REVISITED BOX COUNTING TECHNIQUE IN BAYESIAN SENSE

Václav Hubata–Vacek ¹, Jaromír Kukal ¹

¹CTU in Prague, Faculty of Nuclear Sciences and Physical Engineering
Department of Software Engineering in Economics
Břehová 7, 115 19 Prague 1
Czech Republic
hubatvac@fjfi.cvut.cz

Abstract:

Keywords: EEG, Alzheimer's disease, permutation entropy, unbiased estimation, hash table

1 Introduction

2 Multinomic Distribution

Multinomic distribution model plays main role in investigation of point set structures. Let $n \in \mathbb{N}$ be number of distinguish events. Let $p_j > 0$ be probability of j^{th} event for j = 1, ..., n satisfying $\sum_{j=1}^n p_j = 1$. Then random variable j has multinomic distribution $Mul(p_1, ..., p_n)$. After realization of multinomic distribution sample of size $N \in \mathbb{N}$, we can count the events and obtain $N_j \in \mathbb{N}_0$ as number of j^{th} event occurences for j = 1, ..., n satisfying $\sum_{j=1}^n N_j = N$. Therefore, we define number of various events in sample as $K = \sum_{N_j > 0} 1 \le min(n, N)$. Remembering Hartley and Shannon entropies definitions

$$H_0 = \ln n,\tag{1}$$

$$H_1 = -\sum_{j=1}^{n} p_j \ln p_j, \tag{2}$$

we can perform naive or rather naive estimation of them as

$$H_{0,\text{NAIVE}} = \ln K,\tag{3}$$

$$H_{1,\text{NAIVE}} = -\sum_{j=1}^{n} \frac{N_j}{N} \ln \frac{N_j}{N}.$$
 (4)

The main disadvantage of naive estimation is their biases. Random variable $K = \{1, ..., n\}$ is upper construined by n, then $EH_{0,\text{NAIVE}} = E \ln K < E \ln n = \ln n = H_0$. Therefore, naive estimate of Hartley entropy $H_{0,\text{NAIVE}}$ is negative biased. On the other hand, traditional Box Counting Technique is based on this estimate because we plot logarithm of covering element number $C(a) \in \mathbb{N}$ against logarithm of covering element size a > 0 and then estimate their dependency in linear form $\ln C(a) = A_0 - D_{0,\text{NAIVE}} \ln a$. Recognizing equivalence C(a) = K, we obtain $\ln C(a) = \ln K = H_{0,\text{NAIVE}}$ and then $H_{0,\text{NAIVE}} = A_0 - D_{0,\text{NAIVE}} \ln a$. Defining $D_{0,\text{NAIVE}}$ as estimate of capacity dimension and recognizing the occurrence of $H_{0,\text{NAIVE}}$ in Box Counting procedure, we are not suprised to be victims of the bias of Hartley entropy estimate.

3 Bias of Shannon entropy

Similar situation is the case of Shannon entropy estimation. There are several approaches how to declare the bias of $H_{1 \text{ NAIVE}}$ to be closer to Shannon entropy H_1 .

TODO (Miller, Harris, modifacions)

Finally, we can estimate information dimension according to relation

$$H_{1,\text{EST}} = A_1 - D_{1,\text{EST}} \ln a \tag{5}$$

where $H_{1,\text{EST}}$ is any estimate of H_1 . Therefore, we can also estimate Hansdorf dimension D_{H} using inequalities $D_1 \leq D_{\text{H}} \leq D_0$ and then also supposing $D_{1,\text{EST}} \leq D_{\text{H}} \leq D_{0,\text{EST}}$ for any "good" estimates $D_{0,\text{EST}}$, $D_{1,\text{EST}}$ of capacity and information dimensions. Next section is oriented to Bayesian estimation of H_0 , H_1 for $D_{0,\text{EST}}$ and $D_{1,\text{EST}}$ evaluations.

4 Bayesian estimation of Hartley entropy

Having again $n, N \in \mathbb{N}$ as number of possible events and sample size we can suppose uniform distribution of random vector $\vec{p} = (p_1, ..., p_n)$ satisfying $p_j \geq 0$, $\sum_{j=1}^n p_j = 1$. Using properties of multinomic and Dirichlet distributions, we can calculate density p(K|n, N) of random variable $K \in \mathbb{N}$ for $K \leq \min(n, N)$ as

$$p(K|n,N) = prob(\sum_{N_j>0} 1 = K|n, \sum_{j=1}^n N_j = N) = \frac{\binom{n}{K}\binom{N-1}{K-1}}{\binom{N+n-1}{n-1}}.$$
 (6)

When $N \geq K + 2$, we can calculate

$$S_{K,N} = \sum_{n=K}^{\inf} p(K|n,N). \tag{7}$$

Using inequality

$$p(K|n,N) = \frac{N!(N-1)!}{K!(K-1)!(N-K)!} \frac{n!(n-1)!}{(n-K)!(n+N-1)!} =$$

$$= q(K,N) \frac{n(n-1)...(n-k+1)}{(n+N-1)(n+N-2)...n} \le q(K,N) \frac{n^K}{n^N}$$
(8)

we can overestimate

$$S_{K,N} \le \sum_{n=K}^{\inf} q(K,N) n^{K-N} = q(K,N) \sum_{n=K}^{\inf} n^{K-N} < +\inf$$
 (9)

and then recognize the convergence of infinite series TODO. Having a knowledge of K, N where $N \ge K + 2$, we can calculate bayesian density

$$p(n|K,N) = \frac{p(K|n,N)}{S_{K,N}}$$
 (10)

for $n \geq K$. Therefore, Bayesian estimate of Hartley entropy is

$$H_{0,\text{BAYES}} = EH_0 = \sum_{n=K} \inf p(n|K,N) \ln n > \ln k$$
(11)

which is also convergent sum. Substituing n = K + j we obtain equivalent formula

$$H_{0,\text{BAYES}} = \frac{\sum_{j=0} \inf b_j \ln K + j}{\sum_{j=0} \inf b_j}$$

$$\tag{12}$$

where $b_j = \frac{\binom{K+j}{j}\binom{K+j-1}{j}}{\binom{K+j+N-1}{j}}$

Asymptotic properties of Bayesian estimate for $N \to + \inf$ can be investigated via limits

$$\lim_{N \to +\inf} H_{0,\text{BAYES}} = \ln K,\tag{13}$$

$$\lim_{N \to + \inf} (H_{0,BAYES} - \ln K) N = K(K+1) \ln 1 + 1/K, \tag{14}$$

$$\lim_{N \to +\inf} (H_{0,\text{BAYES}} - \ln K - \frac{K(K+1)\ln(1+1/K)}{N})N^2 = TODO, \tag{15}$$

TODO

Therefore

$$H_{0,\text{BAYES}} \approx \ln K + \frac{K(K+1)\ln(1+1/K)}{N} + TODO$$
 (16)

When K is also large, we can roughly approximate Hartley entropy as

$$H_{0,\text{BAYES}} \approx \ln K + \frac{K+1}{N}$$
 (17)

which is very similar to Miller correction TODO in the case of Shannon entropy estimation.

5 Bayesian estimation of Shannon entropy

In the case when the number of events n is known, we can perform Bayesian estimation of Shannon entropy as

$$H_{1,n} = EH_1(K = m) = \sum_{j=1}^{m} \left(\frac{N_j + 1}{N + m} \sum TODO\right)$$
 (18)

as derived in [TODO]. But when the number of events n is unknown, we can use k as lower estimate of n and perform final Bayesian estimation as

$$H_{1,\text{BAYES}} = \sum_{n=K}^{\inf} p(n|K,N)H_{1,n}$$
 (19)

which is also convergent sum for $N \ge K + 2$. Asymptotic properties of (TODO) for $N \to + \inf$ can be investigated by the same technique as in previous section. Resulting asymptotic formula is

$$H_{1,\text{BAYES}} \approx c_0 + \frac{c_1}{N} + \frac{c_2}{N^2}$$
 (20)

where

$$c_0 = \sum_{N_j > 0} \frac{N_j}{N} \ln \frac{N}{N_j} TODOc1, c2$$

$$(21)$$

Here c_0 is naive estimate of Shannon entropy, c_1/N corresponds with Miller estimate [TODO] but the term c_2/N^2 differs from Harris estimate [TODO]. The main advantage of formulas TODO, TODO is in absence of theoretical probability knowledge.

6 REvisited Cox Counting

7 Experimental parth

8 Conclusion

Acknowledgement: The paper was created with the support of CTU in Prague, Grant SGS11/165/OHK4/3T/14.

References

[1] todo t.todo. todo.

A Main function for permutation

function

B Hash function

function