Potentials and Pitfalls

Bob Muscarella Sapienza University, Roma June 9-11

Course website: https://bobmuscarella.github.io/SDM-course/index.html

Applications of SDMs

(Some) Potential applications of SDMs/ENMs

- Niche structure and limits (ecological / evolutionary application)
- Discovery of species and populations
- Consequences of climate change
- Reconstructing past distributions
- Invasive species applications
- Systematic conservation planning
- Large-scale conservation/restoration projects
- Public health

Evolutionary hypotheses

Niche conservatism? Niche divergence?

Evolutionary hypotheses

Niche conservatism? Niche divergence?

Kozak & Weins (2006) Does niche conservatism promote speciation? A case study in north American salamanders. *Evolution* 60(12): 2604–2621 Kozak *et al.* (2008) Integrating GIS-based environmental data into evolutionary biology. *Trends in Ecology & Evolution* 23(3)

Abundance-Center Hypothesis:

Species are more abundance towards the geographic center of the range.

Vol. 124, No. 2 The American Naturalist August 1984

ON THE RELATIONSHIP BETWEEN ABUNDANCE AND DISTRIBUTION OF SPECIES

JAMES H. BROWN

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Submitted July 8, 1983; Accepted February 27, 1984

Distance from range center

Brown (1984) On the Relationship between Abundance and Distribution of Species. The American Naturalist. 124(2) 255-279.

Abundance-Center Hypothesis:

Species are more abundance towards the geographic center of the range.

Mean Density

Distance from center of distribution (km)

Scissor-tailed Flycatcher

Abundance-Center Hypothesis:

Species are more abundance towards the geographic center of the range.

For >1,400 species of birds, trees, mammals, fishes:

Dallas et al. (2017) Species are not most abundant in the centre of their geographic range or climatic niche. *Ecology Letters*. 10.1111/ele.12860

Abundance-Center Hypothesis:

Species are more abundance towards the geographic center of the range.

Distance from range center

For >1,400 species of birds, trees, mammals, fishes:

Dallas et al. (2017) Species are not most abundant in the centre of their geographic range or climatic niche. *Ecology Letters*. 10.1111/ele.12860

• Other (Unmeasured? Unknown?) variables may be most important determinants of a species distributions

- "Environmental" variables derived from paintings did as good (or better) at predicting species distributions as commonly used bioclimatic variables.
- Metrics of "model performance" do not assess the biological significance of SDMs.
- Variable selection needs to be hypothesis-driven, connected to the ecology of the study species.

• Other (unmeasured) variables may be most important determinants of a species distribution

- A species may not be in *equilibrium* with the environment
 - Abundance (presence) is not highest where fitness is highest

Limited filling of the potential range in European tree species

Potential?

Predicting suitable areas under climate change

Suitable tree habitat in Greenland

Potential?

Suitable habitat for South African ornamental plants predicts invasion success

e.g., Carpobrotus edulis

Invasive species

OPEN

Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments

Arman N. Pili₁,2,3 , Reid Tingley³, Emerson Y. Sy^{2,4}, Mae Lowe L. Diesmos^{2,5,6} & Arvin C. Diesmos^{1,2,7}

Centroid shift from native to Philippine range climate Climate niche in native range

Climate niche in Philippine invaded-range

Climate niche overlap

Invasive species

 Niche shifts and environmental nonequilibrium challenge our ability to predict potential distributions

• Other (unmeasured) variables may be most important determinants of a species distribution

- A species may not be in *equilibrium* with the environment
 - Abundance (presence) is not highest where fitness is highest
- Are we using best practices?

Standards for distribution models in biodiversity assessments

Emerging infectious disease

Summary

- SDMs/ENMs are relevant for an extremely broad range of applications
- Some key assumptions are rarely met (e.g., environmental equilibrium)
- Best practices are ... not always ... used
- Yet, these types of models can be extremely useful (understanding, prediction, communication)

