Практическое занятие 6 Свойства множества по отношению порядка

- •1. Элементы ч.у.м. по отношению порядка.
- •2. Супремум и инфимум упорядоченного подмножества.
- •3. Понятие решетки.

Литература

- 1. Гретцер Г. Общая теория решеток. М.: Мир, 1982.
- 2. Набебин А.А. Сборник заданий по дискретной математике. М.: Научный мир, 2009. 280 с.

- Отношение частичного порядка
- бинарное отношение Q на X, обладающее свойствами:
- рефлексивности,
- антисимметричности,
- транзитивности.

Обозначение: $x \leq y$.

Говорят, что элемент x предшествует или равен y, а элемент y следует за или равен x.

ITMO University

- Отношение строгого порядка
- бинарное отношение Q на X, обладающее свойствами:
- антирефлексивности,
- антисимметричности,
- транзитивности.

$$\forall x, y \in X \ x \preceq y \iff x \preceq y \ \mathsf{u} \ x \neq y.$$

ITMO University

Говорят, что элемент x строго предшествует y, а элемент y строго следует за x.

- Отношение линейного порядка
- отношение частичного порядка на множестве X, для которого любые два элемента сравнимы:

$$x \leq y$$
 или $y \leq x$.

Непустое множество X с заданным на нем бинарным отношением порядка Q называется упорядоченным.

Обозначение: < X, Q >.

Частично (линейно) упорядоченное множество — непустое множество X с заданным на нем отношением частичного (линейного) порядка Q. Сокращенно ч.у.м. или л.у.м.

Рассмотрим ч.у.м. $\langle X, \preceq \rangle$.

Элемент y доминирует над x (y покрывает x), если

 $x \prec y$ и $\nexists z \in X$ такой, что $x \prec z \prec y$.

Обозначение: х ≤ у

Конечное ч.у.м. $< X, \preceq >$ имеет диаграмму Хассе, если в нем строгий порядок определяется отношением доминирования:

$$\forall x,y \in X \quad x \prec y \iff \exists x_0, x_1, x_2 \dots, x_n$$

такая, что
$$x = x_0 \triangleleft x_1 \triangleleft x_2 \triangleleft ... \triangleleft x_n = y$$
.

В диаграмме Хассе:

- каждый элемент $x_i \in X$ изображают точкой на плоскости,
- если $x_i \triangleleft x_{i+1}$, то точку x_{i+1} располагают выше точки x_i и соединяют их отрезком (дугой).

1. Элементы множества по отношению порядка

Пусть $< X, \leq > -$ ч.у.м.

Определение 1

Элемент $x_{max} \in X$ называется максимальным элементом множества X, если $\nexists x \in X$ такой, что $x \succ x_{max}$.

Элемент $x^* \in X$ называется наибольшим элементом множества X по данному отношению порядка, если

$$\forall x \in X \quad x \leq x^*.$$

Элемент $x_{min} \in X$ называется минимальным элементом множества X, если $\nexists x \in X$ такой, что $x \prec x_{min}$.

Элемент $x_* \in X$ называется наименьшим элементом множества X по данному отношению порядка, если $\forall x \in X \ x_* \preceq x$.

Наибольший элемент называют единицей,

наименьший элемент — H иножества X по данному отношению порядка.

$$<\{x_0, x_1, x_2, x_3, x_4, x_5, x_6\}, \le$$
 y.y.m.

множество максимальных элементов:

$$X_{max} = \{x_4, x_5, x_6\};$$

- наибольший элемент x^* не существует;
- наименьший элемент $x_* = x_0 = x_{min}$, т.е. он же минимальный. © I.Krivtsova ITMO University

 $<\Delta OAB, \Pi>$ 4.y.M.

• множество максимальных элементов

$$X_{max} = [A, B];$$

- наибольший элемент x^* не существует;
- наименьший элемент $x_* = (0,0) = x_{min}$.

Теорема 1

Если наибольший (наименьший) элемент множества по данному отношению порядка существует, то он единственный.

2. Супремум и инфимум упорядоченного подмножества

Пусть $< X, \preceq > -$ ч.у.м., $M \subseteq X, M \neq \emptyset$ Обозначим \preceq_M — ограничение отношения \preceq на подмножество M.

Ч.у.м. $< M, \preceq_M >$ называется упорядоченным подмножеством ч.у.м. $< X, \preceq >$.

Порядок \preceq_M на подмножестве M называют порядком, индуцированным исходным порядком \preceq на всем множестве X:

для $x,y \in M$ полагаем

$$x \preceq_{M} y \iff x \preceq y$$

Элемент $a \in X$ называется:

- верхней гранью множества M, если $\forall x \in M$ выполняется $x \preceq a$.
- нижней гранью множества M, если $\forall x \in M$ выполняется $a \leq x$.

Верхним конусом множества M называют множество всех его верхних граней.

Обозначение: M^{Δ}

Нижним конусом множества M называют множество всех его нижних граней.

Обозначение: M^{∇} .

Точной верхней гранью или супремумом множества M называется наименьший элемент множества всех его верхних граней.

Обозначение: sup M.

Точной нижней гранью или инфимумом множества M называется наибольший элемент множества всех его нижних граней.

Обозначение: inf M.

U I.Krivtsova
ITMO University

$$< R^2$$
, $\Pi > -$ ч.у.м., где (a,b) $\Pi(c,d) \Leftrightarrow a \leq c, b \leq d$. $B = \{(x,y): 0 \leq x \leq c \ \text{и} \ 0 \leq y \leq d\}$

- $sup B = a^* = (c,d);$
- $inf B = a_* = (0,0).$

Теорема 2

Если точная верхняя (нижняя) грань упорядоченного множества существует, то она *единственная*.

3. Понятие решетки

Пусть $< X, \le > -$ ч.у.м.; $x,y \in X$.

Определение 6

Элемент a называется:

- верхней гранью элементов x и y, если $x \leq a$ и $y \leq a$;
- нижней гранью элементов x и y, если $a \preceq x$ и $a \preceq y$.

ITMO University

Элемент a^* называется точной верхней гранью или супремумом элементов x и y, если

$$\forall t \ x \leq t \ \mathsf{u} \ y \leq t \Rightarrow a^* \leq t$$

Обозначение: $a^* = \sup \{x, y\}.$

Элемент a_* называется точной нижней гранью или инфимумом элементов x и y, если

$$\forall t \quad t \leq x \quad \mathsf{u} \quad t \leq y \Longrightarrow t \leq a_*$$

Обозначение: $a_* = inf \{x, y\}.$

Решеткой называется ч.у.м. $< X, \preceq >$, в котором каждая пара элементов x и y имеет супремум и инфимум.

Попарно неизоморфные 5-элементные решетки © I.Krivtsova

ITMO University

