Hall Effect

Appendix B

Thermocouples and the Hall Probe

Source: "Omega Temperature Measurements Handbook and Encyclopedia"

THE THERMOCOUPLE

When two wires composed of dissimilar metals are joined at both ends and one of the ends is heated, there is a continuous current which flows in the thermoelectric circuit. Thomas Seebeck made this discovery in 1821.

THE SEEBECK EFFECT Figure 2

If this circuit is broken at the center, the net open circuit voltage (the Seebeck voltage) is a function of the junction temperature and the composition of the two metals.

e_{AB} = SEEBECK VOLTAGE Figure 3

All dissimilar metals exhibit this effect. The most common combinations of two metals are listed in Appendix B of this application note, along with their important characteristics. For small changes in temperature the Seebeck voltage is linearly proportional to temperature:

$$\Delta e_{AB} = \alpha \Delta T$$

Where α , the Seebeck coefficient, is the constant of proportionality.

Measuring Thermocouple Voltage - We can't measure the Seebeck voltage directly because we must first connect a voltmeter to the thermocouple, and the voltmeter leads themselves create a new thermoelectric circuit.

Let's connect a voltmeter across a copper-constantan (Type T) thermocouple and look at the voltage output:

EQUIVALENT CIRCUITS:

MEASURING JUNCTION VOLTAGE WITH A DVM
Figure 4

We would like the voltmeter to read only V_1 , but by connecting the voltmeter in an attempt to measure the output of Junction J_1 , we have created two more metallic junctions: J_2 and J_3 . Since J_3 is a copper-to-copper junction, it creates no thermal EMF ($V_3=0$) but J_2 is a copper-to-constantan junction which will add an EMF (V_2) in opposition to V_1 . The resultant voltmeter reading V will be proportional to the temperature difference between J_1 and J_2 . This says that we can't find the temperature at J_1 unless we first find the temperature of J_2 .

The Reference Junction

EXTERNAL REFERENCE JUNCTION Figure 5

One way to determine the temperature of J_2 is to shysically put the junction into an ice bath, forcing its temperature to be 0° C and establishing J_2 as the Reference Junction. Since both voltmeter terminal functions are now copper-copper, they create no thermal emf and the reading V on the voltmeter is proportional to the temperature difference between J_1 and J_2 .

Now the voltmeter reading is (See Figure 5):

$$V = (V_1 - V_2) \cong \alpha (t_{J_1} - t_{J_2})$$

If we specify T_{J1} in degrees Celsius:

$$T_{J_1}$$
 (°C) + 273.15 = t_{J_1}

then V becomes:

$$V = V_1 - V_2 = \alpha \left[\left(T_{J_1} + 273.15 \right) - \left(T_{J_2} + 273.15 \right) \right]$$
$$= \alpha \left(T_{J_1} - T_{J_2} \right) = \alpha \left(T_{J_1} - 0 \right)$$

$$V = \alpha T_{J_1}$$

We use this protracted derivation to emphasize that the ice bath junction output, V_2 , is not zero volts. It is a function of absolute temperature.

By adding the voltage of the ice point reference junction we have now referenced the reading V to 0° C. This method is very accurate because the ice point temperature can be precisely controlled. The ice point is used by the National Bureau of Standards (NBS) as the fundamental reference point for their thermocouple tables, so we can now look at the NBS tables and directly convert from voltage V to Temperature T_{J_1} .

The copper-constantan thermocouple shown in Figure 5 is a unique example because the copper wire is the same metal as the voltmeter terminals. Let's use an iron-constantan (Type J) thermocouple instead of the copper-constantan. The iron wire (Figure 6) increases the number of dissimilar metal junctions in the circuit, as both voltmeter terminals become Cu-Fe thermocouple junctions.

IRON-CONSTANTAN COUPLE
Figure 6

This circuit will still provide moderately accurate measurements as long as the voltmeter high and low terminals $(J_3 & J_4)$ in opposition (Fig. 7):

JUNCTION VOLTAGE CANCELLATION Figure 7

If both front panel terminals are not at the same temperature, there will be an error. For a more precise measurement the copper voltmeter leads should be extended so the copper-to-iron junctions are made on an isothermal (same temperature) block:

REMOVING JUNCTIONS FROM DVM TERMINALS
Figure 8

The isothermal block is an electrical insulator but a good heat conductor and it serves to hold J_3 and J_4 at the same temperature. The absolute block temperature is unimportant because the two Cu-Fe junctions act in opposition. We still have

$$V = \alpha(T_1 - T_{REF})$$

Reference Circuit

Let's replace the ice bath with another isothermal block:

ELIMINATING THE ICE BATH Figure 9

The new block is at Reference Temperature T_{REF} , and because J_3 and J_4 are still at the same temperature we can again show that

$$V = \alpha (T_1 - T_{REF})$$

This is still a rather inconvenient circuit because we have to connect two thermocouples. Let's eliminate the extra Fe wire in the negative (Lo) lead by combining the Cu-Fe junction (J_4) and the Fe-C junction (J_{REF}).

We can do this by first joining the two isothermal blocks (Figure 9b).

JOINING THE ISOTHERMAL BLOCKS
Figure 9b

We haven't changed the output voltage V. It is still $V = \alpha (T_{J_1} - T_{J_{REF}})$

Now we call upon the law of intermediate metals (see Appendix A) to eliminate the extra junction. This empirical "law" states that a third metal (in this case, iron) inserted between the two dissimilar metals of a thermocouple junction will have no effect upon the output voltage as long as the two junctions formed by the additional metal are at the same temperature:

Thus the low lead in Fig. 9b:

Becomes:

LAW OF INTERMEDIATE METALS Figure 10

This is a useful conclusion, as it completely eliminates the need for the iron (Fe) wire in the LO lead:

Again, $V = \alpha (T_{J_1} - T_{REF})$, where α is the Seebeck coefficient for an Fe-C thermocouple.

Junctions J_3 and J_4 take the place of the ice bath. These two junctions now become the Reference Junction

Now we can proceed to the next logical step: Directly measure the temperature of the isothermal block (the Reference Junction) and use that information to compute the unknown temperature, $T_{\rm J_1}$).

EXTERNAL REFERENCE JUNCTION-NO ICE BATH Figure 12

A thermistor, whose resistance R_T is a function of temperature, provides us with a way to measure the absolute temperature of the reference junction. Junctions J_3 and J_4 and the thermistor are all assumed to be at the same temperature, due to the design of the isothermal block. Using a digital multimeter under computer control, we simply:

- 1) Measure R_T to find T_{REF} and convert T_{REF} to its equivalent reference junction voltage. V_{REF}
- 2) Measure V and subtract V_{REF} to find V_1 , and convert V_1 to temperature T_{J_1}

This procedure is known as Software Compensation because it relies upon the software of a computer to compensate for the effect of the reference junction. The isothermal terminal block temperature sensor can be any device which has a characteristic proportional to absolute temperature: an RTD, a Thermistor, or an integrated circuit sensor.

It seems logical to ask: If we already have a device that will measure absolute temperature, (like an RTD or thermistor) why do we even bother with a thermocou-

ple that requires reference junction compensation? The single most important answer to this question is that the thermistor, the RTD, and the integrated circuit transducer are only useful over a certain temperature range. Thermocouples, on the other hand, can be used over a range of temperatures, and optimized for various atmospheres. They are much more rugged than thermistors, as evidenced by the fact that thermocouples are often welded to a metal part or clamped under a screw. They can be manufactured on the spot, either by soldering or welding. In short, thermocouples are the most versatile temperature transducer available and since the measurement system performs the entire task of reference compensation and software voltageto-temperature conversion, using a thermocouple becomes as easy as connecting a pair of wires.

Thermocouple measurement becomes especially convenient when we are required to monitor a large number of data points. This is accomplished by using the isothermal reference junction for more than one thermocouple element (see Figure 13).

A reed relay scanner connects the voltmeter to the various thermocouples in sequence. All of the voltmeter and scanner wires are copper, independent of the type of thermocouple chosen. In fact, as long as we know what each thermocouple is, we can mix thermocouple types on the same isothermal junction block (often called a zone box) and make the appropriate modifications in software. The junction block

temperature sensor, R_T is located at the center of the block to minimize errors due to thermal gradients.

Software compensation is the most versatile technique we have for measuring thermocouples. Many thermocouples are connected on the same block, copper leads are used throughout the scanner, and the technique is independent of the types of thermocouples chosen. In addition, when using a data acquisition system with a built-in zone box, we simply connect the thermocouple as we would a pair of test leads. All of the conversions are performed by the computer. The one disadvantage is that the computer requires a small amount of additional time to calculate the reference junction temperature. For maximum speed we can use hardware compensation.

Hardware Compensation

Rather than measuring the temperature of the reference junction and computing its equivalent voltage as we did with software compensation, we could insert a battery to cancel the offset voltage of the reference junction. The combination of this hardware compensation voltage and the reference junction voltage is equal to that of a 0°C junction.

The compensation voltage, e, is a function of the temperature sensing resistor, $R_{\rm T}$. The voltage V is now referenced to 0°C, and may be read directly and converted to temperature by using the NBS tables.

Another name for this circuit is the electronic ice

point reference. (6) These circuits are commercially available for use with any voltmeter and with a wide variety of thermocouples. The major drawback is that a unique ice point reference circuit is usually needed for each individual thermocouple type.

Figure 15 shows a practical ice point reference circuit that can be used in conjunction with a reed relay scanner to compensate an entire block of thermocouple inputs. All the thermocouples in the block must be of the same type, but each block of inputs can accommodate a different thermocouple type by simply changing gain resistors.

HARDWARE COMPENSATION CIRCUIT

⁶ Refer to Bibliography 6.

PRACTICAL HARDWARE COMPENSATION
Figure 15

The advantage of the hardware compensation circuit or electronic ice point reference is that we eliminate the need to compute the reference temperature. This saves us two computation steps and makes a hardware compensation temperature measurement somewhat faster than a software compensation measurement.

HARDWARE COMPENSATION	SOFTWARE COMPENSATION
Fast	Requires more computer menipulation and
Restricted to one thermocouple type	Versatile - accepts any thermocouple
per card	

Table 2

OMEGA Ice Point Reference Chamber. Electronic Refrigeration Eliminates Ice Bath

A STATE OF THE PARTY OF THE PAR

OMEGA TAC---Electronic Ice Point and Thermocouple Preamplifier/Linearizer Plugs into Standard Connector.

Voltage-To-Temperature Conversion

OMEGA Electronic Ice Point Built into Tr Connector--"MCJ"

We have used hardware and software compensation to synthesize an ice-point reference. Now all we have to do is to read the digital voltmeter and convert the voltage reading to a temperature. Unfortunately, the temperature-versus-voltage relationship of a thermocouple is not linear. Output voltages for the more common thermocouples are plotted as a function of temperature in Figure 16. If the slope of the curve (the Seebeck coefficient) is plotted vs. temperature, as in Figure 17, it becomes quite obvious that the thermocouple is a non-linear device.

A horizontal line in Figure 17 would indicate a constant α , in other words, a linear device. We notice that the slope of the type K thermocouple approaches a constant over a temperature range from 0°C to 1000 °C. Consequently, the type K can be used with a multiplying voltmeter and an external ice point reference to obtain a moderately accurate direct readout of temperature. That is, the temperature display involves only a scale factor. This procedure works with voltmeters.*

By examining the variations in Seebeck coefficient, we can easily see that using one constant scale factor would limit the temperature range of the system and restrict the system accuracy. Better conversion accuracy can be obtained by reading the voltmeter and consulting the National Bureau of Standards Thermocouple Tables' in Section T of the OMEGA TEMPERATURE MEASUREMENT HANDBOOK — see Table 3. We could store these look-up table values in a computer, but they would consume an inordinate amount of memory. A more viable approach is to approximate the table values using a power series polynomial:

4 Refer to Bibliography 4.

 $T = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ where

T = Temperature

x = Thermocouple Voltage

a = Polynomial coefficients unique to each thermocouple

n - Maximum order of the polynomial

As n increases, the accuracy of the polynomial improves. A representative number is n=9 for $\pm 1^{\circ}C$ accuracy. Lower order polynomials may be used over a narrow temperature range to obtain higher system speed.

Table 4 is an example of the polynomials used in conjunction with system software compensation packages for a data acquisition system. Rather than directly calculating the exponentials, the computer is programmed to use the nested polynomial form to save execution time. The polynomial fit rapidly degrades outside the temperature range shown in Table 4 and should not be extrapolated outside those limits.

THERMOCOUPLE TEMPERATURE vs.

VOLTAGE GRAPH

Figure 16

^{*}Some recommended voltmeters that can be used are: HEWLETT PACKARD models 3455A, 3456B and 3467A.

Revised Thermocouple Reference Tables

Copper VS. Copper-Nickel

Extension Grade

Thermocouple

Grade

MAXIMUM TEMPERATURE RANGE

Thermocouple Grade

– 328 to 662°F

– 200 to 350°C

Extension Grade

- 76 to 212°F - 60 to 100°C

LIMITS OF ERROR (whichever is greater) Standard: 1.0°C or 0.75% Above 0°C 1.0°C or 1.5% Below 0°C Special: 0.5°C or 0.4%

COMMENTS, BARE WIRE ENVIRONMENT:

Mild Oxidizing, Reducing Vacuum or Inert; Good Where Moisture Is Present; Low Temperature

and Cryogenic Applications
TEMPERATURE IN DEGREES °C
REFERENCE JUNCTION AT 0°C

Thermoelectric Voltage in Millivolts

°C	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°C)°(0	1	2	3	4	5	6	7	8	9	10	°C
													5	Ō	2.036 2.468	2.079 2.512	2.122 2.556	2.165 2.600	2.208 2.643	2.687	2.294 2.732	2.338 2.776	2.381 2.820	2.425 2.864	2.468 2.909	50 60
-260							-6.245						8	Ō	2.909 3.358	2.953 3.403	2.998 3.448	3.043 3.494		3.585	3.177 3.631	3.222 3.677	3.267 3.722	3.312 3.768	3.358 3.814	70 80
-250							-6.204					-250	9	0	3.814	3.860	3.907	3.953		4.046	4.092	4.138	4.185	4.232	4.279	90
-240 -230							-6.138 -6.049					-240 -230	10		4.279 4.750	4.325 4.798	4.372 4.845	4.419 4.893		4.513 4.988	4.561 5.036	4.608 5.084	4.655 5.132	4.702 5.180	4.750 5.228	100 110
-220 -210							-5.938 -5.809					-220 -210	12 13		5.228 5.714	5.277 5.763	5.325 5.812	5.373 5.861		5.470 5.959		5.567 6.057	5.616 6.107	5.665 6.156	5.714 6.206	120 130
-200	-5.753	-5.739	-5.724	-5.710	-5.695	-5.680	-5.665	-5.650	-5.634	-5.619	-5.603	-200	14	0	6.206	6.255	6.305	6.355	6.404	6.454	6.504	6.554	6.604	6.654	6.704	140
-190 -180							-5.506 -5.334						15 16		6.704 7.209	6.754 7.260	6.805 7.310	6.855 7.361		6.956 7.463		7.057 7.566	7.107 7.617	7.158 7.668	7.209 7.720	150 160
-170	-5.261	-5.242	-5.224	-5.205	-5.186	-5.167	-5.148 -4.949	-5.128	-5.109	-5.089	-5.070		17	Õ	7.720 8.237	7.771 8.289	7.823 8.341	7.874 8.393	7.926	7.977 8.497	8.029	8.081 8.602	8.133 8.654	8.185 8.707	8.237 8.759	170 180
-150							-4.737						19		8.759	8.812	8.865	8.917		9.023		9.129		9.235	9.288	190
-140							-4.512						20		9.288	9.341 9.876	9.395	9.448				9.662			9.822	200
-120	-4.177	-4.152	-4.127	-4.102	-4.077	-4.052	-4.275 -4.026	-4.000	-3.975	-3.949	-3.923	-120	21	Õ 1	10.362	10.417	10.471	10.525	10.580	10.634	10.689	10.200 10.743	10.798	10.853	10.907	210 220
							-3.765 -3.491						23 24									11.292 11.846				230 240
-90							-3.206					-90	25									12.405				250
-80 -70	-2.788	-2.757	-2.726	-2.695	-2.664	-2.633	-2.910 -2.602	-2.571	-2.539		-2.476	-80 -70	27	0 1	13.139	13.196	13.253	13.310	13.366	13.423	13.480	12.969 13.537	13.595	13.652	13.709	260 270
-60 -50							-2.283 -1.954					-60 -50										14.110 14.688				280 290
-40	-1.819	-1.785	-1.751	-1.717	-1.683	-1.648	-1.614	-1.579	-1.545	-1.510	-1.475	-40										15.270				300
							-1.264 -0.904					-30 -20										15.856 16.446				310 320
-10 0							-0.534 -0.154					-10 0										17.040 17.638				330 340
0	0.000	0.039	0.078	0.117			0.234					0										18.241				350
10 20	0.391	0.431	0.470	0.510	0.549	0.589	0.629	0.669	0.709			10 20	36	0 1	18.422	18.483	18.543	18.604	18.665	18.725	18.786	18.847 19.457	18.908	18.969	19.030	360 370
30 40	1.196	1.238	1.279	1.320	1.362	1.403 1.823	1.445 1.865	1.486	1.528	1.570	1.612	30 40	38	0 1	19.641	19.702	19.763	19.825	19.886	19.947	20.009	20.070	20.132	20.193	20.255	380 390
°C	0	1.004	2	3	1.780 4	1.823 5	6	1.908	1.950	1.993 9	2.036	°C	°(0	20.317	20.378	20.440	20.502 4	20.563	6	20.687	20.748	20.810 9	10	°C
•	_	-	-	_	-	-	-	-	_	-	. •	•	,	-	-	-	-	-	•	-	-	-	-	-		-

HALLTRON HALL EFFECT PROBES MODEL HR-66

SPECIFICATIONS

- HALL OUTPUT (V_h), open circuit

B = 10 Kilogauss

 $I_c = 200$ Milliamperes _____500 millivolts $\pm 25\%$

CONTROL CURRENT (I_e) 200 milliamperes, nominal

OHMIC RESIDUAL (Vm)

B = 0

 $I_c = 100$ Milliamperes<0.5 millivolts, typical

- INPUT RESISTANCE (Rin) _____approx. 5.0 ohms

DUTPUT RESISTANCE (Rout) _____approx. 4.0 ohms

TEMPERATURE COEFFICIENT OF V,-0.2%/°C

LOAD RESISTANCE (R_L) for

OPTIMUM LINEARITY ______15 ohms, typical

LINEARITY ERROR, PERCENT OF

FULL SCALE WITH OPTIMUM R_L ±1%

LEAD COLOR CODE: Input ______RED-BLACK Output _____YELLOW-BLUE

LEAD INSULATION ______Teflon

POLARITY: With positive voltage applied to the RED lead and the Halltron positioned as shown in the above illustration, a positive output will be observed on the YELLOW lead.

HALLTRON MAGNETIC FIELD MEASUREMENT

HALLTHON ELECTRONIC WILTIPLIER

HALLTRON INSTANTANEOUS POWER NETER

HALLTHON CLIP-ON TYPE AMMETER

OHIO SEMITRONICS, INC.

1205 Chesapeake Avenue • Columbus, Ohio 43212 / Phone 614-486-9561
Pioneer in solid state energy conversion materials, devices and systems.

HALLTRON MAGNETIC FIELD PROBE

FEATURES

High accuracy, low noise.

APPLICATIONS

Magnetic field sensing applications.

MODEL SELECTION

	NOMINAL CONTROL	RES	OHMIC DUAL nV)	NOMINAL INPUT RESISTANCE	NOMINAL OUTPUT RESISTANCE		MENSIC	ONS (INC	CHE	S)	LEAD INSULATION AV		TEMP. COEFF. % OUTPUT	MODEL
±25% (mV)	CURRENT Ic (mA)	-	FIELD=0 lc=100mA	approx. (Ω)	approx. (Ω)	A	В	С	D	E	MATERIAL		PER °C (typical)	NUMBER
350	350		0.15	1.5	1.5	0.625	0.375	0.035	6	0.250	PVC	32	-0.10	HR36
200	25	0.15		10.0	10.0	0.625	0.375	0.035	6	0.250	PVC	32	-0.25	HR38
500	200		0.50	5.0	4.0	0.200	0.250	0.028	6	0.250	Enamel**	34	-0.15	HR66
340	200		0.50	2.0	2.0	0.200	0.250	0.028	6	0.250	PVC	32	-0.10	HR70
700	100		2.00	9.0	6.0	0.200	0.250	0.028	6	0.250	Enamel**	34	-0.25	HR72
550	100	0.20		10.0	10.0	0.200	0.250	0.035	6	0.250	Enamel**	34	-0.25	HR77
75	100		0.50	1.5	1.5	0.200	0.250	0.028	6	0.250	Enamel**	34	-0.05	HR120
100	100		0.50	2.5	2.0	0.200	0.250	0.028	6	0.250	Enamel**	34	-0.15	HR125A
10	200		0.03	1.0	1.0	0.200	0.250	0.028	6	0.250	Enamel**	34	-0.005	HR170

Output specified with field strength of 10kGauss and control current as listed in table.

Magnet wire with enamel and/or polyurethane insulation may be used. Other sizes and configurations are available. Contact factory for details.

SPECIFICATIONS

INPUT TEMPERATURE Magnetic Field 10kGauss

Operating Range.....-65 to 85°C Coefficient See Table

INSTRUMENT POWER

Control Current...... See Table

PHYSICAL

OUTPUT

Input LeadsRed (+), Black (-) Output Leads......Blue (+), Yellow (-) Voltage See Table

DIMENSIONS

See table for length, width, and thickness dimensions.

NOTE: For HR36 and HR38 probes, the wire color order is (top to bottom) Blue, Red, Yellow, Black, where Red (+) and Black (-) are the input leads and Blue (+) and Yellow (-) are the output leads.

4242 REYNOLDS DRIVE * HILLIARD, OHIO * 43026-1264 PHONE: (614) 777-1005 * FAX: (614) 777-4511

WWW.OHIOSEMITRONICS.COM * 1-800-537-6732