An Extended GHKM Algorithm for Inducing λ-SCFG

Peng Li, Yang Liu and Maosong Sun

THUNLP&CSS
Tsinghua University, China

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

Semantic Parsing

 Semantic parsing: mapping a natural language sentence into its computer executable meaning representation

NL: Every boy likes a star

MR: $\forall x.(boy(x) \rightarrow \exists y (human(y) \land pop(y) \land like(x, y)))$

Related Work

- Hand-build systems (e.g., Woods et al., 1972; Warren & Pereira, 1982)
- Learning for semantic parsing
 - Supervised methods (e.g., Wong & Mooney, 2007; Lu et al., 2008)
 - Semi-supervised methods (e.g., Kate & Mooney, 2007)
 - Unsupervised methods (e.g., Poon & Domingos, 2009 & 2010; Goldwasser et al., 2011)

Related Work

- Hand-build systems (e.g., Woods et al., 1972; Warren & Pereira, 1982)
- Learning for semantic parsing
 - Supervised methods (e.g., Wong & Mooney, 2007; Lu et al., 2008)
 - Semi-supervised methods (e.g., Kate & Mooney, 2007)
 - Unsupervised methods (e.g., Poon & Domingos, 2009 & 2010; Goldwasser et al., 2011)

Supervised Methods

- Inductive logic programming based methods (e.g., Zelle & Mooney, 1996; Tang & Mooney, 2001)
- String kernel based methods (e.g., Kate & Mooney, 2006)
- Grammar based methods
 - PCFG (e.g., Ge & Mooney, 2005)
 - SCFG (e.g., Wong & Mooney, 2006 & 2007)
 - CCG (e.g., Zettlemoyer & Collins, 2005 & 2007; Kwiatkowski et al., 2010 & 2011)
 - Hybrid tree (e.g., Lu et al., 2008)
 - Tree transducer (Jones et al., 2012)

Supervised Methods

- Inductive logic programming based methods (e.g., Zelle & Mooney, 1996; Tang & Mooney, 2001)
- String kernel based methods (e.g., Kate & Mooney, 2006)
- Grammar based methods
 - PCFG (e.g., Ge & Mooney, 2005)
 - SCFG (e.g., Wong & Mooney, 2006 & 2007)
 - CCG (e.g., Zettlemoyer & Collins, 2005 & 2007; Kwiatkowski et al., 2010 & 2011)
 - Hybrid tree (e.g., Lu et al., 2008)
 - Tree transducer (Jones et al., 2012)

Context Free Grammar (CFG)

 A formal grammar in which every production rule is of the following form

Context Free Grammar (CFG)

Derivation example

Derivation

$$S \rightarrow X$$

- \rightarrow Every X
- \rightarrow Every $X_1 X_2$
- \rightarrow Every boy X_2
- \rightarrow Every boy X_2 a star
- → Every boy likes a star

CFG Rules

$$r_1: S \rightarrow X$$

 $r_2: X \rightarrow Every X$
 $r_3: X \rightarrow X_1 X_2$
 $r_4: X \rightarrow boy$
 $r_5: X \rightarrow X \ a \ star$
 $r_6: X \rightarrow likes$

Synchronous Context Free Grammar (SCFG)

Synchronous Context Free Grammar (SCFG)

Two strings can be generated synchronously

$$S \rightarrow < X, X >$$

 $\rightarrow < Every X, 每 \uparrow X >$
 $\rightarrow < Every X_1 X_2, 每 \uparrow X_1 X_2 >$

How to use SCFG to handle logical forms?

λ-calculus

- A formal system in mathematical logic for expressing computation by way of variable binding and substitution
 - λ -expression: $\lambda x. \lambda y. borders(y, x)$
 - β -conversion: bound variable substitution $\lambda x. \lambda y. borders(y, x)(texas) = \lambda y. borders(y, texas)$
 - α-conversion: bound variable renaming

```
\lambda x.\lambda y.borders(y, x) = \lambda z.\lambda y.borders(y, z)
```

λ-SCFG: SCFG+λ-calculus

- Reducing semantic parsing problem to SCFG parsing problem
- Using λ-calculus to handle semantic specific phenomenon
- Rule example
 - $X \rightarrow \langle Every X_1, \lambda f. \forall x (f(x)) \triangleleft X_1 \rangle$

λ-SCFG: SCFG+λ-calculus

NL: Every boy likes a star

```
r_1: S \to \langle X_1, X_1 \rangle
r_2: X \rightarrow < Every X_1, \lambda f. \forall x (f(x)) \triangleleft X_1 >
r_3: X \rightarrow \langle X_1 X_2, \lambda f. \lambda g. \lambda x. f(x) \rightarrow g(x) \triangleleft X_1 \triangleleft X_2 \rangle
r_4: X \rightarrow \langle boy, \lambda x.boy(x) \rangle
r_5: X \rightarrow \langle X_1, \lambda f, \lambda x, \exists y (f(x, y)) \triangleleft X_1 \rangle
r_6: X \rightarrow \langle X_1 \text{ a star}, \lambda f. \lambda x. \lambda y. human(y) \wedge pop(y) \wedge f(x,y) \triangleleft X_1 \rangle
r_7: X \rightarrow \langle like, \lambda x. \lambda y. like(x,y) \rangle
< S_1, S_1 >
\rightarrow \langle X_2, X_2 \rangle
                                                                                                                                                                            (r_1)
\rightarrow < Every X_3, \lambda f. \forall x. (f(x)) \triangleleft X_3 >
                                                                                                                                                                            (r_2)
\rightarrow < Every X_4 X_5, \lambda f. \lambda g. \forall x.(f(x) \rightarrow g(x)) \triangleleft X_4 \triangleleft X_5 >
                                                                                                                                                                            (r_3)
 \rightarrow < Every boy X_5, \lambda g. \forall x. (boy (x) \rightarrow g(x)) \triangleleft X_5 >
                                                                                                                                                                            (r_{4})
 \rightarrow < Every boy X_6, \lambda f. \forall x. (boy (x) \rightarrow \exists y (f(x, y))) \triangleleft X_6 >
                                                                                                                                                                            (r_5)
 \rightarrow < Every boy X_7 a star, \lambda f. \forall x. (boy(x) \rightarrow \exists y (human(y) \land pop(y) \land f(x, y))) \triangleleft X_7 > (r_6)
 \rightarrow < Every boy likes a star, \forall x.(boy(x) \rightarrow \exists y (human(y) \land pop(y) \land like(x, y))) >
                                                                                                                                                                           (r_7)
```

GHKM

 The GHKM algorithm extracts STSG rules from aligned tree-string pairs

(Galley et al., 2004)

GHKM

 The GHKM algorithm extracts STSG rules from aligned tree-string pairs

Our work

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

Overview

NL: Every boy likes a star

MR: $\forall x.(boy(x) \rightarrow \exists y (human(y) \land pop(y) \land like(x, y)))$

GHKM Rule Extractor

$$X \rightarrow < Every X_1, \lambda f. \forall x (f(x)) \triangleleft X_1 > X \rightarrow < boy, \lambda x. boy (x) >$$

Semantic Parser

Rule Extraction Algorithm

- Outline
 - 1. Building training examples
 - 1. Transforming logical forms to trees
 - Aligning trees with sentences
 - Identifying frontier nodes
 - 3. Extracting minimal rules
 - 4. Extracting composed rules

NL: Every boy likes a star

MR: $\forall x.(boy(x) \rightarrow \exists y (human(y) \land pop(y) \land like(x, y)))$

type	expression	expression tree	
variable	x	(x)	
atomic predicate	$p(x_1,\ldots,x_n)$	$(p(x_1)(x_n))$	
complex predicate	$p(P_1(x),\ldots,P_n(x))$	$(p(P_1(x))(P_n(x)))$	
universal quantifier	$\forall x P(x)$	$(\forall x (P(x)))$	
existential quantifier	$\exists x P(x)$	$(\exists x (P(x)))$	
λ operator	$\lambda x.P(x)$	$(\lambda x (P(x)))$	
negation operator	$\neg P(x)$	$(\neg (P(x)))$	
conjunction operator	$P_1(x) \wedge \cdots \wedge P_n(x)$	$(\land (P_1(x)) \dots (P_n(x)))$	
disjunction operator	$P_1(x) \vee \cdots \vee P_n(x)$	$(\vee (P_1(x))\dots(P_n(x)))$	
implication operator	$P_1(x) \to P_2(x)$	$(\rightarrow (P_1(x)) (P_2(x)))$	
biconditional operator	$P_1(x) \leftrightarrow P_2(x)$	$(\leftrightarrow (P_1(x))(P_2(x)))$	

 $\forall x.(boy(x) \rightarrow \exists y (human(y) \land pop(y) \land like(x, y)))$

Identifying Frontier Nodes

Identifying Frontier Nodes

Extracting minimal rules

Composed Rule Extraction

$$X \rightarrow \langle X_1 X_2, \lambda f. \lambda g. \lambda x. f(x) \rightarrow g(x) \triangleleft X_1 \triangleleft X_2 \rangle$$

 $X \rightarrow \langle boy, \lambda x. boy(x) \rangle$
 $+ X \rightarrow \langle X_1, \lambda f. \lambda x. \exists y (f(x, y)) \triangleleft X_1 \rangle$

$$= X \rightarrow \langle boy X_1, \lambda f. \lambda x. boy(x) \rightarrow \exists y (f(x, y)) \triangleleft X_1 \rangle$$

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

Modeling

Log-linear model + MERT training

$$w(D) = \prod_{i=1}^{3} \prod_{r \in D} h_i(r)^{\lambda_i} \times h_4(D)^{\lambda_4} \times h_5(D)^{\lambda_5}$$

$$h_1(X \to \langle s, e \rangle) = p(e \mid s) \qquad h_4(X \to \langle s, e \rangle) = p_s(e(D))$$

$$h_2(X \to \langle s, e \rangle) = p_{lex}(s \mid e) \qquad h_5(X \to \langle s, e \rangle) = \exp(|D|)$$

$$h_3(X \to \langle s, e \rangle) = p_{lex}(e \mid s)$$

Target

$$\hat{e} = e \left(\underset{D \text{ s.t. } s(D) = s}{\operatorname{argmax}} w(D) \right)$$

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

- Dataset: GEOQUERY
 - 880 English questions with corresponding Prolog logical forms

- Dataset: GEOQUERY
 - 880 English questions with corresponding Prolog logical forms
- Evaluation metrics

$$precision = \frac{|C|}{|G|}, recall = \frac{|C|}{|T|},$$
$$F - measure = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

System	Р	R	F					
Independent Test Set								
Z&C 2005	96.3 79.3		87.0					
Z&C 2007	95.5	83.2	88.9					
Kwiatkowksi, et al. (2010)	94.1	85.0	89.3					
Cross Validation Results								
Kate <i>et al</i> . (2005)	89.0	54.1	67.3					
Wong and Mooney (2006)	87.2	74.8	80.5					
Kate and Mooney (2006)	93.3	71.7	81.1					
Lu <i>et al.</i> (2008)	89.3	81.5	85.2					
Ge and Mooney (2005)	95.5	77.2	85.4					
Wong and Mooney (2007)	92.0	86.6	89.2					
this work	93.0	87.6	90.2					

F-measure for different languages

System	en	ge	el	th
Wong and Mooney (2006)	77.7	74.9	78.6	75.0
Lu <i>et al.</i> (2008)	81.0	68.5	74.6	76.7
Kwiatkowksi, et al. (2010)	82.1	<i>75.0</i>	73.7	66.4
Jones <i>et al</i> . (2005)	79.3	74.6	75.4	78.2
this work	84.2	74.6	79.4	76.7

^{*} en - English, ge - German, el - Greek, th - Thai

Advantages

- Feasible to extract rules with varying granularities in a principled way
 - The widely used dataset only has 880 training examples
- Alleviating the data sparseness problem
 - Treating atomic logical form tokens as tree nodes instead of context free grammar (CFG) production
- Robust to the nonisomorphism between NL sentences and logical forms

Outline

- Background
- Rule extraction algorithm
- Modeling
- Experiments
- Conclusion

Conclusion

- We have presented an extended GHKM algorithm for inducing λ-SCFG and achieved state-of-the-art performance
- Future work
 - Better alignment model
 - Investigate tree binarization to further improve rule coverage
 - Use EM or Monte Carlo methods to better estimate λ-SCFG rule probabilities