Ejercicios

1. Siguiendo el ejemplo de tutoría, se propone calcular las áreas encerradas bajo las funciones f(x) = 1, f(x) = x y $f(x) = x^3$. Por cierto en los dos primeros casos los resultados son bien conocidos, no así en el tercero. Nótese que al resolver estos ejercicios se observa lo siguiente:

función	Area entre 0 y b	donde
$f(x) = x^0$	$b \cdot h$	h = 1
$f(x) = x^1$	$\frac{b \cdot h}{2}$	h = b
$f(x) = x^2$	$\frac{b \cdot h}{3}$	$h = b^2$
$f(x) = x^3$	$\frac{b \cdot h}{4}$	$h = b^3$

Formule una generalización a estos resultados a potencias superiores.

- **2.** Calcular el área encerrada bajo la función sen(x) entre 0 y $\pi/2$.
- 3. Calcule la integral $\int_{a}^{b} (cx+d)$ usando una familia de particiones equiespaceadas.
- 4. Calcule la integral $\int_{-b}^{b} (e^{x})$ usando una familia de particiones equiespaceadas.

Considere la función $f(x) = \begin{cases} x & \text{si } x \text{ es racional} \\ 0 & \text{otro caso} \end{cases}$, $x \in [a, b]$.

- (a) Calcule s(f, P) y S(f, P)
- **(b)** Calcule $\inf_{P \in \mathcal{P}_{a,b}} S(f,P)$.
- **5.** Dados dos funciones f y g integrables en $[p,q] y a, b \in [p,q]$, demostrar que:

87

1)
$$\int_a^b \alpha = \alpha(b-a), \quad \forall \alpha \in$$

1)
$$\int_a^b \alpha = \alpha(b-a), \quad \forall \alpha \in$$
 4) $\int_a^b (f+g) = \int_a^b f + \int_a^b g$

$$2) \int_a^b f = \int_a^c f + \int_c^b f, \quad \forall c \in [p, q]$$

2)
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f, \quad \forall c \in [p, q]$$
 5)
$$0 \leq f(x) \leq g(x), \quad \forall x \in [p, q] \Rightarrow \left| \int_{a}^{b} f \right| \leq \left| \int_{a}^{b} g \right|$$

3)
$$\int_a^b \alpha f = \alpha \int_a^b f$$
, $\forall \alpha \in$ 6) $\left| \int_a^b f \right| \le \left| \int_a^b |f| \right|$

$$6) \left| \int_a^b f \right| \le \left| \int_a^b |f| \right|$$

6. Usando sumas de Riemann calcular los siguientes límites

(a)
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{n}{n^2+k^2}.$$

(c)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{1+4k/n}}$$
.

(b)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \sum_{i=1}^{n} \sqrt{k+n}$$

(b)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \sum_{i=1}^{n} \sqrt{k+n}$$
. **(d)** Calcular $\lim_{n \to \infty} n^2 \left(\frac{1}{(n+1)^3} + \frac{1}{(n+2)^3} + \dots + \frac{1}{(n+n)^3} \right)$.

Problemas

- **P1.** Considere la sucesión $a_n = \int_0^n q^x dx$, con 0 < q < 1.
 - (a) Explique por qué (a_n) está bien definida, es decir, por qué q^x es Riemann integrable en [0, n], y muestre que es estrictamente creciente.
 - (b) Calcule las sumas de Riemann inferior y superior para q^x y la partición $P = \{0, 1, ..., n\}.$
 - (c) Utilice las sumas anteriores para obtener las siguientes cotas para (a_n) .

$$\forall n \in , q \frac{1-q^n}{1-q} < \int_0^n q^x dx < \frac{1}{1-q}.$$

(d) Concluya que (a_n) converge y que $a = \lim a_n$ satisface

$$\frac{q}{1-q} \le a \le \frac{1}{1-q}.$$

- **P2.** Sea $f:[a,b] \to \text{una función integrable y acotada inferiormente por una constante <math>c > 0$. Para demostrar que $\frac{1}{f}$ es integrable, se pide lo siguiente:
 - (a) Si $S(\cdot,\cdot)$ y $s(\cdot,\cdot)$ denotan las sumas superiores e inferiores, pruebe que para toda partición P del intervalo [a,b] se cumple

$$S(\frac{1}{f}, P) - s(\frac{1}{f}, P) \le \frac{1}{c^2} \{ S(f, P) - s(f, P) \}.$$

- (b) Use el resultado anterior para demostrar que la función $\frac{1}{f}$ es integrable en [a, b].
- **P3.** Sea $f: [1, \infty] \rightarrow$ una función no negativa y creciente
 - (a) Usando la partición $P = \{1, 2, 3, \dots, n\}$ pruebe que

$$\sum_{n=1}^{n-1} f(i) \le \int_{1}^{n} f(x) dx \le \sum_{i=2}^{n} f(i), \quad \forall n \ge 2.$$

(b) Considere $f(x) = \ln(x)$ y utilice la parte anterior para demostrar que

$$(n-1)! \le n^n e^{-n+1} \le n!, \quad \forall n \ge 1.$$

- **P4.** Considere la función $f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \text{ fracción irreducible} \\ 0 & \text{otro caso} \end{cases}$, $x \in [0,1]$.
 - (a) Calcule s(f, P) y S(f, P).
 - **(b)** Calcule $\inf_{P \in \mathcal{P}_{0,1}} S(f,P)$ y $\sup_{P \in \mathcal{P}_{0,1}} s(f,P)$.

Ingeniería Matemática Universidad de Chile

- (c) Concluya que f es integrable y que $\int_{0}^{1} f = 0$.
- P5. (a) Demuestre que:

$$\frac{1}{2} \left(\frac{1}{e^{1/4}} + \frac{1}{e} \right) \le \int_0^1 e^{-x^2} dx \le \frac{1}{2} \left(1 + \frac{1}{e^{(1/4)}} \right)$$

 $\mathit{Indicaci\'on:}$ Considere la partición $P=\{0,\frac{1}{2},1\}.$

(b) Demuestre que $\int\limits_a^b \frac{1}{x} dx = \ln(b) - \ln(a)$, donde 0 < a < b.

Indicación: Considere la partición $x_i = aq^i, i = 0, 1, \dots, n$.