Chapter 3 Borne supérieure dans $\mathbb R$

3.1 Majorant, minorant

Solution 3.1

Pour que \mathbb{N} soit majoré, il faudrait qu'il existe un réel M tel que, quel que soit n naturel, $n \leq M$; il faudrait donc que ce soit le même réel qui majore chaque naturel; or dans le texte, on a changé de majorant pour chaque naturel.

Solution 3.2

- 1.] − 4,6] est une partie bornée de ℝ. Elle est minorée par −35, majorée par 212. Elle a pour plus grand élément 6 mais n'a pas de plus petit élément.
- **2.** [-1,0[est une partie bornée de \mathbb{R} . Elle est minorée par -35, majorée par 212. Elle n'a pas de plus grand élément; son plus petit élément est -1.
- 3. $[3, +\infty[$ est minorée, non majorée, $min([3, +\infty[) = 3.$
- **4.** \mathbb{R}^* n'est ni majorée, ni minorée.
- 5. Z n'est ni majorée, ni minorée.
- **6.** N n'est pas majorée. Elle est minorée et a pour plus petit élément 0.
- 7. $\{x \in \mathbb{R}, x^2 \le 2\} = [-\sqrt{2}, \sqrt{2}]$. Cette partie de \mathbb{R} est bornée, son plus grand élément est $\sqrt{2}$, son plus petit élément est $-\sqrt{2}$.
- **8.** $[0, \pi] \cap \mathbb{Q}$ est une partie bornée de \mathbb{R} . Elle est minorée par 0, qui est sont plus petit élément. Elle est majorée par π , mais n'a pas de plus grand élément.
- 9. $]0, \pi[\cap \mathbb{Q}]$ est une partie bornée de \mathbb{R} . Elle est minorée par -35, majorée par 212. Elle n'a pas de plus grand élément, ni de plus petit élément.

Solution 3.3

3.2 Théorème de la borne supérieure

Solution 3.4

- **1.** Montrons que $\sup(]0, 1[) = 1$.
 - Le réel 1 est un majorant de]0, 1[car pour tout $x \in]0, 1[$, on a $x \le 1$.
 - Montrons que 1 est le plus petit des majorants. Soit μ un autre majorant de]0, 1[, et supposons que μ < 1.

Dans ce cas, il existe un z tel que $\mu < z < 1$. On pose $x = \max\left\{\frac{1}{2}, z\right\}$ (pour être sûr d'avoir x > 0), alors

$$x \in]0, 1[$$
 et $x \ge z > \mu;$

ce qui contredit le fait que μ est un majorant.

Ainsi, 1 est le plus petit des majorant de]0,1[, c'est-à-dire sup (]0,1[)=1. De plus, $1 \notin]0,1[$, donc]0,1[n'a pas de plus grand élément.

- Le réel 0 est un minorant de]0, 1[car pour tout $x \in]0, 1[$, on a $x \ge 0$.
- Montrons que 0 est le plus grand des minorants. Soit μ un autre minorant de]0, 1[, et supposons qu $\mu > 0$. On pous $x = \min \left\{ \frac{1}{2}, \frac{\mu}{2} \right\}$, alors

$$x \in]0,1[$$
 et $x \le \mu;$

ce qui contredit le fait que μ est un minorant.

Ainsi, 1 est le plus grand des minorant de]0,1[, c'est-à-dire sup (]0,1[)=0. De plus, $0 \notin]0,1[$, donc]0,1[n'a pas de plus petit élément.

2. De manière analogue à la question précédente, on a sup ([0,1[) = 1 et [0,1[n'a pas de plus grand élément.

De plus, $0 \in [0, 1[$ et pour tout $x \in [0, 1[$, on a $0 \le x$. Ainsi 0 est le plus petit élément de [0, 1[, c'est donc également sa borne inférieure : inf[0, 1[= 0 (inutile de refaire la preuve)].

3. L'intervalle $]1, +\infty[$ n'est pas majoré : il n'a ni borne supérieure, ni plus grand élément.

L'intervalle]1, $+\infty$ [et minoré par 1. De plus, si $\mu > 1$, alors il existe $x \in \mathbb{R}$ tel que $1 < x < \mu$ (par exemple $x = \frac{1+\mu}{2}$. Ainsi

$$x \in]1, +\infty[$$
 et $x < \mu$

donc μ n'est pas un majorant de]1, + ∞ [.

Ainsi, inf]1, $+\infty$ [= 1 et puisque 1 \notin]1, $+\infty$ [, cet intervalle n'a pas de plus petit élément.

- **4.** \mathbb{N} n'est pas majoré : il n'a ni borne supérieure, ni plus grand élément. De plus, $0 \in \mathbb{N}$ et pour tout $n \in \mathbb{N}$, $0 \le n : 0$ est le plus petit élément de \mathbb{N} . On a donc également inf $\mathbb{N} = \min \mathbb{N} = 0$.
- 5. Notons $A = \left\{ \left. \frac{1}{n} \mid n \in \mathbb{N}^* \right. \right\}$. Pour $n \in \mathbb{N}^*$, $\frac{1}{n} \le 1$ et $1 \in A$, donc $1 = \max A = \sup A$.

Pour $n \in \mathbb{N}^*$, $0 \le \frac{1}{n}$, donc 0 est un minorant de A. Soit $\mu > 0$, le caractère Archimédien de \mathbb{R} montre qu'il existe $n_0 \in \mathbb{N}$ tel que

$$\frac{1}{u} < n_0.$$

(Explicitement, on peut prendre $n_0 = \lfloor 1/\mu \rfloor + 1$). On a donc

$$\frac{1}{n_0} \in A \text{ et } \frac{1}{n_0} < \mu,$$

donc μ n'est pas un minorant de A. Ainsi inf A = 0 et A n'a pas de plus petit élément $(0 \notin A)$.

6. On a $B = \{ x \in \mathbb{R} \mid x^2 \le 2 \} = [-\sqrt{2}, \sqrt{2}]$. Il est facile de voir que $-\sqrt{2}$ est son plus petit élément et $\sqrt{2}$ son plus grand élément. Ainsi

$$\inf B = \min B = -\sqrt{2} \quad \text{ et } \quad \sup B = \max B = \sqrt{2}.$$

7. Notons $C = \{ x \in \mathbb{Q} \mid x^2 \le 2 \} = \{ x \in \mathbb{Q} \mid -\sqrt{2} \le x \le \sqrt{2} \}.$

Le réel $\sqrt{2}$ est un majorant de C. De plus, si $\mu < \sqrt{2}$, alors $\min(\mu, 0) < \sqrt{2}$ et il existe un rationnel $z \in \mathbb{Q}$ tel que $\mu < z < \sqrt{2}$. Ainsi

$$z \in C$$
 et $z > \mu$;

donc μ n'est pas un majorant de C. On a donc sup $C=\sqrt{2}$, et puisque $\sqrt{2} \notin C$, C n'a pas de plus grand élément.

De manière analogue, inf $C = -\sqrt{2}$ et C n'a pas de plus petit élément.

Solution 3.5

Solution 3.6

Puisque les chiffres α_k sont les même pour x et x_k pour $h \le k$; et vérifiant $\alpha_k \ge 0$ pour h > k, on peut donc écrire $x_k \le x$ et x est un majorant de X.

S'il en existait un plus petit M, sont développement décimal propre s'écrirait $n_1, \beta_1 \dots \beta_k \beta_{k+1} \dots \beta_n \dots$ Puisque M < x, on a $\beta_k = \alpha_k$ pour tous les indices h inférieures ou égaux à un certain entier N-1, puis $\beta_N < \alpha_N$. Mais alors $M < x_N$ et M ne majore pas X.

Pour que $x = \max X$, il faut et il suffit que $x \in X$, ce qui exige que les α_k soient nuls au delà d'un certain rang, donc que x soit un décimal. La réciproque est évidente.

De la même manière, on montre que si x < 0, c'est la borne inférieure de X.

Solution 3.7

Puisque M > 0, et que M est le plus petit des majorant de A, 0 n'est pas un majorant de A: il existe $x_0 \in A$ tel que $x_0 > 0$.

Solution 3.8

Solution 3.9

Solution 3.11

Solution 3.12

Solution 3.13

Solution 3.14

1. Montrer que $\sup (f(A)) \le f(\sup A)$ revient à démontrer que $f(\sup A)$ est un majorant de f(A).

Soit $y \in f(A)$, il existe $x \in A$ tel que y = f(x). Or $x \in A$ donc $x \le \sup A$. De plus, f est croissante donc $y = f(x) \le f(\sup A)$.

On a donc

$$\forall y \in f(A), y \leq f(\sup A),$$

c'est-à-dire que $f(\sup A)$ est un majorant f(A). Or $\sup (f(A))$ est le plus petit des majorant de f(A) d'où

$$\sup (f(A)) \le f(\sup A).$$

2. Posons

$$f: \mathbb{R} \to \mathbb{R} \qquad \text{et} \qquad A = [0, 3[.$$

$$x \mapsto \begin{cases} x & : x < 3 \\ x + 8 & : x \ge 3 \end{cases}$$

L'application f est croissante. De plus,

- f(A) = [0, 3[donc sup(f(A)) = 3,
- $\sup A = 3$ et $f(\sup A) = f(3) = 11$.

On a donc bien $\sup (f(A)) < f(\sup A)$.

Solution 3.15

Solution 3.17 Un théorème de point fixe

3.3 Les dix types d'intervalles de \mathbb{R}

Solution 3.18

On peut traiter les $10 \times 10 = 100$ cas à la main. Il vaut mieux utiliser le caractère convexe des intervalles. Soit A et B deux intervalles de \mathbb{R} . Montrons que $A \cap B$ est convexe, donc un intervalle de \mathbb{R} . Soit $x, y \in A \cap B$ tels que x < y et soit $z \in [x, y]$.

- $(x, y) \in A^2$ et A est un intervalle, donc $z \in A$,
- $(x, y) \in B^2$ et B est un intervalle, donc $z \in B$.

Ainsi $z \in A \cap B$.

Conclusion

 $A \cap B$ est un intervalle de \mathbb{R} .

3.4 La droite achevée $\overline{\mathbb{R}}$