WYKŁAD 4

Detekcja krawędzi, operacje morfologiczne

Detekcja (wykrywanie) krawędzi (edge detection) – jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie ich sąsiedztwa.

Krawędź – zbiór piksli na krzywej mający taką właściwość, że piksle w ich sąsiedztwie, lecz po przeciwnych stronach krzywej mają różne poziomy jasności.

Cel detekcji: znalezienie lokalnych nieciągłości w poziomach jasności obrazu oraz granic obiektów znajdujących się w scenie.

Przykłady masek FG detekcji krawędzi:

	ma	aska	. 1
	<i>y-1</i>	У	<i>y</i> +1
<i>x-1</i>	1	-2	1
X	-2	5	-2
x+1	1	-2	1

		_			
<i>y-1</i>	У	<i>y</i> +1	_		
1	-2	1		-1	-1
-2	5	-2		-1	9
1	-2	1		-1	-1
			•		

-1	-1	-1	
-1	9	-1	
-1	-1	-1	

maska 2

0	-1	0
-1	5	-1
0	-1	0

maska 3 ogólnie

w_I	w_2	W_3
W_4	W_5	W_6
W_7	w_{s}	W_g

Obliczanie wartości piksla obrazu wynikowego

$$g(x,y) = w_1 f(x-1,y-1) + w_2 f(x-1,y) + w_3 f(x-1,y+1) + w_4 f(x,y-1) + w_5 f(x,y) + w_6 f(x,y+1) + w_7 f(x+1,y-1) + w_8 f(x+1,y) + w_9 f(x+1,y+1)$$

Uwaga: W przypadku operacji wyostrzania oraz detekcji krawędzi wag oraz maska są równoważne. Oznacza macierz współczynnik maski K=1.

Przykład:

f(x,y)

x^{j}	, 1	2	3	4	5	6	7
1	4	4	4	8	8	8	8
2	4	4	4	8	8	8	8
3	4	4	4	8	8	8	8
4	4	4	4	8	8	8	8
5	4	4	4	8	8	8	8

x^{\downarrow}	, 1	2	3	4	5	6	7
1	X	Х	Х	Х	Х	Х	X
2	Χ	4	-8	20	8	8	Х
3	Χ	4	-8	20	8	8	X
4	Χ	4	-8	20	8	8	Х
5	Χ	Х	Х	Х	Х	Х	Х

g(x,y)

Np. dla maski drugiej:

$$g(2,2) = -32 + 36 = 4;$$

$$g(2\ 3) = -20 - 24 + 36 = -8$$

$$g(2,2) = -32 + 36 = 4;$$
 $g(2,3) = -20 - 24 + 36 = -8;$ $g(2,4) = -12 - 40 + 72 = 20;$ $g(2,5) = -64 + 72 = 8$

$$g(2.5) = -64 + 72 = 8$$

Typowe wymiary masek: 3 x 3, 5 x 5, 9 x 9, Czas obliczeń: x 1, x 2,7, x 9.

Poziom jasności:

 $g(x,y) \cong 0$ - obiekty, tło:

- krawędzie: $g(x,y) \cong L_{max}$

Metoda specjalnego gradientu

Stosowana w przypadkach, gdy metody filtracji górnoprzepustowej (FG) powodują wzmocnienie zakłóceń w obszarach leżących wewnątrz konturu.

Zasada: krawędź uznana jest za istniejącą, jeśli wartość gradientu intensywności w pewnych punktach przekracza ustalony próg.

Metody aproksymacji: Robertsa, Sobela, Prewitta.

Oznaczenia piksli:

Metoda Robertsa

$$R(i,j) = \sqrt{(f_4 - f_8)^2 + (f_7 - f_5)^2};$$
 $\alpha = -\frac{\pi}{4} + tg^{-1} \left(\frac{f_7 - f_5}{f_4 - f_8}\right)$

gdzie: R(i,j) - specjalny gradient w punkcie (i,j) α - kierunek gradientu intensywności.

Metoda Sobela: - dwie składowe gradientu:

$$S_x = (f_2 + 2f_5 + f_8) - (f_0 + 2f_3 + f_6)$$

$$S_y = (f_6 + 2f_7 + f_8) - (f_0 + 2f_1 + f_2)$$

$$S(x, y) = \sqrt{S_x^2 + S_y^2}$$

Maski konwolucyjne:

Roberts

1	0	0	-1
0	-1	1	0

 G_{x} G_{y}

Sobel:

-1	0	1	-1	-2	-1
-2	0	2	0	0	0
-1	0	1	1	2	1

 G_{x} G_{y}

Prewitt:

1	0	-1	1	1	1
1	0	-1	0	0	0
1	0	-1	-1	-1	-1

 G_{x}

 G_{v}

Przykład:

$$S_{x} = [p(i-1,j-1) + 2p(i,j-1) + p(i+1,j-1)] - [p(i-1,j+1) + 2p(i,j+1) + p(i+1,j+1)]$$

$$S_{y} = [p(i+1,j-1) + 2p(i+1,j) + p(i+1,j+1)] - [p(i-1,j-1) + 2p(i-1,j) + p(i-1,j+1)]$$

dla piksla p(2,2):

$$\begin{cases} S_x = 3+4+3-2-12-7=11 \\ S_y = -3-8-2+3+10+7=17 \end{cases}$$
$$S_{x,y} = \sqrt{11^2+17^2} = \sqrt{170} \cong 13$$

Zalety i wady metody gradientowej:

- nieuwydatnianie zakłóceń (tak jak w FG),
- w obrazach o małej kontrastowości kłopoty z interpretacją wyników.

Wniosek: konieczność zastosowania techniki opartej na metodzie poszukiwania krawędzi o z góry zadanym kształcie.

Metoda uzgadniania wzorca

Uzgadnianie obrazu metodą konwolucji ze wzorcem danej, idealnej krawędzi, tzn. z maską krawędzi.

Maski **Prewitta** do detekcji krawędzi w formie narożników o różnych ustalonych kierunkach:

J	N]	NE	,		E			SE	,
1	1	1	1	1	1	-1	1	1	-1	-1	1
1	-2	1	-1	-2	1	-1	-2	1	-1	-2	1
-1	-1	-1	-1	-1	1	-1	1	1	1	1	1
	S		(SW	7		W		1	VV	Ţ
-1	-1	-1	1	-1	-1	1	1	-1	1	1	1
-1 1	-1 -2	-1 1	1	-1 -2	-1 -1	1	1 -2	-1 -1	1	1 -2	1 -1

Metoda Kirscha: wartość piksla (i,j) jest zmieniana według wzoru:

$$g(i,j) = \max_{k=0}^{7} \{1, \max[|5S_k - 3T_k|]\}$$

 $g(i,j) = \max_{k=0}^{7} \{1, \max[|5S_k - 3T_k|]\}$ gdzie: $S_k = f_k + f_{k+1} + f_{k+2}$; $T_k = f_{k+3} + f_{k+4} + f_{k+5} + f_{k+6} + f_{k+7}$ f - obraz źródłowy, g - obraz wynikowy Indeksy punktów obrazu f - wartości modulo 8

Numeracja piksli:

Maski odpowiadające operatorowi Kirscha (maski Kirscha):

	N						
3	3	3					
3	0	3					
-5	-5	-5					
	S						

-5	-5	-5	-5	-5	
	S		,	SW	/
-5	-5	-5	3	-5	
3	0	3	3	0	
3	3	3	3	3	

<u>NE</u>				
3	3	3		
-5	0	3		
-5	-5	3		

(SW	I		W	
	-5	-5	3	3	-5
	0	-5	3	0	-5
	3	3	3	3	-5

	\mathfrak{SL}				
	-5	-5	3		
	-5	0	3		
	3	3	3		
_	NW				

NW				
3	3	3		
3	0	-5		
3	-5	-5		

Przykład: porównanie operatorów Prewitta i Kirscha

	[q(i	,j)]				į,
	х	х	х	х	х	-
	Х	-10	2	(-1)	Х	
	X	(39)	(-1)	-18	X	
	X	-24	(1)	-14	X	
i	X	X	X	X	X	
1	7					

	(SW		
			П	
3	-5	-5		
3	0	-5		(Kirsch)
3	3	3	77	

X	X	X	X	х
X				х
X	105			Х
X				х
х	Х	Х	Х	Х

$$q_{22} = 15 + 14 + 4 + 15 + 12 - 28 - 15 - 14 - 13 = -10$$

$$q_{23} = 15 + 14 + 15 + 12 + 11 - 26 - 14 - 13 - 12 = 2$$

$$q_{32} = 14 + 4 + 5 + 3 + 4 - 30 - 14 - 13 - 12 = -39$$

$$q_{42} = 4 + 5 + 1 + 3 - 6 - 15 - 12 - 4 = -24$$

$$q_{33} = 14 + 15 + 3 + 4 + 5 - 24 - 13 - 12 - 11 = -19$$

$$q_{43} = 15 + 3 + 3 + 4 - 8 - 12 - 11 - 5 = -11$$

$$q_{24} = 14 + 13 + 12 + 11 + 12 - 24 - 13 - 14 - 12 = -11$$

$$q_{34} = 13 + 12 + 4 + 5 + 6 - 22 - 12 - 12 - 12 = -18$$

$$q_{44} = 12 + 4 + 3 + 4 + 2 - 10 - 11 - 12 - 6 = -14$$

$$\begin{array}{l} q_{22} = \\ q_{32} = 3 \cdot 14 + 3 \cdot 4 + 3 \cdot 5 + 3 \cdot 3 + 3 \cdot 4 - 5 \cdot 14 - 5 \cdot 13 - 5 \cdot 12 = 42 + 12 + 15 + 9 + 12 - 70 - 65 - 60 = -105 \\ q_{42} = \\ q_{23} = \\ q_{33} = \\ q_{24} = \\ q_{34} = \\ q_{34} = \\ q_{44} = \end{array}$$

Przykład 2.

[q(i,j)]			;	
x	х	х	х	<i>J</i> x	
х	(4)	-12	0	X	
X	-8	-20	(-12)	X	
X	-4	(-8)	4	X	
X	x	х	x	X	

SW(Kirsch)

3	-5	-5		
3	0	-5] [
3	3	3	\bigvee	/

$q_{22} = 4 + 4 + 4 + 4 + 8 - 8 - 4 - 8 - 8 = -4$
$q_{32} = 4 + 4 + 4 + 4 + 4 + 4 - 8 - 4 - 8 - 8 = -8$
$q_{42} = 4 + 4 + 4 + 4 + 4 + 4 - 8 - 4 - 8 - 4 = -4$
$q_{23} = 4 + 4 + 4 + 8 - 8 - 16 - 8 - 8 - 8 = -12$
$q_{33} = 4 + 4 + 4 + 4 + 4 + 4 - 16 - 8 - 8 - 8 = -20$
$q_{43} = 4 + 4 + 4 + 4 + 4 + 4 - 8 - 8 - 8 - 4 = -8$
$q_{24} = 8 + 8 + 8 + 8 + 8 + 8 - 16 - 8 - 8 - 8 = 0$
$q_{34} = 8 + 8 + 4 + 4 + 4 - 16 - 8 - 8 - 8 = -12$
$q_{44} = 8 + 4 + 4 + 4 + 4 - 8 - 8 - 8 - 4 = -4$

 $q_{22} =$

 $q_{32} =$

 $q_{42} =$

 $q_{33} = 12 + 12 + 12 + 12 + 12 + 12 - 40 - 40 - 40 = 60 - 120 = -60$

 $q_{24} =$

Wniosek: Operator Kirsch'a jest bardziej czuły na $q_{34} =$

 $q_{44} =$

zmiany wartości piksli niż operator Prewitta.

Elementy segmentacji

Obraz z wykrytymi krawędziami:

Detektory wzrostu (DTW)

Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy bezwzględnej.

- Różnica bezpośrednia:
$$r(x,y) = \begin{cases} 1 & gdy & f(x,t) - f(x,y+1) \ge T \\ 0 & gdy & f(x,t) - f(x,y+1) < T \end{cases}$$

gdzie 1 - wartość konturu, 0 - wartość tła.

Różnica bezwzględna:

$$R(x, y) = 3f(x, y) - f(x, y + 1) - f(x + 1, y) - f(x + 1, y + 1)$$

$$r(x, y) = \begin{cases} 1 & gdy & R(x, y) \ge T \\ 0 & gdy & R(x, y) < T \end{cases}$$

Obliczenie R(x,y): konwolucja oraz maska:

3 1 -1 -1

Różne stopnie złożoności operatora wzrostu (maski). Przykład zastosowania: detekcja krawędzi obiektu nierówno oświetlonego

Detekcja krawędzi na podstawie histogramów dwuwymiarowych (H2D) Efekt: poprawa ciągłości linii brzegowej

Piksle: Wnętrza obiektów, Zakłócenia, Tło, Elementy faktury tła, Kontury

Obraz pierwotny [p(i,j)]

Obraz wynikowy [q(i,j)] (np. po operacji gradientu)

Sposób postępowania

- 1. Odpowiednio przygotowany obraz źródłowy (po korekcji radiometrycznej, geometrycznej i po przetworzeniu metodami jednopunktowymi) zostaje przekształcony gradientowo lub za pomocą laplasjanu.
- 2. Tworzenie histogramu 2D na podstawie obrazu źródłowego i przetworzonego.
- 3. Wyodrębnianie na histogramie dwuwymiarowym grup skupień punktowych należących do tła, obiektu i konturu (promieniste przeszukiwanie okolic centrów poszczególnych grup z uwzględnieniem gradientu przyrostu wartości).
- 4. Współrzędne obszarów wyodrębnionych jako kontur tworzą dalej zbiór wartości, według którego tworzony jest końcowy, zbinaryzowany obraz zawierający poszukiwane kontury.

Metoda ułatwia selekcję punktów pośrednich i ich klasyfikację do punktów brzegowych.

Metoda analizy otoczenia

- Technika logicznej analizy otoczenia
- stosowana do obrazów binarnych,
- wykorzystuje metodę różnicy bezwzględnej,
- działa na zasadzie sprawdzania wartości poszczególnych punktów obrazu i zaznaczania jako punktów brzegowych tych, które zawierają w swoim otoczeniu równocześnie w mniej więcej równej ilości punkty obiektu i tła.

Oznaczanie otoczenia punktu x₀:

	X_2	
X_3	X ₀	X ₁
	X ₄	

Implementacja metody - formuła logiczna:

$$x_0' = x_0 \land \sim (x_1 \land x_2 \land x_3 \land x_4)$$
; gdzie: \sim negacja, $^{\land}$ koniunkcja

• Poprawa ciągłości linii brzegowej:

filtr pionowy:

$$x'_0 = \begin{cases} x_2 & \text{dla } x_2 = x_4 \\ x_0 & \text{dla } x_2 \neq x_4 \end{cases}$$

filtr poziomy:

$$x'_{0} = \begin{cases} x_{1} & \text{dla } x_{1} = x_{3} \\ x_{0} & \text{dla } x_{1} \neq x_{3} \end{cases}$$

• Pocienianie (zmniejszanie szerokości linii brzegowej obiektu):

 $x_0' = x_0 \wedge x_1 \wedge x_2 \wedge x_3 \wedge x_4$ - z wykorzystaniem operatora koniunkcji Wielokrotne wykonywanie operacji zależnie od potrzebnej szerokości linii.

• Pogrubianie linii brzegowej:

 $x_0 = x_0 \lor x_1 \lor x_2 \lor x_3 \lor x_4$ - z wykorzystaniem operatora alternatywy. Kolejność działań:

 kilkakrotne pocienianie ("erozja"); likwidacja izolowanych ciemnych punktów oraz "gałązek".

Wielokrotne pocienianie i pogrubianie:

 po kilkakrotnym pocienianiu "erozji" wykonuje się tyle samo razy operację pogrubiania "dylatacji".

Efekt operacji:

Wzmocnienie zachowanych linii, usunięcie drobnych przerw (uciąglenie); oznacza to radykalne polepszenie jakości obrazu (w sensie przygotowania do kolejnych etapów procesu rozpoznawania obrazu tzn. segmentacja, analiza, rozpoznanie właściwe).

Badanie cech linii

<u>Zadanie:</u> wykrywanie (detekcja) nieciągłości, zakrzywień, zamkniętości, otwartości, wklęsłosci, wypukłości

Badanie zakrzywień (krzywizny) linii

Czy zakrzywienia (jeśli istnieją) mieszczą się w granicach tolerancji. Metody:

- a) śledzenie linii brzegowej z jednoczesną kontrolą jej współczynników,
- b) zliczanie punktów w oknie przesuwającym się pionowo lub poziomo (w zależności od położenia linii) od punktu startowego linii brzegowej.
- c) metoda maskowa z dowolnym przesuwem maski (okna)
- Metoda maskowa detekcja krzywych w oknie 3x3

а	b	С
d	е	f
g	h	i

$$e' = \begin{cases} e & \text{jeśli} \left[k(1) \neq 0 \land k(5) \neq 0 \right] \lor \left[k(2) \neq 0 \land k(6) \neq 0 \right] \lor \dots \lor \left[k(4) \neq 0 \land k(8) \neq 0 \right] \\ 0 & \text{jeśli powyższy warunek nie jest spełniony} \end{cases}$$

Zaleta: Niezależnie od kierunku przeszukiwania wykrywa krzywizny poziome i pionowe.

Badanie ciagłości linii brzegowej

Metody: śledzenie linii brzegowej, różnicy bezwzględnej, filtru logicznego

• Metoda filtru logicznego; realizacja maszynowa przybiera postać maski.

gdzie M - znacznik nieciagłości

<u>Efekty:</u> krawędzie skuteczniej i doskonalej wydobywane za pomocą operatorów ekstrakcji linii, pocieniania, uciaglania itp. niż laplasjanem.

Detekcja krawędzi z wykorzystaniem Transformacji Hougha (TH)

Proces (omówiony wcześniej) detekcji linii daje pojedyncze elementy (piksle) poszukiwanej krawędzi.

<u>Kolejny etap:</u> aproksymacja linii (prostych i krzywych) na podstawie tych wyodrębnionych (wydobytych) elementów.

Metody: grafów, projekcji, transformacji Hougha (największa praktyczna przydatność).

Transformacja Hougha (TH) - metoda detekcji krzywych (nie piksli (!) - co jest realizowane przez detekcję krawędzi lub segmentację) oparta na *dualności* pomiędzy **punktami** na krzywej a **parametrami** tej krzywej.

Zaleta TH: działa dobrze nawet wówczas, gdy ciągłość krawędzi nie jest zachowana (np. z powodu szumów)

Krzywa analityczna o postaci f(x,a)=0, gdzie x –punkt obrazu, a - wektor parametrów.

Przykład: detekcja **prostych** w obrazie, stąd: f(x,a) - równanie prostej.

Przestrzeń obrazu: Równanie *normalne* prostej: $x \cdot \cos \varphi + y \cdot \sin \varphi = \rho$

Założenie:

Piksle o niezerowej wartości są elementami krawędzi. Jeśli piksel (x,y) leży na prostej \rightarrow znaleźć zbiór wartości (ρ, ϕ) w przestrzeni parametrów tej prostej.

(x,y) - dane, (ρ, ϕ) - zmienne \rightarrow równanie normalne prostej przedstawia relację pomiędzy krzywą w przestrzeni parametrów a **punktem** w obrazie.

Punkt (x,y) leży na prostej \rightarrow krzywa w przestrzeni parametrów - **sinusoida**:

Przestrzeń parametrów: Równanie sinusoidy $x \cdot \cos \varphi + y \cdot \sin \varphi = \rho$

TH - transformacja pomiędzy **punktami obrazu** a **przestrzenią parametrów** poszukiwanej krzywej.

Operacje morfologiczne

- - unarne (dopełnienie, odbicie zwierciadlane, translacja)
- - dyadyczne (przetworzenie dwóch obrazów w jeden np. AND, OR),
- - geometryczne transformacje obrazów (np. erozja, dylatacja)

Erozja

Dwa rodzaje erozji: wykorzystanie sąsiedztwa 8-spójnego i 4-spójnego (**wzorce**: kwadrat i romb). Operacja ta dotyczy obrazów szaroodcieniowych. Algorytm erozji opiera się na wybraniu piksla o wartości najmniejszej i wstawieniu go w miejsce środkowego. Przykład:

Kwadrat

wybór najmniejszej wartości z sąsiedztwa 8-spójnego wstawienie wybranej wartości w środek

4	5	7
3	7	9
1	14	5

4	5	7
3	1	9
1	14	5

Romb

wybór najmniejszej wartości z sąsiedztwa 4-spójnego wstawienie wybranej wartości w środek

	5	
3	7	9
	14	

	5	
3	3	9
	14	

Dylatacja

Dwa rodzaje dylatacji: wykorzystanie sąsiedztwa 8-spójnego i 4-spójnego (wzorce: kwadrat i romb). Dotyczy obrazów szaroodcieniowych. Algorytm dylatacji opiera się na wybraniu piksla o wartości największej i wstawieniu go w miejsce środkowego.

Przykład:

Kwadrat

wybór największej wartości z sąsiedztwa 8-spójnego wstawienie wybranej wartości w środek

4	5	7
3	7	9
1	14	5

4	5	7
3	14	9
1	14	5

Romb

wybór największej wartości z sąsiedztwa 4-spójnego wstawienie wybranej wartości w środek

Otwarcie

Operacja morfologiczna, która opiera się na dwóch innych operacjach: erozji i dylatacji. Otwarcie polega na wykonaniu na obrazie najpierw erozji (minimum), a następnie na tak przetworzonym obrazie, należy zastosować dylatację (maksimum).

Zamknięcie

Operacja morfologiczna, która opiera się na dwóch innych operacjach: dylatacji i erozji. Zamknięcie polega na wykonaniu na obrazie najpierw dylatacji (maksimum), a następnie na tak przetworzonym obrazie, należy zastosować erozję (minimum).

Pocienianie

Zmniejszenie obiektu o piksle będące jego krawędzią.

Pogrubianie

Zwiększenie obiektu o dodatkowe piksle w miejscu krawędzi obiektu.

Ekstrakcja konturu

Kolejność działań: 1) operacja erozji obrazu, 2) odjęcie obrazu podstawowego od obrazu po erozji. W wyniku otrzymujemy kontur obiektu.

Szkieletyzacja

Operacja, która wykrywa szkielet obiektu. Przykładowy algorytm szkieletyzacji: 1) obliczyć, ile erozji można wykonać, aby obraz nie został sprowadzony do tła, 2) wykonać obliczoną ilość razy erozję i otwarcie. Wyniki kolejnych kroków erozji i otwarcia należy od siebie odjąć. Wyniki odejmowania z kolejnych kroków należy wstawić w obraz wynikowy.

Pytania 4

- 1. Na czym polega operacja detekcji krawędzi?
- 2. Co to jest krawędź w obrazie, podać przykład krawędzi.
- 3. Jaki jest cel detekcji krawędzi.
- 4. Podać macierz wag, maskę FG oraz współczynnik maski dla przykładowej operacji detekcji krawędzi.
- 5. Podać macierz wag, maskę oraz współczynnik maski dla przykładowej operacji wyostrzania obrazu.
- 6. Podać macierz wag, maskę oraz współczynnik maski dla przykładowej operacji wygładzania obrazu.
- 7. Jakiego typu sąsiedztwo stosowane jest w maskach (specjalnego gradientu) Robertsa, Sobela i Prewitta. Podać wpływ typu tego sąsiedztwa na wybór sposobu operacji na pikslach wchodzących w skład skrajnych kolumn i wierszy tablicy reprezentującej obraz pierwotny.
- 8. Które piksle z sąsiedztwa piksla przetwarzanego metodą Robertsa mają wpływ na kierunek gradientu intensywności?
- 9. Podać kierunki krawędzi najlepiej wykrywanych przy użyciu masek uzgadniania wzorca Prewitta i Kirscha.
- 10. Jaka jest zasadnicza różnica w efektach użycia masek uzgadniania wzorca Prewitta i Kirscha?
- 11. Jakie sąsiedztwo przetwarzanego piksla jest brane pod uwagę w lokalizacji krawędzi metodą różnicy bezpośredniej, a jakie dla przypadku lokalizacji metodą różnicy bezwzględnej.
- 12. Czy liczba umieszczona w tablicy przedstawiającej histogram 2D może być mniejsza od M (tzn. liczby poziomów jasności obrazu)?
- 13. W jaki sposób można zmodyfikować histogram 2D w celu zbinaryzowania obrazu wynikowego (tzn. obrazu po detekcji krawędzi).
- 14. Cele stosowania technik: a) logicznej analizy otoczenia, b) poprawy ciągłości linii brzegowej, c) pocieniania (erozji) linii brzegowej, pogrubiania (dylatacji) linii brzegowej.
- 15. Co to jest wzorzec i jaki jest jego wpływ na operację erozji.
- 16. Co to jest wzorzec i jaki jest jego wpływ na operację dylatacji.
- 17. Czym sę różni operacja otwarcia od operacji zamknięcia?
- 18. Na czym polega operacja ekstrakcji konturu?

Problem 4

Zadanie 1

Dany jest przykładowy obraz pierwotny f(x,y) (str. 2 (Wykład 4)).

Wyznaczyć obrazy wynikowe stosując odpowiednio maski (1) i (3) filtracji górnoprzepustowej (FG) detekcji krawędzi (str. 1 (folie wykładowe)).

Zadanie 2

Wyznaczyć kierunki gradientu intensywności w metodzie Robertsa dla poszczególnych piksli o współrzędnych (*i*, *j*) zadanego obrazu o parametrach N=4, M=16, Lmin=0.

10	9	2	1	
10	10	2	1	ι
5	3	9	7	
5	3	7	8	
Ι.				•

 $\downarrow j$

Rozwiązanie (dla 2 przykładowych piksli):

1)
$$i=1, j=1.$$

$$\alpha = -\frac{\pi}{4} + tg^{-1} \left(\frac{f_7 - f_5}{f_4 - f_8} \right) = -\frac{\pi}{4} + tg^{-1} \left(\frac{10 - 9}{10 - 10} \right) =$$

$$= -\frac{\pi}{4} + \frac{\pi}{2} = \frac{\pi}{4}$$

2)
$$i=2, j=2$$
.

$$\alpha = -\frac{\pi}{4} + tg^{-1} \left(\frac{f_7 - f_5}{f_4 - f_8} \right) = -\frac{\pi}{4} + tg^{-1} \left(\frac{3 - 2}{10 - 9} \right) = -\frac{\pi}{4} + \frac{\pi}{4} = 0$$

Oznaczenia kierunków gradientu intensywności.

Wyznaczyć kierunki dla innych piksli

Zadanie 3

Dla każdej z par obrazów przed i po operacji detekcji krawędzi (rozdzielczość N=5), podanych w punktach a) i b) sporządzić histogram dwuwymiarowy. Dokonać interpretacji rozkładu częstości występowania poziomów jasności odpowiednich piksli w poszczególnych obszarach tego histogramu.

a) Lmin=0, Lmax=3

[p(i,j)]

0	0	3	0	0
0	2	3	2	1
1	3	3	3	0
0	3	2	3	2
0	0	1	1	0

[q(i,j)]

0	0	3	0	0
0	2	0	2	1
0	3	0	3	0
0	3	2	3	0
0	0	1	1	0

b) M=16

[p(i,j)]

0	0	14	0	0
3	14	15	15	0
0	15	14	15	0
0	15	15	14	2
3	0	15	3	3

[q(i,j)]

0	0	15	0	0
3	15	0	15	0
0	15	0	15	3
0	15	0	15	0
3	3	15	0	3

Zadanie 4

Na podstawie podanego histogramu 2D utworzyć odpowiadającą mu parę obrazów (każdy o rozmiarze NxN): pierwotny [p(i,j)] - zawierający jasny obiekt z zakłóceniami i ciemne tło z zakłóceniami, i wynikowy (po detekcji krawędzi) [q(i,j)], zawierający jasny kontur, ciemne wnętrze oraz ciemne tło.

- a) Wyznaczyć parametry M, N, Lmin, Lmax utworzonych obrazów,
- b) Na histogramie 2D zaznaczyć obszary odpowiadające: krawędziom obiektu, tłu, wnętrzu obiektu, zakłóceniom,
- c) Przeprowadzić próbę modyfikacji podanego histogramu 2D w taki sposób, aby została polepszona jakość obrazu [q(i,j)] (bez ingerencji w strukturę obrazu [p(i,j)]). Przedstawić widok obrazu [q(i,j)] po polepszeniu jakości.

Materialy:

- 1. M. Doros: Przetwarzanie obrazów, Skrypt WSISIZ, Warszawa 2005.
- 2. M. Doros, A. Korzyńska, M. Przytulska, H. Goszczyńska: Przetwarzanie Obrazów, materiały pomocnicze do ćwiczeń, Skrypt WSISIZ, Warszawa 2004.