אלגברה לינארית 1 סמסטר ב' תשע"ח - תרגיל 11

עם איותר לכל מדרגה לכל מרחב מרחב $V=\left\{a+bx+cx^2:a,b,c\in\mathbb{Q}\right\}$.1. יהי מקדמים רציונלים. נתבומן בבסיסים:

$$B = (1, x, x^2), C = (1 + x, 1 + x^2, x + x^2), D = (x, 1, x^2)$$

T:V o V ההעתקה הלינארית:

$$T\left(a+bx+cx^2\right) = b+ax+cx^2$$

 $[T]_D^B$ ו $[T]_{C'}^C[T]_C^B$ מצאו את

ריחו או לאו. הוכיחו כי $K,L\in M_{n imes n}(\mathbb{F})$ הוכיחו או 2.

L=K אם $c\in\mathbb{F}$ עבור $K=cI_n$ אם (א

בוn בוn בוn בוn בו $K+I_n$ בו $K+I_n$ ב $L+I_n$ בו $L+I_n$

הוכיחו . $\big([Id_V]_C^B\big)^2=I_n$ -ע כך של V כך ה"ל, B,C ה"ל, וו $V\to V$, מ"ו, V מ"ו, מ"ו. יהיו מיי . ז הומות או לאו . [$T]_C^B$ ו וו $[T]_C^B$

אשר או או דומות האם הא $K,L\in M_{2\times 2}(\mathbb{R})$ או לאו גתונות 4.

$$K = egin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix}$$
 $L = egin{pmatrix} 2 & 1 \ 0 & 2 \end{pmatrix}$ (እ

$$K = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 $L = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ (No. 17)
$$K = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 $L = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ (17)
$$K = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 $L = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ (18)

$$K = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \quad C$$

 $_{n}B=\left(v_{1},\ldots,v_{n}
ight),C=\left(w_{1},\ldots,w_{m}
ight)$ עם בסיסים \mathbb{F} , עם מ"ו מעל שדה V,W הייו V,W .5 :בהתאמה. יהי $k \leq m$, ונגדיר את הקבוצה

$$L = \{T \in Hom(V, W) : ImT \subseteq Span\{w_1, \dots, w_k\}\}\$$

 $\mathcal{H}om\left(V,W\right)$ או תת-מרחב של ביתו כי L תת

 $\dim L$ ב) מצאו את

 $1 \leq \ell \leq n$ עתה, יהי $1 \leq \ell \leq n$ ונתבונן בקבוצה

 $M = \{T \in Hom(V, W) : ImT \subseteq Span\{w_1, \dots, w_k\}, Span\{v_1, \dots, v_\ell\} \subseteq \ker T\}$

 $\mathcal{H}om\left(V,W\right)$ או תת-מרחב של M כי M הוכיחו כי

 $\dim M$ מצאו את (ד

- E_{ij} המטריצות המטריצות (R_{ij}) ובבסיס הסדור המטריצות (R_{ij}) ובבסיס הסדור המטריצות $M_{2 imes2}$ (R_{ij}) הוגדרו בתרגול). נגדיר ה"ל $M_{2 imes2}$ (R_{ij}) על ידי $M_{2 imes2}$ על ידי $M_{2 imes2}$ (R_{ij}) הוגדרו בתרגול). נגדיר ה"ל $M_{2 imes2}$ הבסיס הסטנדרטי של $M_{2 imes2}$ (R_{ij}), כאשר $M_{2 imes2}$ הבסיס הסטנדרטי של $M_{2 imes2}$
- E_{ij} המטריצות (\mathbb{R}) המטריצות (\mathbb{R}) נתבונן ב $M_{2\times2}(\mathbb{R})$ ובבסיס הסדור ($M_{2\times2}(\mathbb{R})$ נתבונן ב $M_{2\times2}(\mathbb{R})$ ובבסיס הסדור ($M_{2\times2}(\mathbb{R})$ על ידי ($M_{2\times2}(\mathbb{R})$ הוגדרו בתרגול). נגדיר ה"ל ($M_{2\times2}(\mathbb{R})$ הוגדרו את $M_{2\times2}(\mathbb{R})$ ($M_{2\times2}(\mathbb{R})$
- 5. יהי ע מ"ו ממימד סופי, Uת"מ של ע, וVו של ת"מ על מ"ו ממימד מופי, ע מ"ו מ"מ על U^* ו. הוכיחו פא $\ell\,(u)=m\,(u)$, $u\in U$
- 9. יהי V מ"ו, $A=(a_{ij})_{1\leq i,j\leq n}\in M_{n\times n}$ ($\mathbb R$) אין של סדור של (v_1,\dots,v_n) בסיס מ"ו, (v_1,\dots,v_n) בסיס מ"ו, ℓ_i מטריצה פיכה. הוכיחו כי אם ℓ_i או ℓ_i הם כך ש ℓ_i הם כך ש ℓ_i בסיס של ℓ_i בסיס של ℓ_i
 - $.B^*$ את את של \mathbb{Q}^2 של $B=\left(\left[egin{array}{c}3\\2\end{array}
 ight],\left[egin{array}{c}2\\3\end{array}
 ight]
 ight)$ מצאו את. 10
- -11. יהי $l_1,\dots,l_n\in V^*$, $v_1,\dots,v_n\in V$ הם כי הוכיתו קטורי. הוכיתו מרחב וקטורי. אם $\{l_1,\dots,l_n\}$ בת"ל וגם וקטורי. הוכיתו לכל ווגט ווא הוכיעות לווא הוכיעות אוני ווא בי ווא הוכיעות הוביעות הוכיעות הוביעות הוכיעות הוכיעות הוביעות הוביעות הוביעות הוביעות הוביעות
- $B^*=$, ע בסיס של $B=(v_1,\ldots,v_n)$ בי אם הוכיחו כי אם אם ווכי. בי מרחב וקטורי. הוכיחו כי אם $v=l_1(v)v_1+\ldots+l_n(v)v_n$ אז אי $v\in V$, (l_1,\ldots,l_n)