Learning and Inference in Deep, Unsupervised Neural Networks

Kyunghyun Cho

Department of Information and Computer Science
Aalto University, School of Science
kyunghyun.cho@aalto.fi

21 March 2014

This work was done under the supervision of Prof. Juha Karhunen, Prof. Tapani Raiko and Dr. Alexander Ilin at the Deep Learning and Bayesian Modeling Group, Department of Information and Computer Science, Aalto University School of Science between mid 2009 and early 2014.

Boltzmann machines? I remember working on them in 80s and 90s..

Anonymous, 2011 paraphrased

Introduction

Machine Learning Deep Learning Challenges

Deep, Unsupervised Neural Networks

Restricted Boltzmann Machines Deep Boltzmann Machines Deep Autoencoders

Discussion

Machine Learning in a Single Slide

- 1. Let the model \mathcal{M} learn the data D
- 2. Let the model \mathcal{M} infer unknown quantities

Examples

Data	Query
Movie Ratings	Will a user X like a movie Y ?
Tagged Images	Is a cat in this image?
Transcribed Speech	What is this person saying?
Parallel Corpora	What is "moi" in English?

Deep Learning in a Single Slide

(Krizhevsky et al., 2012)

Challenges in Machine Learning

- 1. Learning is not trivial
- 2. Learning and inference are *not* separate

Learning Difficulties

- ▶ True cost \mathcal{C} is *not* available: Only empirical cost $\tilde{\mathcal{C}}$ available
- Often, non-convex optimization with many local/apparent minima
- ▶ Impractical to compute either $\mathcal C$ or $\tilde{\mathcal C}$, as $|D| \to \infty$

Vicious Cycle or Virtuous Cycle?

Example: MLE for feedforward neural networks

$$\min_{\boldsymbol{\theta}} \mathcal{C}(\boldsymbol{\theta}) \approx \min_{\boldsymbol{\theta}} \tilde{\mathcal{C}}(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} -\frac{1}{N} \sum_{(\mathbf{x},t) \in \mathcal{D}} \log p(y = t \mid \mathbf{x}, \boldsymbol{\theta})$$

What gets worse with *deep* learning?

Learning

- ▶ No access to C, but only to \tilde{C}
- Highly entangled inference and learning
- High-dimensional
- Non-convex with a lot of local (apparent) minima
- ▶ Intractable to compute even $\tilde{\mathcal{C}}$, because $|D| \to \infty$

Inference

- No analytical expression, often
- Intractable to compute, often
- Difficult to analyze and understand

Deep, Unsupervised Neural Networks Boltzmann Machines and Autoencoders

- I Enhanced Gradient for Training Restricted Boltzmann Machines
- II Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines
- III Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines
- VII A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines
- VIII Simple Sparsification Improves Sparse Denoising Autoencoders in Denoising Highly Corrupted Images

Boltzmann Machines

Popular variants:

- If V = 0 and U = 0, restricted Boltzmann machine (RBM)
- If U = 0 and layered h, deep Boltzmann machine (DBM)

1. Negative energy over **x** and **h**:

$$\begin{split} -E(\mathbf{x},\mathbf{h}\mid\boldsymbol{\theta}) &= \mathbf{b}^{\top}\mathbf{x} + \mathbf{c}^{\top}\mathbf{h} + \\ \mathbf{x}^{\top}\mathbf{W}\mathbf{h} &+ \frac{1}{2}\mathbf{x}^{\top}\mathbf{U}\mathbf{x} + \frac{1}{2}\mathbf{h}^{\top}\mathbf{V}\mathbf{h} \end{split}$$

2. Probability over x and h:

$$\rho(\mathbf{x}, \mathbf{h} \mid \theta) = \frac{1}{Z(\theta)} \exp \{-E(\mathbf{x}, \mathbf{h} \mid \theta)\}$$

3. Learn $p(\mathbf{x})$ by maximizing

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x} \in D} \left[\log \frac{1}{Z(\theta)} \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h} | \theta)} \right]$$

with stochastic gradient descent

Learning: Observations

- Invariant to bit-flipping transformation
- ▶ 2^{p+q} descent directions
- leading to (potentially all) different solutions
- Which direction?
- How to tractably decide?

Learning: Enhanced Gradient

Enhanced

Conventional

▶ Importance/weight of each direction $\nabla_{\mathbf{f}}\mathcal{L}$

$$\prod_{k=1}^{n_{v}+n_{h}} \langle x_{k} \rangle_{\mathsf{dm}}^{f_{k}} \left(1-\langle x_{k} \rangle_{\mathsf{dm}}\right)^{1-f_{k}}$$

Weighted sum of all possible updates

$$\begin{split} &\nabla_{\!e} \, \textit{w}_{ij} = \mathsf{Cov}_{\mathsf{d}} \left(\textit{x}_{i}, \textit{h}_{j} \right) - \mathsf{Cov}_{\mathsf{m}} \left(\textit{x}_{i}, \textit{h}_{j} \right) \\ &\nabla_{\!e} \, \textit{b}_{i} = \left\langle \textit{x}_{i} \right\rangle_{\mathsf{d}} - \left\langle \textit{x}_{i} \right\rangle_{\mathsf{m}} - \sum_{j} \left\langle \textit{h}_{j} \right\rangle_{\mathsf{dm}} \nabla_{\!e} \, \textit{w}_{ij} \\ &\nabla_{\!e} \, \textit{c}_{j} = \left\langle \textit{h}_{j} \right\rangle_{\mathsf{d}} - \left\langle \textit{h}_{j} \right\rangle_{\mathsf{m}} - \sum_{i} \left\langle \textit{x}_{i} \right\rangle_{\mathsf{dm}} \nabla_{\!e} \, \textit{w}_{ij} \end{split}$$

Learning vs. Inference

Boltzmann machine learning requires inference.

$$\nabla_{e} w_{ij} = \text{Cov}_{d}(x_{i}, h_{i}) - \text{Cov}_{m}(x_{i}, h_{i})$$

- What is the covariance between x_i and h_i with the current θ ?
 - NP-Hard problem even in the case of RBMs (Long&Servedio, 2010)
 - Monte Carlo approximation with persistent MCMC

$$Cov_{m}(x_{i}, h_{j}) \approx \left(\frac{1}{N} \sum_{n=1}^{N} x_{i}^{(n)} h_{j}^{(n)}\right) - \left(\frac{1}{N} \sum_{n=1}^{N} x_{i}^{(n)}\right) \left(\frac{1}{N} \sum_{n=1}^{N} h_{j}^{(n)}\right)$$

Gibbs sampling

Learning vs. Inference: Vicious Cycle

Failed inference (sampling) breaks learning

 \rightarrow Good MCMC sampler is needed!

Inference: Better MCMC Sampler

▶ MCMC with a *local* jump cannot easily escape an isolated mode

Parallel Tempering

- ▶ Parallel chains between P_0 and P_∞
- Jump via tempered chains
- Better exploration of the state space

From an RBM to a deeper neural network..

Deep Belief Network (Pretrained MLP)

Deep Boltzmann Machine

Deep Boltzmann Machines

- Undirected Hierarchical Model
- **Negative Energy**

$$\begin{array}{c}
-\mathcal{E}(\mathbf{x}, \mathbf{h} \mid \boldsymbol{\theta}) = \\
\mathbf{b}^{\top} \mathbf{x} + \mathbf{c}_{[1]}^{\top} \mathbf{h}_{[1]} + \mathbf{x}^{\top} \mathbf{W} \mathbf{h}_{[1]} \\
x_1 \quad x_2 \quad x_p \\
\end{array}$$

$$\begin{array}{c}
-\mathcal{E}(\mathbf{x}, \mathbf{h} \mid \boldsymbol{\theta}) = \\
\mathbf{b}^{\top} \mathbf{x} + \mathbf{c}_{[1]}^{\top} \mathbf{h}_{[1]} + \mathbf{x}^{\top} \mathbf{W} \mathbf{h}_{[1]} \\
+ \sum_{l=2}^{L} \left(\mathbf{c}_{[l]}^{\top} \mathbf{h}_{[l]} + \mathbf{h}_{[l-1]}^{\top} \mathbf{U}_{[l-1]} \mathbf{h}_{[l]} \right)
\end{array}$$

- The further away a layer from x, the more abstract concept the layer learns
- Hierarchical representation with both bottom-up and top-down signals

Learning: Depressing Observation

Observation: Lack of Structures in Deeper Hidden Layers

Which direction does learning move toward? - matching data and model statistics

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial u_{ij}^{[l]}} \propto \left\langle h_i^{[l]} h_j^{[l+1]} \right\rangle_{p(\mathbf{h}|\mathbf{v},\boldsymbol{\theta})p_D(\mathbf{v})} - \left\langle h_i^{[l]} h_j^{[l+1]} \right\rangle_{p(\mathbf{v},\mathbf{h}|\boldsymbol{\theta})}$$

What happens if $p(\mathbf{h} \mid \mathbf{v}, \boldsymbol{\theta})$ does not have any structure?

- Learning will not utilize deeper layers easily
- Especially severe at the intial stage of learning

Learning: Hierarchical structure borrowed from DBN

- Stage 1 Recursively train a stack of RBMs to get $Q(\mathbf{h} | \mathbf{x})$
- Stage 2 Train a large RBM \iff Maximize the variational lower-bound of DBM

$$\mathbb{E}_{D(\mathbf{v})}\left[\log p(\mathbf{v}^{(n)}\mid\boldsymbol{\theta})\right] \geq \mathbb{E}_{D(\mathbf{v})Q(\mathbf{h}_{-})}\left[\log \sum_{\mathbf{h}_{+}} e^{\left\{-E(\mathbf{v}^{(n)},\mathbf{h}_{-},\mathbf{h}_{+})\right\}}\right] + \mathcal{H}(Q) - \log Z(\boldsymbol{\theta})$$

 $\mathbf{Q} : \mbox{Have I worked on anything other than Boltzmann machines?}$

Unsupervised Learning: Encoder-Decoder Perspective

Sparse coding:

Encoder
$$\mathbf{h} = \underset{-}{\operatorname{arg\,min}}_{\mathbf{h}} \|\mathbf{x} - \mathbf{W}^{\top}\mathbf{h}\| + \lambda \Omega(\mathbf{h})$$

Decoder $\mathbf{x} = \mathbf{W}^{\top} \mathbf{h}$

Probabilistic PCA:

Encoder
$$\mathbb{E}[\mathbf{h}] = (\mathbf{W}^{\top}\mathbf{W} + \sigma^2\mathbf{I})^{-1}\mathbf{W}^{\top}\mathbf{x}$$

Decoder
$$\mathbb{E}[\mathbf{x}] = \mathbf{W}^{\top}\mathbf{h}$$

► RBM:

Encoder
$$\mathbb{E}[\mathbf{h}] = \sigma(\mathbf{W}\mathbf{x} + \mathbf{c})$$

Decoder
$$\mathbb{E}[\mathbf{x}] = \sigma(\mathbf{W}^{\top}\mathbf{h} + \mathbf{b})$$

► DBM:

$$\begin{array}{l} \mathsf{Encoder} \ \ \boldsymbol{\mu}^{[l]} \leftarrow \sigma(\mathbf{U}_{[l]}^{\top}\boldsymbol{\mu}^{[l+1]} + \mathbf{U}_{[l-1]}\boldsymbol{\mu}^{[l-1]} + \mathbf{c}^{[l]}), \\ \mathbb{E}\left[\mathbf{h}^{[l]}\right] \approx \boldsymbol{\mu}^{[l]} \end{array}$$

Decoder
$$\mathbb{E}[\mathbf{x}] = \sigma(\mathbf{W}^{\top}\mathbf{h}^{[1]} + \mathbf{b})$$

Denoising Autoencoder: Explicit Sparsification

Sparse Denoising Autoencoder

- ▶ Encoder $\mathbf{h} = f(\mathbf{x}) : \mathbb{P} \to \mathbb{Q}$
- ▶ Decoder $\tilde{\mathbf{x}} = g(\mathbf{h}) : \mathbb{Q} \to \mathbb{P}$

$$\begin{split} \mathbb{P} &= \big\{ \mathbf{x} \in \mathbb{R}^{\rho} \, \big| \exists \mathbf{x}^{(n)} \in D, \|\mathbf{x} - \mathbf{x}^{(n)}\|_2^2 \leq \epsilon \big\} \\ \mathbb{Q} &\approx \big\{ \mathbf{h} = f(\mathbf{x}) \, \big| \mathbf{x} \in \mathbb{P}, \|\mathbb{E}_{\mathbf{x} \in \mathbb{P}} \, [h_j] - \rho \|_2^2 = 0 \big\} \end{split}$$

What do we do with $\mathbf{x} \notin \mathbb{P}$?

- 1. Encode: $\mathbf{h} = f(\mathbf{x})$
- 2. Sparsify: $\tilde{\mathbf{h}} = R(\mathbf{h})$
- 3. Decode: $\tilde{\mathbf{x}} = g(\tilde{\mathbf{h}})$

And beyond..

- Theoretical understanding beyond universal approximator properties
- Deep learning for long sequences
- ▶ Deep learning for $p \gg n$ and $n \rightarrow 1$
- New models that tackles learning and inference directly