University of Pennsylvania

CIS 1600 F23

Theorems, Lemmas & Proofs

by

Jefferson Ding

Contents

Contents		2
1	Logic & Number Theory	3
2	Sets	4
3	Counting & Probability	4
4	Graph Theory	6
5	Relations & Functions	8
\mathbf{A}	Appendix: Proofs	9

1 Logic & Number Theory

Logic

Theorem 1.1

$$p \to q \equiv \neg p \lor q \equiv \neg q \to \neg p$$

Theorem 1.2 (Basis for Contradiction)

$$p \equiv \neg p \to C$$
 $p \to q \equiv p \land \neg q \to C$

Number Theory

Theorem 1.3 If the sum of two integers is even, their difference is also even.

Theorem 1.4 If the product of n integers is odd, then all of the integers are odd.

Theorem 1.5 If n is odd, then $n^2 + n + 1$ is odd.

Theorem 1.6 For all $x \in \mathbb{Z}^+$, $x^3 + 1$ is composite

Theorem 1.7 For all $x, y \in \mathbb{Z}$, if x + y is even, then x and y are both odd or both even.

Theorem 1.8 For all $x, y \in \mathbb{R}$, if ab is irrational, then either a or b or both are irrational.

Theorem 1.9 (Sum of Arithmetic Series) For all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n i = \frac{n(n+1)}{2}$

Theorem 1.10 (Sum of Geometric Series) For all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n r^i = \frac{r^{n+1}-1}{r-1}$

Theorem 1.11 (Sum of Infinite Geometric Series) For all |r| < 1, $\sum_{i=1}^{\infty} r^i = \frac{1}{1-r}$

Theorem 1.12 (Unique Factorization Theorem) For all $n \in \mathbb{Z}^+$, n can be written as a product of primes in a unique way.

Theorem 1.13 There exists infinitely many primes.

Theorem 1.14 (Binomial Theorem) For all $n \in \mathbb{Z}^+$, $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$

Theorem 1.15 (Generalized Pigeonhole Principle) For all $n \in \mathbb{Z}^+$, to place n objects into k boxes, at least one box must contain $\lceil \frac{n}{k} \rceil$ objects.

Theorem 1.16 For a sequence of n positive integers, there exists a consecutive subsequence whos sum is devisable by n

2 Sets

Theorem 2.1

$$|P(A)| = 2^{|A|}$$

Theorem 2.2 $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$

Theorem 2.3 $(T \cap S) \cup (F \cap G) \subseteq (T \cup F) \cap (S \cup G)$

Theorem 2.4 $A \times B = B \times A \leftrightarrow A = B$

Theorem 2.5 (De'Morgan's Laws)

$$A - (B \cup C) = (A - B) \cap (A - C)$$
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Theorem 2.6 (Principal of Inclusion-Exclusion)

$$|A_i \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

3 Counting & Probability

Theorem 3.1 (Multiplication Rule) For all $n \in \mathbb{Z}^+$, if a task consists of n steps, where the ith step can be done in n_i ways, then the task can be done in $\prod_{i=1}^n n_i$ ways.

Theorem 3.2 (Permutation of Multisets) If there ar n_1 T_1 objects, n_2 T_2 objects, ..., n_k T_k objects, then there are

$$\frac{(n_1+n_2+\ldots+n_k)!}{n_1!n_2!\ldots n_k!}$$

ways to arrange them.

Theorem 3.3 (r-Combinations with Repetition) For all $n, r \in \mathbb{Z}^+$, there are

$$\binom{n+r-1}{r}$$

ways to choose r objects from n types of objects with repetition.

Theorem 3.4 (Pascals Formula) For all $n, r \in \mathbb{Z}^+$, $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$

Theorem 3.5 $\sum_{i=0}^{n} \binom{n}{i} = 2^n$

Probability

Theorem 3.6 (Conditional Probability) For all events A, B,

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Corollary 3.6.1 For all events A, B,

$$Pr[A \cap B] = Pr[A|B]Pr[B]$$

Theorem 3.7 (Total Probability Theorem) For all events A, B_1, \ldots, B_n ,

$$Pr[A] = \sum_{i=1}^{n} Pr[A|B_i]Pr[B_i]$$

Theorem 3.8 Event A and B are independent $\leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$

Theorem 3.9 (Expected Value) For all events A_1, \ldots, A_n ,

$$E[X] = \sum_{i=1}^{n} Pr[A_i]X_i$$

Theorem 3.10 (Linearity of Expectation) For all events A_1, \ldots, A_n ,

$$E[X] = \sum_{i=1}^{n} E[X_i]$$

Theorem 3.11 (Markov's Inequality) For all random variables X and a > 0,

$$Pr[X \geq a] \leq \frac{E[X]}{a}$$

Theorem 3.12 (Varience) $\int For \ all \ random \ variables \ X$,

$$Var[X] = E[X^2] - E[X]^2$$

Theorem 3.13 If X and Y are independent random variables, then E[XY] = E[X]E[Y] and Var[X + Y] = Var[X] + Var[Y]

Theorem 3.14 $E[Y] = \sum_{k=0}^{\infty} Pr[Y > k]$

Theorem 3.15 (De'Morgan's Laws)

$$Pr[\overline{A \cup B}] = Pr[\overline{A} \cap \overline{B}]$$
$$Pr[\overline{A \cap B}] = Pr[\overline{A} \cup \overline{B}]$$

Graph Theory 6

4 Graph Theory

General Graphs

Lemma 4.1 (Handshaking Lemma) For any graph G, the sum of the degrees of all vertices is twice the number of edges. That is:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Theorem 4.2 There is an even amount of vertices with odd degree in any graph G.

Theorem 4.3 Graph with n vertices and m edges must have $\geq n-m$ connected components

Corollary 4.3.1 Each connected graph must have at least n-1 edges

Theorem 4.4 Graph G = (V, E) has $|V| \ge 1$ and $|E| \ge 1$, then $|V| \le |V|^2 - 2|E|$

Theorem 4.5 If v is a cut vertex in G, v is not a cut vertex in \overline{G} and \overline{G} is connected.

Theorem 4.6 Either G or \overline{G} is connected. Where \overline{G} is the complement of G.

Trees

Theorem 4.7 The following are equivalent for a graph G:

- 1. G is a tree
- 2. G is connected and has |V| 1 edges
- 3. G is minimally connected, G-e is disconnected for any $e \in E$
- 4. G is acyclic and $G + \{x,y\}$ for non-adjacent $x,y \in V$ creates a unique cycle
- 5. G There is a unique path between any two vertices

Theorem 4.8 Every connected graph contains a spanning subtree.

Theorem 4.9 A full binary tree with k internal vertices has 2k+1 vertices and k+1 leaves.

Theorem 4.10 A binary tree of height h has at most 2^h leaves.

Theorem 4.11 For any graph with $\delta(G) \geq 2$, G contains a cycle

Theorem 4.12 For any graph with $\delta(G) \geq \frac{n}{2}$, G is connected

Theorem 4.13 A tree T such that the degree of all vertices adjacent to a leaf is ≥ 3 has leaf $x \neq y$ wherh N(x) = N(y).

Theorem 4.14 Every three tree with ≥ 4 leaves has some internal vertex thats adjacent to two leaves.

Theorem 4.15 Every three tree with l has l-2 vertices of degree 3.

Theorem 4.16 A tree T must have at least $\Delta(T)$ leaves.

Graph Theory 7

Eularian & Hamiltonian Graphs

Corollary 4.16.1 For any graph with $\delta(G) \geq \frac{n}{2}$ and $n \geq 3$, G is Hamiltonian

Theorem 4.17 If a graph contains a Eularian circuit \rightarrow the line graph of G is Hamiltonian

Planar Graphs

Theorem 4.18 (Euler's Formula) n - m + f = 2 for any connected graph

Theorem 4.19 Sum of all degrees of faces in a crossing is 2|E|

Corollary 4.19.1 $|E| \le 3|V| - 6$ for any planar graph with $|V| \ge 2$

Theorem 4.20 All plant graph have $\delta(G) \leq 5$

Theorem 4.21 A graph is planar \leftrightarrow it contains no subdivision of K_5 or $K_{3,3}$

Theorem 4.22 If a graph is planar, $\chi(G) \leq 6$

Graph Coloring & Matchings

Theorem 4.23 A graph with $\Delta(G) \leq k$, G is k + 1-colorable

Theorem 4.24 Graph G is bipartite $\leftrightarrow G$ contains no odd length cycle

Theorem 4.25 Matching M is maximum \leftrightarrow contains no M-augmenting path

Theorem 4.26 (Hall's Theorem) Bipartite graph G = (X, Y, E) has a X-saturating matching $\Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem 4.27 A n-vertex tournament graph has $\frac{n!}{2^{n-1}}$ Hamiltonian paths

Theorem 4.28 For graph G = (V, E) and $d = \frac{2m}{n}$ is the average degree, $\alpha(G) \geq \frac{n}{2d}$

Theorem 4.29 For graph G where $|V| \ge 2$ and $\delta(G) = \delta$ contains a dominating set of at $\max \frac{n \cdot (1 + \ln(1 + \delta))}{1 + \delta}$

Theorem 4.30 In graph G, For $k \in \mathbb{Z}^+$, if n is larnge enough, there exists a k-dominated tournament on n vertices.

Theorem 4.31 For a bipartite graph G = (X, Y, E), $\delta(X) \ge \Delta(Y)$ there exists a X-saturating matching.

Theorem 4.32 For any graph G = (V, E), there exists a partition of $V_1 \cup V_2 = V$ such that there are $\geq \frac{|E|}{2}$ edges between them.

Theorem 4.33 For G = (V, E), if $\delta(G) \geq 2k$, then there exists a matching of size at least k.

Theorem 4.34 If every vertex in a bipartite graph G = (X, Y, E) has the same degree $d \ge 0$, then |X| = |Y|

Theorem 4.35 If

$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1, \text{ then } R(k,k) > n$$

5 Relations & Functions

Theorem 5.1 f is a function

- 1. f is injective \leftrightarrow for all $a, b \in A$, $f(a) = f(b) \rightarrow a = b$
- 2. f is surjective \leftrightarrow for all $b \in B$, there exists $a \in A$ such that f(a) = b
- 3. f is bijective $\leftrightarrow f$ is injective and surjective (one-to-one correspondence)

Theorem 5.2 There are $2^{n(n-1)}$ relations on a set of size n.

Theorem 5.3 R is a relation on set A. R is transitive $\leftrightarrow R^n \subseteq R$ for all $n \in \mathbb{Z}^+$

Theorem 5.4 f and g are surjective/injective/bijective $\leftrightarrow f \circ g$ is surjective/injective/bijective

9

A Appendix: Proofs