

B. Bacchelli, M. Di Natale, M. Mauri

Richiami di Matematica

TEST

QUESITI A RISPOSTA MULTIPLA

Ad uso del corso Richiami di Matematica della Facoltà di Scienze M.F.N.

Milano, gennaio 2010

Indice

1.	Logica - Insiemi	1
2.1	Numeri reali	4
2.2	Percentuali	7
3.	Proprietà delle potenze	9
4.	Polinomi	12
5.1	Equazioni razionali e sistemi	16
5.2	Equazioni col modulo e irrazionali	19
6.	Disequazioni algebriche e sistemi	22
7.	Geometria analitica	26
8.	Funzioni reali	29
9.1	Equazioni esponenziali e logaritmiche	32
9.2	Disquazioni esponenziali e logaritmiche	36
10.	Trigonometria	39

£ 1	Test 1. logica e insiemi
(1)	Se A ha 3 elementi e B ha 4 elementi allora
	(a) $A \times B$ ha 12 elementi.
	(b) $A \subset A \times B$.
	(c) $B \subset A \times B$.
	(d) $A \times B = B \times A$.
	Sia A la proposizione " x è un numero reale positivo" e B la proposizione " \sqrt{x} è un numero e". Stabilire quale è vera :
	(a) Condizione necessaria affinché valga A è che valga B .
	(b) Condizione necessaria affinché valga B è che valga A .
	(c) Condizione necessaria e sufficiente affinché valga A è che valga B .
	(d) Condizione necessaria affinché valga B è che sia $x=4$.
(3)	Determinare quale equivalenza di proposizioni è vera:
	(a) P è un rettangolo $\Leftrightarrow P$ è un quadrilatero con lati uguali.
	(b) P è un rettangolo $\Leftrightarrow P$ è un quadrilatero con tre angoli retti.
	(c) P è un rettangolo \Leftrightarrow P è un poligono con quattro angoli retti.
	(d) P è un rettangolo \Leftrightarrow P è un quadrilatero con lati opposti uguali.
(4) è:	Sia data la proposizione "ogni numero naturale è dispari e minore di 16". La sua negazione
	(a) qualche numero naturale è maggiore di 16.
	(b) ogni numero naturale è pari o maggiore di 15
	(c) qualche numero naturale è pari e maggiore di 15
	(d) qualche numero naturale o è pari o è maggiore di 15

(5) è:	Sia data la proposizione "ogni giorno vado dal panettiere o in salumeria". La sua negazione
	(a) qualche giorno non vado né dal panettiere né in salumeria
	(b) qualche giorno o non vado dal panettiere o non vado in salumeria
	(c) ogni giorno non vado né dal panettiere né in salumeria
	(d) ogni giorno o non vado dal panettiere o non vado in salumeria
` '	Siano A e B due proposizioni di cui si sa che "se B è vera allora A è vera" . Quale di sti affermazioni è corretta?
	(a) condizione necessaria affinché valga B è che valga A .
	(b) se B non è vera allora A non è vera.
	(c) se A è vera allora B è vera.
	(d) condizione sufficiente affinché valga B è che valga A
	Siano dati gli insiemi $A = \{(x, y) \in \mathbb{R}^2 : y^2 = x^2 + 4x + 4\}$ e $B = \{(x, y) \in \mathbb{R}^2 : y = 2\}$. Allora:
	(a) $A = B$
	(b) A contiene B
	(c) $A \cap B = \{(x, y) \in \mathbb{R}^2 : y^2 - x^2 = 16\}$
	(d) B contiene A
(8)	Sia X un sottoinsieme proprio di Y . Quale di queste affermazioni è vera?
	(a) esiste un elemento di X che non appartiene a Y
	(b) ogni elemento di Y non appartiene a X
	$(c) X \cap Y = X \cup Y$
	(d) esiste un elemento di Y che non appartiene a X
(9)	Siano $A = \{x \in \mathbb{N} : x \text{ è pari}\}\ e\ B = \{x \in \mathbb{N} : x \text{ è divisibile per 4}\}.$ Allora:
	(a) $A \subset B$.
	(b) $B \subset A$.
	$(c) \ A \cup (A \cap B) = B.$
	$(d) \ A \cap (A \cup B) = B.$

(10) Siano $A = \{(x,y) \in \mathbb{R}^2 : y^2 + x^2 > 0\}$ e $B = \{(x,y) \in \mathbb{R}^2 : y^2 + x^2 \leq 1\}$. Allora, se si denotano con A^c e B^c il complementare di A e B rispettivamente, quale delle seguenti affermazioni è vera?
(11) Siano $A = \{(x,y) \in \mathbb{R}^2 : y^2 + x^2 = 5\}$ e $B = \{(x,y) \in \mathbb{R}^2 : y^2 + x^2 \le 1\}$. Allora se si denota con A^c e B^c il complementare di A e B rispettivamente, quale delle seguenti affermazioni è vera? (a) $A \subset B$. (b) $A \cup B^c = A$. (c) $A^c \cap B^c = \emptyset$. (d) $A^c \cap B = B$.
(12) Quanti sono i sottoinsiemi dell'insieme $A = \{1, 2, a, b\}$?
(a) 10.
(b) 12.
(c) 15.
(d) 16.

- (1) Se è $2 \le a \le 4$ e $-12 \le b \le -8$, quale è vera?
- (a) $-1/2 \le a \cdot b^{-1} \le -1/6$
- (b) $1/6 \le a \cdot b^{-1} \le 1/2$
- (c) $-1/6 \le a \cdot b^{-1} \le -1/2$
- (d) $-1/3 \le a \cdot b^{-1} \le -1/4$
- (2) Quale è vera?
- (a) $\frac{3}{2} < 1, 2 < \frac{5}{3}$
- (b) $1 < 1, 2 < \frac{5}{4}$
- $(c) \frac{6}{5} < 1, 2 < \frac{5}{3}$
- (d) $\frac{4}{3} < 1, 2 < \frac{7}{5}$
- (3) Se $a \cdot b = 0$, allora
- (a) a = 0
- (c) $(a = 0) \lor (b = 0)$
- (d) $(a = 0) \land (b = 0)$
- (4) La frazione $\left(\frac{1}{\frac{2}{3} \frac{5}{6}}\right) \cdot \frac{3}{5}$ è uguale a
- (a) $\frac{15}{3}$
- $(b) -\frac{18}{5}$
- (d) -6

- (5) Quale è vera?
- (a) $6538 \cdot 10^{13} = 65,38 \cdot 10^{15}$
- (b) $6538 \cdot 10^{13} = 6,538 \cdot 10^{10}$
- (c) $6538 \cdot 10^{13} = 65,38 \cdot 10^{-5}$
- (d) $6538 \cdot 10^{13} = 6,538 \cdot 10^{14}$
- (6) Il prodotto dei numeri 83.456.712 e 8.145.306 è circa uguale a
- (a) $6,64 \cdot 10^{14}$
- (b) $6,64 \cdot 10^{13}$
- (c) $6,64 \cdot 10^{15}$
- (d) $6,64 \cdot 10^{12}$
- (7) L'espressione $(4\sqrt{2}-3)^2$ è uguale a
- (a) $41 24\sqrt{2}$
- (b) $27 24\sqrt{2}$
- (c) $27 + 24\sqrt{2}$
- **(8)** Sia $a = \frac{\sqrt{50} 7}{2}$. Allora $\frac{1}{a}$ vale
- (a) $\frac{2}{\sqrt{50}+7}$
- (b) $\frac{1}{7 \sqrt{50}}$
- (c) $14 + 10\sqrt{2}$
- (d) $7 + \sqrt{50}$

- **(9)** Sia $a = \frac{9 + \sqrt{45}}{2}$. Allora $\frac{1}{a}$ vale
- (a) $\frac{9-\sqrt{45}}{2}$

▲ Test 2.2 Percentuali

` ,	a in scala 1 : 60.000?
	(a) 1,5cm
	(b) 5cm
	(c) 3,5cm
	(d) 2cm
` '	Se un oggetto è in vendita con uno sconto del 30%, pagandolo 21 euro alla cassa quale il suo prezzo prima dello sconto?
	(a) 30 euro
	(b) 70 euro
	(c) 24 euro
	(d) 28 euro
` '	Se in un processo chimico una grandezza q passa dal valore 1 al valore 9, di quanto è nentata q in percentuale? (a) 90% (b) 900% (c) 800% (d) 8%
(4) dive	Tre grandezze p , q , r sono legate dalla relazione $3p=\frac{1}{q\cdot r}$. Se r raddoppia, allora p nta
	(a) $\frac{1}{6}$ del valore iniziale
	(b) $\frac{1}{2}$ del valore iniziale
	(c) $\frac{1}{3}$ del valore iniziale
	(d) il doppio del valore iniziale

(5) In una soluzione di alcool e acido borico l'acido borico è presente al 40%. Quanto alcool contengono 150 grammi di soluzione?		
(a) 90 gr.		
(b) 40gr.		
(c) 60gr.		
(d) 120gr.		
(6) In una confezione di 240 kg di mele e pere, ci sono 60 kg di pere. Quale è la percentuale presente di mele?		
(a) circa il 13%		
(b) 25%		
(c) 55%		
(d) 75%		
(7) In una cultura è presente una popolazione di 25 milioni di batteri, dei quali 200.000 sono di tipo A. Quale è la percentuale di batteri di tipo A rispetto all'intera popolazione?		
di tipo A . Quale è la percentuale di batteri di tipo A rispetto all'intera popolazione?		
di tipo A. Quale è la percentuale di batteri di tipo A rispetto all'intera popolazione? (a) 8%		
(a) 8%		
(a) 8% (b) 1,25%		
(a) 8% (b) 1,25% (c) 0,8%		
 (a) 8% (b) 1,25% (c) 0,8% (d) 12,5% (8) In un processo chimico due grandezze p e q sono inversamente proporzionali; se p diminuisce 		
 (a) 8% (b) 1,25% (c) 0,8% (d) 12,5% (8) In un processo chimico due grandezze p e q sono inversamente proporzionali; se p diminuisce del 30%, allora di quale percentuale aumenta q ? 		
 (a) 8% (b) 1, 25% (c) 0, 8% (d) 12, 5% (8) In un processo chimico due grandezze p e q sono inversamente proporzionali; se p diminuisce del 30%, allora di quale percentuale aumenta q? (a) 52% circa 		
 (a) 8% (b) 1, 25% (c) 0, 8% (d) 12, 5% (8) In un processo chimico due grandezze p e q sono inversamente proporzionali; se p diminuisce del 30%, allora di quale percentuale aumenta q? (a) 52% circa (b) 70% circa 		

△ Test 3. Proprietà delle potenze

- (1) $6^4 + 6^4 =$
- (a) $2^5 \cdot 3^4$
- (b) $2^4 \cdot 3^5$
- $(c) 6^8$
- $(d) 12^4$
- (2) $3^4 \cdot 3^5 =$
- (a) 9^9
- $(b) 3^{20}$
- $(c) 9^{20}$
- $(d) 3^9$
- (3) Indicare la proposizione vera
- (a) $\sqrt{x^2} = x, \forall x \in \mathbb{R}$
- (b) $\sqrt{x^2} = \pm x, \forall x \in \mathbb{R}$

- **(4)** L'espressione $(\sqrt[3]{-5})^{18}$ è uguale a
- $(a) -5^3$
- $(b) 5^6$
- (c) non esiste
- $(d) -5^6$
- **(5)** L'espressione $\frac{3 \cdot 10^{-7} \cdot 8 \cdot (10^{-2})^{-3}}{10^{-5}}$ è uguale a
- (a) $2, 4 \cdot 10^4$
- (b) $2, 4 \cdot 10^5$
- (c) $24 \cdot 10^{-7}$
- (d) $2, 4 \cdot 10^3$

- **(6)** Sia a > 0. L'espressione $\frac{\sqrt[3]{a^2}a^{-3}}{\sqrt[6]{a^4}\sqrt[3]{a}}$ vale
- (a) $a^{-10/3}$
- (b) $a^{3/4}$
- $(c) a^{-4/3}$
- (d) a^{-1}
- (7) Quale è vera?
- (a) $\sqrt[5]{a}\sqrt[6]{b^3} = \sqrt[10]{a^2}\sqrt{b}$, per ogni $a \in \mathbb{R}$, $b \ge 0$
- (b) $\sqrt[5]{a}\sqrt[6]{b^3} = \sqrt[15]{a^3}\sqrt{b}$, per ogni $a \in \mathbb{R}$, $b \ge 0$
- (c) $\sqrt[5]{a^{20}}\sqrt[6]{b^2} = a^4\sqrt{b^3}$, per ogni $a, b \in \mathbb{R}$
- (d) $\sqrt{\sqrt{a^4}} = a$, per ogni $a \in \mathbb{R}$
- (8) La frazione $\frac{8x^{-3}}{\frac{y^3}{4x^3}}$ è uguale a
- (a) $\frac{2}{x^9y^6}$
- (b) $\frac{x^9}{2y^5}$

- (9) Quale delle seguenti è vera?
- (a) $\sqrt{a}\sqrt[3]{b} = \sqrt[5]{ab}$, per ogni a > 0, b > 0
- (b) $\sqrt{a}\sqrt[3]{b} = \sqrt[6]{a^3b^2}$, per ogni a > 0, b > 0
- (c) $\sqrt{a^2(a^2+1)} = a\sqrt{a^2+1}$, per ogni *a* reale
- (d) $\sqrt[3]{a} = \sqrt[5]{a}$, per ogni a > 0

- (10) Stabilire quale proposizione è falsa
- (a) $\forall a \in \mathbb{R}, a^{2n} > 0, \forall n \text{ intero positivo}$
- (b) $\forall a \in \mathbb{R} \setminus \{0\}$, $a^n \neq 0$, $\forall n$ intero positivo
- (c) $\forall a \in \mathbb{R} \setminus \{0\}$, $a^0 = 1$
- (d) $0^n = 0, \forall n$ intero positivo
- (11) Stabilire quale proposizione è vera, comunque si scelgano a e b in \mathbb{R} e n in \mathbb{N} .
- (a) Se a < b, con $a \cdot b \neq 0$, allora $a^{-2} < b^{-2}$
- (b) Se a < b, con $a \cdot b \neq 0$, allora $\frac{1}{b} < \frac{1}{a}$
- (c) $[(-a^n)^n]^2 = a^{2n^2}$
- (d) Se $a \neq 0$, allora $(a^{-n} a^{-n})^0 = 1$

🙇 Test 4. Polinomi

- (1) Per quale k reale il polinomio $2x^3 + 2x^2 + k$ risulta divisibile per (x 1)?
- (a) 2
- (b) 4
- (c) -4
- (d) -6
- (2) Determinare le radici razionali negative del polinomio $x^5 2x^4 x^2 x + 2$.
- (a) -1
- (c) -2
- (d) non esistono radici razionali negative.
- (3) Nell'insieme dei numeri reali $x^4 + 1$ si scompone nei seguenti fattori:
- (a) $(x^2 + \sqrt{2}x 1)(x^2 + \sqrt{2}x + 1)$
- (b) $(x^2 x + \sqrt{2})(x^2 + x \sqrt{2})$
- (c) $(x^2 \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$
- (d) non si scompone non avendo radici reali
- (4) Il M.C.D. (massimo comun divisore) dei polinomi:

$$A(x) = x^3 + 6x^2 + 12x + 8$$
, $B(x) = x^3 + 2x^2$, $C(x) = x^2 + 3x + 2$

- è:
- (a) (x+1)(x+2)
- (b) (x+2)
- (c) (x+1)
- (d) $x^2(x+1)(x+2)$

(5) Il m.c.m. (minimo comune multiplo) dei polinomi:

$$A(x) = x^3 + 6x^2 + 12x + 8$$
, $B(x) = x^3 + 2x^2$, $C(x) = x^2 + 3x + 2$

è:

- (a) $x(x+2)(x-1)^2$
- (b) $x^2(x+1)(x+2)^3$
- $(c) (x-2)^3(x+1)$
- (d) $x^3(x-1)(x-2)$
- **(6)** Siano $a \neq 0$, $b \neq 0$, $a \neq b$; l'espressione

$$\left(\frac{1}{b} - \frac{1}{a}\right) : \left(\frac{a}{b} + \frac{b}{a} - 2\right) \cdot (a^2 - b^2)$$

è uguale a

- (a) a+b
- \bigcap (b) a-b
- (d) nessuna delle precedenti
- (7) Siano $x \neq 0$, $x \neq \pm y$; l'espressione

$$\frac{x+y}{(x-y)^{2}} \cdot \frac{\frac{x^{2}}{x+y}}{\frac{x+y}{x-y} + \frac{y^{2}}{(x-y)^{2}}}$$

è uguale a

- (b) 1

(8) Siano $\frac{a+b}{a-b} > 0$, $a \neq b$; l'espressione

$$\sqrt{\frac{a+b}{a-b}} \cdot \sqrt[3]{\frac{a-b}{a+b}}$$

è uguale a

- (a) 1

- (d) nessuna delle precedenti
- (9) Sia a > 0; l'espressione

$$\sqrt{a\sqrt[5]{\frac{1}{a^3}\sqrt[3]{a^2}}}$$

è uguale a

- (a) 1
- (b) $a\sqrt[5]{a^2}$
- (c) $\sqrt[15]{a^4}$
- (d) nessuna delle precedenti
- (10) L'espressione $\sqrt{x^2 4x + 4}$ è uguale a
- (a) |x-2|
- (b) x 2

- (11) L'espressione $\sqrt[3]{x^3 3x^2 + 3x 1}$ è uguale a
- (a) |x-1|
- (b) x 1
- \bigcap (c) 1-x
- (d) |x + 3|

- (12) L'espressione $\sqrt[4]{x^6 2x^5 + x^4}$ è uguale a
- (a) $\sqrt{x^3(x^3-x)}$
- (b) $x(x-1)^{1/2}$
- (d) $|x| \sqrt{|x-1|}$

▲ Test 5.1 Equazioni razionali e sistemi

- (1) L'equazione ax + b = 0, con le condizioni a = 0 e b = 0
- (a) ha infinite soluzioni
- (b) non ha soluzione
- (d) nessuna delle precedenti
- (2) L'equazione a(x-1) + 3x = 0
- (a) ha infinite soluzioni se a = -3
- (b) ha una soluzione se a = -3
- (c) ha una soluzione se $a \neq -3$
- (d) nessuna delle precedenti
- (3) L'equazione $2x^2 + 2kx + k 1 = 0$ ha radici la cui somma vale 4 per
- (a) k = 4
- (b) k = -2
- (c) k = 2
- (d) k = -4
- (4) L'equazione $3x^2 + 2kx + k 1 = 0$ ha radici il cui prodotto vale 1 per
- (a) k = 4
- (c) k = 2
- (d) k = -4
- **(5)** Un'equazione di secondo grado a coefficienti interi che ha soluzioni $x_1 = -2$ e $x_2 = \frac{2}{3}$ è:
- (a) $3x^2 4x 4 = 0$
- (b) $3x^2 8x + 4 = 0$
- (c) non esiste

(6)	Le soluzioni reali dell'equazione $(x-1)^3 = 27$ sono
	(a) $x = 4, x = -2$
	(b) $x = 4$
	(c) $x = -2$
	(d) $x = -4$
/- \	
(7)	Le soluzioni reali dell'equazione $(x + 1)^4 - 16 = 0$ sono
	(a) $x = 1, x = -3$
	(b) x = 1
	(c) l'equazione non ha soluzioni reali
	(d) $x = 3, x = -1$
(8)	Le soluzioni reali dell'equazione $2x^4 - 2x^2 + 5 = 0$ sono
	(a) $x = 1, x = -1$
	(b) $x = \frac{5}{2}$
	(c) non ha soluzioni reali
	(d) $x = -5, x = -1$
(0)	Le soluzioni reali dell'equazione $(x-2)^6 = (2x-1)^6$ sono
	(a) $x = -1$
	$(b) x = \pm 1$
	(c) non ha soluzioni reali
	(d) $x = -5, x = -1$
	(<i>u</i>) $x = -3, x = -1$
(10)	Le soluzioni dell'equazione $x^4 + x^2 - 2 = 0$ sono
	(a) le stesse dell'equazione $x^2 - 1 = 0$
	(b) diverse dalle soluzioni dell'equazione $x^2 - 1 = 0$
	(c) le stesse dell'equazione $(x+1)^2 = 0$
	(d) non ha soluzioni reali

(d) non ha soluzioni se k = -2

(11)	Quante coppie di numeri reali sono soluzione del sistema $\left\{egin{array}{ll} ab & =1 \ a^2+ab-1 & =0 \end{array} ight.$
	(a) nessuna
	(b) una
	(c) due
	(d) tre
(12)	Quante coppie di numeri reali sono soluzione del sistema $\left\{ \begin{array}{ll} a+b & =1 \\ a^2+ab-1 & =0 \end{array} \right.$
	(a) nessuna
	(b) una
	(c) due
	(d) tre
(13)	Il sistema di equazioni $\begin{cases} ka-b = 2 \\ 2a+b = 1 \end{cases}$ con a e b reali e k parametro reale:
	(a) ha sempre una e una sola soluzione
	(b) ha infinite soluzioni se $k=2$
	(c) non ha mai soluzione

(c) 2

(d) 3

▲ Test 5.2 Equazioni col modulo e irrazionali

(1) Il numero delle soluzioni reali della equazione $|x^2 - 4x + 1| = 3$ è (a) 0 (b) 1(c) 2(d) 3 (2) Siano $A = \{x \in \mathbb{R} : 4x + 1 = |4 - x|\} \in B = \{x \in \mathbb{R} : (4x + 1)^2 = (4 - x)^2\}.$ Allora (a) A = B(c) $B \subset A$ (d) $A \cap B = \emptyset$ (3) Siano $A = \{x \in \mathbb{R} : 3x + 1 = |3 - x|\}$ e $B = \{x \in \mathbb{R} : |3x + 1| = |3 - x|\}$. Allora (a) $A \subset B$ (b) A = B(c) $B \subset A$ (d) $A \cap B = \emptyset$ (4) L'equazione $(x-2)^2 = (3x-1)^2$ è equivalente alla equazione (a) |3x - 1| = x - 2(b) 3x - 1 = |x - 2|(c) 3x - 1 = x - 2(d) |3x-1|=|x-2|(5) Il numero delle soluzioni reali della equazione |x - 1| = 3|x| è (a) 0(b) 1

(6)	L'equazione $x^3 = \sqrt{(2-2x)^3}$
	(a) non ha soluzioni reali
	(b) ha solo la soluzione $x = -1 + \sqrt{3}$
	(c) ha le due soluzioni $x = -1 \pm \sqrt{3}$
	(d) ha le stesse soluzioni dell'equazione $(x + 1 + \sqrt{3})^4 = 0$
(7)	Le soluzioni dell'equazione $x = 3\sqrt{x}$ sono
	(a) $x = 0$
	(b) $x = 9$
	(c) $x = \sqrt{3}$
	(d) nessuna delle precedenti
(8)	Le soluzioni dell'equazione $2x = \sqrt{x^2 - 6x + 9}$ sono
	(a) $x = 3\sqrt{2}$
	(b) $x = 1$
	(c) $x = -3, x = 1$
	(d) non ha soluzioni reali
(9)	Le soluzioni dell'equazione $\sqrt{x-2} = x\sqrt{x-2}$ sono
	(a) $x = 2$
	(b) $x = 2 e x = 1$
	(c) $x = 1$ e $x = 0$
	(d) $x = 2 e x = 0$
(10) L'equazione $\sqrt{x-2} = 3\sqrt{x}$
	(a) ha soluzione $x = \frac{1}{4}$
	(b) è equivalente all'equazione $x - 2 = 9x$
	(c) non ha soluzioni reali
	(d) è equivalente all'equazione $ x-2 =9 x $

(11) Il numero delle soluzioni reali della equazione $\sqrt[3]{2x^2-1}=-1$ è

(a) 0

(b) 1

(c) 2

(d) 3

△ Test 6. Disequazioni algebriche e sistemi

- (1) Sia h è un numero reale negativo. Allora hx > 3(x-1) ha soluzioni
- (b) $x < \frac{3}{3-h}$
- \bigcap (c) $\forall x$
- (d) $x < \frac{-1}{h-3}$
- (2) Per quali $h \in R$ la disequazione hx 4x + 5 > 0 ha soluzioni $x < \frac{-5}{h-4}$
- (a) h > 4

- (3) Se $(a+b)^2 < a^2 + c$, con a, b, c numeri reali diversi da zero, allora $\left(\frac{b}{a}\right)^2 \frac{c}{a^2}$ è
- (a) minore di 0
- \Box (b) minore di $-\frac{b}{a}$
- (c) minore di $-2\frac{b}{a}$
- (d) maggiore di $2\frac{b}{a}$
- (4) Sia h < 0; Per quali valori di x si ha $\frac{h-2}{3-x} > 0$?
- (a) x > 3
- (c) x > 5 h
- (d) x < 3

- **(5)** Se 0 < b < c < 3a, allora $\frac{a}{b}$ è maggiore di

- (d) nessuna delle precedenti
- **(6)** Le soluzioni positive della disequazione $\frac{2x^2-4}{x+1} > 0$ sono
- (a) 0 < x < 2
- (b) x > 2
- (d) $0 < x < \sqrt{2}$
- (7) Le soluzioni negative della disequazione $\frac{1}{(2x^2-4)(x-1)} > 0$ sono
- (a) $x < -\sqrt{2}$, -1 < x < 0
- (b) $-\sqrt{2} < x < 0$
- (c) $x < -\sqrt{2}$
- (d) non ci sono soluzioni negative
- (8) Le soluzioni della disequazione $\frac{1-x}{(2x-4)(x-1)} > 0$ sono
- (a) $x < 2, x \neq 1$
- (b) 1 < x < 2
- (c) x < 1

- (9) II sistema $\begin{cases} x^2 8x > 0 \\ x^2 2x + 4 \le 0 \end{cases}$ ha soluzioni
- (a) il sistema è impossibile
- (b) x = -2
- (c) x < 0, x > 8
- (d) x > -2
- (10) II sistema $\begin{cases} \frac{1}{x-1} > 0 \\ x+4 > 7 \\ (x-2)^2 < 4 \end{cases}$ ha soluzioni
- (a) 0 < x < 4
- (b) x < 0, x > 4
- (c) 3 < x < 4
- (d) il sistema è impossibile
- (11) $-1 < \frac{1}{x} 2 < 1$ se e solo se
- (a) x < 0, x > 1
- (b) $x < 0, \frac{1}{3} < x < 3$
- (d) $\frac{1}{3} < x < 1$
- **(12)** |3x| 2 < 1 se e solo se
- (a) x < 3
- (b) $0 \le x < 1$
- (c) -1 < x < 1

(13) $\sqrt{2x-3}-7<-2$ se e	solo	se
-------------------------------------	------	----

- (a) x < 14
- (c) $\frac{3}{2} \le x < 14$
- (d) non ha soluzioni
- (14) Le soluzioni della disequazione $\sqrt{x^2 4} \ge |-2|$ sono
- \bigcap (a) $\forall x$
- (b) $x \le -2\sqrt{2}, x \ge 2\sqrt{2}$
- (d) la disequazione non ha soluzioni

(b) una ellisse

(c) due rette incidenti

(d) due rette parallele

(1) L'equazione della retta passante per i punti P = (-2, 3) e Q = (-2, 5) è (a) x + 2 = 0(b) x - 2 = 0(c) y - 3 = 0(d) non esiste (2) La retta passante per il punto P = (1,3) e parallela alla retta di equazione x - 2y + 7 = 0ha equazione (a) 2x - y - 4 = 0(b) -x + 2y - 5 = 0(c) -2x + y - 4 = 0(d) x - 2y - 5 = 0(3) La retta passante per il punto A = (-5, -1) e perpendicolare alla retta passante per i punti P = (0,3) e Q = (-2,0) ha equazione (a) 2x + 3y + 13 = 0(b) 2x - 3y + 7 = 0(c) -2x - 3y - 11 = 0(d) 3x - 2y + 13 = 0(4) L'equazione della circonferenza di centro C = (-1, 2) e raggio r = 4 è (a) $x^2 + y^2 - 2x + 4y - 11 = 0$ (b) $x^2 + y^2 + 2x - 4y - 11 = 0$ (c) $x^2 + y^2 + 2x - 4y + 1 = 0$ (d) $2x^2 + 2y^2 + 4x - 8y + 21 = 0$ **(5)** L'equazione $9x^2 - 9y^2 + 6y - 1 = 0$ rappresenta (a) una circonferenza

(6) La circonferenza di equazione $x^2 + y^2 - 1 = 0$ e la retta di equazione $y - x - \sqrt{2} = 0$
(a) non hanno punti di intersezione
(b) si intersecano in un punto
(c) si intersecano in due punti
(d) si intersecano in tre punti
(7) La parabola di equazione $y = \frac{1}{3}x^2$ e la retta di equazione $y = 2x + c$ hanno due intersezioni se e solo se
(a) $c < 3$
(b) $c > 3$
(c) c < -3
(d) c > -3
(8) Siano $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 8x + 4y < 0\}$ e $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 2x + y = 0\}$. Dire quale delle seguenti proposizioni è vera.
\Box (a) $A \subset B$
(9) Siano $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 4x + 4y < 0\}$ e $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 2x + 2y + 3 = 0\}$ Dire quale delle seguenti proposizioni è vera.
\Box (a) $A \subset B$
(d) nessuna delle precedenti

	Siano $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 + 4x + 4y < 0\}$ e $B = \{(x, y) \in \mathbb{R}^2 : y - x^2 > 0\}$. quale delle seguenti proposizioni è vera.
	(a) A ⊂ B
	(b) $B \subset A$
	(c) $A \cap B = \emptyset$
	(d) $A \cap B \neq \emptyset$
(11)	La parabola di equazione $y - x^2 + 2x - 1 = 0$ e la retta di equazione $y - x + 5 = 0$
	(a) non hanno punti di intersezione
	(b) si intersecano in un punto
	(c) si intersecano in due punti
	(d) si intersecano in tre punti
(12)	L'iperbole di equazione $x^2 - 2y^2 = 1$ e la retta di equazione $y - x + 1 = 0$
	(a) non hanno punti di intersezione
	(b) si intersecano in un punto
	(c) si intersecano in due punti
	(d) si intersecano in tre punti
(13) vale	L'area del quadrato inscritto nella circonferenza di equazione $x^2 + y^2 - 6x + 4y - 3 = 0$
	(a) 24
	(b) 28
	(c) 32
	(d) 36
	Il perimetro del quadrato circoscritto nella circonferenza di centro $C=(0,0)$ e passante I punto $P=(3,0)$ vale
	(a) 24
	(b) 28
	(c) 32
	(d) 36

▲ Test 8. Funzioni reali

- (1) Sia $f(x) = \frac{1}{\sqrt{4-x^2}} e g(x) = \frac{1}{\sqrt{3+2x-x^2}}$. Allora
- (a) g(x) = f(x+1)

- (2) Sia $f(x) = 2^{x+1} e g(x) = 2^x$. Allora
- (a) g(x) = f(x+1)
- (b) f(x) = g(x+1)

- (3) Sia $f(x) = \frac{1-x^2}{4+x^2}$ e $g(x) = \frac{-7-3x^2}{4+x^2}$. Allora
- (a) g(x) = f(x) + 1
- (b) g(x) = f(x) 2

- **(4)** Sia $f(x) = \frac{1-x^2}{4+x^2}$ e $g(x) = \frac{-5-3x}{4+x}$. Allora
- (a) f è pari e g è dispari
- \bigcap (b) f non è pari e g è dispari
- \bigcap (c) f è pari e g non è dispari
- \bigcap (d) f non è pari e g non è dispari

- **(5)** II dominio di $f(x) = \frac{1}{\sqrt{4-x^2}}$ è
- (a) x > 2

- **(6)** II dominio di $f(x) = \log_2(x^2 x + 1)$ è
- (a) $-2 \le x \le 2$
- (b) x > 1
- \bigcap (c) $\forall x$
- (d) $x < \frac{1-\sqrt{3}}{2}, x > \frac{1+\sqrt{3}}{2}$
- (7) II dominio di $f(x) = \frac{3}{x^2 1} + \log_{10} x$ è
- (a) x < -1, x > 1

- **(8)** Sia k un numero reale. I grafici delle funzioni $f(x) = x^2 1$ e g(x) = k hanno due intersezioni distinte se e solo se
- (a) k > -1

- **(9)** La seguente funzione $f(x) = \begin{cases} 0, & \text{se } x < 0 \\ 2^x, & \text{se } x \ge 0 \end{cases}$ è
 - (a) non crescente
- (b) non decrescente
- (c) crescente
- (d) nè crescente, nè decrescente
- (10) La seguente funzione $f(x) = \begin{cases} -x & \text{, se } x < 0 \\ x 3 & \text{, se } x \ge 0 \end{cases}$ è
- (a) nè crescente, nè decrescente
- (b) crescente
- (c) decrescente
- (d) non crescente

▲ Test 9.1 Equazioni esponenziali e logaritmiche

- (1) Le soluzioni dell'equazione $3^{2(x-1)} = 81$ sono
- (a) x = 0
- (b) x = 4
- (c) x = 3
- (2) Le soluzioni dell'equazione $3^{2x} = 7$ sono

- (3) Le soluzioni dell'equazione $3^{2x+1} 3^{2x-1} = 16$ sono
- (a) $x = \log_3 6$
- (b) $x = \frac{1 + \log_3 4}{2}$
- $(c) x = \frac{16}{3} \log_3 2$
- (4) Le soluzioni dell'equazione $3^x 5 \cdot 3^{-x} = 4$ sono
- (b) $x_1 = 0$, $x_2 = \log_3 5$
- (d) nessuna soluzione

(5)	Quante soluzioni ha l'equazione $\left(\frac{3}{5}\right)^{x^2} = \left(\frac{125}{27}\right)^{x+1}$
	(a) nessuna
	(b) una
	(c) due
	(d) tre
(6)	Quale delle seguenti espressioni ha significato?
	(a) log ₂ 0
	(b) log ₃ 1
	$(c) \log_3(-3)$
	(d) $\log_{(-4)} 2$
(7)	Il numero $log_{10}(0.0001)$ è uguale a
	(a) 10^{-4}
	(b) -4
	$(c) 10^4$
	$(d) - \log_{10} 4$
(8)	
	Se $c = \log_{10}(99.832.780.320)$ allora
	Se $c = \log_{10}(99.832.780.320)$ allora (a) $8 < c < 9$
	· · · · · · · · · · · · · · · · · · ·
	(a) 8 < c < 9
	(a) 8 < c < 9 (b) 9 < c < 10
	(a) $8 < c < 9$ (b) $9 < c < 10$ (c) $10 < c < 11$ (d) $11 < c < 12$
(9)	(a) $8 < c < 9$ (b) $9 < c < 10$ (c) $10 < c < 11$ (d) $11 < c < 12$
(9)	 (a) 8 < c < 9 (b) 9 < c < 10 (c) 10 < c < 11
(9)	(a) $8 < c < 9$ (b) $9 < c < 10$ (c) $10 < c < 11$ (d) $11 < c < 12$ Per quale numero reale positivo r vale $\log_2 \frac{r^2}{4} = 3$?
(9)	(a) $8 < c < 9$ (b) $9 < c < 10$ (c) $10 < c < 11$ (d) $11 < c < 12$ Per quale numero reale positivo r vale $\log_2 \frac{r^2}{4} = 3$? (a) $4\sqrt{2}$

(10) Per quale numero reale r vale $4^{\frac{1}{2}r-1} = 64$?
(a) 5
(b) 4
\Box (d) 6
(11) Per quale numero reale r , positivo e diverso da 1, vale $\log_r \sqrt[5]{16} = \frac{4}{5}$?
(a) 5
(b) 4
(c) 8
(d) 2
(12) L'equazione $3 \cdot 7^x + 7^{x-1} = 154$ ha soluzione
(b) $x = -1$
(13) L'equazione $5^{x+2}2^x = 2500$ ha soluzione
(c) x = 3
(14) Ovala della samuanti affannassiani è vana man ami valana mala di v. 3
(14) Quale delle seguenti affermazioni è vera per ogni valore reale di x ?
$(a) 2^{x} + 2^{x} = 2^{2x}$
$(c) \ 3^2 \cdot 3^{2x} = 81^x$
(d) $2^{x^2} - 4 \cdot 2^x = 2^{x^2 - 2 - x}$

(d) $-2 < \log_{10} 9 < -1$

(15) Quanto vale log ₉ 27 ?
	(a) Non esiste
	(b) $\frac{3}{2}$
	(c) $\sqrt{2}$
	(d) -2
	(e) $\frac{2}{3}$
(16) Supponendo che sia $\log_{10} 2 = 0,301$, quanto vale $\log_{10}(20000)$?
	(a) 4, 301
	(b) 1, 204
	(c) 301
	(d) 2,301
(17)) Quale delle seguenti affermazioni è vera ?
	(a) $0 < \log_{10} 9 < 1$
	(b) $-1 < \log_{10} 9 < 0$
	(c) $1 < \log_{10} 9 < 10$

(d) tre soluzioni

Sia $c = \log_2 100$. Allora
(a) 3 < c < 4
(b) $4 < c < 5$
(c) 5 < c < 6
(d) $6 < c < 7$
Quante soluzioni ha l'equazione $10^x + x = -2$
(a) nessuna soluzione
(b) una soluzione
(c) due soluzioni

(1) Le soluzioni della disequazione $3^{2x} > 5$ sono

(a) $x > \log_5 \frac{3}{2}$

(2) Le soluzioni della disequazione $\log_2 \frac{r}{4} > 3$ sono

(a) $r > 2^2$

(b) $r > 2^3$

 $(c) r > 2^4$

(d) $r > 2^5$

(3) Le soluzioni della disequazione $3^{2x} - 4 \cdot 3^x < 0$ sono

(a) x > 1

 \bigcap (c) $\forall x$

(d) non ci sono soluzioni

(4) Le soluzioni della disequazione $5^{2x} - 5^{x+2} > 0$ sono

(a) x > 2

(b) x < 1

 $(c) \forall x$

(d) non ci sono soluzioni

(5) Le soluzioni della disequazione $5^{2x} - 5^x > -1$ sono

(a) x > 2

 \bigcap (c) $\forall x$

(d) non ci sono soluzioni

(6) Le soluzioni della disequazione	ne $\left(\frac{1}{2}\right)^{2r} + 2^{2r} < 0$ son	10
-------------------------------------	---	----

- (a) r > 2
- (c) r < 2
- (d) non ci sono soluzioni
- (7) Le soluzioni della disequazione $\left(\frac{1}{5}\right)^{3x} > 5$ sono
- (a) x > 0
- (b) $x > -\frac{1}{3}$
- (c) $x < \frac{1}{3}$
- (8) Le soluzioni della disequazione $4^x 4^{x+2} > 1$ sono
- (a) x > 2
- (b) x < 1
- $(c) \forall x$
- (d) non ci sono soluzioni
- (9) Le soluzioni della disequazione $4^x + 4^{x+1} > 20$ sono
- (a) x > 1
- (b) x < 2
- $(c) \forall x$
- (d) non ci sono soluzioni

(10) Le soluzioni della disequazione $log_2(x+1) + 3 > 0$ sono

- (a) $x > -\frac{7}{8}$
- (c) x > 1
- (d) non ci sono soluzioni

△ Test 10. Trigonometria

(1) In una circonferenza, un arco di lunghezza π metri sottende un angolo di 30°. Quanto misura il raggio? (a) 3 metri (b) 6 metri (c) 4 metri (d) π metri (2) Quante soluzioni ha l'equazione $\sin x = \frac{2}{\pi}x$? (a) 0(b) 3(c) 2 (d) infinite (3) Supponendo $-\pi < x < 2\pi$, quante soluzioni ha l'equazione $\cos x = \frac{1}{3}$? (a) 0 (b) 1 (c) 3 (d) 5 (4) La funzione $y = \cos x$, con $-\pi < x < 0$, è (a) crescente (b) decrescente (c) nè crescente nè decrescente (d) non crescente

- (5) Le soluzioni della equazione $\tan x = \frac{1}{\cos x}$ sono

- (c) l'equazione non ha soluzioni
- **(6)** Le soluzioni della disequazione $\sin^2 x + 3 < 0$ sono
- (a) infinite
- (b) nessuna
- (c) 3
- (7) Il dominio della funzione $f(x) = \sqrt{\frac{1}{\sin x}}$ è
- (a) $x \neq k\pi$, $k \in \mathbb{Z}$
- $(c) -\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$
- (8) Il dominio della funzione $f(x) = \log|\cos x|$ è
- (a) $x \neq k\pi$, $k \in \mathbb{Z}$
- (b) $2k\pi < x < \pi + 2k\pi$, $k \in \mathbb{Z}$
- $(c) -\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$

(9) La funzione $f(x) = \sin^3 x$ è
(a) pari
(b) dispari
(c) nè pari nè dispari
(d) crescente
(10) La funzione $f(x) = \cos(2x)$ è
(a) pari
(b) dispari
(c) nè pari nè dispari
(d) decrescente
(11) Il dominio della funzione $f(x) = \sqrt{\cos(4x)}$ è
$(c) -\frac{\pi}{8} + k\frac{\pi}{2} \le x \le \frac{\pi}{8} + k\frac{\pi}{2}, \ k \in \mathbb{Z}$
(12) Le soluzioni della disequazione $\sin^2 x > \tan^2 x$ sono
(a) infinite
(b) nessuna
(d) 2
(13) Le soluzioni della disequazione $\sin^2 x < \tan^2 x$ sono
(a) infinite
(b) nessuna
(c) 1
(d) 2

(14) In un triangolo rettangolo l'ipotenusa misura $40cm$ e un angolo acuto è di 45^o . Calcolare l'area del triangolo.
(a) $40cm^2$
(b) $40\sqrt{2}cm^2$
$(c) 400 cm^2$
(d) $0, 4m^2$
(15) In un triangolo isoscele un angolo misura 120° e il lato opposto a tale angolo misura 30 metri. Quanto misurano i lati uguali?
(a) $10\sqrt{3}$ metri
(b) 15 metri
(d) 15 $\sqrt{2}$ metri