3818 R Homework 5

*** Student Name ***

8/20/2020

Question 1

For this exercise we will run a regression using Swiss demographic data from around 1888. The sample is a cross-section of French speaking counties in Switzerland. This data come with the R package datasets. The first step is to load the package into your current environment by typing the command library(datasets) in to the R console. 1 This loads a number of datasets including one called swiss. Type help(swiss) in the console for additional details. The basic variable definitions are as follows:

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig, 'common standardized fertility measure' [,2] Agriculture % of males involved in agriculture as occupation [,3] Examination % draftees receiving highest mark on army examination [,4] Education % education beyond primary school for draftees. [,5] Catholic % 'catholic' (as opposed to 'protestant'). [,6] Infant.Mortality live births who live less than 1 year.

```
help(swiss, package="datasets")
data(swiss, package="datasets")
head(swiss)
```

##		Fertility	Agriculture	Examination	Education	Catholic
##	Courtelary	80.2	17.0	15	12	9.96
##	Delemont	83.1	45.1	6	9	84.84
##	${\tt Franches-Mnt}$	92.5	39.7	5	5	93.40
##	Moutier	85.8	36.5	12	7	33.77
##	Neuveville	76.9	43.5	17	15	5.16
##	Porrentruy	76.1	35.3	9	7	90.57
##		Infant.Mon	rtality			
##	Courtelary		22.2			
##	Delemont		22.2			
##	${\tt Franches-Mnt}$		20.2			
##	Moutier		20.3			
##	Neuveville		20.6			
##	Porrentruy		26.6			

Use the summary() command to report the mean and median for the variables Fertility, Education, and Catholic.

Question 2

We want to estimate the expected Fertility level in a Swiss county conditional on the county's education level. We assume the relationship is linear. So, we are interested in estimating α and β in

Fertility_c =
$$\alpha + \beta \cdot \text{Education}_c + \epsilon_c$$
.

If we use Ordinary Least Squares to estimate and we have the following formulas:

$$\hat{\beta} = r_{x,y} \frac{s_y}{s_x}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x},$$

where y is the left hand side variable, x is the right hand side variable, and the bar⁻denotes the mean, s is the standard deviation, and $r_{x,y}$ is the correlation between x and y. - Find the correlation between Education and Fertility using the cor() function, as well as the sample standard deviation for each variable using the sd() function. Report these numbers. - Use the cor() and sd() function to get an estimate for β in the equation relating Fertility toEducation. Keep this value stored in a scalar called beta_hat. Report this number. - Now use the estimate beta_hat, along with the function mean() to get an estimate for alpha. Keep this value stored as a scalar called alpha hat. Report this number.

Code for Question 2 goes here

Answer:

Question 3

Use alpha_hat and beta_hat to predict the average fertility rate in a county where 40% of the population is educated.

Code for Question 3 goes here

Answer:

Question 4

Plot the relationship between Fertility and Education using the plot() function with Education on the horizontal axis. Make sure to label your axis!

Code for Question 4 goes here

Answer:

Question 5

Now estimate the model the model relating Fertility Rate to Education using the lm() function in R's base code. Typically, if you want to estimate you use the syntax lm(yvar ~ xvar, data= dataframe). - Store the estimation results as follows model_1 <- lm(...). This list should include a number of details include the estimated parameters, the coefficient of determination (r-squared), all of the residuals from the model, and more. - Use the command summary(model_1) to report the summary of the ordinary least squares estimation and paste the results in the word document. Do you have the same estimates for and from Question 2? -. What is the R-squared from this regression? Interpret it in a meaningful way.

Code for Question 5 goes here

Answer:

Question 6

For each one of the estimated parameters reported in Question 5: - Interpret the coefficient in a meaningful way. - Report the results from testing the null hypothesis that the true parameter value is zero.

Answer:

Question 7

Recreate the figure in Question 4, and then add the line of best fit using the abline() function with the coefficients from model_1, model_1\$coefficients.

```
# Code for Question 7 goes here
```

Answer:

Question 8

Plot Education with the residuals associated with the model, model_1\$residuals. Do the residuals show any pattern?

```
# Code for Question 8 goes here
```

Answer:

Question 9

Use the mean() command to show that the average of the residuals associated with model_1 is zero.

Code for Question 9 goes here