Machine Learning System Design

Quiz, 5 questions

1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.157

1 point

2.

Suppose a massive dataset is available for training a learning algorithm. Training on Machine Learning Systems Designer formance when two of the following conditions Quiz, 5 questions hold true.

Which	are the two?					
	We train a learning algorithm with a					
	small number of parameters (that is thus unlikely to					
	overfit).					
	The features x contain sufficient					
	information to predict \boldsymbol{y} accurately. (For example, one					
	way to verify this is if a human expert on the domain					
	can confidently predict y when given only x).					
	We train a learning algorithm with a					
	large number of parameters (that is able to					
	learn/represent fairly complex functions).					
	We train a model that does not use regularization.					
1 poin	t					
3. Suppo:	se you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.					
	Currently, you predict 1 if $h_{\theta}(x) \geq$ threshold, and predict 0 if $h_{\theta}(x)lt$ threshold, where currently the threshold is set to 0.5.					
Suppo: all that	se you decrease the threshold to 0.1. Which of the following are true? Check apply.					
	The classifier is likely to have unchanged precision and recall, but					
	lower accuracy.					
	The classifier is likely to have unchanged precision and recall, but					

Machine L	earni	higher accuracy. ing System Design				
Quiz, 5 questions		The classifier is likely to now have higher precision.				
		The classifier is likely to now have higher recall.				
	1 point 4. Suppos	se you are working on a spam classifier, where spam				
	emails	are positive examples ($y=1$) and non-spam emails are				
	negativ	we examples ($y=0$). You have a training set of emails				
	in whic	h 99% of the emails are non-spam and the other 1% is				
	spam. \	Which of the following statements are true? Check all				
	that ap	that apply.				
		If you always predict spam (output $y = 1$),				
		your classifier will have a recall of 100% and precision				
		of 1%.				
		If you always predict spam (output $y=1$),				
		your classifier will have a recall of 0% and precision				
		of 99%.				
		If you always predict non-spam (output				
		y=0), your classifier will have an accuracy of				
		99%.				
		If you always predict non-spam (output				
		y = 0), your classifier will have a recall of				

0%.

Machine Learning System Design

Ouiz.	5	questions
Quiz,	_	questions

1 point

5. Which of the following statements are true? Check all that apply.

Using a **very large** training set makes it unlikely for model to overfit the training data. If your model is underfitting the training set, then obtaining more data is likely to help. After training a logistic regression classifier, you **must** use 0.5 as your threshold for predicting whether an example is positive or negative. It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm. The "error analysis" process of manually examining the examples which your algorithm got wrong can help suggest what are good steps to take (e.g.,

performance.

developing new features) to improve your algorithm's

	permanent failure of this course or deactivation of my Coursera account.					
Quiz, 5 questions	TUNG T LE					
	Submit Quiz					

