2-1. 화학 평형

1. 평형 삼수(equilibrium constant)

반응 $a A + b B \rightleftharpoons c C + d D$ 에 대하여 평형 상수를 정의하면

K=(실험적)

K=(열역학적)

- ① 실험적 평형 상수(empirical equilibrium constant) : 단위가 []다. 진짜 압력/놈도를 대입해서 계산
- ② 열역학적 평형 삼수(thermodynamic equilibrium constant : 단위가 []다. [

](activity)를 대입해서 계산

☆ [] 상태(standard state) : 기준이 되는 상태를 의미

- 고체(solid) & 액체(liquid) : 고체와 액체는 지정된 온도/압력에서 순수한 고체/액체가 표준 상태
- 기체(gas) : 1 []가 표준 상태로 정의
- 용맥(solution) : 1 []의 용맥을 표준 상태로 정의
- 2. 화학 평형의 열역학적 해석

① [](reaction quotient, Q) : 평형 삼수의 식과 동일하지만 현재의 놈도를 대입

Q =

② 화학 평형의 깁스 에너지

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

 \triangleright

③ 르샤틀리에 원리 : 평형에 외부 조작이 가해지면 평형은 그 조작을 [

]하려는 밤햠으로 이동한다.

반음 지수 VS 폄혐 삼수	반음 깁스 에너지의 부호	정반음의 자발섬
반음 지수 > 평형 삼수		
반음 지수 = 평형 삼수		
반음 지수 < 평형 삼수		

→ 평형이 이동하려면? 1. []를 바꾸거나 2. []물/[]물을 넘거나 3. []을 바꾸거나 ...

3. 평형 상수의 온도 의존성 : 평형 상수는 []만의 함수이다.

 $\triangle G^{\circ} = -RT \ln K$ \triangleright K=

반응 엔탈피의 부호	$e^{-\Delta H^\circ/RT}$ 의 증감	평형 삼수의 변화
$\Delta H^{\circ} < 0$		
$\Delta H^{\circ} > 0$		

→ 르샤틀리에의 원리(Le Chatlier's principle)를 만족한다.

- 4. 용해도 평형(solubility equilibrium)
- oxlimit [$oxrime{1}$]곱 상수(solubility product) : 고체 염의 수용액에서의 용해도 폄형에 대한 폄형 상수를 의미
- 예) $CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$ $(K_{sp} =$
- $=2.4\times10^{-5}$)
- 수용액에 고체 염이 존재한다면 그 구성 이온들은 용해도 폄형을 만족해야 한다.
- → 반대로, 수용액에 고체 염이 존재하지 않다면. 구성 이온들은 용해도 평형을 (그래도 만족해야 한다 / 만족할 필요 없다.)
- 평형에서 녹지 않은 고체 염의 양은 []하다.
- 만일 용액에 초기에 투입된 구성 이온들의 농도곱이 용해도곱 상수를 초과한다면, [](precipitation)이 발생한다
- ② [] 효과(common ion effect) : 고체 염 AB에 그 구성 이온 중 하나에 대한 다른 소스가 존재한다면, 고체 염 AB의 물에 대한 용해도는 []한다.
- 예) solvation of $CaSO_4$ into $CaCl_2(aq)$ solution
- 5. 이온의 선택적 침전(selective precipitation of ions)

(사용 조건) 같은 []을 양이온이나 음이온으로 갖는 염의 경우 반대 이온의 선택적 침전이 가능하다.

K가 [] 이온이 침전

모두 침전된 뒤에

K가 [] 이온이 침전

- 예) 납(II) 이온과 수은(I) 이온이 각각 0.010 M씩 들어 있는 용액에서, I'로 Pb^{2^+} 이온을 침전시키지 않으면서 $Hg_2^{2^+}$ 를 99.990%까지 선택적으로 침전시켜 $Hg_2^{2^+}$ 의 놈도를 낮추는 것이 가늠한가? (단, $K_{sp}(PbI_2) = 7.9 \times 10^{-9}$, $K_{sp}(Hg_2I_2) = 4.6 \times 10^{-29}$)
- ▷ 문제의 재해석: 수은(I) 이온의 최종 농도를 [M]로 만드는 것이 가능한가?

- 5. 착물 샘섬에 대한 평형(equilibrium of complex formation)
- ② 단계적 형점 삼수(K_n) vs 촘괄 형점 삼수(β_n)

	단계적 형섬 삼수($K_{\!n}$)	총괄 형성 삼수 (eta_n)
반음식	$MX_{n-1} + X \rightleftharpoons MX_n$	$M + nX \rightleftharpoons MX_n$
평혐 삼수의 표현		

예) ${
m Pb}^{2+}$ 와 ${
m I}^-$ 의 반응으로 만들어지는 여러 가지 착화합물들 ightarrow ${
m I}^-$ 의 농도가 ${
m I}^-$ 기다면 형성 반응 발생

반음식	평혐 삼수 값
$\operatorname{PbI}_2(s) \rightleftharpoons \operatorname{Pb}^{2+} + 2\operatorname{I}^-$	$K_{sp} = 7.9 \times 10^{-9}$
Pb ²⁺ + I [−] ← PbI ⁺	$K_1 = \beta_1 = 1.0 \times 10^2$
$Pb^{2+} + 2I^- \rightleftharpoons PbI_2(aq)$	$\beta_2 = 1.4 \times 10^3$
$Pb^{2+} + 3I^- \rightleftharpoons PbI_3^-$	$\beta_3 = 8.3 \times 10^3$
$Pb^{2+} + 4I^{-} \rightleftharpoons PbI_{4}^{2-}$	$\beta_4 = 3.0 \times 10^4$

→ Pb 포함 화합물이 solvαtion되어 존재할 수 있는 화학좀에는 무엇이 있는가? ______

예) [I] = X, $\log [I] = x$ 로 주어졌다고 가점하자.

 $\log [Pb^{2+}] =$

 $log [PbI^+] =$

 $log [PbI_2(aq)] =$

 $log [PbI_3^-] =$

 $\log [PbI_4^-] =$

▷ log [Pb species] - log [디]를 그리면?

6. 브뢴스테드-로우리 산/염기 개념

- ① 브뢴스테드 로우리의 산-염기 정의 : 산은 양성자 [], 염기는 양성자 []로 정의 ▷ []이 아니어도 됨!
- ② []-[](conjugate acid-base pair) : protonated form and its deprotonated form
- ③ pH에 대한 몇 가지 formula : 물의 자체 이온화 반음 $H_2O \rightleftharpoons H^+ + OH^-$ 의 평형 삼수 $K_w = 1.0 \times 10^{-14}$

$$pH$$
= $-\log [H^+], pH+pOH=pK_w$ $K_a \times K_b = K_w, pK_a+pK_b=pK_w$

- ④ 산-염기의 세기 비교 : K_a 값이 클수록 []한 산이며, pK_a 의 값이 []수록 감한 산이다.
- ightarrow K_a 는 fully [] form의 산 해리 상수로 정의한다. 예) 암모니아의 K_a :

※ 특수한 경우의 산의 세기

- ① 가변 원자가(variable valence)가 가늠한 금속 이온 : 산화 상태가 []을수록 산의 세기가 증가한다.
- 에) triavalent ions(e.g. $\mathrm{Fe^{3+}}$, $K_a=10^{-2.19}$) > divalent ions(e.g. $\mathrm{Fe^{2+}}$, $K_a=10^{-9.4}$) > monovalent ions(e.g. $\mathrm{Na^+}$, $K_a=10^{-13.9}$)

이유)

- ② 다양성자산과 다양성자 염기
- ightarrow 다양성자산의 경우 양성자를 떼어내면 떼어낼수록 K_a 값은 감소한다.

미유)

2-2. 적점 시작하기

1. 용어 정리

용어	염어로	<u> </u>
	titrant	미지의 용액 속 화학종의 양을 알기 위해 가해지는 용액
	equivalence point	이론상 적점 반응이 완결되도록 하는 지점
	end point	실험적으로 적점 반응이 완결되는 지점
	indicator	산성형과 염기성형의 색상이 다른 약산으로 당량점 근처에서 색 변함
	titration error	당량점과 종말점 사이의 오차
	blank titration	analyte 없이 진행하는 titration을 의미
	primary standard	충분히 순수하여 무게를 재고 쓸 수 있는 시약을 의미
	standarization	표준화되지 않은 시약의 놈도를 점확히 맞추는 과점
	standard solution	표준화된 용액을 의미함
	direct titration	적정 반음이 끝날 때까지 저가액을 가하며 적점하는 관습적 방법
	back titration	처음의 미럄의 titrant를 넣고 과량으로 들어간 양을 구하는 방법

2. 적점 계산하기

예) 소변에 있는 칼슘의 양은 다음과 같은 방법으로 구할 수 있다.

1단계) 염기성 용액에서 옥살산 칼슘으로 Ca^{2+} 를 침전시킨다.

$$Ca^{2+} + C_2O_4^{2-} \rightarrow Ca(C_2O_4) \cdot H_2O(s)$$

2단계) 침전물 중에 붙어 있는 목살산 이온을 제거하기 위해 침전물을 찬물로 세척한다. 그리고 산에 녹여 용액 중에 Ca^{2+} 와 $H_2C_2O_4$ 상태로 존재하도록 한다.

3단계) 녹인 옥살산을 60℃로 가열하고 자주색 종말점이 관찰될 때까지 표준화된 과망가니즈산 포타슘으로 적정한다.

〈표준화〉 목살산 소듐($Na_2C_2O_4$, Mw=134.00g/mol) 0.3562g이 250.0 mL 부피 플라스크에 녹아 있다고 가정하자. 이 용액 10.0 mL를 적정하는 데 필요한 $KMnO_4$ 48.36 mL가 필요하다고 가정하고 과망가니즈산 이온 용액의 몰놈도를 구하시오.

<미지 농도의 분석> 소변 시료 5.00 mL에 존재하는 칼슘을 위의 과저에 의해 침전시켜 다시 녹인 후 적정한 결과 표준 $\mathsf{MnO_4}^\mathsf{-1}$ 용액 $\mathsf{16.17}$ mL가 소비되었다고 가정하자. 소변에 있는 $\mathsf{C\alpha}^{2^+}$ 의 농도를 구하시오.

3. 적점 곡선 → 실제 놈도는 거의 변하지 않는다. 따라서 변하는 점도를 극대화하기 위해 []를 사용해 표현한다.

$$pX = - log[X]$$

예) $\mathrm{AgI}(s)$ \rightleftarrows $\mathrm{Ag^+} + \mathrm{I^-}$ 의 적점 반음 $(K_{sp} = 8.3 \times 10^{-17})$ \triangleright 0.1000M $\mathrm{I^-}$ 에 0.05000M $\mathrm{Ag^+}$ 를 첨가

<u>첨가된 Ag^+ 의 부피에 따른 pAg^+ 를 그래프로 그려보자.</u>

- ① V=0mL인 경우: $-\log{[Ag^+]} =$
- ② V=10mL민 경우:
- 1) 직접 계산 : (I^- 의 몰수) = (초기 I^- 의 몰수) (첨가된 Ag^+ 의 몰수)

=

 \triangleright [I $\overline{\ }$] =

2) streamlined calculation

화학종의 놈도 = 남아 있는 분율 × [

] × 묽힘 인자

- ③ 당량점에서 : $V = V_e =$
- ④ V=52.00mL인 경우:

streamlined calculation 사용하면

화학좀의 농도 =

- ▷ (침전) 적점 곡선에 영향을 주는 요인
- 1) 미지 시약의 []: 농도가 증가할수록 당량점에서의 p function 변화가 (커진다 / 작아진다).
- 2)[] 상수 : [] 삼수가 증가할수록 당량점에서의 p function 변화가 (커진다 / 작아진다).

▷ 담람점 이후의 곡선은 오로지 titrant의 영향만을 받아 []하므로 Ksp와 eq. point에서의 p function의 변화는 반비례한다.

2-3. 활동도와 평형의 체계적 처리

- 1. 이온 분위기(ionic atmosphere)
- ① 왜 생기는가? 이온성 염의 수용액은 전기적으로 []이다. 하지만, 국부적인 조성을 보면 양이온 주위에는 []이온이 더 많이 존재하고, 음이온 주위에는 []이온이 더 많이 존재한다. 따라서, 국부적으로 봤을 때는 전하의 []이 발생한다.
- ② 수용액에서 실제 용액은 이온에 그 이온의 []를 더한 것으로 존재하며, 따라서 이온의 전하는 []하여 말짜 인력은 순수한 얌이온과 음이온 사이의 인력보다 []다. → 이온이 해리된 형태로 (더 / 덜) 존재하고자 한다.
- 2. 미온 세기(ionic strength)
- ① 점의 : 용액 중에 있는 []의 전체 놈도를 나타내는 척도 → 이온의 []가 클수록 이온 세기는 커진다.

이온 세기(μ) =

- ② 이온 세기가 증가하면 이온 분위기의 전하 또한 []한다.
- 예) 타타르산 수소 포타슘($\mathrm{KC_4H_5O_6}$)에 염을 첨가했을 때의 용해도 변화를 관찰해 보자.
- NaCl, $MgSO_4$ 를 첨가한 경우 : [](ionic strength)가 증가하여 ionic atmosphere가 감해진다 \rightarrow 따라서 K^+ 와 C₄H₅O₆ 사이의 []이 감소한다. → 더 []되고자 하여 용해도가 (증가 / 감소)한다.
- 글루코스를 첨가한 경우 : 이온 세기가 변화하지 않는다. 왜?
- 예) 0.020M KBr + 0.010M Na_2SO_+ 용액의 이온 세기를 구하시오.
- 2. 활동도(activity)
- ① 놈도를 사용했을 때의 문제점 : 수용액 평형에서 []의 영향을 반영할 수 없다 ▷ []를 쓰자!
- ② 활동도란?

③ 이온의 활동도 계수 : Debye-Huckel 극한식을 이용해 계산

(Extended Debye-Huckel Equation) $\log \gamma$ =

ightarrow z가 증가할수록 $\log \gamma$ 의 값이 0으로부터 멀어진다

왜? z가 증가하면 [

]의 전하가 증가 → [

 $](\mu)$ 가 증가

0.8

0.6

0.4

0.2

0.0

- $\rightarrow \mu$ 가 O으로 수렴하면 activity coefficient(γ)는 []로 수렴한다.
- $\rightarrow \alpha$ 가 증가할수록 activity coefficient가 (빠르게 / 느리게) 1로부터 이탈한다.
- ④ 중성 분자의 활동도 계수는 []로 간주한다.

⑤ 기체의 경우 활동도는 [](fugacity)라고 부르며, 따라서 활동도 계수 또한 [] 계수라고 부른다.

이온 세기(μ)

0.01

0.001

☆ 활동도 계수의 계산

① 표를 보고 찾는다.

② 표에 없는 경우 : 직선의 형태로 []한다.

③ 정보가 있다면 직접 계산한다(by D-H equation)

예) $\mu = 0.025 \, \mathrm{Mg}$ 때 H^+ 의 활동도 계수를 구하시오. (오른쪽 표 참고, $\alpha = 900 \, (\mathrm{pm})$.)

① 표를 이용해 외삽하여 계산

② Extended Debye-Huckel equation을 써서 계산

μ	H^+ 에 대해 γ	
0.01	0.914	
0.025	?	
0.05	0.86	

ight
angle 이온의 놈도가 매우 증가하여 μ 가 극단적으로 증가하면, γ 또한 증가한다. 왜? 이때부터는 []과 []의 경계가 모 호애지기 때문이다.

3. pH revised

① pH의 정의 : 농도가 아닌 []에 p function을 취한다. 따라서

pH=

예) 순수한 물의 경우 : 이온의 놈도가 매우 낮으므로 [] $M o \gamma pprox$ []이라 할 수 있다. o 기존의 계산 유지!

예) 25[℃]에서 0.10M KCI 용액의 pH를 계산하시오. (단, K⁺와 Cl⁻의 활동도 계수는 각각 0.83, 0.76이다.)

2-4. 평형의 체계적 처리

1. 평형의 체계적 처리의 목적 : 미지수들을 소거하여 [$](\gamma)$, 최종 [](c)를 찾는다.

밤점식의 소스	방정식의 처리 밤법	
	l전하l와 농도를 곱해서 더한 것의 합은 양이온과 음이온이 같다.	
	① 생성물의 비는 계수 비와 같다 또는 ② 합쳐진 것은 쪼개진 것의 합과 같다	
	주어진 평형 삼수의 값으로부터 농도에 대한 표현을 얻을 수 있다.	

예) 물의 자체 이온화 (단, 25° C 에서 $K_w = 1.0 \times 10^{-14}$)

밤점식의 소스	밤점식
① 전하 균형	(반드시 식은 1개)
	(물이 쪼개지면 두 이온은 1 : 1로 생긴다)
③ 평형 삼수	

ightarrow 식이 2개, 미지수는 4개. 놈도가 매우 작으니까 $\gamma pprox 1$ 로 근사하면,

예) 0.01M 암모니아 용액(단, 암모니아의 $K_b = 1.76 \times 10^{-5}$, $K_w = 1.0 \times 10^{-14}$

밤점식의 소스	방점식
① 전하 균혐	(반드시 식은 1개)
	(문제에서 준 평형 상수가 2개)
③ 평형 삼수	1) 염기 해리 상수
	2) 물의 자체 이온화 삼수

- → 활동도 계수가 4개, 놈도 함이 4개, 밤점식은 []개 → 활동도 계수를 소거한다(1로 가점)
- ▷ 어떻게 풀어야 하는가? 모든 화학종의 농도를 한 화학종의 농도로 정리한다. 예) [A] = [A], [B] = f([A]), ...

예) 포화된 $C\alpha SO_{+}$ 용맥에서 화학종들의 놈도 계산

반음식	평형 삼수	반음식	평형 삼수
$CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$	$K_{sp} = 2.4 \times 10^{-5}$	$CaSO_4(s) \rightleftharpoons CaSO_4(aq)$	$K_{ip} = 5.0 \times 10^{-3}$
$\operatorname{Ca}^{2+}(aq) + \operatorname{H}_2\operatorname{O}(l) \rightleftharpoons \operatorname{CaOH}^+(aq) + \operatorname{H}^+(aq)$	$K_a = 2.0 \times 10^{-13}$	$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$	$K_w = 1.0 \times 10^{-14}$
$SO_4^{2-}(aq) + H_2O(l) \rightleftharpoons HSO_4^-(aq) + OH^-(aq)$	$K_b = 9.8 \times 10^{-13}$		

밤점식의 소스	밤정식	
	(반드시 식은 1개)	
<u> </u>	Ca에 대해서:	
② 물질 균형	SO_4^{2-} 에 대해서:	
③ 평형 삼수	(문제에서 준 평형 삼수가 5개)	

▷ 변수는 []개, 식은 []개: 무엇을 근사해야 하는가? 평형 상수가 [] 반응은... 무시하자!

2-4. 일얌성자성 산-염기 평형

- 1. 강산과 강염기, 약산과 약염기
- ① 강산과 감염기(strong acid and base)
- 감산(strong acid) : 완전히 미온화하여 []를 내놓는 물질
- 염기(strong base) : H⁺와 결합하여 []를 내놓는 물질
- ightarrow 감산과 감염기는 [$](\gamma)$ 에 무관하게 pH 값을 계산해도 된다.
- 예) 0.10M HBr 용액의 pH를 계산하시오. (단, H⁺의 활동도 계수는 0.83이다.)
- ② 놈도가 진한 감산은 잘 해리되는가? 답: []다
- → 놈도를 달리하며 질산 용액에 대해서 Raman 분광을 찍으면 낮은 놈도에서는 []의 피크과 []의 피크가 공존해서 나타나지만 진한 놈도에서는 []의 피크만 나타난다. 이는 놈도가 진해지면 질산 이온에 비해 []이 너무 적어 [] 껍질을 형성하기 어려워져 이온이 효과적으로 안정화되지 못하기 때문이다.

- ③ 자체이온화를 무시할 수 없는 감산 용맥의 계산 평혐의 체계적 처리
- 예) $1.0 \times 10^{-8} \mathrm{M}$ KOH의 pH는 얼마인가? 그냥 계산하면 []이 나온다. \triangleright 감염기로 산성 용액을 만드는 기적을 행함.

밤점식의 소스	밤점식
① 전하 균형	(반드시 식은 1개)
③ 평형 삼수	$K_w = 1.0 \times 10^{-7} =$

- ④ 약산과 약염기에 대하여 : 약산의 짝염기는 []염기이고, 약염기의 짝산은 []이다. 다만, 상대적 약염기의 짝산은 상대적으로 []이며, 상대적 약산의 짝염기는 상대적 []염기이다.
- 2. 약산의 해리 평형
- ① 약산의 혐식 놈도가 F이고 그 산 해리 삼수의 값이 K_a 일 때 약산 HA의 pH르 계산해 보자.

밤점식의 소스	밤점식
① 전하 균형	(반드시 식은 1개)
② 물질 균형	
③ 평형 상수	$K_w = 1.0 \times 10^{-7} =$ $K_a =$

▷ 어떤 근사를 취해야 하는가? 전하 균형 식에서 []는 물에서 기원하고, []는 HA에서 기원한다. 해리도가 HA가 물보다 매우 클 것으로 예상되므로, 식을 정리하면

- 예) $o-{\rm hydroxobenzoic}$ acid의 F=0.0500M, $pK_a=2.97$ 이다. 이 용액의 pH를 구하면?
- 3. 해리 분율(fraction of dissociation, α) : HA 중 얼마나 해리되었는가?

 $\alpha =$

예) 위 문제에서 해리 분율을 구하면?

4. 결합 분율(fraction of association, β) : B 중 []와 결합한 비율은 얼마인가?

 $\beta =$

예) 0.10M 암모니아 수용액의 pH를 구하고 결합 분율을 계산하시오. (단, pKα=9.245이다.)

- 5. 완충 용맥(buffer solution)
- ① 점의 : []과 그 []가 공존하는 용액 \to pH 변화에 []하므로 완충 용액이다.
- ② 원리 : 기본적으로 약산과 약염기에서 []와 [] 값은 매우 작으며, 완충 작용 과정에서 그 짝산과 짝염기가 생성되며 르샤틀리에의 원리에 의해 평혐이 [] 쪽으로 이동한다.
- ③ 완충 용액을 어떻게 계산하는가? Henderson-Hasselbalch 식

(산에 대해서)

- \rightarrow 적정 과정에서 반당량점($[A^-]=[HA]$ 또는 $[B]=[BH^+]$)인 경우 pH=[]이다.
- 예) 하이포아염소산 소듐(NαOCI)을 pH 6.20인 완충 용맥에 녹였다. 이 용맥에서 OCI⁻의 놈도는 HOCI 놈도의 몇 배인가? (단, HOCI의 pKα=7.53이다.)

- 예) 트리스(FM 121.135) 12.43g과 트리스 염화수소(FM 157.59) 4.67g을 물에 녹여 1.00L로 만들었다.
- (1) 이 완충 용액의 pH는 얼마인가?
- (2) 이 용액에 1.00M HCI 12.0mL를 가하면 새로운 pH 값은 얼마인가?

6. 완충 용맥의 실제 : Henderson-Hasselbalch 식으로부터

$$pH = p K_a + log \frac{[A^-]}{[HA]}$$

- ① K_a 는 []의 일종으로 []의 함수이다. 따라서 완충 용액의 pH 역시 []에 의존한다.
- 예) 트리스의 경우 25[°]C에서 pH = 8.07, 4[°]C에서 pH = 8.7
- ② 실제 Henderson-Hasselbalch 식은 평형 상수의 정리식이므로 농도함 또한 []로 정리돼야 하며, 따라서 activity coefficient(γ)가 중요하다. 이때 활동도 계수는 []의 영향을 받으므로 μ 에 따라서 완충계의 pH는 (바뀐다 / 바뀌지 않는다).
- 예) 붐산의 pK α =9이다. 0.200mol B $(OH)_3$ 와 0.100 mol N α OH를 넣은 1.00 L의 수용액을 만든다.

$$\frac{\mathrm{H^+ + OH^-} \rightleftharpoons \mathrm{H_2O}}{\mathrm{B(OH)_3 + OH^-} \rightleftharpoons \mathrm{B(OH)_4^-}} \qquad 1/K_{\mathrm{w}} \approx 10^{14}$$

$$K = K_{\mathrm{a}}/K_{\mathrm{w}} = 10^5$$

ionic strength 변화에 따른(μ =0, μ =0.1 M) pKa 값의 변화를 계산하라.

- ※ 완충 용맥 만들기: 0.100M 트리스가 든 pH 7.60의 완충 용맥 1.00L를 만들어 보자.
- ① 트리스 염화수소 0.100M을 담아서 약 800mL의 물이 담긴 비이커에 녹인다.
- ② 보정된 pH 전극을 용액에 담가서 pH를 관찰한다.
- ③ pH가 정확히 7.60이 될 때까지 NaOH를 첨가한다 \rightarrow 계산 그딴 거 없음 []적 방법으로 맞춘다.
- ④ 용액을 []에 옮기고 비이커를 씻고 그 액을 부피 플라스크에 또한 넣는다.
- ⑤ 표선까지 묽이고 혼합한다.
- 7. 내가 생각하는 것과 다른 경우 → 어떤 상황에서 []와 []가 포말 놈도와 달라지는가?
- ① [] 용액의 경우 : 물의 []의 영향을 무시할 수 없다.
- ② 극단적인 pH로 만든 겸우 예) F_{HA} mol의 HA와 $\mathrm{F}_{\mathrm{A}^-}$ mol의 염 $\mathrm{Na^+A^-}$ 를 섞는다고 가점하자.

밤점식의 소스	밤점식
① 전하 균혐	(반드시 식은 1개)
② 물질 균형	$[Na^+] =$

예) 0.0100 mol의 $HA(pK\alpha=2.00)$ 과 0.0100 mol의 A^- 를 녹여 1.00L로 만든 용액의 pH는 얼마인가?