

Homework #5

Завдання 1 (№ 1575).

Спочатку знайдемо власні вектора матриці. Характеристичний поліном:

$$\chi_A(\lambda) = \lambda^3 - \operatorname{tr}_1(A)\lambda^2 + \operatorname{tr}_2(A)\lambda - \det A = 0$$

Знаходимо сліди:

$$ext{tr}_1(A) = rac{3}{4} + rac{3}{4} + rac{1}{2} = 2$$
 $ext{tr}_2(A) = \left| egin{array}{ccc} rac{3}{4} & rac{\sqrt{6}}{4} \ -rac{\sqrt{6}}{4} & rac{1}{2} \end{array}
ight| + \left| egin{array}{ccc} rac{3}{4} & -rac{\sqrt{6}}{4} \ rac{1}{2} \end{array}
ight| + \left| rac{3}{4} & rac{1}{4} & rac{1}{4} \ rac{1}{4} & rac{3}{4} \end{array}
ight| = 2$ $ext{det } A = rac{3}{4} \left| egin{array}{ccc} rac{3}{4} & rac{\sqrt{6}}{4} \ -rac{\sqrt{6}}{4} & rac{1}{2} \end{array}
ight| - rac{1}{4} \left| egin{array}{ccc} rac{1}{4} & -rac{\sqrt{6}}{4} \ -rac{\sqrt{6}}{4} & rac{1}{2} \end{array}
ight| + rac{\sqrt{6}}{4} \left| rac{1}{3} & -rac{\sqrt{6}}{4} \ rac{1}{3} & rac{\sqrt{6}}{4} \end{array}
ight| = 1$

Отже характеристичний поліном:

$$\chi_A(\lambda) = \lambda^3 - 2\lambda^2 + 2\lambda - 1$$

Одне власне число вгадати легко: $\lambda_1=1$. Поділивши на $\lambda-1$, отримуємо:

$$\chi_A(\lambda) = (\lambda - 1)(\lambda^2 - \lambda + 1)$$

Розв'язавши друге рівняння, маємо $\lambda_2=e^{i\pi/3},\lambda_3=e^{-i\pi/3}.$ Отже, в канонічній формі буде присутній блок у вигляді матриці повороту $R_{\pi/3}=rac{1}{2}igg(rac{1}{\sqrt{3}}-rac{-\sqrt{3}}{1}igg).$ Тобто канонічна форма матриці A має вид

$$B = egin{pmatrix} 1 & 0 \ 0 & R_{\pi/3} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & rac{1}{2} & -rac{\sqrt{3}}{2} \ 0 & rac{\sqrt{3}}{2} & rac{1}{2} \end{pmatrix}$$

Тепер знайдемо матрицю перетворення T. Знайдемо власні вектори. Оскільки $A\mathbf{v}=\lambda_j\mathbf{v}$ або $(A-\lambda_jE)\mathbf{v}=\theta$, то нам достатньо знайти базісні вектори \mathbf{v}_j з $\mathrm{Null}(A-\lambda_jE)$. Отже

$$\text{Null}(A - \lambda_1 E) = \text{Null}\begin{pmatrix} -1/4 & 1/4 & -\sqrt{6}/4 \\ 1/4 & -1/4 & \sqrt{6}/4 \\ \sqrt{6}/4 & -\sqrt{6}/4 & -1/2 \end{pmatrix} = \text{Null}\begin{pmatrix} 1 & -1 & \sqrt{6} \\ \sqrt{6} & -\sqrt{6} & -2 \end{pmatrix}$$

Отже нам потрібно знайти множину векторів $\mathbf{v} = egin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ таких, що

$$\begin{cases} x - y + \sqrt{6}z = 0\\ \sqrt{6}x - \sqrt{6}y - 2z = 0 \end{cases}$$

3 першого рівняння $x-y=-\sqrt{6}z$, а з другого $x-y=\frac{2}{\sqrt{6}}z$, отже z=0, x=y=t, тому для цього власного числа, власні вектори будуть мати вид $t\begin{pmatrix}1\\1\\0\end{pmatrix}$. Отже, достатньо взяти вектор $\mathbf{v}_1=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\0\end{pmatrix}$ в якості власного

1

вектора.

Тепер проробимо те саме з $\lambda_2=e^{i\pi/3}=rac{1}{2}+rac{\sqrt{3}}{2}i$. Маємо:

$$\text{Null}(A - \lambda_2 E) = \text{Null} \begin{pmatrix} \frac{1}{4} - \frac{\sqrt{3}}{2}i & \frac{1}{4} & -\frac{\sqrt{6}}{4} \\ \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{2}i & \frac{\sqrt{6}}{4} \\ \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{\sqrt{3}}{2}i \end{pmatrix} = \text{Null} \begin{pmatrix} 1 - 2\sqrt{3}i & 1 & -\sqrt{6} \\ 1 & 1 - 2\sqrt{3}i & \sqrt{6} \\ 1 & -1 & -\sqrt{2}i \end{pmatrix}$$

Або знаходимо розв'язок системи

$$\begin{cases} (1 - 2\sqrt{3}i)x + y - \sqrt{6}z = 0\\ x + (1 - 2\sqrt{3}i)y + \sqrt{6}z = 0\\ x - y - \sqrt{2}iz = 0 \end{cases}$$

Якщо покласти x=t, то після доволі муторних дій отримуємо $y=-t, z=-i\sqrt{2}t$, тому власні вектора для $\lambda_2=e^{i\pi/3}$ мають вид $t\begin{pmatrix}1\\-1\\-i\sqrt{2}\end{pmatrix}$. Для зручності покладемо $t=\frac{i}{\sqrt{2}}$, отримавши множину $k\begin{pmatrix}i/\sqrt{2}\\-i/\sqrt{2}\\1\end{pmatrix}$. Розділимо це на дійсну і уявну частину:

$$egin{pmatrix} rac{i}{\sqrt{2}} \ -rac{i}{\sqrt{2}} \ 1 \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} + egin{pmatrix} rac{1}{\sqrt{2}} \ -rac{1}{\sqrt{2}} \ 0 \end{pmatrix} i$$

Отже, оберемо 2 вектори $\mathbf{v}_2=egin{pmatrix}0\\0\\1\end{pmatrix}, \mathbf{v}_3=egin{pmatrix}\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0\end{pmatrix}.$

Отже, матрицю перетворення до канонічного виду побудуємо наступним чином:

$$T = egin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} = egin{pmatrix} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \ 0 & 1 & 0 \end{pmatrix}$$

Таким чином, канонічна форма:

$$A = T egin{pmatrix} 1 & 0 & 0 \ 0 & rac{1}{2} & -rac{\sqrt{3}}{2} \ 0 & rac{\sqrt{3}}{2} & rac{1}{2} \end{pmatrix} T^{-1}$$

Завдання 2.

Для початку перевіримо унітарність. За означенням наша матриця з умови A ε унітарною, якщо $A^*A=E$. Перевіримо це:

$$A^* = \overline{A^T} = \overline{A} = rac{1}{2} egin{pmatrix} 1+i & 1-i \ 1-i & 1+i \end{pmatrix}$$

(друга рівність виконується, бо матриця симетрична, тому $A = A^T$). Тому

$$A^*A=rac{1}{4}egin{pmatrix}1+i&1-i\1-i&1+i\end{pmatrix}egin{pmatrix}1-i&1+i\1+i&1-i\end{pmatrix}=egin{pmatrix}1&0\0&1\end{pmatrix}=E$$

Знайдемо діагоналізацію матриці. Запишемо матрицю трохи в іншому виді:

$$A=rac{1}{\sqrt{2}}egin{pmatrix} e^{-i\pi/4} & e^{i\pi/4} \ e^{i\pi/4} & e^{-i\pi/4} \end{pmatrix}$$

Homework #5

Так вона виглядає трохи красивіше. Знайдемо власні вектора:

$$\chi_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \det A$$

Звідси $\mathrm{tr}(A)=rac{1}{\sqrt{2}}\cdot 2e^{-i\pi/4}=\sqrt{2}\left(rac{\sqrt{2}}{2}-irac{\sqrt{2}}{2}
ight)=1-i$. А детермінант:

$$\det A = \left(rac{1}{\sqrt{2}}
ight)^2 \left(e^{-i\pi/2} - e^{i\pi/2}
ight) = -i$$

Для знаходження власних чисел розв'язуємо $\chi_A(\lambda)=0$ або $\lambda^2-(1-i)\lambda-i=0$. Звідси маємо 2 розв'язки: $\lambda_1=1,\lambda_2=-i$.

Тепер знайдемо множину власних векторів. За означенням $A\mathbf{v}=\lambda\mathbf{v}$ або $(A-\lambda E)\mathbf{v}=\theta$, отже $\mathbf{v}\in \mathrm{Null}(A-\lambda E)$. Знаходимо ядро $A-\lambda_1 E$ та $A-\lambda_2 E$:

$$\mathrm{Null}(A-\lambda_1 E) = \mathrm{Null}\begin{pmatrix} \frac{1-i}{2}-1 & \frac{1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}-1 \end{pmatrix} = \mathrm{Null}\begin{pmatrix} -1-i & 1+i \\ 1+i & -1-i \end{pmatrix} = \left\{\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2 \mid x-y=0 \right\}$$

Отже в якості власного вектора \mathbf{v}_1 візьмемо $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Друге ядро:

$$\operatorname{Null}(A-\lambda_2 E)=\operatorname{Null}egin{pmatrix} rac{1-i}{2}+i & rac{1+i}{2} \ rac{1+i}{2} & rac{1-i}{2}+i \end{pmatrix}=\operatorname{Null}egin{pmatrix} 1+i & 1+i \ 1+i & 1+i \end{pmatrix}=\left\{\mathbf{v}=egin{pmatrix} x \ y \end{pmatrix}\in \mathbb{C}^2\mid x+y=0
ight\}$$

Звідси візьмемо другий власний вектор $\mathbf{v}_2 = egin{pmatrix} 1 \\ -1 \end{pmatrix}$. Отже, диагоналізація матриці A:

$$egin{pmatrix} \left(\mathbf{v}_1 & \mathbf{v}_2
ight)^{-1} A \left(\mathbf{v}_1 & \mathbf{v}_2
ight) = egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix}$$

Тобто при лінійній трансформації $T=egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$ будемо мати диагоналізацію:

$$T^{-1}AT = egin{pmatrix} 1 & 0 \ 0 & -i \end{pmatrix}, \;\; A = Tegin{pmatrix} 1 & 0 \ 0 & -i \end{pmatrix}T^{-1}$$

Homework #5