

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low R_{DS(ON)}

Product Summary

BVDSS	RDSON	ID
100V	4.1mΩ	120A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO220AB Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	100	V	
V _{GS}	V _{GS} Gate-Source Voltage		V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	120	А	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	81	А	
I _{DM}	Pulsed Drain Current ²	512	Α	
EAS	Single Pulse Avalanche Energy ³	486	mJ	
las	Avalanche Current	67	А	
P _D @T _C =25°C	Total Power Dissipation ⁴	178	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹		56	°C/W
Rejc	Thermal Resistance Junction-Case ¹		0.8	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
Б	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		4.1	5.0	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =20A				
V _{GS(th)}	Gate Threshold Voltage	\\ _\\	2.0	3.0	4.0	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$-V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}		V _{DS} =80V, V _{GS} =0V , T _J =100°C			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		35		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.6		Ω
Qg	Total Gate Charge			69		
Q _{gs}	Gate-Source Charge	V _{DS} =50V , V _{GS} =10V , I _D =20A		24		nC
Q _{gd}	Gate-Drain Charge			18.5		
T _{d(on)}	Turn-On Delay Time	VGS=10V, VDD=50V, RG=3Ω, ID=20A		18.0		
Tr	Rise Time			23		
T _{d(off)}	Turn-Off Delay Time			37		ns
T _f	Fall Time			15.7		
C _{iss}	Input Capacitance			4102		
Coss	Output Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		592		pF
C _{rss}	Reverse Transfer Capacitance			19.8		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			120	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

FÈThe Ádata Á ested Ány Ásurface Ánnounted Ánn Ás Ál Ánch² FR-4 Ánoard Ávith Á2OZ Ásopper.

CÈThe Ádata Áested Áby Ápulsed Á Ápulse Ávidth Ás 300 us Á Áduty Ábycle Ás 2%
HÈThe ÁEAS Ádata Áshows ÁMax. Ádating Á ÁThe Áest Ábondition Ás ÁTJ = 25°C, L = 3.0mH, IAS = 18A, VGS = 10V, VDD = 50V; 100% test at L = 0.1mH, IAS =

I He Apower Adissipation As Aimited Aby A 50°C junction Atemperature

Í 🖹 he Ádata Ás Áheoretically Áhe Ásame Ás Á_{D A}and Á_{DMÁ} Án Áteal Áspplications Á Áshould Áse Áimited Ásy Átotal Ásower Á

dissipation.

Typical Electrical & Thermal Characteristics

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics

Figure 3: R_{DS(ON)} vs. Drain Current

Figure 4: R_{DS(ON)} vs. Junction Temperature

Figure 5: $V_{GS(th)}$ vs. Junction Temperature

Figure 6: $V_{BR(DSS)}$ vs. Junction Temperature

Typical Electrical & Thermal Characteristics

Figure 7: Body-Diode Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Current De-rating

Figure 10: Power De-rating

Figure 11: Maximum Safe Operating Area

Figure 12: Single Pulse Power Rating, Junction-to-Case

Typical Electrical & Thermal Characteristics

Figure 13: Normalized Maximum Transient Thermal Impedance

Mechanical Dimensions for TO-220

OMMON DIMENSIONS

SYMBOL	MM			
	MIN	MAX		
Α	9.70	10.30		
В	3.40	3.80		
С	8.80	9.40		
D	1.17	1.47		
E	2.60	3.50		
F	15.10	16.70		
G	19.55MAX			
Н	2.54REF			
I	0.70	0.95		
J	9.35	11.00		
K	4.30	4.77		
L	1.20	1.45		
М	0.40	0.65		
N	2.20	2.60		