Single Source Shortest Paths with Negative Weights

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 5

■ Recall the burning pipeline analogy

- Recall the burning pipeline analogy
- We keep track of the following
 - The vertices that have been burnt
 - The expected burn time of vertices

- Recall the burning pipeline analogy
- We keep track of the following
 - The vertices that have been burnt
 - The expected burn time of vertices
- Initially
 - No vertex is burnt
 - Expected burn time of source vertex is 0
 - Expected burn time of rest is ∞

Initialization (assume source vertex 0)

■
$$B(i)$$
 = False, for $0 \le i < n$

$$B = \{k \mid B(k) = \mathsf{False}\}$$

$$\blacksquare EBT(i) = \begin{cases} 0, & \text{if } i = 0 \\ \infty, & \text{otherwise} \end{cases}$$

- Recall the burning pipeline analogy
- We keep track of the following
 - The vertices that have been burnt
 - The expected burn time of vertices
- Initially
 - No vertex is burnt
 - Expected burn time of source vertex is 0
 - Expected burn time of rest is ∞
- While there are vertices yet to burn
 - Pick unburnt vertex with minimum expected burn time, mark it as burnt
 - Update the expected burn time of its neighbours

Initialization (assume source vertex 0)

- B(i) = False, for $0 \le i < n$
- $EBT(i) = \begin{cases} 0, & \text{if } i = 0 \\ \infty, & \text{otherwise} \end{cases}$

Update, if $UB \neq \emptyset$

- Let $j \in UB$ such that $EBT(j) \leq EBT(k)$ for all $k \in UB$
- Update B(j) = True, $UB = UB \setminus \{j\}$
- For each $(j, k) \in E$ such that $k \in UB$, $EBT(k) = \min(EBT(k),$

Correctness requires non-negative edge weights

- Each new shortest path we discover extends an earlier one
- By induction, assume we have found shortest paths to all vertices already burnt

Correctness requires non-negative edge weights

- Each new shortest path we discover extends an earlier one
- By induction, assume we have found shortest paths to all vertices already burnt
- Next vertex to burn is **v**, via **x**
- Cannot find a shorter path later from y to v via w
 - Burn time of $\mathbf{w} \ge \text{burn time of } \mathbf{v}$
 - Edge from **w** to **v** has weight ≥ 0

Correctness requires non-negative edge weights

- Each new shortest path we discover extends an earlier one
- By induction, assume we have found shortest paths to all vertices already burnt
- Next vertex to burn is **v**, via **x**
- Cannot find a shorter path later from y to v
 via w
 - Burn time of $\mathbf{w} \ge \text{burn time of } \mathbf{v}$
 - Edge from **w** to **v** has weight ≥ 0
- This argument breaks down if edge (w,v) can have negative weight

 The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt

- The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt
- What if we allow updates even after a vertex is burnt?

- The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt
- What if we allow updates even after a vertex is burnt?
- Recall, negative edge weights are allowed, but no negative cycles

- The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt
- What if we allow updates even after a vertex is burnt?
- Recall, negative edge weights are allowed, but no negative cycles
- Going around a cycle can only add to the length

- The difficulty with negative edge weights is that we stop updating the burn time once a vertex is burnt
- What if we allow updates even after a vertex is burnt?
- Recall, negative edge weights are allowed, but no negative cycles
- Going around a cycle can only add to the length
- Shortest route to every vertex is a path, no loops

Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_{\ell}} k$$

 Need not be minimum in terms of number of edges

Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_\ell} k$$

- Need not be minimum in terms of number of edges
- Every prefix of this path must itself be a minimum weight path
 - $0 \xrightarrow{w_1} j_1$

 -

Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_{\ell}} k$$

- Need not be minimum in terms of number of edges
- Every prefix of this path must itself be a minimum weight path
 - $0 \xrightarrow{w_1} j_1$
 - $0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2$
 -

• Once we discover shortest path to $j_{\ell-1}$, next update will fix shortest path to k

Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_\ell} k$$

- Need not be minimum in terms of number of edges
- Every prefix of this path must itself be a minimum weight path
 - $0 \xrightarrow{w_1} j_1$
 - $0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2$
 -

- Once we discover shortest path to $j_{\ell-1}$, next update will fix shortest path to k
- Repeatedly update shortest distance to each vertex based on shortest distance to its neighbours
 - Update cannot push this distance below actual shortest distance

Suppose minimum weight path from 0 to k is

$$0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{\ell-1}} j_{\ell-1} \xrightarrow{w_\ell} k$$

- Need not be minimum in terms of number of edges
- Every prefix of this path must itself be a minimum weight path
 - $0 \xrightarrow{w_1} j_1$
 - $0 \xrightarrow{w_1} j_1 \xrightarrow{w_2} j_2$
 -

- Once we discover shortest path to $j_{\ell-1}$, next update will fix shortest path to k
- Repeatedly update shortest distance to each vertex based on shortest distance to its neighbours
 - Update cannot push this distance below actual shortest distance
- After ℓ updates, all shortest paths using $\leq \ell$ edges have stabilized
 - Minimum weight path to any node has at most *n*−1 edges
 - After *n*−1 updates, all shortest paths have stabilized

Initialization (source vertex 0)

- D(j): minimum distance known so far to vertex j
- $D(j) = \begin{cases} 0, & \text{if } j = 0 \\ \infty, & \text{otherwise} \end{cases}$

Initialization (source vertex 0)

- D(j): minimum distance known so far to vertex j
- $D(j) = \begin{cases} 0, & \text{if } j = 0 \\ \infty, & \text{otherwise} \end{cases}$

Repeat n-1 times

■ For each vertex $j \in \{0, 1, ..., n-1\}$, for each edge $(j, k) \in E$, $D(k) = \min(D(k), D(j) + W(j, k))$

Initialization (source vertex 0)

- D(j): minimum distance known so far to vertex j
- $D(j) = \begin{cases} 0, & \text{if } j = 0 \\ \infty, & \text{otherwise} \end{cases}$

Repeat n-1 times

■ For each vertex $j \in \{0, 1, ..., n-1\}$, for each edge $(j, k) \in E$, $D(k) = \min(D(k), D(j) + W(j, k))$

Works for directed and undirected graphs

Initialization (source vertex 0)

- **D**(j): minimum distance known so far to vertex j
- $D(j) = \begin{cases} 0, & \text{if } j = 0 \\ \infty, & \text{otherwise} \end{cases}$

Repeat n-1 times

■ For each vertex $j \in \{0, 1, ..., n-1\}$, for each edge $(j, k) \in E$, $D(k) = \min(D(k), D(j) + W(j, k))$

```
def bellmanford(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  distance = {}
  for v in range(rows):
    distance[v] = infinity
  distance[s] = 0
  for i in range(rows):
    for u in range(rows):
      for v in range(cols):
        if WMat[u,v,0] == 1:
          distance[v] = min(distance[v], distance[u]
                                         +WMat[u,v,1])
  return(distance)
```

Works for directed and undirected graphs

Initialization (source vertex 0)

D(j): minimum distance known so far to vertex j

Repeat n-1 times

■ For each vertex $j \in \{0, 1, ..., n-1\}$, for each edge $(j, k) \in E$,

$$D(k) = \min(D(k), D(j) + W(j, k))$$

Works for directed and undirected graphs

V		D(v)		
0					
1					
2					
3					
4					
5					
6					
7					

V			D(v)		
0	0					
1	∞					
2	∞					
3	∞					
4	∞					
5	∞					
6	∞					
7	∞					

■ Initialize D(0) = 0

V			D(v)		
0	0	0				
1	∞	10				
2	∞	∞				
3	∞	∞				
4	∞	∞				
5	∞	∞				
6	∞	∞				
7	∞	8				

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k),$

V				D(v)		
0	0	0	0				
1	∞	10	10				
2	∞	∞	∞				
3	∞	∞	∞				
4	∞	∞	∞				
5	∞	∞	12				
6	∞	∞	9				
7	∞	8	8				

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k))$

V				D(v)		
0	0	0	0	0			
1	∞	10	10	5			
2	∞	∞	∞	10			
3	∞	∞	∞	∞			
4	∞	∞	∞	∞			
5	∞	∞	12	8			
6	∞	∞	9	9			
7	∞	8	8	8			

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k))$.

V				D(v)		
0	0	0	0	0	0		
1	∞	10	10	5	5		
2	∞	∞	∞	10	6		
3	∞	∞	∞	∞	11		
4	∞	∞	∞	∞	∞		
5	∞	∞	12	8	7		
6	∞	∞	9	9	9		
7	∞	8	8	8	8		

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k),$

D(i) + W(j,k)

V				D(v)		
0	0	0	0	0	0	0	
1	∞	10	10	5	5	5	
2	∞	∞	∞	10	6	5	
3	∞	∞	∞	∞	11	7	
4	∞	∞	∞	∞	∞	14	
5	∞	∞	12	8	7	7	
6	∞	∞	9	9	9	9	
7	∞	8	8	8	8	8	

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min(D(k))$

$$D(k) = \min(D(k), D(j) + W(j, k))$$

V				D(v)			
0	0	0	0	0	0	0	0	
1	∞	10	10	5	5	5	5	
2	∞	∞	∞	10	6	5	5	
3	∞	∞	∞	∞	11	7	6	
4	∞	∞	∞	∞	∞	14	10	
5	∞	∞	12	8	7	7	7	
6	∞	∞	9	9	9	9	9	
7	∞	8	8	8	8	8	8	

- Initialize D(0) = 0
- For each $(j, k) \in E$, update $D(k) = \min_{k \in E} D(k)$

$$D(k) = \min(D(k), D(j) + W(j, k))$$

V				D(v)			
0	0	0	0	0	0	0	0	0
1	∞	10	10	5	5	5	5	5
2	∞	∞	∞	10	6	5	5	5
3	∞	∞	∞	∞	11	7	6	6
4	∞	∞	∞	∞	∞	14	10	9
5	∞	∞	12	8	7	7	7	7
6	∞	∞	9	9	9	9	9	9
7	∞	8	8	8	8	8	8	8

- Initialize D(0) = 0
- For each $(j, k) \in E$, update

$$D(k) = \min(D(k), D(j) + W(j, k))$$

V				D(v)			
0	0	0	0	0	0	0	0	0
1	∞	10	10	5	5	5	5	5
2	∞	∞	∞	10	6	5	5	5
3	∞	∞	∞	∞	11	7	6	6
4	∞	∞	∞	∞	∞	14	10	9
5	∞	∞	12	8	7	7	7	7
6	∞	∞	9	9	9	9	9	9
7	∞	8	8	8	8	8	8	8

■ What if there was a negative cycle?

V				D(v)			
0	0	0	0	0	0	0	0	0
1	∞	10	10	5	5	5	5	5
2	∞	∞	∞	10	6	5	5	5
3	∞	∞	∞	∞	11	7	6	6
4	∞	∞	∞	∞	∞	14	10	9
5	∞	∞	12	8	7	7	7	7
6	∞	∞	9	9	9	9	9	9
7	∞	8	8	8	8	8	8	8

- What if there was a negative cycle?
- Distance would continue to decrease

V				D(v)			
0	0	0	0	0	0	0	0	0
1	∞	10	10	5	5	5	5	5
2	∞	∞	∞	10	6	5	5	5
3	∞	∞	∞	∞	11	7	6	6
4	∞	∞	∞	∞	∞	14	10	9
5	∞	∞	12	8	7	7	7	7
6	∞	∞	9	9	9	9	9	9
7	∞	8	8	8	8	8	8	8

- What if there was a negative cycle?
- Distance would continue to decrease
- Check if update n reduces any D(v)

■ Initialing infinity takes $O(n^2)$ time

```
def bellmanford(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  distance = {}
  for v in range(rows):
    distance[v] = infinity
  distance[s] = 0
  for i in range(rows):
    for u in range(rows):
      for v in range(cols):
        if WMat[u,v,0] == 1:
          distance[v] = min(distance[v], distance[u]
                                         +WMat[u,v,1])
  return(distance)
```

- Initialing infinity takes $O(n^2)$ time
- The outer update loop runs O(n) times

```
def bellmanford(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  distance = {}
  for v in range(rows):
    distance[v] = infinity
  distance[s] = 0
  for i in range(rows):
    for u in range(rows):
      for v in range(cols):
        if WMat[u,v,0] == 1:
          distance[v] = min(distance[v], distance[u]
                                         +WMat[u,v,1])
  return(distance)
```

- Initialing infinity takes $O(n^2)$ time
- The outer update loop runs O(n) times
- In each iteration, we have to examine every edge in the graph
 - This take $O(n^2)$ for an adjacency matrix

```
def bellmanford(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  distance = {}
  for v in range(rows):
    distance[v] = infinity
  distance[s] = 0
  for i in range(rows):
    for u in range(rows):
      for v in range(cols):
        if WMat[u,v,0] == 1:
          distance[v] = min(distance[v].distance[u]
                                         +WMat[u,v,1])
  return(distance)
```

- Initialing infinity takes $O(n^2)$ time
- The outer update loop runs O(n) times
- In each iteration, we have to examine every edge in the graph
 - This take $O(n^2)$ for an adjacency matrix
- Overall, $O(n^3)$

```
def bellmanford(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  distance = {}
  for v in range(rows):
    distance[v] = infinity
  distance[s] = 0
  for i in range(rows):
    for u in range(rows):
      for v in range(cols):
        if WMat[u,v,0] == 1:
          distance[v] = min(distance[v], distance[u]
                                         +WMat[u,v,1])
  return(distance)
```

- Initialing infinity takes $O(n^2)$ time
- The outer update loop runs O(n) times
- In each iteration, we have to examine every edge in the graph
 - This take $O(n^2)$ for an adjacency matrix
- Overall, $O(n^3)$
- If we shift to adjacency lists
 - Initializing infinity is O(m)
 - Scanning all edges in each update iteration is O(m)

```
def bellmanfordlist(WList,s):
  infinity = 1 + len(WList.keys())*
                 max([d for u in WList.keys()
                         for (v,d) in WList[u]])
  distance = {}
  for v in WList.keys():
    distance[v] = infinity
  distance[s] = 0
  for i in WList.keys():
    for u in WList.kevs():
      for (v,d) in WList[u]:
        distance[v] = min(distance[v], distance[u] + d)
  return(distance)
```

- Initialing infinity takes $O(n^2)$ time
- The outer update loop runs O(n) times
- In each iteration, we have to examine every edge in the graph
 - This take $O(n^2)$ for an adjacency matrix
- Overall, $O(n^3)$
- If we shift to adjacency lists
 - Initializing infinity is O(m)
 - Scanning all edges in each update iteration is O(m)
- Now, overall O(mn)

```
def bellmanfordlist(WList,s):
  infinity = 1 + len(WList.keys())*
                 max([d for u in WList.keys()
                         for (v,d) in WList[u]])
  distance = {}
  for v in WList.keys():
    distance[v] = infinity
  distance[s] = 0
  for i in WList.keys():
    for u in WList.kevs():
      for (v,d) in WList[u]:
        distance[v] = min(distance[v], distance[u] + d)
  return(distance)
```

Summary

- Dijkstra's algorithm assumes non-negative edge weights
 - Final distance is frozen each time a vertex "burns"
 - Should not encounter a shorter route discovered later
- Without negative cycles, every shortest route is a path
- Every prefix of a shortest path is also a shortest path
- Iteratively find shortest paths of length 1, 2, ..., n-1
- Update distance to each vertex with every iteration Bellman-Ford algorithm
- $O(n^3)$ time with adjacency matrix, O(mn) time with adjacency list
- If Bellman-Ford algorithm does not converge after n-1 iterations, there is a negative cycle