Hochschule -

Fakultät IV – Technische Informatik Modul: Programmieren 1 Professor: -

Entwicklungsarbeit

von

Sebastian Schramm Matrikel-Nr. -

5. Dezember 2020

Inhaltsverzeichnis

1	Kap	itel 3	
	1.1	Teilau	fgabe 1
		1.1.1	Aufgabenstellung
		1.1.2	Anforderungsdefinition
		1.1.3	Entwurf
		1.1.4	Quelltext
			1.1.4.1 Typkonvertierungen.java
		1.1.5	Testdokumentation
		1.1.6	Benutzungshinweise
		1.1.7	Anwendungsbeispiel
	1.2	Teilau	fgabe 2
		1.2.1	Aufgabenstellung
		1.2.2	Anforderungsdefinition
		1.2.3	Entwurf
		1.2.4	Quelltext
			1.2.4.1 Wertebereiche.java
		1.2.5	Testdokumentation
		1.2.6	Benutzungshinweise
		1.2.7	Anwendungsbeispiel

1 Kapitel 3

1.1 Teilaufgabe 1

1.1.1 Aufgabenstellung

In der ersten Teilaufgabe sollten wir uns mit der Typkonvertierung befassen. Welches alle primitive Datentypen erweiternd und einschränkend Konvertiert.

1.1.2 Anforderungsdefinition

1. Zu jedem Primitiven Datentypen eine erweiternde und einschränkende Konvertierung durchführen.

1.1.3 Entwurf

1.1.4 Quelltext

1.1.4.1 Typkonvertierungen.java

```
package chapter_03;
2
3
4
   * Klasse mit der Main-Methode
    * und der einzelnen Typkonvertierungen
    * @author Sebastian
6
7
   public class Typkonvertierungen {
     public static void main(String[] args) {
10
11
        * Rund die einzelnen Methoden auf, mit entsprechenden Werten
12
13
       convertByte((byte) -128);
14
       convertShort((short) 34);
15
       convertInt (98987);
16
       convertLong(987987987);
17
18
       convertChar('a');
19
20
       convertFloat(15.0f);
21
       convertDouble(1.7976931348623157E308);
22
     }
23
24
25
      * Eine erweiternde Konvertierung von Byte zu Double
26
      * @param _byte
27
28
     private static void convertByte(byte _byte) {
29
       short newShort = _byte;
30
       int newInt = _byte;
31
       long newLong = _byte;
32
       float newFloat = _byte;
       double newDouble = _byte;
34
35
       System.out.println("----");
36
       System.out.println("Byte erweiternd");
37
       System.out.println("Byte
                                   " + _byte);
38
       System.out.println("Short " + newShort);
39
                                   " + newInt);
       System.out.println("Int
40
                                   " + newLong);
41
       System.out.println("Long
                                   " + newFloat);
42
       System.out.println("FLoat
       System.out.println("Bouble " + newDouble);
43
       System.out.println("\nChar" + (char) newInt); //Char wird hier separat
           ausgegeben
```

```
System.out.println("----");
45
46
47
48
      * Eine einschraenkende Konvertierung von Short zu Byte
49
      * Eine erweiternde Konvertierung von Short zu Double
50
51
      * @param _short
52
53
     private static void convertShort(short _short) {
       byte newByte = (byte) _short;
54
       int newInt = _short;
55
       long newLong = _short;
56
       float newFloat = _short;
57
       double newDouble = _short;
58
59
60
       System.out.println("Short einschraenkend");
       System.out.println("Short " + _short);
       System.out.println("Byte" + newByte);
63
       System.out.println("Short erweiternd");
64
       System.out.println("Short " + _short);
65
                                   " + newInt);
       System.out.println("Int
66
                                   " + newLong);
       System.out.println("Long
67
                                  " + newFloat);
       System.out.println("FLoat
68
       System.out.println("Bouble " + newDouble);
69
       System.out.println("\nChar" + (char) newInt); //Char wird hier separat
70
           ausgegeben
       System.out.println("----");
71
72
73
74
      * Eine einschraenkende Konvertierung von Int zu Byte
75
      * Eine erweiternde Konvertierung von Int zu Double
76
77
      * @param _int
      * /
78
     private static void convertInt(int _int) {
79
       short newShort = (short) _int;
80
       byte newByte = (byte) _int ;
82
       long newLong = _int;
83
       float newFloat = _int;
84
       double newDouble = _int;
85
86
       System.out.println("Int einschraenkend");
87
       System.out.println("Int " + _int);
88
       System.out.println("Short " + newShort);
89
       System.out.println("Byte
                                  " + newByte);
90
91
       System.out.println("Int erweiternd");
92
                                " + _int);
       System.out.println("Int
93
       System.out.println("Long
                                   " + newLong);
94
       System.out.println("FLoat " + newFloat);
95
       System.out.println("Bouble " + newDouble);
96
       System.out.println("\nChar " + (char) _int); //Char wird hier separat
97
           ausgegeben
       System.out.println("----");
98
     }
99
100
      * Eine einschraenkende Konvertierung von Long zu Byte
      * Eine erweiternde Konvertierung von Long zu Double
103
      * @param _long
104
      * /
105
```

```
private static void convertLong(long _long) {
106
        int newInt = (int) _long;
107
        short newShort = (short) _long;
108
        byte newByte = (byte) _long;
109
110
        float newFloat = _long;
111
112
        double newDouble = _long;
113
114
        System.out.println("Long einschraenkend");
        System.out.println("Long " + _long);
115
                                    " + newInt);
        System.out.println("Int
116
        System.out.println("Short " + newShort);
117
        System.out.println("Byte
                                    " + newByte);
118
119
        System.out.println("Long erweiternd");
120
                                    " + _long);
121
        System.out.println("Long
        System.out.println("FLoat " + newFloat);
122
        System.out.println("Bouble " + newDouble);
123
        System.out.println("\nChar" + (char) newInt); //Char wird hier separat
124
           ausgegeben
        System.out.println("----");
125
126
      }
127
128
       * Eine einschraenkende Konvertierung von Char zu Byte
129
       * Eine erweiternde Konvertierung von Char zu Double
130
131
       * @param _char
132
133
      private static void convertChar(char _char) {
        int newInt = _char;
134
        short newShort = (short) _char;
135
        byte newByte = (byte) _char;
136
137
        long newLong = _char;
138
        float newFloat = _char;
139
        double newDouble = _char;
140
141
        System.out.println("Char einschraenkend");
        System.out.println("Char" + _char);
                                    " + newLong);
        System.out.println("Long
144
        System.out.println("Int
                                    " + newInt);
145
        System.out.println("Short " + newShort);
146
        System.out.println("Byte
                                    " + newByte);
147
148
        System.out.println("Char erweiternd");
149
        System.out.println("Char
150
        System.out.println("Long
                                    " + newLong);
151
        System.out.println("FLoat " + newFloat);
152
        System.out.println("Bouble " + newDouble);
        System.out.println("----");
154
155
156
157
      * Eine einschraenkende Konvertierung von FLoat zu Byte
158
       * Eine erweiternde Konvertierung von FLoat zu Double
159
       * @param _float
160
161
     private static void convertFloat(float _float) {
162
        long newLong = (long) _float;
        int newInt = (int) _float;
165
        short newShort = (short) _float;
        byte newByte = (byte) _float;
166
167
```

```
double newDouble = _float;
168
169
       System.out.println("Float einschraenkend");
170
       System.out.println("FLoat
                                   " + _float);
171
                                   " + newLong);
       System.out.println("Long
172
                                   " + newInt);
       System.out.println("Int
173
       System.out.println("Short " + newShort);
                                    " + newByte);
175
       System.out.println("Byte
176
       System.out.println("Float erweiternd");
177
       System.out.println("FLoat " + _float);
178
       System.out.println("Bouble " + newDouble);
179
       System.out.println("\nChar " + (char) newInt); //Char wird hier separat
180
           ausgegeben
       System.out.println("----");
181
182
183
184
       * Eine einschraenkende Konvertierung von Double zu Byte
185
186
       * @param _double
187
188
     private static void convertDouble(double _double) {
       float newFloat = (float) _double;
189
       long newLong = (long) _double;
190
       int newInt = (int) _double;
191
       short newShort = (short) _double;
192
       byte newByte = (byte) _double;
193
194
       System.out.println("Double einschraenkend");
195
       System.out.println("Bouble " + _double);
196
       System.out.println("FLoat " + newFloat);
197
                                   " + newLong);
       System.out.println("Long
198
                                   " + newInt);
       System.out.println("Int
199
       System.out.println("Short " + newShort);
200
                                   " + newByte);
       System.out.println("Byte
201
       System.out.println("\nChar" + (char) newInt); //Char wird hier separat
202
           ausgegeben
       System.out.println("----");
205
206
```

1.1.5 Testdokumentation

1.1.6 Benutzungshinweise

Keine Besonderen Benutzungshinweise. Man navigiere zu dem Ordner von sich die Compilierte Datei mit dem Namen "Typkonvertierungen.class" befindet und führt anschließend java Typkonvertierungen aus.

1.1.7 Anwendungsbeispiel

Nach dem man das Programm gestartet hat, sollte folgende Ausgabe erscheinen:

```
11 | Char
12
   Short einschraenkend
13
   Short 34
Byte 34
14
15
   Short erweiternd
16
   Short 34
         34
   Int
   Long 34
19
  FLoat 34.0
20
  Bouble 34.0
21
22
  Char "
23
   -----
24
25 | Int einschraenkend
26 Int 98987
27 | Short -32085
28 Byte -85
29 | Int erweiternd
30 | Int 98987
31 Long 98987
32 FLoat 98987.0
  Bouble 98987.0
33
34
   Char
35
36
   _____
37
   Long einschraenkend
   Long 987987987
Int 987987987
   Short -32749
40
   Byte 19
41
   Long erweiternd
42
  || Long 987987987
43
44 | FLoat 9.8798797E8
  Bouble 9.87987987E8
45
46
47
   ______
   Char einschraenkend
   Char a
51 | Long 97
int 97
53 | Short 97
54 | Byte
   Char erweiternd
55
   Char a
Long 97
56
57
   FLoat 97.0
58
  Bouble 97.0
   _____
61 | Float einschraenkend
  FLoat 15.0
62
  Long 15
63
  || Int 15
64
65 Short 15
66 Byte 15
67 || Float erweiternd
68 | FLoat 15.0
  Bouble 15.0
71
   Char
72
73 Double einschraenkend
```

```
Bouble 1.7976931348623157E308
74
          Infinity
   FLoat
75
           9223372036854775807
   Long
76
           2147483647
77
78
   Short
   Byte
           -1
79
   Char
   [sebastian@laptop bin]$
```

1.2 Teilaufgabe 2

1.2.1 Aufgabenstellung

In dieser Teilaufgabe sollen wir ein Programm schreiben welle die Wertebereiche der primitieven Datentypen ausgibt.

1.2.2 Anforderungsdefinition

1. Zu jedem primitieven Datentypen den Max und Min-Wert ausgeben.

1.2.3 Entwurf

1.2.4 Quelltext

1.2.4.1 Wertebereiche.java

```
package chapter_03;
84
85
86
    * Klasse mit der Main-Methode
    * und gibt die Wertebereiche der primitieven Datentypen aus
88
     * @author Sebastian
90
   public class Wertebereiche {
91
92
     public static void main(String[] args) {
93
        //Min und Max Value von Byte
94
        System.out.println("Byte min " + Byte.MIN_VALUE + " | Byte max " + Byte.
95
           MAX_VALUE);
        //Min und Max Value von Short
96
        System.out.println("Short min " + Short.MIN_VALUE + " | Short max " + Short.
           MAX_VALUE);
        //Min und Max Value von Integer
98
        System.out.println("Integer min " + Integer.MIN_VALUE + " | Integer max " +
99
           Integer.MAX_VALUE);
        //Min und Max Value von Long
100
        System.out.println("Long min " + Long.MIN_VALUE + " | Byte Long " + Long.
101
           MAX_VALUE);
102
        //Min und Max Value von Char
103
        System.out.println("Char min " + Character.MIN_VALUE + " | Char max " +
104
           Character.MAX_VALUE);
        //System.out.println("\u0000 | \uffff");
105
106
        //Min und Max Value von Float
107
        System.out.println("Float min " + Float.MIN_VALUE + " | Float max " + Float.
108
           MAX_VALUE);
        //Min und Max Value von Double
109
        System.out.println("Double min " + Double.MIN_VALUE + " | Double max " + Double
110
            .MAX_VALUE);
```

```
112
113 }
```

1.2.5 Testdokumentation

1.2.6 Benutzungshinweise

Keine Besonderen Benutzungshinweise. Man navigiere zu dem Ordner von sich die Compilierte Datei mit dem Namen "Wertebereiche.class" befindet und führt anschließend java Wertebereiche aus.

1.2.7 Anwendungsbeispiel

Nach dem man das Programm gestartet hat, sollte folgende Ausgabe erscheinen:

```
[sebastian@laptop bin]$ java Wertebereiche

Byte min -128 | Byte max 127

Short min -32768 | Short max 32767

Integer min -2147483648 | Integer max 2147483647

Long min -9223372036854775808 | Byte Long 9223372036854775807

Char min | Char max

Float min 1.4E-45 | Float max 3.4028235E38

Double min 4.9E-324 | Double max 1.7976931348623157E308

[sebastian@laptop bin]$
```