Идеали. Факторпръстени. Теорема за хомомрфизмите на пръстени.

Нека R е произволен пръстен, а $I \subseteq R$ е непразно негово подмножество. Казваме, че I е ляв идеал на R, ако за $\forall a, b \in I$ е изпълнено че $a - b \in I$ и за $\forall a \in I, \forall r \in R$ е изпълнено, че $ra \in I$. Аналогично, казваме, че I е десен идеал на R, ако за $\forall a,b\in I$ е изпълнено, че $a-b\in I$ и за $\forall a \in I, r \in R$ е изпълнено, че $ar \in I$. Ако I е едновременно ляв и десен идеал на R, то казваме, че I е двустранен идеал или просто идеал на Rи пишем $I \triangleleft R$.

Всеки идеал I на пръстена R е също и негов подпръстен, защото от дефиницията следва, че за $\forall a, b \in I$ е изпълнено $a-b \in I$ и $ab \in I$. Оттук следва и че I е подгрупа на адитивната група на R.

Примери:

- 1. Нулевият идеал $\{0_R\} \le R$ и целият пръстен $R \le R$ са тривиални примери за идеали.
- 2. Нека $R=\mathbb{Z}$, а $I=m\mathbb{Z}=\{mz\mid z\in\mathbb{Z}\}$ за $m=0,1,2,\ldots$ Тогава за произволни два елемента $a,b\in I$ имаме, че $a=mz_1$ и $b=mz_2$ за $z_1,z_2\in\mathbb{Z}.$ Тогава $a-b=mz_1-mz_2=m(\underbrace{z_1-z_2}_{\in\mathbb{Z}}),$ което означава, че $a-b\in I.$ За произволно $r\in R=\mathbb{Z}$ имаме, че $ra=rmz_1=m(\underbrace{rz_1}_{\in\mathbb{Z}})$ и

$$a-b\in I$$
. За произволно $r\in R=\mathbb{Z}$ имаме, че $ra=rmz_1=m\underbrace{rz_1}_{\in\mathbb{Z}}$ и $ar=mz_1r=m\underbrace{z_1r}_{\in\mathbb{Z}}$. С това $I\unlhd R$, т.е. $m\mathbb{Z}\unlhd\mathbb{Z}$.

3. Ясно е, че ако R е комутативен пръстен, то левите и десните идеали в него съвпадат и говорим просто за идеали на R.

4. Нека F е произволно поле. Да разгледаме матричния пръстен $R=F_{2\times 2}$, състоящ се от всички 2×2 матрици с елементи от полето F. Лесно се вижда, че множеството

$$I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in F \right\}$$

е ляв, но не е десен идеал на R, а множеството

$$J = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in F \right\}$$

е десен, но не е ляв идеал на R. Изобщо в R няма двустранни идеали с изключение на тривиалните.

5. Сечението на идеали на R също е идеал на R.

Нека R е комутативен пръстен с единица 1_R . За произволен елемент $a \in R$ разглеждаме множеството

$$(a) = \{xa = ax \mid x \in R\}.$$

То е идеал на R, наречен главен идеал на R, породен от a. Наистина, за произволни два елемента $xa,ya\in(a)$, където $x,y\in R$ е изпълнено, че $xa-ya=(x-y)a\in(a)$, а за произволен елемент $r\in R$ е изпълнено

$$r(xa) = \underbrace{(rx)}_{\in R} a \in (a)$$
 и така $(a) \le R$.

В пръстена на целите числа \mathbb{Z} идеалите се изчерпват с $m\mathbb{Z}$ за $m \in \mathbb{Z}, m \geq 0$ и следователно всичките са главни идеали. Наистина, ако $I \leq \mathbb{Z}$ е идеал на \mathbb{Z} , то тогава I е подгрупа на адитивната група на \mathbb{Z} . Знаем, че всички подгрупи на групата на целите числа се изчерпват с $m\mathbb{Z}$ за $m \in \mathbb{Z}, m \geq 0$ и следователно $I = m\mathbb{Z}$ за някое $m \in \mathbb{Z}, m \geq 0$. Имаме, че $m\mathbb{Z} = \{mz \mid z \in \mathbb{Z}\} = (m)$ според определението на главен идеал.

Твърдение 1. Нека R е пръстен c единица 1_R , а $I \leq R$ е идеал в R. Тогава

- a) $A\kappa o 1_R \in I$, mo I = R;
- б) Ако I съдържа обратим елемент на R, то I = R.

Доказателство. a) Нека $1_R \in I$. Тогава за $\forall r \in R$ е изпълнено $r = r.1_R \in I$ и по този начин $R \subseteq I$. Т.к. по определение $I \subseteq R$, то получихме R = I.

б) Нека $a \in I$ е обратим елемент на R. Тогава $\exists a^{-1} \in R : a^{-1}a = 1_R$. Сега от определението за идеал, имаме че $a^{-1}a \in I$, т.е. $1_R \in I$ и според а) следва, че R = I.

Да отбележим, че ако един пръстен R е тяло (и в частност поле), то в R няма идеали различни от $\{0_R\}$ и R, т.е. няма нетривиални идеали. Наистина, нека $I \leq R$ е идеал на R и да допуснем, че $I \neq \{0_R\}$. Тогава $\exists a \in I : a \neq 0_R$. Но R е тяло и в него всеки ненулев елемент е обратим, а оттам елементът a също е обратим. Сега от Твърдение 1 б) следва, че I = R. По този начин, ако $I \leq R$, то или $I = \{0_R\}$, или I = R.

Твърдение 2. Комутативен простен R с единица 1_R е поле $\Leftrightarrow R$ няма нетривиални идеали.

Доказателство. Вече видяхме, че необходимостта е в сила. Остава да докажем обратната посока. Нека R е комутативен пръстен с единица и единствени идеали $\{0_R\}$ и R. Нека $a \in R, a \neq 0_R$ е ненулев елемент. Разглеждаме главният идеал, породен от a

$$(a) = \{ ra \mid r \in R \}.$$

Имаме, че $a \in (a)$ и $a \neq 0_R$, откъдето следва, че $(a) \neq \{0_R\}$. В такъв случай, единствената възможност, която остава е (a) = R. Очевидно $1_R \in R$, което означава, че $1_R \in (a)$. Но тогава $\exists r \in R : ra = 1_R$. Това означава, че произволен ненулев елемент $a \in R$ е обратим. Така R е комутативно тяло, т.е. е поле.

Когато разглеждахме група G, притежаваща нормална подгрупа $H \subseteq G$, ние построихме нова група G/H, наречена факторгрупа на G по H. Сега ще извършим аналогична процедура спрямо даден прсътен.

Нека R е пръстен, а $I \subseteq R$ е негов идеал. От определението за пръстен знаем, че R образува абелева група, относно операцията +, а от определението на идеал следва, че $I \le R$ е подгрупа на R. Т.к. всяка подгрупа на абелева група е нормална, то получаваме, че $I \subseteq R$ е нормална подгрупа на адитивната група на пръстена R. Разглеждаме факторгрупата на групата R по подгрупата I, а именно

$$R/I = \{a+I \mid a \in R\}.$$

R/I е абелева група спрямо операцията +, наследена от пръстена R, с нулев елемент I. В R/I дефинираме допълнително и операция \cdot по

правилото $(a+I)\cdot(b+I)=ab+I$. Да проверим, че така въведеното умножение на елементи е коректно: нека $a_1\in a+I, b_1\in b+I$ са други представители на същите съседни класове. Това ни дава, че $a_1=a+i_1$ за някакъв елемент $i_1\in I$, а $b_1=b+i_2$ за някакъв елемент $i_2\in I$. Тогава $a_1b_1-ab=(a+i_1)(b+i_2)-ab=ab+ai_2+bi_1+i_1i_2-ab=\underbrace{ai_2+bi_1+i_1i_2}_{\in I}$, което означава, че $a_1b_1-ab\in I$. Според свойствата

на съседните класове получаваме, че $a_1b_1 + I = ab + I$. По този начин видяхме, че така дефинираната операция съпоставя един и същ съседен клас на представители от един и същ съседен клас, т.е. тя е коректно въведена.

Сега, спрямо двете операции + и \cdot , множеството R/I се превръща в пръстен, наречен факторпръстен на R по идеала I. Ако пръстенът R е комутативен, то R/I също е комутативен, защото за $\forall a+I,b+I\in R/I$ имаме, че $(a+I)\cdot(b+I)=ab+I=ba+I=(b+I)\cdot(a+I)$. Ако R е пръстен с единица 1_R , то R/I е пръстен с единица 1_R+I , защото $(1_R+I)\cdot(a+I)=1_Ra+I=a+I=a1_R+I=(a+I)\cdot(1_R+I)$.

Пример:

За $R=\mathbb{Z}$ и $I=n\mathbb{Z}$ за $n\in\mathbb{Z}, n\geq 0$, имаме че

$$R/I = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

Нека R и R' са пръстени, а $\varphi: R \longrightarrow R'$ е изображение. Изображението φ е хомоморфизъм на прсътени, ако за $\forall a,b \in R$ е изпълнено $\varphi(a+b)=\varphi(a)+\varphi(b)$ и $\varphi(ab)=\varphi(a)\varphi(b)$. Ако в допълнение φ е биекция на R върху R', то φ е изоморфизъм на пръстени, а R и R' са изоморфии. Този факт отбелязваме с $R\cong R'$.

Нека $\varphi: R \longrightarrow R'$ е хомоморфизъм. Дефинираме множеството

$$\operatorname{Im} \varphi = \{ \varphi(a) \in R' \mid a \in R \},\$$

наречено *образ на* φ и множеството

$$\operatorname{Ker} \varphi = \{ a \in R \mid \varphi(a) = 0_{R'} \},\$$

наречено ядро на φ .

За произволни елементи $a,b \in \text{Ker } \varphi$ имаме, че $\varphi(a-b) = \varphi(a) - \varphi(b) = 0_{R'} - 0_{R'} = 0_{R'}$, т.е. $a-b \in \text{Ker } \varphi$. За произволен елемент $r \in R$ имаме още че $\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)0_{R'} = 0_{R'}$ и $\varphi(ar) = \varphi(a)\varphi(r) = 0_{R'}\varphi(r) = 0_{R'}$, т.е. $ra, ar \in \text{Ker } \varphi$. Всичко това означава, че $\text{Ker } \varphi \triangleleft R$.

Твърдение 3. Нека R е пръстен, а $I \subseteq R$ е идеал на R. Тогава изображението

$$\pi: R \longrightarrow R/I$$
,

дефинирано с $\pi(a) = a + I$ за $\forall a \in R$ е хомоморфизъм на пръстени, наречен естествен хомоморфизъм¹ на R върху R/I, с $\operatorname{Im} \pi = R/I$ и $\operatorname{Ker} \pi = I$.

Доказателство. От материала за групи знаем, че R е група спрямо операцията + и изображението π е хомоморфизъм на групата R във факторгрупата R/I (т.е. $\pi(a+b)=\pi(a)+\pi(b)$) с $\mathrm{Im}\,\varphi=R/I$ и $\mathrm{Ker}\,\varphi=I$. Остава ни да проверим единствено, че $\pi(ab)=ab+I=(a+I)\cdot(b+I)=\pi(a)\pi(b)$ за $\forall a,b\in R$, което означава, че π е хомоморфизъм на пръстени.

Теорема за хомоморфизмите на пръстени. *Нека* R u R' ca np σc -menu, a usofp σ eeueu

$$\varphi:R\longrightarrow R'$$

e хомоморфизъм на пръстени. Тогава $\operatorname{Ker} \varphi \subseteq R$ и $R/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

Доказателство. От материала за групи знаем, че изображението

$$f: R/\operatorname{Ker}\varphi \longrightarrow \operatorname{Im}\varphi$$
,

дефинирано с $f(a+\operatorname{Ker}\varphi)=\varphi(a)$ за $\forall a\in R$ е коректно и е изоморфизъм на групи. Остава да проверим единствено, че f е хоморфизъм на пръстени. Наистина, за произволни $a,b\in R$ имаме, че $f[(a+\operatorname{Ker}\varphi)\cdot(b+\operatorname{Ker}\varphi)]=f(ab+\operatorname{Ker}\varphi)=\varphi(ab)=\varphi(a)\varphi(b)=f(a+\operatorname{Ker}\varphi)f(b+\operatorname{Ker}\varphi)$. И така, f е изоморфизъм на пръстените $R/\operatorname{Ker}\varphi$ и $\operatorname{Im}\varphi$, т.е. $R/\operatorname{Ker}\varphi\cong \operatorname{Im}\varphi$.

 $^{^{1}}$ Или още естествен епиморфизъм.