Analysis and Validation of Semantic Mistranslation Errors in Emulators

Christian Krinitsin, Theofilos Augoustis, Sebastian Reimers, Pramod Bhatotia

Program Emulators

ТΙΠ

Emulators have a critical role:

- Enable cross-platform execution
- Only support for legacy software

Program Emulators

Source ISA

Bugs in emulators:

- Hard to find
- Subtle errors vs. program crashes
- Better tools are needed to validate emulators

What types of bugs exist in user-mode emulators and how can we detect them?

QEMU bug analysis

Manual classification of QEMU user-mode bugs

We lock the following results:

- 5812 bugs in total
- 551 user-mode bugs
- 119 mistranslation bugs

Overview: QEMU bug analysis

Filter all reports for user-mode bugs and classify each bug using **LLMs**

Box64 and FEX bug analysis

User-mode only emulators: discard non-runtime issues in one step

Focaccia

Focaccia can detect bugs and create reproducers

Symbolic Execution Backend - Miasm

Focaccia's effectiveness depends on Miasm's completeness

Overview: Miasm Extension

Implementation of instruction consists out of **two** different steps

Miasm extension - QEMU BLSI bug

Miasm extension - QEMU BLSI bug

Implementation of the instruction semantics can be **simple**

Miasm extension - BLSI Opcode

Opcode/ Instruction

VEX.LZ.oF38.Wo F3 /3 BLSI r32, r/m32

VEX.LZ.oF38.W1 F3 /3 BLSI r64, r/m64

Instruction Operand Encoding

VEX.vvvv (w) ModRM:r/m (r)

Purpose of opcode fields:

- VEX prefix with set constants
- Opcode
- Opcode extension in reg field
- Operands

Miasm extension - VEX prefix

VEX prefix								
1	1	0	0	0	1	0	0	
R	X	B	m ₄	m ₃	m ₂	m ₁	m _o	
W	\overline{V}_3	\overline{V}_2	\overline{V}_1	\overline{V}_0	L	p ₁	p _o	

Purpose of VEX fields:

- R; X; B: Fourth bit for register index fields
- m: Opcode extension
- W: Specifies 64-bit operands
- v: Additional source register index
- L: Specifies vector length of 128/256 bit
- p: Additional prefix bytes

Most of the logic is **already implemented** for the predecessor, the REX prefix

BLSI encoding - pre disassembly

$$v = 0 \Rightarrow eax$$

Evaluation Plan

Bug study:

- Setup: QEMU/Box64/FEX user-mode bug reports
- Criteria: Significance (% mistranslation bug reports, quality)
- LLM: Gemma3 (27b) using Ollama
- Baseline: Manual classification on QEMU reports

• <u>Implementation</u>:

- Setup: Miasm
- Criteria: Effectiveness (# bugs reproduced, # newly supported instructions)
- Benchmark: x86-64 Bit manipulation instructions (BMI)
- Target Architecture: x86-64

Evaluation - QEMU

Classification of QEMU user-mode bugs using the Gemma3 (27b) LLM

End result of classification after manually filtering out false positives

Evaluation - Box64

Classification of Box64 user-mode bugs using the Gemma3 (27b) LLM

Quality of bug reports is low:

- No user debugging
- Root causes are not discussed
- Potentially hide mistranslation bugs

Evaluation - FEX

Classification of FEX user-mode bugs using the Gemma3 (27b) LLM

Quality of bug reports is even lower:

- Half of reports are issued by the maintainers
- 'Mistranslations' are rather performance issues
- Results not meaningful for bug study

Evaluation - Reproducing BLSI bug


```
1. [ERROR] Content of register CF is false. Expected value: 0x0, actual value in the
translation: 0x1.
Expected transformation: Symbolic state transformation 0x401040 -> 0x401045:
[Symbols]
 ZF = (RAX & (-RAX))?(oxo,ox1)
 SF = (RAX & (-RAX))[63:64]
  OF = oxo
      = RAX?(ox1,ox0)
 RBX = RAX & (-RAX)
  RIP
       = 0x401045
 [Instructions]
 BLSI
         RBX, RAX
                    Snapshot (x86 64): {'RSP': 'oxo', 'RIP': 'ox5'}
Actual difference:
```

Focaccia's output for validating QEMU 7.2 on the BLSI instruction

Evaluation - BMI instructions

Instruction	Extension	Bug reproduced on	Supported
BLSI	BMI1	x86-64	✓
BEXTR	BMI1	x86-64	✓
ANDN	BMI1	-	✓
BLSMSK	BMI1	x86-64	✓
BLSR	BMI1	x86-64	✓
TZCNT	BMI1	-	✓
BZHI	BMI2	x86-64	✓

Conclusion

Takeaways:

- Mistranslation bugs are a significant cause of errors in user-mode emulators
- Data-driven bug analysis **aids** validation
- Validation in Focaccia needs a correct and complete symbolic execution backend
- Many mistranslations occur for **uncommon** instructions

Next steps:

- Expanding the symbolic execution backend of Focaccia to support more instructions
- Reproducing more bugs from the bug study