Algebra 2 Homework 5

February 17, 2024

Solution of problem 1:	
Solution of problem 2: We have a quadratic equation in x^2 , which gives us $x^2 = \pm \omega$. Solution further, we get $x^4 + x^2 + 1 = (x - \omega)(x + \omega)(x - i\omega)(x + i\omega)$. Then clearly $\mathbb{Q}(x + i\omega)$ contains the splitting field. Also, adjoining all the roots to \mathbb{Q} gives us $\mathbb{Q}(\omega, -\omega, i\omega, -\omega)$ which certainly contains $\mathbb{Q}(i, \omega)$. Thus the splitting field is $\mathbb{Q}(i, \omega)$.	i,ω
Solution of problem 3: The polynomial x^6-4 splits into linear factors in \mathbb{C} , where the re $\pm\zeta_3\alpha$, where $\zeta_3\in\{1,\omega,\omega^2\}$, and $\alpha=\sqrt[3]{2}$. We propose that the splitting field is $\mathbb{Q}(\alpha)$. This clearly contains all the roots of this polynomial, thus it contains the splitting field Also, we get the splitting field by adjoining all the roots to \mathbb{Q} , which clearly contains $\mathbb{Q}(\alpha)$ thus it is the splitting field.	(ω) . ield.
Solution of problem 4:	