SI231b: Matrix Computations

Lecture 14: Eigenvalue Revealing Decomposition

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 02, 2021

Recap: Algebraic and Geometric Multiplicity

Algebraic Multiplicity

- ► Characteristic polynomial $p(\lambda) = \prod_{i=1}^{n} (\lambda \lambda_i)$
- lacktriangle denote μ_i as the number of repeated eigenvalues of λ_i $(i=1,\,\ldots,\,\,k)$

$$p(\lambda) = (\lambda - \lambda_1)^{\mu_1} (\lambda - \lambda_2)^{\mu_2} \cdots (\lambda - \lambda_k)^{\mu_k},$$

with $\mu_1 + \mu_2 + \cdots + \mu_k = n$ and λ_i is distinct with λ_i .

 \blacktriangleright μ_i is called the algebraic multiplicity of the eigenvalue λ_i

Geometric Multiplicity

- ightharpoonup every λ_i can have more than one eigenvector (scaling not counted)
- eigenspace \mathcal{E}_{λ_i} associated with λ_i , $\mathcal{E}_{\lambda_i} = \mathcal{N}(A \lambda_i I)$
- $ightharpoonup \gamma_i = \dim(\mathcal{E}_{\lambda_i})$ is called the geometric multiplicity of the eigenvalue λ_i

Fact: $\mu_i \geq \gamma_i$ for each λ_i .

4 □ ▶ 4 □ № 4 □

Outline

- ► Diagonalization
- ► Similarity Transformation
- ► Schur Decomposition
- ► Eigenvalues of Hermitian Matrices

Diagonalization

Theorem 1: An $n \times n$ matrix A is nondefective if and only if it has an eigenvalue decomposition

$$A = V\Lambda V^{-1}$$

with $\Lambda = \operatorname{diag}(\lambda_1, \ \lambda_2, \ \cdots, \ \lambda_n)$ and the k-th column of V being the eigenvector v_k associated with λ_k .

Hint: you need the following lemma to prove the theorem

Lemma 1: Let $A \in \mathbb{C}^{n \times n}$, and suppose that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$, $k \leq n$, is the set of all distinct eigenvalues of A. Also, let v_i be *any* eigenvector associated with λ_i . Then v_1, \ldots, v_k must be linearly independent.

From Theorem 1, another term for nondefective is diagonalizable.

Properties of Eigenvalue Decomposition

If A admits an eigenvalue decomposition, the following properties can be shown (easily):

- $\blacktriangleright \ \det(\mathsf{A}) = \prod_{i=1}^n \lambda_i$
- $\operatorname{tr}(\mathsf{A}) = \sum_{i=1}^n \lambda_i$
- ▶ the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$
- A is nonsigular if and only if A does not have zero eigenvalues
- suppose that A is also nonsingular. Then, $A^{-1} = V\Lambda^{-1}V^{-1}$

Note: the first three properties does not require the eigenvalue decomposition to prove.

Similarity Transformation

For $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), if $T \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is nonsingular, the map $A \mapsto T^{-1}AT$ is called a similarity transformation of A.

Theorem 2 If T is nonsingular, then A and $T^{-1}AT$ have the same

- ► characteristic polynomial
- eigenvalues
- ► algebraic multiplicity
- geometric multiplicity

Hint: using characteristic polynomial to show.

Schur Decomposition

Let $A \in \mathbb{C}^{n \times n}$, the Schur decomposition of A is given by

$$A = QTQ^{H}$$
,

where Q is unitary $(Q^HQ = I)$, and T is upper-triangular.

Property: Since A and T are similar, the eigenvalues of A appear on the diagonal of T.

Theorem 3: Every square matrix A has a Schur decomposition.

Hint: applying induction to prove.

Eigenvalues of Hermitian Matrices

Real Eigenvalues

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian $(A = A^H)$, then

- 1. the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are real
- 2. suppose that λ_i 's are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of A. Also, let v_i be *any* eigenvector associated with λ_i . Then v_1, \ldots, v_k must be orthonormal.

Remark:

the above results apply to real symmetric matrices, recall that

$$\mathsf{A} = \mathsf{A}^\mathsf{T} \Rightarrow \mathsf{A} = \mathsf{A}^\mathsf{H}.$$

Corollary:

▶ for a real symmetric matrix, all eigenvectors $v_1, ..., v_n$ can be chosen as real

Diagonalization of Hermitian Matrices

Theorem 4: Every Hermitian matrix $A \in \mathbb{C}^{n \times n}$ has an eigenvalue decomposition given by

$$A = V \Lambda V^H$$

where $V \in \mathbb{C}^{n \times n}$ is unitary $(V^H V = I)$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. Also, if $A \in \mathbb{R}^{n \times n}$ is symmetric, V is an orthogonal matrix.

Hint: can you use Schur decomposition to prove this?

Remark:

b does not require the assumption of $\mu_i = \gamma_i$ for all λ_i

Corollary:

▶ If A is Hermitian or real symmetric, $\mu_i = \gamma_i$ for all λ_i (no. of repeated eigenvalues = no. of linearly independent eigenvectors)

Eigenvalue Revealing Decomposition

Factorize a matrix to a form in which eigenvalues are explicitly displayed

- ▶ Diagonalization, $A = V\Lambda V^{-1}$, exists if and only if A is nondefective.
- ► Schur decomposition, $A = QTQ^H$ always exists.
- ► Jordan canonical form, A = SJS⁻¹ always exists (will not be introduced in our lecture), where

$$\mathsf{J} = egin{bmatrix} \mathsf{J}_1 & & & & & \\ & \mathsf{J}_2 & & & & \\ & & & \ddots & & \\ & & & \mathsf{J}_k & & \end{bmatrix}$$

with

$$\mathsf{J}_i = egin{bmatrix} \lambda_i & & & & & \ & \lambda_i & & & \ & & \ddots & & \ & & & \lambda_i \end{bmatrix}, \quad \mathsf{or} \quad \mathsf{J}_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & \ddots & & \ & & \ddots & 1 & & \ & & \lambda_i \end{bmatrix}$$

10 / 11

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 7.1, 8.1