Experiment No. 3

Aim: Perform Data Modeling.

Problem Statement:

- a. Partition the data set, for example 75% of the records are included in the training data set and 25% are included in the test data set.
- b. Use a bar graph and other relevant graph to confirm your proportions.
- c. Identify the total number of records in the training data set.
- d. Validate partition by performing a two-sample Z-test.

1. Importing required libraries:

```
[ ] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from scipy.stats import norm
```

2. Overview of Dataset:

df = pd.read_csv("/content/financial_risk_preprocessed.csv")
df.head()

Age	Gender	Education Level	Income	Credit Score	Loan Amount	Employment Status	Years at Current Job	Payment History	Debt-to-Income Ratio	Assets Value	Number of Dependents	Country	Previous Defaults	Risk Rating
	Male	PhD	72799.0	688.0	45713.0	Unemployed		Poor	0.154313	120228.000000		Cyprus		
	Female	Bachelor's		690.0	33835.0	Employed			0.148920	55849.000000		Turkmenistan		Medium
	Non- binary	Master's	55687.0		36623.0	Employed			0.362398	180700.000000		Luxembourg		Medium
	Male	Bachelor's	26508.0	622.0	26541.0	Unemployed		Excellent	0.454964	157319.000000		Uganda		Medium
	Non- binary					Unemployed			0.295984			Iceland		Medium

The Financial Risk Assessment Dataset provides detailed information on individual financial profiles. It includes demographic, financial, and behavioral data to assess financial risk. The dataset features various columns such as income, credit score, and risk rating, with intentional imbalances and missing values to simulate real-world scenarios.

3. Splitting Training and Testing Dataset in 75% - 25%:

```
train, test = train_test_split(df, test_size=0.25, random_state=42)
print(f"Total records: {len(df)}")
print(f"Training set records: {len(train)}")
```

print(f"Test set records: {len(test)}")

plt.figure(figsize=(8, 5))

```
→ Total records: 10833
Training set records: 8124
Test set records: 2709
```

The dataset is divided into 75% for training and 25% for testing.

4. Plotting graph of Training and Testing Dataset

```
plt.bar(["Training Set", "Test Set"], [len(train), len(test)], color=['blue', 'orange'])
plt.ylabel("Number of Records")
plt.title("Dataset Partitioning")
plt.show()

plt.figure(figsize=(6, 6))
plt.pie([len(train), len(test)], labels=["Training Set", "Test Set"], autopct="%1.1f%%"
colors=['blue', 'orange'])
```

Div : **D15C**

plt.figure(figst2c (0, 0))
plt.pie([len(train), len(test)], labels=["Training Set", "Test Set"], autopct="%1.1f%%",
colors=['blue', 'orange'])
plt.title("Training vs. Test Data Distribution")
plt.show()

From above graph we can see that our data is properly partitioned into 75% training data and 25% testing data

Div: D15C

5. Performing Z-Test

```
column_name = df.columns[0]
train_mean = train[column_name].mean()
test_mean = test[column_name].mean()
train_std = train[column_name].std()
test_std = test[column_name].std()
n_train = len(train)
n_test = len(test)

# Compute Z-score
z_score = (train_mean - test_mean) / np.sqrt((train_std**2 / n_train) + (test_std**2 / n_test))
# Compute p-value
p_value = 2 * (1 - norm.cdf(abs(z_score)))

print(f"Z-Score: {z_score:.3f}")
print(f"P-Value: {p_value:.3f}")
```

```
# Interpretation
alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: The means of the two groups are significantly different.")
else:
    print("Fail to reject the null hypothesis: The means are similar between training and test sets.")
```

Div: D15C

```
Z-Score: 1.604
P-Value: 0.109
Fail to reject the null hypothesis: The means are similar between training and test sets.
```

Performing two sample z-test on 'Age' columns. Given that the null hypothesis was not rejected, the data split is statistically valid

6. Performing Correlation Test

```
# Calculate Pearson correlation for all numerical columns correlation_matrix = train.corr(numeric_only=True)
print("Correlation Matrix (Training Set):\n", correlation_matrix)

# Visualize the correlation matrix import seaborn as sns import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Matrix for Training Data")
plt.show()
```

	4 A B 38.7878					
Correlation Matrix (1	# C					
		Income				
Age	1.000000 0.00		0.013612			
Income	0.001015 1.00		0.001392			
Credit Score	0.013612 0.00		1.000000	-0.013475		
Loan Amount	-0.000546 -0.00		-0.013475	1.000000		
Years at Current Job	-0.006949 0.03	13522	0.011674	-0.007857		
Debt-to-Income Ratio	-0.001505 0.00	97965	0.015618	0.016472		
Assets Value	-0.003270 -0.00	96882	0.005112	-0.018345		
Number of Dependents	0.004430 -0.00	90333	0.007754	0.001100		
Previous Defaults	0.001992 0.00	91911	-0.001708	0.005074		
	Years at Curre	ent Job	Debt-to-Inco	me Ratio \		
Age	-0	.006949	24	0.001505		
Income	0	013522		0.007965		
Credit Score	0	.011674		0.015618		
Loan Amount	-0	.007857		0.016472		
Years at Current Job	1	. 000000		0.008937		
Debt-to-Income Ratio	0	.008937		1.000000		
Assets Value		.012742	9)	0.026238		
Number of Dependents	0	.008165	0.007587			
Previous Defaults		.007654		0.000719		
	Assets Value	Number	of Dependents			
Age	-0.003270		0.004430		001992	
Income	-0.006882		-0.000333	0.	001911	
Credit Score	0.005112		0.007754	-0.	001708	
Loan Amount	-0.018345		0.001100	0.	005074	
Years at Current Job	-0.012742		0.008165	0.	007654	
Debt-to-Income Ratio	0.026238		0.007587	Θ.	000719	
Assets Value	1.000000		-0.006907	0.	004923	
Number of Dependents	-0.006907		1.000000	-0.	014012	
Previous Defaults	0.004923		-0.014012	1.	000000	

Div: D15C

The negligible correlation values indicate an absence of a meaningful relationship between the columns, a finding that is further supported by the correlation heatmap.

7. Performing Chi-Squared Test:

Create a contingency table for Education Level and Employment Status contingency table = pd.crosstab(train['Education Level'], train['Employment Status'])

```
print("Contingency Table:\n", contingency table)
print("\n\n")
from scipy.stats import chi2 contingency
# Perform the chi-squared test
chi2, p, dof, expected = chi2 contingency(contingency table)
# Display the results
print(f"Chi-Squared Statistic: {chi2:.3f}")
print(f"p-value: {p:.3f}")
print(f"Degrees of Freedom: {dof}")
print("Expected Frequencies:\n", pd.DataFrame(expected, index=contingency table.index,
columns=contingency table.columns))
print("\n\n")
# Interpret the p-value
alpha = 0.05
if p < alpha:
  print("Reject the null hypothesis: Education Level and Employment Status are
dependent.")
else:
  print("Fail to reject the null hypothesis: Education Level and Employment Status are
independent.")
```

Div: D15C

The Chi-Squared test was performed on columns 'Education Level' and 'Employment Status'. Since the test results do not reject the null hypothesis, it can be concluded that 'Education Level' and 'Employment Status' are independent variables according to the dataset.

8. Download partitioned Training and Testing dataset

```
train.to_csv("financial_risk_train_data.csv", index=False)
test.to_csv("financial_risk_test_data.csv", index=False)
from google.colab import files
```

files.download("financial_risk_train_data.csv")
files.download("financial_risk_test_data.csv")

We can use partitioned dataset for training and testing purposes

Conclusion:

The dataset was first loaded into a **Colab notebook** and divided into 75% for training and 25% for testing. To ensure the partition was accurate, a **bar graph and pie chart** were plotted, both confirming the correct data split.

A **Z-test** was then performed to validate the partition, and the results supported its correctness, as the **null hypothesis was not rejected**. Next, a **correlation heatmap** was generated to analyze relationships between columns, revealing **no significant correlations** among them.

Finally, a **chi-square test** was applied to the **'Education Level'** and **'Employment Status'** columns. The results confirmed that these features are **independent**, as the **null hypothesis was not rejected**.