Exersise 1.1

We have the isomorphism

$$\phi: \mathbb{R}[x]/(x^2+x+1) \to \mathbb{R}[\zeta_3]$$
$$x \to \zeta_3$$

Where $\zeta_3 = 1/2 + \frac{\sqrt{3}}{2}i$ is the third root of unity. This is an isomorphism since $x^2 + x + 1$ is the minimal polynomial of ζ_3 over \mathbb{R} .

We have that $\mathbb{R}[\zeta_3] \cong \mathbb{C}$ since by definition $\mathbb{C} = \mathbb{R}[i]$, $\zeta_3 \in \mathbb{C}$ so $\mathbb{R}[\zeta_3] \subseteq \mathbb{C}$ and $i = (\zeta_3 - 1/2) \frac{2}{\sqrt{3}}$ so $\mathbb{C} \subseteq \mathbb{R}[\zeta_3]$

Exersise 1.2

Let $\alpha = \sqrt{2} + \sqrt{3}$. It is clear $\alpha \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ so $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have

$$\frac{\alpha^{3} - 9\alpha}{2} = \frac{11\sqrt{2} + 9\sqrt{3} - 9(\sqrt{2} + \sqrt{3})}{2} = \sqrt{2}$$
$$\sqrt{3} = \alpha - \frac{\alpha^{3} - 9\alpha}{2}$$

So $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\alpha) \Rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\alpha)$, thus $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\alpha)$ so α is a primitive element

Exersise 1.3

We have the factorization

$$x^5 + x^2 - x - 1 = (x+1)(x-1)(x^2 + x + 1)$$

Where $x^2 + x + 1$ is irriducible since the roots are $\pm \zeta_3 \notin \mathbb{Q}$. Thus either $\alpha = \pm 1$ which yields a degree 1 extension $\mathbb{Q}[\alpha] = \mathbb{Q}$, or $\alpha = \pm \zeta_3$ which yields a degree 2 extension since 2 is the degree of the minimal polynomial of α : $x^2 + x + 1$

Exersise 1.4

If \sqrt{a} , $\sqrt{a+1} \in \mathbb{Q}$ then $\alpha \in \mathbb{Q}$ and $m_{\alpha}(x) = x - \alpha$

If $\sqrt{a} \in \mathbb{Q}$, $\sqrt{a+1} \notin \mathbb{Q}$, then $m_{\alpha}(x) = (x-\sqrt{a})^2 - a - 1$. The only roots of m_{α} are $\sqrt{a} \pm \sqrt{a+1} \notin \mathbb{Q}$ and thus since m_{α} is degree 2, m_{α} is irriducible and so minimal over \mathbb{Q} . If $\sqrt{a} \notin \mathbb{Q}$, $\sqrt{a+1} \in \mathbb{Q}$, then $m_{\alpha}(x) = (x-\sqrt{a+1})^2 - a$. The only roots of m_{α} are $\pm \sqrt{a} + \sqrt{a+1} \notin \mathbb{Q}$ and thus since m_{α} is degree 2, m_{α} is irriducible and so minimal over \mathbb{Q} . If \sqrt{a} , $\sqrt{a+1} \notin \mathbb{Q}$, $m_{\alpha}(x) = x^4 - (4a+2)x^2 + 1$.

 m_{α} is irriducible since the roots are $\pm \alpha, \pm \frac{1}{\alpha} \notin \mathbb{Q}$ and no degree 2 polynomial can divide m_{α} as follows.

If we can write $m_{\alpha} = p(x)q(x)$ where p, q are degree 2 polynomials $\in \mathbb{Q}[x]$ then the roots of p must be a subset of $\pm \alpha, \pm \frac{1}{\alpha}$ but none of the options of $(x \pm \alpha)(x \pm \frac{1}{\alpha}), (x \pm \frac{1}{\alpha}), (x \pm \frac{1}{\alpha}), (x \pm \frac{1}{\alpha})$ yield a polynomial in $\mathbb{Q}[x]$

Exersise 1.5

We know that $\alpha^2 \in k(\alpha)$ so $k(\alpha^2) \subseteq k(\alpha)$

Since $[k(\alpha):k]$ is odd, the minimal polynomial over k, m_{α} , has odd degree (2n-1):

$$m_{\alpha}(\alpha) = \alpha^{2n-1} + c_{2n-2}\alpha^{2n-2} + \dots + c_2\alpha^2 + c_1\alpha + c_0 = 0$$

Multiplying by α on both sides in K yields

$$\alpha^{2n} + c_{2n-2}\alpha^{2n-1} + \dots + c_2\alpha^3 + c_1\alpha^2 + c_0\alpha = 0$$

Subtracting all odd degree terms:

$$\alpha^{2n} + \dots + c_1 \alpha^2 = -c_{2n-2} \alpha^{2n-1} - \dots - c_2 \alpha^3 - c_0 \alpha$$

Factoring out α and relabeling constants $k_i = -c_i$:

$$\alpha^{2n} + \dots + c_1 \alpha^2 = \alpha (k_{2n-2} \alpha^{2n-2} + \dots + k_2 \alpha^2 + k_0)$$

We have α in terms of a ratio of polynomials in α^2 :

$$\alpha = \frac{\alpha^{2n} + \dots + c_1 \alpha^2}{k_{2n-2}\alpha^{2n-2} + \dots + k_2 \alpha^2 + k_0} \in k(\alpha^2)$$

We know that this is well defined, ie $k_{2n-2}\alpha^{2n-2}+\cdots+k_0\neq 0$ is invertable, since it is a non-zero polynomial $f(\alpha)=k_{2n-2}\alpha^{2n-2}+\cdots+k_2\alpha^2+k_0$ of degree less than m_α and therefore cannot be zero otherwise we would contradict minimality of m_α . f is nonzero since $k_0=-c_0$ is nonzero since if $c_0=0$ then

$$x|m_{\alpha}(x) = x^{2n-1} + c_{2n-2}x^{2n-2} + \dots + c_2x^2 + c_1x$$

which contradicts m_{α} being irriducible.

Thus $k(\alpha) \subseteq k(\alpha^2)$ so $k(\alpha) = k(\alpha^2)$

Exersise 1.6

Since A is a subring of K we know A is an integral domain. All we must show is that for any $\alpha \in A$, $\alpha^{-1} \in A$.

We have that $k[\alpha] \subseteq A$ where $k[\alpha]$ is the smallest subring of K to contain k and α . It turns out that $k[\alpha] = k(\alpha)$ and therefore $\alpha^{-1} \in k(\alpha) \subseteq A$, so A is a field.

The reason $k[\alpha] = k(\alpha)$ is since $\alpha \in K$ and K algebraic over k, there is a minimal polynomial for α , $m_{\alpha}(x) \in k[x]$. $k[\alpha]$ must contain all linear powers of α over k, with $m_{\alpha}(\alpha) = 0$. From this we have the isomorphism $k[\alpha] \cong k[x]/(m_{\alpha}(x))$ (this isomorphism is established more rigorously in Dummit and Foote's section of Field Theory) which is a field since $(m_{\alpha}(x))$ is maximal. Thus $k[\alpha]$ is a field so $k(\alpha) \subseteq k[\alpha]$. Since $k(\alpha)$ is a ring we know $k[\alpha] \subseteq k(\alpha)$, so $k[\alpha] = k(\alpha)$