

Certificate Of Mailing by "EXPRESS MAIL"

I hereby certify that this correspondence is being deposited with the US Postal Services Express Mail Post Office To Addressee" service under 37 CFR 1.10 Express Mail Label No. EL 873071203 US and addressed to Box Patent Application, the Commissioner for Patents, Washington, D.C. 20231 on the date shown below.

Date: February 19, 2002

By:
Kay Gaviglio

PATENT
Docket No. GC567-C1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)
Huaming Wang) Group Art Unit: --
Serial No.: Cont of 09/218,702) Examiner: --
Filed: Herewith)
For: NOVEL PHENOL OXIDIZING)
ENZYMES)

STATEMENT OF SAMENESS

Commissioner for Patents
Washington, D.C. 20231

Sir:

In accordance with 37 CFR 1.821(e) or 1.821(f) or 1.821(g) or 1.825(d), the computer readable copy of the sequence listing, and the paper copy submitted herewith in the above application are believed to be the same.

Respectfully submitted,

H. Thomas Anderton
Registration No. 40,895

Date: February 19, 2002

Genencor International, Inc.
925 Page Mill Road
Palo Alto, CA 94304-1013
Tel: 650-846-7615
Fax: 650-845-6504

SEQUENCE LISTING

<110> Wang, Huaming

<120> Novel Phenol Oxidizing Enzymes

<130> GC567

<140> 09/218,702

<141> 1998-12-22

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1791

<212> DNA

<213> Stachybotrys sp.

<400> 1

gtcaatatgc tttcaagtc atggcaactg gcagcagccct cggggctcct gtctggagtc	60
ctcgccatcc cgatggacac cggcagccac cccattgagg ctgttgcatt cgaagtgaag	120
actgagggtct tcgctgactc cctcattgtct gcagcaggcg atgacgactg ggagtcacct	180
ccataacaact tgctttacag gaatgccctg ccaattccac ctgtcaagca gccaagatg	240
atcattacca accctgtcac cggcaaggac atttggtaact atgagatcga gatcaagcca	300
tttcagcaaa ggatttaccc cacattgcgc cctgcccactc tcgtcggcta cgatggcatg	360
agccctggtc ctactttcaa tgttccaga ggaacagaga ctgttagttt gttcatcaac	420
aatgccaccg tggagaactc ggtccatctg cacggctccc catcgctgc cccttcgat	480
ggttgggctg aagatgtgac cttccctggc gagtacaagg attactactt tcccaactac	540
caatccgccc gccttctgtg gtaccatgac cacgcttca tgaagactgc tgagaatgcc	600
tactttggtc aggctggcgc ctacattatc aacgacgagg ctgaggatgc tctcggtctt	660
cctagtggct atggcgagtt cgatatccct ctgatcttgc cggccaagta ctataacgcc	720
gatgttaccc tgcgttcgac cgagggttag gaccaggacc tggtgggaga tgtcatccat	780
gtcaacggac agccatggcc ttctttaac gtccagcccc gcaagtaccg ttcccgattc	840
ctcaacgctg ccgtgtctcg tgctggctc ctctacccctg tcaggaccag ctctcccaac	900
gtcagaattc ctttccaagt cattgcctct gatgctggc tccttcaagc ccccggttcag	960
acctctaacc tctaccttgc tggttgcgag cgttacgaga tcattattga cttcaccaac	1020
tttgcgtggcc agactcttga cctgcgcac gttgctgaga ccaacgatgt cggcgacgag	1080
gatgagtacg ctcgcactct cgagggtatcg cggttcgtcg tcagctctgg cactgtttag	1140
gacaacagcc aggtcccttc cactctccgt gacgttcctt tccctcctca caaggaaggc	1200
cccgccgaca agcacttcaa gtttgaacgc agcaacggac actacctgtat caacgatgtt	1260
ggctttggcg atgtcaatga gctgttcctg gccaagcccc agtcggcac cggttgggtc	1320
tggagctcg agaactccctc tggaggctgg agccaccccg tccacattca ctttgttgc	1380
ttcaagatcc tcaagcgaac tggttgcgt ggccagggtca tgccctacga gtctgcttgt	1440
cttaaggatg tcgtctgggt gggcagggtt gagaccctga ccatcgaggc ccactaccaa	1500
ccctggactg gagcttacat gtggcactgt cacaacctca ttcacgaggta aacgacatg	1560
atggctgtat tcaacgtcac cgccatggag gagaaggat atctcaggaa ggacttcgag	1620
gaccggatga accccaagtgcgcgtt ctttacaacc gcaacgactt ccatgctgc	1680
gctggaaact tctccggca gtccatcact gcccggatgc aggagctggc cgagcaggag	1740
ccgtacaacc gcctcgatga gatcctggag gatcttgaa tcgaggagta a	1791

<210> 2

<211> 594

<212> PRT

<213> Stachybotrys sp.

<400> 2

Met Leu Phe Lys Ser Trp Gln Leu Ala Ala Ala Ser Gly Leu Leu Ser
1 5 10 15
Gly Val Leu Gly Ile Pro Met Asp Thr Gly Ser His Pro Ile Glu Ala
20 25 30
Val Asp Pro Glu Val Lys Thr Glu Val Phe Ala Asp Ser Leu Leu Ala
35 40 45
Ala Ala Gly Asp Asp Asp Trp Glu Ser Pro Pro Tyr Asn Leu Leu Tyr
50 55 60
Arg Asn Ala Leu Pro Ile Pro Pro Val Lys Gln Pro Lys Met Ile Ile
65 70 75 80
Thr Asn Pro Val Thr Gly Lys Asp Ile Trp Tyr Tyr Glu Ile Glu Ile
85 90 95
Lys Pro Phe Gln Gln Arg Ile Tyr Pro Thr Leu Arg Pro Ala Thr Leu
100 105 110
Val Gly Tyr Asp Gly Met Ser Pro Gly Pro Thr Phe Asn Val Pro Arg
115 120 125
Gly Thr Glu Thr Val Val Arg Phe Ile Asn Asn Ala Thr Val Glu Asn
130 135 140
Ser Val His Leu His Gly Ser Pro Ser Arg Ala Pro Phe Asp Gly Trp
145 150 155 160
Ala Glu Asp Val Thr Phe Pro Gly Glu Tyr Lys Asp Tyr Tyr Phe Pro
165 170 175
Asn Tyr Gln Ser Ala Arg Leu Leu Trp Tyr His Asp His Ala Phe Met
180 185 190
Lys Thr Ala Glu Asn Ala Tyr Phe Gly Gln Ala Gly Ala Tyr Ile Ile
195 200 205
Asn Asp Glu Ala Glu Asp Ala Leu Gly Leu Pro Ser Gly Tyr Gly Glu
210 215 220
Phe Asp Ile Pro Leu Ile Leu Thr Ala Lys Tyr Tyr Asn Ala Asp Gly
225 230 235 240
Thr Leu Arg Ser Thr Glu Gly Glu Asp Gln Asp Leu Trp Gly Asp Val
245 250 255
Ile His Val Asn Gly Gln Pro Trp Pro Phe Leu Asn Val Gln Pro Arg
260 265 270
Lys Tyr Arg Phe Arg Phe Leu Asn Ala Ala Val Ser Arg Ala Trp Leu
275 280 285
Leu Tyr Leu Val Arg Thr Ser Ser Pro Asn Val Arg Ile Pro Phe Gln
290 295 300
Val Ile Ala Ser Asp Ala Gly Leu Leu Gln Ala Pro Val Gln Thr Ser
305 310 315 320
Asn Leu Tyr Leu Ala Val Ala Glu Arg Tyr Glu Ile Ile Ile Asp Phe
325 330 335
Thr Asn Phe Ala Gly Gln Thr Leu Asp Leu Arg Asn Val Ala Glu Thr
340 345 350
Asn Asp Val Gly Asp Glu Asp Glu Tyr Ala Arg Thr Leu Glu Val Met
355 360 365
Arg Phe Val Val Ser Ser Gly Thr Val Glu Asp Asn Ser Gln Val Pro
370 375 380
Ser Thr Leu Arg Asp Val Pro Phe Pro Pro His Lys Glu Gly Pro Ala
385 390 395 400
Asp Lys His Phe Lys Phe Glu Arg Ser Asn Gly His Tyr Leu Ile Asn
405 410 415
Asp Val Gly Phe Ala Asp Val Asn Glu Arg Val Leu Ala Lys Pro Glu
420 425 430

Leu Gly Thr Val Glu Val Trp Glu Leu Glu Asn Ser Ser Gly Gly Trp
 435 440 445
 Ser His Pro Val His Ile His Leu Val Asp Phe Lys Ile Leu Lys Arg
 450 455 460
 Thr Gly Gly Arg Gly Gln Val Met Pro Tyr Glu Ser Ala Gly Leu Lys
 465 470 475 480
 Asp Val Val Trp Leu Gly Arg Gly Glu Thr Leu Thr Ile Glu Ala His
 485 490 495
 Tyr Gln Pro Trp Thr Gly Ala Tyr Met Trp His Cys His Asn Leu Ile
 500 505 510
 His Glu Asp Asn Asp Met Met Ala Val Phe Asn Val Thr Ala Met Glu
 515 520 525
 Glu Lys Gly Tyr Leu Gln Glu Asp Phe Glu Asp Pro Met Asn Pro Lys
 530 535 540
 Trp Arg Ala Val Pro Tyr Asn Arg Asn Asp Phe His Ala Arg Ala Gly
 545 550 555 560
 Asn Phe Ser Ala Glu Ser Ile Thr Ala Arg Val Gln Glu Leu Ala Glu
 565 570 575
 Gln Glu Pro Tyr Asn Arg Leu Asp Glu Ile Leu Glu Asp Leu Gly Ile
 580 585 590
 Glu Glu

<210> 3
 <211> 3677
 <212> DNA
 <213> Stachybotrys chartarum

<400> 3
 ctggctagcc tcacttggta gacagccctg acagcctcac tggctgggg tcgaaaggcc 60
 agtcaatatac ttggtcactg ctaatagttc cttgctacgc gaaaaaagct cttgccgaa 120
 ggggcacaga ctatcaagtg agacatatacg gatgcacgtc tttcatagcc acagtttaggg 180
 tggtgaccta ctcgaagagg ccccacttg catgcatacg acatgtcgct tccatgcaac 240
 atgtatgcgc acatcgccga tcaggcaccc tctgcacgtca gaatagaacc cccctggtt 300
 ccttttgtt ctttccctt ctcaacgcacg cgtgagcgtg gttaacttga gcaaggccga 360
 gtggctgtt cacgaggtt ccacatcgaaatc ctcttccctt ccaatcatga cctgcccccc 420
 gagtttagcc cccatcacgg ctgtgaaatc cacttcgata atccttagcct agtgcatactc 480
 ttcaatagtt gtccttgatg gggcactttg gtcacattgc cttggattyct cctacctcg 540
 tctctccgc atcaagccctc tatgcccac gacaacaccc cattggcccg gaccactttg 600
 agcgccgcacg caccatcgccg ccgaaggagt tgataaacacc cttcacccctt gcccaatgtat 660
 ggagttttgg tctatttgtc atgatcacct cacattcaact agatcacggc tcctggaaaga 720
 ggggtggaa gccagaccag ctgtccctg ttcttgacaga ctcaggctcg ctccctagccg 780
 ctatcacagc tcaggattat caagtccgt aaagtccaga ccctttcat tgtatgtatgc 840
 tgcctaattt ggcgttatctc tatgcccgtag cagccgtctt ggctacaact ggctgcccattg 900
 gctgaagcat cgtgagatct ataaaggctc ccgaatccctc ggtgaagtca gaatcgcttc 960
 tccacaccag tcaacaacaa gcttcttctt cttacagctt agcctgagca cattcacaga 1020
 actctccct tctttcgtc aatatgtgt tcaagtcatg gcaactggca gcagcctccg 1080
 ggctcctgtc tggagtcctc ggcattccga tggacacccgg cagccacccc attgaggctg 1140
 ttgatcccga agtgaagact gaggtctcg ctgactccct ccttgctgca gcaggcgatg 1200
 acgactggga gtcaccccca tacaacttgc tttacaggtg agacacctgt cccacctgtt 1260
 ttccctcgat aactaactt tataggatg ccctgccaat tccacctgtc aagcagccca 1320
 agatgtatgt ctgtgatttt ctacgaagca actcgccccc gactaatgtt ttcttaggatc 1380
 attaccaacc ctgtcaccgg caaggacatt tggtaactatg agatcgagat caagccattt 1440
 cagcaaaggg tggatgttgc cagaaacctt gtggtaatta atcattgtt ctgacccttt 1500
 cagatttacc ccacccgtc ccctgcccact ctcgtcggt acgatggcat gagccctgg 1560
 cctactttca atgttcccaag aggaacagag actgttagtta ggttcatcaa caatgccacc 1620
 gtggagaact cggtccatct gcacccgtc ccacatcgccgt cccctttcgta tggttggct 1680

gaagatgtga	ccttccctgg	cgagtacaag	gattactact	ttcccaacta	ccaatccgcc	1740
cgccttctgt	ggtaccatga	ccacgcttc	atgaaggat	tgatcagagcc	tttatcttc	1800
ttggctacct	ttggctaacc	aacttcctt	cgttagactgc	tgagaatgcc	tactttggtc	1860
aggctggcgc	ctacattatc	aacgacgagg	ctgaggatgc	tctcggtctt	cctagttggct	1920
atggcgagtt	cgatataccct	ctgatcctga	cggccaagta	ctataacgcc	gatggtaccc	1980
tgcgttgcac	cgagggtgag	gaccaggacc	tgtggggaga	tgtcatccat	gtcaacggac	2040
agccatggcc	tttccttaac	gtccagcccc	gcaagtaccg	tttccgattc	ctcaacgctg	2100
ccgtgtctcg	tgcttggctc	ctctacctcg	tcaggaccag	ctctcccaac	gtcagaattc	2160
ctttccaagt	cattgcctct	gatgctggtc	tccttcaaggc	ccccgttcag	acctctaaacc	2220
tctaccttgc	tgttgcgag	cgttacgaga	tcattattgg	tatgccctcc	cctctcacga	2280
atgagtcaag	aactctaaga	ctaacaacttgc	tagacttcac	caactttgtc	ggccagactc	2340
ttgacctgctg	caacgttgct	gagaccaacg	atgtcggcga	cgaggatgag	tacgctcgca	2400
ctctcgaggt	gatgcgcttc	gtcgtcagct	ctggcactgt	tgaggacaac	agccaggatcc	2460
cctccactct	ccgtgacgtt	ccttccctc	ctcacaagga	aggccccccc	gacaagactc	2520
tcaagtttga	acgcagcaac	ggacactacc	tgatcaacga	tgttggcttt	gcccgtgtca	2580
atgagcgtgt	cctggccaag	cccgagctcg	gcaccgttga	ggctctggag	ctcgagaact	2640
cctctggagg	ctggagccac	cccggtccaca	ttcaccttgt	tgacttcaag	atcctcaagc	2700
gaactgggtgg	tcgtggccag	gtcatgccct	acgagtctgc	tggcttaag	gatgtcgct	2760
ggttggcag	gggtgagacc	ctgaccatcg	aggcccacta	ccaaccctgg	actggagctt	2820
acatgtggca	ctgtcacaac	ctcattcacy	aggataaacga	catgatggct	gtattcaacg	2880
tcaccgccat	ggaggagaag	ggatatcttc	aggaggactt	cgaggaccac	atgaacccca	2940
agtggcgccgc	cgttccttac	aaccgcaacg	acttccatgc	tcgcgcttga	aacttctccg	3000
ccgagtcct	caactgcccga	gtgcaggagc	tggccgagca	ggagccgtac	aaccgcctcg	3060
atgagatcct	ggaggatctt	ggaatcgagg	agtaaacc	gagccacaag	ctctacaatc	3120
gtttttagtc	ttaagacgag	gctttgggt	cgtattctt	tctccctac	ggggactcc	3180
gctgtccact	gcatgtgaa	ggaccatcac	aaagcaacgt	atatattgga	ctcaccactg	3240
tcattaccgc	ccacttgtac	ctattcgatt	cttggtaaaa	ctttcttagt	gcgagagtgt	3300
ccatagtcaa	gaaacgccc	taggctatc	gtctaaactg	aactattgt	tggctgtga	3360
cgtggagtag	atgtcaattt	tgtgagaca	cagtaaatac	ggtatatctt	ttccttaggac	3420
tacaggatca	gtttctcatg	agattacatc	cgtctaattgt	ttgtccatga	gagtctagct	3480
aaggttgaga	atgcatcaga	cggaatcatt	tgatgcttc	agctcgatt	accgatgtaa	3540
gacaagttag	gtaagttgt	tggatccga	aatgacta	ggctccctca	ttaggttgca	3600
tgtaaaaacc	ttcagcaact	catgggtgtt	gggaccaa	atccatacc	tgattttgat	3660
aactgacctg	ggtcaat					3677

<210> 4

<211> 568

<212> PRT

<213> Bilirubin oxidase

<400> 4

Met	Phe	Lys	His	Thr	Leu	Gly	Ala	Ala	Leu	Ser	Leu	Leu	Phe	Asn	
1				5				10					15		
Ser	Asn	Ala	Val	Gln	Ala	Ser	Pro	Val	Pro	Glu	Thr	Ser	Pro	Ala	Thr
				20				25					30		
Gly	His	Leu	Phe	Lys	Arg	Val	Ala	Gln	Ile	Ser	Pro	Gln	Tyr	Pro	Met
				35				40				45			
Phe	Thr	Val	Pro	Leu	Pro	Ile	Pro	Pro	Val	Lys	Gln	Pro	Arg	Leu	Thr
				50				55			60				
Val	Thr	Asn	Pro	Val	Asn	Gly	Gln	Glu	Ile	Trp	Tyr	Tyr	Glu	Val	Glu
				65				70			75			80	
Ile	Lys	Pro	Phe	Thr	His	Gln	Val	Tyr	Pro	Asp	Leu	Gly	Ser	Ala	Asp
				85				90				95			
Leu	Val	Gly	Tyr	Asp	Gly	Met	Ser	Pro	Gly	Pro	Thr	Phe	Gln	Val	Pro
				100				105				110			
Arg	Gly	Val	Glu	Thr	Val	Val	Arg	Phe	Ile	Asn	Asn	Ala	Glu	Ala	Pro
				115				120			125				

Asn Ser Val His Leu His Gly Ser Phe Ser Arg Ala Ala Phe Asp Gly
 130 135 140
 Trp Ala Glu Asp Ile Thr Glu Pro Gly Ser Phe Lys Asp Tyr Tyr Tyr
 145 150 155 160
 Pro Asn Arg Gln Ser Ala Arg Thr Leu Trp Tyr His Asp His Ala Met
 165 170 175
 His Ile Thr Ala Glu Asn Ala Tyr Arg Gly Gln Ala Gly Leu Tyr Met
 180 185 190
 Leu Thr Asp Pro Ala Glu Asp Ala Leu Asn Leu Pro Ser Gly Tyr Gly
 195 200 205
 Glu Phe Asp Ile Pro Met Ile Leu Thr Ser Lys Gln Tyr Thr Ala Asn
 210 215 220
 Gly Asn Leu Val Thr Thr Asn Gly Glu Leu Asn Ser Phe Trp Gly Asp
 225 230 235 240
 Val Ile His Val Asn Gly Gln Pro Trp Pro Phe Lys Asn Val Glu Pro
 245 250 255
 Arg Lys Tyr Arg Phe Arg Phe Leu Asp Ala Ala Val Ser Arg Ser Phe
 260 265 270
 Gly Leu Tyr Phe Ala Asp Thr Asp Ala Ile Asp Thr Arg Leu Pro Phe
 275 280 285
 Lys Val Ile Ala Ser Asp Ser Gly Leu Leu Glu His Pro Ala Asp Thr
 290 295 300
 Ser Leu Leu Tyr Ile Ser Met Ala Glu Arg Tyr Glu Val Val Phe Asp
 305 310 315 320
 Phe Ser Asp Tyr Ala Gly Lys Thr Ile Glu Leu Arg Asn Leu Gly Gly
 325 330 335
 Ser Ile Gly Gly Ile Gly Thr Asp Thr Asp Tyr Asp Asn Thr Asp Lys
 340 345 350
 Val Met Arg Phe Val Val Ala Asp Asp Thr Thr Gln Pro Asp Thr Ser
 355 360 365
 Val Val Pro Ala Asn Leu Arg Asp Val Pro Phe Pro Ser Pro Thr Thr
 370 375 380
 Asn Arg Gln Phe Arg Phe Gly Arg Thr Gly Pro Thr Trp Thr Ile Asn
 385 390 395 400
 Gly Val Ala Phe Ala Asp Val Gln Asn Arg Leu Leu Ala Asn Val Pro
 405 410 415
 Val Gly Thr Val Glu Arg Trp Glu Leu Ile Asn Ala Gly Asn Gly Trp
 420 425 430
 Thr His Pro Ile His Ile His Leu Val Asp Phe Lys Val Ile Ser Arg
 435 440 445
 Thr Ser Gly Asn Asn Ala Arg Thr Val Met Pro Tyr Glu Ser Lys Asp
 450 455 460
 Val Val Trp Leu Gly Arg Arg Glu Thr Val Val Val Glu Ala His Tyr
 465 470 475 480
 Ala Pro Phe Pro Gly Val Tyr Met Phe His Cys His Asn Leu Ile His
 485 490 495
 Glu Asp His Asp Met Met Ala Ala Phe Asn Ala Thr Val Leu Pro Asp
 500 505 510
 Tyr Gly Tyr Asn Ala Thr Val Phe Val Asp Pro Met Glu Glu Leu Trp
 515 520 525
 Gln Ala Arg Pro Tyr Glu Leu Gly Glu Phe Gln Ala Gln Ser Gly Gln
 530 535 540
 Phe Ser Val Gln Ala Val Thr Glu Arg Ile Gln Thr Met Ala Glu Tyr
 545 550 555 560
 Arg Pro Tyr Ala Ala Asp Glu
 565

<210> 5
<211> 2067
<212> DNA
<213> Artificial Sequence

<220>
<223> plasmid

<400> 5
agatctaata tgctgttcaa gtcatggcaa ctggcagcag cctccggct cctgtctgga 60
gtcctcgca tcccgtatggc caccggcagc caccccatgg aggtgttgc tcccgaaatgt 120
aagactgagg tcttcgtctga ctccctccctt gctgcagcag gcatgcacgc ctgggagtca 180
cctccataaca acttgcttta caggtgagac acctgtccca cctgtttcc ctcgataact 240
aactcttata ggaatgcctt gccaatttcca cctgtcaagc agcccaagat gtatgtcttt 300
gattttctac gaagcaactc ggccccgact aatgtattctt aggtatcatta ccaaccctgt 360
caccggcaag gacatttggt actatgagat cgagatcaag ccatttcagc aaagggtgag 420
tttgcgtcaga aaccttggta taattaatca ttgttactga cccttcaga tttaccac 480
cttgcgcctt gccactctcg tcggctacga tggcatgagc cctggctcta ctttcaatgt 540
tcccagagga acagagactg tagtaggtt catcaacaat gccaccgtgg agaactcggt 600
ccatctgcac ggctcccat cgcgtcccc tttcgatggt tggctgaag atgtgacctt 660
ccctggcgag tacaaggatt actacttcc caactaccaa tccggccgc ttctgtggta 720
ccatgaccac gcttcatga aggtatgcta cgagcctta tctttcttgg ctaccttgg 780
ctaaccactt tccttcgtt gactgtgag aatgcctact ttgttgcaggc tggcgccctac 840
attatcaacg acgaggctga ggtatgtctc ggtcttcata gtgttatgg cgagttcgat 900
atccctctga tcctgacggc caagtactat aacgccatg gtaccctcg ttcgaccgag 960
ggtgaggacc aggacctgtg gggagatgtc atccatgtca acgacagcc atggcccttc 1020
cttaacgtcc agcccgcaat gtaccgttc cgattcctca acgctgcgt gtctcggt 1080
tggctcctctt acctcgtagt gaccagctt cccaaacgtca gaattccctt ccaagtatt 1140
gcctctgatg ctggctcttca tcaagcccc gttcagaccc ttaacctcta ctttgcgtt 1200
gccgagcggtt acgagatcat tatttgtatg ccctccctc tcacgaatga gtcaagaact 1260
ctaagactaa cacttgttca cttcaccaac tttgctggcc agacttgc cctgcgcac 1320
gttgcgtgaga ccaacgtgtt cggcgacgag gatgagtagc ctgcactct cgaggtgatg 1380
cgcttcgtcg tcagctctgg cactgttgc gacaacagcc aggtccctc cactctccgt 1440
gacgttcctt tccctcctca caaggaaggc cccgcccaca agcaacttcaa gtttgaacgc 1500
agcaacggac actacctgtt caacgtatgtt ggcttgcgtt atgtcaatga gcgtgtccgt 1560
gccaagcccc agctcgac cgttgaggc tggagctcg agaactcctc tggaggtgg 1620
agccaccccg tccacattca ctttgcgttgc ttcaagatcc tcaagcgaac tgggtgcgt 1680
ggccagggtca tggccctacga gtctcggtt cttaaggatg tcgtctgggtt gggcagggtt 1740
gagaccctga ccatcgaggc ccactaccaa ccctggactg gagcttacat gtggcactgt 1800
cacaacctca ttcacgaggta taacgacatg atggctgtat tcaacgtcac cgccatggag 1860
gagaaggat atcttcaggta ggacttcgag gaccccatgtt accccaagtg ggcgcgcgtt 1920
ccttacaacc gcaacgactt ccatcgacgc gctggaaact tctccgcga gtccatcact 1980
gcccgggttc aggagctggc cgagcaggag ccgtacaacc gcctcgatga gatcctggag 2040
gatcttggaa tcgaggagta gtctaga 2067