Paper Reading

Dachun Kai

USTC

December 17, 2021

1/13

WEVI(ICCV2021)

Training Weakly Supervised Video Frame Interpolation with Events

Zhiyang Yu † 1,2, Yu Zhang* 2,3, Deyuan Liu † 2,5, Dongqing Zou 2,4 , Xijun Chen* 1, Yebin Liu 3 , and Jimmy Ren 2,4

¹Harbin Institute of Technology, ²Sense Time Research and Tetras.AI, ³Tsinghua University ⁴Qing Yuan Research Institute, Shanghai Jiao Tong University, ⁵Peking University

Preliminaries

Weakly Supervised learning

- Incomplete supervision: subset labels → trained on low frame-rate videos
- Inexact supervision: coarse-grained labels
- Inaccurate supervision: wrong labels

Preliminaries

Great performance of Event Camera

- High temporal resolution(microsecs)
- Low Latency
- Low Power(SNN, neuromorphic chip)
- No motion blur
- High dynamic range

Motivation

- Parameterized motion model falls into an ill-posed problem when input frames are sparse.
- Event-based methods: learn frame residual, can't solve low-texture surface, always need high frame-rate auxiliary videos.

Contributions

- Weakly supervised training, and perform SOTA, generalize well.
- Complementary appearance fusion (CAF) for aggregates image and event appearance.
- Subpixel Motion Transformer(SMT), for super resolution(SR) reconstruction.
- Contribute an event dataset, but not open source yet.

Overview

- Two stages: complementary appearance fusion (CAF) and subpixel motion transfer(SMT)
- CAF stage: fuse images and events, get initial \hat{l}_1 .
- SMT stage: refine results with subpixel attention mechanism.

Stage I: Complementary appearance fusion(CAF)

- Prepare works:
 - ▶ Forward warping \mathcal{I}_0 and \mathcal{I}_2 with PWC-Net¹ $\rightarrow \mathcal{I}_{0\rightarrow 1}, \ \mathcal{I}_{2\rightarrow 1}$
 - Event representation \mathbb{E}_1

Dachun Kai (USTC) Paper Reading December 17, 2021 6/13

Stage I: Complementary appearance fusion(CAF)

Stage I

Adaptive Appearance Fusion Block(AAFB):

$$x^{s} = g\left(x_{\uparrow}^{s-1}; f^{s}, e^{s}\right), s \in \{1, 2, 3, 4, 5\}$$
 (1)

 x_{+}^{s-1} denotes the 2× upsampled version of x^{s-1} f^s, e^s denotes 2 branches features.

6/13

Stage I: Complementary appearance fusion(CAF)

Stage I

Adaptive Appearance Fusion Block(AAFB):

$$\mathbf{y}^{\mathsf{e}} = \left(\frac{\mathbf{x}^{\mathsf{s}}_{\uparrow} - \mu\left(\mathbf{x}^{\mathsf{s}}_{\uparrow}\right)}{\sigma\left(\mathbf{x}^{\mathsf{s}}_{\uparrow}\right)}\right) \odot \mathbf{s}^{\mathsf{e}} + \mathbf{b}^{\mathsf{e}} \tag{1}$$

AAFB

Break up f^s, e^s with scalings and biases s^f, b^f and s^e, b^e

Dachun Kai (USTC) Paper Reading December 17, 2021 6/13

Stage I: Complementary appearance fusion(CAF)

Stage I

AAFB

Adaptive Appearance Fusion Block(AAFB):

$$y^{e} = \left(\frac{x_{\uparrow}^{s} - \mu\left(x_{\uparrow}^{s}\right)}{\sigma\left(x_{\uparrow}^{s}\right)}\right) \odot s^{e} + b^{e}$$
 (1)

$$y = y^e \odot \mathbf{m} + y^f (1 - \mathbf{m}) \tag{2}$$

40.40.45.45. 5 000

Stage II: Subpixel Motion Transformer(SMT)

- Prepare works:
 - $ightharpoonup (\mathcal{I}, \mathbb{E}) \xrightarrow{conv} \{ \mathsf{v}^s \mid s \in \{0, 1, 2\} \}$ as values
 - $ightharpoonup v^2 \xrightarrow{clone} k_0, k_2 \text{ as keys, } \hat{k}_1 \text{ as query}$
 - relevance measure:

$$D_0(i,p) = \left\| \frac{\hat{k}_1(i)}{\left\| \hat{k}_1(i) \right\|_2} - \frac{k_0(i+p)}{\left\| k_0(i+p) \right\|_2} \right\|_2^2$$
 (1)

 $p \in [-m, m]^2$ represents a spatial offset.

6/13

Stage II: Subpixel Motion Transformer(SMT)

Subpixel attention learning:

$$j=i+p^* \text{ where } p^*=\arg\min_p D_0(i,p) \tag{1}$$

$$d(u) = D_0(i, p^* + u), u \in \mathbb{Z}^2 \cap [-n, n]^2$$
 (2)

$$d(\mathbf{u}) \approx \hat{d}(\mathbf{u}) = \frac{1}{2}\mathbf{u}^{\mathrm{T}}\mathsf{A}\mathbf{u} + \mathsf{b}^{\mathrm{T}}\mathbf{u} + c \tag{3}$$

$$\min_{A,b,c} \sum_{u} w(u) ||\hat{d}(u) - d(u)||^2$$
 (4)

Stage II: Subpixel Motion Transformer(SMT)

- Subpixel patch transfer:
 - ▶ distance means relevalce($K \cdot Q$), then mutiply with V, get transferred values z_0^s and z_2^s
 - select transferred values

$$z_1^{\mathfrak{s}}(i) = \begin{cases} z_0^{\mathfrak{s}}(i), & \text{if } D_0\left(i, p_0^*\right) < D_2\left(i, p_2^*\right) \\ z_2^{\mathfrak{s}}(i), & \text{otherwise.} \end{cases}$$
 (1)

fuse with previous features

| 4 日 ト 4 回 ト 4 直 ト 4 直 ・ 夕 Q C・

6/13

Settings:

- ▶ Datasets: GroPro(720p, 240FPS), SloMo-DVS dataset(self-collected) Adopt 10×, so sample 1th, 11th, 21th frames to form a sparse training triplet to train.
- ▶ Loss: Charbonnier Loss(superior to ℓ_1 , ℓ_2 loss)

Charbonnier_loss =
$$\sqrt{x^2 + \epsilon^2}$$
 (1)

Thoughts

- Frame info still rely on optical flow, not end-to-end.
- Process event in image format, point cloud or 3D conv works?
- 240FPS with sample rate 10 $\stackrel{\textit{versus}}{\Longleftrightarrow}$ 25FPS with sample rate 1, which is weakly supervision?

Quatitative results

Table 1. Comparing models on GoPro dataset, measured in PSNR and SSIM. Bold indicates the top place while underline the second.

Supervision			igh FPS v				High FP					videos + events
Methods	SloMo ^[14]	QVI ^[48]	DAIN ^[3]	TAMI ^{†[7]}	FLAVR ^[16]	ETV ^[38]	SloMo*[14]	QVI*[48]	EMD ^[15]	EDVI ^[21]	BHA ^[33]	Proposed
PSNR	27.79	29.54	27.30	32.91	31.10	32.25	32.79	33.07	29.67	30.90	28.49	33.33
SSIM	0.838	0.872	0.836	0.943	0.917	0.925	0.940	0.943	0.927	0.905	0.920	0.940

† TAMI also adopts external private datasets for training. * Enhanced variants with events added into the inputs of network.

Table 2. Comparing models on SloMo-DVS dataset, measured in PSNR and SSIM. Bold indicates the top place while underline the second.

Supervision		High FPS videos				High FPS videos + events				Low FPS videos + events	
Methods	SloMo ^[14]	QVI ^[48]	DAIN ^[3]	FLAVR ^[16]	ETV[38]	SloMo*[14]	QVI*[48]	EDVI ^[21]	BHA ^[33]	Proposed	
PSNR	30.69	30.93	30.38	30.79	32.06	33.46	33.70	33.60	22.95	34.17	
SSIM	0.915	0.920	0.914	0.917	0.936	0.950	0.953	0.948	0.828	0.952	

Abalation Study

Table 3. Performance in PSNR with low frame-rate tra	ining.
--	--------

Method	SloM	lo [144]	QV	[40]	Proposed			
Frame rate	High	Low	High	Low	Low			
GoPro	32.79	31.40	33.07	29.88	33.33			
SloMo-DVS	33.46	32.76	33.70	31.80	34.17			
Table 4. Analysing the performance of CAF network.								
Setting	PSN	R SSIM						
Replacing AF	32.2	7 0.930						

29.43

31.37

32.47

0.882

0.927

0.929

Table 5. Analysing the performance of SMT network.									
ID	Key type	Value type	Att. type	Fused stage	PSNR				
1	img.+evt.	image	subpix.	both	32.72				
2	img.+evt.	event	subpix.	both	32.91				
3	image	img.+evt.	subpix.	both	33.01				
4	event	img.+evt.	subpix.	both	33.03				
5	img.+evt.	img.+evt.	subpix.	first	33.00				
6	img.+evt.	img.+evt.	subpix.	second	32.56				
7	img.+evt.	img.+evt.	hard	both	33.02				
8	img.+evt.	img.+evt.	soft	both	32.50				
9	img.+evt.	img.+evt.	subpix.	both	33.33				

Using image branch only

Using event branch only

Full model

Qualitative results

Figure 5. Qualitative comparisons on real data. In the first column (Ref.) we visualize the nearest input frame as reference since there is no groundtruth. We suggest the readers to watch our supplementary video for more qualitative comparisons on real-world video interpolation.

Qualitative results

Figure 6. Visualizing the impact of adaptively fusing image and event appearance features in the CAF network.

Qualitative results

Figure 7. Patch transfer results with different types of attention.

11 / 13

Dachun Kai (USTC) Paper Reading December 17, 2021

Conclusions

- Train with low frame-rate videos, but outperform others and generalize well.
- Attention mechanism, no direct motion modelling, eg optical flow.

Thanks, Q & A