Généralités sur les fonctions

Capacités attendues

- Connaître les règles de manipulation des inégalités.
- Déduire les variations d'une fonction, ses extremums et son signe à partir de sa représentation graphique ou son tableau de variations.
- Déterminer les variations de $x \mapsto f(x) + \lambda$, $x \mapsto \lambda f(x)$ connaissant les variations de f.
- Déterminer les variations de $g \circ f$, connaissant les variations des fonctions f et g.
- Résoudre les équations f(x) = c et f(x) = g(x) graphiquement.
- Étudier les équations et les inéquations en utilisant les fonctions.

4	Gé	nér	alité	s sı	ır le	es fo	nc	tio	ns	7	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	2
	Ens	emb	le de	défi	initi	on					•		•		•	•		•	•		•	•	•	•			•	• (•		3
Ш	Fon	ctio	n maj	joré	e - Fo	oncti	on i	min	or	ée	- F	or	ıct	io	n l	00	rn	ée				•	•				•	• (•	•	3
Ш	Ext	remu	ıms d	l'und	e for	nctio	n nı	ıme	éri	qu	e	•	•		•			•	•								•	• (•	•	4
IV	Ope	érati	ons s	ur le	es fa	ncti	ons	•		•	•		•		•			•	•								•	• (•	•	4
	1	Éga	lité d	e de	ux f	onct	ions	5					•		•	•		•	•			•	•				•	• (•	•	4
	2	Con	nposi	tion	de	fonct	ion	S																				• (4
V	Par	ité d	'une	fond	ction	1 .																						• (5
vì	Мо	noto	nie d	'une	for	etio	n																									5
	1		nitio																													5
	2		x de v																													6
	3		nono																													6
	4		s de v																													6
VII	For		ns pé									-	-		_	-			-			-	-	_		-	-			_	-	7
VIII			ntati																													8
• • • • • • • • • • • • • • • • • • • •	1		oncti																													8
	•	Lai	Dileti	O II .	λ /	ax +	h	10	CI	4.	16	и +	. 0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	2	La f	oncti	on:	$x \rightarrow$	CX	$\frac{3}{d}$ te	el qu	ue	<i>C</i> ≠	± 0	•	•	• •	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	9
	3	La f	oncti	on:	$\chi \rightarrow$	$\sqrt{\chi}$	<u>и</u> а																									10
	4		oncti																													10
	5		oncti						•																							11
	6		rései																													11
IX	_	_	aiso		_		_										-															12
	1		olutio																													12
	•	a	Réso																													12
		b	Réso		,	\ /																										12
	2		neso olutio			. ,	· /																									13
	_																															13
			Réso		,	\ /																										
		b	Réso	Hutic	on f	$(x) \geq$	g(x)	•	•	• •	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	13

Ensemble de définition

Définition 1 On appelle fonction f un procédé, qui, à tout nombre x d'un ensemble, associe un nombre f(x).

On dit alors que f(x) est l'image de x, et que x est un antécédent de f(x). L'ensemble de définition d'une fonction f de \mathbb{R} dans \mathbb{R} est l'ensemble des nombres de \mathbb{R} qui ont une image par la fonction f; on note usuellement D_f cet ensemble. Autrement dit : $x \in D_f \Leftrightarrow x \in \mathbb{R} \land f(x) \in \mathbb{R}$ ou $D_f = \{ x \in \mathbb{R} / f(x) \in \mathbb{R} \}$

EXERCICE N°1: Déterminer l'ensemble de définition de chacune des fonctions suivantes : $f(x) = \frac{4|x|+3}{x^2-4x+4}$; $g(x) = \frac{x^3-5}{2|x-3|-8}$; $h(x) = \sqrt{3-|x-4|}$; $p(x) = \frac{x^2+\sqrt{x}}{\sqrt{x^2+x-2}}$

$$f(x) = \frac{4|x|+3}{x^2-4x+4};$$

$$g(x) = \frac{x^3 - 5}{2|x - 3| - 8}$$

$$h(x) = \sqrt{3 - |x - 4|};$$

$$p(x) = \frac{x^2 + \sqrt{x}}{\sqrt{x^2 + x - 2}}$$

Fonction majorée - Fonction minorée - Fonction bornée

Définitions Soit f une fonction définie sur un intervalle I de D_f .

• On dit que la fonction f est majorée sur I s'il existe un réel M tel que :

$$(\forall x \in I), f(x) \le M$$

Le réel *M* s'appelle un **majorant** de *f* sur *I*.

• On dit que la fonction f est minorée sur I s'il existe un réel m tel que :

$$(\forall x \in I), f(x) \ge m$$

Le réel *m* s'appelle un **minorant** de *f* sur *I*.

• On dit que la fonction f est bornée sur I s'il existe deux réels M et m tel que : $(\forall x \in I), m \le f(x) \le M$

Propriété

Soit f une fonction définie sur un intervalle I de D_f .

La fonction f est bornée sur l'intervalle I si et seulement s'il existe un réel positif k tel que : $(\forall x \in I), |f(x)| \le k$

EXERCICE N°2: Soient f, g et h les fonctions définies respectivement par :

$$f(x) = x - \sqrt{x^2 + 1};$$
 $g(x) = x^2 + 4x$ et $h(x) = \frac{\sin^2 x}{1 + \cos x}$

1 Montrer que la fonction f est majorée par le nombre M=0 sur \mathbb{R} .

Montrer que la fonction g est minorée par le nombre m = -4 sur \mathbb{R} .

Montrer que la fonction h est bornée sur l'intervalle $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$.

Ш

Extremums d'une fonction numérique

Définition Soient f une fonction définie sur un intervalle I de D_f et $x_0 \in I$.

- $f(x_0)$ est le **minimum** de f sur I si et seulement si : $(\forall x \in I), f(x) \ge f(x_0)$ et on $\operatorname{\acute{e}crit}: f(x_0) = \min_{x \in I} f(x)$
- $f(x_0)$ est le **maximum** de f sur I si et seulement si : $(\forall x \in I), f(x) \le f(x_0)$ et on $\operatorname{\acute{e}crit}: f(x_0) = \max_{x \in \mathcal{X}} f(x).$
- Le maximum et le minimum sont appelés les **extremums** de la fonction f.

EXERCICE N°3

- Soit f la fonction définie dans \mathbb{R} par : $f(x) = x^3 3x$. Montrer que f(1) est un minimum de f sur l'intervalle $[0;+\infty[$.
- 2 Soit f la fonction définie dans \mathbb{R} par : $f(x) = \frac{x^2}{x^2 + 1}$ Montrer que f a un maximum sur \mathbb{R} dans le points $x_0 = 1$.

Opérations sur les fonctions

Égalité de deux fonctions

Définition

Soient f et g deux fonctions. On dit que f et g sont égales et on note f = g si : $D_f = D_g = D$ et $\forall x \in D$) f(x) = g(x)

Composition de fonctions

Définition

Soit f une fonction définie sur D_f et g une fonction définie sur D_g . On pose : $D = \{x \in \mathbb{R}/x \in D_f \text{ et } f(x) \in D_g\}.$ La fonction h définie sur D par h(x) = g(f(x)) est appelée fonction composée de f suivie de g notée $g \circ f$.

Remarque

 $D_{g \circ f} = \{x \in \mathbb{R} | x \in D_f \text{ et } f(x) \in D_g\} \text{ ou } x \in D_{g \circ f} \Leftrightarrow x \in \mathbb{R} \text{ et } x \in D_f \text{ et } f(x) \in D_g\}$

EXERCICE N°4: Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x} - 1$ et g la fonction définie sur \mathbb{R} par $g(x) = x^2 + 3$. Définir $g \circ f$ et $f \circ g$. Sont-elles égales?

Parité d'une fonction

Définition Soit f une fonction et D_f son ensemble de définition.

- f est une fonction paire $\Leftrightarrow (\forall x \in D_f), -x \in D_f \land f(-x) = f(x)$
- f est une fonction impaire $\Leftrightarrow (\forall x \in D_f), -x \in D_f \land f(-x) = -f(x)$

Propriété

- f est paire se traduit par : la représentation graphique de f dans un repère orthogonal est symétrique par rapport à l'axe des ordonnées.
- f est impaire se traduit par : la représentation graphique de f dans un repère est symétrique par rapport à l'origine du repère.

EXERCICE N°5: Soit f la fonction définie dans \mathbb{R} par :

$$f(x) = x^3 - 3x$$

- 1 Montrer que f est impaire.
- 2 Montrer que f(1) est un minimum de la fonction f sur $[0; +\infty[$.
- |3| En déduire que $(\forall x \in]-\infty; 0]$ $f(x) \le 2$.

Monotonie d'une fonction

Définition

Définition Soit une fonction f définie sur un intervalle I.

- f est croissante sur $I \Leftrightarrow (\forall (a;b) \in I^2), a < b \Rightarrow f(a) \leq f(b)$.
- f est décroissante sur $I \Leftrightarrow (\forall (a; b) \in I^2), a < b \Rightarrow f(a) \ge f(b)$.
- f est strictement croissante sur $I \Leftrightarrow (\forall (a; b) \in I^2), a < b \Rightarrow f(a) < f(b)$.
- f est strictement décroissante sur $I \Leftrightarrow (\forall (a; b) \in I^2), a < b \Rightarrow f(a) > f(b)$.
- *f* est monotone sur *I* si elle est croissante ou décroissante sur *I*.
- f est strictement monotone sur I si elle est strictement croissante ou décroissante sur *I*.

2 Taux de variation

Définition

Soit une fonction f définie sur un intervalle I et Soient a et b deux nombres distincts de l'intervalle I.

Le nombre $T(a;b) = \frac{f(a) - f(b)}{a - b}$ s'appelle le taux de variation de la fonction f entre a et b.

Propriété

Soit une fonction f définie sur un intervalle I.

- f est croissante sur I si et seulement si, quels que soient les nombres distinct a et b de I on a : $T(a;b) \ge 0$
- f est strictement croissante sur I si et seulement si, quels que soient les nombres distinct a et b de I on a : T(a;b) > 0
- f est décroissante sur I si et seulement si, quels que soient les nombres distinct a et b de I on a : $T(a;b) \le 0$
- f est strictement décroissante sur I si et seulement si, quels que soient les nombres distinct a et b de I on a : T(a;b) < 0

La monotonie et la parité

Propriété

Soit f une fonction définie sur un ensemble D_f symétrique par rapport à 0 et soient $I \subset D_f \cap \mathbb{R}^+$ et I' son symétrique par rapport à 0.

- soit f paire, on a : si f est croissante sur I alors f est décroissante sur I' et si f est décroissante sur I alors f est croissante sur I'
- soit f impaire, on a : si f est croissante sur I alors f est croissante sur I' et si f est décroissante sur I alors f est décroissante sur I'

Sens de variation de la fonction $u \circ v$

Propriété

Soit u une fonction définie et monotone sur un intervalle J. Soit v une fonction définie et monotone sur un intervalle I et telle que pour tout $x \in I$, $v(x) \in J$.

- Si u et v ont même sens de variation alors $u \circ v$ est croissante sur I.
- Si u et v ont des sens de variation contraires alors $u \circ v$ est décroissante sur I.

EXERCICE N°6: Soient f et g deux fonctions définies par : f(x) = -2x + 1 et $g(x) = \frac{1-2x}{x-1}$

- 1 Donner le tableau de variation de la fonction f et celui de g.
- Déterminer la monotonie de la fonction gof sur les intervalles : $]-\infty,0[$ et $]0,+\infty[$

EXERCICE N°7: Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 - 2|x| + 3$

- 1 Montrer que la fonction f est paire .
- 2 Montrer que la fonction f est minorée par le nombre 2.
- Montrer que la fonction f est croissante sur l'intervalle]1; $+\infty$ [et décroissante sur l'intervalle [0.1].
- 4 En déduire les variation de la fonction f sur les intervalles $]-\infty;-1]$ et]-1;0].

VII

Fonctions périodiques

Définition

Une fonction f est dite périodique de période T si et seulement si , pour tout réel $x \in D_f$, on a : $(x + T) \in D_f \land f(x + T) = f(x)$.

Remarque

Conséquence graphique : Si f est périodique de période T il suffit de l'étudier sur un intervalle de longueur T.

Propriété

• Si la fonction f est périodique de période T alors

$$(\forall x \in D_f)(\forall k \in \mathbb{Z}), f(x+kT) = f(x)$$

- Posons : $I_0 = [x_0; x_0 + T[$ et $I_k = [x_0 + kT; x_0 + (k+1)T[$ tels que $x_0 \in D_f$ et $k \in \mathbb{Z}$ et soient (C_0) la courbe de la fonction f sur l'intervalle I_0 et (C_k) sa courbe sur l'intervalle I_k dans un repère $(O; \vec{i}; \vec{j})$. On a :
 - \rightarrow (C_k) est l'image de (C_0) par la translation de vecteur $kT.\vec{i}$.
 - \rightarrow La fonction f a le même sens de variation sur I_0 et I_k .

EXERCICE N°8 : Soit f une fonction impaire, périodique de période T = 3 et définie sur l'intervalle $\left[0; \frac{3}{2}\right]$ par : $f(x) = x^2 - x$.

- 1 Calculer f(2017) et f(1439).
- 2 Déterminer l'expression f(x) sur \mathbb{R}

VIII

Représentation graphique des fonctions de référence

Définition

La courbe représentative de la fonction f dans un repère est l'ensemble des points de coordonnées (x; f(x)) où x parcourt le domaine de définition \mathcal{D} de la fonction f. Elle est souvent notée \mathcal{C}_f .

L'équation de cette courbe représentative est : y = f(x).

La courbe représentative de la fonction carrée s'appelle une parabole et celle de la fonction inverse une hyperbole.

1

La fonction : $x \rightarrow ax^2 + bx + c$ **tel que** $a \ne 0$

Propriétés

Soit f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ tel que $a \neq 0$.

- f(x) peut s'écrire sous la forme $f(x) = a(x-\alpha)^2 + \beta$ tels que $\alpha = -\frac{b}{2a}$ et $\beta = f\left(-\frac{b}{2a}\right)$
- la courbe représentative de f est une parabole de sommet $\Omega(\alpha; \beta)$ et d'axe de symétrie la droite d'équation $x = \alpha$.
- tableau de variations et représentation graphique :

$$\rightarrow$$
 si $a > 0$:

х	-∞	α	+∞
f(x)		\searrow_{β}	

 \rightarrow si a < 0:

х	-∞	α	+∞
f(x)		β	

2

La fonction : $x \to \frac{ax+b}{cx+d}$ **tel que** $c \ne 0$

Propriétés

Soit f la fonction par $f(x) = \frac{ax+b}{cx+d}$ tel que $c \neq 0$.

- L'ensemble de définition de la fonction f est : $D_f = \mathbb{R} \left\{-\frac{d}{c}\right\}$.
- La courbe représentative de la fonction f est une **hyperbole** de centre $I\left(-\frac{d}{c}; \frac{a}{c}\right)$ et d'asymptotes les droites d'équations $x = -\frac{d}{c}$ et $y = \frac{a}{c}$.
- Tableau de variations et représentation graphique : On pose : $\Delta = ad bc$
 - \rightarrow si $\Delta < 0$:

х	-∞ _	$\frac{d}{c}$ $+\infty$
f(x)		<u></u>

$$\rightarrow$$
 si $\Delta > 0$:

х	-∞ _	$\frac{d}{c}$ + ∞
f(x)		

3

La fonction : $x \to \sqrt{x+a}$

Propriétés

Soit f la fonction définie par $f(x) = \sqrt{x+a}$.

- L'ensemble de définition de la fonction f est : $D_f = [-a; +\infty[$.
- La fonction f est croissante sur D_f .
- Tableau de variations et représentation graphique :

4

La fonction : $x \rightarrow ax^3$ **tel que** $a \ne 0$

Propriétés

Soit f la fonction par $f(x) = ax^3$ tel que $a \ne 0$.

- L'ensemble de définition de la fonction f est : $D_f = \mathbb{R}$.
- La fonction *f* est impaire.
- Tableau de variations et représentation graphique :
 - \rightarrow Si a > 0:

 \rightarrow Si a > 0:

5

La fonction partie entière

Définition

On appelle fonction **partie entière** la fonction f définie de \mathbb{R} dans \mathbb{R} telle que pour tout nombre réel x, f(x) est égal au plus grand entier inférieur ou égal à x. La partie entière de x se note [x] ou E(x).

Exemples

$$E(5) = 5;$$
 $E(-3,2) = -4;$ $E(6,9) = 6;$ $E(\frac{7}{3}) = 2;$ $E(-\frac{8}{3}) = -3$

Le graphique de la fonction **partie entière** définie par : f(x) = [x] :

Propriétés

- $(\forall x \in \mathbb{R}), E(x) \le x < E(x) + 1$
- $(\forall k \in \mathbb{Z}), E(k) = k$
- $(\forall x \in \mathbb{R})(\forall k \in \mathbb{Z}), E(x+k) = E(x) + k$

6

Représentation graphique d'une fonction $x \mapsto f(x+a) + b$

Propriété

Soit f une fonction et g la fonction définie par g(x) = f(x+a) + b.

Dans un repère (O, \vec{i}, \vec{j}) , on appelle C_f et C_g les courbes représentatives des fonctions f et g.

 C_g est l'image de C_f par la translation de vecteur $-a\vec{i}+b\vec{j}$, autrement dit le vecteur de coordonnées (-a;b).

Démonstration : Soient M(x; y) et M'(x - a; y + b).

$$M' \in C_g \Leftrightarrow y+b = g(x-a) \Leftrightarrow y+b = f(x-a+a)+b \Leftrightarrow y=f(x) \Leftrightarrow M \in C_f$$

IX

Comparaison de deux fonctions

1

Résolution d'une équation

- a
- **Résolution** f(x) = k

On trace la droite d'équation y = k et on lit les abscisses des points d'intersection avec la courbe.

Donc l'ensemble des solutions de cette équation est : $S = \{x_1; x_2\}$

b

Résolution f(x) = g(x)

On trace les deux courbes (C_f) et (C_g) et on lit les abscisses des points d'intersection .

Donc l'ensemble des solutions de cette équation est : $S = \{x_1; x_2\}$

- Résolution d'une inéquation
- **a** Résolution f(x) > 0

Donc l'ensemble des solutions de cette inéquation est : $S =]x_1; x_2[\cup]x_3; +\infty[$

b Résolution $f(x) \ge g(x)$

Donc l'ensemble des solutions de cette inéquation est : $S = [x_1; x_2] \cup [x_3; +\infty[$