The genome of a tardigrade - Horizontal gene transfer or bacterial contamination?

Felix Bemm, Clemens Weiß, Jörg Schultz, Frank Förster

1 Figures

Figure 1: The plots depict the kmer distribution for each library before (black line) and after classification into "trusted" (green line) and "untrusted" kmers (red line).

Figure 2: A) Per-site coverage of trusted and untrusted assembly based on mappings of Moleculo reads. Contigs from the untrusted assembly generally don't share the coverage of the trusted, most likley nuclear, genome. B) GC concent of trusted and untrusted assembly estimated using sliding window approach. The untrusted assembly contains multiple peaks pointing towards contig subpopulations with different GC content. C) Per-site variability of trusted und untrusted assembly which can serve as ploidy proxy. The untrusted variability spectrum seems distored and contains a multiude of different peaks while the trusted assembly shows a typical diploid spectrum. D) Lenght distribution of intergenetic regions. Intragenetic regions are significantly larger in the trusted assembly than in the trusted.

Figure 3: Circular map of an unknown bacterial genome probably belonging to the Chitinophagaceae drawn with CGView. Track 1 and 2 (blue) indicate GeneMark-S annoated genes on forward and reverse strand. Track 3 (red) visualizes regions of homology to a set of 30,844 Chitinophagaceae proteins downloaded from UniProtKB. Track 4 (green) shows homology between GeneMark-S predicted proteins and the published protein set of Boothby et al.

2 Methods

GitHub repository

All script files are available from our GitHub repository (https://github.com/greatfireball/hypsibius_genome_revised/).

Data set

We used the data set provided by **Boothby2015** and downloaded the data from http://weatherby.genetics.utah.edu/seq_transf/. A complete list of the used input files are given in table 1.

Programs

Table 2: List of all programs including the version numbers and references to publications or websites used for the data processing and analysis

Programname	Version	Reference
Allpath-LG	v 50378	Gnerre2011, Ribeiro2012
$\operatorname{BEDTools}$	$v \ 2.20.1$	Quinlan2010
bioperl	v 1.69.1	Stajich2002
bowtie2	$v \ 2.2.2$	Langmead2012
bwa	v0.7.10	Li2009a, Li2010
CGView	v 1.0	Grin2011 ????
Falcon	v 0.4.0	https://github.com/PacificBiosciences/falcon
Genemark-S	v 4.3.2	Besemer2001
Genemark-ET	v 4.29	Lomsadze2014
Jellyfish	$v \ 2.2.4$	Marcais2011
Perl	v 5.14.2	https://www.perl.org/
$\operatorname{samtools}$	v 1.1	Li2009b, Li2011a, Li2011b
$_{ m skewer}$	v 0.1.124	XXX
Trimmomatic	${ m v}0.3.5$	XXX

Trimming of the input data

Short reads were trimmed with skewer.

```
skewer -m pe -q 30 -Q 30 -1 60 -t 64 HD_gen.il_L[358]*00_P1.fastq HD_gen.il_L[358]*
Long reads were trimmed with Trimmomatic.
```

java -jar trimmomatic-0.35.jar SE -phred33 HD_gen.mo_L[12345]*.fastq HD_gen.mo_L[12

Table 1: Bla

Filename and location	Modification time	Size in Bytes	MD5 check sum	MD5 check sum decompressed
tg.genome.fsa.gz	2015-11-25T01:34:44Z	72,215,266	b8bd39390ef35dd43d1cda1ca6944d5a	77be 374d 28b91 232c0810cc4d3cd37b9
tg.default.maker.proteins.final.fasta.gz	2015-12-02T23:43:44Z	12,359,873	2de12e5d28d6dba121973db2071565d9	1ad17cfa9e6c26e552fa8048c6ee90af
short_reads/TG-300-SIPE_1_sequence.txt	2015-11-30T21:48:51Z	11,526,955,725	c16b5442c9893b6feaa3aa81a39eefcd	c16b5442c9893b6feaa3aa81a39eefcd
short_reads/TG-300-SIPE_2_sequence.txt.gz	2015-11-30T21:52:41Z	3,920,224,257	3bea43d66d71926fb620966d281598c6	bc8423d4fe4275863e0809445ffd21ce
short_reads/TG-500-SIPE_1_sequence.txt.gz	2015-12-01T05:32:05Z	2,738,243,219	da8b15d388961938584343f8926f7b24	eee7363557ccb1fb0fa75ebe55ae7ee5
short_reads/TG-500-SIPE_2_sequence.txt.gz	2015-12-01T05:35:15Z	2,805,269,168	aa8c2c345484b9464d272e0993d6968b	325d74bbafd9b6019609e2fd33eca260
short_reads/TG-800-SIPE_1_sequence.txt.gz	2015-12-01T05:36:55Z	2,155,735,304	6e9cce1a27000ae2b4f87181a976df92	a85568ef 53979c367870eee 6390f 2ced
short_reads/TG-800-SIPE_2_sequence.txt.gz	2015-12-01T05:37:46Z	2,058,207,374	ccf097cf4f13bb5cbc5a8e002250093d	4a4cc02c2f289d59c300810fb621eb28
moleculo_reads/IR6000049-DNA_A01-LRAAD-01_LongRead.fastq.gz	2015-11-30T17:50:17Z	825,877,986	86e75544f2d6ef5185bae419bbd2a4b2	bace 73ed 4750b 33fc 144e 56c 1554 54ab
moleculo_reads/LR6000049-DNA_A01-LRAAD-02_LongRead.fastq.gz	2015-11-30T17:51:34Z	835,283,315	4dea 3e 39a7a 25059a 6e bbd 5588e 845b2	cb83c39f9a385f0b4fd1e507cfe4Off1
moleculo_reads/IR6000049-DNA_A01-LRAAD-03_LongRead.fastq.gz	2015-11-30T17:52:51Z	847,867,943	16276b6ef8dea90721eb67ac21d616e6	51d4 ce 37668684b4aa25e 061f b95b4ef
moleculo_reads/LR6000049-DNA_A01-LRAAD-04_LongRead.fastq.gz	2015-11-30T17:56:08Z	859,746,540	3364040445c7377c9323f82d98a2258c	dbe06ec4248199f416bb1d02ff1e65f5
moleculo_reads/LR6000049-DNA_A01-LRAAD-05_LongRead.fastq.gz	2015-11-30T17:56:51Z	854,266,597	7995559df803ef0de0250f1bfac71f1a	98d3Of 3ceb813d9f53c6df2ed1fa2239

Estimation of the genomes size

cd kmer

The genome size was esitmated by running the standalone error correction pipeline of Allpahts-LG.

ErrorCorrectReads.pl PHRED_ENCODING=33 READS_OUT=\$OUT KEEP_KMER_SPECTRA=1 MAX_MEMOR

Counting and Filtering bases on kmers

The kmers of all libraries where counted using the software jellyfish [Marcais2011]:

```
# counting the kmers inside the trimmed sequence libraries
mkdir kmer
cd kmer
jellyfish count -t 32 -m 19 -s 30G -C \
   -o HD_gen.il_L300.trimmed_mer_19 \
   ../trimmed/HD_gen.il_L300.trimmed_P1.fastq \
   ../trimmed/HD_gen.il_L300.trimmed_P2.fastq
jellyfish count -t 32 -m 19 -s 30G -C \
   -o HD_gen.il_L500.trimmed_mer_19 \
   ../trimmed/HD_gen.il_L500.trimmed_P1.fastq \
   ../trimmed/HD_gen.il_L500.trimmed_P2.fastq
jellyfish count -t 32 -m 19 -s 30G -C \
   -o HD_gen.il_L800.trimmed_mer_19 \
   ../trimmed/HD_gen.il_L800.trimmed_P1.fastq \
   ../trimmed/HD_gen.il_L800.trimmed_P2.fastq
for i in $(find ../trimmed/ -name HD_gen.mo_L[12345]*.trimmed.formatted.fastq)
    jellyfish count -t 32 -m 19 -s 30G -C -o $(basename "$i" .fastq)_mer_19 "$i"
done
# merging of the moleculo hashes
jellyfish merge \
   -o HD_gen.mo_L1-5.trimmed.formatted_mer_19 \
   HD_gen.mo_L[12345].trimmed.formatted_mer_19
```

The resulting kmer hashes need to be dumped and converted to a hash utilized later during the filtering step. This step and the following required > 200 GB of memory and was performed by the perl script prepare_filter_fastq_by_valid_kmers.pl.

```
# dumping the kmer hashes
for i in *_mer_19
do
    jellyfish dump --column --tab -o $(basename "$i").dump "$i"
done

# merging kmer hash information into a single perl hash
prepare_filter_fastq_by_valid_kmers.pl \
    --output kmer_hash.bin \
    --kmerlib 300=HD_gen.il_L300.trimmed_mer_19.dump \
    --kmerlib 500=HD_gen.il_L500.trimmed_mer_19.dump \
```

```
--kmerlib 800=HD_gen.il_L800.trimmed_mer_19.dump \
   --kmerlib Moleculo=HD_gen.mo_L1-5.trimmed.formatted_mer_19.dump
  The generated hash was used to filter individual libraries by the perl script filter_fastq_by_valid_l
mkdir kmer_filtered
cd kmer_filtered
../scripts/filter_fastq_by_valid_kmers_reduced.pl \
   --infile ../trimmed/HD_gen.il_L300.trimmed_P1.fastq,../trimmed/HD_gen.il_L300.tr
   --kmerhash ../kmer/kmers_hash.bin \
   --out HD_gen.il_L300.trimmed_P12.fastq.interleaved.filtered \
   --paired
../scripts/filter_fastq_by_valid_kmers_reduced.pl \
   --infile ../trimmed/HD_gen.il_L500.trimmed_P1.fastq,../trimmed/HD_gen.il_L500.tr
   --kmerhash ../kmer/kmers_hash.bin \
   --out HD_gen.il_L500.trimmed_P12.fastq.interleaved.filtered \
   --paired
../scripts/filter_fastq_by_valid_kmers_reduced.pl \
   --infile ../trimmed/HD_gen.il_L800.trimmed_P1.fastq,../trimmed/HD_gen.il_L800.tr
   --kmerhash ../kmer/kmers_hash.bin \
   --out HD_gen.il_L800.trimmed_P12.fastq.interleaved.filtered \
   --paired
for i in $(find ../trimmed/ -name HD_gen.mo_L[12345]*.trimmed.formatted.fastq)
   ../scripts/filter_fastq_by_valid_kmers_reduced.pl \
      --infile "$i" \
      --kmerhash ../kmer/kmers_hash.bin \
      --out $(basename "$i").filtered
  The filtered data sets are classified as "trusted" or "untrusted" based on the "trusted"
kmer content. Reads with at least 95 % "trusted" kmers content are called "trusted"
while reads below that threshold are classified as "untrusted".
pv HD_gen.il_L300.trimmed_P12.interleave.kmerfiltered.fastq | \
   perl -ne '
      unless (/percent_valid:([\d.]+)/) { die "Fehler"; }
      if ($1 < 0.95) {
        print STDERR \$_-, scalar <>,
                      scalar <>, scalar <>,
                      scalar <>, scalar <>,
                      scalar <>, scalar <>;
      } else {
        print $_,scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>;
```

```
pv HD_gen.il_L500.trimmed_P12.interleave.kmerfiltered.fastq | \
   perl -ne '
      unless (/percent_valid:([\d.]+)/) { die "Fehler"; }
      if ($1 < 0.95) {
        print STDERR $_, scalar <>,
                     scalar <>, scalar <>,
                     scalar <>, scalar <>,
                     scalar <>, scalar <>;
      } else {
        print $_,scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>;
      }' 2> HD_gen.il_L500.trimmed_P12.interleave.kmerfiltered.untrusted.fastq \
          > HD_gen.il_L500.trimmed_P12.interleave.kmerfiltered.trusted.fastq
pv HD_gen.il_L800.trimmed_P12.interleave.kmerfiltered.fastq | \
   perl -ne '
      unless (/percent_valid:([\d.]+)/) { die "Fehler"; }
      if ($1 < 0.95) {
        print STDERR $_, scalar <>,
                     scalar <>, scalar <>,
                     scalar <>, scalar <>,
                     scalar <>, scalar <>;
      } else {
        print $_,scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>,
              scalar <>, scalar <>;
      }' 2> HD_gen.il_L800.trimmed_P12.interleave.kmerfiltered.untrusted.fastq \
          > HD_gen.il_L800.trimmed_P12.interleave.kmerfiltered.trusted.fastq
```

Long Read Assembly

Trusted and untrusted Moleculo reads were assembled with Falcon.

```
fc_run.py trusted.falcon.cfg
fc_run.py untrusted.falcon.cfg
```

See configuration files for parameter details.

Assembly Annotation

```
The trusted assembly was annotated with GeneMark-ES.
```

```
gmes_petap.pl --sequence HD_gen.trusted.fasta --ES --cores 64
```

The untrusted assembly was annotated with GeneMark-S

```
gmsn.pl --fnn --faa --species HD --gm --name HD HD_gen.unsupported.fasta
```

The largest untrusted sequence was visualized using the CGView Server.

Assembly Comparison

Trusted and untrusted assemblies were compared using GC content, mapping coverage, per-site variability and gene spacing.

GC content The GC content was determined for all contigs $\geq 1 \, \text{kbp}$ using a sliding window of 1 kbp and a stepsize of 100 bp by the perl script sliding_window_gc.pl.

```
mkdir cg
cd cg

for i in ../assemblies/HD*.fasta
do
    ../scripts/sliding_window_gc/sliding_window_gc.pl
    --in "$i" \
    --min-length 1000
    > $(basename "$i").sliding_gc.tsv
done
```

Mapping Coverage The mapping coverage was determinded by remapping of the short or longreads onto the assembled contig. For the short read libraries, we used bowtie2 as mapper. Long read libraries were mapped by bwa. The per-base coverage was determined by bedtools.

```
mkdir mapping
cd mapping
BWA = bwa
SAMTOOLS = samtools
ln -s ../assemblies/HD*.fasta ./
# prepare mapping indices for bowtie2 and bwa
for i in *.fasta
   \# bowtie2 preparation
   bowtie2-build "$i" \
      (basename "$i" .fasta) 2>&1 | 
      tee bowtie2-build-$(basename "$i" .fasta).log
   # bwa preparation
   bwa index "$i" 2>&1 | \
      tee bwa-index-$(basename "$i" .fasta).log
done
# mapping of short reads
for REF in HD_gen.supported.fasta HD_gen.unsupported.fasta
   # 300 bp library
   bowtie2 \
        -x "$REF" \
        -1 ../trimmed/HD_gen.il_L300.trimmed_P1.fastq \
```

```
-2 ../trimmed/HD_gen.il_L300.trimmed_P2.fastq \
        -p 32 \
        --minins 0 \
        --maxins 900 | \
        samtools view -uS - \mid \
        samtools sort -@32 - "$REF"-i1.L300
   # 500 bp library
   bowtie2 \
        -x "$REF" \
        -1 ../trimmed/HD_gen.il_L500.trimmed_P1.fastq \
        -2 ../trimmed/HD_gen.il_L500.trimmed_P2.fastq \
        -p 32 \
        --minins 0 \
        --maxins 1500 | \
        samtools view -uS - \mid \
        samtools sort -@32 - "$REF"-il.L500
   # 800 bp library
   bowtie2 \
        -x "$REF" \
        -1 ../trimmed/HD_gen.il_L800.trimmed_P1.fastq \
        -2 ../trimmed/HD_gen.il_L800.trimmed_P2.fastq \
        -p 32 \
        --minins 0 \setminus
        --maxins 2400 \mid \
        samtools view -uS - | \
        samtools sort -@32 - "$REF"-il.L800
done
# mapping of long reads
# combine all long reads
find ../trimmed/ -name "HD_gen.mo_L[12345].trimmed.formatted.fastq" \mid \
   xargs cat > ../trimmed/HD_gen.mo_L12345.trimmed.formatted.fastq
# map the longreads
for REF in HD_gen.supported.fasta HD_gen.unsupported.fasta
do
   for SEQ in ../trimmed/HD_gen.mo_L12345.trimmed.formatted.fastq
      OUT=$(basename "$REF")_$(basename "$SEQ")
      $BWA mem -t 32 "$REF" "$SEQ" | \
      $SAMTOOLS view -uS - | \
      $SAMTOOLS sort -@32 - "$OUT"
   done
done
# extraction of per base coverage
for REF in HD_gen.supported.fasta HD_gen.unsupported.fasta
   for BAM in "$REF"*.bam
   dο
```

per-site Variability The per-site variability was calculated by counting bases covering each site of the two assembly. Each base that occurred at a given site with a minimum frequency of 0.2 was taken into account and a histogram of all these base frequencies was created.

Gene Spacing Lenght of the intragenetic regions were directly extracted from the GeneMark-S/ES annotation files.

```
gtf2genespacing.pl --gtf HD_gen.supported.gtf gtf2genespacing.pl --gtf HD_gen.unsupported.gtf
```

All resulting data set were compared, tested and visualized using the GNU R package 'sm'.