

Isocharic process:
$$dV = 0$$
 $dV = dQ - dW$
 $\Rightarrow dQ = dV + dW$
 $= dV$
 $\Rightarrow \int_{0}^{\infty} \int_$

for monoatomic gas: f=3, $Cv=\frac{3}{2}R$, $Cp=\frac{5}{2}R$ diatomore gas: f=5, Cv=\frac{7}{2}R. Gp=\frac{7}{2}R Define: ratio of heat capacity = $Y = \frac{C_P}{C_V} > 1$ $V_{\text{tonoatom}} = \frac{5}{3} = 1.667$ $V_{\text{diatomic}} = \frac{7}{5} = 1.4$ Adiabatia Process: Process where no heat exchange. $dQ = 0 \Rightarrow W = -av$ expansion: $W>0 \Rightarrow \Delta U < 0$ cooling compression: $W<0 \Rightarrow \Delta U>0$ heating. Question: How does the path of adiabatic process on a p-V diagram look like? Consider a state changes from (p. V. T) to (p+dp, V+dV, T+dT) with dp, dV and dT

satisfy a constraint that dQ = 0. What dp, dV and dT will we have?

Answer:
$$dV = dCV - pdV = -pdV = -nRTdV$$

$$n C v dT$$

$$\Rightarrow dT + R dV = 0$$

$$dT + (Y-1) dV = 0$$

$$\Rightarrow dT + (Y-1) dV =$$

Lecture 22 Page 4

Work done in adiabatic process.

$$W = -\Delta V = -n C_v \Delta T = -n C_v (T_f - T_i)$$

$$W = n C_v (T_i - T_f)$$

$$= n C_v \frac{p_i V_i}{nR} - \frac{p_f V_f}{nR}$$

$$= \frac{C_v}{R} (p_i V_i - p_f V_f)$$

$$W = \frac{1}{8-1} (p_i V_i - p_f V_f)$$

Summary: In adiabatic process, the state satisfies

$$PV^{8} = P \cdot V^{8}$$
as well as
$$PV = nRT. \quad (still valid)$$
adiabatic has are steeper in p-V diagram

$$P = \frac{constant}{V^{8}}, \quad y > 1$$

$$compared to \quad Tootherms where
$$P = \frac{nRT}{V} = \frac{constant}{V}$$$$

Adiabatic compression. (demo)

gas beny compressed quickly does not have enough time to

exchange heat with surroundings. $\Rightarrow Q = 0$ $T_{z} = ?$ if $V_{z} = \frac{V_{1}}{10}$ $T_{z} = 7.0 \times 1.4$ $T_{z} = 7.0 \times 1.4$

Video demo.

Cloud appearing when opening a con of soft drink.

Pressure in a can = $P_1 \sim 1.2$ atm

Pressure in a can = $P_1 \sim 1.2$ atm

Tamperature of can taken out from fridge $T_1 = 4^{\circ}c = 277 \text{ K}$.

when open 1 P2 = 1 atm Th = ?

 $\gamma \text{ of CO2} = 1.29$

Assume the gas maide the con expands adiabatically

 $T_1 V_1^{s-1} = T_2 V_2^{s-1}$ ⇒ To - To

PV2 hRT V~Tp

 $T_2 = \left(\frac{P_2}{P_1}\right)^{\frac{0-1}{2}} \cdot T_1$

= 265.8K = -7c

cold enough to water condense the vapour in the ar to

form cloud.