

March 1, 2024

hmmlearn

```
[]: from IPython.display import clear_output
[]: !pip install sklearn-crfsuite
     !pip install tabulate
     !pip install nervaluate
     clear_output()
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from wordcloud import WordCloud
     from tabulate import tabulate
     from sklearn.feature_extraction.text import CountVectorizer
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import classification_report, confusion_matrix
     import itertools
     from nervaluate import Evaluator
     from tqdm.auto import tqdm
     import re
     tqdm.pandas()
[]: tag_name_pattern = re.compile(r"(B|I)-")
     def map_seq(seq, dictionary):
         return [dictionary[elem] for elem in seq]
     def plot_confusion_matricies(y_true, y_pred, class_labels):
         cm = confusion_matrix(y_true, y_pred)
         precision_cm = cm / np.sum(cm, axis=0)
         recall_cm = cm / np.sum(cm, axis=1)
         precision_cm = pd.DataFrame(np.flip(precision_cm, axis=0),__
      ⇔columns=class_labels)
```

```
recall_cm = pd.DataFrame(np.flip(recall_cm, axis=0), columns=class_labels)
         precision_cm = precision_cm.set_index(np.flip(class_labels)).fillna(0)
         recall_cm = recall_cm.set_index(np.flip(class_labels)).fillna(0)
         _, axs = plt.subplots(ncols=2, figsize=(22,8))
         axs[0].set_title("Precision per class")
         axs[1].set_title("Recall per class")
         sns.heatmap(precision_cm, annot=True, fmt=".2f", robust=True, cbar=False,
      \Rightarrowax=axs[0]):
         sns.heatmap(recall_cm, annot=True, fmt=".2f", robust=True, cbar=False,
      \Rightarrowax=axs[1]);
     def plot_eval_result(results):
         keys = list(results.keys())
         #_, axs = plt.subplots(nrows=len(keys), ncols=2, figsize=(20,12))
         normalized_stats = ["f1", "recall", "precision"]
         absolute_stats = ["correct", "incorrect", "partial", "missed", "spurious", __

¬"possible", "actual"]

         for ind, key in enumerate(keys):
             fig, axs = plt.subplots(ncols=2, figsize=(20,3))
             fig.suptitle(key)
             stats = results[key]
             temp df = pd.DataFrame(stats, index=[0], columns=stats.keys())
             \#temp\_df[absolute\_stats] = temp\_df[absolute\_stats] /_{\sqcup}
      \hookrightarrow temp\_df[absolute\_stats].sum(axis=1).iloc[0]
             sns.barplot(data=temp_df[normalized_stats], palette="crest", ax=axs[0])
             sns.barplot(data=temp df[absolute stats], palette="crest", ax=axs[1])
[]: data1 = pd.read_csv("ner.csv", encoding = "ISO-8859-1", index_col=0,__
      ⇔error_bad_lines=False)
     data2 = pd.read_csv("ner_dataset.csv", encoding="latin1")
    <ipython-input-5-baa0f446c6a5>:1: FutureWarning: The error_bad_lines argument
    has been deprecated and will be removed in a future version. Use on bad lines in
    the future.
      data1 = pd.read_csv("ner.csv", encoding = "ISO-8859-1", index_col=0,
    error bad lines=False)
    Skipping line 281837: expected 25 fields, saw 34
[]: chrs = ["\x85", "\x94"]
     lengths = data2["Word"].apply(lambda x: len(x.split()))
     data2 = data2[lengths == 1]
```

```
data2 = data2[data2["Word"].apply(lambda x: x not in chrs)]
     data2 = data2.reset_index(drop=True)
     first_words_inds = data2[data2["Sentence #"].notna()].index.to_list()
     for i in tqdm(range(len(first_words_inds)-1)):
         data2["Sentence #"].loc[range(first_words_inds[i], first_words_inds[i+1])]_
     data2["Sentence #"].loc[range(first_words_inds[-1],data2["Sentence #"].
      ⇒shape[0])] = len(first_words_inds) - 1
     data2 = data2.astype({"Sentence #": int, "Word": "string", "POS": "string", "

¬"Tag": "string"})
     texts_df = data2[["Sentence #", "Word", "POS", "Tag"]].groupby(by="Sentence #").
      ⇒aggregate(lambda x: " ".join(x))
     texts_df.columns = ["text", "pos seq", "tag seq"]
                   | 0/47958 [00:00<?, ?it/s]
      0%1
[]: from sklearn.model selection import train test split
     from sklearn_crfsuite.metrics import flat_classification_report
[]: class HMMTaggerTemplate():
         def __init__(self, states, observations):
             # add 'Unk' to handle unkown tokens
             self.states = states
             self.observations = [*observations, 'Unk']
             self.states_num = len(self.states)
             self.observations_num = len(self.observations)
             self.init prob = np.zeros(shape=(1, self.states num))
             self.transition_matrix = np.zeros(shape=(self.states_num,self.
      ⇔states num))
             self.emission_matrix = np.zeros(shape=(self.states_num, self.
      ⇔observations_num))
             self.states_to_idx = {state:idx for idx, state in enumerate(self.
             self.observations_to_idx = {obs:idx for idx, obs in enumerate(self.
      →observations)}
         def fit(self, train_data):
```

```
self.emission_matrix += 1 # smoothing
      c_final = np.zeros(shape=(1, self.states_num))
      for example in train_data:
        first_state_ind = self.states_to_idx[example[0][0]]
        last_state_ind = self.states_to_idx[example[-1][0]]
        last_obs_ind = self.observations_to_idx[example[-1][1]]
        self.init prob[0, first state ind] += 1
        c_final[0, last_state_ind] += 1
        for ind in range(len(example)-1):
          curr_state_ind = self.states_to_idx[example[ind][0]]
          curr_obs_ind = self.observations_to_idx[example[ind][1]]
          next_state_ind = self.states_to_idx[example[ind+1][0]]
          self.transition_matrix[next_state_ind, curr_state_ind] += 1
           self.emission_matrix[curr_state_ind, curr_obs_ind] += 1
        self.emission_matrix[last_state_ind, last_obs_ind] += 1
      self.init_prob = self.init_prob / np.sum(self.init_prob)
      self.transition_matrix = (self.transition_matrix / (np.sum(self.
⇔transition matrix, axis=0))).T
      self.emission_matrix = self.emission_matrix / np.sum(self.
⇔emission_matrix, axis=1).reshape(-1, 1)
      #return self
  def __viterbi(self, obs_sequence_indices):
      tmp = [0]*self.states_num
      delta = [tmp[:]] # Compute initial state probabilities
      for i in range(self.states num):
        delta[0][i] = self.init_prob[0,i] * self.emission_matrix[i,_
→obs_sequence_indices[0]]
      phi = [tmp[:]]
      for obs in obs_sequence_indices[1:]: # For all observations except the_
⇒inital one
        delta_t = tmp[:]
        phi_t = tmp[:]
        for j in range(self.states_num): # Following formula 33 in_
→Rabiner'89
          tdelta = tmp[:]
          tphimax = -1.0
```

```
for i in range(self.states_num):
                   tphi_tmp = delta[-1][i] * self.transition_matrix[i,j]
                   if (tphi_tmp > tphimax):
                     tphimax = tphi_tmp
                     phi_t[j] = i
                   tdelta[i] = tphi_tmp * self.emission_matrix[j, obs]
                 delta t[j] = max(tdelta)
               delta.append(delta_t)
               phi.append(phi_t)
             tmax = -1.0
             for i in range(self.states_num):
               if (delta[-1][i] > tmax):
                 tmax = delta[-1][i]
                 state_seq = [i] # Last state with maximum probability
             phi.reverse() # Because we start from the end of the sequence
             for tphi in phi[:-1]:
               state_seq.append(tphi[state_seq[-1]])
             return reversed(state_seq)
         def predict(self, obser_seq):
             result = []
             for seq in tqdm(obser seq):
               obser_inds_seq = [self.observations_to_idx[token] for token in seq]
               state_ind_seq = list(self.__viterbi(obser_inds_seq))
               state_seq = [self.states[state_ind] for state_ind in state_ind_seq]
               result.append(state_seq)
             return result
[]: texts = texts_df["text"].apply(lambda x: x.split())
     tags = texts_df["tag seq"].apply(lambda x: x.split())
     X_train, X_test, y_train, y_test = train_test_split(texts.to_numpy(), tags.
      →to_numpy(), test_size=0.15, random_state=42)
[]: ziped_train = []
     for pair in np.stack((X_train, y_train), axis=1):
         ziped_train.append(np.stack((pair[1], pair[0]), axis=1))
[]: states = data2["Tag"].unique().to_numpy()
     observ = data2["Word"].unique().to_numpy()
     hmm = HMMTaggerTemplate(states, observ)
[ ]: hmm.fit(ziped_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to
0.0 in labels with no predicted samples. Use `zero_division` parameter to
control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
B-art	0.00	0.00	0.00	63
B-eve	0.00	0.00	0.00	48
B-geo	0.83	0.86	0.85	5777
B-gpe	0.89	0.90	0.90	2349
B-nat	0.00	0.00	0.00	40
B-org	0.78	0.60	0.68	2976
B-per	0.80	0.72	0.76	2562
B-tim	0.92	0.75	0.83	3065
I-art	0.00	0.00	0.00	45
I-eve	1.00	0.05	0.09	42
I-geo	0.76	0.68	0.72	1102
I-gpe	0.93	0.56	0.70	25
I-nat	0.00	0.00	0.00	9
I-org	0.72	0.76	0.74	2484
I-per	0.76	0.93	0.83	2589
I-tim	0.84	0.44	0.58	974
0	0.98	0.99	0.99	132448
accuracy			0.96	156598
macro avg	0.60	0.49	0.51	156598
weighted avg	0.95	0.96	0.95	156598

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
_warn_prf(average, modifier, msg_start, len(result))
```

```
[]: plot_confusion_matricies(y_test_flat, y_pred_flat, states)
```

<ipython-input-4-f37e1a220c3b>:9: RuntimeWarning: invalid value encountered in
divide

precision_cm = cm / np.sum(cm, axis=0)


```
[]: ent_types = list(set([tag_name_pattern.sub("", tag) for tag in states]))
```

```
[]: evaluator = Evaluator(y_test, y_pred, tags=ent_types, loader="list")
```

[]: results, results_by_tag = evaluator.evaluate()