

CICLO 01

Fundamentos de Programación

Colección de datos Inserción en vector ordenado

Operación de inserción en vector ordenado

Si se quiere insertar el 25 se detecta, por inspección, que debe quedar en la posición 6 y los datos conservan la propiedad de que están ordenados ascendentemente. Lo anterior implica que hay que mover los datos desde la posición 6 hasta la 13 una posición a la derecha.

En general, llamemos **k** la posición donde debe quedar el dato a insertar.

Hay que mover los datos desde la posición \mathbf{k} hasta la posición $\mathbf{V[0]}$ una posición a la derecha. Asignar el dato a insertar a la posición \mathbf{k} y actualizar la posición $\mathbf{V[0]}$.

Para determinar \mathbf{k} basta con recorrer el vector a partir de la posición $\mathbf{1}$ hasta encontrar un dato que sea mayor que el dato a insertar. Esa es la posición \mathbf{k} .

Tendremos dos algoritmos: uno que llamaremos **buscaDondeInsertar**, con el cual se determina **k**. Al otro lo llamaremos **insertar**, el cual moverá los datos desde la posición **k** hasta **V[0]** y asignará el dato a la posición **k**.


```
def buscarDondeInsertar(V, d): k = 1 while k \le V[0] and V[k] \le d: k = k + 1 return k
```



```
def buscarDondeInsertar(V, d): k = 1 while k \le V[0] and V[k] \le d: k = k + 1 return k
```



```
def buscarDondeInsertar(V, d):

k = 1

while k \le V[0] and V[k] \le d:

k = k + 1

return k
```



```
def buscarDondeInsertar(V, d): k = 1 while k \le V[0] and V[k] \le d: k = k + 1 return k
```



```
def buscarDondeInsertar(V, d):

k = 1

while k \le V[0] and V[k] \le d:

k = k + 1

return k
```



```
def buscarDondeInsertar(V, d):

k = 1

while k \le V[0] and V[k] \le d:

k = k + 1

return k
```



```
def insertar(V, d, k):
    for i in range(V[0], k – 1, –1 ):
        V[i+1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k – 1, –1 ):
        V[i+1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k – 1, –1 ):
        V[i+1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k - 1, -1 ):
        V[i+1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k - 1, -1 ):
        V[i + 1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k - 1, -1 ):
        V[i + 1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k - 1, -1 ):
        V[i + 1] = V[i]
        V[k] = d
        V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k - 1, -1 ):
        V[i + 1] = V[i]
        V[k] = d
        V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k – 1, –1 ):
        V[i + 1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```



```
def insertar(V, d, k):
    for i in range(V[0], k – 1, –1 ):
        V[i + 1] = V[i]
    V[k] = d
    V[0] = V[0] + 1
```


