ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Assignatura: Senyals i Sistemes II Primer Control T06

Data: 20 d'Octubre de 2006 Número d'identificació de la prova: 230 11485 53 0 00

Professors: J.R. Casas, J. Hernando, J.B. Mariño, E. Monte, P. Salembier

Temps: 1 h 30 min

 Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents

- Totes les marques del full de respostes s'han de fer en llapis (B, HB preferiblement)

 Les preguntes tenen com a mínim una resposta correcta i com a màxim tres. Les respostes errònies <u>resten</u> <u>punts</u>. Utilitzeu la <u>numeració de la dreta</u> (opció d'anul·lar respostes)

- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil

1. Señale cuáles de estos sistemas son invariantes:

1A:
$$y[n] = \sum_{k=0}^{L} x[n-10k]$$

1B:
$$y[n] = \sum_{k=0}^{L} x[k] a^{kn}$$

1C:
$$y[n] = x^2[n] + x[n]$$

1D:
$$y[n] = x[n^2] + x[n]$$

2. Considere los sistemas S1: y[n] = x[-n]

S2:
$$y[n] = x[3n]$$

S3:
$$y[n] = \sum_{r=-\infty}^{\infty} x[n+rP], P > 0$$

S4:
$$y[n] = x[n-2]$$
,

y señale las afirmaciones correctas:

2A:
$$S1(S2(S4(S3(x[n])))) = \sum_{r=-\infty}^{\infty} x[rP - 3n - 2]$$

2B: El sistema $S1(S2(\cdot))$ es lineal e invariante

2C: El sistema $S3(S1(\cdot))$ es estable

2D: El sistema $S4(S2(\cdot))$ no es causal

Figura 1

3. En el diagrama de la Figura 1 la frecuencia de muestreo es $F_m = 10 \,\text{kHz}$, los filtros antialiasing y reconstructor son ideales con frecuencia de corte F_A y F_R , respectivamente, y el sistema discreto presenta la respuesta impulsional $h[n] = \delta[n]$. Si la señal x(t) es una sinusoide cuya frecuencia es 3 kHz, señale las afirmaciones correctas:

3A: Si $F_A = F_R = 8$ kHz, y(t) estará compuesta por 2 sinusoides

3B: Si $F_A = 4$ kHz y $F_R = 8$ kHz, y(t) estará compuesta por 2 sinusoides

3C: Si $F_A = 8$ kHz y $F_R = 4$ kHz, y(t) estará compuesta por 2 sinusoides

3D: Si $F_A = F_R = 4$ kHz, y(t) estará compuesta por 1 sinusoide

4. En el diagrama de la Figura 1 la frecuencia de muestreo es F_m kHz, los filtros antialiasing y reconstructor son ideales con frecuencia de corte $F_A = F_R < F_m/2$ y $h[n] = \delta[n]$. Si la señal x(t) es una sinusoide cuya frecuencia es F kHz, menor que F_A , señale las afirmaciones correctas:

4A: y(t) siempre es periódica, cualquiera que sea F

4B: y[n] siempre es periódica, cualquiera que sea F

4C: x[n] es periódica con periodo F_m/F

4D: La frecuencia de x[n] es F/F_m

- 5. Dada la señal $x[n] = a^n u[n]$ (|a| < 1) y un sistema $T\{\cdot\}$ con respuesta impulsional h[n], señale las respuestas correctas:
 - **5A:** $y[n] = T\{x^2[n]\}$ tendrá un término de la forma $ka^nu[n]$, con k constante
 - **5B:** Si $h[n] = k_3 b^n u[n]$ (|b| < 1 y $b \ne a$) entonces se cumple que, $y[n] = T\{x[n]\} = k_1 a^n u[n] + k_2 b^n u[n]$ con k_1 , k_2 , k_3 constantes
 - **5C:** Si H(z) es la función de transferencia de $T\{\cdot\}$ entonces $y[n] = T\{x[n]\} = H(a)a^nu[n]$
 - **5D:** Si $h[n] = (-1)^n u[n]$ entonces y[n] será acotada $(|y[n]| < \infty)$ para toda n
- 6. Dado el sistema definido por la EDF y[n] = ay[n-1] + x[n]. Señale las respuestas correctas:
 - **6A:** Si $x[n] = \{...0, \underline{1}, 1, 1, 0, 0, ...\}$ y el sistema está en condiciones iniciales nulas, entonces la longitud de y[n] es 4
 - **6B:** El sistema asociado con la EDF es estable para toda |a| < 1
 - **6C:** Si $x[n] = \delta[n]$ y a = 1/2, entonces y[n] tendrá un término proporcional a $1/2^n$ aunque las condiciones iniciales no sean nulas
 - **6D:** Si $x[n] = \cos(2\pi f n)$ entonces existe al menos una frecuencia $f(0 \le f < 1/2)$ para la que salida de la EDF es y[n] = 0 para toda n
- 7. Indique las respuestas correctas que completan la frase: "La serie de potencias que define la transformada de Fourier de una secuencia discreta...
 - 7A: ...converge uniformemente si la secuencia es sumable en valor absoluto"
 - **7B:** ...converge cuadráticamente a una función que puede presentar discontinuidades si la secuencia es de energía finita"
 - 7C: ...converge a una función que puede presentar $\delta(\omega)$ si la secuencia es de potencia media finita"
 - **7D:** ...no converge nunca"
- 8. Indicar las propiedades correctas de la transformada de Fourier $X(e^{j\omega})$ de una secuencia x[n]:
 - 8A: Si x[n] es real y par, la transformada es par y tiene parte imaginaria nula
 - **8B:** Se cumple $X(e^{j\omega}) = X(e^{j(2\pi-\omega)})$ para cualquier secuencia x[n]
 - **8C:** $|\text{TF}\{x[n]\}| = |\text{TF}\{x[n-k]\}|$, es decir un retardo en x[n] no modifica el módulo de la transformada
 - **8D:** La transformada de $y[n] = x^2[n]$ es $Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X^2(e^{j\lambda}) d\lambda$ para cualquier secuencia x[n]
- 9. Diga qué pares de secuencia-transformada son correctas:

9A:
$$u[n] \stackrel{FT}{\longleftrightarrow} \frac{1}{1-e^{j\omega}}$$

9B:
$$u[n]-u[n-1] \xleftarrow{FT} 1$$

9C:
$$2^n u[n] \leftarrow^{FT} \frac{1}{1+2e^{j\omega}}$$

9D:
$$2^{-n}u[n] \longleftrightarrow \frac{1}{1-2^{-1}e^{-j\omega}}$$

10. Considérese la secuencia $x[n] = \{..., 0, \underline{1}, -1, 1, 0, ...\}$, cuyas muestras no representadas son nulas. A continuación, se indican distintas operaciones sobre su DFT, el número de muestras de la misma, y la secuencia y[n] resultante de aplicar la DFT inversa con el mismo número de muestras. Indique las secuencias y[n] correctas:

10A:
$$X[k] e^{-j(2\pi lN)k}$$
 $N=3$
 $y[n] = x[n]$
 $0 \le n \le N-1$

 10B: $X[k] e^{-j(2\pi lN)k}$
 $N=4$
 $y[n] = x[n-1]$
 $0 \le n \le N-1$

 10C: $X^2[k]$
 $N=6$
 $y[n] = x[n]*x[n]$
 $0 \le n \le N-1$

 10D: $X^2[k] e^{-j(2\pi lN)k}$
 $N=4$
 $y[n] = x[n-1]*x[n]$
 $0 \le n \le N-1$