

Contact Model for Grasping

Zhan Ling

Grasping

- Robot manipulates objects with robot hands.
- The grasp planning problem is to determine a set of contact locations for the object and the fingers.
- Desirable properties:
 - Force-closure: Resist external forces.
 - Manipulable: Dexterously manipulate the object.

Grasping

- Robot manipulates objects with robot hands.
- The grasp planning problem is to determine a set of contact locations for the object and the fingers.
- Desirable properties:
 - Force-closure: Resist external forces.
 - Manipulable: Dexterously manipulate the object.

Grasp Model

- Friction Model at a Single Contact
- Multi-Contact Configuration

Contact

 A contact between a finger and an object can be described as a mapping between forces exerted by the finger at the point of contact and the resultant wrenches at some reference point on the object.

Contact Coordinate Frame

- Location of the contact point on the object is fixed
- The contact coordinate frame C_i satisfies that its z -axis points in the direction of the inward surface normal at the point of contact.

Figure 5.2: Coordinate frames for contact and object forces.

Frictionless point contact

 A frictionless point contact is obtained when there is no friction between the fingertip and the object.

•

Frictionless point contact

 Forces can only be applied in the direction that is the orthogonal to the surface of the object:

$$F_{c_i} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} f_{c_i}, f_{c_i} \ge 0$$

• , where f_{c_i} is the magnitude of the force.

- Coulomb friction model is a simple contact model which deals with the friction.
- $f_t \in R$ denote the magnitude of the tangential force
- $f_n \in R$ denote the magnitude of the normal force.

• Coulomb's law: Slipping begins when $|f^t| > \mu f^n$, where $\mu > 0$ is the static coefficient of friction.

• Constraints: $|f^t| \le \mu f^n, f_n > 0$.

$$F_{c_i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} f_{c_i}, f_{c_i} \in FC_{c_i}$$

•
$$FC_{c_i} = \left\{ f \in R^3 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0 \right\}$$
 is the friction cone.

$$FC_{c_i} = \left\{ f \in \mathbb{R}^3 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0 \right\} \text{ is the}$$

friction cone.

• The angle of the cone with respect to the normal is given by $\alpha = \tan^{-1} \mu$.

normal force

Limitation of Point-contact Finger

Point-finger contact cannot model

A more realistic contact model is the soft-finger

contact

Soft-finger contact

A more realistic contact model is the soft-finger

contact

 Frictional forces and torques about that normal are allowed

Soft-finger contact

The applied contact wrench is

Note that the torque is only around the z-axis

Soft-finger contact

The applied contact wrench is

If constraints "violated", there is slippery.

$$FC_{c_i} = \{ f \in \mathbb{R}^4 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0, |f_4| \le \gamma f_3 \}$$

Torsional friction coefficient

General contact model

• A contact model can be represented by using a wrench basis $B_{c_i} \in R^{p \times m_i}$.

• e.g.
$$p=6, m_i=4$$
 for $F_{c_i}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $f_{c_i}, f_{c_i} \in FC_{c_i}$

• m_i indicates the number of independent forces that can be applied by the contact.

General contact model

- Friction cone FC_{c_i} :
 - The set of all possible wrench at a certain contact (determined by the local geometry and material).
 - FC_{c_i} is a closed subset of R^{m_i} with non-empty interior.
 - $f_1, f_2 \in FC_{c_i} \Rightarrow \alpha f_1 + \beta f_2 \in FC_{c_i}$ for $\alpha, \beta > 0$.
- . Contact wrench: $F_{c_i} = B_{c_i} f_{c_i}, f_{c_i} \in FC_{c_i}$

Summary of three kinds of grasp

Table 5.2: Common contact types.

Contact type	Picture	Wrench basis	FC
Frictionless point contact		$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$f_1 \ge 0$
Point contact with friction		$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\sqrt{f_1^2 + f_2^2} \le \mu f_3$ $f_3 \ge 0$
Soft-finger	C	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \sqrt{f_1^2 + f_2^2} \le \mu f_3 $ $ f_3 \ge 0 $ $ f_4 \le \gamma f_3 $

Grasp Model

- Friction Model at a Single Contact
- Multi-Contact Configuration

Multiple fingers

Figure 5.14: Grasp coordinate frames.

Force-closure

 Question: How to set the contact positions so that any external wrench on the object can be resisted?

Net object wrench

 After having contact forces of each finger, we can calculate the net object force by summation of

Figure 5.2: Coordinate frames for contact and object forces.

Force closure

 Question: How to set the contact positions so that any external wrench on the object can be resisted?

$$F_o = \sum_{i=1}^k A d_{g_{oc_i}^{-1}}^T F_{c_i} = \sum_{i=1}^k A d_{g_{oc_i}^{-1}}^T B_{c_i} f_{c_i}$$

• Equivalent question: Given any external wrench F, can I find f_{c_i} so that $F_o = -F$

Grasp Map

• Grasp map: map between the contact wrench and the net wrench: $F_o = Gf_c, f_c \in FC = FC_1 \times \cdots \times FC_n$.

.
$$G=\left[Ad_{g_{oc_1}^{-1}}^TB_{c_1},\cdots,Ad_{g_{oc_k}^{-1}}^TB_{c_k}\right]$$
 , determined by contact positions and friction model types

$$f_c = \begin{bmatrix} f_{c_1} \\ \vdots \\ f_{c_k} \end{bmatrix} \text{, the set of wrench from all contact points}$$

Force Closure

- Two equivalent conditions:
 - Given any external wrench $F_e \in R^p$ applied to the object, there exist contact forces $f_c \in FC$ such that $Gf_c = -F_e$.
 - $G(FC) = R^p$.
- If satisfied, the grasp (contact configuration) can resist any external wrench, which is a grasp with force closure.

Cases When It is Impossible to Satisfy Force Closure

- Example:
 - A frictionless sphere in \mathbb{R}^3 . It can rotate, even we have forces over the whole surface.
- Exceptional surface theory