BCA - Semester II Question Bank

Multiple Choice Questions:

Unit - 1

1.	A gat	e is a logic circuit with one	or more in	put signals but only output signa	ıl.	
	A.	One	B.	Two		
	C.	Three	D.	None of these		
2.	The gate has two or more input signals. All inputs must be high to get a high output.					
	A.	AND	B.	OR		
	C.	NAND	D.	NOR		
3.	Inve	t gate has only input	and	output.		
	A.	Two, One	В.	One, Two		
	C.	One, One	D.	None of these		
4.	An in	vert gate is also called a	gate.			
	A.	NOR	В.	NOT		
	C.	XNOR	D.	NAND		
5.	The OR gate has two or more input signals. If any input is, the output is high.					
	A.	High	В.	Low		
	C.	Both A and B	D.	None of these		
6.	The NAND gate has two or more input signals. If all inputs are, the output is low.					
	A.	High	В.	Low		
	C.	Both A and B	D.	None of these		
7.	The NOR gate has two or more input signals. If all inputs are, the output is high.					
	A.	High	В.	Low		
	C.	Both A and B	D.	None of these		
8.	The gate has two or more input signals. All inputs must be same to get a low output.					
	A.	NOR	B.	XNOR		
	C.	NAND	D.	XOR		

		US02ID	BCA05- Digit	al Electronics ————————————————————————————————————			
9.	The gate has two or more input signals. All inputs must be same to get a high output.						
	A.	NOR	В.	XNOR			
	C.	NAND	D.	XOR			
10.	De M	De Morgan's first theorem says that a NOR gate is equivalent to a					
	A.	Bubbled OR	B.	Bubbled NOR			
	C.	Bubbled AND	D.	Bubbled NAND			
11.	De M	De Morgan's second theorem says that a NAND gate is equivalent to a					
	A.	Bubbled OR	B.	Bubbled NOR			
	C.	Bubbled AND	D.	Bubbled NAND			
12.	A $___$ is a combinational circuit that converts binary information from the "2n' coded inputs to "n" outputs.						
	A.	Half Adder	B.	Decoder			
	C.	Encoder	D.	Comparator			
13.	A $___$ is a combinational circuit that converts binary information from the "n coded inputs to " 2^n " unique outputs.						
	A.	Half Adder	B.	Decoder			
	C.	Encoder	D.	Comparator			
14.	In Comparator, gate is use for comparing bits in word.						
	A.	XOR	B.	AND			
	C.	NOR	D.	XNOR			
15.	A combinational circuit that performs the arithmetic addition of two bits is called						
	A.	Full Adder	В.	Half Adder			
	C.	Binary Adder	D.	Decoder			
16.	A combinational circuit that performs the arithmetic addition of three bits is called						
	A.	Full Adder	B.	Half Adder			
	C.	Binary Adder	D.	Decoder			
17.	A is logic circuit that can add two binary numbers.						
	A.	Full Adder	B.	Half Adder			
	C.	Binary Adder	D.	Decoder			

US02IDBCA05- Digital Electronics						
18.	18. In half adder XOR gate's output is					
	A.	Carry	В.	Sum		
	C.	Remainder	D.	None of these		
19.	In hal	f adder AND gate's out	put is			
	A.	Carry	В.	Sum		
	C.	Remainder	D.	None of these		
20.	The F	ull Adder adds	digits at a ti	me.		
	A.	1	В.	2		
	C.	3	D.	4		
		II-nit	1 Long ()ations		
		Unit	– 1 Long Q	uestions		
1.	What is logic gate? Draw electronic symbol and explain AND, OR, and NOT gates with truth table.					
2.	Explain NOR, NAND, XOR, and XNOR gates with truth table.					
3.	Explain Boolean Addition, Multiplication and Boolean Laws.					
4.	Explain rules of Boolean Algebra.					
5.	Explain Encoder with circuit and truth table					
6.		Decoder with circuit a				
7 .	Explain Half – Adder and Full – Adder with circuit and truth table					
8.	-	Binary Adders – Subtr				
	1	J				
			<i>Unit – 2</i>			
_	m) 1					
1.		_	•	circuit is		
	A. C.	Flip-Flop NAND Gate	В. D.	OR Gate AND Gate		
•						
2.	A.	ruth table for an R-S Fii	ip-Flop nas nov B.	v many VALID entries? 2		
	А. С.	3	Б. D.	4		
	<u> </u>	-	ے.			

Page 3

3.	In wl	hich of the following condition th	ne RS	Flip-Flop are unstable?			
	A.	S = 0, R = 1	B.	S = 1, R = 0			
	C.	S = 0, R = 0	D.	S = 1, R = 1			
4.	The RS Latch is an example of						
	A.	Combinational circuit	B.	Synchronous sequential circuit			
	C.	One-bit memory element	D.	One-clock delay element			
5.	RS flip-flop can be converted into D flip-flop if S is connected to R through						
	A.	OR Gate	B.	AND Gate			
	C.	Inverters	D.	None of these			
6.	Wha	What is the one disadvantage of an RS Flip-Flop has					
	A.	no Enable input	B.	a RACE condition			
	C.	no clock input	D.	only single output			
7.	Which of the following condition a D Flip-Flop is said to be in a transparent condition?						
	A.	Output is LOW	B.	Output is HIGH			
	C.	Output follows clock	D.	Output follows input			
8.	The D flip-flop has input.						
	A.	1	B.	2			
	C.	3	D.	4			
9.	In D flip-flop, D stands for						
	A.	Distant	B.	Data			
	C.	Desired	D.	Delay			
10.	The D flip-flop has output/outputs.						
	A.	1	B.	2			
	C.	3	D.	4			
11.	In D flip-flop, if clock input is LOW, the D input						
	A.	Don't Care	B.	High			
	C.	Low	D.	Not Change			
12.	The length of a register is called						
	A.	Word limit	B.	Word size			
	C.	Register limit	D.	Register size			

Page 4 ----

US02IDBCA05- Digital Electronics					
13.	A register that is used to store binary information is called				
	A.	Data Register	B.	Binary Register	
	C.	Shift Register	D.	None of these	
14.	4. A register capable of shifting its binary information either to the right or the left i called a				
	A.	Parallel Register	B.	Serial Register	
	C.	Shift Register	D.	Storage Register	
15.	Generally, is used to construct shift registers.				
	A.	D Flip-Flop	B.	Half Adder	
	C.	Full Adder	D.	RS Flip-Flop	
16.	The number of Flip-Flops required to construct 8-bit shift register will be				
	A.	4	B.	8	
	C.	16	D.	32	

Unit - 2 Long Questions

- **1.** Explain what is Latch and Flip-Flop and also differentiate them.
- **2.** Explain RS Flip-Flop with diagram.
- **3.** Explain D Flip-Flop with diagram.
- **4.** What is register? Explain buffer and controlled buffer register with diagram.
- **5.** Explain Left-Shift and Right-Shift register with diagram.