Discrete Mathematics

Tapas Pandit

1 Propositional Calculus

In general, we are interested in validity of several (mathematical) statements. A statement may get complicated when it is composed of many statements. In propositional calculus, a complex statement is formed from many simple statements using propositional connectives: negation (\neg) , disjunction (a.k.a "logical or") (\lor) , conjunction (a.k.a "logical and") (\land) , conditional (\Longrightarrow) and biconditional (\Longleftrightarrow) .

A statement will have one of the two values, T (true) and F (false). For a complex statement, we have to consider *truth-functional* combinations of all the simple statements involved therein through different logical connectives. In the following, we illustrate validation of some statements.

Negation (\neg). If A is a statement, then its negation is denoted by $\neg A$. The truth-functional behavior of negation is given below using a table, called *truth table*.

A	$\neg A$
Т	F
F	Т

Disjunction (\vee). The disjunction of two statements A and B is denoted by $A \vee B$ and its truth table is given below.

A	В	$A \vee B$
Т	Т	T
T	F	T
F	Т	T
F	F	F

Disjunction can easily be extended to more than two statements and the resultant statement will be true if and only if one of them is T.

Conjunction (\land). The conjunction of two statements A and B is denoted by $A \land B$ and its truth table is given below.

A	В	$A \wedge B$
Т	Т	T
T	F	F
F	Т	F
F	F	F

Conjunction can easily be extended to more than two statements and the resultant statement will be true if and only if all of them are T.

Conditional (\Longrightarrow). The conditional connective of two statements A and B is denoted by $A\Longrightarrow B$. We would read $A\Longrightarrow B$ as "if A, then B". The statement $A\Longrightarrow B$ is F when the antecedent A is F and the consequent F is F. The truth table of F is given below.

A	В	$A \implies B$
Т	Т	Т
T	F	F
F	Т	T
F	F	Т

What can be said about the validity of the following statements?

- 1. If 1 + 1 = 2, then Plaksha University is located in Mohali, Punjab.
- 2. If $1+1\neq 2$, then Plaksha University is located in Mohali, Punjab.
- 3. If 1 + 1 = 2, then Plaksha University is located in New Delhi.
- 4. If $1+1\neq 2$, then Plaksha University is located in New Delhi.

Biconditional (\iff). The biconditional connective of two statements A and B is denoted by $A \iff B$. We would read $A \iff B$ as "A if and only if B". The statement $A \iff B$ is T when A and B have the same truth value. The truth table of $A \iff B$ is given below.

A	В	$A \Longleftrightarrow B$
Т	Т	Т
T	F	F
F	Т	F
F	F	T

Although we have already seen some statements constructed using some propositional connectives, there is a way to concretely define a statement form.

Definition 1.1. The propositional statement forms are defined recursively as follows.

- 1. All statement *letters* (capital) and such letters with numerical subscripts are statement forms.
- 2. If X and Y are statement forms, then so are $(\neg X)$, $(X \lor Y)$, $(X \land Y)$, $(X \Longrightarrow Y)$ and $(X \Longleftrightarrow Y)$.
- 3. Nothing is a statement form unless it follows from 1 and 2.

Here are some examples of statement forms: A, B_1 , C_2 , $(\neg B_2)$, $(D_{10} \land (\neg A))$, $(((\neg A) \lor B) \implies C)$, $((A \land B)) \implies (A \lor C)$ and $((A \Longleftrightarrow B) \implies ((\neg A) \land B))$. Note that for every assignment of truth values T or F to the *statement letters* that appear in a statement form, there is a truth value for the statement form. Thus, each statement form determines a *truth function* (a.k.a *boolean function*). For example, look at the truth table of the statement form $(((\neg A) \lor B) \implies C)$.

A	В	C	$\neg A$	$((\neg A) \lor B)$	$(((\neg A) \lor B) \implies C)$
Т	Т	Т	F	Т	Т
F	Т	T	Т	Т	T
T	F	Т	F	F	T
F	F	Т	Т	Т	T
T	Т	F	F	Т	F
F	Т	F	Т	Т	F
T	F	F	F	F	T
F	F	F	Т	Т	F

Remark 1.1. If there are n distinct letters involved in a statement form, then there are 2^n possible assignments of truth values to the statement letters and, hence, 2^n rows in the truth table.

If a statement always happens to be true, no matter what the truth values of its statement letters may be, then it is called a *tautology*. More concretely, it is defined as follows.

Definition 1.2 (Tautology). A statement form is a *tautology* if its corresponding truth function takes only the value T, or equivalently, if in its truth table, the column under the statement form contains only T's.

Some examples of tautology are $(A \lor (\neg A))$, $(\neg (A \land (\neg A)))$, $(A \Longleftrightarrow (\neg (\neg A)))$, $((A \land B) \Longrightarrow A)$ and $(A \Longrightarrow (A \lor B))$.

Definition 1.3 (Logically equivalent). Two statement forms \mathcal{X} and \mathcal{Y} are said to be *logically equivalent* if they have the same truth table.

For example, A and $(\neg(\neg A))$ are logically equivalent.

Exercise 1.2. Check whether the following statements are tautologies.

1.
$$(((A \Longrightarrow B) \Longrightarrow B) \Longrightarrow B)$$

2.
$$(((A \Longrightarrow B) \Longrightarrow B) \Longrightarrow A)$$

3.
$$(((A \Longrightarrow B) \Longrightarrow A) \Longrightarrow A)$$

4.
$$(((B \Longrightarrow C) \Longrightarrow (A \Longrightarrow B)) \Longrightarrow (A \Longrightarrow B))$$

5.
$$((A \lor (\neg (B \land C))) \implies ((A \Longleftrightarrow C) \lor B))$$

6.
$$(A \Longrightarrow (B \Longrightarrow (B \Longrightarrow A)))$$

7.
$$((A \Longrightarrow B) \lor (B \Longrightarrow A))$$

8.
$$((\neg(A \Longrightarrow B)) \Longrightarrow A)$$

Exercise 1.3. Check whether the following pairs are logically equivalent.

1.
$$((A \Longrightarrow B) \Longrightarrow A)$$
 and A

2.
$$(A \Longleftrightarrow B)$$
 and $((A \Longrightarrow B) \land (B \Longrightarrow A))$

3.
$$((\neg A) \lor B)$$
 and $((\neg B) \lor A)$

4.
$$(\neg(A \iff B))$$
 and $(A \iff (\neg B))$

5.
$$(A \lor (B \iff C))$$
 and $((A \lor B) \iff (A \lor C))$

2 Proofs by Contradiction

Proof by contradiction is proof strategy that proves the truth or the validity of a statement by showing that assuming the statement to be false leads to a contradiction.

Proposition 2.1. Sum of odd integer and even integer is always an odd integer.

Proof. Let o and e be odd and even integers respectively. We have to show that o + e is an odd integer. Suppose otherwise, then o + e is divisible by 2, which implies that $o + e = 2 \cdot m$ for some integer m. Then, $o = 2 \cdot m - e \implies o$ is an even integer, a contradiction. So, our assumption is wrong. Therefore, o + e is an odd integer

Proposition 2.2. Sum of two odd integers is always an even integer.

Proof. Let o_1 and o_2 be two odd integers. We have to show that $o_1 + o_2$ is an even integer. Suppose not, then $o_1 + o_2$ is an odd integer. We can write $o_1 + o_2 = 2 \cdot m + 1$ for some integer m. Also, we can write $o_2 = 2 \cdot n + 1$ for some integer n. So, we have $o_1 = 2(m - n)$ which implies that o_1 is an even integer, a contradiction. This completes the proof.

Proposition 2.3. The number of all primes is infinite.

Proof. Suppose the number of all primes are finite. Let p_1, p_2, \ldots, p_n be the list of all primes. Let $p = p_1 \cdots p_n$. Check that p + 1 is also a prime (why), which is not in the list. This is a contradiction. Therefore, the number of all primes are finite.

Proposition 2.4. Show that $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2}$ is not irrational. Then, we can write $\sqrt{2} = p/q$ for some integers p and q with gcd(p,q) = 1. So, we have $p^2 = 2 \cdot q^2 \implies p^2$ is even, which implies p is even integer. So, $4|p^2 \implies 4 \cdot q^2 \implies 2|q^2$ and hence, q^2 is even, implies q is even. So, $gcd(p,q) \neq 1$, a contradiction. This completes the proof. \Box

Proposition 2.5. Let o be an integer. Show that o + 2 is an odd integer if and only if o is an odd integer

Proof. If part. Given that o + 2 is an odd integer. We have to show that o is odd. Suppose not, then $2|o \implies 2|(o+2)$. So, o + 2 is an even integer which is a contradiction.

Converse. Given that o is an odd integer. We have to show that o+2 is odd. Suppose not, then o+2 is even. That means, 2|o which is a contradiction.

Proposition 2.6. Let A and B be two statements. Then $A \Longrightarrow B$ if and only if $\neg B \Longrightarrow \neg A$.

Proof. If part. We show that if $A \Longrightarrow B$, then $\neg B \Longrightarrow \neg A$. Given $A \Longrightarrow B$ and assume that $\neg B$ is true, that is, B is false. We have to show that $\neg A$ is true. Suppose otherwise, then A is true which implies that B is true (using $A \Longrightarrow B$). This leads to a contradiction as B is false. So, $\neg A$ false and hence, $\neg B \Longrightarrow \neg A$.

Converse. We have to show that if $\neg B \implies \neg A$, then $A \implies B$. In fact, by "if part", we have $\neg(\neg A) \implies \neg(\neg B)$. Since $\neg(\neg A)$ (resp. $\neg(\neg B)$) is equivalent to A (resp. B), the proof is done.

3 Basics of Set Theory

A set is some collection of objects. Typically, sets are written within curly braces $\{,\}$. For example, $\{2,4,6,\ldots\}$ is the set of all positive even integers. Some conventional sets are given below.

- \mathbb{R} : Set of real numbers
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ (Set of integers)
- $\mathbb{N} = \{1, 2, \ldots\}$ (Set of positive integers)

• $\mathbb{Q} = \{x \in \mathbb{R} : x = \frac{p}{q}, \text{ with } p, q \in \mathbb{Z} \text{ and } q \neq 0\}$ (Set of rational numbers)

Let us introduce some conventional notations of mathematics.

- for all: \forall
- there exists: ∃
- there exists unique: ∃!
- for $n \in \mathbb{N}$, define $[n] = \{1, 2, \dots, n\}$

Membership. Given a set A and an element a, the notation " $a \in A$ " means that "a belongs A" and the notation " $a \notin A$ " indicates that "a does not belong to A".

Subset. We say a set A is a *subset* of B (denoted by $A \subseteq B$), if every element of A is also an element of B. That is, $A \subseteq B$, if $\forall x \in A \implies x \in B$. When A is not a subset of B, we write $A \nsubseteq B$. That is, $A \nsubseteq B$, if $\exists x \in A$ such that $x \notin B$.

Equality. For any two sets A and B, A = B iff $A \subseteq B$ and $B \subseteq A$.

Empty set. A set without any element is called *empty set* and is denoted by \emptyset . So, $\emptyset = \{\}$. It is easy to check that $\emptyset \subseteq A$ for all sets A.

Cardinality. For a set A, its *cardinality*, denoted by #A or |A|, is defined to be the number of elements of A. A is called *finite set*, if $\#A \in \mathbb{N}$, otherwise, called *infinite set*.

We now briefly discuss some basic set operations.

- 1. **Union.** For any two sets A and B, $A \cup B = \{x : x \in A \text{ or } x \in B\}$. This definition can be extended to any numbers of sets.
- 2. **Intersection.** For any two sets A and B, $A \cap B = \{x : x \in A \text{ and } x \in B\}$. This definition can be extended to any numbers of sets.
- 3. **Complement.** For a set A, its complement is defined by $\overline{A} = \{x : x \notin A\}$. That is, $x \in \overline{A} \iff x \notin A$.
- 4. **Set difference/minus.** For any two sets A and B, the set minus of A and B is defined by $A \setminus B = A \cap \overline{B} = \{x : x \in A \text{ and } x \notin B\}$.
- 5. **Symmetric difference.** For any two sets A and B, their symmetric difference is defined by $A\Delta B = (A \setminus B) \cup (B \setminus A)$. In other words, $A\Delta B = (A \cup B) \setminus (A \cap B)$.

The Venn diagrams for union, intersection, complement and set and symmetric differences are given below.

Definition 3.1 (Set partition). A partition of a given set A is a collections of nonempty sets A_1, A_2, \ldots, A_k for some $k \in \mathbb{N}$ such that $A = \bigcup_{i=1}^k A_i$ and $A_i \cap A_j = \emptyset$ for any i, j with $1 \le i, j \le k$ and $i \ne j$.

It is easy to see that a set can be partitioned many ways. So, partition of a set is not unique. The above partition is called finite partition. This definition can be extended to infinite partition, if the the given set is infinite. For example, $\mathbb{N} = \bigcup_{i=1}^{\infty} A_i$, where $A_i = \{i\}$.

Next, we describe some universal laws which can be checked easily. Let A, B and C be any sets.

- Associative. $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- Commutative. $A \cup B = B \cup A$ and $A \cap B = B \cap A$. Note that in general $A \setminus B \neq B \setminus A$.
- Transitive. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- Subset. $\emptyset \subseteq A \cap B \subseteq A$.
- Complement. $A \cap \overline{A} = \emptyset$ and $\overline{\overline{A}} = A$.
- Idempotent. $A \cup A = A \cap A = A$.
- **Dominance.** $A \cap \emptyset = \emptyset$ and $A \cup \emptyset = A$.
- **Absorption.** If $A \subseteq B$, then $A \cup B = B$ and $A \cap B = A$.
- De Morgan's law. $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ and $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.
- Distributive law. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Partition. $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$. So, $A \setminus B$, $A \cap B$ and $B \setminus A$ form a partition for $A \cup B$.

Exercise 3.1. Let A, B and S be three sets such that $A, B \subseteq S$. Prove that $A \cap B = S \setminus ((S \setminus A) \cup (S \setminus B))$ and $A \cup B = S \setminus ((S \setminus A) \cap (S \setminus B))$.

Power set. Let A be a set. Then, its *power set* is defined to be the set of all subsets of A (including the empty set \emptyset and the set A itself). It is denoted by $\mathcal{P}(A)$ or 2^A , but the latter notation carries some meaningful information. Do you know what kind of information the 2nd notation carries? Let $A = \{a, b, c\}$, then its power set is $2^A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}$. In this example, you might have noticed that $|2^A| = 8 = 2^{|A|}$. In fact, it can be shown that in general $|2^A| = 2^{|A|}$ using different approaches.

3.1 Cartesian Product

The Cartesian product of two nonempty¹ sets S and T is defined as $S \times T = \{(a, b) : a \in S \text{ and } b \in T\}$. Note that here (a, b) is an order pair and $(a, b) \in S \times T$ does not mean that $(b, a) \in S \times T$. Similarly, one can define Cartesian product $S_1 \times \cdots \times S_k$ of S_1, S_2, \ldots, S_k . Note that $|S_1 \times \cdots \times S_k| = |S_1| \cdot |S_2| \cdots |S_k|$.

Definition 3.2 (Binary Relation). A binary relation between two sets S and T is subset R of $S \times T$. For any $(a,b) \in S \times T$, we say "a is R-related to b" if $(a,b) \in R$, otherwise "a is not R-related to b".

Here, S is called *domain* and T is called *codomain*. When a is \mathcal{R} -related to b and \mathcal{R} is understood from the context, we write $a\mathcal{R}b$ for simplicity. On other hand, if a and b are not related, we write $a\mathcal{R}b$.

Example 3.2. Let $S = \{1, 2, 3, 4, 5\}$ and $T = \{3, 4, 5, 6, 7, 8\}$. Let $\mathcal{R} = \{(a, b) \in S \times T : b - a = 5\}$, that is $\mathcal{R} = \{(1, 6), (2, 7), (3, 8)\}$.

¹What happens if any of S and T is empty set?