

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2015

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 27 pages./ Hierdie memorandum bestaan uit 27 bladsye.

NOTE:

- If a candidate answers a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.
- Penalty of only 1 mark for incorrect rounding throughout the paper (Q1.2.1)

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- Indien 'n kandidaat 'n antwoord doodgetrek het en nie oorgedoen het nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes om 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

Fat/Vet (in g)	9	14	25	8	12	31	28	14	29	20
Energy/ <i>Energie</i> (in kJ)	1 100	1 300	2 100	300	1 200	2 400	2 200	1 400	2 600	1 600

4 NSC/*NSS* – Memorandum

1.2.1	$\hat{y} = 154,60 + 77,13(18)$	✓ subst
	$= 1542,94 \approx 1500 \text{ kJ}$	✓ answ rounded
	, , , , , , , , , , , , , , , , , , , ,	off correctly/
		antw korrek
		afgerond
		(2)
1.3	(8; 300)	✓ answ/antw
		(1)
1.4	$r = 0.9520 \approx 0.95$	✓✓ answ/antw
		(2)
1.5	very strong positive relationship/	✓ strong/ sterk
	baie sterk positiewe verband	(1)
		[11]

Sum of the values on uppermost faces/ Som van die waardes op boonste vlakke	Frequency/ Frekwensie
2	0
3	3
4	2
5	4
6	4
7	8
8	3
9	2
10	2
11	1
12	1

2.1	mean/gemiddelde = $\frac{2(0) + 3(3) + 4(2) + \dots + 12(1)}{30} = \frac{202}{30}$	✓202
	= 6,73	✓ answ/antw (2)
2.2	median/mediaan = $\frac{T_{15} + T_{16}}{2} = \frac{7+7}{2} = 7$	√√ answ/antw (2)
2.3	$SD/SA = 2,264 \approx 2,26$	$\checkmark \checkmark$ answ/antw (2)
2.4	$(6,73-2,26;6,73+2,26)$ = (4,47;8,99) $\therefore 4+4+8+3=19 \text{ times/keer}$	✓ lower boundary ✓ upper boundary ✓ answ/antw (3)

3.1	$m_{\rm PO} = \tan 45^{\circ}$		$\sqrt{m} = \tan 45^{\circ}$
	= 1		✓ answ/antw
	1		(2)
3.2	MN QP	[midpt theorem/midpt-stelling]	✓ S OR R
	$\therefore m_{\text{MN}} = 1$		$\checkmark m_{\text{MN}}$
	$\therefore y - y_1 = m(x - x_1)$		✓ subst <i>m</i> and/ <i>en</i>
	$\therefore y-1=1(x-7)$		N(7; 1)
	$\therefore y = x - 6$		✓ equation/vgl
			(4)
	OR/OF		
	MN PQ	[midpt theorem/midpt-stelling]	✓ S OR R
	$\therefore m_{\rm MN} = 1$	[mapt theorem/mapt stetting]	$\checkmark m_{ m MN}$
	·		
	$\therefore y = mx + c$ $\therefore 1 = 1(7) + c$		✓ subst <i>m</i> and/ <i>en</i>
	$\therefore 1 = 1(7) + c$ $-6 = c$		N(7; 1)
	$\therefore y = x - 6$		✓ equation/vgl
			(4)
3.3	$MN = \frac{1}{2}PO$	[midpoint theorem/midp stelling]	✓ S
	$MN = \frac{1}{2}PQ$		
	$\therefore MN = \frac{7\sqrt{2}}{2} \approx 4.9.$	-	
	\therefore MN = $\frac{1}{2}$ ≈ 4.99	5	✓ answ/antw
			(2)

2.5	ON - NS [diag of m/hoold you m]	
3.5	QN = NS [diag of m/hoekl van m] $\frac{-2 + x_S}{2} = 7 \text{and/en} \frac{-3 + y_S}{2} = 1$ $\therefore x_S = 16 \therefore y_S = 5$ OR/OF	✓ method/metode ✓ x-value/waarde ✓ y-value/waarde (3)
	QN = NS [diag of m/hoekl van m] ∴ by inspection/deur inspeksie: S(16; 5)	✓ method/metode ✓ x-value/waarde ✓ y-value/waarde (3)
3.6	Equation of/ $Vgl \ van \ PQ$: $y = x + c$ -3 = -2 + c y = x - 1 .: $a = b + 1$ (1) From distance formula/ $Van \ afstands formule$: $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ eq of/vgl van PQ
	$7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ $\therefore 98 = (a + 2)^2 + (b + 3)^2 \qquad \dots (2)$ Subst (1) into (2): $98 = (b + 1 + 2)^2 + (b + 3)^2$	✓ subst Q & $7\sqrt{2}$ into/in distance formula/ afstandsformule
	$98 = b^{2} + 6b + 9 + b^{2} + 6b + 9$ $0 = 2b^{2} + 12b - 80$ $0 = b^{2} + 6b - 40$ $10 = (b + 10)(b - 4)$	✓ subst eq of/vgl v. PQ ✓ st form/st vorm
	∴ $0 = (b + 10)(b - 4)$ ∴ $b = 4$ (since $b > 0$) Subst $b = 4$ into (1): ∴ $a = 4 + 1 = 5$ ∴ P(5; 4)	✓ value of/waarde van b ✓ value of/waarde van a
	OR/OF	(6)
	Equation of $Vgl\ van\ PQ$: $y = x + c$ -3 = -2 + c y = x - 1 .: $a = b + 1$ (1)	✓ eq of/vgl van PQ
	From distance formula/Van afstandsformule: $7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$ $\therefore 98 = (a + 2)^2 + (b + 3)^2 \qquad \dots (2)$ Subst (1) into (2): $98 = (b + 1 + 2)^2 + (b + 3)^2$	✓ subst Q & 7√2 into/in distance formula/ afstandsformule ✓ subst eq of/vgl v. PQ
	$98 = 2(b+3)^{2}$ $49 = (b+3)^{2}$	✓ simplification/ vereenvoudig
	$\pm 7 = b + 3$ $\pm 7 - 3 = b$ ∴ $b = 4$ (since $b > 0$) Subst $b = 4$ into (1): ∴ $a = 4 + 1 = 5$ ∴ P(5; 4)	✓ value of/waarde van b ✓ value of/waarde van a (6)

OR/OF

Equation of $Vgl\ van\ PQ$: y = x + c

$$-3 = -2 + c$$

$$y = x - 1$$
 .: $a = b + 1$ (1)

From distance formula/Van afstandsformule:

$$7\sqrt{2} = \sqrt{(a - (-2))^2 + (b - (-3))^2}$$

$$98 = (a+2)^2 + (a-1+3)^2$$

$$=2(a+2)^2$$

 $\therefore a + 2 = 7 \quad (\text{since}/\text{aangesien } a > 0)$

 $\therefore a = 5$

Subst a = 4 into (1):

$$\therefore b = 5 - 1 = 4$$

 $\therefore P(5;4)$

- ✓ eq of/vgl van PQ
- ✓ subst Q & $7\sqrt{2}$ into/in distance formula/ afstandsformule
- ✓ subst eq of/vgl v. PQ
- ✓ simplification/ vereenvoudig
- ✓ value of/waarde van a
- ✓ value of/waarde van b

(6)

OR/OF

$$a = -2 + 7\sqrt{2}\cos 45^{\circ} = 5$$
$$b = -3 + 7\sqrt{2}\sin 45^{\circ} = 4$$

 \checkmark

√

(6) [17]

4.1	$(x-5)^{2} + (y-2)^{2} = r^{2}$ $(0-5)^{2} + (6-2)^{2} = r^{2}$ $25 + 16 = r^{2}$ $41 = r^{2}$ $(x-5)^{2} + (y-2)^{2} = 41$	✓ subst (5; 2) into circle eq/in sirkelvgl ✓ value of/waarde van r² ✓ equation/vgl (3)
	OR/OF PQ = $\sqrt{(0-5)^2 + (6-2)^2}$ = $\sqrt{25+16}$	✓ subst (5; 2) & (0; 6) into dist. form/in afst. form
	$r = \sqrt{41}$ $\therefore (x-5)^2 + (y-2)^2 = 41$	✓ value of/waarde van r ✓ equation/vgl (3)
4.2	$(0-5)^{2} + (y-2)^{2} = 41$ $25 + (y-2)^{2} = 41$ $25 + y^{2} - 4y + 4 = 41$	$\checkmark x = 0$
	$y^{2} - 4y - 12 = 0$ $(y - 6)(y + 2) = 0$ $y \neq 6 or / of y = -2$ ∴ S(0; -2) or $y = -2$	✓ st form/st. vorm ✓ answ/antw (neg value) (3)

	NSC/NSS – Memorandum	
	OR/OF	
	$(0-5)^2 + (y-2)^2 = 41$	
	$25 + (y - 2)^2 = 41$	$\checkmark x = 0$
	$(y-2)^2=16$	✓ square form/
	$y-2=\pm 4$	kwadraatvorm
	$y = 2 \pm 4$	
	$y \neq 6 \text{or} / of y = -2$ \(\therefore\) S(0; -2)	✓ answ/ <i>antw</i>
		(neg value)
	OR/OF	(3)
	D(0 · 6)	
	PT = TS [line from centre to chord/	
	$[lyn \ van \ midpt \ \bot \ koord] \qquad \qquad 4 \ \bot$	
	$PT = y_P - y_Q = 6 - 2 = 4$ T $Q(5; 2)$	
	$y_{Q} - y_{S} = 4 \qquad 4 + $	
	$y_{\rm S} = 2 - 4 = -2$ $\therefore S(0; -2)$	
	5(0, -2)	
		$ \begin{array}{l} \checkmark x = 0 \\ \checkmark \checkmark y = -2 \end{array} $
		(3)
4.3	$m_{\rm PQ} = \frac{6-2}{0-5}$	✓ subst (0; 6) & (5; 2) into grad
	4	form/in grad.
	$=-\frac{1}{5}$	formule ✓ m _{PQ}
	$m_{\rm PQ} \times m_{\rm APB} = -1$ [tan/raakl \(\perp\) radius]	····pQ
	$\therefore m_{APB} = \frac{5}{4}$	✓ m _{APB}
	$\therefore y = \frac{5}{4}x + 6$	✓ equation/vgl
4.4		(4)
4.4	$\tan \alpha = \frac{5}{4}$	$\checkmark \tan \alpha = m_{APB}$
	$\therefore \alpha = 51,34^{\circ}$	✓ answ/antw
	OR/OF	(2)
	B(4,8;0) 6	
	$\therefore \tan \alpha = \frac{6}{4.8}$	$\checkmark \tan \alpha = \frac{6}{4.8}$
	$\therefore \alpha = 51,34^{\circ}$	✓ answ/antw
		(2)

4.5		✓ S ✓ R
4.3	$\theta = \hat{BPS}$ [tan-chord th/raakl-koordst.]	∨ S ∨ R √ 90° − α
	$= 90^{\circ} - \alpha \qquad [\angle \text{ sum in } \Delta / \angle \text{ som van } \Delta]$	v 90 - α
	$=90^{\circ}-51,34^{\circ}$	✓ answ/antw
	= 38,66°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	OR/OF	(4)
	OR/OF	
	PS = 8	
	$PQ = SQ = \sqrt{41}$	
	$PS^2 = PQ^2 + SQ^2 - 2.PQ.SQ.\cos PQS$	✓ correct subst into
	$64 = 41 + 41 - 2.41.\cos PQS$	cosine rule
	$\cos P\hat{Q}S = \frac{18}{82}$	
	-	\checkmark PQS = 77,32°
	$P\hat{Q}S = 77,32^{\circ}$	✓ R
	$\theta = \frac{1}{2} \hat{PQS}$ [\(\text{ at centre} = 2 \times \times \text{ circumf} \)]	✓ answ/antw
	2	(4)
	= 38,66°	
	1	
4.6	Area $\triangle PQS = \frac{1}{2}PS \times height/hoogte$	✓ area formula/e:
	1	ΔPQS
	$=\frac{1}{2}(8)(5)$	
	= 20 sq units/ vk eenh	$\sqrt{\frac{1}{\sqrt{\frac{1}{2}}}} = \frac{1}{\sqrt{\frac{1}{2}}} = \frac{1}{\sqrt{\frac{1}{2}}}$
	20 Sq units/ vice cent	$\sqrt{answ/antw}$ (4)
	OR/OF	(4)
	$\hat{PQS} = 2 \times 38,66^{\circ}$ [\(\alpha \text{at centre} = 2 \times \alpha \text{ at circum/}	
	$midpts \angle = 2omtreks \angle$	✓ size of/grootte v
	= 77,32°	PQS
	1	✓ area rule/reël:
	Area $\triangle PQS = \frac{1}{2} PQ.QS.\sin PQS$	ΔPQS
	$=\frac{1}{41}\sqrt{41}\sin 77.220$	✓ subst correctly/
	$= \frac{1}{2}.\sqrt{41}.\sqrt{41}.\sin 77,32^{\circ}$	subst korrek
		✓ answ/antw
	= 20 sq units/vk eenh	(4)
		[20]

<i>E</i> 1 1	ain 2020	(madavati /
5.1.1	$ \begin{vmatrix} \sin 203^{\circ} \\ = -\sin 23^{\circ} \end{vmatrix} $	✓ reduction/ reduksie
		<i>reauksie</i> ✓ answ ito/ <i>antw</i>
	$=-\sqrt{k}$	itv k
		(2)
5.1.2	$\cos^2 23^\circ = 1 - \sin^2 23^\circ$	✓ identity/identiteit
3.1.2		$\sqrt{\cos^2 23^\circ ito/itv k}$
	=1-k	003 23 Hortiv K
	$\cos 23^{\circ} = \sqrt{1-k}$	✓ answ/antw
		(3)
	OR/OF	
	$x^2 + (\sqrt{k})^2 = 1$	
	$x^2 = 1 - k$	$\checkmark x^2 = 1 - k$
	$x = \sqrt{1 - k} \qquad (x ; \sqrt{k})$	
	$x = \sqrt{1-R}$	$\checkmark x$ ito/itv k
	$\cos 23^\circ = \frac{\sqrt{1-k}}{1} = \sqrt{1-k}$	
	1 1 23	✓ answ/antw
	'	(3)
5.1.3	$\tan (-23^\circ) = -\tan 23^\circ$	✓ reduction/
	$= -\frac{\sin 23^{\circ}}{\cos 23^{\circ}}$	reduksie
	cos 23°	✓ answ ito/antw
	$= -\frac{\sqrt{k}}{\sqrt{1-k}} = -\sqrt{\frac{k}{1-k}}$	itv k
	$\frac{1}{\sqrt{1-k}} = -\sqrt{\frac{1-k}{1-k}}$	(2)
	,	
	OR/OF	
	$\tan (-23^\circ) = -\tan 23^\circ$	✓ reduction/
	$= -\frac{\sqrt{k}}{\sqrt{1-k}} = -\sqrt{\frac{k}{1-k}}$	reduksie
	$=-\frac{1}{\sqrt{1-k}}=-\sqrt{\frac{1-k}{1-k}}$	✓ answ ito/antw
	V	itv k
		(2)
5.2	$4\cos x \cdot (-\sin x)$	$\sqrt{\cos x} \sqrt{-\sin x}$
	$\sin(30^{\circ}-x+x)$	$\checkmark \sin(\alpha + \beta)$
	$-4\sin x.\cos x$	
	$=\frac{1000 \times 2000 \times 300}{\sin 30^{\circ}}$	
		1
	$=\frac{-4\sin x.\cos x}{\frac{1}{x}}$	$\sqrt{\frac{1}{2}}$
	$\frac{1}{2}$	2
	_	✓ double sine form
	$= -8\sin x \cdot \cos x$	/ dubbel sin form
	$=-4(2\sin x.\cos x)$	
	$=-4\sin 2x$	✓ answ/antw
		(6)

NSC/NSS – Memorandum	1
OR/OF $4\cos x.(-\sin x)$	$\checkmark \cos x \checkmark - \sin x$
$\frac{1}{(\sin 30^{\circ}\cos x - \cos 30^{\circ}\sin x)\cos x + (\cos 30^{\circ}\cos x + \sin 30^{\circ}\sin x)\sin x}$	
$-4\sin x.\cos x$	
$= \frac{1}{(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x)\cos x + (\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x)\sin x}$ $= \frac{-2(2\sin x \cdot \cos x)}{\frac{1}{2}\cos^2 x + \frac{1}{2}\sin^2 x}$ $= \frac{-2(2\sin x \cdot \cos x)}{-2(2\sin x \cdot \cos x)}$	$\int_{0}^{\infty} \frac{1}{2}\cos^2 x + \frac{1}{2}\sin^2 x$
$= \frac{-2(2\sin x.\cos x)}{\frac{1}{2}(\cos^2 x + \sin^2 x)}$	
$=\frac{-2(2\sin x.\cos x)}{\frac{1}{2}(1)}$	$\sqrt{\frac{1}{2}}$
$= -8\cos x \sin x$	✓ double sine
$= -4(2\sin x \cos x)$	/ dubbel sin
$= -4\sin 2x$	✓ answ/antw
+ 5III 2x	

<i>F</i> 2	2-2-2-3-3-3-6	
5.3	$\cos 2x - 7\cos x - 3 = 0$ $2\cos^{2} x - 1 - 7\cos x - 3 = 0$ $2\cos^{2} x - 7\cos x - 4 = 0$ $(2\cos x + 1)(\cos x - 4) = 0$	✓ expansion/ uitbreiding ✓ $2\cos^2 x - 7\cos x - 4 = 0$ ✓ factors/faktore
	$\therefore \cos x = -\frac{1}{2} \text{or/of } \cos x = 4 \text{ (no solution)}$ $\therefore x = 120^{\circ} + n.360^{\circ} \text{or/of } x = 240^{\circ} + n.360^{\circ} ; n \in \mathbb{Z}$ OR/OF	
	$\therefore x = \pm 120^{\circ} + n.360^{\circ} \; ; n \in \mathbb{Z}$	OR/OF ✓ ±120° ✓ + n.360° (6)
5.4	$\sin 3\theta = \sin(2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos \theta \cos \theta + (1 - 2\sin^2 \theta)\sin \theta$ $= 2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$ $= 3\sin \theta - 4\sin^3 \theta$ $= 3(\frac{1}{3}) - 4(\frac{1}{3})^3$	✓ expansion of/ uitbreiding van $\sin(2\theta + \theta)$ ✓ expansions of $\sin 2\theta$ AND $\cos 2\theta$ ✓ $1-\sin^2\theta$ ✓ subst
	$=1-\frac{4}{27}$ $=\frac{23}{27}$	✓ answ/ <i>antw</i> (5) [24]

6.1	$f(x) = \cos x - \frac{1}{2} \qquad \text{and/en} \qquad g(x) = \sin(x + 30^\circ)$	$\checkmark f(x) = \cos x - \frac{1}{2}$
	$\therefore p = 30^{\circ} \text{ and/} en \ q = -\frac{1}{2}$	\checkmark $g(x) = \sin(x + 30^\circ)$ \checkmark value of/waarde $v p$ \checkmark value of/waarde $v q$
	OR/OF	(4)
	$\sin (60^{\circ} + p) = 1$ and/ $en \cos 0^{\circ} + q = \frac{1}{2}$	$\checkmark \sin (60^\circ + p) = 1$
	$\therefore p = 30^{\circ} \qquad \qquad \therefore q = -\frac{1}{2}$	$\checkmark \cos 0^{\circ} + q = \frac{1}{2}$
	2	✓ value of/waarde v p
		\checkmark value of/waarde v q (4)
6.2	$x \in (-120^{\circ}; 0^{\circ}) \text{ OR/}OF -120^{\circ} < x < 0^{\circ}$	✓ critical values/
		kritiese waardes ✓ correct interval/
		korrekte interval
		(2)

6.3	The graph of g has to shift 60° to the left and then be reflected	✓ 60° left/links
	about the x-axis./Die grafiek van g moet 60° na links skuif en	✓ reflection about
	dan om die x-as gereflekteer word.	x-axis/refleksie om
		x-as
		(2)
	OR/OF	
	The graph of g must be reflected about the x-axis and then be shifted 60° to the left./Die grafiek van g moet om die x-as gereflekteer word en dan met 60° na links geskuif word.	✓ reflection about x-axis/refleksie om x-as ✓ 60° left/links (2)
	OR/OF	(2)
	The graph of g has to shift 120° to the right./Die grafiek van g moet 120° na regs geskuif word.	✓ ✓ 120° right/regs (2)
	OR/OF	/ / 2400 1-0/l:l
	The graph of g has to shift 240° to the left./Die grafiek van g	\checkmark 240° left/links
	moet met 240° na links geskuif word	(2)
		[8]

7.1	$\hat{CAD} = 180^{\circ} - 2\theta$ [$\angle s \text{ sum of } \Delta / \angle e \text{ som van } \Delta$]	✓ answ/antw (1)
7.2	$\frac{\sin \theta}{x+3} = \frac{\sin(180^\circ - 2\theta)}{2x}$ $\frac{\sin \theta}{x+3} = \frac{\sin 2\theta}{2x}$ $\frac{\sin \theta}{x+3} = \frac{2\sin \theta \cdot \cos \theta}{2x}$ $\cos \theta = \frac{2x\sin \theta}{2(x+3)\sin \theta}$	 ✓ correct subst into sine rule/korrekte subst in sin-reël ✓ sin 2θ ✓ 2 sinθ. cos θ ✓ cos θ as subject/ as onderwerp
	$\cos\theta = \frac{x}{x+3}$	(4)
	OR/OF AD = x + 3 [sides opp = $\angle s/sye \ to = \angle e$] AC ² = AD ² + CD ² - 2AD.CD.cos θ $(x+3)^2 = (x+3)^2 + (2x)^2 - 2(2x)(x+3).\cos\theta$ $0 = 4x^2 - 4x(x+3)\cos\theta$ $\cos\theta = \frac{4x^2}{4x(x+3)}$	✓ AD = $x + 3$ ✓ correct subst into cosine rule/korrekte subst in cos-reël ✓ simplification/ vereenvoudiging ✓ cos θ as subject/ as onderwerp
	$= \frac{x}{x+3}$ OR/OF A	(4)
	Draw/Trek AP \perp CD $\cos \theta = \frac{x}{x+3}$ $C x P x D$	✓ constr/konstr ✓ sketch shown/ toon skets (4)

7.3	2	2
	$\cos\theta = \frac{2}{5}$	$\checkmark \cos \theta = \frac{2}{5}$
	$\therefore \ \theta = 66,42^{\circ}$	✓ size of/grootte $v \theta$
	In ΔABC:	
	$\sin \frac{1}{2}\theta = \frac{AB}{AC}$	✓ correct ratio/
	$\sin 33,21^\circ = \frac{AB}{5}$	korrekte verh ✓ subst correctly/
		korrek
	$\therefore AB = 5 \sin 33,21^{\circ}$	✓ answ/antw
	= 2,74	(5)
	OR/OF	
	$\sin \frac{\theta}{2} = \frac{AB}{5}$	
	_	\checkmark AB = $5 \sin \frac{\theta}{2}$
	$\therefore AB = 5 \sin \frac{\theta}{2}$	$\sqrt{AB-3}\sin\frac{\pi}{2}$
	but/maar:	
		✓ equation/vgl
	$\cos\theta = \frac{2}{5}$	
	$1-2\sin^2\frac{\theta}{2}=\frac{2}{5}$	✓ simplification/
	$\frac{1-2\sin^2 \frac{1}{2}}{1-\frac{1}{5}}$	vereenvoudiging
	$\sin^2\frac{\theta}{2} = \frac{3}{10}$	
	_ 10	✓ value of/ <i>waarde</i> v
	$\sin\frac{\theta}{2} = \sqrt{\frac{3}{10}}$	$\sin \frac{\theta}{2}$
		<u> </u>
	$\therefore AB = 5\sqrt{\frac{3}{10}} = \sqrt{\frac{15}{2}} = 2,74$	\checkmark answ/antw (5)
	V10 V 2	[10]

8.1.1	twice or double /twee keer of dubbel	✓ R
		(1)
8.1.2	$\hat{O}_1 = 2\hat{A}$ [\(\alpha \) at centre = 2\(\times \) at circ/midpts \(\alpha = 2 \times omtreks \(\alpha \)]	✓ S
	$\hat{O}_2 = 2\hat{C}$ [\angle at centre = $2 \times \angle$ at circ/midpts $\angle = 2 \times omtreks \angle$]	
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$ [\(\sigma \text{ in a rev}/\(\setimes \text{ in omw of om 'n pt} \)]	✓ S
	$2\hat{A} + 2\hat{C} = 360^{\circ}$	✓ S
	$\therefore \hat{A} + \hat{C} = 180^{\circ}$	(3)
	OR/OF	
	Let/Gestel $\hat{O}_1 = 2x$	
	$\hat{A} = x$ [\(\alpha \text{ at centre} = 2 \times \alpha \text{ at circ/midpts} \(\alpha = 2 \times omtreks \(\alpha \)]	✓ S
	$\hat{O}_2 = 360^{\circ} - 2x$ [\(\angle \text{s in a rev}/\angle e in omw of om 'n pt]	✓ S ✓ S
	$\hat{C} = 180^{\circ} - x$ [\angle at centre = $2 \times \angle$ at circ/midpts $\angle = 2 \times omtreks \angle$]	V S
	$\therefore \hat{A} + \hat{C} = 180^{\circ}$	(3)

8.2

8.2	$\hat{A} = \hat{C}_2$	$[\text{ext} \angle \text{ of cyclic quad}/buite} \angle v kdvh]$	✓ S ✓ R	
	$\hat{\mathbf{E}} = 180^{\circ} - \hat{\mathbf{C}}_2$	[opp \angle s of cyclic quad/tos \angle e v kdvh]	✓ S ✓ R	
	$\therefore \hat{E} = 180^{\circ} - \hat{A}$			
	∴ EF AB	[co-interior ∠s 180°/ko-binne∠e 180°]	✓ R	
	OR/OF			(5)
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_1$	[ext \angle of cyclic quad/buite \angle v kdvh]	✓ S ✓ R	
	$\hat{\mathbf{F}} = 180^{\circ} - \hat{\mathbf{D}}_{1}$	[opp \angle s of cyclic quad/tos \angle e v kdvh]	✓ S ✓ R	
	$\therefore \hat{\mathbf{F}} = 180^{\circ} - \hat{\mathbf{B}}$	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VSVK	
	∴ EF AB	[co-interior ∠s 180°/ko-binne∠e 180°]	✓ R	. . .
				(5)
				[9]

9.1	$\hat{K}_3 = \hat{C}$	[corresp ∠s/ooreenk ∠e ; CA KT]	✓ S ✓ R	
	$= \hat{A}_3$	[tan-chord th/raakl-koordst]	✓ S ✓ R	
	$= \chi$			(4)
9.2	$\hat{\mathbf{K}}_3 = x = \hat{\mathbf{A}}_3$	[proved/bewys in 9.1]	✓ S	
	∴ AKBT is cyc quad	[line (BT) subtends equal ∠s/	✓ R	(2)
		lyn (BT) onderspan gelyke ∠e]		(2)
		OR/OF		
		[converse ∠s in same segment/		
		omgek ∠e in dies segment]		
9.3	$\hat{K}_3 = \hat{C}$	[proven in 9.1]		
	$= \hat{B}_2$	[tan-chord th/raakl-koordst]	✓ S ✓ R	
	$=\hat{K}_2$	$[\angle s \text{ in the same segm}/\angle e \text{ in dies segm}]$	✓ S ✓ R	
	∴ TK bisects/halveer	AĥB		
	07/07			(4)
	OR/OF		(7 (7	
	$\hat{K}_2 = \hat{B}_2$	$[\angle s \text{ in the same seg}/\angle e \text{ in dies segm}]$	✓ S ✓ R	
	$=\hat{A}_3$	[tans from same pt; \angle s opp equal sides/ rkle v dies pt; \angle e to gelyke sye]	✓ S ✓ R	

	NSC/NSS – Memorandum	T	
	$\therefore = \hat{K}_3 \qquad [proven in 9.1]$		(4)
	∴ TK bisects/halveer AKB		(.)
9.4	$\hat{A}_3 = \hat{K}_2 = x$ [proven/bewys]	✓ S ✓ R	
	∴ TA tangent [converse tan chord theorem OR ∠ between line and chord/ omgekeerde raakl-kdst OF ∠ tussen lyn en koord]	V K	(2)
9.5	BŜA = BKÂ = $2x$ [A,S,K & B concyclic/konsiklies] ATB = $180^{\circ} - 2x$ [A,T,B & K concyclic/konsiklies] ∴ points A, S, B and T are also concyclic/punte A, S, B en T is ook konsiklies [opp ∠s of quad = $180^{\circ}/tos \angle e \ van \ vierhoek = 180^{\circ}$]	✓ S (both/beide statements/ bewerings) ✓ R	(2)
	OR/OF		
	A, S K and B are concyclic. A, K, B and T are concyclic. ∴ A, S, B and T are concyclic.	✓ S ✓ S	(2)
	OR/OF		(2)
	The circle passing through points A, K and B contains the point S on the circumference (A, ,S, K and B concyclic)./Die sirkel deur punt A, K en B bevat die punt S op die omtrek (A, S, K en B konsiklies).	✓ S	
	The circle passing through A, K and B contains the point T on the circumference (proven in 9.2)./Die sirkel deur punt A, K en B bevat die punt T op die omtrek (bewys in 9.2).	✓ S	
	:. points A, S, B and T are also concyclic/punte A, S, B en T is		
	konsiklies		(2)
			[14]

10.1		[∠ in semi circle/∠ in halfsirkel] [Th of/stelling v Pythagoras]	✓ S ✓ using/gebruik Pyth korrek/ correctly ✓ answ/antw (3)
10.2.1	$\frac{CF}{CD} = \frac{CE}{CB}$	[line one side of Δ/lyn een sy van Δ]	✓ S/R
	$\therefore \frac{CF}{15} = \frac{1}{4}$ $\therefore CF = 3,75$	OR/OF ΔCEF ΔCBD	✓ subst correctly/ korrek ✓ answ/antw
10.2.2			(3)
10.2.2	$\hat{BDC} = 90^{\circ}$	$[\angle \text{ in semi circle}/\angle \text{ in halfsirkel}]$	
	EFC = BDC	[corresp \angle s/ooreenk \angle e; EF BD]	✓ S/R
	$\hat{ABC} = 90^{\circ}$	$[\tan \perp \operatorname{diameter}/raakl \perp middellyn]$	✓ S ✓ R
	In $\triangle BAC$ and/en $\triangle FI$		
	$\hat{ABC} = \hat{EFC}$	[proven/bewys]	
	$\hat{C} = \hat{C}$	[common/gemeen]	✓ S
	$\therefore \Delta BAC \Delta FEC$		✓ R
			(5)
	OR/OF		
	BDC = 90°	$[\angle \text{ in semi circle}/\angle \text{ in halfsirkel}]$	
	$\hat{EFC} = \hat{BDC}$	[corresp ∠s/ooreenk ∠e; EF BD]	✓ S/R
	$\hat{ABC} = 90^{\circ}$	$[\tan \perp \operatorname{diameter}/\operatorname{raakl} \perp \operatorname{middellyn}]$	✓ S ✓ R
	In \triangle BAC and/en \triangle Fl	EC:	
	$\hat{ABC} = \hat{EFC}$	[proven/bewys]	
	$\hat{\mathbf{C}} = \hat{\mathbf{C}}$	[common/gemeen]	✓ S

	NSC/NSS – Memorandum	1
	BÂC = FÊC [∠ sum in Δ/∠ som van Δ] ∴ ΔBAC Δ FEC	✓ S (5)
10.2.3	$EC = \frac{1}{4} \times 17 = 4,25$ $\frac{AC}{EC} = \frac{BC}{FC}$ $\frac{AC}{4,25} = \frac{17}{3,75}$ $[\Delta BAC \mid \mid \mid \Delta FEC]$	✓ length of/lengte v EC ✓ S ✓ subst correctly/
	:. AC = 19,27 or/of $19\frac{4}{15}$	korrek ✓ answ/antw (4)
	OR/OF	
	$\cos \hat{C} = \frac{CF}{CE} = \frac{BC}{AC}$ $\therefore \frac{3,75}{4,25} = \frac{17}{AC}$ $\therefore AC = 19,27 \text{ or/of } 19 \frac{4}{15}$	✓✓ correct ratios/ korrekte verh's ✓ subst correctly/ korrek ✓ answ/antw (4)
	OR/OF	
	$\Delta BCA \mid \mid \mid \Delta DBC$ $CB^2 = CD \cdot AC$	✓ S OR Pyth th ✓ correct ratio
	$AC = \frac{BC^2}{DC}$ $= \frac{17^2}{15}$	✓ subst
	$= 19,27 \text{ or/}of 19 \frac{4}{15}$	✓ answ/antw (4)
	OR/OF $\hat{C} = A\hat{B}D$ [tan-chord theorem/rkl-kdstelling] $\frac{AD}{8} = \tan A\hat{B}D$	✓ S ✓ correct ratio
	$= \tan \hat{C}$, correct ratio
	$=\frac{8}{15}$ $AD = \frac{64}{15}$	✓ subst
	∴ AD = $\frac{64}{15}$ ∴ AC = 19,27 or/of 19 $\frac{4}{15}$	✓ answ/antw (4)

10.2.4	AC is diameter of the circle passing through A, B and C	✓ S/R
	[chord subtends 90° OR converse ∠ in semi circle]	
	AC is middellyn van die sirkel wat deur die punte A, B en C gaan	
	[koord onderspan 90° OF omgek \angle in halfsirkel]	
	: radius = $\frac{1}{2} \times 19,27 = 9,63 \text{ or/of } 9\frac{19}{30} \text{ or/of } \frac{1}{2} \text{AC}$	✓ answ/antw
	$\frac{1}{2} \times 19,27 = 9,03 \text{ of } 69 = 30$	(2)
		[17]

11.1	equiangular or similar/gelykhoekig of gelykvormig	✓ answ/antw	
			(1)

In ΔMNR:

1.25² = 1,5² = 2;
$$\frac{PM}{NM} = \frac{2}{1} = 2$$
; $\frac{KM}{RM} = \frac{2.5}{1.25} = 2$

all 3 statements/
al 3 bewerings

(3)

∴ ΔΚΡΜ || | ΔRNM [Sides of Δ in prop/sye v Δ eweredig]

OR/OF

$$\frac{RN}{KP} = \frac{0.75}{1.5} = \frac{1}{2}; \frac{NM}{PM} = \frac{1}{2}; \frac{RM}{KM} = \frac{1.25}{2.5} = \frac{1}{2}$$
∴ $\frac{RN}{KP} = \frac{NM}{PM} = \frac{RM}{KM}$
∴ ΔΚΡΜ || | ΔRNM [Sides of Δ in prop/sye v Δ eweredig]

OR/OF

In ΔΜΝR:
1.25² = 1² + 0.75² = 1.5625
∴ M̂R = 90° [converse Pyth theorem]
In ΔΡΚΜ:
2.5² = 1,5² + 2² = 6.25
∴ P̂ = 90° [converse Pyth theorem]
cos Pκ̂M = $\frac{1.5}{2.5} = \frac{3}{5}$ and cos $\hat{R} = \frac{0.75}{1.25} = \frac{3}{5}$
∴ Pκ̂M = \hat{R}
In ΔΚΡΜ and ΔRNM
Pκ̂M = \hat{R} [proved]
 $\hat{P} = M\hat{N}R$ [proved]
 $\hat{P} = M\hat{N}R$ [proved]
∴ ΔΚΡΜ|| |ΔRNM | \mathcal{L} ; ∠: ∠ OR 3rd ∠|

27 NSC/*NSS* – Memorandum

11.2.2		[ΔKPM ΔRNM]	✓ S
	∴ P̂ is common/gemeen		
		[]	✓ ΔRPQ ΔKPM
			✓ S
	$\frac{RP}{KP} = \frac{RQ}{KM}$	$[\Delta RPQ \mid \mid \mid \Delta KPM]$	V 5
	$\therefore \frac{3,25}{1,5} = \frac{RQ}{2,5}$		✓ subst correctly/
	1,5 - 2,5		korrek
	$\therefore RQ = \frac{2,5 \times 3,25}{1,5} = 5,42 \text{ or } 5\frac{5}{12}$ $\therefore NQ = 5,42 - 0,75 = 4,67 \text{ or } 4\frac{2}{3}$ OR/OF		$\checkmark RQ = 5\frac{5}{12}$
			12
			$\sqrt{NQ} = \frac{\text{answ}}{antw}$
			(6)
	ON OI		
	$\hat{RNM} = \hat{P}$	[ΔKPM ΔRNM]	✓ S
	∴ R̂ is common/gemeen		
	∴ ∆RNM ∆RPQ	[∠∠∠]	✓ ∆RNM ∆RPQ
	$\frac{RP}{R} = \frac{RQ}{R}$	[ΔRNM ΔRPQ]	✓ S
	RN RM	[~
	$\therefore \frac{3,25}{0,75} = \frac{RQ}{1,25}$		✓ subst correctly/
			korrek
	:. RQ = 5,42 or $5\frac{5}{12}$		$\checkmark RQ = 5\frac{5}{12}$
	∴ NQ = 5,42 – 0,75 = 4,67 or $4\frac{2}{3}$ OR/OF In Δ MNR: 1,25 ² = 1 ² + 0,75 ² = 1,5625 ∴ MNR = 90° [converse Pyth theorem] In Δ PKM: 2,5 ² = 1,5 ² + 2 ² = 6,25 ∴ $\hat{P} = 90^{\circ}$ [converse Pyth theorem] In Δ MNR and Δ QPR ∠R is common MNR = $\hat{P} = 90^{\circ}$ ∴ Δ MNR Δ QPR [∠∠∠]		12
			$\sqrt{NQ} = \frac{\text{answ}}{antw}$
			(6)
			✓ S
			✓ ∆MNR ∆QPR
	$\frac{RP}{RN} = \frac{RQ}{RM}$	[ΔRNM ΔRPQ]	✓ S
		[
	$\therefore \frac{3,25}{0,75} = \frac{RQ}{1,25}$		✓ subst correctly/
	0,75 1,25		korrek
	:. RQ = 5,42 or $5\frac{5}{12}$		$\checkmark RQ = 5\frac{5}{12}$ $\checkmark NQ = \frac{5}{12}$ $\checkmark NQ = \frac{5}{12}$
	$\therefore RQ = 5,42 \text{ or } 5\frac{5}{12}$ $\therefore NQ = 5,42 - 0,75 = 4,67 \text{ or } 4\frac{2}{3}$		12 NO = onsw/anti-
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		3	[10]
			[-*]