Design A Lead Screw For Lathe Machine

Presenters:

Ayman Khan (200108149)
Tarek Ahmed (200108144)
Hasin Anjum Junayed (200108138)
Nazmul Ahsan Nahid (200108135)
Ishtiyak Karim Ratul (200108136)

REDESIGN & SOLUTION

2D DRAWING

For better view, L = 30 mm

Technical Specifications

Specifications	Value
Major Diameter, d	10 mm
Pitch, p	2 mm
Pitch Diameter, Dp	9 mm
Minor Diameter, Dm	8 mm
Force, F	6.0 kN (approx.)
Target Tolarence	1.00%
Actual	0.46%
Rasing Torque, Tr	4.44 Nm
Torsional Shear Stress (MPa)	44.19 MPa
Axial Stress (MPa)	123.27 MPa
Bending Stress (MPa)	224.07 MPa
Efficiency	44.39%

ACME Lead Screw (Optimized solution)

Material: SS Grade 316L

Efficient lead screws (>50%) can **back-drive**, requiring brakes for vertical loads.

Verification

- Results consistent with the mathematical model? (YES, based on Stress Analysis sim and Mesh Refinement)
- Acceptable amount of Numerical error? (<10% acceptable)
- Acceptable variation in comparison with hand calculations?
 (Ans in Next slide)

202.7 Max. Load Case1▼ 181.8 160.9 Von Mises ▼ 140 119.1 98.2 77.3 56.4 203 MPa 35.5 14.6 Min. Max: 202.7 MPa

Axial Stress

Theoretical value: 123 MPa

Experimental value: 116 MPa

Error % : ((123-116)/123) % = 5.7 %

Bending Stress

Theoretical value: 224 MPa

Experimental value: 203 MPa

Error % : ((224-203)/224) % = 9.37%

Validation

• Comparing the results with those of experimental results

• d = 10 mm

• p = 2 mm

ACME
Thread Rendered (NEW)
OPTIMAL SOLUTION

As the experimental machines were unavailable, we compared the theoretical calculation with simulated data

Parameters	Axial Stress	Bending Stress
Theoretical value	123	224
Experimental value	116	203

Fatigue Life (S-N Curve)

Fig 1, Courtesy: https://doi.org/10.1007/s42452-019-1390-7

Fatigue Life Comparison

Fig 2, Courtesy: https://doi.org/10.1007/s42452-019-1390-7

Forming Lead Screw by Through-Feed Rolling Process with Active Rotation (paper 2022)

TFRPAR creates a lead screw by,

- utilizing parallel-axis rolling dies with a taper angle,
- active rotation of both the rolling die and workpiece

Efficient way of making in modern days!

Courtesy: https://ars.els-cdn.com/content/image/1-s2.0-S1526612522005308-ga1.jpg

Vertical Lathe Machine

(Source: @themachinistden470)

HOW IS IT MADE GENERALLY?

Take Cylindrical Bar

Plug into Chuck

Hold end with Tailstock

Use ACME Cutting tool

THANK YOU

