

16. 클러스터링 알고리즘

1. Introduction

Cluster analysis

- Statistical technique to generate a category structure which fits a set of observations.
- High degree of association between members of the same group and a low degree between members of different groups.
- Similar to automatic classification, but different in that classes are not known prior to processing
- Methods and algorithms are found in
 - statistical analysis packages: SAS, SPSSX, BMDP
 - cluster analysis packages: CLUSTAN, CLUSTAR/CLUSTID

Applications in I.R.

- Documents may be clustered on the basis of the terms that they contain.
- Documents may be clustered based on co-occurring citations in order to provide insights into the nature of the literature of a field.
- Terms may be clustered on the basis of the documents in which they co-occur.

2. Measures of Association

- Means of quantifying the degree of association between documents(terms).
 - → Distance measure, or a measure of similarity/dissimilarity
 - Some methods use a specific measure
 e.g. Euclidean distance for Ward's method
- Weighting of document terms is not as significant in improving performance in cluster-based retrieval.
- Similarity measures
 - Dice coefficient
 - Jaccard coefficient
 - Cosine coefficient

Similarity Measures

Dice coefficient

$$S_{D_{i},D_{j}} = \frac{2\sum_{k=1}^{L} (weight_{ik} \ weight_{jk})}{\sum_{k=1}^{L} weight_{ik}^{2} + \sum_{k=1}^{L} weight_{jk}^{2}}$$

Binary term weights

$$S_{D_i,D_j} = \frac{2C}{A+B}$$
 A: the number of terms in D_i B: the number of terms in D_j C: D_i 와 D_j 의 공통 용어 수

Jaccard coefficient

$$S_{D_{i},D_{j}} = \frac{\sum_{k=1}^{L} (weight_{ij} \ weight_{jk})}{\sum_{k=1}^{L} weight_{ik}^{2} + \sum_{k=1}^{L} weight_{jk}^{2} - \sum_{k=1}^{L} (weight_{ik} \ weight_{jk})}$$

• Cosine coefficient
$$\sum_{k=1}^{L} (u_k)^{-k}$$

Cosine coefficient
$$S_{D_{i},D_{j}} = \frac{\sum_{k=1}^{L} (weight_{ij} \ weight_{jk})}{\sqrt{\sum_{k=1}^{L} weight_{ik}^{2} \sum_{k=1}^{L} weight_{jk}^{2}}}$$

Similarity Matrix

- Pairwise coupling of the most similar documents or clusters
- The similarity between every pair of documents
- Symmetric → lower triangular matrix

$$S = \begin{vmatrix} S_{21} \\ S_{31} & S_{32} \\ S_{41} & S_{42} & S_{43} \\ \vdots & \vdots & \ddots \\ S_{N1} & S_{N2} & S_{N3} & \dots & S_{N(N-1)} \end{vmatrix}$$
Figure 16.1 Similarity matrix

- Similarity matrix can be the basis for identifying a nearest neighbor(NN) → find the closest vector to a given vector from a set of N multidimensional vectors.
- Efficient NN-finding algorithm → inverted file algorithm

3. Clustering Methods

- Goal: N objects → M groups
 - N >> M and M is usually unknown
- Agglomerative vs. Divisive
 - Agg.: unclustered data set → N-1 pairwise joins
 - Div. : all objects in a single cluster → N-1 divisions of some cluster into a smaller cluster
- Nonhierarchical methods
 - Partitioning and reallocating items until some criterion is optimized.
 - Heuristic in nature, since a priori decisions about the number of clusters, cluster size, criterion for cluster membership, and form of cluster representation are required.
- Hierarchical methods

4. Nonhierarchical Methods (1/3)

- 경험적인 결정을 요구
- 최적의 해결책을 구하기는 불가능
- 자료집합 N이 클러스터 M보다 매우 크면(M<<N) 큰 자료 집합을 분할하는데 계층적 방법보다 효율적
- 계산자원에 한계가 있었던 초창기 문헌 클러스터링 연구에 사용
- 단일패스 방법
- 재배치 방법

Nonhierarchical Methods (2/3)

Single Pass Methods

- 1. Assign the first document D_1 as the representative for C_1 .
- 2. For D_i , calculate the similarity S with the representative for each existing cluster.
- 3. If $S_{max} > S_T$ (threshold), add the item to the corresponding cluster and recalculate the cluster representative; otherwise, use D_i to initiate a new cluster.
- 4. If an item D_i remains to be clustered, return to step 2.

Nonhierarchical Methods (3/3)

Reallocation Methods

- Beginning initial partition of the data set
- Moving items from cluster to cluster to obtain an improved partition.
- 1. Select *M* cluster representatives or centroids.
- 2. For i = 1 to N, assign D_i to the most similar centroid.
- 3. For j = 1 to M, recalculate the cluster centroid C_{j} .
- 4. Repeat steps 2 and 3 until there is little or no change in cluster membership.

5. Hierarchical Methods

- Hierarchical Agglomerative Clustering Method : HACM
- Dendrogram(역수형도) → 생성된 클러스터의 구조
 - The order of pairwise coupling of the objects is shown and the value of the similarity function(level) at which each fusion occurred.

Single/complete/group-average link, Ward's method

General algorithm for HACM

- General algorithm for HACM
 - 1.Identify the two closest points and combine them in a cluster.
 - 2.Identify and combine the next two closest points(treating existing clusters as points).
 - 3. If more than one cluster remains, return to step 1.
- Lance-Williams dissimilarity update formula
 - If objects C_i and C_j have just been merged to form cluster $C_{i,j}$, the dissimilarity d between the new cluster and any existing cluster C_k is given by:

$$dc_{i,j}c_k = \alpha_i dc_i c_k + \alpha_j dc_j c_k + \beta dc_i c_j + \gamma |dc_i c_k - dc_j c_k|$$

Table 16.1 Characteristics of HACM

HACM	Lance-Williams parameters	Cluster centers
Single link	$\alpha_i = \frac{1}{2}$	nia sali i — i este sei ima e terine Parte — — — e este sur the fol
	_	
an house self-artificial in a month	$\beta = 0$	rob danie stem dati
	$\gamma = -\frac{1}{2}$	
Complete link	$\alpha_i = \frac{1}{2}$	entral world extend to be any
	2	part out of a second second
beit stalger is vir entimosis. I beginne it sin i i i i i i i i i i i i i i i i i i	$\boldsymbol{\beta} = 0$	
a page 182 to 184 page 1 to 184 page 1	$\mathbf{v} = 1$	
for the season of the season o		
Group average ·	$\alpha_i = \frac{m_i}{m_i + m_i}$	AND ENTER A CONTRACTOR OF THE STATE OF THE S
	(8)	this art is a section with a sec
		$C_{i,j} = \frac{C_i + C_j}{2}$
for the one same and same art up to the	2 38 10	Tilly as 2 till as a second
	$\beta = -\frac{1}{4}$	
	$\gamma = 0$	
Centroid		$C_{i,j} = \frac{m_i C_i + m_j C_j}{m_i + m_j}$
	$m_i + m_j$	$m_i + m_j$
a 1977 - De Mariday III de General Prompto Scotta en Lena (d. 1974)	$\beta = -\frac{m_i m_j}{(m_i + m_i)^2}$	stated when the
	$\gamma = 0$	
Ward's method	$\alpha_i = \frac{m_i + m_k}{m_i + m_j + m_k}$	$C_{i,j} = \frac{m_i C_i + m_j C_j}{m_i + m_j}$
	$\beta = -\frac{m_k}{m_i + m_j + m_k}$	
	$\gamma = 0$	

Notes: m_i is the number of items in C_i ; the dissimilarity measure used for Ward's method must be the increase in variance (section 16.5.5).

Single Link Method (1)

Characteristics

- Joins the most similar pair of objects.
- It has some attractive theoretical properties.
- It can be implemented relatively efficiently. → widely used
- Long straggly clusters, or chaining
- Suitable for delineating ellipsoidal clusters
- Unsuitable for isolating spherical or poorly separated clusters
- Complexity: $O(NlogN) \sim O(N^5)$

Van Rijsbergen algorithm

- Do not require the storage of the similarity matrix
- $-O(N^2)$ in time, O(N) in space

SLINK algorithm

- Dendrogram is built by inserting one point at a time into the representation.
- The hierarchy is generated in a form of pointer representation.
- 3 arrays
 - *pi* : hold the pointer representation
 - lambda: hold the distance value associated with each pointer
 - distance : process the current row of the distance matrix

Single Link Method (2)

- Minimal spanning tree(MST) algorithm
 - Tree linking N objects with N-1 connections → no loops]
 - The sum of the N-1 dissimilarities is minimized.
- Fundamental construction principles for MST
 - Any isolated point can be connected to a nearest neighbor.
 - Any isolated fragment(subset of MST) can be connected to a nearest neighbor by a shortest available link.
- Prim-Dijkstra algorithm for MST
 - 1. Place an arbitrary point in MST and connect its nearest neighbor to it.
 - Find the point not in MST closest to any point in MST, and add it to the fragment.
 - 3. If a point remains that is not in the fragment, return to step 2.

Complete Link Method

Characteristics

- Use the least similar pair between each of two clusters to determine the intercluster similarity
- All entities in a cluster are linked to on e another within some minimum similarity.
- Small, tightly bound clusters
- Difficult to apply to large data sets

Defay's CLINK algorithm

- Analogous to SLINK algorithm
 - Uses the same three arrays: pi, lambda, distance
 - $O(N^2)$ in time, O(N) in space

Voorhees algorithm

- Efficient for relatively large document collections
- It is a variation on the sorted matrix approach
- This requires a sorted list of document-document similarities, and a means of counting the number of similarities seen between any two active clusters.

Group Average Link Methods

Characteristics

- The similarity between two clusters is determined by the average value of all the pairwise links between points.
- The general HACM algorithm can be used → impractical for large collection.
- More efficient special case algorithm is available.
 - Vorhees algorithm

Ward's Method

Characteristics

- Minimum variance method
 - Minimizes the increase in the total within-group error sum of squares, based on the Euclidean distance between centroids.
 - It tends to produce homogeneous clusters and a symmetric hierarchy.
 - Its definition of a cluster center of gravity provides a useful way of representing a cluster.
- Follows the general HACM algorithm

Reciprocal nearest neighbor algorithm

- For any point or cluster, there exists a chain of nearest neighbors(NNs)
- Select an arbitrary point.
- 2. Follow the NN chain from this point till an RNN pair is found.
- 3. Merge these two points and replace them with a single point.
- 4. If there is a point in NN chain preceding the merged points, return to step 2; otherwise return to step 1. Stop when only one point remains.

6. Evaluation and Validation

Evaluation

- Determine the "best" clustering method by
 - applying a range of clustering methods to test data sets
 - and comparing the quality of the results
- Voohees found that
 - Complete link → most effective for larger collections
 - Complete and group average → comparable for smaller collections
 - Single link → worst performance
- El-Hamdouchi and Willett
 - Group average → most suitable for document clustering
 - Complete link → not as effective as in Voorhees

Evaluation and Validation (2)

Validation

- Is the data matrix random?
- How well does a hierarchy fit a proximity matrix?
- Is a partition valid?
- Which individual clusters appearing in a hierarchy are valid?
- Three tests for clustering tendency
 - Clustering tendency: is retrieval performance achieved?
 - Overlap test: query-relevance test → RR, RNR overlap
 - 3. Nearest neighbor test: how many of its n nearest neighbors are also relevant?

7. Updating the Cluster Structure

- When new items are added, updating the cluster without the need to recluster the entire collection is desirable.
- Crouch's reallocation algorithm(1975)
 - Includes a mechanism for cluster maintenance
- Can and Ozkarahan(1989)
 - Strategy for dynamic cluster maintenance based on their cover coefficient concept.

8. Document Retrieval From A Clustered Data Set

- Document clustering
 - Improves the efficiency of retrieval.
 - Improves the effectiveness of retrieval.
 - Provides an alternative to Boolean or best match retrieval.
- Approaches to retrieval
 - Top-down search
 - Enter the tree at the root and matching the query against the cluster at each node.
 - 2. Move down the tree following the path of greater similarity.
 - Bottom-up search
 - 1. Begins with some document or cluster at the base of the tree.
 - beginning document → an item known to be relevant
 - It can be obtained by a best match search of documents or lowest-level clusters.
 - 2. Moves up until the retrieval criterion is satisfied.

k-Means 알고리즘

i번째 클러스터의 중심 μ_i 을 , 클러스터에 속하는 점의 집합을 S_i 라고 할 때, 전체 분산은 다음과 같이 계산

$$V = \sum_{i=1}^{k} \sum_{j \in S_i} |x_j - \mu_i|^2$$

- 이 값 V를 최소화하는 S_i을 찾는 알고리즘
- 우선 초기의 μ; 를 임의로 설정한 후에 아래 두 단계를 반복
 - 1) 클러스터 설정: 각 점에 대해, 그 점에서 가장 가까운 클러스터에 할당
 - 2) 클러스터 중심 재조정: μ_i 를 각 클러스터에 있는 점들의 평균값으로 재설정
- 만약 클러스터가 변하지 않는다면 반복을 중지한다.

• 맨 처음, 각 점들을 k개 집합으로 분할

- 1) 임의로 분할 혹은 적당한 휴리스틱을 사용
- 2) 각 집합의 무게중심 계산
- 3) 각 점들을 방금 구한 무게중심 가운데 제일 가까운 것에 연결하여 집합을 재구성
- 4) 이 작업을 반복하면 점들이 소속된 집합을 바꾸지 않거나, 무게중심이 변하지 않는 상태로 수렴

이 알고리즘은 간단하고 빠르게 수렴하여 널리 사용

- 다만, superpolynomial 시간이 걸리는 경우도 있음
- 이 알고리즘은 전역 최적값을 보장해 주지 않음
- 초기 클러스터 설정에 따라서는 실제 최적값보다 꽤 나쁜 값을 얻을 수도 있음
 - 이를 방지하려면, 서로 다른 초기값으로 여러 번 시도하여 가장 좋은 결과를 얻는 기법 등을 사용
- 이 알고리즘은 클러스터 개수를 미리 정해야 함
 - 클러스터 개수를 많게 하면 큰 클러스터가 여러 개로 분할될 수
 있음

