1. Consider two identical hedgehogs starting at the vertices A and B of a polygon ABCDE. Each minute they simulteneously and independently choose to go clockwise or counter-clockwise in the next vertex.

The brotherhood of two brave hedgehogs can be in three states: in one vertex, in two adjacent vertices, in two non-adjacent vertices.

- (a) What is the probability that they will be in one vertex after 3 steps?
- (b) Write down the transition matrix of the brotherhood Markov chain.
- (c) What proportion of time the brotherhood will spend in each state in the long run?
- (d) Find the expected time until the hedgehogs meet in one vertex.
- 2. Each day the Random Restaurant is independently closed with probability p. If the restaurant is open then the number of clients has Poisson distribution with mean μ .

After N days (working or non-working) the Random Restaurant will permanently close and you are right, N is random and has Poisson distribution with mean n.

- (a) Find the moment generating function of the number of clients during day 1, assuming $N \ge 1$.
- (b) Find the moment generating function of the total number of clients served in the Random Restaurant.
- 3. Find the probability limit plim X_n , where

$$X_n = \frac{Y_1 + 2Y_2 + 3Y_3 + \ldots + nY_n}{n^2}$$

and $Y_1, Y_2, ...$ are independent uniform on [0; 1].

Hint: try to calculate $\mathbb{E}(X_n)$, \mathbb{V} ar (X_n) . You may google the formulas for $1+2+\ldots+n$ and $1^2+2^2+\ldots+n^2$ or ask ChatGPT.

4. Consider the Poisson arrival process X_t with constant rate λ .

Now let's scale the time in a non-linear fashion, $Y_t = X_{t^2}$.

- (a) Find $\mathbb{E}(Y_t)$, $\mathbb{V}ar(Y_t)$, $\mathbb{P}(Y_t = 0)$.
- (b) Find $\mathbb{E}(Y_{t+5} \mid Y_t)$ and $\mathbb{V}ar(Y_{t+5} \mid Y_t)$.
- 5. Let's toss a dice until the first six appears. Let X be the result of the first toss and Y the total number of tosses.
 - (a) Find $\mathbb{E}(X \mid Y)$, $\mathbb{E}(Y \mid X)$.
 - (b) Find $Var(X \mid Y)$, $Var(Y \mid X)$.
- 6. The joint distribution of X and Y is given in the table

	X = -1	X = 0	X = 1
Y = 0	0.1	0.2	0.3
Y = 1	0.2	0.1	0.1

- (a) Explicitely find the $\sigma\text{-algebras }\sigma(X),\,\sigma(Y),\,\sigma(X\cdot Y).$
- (b) How many elements are there in $\sigma(X,Y)$, $\sigma(X+Y)$, $\sigma(X,Y,X+Y)$?

Hereinafter (W_t) is a standard Wiener process.

- 1. Some questions about Wiener process!
 - (a) Find $\mathbb{E}(W_7 \mid W_5)$, $\mathbb{V}ar(W_7 \mid W_5)$, $\mathbb{E}(W_7W_6 \mid W_5)$.
 - (b) Find $\mathbb{E}(W_5 \mid W_7)$, $\mathbb{V}ar(W_5 \mid W_7)$.
- 2. Let (W_t) be a standard Wiener process and $Y_t = W_t^3 + t^2 W_t^2$.
 - (a) Find $\mathbb{E}(Y_t)$ and $\mathbb{V}ar(Y_t)$.
 - (b) Is Y_t a martingale?
 - (c) Find $\mathbb{E}(Y_t \mid W_s)$ for $t \geq s$.
- 3. Consider two independent Wiener processes A_t and B_t . Check whether these processes are Wiener processes:
 - (a) $X_t = (A_t + B_t)/2$.
 - (b) $Y_t = (A_t + B_t)/\sqrt{2}$.
- 4. Using Ito's lemma find dX and the corresponding full form.
 - (a) $X_t = W_t^6 \cos t$.
 - (b) $X_t = Y_t^3 + t^2 Y_t$ where $dY_t = W_t^2 dW_t + tW_t dt$.
- 5. Consider $I_t = \int_0^t W_u^2 u^2 du$. Find $\mathbb{E}(I_t)$, $\mathbb{V}\mathrm{ar}(I_t)$ and $\mathbb{C}\mathrm{ov}(I_t, W_t)$.
- 6. Let $X_t = 42 + t^2 W_t^3 + t W_t^2 + \int_0^t 3W_u du + \int_0^t W_u^3 dW_u$.
 - (a) Find dX_t .
 - (b) Is X_t a martingale? Is $Y_t = X_t \mathbb{E}(X_t)$ a martingale? Provide a short argument for your answer.

- 1. Consider two-period binomial tree model without dividents. Initial stock price is $S_0=200$, in each period the stock price is multiplied by u=1.15 or by d=0.75. One period interest rate is r=0.05.
 - (a) Find the risk-neutral probability.
 - (b) Price the following binary option: at time T=2 you get 100\$ if $S_1>200$ and nothing otherwise.
 - (c) Price the following chooser option: at t=1 the owner of the option decides whether the option is call or put. The strike price is K=200 and expiry date is T=2.
- 2. In the framework of Black and Scholes model find the price at t=0 of the following two financial assets, $dS_t = \mu S_t dt + \sigma S_t dW_t$ is the share price equation.
 - (a) The asset pays you at time T exactly one dollar if $S_T < K$ where K is a constant specified in the contract.
 - (b) The asset pays you at time T exactly S_T^2 dollars.
- 3. Consider the Vasicek interest rate model,

$$dR_t = 5(0.06 - R_t) dt + 3 dW_t$$
, $R_0 = 0.07$.

Here R_t is the interest rate.

- (a) Using the substitution $Y_t = e^{at}R_t$ find the solution of the stochastic differential equation. Start by finding dY_t .
- (b) Find $\mathbb{E}(R_t)$ and $\mathbb{V}ar(R_t)$.
- (c) Which value in this model would you call long-term equilibrium rate and why?

Hint: you may have integrals in you expression for R_t , but no R_t .

4. Let X_t be the exchange rate measured in roubles per dollar. We suppose that $dX_t = \mu X_t dt + \sigma X_t dW_t$. Consider the inverse exchange rate $Y_t = 1/X_t$ measured in dollars per rouble.

Write the stochastic differential equation for dY_t . The equation may contain Y_t and constants, but not X_t .

5. Solve the stochatic differential equation

$$dY_t = -Y_t dt + dW_t, Y_0 = 1$$

If you are have no clues you may try a substitution $Z_t = f(t)Y_t$. Do not forget that the final answer may contain integrals that can't be calculated explicitly. It's ok.

- 1. The process (u_t) is a white noise with variance $\mathbb{V}\mathrm{ar}(u_t) = \sigma^2$. Consider the process $b_t = t^2 + 6t + (1 2L)^2 u_t$.
 - (a) Write explicit expression for (b_t) without lag operator L.
 - (b) Find $\mathbb{E}(b_t)$ and $\mathbb{V}ar(b_t)$.
 - (c) Find $\mathbb{C}ov(b_t, b_{t-k})$ and $\mathbb{C}orr(b_t, b_{t-k})$.
 - (d) Is the process (b_t) weakly stationary?
- 2. Let (u_t) be a white noise process with variance $\mathbb{V}ar(u_t) = \sigma^2$ and

$$y_t = 1 + u_t + 0.7u_{t-1} + 0.7^2u_{t-2} + 0.7^3u_{t-3} + \dots$$

- (a) Find $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$.
- (b) Find $Cov(y_t, y_{t-k})$.
- (c) Is (y_t) weakly stationary?
- (d) Sketch the autocorrelation function of (y_t) if it is weakly stationary.
- 3. Provide an example of two dependent processes (a_t) and (b_t) such that each of them is weakly stationary, but their sum is not weakly stationary.
- 4. Consider three variables (y_1, y_2, y_3) that are jointly normal

$$y \sim \mathcal{N}\left(\begin{pmatrix} 2\\6\\11 \end{pmatrix}; \begin{pmatrix} 16 & 0 & -1\\0 & 4 & 1\\-1 & 1 & 4 \end{pmatrix}\right).$$

Find \mathbb{C} orr (y_1, y_2) and partial correlation p \mathbb{C} orr $(y_1, y_2; y_3)$.

- 5. Let $y_t = 5 + u_t + u_{t-1} + u_{t-2}$ where (u_t) is a white noise with variance $\mathbb{V}ar(u_t) = \sigma^2$.
 - (a) Is the process (y_t) weakly stationary?
 - (b) Find the autocorrelation function ρ_k for this process.
 - (c) Find the first two values of the partial autocorrelation function, ϕ_{11} and ϕ_{22} .
- 6. [bonus] Variables u_1 and u_2 are independent $\mathcal{N}(0;1)$. Consider the process $y_t = u_1 \cos(\pi t/2) + u_2 \sin(\pi t/2)$.
 - (a) Find $\mathbb{E}(y_t)$, $\mathbb{V}ar(y_t)$, $\gamma_k = \mathbb{C}ov(y_t, y_{t+k})$.
 - (b) Is (y_t) weakly stationary?
 - (c) Can (y_t) be represented as $MA(\infty)$ process with respect to *some* white noise, not necessary (u_t) ?

Your know additionally that $y_{100} = 0.2024$.

- (d) What is your best point prediction for y_{104} ?
- (e) What is the shortest prediction interval that covers y_{104} with at least 95%-probability?

- 1. Consider the stationary AR(1) process with equation $y_t = 5 + 0.3y_{t-1} + u_t$ where (u_t) is a white noise.
 - (a) Find all values of the autocorrelation function ρ_k .
 - (b) Find all values of the partial autocorrelation function ϕ_{kk} .
- 2. Consider the stationary AR(2) process with equation $y_t = 5 + 0.3y_{t-1} 0.02y_{t-2} + u_t$ where (u_t) is a white noise.
 - (a) Find the first two values of the autocorrelation function: ρ_1 and ρ_2 .
 - (b) Find all values of the partial autocorrelation function ϕ_{kk} .
- 3. Consider the stationary ARMA(1,1) process with equation $y_t = 1 + 0.5y_{t-1} + u_t 0.7u_{t-1}$ where (u_t) is a white noise.
 - (a) Find μ , δ_1 and δ_2 in the $MA(\infty)$ representation of the process

$$y_t = \mu + u_t + \delta_1 u_{t-1} + \delta_2 u_{t-2} + \dots$$

- (b) Assume that $Var(u_t) = 9$, $u_{100} = -2$ and $y_{100} = 3$. Find 95% predictive interval for y_{101} and y_{102} .
- 4. The semi-annual y_t is modelled by ETS(AAA) process:

$$\begin{cases} u_t \sim \mathcal{N}(0;4) \\ s_t = s_{t-2} + 0.1u_t \\ b_t = b_{t-1} + 0.2u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + b_{t-1} + s_{t-2} + u_t \end{cases}$$

Given that $s_{100}=2$, $s_{99}=-1.9$, $b_{100}=0.5$, $\ell_{100}=4$ find 95% predictive interval for y_{102} .

- 5. Consider the equations (A) $y_t = 4 + 0.6y_{t-1} 0.08y_{t-2} + u_t$, (B) $y_t = 4 + 0.6y_{t-1} + 1.6y_{t-2} + u_t$ and (C) $y_t = 4 + 0.6y_{t-1} + 0.4y_{t-2} + u_t$. Assume that (u_t) is a white noise.
 - (a) How many non-stationary solutions does each equation have?
 - (b) How many stationary solutions does each equation have?
 - (c) How many stationary solutions that are $MA(\infty)$ with respect to (u_t) does each equation have?
- 6. (bonus) Consider the process

$$y_t = \frac{1 - 0.5F}{1 - 0.5L} u_t,$$

where (u_t) is a white noise and F is the forward operator, $Fu_t = u_{t+1}$.

- (a) Write explicit expression for (y_t) without lag nor forward operator.
- (b) Is (y_t) a white noise?