

第四章 组合逻辑电路设计(二)

秦磊华 计算机学院

4.5 logisim的基本使用

例1设计一个比较两个三位二进制数是否相等的数值比较器。

(两个3位二进制数分别为A = $a_3a_2a_1$, B = $b_3b_2b_1$)

$$F_{=} = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

$$F_{A>B} = A_3\overline{B}_3 + (A_3B_3 + \overline{A}_3\overline{B}_3)(A_2\overline{B}_2) + (A_3B_3 + \overline{A}_3\overline{B}_3)(A_2B_2 + \overline{A}_2\overline{B}_2)(A_1\overline{B}_1)$$

$$F_{A < B} = \overline{A}_3 B_3 + (A_3 B_3 + \overline{A}_3 \overline{B}_3)(\overline{A}_2 B_2) + (A_3 B_3 + \overline{A}_3 \overline{B}_3)(A_2 B_2 + \overline{A}_2 \overline{B}_2)(\overline{A}_1 B_1)$$

1. 一位全加器FA(Full-Adder)设计

加数Xi	加数Yi	低位进位 C _i	和Si	进位 C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4-2或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i + Y_i) C_i$$

$$C_{i+1} = X_i Y_i + (X_i + Y_i) C_i \mid C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

$$S_i = X_i \oplus Y_i \oplus C_i C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4-2或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

$$S_i = X_i \oplus Y_i \oplus C_i$$

$$C_{i+1} = X_i Y_i + (X_i + Y_i) C_i$$

$$= X_i Y_i + X_i C_i + Y_i C_i$$

$$= \overline{X_i Y_i + X_i C_i + Y_i C_i}$$

$$= \overline{X_i Y_i} \cdot \overline{X_i C_i} \cdot \overline{Y_i C_i}$$

型号	功能		PDT _{MAX}
74LS86	4-2异或		0ns
74LS32	4-2或门	2	2ns
74LS00	4-2与非门] 15ns	
74LS04	6-非门	1	5 n s
74LS08	4-2与门 2		0 n s
74136	4输入异或门		30ns

能用FA构建任意位数的多位加法器吗?

2.设计一个3位求补电路

$$x = + 1011001$$

 $[X]^{\frac{1}{N}} = 01011001$
 $[x]_{\dot{k}} = \frac{1}{1}0100111$
x = -1011001

 $[\sqrt{1}] = 01011001$

	输入端			输出端		
S	\mathbf{A}_2	A_1	A_0	F_2	F ₁	F ₀
1	0	0	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	1	1	0
1	0	1	1	1	0	1
1	1	0	0	1	0	0
1	1	0	1	0	1	1
1	1	1	0	0	1	0
1	1	1	1	0	0	1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1

. \SA ₂							
A_1A_0	00	01	11	10			
00	0	[1]	1	0			
01	0	1	0	[1]			
11	0	1	0	1			
10	0	1	0	1_			

 F_2

A ₁ A ₀ SA	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	_1	1
10	0	0	0	0

$$F_{2} = \overline{S}A_{2} + A_{2}\overline{A_{1}}\overline{A_{0}} + S\overline{A_{2}}A_{0} + S\overline{A_{2}}A_{1}$$

$$F_{1} = \overline{A_{0}}A_{1} + A_{1}\overline{S} + S\overline{A_{1}}A_{0}$$

$$F_{0} = A_{0}$$

 F_0

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2.设计一个3位求补电路

3. 硬件迭代设计

1)基本概念

若一个规模可扩展的逻辑电路可通过重复使用功能相同的子模块设计而成, 称这样的硬件设计为硬件的迭代设计。

3. 硬件迭代设计

2)具有迭代性的硬件构件模块设计方法

(1)判定逻辑功能的可分解性

硬件构件模块应是具有完整逻辑功能、可单独使用的电路模块。因此,设计构件模块时,首先要确定对应逻辑功能是否可被分解与重用,确定可被分解后,再从是否便于分解、设计、重用等角度综合确定分解方法、构件模块的规模、分解与重用的策略等

3. 硬件迭代设计

2)具有迭代性的硬件构件模块设计方法

加法功能可被分解、迭代使用方便、可扩展性好!

3. 硬件迭代设计

2)具有迭代性的硬件构件模块设计方法

(2)分析构件模块的可扩展机制

可扩展是构建模块应用于迭代设计的根本属性,是构件模块为支持迭代设计所需的输入、输出及控制信息。不同逻辑功能的构件模块具有不同的可扩展机制。如何找到构建模块的可扩展机制是构件模块设计的重点与难点。

- 3. 硬件迭代设计
 - 2)具有迭代性的硬件构件模块设计方法
 - (2)分析构件模块的可扩展机制

一位全加器的可扩展机制是什么?

- 3. 硬件迭代设计
 - 2)具有迭代性的硬件构件模块设计方法
 - (2)分析构件模块的可扩展机制

3. 硬件迭代设计

2)具有迭代性的硬件构件模块设计方法

(3)定义构件模块的可扩展接口

构件模块的可扩展机制通过其接口定义与实现,包括输入、输出和控制等接口。应清晰表达可扩展接口的逻辑功能、输入输出属性、使用方法和使用时应关注的问题。

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

4. 可迭代的求补电路设计

1)设计求补构件模块(电路)

输入端			输出端			
S	\mathbf{A}_2	A_1	A_0	F_2	F_{i}	F_{0}
1	0	0	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	1	1	0
1	0	1	1	1	0	1
1	1	0	0	1	0	0
1	1	0	1	0	1	1
1	1	1	0	0	1	0
1	1	1	1	0	0	1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1

原有设计的问题在哪里?

4. 可迭代的求补电路设计

1)设计求补构件模块(电路)

- (1)判定逻辑功能的可分解性
- (2)分析构件模块的可扩展机制
- (3)定义构件模块的可扩展接口
- (4)设计构件模块

→ 求补功能可分解

从右向左第一次出现 1, 注重机制的传递

输出(C1): 本模块处理的数据中是否首次出现"1或传输从底位模块传输过来的相关信息;

输位(C0): 接收其他模块输出有关出现"1"的信息。

x = -1011001

 $[x]_{k} = 10100111$

学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

4. 可迭代的求补电路设计

1)设计求补构件模块(电路)

A	В	S	C0	F1	F0	C1
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	1	1	1
0	1	1	1	1	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	0	1	1
1	1	1	1	0	0	1

\AE	3			
SC_0	00	01	11	10
SC_0	0	0	1	
01	0	0	1	1
11			0	0
10	0	1	0	$\lceil \overline{1} \rceil \rceil$

$$F2 = A\overline{S} + \overline{A} SCO + \overline{A}BS + A\overline{B}\overline{CO}$$

 $F1=\Sigma m(3,6,7,8,9,10,12,13)$

 $C1=\Sigma m(3,6,7,10,11,14,15)$

 $F0=\Sigma m(3,4,5,6,11,12,13,14)$

SC_0^A	B ₀₀	01	11	10
00	0	1	1)	0
01	0	1	1,	0
11	1)	0	0	$\left(1\right)$
10	0	(1)	1 }	0

$$F1 = B\overline{S} + B\overline{C0} + \overline{B} SC0$$

SC_0^A	B 00	01	11	10
00	0	0	0	0
01	0	0	0	0
11		<u>'</u> 1	1	1
10	0	1	1	1

$$C1 = SC0 + BS + AS$$

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

4. 可迭代的求补电路设计

1)设计求补构件模块(电路)

$$F2 = A\overline{S} + \overline{A} SC0 + \overline{A}BS + A\overline{B}\overline{C0}$$

$$F1 = B\overline{S} + B\overline{C0} + \overline{B}SC0$$

$$C1 = SC0 + BS + AS$$

学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

- 4. 可迭代的求补电路设计
 - 2)设计规模可扩展求补电路

5.编码器

1)编码的基本概念

用 文字、数字、符号等标识特定对象,将数据从一种形式变成另一种形式。传感器就是一种常见的编码器,如位置传感器、压力传感器等。

2)编码器

能够完成编码功能的电路叫编码器

3)编码器分类

普通编码器和优先编码器

4)普通编码器

任何时刻只允许输入一个编码信号,不允许同时输入多个编码信号

			输		λ			输	出	Ī
I ₀	l ₁	l ₂	l ₃	I ₄	I ₅	I ₆	I ₇	Y ₂	Y ₁	\mathbf{Y}_0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_0 = I_1 + I_3 + I_5 + I_7$$

发现存在的问题! 如何解决?

5)优先编码器

优先编码器允许同时在几个输入端有输入信号,编码器按输入信号排定的优先顺序,只对同时输入的几个信号中优先权最高的输入进行编码。

17	l ₆	l ₅	l ₄	l ₃	l ₂	l ₁	l _o	Y ₂	Y ₁	Y ₀
1				X				1	1	1
0	1			1	1	0				
0	0	1			Χ			1	0	1
0	0	0	1		>	(1	0	0
0	0	0	0	~		X		0	~	1
0	0	0	0	0	1		X	0	1	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	0	0	1	0	0	0

$$\begin{split} Y_2 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot I_4 = I_7 + I_6 + I_5 + I_4 \\ Y_1 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot I_2 = I_7 + I_6 + \overline{I_5} \cdot \overline{I_4} \cdot (I_3 + I_2) \\ Y_0 &= I_7 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot \overline{I_2} \cdot I_1 = I_7 + \overline{I_6} \cdot I_5 + \overline{I_6} \cdot \overline{I_4} \cdot I_3 + \overline{I_6} \cdot \overline{I_4} \cdot \overline{I_2} \cdot I_1 \end{split}$$

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_0 = I_1 + I_3 + I_5 + I_7$$

$$\begin{split} Y_2 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot I_4 = I_7 + I_6 + I_5 + I_4 \\ Y_1 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot I_2 = I_7 + I_6 + \overline{I_5} \cdot \overline{I_4} \cdot (I_3 + I_2) \\ Y_0 &= I_7 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot \overline{I_2} \cdot I_1 = I_7 + \overline{I_6} \cdot I_5 + \overline{I_6} \cdot \overline{I_4} \cdot I_3 + \overline{I_6} \cdot \overline{I_4} \cdot \overline{I_2} \cdot I_1 \end{split}$$

6)带使能控制的优先编码器

输入使能端	1	:	输				入			输		扩展	使能输出
S	I ₇	$\overline{I_6}$	I ₅	$\overline{I_{4}}$	$\overline{I_3}$	I_2	I_1	$\overline{I_0}$	\overline{Y}_2	₩ ₁	$\overline{\mathbf{Y}}_{0}$	\overline{Y}_{EX}	Y _s
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	×	×	×	×	×	×	×	0	0	0	0	1
0	1	0	×	×	×	×	×	×	0	0	1	0	1
0	1	1	0	×	×	×	×	×	0	1	0	0	1
0	1	1	1	0	×	×	×	×	0	1	1	0	1
0	1	1	1	1	0	×	×	×	1	0	0	0	1
0	1	1	1	1	1	0	×	×	1	0	1	0	1
0	1	1	1	1	1	1	0	×	1	1	0	0	1
0	1	1	1	1	1	1	1	0	1	1	1	0	1

$$\overline{Y}_2 = \overline{(I_4 + I_5 + I_6 + I_7) \cdot ST} \qquad \overline{Y}_1 = \overline{(I_2 \overline{I}_4 \overline{I}_5 + I_3 \overline{I}_4 \overline{I}_5 + I_6 + I_7) \cdot ST}$$

$$\overline{Y}_0 = \overline{(I_1 \overline{I}_2 \overline{I}_4 \overline{I}_6 + I_3 \overline{I}_4 \overline{I}_6 + I_5 \overline{I}_6 + I_7) \cdot ST} \qquad \overline{Y}_S = \overline{\overline{I}_0 \cdot \overline{I}_1 \cdot \overline{I}_2 \cdot \overline{I}_3 \cdot \overline{I}_4 \cdot \overline{I}_5 \cdot \overline{I}_6 \cdot \overline{I}_7 \cdot S}$$

6)带使能控制的优先编码器

输入使能端	İ	:	输				入		输	i H	Ц	扩展	使能输出
S	I ₇	I ₆	I ₅	$\overline{I_{4}}$	I_3	I_2	I_1	\overline{I}_0	\overline{Y}_2	$\overline{\mathbf{Y}}_1$	\overline{Y}_0	Y _{EX}	Y _s
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	×	×	×	×	×	×	×	0	0	0	0	1
0	1	0	×	×	×	×	×	×	0	0	1	0	1
0	1	1	0	×	×	×	×	×	0	1	0	0	1
0	1	1	1	0	×	×	×	×	0	1	1	0	1
0	1	1	1	1	0	×	×	×	1	0	0	0	1
0	1	1	1	1	1	0	×	×	1	0	1	0	1
0	1	1	1	1	1	1	0	×	1	1	0	0	1
0	1	1	1	1	1	1	1	0	1	1	1	0	1

$$\overline{Y_{EX}} = \overline{\overline{Y_S} \cdot S} = \overline{\overline{I_0 I_1 I_2 I_3 I_4 I_5 I_6 I_7 S}}$$

$$= \overline{(I_0 + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7)S}$$

6.译码器

1)基本概念

编码器的逆过程,将输入的每个二进制代码翻译成对应的输出高、低电平。

2)译码器分类

- ●变量译码器
- ●码制变换译码器
- ●数字显示译码器

3)变量译码器

变量译码器是表示输入状态的组合逻辑网络,如2:4译码器

对输入的2位二进制数进行译码, 具有 22 = 4 个输出

4)2:4变量译码器

A ₁	A_0	$\overline{Y_3}$	$\overline{Y_2}$	$\overline{Y_1}$	$\overline{Y_0}$
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

$$\overline{Y}_3 = \overline{A_1} \overline{A_0}$$

$$\overline{Y}_3 = \overline{A_1 A_0} \qquad \overline{Y}_2 = \overline{A_1 \overline{A_0}}$$

$$\overline{Y}_1 = \overline{A}_1 A_0$$

$$\overline{Y_0} = \overline{A_1} \overline{A_0}$$

5)带选通功能的2:4变量译码器

\overline{ST}	A ₁	A_0	$\overline{Y_3}$	$\overline{Y_2}$	$\overline{Y_1}$	$\overline{Y_0}$
1	X	X	1	1	~	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

$$\overline{Y_3} = \overline{\overline{A_1 A_0}} \overline{\overline{ST}} = \overline{A_1 A_0 ST}$$

$$\overline{Y_2} = \overline{A_1} \overline{A_0} ST$$
 $\overline{Y_1} = \overline{\overline{A_1}} A_0 ST$ $\overline{Y_0} = \overline{\overline{A_1}} \overline{A_0} ST$

7.码制变换译码器

码制变换译码器的功能是将一种码制转换为另一种码制。

例1:设计一个将余三码转换为8421BCD码的转换电路

A	В	С	D	W	X	Y	Z
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

$$W = AB + ACD$$
$$X = \overline{BC} + \overline{BD} + BCD$$

A	В	С	D	W	X	Y	Z
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

$$W = \overline{\overline{AB} \cdot \overline{ACD}}$$

$$X = \overline{\overline{\overline{AC}} \cdot \overline{\overline{BD}} \cdot \overline{\overline{BCD}}}$$

$$Y = \overline{\overline{\overline{CD}} \cdot \overline{\overline{CD}}}$$

$$Z = \overline{\overline{D}}$$

8. 数字显示译码器

发光二极管可以单独封装,也可以组合封装为LED数码管。

发光二极管按驱动方式又分为共阳极和共阴极接法。

共阳极接法

共阴极接法

例设计8421BCD七段显示译码电路。

$$\begin{array}{c|c}
a \\
f & g \\
e & c
\end{array}$$

本题采用共阳极设计

D	C	В	A	a	b	c	d	е	f	g	显示
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	1	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0	2
0	0	1	1	0	0	0	0	1	1	0	3
0	1	0	0	1	0	0	1	1	0	0	4
0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	0	1	0	0	0	0	0	6
0	1	1	1	0	0	0	1	1	1	1	7
1	0	0	0	0	0	0	0	0	0	0	8
1	0	0	1	0	0	0	0	1	0	0	9

D	С	В	A	a	b	С	d	е	f	g	显示
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	1	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0	2
0	0	1	1	0	0	0	0	1	1	0	3
0	1	0	0	1	0	0	1	1	0	0	4
0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	0	1	0	0	0	0	0	6
0	1	1	1	0	0	0	1	1	1	1	7
1	0	0	0	0	0	0	0	0	0	0	8
1	0	0	1	0	0	0	0	1	0	0	9

$$a = \overline{DCBA} + C\overline{BA}$$

00

01

11

10

$$b = CBA + CBA$$

01		U	X	U		
11	1	1	X	X		
10	1	0	X	X		
•		f			•	
f = BA	<u> </u>	CB	\overline{A} +	- D	CBA	

c = CBA

01

C	00	01	11	10	DO BA	00	01	11	10	
	0	0	X	0	00	0	1	X	0	
	0	0	X	0	01	1	0	X	0	
	0	0	X	X	11	0	1	X	X	
	1	0	X	X	10	0	0	X	X	
C						d				

$$d = CBA + CBA + DCBA$$

$$g = \overline{DCB} + CBA$$

$$a = \overline{D}\overline{C}\overline{B}A + C\overline{B}\overline{A}$$

$$b = \overline{CBA} + \overline{CBA}$$

$$c = \overline{C}B\overline{A}$$

$$d = \overline{CBA} + \overline{CBA} + \overline{DCBA}$$

$$e = A + \overline{CBA}$$

$$f = BA + \overline{C}B\overline{A} + \overline{D}\overline{C}BA$$

$$g = \overline{DCB} + CBA$$

数字显示译码器的动态显示

灯测试输入端主要用 于检查**LED**的好坏。

消隐输入端(与灭**0** 输出端共用)

灭**0**输入端,熄灭 无意义的**0**

灭0输出端 RBO与 (灭0输入端配合使用)

$$\overline{LT} = \begin{cases} 1 & \text{时,正常译码。} \\ 0 & \text{时,输出 a ~ g 全 "1" 七段全亮。} \end{cases}$$

$$\overline{BI} = \begin{cases} 0 \text{ 时,不管输入何种状态,输出全} 0 \\ 1 \text{ 时,正常译码。} \end{cases}$$

即:灭0输入等于0,灭0输出一定等于0。