Multicollinearity

The formulas are primarily derived from *Linear Regression Analysis*, *Fifth Edition* by Montgomery et al. and/or the materials from the STAT 6021 course taught by Dr. Woo at the University of Virginia. Except where specially cited, it is believed that the materials are well-known equations and concepts in the public domain. If you believe otherwise, please reach out to me through my Github account so that I can correct the material.

Multicollinearity

It should be noted that collinearity and multicollinearity are not exact synonyms. James et al. offer good definitions of collinearity and multicollinearity in An Introduction to Statistical Learning (link):

"Collinearity refers to the situation in which two or more predictor variables are closely related to one another... A simple way to detect collinearity is to look at the correlation matrix of the predictors. An element of this matrix that is large in absolute value indicates a pair of highly correlated variables, and therefore a collinearity problem in the data. Unfortunately, not all collinearity problems can be detected by inspection of the correlation matrix: it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. We call this situation multicollinearity." (pg. 99-101)

The authors of that text suggest using the variance inflation factor as a measure: "Instead of inspecting the correlation matrix, a better way to assess multicollinearity is to compute the variance inflation factor" (ibid.). The notes below are derived from Montgomery et al. regarding this subject.

Variance inflation factor

We define the variance inflation factor as

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the coefficient of multiple determination (i.e., the non-adjusted R^2) when fitting x_j as the response of the other predictors:

$$x_j = \zeta_0 + \zeta_1 x_1 + \dots + \zeta_{j-1} x_{j-1} + \zeta_{j+1} x_{j+1} + \dots + \zeta_n x_n.$$

Interpretation

Here are some rules for interpreting VIFs:

- The book notes that values higher than five may imply a problem: "practical experience indicates that if any of the VIF exceed 5 or 10, it is an indication that the associated regression coefficient are poorly etimated becaue of multicollinearity" (p. 296).
- VIFs also affect the length of the confidence intervals for coefficients. According to the book, the j confidence interval will be longer by a factor of $\sqrt{\text{VIF}_j}$.

Example calculation

For example:

```
library(faraway)
# produce some hypothetical data
t = seq(1,10, by=0.1)
                              # just some linear values
x1 = sin(t)
                               # x1
x2 = t + x1
                               # x2
e = rnorm(length(t), sd = 10) # error term for y
                        # hypothetical model
y = x1 + 10*x2 + e
\#data.frame(y, x1, x2)
                               # (uncomment to) print the outcome
# ask R to fit the model
                          # fit the model
model = lm(y \sim x1 + x2)
# summary(model)
                                 # (uncomment to) print the summary
# calculate the VIFs with faraway
faraway_vifs = vif(cbind(x1,x2))
# now calculate them directly using 1 / (1 - R^2)
x1_r2 = summary(lm(x1 \sim x2))$r.squared
x2_r2 = summary(lm(x2 \sim x1)); r.squared
our_vifs = 1 / (1 - c(x1_r2, x2_r2))
results = as.matrix(rbind(faraway_vifs, our_vifs))
results
##
                              x2
                     x1
## faraway_vifs 1.058237 1.058237
## our_vifs
              1.058237 1.058237
```

Matrix calculation

The values of VIF_j is also the value of C_{jj} when fitting the linear model. This leads to an alternative formula:

$$VIF_j = ((\mathbf{W}'\mathbf{W})^{-1})_{jj}$$

where W arises from the scaled version of X obtained when using unit length scaling.

We show this with R:

1.058237 1.058237

```
s1 = sum((x1 - mean(x1))^2)
s2 = sum((x2 - mean(x2))^2)
w1 = (x1 - mean(x1)) / sqrt(s1)
w2 = (x2 - mean(x2)) / sqrt(s2)
w = as.matrix(data.frame(w1, w2))
result = diag(solve(t(w) %*% w))
c("vif" = result)
## vif.w1 vif.w2
```