

高级程序语言设计

张伯雷

bolei.zhang@njupt.edu.cn

bolei-zhang.github.io

计算机学院,软件教学中心

http://10.164.114.139:4002/

课时计划

■ 学时: 40+8=48, 本课程共做4个实验

实验项目	实验周次	实验时间
实验一	第9周周四	10~11节
实验二	第11周周四	10~11节
实验三	第15周周四	10~11节
实验四	第17周周四	10~11节

计算机学科楼 计算中心机房

Manufacturerity of Prost and Telecomencipation of Life (PS) ESC ES ESC OF OSO

答疑安排

• 本人:

And the state of t

辅导答疑时间	辅导答疑地点	辅导老师
3-18周每周三 中午12:30-13:30	计算机学科楼337	张伯雷

• 课程组: 见答疑表

课程考核

■ 总成绩 = 平时成绩 * 40% + 期末考试 * 60%

o期末考试:笔试(闭卷)

o平时成绩:

MOOC成绩(60%):中国大学MOOC网

实验成绩(30%):机房上机、电子版实验报告

考勤(10%):出勤、课程参与、兴趣编程

成绩评定及考核

Nacina University of Posts and Table Commissional Conference of Posts and Table Conference of Posts and Table Commissional Conference of Posts and Table Conferen

■ MOOC成绩由四部分组成:

- (1)单元测验:第1-11章,共11次,占30%;
- (2)编程作业:第3-10章,共8次,占30%;
- (3)线上期末考试:1次,最后1周,占30%;
- (4)论坛讨论:在课程讨论区的第2子板块"课堂交流区"参与回复的数量达到5个即满分,占10%

o特别说明:每节课里的随堂测验是帮助大家理解本小节课的内容,不计入成绩,建议选做

学习本课程可用的资源

(i)全套教材,主教材扫码看例题讲解,辅导教材可以深度思考、增加练习量、编程训练

(ii) MOOC课程资源:视频、测验、编程、讨论

(iii)任课老师:面对面答疑解惑,你有问我必答

(iv)网络资源:各种网络资源,编程人员交流的区

域,专业网站等

参考书

C程序设计(第四版) 谭浩强 清华大学出版社

C语言程序设计:现代方法(第二版) [美]K. N. King 著,吕秀峰等译 人民邮电出版社

如何学习?

Nanipa University of Posts and Telecommunications () Edge 465 Edge 575 Edge 575

上课听讲	及时复习	经常上机	独立作业	课外练习	分数
√	✓	✓	√	✓	>90
√	✓		√	✓	>80
√	✓	✓	√		>80
√	✓		√		>70
√	✓				60左右
√					<60

高级程序语言设计

第01章 初识计算机、程序与C语言

本节课...

■ 计算机是什么?

■ 计算机程序如何在计算机中运行?

■ 为什么学习C语言?

■ 为什么使用二进制?

计算

- 计算
 - 也是构建在一套公理体系上,并且在此基础上不断向上演化。
 - o 由三大类组成,数字,基本运算符和组合方式。
- 可计算性:
 - 什么问题是可计算的

函数式编程语言: Lisp (1958), Scheme

丘奇代表了"逻辑"和"语言"

图灵机:图灵机是一个逻辑机的通用模型。图灵机由一个控制器、一个读写头和一个无限长的存储带组成。 通过有限指令序列就能实现各种演算过程

命令式/过程式程序设计语言:C、C++、JAVA

图灵代表了"物理"和"机器"

第一台现代电子计算机

Nanijing university of the season of the sea

姓名: ENIAC (埃尼阿克)

• 生日:1946年2月14日

• 出生地:美国宾夕法尼亚大学

• 作用:美国军方用于计算弹道

• 构成:17840支电子管

• 性能参数:

大小为80英尺×8英尺,重达28吨,功耗为170干瓦,运算速度为每秒5000次的加法运算

● 造价:约为487000美元

早期程序设计语言

《隐藏人物》(Hidden Figures)

计算机及其组成

Nanipa unua datu or posts and release

■ 计算机: 硬件系统 + 软件系统

俗称电脑,自动、高速处理海量数据

■ 历史上的重要人物

巴贝奇 原型机之父 分析机(1834)

Nanjing University of Prosess and Teleconomic actions (1) Life (14) Life (14

图灵 计算机科学之父 图灵测试—AI之父

阿塔那索夫 第一台电子计算机 —ABC机(1939)

冯诺依曼 现代计算机之父 "存储程序"思想 (1946)

存储程序

- 把程序本身当作数据来对待
 - (1) 数据和指令用**二进制**数表示
 - o (2) **顺序**执行程序
 - o (3) 计算机运行过程中,把要执行的**程序和处理的数据** 首先存入主存储器(内存)
 - (4) 计算机硬件由运算器、控制器、存储器、输入设备和输出设备五大部分组成

Engima

• 整个计算机就是一个巨大的插线板,通过在板子上不同的插头或者接口的位置插入线路,来实现不同的功能。这样的计算机自然是"可编程"的,但是编写好的程序不能存储下来供下一次加载使用,不得不每次要用到和当前不同的"程序"的时候,重新插板子,重新"编程"。

计算机发展的四个时代

					Orposts
时代	名称	起止年	硬件	软件及应用领域	特点
第1代	电子管 时代	1946— 1958	逻辑元件采用真空电子管 ,主存采用汞延迟线、磁 鼓、磁芯;外存采用磁带	采用机器语言、汇编语言编程。 应用领域以军事和科学计算为主	体积大、功耗高、可靠性 差、速度慢(每秒几干至 几万次)、价格昂贵
第2代	晶体管 时代	1958— 1964	逻辑元件采用晶体管,主存储器采用磁芯	出现操作系统,用高级语言及编译程序开发程序。应用在科学计算和事务处理、工业控制等	体积缩小、能耗降低、可 靠性提高、运算速度提高 (每秒几十万次)
第3代	集成电路 时代	1964— 1970	逻辑元件采用中、小规模 集成电路,主存储器采用 磁芯	出现分时操作系统以及结构化、 模块化程序设计方法。应用领域 进入文字处理和图形图像处理等	速度更快(每秒几百万次),可靠性更高,价格下 降,通用化、系列化和标 准化
第4代	大规模集 成电路时 代	1970至 今	逻辑元件采用大规模和超 大规模集成电路	出现数据库管理系统、网络管理 系统和面向对象语言等。应用领 域逐步走向家庭	集成度高,体积小,速度 极快(每秒百万至数亿次),微型计算机1971年 诞生

计算机及其组成

Missing University of Prosts and Teaconnucleations (Sept. 463 Sep

存储器的基本知识

Nanijan university of Posts and Teleconditions

- 存储器类型:
 - 主存储器(即内存)
 - 辅助存储器(即外存)
 - 高速缓存等
- 代码(指令)及数据以二进制形式存储在内存
- 存储器内容:
 - 由存储单元组成,每个单元为1个字节(1Byte=8bit)
 - 每个单元对应一个地址。

举例: 教室、座位、教室号

存储器的基本知识

- 存储器的大小:
 - 包含多少个字节
 - n根地址总线,存储器容量为: 2n
- 存储计量单位:
 - B, KB, MB, GB, TB... $1TB=2^{10}GB=2^{20}MB=2^{30}KB=2^{40}B$

计算机程序与计算机语言

- 计算机软件系统:
 - **O系统软件** (System360, Windows, MacOS, Linux)
 - O应用软件 (Office, Wechat, VScode)
- ■程序:
 - ○一组命令的序列,实现目标或解决问题
 - o用某种程序设计语言开发
- ■程序设计语言:
 - ○语法规则
 - o符号集

视频链接

C语言简介

● C语言的起源

A语言? B语言?

ALGOL 60 - CPL (1963@剑桥) - BCPL (1967@剑桥) - B语言 (1970@贝尔) - C语言 (1973@贝尔)

- C语言的<mark>优势</mark>
 - (1) 简洁紧凑
 - (2)运算符、数据结构丰富,功能强大
 - (3)适用范围广
 - (4)可移植性好(多操作系统和机型)
 - (5)运行效果高(windows, Linux, Unix内核都是由C写成)
 - (6)底层语言:提供了机器级的访问,指针
- 缺点
 - 危险性高:安全性检查较少
 - 开发周期长:面向过程,写大型工程难度较高
 - 可移植性:相比JAVA等还有提高空间

C语言开发过程

- C程序的开发在特定的<mark>集成开发环境</mark>下进行
- 本教材程序在Visual Studio 2000下实现
- 举例:一个C程序在VS2000下开发的全过程

```
Hello world!程序
#include<stdio.h>
int main()
{
   printf( "hello world!" );
}
```


C语言开发过程

程序代码的录入, 生成源程序*.c

语法分析查错,翻译 生成目标程序*.obj

与其它目标程序或库 链接装配,生成可执行 程序*.exe/*.out

	源程序	目标程序	可执行程序
内容	程序设计 语言代码	机器语言代 码	机器语言 代码
可执行?	不可以	不可以	可以
扩展名	. c	. ob j	. exe/. out

CPU工作原理

高级程序语言

x=2+3;

汇编语言

ADD R13

机器语言

A SA PER SET OF OFFI

00100010001011110101

二进制

● 我们为什么用十进制?

• 计算机为什么用二进制?

• 计算机是用电路实现的

- 需要考虑到信号的衰减延迟,电路器件的各种电气特性,电磁波干扰电流扰动等等,最大程度避免衰减,失真对计算机的破坏
- 电路的设计,制作成本,就需要最简单化的物理实现方案。

进制	每位符 号	逢几 进一	位权	n位数的不 同个数	例子(结果统一到十进制)
+	0~9	10	10 ⁱ	10 ⁿ	$341 = 3*10^2 + 4*10^1 + 1*10^0 = 341$
<u> </u>	0~1	2	2 ⁱ	2 ⁿ	$101 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5$
八	0~7	8	8 ⁱ	8 ⁿ	$127 = 1*8^2 + 2*8^1 + 7*8^0 = 87$
十六	0~9	16	16 ⁱ	16 ⁿ	$31D=3*16^2+1*16^1+13*16^0=797$
	A~F				

另:3位二进制数相当于1位八进制数: 101 011B=(53)8=53Q

4位二进制数相当于1位十六进制数: 1101 1001B=(D9)16=D9H=d9H

- 〇十进制数转成N进制数:除N取余至商为零再逆序输出余数
- ○例如:十进制数157转化为八进制数235的过程如下:

○N进制数转成十进制数:各位数符所代表的值乘以对应位的位权再累计求和,通用公式可表达如下:

$$S = A_n A_{n-1} ... A_1 A_0.A_{-1} A_{-2} ... A_{-m}$$

$$= \sum_{i=-m}^{n} A_i \times N^i$$

○二进制数与八进制数的相互转换:

2到8,三合一;8到2,一分三

3位二进制数	000	001	010	011	100	101	110	111
1位八进制数	0	1	2	3	4	5	6	7

○例:二进制数 11010111110101000001,按每三位一组划分,然后用对应的一位八进数来表示,得到 等效的八进制数3276501

○反过来,八进制数 3276501 转化为二进制数,只需要将每一位八进制数转化为对应的三位二进制数,最前面多余的0删除即可得到对应的二进制数:

11010111110101000001

○二进制数与十六进制数的相互转换:

2到16,四合一;16到2,一分四

4位二进制数	0000	0001	0010	0011	0100	0101	0110	0111
1位十六进制数	0	1	2	3	4	5	6	7
4位二进制数	1000	1001	1010	1011	1100	1101	1110	1111
1位十六进制数	8	9	A	В	C	D	E	F

○例:二进制数 110101111110101000001,按每四位一组划分,然后用对应的一位十六进数来表示,得到等效的十六进制数 D7D41;反之,将十六进制数 D7D41每一位标成4位二进制数就得到等效的二进制数了

思考题

思考:

Najha University of Prosts and Telecommunication () Edge (G) = Edge (E) (C)

如何看待101这个数?

二进制、八进制、十六进制、十进制

本节课...

- 计算机是什么?
 - o可计算型
 - o计算机的五大基本组件
- 计算机程序如何在计算机中运行?
 - o冯·诺依曼体系结构和"程序存储"的思想
- 为什么学习C语言?
 - o C语言的历史和特点
- 为什么使用二进制?

