

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
19. Juli 2001 (19.07.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/52373 A2

(51) Internationale Patentklassifikation⁷: **H01S 5/00**

[DE/DE]; Drosselstrasse 34 C, 85521 Ottobrunn (DE).
EGOROV, Anton Yurevitch [RU/RU]; Baskov 19, App.
17, St.Petersburg, 191014 (RU).

(21) Internationales Aktenzeichen: **PCT/DE00/04317**

(74) Anwalt: VIERING, JENTSCHURA & PARTNER;
Postfach 22 14 43, 80504 München (DE).

(22) Internationales Anmeldedatum:
4. Dezember 2000 (04.12.2000)

(81) Bestimmungsstaaten (*national*): JP, KR, US.

(25) Einreichungssprache: **Deutsch**

(84) Bestimmungsstaaten (*regional*): europäisches Patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

(30) Angaben zur Priorität:
100 01 122.5 13. Januar 2000 (13.01.2000) DE

Veröffentlicht:
— ohne internationalen Recherchenbericht und erneut zu
veröffentlichen nach Erhalt des Berichts

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von
US*): INFINEON TECHNOLOGIES AG [DE/DE]; St-
Martin-Strasse 53, 81669 München (DE).

Zur Erklärung der Zweibuchstaben-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

(72) Erfinder; und
(75) Erfinder/Anmelder (*nur für US*): RIECHERT, Henning

(54) Titel: SEMICONDUCTOR LASER STRUCTURE

(54) Bezeichnung: HALBLEITERLASERSTRUKTUR

WO 01/52373 A2

(57) Abstract: The active layer (1) and the barrier layers (2) contain a group III component, a group V component and nitrogen, whereby the active layer is a quaternary material and the barrier layers are ternary materials, or, in order to match the lattice properties of the active layer to the barrier layers, the nitrogen content in the barrier layers is higher. The active layer is preferably InGaAsN, the barrier layers are InGaAsN with higher nitrogen content or GaAsN. Superlattices may exist in the barrier layers, for example, series of thin layers of In_x Ga_{1-x} As_y N_{1-y}, with varying factors x and y, where, in particular, x = 0 and y = 1.

(57) Zusammenfassung: In der aktiven Schicht (1) und in den Barrièreschichten (2) sind eine III-Komponente, eine V-Komponente und N enthalten, wobei die aktive Schicht quaternäres Material und die Barrièreschichten ternäres Material sind oder zur Gitteranpassung der aktiven Schicht an die Barrièreschichten der Stickstoffanteil in den Barrièreschichten höher ist. Die aktive Schicht ist vorzugsweise InGaAsN, die Barrièreschichten sind InGaAsN mit höherem Stickstoffanteil oder GaAsN. In den Barrièreschichten können Übergitter (superlattices) vorhanden sein, z.B. Folgen dünner Schichten aus In_x Ga_{1-x} As_y N_{1-y}, mit unterschiedlichen Anteilen x und y, wobei insbesondere x = 0 und y = 1 sein kann.

Beschreibung**Halbleiterlaserstruktur**

5 Die vorliegende Erfindung betrifft eine Halbleiter-Schichtstruktur, die für die Herstellung von Laserdioden geeignet ist.

Für Wellenlängen der Strahlungsemision von ca. 1,3 µm wird
10 üblicherweise das Material InGaAsP, vorzugsweise auf InP-Substraten, verwendet. InGaAs als aktive Schicht in Heterostrukturen auf GaAs ist für diesen Wellenlängenbereich nicht geeignet, da die Bandlücke (Energiebandabstand) in homogenen InGaAs-Schichten einen so hohen Anteil an Indium erfordert
15 würde, dass die Schicht wegen struktureller Relaxation für Laser unbrauchbar würde. Es wurde jedoch nachgewiesen, dass Heterostrukturen auf GaAs prinzipiell ebenso für längerwellige Emission eingesetzt werden können, wenn das emittierende Material ein Potentialtopf (quantum well) aus InGaAsN ist,
20 wobei als Barriereschichten über und unter der für Strahlungserzeugung vorgesehenen aktiven Schicht zumeist GaAs-Schichten verwendet werden (s. z.B. M. Kondow et al.: "GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers" in IEEE J. Select. Topics Quantum Electron. 3, 719 -
25 730 (1997), M. Kondow et al.: "Gas-source MBE of GaInNAs for long-wavelength laser diodes" in J. Crystal Growth 188, 255 - 259 (1998) und K. Nakahara et al.: "1.3-µm Continuous-Wave Lasing Operation in GaInNAs Quantum-Well Lasers" in IEEE Photon. Technol. Lett. 10, 487 - 488 (1998)). In der Veröffentlichung von T. Miyamoto et al.: "A Novel GaInNAs-GaAs Quantum-Well Structure for Long-Wavelength Semiconductor Lasers" in IEEE Photonics Technology Letters 9, 1448-1450 (1997) ist eine Halbleiterlaserstruktur beschrieben, bei der eine als aktive Schicht vorgesehene QW-Schicht (quantum well)
30 aus $\text{Ga}_{0,6} \text{In}_{0,4} \text{No}_{0,01} \text{As}_{0,99}$ zwischen Schichten aus $\text{Ga}_{0,97} \text{In}_{0,03} \text{No}_{0,01} \text{As}_{0,99}$ angeordnet ist. Aus EP-A-0.896.406 ist eine Halbleiterlaserstruktur mit einer aktiven Schicht
35

aus $In_{N_x} As_y P_{1-x-y}$ ($0 < x < 1$ und $0 \leq y < 1$) zwischen Schichten aus $Ga_{N_x'} As_{y'} P_{1-x'-y'}$ ($0 < x' < 1$ und $0 \leq y' < 1$) bekannt. Eine Halbleiterlaserstruktur mit einer aktiven Schicht aus $In_y Ga_{1-y} As_{1-w-v} Sb_w N_v$ ($v \leq 0,0095$ und $w+y \geq 0,33$) zwischen 5 Schichten aus $Ga_{As_{1-z}} P_z$ ($0 \leq z \leq 1$) bzw. $In_y Ga_{1-y} As$ ($0,53 \leq y \leq 1$) ist aus US-A-5.719.894 und US-A-5.825.796 bekannt.

Aufgabe der vorliegenden Erfindung ist es, eine zur Herstellung 10 von Laserdioden geeignete Halbleiter-Schichtstruktur anzugeben, die eine effiziente Strahlungsemission bei Wellenlängen von $1,3 \mu m$ und darüber ermöglicht.

Diese Aufgabe wird mit der Halbleiterlaserstruktur mit den 15 Merkmalen des Anspruches 1, 4 bzw. 7 gelöst. Ausgestaltungen ergeben sich aus den jeweiligen abhängigen Ansprüchen.

Die erfindungsgemäße Halbleiterlaserstruktur basiert auf der Erkenntnis, dass die Strahlungsemission in einem Wellenlängenbereich von $1,3 \mu m$ und darüber wesentlich verbessert werden kann, wenn die Eigenschaften der Barrièreschichten, die die für Strahlungserzeugung vorgesehene aktive Schicht begrenzen, im Hinblick auf die in der Heterostruktur auftretenden Verspannungen und Versetzungen genauer eingestellt werden. In der für Strahlungserzeugung vorgesehenen Schicht und 20 in den Barrièreschichten sind dazu Materialzusammensetzungen vorhanden, die eine III-Komponente, eine V-Komponente und N enthalten (III und V entsprechend den Gruppen des Periodensystems der Elemente). Mit dem Stickstoffanteil in der aktiven Schicht wird die Emissionswellenlänge eingestellt. In einer Ausführungsform ist die aktive Schicht quaternäres Material mit einem Anteil einer weiteren III-Komponente, und die Barrièreschichten sind ternäres Material; in einer weiteren Ausführungsform sind die Schichten aus denselben chemischen 35 Elementen zusammengesetzt und unterscheiden sich nur in den prozentualen Anteilen dieser Elemente (z.B. jeweils quaternäres Material aus denselben Elementen mit unterschiedlichen

Atomanteilen), wobei aber der Stickstoffanteil in den Barrièreschichten höher ist als in der aktiven Schicht. Im Fall eines bevorzugten Ausführungsbeispiels im Materialsystem von GaAs sind sowohl in der aktiven Schicht als auch in den Barrièreschichten Ga, As und N vorhanden. Die aktive Schicht ist dann vorzugsweise InGaAsN, die Barrièreschichten sind InGaAsN mit höherem Stickstoffanteil oder GaAsN.

Eine andere Ausführungsform umfasst Übergitter (superlattices) in den Barrièreschichten, die durch eine Folge dünner Schichten gebildet sind, die jeweils eine III-Komponente, eine V-Komponente und N in unterschiedlichen prozentualen Anteilen enthalten. Im Materialsystem von GaAs sind die Schichten, die das Übergitter bilden, z.B. $In_x Ga_{1-x} As_y N_{1-y}$ mit

unterschiedlichen Anteilen x und y, wobei insbesondere $x = 0$ und $y = 1$ sein kann. Die Zusammensetzungen der einzelnen Schichten sind aber so gewählt, dass sich insgesamt in dem Übergitter der gewünschte Anteil an Stickstoff bzw. Indium ergibt.

20

Erfindungsgemäß lässt sich einerseits eine ausreichende Gitteranpassung der aufgewachsenen Schichten erreichen und andererseits ein ausreichend großer Sprung in der Energiebandlücke, wodurch ein Confinement bewirkt wird. Das Barrierenmaterial muss nicht notwendigerweise die gesamte Schichtdicke des Bauelementes über und unter der aktiven Schicht einnehmen (bei einem VCSEL z.B. den Bereich zwischen den als Resonatorendspiegel fungierenden DBR-Gittern). In der praktischen Ausführung genügen Barrièreschichten einer Dicke von typisch 30 50 nm; außerhalb kann beispielsweise als Mantelschicht GaAs sein. Es kann auch eine mehrstufige Verringerung der Energiebandlücke in den Barrièreschichten vorteilhaft sein.

Ein Beispiel der erfindungsgemäßen Heterostruktur wird im 35 Folgenden anhand der Figuren beschrieben.

Figur 1 zeigt einen Schichtaufbau im Querschnitt.

Figur 2 zeigt ein Energiediagramm für den Schichtaufbau der **Figur 1**.

Bei einem bevorzugten Ausführungsbeispiel der Erfindung ist
5 die aktive Schicht 1 (siehe **Figur 1**) aus InGaAsN, und die an-
grenzenden Barrièreschichten 2 sind aus Halbleitermaterial
derselben Komponenten, aber mit geringerem Indiumgehalt und
höherem Stickstoffgehalt. Der Anteil an Indium in den Barrie-
reschichten kann auch vollständig reduziert sein, so dass die
10 Barrièreschichten 2 GaAsN sind. In **Figur 1** ist als Beispiel
die Struktur einer oberflächenemittierenden Laserdiode mit
vertikalem Resonator (VCSEL) dargestellt. Die erforderliche
Laserresonanz wird hier durch obere und untere DBR-Gitter 3
(distributed Bragg reflection) erzeugt. Die Anordnung befin-
15 det sich vorzugsweise auf einem Substrat 4. Weitere Einzel-
heiten der Laserdiode, die wie die Anschlusskontakte an sich
bekannt sind, wurden zur Verdeutlichung der erfindungswesent-
lichen Teile weggelassen.

20 **Figur 2** zeigt ein Diagramm, in dem auf der linken Seite der
Verlauf der oberen Kante des Valenzbandes und auf der rechten
Seite der Verlauf der unteren Kante des Leitungsbandes für
den in **Figur 1** dargestellten Schichtaufbau gezeichnet ist.
Die für die aktive Schicht 1, die Barrièreschichten 2 und die
25 angrenzenden Gitter 3 geltenden Bereiche sind mit den ent-
sprechenden Ziffern bezeichnet. Das Diagramm ist nicht im
Maßstab gezeichnet, zeigt aber qualitativ richtig die typi-
schen Relationen der Energiebandabstände in den einzelnen
Schichten. Es ist dabei angenommen, dass die aktive Schicht 1
30 InGaAsN ist, und dass die Barrièreschichten 2 ebenfalls
InGaAsN sind, aber mit einem im Vergleich zu dem Material der
aktiven Schicht 1 verminderten Indiumgehalt. In **Figur 2** sind
gestrichelt eingezeichnet die entsprechenden Kurvenverläufe
für den Fall, dass die Barrièreschichten 2 GaAs sind. Es ist
35 erkennbar, dass bei Verwendung von InGaAsN für die Barriere-
schichten 2 ein gegenüber der Verwendung von GaAs verminder-
ter Energiebandabstand in den Barrièreschichten resultiert.

Dieser reduzierte Energiebandabstand ergibt sich wie in der Figur 2 erkennbar daraus, dass in den Barrièreschichten 2 die obere Kante des Valenzbandes geringer abgesenkt ist als die untere Kante des Leitungsbandes.

5

Die aktive Schicht ist bei einer Anordnung der Halbleiterlaserstruktur auf GaAs wegen der gegenüber GaAs kleineren Gitterkonstanten von InGaAsN üblicherweise stark kompressiv verspannt; diese Verspannung könnte in der Schicht selbst nur dadurch beseitigt werden, dass der Stickstoffanteil in dieser Schicht auf ca. 1/3 des Indiumanteils erhöht würde, was sich aber wegen der schlechten Ergebnisse der optischen Qualität des Bauelementes verbietet. Indem in den Barrièreschichten erfindungsgemäß GaAsN verwendet oder ein höherer Stickstoffanteil als in der aktiven Schicht gewählt wird, werden die Barrièreschichten entgegengesetzt zu der aktiven Schicht verspannt.

In dem beschriebenen Materialsystem können die als Reflektoren vorgesehenen DBR-Gitter entsprechend herkömmlichen Schichtstrukturen im Materialsystem von AlGaAs/AlAs hergestellt sein. Ebenso ist es möglich, Mantelschichten, Deckschichten oder dergleichen aus AlGaAs vorzusehen. Wesentlich für die erfindungsgemäße Schichtstruktur ist, dass sowohl die aktive Schicht 1 also auch die daran angrenzenden Barrièreschichten 2 Stickstoff als Materialkomponente enthalten.

Eine weitere Ausgestaltung der Halbleiterlaserstruktur weist Übergitter (superlattices) in den Barrièreschichten auf. Die mittlere Gitterkonstante des Übergitters ist vorzugsweise kleiner oder gleich der des Substratmaterials, damit eine zusätzliche Verspannung der Schichtstruktur vermieden wird. Die mittlere Energiebandlücke des Übergitters liegt vorzugsweise zwischen derjenigen der aktiven Schicht, die mit den Barrieren den Potentialtopf bildet, und einer jeweils auf der davon abgewandten Seite an die Barrièreschicht anschließenden Mantelschicht. Dabei ist darauf zu achten, dass für alle La-

dungsträger, Elektronen und Löcher, eine energetische Barriere zur aktiven Schicht vorhanden ist. Geeignete Übergitter lassen sich, und zwar insbesondere auf GaAs als Substratmaterial, z.B. durch Folgen von Schichten aus $In_x Ga_{1-x} As_y N_{1-y}$ oder aus $In_x Ga_{1-x} As_y P_{1-y}$ mit unterschiedlichen prozentualen Atomanteilen x und y oder durch Folgen von Schichten aus InGaAsN und AlGaAsN, GaAsN oder GaAs bilden. Weitere Möglichkeiten sind Folgen aus InGaAs und GaAsN, GaAsP oder InGaP.

10 Als Vorteile der erfindungsgemäßen Schichtstruktur sind insbesondere die folgenden zu nennen. Die Verspannung des Materials der Barriermaterialien 2 kann so eingestellt werden, dass sie die in der Regel stark kompressive Verspannung des Potentialtopfes, der durch die aktive Schicht zwischen den 15 Barriermaterialien gebildet wird, zumindest teilweise kompensiert. Dadurch werden höhere Verspannungen des Potentialtopfes (und damit größere Schichtdicken oder höhere Indiumgehalte) möglich, ohne dass strukturelle Relaxation eintritt. Das ermöglicht längerwellige Strahlungsemision als mit herkömmlichen GaAs-Barrieren. Durch die kleinere Energiebandlücke des erfindungsgemäßen Barriermaterials (im Vergleich zu GaAs-Barrieren) wird bei ansonsten gleich strukturiertem Potentialtopf der optische Übergang im Potentialtopf ins Längewellige verschoben, womit ebenfalls eine längerwellige 20 Strahlungsemision erreicht wird. Durch den Einbau von Stickstoff in das Material der Barriermaterialien wird das Verhältnis der Sprünge der Energiebandkanten an der Grenze zum Potentialtopf (Schichtgrenze zwischen aktiver Schicht 1 und Barriermaterialien 2) mittels geeigneter Wahl des prozentualen 25 Anteils des Stickstoffs beeinflussbar. Während der Energiebandabstand in der aktiven Schicht 1 gleich bleibt, wird durch Absenken der oberen Kante des Valenzbandes im Material der Barriermaterialien die Barrierefunktion (confinement) vergrößert. Das erhöht den energetischen Einschluss von Löchern 30 und damit die gesamte Rate an Elektron-Loch-Rekombinationen 35 im Potentialtopf, was die Effizienz eines mit dieser Heterostruktur versehenen Lasers erhöht. Durch die Wahl der Zusam-

mensetzungen mit einem höheren Stickstoffgehalt der Barrieref-
schichten bzw. der Verwendung von ternärem Material in den
Barriereschichten und quaternärem Material in der aktiven
Schicht kann eine Verspannung der aktiven Schicht zumindest
5 teilweise derart kompensiert werden, dass auch bei großen
Wellenlängen im Bereich von $1,3 \mu\text{m}$ an aufwärts eine effizien-
te Strahlungsausbeute erreicht wird.

Patentansprüche

1. Halbleiterlaserstruktur mit einer für Strahlungserzeugung vorgesehenen aktiven Schicht (1) zwischen Barriereschichten (2),
5 bei der die aktive Schicht (1) und die Barriereschichten (2) jeweils ein Halbleitermaterial sind, das eine III-Komponente, eine V-Komponente und Stickstoff enthält,
bei der die Barriereschichten (2) ein Halbleitermaterial
10 sind, das einen größeren Energiebandabstand aufweist als das Halbleitermaterial der aktiven Schicht (1), und
bei der zur Gitteranpassung der aktiven Schicht (1) an die Barriereschichten (2) das Halbleitermaterial der Barrierefürschichten (2) einen höheren Anteil Stickstoff enthält als das
15 Halbleitermaterial der aktiven Schicht (1).

2. Halbleiterlaserstruktur gemäß Anspruch 1,
bei der die aktive Schicht (1) $In_x Ga_{1-x} As_y N_{1-y}$ ist und
bei der die Barriereschichten (2) $In_{x'} Ga_{1-x'} As_{y'} N_{1-y'}$ mit
20 $y' < y$, $In_{Py'} N_{1-y'}$ mit $y' < y$, $In_{Asy'} Py'' N_{1-y'-y''}$ mit
 $y'+y'' < y$, oder $Ga_{Asy'} N_{1-y'}$ mit $y' < y$ sind.

3. Halbleiterlaserstruktur gemäß Anspruch 1,
bei der die aktive Schicht (1) $GaAsSbN$ ist und
25 bei der die Barriereschichten (2) $GaAsSbN$ oder $GaAsN$ sind.

4. Halbleiterlaserstruktur mit einer für Strahlungserzeugung vorgesehenen aktiven Schicht (1) zwischen Barriereschichten (2),
30 bei der die aktive Schicht (1) und die Barriereschichten (2) jeweils ein Halbleitermaterial sind, das eine III-Komponente, eine V-Komponente und Stickstoff enthält,
bei der die Barriereschichten (2) ein Halbleitermaterial sind, das einen größeren Energiebandabstand aufweist als das
35 Halbleitermaterial der aktiven Schicht (1), und
bei der zur Gitteranpassung der aktiven Schicht (1) an die Barriereschichten (2) die aktive Schicht (1) quaternäres

Halbleitermaterial und die Barriereschichten (2) ternäres Halbleitermaterial sind.

5. Halbleiterlaserstruktur gemäß Anspruch 4,
5 bei der die aktive Schicht (1) InGaAsN ist und
bei der die Barriereschichten (2) InPN oder GaAsN sind.
- 10 6. Halbleiterlaserstruktur gemäß Anspruch 4,
bei der die aktive Schicht (1) GaAsSbN ist und
10 bei der die Barriereschichten (2) GaAsN sind.
- 15 7. Halbleiterlaserstruktur mit einer für Strahlungserzeugung vorgesehenen aktiven Schicht (1) zwischen Barriereschichten (2),
15 bei der die aktive Schicht (1) und die Barriereschichten (2) jeweils ein Halbleitermaterial sind, das eine III-Komponente und eine V-Komponente enthält,
bei der die Barriereschichten (2) ein Halbleitermaterial sind, das einen größeren Energiebandabstand aufweist als das
20 20 Halbleitermaterial der aktiven Schicht (1), und
bei der zur Gitteranpassung der aktiven Schicht (1) an die Barriereschichten (2) die Barriereschichten (2) Folgen aus Schichten unterschiedlicher Zusammensetzung sind, die ein Übergitter (superlattice) bilden.
- 25 8. Halbleiterlaserstruktur gemäß Anspruch 7,
bei der die Barriereschichten (2) Folgen von Schichten aus $In_x Ga_{1-x} As_y N_{1-y}$ mit unterschiedlichen prozentualen Atomanteilen x und y sind.
- 30 9. Halbleiterlaserstruktur gemäß Anspruch 7,
bei der die Barriereschichten (2) Folgen von Schichten aus InGaAsN und AlGaAsN,
aus InGaAsN und GaAsN,
35 aus InGaAs und GaAsN oder
aus InGaAsN und GaAs sind.

10

10. Halbleiterlaserstruktur gemäß Anspruch 7,
bei der die Barriereschichten (2) Folgen von Schichten
aus $In_x Ga_{1-x} As_y P_{1-y}$ mit unterschiedlichen prozentualen
Atomanteilen x und y sind.

5

11. Halbleiterlaserstruktur gemäß Anspruch 10,
bei der die Barriereschichten (2) Folgen von Schichten
aus InGaAs und GaAsP oder
aus InGaAs und InGaP sind.

10

FIG 1

FIG 2

