Integration of functions of single variable

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

December 5, 2020

- 1 Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

The area problem

Figure:
$$S = \{(x, y) \mid a \le x \le b, 0 \le y \le f(x)\}.$$

Problem: Find the area of the region S under the curve y = f(x)from a to b, $(f(x) \ge 0)$.

0000

A partition of
$$[a, b]$$
: $a \equiv x_0 < x_1 < ... < x_n \equiv b, \ \Delta x_i = x_i - x_{i-1}$. $S = S_1 + S_2 + ... + S_n = \sum_{i=1}^n S_i$.

0000

Pick a sample point $x_i^* \in [x_{i-1}, x_i]$, $1 \le i \le n$; $S_i \approx f(x_i^*)\Delta x_i$. $S \approx \sum_{i=1}^{n} f(x_i^*) \Delta x_i.$

$$S:=\lim_{\substack{n o \infty \ \lambda o 0}} \sum_{i=1}^n f(x_i^*) \Delta x_i$$
 if the limit exists, $\lambda=\max_{1 \le i \le n} \Delta x_i$.

I is called the definite integral of f(x) on [a, b].

Notation $I = \int_{a}^{b} f(x) dx$.

f(x): integrand, a: lower limit, b: upper limit.

f(x) is said to be integrable on [a, b]

The area of the region under the graph of $f(x) \ge 0$ from a to b is $S = \int_a^b f(x) dx$.

- 1 Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- 3 The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

Theorem

$$y = f(x)$$
 is integrable on $[a, b]$ iff $\lim_{\substack{n \to \infty \\ \lambda \to 0}} (S - s) = 0$, where

$$S = \sum_{i=1}^{n} M_i \Delta x_i, \qquad s = \sum_{i=1}^{n} m_i \Delta x_i,$$
$$M_i = \max_{[x_{i-1}, x_i]} f(x), m_i = \min_{[x_{i-1}, x_i]} f(x).$$

Theorem

If f(x) is continuous on [a, b] then it is integrable on that interval.

Theorem

If f(x) is bounded on [a, b] and has finitely many jump discontinuities then it is integrable on that interval.

Theorem

If f(x) is integrable on [a, b], then f(x) is bounded.

- Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

2 Linearity: $A, B \in \mathbb{R}$

$$\int_a^b (Af(x) + Bg(x))dx = A \int_a^b f(x)dx + B \int_a^b g(x)dx.$$

 \bigcirc Let $c \in (a, b)$

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

4 If $f(x) \geq 0$ for $x \in [a, b]$. Then

$$\int_{a}^{b} f(x)dx \ge 0.$$

Order preserving

Corollary

If $f(x) \leq g(x)$ for $x \in [a, b]$, then

$$\int_a^b f(x)dx \le \int_a^b g(x)dx.$$

In particular,

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Mean value theorem

Theorem (Mean value theorem)

If $m \le f(x) \le M$ on [a, b], then

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a).$$

There exists $\mu \in [m, M]$ such that

$$\int_a^b f(x)dx = \mu(b-a).$$

Moreover, if f(x) is continuous on [a, b] then there exists $c \in [a, b]$ such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Example

Express the following limits in terms of definite integrals

$$\lim_{n\to\infty}\frac{1}{n}\left(1+\sqrt{1+\frac{2}{n}}+\ldots+\sqrt{1+\frac{n-1}{n}}\right)$$

$$\lim_{n \to \infty} \frac{1 + 2^p + \ldots + n^p}{n^{p+1}}, \ p > 1.$$

- Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- 3 The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

$\mathsf{Theorem}$

If f(x) is continuous on [a, b], then

$$F(x) = \int_{a}^{x} f(t)dt, a \le x \le b,$$

is an antiderivative of f(x) on (a, b), namely

$$\left(\int_a^x f(t)dt\right)'=f(x).$$

Corollary

Let $\alpha(x), \beta(x), f(x)$ be continuous on [a, b]. Then

$$\frac{d}{dx}\left(\int_{\alpha(x)}^{\beta(x)}f(t)dt\right)=f(\beta(x))\beta'(x)-f(\alpha(x))\alpha'(x).$$

- Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- 3 The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

Theorem (Newton-Leibniz formula)

If f(x) is continuous on [a, b] and F(x) is an antiderivative of f(x), then

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a).$$

Example

Compute the limits

$$\lim_{x \to 0} \frac{\int_0^{\sin x} t^2 \sin t dt}{x^4}$$

$$\lim_{x \to 0} \frac{\int_0^{\sin^2 x} (e^{-t^2} - 1) dt}{\int_0^{x^2} \ln(1 + 3t^2) dt}$$

- 1 Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

Theorem

If u = g(x): $[a, b] \rightarrow [g(a), g(b)]$ is continuously differentiable on [a, b], f is continuous on [g(a), g(b)], then

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du.$$

Example

Evaluate the integrals

$$\int_0^{\frac{3\pi}{2}} \frac{dx}{2 + \cos x}.$$

Integrals of symmetric functions

Example

• If f(x) is an even function on [-l, l], then

$$\int_{-l}^{l} f(x)dx = 2\int_{0}^{l} f(x)dx.$$

② If f(x) is an odd function on [-I, I], then

$$\int_{-1}^{1} f(x)dx = 0.$$

- 1 Definition. Geometric interpretation
- 2 Properties
 - Integrability criteria
 - Properties
- The fundamental theorem of Calculus
 - The fundamental theorem of Calculus
 - Newton-Leibniz formula
- 4 Substitution rule and integration by parts
 - Substitution rule
 - Integration by parts

Let u(x), v(x) be continuously differentiable on [a, b]. We have

$$\int_a^b u dv = uv \Big|_a^b - \int_a^b v du.$$

Example

Evaluate the integrals