

Data Collection and Preprocessing Phase

Date	5 July 2024
Team ID	SWTID1720082525
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	D	esc	ript	ion										
		Dimension: 400 rows × 26 columns Descriptive statistics:												
		id	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	
Data Overview	0	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.	
	1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.	
	2	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.	
	3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.	
	4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.	
	5	5	60.0	90.0	1.015	3.0	0.0	NaN	NaN	notpresent	notpresent	74.0	25.	
	6	6	68.0	70.0	1.010	0.0	0.0	NaN	normal	notpresent	notpresent	100.0	54.	
	7	7	24.0	NaN	1.015	2.0	4.0	normal	abnormal	notpresent	notpresent	410.0	31.	
	8	8	52.0	100.0	1.015	3.0	0.0	normal	abnormal	present	notpresent	138.0	60.	
	9	9	53.0	90.0	1.020	2.0	0.0	abnormal	abnormal	present	notpresent	70.0	107	


```
Random_value_imputation for "red blood cells" & "pus cell"
                                      def Random_value_imputation(feature):
                                     Random_value_imputation('pus cell')
Random_value_imputation('red blood cells')
                                   mode_imputation for all other categorical features
Handling Missing Data
                                       def mode_imputation(feature):
                                          mode=data[feature].mode()[0]
                                          data[feature]=data[feature].fillna(mode)
                                       for col in cat col:
                                          mode_imputation(col)
                                       data[cat_col].isnull().sum()
                                  a. Renaming the columns in the
                                  data to their expanded form
                                       columns=pd.read_csv('./data_description.txt',sep='-')
                                       columns=columns.reset_index()
                                       columns.columns=['cols', 'abb_col_names']
                                       df.columns=columns['abb_col_names'].values
                                  b. Correcting datatype of the columns
                                      features=['red blood cell count', 'packed cell volume', 'white blood cell count']
Data Transformation
                                      def convert_dtype(df,feature):
                                        df[feature] = pd.to_numeric(df[feature], errors='coerce')
                                         convert_dtype(df,feature)
                                   c. Drop the id column
                                          df.drop(["id"],axis=1,inplace=True)
                                          0.0s
```


	d. Cleaning Categorical Columns
	<pre>cat_col=[col for col in df.columns if df[col].dtype=='object'] for col in cat_col: print('{} has {} values '.format(col,df[col].unique())) print('\n')</pre>
Feature Engineering	Attached the codes in final submission.
Save Processed Data	-