Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	7

[5252]-578

S.E. (I.T.) (Second Semester) EXAMINATION, 2017 DATA STRUCTURES AND FILES (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Answer four questions.

- (ii) Neat diagrams must be drawn wherever necessary.
- (iii) Figures to the right indicate full marks.
- (iv) Assume suitable data, if necessary.
- 1. (a) Convert the following infix expressions to postfix expression using stack: [6]

$$((A+B)*C-(D-E) ^ (F+G))$$

(b) Write a non-recursive algorithm to find the post-order traversal of a binary tree. [6]

Or

2. (a) Imagine that the content of queue Q1 & Queue Q2 are as shown. What would be the content of Q3 after the following code is executed? Show pictorial representation of both Q1 & Q2 with value of front & rear. The queue contents are shown front (left) to rear (right). [6]

Q1 : 42 30 41 30 19 20 25 14 10 11 12 15

Q2 : 3 5 7 4 13

1. Q3 = createQueue()

- 2. count = 0
- 3. loop (not empty Q1) and not empty Q2)
 - 3.1. count = count + 1
 - 3.2. dequeue(Q1, x)
 - 3.3. dequeue(Q2, y)
 - 3.4 if (y equal count)
 - 3.4.1. enqueue(Q3, x)
 - 3.5. end if
- 4. end loop.
- Draw the BST for the following given nodes and write recursive (*b*) algorithm for the following operations on it 45, 7, 21, 76, 1, 54, 22, 4, 86 :
 - To search a data, (i)
 - Height of a tree. (ii)

- [6]
- What is graph? Explain Graph representations with example. **3.** (a)[6]
 - (*b*) Construct the Huffman tree for the following data: [6]

t the	e Huffman	tree	for	the	following	data	: 6[6]
Data	a O	H	req	ueno	$\mathbf{e}\mathbf{y}$		3.
P	×′			18		8) .
Q				8	9,		
R				15		1	
S				2	0, 27	7	
T			9	25	200		
U			4	13)			
V				5			
W			4	26	i e e e e e e e e e e e e e e e e e e e		

4. (a	Sort the given list of elements using heap sort:
	14, 12, 9, 8, 7, 10, 18 [8]
(b	Using the modulo-division method and linear probing without
	replacement, store the keys shown below in an array with
	19 elements. How many collisions occurred:
	224562, 137456, 214562, 140145, 214576, 162145, 144467, 199645
	234534. [4]
5. (a)	(a) Explain threaded binary tree with example. [4]
(b	O) Construct an AVL for the following data :
	MAR, MAY, NOV, AUG, APR, JAN, DEC, JUN, FEB, JUL,
	OCT, SEP.
	Show the balance factor of each node and rotation. [10]
	Or
6. (a)	(a) Construct red black tree for given list of numbers :
	2, 1, 4, 5, 9, 3, 6, 7. [8]
(b	Write a short note on B Tree and Splay Tree. [6]
7. (a	Write C++ program to copy one file content into another file. [4]
(b	Explain Primitive operations on Index Sequential Files in
	detail. [8]
	Or
8. (a	What is file? Explain different types of file organizations.
	[6]
(b	Write C++ pseudo code for modify and delete operation on
	sequential files. [6]
[5050] 5	3
[5252]-5	9