Jméno:

Místnost:

Souřadnice:

list

 $u\check{c}o$

body

Oblast strojově snímatelných informací. Své UCO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

01123456789

Definujte nedeterministický konečný automat a jeho rozšířenou přechodovou funkci.

Příklad 1 6 bodů

je to jatica M= (Q, Z, S, q, F), Rde:

Q = neprazdna honicna mnozina staror

& = honiena vshyma druda

S = puebodara' fira dy also zobraz. Qx E F 2ª

q ∈ Q = je počíatočný (inicialny) no star

FEQ = je to koniena mnozina akceptnýmich staror

402 sirena prech. fia NFA: 3: Qx Ex 7 \$ (q, E) = 893 C

S (qima) = Vies(qim) S(pia)

Nechť $L = \{a^2, a^5\}$ je jazyk nad abecedou $\{a\}$.

Určete, kolik slov má jazyk $L^3 \cup co^-(L^*)$. Všechna slova vypište.

L3 = L.L1 = { 02, 053. { 02, 05} = { 04, 07, 003

Příklad 2 3 body

L* . E E, a2, a1, a1, a1, a1, a1, a10

 $co-(L^*) = \{ \alpha, \alpha^3 \} /$

L3Uco-(L*) = {a,a3,a6,a9,a12,a15} V

Tenta jæge ma'6 slor: a,a,a,a,a,a,a,a.

Jméno: Místnost: Souřadnice: list $u\check{c}o$ bodyOblast strojově snímatelných informací. Své UČO vyplňte zleva 0023456009 dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte. Navrhněte deterministický konečný automat, který rozpoznává jazyk √

Příklad 3 6 bodů

 $L = \{w \in \{a, b\}^* \mid w \text{ obsahuje podslovo } babb \text{ nebo končí na } a\}.$

Saus. aleylujniei jaryh L= ENE {a, b }* | w konai Ma a }

(E) (11)

Rozhodněte, zda platí následující implikace. Svá rozhodnutí zdůvodněte.

Příklad 4 8 bodů

- (a) $L.\{a,b\}^*$ je regulární $\implies L$ je regulární
- (b) $L.\{a,b\}^*$ není regulární $\implies L$ není regulární **plati**

Jméno:

Místnost:

Souřadnice:

list

 $u\check{c}o$

body

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

80829456789

Rozhodněte, zda je jazyk

Příklad 5 9 bodů

$$L = \{ubv \mid u, v \in \{a, b\}^* \land |u| < |v|\}$$

regulární. Své tvrzení dokažte.

(Pro důkaz, že jazyk je regulární, stačí napsat odpovídající gramatiku nebo automat.)

uch meN je hibovolne.

2 molim si m= amba^{m+1}, m EL ilmrl>m

Bosom pre každe xy; z sake, že lxyls m, y # E pest:

x = ak

y = al

t = a^{m-k}-l b a^{m+1}

Potom si ie N; i=3

Potom ×yiz = ×y³z · a. a. a. a. a. a. a. a. b. a. a. b. a.

Jméno:

Mistnost:

Souřadnice:

list

 $u\check{c}o$

body

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

01123456789

K následujícímu konečnému automatu A sestrojte

Příklad 6 10 bodů

- (a) ekvivalentní regulární gramatiku G a
- (b) ekvivalentní deterministický konečný automat A' s totální přechodovou funkcí.

(Pokud použijete standardní algoritmy, nemusíte dokazovat rovnosti L(A) = L(G)a L(A) = L(A'). V opačném případě rovnosti dokažte.)

\mathcal{A}	a	b
1	Ø	{2}
$\leftrightarrow 2$	{3}	{2,3}
$\leftarrow 3$	$\{1, 2\}$	{1}

S -> bAlaBIbBIbla181 A -> aBlbB|bA|alb| B -> aAlacIbC/al

C-> bAlb

bud je počiatočný star takortní aj koncorý, nytrovíme si mory tot poč. star (r tomto prípade je to S) a redieme t melo puelody ako z pôrod-

b) ,		
A	a	6
1	P	2
P	P	7
2	3	23
- 3	12	1
= 23	123	123
- 12	3	23
= 123	123	123

Htang= (...) miles poë. starre

A do stifiche sapisajem vi. Many, do M. sa da poslupne dostata z wich Wadein precludy food a a b.

Mistnost: Souřadnice: Jméno:

list

 $u\check{c}o$

body

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

00123456789

Uvažujte následující relace na slovech nad abecedou $\Sigma = \{a,b\}$. U každé relace určete, zda se jedná o pravou kongruenci. Pokud rozhodnete, že se o pravou kongruenci nejedná, dokažte to. V opačném případě určete index relace a popište jednotlivé třídy ekvivalence.

Příklad 7 8 bodů

- (a) $u \sim_1 v \iff u$ začíná na b, právě když v začíná na b
- (b) $u \sim_2 v \iff \#_a(u) = \#_a(v)$ nebo $\#_a(u)$ i $\#_a(v)$ je větší než 3

a) reflecione, symetricke, bransitione a ide o eleviralencia PK: ide o pravn' hongruenciux

index = 3

Ta = 8 E3

Tz = {a3. {a,b3*

T3 = { b3. {a,b3*

je No RST - choivalencia

je to pravni kongruencia V judex = 5 V T7 = { E3

Tz = 563* Eag. 363*

T3 = {63. {03. }63. }63. 503. 263

Tr = {b3*{a3 {b3*{a3 {b3*}}. {a3 {b*}. {a3 {b5. {a3. {a1b3*}}