Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria ordinaria

Ejercicio 1. (2.5 puntos) Sea Ω un dominio de \mathbb{C} y sean $f, g \in \mathcal{H}(\Omega)$. Supongamos que existe $k \in \mathbb{N}$ de modo que $f^k(z) = g^k(z)$ para todo $z \in \Omega$. Probar que existe $\lambda \in \mathbb{C}$, con $\lambda^k = 1$, tal que $f(z) = \lambda g(z)$ para cada $z \in \Omega$.

Ejercicio 2. (2.5 puntos) Integrando la función $z \mapsto \frac{ze^{iz}}{(1+z^2)^2}$ sobre un camino cerrado que recorra la frontera de la mitad superior del disco D(0,R) calcular la integral:

$$\int_{-\infty}^{+\infty} \frac{x \operatorname{sen}(x)}{(1+x^2)^2} \, dx.$$

Ejercicio 3. (2.5 puntos) Sean $f, g \in \mathcal{H}(\mathbb{C})$ verificando $f(g(z)) = z^2$ para cada $z \in \mathbb{C}$. Probar que una de las funciones $f \neq g$ es un polinomio de grado uno y la otra es un polinomio de grado dos.

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\sin(t^n + z)\cos(t^n + z)}{1 + t^2} dt \qquad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Granada, 9 de junio de 2020

Instrucciones:

- Enviad la prueba resuelta a mi email (jmeri@ugr.es) en un único archivo .pdf con el nombre en el formato Apellido1Apellido2Nombre.pdf
- Tenéis hasta las 13:00 para entregar la prueba.