Exercise no 7

CORENTIN LACROIX 1812554

MTH 6312: MÉTHODES STATISTIQUES D'APPRENTISSAGE

November 3, 2015

Exercise 1 Prove the $h_3(x)=(x-\xi_2)_+$ cause continuity at $x=\xi_2$ in expansion of the form $f(x)=\beta_0+\beta_1x+(x-\xi_1)_++(x-\xi_2)_+$

Solution 1 Let f be $f(x) = \beta_0 + \beta_1 x + (x - \xi_1)_+ + (x - \xi_2)_+ \forall x \in \mathcal{R}$ with $(\xi_1, \xi_2) \in \mathcal{R}^2$ and $(\beta_0, \beta_1) \in \mathcal{R}^2$

We have

$$f(x) = \begin{cases} \beta_0 + \beta_1 x & \text{if } x \le \xi_1 \\ \beta_0 + \beta_1 x + x - \xi_1 & \text{if } \xi_1 < x \le \xi_2 \\ \beta_0 + \beta_1 x + x - \xi_1 + x - \xi_2 & \text{if } x > \xi_2 \end{cases}$$

Then,
$$\lim_{\substack{x>\xi_2\\x\to\xi_2}} f(x) = \lim_{\substack{x>\xi_2\\x\to\xi_2}} (\beta_0 + \beta_1 x + x - \xi_1 + x - \xi_2) = \beta_0 + \beta_1 \xi_2 + \xi_2 - \xi_1$$

And
$$\lim_{\substack{x < \xi_2 \\ x \to \xi_2}} f(x) = \lim_{\substack{x < \xi_2 \\ x \to \xi_2}} (\beta_0 + \beta_1 x + x - \xi_1) = \beta_0 + \beta_1 \xi_2 + \xi_2 - \xi_1 = \lim_{\substack{x > \xi_2 \\ x \to \xi_2}} f(x)$$

Consequently, the f function is continous at $x = \xi_2$ thanks to the term $h_3(x) = (x - \xi_2)_+$

Exercise 2 Why don't we include terms of the form $(x - \xi_l)^i$ for $i \in \{0, 1, 2\}$ in cubic spline expansion? Prove it for the case of cubic spline with only one knot

Solution 2 Let f be $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_+^3 \quad \forall x \in \mathcal{R}$ with $\xi \in \mathcal{R}$ and $(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4) \in \mathcal{R}^5$

We have:

$$f(x) = \begin{cases} \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 = f_1(x) & \text{if } x \le \xi \\ \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3 = f_2(x) & \text{if } x > \xi \end{cases}$$

With $f_1(x) = 0$ if $x > \xi$ and $f_2(x) = 0$ if $x \le \xi$

So,

$$f'(x) = \begin{cases} f'_1(x) & \text{if } x \leq \xi \\ f'_2(x) & \text{if } x > \xi \end{cases}$$

And we have a similar result for f".

If we derive f_1 and f_2 , we get :

$$\begin{cases} f_1'(x) = \beta_1 + 2\beta_2 x + 3\beta_3 x^2 \ \forall x \le \xi \\ f_2'(x) = \beta_1 + 2\beta_2 x + 3\beta_3 x^2 + 3\beta_4 (x - \xi)^2 \ \forall x > \xi \end{cases}$$

Then, immediatly,

$$\lim_{\substack{x \le \xi \\ x \to \xi}} f_1'(x) = \lim_{\substack{x > \xi \\ x \to \xi}} f_2'(x) = \beta_1 + \beta_2 \xi + 3\beta_3 \xi^2$$

Similarly,

$$\begin{cases} f_1"(x) = 2\beta_2 + 6\beta_3 x \ \forall x \le \xi \\ f_2"(x) = 2\beta_2 + 6\beta_3 x + 6\beta_4 (x - \xi) \ \forall x > \xi \end{cases}$$

And,

$$\lim_{\substack{x \le \xi \\ x \to \xi}} f_1''(x) = \lim_{\substack{x > \xi \\ x \to \xi}} f_2''(x) = 2\beta_2 + 6\beta_3 \xi$$

So, in this case, f' and f" are continuous for $x = \xi$.

If we had added to f a term $\beta(x-\xi)_+^i$, $i \in \{0,1,2\}$:

- for $i=0,\ f$ wouldn't be continous in $x=\xi$ because $\lim_{\substack{x\leq\xi\\x\to\xi}}f_1(x)$ and $\lim_{\substack{x>\xi\\x\to\xi}}f_1(x)$ would be separated by the constant β .
- for $i=1,\ f'$ wouldn't be continous in $x=\xi$ because $\lim_{\substack{x\leq\xi\\x\to\xi}}f_1'(x)$ and $\lim_{\substack{x>\xi\\x\to\xi}}f_1'(x)$ would be separated by the constant β .
- for i=2, f wouldn't be continous in $x=\xi$ because $\lim_{\substack{x\leq \xi\\x\to\xi}} f_1"(x)$ and $\lim_{\substack{x>\xi\\x\to\xi}} f_1"(x)$ would be separated by the constant β .

Exercise 3 Generate the following graph using smoothing splines with $\lambda = 0.00022$ and df = 12.

Solution 3 R-code for generating the corresponding plot :

```
> plot(subset(bone, gender == 'female')$age,
+ subset(bone, gender == 'female')$spnbmd,
+ col='red', pch=3, xlab='Age', ylab='Relative change in spinal BMD')
> points(subset(bone, gender == 'male')$age,
subset(bone, gender == 'male')$spnbmd,
col='blue', pch=4)
```

> femaleSmooth = smooth.spline(subset(bone, gender == 'female')\$age,

- + subset(bone, gender == 'female')\$spnbmd, df=12)
- > maleSmooth = smooth.spline(subset(bone, gender == 'male')\$age,
- + subset(bone, gender == 'male')\$spnbmd, df=12)
- > lines(femaleSmooth, col='red', lwd=3)
- > lines(maleSmooth, col='blue', lwd=3)
- > legend(20, 0.125, c("Female", "Male"), lty=c(1,1),
- + lwd=c(2.5,2.5), col=c("red", "blue"))

The corresponding figure is in annex.

Exercise 4 Show that the matrix $S_{\lambda} = N(N^{\top}N + \lambda\Omega_N)^{-1}N^{\top}$ is symmetric, idempotent and its rank is equal to N (number of observations)

Solution 4 First of all, let's compute S_{λ}^{\top} :

$$S_{\lambda}^{\top} = N((\mathbf{N}^{\top} \mathbf{N} + \lambda \mathbf{\Omega}_{N})^{-1})^{\top})$$

$$= \mathbf{N}((\mathbf{N}^{\top} \mathbf{N} + \lambda \mathbf{\Omega}_{N})^{\top})^{-1})$$

$$= \mathbf{N}(\mathbf{N}^{\top} \mathbf{N} + \lambda \mathbf{\Omega}_{N}^{\top})^{-1})$$

$$= \mathbf{N}(\mathbf{N}^{\top} \mathbf{N} + \lambda \mathbf{\Omega}_{N})^{-1} \mathbf{N}^{\top} because \ \mathbf{\Omega}_{N} is symmetric$$

$$(1)$$

We can conclude that:

$$oldsymbol{S}_{\lambda}$$
 is symmetric

Secondly, it is clear that S_{λ} is inversible is equivalent to N inversible and $N^{\top}N + \lambda \Omega_{N}$. The question assumes implicitly that $N^{\top}N + \lambda \Omega_{N}$ (and I would be very em-

barassed to prove it). Given that, we just have to prove that N is inversible to prove that S_{λ} is inversible.

It seems to be also a complicated task... The space spanned by the N cubic spline spline basis function is a N linear dimension space. By adding more constraints on these N cubic spline functions. By forcing the global resulting function to have fixed values at the knots, that is to say for a given real set $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{R}^N$ forcing f to respect the constraints $\forall k \in \{1, 2, \dots, N\}, \ f(x_k) = \sum_{i=1}^N \theta_i N_i(x_k) = \alpha_k$, we remove N degrees of freedom, that gives 0 degrees of freedom.

Thus, the linear application defined for a given set of \mathcal{R}^N (x_1, x_2, \ldots, x_n) , $\forall f$ in the natural cubic spline space by $\phi(f) = (f(x_1), f(x_2), \ldots, f(x_n))$ is a bijection between the cubic spline space and \mathcal{R}^N .

Consequently, the columns vector of N are the images by the application ϕ of the function basis (N_1, N_2, \dots, N_N) . The columns of the matrix form a basis of \mathbb{R}^N are independent and:

$$oldsymbol{N}$$
 is inversible and so is $oldsymbol{S}_{\lambda}$

(I admit that the justification for ϕ being injective is not satisfactory..)

Exercise 5 Prove that S_{λ} can be written in form of $(I + \lambda K)^{-1}$ where K does not depend on λ .

Solution 5 Knowing that if A, B and C are inversible matrices, then $(ABC) = C^{-1}B^{-1}A^{-1}$.

We have:

$$S_{\lambda} = ((\boldsymbol{N}^{\top})^{-1}((\boldsymbol{N}^{\top}\boldsymbol{N} + \lambda\boldsymbol{\Omega}_{N})(\boldsymbol{N}^{-1}))^{-1}$$

$$= (\boldsymbol{I} + \lambda\boldsymbol{N}^{-\top}\boldsymbol{\Omega}_{N}\boldsymbol{N}^{-1})^{-1}$$
(2)

Exercise 6 Produce the following graphs using smoothing splines with the mentioned degrees of freedom.

Solution 6 R-code to generate the 2 plots :

- > plot(airData\$daggett.pressure.gradient, airData\$ozone.level,
- + xlab='Daggett Pressure Gradient', ylab='Ozone Level', pch=19, col='gray')
- > smoothFunction1 = smooth.spline(airData\$daggett.pressure.gradient,
- + airData\$ozone.level, df=5)
- > smoothFunction2 = smooth.spline(airData\$daggett.pressure.gradient,
- + airData\$ozone.level, df=11)
- > smoothFunction3 = smooth.spline(airData\$daggett.pressure.gradient,
- + airData\$ozone.level, df=17)
- > lines(smoothFunction1, col='blue', lwd=3)
- > lines(smoothFunction2, col='red', lwd=3)

- > lines(smoothFunction3, col='yellow', lwd=3)
- > legend(60, 28.5, c("df = 5", "df = 11", "df = 17"), lty=c(1,1,1),
- + lwd=c(2.5,2.5,2.5), col=c("blue", "red", "yellow"))