

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных технологий Кафедра информационных систем

09.04.01 «Информатика и вычислительная техника»

Лабораторная работа №3.

Выполнил

Студент группы ИДМ-24-07

Туркин Александр

MNDO

Расчет дипольного момента и оценка растворимости

Dipole (Deb	oyes) x	У	Z	Total
Point-Chg.	-0.000	0.000	0.000	0.000
sp Hybrid	0.000	0.000	-0.000	0.000
pd Hybrid	0.000	0.000	0.000	0.000
Sum	0.000	0.000	-0.000	0.000

Из-за отсутствия дипольного момента и неполярной природы бензола, он хорошо растворим в неполярных растворителях и плохо растворим в полярных растворителях, таких как вода.

Расчет электронной структуры и спектров молекулы

Определение положения реакционных центров

Распределение зарядов такого, что на каждом атоме углерода заряд -0.059, а на каждом атоме водорода 0.059.

Вывод: атомы H — наиболее вероятные центры электрофильной атаки.

Разложение ВЗМО и НВМО по атомным орбиталям

ATOMIC ORBITAL ELECTRON POPULATIONS					
AO:	1 S C 1 Px C 1 Py C 1 Pz C 2 S C				
	1.210479 0.929982 0.918852 0.999999 1.210478				
AO:	2 Px C 2 Py C 2 Pz C 3 S C 3 Px C				
	0.929981 0.918851 1.000002 1.210478 0.913287				
AO:	3 Py C 3 Pz C 4 S C 4 Px C 4 Py C				
	0.935545 1.000001 1.210481 0.929981 0.918853				
AO:	4 Pz C 5 S C 5 Px C 5 Py C 5 Pz C				
	0.999998 1.210477 0.929981 0.918853 1.000002				
AO:	6 S C 6 Px C 6 Py C 6 Pz C 7 S H				
	1.210482 0.913289 0.935545 0.999998 0.940691				
AO:	8 S H 9 S H 10 S H 11 S H 12 S H				
	0.940686 0.940685 0.940689 0.940687 0.940689				

Определение нуклеофильных и электрофильных свойств молекулы

Энергия НВМО положительна, следовательно бензол – нуклеофил.

Определение жесткости и мягкости молекулы

Молекула бензола – нуклеофил, т.ч. работаем с ВЗМО. ВЗМО молекулы отделена от соседней МО (№25 4.895 эВ) на 0.05 эВ. Следовательно, считается жестким реагентом.

Жесткость молекулы = 0 эВ

Расчет вибрационного спектра и определение характеристик наиболее интенсивных мод колебаний

Было проведено вибрационное моделирование для бензола.

Энергетические характеристики молекулы

ENERGIES AND GRADIENT

Total Energy = -19637.3630459 (kcal/mol)

Total Energy = -31.294126116 (a.u.)

Binding Energy = -1316.7360839 (kcal/mol)

Isolated Atomic Energy = -18320.6269620 (kcal/mol)

Electronic Energy = -74997.7871156 (kcal/mol)

Core-Core Interaction = 55360.4240697 (kcal/mol)

Heat of Formation = 21.2159161 (kcal/mol)

Gradient = 0.0380764 (kcal/mol/Ang)

AB-INITIO

Расчет дипольного момента и оценка растворимости

Dipole Moment (Debye):

X: 0.0000 Y: -0.0000 Z: -0.0000 Ttl: 0.0000

Из-за отсутствия дипольного момента и неполярной природы бензола, он хорошо растворим в неполярных растворителях и плохо растворим в полярных растворителях, таких как вода.

Расчет электронной структуры и спектров молекулы

Определение положения реакционных центров

Распределение зарядов такого, что на каждом атоме углерода заряд -0.063, а на каждом атоме водорода 0.063.

Вывод: атомы H – наиболее вероятные центры электрофильной атаки.

Энергия ВЗМО – 7.3686 эВ

Энергия НВМО - 13.8544 эВ

Разложение ВЗМО и НВМО по атомным орбиталям

Mol. Orbita	1 23	24
Symmetry:	1 E2U	1 B1G
Eigenvalue	0.2707	9 0.50914
S C 1	0.00000	0.00000
S C 2	0.00000	0.00000
Px C 1	0.00000	0.00000
Py C 1	0.00000	0.00000
Pz C 1	0.09287	0.52439
S C 3	0.00000	0.00000
S C 4	0.00000	0.00000
Px C 4	0.00000	0.00000
Py C 4	0.00000	0.00000
Pz C 4	-0.61207	0.52442
S C 5	0.00000	0.00000
S C 6	0.00000	0.00000
Px C 6	0.00000	0.00000

Py C	6	0.00000	0.00000
Pz C	6	0.51922	0.52441
S H	7	0.00000	0.00000
S H	8	0.00000	0.00000
S H	9	0.00000	0.00000
S H	10	0.00000	0.00000
S H	11	0.00000	0.00000
S H	12	0.00000	0.00000

Определение нуклеофильных и электрофильных свойств молекулы

Энергия НВМО положительна, следовательно бензол – нуклеофил.

Определение жесткости и мягкости молекулы

Молекула бензола – нуклеофил, т.ч. работаем с ВЗМО. ВЗМО молекулы отделена от соседней МО (№22 7.3676эВ) на 0.0009 эВ. Следовательно, считается жестким реагентом.

Жесткость молекулы =
$$\frac{1}{2}$$
 (13.8544 $-$ 7.3686) = 3.2429 эВ

Расчет вибрационного спектра и определение характеристик наиболее интенсивных мод колебаний

Было проведено вибрационное моделирование для бензола.

Энергетические характеристики молекулы

ENERGIES AND GRADIENT

Total Energy = -143004.0026487 (kcal/mol)

Total Energy = -227.891356059 (a.u.)

Electronic Kinetic Energy = 141856.0016006 (kcal/mol)

Electronic Kinetic Energy = 226.061900164 (a.u.)

The Virial (-V/T) = 2.0081

eK, ee and eN Energy = -271351.9036142 (kcal/mol)

Nuclear Repulsion Energy = 128347.9009655 (kcal/mol)

RMS Gradient = 0.0740960 (kcal/mol/Ang)

Таблица 1. Геометрия молекулы Бензола.

Длина связи или валентный угол	Данные ММ+ расчета	Данные MNDO расчета	Данные pacчета ab- initio	Эксперимент
C-C	1.34243	1.40662	1.38666	1.397
C=C	1.34244	1.40665	1.38681	1.397
С-Н	1.10386	1.0904	1.0827	1.084
С-С-Н	120.018	120.006	119.996	120
C-C=C	119.992	119.999	120.002	120

Справочные данные были взяты из «Краткий справочник физикохимических величин. Издание десятое, испр. и дополн. / Под ред. А.А. Равделя и А.М. Пономаревой - СПб.: «Иван Федоров», 2003 г. С. 194».

вывод

Метод ab-initio демонстрирует наилучшие результаты по сравнению с MM+ и MNDO, что подтверждает его высокую точность в расчетах геометрии молекул. Все методы показывают, что бензол имеет высокую степень ковалентности, что согласуется с его известной структурой и свойствами.