МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Президентский физико-математический лицей № 239

Отчёт по годовому проекту

Ученик: Берхман Евгений Юрьевич Преподаватель: Клюнин Алексей Олегович

Класс: 10-3

Содержание

1	Постановка задачи
2	Алгоритм решения задачи 2.1 Базовые структуры данных
3	Построение аогритма 3.1 Обобщенная блок-схема алгоритма
4	Листинг программы
5	Пример работы программы 5.1 Исходные данные

1 Постановка задачи

На плоскости заданно множество точек. Выбрать из них такие три точки, не лежащие на одной прямой, которые составляют треугольник наименьшей площади.

Рис. 1: Множество из шести точек, где точки А, В и С-искомые, образуют треугольник наименьшей площади.

2 Алгоритм решения задачи

2.1 Базовые структуры данных

Класс \mathbf{Point} описывает точку, состоит из двух полей $\mathbf{x_n}$ и $\mathbf{y_n}$ типа double, задающих координаты точки на плоскости.

Класс Set описывает множество точек, состоит из двух полей: ${\bf k}$ типа $int({\bf B}$ данной задаче ${\bf k}$ всегда равна 3, так как три точки образуют треугольник) и массив состоящий из ${\bf k}$ экземпляров класса Point.

2.2 Описание алгоритма

Будем решать задачу в системе координат. С клавиатуры на вход подаётся число ${\bf n}$ типа int, количество данных точек(${\bf n}\geqslant {\bf 3}$). Также введем переменную ${\bf min}$, которой будет присваиваться наименьшее значение площади. Для каждого из ${\bf n}$ экземпляров класса ${\bf Point}$ с клавиатуры считываются (или случайным образом. пользователь может выбрать вариант: вводить координаты самому с клавиотуры или предоставить компьютеру выбрать их случайным образом, для этого будет создана переменная типа boolean) значения переменных ${\bf x_n}$ и ${\bf y_n}$, координаты точек на плоскости. Создадим ${\bf C_n^3}$ (${\bf C_n^3} = \frac{{\bf n}!}{{\bf 3}!*({\bf n}-{\bf 3})!}$) экземпляров класса

Set, состоящих из 3-х точек(Point). С помощью метода square получим значение площади для каждого из цэ треугольников, т.е. для каждого из Set'ов. Опишем метод: будем считать 3 расстояния для каждого экземпляра: от точки $\mathbf{P_a}$ до точки $\mathbf{P_b}$, от точки $\mathbf{P_b}$ до точки $\mathbf{P_c}$ и от точки $\mathbf{P_c}$ до точки $\mathbf{P_a}$. Получив данные значения длины трех сторон по формуле $L_a = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$ -расстояние от $\mathbf{P_a}$ до $\mathbf{P_b}$ (далее аналогично), посчитаем значение площади треугольника по формуле Герона: $S = \sqrt{p(p-L_a)(p-L_b)(p-L)}$, где $p = (L_a + L_b + L_c)/2$. Будем каждый раз сравнивать значение площади Set.square со значением переменной \mathbf{min} (с самого начала присвоим \mathbf{min} значение площади первого Set'a), и если новое значение меньше, то будем присваивать его переменной \mathbf{min} . Проверив все $\mathbf{C_n^3}$ вариантов получим конечное значение \mathbf{min} . 3 точки, образующие треугольник, соответствующий данному значению переменной \mathbf{min} , и будут искомыми. Ответом на данную задачу является значение минимальной площади. При этом на плоскости будут отображены те три точки, которые образуют треугольник наименьшей площади.

Примечания: Для каждого \mathbf{Set} 'а площадь не должна быть нулевой, иначе данный \mathbf{Set} противоречит условию(3 токчи лежат на одной пряой). То есть при создании \mathbf{Set} 'а, если его площадь равно 0, то значение переменной \mathbf{min} не меняется, а именно не становится нулевым.

3 Построение аогритма

3.1 Обобщенная блок-схема алгоритма

3.2 Блок-схема алгоритма

4 Листинг программы

```
double min = -1; // значение минимальной площади
   MySet answertriangle = new MySet(); //создадим треугольник минимальной площади
   Point[] points2 = new Point[points.size()];
   int n = points.size();
   for (int i = 0; i < n; i++) points2[i] = points.get(i);
   for (int i = 0; i < n; i++)
   for (int j = 0; j < n; j++)
   for (int h = 0; h < n; h++)
   if (i == j || i == h || j == h) continue; // проверим, что мы выбрали три различные
точки
   MySet triangle = new MySet(3, points2[i], points2[j], points2[h]); // создадим тре-
угольник
   с данными тремя вершинами
   double square = triangle.Square(); // найдем его площадь
   if (square > 0 'and' (min == -1 || min > square))
   -ный (площадь больше нуля) и его площадь меньше, чем та что была
   min = square; // обновим значение минимальной площади
   answertriangle = triangle.myCopy();
```

5 Пример работы программы

5.1 Исходные данные

65 13 145 200

231 345

461 398

423 358

10 53

5.2 Выходные данные

198.0

123 456

156 90

145 200