

AND

	В	F
0	0	0
1	0	0
0	1	0
1	1	1
		9

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	В	F
0	0	1
1	0	0
0	1	0
1	1	0

	A	В	F
<i>></i> ~	0	0	1
OR	1	0	0
	0	1	0
	1	1	0

	Inputs		Output
j	Α	В	F
	0	0	0
	0	1	1
2	1	0	1
	1	1	0

EXCLUSIVE NOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

IC – Introdução a Computação

EXCLUSIVE OR

O que vimos até agora?

Já sabemos que existem os circuitos combinacionais, que são os que vimos até agora;

Como o exemplo abaixo:

Como já vimos aqui em aula, nos circuitos combinacionais, para descobrimos sua saída, apenas precisamos de suas entradas, ou seja, sua saída depende apenas das entradas.

Veja esse vídeo!

Circuitos Digitais - Circuitos Combinacionais

https://www.youtube.com/watch?v=HFXUJsAWWI

Mas e nos circuitos sequenciais?

Nos circuitos sequenciais, a sua saída não pode ser determinada apenas com sua entrada, em outras palavras, precisamos também do estado armazenado.

Estado armazenado – nada mais é que uma variável armazenada no circuito.

Este valor armazenado pode representar algo mais real, uma definição ou até mesmo uma determinada situação.

Um circuito sequencial é composto por um circuito combinacional e **elementos de memória**. As **entradas** e as **saídas** do circuito sequencial estão conectadas somente ao circuito combinacional.

Mas e nos circuitos sequenciais?

Os circuitos sequenciais podem ser divididos em dois tipos, conforme o comportamento temporal dos seus sinais: **síncronos** e **assíncronos**.

Vamos entender esse conceito.

Vamos recorrer a um exemplo prático;

Pensaremos em uma maquina de lavar roupas.

Deixar a roupa de molho

Bater a roupa (lavar)

Enxaguar

Centrifugar.

Cada uma dessas operações (M, L, E, C) da máquina de lavar é um estado.

Vamos entender esse conceito.

O funcionamento da máquina segue esses estados:

- A lavagem só começa após o molho;
- Só haverá o enxague após a lavagem;
 - Existe uma sequencia no desenvolvimento dos estados

Imagine que a máquina tem um botão de avançar.

- Se for pressionado no estado do molho ela passa para lavagem
- Se ele for pressionado no estado de **enxaguar** ele passa para **centrifugação**
- O fato de apertar o botão passa para próxima ação da máquina.

Com esse cenário apresentado, concluímos que a máquina de lavar é um dispositivo que tem um circuito sequencial.

Vamos entender esse conceito.

Estamos falando de circuitos digitais. Então precisamos codificar esses estados de maneira a representar números binários.

A isso chamaremos de variáveis binárias de estado ou apenas Variáveis de Estado.

Voltando a máquina de lavar:

Temos 4 estados, então precisamos de 2 variáveis de estado.

Vamos denominar em nosso curso de E₁E₀

- ❖ Molho Seleção $(E_1E_0) = 00$
- ightharpoonup Lavar Seleção (E_1E_0) = 01
- ❖ Enxaguar Seleção (E₁E₀) = 10
- ❖ Centrifugar Seleção (E₁E₀) = 11

Deslocadores (Shifter)

São componentes que realizam o deslocamento do bit (a direita ou esquerda), sobre um número de N bits gerando uma saída de N bits.

Parecido com outros circuitos que já vimos existe um sinal de controle que define o deslocamento do bit.

Em nossas aulas chamaremos esse bit de sh (shifter).

Senac

Deslocadores (Shifter)

Podemos fazer o deslocamento a Direita e a Esquerda.

- Para a Direita:
 - Move cada bit uma posição a direita.
 - Introduz um novo bit 0 a esquerda (MSB)
 - ❖ O bit mais a direita (LSB) é perdido.
- Para a Esquerda:
 - Move cada bit uma posição a esquerda.
 - Introduz um novo bit 0 a direita (LSB)
 - ❖ O bit mais a esquerda (MSB) é perdido.

Deslocadores (Shifter)

Exemplo: Vamos realizar a operação de deslocamento a direita e a esquerda do numero 0110

A direita:

O novo bit deslocado a direita é 0011

Deslocadores (Shifter)

A Esquerda:

O novo bit deslocado a esquerda é 1100

Deslocadores (Shifter)

A direita:

Divisão por 2

A Esquerda:

Multiplicação por 2

Aplicações:

- Deslocar um bit para esquerda é o mesmo que multiplicar por 2 (forma rápida)
- Deslocar um bit a direia é o mesmo que Dividir por 2 (forma rápida)
- Conversão entre serial / paralelo ou paralelo/ serial

Deslocadores (Shifter)

Vamos projetar um deslocador a esquerda de 4 bits. (1 unidade)

Entrada	a ₃	a_2	a ₁	a_0
Deslocamento à esquerda (sh =1)	a ₂	a ₁	a ₀	0
Deslocamento à esquerda (sh =0)	a ₃	a ₂	a ₁	a ₀
Saída	b ₃	b ₂	b ₁	b ₀

Vamos utilizar multiplexadores para fazer nosso deslocador:

Quando:

$$\Box$$
 Sh = 0 = b_n = a_n

$$\Box$$
 Sh = 1 = $b_n = a_{n-1}$

Senac

Deslocadores (Shifter)

Exemplo do circuito deslocador

Diagrama de blocos

Nosso Circuito

Deslocadores (Shifter)

Vamos projetar um deslocador a direita de 4 bits. (1 unidade)

Entrada	a ₃	a_2	a ₁	a_0
Deslocamento à direita (sh =1)	0	a ₃	a ₂	a ₁
Deslocamento à direita (sh =0)	a ₃	a ₂	a ₁	a ₀
Saída	b ₃	b ₂	b ₁	b ₀

Vamos utilizar multiplexadores para fazer nosso deslocador:

Quando:

$$\Box$$
 Sh = 0 = b_n = a_n

$$\Box$$
 Sh = 1 = $b_n = n_{a+1}$

Deslocadores (Shifter)

Exemplo do circuito deslocador

Diagrama de blocos

Nosso Circuito

Deslocadores (Shifter)

Vamos projetar um deslocador à direita/esquerda de 4 bits. (1 unidade)

Entrada	a ₃	a_2	a ₁	a_0
Deslocamento à direita (shr =1)	0	a ₃	A_2	a ₁
Deslocamento à esquerda (shl =1)	a ₂	a ₁	a ₀	0
Sem deslocamento	a ₃	a_2	a ₁	a_0
Saída	b ₃	b ₂	b ₁	b ₀

shl	shr	b _n	Comentário
0	0	a _n	Sem deslocamento
0	1	a _{n+1}	Deslocamento a direita
1	0	a _{n-1}	Deslocamento à esquerda
1	1	a _{n-1}	Deslocamento à esquerda (Prioridade)

Quando:

☐ shr = 1 — Deslocamento à direita

Deslocadores (Shifter)

shl	shr	b _n	Comentário
0	0	a _n	Sem deslocamento
0	1	a _{n+1}	Deslocamento a direita
1	0	a _{n-1}	Deslocamento à
ı			esquerda
1	1	1 a _{n-1}	Deslocamento à
			esquerda (Prioridade)

Diagrama de blocos

Deslocadores (Shifter)

Nosso Circuito

Deslocadores (Shifter)

Vamos projetar um deslocador Barrel de 4 bits. (1 unidade)

Diagrama de blocos

- Deslocador no qual pode realizar um número qualquer de deslocamentos em um dado de N bits
- ❖ A nossa entrada de controle sh indica quantos bits serão deslocados.

Exemplo:

Sh = 101 (3 deslocamentos)

Para que serve esse tipo de deslocador?

Para fazer operações de multiplicação de maneira rápida.

Imagina que você ira fazer 2ⁿ para saber por quanto está multiplicando.

Senac

Deslocadores (Shifter)

Nosso Circuito

Senac

Deslocadores (Shifter)

Deslocadores (Shifter)

O que vimos até agora?

ATÉ A PRÓXIMA AULA!

Bibliografia

TOCCI, R.; WIDMER, N.; MOSS, G. Sistemas Digitais – Princípios e Aplicações. [S.I.]: Pearson Education Limited, 2011.

FEDELI, Ricardo Daniel. Introdução à ciência da computação / Ricardo Daniel Fedeli, Erico Giulio Franco Polloni, Fernando Eduardo Peres. – 2. ed. – São Paulo: Cengage Learning, 2011.

TANENBAUM, Andrew S.. Organização Estruturada de Computadores. 6º Edição. São Paulo, Pearson Prentice Hall, 2013.

