COL380 A0 Report

Koduru Suchith (2021CS10572)

1 Execution Time vs Matrix Size

Figure 1: Execution Time vs Matrix Size

2 Execution Time vs Matrix Size with perf

Figure 2: Execution Time vs Matrix Size

The times reported by perf differ because it captures the precise CPU time spent on computation, excluding overheads such as I/O operations that the Python script may include.

3 Matrix Multiplication Time Only

In this experiment, only the matrix multiplication time is considered, excluding file read/write times or memory allocation times. The graph is shown below:

Figure 3: Matrix Multiplication Time Only

4 Cache-Hit Rate vs Matrix Size

This section shows the results of Experiment 2, but with cache-hit rate on the Y-axis instead of execution time. The plotted graph is given below:

Figure 4: Cache-Hit Rate vs Matrix Size

5 Best Loop Permutation Analysis

The following table summarizes the average execution time (user time) and cache-hit rate for each loop permutation:

Permutation	Execution Time (User Time)	\mid Cache-Hit Rate (%) \mid
0	387.9304	73.8215
1	35.4698	23.3061
2	325.9446	80.9416
3	665.5014	85.2802
4	48.4220	16.1031
5	628.5444	87.4036

Observations:

- Execution Time (User Time): The fastest execution time is achieved by permutation 1 with an average time of 35.4698 units. The second-fastest is permutation 4, with an average time of 48.4220 units. The slowest execution time is for permutation 3, with an average time of 665.5014 units.
- Cache-Hit Rate: The highest cache-hit rate is observed for permutation 5, achieving 87.4036%.
 The second-highest is for permutation 3, at 85.2802%. The lowest cache-hit rate is for permutation 4, with just 16.1031%.

Key Findings:

• There is no single loop permutation that optimizes both execution time and cache-hit rate.

- **Permutation 1** achieves the lowest execution time but has a relatively poor cache-hit rate of **23.3061%**. This suggests that it is efficient in CPU usage but may not be utilizing the cache effectively.
- Permutation 5 achieves the best cache-hit rate (87.4036%) but has a high execution time of 628.5444 units. This indicates that while the cache usage is optimal, other factors such as computation or memory access patterns may slow it down.
- Permutation 3 offers a balance, with a high cache-hit rate (85.2802%) and a moderate execution time (665.5014 units).
- **Permutation 4** has the second-fastest execution time (**48.4220 units**) but suffers from the lowest cache-hit rate (**16.1031%**), making it less efficient for cache-sensitive workloads.