HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS

Brückenkurs Mathematik zum Sommersemester 2015

Übungsblatt 3 (Elementare Funktionen, Trigonometrie)

Aufgabe 1. Zeichnen Sie den Graphen der Funktion $f(x) = x^2 - 2x + 3$ im Intervall [-3, 4].

Aufgabe 2. Bestimmen Sie jeweils die Definitionsmenge, die Bildmenge, alle Nullstellen, den Scheitelpunkt und die Umkehrfunktion:

(a)
$$f(x) = 3x^2 + 5$$

(b)
$$f(x) = x^2 + 4x + 3$$

(c)
$$f(x) = \frac{1}{x+4}$$

 ${\bf Aufgabe~3.}~\it Zeichnen~Sie~die~folgenden~Betragsfunktionen:$

(a)
$$f(x) = |2x^2|$$

(b)
$$f(x) = |x^2 - 9|$$

$$(c) \ f(x) = |x|$$

Aufgabe 4. Führen Sie die Polynom-Divisionen durch:

(a)
$$(x^3 + 7x^2 + 9x - 5) \div (x + 5)$$

(b)
$$(x^5 - x^4 - 13x^3 + 16x^2 + 13x - 10) \div (x^2 + 3x - 2)$$

(c)
$$(x^3 + 3x^2 + 3x + 1) \div (x + 1)$$

Aufgabe 5. Beschreiben Sie Symmetrie, Monotonieverhalten und Achsenschnittpunkte der folgenden Graphen:

(a)
$$f(x) = x^6 + 14$$

(b)
$$f(x) = 3x^{-4}$$

(c)
$$f(x) = 2(x-2)^3 + 1$$

Aufgabe 6. Rechnen Sie von Grad ins Bogenmaß um oder umgekehrt:

(a)
$$30^{\circ}$$

$$(d) \frac{\pi}{4}$$

$$(b) -45^{\circ}$$

$$(e)$$
 $-\frac{5\pi}{6}$

(c)
$$135^{\circ}$$

$$(f) \frac{\pi}{3}$$

Aufgabe 7. Gegeben seien rechtwinklige Dreiecke mit Katheten a und b und Hypotenuse c und Winkeln α (gegenüber a), β (gegenüber b) und $\gamma = 90^{\circ}$. Berechnen Sie die fehlenden Seiten oder Winkel:

(a)
$$a = 3cm, b = 4cm$$

(b)
$$c = 10cm, \alpha = 45^{\circ}$$

Aufgabe 8. Bestimmen Sie erst Amplitude, Periode und Phasenverschiebung der Schwingungsfunktion $f(x) = 3\sin(2x - \frac{\pi}{4})$ und zeichnen Sie nachher ihren Verlauf.