Intégration et probabilités

César Almecija étudiant en première année aux MINES ParisTech cesar.almecija@mines-paristech.fr

26 avril 2021

Table des matières

I	Th	néorie de la mesure et intégration	3
1	Introduction à la théorie de la mesure		4
	1.1	Ensembles mesurables	4
	1.2	Définition de la mesure	5
	1.3	Exemples importants	6
	1.4	Fonctions mesurables	7
2 Construction de l'intégrale de Lebesgue		astruction de l'intégrale de Lebesgue	9
	2.1	Pourquoi définir une nouvelle intégrale?	9
	2.2	Définition de l'intégrale de Lebesgue pour des fonctions positives	10
	2.3	Propriétés de l'intégrale positive	11
	2.4	Définition de l'intégrale de Lebesgue pour des fonctions signées.	11

Avant-propos

Ce document vise à résumer les notions essentielles d'intégration et de probabilités. Son objectif est de retracer les cheminements de pensée qui mènent aux résultats essentiels, afin de mieux les retenir. Ainsi, il pourra être avantageusement utilisé pour se refamiliariser avec ces notions, au cas-où elles auraient été oubliées. Ce travail peut également servir de préambule à une étude plus approfondie du sujet, pour découvrir les fondements de ce domaine des mathématiques.

Néanmoins, ce document ne saurait se substituer à un ouvrage de référence. En effet, par soucis de clarté et de concision, il ne détaille pas toutes les démonstrations. Celles-ci sont néanmoins nécessaires pour saisir l'entièreté des résultats énoncés ici. De cette manière, il faut le lire comme un aide-mémoire ou un résumé, et non comme un cours.

Ce travail se partage en trois grandes parties :

- Une première partie commençant par une introduction à la théorie de la mesure, suivie de la construction rapide de l'intégrale de Lebesgue, et qui finit par s'attarder sur les résultats essentiels d'intégration
- Une deuxième partie qui applique la partie précédente à la théorie des probabilités
- Une troisième partie rapide qui explore la théorie des séries à l'aide des résultats précédents.

Ce document s'est grandement inspiré du cours Calcul Différentiel, Intégral et Stochastique (CDIS) de l'Ecole des MINES ParisTech. L'auteur recommande aux lecteurs intéressés de s'y référer régulièrement.

Première partie

Théorie de la mesure et intégration

Chapitre 1

Introduction à la théorie de la mesure

Pour comprendre cette notion, partons d'un constat évident. On sait mesurer la taille d'un segment : la manière de mesurer cette grandeur est d'utiliser la longueur. Par exemple, la longueur du segment [0,1] vaut 1. Plus généralement, λ , l'application qui à un segment [a,b] associe sa longueur b-a, pourrait s'appeler dans le langage courant une mesure, c'est-à-dire une fonction permettant d'obtenir la mesure (la taille) d'un objet.

Se posent alors les questions suivantes :

- dans \mathbb{R} , comment mesurer n'importe-quel ensemble?
- plus généralement, comment mesurer dans \mathbb{R}^n ?
- mais est-il possible de *tout* mesurer? Ou faut-il se restreindre à une catégorie d'ensembles *mesurables*?

On commencera par répondre à cette dernière question.

1.1 Ensembles mesurables

Il n'est pas possible de tout mesurer ainsi. Il faut introduire une classe d'ensembles, appelée **tribu**, qui va représenter l'ensemble des ensembles **mesurables**.

Une tribu doit cependant garantir certaines propriétés de stabilité par opérations ensemblistes. En effet, si deux ensembles sont mesurables, on aimerait pouvoir donner un sens à la mesure de leur intersection ou de leur union. De même, si un ensemble est mesurable, il est légitime de demander que son complémentaire soit mesurable à son tour. Enfin, demander que l'ensemble vide soit mesurable est raisonnable, et on verra par la suite que la mesure du vide doit valoir 0, conformément à l'intuition.

Ces considérations étant faites, on définit alors une tribu comme suit :

Définition 1.1.1. Une tribu (ou σ -algèbre) \mathcal{A} d'un ensemble E est une col-

lection d'ensembles $\mathcal{A} \subset \mathcal{P}(E)$ vérifiant les hypothèses suivantes :

- 1. $\varnothing \in \mathcal{A}$
- 2. \mathcal{A} est stable par passage au complémentaire
- 3. \mathcal{A} est stable par union dénombrable

Définition 1.1.2. Un **espace mesurable** (E, A) est un ensemble E muni d'une tribu A.

Définition 1.1.3. Soit (E, A) un espace mesurable. Un ensemble $X \in A$ est dit A-mesurable.

Remarque 1.1.1. Si le contexte est clair (ie il n'y a qu'une seule tribu), on pourra omettre \mathcal{A} et parler simplement d'ensemble mesurable

Remarque 1.1.2. On remarquera qu'il faut distinguer les espaces mesurables (définition 1.1.2) des ensembles mesurables (définition 1.1.3).

Définition 1.1.4. Soit E un ensemble, et B une collection d'ensembles de E. La **tribu engendrée par** B est la plus petite tribu sur E contenant B. De manière équivalente, c'est l'intersection de toutes les tribus de E contenant E.

Définition 1.1.5. Soit E un ensemble muni d'une topologie. La **tribu de Borel** est la tribu engendrée par les ouverts de E (ou de manière équivalente, par les fermés de E).

1.2 Définition de la mesure

Abordons désormais la notion de mesure. Un ensemble mesurable doit intuitivement admettre une mesure positive. De plus, si deux ensembles sont disjoints, il est légitime de demander que la mesure de leur union soit la somme des mesures.

Cela nous amène à définir une mesure ainsi :

Définition 1.2.1. Une **mesure** μ sur un espace mesurable (E, A) est une application $\mu: A \longrightarrow \mathbb{R}_+ \cup \{+\infty\}$ telle que :

- 1. $\mu(\emptyset) = 0$
- 2. Pour une famille au plus dénombrable d'ensembles mesurables $(A_i)_{i \in I}$,

$$\mu\left(\bigcup_{i\in I}A_{i}\right)=\sum_{i\in I}\mu\left(A_{i}\right)$$

Remarque 1.2.1. Cette deuxième propriété porte le nom de σ -additivité.

Remarque 1.2.2. Si $\mu(\varnothing) \neq 0$, le lecteur pourra vérifier que la mesure de n'importe-quel ensemble mesurable (a fortiori du vide) vaut $+\infty$. On comprend alors pourquoi on impose que la mesure du vide soit nulle : si ce n'était pas le cas, mesurer n'aurait pour ainsi dire aucun intérêt.

Définition 1.2.2. Un **espace mesuré** (E, \mathcal{A}, μ) est un espace mesurable (E, \mathcal{A}) muni d'une mesure μ .

Définition 1.2.3. Soit (E, \mathcal{A}, μ) un espace mesuré. Un ensemble $X \subset E$ est dit μ -négligeable si :

 $\exists Y \in \mathcal{A}, \left\{ \begin{array}{c} \mu(Y) = 0 \\ X \subset Y \end{array} \right.$

Remarque 1.2.3. On remarque qu'un ensemble négligeable n'est pas forcément mesurable. Il est cepedant commode d'imposer qu'un ensemble négligeable soit nécessairement mesurable. Modifier une mesure et la tribu respective pour arriver à ce résultat porte le nom de **complétion d'une mesure**.

Ce processus ne sera pas détaillé ici, mais le lecteur peut néanmois retenir qu'une mesure complétée vérifie l'équivalence suivante : un ensemble est négligeable ssi il est mesurable, de mesure nulle

Remarque 1.2.4. On notera que la notion d'ensemble négligeable dépend de la mesure choisie. Un ensemble négligeable pour une certaine mesure peut très bien ne pas l'être pour une autre mesure.

1.3 Exemples importants

Il existe trois mesures importantes à connaître.

Définition 1.3.1. La mesure de Lebesgue λ est l'unique mesure sur \mathbb{R}^n qui prolonge la notion de volume. Habituellement, sa tribu de définition est la **tribu** de Lebesgue ou la **tribu** de Borel.

Remarque 1.3.1. En définissant la mesure de Lebesgue sur la tribu de Borel, elle ne serait en fait pas complète (voir 1.2.3). La tribu de Lebesgue est alors définie comme étant la plus petite tribu de \mathbb{R}^n permettant à cette mesure d'être complète.

On ne retiendra pas plus de détails sur la tribu de Lebesgue, mais il est bon de retenir qu'un élément Borel-mesurable est Lebesgue-mesurable (la réciproque est fausse).

Remarque 1.3.2. On remarque immédiatement que :

- lorsque n = 1, cette mesure prolonge la notion de longueur vue en introduction du chapitre.
- lorsque n=2, cette mesure prolonge la notion de surface.
- lorsque n = 3, cette mesure prolonge la notion de volume.

Par ailleurs, cette mesure sera centrale dans la partie ?? concernant les intégrales.

Définition 1.3.2. Soit (E, A) un espace mesurable. La **mesure de comptage** c est définie sur cette espace comme suit :

$$c: \left\{ \begin{array}{ccc} \mathcal{A} & \longrightarrow & \mathbb{R}_+ \cup \{+\infty\} \\ A & \longmapsto & \left\{ \begin{array}{ccc} 0 & \text{si} & A = \varnothing \\ n & \text{si} & A \text{ est fini de cardinal } n \\ +\infty & \text{si} & A \text{ est infini} \end{array} \right. \right.$$

Remarque 1.3.3. Comme son nom l'indique, cette mesure compte les éléments présents dans l'ensemble que l'on mesure.

Remarque 1.3.4. Bien que cette mesure soit définie pour un espace mesurable quelconque, elle sera particulièrement utile dans $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ (notamment pour la partie ?? concernant les séries).

Définition 1.3.3. Soit (E, A) un espace mesurable. La **mesure de Dirac en** $x \in E$ δ_x est définie comme suit :

$$\delta_x : \left\{ \begin{array}{ccc} \mathcal{A} & \longrightarrow & \mathbb{R}_+ \\ A & \longmapsto & \left\{ \begin{array}{ccc} 0 & \text{si} & x \in A \\ 1 & \text{si} & x \notin A \end{array} \right. \right.$$

 $Remarque\ 1.3.5.$ La mesure de Dirac et la fonction indicatrice sont reliées de la manière suivante :

$$\forall A \in \mathcal{A}, \forall x \in E, \delta_x(A) = \mathbb{1}_A(x)$$

1.4 Fonctions mesurables

Lorsque deux espaces mesurables sont définis, il peut être utile de définir une classe de fonctions qui font bon ménage avec les tribus des espaces mis en jeu.

Définition 1.4.1. Soit (E, \mathcal{A}) et (F, \mathcal{B}) deux espaces mesurables. Une fonction \mathcal{A}/\mathcal{B} -mesurable est une fonction $f: E \longrightarrow F$ telle que :

$$\forall Y \in \mathcal{B}, f^{-1}(Y) \in \mathcal{A}$$

Remarque 1.4.1. Cette caractérisation des fonctions mesurables porte le nom de critère de l'image réciproque.

Remarque 1.4.2. Cette notation est lourde, et c'est pourquoi elle est souvent simplifiée.

• dans le cas où $\mathcal{B} = \mathcal{B}(F)$ (la tribu d'arrivée est celle des boréliens), on pourra simplifier la notation et dire simplement que :

$$f$$
 est \mathcal{A} -mesurable

• si, de plus, la tribu de l'espace de départ n'est pas ambigüe, on pourra alors simplement écrire que :

f est mesurable

Remarque 1.4.3. On remarquera que la notion de fonction mesurable est **indépendante des mesures choisies**. Elle ne dépend que des tribus de l'espace de départ et d'arrivée.

Voici un lien bien utile entre ensembles et fonctions mesurables :

Proposition 1.4.1. Soit (E, A) un espace mesurable. Soit $A \subset E$. Alors A est mesurable ssi $\mathbb{1}_A$ est mesurable.

 $Remarque\ 1.4.4.$ On remarquera que l'on a bien utilisé le formalisme de la remarque précédente :

- \bullet la tribu de l'espace d'arrivée est la tribu borélienne de \mathbb{R} .
- la tribu de l'espace de départ est \mathcal{A} , non-ambigüe.

La proposition suivante permet de simplifier considérablement la vérification de la mesurabilité d'une fonction, dans le cas où l'espace d'arrivée est muni de la tribu des boréliens.

Elle découle directement du fait que la tribu des boréliens soit la tribu engendrée par les ouverts : pour vérifier que le résultat est vrai pour tout élément de la tribu, il suffit de le vérifier sur les éléments qui engendrent la tribu (en l'ocurrence, les ouverts).

Proposition 1.4.2. Soit (E, A) et $(F, \mathcal{B}(F))$ deux espaces mesurables. f est A-mesurable ssi pour tout ouvert U de F, $f^{-1}(U) \in A$.

Remarque~1.4.5. En vertu de la définition 1.1.5, on peut remplacer dans la proposition 1.4.2 « ouvert »par « fermé ».

Le résultat suivant est un résultat important concernant la composition des fonctions mesurables :

Proposition 1.4.3. Soit (E, A), (F, B) et (G, C) trois espaces mesurables, $f: E \longrightarrow F$ une fonction A/B-mesurable et $g: F \longrightarrow G$ une fonction B/C-mesurable. Alors $g \circ f: E \longrightarrow G$ est une fonction A/C-mesurable

Chapitre 2

Construction de l'intégrale de Lebesgue

Maintenant que nous connaissons les notions de base concernant la théorie de la mesure, nous sommes en mesure de définir l'intégrale de Lebesgue. Cette intégrale est en quelque sorte une généralisation de l'intégrale de Riemann.

2.1 Pourquoi définir une nouvelle intégrale?

Deux raisons principales peuvent nous amener à définir une nouvelle intégrale.

D'une part, l'intégrale de Riemann ne permet de calculer l'intégrale que de fonctions continues par morceaux. Or, cela est très restrictif : par exemple, prenons la fonction $\mathbb{1}_{\mathbb{Q}}$. Elle n'est pas continue par morceaux, donc n'est pas intégrable au sens de Riemann. Pourtant, pour la mesure de Lebesgue, \mathbb{Q} est négligeable (voir l'exemple ??). Ainsi, $\mathbb{1}_{\mathbb{Q}}$ est Lebesgue-presque-partout égale à 0. On aurait donc envie de dire que « l'influence de \mathbb{Q} est si petite, qu'elle n'a aucun impact dans l'intégrale ». En disant cela, on veut en fait dire que l'intégrale de $\mathbb{1}_{\mathbb{Q}}$ serait égale à l'intégrale de la fonction nulle, qui vaut zéro. Ce faisant, on pourrait donner un sens à l'intégrale d'une fonction qui n'est pas continue par morceaux!

Plus généralement, l'intégrale de Lebesgue permettra de définir l'intégrale d'une fonction mesurable, et non plus d'une fonction continue par morceaux.

D'autre part, l'intégrale de Riemann utilise la notion de longueur : par exemple, si f est la fonction constante égale à 1, nous avons

$$\int_0^1 f(x) dx = 1 > 2 = \int_0^2 f(x) dx$$

Mais il est impossible de « mesurer différemment ». En effet, si une mesure μ vérifie $\mu([1,2])=0$, alors on aimerait pouvoir dire que les deux intégrales cidessus, calculées avec μ , seraient égales. Plus généralement, **on aimerait pou**-

voir intégrer dans n'importe-quel espace par n'importe-quelle mesure. L'intégrale de Lebesgue répondra à ce besoin.

2.2 Définition de l'intégrale de Lebesgue pour des fonctions positives

Les fonctions positives ont une place privilégiée dans la théorie de l'intégration de Lebesgue. En effet, leurs intégrales sont toujours définies (quitte à valoir $+\infty$) :

Définition 2.2.1. Soit (E, \mathcal{A}, μ) un espace mesuré et $f: E \to \mathbb{R}_+$ mesurable. **La** μ **intégrale de Lebesgue** $\int_E f(x) d\mu(x)$ existe toujours et est l'unique élément de $\mathbb{R}_+ \cup \{+\infty\}$ vérifiant :

• la relation mesure-intégrale : pour tout ensemble X \mathcal{A} -mesurable,

$$\int_{E} \mathbb{1}_{X}(x) \mathrm{d}\mu(x) = \mu(X)$$

• l'hypothèse de linéarité : pour toute fonction mesurable $g: E \to \mathbb{R}_+$ et pour tous $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$,

$$\int_{E} (\alpha f + \beta g)(x) d\mu(x) = \alpha \int_{E} f(x) d\mu(x) + \beta \int_{E} g(x) d\mu(x)$$

• l'hypothèse de convergence monotone : pour toute suite croissante de fonctions mesurables $f_n: E \to \mathbb{R}_+$ convergeant simplement vers f,

$$\lim_{n \to +\infty} \int_{E} f_n(x) d\mu(x) = \int_{E} f(x) d\mu(x)$$

Remarque 2.2.1. L'intégrale d'une fonction mesurable positive vérifie immédiatement, par définition, ces trois hypothèses fondamentales, qui seront centrales dans la suite de ce document. Attention cependant : les deux hypothèses de mesurabilité et de positivité sont absolument nécessaires.

Définition 2.2.2. Soit (E, \mathcal{A}, μ) un espace mesuré et $f : E \to \mathbb{R}_+$ mesurable. f est dite μ -intégrable lorsque $\int_E f(x) d\mu(x) < +\infty$.

Remarque 2.2.2. On fera donc bien attention au sens précis du mot « intégrable ». Il est plus fort de dire qu'une fonction est intégrable, que de dire que l'intégrale d'une fonction existe. Par exemple, une fonction mesurable positive admet toujours une intégrale, mais elle n'est pas forcément intégrable.

Définition 2.2.3. Soit $f: E \longrightarrow \mathbb{R}$, et $F \subset E$. On dit que f est **intégrable** sur le sous ensemble F lorsque $f\mathbb{1}_F$ est intégrable.

Remarque 2.2.3. Pour avoir une chance que f soit intégrable sur F, il est nécessaire que $f\mathbbm{1}_F$ soit mesurable.

2.3 Propriétés de l'intégrale positive

2.4 Définition de l'intégrale de Lebesgue pour des fonctions signées

Commençons par des résultats préliminaires qui seront utiles par la suite :

Définition 2.4.1. Soit E un ensemble. Soit $f: E \longrightarrow \mathbb{R}$. Les **partie positive** et **partie négative** de f, respectivement f_+ et f_- , sont définies comme suit :

$$\begin{cases} f_+ &:= \max(0, f) \\ f_- &:= \min(0, f) \end{cases}$$

Proposition 2.4.1. Soit E un ensemble et $f: E \longrightarrow \mathbb{R}$. Alors:

$$f = f_+ - f_-$$

Le résultat suivant est une conséquence directe de la proposition ?? :

Proposition 2.4.2. Soit (E, A) un espace mesurable et $f : E \longrightarrow \mathbb{R}$ une fonction mesurable. Alors f^+ et f_- sont mesurables

Désormais, passons à la définition de l'intégrale d'une fonction signée. Celleci arrive volontairement dans une nouvelle section, pour souligner la différence avec l'intégrale d'une fonction positive. En effet, comme cela a été souligné au début de la section 2.2, les fonctions positives occupent une place privilégiée dans la théorie de l'intégration de Lebesgue : elles vérifient des résultats qui ne sont pas sytématiquement vrais pour les fonctions signées.

En général, tous les résultats pour les fonctions signées se déduiront des résultats pour les fonctions positives de la manière suivante :

- On décompose une fonction signée mesurable $f: E \longrightarrow \mathbb{R}$ en sa partie positive f^+ et sa partie négative f_- (voir la définition 2.4.1).
- Ces deux fonctions étant positives (et encore mesurables par la proposition 2.4.2), on applique leur applique un résultat vrai pour les fonctions positives.
- On utilise l'identité $f = f^+ + f_-$ pour obtenir le résultat final.

La définition de l'intégrale pour une fonction signée n'échappe pas à cette règle :

Définition 2.4.2. Soit (E, \mathcal{A}, μ) un espace mesuré et $f: E \to \mathbb{R}_+$ mesurable. **La** μ **intégrale de Lebesgue** $\int_E f(x) \mathrm{d}\mu(x)$ existe dès que f_+ ou f_- est μ -intégrable. Dans ce cas, on a :

$$\int_{E} f(x) \mathrm{d}\mu(x) = \int_{E} f_{+} \mathrm{d}\mu(x) - \int_{E} f_{-}(x) \mathrm{d}\mu(x)$$

Remarque 2.4.1. Contrairement au cas positif, l'intégrale d'une fonction signée n'existe pas systématiquement!

Définition 2.4.3. Soit (E, \mathcal{A}, μ) un espace mesuré et $f : E \to \mathbb{R}$ mesurable. f est dite μ -intégrable lorsque f_+ et f_- sont μ -intégrables.

Remarque 2.4.2. On notera que, de manière équivalente, une fonction signée est intégrable ssi l'intégrale de f existe, et est finie.

Remarque 2.4.3. Comme dans le cas positif (remarque 2.2.2), le mot « intégrable » a un sens bien précis!

Théorème 2.4.1. Soit (E, A, μ) un espace mesuré et $f : E \longrightarrow \mathbb{R}$ mesurable. f est μ -intégrable ssi |f| est μ -intégrable. On dit que **l'intégrale de Lebesgue** est absolue.

Remarque 2.4.4. Pour vérifier qu'une fonction signée est intégrable, on vérifiera en pratique que sa valeur absolue est intégrable.

Le théorème suivant assure que cette nouvelle intégrale vérifie bien les besoins que l'on avait exprimé en début de chapitre.

Théorème 2.4.2. L'intégrale de Lebesgue prolonge l'intégrale de Riemann.