Essentials of Analytical Geometry and Linear Algebra I, Class #1

Innopolis University, September 2020

- 1. Points A(3, -2) and B(1, 4) are given. The M point is on the line AB in the way that $|\mathbf{AM}| = 3|\mathbf{AB}|$. Find coordinates of the **M** point, if:
- 1. The points M and B are from the same side from A.
- 2. The points \mathbf{M} and \mathbf{B} are from the different sides from \mathbf{A} .
- 2. Check if the result of each of the following operations is a vector or not. Explain your answer.
- 1. $\mathbf{a} + \mathbf{b}$, if \mathbf{a} and \mathbf{b} are vectors
- 2. $\mathbf{a} \mathbf{a}$, if \mathbf{a} is a vector

$$3.\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\2\end{bmatrix}$$

3.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

4. $\begin{bmatrix} 2x+15-4y \\ y-x \end{bmatrix}$, if x and y are integer numbers
5. $\begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix} - \begin{bmatrix} x+y \\ 2y+122-3x \end{bmatrix}$, if x and y are real numbers

- **3.** Three vectors are given $\mathbf{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{b} \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Find the vectors $2\mathbf{a} + 3\mathbf{b} \mathbf{c}$ and 16a + 5b - 9c.
- 4. Check for each case if the following set of vectors is a basis or not. Explain

$$\begin{array}{c}
1. \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \\
2. \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \\
3. \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \\
4. \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \\
5. \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \\
6. \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

- **5.** Check for each case if the following set of vectors is a subspace or not. Explain your answer.
- 1. Part of the plane x > 0
- 2. Entire plane
- 3. Part of the plane y < 0
- 4. Part of the plane x > 0, y > 0
- 5. Inner circle with the radius r=5

- **6.** Find the coordinates of the gravity center of a triangular plate **ABC** with vertices in points $\mathbf{A}(3,1), \mathbf{B}(6,3), \mathbf{C}(0,2)$.
- **7.** Check for each case if the following set of vectors is a coplanar or not. Explain your answer.
- $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$
- 8. In the plane of the triangle **ABC** find the point **O** such that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0}$. Are there such points outside of the triangle?

Note: ${f 0}$ is a zero-vector.