Análisis de Redes Sociales

Guillermo Jiménez Díaz (gjimenez@ucm.es) Alberto Díaz (albertodiaz@fdi.ucm.es)

22 de octubre de 2014

Prefacio

Estos son los apuntes de la asignatura Análisis de Redes Sociales, impartida en la Facultad de Informática de la Universidad Complutense de Madrid por los profesores Guillermo Jiménez Díaz y Alberto Díaz, del Departamento de Ingeniería del Software e Inteligencia Artificial.

Este material ha sido desarrollado a partir de distintas fuertes, destacando como referencia principal el libro *Network Science* de Laszlo Barabasi, el material de la asignatura *Social Network Analysis*, impartido por Lada Adamic a través de Coursera, y las transparencias de la asignatura Redes y Sistemas Complejos, creadas por Oscar Cordón García de la Universidad de Granada.

Tema 3: Redes libres de escala

Tal y como hemos visto en el capítulo anterior el modelo de Erdös-Renyi o de red aleatoria presenta algunas propiedades que no se cumplen en las redes reales. De entre ellas destacamos que el modelo de redes aleatoria no contempla la existencia de hubs o concentradores, nodos con un grado mucho mayor que el resto de nodos de la red.

En este tema vamos a estudiar un nuevo modelo de red que se ajusta mucho mejor a las redes reales, conocido como **redes libres de escala**.

3.1 La WWW: el primer mapa de red no aleatoria

En 1999 un grupo de investigadores realizó el primer mapa de una porción de la WWW con el objetivo de verificar las propiedades de los modelos de red aleatoria en este sistema complejo de páginas y enlaces. Hasta aquel momento había razones suficientes para suponer que esta red seguía este modelo de red

aleatoria. Compusieron el mapa del dominio nd.edu, con un total de 300000 documentos (nodos) y 1,5 millones de enlaces.

Aunque a primera vista parecía que este mapa cumplía esa aleatoriedad predicha por el modelo. Sin embargo, se pudo observar que, conviviendo con un gran número de nodos de grado pequeño, existen nodos con un número excepcional de enlaces: los hubs o concentradores. Recordemos que estos nodos son extremadamente improbables en las redes aleatorias por lo que este estudio dio lugar a replantearse que tal vez este modelo no era el que servía para modelar esta red. Así mismo, como veremos más adelante, se observó que estos hubs aparecen en otras muchas redes reales.

Figure 1: Mapa de la WWW: se puede ver la existencia de hubs.

Lo que sí que han demostrado que cumplen las redes reales de acuerdo a lo predicho por el modelo de red aleatoria es la **propiedad de los pequeños mundos**:

En un sistema complejo hay un camino de longitud *corta* entre cualquier par de nodos de la red que lo modela.

At a glance: Random networks

- Definition: N nodes, where each node pair is connected with probability p.
- Average degree: $\langle k \rangle = p(N-1)$
- Average number of links: $\langle L \rangle = \frac{p(N-1)}{2}$
- Degree distribution: $p_k = {N-1 \choose k} p^k (1-p)^{N-l-k}$.

For sparse networks (k \ll N), P_k has the Poisson form

$$p_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}.$$

Giant component (N_G):

dv < 1: no giant component $(N_6 \sim \ln N)$

1 < iki < lnN: one giant component and disconnected clusters

$$\left(N_G \sim N^{\frac{2}{3}}\right)$$

 $ds > \ln N$: all nodes join the giant component $N_G \sim (p - p_i)N$

- Average distance: $\langle d \rangle \propto \frac{\log N}{\log \langle k \rangle}$,
- Clustering coefficient: $C = \frac{\langle k \rangle}{N}$

30x 3.8

Figure 2: Cuadro resumen (extraído de Network Science, pp. 70)