UNIDADE CURRICULAR: Arquitetura de Computadores

CÓDIGO: 21010

DOCENTE: Gracinda Carvalho, José Coelho

NOME: Paulo Jorge Martins Nicolau

N.º DE ESTUDANTE: 1800465

CURSO: Licenciatura em Engenharia Informática

DATA DE ENTREGA: 20 de Janeiro de 2020

TRABALHO / RESOLUÇÃO:

Para realizar o trabalho foi utilizado a versão online do simulador de P3, disponibilizado na plataforma de e-learning, de modo a testar o código realizado.

Alínea A:

Para esta alínea pretendia-se criar um programa que permita calcular a distância de Manhattan do espaço vazio até à posição final num puzzle com 15 peças (vetor de tamanho 16).

Para este programa decidi separar o código em duas secções, sendo que na primeira secção iria procurar a posição no vetor onde se encontrava o espaço vazio (peça 16), e a segunda secção iria com base nessa posição realizar o calculo da distância de Manhattan.

Na procura da posição do espaço vazio, vai-se atribuir o primeiro valor do vetor a um registo, e vai-se percorrendo as posições de memória do vetor verificando se o valor dessa posição é maior que a do registo, trocando em caso afirmativo. No final é guardado numa posição de memoria o valor da posição.

Foi reservado na posição seguinte ao vetor, um espaço vazio (com valor 0) que vai servir para indicar que o vetor chegou ao final.

Tendo em conta que o vetor possui 16 posições de tamanho, a posição final, num quadrado com tamanho 4, será (4,4). Já a posição inicial do espaço vazio pode variar assim foi necessário utilizar as seguintes formulas para calcular o ponto num espaço bidimensional a partir da posição encontrada na secção inicial do programa.

Para obter a posição do espaço vazio no vetor:

Posição Vetor = Posição Memoria Maior Numero do Vetor - Posição Memoria Inicio do Vetor

Para converter essa posição, numa posição de uma matriz 4 × 4:

• Posição Linha é o quociente da divisão $\frac{Posição Vetor}{Tamanho Linha}$, onde neste caso,

 $Tamanho\,Linha=4$ e $Posição\,Coluna$ é o resto da divisão $\frac{Posição\,Vetor}{Tamanho\,Linha}$, fazendo em seguida as seguintes correções:

- No caso de Posição Coluna = 0 → Posição Coluna = 4
- No caso de Posição Coluna ≠0 → Posição Linha = Posição Linha +1

Após obter a coordenada bidimensional calcula-se o valor da distância de Manhattan através da formula:

Distancia = (Linha Posição Final – Linha Espaço Vazio) + (Coluna Posição Final – Coluna Espaço Vazio)

Alínea B:

Para esta alínea era pedido um programa que permita calcular as inversões do vetor. Para realizar essa tarefa, foram utilizados dois registos, que vão servir de índice, de forma a criar dois ciclos, um interno e outro externo, e ao percorrer o ciclo interno vai-se verificando se o valor no registo do índice interno é menor do que o valor do registo do índice externo, e caso seja vai ser incrementado o valor de um registo que serve de contador.

Alínea C:

Nesta alínea pretende-se verificar se o puzzle que é fornecido é um puzzle que pode ser resolvido. Para isso, utilizei o código desenvolvido anteriormente, para obter a distancia de Manhattan e o total de inversões, e depois, a secção de código novo vai copiar o valor dos registos R1 e R2 para outros registos, e depois vai adicionar os valores desses registos para obter a soma. Em seguida, avalia a paridade do valor da soma indicando no caso de ser ímpar 1 ou par 0 no registo R3.

Segue-se os testes realizados, com os exemplos fornecidos:

Nome	Resolúvel	Ciclos de Relógio	Instruções
Exemplo Efólio	Sim	15008	1657
Exemplo 4.1	Não	15026	1658
Exemplo 4.2	Não	15006	1670
Exemplo 4.3			
Exemplo 4.4			
Exemplo 4.5			

Alínea D:

Esta alínea consistia na mesma tarefa que a alínea C, no entanto possibilitando que fosse possível avaliar puzzles de outros tamanhos. Para isso, foi reservado em memória, antes do vetor um espaço com o valor do tamanho das linhas/colunas da matriz do puzzle.

Ao longo do código, foi substituido todas as instruções onde se avaliava o tamanho como sendo 4 para ler o valor desse espaço de memória.

Segue-se os testes realizados, com os exemplos fornecidos:

Nome	Dimensão	Resolúvel	Ciclos de Relógio	Instruções
Exemplo 3.1				
Exemplo 3.2				
Exemplo 3.3				
Exemplo 3.4				
Exemplo 3.5				

Exemplo 4.1				
Nome	Dimensão	Resolúvel	Ciclos de Relógio	Instruções
Exemplo 4.2				
Exemplo 4.3				
Exemplo 4.4				
Exemplo 4.5				
Exemplo 5.1				
Exemplo 5.2				
Exemplo 5.3				
Exemplo 5.4				
Exemplo 5.5				
Exemplo 7.1				
Exemplo 7.2				
Exemplo 7.3				
Exemplo 7.4				
Exemplo 7.5				
Exemplo 10.1				
Exemplo 10.2				
Exemplo 10.3				
Exemplo 10.4				
Exemplo 10.5				
20.0				

Exemplo Efólio		