PEU 438 Assignment 1

Mohamed Hussien El-Deeb (201900052)

Contents

1	\mathbf{Pro}	blem 1	
	1.1	Blackbody Radiation Energy Inside the Eye	
	1.2	Energy Entering the Eye from Light Bulb	
	1.3	Comparison	
	1.4	Answer	
2	Problem 2		
	2.1	General Solution	
	2.2	Small Optical Depth	
	2.3	Large Optical Depth	
3	Problem 3		
	3.1	General Solution	
	3.2	Small Optical Depth	
	3.3	Large Optical Depth	
4	Problem 4		
	4.1	Brightness Temperature and Energy Regime	
		4.1.1 Brightness Temperature	
		4.1.2 Energy Regime	
	4.2	Effect of Compact Emitting Region on Brightness Temperature	
	4.3	Frequency at Which the Radiation Peaks (Wien's Law)	
5	Pro	blem 5	

1.1 Blackbody Radiation Energy Inside the Eye

Radius of the Eye (r):

$$r = 1.5 \,\mathrm{cm} = 0.015 \,\mathrm{m}$$

Volume of the Eye (V_{eye}) :

$$V_{\text{eye}} = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.015 \,\text{m})^3 = 1.4137 \times 10^{-5} \,\text{m}^3$$

Energy Density of Blackbody Radiation (u):

$$u = aT^4$$

Where $a=7.5657\times 10^{-16}\,\rm J\cdot m^{-3}\cdot K^{-4}$ is the radiation constant, and $T=37^{\circ}\rm C=310.15\,K.$

$$T^4 = (310.15 \,\mathrm{K})^4 = 9.254 \times 10^9 \,\mathrm{K}^4$$

Then,

$$u = (7.5657 \times 10^{-16} \,\mathrm{J \cdot m^{-3} \cdot K^{-4}})(9.254 \times 10^9 \,\mathrm{K^4}) = 7.0013 \times 10^{-6} \,\mathrm{J/m^3}$$

Total Energy Inside the Eye (E_{eye}) :

$$E_{\rm eye} = u \times V_{\rm eye} = (7.0013 \times 10^{-6} \,{\rm J/m}^3)(1.4137 \times 10^{-5} \,{\rm m}^3) = 9.9 \times 10^{-11} \,{\rm J}$$

1.2 Energy Entering the Eye from Light Bulb

Intensity at 1 Meter (I):

$$I = \frac{\text{Power}}{4\pi r^2} = \frac{100 \text{ W}}{4\pi (1 \text{ m})^2} = 7.9577 \text{ W/m}^2$$

Area of the Pupil (A_{pupil}) :

$$A_{\text{pupil}} = 0.1 \,\text{cm}^2 = 1 \times 10^{-5} \,\text{m}^2$$

Power Entering the Eye (P_{eye}) :

$$P_{\text{eye}} = I \times A_{\text{pupil}} = (7.9577 \,\text{W/m}^2)(1 \times 10^{-5} \,\text{m}^2) = 7.9577 \times 10^{-5} \,\text{W}$$

Energy Entering the Eye in 1 Second (E_{in}) :

$$E_{\rm in} = P_{\rm eye} \times t = (7.9577 \times 10^{-5} \,\mathrm{W})(1 \,\mathrm{s}) = 7.9577 \times 10^{-5} \,\mathrm{J}$$

1.3 Comparison

$$\frac{E_{\rm in}}{E_{\rm eve}} = \frac{7.9577 \times 10^{-5} \,\mathrm{J}}{9.9 \times 10^{-11} \,\mathrm{J}} \approx 8 \times 10^{5}$$

1.4 Answer

It is dark when we close our eyes because the energy of the blackbody photons inside the eye is below the threshold needed to stimulate the photoreceptors.

2.1 General Solution

$$I_{\nu} = I_{\nu}(\tau_{\nu} = 0)e^{-\tau_{\lambda,0}} + \int_{0}^{\tau_{\lambda,0}} S_{\nu}(\tau_{\nu})e^{-(\tau_{\lambda,0} - \tau_{\nu})} d\tau_{\nu}$$

$$I_{\nu}(\tau_{\nu} = 0) = 0, \quad S_{\nu}(\tau_{\nu}) = S_{\nu}$$

$$I_{\nu} = S_{\nu}e^{-\tau_{\lambda,0}} \int_{0}^{\tau_{\lambda,0}} e^{\tau_{\nu}} d\tau_{\nu}$$

$$I_{\nu} = S_{\nu}(1 - e^{-\tau_{\lambda,0}})$$

2.2 Small Optical Depth

$$e^{-\tau_{\lambda,0}} \approx 1 - \tau_{\lambda,0}$$

$$I_{\nu} = S_{\nu}\tau_{\lambda,0}$$

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}, \quad \tau_{\lambda,0} = \alpha_{\nu}L$$

Where j_{ν} is the emission function of a specific wavelength.

2.3 Large Optical Depth

$$I_{\nu} = S_{\nu}$$

 $I_{\nu} = j_{\nu}L$

$$I_{\nu} = B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

3.1 General Solution

$$I_{\nu} = I_{\nu}(\tau_{\nu} = 0)e^{-\tau_{\lambda,0}} + \int_{0}^{\tau_{\lambda,0}} S_{\nu}(\tau_{\nu})e^{-(\tau_{\lambda,0} - \tau_{\nu})} d\tau_{\nu}$$

$$I_{\nu}(\tau_{\nu} = 0) = I_{\lambda,0}, \quad S_{\nu}(\tau_{\nu}) = S_{\nu}$$

$$I_{\nu} = I_{\lambda,0}e^{-\tau_{\lambda,0}} + S_{\nu}e^{-\tau_{\lambda,0}} \int_{0}^{\tau_{\lambda,0}} e^{\tau_{\nu}} d\tau_{\nu}$$

$$I_{\nu} = I_{\lambda,0}e^{-\tau_{\lambda,0}} + S_{\nu}(1 - e^{-\tau_{\lambda,0}})$$

3.2 Small Optical Depth

$$e^{-\tau_{\lambda,0}} \approx 1 - \tau_{\lambda,0}$$

$$I_{\nu} = (1 - \tau_{\lambda,0})I_{\lambda,0} + \tau_{\lambda,0}S_{\nu} = I_{\lambda,0} + (S_{\nu} - I_{\lambda,0})\tau_{\lambda,0}$$

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}, \quad \tau_{\lambda,0} = \alpha_{\nu} L$$

$$I_{\nu} = I_{\lambda,0}(1 - \alpha_{\nu}L) + j_{\nu}L = I_{\lambda,0} + (j_{\nu} - \alpha_{\nu}I_{\lambda,0})L$$

Where j_{ν} is the emission function of a specific wavelength and a_{ν} is the absorption coefficient for a specific wavelength.

3.3 Large Optical Depth

$$I_{\nu} = S_{\nu}$$

$$I_{\nu} = B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

4.1 Brightness Temperature and Energy Regime

4.1.1 Brightness Temperature

Convert Angular Diameter to Radians

$$\theta = 4.3' \times \left(\frac{1\deg}{60'}\right) \times \left(\frac{\pi \text{ rad}}{180\deg}\right) = 4.3 \times \frac{\pi}{10800} \approx 1.2507 \times 10^{-3} \text{ rad}$$

Calculate the Solid Angle Ω

$$\Omega = \pi \left(\frac{\theta}{2}\right)^2 = \pi \left(\frac{1.2507 \times 10^{-3} \text{ rad}}{2}\right)^2 = \pi \left(6.2535 \times 10^{-4} \text{ rad}\right)^2 \approx 1.2277 \times 10^{-6} \text{ sr}$$

Convert Flux Density to SI Units

$$F_{100} = \left(1.6 \times 10^{-19} \frac{\text{erg}}{\text{cm}^2 \text{ s Hz}}\right) \times \left(\frac{1 \times 10^{-7} \text{J}}{1 \text{ erg}}\right) \times \left(\frac{1}{(1 \times 10^{-2} \text{ m})^2}\right) = 1.6 \times 10^{-19} \times 1 \times 10^{-7} \times 1 \times 10^4 \frac{\text{W}}{\text{m}^2 \text{ Hz}}$$

$$F_{100} = 1.6 \times 10^{-22} \frac{\text{W}}{\text{m}^2 \text{ Hz}}$$

Find the Wavelength λ

$$\lambda = \frac{c}{\nu} = \frac{3.0 \times 10^8 \text{m s}^{-1}}{1.0 \times 10^8 \text{Hz}} = 3.0 \text{m}$$

Brightness Temperature

$$T_b = \frac{F_\nu \lambda^2}{2k\Omega}$$

Where:

- F_{ν} is the flux density at frequency ν
- λ is the wavelength

• k is Boltzmann's constant $(1.38 \times 10^{-23} \text{J K}^{-1})$

Substitute the values:

$$T_b = \frac{(1.6 \times 10^{-22} \text{W m}^{-2} \text{Hz}^{-1}) \times (3.0 \text{m})^2}{2 \times (1.38 \times 10^{-23} \text{J K}^{-1}) \times (1.2277 \times 10^{-6} \text{sr})} = 4.247 \times 10^7 \text{K}$$

4.1.2 Energy Regime

Compare $h\nu$ and kT_b :

$$h\nu = (6.626 \times 10^{-34} \text{J s})(1.0 \times 10^8 \text{Hz}) = 6.626 \times 10^{-26} \text{J}$$

$$kT_b = (1.38 \times 10^{-23} \text{J K}^{-1})(4.247 \times 10^7 \text{K}) = 5.861 \times 10^{-16} \text{J}$$

Since $h\nu \ll kT_b$, the emission is in the **Rayleigh-Jeans** regime (long-wavelength limit of the blackbody curve).

4.2 Effect of Compact Emitting Region on Brightness Temperature

If the actual emitting region is more compact, the angular diameter θ is smaller, leading to a smaller solid angle Ω .

Since:

$$T_b \propto \frac{1}{\Omega}$$

A smaller Ω results in a higher brightness temperature T_b .

4.3 Frequency at Which the Radiation Peaks (Wien's Law)

Use Wien's Law for frequency:

$$\nu_{\max} = \frac{kT}{h} \times x$$

Where:

- \bullet k is Boltzmann's constant
- \bullet h is Planck's constant
- x is a constant approximately equal to 2.8214

Calculate $\nu_{\rm max}$:

$$\nu_{\rm max} = \frac{(1.38 \times 10^{-23} \rm J~K^{-1}) (4.247 \times 10^7 K)}{6.626 \times 10^{-34} \rm J~s} \times 2.8214 = 2.497 \times 10^{18} \rm Hz$$

a. Note that $j_{\nu} = P_{\nu}/4\pi$ and that, effectively, $\alpha_{\nu} = 0$, since the cloud is optically thin. Then, using Eq. (1.24),

$$I_{\nu}(b) = \int j_{\nu}(z) dz = \frac{P_{\nu}}{2\pi} \sqrt{R^2 - b^2}.$$

b. The total power emitted by the cloud is $L = (4/3)\pi R^3 P_{\nu}$, where $P = \int P_{\nu} d\nu$. Then

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4,$$

by definition of T_{eff} , so that

$$T_{\text{eff}} = \left(\frac{PR}{3\sigma}\right)^{1/4}.$$

c. Let d be the distance from the spherical cloud to the earth. Energy conservation gives a relation between F_{ν} , the flux at the earth, and P_{ν} :

$$4\pi d^2 F_{\nu} = \frac{4}{3}\pi R^3 P_{\nu},$$

$$F_{\nu} = \frac{P_{\nu}R^3}{3d^2}.$$

d. From Eq. (1.30), with $S_{\nu} = B_{\nu}(T), I_{\nu}(0) = 0, \tau_{\nu} \ll 1$,

$$I_{\nu} = B_{\nu}(T)(1 - e^{-\tau_{\nu}}) \approx \tau_{\nu} B_{\nu}(T) \ll B_{\nu}(T).$$

With the definition of T_b from Eq. (1.59),

$$B_{\nu}(T_b) \ll B_{\nu}(T),$$

and the monotonicity of $B_{\nu}(T)$ with T, we have $T_b \ll T$.

- e. For the optically thick case the results are:
 - a'. From Eq. (1.30) with $\tau_{\nu} \gg 1$ and with $S_{\nu} = B_{\nu}(T)$ we have $I_{\nu} = B_{\nu}(T)$ independent of b.
 - b'. Since $I_{\nu} = B_{\nu}$, the flux at the surface is the blackbody flux, so $T_{\text{eff}} = T$.

c'. The monochromatic flux at the surface is $\pi B_{\nu}(T)$ [cf. Eq. (1.14)], so using the inverse square law gives

$$F_{\nu}(d) = \pi \left(\frac{R}{d}\right)^2 B_{\nu}(T).$$

d'. From (a') and Eq. (1.59) we have $B_{\nu}(T_b) = B_{\nu}(T)$, which implies $T_b = T$.

A certain gas emits thermally at the rate $P(\nu)$ (power per unit volume and frequency range). A spherical cloud of this gas has radius R, temperature T, and is a distance d from Earth $(d \gg R)$.

(a) Optically Thin Cloud: Brightness as a Function of b

For an optically thin cloud, the observed brightness $I_{\nu}(b)$ at Earth is the integrated emission along the line of sight at a distance b from the cloud center. The emission coefficient j_{ν} (power emitted per unit volume per unit solid angle per unit frequency) relates to $P(\nu)$ as:

$$j_{\nu} = \frac{P(\nu)}{4\pi}$$

The path length through the cloud at impact parameter b is:

$$L(b) = 2\sqrt{R^2 - b^2} \quad \text{for } b \le R$$

Thus, the brightness $I_{\nu}(b)$ is:

$$I_{\nu}(b) = \int_{-\infty}^{+\infty} j_{\nu}(s) ds = \frac{P(\nu)}{4\pi} \times 2\sqrt{R^2 - b^2} = \frac{P(\nu)}{2\pi} \sqrt{R^2 - b^2}$$

(b) Optically Thin Cloud: Effective Temperature

$$L = (4/3)\pi R^3 P_{\nu}$$
, where $P = \int P_{\nu} d\nu$.

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4,$$

$$T_{\text{eff}} = \left(\frac{PR}{3\sigma}\right)^{1/4}.$$

(c) Optically Thin Cloud: Flux F_{ν} Measured at Earth

The total luminosity L_{ν} emitted by the cloud at frequency ν is:

$$L_{\nu} = P(\nu) \times V = P(\nu) \times \frac{4}{3}\pi R^{3}$$

The flux F_{ν} measured at Earth is:

$$F_{\nu} = \frac{L_{\nu}}{4\pi d^2} = \frac{P(\nu) \times \frac{4}{3}\pi R^3}{4\pi d^2} = \frac{P(\nu)R^3}{3d^2}$$

(d) Optically Thin Cloud: Comparison of Brightness Temperatures

Since $T_B(b) \propto \sqrt{R^2 - b^2}$ and $P(\nu)$ is finite, the measured brightness temperatures $T_B(b)$ are much less than the actual cloud temperature T:

$$T_B(b) \ll T$$

This is because the cloud is optically thin and does not emit as a blackbody along the line of sight.

(e) Optically Thick Cloud

(a) Brightness as a Function of b

For an optically thick cloud, the specific intensity $I_{\nu}(b)$ at any impact parameter $b \leq R$ is equal to the blackbody intensity:

$$I_{\nu}(b) = B_{\nu}(T)$$

since the cloud is opaque and emits as a blackbody at temperature T.

(b) Effective Temperature

In this case, the brightness temperature is equal to the actual temperature:

$$T_B(b) = T$$

(c) Flux F_{ν} Measured at Earth

The flux measured at Earth is calculated from the projected area of the cloud and the blackbody intensity:

$$F_{\nu} = \frac{\text{Total Power Emitted Towards Earth}}{\text{Area at Distance } d} = \frac{I_{\nu}(b) \times \text{Projected Area}}{d^2} = \frac{B_{\nu}(T) \times \pi R^2}{d^2}$$

(d) Comparison of Brightness Temperatures

For an optically thick cloud, the measured brightness temperatures are equal to the cloud's temperature:

$$T_B(b) = T$$

This is because the cloud emits as a blackbody along every line of sight within its angular size.

References

[1] M.H. El-Deeb. PEU-438 Assignments.