

M. Morris Mano & Charles R. Kime

LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

☐ TABLE 9-1 Function Table for Arithmetic Circuit

Select		Input	$\mathbf{G} = (\mathbf{A} 1 \mathbf{Y} 1 \mathbf{C_{in}})$							
S ₁	S ₀	Y	C _{in} = 0	C _{in} = 1						
0 0 1 1	0 1 0 1	all 0s $\frac{B}{B}$ all 1s	G = A (transfer) G = A + B (add) $G = A + \overline{B}$ G = A - 1 (decrement)	G = A + 1 (increment) G = A + B + 1 $G = A + \overline{B} + 1$ (subtract) G = A (transfer)						

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

Inputs	Output					
S_1 S_0 B_i	Y_i					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cc} 0 & Y_i = 0 \\ 0 & \\ 0 & Y_i = B_i \\ 1 & \\ 1 & Y_i = \overline{B}_i \\ 0 & \end{array}$					
1 0 1 1 1 0 1 1 1	$ \begin{array}{cc} 0 \\ 1 & Y_i = 1 \\ 1 \end{array} $					

(a) Truth table

(b) Map simplification:

$$Y_i = B_iS_0 + \overline{B}_iS_1$$

© 2008 Pearson Education, Inc.

M. Morris Mano & Charles R. Kime

S_1	S_0	Output	Operation
0	0	$G = A \wedge B$	AND
0	1	$G = A \vee B$	OR
1	0	$G = A \oplus B$	XOR
1	1	$G = \overline{A}$	NOT

(b) Function table

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

□ TABLE 9-2 Function Table for ALU

Operation Select

S ₂	S ₁	S ₀	C _{in}	Operation	Function
0	0	0	0	G = A	Transfer A
0	0	0	1	G = A + 1	Increment A
0	0	1	0	G = A + B	Addition
0	0	1	1	G = A + B + 1	Add with carry input of 1
0	1	0	0	$G = A + \overline{B}$	A plus 1s complement of B
0	1	0	1	$G = A + \overline{B} + 1$	Subtraction
0	1	1	0	G = A - 1	Decrement A
0	1	1	1	G = A	Transfer A
1	X	0	0	$G = A \wedge B$	AND
1	X	0	1	$G = A \vee B$	OR
1	X	1	0	$G = A \oplus B$	XOR
1	X	1	1	$G = \overline{A}$	NOT (1s complement)

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

☐ TABLE 9-3
Function Table for 4-Bit Barrel Shifter

Select			Ou	tput		
S ₁	S ₀	$\overline{Y_3}$	Y ₂	Y ₁	Υ ₀	Operation
0	0	D_3	D_2	D_1	D_0	No rotation
0	1	D_2°	D_1^2	D_0	D_3°	Rotate one position
1	0	D_1^2	D_0	D_3°	D_2°	Rotate two positions
1	1	D_0^1	D_3°	D_2°	D_1^2	Rotate three positions

TABLE 9-4
G Select, H Select, and MF Select Codes Defined in Terms of FS Codes

FS(3:0)	MF Select	G Select(3:0)	H Select(3:0)	Microoperation
0000	0	0000	XX	F = A
0001	0	0001	XX	F = A + 1
0010	0	0010	XX	F = A + B
0011	0	0011	XX	F = A + B + 1
0100	0	0100	XX	$F = A + \overline{B}$
0101	0	0101	XX	$F = A + \overline{B} + 1$
0110	0	0110	XX	F = A - 1
0111	0	0111	XX	F = A
1000	0	1 X 0 0	XX	$F = A \wedge B$
1001	0	1 X 0 1	XX	$F = A \vee B$
1010	0	1 X 1 0	XX	$F = A \oplus B$
1011	0	1 X 1 1	XX	$F = \overline{A}$
1100	1	XXXX	0 0	F = B
1101	1	XXXX	0 1	$F = \operatorname{sr} B$
1110	1	XXXX	10	$F = \operatorname{sl} B$

^{© 2008} Pearson Education, Inc.

M. Morris Mano & Charles R. Kime

DA AA BA M B FS M R D W

■ TABLE 9-5Encoding of Control Word for the Datapath

DA, AA	DA, AA, BA			FS		MD		RW		
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code	
R0	000	Register	0	F = A	0000	Function	0	No Write	0	
<i>R</i> 1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1	
R2	010			F = A + B	0010					
R3	011			F = A + B + 1	0011					
R4	100			$F = A + \overline{B}$	0100					
<i>R</i> 5	101			$F = A + \overline{B} + 1$	0101					
<i>R</i> 6	110			F = A - 1	0110					
<i>R</i> 7	111			F = A	0111					
				$F = A \wedge B$	1000					
				$F = A \vee B$	1001					
				$F = A \oplus B$	1010					
				$F = \overline{A}$	1011					
				F = B	1100					
				$F = \operatorname{sr} B$	1101					
				$F = \operatorname{sl} B$	1110					

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

TABLE 9-6
Examples of Microoperations for the Datapath, Using Symbolic Notation

Micro- operation	DA	AA	ВА	МВ	FS	MD	RW
$R1 \leftarrow R2 - R3$	R 1	<i>R</i> 2	<i>R</i> 3	Register	$F = A + \overline{B} + 1$	Function	Write
R4←sl R6	R4		<i>R</i> 6	•	$F = \operatorname{sl} B$	Function	Write
$R7 \leftarrow R7 + 1$	<i>R</i> 7	<i>R</i> 7		_	F = A + 1	Function	Write
$R1 \leftarrow R0 + 2$	R1	R0		Constant	F = A + B	Function	Write
Data out $\leftarrow R3$			R3	Register	_		No Write
$R4 \leftarrow Data in$	R4			_		Data in	Write
$R5 \leftarrow 0$	<i>R</i> 5	R0	R0	Register	$F = A \oplus B$	Function	Write

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

■ TABLE 9-7
Examples of Microoperations from Table 9-6, Using Binary Control Words

Micro- operation	DA	AA	ВА	МВ	FS	MD	RW
$R1 \leftarrow R2 - R3$	001	010	011	0	0101	0	1
$R4 \leftarrow sl R6$	100	XXX	110	0	1110	0	1
$R7 \leftarrow R7 + 1$	111	111	XXX	Χ	0001	0	1
$R1 \leftarrow R0 + 2$	001	000	XXX	1	0010	0	1
Data out $\leftarrow R3$	XXX	XXX	011	0	XXXX	Χ	0
$R4 \leftarrow Data in$	100	XXX	XXX	Χ	XXXX	1	1
$R5 \leftarrow 0$	101	000	000	0	1010	0	1

Clock 1

Instruction memory $2^{15} \times 16$

Program counter (PC)

Register file 8×16

Data memory $2^{15} \times 16$

 $\ensuremath{\texttt{©}}$ 2008 Pearson Education, Inc.

M. Morris Mano & Charles R. Kime

(c) Jump and Branch

^{© 2008} Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

□ TABLE 9-8 Instruction Specifications for the Simple Computer

Instruction	Opcode	Mne- monic	Format	Description	Status Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1^*$	N, Z
AND	0001000	AND	RD, RA, RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR	RD, RA, RB	$R[DR] \leftarrow R[SA] \lor R[SB]^*$	N, Z
Exclusive OR	0001010	XOR	RD, RA, RB	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]} *$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	
Load Immediate	1001100	LDI	RD, OP	$R[DR] \leftarrow zf OP^*$	
Add Immediate	1000010	ADI	RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP^*$	N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$	
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$	
Branch on Zero	1100000	BRZ	RA,AD	if $(R[SA] = 0) PC \leftarrow PC + se AD$, N, Z
				if $(R[SA] \neq 0) PC \leftarrow PC + 1$	
Branch on	1100001	BRN	RA,AD	if $(R[SA] < 0)$ PC \leftarrow PC + se AD	, N, Z
Negative				if $(R[SA] \ge 0) PC \leftarrow PC + 1$	
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]$	

^{*} For all of these instructions, $PC \leftarrow PC + 1$ is also executed to prepare for the next cycle.

M. Morris Mano & Charles R. Kime

^{© 2008} Pearson Education, Inc.

T 9-9

☐ TABLE 9-9

Memory Representation of Instructions and Data

Decimal Address	Memory Contents	Decimal Opcode	Other Fields	Operation
25	0000101 001 010 011	5 (Subtract)	DR:1, SA:2, SB:3	$R1 \leftarrow R2 - R3$
35	0100000 000 100 101	32 (Store)	SA:4, SB:5	$M[R4] \leftarrow R5$
45	1000010 010 111 011	66 (Add Immediate)	DR:2, SA:7, OP:3	$R2 \leftarrow R7 + 3$
55	1100000 101 110 100	96 (Branch on Zero)	AD: 44, SA:6	If $R6 = 0$, $PC \leftarrow PC - 20$
70	0000000011000000	Data = 192. A Data = 80.	After execution of ins	struction in 35,

^{© 2008} Pearson Education, Inc.

M. Morris Mano & Charles R. Kime

Control word

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime

TABLE 9-10 Truth Table for Instruction Decoder Logic

	Instruction Bits				Control Word Bits						
Instruction Function Type	15	14	13	9	MB	MD	RW	MW	PL	JB	ВС
Function-unit operations using registers	0	0	0	X	0	0	1	0	0	X	Χ
Memory read	0	0	1	Χ	0	1	1	0	0	X	X
Memory write	0	1	0	Χ	0	Χ	0	1	0	Χ	X
Function-unit operations using register and constant	1	0	0	X	1	0	1	0	0	X	X
Conditional branch on zero (Z)	1	1	0	0	X	Χ	0	0	1	0	0
Conditional branch on negative (N)	1	1	0	1	Χ	Χ	0	0	1	0	1
Unconditional jump	1	1	1	X	X	Χ	0	0	1	1	X

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

☐ TABLE 9-11
Six Instructions for the Single-Cycle Computer

Operation Code	Symbolic Name	Format	Description	Function	МВ	MD	RW	MW	PL	JB	вс
1000010	ADI	Immediate	Add immediate operand	$R[DR] \leftarrow R[SA] + zf I(2:0)$	1	0	1	0	0	0	0
0010000	LD	Register	Load memory content into register	$R[DR] \leftarrow M[R[SA]]$	0	1	1	0	0	1	0
0100000	ST	Register	Store register content in memory	$M[R[SA]] \leftarrow R[SB]$	0	1	0	1	0	0	0
0001110	SL	Register	Shift left	$R[DR] \leftarrow sl R[SB]$	0	0	1	0	0	1	0
0001011	NOT	Register	Complement	$R[DR] \leftarrow \overline{R[SA]}$	0	0	1	0	0	0	1
1100000	BRZ	Jump/Branch	If $R[SA] = 0$, branch to $PC + \sec AD$	If $R[SA] = 0$, $PC \leftarrow PC + \text{se AD}$ If $R[SA] \neq 0, PC \leftarrow PC + 1$	1	0	0	0	1	0	0

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

27	24	23 22 2	1 20 17	16 13	12 9	8 7	4	. 3	2	1	0
	NS	PS I L	DX	AX	BX	M B	FS	M D			M W

□ TABLE 9-12 Control-Word Information for Datapath

DX	AX	ВХ	Code	MB	Code	FS	Code	e MD	RW	MM	MW	Code
R[DR] <i>R</i> [SA] <i>R</i> [SB] 0XXX I	Register	0	F = A	0000	FnUt	No Write	Address out	No Write	0
<i>R</i> 8	<i>R</i> 8	<i>R</i> 8	1000 (Constant	1	F = A + 1	0001	Data in	Write	PC	Write	1
<i>R</i> 9	<i>R</i> 9	<i>R</i> 9	1001			F = A + B	0010					
<i>R</i> 10	<i>R</i> 10	<i>R</i> 10	1010			Unused	0011					
<i>R</i> 11	<i>R</i> 11	<i>R</i> 11	1011			Unused	0100					
<i>R</i> 12	<i>R</i> 12	<i>R</i> 12	1100			$F = A + \overline{B} + 1$	0101					
R13	<i>R</i> 13	<i>R</i> 13	1101			F = A - 1	0110					
<i>R</i> 14	<i>R</i> 14	<i>R</i> 14	1110			Unused	0111					
<i>R</i> 15	<i>R</i> 15	R15	1111			$F = A \wedge B$	1000					
						$F = A \vee B$	1001					
						$F = A \oplus B$	1010					
						$F = \overline{A}$	1011					
						F = B	1100					
						$F = \operatorname{sr} B$	1101					
						$F = \operatorname{sl} B$	1110					
						Unused	1111					

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

□ TABLE 9-13Control Information for Sequence Control

NS	PS		IL	
Next State	Action	Code	Action	Code
Gives next state of control state	Hold PC Inc PC	00 01	No load Load IR	0
register	Branch Jump	10 11		

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

☐ TABLE 9-14 State Table for Two-Cycle Instructions

	Inpu	ts	Next					Outp	uts										
State	Opcode	VCNZ	State	L	P S	DX	AX	вх	M B	FS	M D	R W	M	M W		Comments			
INF	XXXXXXX	XXXX	EX0	1	00	XXXX	XXXX	XXXX	Χ	XXXX	Χ	0	1	0		$IR \leftarrow M[PC]$			
EX0	0000000	XXXX	INF	0	01	OXXX	0XXX	XXXX	Χ	0000	0	1	Χ	0	MOVA	$R[DR] \leftarrow R[SA]^*$			
EX0	0000001	XXXX	INF	0	01	OXXX	0XXX	XXXX	Χ	0001	0	1	Χ	0	INC	$R[DR] \leftarrow R[SA] + 1^*$			
EX0	0000010	XXXX	INF	0	01	OXXX	0XXX	0XXX	0	0010	0	1	Χ	0	ADD	$R[DR] \leftarrow R[SA] + R[SB]^*$			
EX0	0000101	XXXX	INF	0	01	OXXX	0XXX	0XXX	0	0101	0	1	Χ	0	SUB	$R[DR] \leftarrow R[SA] + \overline{R[SB]} + 1^*$			
EX0	0000110	XXXX	INF	0	01	OXXX	0XXX	XXXX	Χ	0110	0	1	Χ	0	DEC	$R[DR] \leftarrow R[SA] + (-1)^*$			
EX0	0001000	XXXX	INF	0	01	OXXX	0XXX	0XXX	0	1000	0	1	Χ	0	AND	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$			
EX0	0001001	XXXX	INF	0	01	OXXX	0XXX	0XXX	0	1001	0	1	Χ	0	OR	$R[DR] \leftarrow R[SA] \lor R[SB]^*$			
EX0	0001010	XXXX	INF	0	01	OXXX	0XXX	0XXX	0	1010	0	1	Χ	0	XOR	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$			
EX0	0001011	XXXX	INF	0	01	OXXX	0XXX	XXXX	Χ	1011	0	1	Χ	0	NOT	$R[DR] \leftarrow \overline{R[SA]} *$			
EX0	0001100	XXXX	INF	0	01	OXXX	XXXX	OXXX	0	1100	0	1	Χ	0	MOVB	$R[DR] \leftarrow R[SB]^*$			
EX0	0010000	XXXX	INF	0	01	OXXX	OXXX	XXXX	Χ	XXXX	1	1	0	0	LD	$R[DR] \leftarrow M[R[SA]]^*$			
EX0	0100000	XXXX	INF	0	01	XXXX	OXXX	OXXX	0	XXXX	Χ	0	0	1	ST	$M[R[SA]] \leftarrow R[SB]^*$			
EX0	1001100	XXXX	INF	0	01	OXXX	XXXX	XXXX	1	1100	0	1	0	0	LDI	$R[DR] \leftarrow zf OP^*$			
EX0	1000010	XXXX	INF	0	01	OXXX	OXXX	XXXX	1	0010	0	1	0	0	ADI	$R[DR] \leftarrow R[SA] + zf OP^*$			
EX0	1100000	XXX1	INF	0	10	XXXX	OXXX	XXXX	Χ	0000	Χ	0	0	0	BRZ	$PC \leftarrow PC + \text{se AD}$			
EX0	1100000	XXXO	INF	0	01	XXXX	OXXX	XXXX	Χ	0000	Χ	0	0	0	BRZ	$PC \leftarrow PC + 1$			
EX0	1100001	XX1X	INF	0	10	XXXX	OXXX	XXXX	Χ	0000	Χ	0	0	0	BRN	$PC \leftarrow PC + \text{se AD}$			
EX0	1100001	XXOX	INF	0	01	XXXX	OXXX	XXXX	Χ	0000	Χ	0	0	0	BRN	$PC \leftarrow PC + 1$			
EX0	1110000	XXXX	INF	0	11	XXXX	0XXX	XXXX	Χ	0000	Χ	0	0	0	JMP	$PC \leftarrow R[SA]$			

^{*} For this state and input combination, $PC \leftarrow PC + 1$ also occurs.

^{© 2008} Pearson Education, Inc.

M. Morris Mano & Charles R. Kime

^{© 2008} Pearson Education, Inc. M. Morris Mano & Charles R. Kime

☐ TABLE 9-15
State Table for Illustration of Instructions Having Three or More Cycles

	Inpu	ts						C	Outpu	ts												
State	Opcode	VCNZ	Next state	L	PS	DX	AX	вх	МВ	FS	MD	RW	ММ	M W		Comments						
EX0	0010001	XXXX	EX1	0	00	1000	OXXX	XXXX	Χ	0000	1	1	Χ	0	LRI	$R8 \leftarrow M[R[SA]], \rightarrow EX1$						
EX1	0010001	XXXX	INF	0	01	OXXX	1000	XXXX	Χ	0000	1	1	Χ	0	LRI	$R[DR] \leftarrow M[R8], \rightarrow INF^*$						
EX0	0001101	XXXO	EX1	0	00	1000	OXXX	XXXX	Χ	0000	0	1	Χ	0	SRM	$R8 \leftarrow R[SA], \overline{Z}: \rightarrow EX1$						
EX0	0001101	XXX1	INF	0	01	1000	OXXX	XXXX	Χ	0000	0	1	Χ	0	SRM	$R8 \leftarrow R[SA], Z: \rightarrow INF^*$						
EX1	0001101	XXXO	EX2	0	00	1001	XXXX	XXXX	1	1100	0	1	Χ	0	SRM	$R9 \leftarrow \text{zf OP}, \ \overline{Z}: \rightarrow \text{EX2}$						
EX1	0001101	XXX1	INF	0	01	1001	XXXX	XXXX	1	1100	0	1	Χ	0	SRM	$R9 \leftarrow \text{zf OP}, Z: \rightarrow \text{INF}^*$						
EX2	0001101	XXXX	EX3	0	00	1000	XXXX	1000	0	1101	0	1	Χ	0	SRM	$R8 \leftarrow \text{sr } R8, \rightarrow \text{EX3}$						
EX3	0001101	XXXO	EX2	0	00	1001	1001	XXXX	Χ	0110	0	1	Χ	0	SRM	$R9 \leftarrow R9 - 1, \overline{Z}: \rightarrow EX2$						
EX3	0001101	XXX1	EX4	0	00	1001	1001	XXXX	Χ	0110	0	1	Χ	0	SRM	$R9 \leftarrow R9 - 1, Z: \rightarrow EX4$						
EX4	0001101	XXXX	INF	0	01	OXXX	1000	XXXX	Χ	0000	0	1	Χ	0	SRM	$R[DR] \leftarrow R8, \rightarrow INF^*$						
EX0	0001110	XXXO	EX1	0	00	1000	OXXX	XXXX	Χ	0000	0	1	Χ	0	SLM	$R8 \leftarrow R[SA], \overline{Z}: \rightarrow EX1$						
EX0	0001110	XXX1	INF	0	01	1000	0XXX	XXXX	Χ	0000	0	1	Χ	0	SLM	$R8 \leftarrow R[SA], Z: \rightarrow INF*$						
EX1	0001110	XXXO	EX2	0	00	1001	XXXX	XXXX	1	1100	0	1	Χ	0	SLM	$R9 \leftarrow \text{zf OP}, \ \overline{Z}: \rightarrow \text{EX2}$						
EX1	0001110	XXX1	INF	0	01	1001	XXXX	XXXX	1	1100	0	1	Χ	0	SLM	$R9 \leftarrow \text{zf OP}, Z: \rightarrow \text{INF}^*$						
EX2	0001110	XXXX	EX3	0	00	1000	XXXX	1000	0	1110	0	1	Χ	0	SLM	$R8 \leftarrow \text{sl } R8, \rightarrow \text{EX3}$						
EX3	0001110	XXXO	EX2	0	00	1001	1001	XXXX	Χ	0110	0	1	Χ	0	SLM	$R9 \leftarrow R9 - 1, \overline{Z}: \rightarrow EX2$						
EX3	0001110	XXX1	EX4	0	00	1001	1001	XXXX	Χ	0110	0	1	Χ	0	SLM	$R9 \leftarrow R9 - 1, Z: \rightarrow EX4$						
EX4	0001110	XXXX	INF	0	01	OXXX	1000	XXXX	Χ	0000	0	1	Χ	0	SLM	$R[DR] \leftarrow R8, \rightarrow IF^*$						

^{*}For this state and input combination, $PC \leftarrow PC + 1$ also occurs.

^{© 2008} Pearson Education, Inc.

M. Morris Mano & Charles R. Kime