

Chart showing the major contributing factors in the progression of Colonary Heart

Disease (CHD) and how the activity of cocoa procyanidins contributes to the

prevention of the progression of the disease state

FIG.2a

The cocoa procvanidins induce the activity of NOS and therefor

resulting production NO, thereby enhancing the health benefits

mediated by the activity of nitric oxide (NO).

"inhibits platelet aggregation, monocyte adhesion, chemotaxis and vascular smooth muscle proliferation thereby causing vascular relaxation and preventing the disease progression of CHD.

By lowering blood pressure via the following mechanism:

vascular endothelial cells release eNOS

- of NO
- →NO relaxes vascular smooth muscles, increasing vascular lumen diameter
- -> induces hypotension.

HYPERTENSION RESPONSIBLE FOR CARDIOVASCULAR DISEASES:

including:

FIG.2b

Stroke heart attack heart failure kidney failure ° Macropages have a different NOS(iNOS)

*INOS gene transcription is controlled by cytokines

° iNOS activity results in →result in production macrophage NO production at sufficient concentrations to inhibit ribonnclease reductase

> -- causes inhibition of DNA synthesis

→ lowers blood pressure → potential mechanism of action in anti-tumor and anti-microbial function.

The cocoa procyanidins inhibit the production of cyclo-oxygenase, thereby

blocking the arachidonic acid pathway, which is responsible for the inflammatory
response and the vasoconstrictive and platelet aggregating responses which
contribute to the disease progression of CHD.

FIG.7

FIG.8A

EFFECT OF COCOA PROCYANIDIN FRACTION A ON BLOOD PRESSURE

FIG.8B EFFECT OF COCOA PROCYANIDIN FRACTION C ON BLOOD PRESSURE

3 min

BP decreased by 50.5% within 1 min BP back to normal value after 5 min

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON ARTERIAL BLOOD PRESSURE IN ANESTHISIZED GUINEA PIGS

FIG.9

EFFECT OF L-NMMA ON THE ALTERATIONS OF ARTERIAL BLOOD PRESSURE IN ANESTHISIZED GUINEA PIGS INDUCED BY COCOA PROCYANIDIN FRACTION C

FIG.10

EFFECT OF BRADYKININ ON NO PRODUCTION BY HUVEC

FIG.11

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON NO PRODUCTION BY HUVEC

FIG.12

FIG.14

(-) WITH THE EXCEPTION OF SAMPLE SII EXPRESSED AS mg/ml

FIG.16B

(*) WITH THE EXCEPTION OF SAMPLE SIT EXPRESSED AS mg/ml

FIG.17

(*) WITH THE EXEPTION OF SAMPLE SII

FIG.18A

FIG.18B

FIG.18C

FIG.18D

FIG.18E

FIG.18F

FIG.18G

FIG.18H

FIG.18 I

FIG.18J

FIG.18K

FIG.18L

FIG.18M

FIG.18N

FIG.180

FIG.18P

FIG.18Q

FIG.18R

FIG.18S

FIG.18T

FIG.18U

FIG.18V

without simulation with weak agonisys. Platelet activation marker expression is presented as Tukey box plots at times zero (white boxes), 2 hours (light grey boxes), and 6 hours (dark grey boxes) post consumption of water, or (C) with ADP (20uM). Activated GP11b-111a is expressed on the surface of activated platelets. Each box shows the repeated measure ANOVA on ranks, Student-Newman-Keuls multiple comparison method, n=10 in each expressing activated gp11b-111a (PAC1= platelets) without stimulation (B) after stimulation with epinephrine (20uM) percentile. Asterisks indicate P 0.05 betweenzero time and 6 hour hour time points of each respective data set a caffeine-containing control beverage (caffeine) or a cocoa beverage (cocoa). (A) percentage of platelets 25-75th percentile, the horizontal bar in the box shows the median. The lines outside the box show the 10th and 90th Effect of cocoa beverage consumption on platelet surface expression of activated GP11b-111a with and

O

60-

10

O

000

o

80-

0

without stimulation with weak agonists, platelet activation marker expression presented as Tukey box plots at time caffeine-containing control beverage (caffeine) or a cocoa beverage (cocoa).(A) Percentage of platelets expres zero (white boxes), 2 hours (light grey boxes) and 6 hours (dark grey boxes) post-consumption of water, a ADP(20uM). P-selection is expressed on the surface of activated Asterisks indicate P<0.05 between zero time a P-selection(CD62P+platelets) without stimulation, (P) after stimulation with epinephrine (20uM) or (C) with hours and between zero time and six Effect of cocoa beverage consumption on platelet surface surface expression of activated P-selection with a

Cocoa

Water

Caffeine

Cocoa