МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни «Дискретна математика»

Виконав:

студент групи КН-112 Тиський Святослав

Викладач:

Мельникова Н.І.

Варіант 14

Тема: "Моделювання основних логічних операцій"

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Завдання №1:

- 1. Формалізувати речення. Сашко працює, якщо він втомився, то він відпочиває; якщо він не відпочиває, то він хворий і виконує простішу роботу.
- 2. Побудувати таблицю істинності для висловлювань: $((x \Rightarrow y) \land (y \Rightarrow z)) \Rightarrow (x \Rightarrow z).$
- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям: $((\overline{p} \to \overline{q} \leftrightarrow (\overline{q} \to r)) \to (p \lor \overline{r}).$
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання:

$$((p \rightarrow q) \land (q \rightarrow q)) \rightarrow p.$$

5. Довести, що формули еквівалентні: $(r \land q) \lor (q \rightarrow r)$ та $(p \leftrightarrow r) \rightarrow (p \land r)$.

Розв'язок завдання №1:

1.х – Сашко працює.

v- Сашко втомився.

r-Сашко відпочиває.

h-Сашко хворий.

w-Сашко виконує простішу роботу.

$$x \oplus ((v \to r) \lor (\bar{r} \to (h \land w)))$$

2.

							·
Х	У	Z	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow z$	$x \Rightarrow y \land y \Rightarrow z$	$((x \Rightarrow y) \land (y \Rightarrow z)) \Rightarrow (x \Rightarrow z)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

р	q	r	\bar{q}	$p \rightarrow q$	$\bar{q} \rightarrow r$	$p \vee \bar{r}$	$\overline{p \rightarrow q}$	$(\overline{p \to q} \leftrightarrow (\overline{q} \to r))$	
0	0	0	1	1	0	0	0	1	0
0	0	1	0	1	1	0	0	0	1
0	1	0	1	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	0	0	1	0	0	0	1	0	1
1	0	1	0	0	1	1	1	1	1
1	1	0	1	1	1	0	0	0	1
1	1	1	0	1	1	1	0	0	0

За допомогою таблиці істинності я визначив, що висловлювання є нейтральним.

4. $((p \to q) \land (q \to q)) \to p$ Нехай p-F. Якщо p-F ,то $(p \to q) \land (q \to q)$ — Т так як p-F, то $(p \to q)$ завжди T і $(q \to q)$ завжди T \Rightarrow якщо p-F, то вираз = F, отже він не є тавтологією.

5. Доведення того, що формули еквівалентні я буду робити за допомогою таблиці істинності. $((r \land q) \lor (q \to r) \equiv (p \leftrightarrow r) \to (p \land r))$.

r	q	р	$r \wedge q$	$q \rightarrow r$	$(r \land q) \lor (q \rightarrow r)$	$p \leftrightarrow r$	$p \wedge r$	$(p \leftrightarrow r) \to (p \land r)$	
0	0	0	0	1	1	1	0	0	0
0	0	1	0	1	1	0	0	1	1
0	1	0	0	0	0	1	0	0	1
0	1	1	0	0	0	0	0	1	0
1	0	0	0	1	1	0	0	1	1
1	0	1	0	1	1	1	1	1	1
1	1	0	1	1	1	0	0	1	1
1	1	1	1	1	1	1	1	1	1

3 побудованої таблиці істинності бачимо, що формули не еквівалентні.

Завдання №2: Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях.

$$((x \Rightarrow y) \land (y \Rightarrow z)) \Rightarrow (x \Rightarrow z)$$

Розв'язок завдання №2:

```
#include <iostream>
 using namespace std;
⊡int main()
     cout << "print y ";</pre>
     if (x == 0 \&\& y == 0 \&\& z == 0 | | // якщо x = 0 i y=0 i z=0 aбо
         x == 0 & y == 1 & z == 1 | // якщо <math>x = 0 i y=1 i z=1 або
         x == 1 & y == 0 & z == 0 | //  xxuo x = 1 i y = 0 i z = 0 a 60
         x == 1 & y == 0 & z == 1 | // 9 \times 0 \times 1 = 1 = 0 = 0 = 0 = 0
         x == 1 & y == 1 & z == 0 | // якщо x = 1 i y = 1 i z = 0 a 60
         x == 1 &  y == 1 &  z == 1//9  x == 1  y == 1  y == 1 
         cout << "result is 1";//якщо наша умова справджується виводимо "result is 1"
cout << "wrong";//якщо наша умова не справджується виводимо "wrong"
     system("pause");
     return 0;
```

```
print x 1
print y 1
print z 1
result is 1Для продолжения нажмите любую клавишу . . .
```

Висновок: На цій лабораторній роботі я ознайомився на практиці із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинні значення таблицями істинності, використовувати закони алгебри логіки, освоїв методи доведень.