Theoretical Crawling

A guide to the mathematics and statistics of animal movement

Devin S. Johnson

NOAA Fisheries Marine Mammal Laboratory

Seattle, Washington

Email: devin.johnson@noaa.gov

Animal movement workshop February 14–16, 2017

Outline

Mathematics

- 1 Discrete-time random walks
- 2 Correlated random walks
- 3 Brownian motion
- 4 Ornstein-Ulenbeck (OU) process
- Stochastic differential equations
- **6** Integrated SDEs
- 7 Continuous-time CRW

Outline

Mathematics

- 1 Discrete-time random walks
- 2 Correlated random walks
- 3 Brownian motion
- Ornstein-Ulenbeck (OU) process
- Stochastic differential equations
- 6 Integrated SDEs
- 7 Continuous-time CRW

Statistics

- Maximum likelihood inference
- 2 Bayesian inference
- 3 State-space models
- Kalman filter/smoother (KFS)
- 5 Practical Bayesian inference
- 6 Process imputation

For more information...

- Available from Amazon (\$86)
- Soon to be available at the MML library
- Borrow from me (maybe Brett)

Part I

movement

Mathematics of animal

Discrete-time models

Time series models

Telemetry data are thought of as predominately spatial

- We display them on 2d maps
- We want to know something about space use
- We want to know which spatial locations are selected over others

Time series models

Telemetry data are thought of as predominately spatial

- We display them on 2d maps
- We want to know something about space use
- We want to know which spatial locations are selected over others

Most mathematical models and statistical analysis view telemetry data as *time series* processes where a realization occurs in geographical space

Time series models

Telemetry data are thought of as predominately spatial

- We display them on 2d maps
- We want to know something about space use
- We want to know which spatial locations are selected over others

Most mathematical models and statistical analysis view telemetry data as *time series* processes where a realization occurs in geographical space

Notation (discrete time)

- $\mu_t = (\mu_{x,t}, \mu_{y,t})$ is the location of the animal at time t.
- $\mathbf{s}_t = (s_{x,t}, s_{y,t})$ is the observed location at time t.
- $d\mu_t = \mu_t \mu_{t-1}$ is movement!

Random walk

$$egin{aligned} m{\mu}_t &= m{\mu}_{t-1} + m{\epsilon}_t \ & [m{\epsilon}_t] &= \mathcal{N}(0, m{\Sigma}) \end{aligned}$$

- ullet The movements, $d\mu_t=\epsilon_t$ are all independent of each other.
- Typically $\mathbf{\Sigma} \equiv \sigma^2 \mathbf{I}$, so, $\mu_{x,t}$ is independent of $\mu_{y,t}$

Random walk

$$egin{aligned} oldsymbol{\mu}_t &= oldsymbol{\mu}_{t-1} + oldsymbol{\epsilon}_t \ & [oldsymbol{\epsilon}_t] &= \mathcal{N}(0, oldsymbol{\Sigma}) \end{aligned}$$

- ullet The movements, $d\mu_t=\epsilon_t$ are all independent of each other.
- Typically $\mathbf{\Sigma} \equiv \sigma^2 \mathbf{I}$, so, $\mu_{\mathbf{x},t}$ is independent of $\mu_{\mathbf{y},t}$

An unconditional view

We can rewite the RW using the accumulation of movements:

$$egin{aligned} \mu_t &= \mu_{t-1} + \epsilon_t \ &= \mu_{t-2} + \epsilon_{t-1} + \epsilon_t \ &= \mu_0 + \sum_{i=1}^t \epsilon_i \end{aligned}$$

random walk (n = 100)

Vector autoregressive models (VAR)

Let's suppose that an animal would like to stay close to some focal point, say $\bar{\mu}$.

Vector autoregressive models (VAR)

Let's suppose that an animal would like to stay close to some focal point, say $\bar{\mu}$.

VAR(1) model

$$egin{aligned} \mu_t &= ar{\mu} + \mathsf{M}(\mu_{t-1} - ar{\mu}) + \epsilon_t \ &= (\mathsf{I} - \mathsf{M})ar{\mu} + \mathsf{M}\mu_{t-1} + \epsilon_t \end{aligned}$$

- Weighted mean of last location and point of attraction
- If $\mathbf{M} \equiv \gamma \mathbf{I}$ and $|\gamma| < 1$ then as $t \to \infty$

$$[oldsymbol{\mu}_t] = \mathcal{N}\left(ar{oldsymbol{\mu}}, rac{1}{1-\gamma^2}oldsymbol{\Sigma}
ight)$$

Vector autoregressive models (VAR)

Let's suppose that an animal would like to stay close to some focal point, say $\bar{\mu}$.

VAR(1) model

$$egin{aligned} \mu_t &= ar{\mu} + \mathsf{M}(\mu_{t-1} - ar{\mu}) + \epsilon_t \ &= (\mathsf{I} - \mathsf{M})ar{\mu} + \mathsf{M}\mu_{t-1} + \epsilon_t \end{aligned}$$

- Weighted mean of last location and point of attraction
- If $\mathbf{M} \equiv \gamma \mathbf{I}$ and $|\gamma| < 1$ then as $t \to \infty$

$$[oldsymbol{\mu}_t] = \mathcal{N}\left(ar{oldsymbol{\mu}}, rac{1}{1-\gamma^2}oldsymbol{\Sigma}
ight)$$

• What happens if $\gamma \to 1$?

VAR(1) (n = 100)

Modeling velocity

• Rule 1. velocity \neq speed!

Modeling velocity

- Rule 1. velocity ≠ speed!
- We are thinking of velocity in the physics sense. Speed is the magnitude of velocity.

velocity = derivative of location process

Modeling velocity

- Rule 1. velocity ≠ speed!
- We are thinking of velocity in the physics sense. Speed is the magnitude of velocity.

velocity = derivative of location process

What does that mean for our random walk models in discrete-time?

velocity
$$=d\mu_t \ = \mu_t - \mu_{t-1}$$

VAR(1) model for velocity

Instead of directly modeling location as a VAR(1), we can model movement (velocity) with a VAR(1)

$$d\mu_t = \mathsf{M}d\mu_{t-1} + \epsilon_t$$

Now, the movement steps are *correlated* compared to a simple random walk.

VAR(1) model for velocity

Instead of directly modeling location as a VAR(1), we can model movement (velocity) with a VAR(1)

$$d\mu_t = \mathsf{M}d\mu_{t-1} + \epsilon_t$$

Now, the movement steps are *correlated* compared to a simple random walk.

We might call this model a correlated random walk

VAR(1) model for velocity

Instead of directly modeling location as a VAR(1), we can model movement (velocity) with a VAR(1)

$$d\mu_t = \mathsf{M}d\mu_{t-1} + \epsilon_t$$

Now, the movement steps are *correlated* compared to a simple random walk.

We might call this model a correlated random walk

Why CRW?

- Step at time t, $d\mu_t$, tends to be similar to the previous step, $d\mu_{t-1}$
- The correlation in steps produces a superdiffusive process for μ_t
- Why is it useful? Better model of movement in the short term (i.e., $t << \infty$)

If we model $d\mu_t = \mathbf{M} \ d\mu_{t-1} + \epsilon_t$, what does this mean for μ_t ?

If we model $d\mu_t = \mathbf{M} \ d\mu_{t-1} + \epsilon_t$, what does this mean for μ_t ? Recall we can always write the position process like this:

$$egin{aligned} \mu_t &= \mu_{t-1} + (\mu_t - \mu_{t-1}) \ &= \mu_{t-2} + (\mu_{t-1} - \mu_{t-2}) + (\mu_t - \mu_{t-1}) \ &dots \ &= \mu_0 + \sum_{i=1}^t (\mu_i - \mu_{i-1}) \ &= \mu_0 + \sum_{i=1}^t d\mu_i \end{aligned}$$

Notice that there was no distributional assumption for $d\mu_t$. It's a simple recursion.

The CRW can also be represented as a VAR(2) process

$$\begin{split} \boldsymbol{\mu}_t &= \boldsymbol{\mu}_{t-1} + \mathsf{M} d \boldsymbol{\mu}_{t-1} + \boldsymbol{\epsilon}_t \\ &= \boldsymbol{\mu}_{t-1} + \mathsf{M} (\boldsymbol{\mu}_{t-1} - \boldsymbol{\mu}_{t-2}) + \boldsymbol{\epsilon}_t \\ &= (\mathbf{I} + \mathbf{M}) \boldsymbol{\mu}_{t-1} - \mathsf{M} \boldsymbol{\mu}_{t-2} + \boldsymbol{\epsilon}_t \end{split}$$

Current location is a weighted sum of previous two locations

The CRW can also be represented as a VAR(2) process

$$\begin{split} \boldsymbol{\mu}_t &= \boldsymbol{\mu}_{t-1} + \mathsf{M} d \boldsymbol{\mu}_{t-1} + \boldsymbol{\epsilon}_t \\ &= \boldsymbol{\mu}_{t-1} + \mathsf{M} (\boldsymbol{\mu}_{t-1} - \boldsymbol{\mu}_{t-2}) + \boldsymbol{\epsilon}_t \\ &= (\mathbf{I} + \mathbf{M}) \boldsymbol{\mu}_{t-1} - \mathsf{M} \boldsymbol{\mu}_{t-2} + \boldsymbol{\epsilon}_t \end{split}$$

Current location is a weighted sum of previous two locations

The **M** matrix

Turning angle specification

$$\mathbf{M} = \gamma \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- θ represents mean turning angle (probably close to 0)
- $0 < \gamma < 1$ controls the correlation in velocity

Let's suppose $\theta=$ 0, so,

 $\mathbf{M}=\gamma\mathbf{I}$

Then $\operatorname{corr}(d\mu_t,d\mu_s)=\gamma^{|t-s|}$

Let's suppose
$$\theta = 0$$
, so,

$$\mathbf{M} = \gamma \mathbf{I}$$

Then
$$\operatorname{corr}(d\mu_t,d\mu_s)=\gamma^{|t-s|}$$

But let's reparameterize $\gamma = e^{-\beta}$, then

- $\gamma \approx 1 \implies \beta \approx 0$
- $\gamma \approx 0 \implies \beta$ very large (sort of)

So, $\operatorname{corr}(d\mu_t,d\mu_s)=e^{-\beta|t-s|}$

discrete time CRW (n = 100)

Continuous-time models

Forms the basis of all continuous-time models

Forms the basis of all continuous-time models Random walk in continuous-time

Forms the basis of all continuous-time models

Random walk in continuous-time

So, let's start from the beginning...

$$\mathbf{b}_{t} = \mathbf{b}_{t-1} + \epsilon_{t}$$

$$= \mathbf{b}_{0} + \sum_{j=1}^{t} [\mathbf{b}_{j} - \mathbf{b}_{j-1}]$$

$$= \mathbf{b}_{0} + \sum_{j=1}^{t} d\mathbf{b}_{j}$$

Forms the basis of all continuous-time models

Random walk in continuous-time

So, let's start from the beginning...

$$\mathbf{b}_{t} = \mathbf{b}_{t-1} + \epsilon_{t}$$

$$= \mathbf{b}_{0} + \sum_{j=1}^{t} [\mathbf{b}_{j} - \mathbf{b}_{j-1}]$$

$$= \mathbf{b}_{0} + \sum_{j=1}^{t} d\mathbf{b}_{j}$$

Recall, $[d\mathbf{b}_j] = N(\mathbf{0}, \sigma^2 \mathbf{I})$ and $d\mathbf{b}_j$ is indep. of $d\mathbf{b}_i$ (usually, $\mathbf{b}_0 = \mathbf{0}$ and $\sigma = 1$)

We can get to continuous-time by making the time gaps, $\delta=\tau_j-\tau_{j-1}$, smaller and smaller

We can get to continuous-time by making the time gaps, $\delta=\tau_j-\tau_{j-1}$, smaller and smaller

Definition

$$\mathbf{b}_{\tau} = \lim_{\delta \to 0} \sum_{j=1}^{\tau} d\mathbf{b}_{j}$$
$$= \int_{0}^{\tau} d\mathbf{b}_{u}$$

Brownian motion

We can get to continuous-time by making the time gaps, $\delta=\tau_j-\tau_{j-1}$, smaller and smaller

Definition

$$\mathbf{b}_{\tau} = \lim_{\delta \to 0} \sum_{j=1}^{\tau} d\mathbf{b}_{j}$$
$$= \int_{0}^{\tau} d\mathbf{b}_{u}$$

- db_τ is infinitely rough
- $oldsymbol{b}_{ au}$ is a continuous function of time with no classical derivative
- Trivia fact for the bar: Here '∫' represents an Ito integral

Brownian motion

Brownian motion

Properties

- Mean $[\mathbf{b}_{ au}] = \mathbf{0}$
- $Var[\mathbf{b}_{\tau}] = \tau \mathbf{I}$
- Independent increments ...

 $\mathbf{b}_{\tau_2} - \mathbf{b}_{\tau_1}$ is independent of $\mathbf{b}_{\tau_4} - \mathbf{b}_{\tau_3}$ if $[\tau_1, \tau_2]$ does not overlap $[\tau_3, \tau_4]$.

(1)
$$\mu_t = \gamma(\mu_{t-1} - \bar{\mu}) + \epsilon_t$$

(1)
$$\mu_t = \gamma(\mu_{t-1} - \bar{\mu}) + \epsilon_t$$

(2)
$$\mu_t = \mu_0 + \sum_{j=1}^t [\mu_j - \mu_{j-1}]$$

 $= \mu_0 + \sum_{j=1}^t (\gamma - 1)(\mu_{j-1}) - \bar{\mu}) + \sum_{j=1}^t \epsilon_j$

(1)
$$\mu_t = \gamma(\mu_{t-1} - \bar{\mu}) + \epsilon_t$$

(2)
$$\mu_t = \mu_0 + \sum_{j=1}^t [\mu_j - \mu_{j-1}]$$

 $= \mu_0 + \sum_{j=1}^t (\gamma - 1)(\mu_{j-1}) - \bar{\mu}) + \sum_{j=1}^t \epsilon_j$
(3) $\mu_\tau = \mu_0 + \int_0^\tau (\gamma - 1)(\mu_u - \bar{\mu}) du + \sigma \mathbf{b}_u$

(1)
$$\mu_t = \gamma(\mu_{t-1} - \bar{\mu}) + \epsilon_t$$

$$(2) \quad \boldsymbol{\mu}_t = \boldsymbol{\mu}_0 + \sum_{j=1}^t [\boldsymbol{\mu}_j - \boldsymbol{\mu}_{j-1}]$$

$$= \boldsymbol{\mu}_0 + \sum_{j=1}^t (\gamma - 1)(\boldsymbol{\mu}_{j-1}) - \bar{\boldsymbol{\mu}}) + \sum_{j=1}^t \epsilon_j$$

$$(3) \quad \boldsymbol{\mu}_\tau = \boldsymbol{\mu}_0 + \int_0^\tau (\gamma - 1)(\boldsymbol{\mu}_u - \bar{\boldsymbol{\mu}})d\boldsymbol{u} + \sigma \mathbf{b}_u$$
which implies $(\beta = 1 - \gamma)$

$$d\boldsymbol{\mu}_\tau = -\beta(\boldsymbol{\mu}_\tau - \bar{\boldsymbol{\mu}})d\tau + \sigma d\mathbf{b}_\tau$$

Ornstein-Uhlenbeck motion

corr = 0.95

Stochastic differential equations

General form

$$doldsymbol{\mu}_{ au} = g(oldsymbol{\mu}_{ au})dt + h(oldsymbol{\mu}_{ au})d\mathbf{b}_{ au}$$

Stochastic differential equations

General form

$$d\mu_{ au} = g(\mu_{ au})dt + h(\mu_{ au})d\mathbf{b}_{ au}$$

Solution (assume $h \equiv \sigma$)

$$oldsymbol{\mu}_{ au} = oldsymbol{\mu}_0 + \int_0^ au g(oldsymbol{\mu}_u) du + \sigma oldsymbol{b}_{ au}$$

Stochastic differential equations

General form

$$d\mu_{ au} = g(\mu_{ au})dt + h(\mu_{ au})d\mathbf{b}_{ au}$$

Solution (assume $h \equiv \sigma$)

$$oldsymbol{\mu}_{ au} = oldsymbol{\mu}_0 + \int_0^{ au} g(oldsymbol{\mu}_u) du + \sigma oldsymbol{b}_{ au}$$

For OU model

$$m{\mu}_{ au} = e^{-eta t} m{\mu}_0 + (1 - e^{-eta au}) ar{m{\mu}} + m{\zeta}_{ au}$$

where
$$[oldsymbol{\zeta}_{ au}] = \mathcal{N}\left(oldsymbol{0}, rac{\sigma^2(1-\mathrm{e}^{-2eta au})}{2eta}oldsymbol{I}
ight)$$

Integrated SDEs (Velocity modeling)

New notation:

- $\nu_{\tau} =$ velocity at time τ
- $H(\mu_{ au}) = ext{potential function to control movement}$
- $\nabla H(\cdot) = \text{spatial gradient of } H$

Integrated SDEs (Velocity modeling)

New notation:

- u_{τ} = velocity at time τ
- $H(\mu_{ au}) = ext{potential function to control movement}$
- $\nabla H(\cdot) = \text{spatial gradient of } H$

Movement ISDE

$$egin{aligned} doldsymbol{
u}_{ au} &= -eta\{oldsymbol{
u}_{ au} -
abla H(oldsymbol{\mu}_{ au})\} + \sigma doldsymbol{\mathbf{b}}_{ au} \ doldsymbol{\mu}_{ au} &= oldsymbol{
u}_{ au} \ oldsymbol{\mu}_{ au} &= \int_{0}^{ au} oldsymbol{
u}_{u} du \end{aligned}$$

CTCRW

$$egin{aligned} doldsymbol{
u}_{ au} &= -eta oldsymbol{
u}_{ au} + \sigma doldsymbol{\mathbf{b}}_{ au} \ doldsymbol{\mu}_{ au} &= oldsymbol{
u}_{ au} \ \psi \ oldsymbol{
u}_{ au} &= \mathsf{OU}(eta, \sigma) \ oldsymbol{\mu}_{ au} &= oldsymbol{\mu}_{0} + \int_{0}^{ au} oldsymbol{
u}_{u} du \end{aligned}$$

- $u_{ au}$ is an Ornstein-Uhlenbeck (continuous-time AR(1)) process
- H ≡ 0
- $m{\cdot}$ $m{\mu}_{ au}$ accumulates instantaneous changes in location

Some useful properties:

•
$$\boldsymbol{\nu}_{\tau+\delta} = \boldsymbol{\nu}_{\tau} e^{-\beta \delta} + \boldsymbol{\zeta}_{\tau+\delta}$$
,

$$ullet \ oldsymbol{\mu}_{ au+\delta} = oldsymbol{\mu}_{ au} + oldsymbol{
u}_{ au} \left(rac{1 - oldsymbol{e}^{-eta\delta}}{eta}
ight) + oldsymbol{\xi}_{ au+\delta}$$

Some useful properties:

•
$$\nu_{\tau+\delta} = \nu_{\tau} e^{-\beta \delta} + \zeta_{\tau+\delta}$$
,

$$oldsymbol{\mu}_{ au+\delta} = oldsymbol{\mu}_{ au} + oldsymbol{
u}_{ au} \left(rac{1-\mathsf{e}^{-eta\delta}}{eta}
ight) + oldsymbol{\xi}_{ au+\delta}$$

• $\epsilon_{\tau+\delta} = (\zeta_{\tau+\delta}, \xi_{\tau+\delta})$ are zero mean independent (through time) normal errors that depend only on δ , β , and σ (**Not** τ !)

Some useful properties:

•
$$\nu_{\tau+\delta} = \nu_{\tau} e^{-\beta \delta} + \zeta_{\tau+\delta}$$
,

•
$$oldsymbol{\mu}_{ au+\delta} = oldsymbol{\mu}_{ au} + oldsymbol{
u}_{ au} \left(rac{1 - \mathbf{e}^{-eta \delta}}{eta}
ight) + oldsymbol{\xi}_{ au+\delta}$$

- $\epsilon_{\tau+\delta} = (\zeta_{\tau+\delta}, \xi_{\tau+\delta})$ are zero mean independent (through time) normal errors that depend only on δ , β , and σ (**Not** τ !)
- Can we write μ_{τ+δ} just as a function of μ_τ?
 No. Distribution of μ_τ is a function of the whole μ_u, u < τ.

Some more properties:

```
• \operatorname{corr}[\nu_{\tau+\delta}, \nu_{\tau}] = e^{-\beta\delta},

\approx 0 for \beta large

\approx 1 for \beta small
```

Some more properties:

- $\operatorname{corr}[\nu_{\tau+\delta}, \nu_{\tau}] = e^{-\beta\delta},$ $\approx 0 \text{ for } \beta \text{ large}$ $\approx 1 \text{ for } \beta \text{ small}$
- $\mu_{ au} o$ Brownian motion as eta becomes large $\mu_{ au}$ becomes very smooth as eta becomes small

Some more properties:

- $\operatorname{corr}[\nu_{\tau+\delta}, \nu_{\tau}] = e^{-\beta\delta},$ $\approx 0 \text{ for } \beta \text{ large}$ $\approx 1 \text{ for } \beta \text{ small}$
- $\mu_{ au} o$ Brownian motion as eta becomes large $\mu_{ au}$ becomes very smooth as eta becomes small
- $u_{\tau+\delta}$ roughly indep. of u_{τ} at time gap $\delta=3/\beta$, so, ... $\mu_{\tau}, \ \mu_{\tau+3/\beta}, \ \mu_{\tau+6/\beta}, \ldots$ not really distinguishable from Brownian motion

What about $H(x, y) \neq 0$? The future?

What about $H(x, y) \neq 0$? The future?

Numerical solution to general ISDE model

for small δ

$$u_{\tau+\delta} \approx -\beta (\nu_{\tau} - \nabla H(\mu_{\tau}))\delta + \epsilon_{\tau+\delta}; \qquad [\epsilon_{\tau}] = N(\mathbf{0}, \sigma^2 \delta \mathbf{I})$$

$$oldsymbol{\mu}_{ au+\delta}pproxoldsymbol{\mu}_{ au}+oldsymbol{
u}_{ au}\delta\impliesoldsymbol{
u}_{ au}pprox(oldsymbol{\mu}_{ au+\delta}-oldsymbol{\mu}_{ au})/\delta$$

Resulting approximation:

$$\boldsymbol{\mu}_{\tau+2\delta} = (2 - \beta \delta) \boldsymbol{\mu}_{\tau+\delta} - (1 - \beta \delta) \boldsymbol{\mu}_{\tau} + \beta \delta^2 \nabla H(\boldsymbol{\mu}_{\tau}) + \boldsymbol{\epsilon}_{\tau+\delta}$$

What about $H(x, y) \neq 0$? The future?

Numerical solution to general ISDE model

for small δ

$$u_{\tau+\delta} \approx -\beta (\nu_{\tau} - \nabla H(\mu_{\tau}))\delta + \epsilon_{\tau+\delta}; \qquad [\epsilon_{\tau}] = N(\mathbf{0}, \sigma^2 \delta \mathbf{I})$$

$$oldsymbol{\mu}_{ au+\delta}pproxoldsymbol{\mu}_{ au}+oldsymbol{
u}_{ au}\delta\impliesoldsymbol{
u}_{ au}pprox(oldsymbol{\mu}_{ au+\delta}-oldsymbol{\mu}_{ au})/\delta$$

Resulting approximation:

$$\boldsymbol{\mu}_{\tau+2\delta} = (2 - \beta \delta) \boldsymbol{\mu}_{\tau+\delta} - (1 - \beta \delta) \boldsymbol{\mu}_{\tau} + \beta \delta^2 \nabla H(\boldsymbol{\mu}_{\tau}) + \boldsymbol{\epsilon}_{\tau+\delta}$$

Notice that ν_{τ} process disappears and there is a spatial component, $\nabla H(\mu_{\tau})!$ Something missing from the standard CTCRW model.

Part II Statistics of animal movement

Inference refresher

Maximum likelihood estimation

Notation

- $\mathbf{d} = (d_1, \dots, d_n) = \text{vector general data}$
- $oldsymbol{ heta}$ general set a parameters
- $[d_i|\theta] =$ probability model that generates data
- $L(\theta|\mathbf{d}) = \text{likelihood function}$ typically $L(\theta|\mathbf{d}) = [\mathbf{d}|\theta] = \prod_i [d_i|\theta]$

MLE is very straightforward (in theory) ...

$$\hat{\boldsymbol{\theta}} = \max_{\boldsymbol{\theta}} \{ \log L(\boldsymbol{\theta}|\mathbf{d}) \}$$

Maximum likelihood estimation

Notation

- $\mathbf{d} = (d_1, \dots, d_n) = \text{vector general data}$
- $oldsymbol{ heta}$ general set a parameters
- $[d_i|\theta] =$ probability model that generates data
- $L(\theta|\mathbf{d}) = \text{likelihood function}$ typically $L(\theta|\mathbf{d}) = [\mathbf{d}|\theta] = \prod_i [d_i|\theta]$

MLE is very straightforward (in theory) ...

$$\hat{\boldsymbol{\theta}} = \max_{\boldsymbol{\theta}} \{ \log L(\boldsymbol{\theta}|\mathbf{d}) \}$$

boom!

Large sample theory

If $\mathbf{d} = (d_1 \dots d_n)$ is 'large' then

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}(oldsymbol{ heta}, -\mathbf{H}_{oldsymbol{ heta}}^{-1}),$$

where \mathbf{H}_{θ} is the Hessian matrix of $\log L(\theta | \mathbf{d})$.

Large sample theory

If $\mathbf{d} = (d_1 \dots d_n)$ is 'large' then

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}(oldsymbol{ heta}, -oldsymbol{\mathsf{H}}_{oldsymbol{ heta}}^{-1}),$$

where \mathbf{H}_{θ} is the Hessian matrix of $\log L(\theta|\mathbf{d})$.

Dependent data

If the data are dependent, then $[\mathbf{d}|\boldsymbol{\theta}] \neq \prod_i [d_i|\boldsymbol{\theta}].$

$$[\mathbf{d}|\boldsymbol{\theta}] = [d_1|\boldsymbol{\theta}] \times [d_2|d_1,\boldsymbol{\theta}] \times [d_3|d_1,d_2,\boldsymbol{\theta}] \times \cdots \times [d_n|d_1,\ldots,d_{n-1},\boldsymbol{\theta}]$$

If we're lucky, our data are Markov

$$[\mathbf{d}|\boldsymbol{\theta}] = [d_1|\boldsymbol{\theta}] \times [d_2|d_1,\boldsymbol{\theta}] \times [d_3|d_2,\boldsymbol{\theta}] \times \cdots \times [d_n|d_{n-1},\boldsymbol{\theta}]$$

Missing 'data' likelihoods

$$L(\theta|\mathbf{d}_{obs}) = [\mathbf{d}_{obs}|\theta] = \int [\mathbf{d}_{obs}|\mathbf{d}_{mis},\theta] \ [\mathbf{d}_{mis}|\theta] d\mathbf{d}_{mis}$$

Missing 'data' likelihoods

$$L(\theta|\mathbf{d}_{obs}) = [\mathbf{d}_{obs}|\theta] = \int [\mathbf{d}_{obs}|\mathbf{d}_{mis},\theta] \ [\mathbf{d}_{mis}|\theta] d\mathbf{d}_{mis}$$

Penalized likelihood

Sometimes the likelihood is hard to maximize or parameters are not full identifiable. So, a penalty term is added

$$\log L_p(\boldsymbol{\theta}|\mathbf{d}) = \log L(\boldsymbol{\theta}|\mathbf{d}) + \kappa J(\boldsymbol{\theta})$$

We'll see some examples laster. But this is how spline regressions are fit (e.g., see mgcv package).

Bayesian inference

Instead of a fixed quantity, θ , is treated like a random variable itself. Before any data is collected, we might model our uncertainty about the value of θ with the probability distribution $[\theta]$. This is the 'prior' distribution.

Bayesian inference

Instead of a fixed quantity, θ , is treated like a random variable itself. Before any data is collected, we might model our uncertainty about the value of θ with the probability distribution $[\theta]$. This is the 'prior' distribution.

We already have the data model $[\mathbf{d}|m{ heta}] = L(m{ heta}|\mathbf{d})$

Bayesian inference

Instead of a fixed quantity, θ , is treated like a random variable itself. Before any data is collected, we might model our uncertainty about the value of θ with the probability distribution $[\theta]$. This is the 'prior' distribution.

We already have the data model $[\mathbf{d}|\mathbf{ heta}] = L(\mathbf{ heta}|\mathbf{d})$

Bayes rule and posterior distribution

$$[\boldsymbol{ heta}|\mathbf{d}] = rac{L(oldsymbol{ heta}|\mathbf{d})~[oldsymbol{ heta}]}{\int [\mathbf{d}|oldsymbol{ heta}']~[oldsymbol{ heta}']doldsymbol{ heta}'}$$

Or, we can look at it on the log scale

$$\log[\theta|\mathbf{d}] = \log L(\theta|\mathbf{d}) + \log[\theta] - const.$$

Bayes inference details

How do we work with a posterior distribution?

- $\hat{\theta} = \text{mean}$, median or mode
- SE of $\hat{\boldsymbol{\theta}} = SD$ of $[\boldsymbol{\theta}|\mathbf{d}]$
- Interval estimates $=(\hat{\theta}_I,\hat{\theta}_u)$ such that $Pr(\hat{\theta}_I < \theta | \mathbf{d} < \hat{\theta}_u) = 0.95$. These are called 'credible intervals'

Bayes inference details

How do we work with a posterior distribution?

- $\hat{\theta} = \text{mean}$, median or mode
- SE of $\hat{\boldsymbol{\theta}} = SD$ of $[\boldsymbol{\theta}|\mathbf{d}]$
- Interval estimates $=(\hat{\theta}_I,\hat{\theta}_u)$ such that $Pr(\hat{\theta}_I < \theta | \mathbf{d} < \hat{\theta}_u) = 0.95$. These are called 'credible intervals'

How do we find these for general posteriors?

- Approximate with a sample $\theta_1, \ldots, \theta_m$ from $[\theta|\mathbf{d}]$ and use sample versions
- Numerically (including Monte Carlo) approximate integrals necessary
- Approximate with known distribution that is similar

Telemetry analysis

State-space models

Notation

- $\mathbf{s}_1, \dots, \mathbf{s}_n$ are observed locations
- τ_1, \ldots, τ_n are the observation times
- $\mu_{ au}$ is the continuous path of the animal at time au
- $m{\cdot}$ $m{
 u}_{ au}$ is the velocity at time au
- $\bullet \ \alpha_{\tau} = (\mu_{\tau,\mathsf{x}}, \nu_{\tau,\mathsf{x}}, \mu_{\tau,\mathsf{y}}, \nu_{\tau,\mathsf{y}}),$

State-space models

CTCRW model

$$\mathbf{s}_i = \mathbf{z}' oldsymbol{lpha}_{ au_i} + oldsymbol{\epsilon}_i \ oldsymbol{lpha}_{ au_{i+1}} = \mathbf{T}_i oldsymbol{lpha}_{ au_i} + oldsymbol{\eta}_i$$

- $[\epsilon_i] = N(\mathbf{0}, \mathbf{V}_i)$; \mathbf{V}_i is the location error variance.
- z = (1, 0, 1, 0)
- \mathbf{T}_i is a function of β and $\delta_i = \tau_{i+1} \tau_i$
- $[\boldsymbol{\eta}_i] = N(\mathbf{0}, \mathbf{Q}_i)$
- \mathbf{Q}_i depends only on β , δ_i , and σ

Temporally dynamic CTCRW

The parameters do not have to remain constant over time!

- au_1^*, \dots, au_m^* are known times where eta and σ can change
- Define model as before based on merged observation and changepoint times, $\tau_1, \ldots, \tau_{n+m}$

Temporally dynamic CTCRW

The parameters do not have to remain constant over time!

- au_1^*, \dots, au_m^* are known times where eta and σ can change
- Define model as before based on merged observation and changepoint times, $\tau_1, \ldots, \tau_{n+m}$

Temporally dynamic movement model

$$\mathbf{s}_i = \left\{ egin{array}{ll} \mathbf{z}' oldsymbol{lpha}_{ au_i} + oldsymbol{\epsilon}_i & ext{for } au_i ext{ an observed time} \ \mathrm{NA} & ext{for } au_i ext{ in } au_1^*, \dots, au_m^* \ oldsymbol{lpha}_{ au_{i+1}} = \mathbf{T}_i oldsymbol{lpha}_{ au_i} + oldsymbol{\eta}_i \end{array}
ight.$$

Movement model is still continuous in time!

Kalman filter

Method to calculate likelihood, NOT a model!

Likelihood for state-space models

$$\begin{split} L(\boldsymbol{\theta}|\mathbf{s}_{1:n}) &= \prod_{i} [\mathbf{s}_{i+1}|\mathbf{s}_{1:i}, \boldsymbol{\theta}] \\ &= \int [\mathbf{s}_{1}|\boldsymbol{\alpha}_{\tau_{1}}, \boldsymbol{\theta}] \; [\boldsymbol{\alpha}_{\tau_{1}}|\boldsymbol{\theta}] \dots [\boldsymbol{\alpha}_{\tau_{i}}|\boldsymbol{\alpha}_{\tau_{i-1}}, \boldsymbol{\theta}] \times \dots \\ &\times [\mathbf{s}_{n}|\boldsymbol{\alpha}_{\tau_{n+m}}, \boldsymbol{\theta}] \; [\boldsymbol{\alpha}_{\tau_{n+m}}|\boldsymbol{\alpha}_{\tau_{n+m-1}}, \boldsymbol{\theta}] d\boldsymbol{\alpha}_{1:n+m} \end{split}$$

Kalman filter

Method to calculate likelihood, NOT a model!

Likelihood for state-space models

$$\begin{split} L(\theta|\mathbf{s}_{1:n}) &= \prod_{i} [\mathbf{s}_{i+1}|\mathbf{s}_{1:i}, \theta] \\ &= \int [\mathbf{s}_{1}|\boldsymbol{\alpha}_{\tau_{1}}, \theta] \; [\boldsymbol{\alpha}_{\tau_{1}}|\boldsymbol{\theta}] \dots [\boldsymbol{\alpha}_{\tau_{i}}|\boldsymbol{\alpha}_{\tau_{i-1}}, \theta] \times \dots \\ &\times [\mathbf{s}_{n}|\boldsymbol{\alpha}_{\tau_{n+m}}, \theta] \; [\boldsymbol{\alpha}_{\tau_{n+m}}|\boldsymbol{\alpha}_{\tau_{n+m-1}}, \theta] d\boldsymbol{\alpha}_{1:n+m} \end{split}$$

Kalman filter is a numerical algorithm that allows calculation of $L(\theta|\mathbf{s}_1,\ldots,\mathbf{s}_n)$ in an efficient manner.

- moves forward through the complete likelihood integrating on the way
- requires linear form and normal errors

Kalman smoother

Obtain predictions from model fit

- optimal predictor $\hat{\alpha}_i = E[\alpha_i | \mathbf{s}_{1:n}, \boldsymbol{\theta}]$
- prediction errors $\widehat{\mathsf{var}}(\hat{lpha}_i) = \mathit{Var}[lpha_i | \mathbf{s}_{1:n}, oldsymbol{ heta}]$

Kalman smoother

Obtain predictions from model fit

- optimal predictor $\hat{oldsymbol{lpha}}_i = E[oldsymbol{lpha}_i | \mathbf{s}_{1:n}, oldsymbol{ heta}]$
- prediction errors $\widehat{\mathsf{var}}(\hat{lpha}_i) = \mathit{Var}[lpha_i | \mathbf{s}_{1:n}, m{ heta}]$

Kalman smoother is an algorithm to calculate mean and variance of $[\alpha_i|\mathbf{s}_{1:n},\theta]$

- uses output from Kalman filter to go backwards through the model/data to calculate these quantities
- $\alpha_i | \mathbf{s}_{1:n}, \boldsymbol{\theta}$ is normally distributed.

Practical Bayesian inference

Posterior

$$egin{aligned} [heta, lpha | \mathbf{s}] &\propto [\mathbf{s} | lpha, heta] \; [lpha | eta] \; [eta] \ &\propto [lpha | \mathbf{s}, eta] \; [eta | \mathbf{s}] \end{aligned}$$

Practical Bayesian inference

Posterior

$$egin{aligned} [heta, lpha | extsf{s}] &\propto [extsf{s} | lpha, heta] \ [lpha | extsf{s}, heta] \ [heta | extsf{s}] \end{aligned} \ egin{aligned} &\propto [lpha | extsf{s}, heta] \ [heta | extsf{s}] \end{aligned}$$

Approach

- **1** Approximate $[\theta|\mathbf{s}]$ with something easy to sample from, say $[\theta|\mathbf{s}]^*$
- 2 Draw $\theta^{(i)} \sim [\theta | \mathbf{s}]^*$ then draw $\alpha^{(i)} \sim [\alpha | \theta^{(i)}, \mathbf{s}]$ $([\alpha | \theta^{(i)}, \mathbf{s}]$ easy to sample from using KFS algorithms)
- $(\theta^{(1)}, \alpha^{(1)}), \dots, (\theta^{(K)}, \alpha^{(K)})$ is a posterior sample
- **4** $m_i = f(\theta^{(i)}, \alpha^{(i)})$ will be a sample from $[m|\mathbf{s}]$

Approximating $[\theta|\mathbf{s}]$

- Normal approximation
 - **1** maximize $\log[\mathbf{s}|\boldsymbol{\theta}] + \log[\boldsymbol{\theta}] = L_p(\boldsymbol{\theta}|\mathbf{s})$ (penalized likelihood)
 - 2 $[m{ heta}|\mathbf{s}]^* = N\left(\hat{m{ heta}}, -\mathbf{H}_{\hat{m{ heta}}}^{-1}
 ight)$ (possibly truncated)

Approximating $[\theta|\mathbf{s}]$

- Normal approximation
 - **1** maximize $\log[\mathbf{s}|\theta] + \log[\theta] = L_p(\theta|\mathbf{s})$ (penalized likelihood)
 - $\mathbf{2} \ [\mathbf{ heta}|\mathbf{s}]^* = N\left(\hat{\mathbf{ heta}}, -\mathbf{H}_{\hat{\mathbf{ heta}}}^{-1}\right) ext{ (possibly truncated)}$
- Importance sampling (exact sample)
 - $oldsymbol{0}$ sample $ilde{ heta}^{(k)} \sim q(heta)$ (maybe normal from last item)
 - 2 form weights $w_k = [\tilde{\boldsymbol{\theta}}^{(k)}|\mathbf{s}]/q(\tilde{\boldsymbol{\theta}}^{(k)})$
 - **3** sample $\boldsymbol{\theta}^{(i)}$ from $\tilde{\boldsymbol{\theta}}^{(1)},\ldots,\tilde{\boldsymbol{\theta}}^{(K)}$ with prob. $\propto w_1,\ldots,w_K$

Approximating $[\theta|\mathbf{s}]$

- Normal approximation
 - **1** maximize $\log[\mathbf{s}|\theta] + \log[\theta] = L_p(\theta|\mathbf{s})$ (penalized likelihood)
 - 2 $[heta|\mathbf{s}]^* = N\left(\hat{m{ heta}}, -\mathbf{H}_{\hat{m{ heta}}}^{-1}
 ight)$ (possibly truncated)
- Importance sampling (exact sample)
 - $oldsymbol{0}$ sample $ilde{ heta}^{(k)} \sim q(heta)$ (maybe normal from last item)
 - **2** form weights $w_k = [\tilde{\boldsymbol{\theta}}^{(k)}|\mathbf{s}]/q(\tilde{\boldsymbol{\theta}}^{(k)})$
 - $m{3}$ sample $m{ heta}^{(i)}$ from $m{ ilde{ heta}}^{(m{ ilde{1}})},\ldots,m{ ilde{ heta}}^{(m{ ilde{K}})}$ with prob. $\propto w_1,\ldots,w_K$
- Deterministic sample (INLA)
 - $oldsymbol{0}$ sample $ilde{ heta}^{(k)}$ from deterministic grid
 - **2** form weights $w_k = [\tilde{\boldsymbol{\theta}}^{(k)}|\mathbf{s}]$
 - 3 sample $\boldsymbol{\theta}^{(i)}$ from $\tilde{\boldsymbol{\theta}}^{(1)},\ldots,\tilde{\boldsymbol{\theta}}^{(K)}$ with prob. $\propto w_1,\ldots,w_K$

Process imputation

- Allows us to account for location uncertainty in other analysis of movement data
- ullet Assume we know $\mu_{ au}$ on a sufficiently fine time scale
- Response variable of interest $\mathbf{y} = \mathbf{f}(\boldsymbol{\mu})$, e.g.,
 - Distance traveled,
 - Utilization distribution, or
 - locations of dives
- Model of interest $[\mathbf{y}|\psi]$, e.g.,
 - ANOVA,
 - Spatial regression model, or
 - Point process model
- ullet But,... we don't observe $oldsymbol{\mu}_{ au}$

Process imputation

Solution Average over unknown 'true' paths

$$[\psi|\mathsf{s}] = \int [\mathsf{y}_{oldsymbol{\mu}}|\psi] \ [\psi] \ [\mu|\mathsf{s}] doldsymbol{\mu}$$

Process imputation

Solution Average over unknown 'true' paths

$$[\psi|\mathbf{s}] = \int [\mathbf{y}_{oldsymbol{\mu}}|\psi] \; [\psi] \; [\mu|\mathbf{s}] d\mu$$

Method

- **1** Simulate $oldsymbol{\mu}^{(i)} \sim [oldsymbol{\mu} | \mathbf{s}]
 ightarrow \mathsf{Calculate} \ \mathbf{y}^{(i)}$
- **2** Calculate summaries of $[\psi^{(i)}|\mathbf{y}^{(i)}]$
 - posterior mean
 - posterior predictions
 - UDs
 - MCMC sample
- 3 Summarize over $\mu^{(i)}$ realizations
 - $E[\psi|\mathbf{s}] = mean(E[\psi|\mathbf{s}])$
 - $\ \textit{Var}[\boldsymbol{\psi}|\mathbf{s}] = \textit{Var}(\textit{E}[\boldsymbol{\psi}|\mathbf{s}]) + \textit{mean}(\textit{Var}[\boldsymbol{\psi}|\mathbf{y}])$

