Lista 3*, Analiza Matematyczna I

- **301.** Udowodnić, że jeśli funkcja f(x) jest różniczkowalna w przedziale $(c, +\infty)$ i $\lim_{x \to +\infty} f'(x) = 0$, to $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$. Pokazać, że gdy $\lim_{x \to +\infty} [(f(x) + f'(x)] = 0$, to $\lim_{x \to +\infty} f(x) = 0$. Czy odwrotna implikacja jest prawdziwa?
- 302. Dowieść, że funkcja $f(x)=\sum_{n=1}^{\infty}\frac{1}{x^2-n^2}$ jest ciągła we wszystkich punktach , w których jest określona (tzn. $x\neq \pm n$).
- **303.** Sprawdzić, że funkcja $f(x) = \sum_{n=1}^{\infty} \sqrt{x} e^{-n^2 x}$ jest ciągła w przedziale x > 0 i nieciągła w x = 0.
- **304.** Pokazać, że dla $1 < \alpha < 2$ szereg

$$\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha} + x^{2n}}$$

jest jednostajnie zbieżny na półprostej $(-\infty, 1]$, ale nie jest zbieżny jednostajnie na półprostej $[1, \infty)$. Czy szereg ten jest jednostajnie zbieżny na prostej dla $\alpha = 2$?

- **305.** Zbadać ilość dodatnich pierwiastków równania $a^x = x$ w zależności od parametru a. Pokazać, że równanie $a^{a^x} = x$ ma te same pierwiastki co równanie $a^x = x$ dla $a \ge e^{-e}$. Udowodnić, że dla $0 < a < e^{-e}$ równanie $a^{a^x} = x$ ma trzy rozwiązania $r_1 < x_0 < r_2$, gdzie x_0 jest jedynym rozwiązaniem równania $a^x = x$.
- **306.** Udowodnić, że jeśli funkcja f(x) jest różniczkowalna w przedziale (c, ∞) i $\lim_{x \to \infty} f'(x) = 0$, to $\lim_{x \to \infty} \frac{f(x)}{x} = 0$. Pokazać, że gdy $\lim_{x \to \infty} [f(x) + xf'(x)] = 0$, to $\lim_{x \to \infty} f(x) = 0$. Czy odwrotna implikacja jest prawdziwa?
- **307.** (odniesienie do zad. z listy 14) Niech f(x) będzie funkcją dwukrotnie różniczkowalną na prostej i $M_n = \sup_x |f^{(n)}(x)|$ dla n = 0, 1, 2. Udowodnić nierówność $M_1^2 \leq 2M_0M_2$. Pokazać na przykładzie, że stała 2 jest optymalna.