10 /615 442

COFC

CHARLES B. GORDON
THOMAS P. SCHILLER
DAVID B. DEIOMA
JOSEPH J. CORSO
HOWARD G. SHIMOLA
JEFFREY J. SOPKO
JOHN P. MURTAUGH
JAMES M. MOORE
MICHAEL W. GARVEY
RICHARD A. SHARPE
RONALD M. KACHMARIK
PAUL A. SERBINOWSKI

PEARNE & GORDON LLP

ATTORNEYS AT LAW 1801 EAST NINTH STREET SUITE 1200

CLEVELAND, OHIO 44114-3108 (216) 579-1700 FAX: (216) 579-6073

EMAIL: ip@pearnegordon.com

March 7, 2005

STEPHEN S. WENTSLER BRIAN G. BEMBENICK AARON A. FISHMAN ROBERT F. BODI SUZANNE B. GAGNON UNA L. LAURICIA STEVEN J. SOLOMON GREGORY D. FERNENGEL OF COUNSEL: LOWELL L. HEINKE THADDEUS A. ZALENSKI

PATENT, TRADEMARK, COPYRIGHT AND RELATED INTELLECTUAL PROPERTY LAW

Mail Stop Certificate of Corrections Branch Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Re:

U.S. Patent No.: 6,845,217 B2

Issued: January 18, 2005

Inventor: Konishi

Our Docket: 33476US1

Certificate
MAR 1 6 2005

of Correction

Sir:

A Certificate of Correction under 35 U.S.C. 254 is hereby requested to correct Patent Office printing errors in the above-identified patent. Enclosed herewith is a proposed Certificate of Correction (Form No. PTO-1050) for consideration along with appropriate documentation supporting the request for correction.

It is requested that the Certificate of Correction be completed and mailed at an early date to the undersigned attorney of record. The proposed corrections are obvious ones and do not in any way change the sense of the application.

We understand that a check is not required since the errors were on the part of the Patent and Trademark Office in printing the patent.

Very truly yours,

Jeffrey I Sonko Reg No 27670

JJS:vln Enclosures

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date indicated below.

Jeffrey J. Sopko

Name of Attorney for Applicant(s)

March 5, 2005

Date

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

: 6,845,217 B2

PAGE 1 OF 1

DATED

: January 18, 2005

INVENTOR(S)

: Konishi

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 4

Line 64, please delete "Bide" and insert therefor --side--.

Column 8

Line 52, please delete "FIG. 12(a)" and insert therefor --FIG. 12(b)--.

Column 32

Claim 17, line 52, please delete "elate" and insert therefor --plate--.

MAILING ADDRESS OF SENDER:

Jeffrey J. Sopko Pearne & Gordon LLP 1801 East 9th Street **Suite 1200**

Cleveland, Ohio 44114-3108

PATENT NO. <u>6,845,217 B2</u>

No. of additional copies

0

shown in the parts (a) and (b) of FIG. 26FIGS. a plane orthogonal coordinate axes on perpendicular to the axial direction of the heating element The direction opposed to 240 shown in FIG. 25. reflection face of the infrared ray reflection plate 280 is defined as the negative direction of the x axis. In the parts (a) and (b) of FIG. 26FIGS. 26(a) and 26(b), origin 0 corresponds to the center axis of the heating element 240. In the graph of the part (a) of FIG. 26(a), in the radial directions represented the the values emission intensity of the infrared rays, and the values in the circumferential directions represented angles with respect to the center axis on the plane perpendicular to the axial direction of the heating element 240. These angles are designated by angles from the positive direction In the part (a) of FIG. 26<u>(a)</u>, of the x axis. concentric gradations indicating the emission intensity have the same values of the gradations shown in the part (a) of the above-mentioned FIG. 24(a). In addition, the method of measuring the emission intensity is the same as that in the case shown in the part (a) of FIG. 24(a).--

--::}

Please replace the paragraph beginning on page 11, line 16 and ending on page 11, line 20 with the following amended paragraph:

--As shown in the part (a) of FIG. 26(a), by providing the infrared ray reflection plate 280, infrared rays are

Appl. No. 10/615,442 Amdt. Dated July 1, 2004 Reply to Office action of April 1, 2004

emitted intensely only on one side of the infrared ray lamp, with the positive direction of the x axis used as the center.--

Please replace the paragraph beginning on page 12, line 12 and ending on page 12, line 24 with the following amended paragraph:

--Furthermore, the emission intensity distribution obtained by providing the semi-cylindrical infrared ray reflection plate for the infrared ray lamp having the above-mentioned intensity distributions all isotropic emission directions is substantially the same in a wide range on one side in general as shown in the part (a) of FIG. 26 (a). For this reason, in the conventional infrared ray lamp, an attempt to increase the emission intensity in a more limited range and to decrease the intensity in other ranges in order to enhance directivity is difficult. As a result, in the case when the conventional heating apparatus is used localized heating, problem of low heating the efficiency occurs . - -

Please replace the paragraph beginning on page 21, line 19 and ending on page 21, line 22 with the following amended paragraph:

--part (a) of FIG. 9(a) is a plan view showing an infrared ray lamp in accordance with a third embodiment of the present invention, and part (b) of FIG. 9(b) is a front

Appl. No. 10/615,442 Amdt. Dated July 1, 2004 Reply to Office action of April 1, 2004

view thereof; --

Please replace the paragraph beginning on page 21, line 26 and ending on page 22, line 5 with the following amended paragraph:

--part (a) of FIG. 11(a) is a graph showing the distribution curve of the intensity of the infrared rays emitted from the heating element of the third embodiment, and part (b) of FIG. 11(b) shows the cross section of the central portion of the infrared ray lamp of the third embodiment;--

Please replace the paragraph beginning on page 22, line 6 and ending on page 22, line 9 with the following amended paragraph:

--part (a) of FIG. 12(a) is a plan view showing an infrared ray lamp in accordance with a fourth embodiment of the present invention, and part (b) of FIG. 12(b) is a front view thereof;--

Please replace the paragraph beginning on page 22, line 13 and ending on page 22, line 18 with the following amended paragraph:

--part (a) of FIG. 14(a) is a graph showing the distribution curve of the intensity of the infrared rays emitted from the infrared ray lamp of the fourth embodiment, and part (b) of FIG. 14(b) shows the cross section of the central portion of the infrared ray lamp of

1	Claim 23 (original): A heating apparatus in
2	accordance with claim 19, wherein the central portion of
3	the cross section of said reflection plate is disposed so
4	as to be opposed to the wider side portion of said
5	heating element.
1	Claim 24 (original): A heating apparatus in
2	accordance with claim 19, wherein the central portion of
3	the cross section of said reflection plate is disposed so
4	as to be opposed to the narrower side portion of said
5	heating element.
	Issued as claim 17
1 ·	Claim 25 (currently amended): A method of producing
2	an infrared ray lamp, comprising:
3	a step of forming a heating element which is formed
4	of a carbon-based substance including at least
5	crystallized carbon, a resistance value adjustment
. 6	substance and amorphous carbon into a substantially plate
7	shape, the width of which is larger than its thickness by
8	five times or more,
9	a step of disposing a lead wire having a spring
10	portion which pulls said heating element at a
11	predetermined tension,
12	a step of forming a glass tube by forming glass into
13	a substantially cylindrical shape,
14	a step of hermetically sealing a substantially plate

11

12

13

14

15 said heating element, the width of which is larger than 16 its thickness by five times or more, inside said glass 17 tube so that the center line of said heating element in 18 the longitudinal direction thereof is substantially 19. coaxial with the center axis of said glass tube, and 20 a step of forming a reflection film for reflecting 21 infrared rays into a substantially semi-cylindrical shape 22 on the external face of the cylindrical shape of said 23 glass tube so as to substantially include the range of 24 the disposition of said heating element in the axial 25 direction thereof.

- Claim 26 (currently amended): A method of producing
 an infrared ray lamp, comprising:
- a step of forming a heating element which is formed

 of a carbon-based substance including at least

 crystallized carbon, a resistance value adjustment

 substance and amorphous carbon into a substantially plate

 shape, the width of which is larger than its thickness by

 five times or more,
- a step of forming a glass tube by forming glass into

 a substantially cylindrical shape,
 - a step of forming a reflection film for reflecting infrared rays into a predetermined substantially semi-cylindrical shape on the external face or the internal face of the cylindrical shape of said glass