Marriage Matching with Search Friction: An Empirical Framework

Liang Chen¹ Eugene Choo²

¹Zhejiang University, China

²Yale-NUS College, Singapore

DSE2024, 6 Aug 2024

Introduction

- ► Interested in rationalizing the marriage distribution of 'who marries whom' by age.
- ▶ Develop an empirically tractable behavioral marriage matching model that allows for search friction in marriage.
- Propose an empirical version of the Shimer-Smith (2000) model.
- Empirically quantify the marital gains and search frictions across gender and age.
- What are relative importance of search friction and marital gains in marital decisions?

Introduction continues

- ► Our equilibrium marriage matching model delivers a new closed form matching function to the matching problem with search friction.
- ▶ Develop an empirical strategy that separately identifies marital surpluses and search frictions with cross-sectional data.
 - ➤ To identify search friction, we utilize the marriage duration (divorce) data. (A number of papers like ours uses this insight papers: notably Shin (2013), Ciscato (2023), Goussé, Jacquemet and Robin (2017))
- ▶ Apply our model to investigate how technology and social media has affected the marriage distribution in the United States from 2007/8 to 2017/18.
- ► Extends Choo and Siow(2006), Choo(2015), Chiappori, Salanié and Weiss (2017), and Galichon and Salanié (2022), among others.

Preview of Main Contributions

- (1) Develop a model delivers a new closed-form marriage matching function with search friction.
- (2) Propose an empirical strategy to separately identify marital gains and search frictions by using cross-sectional data.
- (3) Apply our model to investigate how technology and social media has affected the marriage distribution in the United States from 2007/8 to 2017/18.

Contributions - Marriage Matching Function with Search Friction

► The model delivers a new closed-form marriage matching function in the stationary equilibrium,

$$\mu = \mathcal{G}(\boldsymbol{v}, \boldsymbol{s}^m, \boldsymbol{s}^f; \boldsymbol{\Pi}, \boldsymbol{\rho}),$$
 (1)

- \blacktriangleright μ : equilibrium numbers of new marriages;
- lacktriangleright v: endogenous equilibrium numbers of unsuccessful meetings;
- ▶ $s^m \equiv (s_k^m)_{k \in \mathbb{Z}}$ and $s^f \equiv (s_k^f)_{k \in \mathbb{Z}}$, : endogenous equilibrium numbers of available single men and women;
- Π: exogenous marital surplus parameters;
- ho: exogenous search friction parameters.

Contributions - Identification

- Separately identify marital gains and search frictions by using cross-sectional data.
 - With only matching data, it is challenging to disentangle the marital preferences and search frictions as both could affect marriage outcomes.
 - Most existing papers use panel data to identify matching model with search frictions

Contributions - Empirical Application

- Apply our model to investigate how technology and social media has affected the marriage distribution in the United States from 2007/8 to 2017/18.
 - i) raised search cost among the young (21 to 31 years of age) while it lowered search cost among the old (older than 40).
 - ii) lowered marital surplus among the young (21 to 31 years of age) while it raised surplus among the old.

Road Map

- ▶ Model: setup, decision problems, solving the model
- Stationary equilibrium
- ► Identification
- ► Empirical application
- Conclusion

Model setup - Model Environment

- Consider a stationary economy populated by overlapping generational adults who live for Z periods.
- Certain numbers of age one adult males and females are born each period.
- \triangleright (i,j) denote male and female age.
- ▶ I_i^m denotes the population of age i adult males, the vector is denoted by $I^m = (I_i^m)_{i \in \mathcal{Z}}$, the total male population is denoted by $L^m = \sum_{k \in \mathcal{Z}} I_k^m$. $(I_i^f, I^f \text{ and } L^f)$
- ▶ s_i^m denotes the number of age i single males the vector $\mathbf{s}^m = (\mathbf{s}_k^m)_{k \in \mathcal{Z}}$. The total single male, $S^m = \sum_{i \in \mathcal{Z}} \mathbf{s}_i^m$, $(\mathbf{s}_i^f, \mathbf{s}_i^f \text{ and } S^f)$
- ▶ n(i,j) is the stock of (i,j) couples, the matrix $\mathbf{n} = (n(i,j)_{i,j\in\mathcal{Z}})$.
- ▶ I^m and I^f , are predetermined, s^m , s^f , and n, are equilibrium quantities endogenously determined in the model

Model setup - Search Technology

ightharpoonup The number of meetings between age i men and age j women,

$$m_{i,j} = \rho_{ij} \frac{s_i^m s_j^f}{S^m S^f} M(S^m, S^f), \tag{2}$$

which is the product of three components:

- 1. ρ_{ij} , the type-specific exogenous parameter capturing the search efficiency;
- 2. $\frac{s_i^m s_j^f}{S^m S^f}$, the fraction of the number of potential meetings between age i men and age j women to the total market-level potential meetings in one unit of time period;
- 3. $M(S^m, S^f)$, proportional to the total market-level meetings in one unit of time period, $M(S^m, S^f) = \sqrt{S^m S^f}$ following the literature.

Model setup - Search Technology: continues

▶ The rate that an age i man meets an age j woman is then given by:

$$\omega_{ij}^m = \frac{m_{i,j}}{s_i^m} = \frac{\rho_{ij}s_j^t}{\sqrt{S^m S^t}}.$$
 (3)

- A single individual is not guaranteed to meet someone of the opposite sex for sure. Let $\omega_{i0}^m = 1 \sum_{j \in \mathcal{Z}} \omega_{ij}^m$ denotes the probability that a single age i man meets no one on the marriage market.
- Similarly, the rate that a single woman of age j meets a man of age i is given by:

$$\omega_{ij}^f = \frac{m_{i,j}}{s_j^f} = \frac{\rho_{ij}s_i^m}{\sqrt{S^mS^f}},\tag{4}$$

▶ and $\omega_{0j}^f = 1 - \sum_{i \in \mathcal{Z}} \omega_{ij}^f$ denotes the probability that she meets no one.

Model setup - Time-line

Model Setup - Assumptions

Actions: Agents have binary actions. A married or paired couple of individuals g and h of (i,j) type have actions $a_{ijgh} \in \{0,1\}$, where

- $ightharpoonup a_{ijgh} = 1$ denotes the decision to marry (for paired couples) or remain married (for married couples), and
- ▶ $a_{ijgh} = 0$ denotes the decision to remain single (for paired couples) or divorce (for married couples).

Model does not differentiate between newly-paired partners and couples who got married in the previous periods and choose to remain married.

Exogenous Parameters:

- $\beta \in (0,1)$, represents the discount factor,
- $m{ heta} \in (0,1)$ is the Nash bargaining solution, the bargaining power of men

Preferences:

- $ightharpoonup \Pi_{ij}$ denote (i,j) type couple per-period systematic marital gain.
- ▶ Endogenous per-period net utility that male g (or female h) receives from action a_{ijgh} : $u(a_{ijgh}, (i, j), \varepsilon_{i_g j}, \eta_{ij_h})$ (or $w(a_{ijgh}, (i, j), \varepsilon_{i_g j}, \eta_{ij_h})$).
- ▶ When couple marries, $a_{ijgh} = 1$, the aggregate marital utilities is,

$$egin{aligned} u(a_{ijgh} = 1, (i, j), & arepsilon_{i_g j}, oldsymbol{\eta}_{ij_h}) + w(a_{ijgh} = 1, (i, j), & arepsilon_{i_g j}, oldsymbol{\eta}_{ij_h}) \ & = \Pi_{ij} + arepsilon_{i_g j, 1} + \eta_{ij_h, 1}. \end{aligned}$$

- ▶ If the meeting was unsuccessful or the married couple decides to divorce, a_{iigh} = 0.
- Per-period systematic gain from remaining single or divorcing is normalized to zero.

$$u(a_{ijgh}=0,(i,j), \boldsymbol{\varepsilon}_{igj}, \boldsymbol{\eta}_{ij_h}) = \boldsymbol{\varepsilon}_{i_gj,0}, \text{ and} \ w(a_{ijgh}=0,(i,j), \boldsymbol{\varepsilon}_{i_gj}, \boldsymbol{\eta}_{ij_h}) = \eta_{ij_h,0}.$$

Model Setup - Assumptions continue

- Assume that preferences and the evolution of the state variables satisfy two assumptions:
- ▶ Additive Separability (AS) in utilities The sum of one-period utilities from marriage for incumbent or paired couples is additively separable in the mean utilities, Π_{ij} , and the sum of idiosyncratic shocks, $\varepsilon_{i_g j, 1} + \eta_{ij_h, 1}$.
- Conditional Independence (CI): the unobserved shocks are independent across periods.

DP: Married (or Paired) Individuals

- ▶ (i,j) type couple (g,h) makes a binary decision a that maximizes their life-cycle expected discounted utility. $U((i,j), \varepsilon_{i,j}, \eta_{ii,b})$.
- ► This value function for age *i* man conditional on marrying or pairing with an age *j* woman takes the form,

$$\begin{split} &U((i,j),\varepsilon_{i_gj},\boldsymbol{\eta}_{ij_h}) = &\max \bigg\{ u(a=1,(i,j),\varepsilon_{i_gj},\boldsymbol{\eta}_{ij_h}) \\ &+ \beta \mathbb{E} \big[U((i+1,j+1),\varepsilon_{i_g'j'}',\boldsymbol{\eta}_{i'j_h'}') | (i,j),\varepsilon_{i_gj},\boldsymbol{\eta}_{ij_h},a=1 \big], \\ &u(a=0,(i,j),\varepsilon_{i_gj},\boldsymbol{\eta}_{ij_h}) \\ &+ \beta \mathbb{E} \big[U((i+1,0),\varepsilon_{i+1_g0}',(\boldsymbol{\eta}_{0k_{h'}}')_k) | (i,j),\varepsilon_{i_gj},\boldsymbol{\eta}_{ij_h},a=0 \big] \bigg\}. \end{split}$$

DP: Single Individuals

▶ The value function for the single male g with state $((i,0), \varepsilon_{i_g0})$ is then given by the Bellman equation,

$$\begin{split} U((i,0), \varepsilon_{i_g0}, (\eta_{0j_h}^i)_j) &= \sum_k \omega_{ik}^m U((i,k), \varepsilon_{i_g0}^k, \eta_{0k_h}^i) \\ &+ \omega_{i0}^m \beta \mathbb{E} \big[U((i+1,0), \varepsilon_{i+1_g0}^i, (\eta_{0j_h'}^i)_j | (i,0), \varepsilon_{i_g0}, (\eta_{0j_h}^i)_j) \big]. \end{split}$$

Solving the model

Assume that $(\varepsilon_{i_g j,1} + \eta_{ij_h,1})$ and $\varepsilon_{i_g j,0}/\theta$ are independently drawn from Type I Extreme Value distribution, the probability that male g of couple type (i,j) remains married this period is given by,

$$\mathcal{P}_{ij,1} = \frac{\exp[\Pi_{ij} + \beta C_{i+1,j+1} \cdot \mathbb{I}(i < Z, j < Z)]}{1 + \exp[\Pi_{ij} + \beta C_{i+1,j+1} \cdot \mathbb{I}(i < Z, j < Z)]}.$$

The corresponding integrated value function for an age i < Z male married to an age j female is given by,

$$\mathbb{U}_{i,j} = \theta[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{U}_{i+1,0} \cdot \mathbb{I}(i < Z),$$

ightharpoonup and the integrated value function for an age i < Z single male is,

$$\mathbb{U}_{i,0} = \sum_{k} \omega_{ik}^{m} \theta[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{U}_{i+1,0} \cdot \mathbb{I}(i < Z).$$

Solving the model - continues

▶ Similarly the integrated value function for an age $j \in \mathcal{Z}$, married female is given by,

$$\mathbb{W}_{i,j} = (1 - \theta)[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{W}_{i+1,0} \cdot \mathbb{I}(j < Z),$$

lacktriangle and the corresponding integrated value function for a single age $j\in\mathcal{Z}$ female is given by

$$\mathbb{W}_{0,j} = \sum_k \omega_{kj}^f (1-\theta)[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{W}_{0,j+1} \cdot \mathbb{I}(j < Z).$$

Solving the Model: Dynamic Matching Function with Search Friction

 $uarrange \nu_{i,j}$ the flow of new (i,j) marriages, and $v_{i,j}$ the flow of unsuccessful paired (i,j) meetings. Using this to estimate the probabilities $\hat{\mathcal{P}}_{ij,1} = \frac{\mu_{i,j}}{m_{i,j}}$ and $\hat{\mathcal{P}}_{ij,0} = \frac{v_{i,j}}{m_{i,j}}$, substituting them into the log-odds ratio, we obtain the equilibrium matching function equation

$$\mu_{i,j} = \begin{cases} \exp(\kappa) \exp(\Pi_{ij}) v_{i,j} \left(\frac{v_{i+1,j+1}}{m_{i+1,j+1}}\right)^{-\beta} \\ \times \prod_{k=1}^{Z} \left(\frac{v_{i+1,k}}{m_{i+1,k}}\right)^{\beta\theta\omega_{i+1,k}^m} \left(\frac{v_{k,j+1}}{m_{k,j+1}}\right)^{\beta(1-\theta)\omega_{kj+1}^f}, & \text{if } i < Z, j < Z, \\ \exp(\Pi_{ij}) v_{i,j}, & \text{if } i = Z \text{ or } j = Z, \end{cases}$$

• where the term $\kappa \equiv \beta c - \beta \theta c \sum_{k=1}^{Z} \omega_{i+1k}^m - \beta (1-\theta) c \sum_{k=1}^{Z} \omega_{kj+1}^f$.

Stationary equilibrium

- ▶ In the stationary equilibrium, the inflow and outflow of married couples of each type must exactly balance each other.
- ▶ The inflow of (i,j)-type marriage is given by $m_{i,j}\mathcal{P}_{ij,1}$, where m(i,j) is the number of (i,j)-type meetings, and $\mathcal{P}_{ij,1}$ is the marriage probability for an (i,j) paired partner.
- ▶ The outflow of (i,j)-type marriage is given by $n(i,j)(1-\mathcal{P}_{ij,1})$, where n(i,j) is the stock of (i,j)-type couples, and $(1-\mathcal{P}_{ij,1})$ is the dissolution or divorce probability for an (i,j).

$$m_{i,j}\mathcal{P}_{ij,1}=n(i,j)(1-\mathcal{P}_{ij,1}).$$

Stationary equilibrium: continue

▶ The stationary steady state stock of (i, j) marriages,

$$n(i,j) = m_{i,j} \frac{\mathcal{P}_{ij,1}}{(1 - \mathcal{P}_{ij,1})} = \frac{\rho_{ij} s_i^m s_j^f}{\sqrt{S^m S^f}} \frac{\mathcal{P}_{ij,1}}{(1 - \mathcal{P}_{ij,1})}.$$
 (5)

▶ The following accounting balance conditions for each gender and type $i, j \in \mathcal{Z}$,

$$I_i^m = s_i^m + \sum_{j \in \mathcal{Z}} n(i, j), \tag{6}$$

$$I_j^f = s_j^f + \sum_{i \in \mathcal{Z}} n(i, j). \tag{7}$$

Stationary equilibrium: continues

A stationary marriage market equilibrium with search friction is defined by the tuple $(s^m, s^f, n, U, W, \mathcal{P})$, which comprises two vectors indicating the quantities of single males and females (s^m, s^f) , a matrix representing the stocks of marriages n, two vectors that encapsulate the expected values for males and females within unions (U, W), and a matrix detailing the probabilities of opting for marriage \mathcal{P} . In this equilibrium, the vectors s^m and s^f are solutions to the fixed-point equations defined by

$$\begin{split} I_i^m &= s_i^m + \sum_{j \in \mathcal{Z}} \frac{\rho_{ij} s_i^m s_j^f}{\sqrt{S^m S^f}} \frac{\mathcal{P}_{ij,\mathbf{1}}}{(1 - \mathcal{P}_{ij,\mathbf{1}})}, \text{ and } \\ I_j^f &= s_j^f + \sum_{i \in \mathcal{Z}} \frac{\rho_{ij} s_i^m s_j^f}{\sqrt{S^m S^f}} \frac{\mathcal{P}_{ij,\mathbf{1}}}{(1 - \mathcal{P}_{ij,\mathbf{1}})}, \end{split}$$

. The matrix n is given by the equation

$$n(i,j) = m_{i,j} \frac{\mathcal{P}_{ij,1}}{\left(1 - \mathcal{P}_{ij,1}\right)} = \frac{\rho_{ij} s_i^m s_j^f}{\sqrt{S^m S^f}} \frac{\mathcal{P}_{ij,1}}{\left(1 - \mathcal{P}_{ij,1}\right)}.$$

The value function matrices, $oldsymbol{U}$ and $oldsymbol{W}$, are determined by equations

$$\begin{split} \mathbb{U}_{i,j} &= \theta[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{U}_{i+1,0} \cdot \mathbb{I}(i < Z), \\ \mathbb{U}_{i,0} &= \sum_k \omega_{ik}^m \theta[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{U}_{i+1,0} \cdot \mathbb{I}(i < Z). \\ \mathbb{W}_{i,j} &= (1 - \theta)[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{W}_{i+1,0} \cdot \mathbb{I}(j < Z), \\ \mathbb{W}_{0,j} &= \sum_k \omega_{kj}^f (1 - \theta)[c - \ln \mathcal{P}_{ij,0}] + \beta \mathbb{W}_{0,j+1} \cdot \mathbb{I}(j < Z), \end{split}$$

and the probabilities within ${\cal P}$ are defined by equation

$$\mathcal{P}_{ij,1} = \frac{\exp[\Pi_{ij} + \beta C_{i+1,j+1} \cdot \mathbb{I}(i < Z, j < Z)]}{1 + \exp[\Pi_{ij} + \beta C_{i+1,j+1} \cdot \mathbb{I}(i < Z, j < Z)]}.$$

Identification

- Model primitives: search friction parameters ρ and the marital preference parameters Π .
- ▶ Observables: the matching distribution, $\hat{\nu} = (\hat{\mu}, \hat{\mathbf{s}}^m, \hat{\mathbf{s}}^f)$, and the divorce rates $\hat{\delta} = (\delta_{i,j})_{i,j \in \mathcal{Z}}$.
- ► Key idea: duration data identify the marital gains from marriages and then use observed matches identify search friction.

Identification continues

► Recall:

$$\mu_{ij} = m_{i,j} \mathcal{P}_{ij,1} = \frac{\rho_{i,j} s_i^m s_j^f}{\sqrt{S^m S^f}} \mathcal{P}_{ij,1},$$

► Assumption: married couples and paired couples face the same decision problems:

$$\hat{\mathcal{P}}_{ij,1} = 1 - \hat{\delta}_{i,j} \text{ and } \hat{\mathcal{P}}_{ij,0} = \hat{\delta}_{i,j}. \tag{8}$$

► This allows us to identify

$$\hat{\rho}_{i,j} = \frac{\hat{\mu}_{i,j}}{1 - \hat{\delta}_{i,j}} \frac{\sqrt{\hat{S}^m \hat{S}^f}}{\hat{s}_i^m \hat{S}_j^f},$$

Identification: continues

▶ With $\hat{\rho}_{i,j}$, we can identify the search probabilities,

$$\hat{\omega}_{ij}^m = \frac{\hat{\rho}_{ij}\hat{\mathbf{s}}_j^f}{\sqrt{\hat{\mathbf{S}}^m\hat{\mathbf{S}}^f}}, \quad \text{and} \quad \hat{\omega}_{ij}^f = \frac{\hat{\rho}_{ij}\hat{\mathbf{s}}_i^m}{\sqrt{\hat{\mathbf{S}}^m\hat{\mathbf{S}}^f}}.$$

and

$$\hat{\kappa} = \beta c - \beta \theta c \sum_{k=1}^{Z} \hat{\omega}_{i+1k}^{m} - \beta (1-\theta) c \sum_{k=1}^{Z} \hat{\omega}_{kj+1}^{f}, \tag{9}$$

▶ Rearranging the log-odd ratio gives us the identification equation of $\Pi_{i,j}$,

$$\hat{\Pi}_{ij} = \begin{cases} -\hat{\kappa} + \log \hat{\mathcal{P}}_{ij,1} - \log \hat{\mathcal{P}}_{ij,0} + \beta \log \hat{\mathcal{P}}_{i+1j+1,0} \\ -\beta \sum_{k=1}^{Z} \log [\hat{\mathcal{P}}_{i+1k,0}^{\hat{\omega}_{i+1k}^{m}} \hat{\mathcal{P}}_{kj+1,0}^{\hat{\omega}_{kj+1}^{f}}], & \text{if } i < Z, j < Z \\ \log \hat{\mathcal{P}}_{ij,1} - \log \hat{\mathcal{P}}_{ij,0}, & \text{if } i = Z \text{ or } j = Z \end{cases}$$

Empirical Application: Data Summary

U.S. American Community Survey Data, 2007 and 2017
A. Available singles and stock of marrieds

	2007	2017	Δ
Available men (million)	28.60	31.32	9.51%
Available women (million)	27.00	29.49	9.22%
Average age of single men	32.97	32.33	
Average age of single women	33.61	32.85	
Stock of marrieds (million)	26.86	23.57	-12.25%
Average age of married men	39.01	39.12	
Average age of married women	37.27	37.42	

B. New marrieds and divorces

	2008-10	2018-20	Δ
New marrieds (million)	1.40	1.33	-5.00%
Average age of newly married men	32.15	32.30	
Average age of newly married women	30.17	30.62	
Divorces (million)	1.64	1.14	-30.49%
Average age of divorced men	38.20	38.89	
Average age of divorced men	36.56	37.30	

Observed available singles and newly marrieds by age

▶ Surface of observed μ_{ij} in thousand

Observed stock of marrieds and divorces

Estimated ρ_{ij} and Π_{ij} in 2008-10 for ages 25, 35, 45 males

► Changes in $\widehat{\rho_{ij}}$ and $\widehat{\Pi_{ij}}$ for ages 25, 35, 45 males

Conclusion

- Propose an empirical model of marriage matching with search frictions.
- ▶ Rationalizes a new marriage matching function with search friction.
- Develop an empirical strategy to separately identify marital gains and search frictions.
- ▶ Applied our model to investigate how advancement in social media has affected marital gains and search cost from 2007/8 to 2017/18.
- ▶ Preliminary results showed that these technological advancement
- i) raised search cost among the young (21 to 31 years of age) while it lowered search cost among the old (older than 40).
- ii) lowered marital surplus among the young (21 to 31 years of age) while it raised surplus among the old.