Ejemplo 1: Control difuso de una calefacción

Descripción: Se pretende controlar la calefacción de un invernadero/edificio/etc. a partir de los parámetros de temperatura y humedad del mismo. La finalidad es mantener controlada la temperatura e, implícitamente, la humedad.

- Se cuenta con un sensor de temperatura con un rango de funcionamiento desde 0° C a 40° C y una precisión de centésimas.
- Y un sensor de humedad con un rango de funcionamiento entre 0% y 100% de humedad relativa, con una precisión de centésimas.
- La caldera se puede controlar mediante incrementos/decrementos de temperatura, desde -15° C a +15°C.

Universitat d'Alacant Universidad de Alicante

Control difuso de una calefacción

- Variables de estado (entrada): Temperatura y Humedad
- Temperatura: Se asumen 5 etiquetas lingüísticas: muy baja (MB), baja(B), normal (N), alta(A), muy alta(MA)

Universitat d'Alacant Universidad de Alicante

Control difuso de una calefacción

 Humedad: Se asumen 5 etiquetas lingüísticas: muy baja (MB), baja(B), normal (N), alta(A), muy alta(MA)

- Variables de control (salida)
 - Variación de temperatura: Se asumen 7 etiquetas lingüísticas: bajada grande (BG), bajada normal (BN), bajada pequeña (BP), mantener (M), subida pequeña (SP), subida normal (SN), subida grande (SG)

Reglas difusas

 Se considera la siguiente FAM (Fuzzy Association Matrix) para la variable de control Variación de temperatura.

	Humedad				
Temp.	MB	В	N	Α	MA
MB	SN	SN	SG	SG	SG
В	М	M	SP	SP	SN
N	М	M	M	M	BP
Α	М	M	BP	BP	BN
MA	BP	BN	BN	BG	BG

Reglas difusas

- IF (TEMP IS muy_baja) AND (HUM IS muy_baja) THEN (VAR IS subida_normal)
- IF (TEMP IS muy_baja) AND (HUM IS baja) THEN (VAR IS subida_normal)
- IF (TEMP IS muy baja) AND (HUM IS normal) THEN (VAR IS subida grande)
- IF (TEMP IS muy_baja) AND (HUM IS alta) THEN (VAR IS subida_grande)
- IF (TEMP IS muy_baja) AND (HUM IS muy_alta) THEN (VAR IS subida_grande)
- IF (TEMP IS baja) AND (HUM IS muy_baja) THEN (VAR IS mantener)
- IF (TEMP IS baja) AND (HUM IS baja) THEN (VAR IS mantener)
- IF (TEMP IS baja) AND (HUM IS normal) THEN (VAR IS subida pequena)
- IF (TEMP IS baja) AND (HUM IS alta) THEN (VAR IS subida pequena)
- IF (TEMP IS baja) AND (HUM IS muy_alta) THEN (VAR IS subida_normal)
- IF (TEMP IS normal) AND (HUM IS muy_baja) THEN (VAR IS mantener)
- ..

Se usarán los siguientes operadores:

- Conectiva AND (∧): mínimo.
- Conectiva OR (v): máximo
- Implicación difusa (→): Mamdani
- Agregación de las salidas difusas de las reglas activadas: OR (máximo)
- Operador de fuzzyficación: singleton
- Operador de desfuzzificación: centro de masas
- El uso del implicador de Mamdani $f_{P\to Q}(x,y) = min\{f_P(x), f_Q(y)\}$
 - junto con la fuzzyficación usando conjuntos singleton simplifica la aplicación del modus ponens difuso.
 - Para aplicar una regla sobre conjuntos singleton bastará con "seleccionar" un α-corte del conjunto difuso vinculado al "consecuente".

Ejercicio: Obtener el funcionamiento suponiendo las siguientes entradas en los sensores del sistema:

• Temperatura actual: 19,5° C

• Humedad actual: 65 %

Fuzzyficación (singleton)

El valor singleton "Temperatura=19,5° C" se corresponde con un grado de verdad 0,1 para el valor difuso Temperatura Baja(B) y con un grado de verdad 0,9 para el valor difuso Temperatura Normal(N)

El valor singleton "Humedad=65 %" se corresponde con un grado de verdad 0,5 para el valor difuso Humedad Alta(A) y con un grado de verdad 0,33 para el valor difuso Humedad MuyAlta(MA)

Reglas activadas

	Humedad -					
Temp	MB	В	N	Α	MA]
MB	SN	SN	SG	SG	SG	1
В	M	М	SP	SP	SN	١
N	M	M	М	M	BP	ľ
Α	M	М	BP	BP	BN	İ
MA	BP	BN	BN	BG	BG	ľ

IF	(Temperatura	es Baja AND Humedad es Alta)
THEN	Variación es	SubidaPequeña
IF	(Temperatura	es Baja AND Humedad es MuyAlta)
THEN	Variación es	SubidaNormal
IF	(Temperatura	es Nornal AND Humedad es Alta)
THEN	Variación es	Mantener
IF	(Temperatura	es Nornal AND Humedad es MuyAlta
THEN	Variación es	BajadaPequeña

Modus Ponens Difuso

If (TEMP es baja y HUM es alta) then VAR=subida pequena (SP)

AND Min(0.1,0.33) = 0.1

If (TEMP es normal y HUM es my alta) then VAR=bajada pequeña (BP)

Agregación (max)

Universitat d'Alacant Universidad de Alicante

Control difuso de una calefacción

cogs
$$U=rac{\sum\limits_{i=1}^p[u_i\mu_i]}{\sum\limits_{i=1}^p[\mu_i]}$$

$$U = \frac{\sum\limits_{i=1}^p [u_i \mu_i]}{\sum\limits_{i=1}^p [\mu_i]}$$

Num =
$$-8*0.10 + -7*0.30 + -6*0.49 + (-5-4-3-2)*0.50 + -1*0.39 + 0*0.33 + (1+2+3+4+5+6+7+8+9)*0.10$$

$$COGS = Num / Den = -8.71 / 4.51$$

 $COGS = -1.931$

Salida: bajar la calefacción: -1,931

Ejemplo 2: Lavadora automática

Descripción: Se requiere diseñar un sistema de control difuso para una lavadora inteligente que ajuste automáticamente la cantidad de detergente y la duración del ciclo de lavado basándose en dos factores principales: la carga de ropa (Load) y el nivel de suciedad (Dirt).

Variables de Entrada:

Carga de Ropa (Load):

Rango: 0 a 6 kg

Términos lingüísticos: Pequeña (small), Normal (normal)

Nivel de Suciedad (Dirt):

Rango: 0 a 6 (escala arbitraria)

Términos lingüísticos: Baja (low), Alta (high)

Variables de Salida:

Cantidad de Detergente (Detergent):

Rango: 0 a 80 ml

Términos lingüísticos: Menos de lo usual (less_than_usual), Usual (usual), Más de lo usual (more than usual)

Duración del Ciclo (Cycle):

Rango: 0 a 20 minutos

Términos lingüísticos: Corto (short), Largo (long)

Lavadora automática

Descripción: Se requiere diseñar un sistema de control difuso para una lavadora inteligente que ajuste automáticamente la cantidad de detergente y la duración del ciclo de lavado basándose en dos factores principales: la carga de ropa (Load) y el nivel de suciedad (Dirt).

Reglas del experto:

- if Load is small and Dirt is not high then Detergent is less_than_usual
- if Load is small and Dirt is high then Detergent is usual
- if Load is normal and Dirt is low then Detergent is less_than_usual
- if Load is normal and Dirt is high then Detergent is more_than_usual
- if Detergent is usual or Detergent is less_than_usual then Cycle is short
- if Detergent is more_than_usual then Cycle is long

Objetivo: El sistema debe ser capaz de recibir como entrada la carga de ropa y el nivel de suciedad, y determinar la cantidad apropiada de detergente a usar y la duración del ciclo de lavado.

Lavadora automática

Conjuntos difusos de las variables de entrada

Creamos un conjunto NOT high por las reglas...

Lavadora automática

Conjuntos difusos de las variables de salida

load = 3.5 # Carga normal dirt = 4.5 # Suciedad alta

¿Qué reglas se ejecutarán?

- if Load is small and Dirt is not high then Detergent is less_than_usual
- if Load is small and Dirt is high then Detergent is usual
- if Load is normal and Dirt is low then Detergent is less_than_usual
- if Load is normal and Dirt is high then Detergent is more_than_usual
- if Detergent is usual or Detergent is less_than_usual then Cycle is short
- if Detergent is more_than_usual then Cycle is long

AND Min

if Load is small and Dirt is not high then Detergent is less_than_usual

if Load is small and Dirt is high then Detergent is usual

if Load is normal and Dirt is low then Detergent is less_than_usual

if Load is normal and Dirt is high then Detergent is more_than_usual

Reglas del experto:

- if Load is small and Dirt is not high then Detergent is less than usual
- if Load is small and Dirt is high then Detergent is usual
- if Load is normal and Dirt is low then Detergent is less than usual
- if Load is normal and Dirt is high then Detergent is more_than_usual
- if Detergent is usual or Detergent is less_than_usual then Cycle is short
- if Detergent is more than usual then Cycle is long

¡No tenemos la cantidad de detergente! Viene determinada por las reglas anteriores. La calculamos:

Agregación para detergente:

COGS:

Usaremos el COG continuo: 54.86

Universo de discurso

Ejercicio: Lavadora automática ¿Que ciclo y detergente hay que añadir para...?

Universo de discurso

Universo de discurso

Agregación para ciclo con max:

COGS:

Cálculo del Centro de Gravedad (COG) discreto:

Num = (0+1+2+3+...+10)*1+11*0.90+12*0.80+13*0.70+14*0.60+15*0.50+16*0.40+17*0.30+18*0.20+19*0.16+20*0.16Den = 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 0.90 + 0.80 + 0.70 + 0.60 + 0.50 + 0.40 + 0.30 + 0.20 + 0.40 + 00.16 + 0.16

load = 3.5 # Carga normal dirt = 4.5 # Suciedad alta

Para los datos anteriores tendremos:

- Un ciclo de 7.68 minutos
- Cantidad de detergente: 54.86ml

