

Минская городская олимпиада по физике (2003 год)

11 класс.

1. «Фототок» . Длинная плоская пластинка длиной l и шириной a, сопротивление которой равно R_0 , включена последовательно в электрическую цепь, содержащую источник постоянного напряжения U_0 и два одинаковых резистора сопротивлениями R. Пластинка освещается параллельным монохроматическим

световым потоком с длиной волны λ , интенсивность которого равна I_0 . Под действием этого излучения происходит фотоэффект, квантовая эффективность которого равна η . Найдите силы токов через каждый резистор. Внутренним сопротивлением источника пренебречь; считать, что плотность фототока постоянна на всей пластине, и вылетевшие электроны на пластину не возвращаются. Емкость источника можно считать бесконечно большой.

Примечания: - под **интенсивностью света** в данном случае понимается энергия, переносимая световым потоком в единицы времени через площадку единичной площади, расположенную перпендикулярно световому потоку; **квантовая эффективность фотоэффекта** - отношение числа электронов, вылетевших из пластины, к числу фотонов, попавших на пластину.

2. «Застой». Хорошо известно, что для большинства трущихся поверхностей коэффициент трения покоя превышает коэффициент трения скольжения. Увеличение силы трения покоя по сравнению с силой терния скольжения носит название «явление застоя». Это явление приводит к ряду интересных последствий, например, его наличием объясняется скрип дверных петель, звучание струны скрипки и др.

Для изучения явления застоя создана следующая установка. На движущуюся с постоянной скоростью горизонтальную ленту транспортера помещен брусок, прикрепленный с помощью лекгорастяжимой пружины к неподвижному упору. При этом брусок совершает незатухающие колебания.

- А). Объясните механизм возникновения незатухающих колебаний.
- Б). Найдите максимальную и минимальную деформации пружины в процессе движения бруска.
- В). Определите период колебаний бруска.
- Γ). Найдите закон движения бруска x(t) и постройте его график (в качестве координаты x используйте деформацию пружины).

<u>Параметры установки:</u> масса бруска $m = 100 \, \varepsilon$; коэффициент жесткости

пружины
$$k=10\frac{H}{_M}$$
; скорость движения ленты транспортера $v_0=5.0\frac{c_M}{c}$;