version: 2018-02-09 · 18:14:04

Motivation: Quantile Regression

- ▶ Normal Regression Model: $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.
 - ► MLE: $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
 - ► Confidence Intervals: $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 \mathbf{V}), \quad \mathbf{V} = (\mathbf{X}'\mathbf{X})^{-1}.$
 - \implies 95% CI for β_j is $\hat{\beta}_j \pm 1.96 \cdot \hat{\sigma} V_{ij}^{1/2}$, where $\hat{\sigma}$ is the MLE of σ .

(This is the Observed Fisher Information method, which is indistinguishable from the exact CI based on the $t_{(n-p)}$ distribution for n-p>30.)

- ► Relaxed Assumptions: $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} f(\varepsilon)$, $E[\varepsilon_i] = 0$, $\text{var}(\varepsilon_i) = 1$.
 - ▶ **Estimator**: Under Relaxed Assumptions, $\hat{\beta}$ is the Best Linear Unbiased Estimator (BLUE), in the sense that for any $\tilde{\beta} = \mathbf{A}\mathbf{y}$ with $E[\tilde{\beta}] = \beta$,

$$\operatorname{var}(\mathbf{a}'\hat{\boldsymbol{\beta}}) \leq \operatorname{var}(\mathbf{a}'\tilde{\boldsymbol{\beta}}), \quad \mathbf{a} \in \mathbb{R}^p.$$

► **Confidence Intervals:** By linearity still have $var(\hat{\beta}) = \sigma^2 V$. Turns out that normality-based CI is asymptotically valid.

Motivation: Quantile Regression

- ▶ Mean Regression: $E[y | x] = x'\beta$.
- ▶ Quantile Regression: Define the τ -level quantile function

$$q_{\tau}(y \mid \mathbf{x}) = F_{y \mid \mathbf{x}}^{-1}(\tau \mid \mathbf{x}) \qquad \Longleftrightarrow \qquad \Pr\{y \leq q_{\tau}(y \mid \mathbf{x}) \mid \mathbf{x}\} = \tau.$$

The QR model is

$$q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}' \boldsymbol{\beta},$$

for any $\mathbf{x} \in \mathbb{R}^p$ and specific $au \in (0,1)$ (or multiple au each with their own $oldsymbol{eta}_ au$).

Quantile Regression

Examples

1. Additive Model: $y = \mathbf{x}'\boldsymbol{\beta} + \varepsilon$, where ε is an arbitrary error independent of \mathbf{x} .

$$\implies q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}' \boldsymbol{\beta} + q_{\tau}(\varepsilon).$$

2. Location-Scale Model: $y = x'\gamma + x'\eta \cdot \varepsilon$, $\varepsilon \coprod x$.

$$\implies q_{ au}(y \,|\, \mathbf{x}) = \mathbf{x}'[\gamma + \boldsymbol{\eta} \cdot q_{ au}(\varepsilon)].$$

(Having ${\bf x}$ in both mean and standard deviation is not a real restriction, i.e., set ${\bf x}=({\bf z},{\bf w})$,

$$\gamma = (\gamma_z, \mathbf{0}), \ \boldsymbol{\eta} = (\mathbf{0}, \boldsymbol{\eta}_w).)$$

- **3. Fixed-Quantile Error:** $y = \mathbf{x}'\boldsymbol{\beta} + \varepsilon$, where ε is not independent of \mathbf{x} , but
 - $q_{\tau}(\varepsilon \mid \mathbf{x}) = \text{CONST}.$
- **4. Fully specified QR model:** $q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}_{\tau}$ for all $0 < \tau < 1$.

Actually quite restrictive since quantiles need to be ordered:

$$\alpha_1 < \alpha_2 \implies \mathbf{x}' \boldsymbol{\beta}_{\alpha_1} < \mathbf{x}' \boldsymbol{\beta}_{\alpha_2} \quad \forall \ \mathbf{x} \in \mathbb{R}^p.$$

Parameter Estimation

- ▶ Quantile Regression Model: $q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}'\beta$ for given $\tau \in (0,1)$.
- ▶ Moment Condition: If true parameter value if $\beta = \beta_0$, then

$$eta_0 = \operatorname*{arg\,min}_{eta} E[
ho_{ au}(y-\mathbf{x}'oldsymbol{eta})], \qquad
ho_{ au}(u) = u \cdot (au - \mathbb{1}\{u < 0\}).$$

► Sample Analog: $\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{x}_i'\beta)$.

Parameter Estimation

- ▶ Quantile Regression Model: $q_{\tau}(\alpha \mid \mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$ for given $\tau \in (0,1)$.
- ► Point Estimate:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n \rho_{\tau}(y_i - \mathbf{x}_i' \boldsymbol{\beta}), \quad \rho_{\tau}(u) = u \cdot (\tau - \mathbb{1}\{u < 0\}).$$

► Equivalent Formulation:

$$\min_{\boldsymbol{\beta}^+,\boldsymbol{\beta}^-,\mathbf{u}^+,\mathbf{u}^-} \sum_{i=1}^n \tau u_i^+ + (1-\tau)u_i^- \qquad \text{subject to} \qquad \mathbf{X}(\boldsymbol{\beta}^+ - \boldsymbol{\beta}^-) + \mathbf{u}^+ - \mathbf{u}^- = \mathbf{y},$$

where $\beta_i^+ = \max(\beta_i, 0)$, $\beta_i^- = -\min(\beta_i, 0)$ and similarly for u_i^+ and u_i^- .

► This is a linear program in $\mathbf{w} = (\boldsymbol{\beta}^+, \boldsymbol{\beta}^-, \mathbf{u}^+, \mathbf{u}^-)$,

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \, \mathbf{c}' \mathbf{w}$$
 subject to $\mathbf{A} \mathbf{w} \leq \mathbf{b}, \mathbf{w} \geq \mathbf{0},$

for which efficient algorithms are available.

Quantile Regression

- ▶ Model: $q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}'\beta$ for given $\tau \in (0, 1)$.
- ▶ Point Estimate: $\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y_i \mathbf{x}_i'\beta)$ via linear programming.
- ► Confidence Intervals: ???, since we don't have a likelihood to calculate Observed Fisher Information!
 - Add modeling assumptions $\implies \hat{\beta} \to \mathcal{N}(\beta_0, \Sigma)$, but Σ is difficult to estimate (nonparametric smoothing estimator with high variance).
 - ► Can do something much simpler... (but computationally more intensive)

- ► Setup:
 - ▶ Data and Model: $y = (y_1, ..., y_n) \sim F(y)$.

I.e., completely general data-generating process (DGP) on the random vector \mathbf{y} . Could be a parametric model $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\theta})$, a nonparametric model $y_i \stackrel{\text{iid}}{\sim} F(y)$, or a semi-parametric model like quantile regression...

▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.

I.e., τ_0 must be some functional of the DGP. Could be $\tau_0 = \tau(\theta_0)$, or the median of F...

- **Estimator:** $\hat{\tau} = g(y)$.
- **Objective:** Calculate a confidence interval for τ_0 .

- ► Setup:
 - ▶ Data and Model: $\mathbf{y} = (y_1, \dots, y_n) \sim F(\mathbf{y})$.
 - ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
 - ▶ Estimator: $\hat{\tau} = g(y)$.
- ▶ **Objective:** Calculate a confidence interval for τ_0 .
- Problem: Can't use likelihood theory because:
 - 1. Sample size n is too small for asymptotics to kick in.
 - **2.** Don't have a parametric likelihood $f(\mathbf{y} \mid \boldsymbol{\theta})$.
 - 3. Have likelihood but estimator is not MLE (e.g., lasso for variable selection).
 - 4. Have likelihood + MLE, but suspect some degree of model misspecification.

▶ Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim F(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- ▶ Estimator: $\hat{\tau} = g(y)$.
- ▶ **Objective:** Calculate a confidence interval for τ_0 .
- ▶ **Idealized Scenario:** Suppose an oracle gives you the distribution of the *pivotal quantity* $T = \tau_0 \hat{\tau}$. Then

$$\Pr(L < T < U) = \Pr(L < \tau_0 - \hat{\tau} < U) = \Pr(\hat{\tau} + L < \theta_0 < \hat{\tau} + U).$$

 \implies If L/U are the 2.5/97.5% quantiles of T, then a 95% CI for τ_0 is

$$\tau_0 \in (\hat{\tau} + L, \hat{\tau} + U).$$

- ► Data and Model:
 - $\mathbf{y} = (y_1, \ldots, y_n) \sim \mathbf{F}(\mathbf{y}).$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- ▶ Estimator: $\hat{\tau} = g(\mathbf{y})$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

If L/U are the 2.5/97.5% quantiles of T, then CI for τ_0 is $(\hat{\tau} + L, \hat{\tau} + U)$.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$. The two most common ways to do this are:
 - i. Parametric Bootstrap: If $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\theta})$, then $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \hat{\boldsymbol{\theta}})$.
 - ii. Nonparametric Bootstrap: If $y_i \stackrel{\text{iid}}{\sim} F(y)$, then $y_i^{(m)} \stackrel{\text{iid}}{\sim} \hat{F}(y)$, where $\hat{F}(y)$ is the empirical CDF of y. In other words, $\tilde{y}^{(m)}$ is sampled n times with replacement from y.

► Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim \mathbf{F}(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(\mathbf{y})$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

If L/U are the 2.5/97.5% quantiles of T, then CI for τ_0 is $(\hat{\tau} + L, \hat{\tau} + U)$.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$.
 - **2.** For each dataset, calculate $\tilde{\tau}^{(m)} = g(\tilde{\mathbf{y}}^{(m)})$ and $\tilde{T}^{(m)} = \hat{\tau} \tilde{\tau}^{(m)}$.
 - 3. Let \tilde{L}/\tilde{U} be the 2.5/97% sample quantiles of $\tilde{T}^{(1)}, \ldots, \tilde{T}^{(M)}$.
 - \implies The Bootstrap CI for τ_0 is given by $(\hat{\tau} + \tilde{L}, \hat{\tau} + \tilde{U})$.

	Real World	Bootstrap World
Sampling Distribution	$\mathbf{y} \sim F(\mathbf{y})$	$ ilde{f y}\sim \hat{m F}({f y})$
Quantity of Interest	$ au_0 = \mathcal{G}(F)$	$\hat{ au} = g(\mathbf{y})$
Estimator	$\hat{ au} = g(y)$	$ ilde{ au} = extstyle g(ilde{ extbf{y}})$
Pivotal Quantity	$T = au_0 - \hat{ au}$	$ ilde{ au}=\hat{ au}- ilde{ au}$
Quantiles:	P(L < T < U) = 95%	$P(\tilde{L} < \tilde{T} < \tilde{U}) = 95\%$
95% Confidence Interval	Oracle: $(\hat{\tau} + L, \hat{\tau} + U)$	
95% Confidence interval	Bootstrap: $(\hat{\tau} + \tilde{L}, \hat{\tau} + \tilde{U})$	

Parallel between the Real world and the Bootstrap world.

- ▶ **Objective:** Given $\mathbf{U} = (U_1, \dots, U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1. Sample Size:** (i) n = 100 and (ii) n = 10000
 - **2. Estimators:** (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).
 - **3. Bootstrap Sampling:** (i) Nonparametric ($\tilde{\mathbf{U}}$ sampled with replacement) and (ii) Parametric ($\tilde{U}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$). Always use M=1000 bootstrap samples.
 - **4. Confidence Intervals:** (i) Basic Bootstrap: $(\hat{\theta} + \tilde{L}, \hat{\theta} + \tilde{U})$ (ii) Percentile Bootstrap: 2.5/97.5% quantiles of $\tilde{\theta}^{(1)}, \dots \tilde{\theta}^{(M)}$. (seems simpler but...)
 - **5. Model Misspecification:** True sampling distribution is $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ (Beta(1,1) = Unif(0,1)) and (ii) $\alpha = 2$. (θ is range of distribution, so still meaningfull quantity to estimate. For $\alpha \neq 1$, $\hat{\theta}_1$ no longer MLE, but $\hat{\theta}_2$ still unbiased.)
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

- ▶ **Objective:** Given $\mathbf{U} = (U_1, \dots, U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, wish to estimate θ .
- ▶ **Simulation Study:** For N = 1000 datasets with $\theta_0 = 1$:
 - **1. Sample Size:** (i) n = 100 and (ii) n = 10000
 - 2. Estimators: (i) $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) $\hat{\theta}_2 = 2\bar{\mathbf{U}}$.
 - 3. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is
 - i. Nonparametric: $\tilde{\mathbf{U}}$ sampled with replacement.

Variance Reduction: Use same $\tilde{\mathbf{U}}^{(m)}$ to calculate both $\hat{\theta}_1^{(m)}$ and $\hat{\theta}_2^{(m)}$. \Longrightarrow Monte Carlo difference between comparison metrics has same expectation, but lower variance

- ii. Parametric: $\tilde{U}_{i}^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0, \hat{\theta})$.
- 4. Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.
- **5. Model Misspecification:** $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ and (ii) $\alpha = 2$.
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

- ▶ **Objective:** Given $\mathbf{U} = (U_1, \dots, U_n), U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, wish to estimate θ .
- ▶ **Simulation Study:** For N = 1000 datasets with $\theta_0 = 1$:
 - **1. Sample Size:** (i) n = 100 and (ii) n = 10000
 - **2. Estimators:** (i) $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) $\hat{\theta}_2 = 2\bar{\mathbf{U}}$.
 - 3. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is
 - i. Nonparametric: $\tilde{\mathbf{U}}$ sampled with replacement.

Variance Reduction: Use same $\tilde{\mathbf{U}}^{(m)}$ to calculate both $\hat{\theta}_1^{(m)}$ and $\hat{\theta}_2^{(m)}$.

- ii. Parametric: $\tilde{U}_{:}^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0, \hat{\theta})$.
 - Variance Reduction: Use same $\tilde{R}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,1)$, and let $\tilde{U}_i^{(m)} = \hat{\theta}_k \tilde{R}_i^{(m)}$, k = 1, 2.
- 4. Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.
- **5. Model Misspecification:** $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ and (ii) $\alpha = 2$.
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

Actual Coverage					Interval Width					
alpha = 1					alpha = 1					
	NP_max N	<pre>IP_mean2</pre>	P_max	P_mean2		NP_max N	<pre>IP_mean2</pre>	P_max	P_mean2	
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22	
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02	
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22	
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02	
alpha = 2					alpha = 2					
	NP_max N	<pre>IP_mean2</pre>	P_max	P_mean2		NP_max	NP_mean	2 P_ma	x P_mean2	
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22	
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02	
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22	
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02	

Remarks:

1. Percentile CI based on $\hat{\theta}_1 = \max(\mathbf{U})$ has 0% coverage! This is because $\theta_0 > \hat{\theta}_1 > \tilde{\theta}_1^{(m)}$, so quantiles of $\tilde{\theta}_1^{(m)}$ can never cover θ_0 .

Actual Coverage				Interval Width					
alpha = 1	ND N	ID0	D	D0	alpha = 1	ND N	ID0	D	D0
basic n=100	NP_max N 0.86	0.94	0.94	0.95	basic n=100	NP_max N 0.03	0.22	_	0.22
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02
alpha = 2					alpha = 2				
-	NP_max N	IP_mean2	P_max	P_mean2	-	NP_max	NP_mean	2 P_max	x P_mean2
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02

Remarks:

2. NP bootstrap with Basic CI does not approach 95% coverage as sample size $n \to \infty$! This is because bootstrap only works if $\tilde{\theta}$ and $\hat{\theta}$ have the same distribution as $n \to \infty$. However, $\hat{\theta}_1 \sim \theta_0 \times \text{Beta}(1,n)$ is a continuous distribution, but

$$\Pr(\tilde{\theta}_1 = \hat{\theta}_1) = 1 - \Pr(\tilde{\theta}_1 \neq \hat{\theta}_1) = 1 - (1 - \frac{1}{n})^n \to 1 - e^{-1} \approx 0.63.$$

Therefore, $\tilde{\theta}_1$ has a non-vanishing point mass at $\hat{\theta}_1$, so doesn't get close to continuous distribution of $\hat{\theta}_1$.

Actual Covera	ctual Coverage				Interval Width					
alpha = 1 NP_max NP_mean2 P_max P_mean2					alpha = 1 NP_max NP_mean2 P_max P_mean2					
	_	_	_	_		_	_	_	_	
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22	
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02	
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22	
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02	
alpha = 2					alpha = 2					
	NP_max NP_mean2 P_max P_mean2					NP_max NP_mean2 P_max P_mean				
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22	
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02	
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22	
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02	

Remarks:

3. NP-CI for $\hat{\theta}_2$ have the right coverage, even under wrong model $\alpha=2$. On the other hand P-CI with $\hat{\theta}_2$ overcover under wrong model (98% instead of 95%).

Actual Coverage					Interval Width					
alpha = 1					alpha = 1					
•	NP_max 1	WP_mean2	P_max	P_mean2	•	NP_max N	<pre>IP_mean2</pre>	P_max	P_mean2	
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22	
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02	
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22	
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02	
alpha = 2					alpha = 2					
NP_max NP_mean2 P_max P_mean2					NP_max NP_mean2 P_max P_mea					
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22	
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02	
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22	
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02	

Remarks:

4. $\hat{\theta}_1$ does not converge to θ_0 under the wrong model $\alpha=2$, so CI has poor coverage. On the other hand, interval width is narrower than with $\hat{\theta}_2$, because max has less variance than mean.

Example: GARCH Stochastic Volatility Model

▶ **SDE SV Model:** Let $(\Delta X_t, \Delta V_t)$ be the asset/volatility log-return/return on day t. The basic SDE-SV model is

$$\Delta X_t = (\alpha - \frac{1}{2}V_t)\Delta t + V_t^{1/2}\Delta B_{1t}$$

$$\Delta V_t = -\gamma(V_t - \mu)\Delta t + \sigma V_t^{1/2}\Delta B_{2t}$$

- ▶ Pros: Excellent performance; easy to calibrate when V_t is observed (e.g., VIX for GSPC).
- ▶ Cons: Extremely difficult to calibrate when V_t is latent, since $\ell(\theta \mid \mathbf{X})$ is not available in closed-form, i.e,

$$\mathcal{L}(\theta \mid \mathbf{X}) \propto p(\mathbf{X} \mid \theta) = \int p(\mathbf{X}, \mathbf{V} \mid \theta) d\mathbf{V}$$

GARCH Stochastic Volatility Model

► SDE SV Model:

$$\Delta X_t = (\alpha - \frac{1}{2}V_t)\Delta t + V_t^{1/2}\Delta B_{1t}$$

$$\Delta V_t = -\gamma(V_t - \mu)\Delta t + \sigma V_t^{1/2}\Delta B_{2t}$$

▶ **GARCH SV Model:** Let $\varepsilon_t = \Delta X_t$. The GARCH(1,1) model is

$$\varepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$
$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

- ▶ Like SDEs, volatility σ_t is stochastic.
- ▶ Pros: Inference with GARCH is far simpler than with SDE (closed-form likelihood).
- ► Cons: Unlike SDEs, GARCH is a discrete-time model (difficult for option pricing and consistency across timescales)

GARCH Stochastic Volatility Model

- ▶ Data: Asset values $\mathbf{S} = (S_0, \dots, S_N) \implies \text{log-returns } \varepsilon = (\varepsilon_1, \dots, \varepsilon_N)$, with $\varepsilon_t = \log(S_t/S_{t-1})$.
- ► GARCH(1,1) Model: $\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
- ▶ **Objective:** On given day N, estimate the p-day forward τ -level Value-At-Risk, i.e., the conditional quantile

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} < \mathsf{VaR}_{\tau} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) = \tau.$$

For example, we would say that the 10-day 5%-level VaR of AAPL is a 1.3% drop in value.

GARCH Model

► Model: $\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$

► Parameter Estimation:

- ▶ R Packages: rugarch, fGarch. The former is more stable, the latter is faster. Both can fit numerous extensions to the basic GARCH(1,1) model above.
- ▶ Profile Likelihood: For $\theta = (\omega, \alpha, \beta)$

$$\begin{split} \ell(\boldsymbol{\theta} \,|\, \boldsymbol{\varepsilon}) &= -\frac{1}{2} \sum_{t=1}^{N} \frac{\varepsilon_{t}^{2}}{\sigma_{t}^{2}} + \log(\sigma_{t}^{2}), & \sigma_{t}^{2} &= \omega + \alpha \varepsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2} \\ &= -\frac{1}{2} \sum_{t=1}^{N} \frac{\varepsilon_{t}^{2}}{\boldsymbol{\omega} \cdot \tilde{\sigma}_{t}^{2}} + \log(\boldsymbol{\omega} \cdot \tilde{\sigma}_{t}^{2}), & \tilde{\sigma}_{t}^{2} &= 1 + \eta \varepsilon_{t-1}^{2} + \beta \tilde{\sigma}_{t-1}^{2}, \end{split}$$

where
$$\eta = \alpha/\omega \implies \hat{\omega}(\eta, \beta) = \sum_{t=1}^{N} (\varepsilon_t/\tilde{\sigma}_t)^2$$
.

(Note the technical issue of initializing $\tilde{\sigma}_1$ which we won't discuss here.)

Value-at-Risk

► GARCH(1,1) Model:
$$\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

► Value-at-Risk:

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} < \mathsf{VaR}_{\tau} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) = \tau.$$

- ▶ 1-Day VaR: For given θ and data $\varepsilon = (\varepsilon_1, \dots, \varepsilon_N)$
 - **1.** Let $\sigma_1^2 = E[\sigma_1^2 | \theta] = \omega/(1 \alpha \beta)$
 - **2.** Use GARCH equation to obtain $\sigma_{N+1}^2 = \omega + \alpha \varepsilon_N^2 + \beta \sigma_N^2$
 - $\textbf{3.} \ (S_{N+1}-S_N)/S_N=\exp(\varepsilon_{N+1})-1 \implies \mathsf{VaR}_\tau=\exp\{\mathtt{qnorm}(\tau\,|\,0,\sigma_{N+1})\}-1$

In other words, $VaR_{\tau} = VaR_{\tau}(\theta \mid \varepsilon)$ is a function of θ (and observed data ε).

Value-at-Risk

► GARCH(1,1) Model:
$$\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

- ▶ 1-Day VaR: For given θ and data $\varepsilon = (\varepsilon_1, ..., \varepsilon_N)$
 - **1.** Let $\sigma_1^2 = E[\sigma_1^2 | \theta] = \omega/(1 \alpha \beta)$
 - **2.** Use GARCH equation to obtain $\sigma_{N+1}^2 = \omega + \alpha \varepsilon_N^2 + \beta \sigma_N^2$
 - 3. $(S_{N+1} S_N)/S_N = \exp(\varepsilon_{N+1}) 1 \implies \text{VaR}_{\tau} = \exp\{\text{qnorm}(\tau \mid 0, \sigma_{N+1})\} 1$ In other words, $\text{VaR}_{\tau} = \text{VaR}_{\tau}(\boldsymbol{\theta} \mid \boldsymbol{\varepsilon})$.
- ▶ **Inference:** If $\hat{\theta}$ is the MLE of GARCH model, then
 - ▶ **MLE**: Use plug-in principle: $\hat{VaR}_{\tau} = VaR_{\tau}(\hat{\theta} \mid \varepsilon)$.
 - ► Confidence Intervals?

Delta-Method

► Setup:

- ▶ Let $Y_1, Y_2,...$ be some stochastic process determined by a parameter $\theta \in \mathbb{R}^p$ (In the simplest case, we have $Y_n \stackrel{\text{iid}}{\sim} f(y \mid \theta)$, but the theory works for stationary processes such as GARCH(1,1) as well).
- For $\mathbf{Y}_{1:n} = (Y_1, \dots, Y_n)$, suppose the MLE and the inverse Fisher Information

$$\hat{m{ heta}}_n = \mathop{\mathsf{arg}} \max_{m{ heta}} \ell(m{ heta} \, | \, \mathbf{Y}_{1:n}), \qquad \hat{\mathbf{V}}_n = \left[-rac{\partial^2}{\partial m{ heta}^2} \ell(m{ heta} \, | \, \mathbf{Y}_{1:n})
ight]^{-1}$$

satisfy the usual asymptotic theory, i.e., $\hat{\mathbf{V}}_n^{1/2}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \to \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ as $n \to \infty$, where $\boldsymbol{\theta}_0$ is the true parameter value.

▶ **Theorem:** Suppose that $\tau : \mathbb{R}^p \to \mathbb{R}^q$ is a differentiable function with $q \leq p$, and we wish to estimate $\tau_0 = \tau(\theta_0)$. Then as $n \to \infty$ we have

$$egin{aligned} \hat{\Sigma}_n^{1/2}(\hat{ au}_n - au_0) &
ightarrow \mathcal{N}(extbf{0}, extbf{I}), \qquad &\hat{ au}_n = au(\hat{ heta}_n) \ &\hat{\Sigma}_n = [
abla au(\hat{ heta}_n)]' \hat{ extbf{V}}_n [
abla au(\hat{ heta}_n)]. \end{aligned}$$

Delta-Method

- ▶ **Setup:** Suppose that as $n \to \infty$ we have $\hat{\mathbf{V}}_n^{1/2}(\hat{\theta}_n \theta_0) \to \mathcal{N}(\mathbf{0}, \mathbf{I})$, where $(\hat{\theta}_n, \hat{\mathbf{V}}_n)$ are the MLE and inverse Fisher Information calculated from a sequence of random variables $\mathbf{Y}_{1:n}$.
- ▶ **Theorem:** Suppose that $\tau : \mathbb{R}^p \to \mathbb{R}^q$ is a differentiable function with $q \le p$, and we wish to estimate $\tau_0 = \tau(\theta_0)$. Then as $n \to \infty$ we have

$$egin{aligned} \hat{\Sigma}_n^{1/2}(\hat{ au}_n - au_0) &
ightarrow \mathcal{N}(extbf{0}, extbf{I}), \qquad &\hat{ au}_n = au(\hat{ heta}_n) \ &\hat{\Sigma}_n = [
abla au(\hat{ heta}_n)]' \hat{ extbf{V}}_n [
abla au(\hat{ heta}_n)]. \end{aligned}$$

Proof: The 1st order Taylor expansion of $au(\hat{ heta}_n)$ about $heta= heta_0$ gives

$$au(\hat{ heta}_n) - au(heta_0) pprox [
abla au(heta_0)]'(\hat{ heta}_n - heta_0).$$

Since $\hat{\theta}_n - \theta_0 \approx \mathcal{N}(\mathbf{0}, \hat{\mathbf{V}}_n)$, by linearity of MVN we have

$$\hat{m{ au}}_n - m{ au}_0 pprox \mathcal{N}(m{0}, [
abla m{ au}(m{ heta}_0)]' \hat{m{V}}_n [
abla m{ au}(m{ heta}_0)]).$$

Result follows since $\nabla \boldsymbol{ au}(\hat{\boldsymbol{ heta}}_n)
ightarrow \nabla \boldsymbol{ au}(\hat{\boldsymbol{ heta}}_0)$.

Delta-Method

- ▶ **Setup:** Suppose that as $n \to \infty$ we have $\hat{\mathbf{V}}_n^{1/2}(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0) \to \mathcal{N}(\mathbf{0}, \mathbf{I})$, where $(\hat{\boldsymbol{\theta}}_n, \hat{\mathbf{V}}_n)$ are the MLE and inverse Fisher Information calculated from a sequence of random variables $\mathbf{Y}_{1:n}$.
- ▶ **Theorem:** Suppose that $\tau : \mathbb{R}^p \to \mathbb{R}^q$ is a differentiable function with $q \le p$, and we wish to estimate $\tau_0 = \tau(\theta_0)$. Then as $n \to \infty$ we have

$$egin{aligned} \hat{\mathbf{\Sigma}}_n^{1/2}(\hat{m{ au}}_n - m{ au}_0) &
ightarrow \mathcal{N}(m{0},m{I}), \qquad \hat{m{ au}}_n = m{ au}(\hat{m{ heta}}_n) \ \hat{\mathbf{\Sigma}}_n = [
abla m{ au}(\hat{m{ heta}}_n)]'\hat{m{V}}_n[
abla m{ au}(\hat{m{ heta}}_n)]. \end{aligned}$$

▶ **Upshot:** If $(\hat{\theta}, \hat{\mathbf{V}})$ are the MLE and its variance estimator, a confidence interval for a 1D quantity of interest $\tau_0 = \tau(\theta_0)$ can be constructed via

$$\hat{ au} \pm 1.96 \cdot s_{\hat{ au}}, \qquad \hat{ au} = au(\hat{oldsymbol{ heta}}) \ s_{\hat{ au}} = \sqrt{[
abla au(\hat{oldsymbol{ heta}})]' \hat{oldsymbol{ heta}}[
abla au(\hat{oldsymbol{ heta}})]} \, .$$

Can use this to calculate CI for 1-day $VaR_{\tau} = \tau(\theta_0) = VaR_{\tau}(\theta_0 \mid \varepsilon)$.

Value-at-Risk

► GARCH(1,1) Model:

$$\varepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_t^2 + \beta \sigma_t^2 + \beta \sigma_t^2$$

► Value-at-Risk:

$$\mathsf{VaR}_\tau = q_\tau \left(\frac{S_{N+p} - S_N}{S_N} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{N+p} - S_N}{S_N} < \mathsf{VaR}_\tau \, | \, \mathbf{S}, \boldsymbol{\theta} \right) = \tau.$$

No analytic solution for p > 1.

- ▶ Point Estimate: Use Monte Carlo:
 - **1.** For given θ , analytically obtain $\sigma_1^2, \ldots, \sigma_N^2$
 - **2.** Generate M iid realizations of $R = \log(S_{N+p}/S_N)$ from $p(R \mid \varepsilon_N, \sigma_N)$ using GARCH. (Note that $R = \sum_{i=1}^p \varepsilon_{N+1}$)
 - 3. The Monte Carlo approximation is $VaR_{\tau} = \exp{\{\hat{q}_{\tau}(R \mid \varepsilon_{N}, \theta)\}} 1$, where $\hat{q}_{\tau}(R \mid \varepsilon_{N}, \theta)$ is the τ -level sample quantile of the iid realizations $R^{(1)}, \ldots, R^{(M)}$.
- ▶ Interval Estimate: Use Delta-Method, with $\hat{VaR}_{\tau} = \exp{\{\hat{q}_{\tau}(R \mid \varepsilon_N, \hat{\theta})\}} 1$, but with variance reduction, i.e., same $z_{N+1}^{(m)}, \ldots, z_{N+n}^{(m)}$ for every value of θ .

Value-at-Risk

► GARCH(1,1) Model:

$$\varepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$
$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

► Value-at-Risk:

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{\mathcal{N}+p} - S_{\mathcal{N}}}{S_{\mathcal{N}}} < \mathsf{VaR}_{\tau} \, | \, \mathbf{S}, \boldsymbol{\theta} \right) = \tau.$$

- ▶ Point/Interval Estimate: Monte Carlo + Delta Method
- ▶ **Model Misspecification:** Suppose we have GARCH(1,1), but with $z_t \stackrel{\text{iid}}{\sim} F(z)$ with $F \neq \mathcal{N}(0,1)$?
- ► Residual Bootstrap:
 - ▶ GARCH model: $\varepsilon_t = \sigma_t z_t$, $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
 - ▶ Use $\hat{\theta}$ to calculate $\hat{\sigma} = (\hat{\sigma}_1, \dots, \hat{\sigma}_N)$ and residuals $\hat{\mathbf{z}} = (\hat{z}_1, \dots, \hat{z}_N) = \varepsilon/\hat{\sigma}$.
 - Obtain Bootstrap residuals ž by sampling with replacement from ẑ
 - ▶ Bootstrap log-returns: $\tilde{\varepsilon}_t = \tilde{\sigma}_t \tilde{z}_t$, $\sigma_t^2 = \hat{\omega} + \hat{\alpha} + \tilde{\varepsilon}_{t-1}^2 + \hat{\beta} \tilde{\sigma}_{t-1}^2$