10/591U95 1AP9 Rec'd PCT/PTO 2 9 AUG 2006

SEQUENCE LISTING

<110>	Frankard, Valerie	
<120>	Plants having increased yield and method for making the same	
<130>	14546-00001-US	
<150> <151>		
	EP 04100841.5 2004-03-01	
	US 60/550,918 2004-03-05	
<160>	5	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1256 DNA	
<400>		60
		20
		80
ttactt	aaag agcttaagca tccacatata attgagttga ttgatgcgtt tcctcacaag 2	40
gagaat	ttgc acatcgtgtt tgagttcatg gagactgatc tcgaagcagt tatccgagat 3	00
cgtaat	ctct atctttcgcc tggtgatgtc aaatcttacc tccaaatgat attgaaaggt 3	60
cttgaa	atatt gccatggcaa atgggttctg cacagagata tgaagccaaa caacttgttg 4	20
atagga	accca atggacaget gaaacttgca gattttgggt tagcacgtat atttggtage 4	80
ccaggt	cgta agtttaccca ccaggtgttt gctagatggt atagagcacc tgaacttttg 5	40
tttggt	gcaa aacaatatga tggtgcagtt gatgtttggg ctgctggctg catttttgct 6	00
gaactt	ctat tacgcagacc atttcttcag ggaaacagtg atattgatca attaagcaaa 6	60
atcttt	getg cetttgggae tecaaaagea gateagtgge etgacatgat etgeetteet 7	20
gattat	gtag agtatcaatt tgtccctgct ccttctttac gttctttact cccaacggtt 7	80
agtgag	ggatg ctttagattt gttgtcaaag atgttcacct atgaccccaa gtctagaata 8	40
tcgatt	cage aggetetaaa acaeaggtae tteaeatetg caeetteaee taetgaeeet 9	00

ttaaagctcc	caagaccagt	ttccaagcaa	gatgctaagt	catctgatag	taaacttgaa	960
gccattaaag	tgctgtcacc	agcacataag	tttagaagag	tgatgcctga	ccgaggaaag	1020
tctggtaatg	gtttcaagga	ccagagtgtt	gatgtcatga	gacaagctag	ccatgatgga	1080
caagcaccaa	tgtctttaga	tttcaccatc	ttagctgagc	ggccaccaaa	ccgaccaacc	1140
atcaccagtg	cagatagatc	tcatctgaag	aggaaacttg	atctcgagtt	cctataggat	1200
atcgcgtaac	aggcttcttc	ttgacgtcgt	tcttcaggtt	cctatagcct	atagga	1256

<210> 2

<211> 398

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Glu Gln Pro Lys Lys Val Ala Asp Arg Tyr Leu Lys Arg Glu Val 1 5 10 15

Leu Gly Gln Gly Thr Tyr Gly Val Val Phe Lys Ala Thr Asp Thr Lys 20 25 30°

Asn Gly Glu Thr Val Ala Ile Lys Lys Ile Arg Leu Gly Lys Glu Lys 35 40 45

Glu Gly Val Asn Val Thr Ala Leu Arg Glu Ile Lys Leu Leu Lys Glu 50 55 60

Leu Lys His Pro His Ile Ile Glu Leu Ile Asp Ala Phe Pro His Lys 65 70 75 80

Glu Asn Leu His Ile Val Phe Glu Phe Met Glu Thr Asp Leu Glu Ala 85 90 95

Val Ile Arg Asp Arg Asn Leu Tyr Leu Ser Pro Gly Asp Val Lys Ser 100 105 110

Tyr Leu Gln Met Ile Leu Lys Gly Leu Glu Tyr Cys His Gly Lys Trp 115 120 125

Val Leu His Arg Asp Met Lys Pro Asn Asn Leu Leu Ile Gly Pro Asn 130 135 140

Gly Gln Leu Lys Leu Ala Asp Phe Gly Leu Ala Arg Ile Phe Gly Ser

145	150	155	160
Pro Gly Arg Lys Phe		Phe Ala Arg Trp 170	Tyr Arg Ala 175
Pro Glu Leu Leu Phe	e Gly Ala Lys Gln		Val Asp Val
180	185		190
Trp Ala Ala Gly Cys	s Ile Phe Ala Glu 200	Leu Leu Leu Arg 205	Arg Pro Phe
Leu Gln Gly Asn Ser	Asp Ile Asp Gln	Leu Ser Lys Ile	Phe Ala Ala
210	215	220	
Phe Gly Thr Pro Lys	s Ala Asp Gln Trp	Pro Asp Met Ile	Cys Leu Pro
	230	235	240
Asp Tyr Val Glu Tyr		Ala Pro Ser Leu	Arg Ser Leu
245		250	255
Leu Pro Thr Val Ser	Glu Asp Ala Leu	_	Lys Met Phe
260	265		270
Thr Tyr Asp Pro Lys	s Ser Arg Ile Ser	Ile Gln Gln Ala	Leu Lys His
275	280	285	
Arg Tyr Phe Thr Ser	r Ala Pro Ser Pro	Thr Asp Pro Leu	Lys Leu Pro
290	295	300	
Arg Pro Val Ser Lys	s Gln Asp Ala Lys	Ser Ser Asp Ser	Lys Leu Glu
305	310	315	320
Ala Ile Lys Val Let		Lys Phe Arg Arg	Val Met Pro
325		330	335
Asp Arg Gly Lys Ser	Gly Asn Gly Phe		Val Asp Val
340	345		350
Met Arg Gln Ala Ser	His Asp Gly Gln	Ala Pro Met Ser	Leu Asp Phe
355	360	365	
Thr Ile Leu Ala Glu 370	a Arg Pro Pro Asn 375	Arg Pro Thr Ile	Thr Ser Ala

Asp Arg Ser His Leu Lys Arg Lys Leu Asp Leu Glu Phe Leu 385 390 395

<210> 3 <211> 2193 <212> DNA

<213> Oryza sativa

<400> 3

60 aatccgaaaa gtttctgcac cgttttcacc ccctaactaa caatataggg aacgtgtgct aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgc aagaaaaact 120 180 catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt 240 tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc 300 tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata aaaaaatctt tctagctgaa ctcaatgggt aaagagagag atttttttta aaaaaataga 360 atgaagatat totgaacgta ttggcaaaga tttaaacata taattatata attttatagt 420 480 ttgtgcattc gtcatatcgc acatcattaa ggacatgtct tactccatcc caatttttat 540 ttagtaatta aagacaattg acttattttt attatttatc ttttttcgat tagatgcaag gtacttacgc acacactttg tgctcatgtg catgtgtgag tgcacctcct caatacacgt 600 660 tcaactagca acacatetet aatateaete geetatttaa taeatttagg tageaatate tgaattcaag cactccacca tcaccagacc acttttaata atatctaaaa tacaaaaaat 720 780 aattttacag aatagcatga aaagtatgaa acgaactatt taggtttttc acatacaaaa 840 aaaaaaagaa ttttgctcgt gcgcgagcgc caatctccca tattgggcac acaggcaaca 900 acagagtggc tgcccacaga acaacccaca aaaaacgatg atctaacgga ggacagcaag 960 tecgeaacaa eettttaaca geaggetttg eggeeaggag agaggaggag aggeaaagaa 1020 aaccaagcat cotoctocto coatotataa attoctocoo cottttocoo tototatata 1080 ggaggcatcc aagccaagaa gagggagagc accaaggaca cgcgactagc agaagccgag 1140 cgaccgcctt cttcgatcca tatcttccgg tcgagttctt ggtcgatctc ttccctcctc 1200 cacctcctcc tcacagggta tgtgcccttc ggttgttctt ggatttattg ttctaggttg 1260 tgtagtacgg gcgttgatgt taggaaaggg gatctgtatc tgtgatgatt cctgttcttg 1320 qatttgggat agaggggttc ttgatgttgc atgttatcgg ttcggtttga ttagtagtat 1380 ggttttcaat cgtctggaga gctctatgga aatgaaatgg tttagggtac ggaatcttgc

gattttgtga gtaccttttg tttgaggtaa aatcagagca ccggtgattt tgcttggtgt	1440
aataaaagta cggttgtttg gtcctcgatt ctggtagtga tgcttctcga tttgacgaag	1500
ctatcctttg tttattccct attgaacaaa aataatccaa ctttgaagac ggtcccgttg	1560
atgagattga atgattgatt cttaagcctg tccaaaattt cgcagctggc ttgtttagat	1620
acagtagtcc ccatcacgaa attcatggaa acagttataa tcctcaggaa caggggattc	1680
cctgttcttc cgatttgctt tagtcccaga atttttttc ccaaatatct taaaaagtca	1740
ctttctggtt cagttcaatg aattgattgc tacaaataat gcttttatag cgttatccta	1800
gctgtagttc agttaatagg taatacccct atagtttagt caggagaaga acttatccga	1860
tttctgatct ccatttttaa ttatatgaaa tgaactgtag cataagcagt attcatttgg	1920
attattttt ttattagete teaceeette attattetga getgaaagte tggeatgaae	1980
tgtcctcaat tttgttttca aattcacatc gattatctat gcattatcct cttgtatcta	2040
cctgtagaag tttcttttg gttattcctt gactgcttga ttacagaaag aaatttatga	2100
agctgtaatc gggatagtta tactgcttgt tcttatgatt catttccttt gtgcagttct	2160
tggtgtagct tgccactttc accagcaaag ttc	2193
<210> 4 <211> 53 <212> DNA <213> Artificial sequence	
<220> <223> primer prm2676	
<400> 4 ggggacaagt ttgtacaaaa aagcaggctt cacaatggaa cagccgaaga aag	53
<210> 5 <211> 53 <212> DNA <213> Artificial sequence	
<220> <223> primer prm2677	
<400> 5 ggggaccact ttgtacaaga aagctgggtc ctataggaac tcgagatcaa gtt	53