

## Why

If R corresponds to a line, and  $R^2$  to a plane, and  $R^3$  to space, does  $R^4$  correspond to anything? What of  $R^5$ ?

### **Definition**

Let n be a natural number. We call the set  $\mathbb{R}^n$  n-dimensional space (or Euclidean n-space, or real coordinate space). We call elements of  $\mathbb{R}^n$  points. We identify  $\mathbb{R}^1$  with  $\mathbb{R}$  in the obvious way.

We call the point associated with  $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$  with  $x_i = 0$  for  $1 \le i \le n$  the *origin*. We denote the origin by 0. Similarly, we denote the point x with  $x_i = 1$  for all i = 1, ..., n by 1.

### Visualization

We can not visualize n-dimensional space. Thus, our intuition for it comes from real space (see Real Space).

#### Distance

A natural notion of distance for  $\mathbb{R}^n$  generalizes that in  $\mathbb{R}^2$  and  $\mathbb{R}^3$ . We define the distance (or Euclidean distance) between  $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$  as

$$\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots+(x_n-y_n)^2}$$
.

Does this have the properties that distance has in the plane and in space? We discussed these properties It does. Denote the function which associates to  $x, y \in \mathbf{R}^n$  their distance  $d : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ . So d(x, y) is the distance between the points corresponding to x and y.

**Proposition 1.** d is non-negative, symmetric, and the distance between two points is no larger than the sum of the distances with any third object.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Future editions will include an account.

# Order

Let  $x, y \in \mathbf{R}^n$ . If  $x_i < y_i$  for all i = 1, ..., n then we say x is less than y. Likewise, if  $x_i \le y_i$  for all i = 1, ..., n then we say  $x \le y$ . Likewise for > and  $\ge$ .

# Notation

If  $x \in \mathbf{R}^n$  is less than  $y \in \mathbf{R}^n$  then we write x < y. Similarly for  $x \le y$ , x > y and  $x \ge y$ . Other notation in the literature for  $\mathbf{R}^n$  includes  $E^n$ , which is a mnemonic for "euclidean."

