МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

до практичної роботи № 1 на тему: ""Мінімізація булевих функцій. Синтез комбінаційних схем""

з дисципліни: "Архітектура комп'ютера та комп'ютерних мереж"

Лектор: доц. каф. ПЗ Крук О.Г.	
Виконала: ст. гр. ПЗ-26 Пелих О. Р.	
Прийняв: доц. каф. ПЗ Крук О.Г.	
» 2024 p.	«

Хід роботи

Варіант 17

1		ення		Зна чення функції																															
X4	X3	X2	X 1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32																															
0	0	0	0	1	0	1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1
0	0	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0
0	0	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0
0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1	0	0	1	1
0	1	0	0	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1	0	0	1
0	1	0	1	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1	0	0
0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1	0
0	1	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	1
1	0	0	0	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1
1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0
1	0	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1	0	1	0	1
1	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	1
1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1	0	1
1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1	0
1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	0	1	1
Ч		ота Гц	f,	316	318	326	328	336	338	346	348	356	5	366	368	376	378	988	388	968	868	406	408	416	418	426	428	436	434	442	444	452	454	462	464

1. Для логічної функції відповідно до свого варіанту, що задана таблицею істинності, запишіть функцію $F(x_1, x_2, x_3, x_4)$ в досконалій диз'юнктивній нормальній формі (ДДНФ).

$$F(x_1,x_2,x_3,x_4) = \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4} + x_1\overline{x_2}\overline{x_3}\overline{x_4} + \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4} + \overline$$

- 2. Складіть карту Карно для функції $F(x_1, x_2, x_3, x_4)$.
- 3. Визначіть групи, які складаються з двох, або чотирьох, чи навіть з восьми клітинок.

	$\overline{x_2}\overline{x_1}$	$\overline{x_2x_1}$	X2X1	$\overline{x_2}$ X ₁
$\overline{x_4}\overline{x_3}$	1	0	0	1
$\overline{X_4x_3}$	1	1	0	1
X4X3	1	1	0	0
$\overline{x_4}$ X3	1	0	0	1

4. Запишіть спрощену функцію F_{min1} (x_1, x_2, x_3, x_4)

$$\mathbf{F}_{min1}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = (\overline{x_2}\overline{x_4}) + (\overline{x_1}x_4) + (x_1\overline{x_2}\overline{x_3})$$

5. Виконайте спрощення початкової функції F(x1,x2,x3,x4) методом Квайна — Мак-Класкі. 6. Запишіть спрощену функцію Fmin2(x1,x2,x3,x4).

0000 *	000- * 0-00 * -000 *	0-0- -00- 00
0001 * 0100 * 1000 *	0-01 * -001 * 010- * -100 * 100- * 10-0 * 1-00 *	10
0101 * 1001 * 1010 * 1100 *	1-10 * 11-0 *	

Таблиця покриття:

	0000	0001	0100	0101	1000	1001	1010	1100	1110
0-0-	V	V	V	V					
-00-	V	V			V	V			
00	V		V		V			V	
10					V		V	V	V

6. Запишіть спрощену функцію $Fmin2(x_1, x_2, x_3, x_4)$.

$$\mathbf{F}_{min2}(x_1,x_2,x_3,x_4) = (\overline{x_2}\overline{x_4}) + (\overline{x_2}\overline{x_3}) + (\overline{x_1}x_4)$$

7. Для логічної функції відповідно до свого варіанту, що задана таблицею істинності, запишіть функцію P(x1,x2,x3,x4) в досконалій кон'юнктивній нормальній формі (ДКНФ).

$$\mathbf{P}(x_1,x_2,x_3,x_4) = \overline{x_1}x_2\overline{x_3}\overline{x_4} + x_1x_2\overline{x_3}\overline{x_4} + \overline{x_1}x_2x_3\overline{x_4} + x_1x_2x_3\overline{x_4} + x_1x_2x_3\overline{x_4} + x_1x_2x_3\overline{x_4} + x_1x_2x_3\overline{x_4} + x_1x_2x_3\overline{x_4} + x_1x_2x_3x_4 + x_1x$$

8. Синтезуйте і введіть в систему PROTEUS схеми, які описуються: 1) початковою функцією $F(x_1, x_2, x_3, x_4)$; 2) спрощеною функцією $Fmin1(x_1, x_2, x_3, x_4)$; 3) спрощеною функцією $Fmin2(x_1, x_2, x_3, x_4)$; 4) функцією

 $P(x_1, x_2, x_3, x_4)$. Ім'я кожного елемента формуйте за шаблоном <ід>Еk, де ід — ідентифікатор, що містить шифр групи і номер варіанта, до прикладу, ід = $G21_13_$ якщо ваша група ПЗ-21 і ваш номер у списку групи 13, k = 1, 2, 3... - номер за порядком (кутових дужок не ставити!).

Рис. 1. Схема початкової функції F

Рис. 2. Схема спрощеної функції F_{min1}

Рис. 2. Схема спрощеної функції F_{min2}

Рис. 4. Схема функції Р

9. Подайте на схеми сигнали від чотирьох цифрових генераторів, їх імена також формуйте з ідентифікатором. Для генератора <ід>G1 задайте частоту f1 = 8*f; для генератора <ід>G2 - f2 = 4*f; для генератора <ід>G3 - f3 = 2*f; для генератора <ід>G4 - f4 = f, де f - частота відповідно до варіанту.

 $G1 = 396\ 000 * 8 = 3\ 168\ 000\ \Gamma$ ц

 $G2 = 396\ 000 * 4 = 1\ 584\ 000\ \Gamma$ ц

 $G3 = 396\ 000 * 2 = 792\ 000\ \Gamma$ ц

 $G4 = 396\ 000$

10. На вільному місці робочої області побудуйте цифровий графік з заголовком Sxemy, на якому виведіть сигнали з генераторів $\langle iд \rangle G1$, $\langle iд \rangle G2$, $\langle iд \rangle G3$, $\langle iд \rangle G4$ і з виходів першої, другої, третьої і четвертої схем.

11. Розрахуйте період цифрового сигналу T = 1/f (значення частоти f переведіть в Γ ц, результат заокругліть до трьох значущих цифр). Задайте кінцевий момент часу моделювання tк= T.

- 12. Ініціюйте виконання моделювання і побудову кривих графіка Sxemy.
- 13. Порівняйте вихідні сигнали зі схем.

Аналізуючи графіки, можна зробити висновок, що вхідні сигнали x_1 , x_2 , x_3 , x_4 задано правильно та відповідають варіанту. Вихідні сигнали функцій F, F_{min1} , F_{min2} і P однакові та також відповідають заданому варіанту. Отже, всі функції побудовано правильно, а схеми синтезовано коректно.

- 14. Змініть тло графіка Ѕхету з чорного на біле.
- 15. Оформіть звіт. Зробіть висновки про значення спрощення логічних функцій.

Висновок

Під час виконання практичної роботи №1 я детально ознайомилася з роботою логічних елементів NOT, AND та OR у середовищі Proteus. Повторила методи роботи з нормальними диз'юнктивними та кон'юнктивними формами функцій, а також пригадала способи їх спрощення за допомогою карт Карно та методу Квайна-Мак-Класкі.

За результатами роботи я зробила висновок, що спрощення логічних функцій значно полегшує роботу з ними та дозволяє синтезувати простіші логічні схеми, використовуючи менше логічних елементів.