Exercices « Formules trigonométriques »

Exercice 1 : Formules trigonométriques (I)

Calculer les valeurs exactes des quantités suivantes :

- 1. $\cos(\pi/12)$
- 2. $\sin(11\pi/12)$
- 3. $\cos(\pi/8)$
- 4. $\sin(7\pi/8)$

Exercice 2: Formules trigonométriques (II)

Résoudre dans \mathbb{R} les (in)équations suivantes

- 1. $\cos(x) + \sin(x) \ge 1$
- 2. $\cos(x) + \sqrt{3}\sin(x) > 1$
- 3. $\cos(2x) + 2\sin(x) = 0$
- 4. $\sin(2x) 2\sin(x) = 0$
- 5. cos(x) + cos(2x) + cos(3x) = 0
- 6. cos(3x) sin(2x) = 0 [difficile]

Exercice 3: Tangente

Donner le nombre de solutions dans $[0, \pi]$ de l'équation

$$\tan(x) + \tan(2x) + \tan(3x) + \tan(4x) = 0$$

Exercice 4 : Fonctions trigonométriques réciproques

Résoudre dans \mathbb{R} (sauf mention explicite du contraire) les équations trigonométriques suivantes :

- 1. $10\cos(8\theta) = -5$
- 2. $2\sin(\theta/4) = \sqrt{3}$
- 3. $2\sin(\theta/4) = \sqrt{3} \text{ dans } [0, 16\pi]$
- 4. $10 + 7\tan(4\theta) = 3 \text{ dans } [-\pi, 0].$
- 5. $3 4\sin(4\theta) = 5 \text{ dans } [-3\pi/2, -\pi/2]$
- 6. $2\cos^2(x) 3\cos(x) + 1 = 0$ dans $[0, 2\pi]$

Exercice 5: Inéquations

Résoudre dans \mathbb{R} (sauf mention explicite du contraire) les équations suivantes :

- 1. $|\cos(x)| \ge |\sin(x)|$
- 2. $\ln(\cos^2(x)) = 0$
- 3. $2\ln(\cos(x)) = 0$
- 4. $\sqrt{1-\cos^2(x)} = \frac{\sqrt{3}}{2}$

5.
$$e^{\cos(x)} \le 1$$

Exercice 6: arcsin

On cherche à calculer $X = \arcsin\left(-\sqrt{\frac{2-\sqrt{2}}{4}}\right)$.

1. Montrer que pour tout $x \in \mathbb{R}$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

- 2. Appliquer la formule précédente à $x = \frac{\pi}{8}$.
- 3. En déduire la valeur de X.
- 4. Vérifier que vous n'avez pas fait de fautes, par exemple avec une calculatrice.

Exercice 7: Produit de cosinus

Soit $a \in (0, \pi)$. Calculer pour tout $n \in \mathbb{N}^*$

$$\prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$$

On pourra utiliser $\sin(2x) = 2\cos(x)\sin(x)$. En déduire

$$\lim_{n \to \infty} \sum_{k=1}^{n} \ln \left(\cos \left(\frac{a}{2^k} \right) \right)$$

Corrections

Correction de cos(2x) + 2sin(x) = 0

$$\cos(2x) + 2\sin(x) = 0 \Leftrightarrow (\cos^2(x) - \sin^2(x)) + 2\sin(x) = 0$$
$$\Leftrightarrow (1 - 2\sin^2(x)) + 2\sin(x) = 0$$
$$\Leftrightarrow -2\sin^2(x)) + 2\sin(x) + 1 = 0$$

On pose $\sin(x)=X$ et on cherche à résoudre l'équation de degré $2-2X^2+2X+1=0$. En calculant le discriminant, on trouve que les solutions sont $X_1=\frac{1-\sqrt{3}}{2}$ et $X_2=\frac{1+\sqrt{3}}{2}$ et on est ramené à résoudre $\sin(x)=X_1$ et $\sin(x)=X_2$. $X_2>1$ donc l'équation $\sin(x)=X_2$ n'a pas de solution. $X_1\in[-1,1]$ donc l'équation $\sin(x)=X_1$ a une infinité de solutions. Comme X_1 n'est pas un sin remarquable, on passe par la fonction \arcsin

$$\sin(x) = X_1 \Leftrightarrow \sin(x) = \sin(\arcsin(X_1)) \Leftrightarrow \begin{cases} x = \arcsin(X_1) + 2k\pi & (k \in \mathbb{Z}) \\ x = \pi - \arcsin(X_1) + 2k\pi & (k \in \mathbb{Z}) \end{cases}$$
$$\Leftrightarrow \begin{cases} x = \arcsin\left(\frac{1-\sqrt{3}}{2}\right) + 2k\pi & (k \in \mathbb{Z}) \\ x = \pi - \arcsin\left(\frac{1-\sqrt{3}}{2}\right) + 2k\pi & (k \in \mathbb{Z}) \end{cases}$$

Correction de $\cos(3x) - \sin(2x) = 0$

On cherche à tout exprimer en fonction de $\cos(x)$ et $\sin(x)$. On utilise le fait que $\sin(2x) = 2\sin(x)\cos(x)$ et $\cos(2x) = \cos^2(x) - \sin^2(x)$

$$\cos(3x) = \cos(2x + x) = \cos(2x)\cos(x) - \sin(x)\sin(2x)$$

$$= (\cos^2(x) - \sin^2(x))\cos(x) - \sin(x)(2\sin(x)\cos(x))$$

$$= \cos(x)[\cos^2(x) - \sin^2(x) - 2\sin^2(x)] = \cos(x)[1 - 4\sin^2(x)]$$

Donc

$$\cos(3x) - \sin(2x) = \cos(x)[1 - 4\sin^2(x)] - 2\sin(x)\cos(x) = \cos(x)[1 - 2\sin(x) - 4\sin^2(x)]$$

qui s'annule si $\cos(x)=0$ (c'est à dire $x=\pi/2+k\pi$) ou si $1-2\sin(x)-4\sin^2(x)=0$. On est donc amené à résoudre l'équation de degré $21-2X-4X^2=0$ dont les solutions sont $X_1=\frac{-1+\sqrt{5}}{4}$ et $X_2=\frac{-1-\sqrt{5}}{4}$ puis les équations $\sin(x)=X_1$ et $\sin(x)=X_2$. Comme X_1 et X_2 sont dans [-1,1], ces deux équations ont des solutions. Au final, en raisonnant comme précédemment on trouve les solutions suivantes :

$$x \in \left\{-\frac{\pi}{2}, \frac{\pi}{2}, -\arccos\left(\frac{-1-\sqrt{5}}{4}\right), \arccos\left(\frac{-1-\sqrt{5}}{4}\right), -\arccos\left(\frac{-1+\sqrt{5}}{4}\right), \arccos\left(\frac{-1+\sqrt{5}}{4}\right)\right\} + 2k\pi$$

Correction de $10 + 7\tan(4\theta) = 3$ dans $[-\pi, 0]$

On raisonne par équivalence

$$10 + 7\tan(4\theta) = 3 \Leftrightarrow \tan(4\theta) = -1$$
$$\Leftrightarrow \tan(4\theta) = \tan(-\pi/4)$$
$$\Leftrightarrow 4\theta = -\pi/4 + k\pi$$
$$\Leftrightarrow \theta = -\frac{\pi}{16} + k\frac{\pi}{4}$$

On cherche ensuite les solutions qui sont dans $[-\pi,0]$. Par exemple, $-\frac{\pi}{16}$ est solution. Comme toutes les solutions sont "décalées" de $\pi/4$, il suffit de lui ajouter $\pi/4$ jusqu'à être plus grand que 0 et de lui retrancher $\pi/4$ jusqu'à être plus petit que $-\pi$. Au final, on trouve que les solutions sont

$$x \in \left\{ -\frac{\pi}{16}, -\frac{5\pi}{16}, -\frac{9\pi}{16}, -\frac{13\pi}{16} \right\}$$

Correction de $2\cos^2(x) - 3\cos(x) + 1 = 0$ **dans** $[0, 2\pi]$

On pose $X = \cos(x)$ et on se ramène à l'équation de degré $2 \ 2X^2 - 3X + 1 = 0$ dont les solutions sont $X_1 = -1$ et $X_2 = -1/2$. Les deux valeurs sont dans [-1,1] dont leur arccos sont bien définis.

$$\begin{cases} \cos(x) &= -1 \\ \text{OU} & \Leftrightarrow \\ \cos(x) &= -1/2 \end{cases} \Leftrightarrow \begin{cases} x &= \pi + 2k\pi \\ \text{OU} \\ x &= 2\pi/3 + 2k\pi \\ \text{OU} \\ x &= -2\pi/3 + 2k\pi \end{cases}$$

En conservant uniquement les solutions dans $[0, 2\pi]$, on obtient

$$x \in \left\{ \frac{2\pi}{3}, \pi, \frac{4\pi}{3} \right\}$$

Correction de $|\cos(x)| \ge |\sin(x)|$

Par 2π -périodicité, on peut se limiter à $x \in [0, 2\pi]$. De plus, comme $|\cos(x + \pi)| = |-\cos(x)| = |\cos(x)|$ et de même pour $|\sin|$, la fonction $|\cos(x)| - |\sin(x)|$ est en fait π -périodique et on peut donc se limiter à $x \in [-\pi/2, \pi/2]$.

On cherche ensuite à se débarrasser des valeurs absolues en distinguant 2 cas.

Premier cas : $\mathbf{x} \in [\mathbf{0}, \pi/\mathbf{2}]$

Sur cet intervalle, l'inégalité se réduit à (E_1)

$$|\cos(x)| \ge |\sin(x)| \Leftrightarrow \cos(x) \ge \sin(x) \Leftrightarrow \sqrt{2}\cos(x + \pi/4) \ge 0$$

En faisant (par exemple) une étude de signe de $\cos(x + \pi/4)$ sur $[0, \pi/2]$, on trouve que les solutions de (E_1) sont $x \in [0, \pi/4]$.

Second cas : $x \in [-\pi/2, 0]$

Sur cet intervalle, l'inégalité se réduit à (E_2)

$$|\cos(x)| \ge |\sin(x)| \Leftrightarrow \cos(x) \ge -\sin(x) \Leftrightarrow \sqrt{2}\cos(x-\pi/4) \ge 0$$

En faisant (par exemple) une étude de signe de $\cos(x-\pi/4)$ sur $[-\pi/2,0]$, on trouve que les solutions de (E_2) sont $x \in [-\pi/4,0]$.

Synthèse : En recollant les morceaux et en utilisant la π -périodicité, on obtient que l'ensemble des solutions est $[-\pi/4, \pi/4] + k\pi$