PRÁCTICA 6 - LÓGICA DE PRIMER ORDEN -

Ejercicio 1. Decidir si las siguientes estructuras son apropiadas para los siguientes lenguajes, en donde f es un símbolo unario y g es binario:

a.
$$C = \emptyset$$
, $F = \{f, g\}$, $P = \{=\}$, $U_A = \mathbb{N}$, $f_A(n) = \sqrt{n}$, $g_A(n, m) = n + m$.

b.
$$C = \{c\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{=\}, U_{\mathcal{A}} = \mathbb{N}, f_{\mathcal{A}}(n) = n^2, g_{\mathcal{A}}(n, m) = n + m, c_{\mathcal{A}} = 2.$$

c.
$$C = \{c, d\}, \mathcal{F} = \{f, g\}, \mathcal{P} = \{=\}, U_{\mathcal{A}} = \mathbb{N},$$

$$f_{\mathcal{A}}(n) = \begin{cases} 1 & \text{si } n \text{ es primo} \\ 2 & \text{si } n \text{ no es primo} \end{cases}$$

$$g_{\mathcal{A}}(n,m) = n^2 - n, c_{\mathcal{A}} = d_{\mathcal{A}} = 0.$$

Ejercicio 2. En cada uno de los siguientes ejemplos, describir la propiedad que determinan los siguientes enunciados. Cuando sea posible determinar si el enunciado es verdadero o falso en la estructura correspondiente.

- a. $\forall x \forall y (P(x,y) \to \exists z ((Q(z) \land P(x,z)) \land P(z,y)))$, donde $P \lor Q$ son símbolos de predicados binario y unario respectivamente, el universo de la estructura son los números reales, $P_{\mathcal{A}} = \langle Q_{\mathcal{A}}(x) \rangle$ significa x es un número racional.
- b. $\forall x(Q(x) \to \exists y(R(y) \land P(y,x)))$, donde P es un símbolo de predicado binario, Q y R son símbolos de predicados unarios, el universo de la estructura es el conjunto de los días y las personas, $P_{\mathcal{A}}(x,y)$ significa x nace en el día y, $Q_{\mathcal{A}}(x)$ significa x es un día, y $R_{\mathcal{A}}(x)$ significa x es un hombre libre.
- c. $\forall x \forall y ((Q(x) \land Q(y)) \rightarrow P(f(x,y)))$, donde Q y P son símbolos de predicados unarios, f es un símbolo de función binario, el universo de la estructura son los números enteros, $Q_{\mathcal{A}}(x)$ significa x es par, $P_{\mathcal{A}}(x)$ significa x es impar, y $f_{\mathcal{A}}(x,y) = x + y$.

Ejercicio 3. Usando como lenguaje el que contiene únicamente la igualdad, escribir enunciados que expresen:

- a. Existen al menos dos elementos.
- b. Existen exactamente dos elementos.
- c. Existen a lo sumo dos elementos.

Agregando al lenguaje un símbolo de predicado unario P, escribir:

- d. Existen a lo sumo dos elementos y al menos uno que cumplen la propiedad P.
- e. Si existe un elemento que cumple la propiedad P, es único.
- f. Existe un elemento que cumple la propiedad P y es único.

Ejercicio 4. Considerar un lenguaje con igualdad y un símbolo de función unario f. Escribir una fórmula φ que cumpla $\mathcal{A} \models \varphi$ sii $f_{\mathcal{A}}$ es inyectiva pero no sobreyectiva. ¿Es φ satisfacible? ¿Es satisfacible por un modelo finito?

Ejercicio 5. * Sea P un símbolo de relación unario y sea f un símbolo de función binario. Para cada una de las fórmulas $\forall x \forall y \ f(x,y) = x$, $\exists x \forall y \ f(x,y) = y$, $\exists x (P(x) \land \forall y \ P(f(x,y)))$ hallar una estructura que la satisfaga y otra que no la satisfaga.

Ejercicio 6. Decimos que un elemento e del universo de una estructura \mathcal{A} es distinguible con el lenguaje \mathcal{L} si existe una \mathcal{L} -fórmula $\varphi(x)$ con una sola variable libre x tal que $\mathcal{A} \models \varphi(x)[v]$ si y sólo si v(x) = e.

Dar un ejemplo de un lenguaje finito sin constantes y una estructura de dicho lenguaje con universo infinito tal que todo elemento del universo de la estructura dada sea distinguible.

Ejercicio 7. Sea \mathcal{L} un lenguaje con igualdad y un símbolo de función binario, y sean \mathcal{A}_1 y \mathcal{A}_2 las siguientes estructuras:

$$A_1 = (\mathbb{N}, +)$$
 $A_2 = (\mathbb{N}, \cdot)$

donde $\mathbb N$ denota el conjunto de los números naturales. Probar que 1 es un elemento distinguido en ambas estructuras.

Ejercicio 8. Sea \mathcal{L} un lenguaje de primer orden con igualdad y con un símbolo de predicado binario \leq . Probar que todos los elementos del universo de las siguientes estructuras son distinguibles,

Obaservación: Estos esquemas se conocen como "Diagramas de Hasse" y la relación que describen es la menor relación reflexiva y transitiva que contiene a los pares explicitados en el diagrama. Por ejemplo, en a), se tienen los pares (1,1),(2,2),(2,6) entre otros aunque no estén explícitamente en el esquema.

Ejercicio 9. Probar que si el universo de una estructura es finito con n+1 elementos, y tiene la propiedad que n elementos del universo son distinguibles, entonces todos los elementos son distinguibles.

Ejercicio 10. Dada una estructura \mathcal{A} con universo A, decimos que una relación $R \subseteq A^n$ es expresable con el lenguaje \mathcal{L} si existe una \mathcal{L} -fórmula $\varphi(x_1,\ldots,x_n)$ con n variables libres tal que para toda valuación v cumpla $\mathcal{A} \models \varphi(x_1,\ldots,x_n)[v]$ sii $(v(x_1),\ldots,v(x_n)) \in R$. Demostrar que las siguientes relaciones son expresables.

- a. $A_1 = \langle \mathbb{N}, \cdot, = \rangle$ con · el producto de naturales.
 - $R_1 = \{(n, m) : n \text{ divide a } m\}.$
 - $P_1 = \{n : n \text{ es primo}\}.$
- b. $A_2 = \langle \mathbb{N}, +, =, 0, 1 \rangle$ con + la suma de naturales.
 - $R_2 = \{(n, m) : n < m\}.$
- c. $A_3 = \langle L, \circ, = \rangle$ con L el conjunto de todas las listas, \circ la concatenación de listas. $R_3 = \{(a, b) : a \text{ es sublista de } b\}.$

Ejercicio 11. Decimos que una clase de estructuras K es definible con el lenguaje \mathcal{L} si existe una sentencia φ tal que para toda estructura \mathcal{A} y valuación v se cumple que $\mathcal{A} \models \varphi[v]$ sii $\mathcal{A} \in K$. Demostrar que las siguientes clases son definibles con su respectivo lenguaje.

- a. $\mathcal{L}_0 = \{=\}$. $K_0 = \emptyset$.
- b. $\mathcal{L}_1 = \{=\}$. $K_1 = \{\text{todas las estructuras}\}$.

- c. $\mathcal{L}_2 = \{P, =\}$ con P predicado binario. $\mathsf{K}_2 = \{\mathcal{A} : P_{\mathcal{A}} \text{ es reflexivo y transitivo}\}.$
- d. $\mathcal{L}_3 = \{f, g, =\}$ con f, g funciones unarias. $\mathsf{K}_3 = \{\mathcal{A} : \operatorname{Im} f_{\mathcal{A}} \subseteq \operatorname{Im} g_{\mathcal{A}}\}.$

^{*}Este ejercicio puede ser entregado, de manera opcional, como se resolvería en un examen, a modo de práctica para el parcial.