

2015—2016 学年第二学期 《大学物理 (2-1)》(64 学时)期末试卷

专业班级	
姓名	
学 号	
开课系室	基础物理系
,,,,,,,,	
考试日期	2016年6月26日8:30-10:30

题号	_	二			三				四	总分	
		1	2	3	4	1	2	3	4	1 24	必为
得分											
阅卷人											

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面整洁;
- 3. 本试卷共四道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共9页.

一、选择题(共10小题,每小题3分,共30分)

1、(本题 3 分)

一只光滑的内表面半径为 10 cm 的半球形碗,以 匀角速度 ω 绕其对称OC旋转.已知放在碗的内表面 上的一个小球 P 相对于碗 静止,其位置高于碗底 4cm,则由此可推知碗的旋转的角速度约为

Γ

7

本大题满分30分 本 大 题 得

- (A) 10 rad/s
- (B) 13 rad/s
- (C) 17 rad/s
- (D) 18 rad/s

2、(本题 3 分)

一个质量为 60 kg 的人起初站在一条质量为 300 kg, 且正以 2 m/s 的速率向湖岸驶近的 小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v沿船的前进方向向 河岸跳去,该人起跳后,船速减为原来的一半,0应为

- (A) 2 m/s
- (B) 3 m/s
- (C) 5 m/s

3、(本题 3 分)

Γ

光滑的水平桌面上,有一长为2L、质量为m的匀质细杆,可绕过其中点且垂直于杆的 竖直光滑固定轴 O 自由转动,其转动惯量为 $\frac{1}{2}mL^2$,起初杆静 止. 桌面上有两个质量均为m的小球,各自在垂直于杆的方向 0 上,正对着杆的一端,以相同速率 v 相向运动,如图所示. 当 两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘

俯视图

(A) $\frac{2v}{3L}$ (B) $\frac{6v}{7L}$ (C) $\frac{4v}{5L}$ (D) $\frac{8v}{9L}$ (E) $\frac{12v}{7L}$

在一起转动,则这一系统碰撞后的转动角速度应为

4、(本题 3 分)

Γ 7

关于可逆过程和不可逆过程的判断:

(1) 可逆热力学过程一定是准静态过程; (2) 准静态过程一定是可逆过程; (3) 不可逆过 程就是不能向相反方向进行的过程; (4) 凡有摩擦的过程,一定是不可逆过程。以上四种判 断,其中正确的是

- (A) (1), (2), (3) (B) (1), (2), (4) (C) (2), (4) (D) (1), (4)

5、(本题 3 分)	Γ]					
若室内生起炉子后温度从 15℃升高到 27℃,而室内气压不	变,	则此时	室内的分子数减					
少了								
(A) 0.5% (B) 9% (C) 4% (D) 21	%							
6、(本题 3 分)]					
已知一平面简谐波的表达式为 $y = A\cos(at - bx)$ (a, b) 为正值常量),则								
(A) 波的频率为 a (B) 波的传播速度为 b/a								
(C) 波长为 π/b (D) 波的周期为 $2\pi/a$								
7、(本题 3 分)]					
一列平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中:								
(A) 它的势能转换成动能. (B) 它的动能转换成势能	٤.							
(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加								
(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐	渐减	小						
8、(本题 3 分)	[]					
在真空中波长为 λ 的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B ,若 A 、								
B 两点相位差为 3π ,则此路径 AB 的光程为								
(A) 1.5λ (B) $1.5 \lambda/n$ (C) $1.5 n \lambda$	(D) 3 λ						
9、(本题 3 分)	[]					
在狭义相对论中,下列说法中哪些是正确的?								
(1) 一切运动物体相对于观察者的速度都不能大于真空中的	的光速	Ē						
(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的								
(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时								
发生的								
(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟	时,	会看到	这时钟比与他相					
对静止的相同的时钟走得慢些								
(A) (1), (3), (4) (B) (1), (2), (4) (C) (1), (2), (3)		(D) (2),	(3), (4)					
10、(本题 3 分)]					
α 粒子在加速器中被加速,当其质量为静止质量的 3 倍时,其动能为静止能量的								
(A) 2 倍 (B) 3 倍 (C) 4 倍 (D) 5 倍								

二、简单计算与问答题(共 4 小题,每小题 5 分,共 20 分) 1、(本题 5 分)

历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔 A,到达远处的镜面反射后又回到齿轮上.设齿轮的半径为 5cm,边缘上的齿孔数为 500 个,齿轮的转速,使反射光恰好通过与 A

本大题满分 20 分 本 大 题 得 分

相邻的齿孔 B. (1) 若测得这时齿轮的角速度为 $600\,\mathrm{r/s}$,齿轮到反射镜的距离为 $500\,\mathrm{m}$,那么测得的光速是多大? (2) 齿轮边缘上一点的线速度和加速度是多大?

2、(本题 5 分)

计算一个刚体对某转轴的转动惯量时,是否可以认为它的质量集中于其质心,把刚体看作一个质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

3、(本题 5 分)

重力场中粒子按高度的分布为 $n=n_0e^{-mgh/kT}$. 设大气中温度随高度的变化忽略不计,在 27 $\mathbb C$ 时,升高多大高度,大气压强减为原来的一半。(空气的摩尔质量为 29g)

4、(本题 5 分)

1966~1972 年间,欧洲原子核研究中心(CERN)多次测量到储存环中沿"圆形轨道"运行的 μ 粒子的平均寿命,在 μ 粒子的速率为 0.9965c 时,测得的平均寿命是 2.615×10⁻⁶ s . μ 粒子固有寿命的实验值是 2.197×10⁻⁶ s . 问实验结果与相对论理论值符合的程度如何?

三. 计算题(共4小题,每小题10分,共40分)

1、(本题 10 分)

一个质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 μ),圆盘可绕通过其中心O的竖直固

本大题满分 40 分 本 大 题 得 分

定光滑轴转动. 开始时,圆盘静止,一颗质量为m的子弹以水平速度 v_0 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求

- (1) 子弹击中圆盘后,盘所获得的角速度.
- (2) 经过多少时间后,圆盘停止转动.

(圆盘绕通过 O 的竖直轴的转动惯量为 $\frac{1}{2}MR^2$,

忽略子弹重力造成的摩擦阻力矩)

2、(本题 10 分)

热容比 $\gamma=1.40$ 的理想气体,进行如图所示的 ABCA 循环,状态 A 的温度为 300K. 试 求(1)状态 B 和 C 的温度; (2)各过程中气体吸收的热量、气体所作的功和气体内能的 增量. (3)循环效率.

3、(本题 10 分)

在空气中有一沿 Ox 轴正向传播的平面波, 其波函数为

$$y = 0.01\cos(4t - \pi x - \pi/3)$$
 (S1),

若波源处于坐标原点,在x = 5.00 m 处是空气与玻璃的分界面,且该平面波经过分界面反射后波的强度不衰减,试求:(1)波源的振动周期和初相位;(2)反射波的波函数.

4、(本题 10 分)

- (1) 波长为 5500 Å 的黄绿光对人眼和照相底片最敏感,要增大照相机镜头对该光的透射率,可在镜头上镀一层氟化镁 (\mathbf{MgF}_2)薄膜.已知氟化镁的折射率为 1.38,玻璃的折射率为 1.50,求氟化镁的最小厚度.
- (2) 用波长 $\lambda = 6328 \text{Å}$ 的氦-氖激光垂直照射单缝,其夫琅禾费衍射图样的第 1 级极小的衍射角为 $5^{\,0}$,求单缝的宽度.

四、实验设计题(共1题, 共10分)

下图是弦驻演示仪的示意图,该实验装置由可调频的机械振动源、弦线 (充当驻波的介质)、弦线支撑平台组成。该实验演示了弦线形成驻波的现象。根据你对该实验的操作、观察和理解,试回答以下问题:

- (1)调节机械振动源到合适的振动频率和振幅后,会在弦线上出现什么现象?
 - (2) 为什么会出现这样的现象?
 - (3)调节振动源上的振动频率,对弦线的振动会产生什么影响?为什么?
 - (4) 试举例说明驻波在现实生活中的应用。

