Application No.: 09/965,551

Office Action Dated: April 24, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1-27 (canceled).

Claim 28 (previously amended): A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said organism with a compound of formula:

wherein:

each B is a nucleobase;

one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;

each R_1 , is, independently, H, hydroxyl, C_1 - C_{20} alkyl, C_3 - C_{20} alkenyl, C_2 - C_{20} alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-

DOCKET NO.: ISIS-4847 **Application N .:** 09/965,551

Office Action Dated: April 24, 2003

alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R_1 is a group of formula $Z-R_{22}-(R_{23})_v$;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R₁ has the formula:

$$-(O)_{y1} = (CH_2)_{y2} - O - N = (CH_2)_{y2} - O - E$$

wherein:

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R_1 has one of formula I or II:

DOCKET NO.: ISIS-4847 **Application N .:** 09/965,551

Office Action Dated: April 24, 2003

$$= \begin{bmatrix} Z_0 - (CH_2)q_1 \end{bmatrix}_{q_2} (O)_{q_3} - E$$

$$= \begin{bmatrix} Z_1 & Z_5 \\ Z_2 & Z_5 \end{bmatrix}_{q_1}$$

$$= \begin{bmatrix} Z_4 & II & II \end{bmatrix}$$

wherein:

Z₀ is O, S, or NH; q¹ is from 0 to 10; q² is from 1 to 10; q³ is 0 or 1; q⁴ is, 0, 1 or 2; Z₄ is OM₁, SM₁, or N(M₁)₂;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and m is 0 or 1.

Claim 29 (previously amended): A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said organism with a compound of formula:

DOCKET NO.: ISIS-4847 **Application No.:** 09/965,551

Office Action Dated: April 24, 2003

$$\begin{array}{c}
R_2 \\
O \\
O \\
R_1
\end{array}$$

$$\begin{array}{c}
X_1 \\
O \\
X_2
\end{array}$$

$$\begin{array}{c}
B \\
O \\
R_1
\end{array}$$

$$\begin{array}{c}
R_3
\end{array}$$

wherein:

each B is a nucleobase;

 X_1 is S;

 X_2 is O;

each R₁, is, independently, H, hydroxyl, C₁-C₂₀ alkyl, C₃-C₂₀ alkenyl, C₂-C₂₀ alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R₁ is a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

DOCKET NO.: ISIS-4847 **Application No.:** 09/965,551

Office Action Dated: April 24, 2003

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R₁ has the formula:

$$-(O)_{y1} \left\{ (CH_2)_{y2} - O - N \right\}_{y3} (CH_2)_{y2} - O - E$$

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R₁ has one of formula I or II:

wherein:

 Z_0 is O, S, or NH; q^1 is from 0 to 10; q^2 is from 1 to 10;

Page 6 of 19

DOCKET NO.: ISIS-4847 **Application No.:** 09/965,551

Office Action Dated: April 24, 2003

q³ is 0 or 1; q⁴ is, 0, 1 or 2;

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and

m is 0 or 1;

R₂ is H, a hydroxyl protecting group, or an oligonucleotide; and

R₃ is OH, an oligonucleotide, or a linker connected to a solid support.

Claim 30 (previously amended): A method of treating an organism having a disease characterized by the undesired production of a protein, said method comprising contacting said organism with a compound of formula:

$$(5') W^1 - W^2 - W^3 (3')$$

wherein:

W¹ has the Formula:

DOCKET NO.: ISIS-4847 **Application No.:** 09/965,551

Office Action Dated: April 24, 2003

wherein:

each B is a nucleobase;

one of X_1 or X_2 is O, and the other of X_1 or X_2 is S;

each R₁, is, independently, H, hydroxyl, C₁-C₂₀ alkyl, C₃-C₂₀ alkenyl, C₂-C₂₀ alkynyl, halogen, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

or R_1 is a group of formula $Z-R_{22}-(R_{23})_v$;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-Page 8 of 19

DOCKET NO.: ISIS-4847 PATENT

Application No.: 09/965,551

Office Action Dated: April 24, 2003

aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, or polyether;

v is from 0 to about 10;

or R₁ has the formula:

$$-(O)_{y1} = (CH_2)_{y2} - O - N = (CH_2)_{y2} - O - E$$

y1 is 0 or 1;

y2 is independently 0 to 10;

y3 is 1 to 10;

E is C_1 - C_{10} alkyl, $N(Q_1)(Q_2)$ or $N=C(Q_1)(Q_2)$;

each Q_1 and Q_2 is, independently, H, C_1 - C_{10} alkyl, substituted alkyl, dialkylaminoalkyl, a nitrogen protecting group, a tethered or untethered conjugate group, a linker to a solid support; or Q_1 and Q_2 , together, are joined in a nitrogen protecting group or a ring structure that can include at least one additional heteroatom selected from N and O;

or R₁ has one of formula I or II:

wherein:

Z₀ is O, S, or NH; q¹ is from 0 to 10; q² is from 1 to 10; q³ is 0 or 1; q⁴ is, 0, 1 or 2;

Page 9 of 19

DOCKET NO.: ISIS-4847 **Application No.:** 09/965,551

Office Action Dated: April 24, 2003

 Z_4 is OM_1 , SM_1 , or $N(M_1)_2$;

each M_1 is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)M_2$, $C(=O)N(H)M_2$ or $OC(=O)N(H)M_2$;

 M_2 is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms, or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur, and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic; and

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(Q_1)(Q_2)$, OQ_1 , halo, SQ_1 or CN;

n is from 2 to 50; and

m is 0 or 1;

R₂ is H, a hydroxyl protecting group, or an oligonucleotide;

W³ has the Formula:

wherein R₃ is OH, an oligonucleotide, or a linker connected to a solid support; and

DOCKET NO.: ISIS-4847

Application No.: 09/965,551

Office Action Dated: April 24, 2003

 W^2 is a plurality of covalently bound nucleosides linked by phosphodiester or phosphorothioate linkages.

PATENT

Claims 31-51 (canceled).

Claim 52 (Reinstated – formerly claim no. 34): The method of claim 28 wherein R₁ is -O-CH₂-CH₂-O-CH₃.

Claim 53 (Reinstated – formerly claim no. 35): The method of claim 28 wherein n is about 5 to about 50.

Claim 54 (Reinstated – formerly claim no. 36): The method of claim 28 wherein n is about 8 to about 30.

Claim 55 (Reinstated – formerly claim no. 37): The method of claim 28 wherein n is about 4 to about 15.

Claim 56 (Reinstated – formerly claim no. 38): The method of claim 28 wherein n is 2 to about 10.

DOCKET NO.: ISIS-4847

Application No.: 09/965,551

Office Action Dated: April 24, 2003

Claim 57 (Reinstated – formerly claim no. 39): The method of claim 29 wherein R₁ is -O-

PATENT

 CH_2 - CH_2 -O- CH_3 .

Claim 58 (Reinstated – formerly claim no. 40): The method of claim 29 wherein R₂ is H, and

R₃ is OH.

Claim 59 (Reinstated – formerly claim no. 41): The method of claim 29 wherein R₂ is a

phosphodiester-linked oligonucleotide or a phosphorothioate linked oligonucleotide.

Claim 60 (Reinstated – formerly claim no. 42): The method of claim 29 wherein R₃ is a

phosphodiester-linked oligonucleotide or a phosphorothioate linked oligonucleotide.

Claim 61 (Reinstated – formerly claim no. 43): The method of claim 29 R_2 and R_3 are each a

phosphodiester-linked oligonucleotide or a phosphorothioate linked oligonucleotide.

Claim 62 (Reinstated – formerly claim no. 44): The method of claim 30 wherein R₁ is -O-

CH2-CH2-O-CH3.

Claim 63 (Reinstated – formerly claim no. 45): The method of claim 30 wherein R₂ is H, and

R₃ is OH.

DOCKET NO.: ISIS-4847 **Application N .:** 09/965,551

Office Action Dated: April 24, 2003

Claim 64 (Reinstated – formerly claim no. 46): The method of claim 30 wherein n is about 5 to about 50.

Claim 65 (Reinstated – formerly claim no. 47): The method of claim 30 wherein n is about 8 to about 30.

Claim 66 (Reinstated – formerly claim no. 48): The method of claim 30 wherein n is about 4 to about 15.

Claim 67 (Reinstated – formerly claim no. 49): The method of claim 30 wherein n is 2 to about 10.

Claim 68 (Reinstated – formerly claim no. 50): The method of claim 30 wherein W² is a plurality of covalently bound nucleosides linked by phosphodiester linkages.

Claim 69 (Reinstated – formerly claim no. 51): The method of claim 30 wherein W² is a plurality of covalently bound nucleosides linked by phosphorothioate linkages.--