- 1. Consider the function $y = f(x) = x^3 3x^2 + 4$.
- (i) Find the y-intercept.
- (ii) Show that x = 2 and x = -1 are roots.
- (iii) Find the first and second derivatives.
- (iv) Find the turning points and use the second derivative test to classify them as local maxima or minima.
- (v) Find the x-values for which y is increasing/decreasing.
- (vi) Find the point(s) of inflection.
- (vii) Find the x-values for which y is concave up/concave down.
- (viii) Sketch the graph of $y = x^3 3x^2 + 4$, labeling the various points found above.
- 2. Differentiate each of the following functions:

(i)
$$y = x^3 e^x$$
 (ii) $y = e^x \ln x$

(ii)
$$y = e^x \ln x$$
 (iii) $P = \ln(Q\sqrt{Q})$

(iv)
$$y = \frac{3x}{4x+1}$$
 (v) $s = \frac{\ln t}{t^2}$ (vi) $y = (3x+1)^{20}$

(vii)
$$y = \sqrt{x^2 + 4}$$
 (viii) $f(x) = \ln(7x - 6)$ (ix) $Q = e^{5-3L}$
(x) $P = e^{3Q-Q^2}$ (xi) $y = x^2e^{-3x}$ (xii) $s = \ln(t^5 + 3t)$.

(x)
$$P = e^{3Q-Q^2}$$
 (xi) $y = x^2 e^{-3x}$ (xii) $s = \ln(t^5 + 3t)$.