

Логически елементи

Основни логически функции и закони. Реализиране на логически елементи.

I. Логическо състояние – bit (разред)

- □ Цифровата схема се различава от аналоговата схема по това, че работи само с две нива на сигнала високо и ниско, които съответно се наричат
 - ✓ "логическа единица" и
 - ✓ "логическа нула".

Логическо състояние					Напрежения
1	да	вкл.	High	true	2,55 V
0	не	изкл.	Low	false	00,4 V

II. Комбинации (състояния)

□ С n бита може да се представят 2ⁿ състояния

Ако n=2, то състоянията са 4:

Bit	Bit	Състоя-
1	2	ние
0	0	0
0	1	1
1	0	2
1	1	3

III. Представяне на комбинации

□ Двоично представяне (binary, основа 2)

$$Z_{s} = 2^{s} \cdot b_{s} + 2^{s-1} \cdot b_{s-1} \dots 2^{s} \cdot b_{s} + 2^{s} \cdot b_{s} + 2^{1} \cdot b_{1} + 2^{o} \cdot b_{0}$$

$$Z_{s} = \dots 16 \cdot b_{s} + 8 \cdot b_{s} + 4 \cdot b_{s} + 2 \cdot b_{1} + 1 \cdot b_{0} = \sum_{i=0}^{s} 2^{i} \cdot b_{i}$$

Шестнадесетично представяне (Нех, основа 16)

$$Z_{ii} = h_{ii} \cdot 16^{ii} + ... + h_{ij} \cdot 16^{ij} + h_{ij} \cdot 16^{ij} + h_{ij} \cdot 16^{ij} + h_{ij} \cdot 16^{ij} = \sum_{i=0}^{n} 16^{ij} \cdot h_{ij}$$
$$Z_{ii} = h_{ij} h_{ij} h_{ij} h_{ij} \text{ mit } h_{ij} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$$

 \triangleright Пример: $125_{(p)} = 0b011111101 = 0x7D=7DH$

III. Представяне на комбинации

Двоична и шестнадесетична система

Decimal	Binary	Hex
0	00000	0
1	00001	1
2	00010	2
3	00011	3
4	00100	4
5	00101	5
6	00110	6
7	00111	7
8	01000	8
9	01001	9

Decimal	Binary	Hex
10	01010	A
11	01011	В
12	01100	C
13	01101	D
14	01110	E
15	01111	F
16	10000	10
17	10001	11
18	10010	12
19	10011	13

IV. Представяне на аналогово напрежение

Представено е аналогово напрежение с:

1-битово число Z_2 (зелено)

2-битово число Z_4 (червено)

3-битово число Z_8 (сиво)

Колкото повече бита (разряда) се изпозлват за аналогоцифровото представяне, токлова точността на представянето е по-висока.

V. Кодиране

- □ Двоичните числа дават възможност за представяне на естествените числа: 0,1,2....
- □ Представянето на не цели числа или дробни числа изискват кодиране, което трябва да бъде избрано и напасвано в зависимост от задачите.
- ВСD-код (двоично кодирана десетична система)

В ВСD код всяка цифра на едно десетично число се кодира като двоично число. Например десетичното число:

3961 => BCD => 011 1001 0110 0001

	Хиляди	Стотици	Десетици	Единици
Десетично число	3	9	6	1
BCD число	0011	1001	0110	0001

Оснивният градивен блок на цифровите схеми са логическите елементи.

Логическите елементи и схеми са импулсни устройства, при които входните и изходните сигнали имат две възможни стойности (състояния), наречени логически нива.

Тези нива се означават с двоичните цифри 0 и 1, а поведението на схемите се описва с законите на двоичната логика.

Логическа 1 е всяко напрежение, което се намира над определена минимална стойност. Логическа 0 е всяко напрежение, намиращо се под определена максимална стойност.

В зависимост от използваните елементи и схемни решения при тяхната реализация логическите схеми се обособяват в следнте фамилии:

- резисторно-транзисторната логика (RTL),
- диодно-транзисторната логика (DTL),
- логиката с високи нива (HLL),
- транзисторно-транзисторната логика (TTL),
- емитерно свързаната логика (ECL) и
- интегралната инжекционна логика (I2L).
- N-каналната MOS логика
- комплементарна MOS логика (CMOS)
- интегрирана биполярна CMOS логика (BiCMOS) и
- нисковолтовата логика (LVL).

Най-широко приложение в практиката имат транзисторно-транзисторната логика (TTL) и комплементарната MOS логика (CMOS).

Фамилиите се различават по:

- ✓ нивата на логическата "0" и логичвската "1" (Off, On)
- ✓ бързодействие (скоростта на превключване)
- ✓ ниска консумация (консумираната мощност)

			Ненаситена логика			
	CMOS	HCMOS	TTL	STTL	ECL	1
	Complemen- tary MOS	High Speed- CMOS	Transistor- Transistor	Schottky-TTL	Emitter- Coupled-	
77	/S \1537	5 V	Logic	5 V	Logic	
U _v On	(5)15 V 11 14,8 V	4.9 V	5 V 3,6 V	3,5 V	5 V - 0,9 V	
Off	0,24 V	0,1 V	0,5 V	0,5 V	- 1,7 V	
Скорост на превключване	35 ns	8 ns	10 ns	4 ns	1 ns	
Консумирана мощност	10 nW	25 nW	10 mW	20 mW	25 mW	

□ Инвертор - Отрицание - "HE" (NOT)

Логическа функция

$$f1(x1) = \overline{x1}$$

Таблица на истинност

Ν°	x 1	f1(x1)
0	0	1
1	1	0

□ Конюнкция – "И" (AND)

Логическа функция

$$y = f2(x1, x2) = x1.x2$$

Таблица на истинност

N٥	x 1	x 2	f2(x1,x2)
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

□ NAND

Логическа функция

$$y = f3(x1, x2) = \overline{x1.x2}$$

Таблица на истинност

N	0	x 1	x2	f3(x1,x2)
C		0	0	1
1		0	1	1
2		1	0	1
3		1	1	0

Графичен символ

□ Дизюнкция — "ИЛИ" (OR)

Логическа функция

Nº	x1	x2	f4(x1,x2)
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Графичен символ

☐ NOR

Логическа функция

$$y = f5(x1, x2) = \overline{x1 + x2}$$

Таблица на истинност

N°	x 1	x 2	f5(x1,x2)
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	0

Графичен символ

Времева функция X1 X2

Y

□ Нееднаквост (XOR)

Логическа функция y= f6(x1,x2) = x1⊕ x2

Таблица на истинност

Ν°	x 1	x2	f6(x1,x2)
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

Графичен символ X1 → X1⊕X2

□ Еднаквост (XNOR)

Логическа функция

$$y=f7(x1,x2)=\overline{x1\oplus x2}$$

Таблица на истинност

N٥	x 1	x2	f7(x1,x2)
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	1

VI. Закони на Булевата алгебра

Конюнкция

$$y = x_i \wedge x_i = x_i \cdot x_i = x_i x_i$$

Дизюнкция

$$y = x_1 \vee x_2 = x_1 + x_2$$

Отрицание

$$y = x = /x$$

Комутативен закон

$$xx = xx$$

$$x_1 + x_2 = x_2 + x_1$$

Асоциативен закон

$$x_i(x_2x_1) = (x_1x_2)x_1$$

$$x_{1} + (x_{2} + x_{3}) = (x_{1} + x_{2}) + x_{3}$$

Дистрибутивен закон

$$x_{i}(x_{1}+x_{1})=x_{1}x_{1}+x_{1}x_{1}$$

$$x_1 + x_2 x_3 = (x_1 + x_2)(x_1 + x_3)$$

Закон за поглъщане

$$x_i(x_i + x_j) = x_i$$

$$X_1 + X_2 X_3 = X_1$$

Закон за повторение

$$\chi \chi = \chi$$

$$x + x = x$$

Закон на допълнението

$$xx = 0$$

$$x+x=1$$

Закон за двойното отрицание

$$\overline{(\overline{x})} = x$$

Теорема на Де Морган

$$\overline{X_i X_j} = \overline{X_i} + \overline{X_j}$$

$$\overline{X_i + X_j} = \overline{X_i} \overline{X_j}$$