Chethan Kamath

Indian Institute of Science, Bangalore

November 23, 2013

Table of contents

Overview

Background

Formal Definitions Schnorr Signature and Oracle Replay Attack General Forking

Galindo-Garcia IBS

Galindo-Garcia IBS Multiple-Forking Lemma Security Argument

GG-IBS, Improved Intuition (In)Dependence for Random Oracles

Transformation

Conclusion

Contents

Overview

- Introduced by Shamir in 1984.
- Any arbitrary string can be used as public key.
- Certificate management can be avoided.
- A trusted *private key generator* (PKG) generates secret keys.

- Introduced by Shamir in 1984.
- Any arbitrary string can be used as public key.
- Certificate management can be avoided.
- A trusted private key generator (PKG) generates secret keys.

Identity-Based Cryptography

- Introduced by Shamir in 1984.
- Any arbitrary string can be used as public key.
- Certificate management can be avoided.
- A trusted *private key generator* (PKG) generates secret keys.

Identity-Based Cryptography

- Introduced by Shamir in 1984.
- Any arbitrary string can be used as public key.
- Certificate management can be avoided.
- A trusted private key generator (PKG) generates secret keys.

Identity-Based Signatures

• IBS: digital signatures extended to identity-based setting

Identity-Based Signatures

IBS: digital signatures extended to identity-based setting

- Focus of the work: construction of IBS schemes
 - 1. Concrete IBS based on Schnorr signature
 - 2. Generic construction from a weaker model

Contents

Background

Formal Definitions Schnorr Signature and Oracle Replay Attack General Forking

Public-Key Signature

Consists of three PPT algorithms $\{\mathcal{K}, \mathcal{S}, \mathcal{V}\}$:

- Key Generation, $\mathcal{K}(\kappa)$
 - Used by the signer to generate the key-pair (pk,sk)
 - pk is published and the sk kept secret
- Signing, $S_{al}(m)$
 - Used by the *signer* to generate signature on some message m
 - The secret key sk used for signing
- Verification, $V_{pk}(\sigma, m)$
 - Used by the verifier to validate a signature
 - Outputs 1 if σ is a valid signature on m; else, outputs 0

Identity-Based Signature

Consists of four PPT algorithms $\{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$:

• Set-up, $\mathcal{G}(\kappa)$

Background

- Used by PKG to generate the master key-pair (mpk,msk)
- mpk is published and the msk kept secret
- Key Extraction, $\mathcal{E}_{msk}(id)$
 - Used by PKG to generate the user secret key (usk)
 - usk is then distributed through a secure channel
- Signing, $S_{nsk}(id, m)$
 - Used by the signer (with identity id) to generate signature on some message m
 - The user secret key usk used for signing
- Verification, $V_{mpk}(\sigma, id, m)$
 - Used by the verifier to validate a signature
 - Outputs 1 if σ is a valid signature on m by the user with identity id; otherwise, outputs 0

STANDARD SECURITY MODELS

- Existential unforgeability under chosen-message attack
 - 1. $\mathcal C$ generates key-pair (pk, sk) and passes pk to $\mathcal A$
 - 2. \mathcal{A} allowed: Signature Queries through an oracle \mathcal{O}_s
 - 3. Forgery: A wins if $(\hat{\sigma}; \hat{m})$ is valid and non-trivial
- Adversary's advantage in the game:

$$\Pr\left[1\leftarrow\mathcal{V}_{pk}(\hat{\sigma};\hat{\textit{m}}):(\mathtt{sk},\mathtt{pk}) \xleftarrow{\$} \mathcal{K}(\kappa);(\hat{\sigma};\hat{\textit{m}}) \xleftarrow{\$} \mathcal{A}^{\mathcal{O}_{\mathtt{S}}}(\mathtt{pk})\right]$$

Security Model for IBS: EU-ID-CMA

- Existential unforgeability with adaptive identity under chosen-message attack
 - 1. \mathcal{C} generates key-pair (mpk, msk) and passes mpk to \mathcal{A}
 - 2. A allowed: Signature Queries, Extract Queries
 - 3. Forgery: A wins if $(\hat{\sigma}; (\hat{id}, \hat{m}))$ is valid and non-trivial
- Adversary's advantage in the game:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}_{\mathtt{mpk}}(\hat{\sigma}; (\hat{\mathtt{id}}, \hat{m})) : (\mathtt{msk}, \mathtt{mpk}) \xleftarrow{\$} \mathcal{G}(\kappa); (\hat{\sigma}; (\hat{\mathtt{id}}, \hat{m})) \xleftarrow{\$} \mathcal{A}^{\mathcal{O}_{\{\$, \varepsilon\}}}(\mathtt{mpk})\right]$$

SCHNORR SIGNATURE AND ORACLE REPLAY ATTACK

Schnorr Signature: Features

- Derived from Schnorr identification (FS Transform)
- Uses one hash function
- Security:
 - Based on discrete-log assumption
 - Hash function modelled as a random oracle (RO)
 - Argued using (random) oracle replay attacks

Schnorr Signature: Construction

The Setting:

- 1. We work in group $\mathbb{G} = \langle g \rangle$ of prime order p.
- 2. A hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_p$ is used.

Key Generation:

- 1. Select $z \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ as the sk
- 2. Set $Z := g^z$ as the pk

Signing:

- 1. Select $r \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$, set $R := g^r$ and $c := \mathsf{H}(m,R)$.
- 2. The signature on m is $\sigma := (y, R)$ where y := r + zc

Verification:

- 1. Let $\sigma := (y, R)$ and c := H(m, R).
- 2. σ is valid if $g^y = RZ^c$

Oracle Replay Attack

• Random oracle H $-i^{th}$ RO query Q_i replied with s_i

Adversary re-wound to Q, Simulation in round 1 from Q, using a different random function

Oracle Replay Attack

• Random oracle H – i^{th} RO query Q_i replied with s_i .

1. Adversary re-wound to Q_I

Simulation in round 1 from Q_I using a different random function

Oracle Replay Attack

• Random oracle $H - i^{th}$ RO query Q_i replied with s_i .

- 1. Adversary re-wound to Q,
- 2. Simulation in round 1 from Q₁ using a different random function

Security of Schnorr Signature, In Brief

Cost of Oracle Replay Attack

- Forking Lemma [PS00]: bounds success probability of the oracle replay attack (frk) in terms of
 - 1. success probability of the adversary (ϵ)
 - 2. bound on RO queries (q)

$$\mathsf{DLP} \leq_{\mathsf{O}(q/\epsilon^2)} \mathsf{Schnorr Signature}$$

Analysis done using the Splitting Lemma

Cost of Oracle Replay Attack

- Forking Lemma [PS00]: bounds success probability of the oracle replay attack (*frk*) in terms of
 - 1. success probability of the adversary (ϵ)
 - 2. bound on RO queries (q)

$$\mathsf{DLP} \leq_{\mathsf{O}(q/\epsilon^2)} \mathsf{Schnorr Signature}$$

- Analysis done using the Splitting Lemma
- The cost: security *degrades* by O(q)
 - More or less optimal [Seu12]

General-Forking Lemma

"Forking Lemma is something purely probabilistic, not about signatures" [BN06]

- Abstract version of the Forking Lemma
- Separates out details of simulation (of adversary) from analysis
- A wrapper algorithm used as intermediary
 - 1. Simulate protocol environment to ${\cal A}$
 - 2. Simulate RO as specified by ${\cal S}$

General-Forking Lemma

"Forking Lemma is something purely probabilistic, not about signatures" [BN06]

- Abstract version of the Forking Lemma
- Separates out details of simulation (of adversary) from analysis
- A wrapper algorithm used as intermediary
 - 1. Simulate protocol environment to ${\cal A}$
 - 2. Simulate RO as specified by ${\cal S}$

• Structure of a wrapper call: $(I, \sigma) \leftarrow \mathcal{W}(x, s_1, \dots, s_q; \rho)$

General-Forking Lemma

"Forking Lemma is something purely probabilistic, not about signatures" [BN06]

- Abstract version of the Forking Lemma
- Separates out details of simulation (of adversary) from analysis
- A wrapper algorithm used as intermediary
 - 1. Simulate protocol environment to ${\cal A}$
 - 2. Simulate RO as specified by ${\cal S}$

• Structure of a wrapper call: $(I, \sigma) \leftarrow \mathcal{W}(x, s_1, \dots, s_q; \rho)$

General-Forking Algorithm $\mathcal{F}_{\mathcal{W}}(x)$

Pick coins ρ for $\mathcal W$ at random

```
\begin{split} \{s_1,\ldots,s_q\} &\stackrel{\cup}{\leftarrow} \mathbb{S}; \ (I,\sigma) \leftarrow \mathcal{W}(x,s_1,\ldots,s_q;\rho) \quad \text{$/\!\!\!/} \text{round 0} \\ &\text{if } \ (I=0) \ \text{then return } (0,\bot,\bot) \\ \{s,l_0,\ldots,s_q'\} &\stackrel{\cup}{\leftarrow} \mathbb{S}; \ (I',\sigma') \leftarrow \mathcal{W}(x,s_1,\ldots,s_{l-1},s_l',\ldots,s_q';\rho) \quad \text{$/\!\!\!/} \text{round 1} \\ &\text{if } \ (I'=I \land s_l' \neq s_l) \ \text{then return } (1,\sigma,\sigma') \\ &\text{else return } \ (0,\bot,\bot) \end{split}
```

General-Forking Lemma...

```
General-Forking Algorithm \mathcal{F}_{\mathcal{W}}(x)
```

else return $(0, \perp, \perp)$

Pick coins ρ for W at random

$$\begin{aligned} &\{s_1,\ldots,s_q\} \overset{\cup}{\leftarrow} \mathbb{S}; \ (I,\sigma) \leftarrow \mathcal{W}(x,s_1,\ldots,s_q;\rho) \quad \text{$/\!\!\!/$} \text{round 0} \\ &\text{if } \ (I=0) \ \text{then return } \ (0,\bot,\bot) \\ &\{s_i,l_0,\ldots,s_q'\} \overset{\cup}{\leftarrow} \mathbb{S}; \ (I',\sigma') \leftarrow \mathcal{W}(x,s_1,\ldots,s_{l-1},s_l',\ldots,s_q';\rho) \quad \text{$/\!\!\!/$} \text{round 1} \\ &\text{if } \ (I'=I \land s_l' \neq s_l) \ \text{then return } \ (1,\sigma,\sigma') \end{aligned}$$

General-Forking Lemma: bounds success probability of the oracle replay attack (frk) in terms of

- 1. success probability of W (acc)
- 2. bound on RO queries (q)

$$frk \geq acc^2/q$$

Contents

Overview

Background

Formal Definitions
Schnorr Signature and Oracle Replay Attack
General Forking

Galindo-Garcia IBS

Galindo-Garcia IBS Multiple-Forking Lemma Security Argument

GG-IBS, Improved
Intuition
(In)Dependence for Random Oracle

Transformation

Conclusion

- Derived from Schnorr signature scheme nesting [GG09]
 - Based on the discrete-log (DL) assumption
- Efficient, simple and does not use pairing
- Uses two hash functions
- Security argued using nested replay attacks

Galindo-Garcia IBS: Construction

Setting:

- 1. We work in a group $\mathbb{G} = \langle g \rangle$ of prime order p.
- 2. Two hash functions $H, G : \{0,1\}^* \mapsto \mathbb{Z}_p$ are used.

Set-up:

1. Select $z \stackrel{\circ}{\leftarrow} \mathbb{Z}_p$ as the msk; set $Z := g^z$ as the mpk

Key Extraction:

- 1. Select $r \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ and set $R := g^r$.
- 2. Return usk := (y, R) as the usk, where y := r + zc and c := H(id, R).

Signing:

- 1. Select $a \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ and set $A := g^a$.
- 2. Return $\sigma := (b, R, A)$ as the signature, where b := a + yd and d := G(id, m, A).

MULTIPLE FORKING

Multiple Forking: Overview

- Introduced by Boldyreva et al. [BPW12]
- Motivation:
 - General Forking: elementary replay attack
 - restricted to one RO and single replay attack
 - Multiple Forking: nested replay attack
 - two ROs and multiple (n) replay attacks

Multiple Forking: Overview

Introduced by Boldyreva et al. [BPW12]

Galindo-Garcia IBS 00000

- Motivation:
 - General Forking: elementary replay attack
 - restricted to one RO and single replay attack
 - Multiple Forking: nested replay attack
 - two ROs and multiple (n) replay attacks
- Used in [BPW12] to argue security of a DL-based proxy SS
- Used further in
 - Galindo-Garcia IBS
 - 2. Chow et al. Zero-Knowledge Argument [CMW12]

Multiple-Forking Algorithm

```
Multiple-Forking Algorithm \mathcal{M}_{W,3}
   (I_0, J_0, \sigma_0) \leftarrow \mathcal{W}(x, s_1^0, \dots, s_n^0; \rho) /round 0
   if ((I_0 = 0) \lor (J_0 = 0)) then return (0, \bot)
   (I_1, J_1, \sigma_1) \leftarrow \mathcal{W}(x, s_1^0, \dots, s_0 I_0 - 1, s_{I_0}^1, \dots, s_{I_0}^1; \rho) /round 1
   if ((I_1, J_1) \neq (I_0, J_0) \vee (s_{I_0}^1 = s_{I_0}^0)) then return (0, \bot)
   (\mathit{I}_2,\mathit{J}_2,\sigma_2) \leftarrow \mathcal{W}(\mathsf{x},\mathsf{s}_1^0,\ldots,\mathsf{s}_0^{}\mathit{J}_0-1,\mathsf{s}_{\mathit{J}_0}^2,\ldots,\mathsf{s}_\sigma^2;\rho) \quad \texttt{//round 2}
   if (I_2, J_2) \neq (I_0, J_0) \vee (s_{J_0}^2 = s_{J_0}^1) then return (0, \bot)
   (I_3, J_3, \sigma_3) \leftarrow \mathcal{W}(x, s_1^0, \dots, s_0 J_0 - 1, s_{I_0}^2, \dots, s_{I_{n-1}}^2, s_3 I_2, \dots, s_3 q; \rho) /round 3
   if ((I_3, J_3) \neq (I_0, J_0) \vee (s_3 I_0 = s_2 I_0)) then return (0, \bot)
```

Multiple-Forking Algorithm...

Multiple-Forking Lemma

Multiple-Forking Lemma: bounds success probability of nested replay attack (*mfrk*) in terms of

- 1. success probability of \mathcal{W} (acc)
- 2. bound on RO queries (q)
- 3. number of rounds of forking (n)

$$mfrk \ge acc^{n+1}/q^{2n}$$

Multiple-Forking Lemma

Multiple-Forking Lemma: bounds success probability of nested replay attack (*mfrk*) in terms of

- 1. success probability of \mathcal{W} (acc)
- 2. bound on RO queries (q)
- 3. number of rounds of forking (n)

$$mfrk \ge acc^{n+1}/q^{2n}$$

Follows from condition $F: (I_n, J_n) = (I_{n-1}, J_{n-1}) = ... = (I_0, J_0)$

Degradation: $O(q^{2n})$

• Cost per forking (involving two ROs): O (q^2)

GG-IBS, Improved

Transformation

Conclusion

SECURITY ARGUMENT

Original Security Argument

- Two reductions: \mathcal{B}_1 and \mathcal{B}_2 depending on the type of adversary (event E and \bar{E})
 - DLP \leq GG-IBS

- Two reductions: \mathcal{B}_1 and $\overline{\mathcal{B}}_2$ depending on the type of adversary (event E and $\overline{\mathsf{E}}$)
 - DLP ≤ GG-IBS

Reduction	Success Prob. (≈)	Forking Algorithm
\mathcal{B}_1	$\epsilon^2/q_{\scriptscriptstyle \sf G}^3$	General Forking $(\mathcal{F}_{\mathcal{W}})$
\mathcal{B}_2	$\epsilon^4/(q_{\scriptscriptstyle extsf{H}}q_{\scriptscriptstyle extsf{G}})^6$	Multiple Forking $(\mathcal{M}_{\mathcal{W},3})$

Original Security Argument: Flaws

- We found several problems with \mathcal{B}_1 and \mathcal{B}_2
 - 1. \mathcal{B}_1 : Fails in the standard security model for IBS
 - 2. \mathcal{B}_2 : All the adversarial strategies were not covered
- Simulation is distinguishable from real execution!

Original Security Argument: Flaws

- We found several problems with \mathcal{B}_1 and \mathcal{B}_2
 - 1. \mathcal{B}_1 : Fails in the standard security model for IBS
 - 2. \mathcal{B}_2 : All the adversarial strategies were not covered
- Simulation is distinguishable from real execution!
- Contribution: fixed the security argument
 - Slightly tighter reduction [CKK12]

Fixed Security Argument

Type Ē further split: type F and Ē
 F: A makes target G(·,·,·) before target H(·,·) (G < H)

- 1. \mathcal{R}_1 addresses problems with \mathcal{B}_1 + Coron's Technique
- 2. \mathcal{R}_2 covers unaddressed adversarial strategy in \mathcal{B}_2 (i.e., $\mathsf{H} < \mathsf{G}$)
- 3. \mathcal{R}_3 same as the original reduction \mathcal{B}_2

Fixed Security Argument

Reduction	Success Prob. (≈)	Forking Used
\mathcal{R}_1	$\frac{\epsilon^2}{q_{\rm G}q_{\varepsilon}}$	$\mathcal{F}_{\mathcal{W}}$
\mathcal{R}_2	$\frac{\epsilon^2}{(q_{H}+q_{G})^2}$	$\mathcal{M}_{\mathcal{W},1}$
\mathcal{R}_3	$\frac{\epsilon^4}{(q_{H}+q_{G})^6}$	$\mathcal{M}_{\mathcal{W},3}$

Reduction \mathcal{R}_3

Degradation

- Degradation: O (q^6)
 - Reason: cost per forking is $O\left(q^2\right)$

Degradation

- Degradation: O (q^6)
 - Reason: cost per forking is $O(q^2)$
- Can we improve?

Overview

Background

Formal Definitions

Schnorr Signature and Oracle Replay Attack

General Forking

Galindo-Garcia IBS

Galindo-Garcia IBS

Multiple-Forking Lemma

Security Argument

GG-IBS, Improved

Intuition

(In)Dependence for Random Oracles

Transformation

Conclusion

- Observations:
 - 1. Independence condition O_1 : I_2 need not equal I_0

- Observations:
 - 1. Independence condition O_1 : I_2 need not equal I_0
 - 2. Dependence condition O_2 : $(I_1 = I_0)$ can imply $(J_1 = J_0)$

- Observations:
 - 1. Independence condition O_1 : I_2 need not equal I_0
 - 2. Dependence condition O_2 : $(I_1 = I_0)$ can imply $(J_1 = J_0)$ (similarly $(I_3 = I_2)$ can imply $(J_3 = J_2)$)

The Intuition...

Effect of O_1 and O_2 on $F: (I_3, J_3) = (I_2, J_2) = (I_1, J_1) = (I_0, J_0)$

• O_1 : I_2 need not equal I_0

$$(I_3, J_3) = (I_2, J_2) \wedge (J_2 = J_0) \wedge (I_1, J_1) = (I_0, J_0)$$

• O₂: $(I_1 = I_0) \implies (J_1 = J_0)$ and $(I_3 = I_2) \implies (J_3 = J_2)$

$$(I_3 = I_2 = I_1 = I_0) \wedge (J_2 = J_0)$$

The Intuition...

Effect of O_1 and O_2 on $F: (I_3, J_3) = (I_2, J_2) = (I_1, J_1) = (I_0, J_0)$

• O₁: I₂ need not equal I₀

$$(I_3, J_3) = (I_2, J_2) \wedge (J_2 = J_0) \wedge (I_1, J_1) = (I_0, J_0)$$

• O₂: $(I_1 = I_0) \implies (J_1 = J_0)$ and $(I_3 = I_2) \implies (J_3 = J_2)$

$$(I_3 = I_2 = I_1 = I_0) \wedge (J_2 = J_0)$$

Together, O₁ & O₂:

$$(I_3 = I_2) \wedge (I_1 = I_0) \wedge (J_2 = J_0)$$

The Intuition...

Effect of O_1 and O_2 on $F: (I_3, J_3) = (I_2, J_2) = (I_1, J_1) = (I_0, J_0)$

• O₁: I₂ need not equal I₀

$$(I_3, J_3) = (I_2, J_2) \wedge (J_2 = J_0) \wedge (I_1, J_1) = (I_0, J_0)$$

• O₂: $(I_1 = I_0) \implies (J_1 = J_0)$ and $(I_3 = I_2) \implies (J_3 = J_2)$

$$(I_3 = I_2 = I_1 = I_0) \wedge (J_2 = J_0)$$

Together, O₁ & O₂:

$$(I_3 = I_2) \wedge (I_1 = I_0) \wedge (J_2 = J_0)$$

Intuitively, degradation reduced to $O(q^3)$

• In general, degradation reduced to $O(q^n)$

alindo-Garcia 0 0000 00000 GG-IBS, Improved

ransformation C

MORE ON (IN)DEPENDENCE

Consider round 0 and round 1 of simulation for GG-IBS

$$\mathbb{Q}^0_{J_0}:\mathsf{H}(\hat{\mathrm{id}},\hat{R})\overset{c_0}{\cdots} \mathbb{Q}^0_{I_0}:\mathsf{G}(\hat{\mathrm{id}},\hat{m}_0,\hat{A}_0)$$

Consider round 0 and round 1 of simulation for GG-IBS

$$\mathbb{Q}^0_{J_0}:\mathsf{H}(\hat{\mathtt{id}},\hat{R})\overset{c_0}{\cdots} \mathbb{Q}^0_{I_0}:\mathsf{G}(\hat{\mathtt{id}},\hat{m}_0,\hat{A}_0)$$

$$\mathbb{Q}^1_{I_0+1}\cdots\cdots \mathsf{round}\ 1$$

• Need to explicitly ensure that $(J_1 = J_0)$

Consider round 0 and round 1 of simulation for GG-IBS

$$\mathbb{Q}^0_{J_0}:\mathsf{H}(\hat{\mathsf{id}},\hat{R})\overset{c_0}{\dots}\mathbb{Q}^0_{I_0}:\mathsf{G}(\hat{\mathsf{id}},\hat{m}_0,\hat{A}_0)$$

• Need to explicitly ensure that $(J_1 = J_0)$

$$Q_{J_0}^0: \mathsf{H}(\hat{\mathsf{id}}, \hat{R}) \overset{c_0}{\cdots} Q_{I_0}^0: \mathsf{G}(\hat{\mathsf{id}}, \hat{m}_0, \hat{A}_0, c_0)$$

Consider round 0 and round 1 of simulation for GG-IBS

$$\mathbb{Q}^0_{J_0}:\mathsf{H}(\hat{\mathsf{id}},\hat{R})\overset{c_0}{\cdots} \mathbb{Q}^0_{I_0}:\mathsf{G}(\hat{\mathsf{id}},\hat{m}_0,\hat{A}_0)$$

• Need to explicitly ensure that $(J_1 = J_0)$

$$Q_{J_0}^0: \mathsf{H}(\hat{\mathsf{id}}, \hat{R}) \overset{c_0}{\cdots} Q_{J_0}^0: \mathsf{G}(\hat{\mathsf{id}}, \hat{m}_0, \hat{A}_0, c_0)$$

• Hence, $(I_1 = I_0) \implies (J_1 = J_0)!$

Definition (RO Dependence)

An RO H_2 is $\eta\text{-dependent}$ on RO H_1 $(H_1 \prec H_2)$ if:

- 1. $(1 \le J < I \le q)$ and
- 2. $\Pr[(J' \neq J) \mid (I' = I)] \leq \eta$

Definition (RO Dependence)

An RO H_2 is η -dependent on RO H_1 ($H_1 \prec H_2$) if:

- 1. $(1 \le J < I \le q)$ and
- 2. $\Pr[(J' \neq J) \mid (I' = I)] \leq \eta$

Claim (Binding induces dependence)

Binding H_2 to H_1 induces a RO dependence $H_1 \prec H_2$ with $\eta_b := q_1(q_1-1)/|\mathbb{R}_1|$.

- q₁: upper bound on queries to H₁
- \mathbb{R}_1 : range of H_1

Setting:

- 1. We work in a group $\mathbb{G} = \langle g \rangle$ of prime order p.
- 2. Two hash functions $H, G : \{0,1\}^* \mapsto \mathbb{Z}_p$ are used.

Set-up:

1. Select $z \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ as the msk; set $Z := g^z$ as the mpk

Key Extraction:

- 1. Select $r \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ and set $R := g^r$.
- 2. Return usk := (y, R) as the usk, where y := r + zc and c := H(id, R).

Signing:

- 1. Select $a \stackrel{\cup}{\leftarrow} \mathbb{Z}_p$ and set $A := g^a$.
- 2. Return $\sigma := (b, R, A)$ as the signature, where b := a + yd and d := G(m, A, c).

Effects of (In)Dependence

- Enables better (but involved) analysis
 - Imparts a structure to underlying set of random tapes
 - Analysis using the Splitting Lemma (twice) in place of an Extended Splitting Lemma

Effects of (In)Dependence

- Enables better (but involved) analysis
 - Imparts a structure to underlying set of random tapes
 - Analysis using the Splitting Lemma (twice) in place of an Extended Splitting Lemma
- Effective degradation for GG-IBS: $O(q^3)$
 - Cost per forking (involving two ROs): O(q)

The Conceptual Wrapper

- Observations better formulated using a conceptual wrapper
 - Clubs two (consecutive) executions of the original wrapper
 - ullet Denoted by ${\mathcal Z}$

$$(I_k, J_k, \sigma_k), (I_{k+1}, J_{k+1}, \sigma_{k+1})) \leftarrow \mathcal{Z}\left(x, S^k, S^{k+1}; \rho\right)$$

The Conceptual Wrapper

- Observations better formulated using a conceptual wrapper
 - Clubs two (consecutive) executions of the original wrapper
 - ullet Denoted by ${\mathcal Z}$

$$(I_k, J_k, \sigma_k), (I_{k+1}, J_{k+1}, \sigma_{k+1})) \leftarrow \mathcal{Z}\left(x, S^k, S^{k+1}; \rho\right)$$

Abstracting (In)Dependence

- Index Dependence: It is possible to design protocols such that, for the k^{th} invocation of \mathcal{Z} , $(I_{k+1} = I_k) \implies (J_{k+1} = J_k)$.
- Index Independence: It is not necessary for the I indices across \mathcal{Z} to be the same
 - I_k need not be equal to $I_{k-2}, I_{k-4}, \ldots, I_0$ for $k = 2, 4, \ldots, n-1$

Abstracting (In)Dependence

0000000

- Index Dependence: It is possible to design protocols such that, for the k^{th} invocation of \mathcal{Z} , $(I_{k+1} = I_k) \implies (J_{k+1} = J_k)$.
- Index Independence: It is not necessary for the I indices across \mathcal{Z} to be the same
 - I_k need not be equal to $I_{k-2}, I_{k-4}, \ldots, I_0$ for $k = 2, 4, \ldots, n-1$
- We formulated a unified model for multiple forking |CK13a|
 - Four different cases depending on applicability of O₁ & O₂

0000000

Contents

Overview

Background

Formal Definitions

Schnorr Signature and Oracle Replay Attack

General Forking

Galindo-Garcia IBS

Galindo-Garcia IBS

Multiple-Forking Lemma

Security Argument

GG-IBS, Improved

Intuition

(In)Dependence for Random Oracle

Transformation

Conclusion

Construction of IBS from sID-IBS

- sID Model: a weaker model
 - Adversary has to, beforehand, commit to the target identity
- Goal: construct ID-secure IBS from sID-secure IBS
 - 1. without random oracles
 - 2. with sub-exponential degradation
- Tools used:
 - 1. Chameleon Hash Function (CHF)
 - 2. GCMA-secure PKS

Construction of IBS from sID-IBS

- sID Model: a weaker model
 - Adversary has to, beforehand, commit to the target identity
- Goal: construct ID-secure IBS from sID-secure IBS
 - without random oracles
 - 2. with sub-exponential degradation
- Tools used:
 - 1. Chameleon Hash Function (CHF)
 - 2 GCMA-secure PKS
- Main result: EU-ID-CMA-IBS ≡ (EU-sID-CMA-IBS)+(EU-GCMA-PKS)+(CR-CHF)
- Further: EU-ID-CMA-IBS ≡ (EU-wID-CMA-IBS)+(EU-GCMA-PKS)+(CR-CHF)

00000 0000000 00 000000

Contents

Overview

Background

Formal Definitions

Schnorr Signature and Oracle Replay Attack

General Forking

Galindo-Garcia IBS

Galindo-Garcia IBS

Multiple-Forking Lemma

Security Argument

GG-IBS, Improved

Intuition

(In)Dependence for Random Oracle

Transformation

Conclusion

Conclusions:

- Identified flaws in security argument of GG-IBS
- Came up with a tighter security bound for GG-IBS
- Constructed IBS from weaker IBS

Future directions:

- Is the bound optimal?
- Other applications for RO dependence?
 - Γ-protocols [YZ13]
 - Extended Forking Lemma [YADV+12]
- Other techniques to induce RO dependence

ndo-Garcia II 000 00000 GG-IBS, Improved

 ${\sf Transformation}$

Conclusion

THANK YOU!