1 Решение задачи 2

Пусть $\mathcal{L} = \{c^i a^n b^k a^j \mid (k > n) \lor (i = j \& n > 2)\}$. Язык $\mathcal{L} \in CFL$, поскольку $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, где

$$\begin{split} \mathcal{L}_1 &= \{c^i a^n b^k a^j \,|\, k>n\} \in \text{CFL},\\ \mathcal{L}_2 &= \{c^i a^n b^k a^j \,|\, i=j \,\&\, n>2\} \in \text{CFL}. \end{split}$$

Язык \mathcal{L} недетерминирован, так как $\mathcal{L}_2 \notin \text{DCFL}$. Докажем это с помощью леммы о накачке для DCFL. Пусть n- длина накачки. Рассмотрим слова

$$w_1 = c^n a^{n+2} \in \mathcal{L}_2,$$

$$w_2 = c^n a^{n+2} b a^n \in \mathcal{L}_2.$$

У них общий префикс $x=c^na^{n+1},\ |x|>n,$ и различные суффиксы y=a и $z=aba^n$ соответственно, причём y[0]=z[0]. Будем предполагать выполненным пересечение с регулярной аппроксимацией $c^*a^2a^*b?a^*.$

Пусть накачивается только префикс x, т.е. существует разбиение $x=x_0x_1x_2x_3x_4, |x_1x_3|>0, |x_1x_2x_3|\leq n$, такое, что $(\forall i\in\mathbb{N})\ x_0x_1^ix_2x_3^ix_4y\in\mathcal{L}_2$ и $x_0x_1^ix_2x_3^ix_4z\in\mathcal{L}_2$. Рассмотрим разбиения префикса x.

- $x_1x_3 = c^i$ для некоторого i. Отрицательная накачка рассинхронизирует число букв c и a в слове w_1 ;
- $x_1 = c^i$, $x_3 = a^j$ для некоторых i, j. При отрицательной накачке наблюдаем рассинхронизацию числа букв c и a уже в слове w_2 ;
- $x_1x_3 = a^i$ для некоторого i. Вновь отрицательная накачка рассинхронизирует число букв c и a в слове w_1 .

Пусть теперь префикс x и суффиксы y, z накачиваются синхронно, т.е. существуют разбиения $x=x_0x_1x_2, \ y=y_0y_1y_2, \ z=z_0z_1z_2,$ где $|x_1x_2|\leq n,\ |x_1|>0,$ такие, что $(\forall i\in\mathbb{N})\ x_0x_1^ix_2y_0y_1^iy_2\in\mathcal{L}_2$ и $x_0x_1^ix_2z_0z_1^iz_2\in\mathcal{L}_2.$ Заметим, что $x_1=a^i$ для некоторого і. Какое бы мы ни выбрали разбиение $y\ (y_1=a$ или $y_1=\varepsilon),$ при отрицательной накачке слово w_1 выходит из языка из-за рассинхронизации числа букв a и c. Таким образом, $\mathcal{L}_2\notin \mathrm{DCFL},$ и $\mathcal{L}\notin \mathrm{DCFL}.$