Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: Practice Questions for
Date: 02/28/22	Course: Math 101 A04 Spring 2022	Sections 6.3 & 7.2 [Not for

For a particular chemical reaction the rate (g/hr) at which one of the reactants changes is proportional to the amount of that reactant present. If y represents the amount of that reactant at time t, $\frac{dy}{dt} = -0.1y$. If there were 50 grams of the reactant when the process started (t = 0), how many grams will remain after 2 hours.

Solve for y by integrating both sides of $\frac{dy}{y} = -0.1dt$.

$$\int \frac{dy}{y} = -0.1 \int dt$$

In
$$y = -0.1t + C$$

Rewrite by using each side of the equation as the exponent of the base e.

$$e^{\ln y} = e^{-0.1t + C}$$

Simplifying both sides, $y = C_1 e^{-0.1t}$.

Evaluate the arbitrary constant with the given initial conditions: y = 50 grams at t = 0 hours.

$$C_1 = 50$$

Thus, $y = 50 e^{-0.1t}$. The amount remaining at t = 2 hours is 40.9 grams.