# Chapter 12

## Lesson-34:

| Торіс                                               | Lesson Learning Outcomes                                                      | Teaching-Learning<br>Methodology  | Assessment<br>Method   |
|-----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|------------------------|
| Bus and Memory of<br>Microprocessor based<br>system | <ul><li>to design Buffer based bus</li><li>To design memory systems</li></ul> | Class Lecture Question and answer | Test, exams, quiz, etc |



Figure 12-1 Microcomputer system block diagram

- Bus Design
  - 3 state unidirectional buffer can be used as address bus



3 state bidirectional buffer can be used as data bus



- Memory Organization
  - Microprocessor must communicate with memory
    - Both RAM and ROM
      - Distinguish between them in terms of computer design.
    - Is computer hard-disk a memory?
  - Size of memory
    - Depends on manufacturer of IC package
      - Data-word x address
    - Depends on the micro computer architecture specially address bus
      - 16 bit address line can accommodate up to 64K bytes

- RAM and ROM chips
  - Typical RAM chip



(a) Block diagram

| CS1                   | CS2                        | RD                    | WR                         | Memory function                                           | State of data bus                                                                                  |
|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 0<br>0<br>1<br>1<br>1 | 0<br>1<br>0<br>0<br>0<br>0 | X<br>0<br>0<br>1<br>X | X<br>X<br>0<br>1<br>X<br>X | Inhibit<br>Inhibit<br>Inhibit<br>Write<br>Read<br>Inhibit | High-impedance High-impedance High-impedance Input data to RAM Output data from RAM High-impedance |

- RAM and ROM chips
  - Typical ROM chip



- Memory Address Mapping
  - A microprocessor system need
    - RAM 512 bytes
      - You have RAM chips of 128 bytes
    - ROM 512 bytes
      - You have ROM chips of 512 bytes

How many chips are needed and how to map the address?

## Memory Address Mapping

|           | Hexadecimal address | Address bus |   |   |   |   |   |   |   |   |   |
|-----------|---------------------|-------------|---|---|---|---|---|---|---|---|---|
| Component |                     | 10          | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| RAM 1     | 0000-007F           | 0           | 0 | 0 | x | x | x | x | x | x | X |
| RAM 2     | 0080-00FF           | 0           | 0 | 1 | x | x | x | x | X | X | X |
| RAM 3     | 0100-017F           | 0           | 1 | 0 | x | x | x | x | x | X | X |
| RAM 4     | 0180-01FF           | 0           | 1 | 1 | x | x | x | X | x | x | X |
| ROM       | 0200-03FF           | 1           | X | x | x | x | x | x | x | X | X |

 Memory connection to the microprocessor



Figure 12-13 Memory connection to the microprocessor

### □ Array of RAM Chips

- We have many RAM chips of small size but we want a RAM with larger size
- How to increase the RAM size?
  - Increasing the address size
    - Increasing 1 bit of address size doubles the memory size and/or
  - Increasing the word size.
    - Increasing one bit of word size increases the memory size with the amount of the address.
  - How to make array of RAM chips.

### □ Array of RAM Chips

Increasing address size



### □ Array of RAM Chips

Increasing word size



- 12-29. A microprocessor employs RAM chips of 256 × 8 and ROM chips of 1024 × 8. The microcomputer system needs 2K bytes of RAM, 4K bytes of ROM, and four interface units, each with four registers. A memory-mapped I/O configuration is used. The two highest-order bits of the address bus are assigned 00 for RAM, 01 for ROM, and 10 for interface registers.
  - (a) How many RAM and ROM chips are needed?
  - (b) Draw a memory-address map for the system.
  - (c) Give the address range in hexadecimal for RAM, ROM, and interface.

- Given, RAM ROM and 4 interface unit
  - RAM chips of 256×8,
  - ROM chips of 1024×8,
  - 4 interface unit with 4 registers
- Solution
  - 2K bytes RAM requires 2K/ 256= 8 chips
    - Address for 2K words requires 11 bits
      - 8 bits for each chip and 3 bits to select 8 chips
      - Address range 0000 07FF (0000 0111 1111 1111)
  - 4K bytes ROM requires 4K/1024=4 chips
    - Address for 4K words requires 12 bits
      - 10 bits for each chip and 2 bits to select 4 chips
      - Address range 2000 (0010 0000 0000 0000) 2FFF (0010 1111 1111 1111)
  - 4 interface unit with 4 registers requires 4×4=16 address
    - Address range 4000 (0100 0000 0000 0000) 400F (0100 0000 0000 1111)

### Example:

- Core i-5 processor with maximum memory size 32GB
- 4-GB RAM
- 32 bit OS has addressing capability  $2^{32} = 4$  GB
  - Processor cache memory 6MB
  - Graphics Card memory 1GB
  - Address for peripheral interface
    - I/O, USB, PCI, etc
- The remaining address will be assigned to the RAM
  - Hence if you connect 4GB RAM to the system you will get a much less useable memory

#### □ Problems

- 7-35 (a) How many 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?
  - (b) How many lines of the address must be used to access 2048 bytes? How many of these lines are connected to the address inputs of all chips?
  - (c) How many lines must be decoded for the chip-select inputs? Specify the size of the decoder.
- 7 -36 A computer uses RAM chips of 1024 x 8 capacity.
  - (a) How many chips are needed and how should their address lines be connected to provide a memory capacity of 1024 bytes?
  - (b) How many chips are needed to provide a memory capacity of 16K bytes? Explain in words how the chips are to be connected.

#### Problems of Chapter 12:

12-25, 12-26, 12-27, 12-28, 12-29, 12-30.

## Lesson-35:

| Topic                       | Lesson Learning Outcomes                                                  | Teaching-Learning Methodology     | Assessment<br>Method   |
|-----------------------------|---------------------------------------------------------------------------|-----------------------------------|------------------------|
| I/O and interrupt<br>design | <ul> <li>Design I/O interface</li> <li>Design DMA and interupt</li> </ul> | Class Lecture Question and answer | Test, exams, quiz, etc |

- Addressing I/O
  - Memory-mapped I/O
  - Isolated I/O

- 4 Types of Input-Output Interface
  - Parallel Peripheral Interface
  - Serial Peripheral Interface
  - Special Dedicated Interface
  - Direct Memory Access (DMA) Interface

### Parallel peripheral Interface



| CS | RS1 | RS2 | Register selected                 |
|----|-----|-----|-----------------------------------|
| 0  | X   | X   | None - data bus in high-impedance |
| 1  | 0   | 0   | Port A data register              |
| 1  | 0   | ł   | Port A control register           |
| 1  | l   | 0   | Port B data register              |
| 1  | 1   | 1   | Port B control register           |

Figure 12-14 Block diagram of parallel peripheral interface

### Serial communication Interface



Figure 12-15 Block diagram of a typical serial communication interface

- Serial communication Interface
  - Asynchronous serial transmission of a character



### Dedicated interface components

Floppy disk controller

Keyboard and display interface

Priority interrupt controller

Interval timer

Universal peripheral interface

- Commonly used for data transfer in storage devices
  - Storage devices ex, magnetic-disk, magnetic-tape, CD, etc limited by speed
  - Processor spent most of its time for transferring data to these devices
  - The solution is to bypass the processor in such transfer
    - Peripheral device that can do this is the Direct Memory Access (DMA)
  - Processor is idle during DMA transfer
  - A DMA controller takes over the busses to manage the transfer directly between peripheral devices and memory.

## Control Signals for DMA Controller



Block Diagram of DMA Controller



- The microprocessor initializes the DMA by sending the following information through the data bus:
  - 1. The starting address of the memory block where data are available (for read) or where data are to be stored (for write).
  - 2. The byte count, which is the number of bytes in the memory block.
  - 3. Control bits to specify a read or write transfer
  - A control bit to start the DMA.

 DMA transfer in microcomputer system



Figure 12-19 DMA transfer in a microcomputer system

# Stack Subroutine and Interrupt

Memory Stack Operation



# Stack Subroutine and Interrupt

### Example of Call Subroutine

