Санкт-Петербургский политехнический университет Петра Великого Высшая школка интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №1

Дисциплина: Вычислительная математика

Номер варианта: 8

Выполнил студент гр. 3530901/10001 Преподаватель

Козырев Д. В. Цыган В. Н.

«10» февраль 2023

Санкт-Петербург

Задача.

Для таблично заданной функции f(x):

x	1.0	1.2	1.5	1.6	1.8	2.0
f(x)	5.000	6.899	11.180	13.133	18.119	25.000

построить сплайн-функцию и полином Лагранжа, после чего использовать две полученные интерполирующие функции по отдельности для нахождения корня уравнения f(x) = 6x + 3 на промежутке [1,2] методом бисекции. Определить, насколько будут отличаться значения корней, найденные двумя способами.

С использованием программы **QUANC8** вычислить интегралы от двух интерполирующих функций на интервале [1, 2] и сравнить их значения.

Ход работы.

Интерполяция.

Вызовом подпрограммы **lagrange** для всех $x: x \in [1,2]$ с шагом 0.1 найдем значения интерполяционного полинома в форме Лагранжа, построенного по 6 точкам из таблицы выше. На основе полученных данных (рис.1) изобразим график этого полинома (рис.2).

//	ACDANICE		
//	LAGRANGE-		
x =	1	f(x) =	5
x =	1.1	f(x) =	5.87491
x =	1.2	f(x) =	6.899
x =	1.3	f(x) =	8.10233
x =	1.4	f(x) =	9.5172
x =	1.5	f(x) =	11.18
x =	1.6	f(x) =	13.133
x =	1.7	f(x) =	15.4262
x =	1.8	f(x) =	18.119
x =	1.9	f(x) =	21.2823
x =	2	f(x) =	25

Рис.1. Таблица значений полинома Лагранжа для данной таблицы узлов интерполирования.

Пользуясь единственным вызовам подпрограммы **spline** с последующим множественным вызовом подпрограммы **seval** найдем значения сплайн-функции, построенной для заданных узлов интерполирования, во всех $x: x \in [1, 2]$ с шагом 0.1 (рис.3). Изобразим график функции на рис. 4.

Рис.2. Полином в форме Лагранжа.

//	-SPLINE		
x =	1	f(x) =	5
x =	1.1	f(x) =	5.6466
x =	1.2	f(x) =	6.899
x =	1.3	f(x) =	8.18169
x =	1.4	f(x) =	9.54129
x =	1.5	f(x) =	11.18
x =	1.6	f(x) =	13.133
x =	1.7	f(x) =	15.1219
x =	1.8	f(x) =	18.119
x =	1.9	f(x) =	22.5203
x =	2	f(x) =	25

Рис.3. Таблица значений сплайн-функции для данной таблицы узлов интерполирования.

График функции абсолютного отклонения представлен на рис. 5. По графику видно, что разница значений двух аппроксимирующих функций во

всех точках, кроме x = 1.9 колеблется в диапазоне [0, 0.0304]. Максимальный разброс $\sigma = 1.238$ функции абсолютного отклонения достигается в точке x = 1.9, что может быть связано с резким ростом функции f(x) на границах отрезка [1.8, 2.0] и отсутствием узла интерполирования на данном промежутке.

Рис. 5. График абсолютного отклонения полинома в форме Лагранжа от сплайн-функции.

Поиск корня уравнения.

Произведем поиск корня уравнения f(x) = 6x + 3, для полинома Лагранжа и сплайн функции методом половинного деления с точностью $\varepsilon = 10^{-5}$ (рис.6).

*** CALCUL	ATF $f(x) = 6x +$	3 for LAGRANGE			LATE $f(x) = 6x + 6x$		
1. At x =	1.5, f(x)		-0.82	1. At x =			-0.82
2. At x =			3.21849	2. At x =	1.75, f(x)		2.91153
3. At x =			0.922255	3. At x =			0.858266
4. At x =	1.5625,			4. At x =	1.5625,		
5. At x =	1.59375,			5. At x =	1.53125,		
6. At x =	1.57812,			6. At x =	1.54688,	f(x) - 6x - 3 =	
7. At x =	1.57031,	f(x) - 6x - 3 =		7. At x =	1.55469,	f(x) - 6x - 3 =	
				8. At x =	1.55859,	f(x) - 6x - 3 =	-0.0343224
8. At x =	1.56641,	f(x) - 6x - 3 =		9. At x =	1.56055,	f(x) - 6x - 3 =	-0.00716541
9. At x =	1.56445,	f(x) - 6x - 3 =		10. At x =	1.56152,	f(x) - 6x - 3 =	0.00641304
10. At x =	1.56348,	f(x) - 6x - 3 =		11. At x =	1.56104,	f(x) - 6x - 3 =	-0.000376102
11. At x =	1.56299,	f(x) - 6x - 3 =		12. At x =	1.56128,	f(x) - 6x - 3 =	0.0030185
12. At x =	1.56323,	f(x) - 6x - 3 =		13. At x =	1.56116,	f(x) - 6x - 3 =	0.0013212
13. At x =	1.56335,	f(x) - 6x - 3 =		14. At x =	1.5611,	f(x) - 6x - 3 =	0.000472552
14. At x =	1.56329,	f(x) - 6x - 3 =	-0.000323055	15. At x =	1.56107,	f(x) - 6x - 3 =	4.82256e-05
15. At x =	1.56332,	f(x) - 6x - 3 =	0.000102079	16. At x =	1.56105,	f(x) - 6x - 3 =	-0.000163938
16. At x =	1.56331,	f(x) - 6x - 3 =	-0.000110491	17. At x =	1.56106,	f(x) - 6x - 3 =	-5.78561e-05
17. At x =	1.56332,	f(x) - 6x - 3 =	-4.20686e-06	18. At x =	1.56106,	f(x) - 6x - 3 =	-4.81523e-06
			<u> </u>				
		a)				ნ)	
		aj				<i>U</i>	

Рис. 6. Итерации рабочего цикла метода бисекции. а) для полинома в форме Лагранжа; б) для сплайн-функции.

На 17-м шаге метода бисекции для полинома Лагранжа было достигнуто требование по точности, значение x=1.56332 — искомое для поставленной задачи. Аналогично на 18-м шаге алгоритма для сплайн-функции было получено значение x=1.56106 с заданной точностью $\varepsilon=10^{-5}$. Разница

корней равна $\delta_{abs} = |1.56332 - 1.56106| = 0.00226$. Погрешность имеется из-за разной природы аппроксимирующих функций. Разница значений мала в сравнении с разбросом функции абсолютного отклонения σ , из-за того, что сам корень находится вблизи узла интерполирования.

Интегрирование.

Используя подпрограмму **quanc8** найдем значения определенных интегралов от интерполяционного полинома в форме Лагранжа и сплайн функции. Результаты выполнения программы и разница значений приведены ниже.

```
Lagrange polynome integral = 12.4266

Lagrange polynome error estimation = 1.33357e-15

Spline-function integral = 12.5345

Spline-function error estimation = 4.05925e-06

Absolute difference = 0.107856
```

Рис.7. Результаты работы подпрограммы **quanc8**, абсолютная разница результатов, а также оценка глобальной погрешности результата.

Вывод.

В ходе работы были построены две аппроксимирующие функции, произведен сравнительный анализ их поведения на отрезке [1,2], оценены значения корней уравнения f(x) = 6x + 3 для построенных функций, а также их интегралов на том же отрезке. Исследование показало, что две аппроксимирующие функции имеют максимальный абсолютный разброс $\sigma = 1.238$, значения корней, вычисленные с погрешностью $\varepsilon = 10^{-5}$ отстоят друг от друга на $\delta_{abs} = 0.00226$, определенные интегралы, вычисленные одним и тем же методом, различны на величину порядка 10^{-1} , при использовании контроля абсолютной и относительной погрешностей на величину, равную 10^{-5} . Расчетные глобальные погрешности интегрирования отличаются на семь порядков, в пользу интерполяционного полинома в форме Лагранжа, значит он обладает большей степень точности, для данной таблицы значений, чем сплайн-функция.