STAT 6338 4 PROBLEM 26.11

1 Problem 21.6

	Source	SS	df	MS
	Blocks	433.3667	9	48.152
a)	Training methods	$1,\!295.0$	2	647.5
	Error	112.3333	18	6.241
	Total	1,840.7	29	

- b) $\bar{Y}_{.1} = 70.6, \, \bar{Y}_{.2} = 74.6, \, \bar{Y}_{.3} = 86.1$
- c) H_0 : all τ_j equal zero, H_a : not all τ_j equal zero. $F^* = 103.754 > F(.95, 2, 18) = 3.55$. Conclude H_a .

d)
$$\hat{D}_1 = \bar{Y}_{.1} - \bar{Y}_{.2} = -4.0, \ \hat{D}_2 = \bar{Y}_{.1} - \bar{Y}_{.3} = -15.5, \ \hat{D}_3 = \bar{Y}_{.2} - \bar{Y}_{.3} = -11.5, \ s(\hat{D}_i) = 1.1172,$$

 $q(.9, 3, 18) = 3.10, \ T = 2.191.$
 $-6.45 \le D_1 \le -1.55, \ -17.95 \le D_2 \le -13.05, \ -13.95 \le D_1 \le -9.05$

2 Problem 21.18

 $\hat{E} = 3.084$

3 Problem 26.10

	Source	SS	df	MS
	States (A)	6976.84	2	3488.42
a)	Cities B(A)	167.6	6	27.933
	Error	3893.2	36	108.1441
	Total	11,037.64	44	

b) $F^* = 32.257 > F(.95, 2, 36) = 3.26.$

Conclude H_a : not all α_i equal zero. (i=1, 2, 3).

c) $F^* = .258 < F(.95, 6, 36) = 2.36$.

Conclude H_0 : all $\beta_{j(i)}$ equal zero.

d) $\alpha \leq .1$

4 Problem 26.11

a) $\bar{Y}_{11.} = 40.2, \ s(\bar{Y}_{11.}) = .4651, \ t(.975, 36) = 2.028,$ $30.77 \le \mu_{11} \le 49.63$

STAT 6338 6 PROBLEM 28.23

b) $\bar{Y}_{1..} = 40.8667$, $\bar{Y}_{2..} = 57.3333$, $\bar{Y}_{3..} = 26.8667$, $s(\bar{Y}_i) = 2.6851$, t(.995, 36) = 2.7195, $33.565 \le \mu_1 \le 48.169$, $50.031 \le \mu_2 \le 64.635$, $19.565 \le \mu_3 \le 34.169$

c)
$$\hat{L}_1 = \bar{Y}_{1..} - \bar{Y}_{2..} = -16.4666$$
, $\hat{L}_2 = \bar{Y}_{1..} - \bar{Y}_{3..} = 14.0$, $\hat{L}_3 = \bar{Y}_{2..} - \bar{Y}_{3..} = 30.4666$, $s(\hat{L}_i) = 3.7973$, $q(.90, 3, 36) = 2.998$, $T = 2.12$

$$-24.52 \le L_1 \le -8.42, 5.95 \le L_2 \le 22.05, 22.42 \le L_3 \le 38.52$$

d)
$$\hat{L} = 12.4$$
, $s(\hat{L}) = 6.5771$, $t(.975, 36) = 2.028$, $-.94 \le L \le 25.74$

5 Problem 28.22

The correlation coefficient between the ordered residuals and their expected values under normality is 0.98. The residuals are random and normally distributed.

6 Problem 28.23

Source	df	SS	MS
Period	3	0.00592	0.00197
Subject	3	0.03462	0.01154
Treatment	3	0.4333	0.14444
Drug X	1	0.22801	0.22801
Drug Y	1	0.19581	0.19581
XY Interactions	1	0.00951	0.00951
Residuals	6	0.00904	0.00151
Total	15	0.48291	

Page 2 of 3

STAT 6338 6 PROBLEM 28.23

a) The model to be used is:

$$Y_{ijkl} = \mu... + \rho_i + \kappa_j + \alpha_k + \beta_l + (\alpha\beta)_{kl} + \varepsilon_{ijkl}$$

b) <u>Hypotheses</u>:

 H_0 : All $(\alpha\beta)_{kl} = 0$ (There's no interaction between the two drugs)

 H_1 : At least one $(\alpha\beta)_{kl} \neq 0$ (There's interaction between the two drugs)

at 10% significance level

Test Statistics:

$$F^* = \frac{MSXY}{MSE} = \frac{0.00951}{0.00151} = 6.298$$

<u>Decision</u>: If $F^* > F_{(0.9,1,6)} = 3.776$, we reject H_0 , otherwise we fail to reject H_0 .

<u>Conclusion</u>: Since $F^* = 6.298 > 3.776$, we reject H_0 and conclude that there is interaction effect between Drugs X and Y.

c)
$$\bar{Y}_{..1} = 0.0050, \, \bar{Y}_{..2} = 0.1950, \, \bar{Y}_{..3} = 0.1775, \, \bar{Y}_{..4} = 0.4650, \, t_{(0.95.6)} = 1.943, \, s\{\hat{L}\} = 0.0389$$

$$\hat{L} = \bar{Y}.._2 - \bar{Y}.._1 - \bar{Y}.._4 + \bar{Y}.._3 = 0.1950 - 0.0050 - 0.4650 + 0.1775 = -0.0975$$

$$\hat{L} \pm t_{(0.95,6)} s\{\bar{Y}\} \qquad \Longrightarrow \qquad -0.0975 \pm 1.943 (0.0389) \qquad \Longrightarrow \qquad -0.1731 \leq L \leq -0.0219$$