ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC PHẦN HỌC KỲ II, NĂM HỌC 2011-2012

----oOo-----

Môn thi: Tối ưu hóa

Mã môn học: **49ABCD** Số tín chỉ: **2** Đề số: **1**

Dành cho sinh viên lớp học phần: 49ABCD 1

Thời gian làm bài **90 phút** (không kể thời gian phát đề)

Câu 1. (2 điểm) Cho hai tập lồi X,Y và các số thực α,β . Chứng minh rằng các tệp sau đây cũng là tập lồi:

- (i) $X \cap Y$;
- (ii) $\alpha X = {\alpha x | x \in X}$;
- (iii) $\alpha X + \beta Y = \{\alpha x + \beta y | x \in X, y \in Y\}.$

Câu 2. (4 điểm) Cho bài toán quy hoạch tuyến tính

$$L(x) = x_1 + 3x_2 + x_3 \rightarrow \min$$

$$\begin{cases} x_1 + x_2 + x_3 & \ge 5 \\ x_2 + 2x_3 & = 8 \\ x_1 + 2x_2 + x_3 & \le 10 \\ x_i \ge 0 (i = 1, 2, 3) \end{cases}$$

- i) Đưa về dạng chính tắc;
- ii) Giải bài toán trên bằng phương pháp đơn hình;

Câu 3. (4 điểm) Trong vụ bão lụt vừa qua có 4 điểm B_1, B_2, B_3, B_4 bị ngập nặng, cần tiếp tế lương thực với yêu cầu tương ứng là b = (10, 15, 20, 20) theo đơn vị tấn. Nhà nước đã bố trí lương thực cứu trợ ở ba kho A_1, A_2, A_3 với trữ lượng tương ứng là a = (15, 20, 30). Cước phí vận chuyển từ A_i đến B_j là c_{ij} như trong ma trận sau đây:

Hãy lập kế hoạch vận chuyển tối ưu sao cho các điểm cần cứu trợ nhận đủ số lượng lương thực và tổng số tấn /km là nhỏ nhất.

- 1. Thiết lập bảng vận tải với phương án cơ sở theo phương pháp góc tây bắc.
- 2. Giải bài toán bằng phương pháp thế vị.

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC PHẦN, HỌC KỲ II, NĂM HỌC 2011-2012 Môn thi: Tối ưu hóa

Mã học phần: **49ABCD** Số tín chỉ: **2** Đề số: **1**

Dành cho sinh viên lớp học phần: 49ABCD 1

Lời giải 1. [2 điểm]

(i) Cho $x, y \in X \cap Y$ và $0 \le \lambda \le 1$. Taphải chứng minh $\lambda x + (1 - \lambda)y \in X \cap Y$. Thật vậy, do $x, y \in X \cap Y$.	1
$X \cap Y$ nên $x, y \in X$. Do X là lồi nên $\lambda x + (1 - \lambda)y \in X$; tương tự ta cũng có $\lambda x + (1 - \lambda)y \in Y$. Từ	
đó suy ra λx + (1 − λ) y ∈ X ∩ Y .	
(ii) Giả sử ta có $\alpha x^1, \alpha x^2 \in \alpha X$ với $x^1, x^2 \in X$ và $0 \le \lambda \le 1$. Vì X là lồi nên $\lambda x^1 + (1 - \lambda)x^2 \in X$.	0.5
Ta xét $\lambda(\alpha x^1) + (1 - \lambda)\alpha x^2 = \alpha(\lambda x^1 + (1 - \lambda)x^2) \in \alpha X$.	
(iii) Chứng minh tương tự phần trên.	0.5

Lời giải 2. [4 điểm]

i) Dạng chính tắc: đưa t	hên	ı biến p	hụ x ₄	$, x_5 1$	à biế	n phụ						1
		(L(x)	$=x_1$	+3x	$2 + x_3$	\rightarrow n	nin				
$x_1 + x_2 + x_3 - x_4 = 5$												
$L(x) = x_1 + 3x_2 + x_3 \to \min$ $\begin{cases} x_1 + x_2 + x_3 - x_4 &= 5\\ x_2 + 2x_3 &= 8\\ x_1 + 2x_2 + x_3 + x_5 &= 10\\ x_i \ge 0 (i = 1, 2, 3, 4, 5) \end{cases}$												
$\int x_1 + 2x_2 + x_3 + x_5 = 10$												
		()	$x_i \ge 0$	0(i =		1	,2,3	,4,5)			
ii) Giải bằng phương ph	náp (đơn hìn	h: Đư	ra thé	m x ₆	, <i>x</i> ₇ là	biến	giả,	bài t	oán t	rở thành	0.5
		$L(x) = \begin{cases} x_1 + \\ x_2 + \\ x_1 + \\ x_i \ge \end{cases}$	$x_1 +$	$3x_2$ -	$+x_3$ -	$+Mx_6$	+M	x ₇ —	→ mir	1		
		$\int x_1 +$	$x_2 +$	x_3	$x_4 + .$	$x_6 =$	= 5					
		$ x_2+$	$2x_3 +$	- X7		=	- 8					
		$\begin{cases} x_1 + x_2 \end{cases}$	$2x_2 \dashv$, - x2 →	- X5	=	: 10					
		$\begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$	$\Omega(i -$	-	703	1	2 3	15	6.7)			
		$(x_i \leq$	0(1-	_		1	, 2, 5,	т, Э,	, 0, 7)			
												0.5
	J	c_J	χ_J	1	2	3	4	5	6	7		
				1	3	1	0	0	M	M		
	6	M	5	1	1	1	-1	0	1	0		
	7	M	8	0	1	[2]	0	0	0	1		
	5	0	10	1	2	1	0	1	0	0		
		L(x)	0	-1	-3	-1	0	0	0	0		
		. ,	13	1	2	[3]	-1	0	0	0		

Do còn tồn tại giá trị Δ lớn hơn 0 nên chưa có phương án tối ưu ta cần tìm biến đưa vào Cột có giá lớn nhỏ nhất ứng với x_3 vậy biến đưa vào là : x_3 Hàng có giá trị θ nhỏ nhất ứng với cột đó là hàng 2

1

J	c_J	χ_J	1	2	3	4	5	6	7
			1	3	1	0	0	M	M
6	M	1	[1]	1/2	0	-1	0	1	
3	1	4	0	1/2	1	0	0	0	
5	0	6	1	3/2	0	0	1	0	
	L(x)	4	[-1]	-5/2	0	0	0	0	
		1	1	1/2	0	-1	0	0	

Do còn tồn tại giá trị Δ lớn hơn 0 nên chưa có phương án tối ưu ta cần tìm biến đưa vào Cột có giá lớn nhỏ nhất ứng với x_1 vậy biến đưa vào là : x_1 Hàng có giá trị θ nhỏ nhất ứng với cột đó là hàng 1

1

J	c_J	x_J	1	2	3	4	5	6	7
			1	3	1	0	0	M	M
1	1	1	1	1/2	0	-1	0		
3	1	4	0	1/2	1	0	0		
5	0	5	0	1	0	0	1		
	L(x)	5	0	-2	0	-1	0		
		0	0	0	0	0	0		

Phương án tối ưu của bài toán mở rộng là : $x^* = (1,0,4,0,5,0,0)$

Giá trị hàm mục tiêu đạt được là : F(x) = 5

Lời giải 3. [4 điểm]

1. Đây là bài toán vận tải dạng min. Nơi cung cấp hàng $a_1 = 15$, $a_2 = 20$, $a_3 = 30$, và nơi nhận hàng $b_1 = 10$, $b_2 = 15$, $b_3 = 20$, $b_4 = 20$. Dễ thấy đây là bài toán vận tải cân bằng thu phát.

2. Phương án cơ sở theo phương pháp góc tây bắc trong bảng ??.

A_i B_j	B_1 :	10	<i>B</i> ₂ :	15	<i>B</i> ₃ :	20	B_4 :	20
	3		4		7		8	
$A_1:15$		10		5				
	4		3		7		9	
$A_2:20$				10		10		
	6		5		4		11	
$A_3:30$						10		20

Bảng 1.

<i>виос 1</i> . Pr	p thứ nhất: nương án <i>x</i> kh	nông thơ	ái hó	a vì <i>G</i>	=m	+ n - 1	= 7.	Tìm cá	c thế	vį			0.5
$u_1 + v_1 = 3$													
$u_1 + v_1 = 3$ $u_1 + v_2 = 4$													
$u_1 + v_2 = 4$ $u_2 + v_2 = 3$													
$u_2 + v_2 = 3$ $u_2 + v_3 = 7$													
$u_2 + v_3 = 1$ $u_3 + v_3 = 4$													
-													
$u_3 + v_4 = 11$													
	$0 \text{ suy ra } v_1 = \frac{1}{2}$	$3, v_2 =$	4 và	$u_2 = -$	$1, v_3 =$	$= 8, u_3$	=8,v	$t_4 = 15.$					0.5
Tính Δ_{ij} nl	nu bang 2												0.5
	A_i B_j	B_1 :	10	B_2 :	15	<i>B</i> ₃ :	20	B_4 :	20]		
	111	0		0	_	1		7	+	$u_1 = 0$	1		
	$A_1:15$		10		5	_		·	'	1			
		-2		0	+	0	- 1	5		$u_2 = -1$			
	$A_2:20$				10		10				_		
	4 30	-7		-5		0	$\frac{+}{10}$	0	- 20	$u_3 = -4$			
	$A_3:30$	ν ₁ =	3	v2 =	4	v ₂ =	8	$v_4 =$	15				
	$v_1 = 3 v_2 = 4 v_3 = 8 v_4 = 15$ Bång 2												
		, I			Bån						_		
			1			ng 2					_		
Ô vi phạm	dấu hiệu tối) là ô	đưa và		ng 2	Ţ,	•					0.5
Ô vi phạm		ưu (2,3)			o. Ta	ng 2			1.2)-	}			0.5
	V	uu (2,3) = {(1,	4)+,($(3,4)^{-}$	o. Ta	ng 2 có vòng 1+, (2,3)-,(2	(1,2) ⁺ ,(1	,				0.5
Lượng điề	V u chỉnh $q={ m n}$	$\text{uu } (2,3)$ $f = \{(1, \\ \min\{x_{34}, \\ \\ \end{bmatrix}$	$(4)^+, (x_{23}, x_{23}, x_{23})$	$(3,4)^{-}$	o. Ta	ng 2 có vòng 1+, (2,3)-,(2	(1,2) ⁺ ,(1	,		đây là ô	loại	0.5
Lượng điề	V	$\text{uu } (2,3)$ $f = \{(1, \\ \min\{x_{34}, \\ \\ \end{bmatrix}$	$(4)^+, (x_{23}, x_{23}, x_{23})$	$(3,4)^{-}$	o. Ta	ng 2 có vòng 1+, (2,3)-,(2	(1,2) ⁺ ,(1	,		đây là ô	loại	0.5
Lượng điề	V u chỉnh $q=$ n \log mới bằn g	uu (2,3) $= \{(1, $ $\min\{x_{34}, $ cách tín	4) ⁺ , (,x ₂₃ , x	$(3,4)^{-1}$ $(x_{12}) = x_{12}$	o. Ta ((3,3)) min{2	có vòng	$(2)^{-}, (2)^{-}$. Tương	g ứng		đây là ô	loại	0.5
Lượng điề	V u chỉnh $q={ m n}$	uu (2,3) $f = \{(1, min \{x_{34}, cach tin \}, x_{34}, cach tin \})$	$(4)^{+}, (6)^{+}, (7)^{+}, ($	$(3,4)^{-1}$ x_{12} } = B_2 :	o. Ta	$\frac{1}{1}$ có vòng $\frac{1}{2}$, (2,3 $\frac{1}{2}$ 0, 10,5 $\frac{1}{2}$ 3 :)-,(2	$(B,2)^+,(1)^+$. Tương $(B_4:$	g ứng	với ô (1,2)	đây là ô	loại	0.5
Lượng điề	V u chỉnh $q=$ n ng mới bằng A_i B_j	uu (2,3) $= \{(1, $ $\min\{x_{34}, $ cách tín	4) ⁺ , (,x ₂₃ , x	$(3,4)^{-1}$ $(x_{12}) = x_{12}$	o. Ta ((3,3)) min{2	có vòng	$(2)^{-}, (2)^{-}$. Tương	g ứng		đây là ô	loại	0.5
Lượng điề	V u chỉnh $q = n$ ng mới bằng $A_i B_j$ $A_1: 15$	uu (2,3) $f = \{(1, min \{x_{34}, cach tin \}, x_{34}, cach tin \})$	$(4)^{+}, (6)^{+}, (7)^{+}, ($	$(3,4)^{-1}$ x_{12} } = B_2 :	o. Ta (3,3) min{2	$\frac{1}{1}$ có vòng $\frac{1}{2}$, (2,3 $\frac{1}{2}$ 0, 10,5 $\frac{1}{2}$ 3 :	$(20)^{-}, (20)^{-}, (20)^{-}$	$(B,2)^+,(1)^+$. Tương $(B_4:$	20 +	với ô (1,2)	đây là ô	loại	0.5
Lượng điề	V u chỉnh $q=$ n ng mới bằng A_i B_j	uu (2,3) $= \{(1, \\ \min\{x_{34}, \\ \text{cách tín} \}\}$ $= \{(1, \\ B_{1}: \\ 0 \\ 5 \\ = 5\}$	$(4)^{+}, ($	$(3,4)^{-1}$ $x_{12} = \frac{1}{2}$ $B_2 : \frac{1}{2}$ 0	o. Ta ((3,3)) min{2	ng 2 có vòng 1+, (2,3 20, 10,5	$(20)^{-}$, $(20)^{-}$	$(B_4:0)^+$, (1)	20 +	với ô (1,2) $u_1 = 0$ $u_2 = 7$	đây là ô	loại	0.5
Lượng điề	V u chỉnh $q=n$ ng mới bằng $A_i B_j$ $A_1:15$ $A_2:20$	$uu (2,3)$ $= \{(1, \min\{x_{34}, \text{cách tín}\} \}$	$(4)^{+}, ($	$(3,4)^{-}$ x_{12} = B_2 :	o. Ta (3,3) min{2	ng 2 có vòng	$ (20)^{-}, (20$	$(B_4: 0)$	20 + 5	với ô $(1,2)$ $u_1 = 0$	đây là ô	loại	0.5
Lượng điề	V u chỉnh $q = n$ ng mới bằng $A_i B_j$ $A_1: 15$	uu (2,3) $= \{(1, \\ \min\{x_{34}, \\ \text{cách tín} \}\}$ $= \{(1, \\ B_{1}: \\ 0 \\ 5 \\ = 5\}$	$(4)^{+}, ($	$(3,4)^{-1}$ $x_{12} = \frac{1}{2}$ $B_2 : \frac{1}{2}$ 0	o. Ta (3,3) min{2	ng 2 có vòng 1+, (2,3 20, 10,5	$(20)^{-}$, $(20)^{-}$	$(B_4:0)^+$, (1)	20 + 5	với ô (1,2) $u_1 = 0$ $u_2 = 7$	đây là ô	loại	0.5

Tìm các thế vị	0.5
$u_1 + v_1 = 0$	
$u_2 + v_2 = 0$	
$u_2 + v_3 = 0$	
$u_3 + v_3 = 0$	
$u_1 + v_4 = -7$	
$u_3 + v_4 = 0$	
Cho $u_1 = 0$ suy ra $v_4 = -7$, $v_1 = 0$, $v_3 = -7$, $v_2 = -7$, $u_2 = 7$, $u_3 = 7$.	

Tính Δ_{ij} như bảng 3

Ô vi phạm dấu hiệu tối ưu (2,1) là ô đưa vào. Ta có vòng

$$V = \{(2,1)^+, (1,1)^-, (1,4)^+, (3,4)^-, (3,3)^+, (2,3)^-\}$$

Lượng điều chỉnh $q = \min\{x_{11}, x_{34}, x_{23}\} = \min\{10, 15, 5\} = 5$. Tương ứng với ô (2,3) đây là ô loại ra ta có bảng mới bằng cách tính lại

A_i B_j	B_1 :	10	<i>B</i> ₂ :	15	B_3 :	20	B_4 :	20	
	0		-2		-6		0		$u_1 = 0$
$A_1:15$		5						10	
	0		0		-5		0		$u_2 = -5$
$A_2:20$		5		15		5			
	0		0		0		0		$u_1 = 0$
$A_3:30$						20		10	
	$v_1 =$	0	$v_2 =$	5	$v_3 =$	0	$v_4 =$	0	

Bảng 4

Vậy phương án tối ưu phải tìm là

$$X^* = \begin{bmatrix} 5 & 0 & 0 & 10 \\ 5 & 15 & 0 & 0 \\ 0 & 0 & 20 & 10 \end{bmatrix}$$

Chi phí tối ưu là F(x) = 350.

Hà Nội, ngày 15 tháng 12 năm 2011 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

PGS.TS. Nguyễn Hữu Điển