Introduction into Particle Physics for Data Scientists

Course Structure

- Introduction. Particle Physics meets Machine Learning (ML).
 Examples of applications;
- Particle detector structure. Particle identification;
- ML and New Physics search;
- Dark matter search at SHiP experiment;
- Experiment design pptimization.

Why Particle Physics?

- The most fundamental understanding of the Universe;
- Global challenge to the Humanity;
- A lot of puzzles unsolved;
- Requires advanced Machine Learning;
- Source of technologies for everyday life.

Disclaimer: Particle Physics subject is much more complex than described here. We do not guarantee completeness, accuracy or applicability of the information therein to your Particle Physics adventure. The sole reason for the simplifications is to allow for a more prominent Universe picture to emerge that will help you to get engaged in the beautiful journey of the Universe exploration!

Scales of our Universe

Earth 106m

Sun 109m

Solar System 1012m

Galaxy 1018m

Visible Universe Today is around 10²⁷ m

R

Scales of our Universe

Earth 106m

Sun 109m

Solar System 1012m

Galaxy 1018n

Gravity~ 10⁻⁴¹

Each "structure" is due to some fundamental force. The stronger the force the smaller the structure.

http://bit.ly/2tfxP8l

Standard Model (SM) of Elementary Particles

Standard Model (SM) of Elementary Particles

https://simple.wikipedia.org/wiki/Standard_Model

Standard Model (SM) of Elementary Particles

https://www.youtube.com/watch?v=edgsmtUH954

Standard Model (SM) Shortcomings

- Gravity not included! Why gravity is so much weaker than everything else?
- Why masses of particles differ so massively?
- SM misses great deal of the Universe: No Dark Matter candidate. Can't explain Dark Energy.
- SM requires 19 unrelated and arbitrary parameters (e.g. lepton (electron, muon) masses)...Why these values?
- Also the asymmetry between matter and anti-matter is too negligible according to the SM to explain why we exist!

Experimental Particle Physics

CERN

- The world largest international laboratory
- More than 20 experiments international collaborations
- Birthplace of the WWW
- Large Hadron Collider arena for the Universe models contest

ABC of LHC

- 27 km-long tunnel, 50-175 meters deep
- Proton speed: 0,99999999 c
- Total collision Energy: up to 14 TeV
- 4 "big" detectors: ALICE, ATLAS, CMS, LHCb
- 40 mln bunch collisions per second
- Tens of petabytes of data per year

Main stages

- Create protons out of Hydrogen, accelerate to 0,999999999
- Smash bunches of protons ('events')
- Convert raw detector information into 'hits' (pixels)
- Reconstruct particle trajectories 'tracks', 'jets', 'showers'
- Identify types of particles
- Reconstruct decay structure
- Filter meaningful events
- Analyse statistical properties

Detector: Sub-atomic Digital Camera

1,0000000000

1.50000000000

0,00000000

Particle Identification

R

Lippmann / https://inspirehep.net/record/884672/plots

How CERN Works

https://videos.cern.ch/record/2020780

Machine Learning Challenges

- Precise and fast particle tracking:
 - single tracks, shower, jets.
- Particle identification;
- Fast and accurate online data processing and filtering;
- Anomaly detection:
 - data quality monitoring;
 - infrastructure monitoring.
- Detector design optimization (bayesian optimization, surrogate modelling).

Tracking Example

• For a given set of hits recognize particle tracks of certain shapes: straight lines, circles, etc.

Estimate the tracks parameters

Testing Hypotheses Experimentally

Extra Dimensions

Why is gravity so much weaker than the other forces?

Large Extra Dimension (LED models)

- <blah blah про атлета>
- Each decay happens with own probability (branching ratio), but
- different theories may give different predictions for it, thus
- measuring actual value is a good key for theory discrimination.

ТЕХНИЧЕСКИЙ СЛАЙД

Theory Graveyard

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

AILAS EXOTICS	Searcnes*	- 95%	CL	EXClusion	
Status: March 2015					

	Model	ℓ, γ	Jets	E _T miss	∫£ dt[fl	Mass limit		Reference
	ADD $G_{KK} + g/q$		≥ 1 j	Yes	20.3	M _D 5.25 TeV	n = 2	1502.01518
	ADD non-resonant &	2e, µ	- L	ies	20.3	M _S 5.25 TeV	n = 2 n = 3 HLZ	1407.2410
Extra dimensions	ADD QBH $\rightarrow \ell q$	1 e, μ	1 j	_	20.3	M _{th} 5.2 TeV	n = 5 ALZ $n = 6$	1311.2006
	ADD QBH	-	2 j	_	20.3	M _{th} 5.82 TeV		1407.1376
	ADD BH high N _{trk}	2 μ (SS)	-,	_	20.3	M _{th} 4.7 TeV	$n = 6$, $M_D = 3$ TeV, non-rot BH	1308.4075
	ADD BH high $\sum p_T$	$\geq 1 e, \mu$	≥ 2 j	_	20.3	M _{th} 5.8 TeV		1405,4254
	ADD BH high multijet		≥ 2 j	_	20.3	M _{th} 5.8 TeV		Preliminary
Ė	RS1 $G_{KK} \rightarrow \ell\ell$	2 e, μ	,	_	20.3	G _{KK} mass 2.68 TeV	$k/\overline{M}_{Pl} = 0.1$	1405.4123
a	RS1 $G_{KK} \rightarrow \gamma \gamma$	2γ	_	_	20.3	G _{KK} mass 2.66 TeV	$k/\overline{M}_{Pl} = 0.1$	Preliminary
ŧ,	Bulk RS $G_{KK} \rightarrow ZZ \rightarrow ga\ell\ell$	2 e, μ	2i/1J	_	20.3	G _{KK} mass 740 GeV	$k/\overline{M}_{Pl} = 1.0$	1409.6190
Ü	Bulk RS $G_{KK} \rightarrow WW \rightarrow gg\ell v$	1 e, μ	2j/1J	Yes	20.3	W' mass 700 GeV	$k/\overline{M}_{Pl} = 1.0$	1503.04677
	Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	-	4 b	_	19.5	G _{KK} mass 590-710 GeV	$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-005
	Bulk RS $g_{KK} \rightarrow t\bar{t}$	1 e.μ	≥ 1 b, ≥ 1J	/2i Yes	20.3	g _{KK} mass 2.2 TeV	BR = 0.925	ATLAS-CONF-2015-009
	2UED / RPP		≥ 1 b, ≥ 1		20.3	KK mass 960 GeV		Preliminary
_	SSM $Z' \rightarrow \ell \ell$	2 e, μ	_	_	20.3	Z' mass 2.9 TeV		1405.4123
us	SSM Z' → TT	2 τ	_	_	19.5	Z' mass 2.02 TeV		1502.07177
SO	SSM $W' \rightarrow \ell v$	1 e, μ	_	Yes	20.3	W' mass 3.24 TeV		1407.7494
posons	$FGM W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$	3 e, µ	-	Yes	20.3	W' mass 1.52 TeV		1406.4456
9	EGM $W' \rightarrow WZ \rightarrow gg\ell\ell$	2 e, μ	2j/1J	-	20.3	W' mass 1.59 TeV		1409.6190
Gauge	$HVT W' \rightarrow WH \rightarrow \ell \nu bb$	1 e, μ	2 b	Yes	20.3	W' mass 1.47 TeV	$g_V = 1$	Preliminary
Ga	LRSM $W_{P}' \rightarrow t\overline{b}$	1 e, μ	2 b, 0-1 j		20.3	W' mass 1.92 TeV		1410,4103
	LRSM $W_R^R \to t\overline{b}$	0 e, μ	≥ 1 b, 1 J		20.3	W' mass 1.76 TeV		1408.0886
-	Cl qqqq	_	2 i	_	17.3	*	12.0 TeV $\eta_{LL} = -1$	Preliminary
O	Cl qqℓℓ	2 e, μ	_	_	20.3	A	21.6 TeV η _{LL} = -1	1407.2410
	Cl uutt	2 e, μ (SS)	≥ 1 b, ≥ 1	j Yes	20.3	A 4.35 TeV	$ C_{LL} =1$	Preliminary
2	EFT D5 operator (Dirac)	0 e, μ	≥1j	Yes	20.3	M. 974 GeV	at 90% CL for $m(\chi) < 100$ GeV	1502.01518
DM	EFT D9 operator (Dirac)	0 ε, μ	1 J, ≤ 1 j		20.3	M. 2.4 TeV	at 90% CL for $m(\chi)$ < 100 GeV	1309.4017
~	Scalar LQ 1st gen	2 e	≥ 2 j	-	1.0	LQ mass 660 GeV	$\beta = 1$	1112.4828
9	Scalar LQ 2 nd gen	2 μ	≥ 2 j	-	1.0	LQ mass 685 GeV	$\beta = 1$	1203.3172
	Scalar LQ 3 rd gen	1 e, μ, 1 τ	1 b, 1 j	-	4.7	LQ mass 534 GeV	$\beta = 1$	1303.0526
	$VLQ TT \rightarrow Ht + X, Wb + X$	1 e, μ	≥ 1 b, ≥ 3	j Yes	20.3	T mass 785 GeV	isospin singlet	ATLAS-CONF-2015-012
Bavy	$VLQ TT \rightarrow Zt + X$	2/≥3 e, µ			20.3	T mass 735 GeV	T in (T,B) doublet	1409.5500
a c	$VLQ BB \rightarrow Zb + X$	2/>3 e. u	>2/>1 h	_	20.3	B mass 755 GeV	B in (B.Y) doublet	1409.5500

Looking for Higgs Boson

Looking for: $H \to \gamma \gamma$

https://cds.cern.ch/record/2230893

Decay of a muon into a W^- particle and a muon neutrino

$$\mu \to \nu_{\mu} W^{-} \to e^{-} \bar{\nu}_{e}$$

Interaction points are represented by vertices (red). It also mark places where charge, momentum and energy conservation must be valid

The second vertex shows the creation of particles. Here, the W particle transofrms into an electron and an electron antineutrino.

- Represent quantum process (space and time)
- Based on Quantim Field Theory
- Consist of
 - elementrary particles (straight lines)
 - Force representatives (bosons, wavy lines)
- Vertrex represent interaction point
 - Conservation of energy and momenta
- Allows for calculation of probability of the process

Z Boson

- Mediates weak interactions along with W-bosons
- Can decay into:
 - lepton, anti-lepton pair (10%)
 - Neutrino, anti-neutrino pair (20%)
 - Quark, anti-quark (70%)
 - http://pdglive.lbl.gov/Particle.action?init=0&node=S044
- Important part of SM jigsaw puzzle
- Discovered in 1983 at CERN

Process Probability Estimation

Process of particle (Z) decay is called *resonance* and its probability can be estimated from the diagram:

$$P \propto \frac{1}{((\mathbf{p_{z}})^{2} - m_{Z}^{2})^{2} + \epsilon} = \frac{1}{((\mathbf{p_{\mu^{+}}} + \mathbf{p_{\mu^{-}}})^{2} - m_{Z}^{2})^{2} + \epsilon}$$

http://www.quantumdiaries.org/author/richard-ruiz/

Background

$$d+d
ightarrow \gamma
ightarrow \mu \mu$$
 (Drell-Yan process)

Signal and Background

- Signal: $d+d \rightarrow Z \rightarrow \mu\mu$
- Background: $d+d o \gamma o \mu\mu$ (Drell-Yan)

Dimuon Mass Spectrum

Particle Physics Simulation

Simulation in Physics Data Analysis

- Source of the precise information on particle decays
- Predecessor of data

Simulation Packages

http://genie.hepforge.org/

http://home.thep.lu.se/Pythia/

Geant 4

https://geant4.web.cern.ch/geant4/

Much more at https://arxiv.org/pdf/1101.2599.pdf

Machine Learning Challenge Examples

- Precise and fast particle tracking:
 - single tracks, shower, jets.
- Particle identification;
- Fast and accurate online data processing and filtering;
- Anomaly detection:
 - data quality monitoring;
 - infrastructure monitoring.
- Detector design optimization (bayesian optimization);
- Data Analysis (signal from background separation);
- Simulation:
 - speed-up simulation using generative models;
 - simulator parameters optimization (tuning).

Science → **Industry** → **Humanity**

- WWW, Internet
- Muono-graphy
- Aerospace
- Cryogenics, ultra vacuum
- Medicine:
 - Ion radiotherapy
 - Hadron therapy
- Simulation toolkits (GEANT4, FLUKA)

https://kt.cern/technologies

Conclusion

- LHC is a huge sub-atomic microscope
- Search for the most basic components we are made of
- Solid theoretical foundation
 - still not complete (yet)
- Plenty of Machine Learning challenges
 - Data stream processing
 - Data analysis
 - Simulation
 - Experiment Design and optimization

