14. Zadania

Zadanie 14.1.

Z charakterystyki prądowo-napięciowej diody półprzewodnikowej typu 1N4148 pracującej w temperaturze –40 0 C odczytano współrzędne trzech punktów: Q₁(50 μ A, 0,6 V), Q₂(500 μ A, 0,7 V), Q₃(2 mA, 0,75 V). Oszacować współczynnik emisji n oraz prąd wsteczny I_S w modelu Shockleya.

Odp.
$$I_S \approx 5 \cdot 10^{-11} \text{ A, n} \approx 1.7$$

Zadanie 14.2.

Dioda półprzewodnikowa pracuje w stałej temperaturze 27 $^{\circ}$ C. Obliczyć rezystancję dynamiczną diody r_D , jeżeli prąd przewodzenia $I_F=100$ mA, prąd wsteczny $I_S=10^{-14}$ A. Dane: $e=1,602\cdot10^{-19}$ C, $k=1,38\cdot10^{-23}$ J/K

Odp. 0,26 Ω

Zadanie 14.3.

Krzemowa dioda prostownicza pracuje w temperaturze 37° C i przewodzi prąd $I_F = 50$ mA. O ile woltów należy zmienić napięcie na diodzie, aby prąd I_F wzrósł 10-krotnie. Dane: $I_S = 1$ nA; $k = 1,38\cdot10^{-23}$ J/K; $e = 1,602\cdot10^{-19}$ C; n = 1.

Odp.
$$\Delta U_F = 61,41 \text{ mV}$$

Zadanie 14.4.

Wyznaczyć zmianę napięcia na przewodzącej prąd stały ($I_F = 5$ mA) diodzie krzemowej, jeżeli temperatura złącza zmieniła się od $T_1 = 280$ K do $T_2 = 320$ K, a prąd wsteczny ma wartość $I_S = 4 \cdot 10^{-14}$ A.

Odp.
$$\Delta U_F = -71,7 \text{ mV}$$

Zadanie 14.5.

Na podstawie charakterystyk diody prostowniczej typu 1N4148 przedstawionych na rys.14.1 wyznaczyć parametry modelu dwuodcinkowego: napięcie progu załączenia U_{F0} oraz rezystancję dynamiczną r_D diody.

Rys.14.1.

Zadanie 14.6.

Wiedząc, że w tranzystorze bipolarnym $I_C = \alpha_0 \cdot I_E + I_T$, gdzie I_T jest prądem zerowym tranzystora, wykazać, że prądy zerowe tranzystora spełniają zależność $I_{CE0} = (\beta_0 + 1)I_{CB0}$.

Zadanie 14.7.

W układach jak na rys. 14.2., w temperaturze otoczenia około 300 K, dla tranzystora bipolarnego typu npn, wykonano pomiary prądów $I_E=5,05$ pA i $I_C=5,02$ pA. Korzystając z modelu Ebersa-Molla obliczyć współczynniki wzmocnienia prądowego α_N oraz β_N tego tranzystora.

Odp. $\alpha_N = 0.9941$, $\beta_N = 167$

Zadanie 14.8.

W układach jak na rys. 14.3., w temperaturze otoczenia około 300 K, dla tranzystora bipolarnego typu pnp, wykonano pomiary prądów $I_E = 4,06$ pA i $I_C = 8,02$ pA. Korzystając z modelu Ebersa-Molla obliczyć współczynniki wzmocnienia prądowego α_I oraz β_I tego tranzystora.

Odp. $\alpha_1 = 0,5062, \beta_1 = 1,025$

Zadanie 14.9.

Na rys. 14.4 przedstawiono charakterystyki wyjściowe tranzystora unipolarnego JFET z kanałem typu p.

Rys.14.4.

Narysować charakterystyki bramkowe $I_D = f(U_{GS})$ dla tego tranzystora, dla $U_{DS1} = -2$ V i $U_{DS2} = -5$ V. Obliczyć wartość współczynnika nachylenia S charakterystyki bramkowej i rezystancję dynamiczną r_{DS} w punkcie $U_{GS} = 1,5$ V, $I_D = -10$ mA.

Odp. $S \approx 5.9$ mA/V, $r_{DS} \approx 1.25$ k Ω

Zadanie 14.10.

Obliczyć wartość prądu I_{DSS} i napięcia U_P , w modelu tranzystora MOSFET z kanałem typu n, jeżeli znane są dwa punkty pomiarowe z zakresu pracy nieliniowej (stan nasycenia) przy napięciu $U_{DS} = 5$ V, $Q1(I_{D1} = 0.2 \text{ mA}, U_{GS1} = 3 \text{ V})$ oraz $Q2(I_{D2} = 1 \text{ mA}, U_{GS2} = 5 \text{ V})$.

Odp. $U_P = 1,38 \text{ V}, I_{DSS} = 0,28 \text{ mA}$