Całka Riemanna

Niech dana będzie funkcja ograniczona $f \colon [a, b] \to \mathbb{R}$

$$R_{f,P(q_1...q_2)} = \sum_{i=1}^{n} f(q_i) \cdot \Delta p_i.$$

Funkcję f nazywa się całkowalną w sensie Riemanna lub krótko R-całkowalnq, jeśli dla dowolnego ciągu normalnego (P^k) podziałów przedziału [a,b] istnieje (niezależna od wyboru punktów pośrednich) granica

$$R_f = \lim_{k \to \infty} R_{f, P^k(q_1^k, \dots, q_{n_k}^k)}$$

nazywana wtedy **całką Riemanna** tej funkcji. Równoważnie: jeżeli istnieje taka liczba R_f , że dla dowolnej liczby rzeczywistej $\varepsilon < 0$ istnieje taka liczba rzeczywista $\sigma > 0$, że dla dowolnego podziału $P(q_1, \ldots, q_n)$ o średnicy **diam** $P(q_1, \ldots, q_n) < \sigma$ bądź też w języku rozdrobnień: że dla dowolnej liczby rzeczywistej $\varepsilon > 0$ istnieje taki podział $S(t_1, \ldots, t_m)$ przedziału [a, b] że dla każdego podziału $P(q_1, \ldots, q_n)$ rozdrabniającego $S(t_1, \ldots, t_m)$ zachodzi

$$|R_{f,P(q_1,\ldots,q_n)} - R_f| < \varepsilon.$$

Funkcję f nazywa się wtedy całkowalną w sensie Riemanna (R-całkowalną), a liczbę R_f jej ${\bf całka}$ ${\bf Riemanna}$.

Rysunek 1: Przykład sum Riemanna