(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-261021

(43)公開日 平成6年(1994)9月16日

(51)Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 J 13/00

A 8949-5K

H 0 4 B 7/26

109 A 7304-5K

審査請求 未請求 請求項の数17 FD (全 12 頁)

(21)出願番号

特願平5-342292

(22)出願日

平成5年(1993)12月15日

(31)優先権主張番号 991841

(32)優先日

1992年12月16日

(33)優先権主張国

米国(US)

(71)出願人 390035493

アメリカン テレフォン アンド テレグ

. ラフ カムパニー

AMERICAN TELEPHONE

AND TELEGPAPH COMPA

アメリカ合衆国 10013-2412 ニューヨ

ーク ニューヨーク アヴェニュー オブ

ジ アメリカズ 32

(72)発明者 クイ ビ

アメリカ合衆国 07950 ニュージャージ

-, モリス プレインズ、ローレル スト

リート、19

(74)代理人 弁理士 三俣 弘文

(54)【発明の名称】 CDMAシステムに使用される装置と方法

(57)【要約】

【目的】 既存のCDMAシステムに容易に追加可能な 低コストのデータ再生回路を提供すること。

【構成】 本発明の装置または方法は、受信信号を符号 係数シーケンスを用いて結合する。この符号係数シーケ ンスは、その符号化信号を生成する為に、ユーザにより 使用されるものとは異なる。特に、符号化ユーザ信号 は、複数のユーザの各々に対し、そのユーザの記号を符 号係数の関連シーケンスで処理することにより、伝送さ れる。この受信信号は、全ての符号化ユーザ信号の合成 である。受信器において、各符号化ユーザ信号は、異な る抽出符号係数シーケンスを用いて、再生される。この 各抽出された符号係数シーケンスは、システムユーザに 関連する符号係数シーケンスと他のシステムユーザに関 連する符号係数シーケンスとの相関の関数である。干渉 を引き起こす復号化エラーを減少させる。本発明の実施 例においては、各抽出された符号係数シーケンスは、関 連シーケンス符号係数と重み係数との積である。

【特許請求の範囲】

【請求項1】 複数のユーザの各々に、符号化ユーザ信 号伝送し、この伝送されたユーザ信号は、ユーザ記号を 関連する符号化係数のシーケンスで処理することにより 形成され、受信信号は前記複数の符号化ユーザ信号の合 成を含むCDMAシステムで使用される装置において、

所定の時間間隔で受信された前記受信信号のサ ンプルを受信する手段と、

(B) 前記受信信号サンプルに応答して、抽出された 符号係数シーケンスを用いて、ユーザの記号を予測する 手段と.

からなり、

前記抽出された符号係数シーケンスは、前記ユーザに関 連する符号係数シーケンスと、他のユーザに関連する符 号係数シーケンスとの相関の関数であること特徴とする CDMAシステムに使用される装置。

【請求項2】 前記時間間隔は、前記ユーザの記号が拡 張する時間間隔であることを特徴とする請求項1の装

ユーザに関連する符号係数のシーケンスのレプリカを生 成する手段を有することを特徴とする請求項1の装置。

【請求項4】 前記生成手段は、疑似ランダム数生成器 を有することを特徴とする請求項3の装置。

【請求項5】 前記抽出されたシーケンスは、前記ユー ザに関連する符号係数のシーケンスのレプリカから抽出 されることを特徴とする請求項1の装置。

【請求項6】 前記抽出された符号係数シーケンスは、 前記レプリカ内の各係数と関連する重み係数との積によ り形成されることを特徴とする請求項5の装置。

【請求項7】 前記関連する重み係数は、前記レプリカ 内の係数毎に変化することを特徴とする請求項6の装 置。

【請求項8】 前記(B)の予測手段は、

前記ユーザに関連する目的関数を形成する手段と、 所定の基準を用いて、前記目的関数を最小化する手段と を有することを特徴とする請求項1の装置。

【請求項9】 前記所定の基準は、前記ユーザの記号内 の干渉を減少させることを特徴とする請求項8の装置。

【請求項10】 前記所定の基準は、前記受信信号エネ ルギの損失を最小化することを特徴とする請求項8の装 置。

【請求項11】 前記(B)の予測手段は、信号結合手 段を有することを特徴とする請求項1の装置。

【請求項12】 各符号化ユーザ信号は、非差動符号化 されることを特徴とする請求項1の装置。

【請求項13】 各符号化ユーザ信号は、差動符号化さ れることを特徴とする請求項1の装置。

【請求項14】 前記予測手段に接続され、前記ユーザ

を特徴とする請求項1の装置。

【請求項15】 前記予測手段に接続され、直列に接続 された量子化手段と復号化手段とをさらに有することを ・特徴とする請求項1の装置。

2

【請求項16】 前記予測手段に接続されたフィルタ手 段をさらに有することを特徴とする請求項1の装置。

【請求項17】 複数のユーザの各々に、符号化ユーザ 信号伝送し、この伝送されたユーザ信号は、ユーザ記号 を関連する符号化係数のシーケンスで処理することによ 10 り形成され、受信信号は前記複数の符号化ユーザ信号の 合成を含むCDMAシステムで使用される方法におい て、

- (A) 所定の時間間隔で受信された前記受信信号のサ ンプルを受信するステップと、
- (B) 前記受信信号サンプルに応答して、抽出された 符号係数シーケンスを用いて、ユーザの記号を予測する ステップと、

からなり、

前記抽出された符号係数シーケンスは、前記ユーザに関 【請求項3】 前記(B)の予測手段は、前記複数の各 20 連する符号係数シーケンスと、他のユーザに関連する符 号係数シーケンスとの相関の関数であること特徴とする CDMAシステムに使用される方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、符号分割多重アクセス (CDMA: Code Division Multiple Access) システ ムの受信器内で伝送されたデータを再生する装置に関 し、特に、全ユーザの記号の合成体である受信信号を結 合することにより、各ユーザの記号を再生するようなシ 30 ステムに関する。

[0002]

【従来の技術】このCDMA(Code Division Multiple Access)は、セルラ電話システムのような様々な応用 に用いられている。このシステムにおいては、複数のユ ーザは、共通の周波数バンドを介して、基地局と通信す るが、各ユーザは唯一の符号化信号を伝送する。それ故 に、基地局で受信された信号は、複数の異なる信号の合 成体である。各ユーザの送信器において、ユーザの符号 化信号は、符号係数のシーケンスを用いて、2つの方法 40 のいずれかにより、形成される。非差動符号化システム においては、各ユーザの記号は、符号係数により乗算さ れる。一方、作動符号化システムにおいては、各ユーザ の記号と符号係数とを乗算する代わりに、ある記号と先 行する記号との差と符号係数のシーケンスとを乗算す る。いずれの方法においても、この乗算プロセスは、符 号化出力記号ぼ信号スペクトルは、非符号化ユーザ記号 のそれよりも幅広い周波数範囲にわたっているので、拡 散として知られている。受信機において、各ユーザの符 号化デジタル記号は、入力合成信号から信号結合器を用 記号予測値を復号化する復号化手段をさらに有すること 50 いて、再生される。この結合装置においては、各ユーザ

3

の記号は、入力合成信号と複数の異なる符号係数シーケンスの関連する1つとの積により、再生される。従来技術においては、各ユーザに関連する符号シーケンスは、そのユーザの記号を符号化するのに使用される符号のレプリカである。

【0003】伝送中に相当な量の干渉が他の符号化信号 から各符号化信号に導入され、この干渉は情報通信にと って考慮しなければならないと長い間認識されていた。 この干渉を減らすために、従来の一つのシステムは、再 生された各ユーザの記号に対し、その前に再生された他 のユーザの記号を用いて干渉を減少させている(これに ついては、米国特許第5136612号を参照のこ と)。別の従来のシステムは、時間間隔にわたって受信 した合成信号に対し、符号係数のブロックを用いて処理 する方法であり、このブロックには、この時間間隔に対 応する各ユーザ符号係数が含まれる。これについては、 IEEEの「通信論文集」vol. 38, No. 4, 1990年4月 の「非同期チャネルにおける複数の使用者の検知装置の 遠端抵抗」と題する論文を参照のこと。これらの従来の 方法の問題点は、受信機に干渉キャンセル回路を追加す る必用があり、それに伴い、コストが増加する点であ る。さらに、これらの装置は、既存のCDMAシステム の性能を容易に向上させることがない。

[0004]

【発明が解決しようとする課題】本発明の目的は、既存のCDMAシステムに容易に追加可能な低コストのデータ再生回路を提供することである。

[0005]

【課題を解決するための手段】本発明の装置または方法 は、受信信号を符号係数シーケンスを用いて結合する。 この符号係数シーケンスは、その符号化信号を生成する 為に、ユーザにより使用されるものとは異なる。特に、 符号化ユーザ信号は、複数のユーザの各々に対し、その ユーザの記号を符号係数の関連シーケンスで処理するこ とにより、伝送される。従って、この受信信号は、全て の符号化ユーザ信号の合成である。受信器において、各 符号化ユーザ信号は、異なる抽出符号係数シーケンスを 用いて、再生される。この各抽出された符号係数シーケ ンスは、システムユーザに関連する符号係数シーケンス と他のシステムユーザに関連する符号係数シーケンスと の相関の関数である。この手法は、干渉を引き起こす復 号化エラーを減少させ、差動、非差動符号化CDMAシ ステムのいずれにおいても、結合器の使用に適してい る。本発明の実施例においては、各抽出された符号係数 シーケンスは、関連シーケンス符号係数と重み係数との 積である。

[0006]

【実施例】本発明は、n人のユーザ(nは2以上の整 $\mathbf{c_i} = (\mathbf{c_{i1}}, \mathbf{c_{i2}}, \dots, \mathbf{c_{im}})^T$

数)のチップストリームが基地局に到達するようなCDMAシステムを例に挙げて説明する。周知のように各ユーザは、符号化記号を基地局に送信する。各ユーザの送信器では、各ユーザのチップストリームが各記号と符りを、複数の符号係数を有する拡散符号とを乗算することにより生成される。その結果、各シーケンスにm個の(mは2以上の整数)の号係数が存在する場合には、各記号に対し伝送されるm個のチップが存在する。各記号は、複数の個別のユーザが明からである。一般のに拡散符号中の各係数は、一1か、十1の何れかで、疑似ランダム生成器を用いて生成される。この拡散符号は、各ユーザに対し唯一のもので、且つ、何れのユーザに対しても、記号期間毎に異なるものである。

【0007】基地局の受信器では、この入力信号は、す べてのユーザのチップストリームの合成物を含む。これ らのチップストリームは、ユーザと基地局との間の通信 の非同期特性に基づいて、互いに遅延する。各ユーザの 記号を再生するために、各ユーザのチップストリーム は、この受信信号から抽出しなければならない。これは 信号結合装置(拡散したものを元に戻す)によって行わ れ、従来は、この信号結合装置は、記号期間の間受信さ れた信号とその記号期間の間の符号係数のユーザのシー ケンスのレプリカとを乗算していた。本発明は、上記の CDMAシステムにおいては、ガウス分布のノイズは、 各ユーザのチップストリームが他のユーザのチップスト リームにより導入される干渉に比較して、無視しうるも のであるということを認識したことによるものである。 30 さらに、如何なる記号期間の間のユーザチップのストリ ームの干渉は、符号係数のユーザのシーケンスとその記 号間隔のすべての他のユーザの符号係数のシーケンスと の間の相関の関数であるという認識に基づく。本発明 は、この原理を記号期間の間受信された信号とこの記号 期間の間ユーザの符号係数のシーケンスのレプリカの変 更である各ユーザの符号係数のシーケンスとを乗算する 信号結合装置を用いる。この変更は、上記の相関の関数 である。それ故に、この変更は、ユーザに特定のもの で、すなわち、ユーザごとに変化し、さらに、この相関 40 は記号間隔ごとに変化し、その結果、何れのユーザの変 更も記号間隔ごとに変化するものである。記号間隔にお ける各シーケンス内の符号係数について、以下に説明す る。

【0008】ます、i番目($1 \le i \le n$)のユーザに対する符号係数は、記号間隔における符号係数 c_i として表される。

【数1】

5

ここで、上付きTは、ベクトルの配置行列を表し、シー ケンスciの各符号係数の第2の下付きは、m個の係数 の位置を表す。 n 個のベクトル c j の合成体は、m×n

$$C = (c_1, c_2, \ldots, c_n).$$

そして、マトリックスCは、1記号期間内におけるすべ てのユーザの符号係数を含む。各ベクトル c;は、m× n対角マトリックスCiに拡張でき、数式(3)のよう

$$\hat{C}_i = diag(c_{i1}, c_{i2}, \ldots, c_{im})$$

ここで、diagは、マトリックスの対角項を表し、こ の対角項は、左上から右下にかけて、斜めに配列される ベクトルciのm個の値を含む。Ciの他のマトリックス の要素はゼロである。

【0009】各記号間隔に受信された信号は、アナログ 信号、あるいは、デジタル信号の何れでも所定数のベク

$$\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathrm{T}}.$$

従来は結合装置の動作は、y^TCに数学的に等価なもの の転置行列を意味する。

【0010】この従来のシステムにおいては、干渉は、 ベクトルR'に関連し、1記号間隔当たりm個のチップ

$$\mathbf{R}_{i}' = \mathbf{C}^{\mathrm{T}}\mathbf{c}_{i} ,$$

言い替えると、

$$\mathbf{R}'_{i} = \begin{bmatrix} \sum_{L=1}^{m} (c_{1L}) & (c_{iL}) \\ \sum_{L=1}^{m} (c_{2L}) & (c_{iL}) \\ \vdots \\ \vdots \\ \sum_{L=1}^{m} (c_{nL}) & (c_{iL}) \end{bmatrix}$$

ここで、しは加算の一次的変数である。

【0011】数式(6)を検討すると、ベクトルR'iの n個の成分は、何れかの記号間隔におけるi番目のユー ザの対する符号係数のシーケンスの相互相関を表し、相 互相関とこの同一の符号期間の他のすべてのユーザの符

$$\mathbf{R}_{i} = \mathbf{C}^{T} \hat{\mathbf{C}}_{i} \mathbf{w}_{i} ,$$

すなわち、

のマトリックスCとして、次式で表される。

【数2】

に表すことができる。ここで、Ciは、特に断らない限 り、数式(3)の左辺を表すものとする。

【数3】

トル要素を有するベクトルyで表すことができる。簡単 のために、ベクトルyの要素の数をmとして、mが Nyq uist 定理を満足するサンプルの数であるとすると、べ クトルyは、以下のように表すことができる。

【数4】

を形成するn人のユーザのCDMAシステムにおいて として表現されていた。ここで、上付きTは、ベクトル 20 は、ベクトルR は、 $n \times 1$ 次元を持ち、以下のように 表すことができる。

【数5】

【数6】

号係数を表す。

40 【0012】ここで、数式(5)は以下のように書くこ とができる。

【数7】

【数8】

$$R_{i} = \begin{bmatrix} \sum_{L=1}^{m} (C_{1L}) (c_{iL}) (w_{iL}) \\ \sum_{L=1}^{m} (C_{2L}) (c_{iL}) (w_{iL}) \\ \vdots \\ \vdots \\ \sum_{L=1}^{m} (C_{nL}) (c_{iL}) (w_{iL}) \end{bmatrix}$$

ベクトルwiは、以下のように表すことができる。

【数9】

(9)

8

(8)

かくして、ベクトルRiは、上記の相互相関と重み付き ベクトルwiとの積で表すことができる。この重み付き

$$\mathbf{w}_{i} = (\mathbf{w}_{i1}, \mathbf{w}_{i2}, \ldots, \mathbf{w}_{im})^{T},$$

ここで、wiは、m×1のベクトルで、上付きTは、こ のベクトルの転置行列を表す。数式(6)において、こ の重み付きベクトルは、単位ベクトル、則ち、すべてが 1のベクトルである。数式(8)からRiの要素、すな わち、他のユーザからの干渉は、wiの適当なノンゼロ の値を発見することによって、減少し、Riのn個の各

$$\mathbf{J} = \mathbf{R}_i^T \mathbf{R}_i - \alpha_i \sum_{L=1}^m \mathbf{w}_{iL} ,$$

または

$$\mathbf{J} = \mathbf{R}_{i}^{T} \mathbf{R}_{i} - \alpha_{i} \sum_{L=1}^{m} \mathbf{w}_{iL}^{2} ,$$

ここで、 α_i は、換算係数で $0 \le \alpha_i \le 1$ である。数式 (10) または数式 (11) の何れかで、Jを最小化し ようとすると、再生されたユーザのチップストリームの 干渉を最小化することになる。実際、数式(10)と数 式(11)の右辺の第1項は、この干渉を表す。さら に、これらの式で何れかで、Jを最小化することは、数 式(10)と数式(11)の右辺の第2項の積分項を最 大化することになる。これらの和の何れかの最大化は、 wiの値の選択を表し、このwiの値は受信信号エネルギ ーをできるだけ減少させる。

$$\mathbf{c}_{i}' = \hat{\mathbf{C}}_{i} \mathbf{w}_{i}$$
.

【0016】以下に説明するように、数式(10)と数 式(11)で表される目的関数は、本発明の実施例にお いて使用される。Jの最小値が発見されると、wiの対 応するノンゼロ値を用いて、n人のユーザのそれぞれに 対し、数式(12)で表される変更した符号シーケンス ciを生成する。

【0017】図1に本発明の受信装置100を示す。サ ンプリング装置は、各記号期間において、リード101 に受信信号のm個のサンプルを形成する。これらのサン

々は、数式(6)の重み付きのない対応分に比較して減 少している。

【0013】R_iのn個を最小化することは、以下の目 的関数の内の何れか1つによって表現することができ 20 る。

【数10】

(10)

【数11】

(11)

【0014】数式(10)と数式(11)により支配さ 30 れる目的関数は、ベクトルwiの各要素の可能なノンゼ 口値の上の制約のみが異なる。すなわち、数式(10) においては、0≤wil≤1で、数式(11)において は、-1≦w_{il}≦1である。

【0015】適当な重み付きベクトルwiが発見される と、結合装置が、以下の式で表される符号係数シーケン スでもって動作すると、この結合装置内において、干渉 が減少する。

【数12】

(12)

個の異なる符号シーケンスの1つの異なる符号係数とを 乗算する。これらの符号シーケンスの各々は、パス10 3の関連するリードを介して、結合装置102に入力さ れる。

【0018】コードシーケンス生成装置104は、n個 の符号シーケンスを結合装置102に入力する。送信器 のn人のユーザの各々によって使用される符号シーケン スの各レプリカは、コードシーケンス生成装置105-1から105-nによって提供される。これらのコード プルは、結合装置102に入力されて、各サンプルとn 50 シーケンス生成装置105のすべての出力は、マトリッ

クス生成装置106に入力され、このマトリックス生成 装置106でマトリックスC^Tを形成し、このマトリッ クスC^Tは、目的関数生成装置107-1から107nに入力される。コードシーケンス生成装置105-1 から105-nの各出力は、それぞれマトリックス生成 装置108-1から108-nに入力される。これらの マトリックス生成装置108は、特定の符号シーケンス に関連した対角マトリックスを生成する。すなわち、コ ードシーケンス生成装置105-2は、ユーザ2により 使用される符号シーケンスを提供し、マトリックス生成 装置108-2は、関連する対角マトリックスC^2(こ こで、C¹はCの上付き²を意味する)を生成する。この 対角マトリックスC²は、マトリックスの対角に、ユー ザ2用の符号シーケンスがあり、他の要素はゼロであ る。マトリックス生成装置108-1から108-nに より提供される対角マトリックスは、それぞれ目的関数 生成装置107-1から107-nの関連する1つに入 力される。目的関数生成装置107-1から107-n のそれぞれは、所定のプロセスを実行して、ユーザ1か らn用の目的関数を最適化する。この所定のプロセス は、公知の最適化技法の様々なものの何れかで、例え ば、目的関数の数学的導関数を形成し、この導関数をゼ 口に設定する、あるいは、このプロセスの繰り返しの手 段を意味する。何れの場合においても、各ユーザの目的 関数は、数式(10)または数式(11)の何れかによ り支配され、繰り返し最適化プロセスを用いて、wiの 1個の予測値以上のものが、各目的関数生成装置に提供 される。これを受け入れるために、目的関数生成装置1 07-1から107-nは、それぞれ最小化制御装置1 09-1から109-nに関連している。各最小化制御 装置109は、Jの異なる値を受信し、wiの対応する 値が各記号期間の所定の部分の間関連する目的関数生成 装置により提供される。これらの値は、リード110-1から110-nの関連する1つを介して、最小化制御 装置に提供される。この最小化制御装置は、公知の最適 化技法を用いて、次のwiベクトルを生成し、このベク トルを関連する目的関数生成装置にバス111-1から 111-nの関連する1つを介して提供する。記号期間 ごとに1回各最小化制御装置は、それに入力される」の 最小値を選択し、関連する最適化関数生成装置がJの最 小値に対応するベクトルwiの出力をバス116に接続 する。この接続は、リード115の上の制御信号を介し て行われる。従って、バス116は、n個の異なるwi ベクトルを各記号期間において、乗算器117-1から 117-nに接続する。これらの乗算器は、それぞれ積 C_1W_1 、 C_2W_2 、…、 C_nW_n を生成し、これらはバス1 03を介して結合装置102に接続される。

9

【0019】結合装置102は、乗算器112-1から 112-nを有し、これらはそれぞれ加算器113-1 から113-nに接続されている。各乗算器112は、 n個の乗算の異なる1つを実行し、n個の積を関連する加算器113-1から113-nに提供する。各加算器113は、これらのnの積の和を出力し、それらはy c iで各記号期間にわたって表される。

【0020】図2は、図1内の目的関数生成装置107-1の一実施例内の回路を表す。数式(10)または数式(11)の目的関数は、公知の最適化技術の1つでもって提供される。他の目的関数生成装置の内の回路は、図2に示したものと同一である。

【0021】図2に示すように、乗算器201は積 C^T C_1 を生成し、この積を乗算器202に入力する。この乗算器202は、ベクトル R_1 、すなわち、乗算器201の出力と w_1 バス111-1を介して提供される各候補(candidate)重み付きベクトル、則ち、トライアル重み付きベクトル w_1 の積を生成する。バス111-1は、各記号期間内に少なくとも1個の候補重み付きベクトル w_1 を提供する。マトリックストランスポータ205は、各記号期間において、マトリックスの積 C^TC_1 w_1 0配置行列を形成する。乗算器203は、各候補ベクトルに対し、ベクトル積 R_1 ^T R_1 を形成する。

【0022】目的関数生成装置107-1は、数式(1 0) または数式(11)の何れかに基づいて動作する。 前者の場合、最小化制御装置109-1により、バス1 11-1に提供される各候補ベクトルが直接乗算器20 8に入力され、この乗算器208は、各候補ベクトルを 所定の換算係数α」で乗算する。後者の場合、各候補べ クトルは、候補ベクトルw1要素207に入力され、こ の候補ベクトルw」要素207は、各候補ベクトルの各 成分を二乗し、その後、この二乗された要素を乗算器2 08に入力する。従って、候補ベクトルw1要素207 の使用は、任意のもので、図2では点線の四角で示して いる。何れの場合も204は、代数的に乗算器203の 出力から乗算器208の出力を減算し、目的関数Jを形 成する。制御装置/メモリユニット209は、各候補べ クトルとこの候補重み付きベクトルを用いる関連目的関 数を受信し、これらの値を記憶する。各記号期間におい て、形成された複数の目的関数」は、連続的に最小化制 御装置109-1にリード110-1を介して入力され る。その後、この最小化制御装置は、各記号期間で形成 されたJの最小値を選択し、この選択結果をリード11 5を介して、制御装置/メモリユニット209に入力す る。リード115上の制御信号に応答して、Jの最小値 に対応する候補重み付きベクトルをバス116に出力す

【0023】本発明は非差動符号化を利用するCDMAシステムについて説明したが、差動符号化を用いるCDMAシステムにも適用可能である。差動符号化においては、数式(10)の目的関数は次式となる。

【数13】

$$\mathbf{J} = \mathbf{R}_{i}^{T} \mathbf{R}_{i} - \alpha_{i} \sum_{L=1}^{m} \hat{\mathbf{w}}_{iL} \mathbf{w}_{iL},$$

(13)

12

ここで、数式 (13) の項は、数式 (10) のそれぞれ の対応するものと同一の意味を有し、項w il は最適重 み付きベクトルが決定される記号期間の直前の記号期間 内における i 番目のユーザの選択された重み付きベクト

ルを意味する。同様に数式(11)の目的関数は次式となる。

【数14】

$$\mathbf{J} = \mathbf{R}_{i}^{\mathsf{T}} \mathbf{R}_{i} - \alpha_{i} \sum_{L=1}^{m} |\hat{\mathbf{w}}_{iL}| |\mathbf{w}_{iL}|.$$
 (14)

数式 (13) と数式 (14) は、数式 (10) と数式 (11) と同様に、ベクトル \mathbf{w}_i の各成分の許容可能な ノンゼロ値上の制限しか異ならない。数式 (13) においては、 $0 \le \mathbf{w}_{iL} \le 1$ であるが、数式 (14) において は、 $-1 \le \mathbf{w}_{iL} \le 1$ である。

【0024】図3は本発明が差動符号化を用いるCDM Aシステムに適用される際の受信機300を表してい る。図3に示された回路の多くは、図1に示されたもの と同一の構造および機能を有する。これらの各同一の回 路は、図3と図1とでは同一の番号で表している。コー ドシーケンス生成装置304は、図1のコードシーケン ス生成装置104と同一である。但し、数式(13)ま たは数式(14)に応じて、目的関数を実行するのに必 要な目的関数生成装置の各々の変更が若干なされてい る。これらの目的関数生成装置は、図3においては、目 的関数生成装置307-1から307-nで表されてい る。数式(13)または数式(14)の目的関数は、べ クトルw¹;を必要とし、バス316-1から316-n は、これらのベクトルを各最小化制御装置とその関連す る目的関数生成装置との間を接続する。同様に、結合回 路302は結合装置102と同一で、但し、記号間隔遅 延ユニット317-1から317-n、乗算器318-1から318-nを追加した点が異なる。各前者はそれ ぞれ乗算器112-1から112-nの異なる1つは、 積を1記号期間だけ遅延させる。その結果、乗算器31 8-1から318-nは、それぞれ乗算器112-1か ら112-nの2個の連続する出力の積を形成する。

【0025】次に図4において、ユーザ1用の目的関数生成装置(307-1)の回路が示されており、この回路は、目的関数生成装置307-2から307-nのそ 40れぞれで用いられるものである。数式(10)の目的関数と数式(13)の目的関数との差を説明するために、ベクトルトランスポーズユニット303とコードシーケンス生成装置304とが用いられる。ベクトルのw¹とw₁とは、それぞれバス316-1とバス111-1を介して、目的関数生成装置307-1に入力される。ベクトルトランスポーズユニット303は、ベクトルの配置行列w¹を形成し、これはベクトルw₁によりコードシーケンス生成装置304を介して乗算されたものである。この目的関数生成装置が、数式(14)による目的 50

関数を実行する場合には、絶対値回路301と302が 図4に示されるよう配置されて、それぞれベクトルw~1 とw1のm個の項の各々の絶対値をそれぞれ提供する。

【0026】図1または図3の何れかの回路は、予測装 置とも考えることができ、出力された予測装置は実数信 号である。この出力を二進出力に変換するために、図5 または6に示された回路は、バス114に接続される。 図5は、「ハード」の決定復号化装置と通常称されるも ので、多入力量子化装置501を有し、この多入力量子 20 化装置501は、直列にチャネル復号装置502に接続 されている。「ソフト」決定復号化装置が、図6に示さ れており、この装置はチャネル復号装置601によりバ ス114に接続されている。図1および図3の別の使用 例は、これらの図の何れかと図7とを組み合わせること によって実現できる。この点に関しては、図1と3の出 力は、受信信号の瞬間パワー(instantaneous power) を表している。これらの出力の何れかを図7に示すFI Rフィルタ701に入力することにより、この瞬間パワ -の積分が得られる。それ故に、図1と図7または図3 30 と図7を組み合わせることにより、パワーの予測装置が 得られる。

【0027】本発明はCDMAシステムについて説明し、ユーザの記号が複数のピットを表し、それらは差動的、あるいは非差動的に符号化されているが、本発明は差動符号化、あるいは非差動符号化の何れにも適用可能である。また、実施例においては、受信信号サンプルが形成される各記号期間の数に等しいが、本発明は1記号期間当たりの受信信号サンプルの如何なる数も Nyquist 20 定理を満たすものについては、適用可能となる。また、実施例は個別の装置を用いたが、これらの装置は適当なプログラムされた汎用プロセッサ、あるいは特定の集積回路、あるいはデジタルプロセッサ、あるいはアナログ、あるいはそのハイプリッドプロセッサを用いでも実現できる。

[0028]

【発明の効果】本発明の受信装置は、既存のCDMAシステムに容易に追加可能な低コストのデータ再生回路を 提供することができる。

0 【図面の簡単な説明】

14

【図1】本発明の一実施例による非差動符号化CDMAシステムの受信回路のブロック図である。

【図2】図1の目標関数発生器のブロック図である。

【図3】本発明一実施例による差動符号化CDMAシステム受信回路のブロック図である。

【図4】図3の目標関数生成器のブロック図である。

【図5】図1または図3の何れかの回路に使用される付加的な回路のブロック図である。

【図6】図1または図3の何れかの回路に使用される付加的な回路のブロック図である。

【図7】図1または図3の何れかの回路に使用される付加的な回路のブロック図である。

【符号の説明】

100 本発明の受信装置

101 リード

102 結合装置

103 バス

104 コードシーケンス生成装置

105 コードシーケンス生成装置

106 マトリックス生成装置

107 目的関数生成装置

108 マトリックス生成装置

109 最小化制御装置

110 リード

111 パス

112、117 乗算器

113 加算器

114、116 バス

115 リード

201、202、203 乗算器

205 マトリックストランスポータ

207 候補ベクトルw₁要素

208 乗算器

10 209 制御装置/メモリユニット

301、302 絶対値回路

302 結合装置

303 ベクトルトランスポーズユニット

304 コードシーケンス生成装置

307 目的関数生成装置

308 目的関数生成装置

313 ベクトルトランスポーズユニット

316 バス

317 記号間隔遅延ユニット

20 318 乗算器

501 多入力量子化装置

502 チャネル復号装置

601 チャネル復号装置

701 FIRフィルタ

[図3]

