to 0, and]

Or if a user is able to input an PIN number correctly even if this flag is set to 1, the recording and reproducing device 1 will display the list of PlayList in that disk. Reproduction restrictions of each PlayList are unrelated to volume_protect_flag, and it is shown by playback_control_flag defined in UIAppInfoPlayList().

[0136]PIN comprises a number to four 0 thru/or 9, and each number is coded according to ISO/IEC646. The field of ref_thumbnail_index shows the information on the thumbnail image added to volume. In the case of the value whose ref_thumbnail_index field is not 0xFFFF, the thumbnail image is added to the volume and the thumbnail image is stored in a menu.thum file. The picture is referred to using the value of ref_thumbnail_index in a menu.thum file. When the ref_thumbnail_index field is 0xFFFF, it is shown that the thumbnail image is not added to the volume.

[0137]Next, TableOfPlayLists() in the syntax of info.dvr shown in <u>drawing 15</u> is explained. TableOfPlayLists() stores the file name of PlayList (Real PlayList and Virtual PlayList). All the PlayList files currently recorded on volume are included in TableOfPlayList(). TableOfPlayLists() shows the default reproduction sequence of PlayList in volume.

[0138] <u>Drawing 20</u> is a figure showing the syntax of TableOfPlayLists(), version_number of TableOfPlayLists shows four character characters which show the version number of this TableOfPlayLists for explaining that syntax. version_number must be coded with "0045" according to ISO 646.

[0139]length is an integer without 32-bit numerals which shows the number of bytes of TableOfPlayLists() from immediately after this length field to the last of TableOfPlayLists(). The 16-bit field of number_of_PlayLists shows the loop count of for-loop containing PlayList_file_name. This number must be equal to the number of PlayList(s) currently recorded on volume. 10 bytes of number of PlayList_file_name shows the file name of PlayList.

[0140] Drawing 21 is a figure showing the composition of another operation of the syntax of TableOfPlayLists(). The syntax shown in drawing 21 is considered as the composition which included UIAppinfoPlayList (after-mentioned) in the syntax shown in drawing 20. Thus, it becomes possible only by reading TableOfPlayLists to create a menu screen by having composition in which UIAppinfoPlayList was included. Here, the following explanation is given noting that the syntax shown in drawing 20 is used. [0141] MakersPrivateData in the syntax of info.dvr shown in drawing 15 is explained. MakersPrivateData is provided so that the maker of the recording and reproducing device 1 can insert the private data of a maker into MakersPrivateData() for the special application of each company. The private data of each maker has maker_ID

standardized in order to identify the maker which defined it. MakersPrivateData() may also contain one or more maker_ID.

[0142]When a predetermined maker wants to insert private data and the private data of other makers is already contained in MakersPrivateData(), other makers, The old private data which already exists is not eliminated, but new private data is added into MakersPrivateData(). Thus, in this embodiment, the private data of two or more makers carries out as [be / being contained in one MakersPrivateData() / possible]. [0143]Drawing 22 is a figure showing the syntax of MakersPrivateData. version_number shows four character characters which show the version number of this MakersPrivateData() for explaining the syntax of MakersPrivateData shown in drawing 22. version_number must be coded with "0045" according to ISO 646. length shows the 32-bit unsigned integer which shows the number of bytes of MakersPrivateData() from immediately after this length field to the last of MakersPrivateData().

[0144]mpd_blocks_start_address shows the head byte address of the first mpd_block() by making the relative number of bytes from the byte of the head of MakersPrivateData() into a unit. A relative number of bytes is counted from zero. number_of_maker_entries is a 16-bit unsigned integer which gives the number of entries of the maker private data contained in MakersPrivateData(). Two or more maker private data which have a value of the same maker_ID in MakersPrivateData() must not exist.

[0145]mpd_block_size is a 16-bit unsigned integer which gives the size of one mpd_block by making 1024 bytes into a unit. For example, if it becomes mpd_block_size=1, it shows that the size of one mpd_block is 1024 bytes. number_of_mpd_blocks is a 16-bit unsigned integer which gives the number of mpd_block contained in MakersPrivateData(). maker_ID is a 16-bit unsigned integer which shows the manufacturing maker of the DVR system which created the maker private data. The value coded by maker_ID is specified by the licenser of this DVR format.

[0146]maker_model_code is a 16-bit unsigned integer which shows the model number code of the DVR system which created the maker private data. The value coded by maker_model_code is set up by the manufacturing maker who received the license of this format. start_mpd_block_number is a 16-bit unsigned integer which shows the number of mpd_block by which the maker private data is started. The aryne of the initial data of maker private data must be carried out to the head of mpd_block.start_mpd_block_number corresponds to the variable j in for-loop of

mpd_block.

[0147]mpd_length is a 32-bit unsigned integer which shows the size of maker private data per byte. mpd_block is a field in which maker private data is stored. All the mpd_block in MakersPrivateData() must be the same sizes.

[0148]Next, xxxxx.rpls and yyyyy.vpls will be explained if it puts in another way about Real PlayList file and Virtual PlayList file. <u>Drawing 23</u> is a figure showing the syntax of xxxxx.rpls (Real PlayList) or yyyyy.vpls (Virtual PlayList). xxxxx. rpls and yyyyy.vpls have the same syntax composition. xxxxx. rpls and yyyyy.vpls comprise three objects, respectively and they are PlayList(), PlayListMark(), and MakerPrivateData().

[0149]PlayListMark_Start_address shows the start address of PlayListMark() by making the relative number of bytes from the byte of the head of a PlayList file into a unit. A relative number of bytes is counted from zero.

[0150]MakerPrivateData_Start_address shows the start address of MakerPrivateData() by making the relative number of bytes from the byte of the head of a PlayList file into a unit. A relative number of bytes is counted from zero.

[0151]padding_word (padding word) is inserted according to the syntax of a PlayList file, and N1 and N2 are zero or arbitrary positive integers. It may be made for each padding word to take any value.

[0152]Here, although already explained simple, PlayList is explained further. Refer to the reproducing section in all the Clip(s) except Bridge-Clip (after-mentioned) for all the Real PlayList in a disk. And two or more RealPlayList(s) must not make the reproducing section shown by those PlayItem(s) overlap in the same Clip.

[0153]With reference to drawing 24, as shown, Real PlayList to which all the Clip(s) correspond exists in explaining further at drawing 24 (A). This rule is followed after editing work is performed, as shown in drawing 24 (B). therefore, all the Clip(s) — which — it is — certainly viewing and listening is possible by referring to Real PlayList. [0154]As shown in drawing 24 (C), the reproducing section of Virtual PlayList must be included in the reproducing section of Real PlayList, or the reproducing section of Bridge-Clip. Bridge-Clip referred to at no Virtual PlayList must not exist in a disk.

[0155]Although RealPlayList includes the list of PlayItem, it must not contain SubPlayItem. Virtual PlayList includes the list of PlayItem, CPI_type shown in PlayList() is EP_map type, And when PlayList_type is 0 (PlayList containing video and an audio), Virtual PlayList can contain one SubPlayItem. In PlayList() in this embodiment, SubPlayIte must be used only for the purpose of postrecording of an audio and the number of SubPlayItem(s) which one Virtual PlayList has must be 0 or 1. [0156]Next, PlayList is explained. <u>Drawing 25</u> is a figure showing the syntax of

PlayList. They are four character characters in which version_number shows the version number of this PlayList() for explaining the syntax of PlayList shown in drawing 25. version_number must be coded with "0045" according to ISO 646. length is a 32-bit unsigned integer which shows the number of bytes of PlayList() from immediately after this length field to the last of PlayList(). PlayList_type is the 8-bit field which shows the type of this PlayList, and shows drawing 26 that example.

[0157]CPI_type is a 1-bit flag and shows the value of CPI_type of Clip referred to by PlayItem() and SubPlayItem(). If all Clip(s) referred to by one PlayList do not have a the same value of CPI_type defined in those CPI(), they will not become number_of_PlayItems is the 16-bit field which shows the number of PlayItem(s) in PlayList.

[0158]PlayItem_id corresponding to predetermined PlayItem() is defined by the turn that the PlayItem() appears, in for-loop containing PlayItem(). PlayItem_id is started from 0. number_of_SubPlayItems is the 16-bit field which shows the number of SubPlayItem(s) in PlayList. This value is 0 or 1. The path (audio stream path) of an additional audio stream is a kind of a sub path.

[0159]Next, UIAppInfoPlayList of the syntax of PlayList shown in drawing 25 is explained. UIAppInfoPlayList stores the parameter of the user interface application about PlayList. Drawing 27 is a figure showing the syntax of UIAppInfoPlayList. For explaining the syntax of UIAppInfoPlayList shown in drawing 27, character_set is the 8-bit field and shows the encoding method of the character character coded in the PlayList_name field. The encoding method corresponds to the value based on the table shown in drawing 19.

[0160]name_length is eight bit fields and shows the byte length of the PlayList name shown in the PlayList_name field. The field of PlayList_name shows the name of PlayList. The number of bytes of the left in this field to a name_length number is an effective character character, and it shows the name of PlayList. In the PlayList_name field, what kind of value may be [value after these effective character character] contained.

[0161]record_time_and_date is the 56-bit field in which time when PlayList is recorded is stored. This field codes 14 numbers by 4-bit Binary Coded Decimal (BCD) about a /part / second at the time of year / moon / day/. For example, 2001/12/23:01:02:03 are coded with "0x20011223010203."

[0162]duration is the 24-bit field which showed the total reproduction time of PlayList in the unit of time / part / second. This field codes six numbers by 4-bit Binary CodedDecimal (BCD). For example, 01:45:30 is coded with "0x014530."

[0163]valid_period is the 32-bit field which shows the period when PlayList is effective. This field codes eight numbers by 4-bit Binary Coded Decimal (BCD). For example, the recording and reproducing device 1 is used as it said that automatic deletion of the PlayList over which this shelf-life passed was carried out. For example, 2001/05/07 are coded with "0x20010507."

[0164]maker_id is a 16-bit unsigned integer which shows the manufacturer of the DVR player (recording and reproducing device 1) which updated the PlayList at the end. The value coded by maker_id is assigned by the licenser of a DVR format. maker_code is a 16-bit unsigned integer which shows the model number of the DVR player which updated the PlayList at the end. The value coded by maker_code is decided by the manufacturer who received the license of the DVR format.

[0165] The PlayList is reproduced, only when the flag of playback_control_flag is set to 1 and a user is able to input an PIN number correctly. When this flag is set to 0, even if a user does not input an PIN number, the user can view and listen to that PlayList. [0166] As a table is shown write_protect_flag in drawing 28_(A), when being set to 1, write_protect_flag is removed, and the contents of the PlayList are not eliminated and changed. When this flag is set to 0, the user can eliminate and change that PlayList freely. When this flag is set to 1, before a user eliminates, edits or overwrites that PlayList, the recording and reproducing device 1 displays a message which is reconfirmed to a user.

[0167]Real PlayList by which write_protect_flag is set to zero exists, And Virtual PlayList which refers to Clip of the Real PlayList exists, and write_protect_flag of the Virtual PlayList may be set to one. When a user is going to eliminate RealPlayList, the recording and reproducing device 1, "Minimize" [it warns a user of existence of above-mentioned Virtual PlayList, or / the Real PlayList] before eliminating the Real PlayList.

[0168] As shown in <u>drawing 28</u> (B), when the flag is set to 1, is_played_flag the PlayList, After being recorded, when having been reproduced is shown and it is set to 0 at once, the PlayList shows not being reproduced once, after being recorded.

[0169] archive is the 2-bit field which shows whether the PlayList is original or it is copied, as shown in <u>drawing 28</u> (C). The field of ref_thumbnail_index shows the information on a thumbnail image that PlayList is represented. In the case of the value whose ref_thumbnail_index field is not 0xFFFF, the thumbnail image representing PlayList is added to the PlayList, and the thumbnail image is stored in a menu.thum file. The picture is referred to using the value of ref_thumbnail_index in a menu.thum file. When the ref_thumbnail_index field is 0xFFFF, the thumbnail image representing

PlayList is not added to the PlayList.

[0170]Next, PlayItem is explained. One PlayItem() contains the following data fundamentally. Clip_information_file_name for specifying the file name of Clip, The pair of IN_time for pinpointing the reproducing section of Clip, and OUT_time, When CPI_type defined in PlayList() is EP_map type, They are STC_sequence_id which IN_time and OUT_time refer to, and connection_condition which shows the state of connection between PlayItem to precede and the present PlayItem.

[0171]Those PlayItem(s) are arranged in on the global time-axis of PlayList without the gap of time, or overlap by the single tier when PlayList comprises two or more PlayItem(s). CPI_type defined in PlayList() is EP_map type, And the pair of IN_time defined in the PlayItem when the present PlayItem does not have BridgeSequence(), and OUT_time, The time on the same STC continuation section specified by STC_sequence_id must be pointed out. Such an example is shown in drawing 29.

[0172]CPI_type defined in PlayList() is EP_map type, and <u>drawing 30</u> shows the case where the rule explained below is applied, when the present PlayItem has BridgeSequence(). IN_time (what is indicated to be IN_time1 in the figure) of PlayItem preceded with the present PlayItem has pointed out the time on the STC continuation section specified by STC_sequence_id of PlayItem to precede. OUT_time (what is indicated to be OUT_time1 in the figure) of PlayItem to precede has pointed out the time in Bridge-Clip specified in BridgeSequenceInfo() of the present PlayItem. This OUT_time must follow the coding restrictions mentioned later.

[0173]IN_time (what is indicated to be IN_time2 in the figure) of the present PlayItem has pointed out the time in Bridge-Clip specified in BridgeSequenceInfo() of the present PlayItem. This IN_time must also follow the coding restrictions mentioned later. OUT_time (what is indicated to be OUT_time2 in the figure) of PlayItem of the present PlayItem has pointed out the time on the STC continuation section specified by STC_sequence_id of the present PlayItem.

[0174]As shown in <u>drawing 31</u>, when CPI_type of PlayList() is TU_map type, the pair of IN_time of PlayItem and OUT_time has pointed out the time on the same Clip AV stream.

[0175] The syntax of PlayItem comes to be shown in <u>drawing 32</u>. The field of Clip_Information_file_name shows the file name of ClipInformation file for explaining the syntax of PlayItem shown in <u>drawing 32</u>. Clip_stream_type defined in ClipInfo() of this Clip Information file must show Clip AV stream.

[0176]STC_sequence_id is the 8-bit field and shows STC_sequence_id of the STC continuation section which PlayItem refers to. When CPI_type specified in PlayList() is

TU_map type, these eight bit fields have no meanings, but are set to 0. IN_time is 32 bit fields and stores the reproduction start time of PlayItem. The semantics of IN_time changes with CPI_type defined in PlayList(), as shown in <u>drawing 33</u>.

[0177]OUT_time is 32 bit fields and stores the reproduction finish time of PlayItem. The semantics of OUT_time changes with CPI_type defined in PlayList(), as shown in drawing 34.

[0178]Connection_Condition is the 2-bit field which shows the connected state between PlayItem to precede as shown in <u>drawing 35</u>, and the present PlayItem. <u>Drawing 36</u> is a figure explaining each state of Connection_Condition shown in <u>drawing 35</u>.

[0179]Next, BridgeSequenceInfo is explained with reference to <u>drawing 37</u>. BridgeSequenceInfo() is the attached information of the present PlayItem and has the information shown below. Bridge_Clip_Information_file_name which specifies a Bridge—Clip AV stream file and ClipInformation file corresponding to it is included.

[0180]It is an address of the source packet on Clip AV stream which PlayItem to precede refers to, and the source packet of the beginning of a Bridge-Clip AV stream file is connected following this source packet. This address is called RSPN_exit_from_previous_Clip. It is an address of the source packet on Clip AV stream which the further present PlayItem refers to, and the source packet of the last of a Bridge-Clip AV stream file is connected before this source packet. This address is called RSPN_enter_to_current_Clip.

[0181]In drawing 37, RSPN_arrival_time_discontinuity shows the address of the source packet which has a break point of arrival time base in a the Bridge-Clip AVstream file. This address is defined in ClipInfo().

[0182] <u>Drawing 38</u> is a figure showing the syntax of BridgeSequenceinfo. The syntax of BridgeSequenceinfo shown in <u>drawing 38</u> to explain the field of Bridge_Clip_Information_file_name, The file name of Clip Information file corresponding to a Bridge-Clip AV stream file is shown. Clip_stream_type defined in ClipInfo() of this Clip Information file must show 'Bridge-Clip AV stream'.

[0183]32 bit fields of RSPN_exit_from_previous_Clip, It is a relative address of the source packet on Clip AV stream which PlayItem to precede refers to, and the source packet of the beginning of a Bridge-Clip AV stream file is connected following this source packet. RSPN_exit_from_previous_Clip, It is a size which makes a source packet number a unit, and the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of the Clip AV stream file which PlayItem to precede refers to is counted as an initial value.

[0184]32 bit fields of RSPN_enter_to_current_Clip, It is a relative address of the source packet on Clip AV stream which the present PlayItem refers to, and the source packet of the last of a Bridge-Clip AV stream file is connected before this source packet. RSPN_exit_from_previous_Clip, It is a size which makes a source packet number a unit, and the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of the Clip AV stream file which the present PlayItem refers to is counted as an initial value.

[0185]Next, SubPlayItem is explained with reference to <u>drawing 39</u>. Use of SubPlayItem() is allowed only when CPI_type of PlayList() is EP_map type. In this embodiment, SubPlayItem presupposes that it is used only for the purpose of postrecording of an audio. SubPlayItem() contains the data shown below. First, Clip_information_file_name for specifying Clip which sub path in PlayList refers to is included.

[0186] SubPath_IN_time and SubPath_OUT_time for specifying the reproducing section of sub path in Clip are included. sync_PlayItem_id and sync_start_PTS_of_PlayItem for specifying the time in which sub path carries out a reproduction start on the time—axis of main path are included. Clip AV stream of the audio referred to at sub path must not contain an STC break point (break point of system time base). The clock of the audio sample of Clip used for sub path is locked by the clock of the audio sample of main path.

[0187] <u>Drawing 40</u> is a figure showing the syntax of SubPlayItem. The syntax of SubPlayItem shown in <u>drawing 40</u> to explain the field of Clip_Information_file_name, The file name of Clip Information file is shown and it is used by sub path in PlayList. Clip_stream_type defined in ClipInfo() of this Clip Information file must show Clip AV stream.

[0188] The 8-bit field of SubPath_type shows the type of sub path. Here, as shown in drawing 41, only '0x00' is set up but other values are secured for the future.

[0189]The 8-bit field of sync_PlayItem_id shows PlayItem_id of PlayItem in which the time in which sub path carries out a reproduction start on the time-axis of main path is contained. The value of PlayItem_id corresponding to predetermined PlayItem is defined in PlayList() (refer to drawing 25).

[0190]The 32-bit field of sync_start_PTS_of_PlayItem, The time in which sub path carries out a reproduction start on the time-axis of main path is shown, and top 32 bits of PTS (Presentaiotn Time Stamp) on PlayItem referred to by sync_PlayItem_id are shown. 32 bit fields of SubPath_IN_time store the reproduction start time of Sub path. SubPath_IN_time shows top 32 bits of PTS of 33 bit length corresponding to the

first presentation unit in Sub Path.

[0191]32 bit fields of SubPath_OUT_time store the reproduction finish time of Sub path. SubPath_OUT_time shows top 32 bits of the value of Presenation_end_TS computed by a following formula. Presentation_end_TS = PTS_out+AU_duration -- here, PTS_out is PTS of 33 bit length corresponding to the presentation unit of the last of SubPath. AU_duration is a display period of the 90-kHz unit of the presentation unit of the last of SubPath.

[0192]Next, PlayListMark() in the syntax of xxxxx.rpls shown in <u>drawing 23</u> and yyyyy.vpls is explained. The mark information about PlayList is stored in this PlayListMark. <u>Drawing 42</u> is a figure showing the syntax of PlayListMark. They are four character characters in which version_number shows the version number of this PlayListMark() for explaining the syntax of PlayListMark shown in <u>drawing 42</u>. version_number must be coded with "0045" according to ISO 646.

[0193]length is a 32-bit unsigned integer which shows the number of bytes of PlayListMark() from immediately after this length field to the last of PlayListMark(). number_of_PlayList_marks is a 16-bit unsigned integer which shows the number of the mark currently stored in PlayListMark. number_of_PlayList_marks may be 0. mark_type is the 8-bit field which shows the type of a mark, and is coded according to the table shown in drawing 43.

[0194]32 bit fields of mark_time_stamp store the time stamp in which the point as which the mark was specified is shown. The semantics of mark_time_stamp changes with CPI_type defined in PlayList(), as shown in <u>drawing 44</u>. PlayItem_id is the 8-bit field which specifies PlayItem on which the mark is put. The value of PlayItem_id corresponding to predetermined PlayItem is defined in PlayList() (refer to <u>drawing 25</u>). [0195]The 8-bit field of character_set shows the encoding method of the character character coded by the mark_name field. The encoding method corresponds to the value shown in <u>drawing 19</u>. Eight bit fields of name_length show the byte length of the mark name shown in the Mark_name field. The field of mark_name shows the name of a mark. The number of bytes of the left in this field to a name_length number is an effective character character, and it shows the name of a mark. As for the value after these effective character character, what kind of value may be set up in the Mark name field.

[0196] The field of ref_thumbnail_index shows the information on the thumbnail image added to a mark. In the case of the value whose ref_thumbnail_index field is not 0xFFFF, the thumbnail image is added to the mark and the thumbnail image is stored in a mark.thmb file. The picture is referred to using the value of ref_thumbnail_index in

a mark.thmb file (after-mentioned). When the ref_thumbnail_index field is 0xFFFF, it is shown that the thumbnail image is not added to the mark.

[0197]Next, Clip information file is explained. zzzzz.clpi (Clip information file file) comprises six objects, as shown in <u>drawing 45</u>. They are ClipInfo(), STC_Info(), ProgramInfo(), CPI(), ClipMark(), and MakerPrivateData(). "zzzzz" of the digit string with same AV stream (Clip AV stream or Bridge-Clip AV stream) and Clip Information file corresponding to it is used.

[0198]to explain the syntax of zzzzz.clpi (Clip information file file) shown in drawing 45, ClipInfo_Start_address shows the start address of ClipInfo() by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero.

[0199]STC_Info_Start_address shows the start address of STC_Info() by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero. ProgramInfo_Start_address shows the start address of ProgramInfo() by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero. CPI_Start_address shows the start address of CPI() by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero.

[0200]ClipMark_Start_address shows the start address of ClipMark() by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero. MakerPrivateData_Start_address shows the start address of MakerPrivateData () by making the relative number of bytes from the byte of the head of a zzzzz.clpi file into a unit. A relative number of bytes is counted from zero. padding_word (padding word) is inserted according to the syntax of a zzzzz.clpi file. N1, N2, N3, N4, and N5 must be zero or arbitrary positive integers. Any value may be made to be taken each padding word.

[0201]Next, ClipInfo is explained. <u>Drawing 46</u> is a figure showing the syntax of ClipInfo. ClipInfo() stores the attribution information of the AV stream file (a Clip AV stream or a Bridge-Clip AV stream file) corresponding to it.

[0202] They are four character characters in which version_number shows the version number of this ClipInfo() for explaining the syntax of ClipInfo shown in <u>drawing 46</u>. version_number must be coded with "0045" according to ISO 646. length is a 32-bit unsigned integer which shows the number of bytes of ClipInfo() from immediately after this length field to the last of ClipInfo(). The 8-bit field of Clip_stream_type shows the type of the AV stream corresponding to a Clip Information file, as shown in <u>drawing 47</u>.

The stream type of each type of AV stream is mentioned later.

[0203] The 32-bit field of offset_SPN gives the offset value of the source packet number about the source packet of the beginning of an AV stream (Clip AV stream or Bridge-Clip AV stream) file. This offset_SPN must be 0 when an AV stream file is first recorded on a disk.

[0204]As shown in <u>drawing 48</u>, when the first portion of an AV stream file is eliminated by edit, offset_SPN is very good in values other than zero. The relative source packet number (relative address) which refers to offset_SPN in this embodiment is often RSPN_xxx (xxx changes.). It is described by in the form of example .RSPN_EP_start in syntax. A relative source packet number is a size which makes a source packet number a unit, and counts the value of offset_SPN as an initial value from the source packet of the beginning of an AV stream file.

[0205] The number (SPN_xxx) of the source packets to the source packet referred to by a relative source packet number from the source packet of the beginning of an AV stream file is computed with a following formula.

An example in case offset_SPN is 4 is shown in SPN_xxx = RSPN_xxx - offset_SPN drawing 48.

[0206]TS_recording_rate is a 24-bit unsigned integer — this value — a DVR drive (writing part 22) — or the bit rate of required input and output of the AV stream from a DVR drive (read section 28) is given. record_time_and_date, It is the 56-bit field in which time when the AV stream corresponding to Clip is recorded is stored, and 14 numbers are coded by 4-bit Binary Coded Decimal (BCD) about a /part / second at the time of year / moon / day/. For example, 2001/12/23:01:02:03 are coded with "0x20011223010203."

[0207] duration is the 24-bit field which showed the total reproduction time of Clip in the unit of time / part / second based on an arrival time clock. This field codes six numbers by 4-bit Binary Coded Decimal (BCD). For example, 01:45:30 is coded with "0x014530."

[0208] The flag of time_controlled_flag: shows the recording mode of an AV stream file. When this time_controlled_flag is 1, the recording mode must fulfill the conditions which show that it is the mode in which it is recorded to the time progress after recording as a file size is proportional, and are shown in a following formula.

TS_average_rate*192/188*(t - start_time)-alpha < -- = size_clip(t) <= TS_average_rate*192 / 188*(t - start_time)+alpha -- here, TS_average_rate expresses the average bit rate of the transport stream of an AV stream file with a bytes/second unit.

[0209]In an upper type, t shows the time expressed with a second bit, and start_time is time when the source packet of the beginning of an AV stream file is recorded, and is expressed with a second bit. When the size of size_clip (t) and the AV stream file in the time t is expressed per byte, for example, ten source packets are recorded by the time t from start_time, size_clip (t) is 10*192 bytes. alpha is a constant depending on TS_average_rate.

[0210]When time_controlled_flag is set to zero, not controlling the recording mode so that the file size of an AV stream is proportional to time progress of record is shown. For example, this is a case where transparent record of the input transport stream is carried out.

[0211]When, as for TS_average_rate, time_controlled_flag is set to one, this 24-bit field shows the value of TS_average_rate used by the upper formula. When time_controlled_flag is set to zero, this field has no meanings but must be set to 0. For example, the transport stream of a Variable Bit Rate is coded by the procedure shown below. A transformer portrait is first set to the value of TS_recording_rate. Next, a video stream is coded with a Variable Bit Rate. And a transport packet is intermittently coded by not using null packets.

[0212]32 bit fields of RSPN_arrival_time_discontinuity are the relative addresses of the place which the discontinuity of arrival time base generates on a Bridge-ClipAV stream file. RSPN_arrival_time_discontinuity, It is a size which makes a source packet number a unit, and the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of a Bridge-Clip AV stream file is counted as an initial value. The absolute address in the inside of the Bridge-Clip AV stream file is computed based on SPN_xxx = RSPN_xxx - offset_SPN mentioned above.

[0213] The 144-bit field of reserved_for_system_use is reserved for systems. When the flag of is_format_identifier_valid is 1, it is shown that the field of format_identifier is effective. When the flag of is_original_network_ID_valid is 1, it is shown that the field of original_network_ID is effective. When the flag of is_transport_stream_ID_valid is 1, it is shown that the field of transport_stream_ID is effective. When the flag of is_servece_ID_valid is 1, it is shown that the field of servece_ID is effective.

[0214]When the flag of is_country_code_valid is 1, it is shown that the field of country_code is effective. 32 bit fields of format_identifier show the value of format_identifier which registration deascriotor (it defines as ISO/IEC 13818-1) has in a transport stream. 16 bit fields of original_network_ID show the value of original_network_ID defined in the transport stream. 16 bit fields of transport_stream_ID show the value of transport_stream_ID defined in the transport

stream.

[0215]16 bit fields of servece_ID show the value of servece_ID defined in the transport stream. The 24-bit field of country_code shows the country code defined by ISO3166. Each character character is coded by ISO8859-1. For example, Japan is expressed as "JPN" and coded with "0x4A 0x500x4E." stream_format_name is 16 character codes of ISO-646 which shows the name of the format organization which is carrying out the stream definition of the transport stream. The invalid byte in this field, value'0xFF' is set.

[0216]format_identifier, original_network_ID, transport_stream_ID, servece_ID, country_code, and stream_format_name, The service provider of a transport stream is shown and by this, Coding restrictions of an audio or a video stream and the stream definition of the standard of SI (service information) or private data streams other than an audio video stream can be recognized. These information can be used, in order that a decoder may perform initial setting of a decoder system before a decoding start whether the stream can be decoded and when it can decode and.

[0217]Next, STC_Info is explained. In MPEG-2 transport stream, here call STC_sequence the time intervals which do not contain the break point (break point of system time base) of STC, and in Clip, STC_sequence is specified with the value of STC_sequence_id. Drawing 50 is a figure explaining the STC section [****]. The value of the STC same in the same STC_sequence never appears (however, the maximum time length of Clip is restricted so that it may mention later). Therefore, the value of the same PTS also never appears in the same STC_sequence. When an AV stream contains the STC break point of N (N> 0) individual, the system time base of Clip is divided into STC_sequence of an individual (N+1).

[0218]STC_Info stores the address of the place which the discontinuity (discontinuity of system time base) of STC generates. So that it may explain with reference to drawing 51 RSPN_STC_start, The address is shown and k-th STC_sequence (k>=0) except the last STC_sequence, It begins from the time when the source packet referred to by k-th RSPN_STC_start arrived, and finishes with the time when the source packet referred to by RSPN_STC_start of eye watch (k+1) arrived. The last STC_sequence begins from the time when the source packet referred to by the last RSPN_STC_start arrived, and is ended at the time when the last source packet arrived. [0219]Drawing 52 is a figure showing the syntax of STC_Info. They are four character characters in which version_number shows the version number of this STC_Info() for explaining the syntax of STC_Info shown in drawing 52 version_number must be coded with "0045" according to ISO 646.

[0220]length is a 32-bit unsigned integer which shows the number of bytes of STC_Info() from immediately after this length field to the last of STC_Info(). When CPI_type of CPI() shows TU_map type, this length field may set zero. When CPI_type of CPI() shows EP_map type, num_of_STC_sequences must be one or more values.

[0221]The 8-bit unsigned integer of num_of_STC_sequences shows the number of STC_sequence in the inside of Clip. This value shows the loop count of for-loop following this field. STC_sequence_id corresponding to predetermined STC_sequence is defined in for-loop containing RSPN_STC_start by the turn that RSPN_STC_start corresponding to the STC_sequence appears. STC_sequence_id is started from 0.

[0222]32 bit fields of RSPN_STC_start show the address which STC_sequence starts on an AV stream file. RSPN_STC_start shows the address which the break point of system time base generates in an AV stream file. RSPN_STC_start is good also as a relative address of a source packet which has PCR of the beginning of new system time base in an AV stream. RSPN_STC_start is a size which makes a source packet number a unit, and counts the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of an AV stream file as an initial value. The absolute address in the inside of the AV stream file is computed by SPN_xxx = RSPN_xxx - offset_SPN already mentioned above.

[0223]Next, ProgramInfo in the syntax of zzzzz.clip shown in drawing 45 is explained. The time intervals which have the following feature in Clip are called program_sequence for explaining here, referring to drawing 53. First, the value of PCR_PID does not change. Next, the number of video elementary streams does not change. The encoded information defined by the value and VideoCodingInfo of PID about each video stream does not change. The number of audio elementary streams does not change. The encoded information defined by the value and AudioCodingInfo of PID about each audio stream does not change.

[0224]In the same time, program_sequence has only one system time base. In the same time, program_sequence has only one PMT. ProgramInfo() stores the address of the place which program_sequence starts. RSPN_program_sequence_start shows the address.

[0225] <u>Drawing 54</u> is a figure showing the syntax of ProgramInfo. They are four character characters in which version_number shows the version number of this ProgramInfo() for explaining SHINTAKU of ProgramInfo shown in <u>drawing 54</u>. version_number must be coded with "0045" according to ISO 646.

[0226]length is a 32-bit unsigned integer which shows the number of bytes of ProgramInfo() from immediately after this length field to the last of ProgramInfo().

When CPI_type of CPI() shows TU_map type, this length field may be set to zero. When CPI_type of CPI() shows EP_map type, number_of_programs must be one or more values.

[0227]The 8-bit unsigned integer of number_of_program_sequences shows the number of program_sequence in the inside of Clip. This value shows the loop count of for-loop following this field. When program_sequence does not change 32 bit fields set. number_of_program_sequences must have one RSPN_program_sequence_start are the relative addresses of the place which a program sequence starts on an AV stream file.

[0228]RSPN_program_sequence_start is a size which makes a source packet number a unit, and counts the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of an AV stream file as an initial value. The absolute address in the inside of the AV stream file is computed by SPN_xxx = RSPN_xxx - offset_SPN. The RSPN_program_sequence_start value must appear in an ascending order in for-loop of syntax.

[0229]16 bit fields of PCR_PID show PID of a transport packet including the PCR field effective in the program_sequence. Eight bit fields of number_of_videos show the loop count of video_stream_PID and for—loop containing VideoCodingInfo(). Eight bit fields of number_of_audios show the loop count of audio_stream_PID and for—loop containing AudioCodingInfo(). 16 bit fields of video_stream_PID show PID of the transport packet containing a video stream effective in the program_sequence. VideoCodingInfo() following this field must explain the contents of the video stream referred to by that video stream_PID.

[0230]16 bit fields of audio_stream_PID show PID of the transport packet containing an audio stream effective in the program_sequence. AudioCodingInfo() following this field must explain the contents of the video stream referred to by that audio_stream_PID.

[0231]The turn that the value of video_stream_PID appears in for-loop of syntax must be equal to the turn that PID of the video stream is coded in PMT effective in the program_sequence. The turn that the value of audio_stream_PID appears in for-loop of syntax must be equal to the turn that PID of the audio stream is coded in PMT effective in the program_sequence.

[0232] <u>Drawing 55</u> is a figure showing the syntax of VideoCodingInfo in the syntax of Programinfo shown in <u>drawing 54</u>. For explaining the syntax of VideoCodingInfo shown in <u>drawing 55</u>, eight bit fields of video_format show the format video corresponding to video_stream_PID in ProgramInfo(), as shown in <u>drawing 56</u>.

[0233] Eight bit fields of frame_rate show the frame rate of the video corresponding to video_stream_PID in ProgramInfo(), as shown in <u>drawing 57</u>. Eight bit fields of display_aspect_ratio show the display aspect ratio of the video corresponding to video_stream_PID in ProgramInfo(), as shown in <u>drawing 58</u>.

[0234] <u>Drawing 59</u> is a figure showing the syntax of AudioCodingInfo in the syntax of Programinfo shown in <u>drawing 54</u>. For explaining the syntax of AudioCodingInfo shown in <u>drawing 59</u>, eight bit fields of audio_coding show the encoding method of the audio corresponding to audio_stream_PID in ProgramInfo(), as shown in <u>drawing 60</u>.

[0235]Eight bit fields of audio_component_type show the component type of the audio corresponding to audio_stream_PID in ProgramInfo(), as shown in <u>drawing 61</u>. Eight bit fields of sampling_frequency show the sampling frequency of the audio corresponding to audio stream PID in ProgramInfo(), as shown in drawing 62.

[0236]Next, CPI (Characteristic Point Information) in the syntax of zzzzz.clip shown in drawing 45 is explained. Since the hour entry in an AV stream and the address in the file are associated, there is CPI. There are two types of CPI(s) and they are EP_map and TU_map. As shown in drawing 63, when CPI_type in CPI() is EP_map type, the CPI() contains EP_map. As shown in drawing 64, when CPI_type in CPI() is TU_map type, the CPI() contains TU_map. One AV stream has one EP_map or one TU_map. When an AV stream is a SESF transport stream, Clip corresponding to it must have EP_map.

[0237] Drawing 65 is a figure showing the syntax of CPI. They are four character characters in which version_number shows the version number of this CPI() for explaining the syntax of CPI shown in drawing 65. version_number must be coded with "0045" according to ISO 646. length is a 32-bit unsigned integer which shows the number of bytes of CPI() from immediately after this length field to the last of CPI(). As shown in drawing 66, CPI_type is a 1-bit flag and expresses the type of CPI of Clip. [0238]Next, EP_map in the syntax of CPI shown in drawing 65 is explained. There are two types of EP_map and it is EP_map for video streams, and EP_map for audio streams. EP_map_type in EP_map distinguishes the type of EP_map. When Clip contains one or more video streams, EP_map for video streams must be used. When Clip does not contain a video stream but contains one or more audio streams, EP_map for audio streams must be used.

[0239]EP_map for video streams is explained with reference to <u>drawing 67</u>. EP_map for video streams has data called stream_PID, PTS_EP_start, and RSPN_EP_start. stream_PID shows PID of the transport packet which transmits a video stream. PTS_EP_start shows PTS of the access unit begun from the sequence header of a

video stream. RSPN_EP_start shows the address of the sauce pocket containing the 1st byte of the access unit referred to by PTS_EP_start in an AV stream.

[0240]The sub table called EP_map_for_one_stream_PID() is made for every video stream transmitted by the transport packet with the same PID. When two or more video streams exist in Clip, EP_map may also contain two or more EP_map_for_one_stream_PID().

[0241]EP_map for audio streams has data called stream_PID, PTS_EP_start, and RSPN_EP_start. stream_PID shows PID of the transport packet which transmits an audio stream. PTS_EP_start shows PTS of the access unit of an audio stream. RSPN_EP_start shows the address of the sauce pocket containing the 1st byte of the access unit referred to by PTS_EP_start in an AV stream.

[0242] The sub table called EP_map_for_one_stream_PID() is made for every audio stream transmitted by the transport packet with the same PID. When two or more audio streams exist in Clip, EP_map may also contain two or more EP_map_for_one_stream_PID().

[0243]One EP_map_for_one_stream_PID() is made by explaining the relation between EP_map and STC_Info on one table regardless of the break point of STC. By comparing the value of RSPN_STC_start defined in the value of RSPN_EP_start and STC_Info() shows the boundary of the data of EP_map belonging to each STC_sequence (see drawing 68). EP_map must have one EP_map_for_one_stream_PID to the range of the continuous stream transmitted by the same PID. When shown in drawing 69, although program#1 and program#3 have the same video PID, since the data range is not continuing, they must have EP_map_for_one_stream_PID for every program.

[0244] <u>Drawing 70</u> is a figure showing the syntax of EP_map. For explaining the syntax of EP_map shown in <u>drawing 70</u>, EP_type is the 4-bit field, and as shown in <u>drawing 71</u>, it shows the entry point type of EP_map. EP_type shows the semantics of the data field following this field. EP_type must be set to zero ('video') when Clip contains one or more video streams. Or EP_type must be set to one ('audio'), when Clip does not contain a video stream but contains one or more audio streams.

[0245]The 16-bit field of number_of_stream_PIDs shows the loop count of for-loop which has number_of_stream_PIDs in EP_map() in a variable. The 16-bit field of stream_PID (k), PID of the transport packet which transmits the k-th elementary stream (video or audio stream) referred to by EP_map_for_one_stream_PID (num_EP_entries (k)) is shown. case EP_type is equal to zero ('video') — the elementalist ream — a video stream — kicking does not become impossible. When EP_type is equal to one ('audio'), the elementalist ream must be an audio stream.

[0246]The 16-bit field of num_EP_entries (k) shows num_EP_entries (k) referred to by EP_map_for_one_stream_PID (num_EP_entries (k)).

EP_map_for_one_stream_PID_Start_address (k): This 32-bit field, The relative byte position from which EP_map_for_one_stream_PID (num_EP_entries (k)) begins in EP_map() is shown. This value is shown by the size from the 1st byte of EP_map().

[0247]padding_word must be inserted according to the syntax of EP_map(). X and Y must be zero or arbitrary positive integers. Each padding word may take any value.

[0248] <u>Drawing 72</u> is a figure showing the syntax of EP_map_for_one_stream_PID. The semantics of the 32-bit field of PTS_EP_start changes with EP_type defined in EP_map() to explain the syntax of EP_map_for_one_stream_PID shown in <u>drawing 72</u>. When EP_type is equal to zero ('video'), this field has top 32 bits of PTS of the 33-bit accuracy of the access unit which starts with the sequence header of a video stream. When EP_type is equal to one ('audio'), this field has top 32 bits of PTS of the 33-bit accuracy of the access unit of an audio stream.

[0249] The semantics of the 32-bit field of RSPN_EP_start changes with EP_type defined in EP_map(). When EP_type is equal to zero ('video'), this field shows the relative address of the sauce pocket containing the 1st byte of the sequence header of the access unit referred to by PTS_EP_start in an AV stream. Or when EP_type is equal to one ('audio'), this field shows the relative address of the sauce pocket containing the first byte of the audio frame of the access unit referred to by PTS_EP_start in an AV stream.

[0250]RSPN_EP_start is a size which makes a source packet number a unit, and counts the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of an AV stream file as an initial value. The absolute address in the inside of the AV stream file is computed by SPN_xxx = RSPN_xxx - offset_SPN. The value of RSPN_EP_start must appear in an ascending order in for-loop of syntax.

[0251]Next, TU_map is explained with reference to <u>drawing 73</u>. TU_map makes one time-axis based on the arrival time clock (clock of an arrival time base) of a source packet. The time-axis is called TU_map_time_axis. The starting point of TU_map_time_axis is shown by offset_time in TU_map(). TU_map_time_axis is divided into a fixed unit from offset_time. The unit is called time_unit.

[0252]In each time_unit in an AV stream, the address on the AV stream file of the source packet of the first perfect form is stored in TU_map. These addresses are called RSPN_time_unit_start. In a TU_map_time_axis top, it is k. The time when time_unit of eye watch (k>=0) begins is called TU_start_time (k). This value is computed based on a following formula.

TU_start_time (k) = offset_time+k*time_unit_sizeTU_start_time (k) has the accuracy of 45 kHz.

[0253] Drawing 75 is a figure showing the syntax of TU_map. The field of the 32-bit length of offset_time gives the offset time to TU_map_time_axis for explaining the syntax of TU_map shown in drawing 75. This value shows the offset time to time_unit of the beginning in Clip. offset_time is a size which makes a unit the 45-kHz clock drawn from the arrival time clock of 27-MHz accuracy. offset_time must be set to zero when an AV stream is recorded as new Clip.

[0254]32 bit fields of time_unit_size give the size of time_unit, and it is a size which makes a unit the 45-kHz clock drawn from the arrival time clock of 27-MHz accuracy. time_unit_size is good to use 1 or less (time_unit_size <=45000) second. 32 bit fields of number_of_time_unit_entries show the number of entries of time_unit currently stored in TU_map().

[0255]32 bit fields of RSPN_time_unit_start show the relative address of the place which each time_unit starts in an AV stream. RSPN_time_unit_start is a size which makes a source packet number a unit, and counts the value of offset_SPN defined in ClipInfo() from the source packet of the beginning of an AV stream file as an initial value. The absolute address in the inside of the AV stream file is computed by SPN_xxx = RSPN_xxx - offset_SPN. The value of RSPN_time_unit_start must appear in an ascending order in for-loop of syntax. (k+1) When anything does not have a source packet in time_unit of eye watch, RSPN_time_unit_start of eye watch (k+1) must be equal to k-th RSPN_time_unit_start.

[0256]ClipMark in the syntax of zzzzz.clip shown in <u>drawing 45</u> is explained. ClipMark is the mark information about a clip and is stored into ClipMark. This mark is set by a recorder (recording and reproducing device 1), and is not set by the user.

[0257] <u>Drawing 75</u> is a figure showing the syntax of ClipMark. They are four character characters in which version_number shows the version number of this ClipMark() for explaining the syntax of ClipMark shown in <u>drawing 75</u>. version_number must be coded with "0045" according to ISO 646.

[0258]length is a 32-bit unsigned integer which shows the number of bytes of ClipMark() from immediately after this length field to the last of ClipMark(). The 16-bit unsigned integer number_of_Clip_marks indicates the number of the mark currently stored in ClipMark to be. number_of_Clip_marks may be 0. mark_type is the 8-bit field which shows the type of a mark, and is coded according to the table shown in <u>drawing</u> 76.

[0259]mark_time stamp is 32 bit fields and stores the time stamp in which the point as

which the mark was specified is shown. The semantics of mark_time_stamp changes with CPI_type in PlayList(), as shown in <u>drawing 77</u>.

[0260]When, as for STC_sequence_id, CPI_type in CPI() shows EP_map type, this 8-bit field shows STC_sequence_id of the STC continuation section on which the mark is put. When CPI_type in CPI() shows TU_map type, this 8-bit field has no meanings, but is set to zero. The 8-bit field of character_set shows the encoding method of the character character coded by the mark_name field. The encoding method corresponds to the value shown in drawing 19.

[0261]Eight bit fields of name_length show the byte length of the mark name shown in the Mark_name field. The field of mark_name shows the name of a mark. The number of bytes of the left in this field to a name_length number is an effective character character, and it shows the name of a mark. In the mark_name field, what kind of value may be [value after these effective character character] contained.

[0262] The field of ref_thumbnail_index shows the information on the thumbnail image added to a mark. In the case of the value whose ref_thumbnail_index field is not 0xFFFF, the thumbnail image is added to the mark and the thumbnail image is stored in a mark.thmb file. The picture is referred to using the value of ref_thumbnail_index in a mark.thmb file. When the ref_thumbnail_index field is 0xFFFF, the thumbnail image is not added to the mark.

[0263]Since MakersPrivateData was already explained with reference to drawing 22, the explanation is omitted.

[0264]Next, the thumbnail information (Thumbnail Information) is explained. A thumbnail image is stored in a menu.thmb file or a mark.thmb file. These files are the same syntax structures and have only one Thumbnail(). A menu.thmb file stores a menu thumbnail image, i.e., the picture representing Volume, and the picture representing each PlayList. All the menu thumbnails are stored only in one menu.thmb file.

[0265]A mark.thmb file stores the picture showing a mark thumbnail image, i.e., a marking point. All the mark thumbnails to all the PlayList(s) and Clip(s) are stored only in one mark.thmb file. Since a thumbnail is added and deleted frequently, add operation and operation of partial deletion must be able to be performed at high speed easily. Thumbnail() has a block structure for this reason. The data of a picture is divided into some portions and each portion is stored in one tn_block. One image data is stored in tn_block which ******(ed). tn_block which is not used may exist in the sequence of tn_block. The byte length of one thumbnail image is variable.

[0266] Drawing 78 is a figure showing the syntax of menu.thmb and mark.thmb, and

drawing 79 is a figure showing the syntax of Thumbnail in the syntax of menu.thmb shown in drawing 78, and mark.thmb. They are four character characters in which version_number shows the version number of this Thumbnail() for explaining the syntax of Thumbnail shown in drawing 79. version_number must be coded with "0045" according to ISO 646.

[0267]length is a 32-bit unsigned integer which shows the number of bytes of MakersPrivateData() from immediately after this length field to the last of Thumbnail(). tn_blocks_start_address is a 32-bit unsigned integer which shows the head byte address of the first tn_block by making the relative number of bytes from the byte of the head of Thumbnail() into a unit. A relative number of bytes is counted from zero. number_of_thumbnails is a 16-bit unsigned integer which gives the number of entries of the thumbnail image contained in Thumbnail().

[0268]tn_block_size is a 16-bit unsigned integer which gives the size of one tn_block by making 1024 bytes into a unit. For example, if it becomes tn_block_size=1, it shows that the size of one tn_block is 1024 bytes. number_of_tn_blocks is a 116-bit unsigned integer showing the number of entries of tn_block in this Thumbnail(). thumbnail_index is a 16-bit unsigned integer showing the index number of a thumbnail image expressed with the thumbnail information on the "for" loop batch which begins from this thumbnail_index field. Don't use a value called 0xFFFF as thumbnail_index. Refer to thumbnail_index for ref_thumbnail_index in UIAppInfoVolume(), UIAppInfoPlayList(), PlayListMark(), and ClipMark().

[0269]thumbnail_picture_format is an 8-bit unsigned integer showing the picture format of a thumbnail image, and takes a value as shown in <u>drawing 80</u>. DCF and PNG in front are allowed only within "menu.thmb." The mark thumbnail must take value "0x00" (MPEG-2 Video I-picture).

[0270]picture_data_size is a 32-bit unsigned integer which shows the byte length of a thumbnail image per byte. start_tn_block_number is a 16-bit unsigned integer showing the tn_block number of tn_block from which the data of a thumbnail image begins. The head of thumbnail image data must be in agreement with the head of tb_block. A tn_block number begins from 0 and is related to the value of the variable k in the for-loop of tn_block.

[0271]x_picture_length is a 16-bit unsigned integer showing the horizontal number of pixels of the frame picture frame of a thumbnail image. y_picture_length is a 16-bit unsigned integer showing the number of pixels of the perpendicular direction of the frame picture frame of a thumbnail image. tn_block is a field in which a thumbnail image is stored. All the tn_block in Thumbnail() is the same sizes (fixed length), and the size

is defined by tn_block_size.

[0272] Drawing 81 is the figure which meant typically how thumbnail image data would be stored in tn_block. Like drawing 81, each thumbnail image data begins from the head of tn_block, and, in the case of the size exceeding 1 tn_block, it is stored using continuous following tn_block. By doing in this way, the picture data which is variable length becomes possible [managing as fixed-length data], and can respond now by simple processing to edit called deletion.

[0273]Next, an AV stream file is explained. An AV stream file is stored in an "M2TS" directory (drawing 14). There are two types of AV stream files, and they are a Clip AV stream and a Bridge-Clip AV stream file. It must be the structure of a DVR MPEG-2 transport stream file where both AV streams are defined henceforth [this].

[0274]First, DVR MPEG-2 A transport stream is explained. The structure of DVR MPEG-2 transport stream is shown in <u>drawing 82</u>. An AV stream file has the structure of a DVR MPEG2 transport stream. A DVR MPEG2 transport stream comprises Aligned unit of integer pieces. The size of Alignedunit is 6144. Byte (2048*3 byte) It is. Aligned unit begins from the 1st byte of a source packet. A source packet is 192-byte length. One source packet comprises TP_extra_header and a transport packet. TP_extra_header is 4-byte length and a transport packet is 188-byte length.

[0275]One Aligned unit comprises 32 source packets. Aligned unit of the last in a DVR MPEG2 transport stream also comprises 32 source packets. Therefore, the termination of the DVR MPEG2 transport stream is carried out on the boundary of Aligned unit. When the number of the transport packets of the input transport stream recorded on a disk is not a multiple of 32, a source packet with null packets (transport packet of PID=0x1FFF) must be used for the last Aligned unit. The file system must not add excessive information to a DVR MPEG2 transport stream.

[0276] The recorder model of DVR MPEG-2 transport stream is shown in <u>drawing 83</u>. The recorder shown in <u>drawing 83</u> is a model on the concept for specifying a recording process. DVR MPEG-2 transport stream follows this model.

[0277]The input timing of MPEG-2 transport stream is explained. An input MPEG2 transport stream is a full transport stream or a partial transport stream. The MPEG2 transport stream inputted must follow ISO/IEC 13818-1 or ISO/IEC 13818-9. The i-th byte of an MPEG2 transport stream is simultaneously inputted into T-STD (it is prescribed by ISO/IEC 13818-1 Transport stream system target decoder) and saw spa KETTAIZA at time t(i). Rpk is the instant maximum of the input rate of a transport packet.

[0278]27MHz PLL52 generates the frequency of 27 MHz clocks. The frequency of 27

MHz clocks is locked by the value of PCR (Program Clock Reference) of MPEG-2 transport stream. arrival time clock counter53 is a binary counter which counts a pulse with a frequency of 27 MHz. Arrival_time_clock(i) is the counted value of Arrival time clock counter in time t(i).

[0279]source packetizer54 adds TP_extra_header to all the transport packets, and makes a source packet. Arrival_time_stamp expresses the time when the 1st byte of a transport packet arrives to both T-STD and saw spa KETTAIZA. Arrival_time_stamp (k) is a sampled value of Arrival_time_clock (k), as shown in a following formula, and k shows the 1st byte of a transport packet here.

arrival_time_stamp(k) = arrival_time_clock(k) % 2 30 [0280]When the time interval of two transport packets inputted continuously becomes 2 30 / more than 27 million second (about 40 seconds), The difference of arrival_time_stamp of the two transport packets should be set as it has been 2 30 / 27 million seconds. It prepares for the case where a recorder becomes such.

[0281]smoothing buffer55 carries out smoothing of the bit rate of an input transport stream. Don't overflow a smoothing buffer. Rmax is the output bit rate of the source packet from a smoothing buffer in case a smoothing buffer is not empty. When a smoothing buffer is empty, the output bit rate from a smoothing buffer is zero.

[0282]Next, the parameter of the recorder model of DVR MPEG-2 transport stream is explained. A value called Rmax is given by TS_recording_rate defined in ClipInfo() corresponding to an AV stream file. This value is computed by a following formula.

The value of Rmax = TS_recording_rate*192/188 TS_recording_rate is a size which makes bytes/second a unit.

[0283]When an input transport stream is a SESF transport stream, Rpk must be equal to TS_recording_rate defined in ClipInfo() corresponding to an AV stream file. When an input transport stream is not a SESF transport stream, Refer to the value set and defined without a descriptor, for example, maximum_bitrate_descriptor, partial_transport_stream_descriptor, etc. of MPEG-2 transport stream for this value.

[0284]When the input transport stream of smoothing buffer size is a SESF transport stream, the size of a smoothing buffer is zero. When an input transport stream is not a SESF transport stream, The size of a smoothing buffer The descriptor of MPEG-2 transport stream, For example, the value defined in smoothing_buffer_descriptor, short_smoothing_buffer_descriptor, partial_transport_stream_descriptor, etc. may be referred to.

[0285]A record machine (recorder) and the reproduction machine (player) must prepare the buffer of sufficient size. Default buffer size is 1536 bytes.

[0286]Next, the player model of DVR MPEG-2 transport stream is explained. <u>Drawing 84</u> is a figure showing the player model of DVR MPEG-2 transport stream. This is a model on the concept for specifying reconstructive processing. DVR MPEG-2 transport stream follows this model.

[0287]X-tal61 generates 27 MHz of frequency of 27Mhz. The error span of 27-MHz frequency must be +/-30 ppm (27 million+/- 810 Hz). arrival timeclock counter62 is a binary counter which counts a pulse with a frequency of 27 MHz. Arrival_time_clock(i) is the counted value of Arrival time clock counter in time t(i).

[0288]In smoothing buffer64, Rmax is the input bit rate of the source packet to a smoothing buffer in case a smoothing buffer is not full. When a smoothing buffer is full, the input bit rate to a smoothing buffer is zero.

[0289]to explain the output timing of MPEG-2 transport stream, When arrival_time_stamp of the present source packet is equal to the value which is 30 bits of LSB of arrival_time_clock(i), the transport packet of the source packet is drawn out from a smoothing buffer. Rpk is the instant maximum of a transport packet rate. Don't carry out underflow of the smoothing buffer.

[0290] About the parameter of the player model of DVR MPEG-2 transport stream, it is the same as that of the parameter of the recorder model of DVR MPEG-2 transport stream mentioned above.

[0291] <u>Drawing 85</u> is a figure showing the syntax of Source packet. transport_packet() is MPEG-2 transport packet specified by ISO/IEC 13818-1. The syntax of TP_Extra_header in the syntax of Source packet shown in <u>drawing 85</u> is shown in <u>drawing 86</u>. It is an integer as which copy_permission_indicator expresses copy restrictions of the pay load of a transport packet for explaining the syntax of TP_Extra_header shown in <u>drawing 86</u>. Copy restrictions can be set to copy free, no morecopy, copy once, or copy prohibited. <u>Drawing 87</u> shows the value of copy_permission_indicator, and the relation in the mode specified by them.

[0292]copy_permission_indicator is added to all the transport packets. When recording an input transport stream using an IEEE1394 digital interface, the value of copy_permission_indicator, It may relate with the value of EMI (Encryption Mode The IEEE1394 header. value of Indicator) in isochronouspacket copy_permission_indicator may be related with the value of CCI embedded into the transport packet, when recording an input transport stream without using an IEEE1394 digital interface. The value of copy_permission_indicator may be related with the value of CGMS-A of an analog signal when carrying out self encoding of the analog signal input.

[0293]arrival_time_stamp is following formula arrival_time_stamp (k). In = $arrival_time_clock(k) \% 2^{30}$, it is an integral value with the value specified by $arrival_time_stamp$.

[0294] The Clip AV stream must have [defining a Clip AV stream and] the structure of DVR MPEG-2 transport stream where a definition which was mentioned above is carried out. arrival_time_clock(i) must increase continuously in a Clip AV stream. Even if the break point of system time base (STC base) exists in a Clip AV stream, arrival_time_clock(i) of the Clip AV stream must increase continuously.

[0295]The maximum of the start in a Clip AV stream and the difference of arrival_time_clock(i) between ends must be 26 hours. This restriction guarantees that PTS (Presentation Time Stamp) of the same value never appears in a Clip AV stream, when the break point of system time base (STC base) does not exist in an MPEG2 transport stream. The MPEG 2 systems standard has specified the wrap around cycle of PTS as 233 / 90000 second (about 26.5 hours).

[0296]The Bridge-Clip AV stream must have [defining a Bridge-Clip AV stream and] the structure of DVR MPEG-2 transport stream where a definition which was mentioned above is carried out. The Bridge-Clip AV stream must contain the break point of one arrival time base. The transport stream before and behind the break point of arrival time base must follow DVR-STD which must follow restriction of the coding mentioned later and is mentioned later.

[0297]In this embodiment, the video between PlayItem(s) in edit and seamless connection of an audio are supported. Making between PlayItem seamless connection guarantees "the continuous supply of data", and "seamless decoding processing" to a player/recorder. "The continuous supply of data" is being able to guarantee a file system supplying data by the required bit rate so that a decoder's may not be made to cause the underflow of a buffer. The real time nature of data is guaranteed, and data is stored by the block unit which sufficient size followed so that data can be read from a disk.

[0298]"Seamless decoding processing" is that a player can display the audio video data recorded on the disk, without making the reproducing output of a decoder start a pause and a gap.

[0299] The AV stream which PlayItem by which seamless connection is made refers to is explained. It can be judged whether connection of PlayItem to precede and the present PlayItem is guaranteed to indicate by seamless from the connection_condition field defined in the present PlayItem. The seamless connection between PlayItem(s) has the method of using Bridge-Clip, and a method which is not used.

[0300] Drawing 88 shows the relation between PlayItem preceded in the case of using Bridge-Clip, and the present PlayItem. In drawing 88, the stream data which a player reads give a shadow and are shown. TS1 shown in drawing 88 comprises the stream data which were able to attach the shadow of Clip1 (Clip AV stream), and the stream data which were able to attach the shadow before RSPN_arrival_time_discontinuity of Bridge-Clip.

[0301] The stream data which were able to attach the shadow of Clip1 of TS1, From the address of a stream required in order to decode the presentation unit corresponding to IN time (illustrated by IN_time1 in drawing 88) of PlayItem to precede, source packet referred Thev the stream data to the RSPN exit from previous Clip. The stream data which were able to attach the shadow before RSPN arrival_time_discontinuity of Bridge-Clip contained in TS1, They are the stream data from the source packet of the beginning of Bridge-Clip to the source packet in front of the source packet referred to by RSPN_arrival_time_discontinuity. [0302]TS2 in drawing 88 comprises the stream data which were able to attach the shadow of Clip2 (Clip AV stream), and the stream data which were able to attach the shadow after RSPN_arrival_time_discontinuity of Bridge-Clip. The stream data which were able to attach the shadow after RSPN_arrival_time_discontinuity of Bridge-Clip contained in TS2. They are the stream data from the source packet referred to by RSPN arrival time_discontinuity to the source packet of the last of Bridge-Clip. The stream data which were able to attach the shadow of Clip2 of TS2, From the source packet referred to by RSPN_enter_to_current_Clip. They are the stream data to the address of a stream required in order to decode the presentation unit corresponding to OUT_time (illustrated by OUT_time2 in drawing 88) of the present PlayItem.

[0303] Drawing 89 shows the relation between PlayItem preceded when not using Bridge-Clip, and the present PlayItem. In this case, the stream data which a player reads give a shadow and are shown. TS1 in drawing 89 comprises the stream data which were able to attach the shadow of Clip1 (Clip AV stream). The stream data which were able to attach the shadow of Clip1 of TS1, It begins from the address of a stream required in order to decode the presentation unit corresponding to IN_time (illustrated by IN_time1 in drawing 89) of PlayItem to precede, and is data to the source packet of the last of Clip1. TS2 in drawing 89 comprises the stream data which were able to attach the shadow of Clip2 (Clip AV stream).

[0304] The stream data which were able to attach the shadow of Clip2 of TS2. They are the stream data to the address of a stream required in order to begin from the source packet of the beginning of Clip2 and to decode the presentation unit

corresponding to OUT_time (illustrated by OUT_time2 in <u>drawing 89</u>) of the present PlayItem.

[0305]In drawing 88 and drawing 89, TS1 and T2 are the streams which the source packet followed. Next, stream regulation of TS1 and TS2 and the connection conditions between them are considered. First, the coding restrictions for seamless connection are considered. As restriction of the coding structure of a transport stream, the number of the programs included in TS1 and TS2 must be 1 first. The number of the video streams contained in TS1 and TS2 must be 1. The number of the audio streams contained in TS1 and TS2 must be two or less. The number of the audio streams contained in TS1 and TS2 must be equal. In TS1 and/or TS2, elementary streams or private streams other than the above may be contained.

[0306] Restriction of a video bit stream is explained. <u>Drawing 90</u> is a figure showing the example of the seamless connection shown by the display order of a picture. In order to be able to display a video stream seamlessly in a node, The unnecessary picture displayed the OUT_time1 (OUT_time of Clip1) back and before IN_time2 (IN_time of Clip2) must be removed by the process of re-encoding the partial stream of Clip near a node.

[0307]When shown in <u>drawing 90</u>, the example which makes seamless connection using BridgeSequence is shown in <u>drawing 91</u>. The video stream of Bridge-Clip before RSPN_arrival_time_discontinuity comprises the coding video stream to the picture corresponding to OUT_timeof Clip1 of <u>drawing 90</u> 1. And it is connected to the video stream of Clip1 to precede, and the video stream is re-encoded so that it may become the elementary stream which followed the MPEG 2 standard by one continuation.

[0308] Similarly, the video stream of Bridge-Clip after RSPN_arrival_time_discontinuity comprises the coding video stream after the picture corresponding to IN_timeof Clip2 of drawing 90 2. And a decoding start can be carried out correctly and it is connected to the video stream of Clip2 following this, and the video stream is re-encoded so that it may become the elementary stream which followed the MPEG 2 standard by one continuation. In order to make Bridge-Clip, generally, the picture of several sheets must be re-encoded and the other picture can be copied from original Clip.

[0309] The example which makes seamless connection without using BridgeSequence in the case of the example shown in <u>drawing 90</u> is shown in <u>drawing 92</u>. The video stream of Clip1 comprises the coding video stream to the picture corresponding to OUT_time1 of <u>drawing 90</u>, and it is re-encoded so that it may become the elementary stream which followed the MPEG 2 standard by one continuation. Similarly, the video

stream of Clip2 comprises the coding video stream after the picture corresponding to IN_timeof Clip2 of drawing 90 2, and it is re-encoded so that it may become the elementary stream which followed the MPEG 2 standard by one continuation.

[0310] The frame rate of the video stream of TS1 and TS2 must be equal to explaining coding restrictions of a video stream first. The termination of the video stream of TS1 must be carried out by sequence_end_code. The video stream of TS2 must be started by Sequence Header, GOP Header, and I-picture. The video stream of TS2 must be started by closed GOP.

[0311] The video presentation unit (a frame or the field) defined in a bit stream must be continuation on both sides of a node. There must not be any gap of a frame or the field in a node. In a node, the field sequence of a top? bottom product must be continuation. In encoding which uses 3-2 PURUDAUN, "top_field_first" It reaches. In order to rewrite a "repeat_first_field" flag or to prevent generating of a field gap, it may be made to re-encode locally.

[0312]If the sampling frequency of the audio of TS1 and TS2 is not the same, it will not be explaining coding restrictions of an audio bit stream. If the encoding method (example . the MPEG1 layer 2, AC-3, SESF LPCM, AAC) of the audio of TS1 and TS2 is not the same, it will not become.

[0313]Next, the audio frame of the last of the audio stream of TS1 must contain the audio sample with display time equal at the time of the end of a display of the display picture of the last of TS1 in explaining coding restrictions of MPEG-2 transport stream. The audio frame of the beginning of the audio stream of TS2 must contain the audio sample with display time equal at the time of the display start of the display picture of the beginning of TS2.

[0314]In a node, the sequence of an audio presentation unit must not have a gap. As shown in <u>drawing 93</u>, there may be overlap defined by the length of the audio presentation unit of less than 2 audio frame sections. The first packet that transmits the elementary stream of TS2 must be a video packet. The transport stream in a node must follow DVR-STD mentioned later.

[0315]TS1 and TS2 must not contain the break point of arrival time base in explaining restriction of Clip and Bridge-Clip in each.

[0316] The following restrictions are applied only when using Bridge-Clip. Only in the node of the source packet of the last of TS1, and the source packet of the beginning of TS2, a Bridge-ClipAV stream has a break point of only one arrival time base. RSPN_arrival_time_discontinuity defined in ClipInfo() must show the address of the break point, and it must show the address which refers to the source packet of the

beginning of TS2.

[0317]May any source packet in Clip1 be sufficient as the source packet referred to by RSPN_exit_from_previous_Clip defined in BridgeSequenceInfo()? It does not need to be a boundary of Aligned unit. May any source packet in Clip2 be sufficient as the source packet referred to by RSPN_enter_to_current_Clip defined in BridgeSequenceInfo()? It does not need to be a boundary of Aligned unit.

[0318]OUT_time (OUT_time1 shown in <u>drawing 88</u> and <u>drawing 89</u>) of PlayItem preceded for explaining restriction of PlayItem must show the display finish time of the video presentation unit of the last of TS1. IN_time (IN_time2 shown in F <u>drawing 88</u> and <u>drawing 89</u>) of the present PlayItem must show the display start time of the video presentation unit of the beginning of TS2.

[0319]Seamless connection must be made by explaining restriction of the data allocation in the case of using Bridge-Clip with reference to drawing 94 so that the continuous supply of data may be guaranteed by a file system. This must be performed by arranging the Bridge-Clip AV stream connected to Clip1 (Clip AV stream file) and Clip2 (Clip AV stream file) so that data allocation regulation may be fulfilled.

(Clip ΑV file) before [0320]The portion of Clip1 stream stream RSPN_exit_from_previous_Clip as arranged to the continuation field more than half fragmentation, RSPN_exit_from_previous_Clip must be chosen. The data length of a Bridge-Clip AV stream must be chosen so that it may be arranged to the continuation field more than half fragmentation. The stream portion of Clip2 (Clip AV stream file) after RSPN_enter_to_current_Clip as arranged to the continuation field more than half fragmentation, RSPN_enter_to_current_Clip must be chosen.

[0321] Seamless connection must be made by explaining restriction of the data allocation in the case of making seamless connection without using Bridge-Clip with reference to drawing 95 so that the continuous supply of data may be guaranteed by a file system. This must be performed by arranging the portion of the last of Clip1 (Clip AV stream file), and the portion of the beginning of Clip2 (Clip AV stream file) so that data allocation regulation may be fulfilled.

[0322] The stream portion of the last of Clip1 (Clip AV stream file) must be arranged to the continuation field more than half fragmentation. The stream portion of the beginning of Clip2 (Clip AV stream file) must be arranged to the continuation field more than half fragmentation.

[0323]Next, DVR-STD is explained. DVR-STD is a conceptual model for modeling generation of a DVR MPEG2 transport stream, and decoding in the case of verification.

DVR-STD is also a conceptual model for modeling generation of the AV stream referred to by two PlayItem(s) which were mentioned above, and by which seamless connection was made, and decoding in the case of verification.

[0324]A DVR-STD model is shown in <u>drawing 96</u>. The DVR MPEG-2 transport-stream player model is contained in the model shown in <u>drawing 96</u> as a component. The transcription method of n, TBn, MBn, EBn, TBsys, Bsys, Rxn, Rbxn, Rxsys, Dn, Dsys, On, and Pn (k) is the same as what is defined as T-STD of ISO/IEC 13818-1. That is, it is as follows. n is an index number of an elementary stream. TBn is a transport buffer of the elementary stream n, and is **.

[0325]MBn is a multiple buffer of the elementary stream n. It exists only about a video stream. EBn is an elementary stream buffer of the elementary stream n. It exists only about a video stream. TBsys is an input buffer for the system information of the program under decoding. Bsys is a main buffer in the system target decoder for the system information of the program under decoding. Rxn is a transmission rate by which data is removed from TBn. Rbxn is a transmission rate by which a PES packet pay load is removed from MBn. It exists only about a video stream.

[0326]Rxsys is a transmission rate by which data is removed from TBsys. Dn is a decoder of the elementary stream n. Dsys is a decoder about the system information of the program under decoding. On is re-ordering buffer of the video stream n. Pn (k) is the k-th presentation unit of the elementary stream n.

[0327]The decoding process of DVR-STD is explained. While reproducing DVR MPEG-2 single transport stream, the timing which inputs a transport packet into the buffer of TB1, TBn, or TBsys is determined by arrival_time_stamp of a source packet. Regulation of the buffering operation of TB1, MB1, EB1, TBn, Bn, TBsys, and Bsys is the same as T-STD specified to ISO/IEC 13818-1. Regulation of decoding operation and a display action is the same as T-STD specified to ISO/IEC 13818-1.

[0328]The decoding process [it is reproducing PlayItem by which seamless connection was made] of a between is explained. Here, reproduction of two AV streams referred to by PlayItem by which seamless connection was made will be explained, and future explanation explains the reproduction of TS (for example, shown in <u>drawing 88</u>)1, and TS2 mentioned above. TS1 is a stream to precede and TS2 is the present stream.

[0329] <u>Drawing 97</u> shows the timing chart of the input of a transport packet when moving from a certain AV stream (TS1) to the following AV stream (TS2) seamlessly connected to it, decoding, and a display. While moving from a predetermined AV stream (TS1) to the following AV stream (TS2) seamlessly connected to it, The

time-axis (<u>drawing 97</u> is shown by ATC2) of the arrival time base of TS2 is not the same as that (<u>drawing 97</u> is shown by ATC1) of the arrival time base of TS1.

[0330] The time-axis (<u>drawing 97</u> is shown by STC2) of the system time base of TS2 is not the same as that (<u>drawing 97</u> is shown by STC1) of the system time base of TS1. It is required that the display of video should continue seamlessly. Overlap may be shown in the display time of the presentation unit of an audio.

[0331] The input timing to DVR-STD is explained. Until the video packet of the time by the time T1, i.e., the last of TS1, carries out the end of an input TB1 of DVR-STD, The input timing to the buffer of TB1 of DVR-STD, TBn, or TBsys is determined by arrival_time_stamp of the source packet of TS1.

[0332] The remaining packets of TS1 must be inputted into the buffer of TBn of DVR-STD, or TBsys by the bit rate of TS_recording_rate (TS1). Here, TS_recording_rate (TS1) is a value of TS_recording_rate defined in ClipInfo() corresponding to Clip1. The time which the byte of the last of TS1 inputs into a buffer is the time T2. Therefore, arrival_time_stamp of a source packet is disregarded in the section from time T_1 to T_2 .

[0333]When N1 is made into the number of bytes of the transport packet of TS1 following the video packet of the last of TS1, time DT1 to time T_1 thru/or T_2 , It is time required in order that N1 byte may carry out the end of an input by the bit rate of TS_recording_rate (TS1), and is computed by a following formula.

Both the values of RXn and RXsys change to the value of TS_recording_rate (TS1) before $DT1=T_2-T_1=N1$ / TS_recording_rate (TS1) time T_1 thru/or T_2 . Buffering operation other than this rule is the same as T-STD.

[0334]arrival time clock counter is reset by the value of arrival_time_stamp of the source packet of the beginning of TS2 in the time of T₂. The input timing to the buffer of TB1 of DVR-STD, TBn, or TBsys is determined by arrival_time_stamp of the source packet of TS2. RXn and RXsys both change to the value defined in T-STD.

[0335]About additional audio buffering and system-data buffering to explain an audio decoder and a system decoder, In addition to the amount of buffers defined by T-STD, the additional amount of buffers (data volume for about 1 second) is required so that the input data of the section from the time T1 to T2 can be processed.

[0336] The display of a video presentation unit must let a node pass to explain the presentation timing of video, and it must be continuation without a gap. Here, STC1 considers it as the time-axis (in <u>drawing 97</u>, illustrated with STC1) of the system time base of TS1, and STC2 is a time-axis (in <u>drawing 97</u>, illustrated with STC2.) of the system time base of TS2. Correctly, STC2 is started from the time which PCR of the

beginning of TS2 inputted into T-STD. It carries out.

[0337]The offset between STC1 and STC2 is determined as follows. PTS_{end}^1 is PTS on STC1 corresponding to the video presentation unit of the last of TS1, and PTS_{start}^2 , Are PTS on STC2 corresponding to the video presentation unit of the beginning of TS2, and T_{pp} , If it is a display period of the video presentation unit of the last of TS1, offset STC_delta between two system time base will be computed by a following formula.

STC_delta = $PTS^1_{end} + T_{pp} - PTS^2_{start}[0338]$ In a node to explain the timing of the presentation of an audio, There may be overlap of the display timing of an audio presentation unit, and it is 0 thru/or less than 2 audio frames (see "audio overlap" currently illustrated by <u>drawing 97</u>). Which audio sample being chosen and carrying out resynchronization of the display of an audio presentation unit to the amended time base after a node are set up by the player side.

[0339]In the time T5, the audio presentation unit of the last of TS1 is displayed for explaining about the system time clock of DVR-STD. The system time clock may overlap from time T_2 to T_5 . In this section, DVR-STD changes a system time clock between the value (STC1) of old time base, and the value (STC2) of new time base. The value of STC2 is computed by a following formula.

STC2=STC1-STC_delta[0340]The continuity of buffering is explained. STC1¹ video_end is a value of STC on system time base STC1 in case the byte of the last of the video packet of the last of TS1 arrives to TB1 of DVR-STD. STC2² video_start is a value of STC on system time base STC2 in case the byte of the beginning of the video packet of the beginning of TS2 arrives to TB1 of DVR-STD. STC2¹ video_end is the value which converted the value of STC1¹ video_end into the value on system time base STC2. STC2¹ video_end is computed by a following formula.

STC2¹ _{video_end}= STC1¹ _{video_end}- STC_delta [0341]In order to follow DVR-STD, it is required that the following two conditions should be fulfilled. First, the arrival timing of TB1 of the video packet of the beginning of TS2 must fill the inequality shown below. And the inequality shown below must be filled.

STC2² video_start > STC2¹ video_end + deltaT1 — this inequality is filled — as — Clip1 — and, or the partial stream of Clip2 — re-encoding — and — or when it is necessary to re-multiplex-ize, it is carried out if needed [the].

[0342]next, the input of the video packet from TS2 which continues at the input of the video packet from TS1, and it on the time-axis of the system time base which converted STC1 and STC2 on the same time-axis — a video buffer — overflow — and don't carry out underflow.

[0343] The contents of the data currently recorded on the recording medium by being based on such syntax, a data structure, and a rule, Reproduction information etc. can be managed appropriately and it has them, and a user can check the contents of the data currently appropriately recorded on the recording medium at the time of reproduction, or it can make it possible to reproduce desired data simple.

[0344] Although this embodiment makes an MPEG2 transport stream an example and explains it as a multiplexed stream, It is possible to apply also to the DSS transport stream currently used with DirecTV service (trademark) of not only this but an MPEG 2 program stream or the U.S.

[0345]Next, <u>drawing 98</u> shows another example of a PlayList file. The big difference in the syntax of <u>drawing 98</u> and <u>drawing 23</u> is a place in which UIAppInfoPlayList() is stored. In the example of <u>drawing 98</u>, since UIAppInfoPlayList() is taken out outside out of PlayList(), information extension of the future of UIAppInfoPlayList() can carry out comparatively easily.

[0346]version_number is four numbers which show the version number of this thumbnail header information file.

[0347]PlayList_start_address shows the start address of PlayList() by making the relative number of bytes from the byte of the head of a PlayList file into a unit. A relative number of bytes is counted from zero.

[0348]PlayListMark_start_address shows the start address of PlayListMark() by making the relative number of bytes from the byte of the head of a PlayList file into a unit. A relative number of bytes is counted from zero.

[0349]MakersPrivateData_start_address shows the start address of MakersPrivateData() by making the relative number of bytes from the byte of the head of a PlayList file into a unit. A relative number of bytes is counted from zero.

[0350] Drawing 99 shows the syntax of UIAppInfoPlayList in the PlayList file of drawing 98. PlayList_service_type shows the type of a PlayList file. The example is shown in drawing 26. PlayList_service_type may give the same meaning as the service type which the program of digital TV broadcasting shows. For example, in the case of digital BS broadcasting of Japan, a service type has three kinds, television services, voice service, and data-broadcasting service. The value representing the service type of the program which the ClipAV stream which PlayList uses includes is set to PlayList_service_type.

[0351]PlayList_character_set shows the encoding method of the character character coded by channel_name, PlayList_name, and the PlayList_detail field. This shows the encoding method of the character character coded by the mark_name field in

PlayListMark.

[0352]channel_number shows a broadcast channel number or a service number with the selected user, when the PlayList is recorded. When the combine of two or more PlayList(s) is carried out to one PlayList, this field shows the central value of that PlayList. When this field is set to 0xFFFF, this field has no meanings.

[0353]channel_name_length shows the byte length of the channel name shown in the channel_name field. This field is 20 or less value.

[0354]channel_name shows a broadcast channel with the selected user, or the name of service, when the PlayList is recorded. A number of numbers of bytes shown by channel_name_length from the left in this field are effective character characters, and said name is shown. As for the remaining bytes who follows these effective character character in this field, what kind of value may be set. When the combine of two or more PlayList(s) is carried out to one PlayList, this field shows the name representing that PlayList.

[0355]PlayList_name_length shows the byte length of the PlayList name shown in the PlayList_name field.

[0356]PlayList_name shows the name of PlayList. A number of numbers of bytes shown by PlayList_name_length from the left in this field are effective character characters, and said name is shown. As for the remaining bytes who follows these effective character character in this field, what kind of value may be set.

[0357]PlayList_detail_length shows the byte length of the detailed information of PlayList shown in the PlayList_datail field. This field is 1200 or less value.

[0358]PlayList_detail shows the text explaining the detailed information of PlayList. A number of numbers of bytes shown by PlayList_detail_length from the left in this field are effective character characters, and said text is shown. As for the remaining bytes who follows these effective character character in this field, what kind of value may be set.

[0359] The meaning of the syntax fields other than this is the same as the field of the same name shown in drawing 27.

[0360] <u>Drawing 100</u> shows the syntax of PlayList() in the PlayList file of <u>drawing 98</u>. It is only different in that UIAppInfoPlayList() was lost compared with the example of drawing 25, and fundamentally the same except this.

[0361] <u>Drawing 101</u> shows example of another of the syntax of SubPlayItem. The point that STC_sequence_id was added compared with the example of <u>drawing 40</u> is a big difference.

[0362]STC_sequence_id, STC_sequence_id of STC which SubPath_IN_time and

SubPath_OUT_time for pinpointing the reproducing section on the AV stream file corresponding to Clip_Information_file_name refer to is shown. SubPath_IN_time and SubPath_OUT_time show the time on the same STC continuation section specified by STC_sequence_id.

[0363]By adding STC_sequence_id to SubPlayItem, the AV stream file which SubPlayItem refers to comes to be allowed to have an STC break point.

[0364] The meaning of the syntax fields other than this is the same as the field of the same name shown in drawing 40.

[0365] <u>Drawing 102</u> shows the flow chart explaining the preparation method of Real PlayList. It explains referring to the block diagram of the recording and reproducing device of drawing 1.

[0366]At Step S11, the control section 23 records a Clip AV stream.

[0367]At Step S12, it is investigated whether the control section 23 can create EP_map of a Clip AV stream. At Step S12, in Yes, it progresses to Step S13, and it creates EP_map. At Step S12, in No, it progresses to Step S14, and it creates TU_map. [0368]Then, the control section 23 sets CPI_type of PlayList at Step S15.

[0369]At Step S16, the control section 23 creates PlayList() which consists of PlayItem which covers all the refreshable ranges of the above-mentioned Clip. When CPI_type is an EP_map type, When setting a hour entry on a PTS basis, and an STC break point is in Clip and PlayList() consists of two or more PlayItem(s), connection_condition between PlayItem(s) is also determined. When CPI_type is a TU_map type, a hour entry is set in arrival time base.

[0370] At Step S17, the control section 23 creates UIAppInfoPlayList().

[0371]At Step S18, the control section 23 creates PlayListMark.

[0372]At Step S19, the control section 23 creates MakersPrivateData.

[0373] At Step S20, the control section 23 records a Real PlayList file.

[0374]Thus, whenever it records a Clip AV stream newly, one Real PlayList file is made.

[0375] <u>Drawing 103</u> is a flow chart explaining the preparation method of Virtual PlayList.

[0376]At Step S31, it lets a user interface pass and one Real PlayList currently recorded on the disk is specified. And out of the reproduction range of the Real PlayList, it lets a user interface pass and the reproducing section shown by the IN point and an OUT point is specified. When CPI_type is an EP_map type, a reproducing section is set on a PTS basis, and when CPI_type is a TU_map type, a reproducing section is set in arrival time base.

[0377]It is investigated whether at Step S32, all the designating operation of the reproduction range by a user ended the control section 23. When a user chooses the section reproduced after the reproducing section which directed [above-mentioned], it returns to Step S31. When all the designating operation of the reproduction range by a user is completed at Step S32, it progresses to Step S33.

[0378]At Step S33, a user determines the connected state (connection_condition) between two reproducing sections reproduced continuously through a user interface, or the control section 23 is determined.

[0379]At Step S34, when CPI_type is an EP_map type, it lets a user interface pass and a user specifies sub path (audio for postrecording) information. When a user does not create a sub path, this step does not exist.

[0380]At Step S35, the control section 23 creates PlayList() based on the reproduction scope information specified by a user, and connection_condition.

[0381]At Step S36, the control section 23 creates UIAppInfoPlayList().

[0382]At Step S37, the control section 23 creates PlayListMark.

[0383]At Step S38, the control section 23 creates MakersPrivateData.

[0384]At Step S39, the control section 23 records a Virtual PlayList file.

[0385] Thus, one Virtual PlayList file is made for every thing which chose the reproducing section which a user wants to see from the playback ranges of Real PlayList currently recorded on the disk, and carried out grouping of the reproducing section.

[0386] Drawing 104 is a flow chart explaining the regeneration method of PlayList.

[0387]At Step S51, the control section 23 acquires the information on Info.dvr, Clip Information file, PlayList file, and a thumbnail file, The GUI picture in which the list of PlayList currently recorded on the disk is shown is created, and it lets a user interface pass, and displays on GUI.

[0388]At Step S52, the control section 23 shows a GUI picture the information explaining PlayList based on UIAppInfoPlayList() of each PlayList.

[0389]At Step S53, it lets a user interface pass and a user directs reproduction of one PlayList from on a GUI picture.

[0390]When CPI_type of the control section 23 is an EP_map type at Step S54, The source packet number which has the nearest entry point in front in time than IN_time is acquired from STC-sequenc-id of the present PlayItem, and PTS of IN_time. Or the control section 23 acquires the source packet number which the nearest time unit in front starts in time than IN_time to IN_time of the present PlayItem, when CPI_type is a TU_map type.

[0391]At Step S55, the control section 23 reads the data of an AV stream from the source packet number acquired at the above-mentioned step, and supplies it to AV decoder 27.

[0392]At Step S56, when there is front PlayItem in time [the present PlayItem], the control section 23 performs connection processing of the display with front PlayItem and the present PlayItem according to connection_condition.

[0393]At Step S57, the control section 23 directs that AV decoder 27 starts a display from the picture of PTS of IN_time, when CPI_type is an EP_map type. Or the control section 23 directs that AV decoder 27 starts a display from the picture of the stream after IN_time, when CPI_type is an EP_map type.

[0394]At Step S58, the control section 23 directs to continue decoding of an AV stream to AV decoder 27.

[0395]At Step S59, as for the control section 23, when CPI_type is an EP_map type, the picture of the present display investigates whether it is a picture of PTS of OUT_time. Or the control section 23 investigates whether the stream decoded now passed over OUT_time, when CPI_type is a TU_map type.

[0396]In No, it progresses to Step S60 at Step S59. The present picture is expressed as Step S60, and it returns to Step S58. In Yes, it progresses to Step S61.

[0397]At Step S61, as for the control section 23, the present PlayItem investigates in PlayList whether it is the last PlayItem. In No, it returns to Step S54. In Yes, reproduction of PlayList is ended.

[0398] <u>Drawing 105</u> is a flow chart explaining the regeneration method of the Sub path of PlayList. The regeneration method of the sub path of PlayList of <u>Drawing 105</u> is used only when CPI_type of PlayList is EP_map. Processing of this flow chart is simultaneously performed with the processing after step S54 in reproduction of PlayList of <u>Drawing 104</u>. AV decoder 27 is premised on decoding of two audio streams being simultaneously possible.

[0399]At Step S71, the control section 23 acquires the information on SubPlayItem.

[0400]At Step S72, the control section 23 acquires the source packet number which has the nearest entry point in front in time than SubPath_IN_time.

[0401]At Step S73, the control section 23 reads the data of the AV stream of a sub path from a source packet number with the above-mentioned entry point, and supplies it to AV decoder 27.

[0402]At Step S74, the control section 23 directs that the audio of a sub path starts a display to AV decoder 27, if reproduction of a Main path becomes a picture shown by sync_PlayItem_id and sync_start_PTS_of_PlayItem.

[0403]AV decoder 27 continues decoding of the AV stream of a sub path at Step S75. [0404]PTS of the sub path which displays the control section 23 now investigates whether it is SubPath_OUT_time at Step S76. In No, it progresses to Step S77. The display of a sub path is continued at Step S77, and it returns to Step S75.

[0405]As for the case of SubPath_OUT_time, PTS of the sub path displayed at Step S76 now ends the display of a sub path.

[0406]It carries out, as shown in <u>Drawing 104</u> and <u>Drawing 105</u>, and reproduction of the main path of one PlayList file and a sub path in which reproduction instruction was done by the user is performed.

[0407] <u>Drawing 106</u> shows the flow chart explaining the preparation method of PlayListMark. It explains referring to the block diagram of the recording and reproducing device of drawing 1.

[0408]At Step S91, the control section 23 acquires the information on Info.dvr, Clip Information file, PlayList file, and Thumbnail file, The GUI picture in which the list of PlayList currently recorded on the disk is shown is created, and it lets a user interface pass, and displays on GUI.

[0409]At Step S92, it lets a user interface pass and a user directs reproduction of one PlayList to the control section 23.

[0410]The control section 23 makes the reproduction of PlayList directed [above-mentioned] start at Step S93 (refer to <u>Drawing 104</u>).

[0411]At Step S94, it lets a user interface pass and the set of a mark is directed to the control section 23 at the place whose user is a favorite scene.

[0412]At Step S95, the control section 23 acquires PTS of a mark, and PlayItem_id of PlayItem to which it belongs, when CPI_type is EP_map. Or the control section 23 acquires the arrival time of a marking point, when CPI_type is TU_map. [0413]At Step S96, the control section 23 stores the information on a mark in PlayListMark().

[0414]At Step S97, the control section 23 records a PlayList file on the recording medium 100.

[0415] <u>Drawing 107</u> is a flow chart explaining the search regeneration method which uses PlayListMark. It explains referring to the block diagram of the recording and reproducing device of drawing 1.

[0416]At Step S111, the control section 23 acquires the information on Info.dvr, Clip Information file, PlayList file, and Thumbnail file, The GUI picture in which the list of PlayList currently recorded on the disk (recording medium 100) is shown is created, and it lets a user interface pass, and displays on GUI.

[0417]At Step S112, the control section 23 lets a user interface pass, and a user

directs reproduction of one PlayList.

[0418] The control section 23 expresses a user interface to GUI as Step S113 through the list of thumbnails generated from the picture referred to by PlayListMark.

[0419]At Step S114, it lets a user interface pass and a user specifies the marking point of a reproducing starting point as the control section 23.

[0420]As for CPI_type, in an EP_map type case, at Step S115, the control section 23 acquires PTS of a mark, and PlayItem_id to which it belongs. Or as for the control section 23, in a TU_map type case, CPI_type acquires ATS (Arrival Time Stamp) of a mark.

[0421]As for the control section 23, in an EP_map type case, at Step S116, CPI_type acquires STC-sequence-id of the AV stream which PlayItem which PlayItem_id points out refers to.

[0422]As for the control section 23, in an EP_map type case, at Step S117, CPI_type inputs an AV stream into a decoder based on above-mentioned STC-sequence-id and PTS of a mark. Specifically, the same processing as Step S54 of <u>Drawing 104</u> and Step S55 is performed using this STC-sequence-id and PTS of a marking point. Or as for the control section 23, in a TU_map type case, CPI_type inputs an AV stream into a decoder based on ATS of a mark. Specifically, the same processing as Step S54 of Drawing 104 and Step S55 is performed using this ATS.

[0423]The control section 23 makes a display start from the picture of PTS of a marking point at Step S118, when CPI_type is an EP_map type. Or the control section 23 makes a display start from the picture after ATS of a marking point, when CPI_type is a TU_map type.

[0424] Thus, it carries out, as shown in <u>Drawing 106</u>, and a user chooses the starting point of a favorite scene, etc. from PlayList, and a recorder (control section 23 of the recording and reproducing device 1) manages it to PlayListMark. It carries out, as shown in <u>Drawing 107</u>, and a reproducing starting point is chosen from the list of marking points that the user is stored in PlayListMark, and a player starts reproduction from the starting point.

[0425] The contents of the data currently recorded on the recording medium by being based on such syntax, a data structure, and a rule, Reproduction information etc. can be managed appropriately and it has them, and a user can check the contents of the data currently appropriately recorded on the recording medium at the time of reproduction, or it can make it possible to reproduce desired data simple.

[0426]When the position of I picture can be analyzed and the position of I picture cannot be analyzed using EP_map, by using TU_map. It becomes possible to record,

reproduce and manage the AV stream of a different format to the same recording medium with a common application program (software).

[0427]When the contents (position of I picture) are analyzed and an AV stream is recorded on a recording medium (when carrying out cog NIZANTO record), By using TU_map, and using EP_map, when recording on a recording medium as it is, without analyzing the contents (position of I picture) (when carrying out non cog NIZANTO record), with a common application program. It can record on the same recording medium, and can reproduce, and AV information can be managed.

[0428]Therefore, when the AV information by which scramble was carried out is descrambled and is recorded on a recording medium (analyzing) for example, When recording on a recording medium as it is, without using and descrambling TU_map (** which is not analyzed), EP_map is used, with a common application program, it can record on the same recording medium, and can reproduce, and AV information can be managed.

[0429]Since it enabled it to describe EP_map type and TU_map type in PlayLyst() as CPI_type, TU_map can be used, when the position of I picture can be analyzed and the position of I picture cannot be analyzed using EP_map. It enables this to unify and manage the AV stream data which analyzes and records the position of I picture, and the AV stream data recorded without analyzing by a common program only by setting up a flag.

[0430] Since it dissociates independently and a PlayList file and a Clip Information file are recorded, when the contents of a certain PlayList and Clip are changed, it is not necessary by edit etc. to change other files which are unrelated to the file. Therefore, time which can modify a file easily and the change and record take can be made small. [0431] Read only Info.dvr first and the contents of record of a disk are shown to a user interface. If a user reads only the PlayList file which carried out reproduction instruction, and the Clip Information file relevant to it from a disk, a user's waiting time can be made small.

[0432]If all the PlayList files and Clip Information files are summarized to one file and recorded, the file size will become very large. Therefore, the time which it takes in order to modify the file and to record it becomes very large compared with the case where dissociate independently and each file is recorded. This invention solves this problem.

[0433] Although a series of processings mentioned above can also be performed by hardware, they can also be performed with software. The computer by which the program which constitutes the software is included in hardware for exclusive use

when performing a series of processings with software, Or it is installed in the personal computer etc. which can perform various kinds of functions, for example, are general-purpose, etc. from a recording medium by installing various kinds of programs. [0434]. As shown in <u>Drawing 108</u>, this recording medium is distributed apart from a computer in order to provide a user with a program. The magnetic disk 221 (a floppy disk is included) with which the program is recorded, the optical disc 222 (CD-ROM (Compact Disk-Read Only Memory).) DVD (Digital Versatile Disk) is included. It is not only constituted by the package media which consist of the magneto-optical disc 223 (MD (Mini-Disk) is included) or the semiconductor memory 224, but, It comprises a hard disk etc. in which ROM202 with which a user is provided in the state where it was beforehand included in the computer, and the program is remembered to be, and the storage parts store 208 are contained.

[0435]In this specification, even if the processing serially performed according to an order that the step which describes the program provided by a medium was indicated is not of course necessarily processed serially, it also includes a parallel target or the processing performed individually.

[0436]In this specification, a system expresses the whole device constituted by two or more devices.

[0437]

[Effect of the Invention] According to the program of the 1st information processor of this invention and a method, and a recording medium, a program, and the recording medium, like the above. The 1st table that describes the correspondence relation between a presentation time stamp and the address in said AV stream data of the access unit corresponding to it, Or one side of the 2nd table that describes the correspondence relation between the arrival time stamp based on the arrival time of the transport packet and the address in said AV stream data of the transport packet corresponding to it was recorded according to the record method.

[0438]According to the program of the 2nd information processor of this invention and a method, and a recording medium, and the program. The 1st table that describes the correspondence relation between a presentation time stamp and the address in said AV stream data of the access unit corresponding to it, Or the arrival time stamp based on the arrival time of the transport packet, One side of the 2nd table that describes a correspondence relation with the address in said AV stream data of the transport packet corresponding to it reproduces it from the recording medium currently recorded according to the record method, and controlled the output.

[0439] According to the program of the 3rd information processor of this invention and

a method, and a recording medium, a program, and the 2nd recording medium. The reproduction specification information constituted by the 1st information that shows the main reproduction paths, and the 2nd information that shows the reproduction path of ** reproduced synchronizing with said main reproduction paths was recorded. [0440]According to the program of the 4th information processor of this invention and a method, and a recording medium, and the program. The reproduction specification information constituted by the 1st information that shows the main reproduction paths, and the 2nd information that shows the reproduction path of ** reproduced synchronizing with said main reproduction paths is reproduced from a recording medium, and the output was controlled based on it.

[0441]Therefore, in the case of which, the AV stream in which fast reproduction is possible, and an impossible AV stream are manageable in common. After recording becomes possible.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is a figure showing the composition of the 1 embodiment of the recording and reproducing device which applied this invention.

[Drawing 2]It is a figure explaining the format of the data recorded on a recording

medium by the recording and reproducing device 1.

[Drawing 3] It is a figure explaining Real PlayList and Virtual PlayList.

[Drawing 4]It is a figure explaining creation of Real PlayList.

[Drawing 5]It is a figure explaining deletion of Real PlayList.

[Drawing 6]It is a figure explaining assemble editing.

[Drawing 7]It is a figure explaining the case where a sub path is provided in Virtual PlayList.

[Drawing 8]It is a figure explaining change of the reproduction sequence of PlayList.

[Drawing 9]It is a figure explaining the mark on PlayList, and the mark on Clip.

[Drawing 10]It is a figure explaining a menu thumbnail.

[Drawing 11]It is a figure explaining the mark added to PlayList.

[Drawing 12]It is a figure explaining the mark added to a clip.

[Drawing 13]It is a figure explaining the relation of PlayList, Clip, and a thumbnail file.

[Drawing 14]It is a figure explaining directory structure.

[Drawing 15]It is a figure showing the syntax of info.dvr.

[Drawing 16] It is a figure showing the syntax of DVR volume.

[Drawing 17] It is a figure showing the syntax of Resumevolume.

[Drawing 18]It is a figure showing the syntax of UIAppInfovolume.

[Drawing 19]It is a figure showing the table of Character set value.

[Drawing 20]It is a figure showing the syntax of TableOfPlayList.

[Drawing 21]It is a figure showing other syntax of TableOfPlayList.

[Drawing 22]It is a figure showing the syntax of MakersPrivateData.

[Drawing 23]xxxxx. It is a figure showing the syntax of rpls and yyyyy.vpls.

[Drawing 24]It is a figure explaining PlayList.

[Drawing 25]It is a figure showing the syntax of PlayList.

[Drawing 26]It is a figure showing the table of PlayList_type.

[Drawing 27]It is a figure showing the syntax of UIAppinfoPlayList.

[Drawing 28] It is a figure explaining the flag in the syntax of UIAppinfoPlayList shown in drawing 27.

[Drawing 29]It is a figure explaining PlayItem.

[Drawing 30]It is a figure explaining PlayItem.

[Drawing 31] It is a figure explaining PlayItem.

[Drawing 32]It is a figure showing the syntax of PlayItem.

[Drawing 33]It is a figure explaining IN_time.

[Drawing 34]It is a figure explaining OUT_time.

[Drawing 35]It is a figure showing the table of Connection_Condition.

```
[Drawing 36]It is a figure explaining Connection_Condition.
```

[Drawing 37]It is a figure explaining BridgeSequenceInfo.

[Drawing 38]It is a figure showing the syntax of BridgeSequenceInfo.

[Drawing 39]It is a figure explaining SubPlayItem.

[Drawing 40]It is a figure showing the syntax of SubPlayItem.

[Drawing 41]It is a figure showing the table of SubPath_type.

[Drawing 42]It is a figure showing the syntax of PlayListMark.

[Drawing 43]It is a figure showing the table of Mark_type.

[Drawing 44]It is a figure explaining Mark_time_stamp.

[Drawing 45]It is a figure showing the syntax of zzzzz.clip.

[Drawing 46]It is a figure showing the syntax of ClipInfo.

[Drawing 47]It is a figure showing the table of Clip_stream_type.

[Drawing 48]It is a figure explaining offset_SPN.

[Drawing 49]It is a figure explaining offset_SPN.

[Drawing 50]It is a figure explaining the STC section.

[Drawing 51]It is a figure explaining STC_Info.

[Drawing 52]It is a figure showing the syntax of STC_Info.

[Drawing 53]It is a figure explaining ProgramInfo.

[Drawing 54] It is a figure showing the syntax of ProgramInfo.

[Drawing 55] It is a figure showing the syntax of VideoCondingInfo.

[Drawing 56] It is a figure showing the table of Video_format.

[Drawing 57]It is a figure showing the table of frame_rate.

[Drawing 58]It is a figure showing the table of display_aspect_ratio.

[Drawing 59]It is a figure showing the syntax of AudioCondingInfo.

[Drawing 60]It is a figure showing the table of audio_coding.

[Drawing 61] It is a figure showing the table of audio_component_type.

[Drawing 62] It is a figure showing the table of sampling_frequency.

[Drawing 63]It is a figure explaining CPI.

[Drawing 64]It is a figure explaining CPI.

[Drawing 65]It is a figure showing the syntax of CPI.

[Drawing 66]It is a figure showing the table of CPI_type.

[Drawing 67] It is a figure explaining video EP_map.

[Drawing 68]It is a figure explaining EP_map.

[Drawing 69]It is a figure explaining EP_map.

[Drawing 70]It is a figure showing the syntax of EP_map.

[Drawing 71]It is a figure showing the table of EP_type values.

[Drawing 72]It is a figure showing the syntax of EP_map_for_one_stream_PID.

[Drawing 73]It is a figure explaining TU_map.

[Drawing 74]It is a figure showing the syntax of TU_map.

[Drawing 75] It is a figure showing the syntax of ClipMark.

[Drawing 76] It is a figure showing the table of mark_type.

[Drawing 77]It is a figure showing the table of mark_type_stamp.

[Drawing 78]It is a figure showing the syntax of menu.thmb and mark.thmb.

[Drawing 79] It is a figure showing the syntax of Thumbnail.

[Drawing 80] It is a figure showing the table of thumbnail_picture_format.

[Drawing 81]It is a figure explaining tn_block.

[Drawing 82] It is a figure explaining the structure of the transport stream of DVR MPEG 2.

[Drawing 83] It is a figure showing the recorder model of the transport stream of DVR MPEG 2.

[Drawing 84] It is a figure showing the player model of the transport stream of DVR MPEG 2.

[Drawing 85] It is a figure showing the syntax of source packet.

[Drawing 86] It is a figure showing the syntax of TP_extra_header.

[Drawing 87]It is a figure showing the table of copy permission indicator.

[Drawing 88]It is a figure explaining seamless connection.

[Drawing 89]It is a figure explaining seamless connection.

[Drawing 90] It is a figure explaining seamless connection.

[Drawing 91] It is a figure explaining seamless connection.

[Drawing 92]It is a figure explaining seamless connection.

[Drawing 93]It is a figure explaining the overlap of an audio.

[Drawing 94]It is a figure explaining the seamless connection using BridgeSequence.

[Drawing 95] It is a figure explaining the seamless connection which does not use BridgeSequence.

[Drawing 96]It is a figure showing a DVR STD model.

[Drawing 97]It is a timing chart of decoding and a display.

[Drawing 98]It is a figure showing the syntax of a PlayList file.

[Drawing 99]It is a figure showing the syntax of UIAppInfoPlayList in the PlayList file of drawing 98.

[Drawing 100]It is a figure showing the syntax of PlayList() in the PlayList file of drawing 98.

[Drawing 101]It is a figure showing the syntax of SubPlayItem.

[Drawing 102]It is a flow chart explaining the preparation method of Real PlayList.

[Drawing 103]It is a flow chart explaining the preparation method of Virtual PlayList.

[Drawing 104] It is a flow chart explaining the regeneration method of PlayList.

[Drawing 105] It is a flow chart explaining the regeneration method of the Sub path of PlayList.

[Drawing 106]It is a flow chart explaining the preparation method of PlayListMark.

[Drawing 107] It is a flow chart explaining the search regeneration method which uses PlayListMark.

[Drawing 108]It is a figure explaining a medium.

[Description of Notations]

1 A recording and reproducing device, and 11 thru/or 13 A terminal, 14 Analyzing parts and 15 AV encoder, 16 A multiplexer and 17 A switch, 18 Multiplexed stream analyzing parts and 19 [A user interface and 26 / A demultiplexer and 27 AV decoders,] Saw spa KETTAIZA, 20 ECC-code-ized part, and 21 A modulation part, 22 writing parts, and 23 A control section and 24 28 A read section, 29 demodulation sections, 30 ECC decoding part, and 31 Saw spa KETTAIZA, 32, and 33 Terminal

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-158972

(P2002-158972A)

(43)公開日 平成14年5月31日(2002.5.31)

(51) Int.Cl.7		識別記号	FΙ		7	7]ト*(参考)
H04N	5/92		H04N	5/85	Α	5 C 0 5 2
	5/85			5/92	H	5 C 0 5 3
	5/91			5/91	N	
	5/93			5/93	Z	

審査請求 未請求 請求項の数27 OL (全 67 頁)

		ES	Manager Militar Militar Militar Militar Communication Comm
(21)出願番号	特順2001-91830(P2001-91830)	(71)出願人	000002185
			ソニー株式会社
(22)出願日	平成13年3月28日(2001.3.28)		東京都品川区北品川6丁目7番35号
		(72)発明者	加藤元樹
(31)優先権主張番号	特順2000-183771 (P2000-183771)		東京都品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年4月21日(2000.4.21)		一株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	浜田 俊也
(31)優先権主張番号	特贖2000-271552(P2000-271552)		東京都品川区北品川6丁目7番35号 ソニ
(32)優先日	平成12年9月7日(2000.9.7)		一株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	100082131
			弁理士 稲本 義雄
			鼻軟質に続く

(54) 【発明の名称】 情報処理装置および方法、記録媒体、プログラム、並びに記録媒体

(57)【要約】

【課題】 Iピクチャの位置を分析して記録するAVストリームデータと、分析しないで記録するAVストリームデータとを、共通に管理できるようにする。

【解決手段】 PlayList()には、CPI_typeが記述される。CPI_typeには、EP_maptypeと、TU_map typeがある。I ピクチャの位置が分析できる場合、EP_mapが用いられ、I ピクチャの位置が分析できない場合、TU_mapが用いられる。

CPI_type	Meaning
O	EP map type
1	TU map type

CPI_type の意味

【特許請求の範囲】

【請求項1】 AVストリームデータを記録媒体に記録す る情報処理装置において、

1

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルを生成する第1の生成手段 10

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択手段と、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する第1の記録手段とを有する ことを特徴とする情報処理装置。

【請求項2】 前記第1のテーブルは、EP_mapであり、 前記第2のテーブルは、TU mapであることを特徴とする 請求項1に記載の情報処理装置。

【請求項3】 前記選択手段は、ノンコグニザント記録 の際には、前記第2のテーブルを選択することを特徴と する請求項1に記載の情報処理装置。

【請求項4】 前記選択手段は、セルフエンコード記録 の際には、前記第1のテーブルを選択することを特徴と する請求項1に記載に記載の情報処理装置。

【請求項5】 前記選択手段は、コグニザント記録の際 には、前記第1のテーブルを選択することを特徴とする 請求項1に記載に記載の情報処理装置。

【請求項6】 前記AVストリームデータの再生を指定す る再生指定情報を生成する第2の生成手段と、

前記第2の生成手段により生成された前記再生指定情報 を前記記録媒体に記録する第2の記録手段をさらに有 し、

前記再生指定情報は、前記AVストリームデータの再生区 間の時間情報を、プレゼンテーションタイムベースで表 現するか、またはアライバルタイムベースで表現するか を示す種別情報を含むことを特徴とする請求項1に記載 に記載の情報処理装置。

【請求項7】 前記AVストリームデータとともに前記第 1のテーブルが記録されている場合、前記再生指定情報 は、前記AVストリームデータの再生区間の時間情報を、 プレゼンテーションタイムベースで表現し、

前記AVストリームデータとともに前記第2のテーブルが 記録されている場合、前記再生指定情報は、前記AVスト リームデータの再生区間の時間情報を、アライバルタイ ムベースで表現することを特徴とする請求項6に記載に 記載の情報処理装置。

【請求項8】 AVストリームデータを記録媒体に記録す る情報処理装置の情報処理方法において、

アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルを生成する生成ステップ

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する記録ステップとを含むこと を特徴とする情報処理方法。

【請求項9】 AVストリームデータを記録媒体に記録す る情報処理装置のプログラムにおいて、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルを生成する生成ステップ

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する記録ステップとを含むこと を特徴とするコンピュータが読み取り可能なプログラム が記録されている記録媒体。

【請求項10】 AVストリームデータを記録媒体に記録 30 する情報処理装置を制御するコンピュータに、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルを生成する生成ステップ と、

記録方法に応じて前記第1のテーブルまたは前記第2の テーブルの一方を選択する選択ステップと、

前記選択されたテーブルを前記AVストリームデータとと もに前記記録媒体に記録する記録ステップとを実行させ るプログラム。

【請求項11】 記録媒体からAVストリームデータを再 生する情報処理装置において、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト ランスポートパケットの到着時刻に基づいたアライバル プレゼンテーションタイムスタンプと、それに対応する 50 タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている前記記録媒体から、前記第1のテーブルまたは前記第2のテーブルの一方を再生する再生手段と、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御手段とを有することを特徴 とする情報処理装置。

【請求項12】 記録媒体からAVストリームデータを再生する情報処理装置の情報処理方法において、

プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている前記記録媒体から、前記第1のテーブルまたは前記第2のテーブルの一方を再生する再生ステップと、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御ステップとを含むことを特 徴とする情報処理方法。

【請求項13】 記録媒体からAVストリームデータを再生する情報処理装置のプログラムにおいて、

プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている前記記録媒体から、前記第1のテーブルまたは前記第2のテーブルの一方を再生する再生ステップと、

再生された前記テーブルに基づいて、前記AVストリームデータの出力を制御する制御ステップとを含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項14】 記録媒体からAVストリームデータを再 40 生する情報処理装置を制御するコンピュータに、

プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている前記記録媒体から、前記第1のテーブルまたは前記第2のテーブルの一方を原生する原生ステ

ップと、

再生された前記テーブルに基づいて、前記AVストリーム データの出力を制御する制御ステップとを実行させるプログラム。

【請求項15】 AVストリームデータが記録されている 記録媒体において、

プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ スとの対応関係を記述する第1のテーブル、または、ト 10 ランスポートパケットの到着時刻に基づいたアライバル タイムスタンプと、それに対応するトランスポートパケ ットの前記AVストリームデータ中のアドレスとの対応関 係を記述する第2のテーブルの一方が、記録方法に応じ て記録されていることを特徴とする記録媒体。

【請求項16】 AVストリームデータを記録媒体に記録する情報処理装置において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成手段と、

の 前記AVストリームデータと前記再生指定情報を前記記録 媒体に記録する記録手段とを備えることを特徴とする情報処理装置。

【請求項17】 前記副の再生パスは、オーディオデータのアフターレコーディング用のパスであることを特徴とする請求項16に記載の情報処理装置。

【請求項18】 前記第1の情報は、Main_pathであ

前記第2の情報は、Sub_pathであることを特徴とする請求項16に記載の情報処理装置。

【請求項19】 前記第2の情報は、

前記副の再生パスのタイプを表すタイプ情報、

前記副の再生パスが参照する前記AVストリームのファイル名、

前記副の再生パスの前記AVストリームのイン点とアウト 点、および前記再生パスのイン点が、前記主のパスの時 間軸上で同期してスタートする前記主のパス上の時刻を 含むことを特徴とする請求項16に記載の情報処理装 置。

【請求項20】 AVストリームデータを記録媒体に記録 する情報処理装置の情報処理方法において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、前記AVストリームデータと前記再生指定情報を前記記録媒体に記録する記録ステップとを含むことを特徴とする情報処理方法。

【請求項21】 AVストリームデータを記録媒体に記録する情報処理装置のプログラムにおいて、

て記録されている前記記録媒体から、前記第1のテーブ 主の再生パスを示す第1の情報と、前記主の再生パスとルまたは前記第2のテーブルの一方を再生する再生ステ 50 同期して再生される副の再生パスを示す第2の情報によ

5

り構成される再生指定情報を生成する生成ステップと、 前記AVストリームデータと前記再生指定情報を前記記録 媒体に記録する記録ステップと

を含むことを特徴とするコンピュータが読み取り可能な プログラムが記録されている記録媒体。

【請求項22】 AVストリームデータを記録媒体に記録する情報処理装置を制御するコンピュータに、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、前記AVストリームデータと前記再生指定情報を前記記録媒体に記録する記録ステップとを実行させるプログラム。

【請求項23】 記録媒体からAVストリームデータを再生する情報処理装置において、

主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生手段と、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御手段とを備えることを特徴とする情報処理装置。

【請求項24】 記録媒体からAVストリームデータを再生する情報処理装置の情報処理方法において、

主の再生パスを示す第1の情報と、前記主の再生パスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報を、前記記録媒体から再生す る再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを含むこと 30 を特徴とする情報処理方法。

【請求項25】 記録媒体からAVストリームデータを再生する情報処理装置のプログラムにおいて、

主の再生パスを示す第1の情報と、前記主の再生パスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報を、前記記録媒体から再生す る再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを含むことを特徴とするコンピュータが読み取り可能なプログラム 40 が記録されている記録媒体。

【請求項26】 記録媒体からAVストリームデータを再生する情報処理装置を制御するコンピュータに、

主の再生パスを示す第1の情報と、前記主の再生パスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報を、前記記録媒体から再生す る再生ステップと、

再生された前記再生指定情報に基づいて、前記AVストリームデータの出力を制御する制御ステップとを実行させるプログラム。

【請求項27】 AVストリームデータが記録されている 記録媒体において、

主の再生パスを示す第1の情報と、前記主の再生パスと 同期して再生される副の再生パスを示す第2の情報によ り構成される再生指定情報が記録されていることを特徴 とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は情報処理装置、再生方法、記録媒体、プログラム、並びに記録媒体に関し、特に、GUIなどに説明表示する情報、主の再生経路の情報、副の再生経路の情報、主の再生経路を構成する個々の再生区間の間の接続情報、ユーザが所望したシーンにセットするブックマークやリジューム点の情報などの情報を含むファイルを記録する情報処理装置、再生方法、記録媒体、プログラム、並びに記録媒体に関する。

[0002]

【従来の技術】近年、記録再生装置から取り外し可能なディスク型の記録媒体として、各種の光ディスクが提案されつつある。このような記録可能な光ディスクは、数ギガバイトの大容量メディアとして提案されており、ビデオ信号等のAV(Audio Visual)信号を記録するメディアとしての期待が高い。この記録可能な光デイスクに記録するデジタルのAV信号のソース(供給源)としては、CSデジタル衛星放送やBSデジタル放送があり、また、将来はデジタル方式の地上波テレビジョン放送等も提案されている。

【0003】ここで、これらのソースから供給されるデジタルビデオ信号は、通常MPEG(Moving Picture Experts Group)2方式で画像圧縮されているのが一般的である。また、記録装置には、その装置固有の記録レートが定められている。従来の民生用映像蓄積メディアで、デジタル放送由来のデジタルビデオ信号を記録する場合、アナログ記録方式であれば、デジタルビデオ信号をデコード後、帯域制限をして記録する。あるいは、MPEG1 Video、MPEG2 Video、DV方式をはじめとするデジタル記録方式であれば、1度デコードされた後に、その装置固有の記録レート・符号化方式で再エンコードされて記録される。

40 【0004】しかしながら、このような記録方法は、供給されたビットストリームを1度デコードし、その後で帯域制限や再エンコードを行って記録するため、画質の劣化を伴う。画像圧縮されたデジタル信号の記録をする場合、入力されたデジタル信号の伝送レートが記録再生装置の記録レートを超えない場合には、供給されたビットストリームをデコードや再エンコードすることなく、そのまま記録する方法が最も画質の劣化が少ない。ただし、画像圧縮されたデジタル信号の伝送レートが記録媒体としてのディスクの記録レートを超える場合には、記録再生装置でデコード後、伝送レートがディスクの記録

10

レートの上限以下になるように、再エンコードをして記 録する必要はある。

【0005】また、入力デジタル信号のビットレートが 時間により増減する可変レート方式によって伝送されて いる場合には、回転ヘッドが固定回転数であるために記 録レートが固定レートになるテープ記録方式に比べ、1 度バッファにデータを蓄積し、バースト的に記録ができ るディスク記録装置が記録媒体の容量をより無駄なく利 用できる。

【0006】以上のように、デジタル放送が主流となる 将来においては、データストリーマのように放送信号を デジタル信号のまま、デコードや再エンコードすること なく記録し、記録媒体としてディスクを使用した記録再 生装置が求められると予測される。

[0007]

【発明が解決しようとする課題】ところで、上述したよ うな記録装置により記録媒体にAVストリームデータを記 録する場合、例えば、高速再生ができるようにするため に、Aストリームデータを分析し、Iピクチャの位置を 検出して、Iピクチャにアクセスできるようにして記録 する場合と、Λストリームデータを分析せず、そのまま 記録する場合とがある。

【0008】このような場合、従来、それぞれ専用のア プリケーションプログラムを用意し、それぞれにより、 AVストリームを、異なるフォーマットのAVストリーム (高速再生が可能なAVストリーム、または不可能なAVス トリーム)として記録媒体に記録するようにしていた。 その結果、アプリケーションプログラムの開発に、費用 と時間がかかる課題があった。また、それぞれのアプリ ケーションプログラムにより記録されたAVストリーム は、異なるフォーマットのものとなので、相互の互換性 がなくなり、共通の装置で再生することができなくなる 課題があった。

【0009】さらに、従来の記録装置では、例えば、オ ーディオデータを、所謂アフターレコーディングするこ とが困難である課題があった。

【0010】本発明はこのような状況に鑑みてなされた ものであり、その第1の目的は、高速再生が可能なAVス トリームと不可能なAVストリームを、共通に管理するこ とができるようにすることにある。

【0011】さらに、第2の目的は、アフターレコーデ ィングを可能にすることにある。

[0012]

【課題を解決するための手段】本発明の第1の情報処理 装置は、プレゼンテーションタイムスタンプと、それに 対応するアクセスユニットのAVストリームデータ中のア ドレスとの対応関係を記述する第1のテーブル、また は、トランスポートパケットの到着時刻に基づいたアラ イバルタイムスタンプと、それに対応するトランスポー トパケットのAVストリームデータ中のアドレスとの対応 50 を選択する選択ステップと、選択されたテーブルをAVス

関係を記述する第2のテーブルを生成する第1の生成手

段と、記録方法に応じて第1のテーブルまたは第2のテ ーブルの一方を選択する選択手段と、選択されたテーブ ルをAVストリームデータとともに記録媒体に記録する第 1の記録手段とを有することを特徴とする。

【 O O 1 3 】前記第 1 のテーブルは、EP_mapであり、第 2のテーブルは、TU mapとすることができる。

【0014】前記選択手段は、ノンコグニザント記録の 際には、第2のテーブルを選択することができる。

【0015】前記選択手段は、セルフエンコード記録の 際には、第1のテーブルを選択することができる。

【0016】前記選択手段は、コグニザント記録の際に は、第1のテーブルを選択することができる。

【0017】前記AVストリームデータの再生を指定する 再生指定情報を生成する第2の生成手段と、第2の生成 手段により生成された再生指定情報を記録媒体に記録す る第2の記録手段をさらに有し、再生指定情報は、AVス トリームデータの再生区間の時間情報を、プレゼンテー ションタイムベースで表現するか、またはアライバルタ イムベースで表現するかを示す種別情報を含むようにす ることができる。

【0018】前記AVストリームデータとともに第1のテ ーブルが記録されている場合、再生指定情報は、AVスト リームデータの再生区間の時間情報を、プレゼンテーシ ョンタイムベースで表現し、AVストリームデータととも に第2のテーブルが記録されている場合、再生指定情報 は、AVストリームデータの再生区間の時間情報を、アラ イバルタイムベースで表現することができる。

【0019】本発明の第1の情報処理方法は、プレゼン 30 テーションタイムスタンプと、それに対応するアクセス ユニットのAVストリームデータ中のアドレスとの対応関 係を記述する第1のテーブル、または、トランスポート パケットの到着時刻に基づいたアライバルタイムスタン プと、それに対応するトランスポートパケットのAVスト リームデータ中のアドレスとの対応関係を記述する第2 のテーブルを生成する生成ステップと、記録方法に応じ て第1のテーブルまたは第2のテーブルの一方を選択す る選択ステップと、選択されたテーブルをAVストリーム データとともに記録媒体に記録する記録ステップとを含 40 むことを特徴とする。

【0020】本発明の第1の記録媒体のプログラムは、 プレゼンテーションタイムスタンプと、それに対応する アクセスユニットのAVストリームデータ中のアドレスと の対応関係を記述する第1のテーブル、または、トラン スポートパケットの到着時刻に基づいたアライバルタイ ムスタンプと、それに対応するトランスポートパケット のAVストリームデータ中のアドレスとの対応関係を記述 する第2のテーブルを生成する生成ステップと、記録方 法に応じて第1のテーブルまたは第2のテーブルの一方

トリームデータとともに記録媒体に記録する記録ステップとを含むことを特徴とする。

【0021】本発明の第1のプログラムは、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルを生成する生成ステップと、記録方法に応じて第1のテーブルまたは第2のテーブルの一方を選択する選択ステップと、選択されたテーブルをAVストリームデータとともに記録媒体に記録する記録ステップとを実行させる。

【0022】本発明の第2の情報処理装置は、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、第1のテーブルまたは第2のテーブルの一方を再生する再生手段と、再生されたテーブルに基づいて、AVストリームデータの出力を制御する制御手段とを有することを特徴とする。

【0023】本発明の第2の情報処理方法は、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、第1のテーブルまたは第2のテーブルの一方を再生する再生ステップと、再生されたテーブルに基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。

【0024】本発明の第2の記録媒体のプログラムは、プレゼンテーションタイムスタンプと、それに対応する 40 アクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、第1のテーブルまたは第2のテーブルの一方を再生する再生ステップと、再生されたテーブルに基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。 50

【0025】本発明の第2のプログラムは、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、第1のテーブルまたは第2のテーブルの一方を再生する再生ステップと、再生されたテーブルに基づいて、AVストリームデータの出力を制御する制御ステップとを実行させるプログラム。

【0026】本発明の第1の記録媒体は、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットのAVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットのAVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されていることを特徴とする。

【0027】本発明の第3の情報処理装置は、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成手段と、AVストリームデータと再生指定情報を記録媒体に記録する記録手段とを備えることを特徴とする。

【0028】前記副の再生パスは、オーディオデータのアフターレコーディング用のパスとすることができる。 【0029】前記第1の情報は、Main_pathであり、第2の情報は、Sub_pathとすることができる。

【0030】前記第2の情報は、副の再生パスのタイプを表すタイプ情報、副の再生パスが参照するAVストリームのファイル名、副の再生パスのAVストリームのイン点とアウト点、および再生パスのイン点が、主のパスの時間軸上で同期してスタートする主のパス上の時刻を含むようにすることができる。

【0031】本発明の第3の情報処理方法は、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、AVストリームデータと再生指定情報を記録媒体に記録する記録ステップとを含むことを特徴とする。

【0032】本発明の第3の記録媒体のプログラムは、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、AVストリームデータと再生指定情報を記録媒体に記録する記録ステップとを含むことを特徴とする。

50 【0033】本発明の第3のプログラムは、主の再生パ

スを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を生成する生成ステップと、AVストリームデータと再生指定情報を記録媒体に記録する記録ステップとを実行させる。

【0034】前記第4の情報処理装置は、主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、前記記録媒体から再生する再生手段と、再生された前記再生指定情報に基づいて、前記AVス 10トリームデータの出力を制御する制御手段とを備えることを特徴とする。

【0035】本発明の第4の情報処理方法は、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。

【0036】本発明の第4の記録媒体のプログラムは、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを含むことを特徴とする。

【0037】本発明の第4のプログラムは、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を、記録媒体から再生する再生ステップと、再生された再生指定情報に基づいて、AVストリームデータの出力を制御する制御ステップとを実行させる。

【0038】本発明の第2の記録媒体は、主の再生パスを示す第1の情報と、主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報が記録されていることを特徴とする。

【0039】本発明の第1の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに記録媒体においては、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ 40中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録される。

【0040】本発明の第2の情報処理装置および方法、 記録媒体のプログラム、並びにプログラムにおいては、 プレゼンテーションタイムスタンプと、それに対応する アクセスユニットの前記AVストリームデータ中のアドレ 50

スとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体から、そのテーブルが再生され、それに基づいて、出力が制御される。

【0041】本発明の第3の情報処理装置および方法、 記録媒体のプログラム、プログラム、並びに第2の記録 媒体においては、主の再生パスを示す第1の情報と、前 記主の再生パスと同期して再生される副の再生パスを示 す第2の情報により構成される再生指定情報が記録され る。

【0042】本発明の第4の情報処理装置および方法、記録媒体のプログラム、並びにプログラムにおいては、主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報が記録媒体から再生され、それに基づいて、出力が制御される。

20 [0043]

【発明の実施の形態】以下に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明を適用した記録再生装置1の内部構成例を示す図である。まず、外部から入力された信号を記録媒体に記録する動作を行う部分の構成について説明する。記録再生装置1は、アナログデータ、または、デジタルデータを入力し、記録することができる構成とされている。

【0044】端子11には、アナログのビデオ信号が、端子12には、アナログのオーディオ信号が、それぞれ入力される。端子11に入力されたビデオ信号は、解析部14とAVエンコーダ15に、それぞれ出力される。端子12に入力されたオーディオ信号は、AVエンコーダ15に出力される。解析部14は、入力されたビデオ信号からシーンチェンジなどの特徴点を抽出する。

【0045】AVエンコーダ15は、入力されたビデオ信号とオーディオ信号を、それぞれ符号化し、符号化ビデオストリーム(V)、符号化オーディオストリーム(A)、およびAV同期等のシステム情報(S)をマルチプレクサ16に出力する。

【0046】符号化ビデオストリームは、例えば、MPEG (Moving Picture Expert Group) 2方式により符号化されたビデオストリームであり、符号化オーディオストリームは、例えば、MPEG 1方式により符号化されたオーディオストリームや、ドルビーAC3方式により符号化されたオーディオストリーム等である。マルチプレクサ16は、入力されたビデオおよびオーディオのストリームを、入力システム情報に基づいて多重化して、スイッチ17を介して多重化ストリーム解析部18とソースパケッタイザ19に出力する。

【0047】多重化ストリームは、例えば、MPEG2トラ

10

13

ンスポートストリームやMPEG2プログラムストリームで ある。ソースパケッタイザ19は、入力された多重化ス トリームを、そのストリームを記録させる記録媒体10 0のアプリケーションフォーマットに従って、ソースパ ケットから構成されるAVストリームを符号化する。AVス トリームは、ECC(誤り訂正)符号化部20、変調部2 1で所定の処理が施され、書き込み部22に出力され る。書き込み部22は、制御部23から出力される制御 信号に基づいて、記録媒体100にAVストリームファイ ルを書き込む(記録する)。

【0048】デジタルインタフェースまたはデジタルテ レビジョンチューナから入力されるデジタルテレビジョ ン放送等のトランスポートストリームは、端子13に入 力される。端子13に入力されたトランスポートストリ ームの記録方式には、2通りあり、それらは、トランス ペアレントに記録する方式と、記録ビットレートを下げ るなどの目的のために再エンコードをした後に記録する 方式である。記録方式の指示情報は、ユーザインターフ ェースとしての端子24から制御部23へ入力される。 【0049】入力トランスポートストリームをトランス ペアレントに記録する場合、端子13に入力されたトラ

ンスポートストリームは、多重化ストリーム解析部18 と、ソースパケッタイザ19に出力される。これ以降の 記録媒体100へAVストリームが記録されるまでの処理 は、上述の入力オーディオ浸透とビデオ信号を符号化し て記録する場合と同一の処理なので、その説明は省略す

【0050】入力トランスポートストリームを再エンコ ードした後に記録する場合、端子13に入力されたトラ ンスポートストリームは、デマルチプレクサ26に入力 30 される。デマルチプレクサ26は、入力されたトランス ポートストリームに対してデマルチプレクス処理を施 し、ビデオストリーム(V)、オーディオストリーム(A)、 およびシステム情報(S)を抽出する。

【0051】デマルチプレクサ26により抽出されたス トリーム(情報)のうち、ビデオストリームはAVデコー ダ27に、オーディオストリームとシステム情報はマル チプレクサ16に、それぞれ出力される。AVデコーダ2 7は、入力されたビデオストリームを復号し、その再生 ビデオ信号をAVエンコーダ15に出力する。AVエンコー ダ15は、入力ビデオ信号を符号化し、符号化ビデオス トリーム(V)をマルチプレクサ16に出力する。

【0052】一方、デマルチプレクサ26から出力さ れ、マルチプレクサ16に入力されたオーディオストリ ームとシステム情報、および、AVエンコーダ15から出 力されたビデオストリームは、入力システム情報に基づ いて、多重化されて、多重化ストリームとして多重化ス トリーム解析部18とソースパケットタイザ19にスイ ッチ17を介して出力される。これ以後の記録媒体10 OへAVストリームが記録されるまでの処理は、上述の入 50 ース情報を読み出し、そのアプリケーションデータベー

力オーディオ信号とビデオ信号を符号化して記録する場 合と同一の処理なので、その説明は省略する。

【0053】本実施の形態の記録再生装置1は、AVスト リームのファイルを記録媒体100に記録すると共に、 そのファイルを説明するアプリケーションデータベース 情報も記録する。アプリケーションデータベース情報 は、制御部23により作成される。制御部23への入力 情報は、解析部14からの動画像の特徴情報、多重化ス トリーム解析部18からのAVストリームの特徴情報、お よび端子24から入力されるユーザからの指示情報であ

【0054】解析部14から供給される動画像の特徴情 報は、入力動画像信号の中の特徴的な画像に関係する情 報であり、例えば、プログラムの開始点、シーンチェン ジ点、コマーシャル(CM)の開始・終了点などの指定 情報(マーク)であり、また、その指定場所の画像のサ ムネイル画像の情報も含まれる。

【0055】多重化ストリーム解析部18からのAVスト リームの特徴情報は、記録されるAVストリームの符号化 情報に関係する情報であり、例えば、AVストリーム内の Iピクチャのアドレス情報、AVストリームの符号化パラ メータ、AVストリームの中の符号化パラメータの変化点 情報、ビデオストリームの中の特徴的な画像に関係する 情報(マーク)などである。

【0056】端子24からのユーザの指示情報は、AVス トリームの中の、ユーザが指定した再生区間の指定情 報、その再生区間の内容を説明するキャラクター文字、 ユーザが好みのシーンにセットするブックマークやリジ ューム点の情報などである。

【0057】制御部23は、上記の入力情報に基づい て、AVストリームのデータベース(Clip)、 AVストリー ムの再生区間(PlayItem)をグループ化したもの (PlayLi st) のデータベース、記録媒体100の記録内容の管理 情報(info.dvr)、およびサムネイル画像の情報を作成す る。これらの情報から構成されるアプリケーションデー タベース情報は、AVストリームと同様にして、ECC符号 化部20、変調部21で処理されて、書き込み部22へ 入力される。書き込み部22は、制御部23から出力さ れる制御信号に基づいて、記録媒体100ヘデータベー スファイルを記録する。

【0058】上述したアプリケーションデータベース情 報についての詳細は後述する。

【0059】このようにして記録媒体100に記録され たAVストリームファイル(画像データと音声データのフ ァイル)と、アプリケーションデータベース情報が再生 される場合、まず、制御部23は、読み出し部28に対 して、記録媒体100からアプリケーションデータベー ス情報を読み出すように指示する。そして、読み出し部 28は、記録媒体100からアプリケーションデータベ ス情報は、復調部29、ECC復号部30の処理を経て、 制御部23へ入力される。

【0060】制御部23は、アプリケーションデータベ ース情報に基づいて、記録媒体100に記録されている PlayListの一覧を端子24のユーザインターフェースへ 出力する。ユーザは、PlayListの一覧から再生したいPl ayListを選択し、再生を指定されたPlayListに関する情 報が制御部23へ入力される。制御部23は、そのPlay Listの再生に必要なAVストリームファイルの読み出し を、読み出し部28に指示する。読み出し部28は、そ 10 の指示に従い、記録媒体100から対応するAVストリー ムを読み出し復調部29に出力する。復調部29に入力 されたAVストリームは、所定の処理が施されることによ り復調され、さらにECC復号部30の処理を経て、ソー スデパケッタイザ31出力される。

【0061】ソースデパケッタイザ31は、記録媒体1 00から読み出され、所定の処理が施されたアプリケー ションフォーマットのAVストリームを、デマルチプレク サ26に出力できるストリームに変換する。デマルチプ レクサ26は、制御部23により指定されたAVストリー 20 ムの再生区間(PlayItem)を構成するビデオストリーム (V)、オーディオストリーム(A)、およびAV同期等のシス テム情報(S)を、AVデコーダ27に出力する。AVデコー ダ27は、ビデオストリームとオーディオストリームを 復号し、再生ビデオ信号と再生オーディオ信号を、それ ぞれ対応する端子32と端子33から出力する。

【0062】また、ユーザインタフェースとしての端子 24から、ランダムアクセス再生や特殊再生を指示する 情報が入力された場合、制御部23は、AVストリームの データベース(Clip)の内容に基づいて、記憶媒体100 からのAVストリームの読み出し位置を決定し、そのAVス トリームの読み出しを、読み出し部28に指示する。例 えば、ユーザにより選択されたPlayListを、所定の時刻 から再生する場合、制御部23は、指定された時刻に最 も近いタイムスタンプを持つ」ピクチャからのデータを 読み出すように読み出し部28に指示する。

【0063】また、ユーザによって高速再生(Fast-forw ard playback)が指示された場合、制御部23は、AVス トリームのデータベース(Clip)に基づいて、AVストリー ムの中の1-ピクチャデータを順次連続して読み出すよう に読み出し部28に指示する。

【0064】読み出し部28は、指定されたランダムア クセスポイントからAVストリームのデータを読み出し、 読み出されたデータは、後段の各部の処理を経て再生さ

【0065】次に、ユーザが、記録媒体100に記録さ れているAVストリームの編集をする場合を説明する。ユ ーザが、記録媒体100に記録されているAVストリーム の再生区間を指定して新しい再生経路を作成したい場 合、例えば、番組 Λ という歌番組から歌手 Λ の部分を再 50 については、直接、マルチプレクサ16に入力される。

生し、その後続けて、番組Bという歌番組の歌手Aの部 分を再生したいといった再生経路を作成したい場合、ユ ーザインタフェースとしての端子24から再生区間の開 始点(イン点)と終了点(アウト点)の情報が制御部2 3に入力される。制御部23は、AVストリームの再生区 間(PlayItem)をグループ化したもの(PlayList)のデー タベースを作成する。

【0066】ユーザが、記録媒体100に記録されてい るAVストリームの一部を消去したい場合、ユーザインタ フェースとしての端子24から消去区間のイン点とアウ ト点の情報が制御部23に入力される。制御部23は、 必要なAVストリーム部分だけを参照するようにPlayList のデータベースを変更する。また、AVストリームの不必 要なストリーム部分を消去するように、書き込み部22 に指示する。

【0067】ユーザが、記録媒体100に記録されてい るAVストリームの再生区間を指定して新しい再生経路を 作成したい場合であり、かつ、それぞれの再生区間をシ ームレスに接続したい場合について説明する。このよう な場合、制御部23は、AVストリームの再生区間(PlayI tem)をグループ化したもの(PlayList)のデータベース を作成し、さらに、再生区間の接続点付近のビデオスト リームの部分的な再エンコードと再多重化を行う。

【0068】まず、端子24から再生区間のイン点のピ クチャの情報と、アウト点のピクチャの情報が制御部2 3へ入力される。制御部23は、読み出し部28にイン 点側ピクチャとアウト点側のピクチャを再生するために 必要なデータの読み出しを指示する。そして、読み出し 部28は、記録媒体100からデータを読み出し、その データは、復調部29、ECC復号部30、ソースデパケ ッタイザ31を経て、デマルチプレクサ26に出力され

【0069】制御部23は、デマルチプレクサ26に入 力されたデータを解析して、ビデオストリームの再エン コード方法(picture_coding_typeの変更、再エンコー ドする符号化ビット量の割り当て)と、再多重化方式を 決定し、その方式をAVエンコーダ15とマルチプレクサ 16に供給する。

【0070】次に、デマルチプレクサ26は、入力され たストリームをビデオストリーム(V)、オーディオスト リーム(A)、およびシステム情報(S)に分離する。ビデオ ストリームは、「AVデコーダ27に入力されるデータ」 と「マルチプレクサ16に入力されるデータ」がある。 前者のデータは、再エンコードするために必要なデータ であり、これはAVデコーダ27で復号され、復号された ピクチャはAVエンコーダ 1 5 で再エンコードされて、ビ デオストリームにされる。後者のデータは、再エンコー ドをしないで、オリジナルのストリームからコピーされ るデータである。オーディオストリーム、システム情報 【0071】マルチプレクサ16は、制御部23から入力された情報に基づいて、入力ストリームを多重化し、多重化ストリームを出力する。多重化ストリームは、ECC符号化部20、変調部21で処理されて、書き込み部22に入力される。書き込み部22は、制御部23から供給される制御信号に基づいて、記録媒体100にAVストリームを記録する。

17

【0072】以下に、アプリケーションデータベース情報や、その情報に基づく再生、編集といった操作に関する説明をする。図2は、アプリケーションフォーマットの構造を説明する図である。アプリケーションフォーマットは、AVストリームの管理のためにPlayListとClipの2つのレイヤをもつ。Volume Informationは、ディスク内のすべてのClipとPlayListの管理をする。ここでは、1つのAVストリームとその付属情報のペアを1つのオブジェクトと考え、それをClipと称する。AVストリームファイルはClip AV stream fileと称し、その付属情報は、Clip Information fileと称する。

【0073】1つのClip AV stream fileは、MPEG2トランスポートストリームをアプリケーションフォーマットによって規定される構造に配置したデータをストアする。一般的に、ファイルは、バイト列として扱われるが、Clip AV stream fileのコンテンツは、時間軸上に展開され、Clipの中のエントリーポイントは、主に時間ベースで指定される。所定のClipへのアクセスポイントのタイムスタンプが与えられた時、Clip Information fileは、Clip AV stream fileの中でデータの読み出しを開始すべきアドレス情報を見つけるために役立つ。

【0074】PlayListについて、図3を参照して説明する。PlayListは、Clipの中からユーザが見たい再生区間を選択し、それを簡単に編集することができるようにするために設けられている。1つのPlayListは、Clipの中の再生区間の集まりである。所定のClipの中の1つの再生区間は、PlayItemと呼ばれ、それは、時間軸上のイン点(IN)とアウト点(OUT)の対で表される。従って、PlayListは、複数のPlayItemが集まることにより構成される。

【0075】PlayListには、2つのタイプがある。1つは、Real PlayListであり、もう1つは、Virtual PlayListである。Real PlayListは、それが参照しているClip 40のストリーム部分を共有している。すなわち、Real PlayListは、それの参照しているClipのストリーム部分に相当するデータ容量をディスクの中で占め、Real PlayListが消去された場合、それが参照しているClipのストリーム部分もまたデータが消去される。

【0076】Virtual PlayListは、Clipのデータを共有していない。従って、Virtual PlayListが変更または消去されたとしても、Clipの内容には何も変化が生じない。

【0077】次に、Real PlayListの編集について説明

する。図4 (A) は、Real PlayListのクリエイト(crea te:作成)に関する図であり、AVストリームが新しいClipとして記録される場合、そのClip全体を参照するReal PlayListが新たに作成される操作である。

【0078】図4(B)は、Real PlayListのディバイド(divide:分割)に関する図であり、Real PlayListが所望な点で分けられて、2つのReal PlayListに分割される操作である。この分割という操作は、例えば、1つのPlayListにより管理される1つのクリップ内に、2つの番組が管理されているような場合に、ユーザが1つ1つの番組として登録(記録)し直したいといったようなときに行われる。この操作により、Clipの内容が変更される(Clip自体が分割される)ことはない。

【0079】図4 (C) は、Real PlayListのコンバイン(combine: 結合)に関する図であり、2つのReal PlayListを結合して、1つの新しいReal PlayListにする操作である。この結合という操作は、例えば、ユーザが2つの番組を1つの番組として登録し直したいといったようなときに行われる。この操作により、Clipが変更される(Clip自体が1つにされる)ことはない。

【0080】図5(A)は、Real PlayList全体のデリート(delete:削除)に関する図であり、所定のReal PlayList全体を消去する操作がされた場合、削除されたReal PlayListが参照するClipの、対応するストリーム部分も削除される。

【0081】図5(B)は、Real PlayListの部分的な削除に関する図であり、Real PlayListの所望な部分が削除された場合、対応するPlayItemが、必要なClipのストリーム部分だけを参照するように変更される。そして、Clipの対応するストリーム部分は削除される。

【0082】図5 (C) は、Real PlayListのミニマイズ(Minimize:最小化)に関する図であり、Real PlayListに対応するPlayItemを、Virtual PlayListに必要なClipのストリーム部分だけを参照するようにする操作である。Virtual PlayList にとって不必要なClipの、対応するストリーム部分は削除される。

【0083】上述したような操作により、Real PlayListが変更されて、そのReal PlayListが参照するClipのストリーム部分が削除された場合、その削除されたClipを使用しているVirtual PlayListが存在し、そのVirtual PlayListにおいて、削除されたClipにより問題が生じる可能性がある。

【0084】そのようなことが生じないように、ユーザに、削除という操作に対して、「そのReal PlayListが参照しているClipのストリーム部分を参照しているVirtual PlayListが存在し、もし、そのReal PlayListが消去されると、そのVirtual PlayListもまた消去されることになるが、それでも良いか?」といったメッセージなどを表示させることにより、確認(警告)を促した後50に、ユーザの指示により削除の処理を実行、または、キ

ャンセルする。または、Virtual PlayListを削除する代わりに、Real PlayListに対してミニマイズの操作が行われるようにする。

【0085】次にVirtual PlayListに対する操作につい

て説明する。Virtual PlayListに対して操作が行われた としても、Clipの内容が変更されることはない。図6 は、アセンブル(Assemble) 編集 (IN-OUT 編集)に関す る図であり、ユーザが見たいと所望した再生区間のPlay Itemを作り、Virtual PlavListを作成するといった操作 である。PlayItem間のシームレス接続が、アプリケーシ 10 ョンフォーマットによりサポートされている(後述)。 【0086】図6 (A) に示したように、2つのReal P layList 1, 2と、それぞれのRealPlayListに対応するC lip1, 2が存在している場合に、ユーザがReal PlayLi st 1 内の所定の区間 (In 1 乃至Out 1 までの区間: Play I tem 1) を再生区間として指示し、続けて再生する区間 として、Real PlayList 2内の所定の区間(In 2乃至Out 2までの区間:PlayItem 2) を再生区間として指示した とき、図6(B)に示すように、PlayItem 1とPlayItem 2から構成される1つのVirtual PlayListが作成され る。

【0087】次に、Virtual PlayList の再編集(Re-editing)について説明する。再編集には、Virtual PlayListの中のイン点やアウト点の変更、Virtual PlayListへの新しいPlayItemの挿入(insert)や追加(append)、Virtual PlayListの中のPlayItemの削除などがある。また、Virtual PlayListそのものを削除することもできる。

【0088】図7は、Virtual PlayListへのオーディオのアフレコ(Audio dubbing (post recording))に関する図であり、Virtual PlayListへのオーディオのアフレコ 30をサブパスとして登録する操作のことである。このオーディオのアフレコは、アプリケーションフォーマットによりサポートされている。Virtual PlayListのメインパスのAVストリームに、付加的なオーディオストリームが、サブパスとして付加される。

【0089】Real PlayListとVirtual PlayListで共通の操作として、図8に示すようなPlayListの再生順序の変更(Moving)がある。この操作は、ディスク(ボリューム)の中でのPlayListの再生順序の変更であり、アプリケーションフォーマットにおいて定義されるTable Of P 40 layList (図20などを参照して後述する)によってサポートされる。この操作により、Clipの内容が変更されるようなことはない。

【0090】次に、マーク(Mark)について説明する。マークは、ClipおよびPlayListの中のハイライトや特徴的な時間を指定するために設けられている。Clipに付加されるマークは、AVストリームの内容に起因する特徴的なシーンを指定する、例えば、シーンチェンジ点などである。PlayListを再生する時、そのPlayListが参照するClipのマークを参照して、使川する事ができる。

【0091】PlayListに付加されるマークは、主にユーザによってセットされる、例えば、ブックマークやリジューム点などである。ClipまたはPlayListにマークをセットすることは、マークの時刻を示すタイムスタンプをマークリストに追加することにより行われる。また、マークを削除することは、マークリストの中から、そのマークのタイムスタンプを除去する事である。従って、マークの設定や削除により、AVストリームは何の変更もされない。

【0092】次にサムネイルについて説明する。サムネイルは、Volume、PlayList、およびClipに付加される静止画である。サムネイルには、2つの種類があり、1つは、内容を表す代表画としてのサムネイルである。これは主としてユーザがカーソル(不図示)などを操作して見たいものを選択するためのメニュー画面で使われるものである。もう1つは、マークが指しているシーンを表す画像である。

【0093】Volumeと各Playlistは代表画を持つことができるようにする必要がある。Volumeの代表画は、ディスク(記録媒体100、以下、記録媒体100はディスク状のものであるとし、適宜、ディスクと記述する)を記録再生装置1の所定の場所にセットした時に、そのディスクの内容を表す静止画を最初に表示する場合などに用いられることを想定している。Playlistの代表画は、Playlistを選択するメニュー画面において、Playlistの内容を表すための静止画として用いられることを想定している。

【0094】Playlistの代表画として、Playlistの最初の画像をサムネイル(代表画)にすることが考えられるが、必ずしも再生時刻0の先頭の画像が内容を表す上で最適な画像とは限らない。そこで、Playlistのサムネイルとして、任意の画像をユーザが設定できるようにする。以上2種類のサムネイルをメニューサムネイルと称する。メニューサムネイルは頻繁に表示されるため、ディスクから高速に読み出される必要がある。このため、すべてのメニューサムネイルを1つのファイルに格納することが効率的である。メニューサムネイルは、必ずしもボリューム内の動画から抜き出したピクチャである必要はなく、図10に示すように、パーソナルコンピュータやデジタルスチルカメラから取り込こまれた画像でもよい。

【0095】一方、ClipとPlaylistには、複数個のマークを打てる必要があり、マーク位置の内容を知るためにマーク点の画像を容易に見ることが出来るようにする必要がある。このようなマーク点を表すピクチャをマークサムネイル(Mark Thumbnails)と称する。従って、サムネイルの元となる画像は、外部から取り込んだ画像よりも、マーク点の画像を抜き出したものが主となる。【0096】図11は、PlayListに付けられるマーク

と、そのマークサムネイルの関係について示す図であ

り、図12は、Clipに付けられるマークと、そのマーク サムネイルの関係について示す図である。マークサムネ イルは、メニューサムネイルと異なり、Playlistの詳細 を表す時に、サブメニュー等で使われるため、短いアク セス時間で読み出されるようなことは要求されない。そ のため、サムネイルが必要になる度に、記録再生装置1 がファイルを開き、そのファイルの一部を読み出すこと で多少時間がかかっても、問題にはならない。

【0097】また、ボリューム内に存在するファイル数を減らすために、すべてのマークサムネイルは1つのファイルに格納するのがよい。Playlistはメニューサムネイル1つと複数のマークサムネイルを有することができるが、Clipは直接ユーザが選択する必要性がない(通常、Playlist経由で指定する)ため、メニューサムネイルを設ける必要はない。

【0098】図13は、上述したことを考慮した場合のメニューサムネイル、マークサムネイル、PlayList、およびClipの関係について示した図である。メニューサムネイルファイルには、PlayList毎に設けられたメニューサムネイルがファイルされている。メニューサムネイルファイルには、ディスクに記録されているデータの内容を代表するボリュームサムネイルが含まれている。マークサムネイルファイルは、各PlayList毎と各Clip毎に作成されたサムネイルがファイルされている。

【0099】次に、CPI(Characteristic Point Information)について説明する。CPIは、Clipインフォメーションファイルに含まれるデータであり、主に、それはClipへのアクセスポイントのタイムスタンプが与えられた時、Clip AV stream fileの中でデータの読み出しを開始すべきデータアドレスを見つけるために用いられる。本実施の形態では、2種類のCPIを用いる。1つは、 EP_map であり、もう1つは、 TU_map である。

【0100】EP_mapは、エントリーポイント(EP)データのリストであり、それはエレメンタリーストリームおよびトランスポートストリームから抽出されたものである。これは、AVストリームの中でデコードを開始すべきエントリーポイントの場所を見つけるためのアドレス情報を持つ。1つのEPデータは、プレゼンテーションタイムスタンプ (PTS) と、そのPTSに対応するアクセスユニットのAVストリームの中のデータアドレスの対で構成される。

【0101】EP_mapは、主に2つの目的のために使用される。第1に、PlayListの中でプレゼンテーションタイムスタンプによって参照されるアクセスユニットのAVストリームの中のデータアドレスを見つけるために使用される。第2に、ファーストフォワード再生やファーストリバース再生のために使用される。記録再生装置1が、入力AVストリームを記録する場合、そのストリームのシンタクスを解析することができるとき、EP_mapが作成され、ディスクに記録される。

【0102】TU_mapは、デジタルインタフェースを通して入力されるトランスポートパケットの到着時刻に基づいたタイムユニット(TU)データのリストを持つ。これは、到着時刻ベースの時間とAVストリームの中のデータアドレスとの関係を与える。記録再生装置1が、入力AVストリームを記録する場合、そのストリームのシンタクスを解析することができないとき、TU_mapが作成され、ディスクに記録される。

【0103】STCInfoは、MPEG2トランスポートストリームをストアしているAVストリームファイルの中にあるSTCの不連続点情報をストアする。AVストリームがSTCの不連続点を持つ場合、そのAVストリームファイルの中で同じ値のPTSが現れるかもしれない。そのため、AVストリーム上のある時刻をPTSベースで指す場合、アクセスポイントのPTSだけではそのポイントを特定するためには不十分である。更に、そのPTSを含むところの連続なSTC区間のインデックスが必要である。連続なSTC区間を、このフォーマットでは STC-sequenceと呼び、そのインデックスをSTC-sequence-idと呼ぶ。STC-sequenceの情報は、Clip Information fileのSTCInfoで定義される。STC-sequence-idは、EP_mapを持つAVストリームファイルで使用するものであり、TU_mapを持つAVストリームファイルではオプションである。

【0104】プログラムは、エレメンタリストリームの 集まりであり、これらのストリームの同期再生のため に、ただ1つのシステムタイムベースを共有するもので ある。再生装置(図1の記録再生装置1)にとって、AV ストリームのデコードに先だち、そのAVストリームの内 容がわかることは有用である。例えば、ビデオやオーデ ィオのエレメンタリーストリームを伝送するトランスポ ートパケットのPIDの値や、ビデオやオーディオのコン ポーネント種類(例えば、HDTVのビデオとMPEG-2AACの オーディオストリームなど)などの情報である。この情 報はAVストリームを参照するところのPlayListの内容を ユーザに説明するところのメニュー画面を作成するのに 有用であるし、また、AVストリームのデコードに先だっ て、再生装置のAVデコーダおよびデマルチプレクサの初 期状態をセットするために役立つ。この理由のために、 Clip Information fileは、プログラムの内容を説明す るためのProgramInfoを持つ。

【0105】MPEG2トランスポートストリームをストアしているAVストリームファイルは、ファイルの中でプログラム内容が変化するかもしれない。例えば、ビデオエレメンタリーストリームを伝送するところのトランスポートパケットのPIDが変化したり、ビデオストリームのコンポーネント種類がSDTVからHDTVに変化するなどである。

【0106】ProgramInfoは、AVストリームファイルの中でのプログラム内容の変化点の情報をストアする。AVストリームファイルの中で、このフォーマットで定める

23

ところのプログラム内容が一定である区間をProgram-se quenceと呼ぶ。Program-sequenceは、EP_mapを持つAVス トリームファイルで使用するものであり、TU_mapを持つ AVストリームファイルではオプションである。

【0107】本実施の形態では、セルフエンコードのス トリームフォーマット (SESF) を定義する。SESFは、ア ナログ入力信号を符号化する目的、およびデジタル入力 信号 (例えばDV) をデコードしてからMPEG2トランスポ ートストリームに符号化する場合に用いられる。

【0108】SESFは、MPEG-2トランスポートストリーム 10 およびAVストリームについてのエレメンタリーストリー ムの符号化制限を定義する。記録再生装置1が、SESFス トリームをエンコードし、記録する場合、EP_mapが作成 され、ディスクに記録される。

【0109】デジタル放送のストリームは、次に示す方 式のうちのいずれかが用いられて記録媒体100に記録 される。まず、デジタル放送のストリームをSESFストリ ームにトランスコーディングする。この場合、記録され たストリームは、SESFに準拠しなければならない。この 場合、EP mapが作成されて、ディスクに記録されなけれ 20 ばならない。

【0110】あるいは、デジタル放送ストリームを構成 するエレメンタリーストリームを新しいエレメンタリス トリームにトランスコーディングし、そのデジタル放送 ストリームの規格化組織が定めるストリームフォーマッ トに準拠した新しいトランスポートストリームに再多重 化する。この場合、EP_mapが作成されて、ディスクに記 録されなければならない。

【O111】例えば、入力ストリームがISDB(日本のデ ジタルBS放送の規格名称)準拠のMPEG-2トランスポート ストリームであり、それがHDTVビデオストリームとMPEG AACオーディオストリームを含むとする。HDTVビデオス トリームをSDTVビデオストリームにトランスコーディン グし、そのSDTVビデオストリームとオリジナルのAACオ ーディオストリームをTSに再多重化する。SDTVストリー ムと記録されるトランスポートストリームは、共にISDB フォーマットに準拠しなければならない。

【0112】デジタル放送のストリームが、記録媒体1 00に記録される際の他の方式として、入力トランスポ ートストリームをトランスペアレントに記録する(入力 40 トランスポートストリームを何も変更しないで記録す る)場合であり、その時にEP_mapが作成されてディスク に記録される。

【0113】または、入力トランスポートストリームを トランスペアレントに記録する(入力トランスポートス トリームを何も変更しないで記録する)場合であり、そ の時にTU_mapが作成されてディスクに記録される。

【0114】次にディレクトリとファイルについて説明 する。以下、記録再生装置 1 をDVR (Digital Video Rec ording)と適宜記述する。図14はディスク上のディレ 50 PlayListに関連する情報をストアする。それぞれのVirt

クトリ構造の一例を示す図である。DVRのディスク上に 必要なディレクトリは、図14に示したように、"DVR" ディレクトリを含むrootディレクトリ、"PLAYLIST"ディ レクトリ、"CLIPINF"ディレクトリ、"M2TS"ディレクト リ、および"DATA"ディレクトリを含む"DVR"ディレクト リである。rootディレクトリの下に、これら以外のディ レクトリを作成されるようにしても良いが、それらは、 本実施の形態のアプリケーションフォーマットでは、無 視されるとする。

【0115】"DVR"ディレクトリの下には、 DVRアプリ ケーションフォーマットによって規定される全てのファ イルとディレクトリがストアされる。"DVR"ディレクト リは、4個のディレクトリを含む。"PLAYLIST"ディレク トリの下には、Real PlayListとVirtual PlayListのデ ータベースファイルが置かれる。このディレクトリは、 PlayListが1つもなくても存在する。

【O 1 1 6】 "CLIPINF"ディレクトリの下には、Clipの データベースが置かれる。このディレクトリも、Clipが 1つもなくても存在する。"M2TS"ディレクトリの下に は、AVストリームファイルが置かれる。このディレクト リは、AVストリームファイルが1つもなくても存在す る。"DATA"ディレクトリは、デジタルTV放送などのデー タ放送のファイルがストアされる。

【0117】"DVR"ディレクトリは、次に示すファイル をストアする。"info.dvr"ファイルは、 DVRディレクト リの下に作られ、アプリケーションレイヤの全体的な情 報をストアする。DVRディレクトリの下には、ただ1つ のinfo.dvrがなければならない。ファイル名は、info.d vrに固定されるとする。"menu.thmb"ファイルは、メニ ューサムネイル画像に関連する情報をストアする。DVR ディレクトリの下には、ゼロまたは1つのメニューサム ネイルがなければならない。ファイル名は、memu.thmb に固定されるとする。メニューサムネイル画像が1つも ない場合、このファイルは、存在しなくても良い。

【0118】"mark.thmb"ファイルは、マークサムネイ ル画像に関連する情報をストアする。DVRディレクトリ の下には、ゼロまたは1つのマークサムネイルがなけれ ばならない。ファイル名は、mark.thmbに固定されると する。メニューサムネイル画像が1つもない場合、この ファイルは、存在しなくても良い。

【0119】"PLAYLIST"ディレクトリは、2種類のPlay Listファイルをストアするものであり、それらは、Real PlayListとVirtual PlayListである。"xxxxxx.rpls" フ ァイルは、1つのReal PlayListに関連する情報をスト アする。それぞれのReal PlayList毎に、1つのファイ ルが作られる。ファイル名は、"xxxxx.rpls"である。こ こで、"xxxxx"は、5個の0乃至9まで数字である。フ アイル拡張子は、"rpls"でなければならないとする。

【0120】"yyyyy.vpls"ファイルは、1つのVirtual

ual PlayList毎に、1つのファイルが作られる。ファイ ル名は、"yyyyy.vpls"である。ここで、"yyyyy"は、5 個の0乃至9まで数字である。ファイル拡張子は、"vpl s"でなければならないとする。

【O 1 2 1】"CLIPINF"ディレクトリは、それぞれのAV ストリームファイルに対応して、1つのファイルをスト アする。"zzzzz.clpi" ファイルは、1つのAVストリー ムファイル(Clip AV stream file または Bridge-Clip AV stream file)に対応するClip Information fileであ る。ファイル名は、"zzzzz.clpi"であり、"zzzzz"は、 5個の0乃至9までの数字である。ファイル拡張子 は、"clpi"でなければならないとする。

【O 1 2 2】"M2TS"ディレクトリは、AVストリームのフ ァイルをストアする。"zzzzz.m2ts"ファイルは、DVRシ ステムにより扱われるAVストリームファイルである。こ れは、Clip AV stream fileまたはBridge-Clip AV stre amである。ファイル名は、"zzzzz.m2ts"であり、"zzzz z"は、5個の0乃至9までの数字である。ファイル拡張 子は、"m2ts"でなければならないとする。

【O123】"DATA"ディレクトリは、データ放送から伝 20 送されるデータをストアするものであり、データとは、 例えば、XML fileやMHEGファイルなどである。

【0124】次に、各ディレクトリ(ファイル)のシン タクスとセマンティクスを説明する。まず、"info.dvr" ファイルについて説明する。図15は、"info.dvr"ファ イルのシンタクスを示す図である。"info.dvr"ファイル は、3個のオブジェクトから構成され、それらは、DVRV olume()、TableOfPlayLists()、およびMakerPrivateDat a()である。

【0125】図15に示したinfo.dvrのシンタクスにつ 30 いて説明するに、TableOfPlayLists_Start_addressは、 info.dvrファイルの先頭のバイトからの相対バイト数を 単位として、TableOfPlayList()の先頭アドレスを示 す。相対バイト数はゼロからカウントされる。

【0 1 2 6】MakerPrivateData_Start_addressは、inf o.dvrファイルの先頭のバイトからの相対バイト数を単 位として、MakerPrivateData()の先頭アドレスを示す。 相対バイト数はゼロからカウントされる。padding_word (パディングワード) は、info.dvrのシンタクスに従っ て挿入される。N1とN2は、ゼロまたは任意の正の整 40 数である。それぞれのパディングワードは、任意の値を 取るようにしても良い。

【O 1 2 7】DVRVolume()は、ボリューム(ディスク) の内容を記述する情報をストアする。図16は、DVRVol ume()のシンタクスを示す図である。図16に示したDVR Volume()のシンタクスを説明するに、version_number は、このDVRVolume()のバージョンナンバを示す 4 個の キャラクター文字を示す。version numberは、ISO 646 に従って、"0045"と符号化される。

らDVRVolume()の最後までのDVRVolume()のバイト数を示 す32ビットの符号なし整数で表される。

【0129】ResumeVolume()は、ボリュームの中で最後 に再生したReal PlayListまたはVirtual PlayListのフ ァイル名を記憶している。ただし、Real PlayListまた はVirtual PlayListの再生をユーザが中断した時の再生 位置は、PlayListMark()において定義されるresume-mar kにストアされる。

【0130】図17は、ResumeVolume()のシンタクスを 10 示す図である。図17に示したResumeVolume()のシンタ クスを説明するに、valid_flagは、この1ビットのフラ グが1にセットされている場合、resume_PlayList_name フィールドが有効であることを示し、このフラグが0に セットされている場合、resume_PlayList_nameフィール ドが無効であることを示す。

【0131】resume_PlayList_nameの10バイトのフィ ールドは、リジュームされるべきReal PlayListまたはV irtual PlayListのファイル名を示す。

【0132】図16に示したDVRVolume()のシンタクス のなかの、UIAppInfoVolume は、ボリュームについての ユーザインターフェースアプリケーションのパラメータ をストアする。図18は、UIAppInfoVolumeのシンタク スを示す図であり、そのセマンティクスを説明するに、 character_setの8ビットのフィールドは、Volume_name フィールドに符号化されているキャラクター文字の符号 化方法を示す。その符号化方法は、図19に示される値 に対応する。

【0133】name_lengthの8ビットフィールドは、Volu me_nameフィールドの中に示されるボリューム名のバイ ト長を示す。Volume_nameのフィールドは、ボリューム の名称を示す。このフィールドの中の左からname_lengt h数のバイト数が、有効なキャラクター文字であり、そ れはボリュームの名称を示す。Volume_nameフィールド の中で、それら有効なキャラクター文字の後の値は、ど んな値が入っていても良い。

【0134】Volume_protect_flagは、ボリュームの中 のコンテンツを、ユーザに制限することなしに見せてよ いかどうかを示すフラグである。このフラグが1にセッ トされている場合、ユーザが正しくPIN番号(パスワー ド) を入力できたときだけ、そのボリュームのコンテン ツを、ユーザに見せる事 (再生される事) が許可され る。このフラグが0にセットされている場合、ユーザが PIN番号を入力しなくても、そのボリュームのコンテン ツを、ユーザに見せる事が許可される。

【0135】最初に、ユーザが、ディスクをプレーヤへ 挿入した時点において、もしこのフラグが 0 にセットさ れているか、または、このフラグが1にセットされてい てもユーザがPIN番号を正しく入力できたならば、記録 再生装置1は、そのディスクの中のPlayListの一覧を表 【0128】lengthは、このlengthフィールドの直後か 50 示させる。それぞれのPlayListの再生制限は、volume_p 20

rotect_flagとは無関係であり、それはUIAppInfoPlayList()の中に定義されるplayback_control_flagによって示される。

27

【0136】PINは、4個の0万至9までの数字で構成され、それぞれの数字は、ISO/IEC 646に従って符号化される。ref_thumbnail_indexのフィールドは、ボリュームに付加されるサムネイル画像の情報を示す。ref_thumbnail_indexフィールドが、0xFFFFでない値の場合、そのボリュームにはサムネイル画像が付加されており、そのサムネイル画像は、menu.thumファイルの中にストアされている。その画像は、menu.thumファイルの中でref_thumbnail_indexの値を用いて参照される。ref_thumbnail_indexフィールドが、0xFFFFである場合、そのボリュームにはサムネイル画像が付加されていないことを示す。

【0137】次に図15に示したinfo.dvrのシンタクス内のTableOfPlayLists()について説明する。TableOfPlayLists()は、PlayList(Real PlayListとVirtual PlayList)のファイル名をストアする。ボリュームに記録されているすべてのPlayListファイルは、TableOfPlayList()の中に含まれる。TableOfPlayLists()は、ボリュームの中のPlayListのデフォルトの再生順序を示す。

【0138】図20は、TableOfPlayLists()のシンタクスを示す図であり、そのシンタクスについて説明するに、TableOfPlayListsのversion_numberは、このTableOfPlayListsのバージョンナンバーを示す4個のキャラクター文字を示す。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0139】lengthは、このlengthフィールドの直後からTableOfPlayLists()の最後までのTableOfPlayLists()の所名とないるという。のバイト数を示す32ビットの符号なしの整数である。number_of_PlayListsの16ビットのフィールドは、PlayList_file_nameを含むfor-loopのループ回数を示す。この数字は、ボリュームに記録されているPlayListの数に等しくなければならない。PlayList_file_nameの10バイトの数字は、PlayListのファイル名を示す。

【0140】図21は、TableOfPlayLists()のシンタクスを別実施の構成を示す図である。図21に示したシンタクスは、図20に示したシンタクスに、UIAppinfoPlayList(後述)を含ませた構成とされている。このように、UIAppinfoPlayListを含ませた構成とすることで、TableOfPlayListsを読み出すだけで、メニュー画面を作成することが可能となる。ここでは、図20に示したシンタクスを用いるとして以下の説明をする。

【0141】図15に示したinfo.dvrのシンタクス内の MakersPrivateDataについて説明する。MakersPrivateDataは、記録再生装置1のメーカが、各社の特別なアプリケーションのために、MakersPrivateData()の中にメーカのプライベートデータを挿入できるように設けられている。各メーカのプライベートデータは、それを定義し

たメーカを識別するために標準化されたmaker_IDを持つ。MakersPrivateData()は、1つ以上のmaker_IDを含んでも良い。

【0142】所定のメーカが、プライベートデータを挿入したい時に、すでに他のメーカのプライベートデータがMakersPrivateData()に含まれていた場合、他のメーカは、既にある古いプライベートデータを消去するのではなく、新しいプライベートデータをMakersPrivateData()の中に追加するようにする。このように、本実施の形態においては、複数のメーカのプライベートデータが、1つのMakersPrivateData()に含まれることが可能であるようにする。

【0143】図22は、MakersPrivateDataのシンタクスを示す図である。図22に示したMakersPrivateDataのシンタクスについて説明するに、version_numberは、このMakersPrivateData()のバージョンナンバを示す4個のキャラクター文字を示す。version_numberは、ISO646に従って、"0045"と符号化されなければならない。1engthは、このlengthフィールドの直後からMakersPrivateData()の最後までのMakersPrivateData()のバイト数を示す32ビットの符号なし整数を示す。

【0144】mpd_blocks_start_addressは、MakersPrivateData()の先頭のバイトからの相対バイト数を単位として、最初のmpd_block()の先頭バイトアドレスを示す。相対バイト数はゼロからカウントされる。number_of_maker_entriesは、MakersPrivateData()の中に含まれているメーカプライベートデータのエントリー数を与える16ビットの符号なし整数である。MakersPrivateData()の中に、同じmaker_IDの値を持つメーカプライベートデータが2個以上存在してはならない。

【0145】mpd_block_sizeは、1024バイトを単位として、1つのmpd_blockの大きさを与える16ビットの符号なし整数である。例えば、mpd_block_size=1ならば、それは1つのmpd_blockの大きさが1024バイトであることを示す。number_of_mpd_blocksは、Makers PrivateData()の中に含まれるmpd_blockの数を与える16ビットの符号なし整数である。maker_IDは、そのメーカプライベートデータを作成したDVRシステムの製造メーカを示す16ビットの符号なし整数である。maker_IDに符号化される値は、このDVRフォーマットのライセンサによって指定される。

【0146】maker_model_codeは、そのメーカプライベートデータを作成したDVRシステムのモデルナンバーコードを示す16ビットの符号なし整数である。maker_model_codeに符号化される値は、このフォーマットのライセンスを受けた製造メーカによって設定される。start_mpd_block_numberは、そのメーカプライベートデータが開始されるmpd_blockの番号を示す16ビットの符号なし整数である。メーカプライベートデータの先頭データは、mpd_blockの先頭にアラインされなければならな

い。start_mpd_block_numberは、mpd_blockのfor-loop の中の変数iに対応する。

【 O 1 4 7 】 mpd_lengthは、バイト単位でメーカプライベートデータの大きさを示す 3 2 ビットの符号なし整数である。 mpd_blockは、メーカプライベートデータがストアされる領域である。 MakersPrivateData()の中のすべてのmpd_blockは、同じサイズでなければならない。

【0148】次に、Real PlayList fileとVirtual Play List fileについて、換言すれば、xxxxx.rplsとyyyyv.vplsについて説明する。図23は、xxxxx.rpls(Real PlayList)、または、yyyyy.vpls(Virtual PlayList)のシンタクスを示す図である。xxxxx.rplsとyyyyv.vplsは、同一のシンタクス構成をもつ。xxxxx.rplsとyyyyvvplsは、それぞれ、3個のオブジェクトから構成され、それらは、PlayList()、PlayListMark()、およびMakerPrivateData()である。

【 O 1 4 9】PlayListMark_Start_addressは、PlayListファイルの先頭のバイトからの相対バイト数を単位として、PlayListMark()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0150】MakerPrivateData_Start_addressは、Play Listファイルの先頭のバイトからの相対バイト数を単位として、MakerPrivateData()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0151】padding_word(パディングワード)は、PlayListファイルのシンタクスにしたがって挿入され、N1とN2は、ゼロまたは任意の正の整数である。それぞれのパディングワードは、任意の値を取るようにしても良い。

【 O 1 5 2 】 ここで、既に、簡便に説明したが、PlayLi 30 stについてさらに説明する。ディスク内にあるすべての Real PlayListによって、Bridge-Clip (後述)を除くすべてのClipの中の再生区間が参照されていなければならない。かつ、2つ以上のRealPlayListが、それらのPlay Itemで示される再生区間を同一のClipの中でオーバーラップさせてはならない。

【0153】図24を参照してさらに説明するに、図24(A)に示したように、全てのClipは、対応するReal PlayListが存在する。この規則は、図24(B)に示したように、編集作業が行われた後においても守られる。従って、全てのClipは、どれかしらのReal PlayListを参照することにより、必ず視聴することが可能である

【0154】図24 (C) に示したように、Virtual PlayListの再生区間は、Real PlayListの再生区間またはBridge-Clipの再生区間の中に含まれていなければならない。どのVirtual PlayListにも参照されないBridge-Clipがディスクの中に存在してはならない。

【O 1 5 5】RealPlayListは、PlayItemのリストを含むが、SubPlayItemを含んではならない。Virtual PlayLis 50

tは、PlayItemのリストを含み、PlayList()の中に示されるCPI_typeがEP_map typeであり、かつPlayList_typeが0 (ビデオとオーディオを含むPlayList) である場合、Virtual PlayListは、ひとつのSubPlayItemを含む事ができる。本実施の形態におけるPlayList()では、SubPlayIteはオーディオのアフレコの目的にだけに使用される、そして、1つのVirtual PlayListが持つSubPlayItemの数は、0または1でなければならない。

【0156】次に、PlayListについて説明する。図25は、PlayListのシンタクスを示す図である。図25に示したPlayListのシンタクスを説明するに、version_numberは、このPlayList()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。lengthは、このlengthフィールドの直後からPlayList()の最後までのPlayList()のバイト数を示す32ビットの符号なし整数である。PlayList_typeは、このPlayListのタイプを示す8ビットのフィールドであり、その一例を図26に示す。

20 【0157】CPI_typeは、1ビットのフラグであり、PI ayItem()およびSubPlayItem()によって参照されるClip のCPI_typeの値を示す。1つのPlayListによって参照される全てのClipは、それらのCPI()の中に定義されるCPI_typeの値が同じでなければならない。number_of_PlayItemsは、PlayListの中にあるPlayItemの数を示す16ビットのフィールドである。

【0158】所定のPlayItem()に対応するPlayItem_id は、PlayItem()を含むfor-loopの中で、そのPlayItem()の現れる順番により定義される。PlayItem_idは、0から開始される。number_of_SubPlayItemsは、PlayListの中にあるSubPlayItemの数を示す16ビットのフィールドである。この値は、0または1である。付加的なオーディオストリームのパス(オーディオストリームパス)は、サブパスの一種である。

【0159】次に、図25に示したPlayListのシンタクスのUIAppInfoPlayListについて説明する。UIAppInfoPlayListは、PlayListについてのユーザインターフェースアプリケーションのパラメータをストアする。図27は、UIAppInfoPlayListのシンタクスを示す図である。図27に示したUIAppInfoPlayListのシンタクスを説明するに、character_setは、8ビットのフィールドであり、PlayList_nameフィールドに符号化されているキャラクター文字の符号化方法を示す。その符号化方法は、図19に示したテーブルに準拠する値に対応する。

【0160】name_lengthは、8ビットフィールドであり、PlayList_nameフィールドの中に示されるPlayList名のバイト長を示す。PlayList_nameのフィールドは、PlayListの名称を示す。このフィールドの中の左からname_length数のバイト数が、有効なキャラクター文字であり、それはPlayListの名称を示す。PlayList_nameフィ

10

50

ールドの中で、それら有効なキャラクター文字の後の値 は、どんな値が入っていても良い。

【0161】record_time_and_dateは、PlayListが記録 された時の日時をストアする56ビットのフィールドで ある。このフィールドは、年/月/日/時/分/秒につ いて、14個の数字を4ビットのBinary Coded Decimal (BCD)で符号化したものである。例えば、2001/12/23:0 1:02:03 は、"0x20011223010203"と符号化される。

【0162】durationは、PlayListの総再生時間を時間 /分/秒の単位で示した24ビットのフィールドであ る。このフィールドは、6個の数字を4ビットのBinary CodedDecimal(BCD)で符号化したものである。例えば、 01:45:30は、"0x014530"と符号化される。

【0 1 6 3】valid_periodは、PlayListが有効である期 間を示す32ビットのフィールドである。このフィール ドは、8個の数字を4ビットのBinary Coded Decimal(B CD)で符号化したものである。例えば、記録再生装置1 は、この有効期間の過ぎたPlayListを自動消去する、と いったように川いられる。例えば、2001/05/07 は、"Ox 20010507"と符号化される。

【0 1 6 4】maker_idは、そのPlayListを最後に更新し たDVRプレーヤ (記録再生装置1)の製造者を示す16 ビットの符号なし整数である。maker_idに符号化される 値は、DVRフォーマットのライセンサによって割り当て られる。maker_codeは、そのPlayListを最後に更新した DVRプレーヤのモデル番号を示す 16ビットの符号なし 整数である。maker_codeに符号化される値は、DVRフォ ーマットのライセンスを受けた製造者によって決められ る。

【0 1 6 5】playback_control_flagのフラグが1にセ ットされている場合、ユーザが正しくPIN番号を入力で きた場合にだけ、そのPlayListは再生される。このフラ グがOにセットされている場合、ユーザがPIN番号を入 力しなくても、ユーザは、そのPlayListを視聴すること ができる。

【0166】write_protect_flagは、図28(A)にテ ーブルを示すように、1にセットされている場合、writ e_protect_flagを除いて、そのPlayListの内容は、消去 および変更されない。このフラグが0にセットされてい る場合、ユーザは、そのPlayListを自由に消去および変 更できる。このフラグが1にセットされている場合、ユ ーザが、そのPlayListを消去、編集、または上書きする 前に、記録再生装置1はユーザに再確認するようなメッ セージを表示させる。

【0167】write_protect_flagが0にセットされてい るReal PlayListが存在し、かつ、そのReal PlayListの Clipを参照するVirtual PlayListが存在し、そのVirtua 1 PlayListのwrite protect flagが1にセットされてい ても良い。ユーザが、RealPlayListを消去しようとする 場合、記録再生装置1は、そのReal PlayListを消去す

る前に、上記Virtual PlayListの存在をユーザに警告す るか、または、そのReal PlayListを"Minimize"する。

【0168】is_played_flagは、図28(B)に示すよ うに、フラグが1にセットされている場合、そのPlayLi stは、記録されてから一度は再生されたことを示し、O にセットされている場合、そのPlayListは、記録されて から一度も再生されたことがないことを示す。

【0 1 6 9】archiveは、図28(C)に示すように、 そのPlayListがオリジナルであるか、コピーされたもの であるかを示す2ビットのフィールドである。ref_thum bnail_index のフィールドは、PlayListを代表するサム ネイル画像の情報を示す。ref_thumbnail_indexフィー ルドが、OxFFFFでない値の場合、そのPlayListには、Pl ayListを代表するサムネイル画像が付加されており、そ のサムネイル画像は、menu.thum ファイルの中にストア されている。その画像は、menu.thumファイルの中でref _thumbnail_indexの値を用いて参照される。ref_thumbn ail_indexフィールドが、OxFFFF である場合、そのPlay Listには、PlayListを代表するサムネイル画像が付加さ 20 れていない。

【0170】次にPlayItemについて説明する。1つのPl ayItem()は、基本的に次のデータを含む。Clipのファイ ル名を指定するためのClip_information_file_name、Cl ipの再生区間を特定するためのIN_timeとOUT_timeのペ ア、PlayList()において定義されるCPI_typeがEP_map t ypeである場合、IN_timeとOUT_timeが参照するところの STC_sequence_id、および、先行するPlayItemと現在のP layItemとの接続の状態を示すところのconnection_cond itionである。

【0171】PlayListが2つ以上のPlayItemから構成さ れる時、それらのPlayItemはPlayListのグローバル時間 軸上に、時間のギャップまたはオーバーラップなしに一 列に並べられる。PlayList()において定義されるCPI_ty peがEP_map typeであり、かつ現在のPlayItemがBridgeS equence()を持たない時、そのPlayItemにおいて定義さ れるIN_timeとOUT_timeのペアは、STC_sequence_idによ って指定される同じSTC連続区間上の時間を指していな ければならない。そのような例を図29に示す。

【0172】図30は、PlayList()において定義される CPI_typeがEP_map typeであり、かつ現在のPlayItemがB ridgeSequence()を持つ時、次に説明する規則が適用さ れる場合を示している。現在のPlayItemに先行するPlay ItemのIN_time (図の中でIN_timelと示されているもの) は、先行するPlayItemのSTC_sequence_idによって指定 されるSTC連続区間上の時間を指している。先行するPla yltemのOUT_time (図の中でOUT_time1と示されているも の) は、現在のPlayItemのBridgeSequenceInfo()の中で 指定されるBridge-Clipの中の時間を指している。この0 UT timeは、後述する符号化制限に従っていなければな らない。

【 O 1 7 3】現在のPlayItemのIN_time(図の中でIN_time2と示されているもの)は、現在のPlayItemのBridgeS equenceInfo()の中で指定されるBridge-Clipの中の時間を指している。このIN_timeも、後述する符号化制限に従っていなければならない。現在のPlayItemのPlayItemのOUT_time(図の中でOUT_time2と示されているもの)は、現在のPlayItemのSTC_sequence_idによって指定されるSTC連続区間上の時間を指している。

【0174】図31に示すように、PlayList()のCPI_ty peがTU_map typeである場合、PlayItemのIN_timeとOUT_ 10 timeのペアは、同じClip AVストリーム上の時間を指している。

【O 1 7 5】PlayItemのシンタクスは、図3 2に示すようになる。図3 2に示したPlayItemのシンタクスを説明するに、Clip_Information_file_nameのフィールドは、ClipInformation fileのファイル名を示す。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、Clip AV streamを示していなければならない。

【0176】STC_sequence_idは、8ビットのフィールドであり、PlayItemが参照するSTC連続区間のSTC_sequence_idを示す。PlayList()の中で指定されるCPI_typeがTU_map typeである場合、この8ビットフィールドは何も意味を持たず、0にセットされる。IN_timeは、32ビットフィールドであり、PlayItemの再生開始時刻をストアする。IN_timeのセマンティクスは、図33に示すように、PlayList()において定義されるCPI_typeによって異なる。

【O 1 7 7】OUT_timeは、3 2 ビットフィールドであり、PlayItemの再生終了時刻をストアする。OUT_timeのセマンティクスは、図 3 4 に示すように、PlayList()において定義されるCPI_typeによって異なる。

【0178】Connection_Conditionは、図35に示したような先行するPlayItemと、現在のPlayItemとの間の接続状態を示す2ビットのフィールドである。図36は、図35に示したConnection_Conditionの各状態について説明する図である。

【O 1 7 9】次に、BridgeSequenceInfoについて、図37を参照して説明する。BridgeSequenceInfo()は、現在のPlayItemの付属情報であり、次に示す情報を持つ。Bridge-Clip AV streamファイルとそれに対応するClip Information fileを指定するBridge_Clip_Information_file_nameを含む。

【0180】また、先行するPlayItemが参照するClip A V stream上のソースパケットのアドレスであり、このソースパケットに続いてBridge-Clip AV streamファイルの最初のソースパケットが接続される。このアドレスは、RSPN_exit_from_previous_Clipと称される。さらに現在のPlayItemが参照するClip AV stream上のソースパケットのアドレスであり、このソースパケットの前にBr 50

idge-Clip AV streamファイルの最後のソースパケットが接続される。このアドレスは、RSPN_enter_to_current_Clipと称される。

【0181】図37において、RSPN_arrival_time_disc ontinuityは、the Bridge-Clip AVstreamファイルの中でアライバルタイムベースの不連続点があるところのソースパケットのアドレスを示す。このアドレスは、Clip Info()の中において定義される。

【0182】図38は、BridgeSequenceinfoのシンタクスを示す図である。図38に示したBridgeSequenceinfoのシンタクスを説明するに、Bridge_Clip_Information_file_nameのフィールドは、Bridge-Clip AV streamファイルに対応するClip Information fileのファイル名を示す。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、'Bridge-Clip AV stream'を示していなければならない。

【0183】RSPN_exit_from_previous_Clipの32ビットフィールドは、先行するPlayItemが参照するClip AV stream上のソースパケットの相対アドレスであり、このソースパケットに続いてBridge-Clip AV streamファイルの最初のソースパケットが接続される。RSPN_exit_from_previous_Clipは、ソースパケット番号を単位とする大きさであり、先行するPlayItemが参照するClip AV streamファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。

【0184】RSPN_enter_to_current_Clipの32ビットフィールドは、現在のPlayItemが参照するClip AV stream上のソースパケットの相対アドレスであり、このソースパケットの前にBridge-Clip AV streamファイルの最後のソースパケットが接続される。RSPN_exit_from_previous_Clipは、ソースパケット番号を単位とする大きさであり、現在のPlayItemが参照するClip AV streamファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。

【0185】次に、SubPlayItemについて、図39を参照して説明する。SubPlayItem()の使用は、PlayList()のCPI_typeがEP_map typeである場合だけに許される。本実施の形態においては、SubPlayItemはオーディオのアフレコの目的のためだけに使用されるとする。SubPlayItem()は、次に示すデータを含む。まず、PlayListの中のsub pathが参照するClipを指定するためのClip_information_file_nameを含む。

【0186】また、Clipの中のsub pathの再生区間を指定するためのSubPath_IN_time と SubPath_OUT_timeを含む。さらに、main pathの時間軸上でsub pathが再生開始する時刻を指定するためのsync_PlayItem_id と sync_start_PTS_of_PlayItemを含む。sub pathに参照されるオーディオのClip AV streamは、STC不連続点(シス

テムタイムベースの不連続点)を含んではならない。subpathに使われるClipのオーディオサンプルのクロックは、mainpathのオーディオサンプルのクロックにロックされている。

【0187】図40は、SubPlayItemのシンタクスを示す図である。図40に示したSubPlayItemのシンタクスを説明するに、Clip_Information_file_nameのフィールドは、Clip Information fileのファイル名を示し、それはPlayListの中でsub pathによって使用される。このClip Information fileのClipInfo()において定義されるClip_stream_typeは、Clip AV streamを示していなければならない。

【0188】SubPath_typeの8ビットのフィールドは、sub pathのタイプを示す。ここでは、図41に示すように、'0x00'しか設定されておらず、他の値は、将来のために確保されている。

【0189】sync_PlayItem_idの8ビットのフィールドは、main pathの時間軸上でsub pathが再生開始する時刻が含まれるPlayItemのPlayItem_idを示す。所定のPlayItemに対応するPlayItem_idの値は、PlayList()において定義される(図25参照)。

【0190】sync_start_PTS_of_PlayItemの32ビットのフィールドは、main pathの時間軸上でsub pathが再生開始する時刻を示し、sync_PlayItem_idで参照されるPlayItem上のPTS(Presentaiotn Time Stamp)の上位32ビットを示す。SubPath_IN_timeの32ビットフィールドは、Sub pathの再生開始時刻をストアする。SubPath_IN_timeは、Sub Pathの中で最初のプレゼンテーションユニットに対応する33ビット長のPTSの上位32ビットを示す。

【O 191】SubPath_OUT_timeの32ビットフィールドは、Sub pathの再生終了時刻をストアする。SubPath_OUT_timeは、次式によって算出されるPresenation_end_TSの値の上位32ビットを示す。Presentation_end_TS = PTS_out + AU_durationここで、PTS_outは、SubPathの最後のプレゼンテーションユニットに対応する33ビット長のPTSである。AU_durationは、SubPathの最後のプレゼンテーションユニットの90kHz単位の表示期間である。

【0192】次に、図23に示したxxxxx.rplsとyyyy.vplsのシンタクス内のPlayListMark()について説明する。PlayListについてのマーク情報は、このPlayListMarkにストアされる。図42は、PlayListMarkのシンタクスを示す図である。図42に示したPlayListMarkのシンタクスについて説明するに、version_numberは、このPlayListMark()のバージョンナンバを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0193】lengthは、このlengthフィールドの直後からPlayListMark()の最後までのPlayListMark()のバイト

数を示す32ビットの符号なし整数である。number_of_Playl.ist_marksは、Playl.istMarkの中にストアされているマークの個数を示す16ビットの符号なし整数である。number_of_Playl.ist_marks は、0であってもよい。mark_typeは、マークのタイプを示す8ビットのフィールドであり、図43に示すテーブルに従って符号化される。

【0194】mark_time_stampの32ビットフィールド は、マークが指定されたポイントを示すタイムスタンプ をストアする。mark_time_stampのセマンティクスは、 図44に示すように、PlayList()において定義されるCP I_typeによって異なる。PlayItem_idは、マークが置か れているところのPlayItemを指定する8ビットのフィー ルドである。所定のPlayItemに対応するPlayItem_idの 値は、PlayList()において定義される(図25参照)。 【0195】character_setの8ビットのフィールド は、mark_nameフィールドに符号化されているキャラク ター文字の符号化方法を示す。その符号化方法は、図1 9に示した値に対応する。name_lengthの8ビットフィ ールドは、Mark_nameフィールドの中に示されるマーク 名のバイト長を示す。mark_nameのフィールドは、マー クの名称を示す。このフィールドの中の左からname_len gth数のバイト数が、有効なキャラクター文字であり、 それはマークの名称を示す。Mark_nameフィールドの中 で、それら有効なキャラクター文字の後の値は、どのよ うな値が設定されても良い。

【0196】ref_thumbnail_indexのフィールドは、マークに付加されるサムネイル画像の情報を示す。ref_th umbnail_indexフィールドが、OxFFFFでない値の場合、そのマークにはサムネイル画像が付加されており、そのサムネイル画像は、mark.thmbファイルの中にストアされている。その画像は、mark.thmbファイルの中でref_t humbnail_indexの値を用いて参照される(後述)。ref_thumbnail_indexフィールドが、OxFFFFである場合、そのマークにはサムネイル画像が付加されていない事を示す。

【0197】次に、Clip information fileについて説明する。zzzzz.clpi (Clip information fileファイル)は、図45に示すように6個のオブジェクトから構成される。それらは、ClipInfo()、STC_Info()、ProgramInfo()、CPI()、ClipMark()、およびMakerPrivateData()である。AVストリーム(Clip AVストリームまたはBridge-Clip AV stream)とそれに対応するClip Informationファイルは、同じ数字列の"zzzzz"が使用される。

【0198】図45に示したzzzzz.clpi(Clip informa tion fileファイル)のシンタクスについて説明するに、ClipInfo_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ClipIn fo()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0199】STC_Info_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、STC_Info()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。ProgramInfo_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ProgramInfo()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。CPI_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、CPI()の先頭アドレスを示す。相対バイト数と単位として、CPI()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0200】ClipMark_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、ClipMark()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。MakerPrivateData_Start_addressは、zzzzz.clpiファイルの先頭のバイトからの相対バイト数を単位として、MakerPrivateData()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。padding_word(パディングワード)は、zzzzz.clpiファイルのシンタクスにしたがって挿入される。N1,N2,N3,N4、およびN5は、ゼロまたは任意の正の整数でなければならない。それぞれのパディングワードは、任意の値がとられるようにしても良い。

【0201】次に、ClipInfoについて説明する。図46は、ClipInfoのシンタクスを示す図である。ClipInfo()は、それに対応するAVストリームファイル(Clip AVストリームまたはBridge-Clip AVストリームファイル)の属性情報をストアする。

【0202】図46に示したClipInfoのシンタクスについて説明するに、version_numberは、このClipInfo()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。lengthは、このlengthフィールドの直後からClipInfo()の最後までのClipInfo()のバイト数を示す32ビットの符号なし整数である。Clip_stream_typeの8ビットのフィールドは、図47に示すように、Clip Informationファイルに対応するAVストリームのタイプを示す。それぞれのタイプのAVストリームのストリームタイプについては後述する。

【0203】offset_SPNの32ビットのフィールドは、AVストリーム(Clip AVストリームまたはBridge-Clip A 40 Vストリーム)ファイルの最初のソースパケットについてのソースパケット番号のオフセット値を与える。AVストリームファイルが最初にディスクに記録される時、このoffset SPNは0でなければならない。

【0204】図48に示すように、AVストリームファイルのはじめの部分が編集によって消去された時、offset _SPNは、ゼロ以外の値をとっても良い。本実施の形態では、offset_SPNを参照する相対ソースパケット番号(相対アドレス)が、しばしば、RSPN_xxx(xxxは変形する。例、RSPN_EP_start)の形式でシンタクスの中に記

述されている。相対ソースパケット番号は、ソースパケット番号を単位とする大きさであり、AVストリームファイルの最初のソースパケットからoffset_SPNの値を初期値としてカウントされる。

【0205】AVストリームファイルの最初のソースパケットから相対ソースパケット番号で参照されるソースパケットまでのソースパケットの数(SPN_xxx)は、次式で算出される。

 $SPN_xxx = RSPN_xxx - offset_SPN$

10 図48に、offset_SPNが4である場合の例を示す。

【0206】TS_recording_rateは、24ビットの符号なし整数であり、この値は、DVRドライブ(書き込み部22)へまたはDVRドライブ(読み出し部28)からのAVストリームの必要な入出力のビットレートを与える。record_time_and_dateは、Clipに対応するAVストリームが記録された時の日時をストアする56ビットのフィールドであり、年/月/日/時/分/秒について、14個の数字を4ビットのBinary Coded Decimal(BCD)で符号化したものである。例えば、2001/12/23:01:02:03は、"0x20011223010203"と符号化される。

【0207】durationは、Clipの総再生時間をアライバルタイムクロックに基づいた時間/分/秒の単位で示した24ビットのフィールドである。このフィールドは、6個の数字を4ビットのBinary Coded Decimal(BCD)で符号化したものである。例えば、01:45:30は、"0x014530"と符号化される。

【0208】time_controlled_flag:のフラグは、AVストリームファイルの記録モードを示す。このtime_controlled_flagが1である場合、記録モードは、記録してからの時間経過に対してファイルサイズが比例するようにして記録されるモードであることを示し、次式に示す条件を満たさなければならない。

TS_average_rate 192/188 (t - start_time) - $\alpha \le si$ ze_clip(t)

<= TS_average_rate*192/188*(t - start_time) + α ここで、TS_average_rateは、AVストリームファイルの トランスポートストリームの平均ビットレートをbytes/ second の単位で表したものである。

【0209】また、上式において、tは、秒単位で表される時間を示し、start_timeは、AVストリームファイルの最初のソースパケットが記録された時の時刻であり、秒単位で表される。size_clip(t)は、時刻tにおけるAVストリームファイルのサイズをバイト単位で表したものであり、例えば、start_timeから時刻tまでに10個のソースパケットが記録された場合、size_clip(t)は10*192バイトである。 α は、TS_average_rateに依存する定数である。

【0210】timc_controlled_flagが0にセットされている場合、記録モードは、記録の時間経過とAVストリームのファイルサイズが比例するように制御していないこ

とを示す。例えば、これは入力トランスポートストリームをトランスペアレント記録する場合である。

【0211】TS_average_rateは、time_controlled_flagが1にセットされている場合、この24ビットのフィールドは、上式で用いているTS_average_rateの値を示す。time_controlled_flagが0にセットされている場合、このフィールドは、何も意味を持たず、0にセットされなければならない。例えば、可変ビットレートのトランスポートストリームは、次に示す手順により符号化される。まずトランスポートレートをTS_recording_rat 10eの値にセットする。次に、ビデオストリームを可変ビットレートで符号化する。そして、ヌルパケットを使用しない事によって、間欠的にトランスポートパケットを符号化する。

【0212】RSPN_arrival_time_discontinuityの32 ビットフィールドは、Bridge-Clip AV streamファイル 上でアライバルタイムベースの不連続が発生する場所の 相対アドレスである。RSPN_arrival_time_discontinuit yは、ソースパケット番号を単位とする大きさであり、B ridge-Clip AV streamファイルの最初のソースパケット からClipInfo() において定義されるoffset_SPNの値を 初期値としてカウントされる。そのBridge-Clip AV str camファイルの中での絶対アドレスは、上述した SPN_xxx = RSPN_xxx - offset_SPN に基づいて算出される。

【0213】reserved_for_system_useの144ビットのフィールドは、システム用にリザーブされている。is_for mat_identifier_validのフラグが1である時、format_i dentifierのフィールドが有効であることを示す。is_or iginal_network_ID_validのフラグが1である場合、ori 30 ginal_network_IDのフィールドが有効であることを示す。is_transport_stream_ID_validのフラグが1である場合、transport_stream_IDのフィールドが有効であることを示す。is_servece_ID_validのフラグが1である場合、servece_IDのフィールドが有効であることを示す。

【0214】is_country_code_validのフラグが1である時、country_codeのフィールドが有効であることを示す。format_identifierの32ビットフィールドは、トランスポートストリームの中でregistration deascriotor 40(ISO/IEC13818-1で定義されている)が持つformat_identifierの値を示す。original_network_IDの16ビットフィールドは、トランスポートストリームの中で定義されているoriginal_network_IDの値を示す。transport_stream_IDの16ビットフィールドは、トランスポートストリームの中で定義されているtransport_stream_IDの値を示す。

【0215】servece_IDの16ビットフィールドは、トランスポートストリームの中で定義されているservece_IDの値を示す。country_codeの24ビットのフィールド 50

は、ISO3166によって定義されるカントリーコードを示す。それぞれのキャラクター文字は、ISO8859-1で符号化される。例えば、日本は"JPN"と表され、"0x4A 0x500 x4E"と符号化される。stream_format_nameは、トランスポートストリームのストリーム定義をしているフォーマット機関の名称を示すISO-646の1 6 個のキャラクターコードである。このフィールドの中の無効なバイトは、値'0xFF'がセットされる。

【0216】format_identifier、original_network_ID、transport_stream_ID、servece_ID,country_code、およびstream_format_nameは、トランスポートストリームのサービスプロバイダを示すものであり、これにより、オーディオやビデオストリームの符号化制限、SI(サービスインフォメーション)の規格やオーディオビデオストリーム以外のプライベートデータストリームのストリーム定義を認識することができる。これらの情報は、デコーダが、そのストリームをデコードできるか否か、そしてデコードできる場合にデコード開始前にデコーダシステムの初期設定を行うために用いることが可能である。

【0217】次に、STC_Infoについて説明する。ここでは、MPEG-2トランスポートストリームの中でSTCの不連続点(システムタイムベースの不連続点)を含まない時間区間をSTC_sequenceと称し、Clipの中で、STC_sequenceは、STC_sequence_idの値によって特定される。図50は、連続なSTC区間について説明する図である。同じSTC_sequenceの中で同じSTCの値は、決して現れない(ただし、後述するように、Clipの最大時間長は制限されている)。従って、同じSTC_sequenceの中で同じPTSの値もまた、決して現れない。AVストリームが、N(N>0)個のSTC不連続点を含む場合、Clipのシステムタイムベースは、(N+1)個のSTC_sequenceに分割される。

【0218】STC_Infoは、STCの不連続(システムタイムベースの不連続)が発生する場所のアドレスをストアする。図51を参照して説明するように、RSPN_STC_startが、そのアドレスを示し、最後のSTC_sequenceを除くk番目(k>=0)のSTC_sequenceは、k番目のRSPN_STC_startで参照されるソースパケットが到着した時刻から始まり、(k+1)番目のRSPN_STC_startで参照されるソースパケットが到着した時刻で終わる。最後のSTC_sequenceは、最後のRSPN_STC_startで参照されるソースパケットが到着した時刻から始まり、最後のソースパケットが到着した時刻から始まり、最後のソースパケットが到着した時刻で終了する。

【0219】図52は、STC_Infoのシンタクスを示す図である。図52に示したSTC_Infoのシンタクスについて説明するに、version_numberは、このSTC_Info()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0220】lengthは、このlengthフィールドの直後か

らSTC_Info()の最後までのSTC_Info()のバイト数を示す 3 2 ビットの符号なし整数である。CPI()のCPI_typeがT U_map typeを示す場合、このlengthフィールドはゼロをセットしても良い。CPI()のCPI_typeがEP_map typeを示す場合、num_of_STC_sequencesは1以上の値でなければ ならない。

41

【0221】num_of_STC_sequencesの8ビットの符号なし整数は、Clipの中でのSTC_sequenceの数を示す。この値は、このフィールドに続くfor-loopのループ回数を示す。所定のSTC_sequenceに対応するSTC_sequence_idは、RSPN_STC_startを含むfor-loopの中で、そのSTC_sequenceに対応するRSPN_STC_startの現れる順番により定義されるものである。STC_sequence_idは、0から開始される。

【0222】RSPN_STC_startの32ビットフィールドは、AVストリームファイル上でSTC_sequenceが開始するアドレスを示す。RSPN_STC_startは、AVストリームファイルの中でシステムタイムベースの不連続点が発生するアドレスを示す。RSPN_STC_startは、AVストリームの中で新しいシステムタイムベースの最初のPCRを持つソースパケットの相対アドレスとしても良い。RSPN_STC_startは、ソースパケット番号を単位とする大きさであり、AVストリームファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。そのAV streamファイルの中での絶対アドレスは、既に上述したSPN_xxx = RSPN_xxx - off set SPNにより算出される。

【0223】次に、図45に示したzzzzz.clipのシンタクス内のProgramInfoについて説明する。図53を参照しながら説明するに、ここでは、Clipの中で次の特徴をもつ時間区間をprogram_sequenceと呼ぶ。まず、PCR_PIDの値が変わらない。次に、ビデオエレメンタリーストリームの数が変化しない。また、それぞれのビデオストリームについてのPIDの値とそのVideoCodingInfoによって定義される符号化情報が変化しない。さらに、オーディオエレメンタリーストリームの数が変化しない。また、それぞれのオーディオストリームについてのPIDの値とそのAudioCodingInfoによって定義される符号化情報が変化しない。

【0224】program_sequenceは、同一の時刻において、ただ1つのシステムタイムベースを持つ。program_sequenceは、同一の時刻において、ただ1つのPMTを持つ。ProgramInfo()は、program_sequenceが開始する場所のアドレスをストアする。RSPN_program_sequence_startが、そのアドレスを示す。

【0225】図54は、ProgramInfoのシンタクスを示す図である。図54に示したProgramInfoのシンタクを説明するに、version_numberは、このProgramInfo()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符

号化されなければならない。

【0226】lengthは、このlengthフィールドの直後からProgramInfo()の最後までのProgramInfo()のバイト数を示す32ビットの符号なし整数である。CPI()のCPI_t ypeがTU_map typeを示す場合、このlengthフィールドはゼロにセットされても良い。CPI()のCPI_typeがEP_map typeを示す場合、number_of_programsは1以上の値でなければならない。

【0227】number_of_program_sequencesの8ビットの符号なし整数は、Clipの中でのprogram_sequenceの数を示す。この値は、このフィールドに続くfor-loopのループ回数を示す。Clipの中でprogram_sequenceが変化しない場合、number_of_program_sequencesは1をセットされなければならない。RSPN_program_sequence_startの32ビットフィールドは、AVストリームファイル上でプログラムシーケンスが開始する場所の相対アドレスである。

【0228】RSPN_program_sequence_startは、ソースパケット番号を単位とする大きさであり、AVストリームファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。そのAVストリームファイルの中での絶対アドレスは、

SPN_xxx = RSPN_xxx - offset_SPN により算出される。シンタクスのfor-loopの中でRSPN_p rogram_sequence_start値は、昇順に現れなければならない。

【0229】PCR_PIDの16ビットフィールドは、そのprogram_sequenceに有効なPCRフィールドを含むトランスポートパケットのPIDを示す。number_of_videosの8ビットフィールドは、video_stream_PIDとVideoCodingInfo()を含むfor-loopのループ回数を示す。number_of_audiosの8ビットフィールドは、audio_stream_PIDとAudio CodingInfo()を含むfor-loopのループ回数を示す。video_stream_PIDの16ビットフィールドは、そのprogram_sequenceに有効なビデオストリームを含むトランスポートパケットのPIDを示す。このフィールドに続くVideoCodingInfo()は、そのvideo_stream_PIDで参照されるビデオストリームの内容を説明しなければならない。

【0230】audio_stream_PIDの16ビットフィールドは、そのprogram_sequenceに有効なオーディオストリームを含むトランスポートパケットのPIDを示す。このフィールドに続くAudioCodingInfo()は、そのaudio_stream_PIDで参照されるビデオストリームの内容を説明しなければならない。

【0231】なお、シンタクスのfor-loopの中でvideo_stream_PIDの値の現れる順番は、そのprogram_sequenceに行効なPMTの中でビデオストリームのPIDが符号化されている順番に等しくなければならない。また、シンタクスのfor-loopの中でaudio_stream_PIDの値の現れる順番

43

は、そのprogram_sequenceに有効なPMTの中でオーディ オストリームのPIDが符号化されている順番に等しくな ければならない。

【0232】図55は、図54に示したPrograminfoのシンタクス内のVideoCodingInfoのシンタクスを示す図である。図55に示したVideoCodingInfoのシンタクスを説明するに、video_formatの8ビットフィールドは、図56に示すように、ProgramInfo()の中のvideo_stream PIDに対応するビデオフォーマットを示す。

【0233】frame_rateの8ビットフィールドは、図57に示すように、ProgramInfo()の中のvideo_stream_PIDに対応するビデオのフレームレートを示す。display_aspect_ratioの8ビットフィールドは、図58に示すように、ProgramInfo()の中のvideo_stream_PIDに対応するビデオの表示アスペクト比を示す。

【0234】図59は、図54に示したPrograminfoのシンタクス内のAudioCodingInfoのシンタクスを示す図である。図59に示したAudioCodingInfoのシンタクスを説明するに、audio_codingの8ビットフィールドは、図60に示すように、ProgramInfo()の中のaudio_strea 20m_PIDに対応するオーディオの符号化方法を示す。

【0235】audio_component_typeの8ビットフィールドは、図61に示すように、ProgramInfo()の中のaudio_stream_PIDに対応するオーディオのコンポーネントタイプを示す。sampling_frequencyの8ビットフィールドは、図62に示すように、ProgramInfo()の中のaudio_stream_PIDに対応するオーディオのサンプリング周波数を示す。

【0236】次に、図45に示したアスアスアス.clipのシンタクス内のCPI(Characteristic Point Information)について説明する。CPIは、AVストリームの中の時間情報とそのファイルの中のアドレスとを関連づけるためにある。CPIには2つのタイプがあり、それらはEP_mapとTU_mapである。図63に示すように、CPI()の中のCPI_typeがEP_map typeの場合、そのCPI()はEP_mapを含む。図64に示すように、CPI()の中のCPI_typeがTU_map typeの場合、そのCPI()はTU_mapを含む。1つのAVストリームは、1つのEP_mapまたは1つのTU_mapを持つ。AVストリームがSESFトランスポートストリームの場合、それに対応するClipはEP_mapを持たなければならない。

【0237】図65は、CPIのシンタクスを示す図である。図65に示したCPIのシンタクスを説明するに、ver sion_numberは、このCPI()のバージョンナンバを示す 4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。lengthは、このlengthフィールドの直後からCPI()の最後までのCPI()のバイト数を示す 32 ビットの符号なし整数である。CPI_typcは、図66 に示すように、1 ビットのフラグであり、ClipのCPIのタイプを表す。

【0238】次に、図65に示したCPIのシンタクス内

のEP_mapについて説明する。EP_mapには、2つのタイプがあり、それはビデオストリーム用のEP_mapとオーディオストリーム用のEP_mapである。EP_mapの中のEP_map_typeが、EP_mapのタイプを区別する。Clipが1つ以上のビデオストリームを含む場合、ビデオストリーム用のEP_mapが使用されなければならない。Clipがビデオストリームを含む場合、オーディオストリーム用のEP_mapが使用されなければならない。

【0239】ビデオストリーム用のEP_mapについて図67を参照して説明する。ビデオストリーム用のEP_mapは、stream_PID、PTS_EP_start、および、RSPN_EP_startというデータを持つ。stream_PIDは、ビデオストリームを伝送するトランスポートパケットのPIDを示す。PTS_EP_startは、ビデオストリームのシーケンスヘッダから始めるアクセスユニットのPTSを示す。RSPN_EP_startは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットの第1バイト目を含むソースポケットのアドレスを示す。

【0240】EP_map_for_one_stream_PID()と呼ばれる サブテーブルは、同じPIDを持つトランスポートパケットによって伝送されるビデオストリーム毎に作られる。 Clipの中に複数のビデオストリームが存在する場合、EP _mapは複数のEP_map_for_one_stream_PID()を含んでも 良い。

【0241】オーディオストリーム用のEP_mapは、stre am_PID、PTS_EP_start、およびRSPN_EP_startというデータを持つ。stream_PIDは、オーディオストリームを伝送するトランスポートパケットのPIDを示す。PTS_EP_startは、オーディオストリームのアクセスユニットのPTSを示す。RSPN_EP_startは、AVストリームの中でPTS_EP_startで参照されるアクセスユニットの第1バイト目を含むソースポケットのアドレスを示す。

【0242】EP_map_for_one_stream_PID()と呼ばれる サブテーブルは、同じPIDを持つトランスポートパケットによって伝送されるオーディオストリーム毎に作られる。Clipの中に複数のオーディオストリームが存在する場合、EP_mapは複数のEP_map_for_one_stream_PID()を含んでも良い。

【0243】EP_mapとSTC_Infoの関係を説明するに、1つのEP_map_for_one_stream_PID()は、STCの不連続点に関係なく1つのテーブルに作られる。RSPN_EP_startの値とSTC_Info()において定義されるRSPN_STC_startの値を比較する事により、それぞれのSTC_sequenceに属するEP_mapのデータの境界が分かる(図68を参照)。EP_mapは、同じPIDで伝送される連続したストリームの範囲に対して、1つのEP_map_for_one_stream_PIDを持たねばならない。図69に示したような場合、program#1とprogram#3は、同じビデオPIDを持つが、データ範囲が連続していないので、それぞれのプログラム毎にEP_map_f

or_one_stream_PIDを持たねばならない。

【0244】図70は、EP_mapのシンタクスを示す図である。図70に示したEP_mapのシンタクスを説明するに、EP_typeは、4ビットのフィールドであり、図71に示すように、EP_mapのエントリーポイントタイプを示す。EP_typeは、このフィールドに続くデータフィールドのセマンティクスを示す。Clipが1つ以上のビデオストリームを含む場合、EP_typeは0('video')にセットされなければならない。または、Clipがビデオストリームを含む場合、EP_typeは1('audio')にセットされなければならない。

45

【0245】 number_of_stream_PIDsの16ビットのフィールドは、 $EP_map()$ の中のnumber_of_stream_PIDsを変数にもつfor-loopのループ回数を示す。stream_PID (k)の16ビットのフィールドは、 $EP_map_for_one_stream_PID(num_EP_entries(k))$ によって参照されるk番目のエレメンタリーストリーム(ビデオまたはオーディオストリーム)を伝送するトランスポートパケットのPIDを示す。 $EP_typeが0$ ('video')に等しい場合、そのエレメンタリストリームはビデオストリームでなけれならない。また、 $EP_typeが1$ ('audio')に等しい場合、そのエレメンタリストリームはオーディオストリームでなければらない。

【0246】num_EP_entries(k)の16ビットのフィールドは、EP_map_for_one_stream_PID(num_EP_entries(k))によって参照されるnum_EP_entries(k)を示す。EP_map_for_one_stream_PID_Start_address(k):この32ビットのフィールドは、EP_map()の中でEP_map_for_one_stream_PID(num_EP_entries(k))が始まる相対バイト位置を示す。この値は、EP_map()の第1バイト目からの大きさで示される。

【0247】padding_wordは、FP_map()のシンタクスにしたがって挿入されなければならない。XとYは、ゼロまたは任意の正の整数でなければならない。それぞれのパディングワードは、任意の値を取っても良い。

【0248】図72は、EP_map_for_one_stream_PIDのシンタクスを示す図である。図72に示したEP_map_for_one_stream_PIDのシンタクスを説明するに、PTS_EP_st artの32ビットのフィールドのセマンティクスは、EP_ 40 map()において定義されるEP_typeにより異なる。EP_typeが0('video')に等しい場合、このフィールドは、ビデオストリームのシーケンスへッダで始まるアクセスユニットの33ビット精度のPTSの上位32ビットを持つ。EP_typeが1('audio')に等しい場合、このフィールドは、オーディオストリームのアクセスユニットの33ビット精度のPTSの上位32ビットを持つ。

【0249】RSPN_EP_startの32ビットのフィールドのセマンティクスは、EP_map()において定義されるEP_typeにより異なる。EP_typeが0('video')に等しい場

合、このフィールドは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットのシーケンスへッダの第1バイト目を含むソースポケットの相対アドレスを示す。または、EP_typeが1 ('audio')に等しい場合、このフィールドは、AVストリームの中でPTS_EP_startにより参照されるアクセスユニットのオーディオフレームの第一バイト目を含むソースポケットの相対アドレスを示す。

46

【0250】RSPN_EP_startは、ソースパケット番号を 単位とする大きさであり、AVストリームファイルの最初 のソースパケットからClipInfo()において定義されるof fset_SPNの値を初期値としてカウントされる。そのAVス トリームファイルの中での絶対アドレスは、

SPN xxx = RSPN_xxx - offset_SPN

により算出される。シンタクスのfor-loopの中でRSPN_E P_startの値は、昇順に現れなければならない。

【0251】次に、TU_mapについて、図73を参照して説明する。TU_mapは、ソースパケットのアライバルタイムクロック(到着時刻ベースの時計)に基づいて、1つの時間軸を作る。その時間軸は、TU_map_time_axisと呼ばれる。TU_map_time_axisの原点は、TU_map()の中のoffset_timeによって示される。TU_map_time_axisは、offset_timeから一定の単位に分割される。その単位を、time_unitと称する。

【0252】AVストリームの中の各々のtime_unitの中で、最初の完全な形のソースパケットのAVストリームファイル上のアドレスが、 TU_map にストアされる。これらのアドレスを、 $RSPN_time_unit_start$ と称する。 $TU_map_time_axis$ 上において、k(k)=0)番目のtime_unitが始まる時刻は、 $TU_start_time(k)$ と呼ばれる。この値は次式に基づいて算出される。

TU_start_time(k) = offset_time + k*time_unit_size
TU_start_time(k)は、45kHzの精度を持つ。

【0253】図75は、TU_mapのシンタクスを示す図である。図75に示したTU_mapのシンタクスを説明するに、offset_timeの32bit長のフィールドは、TU_map_time_axisに対するオフセットタイムを与える。この値は、Clipの中の最初のtime_unitに対するオフセット時刻を示す。offset_timeは、27MHz精度のアライバルタイムクロックから導き出される45kHzクロックを単位とする大きさである。AVストリームが新しいClipとして記録される場合、offset_timeはゼロにセットされなければならない。

【0254】time_unit_sizeの32ビットフィールドは、time_unitの大きさを与えるものであり、それは27MHz精度のアライバルタイムクロックから導き出される45kHzクロックを単位とする大きさである。time_unit_sizeは、1秒以下(time_unit_size<=45000)にすることが良い。number_of_time_unit_entriesの32ビットフィールドは、TU_map()の中にストアされているtime_u

nitのエントリー数を示す。

【0255】RSPN_time_unit_startの32ビットフィールドは、AVストリームの中でそれぞれのtime_unitが開始する場所の相対アドレスを示す。RSPN_time_unit_startは、ソースパケット番号を単位とする大きさであり、AV streamファイルの最初のソースパケットからClipInfo()において定義されるoffset_SPNの値を初期値としてカウントされる。そのAV streamファイルの中での絶対アドレスは、

47

 $SPN_xxx = RSPN_xxx - offset_SPN$

により算出される。シンタクスのfor-loopの中でRSPN_time_unit_startの値は、昇順に現れなければならない。 (k+1)番目のtime_unitの中にソースパケットが何もない場合、(k+1)番目のRSPN_time_unit_startは、k番目のRSPN_time_unit_startと等しくなければならない。

【0256】図45に示したzzzzz.clipのシンタクス内のClipMarkについて説明する。ClipMarkは、クリップについてのマーク情報であり、ClipMarkの中にストアされる。このマークは、記録器(記録再生装置1)によってセットされるものであり、ユーザによってセットされるものではない。

【0257】図75は、ClipMarkのシンタクスを示す図である。図75に示したClipMarkのシンタクスを説明するに、version_numberは、このClipMark()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0258】lengthは、このlengthフィールドの直後からClipMark()の最後までのClipMark()のバイト数を示す32ビットの符号なし整数である。number_of_Clip_marksは、ClipMarkの中にストアされているマークの個数を示す16ビットの符号なし整数。number_of_Clip_marksは、0であってもよい。mark_typeは、マークのタイプを示す8ビットのフィールドであり、図76に示すテーブルに従って符号化される。

【0259】mark_time_stampは、32ビットフィールドであり、マークが指定されたポイントを示すタイムスタンプをストアする。mark_time_stampのセマンティクスは、図77に示すように、PlayList()の中のCPI_typeにより異なる。

【0260】STC_sequence_idは、CPI()の中のCPI_typeがEP_map typeを示す場合、この8ビットのフィールドは、マークが置かれているところのSTC連続区間のSTC_sequence_idを示す。CPI()の中のCPI_typeがTU_map typeを示す場合、この8ビットのフィールドは何も意味を持たず、ゼロにセットされる。character_setの8ビットのフィールドは、mark_nameフィールドに符号化されているキャラクター文字の符号化方法を示す。その符号化方法は、図19に示される値に対応する。

【0261】name_lengthの8ビットフィールドは、Mar 50

k_nameフィールドの中に示されるマーク名のバイト長を示す。mark_nameのフィールドは、マークの名称を示す。このフィールドの中の左からname_length数のバイト数が、有効なキャラクター文字であり、それはマークの名称を示す。mark_nameフィールドの中で、それら有効なキャラクター文字の後の値は、どんな値が入っていても良い。

【0262】ref_thumbnail_indexのフィールドは、マークに付加されるサムネイル画像の情報を示す。ref_th 10 umbnail_indexフィールドが、OxFFFFでない値の場合、そのマークにはサムネイル画像が付加されており、そのサムネイル画像は、mark.thmbファイルの中にストアされている。その画像は、mark.thmbファイルの中でref_thumbnail_indexの値を用いて参照される。ref_thumbnail_indexフィールドが、OxFFFFである場合、そのマークにはサムネイル画像が付加されていない。

【0263】MakersPrivateDataについては、図22を 参照して既に説明したので、その説明は省略する。

【0264】次に、サムネイルインフォメーション(Th umbnail Information)について説明する。サムネイル 画像は、menu.thmbファイルまたはmark.thmbファイルに ストアされる。これらのファイルは同じシンタクス構造であり、ただ1つのThumbnail()を持つ。menu.thmbファイルは、メニューサムネイル画像、すなわちVolumeを代表する画像、および、それぞれのPlayListを代表する画像をストアする。すべてのメニューサムネイルは、ただ1つのmenu.thmbファイルにストアされる。

【0265】mark.thmbファイルは、マークサムネイル画像、すなわちマーク点を表すピクチャをストアする。すべてのPlayListおよびClipに対するすべてのマークサムネイルは、ただ1つのmark.thmbファイルにストアされる。サムネイルは頻繁に追加、削除されるので、追加操作と部分削除の操作は容易に高速に実行できなければならない。この理由のため、Thumbnail()はブロック構造を有する。画像のデータはいくつかの部分に分割され、各部分は1つのtn_blockに格納される。1つの画像データはは連続したtn_blockに格納される。tn_blockの列には、使用されていないtn_blockが存在してもよい。1つのサムネイル画像のバイト長は可変である。

【0266】図78は、menu.thmbとmark.thmbのシンタクスを示す図であり、図79は、図78に示したmenu.thmbとmark.thmbのシンタクス内のThumbnailのシンタクスを示す図である。図79に示したThumbnailのシンタクスについて説明するに、version_numberは、このThumbnail()のバージョンナンバーを示す4個のキャラクター文字である。version_numberは、ISO 646に従って、"0045"と符号化されなければならない。

【0267】lengthは、このlengthフィールドの直後からThumbnail()の最後までのMakersPrivateData()のバイト数を示す32ビットの符号なし整数である。tn_block

s_start_addressは、Thumbnail()の先頭のバイトからの相対バイト数を単位として、最初のtn_blockの先頭バイトアドレスを示す32ビットの符号なし整数である。相対バイト数はゼロからカウントされる。number_of_thumbnailsは、Thumbnail()の中に含まれているサムネイル画像のエントリー数を与える16ビットの符号なし整数である。

【0268】tn_block_sizeは、1024バイトを単位として、1つのtn_blockの大きさを与える16ビットの符号なし整数である。例えば、tn_block_size=1ならば、それは1つのtn_blockの大きさが1024バイトであることを示す。number_of_tn_blocksは、このThumbnail()中のtn_blockのエントリ数を表す116ビットの符号なし整数である。thumbnail_indexは、このthumbnail_indexフィールドから始まるforループー回分のサムネイル情報で表されるサムネイル画像のインデクス番号を表す16ビットの符号なし整数である。thumbnail_index として、0xFFFFという値を使用してはならない。thumbnail_index はUIAppInfoVolume()、UIAppInfoPlayList()、PlayListMark()、およびClipMark()の中のref_thumbnail_indexによって参照される。

【0269】thumbnail_picture_formatは、サムネイル 画像のピクチャフォーマットを表す8ビットの符号なし整数で、図80に示すような値をとる。表中のDCFとPNC は"menu.thmb"内でのみ許される。マークサムネイル は、値"0x00" (MPEG-2 Video I-picture)をとらなければならない。

【0270】picture_data_sizeは、サムネイル画像のバイト長をバイト単位で示す32ビットの符号なし整数である。start_tn_block_numberは、サムネイル画像のデータが始まるtn_blockのtn_block番号を表す16ビットの符号なし整数である。サムネイル画像データの先頭は、tb_blockの先頭と一致していなければならない。tn_block番号は、0から始まり、tn_blockのfor-ループ中の変数kの値に関係する。

【0271】x_picture_lengthは、サムネイル画像のフレーム画枠の水平方向のピクセル数を表す16ビットの符号なし整数である。y_picture_lengthは、サムネイル画像のフレーム画枠の垂直方向のピクセル数を表す16ビットの符号なし整数である。tn_blockは、 サムネイル画像がストアされる領域である。Thumbnail()の中のすべてのtn_blockは、同じサイズ(固定長)であり、その大きさはtn_block_sizeによって定義される。

【0272】図81は、サムネイル画像データがどのようにtn_blockに格納されるかを模式的に表した図である。図81のように、各サムネイル画像データはtn_blockの先頭から始まり、1tn_blockを超える大きさの場合は、連続する次のtn_blockを使用してストアされる。このようにすることにより、可変長であるピクチャデータが、固定長のデータとして管理することが可能となり、

削除といった編集に対して簡便な処理により対応する事ができるようになる。

【0273】次に、AVストリームファイルについて説明する。AVストリームファイルは、"M2TS"ディレクトリ(図14)にストアされる。AVストリームファイルには、2つのタイプがあり、それらは、Clip AVストリームとBridge-Clip AVストリームファイルである。両方のAVストリーム共に、これ以降で定義されるDVR MPEG-2トランスポートストリームファイルの構造でなければなら10ない。

【0274】まず、DVR MPEG-2トランスポートストリームについて説明する。DVR MPEG-2トランスポートストリームの構造は、図82に示すようになっている。AVストリームファイルは、DVR MPEG2トランスポートストリームの構造を持つ。DVR MPEG2トランスポートストリームは、整数個のAligned unitから構成される。Alignedunitの大きさは、6144 バイト(2048*3 バイト)である。Aligned unitは、ソースパケットの第1バイト目から始まる。ソースパケットは、192バイト長である。1つのソースパケットは、TP_extra_headerとトランスポートパケットから成る。TP_extra_headerは、4バイト長であり、またトランスポートパケットは、188バイト長である。

【0275】1つのAligned unitは、32個のソースパケットから成る。DVR MPEG2トランスポートストリームの中の最後のAligned unitも、また32個のソースパケットから成る。よって、DVR MPEG2トランスポートストリームは、Aligned unitの境界で終端する。ディスクに記録される入力トランスポートストリームのトランスポートパケットの数が32の倍数でない時、ヌルパケット(PID=0x1FFFのトランスポートパケット)を持ったソースパケットを最後のAligned unitに使用しなければならない。ファイルシステムは、DVR MPEG2トランスポートストリームに余分な情報を付加してはならない。

【0276】図83に、DVR MPEG-2トランスポートストリームのレコーダモデルを示す。図83に示したレコーダは、レコーディングプロセスを規定するための概念上のモデルである。DVR MPEG-2トランスポートストリームは、このモデルに従う。

【0277】MPEG-2トランスポートストリームの入力タイミングについて説明する。入力MPEG2トランスポートストリームは、フルトランスポートストリームまたはパーシャルトランスポートストリームである。入力されるMPEG2トランスポートストリームは、ISO/IEC13818-1またはISO/IEC13818-9に従っていなければならない。MPEG2トランスポートストリームのi番目のバイトは、T-STD(ISO/IEC 13818-1で規定されるTransport stream system target decoder)とソースパケッタイザーへ、時刻t(i)に同時に入力される。Rpkは、トランスポートパケットの入力レートの瞬時的な最大値である。

50

【0278】27MHz PLL52は、27MHzクロックの周波数を発生する。27MHzクロックの周波数は、MPEG-2トランスポートストリームのPCR (Program Clock Reference)の値にロックされる。arrival time clock counter53は、27MHzの周波数のパルスをカウントするバイナリーカウンターである。Arrival_time_clock(i)は、時刻t(i)におけるArrival time clock counterのカウント値である。

【0279】source packetizer54は、すべてのトランスポートパケットにTP_extra_headerを付加し、ソースパケットを作る。Arrival_time_stampは、トランスポートパケットの第1バイト目がT-STDとソースパケッタイザーの両方へ到着する時刻を表す。Arrival_time_stamp(k)は、次式で示されるようにArrival_time_clock(k)のサンプル値であり、ここで、kはトランスポートパケットの第1バイト目を示す。

arrival_time_stamp(k) = arrival_time_clock(k)% 2

【0280】2つの連続して入力されるトランスポートパケットの時間間隔が、 2^{30} /2700000秒(約40秒)以 20上になる場合、その2つのトランスポートパケットのarrival_time_stampの差分は、 2^{30} /27000000秒になるようにセットされるべきである。レコーダは、そのようになる場合に備えてある。

【0281】smoothing buffer55は、入力トランスポートストリームのビットレートをスムージングする。スムージングバッファは、オーバーフロウしてはならない。Rmaxは、スムージングバッファが空でない時のスムージングバッファからのソースパケットの出力ビットレートである。スムージングバッファが空である時、スム 30ージングバッファからの出力ビットレートはゼロである。

【0282】次に、DVR MPEG-2トランスポートストリームのレコーダモデルのパラメータについて説明する。Rm axという値は、AVストリームファイルに対応するClipIn fo()において定義されるTS_recording_rateによって与えられる。この値は、次式により算出される。

Rmax = TS_recording_rate * 192/188 TS_recording_rateの値は、bytes/secondを単位とする 大きさである。

【0283】入力トランスポートストリームがSESFトランスポートストリームの場合、Rpkは、AVストリームファイルに対応するClipInfo()において定義されるTS_recording_rateに等しくなければならない。入力トランスポートストリームがSESFトランスポートストリームでない場合、この値はMPEG-2 transport streamのデスクリプター、例えばmaximum_bitrate_descriptorやpartial_transport_stream_descriptorなど、において定義される値を参照しても良い。

【0284】smoothing buffer sizeは、入力トランス

ポートストリームがSESFトランスポートストリームの場合、スムージングバッファの大きさはゼロである。入力トランスポートストリームがSESFトランスポートストリームでない場合、スムージングバッファの大きさはMPEG-2 transport streamのデスクリプター、例えばsmoothing_buffer_descriptor、short_smoothing_buffer_descriptor、partial_transport_stream_descriptorなどにおいて定義される値を参照しても良い。

【0285】記録機(レコーダ) および再生機(プレーヤ) は、十分なサイズのバッファを用意しなければならない。デフォールトのバッファサイズは、1536 bytesである。

【0286】次に、DVR MPEC-2トランスポートストリームのプレーヤモデルについて説明する。図84は、DVR MPEC-2トランスポートストリームのプレーヤモデルを示す図である。これは、再生プロセスを規定するための概念上のモデルである。DVR MPEC-2トランスポートストリームは、このモデルに従う。

【0287】27Mlz X-tal61は、27Mhzの周波数を発生する。27MHz周波数の誤差範囲は、+/-30 ppm (27000000 +/- 810 llz)でなければならない。arrival timeclock counter62は、27MHzの周波数のパルスをカウントするバイナリーカウンターである。Arrival_time_clock(i)は、時刻t(i)におけるArrival time clock counterのカウント値である。

【0288】smoothing buffer 64において、Rmaxは、スムージングバッファがフルでない時のスムージングバッファへのソースパケットの入力ビットレートである。スムージングバッファがフルである時、スムージングバッファへの入力ビットレートはゼロである。

【0289】MPEC-2トランスポートストリームの出力タイミングを説明するに、現在のソースパケットのarriva l_time_stampがarrival_time_clock(i)のLSB 30ビットの値と等しい時、そのソースパケットのトランスポートパケットは、スムージングバッファから引き抜かれる。Rpkは、トランスポートパケットレートの瞬時的な最大値である。スムージングバッファは、アンダーフロウしてはならない。

【0290】DVR MPEG-2トランスポートストリームのプ 40 レーヤモデルのパラメータについては、上述したDVR MP EG-2トランスポートストリームのレコーダモデルのパラ メータと同一である。

【0291】図85は、Source packetのシンタクスを示す図である。transport_packet()は、ISO/IEC 13818-1で規定されるMPEG-2トランスポートパケットである。図85に示したSource packetのシンタクス内のTP_Extra_headerのシンタクスを図86に示す。図86に示したTP_Extra_headerのシンタクスについて説明するに、copy_permission_indicatorは、トランスポートパケットの30ペイロードのコピー制限を表す整数である。コピー制限

は、copy free、no more copy、copy once、またはcopy prohibitedとすることができる。図87は、copy_perm ission indicatorの値と、それらによって指定されるモ ードの関係を示す。

【0292】copy_permission_indicatorは、すべての トランスポートパケットに付加される。IEEE1394デジタ ルインターフェースを使用して入力トランスポートスト リームを記録する場合、copy_permission_indicatorの 値は、IEEE1394 isochronouspacket headerの中のEMI (Encryption Mode Indicator)の値に関連付けても良 い。IEEE1394デジタルインターフェースを使用しないで 入力トランスポートストリームを記録する場合、copy_p ermission_indicatorの値は、トランスポートパケット の中に埋め込まれたCCIの値に関連付けても良い。アナ ログ信号入力をセルフエンコードする場合、copy_permi ssion_indicatorの値は、アナログ信号のCGMS-Aの値に 関連付けても良い。

【0293】arrival_time_stampは、次式 arrival_time_stamp(k) = arrival_time_clock(k)% 2

において、arrival_time_stampによって指定される値を 持つ整数値である。

【0294】Clip AVストリームの定義をするに、Clip AVストリームは、上述したような定義がされるDVR MPEG -2トランスポートストリームの構造を持たねばならな い。arrival_time_clock(i)は、Clip AVストリームの中 で連続して増加しなければならない。Clip AVストリー ムの中にシステムタイムベース(STCベース)の不連続 点が存在したとしても、そのClip AVストリームのarriv al_time_clock(i)は、連続して増加しなければならな い。

【O295】Clip AVストリームの中の開始と終了の間 のarrival_time_clock(i)の差分の最大値は、26時間 でなければならない。この制限は、MPEG2トランスポー トストリームの中にシステムタイムベース(STCベー ス) の不連続点が存在しない場合に、Clip AVストリー ムの中で同じ値のPTS(Presentation Time Stamp)が決し て現れないことを保証する。MPEG2システムズ規格は、P TSのラップアラウンド周期を233/90000秒(約26.5時間). と規定している。

【0296】Bridge-Clip AVストリームの定義をする に、Bridge-Clip AVストリームは、上述したような定義 がされるDVR MPEG-2トランスポートストリームの構造を 持たねばならない。Bridge-Clip AVストリームは、1つ のアライバルタイムベースの不連続点を含まなければな らない。アライバルタイムベースの不連続点の前後のト ランスポートストリームは、後述する符号化の制限に従 わなければならず、かつ後述するDVR-STDに従わなけれ ばならない。

avItem間のビデオとオーディオのシームレス接続をサポ ートする。PlayItem間をシームレス接続にすることは、 プレーヤ/レコーダに"データの連続供給"と"シームレ スな復号処理"を保証する。"データの連続供給"とは、 ファイルシステムが、デコーダにバッファのアンダーフ ロウを起こさせる事のないように必要なビットレートで データを供給する事を保証できることである。データの リアルタイム性を保証して、データをディスクから読み 出すことができるように、データが十分な大きさの連続 したブロック単位でストアされるようにする。

【0298】"シームレスな復号処理"とは、プレーヤ が、デコーダの再生出力にポーズやギャップを起こさせ る事なく、ディスクに記録されたオーディオビデオデー タを表示できることである。

【0299】シームレス接続されているPlayItemが参照 するAVストリームについて説明する。先行するPlayItem と現在のPlayItemの接続が、シームレス表示できるよう に保証されているかどうかは、現在のPlayItemにおいて 定義されているconnection_conditionフィールドから判 断することができる。PlayItem間のシームレス接続は、 Bridge-Clipを使川する方法と使川しない方法がある。

【0300】図88は、Bridge-Clipを使用する場合の 先行するPlayItemと現在のPlayItemの関係を示してい る。図88においては、プレーヤが読み出すストリーム データが、影をつけて示されている。図88に示したTS 1は、Clip1 (Clip AVストリーム) の影を付けられたス トリームデータとBridge-ClipのRSPN_arrival_time_dis continuityより前の影を付けられたストリームデータか ら成る。

30 【0301】TS1のClip1の影を付けられたストリームデ ータは、先行するPlayItemのIN_time(図88においてI N time1で図示されている) に対応するプレゼンテーシ ョンユニットを復号する為に必要なストリームのアドレ スから、RSPN_exit_from_previous_Clipで参照されるソ ースパケットまでのストリームデータである。TS1に含 まれるBridge-ClipのRSPN_arrival_time_discontinuity より前の影を付けられたストリームデータは、Bridge-C lipの最初のソースパケットから、RSPN_arrival_time_d iscontinuityで参照されるソースパケットの直前のソー スパケットまでのストリームデータである。

【0302】また、図88におけるTS2は、Clip2 (Clip AVストリーム) の影を付けられたストリームデータとB ridge-ClipのRSPN_arrival_time_discontinuity以後の 影を付けられたストリームデータから成る。TS2に含ま れるBridge-ClipのRSPN_arrival_time_discontinuity以 後の影を付けられたストリームデータは、RSPN_arrival _time_discontinuityで参照されるソースパケットか ら、Bridge-Clipの最後のソースパケットまでのストリ ームデータである。TS2のClip2の影を付けられたストリ 【0297】本実施の形態においては、編集におけるPl 50 ームデータは、RSPN_enter_to_current_Clipで参照され

るソースパケットから、現在のPlayItemのOUT_time(図88においてOUT_time2で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスまでのストリームデータである。

【0303】図89は、Bridge-Clipを使用しない場合の先行するPlayItemと現在のPlayItemの関係を示している。この場合、プレーヤが読み出すストリームデータは、影をつけて示されている。図89におけるTS1は、Clip1 (Clip AVストリーム)の影を付けられたストリームデータから成る。TS1のClip1の影を付けられたストリームデータは、先行するPlayItemのIN_time(図89においてIN_time1で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスから始まり、Clip1の最後のソースパケットまでのデータである。また、図89におけるTS2は、Clip2 (Clip AVストリーム)の影を付けられたストリームデータから成る。

【0304】TS2のClip2の影を付けられたストリームデータは、Clip2の最初のソースパケットから始まり、現在のPlayItemのOUT_time(図89においてOUT_time2で図示されている)に対応するプレゼンテーションユニットを復号する為に必要なストリームのアドレスまでのストリームデータである。

【0305】図88と図89において、TS1とT2は、ソースパケットの連続したストリームである。次に、TS1とTS2のストリーム規定と、それらの間の接続条件について考える。まず、シームレス接続のための符号化制限について考える。トランスポートストリームの符号化構造の制限として、まず、TS1とTS2の中に含まれるプログラムの数は、1でなければならない。TS1とTS2の中に含まれるビデオストリームの数は、1でなければならない。TS1とTS2の中に含まれるオーディオストリームの数は、2以下でなければならない。TS1とTS2の中に含まれるオーディオストリームの数は、5以下でなければならない。TS1とTS2の中に含まれるオーディオストリームの数は、等しくなければならない。TS1および/またはTS2の中に、上記以外のエレメンタリーストリームまたはプライベートストリームが含まれていても良い。

【0306】ビデオビットストリームの制限について説明する。図90は、ピクチャの表示順序で示すシームレス接続の例を示す図である。接続点においてビデオストリームをシームレスに表示できるためには、OUT_timel (Clip1のOUT_time) の後とIN_time2 (Clip2のIN_time) の前に表示される不必要なピクチャは、接続点付近のClipの部分的なストリームを再エンコードするプロセスにより、除去されなければならない。

【0307】図90に示したような場合において、Brid geSequenceを使用してシームレス接続を実現する例を、図91に示す。RSPN_arrival_time_discontinuityより前のBridge-Clipのビデオストリームは、図90のClip1のOUT_time1に対応するピクチャまでの符号化ビデオス

トリームから成る。そして、そのビデオストリームは先行するClip1のビデオストリームに接続され、1つの連続でMPEG2規格に従ったエレメンタリーストリームとなるように再エンコードされている。

【0308】同様にして、RSPN_arrival_time_discontinuity以後のBridge-Clipのビデオストリームは、図90のClip2のIN_time2に対応するピクチャ以後の符号化ビデオストリームから成る。そして、そのビデオストリームは、正しくデコード開始する事ができて、これに続くClip2のビデオストリームに接続され、1つの連続でMPEC2規格に従ったエレメンタリーストリームとなるように再エンコードされている。Bridge-Clipを作るためには、一般に、数枚のピクチャは再エンコードしなければならず、それ以外のピクチャはオリジナルのClipからコピーすることができる。

【0309】図90に示した例の場合にBridgeSequence を使用しないでシームレス接続を実現する例を図92に示す。Clip1のビデオストリームは、図90のOUT_timel に対応するピクチャまでの符号化ビデオストリームから成り、それは、1つの連続でMPEG2規格に従ったエレメンタリーストリームとなるように再エンコードされている。同様にして、Clip2のビデオストリームは、図90のClip2のIN_timc2に対応するピクチャ以後の符号化ビデオストリームから成り、それは、1つの連続でMPEG2規格に従ったエレメンタリーストリームとなるように再エンコードされている。

【0310】ビデオストリームの符号化制限について説明するに、まず、TS1とTS2のビデオストリームのフレームレートは、等しくなければならない。TS1のビデオストリームは、sequence_end_codeで終端しなければならない。TS2のビデオストリームは、Sequence Header、GOPHeader、そしてI-ピクチャで開始しなければならない。TS2のビデオストリームは、クローズドGOPで開始しなければならない。

【0311】ビットストリームの中で定義されるビデオプレゼンテーションユニット(フレームまたはフィールド)は、接続点を挟んで連続でなければならない。接続点において、フレームまたはフィールドのギャップがあってはならない。接続点において、トップ?ボトムのフィールドシーケンスは連続でなければならない。3-2プルダウンを使用するエンコードの場合は、"top_field_first"および "repeat_first_field"フラグを書き換える必要があるかもしれない、またはフィールドギャップの発生を防ぐために局所的に再エンコードするようにしても良い。

【0312】オーディオビットストリームの符号化制限について説明するに、TS1とTS2のオーディオのサンプリング周波数は、同じでなければならない。TS1とTS2のオーディオの符号化方法(例. MPEG1レイヤ2, AC-3, SESFLPCM, AAC)は、同じでなければならない。

【0313】次に、MPEG-2トランスポートストリームの 符号化制限について説明するに、TS1のオーディオスト リームの最後のオーディオフレームは、TS1の最後の表 示ピクチャの表示終了時に等しい表示時刻を持つオーデ ィオサンプルを含んでいなければならない。TS2のオー ディオストリームの最初のオーディオフレームは、TS2 の最初の表示ピクチャの表示開始時に等しい表示時刻を 持つオーディオサンプルを含んでいなければならない。 【0314】接続点において、オーディオプレゼンテー ションユニットのシーケンスにギャップがあってはなら ない。図93に示すように、2オーディオフレーム区間 未満のオーディオプレゼンテーションユニットの長さで 定義されるオーバーラップがあっても良い。TS2のエレ メンタリーストリームを伝送する最初のパケットは、ビ デオパケットでなければならない。接続点におけるトラ ンスポートストリームは、後述するDVR-STDに従わなく てはならない。

【0315】ClipおよびBridge-Clipの制限について説 明するに、TS1とTS2は、それぞれの中にアライバルタイ ムベースの不連続点を含んではならない。

【0316】以下の制限は、Bridge-Clipを使用する場合にのみ適用される。TS1の最後のソースパケットとTS2の最初のソースパケットの接続点においてのみ、Bridge-ClipAVストリームは、ただ1つのアライバルタイムベースの不連続点を持つ。ClipInfo()において定義されるRSPN_arrival_time_discontinuityが、その不連続点のアドレスを示し、それはTS2の最初のソースパケットを参照するアドレスを示さなければならない。

【0317】BridgeSequenceInfo()において定義される RSPN_exit_from_previous_Clipによって参照されるソー 30 スパケットは、Clip1の中のどのソースパケットでも良い。それは、Aligned unitの境界である必要はない。BridgeSequenceInfo()において定義されるRSPN_enter_to_current_Clipによって参照されるソースパケットは、Clip2の中のどのソースパケットでも良い。それは、Aligned unitの境界である必要はない。

【0318】PlayItemの制限について説明するに、先行するPlayItemのOUT_time(図88、図89において示されるOUT_time1)は、TS1の最後のビデオプレゼンテーションユニットの表示終了時刻を示さなければならない。現在のPlayItemのIN_time(F図88、図89において示されるIN_time2)は、TS2の最初のビデオプレゼンテーションユニットの表示開始時刻を示さなければならない。

【0319】Bridge-Clipを使用する場合のデータアロケーションの制限について、図94を参照して説明するに、シームレス接続は、ファイルシステムによってデータの連続供給が保証されるように作られなければならない。これは、Clip1(Clip AVストリームファイル)とClip2(Clip AVストリームファイル)に接続されるBridge 50

-Clip AVストリームを、データアロケーション規定を満たすように配置することによって行われなければならない。

【0320】RSPN_exit_from_previous_Clip以前のClip 1 (Clip AVストリームファイル)のストリーム部分が、ハーフフラグメント以上の連続領域に配置されているように、RSPN_exit_from_previous_Clipが選択されなければならない。Bridge-Clip AVストリームのデータ長は、ハーフフラグメント以上の連続領域に配置されるように、選択されなければならない。RSPN_enter_to_current_Clip以後のClip2 (Clip AVストリームファイル)のストリーム部分が、ハーフフラグメント以上の連続領域に配置されているように、RSPN_enter_to_current_Clipが選択されなければならない。

【0321】Bridge-Clipを使用しないでシームレス接続する場合のデータアロケーションの制限について、図95を参照して説明するに、シームレス接続は、ファイルシステムによってデータの連続供給が保証されるように作られなければならない。これは、Clip1(Clip AVストリームファイル)の最後の部分とClip2(Clip AVストリームファイル)の最初の部分を、データアロケーション規定を満たすように配置することによって行われなければならない。

【0322】Clip1 (Clip AVストリームファイル)の最後のストリーム部分が、ハーフフラグメント以上の連続領域に配置されていなければならない。Clip2 (Clip AVストリームファイル)の最初のストリーム部分が、ハーフフラグメント以上の連続領域に配置されていなければならない。

【0323】次に、DVR-STDについて説明する。DVR-STD は、DVR MPEC2トランスポートストリームの生成および検証の際におけるデコード処理をモデル化するための概念モデルである。また、DVR-STDは、上述したシームレス接続された2つのPlayItemによって参照されるAVストリームの生成および検証の際におけるデコード処理をモデル化するための概念モデルでもある。

【0324】DVR-STDモデルを図96に示す。図96に示したモデルには、DVR MPEG-2トランスポートストリームプレーヤモデルが構成要素として含まれている。n, TBn,MBn, EBn, TBsys, Bsys, Rxn, Rbxn, Rxsys, Dn, Dsys, OnおよびPn(k)の表記方法は、1SO/1EC13818-1のT-STDに定義されているものと同じである。すなわち、次の通りである。nは、エレメンタリーストリームのインデクス番号である。TBnは、エレメンタリーストリームnのトランスポートバッファでる。

【0325】MBnは、エレメンタリーストリームnの多重 バッファである。ビデオストリームについてのみ存在す る。EBnは、エレメンタリーストリームnのエレメンタリ ーストリームバッファである。ビデオストリームについ てのみ存在する。TBsysは、復号中のプログラムのシス テム情報のための入力バッファである。Bsysは、復号中のプログラムのシステム情報のためのシステムターゲットデコーダ内のメインバッファである。Rxnは、データがTBnから取り除かれる伝送レートである。Rbxnは、PESパケットペイロードがMBnから取り除かれる伝送レートである。ビデオストリームについてのみ存在する。

【 O 3 2 6】Rxsysは、データがTBsysから取り除かれる 伝送レートである。Dnは、エレメンタリーストリームn のデコーダである。Dsysは、復号中のプログラムのシス テム情報に関するデコーダである。Onは、ビデオストリ ームnのre-ordering bufferである。Pn(k)は、エレメン タリーストリームnのk番目のプレゼンテーションユニッ トである。

【O327】DVR-STDのデコーディングプロセスについて説明する。単一のDVR MPEG-2トランスポートストリームを再生している間は、トランスポートパケットをTB1、TBnまたはTBsysのバッファへ入力するタイミングは、ソースパケットのarrival_time_stampにより決定される。TB1、MB1、EB1、TBn、Bn、TBsysおよびBsysのバッファリング動作の規定は、ISO/IEC 13818-1に規定されているT-STDと同じである。復号動作と表示動作の規定もまた、ISO/IEC 13818-1に規定されているT-STDと同じである。

【0328】シームレス接続されたPlayItemを再生している間のデコーディングプロセスについて説明する。ここでは、シームレス接続されたPlayItemによって参照される2つのAVストリームの再生について説明をすることにし、以後の説明では、上述した(例えば、図88に示した)TS1とTS2の再生について説明する。TS1は、先行するストリームであり、TS2は、現在のストリームである。

【0329】図97は、あるAVストリーム (TS1) からそれにシームレスに接続された次のAVストリーム (TS2) へと移る時のトランスポートパケットの入力,復号,表示のタイミングチャートを示す。所定のAVストリーム (TS1) からそれにシームレスに接続された次のAVストリーム (TS2) へと移る間には、TS2のアライバルタイムベースの時間軸 (図97においてATC2で示される)は、TS1のアライバルタイムベースの時間軸 (図97においてATC1で示される)と同じでない。

【0330】また、TS2のシステムタイムベースの時間軸(図97においてSTC2で示される)は、TS1のシステムタイムベースの時間軸(図97においてSTC1で示される)と同じでない。ビデオの表示は、シームレスに連続していることが要求される。オーディオのプレゼンテーションユニットの表示時間にはオーバーラップがあっても良い。

【0331】DVR-STD への入力タイミングについて説明 する。時刻T1までの時間、すなわち、TS1の最後のビデ オパケットがDVR-STDのTB1に入力終了するまでは、DVR-50

STDのTB1、TBn またはTBsysのバッファへの入力タイミングは、TS1のソースパケットのarrival_time_stampによって決定される。

【0332】TS1の残りのパケットは、TS_recording_rate(TS1)のビットレートでDVR-STDのTBnまたはTBsysのバッファへ入力されなければならない。ここで、TS_recording_rate(TS1)は、Clip1に対応するClipInfo()において定義されるTS_recording_rateの値である。TS1の最後のバイトがバッファへ入力する時刻は、時刻T2である。従って、時刻T1からT2までの区間では、ソースパケットのarrival_time_stampは無視される。

【0333】NIをTS1の最後のビデオパケットに続くTS1のトランスポートパケットのバイト数とすると、時刻T、乃至 T_2 までの時間DT1は、N1バイトがTS_recording_rate(TS1)のビットレートで入力終了するために必要な時間であり、次式により算出される。

DT1=T₂-T₁=N1 / TS_recording_rate (TS1)時刻T₁乃至T₂までの間は、RXnとRXsysの値は共に、TS_recording_rate(TS1)の値に変化する。このルール以外のバッファリング動作は、T-STDと同じである。

【0334】T₂の時刻において、arrival time clock counterは、TS2の最初のソースパケットのarrival_time _stampの値にリセットされる。DVR-STDのTB1, TBn またはTBsysのバッファへの入力タイミングは、TS2のソースパケットのarrival_time_stampによって決定される。RX nとRXsysは共に、T-STDにおいて定義されている値に変化する。

【0335】付加的なオーディオバッファリングおよびシステムデータバッファリングについて説明するに、オーディオデコーダとシステムデコーダは、時刻T1からT2までの区間の入力データを処理することができるように、T-STDで定義されるバッファ量に加えて付加的なバッファ量(約1秒分のデータ量)が必要である。

【0336】ビデオのプレゼンテーションタイミングについて説明するに、ビデオプレゼンテーションユニットの表示は、接続点を通して、ギャップなしに連続でなければならない。ここで、STC1は、TS1のシステムタイムベースの時間軸(図97ではSTC1と図示されている)とし、STC2は、TS2のシステムタイムベースの時間軸(図97ではSTC2と図示されている。正確には、STC2は、TS2の最初のPCRがT-STDに入力した時刻から開始する。)とする。

【0337】STC1とSTC2の間のオフセットは、次のように決定される。PTS † は、TS1の最後のビデオプレゼンテーションユニットに対応するSTC1上のPTSであり、PTS † は、TS2の最初のビデオプレゼンテーションユニットに対応するSTC2上のPTSであり、 T_{pp} は、TS1の最後のビデオプレゼンテーションユニットの表示期間とすると、2つのシステムタイムベースの間のオフセットSTC_dcltaは、次式により算出される。

61

 $STC_delta = PTS^{1}_{end} + T_{pp} - PTS^{2}_{start}$

【0338】オーディオのプレゼンテーションのタイミングについて説明するに、接続点において、オーディオプレゼンテーションユニットの表示タイミングのオーバーラップがあっても良く、それは0乃至2オーディオフレーム未満である(図97に図示されている"audio ove rlap"を参照)。どちらのオーディオサンプルを選択するかということと、オーディオプレゼンテーションユニットの表示を接続点の後の補正されたタイムベースに再同期することは、プレーヤ側により設定されることであ 10 る。

【0339】DVR-STDのシステムタイムクロックについて説明するに、時刻 T 5において、TS1の最後のオーディオプレゼンテーションユニットが表示される。システムタイムクロックは、時刻 T₂から T₅の間にオーバーラップしていても良い。この区間では、DVR-STDは、システムタイムクロックを古いタイムベースの値(STC1)と新しいタイムベースの値(STC2)の間で切り替える。STC2の値は、次式により算出される。

STC2=STC1-STC delta

【0340】バッファリングの連続性について説明する。STC1 video end は、TS1の最後のビデオパケットの最後のバイトがDVR-STDのTB1へ到着する時のシステムタイムベースSTC1上のSTCの値である。STC2 video stat は、TS2の最初のビデオパケットの最初のバイトがDVR-STDのTB1へ到着する時のシステムタイムベースSTC2上のSTCの値である。STC2 video end は、STC1 video end の値をシステムタイムベースSTC2上の値に換算した値である。STC2 video end は、次式により算出される。STC2 video end - STC2 video end - STC_delta

【0341】DVR-STDに従うために、次の2つの条件を満たす事が要求される。まず、TS2の最初のビデオパケットのTB1への到着タイミングは、次に示す不等式を満たさなければならない。そして、次に示す不等式を満たさなければならない。

 $STC2^2$ video_stati > $STC2^1$ video_end + Δ T1 この不等式が満たされるように、Clip1 および、または、Clip2 の部分的なストリームを再エンコードおよび、または、再多重化する必要がある場合は、その必要に応じて行われる。

【0342】次に、STC1とSTC2を同じ時間軸上に換算したシステムタイムベースの時間軸上において、TS1からのビデオパケットの入力とそれに続くTS2からのビデオパケットの入力は、ビデオバッファをオーバーフロウおよびアンダーフローさせてはならない。

【0343】このようなシンタクス、データ構造、規則に基づく事により、記録媒体に記録されているデータの内容、再生情報などを適切に管理することができ、もって、ユーザが再生時に適切に記録媒体に記録されているデータの内容を確認したり、所望のデータを簡便に再生 50

できるようにすることができる。

【0344】なお、本実施の形態は、多重化ストリームとしてMPEG2トランスポートストリームを例にして説明しているが、これに限らず、MPEG2プログラムストリームや米国のDirecTVサービス(商標)で使用されているDSSトランスポートストリームについても適用することが可能である。

【0345】次に、図98は、PlayListファイルの別の例を示す。図98と図23のシンタクスの大きな違いは、UlAppInfoPlayList()をストアしている場所である。図98の例では、UIAppInfoPlayList()がPlayList()の中から外に出されているので、UIAppInfoPlayList()の将来の情報拡張が比較的容易に行えるようになる。【0346】version_numberは、このサムネールヘッダ情報ファイルのバージョンナンバーを示す4個の数字である。

【0347】PlayList_start_addressは、PlayListファイルの先頭のバイトからの相対バイト数を単位として、PlayList()の先頭アドレスを示す。相対バイト数はゼロ20 からカウントされる。

【0348】PlayListMark_start_addressは、PlayListファイルの先頭のバイトからの相対バイト数を単位として、PlayListMark()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0349】MakersPrivateData_start_addressは、PlayListファイルの先頭のバイトからの相対バイト数を単位として、MakersPrivateData()の先頭アドレスを示す。相対バイト数はゼロからカウントされる。

【0350】図99は、図98のPlayListファイルの中のUIAppInfoPlayListのシンタクスを示す。PlayList_service_typeは、PlayListファイルのタイプを示す。その一例は、図26に示されている。また、PlayList_service_typeは、ディジタルTV放送のプログラムが示すサービスタイプと同じ意味を持たせても良い。例えば、日本のディジタルBS放送の場合、サービスタイプは、テレビサービス、音声サービス、およびデータ放送サービスの3種類を持つ。PlayListが使用するClip AVストリームが含むプログラムのサービスタイプを代表する値をPlayList_service_typeにセットする。

【0351】PlayList_character_setは、channel_name, PlayList_nameおよびPlayList_detailフィールドに符号化されているキャラクター文字の符号化方法を示す。また、これはPlayListMarkの中のmark_nameフィールドに符号化されているキャラクター文字の符号化方法を示す。

【0352】channel_numberは、そのPlayListが記録される時、ユーザによって選択された放送チャンネル番号またはサービス番号を示す。複数のPlayListが1つのPlayListにコンバインされた場合は、このフィールドはそのPlayListの代表値を示す。このフィールドが0xFFFFに

セットされている場合、このフィールドは何も意味を持 たない。

63

【0353】channel_name_lengthは、channel_nameフィールドの中に示されるチャンネル名のバイト長を示す。このフィールドは、20以下の値である。

【0354】channel_nameは、そのPlayListが記録される時、ユーザによって選択された放送チャンネルまたはサービスの名前を示す。このフィールドの中の左からchannel_name_lengthによって示される数のバイト数が有効なキャラクター文字であり、前記名前を示す。このフィールドの中で、それら有効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。複数のPlayListが1つのPlayListにコンバインされた場合は、このフィールドはそのPlayListを代表する名前を示す。

【0355】PlayList_name_lengthは、PlayList_nameフィールドの中に示されるPlayList名のバイト長を示す。

【0356】PlayList_nameは、PlayListの名前を示す。このフィールドの中の左からPlayList_name_length 20 によって示される数のバイト数が行効なキャラクター文字であり、前記名前を示す。このフィールドの中で、それら行効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。

【0357】PlayList_detail_lengthは、PlayList_dat ailフィールドの中に示されるPlayListの詳細情報のバイト長を示す。このフィールドは、1200以下の値である。

【0358】PlayList_detailは、PlayListの詳細情報を説明するテキストを示す。このフィールドの中の左か 30 らPlayList_detail_lengthによって示される数のバイト数が有効なキャラクター文字であり、前記テキストを示す。このフィールドの中で、それら有効なキャラクター文字に続く残りのバイトは、どんな値がセットされていても良い。

【0359】これ以外のシンタクスフィールドの意味は、図27に示す同名のフィールドと同じである。

【0360】図100は、図98のPlayListファイルの中のPlayList()のシンタクスを示す。図25の例と比べると、UIAppInfoPlayList()がなくなった点が違うだけで、これ以外は基本的に同じである。

【0361】図101は、SubPlayItemのシンタクスの 別例を示す。図40の例と比べると、STC_sequence_id が追加された点が大きな違いである。

【0362】STC_sequence_idは、Clip_Information_file_nameに対応するAVストリームファイル上の再生区間を特定するためのSubPath_IN_timeとSubPath_OUT_timeが参照するところのSTCのSTC_sequence_idを示す。SubPath_IN_timeとSubPath_OUT_timeは、STC_sequence_idによって指定される同じSTC連続区間上の時間を示す。

【0363】SubPlayItemにSTC_sequence_idを追加することにより、SubPlayItemが参照するAVストリームファイルがSTC不連続点を持つことが許されるようになる。

【0364】これ以外のシンタクスフィールドの意味は、図40に示す同名のフィールドと同じである。

【0365】図102は、Real PlayListの作成方法を 説明するフローチャートを示す。図1の記録再生装置の ブロック図を参照しながら説明する。

【0366】ステップS11で、制御部23はClip AV ストリームを記録する。

【0367】ステップS12で、制御部23はClip AVストリームの EP_map を作成可能かどうかを調べる。ステップS12で、Yesの場合はステップS13へ進み、 EP_map を作成する。ステップS12で、Noの場合はステップS14へ進み、 TU_map を作成する。

【0368】その後、ステップS15で、制御部23は PlayListのCPI_typeをセットする。

【0369】ステップS16で、制御部23は上記Clipの全ての再生可能範囲をカバーするPlayItemからなるPlayList()を作成する。CPI_typeがEP_mapタイプの場合は、時間情報をPTSベースでセットする、この時、Clipの中にSTC不連続点があり、PlayList()が2つ以上のPlayItemからなる場合は、PlayItem間のconnection_conditionもまた決定する。CPI_typeがTU_mapタイプの場合は、時間情報をアライバルタイムベースでセットする。

【0370】ステップS17で、制御部23はUIAppInfoPlayList()を作成する。

【0371】ステップS18で、制御部23はPlayList Markを作成する。

【0372】ステップS19で、制御部23はMakersPrivateDataを作成する。

【0373】ステップS20で、制御部23はReal PlayListファイルを記録する。

【0374】このようにして、新規にClip AVストリームを記録する毎に、1つのReal PlayListファイルが作られる。

【0375】図103は、Virtual PlayListの作成方法を説明するフローチャートである。

【0376】ステップS31で、ユーザインターフェースを通して、ディスクに記録されている1つのReal PlayListが指定される。そして、そのReal PlayListの再生範囲の中から、ユーザインターフェースを通して、IN点とOUT点で示される再生区間が指定される。CPI_typeがEP_mapタイプの場合は、再生区間をPTSベースでセットし、CPI_typeがTU_mapタイプの場合は、再生区間をアライバルタイムベースでセットする。

【0377】ステップS32で、制御部23はユーザによる再生範囲の指定操作がすべて終了したか調べる。ユーザが上記指示した再生区間に続けて再生する区間を選50 ぶ場合はステップS31へ戻る。ステップS32でユー

10

ザによる再生範囲の指定操作がすべて終了した場合は、 ステップS33へ進む。

【0378】ステップS33で、連続して再生される2つの再生区間の間の接続状態(connection_condition)を、ユーザがユーザインタフェースを通して決定するか、または制御部23が決定する。

【0379】ステップS34で、CPI_typeがEP_mapタイプの場合、ユーザインタフェースを通して、ユーザがサブパス(アフレコ用オーディオ)情報を指定する。ユーザがサブパスを作成しない場合はこのステップはない。

【0380】ステップS35で、制御部23はユーザが 指定した再生範囲情報、およびconnection_conditionに 基づいて、PlayList()を作成する。

【0381】ステップS36で、制御部23はUIAppInfoPlayList()を作成する。

【0382】ステップS37で、制御部23はPlayList Markを作成する。

【0383】ステップS38で、制御部23はMakersPrivateDataを作成する。

【0384】ステップS39で、制御部23はVirtual PlayListファイルを記録する。

【0385】このようにして、ディスクに記録されているReal PlayListの再生範囲の中から、ユーザが見たい再生区間を選択してその再生区間をグループ化したもの毎に、1つのVirtual PlayListファイルが作られる。

【 0 3 8 6 】 図 1 0 4 は Play List の 再生方法を説明する フローチャートである。

【0387】ステップS51で、制御部23はInfo.dvr, Clip Information file, PlayList fileおよびサムネールファイルの情報を取得し、ディスクに記録されているPlayListの一覧を示すGUI画面を作成し、ユーザインタフェースを通して、GUIに表示する。

【0388】ステップS52で、制御部23はそれぞれのPlayListのUIAppInfoPlayList()に基づいて、PlayListを説明する情報をGUI画面に提示する。

【0389】ステップS53で、ユーザインタフェース を通して、GUI画面上からユーザが1つのPlayListの再 生を指示する。

【0390】ステップS54で、制御部23は、CPI_ty peがEP_mapタイプの場合、現在のPlayItemのSTC-sequen 40 c-idとIN_timeのPTSから、IN_timeより時間的に前で最も近いエントリーポイントのあるソースパケット番号を取得する。または制御部23は、CPI_typeがTU_mapタイプの場合、現在のPlayItemのIN_timeから、IN_timeより時間的に前で最も近いタイムユニットの開始するソースパケット番号を取得する。

【0391】ステップS55で、制御部23は上記ステップで得られたソースパケット番号からAVストリームのデータを読み出し、AVデコーダ27へ供給する。

【0392】ステップS56で、現在のPlayItemの時間 50

的に前のPlayItemがあった場合は、制御部23は、前のPlayItemと現在のPlayItemとの表示の接続処理をconnection conditionに従って行う。

【0393】ステップS57で、制御部23は、CPI_ty peがEP_mapタイプの場合、AVデコーダ27は、IN_time のPTSのピクチャから表示を開始するように指示する。または、制御部23は、CPI_typeがEP_mapタイプの場合、AVデコーダ27は、IN_time以後のストリームのピクチャから表示を開始するように指示する。

【0394】ステップS58で、制御部23は、AVデコーダ27にAVストリームのデコードを続けるように指示する。

【0395】ステップS59で、制御部23は、CPI_ty peがEP_mapタイプの場合、現在表示の画像が、OUT_time のPTSの画像かを調べる。または、制御部23は、CPI_t ypeがTU_mapタイプの場合、現在デコードしているストリームがOUT_timeを過ぎたかを調べる。

【0396】ステップS59で、Noの場合は、ステップS60へ進む。ステップS60で現在の画像を表示して、ステップS58へ戻る。Yesの場合は、ステップS61へ進む。

【0397】ステップS61で、制御部23は、現在のPlayItemがPlayListの中で最後のPlayItemかを調べる。Noの場合はステップS54へ戻る。Yesの場合は、PlayListの再生を終了する。

【0398】図105は、PlayListのSubパスの再生方法を説明するフローチャートである。図105のPlayListのサブパスの再生方法は、PlayListのCPI_typeがEP_mapの場合のみに用いられる。このフローチャートの処理は、図104のPlayListの再生におけるステップS54以後の処理と共に、同時に行われる。また、AVデコーダ27は同時に2本のオーディオストリームのデコードが可能であることを前提とする。

【0399】ステップS71で、制御部23は、SubPlayItemの情報を取得する。

【0400】ステップS72で、制御部23は、SubPat h_IN_timeよりも時間的に前で最も近いエントリーポイントのあるソースパケット番号を取得する。

【0401】ステップS73で、制御部23は、上記エントリーポイントのあるソースパケット番号からサブパスのAVストリームのデータを読み出し、AVデコーダ27へ供給する。

【0402】ステップS74で、制御部23は、Mainパスの再生が、sync_PlayItem_idとsync_start_PTS_of_PlayItemで示されるピクチャになったら、サブパスのオーディオを表示を開始するようにAVデコーダ27に指示する

【0403】ステップS75でAVデコーダ27は、サブパスのAVストリームのデコードを続ける。

【0404】ステップS76で制御部23は、現在表示

するサブパスのPTSが、SubPath_OUT_timeかを調べる。Noの場合は、ステップS77へ進む。ステップS77でサブパスの表示を続けて、ステップS75へ戻る。

【0405】ステップS76で現在表示するサブパスのPTSが、SubPath_OUT_timeの場合はサブパスの表示を終了する。

【0406】図104および図105のようにして、ユーザにより再生指示された1つのPlayListファイルのメインパスおよびサブパスの再生が行なわれる。

【0407】図106は、PlayListMarkの作成方法を説明するフローチャートを示す。図1の記録再生装置のブロック図を参照しながら説明する。

【0408】ステップS91で、制御部23はInfo.dvr, Clip Information file, PlayList fileおよびThumbnail fileの情報を取得し、ディスクに記録されているPlayListの一覧を示すGUI画面を作成し、ユーザインタフェースを通して、GUIに表示する。

【0409】ステップS92で、ユーザインタフェース を通して、ユーザが1つのPlayListの再生を制御部23 に指示する。

【0410】ステップS93で、制御部23は、上記指示されたPlayListの再生を開始させる(図104参照)。

【0411】ステップS94で、ユーザインタフェース を通して、ユーザがお気に入りのシーンのところにマー クのセットを制御部23に指示する。

【 O 4 1 2】ステップS95で、制御部23は、CPI_ty peがEP_mapの場合、マークのPTSとそれが属するPlayIte mのPlayItem_idを取得する。または制御部23は、CPI_typeがTU_mapの場合、マーク点のアライバルタイムを取 30 得する

【0413】ステップS96で、制御部23はマークの情報をPlayList Mark()にストアする。

【 O 4 1 4 】 ステップ S 9 7 で、制御部 2 3 は、PlayLi stファイルを記録媒体 1 0 0 に記録する。

【0415】図107は、PlayListMarkを使用した頭出 し再生方法を説明するフローチャートである。図1の記 録再生装置のブロック図を参照しながら説明する。

【 O 4 1 6 】ステップS 1 1 1 で、制御部 2 3 はInfo.d vr, Clip Information file, PlayList fileおよびThum 40 bnail fileの情報を取得し、ディスク(記録媒体 1 0 0)に記録されているPlayListの一覧を示すGUI画面を作成し、ユーザインタフェースを通して、GUIに表示する。

【0417】ステップS112で、制御部23は、ユーザインタフェースを通して、ユーザが1つのPlayListの再生を指示する。

【0418】ステップS113で、制御部23はPlayLi stMarkで参照されるピクチャから生成したサムネールのリストを、ユーザインタフェースを通して、GUIに表示

する。

【0419】ステップS114で、ユーザインタフェースを通して、制御部23にユーザが再生開始点のマーク点を指定する。

【O420】ステップS115で、制御部23は、CPI_typeはEP_mapタイプの場合は、マークのPTSとそれが属するPlayItem_idを取得する。または制御部23は、CPI_typeはTU_mapタイプの場合は、マークのATS(Arrival Time Stamp)を取得する。

【0421】ステップS116で、制御部23は、CPI_typeはEP_mapタイプの場合、PlayItem_idが指すPlayItemが参照するAVストリームのSTC-sequence-idを取得する。

【0422】ステップS117で、制御部23は、CPI_typeはEP_mapタイプの場合は、上記STC-sequence-idとマークのPTSに基づいて、AVストリームをデコーダへ入力する。具体的には、このSTC-sequence-idとマーク点のPTSを用いて、図104のステップS54、ステップS55と同様の処理を行う。または制御部23は、CPI_typeはTU_mapタイプの場合は、マークのATSに基づいて、AVストリームをデコーダへ入力する。具体的には、このATSを用いて図104のステップS54、ステップS55と同様の処理を行う。

【0423】ステップS118で、制御部23は、CPI_typeがEP_mapタイプの場合は、マーク点のPTSのピクチャから表示を開始させる。または制御部23は、CPI_typeがTU_mapタイプの場合は、マーク点のATS以後のピクチャから表示を開始させる。

【0424】このように、図106のようにして、ユーザがPlayListからお気に入りのシーンの開始点等を選び、それをレコーダ(記録再生装置1の制御部23)はPlayListMarkに管理する。また図107のようにして、ユーザがPlayListMarkにストアされているマーク点のリストから再生開始点を選択して、プレーヤはその開始点から再生を開始する。

【0425】このようなシンタクス、データ構造、規則に基づく事により、記録媒体に記録されているデータの内容、再生情報などを適切に管理することができ、もって、ユーザが再生時に適切に記録媒体に記録されているデータの内容を確認したり、所望のデータを簡便に再生できるようにすることができる。

【0426】Iピクチャの位置を分析できる場合、EP_m apを用い、Iピクチャの位置を分析できない場合、TU_m apを用いるようにすることで、共通のアプリケーションプログラム(ソフトウエア)で、異なるフォーマットのAVストリームを、同一の記録媒体に対して記録し、再生し、管理することが可能となる。

【0427】AVストリームを、その中身(Iピクチャの位置)を分析して記録媒体に記録する場合(コグニザント記録する場合)、TU_mapを使用し、、その中身(Iピ

クチャの位置)を分析せずに、そのまま記録媒体に記録する場合(ノンコグニザント記録する場合)、EP_mapを使用するなどして、共通のアプリケーションプログラムで、AVデータを、同一の記録媒体に記録し、再生し、管理することができる。

【0428】従って、例えば、スクランブルされたAVデータを、デスクランブルして(分析して)記録媒体に記録する場合、TU_mapを使用し、デスクランブルせずに(分析せずに)、そのまま記録媒体に記録する場合、EP_mapを使用するなどして、共通のアプリケーションプログラムで、AVデータを、同一の記録媒体に記録し、再生し、管理することができる。

【 O 4 2 9】さらに、EP_map typeとTU_map typeを、CP I_typeとして、PlayLyst()中に、記述できるようにしたので、I ピクチャの位置が分析できる場合、EP_mapを用い、I ピクチャの位置が分析できない場合、TU_mapを用いるようにすることができる。これにより、I ピクチャの位置を分析して記録するAVストリームデータと、分析しないで記録するAVストリームデータを、フラグを設定するだけで、共通のプログラムにより、統一して管理す 20 ることが可能となる。

【0430】また、PlayListファイルやClip Informati onファイルを別々に分離して記録するので、編集などによって、あるPlayListやClipの内容を変更したとき、そのファイルに関係のない他のファイルを変更する必要がない。したがって、ファイルの内容の変更が容易に行え、またその変更および記録にかかる時間を小さくできる。

【0431】さらに、最初にInfo.dvrだけを読み出して、ディスクの記録内容をユーザインタフェースへ提示 30 し、ユーザが再生指示したPlayListファイルとそれに関連するClip Informationファイルだけをディスクから読み出すようにすれば、ユーザの待ち時間を小さくすることができる。

【0432】もし、すべてのPlayListファイルやClip Informationファイルを1つのファイルにまとめて記録すると、そのファイルサイズは非常に大きくなる。そのために、そのファイルの内容を変更して、それを記録するためにかかる時間は、個々のファイルを別々に分離して記録する場合に比べて、非常に大きくなる。本発明は、この問題を解決する。

【0433】上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。

【0434】この記録媒体は、図108に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク221(フロッピディスクを含む)、光ディスク222(CD-ROM(Compact Disk-Read Only Memory), DVD(Digital Versatile Disk)を含む)、光磁気ディスク223(MD(Mini-Disk)を含む)、光磁気ディスク223(MD(Mini-Disk)を含む)、若しくは半導体メモリ224などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記憶されているROM202や記憶部208が含まれるハードディスクなどで構成される。

【0435】なお、本明細書において、媒体により提供されるプログラムを記述するステップは、記載された順序に従って、時系列的に行われる処理は勿論、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。

【0436】また、本明細書において、システムとは、 複数の装置により構成される装置全体を表すものであ る

[0437]

【発明の効果】以上の如く、本発明の第1の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに記録媒体によれば、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方を、記録方法に応じて記録するようにした。

【0438】本発明の第2の情報処理装置および方法、記録媒体のプログラム、並びにプログラムによれば、プレゼンテーションタイムスタンプと、それに対応するアクセスユニットの前記AVストリームデータ中のアドレスとの対応関係を記述する第1のテーブル、または、トランスポートパケットの到着時刻に基づいたアライバルタイムスタンプと、それに対応するトランスポートパケットの前記AVストリームデータ中のアドレスとの対応関係を記述する第2のテーブルの一方が、記録方法に応じて記録されている記録媒体からそれを再生し、出力を制御するようにした。

【0439】また、本発明の第3の情報処理装置および方法、記録媒体のプログラム、プログラム、並びに第2の記録媒体によれば、主の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を記録するようにした。

【0440】本発明の第4の情報処理装置および方法、 記録媒体のプログラム、並びにプログラムによれば、主

30

40

の再生パスを示す第1の情報と、前記主の再生パスと同期して再生される副の再生パスを示す第2の情報により構成される再生指定情報を記録媒体から再生し、それに基づいて出力を制御するようにした。

【0441】従って、いずれの場合においても、高速再生が可能なAVストリームと不可能なAVストリームを、共通に管理することができる。また、アフターレコーディングが可能になる。

【図面の簡単な説明】

【図1】本発明を適用した記録再生装置の一実施の形態 10 の構成を示す図である。

【図2】記録再生装置1により記録媒体に記録されるデータのフォーマットについて説明する図である。

【図3】Real PlayListとVirtual PlayListについて説明する図である。

【図4】Real PlayListの作成について説明する図である。

【図5】Real PlayListの削除について説明する図である。

【図6】アセンブル編集について説明する図である。

【図7】Virtual PlayListにサブパスを設ける場合について説明する図である。

【図8】PlayListの再生順序の変更について説明する図である。

【図9】PlayList上のマークとClip上のマークについて 説明する図である。

【図10】メニューサムネイルについて説明する図である。

【図11】PlayListに付加されるマークについて説明する図である。

【図12】 クリップに付加されるマークについて説明する図である。

【図13】PlayList、Clip、サムネイルファイルの関係 について説明する図である。

【図14】ディレクトリ構造について説明する図である。

【図15】info.dvrのシンタクスを示す図である。

【図16】DVR volumeのシンタクスを示す図である。

【図17】Resumevolumeのシンタクスを示す図である。

【図18】UIAppInfovolumeのシンタクスを示す図である。

【図19】Character set valueのテーブルを示す図で ある.

【図20】TableOfPlayListのシンタクスを示す図である。

【図21】TableOfPlayListの他のシンタクスを示す図である。

【図22】MakersPrivateDataのシンタクスを示す図である。

【図23】xxxxx.rplsとyyyyy.vplsのシンタクスを示す 50

図である。

【図24】PlayListについて説明する図である。

【図25】PlayListのシンタクスを示す図である。

【図26】PlayList_typeのテーブルを示す図である。

【図27】UIAppinfoPlayListのシンタクスを示す図で ある。

【図28】図27に示したUIAppinfoPlayListのシンタクス内のフラグについて説明する図である。

【図29】PlayItemについて説明する図である。

【図30】PlayItemについて説明する図である。

【図31】PlayItemについて説明する図である。

【図32】PlayItemのシンタクスを示す図である。

【図33】IN_timeについて説明する図である。

【図34】OUT_timeについて説明する図である。

【図35】Connection_Conditionのテーブルを示す図である。

【図36】Connection_Conditionについて説明する図である。

【図37】BridgeSequenceInfoを説明する図である。

【図38】BridgeSequenceInfoのシンタクスを示す図である。

【図39】SubPlayItemについて説明する図である。

【図40】SubPlayItemのシンタクスを示す図である。

【図41】SubPath_typeのテーブルを示す図である。

【図42】PlayListMarkのシンタクスを示す図である。

【図43】Mark_typeのテーブルを示す図である。

【図44】Mark_time_stampを説明する図である。

【図45】zzzzz.clipのシンタクスを示す図である。 【図46】ClipInfoのシンタクスを示す図である。

【図47】Clip_stream_typeのテーブルを示す図である。

【図48】offset_SPNについて説明する図である。

【図49】offset_SPNについて説明する図である。

【図50】STC区間について説明する図である。

【図51】STC_Infoについて説明する図である。

【図52】STC_Infoのシンタクスを示す図である。

【図53】ProgramInfoを説明する図である。

【図54】ProgramInfoのシンタクスを示す図である。

【図55】VideoCondingInfoのシンタクスを示す図である。

【図56】Video_formatのテーブルを示す図である。

【図57】frame_rateのテーブルを示す図である。

【図58】display_aspect_ratioのテーブルを示す図である。

【図59】AudioCondingInfoのシンタクスを示す図である。

【図60】audio_codingのテーブルを示す図である。

【図61】audio_component_typeのテーブルを示す図である。

【図62】sampling_frequencyのテーブルを示す図であ

(38)

る。

- 【図63】CPIについて説明する図である。
- 【図64】CPIについて説明する図である。
- 【図65】CPIのシンタクスを示す図である。
- 【図66】CPI_typeのテーブルを示す図である。
- 【図67】ビデオEP_mapについて説明する図である。

73

- 【図68】EP_mapについて説明する図である。
- 【図69】EP_mapについて説明する図である。
- 【図70】EP_mapのシンタクスを示す図である。
- 【図71】EP_type valuesのテーブルを示す図である。
- 【図72】EP_map_for_one_stream_PIDのシンタクスを示す図である。
- 【図73】TU mapについて説明する図である。
- 【図74】TU_mapのシンタクスを示す図である。
- 【図75】ClipMarkのシンタクスを示す図である。
- 【図76】mark_typeのテーブルを示す図である。
- 【図77】mark_type_stampのテーブルを示す図である。
- 【図78】menu.thmbとmark.thmbのシンタクスを示す図である。
- 【図79】Thumbnailのシンタクスを示す図である。
- 【図80】thumbnail_picture_formatのテーブルを示す 図である。
- 【図81】tn_blockについて説明する図である。
- 【図82】DVR MPEG2のトランスポートストリームの構造について説明する図である。
- 【図83】DVR MPEG2のトランスポートストリームのレコーダモデルを示す図である。
- 【図84】DVR MPEG2のトランスポートストリームのプレーヤモデルを示す図である。
- 【図85】source packetのシンタクスを示す図である。
- 【図86】TP_extra_headerのシンタクスを示す図であっ
- 【図87】copy permission indicatorのテーブルを示す図である。
- 【図88】シームレス接続について説明する図である。
- 【図89】シームレス接続について説明する図である。
- 【図90】シームレス接続について説明する図である
- 【図91】シームレス接続について説明する図である。*40 ケッタイザ、

- *【図92】シームレス接続について説明する図である 【図93】オーディオのオーバーラップについて説明す
 - 【図93】オーディオのオーハーラックについて説明9 る図である。
 - 【図94】BridgeSequenceを用いたシームレス接続について説明する図である。
 - 【図95】BridgeSequenceを用いないシームレス接続について説明する図である。
 - 【図96】DVR STDモデルを示す図である。
 - 【図97】復号、表示のタイミングチャートである。
- 10 【図 9 8 】 PlayListファイルのシンタクスを示す図である。
 - 【図99】図98のPlayListファイル中のUIAppInfoPla yListのシンタクスを示す図である。
 - 【図100】図98のPlayListファイル中のPlayList()のシンタクスを示す図である。
 - 【図101】SubPlayItemのシンタクスを示す図である。
 - 【図102】Real PlayListの作成方法を説明するフローチャートである。
- 20 【図103】Virtual PlayListの作成方法を説明するフローチャートである。
 - 【図104】PlayListの再生方法を説明するフローチャートである。
 - 【図105】PlayListのSubパスの再生方法を説明するフローチャートである。
 - 【図106】PlayListMarkの作成方法を説明するフローチャートである。
 - 【図107】PlayListMarkを使用した頭出し再生方法を 説明するフローチャートである。
- 30 【図108】媒体を説明する図である。

【符号の説明】

- 記録再生装置, 11乃至13 端子, 15 AVエンコーダ. 16 マルチプレク 析部, サ. 17 スイッチ. 18 多重化ストリーム解析 ソースパケッタイザ, 20 ECC符号化 部, 2 1 変調部, 22 書き込み部, 23 制 24 ユーザインタフェース, 26 デマルチ 御部, 27 AVデコーダ, 28 読み出し部, プレクサ.
 - 29復調部, 30 ECC復号部, 31 ソースパ

ケッタイザ, 32,33 端子

【図17】

No. 6	Mnemonics
15	ballof
1	belbf
8*10	bslbf
	15 1

【図19】

Value	Character coding
0x00	Reserved
Ox01	ISO/IEC 646 (ASCII)
0x02	ISO/IEC 10646-1 (Unicode)
OxO3-Oxff	Reserved

Character set value

【図1】

アセンブル編集の例

Real PlayList のクリエイトの例

Real PlayList のディバイドの例

Real PlayList のコンバインの例

[図8]

PlayList の将生制序の変更の例

【図5】

(A)

Real PlayList 全体のデリートの例

Real PlayList の部分的なデリートの例

(C)

Real PlayList のミニマイズの例

【図10】

【図11】

【図9】

Playlist 上のマークと Clip 上のマーク

【図12】

【図14】

【図13】

【図15】

Syntax	No. of bits	Mnemonic
info.dvr {		
TableOfPlayLists_Start_address	32	uimsbf
MakerPrivateData_Start_address	32	ulmsbf
reserved	192	bslbf
DVRVolume()		
for (I=0; I <n1; i++)="" td="" {<=""><td></td><td></td></n1;>		
pedding_word	16	bs/bf
}		
TableOfPlayLists()	T T	
for (i=0; i <n2; l++)="" td="" {<=""><td></td><td></td></n2;>		
pedding_word	16	balbf
}		
MakerPrivateData()		
}		1

Info.dvr のシンタクス

【図16】

【図24】

Syntax	No. of bits	Mnemonics		
DVRVolume() {	·		1 (A)	
version_number	8*4	bsibf	1	
length	32	uimsbf	1.	
PiesumeVolume()			1 [Real Play
UIAppinfoVolume()			1 1	
}			1 1	
]	

DVR Volume のシンタクス

初めて AV ストリームが Clip として記録された時の Real PlayList の例

(B)

【図18】

No. of bits	Mnemonice
8	bslbf
8	ulmsbf
8*256	belbf
15	bsibf
1	belbf
8*4	balbf
16	uimsbf
256	bstbf
	8 8 8 9 255 15 1 8 4 16 16

編集後のReal PlayListの例

UlAppinfoVolume のシンタクス

【図20】

Virtual Pl	ayList		Virtual	PlayUst
Final PlayList		III Park	nai Pla List	Real PlayList
		\neg / \neg	71.1/	
CH- 1	Bridge Colp	Clip	Chip	Clip

Syntax	No. of bits	Mnemonics
TableOfPlayLists() {		
version number	8*4	bslof
length	32	uimsbf
number of PlayLists	16	uimabf
for (i=0; i <number i++)="" of="" playlists;="" td="" {<=""><td></td><td></td></number>		
PlayList_file_name	8*10	balbf
	1	1

Virtual PlayList の例

【図26】

PHYLIST TYPE	Meaning
0	AV記録のための PlayList
	この PlayList に参照されるすべての Clip は、一つ以
	上のビデオストリームを含まなければならない。
1	オーディオ記録のための PlayList
	この PlayList に参照されるすべての Clip は、一つ以
	上のオーディオストリームを含まなければならない、
	そしてビデオストリームを含んではならない。
2 - 255	reserved

PlayList_type

TableOfPlayLists	のシンタクス	ζ
------------------	--------	---

【図21】

■ I apieOnPlayLists・ソノタクノ	く (4.2.3.2 の別乗)		
Syntax		No. bits	ā
TableOfPlayLists() (

Syntax	No. of bits	Mnemonice
TebleOfPlayLists() (
version_number	8*4	ballbf
length	32	uimsbf
number_of_PlayLists	16	ulmabf
for (i=0; i <number_of_playlists; i++)="" td="" {<=""><td></td><td></td></number_of_playlists;>		
PlayList_file_name	8 *10	balbf
UlAppinfoPlayList()		
}		
}		

【図41】

SubPath_type	Meaning
0x00	Auxiliary audio stream path
OxO1 - Oxff	received

TableOfPlayLists の別シンタクス

SubPath_type

【図22】

Syntax	No. of bits	Mnemonics
MakersPrivateData() {		
version number	8*4	bellbf
length	322	uimsbf
If(length I=0){		
mpd_blocks_start_address	32	uimebf
number_of_maker_entries	16	uimabf
mpd_block_size	16	uimsbf
number of mpd blocks	16	uimabf
reserved	16	balbf
for (I=0; I <mumber_of_maker_entries; i++){<="" td=""><td></td><td></td></mumber_of_maker_entries;>		
maker_ID	16	uimabf
maker_model_code	16	uimsbf
start_mpd_block_number	16	uimabf
reserved	16	balbf
mpd_length	32	uimsbf
}		
stuffing_bytes	8*2*L1	beibf
for (j=0; j <number_of_mpd_blocks; j++)="" td="" {<=""><td></td><td></td></number_of_mpd_blocks;>		
mpd_block	mpd_block_ size*1024*8	
}		
}		L
}		

MakersPrivateData のシンタクス

【図39】

【図23】

No. of bits	Mnemonica
32	uimab/
32	uimabi
192	belbf
16	belbf
16	belbf
	945 bits 32 32 32 192 165 165 165 165 165 165 165 165 165 165

[図32]

Syntax	No. of bits	Mnemonics
Playltem() {		
Clip_information_file_name	8°10	bslbf
reserved	24	bslbf
STC_sequence_ld	8	uimsbf
IN_time	32	ulmsbf
OUT_time	32	uimsbf
reserved	14	ballof
connection_condition	2	ballof
If (<virtual playlist="">) {</virtual>		
If (connection_condition=='10') {		
BridgeSequenceinfo()	1	
)		
}		
}		

PiayItem のシンタクス

【図25】

Syntax		No. of bits	Mnemonics
PlayList() {			
version_number		8*4	belbf
length		32	uimsbf
PlayList type		8	uimebf
CPI_type		1	belbf
reserved		7	belbf
UIAppinfoPlayList()			
number of Playttems	// main path	16	uimebf
if (<virtual playlist="">) {</virtual>			
number_of_SubPlayItems	// sub path	16	ulmsbf
jeise(
reserved		16	bsibt
3			
for (PlayItem_ld=0;			1
Playttem id <number of="" playt<="" td=""><td>tems;</td><td></td><td></td></number>	tems;		
Playitem Id++) {			
Playitem()	// main path		
}			
if (<virtual playlist="">) {</virtual>			<u> </u>
if (CPI type==0 && PlayList ty	pe==0) {	l	
for (i = 0; i < number of S	ubPlayItems; I++)		
SubPlayitem()	// sub path		
}			
1		1	
1			

. PlayList のシンタクス

【図27】

Syntax	No, of bits	Mnemonics
UIAppinfoPlayListi2() (
character_set	8	belbf
neme_length	5	ulmsbf
PlayList name	8°256	beibf
perved	В	beibf
record time and date	4*14	belbf
reserved	8	bsibf
duration	4*6	balbf
valid_period	4*8	bslbf
maker_id	16	uimabf
maker code	16	uimsbf
perved	11	belbf
playback control flag	1	betbf
write protect_flag	1	belbf
is played flag	1	bslbf
archiva	2	bslbf
ref_thumbnail_index	16	ulmabf
reserved_for_future_use	256	belbf
}	1	

UlAppInfoPlayList のシンタクス

【図33】

【図47】

CPI_type In the PlayList()	Semertics of IN_time
EP_map type	IN_time は、PlayItem の中で最初のプレゼンテーションユニットに対応する33 ピット長のPTS の上位32 ピットを示さなければならない。
TU_map type	IN_time は、TU_mep_time_exis 上の時刻でなければならない。かつ、IN_time は、time_unit の特度に丸めて表さればならない。IN_time は、次に示す等式により計算される。
	IN_time = TU_start_time % 2 st

Clip_stream_type	meaning	
0	Clip AV ストリーム	
1	Bridge-Clip AV ストリーム	
2 - 255	Reserved	

Clip_stream_type

【図28】

【図37】

(A)

write_protect_flag	Meaning
Ob	その PlayList を自由に消去しても良い。
1b	write protect flag を除いてその PlayList の内
	客は、消去および変更されるべきではない。

write_protect_flag

(B)

is_played_flag	Meaning
Ob	その PlayList は、記録されてから一度も再生さ
	れたことがない。
1b	PlayListは、記録されてから一度は再生された。

is_played_flag

(C)

archive	Meaning
00b	何も情報が定義されていない。
01b	オリジナル
10b	コピー
11b	reserved

archive

PlayList が TU_map type である時の例

【図34】

CPI_type in the PlayList()	Semantics of OUT_time
EP_map type	OUT_time は、次に示す等式によって計算される Presentation_end_TS の値の上位32ピットを示さなければならない。 Presentation_end_TS = PTS_out + AU_duration ここで、
	PTS_out は、PlayItem の中で最後のプレゼンデーションユニットに対応する33 ビット長のPTS である。 AU_duration は、最後のプレゼンデーションユニットの 90kHz 単位の表示判断である。
TU_map type	OUT_time は、 <i>TU_map_time_exis</i> 上の時刻でなければならない。かっ、OUT_time は、time_urit の精度に丸めて表さねばならない。 OUT_time は、次に示す等式により計算される。
	OUT_time = TU_start_time % 252

OUT_time

【図35】

connection _condition	meaning
00	 先行する PlayItem と現在の PlayItem の接続は、シームレス再生の保証がなされていない。
	• PlayList の CPI_type が TU_map type である場合、connection_conditionは、この値をセットされねばならない。
01	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	 先行する PlayItem と見任の PlayItem は、システムタイムペース (STC ペース)の不連続点があるために分割されていることを 表す。
10	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	 この状態は、Virtual PlayList に対してだけ許される。
	 先行する Playitem と現在の Playitem との接続は、シームレス再 生の保証がなされている。
	 先行する PlayItem と現在の PlayItem は、BridgeSequence を使 用して接続されており、DVR MPEG-2 トランスポートストリー ムは、後述する DVR-STD に従っていなければならない。
11	 この状態は、PlayList の CPI_type が EP_map type である場合に だけ許される。
	 先行する PlayItem と現在の PlayItem は、シームレス再生の保証がなされている。
	 先行する Pisyttern と現在の Pisyttern は、BridgeSequence を使 用しないで接続されており、DVR MPEG-2 トランスボートスト リームは、後述する DVR-STD に従っていなければならない。
1	

connection_condition

【図36】

connection_condition の説別

【図38】

Syntax	No. of bits	Mnemonics
BridgeSequenceInfo() {		
Bridge Clip Information file name	8 * 10	ballof
RSPN_exit_from_previous_Clip	32	uimsbf
RSPN enter to ourrent Clip	32	uimebl
1		

BridgeSequenceInfoのシンタクス

[図40]

Syntax	No. of bits	Mnemonica
SubPlayItem() {		
Clip information file name	8*10	belbf
SubPath_type	8	bslbf
aync_PlayItem_ld	6	uimabf
sync start PTS of Playitem	32	uimsbf
SubPath IN time	82	uimabf
SubPath OUT time	32	ulmsbf
1		

【図56】

video_format	Mesning
0	4801
1	576i
2	480p (including 640H480p format)
3	1080
4	720p
5	1080p
6 - 254	reserved
6 - 254 255	No information

vidoe_format

SubPlayItem のシンタクス

【図42】

Syntax	No. of bits	Mnemonics
PlayListMark() {		
version_number	8*4	belbf
length	32	uimsbf
number of PlayList marks	16	uimsbf
for(i=0; i < number of PlayList marks; i++) {		
reserved	8	balbf
mark type	8	belbf
mark time stamp	32	uimsbf
Playitem_ld	В	ulmabf
reserved	24	uimsbf
character set	8	belbf
name_length	8	uimsbf
merk name	8*256	balbf
ref thumbnell Index	16	uimsbf
}		

PlayListMark のシンタクス

【図43】

Mark_type	Meening	Comments
0x00	resume-mark	再生リジュームボイント。PlayListMark()において
		定義される再生リジュームポイントの數は、0また
		は1でなければならない。
0x01	book-mark	PlayList の再生エントリーポイント。このマークは、
		ユーザがセットすることができ、例えば、お気に入
		りのシーンの開始点を指定するマークに使う。
0x02	akip-mark	スキップマークポイント。このポイントからプログ
		ラムの最後まで、プレーヤはプログラムをスキップ
	1	する。PlayListMark() において定義されるスキップ
		マークポイントの数は、0または1でなければなら
		ない。
0x03 - 0x8F	reserved	
Ox90 - OxFF	reserved	Reserved for ClipMark()

mark_type

【図44】

CPI_type in the PlayList()	Semantics of mark_time_stamp
EP_map type	mark_time_stamp は、マークで参照されるプレゼンテーションユニットに対応する 33 ビット長の PTS の上位 32 ビットを示さなければならない。
TU_map type	mark_time_stamp は、TU_map_time_axis 上の時刻でなければならない。かつ、mark_time_stamp は、time_unit の発度に丸めて表さねばならない。mark_time_stamp は、次に示す等式により計算される。
	mark_time_stamp = TU_start_time % 2 ³²

mark_time_stamp

【図62】

sampling frequency	Meaning
Ö	48 kHz
1	44.1 kHz
2	32 kHz
3-254	reserved
256	No information

sampling_frequency

【図66】

CPI type	Meening
0	EP map type
1	TU map type

CPI_type の意味

【図46】

Syntax	No.	of	Mnemonica
Clip Info () {			
version_number	8'4		beltif
length	32		ulmebi
Clip_streem_type	8		belbf
offset SPN	32		uimsbf
T8_recording_rate	24		ulmsbi
reserved	8		belbf
record_time_and_date	4*14		belof
reserved	8		bulbf
duration	4*8		belof
reserved	7		betbf
time controlled flag	1		belof
TS average rate	24		ulmetri
# (Clip stream type==1) // Bridge-Clip AV stream	1		
RSPN arrival time discontinuity	32		uimabi
els e			
reserved	32		belbf
reserved for system use	144		belbf
reserved	11		bellof
is formet identifier valid	1		belbf
le original_network_ID_valid *	T1		belbf
le transport stream ID valid	1		bethf
is servece ID valid	T		beth
is country code velid	1		belbf
formet identifier	32		bathf
original network ID	16		uimsbf
transport stream ID	16	~	ulmabf
servece ID	16		uimsbf
country code	24		balbf
streem formet name	1648		belbf
reserved for future use	256		bs/bf

ClipInfo のシンタクス

【図48】

【図57】

frame_rate	Meening
0	forbidden
1	24 000/1001 (23.976)
2	24
3	25
4	30 000/1001 (29.97)
5	30
6	50
7	60 000/1001 (59.94)
8	60
9 - 254	reserved
255	No information

frame_rate

【図45】

【図49】

Syntax	No. of bits	Mnemonic
zzzzz.dpi {		
STC_Info_Start_address	32	uimsbf
ProgramInfo_Start_address	32	ulmsbf
CPI_Start_address	32	uimsbf
ClipMark_Start_address	32	ulmsbf
MakerPrivateDate_Start_address	32	ulmsbf
reserved	96	bsibf
ClipInfo()		
for (l=0; l <n1; l++)="" td="" {<=""><td></td><td></td></n1;>		
padding_word	16	bslbf
}		
STC_Info()		
for (i=0; i <n2; i++)="" td="" {<=""><td></td><td></td></n2;>		
padding_word	16	balbf
}		
ProgramInfo()		
for (i=0; i <n3; i++)="" td="" {<=""><td></td><td></td></n3;>		
padding_word	16	bslbf
}		
CPI()		
1or (i=0; i <n4; i++)="" td="" {<=""><td></td><td></td></n4;>		
padding_word	16	balbf
}		
ClipMark()		
for (i=0; I <n5; i++)="" td="" {<=""><td></td><td></td></n5;>		
padding_word	16	bslbf
)		
MakerPrivateDate()		
}	ľ	

Address in the Clip AV stream (Relative source packet number)

SPN_200x = 5

AV ストリームでの offset_SPN と相対ソースパケット番号 (RSPN_200x) の間の 関係

【図61】

audio_component_type	Meaning
0	single mono channel
1	dual mono channel
2	stereo (2-channel)
3	multi-lingual, multi-channel
4	surround sound
5	audio description for the visually impaired
6	audio for the hard of hearing
7-254	reserved
255	No information

audio_component_type

zzzzz.clpi のシンタクス

-STC_Info

【図55】

Syntax	No. of bits	Mnemonics
VideoCodingInfo() {		
video_format	8	uimsbf
freme rate	8	uimabf
display aspect_ratio	8	ulmabf
reserved	8	belbf
1		

VideoCodingInfo のシンタクス

【図54】

【図58】

Syntax	No. of bits	Mnemonics
Programinfo() {		
version_number	8*4	balbf
length	32	uimsbf
if (langth I= 0) {		
reserved	8	bslbf
number_of_program_sequences	8	ulmsbf
for(=0; <number i++)(<="" of="" program_sequences;="" td=""><td></td><td></td></number>		
RSPN_program_sequence_start	32	uimabf
reserved	48	bsibf
PCR_PID	16	bslbf
number_of_videos	8	uimsbf
number_of_audios	8	uimabf
for (k=0; k <number k++)="" of="" td="" videos;="" {<=""><td>A</td><td></td></number>	A	
video stream_PID	16	beibf
VideoCodingInfo()		
)		L
for (k=0; k< number of audios; k++) {		
audio_stream_PID	16	balbf
AudioCodinginfo()		
}	ļ	.
		<u> </u>
}	<u>. </u>	J

display aspect_ratio	Meaning
0	forbidden
1	reserved
2	4:3 display aspect ratio
3	16:9 display aspect ratio
4-254	reserved
256	No information

display_aspect_ratio

ProgramInfo のシンタクス

【図59】

Syntax	No. of	Mnemonica
Audio Codinginfo() (
audio_coding	8	uimsbf
audio_component_type	8	ulmebf
sampling_frequency	8	uimsbf
reserved	8	belbf
}		

【図60】

| SEST LPCM sudio | Section | Sectio

AudioCodingInfo のシンタクス

【図65】

Syntax	No. of bits	Mnemonice
CPI0 {		
version number	8°4	belbf
length	32	ulmsbf
reserved	15	balbi
CPI_type	1	belbi
if (CPI type == 0)		
EP_map()		
else		
TU_map()		
1		

audio_coding

CPI のシンタクス

[図80]

Thumbnett picture formet	Meaning
0x00	MPEG-2 Video I-picture
Ox01	DCF (restricted JPEG)
0x02	PNG
OxO3-Oxff	reserved

thumbnail__picture__format

【図64】

【図70】

Syntax	No. of bits	Mnemonica
EP_map(){		
reserved	12	bsibf
EP_type	4	uimsbf
number_of_stream_PIDs	16	ulmsbf
for (k=0;k <number_of_stream_pids;k++)(< td=""><td></td><td></td></number_of_stream_pids;k++)(<>		
stream_PID (k)	16	balof
num_EP_entries (k)	32	ulmsof
EP_map_for_one_stream_PED_Start_address(k)	32	ulmsbf
}		
for(i=0;i <x;i++){< td=""><td></td><td></td></x;i++){<>		
padding_word	16	bslbf
}		
for (k=0;k <number_of_stream_pids;k++)(< td=""><td></td><td></td></number_of_stream_pids;k++)(<>		
EP_map_for_one_stream_PID(num_EP_entries(k))		
for(I=0;1 <y;1++){< td=""><td></td><td></td></y;1++){<>		
padding_werd	16	babf
}		
)		
T]	

【図71】

Meaning
video
audio
reserved

[図82]

DVR MPEG·2 トランスポートストリームの構造

Syntax

PTS_EP_start
RSPN_EP_start

No. bits EP_map_for_one_stream_PID(N){ for (l=0; l< N; l++) { uimabf 32 ulmabf

【図81】

EP_map_for_one_stream_PID のシンタクス

【図73】

copy_permission indicator 00 01 10

【図87】

copy free no more copy copy once copy prohibited

【図74】

Syntax	No. of bits	Mnemonics
TU_map(){		
offset time	32	bslbf
time_unit_size	32	ulmsbf
number_of_time_unit_entries	32	ulmabf
for (k=0; k <number_of_time_unit_entries; k++)<="" td=""><td></td><td></td></number_of_time_unit_entries;>		
RSPN_time_unit_start	32	uimsbf
}		

· copy permission indicator table

TU_map のシンタクス

【図77】

CPI_type in the CPI()	Semantics of mark_time_stamp
EP_map type	mark_time_stamp は、マークで参照されるプレゼンテーションユニットに対応する 33 ビット長の PTS の上位 32 ビットを示さなければならない。
TU_map type	mark_time_etamp は、TU_map_time_axis 上の時刻でなければならない。かつ、mark_time_stamp は、time_unit の精度に丸めて表さればならない。mark_time_stamp は、次に示す等式により計算される。
1	mark_time_stamp = TU_start_time % 2 ³²

【図84】

DVR MPEG-2 トランスポートストリームのプレーヤモデル

mark_type_stamp

【図75】

Syntax	No. of bits	Mnemonics
ClipMark() {		
version_number	8*4	beibl
length	32 16	ulmabf ulmabf
number of Clip_marks		
for(i=0; i < number of Clip marks; i++) {		
reserved	8	belbf
mark_type	8	belbf
merk time stemp	32	uimsbf
STC sequence id	8	uimsbf
reserved	24	balbf
character set	8	balbf
name_length	8	uimsbf
mark_name	8*258	bsibf
ref_thumbnait_index	16	ulmebf
}		

ClipMark のシンタクス

【図78】

Syntax	No. of bits	Mnemonics
menu.thmb / mark.thmb (
reserved	256	bslbf
Thumbnall()		
for(I=0; I <n1; i++)<="" td=""><td></td><td></td></n1;>		
padding_word	16	bslbf
)		

menu.thmb と mark.thmb のシンタクス

【図79】

Syntax	Bits	Mnemonics
Thumbhali() {		
version number	8°4	char
length	32	ulmsbf
if (length I= 0) {		
tn blocks_start_address	32	belbf
number of thumbnalls	16	uimsbf
tn block size	16	ulmsbf
number of to blocks	16	uimabf
reserved	16	belbf
for(i = 0; i < number of thumbnells; i++) {		
thumbnell_index	16	uimsbf
thumbnail_ploture_format	8	belof
reserved	8	balbf
picture_date_size	32	uimsbf
start to block number	16	ulmabf
x picture length	16	ulmsbf
y picture length	16	ulmabf
reserved	16	ulmsbf
}		
stuffing bytes	8*2*L1	belbf
for(k = 0; k < number of to blocks; k++) {		
tn_block	tn_block_etze* 1024*8	
}		1
		L
}	1	

Thumbnail のシンタクス

DVR MPEG-2 トランスポートストリームのレコーダモデル

【図85】

Syntax	No. of bits	Mnemonics
source packet () {		
TP_extra header()		
transport_packet()		
)		<u></u>

source packet

[図86]

Syntax	No. of bits	Mnemonics
TP extra header() {		
copy permission indicator	2	ulmebf
arrival time stamp	30	uimsbf
)		Call Root

TP_extra_header

【図94】

BridgeSequence を使用してシームレス接続をする場合の、データアロケーションの例

【図103】

Virtual PlayList の作成方法を説明するフローチャート

[図88]

【図93】

【図91】

BridgeSequence を使用してシームレス接続を実現する例 1

【図95】

BridgeSequence を使用しないでシームレス接続をする場合の、データアロケーションの例

【図92】

BridgeSequence を使用しないでシームレス接続を実現する例 2

【図96】

【図100】

Syntax	No. of bits	Mnemonic
PlayList() {		
length	32	uimsbf
reserved_for_word_align	15	bslbf
CPI_type	1	bslbf
number_of_PlayItems	16	uimsbf
If (<virtual-playlist> && CPI_type==0) {</virtual-playlist>		
number_of_SubPlayItems	16	ulmsbf
) else {		
reserved_for_word_align	16	bslbf
)		
tor (PlayItem_id=0; PlayItem_id <number_of_playitems; PlayItem_id++) {</number_of_playitems; 		
PlayItem()		
}		
if (<virtual-playlist> && CPI_type==0) {</virtual-playlist>		
for (I=0; knumber_of_SubPlayItems; I++) {		
SubPlayItem()		
}		
}		L
}		

図98の PlayList ファイルの中の PlayList() のシンタクス

【図97】

ある AV ストリーム(TS1)からそれにシームレスに接続された次の AV ストリーム(TS2) へと移る時のトランスポートパケットの入力、復号、表示のタイミングチャート

【図98】

【図102】

Real PlayList の作成方法を説明するフローチャート

Syntax	No. of bits	Mnemonic	Real PlayList の 作成スタート
xxxxxxrpls / yyyyy.vpls {			
version_number	8*4	belbf	S11 ClipAVストリームを記録する
PlayList_srart_address	32	uimsbf	Clibya X 1. 2—TASIDA 2.0
PlayListMark_start_address	32	uimsbf	S12 ***
MakersPrivateData_start_address	32	uimsbf	EP_map を作成可能か? No
reserved_for_future_use	160	balbf	Yes S14
UIAppInfoPlayList()			S13 EP map を作成する EP_map を作成する
for(i=0; i <n1; i++)="" td="" {<=""><td></td><td></td><td>Er_map & ready 0</td></n1;>			Er_map & ready 0
padding_word	16	bslbf	4
}			S15 PlayList の CPI_type をセットする
PlayListet()		<u> </u>	Flay List of CF1_type 4. 2717 0
for (I=0; I <n2; i++)="" td="" {<=""><td></td><td></td><td>C10</td></n2;>			C10
padding_word	16	bslbf	S16 上記 Clip の全ての再生可能範をカ
}			バーする PlayItem からなる Play List() を作成する。
PlayListstMark()			CPI_type が EP_map タイプの場
for (I=0; I <n3; i++)="" td="" {<=""><td></td><td></td><td>合は、時間情報をPTSペースでセ</td></n3;>			合は、時間情報をPTSペースでセ
padding_word	16	bslbf	ットし、CPI_type が TU_map タ
}			イプの場合は、時間情報をアライバ ルタイムベースでセットする。
Makers PrivateData()			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
for(i=0; i <n4; i++)="" td="" {<=""><td></td><td></td><td>S17 UTA-T-16-DI-UL-10 + 5-0+2</td></n4;>			S17 UTA-T-16-DI-UL-10 + 5-0+2
padding_word	16	bslbf	31/ UIAppInfoPlayList() を作成する
)			
}		I	S18 PlayListMark() を作成する
PlayList ファイルのシンタク	スの別例		•
			S19 MakersPrivateData() を作成する
			000
			S20 Real PlayList ファイルを記録する
			•
			(エンド)

【図 9	9]
------	----

Syntax	No. of bits	Mnemonic
UIAppInfoPlayList() (
length	32	uimsbf
PlayList_service_type		
PlayList_character_set	8	uimsbf
reserved_for_word_align	3	bslbf
playback_control_flag	1	ulmsbf
write_protect_flag	1	ulmsbf
is_played_flag	1	uimsbf
archive	2	uimsbf
record_time_and_date	4*14	bslbf
duration	4*6	bslbf
maker ID	16	uimsbf
maker model_code	16	uimsbf
ref_thumbnail_index	16	uimsbf
reserved	7	bslbf
rp_info_valid_flag	1	ulmsbf
rp_ref_to_PlayItem_id	16	uimsbf
rp_time_stamp	32	uimsbf
channel_number	16	uimsbf
reserved_for_word_align	8	bslbf
charinel_name_length	8	uimsbf
channel_name	8*20	balbf
PlayList_name_length	8	uimsbf
PlayList_name	8*255	bsibf
PlayList_detail_length	16	ulmsbf
PlayList_detail	8*1200	bsibf
}		

図98の PlayList ファイルの中の UIAppInfoPlayList のシンタクス

【図101】

Syntax	No. of bits	Mnemonic
SubPlayItem() (
length	16	uimabf
Clip_Information_file_name	8*10	bsibf
SubPath_type	8	bsibf
STC_sequence_id	8	uimsbf
SubPath_IN_time	32	uimsbf
SubPath_OUT_time	32	ulmsbf
sync_PlayItem_id	16	uimebf
sync_start_PTS_of_PlayItem	32	uimsbf
}		

SubPlayItem のシンタクスの別例

PlayList の Sub パスの再生方法を説明するフローチャート

【図104】

PlayList の再生方法を説明するフローチャート

【図107】 【図106】 PlayListMark を使用した 頭出し再生スタート PlayListMarkの作成スタート S111 プレーヤが Info.dvr.Clip Information file, PlayList file および Thumbriall file の情報を取得し、GUI画 面を作成する プレーヤが Info.dvr,Clip Information file, PlayList file および Thumbnail file の情報 を取得し、GUI 画面を作成する S91 ユーザーが1つの PlayList の再生を揃示する S113 PlayListMark で参照されるピクチャから生成した サムネールのリストを GUI に表示する ユーザーが1つの PlayList の再生を指示する S93 ユーザーが再生開始点のマーク点を指定する 上記指示された PlayList の再生を開始する CPI_type が EP_map タイプの場合は、マークの PTS とそれが買する PlayItem_Id を取得する。 CPI_type が TU_map タイプの場合は、マークの ATS (Arrival Time Stump) を取得する。 S115 ユーザーがお気に入りのシーンのところに マークのセットを指示する S94 S95 S116 CPI_type が EP_map タイプの場合は、PlayItem _id が指す PlayItem が参照する AV ストリームの STC-sequence-id を取得する。 CPI_type が EP_map の場合、マークの PTS とそれ が属する PlayItem の PlayItem_id を所得する。 CPI_type が TU_map の場合、マーク点のアライバ ルタイムを所得する。 S117 CPL type が EP_map タイプの場合は、上記 STC -sequence-id とマークの PTS に基づいて、AVストリームをデコーダへ入力する。 CPL type が TU_map タイプの場合は、マークの ATS に基づいて、AV ストリームをデコーダへ入力 エス マークの情報を PlayListMark() にストアする S118 CPI_type が EP_map タイプの場合は、マーク点 の PTS のピクチャから表示を開始する。 CPI_type が EP_map タイプの場合は、マーク点 の ATS 以後のピクチャから表示を開始する。 **S97** PlayList ファイルを記憶する エンド エンド

PlayListMark の作成方法を説明するフローチャート PlayListMark を使用した夏出しの再生方法を説明するフローチャート

フロントページの続き

F ターム(参考) 5C052 AA02 AC05 AC08 DD04

5C053 FA14 FA20 FA23 FA29 GA11

GB05 GB06 GB09 GB38 HA24

HA29 JA24 KA08 KA24 KA26