Christian B. Mendl, Richard M. Milbradt

Exercise 1.1 (Complex number arithmetic)

This exercise should refresh your knowledge and proficiency with complex numbers. Given a = 3 + 4i and b = 2 - i:

- (a) Compute
 - a + b
 - ab (product of a and b)
 - 1/a
 - a^* (complex conjugate of a)
 - |a| and arg(a) (argument), such that $a = |a| e^{i arg(a)}$
 - the Euclidean length of the vector $\psi = \begin{pmatrix} a \\ b \end{pmatrix}$, denoted $\|\psi\|$
- (b) Draw a in the complex plane, and interpret a^* , |a| and arg(a) geometrically.
- (c) How can one construct a + b and ab geometrically in the complex plane?

Solution

- (a) Given a = 3 + 4i and b = 2 i, the following expressions are equal to
 - a + b = 5 + 3i
 - ab = 10 + 5i
 - $1/a = \frac{a^*}{|a|^2} = \frac{3}{25} \frac{4}{25}i$
 - $a^* = 3 4i$
 - $|a| = \sqrt{aa^*} = \sqrt{\text{Re}(a)^2 + \text{Im}(a)^2} = 5$, $\arg(a) = \arctan(4/3) \approx 0.927$ rad
 - In general, the norm of a complex vector $\psi = (\psi_1, \psi_2, \dots, \psi_n)$ is defined as

$$\|\psi\| = \sqrt{\sum_{i=1}^{n} |\psi_i|^2}.$$

Here $\|\psi\| = \sqrt{|a|^2 + |b|^2} = \sqrt{25 + 5} = \sqrt{30}$.

(b) Drawing a in the complex plane:

(c) Drawing a+b in the complex plane:

Drawing ab in the complex plane:

