SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Preddiplomski sveučilišni studij računarstva

Računalne simulacije u tehnici **TURBULENTNO STRUJANJE**

Leo Brdar

Luka Đurašinović

Tina Gojak

Nikol Kitić

Rijeka, lipanj 2016.

Sadržaj

1.	Opis zadatka	1
	Analitički izračun	
	Računanje ulazne i izlazne brzine	
	Računanje razlike tlaka ($\Delta oldsymbol{p}$)	
	Prikaz geometrije	
	Dokazivanje mrežne nezavisnosti	.14

1. Opis zadatka

Zadatak je izraditi geometriju zaobljene cijevi sa zavojem i simulirati turbulentan tok vode kroz tu cijev.

Pends of R_0 (R_0) < 3.0 and 0 < 5 < 180° l_0 > 10†	
Bends at $\frac{R_0}{D_0} \left(\frac{R_0}{b_0} \right) < 3.0$ and $0 < \delta \le 180^\circ$, $\frac{t_0}{D_h} \ge 10^{\dagger}$	Diagram
[1, 11, 24, 45, 47, 57, 59, 66, 68]	6-1

1) Smooth walls ($\Delta = 0$) and Re = $w_0 D_h / v \ge 2 \times 10^5$: $\xi = \frac{\Delta p}{\rho w_0^2 / 2} = \xi_{\text{loc}} + \xi_{\text{fr}} = \xi_{\text{loc}} + 0.0175 \frac{R_0}{D_h} \delta \lambda$

 $\xi_{loc} = A, B, C,$

 $A_1=f(\delta),$ see graph a or, tentatively, the corresponding formulas:

δ, degree	≤70	90	≥100		
A_1	0.9 sin δ	1.0	$0.7 + 0.35 \frac{\delta}{90^{\circ}}$		

 $B_1 = f(R_0/D_0)$ or $f(R_0/b_0)$, see graphs b and c or, tentatively, the corresponding formulas:

$\frac{R_0}{D_0} \left(\frac{R_0}{b_0} \right)$	0.5-1.0	>1.0		
B ₁	$\frac{0.21}{(R_0/D_0)^{2.5}}$	$\frac{0.21}{\sqrt{R_0/D_0}}$		

 $C_1 = f(a_0/b_0)$, see graph d (for a circular or square cross section $C_1 = 1.0$);

$$\xi_{\rm fr} = 0.0175 \, \frac{R_0}{D_h} \, \delta \lambda$$

Slika 1: Zadatak

2. Analitički izračun

Računanje ulazne i izlazne brzine

Bends at
$$\frac{R_0}{D_0} \left(\frac{R_0}{b_0}\right) < 3.0$$
 and $0 < \delta \le 180^\circ$, $\frac{l_0}{D_h} \ge 10^\dagger$

Slika 2: Početni uvjeti zadatka

Slika 3: Skica s početnim uvjetima

S obzirom na uvjet zadatka $\frac{R_0}{D_0}$ < 3 (slika 2.) proizvoljno smo odabrali da ta jednakost mora biti jednaka 2 kako bismo mogli izračunati ostale vrijednosti za taj slučaj.

$$\frac{R_0}{D_0} = 2$$

Ako uzmemo da nam je $D_0=1m\,$ iz toga slijedi da je $\,R_0=2m\,$.

Iz uvjeta $0 < \delta \le 180^{\circ}$ odabrali smo kut $\delta = 90^{\circ}$.

Iz uvjeta $\frac{l_0}{D_h} \ge 10$ (slika 2.) i $D_h=D_0$ (slika 3.), dobivamo da je $D_h=1m$ i $l_0\ge 10~m$. U svojem rješenju uzeli smo $l_0=10m$.

Smooth walls (
$$\Delta = 0$$
) and Re = $w_0 D_h / v \ge 2 \times 10^5$:

$$\zeta = \frac{\Delta p}{\rho w_0^2 / 2} = \zeta_{loc} + \zeta_{fr} = \zeta_{loc} + 0.0175 \frac{R_0}{D_h} \delta \lambda$$

$$\zeta_{loc} = A_1 B_1 C_1$$

Slika 4: Uvjeti zadatka

Re	2·10³	2.5 · 10³	3•10³	4•10³	5 • 10 ³	6•10³	8 • 10 ³	10 ⁴	1.5 · 10 ⁴	
λ	0.032	0.034	0.040	0.040	0.038	0.036	0.033	0.032	0.028	
Re	2·10 ⁴	3·10 ⁴	4·10 ⁴	5•10 ⁴	6•10 ⁴	8·10 ⁴	10 ⁵	1.5 • 10 ⁵	2·10 ⁵	3·10 ⁵
λ	0.026	0.024	0.022	0.021	0.020	0.019	0.018	0.017	0.016	0.015
Re	5·10 ⁵	5 • 10 s	6·10 ⁵	8•10 ⁵	10 ⁶	1.5 • 10 ⁶	2·10 ⁸	3•10 ⁸	4·10 ⁸	
λ	0.014	0.013	0.013	0.012	0.012	0.011	0.011	0.010	0.010	
Re λ	5•10 ⁸ 0.009	8•10 ⁸ 0.009	$\frac{10^7}{0.008}$	1.5 • 10 ⁷ 0.008	2·10 ⁷ 0.008	3•10 ⁷ 0.007	6·10 ⁷ 0.007	8•10 ⁷ 0.006	10 ⁸ 0.006	Apple 1 Japan agree

Tablica 1: Re

Zadano je $R_e \ge 2*10^5$ (slika 4.), proizvoljno smo odabrali $R_e = 2*10^5$, a iz tablice 1 dobili smo vrijednost $\lambda = 0.016$.

Zadana je formula $R_e=rac{W_0*D_h}{V}$ ($v=10^{-6}rac{m}{s}-kinetička~viskoznost~vode$), a iz nje slijedi izračun:

$$W_0 = \frac{R_e * \nu}{D_h} = \frac{2 * 10^5 * 10^{-6}}{1} = 0.2 \, m/s$$

Ulazna brzina: 0.2 m/s, izlazna brzina: 0 m/s

Računanje razlike tlaka (Δp)

Na slici 4. zadani su sljedeći uvjeti:

$$\xi = \frac{\Delta p}{\rho * W_0^2/2} = \xi_{loc} + \xi_{fr} = \xi_{loc} + 0.0175 * \frac{R_0}{D_h} * \delta * \lambda$$

$$\xi_{loc} = A_1 * B_1 * C_1$$

 $A_1 = f(\delta)$, see graph a or, tentatively, the corresponding formulas:

δ, degree	≤70	90	≥100
$\overline{A_1}$	0.9 sin δ	1.0	$0.7 + 0.35 \frac{\delta}{90^{\circ}}$

Slika 5: Uvjeti zadatka

S obzirom da je naš kut $\delta=90^\circ$, iz slike 5. dobijemo da je $A_1=1.0$.

2.0	3.0	4.0	6.0	8.0	10	15
0.15	0.12	0.11	0.09	0.07	0.07	0.06
20	25	30	3:	5	40	50
0.05	0.05	0.0	04 0	.04	0.03	0.03
	0.15	0.15 0.12 20 25	0.15 0.12 0.11 20 25 30	0.15 0.12 0.11 0.09 20 25 30 33	0.15 0.12 0.11 0.09 0.07 20 25 30 35	

Tablica 2.

Iz tablice 2. vidimo da je $B_1 = 0.15 \ (R_0/D_h = 2.0)$.

 $C_1 = f(a_0/b_0)$, see graph d (for a circular or square cross section $C_1 = 1.0$);

Slika 6: Uvjeti zadatka

S obzirom da nam je presjek kružni iz slike 6. vidimo da je $\mathcal{C}_1=1.0.$

Sad kad imamo vrijednosti A_1 , B_1 i \mathcal{C}_1 možemo izračunati ξ_{loc}

$$\xi_{loc} = A_1 * B_1 * C_1 = 1 * 0.15 * 1 = 0.15$$

Za računanje ξ_{fr} imamo sve potrebne vrijednosti:

$$\xi_{fr} = 0.0175 * \frac{R_0}{D_h} * \delta * \lambda = 0.0175 * 2 * 90 * 0.016 = 0.0504$$

Sad kad smo izračunali ξ_{loc} i ξ_{fr} možemo izračunati ξ , a nakon toga i Δp ($\rho=1000\frac{kg}{m^3}$):

$$\xi = \ \xi_{loc} + \ \xi_{fr} = 0.15 + 0.0504 = 0.2004$$

$$\Delta p = \xi * \rho * \frac{W_0^2}{2} = 0.2004 * 1000 * \frac{0.2^2}{2} = 4.008$$

3. Prikaz geometrije

Koristeći zadane uvjete i odabrane dimenzije, izradili smo geometriju u obliku zaobljene cijevi.

Slika 7. - Geometrija

Na slici 7. prikazane su dimenzije geometrije:

H2 – polumjer zaobljenosti (90°)

D1 – promjer cijevi (1 m)

V3 – duljina cijevi

Slika 8. - Dimenzije geometrije

Nakon izrade mesha, promjenom vrijednosti Relevance Center u Fine, Relevance na 100, te odabirom opcije Insert Refinement uz vrijednost refinement 1, nastao je mesh s 40213 točaka i 149978 elemenata.

Slika 9. - Mesh

Slika 10. - približeni prikaz mesha

Odabirom Define named selection, označili smo ulaznu i izlaznu plohu te zid cijevi koje se koriste u daljnjem računanju, pri pokretanju fluenta (slike 11.-13.).

Slika 11. - Označavanje ulaza

Slika 12. - Označavanje izlaza

Slika 13. - Označavanje zida

Prema uvjetima zadatka potrebno je postaviti k-epsilon model, odnosno turbulentno gibanje (slika 14. i 15).

Slika 14. - Odabir k-epsilon modela

Slika 15. - Postavke turbulentnog gibanja

Na ulaz cijevi potrebno je postaviti velocity inlet i na njega dovesti vodu (slika 16.) s izračunatom brzinom od 0.2 m/s (slika 17.).

Slika 16. - Odabir vode kao materijala

Slika 17. - Dovođenje vode na ulaz

Na izlaz smo postavili pressure outlet, s gauge pressure (nadtlak) jednakim 0 Pa (slika 18.).

Slika 18. - Pressure outlet na izlaz

Na izlazu smo odredili točku u kojoj se mjeri izlazna brzina vode – izlazna_brzina (slika 19.).

Slika 19. - Određivanje točke za mjerenje izlazne brzine

Nakon pokretanja simulacije, kreiran je graf promjene brzine u točki izlazna_brzina.

Slika 20. - Graf promjene brzine

Dokazivanje mrežne nezavisnosti

Mrežu smo ufinjavali i računali brzinu na izlazu dok razlika između izračunatih brzina nije postala zanemariva; nakon 81215 čvorova možemo zaključiti nezavisnost mreže.

Broj čvorova mreže	Izlazna brzina (m/s)
296	0,20024144
4607	0,20039571
16129	0,20043436
39075	0,20079412
61720	0,20117247
81215	0,20129525
82412	0,20129496
82636	0,20129424

