

- Shells are much like plates except that they are curved.
- FEM models of shells are developed using (1) shell theory or (2) 2-D equations obtained from a degenerated 3D elasticity model
- Shell theory are developed, are originally based on Kirchoff-Love kinematic hypothesis
- Some group of shell theories is based on order magnitude on strains and rotations in full nonlinear equations (called finite rotation theories).
 - \blacktriangleright Strains and rotations about the normal to he surface are assumed to be of order $\epsilon << 1$
 - Roations about tangents to the surface are organised in a consistent classiciation where for each range of magnitude of ratioans specific shell euqations are obtained.
- Shells can be synclastic or anticlastic. A curved surface is developable if it can be developed to a plane without sretching. Nondevelopable requires cuting or deforming. These are stronger than developable because they need additional forces to collapse to planar surfaces.

Fig. 8.2.1: (a) Shell geometry. (b) Position vector of a point and coordinates on the middle surface. (c) Position vectors of points on the middle surface and above the middle surface.

DIFFERENTIAL GEOMETRY

- Take a curved shell element of uniform thickness. Here (ξ_1, ξ_2, ζ) which denote the curvilinear coordinates such that ξ_1, ξ_2 curves are the lines of crvature of the middle surface $(\zeta = 0)$.
- The position vector of a point $(\xi_1, \xi_2, 0)$ is denote by \mathbf{r} and any other arbitary point is denoted by \mathbf{R}
- A differential line element on the middle suface can be written as

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial \xi_a} d\xi_a = \mathbf{g}_a d\xi_a, \quad \mathbf{g}_a = \frac{\partial \mathbf{r}}{\partial \xi_a} \quad (a = 1, 2)$$
 (1)

where the vectors \mathbf{g}_1 and \mathbf{g}_2 are tangent to the ξ_1, ξ_2 coordinates lines as shown.

■ The components of the metric tensor g_{ab} , (a,b=1,2) are

$$\mathbf{g}_{a} \cdot \mathbf{g}_{b} = g_{ab}, \qquad p_{1} = \sqrt{g_{11}}, \qquad p_{2} = \sqrt{g_{22}}, \qquad \mathbf{g_{1} \cdot g_{2}} = p_{1}p_{2}\cos\chi$$
 (2)

where χ denotes the angle between the coordinate curves. ¹

■ The normal vector is found as

$$\hat{\mathbf{h}} = \frac{\mathbf{g_1} \times \mathbf{g_2}}{p_1 p_2 sin \chi} \tag{3}$$

¹Note that \mathbf{h} , p_1 , p_2 are functions of ξ_1 , ξ_2

DIFFERENTIAL GEOMETRY: CONTINUED

■ The square of the distance dS,say between points $(\xi_1, \xi_2, 0)$ and $(\xi_1 + d\xi_1, \xi_2 + d\xi_2, 0)$ on the emiddle surface is given by

$$(ds)^{2} = d\mathbf{r}.d\mathbf{r} = g_{ab}d\xi_{a}d\xi_{b} = p_{1}^{2}(d\xi_{1})^{2} + p_{2}^{2}(d\xi_{2})^{2} + 2a_{1}a_{2}\cos\chi \ d\xi_{1}d\xi_{2}$$
 (4)

The RHS is called the first quadratic form of the surface which allows us to find infinitesimal lengths, angles and area. The terms p_1^2 , p_2^2 , $p_1p_2cos\chi$ are called the first fundamental quantities

■ Let $\mathbf{r} = \mathbf{r}(s)$ be the equation of a curve s on the surface. The unit vector tangent to the curve is

$$\hat{\mathbf{t}} = \frac{d\mathbf{r}}{ds} = \frac{\partial \mathbf{r}}{\partial \xi_a} \frac{\partial \xi_a}{\partial s} = \mathbf{g}_a \frac{\partial \xi_a}{\partial s} \tag{5}$$

1

Im not writing this because the conventions are too long. Please check the annotated book