Chapter 1

Rings

Definition 1 (Ring)

A ring is a set equipped with two binary operations "+" (addition) and "·" (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- **Remark 1** A nonzero commutative ring in which every nonzero element has a multiplicative inverse is a field.
 - A structure with the same axiomatic definition but omitting the requirement of a multiplicative identity is called a rng.

Example 1

- 1. $(\mathbb{Z}, +, \cdot)$
- 2. All fields, such as $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$, are rings.
- 3. The zero ring, denoted $\{0\}$ with the operations 0+0=0 and $0\cdot 0=0$ is a commutative ring.
- 4. Let R be a commutative ring, then R[X], the set of polynomials with coefficients in R, is again a ring, e.g. $\mathbb{Z}[X]$, $\mathbb{Q}[X]$, and $\mathbb{R}[X]$.
- 5. For any ring R and for any $n \in \mathbb{N}$, the set of all square n-by-n matrices with entries from R, forms a ring with matrix addition and matrix multiplication as operations. If n=1, this matrix ring is isomorphic to R itself. For n>1 (and R not a zero ring), this matrix is noncommutative. More concretely, $\mathrm{Mat}_{3\times 3}(\mathbb{R})$ is a noncommutative ring.

2 CHAPTER 1. RINGS

1.1 Integral Domain

Integral domains are generalization of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if $a \neq 0$, an equality ab = ac implies b = c.

Definition 2

An integral domain R is a nonzero commutative ring in which the product of any two nonzero elements is nonzero, i.e. for all $a, b \in R \setminus \{0\}$ it is $a \cdot b \neq 0$. Equivalently:

- 1. An integral domain R is a nonzero commutative ring with no nonzero zero divisors, i.e. there exists no element $a \in R \setminus \{0\}$ such that $a \cdot x = 0$ for some $x \in R$.
- 2. An integral domain R is a commutative ring in which the zero ideal $\{0\}$ is a prime ideal.
- 3. An integral domain R is a nonzero commutative ring for which every nonzero element is cancellable under multiplication, i.e. if $a \in R \setminus \{0\}$, an equality ab = ac implies b = c.
- 4. An integral domain R is a ring for which the set of nonzero elements is a commutative monoid under multiplication.
- 5. An integral domain R is a nonzero commutative ring in which for every nonzero element r, the function that maps each element x of the ring to the product xr is injective. Elements r with this property are called regular, so it is equivalent to require that every nonzero element of the ring be regular.
- 6. An integral domain R is a ring that is isomorphic to a subring of a field.

Chapter 2

something

2.1 No idea yet

Definition 3 (Fractional Ideal)

Let *A* be an integral domain.

- 1. A fractional ideal of A is an A-submodule $I \subset \operatorname{Quot}(A)$ such that $dI \subset A$ for some denominator $d \in A \setminus \{0\}$.
- 2. A principal fractional ideal is a fractional ideal of the form $(r) = rA = \{ar \mid a \in A\}$

Example 2

- All ordinary ideals $I \subset A$ are also fractional ideals with denominator d=1, and are often referred to as integral ideals.
- · The subset

$$\frac{3}{25}\mathbb{Z} = \left\{ \left. \frac{3n}{25} \in \mathbb{Q} \,\middle|\, n \in \mathbb{Z} \right. \right\} \subset \mathbb{Q} \tag{2.1}$$

is a principal fractional ideal of $\mathbb Z$

Example 3

The subset

$$\mathbb{Z}\left[\frac{1}{2}\right] = \left\{ a_0 + a_1 \frac{1}{2} + a_2 \frac{1}{2^2} + \dots + a_n \frac{1}{2^n} \,\middle|\, a_0, \dots, a_n \in \mathbb{Z} \subset \mathbb{Q} \right\}$$
 (2.2)

is not a fractional ideal, because the denominators are not bounded.

Lemma 3.1 If $I \subset \operatorname{Quot}(A)$ is an A-submodule and $d \in \operatorname{Quot}(A)$, then $dI \subset \operatorname{Quot}(A)$ is also an A-module. Thus $I \subset K$ is a fractional ideal if and only if $I = \frac{1}{d}J$ for some $d \in A \setminus \{0\}$ and some integral ideal $J \subset A$ (just take d a denominator of I and J = dI).

Lemma 3.2 Let A be an integral domain and denote its field of fraction with Quot(A) = K.

- 1. If $I \subset K$ is a finitely generated A-submodule, then I is a fractional ideal.
- 2. Conversely, if A is noetherian and $I \subset K$ is a fractional ideal, then I is a finitely generated A-module.
- 3. If $I, J \subset K$ are fractional ideals, then $I \cap J, I + J, IJ, \subset K$ are also fractional ideals.
- 4. If $I, J \subset K$ are fractional ideals and $J \neq 0$, then the generalized ideal quotient

$$(I:J) := \{ x \in K \mid xJ \subset I \}$$
 (2.3)

is also a fractional ideal. Moreover, it satisfies $(I:J)J \subset I$.

The nonzero fractional ideals form an abelian semigroup with neutral element A with respect to the multiplication. We will now show that, if A is a Dedekind domain, every nonzero fractional ideal has an inverse hence they forme an abelian group Id(A).

Definition 4

Let A be an integral domain. A fractional ideal $I \subset K$ is invertible if IJ = A for some fractional ideal J called the inverse of I.

The following result shows characterizes invertible fractional ideals and their inverses (which are unique).

Lemma 4.1 A fractional ideal I is invertible if and only if I(A:I)=A, in which case $I^{-1}:=(A:I)$ is the unique inverse.

The main result of this section is to prove that, in a Dedekind domain, every nonzero ideal is invertible. To this aim we need first a technical result.

Lemma 4.2 Let A be a Dedekind domain and $I \subset A$ a nonzero integral ideal. Then there are not necessarily distinct nonzero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subset A$ such that $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subset I$.

Let

$$\Sigma = \{ I \neq \{0\} \mid I \subset A \text{ ideal. } I \text{ does not contain any product of nonzero prime ideals.} \}.$$
 (2.4)

If $\Sigma \neq \emptyset$, let $I \in \Sigma$ be a maximal element which must exist since A is noetherian. In particular, I is not prime, i.e. there exists $a,b \in A \setminus I$ with $a \cdot b \in I$.

Because of the maximility of I, the ideals I + (a), $I + (b) \supseteq I$ don't lie in I, i.e. there exists nonzero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n, \mathfrak{q}_1, \ldots, \mathfrak{q}_m$ such that

$$\mathfrak{p}_1, \dots, \mathfrak{p}_n \subseteq I + (a) \tag{2.5}$$

$$\mathfrak{q}_1, \dots, \mathfrak{q}_n \subseteq I + (b). \tag{2.6}$$

We have

$$\mathfrak{p}_1 \cdot \dots \cdot \mathfrak{p}_n \cdot \mathfrak{q}_1 \cdot \dots \cdot \mathfrak{q}_m \subseteq (I + (a))(I + (b)) \subseteq I$$
 (2.7)

which is a contradiction. Hence $\Sigma = \emptyset$.

Theorem 4.1 Let A be a Dedekind domain, I a nonzero ideal, and $\mathfrak p$ a prime ideal such that $I\subseteq \mathfrak p$. Set

$$\mathfrak{p}^{-1} := (A : \mathfrak{p}) = \{ x \in \mathsf{Quot}(A) \mid x\mathfrak{p} \subseteq A \}. \tag{2.8}$$

Then, $I \subseteq \mathfrak{p}^{-1}I \subseteq A$. In particular, $A \subseteq \mathfrak{p}^{-1}$ and $\mathfrak{p}^{-1}\mathfrak{p} = A$, i.e. \mathfrak{p} is invertible.

Corollary 1 Let A be a Dedekind domain and

$$Id(A) = \{ I \subseteq K \mid I \text{ is a nonzero fractional ideal.} \}. \tag{2.9}$$

- 1. Every nonzero fractional ideal $I \in Id(A)$ is invertible. In particular, Id(A) is an abelian group with respect to the product of ideals, and the trivial ideal (1) = A as neutral element.
- 2. Moreover, the map

$$\varphi: K^* \to Id(A), \quad \frac{a}{b} \mapsto \left(\frac{a}{b}\right) = \left\{\frac{ac}{b}\middle| c \in A\right\} \subseteq K,$$
 (2.10)

is a group homomorphism, whose image is the subgroup P_A of nonzero principal fractional ideals.

Definition 5

The (ideal) class group of a Dedekind domain A is the quotient $Cl(A) = Id(A)/P_A$ which is naturally an abelian group.

Remark 2 Two crucial objects in the study of a Dedekind domain A are the group of units A^* and the class group Cl(A).

- 1. For example, A is a principal ideal domain if and only if the class group is trivial.
- 2. In general, it is immediate that the kernel of φ is the set of units A^* . Hence there is an exact sequence of abelian groups

$$1 \to A^* \to K^* \to Id(A) \to Cl(A) \to 0. \tag{2.11}$$

2.2 Divisibility and unique factorization of ideals

Theorem 5.1 Let $I \subseteq K = Quot(A)$ be a nonzero fractional ideal of A.

1. There exist an integer $n \in \mathbb{N}_0$, distinct nonzero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subseteq A$, and integers $r_1, \ldots, r_n \in \mathbb{Z} \setminus \{0\}$ such that

$$I = \mathfrak{p}_1^{r_1} \cdot \ldots \cdot \mathfrak{p}_n^{r_n} \tag{2.12}$$

with the convention that the empty product n=0 is A, and $\mathfrak{p}^{-r}:=\left(\mathfrak{p}^{-1}\right)^r$ for any nonzero $r\in\mathbb{N}$.

- 2. The decomposition is unique up to permutation of the factors.
- 3. $I \subseteq A$ if and only if $r_1, \ldots, r_n \ge 0$.

Corollary 2 the chinese remainder theorm.

Definition 6

For every nonzero prime ideal $\mathfrak{p} \subseteq A$, we define $v_{\mathfrak{p}}(I) \in \mathbb{Z}$ as the exponent of \mathfrak{p} in the unique factorization of I into a product prime ideals.

2.3 The case of local Dedekind domains

Definition 7

A ring A is called local if it contains a unique maximal ideal \mathfrak{m} . Sometimes one says that the pair (A, \mathfrak{m}) is a local ring.

2.4 Chapter 5

How to compute the prime factorization $I=\mathfrak{p}_1^{r_2}\cdot\ldots\cdot\mathfrak{p}_n^{r_n}$ of a nonzero ideal in a Dedekind domain $I\subset A$?

One idea is to find a smaller Dedekind subring $A'\subseteq A$ where we can compute these factorizations and then

- 1. Factorize $I \cap A' \subseteq A' \Rightarrow I \cap A' = \tilde{\mathfrak{p}}_1^{s_1}, \dots, \tilde{\mathfrak{p}}_k^{s_k}$.
- 2. Factorize $\tilde{\mathfrak{p}}_i^{s_i}\cdot A\subset A\Rightarrow \tilde{\mathfrak{p}}_1^{s_1}\cdot A=\prod_{j=1}^{N_i}\mathfrak{p}_{i,j}^{e_{i,j}}$.
- 3. For each $\mathfrak{p}_{i,j}$ find the right exponent, i.e. smallest k such that $I \subseteq \mathfrak{p}_{i,j}^k$ $(k \le s_i \cdot e_{i,j})$.

Another approach is

- 1. list all prime ideals $\mathfrak{p}\subseteq A$, $\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\ldots$
- 2. localize at \mathfrak{p}_1 , compute $r_1=v_{\mathfrak{p}_1}(I\cdot A_{\mathfrak{p}_1})$ check if $I=\mathfrak{p}_2^{r_1}$
- 3. If not, then compute again
- 4. jadajadajada

Definition 8

The spectrum of a ring A is

$$Spec(A) = \{ \mathfrak{p} \subseteq A \mid \mathfrak{p} \text{ prime ideal} \}. \tag{2.13}$$

2.4. CHAPTER 5 7

Definition 9

Let A be a Dedekind domain, $K = \operatorname{Quot}(A)$ its field of fraction, L/K a finite separable field extension, and $B = \overline{A}$ the integral closure of A in L.

Moreover, let $\mathfrak{p} \subset A$ and $\mathfrak{q} \subset B$ be two prime ideals. We say that \mathfrak{q} lies over \mathfrak{p} if $\mathfrak{q} \mid \mathfrak{p}B$, i.e. $\mathfrak{q} \cap A = \mathfrak{p}$. In this case, define

1. $e_{\mathfrak{q}|\mathfrak{p}} = v_{\mathfrak{q}}(\mathfrak{p}B) \in \mathbb{Z}_{>0}$ the ramification index of \mathfrak{q} over \mathfrak{p} .

Example 4

Consider $A = \mathbb{Z}$, $K = \mathbb{Q}$, $L = \mathbb{Q}(i)$, so that $B = \mathcal{O}_L = \mathbb{Z}[i]$. For a nonzero prime ideal $\mathfrak{p} = (p) \subseteq \mathbb{Z}$.

1. $p\mathbb{Z}[i] = \mathfrak{q}^2 = (1+i)^2$ for p=2, i.e. $(2) \subseteq \mathbb{Z}$ is ramified (with ramification index $e_{\mathfrak{q}|\mathfrak{p}}=2$). The residue class field $\mathbb{F}_{\mathfrak{q}} \cong \mathbb{F}_2$, hence

Example 5

Let $\alpha := \sqrt[3]{2}$. Consider a Dedekind domain $A := \mathbb{Z}$, $K := \operatorname{Quot}(A)$, $L := \mathbb{Q}(\alpha)$, and $B := \mathcal{O}_K$ the integral closure of \mathbb{Z} in $\mathbb{Q}(\alpha)$.

Take a prime ideal (2) $\subset A$, then (2) \mathcal{O}_K

Theorem 9.1 Let A be a ring and let $B = A[\alpha]$, and let $f(X) \in A[X]$ be the minimal polynomial of α . Moreover, let $\mathfrak{p} \subseteq A$ be a nonzero prime ideal and $g_1(X), \ldots, g_r(X) \in A[X]$ monic such that

$$\overline{f(X)} = \overline{g_1(X)}^{e_1} \cdot \ldots \cdot \overline{g_r(X)}^{e_r} \mod p \in A/\mathfrak{p}[X] = \mathbb{F}_p[X]. \tag{2.14}$$

Then,

$$\mathfrak{p}B = \prod_{i=1}^r Q_i^{e_i} \qquad \text{with } Q_i = (\mathfrak{p}, g_i(\alpha)) \subseteq B \tag{2.15}$$

is the prime factorization of $\mathfrak{p}B$.

Example 6

Let $D \in \mathbb{Z}$ be squarefree with $D \equiv 2, 3 \mod 4$ and $L = \mathbb{Q}(\sqrt{D})$, such that $B = O_L = \mathbb{Z}[\sqrt{D}]$ with the minimal polynomial $f(X) = X^2 - D \in \mathbb{Z}[X]$.

Let $p \in \mathbb{Z}$ be a prime number and look for the factorization of $pB = p\mathcal{O}_L = p\mathbb{Z}[\sqrt{D}]$.

Case A: If $p \neq 2$ consider the factorization of $X^2 - D \in \mathbb{Z}/p\mathbb{Z}[X] = \mathbb{F}_p[X]$.

Case A1: If $p \mid D$ then $\overline{f(X)} = X^2$, so $pB = (p, \sqrt{D})^2$, with $B/(p, \sqrt{p}) \cong \mathbb{F}_p[X]/(X) \cong \mathbb{F}_p$.

Example 7

Denote $\alpha = \sqrt[3]{2}$ and let $A := \mathbb{Z}$,