Assignment - 4

Data Analytics – Python Programming

Assignment Date	18 October 2022
Student Name	Mr. A.Inbasekaran
Student Roll Number	19ITA22
Maximum Marks	2 Marks

```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

In [2]: import os os.chdir("C:/Users/User/Desktop/Datasets")

In [3]: df=pd.read_csv('abalone.csv')

In [4]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

O M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 15

1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 7

2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9

3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155 10

4 I 0.330 0.255 0.080 0.2050 0.0895 0.0895 0.0395 0.055 7
```

]: df.des	df.describe()									
]:	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings		
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000		
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684		
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169		
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000		
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000		
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000		
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000		
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000		

Exploratory Data Analysis

```
In [7]: df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)
```


In [11]: numerical_features = df.select_dtypes(include = [np.number]).columns
 categorical_features = df.select_dtypes(include = [np.object]).columns

C:\Users\User\AppData\Local\Temp\ipykernel_5940\3796453440.py:2: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations categorical_features = df.select_dtypes(include = [np.object]).columns

In [12]: numerical_features

In [13]: categorical_features

Out[13]: Index(['Sex'], dtype='object')

In [14]: plt.figure(figsize = (20,7)) sns.heatmap(df[numerical_features].corr(),annot = True)

Out[14]: <AxesSubplot:>

Data Preprocessing

```
In [16]: # outlier handling
df = pd.get_dummies(df)
dummy_df = df
```

```
In [17]:
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [19]: var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```



```
In [20]: var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
           15
           10
              0.0
                   0.2
                        0.4
                             0.6
                                            1.2
                                                 1.4
 In [23]: var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
         20.0
         17.5
         15.0
         12.5
          7.5
          5.0
In [25]: var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
           20.0
           17.5
           15.0
           12.5
           10.0
           7.5
           5.0
           2.5
                                             0.5
 In [27]: var = 'Height'
         plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


Feature Selection and Standardization

```
In [31]: X = df.drop('age', axis = 1)
y = df['age']
```

```
In [32]: from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.feature_selection import SelectKBest
In [33]: standardScale = StandardScaler()
    standardScale.fit_transform(X)
    selectkBest = SelectKBest()
    X_new = selectkBest.fit_transform(X, y)
    X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size = 0.25)
```

Linear Regression

```
In [34]: from sklearn.linear_model import LinearRegression
In [35]: lm = LinearRegression()
lm.fit(X_train, y_train)
Out[35]: LinearRegression()
In [36]: y_train_pred = lm.predict(X_train)
y_test_pred = lm.predict(X_test)
```

```
In [37]: from sklearn.metrics import mean_absolute_error, mean_squared_error
s = mean_squared_error(y_train, y_train_pred)
print('Mean Squared error of training set :%2f'%s)

p = mean_squared_error(y_test, y_test_pred)
print('Mean Squared error of testing set :%2f'%p)

Mean Squared error of training set :3.544594
Mean Squared error of testing set :3.618508

In [38]: from sklearn.metrics import r2_score
s = r2_score(y_train, y_train_pred)
print('R2 Score of training set:%.2f'%s)

p = r2_score(y_test, y_test_pred)
print('R2 Score of testing set:%.2f'%p)u

R2 Score of training set:0.53
R2 Score of testing set:0.54
```