الاشتقاقية

I]. تعاریف

1) تعريف نهاية دالة عند الصفر

 $\lim_{x\to 0} f(x) = l$ و نكتب f(0) = l معناه f(0) = l معناه و نكتب f(0) = l عند f(0) = l معناه و نكتب

2) قابلية اشتقاق دالة عند عدد

$$(h=x-x_0)$$
 او $\lim_{h o 0} rac{f(x_0+h)-f(x_0)}{h}=l$ او $\lim_{x o x_0} rac{f(x)-f(x_0)}{x-x_0}=l$ عيث $\lim_{x o x_0} rac{f(x)-f(x_0)}{x-x_0}=l$

 $\lim_{h o 0} rac{f(x_0 + h) - f(x_0)}{h} = \infty$:معناه: x_0 معناه عند العدد وير قابلة للاشتقاق عند العدد العدد وير معناه:

$$\lim_{h o 0} rac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$$
 العدد المشتق: يسمى l العدد المشتق للدالة f عند x_0 عند x_0 عند x_0 عند المشتق العدد العدد

g(h) نسبة التزايد: يسمى العدد x_0+h نسبة التزايد للدالة x_0+h و نرمز له ب x_0+h نسبة التزايد: يسمى العدد

#قاعدة: الدوال كثيرات الحدود قابلة للاشتقاق عند كل حد من حدود مجموعة تعريفها

(3) الدالة المشتقة لدالة

- D_f معناه f قابلة للاشتقاق عند كل نقطة من D_f معناه f قابلة للاشتقاق عند كل نقطة من
- $f'(x)=\lim_{h o 0}rac{f(x+h)-f(x)}{h}$ حيث f' حيث f' مشتقة الدالة f هي الدالة التي ترفق بكل x من x مشتقة الدالة f

II]. التفسير الهندسي للعدد المشتق

A معادلة المماس عند نقطة: مماس المنحني C_f عند النقطة (1 هو المستقيم الذي يشمل (1

$$y=f'(x_0)(x-x_0)+f(x_0)$$
 و معامل توجیهه $f'(x_0)$ ، معادلته:

2) التقريب التآلفي للعدد المشتق

يمكن حساب أي قيمة تقريبية للأعداد من الشكل a,n باستخدام التقريب التآلفي دون التعويض في الدالة و ذلك بكتابتها على

f(a+h)=f'(a)h+f(a) (م قيمة قريبة من a+h الشكل a+h الجزء الصحيح و a+h الجزء العشرى

المماس عند a+h ميدها تعويض a+h مباشرة في معادلة المماس عند a+h فيمكن عندها تعويض a+h

VI]. عمليات على الدوال المشتقة

III]. مشتقات الدوال المألوفة

f(x)	f'(x)		
(u+v)	u' + v'		
$(u \times v)$	u'.v+v'.u		
\boldsymbol{u}	u'.v-v'.u		
$oldsymbol{v}$	v^2		
\sqrt{u}	$\frac{\overline{u'}}{2\sqrt{u}}$		
u^n	$nu' \times u^{n-1}$		
λu	λu′		
1	v'		
\overline{v}	$-{v^2}$		
(uov)'	$[u'ov] \times v'$		
u(ax+b)	au'(ax+b)		

f(x)	f'(x)	
ax + b	а	
b	0	
ax	а	
x^2	2 <i>x</i>	
ax^n	$n \times ax^{n-1}$	
1	1	
<u>x</u> 1	$-\frac{1}{x^2}$	
$\frac{1}{x^n}$	$-rac{n}{x^{n+1}}$	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	
sin x	cos x	
cos x	– sin <i>x</i>	

تطبيقات الاشتقاقية

1 تحديد اتجاه تغير دالة

تغيرات f	المشتقة 'f'	
f متزایدة تماما على [ا موجبة تماما على f'	
f متناقصة تماما على I	f' سالبة تماما على f'	
f ثابتة على I	f' معدومة على [

2 معرفة القيم الحدية للدالة

- (c, f(c)) عند قيمة c من c من c من c من النقطة c عند النقطة c عند النقطة c
- ◄ إذا كانت 'f موجبة ثم انعدمت ثم سالبة فإن f تقبل قيمة حدية كبرى و إذا العكس فهي تقبل قيمة حدية صغرى
- (c,f(c)) عند قيمة c من c من d قبن d تقبل مماسا موازيا لحامل محور الفواصل عند النقطة d

انقطة الانعطاف

- (c, f(c)) عند النقطة الأولى f' عند قيمة f' من f' من f' من f' عند قيمة f' من f' من f'
 - (c,f(c)) عند النقطة الثانية f'' عند قيمة f من f من مغيرة إشارتها فإن f تقبل نقطة انعطاف عند النقطة f''
 - ➤ بيانيا نقطة الانعطاف هي النقطة التي يخترق فيها المماس المنحني

4 حصر دالة

- $f(a) \leq f(x) \leq f(b) \Longleftarrow [a,b]$ متزايدة تماما على f
- $f(b) \leq f(x) \leq f(a) \leftrightharpoons [a,b]$ متناقصة تماما على متناقصة مناقصة مناقصة متناقصة متناقصة مناقصة مناقص مناقص

5 الدالة المحدودة من الأسفل أو من الأعلى

- (Majorant) محدودة من الأعلى و يسمى k عنصرا حادا من الأعلى $f \Leftarrow f(x) \leq k$
- (Minorant) محدودة من الأسفل و يسمى k عنصرا حادا من الأسفل $f \Leftarrow f(x) \geq k$ مدودة من الأسفل *

Majorant هو f(c) هو f(c) محدودة من الأعلى و f(c) هو f(c) عند f(c) معدودة من الأسفل و f(c) هو f(c) عقبل قيمة حدية صغرى عند f(c) عند f(c) محدودة من الأسفل و f(c)

6 نظرية القيم المتوسطة

$$[a,b]$$
 على المجال المجال f مستمرة و رتيبة على المجال $f(a) imes f(b) < 0$ على المجال المجال $f(a,b) < 0$

7 المقارنة والوضع النسبي بين دالتين أو دالة ومستقيم

بيانيا

- $f(x) > g(x)
 eq C_g$ فوق C_f
- $f(x) < g(x) \leftarrow C_g$ نحت C_f •
- $f(x) = g(x) \Leftarrow C_g$ تقطع C_f •

حسابيا

f(x) - g(x) ندرس إشارة الفرق

x	a b	$x_0 \\ 0$	
f(x) - g(x) إشارة	_		+
الوضع النسبي بين C_g و C_f	C_g نحت C_f	c_g يقطع c_f	C_g فوق C_f