

Policy Evaluation

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

August 16, 2022

Overview

Review

2 Policy

Policy Evaluation

Review

Markov Reward Process

Markov Reward Process

A Markov reward process is a tuple $\langle S, P, R, \gamma \rangle$ is a Markov chain with values

- \triangleright S: (Finite) set of states
- $\triangleright \mathcal{P}$: State transition probablity
- \triangleright \mathcal{R} : Reward for being in state s_t is given by a deterministic function \mathcal{R}

$$r_{t+1} = \mathcal{R}(s_t)$$

- $ightharpoonup \gamma$: Discount factor such that $\gamma \in [0,1]$
- ▶ In general, the reward function can also be an expectation $\mathcal{R}(s_t = s) = \mathbb{E}[r_{t+1}|s_t = s]$

Value Function

The value function V(s) gives the long-term value of state $s \in \mathcal{S}$

$$V(s) = \mathbb{E}\left(G_t|s_t = s\right) = \mathbb{E}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$

- \blacktriangleright Value function V(s) determines the value of being in state s
- \blacktriangleright V(s) measures the potential future rewards we may get from being in state s
- \blacktriangleright Observe that V(s) is independent of t

Decomposition of Value Function

Let s and s' be successor states at time steps t and t+1, the value function can be decomposed into sum of two parts

- ▶ Immediate reward r_{t+1}
- ▶ Discounted value of next state s' (i.e. $\gamma V(s')$)

$$V(s) = \mathbb{E}\left(G_t|s_t = s\right) = \mathbb{E}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$
$$= \mathbb{E}\left(r_{t+1} + \gamma V(s_{t+1})|s_t = s\right)$$

Bellman equation for value functions

$$V(s) = \mathbb{E}(r_{t+1}|s_t = s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}V(s')$$

Bellman Equation in Matrix Form

We have $S = \{1, 2, \dots, n\}$ and let P, R be known. Then one can write the Bellman equation can as,

$$V = \mathcal{R} + \gamma \mathcal{P}V$$

where

$$\begin{bmatrix} V(1) \\ V(2) \\ \vdots \\ V(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}(1) \\ \mathcal{R}(2) \\ \vdots \\ \mathcal{R}(n) \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \mathcal{P}_{12} & \cdots & \mathcal{P}_{1n} \\ \mathcal{P}_{21} & \mathcal{P}_{22} & \cdots & \mathcal{P}_{2n} \\ \vdots & & & & \\ \mathcal{P}_{n1} & \mathcal{P}_{n2} & \cdots & \mathcal{P}_{nn} \end{bmatrix} \times \begin{bmatrix} V(1) \\ V(2) \\ \vdots \\ V(n) \end{bmatrix}$$

Solving for V, we get,

$$V = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

The discount factor should be $\gamma < 1$ for the inverse to exist

Markov Decision Process

Markov decision process is a tuple $\langle S, A, P, R, \gamma \rangle$ where

- \triangleright S: (Finite) set of states
- \triangleright \mathcal{A} : (Finite) set of actions
- $\triangleright \mathcal{P}$: State transition probability

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a), a_t \in \mathcal{A}$$

 \triangleright \mathcal{R} : Reward for taking action a_t at state s_t and transitioning to state s_{t+1} is given by the deterministic function \mathcal{R}

$$r_{t+1} = \mathcal{R}(s_t, a_t, s_{t+1})$$

 $ightharpoonup \gamma$: Discount factor such that $\gamma \in [0,1]$

Finite and Infinite Horizon MDPs

Depending on time horizon, a Markov decision process can be

- ▶ Finite horizon
- ▶ Infinite horizon
- ► Indefinite horizon (SSP)

For finite and (certain) indefinite MDPs with at least absorbing state, we can take the discount factor to be 1

Policy

Policy

Let π denote a policy that maps state space \mathcal{S} to action space \mathcal{A}

Policy

- ▶ Deterministic policy: $a = \pi(s), s \in \mathcal{S}, a \in \mathcal{A}$
- ▶ Stochastic policy $\pi(a|s) = P[a_t = a|s_t = s]$

Grid World: Revisited

Consider a 4×4 grid world problem

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- \triangleright S: $\{1, 2, \dots, 14\}$ (non-terminal) + 2 terminal states (shaded)
- $ightharpoonup A: \{Right, Left, Up, Down\}$

Grid World : Deterministic Policy

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- $\blacktriangleright \ \mathcal{S}: \{1,2,\cdots,14\} \ (\text{non-terminal}) + 2 \ \text{terminal states} \ (\text{shaded})$
- $ightharpoonup \mathcal{A}: \{ \text{Right, Left, Up, Down} \}$
- ▶ Deterministic policy :

$$\pi(s) = \left\{ \begin{array}{ll} \text{Down,} & \text{if } s = \{3, 7, 11\} \\ \text{Right,} & \text{Otherwise} \end{array} \right\}$$

 \blacktriangleright Example sequences: $\{\{8, 9, 10, 11, G\}, \{2, 3, 7, 11, G\}\}$

Figure Source: David Silver's RL

course

Grid World: Stochastic Policy

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- \triangleright S: $\{1, 2, \dots, 14\}$ (non-terminal) + 2 terminal states (shaded)
- \triangleright \mathcal{A} : {Right, Left, Up, Down}
- **Stochastic policy**: $\pi(a|s)$ could be a uniform random action between all available actions at state s
- \blacktriangleright Example sequences: $\{\{8,4,8,9,13,\cdots,\},\{2,6,5,9,13,\cdots,\}\}$

Stochastic Policy: Rock Scissors Paper

- ► Two player game of rock-paper-scissors
 - ★ Scissors beats paper
 - ★ Rock beats scissors
 - ★ Paper beats rock
- ▶ Consider policies for iterated rock-paper-scissors
 - ★ A deterministic policy is easily exploited
 - ★ A uniform random policy is optimal (i.e. Nash equilibrium)

Policy Evaluation

Value Functions with Policy

Given a MDP and a policy π , we define the value of a policy as follows:

State-value function

The value function $V^{\pi}(s)$ in state s is the expected (discounted) total return starting from state s and then following the policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$

Decomposition of State Value Function

The state-value function can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s)$$

Expanding the expectation, with $\mathcal{R}^a_{ss'} = \mathcal{R}(s, a, s')$ we get,

$$\mathbb{E}_{\pi}[r_{t+1}|s_t = s] = \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \mathcal{R}_{ss'}^a$$

and

$$\mathbb{E}_{\pi}[\gamma V^{\pi}(s_{t+1})|s_t = s] = \sum_{s} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \gamma V^{\pi}(s')$$

Hence,

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

The above equation is called the Bellman Evaluation operator

Matrix Formulation of Bellman Evaluation Equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Denote,

$$\mathcal{P}^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

$$\mathcal{R}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \mathcal{R}^{a}_{ss'} = \mathbb{E}(r_{t+1}|s_{t}=s)$$

Using \mathcal{P}^{π} and \mathcal{R}^{π} , for finite MDP, one can rewrite the Bellman evaluation equation as

$$V^{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} V^{\pi} \implies V^{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

<u>Remark</u>: Bellman Evaluation Equation for $V^{\pi}(s)$ is a system of $n = |\mathcal{S}|$ (<u>linear</u>) equations with n variables and can be solved if the model is known

MDP + Policy = MRP

- ▶ MDP + policy = Markov Reward Process.
- ▶ Given a MDP $< S, A, P, R, \gamma >$ and a policy π
- ▶ The MRP is given by $(S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma)$

Value Function Computation: Example

- ▶ States $S = \{A, B, G_1, G_2\}$; States G_1 and G_2 are terminal states
- ightharpoonup Two actions $\mathcal{A} = \{a_1, a_2\}$
- ▶ Value of states $\{A, B\}$ using forward policy π_f is given by, $V_{\pi_f}(A) = 11$, $V_{\pi_f}(B) = 10$
- ▶ Value of states $\{A, B\}$ using forward policy π_b is given by, $V_{\pi_b}(B) = 6$, $V_{\pi_b}(A) = 5$

Action Value Function

Action-value function

The action-value function Q(s,a) under policy π is the expected return starting from state s and taking action a and then following the policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

The action-value function can similarly be decomposed as

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a)$$

Expanding the expectation we have $Q^{\pi}(s, a)$ to be

$$Q^{\pi}(s, a) = \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma \sum_{s'} \pi(a'|s') Q^{\pi}(s', a') \right]$$

Relationship between $V^{\pi}(\cdot)$ and $Q^{\pi}(\cdot)$

Using definitions of $V^{\pi}(s)$ and $Q^{\pi}(s,a)$, we can arrive at the following relationships

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) Q^{\pi}(s, a)$$

$$Q^{\pi}(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$