VEKTOROPERATIONEN

Strichoperationen				
Addition	$\vec{a} + \vec{b} = \vec{c}$ (Vektor)	$\begin{pmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{pmatrix} = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix}$		\vec{c} \vec{b}
Subtraktion (Addition des Gegenvektors)	$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = \vec{c}$ (Vektor)	$ \begin{pmatrix} a_x - b_x \\ a_y - b_y \\ a_z - b_z \end{pmatrix} = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix} $		\vec{c} \vec{d}
Sonstiges Ope	rationen			
Betrag norm(a)	<i>a</i> =	$= \sqrt{\mathbf{a_x}^2 + \mathbf{a_y}^2 + \mathbf{a_z}^2}$ (Skalar)		\vec{a} $ \vec{a} $
Einheitsvektor a/norm(a)	$\overrightarrow{e_a} = \frac{\overrightarrow{a}}{ \overrightarrow{a} }$	$\vec{a} = a_x * \overrightarrow{e_x} + a_y * \overrightarrow{e_y} + a_z * \overrightarrow{e_z}$		$\overrightarrow{e_a}$ \overrightarrow{a}
Linearkombin.	$\vec{c} = \lambda * \vec{a} + \mu * \vec{b}$	$\begin{vmatrix} c_x = \lambda * a_x + \mu * b_x \\ c_y = \lambda * a_y + \mu * b_y \end{vmatrix}$		\vec{c} \vec{a} \vec{b}
Punktoperatio	onen			
Multiplikation & Division	$a * b = A \qquad a/b$ $(Skalar)$			а <u>А</u> <u>b</u>
Multiplikation & Division mit Skalar	$\lambda * \vec{a} = \vec{b}$ $\vec{a}/\lambda = \vec{b}$ (Vektor)	$\vec{b} = \begin{pmatrix} a_x * \lambda \\ a_y * \lambda \\ a_z * \lambda \end{pmatrix} \vec{b} = \begin{pmatrix} a_x / \lambda \\ a_y / \lambda \\ a_z / \lambda \end{pmatrix}$		\vec{a} \vec{b}
Skalarprodukt dot(a,b) linalg::scalar Product(a,b)	$\vec{a} * \vec{b} = A$ $(Skalar)$ $\vec{a} * \vec{b} = \vec{a} * \vec{b} \cos \varphi$	projizierte Fläche Projektion von b auf a rechtwinklig Länge ist 1 Zwischenwinkel	$+ a_y b_y + a_z b_z$ $A = \vec{a} * \vec{b}$ $\overrightarrow{b_a} = \vec{b} \cos(\varphi) \overrightarrow{e_a}$ $\vec{a} * \vec{b} = 0$ $\vec{a} * \vec{a} = 1$ $\varphi = \cos^{-1} \frac{\vec{a} * \vec{b}}{ \vec{a} * \vec{b} }$	$ \vec{b} * \cos(\varphi)$ $A = \vec{a} * \vec{b}$
Vektorprodukt / Kreuzprodukt cross(a,b) linalg::cross Product(a,b)	$\vec{a} \times \vec{b} = \vec{c}$ (Vektor) $ \vec{a} \times \vec{b} = \vec{a} * \vec{b} \sin \varphi$	c_x : $a_y b_y c_y$:	$\begin{vmatrix} a_x & b_x \\ a_y & b_y \\ d_z & b_z \end{vmatrix} c_z : \begin{vmatrix} a_x & b_x \\ a_y & b_y \\ a_z & b_z \end{vmatrix}$ $\vec{c} = \vec{a} \times \vec{b}$ $\begin{vmatrix} \vec{a} \times \vec{b} = 0 \\ \phi = \sin^{-1} \frac{ \vec{a} \times \vec{b} }{ \vec{a} * \vec{b} }$ $A = \vec{a} \times \vec{b} $	$\vec{c} = \vec{a} \times \vec{b}$ \vec{b} \vec{a} \vec{a}
Spatprodukt / Determinante det([a;b;c]) det(A)	$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = Volumen$ $(Vektor)$	$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{bmatrix} a_x & b_x & c_x & a_x & b_x \\ a_y & b_y & c_y & a_y & b_y \\ a_z & b_z & a_z & b_z \end{bmatrix}$		$\vec{b} \times \vec{c} / \vec{a} / \mathbf{v} = [\vec{a} \vec{b} \vec{c}]$
	$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \vec{a} (\vec{b} \times \vec{c})$ $= \vec{a} * \vec{b} \times \vec{c} \cos \varphi$	Volumen komplanar	$V = \left \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} \right $ $\left[\vec{a} \ \vec{b} \ \vec{c} \right] = 0$	\vec{c} \vec{b}