Relatório do ajuste multinomial

Silvaneo Viera dos Santos Junior

2022-06-12

Introdução

Definição do modelo

Seja $\vec{y_t}$ a quantidade de internações por varicela no tempo t em cada faixa etária ($\vec{y_t}$ é um vetor e cada uma de suas coordenadas corresponde a quantidade de internações em uma faixa etária) e T_t o total de internações por varicela no tempo T, então vamos supor que:

$$\vec{y_t} | \vec{\theta_t} \sim Multinom(T, \vec{p_t}),$$

onde $\vec{\theta}_t$ é o vetor de estados latentes no tempo t e:

$$\ln\left\{\frac{p_{it}}{p_{kt}}\right\} = F'_{it}\theta_t, \forall i \neq k,$$

sendo $F_i t$ conhecido para qualquer i e t, e k o índice da faixa etária de referência. Podemos interpretar p_{it} como a probabilidade de que tenhamos uma internação na faixa etária i dado que uma internação foi observada. É importante observar que, se uma faixa etária (digamos, de índice i) tem um grande volume de indivíduos expostos ao risco de internação, é natural que p_{it} seja maior que p_{jt} para o $j \neq i$, posto isto, fica claro que devemos incluir alguma forma de relativização pelo volume de expostos em cada faixa etária.

Observe que:

$$\begin{split} p_i = & \mathbb{P}(\text{Faixa etária } i | \text{internação}) \\ = & \frac{\mathbb{P}(\text{Faixa etária } i, \text{internação})}{\mathbb{P}(\text{internação})} \\ = & \frac{\mathbb{P}(\text{internação} | \text{Faixa etária } i) \mathbb{P}(\text{Faixa etária } i)}{\mathbb{P}(\text{internação})}. \end{split}$$

Temos que $\mathbb{P}(\text{internação}|\text{Faixa etária }i)$ é a probabilidade de internações na faixa etária i e $\mathbb{P}(\text{Faixa etária }i)$ é a probabilidade de que o indivíduo pertença à faixa etária i, como conhecemos a exposição de cada faixa etária (E_i) e a exposição total E_T , temos que $\mathbb{P}(\text{Faixa etária }i) = \frac{E_i}{E_T}$. Substituindo esse valores na primeira equação:

$$\ln \left\{ \frac{\mathbb{P}(\text{internação}|\text{Faixa etária }i)\frac{E_i}{E_T}}{\mathbb{P}(\text{internação}|\text{Faixa etária }k)\frac{E_k}{E_T}} \right\} = \ln \left\{ \frac{\mathbb{P}(\text{internação}|\text{Faixa etária }i)}{\mathbb{P}(\text{internação}|\text{Faixa etária }k)} \right\} + \ln \left\{ \frac{E_i}{E_k} \right\}$$

$$= F\theta, i = 1, \dots, k-1$$

Assim:

$$\ln\left\{\frac{\mathbb{P}(\text{internação}|\text{Faixa etária }i)}{\mathbb{P}(\text{internação}|\text{Faixa etária }k)}\right\} = F\theta - \ln\left\{\frac{E_i}{E_k}\right\}, i = 1, ..., k-1$$

Se considerarmos um modelo com l
n $\left\{\frac{E_i}{E_k}\right\}$ como regressora com efeito conhecido e igual a 1, então podemos reescrever
 $F\theta=F^*\theta^*+\ln\left\{\frac{E_i}{E_k}\right\}$, daí:

$$\ln\left\{\frac{\mathbb{P}(\text{internação}|\text{Faixa etária }i)}{\mathbb{P}(\text{internação}|\text{Faixa etária }k)}\right\} = F^*\theta^*, i = 1, ..., k-1$$

Assim $F^*\theta^*$ modela, de fato, o log da razão entre a probabilidade de internação da faixa etária i e a faixa etária de referência.

Vale destacar que, como mencionado anteriormente, a exposição é essencialmente constante ao longo do tempo, de modo que a inclusão da exposição não deve ter efeito significativo no ajuste, contudo, agora a interpretação dos resultado se torna mais intuitiva.

Resultado dos ajustes

Efeito da escolha da faixa etária de referência

Avaliação do efeito da vacina

Resultado das simulações