MATH 340: ADVANCED LINEAR ALGEBRA PROBLEM SET #3

SPRING 2025

Due Wednesday, February 5. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1. Let V be a vector space of dimension n. Let E be a set of exactly n vectors. Show that E is linearly independent if and only if E spans V.

Problem 2 (Axler §2C, #10). Fix an integer $m \geq 1$. Let \mathcal{P}_m be the vector space of polynomials over F that are either zero or have degree $\leq m$. Show that $\{p_0, p_1, \ldots, p_m\}$ is a basis of \mathcal{P}_m , where

$$p_k(x) = x^k (1-x)^{m-k}$$
.

Hint: Since dim $\mathcal{P}_m = m + 1$, it suffices by Problem 1 to check that they span.

Problem 3. Linear maps of the form $T: V \to V$ are also called *linear operators* on V. Show that if V is finite-dimensional, then

$$V = \ker(T) + \operatorname{im}(T),$$

and that the right-hand side is a direct sum. *Hint:* Use the latter claim to prove the former.

Problem 4. Let $p \in F[x]$.

- (1) Check that multiplication by p is a linear operator $T_p: F[x] \to F[x]$.
- (2) Show that if $p \neq 0$ and p(0) = 0, then

$$F[x] \neq \ker(T_p) + \operatorname{im}(T_p).$$

Why doesn't this contradict Problem 3?

Problem 5. Find a linear operator $T: \mathbf{R}^3 \to \mathbf{R}^3$ such that $\operatorname{im}(T) \not\subseteq \ker(T)$, but $\operatorname{im}(T \circ T) \subseteq \ker(T)$. What do these conditions imply about $T \circ T$ and $T \circ T \circ T$?

Problem 6. We say that a square matrix M with complex entries is *hermitian* if and only if $M_{i,j} = \bar{M}_{j,i}$ for all i, j, where the bar denotes complex conjugation. Let

$$\operatorname{Herm}_n = \{n \times n \text{ hermitian matrices}\} \subseteq \operatorname{Mat}_n(\mathbf{C}).$$

- (1) Show that Herm_n forms an $\mathbf R$ -linear subspace of $\operatorname{Mat}_n(\mathbf C)$, but not a $\mathbf C$ -linear subspace.
- (2) Find a basis for Herm_2 as a vector space over \mathbf{R} . What is the dimension of Herm_2 ?

Problem 7. We say that a square matrix M with complex entries is *skew-hermitian* if and only if $M_{i,j} = -\bar{M}_{j,i}$ for all i, j. Let

 $\operatorname{Skew}_n = \{n \times n \text{ skew-hermitian matrices}\} \subseteq \operatorname{Mat}_n(\mathbf{C}).$

- (1) Show that $Mat_n(\mathbf{C}) = Herm_n + Skew_n$, as real vector spaces, and that the right-hand side is a direct sum.
- (2) Using Problem 6, deduce the dimension of Skew₂.

Problem 8. For any complex number z = a + bi, let

$$M_z = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \operatorname{Mat}_2(\mathbf{R}).$$

(1) Check that $z = \cos \theta + i \sin \theta$ if and only if (the underlying linear operator of) M_z rotates the standard basis of \mathbf{R}^2 by θ radians counterclockwise. *Hint:* For the "if" direction, observe that $z \mapsto M_z$ is injective.

(Below, you may take for granted that the linear operator rotates any other vector in \mathbb{R}^2 by the same angle.)

- (2) Check that $M_{z_1z_2}=M_{z_1}\cdot M_{z_2}$ for all $z_1,z_2\in {\bf C}.$
- (3) Now take $z_j = \cos \theta_j + i \sin \theta_j$ for j = 1, 2. Using (1)–(2), deduce the classical formulas for $\cos(\theta_1 + \theta_2)$ and $\sin(\theta_1 + \theta_2)$.