2.1.

La gaine plastique enrobant les brins de cuivre est isolante, ainsi elle empêche une électrocution et garanti la sécurité de l'utilisateur.

2.2.1.

$$2 Cu + O_2 \rightarrow 2 CuO$$

Le dioxygène O_2 est placé à gauche de la flèche(ou bien il réagit avec les atomes de cuivre), c'est un réactif.

2.2.2.

Le chiffre « 2 » devant la formule chimique de l'oxyde de cuivre CuO permet d'équilibrer la réaction : il y a 2 atomes d'oxygène dans les réactifs, il faut donc 2 atomes d'oxygène dans les produits et il y a 2 atomes de cuivre dans les réactifs, il faut donc 2 atomes de cuivre dans les produits.

2.4.

Pour allumer et éteindre toutes les lampes en même temps, il faut placer un interrupteur dans la branche contenant la pile(branche principale). Ainsi les positions A et D conviennent.

2.5.1.

D'après la loi d'additivité de l'intensité dans un circuit en dérivation : $I_6 = I_1 + I_2$

$$I_1 = I_G - I_2$$

$$I_1 = 0.15 - 0.12 = 0.03 A$$

$$I_1 = 30 \text{ mA}$$

2.5.2

$$P = U \times I = 12 \times 0.03 = 0.36 W$$

Ainsi sous une tension de 12V et une intensité 30 mA, la lampe reçoit une puissance 0,36W. Cela correspond à sa puissance nominale : la lampe L1 fonctionne dans les conditions normales d'utilisation.

3.

La batterie auxiliaire choisie doit être à décharge lente : la batterie B est donc éliminée.

Calculons l'énergie consommée par les appareils : $E = P \times t$

Pour l'ensemble des lampes (pour le temps, on prends le temps d'utilisation journalier multiplié par 2 car on veut deux jours d'autonomie)

$$E_{L} = P \times t = 6 \times 2 \times 2 = 24 \text{ Wh}$$