CS-725: Assignment 2 (Question-2)

Question 2 Part (a) – Bands of Blue

Proposed Solution – To classify the given regions, we'll employ a neural network with a specific architecture.

Our activation function is given as:

$$g(x;T) = \begin{cases} 1 & \text{If } x \ge T \\ 0 & \text{Otherwise} \end{cases}$$

Network Architecture:

I. Input Layer:

Two input neurons representing the x_1 and x_2 coordinates of a data point.

II. Hidden Layer:

Four neurons, each representing a specific region boundary:

- 1. Neuron 1: Detects the region below the line $x_1 + x_2 = 1$.
- 2. Neuron 2: Detects the region above the line $x_1 + x_2 = 4$.
- 3. Neuron 3: Detects the region below the line $x_1 + x_2 = 6$.
- 4. Neuron 4: Detects the region above the line $x_1 + x_2 = 9$.

III. Output Layer:

Neuron	Weights (w1, w2)	Threshold
1	(-1, -1)	-1
2	(1, 1)	4
3	(-1, -1)	-6
4	(1, 1)	9

The output neuron will have weights of 1 from each hidden neuron and a threshold of 2.

Classification Process:

- 1. **Input:** A data point (x_1, x_2) is fed into the input layer.
- 2. **Hidden Layer:** Each hidden neuron calculates its weighted sum and applies the step function.
- 3. **Output Layer:** The output neuron sums the outputs of the hidden neurons and applies the step function.
 - o If the sum is greater than or equal to 2, the output is 1 (class 1).
 - Otherwise, the output is 0 (class 0).

Rationale:

- **Region Detection:** The hidden neurons are designed to identify specific regions based on their weight and threshold combinations.
- **Intersection Logic:** The output neuron's threshold of 2 ensures that only points belonging to the intersection of two or more regions are classified as class 1.
- Class Assignment: Points that satisfy the intersection criteria are assigned to class 1; others are assigned to class 0.

By following this approach, the neural network can accurately classify the given regions into two classes.

Question 2 Part (b) – Catch the Star

Proposed Solution – To classify the given regions, we'll employ a neural network with a specific architecture.

Our activation function is the same as above.

Network Architecture:

I. Input Layer:

Two input neurons representing the x1 and x2 coordinates of a data point.

II. Hidden Layer:

Four neurons, each representing a specific region boundary:

- 1. Neuron 1: Detects the region below the line $10x_1 + 4x_2 = 80$.
- 2. Neuron 2: Detects the region above the line $10x_1 4x_2 = 20$.
- 3. Neuron 3: Detects the region below the line $x_2 = 6$.
- 4. Neuron 4: Detects the region above the line $7x_1 + 10x_2 = 80$.
- 5. Neuron 5: Detects the region above the line $-7x_1 + 10x_2 = 10$.

III. Output Layer:

Neuron	Weights (w1, w2)	Threshold
1	(-10, -4)	-80
2	(10, -4)	20
3	(0, -1)	-6
4	(7, 10)	80
5	(-7, 10)	10

The output neuron will have weights of 1 from each hidden neuron and a threshold of 4.

Classification Process:

- 1. **Input:** A data point (x_1, x_2) is fed into the input layer.
- 2. **Hidden Layer:** Each hidden neuron calculates its weighted sum and applies the step function.
- 3. **Output Layer:** The output neuron sums the outputs of the hidden neurons and applies the step function.
 - o If the sum is greater than or equal to 4, the output is 1 (class 1).
 - o Otherwise, the output is 0 (class 0).

Rationale:

- **Region Detection:** The hidden neurons are designed to identify specific regions based on their weight and threshold combinations.
- Intersection Logic: The output neuron's threshold of 4 ensures that only points belonging to the intersection of at least four out of the five regions are classified as class 1.
- Class Assignment: Points that satisfy the intersection criteria are assigned to class 1; others are assigned to class 0.

By following this approach, the neural network can accurately classify the given regions into two classes.

