Στρατηγικές Αναγωγής SLD Resolution

Horn Clause ονομάζεται ένα clause στο οποίο υπάρχει το πολύ ένα θετικό literal.

П.Х. {¬р}, {р}, {¬р,¬q,¬z,г}, {¬р,¬q,¬г}

ΘΕΩΡΗΜΑ: Η μέθοδος του SLD resolution είναι ορθή και πλήρης για Horn Knowledge Bases.

Backward Chaining - Παράδειγμα

{ Toddler }	{ ~Toddler, Child }	{ ¬Child, ¬Male, Boy}	{ ~Infant, Child }	{ ¬Child, ¬Female, Girl }	{ Female }		
Î							
Toddler	Toddler ⇒ Child	Child^Male ⇒ Boy	Infant → Child	Child∧Female ⇒ Girl	Female		

Θέλουμε να αποδείξουμε πως από την βάση μας προκύπτει το Girl:

SOLVE [Girl]	SOLVE [Child, Female]	SOLVE [Toddler, Female]	SOLVE [Female]	SOLVE[]
τi	2.	3.	4	5.

Στρατηγικές Αναγωγής Γραμμική Αναγωγή (Linear Resolution)

ΘΕΩΡΗΜΑ: Η μέθοδος της γραμμική αναγωγή είναι ορθή και πλήρης.

Στρατηγικές Αναγωγής Κανονική Αναγωγή (Regular Resolution)

ΘΕΩΡΗΜΑ: Η μέθοδος της κανονικής αναγωγής είναι ορθή και πλήρης.

Forward Chaining

Είσοδος: μια λίστα μεταβλητών q_1, \ldots, q_n

Έξοδος: ΥΕS or NO ανάλογα με το αν η βάση ΚΒ παράγει ταυτολογικά όλα τα α_ι

- 1. Αν όλα τα q_i έχουν επιλυθεί, τότε επέστρεψε YES.
- 2. Eleyfe an upápzel clause $\{q, \neg p_1 \dots \neg p_m\}$ sthy básh tétolo ώστε όλα τα $p_i va έχουν επιλυθεί, χωρίς ωστόσο να έχει επιλυθεί το q.$
- 3. Αν υπάρχει τέτοιο clause στην βάση, καταχώρησε την επίλυση του q, και πήγαινε στο βήμα-1.
- 4. Διαφορετικά απάντησε ΝΟ.

Backward Chaining

Είσοδος: μια λίστα μεταβλητών q_1, \ldots, q_n

Εξοδος: ΥΕS or NO ανάλογα με το αν η βάση γνώση ΚΒ παράγει ταυτολογικά όλα τα α_ι

prodecure $SOLVE[q_1, \ldots, q_n]$

if n=0 then return YES

for each clause c in KB, do

if $c=\{q_1,-p_1,\ldots,-p_m\}$ then $SOLVE[p_1,\ldots,p_m,q_2,\ldots,q_n] \mbox{ and return YES }$

return NO

Forward Chaining - Παράδειγμα

```
Toddler }

Toddler ⇒ Child

Child^Male ⇒ Boy

Infant ⇒ Child

Child^Female ⇒ Girl

Child^Female ⇒ Girl

Female

Toddler }

-Toddler, Child }

-Child, ¬Male, Boy}

Infant, Child }

Child/Female, Girl }

Female
```

Θέλουμε να αποδείξουμε πως από την βάση μας προκύπτει το Girl:

- .. Καταγράφεται η επίλυση του Toddler.
- Καταγράφεται η επίλυση του Child.
- 3. Καταγράφεται η επίλυση του Female.
- . Καταγράφεται η επίλυση του Girl.