Projet SAS: Fertility

Alexandra Marques
Lucie Guillaumin
Ninon Hersant
Sarra Chahdoura

Nos Variables

Introduction

- Saison (Hiver, printemps, été, automne)
- Âge
- Maladie infantiles (varicelle, rougeole,...)
- Accident ou traumatisme grave
- Intervention chirurgicale

- Forte fièvre au cours de la dernière année (moins de 3 mois, plus de 3 mois, non)
- Fréquence de la consommation d'alcool
- Habitude à fumer (jamais, à l'occasion, chaque jour)
- Nombre d'heure passées assis par jour

Importation des données dans SAS

Obs.	saison	age	maladies_infantiles	accident	chirurgie	fievre	alcool	fumer	assis	diagnostic	winter	spring	summer	fall	diagnostic2
1	-0.33	30	0	1	1	0	0.8	0	0.88	N	0	1	0	0	1
2	-0.33	34	1	0	1	0	0.8	1	0.31	0	0	1	0	0	0
3	-0.33	27	1	0	0	0	1.0	-1	0.50	N	0	1	0	0	1
4	-0.33	31	0	11	1	0	1.0	-1	0.38	N	0	1	0	0	1
5	-0.33	30	1	1	0	0	0.8	-1	0.50	0	0	1	0	0	0
6	-0.33	30	1	0	1	0	0.8	0	0.50	N	0	1	0	0	1
7	-0.33	30	0	0	0	-1	0.8	-1	0.44	N	0	1	0	0	1
8	-0.33	36	1	1	1	0	0.6	-1	0.38	N	0	1	0	0	1
9	1.00	29	0	0	1	0	0.8	-1	0.25	N	0	0	0	1	1
10	1.00	28	1	0	0	0	1.0	-1	0.25	N	0	0	0	1	1
11	1.00	30	1	1	0	-1	0.8	0	0.31	N	0	0	0	1	1
12	1.00	32	1	1	1	0	0.6	0	0.13	N	0	0	0	1	1
13	1.00	31	1	1	1	0	0.8	1	0.25	N	0	0	0	1	1
14	1.00	32	1	0	0	0	1.0	-1	0.38	N	0	0	0	1	1
15	1.00	34	1	1	1	0	0.2	-1	0.25	N	0	0	0	1	1
16	1.00	32	1	1	0	0	1.0	1	0.50	N	0	0	0	1	1
17	1.00	29	1	0	1	0	1.0	-1	0.38	N	0	0	0	1	1
18	1.00	30	1	0	1	0	0.8	-1	0.25	0	0	0	0	1	0
19	1.00	31	1	1	1	0	1.0	1	0.25	N	0	0	0	1	1
20	1.00	30	1	0	0	0	0.8	1	0.38	0	0	0	0	1	0
21	1.00	30	0	0	1	0	0.8	-1	0.25	N	0	0	0	1	1
22	1.00	31	1	0	0	0	0.6	0	0.25	N	0	0	0	1	1
23	1.00	30	1	1	0	0	0.8	-1	0.25	N	0	0	0	1	1
24	1.00	30	1	0	1	-1	1.0	-1	0.44	0	0	0	0	1	0
25	1.00	28	1	0	1	0	1.0	-1	0.63	N	0	0	0	1	1
26	1.00	30	1	0	0	0	1.0	-1	0.25	N	0	0	0	1	1
27	1.00	30	1	0	1	0	0.6	-1	0.38	0	0	0	0	1	0
28	1.00	32	1	1	0	1	0.6	-1	0.38	0	0	0	0	1	0
29	1.00	28	0	0	1	0	1.0	-1	0.19	N	0	0	0	1	1
30	1.00	30	0	0	1	0	0.6	0	0.50	0	0	0	0	1	0
31	1.00	28	1	0	1	0	1.0	-1	0.63	N	0	0	0	1	1
32	1.00	28	1	0	0	0	1.0	-1	0.44	N	0	0	0	1	1

Etude des variables :

La procédure MEANS

Variable	N	Moyenne	Ec-type	Minimum	Maximum
saison	100	-0.0789000	0.7967255	-1.0000000	1.0000000
age	100	29.6900000	2.1541363	27.0000000	36.0000000
maladies_infantiles	100	0.8700000	0.3379977	0	1.0000000
accident	100	0.4400000	0.4988877	0	1.0000000
chirurgie	100	0.5100000	0.5024184	0	1.0000000
fievre	100	0.1900000	0.5807519	-1.0000000	1.0000000
alcool	100	0.8320000	0.1675009	0.2000000	1.0000000
fumer	100	-0.3500000	0.8087276	-1.0000000	1.0000000
assis	100	0.4068000	0.1863953	0.0600000	1.0000000
winter	100	0.2800000	0.4512609	0	1.0000000
spring	100	0.3700000	0.4852366	0	1.0000000
summer	100	0.0400000	0.1969464	0	1.0000000
fall	100	0.3100000	0.4648232	0	1.0000000
diagnostic2	100	0.8800000	0.3265986	0	1.0000000

Nombres d'infertiles en fonction de chaque variable

Test de normalité pour nos variables continues

Tests de normalité						
Test	Sta	tistique	p-value			
Shapiro-Wilk	W	0.943341	Pr < W	0.0003		
Kolmogorov-Smirnov	D	0.118533	Pr > D	<0.0100		
Cramer-von Mises	W-Sq	0.259782	Pr > W-Sq	<0.0050		
Anderson-Darling	A-Sq	1.714959	Pr > A-Sq	<0.0050		

	Tests de	normalité			
Test	Sta	tistique	p-value		
Shapiro-Wilk	W	0.811623	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.242065	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	1.189618	Pr > W-Sq	<0.0050	
Anderson-Darling	A-Sq	7.29269	Pr > A-Sq	<0.0050	

Analyse Bivariée

<u>Lien entre 2 variables grâce aux coefficients</u> <u>de corrélation</u>

La procédure CORR

1 Avec les variables :	diagnostic2
12 Variables :	age maladies_infantiles accident chirurgie fievre alcool fumer assis winter spring summer fall

			Coef	ficients de d Proba	orrelation > r sous		
	age	maladies_infantiles	accident	chirurgie	fievre	alcool	fumer
diagnostic2	-0.13955	0.04026	0.14135	-0.05417	0.12142	0.14476	-0.04589

0.1607

0.5924

0.2288

0.1507

0.6503

0.6908

assis	winter	spring	summer	fall
-0.02296	0.16175	0.02804	-0.08166	-0.15170
0.8206	0.1079	0.7818	0.4193	0.1319

0.1661

a) Régression logistique multiple

Analyse rapport de côtes :

Estimation du rapport de cotes					
Effet	Estimation du point	Intervalle de confiance de Wald à95%			
age	0.698	0.469	1.041		
maladies_infantiles	0.716	0.104	4.937		
accident	7.048	1.185	41.915		
chirurgie	0.796	0.184	3.433		
fievre	2.546	0.636	10.198		
alcool	16.439	0.288	937.856		
fumer	0.734	0.310	1.740		
assis	0.046	<0.001	3.703		
winter	6.833	0.593	78.742		
spring	1.782	0.364	8.715		
summer	0.626	0.038	10.308		

a) Régression logistique multiple

Etude AIC

Toutes les variables :

Critère	DDL	Valeur	Valeur/DDL
Log-vraisemblance		-29.0866	
Log-vraisemblance complète		-29.0866	
AIC (préférer les petites valeurs)		82.1732	
AICC (préférer les petites valeurs)		85.7594	
BIC (préférer les petites valeurs)		113.4352	

Sans "Spring":

L'algorithme a convergé.

Critères d'évaluation de l'adéquation					
Critère	DDL	Valeur	Valeur/DDL		
Log-vraisemblance		-29.0866			
Log-vraisemblance complète		-29.0866			
AIC (préférer les petites valeurs)		82.1732			
AICC (préférer les petites valeurs)		85.7594			
BIC (préférer les petites valeurs)		113.4352			

L'algorithme a convergé.

a) Régression logistique multiple

<u>Enlever variables qui nous semblent</u> <u>être les plus importantes</u>

Critère	DDL	Valeur	Valeur/DDL
Log-vraisemblance		-32.7452	
Log-vraisemblance complète		-32.7452	
AIC (préférer les petites valeurs)		73.4903	
AICC (préférer les petites valeurs)		73.9114	
BIC (préférer les petites valeurs)		83.9110	

Sans "winter"

L'algorithme a convergé.

Sans "fièvre"

Critère	DDL	Valeur	Valeur/DDL
Log-vraisemblance		-33.9225	
Log-vraisemblance complète		-33.9225	
AIC (préférer les petites valeurs)		73.8451	
AICC (préférer les petites valeurs)		74.0951	
BIC (préférer les petites valeurs)		81.6606	

L'algorithme a convergé.

b) Régression logistique simple

Régression logistique simple sur les quatre variables les plus significatives.

Examiner Test de Wald et le Rapport de vraisemblance.

Test	khi-2	DDL	Pr > khi-2
Rapport de vrais	1.9510	1	0.1625
Score	2.0956	1	0.1477
Wald	2.0066	1	0.1566

variable "alcool"

variable "accident"

Test	khi-2	DDL	Pr > khi-2
Rapport de vrais	2.1054	1	0.1468
Score	1.9979	1	0.1575
Wald	1.8883	1	0.1694

b) Régression logistique simple

Analyse de B

Analyse de	s valeu	rs estimées (du maxim	um de vrai	semblance
Paramètre	DDL	Estimation	Erreur type	Khi-2 de Wald	Pr > khi-2
Intercept	1	0.0371	1.3716	0.0007	0.9784
alcool	1	2.4268	1.7132	2.0066	0.1566

Variable "alcool"

Variable "Fièvre"

Paramètre	DDL	Estimation	Erreur type	Khi-2 de Wald	Pr > khi-2
Intercept	1	1.9217	0.3105	38.3058	<.0001
fievre	1	0.6550	0.5444	1.4472	0.2290

Paramètre	DDL	Estimation	Erreur	Khi-2 de Wald	Pr > khi-2
Intercept	1	1.7130	0.3276	27.3460	<.0001
winter	1	1.5828	1.0697	2.1894	0.1390

Variable "Winter"

Analyse en composantes principales

Matrice de corrélation					
	age	alcool	assis		
age	1.0000	2522	4307		
alcool	2522	1.0000	0.1114		
assis	4307	0.1114	1.0000		

Valeurs propres de la matrice de corrélation					
	Valeur propre	Différence	Proportion	Cumulé	
1	1.55249716	0.64838742	0.5175	0.5175	
2	0.90410974	0.36071664	0.3014	0.8189	
3	0.54339310		0.1811	1.0000	

Vecteurs propres					
	Prin1	Prin2	Prin3		
age	669017	0.117128	0.733960		
alcool	0.427865	0.868158	0.251462		
assis	0.607740	482269	0.630927		

Nuage de points :

Classification ascendante hiérarchique

<u>Arbre hiérarchique fait uniquement avec les variables quantitatives :</u>

Conclusion

Outils manquants

Une variable surprenante

Résumé du projet

