Sistemas Elétricos de Potência I

PROF. LUCAS CLAUDINO

Sumário

Unidade 1 | Introdução aos sistemas elétricos de potência (SEP)

Seção - 1.1 O sistema elétrico de potência (SEP)

Seção - 1.2 Equipamentos elétricos utilizados em SEP

Seção - 1.3 Subestações de energia

Unidade 2 | Análise do sistema elétrico de potência

Seção - 2.1 Sistema por unidade (PU)

Seção - 2.2 Geradores e cargas utilizados em SEP

Seção - 2.3 Introdução ao fluxo de potência

Sumário

Unidade 3 | Sistemas de transmissão em corrente contínua (HVDC)

- Seção 3.1 Introdução aos sistemas de transmissão em corrente contínua
- Seção 3.2 Sistemas HVDC com elo de corrente
- Seção 3.3 Sistemas HVDC com elo de tensão

Unidade 4 | Automação dos sistemas de distribuição de energia

- Seção 4.1 Motivações para a automação do sistema de distribuição de energia
- Seção 4.2 Monitoramento das redes de distribuição
- Seção 4.3 O sistema de gerenciamento da distribuição e suas funções

CONCEITOS

MONITORAMENTO DAS REDES DE DISTRIBUIÇÃO

Observabilidade

- Sist. Gerenciamento da Transmissão -> Estimador de estado;
- Utiliza dados da rede para estimar o estado provável;

- Possibilidade de decisões restaurativas;
- Necessidade: conjunto mínimo de medidas;
- Necessidade: redundância de dados

Observabilidade em sistemas de distribuição

- Baixa disponibilidade de medidas;
- Ausência de redundância;
- Ausência de medidores extras ao longo da rede;
- Ausência de comunicação da informação;
- Utilização local da informação.

Necessidade -

 Preparar o monitoramento em tempo real

Funcionalidade do controle

Operação instantânea

- Monitoramento em tempo real: demanda, geração, fluxo e níveis de tensão;
- Comparação com limites operativos;
- Conhecer os limites e as ações a serem tomadas

Funcionalidade do controle

Planejamento da operação

- Planejamento de curto e longo prazos:
- Previsão de carga;
- Para isso: monitoramento na subestação de dist, ao longo do alimentador e no ponto de consumo.

Funcionalidade do controle

Reporte da operação

- Necessidade de banco de dados com performance, distúrbios, falhas entre outros;
- Comunicação dos índices de qualidade;
- Exemplo: o que ocorreu em um distúrbio passado pode ser útil para evitar falhas

Medidores eletrônicos inteligentes

- Medição e faturamento;
- Comunicação de dados;
- Brasil: ainda baixo uso!

Fonte: https://images.app.goo.gl/Dsg7bSzC6Mfpvyn28

Medidores fasoriais para distribuição

- Mede as ondas no grid utilizando uma fonte de tensão comum para sincronismo.
- Possibilita medição sincronizada de múltiplos sistemas remotos.

Fonte: https://images.app.goo.gl/Dsg7bSzC6Mfpvyn28

SITUAÇÃO PROBLEMA

SP: Consultoria para transmissão de dados em redes de distribuição

Situação Problema

- ► Você: consultor de planejamento de SEP.
- Desafio: Concessionária quer instalar medidores em pontos da rede e investir em comunicação para implantar um sistema de gerenciamento

Primeira etapa:

levantamento de possibilidades, tendências e soluções.

Fonte: Elaborado pelo Autor (2020)

Resolução da SP

- Estudo inicial necessário:
- Como deverá ser feita a supervisão e controle?
- Utilizando as três principais funções:
- Operação instantânea;
- Planejamento da operação;
- Reporte da operação.

Operação instantânea

- Religador automático
- Seccionador automático
- Relé-disjuntor
- Relé de religamento

Planejamento da operação

- Mecanismos de precificação de reativos
- Penalização de consumidores

Fonte: Cerbantes, 2017, p. 51.

Um dos grandes desafios para se implementar a automação dos sistemas de distribuição diz respeito à observabilidade da rede. Os sistemas de distribuição não são totalmente observáveis, de forma que o caminho para os chamados smart grids, ou redes inteligentes, passa obrigatoriamente por aumentar a observabilidade dos sistemas de distribuição.

Assinale a alternativa que define a observabilidade conforme o texto.

- a) Pessoas observando a operação da rede.
- b) A capacidade de um medidor instalado na subestação de definir o perfil de consumo da rede.
- c) O mapeamento das redes de distribuição por meio de drones.
- d) A disponibilidade de medidores e informações acerca da rede que permitam o cálculo das demais variáveis da rede em tempo real.
- e) A disponibilidade de pessoal qualificado para analisar os diagramas esquemáticos e interpretá-los.

Os micro-PMUs são capazes de		analisar e comunicar
medidas fasoriais de	com	, necessária para as
funcionalidades que são requeridas	no controle auto	mático dos sistemas de
, podendo contrib	uir, inclusive, cor	n a implementação de
estimadores de estado neste tipo de	e redes.	

Assinale a alternativa que completa adequadamente as lacunas.

- a) armazenar tensão e corrente alta precisão transmissão.
- b) armazenar potência ativa e reativa alta precisão transmissão
- c) armazenar tensão e corrente alta precisão distribuição.
- d) armazenar tensão e corrente baixa precisão distribuição.
- e) armazenar potência ativa e reativa baixa precisão distribuição.

- ▶ O centro de controle da transmissão normalmente é implementado em uma sala de controle, que fornece ao operador uma visão geral de operação da rede. Neste centro de controle, as ações de controle remoto e controle local (ou mesmo manual) são monitoradas através de uma interface homemmáquina (HMI).
- O equivalente ao centro de controle para os sistemas de distribuição é chamado de:
- a) Sistema de automação da distribuição.
- b) Sistema de gerenciamento da distribuição.
- c) Sistema de análise de distúrbios e faltas.
- d) Sala de controle e análise de estabilidade de rede.
- e) Subestação automática.

A condição operativa do sistema elétrico de potência (SEP) em regime permanente é caracterizada pelo módulo e pela fase (fasor) das tensões dos barramentos. Assim, os dados relativos aos fasores dos barramentos representam tanto o seu estado de operação do SEP quanto o seu comportamento.

Assinale a alternativa que apresenta corretamente as características dos Sistemas de Medição Fasorial Sincronizada (SMFS).

Escolha uma:

- a. A convenção para medição fasorial sincronizada define que o ângulo é 0° quando o valor do sinal é igual a zero coincide no mesmo instante da passagem do UTC (Tempo Universal Coordenado)
- b. Os fasores sincronizados, ou sincrofasores, podem ser entendidos como fasores medidos com relação a uma referência de tempo absoluta, podendo-se determinar a relação de fase absoluta entre medições feitas em diferentes localidades nos SEPs.
- c. Nos sistemas de medição fasorial sincroniza (SMFS) os dados de medição do sincrofasor são dados ultilizados eventualmente pelo sistema de controle.
- d. Para a medição de ângulos de fase de forma sincronizada não é necessária uma referência de tempo.
- e. Os sincrofasores são assim denominados porque seu sincronismo vem da rede e o tempo de referência é definido pelo controlador do sistema.

INTERVALO

Sistemas Elétricos de Potência I

PROF. LUCAS CLAUDINO

CONCEITOS

SISTEMA DE GERENCIAMENTO DA DISTRIBUIÇÃO E SUAS FUNÇÕES

IMPORTANTE

Estabelecimento de bases de monitoramento e infraestrutura de comunicação!

Consolidação do SCADA para implementar DMS

Aquisição de dados;

Suporte à tomada de decisões;

Monitoramento; Análise de dados.

Controle;

Armazenamento;

Funcionalidades do DMS

- Manter a confiabilidade do sistema
- Manter padrão de qualidade
- Minimizar ocorrência de eventos indesejáveis
- Minimizar o tempo de permanência de ocorrências
- Prever a visualização da rede
- Ações de remediação e planejamento

Análise de conectividade da rede

- Interface georreferenciada
- Auxilia na identificação e localização de elementos da rede
- Analisa e mostra a alimentação por vários pontos da rede
- Auxilia no conhecimento do estado operativo da rede

Segurança para manutenção

- Chaveamento adequado para isolamento
- Gerenciamento: validar a programação do chaveamento de acordo com o modelo de rede
- Combo: chaveamento remoto e manual

Estimador de estado

- Obter o estado confiável baseado nos dados disponíveis da rede
- Var. interesse: limites de operação, estado dos equipamentos, necessidade de intervenção
- Necessidade: sincronismo em tempo real das variáveis

Aplicações de fluxo de carga

- Analisa o SEP em regime permanente
- Obtenção de tensão nas barras e fluxo de potência nos ramos
- Problema não linear -> métodos numéricos

Controle Volt-VAR

- Gerenciamento de níveis de tensão e potência reativa ao longo do alimentador
- Formas: regulador de tensão, LTC (*Load Tap Changer*) e banco de capacitores

Aplicações de corte de carga

- Consequência da instabilidade da rede
- Ações: on/off alimentadores não críticos, reconfiguração da rede, controle de tap de trafos
- Objetivo: redução da propagação de distúrbios

Balanço de carga via reconfiguração de rede

- Coordenação da entrega de energia
- Redução de perdas devido a sobrecarga
- Alivio de fluxo de carga

CONCEITOS

SP: Controle de tensão em rede de distribuição

Situação Problema

- ► Você: consultor de planejamento de SEP.
- Desafio: Concessionária quer controlar a tensão da rede de distribuição
- Controle remoto dos dispositivos de controle

Primeira etapa: Como implementar? Quais equipamentos?

Fonte: Elaborado pelo Autor (2020)

SP: resolução

▶ O que a empresa quer é um controle Volt-VAR remoto utilizando um Sistema de Gerenciamento da Distribuição!

Controle Volt-VAR

- Gerenciamento de níveis de tensão e potência reativa ao longo do alimentador
- Formas: regulador de tensão, LTC (*Load Tap Changer*) e banco de capacitores

SP: resolução – plano de trabalho

Identificação de equipamentos disponíveis

Identificar qual a infra de comunicação a empresa pode utilizar

Estudar a alocação ótima ao longo da rede

Implementar controle ótimo a partir de dados

CONCEITOS

REDES ELÉTRICAS INTELIGENTES

É uma rede elétrica com: elevada integração de tecnológica, telecom, sensoriamento e automação.

Fonte: disponível em https://bit.ly/2XK955x Acesso 16 abr 2020.

Impactos da REI

Geração Transmissã Distribuiçã Consum centralizad 0 0 a **Pequeno** Revolucionário Moderado Grande

Por que precisamos do smart grid?

- Redução de CO2
- Redução do consumo (energia)
- Redução de custos operacionais
- Confiabilidade e segurança

- Melhoria da qualidade do serviço
- Redução de perdas
- Redução da ponta (potência)

Tecnologias: smart meter

- Maior acurácia;
- Comunicação bidirecional;
- Medição em quatro quadrantes;
- Menos suscetível a fraude;
- Cálculo de índices de qualidade;
- Aquisição de várias informações;
- Comunicação remota

Fonte: https://images.app.goo.gl/Dsg7bSzC6Mfpvyn28

(1/2)

Advanced Metering Infrastructure

NAN: Neighbourhoor Area Network

WAN: Wide Area Network

Telecomunicações para REI

Tecnologia	Aplicações em AMI
Power Line Communications (PLC)	HAN, NAN
Celular (3G, 4G)	WAN, NAN
WiFi	HAN
Wimax	NAN
Zigbee	HAN, NAN
RF Mesh	NAN
Fibra ótica	WAN
Satélite	WAN

Fonte: elaborada pelo autor.

Para implementar um sistema de gerenciamento da distribuição (DMS) é importante que as bases de monitoramento e a infraestrutura de comunicação estejam bem definidas. Em outras palavras, deve-se consolidar um sistema SCADA que permita o processamento das informações e a implementação das funções do DMS.

Assinale a alternativa que apresenta os requisitos para implementação de um sistema SCADA.

- a) Aquisição de dados, cálculo de curto-circuito, controle, armazenamento e análise de dados, aplicações de suporte à tomada de decisões e relatórios.
- b) Aquisição de dados, monitoramento e processamento de eventos, controle, armazenamento e análise de dados, aplicações de suporte à tomada de decisões e relatórios.
- c) Aquisição de dados, monitoramento e processamento de eventos, fluxo de carga, armazenamento e análise de dados, aplicações de suporte à tomada de decisões e relatórios.
- d) Aquisição de dados, cálculo de curto circuito, fluxo de carga, armazenamento e análise de dados, aplicações de suporte à tomada de decisões e relatórios.
- e) Aquisição de dados, cálculo de curto circuito, fluxo de carga, análise de estabilidade de tensão, aplicações de suporte à tomada de decisões e reporte.

Nos sistemas de distribuição,				rrer devido	
instabilidades ou condições imprevistas	devido	às	característ	icas inerer	ntes
ao sistema, tais como os	е	a	demanda	flutuante.	As
instabilidades ocorrem normalmente d	levido a			devid	o a
faltas e falhas de esquema de proteção.					

Assinale a alternativa que completa corretamente as lacunas.

- a) o cálculo de curto circuito múltiplos pontos de injeção de carga oscilações.
- b) o corte de carga múltiplos pontos de injeção de carga oscilações.
- c) a previsão de cargas múltiplos pontos de medição sobrecorrentes.
- d) a estimação de estado- múltiplos pontos de medição sobrecorrentes.
- e) o controle Volt-VAR múltiplos pontos de medição oscilações.

Considerando um esquema de			
quando a rede é muito grande			
tomadasa propagaç	ção de distúrbios o	u as consequências	
indesejáveis em outras partes o	da rede. Em esquei	mas,	C
operador deve ser suprido de _		necessária para realizar	a
intervenção de forma manual.	lsso porque se as c	levidas ações não forem	
tomadas	o efeito em	cascata dos eventos pode	
ter consequências mais catastro	óficas.	·	

Assinale a alternativa que completa corretamente as lacunas. a) Aumentam - não automatizados - toda informação – imediatamente.

- b) Aumentam automatizados toda informação -no mesmo dia.
- c) Reduzem não automatizados toda informação imediatamente.
- d) Reduzem automatizados toda informação imediatamente.
- e) Reduzem não automatizados pouca informação no mesmo dia.