

On the Practicality of Data-Oblivious Sorting

Kandidatstuderende

Kris Vestergaard Ebbesen

13/4 - 2015

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Data-Obliviousness

- Hvad er Data-Obliviousness?
- Fordele
 - Branches
 - Hardware
 - Parallisme
- Ulemper
 - Kompleksitet

Data-Oblivious Sorting

- Compare-Exchange
 - Sæt 2 elementer i korrekt rækkefølge
- ÷ Quicksort, Mergesort, Heapsort . . .
- + Bitonic Sort, Pratt's Shellsort . . .

Compare-Exchange

```
procedure Compare-Exchange(A, i, j)
A_{min} \leftarrow \min(A[i], A[j])
A_{max} \leftarrow \max(A[i], A[j])
A[\min(i, j)] \leftarrow A_{min}
A[\max(i, j)] \leftarrow A_{max}
end procedure
```

Deterministic Data-Oblivious Sorting Algorithms

- Sorteringsnetværk
- Long history
 - Bitonic Sort (68)
 - Odd-Even Mergesort (68)
 - Pratt's Shellsort (72)
 - AKS (83)
 - Zig-Zag Sort (14)
- Problematiske køretider

Randomized Data-Oblivious Sorting

- Tilfældigt valgte sammenligninger
- Generelle algoritmer, dybde er ikke så vigtigt
- Nye algoritmer
 - Randomized Shellsort (10)
 - Annealing Sort (14)
- Shaker Sort (87)
- Bedre køretider, ikke garanteret success
- Praktiske problemer

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort
Bitonic Sort
Odd-Even Mergesor

Zig-Zag Sort

Eksperimenter

Konklusioner

Randomized Shellsort

Goodrich, 2010, "Randomized Shellsort: A Simple Oblivious Sorting Algorithm"

- Køretid: $\Theta(n \log n)$
- Fejlrate: $O(n^{-\alpha})$
- Region Comparison
- c og oprydning

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Annealing Sort

Goodrich, 2014, "Spin-the-Bottle Sort and Annealing Sort: Oblivious Sorting via Round-Robin Random Comparisons"

- Køretid: $\Theta(n \log n)$
- Fejlrate: $O(n^{-\alpha})$
- Annealing Sequence
 - 1. $[(n/2, c), (n/2, c), (n/4, c), (n/4, c), \ldots (q \log^6 n, c), (q \log^6 n, c)] \longrightarrow q \ge 1 \text{ og } c > 1$
 - 2. $[(q \log^6 n, r), ((q/2) \log^6 n, r), ((q/4) \log^6 n, r) \dots (g \log n, r)] q$ fra fase 1, $g \ge 1$, og r er $\Theta(\frac{\log n}{\log \log n})$
 - 3. $[(1,1),(1,1)\dots(1,1)]$ længde $g \log n$
- Mange konstanter

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Bitonic Sort

Batcher, 1968, "Sorting Networks and Their Applications"

- Klassisk Sorteringsnetværk
- Bitoniske Sekvenser
- Køretid: $\Theta(n \log^2 n)$
- Dybde: $\Theta(\log^2 n)$

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Odd-Even Mergesort

Batcher, 1968, "Sorting Networks and Their Applications"

- Klassisk Sorteringsnetværk
- Merging A and B

$$C = a_0, (b_0, b_1), (b_2, a_1), (a_2, b_3)...$$

- \circ $C = b_0, (b_1, a_0), (b_2, a_1), (b_3, b_4) \dots$
- Køretid: $\Theta(n \log^2 n)$
- Dybde: $\Theta(\log^2 n)$

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Shell, 1959, "A High-speed Sorting Procedure"

- Shellsort
 - Mulig, men ikke egnet
 - Mere et framework
- Pratt's Shellsort
 - 2ⁱ3^j < n sekvens
 - Ét enkelt løb per indgang i sekvensen, $\Theta(n \log^2 n)$
- Shaker Sort
 - $|1.7^{j}| + 1 < n$ sekvens
 - Enkelt løb, op og ned, $\Theta(n \log n)$
 - Ukendt fejlrate

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Zig-Zag Sort

Goodrich, 2014, "Zig-zag Sort: A Simple Deterministic Data-oblivious Sorting Algorithm Running in $O(N \log N)$ Time"

- Deterministisk $O(n \log n)$ netværk, $\Theta(n \log n) dybde$
- Præcist beskrevet
- Meget bedre konstanter end AKS, men meget dybt
- Afhængig af ϵ -halvers, men bedre ϵ

Zig-Zag Sort

- Faktiske tal: ≈ 50 *cn* log *n*, hvis ϵ -halver er *cn*
- Praktisk implementation, n = 1024, #sammenligninger:
 - Zig-Zag Sort 7056780
 - Odd-Even Mergesort 24063

Introduktion

Algoritmen

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

Nye Algoritmer

Sammenligninger

Tid

Nye Algoritmer

Instruktioner

Cache-Misses

24 of 36

Kris Vestergaard Ebbesen - On the Practicality of Data-Oblivious Sorting

Shellsorts

Sammenligninger

Tid

Shellsorts

Instruktioner

Cache-Misses

SIMD

- SSE4.1 128 bit, 4x32 bit
 - Registre
 - o PMINSD / PMAXSD
- Data Alignment
 - 16-byte aligned
 - o 16-byte unaligned
 - Individuelle loads
- Brugbart? Ja

SIMD

Instruktioner

Tidsændring

28 of 36

RandShell -

BitonicSort

ShakerSort -

Pratt ---

CUDA

- Compute Unified Device Architecture
- Data-Obliviousness

Individuel Tilpasning

Randomized Shellsort CPU -> Texture Shuffle

Bitonic Sort Wire Mapping, Shared memory

Odd-Even Mergesort Speciel Remapping

Shellsort Varianter 1 tråd per sub-sekvens

CUDA - Quadro FX 880M

30 of 36

Pratt ---

Kris Vestergaard Ebbesen - On the Practicality of Data-Oblivious Sorting

CUDA - GTX 880M

Tidsændring

31 of 36

RandShell -

BitonicSort

ShakerSort -

Pratt ---

OpenMP

- OpenMP Basics
- #pragma omp ...
- Stort overhead

Individuel Tilpasning

Randomized Shellsort 1 tråd shuffler, mange sammenligner

Bitonic Sort Tasks

Odd-Even Mergesort Tasks

Shellsort Varianter Manuel scheduling grundet cache

OpenMP

Tidsændring

Instruktionsændring

33 of 36

RandShell -

BitonicSort

ShakerSort -

Pratt ---

OpenMP

Cacheændring

Branchændring

34 of 36

RandShell -

BitonicSort

ShakerSort —

Pratt ---

RandShell

Pratt ---

Introduktion

Algoritmer

Randomized Shellsort

Annealing Sort

Bitonic Sort

Odd-Even Mergesort

Shellsort Varianter

Zig-Zag Sort

Eksperimenter

Konklusioner

- De nye algoritmer er smarte, men fungerer dårligt i praksis
- Ikke meget at gøre ved det
- Men! Nye teknikker gør de gamle algorithmer hurtige

	Base	SIMD	CUDA	OpenMP
Randomized Shellsort	22.6	20.2	20.1	21.5
Bitonic Sort	6.41	2.02	1.80	5.61
Odd-Even Mergesort	8.15	7.60	2.76	7.02
Pratt's Shellsort	8.82	4.50	4.11	5.85
Shaker Sort	3.48	1.75	2.46	2.65
Annealing Sort	67.3	-	-	-