Exercice 1: Soit (un), la suite définie par
$$\begin{cases} U_0 = 0 \\ U_{n+1} = 3u_n - 2n + 3 \end{cases}$$
 $\forall n \ge 0$

Démontrer par récurrence que, pour tout nEN, un > n

Exercice 2: Soit (un), la suite définie par

$$\begin{cases} V_0 = 1 \\ V_{n+1} = \sqrt{2 + \nu_n} & \forall_n \in \mathbb{N} \end{cases}$$

Démantrer par récurrence que, pour tout nEN, O < Un < 2

Exercice 3: Soit (Sn)n la suite définie pour tout nEIN par

$$S_n = \sum_{K=0}^{n} K = 0 + 1 + 2 + \dots + n$$

Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $S_n = \frac{n(n+1)}{2}$

Exercice 4: Soit $(u_n)_n$ la soite définie par $u_0 = \frac{2}{3}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n(2-u_n)$

On admet que la Bonction $f: x \mapsto x(2-x)$ est croissante sur [0,1].

Nontrer par récurrence que, par tout nGIN, $O < U_n < 1$ (Bonus: montrez-le!)

Exercice F: Soit (un)n la suite définie par $\begin{cases} U_2 = 3 \\ U_{n+1} = \frac{3U_n + 1}{U_n + 3} \end{cases} \quad \forall n \geq 2$

Montrer par récurrence que, pour tout
$$n \ge 2$$
, $u_n = \frac{2^n + 2}{2^n - 2}$