Minimization Engines

Overview

- The theory (pretty pictures and lots of math)
 - Traditional minimization methods
 - Stochastic exploration methods
 - ... and bounding conditions mixed in somewhere
- Specific engines and example applications
 - Super simple, but poor performance
 - Good methods that can go bad
 - Need to find the needle? Burn the haystack!
 (And sift through the ashes.)
- Uncertainties

"Traditional" minimization

Gradient descent

As simple as it gets, just go downhill

Newton's method

An improvement on the gradient descent method

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [Hf(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n), \ n \ge 0.$$
Hessian Gradient

The Hessian is the Jacobian of the gradient of F ... a.k.a. all second partial derivatives of F

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Gauss-Newton / Quasi-Newton

Don't know / want to compute the Hessian? No problem, but...

Gauss-Newton:

Only applicable for least-squared minimization problems

Quasi-Newton

- Various algorithms
- Analyze success applications of gradient → ~ Hessian
- Often already implemented, so use a library. E.g.:
 - SR1
 - BHHH
 - BFGS/L-BFGS

Levenberg-Marquardt

A "damped" least-squares method... it's all about the multiplier

Finds the (closest) local minimum, not necessarily the global minimum

Recall Gradient descent

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \delta_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

Multiplier found via:

$$(J^T J)\delta = J^T r(\mathbf{x})$$

In the LM algorithm, the descent id damped by lambda:

$$(J^T J + \lambda I)\delta = J^T r(\mathbf{x})$$

Or, more commonly:

$$(J^T J + \lambda \operatorname{diag}(J^T J))\delta = J^T r(\mathbf{x})$$

Stochastic Minimization

Random search

```
while search_not_done:
    x = random()
    if f(x) < f(x_best):
        x_best = x</pre>
```


Some variants apply bounding conditions on the step size:

- Fixed Step Size Random Search (FSSRS)
- Optimum Step Size Random Search (OSSRS)
- Adaptive Step Size Random Search (ASSRS)
- Optimized Relative Step Size Random Search (ORSSRS)

Metropolis-Hastings algorithm

Classic MCMC

- Start at some random location in the parameter space
- Propose a move from the current position

$$\alpha(\mathbf{x}_1, \mathbf{x}_2) = \begin{cases} \min \left[\frac{\pi(\mathbf{x}_2)q(\mathbf{x}_2, \mathbf{x}_1)}{\pi(\mathbf{x}_1)q(\mathbf{x}_1, \mathbf{x}_2)}, 1 \right], & \text{if } \pi(\mathbf{x}_1)q(\mathbf{x}_1, \mathbf{x}_2) > 0 \\ 1 & & \text{otherwise.} \end{cases}$$

Transition kernel enforces reversibility of moves

i.e.

- if the move is worse, you might go there
- if the move is better, go there

Simulated annealing

A modification to the Metropolis-Hastings algorithm

- Slowly decrease the probability of accepting a worse solution
- Requires an annealing schedule to be defined

Engines

Simple methods

Gridsearch

Adaptive Mesh Refinement (AMR)

MPFIT

Least-squares (Levenberg-Marquardt)

- Languages: IDL, C
- You define:
 - User function to compute the residuals
 - Minimizer stopping/step parameters
- Good
 - Permits fixed/linked variables
 - Explicit or numerical derivatives
- Bad
 - Recursion explicitly prohibited
 - Very sensitive to user-defined parameters.

Levmar

Least-squares (Levenberg-Marquardt)

- Languages: C
- You define:
 - User function to compute the residuals
 - Several parameters
- Good
 - Explicit or numerical derivatives
 - Supports both constrained and unconstrained problems.

MultiNest

Bayesian nested sampling

- Languages: Fortran, C/C++
- You define:
 - User function to compute the Bayesian evidence
 - A few stopping parameters
 - Bounds on all parameters
- Good
 - Permits wrapped variables
 - Computes best-fit values along with Bayesian evidence
 - Works very well in high-dimensions
 - Ellipsoidal bounding conditions
- Bad
 - Highly computationally intensive

Multi-modal example

Multinest application: Star detection

Uncertainties

How do engines derive uncertainties?

$$\Sigma = \begin{bmatrix} E[(X_1 - \mu_1)(X_1 - \mu_1)] & E[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & E[(X_1 - \mu_1)(X_n - \mu_n)] \\ E[(X_2 - \mu_2)(X_1 - \mu_1)] & E[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & E[(X_2 - \mu_2)(X_n - \mu_n)] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_n - \mu_n)(X_1 - \mu_1)] & E[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & E[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}$$

Most engines ignore covariance when reporting uncertainties

$$\sigma^{2} = \operatorname{var}(X_{i})$$

$$= \operatorname{E}[(X_{i} - \operatorname{E}(X_{i}))^{2}]$$

$$= \operatorname{E}[(X_{i} - \operatorname{E}(X_{i})) \cdot (X_{i} - \operatorname{E}(X_{i}))]$$

And the reported uncertainties do not propagate any systematic errors in the data.

Most engines significantly underestimate uncertaintes

Symmetric error bars are probably not right for optical interferometry

Stellar Parameters

Orbital parameter

Disk Parameters

Bootstrapping

Better uncertainty estimates

Derive uncertainties for an unknown distribution

- Procedure:
 - Fit real data once, store best-fit values
 - Repeat many (1k-10k) times:
 - Select N data at random from initial data set (of size N)
 - Take into account any correlations in the data
 - Repeated values are expected
 - Redistribute nominal values
 - Fit data, store best-fit results
 - Create a histogram of best-fit values
 - Derive uncertainties from this distribution

Bootstrapping example

