Convex sets Convex hull: • conv C is the smallest convex set that contains C. • conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, \mathbf{0} \le \mathbf{0} \le \mathbf{1}, \mathbf{1}^\mathsf{T} \mathbf{0} = 1 \right\}$ • conv C is a finite set as long as C is also finite. Affine hull: • aff C is the smallest affine set that contains C. • aff $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, \mathbf{1}^\mathsf{T} \mathbf{\theta} = 1 \right\}$ • aff C is always an infinite set. If aff C contains the origin, it is also a subspace. • Different from the convex set, θ_i is not restricted between 0 and 1 Conic hull: • A is the smallest convex conic that contains C. • $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i \geq 0 \text{ for } i = 1, \dots, k \right\}$ • Different from the convex and affine sets, θ_i does not need to sum up 1. Ray: • The ray is an infinite set that begins in \mathbf{x}_0 and extends infinitely in direction of \mathbf{v} . In other words, it has a beginning, but it has no end. • $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$ • The ray becomes a convex cone if $\mathbf{x}_0 = \mathbf{0}$. Hyperplane: • It is an infinite set $\mathbb{R}^{n-1} \subset \mathbb{R}^n$ that divides the space into two halfspaces. $\bullet \mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^\mathsf{T} \mathbf{x} = b \}$ • The inner product between **a** and any vector in \mathcal{H} yields the constant value b. $\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0) = \mathbf{0} \right\}$ • $a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{\mathsf{T}} \mathbf{v} = 0 \}$ is the infinite set of vectors perpendicular to \mathbf{a} . It passes through the • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ • a^{\perp} is offset from the origin by \mathbf{x}_0 , which is any vector in \mathcal{H} . Halfspaces: • They are infinite sets of the parts divided by \mathcal{H} . $\bullet \mathcal{H}_{-} = \{ \mathbf{x} \mid \mathbf{a}^{\mathsf{T}} \mathbf{x} \leq b \}$ • $\mathcal{H}_+ = \{ \mathbf{x} \mid \mathbf{a}^\mathsf{T} \mathbf{x} \ge b \}$ Euclidean ball: • $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$. • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c|| \le r}$ • \mathbf{x}_c is the center of the ball. • $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^\mathsf{T} (\mathbf{x} - \mathbf{x}_c) \le r^2 \}$ \bullet r is its radius. • $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r ||\mathbf{u}|| \mid ||\mathbf{u}|| \le 1}$ Ellipsoid: • \mathcal{E} is a finite set as long as \mathbf{P} is a finite matrix. • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^\mathsf{T} \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • **P** is symmetric and positive definite, that is, $\mathbf{P} = \mathbf{P}^{\mathsf{T}} > 0$. It determines how far the ellipsoid extends in every direction from \mathbf{x}_c . • $\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{P}^{1/2} \mathbf{u} \mid \|\mathbf{u}\| \le 1 \right\}$ • \mathbf{x}_c is the center of the ellipsoid. • The lengths of the semi-axes are given by $\sqrt{\lambda_i}$. • When $\mathbf{P}^{1/2} \succeq \mathbf{0}$ but singular, we say that \mathcal{E} is a degenerated ellipsoid (degenerated ellipsoids are also convex). Norm cone: • Although it is named "Norm cone", it is a set, not a scalar. • $C = \{(x_1, x_2, \dots, x_n, t) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}||_p \le t\} \subseteq \mathbb{R}^{n+1}$ • The cone norm increases the dimension of \mathbf{x} in 1. • For p=2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties • The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S. • K is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$. • $\mathbf{x} \leq \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K$ for $\mathbf{x}, \mathbf{y} \in S$ (generalized inequality) • K is closed. • $\mathbf{x} < \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in \text{int } K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (strict generalized inequality)}.$ \bullet *K* is solid. \bullet There are two cases where K and S are understood from context and the subscript K is • K is pointed, i.e., $-K \cap K = \{0\}$. \triangleright When $S = \mathbb{R}^n$ and $K = \mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that \triangleright When $S = S^n$ and $K = S^n_+$ or $K = S^n_{++}$, where S^n denotes the set of symmetric $n \times n$ matrices, \mathcal{S}_{+}^{n} is the space of the positive semidefinite matrices, and \mathcal{S}_{++}^{n} is the space of the positive definite matrices. \mathcal{S}_{+}^{n} is a proper cone in \mathcal{S}^{n} (??). In this case, the generalized inequality $Y \geq X$ means that Y - X is a positive semidefinite matrix belonging to the positive semidefinite cone \mathcal{S}_{+}^{n} in the subspace of symmetric matrices \mathcal{S}^{n} . It is usual to denote X > 0 and $X \ge 0$ to mean than X is a positive definite and semidefinite matrix, respectively, where $\mathbf{0} \in \mathbb{R}^{n \times n}$ is a zero matrix S • Another common usage is when $\{\mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2 t + \dots + c_n t^{n-1} \ge 0, \text{ for } 0 \le t \le 1\}.$ In this case, $\mathbf{x} \le_K \mathbf{y}$ means that $x_1 + x_2t + \dots + x_nt^{n-1} \le y_1 + y_2t + \dots + y_nt^{n-1}$. • The generalized inequality has the following properties: ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{u} \leq_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition). ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$, then $\alpha \mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling) \triangleright **x** \leq_K **x** (reflexivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$ (antisymmetric). ightharpoonup If $\mathbf{x}_i \leq_K \mathbf{y}_i$, for $i = 1, 2, \ldots$, and $\mathbf{x}_i \to \mathbf{x}$ and $\mathbf{y}_i \to \mathbf{y}$ as $i \to \infty$, then $\mathbf{x} \leq_K \mathbf{y}$. • It is called partial ordering because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$. When it happens, we say that x and y are not comparable (this case does not happen in ordinary inequality, < and >). • $\mathbf{x} \in S$ is the minimum element of S with respect to the proper cone K if $\mathbf{x} \leq_K \mathbf{y}, \ \forall \ \mathbf{y} \in S$ (for maximum, $\mathbf{x} \succeq_K \mathbf{y}$, $\forall \mathbf{y} \in S$). It means that $S \subseteq \mathbf{x} + K$ (for the maximum, $S \subseteq \mathbf{x} - K$), where $\mathbf{x} + K$ denotes the set K shifted from the origin by \mathbf{x} . Note that any point in $K + \mathbf{x}$ is comparable with \mathbf{x} and is greater or equal to \mathbf{x} in the generalized inequality mean. The set S does not necessarily have a minimum (maximum), but the minimum (maximum) is unique if it does. • $\mathbf{x} \in S$ is the minimal element of S with respect to the proper cone K if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$ (for the maximal, $\mathbf{y} \succeq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$). It means that $(\mathbf{x} - K) \cap S = {\mathbf{x}}$ for minimal (for the maximal $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$), where $\mathbf{x} - K$ denotes the reflected set K shift by \mathbf{x} . Note that any point in $\mathbf{x} - K$ is comparable with \mathbf{x} and is less than or equal to \mathbf{x} in the generalized inequality mean. The set S can have many different minimal (maximal) elements. • When $K = \mathbb{R}_+$ and $S = \mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and the maximal is equal to the maximum. • When we say that a scalar-valued function $f:\mathbb{R}^n\to\mathbb{R}$ is nondecreasing, it means that whenever $\mathbf{u} \leq \mathbf{v}$, we have $h(\mathbf{u}) \leq h(\mathbf{v})$. Similar results hold for decreasing, increasing, and nonincreasing scalar functions. Subspace (cone set?) of the symmetric matrices: • The positive semidefinite cone is given by $\mathcal{S}_{+}^{n} = \{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} \succeq \mathbf{0}\} \subset \mathcal{S}^{n}$. This is the proper cone used to define the generalized inequalities between matrices, e.g., $\mathbf{A} \leq \mathbf{B}$. • $S^n = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^{\mathsf{T}} \}$ • The positive definite cone is given by $\mathcal{S}_{++}^n = \{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} > \mathbf{0}\} \subseteq \mathcal{S}_{+}^n$. This is the proper cone used to define the generalized inequalities between matrices, e.g., $\mathbf{A} \prec \mathbf{B}$. Dual cone: • K^* is a cone, and it is convex even when the original cone K is nonconvex. • $K^* = \{ \mathbf{y} \mid \mathbf{x}^\mathsf{T} \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \}$ • K^* has the following properties: \triangleright K^* is closed and convex. $ightharpoonup K_1 \subseteq K_2 \text{ implies } K_1^* \subseteq K_2^*.$ ▶ If K has a nonempty interior, then K^* is pointed. ▶ If the closure of K is pointed then K^* has a nonempty interior. \triangleright K^{**} is the closure of the convex hull of K. Hence, if K is convex and closed, $K^{**} = K$. Polyhedra: • The polyhedron may or may not be an infinite set. • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{\mathsf{T}} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{\mathsf{T}} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$ • Polyhedron is the result of the intersection of m halfspaces and p hyperplanes. • $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^\mathsf{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^\mathsf{T}$ • Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all special cases of polyhedra. • The nonnegative orthant, $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq \mathbf{0}\}$, is a special polyhedron. Simplex: • Simplexes are a subfamily of the polyhedra set. • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid \mathbf{0} \le \mathbf{\theta} \le \mathbf{1}, \mathbf{1}^\mathsf{T} \mathbf{\theta} = 1\}$ • Also called k-dimensional Simplex in \mathbb{R}^n . • $S = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta} \}$, where $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$ • The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly independent. • $S = \{\mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, \mathbf{1}^\mathsf{T} \mathbf{A}_1 \mathbf{x} \leq 1 + \mathbf{1}^\mathsf{T} \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0 \}$ (Polyhedra form), where $\mathbf{A} = \mathbf{A}_1 \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_3 \mathbf{v}_4 \mathbf{v}_3 \mathbf{v}_4 \mathbf{v}_5 \mathbf{v}_5 \mathbf{v}_5 \mathbf{v}_6 \mathbf{v}_7 \mathbf{v}_8 \mathbf{v}_9 \mathbf{$ • $\mathbf{V} \in \mathbb{R}^{n \times k}$ is a full-rank tall matrix, i.e., rank $(\mathbf{V}) = k$. All its column vectors are independent. Linear inequalities in x Linear equalities in xThe matrix **A** is its left pseudoinverse. $\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{AV} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ \mathbf{0}_{n-k \times n-k} \end{bmatrix}$ α -sublevel set: • If f is a convex (concave) function, then sublevel sets of f are convexes (concaves) for any • $C_{\alpha} = \{ \mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \leq \alpha \}$ (regarding convexity), where $f: \mathbb{R}^n \to \mathbb{R}$ • The converse is not true: a function can have all its sublevel set convex and not be a convex • $C_{\alpha} = \{ \mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \geq \alpha \}$ (regarding concavity), where $f : \mathbb{R}^n \to \mathbb{R}$ function. • $C_{\alpha} \subseteq \text{dom}(f)$ Functions (or operators) and their implications regarding convexity Function Convex (concave)? Comments Not in most of the cases. Union: $C = A \cup B$ Intersection: $C = A \cap B$ Yes, if A and B are convex sets. Convex function: $f : \text{dom}(f) \to \mathbb{R}$ Yes. • Graphically, the line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies always above the graph f. • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, where $0 \le \theta \le 1$. • In terms of sets, a function is convex iff a line segment within • dom(f) shall be a convex set to f be considered a convex dom(f), which is a convex set, gives an image set that is also function. • $\operatorname{dom} f$ is convex iff all points for any line segment within $\operatorname{dom}(f)$ belong to it. • First-order condition: f is convex iff dom (f) is convex and $f(y) \ge$ $f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \text{dom}(f), \mathbf{x} \neq \mathbf{y}, \text{ being } \nabla f(\mathbf{x}) \text{ the}$ gradient vector. This inequation says that the first-order Taylor approximation is a *underestimator* for convex functions. The firstorder condition requires that f is differentiable. • If $\nabla f(\mathbf{x}) = \mathbf{0}$, then $f(\mathbf{y}) \geq f(\mathbf{x}), \forall \mathbf{y} \in \text{dom}(f)$ and \mathbf{x} is a global minimum. • Second-order condition: f is convex iff dom(f) is convex and $\mathbf{H} \geq \mathbf{0}$, that is, the Hessian matrix **H** is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at x. It is important to note that, if $\mathbf{H} >$ $\mathbf{0}, \forall \mathbf{x} \in \text{dom}(f)$, then f is strictly convex. But is f is strictly convex, not necessarily that $\mathbf{H} > \mathbf{0}, \forall \mathbf{x} \in \text{dom}(f)$. Therefore, strict convexity can only be partially characterized. Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ Yes, if the domain $S \subseteq \mathbb{R}^n$ is a convex set, then its image • f is an affine function iff $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, $f(S) = \{f(\mathbf{x}) | \mathbf{x} \in S\} \subseteq \mathbb{R}^m \text{ is also convex.}$ where $\theta \in \mathbb{R}$. • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$ • The affine function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, is a broader category that encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. The linear function has its origin fixed at **0** after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of **b**. • A special case of the linear function is when $\mathbf{A} = \mathbf{c}^{\mathsf{T}}$. In this case, we have $f(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$, which is the inner product between the vector \mathbf{c} and \mathbf{x} . • The inverse image of C, $f^{-1}(C) = \{\mathbf{x} \mid f(\mathbf{x}) \in C\}$, is also convex. • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \cdots + x_n \mathbf{A}_n \leq \mathbf{B}$, is a special case of affine function. In other words, f(S) = $\{x \mid A(x) \leq B\}$ is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. Constant function $f: \mathbb{R} \to \mathbb{R}$ Yes, it is convex as well as concave. • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = f(\mathbf{x})$, where $\theta \in \mathbb{R}$. Exponential function $f: \mathbb{R} \to \mathbb{R}$ Yes. • $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ It depends on the matrix \mathbf{P} : • $f(\mathbf{x}) = a\mathbf{x}^\mathsf{T}\mathbf{P}\mathbf{x} + \mathbf{p}^\mathsf{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and • f is convex iff $P \geq 0$. $a, b \in \mathbb{R}$ • f is strictly convex iff P > 0. • f is concave iff $P \leq 0$. • f is strictly concave iff P < 0. Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ It depends on a $f(x) = x^a$ • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$. Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ Yes. • $f(x) = |x|^p$, where $p \le 1$. Logarithm function: $f: \mathbb{R}_{++} \to \mathbb{R}$ Yes, it is concave. $\bullet \ f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ Yes, it is convex. • When it is defined $f(x)|_{x=0} = 0$, dom $(f) = \mathbb{R}$. $\bullet \ \ f(x) = x \log x$ Minkowski distance, p-norm function, or l_p norm function: Yes. • It can be proved by triangular inequality. $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = ||\mathbf{x}||_p$, where $p \in \mathbb{N}_{++}$. Yes. Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}.$ Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ f is convex if f_1, \ldots, f_n are convex functions. • Its domain dom $(f) = \bigcap_{i=1}^{n} \text{dom}(f_i)$ is also convex. • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \ldots, f_n(\mathbf{x})\}.$ Pointwise infimum: f is concave if g is concave for each $\mathbf{y} \in \mathcal{A}$. • For each value of x, we have an infinite set of points $g(x,y)|_{y\in\mathcal{A}}$. The value f(x) will be the greatest value in the codomain of f• $f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y}).$ that is less than or equal this set. • dom $(f) = \left\{ x \mid (x, y) \in \text{dom}(g) \ \forall \ y \in \mathcal{A}, \inf_{y \in \mathcal{A}} g(x, y) > -\infty \right\}.$ f is convex if g is convex for each $y \in \mathcal{A}$. Pointwise supremum: • For each value of x, we have an infinite set of points $g(x,y)|_{y\in\mathcal{A}}$. The value f(x) will be the least value in the codomain of f that • $f(\mathbf{x}) = \sup g(\mathbf{x}, \mathbf{y}).$ is greater than or equal this set. • dom $(f) = \left\{ x \mid (x, y) \in \text{dom}(g) \ \forall \ y \in \mathcal{A}, \ \sup_{y \in \mathcal{A}} g(x, y) < \infty \right\}.$ • In terms of epigraphs, the pointwise supremum of the infinite set of functions $g(x,y)|_{y\in\mathcal{A}}$ corresponds to the intersection of the following epigraphs: epi $f=\bigcap$ epi $g(\cdot,y)$ Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ Not in most of the cases. • $f(\mathbf{x}) = \min \{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$ Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ Yes. • This function is interpreted as the approximation of the maximum element function, since $\max\{x_1,\ldots,x_n\} \leq f(\mathbf{x}) \leq$ $f(\mathbf{x}) = \log \left(e^{x_1} + \dots + e^{x_n} \right)$ $\max\{x_1,\ldots,x_n\} + \log n$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ Yes $\bullet \ f(\mathbf{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n}$ Log-determinant function $f: \mathcal{S}_{++}^n \to \mathbb{R}$ Yes • X is positive semidefinite, i.e., X > 0 : $X \in \mathcal{S}_{++}^n$ • $f(\mathbf{X}) = \log |\mathbf{X}|$ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • Scalar composition: the following statements hold for • The composition function allows us to see a large class of functions k = 1 and $n \ge 1$, i.e., $h : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$: as convex (or concave). • $f = g \circ h$, i.e., $f(\mathbf{x}) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: ightharpoonup f is convex if h is convex, \tilde{h} is nondecreasing, • For scale composition, the remarkable ones are: $\triangleright g: \mathbb{R}^n \to \mathbb{R}^k$. and g is convex. In this case, dom (h) is either $\triangleright h: \mathbb{R}^k \to \mathbb{R}.$ ▶ If g is convex then $f(x) = h(g(\mathbf{x})) = \exp g(\mathbf{x})$ is convex. $(-\infty, a]$ or $(-\infty, a)$. ▶ If g is concave and dom $(g) \subseteq \mathbb{R}_{++}$, then $f(\mathbf{x}) = h(g(\mathbf{x})) =$ $b \operatorname{dom}(f) = \{ \mathbf{x} \in \operatorname{dom}(g) \mid g(\mathbf{x}) \in \operatorname{dom}(h) \}.$ \triangleright f is convex if h is convex, \tilde{h} is nonincreasing, $\log g(\mathbf{x})$ is concave. and g is concave. In this case, dom (h) is either ▶ If g is concave and dom (g) ⊆ \mathbb{R}_{++} , then $f(\mathbf{x}) = h(g(\mathbf{x})) =$ $[a, \infty)$ or (a, ∞) . $1/g(\mathbf{x})$ is convex. \triangleright f is concave if h is concave, h is nondecreasing, ▶ If g is convex and dom $(g) \subseteq \mathbb{R}_+$, then $f(\mathbf{x}) = h(g(\mathbf{x})) = g^p(\mathbf{x})$ and g is concave. is convex, where $p \ge 1$. ightharpoonup f is concave if h is concave, \tilde{h} is nonincreasing, ▶ If g is convex then $f(\mathbf{x}) = h(g(\mathbf{x})) = -\log(-g(x))$ is convex, and g is convex. where dom $(f) = \{\mathbf{x} \mid g(\mathbf{x}) < 0\}$ • Vector composition: the following statements hold for • For vector composition, we have the following examples: $k \geq 1$ and $n \geq 1$, i.e., $h : \mathbb{R}^k \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^k$. Hence, $g(\mathbf{x}) = (g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_k(\mathbf{x}))$ is a vector-▶ If $g(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ is an affine function, then $f = h \circ g$ is convex valued function (or simply, vector function), where (concave) if h is convex (concave). $g_i: \mathbb{R}^k \to \mathbb{R} \text{ for } 1 \leq i \leq k.$ ▶ Let $h(\mathbf{x}) = x_{[1]} + \cdots + x_{[r]}$ be the sum of the r largest ightharpoonup f is convex if h is is convex, \tilde{h} is nondecreasing in components of $\mathbf{x} \in \mathbb{R}^k$. If g_1, g_2, \dots, g_k are convex, where each argument of **x**, and $\{g_i\}_{i=1}^k$ is a set of convex $dom(g_i) = \mathbb{R}^n$, then $f = h \circ g$, which is the pointwise sum of the largest g_i 's, is convex. ightharpoonup f is convex if h is is convex, \tilde{h} is nonincreasing $ightharpoonup f = h \circ g$ is a convex function when $h(\mathbf{x}) = \log \left(\sum_{i=1}^k e^{x_i}\right)$ and in each argument of **x**, and $\{g_i\}_{i=1}^k$ is a set of g_1, g_2, \ldots, g_k are convex functions. concave functions. ▶ For $0 , the function <math>h(\mathbf{x}) = \left(\sum_{i=1}^k x_i^p\right)^{1/p}$, where ightharpoonup f is concave if h is is concave, h is nondecreasing in each argument of \mathbf{x} , and $\{g_i\}_{i=1}^k$ is a set of dom $(h) = \mathbb{R}^n_+$, is concave. If g_1, g_2, \dots, g_k are concaves (conconcave functions. vexes) and nonnegatives, then $f = h \circ g$ is concave (convex). Where h is the extended-value extension of the function h, which assigns the value ∞ $(-\infty)$ to the point not in dom(h) for h convex (concave). Nonnegative weighted sum: $f : \text{dom}(f) \to \mathbb{R}$ • If f_1, f_2, \ldots, f_m are convex or concave functions, then • Special cases is when f = wf (a nonnegative scaling) and f =f is a convex or concave function, respectively. $f_1 + f_2$ (sum). • $f(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x})$, where $w \ge 0$. • If f_1, f_2, \ldots, f_m are strictly convex or concave functions, then f is a strictly convex or concave function, respectively. Integral function $f: \mathbb{R}^n \to \mathbb{R}$: • If g is convex in x for each $y \in \mathcal{A}$ and if $w(y) \ge$ $0, \forall \mathbf{y} \in \mathcal{A}, \text{ then } f \text{ is convex (provided the integral}$ • $f(\mathbf{x}) = \int_{\mathcal{A}} w(\mathbf{y}) g(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$, where $\mathbf{y} \in \mathcal{A} \subseteq \mathbb{R}^m$, and $w : \mathbb{R}^m \to \mathbb{R}$. Yes, if $S \subseteq \text{dom}(f)$ is a convex set, then its image, Perspective function $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ • The perspective function decreases the dimension of the function $f(S) = \{f(\mathbf{x}) | \mathbf{x} \in S\} \subseteq \mathbb{R}^n$, is also convex. domain since $\dim(\dim(f)) = n + 1$. • $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n$, $t \in \mathbb{R}$. • Its effect is similar to the camera zoom. • The inverse image is also convex, that is, if $C \subseteq \mathbb{R}^n$ is convex, then $f^{-1}(C) = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid \mathbf{x}/t \in C, t > 0\}$ is also convex. • A special case is when n = 1, which is called *quadratic-over-linear* function. Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ Yes, if $S \subseteq \text{dom}(f)$ is a convex set, then its image, • The linear and affine functions are special cases of the linear $f(S) = \{f(\mathbf{x}) | \mathbf{x} \in S\} \subseteq \mathbb{R}^n$, is also convex. fractional function. • $f = p \circ g$, i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$, where • dom $(f) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{c}^\mathsf{T}\mathbf{x} + d > 0\}$ $\triangleright g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) =$ $\begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{\mathsf{T}} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}, \text{ being } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n, \text{ and}$ • $\mathcal{P}(\mathbf{x}) \subset \mathbb{R}^{n+1}$ is a ray set that begins at the origin and its last component takes only positive values. For each $\mathbf{x} \in \text{dom}(f)$, it is associated a ray set in \mathbb{R}^{n+1} in this form. This (projective) $ightharpoonup p: \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the perspective function. correspondence between all points in dom (f) and their respective sets \mathcal{P} is a biunivocal mapping. • $f(\mathbf{x}) = \mathcal{P}^{-1}(\mathbf{Q}\mathcal{P}(\mathbf{x}))$ • The linear transformation **Q** acts on these rays, forming another $\triangleright \mathcal{P}(\mathbf{x}) = \{(t\mathbf{x}, t) \mid t \ge 0\} \subset \mathbb{R}^{n+1}$ set of rays.

