Quiz II (10 pts)

Burak Ekici

Assigned: April the 30th, 20h15

Duration : 60 minutes

Q1. (8 pts) Let $\alpha = a(bca)^*bc$ and $\beta = ab(cab)^*c$ be a pair of regular expressions defined over the alphabet $\Sigma = \{a, b, c\}$. Decide whether $\alpha \equiv \beta$ employing derivatives and bisimulation. Justify your reasoning.

A1. We start with partially deriving the expression α with respect to the letters α , b and c until no new expression is generated:

CAPICSSI	0111	5 generatea.						
α_a	=	$a_a(bca)^*bc$ $\varepsilon(bca)^*bc$ $(bca)^*bc =: \alpha_1$	α_b	=	Ø	α_c	=	Ø
$(\alpha_1)_a$		Ø	$(\alpha_1)_b$	=	$((bca)^*)_bbc + (bc)_b$ $(bca)_b(bca)^*bc + \varepsilon c$ $\varepsilon ca(bca)^*bc + c$ $ca(bca)^*bc + c =: \alpha_2$	$(\alpha_1)_c$	=	Ø
$(\alpha_2)_a$	=	Ø	$(\alpha_2)_b$	=	Ø	$(\alpha_2)_c$	=	$(ca)_c(bca)^*bc + c_c$ $\varepsilon a(bca)^*bc + \varepsilon$ $a(bca)^*bc + \varepsilon =: \alpha_3$
$(\alpha_3)_a$	=	$a_a(bca)^*bc + \varepsilon_a$ $\varepsilon(bca)^*bc + \emptyset$ $(bca)^*bc = \alpha_1$	$(\alpha_3)_b$	=	Ø	$(\alpha_3)_c$	=	Ø
$(\emptyset)_a$	=	Ø	$(\emptyset)_b$	=	Ø	$(\emptyset)_c$	=	Ø
We appl	y th	e same procedure above fo	r the ex	pres	ssion $oldsymbol{eta}$:			
$oldsymbol{eta}_a$	=	$a_ab(cab)^*c$ $\epsilon b(cab)^*c$ $b(cab)^*c =: \beta_1$	eta_b	=	Ø	eta_c	=	Ø
$(\beta_1)_a$	=	Ø	$(\beta_1)_b$		b _b (cab)* c ε(cab)* c	$(\beta_1)_c$	=	Ø

 $= (cab)^*c =: \beta_2$

$$(\beta_2)_a = \emptyset \qquad (\beta_2)_b = \emptyset \qquad (\beta_2)_c = ((cab)^*)_c c + c_c$$

$$= (cab)_c (cab)^* c + \varepsilon$$

$$= c_c ab(cab)^* c + \varepsilon$$

$$= \varepsilon ab(cab)^* c + \varepsilon$$

$$= ab(cab)^* c + \varepsilon = \delta$$

$$= \varepsilon b(cab)^* c + \delta$$

$$= \varepsilon b(cab)^* c + \emptyset$$

$$= b(cab)^* c = \beta_1$$

$$(\emptyset)_a = \emptyset \qquad (\emptyset)_b = \emptyset \qquad (\emptyset)_c = \emptyset$$

We have the following derivative tables:

	а	b	c				а	b	С	
α	α_1	Ø	Ø	1	$\overline{\beta}$!	β_1	Ø	Ø	1
α_1	Ø	α_2	Ø	1	$oldsymbol{eta}_1$	1	Ø	β_2	Ø	1
α_2	Ø	Ø	α_3	1	$oldsymbol{eta}_2$	2	Ø	Ø	β_3	1
α_3	α_1	Ø	Ø	↓	$oldsymbol{eta}_1$	3	β_1	Ø	Ø	↓
Ø	Ø	Ø	Ø	1	Ø	5	Ø	Ø	Ø	1

Therefore, the fact that $\alpha \equiv \beta$ follows by the bisimulation \sim that satisfies

$$L(\alpha) \sim L(\beta)$$

$$L(\alpha_1) \sim L(\beta_1)$$

$$L(\alpha_2) \sim L(\beta_2)$$

$$L(\alpha_3) \sim L(\beta_3)$$

$$L(\emptyset) \sim L(\emptyset).$$

Q2. (2 pts) Simplify the regular expression

$$\alpha := \varepsilon + (a+b+c)((a^*b)^*a^*c)^*(a^*b)^*(\varepsilon + a + aaa^*)$$

defined over the alphabet $\Sigma = \{a, b, c\}$ as much as possible benefiting Kleene Algebra axioms and rules (A.1) – (A.17). Clearly show simplification steps.

A2.

$$\alpha := \varepsilon + (a+b+c)((a*b)*a*c)*(a*b)*(\varepsilon + a + aaa*)$$

$$= \varepsilon + (a+b+c)((a*b)*a*c)*(a*b)*(\varepsilon + a(\varepsilon + aa*))$$

$$= \varepsilon + (a+b+c)((a*b)*a*c)*(a*b)*(\varepsilon + aa*)$$

$$= \varepsilon + (a+b+c)((a*b)*a*c)*(a*b)*a*$$

$$= \varepsilon + (a+b+c)((a*b)*a*c)*(a+b)*$$

$$= \varepsilon + (a+b+c)((a+b)*c)*(a+b)*$$

$$= \varepsilon + (a+b+c)(a+b+c)*$$

$$= (a+b+c)*$$

Important Notice:

- Collaboration is strictly and positively prohibited; lowers your score to 0 if detected.
- Any submission after 60 minutes will NOT be accepted. Please beware and respect the deadline!
- All handwritten answers should somehow be scanned into a single pdf file, and only then submitted. Make sure that your handwriting is decent and readable.