Artificial Intelligence

Lecture 4: Constraint Satisfaction Problems

Xiaojin Gong 2022-03-14

Credits: AI Courses in Berkeley

Review

Search problems

Adversarial search

Review

- Rational Agents
 - Structure
 - Representation

(a) Atomic

Search
Markov decision processes

Constraint satisfaction
Bayesian network

Natural language processing

(b) Factored

(b) Structured

Outline

- Constraint satisfaction problems
 - Problem formulation
 - Backtracking search
 - Inference in CSPs

_			_					
	5	3	2		7			8
6		1	5					2
2			ø	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	9	7
Г	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

- A special subset of search problems
- The goal itself is important, not the path

Constraint Satisfaction Problem

- A CPS consists of three components:
 - A set of variables $X = \{X_1, \dots, X_n\}$
 - A set of domains $D = \{D_1, \dots, D_n\}$
 - A set of constraints C
- State is defined by an assignment of values from a domain D_i to some or all of the variables X_i .
 - An assignment that does not violate any constraints is called a consistent or legal assignment.
 - A complete assignment is one in which every variable is assigned.
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables.
- Solution is a consistent, complete assignment.

Example: Map Coloring

• Variables: $X = \{WA, NT, SA, Q, NSW, V, T\}$

• Domains: $D = \{r, g, b\}$

Constraints:

• Implicit: $WA \neq NT$, ...

• Explicit: $(WA, NT) \in \{(r, g), (r, b), \dots\},\$

• •

Solutions are assignments satisfying all constraints

Constraint Graph

- Each node corresponds to a variable
- Each arc participates in a constraint
- General-purpose CSP algorithms use the graph structure to speed up search.

Example: Cryptarithmetic Puzzle

- Variables: $X = \{F, T, U, W, R, O, C_1, C_2, C_3\}$
- Domains: $D = \{0,1,2,\cdots,9\}$
- Constraints:
 - Alldiff(F, T, U, W, R, O)
 - $O + O = R + 10C_1$
 - $C_1 + W + W = U + 10C_2$
 - $C_2 + T + T = O + 10C_3$
 - $C_3 = F$

Constraint Hypergraph

Example: Sudoku

- Variables: Each (open) square
- Domains: $D = \{1, 2, \dots, 9\}$
- Constraints:
 - 9-way *Alldiff* for each column
 - 9-way *Alldiff* for each row
 - 9-way *Alldiff* for each region
- Solutions are assignments satisfying all constraints

Example: Job-shop Scheduling

- Car assembly tasks:
 - Install axles (front and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel, affix hubcaps, and inspect the final assembly
- Variables:

```
X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}.
```

- Domains: $D = \{1, 2, \dots, 27\}$
- Constraints:
 - Precedence constraint

```
Axle_F + 10 \le Wheel_{RF}; \quad Wheel_{RF} + 1 \le Nuts_{RF}; \quad Nuts_{RF} + 2 \le Cap_{RF};
```

Disjunctive constraint

```
(Axle_F + 10 \le Axle_B) or (Axle_B + 10 \le Axle_F)
```

Example: Real World CSPs

- Timetabling problems
- Transportation scheduling
- Factory scheduling
- Hardware configuration

• . . .

Many real-world problems involve real-valued variables

Varieties of CSPs: Variables

Discrete variables

- Finite domains
 - E.g., map coloring, Sudoku
- Infinite domains
 - E.g., job scheduling
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by linear programming methods

Varieties of CSPs: Constraints

- Varieties of constraints
 - Unary constraints
 - E.g.,map coloring, $SA \neq g$
 - Binary constraints
 - E.g., map coloring, $SA \neq WA$
 - Higher-order constraints
 - E.g., cryptarithmetic column constraints
- Preference constraints (Soft constraints)
 - Indicating which solutions are preferred
 - E.g., red is better than green
 - Often represented by a cost for each variable assignment
 - Gives constrained optimization problems

Solving CSPs

- Standard search formulation
 - States defined by the values assigned so far
 - Initial state: the empty assignment
 - Successor function: assign a value to an unassigned variable
 - Goal test: if the assignment is complete and satisfies all constraints
- Search tree
 - For *n* variables of domain size *d*,
 - Top level: *nd*
 - 2nd level: (*n*-1)*d*
 - Leaves: $n!d^n$

Depth-first search

Commutativity in CPS!

Backtracking Search for CSPs

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Backtracking search is the depth-first search with two improvements:
 - 1. One variable at a time
 - Variable assignments are commutative, so fix ordering
 - Only need to consider assignments to a single variable at each step
 - 2. Backtrack when a variable has no legal values
 - Incremental goal test
- The number of leaves in the search tree is d^n

Backtracking Search for CSPs

```
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
  return BACKTRACK(\{\}, csp)
function BACKTRACK(assignment, csp) returns a solution, or failure
  if assignment is complete then return assignment
  var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
     if value is consistent with assignment then
         add \{var = value\} to assignment
         inferences \leftarrow Inference(csp, var, value)
         if inferences \neq failure then
            add inferences to assignment
            result \leftarrow BACKTRACK(assignment, csp)
            if result \neq failure then
              return result
     remove \{var = value\} and inferences from assignment
  return failure
```

Backtracking Search for CSPs

• Ordering:

- Which variable should be assigned next?
- In what order its values be tried?

• Inference:

Infer reductions in the domain of variables

• Structure:

• Can we exploit the problem structure?

Variable and Value Ordering

- Variable ordering:
 - Minimum-remaining-values (MRV) heuristic
 - Choose the variable with the fewest "legal" values
 - Also called the most constrained variable or fail-first heuristic
 - Help minimize the number of nodes in the search tree by pruning larger parts of the tree earlier.
 - Degree heuristic
 - Choose the variable with the largest degree

Variable and Value Ordering

- Value ordering:
 - Least-constraining-value heuristic

 Leave the maximum flexibility for subsequent variable assignments

Fail-last heuristic

• We only need one solution, therefore it makes sense to look for the most likely values first.

Inference in CSPs

• Inference:

- Constraint propagation
- for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment then add $\{var = value\}$ to assignment $inferences \leftarrow Inference(csp, var, value)$
- Reduce the number of legal values for a variable
- Constraint propagation may be interwined with search, or done as a preprocessing step
- The key idea is local consistency
- Forms of inference:
 - Forward checking
 - Maintaining Arc Consistency (MAC)

Inference: Forward Checking

• Whenever a variable *X* is assigned, the forward-checking process establishes arc consistency for it

- Keep track of domains for unassigned variables and cross off bad options
- Forward checking propagates information from assigned to unassigned variables
- It makes the current variable arc-consistent, but doesn't look ahead and make all the other variables arc-consistent.

Arc Consistency

• An arc $X \rightarrow Y$ is consistent *iff* for every x there is some y which could be assigned without violating a constraint

Delete from the tail!

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc-Consistency Algorithm (AC-3)

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_j) \leftarrow \mathsf{REMOVE}\text{-}\mathsf{FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
                                                                                    WA
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
     if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
       delete x from D_i
       revised \leftarrow true
  return revised
```

Arc-Consistency Algorithm (AC-3)

• Runtime:

- Assume a CSP with n variables, d domain size, and c binary constraints
- Each arc (X_k, X_i) can be inserted d times
- Checking consistency of an arc takes $O(d^2)$ time
- So the total worst-case time is $O(cd^3)$

Arc-Consistency Algorithm (AC-3)

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- Interleaving inference with search

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

 Arc consistency still runs inside a backtracking search!

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency):
 - Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency):
 - For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency:
 - For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute

Strong K-Consistency

- Strong k-consistency:
 - Also k-1, k-2, ... 1 consistent
- Strong n-consistency means we can solve without backtrackin
 - Guaranteed to find a solution in $O(n^2d)$
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - . . .

The Structure of Problems

- Decompose into independent subproblems
 - Independence can be ascertained by finding connected components
- Suppose each subproblem CSP_i has c variables from the total of n variables,
 - The total work is $O(n/c d^c)$
 - E.g. n=80, d=2, c=20
 - 2⁸⁰= 4 billion years at 10 million nodes/sec
 - $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec.

Tree-Structured CSP

- Any two variables are connected by only one path
- Any tree-structured CSP can be solved in $O(nd^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$

Tree-Structured CSP

```
function TREE-CSP-SOLVER (csp) returns a solution, or failure
   inputs: csp, a CSP with components X, D, C
   n \leftarrow number of variables in X
   assignment \leftarrow an empty assignment
   root \leftarrow any variable in X
   X \leftarrow \mathsf{TOPOLOGICALSORT}(X, root)
   for j = n down to 2 do
     MAKE-ARC-CONSISTENT(PARENT(X_i), X_i)
     if it cannot be made consistent then return failure
   for i = 1 to n do
      assignment[X_i] \leftarrow any consistent value from D_i
     if there is no consistent value then return failure
   return assignment
```

Tree-Structured CSP

- Topological sort
 - Each variable appears after its parent in the tree.
- Directed arc consistency (DAC)
 - A CSP is DAC under an ordering $X_1, X_2, ..., X_n$ iff every X_i is arcconsistent with each X_i for j > I

No backtrack!

- Reduce general constraint graphs to trees
 - 1. Removing nodes
 - Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
 - Choose a subset S of the CSP's variables such that the constraint graph becomes a tree after removal of S. S is called a cycle cutset.
 - 2. For each possible assignment to the variables in S that satisfies all constraints on S,
 - (a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S, and
 - (b) If the remaining CSP has a solution, return it together with the assignment for S.

33

- Reduce general constraint graphs to trees
 - 1. Removing nodes
 - Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
 - Cutset size c gives runtime $O(d^c(n-c)d^2)$, very fast for small c
 - Choose a subset S of the CSP's variables such that the constraint graph becomes a tree after removal of S. S is called a cycle cutset.
 - 2. For each possible assignment to the variables in S that satisfies all constraints on S,
 - (a) remove from the domains of the remaining variables any values that are inconsistent with the assignment for S, and
 - (b) If the remaining CSP has a solution, return it together with the assignment for S.

- Reduce general constraint graphs to trees
 - 2. Collapsing nodes together
 - Tree decomposition: construct the constraint graph into a set of connected subproblems.
 - Every variable in the original problem appears in at least one of the subproblems.
 - If two variables are connected by a constraint in the original problem, they must appear together (along with the constraint) in at least one of the subproblems.
 - If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems.

- Reduce general constraint graphs to trees
 - 2. Collapsing nodes together
 - View each subproblem as a "mega-variable" whose domain is the set of all solutions for the subproblem.
 - Solve the constraints connecting between subproblems using the algorithm for tree-structured CSPs.
 - The problem can be solved in $O(nd^{w+1})$, w is the tree width of a tree decomposition.

Assignments

- Reading assignment:
 - Ch. 6.1-6.3, 6.5