Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to a Pandas DataFrame
credit_card_data = pd.read_csv('/content/creditcard.csv')

first 5 rows of the dataset
credit_card_data.head()

→		Time	V1	V2	V3	V4	V5	V6	V7	V8
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533

5 rows × 31 columns

credit_card_data.tail()

→		Time	V1	V2	V3	V4	V5	V6	V7
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006

5 rows × 31 columns

dataset informations
credit_card_data.info()

RangeIndex: 284807 entries, 0 to 284806

Data columns (total 31 columns):

Data	COTUMNS	(total	31 COTUMNS	5):
#	Column	Non-Nu	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64
27	V27	284807	non-null	float64
28	V28	284807	non-null	float64
29	Amount	284807	non-null	float64
30	Class	284807	non-null	int64
dtyna	sc. float	+64(20)	in+64(1)	

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

checking the number of missing values in each column credit_card_data.isnull().sum()

→

0

Time 0

V1 0

V2 0

V3 0

V4 0

V5 0

V6 0

V7 0

V8 0

V9 0

V10 0

V11 0

V12 0

V13 0

V14 0

V15 0

V16 0

V17 0

V18 0

V19 0

V20 0

V21 0

V22 0

V23 0

V24 0

V25 0

V26 0

V27 0

V28 0

Amount 0

```
Class 0
```

```
dtype: int64
```

distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()

₹

count

Class

0 284315

1 492

dtype: int64

This Dataset is highly unblanced

0 --> Normal Transaction

1 --> fraudulent transaction

```
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
```

print(legit.shape)
print(fraud.shape)

statistical measures of the data
legit.Amount.describe()

		_
_	•	_
_		~
-	÷	_

Amount

count	284315.000000
mean	88.291022
std	250.105092
min	0.000000
25%	5.650000
50%	22.000000
75%	77.050000
max	25691.160000

dtype: float64

fraud.Amount.describe()

	Amount
count	492.000000
mean	122.211321
std	256.683288
min	0.000000
25%	1.000000
50%	9.250000
75%	105.890000
max	2125.870000

dtype: float64

compare the values for both transactions
credit_card_data.groupby('Class').mean()

$\overline{}$		
\rightarrow		
<u> </u>		

•		Time	V1	V2	V3	V4	V5	V6	
	Class								
	0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.0096
	1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.5687
	2 rows ×	30 columns							

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions --> 492

legit_sample = legit.sample(n=492)

Concatenating two DataFrames

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new_dataset.head()

_										
₹		Time	V1	V2	V3	V4	V5	V6	V7	
	126587	78035.0	1.160426	-0.502319	0.886433	-0.884251	-1.031212	-0.046391	-0.804541	
	97839	66406.0	-1.909825	1.256160	0.433707	-0.810739	0.170353	-0.370122	0.435935	
	7407	9996.0	1.107242	0.667646	0.314573	2.653926	0.153394	-0.585697	0.381893	-
	56270	47345.0	-1.219131	0.893169	1.854603	1.652850	1.457932	-0.928450	0.826119	-
	131375	79577.0	1.156505	-0.773010	-0.138779	-1.923648	-0.614735	-0.508777	-0.138414	-

5 rows × 31 columns

new_dataset.tail()

→		Time	V1	V2	V3	V4	V5	V6	V7	
	279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	
	280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	
	280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	
	281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	
	281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-
	5 rows × 3	31 columns								

new_dataset['Class'].value_counts()

dtype: int64

new_dataset.groupby('Class').mean()

$\overline{\Rightarrow}$		Time	V1	V2	V3	V4	V5	V6	٧
	Class								
	0	93421.455285	0.152470	0.086492	0.003421	0.029189	0.007979	0.042318	-0.00927
	1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.56873
	2 rows x	30 columns							

Splitting the data into Features & Targets

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
```

print(X)

 $\overline{2}$ Time V1 V2 ٧3 ٧4 ۷5 ۷6 126587 78035.0 1.160426 -0.502319 0.886433 -0.884251 -1.031212 -0.046391 97839 66406.0 -1.909825 1.256160 0.433707 -0.810739 0.170353 -0.370122

```
7407
          9996.0 1.107242 0.667646 0.314573
                                               2.653926 0.153394 -0.585697
         47345.0 -1.219131
56270
                            0.893169 1.854603
                                                1.652850 1.457932 -0.928450
131375
         79577.0 1.156505 -0.773010 -0.138779 -1.923648 -0.614735 -0.508777
. . .
                       . . .
                                           . . .
                                                     . . .
                                                               . . .
             . . .
                                 . . .
279863
       169142.0 -1.927883
                          1.125653 -4.518331
                                               1.749293 -1.566487 -2.010494
280143
       169347.0 1.378559 1.289381 -5.004247
                                               1.411850 0.442581 -1.326536
280149 169351.0 -0.676143 1.126366 -2.213700
                                                0.468308 -1.120541 -0.003346
281144 169966.0 -3.113832 0.585864 -5.399730
                                                1.817092 -0.840618 -2.943548
281674
       170348.0
                 1.991976 0.158476 -2.583441
                                                0.408670 1.151147 -0.096695
                                  V9
                                                V20
              ٧7
                        V8
                                                          V21
                                                                    V22 \
126587 -0.804541
                  0.295474 1.672296
                                      ... -0.194626 0.058137
                                                              0.378931
97839
        0.435935
                 0.196471
                            0.457619
                                      ... -0.266419 -0.294524 -0.553131
                                      ... -0.170259 -0.086024 -0.165620
7407
        0.381893 -0.204886
                            0.039885
                                           0.166811 -0.126169 -0.582343
56270
        0.826119 -0.090274 -1.625399
                                      . . .
131375 -0.138414 -0.095846
                          2.275762
                                      . . .
                                           0.028865 -0.015037 0.244756
                                 . . .
                                      . . .
                                                . . .
             . . .
                       . . .
                                                          . . .
                                          1.252967
279863 -0.882850 0.697211 -2.064945
                                                     0.778584 -0.319189
                                     . . .
280143 -1.413170 0.248525 -1.127396
                                                              0.028234
                                     . . .
                                           0.226138
                                                     0.370612
280149 -2.234739
                 1.210158 -0.652250
                                           0.247968
                                                     0.751826
                                                              0.834108
                                           0.306271
281144 -2.208002 1.058733 -1.632333
                                                     0.583276 -0.269209
                                      . . .
281674  0.223050  -0.068384  0.577829
                                      ... -0.017652 -0.164350 -0.295135
             V23
                       V24
                                 V25
                                           V26
                                                     V27
                                                               V28
                                                                    Amount
126587 -0.009886  0.021266  0.372120 -0.671643  0.101383
                                                          0.020059
                                                                      1.00
97839
       0.212798 -0.571305 -0.588600 -0.209698 -0.885707 -0.558383
                                                                      8.92
7407
       -0.103467  0.471978  0.617368  -0.002281  -0.080451
                                                          0.000473
                                                                     38.03
56270 -0.155451
                  11.37
131375 -0.273189 -0.359524 0.853840 -0.644211
                                                0.081853
                                                          0.023791
                                                                     79.15
                                                                       . . .
             . . .
                       . . .
                                 . . .
                                           . . .
                                                     . . .
                                                               . . .
279863 0.639419 -0.294885 0.537503
                                     0.788395
                                               0.292680
                                                          0.147968
                                                                    390.00
280143 -0.145640 -0.081049 0.521875
                                      0.739467
                                                0.389152
                                                          0.186637
                                                                      0.76
280149 0.190944 0.032070 -0.739695
                                      0.471111
                                                0.385107
                                                          0.194361
                                                                     77.89
                                                                    245.00
281144 -0.456108 -0.183659 -0.328168
                                      0.606116
                                                0.884876 -0.253700
281674 -0.072173 -0.450261 0.313267 -0.289617
                                                0.002988 -0.015309
                                                                     42.53
[984 rows x 30 columns]
          0
97839
          0
          0
7407
```

print(Y)

Name: Class, Length: 984, dtype: int64

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y,
print(X.shape, X_train.shape, X_test.shape)
→ (984, 30) (787, 30) (197, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X train, Y train)
/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: C
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regressio
      n_iter_i = _check_optimize_result(
     ▼ LogisticRegression ① ??
     LogisticRegression()
```

Model Evaluation

Accuracy Score