2.2 EM Waves

Tuesday, October 10, 2023 10:28 PN

Maxwell's Rotations

$$\frac{\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\mu \frac{\partial \vec{H}}{\partial t}$$

$$\frac{1}{2} \vec{\nabla} \times \vec{E} = rotation_{\vec{E}} = \frac{1}{2} \mu \frac{\partial \vec{H}}{\partial t}$$

$$\frac{1}{2} \vec{\nabla} \times \vec{H} = rotation_{\vec{H}} = \frac{1}{2} \varepsilon \frac{\partial \vec{E}}{\partial t}$$

· A Mechanical Analogy

> Consider a rigid rotating mass on a string, the tangential velocity of the mass is v. The rotation can be expressed by a constant angular velocity, \vec{u} , expressed as: $\vec{V} = \vec{u} \times \vec{r}$ where \vec{r} is the position of the mass. In general, $\vec{r} = \langle x, y, z \rangle$

Q A relationship between the tangential velocity \vec{v} and the angular velocity \vec{w} can be established by taking the curl on both sides: $\vec{\nabla} \times \vec{v} = \vec{\nabla} \times (\vec{w} \times \vec{r})$.

Using the identity $\nabla \times (\vec{a} \times \vec{b}) = a(\vec{\nabla} \cdot \vec{b}) + (\vec{b} \cdot \vec{\nabla})\vec{a} - \vec{b}(\vec{\nabla} \cdot \vec{a}) - (\vec{a} \cdot \nabla)\vec{b}$, which of the following is a valid relationship between \vec{v} and \vec{w} ?

$$\vec{\nabla} \times \vec{E} = -\lambda n \frac{\partial f}{\partial f} \qquad \vec{\nabla} \times \vec{H} = \epsilon \frac{\partial f}{\partial E} \qquad \vec{H} = \vec{H}(x, y, z, t)$$

$$\vec{\nabla} \times \vec{E} = 0 \qquad \vec{\nabla} \times \vec{H} = \epsilon \frac{\partial f}{\partial E} \qquad \vec{H} = \vec{H}(x, y, z, t)$$

$$\overline{E}(x,y,z,t) = \overline{E}_{s}(x,y,z,\omega) e^{j\omega t}$$

$$\overline{H}(x,y,z,t) = \overline{H}_{s}(x,y,z,\omega) e^{j\omega t}$$

Phasor
$$\rightarrow$$
 time dependence $e^{j\omega t}$

$$\vec{E}(x,y,z,t) = \vec{E}_{s}(x,y,z,\omega) e^{j\omega t}$$

$$\vec{H}(x,y,z,t) = \vec{H}_{s}(x,y,z,\omega) e^{j\omega t}$$

$$\vec{\nabla} \times \vec{H}_{s}(x,y,z,\omega) = \vec{E}_{s}(x,y,z,\omega) = \vec{E}_{s}(x,z,\omega) = \vec{E}_{s}(x,z,\omega) = \vec{E}_{s}(x,z,$$

$$\nabla^{2} \vec{E} = \frac{1}{v^{1}} \frac{\partial^{1} \vec{E}}{\partial t^{1}} \left(\nabla^{2} = \frac{\partial^{1}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right)$$

$$\nabla^{2} \left[\vec{E}_{s} \left(\chi, \gamma, z, \omega \right) e^{j\omega t} \right] = \frac{1}{v^{1}} \frac{\partial^{1}}{\partial t^{2}} \left[\vec{E}_{s} \left(\chi, \gamma, z, \omega \right) e^{j\omega t} \right]$$

Q The phasor voltage can be expressed as $\vec{E}_s(x,y,z,\omega) = \mathcal{R}_e(\vec{E}_s) + j \mathcal{L}_s$. The measurable instantaneous electric field is $\vec{E}(x,y,z,t) = \mathcal{R}_{e}\{\vec{E}_{s}(x,y,z,\omega)e^{j\omega t}\}$. For an EM Wave travelling in the +2 direction where the E field oscillates in the x axis with real amplitude E_{xo} and the H field oscillates in the $\hat{\gamma}$ axis, the instantaneous E field, $\overline{\xi}$, Can be further expressed as ...

$$\frac{\vec{E}}{\vec{E}} = E_{xo} \cos(\omega t - \beta z) \hat{X}$$

$$\vec{E} = E_{xo} \sin(\omega t - \beta z) \hat{X}$$

$$\vec{E} = E_{xo} \sin(\omega t - \beta z) \hat{z}$$

$$\vec{E} = E_{xo} \cos(\omega t - \beta z) \hat{z}$$

Maxwell's Equations in Plane Wave (3D)

$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \vec{\nabla}^{2} \vec{E} = \vec{\nabla} \times (-\mu \frac{\partial \vec{H}}{\partial t}) = -\mu \frac{\partial}{\partial t} (\vec{\nabla} \times \vec{H})$$

$$-\vec{\nabla}^{2} \vec{E} = -\mu \mathcal{E} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$$

$$\frac{\partial^{2} \vec{E}}{\partial x^{2}} + \frac{\partial^{2} \vec{E}}{\partial y^{1}} + \frac{\partial^{2} \vec{E}}{\partial z^{2}} = \mu \mathcal{E} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$$

Q Given the general 3D wave equation for electric fields: $\vec{\nabla}^2 \vec{E} = \mu E \frac{\partial^2 \vec{E}}{\partial t^2}$. If an E field Oscillating in the \hat{x} axis is substituted into the wave equation: $\vec{E} = (E_x, 0, 0) = (E_0 e^{i(\omega t - \beta z)}, 0, 0)$, which of the following simplification is valid? $\sum_{j=2}^{2^{j}} = \mu E \frac{\partial^2 E_x}{\partial t^2}$ $\frac{\partial^2 E_x}{\partial x^2} = \mu E \frac{\partial^2 E_x}{\partial t^2}$

$$\frac{\partial_{x} \mathcal{E}^{x}}{\partial t^{2}} = - \sqrt{2} \frac{\partial_{x} \mathcal{E}^{x}}{\partial t^{2}}$$

$$\frac{\partial_{x} \mathcal{E}^{y}}{\partial t^{2}} = - \sqrt{2} \frac{\partial_{x} \mathcal{E}^{x}}{\partial t^{2}}$$

In-class

$$\vec{A} \times (\vec{B} \times \vec{C}) = \alpha \vec{B} + \beta \vec{C}$$
 $\vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B})$
 $\vec{B} = \beta \vec{C} + \beta \vec{C}$
 $\vec{B} = \beta \vec{C} + \beta \vec{C} +$