## Segmentare Semantica

# Transferul Parametrilor Invatati (1) (Knowledge Transfer)



#### Problema

 Pentru o arhitectura complexa, cu un numar mare de parametrii, este necesar un dataset mare, pentru a nu face overfitting (invatare mot-a-mot a datasetului)

#### Solutie:

• In cazul in care avem un dataset mic, dar cu obiective de antrenare / invatare similare cu cele ale unor CNN'uri antrenare pe alte dataseturi, mari, putem sa preluam din "knowledge" ul acelor retele neurale prin "Transfer Learning"

#### Transferul Parametrilor Invatati (2)



#### Transferul Parametrilor Invatati (3)

|                                   | Dataset Similar                                                                       | Dataset Diferit                                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Dataset Mic / Fara<br>diversitate | Schimb clasificatorul liniar<br>de pe ultimul layer al unei<br>retele pre-invatate    | Greu de rezolvat. Reinitializeaza / Finetune parti mai mari din retea. Experimenteaza / Augmenteaza     |
| Dataset Bogat / Complex           | Finetune ultimele cateva layere. Cate? Cum va functiona reteaua pe datasetul initial? | Finetune peste un numar mare de layere. Permite retelei sa invete noile caracteristici ale Datasetului. |

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Input

#### Recapitulare Task Clasificare

- Imagine de Input CNN Clasificare 1 obiect/poza
  - Answer DA/NU
- Obiectul poate sa fie oriunde in poza, in orice pozitie, dar preferabil in foreground, de dimensiune mare
- Softmax / CrossEntropy ca functie de loss.
- One-Hot-Encoding ca reprezentare a datelor
- 1 sau mai multe layere FC la sfarsitul retelei.
  - o Posibil sa folosim Global Average Pooling in loc de flatten
  - o Dar vom avea un layer FC la final
- Ce se intampla daca sunt mai multe obiecte in poza?
- Ce alta informatie ne intereseaza, legat de instanta fiecarui obiect?
- Ce se intampla daca obiectele se suprapun?



## Urmatoarele Taskuri in Computer Vision





Classification + Localization



Object Detection



Instance Segmentation



### Segmentare Semantica (1)

Imagine Input -> CNN -> Masca Segmentare

- Nu diferentiaza intre instantele de obiecte
- Conteaza doar clasificarea fiecarui pixel in clasa din care face parte
- CrossEntropy loss peste fiecare pixel

Cum arata Ground Truth-ul?







#### Intuitie pentru Semantic Segmentation

- Avem o retea de clasificare binara: 1/0 per poza, sau clasificare pe C clase
- Dorim sa extindem 1/0 per poza la 1/0 per pixel (segmentare binara)
- Segmentare: pixelwise classification
- Convoluțiile păstrează ordinea spatiala
  - o Ordinea este pastrata, dar avem height/width mai mic
  - o Putem face upsampling pentru a recastiga rezolutia din input
  - Din natura convolutiilor, vine firesc sa folosim doar convolutii pentru dense classification: segmentation
- In dreapta:
  - C numarul de clase: avem volum HxWxC
  - $\circ$  Per pixel i, j = (1:H, 1:W) alegem:
    - Id-ul clasei C cu cel mai bun scor
  - o Softmax-ul este pixelwise in dimensiunea C



#### Segmentare Semantica (2)

Abordarea Naiva / Vanilla. Observatie: Doar Layere Convolutionale: Fully Convolutional Neural Network (FCN)

Care este problema in cazul acesta?

Cum dezvolti dataset cu GT pentru Segmentare semantica?



#### Segmentare Semantica (3)

- In practica, este ineficient sa pastram layere convolutionale ( cu acelasi width / height si depth 64 / 128 / 256 ) pe toata adancimea arhitecturii. (numar de parametrii foarte mare, consum de memorie foarte mare):
  - Arhitectura Clepsidra (Hourglass Encoder/Decoder):
- Input Image -> Downsampling (pooling / stride) > Upsampling < Output Image Mask



## Encoder/Decoder Hourglass (3)



**Encoder Part** 

**Decoder Part** 

## Upsampling

#### **Upsampling:**

- Nearest Neighbor
- Bilinear Upsampling
- Transposed Convolution
- Max Unpooling





#### Convolutia Transpusa

Upsampling cu parametri invatabili : Convolutie Transpusa

- In forward pass avem convolutie normala. In backward pass avem convolutie transpusa
- Face upsampling la feature-map invatand prin parametrii unei convolutii felul in care trebuie sa distribuie, ponderat, valorile pentru urmatorul feature-map
- Valorile filtrului W sunt inmultite cu valoarea de input din feature map => In output vor exista copii ponderate ale W
- Acolo unde aceste copii se suprapun, valorile W\*pondere se aduna.
- Se mai numeste si "Deconvolution"/Fractionally Strided Conv



http://deeplearning.net/software/theano/tutorial/conv\_arithmetic.html https://arxiv.org/pdf/1603.07285.pdf https://github.com/vdumoulin/conv\_arithmetic

#### Bilinear Interpolation





Intuitie pentru convolutia transpusa: invatam modul de influenta al vecinilor

#### Convolutia Transpusa

- Intuitiv, cu cat o valoare (pixel) e mai aproape de centru in output, cu atat acumuleaza "fractiuni" din mai multe valori (pixeli) de input
- Stride-ul se aplica acum in **output**: stride mai mare -> dimensiune mai mare
  - Stride-ul mare produce un output mai mic decat input/s in convolutia directa
- Inversam input/output: input-ul devine output si vice versa:
  - $\circ$  Input<sup>T</sup> = Output<sub>C</sub>
  - Output<sup>T</sup> = Input<sub>C</sub>
  - Se doreste reconstituirea input-ului care a fost folosit in convolutia directa pentru generara output-ului
- Dimensiuni output: (I 1) \* S + K

Stride 1

Stride 2



#### Fully Convolutional Networks - E Shelhamer

- Skip connections
- Upsample from stride 16 to stride 8:
- Use 1x1 bottlenecks to compress to number of classes
- Add with encoder counterpart from stride 8 (1x1 compressed to number of classes)



## Fully Convolutional Networks



#### Resurse

- Aritmetica Convolutiilor
  - http://deeplearning.net/software/theano/tutorial/conv\_arithmetic.html
  - https://arxiv.org/pdf/1603.07285.pdf
  - o <a href="https://github.com/vdumoulin/conv">https://github.com/vdumoulin/conv</a> arithmetic
  - https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0 #d907
  - https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52 d13030c7e8
- Segmentare Semantica folosind FCN
  - https://people.eecs.berkeley.edu/~jonlong/long\_shelhamer\_fcn.pdf

Q & A

YES

NO