Brownske bevegelser

Dag Kristian Dysthe and Anja Røyne Fysisk institutt, UiO (Dated: 4. Mars, 2010) (Sist endret 15. mars 2019)

Målet med denne oppgaven er å lære litt grunnleggende statistisk fysikk, mikroskopi, avbilding og billedanalyse.

I. BAKGRUNN

A. Statistisk fysikk sin barndom

På begynnelsen av 1900-tallet ble det stadig klarere for fysikere at den "molekylær-kinetiske varmeteorien" (som beskrev et statistisk mikroskopisk grunnlag for termodynamikken) måtte vinne frem. En av de endelige spikerne i kisten til dem som strittet imot var en av Einstein sine 1905-artikler: "Investigations on the theory of the Brownian movement". Einstein hadde blitt gjort oppmerksom på mikroskopobservasjoner av biologen Brown der små pollenpartikler i en væske bevegde seg rundt omkring på en tilfeldig måte. Einstein tok utgangspunkt i dette og lagde en kvantitativ modell der man kunne sammenligne målbare størrelser. Det gikk ikke så mange år før eksperimentalistene klarte å måle de forskjellige størrelsene på uavhengig vis og dermed bekrefte modellen til Einstein og derigjennom den mikroskopiske varmeteorien som vi i dag tar for gitt.

B. Nobelprisen i 2009

Elektroniske kameraer omgir oss overalt og har vært brukt vitenskapelig siden de ble oppfunnet. I 2009 fikk Willard S. Boyle and George E. Smith ved Bell Laboratories Nobelprisen i fysikk for "the invention of an imaging semiconductor circuit - the CCD sensor".

II. LANGEVIN-LIGNINGEN: FLUKTUERENDE KREFTER OG VIRREVANDRING

I 1908 publiserte Langevin en enklere og mer elegant utledning av modellen for virrevandring [1]. Hans angrepsmåte er blitt en gjenganger i statistisk fysikk[2]. Både Einstein og Langevin sine artikler ligger på Fronter i engelsk språkdrakt, de er verdt å kikke på.

a. Molekylbevegelser og ekvipartisjonsprinsippet er grunnleggende for den mikroskopiske varmeteorien: I likevekt er den kinetiske energien til hver frihetsgrad av bevegelse til molekylene i væsken og partikler som flyter i væsken kT/2, der k er Boltzmanns konstant og T er temperaturen. I x-retningen er da $v_x = dx/dt$:

$$m < v_x^2 > = kT, \tag{1}$$

der < ... > betyr "ensemblemiddelet" eller middelverdien over mange partikler.

b. Viskøs demping For partikler som er mye større enn den midlere avstanden mellom væskemolekylene så kan man behandle væsken som et kontinuum og se på den hydrodynamiske dempingen av partikkelbevegelsen. Bevegelsesmotstand i væsker er behandlet i en annen øving, men for en kule som beveger seg i en viskøs væske ved lave Reynoldstall (laminar strømning) så fant Stokes at motstandskraften F_d var

$$F_d = 6\pi\mu(T)v_x r,\tag{2}$$

der $\mu(T)$ er den dynamisk viskositeten til væsken (også omtalt som skjærviskositet) ved temperatur T og r er radien til kulen.

c. Langevinligningen De makroskopiske partiklene er utsatt for en hurtig varierende tilfeldig kraft F_r på grunn av de termiske bevegelsene til væskemolekylene og en sakte varierende dempingskraft på grunn av viskositeten til væsken. Langevin satte sammen disse i en bevegelsesligning for partiklene:

$$m\frac{d^2x}{dt^2} = F_r - F_d = F_r - 6\pi\mu(T)r\frac{dx}{dt}.$$
 (3)

Denne typen bevegelsesligning for systemer som kan deles opp i en hurtig varierende og en sakte varierende kraft kalles for en Langevinligning. Ved å multiplisere begge sider med x og bruke kjerneregelen i derivasjon så kan man skrive (3) om som

$$\frac{1}{2}m\left(\frac{d^2x^2}{dt^2} - 2v_x^2\right) = xF_r - 3\pi\mu(T)r\frac{dx^2}{dt}.$$
 (4)

d. Ta ensemblemiddelet og løs ligningen Tar man ensemblemiddelet av (4) så forsvinner det direkte bidraget fra F_r fordi $\langle xF_r \rangle = 0$, det vil si at kraften F_r er tilfeldig og ikke korrelert med seg selv i rom eller tid. Ligning (4) kan nå skrives som

$$\frac{1}{2}m\frac{d^2 < x^2 >}{dt^2} - kT = -3\pi\mu(T)r\frac{d < x^2 >}{dt}.$$
 (5)

Denne ligningen kan løses:

$$\frac{d < x^2 >}{dt} = \frac{kT}{3\pi\mu(T)r} + Ce^{-6\pi\mu(T)rt/m},$$
 (6)

der det siste ledded forsvinner når $t >> m/6\pi\mu(T)r \sim 10^{-8}$ s. Det vil si at hvis vi kan spore posisjonen til mange

partikler og beregne den midlere kvadratiske forflytningen per tidsenhet og vi kjenner viskositeten og radien til partikkelen så kan vi finne Boltzmanns konstant, k. En slik bestemmelse av k og sammenligning med andre måter å bestemme k på var den første testen på Einsteins modell for Brownske bevegelser.

A. Numerisk virrevandring

Virrevandring og dens avarter er grunnleggende og viktige stokastiske modeller som brukes på mange fysiske fenomener. Matlab-skriptet virrevandring.m er en veldig enkel realisering av virrevandring der det plasseres et antall virrevandrere tilfeldig i en del av xy-planet og så forflyttes de i tilfeldig retning med normalfordelt steglengde (bredden på fordelingen er stepsize) i et gitt antall tidssteg. Steglengden er valgt slik at visualiseringen av simuleringen ligner på det dere vil se i mikroskopet i laboratorieøvingen. Midlere kvadratisk forflytning som vises til slutt er beregnet ut ifra ca. 4 ganger så mange partikler som det som vises i boksen. Det lagres også posisjoner til partiklene som vises i boksen. Denne listen over posisjoner ved forskjellige tidssteg har samme struktur som listen over partikkelposisjoner dere vil lage fra eksperimentet i laboratorieøvingen.

III. OPTISK MIKROSKOP

Det er ikke så mye vi skal si om mikroskopet. Mikroskopet er et stabilt stativ som gir deg muligheten små, kontrollerte bevegelser av det du skal se på i forhold til lyskilden og objektivet. Belysningen er minst like viktig for hva du ser med et mikroskop som hva slags objektiv du bruker. Dersom belysningen er riktig er oppløsningen til mikroskopet avgjort av den numeriske aperturen (NA) til objektivet. Oppløsningen er gitt av radien til diffraksjonsmønsteret fra lysende punkter og er på det beste $r=\lambda/(2NA)$ der λ er bølgelengden til lyset. Vi har to objektiver med NA=0.4 og NA=0.65 og oppløsningen til objektivene for grønt lys er da $D_{20X}=0.7~\mu{\rm m}$ og $D_{40X}=0.4~\mu{\rm m}$.

IV. AVBILDING MED ELEKTRONISKE KAMERAER

Objektivet i kameraet sender ut en nesten paralell strålebunt som må gjennom et okular for at vi skal få et bilde på netthinnen eller gjennom en avbildingslinse for å danne et bilde på billedplanet i et kamera. I et elektronisk kamera frigjøres elektroner der lyset faller på en halvlederbrikke. Brikken er delt opp i mange piksler som hver og en fungerer som en lyssensor. Den romlige oppløsningen til et kamera er bestemt av hvor mange piksler brikken er delt opp i. Det som ofte er like viktig er intensitetsoppløsningen til kameraet, det vil si hvor

mange intensitetsnivåer hver enkelt pixel er delt opp i. Intensitetsdybde påvirkes av størrelsen på hvert pixel (jo større pixel i μ m² dess flere elektroner kan dannes), temperaturen til sensoren (jo lavere temperatur, dess færre (støy)elektroner genereres termisk) og utlesingsstøyen (den blir vanligvis større jo fortere man leser ut). De fleste enkle kameraer og de fleste billedformater opererer med 256=28 intensitetsnivåer, også kalt 8 bit. Gode speilreflekskameraer har rå-format med 12 bit oppløsning, dvs. 2¹²=4096 intensitetsnivåer. Gode vitenskapelige kameraer har brikker som er kjølt ned til -80 til -180 C og som har kostbar utlesningselektronikk som gir 2¹⁶=65536 imtensitetsnivåer. Da er hvert enkelt piksel i kameraet en nøvaktig lysmålet med stor følsomhet. Det er noen flere faktorer som påvirker hvordan vi velger kameraer til vitenskapelig formål. Det er en fordel at pikslene i kameraet er kvadratiske. Da er det samme omregning fra antall piksler til objektstørrelse i horisontal som vertikal retning i bildet. Hvis man ikke skal bruke fargeinformasjonen som et fargekamera gir til noe vitenskapelig så er det bedre å velge et gråtonekamera. Årsaken er at man mister romlig oppløsning og intensitetsoppløsning ved fargefiltreringen. Den siste vurderingen gjelder hvilken brikke-teknologi man skal bruke, CCD eller CMOS.

V. BILLEDANALYSE

Figur 1: Analyse av et avbildet firkantgitter. **Venstre øverst:** Monokrom-bilde av et firkantgitter med 50 μ m mellom strekene og 5 μ m brede streker. **Høyre øverst:** samme bilde representert i matrisen I og vist i Matlab med kommandoen imagesc(I). Legg merke til at billedelementet I(1,1) er i øvre venstre hjørne. **Nederst:** Vertikalt snitt I(:,500) til venstre og horisontalt snitt I(500,:) til høyre.

I denne oppgaven skal vi bare bruke monokrom-kameraer så vi tar ikke for oss farger. Et monokromt bilde er en 2-dimensjonal matrise med elementer $\{I_{ij}\}$, $i=1\ldots N_x,\ j=1\ldots N_y$. For et 8-bits bilde har I_{ij} verdier mellom 0 og 255 der 0 er helt svart og 255 er helt hvitt. De romlige billedkoordinatene i og j (kalt piksler) tilsvarer objektkoordinater $x_i=is_x$ og $y_j=js_y$ der s_x og

 s_y er pikselstørrelser i x- og y-retning. Noe av det første en må gjøre når en tar i bruk et nytt avbildingssystem er å finne s_x og s_y ved å avbilde et objekt med kjente dimensjoner og bestemme hvor mange piksler det tilsvarer. I figur 1 viser vi et gråtonebilde som har 1024x1280 piksler og intensitetsverdier mellom 50 og 240. Ved å finne posisjonene j til de horisontale linjene (4 minima i nedre venstre plott) og posisjonene i til de vertikale linjene (5 minima i nedre høyre plott) kan vi beregne forstørrelsene s_x og s_y siden vi vet at avstanden mellom strekene er 50 $\mu{\rm m}$.

VI. LABORATORIEØVING

A. Avbildingskvalitet

Begynn med å få hjelp til å sette test-stykket inn i mikroskopet, skru på lyset, åpne programmet IC Capture (ikonet "Brownske-fys2150" på Windows-skrivebord) og sett kameraet til å ta bilder fortløpende og vise dem på skjermen. Pass på å aldri ta på overflaten til teststykket! Vær forsiktig når du fokuserer og flytter på teststykket! (Noen studenter har allerede ripet opp noen felter på teststykket.)

- Bruk 20X-objektivet, finn et felt med firkantgitter og fokuser mens du ser i okularet på mikroskopet.
- Åpne et vindu som viser histogram og et vindu som lar deg bestemme lukkertiden til kameraet. Histogrammet viser hvor mange piksler som registrerer hvilken intensitet. Du bør se to topper, en tilsvarer de hvite stripene og en de svarte stripene.
- Still inn en lysintensitet som er behagelig for øynene. Skru av all "Auto" i "Exposure". Still deretter fokus på mikroskopet og lukkertid til kameraet for å få størst mulig avstand mellom de to toppene i histogrammet. Du har nå maksimal kontrast.
- Ta et stillbilde av gitteret, lagre det som jpeg og åpne det i Matlab med I=imread('filnavn');.
- Gå frem som i figur 1 for å bestemme forstørrelsene s_x og s_y .
- Gjenta prosedyren for 40X-objektivet.
- Vi er interessert i å vite om oppløsningen til avbildingen er begrenset av diffraksjon eller av antall piksler i kameraet. Bruk de teoretiske (diffraksjonsbegrensede) oppløsningene til å beregne D_{20X}/s_x og D_{40X}/s_x . Hva sier disse forholdene om avbildingssystemet?

B. Brownske bevegelser

Få hjelp av en veileder til å preparere et objektglass med et lite væskevolum med små partikler i. Bruk 20X-

objektivet og vanlig belysning til å finne et område i preparatet med partikler. Bytt til mørkefeltbelysning hvis det er vanskelig å finne partiklene.

- Ta ett bilde av partiklene med vanlig belysning og ett med mørkefeltbelysning, pass på å få så god kontrast som mulig. Beskriv hva som er forskjellen på de to bildene og hvordan de fremkommer.
- Bestem midlere partikkelstørrelse i piksler og i mikrometer.
- Med best mulig kontrast og fokus i mørkefelt, ta opp en 30 sekunders film med 15 bilder i sekundet (15 fps). Pass på at lukketiden ("Exposure time") er kortere enn bilderaten, ellers vil ikke bilderaten være 15 fps. Vi har også erfart at å lage videoopptak direkte til lagringsplass på nettverket ødelegger opptakets kvalitet lagre data først til datamaskinens harddisk (e.g. C:\temp) og kopier til nettverkslagring etterpå.
- Åpne filmen og kjør den noen ganger for å finne ut omtrent hvor langt de mest mobile partiklene flytter seg i løpet av filmen.
- Kjør skriptet finn_spor.m for å plukke ut posisjonen til partiklene i hvert bilde, lagre listen av posisjoner og gjøre et første forsøk på å beregne sporet til partiklene.
- Følg instruksene programmet gir. Programkoden er skrevet slik at du må velge et liketall antall pixler per kule N som ikke er delelig med 4, e.g. N = 6, 10, 14, 18, osv. Du angir en intensitetsverdi "threshold" for å skille partikler fra bakgrunn basert på det andre bildet som finn_spor lager.
- Sjekk at piksel-forstørrelsene i videoopptaket stemmer med de i stillbildet. Hvis ikke er videoopptaket laget med komprimering slått på.
- Hvis det ikke var størrelsesorden 100 spor funnet (dvs. noen titalls til noen 100), kjør finn_spor.m på nytt med andre valg for typisk partikkeldiameter og intensitetsterskel for å skille partikler fra bakgrunnen.
- Kjør skriptet analyse_spor.m for å sjekke om sporingsalgoritmen klarte å lage fornuftige spor.
- Lag et kriterium for å plukke vekk sporene til partikler som sitter fast på glassoverflatene. Sett kriteriet (verdien av grense) inn i analyse_spor.m for å sjekke at det fungerer.
- Med best mulig kontrast og fokus i mørkefelt, ta opp en 1-2 minutters film med 15 fps. Hvis filmen er for lang vil mange kuler bli fjernet fra videre dataanlysse når de går inn og ut av fokus pga. bevegelse i z-retning og fordi de krysser hverandre med økende sannsynlighet.

- Kjør finn_spor.m og analyse_spor.m for å beregne midlere kvadratisk forflytning til de Brownske partiklene.
- Hvordan stemmer resultatet med teorien og verdi-

en av de andre fysiske størrelsene i modellen for Brownske bevegelser?

- [1] Tilfeldig gange, random walk, virrevandring, kjært barn har mange navn.
- [2] Einstein og Langevins bidrag illustrerer et vitenskapssosiologisk poeng: Er du først ute er det ikke så viktig hvor

ryddig eller elegant du gjør det. Hvis du kommer etter kan det hende at bidraget ditt blir kjent hvis det er mer elegant, generelt og enklere å bruke.