Tutorial 10

Janine Egert, Daniel Lill, Daniel Kaschek, Mirjam Kaschek

Exercise: Chemotaxis

Implement the simplest chemotaxis model:

• The probability that a methylated receptor is active is

$$p = \frac{L}{L + K_L}$$

with ligand concentration L and Michaelis-Menten constant K_L .

• The concentration of activated receptors T_a is given by :

$$T_a = p T_m$$

with T_m the concentration of methylated receptors.

• The dynamics of the concentration of methylated receptors is given by

$$\dot{T}_m = k_R R - k_B B \frac{T_a}{K_B + T_a}$$

The expression means that the methylating enzyme R is present in and that the demethylating enzyme B only acts on active receptors. Notice the difference and relationship between T_a and T_m .

• Dynamics of the phosphorylated $CheA_{p}$:

$$\dot{A}_p = k_A (A_{tot} - A_p) T_a - k_Y A_p (Y_{tot} - Y_p)$$

• Dynamics of the phosphorylated $CheY_p$:

$$\dot{Y}_p = k_Y A_p (Y_{tot} - Y_p) - \gamma_Y Y_p$$

Simulate the system

- with the parameters: $K_L = 1$, $k_R = 1$, $k_B = 10$, $K_B = 1$, $k_A = 10$, $k_Y = 1$, $\gamma_Y = 1$, R = 0.01, B = 1, $A_{tot} = 10$, and $Y_{tot} = 10$
- and a ligand concentration of

$$L = \begin{cases} 0.1 & \text{for } 0 \le t < 50s \\ 0.3 & \text{for } 50 \le t < 100s \\ 0.5 & \text{for } 100 \le t < 150s \\ 0.3 & \text{for } 150 \le t < 200s \end{cases}$$

• Consider the (appropriately scaled) time course of the ligand concentration and the single components and make the mechanism clear to you.