Homework #7

1. i. Calculate the integral $\int_0^1 \frac{x}{(1+ax)^2} dx$ by considering the function $F(y)=\int_0^1 \frac{dx}{1+xy}$ and differentiating under the integral sign on the one hand, and performing the integration directly on the other hand. ii. Calculate the integral $\int_0^1 \frac{dx}{(x^2+a^2)^3}$ by considering the function F(y)=

 $\int_0^1 \frac{dx}{x^2 + y^2}.$

2. i. Calculate $\frac{d}{dx} \left(\int_{-x}^{x} \frac{1 - e^{-xy}}{y} dy \right)$. ii. Calculate $\frac{d}{dx} \left(\int_{0}^{\frac{x}{2}} \sqrt{x^2 - y^2} dy \right)$ in two different ways: (1) by different tiating under the integral sign and then integrating, and (2) by direct integration followed by differentiation.

3. Let y(t), f(t) be C^2 -functions satisfying

$$y(x) = 4 \int_0^x (t - x)y(t)dt - \int_0^x (t - x)f(t)dt.$$

Show that y solves the differential equation y''(x) + 4y(x) = f(x), with the initial conditions y(0) = 0, y'(0) = 0.

4. Let v be continuous on [0,1] and define $k(x,y) = \begin{cases} x(1-y), & x \leq y; \\ y(1-x), & x > y. \end{cases}$

Prove that the function $u(x) = \int_0^1 k(x,y)v(y)dy$ satisfies the differential

equation $u''(x) = -v(x), \ x \in [0,1].$ 5. Write the integral $\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx$ as a repeated integral with the order of the integration switched. (Don't calculate the inte-

6. Let $D = \{(x,y) : x^2 + y^2 \le 2x\}$. Write the integral $\int \int_D f(x,y) dx dy$ in polar coordinates. (Don't calculate the integral!)

7. Use polar coordinates to calculate the following integrals:

i.
$$\int \int_D e^{-x^2-y^2} dx dy;$$

ii. $\int_0^R \left(\int_0^{\sqrt{R^2-x^2}} \ln(1+x^2+y^2) dy \right) dx;$

iii. $\int \int_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \, dx \, dy$, where $D = \{(x,y) : x^2 + y^2 \le 1\}$.

8. i. Calculate $\int \int_D (x+y)^3 (x-y)^3 dx dy$, where D is the region bounded by the curves x + y = 1, x + y = 3, x - y = 1 and x - y = -1.

ii. Let D be the region bounded by the curves xy = 1, xy = 2, y = xand y = 3x. Calculate the area of D; that is, calculate $\int \int_D dx dy$.

9. Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove that the graph $\{(x,f(x)):$ $x \in [a,b]$ of f is a set of area zero. (Hint: f is uniformly continuous.)