Chi-square (x2) Distribution Basics & Properties

Standard Normal Variate

$$Z^2 = \left(\frac{x - u}{5}\right)^2 - x^2$$
d.f. = 1

where X-N(11,02)

$$\chi^2 = \stackrel{>}{\geq} \left(\frac{\chi_i - \mu}{\sigma} \right)^2$$

$$d. f. = \nu$$

Pdf of x2- distribution

$$f(x^2) = C.(x^2)^{(2/2-1)} - x^{2/2}$$

x27,0

c= constant dependon df.

Properties of x2 Distribution

- 1. Total area under curve is 1.
- 2. (v)d.f. is only parameter of x = dist.
- 3. Mean = d.f(v), Variance = 2 V
- 4. X2- Value lies between 0 to a (05x2 (a)
- 5. For Small number of degree of freedom, X2 distribution is postively skewed.
- 6. For different d.f., shape of xt-distribution is different.
- 7. Sum of two independent x2 with Viand Vz diff is also a x2-dist with (2,+ Vz) di

Chi-Square (X2) Test Formula, Conditions, Applications

$$\chi^2 = \sum_{f \in F} \left[\frac{(f_0 - f_e)^2}{f_e} \right]$$

to = observed frequencies 3. x + - test of fe = expected frequencies 4. x2 test of

Conditions

- 1. Total frequency should be Very large Efo=N >50
- 2. 2 fo = 2 fe
- 3. No expected frequencies should be less than 5.
- 4. No Information about parent population Non-parametric.

Applications of xi + test

- 1 x2 test of Independence of Attributes
- 2. X2- test of

- 1 X2- test of Independence of Attributes whether two attributes are In dependent or not.

Literate

Illiterate

- 2. x2 test of test of judging whether
- 3. X2 test of whether more than

Chi-Square (X2) Test Formula, Conditions, Applications

$$\chi^2 = \left\{ \frac{(f_0 - f_e)^2}{f_e} \right\}$$

to = observed frequencies fe = expected frequencies 4. x2 test of

Conditions

- 1. Total Frequency should be Very large Efo=N >50
- 2. 5 fo = 5 fe
- 3. No expected frequencies should be less than 5
- 4. No Information about parent population Non-parametric

Applications of N-test

- 1 x2 test of Independence of Attributes
- 2. X2- test of good ness of fit

- 1 x2- test of Independence of Attributes whether two attributes are Independent or not

- 2] x2 test of goodness fit is test of judging whether observed data fitermatch with expected data
- 3 X2 test of whether more than

Chi-Square (x2) Test Formula, Conditions, Applications

 $X^2 = \sum_{fe} \frac{(f_0 - f_e)^r}{f_e}$

to = observed frequencies fe = expected frequencies 4. x2 test of

Conditions

- 1. Total frequency should be Very large Efo=N >50
- 2. 2 fo = 2 fe
- 3. No expected frequencies should be less than 5.
- 4. No Information about parent population Non-parametric.

Applications of x - test

- 1. X2 test of Independence of Attributes
- 2. X2- test of good ness of fit
- 3. x'-test of homogenity
- 1 x2 test of Independence of Attributes whether two attributes are Independent or not

- 2. X2 test of goodness fit is test of judging whether observed data fit or match with expected data
- 3. X2 test of homogenity whether more than two propostions are

Chi-Square (X2) Test Formula, Conditions, Applications $X^2 = \sum \left[\frac{f_0 - f_e}{f_e} \right]^{\frac{1}{2}} \frac{1}{\chi^2 - f_e t} = \sum \frac{f_0 - f_e}{f_0 - f_e} \frac{1}{\chi^2 - f_0 t} = \sum \frac{f_0 - f_0}{\chi^2 - f_0 t} = \sum \frac{f_0 - f_0}{\chi$ to = observed frequencies 3. x + - test of homogenity

Conditions

- 1. Total frequency should be Very large . Efo=N >50
- 2. 2 fo = 2 fe
- 3. No expected frequencies should be less than 5.
- 4. No Information about parent population Non-Parametaic.

def = 2 rected frequencies (4) x2 test of inference about Assume population variance > [population variance > [population of Attributes]

1 x2 + est of Independence of Attributes whether two attributes are Independent or not

2. X2 test of goodness fit is test of judging whether observed data fit or match with expected data

3. X2 test of homogenity whether more than two propostions are equal or not

Chi-Square (x2) Test of Independence of Attributes

$$\chi^2 = \sum_{f \in F} \left[\frac{(f_0 - f_e)^2}{f_e} \right]$$

Fo = observed frequencies fe = expected frequencies

Independence of Attributes 2xx Contigency Table

a	Ь	(a+b)
-	d	((+d)
(a+1)	(b+d)	N= a+6+(+d

E(b) = (a+b)x (b+d) Ho: NO Association E(() = ((+d)(a+c) blw two attributes E(d) = (C+d)(b+d)d.f.= 2 = (8-1) ((-1) = (2-1)(2-1) = 1 no. of no. of 0 Cal Jel, v (tab Jel, v Ho right)

Cal x2 > tab x2 Ho right Mustration 1. In an anti malarial campaign in a certain area, quinine was administered to

rever		ever cases is snown below :
		Total
20	792	812
220	2,216	2,436
240	3,008	3,248
		20 792 220 2,216

Discuss the usefulness of quinine in checking malaria.

Chi-Square (x2) Test of Independence of Attributes

41			(RT) Row
Treatment	Fever	No Fever	Total
Quinine	20	792	812
Not Quinine	2 30	5516	2436
Total (CT)	240	3008	N= 3248

Null Hypothesis, Ho: There is no association between Quinine 8 Malaria.

under Ho, Expected frequencies

$$E(20) = 812 \times 240 = 60$$

$$E(792) = \frac{812 \times 3008}{3248} = 752$$

Co	Iculati.	nof Xt	(fo-fe)
	(fo-fe) -40 40 -40	- T	(fo-fe) fe 1600/60=26.6 2.12 8.88 0.70 (fo-fe)
2 fo 2 fe 3248			Z fe = 38.37

$$J^2 = \mathcal{E}\left[\frac{(f_0 - f_e)^2}{f_e}\right] = 38.37$$

d.f. =
$$\sqrt{2} = (8-1)(c-1) = (2-1)(2-1) = 1$$

Los, $\alpha = 0.05$

Two researchers adopted different sampling techniques while investigating the same group of students to find the number of students falling in different intelligence level. The results are as follows:

No. of students in each level

Researcher	Below average	Average	Above average	Genius	Total	
X	86	60	44	10	200	
Y	40 33		25	2	100	
Tota	1 126	93	69	12	300	

Would you say that the sampling techniques adopted by the two esearchers are significantly different?

Chi-Square (x2) Test of Independence of Attributes

Researchers	Below Average	Average	Above	Genius	Total
X	86	60	44	10	200
Y	40	33	25	2	100
Total	126	93	69	12	N300

Null Hypothesis, Ho: Sampling Techniques adopted by two reachers are not Significantly Differ.

under Ho

$$E(60) = \frac{240 \times 93}{300} = 62$$

$$E(44) = \frac{246 \times 69}{344} = 46$$

$$E(10) = \frac{240012}{390} = 8$$

$$E(33) = \frac{144 \times 93}{344} = 31$$

86 8 60 6 44 4 10 40 33 3 25 3 02) 7 02) 7	Fe (fo-fe) 34 - 2222 0 313337 0 48 = 300	(fo-fe)	(fo-fe) fe 0.046 0.064 0.086 0.035 0.012 0 2(fo-fe) Fe = 0.911
d.f.	= 2= (8-1) ((3-1=	2

☐ Chi Sc

9.2	Below	X2) T Average	est of		endence of Attributes
Researchers	Average	and c	Average	Genius	Total
X	86	60	44	10	200
Y	40	33	2.5	3	100
Total	126	93	69	12	N300
(Cal X0.05,	$ \frac{1}{2} \int \frac{f_0 - f_0}{f_0} dx $ $ \frac{1}{2} = 0.911 $	e) = 0.			fo f_{c} $(f_{0}-f_{c})$ $(f_{0}-f_{c})$ f_{c} $(f_{0}-f_{c})$ f_{c} $(f_{0}-f_{c})$ f_{c} $(f_{0}-f_{c})$ f_{c} $(f_{0}-f_{c})$ f_{c} $(f_{0}-f_{c})$ $(f_{0}-f_$

 The demand for a particular spare part in a factory was found to vary from day to day. In a sample study the following information was obtained:-

Days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
No. of parts demanded	1124	1125	1110	1120	1126	1115

Test the hypothesis that the number of parts does not depend on the day of the week. ($\chi^2_{0.05}$ at 5 d.f. at 0.05% level of significance is 11.07).

Chi-square (x2) Test [goodness of fit for Uniform Distribution]

91

Null Hypothesis, Ho: The no. of Parts demanded is uniform

under Ho: Expected frequencies are given by

$$f_e = \frac{6720}{6} = 1120$$

Tabulated X2 ==

				1
Co	alcula-	tion of	x2 test	. (C C X
			(Fo-fe) Y	(fo-fe) fe
	1120	4	16	16/1120 = 0.014
	1150	5	25	0.022
1110	1120	-10	100	0.084
1120	1150	0	0	0
1126	1150	6	36	0.032
		-5	25	0.023
1115	1120			(fo-fe)2
2fo =	2 fe= 16720	1	1	\(\(\) \(
		clc	C. 127	
	x2=	5 40-	fe) = 0	179
		- 6	6 7	
	d.f.	v = n - 1	= 6-1=5	
	Calci	Noted X	0.05, 5 = 0	.179
	Carco	1121101	0.05,5	
1				

Chi-square (x2) Test [goodness of fit for Uniform Distribution

91

Null Hypothesis, Ho: The no. of Parts demanded is uniform

Under Ho: Expected frequencies are given by

$$f_e = \frac{6720}{6} = 1120$$

Tabulated X2 = 11.07

Decision: (al x² / tab x²
0.179 / 11.07
Ho accept.

Co	alcula	tion of	x2 test	(C C 12)
		fo-fe	(fo-fe) Y	(fo-fe) fe
1124	1120	4	16	16/1120 = 0.014
1125	1120	5	25	0.022
1110	1150	-10	100	0.084
1120	1150	0	0	0
1126	1150	6	36	0.032
1115	1120	-5	25	
2f. =	Efe= 16720			Z (fo-fe)
6720	16720			= 0.179

$$\chi^2 = \mathcal{Z} \left[\frac{(f_0 - f_e)^2}{f_e} \right] = 0.179$$

d. f. $\gamma = n - 1 = 6 - 1 = 5$

(calculated $\chi^2_{0.05, 5} = 0.179$)

The following figures show the distribution of digits in number chosen at random from a telephone directory:

Digits	0	1	2	3	4	5	6	7	8	9	Total
Frequency	1026	1107	997	966	1075	933	1107	972	964	853	10,000
	-					1				200	0.65

Test whether the digit may be taken to occur equally frequently in the directory. (The 5% value of χ^2 for 9 d.f. is 16.919).

Chi-square (x2) Test [goodness of fit for Uniform Distribution]

9.9

Null Hypothesis, Ho: Digits occurs equally frequently.

under Ho: Expected frequencies are given by

$$f_e = \frac{10,000}{10} = 1000$$

Calcula	ation of	x2 test	(6 6 12					
	fo-fe		(fo-fe)					
1026 1000 1107 1000 937 1000 966 1000 1075 1000 933 100 972 100 972 100 972 100 972 100 973 100 974 100 975 100 977 100 977 100 977 100 977 100	107 -3 -34 75 -67 107 -28 -36 -147	676 11449 1156 5675 4489 11449 784 1296 21609	11.449 0.009 1.156 5.675 4.489 11.449 0.784 1.496 21.609 2(fo-fe)* 2 fe = 58.54					
X2 = 2	E (fo-fe)]= 58.50	4					
d.f., v = n-1 = 10-1=9								

Calculated 10.05,9-

Example 15-14. A survey of 800 families with four children each revealed the following distribution:

No. of boys	F	0	1	2	3	4
No. of girls	Paretec	4	3	2	1	0
No. of families	ASSOCIATION OF	32	178	290	236	64

Is this result consistent with the hypothesis that male and female births are equally probable?