图论基础

可达性与最短通路

Lijie Wang

可汰性

反发进进

可达性与最短通路

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

引言

可达性与最短通路

Lijie Wang

可达性

很多时候,我们可能并不关心到底有多少条通路,而只关心从 v_i 到 v_j 是否存在通路,以及长度最短的通路是什么,从而有可达性以及短程线和距离的定义。

Definition

在图 G=<V,E> 中, $v_i,v_j\in V$ 。如果从 v_i 到 v_j 存在通路,则称 v_i 到 v_j 是可达的,否则称 v_i 到 v_j 不可达。规定:任何结点到自己都是可达的。

考虑: 如何判断图中两结点间是否可达?

判断图中两结点 v_i 到 v_j 是否可达的关键是判断是否存在通路,因而只要求邻接矩阵 A 及其正整数次幂 A,A^2,A^3,\cdots ,一旦发现这些矩阵中 i 行 j 列元素为非 0,则表示存在通路。

可达关系判定-引理

Lijie Wang

可达性

Theorem

在一个具有 n 个结点的图中,如果从结点 v_i 到结点 $v_j(v_i \neq v_j)$ 存在一条通路,则从 v_i 到 v_j 存在一条长度不大于 n-1 的通路.

Proof.

设 $v_{i_0}v_{i_1}\cdots v_{i_k}$ 为从 v_i 到 v_j 的长度为 k 的一条通路,其中 $v_{i_0}=v_i$, $v_{i_k}=v_j$, 此通路上有 k+1 个结点。若 $k\leqslant n-1$, 这条通路即为所求。若 k>n-1 , 则此通路上的结点数 k+1>n , 由鸽笼原理知 , 必存在一个结点在此通路中不止一次出现 , 设 $v_{i_s}=v_{i_t}$, 其中 , $0\leqslant s< t\leqslant k$ 。 去掉 v_{i_s} 到 v_{i_t} 中间的通路 , 至少去掉一条边 , 得通路 $v_{i_0}v_{i_1}\cdots v_{i_s}v_{i_{t+1}}\cdots v_{i_k}$, 此通路比原通路的长度至少小 1。 如此重复进行下去,必可得一条从 v_i 到 v_i 的长度不大于 n-1 的通路。

可达关系判定-引理

Lijie Wang

最短通路

Corollary

在一个具有 n 个结点的图中 , 如果从结点 v_i 到结点 $v_j(v_i \neq v_j)$ 存在一条通路 , 则从 v_i 到 v_i 存在一条长度不大于 n-1 的基本通路。

Theorem

在一个具有 n 个结点的图中,如果存在经过结点 v_i 回路,则存在一条经过 v_i 的长度不大于 n 的回路。

Corollary

在一个具有 n 个结点的图中,如果存在经过结点 v_i 回路,则存在一条经过 v_i 的长度不大于 n 的基本回路。

可达关系的判定定理

Lijie Wang

可达性

最短通路

Theorem

设
$$G=$$
 为线图, $V=\{v_1,v_2,\cdots,v_n\}$, $A=(a_{ij})_{n\times n}$ 为 G 的邻接矩阵, $A^m=(a_{ij}^{(m)})_{n\times n}$, $m=1,2,\cdots,n$, $B_n=(b_{ij}^{(n)})_{n\times n}=A+A^2+A^3+\cdots+A^n$ 。则有当 $v_i\neq v_j$ 时,如果 $b_{ij}^{(n)}>0$,那么从 v_i 到 v_j 可达,否则不可达。

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

可达关系的判定

可达性

$$A^2 = \left(\begin{array}{cccc} 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$A^3 = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A^{4} = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 3 & 2 & 3 & 3 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B_4 = A + A^2 + A^3 + A^4 = \begin{pmatrix} 7 & 4 & 7 & 5 \\ 7 & 4 & 7 & 7 \\ 4 & 3 & 4 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix} \bullet \text{ } \text{M v_2 } \text{ } \text{0 v_1, v_2, v_3, v_4 } \text{ } \text{a E σ L $is};$$

$$\bullet \text{ } \text{M v_3 } \text{ } \text{0 v_1, v_2, v_3, v_4 } \text{ } \text{a E σ L $is};$$

$$\bullet \text{ } \text{M v_3 } \text{ } \text{0 v_1, v_2, v_3, v_4 } \text{ } \text{a E σ L $is};$$

$$\bullet \text{ } \text{M v_4 } \text{ } \text{0 v_4 } \text{E σ L $is};$$

- 从 v₁ 到 v₁, v₂, v₃, v₄ 都是可达的;

- 从 v₄ 到 v₄ 是可达的 , 从 v₄ 到 v_1, v_2, v_3 都是不可达的.

可达性矩阵

Lijie Wang

可达性

最短通路

Definition

设 G=<V,E> 是一个线图,其中 $V=\{v_1,v_2,\cdots,v_n\}$,并假定结点已经有了从 v_1 到 v_n 的次序,称 n 阶方阵 $P=(p_{ij})_{n\times n}$ 为图 G 的 可达性矩阵(accessibility matrix),其中 $p_{ij}=\left\{\begin{array}{cc} 1 & \exists v_i \ni v_j \mapsto 0 \\ 0 & \exists v_i\end{array}\right.$

- 无向图的可达性矩阵是对称的,而有向图的可达性矩阵则不一定对称;
- ② 由前面的讨论可知,通过计算 B,就可计算出 P 中各元素,即

$$p_{ij} = \begin{cases} 1 & b_{ij}^{(n)} \neq 0 \\ 0 & b_{ii}^{(n)} = 0 \end{cases}$$
 , $(i, j = 1, 2, 3, \dots, n)$

可达性矩阵的简洁求法

Lijie Wang

可达性

Theorem

设 $G = \langle V, E \rangle$ 为线图, $A \setminus P$ 分别是 G 的邻接矩阵和可达性矩阵,则有 $P = A \vee A^{(2)} \vee A^{(3)} \vee \cdots \vee A^{(n)}$,这里, $A^{(i)}$ 表示做矩阵布尔乘法的;次幂.

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

可达性矩阵的简洁求法

可达性与最短通路

Lijie Wang

可达性

最短通路

短程线及距离

Lijie Wang

可达性

最短通路

Definition

如果 v_i 到 v_j 可达,则称长度最短的通路为从 v_i 到 v_j 的短程线,从 v_i 到 v_j 的短程线的长度称为从 v_i 到 v_j 的距离(distance),记为 $d(v_i,v_j)$ 。如果 v_i 到 v_j 不可达,则通常记为 $d(v_i,v_j)=\infty$ 。

结点间距离的性质

- **2** $d(v_i, v_i) = 0$
- ④ 无向图满足 $d(v_i, v_i) = d(v_i, v_i)$, 而有向图不行。

结点间距离的判定定理

可达性与最短通路

Lijie Wang

可达性

最短通路

Theorem

设
$$G=< V, E>$$
 为线图, $V=\{v_1,v_2,\cdots,v_n\}$, $A=(a_{ij})_{n\times n}$ 为 G 的邻接矩阵, $A^m=(a_{ij}^{(m)})_{n\times n}$, $m=1,2,\cdots,n$,
$$d(v_i,v_j)=\left\{\begin{array}{cc} \infty & \text{如果所有}a_{ij}^{(m)}\text{均为0} \\ k & k=min\{m|a_{ij}^{(m)}\neq 0\} \end{array}\right.$$
, $(m=1,2,3,\cdots,n)$ 。

显然,这里也可以使用邻接矩阵的布尔积幂来判定。

结点间距离的判定

最短通路

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$A = \left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight) \quad A^2 = \left(egin{array}{cccc} 2 & 0 & 1 & 1 \ 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

- $d(v_1, v_2) = d(v_1, v_3) = d(v_2, v_1) = 1$;

$$\bullet$$
 $d(v_1, v_4) = d(v_3, v_2) = 2;$

•
$$d(v_3, v_4) = 3$$
;

•
$$d(v_4, v_1) = d(v_4, v_2) = d(v_4, v_3) = \infty$$
.

•
$$d(v_1, v_2) = d(v_1, v_3) = d(v_2, v_1) = 1$$
;
• $d(v_2, v_3) = d(v_2, v_4) = d(v_3, v_1) = 1$;
• $d(v_1, v_4) = d(v_3, v_2) = 2$; $A^3 = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $A^4 = \begin{pmatrix} 4 & 1 & 3 & 3 \\ 3 & 2 & 3 & 3 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
• $d(v_3, v_4) = 3$;

可达性与最短通 路

Lijie Wang

可达性

最短通路

THE END, THANKS!