Eficiência Energética em Redes de Sensores sem Fios

Relatório Intercalar

Agentes e Inteligência Artificial Distribuída

Mestrado Integrado em Engenharia Informática e Computação

$T11_{-1}$

Francisco Veiga -João Guilherme Routar de Sousa - ei12042@fe.up.pt Luís Telmo Soares Costa - ei08089@fe.up.pt

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn, 4200-465 Porto, Portugal

6 de Novembro de 2016

Conteúdo

1	Intr	rodução	3				
	1.1	Descrição do cenário	3				
	1.2	Objetivos do trabalho					
	1.3	Resultados esperados e forma de avaliação	3				
2	Plataforma e Ferramentas						
	2.1	Utilidade e caraterísticas	5				
	2.2	Funcionalidade relevantes	5				
3	Especificação						
	3.1	Identificação e caraterização dos agentes	6				
	3.2	Protocolos de interação					
	3.3	Faseamento do projeto					
4		cursos	8				
	4.1	Bibliografia	8				
		Software					

1 Introdução

1.1 Descrição do cenário

No âmbito da unidade curricular de Agentes e Inteligência Artifial Distribuída, propusémo-nos a desenvolver um programa, cujo objetivo é otimizar a eficiência energética em redes de sensores sem fios (WSN - Wireless Sensor Networks).

A instalação das WSN em locais remotos e/ou inacessíveis, requer a utilização de algoritmos de perceção e comunicação, responsáveis pela minimização do consumo de energia e, consequentemente, do custo, associado à substituição de baterias.

Por outro lado, é essencial que a informação captada pelos sensores seja fidedigna. Desta forma, é vital balancear a qualidade da informação transmitida e o consumo de energia, como ilustra a figura seguinte.

1.2 Objetivos do trabalho

O principal objetivo do trabalho, descrito na secção anterior (1.1), será alcançado através do desenvolvimento de métodos de Inteligência Artificial, nomeadamente Sistemas Multi-Agentes (MSA). Como tal, será implementado um algoritmo de formação de coligações (CF), denominado COSA, Coalition Oriented Sensing Algorithm.

Este algoritmo estabelece as coligações entre nós (sensores) mediante negociação peer-to-peer, sendo que a estrutura obtida dependerá diretamente do tipo da rede formada, o estado dos nós e o ambiente para cada instante da análise.

1.3 Resultados esperados e forma de avaliação

A avaliação de desempenho do algoritmo *COSA* consiste na verificação da redução do **consumo energético** dos sensores e, consequentemente, do sistema, aliado à **qualidade da informação** transmitida entre os mesmos.

O consumo energético do sistema será avaliado através da mediana dos valores de energia em cada instante, revelando quais os sensores que ainda estão *vivos* na rede, $E(a_i) > 0$, e o padrão de descarga das suas baterias.

A qualidade da informação é avaliada através de duas variáveis: **erro** e **entropia**. O **erro** representa a diferença entre o valor atual observado do *sink node* (nó para onde é enviada informação) para cada nó vivo e o valor atual de poluição. Representa-se da seguinte forma:

$$e^t = \sum_{i \in N^t} \mid\mid xs_i^t - xp_i^t \mid\mid$$

, onde $N^t \subseteq A$ representa o conjunto de nós *vivos* no instante $t; xs_i^t$, o valor conhecido pelo *sink node* para o nível de poluição no nó i no instante t e xp_i^t o nível atual de poluição no nó i no instante t.

A qualidade da informação é obtida através do somatório do valor de entropia associado a cada nó na rede. É representada da seguinte maneira:

$$\sum_{i \in N^t} [H_i(t) = ln(\sigma_i(t).\sqrt{2\pi e})]$$

, sendo que H_i corresponde ao valor da **entropia** e σ_i é uma distribuição plana com uma função de decaimento:

$$\left\{ \begin{array}{ccc}
\sigma_{bot} & \text{if } t=t_i \\
\sigma_{bot} + \frac{e^{t-t_i}}{e^{t_max}} . (\sigma_{top} - \sigma_{bot}) & \text{if } t \neq t_i
\end{array} \right\}$$

, onde t_i é o instante temporal do último valor recebido pelo nó i; σ_{bot} representa a variância do ruído gaussiano adicionado pelo simulador, aquando da leitura de cada sensor; σ_{top} representa uma variância que modela a entropia máxima; Ao parâmetro t_{max} é atribuído o triplo do valor do tempo de leitura de amostras (sampling period).

Tendo em conta o cenário atual, há 4 estratégias de avaliação de resultados, sendo que o análise do *COSA*, por si só, constituirá a de maior prioridade. Para além disso, e se a articulação do tempo disponível for a ideal, será também implementado o *COSA-SF* e o *COSA-C*.

A estratégia *COSA-SF*, *sampling frequency*, consiste, como o nome indica, em alterar a frequência com que são recolhidas as amostras do ambiente, permitindo uma maior eficácia na deteção de mudanças.

A estratégia COSA-C, coherence, representa uma solução menos ideal para um cenário dinâmico. Contudo, permite verificar se um agente lider está coerente com os últimos valores amostrados dos atuais membros da coligação.

2 Plataforma e Ferramentas

2.1 Utilidade e caraterísticas

JADE

O Java Agent Development Environment é um Middleware open-source que facilita o desenvolvimento de MAS, sistemas multi-agente, sob as especificações FIPA (Foundation for Intelligent Physical Agents). É uma plataforma de agentes distribuídos, onde estes estão restritos a um determinado domínio. Para além disso, possibilita a execução paralela dos comportamentos dos agentes behaviours e mobilidade e clonagem dos mesmos.

REPAST

O Recursive Porous Agent Simulation Toolkit é uma plataforma open-source, object-oriented que permite fazer simulações baseadas em agentes. Para além disso, possibilita a acessibilidade e modelação dos mesmos em $run\ time$. Apenas complementa o JADE, dado que não segue as especificações FIPA e não permite o desenvolvimentos de MAS.

SAJaS

É uma API para simulações baseadas em JADE. O seu objetivo é interligar o desenvolvimento e a simulação MAS.

2.2 Funcionalidade relevantes

O JADE, com a sua orientação a objetos, fornecerá abstrações como Agent e Behaviour, comunicação peer-to-peer (entre agentes) e mecanismos de descoberta (pusblish-subscribe, por exemplo, de forma a possibilitar o envio de informações entre agentes. Para além disso, funcionalidades como mobilidade de agentes, tolerância a falhas, integração com web-services, permitem enriquecer e facilitar a interação do utilizador com a plataforma.

A interação REPAST + SAJaS permite a criação e análise de ambientes populados por agentes, culminando na demonstração de resultados na forma de gráficos.

3 Especificação

3.1 Identificação e caraterização dos agentes

O MAS irá ser constituído por agentes com um comportamento padrão de amostragem diferente do normal, por consequência da implementação do *COSA*. Tal implica que os agentes sejam **autónomos**, **proativos** e **reativos**, enquadradando-se na arquitetura de **agentes reativos simples**.

O behaviour dos mesmos é assegurado através de um protocolo de negociação simples, aliado a funções de modelação entre os nós: aderência e liderança.

Os resultados obtidos determinam o diálogo assíncrono protagonizado pelos agentes enquanto negoceiam entre si.

3.2 Protocolos de interação

Os nós de uma rede recolhem amostras do ambiente que os rodeia, que são enviadas, posteriormente, para os seus vizinhos. O seu conteúdo é avaliado por estes, surgindo, ou não, a necessidade de criar uma coligação num modelo *bottom-up*. Em caso afirmativo, o nó que enviou a amostra será o líder do grupo formado, sendo que o(s) restante(s) são considerados dependentes e, como tal, poderão cessar a sua atividade (incluindo recolha de amostras e comunicação com o *sink node*).

É essencial que a organização dos nós seja bem estruturada, de forma a ser possível rentabilizar energia, derivado da poupança de transmissões de longa distância (as que os nós dependentes não têm que fazer).

A seguinte imagem descreve, simplificadamente, o comportamento dos nós, através do algoritmo COSA:

Algorithm 1. COSA: Node basic behaviour

- 1 while energy > 0 do
- 2 environment sampling;
- 3 environment model update;
- 4 relationship to neighbours update;
- 5 social network update;
- 6 end

3.3 Faseamento do projeto

Execução	Fase	Objetivos
Obrigatório	1	Implementação do COSA
Obrigatório	2	Análise e teste de comportamento de apenas 1 agente (líder)
Obrigatório	3	Análise e teste de comportamente de 2 agentes (líder + seguidor)
Obrigatório	4	Análise e teste de comportamento com múltiplos agentes (líder + seguidores)
Hipotético	5	Análise e teste de comportamento com estratégia(s) COSA-SF, COSA-C e/ou
		COSA- SF + C
Hipotético	6	Comparação de resultados entre estratégias utilizadas

4 Recursos

4.1 Bibliografia

- María del Carmen Delgado; Carles Sierra "A Multi-agent Approach to Energy-Aware Wireless Sensor Networks Organization", Agreement Technologies - Second International Conference, AT. Lecture Notes in Computer Science, vol. 8068, Beijing, China,, Springer, pp. 32-47, 01/08/2013.

4.2 Software

- JADE, Repast+SAJaS