# Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source

### **Objective of work**

There are multiple preparation methods of graphene reported. However, Molecular Beam Epitaxy (MBE) grow method provides a better control on growth time, chamber pressure and substrate temperature. This work will probe the efficiency for growing graphene on Pt(111) and Au(111) using MBE.

### Sample description

Two tantalum bars connected through a glassy carbon filament in an Ultra High Vacuum (UHV) received a DC current of 14 A (110 W) to reach evaporation condition (2000 °C). The substrate, either Pt(111) or Au(111), were placed at 20 mm of the carbon source while were annealed at 650 °C and 550 °C respectively.

## **Equipment and conditions for scanning** tunneling microscope

The measurement was performed at a base pressure of 1x10^-10 mbar at room temperature. The STM images were obtained using an Omicron VT-STM operated with Nanotec's WSxM. The deposition rate of carbon on substrate was estimated around 3x10^-4 ML/s.

STM picture showing graphene moirés separated by grain boundaries. Size= 65nm x 65nm, V=-35.7 mV, I=0.04 nA

### Platinum (111)



Atomic resolution image of graphene on platinum. The angle between the direction of moire bumps and atoms line is 16.5° Size 8 nm x 8 nm, V=-3507 mV, I= 0.04 nA

### **Gold (111)**



STM picture showing dendritic (darker) of graphene above of the gold. Size (red arrows) with several types of moirés. The gold 350 nm x 350 nm, I=4 pA, V=-1241 mV.





pographic profile described by

### Results

Using STM technique, they concluded that the graphene layer was deposited about 50% of the Pt surface with 650°C. With respect of the gold substrate, the apparition of graphene on the surface is presented as dendritic islands. These islands are generated by the small electrical conductivity between graphene-gold or adsorbates on the STM tip. They tried to form graphene on Pt at 550 °C. However, it was formed an unordered carbonaceous growth.

