Effect of State-Level Stay-At-Home Orders on Non-Essential Movement

Aditya Bajaj, Ruby Han, Gerrit Lensink, Sumedh Shah

Background

Motivation

- Minimal federal restrictions at beginning of pandemic
- Many states imposed stay-at-home orders

So What?

- Quantify the effectiveness of at-home orders
- How well might similar policies work in the future?

Research Question

How effective are stay-at-home orders in reducing non-essential travel?

Variables

Variable Name	Variable Type	Description	
Non-essential mobility (outcome)	Numeric variable	Percent change in retail/rec mobility compared to baseline	
Stay-at-home order	Indicator variable	1 if state is under stay-at-home order, else 0	
Duration of stay-at-home order	Numeric variable	Number of days a state has been in quarantine at date 't'	
Mask order	Indicator variable	1 if state is under mask order, else 0	
Population density	Numeric variable Population density for state		
New covid cases	Numeric variable	New covid case count (normalized)	

Models

Base Model

	$Dependent\ variable:$	
	avg_retail_rec_change	
at_home_order	-21.965***	
	(0.300)	
Constant	-9.322***	
	(0.115)	

- Stay-at-home orders influenced a 22% decrease in non-essential mobility
- Holding stay-at-home order constant, 9% decrease in non-essential mobility

Primary Model

	Dependent variable:			
	avg_retail_rec_change			
	(1)	(2)		
at_home_order	-21.965^{***}	-28.379***		
	(0.300)	(0.355)		
quarantine_length		0.082***		
quaramomo_rangan		(0.003)		
mask_order		-3.398***		
		(0.207)		
population_density		-0.003***		
– .		(0.0001)		
new_cases_per_100k		-0.070***		
		(0.005)		
Constant	-9.322^{***}	-4.748***		
	(0.115)	(0.193)		

- Stay-at-home orders influenced a 28% decrease in non-essential mobility
- Extended stay-at-home orders are related to an increase in non-essential travel
- Mask orders have a small (4%) impact on mobility
- Population density and new cases have limited impacts on mobility, but are necessary controls

Over-Specified Model

Table 1: Regression Results					
	Dependent variable:				
	avg_retail_rec_change				
	(1)	(2)	(3)		
at_home_order	$-21.965^{***} \ (0.300)$	$-28.379^{***} \ (0.355)$	-25.614^{***} (0.318)		
quarantine_length		0.082*** (0.003)	0.086*** (0.003)		
mask_order		-3.398*** (0.207)	-4.097*** (0.182)		
population_density		-0.003^{***} (0.0001)	$-0.003^{***} \ (0.0001)$		
new_cases_per_100k		$-0.070^{***} \ (0.005)$	0.009** (0.004)		
new_cases			-0.0003^{***} (0.00004)		
population			0.00000*** (0.000)		
avg_parks_change			0.106*** (0.002)		
Constant	-9.322*** (0.115)	-4.748*** (0.193)	-11.026*** (0.229)		

- Stay-at-home orders influenced a ~25% decrease in non-essential mobility
- Coefficients of quarantine length and population density effectively same as before
- Split effect between new cases per 100K residents and new cases
- For every percent increase in mobility at parks, 0.1% increase in non-essential mobility

Conclusion

Result

- <u>Strong</u> negative link between stay-at-home orders and non-essential mobility - 28%
- Significant <u>negative</u> correlation
 - Face Mask Mandate
 - State-normalized New COVID-19 Cases per Day
 - Population Density
- Significant positive correlation
 - Stay-at-home Duration

Omitted variables

- Demographic and Socioeconomic Factors
- Age
- Medical Risk
- Political Affiliation

Practical Significance

- Impose stay-at-home orders but of reasonable length
- Publish local COVID trends