BAB 7

IMPLEMENTASI FORTRAN DALAM MENCARI HASIL INTERPOLASI

TUJUAN

Tujuan Instruksi Umum:

§ Memberikan gambaran dan penjelasan kepada mahasiswa tentang interpolasi dan proses pencarian hasil interpolasi suatu persamaan.

Tujuan Instruksi Khusus:

§ Agar dapat membuat suatu program sederhana untuk mencari suatu interpolasi

MATERI

Sebuah fungsi terkadang ditampilkan dalam bentuk harga pada suatu table lain dari penyajian yang biasa diberikan yakni menggunakan rumus.

Apabila ingin dicari harga suatu F(X) dimana X tidak terdapat dalam table tetapi X masih terdapat didalam suatu interval $[X_1..X_n]$, maka harga F(X) dapat ditaksir dengan harga F(X) yang diketahui, disekitarnya. Proses ini dikenal dengan nama i**nterpolasi.**

Ada tiga metode interpolasi yaitu:

- a. Interpolasi polynomial; dipakai bila hubungan fungsional tidak diketahui dan jumlah pengamatan tidak begitu banyak.
- b. Interpolasi Lest Square; dipakai bila hubungan fungsional diketahui
- c. Interpolasi Spline; dipakai bila hubungan fungsional tidak diketahui dan jumlah data pengamatan boleh banyak ataupun sedikit.

Pada modul ini hanya akan dibahas metode interpolasi polynomial berselang sama. Pada metode ini terbagai atas:

Ø Selisih Muka (Forward Difference)Bila Y₀, Y₁, Y₂,...Y_n adalah nilai-nilai dari Y, maka

Bila selisih Y tersebut berturut-turut ditulis sebagai Delta (Y₀), Delta (Y₁),

Delta (Y_2)...Delta (Y_{n-1}) maka diperoleh:

Delta
$$(Y_0) = (Y_1 - Y_0)$$

Delta
$$(Y_1) = (Y_2 - Y_1)$$

......

Delta
$$(Y_{n-1}) = (Y_n - Y_{n-1})$$

Dengan Delta (Yi) disebut sebagai operator selisish muka

Dengan cara yang sama dapat dicari selisih muka kedua (Delta² (Yi)), ketiga (Delta³ (Yi)), keemapat (Delta⁴ (Yi)), ...ke n (Deltaⁿ (Yi)).

Ø Selisih Belakang (Backward Difference)

Bila Y₀, Y₁, Y₂,...Y_n adalah nilai-nilai dari Y, maka

$$(Y_1-Y_0), (Y_2-Y_1), ...(Y_n-Y_{n-1})$$
 adalah selisih dari Y.

Bila selisih Y tersebut berturut-turut ditulis sebagai Nabla (Y_0) , Nabla (Y_1) , Nabla (Y_2) ...Nabla (Y_{n-1}) maka diperoleh:

Nabla
$$(Y_0) = (Y_1 - Y_0)$$

Nabla
$$(Y_1) = (Y_{2-Y_1})$$

.....

Nabla
$$(Y_{n-1}) = (Y_{n-Y_{n-1}})$$

Dengan Nabla (Yi) disebut sebagai operator selisish belakang

Dengan cara yang sama dapat dicari selisih belakang kedua (Nabla² (Yi)), ketiga (Nabla³ (Yi)), keemapat (Nabla⁴ (Yi)), ...ke n (Nablaⁿ (Yi)).

Ø Selisih Tengah

Operator selisih tengah didefinisikan oleh relasi:

DO
$$(Y_{1/2}) = (Y_1 - Y_0)$$

DO
$$(Y_{3/2}) = (Y_1 - Y_0)$$

DO
$$(Y_{5/2}) = (Y_1 - Y_0)$$

DO
$$(Y_{n-1/2}) = (Y_1 - Y_0)$$

Dengan cara yang sama, selisih tengah berderajat tinggi dapat didefinisikan. Untuk dapat mengetahui langkah-langkah pembuatn programnya, perhatikan dengan seksama Activity Lab yang telah disediakan.