תכנון וניתוח אלגוריתמים הרצאה 1

פרק 1: מודל התכנון הליניארי ©Dr Reuven Hotoveli

- על-ידי רבים כאחת ההתפתחויות החשובות בתחום על-ידי רבים כאחת ההתפתחויות החשובות בתחום המתמטיקה במאה העשרים.
 - מהו טבעו של כלי זה, ולפתרונן של אילו בעיות ♥ הוא נועד?
 - ◆תשובה לשאלה זו תינתן במהלך הדוגמאות שתוצגנה בהמשך, אולם נקדים להן תיאור מילולי קצר.

- ◆היישום הנפוץ ביותר של תכנון ליניארי הוא פתרון בעיות הכרוכות:
 - סבהקצאה הטובה ביותר ◆
 - הלוקה אופטימלית של משאבים מוגבלים בין פעילויות שונות המתחרות על אותם משאבים.

- תיאור זה מתאים למגוון רחב של מצבים, כגון :
 - ס הקצאת אמצעי ייצור למוצרים שונים ◆
 - ♦ הקצאת משאבים לאומיים לצרכים מקומיים
 - ◆ תכנוני הסעות והובלות
 - תכנון חקלאי ♦
 - .תכנון טיפולים רפואיים ועוד

- בתכנון ליניארי משתמשים במודל מתמטי כדי לתאר את הבעיה הנדונה.
- משמעות התואר ליניארי היא שכל הפונקציות המתמטיות, המופיעות במודל, חייבות להיות פונקציות ליניאריות.
- ♦לעיתים משתמשים במונח תכנות ליניארי במקום תכנון ליניארי, אולם אין לראות בכך קשר לתכנות

- ▶תכנון ליניארי עוסק בתכנון פעילויות שמביא לקבלת תוצאה אופטימלית – תוצאה המשיגה את המטרה המוגדרת (על-ידי המודל המתמטי) בצורה הטובה ביותר מבין החלופות האפשריות.
 - הקצאת משאבים היא אמנם היישום הנפוץ ביותרשל תכנון ליניארי, אך ללא ספק אין היא היישוםהיחיד.

- ◆כל בעיה שניתן לתאר באמצעות מודל מתמטי, המתאים למבנה הכללי של מודל תכנון ליניארי, היא בעיית תכנון ליניארי.
 - נפתח את הפרק הנוכחי בפיתוח דוגמה פשוטה האופיינית לבעיית תכנון ליניארי.
 - ▶דוגמה זו קטנה במידה המאפשרת לפתור אותה ישירות, בצורה גרפית.

1.1 דוגמה לבעיית תכנון ליניארי (תיאור מילולי)

◆לאחר הצגת הפתרון הגרפי של הבעיה, נציג את הצורה הכללית של מודל תכנון ליניארי ואת ההנחות הבסיסיות שלו.

♥דוגמא

מפעל קטן לייצור גבינות מייצר שני סוגי גבינות:
גבינה רגילה וגבינת שמנת.

- ▶חומרי הגלם העיקריים המשמשים לייצור שני סוגי
 גבינות אלה הם זהים: שמנת וחלב, אך כמות חומרי
 הגלם בכל סוג גבינה שונה
 - 200 לייצור ק"ג אחד של גבינה רגילה דרושים \$\
 מיליליטר שמנת ו-800 מיליליטר חלב
 - 300 אילו לייצור ק"ג אחד של גבינת שמנת דרושים 300 מיליליטר שמנת ו-700 מיליליטר חלב.

- ▶הרווח של המפעל ממכירת ק"ג אחד של גבינה
 רגילה הוא 2₪, וממכירת ק"ג אחד של גבינת שמנת
 הוא 4₪.
- אילו התאפשר הדבר, המפעל היה מייצר גבינה בכל כמות שהשוק דורש, אך מסיבות שונות יכול המפעל לרכוש בכל יום רק 180,000 מיליליטר שמנת 180,000 מיליליטר חלב.

- ▶הבעיה העומדת בפני מנהל המפעל היא פשוטה:
 אילו כמויות של שני המוצרים עליו לייצר, בתנאים הנתונים, כדי שרווחיו יהיו הגבוהים ביותר האפשריים?
 - ◆הבה נתבונן היטב בבעיה שיש למנהל מפעל הגבינות.

- ▶הוא צריך למצוא את הצירוף המתאים של כמויות הייצור של שני מוצריו, שיבטיח למפעל רווח מקסימלי.
 - →אבל תהליך הייצור כפוף למגבלות מסוימות מגבלות חומרי הגלם שהוא יכול להשיג מדי יום.

א. הגדרת משתני החלטה

- תחילה עלינו לבחור משתנים שייצגו את הכמויות שתיוצרנה מכל סוג גבינה.
- לה הרגילה הרגילה בינה הכמות (בק"ג) של הגבינה הרגילה שתיוצר מדי יום שתיוצר מדי יום הרגילה שתיוצר מדי יום אור מדי יום הרגילה שתיוצר מדי יום הרגילה שתיומים הרג
 - ב- X_2 את הכמות (בק"ג) של גבינת השמנת שתיוצר מדי יום.

- ו- X_2 נקראים משתני ההחלטה של המודל. $X_1 lacktriangle$
- באמצעות המודל צריך מנהל המפעל להחליט אילו כמויות (X_2 ו- X_1) הוא צריך לייצר (כדי להגיע לרווח מקסימלי כפוף לאילוצים הנתונים).

- מנתוני הבעיה למדנו שהרווח מכל ק"ג גבינה רגילה הוא 2₪
- לכן, אם נייצר X_1 ק"ג גבינה רגילה ביום, נרוויח לכן, אם נייצר X_1 ק"ג גבינה רגילה ביום, נרוויח ביום, $2X_1$

:ביטוי זה ב-Z, ונקבל

$$(1) \quad Z = 2X_1 + 4X_2$$

- ביטוי זה הוא פונקציית המטרה.
- סהמטרה היא להביא למקסימום את הביטוי הזה

ג. ניסוח האילוצים

◆נתבונן במגבלות במסגרתן פועל המפעל.

- X_2 -ו X_1 נעבור לניסוח האילוצים החלים על X_1 ו- X_1 (כמויות הייצור).
- על הכמות המקסימלית של שמנת באילוץ על הכמות המקסימלית של שמנת שניתן לרכוש יומיום.
- -כדי לייצר X_1 אבינה רגילה יש צורך ב X_1 מיליליטר שמנת, וכדי לייצר X_2 ק"ג X_2 מיליליטר שמנת אורך ב X_2 מיליליטר שמנת. גבינת שמנת יש צורך ב X_2 מיליליטר שמנת.

(2) 200X₁ + 300X₂
 © כזכור, כמות השמנת המיוצגת על-ידי משוואה
 (2) מוגבלת ל-180,000 מיליליטר.

יהויון הזה: ♦לפיכך חייב להתקיים אי-השוויון הזה:

$$(3) \quad 200X_1 + 300X_2 \le 180,000$$

♦ לפיכך, כמות החלב הכוללת לה נזדקק תהיה:

 $(4) \quad 800X_1 + 700X_2$

◆בגלל מגבלת כמות החלב העומדת לרשותנו, חייב להתקיים אי-השוויון הזה:

 $(5) \quad 800X_1 + 700X_2 \le 560,000$

ד. אילוצי אי-שליליות

ברור לנו כי לא נייצר כמויות שליליות של מוצר כלשהו. כלומר, חייבים להתקיים אי-השוויונים האלה:

(6)
$$X_1 \ge 0$$
 , $X_2 \ge 0$

אי-שוויונים אלה נקראים אילוצי אי-שליליות.

Maximize
$$Z = 2X_1 + 4X_2$$

כפוף לאילוצים:

Subject to:

$$200X_1 + 300X_2 \le 180,000$$

 $800X_1 + 700X_2 \le 560,000$
 $X_1 \ge 0$, $X_2 \ge 0$

- יוהי דוגמה אופיינית לבעיית תכנון ליניארי.
- ♦לעיתים קרובות נוח יותר לרכז את כל נתוני הבעיה בטבלה אחת. במקרה שלפנינו הטבלה תיראה כד:

גבינה רגילה X_1	$oldsymbol{k}$ גבינת שמנת $oldsymbol{X}_2$	הגבלה	
2	4	1	רווח (שייח לקייג)
200	300	180,000	שמנת (מיליליטר)
800	700	560,000	חלב (מיליליטר)

הנה דוגמה לפתרון אפשרי לבעיה, כלומר פתרון $X_1 = 300$ המקיים את האילוצים: $X_2 = 400$ ו- $X_1 = 300$ המקיים את הערכים של X_1, X_2 באילוצים X_1, X_2 השונים, נראה שהם מתקיימים.

 $200*300+300*400 = 180,000 \le 180,000$

:באילוץ על החלב נקבל ♦

 $800*300+700*400=520,000 \le 560,000$

$$X_2$$
= 400 - ו X_1 = 300 אם נציב את הערכים $(Z=2X_1+4X_2)$ נקבל בפונקצית המטרה $Z=2200$

- כתרון אפשרי זה אינו אופטימלי, כי קיימים פתרונות אפשריים טובים יותר.
- $X_1 = 150$ לדוגמה, פתרון אפשרי טוב יותר יהיה $X_1 = 150$ ו- $X_2 = 500$ בדקו שפתרון זה מקיים את $X_2 = 500$.
 - ערך פונקצית המטרה במקרה זה יהיה ightharpoonup ערך פונקצית המטרה במקרה Z=2300

◆ כדי לתאר את תחום הפתרונות האפשריים נוח מאד להיעזר באיור גרפי (ראו את האיור בשקופית הבאה).

- כתחום הפתרונות האפשריים לבעיה הוא האזור המקווקו שחסום על-ידי שני הישרים שמייצגים את האילוצים.
 - ◆לכל אילוץ מוצמד חץ המראה את הכיוון האפשרי לפתרונות שמציב האילוץ.
 - אפשר להוכיח שהמקסימום של פונקצית המטרה אפשר להוכיח שהמקסימום א• . $X_2=600\,$ -ו $X_1=0\,$ שבה שבה שבה כנקודה שבה

- ◆כלומר, הרווח המקסימלי של בעל מפעל הגבינות יתקבל אם הוא ייצר 600 ק"ג גבינת שמנת בלבד (ולא ייצר בכלל גבינה רגילה).
 - בכל נקודה אחרת בתחום הפתרונות האפשריים מתקבל ערך נמוך יותר של פונקצית המטרה.

- •הבעיה שהצגנו היא דוגמה לבעיית החלטה.
 - בבעיה מסוג זה יש לבחור משתני החלטה
 - ♦ שיקיימו את כל האילוצים
 - יוביאו לאופטימום את פונקצית המטרה ♦
- ◆ כלומר, יש לבחור פתרון אפשרי אופטימלי.

- בתכנון ליניארי כל קבוצת ערכים של משתני החלטה תיקרא פתרון, גם אם אינה עונה על אילוצי הבעיה.
 - בתכנון ליניארי אנו מבחינים בין סוגים שונים של פתרונות, כמפורט להלן.
 - הוא פתרון אפשרי (Feasible Solution) הוא פתרון אפשרי המקיים את כל אילוצי הבעיה.

- אהפתרון האפשרי שהוצג באיור שבשקופית 28 סהפתרון האפשרי $X_2 = 500$ -ו $X_1 = 150$ הוא
- ואינו $X_2 = 800$ ו ו- $X_1 = 0$ הוא פתרון שאינו אפשרי.
 - שאוסף כל הפתרונות האפשריים נקרא התחום האפשרי או תחום הפתרונות האפשרי.
- באיור שבשקופית 28 התחום האפשרי הוא התחום . המקווקו.

16.01.2008

- כתרון אופטימלי (Optimal Solution) הוא פתרון אפשרי הנותן את הערך הטוב ביותר פתרון אפשרי הנותן את הערך הטוב ביותר לפונקצית המטרה.
- כלומר, פתרון אופטימלי נותן את הערך הקטן ביותר עבור בעיית מינימום, או את הערך הגדול ביותר עבור בעיית מקסימום.

- בדוגמה שראינו, הפתרון האופטימלי התקבל בקודקוד של התחום האפשרי.
- תופעה זו של פתרון אופטימלי בקודקוד אינה מקרית, והיא נובעת מהסיבה הזו:
- כאשר יש למצוא נקודת מינימום או מקסימום של פונקצית מטרה ליניארית, ככל שנתקדם בכיוון העלייה של הפונקציה או בכיוון הירידה שלה, נקבל פתרון טוב יותר.

1.3 מרכיבי מודל התכנון הליניארי

- בעיית תכנון ליניארי טיפוסית כוללת שלושה מרכיבים עיקריים:
 - ⇒משתני החלטה;
 - ◊ פונקצית המטרה (של משתני ההחלטה);
 - .(על משתני ההחלטה).

באופן כללי: כאשר נעסוק בבעיות חישוב רווח,
 אלה תהיינה בעיות שפונקצית המטרה שלהן היא
 מקסימום, ואילו כאשר נעסוק בבעיות חישוב
 הוצאות אלה תהיינה בעיות שפונקצית המטרה
 שלהן תהיה מינימום.

- ▶האילוצים על משתני ההחלטה הם עובדות המונעות ממקבל ההחלטה לבחור פתרונות מסוימים.
- אילוצים אלה עלולים להיות מגבלות על כמות אמצעי הייצור, כמו: חומרי-גלם, זמן ותקציב (בדוגמה שלנו − מגבלות על כמויות השמנת והחלב שניתן להשיג).

1.4 ההנחות עליהן מבוסס מודל התכנון הליניארי

- ▶המאפיינים המתמטיים של מרכיבי מודל התכנון הליניארי הם:
 - ;פונקצית מטרה ליניארית
 - הפתרון כולל מציאת מינימום או מקסימום של פונקצית המטרה;
- ◆ האילוצים על משתני ההחלטה הם משוואות ליניאריות.

1.4.1 פונקצית מטרה ליניארית

$$Z = 3X_1 + 2X_2 + 5$$

$$Z = 5X_1 - 3X_2 - 7$$

- 1 משתני הפונקציות (X_1) ו- X_1) הם בחזקת \bullet
- מבנה הפונקציה הוא סכום של משתני הפונקציה, מוכפלים בקבוע (שיכול להיות גם שלילי) ועוד קבוע חופשי (שגם הוא יכול להיות שלילי).

 $Z = 3X_1 - 6$:הליניארית

- ◆מודל התכנון הליניארי מתאים לבעיות בהן צריך למצוא מינימום או מקסימום של פונקצית המטרה.
 - .1.3 כתבונן בגרף הפונקציה הליניארית באיור €.
- נניח כי נדרשנו למצוא נקודת מינימום של פונקצית אניח כי נדרשנו למצוא לאילוץ $X_1 \geq 3$.
 - במקרה זה, נקודת המינימום של פונקצית המטרה המינימום אורה זה, נקודת המינימום של פונקצית המטרה תהיה כמובן בנקודה $X_1=3$

מדוע?) □

1.4.3 האילוצים על משתני ההחלטה הם ליניאריים

- ◆ כאשר יש כמה אילוצים על משתני ההחלטה, תחום הפתרונות האפשריים הוא חיתוך התחומים המתקבלים מכל אילוץ כזה
 - ♦ או, לשון אחרת, אוסף הנקודות המופיעות בתחומים האפשריים של כל האילוצים.
- $2X_1 + X_2 2 \le 0$ ניקח לדוגמה את המשוואה הליניארית:
 - איור 1.4 מתאר את האילוץ על הפתרון הנתון על-ידי ◆ משוואה זו:

בצד אחד נמצאות כל הנקודות עבורן

$$2X_1 + X_2 - 2 < 0$$

שני נמצאות כל הנקודות עבורן סובצד שני נמצאות כל

$$.2X_1 + X_2 - 2 > 0$$

- נשאלת השאלה: ◆
- ?איזה חלק מהמישור הוא תחום הפתרונות האפשריים
 - שיטה פשוטה לבחירת התחום האפשרי היא:
- נבדוק את הנקודה (0,0) . נקבל את הביטוי ≥ 0 שהוא כמובן ביטוי אמת.
 - ♦ לכן, הנקודה (0,0) נמצאת בתחום הפתרונות האפשריים
 - ▶ החץ המופיע באיור מראה את כיוון התחום האפשרי של אילוץ זה.
 - סימן השוויון במשוואה הוא כולל גם את הקו הישר עצמו.

תחום הפתרונות האפשריים נקבע על-ידי כמה אילוצים ליניאריים

◆התחום האפשרי הוא התחום המשותף לכל האילוצים על הפתרון. נניח לדוגמה, כי בבעיית החלטה מסוימת נתונים האילוצים האלה:

1.
$$X_2 + X_1 \le 2$$

2.
$$X_1 - X_2 \le 1$$

3.
$$X_1 \ge 0$$

4.
$$X_2 \ge 0$$

- ארבע המשוואות מייצגות את האילוצים על משתני ההחלטה.
 - הן יוצרות ארבעה קווים ישרים ◆
 - ◆כל אחד מהם מחלק את המישור לשני חלקים.
- ▶חלק אחד הוא תחום הפתרונות האפשריים, והחלקהשני הוא תחום הפתרונות שנפסלו על-ידי האילוץ.

$$X_2+X_1\leq 2$$

$$X_1-X_2 \le 1$$

תחום הפתרונות האפשריים המוגדר ע"י 4 האי-שוויונות

- ◆התחום הסגור מכיל בתוכו את כל הנקודות שמציינות פתרונות אפשריים לבעיית ההחלטה.
 - מתוך תחום זה יש לבחור את הנקודה בעלת הערך הטוב ביותר על-פי פונקצית המטרה הנתונה בבעיה.
- הפתרון של בעיית תכנון ליניארי מתחלק אם-כן לשני שלבים :

- 1. הגדרת התחום האפשרי (קבוצת כל הפתרונות האפשריים);
- 2. בחירת פתרון אופטימלי (בחירת הפתרון האפשרי הטוב ביותר).

- דוגמה 1.1 תכנון חקלאי
- ▶חקלאי מגדל לאורך שנים מלפפונים ועגבניות בשדה ששטחו 30 דונם.
- ◆השנה, לקראת הסתיו עליו להחליט כמה דונם יקצה לעגבניות וכמה יקצה למלפפונים.
 - ♦להלן ניתוח של גידוליו בשנים האחרונות:

- עקב הבצורת בשנים האחרונות הוקצבה לחקלאי, לתקופת הגידול הנוכחית, מכסת מים של 450 קוב;
 - ▶האחראי על השיווק במושב דורש להקצות לפחות▶ דונם לגידול המלפפונים על כל 3 דונם לגידולעגבניות.
 - •נסחו את הבעיה כבעיית תכנון ליניארי.
 - 1.1 ספתרון

▶החקלאי צריך להחליט כמה דונם יקצה לכל אחד משני הגידולים, לפיכך משתני ההחלטה שנבחר יהיו כמספר הדונמים המוקצים לכל גידול. נגדיר:

;מספר הדונמים המוקצים לעגבניות – X_1

מספר הדונמים המוקצים למלפפונים. $-X_2$

- כונקצית המטרה היא הפונקציה המחשבת את שיעור הרווח של החקלאי:
- $Z = 3.1500X_1 + 4.600X_2$
- כופלת את התפוקה לדונם ברווח לטון במספר הדונמים המוקצים לכל גידול שהם משתני ההחלטה.

- ◆ההחלטה כפופה כמובן לכמה אילוצים על משתני ההחלטה. לפי תיאור הבעיה קיימים שלושה אילוצים:
 - שא. מגבלת מכסת המים
- $◆ 18X_1 + 10X_2 \le 450$ ב. **סך-כל השטח** העומד לרשות החקלאי
- $X_1 + X_2 \le 30$

משקל המלפפונים צריך להיות גדול משליש משקל העגבניות לשיווק, או בניסוח מתמטי:

$$X_2 \ge \frac{X_1}{3}$$

$$X_2 - \frac{X_1}{3} \ge 0$$

- במקרים רבים קיימות מגבלות פתרון הנובעות מתוך המציאות עצמה אך אינן כתובות במפורש בתיאור הבעיה.
 - לשם איתורן יש להפעיל את השכל הישר ואת הניסיון;
- ◆התעלמות מהן עלולה להביא לפתרונות שגויים.

- משתני ההחלטה הם מספר הדונמים שהוקצו לכל גידול, לכן הם חייבים להיות מספרים אי-שליליים.
 - משום כך יש להוסיף את אילוצי אי-השליליות:

$$\Diamond X_1 \geq 0$$

$$\Diamond X_2 \geq 0$$

• אם נרכז את כל המרכיבים המתמטיים של הבעיה, נקבל:

♦ Maximize $Z = 3.1500 \cdot X_1 + 4.600 \cdot X_2$

: כפוף לאילוצים

 $X_2 - \frac{X_1}{3} \ge 0$

Subject to:

$$\bullet$$
 $18X_1 + 10X_2 \le 450$

$$X_1 + X_2 \leq 30$$

$$X_1 \ge 0, \quad X_2 \ge 0$$

דוגמה 1.2

- דוגמה 1.2 בעיית המכלאות ◊
- ◆בחוות הסוסים בקיבוץ החליטו לבנות שתי מכלאות מגודרות.
 - האחת ריבועית לצורך אימוני רכיבה ◆
- ♦השניה מעגלית לצורך אילוף הסוסים (ראו איור 1.7).
 - מכלאת אימוני הרכיבה (הריבועית) חייבת להיות בעלת צלע העולה על 25 מטר (לצורך מסלול האימונים);

- ◆היקפה של המכלאה המעגלית חייב לעלות על 200
 מטר (לצורכי האילוף).
 - ◆כל אחת מהמכלאות חייבת להיות מוקפת בגדר.
- ♦ לצורך הקמת המכלאות הוקצה תקציב שיאפשר הקמת גדר באורך כולל של 500 מטר;
- יש להחליט כיצד ניתן לבנות את המכלאות כך שהיקפן הכולל יהיה מקסימלי.

- בבעיה זו משתני ההחלטה אינם נתונים בצורה מפורשת, וכל שהוגדר הוא שיש לתכנן את בניית המכלאות.
- עלינו להגדיר את משתני ההחלטה כך שפתרון אפשרי באמצעותם יצביע על מבנה המכלאות מצד אחד, ויהיה ניתן לנסח את הבעיה בצורה מתמטית מצד שני.

- רדיוס המכלאה המעגלית $-X_1$
 - צלע המכלאה הריבועית $-X_2$
 - .2 ♦ הגדרת פונקצית המטרה
- ◆הגדרת פונקצית המטרה דורשת ידע נוסף במקרה זה ידע בגיאומטריה.

$$ightharpoonup L = 4a$$
 איקף הריבוע

$$ightharpoonup L = 2\pi r$$
 איקף העיגול

◆ כיוון שעלינו למצוא פתרון שבו ההיקף הכולל של המכלאות יהיה מקסימלי, נקבע את פונקצית המטרה כך שתבטא את השטח הכולל של המכלאות:

- ▶האילוצים על משתני ההחלטה, המשפיעים על הפתרון האופטימלי, נתונים במקרה זה באופן מפורש:
- \bullet $2\pi X_1 + 4X_2 \le 500$ אורך הגדר

המקיפה את המכלאות

$$X_2 \ge 25$$

צלע הריבוע

$$2 \pi X_1 \ge 200$$

היקף העיגול

כמו בבעיית החקלאי, גם כאן היקף המכלאות חייב להיות אי-שלילי, לכן נוסיף את אילוצי אי-השליליות:

$$X_1 \ge 0$$

$$X_1 \ge 0$$

$$X_2 \ge 0$$

- דוגמה 1.3 בעיית המכס
- מפעל טקסטיל בדרום מייצר חולצות, מכנסיים ומעילים לייצוא.
 - המפעל משלם מכס על שיווק המוצרים בחו"ל לפי סוג הפריט:
 המריט:

רמכס	הפריט	
₪10	רולצה	
₪15	מכנסיים	
№20	מעיל	

- ⇒העברת המוצרים נעשית במכולות;
- נפח ההעמסה של כל מכולה מוגבל.
- כל מכולה יכולה להכיל 1000 חולצות או 500 מכנסיים או 200 מעילים.
- ◆כל מכולה יכולה להכיל כמובן גם צירופים שונים של חולצות, מכנסיים ומעילים.

- ◆המשווק בחו"ל מעוניין לקבל מכולת פריטים אשרמכילה לפחות 100 פריטים מכל סוג
- ▶ אך מספר החולצות חייב להיות שווה למספר זוגות המכנסיים או קטן ממנו.
- ▶ המשווק קונה מכולה מלאה במחיר קבוע, ללא קשר
 להרכב המוצרים במכולה, ובלבד שיעמוד בדרישותיו.
 - ?מהו ההרכב האופטימלי למכולה?

- .1 קביעת משתני ההחלטה
- ענגדיר את משתני ההחלטה כמספר הפריטים מכל סוג המועמסים למכולה:
 - מספר החולצות במכולה $-X_1$
 - מספר זוגות המכנסיים במכולה $-X_2$
 - מספר המעילים במכולה $-X_3$

◆כדי להגדיר את פונקצית המטרה נרכז את נתוני הבעיה בטבלה:

הנפח החלקי של הפריט מחוך הנפח הכולל של המכולה	מכס לפריט (שקלים)	פריט
1/1000	10	חולצות
1/500	15	מכנסיים
1/200	20	מעילים

- ◆כיוון שהרווח של המפעל אינו תלוי בהרכב המוצרים, ההרכב האופטימלי של המוצרים הוא זה שיחייב את המפעל במכס הנמוך ביותר.
 - כך נקבע את פונקצית המטרה כך שתבטא את המכס הכולל שישולם על-פי הרכב הפריטים במכולה:

- .3 ♦ ביעת האילוצים על משתני ההחלטה
- ▶האילוצים על משתני ההחלטה שלפנינו מבוססים על נפח הפריטים הכולל ועל דרישות השיווק; ננסח אותם בצורה זו:

$$\frac{1}{1000} X_1 + \frac{1}{500} X_2 + \frac{1}{200} X_1 = 1$$

♦
$$X_1 \ge 100$$

♦
$$X_2 \ge 100$$

$$X_3 \ge 100$$

$$\diamond$$
 $X_1 \leq X_2$ $(X_1 - X_2 \leq 0$ או)

- ;בבעיה זו אין צורך להגביל את מספר הפריטים
- ▶ אין חשש שנקבל כתוצאה מספר שלילי מפני שמגבלה זו מיושמת כבר במגבלת מספר הפריטים (לפחות 100 מכל סוג).
 - עם זאת, יש בבעיה זו מגבלה שעלולה להתנגש עם הפתרון המתמטי הטהור של הבעיה: העובדה שמספר הפריטים מכל סוג חייב להיות מספר שלם.

- במציאות אי אפשר לשווק מספר לא שלם של פריטי לבוש, ואילו הפתרון המתמטי עלול לתת מספר כזה.
 - בהמשך נלמד כיצד מתמודדים עם בעיה זו. lacktriangle integers X_1, X_2, X_3 בבעיה שלנו