# Anteparas de Segurança (Firewalls)

Nuno Ferreira Neves

Departamento de Informática Faculdade de Ciências da Universidade de Lisboa

## Firewalls, porquê?

Basicamente as organizações não conseguem operar sem estar ligadas às Internet!

#### Exemplos de ataques:

- 1. **Recolha de Informação:** tem como objectivo a construção de uma base dados com informação sobre a organização da rede da instituição e das máquinas que lá residem
  - <u>FERRAMENTAS</u>: emprego de programas como Ping e TraceRoute para determinar endereços de redes e nomes de máquinas
- Testar (Probing) os Sistemas: determinar os problemas (falhas) de segurança de cada máquina
  - <u>FERRAMENTAS</u>: 1) determinar que máquinas suportam serviços com problemas conhecidos; 2) uso de ferramentas disponíveis na Internet para testar vulnerabilidades comuns
- 3. Acesso aos Sistemas Internos: executar ataques que exploram as vulnerabilidades

FERRAMENTAS: explorar os problemas de segurança de cada máquina

## Princípios



- □ *Localização*: a antepara deve ser inserida entre a rede interna da organização e a Internet de forma a que seja possível controlar e segurar a ligação
- □ *Objectivo*: proporciona o ponto único de acesso à rede interna, permitindo definir regras de controle de acesso a máquinas/serviços da rede interna e protegendo-a de várias classes de ataques provenientes da Internet
  - define um ponto privilegiado na rede para se fazer monitorização, gerando-se informação de auditoria e alarmes
  - local onde se podem colocar outros serviços, como tradução de endereços locais para endereços globais
  - local onde se pode proteger o tráfego colocando-o num túnel (IPsec)

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

2

## Princípios (cont)

- Objectivos de desenho
  - Todo o tráfego do exterior para o interior, e vice versa, deve passar pela antepara ⇒ a localização física permite a interposição entre todo o tráfego
  - Só o tráfego autorizado (definido pela política de segurança) pode passar
  - A antepara deve ser imune a penetrações ⇒ implementada num sistema seguro com um sistema operativo de confiança

#### Controlo de Acesso com uma Firewall

#### □ Controlo dos Serviços

Determina que serviços podem ser acedidos
 EXEMPLO: filtrar tráfico baseando-se no endereço IP e porto TCP

#### □ Controlo da Direcção

 Determina a direcção (de fora para dentro, e de dentro para fora) que um pedido para um serviço particular pode ser executado, e ao qual é permitida a passagem pela antepara

#### □ Controlo do Utilizador

- Determina que utilizadores podem aceder ao serviço
- Tipicamente os utilizadores locais não têm qualquer restrição, e os externos necessitam de uma autenticação extra

#### □ Controlo de Comportamento

Controla a forma como são usados determinados serviços
 EXEMPLO: limita o acesso a só algumas das directorias do servidor FTP

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

5

## Limitações das Anteparas

- Não protege contra ataques que contornam a (i.e., não passam pela) antepara

  <u>Exemplo</u>: sistemas na rede interna com capacidade de se ligarem a um ISP;
  ou a rede interna fornece um serviço de WI-FI ao exterior
- Não protege contra ataques provenientes de máquinas internas
  <u>Exemplo</u>: empregado que coopera com hacker externo ou que ele próprio ataca os sistemas computacionais da organização
- Não protege (em muitos casos) contra programas ou ficheiros infectados com vírus/worms, i.e., contra ataques baseados em dados maliciosos ao nível aplicacional

<u>Exemplo</u>: vírus inserido num email; um programa aparentemente correcto é copiado para uma máquina interna, e quando é executado inicia um ataque

#### Decisões Básicas na Construção da Antepara

- Arquitectura de Segurança da Organização: qual é o papel da antepara na arquitectura (completa) de segurança da organização
- Política de Segurança: define fundamentalmente a filosofia básica de segurança da organização
  - PRUDENTE: tudo o que não é explicitamente permitido não passa
  - PERMISIVA: tudo o que **não** é explicitamente negado é permitido
- Custo da Antepara: quanta segurança pode pagar a organização? A organização tem funcionários qualificados para construírem uma antepara a partir do software em domínio público ou é necessária a aquisição de uma antepara comercial? Quanto é que se pretende gastar na manutenção e actualização da antepara? ...
- Componentes do Sistema de Antepara: que componentes devem ser incluídos no sistema de antepara (e.g., packet level filtering; application-level gateway; circuit-level gateway) e como devem ser organizados

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

7

## **Packet-Filtering Router**



- Aplica um conjunto de regras aos pacotes que chegam <u>e depois</u> re-envia ou descarta os pacotes
- ☐ As regras de filtragem normalmente são baseadas nos cabeçalhos IP e do protocolo nível transporte (e.g., TCP ou UDP)
  - endereço IP do emissor e destinatário
  - campo protocolo do cabeçalho IP ⇒ define o protocolo nível transporte
  - portos dos cabeçalhos UDP e TCP ⇒ usualmente definem os serviços
- ☐ Caso não exista nenhuma regra associada ao pacote
  - ⇒ aplica-se a política de omissão, descartar ou passar

# Exemplos de Regras de Filtragem

#### Regras para o envio de emails

| action | their host | port | ourhost | port | comment                      |
|--------|------------|------|---------|------|------------------------------|
| block  | Spam-com   | *    | *       | *    | we do not trust these people |
| allow  | *          | *    | OUR-GW  | 25   | connection to our SMTP port  |

#### Regras para uma ligação FTP



| action | src         | port | dest | port  | flags | comment               |
|--------|-------------|------|------|-------|-------|-----------------------|
| allow  | {our hosts} | *    | *    | *     | *     | our outgoing calls    |
| allow  | *           | *    | *    | *     | ACK   | replies to our calls  |
| allow  | *           | *    | *    | >1024 | *     | traffic to nonservers |

NOTA: assumir que política de omissão é descartar

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

.

# Exemplos de Regras de Filtragem

| Rule Direction | on Src addr | Dst addr | Prtocol | Dest port | Action |
|----------------|-------------|----------|---------|-----------|--------|
| 1 In           | External    | Internal | TCP     | 25        | Permit |
| 2 Out          | Internal    | External | TCP     | >1023     | Permit |
| 3 Out          | Internal    | External | TCP     | 25        | Permit |
| 4 In           | External    | Internal | TCP     | >1023     | Permit |
| 5 Either       | Any         | Any      | Any     | Any       | Deny   |
|                |             |          |         |           |        |

#### Problemas com estas regras?

#### Exemplo para melhorar regra 4:

|   |    |          |    |          |     | Dest port |     |        |
|---|----|----------|----|----------|-----|-----------|-----|--------|
| 4 | In | External | 25 | Internal | TCP | >1023     | ACK | Permit |

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

## Beneficios vs. Limitações

#### Principais Beneficios

- simplicidade
- transparência para com os utilizadores
- muito rápidos

#### Principais Limitações

- não evitam ataques nível aplicacional porque não inspeccionam o conteúdo das mensagens da aplicação
- não suportam mecanismos avançados de autenticação
- não conseguem detectar muitos dos ataques que usam spoofing dos endereços IP (e.g., uso endereços de outra organização)
- é relativamente fácil introduzir erros nas regras do filtro
- dificuldade na definição correcta das regras para alguns serviços (e.g., FTP)

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

11

# Alguns Ataques a Packet-Filtering Routers

- □ IP address spoofing: o intruso transmite pacotes em que coloca como endereço IP do emissor um endereço da rede interna.
  - $\underline{SOLUC ilde{AO}}$ : descartar pacotes provenientes da placa de rede externa com endereços de emissão internos
- □ Ataques source routing: o emissor especifica no pacote a opção de *source* route que indica a caminho a tomar na Internet, com a esperança que a antepara deixe passar o pacote por não analisar este tipo de informação.
  - SOLUÇÃO: descartar todos os pacotes com esta opção
- □ Ataques com fragmentos pequenos: usa-se a fragmentação IP com o objectivo de se criarem fragmentos muito pequenos, de modo a forçar que os cabeçalhos (e.g., TCP) apareçam em fragmentos distintos.
  - SOLUÇÃO: descartar todos os pacotes em que o protocolo é TCP e o tamanho dos fragmentos é pequeno (1 byte)

## PFR com Stateful Inspection

- ☐ São PFR que mantêm contexto (i.e., estado) sobre a ligações que foram permitidas no passado
- Funcionamento
  - o PFR inspecciona o pacote que inicia a ligação
  - se a passagem do pacote é permitida pelas regras da antepara, então adiciona-se uma entrada a uma tabela que descreve esta ligação
  - a partir desse momento, os pacotes desta ligação podem passar livremente,
     i.e., sem mais inspecções, porque a sua passagem é permitida pela tabela de estado
- Vantagem
  - melhora a segurança porque, por exemplo, só deixa passar pacotes exteriores que correspondam a ligações iniciadas pelas máquinas internas
  - este método potencialmente aumenta o desempenho da antepara porque fazse apenas uma comparação com as entradas na tabela de estado

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

12

# Exemplo de Tabela de Estado

| Source Address | Source Port | Destination<br>Address | <b>Destination Port</b> | Connection<br>State |
|----------------|-------------|------------------------|-------------------------|---------------------|
| 192.168.1.100  | 1030        | 210.9.88.29            | 80                      | Established         |
| 192.168.1.102  | 1031        | 216.32.42.123          | 80                      | Established         |
| 192.168.1.101  | 1033        | 173.66.32.122          | 25                      | Established         |
| 192.168.1.106  | 1035        | 177.231.32.12          | 79                      | Established         |
| 223.43.21.231  | 1990        | 192.168.1.6            | 80                      | Established         |
| 219.22.123.32  | 2112        | 192.168.1.6            | 80                      | Established         |
| 210.99.212.18  | 3321        | 192.168.1.6            | 80                      | Established         |
| 24.102.32.23   | 1025        | 192.168.1.6            | 80                      | Established         |
| 223.212.212    | 1046        | 192.168.1.6            | 80                      | Established         |

## Application-Level Gateway (Application Proxy)



- A gateway só suporta aplicações para as quais existe um servidor de proxy, que funciona como representante do servidor interno
- ☐ Basicamente limita-se a passar o tráfego nível aplicação, e
  - os utilizadores apenas podem aceder aos servidores proxy, mas *nunca* se podem ligar directamente à gateway ou aos servidores da rede interna
  - o servidor de proxy pode ser configurado de forma a suportar *apenas* o subconjunto de serviços fornecidos pela aplicação que são considerados aceitáveis (e.g., seguros), e o resto dos serviços são negados

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

15

## Como construir a Application Proxy?

□ Conceito Base

TCB - Trusted Computing Base (ou Base de Computação Segura)

- subconjunto do sistema que é inerentemente seguro (imune a intrusões)
- geralmente é usada para executar mecanismos críticos de segurança
  - » Ex. controlo de acesso, firewall
- composto por hardware, firmware, e software
- □ Propriedades desejáveis para uma TCB:
  - Interposição: a TCB deve estar localizada de forma a que não seja possível aceder aos recursos protegidos sem passar por ela

Não se pode contornar a TCB

 Blindagem: a TCB é construída de maneira a que esteja protegida contra acessos não autorizados

Não se pode causar uma intrusão na TCB

- Validação: a funcionalidade da TCB deve ser verificável

A TCB deve ser simples e pequena

## Como construir a Application Proxy (cont)?

- **Bastion host**: uma máquina crítica do ponto de vista de segurança (application proxy ou um circuit-level gateway)
  - executa uma versão mais segura do sistema operativo
  - apenas os serviços considerados essenciais estão instalados
  - pode requerer formas adicionais de autenticação antes que seja permitido o acesso aos serviços (ex. tecnologia de passwords descartáveis com smart cards)
- □ O Proxy é configurado: 1) para suportar um subconjunto dos comandos; 2) para permitir o acesso apenas a um subconjunto das máquinas internas; 3) para manter informação de auditoria detalhada
- □ Cada proxy é um programa pequeno e simples especificamente desenhado com o objectivo da segurança (e.g., email = 20000 linhas -- proxy = 1000 linhas)
- □ Cada proxy é independente dos outros proxies existentes
- Os proxies normalmente não precisam de aceder a disco
- Os proxies correm como utilizadores não-privilegiados e numa directoria segura

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

17

# Exemplo: Proxy para o Telnet

- O cliente exterior necessita de se autenticar no bastion host
- O cliente ganha acesso à interface do proxy
- O proxy permite apenas um subconjunto dos comandos e determina quais as máquinas que estão disponíveis para ligação
- O cliente especifica a máquina de destino e o proxy faz a ligação para o servidor interno
- O proxy re-envia os comandos do cliente
- O cliente é autenticado pelo servidor na rede interna

Outside-Client > telnet bastion\_host Username: Nuno Neves Challenge Number "123456" Challenge Response: 768954 Trying 198.23.45.67

HostOS UNIX (bastion\_host)

bh-telnet-proxy > **help** Valid commands are:

connect hostname help/? quit/exit

bh-telnet-proxy > connect inside\_server

HostOS UNIX (inside\_server)

login: Nuno Neves Password: #########

Last login: Friday October 13 12:34:56

## Beneficios vs. Limitações

#### Principais Benefícios

- controlo completo sobre cada serviço: é possível especificar quais os serviços suportados e com que opções (ou comandos)
- possibilita formas mais seguras de autenticação e de colecção de informação de auditoria
- mais fácil de configurar e de testar que um packet-filtering router

#### Principais Limitações

- Requer que os utilizadores se habituem à nova forma de funcionar dos serviços ou a existência e instalação nas máquinas clientes de software especializado para acederem a serviços proxy
- Processamento adicional (overheads) em cada ligação

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

10

# Circuit-Level Gateway (ou Circuit-Level Proxy)



- ☐ A gateway cria duas ligações (TCP), uma entre ela e a máquina interna e outra entre ela e a máquina externa
- ☐ A gateway passa o tráfego pela ligação sem fazer qualquer outro processamento
- □ A função de segurança consiste em determinar quais ligações é que são permitidas
- Usada quando os utilizadores internos são de confiança ⇒ a gateway é configurada como application proxy para ligações do exterior e como circuit-level para ligações do interior

#### Exemplo: SOCKS (RFC 1928)

☐ Framework para aplicações cliente-servidor que usem os protocolos TCP ou UDP, e que queiram fornecer serviços numa antepara

Application

Transport

- □ Conceptualmente, o SOCKS é uma camada (fina) entre a aplicação e os protocolos nível transporte
  Client SOCKS Server
- Componentes
  - servidor SOCKS
  - biblioteca SOCKS
  - versões SOCK-ificadas dos programas cliente standard
- Funcionamento
  - o programa cliente contacta o servidor SOCKS no porto TCP 1080
  - existe uma negociação da forma de autenticação
  - estabelece a ligação ou nega a utilização do serviço

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

21

Transport

#### Outros formatos de Firewalls

- ☐ Firewall na máquina
  - parte do sistema operativo ou como um pacote adicional
  - restringem os pacotes que chegam à máquina
  - usadas em servidores ou máquinas pessoais

#### Vantagens

- regras de filtragem podem ser adequadas às necessidades locais
- proteção é feita independentemente da topologia de rede
- funcionam como um extra nível de proteção, que vai além do oferecido pelas firewalls de rede

# Arquitecturas de Anteparas

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

24

## Inline Firewalls



- Os computadores são distribuídos por duas (ou mais) zonas de segurança
- □ Na exterior (DMZ) são colocados os computadores que necessitam de ser acedidos pela Internet (e.g., servidor Web, email gateway, servidor de DNS)
- □ Na interior são colocados os computadores privados da organização
- □ VANTAGEM: um adversário para conseguir corromper os computadores privados tem de passar por duas anteparas; o PFR interno pode ter regras mais estritas
- DESVANTAGEM: atraso no acesso à Internet por parte dos computadores internos

2:

## Rede de Interligação

- Rede de interligação zona desmilitarizada (DMZ)
  - Servidores com serviços públicos (p.ex., email, http, ftp) e que por isso necessitam necessariamente de estar acessíveis do exterior
  - Máquinas sacrificáveis
    - » máquinas que podem ser comprometidas, mas por isso podem comprometer outras
    - » solução
      - > isolar máquinas sacrificáveis em DMZs separadas
      - Como?
        - várias LANs ligadas a várias gateways da firewall
        - VLANs diferentes ligadas a uma gateway

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

26

## Gateway simples (dual home gateway)



- Constituição da firewall: 1 máquina com duas ou mais interfaces, uma para o exterior e uma ou mais para redes interiores
- Os encaminhadores são opcionais, embora permitam reforçar a segurança uma vez que podem operar como filtros de pacotes
- Gateway-bastião diretamente exposta a ataques do exterior e do interior

## Gateway simples (dual home gateway)

- Vantagens
  - simplicidade
  - economia de recursos
  - os computadores continuam a ser divididos por duas zonas de segurança, mas evitamos os atrasos extra nos computadores da rede privada
- Desvantagens
  - comprometimento da gateway-bastião
  - carga de processamento na gateway-bastião
  - limitações à localização dos serviços públicos
    - » outras redes interiores sobrecarrega a gateway ☺

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia

20

## Intrusion Prevention Systems (IPS)

- Extensão aos sistemas de deteção de intrusões (IDS), adicionandolhes a capacidade de bloquear o tráfego considerado malicioso
- □ IPS baseados na rede
  - atua como um IDS de rede, recebendo tráfego numa porta e reenviando-o por outra
  - pode descartar ou alterar pacotes em tempo real, ou interromper ligações
  - suportam regras mais complicadas para a deteção de intrusões, como baseadas em padrões de bytes, assinaturas que utilizam sequências de pacotes, descobrem anomalias no tráfego

# Bibliografia

- □ Stallings & Brown, Computer Security: Principles and Practice, Third Edition, 2014
  - Leitura obrigatória: cap 9
  - Leitura opcional:

© 2018 Nuno Ferreira Neves, Reprodução proibida sem autorização prévia