

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Miércoles 4 de mayo de 2005 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

2205-6125 14 páginas

1	7			Tabla perió	periód	dica						ю	4	w	9	7	•
1 H 1,01				Número atómico	atómico												2 He 4,00
3 Li 6,94	4 Be 9,01			Exemento Masa atómica	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,31		-									13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
55 Cs 132,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)															
		÷	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

1. La ecuación que representa la combustión completa del butano es

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$
.

¿Qué cantidad de dióxido de carbono (en moles) se forma por combustión completa de tres moles de butano?

- A. 4
- B. 8
- C. 12
- D. 24
- 2. ¿Qué solución contiene la mayor cantidad de soluto (en moles)?
 - A. 10,0 cm³ de solución 0,500 mol dm⁻³ de NaCl
 - B. 20,0 cm³ de solución 0,400 mol dm³ de NaCl
 - C. 30,0 cm³ de solución 0,300 mol dm³ de NaCl
 - D. 40,0 cm³ de solución 0,200 mol dm³ de NaCl
- 3. ¿Cuántos átomos de oxígeno hay en 0,0500 moles de dióxido de carbono?
 - A. $3,01 \times 10^{22}$
 - B. $6,02 \times 10^{22}$
 - C. $6,02 \times 10^{23}$
 - D. $1,20 \times 10^{24}$
- 4. ¿Cuántos electrones hay en un ion ${}^{24}_{12}\text{Mg}^{2+}$?
 - A. 10
 - B. 12
 - C. 14
 - D. 22

5.	¿Cu	ántos electrones hay en todos los orbitales d de un átomo de xenón?
	A.	10
	B.	18
	C.	20
	D.	36
6.		é aumenta en incrementos iguales a uno de izquierda a derecha en la tabla periódica de los elementos le el litio al neón?
	A.	el número de niveles energéticos electrónicos ocupados
	B.	el número de neutrones en el isótopo más común
	C.	el número de electrones en el átomo
	D.	la masa atómica
7.	¿Си	ál de los siguientes pares de elementos reacciona más vigorosamente entre sí?
	A.	cloro y litio
	B.	cloro y potasio
	C.	yodo y litio
	D.	yodo y potasio
8.	¿Си	ál es una característica esencial de un ligando?
	A.	una carga negativa
	B.	un número impar de electrones
	C.	la presencia de dos o más átomos
	D.	la presencia de un par de electrones no enlazantes

- **9.** ¿Qué sucede cuando el sodio y el oxígeno se combinan entre sí?
 - A. Cada átomo de sodio gana un electrón.
 - B. Cada átomo de sodio pierde un electrón.
 - C. Cada átomo de oxígeno gana un electrón.
 - D. Cada átomo de oxígeno pierde un electrón.
- **10.** En el etanol, C₂H₅OH(l), hay enlaces covalentes, enlaces de hidrógeno y fuerzas de van der Waals. ¿Qué enlaces o fuerzas se rompen cuando se vaporiza el etanol?
 - A. sólo los enlaces de hidrógeno
 - B. los enlaces covalentes y los enlaces de hidrógeno
 - C. los enlaces covalentes y las fuerzas de van der Waals
 - D. los enlaces de hidrógeno y las fuerzas de van der Waals
- 11. ¿Qué enunciado describe mejor la atracción presente en el enlace metálico?
 - A. la atracción entre núcleos y electrones
 - B. la atracción entre iones positivos y electrones
 - C. la atracción entre iones positivos e iones negativos
 - D. la atracción entre protones y electrones

2205-6125 Véase al dorso

12.	¿Que	é enunciado sobre el enlace múltiple entre átomos de carbono es correcto?	
	A.	Los enlaces dobles se forman a partir de dos enlaces π .	
	B.	Los enlaces dobles son más débiles que los enlaces simples.	
	C.	Los enlaces π se forman por solapamiento entre orbitales s.	
	D.	Los enlaces π son más débiles que los enlaces sigma.	
13.	¿Qué enunciados sobre el diamante, el grafito y el C ₆₀ fulereno son correctos?		
		I. El diamante es el peor conductor eléctrico de los tres.	
		II. En el grafito y el C_{60} fulereno la hibridación de los átomos es sp ² .	
		III. En el diamante y el C_{60} fulereno la disposición atómica es hexagonal.	
	A.	Sólo I y II	
	B.	Sólo I y III	
	C.	Sólo II y III	
	D.	I, II y III	
14.	la pr	Bajo determinadas condiciones, el volumen de una masa fija de un gas ideal es de 800 cm³. Se duplican la presión (en kPa) y la temperatura (en K). ¿Cuál es el volumen del gas después de dichos cambios si las demás condiciones permanecen iguales?	
	A.	200 cm ³	
	B.	800 cm ³	
	C.	1600 cm ³	
	D.	3200 cm^3	

- 15. ¿Qué enunciados son correctos para una reacción endotérmica?
 - I. El sistema absorbe calor.
 - II. La variación de entalpía es positiva.
 - III. La entalpía de enlace total de los reactivos es mayor que la de los productos.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **16.** La entalpía media de enlace para el enlace C—H es de 412 kJ mol⁻¹. ¿Qué proceso tiene un valor de variación de entalpía más cercano a este?
 - A. $CH_4(g) \rightarrow C(s) + 2H_2(g)$
 - B. $CH_4(g) \rightarrow C(g) + 2H_2(g)$
 - C. $CH_4(g) \rightarrow C(s) + 4H(g)$
 - D. $CH_4(g) \rightarrow CH_3(g) + H(g)$
- 17. En un recipiente de volumen fijo y a temperatura ambiente se introduce cloro gaseoso. ¿Qué cambio causará una disminución de la entropía?
 - A. agregado de una pequeña cantidad de hidrógeno
 - B. agregado de una pequeña cantidad de cloro
 - C. enfriar el recipiente
 - D. exponer el recipiente a la luz del sol

- **18.** ¿A qué tipo de reacción se refiere la definición de variación de entalpía estándar de formación?
 - A. la formación de un compuesto a partir de sus elementos
 - B. la formación de un cristal a partir de sus iones
 - C. la formación de una molécula a partir de sus átomos
 - D. la formación de un compuesto a partir de otros compuestos.
- **19.** La reacción entre carbonato de calcio y ácido clorhídrico, llevada a cabo en un recipiente abierto, se puede representar por la siguiente ecuación.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

¿Qué mediciones se podrían utilizar para medir la velocidad de la reacción?

- I. La masa del contenido y del recipiente
- II. El pH de la mezcla de reacción
- III. El volumen de dióxido de carbono producido
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 20. La expresión de velocidad para una reacción particular es

Velocidad =
$$k[P][Q]$$
.

¿Cuál es la posible unidad de k?

- A. $mol^{-2} dm^6 min^{-1}$
- B. $mol^{-1} dm^3 min^{-1}$
- C. $mol dm^{-3} min^{-1}$
- D. $mol^2 dm^{-6} min^{-1}$

- 21. ¿Qué enunciado sobre el comportamiento del catalizador en una reacción reversible es correcto?
 - A. Disminuye la variación de entalpía de la reacción directa.
 - B. Aumenta la variación de entalpía de la reacción inversa.
 - C. Disminuye la energía de activación de la reacción directa.
 - D. Aumenta la energía de activación de la reacción inversa.
- 22. La fabricación de trióxido de azufre se puede representar por medio de la ecuación

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H^{\ominus} = -197 \text{ kJ mol}^{-1}$.

¿Qué sucede cuando se agrega un catalizador a una mezcla en equilibrio de esta reacción?

- A. La velocidad de la reacción directa aumenta y la de la reacción inversa disminuye.
- B. Las velocidades de las reacciones directa e inversa aumentan.
- C. El valor de ΔH^{\ominus} aumenta.
- D. El rendimiento de trióxido de azufre aumenta.
- 23. Un recipiente cerrado a temperatura ambiente contiene agua hasta la mitad. Se eleva la temperatura del recipiente y se deja restablecer el equilibrio. ¿Qué enunciado es correcto cuando se refiere al restablecimiento del equilibrio a la temperatura mayor?
 - A. La velocidad de vaporización es mayor que la velocidad de condensación.
 - B. La cantidad de vapor de agua es mayor que la cantidad de agua líquida.
 - C. La cantidad de vapor de agua es mayor que la cantidad de vapor de agua a menor temperatura.
 - D. La velocidad de condensación es mayor que la velocidad de vaporización.

- 24. ¿Qué métodos diferenciarán entre soluciones equimolares de una base fuerte y un ácido fuerte?
 - I. Agregar magnesio a cada solución y observar la formación de burbujas gaseosas.
 - II. Agregar hidróxido de sodio acuoso a cada solución y medir la variación de temperatura.
 - III. Usar cada solución en un circuito con una pila y una lámpara y ver cómo luce la lámpara.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 25. La siguiente ecuación representa la reacción entre el ácido sulfúrico y el ácido nítrico.

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

¿Qué especies actúan como ácidos en esta reacción, de acuerdo con la teoría de Brønsted-Lowry?

- A. H_2SO_4 y HNO₃
- B. H_2SO_4 y $H_2NO_3^+$
- C. HNO_3 y $H_2NO_3^+$
- D. $H_2NO_3^+$ y HSO_4^-
- **26.** ¿Qué valores son correctos para una solución de NaOH de concentración 0,010 mol dm⁻³ a 298 K?

$$(K_{\rm w} = 1.0 \times 10^{-14} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6} \,\mathrm{a}\,298 \,\mathrm{K})$$

- A. $[H^+] = 1.0 \times 10^{-2} \text{ mol dm}^{-3}$ y pH = 2.00
- B. $[OH^{-}] = 1.0 \times 10^{-2} \text{ mol dm}^{-3}$ y pH = 12.00
- C. $[H^+] = 1.0 \times 10^{-12} \text{ mol dm}^{-3}$ y pOH = 12.00
- D. $[OH^{-}] = 1.0 \times 10^{-12} \text{ mol dm}^{-3}$ y pOH = 2.00

- 27. ¿Qué solución, de concentración 0,10 mol dm⁻³, tiene el mayor valor de pH?
 - A. HCl(aq)
 - B. MgCl₂(aq)
 - C. NaCl(aq)
 - D. AlCl₃(aq)
- **28.** ¿Qué enunciado sobre indicadores es **siempre** correcto?
 - A. El punto medio del cambio de color de un indicador es a pH = 7.
 - B. Los indicadores cuyos valores de pK_a son elevados tienen mayor rango de pH.
 - C. El color rojo indica que la solución es ácida.
 - D. El valor del pK_a de un indicador está comprendido dentro de su rango de pH.
- 29. ¿Cuáles son los números de oxidación de los elementos en el ácido sulfúrico, H₂SO₄?

	Hydrógeno	Azufre	Oxígeno
A.	+1	+6	-2
B.	+1	+4	-2
C.	+2	+1	+4
D.	+2	+6	-8

2205-6125 Véase al dorso

30. Se fabricó una celda voltaica a partir de semiceldas de cobre y cinc. La ecuación que representa la reacción que se produce en la celda es

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
.

¿Qué enunciado es correcto cuando esta celda produce electricidad?

- A. Se pierden electrones de los átomos de zinc.
- B. La masa del electrodo de cobre disminuye.
- C. Los electrones fluyen desde la semicelda de cobre hacia la semicelda de zinc.
- D. Los iones negativos fluyen a través del puente salino desde la semicelda de zinc hacia la semicelda de cobre.
- **31.** A continuación se transcribe la ecuación **desajustada** que representa la conversión de dióxido de azufre en ácido sulfúrico

$$\underline{\hspace{1cm}} SO_2 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} H_2SO_4$$

¿Qué otras especies se utilizan y en qué lado de la ecuación, para ajustarla?

- A. H⁺ y e⁻ en la izquierda
- B. H⁺ en la izquierda y e⁻ en la derecha
- C. H⁺ en la derecha y e⁻ en la izquierda
- D. H^+ y e^- en la derecha
- **32.** ¿Cuál es una característica del electrodo estándar de hidrógeno?
 - A. hidrógeno gaseoso a 1,01×10⁵ Pa (1 atm) de presión
 - B. ácido sulfúrico de concentración 1,0 mol dm⁻³
 - C. temperatura igual a 273 K
 - D. un electrodo de magnesio

33.	¿Qué par de factores afectan la cantidad (en moles) de cloro que se produce en la electrólisis de una solución
	acuosa de cloruro de sodio?

- A. la corriente y la temperatura
- B. la temperatura y la concentración de ion cloruro
- C. la concentración de ion cloruro y la duración de la electrólisis
- D. la presión y la duración de la electrólisis
- 34. ¿Qué compuesto es miembro de la misma serie homóloga que el 1-cloropropano?
 - A. 1-cloropropeno
 - B. 1-clorobutano
 - C. 1-bromopropano
 - D. 1,1-dicloropropano
- **35.** ¿Qué fórmula representa correctamente al pentano?
 - A. CH₃CH₂CHCH₂CH₃
 - B. (CH₃CH₂)₂CH₃
 - C. $CH_3(CH_2)_3CH_3$
 - D. $CH_3(CH_3)_3CH_3$
- **36.** ¿Cuál es el producto orgánico de la reacción entre etanol y ácido etanoico?
 - A. CH₃CHO
 - B. CH₃COOCH₃
 - C. CH₃CH₂COOCH₃
 - D. CH₃COOCH₂CH₃

37.		propanal, CH_3CH_2CHO ($M_r = 58$), sufre fragmentación completa en un espectrómetro de masas. ál es el valor de m/z de la línea más intensa de su espectro de masas?
	A.	15
	B.	29
	C.	43
	D.	58
38.	¿Qu	é enunciado sobre la reacción entre metano y cloro es correcto?
	A.	Comprende ruptura heterolítica e iones Cl ⁻ .
	B.	Comprende ruptura heterolítica y radicales Cl•.
	C.	Comprende ruptura homolítica e iones Cl ⁻ .
	D.	Comprende ruptura homolítica y radicales Cl•.
39.	¿Cu	ál fórmula es la de un halógenoalcano secundario?
	A.	CH ₃ CH ₂ CH ₂ CH ₂ Br
	B.	CH ₃ CHBrCH ₂ CH ₃
	C.	$(CH_3)_2CHCH_2Br$
	D.	$(CH_3)_3CBr$
40.	¿Qu	é compuesto se convierte en butanal por reacción con solución ácida de dicromato(VI) de potasio?
	A.	1-butanol
	B.	2-butanol
	C.	butanona

D.

ácido butanoico