

Devoir surveillé n°4

27/11/23 - 2h - calculatrices autorisées

La rédaction et le soin seront pris en compte dans l'évaluation.

Exercice 1 4 points

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + n - 1.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}$:

$$u_n = 2^n - n$$
.

- 3. Dans cette question, on propose une autre méthode pour établir la formule de la question 2. On pose $v_n = u_n + n$ pour tout $n \in \mathbb{N}$.
 - (a) Prouver que $(v_n)_{n\in\mathbb{N}}$ est géométrique.
 - (b) En déduire une nouvelle démonstration de la formule de la question 2.

Exercice 2 4 points

On pose $u_k = k^3$ pour tout $k \in \mathbb{N}$. On pose également $S_n = \sum_{k=0}^n k^2$ pour tout $n \in \mathbb{N}$. Le but de l'exercice est de calculer S_n .

1. Soit $n \in \mathbb{N}$. Prouver que

$$\sum_{k=0}^{n} (u_{k+1} - u_k) = (n+1)^3.$$

- 2. (a) Soit $k \in \mathbb{N}$. Développer et réduire $u_{k+1} u_k$.
 - (b) En utilisant la linéarité de Σ , en déduire que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} (u_{k+1} - u_k) = 3S_n + \frac{(3n+2)(n+1)}{2}.$$

3. En comparant les résultats des questions 1 et 2, démontrer que pour tout $n \in \mathbb{N}$:

$$S_n = \frac{n(n+1)(2n+1)}{6}.$$

Page 1/2

Exercice 3 5,5 points

Soient A(3;-2) et D la droite de représentation paramétrique $\begin{cases} x & = 3+2t \\ y & = 1+t \end{cases}$, $t \in \mathbb{R}$. On fera une figure, qui sera prise en compte dans la notation.

- 1. Déterminer l'équation cartésienne de la perpendiculaire Δ à D passant par A.
- 2. En déduire les coordonnées de H, point d'intersection de D et Δ .
- 3. Soit \mathscr{C} : $x^2 6x + y^2 + 4y + 6 = 0$. Prouver que \mathscr{C} est un cercle et déterminer son centre et son rayon.
- 4. La droite D coupe-t-elle le cercle \mathscr{C} ?

Exercice 4 4 points

Soit $\mathscr C$ un cercle de centre O et de rayon R, et soit M un point à l'extérieur de $\mathscr C$. Une droite passant par M coupe le cercle $\mathscr C$ en deux points A et B.

- 1. Faire une figure.
- 2. Justifier l'égalité $MA \times MB = \overrightarrow{MA} \cdot \overrightarrow{MB}$.
- 3. On note I le milieu de [AB]. En écrivant $\overrightarrow{MA} = \overrightarrow{MI} + \overrightarrow{IA}$ et $\overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IB}$, prouver que

$$MA \times MB = MO^2 - R^2$$
.

Exercice 5 4,5 points

On fixe un entier naturel n dans tout l'exercice. L'objectif est de calculer $S_n = \sum_{k=0}^n \frac{k}{2^k}$.

1. À l'aide d'un changement d'indice, prouver que

$$\frac{1}{2}S_n = S_n + \frac{n+1}{2^{n+1}} - \sum_{j=1}^{n+1} \frac{1}{2^j}.$$

2. Calculer $\sum_{j=1}^{n+1} \frac{1}{2^j}$ et en déduire que

$$S_n = 2 - \frac{n+2}{2^n}.$$

3. Redémontrer par récurrence la formule pour S_n obtenue à la question 2.