Deformations (b): representability and Schlessinger's criterion

Brian Osserman

Leiture 1

Functors of Artin rings: representability & Schlessinger's criterion.

We've seen that a scheme X can be completely recovered from its functor of points. S (under mild hypotheses) the tangent space is recovered by booking at maps $Speck[i] \rightarrow X$

We'M bok at something in between: Spec $A \to X$, A local Artin ring (my image some $x \in X$)

From a moduli perspective, we're studying families over Spec A, we a fixed restriction to Spec k. These one called "infinitesimal thickenings". and the data obtained is the complete local ring" of the moduli space at the chosen point.

Recovering complete bed rings

(Temperary) notation. Art (k) is the cat. of local Artin rigs w residue field k. (morphism compatible of map to k).

hien X a locally nootherian scheme, and x + X, let

 $F_{X,x}: Ant(k) \longrightarrow Set$ given by $(A \longrightarrow h) \longmapsto \{Spec A \xrightarrow{b} X \text{ s.t. } b \circ (Spec k \longrightarrow Spec A)\}$

Prop. Given X locally noetherian scheme, $x \in X$, the canonical map $\widehat{O}_{X,X} \longrightarrow X$ induces F spec $\widehat{O}_{X,X} \longrightarrow F_{X,X}$, and any complete local hoeth. ring

a bijertion

0

residue field k R w spec R -> X inducing such a bijection is canonically isom. to Ox, re.

Rmh. Last part anticipates prorepresentability.

hoof The first statement is equil to saying any map Spec A -> X y image x factors uniquely through Spec (0x,x -> X.

It's an easy exercise that it factors through Spec Ox, x -> X (indeed this is true So we need Ox,x - A factors uniquely through bull ring A). $0_{X,x} \longrightarrow 0_{X,x}$. But since A is artin., so some power m_{∞}^n maps to 0 in A. i.e. $0 \times x \rightarrow A$ factors through $0 \times x \times m_{x}$

, so get factorization. through Ox,x. 2nd part point is that Ox,x/msc and R/mn both gie Artin rings & n. Using a Yoneda-style trick, construct compatible maps $R \longrightarrow \widehat{\mathcal{O}_{X,X}}/m_{\widehat{X}}$ & $\widehat{\mathcal{O}_{X,X}} \longrightarrow$ construct $O_{X,x} \gtrsim R$.

What data is in Ox,x ?

- dim of X at x. (1)
- "Singularity type" of X at x. something similar to a local ring of an analytic space.
- e.g. Lohen than, X smooth /k of dim n, $O_{X,X} \approx k[X_1,...,X_n]$.
- $, \hat{\theta_{x,x}} \simeq k \mathbb{I} u, v \mathbb{I} / (uv)$ even OX get $\widehat{O}_{XXX} \simeq k \mathbb{T}_{y}, + \mathbb{I}/(y^2 + t^3) \not\approx k \mathbb{T}_{S} \mathbb{I}$, a homeomorphism.

The functors of interest

We work in a relative setting: ne'll fix Λ a complete local noetherian ring w' res. field k, we'll consider $Art(\Lambda,k)$ of Artin local Λ - algebras w residue field k.

Nonstandard terminology: A predeformation functor is a (covariant) functor $F: Art(\Lambda, k) \longrightarrow Set$ sit. F(k) is the one point Set.

Roughly, these arise by considering tamilies over Spec A restricting to a fixed object over Speck. Starting up a global moduli functor, (an obtain a pre-deformation functor by choosing an object /k and restricting to Artin rings.

This doesn't always work new.

Lecture 2

Examples. For "nile" global moduli franctor, it works nell to simply restrict to Art (1, k) to obtain predeformation functors.

Ex Deformations of a closed subscheme.

Let $X \wedge be a$ scheme over $Spec \Lambda$, write X for $X \mid Spec k$. Let $Z \subset X$ be a closed subscheme. Def $Z, X : Art(\Lambda, k) \longrightarrow Set$ is defined by

 $A \longmapsto \left\{ Z_A \subset X_A \mid S_{Per}A \subset Closed subscheme, flat over A. \right\}$ $s.t. \quad Z_A \mid S_{Per}A = Z \quad \right\}.$

Some times, simple restriction of functors isn't so good.

Ex. Deformations of a scheme. Fix X/k.

Def χ is defined by $A \mapsto \{(X_A, \Psi) : X_A \text{ is flat over Spec } A$, $\Psi \colon X \longrightarrow X_A$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \land \qquad \downarrow \land$

Note: If we hairely restricted functors, we still get a pre-deformation functor, but it's behavior will be morse

Roblem comes from auts of X not extending to XA.

First that that for moduli problems involving automorphisms, functors to sets don't capture everything

Ex. Deformations of a quasicoherent sheaf.

Fix X_{Λ} over Sper Λ , set $X = X_{\Lambda}|_{k}$. Fix ξ a q.coh. sheaf on X.

Define Detz by $A \mapsto \{(\xi_A, \Psi): \xi_A \text{ is a q.coh. sheef on } X_A \mid_A, \text{ flat over } A.$ $\Psi: \xi_A \longrightarrow \xi \text{ inducing } \{\xi_A \otimes h \Longrightarrow \xi\} /\simeq.$

horepresentability and hulls.

Def. Given $F: Art(\Lambda, k) \longrightarrow Set$, let $\widehat{Art}(\Lambda, k)$ be the (at. ob complete local Noethorian Λ -algebras, and $\widehat{F}: \widehat{Art}(\Lambda, k) \longrightarrow Set$ defined by

 $\hat{F}(R) := \lim_{n \to \infty} F(R/m^n)$. We say F is prorepresentable if \hat{F} is representable.

: If we start of a global moduli problem, \hat{F} is not necessarily obtained by considering families over R. This is the issue of effectivizability, if next neek.

Det: Given F, F': Art $(\Lambda, k) \longrightarrow Set$, then $f: F \to F'$ is smooth if \forall Surjection $A \rightarrow > 13$ in $Art(\Delta/k)$, the map $F(A) \rightarrow > F(B) \times F(A)$ is surjective.

Recall T_F , the tangent space of F, is F(kEEJ).

Notation. Wien RE Art (A, K), denote hR: Art (A, K) -> Set the functor of points of Spar, $h_R(R') = M_{SR}(R,R')$, and \overline{h}_R is the restriction to $Art(\Lambda,k)$.

Let F le a predeformation functor. a pair (R, M), MFF(R) is a huy for F. if hk- F is smooth, and ThR - TF is an isom.

If (R, η) and (R', η') are hulls of F, then they are isomorphic. Left as an exercise.

Schlessinger's viterion

Det A surjective map $f: A \rightarrow B$ in Art (Δ, k) is a small thickening if kent $\geq k$, or equivalently, m_A . for f = 0, and for f is principal.

Ruk It's easy to check that any surjection in Art (A, k) (an be written as a sequence of sman thickenings.

Circa A' -> A, A" -> A

$$(x) \qquad F(A' \times A'') \longrightarrow \qquad F(A') \times F(A'')$$

[Ihm (Schlussinger) It F is a pre deformation functor, consider: (equi., small thickening) (equiv., small thickening) (H4) (+) is figurie whenever A=A"->>A. (*) is surjective when A" ->> A

(+) is bijertice when A" = k[E], A = k (H1)- (H3) (=) F has a how

(H1)-(144) (=) F is morepresentable. TE is first dim's

Lecture 3. Schlesinger . A'-> A, A'-> A

(*) $F(A_A^{\prime}A^{\prime\prime}) \longrightarrow F(A^{\prime\prime}) \times F(A^{\prime\prime})$

(H1) (*) is surj. if All - A is a small thickening

(Hz) (X) is bijentile if A = k, A"=k[i]

lH3) TF is finite-din'l

(H4) (X) is bijertice if A'= A'' and A'-> A is a small thickening.

Rmh . Fiber modules may seem strange. We'll come bout to this.

- · (H1) & (HZ) one essentially always sutisfied.
- · (H3) tends to be related to proporness.
- (H4) is related to presence of automorphisms

Det A predeformation functor F is a deformation functor it it satisfies (H2) & (H2).

Note (H3) makes sense for any deformation functor.

Detx

Det: Given $(X_A, \Psi) \in \text{Det}_X(A)$, an automorphism of (X_A, Ψ) (an infinitesimal ant. of X_A) is an aut. of X_A/A commuting by Ψ .

Thm, Let X be a scheme /k, and Defx the functor of deformations of X. Then

- (i) Det x is a definition fronto.
- (i'i) Pef x satisfies (H3) i6 x is proper.
- (iii) Defx satisfies (H4) iff $\forall A' \rightarrow A$ a small thickening and (XA', Ψ) own A', every automorphism of $(XA'|A, \Psi|A)$ is the restriction of an aut. of (XA', Ψ) .

In particular, if $H^{\circ}(X, Hom(N^{1}_{X/h}, U_{X})) = 0$, then (H4) is satisfied.

Con If X is proper, then Def x has a hull, and it further $H^0(X)$, $\mathcal{H}_{om}(\mathcal{N}_{X/k}, \mathcal{O}_X))=0$. Then Def x is prosepresentable.

Examples. It X is a smooth proper curve. then Detx has a hull, and Detx is prorepresentable = 972.

of Compatible ring & module home, and my $B = A \times A'', \quad N = M \times M''.$ and $M' \otimes M''$ are flat over $A' \otimes A''$, and:

(i) A" ->> A w nilp kernel

- (ii) u' induces an ison. $M' \otimes_{A} A \longrightarrow M$, and similarly for u''.

Then N is that over B, and p' induces $N\otimes A' \Longrightarrow M'$, and similarly for p'!.

Also, in the same situation, it we have L = B-module, and $q': L \Longrightarrow M'$ and $q'': L \Longrightarrow M''$ sit q' in duces $L\otimes A' \Longrightarrow M'$, then $q'xq'': L \Longrightarrow M'$ is an ison.

Note: This is more general than is necessary for Schlessinger, rince we don't restrict to Artin lord rings (then all flat modules one free).

Prop. Given $A' \to A$, $A'' \to A$, where $A'' \to A$ is surjective of nilp. Kerner, write $B = A' \times A''$, Then

(i) Given X' and X'' that over A' and A'', and an isom. $\varphi: x'|_A \implies x''|_A$, there exists Y' that over B, W' maps $X' \xrightarrow{\psi'} Y'$ and $X'' \xrightarrow{\psi'} Y'$ inducing isoms $X' \xrightarrow{\longrightarrow} Y|_{A'}$, $X'' \xrightarrow{\longrightarrow} Y|_{A''}$ $Spea B' \xrightarrow{\longrightarrow} Spea B$ and $\varphi = \Psi''|_A \circ \Psi^{-1}|_A$.

(ii) Given Y1, Y2 Hat over B, the nat'l map

Isom B (Y1, Y2)

Isom A! (Y1 | A1, Y2 | A1) × Isom A!! (Y2 | A11, Y2 | A11)

Isom (Y2 | A, Y2 | A)

is a bijection.

Broof (i) We'll construct Y on the same tops logical space on X'.

We identify the spaces of X'' and X''|A, and also X'|A using Y, and write $i: X'|A \rightarrow X'$. Set $O_Y(u) = O_{X'}(u) \times O_{X''}(i^{-1}(u))$ $O_{X'|A}(i^{-1}(u))$

So $\mathcal{O}_{Y} = \mathcal{O}_{X'} \times \mathcal{O}_{X'|A} \mathcal{O}_{X''}$.

The Lemma says that "Oy" is flat over B, and recovers Ox1 & Ox11 on restriction to A' & A". Also we check that Oy is in fact a sheat, and defines a scheme str. which boils down to module fiter product commutes of lorelization.

(ii) is similar, using 2nd part of the Lemma.

Proof of Thm (1) (H1) & (H2) satisfied.

(H1) follows from prop (t) . (H2) uses (ii) of Prop.

Wes A = k, so the φ in defin of Defx rigidity the isoms.

(iii) is similar . (ii) is true for smooth proper X from Martin's lecture.
See later lectures for general statements.

Lecture 4. The proof of Schlessinger's flux (*) $F(A' \times A'') \longrightarrow F(A') \times F(A'')$.

The Let F be a predefametion fractor.

F has a hull (=> (H1)-(H3) are satisfied.

F is prorep. (=> (H1)-(H4) are satisfied.

Prop. Let F be a deformation functor. and $A' \to A$ a [small] thickening of kernel I, F or every $\eta \in F(A)$, when the set of $\eta' \in F(A')$ restricting to η is nonempty, it has a transitive aution of $T_F \otimes I$. This action commutes of any morphism $F' \to F$ of deformation functors.

(H4) is satisfied \hookrightarrow \forall $A' \longrightarrow A$ [mall thickenings and all $q \in F(A)$, this action is free. (When ever the set is non empty).

Dets. A surjection $p:A' \rightarrow A$ in Art (Λ,k) is <u>essential</u> if $\forall q:A'' \rightarrow A''$ s.r. $p \circ q$ i) surj., then q is surj.

Lemme. If p is a small thickening, p is not essential (=> p has a section.

 $\frac{k}{2}$ \frac{k}

Prop If (H1)-(H3) are satisfied, then F has a hull

Proof: 2 parts: construct the hull, then prope it is one.

We'll constant (R,3), $R \in \widehat{Ant}(\Lambda,k)$, $3 \in \widehat{F}(R)$, s.t. $\widehat{h}_R \xrightarrow{3} F$ is smooth, and induces $T_R \longrightarrow T_F$.

Let n be the max'l ideal of Λ , $\alpha = \dim T_F$ ($<\infty$ by (H3))

Set $S = \Lambda [t_1, ..., t_n]$, let m be the max, ideal of S.

We'll construct R as S/J, where $J=\bigcap_{i>z} J_i$, and the J_i are constructed

inductively. $J_2 = m^2 + nS$, $S/J_2 = k[T_S^*] \approx k[t] \times \dots \times k[t]$

 $R_2 = S/J_2$, and we (Hz) to construct a $z \in F(R_2)$ $\frac{k}{r}$ the

Aduling a bjection TRZ => TF.

Suppose we have $R_{i-1} = S/J_{i-1}$, and $Z_{i-1} \in F(R_{i-1})$.

We'll choose It to be minimal among I satisfying

- m Ji-1 C J C Ji-1.

- \S_{i-1} (an be lifted to an ext. of $F(R_i = S/J_i)$

First cond's is preserved under arbitrary intersection. need to check that 2nd cond's is too.

Note. I satisfying first cond. = Vector subspaces of Jr-1/m Jr-1, which is finite-din't.

This implies enough to check pairwise intersections.

Suppose J, K satisfy our conditions, claim In K does too.

Again using Ji-1/m Ji-1, we can replace K Wo changing JAK, so that J+K = Ji-1.

Then $S/J \times S/K \simeq S/(J \cap K)$, so by (H1), we have some elt of $F(S/J \cap K)$

restricting to 3:-1, which means JAK satisfies our conditions.

So we can set Ji to be the minimal ideal satisfying our conditions. 8 choose 3; litting Set $J=\bigcap_i Ji$, R=S/J.

If $R_i = S/J_i$, because $m' \subset J_i$, we have $R = \lim_{n \to \infty} R/J_i$, and

J = him 3: makes sense. So (R, 3) is our prospertise hull.

TR = TF is immediate from choice of 3: , smoothness is harden.

Fix $p:A' \rightarrow A$ a small thickening, $\eta' \in F(A')$ s.t. $p(\eta') = \eta \in F(A)$.

and $u: R \rightarrow A$ s.t. $u(z) = \eta$. Want litt $u': R \rightarrow A'$ s.t. $u'(z) = \eta'$.

First construct any u' litting u.

Since A is an Artin ring, u factors through $R \rightarrow Ri$, some i.

P1 is a small thickening.

If he have a section, no problem.

If not, P1 is essential, choose w or above, must be surjective

Enough ken w > Ji+1. This follows from (H1).

So he have some h', he hant to have $h'(3) = \eta'$. But he have compatible

transitie actions of $T_{F} \otimes I \simeq T_{R} \otimes I$ of $F(p)^{-1}(q) & h_{R}(p)^{-1}(q)$

R-Al sir

R-A sends 3 to 1.

So I T+ TFOIL sending u'(3) to n'. Then

he can modify u' by t. and ne'll have the desired u' litting u, sending I to 11.

.

Lecture 5 (*) $F(A' \times A'') \longrightarrow F(A') \times F(A'')$

how of (nest of) Schlessinger's criterion. Already showed (H1)- (H3) \Rightarrow have a hull. Suppose F has a hull (R, 3). (H3) follows from $T_R \approx T_F$, and R noetherian \rightarrow dim $T_R < \infty$.

Now suppose ne have $p': A' \rightarrow A$, $p'': A'' \rightarrow A$ in Art (Λ, k) , M p' surjection. For (H1) want (*) surjective.

Suppose have $\eta' \in F(A')$, $\eta'' \in F(A'')$, both restricting to $\eta \in F(A)$. Since $\widehat{h}_R \to F$ is smooth, (by exercise), it is surjective, so $\exists u' : R \to A'$, six $u' (3) = \eta'$. Also, using smoothness applied to p'', $\exists u'' : R \to A'' \to u'' (3) = \eta''$. & $p'' \cdot u'' = p' \cdot u'$. Set $\Im = u'_X u'' (3) \in F(A'_X A'')$, this lifts (η', η'') and this proces (H1). For (H2), we assume A = k, A'' = k(i), want (*) injective. Suppose $v \in F(A'_X A'')$ also restricts to η' and η'' , want v = 3.

Keeping the same $u': R \rightarrow A'$, he apply smoothness to $A' \not k \ k \ (3) \rightarrow A'$ to obtain $q'': R \rightarrow k \ (3) = U' \times q'' \ (3) = U' \times q' \ (3) = U' \times$

This is (H2), so done i.e. hull = (H1)-(H3).

Now suppose (H1)-(H4) satisfied. (Chow have a hull $(R, \overline{3})$, hant that it provep. F. i.e. $\forall A$, have $h_R(A) \Rightarrow F(A)$. We prove this by induction on the length of A. Let $P: A' \to A$ be a small thickening, \forall bernul I, and suppose $h_R(A) \Rightarrow F(A)$, when f to conclude $h_R(A') \Rightarrow F(A')$.

D.

 $\forall \eta \in F(A)$, have that $h_R(p)^{-1}(\eta)$ and $F(p)^{-1}(\eta)$ are both pseudotossus under $T_F \otimes I \cong T_R \otimes I$, compatibly by functivality. But have surjection, so they must be in hijection. Since this holds for all $\eta \in F(A)$, have hijection $h_R(A') \Longrightarrow F(A')$, so (R, \overline{S}) proup. F by induction.

If F is prozep., then (*) is always bijertie. because $A' \times A''$ is a categorical fifer product in $A \cap (\Lambda, k)$.

Mre examples

Deforme tions of a quotient sheat

Let $X\Lambda$ be a scheme $/\Lambda$, w' a q coh. Sheat $E\Lambda$ White X, E for restriction to k. Fix $E \rightarrow P$ a q oh sheat q uotient.

Pet F, Σ sends A to $\{ \Sigma_{\Lambda} |_{A} \rightarrow F_{A} , \text{ restricting } to \Sigma \rightarrow F \text{ after } \otimes k \}$ flat over A

Note: no ants to norry about, could even have notion of equality of quotients coming from equality of kernels.

Thus Det F, E is a deformation functor, and satisfies (44).

If X_{Λ} is proper and Σ is wherent, then Def $_{F,\Sigma}$ satisfies (H3), so is prorep.

Note: For representability of global version (Quot scheme), need projective hypothesis.

But we see that the local behavior is still scheme like under properness hypothesis.

This hists at algebraic spaces.

Sketch of proof of thm

Culen A' -> A, A" -> A and FA', FA' both restricting to FA on A. Set $B = A' \times A''$, and set $F_B = F_{A'} \times F_{A''}$, get a [surjection] EB= EN | B → FB. EB → EA × EA" → FB not ruce. =, but OK.

This gives (HI), but he actually constructed an inverse to (*), so get (HZ), (H4) also.

The targent space to Det $F, \in \mathcal{C}$ is $H^{o}(X, Hom(G, F))$, $G = \ker(\Sigma \longrightarrow F)$. (exer.) Under hypothesis, this is finite-dim'l, so (H3) is satisfied.

Cor Given X1/1, and ZCX, then Det Z, X is a deformation functor, and satisfies (H4), It further & is proper / A, then (H3) is satisfied, so prorepresentable.

Proof En = OXA

liven XA, YA/A, f: X -> Y over k.

Det f sends A to $\{f_A: X_{\Lambda}|_{A} \to Y_{\Lambda}|_{A}$ over $A\}$ we graph immersion

Con. If X 1 & Y 1 are loc. f. type / 1., and X 1 flat over 1. Y 1 separated. Deff satisfies (H1), (H2), (H4). If XA & VA one proper, also (H3).

Lecture 6 Dimension of hulls

Mori used a lower found on dimension of a space of morphisms (in terms of tangent and obstruction spaces) as a key technical tool to proce amazing thms about existence 1200014

of rath curses on varieties.

Background on obstruction theory

bef. $A \stackrel{!}{\rightarrow} A$ in Art (Δ, k) is a thickening if it is surjective, we have $m_{A'} = 0$ i.e. ken π has a k-vec. sp. str.

Def. hien a pre-detronation bundon F, an obstruction theory for F is a cec Sp. V/k, and $\forall A' \xrightarrow{\pi} A$ thickenings, and all $\eta \in F(A)$, an elt $sb(\eta, A') \in V \otimes len \pi$, $Sit. (i) ob (\eta, A') = o \iff \exists \eta' \in F(A') \Rightarrow f \eta' |_{A} = \eta$ (ii) If $A' \xrightarrow{} A$ by $\ker (A' \xrightarrow{} A) = I$, $\ker (A' \xrightarrow{} B) = J$,

then of (η, B) is induced by of (η, A') . $V \otimes I \longrightarrow V \otimes I/J$.

Thm. Suppose F has a hull (R, 3) and an obstruction theory taking values in V, then $\dim \Lambda + \dim T_F - \dim V \leq \dim R \leq \dim \Lambda + \dim T_F$.

If Λ is regular, and the first inequality is an equality, then R is a complete intersection in Λ [t1,..., tr].

Lemma Suppose $F_1 \rightarrow F_2$ is a smooth morphism of predeformation functors, and we have an obstruction theory for F_2 taking values in V. Then we obtain an obstruction theory for F_1 taking values in V.

host lines $A' \rightarrow A$, $A \leftarrow F_1(A)$, set ob(A, A') = ob(b(A), A'). By smoothness, this satisfies (i), and (ii) is a diagram chase.

Proof of them. The Lemme reduces to the case $F = \overline{h}_R$ since by defin of a hull.

 $\overline{h}_R \to F$ is smooth and induces an dom. $T_R \simeq T_F$.

(et d= din TR, Schlessinger constructs Ras S/J, whore S= 1 [t2,..., td], so it's enough to prove that I can be gen. by s din V elts.

By the Artin-Rees Lemma, we have Jams c J.ms for some n. Set $A' = \Lambda \mathbb{C} t_1, \dots, t_d \mathbb{J} / (m_s \mathcal{J} + m_s^n)$, and $A = \Lambda \mathbb{C} t_1, \dots, t_d \mathbb{J} / (\mathcal{J} + m_s^n)$, this gies a thickening $0 \rightarrow I \rightarrow A' \rightarrow A \rightarrow 0$.

$$(J+m_s^n)/(m_sJ+m_s^n) = J/m_sJ$$

From the quotient map $R = S/J \longrightarrow A$, we have an obs. $\bar{h}_R(A)$ and an obstruction ob (3A, A') to lifting to a map R-7A'.

We can write $db(\overline{3}_{A}, A') = \sum_{j=1}^{dimV} v_j \otimes x_j$, where the v_j form a basis for VØI

 x_i are images of some $x_i \in J$.

Want to show the xj generate J. It's enough to see that the $\overline{x_j}$ gen. $I = J/m_c J$ by Nahayama. Consider $B = A'/(\bar{x_s})$, this smg. Anto A, y kernel I'.

We get $Ob(3_A, B) \in VOI'$. By functorialty, is zero, so we have a lift $R \rightarrow B$.

s fan J

R

Want:
$$J \subset m_s J + (x_i) + m_s^n$$

= ker $(s \rightarrow B)$

We can choose some 4: 5-5 making above commute by choosing 4(ti) appropriately. I commutes us the two maps to A, is the identity

Dan-16

modulo J+ms. In particular, 4 is the identity on ms/ms, so 4 is an isom.

So $\Psi^{-1}(J)$ C $J+m_s^n$. So J C $\Psi(J)+\Psi(m_s^n)$ m_s^n By commutativity of the square, $\Psi(J)$ C $m_sJ+(\chi_i)+m_s^n$, so J C $\Psi(J)+m_s^n$ C $m_sJ+(\chi_i)+m_s^n$.

Example. Say X, Y smooth varieties, $f: X \rightarrow Y$, consider Det f

Fact . tangent space is $H^{\circ}(X, I^{*}T_{Y})$, and those is an obstruction theory in $H^{1}(X, I^{*}T_{Y})$. It X is a curve, then $H^{\circ}-H^{1}$ of $I^{*}T_{Y}$ is $X(I^{*}T_{Y})$, and this is computed by Riemann - Roch.

Ex Petermatinos of a smooth surface X, Tongent space is $H^2(X,T_X)$, and there is an obstantion theory in $H^2(X,T_X)$. If we understand $H^0(X,T_X)$, then we can compute H^1-H^2 of T_X by computing $X(T_X)$ via Rieman-Roch.

as. if X has finite automorphism gp in char. 0, $H^0(X,T_X)=0$.

Latine 7. Effectivity & Algebraization

The remaining questions:

Q: (Effectivity) Suppose F is a deformation functor coming from a global problem, $R \in Art(\Lambda, k)$, and $\eta \in F(R)$, when does η tome from a family over Spa R for the original problem?

Q: (Algebraization) In same situation, above answer is yes, so we have 5th over Sper R, when is this induced from an algebraic object", e.g. from 5th. over R' of f. type/fase.

Effectivity

No general positive answer.

Main Tool for positive result is brothendieck's Existence Theorem.

Than f: X -> Spec A proper, A a complete local noetherian ring,

Let $A_n = A/m_A^{n+1}$, and $X_n = X \otimes A_n$.

Given $\{F_n\}$ a compatible system of whovent sheaves on X_n , $\exists F \circ n X$ whereat w $F|_{X_n} \simeq F_n$, $\forall n$.

This gives a positive answer for effectivity, in the Case of coherent sheaves on a proper scheme.

What about moduli of abstract schemes?

OK for curves, but fails for surfaces.

Specifically, fails for k3 surfaces $(k_X=0, H^1(x, U_X)=0)$

In this case, if we look at Debx, it looks like we have a 20 dim't moduli space.

Only 19 of them are algebraic.

In fact, have 20 dim't space of analytic k3 surfaces,

(algebraic locus is a countable union of 19-dim't subspaces).

Patch: work of moduli of polarized varieties (i.e., we a choice of an ample line bundle). It follows from GET (equiv. of cats version) that effectivity is satisfied for moduli of polarized (projectice) varieties.

2

Algebraization

Artin consider (uni)versal families, proves a positive result quite generally, using earlier approximation theorems. This requires: base S finite type over a field or an excellent Dedeknd domain (erg. Spec 2)

Pages

Pet: Let $F: Schs \rightarrow Set$ be a contravariant functor. We say F: S boundly of finite presentation over S it for all filtering projective systems of affine schemes $Z_A \in Sch_S$, we have $\lim_{n \to \infty} F(Z_A) = F(\lim_{n \to \infty} Z_A)$

Why this? EGA: if $F = h_X$, some $X \in Sch_S$, then this is equiv. to $X \rightarrow S$ being locally of fix-to presentation.

Votation & is a defamation functor,

(R,3), $3 \in \hat{F}(R)$ is smooth over R if the induced map $\bar{h}_R \to F$ is smooth. Art (Λ,k)

Then Suppose F: Schs \longrightarrow Set is locally of timb presentation, and $\eta_0 \in F(k)$, given some $Speck \longrightarrow S$ of fixth type, we image $S \in S$, Let R be a complete local netherian Us, s-algebra, we residue field k, and suppose we have $\mathfrak{F} \in F(R)$, which induces $\mathfrak{F} = \mathfrak{F}(R)$ over \mathfrak{F} , and $\mathfrak{F} = \mathfrak{F}(R)$ smooth over the local deformation functor corresponding to η_0 . Then $\mathfrak{F} = X$ of finite type S, S is also and S of S in S in S of S in S of S in S in

In general, this doesn't imply $\eta \mapsto \mathfrak{F}$ unboy \mathfrak{F} is uniquely determined by the \mathfrak{F}_n .

Then In situation "whose", and if \mathfrak{F} is uniquely determined by the \mathfrak{F}_n , then (X, x, η) is unique up to etale morphisms.

$$(x'', x'', \eta'')$$

oftale
 (x, x, η)
 (x', x', η')

Leiture 8. broupsid perspective

One nice property: when working of cats fibered, we can restrict naturally from global to local and get right result (e.g. we can specify pairs $(X_A, \Psi): X_A$ flet over A, $\Psi: X \longrightarrow X_A$ indusing $X \longrightarrow X_A \otimes k$.)

Det. A cat. cofibered in groupsids over C is a cat. filtered in grapoids over C°.

Det. A grapoid is trivial it I exactly one morphism from any object to any other.

"triv" trivial grapoid: any trivial grapoid is equive to Co.

Rook Artin uses (51'), Rim uses "homogeneous groupoids".

Pet. A cat, coffbered in groupsids over Ar+(1,k) is a deformation stack i's S_k is thinal, and $V A' \rightarrow A$, $A'' \rightarrow A$, he have

 $\begin{array}{c} \text{Mor}_{A'\times A''} & (\eta_1,\eta_2) \longrightarrow \text{Mor}_{A'} & (\eta_1|_{A''},\eta_2|_{A''}) \times \text{Mor}_{A''} & (\eta_1|_{A''},\eta_2|_{A''}) \\ \text{is a hijertion} & \text{Mor}_{A} & (\eta_1|_{A},\eta_2|_{A}) \end{array}$

(ii) Given $\eta' \in SA'$, $\eta'' \in SA''$, and $\psi: \eta'|_A \rightarrow \eta''|_A$, $\exists \psi \in SA'_A A''$ inducing η', η'', ψ on restriction.

Given S, we write f_S : Art $(\Delta, k) \longrightarrow Set$ for the functor of isom. classes.

Prop. Let S be a deformation stack, then Fg is a deformation function.

Proof Fs (k) is one pt set b/c Sk is trivial.

(H1) follows from (ii), (Hz) follows from (i). In fact get injectivity of (x) as long as A = k.

Page20

Rank. Although being a definetion stack is formally stronger than satisfying (H1) & (HZ), it seems in practice that any proof of (H1) & (HZ) is really a proof of the deformation stack condition.

See, Detx. Earlier proposition actually process the deformation stack conditions.

Lemma. If S is the local deformation problem at a point of an Artin Stack, then S is a deformation stack.

Ruk The argument for Lemme involves the "asymmetry of only A" —) A being sujective".

6/c we have to use the formal criterion for smoothness applied to the smooth over by a scheme.

[Lemma 1.4.4 of Olsson, Crystalline cohomology of stacks and Hyodo- Kato whomology]

More good properties of deformation stacks

$$A' \longrightarrow A$$
, $\eta \in SA$, $\{\eta' \in SA' : \eta' | A = \eta'\}/\sim$

ker I

$$\{(\eta', \psi) : \eta' \in SA', \ \psi : \eta' | A \longrightarrow \eta'\}/\sim$$
is a Pseudo-trish over $T_S \bowtie I$
 T_{F_S} .

 $-A' \longrightarrow A, \eta' \in SA', \ \varphi \in Aut \left(\eta' \mid_{A} \right), \ \left\{ \varphi' \in Aut \left(\eta' \right) \colon \ \varphi' \mid_{A} = \varphi \right\}$ is a form one. Aut $\left(\vec{J}_{E} \right) \otimes \vec{I}$, \vec{J}_{E} is third def. over k(E).

Prop. It S is a deformation stack, then F_S satisfies (H4) iff for $A' \rightarrow A$ and all $\eta' \in S_{A'}$, the map $Aut(\eta') \rightarrow Aut(\eta'|_A)$ is sinjective.

In fancier language, in a global setting, (HY) (=) the Isom functor is smooth at the identity.

Why deformation stack ?

Why all these ring fiter products?

Lemma: $A' \times A'' \longrightarrow A''$ $A' \times A' \longrightarrow A' \longrightarrow A''$ $A' \times A' \longrightarrow A''$ $A' \times A' \longrightarrow A''$ $A' \times A' \longrightarrow A' \longrightarrow A''$ $A' \times A' \longrightarrow A' \longrightarrow A''$

B c B'x B' (=> Spec B' 11 Spec B')

I schem - theoretically surj.
Spec B

- & corresponds to fiber product of schemes, i.e. "intersections" from the point of view of descent theory.