COHOMOLOGY OF GRASSMANNIANS

We showed W: $((E_1)^7 \rightarrow (G_1)^7) \neq 0$ 0 $\leq i \leq n$. Naturality \implies W: $(E_n) \neq 0$ 0 $\leq i \leq n$.

Let $f: (\mathbb{RP}^{\infty})^n \longrightarrow G_n$ be classifying map for $(E_1)^n$. & $W_i = W_i(E_n)$.

Then: $\mathbb{Z}_{2}[\omega_{1},...,\omega_{n}] \longrightarrow H^{*}(G_{n};\mathbb{Z}_{2}) \xrightarrow{f^{*}} H^{*}(\mathbb{RP}^{\infty})^{n};\mathbb{Z}_{2}) \cong \mathbb{Z}_{2}[\alpha_{1},...,\alpha_{n}]$ sends wi to ith symm. poly. in the α_{j} .

Fact. The Vi are alg. indep.

→ above map is inj

 $\Rightarrow \mathbb{Z}_2[\omega_1,...,\omega_n] \hookrightarrow H^*(G_n;\mathbb{Z}_2).$

 $\underline{\mathsf{Thm}}\ \mathsf{H}^*(\mathsf{Gn}; \mathbb{Z}_2) = \mathcal{I}_{\mathsf{Z}}[\mathsf{w}_1, ..., \mathsf{wn}]$

also: H* (Gn(C); 7L) = Z[C1,...,Cn]

Pf. We showed im f^* contains $\mathbb{Z}_2[\tau_1,...,\tau_n]$ Also im f^* contained in $\mathbb{Z}_2[\tau_1,...,\tau_n]$ Since permuting the \mathbb{RP}^∞ factors gives same bundle with κ_i 's permuted.

 $\mathcal{I}_{2}[W_{1},...,W_{n}] \longrightarrow H^{*}(G_{n};\mathcal{I}_{2}) \xrightarrow{f^{*}} \mathcal{I}_{2}[U_{1},...,U_{n}]$ $\mathcal{I}_{2}[W_{1},...,W_{n}] \longrightarrow \mathcal{I}_{2}[W_{1},...,W_{n}]$ $\mathcal{I}_{2}[W_{1},...,W_{n}]$

f* surjective. To show f* injective.

Focus on r-grading:

 $(\mathbb{Z}_2[w_1,...,w_n])_r \longrightarrow H'(G_n;\mathbb{Z}_2) \longrightarrow (\mathbb{Z}_2[w_1,...,w_n])_r$

Since composition surj, suffices to show dim H (Gn; 7/2) = dim (7/2[W1,...,Wn])r.

Let p(r,n) = #partitions of r into n nonneg integers.

Step 1. dim (Z2[Wi,..., Wn]) = p(r,n).

 $W_1^{\Gamma}W_2^{\Gamma}...W_n^{\Gamma} \in (\mathcal{I}_2[W_1,...,W_n])_{\Gamma}$ means $\Gamma_1 + 2\Gamma_2 + \cdots + n\Gamma_n = \Gamma$ (Since $W_i \in H^i$) \longrightarrow partition of Γ : $\Gamma_n \leq \Gamma_n + \Gamma_{n-1} \leq \cdots \leq \Gamma_n + \cdots + \Gamma_1$

Step 2. dim $H^r(G_n; T_2) \leq \# Schubert cells of dim r.$

General fact about cell complexes

Step 3. # Schubert cells in Gn of dim r = p(r,n).

A partition $a_1 \leq a_2 \leq \cdots \leq a_n$ ~ Schubert symbol $(a_1+1, a_2+2, \ldots, a_n+n)$.

Example. r=10, n=6.

partition: 0,0,1,1,3,5

Schubert cell: (1,2,4,5,8,11)

monomial: $\omega_1^2 \omega_2^2 \omega_4$