CHAP.2 – PHYSIOLOGIE DE LA GERMINATION

- 1. LA NOTION DE SEMENCE
- 2. LES CONDITIONS DE LA GERMINATION
- 3. LES ASPECTS BIOCHIMIQUES DE LA GERMINATION
- 4. CONCLUSION

1. LA NOTION DE SEMENCE

1.1. DEFINITION

- 1.2. ORIGINE ET CONSTITUTION DES SEMENCES
- 1.2.1. Structure de l'ovule
- 1.2.2. La fécondation
- 1.2.3. Evolution de l'ovule fécondé
- 1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

Semence (agriculture)

Les graines

 Tout autre organe de reproduction choisi pour être semé (bulbes, tubercules ...)

Production de semences (agriculture)

Semenciers

 entreprises spécialisées dans la sélection, la production et la commercialisation des semences

Agriculteurs multiplicateurs

- = sous contrat
- Semences récoltées, triées, calibrées
 - = semences certifiées ; objectif sanitaire

- 1. LA NOTION DE SEMENCE
- 1.1. DEFINITION
- 1.2. ORIGINE ET CONSTITUTION DES SEMENCES
- 1.2.1. Structure de l'ovule
- 1.2.2. La fécondation
- 1.2.3. Evolution de l'ovule fécondé
- 1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

LA STRUCTURE DE L'OVULE DES ANGIOSPERMES

LES DIFFERENTS TYPES DE GRAINE

MORPHOLOGIE FLORALE

A: la fleur vue en coupe longitudinale B: détail d'une étamine C: détail d'un carpelle fermé D: détail d'un carpelle en coupe longitudinale

D'après A. RAYNAL-ROQUES - La Botanique redécouverte - Belin Ed. - 1994

- 1. LA NOTION DE SEMENCE
- 1.1. DEFINITION
- 1.2. ORIGINE ET CONSTITUTION DES SEMENCES
- 1.2.1. Structure de l'ovule
- 1.2.2. La fécondation
- 1.2.3. Evolution de l'ovule fécondé
- 1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

LA STRUCTURE DE L'OVULE DES ANGIOSPERMES

LES DIFFERENTS TYPES DE GRAINE

- 1. LA NOTION DE SEMENCE
- 1.1. DEFINITION
- 1.2. ORIGINE ET CONSTITUTION DES SEMENCES
- 1.2.1. Structure de l'ovule
- 1.2.2. La fécondation
- 1.2.3. Evolution de l'ovule fécondé
- 1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

LA STRUCTURE DE L'OVULE DES ANGIOSPERMES

LES DIFFERENTS TYPES DE GRAINE

ORIGINE ET CONSTITUTION DES SEMENCES (suite)

EVOLUTION DE L'OVULE DES ANGIOSPERMES APRES LA DOUBLE FECONDATION: ORIGINE DES DIFFERENTES TERRITOIRES DE LA GRAINE (in PRAT, 1993)

1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

1.3.1. Analyse élémentaire

- 1.3.2. Les différents types de réserve
- 1.3.2.1. Les réserves glucidiques
- 1.3.2.2. Les réserves lipidiques
- 1.3.2.3. Les réserves protidiques
- 1.4. CARACTERES PHYSIOLOGIQUES DES SEMENCES

ANALYSE ELEMENTAIRE DE QUELQUES SEMENCES

	Eau	Protides	Lipides	Glucides	Sels minéraux
Blé - Orge - Seigle	14	12	02	70	02 %
Pois - Haricot	14	25	02	<i>55</i>	04
Noix - Ricin - Colza	07	20	60	10	03
Lupin - Soja - Féverole	12	40	05	40	03

valeurs exprimées en pourcentage du poids de la semence

- 1.3. CARACTERES BIOCHIMIQUES DES SEMENCES
- 1.3.1. Analyse élémentaire
- 1.3.2. Les différents types de réserve
- 1.3.2.1. Les réserves glucidiques
- 1.3.2.2. Les réserves lipidiques
- 1.3.2.3. Les réserves protidiques
- 1.4. CARACTERES PHYSIOLOGIQUES DES SEMENCES

LES RESERVES GLUCIDIQUES

1. L'AMIDON

Glucose

- Amylose * liaisons α 1-4
- * PM = 50 000

- Amylopectine

 * liaisons α 1-4 (96 %)
 - α 1-6 (4 %)
- * PM = 170 000

2. L'INULINE

Fructose

Glucose - [Fructose] 22

Fructosane type Inuline

LES RESERVES GLUCIDIQUES (suite)

3. LES HEMICELLULOSES

Les hexosanes

Glucose

Galactose

Mannose

→Glucanes

→Galactanes

→Mananes

Les pentosanes

Arabinose

→Arabanes

→Xylanes

Les acides uroniques

Acide glucuronique

Acide galacturonique

LES RESERVES GLUCIDIQUES (suite)

4. LES HETEROSIDES

Les glucosinolates

Fam. des Crucifères: Colza, Moutarde ...

ex.: la glucotropéoline

précurseur = phénylalanine

Les composés cyanogénétiques

Fam. des Légumineuses, Rosacées ...

$$\begin{array}{c} R-CH-C\equiv N\\ \parallel\\ O\\ \parallel\\ Glc \end{array}$$

ex.: la prunasine

précurseur = phénylalanine

1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

- 1.3.1. Analyse élémentaire
- 1.3.2. Les différents types de réserve
- 1.3.2.1. Les réserves glucidiques
- 1.3.2.2. Les réserves lipidiques
- 1.3.2.3. Les réserves protidiques
- 1.4. CARACTERES PHYSIOLOGIQUES DES SEMENCES

LES RESERVES LIPIDIQUES

1. LES TRIGLYCERIDES

Glycérol

CH₂OH | CHOH | CH₂OH

Squelette

- $\begin{array}{c|c} CH_2 O C R1 \\ | & \parallel \\ | & O \\ CH O C R2 \\ | & \parallel \\ | & O \\ CH_2 O C R3 \\ \parallel \\ | & O \\ \end{array}$
- Acides gras →saturés
- acide palmitique CH₃ - (CH₂)₁₄ - COOH
- →insaturés
 - → monoéthyléniques

acide oléique CH₃ - (CH₂)₇ - CH = CH - (CH₂)₇ - COOH

→ <u>diéthyléniques</u>

acide linoléique

 $CH_3 - (CH_2)_4 - CH = CH - CH_2 - CH = CH - (CH_2)_7 - COOH$

2. LES LIPIDES COMPLEXES

Glycérol + acide gras + composé azoté + Pi

1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

- 1.3.1. Analyse élémentaire
- 1.3.2. Les différents types de réserve
- 1.3.2.1. Les réserves glucidiques
- 1.3.2.2. Les réserves lipidiques
- 1.3.2.3. Les réserves protidiques
- 1.4. CARACTERES PHYSIOLOGIQUES DES SEMENCES

LES RESERVES PROTIDIQUES

1. CAS DES DICOTYLEDONES

- GLOBULINES
 - * riches en arginine (15 à 30 %)

 $\begin{array}{c} \mathsf{COOH} \\ | \\ \mathsf{CHNH}_2 \\ | \\ \mathsf{CH}_2 \\ | \\ \mathsf{CH}_2 \\ \setminus \\ \mathsf{NH} \\ / \\ \mathsf{C} = \mathsf{NH} \end{array}$

- * PM ≈ 200 000 à 300 000
- * <u>ex</u>.: légumine→pois arachine→arachide

2. CAS DES MONOCOTYLEDONES = GRAMINEES

surtout

- PROLAMINES
 - * riches en acide glutamique (15 à 25 %)

COOH CHNH₂ CH₂ CH₂ CH₂ COOH

- * PM ≈ 30 000
- * <u>ex</u>.: zéine→pois hordéine→orge

quelques

- GLOBULINES
- ALBUMINES
 - * ex.: gluten→céréales

1.3. CARACTERES BIOCHIMIQUES DES SEMENCES

- 1.3.1. Analyse élémentaire
- 1.3.2. Les différents types de réserve
- 1.3.2.1. Les réserves glucidiques
- 1.3.2.2. Les réserves lipidiques
- 1.3.2.3. Les réserves protidiques

1.4. CARACTERES PHYSIOLOGIQUES DES SEMENCES

Activité métabolique des semences

Activité respiratoire du Petit Pois Pisum sativum

Graine :

0,1 µl O₂ absorbé / g matière sèche / heure

Feuille :

800 µl O₂ absorbé / g matière sèche / heure

Les semences macrobiontiques ou macrobiotiques

Elles ont une durée de vie longue, supérieure à 15 ans. Ces semences peuvent être conservées sans précaution particulière (hormis température fraiche et atmosphère sèche).

Quelques exemples:

- Cas des Légumineuses: trèfle, luzerne ...
- Carotte sauvage: 20 ans
- · Coquelicot: 40 ans
- Moutarde des champs: 60 ans
- Et de nombreuses autres adventices

Les semences mésobiontiques ou mésobiotiques

Elles ont une durée de vie comprise entre 3 et 15 ans. Ces semences représentent la majorité des espèces.

Quelques exemples:

- Cas des Céréales: blé = 10ans
- · Carotte: 4 à 5 ans
- Tomate: 4 ans
- Laitue: 5 ans
- Chicorée: 10 ans
- Aubergine: 6 ans

Les semences microbiontiques ou microbiotiques

Elles ont une durée de vie courte, inférieure à 3 ans. Beaucoup d'entre elles supportent mal la dessication ou sont riches en réserves lipidiques (les lipides sont sujets au phénomène de rancissement ce qui limite leur duréee de conservation).

Quelques exemples:

- · Cas des arbres en général
- Cas des semences oléagineuses
- Ciboulette: 1 an
- · Oignon, persil, salsifis, poireau: 2 ans

Influence de la teneur en eau des semences et de la température de conservation, sur la durée de vie des semences de Riz (d'après Roberts, 1972)

2. LES CONDITIONS DE LA GERMINATION

- 2.1. LES FACTEURS EXTERNES INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

Conditions nécessaires à la germination

- La graine doit être vivante
- La graine doit être mûre
- La graine doit être apte à germer
- · Les conditions extérieures doivent être favorables

- 2. LES CONDITIONS DE LA GERMINATION
- 2.1. LES FACTEURS EXTERNES
 INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

Courbes d'imbibition de deux graines de Pommier (var. Reinette du Mans). Graines mises à imbiber à 18 °C dès leur sortie d'un fruit traité 3 mois à 4 °C. Les flèches indiquent à quel moment la radicule perce les téguments.

- 2. LES CONDITIONS DE LA GERMINATION
- 2.1. LES FACTEURS EXTERNES INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

- 2. LES CONDITIONS DE LA GERMINATION
- 2.1. LES FACTEURS EXTERNES INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

Température et germination

	t°C mini	t°C opti	t°C maxi
Chou	02°C	27°C	30°C
Concombre	12°C	35°C	40°C
Tabac	10°C	24°C	34°C

- 2. LES CONDITIONS DE LA GERMINATION
- 2.1. LES FACTEURS EXTERNES INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES
 INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

- 2. LES CONDITIONS DE LA GERMINATION
- 2.1. LES FACTEURS EXTERNES INDISPENSABLES A LA GERMINATION
- 2.1.1. L'eau
- 2.2.2. L'oxygène
- 2.2.3. La température
- 2.2. LES FACTEURS INTERNES INDISPENSABLES A LA GERMINATION
- 2.2.1. Quiescence
- 2.2.2. Dormance
- 2.3. LES INHIBITIONS TEGUMENTAIRES

2.3. LES INHIBITIONS TEGUMENTAIRES

2.3.1. Résistance mécanique

- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène
- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

2.3. LES INHIBITIONS TEGUMENTAIRES

- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène
- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

LES INHIBITIONS TEGUMENTAIRES

IMPERMEABILITE A L'EAU

Coupe transversale du tégument de la graine de *Melilotus alba*.

a: cuticule; b: couche sous-cuticulaire; c: sommet des cellules de Malpighi; d: ligne lumineuse; e: lumière des cellules de Malpighi; f: espace intercellulaire; g: cellules en piliers; h: couches nutritives; i: espace entre le tégument et l'albumen; j: couche à aleurones; k: couches internes d'albumen.

IMPERMEABILITE A L'OXYGENE

Exemples de structure anatomique des téguments

2.3. LES INHIBITIONS TEGUMENTAIRES

- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau

2.3.3. Imperméabilité à l'oxygène

- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

LES INHIBITIONS TEGUMENTAIRES

IMPERMEABILITE A L'EAU

Coupe transversale du tégument de la graine de *Melilotus alba*.

a: cuticule; b: couche sous-cuticulaire; c: sommet des cellules de Malpighi; d: ligne lumineuse; e: lumière des cellules de Malpighi; f: espace intercellulaire; g: cellules en piliers; h: couches nutritives; i: espace entre le tégument et l'albumen; j: couche à aleurones; k: couches internes d'albumen.

IMPERMEABILITE A L'OXYGENE

Exemples de structure anatomique des téguments

Schéma d'interprétation de l'influence de l'épaisseur des enveloppes séminales imbibées sur la quantité d'oxygène qui parvient à l'embryon

MILIEU EXTERIEUR

Schéma d'interprétation du mécanisme d'approvisionnement en oxygène de l'embryon, à travers les enveloppes séminales imbibées renfermant des composés phénoliques.

ENVELOPPES AVEC PHENOLS

EMBRYON

Schéma d'interprétation de l'influence de la température (t et T) sur la quantité d'oxygène qui parvient à l'embryon, à travers les enveloppes séminales imbibées qui renferment ou non des composés phénoliques.

- 2.3. LES INHIBITIONS TEGUMENTAIRES
- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène

2.3.4. Les inhibiteurs chimiques de la germination

- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

2.3. LES INHIBITIONS TEGUMENTAIRES

- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène
- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

Elimination de la dureté

Traitements naturels

- Putréfaction
- Alternance gel dégel
- Digestion par les sucs digestifs

Traitements artificiels

- Traitements physiques
- Traitements chimiques
- Choc thermique

2.3. LES INHIBITIONS TEGUMENTAIRES

- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène
- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

Amélioration de l'oxygénation

Traitements naturels

- Scarification
- Lessivage
- Oxydation

Traitements artificiels

- Traitements physiques
- Traitements chimiques (lixiviation, traitements oxydants)
- Choc thermique

- 2.3. LES INHIBITIONS TEGUMENTAIRES
- 2.3.1. Résistance mécanique
- 2.3.2. Imperméabilité à l'eau
- 2.3.3. Imperméabilité à l'oxygène
- 2.3.4. Les inhibiteurs chimiques de la germination
- 2.3.5. Traitements facilitant la germination
- 2.3.5.1. Elimination de la dureté
- 2.3.5.2. Amélioration de l'oxygénation
- 2.3.5.3. Postmaturation au sec

2.4. LES DORMANCES EMBRYONNAIRES

2.4.1. Dormance primaire, dormance secondaire

- 2.4.2. Le cas des embryons incomplets
- 2.4.3. Les dormances psychrolabiles

- 2.4. LES DORMANCES EMBRYONNAIRES
- 2.4.1. Dormance primaire, dormance secondaire
- 2.4.2. Le cas des embryons incomplets
- 2.4.3. Les dormances psychrolabiles

- 2.4. LES DORMANCES EMBRYONNAIRES
- 2.4.1. Dormance primaire, dormance secondaire
- 2.4.2. Le cas des embryons incomplets
- 2.4.3. Les dormances psychrolabiles

DORMANCES PSYCHROLABILES: L'EXEMPLE DU POMMIER

1. PRINCIPE DE STRATIFICATION

	Température de stratification		
*	10 °C	20°C	30°C
Durée de stratification			
14 jours	3	3	3
Section 2. The second contraction of			
28 jours	50	25	5% germ.
TOUR OF TOUR PARTY I			
42 jours	100	100	75
,			
48 jours	100	100	100
40 Jouro	• • • •	15/15/15/15	

2. SANS STRATIFICATION

	Nombre de cotylédons			
	2	1	0	
Durée du séjour à 25°C 30 jours	0	8	20% germ.	
40 jours	0	12	48	
60 jours	0	22	52	

TRAITEMENT DE LA DORMANCE PSYCHROLABILE EPICOTYLAIRE

→ Dormance de la gemmule

Ex. du Pêcher, de la Pivoine

- Séjour tiède et humide → Croissance radiculaire 3 mois à 20°C
- Stratification → Levée dormance épicotylaire 3 mois à 7°C
- Séjour tiède et humide → Développement de la plantule 25°C

TRAITEMENT DE LA DOUBLE DORMANCE PSYCHROLABILE

- → Dormance de la radicule et de la gemmule
- 1) Stratification -> Levée dormance radiculaire
- 2) Séjour tiède et humide -- Croissance radiculaire
- 3) Stratification → Levée dormance épicotylaire
- 4) Séjour tiède et humide → Développement de la plantule

Ex. du Muguet:

Eté 2004 Hiver 2004-2005 Eté 2005 Hiver 2005-2006

Eté 2006

dissémination des graines levée dormance radiculaire croissance radiculaire levée dormance épicotylaire développement de la plantule

2.4.4. Les dormances photolabiles

- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- **2.4.4.2.1. Observations**
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

LES DORMANCES PHOTOLABILES Etude expérimentale

Lactuca sativa

SPECTRE D'ACTION DE LA LUHIÈRE BLANCHE

- diramposition on moyen d'un prisme

SOURCE LUMINEUSE ROUGE CL. ROUGE & RETOUR A L'OBSCURITÉ 50% germination

- ENERGIE NÉCESSAIRE POUR OBTENIR 50 % DE GERMINATION , SOUS UNE RADIATION DONNEE E ENERGIE TOTALE ET

Ex: E₇ = 20 min. x Kjeule, / min temps nicusaire. pour obtair 50 % germination

- SPECTRE D'ACTION : 1/ET = (1)

en gratique: germination si 3000 ergs / cm² / s durant 3 à 5 min. (a soule = 10° eys)

CINETIQUE ELEMENTAIRE DE LA GERMINATION

SPECTRE D'ACTION DE LA GERMINATION

EFFET RCL SUPPRINE PAR ECLAIR RS

PHOTORÉVERSIBILITÉ RCL - RS

RCL					50 %
RCL _	RS				5 %
RCL	RS _	RCE			50 %
ROL_	RS _	RCL	→ R 5	3	5 %
	etc .				16

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations

2.4.4.2.2. Hypothèses

- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses

2.4.4.2.3. Expérience de spectrophotométrie in vivo

- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

Structure du chromophore du phytochrome

= forme native

= forme de stockage

P₆₆₀ ~ P₇₃₀

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo

2.4.4.2.4. Equilibre phytochromique

- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

Structure du chromophore du phytochrome

= forme native

= forme de stockage

P₆₆₀ - P₇₃₀

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

Structure du chromophore du phytochrome

= forme native

= forme de stockage

P₆₆₀ - P₇₃₀

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

Structure du chromophore du phytochrome

= forme native

= forme de stockage

P₆₆₀ - P₇₃₀

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

- 2.4.4. Les dormances photolabiles
- 2.4.4.1. Sensibilité à la lumière
- 2.4.4.2. Etude expérimentale
- 2.4.4.2.1. Observations
- 2.4.4.2.2. Hypothèses
- 2.4.4.2.3. Expérience de spectrophotométrie in vivo
- 2.4.4.2.4. Equilibre phytochromique
- 2.4.4.2.5. Forme native, forme active
- 2.4.4.2.6. Structure du phytochrome
- 2.4.4.2.7. Efficience quantique
- 2.4.4.3. Mode d'action du phytochrome
- 2.4.4.3.1. Métabolisme du phytochrome
- 2.4.4.3.2. Mécanisme d'action

3. LES ASPECTS BIOCHIMIQUES DE LA GERMINATION

3.1. SUIVI RESPIRATOIRE

- 3.2. LA MOBILISATION DES RESERVES
- 3.3. CONTRÔLE HORMONAL DES HYDROLASES

4. CONCLUSION

- 3. LES ASPECTS BIOCHIMIQUES DE LA GERMINATION
- 3.1. SUIVI RESPIRATOIRE
- 3.2. LA MOBILISATION DES RESERVES
- 3.3. CONTRÔLE HORMONAL DES HYDROLASES

4. CONCLUSION

- Action des hydrolases :
- > 3 types d'hydrolases, dans un ordre précis α-amylases
- **ß-amylases**
- α-1,6 glucosidase
- > Elles coupent les liaisons α-1,4 et α-1,6 par fixation d'une molécule d'eau

α-amylases Amidon ----- dextrines (oligosides + ou - solubles) **ß-amylases** maltase Glucose maltose (= 2 Glucoses)

- Action des phosphorylases :
- ✓ attaquent l'amidon par l'une de ses extrémités
- ✓ libèrent les molécules de glucose une par une
- √ par fixation d'une molécule d'acide phosphorique H₃PO₄ sur les liaisons α-1,4
- ✓ les molécules de glucose libérées sont des Glu 1 P

MOBILISATION DES RESERVES

Graphique a: Evolution de la teneur des cotylédons du Pois en amidon, dextrines, glucides et protéines totales, au cours de la germination.

Graphique b: Variations de l'activité de l'amylase (exprimée en différence de densité optique, Δ D.O., à 620 nm) et de la phosphorylase (exprimée en μΜ de phosphore pour 5 mn et 2 cotylédons), au cours de la germination du Pois

Evolution des sucres totaux et des lipides au cours de la germination et de la croissance du Ricin.

Temps de germination (jours)	Poids sec (g / 100 graines)		Lipides (g / 100 graines)		Sucres totaux (g /100 graines)	
	Albumen	Embryon	Albumen	Embryon	Albumen	Embryon
0	37,6	-	26,2	-	1,5	-
4	37,0	2,0	24,9	0,1	4,2	0,8
6	25,6	19,5	10,0	0,8	12,2	6,0
8	18,4	25,5	4,0	1,5	9,6	13,8
11	4,0	34,2	0,7	1,1	1,1	16,6

Evolution quantitative de la phytine et du phosphate inorganique au cours de la germination du Blé

LA MOBILISATION DES RESERVES

1. MOBILISATION DES RESERVES GLUCIDIQUES

HYDROLASES

 $\begin{array}{ccc} \alpha \text{ amylases} \\ \text{amidon} & \rightarrow & \text{oligosides solubles = dextrines} \\ & \downarrow & \beta \text{ amylases} \\ \text{glucose} & \leftarrow & \text{maltose} \\ & & \\ & & \\ & & \\ \end{array}$

PHOSPHORYLASES

2. MOBILISATION DES RESERVES LIPIDIQUES

lipases
triglycérides → glycérol + 3 acides gras
↓
glucides
{ glucose
{ saccharose

3. MOBILISATION DES RESERVES PROTEIQUES

protéines → amino-acides
↓ ↓
↓ nouvelles protéines
source carbonée

4. MOBILISATION DES RESERVES PHOSPHORYLEES

 $\begin{array}{c} \text{Méso-inositol} \\ \text{phytase} \\ \text{ADP} + \text{énergie} \end{array} \qquad \begin{array}{c} \text{Méso-inositol} \\ \text{HO}_3 \\ \text{P}_1 \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{HO}_3 \\ \text{OP} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH$

MOBILISATION DES RESERVES

Graphique a: Evolution de la teneur des cotylédons du Pois en amidon, dextrines, glucides et protéines totales, au cours de la germination.

Graphique b: Variations de l'activité de l'amylase (exprimée en différence de densité optique, Δ D.O., à 620 nm) et de la phosphorylase (exprimée en μΜ de phosphore pour 5 mn et 2 cotylédons), au cours de la germination du Pois

Evolution des sucres totaux et des lipides au cours de la germination et de la croissance du Ricin.

Temps de germination (jours)	Poids sec (g / 100 graines)		Lipides (g / 100 graines)		Sucres totaux (g /100 graines)	
	Albumen	Embryon	Albumen	Embryon	Albumen	Embryon
0	37,6	-	26,2	-	1,5	-
4	37,0	2,0	24,9	0,1	4,2	0,8
6	25,6	19,5	10,0	0,8	12,2	6,0
8	18,4	25,5	4,0	1,5	9,6	13,8
11	4,0	34,2	0,7	1,1	1,1	16,6

Evolution quantitative de la phytine et du phosphate inorganique au cours de la germination du Blé

LA MOBILISATION DES RESERVES

1. MOBILISATION DES RESERVES GLUCIDIQUES

HYDROLASES

 $\begin{array}{ccc} \alpha \text{ amylases} \\ \text{amidon} & \rightarrow & \text{oligosides solubles = dextrines} \\ & \downarrow & \beta \text{ amylases} \\ \text{glucose} & \leftarrow & \text{maltose} \\ & & \\ & & \\ & & \\ \end{array}$

PHOSPHORYLASES

2. MOBILISATION DES RESERVES LIPIDIQUES

lipases
triglycérides → glycérol + 3 acides gras
↓
glucides
{ glucose
{ saccharose

3. MOBILISATION DES RESERVES PROTEIQUES

protéines → amino-acides
↓ ↓
↓ nouvelles protéines
source carbonée

4. MOBILISATION DES RESERVES PHOSPHORYLEES

 $\begin{array}{c} \text{Méso-inositol} \\ \text{phytase} \\ \text{ADP} + \text{énergie} \end{array} \qquad \begin{array}{c} \text{Méso-inositol} \\ \text{HO}_3 \\ \text{P}_1 \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{HO}_3 \\ \text{OP} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{Meso-inositol} \\ \text{OH} \\ \text{OH$

- 3. LES ASPECTS BIOCHIMIQUES DE LA GERMINATION
- 3.1. SUIVI RESPIRATOIRE
- 3.2. LA MOBILISATION DES RESERVES
- 3.3. CONTRÔLE HORMONAL DES HYDROLASES

4. CONCLUSION

CONTRÔLE HORMONAL DES HYDROLASES

Cas des ⊲ -amylases de l'orge

(d'après YOMO,1960; PALEG, 1960; VARNER, 1964 et GROAT, 1969)

GA: 48 h → synthèse max. α- amylases: 72 h → synthèse max.

BIOCHIMIE DE LA GERMINATION: TABLEAU RECAPITULATIF

CONTRÔLE HORMONAL DES HYDROLASES

Cas des d -amylases de l'orge

(d'après YOMO,1960; PALEG, 1960; VARNER, 1964 et GROAT, 1969)

GA: 48 h \rightarrow synthèse max.

 α - amylases: 72 h \rightarrow synthèse max.

- 3. LES ASPECTS BIOCHIMIQUES DE LA GERMINATION
- 3.1. SUIVI RESPIRATOIRE
- 3.2. LA MOBILISATION DES RESERVES
- 3.3. CONTRÔLE HORMONAL DES HYDROLASES

4. CONCLUSION

BIOCHIMIE DE LA GERMINATION: TABLEAU RECAPITULATIF

