CHAPITRE II

PREMIER PRINCIPE DE LA THERMODYNAMIQUE

Fonctions U, H et application aux réactions chimiques

Enoncé du 1^{er} principe de la thermodynamique

Lors d'une transformation qui amène un système d'un état d'équilibre initial à un état d'équilibre final, il y a un échange d'énergie avec le milieu extérieur.

Le premier principe

Quel que soit le chemin utilisé pour effectuer une transformation, <u>l'énergie</u> totale échangée (W+Q) est constante.

Enoncé du 1^{er} principe de la thermodynamique

Premier Principe de la Thermodynamique

La variation de l'énergie totale AU du système, est appelée énergie interne

△U = travail + chaleur = cte

$$\Delta U = U_f - U_i = W + Q = cte$$

- △U = variation de l'énergie interne
- W = énergie mécanique
- Q = énergie calorifique

Cas particulier : État initial = État final

 $\Delta U = U_f - U_i = 0 \Rightarrow W + Q = 0 \Rightarrow W = -Q$ La variation ΔU d'un système lors d'un <u>cycle</u> est nulle

Application aux Chaleurs de réaction

■ La quantité de chaleur mise en jeu au cours d'une réaction est liée à la variation de deux <u>fonctions d'état</u>:

l'énergie interne U et l'enthalpie H

Loi de Hess :

Les variations de ces grandeurs au cours d'une réaction ne dépendent que de l'état initial et de l'état final.

A volume constant

On a $\Delta U = W + Q$ donc $dU = \delta W + \delta Q$

Or
$$\delta W = -P_{ext} dV$$
 et $V = cte \Rightarrow dV = 0$

donc $\delta W = 0$ d'où $dU = \delta Q_v$

$$\Rightarrow \Delta U = Q_v$$

ΔU mesure la chaleur de la réaction à V = cte

<u>Remarque</u>: à v=cte, pour un gaz G.P qui subit une transformation à $T = cte : \Delta U = Q_v = mC_v \Delta T = 0$

A pression constante

$$\begin{array}{l} \Delta U = U_f - U_i = W + Q_p \\ &= -P_{ext} \left(V_f - V_i \right) + Q_p \\ \Rightarrow Q_p = U_f - U_i + P_{ext} \left(V_f - V_i \right) \\ &= \left(U_f + P_{ext} V_f \right) - \left(U_i + P_{ext} V_i \right) \\ \text{Si on pose} \quad U + PV = H \\ &\text{alors} \quad Q_p = H_f - H_i = \Delta H \\ \text{H est une fonction d'état appelée enthalpie}. \end{array}$$

 $\Delta H = Q_0 = H_2 - H_1$ (variation d'enthalpie)

C 1/11

A pression constante

$$\Delta H_T = Q_p$$

Q_p mesure la variation d'enthalpie du système au cours d'une transformation effectuée à pression constante.

Remarque : à P=cte, pour un G.P qui subit une transformation à T= cte

$$\Delta H = Q_p = nC_p \Delta T = 0$$

Relation entre Q_v et Q_p

Les chaleurs de réaction mesurées à V=cte (ΔU) et à P=cte (ΔH) au cours d'une même transformation ne sont pas indépendantes :

■ H = U + PV
$$\Rightarrow$$
 Δ H = Δ U + Δ (PV)

Or Δ H = Q_p et Δ U = Q_v
 \Rightarrow $Q_p = Q_v + \Delta$ (PV)

Relation entre Q_v et Q_p

Cas des G.P: PV=nRT

$$Q_p = Q_v + \Delta(PV) = Q_v + \Delta(nRT)$$

Si la transformation se fait à la température T constante :

$$\Rightarrow$$
 $Q_p = Q_v + RT.\Delta n$

■ An: variation du nombre de moles de gaz au cours de

la réaction :
$$Q_p = Q_v + RT. \Delta n_{gaz}$$

$$\Delta n_{gaz} = \sum n_{produits} - \sum n_{réactifs}$$
 à l'état gazeux.

Exemple:

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$$

$$\Delta n_{gaz} = 0-1-\frac{1}{2}=-3/2$$

Relation entre Q_v et Q_p

■ Exercice :

```
à 25°C H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(1)
```

$$\Delta H = -285,58 \text{ KJ.mol}^{-1}$$
.

Calculer ΔU et en déduire Q_p et Q_v .

Solution:

$$\Delta H = \Delta U + RT.\Delta n_{gaz} \Rightarrow \Delta U = \Delta H - RT.\Delta n_{gaz}$$

$$1.H_2(g) + \frac{1}{2}.O_2(g) \rightarrow H_2O(l)$$
 $\Delta n_{gaz} = 0 - 1 - \frac{1}{2} = -3/2$

$$\Delta U = -285,58 - (-3/2).8,32.10^{-3}.298 = -281,86 \text{ KJ.mol}^{-1}$$

$$\rightarrow Q_0 = \Delta H = -285,58 \text{ KJ.mol}^{-1}$$

→
$$Q_V = \Delta U = -281,86 \text{ KJ.mol}^{-1}$$

Premier Principe de la Thermodynamique

$$\Delta U = W + Q = cte$$

à volume constant

à pression constante

ΔU = Q_vVariation
D'énergie
interne

ΔH = Q_p **Variation d'enthalpie**

Relation entre Q_v et Q_p

Si T = constante

 $Q_p = Q_v + RT_{\cdot}\Delta n_{gaz}$

Exercice d'application

Pour la réaction de combustion du benzène

2 C₆H₆ (?)+15 O₂(g) → 12 CO₂(g)+6 H₂O (?)

on trouve les valeurs suivantes à 25°C:

ΔU =-6525,57 KJ/mol et ΔH =-6533,00 KJ/mol

Sous quelle forme (gazeuse ou liquide) se trouvaient le benzène et l'eau ?

Justifier votre réponse.

Solution: $\Delta H = \Delta U + RT. \Delta n_{gaz}$ $\Delta n_{gaz} = (\Delta H - \Delta U)/RT = -3$ donc C_6H_6 et H_2O sont liquides

Application du 1^{er} principe aux réactions chimiques à pression constante

Différentes catégories d'enthalpie

- ■Enthalpie de réaction ΔH_r
- ■Enthalpie de formation ΔH_f
- Enthalpie de changement d'état L
- ■Enthalpie de formation de liaison E_L

Enthalpie de réaction <u>AH</u>

C'est la chaleur de réaction échangée par le système à <u>pression constante</u> :

$$\Delta H_r = Q_p$$

Unité: KJ ou Kcal

Exemple
$$H_2SO_4 + Fe \longrightarrow FeSO_4 + H_2$$

C'est l'enthalpie de réaction de synthèse à partir des éléments constituants dans leur état naturel le plus stable.

$$nC_{solide} + x/2 H_{2(g)} + y/2 O_{2(g)} + z/2 N_{2(g)} \xrightarrow{\Delta H_f} C_n H_x O_y N_z$$

Unité : KJ.mol⁻¹ ou Kcal.mol⁻¹

Exemple: $C_s + O_2(g)$ $\Delta H_f(CO_2)g$ $CO_2(g)$

Remarque

Pour <u>les réactions de formations</u>

$$\Delta H_r = \Delta H_f$$

Exemple:

$$S(s) + 3/2 O_2(g) \rightarrow SO_{3(g)}$$

$$\Delta H_r = \Delta H_f(SO_3) = -395 \text{ KJ.mol}^{-1}$$

Enthalpie <u>standard</u> de formation ΔH°_{f}

■ Dans les conditions standards :

P = 1 atm et T = 298K

<u>les réactifs</u> et <u>les produits</u> sont dans leur <u>état le plus stable</u>.

■ Unité: KJ.mol⁻¹ ou Kcal.mol⁻¹

Enthalpie standard de formation

Rq: L'enthalpie standard de formation ΔH°_{f} des éléments simples dans l'état le plus stable (X ou X_{2}) est *nulle*.

Exemple: O_{2(g)}, H_{2(g)}, N_{2(g)}, C_(graphite), S_(solide), ...

 $\Delta H^{\circ}_{f}(O_{2(g)}) = \Delta H^{\circ}_{f}(H_{2(g)}) = \Delta H^{\circ}_{f}(C_{(graphite)}) = \dots = 0$

ExemplesEnthalpie standard de formation

$$\Delta H^{\circ}_{f}(CH_{4})$$
 $CH_{4(g)}$

1atm, 298K

 $\Delta H^{\circ}_{f}(EtOH) C_{2}H_{5}OH_{(\ell)}$

1atm, 298K

$$2 C_{(s)} + 2 H_{2(g)} + O_{2(g)} \xrightarrow{\Delta H^{\circ}_{f}(CH_{3}CO_{2}H)} CH_{3}COOH_{(\ell)} \xrightarrow{1atm, 298K}$$

Exemples Enthalpie standard de formation

Loi de Hess

■ Permet le calcul de △H_r à partir des △H_f des différents constituants :

$\Delta H_r = \sum v_i \Delta H_f (Produits) - \sum v_j \Delta H_f (réactifs)$

v_i et v_j sont les coefficients stœchiométriques des produits et des réactifs.

■ Exemple: $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(\ell)}$ $\Delta H_r = 2\Delta H_f(H_2O_{(\ell)}) + \Delta H_f(CO_{2(g)}) - \Delta H_f(CH_{4(g)}) + 2\Delta H_f(O_{2(g)})$

REMARQUE: Dans les conditions standards

Loi de HESS

 $\Delta H_{r}^{\circ} = \sum v_{i} \Delta H_{f}^{\circ} (Produits) - \sum v_{j} \Delta H_{f}^{\circ} (réactifs)$

Détermination des chaleurs de réaction

voie indirecte

Construction d'un cycle thermochimique

A partir des enthalpies de formations (Hess)

A partir des énergies de liaison E_L

voie directe

Calorimétrie

Détermination des chaleurs de réaction

■ A) voie indirecte

Si la chaleur d'une réaction ne peut être mesurée directement, on utilise une suite de réactions intermédiaires, dont les chaleurs sont mesurables.

Voie indirecte Cycle thermochimique

On construit un cycle thermochimique :

EXEMPLE

Déterminer ΔH_r de la combustion (ΔH_{com}) de l'éthanol $C_2H_5OH(\ell)$.

Données: $\Delta H_f (C_2H_5OH(\ell))$

 $\Delta H_f(CO_2)_g$

 $\Delta H_f(H_2O)_\ell$

REPONSE

$$\Delta H_r = \Delta H_{com} = ?$$
 $2CO_2 (g) + 3H_2O (\ell)$
 ΔHr_1
 ΔHr_2
 ΔHr_2
 $2C(s) + 3H_2 (g) + 1/2 O_2 (g) + 3 O_2 (g)$

$$\Delta H_r = \Delta H r_1 + \Delta H r_2$$

$$\Delta H r_1 = - \left[\Delta H_f \left(C_2 H_5 O H(\ell) \right) + 3 \Delta H_f (O_2) \right] \quad \text{avec } \Delta H_f \left(O_2 \right) = 0$$

$$\Delta H r_2 = 2 \Delta H_f \left(CO_2 \right)_g + 3 \Delta H_f \left(H_2 O \right)_\ell$$

Voie indirecte : A partir des énergies de liaison

L'énergie de liaison E_L correspond à l'énergie dégagée par le système, lors de la formation d'une liaison covalente entre deux atomes, pris à l'état gazeux.

$$A(g) + B(g) \xrightarrow{E_L} AB(g) : A -B$$

Remarque : $E_L < 0$ et $E_d = - E_L > 0$

Exemple

Déterminer l'enthalpie de formation de NH₃ à partir des énergies de liaison.

On donne :
$$\Delta H^{\circ}_{N \equiv N} = E_{L}(N \equiv N), \ \Delta H^{\circ}_{N-H} = E_{L}(N = H)$$

$$\Delta H^{\circ}_{H-H} = E_{L}(H = H)$$

$$N_{2}(g) + 3H_{2}(g) \xrightarrow{\Delta H_{r}} 2NH_{3}(g)$$

$$-E_{L(N \equiv N)} -3E_{L(H-H)}$$

$$2N(g) + 6H(g)$$

$$6E_{L(N-H)}$$

$$\Delta H_r = - E_L (N \equiv N) - 3 E_L (H-H) + 6 E_L (N-H)$$

Exemples

Exemple 1 : déterminer l'enthalpie de formation de NH₃ à partir des énergies de liaison.

On donne: $\Delta H^{\circ}_{N \equiv N} = E_{L}(N \equiv N), \ \Delta H^{\circ}_{N-H} = E_{L}(N = H)$ $\Delta H^{\circ}_{H-H} = E_{L}(H = H)$

Exemple 2: $CO(g) + \frac{1}{2}O_2(g) \leftrightarrows CO_2(g)$ Calculer l'enthalpie de réaction à partir des énergies de liaison.

Exemple 3:

 $CH_4(g) + 3CI_2(g) \leftrightarrows CHCI_3(I) + 3HCI(g)$ Calculer l'enthalpie de réaction à partir des énergies de liaison.

Exercice

On considère la réaction suivante :

$$COCl_2(g) + 2NH_3(g) \stackrel{\leftarrow}{\rightarrow} CO(NH_2)_2(s) + 2HCl(g)$$

 $\Delta H^{\circ}_r = -201 \text{ kJ}$

a) Calculer l'enthalpie standard de formation de CO(NH₂)₂(s)

	COCI ₂ (g)	NH ₃ (g)	HCI(g)	CO(NH ₂) ₂ (s)
$\Delta H^{\circ}_{f}(kJ.mole^{-1})$	-222	-46	-92	??

 $\Delta H^{\circ}_{f}(CO(NH_{2})_{2}) = -331 \text{ kJ.mole}^{-1}$

b) Calculer l'enthalpie standard de formation de CO(NH₂)₂(s) connaissant les énergies moyennes de formation des liaisons

$$E_L(C-N) = -293 \text{ KJ} ; E_L(C=O) = -720 \text{ KJ} ; E_L(N-H) = -389 \text{ KJ} ; E_L(O=O) = -402 \text{ KJ} ; E_L(H-H) = -435 \text{ KJ} ; E_L(N=N) = -946 \text{ KJ}$$

Et les enthalpies de <u>sublimation</u> du C(s) et de $CO(NH_2)_2(s)$ $\Delta H_{Sub}C(s) = 720 \text{ kJ.mole}^{-1} ; \Delta H_{Sub} CO(NH_2)_2(s) = 110 \text{ kJ.mole}^{-1}$

 $\Delta H^{\circ}_{f}(CO(NH_2)_2) = -235 \text{ kJ.mole}^{-1}$

Détermination des chaleurs de réaction

voie indirecte

Construction d'un cycle thermodynamique

A partir des enthalpies de formations (HESS)

A partir des énergies de liaison (E_L)

voie directe

Calorimétrie

Détermination des chaleurs de réaction

B) Voie directe: Calorimétrie

Voie directe : Calorimétrie

- Système isolé adiabatique (Q_{échangée}= 0)
- On mesure les variations de la température qui accompagnent cette transformation.

De ces variations on peut déduire les chaleurs de réaction :

$$Q_v = \mu C_v \Delta T$$
 ou $Q = C_{cal} \Delta T$
 $Q_p = \mu C_p \Delta T$.

µ : Valeur en eau du calorimètre

la masse d'eau qui a la même capacité thermique que le calorimètre et ses accessoires)

Voie directe: Calorimétrie

Exemple: Dans un calorimètre, on a 100 ml d'eau à la température t_i = 24°C, on fait brûler
 n moles de méthane CH4 dans un excès d'oxygène.

A la fin de la réaction, la température de l'eau est du calorimètre s'élève à $t_f = 28,5$ °C.

Déterminer $\Delta H_{combustion}$ en fonction de n.

 $C_{calorimètre} = 79 \text{ J/K et } C_{m(H2O)} = 4,18 \text{ J/K .g}$

REPONSE

La température a augmenté de t_i =24 °C à t_f =28,5 °C réaction exothermique

Soit Q_{cédée}: chaleur dégagée par la réaction.

Q_{abs}: chaleur absorbée par l'eau et le calorimètre.

Donc $Q_{c\acute{e}d\acute{e}e} + Q_{abs} = 0$ (car système isolé)

 $Q_{abs} = Q_1$ (absorbée par l'eau) + Q_2 (absorbée par le calorimètre)

$$Q_1 = 100x4,18 [(28,5+273) - (24,0+273)]$$
 $Q_{cédée} = -Q_{abs}$ $Q_2 = 79 [(28,5+273) - (24,0+273)]$ $Q_{cédée} = -(Q_1 + Q_2)$

Q_{cédée} : la chaleur de la combustion de n moles de CH₄.

Pour <u>une mole</u> de CH_4 $\Delta H^{\circ}_{combustion}$ est : $\Delta H^{\circ}_{com} = Q_{cédée} / n$

Variation des chaleurs de réaction avec la température

a) Elévation de température d'un corps pur, sans changement d'état

Si la température varie de T₁ à T₂ :

$$Qp = \Delta H = \int_{T_1}^{T_2} nC_p . dT \qquad QV = \Delta U = \int_{T_1}^{T_2} nC_v . dT$$

$$\mathbf{Q}\mathbf{v} = \Delta\mathbf{U} = \int_{T_1}^{T_2} nC_{v}.dT$$

C_p et C_v dépendent de T et de l'état physique du corps (liquide, gaz, solide).

Exemple: $C_p(H_2O)$ liquide = 4.18 J/g.K; $C_p(H_2O)$ glace = 2.1 J/g.K et $C_p(H_2O)$ gaz = 1.9 J/g.K

Q_p et Q_v avec changement d'état

$$\mathbf{Q_p} = \Delta \mathbf{H} = \int_{T_1}^{T_L} nC_{p1} dT + \Delta \mathbf{H}_L + \int_{T_L}^{T_2} nC_{p2} dT$$

$$\mathbf{Q_{v}} = \Delta \mathbf{U} = \int_{T_{1}}^{T_{L}} nC_{v1} dT + \Delta U_{L} + \int_{T_{L}}^{T_{2}} nC_{v2} dT$$

Les différents changements d'état

Un changement d'état ou de phase d'un corps pur A se fait à une température constante T_L appelée température de changement d'état : T_{vap} ; T_{liq} ; T_{fusion}

```
Liquifaction (T_{\ell})

A(g)

A(\ell)

A(\ell)
```

c) Détermination des chaleurs de réaction à des températures différentes : Loi de Kirchoff

Si on connaît la chaleur d'une réaction à T₁ et on désire la calculer à T₂ alors :

à volume cte:
$$\Delta U(T_2) = \Delta U(T_1) + \int_{T_1}^{T_2} \Delta C_v dT$$

à pression cte:
$$\Delta H(T_2) = \Delta H(T_1) + \int_{T_1}^{T_2} \Delta C_p dT$$

 $\Delta C_{\text{v ou p}} = \sum v_i C_{\text{v ou p}} (\text{produits}) - \sum v_j C_{\text{v ou p}} (\text{réactifs})$

Rq: Loi valable si pas de changement d'état dans [T₁,T₂]

- c) Détermination des chaleurs de réaction à des températures différentes : Loi de Kirchoff
- **exemple**: On connaît $\Delta H^{\circ}_{f}(CO)$ à 298K, calculer $\Delta H^{\circ}_{f}(CO)$ à 600 K et P = 1 atm
- 1) Méthode de cycle thermochimique :

$$T_1 = 298 \text{ K}$$
: $C(s) + \frac{1}{2} O_2(g) \xrightarrow{\Delta H_f^o(CO)_{298}} CO(g)$

$$T_2 = 600 \text{ K}$$
: $C(s) + \frac{1}{2} O_2(g) \xrightarrow{\Delta H_f^{\circ}(CO)_{600}} CO(g)$

$$\Delta H^{\circ}_{f}(CO)_{298} = \Delta H_{1} + \Delta H^{\circ}_{f}(CO)_{600} + \Delta H_{2}$$

$$\Delta H^{\circ}_{f}(CO)_{600} = \Delta H^{\circ}_{f}(CO)_{298} - \Delta H_{1} - \Delta H_{2}$$

2) Méthode de la loi de Kircoff:

$$C(s) + \frac{1}{2} O_2(g)$$
 $\xrightarrow{\Delta H_f^{\circ}(CO)_{600}}$ $CO(g)$ $\Delta H_f^{\circ}(CO)_{600} = \Delta H_f^{\circ}(CO)_{298} + \int_{T_1}^{T_2} \Delta C_p . dT$

$$\Delta C_p = 1.C_p (CO_{(g)}) - 1.C_p (C_{(s)}) - (1/2) C_p (O_{2(g)})$$

$$\int_{T_1}^{T_2} \Delta C_p . dT = \int_{T_1}^{T_2} C_{p(CO)} . dT - \int_{T_1}^{T_2} C_{p(C(s))} . dT - 1/2 \int_{T_1}^{T_2} C_{p(O2(g))} . dT$$

Remarque

Si les C_p ne sont pas des constantes alors

 ΔC_p sera de la forme f(T) suivante :

$$\Delta C_p = a+bT+cT^2+dT^3+...$$
 Ou $a+b/T+c/T^2+...$

Alors il faut calculer les intégrales suivantes :

$$\int \Delta C_p dT = a \int dT + b \int TdT + c \int T^2 dT +$$

Ou
$$a \int dT + b \int dT/T + c \int dT/T^2 +$$

Enoncer le premier principe de la thermodynamique

Définir Q_p, Q_v, ΔH et ΔU

ightharpoonup Relation entre Q_p et Q_v ou entre ΔH et ΔU pour une réaction chimique

Objectifs à atteindre

Définir enthalpie de formation et enthalpie de réaction

Sous quelle pression l'état standard estil défini ?

Quelle est l'enthalpie standard de formation des corps simples :O₂(gaz), C(graphite).....?

Décrire un calorimètre, Faire des calculs par Calorimétrie

Ecrire correctement le bilan thermique d'un calorimètre

> Qu'appelle-t-on équivalent en eau d'un calorimètre ?

- Calculer Δ_rH° de réaction
 - –A partir des ΔH°_f des produits et des réactifs (Loi de Hess)
 - A partir des énergies de liaison
 - Par combinaison d'une série de réactions convenables
 - En utilisant un cycle thermodynamique

Calcul de variation des chaleurs de réaction avec la température sans changement d'état (Loi de kirchoff) et avec changement d'état (Cycle thermodynamique)