

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 2

Instructions: Language of the Computer

Instruction Set

- The repertoire of instructions of a computer
- Different computers have different instruction sets
 - But with many aspects in common
- Early computers had very simple instruction sets
 - Simplified implementation
- Many modern computers also have simple instruction sets

The MIPS Instruction Set

- Used as the example throughout the book
- Stanford MIPS commercialized by MIPS Technologies (<u>www.mips.com</u>)
- Large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...
- Typical of many modern ISAs
 - See MIPS Reference Data tear-out card, and Appendixes B and E

Arithmetic Operations

- Add and subtract, three operands
 - Two sources and one destination
 - add a, b, c # a gets b + c
- All arithmetic operations have this form
- Design Principle 1: Simplicity favours regularity
 - Regularity makes implementation simpler
 - Simplicity enables higher performance at lower cost

Arithmetic Example

C code:

$$f = (g + h) - (i + j);$$

Compiled MIPS code:

```
add t0, g, h # temp t0 = g + h add t1, i, j # temp t1 = i + j sub f, t0, t1 # f = t0 - t1
```

Register Operands

- Arithmetic instructions use register operands
- MIPS has a 32 × 32-bit register file
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Assembler names
 - \$t0, \$t1, ..., \$t9 for temporary values
 - \$s0, \$s1, ..., \$s7 for saved variables
- Design Principle 2: Smaller is faster
 - c.f. main memory: millions of locations

Register Operand Example

C code:

```
f = (g + h) - (i + j);

• f, ..., j in $s0, ..., $s4
```

Compiled MIPS code:

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

Memory Operands

- Main memory used for composite data
 - Arrays, structures, dynamic data
- To apply arithmetic operations
 - Load values from memory into registers
 - Store result from register to memory
- Memory is byte addressed
 - Each address identifies an 8-bit byte
- Words are aligned in memory
 - Address must be a multiple of 4
- MIPS is Big Endian
 - Most-significant byte at least address of a word
 - c.f. Little Endian: least-significant byte at least address

Memory Operand Example 1

C code:

```
g = h + A[8];
```

- g in \$s1, h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - 4 bytes per word

```
Iw $t0, 32($s3) # load word
add $s1, \$s2, \$t0

offset base register
```

Memory Operand Example 2

C code:

```
A[12] = h + A[8];
```

- h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32

```
Iw $t0, 32($s3)  # Load word
add $t0, $s2, $t0
sw $t0, 48($s3)  # store word
```

Registers vs. Memory

- Registers are faster to access than memory
- Operating on memory data requires loads and stores
 - More instructions to be executed
- Compiler must use registers for variables as much as possible
 - Only spill to memory for less frequently used variables
 - Register optimization is important!

Immediate Operands

- Constant data specified in an instruction addi \$s3, \$s3, 4
- No subtract immediate instruction
 - Just use a negative constant addi \$s2, \$s1, -1
- Design Principle 3: Make the common case fast
 - Small constants are common
 - Immediate operand avoids a load instruction

The Constant Zero

- MIPS register 0 (\$zero) is the constant 0
 - Cannot be overwritten
- Useful for common operations
 - E.g., move between registers add \$t2, \$s1, \$zero

Unsigned Binary Integers

Given an n-bit number

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: 0 to +2ⁿ 1
- Example
 - 0000 0000 0000 0000 0000 0000 1011₂ = 0 + ... + $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ = 0 + ... + 8 + 0 + 2 + 1 = 11_{10}
- Using 32 bits
 - 0 to +4,294,967,295

2s-Complement Signed Integers

Given an n-bit number

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: -2^{n-1} to $+2^{n-1}-1$
- Example
- Using 32 bits
 - -2,147,483,648 to +2,147,483,647

2s-Complement Signed Integers

- Bit 31 is sign bit
 - 1 for negative numbers
 - 0 for non-negative numbers
- $-(-2^{n-1})$ can't be represented
- Non-negative numbers have the same unsigned and 2s-complement representation
- Some specific numbers
 - 0: 0000 0000 ... 0000
 - —1: 1111 1111 ... 1111
 - Most-negative: 1000 0000 ... 0000
 - Most-positive: 0111 1111 ... 1111

Signed Negation

- Complement and add 1
 - Complement means $1 \rightarrow 0$, $0 \rightarrow 1$

$$x + \overline{x} = 1111...111_2 = -1$$

 $\overline{x} + 1 = -x$

Example: negate +2

$$- +2 = 0000 \ 0000 \ \dots \ 0010_2$$

$$-2 = 1111 \ 1111 \ \dots \ 1101_2 + 1$$

= 1111 \ 1111 \ \dots \ 1110_2