PHYS | 08 . Problem Set # b

Tuesday, November 5, 2024 3:09 PM

A : 31.2 mm?

L = 85.5 cm

I = 115 A

$$n = 8.47 \times 10^{-8} \text{ m}^{-3}$$
 $\sqrt{4} \text{ sith} = \frac{1}{n \text{ A} - n}$

= \frac{115 A}{(8.47 \text{ 10}^{-8} \text{ m}^{-3})(3.2 \text{ mm}^{-3})(1.67 \text{ 10}^{-16} \text{ C})}

= \frac{115 A}{(8.47 \text{ 10}^{-8} \text{ m}^{-3})(3.12 \text{ m}^{-3})(1.67 \text{ 10}^{-16} \text{ C})}

= \frac{115 A}{(8.47 \text{ 10}^{-8} \text{ m}^{-3})(3.12 \text{ m}^{-3})(1.67 \text{ 10}^{-16} \text{ C})}

= \frac{115 A}{(8.47 \text{ 10}^{-1} \text{ m}/5}

\tag{2.198 \text{ 10}^{-1} \text{ m}/5}

\tag{2.195 A}

\text{ 2.198 \text{ 10}^{-1} \text{ m}/5}

\tag{2.195 A}

\text{ 2.198 \text{ 10}^{-1} \text{ m}/5}

\text{ 2.10 \text{ m}/5

\text

 $\frac{1}{12\pi} > \frac{1}{212\pi}$

	$\sqrt{b}\left(\frac{d^2n}{d^2n}\right) > \sqrt{b}\left(\frac{3d^2n}{3d^2n}\right)$			
	$\frac{1}{\beta^2 \pi} > \frac{1}{3 \delta^2 \pi}$			
	· ·			
	$P_{\omega_1} > P_{\omega_2}$			
	Conductor I has the higher resistance of 4L.			
	V III			
3) a.				
<i>ى</i> رد	K 7 6. K			
	F 8 F F F F F F F F F F F F F F F F F F			
middle B				
Index 7	1 1 0			
Thumb F	· · · · · · · · · · · · · · · · · · ·			
Reasonable?	Yes Yes Yes			
Lower A	E E E E E E E E E E			
	All the confirmation and plantically spectrated as these filters for PHD.			
	All three configurations are physically reasonable as though follow the EHR;			
	the directions of each exes align with our orientations defined by right-hand direction conventions.			
	Wind-links			
u)α.	AFR = ABCING (C)			
1, 4.	C -3			
	S = 5			
	O = 30° above x-ovcis			
	$\vec{C} = 3\hat{x}$			
	D = 5 cos 30 x +5 sin 30 y			
	C × B = (3)(5) sin30 €			
	= 15 6430 2			
	- 12 (1) 2			
	= 7.5 2			
b.	$\vec{A} = 2\hat{x} - 5\hat{z}$			
	B = -5x2+34+52			
	V .			
	で = オ 身 章			
	$\vec{C} = \begin{vmatrix} \vec{A} & \vec{y} & \hat{z} \\ 2 & 0 & -5 \\ -5 & 3 & 5 \end{vmatrix}$			
	$\vec{C} = \begin{vmatrix} \hat{A} & \hat{y} & \hat{z} \\ 2 & 0 & -5 \\ -5 & 3 & 5 \end{vmatrix}$			
	$ = \frac{2}{3} \begin{vmatrix} 0 & -5 \\ 3 & 5 \end{vmatrix} - \frac{3}{3} \begin{vmatrix} 2 & -5 \\ -5 & 5 \end{vmatrix} + \frac{2}{5} \begin{vmatrix} 2 & 0 \\ -5 & 3 \end{vmatrix} $			
	3 2 -2 3 -2 3			
	$=\widehat{\pi}(0-(-15))-\widehat{\mathcal{G}}(10-25)+\widehat{\mathcal{E}}(6-0)$			
	$=\hat{x}(15)-\hat{y}(-15)\rightarrow\hat{z}(6)$			
	$= \hat{\pi}(0 - (-15)) - \hat{y}(10 - 25) + \hat{x}(6 - 0)$ $= \hat{\pi}(15) - \hat{y}(-16) + \hat{x}(6)$ $= 15\hat{x}^2 + 15\hat{y} + 6\hat{x}$			
C.	À = dg +2dg B = -rx -dg			
	B = -r ² x -dŷ			
	$C = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \end{vmatrix}$			
	$ \vec{C} = \begin{vmatrix} \hat{A} & \hat{G} & \hat{z} \\ 0 & d & 2d \\ -r & -d & 0 \end{vmatrix} $			
	-r -d 0			
	$= \frac{1}{2} \left \begin{array}{c c} d & 2d \\ - & 1 \end{array} \right - \frac{1}{2} \left \begin{array}{c c} 0 & 2d \\ - & 1 \end{array} \right + \frac{1}{2} \left \begin{array}{c c} 0 & d \\ - & 1 \end{array} \right $			
·				

= x d 2d	-9 0 26	1 + 2	00		
$= \stackrel{\wedge}{x} \begin{vmatrix} d & 2d \\ -d & 0 \end{vmatrix}$		0	-r -d		
= \hat{\gamma} \left(0 - (-2d^2) \right) - \hat{\gamma} \left(0 - (-2dr) + \hat{\hat{\gamma}} \left(0 - (-dr) \right)					
= x(212) -y(2dr)+=(dr)					
= 2d2x - 2dr q+ dr 2					

5)

Magnetic Fields of Each Region:

- a: (Cout of page)
- b: O (into page)
- c: O
- J: 🔇
- e: 🛞 f. 0

Charge is negative b/c particle deflects

towards higher potential plote.

Negative obegad particles Still wort to have high - low AU, since AU = gaV.

AV is positive (expected belower who any external mort/energy) whom a is regortive since $\Delta V = \Delta V_{low} - \Delta V_{ligh} = regortive.$

6) a. \$ = 2.8 x 10 9 m/s B= 50 MT = 50 × 10-6 T m= 1.67 ×10-27 kg g = 9.8 m/s2 q = +e = 1.6 × 10-19 C

b. F=qvBsin0

= (1.6 × 10-4 C)(28 × 104 m/s) (50 × 10-6 T) singo

= 2.24 ×10-16 N

C. F= mg =(1.67×10⁻²⁹ tp)(98 m/s) = 1.637 ×10⁻²⁰ N

d. F_B = 1369×1010 F_B >> F_S