МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана»

Разработка программного обеспечения для визуализации планетарной системы

Студент: Ляпина Н.В. ИУ7-52Б Руководитель: Кострицкий А.С.

Содержание

- 1. Цель и задачи
- 2. Формализация объектов сцены
- 3. Представление модели
- 4. Алгоритмы компьютерной графики
- 5. Требования к ПО
- 6. Программный продукт
- 7. Исследование
- **8.** Выводы

Цель

разработка программного обеспечения для визуализации планетарной системы со Звездой в центре

Задачи

Формализация объектов сцены

Планета

- Представляется сферическим объектом
- о Имеет цвет поверхности
- о Имеет орбиту
- Имеет массу, скорость и координаты центра масс

Звезда

- Представляется сферой
- Имеет массу
- Поверхность является множеством точечных источников света

Представление модели

Для аппроксимации сферических объектов используется полигональный способ задания модели

Для хранения полигональной сетки используется список граней

Элемент этого списка – список вершин, составляющих грань

Алгоритмы трехмерной графики

Удаление невидимых ребер и поверхностей

Объекты не пересекаются, редко перекрывают друг друга, определение большей части изображения не требует анализа, важна быстро действенность алгоритма

Выбран алгоритм Z-буфера

Алгоритмы трехмерной графики

Закраска полигонов

Модель освещения

Локальная простая модель освещения: поверхности планет матовые, а фоновое освещение мало. Перенос света между поверхностями пренебрежимо мал.

Интенсивность освещенности точки вычисляется по закону Ламберта

Модель закраски

Простая закраска: меньше нагружает ПО при покадровой анимации => быстрее отклик на действия пользователя и более плавная анимация

Ухудшение качества изображения некритично, так как поверхность гладкая и одноцветная

Требования к ПО

Программный продукт

Группа кнопок, отвечающих за управление анимацией

Группа кнопок, отвечающих за ввод информации о Звезде

Группа кнопок, отвечающих за ввод информации о планете

Группа кнопок, отвечающих за масштабирование объектов

Кнопка выхода

Исследование

<u>Цель:</u> определение зависимости времени генерации изображения модели планетарной системы в зависимости от количества точек, аппроксимирующих поверхности объектов сцены.

Низкополигональная модель

Высокополигональная модель

Исследование

Результаты

Зависимость процессорного времени генерации изображения от кол-ва точек. Причем зависимость стремится к квадратичной.

Кол-во точек	Параметр сетки	Время (мс)
10	0	0.000
53	1	1.659
127	2	4.272
233	3	7.564
371	4	13.761
541	5	26.961
743	6	42.740
977	7	72.107
1243	8	97.179
1541	9	159.422
1871	10	199.826
2233	11	283.439
2627	12	363.550
3053	13	459.466
3511	14	627.598
4001	15	823.686
4523	16	1041.410
5077	17	1278.590
5663	18	1590.800
6281	19	1956.390
6931	20	2414.680

Выводы

В ходе выполнения курсовой работы было разработано программное обеспечение для визуализации модели планетарной системы. Пользователь может динамически просматривать сцену: масштабировать, запускать и ставить на паузу движение модели планетарной системы.

В дальнейшем этот продукт можно улучшить – использовать реалистичные текстуры для изображения поверхностей космических объектов, добавить звезды, кольца планет и астероиды.

