

Numerical Analysis

Author: Zye Wang

Institute: YZU Mathematical

Date: January 3, 2024

Version: 0.3

Bio: Information

Contents

Chapte	r 1 Mathematical foundations	2
1.1	Norm Space	2
1.2		5
1.3		5
Chapte	r 2 Error Analysis	6
2.1	Basic Concepts of Error	6
2.2	Significant Digits	6
2.3	Machine Number System	7
2.4	Numerical Stability	8
Chapte	r 3 Solutions of Equations in One Variable	10
3.1	The Bisection Method	10
3.2	Fixed-Point Iteration	11
3.3	The convergence of iterative method	12
3.4	Newton's Method and Secant Method	14
Chapte	r 4 Direct method for Linear System	17
4.1	Gaussian Elimination	17
4.2	Doolittle Decomposition	18
4.3	Square Root Method	19
4.4	Tridiagonal matrix algorithm	20
Chapte	r 5 Iterative method for Linear System	23
Chapte	r 6 Interpolation	24
6.1	Lagrange Interpolation	24
6.2	Newton Interpolation	25
6.3	Piecewise Polynomial Interpolation	26
6.4	Hermite Interpolation	27
Chapte	r 7 Curve Fitting	28
7.1	Least-square Method	28
Chapte	r 8 Numerical Differentiation and Integration	31
8.1	Numerical Integration	31
8.2	Newton-Cotes formula	33
8.3	Composite Numerical Integration	35
8.4	Romberg integration	38
Chapte	r 9 Numerical method for Ordinary differential equation	39
9.1	The Existence of Solutions to Initial Value Problems	39

CC	NI	ГΕ	NI'	тς

9.2	Euler Method	39
9.3	Runge-kutta method	43
94	Convergence of methods	45

Introduction

The content of introduction.

Chapter 1 Mathematical foundations

1.1 Norm Space

1.1.1 Norm Space

Definition 1.1 (Norm space)

Let X be a complex (or real) linear space (vector space). A function $\|\cdot\|: X \to \mathbb{R}$ with the properties

- 1. $||x|| \ge 0$, (positivity)
- 2. ||x|| = 0 if and only if x = 0, (definiteness)
- 3. $\|\alpha x\| = |\alpha| \|x\|$, (homogeneity)
- 4. $||x+y|| \le ||x|| + ||y||$, (triangle inequality)

for all $x,y\in X$ and all $\alpha\in\mathbb{C}$ (or \mathbb{R}) is called a norm on X. A linear space X equipped with a norm is called a normed space. For $X=\mathbb{R}^n$ or $X=\mathbb{C}^n$ we will also call the norm a vector norm.

Remark For each norm, the second triangle inequality

$$|||x|| - ||y||| \le ||x - y||$$

holds for all $x, y \in X$.

Proof From the triangle inequality we have

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||,$$

whence $||x|| - ||y|| \le ||x - y||$ follows. Analogously, by interchanging the roles of x and y we have $||y|| - ||x|| \le ||y - x||$.

For two elements x, y in a normed space ||x - y|| is called the distance between x and y.

1.1.2 Vector Norm

Definition 1.2 (Common vector norms)

1. The 1-norm of a vector $x = (x_1, x_2, \dots, x_n)^T$ is defined as

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

2. The 2-norm of a vector $x = (x_1, x_2, \dots, x_n)^T$ is defined as

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

3. The p-norm of a vector $x = (x_1, x_2, \dots, x_n)^T$ is defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, where 1 \leqslant p < \infty$$

4. ∞ -norm of a vector $x = (x_1, x_2, \dots, x_n)^T$ is defined as

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

*

Example 1.1 assume $x = (1, -4, 0, 2)^T$, calculate its vector norm $||x||_1, ||x||_2, ||x||_\infty$ Solution

$$||x||_1 = \sum_{i=1}^n |x_i| = 7$$

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{21}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i| = 4$$

Remark In \mathbb{R}^n space, any two norms are equivalent.

Proposition 1.1

If a sequence of vectors converges in terms of one norm, then it converges in terms of any norm.

$$\lim_{k \to \infty} x^{(k)} = x^* \iff \lim_{k \to \infty} \left\| x^{(k)} - x^* \right\| = 0 \text{ where } \| \cdot \| \text{ is any norm of a vector }$$

1.1.3 Matrix Norm

Definition 1.3 (Frobenius norm)

If we extend the concept of vector norms to matrices, then, based on the 2-norm of vectors in \mathbb{R}^n , we obtain a norm for matrices in $\mathbb{R}^{n \times n}$ defined as:

$$F(A) = ||A||_F = \left(\sum_{i,j=1}^n a_{ij}^2\right)^{\frac{1}{2}}$$

This is referred to as the Frobenius norm (or F norm) of matrix A.

Definition 1.4

For any real-valued function $\|\cdot\|$ defined on the space $\mathbb{R}^{n\times n}$ with respect to any $A,B\in\mathbb{R}^{n\times n}$, satisfying the following conditions:

- 1. Positivity: $||A|| \ge 0$; $||A|| = 0 \Leftrightarrow A = 0$
- 2. Homogeneity: $\|\alpha A\| = |\alpha| \|A\|, \forall \alpha \in \mathbb{R}$
- 3. Triangle inequality: $||A + B|| \le ||A|| + ||B||$
- 4. Compatibility: $||AB|| \leq ||A|| \cdot ||B||$

then the real-valued function $\|\cdot\|$ is termed a matrix norm on the space $\mathbb{R}^{n\times n}$.

Remark Due to the frequent simultaneous consideration of matrices and vectors in most estimation-related problems, there is a desire to introduce a new matrix norm that is compatible with vector norms. Specifically, for any vector $x \in \mathbb{R}^n$ and matrix $A \in \mathbb{R}^{n \times n}$, it is required that the inequality $||Ax|| \leq ||A|| \cdot ||x||$ holds.

Definition 1.5 (Operator Norm)

Let $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Consider a vector norm $\|\|_{\alpha}$ where $\alpha = 1, 2, \infty$. Correspondingly, define a non-negative function for matrices as follows:

$$||A||_{\alpha} = \max_{x \neq \theta} \frac{||Ax||_{\alpha}}{||x||_{\alpha}}$$

Here, $||A||_{\alpha}$ is a matrix norm on $\mathbb{R}^{n\times n}$ and is referred to as the operator norm of the matrix A.

Definition 1.6 (Common Matrix Norm)

1. 1-Norm:

$$\|A\|_1 = \max_{1 \leqslant j \leqslant n} \sum_{i=1}^n |a_{ij}|$$
 (Column Sum Norm)

2. ∞ -Norm:

$$||A||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$$
 (Row Sum Norm)

3. 2-Norm:

$$||A||_2 = \sqrt{\lambda_{max} (A^{\mathrm{T}} A)}$$
 (Spectral Norm)

Example 1.2 Assume $A = \begin{pmatrix} 2 & -1 \\ -2 & 4 \end{pmatrix}$, calculate $\|A\|_1, \|A\|_2, \|A\|_\infty$. Solution $\|A\|_1 = \max\{2+|-2|, |-1|+4\} = 5 \quad \|A\|_\infty = \max\{2+|-1|, |-2|+4\} = 6$ $A^{\mathrm{T}}A = \begin{pmatrix} 2 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 8 & -10 \\ -10 & 17 \end{pmatrix}$ $|\lambda E - A^{\mathrm{T}}A| = 0 \Rightarrow \lambda_1 \approx 23.466, \lambda_2 \approx 1.534$ $\|A\|_2 = \sqrt{23.466} \approx 4.844$

Definition 1.7 (Spectral Radius)

Let $\lambda_i (i = 1, 2, ..., n)$ be the eigenvalues of matrix A.

The quantity $\rho(A) = \max_{1 \le i \le n} \{|\lambda_i|\}$ is referred to as the spectral radius of matrix A.

Theorem 1.1

For any matrix norm, it holds that $\rho(A) \leq ||A||$.

 \Diamond

 \Diamond

Theorem 1.2

If matrix A is symmetric, then $||A||_2 = \rho(A)$.

If matrix 11 to symmetric, then $\|11\|_2 = p(11)$.

Remark In $R^{n \times n}$ space, any two matrix norms are equivalent

Definition 1.8 (Convergence of Matrix Sequences)

The convergence of matrix sequences is also defined as

$$\lim_{k \to \infty} A^{(k)} = A^* \Leftrightarrow \lim_{k \to \infty} \left\| A^{(k)} - A^* \right\| = 0 \left(\Leftrightarrow a_{ij}^{(k)} \to a_{ij}^*, i, j = 1, 2, \cdots, n \right).$$

Theorem 1.3

Assume $A \in \mathbb{R}^{n \times n}$, then $\lim_{k \to \infty} A^k = O \iff \rho(A) < 1$.

 \Diamond

Example 1.3 prove
$$A = \begin{pmatrix} 1/2 & 0 \\ 1/4 & 1/2 \end{pmatrix}$$
 is a convergent matrix

Proof $A^2 = \begin{pmatrix} 1/4 & 0 \\ 1/4 & 1/4 \end{pmatrix}$ $A^3 = \begin{pmatrix} 1/8 & 0 \\ 3/16 & 1/8 \end{pmatrix}$ $A^4 = \begin{pmatrix} 1/16 & 0 \\ 1/8 & 1/16 \end{pmatrix}$... $A^k = \begin{pmatrix} (1/2)^k & 0 \\ k/2^{k+1} & (1/2)^k \end{pmatrix}$... disconvergent

 $\lim_{k\to\infty} (1/2)^k = 0, \lim_{k\to\infty} k/2^{k+1} = 0 \qquad \therefore A \text{ is convergent}$ Remark $\rho(A) = 1/2 < 1$

Proposition 1.2

if ||A|| < 1, then $I \pm A$ is inverse, and

$$||(I \pm A)^{-1}|| \le \frac{1}{1 - ||A||}$$

where $\|\cdot\|$ is the operator norm of a matrix.

Proof if $I \pm A$ is not inverse, then $(I \pm A)x = 0$ has a nonzero solution, thus there exisits nonzero vector x_0 s.t.

$$\pm Ax_0 = -x_0$$

now,

$$\frac{\|Ax_0\|}{\|x_0\|} = 1, \|A\| \geqslant 1$$

what's more,

$$(I \pm A)^{-1} \pm A(I \pm A)^{-1} = (I \pm A)(I \pm A)^{-1} = I$$

$$\longrightarrow (I \pm A)^{-1} = I \mp A(I \pm A)^{-1}$$

$$\longrightarrow \|(I \pm A)^{-1}\| \leqslant 1 + \|A\| \cdot \|(I \pm A)^{-1}\|$$

$$\longrightarrow \|(I \pm A)^{-1}\| \leqslant \frac{1}{1 - \|A\|}$$

1.2

1.3

Chapter 2 Error Analysis

Introduction

- ☐ Error analysis is the study of how well a model or an estimator fits the data.
- ☐ Error analysis is a fundamental part of the theory of statistics

2.1 Basic Concepts of Error

Definition 2.1

Source and classification

- 1. Model error
- 2. Measurement error
- 3. Truncation error
- 4. Round off error

Definition 2.2 (Absolute Error)

Suppose that x^* is an approximation to x, then

$$|e = x - x^*|$$

is called the absolute error of x^*

Definition 2.3 (Relative Error)

If x is an approximation to x^* , then

$$e_r = \frac{x - x^*}{x}$$

is called the relative error of x^*

Definition 2.4 (Relative Error Bound)

A positive number ε is called the relative error bound of x^* if

$$|e_r| = \left| \frac{x - x^*}{x} \right| \leqslant \varepsilon_r \quad or \quad |e_r| = \left| \frac{x - x^*}{x^*} \right| \leqslant \varepsilon_r$$

2.2 Significant Digits

Definition 2.5

Suppose $x = \pm (a_1 \times 10^{-1} + a_2 \times 10^{-2} + \dots a_n \times 10^{-n}) \times 10^m$ where $m \in \mathbb{Z}$, $a_i \in \{0, 1, 2 \cdots, 9\}, a_1 \neq 0$.

If x has n significant digits, the error can be represented as

$$|x^* - x| \leqslant \left(\frac{1}{2} \times 10^{-n}\right) \times 10^m$$

Theorem 2.1

Suppose $x = \pm (a_1 \times 10^{-1} + a_2 \times 10^{-2} + \dots a_n \times 10^{-n}) \times 10^m$ is the approximation of x^*

1. If x has l significant digits, then the relative error bound x is

$$\frac{1}{2a_1} \times 10^{-l+1}$$

2. If the relative error bound of x is

$$\frac{1}{2(a_1+1)} \times 10^{-l+1}$$

where $1 \leq l \leq n$, then x has at least l significant digits.

\Diamond

2.3 Machine Number System

Suppose the computer has an n-bit word length. using the β system. and the order code bit is p. Then the floating -point representation of numbers in a compute is

$$x = \pm (0.a_1 a_2 \cdots a_n) \beta^p$$

 β is called the base of a floating -point number. $\alpha = \pm (0.a_1a_2...a_n)$ is called the mantissa

The set composed by all floating-point number and zero is called the Machine Number System. denoted by

$$F(\beta, n, L, U) = \{0\} \cup \{x \mid x = \pm (0, a_1 a_2 \dots a_n) \beta^P\}.$$

Proposition 2.1

1. $F(\beta, n, L, U)$ is composed of limited number with the number of

$$1 + 2(\beta - 1)\beta^{n-1}(U - L + 1)$$

2. The number with the highest absolute value

$$\pm \left(\frac{\beta - 1}{\beta} + \frac{\beta - 1}{\beta^2} + \dots + \frac{\beta - 1}{\beta^n}\right) \beta^U = \pm \left(1 - \beta^{-n}\right) \beta^U$$

3. The None-zero number with the smallest absolute value

$$\pm \left(\frac{1}{\beta} + \frac{0}{\beta^2} + \dots \frac{0}{\beta^n}\right) \beta^L = \pm \beta^{-1+L}$$

Theorem 2.2

Suppose real number $x \neq 0$. and floating -point number in $F(\beta, n, L, U)$ is fl(x). then e_r is the relative error of fl(x) satisfies

$$|e_r| = \left| \frac{x - fl(x)}{x} \right| \leqslant \frac{1}{2} \beta^{1-n}$$

Let
$$\varepsilon = \frac{f(l) - x}{x}$$
 $fl(x) = x(1 + \varepsilon)$ $|\varepsilon| \leqslant \frac{1}{2}\beta^{1-n}$

Proposition 2.2

suppose x_1, x_2 are flouting-point number, then

- 1. $fl(x_1 + x_2) = (x_1 + x_2)(1 + \varepsilon_1)$
- 2. $fl(x_1 x_2) = (x_1 x_2)(1 + \varepsilon_2)$
- 3. $fl(x_1x_2) = (x_1x_2)(1+\varepsilon_3)$

4.
$$fl(x_1/x_2) = (x_1/x_2)(1 + \varepsilon_4)$$

where $|\varepsilon_i| \leq \frac{1}{2}\beta^{1-n}$

Remark

- 1. When adding numbers of the same number, add the ones with smaller absolute value first.
- 2. In computer floating-point operations, the associative law addition may not necessarily satisfy

Example 2.1 Suppose
$$n = 3, L = -5, U = 5x = 1.623, y = 0.184, z = 0.00362.$$
 find $u = (x + y) + z$. $v = x + (y + z)$.

Solution

$$fl(x) = 0.162 \times 10^{1}$$

$$fl(y) = 0.184 \times 10^{0}$$

$$fl(z) = 0.362 \times 10^{-2}$$

$$fl(x) + fl(y) = 0.162 \times 10^{1} + 0.018 \times 10^{1} = 0.180 \times 10^{1}$$

$$u = (fl(x) + fl(y) + fl(z))$$

$$= 0.180 \times 10^{1} + 0.362 \times 10^{-2}$$

$$= 0.180 \times 10^{1} + 0.000 \times 10^{1}$$

$$= 0.180 \times 10^{1}$$

2.4 Numerical Stability

Example 2.2 Calculate the following integral

$$I_n = \int_0^1 \frac{x^n}{x+5} dx$$
 , $n = 0, 1, 2, \dots, 10$.

Solution

$$I_{n} = \int_{0}^{1} \frac{x^{n}}{x+5} dx$$

$$= \int_{0}^{1} \frac{x^{n-1}(x+5)}{x+5} - 5 \int_{0}^{1} \frac{x^{n-1}}{x+5} dx$$

$$= \frac{1}{n} - 5I_{n-1}$$

$$I_{0} = \int_{0}^{1} \frac{1}{x+5} dx = \ln\left(\frac{6}{5}\right)$$

$$\tilde{I}_{0} \approx \ln 1.2. \quad \tilde{I}_{1} = 1 - 5\tilde{I}_{0} \dots$$
suppose $e_{n} = I_{n} - \tilde{I}_{n} \rightarrow |e_{n}| = 5^{n} |e_{0}|$

Thus it's an unstable algorithm

Then use another method

$$I_{n-1} = \frac{1}{5} \left(\frac{1}{n} - I_n \right) \Rightarrow |e_{n-1}| = \frac{1}{5} |e_n|$$

 $|e_{10-k}| = \left(\frac{1}{5} \right)^k |e_{10}|$

Let's calculate the approximate value of I_{10} below

By first Mean Value Theorem of Integrals

$$I_n = \frac{1}{\xi_n + 5} \int_0^1 x^n dx = \frac{1}{\xi_n + 5} \cdot \frac{1}{n+1} \quad (0 < \xi_n < 1)$$

$$\frac{1}{6} \frac{1}{n+1} < I_n < \frac{1}{5} \frac{1}{n+1}$$

$$let \tilde{I_n} = \frac{1}{2} \left(\frac{1}{6} \frac{1}{n+1} + \frac{1}{5} \frac{1}{n+1} \right) \Rightarrow \tilde{I_{10}} = \frac{1}{60}$$

$$\left| I_{10} - \tilde{I_{10}} \right| \leqslant \frac{1}{2} \left(\frac{1}{55} - \frac{1}{66} \right) = \frac{1}{660}$$

Proposition 2.3

- 1. Avoid the Loss of Accuracy.
- 2. Avoid the subtraction of Nearly Equal Numbers.
- 3. Avoid Big Numbers "swallowing" Small Numbers
- 4. Avoid Dividing by a Number with Small Absolute Value

Example 2.3

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Example 2.4 Using the quadratic formula and 4-digit rounding arithmetic: to find the roots of $x^2 + 62.10x + 1 = 0$

Solution

$$x_1^* = \frac{-62.10 + \sqrt{(62.10)^2 - 4.000}}{2.000}$$

$$= \frac{(-62.1)^2 - ((62.10)^2 - 4.000)}{2.000 \times (-62.10 - \sqrt{(62.10)^2 - 4.000}}00$$

$$= \frac{2.000}{-62.10 - \sqrt{(62.10)^2 - 4.000}}$$

Chapter 3 Solutions of Equations in One Variable

3.1 The Bisection Method

Lemma 3.1 (Intermediate value Theorem)

If $f \in C[a,b]$ is a number between f(a) and f(b) then there exists at least one point x^* . s.t.

$$f\left(x^{*}\right) = k$$

Corollary 3.1 (Zero-point Theorem)

If $f \in c[a,b]$, f(a)f(b) < 0, then there exists at least one number c in (a,b) s.t.

$$f(c) = 0$$

The Algorithm

point.

set
$$a_0 = a, b_0 = b$$

set
$$x_0 = a_0 + b_0/2 \leftarrow$$

if
$$f(x_0) = 0$$
, then $x^* = x_0$

else
$$[a, b] = \begin{cases} [a_0, x_0], & \text{if } f(a_0) f(x_0) < 0\\ [x_0, b_0], & \text{if } f(x_0) f(b_0) < 0 \end{cases}$$

$$f(x_k) < \varepsilon / |b_k - a_k|$$

$$|y_{es}|$$

$$x^* = x_k$$

Remark

$$|x_k-x^*|\leqslant \frac{b_k-a_k}{2}=\frac{b-a}{2^{k+1}}$$
 if $|x_k-x^*|<\varepsilon,\quad \text{i.e.} \frac{b-a}{2^{k+1}}<\varepsilon\Rightarrow k>\log_2\frac{b-a}{\varepsilon}-1$

Example 3.1 Use Bisection method to find solution of $f(x) = x^2 + 4x^2 - 10$ in [1, 2], the iteration is terminated when $|x_k - x^*| < \frac{1}{2} \times |10^{-5}$

Solution
$$f(x) \in C[1,2]$$
 $f(1) = -5 < 0$ $f(2) = 14 > 0$

By Intermediate Value Theorem, $\exists x^* \in (1,2)$ s.t. $f(x^*) = 0$, since $f'(x) = 3x^2 + 8x > 0$, for any $x \in (1,2)$, then x^* is unique,

n	a_n	b_n	x_n	$f(x_n)$
0	1-	2+	1.5^{+}	2.375
1	1-	1.5+	1.25^{-}	-1.79687
2	1.25^{-}	1.5 ⁺	1.375^{+}	0.16211
3	1.25^{-}	1.315^{+}	1.3125^{-}	-0.84839

Remark

1. The Bisection Method is simple, effective, and easy to implement on a computer. However, if the equation has multiple roots on the root interval, this method only finds one of the roots.

- 2. If. there are even double routs. the method cannot be used.
- 3. The Bisection Method has a slow convergence speed and is often used to provide a good initial value for other iterative methods.

3.2 Fixed-Point Iteration

Theorem 3.1

Suppose $\varphi(x)$ satisfies

- 1. $\forall x \in [a, b], \varphi(x) \in [a, b]$
- 2. $\exists 0 \leq L < 1$, s.t. $\forall x \in (a, b) \quad |\varphi'(x)| \leq L < 1$

then, for any initial value $x_0 \in [a, b]$

the sequence $\{x_k = \varphi(x_{k-1})\}\$ converges to the unique root x^* , s.t. $x^* = \varphi(x^*)$.

\Diamond

Proof

1. Existence

consider
$$f(x) = \varphi(x) - x$$

since
$$f(a) = \varphi(a) - a \ge 0$$
. $f(b) = \varphi(b) - b \le 0$

if f(a) or f(b) = 0. then a or b is the fixed -point.

if
$$f(a) > 0, f(b) < 0$$
,

By Intermediate Value Theorem.

 \exists fixed -point x^* s.t. $f(x^*) = 0$

2. Uniqueness

Suppose $x^* = \varphi(x^*)$

$$y^* = \varphi(y^*)$$
$$|x^* - y^*| = |\varphi(x^*) - \varphi(y^*)| \le L|x^* - y^*|$$
$$(1 - L)|x^* - y^*| \le 0.$$

since 1 - L > 0, so $|x^* - y^*| = 0$

ie.
$$x^* = y^*$$

Astringency.

$$|x^* - x_k| = |\varphi(x^*) - \varphi(x_{k-1})| \le L |x^* - x_{k-1}|$$

 $\cdots \le L^k |x^* - x_0| \to 0$

Corollary 3.2

If φ satisfies the hypotheses of Theorem, then the following error bounds hold.

1.

$$|x^* - x_k| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$

2.

$$|x^* - x_k| \leqslant \frac{L^k}{1 - L} |x_1 - x_0|$$

Proof

1.

$$|x^* - x_k| = |\varphi(x^*) - \varphi(x_{k-1})|$$

$$\leq L |x^* - x_{k-1}|$$

$$\leq L (|x^* - x_k| + |x_k - x_{k-1}|)$$

$$\Rightarrow (1 - L) |x^* - x_k| \leq L |x_k - x_{k-1}|$$

2.

$$|x_{k} - x_{k-1}| = |\varphi(x_{k-1}) - \varphi(x_{k-2})|$$

$$\leq L |x_{k-1} - x_{k-2}|$$

$$\leq L^{2} |x_{k-2} - x_{k-3}|$$
...
$$\leq L^{k-1} |x_{1} - x_{0}|$$

$$\Rightarrow |x^{*} - x_{k}| \leq \frac{L}{1 - L} |x_{k} - x_{k-1}| \leq \frac{L^{k}}{1 - L} |x_{1} - x_{0}|$$

Example 3.2 Find the approximation of $\sqrt{2} \left(\varepsilon = 10^{-5} \right)$

Solution Suppose $x = \sqrt{2} - 1$, then (x + 2)x = 1, $f(x) = x^2 + 2x - 1$

$$x^* \in [0, 0.5], \quad x = \frac{1}{x+2} = \varphi(x)$$

 $\varphi(x) \in \left[\frac{2}{5}, \frac{1}{2}\right] \subset [0, 0.5].$

thus. $\forall u, v \in [0, 0.5],$

$$|\varphi(u) - \varphi(v)| = \left| \frac{1}{u+2} - \frac{1}{v+2} \right| = \left| \frac{u-v}{(u+2)(v+2)} \right| \leqslant \frac{1}{4} |u-v|$$

thus. $\varphi(x)$ is a compressed image on an Interval

$$x_{k+1} = \frac{1}{x_{k+2}}$$
 let $x_0 = 0$

$$x^* \approx x_8 = 0.4142132$$
 $\sqrt{2} = x^* + 1 \approx 1.41421$

3.3 The convergence of iterative method

Theorem 3.2

Suppose the equation. $x = \varphi(x)$ has a root x^* in [a,b], if $|\varphi'(x)| \ge 1$ for any $x \in [a,b]$, then for any $x_0 \in [a,b]$ ($x_0 \ne x^*$), the iterative equation $x_{k+1} = \varphi(x_k)$ must be divergence

Theorem 3.3

Suppose the equation $x = \varphi(x)$ has a root x^* in [a,b] if $|\varphi'(x)| \le L < 1$ for any $x \in [a,b]$, then for any $x_0 \in [a,b], (x_0 \ne x^*)$, the iterative equation $x_{k+1} = \varphi(x_k)$ must be convergence

Definition 3.1 (Local Convergence)

The sequence $\{x_k\}_{k=0}^{\infty}$ defined by $x_k = \varphi\left(x_{k-1}\right)$ locally converges to $x^* = \varphi\left(x^*\right)$ if there exists $\delta > 0$, s.t. $\{x_k\}_{k=0}^{\infty}$ converges to x^* for any $x_0 \in (x_0^* - \delta, x^* + \delta)$

Theorem 3.4

let x^* be a root of $x = \varphi(x)$, If there exists a $\delta > 0$. s.t. $\varphi'(x)$ is continuous on $(x^* - \delta, x^* + \delta)$ and $|\varphi'(x)| < 1$. then the sequence locally converges to x^* for any x in $\Omega = (x^* - \delta, x^* + \delta)$

Remark In most cases, if $|\varphi'(x)|$ is significantly smaller than 1 in the small areas near the root, then with the initial value x_0 in the area, $\{x_k\}$ always be convergence.

Definition 3.2 (Order of Convergence)

Suppose $\{x_k\}$ is converges to x^* , denoted $e_k = x^* - x_k$ If positive constant c and p exist with

$$\lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^p} \right| = C$$

Then $\{x_k\}$ converges to x^* of order p with the asymptotic error constant c.

- 1. If p = 1. the sequence is linearly convergent
- 2. If p = 2. the sequence is quadratically convergent

Theorem 3.5

Consider iterative scheme $x_{n+1} = \varphi(x_n) \to x^*$

If $\exists \delta$, $\Omega = \{x \mid x \in (x^* - \delta, x^* + \delta)\}$ s.t. $\varphi'(x) \in C(\Omega)$ and $\varphi'(x) \neq 0$ then the iterative scheme has lined convergence

Proof $e_{k+1}=x^*-x_{k+1}=arphi\left(x^*\right)-arphi\left(x_k\right)=arphi'(\xi)\left(x^*-x_k\right)=arphi'(\xi)e_k$ then $\lim_{n\to\infty}\frac{|e_{k+1}|}{|e_{k}|}=\lim_{n\to\infty}arphi'(\xi)=arphi'\left(x^*\right)=C\neq 0$

Theorem 3.6

Consider iterative scheme $x_{n+1} = \varphi(x_n) \to x^*$

if there exists a $\delta > 0$, s.t. $\varphi(x)$ is p times differentiable on $(x^* - \delta, x^* + \delta)$, and

$$\varphi'(x^*) = \varphi''(x^*) = \dots \varphi^{(p-1)}(x^*) = 0$$

but

$$\varphi^{(p)}\left(x^*\right) \neq 0$$

then $\{x_k\}$ converges to x^* of under p, where $p \geqslant 1$ is an integer. and

$$\lim_{k \to \infty} \left| \frac{e_{k+1}}{e_k^p} \right| = C = \frac{\left| \varphi^{(p)} \left(x^* \right) \right|}{p!}$$

Proof Taylor expansion of $\varphi(x)$ at x^*

$$\varphi(x) = \varphi(x^*) + \varphi'(x^*) (x - x^*) + \dots \frac{\varphi^{(p-1)}(x^*)}{(p-1)!} (x - x^*)^{p-1} + \frac{\varphi^{(p)}(x^*)}{p!} (x - x^*)^p$$

$$\varphi(x) = \varphi(x^*) + \frac{\varphi^{(p)}(\xi)}{p!} (x - x^*)^p$$

$$\text{let} \quad x = x_k, \text{ then}$$

$$x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi)}{p!} (x_k - x^*)^p$$

$$\text{Thus } \left| \frac{e_{k+1}}{e_k} \right| \to \frac{|\varphi^{(p)}(x^*)|}{p!} (k \to \infty)$$

Remark The above conclusion indicates that the convergence speed of the iterative format depends on the selection of the iterative function $\varphi(x)$.

If $\varphi'(x^*) \neq 0$, the scheme can only be linear convergence

Remark

- 1. If $|g'(x^*)| < 1$, but $|g'(x^*)| \neq 0$, then the sequence $\{x_k\}_{k=0}^{\infty}$ is linearly convergent.
- 2. If $q'(x^*) = 0$, put $q''(x^*) \neq 0$, then the sequence is quadratically convergent

3.4 Newton's Method and Secant Method.

3.4.1 Newton's Method

Taylor expansion

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) = 0 \Rightarrow x = x_0 - \frac{f(x)}{f(x_0)}$$

 $f \in c^2[a, b] \quad f'(x_n) \neq 0$

Theorem 3.7

let $f \in C^2[a,b]$, x^* is a simple root of f(x) in [a,b], and $f'(x^*) \neq 0$, then . the sequence generated by Newton's method converges to x^* for any initial value $x_0 \in \Omega$.

Proof

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

$$\varphi'(x^*) = \frac{f(x^*) f''(x^*)}{[f'(x^*)]^2} = 0$$

$$\forall x \in \Omega. \quad |\varphi'(x)| < 1.$$

Thus, Newton iteration is locally convergence

Example 3.3 Find the root of $x^3 + 4^2 - 10 = 0$ in [1, 2] by Newton iteration with 10^{-4} accuracy. Solution let $f(x) = x^3 + 4x^2 - 10$

According to Newton Method

$$x_{n+1} = x_n - \frac{x_n^3 + 4x_n^2 - 10}{3x_n^2 + 8x_n}$$

By selecting $x_0 = 1.5$

n	x_n	$x_n - x_{n-1}$
0	1.5	0.126
1	1.37333	0.126
2	1.36526	0.007
3	1.36523	0.000

$$x^* \approx x_3 = 1.365303$$

3.4.2 Secant Method

Definition 3.3

The secant method is an iterative technique

$$x_k = x_{k-1} - \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})} f(x_{k-1}).$$

Theorem 3.8

If x^* is a simple root of the equation f(x) = 0. $f \in c^2\Omega$, the sequence generated by secant method converges to x^* of order.

$$P = \frac{1+\sqrt{5}}{2} \approx 1.618$$

for any initial value $x_0, x_1 \in \Omega$, as δ sufficiently small.

\Diamond

Theorem 3.9

 $f \in c^2[a,b]$, if x^* is a simple root of f(x) = 0 in [a,b], the Newton iteration with at least second-order convergence.

If $f'(x) \neq 0$

$$\lim_{k \to \infty} \left| \frac{x_{k+1} - x^*}{(x_k - x^*)^2} \right| = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$$

 \bigcirc

Proof

$$\varphi(x) = x - \frac{f(x)}{f'(x)} \quad \varphi'(x) = \frac{f(x^*) f''(x^*)}{[f'(x^*)]^2} = 0$$

$$\varphi''(x) = \begin{cases} \frac{f''(x^*)}{f'(x^*)} & \text{if } f''(x^*) \neq 0 \\ 0 & \text{if } f''(x^*) = 0 \end{cases}$$

$$\left| \frac{e_{k+1}}{e_k p} \right| = \left| \frac{x^* - x_{k+1}}{(x^* - x_k)^p} \right| \Rightarrow \frac{|\varphi^{(p)}(x^*)|}{p!} = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$$

3.4.3 Newton's Method for finding Multiple Roots

$$f(x) = (x - x^*)^m p(x)$$

1.

$$[f(x)]^{\frac{1}{m}} = (x - x^*) [p(x)]^{\frac{1}{m}} = 0$$

$$\det g(x) = [f(x)]^{\frac{1}{m}} \Rightarrow g'(x) = \frac{1}{m} [f(x)]^{\frac{1}{m} - 1} f'(x)$$

$$x_{n+1} = x_n - \frac{[f(x)]^{\frac{1}{m}}}{\frac{1}{m} [f(x)]^{\frac{1}{m} - 1} f'(x)} = x_n - \frac{mf(x_n)}{f'(x_n)}$$

Downside: Need to know the multiplicity of roots beforehand.

2.

$$g(x) = \frac{f(x)}{f'(x)} = \frac{(x - x^*)^m p(x)}{m (x - x^*)^{m-1} p(x) + (x - x^*)^m p'(x)} = \frac{(x - x^*) p(x)}{m p(x) + (x - x^*) p'(x)}$$

Apparently $g'\left(x^{*}\right)=\frac{1}{m}\neq0.$ x^{*} is a simple root of g(x)=0

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = x_k - \frac{f(x_k) f'(x_k)}{[f'(x_k)]^2 - f(x_k) f''(x_k)}$$

Advantage. Not necessary to know the zero root multiplicity of f(x) = 0. in advance and its also applicate to the case of a single root.

Chapter 4 Direct method for Linear System

4.1 Gaussian Elimination

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & b_{1}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & b_{2}^{(1)} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & b_{n}^{(1)} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & b_{1}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & b_{n}^{(1)} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{1}^{(1)} \\ b_{2}^{(2)} \\ \vdots \\ b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{22}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots \\ a_{nn}^{(n)} & b_{n}^{(n)} \end{pmatrix}$$

$$(Backward substitution)$$

$$x_{n} = \frac{b_{n}^{(n)}}{a_{nn}^{(n)}}, x_{i} = \frac{b_{i}^{(i)} - \sum_{j=i+1}^{n} a_{ij}^{(i)} x_{j}}{a_{ij}^{(i)}}, i = n-1, \dots, 2, 1$$

Theorem 4.1

If all the leading principal minors of the coefficient matrix A are non-zero, then Gaussian elimination can proceed sequentially, resulting in a unique solution.

Remark In fact, as long as A is non-singular, meaning A is invertible, the system of equations can be transformed into a triangular system through stepwise elimination and row exchanges, allowing the unique solution to be determined.

Remark The computational complexity of Gaussian elimination

$$\frac{1}{3}\left(n^3 + 3n^2 - n\right)$$

Proposition 4.1 (Column Pivoting Elimination)

Choosing a column pivot before each round of elimination

- 1. Note $|a_{i_1,1}| = \max_{1 \leqslant i \leqslant n} |a_{i,1}|$, To perform transformations on the augmented matrix. $r_{i_1} \leftrightarrow r_1$
- 2. Note $\left|a_{i_2,2}^{(2)}\right| = \max_{2 \le i \le n} \left|a_{i_2}^{(2)}\right|$, To perform transformations on the augmented matrix $r_{i_2} \leftrightarrow r_2$
- 3. Note $\left|a_{i_k,k}^{(k)}\right| = \max_{k \leqslant i \leqslant n} \left|a_{ik}^{(k)}\right|$, To perform transformations on the augmented matrix $r_{i_k} \leftrightarrow r_k$

Remark It does not alter the solutions of the system of equations, while effectively overcoming the shortcomings of the Gaussian elimination method.

4.2 Doolittle Decomposition

Definition 4.1

To decompose a non-singular matrix A into the product of a lower triangular matrix L and an upper triangular matrix U, i.e., A = LU, is known as the triangular decomposition or LU decomposition of matrix A

Remark L is a unit lower triangular matrix, and U is a general upper triangular matrix in the triangular decomposition, known as the Doolittle decomposition.

Theorem 4.2

Let A be an n-order square matrix. If all the leading principal minors of A are non-zero, then A can be uniquely decomposed into the product of a unit lower triangular matrix L and an upper triangular matrix U.

Proposition 4.2

- 1. Calculate the elements in the first row of U: $u_{1j} = a_{1j}$, $j = 1, 2, \dots, n$.
- 2. Calculate the elements in the first column of L: $l_{i1} = a_{i1}/u_{11}$, $i = 2, 3, \dots, n$.
- 3. Calculate the elements in the i-th row of U for $i = 2, 3, \dots, n$:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, \quad j = i, i+1, \dots, n$$

4. Calculate the elements in the i-th column of L for $i=2,3,\cdots,n$:

$$l_{ji} = \frac{\left(a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}\right)}{u_{ii}}, \quad j = i+1, i+2, \dots, n, \quad i \neq n$$

Example 4.1 Solve the system of equations using the Doolittle decomposition method:

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 6 \\ 4x_1 + 5x_2 + 4x_3 = 18 \\ 6x_1 - 3x_2 + 5x_3 = 5 \end{cases}$$

Solution

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- \Rightarrow Solve the equation Ly = b, resulting in $y = (6, 6, -1)^{\mathrm{T}}$.
- \Rightarrow Solve the equation Ux = y, resulting in $x = (1, 2, 1)^{\mathrm{T}}$.

4.3 Square Root Method

Definition 4.2

Given an n-order real symmetric matrix A, for any non-zero vector x of length n, the condition $x^TAx > 0$ always holds, then matrix A is called a symmetric positive definite matrix.

Proposition 4.3

Testing method:

- 1. If A is symmetric and all leading principal minors are greater than 0, then A is a symmetric positive definite matrix.
- 2. If A is symmetric and all eigenvalues are greater than 0, then A is a symmetric positive definite matrix.

Theorem 4.3

If A is a symmetric positive definite matrix, then there exists a non-singular lower triangular matrix G such that $A = GG^{T}$.

Proof

$$A = LU \quad L = \begin{pmatrix} 1 & & & \\ l_{21} & 1 & & \\ \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & \cdots & 1 \end{pmatrix}, U = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ & u_{22} & \cdots & u_{2n} \\ & & \ddots & \vdots \\ & & & u_{nn} \end{pmatrix} \text{ and } u_{ii} > 0$$

$$A = LD\overline{U} \quad D = \begin{pmatrix} u_{11} & & & \\ & u_{22} & & \\ & & \ddots & \\ & & & u_{nn} \end{pmatrix}, \overline{U} = \begin{pmatrix} 1 & u_{12}/u_{11} & \cdots & u_{1n}/u_{11} \\ & 1 & \cdots & u_{2n}/u_{22} \\ & & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$

$$A = A^{\rm T} \Rightarrow LD\overline{U} = \overline{U}^{\rm T}DL^{\rm T}$$

Decomposition Uniqueness $\Rightarrow \mathbf{L}^{\mathrm{T}} = \overline{U}$

$$\Rightarrow A = LDL^{\mathrm{T}}$$

$$\Rightarrow D = D^{\frac{1}{2}}D^{\frac{1}{2}} \quad \text{where,} D^{\frac{1}{2}} = \left(\begin{array}{ccc} \sqrt{u_{11}} & & & \\ & \sqrt{u_{22}} & & \\ & & \ddots & \\ & & & \sqrt{u_{nn}} \end{array}\right)$$

$$A = LD^{\frac{1}{2}}D^{\frac{1}{2}}L^{\mathrm{T}} = LD^{\frac{1}{2}}\left(D^{\frac{1}{2}}\right)^{\mathrm{T}}L^{\mathrm{T}} = LD^{\frac{1}{2}}\left(LD^{\frac{1}{2}}\right)^{\mathrm{T}}$$

denote $G=LD^{\frac{1}{2}},G$ is a non-singular lower triangular matrix , $A=GG^{\mathrm{T}}$

Theorem 4.4

If A is an n-order symmetric positive definite matrix, then there exists a real non-singular lower triangular matrix G such that $A = GG^{T}$. When the diagonal elements of G are constrained to be positive, this

decomposition is unique, and it is referred to as the Cholesky decomposition of A.

Proposition 4.4

Direct Triangular Decomposition Method

$$G = \begin{pmatrix} g_{11} & & & & \\ g_{21} & g_{22} & & & \\ \vdots & \vdots & \ddots & \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{pmatrix} \quad A = \begin{pmatrix} g_{11} & & & & \\ g_{21} & g_{22} & & & \\ \vdots & \vdots & \ddots & & \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{pmatrix} \begin{pmatrix} g_{11} & g_{21} & \cdots & g_{n1} \\ & g_{22} & \cdots & g_{n2} \\ & & \ddots & \vdots \\ & & & & g_{nn} \end{pmatrix}$$

matrix multiply
$$\Longrightarrow a_{ij} = \sum_{k=1}^{j-1} g_{ik}g_{jk} + g_{jj}g_{ij}$$

$$\implies \begin{cases} g_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} g_{jk}^2}, j = 1, 2, \dots, n \\ g_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} g_{ik} g_{jk}\right) / g_{ij}, i = j+1, \dots, n \end{cases}$$

Example 4.2 Solve the system of equations using the Square Root Method:

$$\begin{pmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{pmatrix} x = \begin{pmatrix} 4 \\ 6 \\ 7.25 \end{pmatrix}$$

Solution A is symmetric positive defined
$$A = GG^{T} = \begin{pmatrix} 2 & & \\ -0.5 & 2 & \\ 0.5 & 1.5 & 1 \end{pmatrix} \begin{pmatrix} 2 & -0.5 & 0.5 \\ & 2 & 1.5 \\ & & 1 \end{pmatrix}$$

Solve
$$Gy = b \Longrightarrow y = (2, 3.5, 1)^T$$

Solve $G^Tx = y \Longrightarrow x = (1, 1, 1)^T$

4.4 Tridiagonal matrix algorithm

Definition 4.3 (Diagonally dominant Matrices)

$$A = (a_{ij})_{n \times n}$$

- 1. If the elements of A satisfy $|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$ for each i = 1, 2, ..., n, then A is called a strictly diagonally dominant matrix.
- 2. If the elements of A satisfy $|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}|$ and at least one of these inequalities holds strictly for each i = 1, 2, ..., n, then A is called a weakly diagonally dominant matrix.

Definition 4.4 (diagonally dominant tridiagonal matrix)

The system of equations Ax = d for a diagonally dominant tridiagonal matrix is given by:

$$\begin{bmatrix} a_1 & b_1 & & & & & \\ c_2 & a_2 & b_2 & & & & \\ & c_3 & a_3 & b_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & c_{n-1} & a_{n-1} & b_{n-1} \\ & & & & c_n & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

Conditions:

- 1. $|a_1| > |b_1|$
- 2. $|a_i| \ge |b_i| + |c_i|$, $b_i \cdot c_i \ne 0$, i = 2, ..., n-1
- 3. $|a_n| > |c_n|$

Proposition 4.5

The matrix A can be decomposed into Doolittle form: A = LU,

$$L = \begin{bmatrix} 1 & & & & & \\ l_2 & 1 & & & & \\ & l_3 & 1 & & & \\ & & \ddots & \ddots & \\ & & & l_n & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_1 & b_1 & & & & \\ & u_2 & b_2 & & & \\ & & u_3 & b_3 & & \\ & & & \ddots & \ddots & \\ & & & & u_n \end{bmatrix}$$

where $u_1 = a_1$, $l_i = \frac{c_i}{u_{i-1}}$, and $u_i = a_i - l_i b_{i-1}$, for i = 2, 3, ..., n.

Example 4.3 Solve the tridiagonal system of equations using the Thomas algorithm:

$$\begin{bmatrix} 3 & 1 & & & \\ 2 & 3 & 1 & & \\ & 2 & 3 & 1 \\ & & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Solution Perform the LU decomposition A = LU

$$L = \begin{bmatrix} 1 & & & & \\ 2/3 & 1 & & & \\ & 6/7 & 1 & & \\ & & 7/15 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 3 & 1 & & & \\ & 7/3 & 1 & & \\ & & 15/7 & 1 & \\ & & & 38/15 \end{bmatrix}$$

Solving
$$Ly = d$$
, where
$$\begin{bmatrix} 1 & & & & \\ 2/3 & 1 & & & \\ & 6/7 & 1 & & \\ & & 7/15 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix},$$

Chapter 5 Iterative method for Linear System

To be continued

Chapter 6 Interpolation

6.1 Lagrange Interpolation

Theorem 6.1 (Lagrange Interpolation)

Given n+1 distinct points $x_0, \ldots, x_n \in [a,b]$ and n+1 values $y_0, \ldots, y_n \in \mathbb{R}$, there exists a unique polynomial $p_n \in P_n$ with the property

$$p_n(x_j) = y_j, \quad j = 0, \dots, n.$$

In the Lagrange representation, this interpolation polynomial is given by

$$p_n = \sum_{k=0}^n y_k \ell_k$$

with the Lagrange factors

$$\ell_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x - x_i}{x_k - x_i}, \quad k = 0, \dots, n$$

 \Diamond

Remark

$$\ell_i(x_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 $i, j = 0, 1, \dots, n$

Theorem 6.2 (Remainder of Lagrange interpolation)

If $x_0, x_1, x_2, \dots x_n$ are (n+1) distinct points in [a,b] and $f \in C^{n+1}[a,b]$, then for any $x \in [a,b]$, there exists $\xi(x) \in (a,b)$, s.t.

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^n (x - x_k).$$

Proof since $P_n(x_i) = f(x_i), i = 0, 1, 2, ... n$.

i.e.

$$R_n(x_i) = f(x_i) - P_n(x_i) = 0$$

Suppose

$$R_n(x) = k(x) \prod_{i=0}^{n} (x - x_i)$$

let

$$\varphi(t) = f(t) - P_n(t) - k(x)(t - x_0)(t - x_1)\dots(t - x_n)$$

 $t = x_i (i = 1, 2, \dots n)$ are zero points of $\varphi(t)$.

By generalized Rolle's theorem, there exists $\xi(x) \in (a,b)$.

s.t.

$$\varphi^{(n+1)}(\xi(x)) = 0$$

where

$$\varphi^{(n+1)}(t) = f^{(n+1)}(t) - k(x)(n+1)!$$

$$\mathrm{let}\; t=\xi(x)$$

$$k(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

i.e.

$$R_n(x) = k(x) \prod_{k=0}^{n} (x - x_k)$$

6.2 Newton Interpolation

Suppose $x_0, x_1 \dots x_n$ are (n+1) distinct points,

Construct $P_n(x)$ satisfy

$$P_n\left(x_i\right) = f\left(x_i\right)$$

$$P_n(x) = \sum_{i=0}^{n} \left(a_i \prod_{k=0}^{i-1} (x - x_k) \right)$$

$$\begin{cases} p_n(x_0) = a_0 & = y_0 \\ p_n(x_1) = a_0 + a_1(x_1 - x_0) & = y_1 \\ p_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) & = y_2 \\ \dots & \dots & \dots \\ p_n(x_n) = a_0 + a_1(x_n - x_0) + \dots + a_n(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1}) & = y_n \end{cases}$$

$$p_n(x) = f(x_0) + \sum_{i=1}^{n} \left(f[x_0, x_1, \dots, x_i] \prod_{k=0}^{i-1} (x - x_k) \right)$$

where

$$f[x_0, x_1, x_2, \cdots, x_i] = \frac{f[x_1, x_2, \cdots, x_i] - f[x_0, x_1, \cdots, x_{i-1}]}{x_i - x_0}$$

x_k	$f(x_k)$	1st	2nd	3rd	4th
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f\left[x_0,x_1\right]$			
x_2	$f(x_2)$	$f\left[x_1,x_2\right]$	$f\left[x_0, x_1, x_2\right]$		
x_3	$f(x_3)$	$f\left[x_2,x_3\right]$	$f\left[x_1, x_2, x_3\right]$	$f\left[x_0, x_1, x_2, x_3\right]$	
x_4	$f(x_4)$	$f\left[x_3, x_4\right]$	$f\left[x_2, x_3, x_4\right]$	$f\left[x_1, x_2, x_3, x_4\right]$	$f[x_0, x_1, x_2, x_3, x_4]$
:	:	:	:	:	:

Example 6.1 Find $P_4(x)$ which passes through (1,0), (2,2), (4,12)(5,20). (6,70)

Solution make divided-difference form

x_i	$f(x_i)$	1st	2rd	3rd	4th
1	0				
2	2	2			
4	12	5	1		
5	20	8	1	0	
6	70	50	21	5	1

$$P_4(x) = 0 + 2(x-1) + 1(x-1)(x-2) + 0 + 1(x-1)(x-2)(x-4)(x-5)$$

= $x^4 + 2x^3 + 50x^2 - 79x + 40$

Theorem 6.3 (Remainder of Newton Interpolation)

$$R_n(x) = f(x) - p_n(x) = f[x_0, x_1 \dots x_n, x] \prod_{k=0}^n (x - x_k).$$
with $f[x_0, x_1, \dots x_n, x] = \frac{f^{(n+1)}(\xi)}{n+1!}$

6.3 Piecewise Polynomial Interpolation

Definition 6.1 (Piecewise Polynomial Interpolation)

$$\varphi(x) = \begin{cases} \varphi_0(x), & x \in [x_0, x_1] \\ \varphi_1(x), & x \in [x_1, x_2] \\ \vdots & & \\ \varphi_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

if $\varphi(x)$ satisfies following conditions:

- 1. $\varphi(x) \in C[a,b]$
- 2. $\varphi(x_i) = f(x_i), j = 0, 1, \dots, n$
- 3. in each interval $[x_k, x_{k+1}]$ $(k = 0, 1, \dots, n-1)$, $\varphi_k(x)$ is linear polynomial

we call $\varphi(x)$ Piecewise linear interpolation function

Remark Disadvantages: varphi(x) only continuous and not smooth, derivative does not exist at nodes.

Theorem 6.4 (Remainder of Piecewise Linear Polynomial Interpolation)

Suppose $f \in C^2[a,b]$, let $M_2 = \max_{a \leqslant x \leqslant b} |f''(x)|$ for any $x \in [a,b]$

According Lagrange interpolation in each $[x_k, x_{k+1}]$.

$$|R_1(x)| = |f(x) - \varphi_k(x)| = \left| \frac{1}{2} f''(\xi) (x - x_k) (x - x_{k+1}) \right|$$

$$\leq \frac{1}{8} |f''(\xi)| h_k^2 \hookrightarrow x_{k+1} - x_k$$

let $h = \max h_k$, then in [a, b]

$$\max_{a \le x \le b} |f(x) - \varphi(x)| \le \frac{M_2}{8} h^2$$

 \mathbb{C}

6.4 Hermite Interpolation

3.3. suppose (n+1) distinct point $x_0, x_1, x_2, \ldots x_n$. interpolating condition $f(x_i) = y_i$ $f'(x_i) = m_i$ in each $[x_{i-1}, X_i]$, there hold 4 conditions. which can determine a 3-rod-degree poly nominal.

$$H_{i}(x) = \varphi_{i-1}(x)y_{i-1} + \varphi_{i}(x)y_{i} + \psi_{i-1}(x)m_{i-1} + \psi_{i}(x)m_{i}.$$

$$\varphi_{i-1}(x_{i-1}) = 1 \quad \varphi_{i-1}(x_{i}) = 0. \quad \varphi'_{i-1}(x_{i-1}) = 0 \quad \varphi'_{i-1}(x_{i}) = 0.$$

$$\varphi_{i}(x_{i-1}) = 0 \quad \psi_{i}(x_{i}) = 1 \quad \varphi'_{i}(x_{i-1}) = 0 \quad \varphi'_{i}(x_{i}) = 0.$$

$$\psi_{i-1}(x_{i-1}) = 0 \quad \varphi_{i-1}(x_{i}) = 0. \quad \psi'_{i-1}(x_{i-1}) = 1 \quad \psi'_{i-1}(x_{i}) = 0.$$

$$\psi_{i}(x_{i-1}) = 0 \quad \psi_{i}(x_{i}) = u \quad \psi'_{i}(x_{i-1}) = 0, \quad \psi'_{i}(x_{i}) = 1$$

$$\varphi_{i-1}(x) = (kx + b)(xx_{i-1})^{2}.$$

Chapter 7 Curve Fitting

7.1 Least-square Method

For (x_k, y_k) $k = 1, 2, \dots m$ to construct

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n (m \gg n)$$

by satisfying

$$\min Q = \sum_{k=1}^{m} |p_n(x_k) - y_k|^2$$

$$Q(a_0, a_1, a_2, \dots a_n) = \sum_{k=1}^{m} (a_0 + a_1 x_k + a_2 x_k^2 + \dots a_n x_k^n - y_k)^2$$

$$\begin{cases} 0 = \frac{\partial Q}{\partial a_0} = 2 \sum_{k=1}^{m} (a_0 + a_1 x_k + \dots a_1 x_k^n - y_k) \\ 0 = \frac{\partial Q}{\partial a_1} = 2 \sum_{k=1}^{m} (a_0 + a_1 x_k + a_2 x_k^2 + \dots a_n x_k^n - y_k) \cdot x_k \\ \vdots \\ 0 = \frac{\partial Q}{\partial a_n} = 2 \sum_{k=1}^{m} (a_0 + a_1 x_k + a_2 x_k^2 + \dots a_n x_k^n - y_k) \cdot x_k^n. \end{cases}$$

Normal equation is:

$$\left\{ \begin{array}{l} \left(\sum\limits_{k=1}^{m}1\right)a_{0} + \left(\sum\limits_{k=1}^{m}x_{k}\right)a_{1} + \left(\sum\limits_{k=1}^{m}x_{k}^{2}\right)a_{2} + \ldots \left(\sum\limits_{k=1}^{m}x_{k}^{n}\right)a_{n} = \sum\limits_{k=1}^{m}y_{k} \\ \left(\sum\limits_{k=1}^{m}x_{k}\right)a_{0} + \left(\sum\limits_{k=1}^{m}x_{k}^{2}\right)a_{1} + \left(\sum\limits_{k=1}^{m}x_{k}^{3}\right)a_{2} + \ldots \left(\sum\limits_{k=1}^{m}x_{k}^{n+1}\right)a_{n} = \sum\limits_{k=1}^{m}x_{k}y_{k} \\ \left(\sum\limits_{k=1}^{m}x_{k}^{2}\right)a_{0} + \left(\sum\limits_{k=1}^{m}x_{k}^{3}\right)a_{1} + \left(\sum\limits_{k=1}^{m}x_{k}^{4}\right)a_{2} + \ldots \left(\sum\limits_{k=1}^{m}x_{k}^{n+2}\right)a_{n} = \sum\limits_{k=1}^{m}x_{k}^{2}y_{k} \\ \vdots \\ \left(\sum\limits_{k=1}^{m}x_{k}^{n}\right)a_{0} + \left(\sum\limits_{k=1}^{m}x_{k}^{n+1}\right)a_{1} + \left(\sum\limits_{k=1}^{m}x_{k}^{n+2}\right)a_{2} + \ldots \left(\sum\limits_{k=1}^{m}x_{k}^{2n}\right)a_{n} = \sum\limits_{k=1}^{m}x_{k}^{n}y_{k} \end{array} \right.$$

The Matrix Form is:

$$\begin{pmatrix} \sum_{k=1}^{m} x_{k}^{0} & \sum_{k=1}^{m} x_{k}^{1} & \sum_{k=1}^{m} x_{k}^{2} & \dots & \sum_{k=1}^{m} x_{k}^{n} \\ \sum_{k=1}^{m} x_{k}^{1} & \sum_{k=1}^{m} x_{k}^{2} & \sum_{k=1}^{m} x_{k}^{3} & \dots & \sum_{k=1}^{m} x_{k}^{n+1} \\ \vdots & & & & & \vdots \\ \sum_{k=1}^{m} x_{k}^{n} & \sum_{k=1}^{m} x_{k}^{n+1} & \sum_{k=1}^{m} x_{k}^{n+2} & \dots & \sum_{k=1}^{m} x_{k}^{2n} \\ \vdots & & & & \vdots \\ \sum_{k=1}^{m} x_{k}^{n} & \sum_{k=1}^{m} x_{k}^{n+1} & \sum_{k=1}^{m} x_{k}^{n+2} & \dots & \sum_{k=1}^{m} x_{k}^{2n} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{m} y_{k} \\ \sum_{i=1}^{m} x_{k} y_{k} \\ \vdots \\ \sum_{i=1}^{m} x_{k}^{n} y_{k} \end{pmatrix}$$

Alternatively, it can also be represented as the following matrix form:

$$X^{\top}Xa = X^{\top}y$$

where

$$X = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & & & & \\ 1 & x_m & x_m^2 & \dots & x_m^n \end{pmatrix}, c = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, y = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Thus by solving the normal equation, we can get the coefficients $a_0, a_1, \dots a_n$ of the polynomial $P_n(x)$.

Theorem 7.1

The least-square method is the only method that can be used to solve the linear regression problem.

 \odot

Example 7.1 Use $P_1(x) = a_0 + a_1 x$ to fit

Solution

minimize
$$Q(a_0, a_1) = \sum_{k=1}^{4} |p_1(x_k) - y_k|^2 = \sum_{k=1}^{4} |a_0 + a_1 x - y_k|^2$$

 \iff to solve

$$\begin{pmatrix} \sum_{k=1}^{4} 1 & \sum_{k=1}^{4} x_k \\ \sum_{k=1}^{4} x_k & \sum_{k=1}^{4} x_k^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{\infty} y_k \\ \sum_{k=1}^{\infty} x_k y_k \end{pmatrix}$$
$$\begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 58 \\ 182 \end{pmatrix}$$
$$\begin{cases} a_0 = -4 \\ a_1 = 7.4 \end{cases}$$

Definition 7.1 (contradicting equations)

give such a linear system

$$\begin{cases} a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ a_0 + a_1 x_2 + \dots + a_n x_2^n = y_2 \\ \vdots \\ a_0 + a_1 x_m + \dots + a_n x_m^n = y_n \end{cases}$$

if $n \leq m.R(A) \neq R(\bar{A})$. then the equation is called contradicting equation

*

Proposition 7.1

 $A_{m \times n} x = b$ is contradictory equation with $R(A) = n \ll m$

- (1) $A^{\top}A$ is symmetric positive definite.
- (2) $A^{\top}Ax = A^{\top}b$ has unique solution

(3)
$$Q = \sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_j x_i^j - y_j \right)^2$$
 has minimal value at sol of

$$A^{\top}Ax = A^{\top}b.$$

Example 7.2 Find least-squares solution of
$$\begin{cases} 2x_1 + 4x_2 = 11 \\ 3x_1 - 5x_2 = 3 \\ x_1 + 2x_2 = 6 \end{cases}$$

Solution

$$A = \begin{pmatrix} 2 & 4 \\ 3 & -5 \\ 1 & 2 \\ 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 11 \\ 3 \\ 6 \\ 7 \end{pmatrix}$$

$$A^{\top}A = \begin{pmatrix} 2 & 3 & 1 & 2 \\ 4 & -5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 3 & -5 \\ 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 18 & -3 \\ -3 & 46 \end{pmatrix}$$

$$A^{\top}b = \begin{pmatrix} 2 & 3 & 1 & 2 \\ 4 & -5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 11 \\ 3 \\ 6 \\ 7 \end{pmatrix} = \begin{pmatrix} 51 \\ 48 \end{pmatrix}$$

$$A^{\top}Ax = A^{\top}b.$$

Thus

$$\begin{pmatrix} 18 & -3 \\ -3 & 46 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 51 \\ 48 \end{pmatrix}$$
$$\begin{cases} x_1 = \frac{830}{273} \\ x_2 = \frac{113}{91} \end{cases}$$

Example 7.3 use $\varphi(x) = ae^{bx}$ to fit the following points

\overline{k}	1	2	3	4	5	6
x_k	0.0	0.5	1.0	1.5	2.0	2.5
φ_k	2.0	1.2	0.9	0.6	0.4	0.3

Solution

$$\ln(\varphi(x)) = \ln a + bx$$

then is obviously

Chapter 8 Numerical Differentiation and Integration

Introduction

■ Numerical differentiation is a method to approximate the derivative of a function f(x) at

a point x_0 by a finite difference formula.

8.1 Numerical Integration

Definition 8.1 (Numerical Integration)

Suppose $a = x_0 < x_1 < \ldots < x_n = b$, and f is integral in [a, b]

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

is called a numerical integration

$$E[f] = \int_{a}^{b} f(x)dx - \sum_{i=0}^{n} A_{i}f(x_{i})$$

is called truncation error (remainder) (A_i is called quadrature coefficients / weight)

Definition 8.2 (Degree of Precision)

The degree of precision of $\int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$ is m

1. When
$$f(x) = x^k, k = 0, 1, 2, \dots, \int_a^b x^k dx = \sum_{i=0}^m A_i x_i^k$$

2. When
$$f(x) = x^{m+1}$$
, $\int_a^b x^{m+1} dx \neq \sum_{i=0}^n A_i x_i^{m+1}$

Example 8.1 $\int_0^h f(x)dx \approx A_0 f(0) + A_1 f\left(\frac{h}{2}\right) + A_2 f(h)$ Solution

$$f(x) = 1 \Longrightarrow h = \int_0^h 1 dx = A_0 + A_1 + A_2$$

$$f(x) = x \Longrightarrow \frac{1}{2}h^2 = \int_0^h x dx = \frac{h}{2}A_1 + hA_2$$

$$f(x) = x^2 \Longrightarrow \frac{1}{3}h^3 = \int_0^h x^2 dx = \frac{1}{4}h^2 A_1 + h^2 A_2$$

$$\begin{cases} A_0 = \frac{h}{6} \\ A_1 = \frac{4}{6}h \\ A_2 = \frac{h}{6} \end{cases}$$

$$\int_a^b f(x) dx \approx \frac{h}{6} \left(f(0) + 4f\left(\frac{h}{2}\right) + f(h) \right)$$

$$\begin{array}{ll} \textit{when } f(x) = x^3 & \textit{left} = \int_0^h x^3 dx = \frac{h^4}{4} & \textit{right} = \frac{h}{6} \left(\frac{h^3}{2} + h^3 \right) = \frac{h^4}{4} \\ \textit{when } f(x) = x^4 & \textit{left} = \int_0^h x^4 dx = \frac{h^5}{5} & \textit{right} = \frac{h}{6} \left(\frac{h^4}{4} + h^4 \right) = \frac{5}{24} h^5 \\ \textit{Approximate } I = \int_a^b f(x) dx \end{array}$$

first use Lagrange Interpolatory Polynomial $\mathcal{L}_n(x)$ to approximate f(x)

$$L_n(x) = \sum_{i=0}^{n} f(x_i) l_i(x)$$

denote.
$$w_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$

$$l_i(x) = \frac{w_{n+1}(x)}{(x - x_i) w'_{n+1}(x_i)}$$

$$\Longrightarrow \int_a^b f(x) dx \approx \int_a^b L_n(x) dx$$

$$= \int_a^b f(x_i) l_i(x) dx$$

$$= \sum_{i=0}^n f(x_i) \int_u^b l_i(x) dx$$

$$= \sum_{i=0}^n f(x_i) A_i$$

let

$$A_{i} = \int_{a}^{b} l_{i}(x)dx$$

$$= \int_{a}^{b} \frac{w_{n+1}(x)}{(x - x_{i}) w'_{n+1}(x_{i})} dx$$

$$E[f] = \int_{a}^{b} f(x)dx - \int_{a}^{b} L_{n}(x)dx$$

$$= \int_{a}^{b} \frac{f^{(n+1)}(\xi_{x})}{(n+1)!} w_{n+1}(x)dx$$

Definition 8.3

Suppose $a = x_0 < x_1 < \dots x_n = b, f$ is integral in [a, b] and $f \in C^{n+1}[a, b]$ then

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

with

$$A_{i} = \int_{a}^{b} l_{i}(x)dx = \int_{a}^{b} \frac{w_{n+1}(x)}{(x - x_{i}) w'_{n+1}(x_{i})} dx$$

is called Interpolatory numerical quadrature.

Its truncation error

$$E[f] = \int_{a}^{b} \frac{f^{(n+1)}(\xi_x)}{(n+1)!} w_{n+1}(x) dx$$

Theorem 8.1

The Interpolatory numerical quadrature has at least n degrees of precision

 \Diamond

Proof The remainder of interpolating numerical quadrature

$$E[f] = \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} w_{n+1}(x) \, dx$$
 when $f(x) = x^k, k = 0, 1, 2, \dots n$
$$f^{(n+1)}(x) = \left[x^k \right]^{(n+1)} = 0 \Longrightarrow E[f] = 0$$

$$\Longrightarrow \int_a^b x^k \, dx = \sum_{i=0}^n A_i x_i^k$$
 when $f(x) = x^{n+1}$
$$f^{(n+1)}(x) = (n+1)!$$

$$E[f] = \int_a^b \frac{(n+1)!}{(n+1)!} w_{n+1}(x) \, dx$$

$$= \int_a^b w_{n+1}(x) \, dx \neq 0$$

8.2 Newton-Cotes formula

8.2.1 Trapezoidal rule

Definition 8.4

$$n = 1$$

$$\int_{a}^{b} f(x)dx \approx \int_{x_{0}}^{x_{1}} \left[f(x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x) \right] dx$$

$$= f(x_{0}) \int_{x_{0}}^{x_{1}} \frac{x - x_{1}}{x_{0} - x_{1}} dx + f(x_{1}) \int_{x_{0}}^{x_{1}} \frac{x - x_{0}}{x_{1} - x_{0}} dx$$

$$= (b - a) \left(\frac{f(a) + f(b)}{2} \right)$$

Proposition 8.1

Remainder of Trapezoidal rule is

$$E[f] = \int_{a}^{b} [f(x) - L_1(x)] dx = -\frac{(b-a)^3}{12} f''(\eta)$$

8.2.2 Simpson's rule

Definition 8.5

n = 2

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left[f(x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x) + f(x_{2}) l_{2}(x) dx \right]$$

$$= f(x_{0}) \int_{a}^{b} l_{0}(x) dx + f(x_{1}) \int_{a}^{b} l_{1}(x) dx + f(x_{2}) \int_{a}^{b} l_{2}(x) dx$$

$$= \frac{b-a}{6} f(x_{0}) + \frac{4(b-a)}{6} f(x_{1}) + \frac{b-a}{6} f(x_{2})$$

Thus

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Proposition 8.2

Degree of precision of Simpson's rule is 3

Proposition 8.3

Remainder of Simpson's rule

$$E[f] = \int_{a}^{b} [f(x) - L_2(x)] dx = -\frac{1}{90} h^5 f^{(4)}(\eta)$$

8.2.3 Newton-Cotes formula in general

let

$$h = \frac{b-a}{n}, x_i = a + ih$$

It can he written

$$\int_0^2 \frac{2(t-1)h(t-2)h}{(-h)(-2h)}hdt \int_0^2 \frac{th(t-2)h}{h(-h)}hdt \int_0^2 \frac{th(t-1)h}{2hh}hdt$$

Definition 8.6

Suppose $a = x_0 < x_1 < \ldots < x_n = b$ are (n+1) distinct points with equal division i.e $x_i = a + ih, x = a + th$. then

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$
$$= (b-a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i})$$

with

$$C_i^{(n)} = \frac{(-1)^{n-i}}{i!(n-i)!n} \int_0^n \prod_{\substack{j=0\\ i \neq i}}^n (t-j)dt$$

called cotes coefficient

Proof

$$A_{i} = \int_{a}^{b} l_{i}(x)dx$$

$$= \int_{a}^{b} \frac{(x - x_{0}) \dots (x - x_{i-1}) (x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{0}) \dots (x_{i} - x_{i-1}) (x_{i} - x_{i+1}) \dots (x_{i} - x_{n})} dx$$

$$= \int_{0}^{n} \frac{th(t - 1)h \dots (t - (i - 1))h(t - (i + 1))h \dots (t - n)h}{ih(i - 1)h \dots h(-h)(-2)h \dots (-(n - i))h} hdt$$

$$= h \int_{0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(t - j)}{i!(-1)^{n-i}(n - i)!} dt$$

$$= \frac{(-1)^{n-i}(b - a)}{i!(n - i)!n} \int_{0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} (t - j) dt$$

apparently

$$C_i^{(n)} = \frac{(-1)^{n-i}}{i!(n-i)!n} \int_0^n \prod_{\substack{j=0\\ j \neq i}}^n (t-j)dt$$

$$C_i^{(n)}: \textit{Cotes coefficient} \left\{ \begin{array}{l} C_i^{(n)} = C_{n-i}^{(n)} \\ \sum\limits_{i=0}^{n} C_i^{(n)} = 1 \end{array} \right.$$

Example 8.2

$$\begin{array}{llll} n=1 & C_0^{(1)}=\frac{1}{2} & C_1^{(1)}=\frac{1}{2} \\ n=2 & C_0^{(2)}=\frac{1}{6} & C_1^{(2)}=\frac{4}{6} & C_2^{(2)}=\frac{1}{6} \\ n=3 & C_0^{(3)}=\frac{1}{8} & C_1^{(3)}=\frac{3}{8} & C_2^{(3)}=\frac{3}{8} & C_3^{(3)}=\frac{1}{8} & (\text{Simpson } \frac{3}{8} \text{ rule}) \\ n=4 & C_0^{(4)}=\frac{7}{90} & C_1^{(4)}=\frac{32}{90} & C_2^{(4)}=\frac{12}{90} & C_3^{(4)}=\frac{32}{90} & C_4^{(4)}=\frac{7}{90} \end{array}$$

Cotes rule

Theorem 8.2

The degree of precision of
$$\int_a^b f(x)dx \approx (b-a)\sum_{i=0}^n C_i^{(n)}f(x_i) = \begin{cases} n & n \text{ is odd} \\ n+1 & n \text{ is even} \end{cases}$$

Remark n = 3 $E[f] = -\frac{8}{495}h^7f^{(6)}\eta$

8.3 Composite Numerical Integration

8.3.1 Composite Trapezoidal rule

$$\int_{x_k}^{x_{k+1}} f(x)dx \approx (x_{k+1} - x_k) \left[\frac{1}{2} f(x_k) + \frac{1}{2} f(x_{k+1}) \right] = \frac{h}{2} (f_k + f_{k+1})$$

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) dx$$

$$\approx \sum_{k=0}^{n-1} \frac{h}{2} (f_{k} + f_{k+1})$$

$$= \frac{h}{2} \left(f_{0} + 2 \sum_{k=1}^{n-1} f_{k} + f_{n} \right)$$

Example 8.3 Consider $f(x) = 2 + \sin(2\sqrt{x})$, Use composite trapezoidal rule with 11 nodes to compute an approximation of $\int_1^6 f(x)dx$

Solution $a = 1, b = 6, n = 10, \quad h = \frac{b-a}{n} = \frac{1}{2}$

$$\int_{1}^{6} f(x)dx \approx T_{n} = \frac{h}{2} \left[f_{0} + 2 \sum_{i=1}^{9} f_{i} + f_{10} \right]$$

8.3.2 Composite Simpson's rule

$$\int_{x_k}^{x_{k+1}} f(x)dx = (x_{k+1} - x_k) \left[\frac{1}{6} f(x_k) + \frac{4}{6} f(x_{k+\frac{1}{2}}) + \frac{1}{6} f(x_{k+1}) \right]$$

$$= \frac{h}{6} \left[f_k + 4 f_{k+\frac{1}{2}} + f_{k+1} \right]$$

$$\int_a^b f(x)dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x)dx$$

$$= \frac{h}{6} \sum_{k=0}^{n-1} \left[f_k + 4 f_{k+\frac{1}{2}} + f_{k+1} \right]$$

$$= \frac{h}{6} \left[f_0 + 4 \sum_{i=1}^n f_{\frac{i}{2}} + 2 \sum_{i=1}^{n-1} f_i + f_n \right]$$

Use Another representation, subdivide molecular nodes again

$$n=2m$$
 subinterval, $h=\frac{b-a}{n}=\frac{b-a}{2m}$

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{m-1} \int_{x_{2k}}^{x_{2k+2}} f(x)dx$$

$$\approx \sum_{k=0}^{m-1} (x_{2k+2} - x_{2k}) \left[\frac{1}{6} f_{2k} + \frac{4}{6} f_{2k+1} + \frac{1}{6} f_{2k+2} \right]$$

$$= \frac{h}{3} \left[f_0 + 4 \sum_{k=0}^{m-1} f_{2k+1} + 2 \sum_{k=1}^{m-1} f_{2k} + f_{2m} \right]$$

8.3.3 Remainder Estimation

Definition 8.7 (Convergence order)

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

If remainder $R[f] = \int_a^b f(x)dx - \sum_{i=0}^n A_i f(x_i)$ satisfies

$$\lim_{h \to 0} \frac{R[f]}{h^p} = C, \quad C \neq 0$$

say numerical quadrature is p th convergent.

Proposition 8.5

The convergence order of composite Trapezoidal rule is $-\frac{b-a}{12}h^2f''(\xi)$

 $R[f] = -\sum_{k=0}^{n-1} \frac{h^3}{12} f''(\eta_k)$ $= -\sum_{k=0}^{n-1} \frac{h^2}{12} \frac{b-a}{n} f''(\eta_k)$ $= -\frac{b-a}{12} h^2 \left(\frac{1}{n} \sum_{k=0}^{n-1} f''(\eta_k)\right)$ $= -\frac{b-a}{12} h^2 f''(\xi)$ $\sim O(h^2)$

Proposition 8.6

The convergence order of composite Simpson 's rule is $-\frac{b-a}{180}\left(\frac{h}{2}\right)^4\cdot f^{(4)}(\xi)$

$$R[f] = -\sum_{k=0}^{n-1} \frac{\left(\frac{h}{2}\right)^5}{90} f^{(4)}(\eta_k)$$

$$= -\sum_{k=0}^{n-1} \frac{\left(\frac{h}{2}\right)^4}{90} \frac{b-a}{2n} f^{(4)}(\eta_k)$$

$$= -\frac{\left(\frac{h}{2}\right)^4}{90} \frac{b-a}{2} \cdot \frac{1}{n} \sum_{k=0}^n f^{(4)}(\eta_k)$$

$$= -\frac{b-a}{180} \left(\frac{h}{2}\right)^4 \cdot f^{(4)}(\xi)$$

$$\sim O(h^4)$$

8.4 Romberg integration

8.4.1 Recursive trapezoidal rule

$$h = \frac{b-a}{n}$$

$$T_{n} = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x) dx \approx \sum_{k=0}^{n-1} \frac{h}{2} [f_{k} + f_{k+1}]$$

$$T_{2n} = \sum_{k=0}^{n-1} \left(\int_{x_{k}}^{x_{k+\frac{1}{2}}} f(x) dx + \int_{x_{k+\frac{1}{2}}}^{x_{k+1}} f(x) dx \right)$$

$$\approx \sum_{k=0}^{n-1} \left(\frac{\frac{h}{2}}{2} \left(f_{k} + f_{k+\frac{1}{2}} \right) + \frac{\frac{h}{2}}{2} \left(f_{k+\frac{1}{2}} + f_{k+1} \right) \right)$$

$$= \sum_{k=0}^{n-1} \frac{h}{4} \left[f_{k} + 2f_{k+\frac{1}{2}} + f_{k+1} \right]$$

$$T_{2n} = \frac{1}{2} T_{n} + \sum_{k=0}^{n-1} \frac{h}{2} f_{k+\frac{1}{2}}$$

$$\frac{R_{T_{n}}(f)}{R_{T_{2n}}(f)} \approx \frac{4}{1}$$

$$\frac{I - T_{n}(f)}{I - T_{2n}(f)} \approx \frac{4}{1} \Longrightarrow I \approx \frac{4}{3} T_{2n}(f) - \frac{1}{3} T_{n}(f)$$

Chapter 9 Numerical method for Ordinary differential equation

Introduction

☐ Euler's method

9.1 The Existence of Solutions to Initial Value Problems

$$\left\{ \begin{array}{l} \frac{dy}{dx} = f(x,y), x \in [a,b] \\ y(a) = y_0 \end{array} \right. \left. \left\{ \begin{array}{l} y' = f(x,y) \quad x \in [a,b] \\ y(a) = y_0 \end{array} \right. \rightarrow \text{numerical solution}$$

Definition 9.1 (Lipschitz condition)

f satisfies a Lipschitz condition in variable y,

if there exists
$$L > 0$$
, st. $|f(x, y_1), f(x, y_2)| \le L|y_1 - y_2|$

Theorem 9.1 (The Existence Theorem of Solutions to Initial Value Problems)

Suppose $D = \{(x,y) \mid a \le x \le b, -\infty < y < +\infty\}$ and f is continuous on D. If f satisfies Lipschitz condition on D in variable y

i.e. $\exists L > 0$, s.t. $|f(x, y_1) - f(x, y_2)| \leq L |y_1 - y_2|, \forall (x, y_1), (x, y_2) \in D$ the IVP has a unique solution y(x)

9.2 Euler Method

9.2.1 Euler's method

Proposition 9.1

Euler's method for $\left\{ egin{array}{l} y'(x) = f(x,y) \\ y(a) = y_0 \end{array}
ight., x \in [a,b] \label{eq:baryon}$ step size $h = \frac{b-a}{n} \quad node \; x_i = a+ih \quad i=0,1,2\dots n.$

Thus the iterative scheme is

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Proof
1.

$$\int_{x_0}^{x_1} y'(x)dx = \int_{x_0}^{x_1} f(x, y(x)) dx$$

$$\Rightarrow y(x_{1}) - y(x_{0}) = \int_{x_{0}}^{x_{1}} f(x, y(x)) dx \approx hf(x_{0}, y(x_{0}))$$

$$\Rightarrow y(x_{1}) \approx y(x_{0}) + hf(x_{0}, y(x_{0}))$$

$$y(x_{i+1}) \approx y(x_{i}) + hf(x_{i}, y(x_{i}))$$

$$y_{i+1} = y_{i} + h(f(x_{i}, y_{i}))$$

2.
$$y'(x) = f(x, y)$$

$$y'(x_0) \approx \frac{y(x_1) - y(x_0)}{h}$$
 forward divided-difference
$$\Rightarrow hy'(x_0) \approx y(x_1) - y(x_0)$$
$$y(x_1) \approx y(x_0) + hy'(x_0)$$
$$y(x_1) \approx y(x_0) + hf(x_0, y(x_0))$$

Example 9.1 Use Euler's method to approximate $y' = y - x^2 + 1$, $0 \le x \le 2$, y(0) = 0.5 with n = 10

Proposition 9.2

The local truncation error of Euler method is $O(h^2)$

Proof Suppose $y_i = y(x_i)$

$$R_{i+1} = y(x_{i+1}) - y_{i+1}$$

$$= y(x_{i+1}) - [y_i + hf(x_i, y_i)]$$

$$= y(x_{i+1}) - [y(x_i) + hf(x_i, y(x_i))]$$

$$= y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(\xi_i) - [y(x_i) + hf(x_i, y(x_i))]$$

$$= \frac{h^2}{2}y''(\xi_i).$$

Definition 9.2 (the accuracy of numerical method)

If the local truncation error of one numerical method is $O(h^{p+1})$ we call this numerical method has p order accuracy.

Proposition 9.3

- 1. The local truncation error of Euler's Method is $O(h^2)$
- 2. The global truncation error of Euler's Method is O(h)
- 3. The accuracy of Euler's Method is 1 order.

9.2.2 Implicit Euler's Method

Proposition 9.4

The iterative scheme of Implicit Euler's Method is

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

Proof

1.

$$y'(x) = f(x,y)$$

$$\int_{x_i}^{x_{i+1}} y'(x)dx = \int_{x_i}^{x_{i+1}} f(x,y(x))dx$$

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(x,y(x))dx$$

$$\approx hf(x_{i+1},y(x_{i+1}))$$

$$\Rightarrow y(x_{i+1}) = y(x_i) + hf(x_{i+1},y_{i+1}).$$

$$\Rightarrow y_{i+1} \approx y_i + hf(x_{i+1},y_{i+1})$$

2.

$$y'(x_{i+1}) \approx \frac{y(x_{i+1}) - y(x_i)}{h}$$
 backward divided-difference
$$\Rightarrow y(x_{i+1}) \approx y(x_i) + hy'(x_{i+1}) = y(x_i) + hf(x_{i+1}, y(x_{i+1}))$$

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

$$R_{i+1} = y(x_{i+1}) - y_{i+1}$$

$$= y(x_{i+1}) - [y(x_i) + hf(x_{i+1}, y_{i+1})]$$

$$= -\frac{h^2}{2}y''(\xi_i)$$

$$= O(h^2)$$

Proposition 9.5

- 1. The local truncation error of Implicit Euler's Method is $O(h^2)$
- 2. The global truncation error of Implicit Euler's Method is O(h)
- 3. The accuracy of Implicit Euler's Method is 1 order.

9.2.3 Trapezoidal rule

Proposition 9.6

The iterative scheme of Trapezoidal Method is

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

Proof

$$y'(x) = f(x,y) \Rightarrow \int_{x_i}^{x_{i+1}} y'(x) dx = \int_{x_i}^{x_{i+1}} f(x,y(x)) dx$$

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(x,y(x)) dx$$

$$\approx \frac{h}{2} [f(x_i,y(x_i)) + f(x_{i+1},y(x_{i+1}))]$$

$$y(x_{i+1}) \approx y(x_i) + \frac{h}{2} [f(x_i,y(x_i)) + f(x_{i+1},y(x_{i+1}))]$$

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i,y_i) + f(x_{i+1},y_{i+1})]$$

Proposition 9.7

- 1. The local truncation error of Trapezoidal method is $O(h^3)$
- 2. The global truncation error of Trapezoidal method is $O(h^2)$
- 3. The accuracy of Trapezoidal method is 2 order.

Proof

$$R_{i+1} = y(x_{i+1}) - y_{i+1} = -\frac{h^3}{12}y'''(\xi_i) = O(h^3)$$

9.2.4 Midpoint rule

Proposition 9.8

The iterative scheme of Midpoint rule is

$$y_{i+2} = y_i + 2hf(x_{i+1}, y_{i+1})$$

Proof

$$y'(x_{i+1}) \approx \frac{y(x_{i+2}) - y(x_i)}{2h}$$

 $y(x_{i+2}) \approx y(x_i) + 2hy'(x_{i+1})$
 $y_{i+2} = y_i + 2hf(x_{i+1}, y_{i+1})$ double -step

Proposition 9.9

the iterative scheme of Modified Midpoint rule can also be represented as

$$y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)\right)$$

Proof

$$\begin{cases} y\left(x_{i} + \frac{h}{2}\right) \approx y_{i} + \frac{h}{2}f\left(x_{i}, y_{i}\right) \\ y\left(x_{i+1}\right) \approx y_{i} + hf\left(x_{i} + \frac{h}{2}, y\left(x_{i} + \frac{h}{2}\right)\right) \end{cases}$$

Proposition 9.10

- 1. The local truncation error of Midpoint method is $O(h^3)$
- 2. The global truncation error of Midpoint method is $O(h^2)$
- 3. The accuracy of Midpoint method is 2 order.

9.2.5 Modified Euler's method(Predictor-Corrector method)

Proposition 9.11 (Iterative scheme of Modified Euler's method)

$$\begin{cases} \overline{y_{i+1}} = y_i + hf\left(x_i, y_i\right) & \textit{Euler method} \\ y_{i+1} = y_i + \frac{h}{2}\left[f\left(x_i, y_2\right) + f\left(x_{i+1}, \overline{y_{i+1}}\right)\right] & \textit{Trapezoidal method} \end{cases}$$

Thus one of the iterative schemes of Modified Euler's method is

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

Proposition 9.12 (Predictor-Corrector Scheme)

$$\begin{cases} y_{i+1}^p = y_i + hf(x_i, y_i) \\ y_{i+1}^c = y_{i+1} + hf(x_{i+1}, y_{i+1}^p) \\ y_{i+1} = \frac{1}{2} (y_{i+1}^p + y_{i+1}^c) \end{cases}$$

Remark These two iterative methods are essentially the same.

Proposition 9.13

- 1. The local truncation error of Modified Euler's method is $O(h^3)$
- 2. The global truncation error of Modified Euler's method is $O(h^2)$
- 3. The accuracy of Modified Euler's method is 2 order.

Example 9.2 Use predictor-corrector method to approximate

$$\begin{cases} \frac{du}{dt} = u - \frac{2t}{u}, t \in [0.14], & h = 0.1\\ u(0) = 1 \end{cases}$$

9.3 Runge-kutta method

Proposition 9.14 (Runge - kutta scheme)

Runge - kutta scheme is as follow

$$\begin{cases} y_{i+1} = y_i + h \left[\lambda_1 k_1 + \lambda_2 k_2 \right] \\ k_1 = f \left(x_i, y_i \right) = y' \left(x_i \right) \\ k_2 = f \left(x_i + ph, y_i + phk_1 \right) \end{cases}$$

determine λ_1,λ_2,p to satisfy accuracy 2 or local truncation error $O\left(h^3\right)$

suppose
$$y(x_i) = y_i$$
 $R_{i+1} = y(x_{i+1}) - y_{i+1}$

Taylor expansion

$$f(x+h,y+k) = f(x,y) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) f(x,y) + \frac{\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2}{2!} f(x,y) + \dots$$
$$+ \frac{\left(h\frac{\partial}{\partial x} + k\frac{d}{\partial y}\right)^n}{n!} f(x,y) + \frac{\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n+1}}{(n+1)!} f(x+\theta h, y+\theta k)$$

$$k_{2} = f(x_{i} + ph, y_{i} + phk_{1})$$

$$= f(x_{i}, y_{i}) + phf_{x}(x_{i}, y_{i}) + phk_{1}f_{y}(x_{i}, y_{i}) + O(h^{3})$$

$$= f(x_{i}, y_{i}) + phf''(x_{i}, y_{i}) + O(h^{3})$$

$$y_{i+1} = y_{i} + h [\lambda_{1}k_{1} + \lambda_{2}k_{2}]$$

$$= y_{i} + h [\lambda_{1}y(x_{i}) + \lambda_{2}y(x_{i}) + \lambda_{2}phy''(x_{i}) + \lambda_{2}O(h^{2})]$$

$$= y_{i} + (\lambda_{1} + \lambda_{2}) hy'(x_{i}) + \lambda_{2}ph^{2}y''(x_{i}) \cdot O(h^{3})$$

$$y(x_{i+1}) = y(x_{i}) + hy'(x_{i}) + \frac{h^{2}}{2}y''(x_{i}) + O(h^{3})$$

$$R_{i+1} = y(x_{i+1}) - y_{i+1} = O(h^{3})$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} = 1 \\ \lambda_{2}p = \frac{1}{2} \end{cases}$$

Remark Modified Euler's method, is also 2nd order Runge-kutta scheme.

Proof
$$\lambda_1 = \lambda_2 = \frac{1}{2}, p = 1$$

$$\begin{cases} y_{i+1} = y_i + h\left[\frac{1}{2}k_1 + \frac{1}{2}k_2\right] \\ k_1 = f\left(x_i, y_i\right) & \Leftrightarrow y_{i+1} = y_i + \frac{h}{2}\left[f\left(x_i, y_i\right) + f\left(x_{i+1}, y_i + hf\left(x_i, y_i\right)\right)\right] \\ k_2 = f\left(x_i + h, y_i + hk_1\right) \end{cases}$$

Remark Midpoint method is a 2nd order Runge-kutta method

Proof
$$\lambda_2 = 1$$
 $\lambda_1 = 0$. $p = \frac{1}{2}$

$$\begin{cases} y_{i+1} = y_i + hk_2 \\ k_1 = f(x_i, y_i) \\ k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1\right) \end{cases} \Leftrightarrow y_{i+1} = y_i + hf\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hf(x_i, y_i)\right)$$

Proposition 9.15 (4 order Runge-kutta scheme)

$$\begin{cases} y_{i+1} = y_i + \frac{h}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right] \\ k_1 = f \left(x_i, y_i \right) \\ k_2 = f \left(x_i + \frac{h}{2}, y_i + \frac{h}{2} k_1 \right) \\ k_3 = f \left(x_i + \frac{h}{2}, y_i + \frac{h}{2} k_2 \right) \\ k_4 = f \left(x_i + h, y_i + h k_3 \right) \end{cases}$$

9.4 Convergence of methods

Definition 9.3

A one step method is said to be convergent with respect to the differential equation it approximates if

$$\lim_{h \to 0} \max_{1 \leqslant i \leqslant n} |y_i - y(x_i)| = 0$$

*

Definition 9.4

A one-step method is stable with the results depend continuously on the initial data.

Example 9.3 show Euler's method for $\begin{cases} y' = \lambda y & x \in [0,1] \\ y(0) = y_0 \end{cases}$ is convergent

Proof The exact solution $y(x) = y_0 e^{\lambda x}$, $y(x_i) = y_0 e^{\lambda x_i}$

By Euler's method

$$y_{i+1} = y_i + hf(x_i, y_i)$$

$$= y_i + h\lambda y_i$$

$$= (1 + \lambda h)y_i$$

$$y_1 = (1 + \lambda h)y_0$$

$$y_2 = (1 + \lambda h)y_1 = (1 + \lambda h)^2 y_0$$

$$y_i = (1 + \lambda h)^i y_0 = (1 + \lambda h)^{\frac{x_i}{n}} y_0$$

$$= \left((1 + \lambda h)^{\frac{1}{\lambda h}} \right)^{\lambda x_i} y_0$$

$$\to y_0 e^{\lambda x_i} \quad h \to 0$$

Explicit Euler's method

$$y_{i+1} = y_i + h\lambda y_i = (1+h\lambda)y_i = (1+\bar{h})y_i = (1+\bar{h})^{i+1}y_0$$

$$\varepsilon_0 = y_0 - \overline{y_0} \Rightarrow \varepsilon_{i+1} = y_{i+1} - \overline{y_{i+1}} = (1+\bar{h})^{i+1}\varepsilon_0 \quad \Rightarrow |1+\bar{h}| < 1$$

Implicit Euler's method.

$$y_{i+1} = y_i + h\lambda y_{i+1} \Rightarrow y_{i+1} = \frac{1}{1 - \overline{h}} y_i = \left(\frac{1}{1 - \overline{h}}\right)^{i+1} y_0$$
$$\varepsilon_0 = y_0 - \overline{y_0} \Rightarrow \varepsilon_{i+1} = \left(\frac{1}{1 - \overline{h}}\right)^{i+1} \varepsilon_0 \quad \Rightarrow |1 - \overline{h}| > 1$$