Package 'DirStats'

June 13, 2024

```
Date 2024-06-13
Description Nonparametric kernel density estimation, bandwidth selection,
     and other utilities for analyzing directional data. Implements the estimator
     in Bai, Rao and Zhao (1987) <doi:10.1016/0047-259X(88)90113-3>, the
     cross-validation bandwidth selectors in Hall, Watson and Cabrera (1987)
     <doi:10.1093/biomet/74.4.751> and the plug-in bandwidth selectors in
     García-Portugués (2013) <doi:10.1214/13-ejs821>.
License GPL-3
LazyData true
Depends R (>= 3.6.0)
Imports movMF, rotasym
Suggests viridisLite
URL https://github.com/egarpor/DirStats
BugReports https://github.com/egarpor/DirStats
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation yes
Author Eduardo García-Portugués [aut, cre]
     (<https://orcid.org/0000-0002-9224-4111>)
Maintainer Eduardo García-Portugués <edgarcia@est-econ.uc3m.es>
Repository CRAN
Date/Publication 2024-06-13 17:40:08 UTC
```

Type Package

Version 0.1.10

Title Nonparametric Methods for Directional Data

bic_vmf_mix

Contents

	DirStats-package																											
	bic_vmf_mix																											2
	bw_dir_cv																											4
	bw_dir_pi																											6
	conv																											
	int																											9
	kde_dir																											10
	lebedev																											12
	vmf																											13
Index																												15
DirS	tats-package	Di	rSt	at	s –	No	onp	oar	an	ıet	ric	: N	1et	ho	ds	fo	or I	Di	rec	cti	on	al	D	ate	— а			

Description

Nonparametric kernel density estimation, bandwidth selection, and other utilities for analyzing directional data. Implements the estimator in Bai, Rao and Zhao (1987) <doi:10.1016/0047-259X(88)90113-3>, the cross-validation bandwidth selectors in Hall, Watson and Cabrera (1987) <doi:10.1093/biomet/74.4.751> and the plug-in bandwidth selectors in García-Portugués (2013) <doi:10.1214/13-ejs821>.

Author(s)

Eduardo García-Portugués.

bic_vmf_mix Fitting mixtures of von Mises-Fisher distributions

Description

Fitting mixtures of von Mises–Fisher distributions by the Expectation-Maximization algorithm, with determination of the optimal number of mixture components.

Usage

```
bic_vmf_mix(data, M_bound = ceiling(log(nrow(data))), M_neig = 3,
    crit = "BIC", iterative = TRUE, plot_it = FALSE, verbose = FALSE,
    kappa_max = 250)
```

bic_vmf_mix 3

Arguments

data	directional data, a matrix of size $c(n, q + 1)$.
M_bound	bound for the number of components in the mixtures. If it is not enough, the search for the mixture with minimum crit will continue from M_bound + 1 if iterative = TRUE. Defaults to ceiling(log(nrow(data))).
M_neig	number of neighbors explored around the optimal number of mixture components. Defaults to 3.
crit	information criterion employed, either "BIC" (default), "AICc" or "AIC".
iterative	keep exploring higher number of components if the optimum is attained at M_{bound} ? Defaults to TRUE.
plot_it	display an informative plot on the optimization's grid search? Defaults to FALSE.
verbose	display fitting progress? Defaults to FALSE.
kappa_max	maximum value of allowed concentrations, to avoid numerical instabilities. Defaults to 250.

Details

See Algorithm 3 in García-Portugués (2013). The Expectation-Maximization fit is performed with movMF.

Value

A list with entries:

- best_fit: a list with estimated mixture parameters mu_hat, kappa_hat, and p_hat of the best-fitting mixture according to crit.
- fit_mixs: a list with of the fitted mixtures.
- BICs: a vector with the BICs (or other information criterion) of the fitted mixtures.

References

García-Portugués, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. *Electronic Journal of Statistics*, 7:1655–1685. doi:10.1214/13-ejs821

Hornik, K. and Grün, B. (2014). movMF: An R Package for Fitting Mixtures of von Mises–Fisher Distributions. *Journal of Statistical Software*, 58(10):1–31. doi:10.18637/jss.v058.i10

4 bw_dir_cv

```
# Mixture fit
bic_vmf_mix(data = samp, plot_it = TRUE, verbose = TRUE)
```

bw_dir_cv

Cross-validation bandwidth selectors for directional data

Description

Likelihood and least squares cross-validation bandwidth selectors for kernel density estimation with directional data.

Usage

```
bw_dir_lcv(data, h_grid = exp(seq(log(0.05), log(1.5), l = 100)), L = NULL,
    plot_it = FALSE, optim = TRUE, optim_par = 0.25, optim_lower = 0.06,
    optim_upper = 10)

bw_dir_lscv(data, h_grid = exp(seq(log(0.05), log(1.5), l = 100)),
    L = NULL, plot_it = FALSE, optim = TRUE, R_code = FALSE,
    optim_par = 0.25, optim_lower = 0.06, optim_upper = 10)
```

Arguments

data	directional data, a matrix of size c(n, q + 1).				
h_grid	vector of bandwidths for performing a grid search. Defaults to $\exp(\text{seq}(0.05), \log(1.5), 1 = 100))$.				
L	kernel function. Set internally to $function(x) \exp(-x)$ (von Mises–Fisher kernel) if NULL (default).				
plot_it	display an informative plot on the optimization's grid search? Defaults to FALSE.				
optim	run an optimization? Defaults to TRUE. Otherwise, a grid search on h is done. Only effective if $L = NULL$.				
optim_par, optim_lower, optim_upper					
	parameters passed to par, lower, and upper in optim when using the "L-BFGS-B" method. Default to 0.25 , 0.06 (to avoid numerical instabilities), and 10 .				
R_code	use slower R code when $L = NULL$? Defaults to FALSE.				

Details

data is not checked to have unit norm, so the user must be careful. When L = NULL, faster FORTRAN code is employed.

bw_dir_lscv employs Monte Carlo integration for q>2, which results in a random output. Use set.seed before to avoid it.

bw_dir_cv 5

Value

A list with entries:

- h_opt: selected bandwidth.
- h_grid: h_grid, if used (otherwise NULL).
- CV_opt: minimum of the CV loss.
- CV_grid: value of the CV function at h_grid, if used (otherwise NULL).

Source

The function bw_dir_lscv employs Netlib's subroutine ribes1 for evaluating the modified Bessel function of the first kind. The subroutine is based on a program by Sookne (1973) and was modified by W. J. Cody and L. Stoltz. An earlier version was published in Cody (1983).

References

Cody, W. J. (1983). Algorithm 597: Sequence of modified Bessel functions of the first kind. *ACM Transactions on Mathematical Software*, 9(2):242–245. doi:10.1145/357456.357462

Hall, P., Watson, G. S., and Cabrera, J. (1987). Kernel density estimation with spherical data. *Biometrika*, 74(4):751–762. doi:10.1093/biomet/74.4.751

Sookne, D. J. (1973). Bessel functions of real argument and integer order. *Journal of Research of the National Bureau of Standards*, 77B:125–132.

```
# Sample
n <- 25
q <- 2
set.seed(42)
samp <- rotasym::r_vMF(n = n, mu = c(1, rep(0, q)), kappa = 2)
# bw_dir_lcv
bw_dir_lcv(data = samp, optim = TRUE)$h_opt
bw_dir_lcv(data = samp, optim = FALSE, plot_it = TRUE)$h_opt
bw_dir_lcv(data = samp, L = function(x) exp(-x))$h_opt

# bw_dir_lscv
set.seed(42)
bw_dir_lscv(data = samp, optim = TRUE)$h_opt
bw_dir_lscv(data = samp, optim = FALSE, plot_it = TRUE)$h_opt
bw_dir_lscv(data = samp, optim = FALSE, plot_it = TRUE)$h_opt
bw_dir_lscv(data = samp, optim = FALSE, R_code = TRUE)$h_opt
bw_dir_lscv(data = samp, L = function(x) exp(-x))$h_opt</pre>
```

6 bw_dir_pi

bw_dir_pi	Plug-in bandwidth selectors for directional data	

Description

Plug-in bandwidth selectors for kernel density estimation with directional data, including Rule-Of-Thumb (ROT), Asymptotic MIxtures (AMI), and Exact MIxtures (EMI).

Usage

```
bw_dir_rot(data)
bw_dir_ami(data, fit_mix = NULL, L = NULL)

R_Psi_mixvmf(q, mu, kappa, p)

bw_dir_emi(data, fit_mix = NULL, optim = TRUE,
    h_grid = exp(seq(log(0.05), log(1.5), l = 100)), plot_it = TRUE,
    optim_par = 0.25, optim_lower = 0.06, optim_upper = 10)
```

Arguments

data	directional data, a matrix of size c(n, q + 1).
fit_mix	output from bic_vmf_mix. Computed internally if NULL (default).
L	kernel function. Set internally to $function(x) \exp(-x)$ (von Mises–Fisher kernel) if NULL (default).
q	dimension of S^q , $q \ge 1$.
mu, kappa, p	mixture parameters. mu is the mean matrix of size $c(length(p), q+1)$, kappa is vector of $length(p)$ concentration parameters, and p is the vector of mixture proportions.
optim	run an optimization? Defaults to TRUE. Otherwise, a grid search on h is done. Only effective if $L = NULL$.
h_grid	vector of bandwidths for performing a grid search. Defaults to $\exp(\text{seq}(0.05), \log(1.5), 1 = 100))$.
plot_it	display an informative plot on the optimization's grid search? Defaults to FALSE.
optim_par, optim	n_lower, optim_upper
	parameters passed to par, lower, and upper in optim when using the "L-BFGS-B" method. Default to 0.25, 0.06 (to avoid numerical instabilities), and 10.

Details

See Algorithms 1 (AMI) and 2 (EMI) in García-Portugués (2013). The ROT selector is implemented according to Proposition 2, **but** without the paper's typo in equation (6), case q=2, where an incorrect extra $\hat{\kappa}$ appears premultiplying $(1+4\hat{\kappa}^2)\sinh(2\hat{\kappa})$ in the denominator.

bw_dir_pi 7

bw_dir_ami uses R_Psi_mixvmf for computing the curvature term of a mixture of von Mises-Fisher densities.

bw_dir_emi employs Monte Carlo integration for q > 2, which results in a random output. Use set.seed before to avoid it.

Value

Selected bandwidth for bw_dir_rot and bw_dir_ami. bw_dir_emi returns a list with entries:

- h_opt: selected bandwidth.
- h_grid: h_grid, if used (otherwise NULL).
- MISE_opt: minimum of the MISE loss.
- MISE_grid: value of the MISE function at h_grid, if used (otherwise NULL).

References

García-Portugués, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. *Electronic Journal of Statistics*, 7:1655–1685. doi:10.1214/13-ejs821

```
# Sample
n <- 25
q <- 2
set.seed(42)
samp <- rotasym::r_vMF(n = n, mu = c(1, rep(0, q)), kappa = 2)
# Mixture fit
fit_mix <- bic_vmf_mix(data = samp, plot_it = TRUE)</pre>
# ROT
bw_dir_rot(samp)
# AMI
bw_dir_ami(samp)
bw_dir_ami(samp, fit_mix = fit_mix)
bw_dir_ami(samp, fit_mix = fit_mix, L = function(x) exp(-x))
# EMI
bw_dir_emi(samp)
bw_dir_emi(samp, fit_mix = fit_mix, optim = FALSE, plot_it = TRUE)
```

8 conv

conv

Convenience functions

Description

Normalization of data in R^{q+1} to S^q . Transformations between S^1 and $[0,2\pi)$, and between S^2 and $[0,2\pi)\times[0,\pi]$.

Usage

```
norm2(x)
normalize(x)
to_cir(th)
to_rad(x)
to_sph(th, ph)
```

Arguments

```
x matrix or vector, in S^1 for to_cir. th vector of angles in [0,2\pi). ph vector of angles in [0,\pi].
```

Value

Euclidean norm (norm) and normalized data (normalize). Position in S^1 (to_cir) or in $[0,2\pi)$ (to_rad). Position in S^2 (to_sph) or in $[0,2\pi) \times [0,\pi]$ (to_rad).

```
# Normalization
x <- 1:3
norm2(x)
normalize(x)
x <- rbind(1:3, 3:1)
norm2(x)
normalize(x)

# Circular transformations
th <- 1
x <- c(0, 1)
to_rad(to_cir(th))
to_rad(to_cir(c(th, th + 1)))
to_cir(to_rad(x))
to_cir(to_rad(rbind(x, -x)))</pre>
```

int 9

int

Integration routines

Description

Several quadrature rules for integration of functions on S^1 , S^2 , and S^q , $q \ge 3$.

Usage

```
int_cir(f, N = 500, na.rm = TRUE, f_vect = TRUE, ...)
int_sph(f, na.rm = TRUE, f_vect = TRUE, ...)
int_hypsph(f, q, M = 1e+05, na.rm = TRUE, f_vect = TRUE, ...)
```

Arguments

f	function to be integrated on S^q . Must be vectorized and accept matrix inputs of size c(nx, q + 1).
N	Defaults to 5e2.
na.rm	ignore possible NAs arising from the evaluation of f? Defaults to TRUE.
f_vect	can f be called in a vectorized form, with matrix input? Defaults to TRUE.
	further arguments passed to f.
q	dimension of S^q , $q \ge 1$.
М	number of Monte Carlo replicates. Defaults to 1e5.

Details

int_cir is an extension of equation (4.1.11) in Press et al. (1997), a periodic trapezoidal rule. int_sph employs the Lebedev quadrature on S^2 . int_hypsph implements a Monte Carlo integration on S^q .

Value

A scalar approximating the integral.

10 kde_dir

References

Lebedev, V. I. and Laikov, D. N. (1999). A quadrature formula for the sphere of the 131st algebraic order of accuracy. *Doklady Mathematics*, 59(3):477–481.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery B. P. (1997). *Numerical Recipes in Fortran 77: The Art of Scientific Computing*. Volume 1. Cambridge University Press, Cambridge. Second edition.

Examples

```
# S^1, trapezoidal rule
f <- function(x) rotasym::d_vMF(x = x, mu = c(0, 1), kappa = 2)
int_cir(f = f)

# S^2, Lebedev rule
f <- function(x) rotasym::d_vMF(x = x, mu = c(0, 0, 1), kappa = 2)
int_sph(f = f)

# S^2, Monte Carlo
f <- function(x) rotasym::d_vMF(x = x, mu = c(0, 0, 1), kappa = 2)
int_hypsph(f = f, q = 2)</pre>
```

kde_dir

Directional kernel density estimator

Description

Kernel density estimation with directional data as in the estimator of Bai et al. (1988).

Usage

```
kde_dir(x, data, h, L = NULL)
c_h(h, q, L = NULL)
lambda_L(L = NULL, q)
b_L(L = NULL, q)
d_L(L = NULL, q)
```

Arguments

X	evaluation points, a matrix of size c(nx, q + 1).
data	directional data, a matrix of size c(n, q + 1).
h	bandwidth, a scalar for kde_dir. Can be a vector for c_h.
L	kernel function. Set internally to function(x) $exp(-x)$ (von Mises–Fisher kernel) if NULL (default).
q	dimension of S^q , $q \ge 1$.

kde_dir

Details

data is not checked to have unit norm, so the user must be careful. When L = NULL, faster FOR-TRAN code is employed.

Value

kde_dir returns a vector of size nx with the evaluated kernel density estimator. c_h returns the normalizing constant for the kernel, a vector of length length(h). lambda_L, b_L, and d_L return moments of L.

References

Bai, Z. D., Rao, C. R., and Zhao, L. C. (1988). Kernel estimators of density function of directional data. *Journal of Multivariate Analysis*, 27(1):24–39. doi:10.1016/0047259X(88)901133

```
# Sample
n <- 50
q <- 3
samp <- rotasym::r_vMF(n = n, mu = c(1, rep(0, q)), kappa = 2)
# Evaluation points
x \leftarrow rbind(diag(1, nrow = q + 1), diag(-1, nrow = q + 1))
# kde_dir
kde_dir(x = x, data = samp, h = 0.5, L = NULL)
kde\_dir(x = x, data = samp, h = 0.5, L = function(x) exp(-x))
# c_h
c_h(h = 0.5, q = q, L = NULL)
c_h(h = 0.5, q = q, L = function(x) exp(-x))
# b_L
b_L(L = NULL, q = q)
b_L(L = function(x) exp(-x), q = q)
# d_L
d_L(L = NULL, q = q)
d_L(L = function(x) exp(-x), q = q)
# lambda_L
lambda_L(L = NULL, q = q)
lambda_L(L = function(x) exp(-x), q = q)
```

12 lebedev

lebedev

Lebedev quadrature on the sphere

Description

Nodes and weights for Lebedev quadrature on the sphere S^2 . The rule has 5810 points and is exact up to polynomials of order 131.

Usage

lebedev

Format

A data frame with 5810 rows and two variables:

xyz nodes for quadrature, a matrix with three columns.

w weights for quadrature, a vector.

Details

The approximation to the integral of f has the form

$$\int_{S^2} f(x, y, z) \, dx \, dy \, dz = 4\pi \sum_{i=1}^N w_i f(x_i, y_i, z_i)$$

where N=5810. The nodes (in spherical coordinates) and weights are processed from lebedev_131.txt.

Source

https://people.sc.fsu.edu/~jburkardt/datasets/sphere_lebedev_rule/sphere_lebedev_rule.html

References

Lebedev, V. I. and Laikov, D. N. (1999). A quadrature formula for the sphere of the 131st algebraic order of accuracy. *Doklady Mathematics*, 59(3):477–481.

```
# Load data
data("lebedev")

# Integrate x_1 * x_2^2 (zero integral)
f_1 <- function(x) x[, 1] * x[, 2]^2
4 * pi * sum(lebedev$w * f_1(lebedev$xyz))</pre>
```

vmf

vmf

Von Mises-Fisher distribution utilities

Description

Maximum likelihood estimation for the von Mises-Fisher distribution and evaluation of density mixtures.

Usage

```
kappa_ml(data, min_kappa = 1e-04, max_kappa = 100, ...)
mu_ml(data)
d_mixvmf(x, mu, kappa, p, norm = FALSE)
```

Arguments

Value

Estimated vector mean (mu_ml) or concentration parameter $(kappa_ml)$. A vector of length nx for d_mixvmf .

```
# Sample
n <- 50
q <- 2
samp <- rotasym::r_vMF(n = n, mu = c(1, rep(0, q)), kappa = 2)
# Estimates
mu_ml(samp)
kappa_ml(samp)

# Mixture
x <- to_cir(seq(0, 2 * pi, 1 = 200))
dens <- d_mixvmf(x = x, mu = rbind(c(-1, 0), c(0, 1), c(1, 0)),</pre>
```

vmf

```
kappa = 1:3, p = c(0.5, 0.2, 0.3))
plot(to_rad(x), dens, type = "1")
```

Index

```
* datasets
                                                   to_cir(conv), 8
    lebedev, 12
                                                   to_rad (conv), 8
                                                   to_sph (conv), 8
b_L (kde_dir), 10
bic\_vmf\_mix, 2, 6
                                                   uniroot, 13
bw_dir_ami (bw_dir_pi), 6
                                                   vmf, 13
bw_dir_cv, 4
bw_dir_emi (bw_dir_pi), 6
bw_dir_lcv (bw_dir_cv), 4
\verb|bw_dir_lscv| (\verb|bw_dir_cv|), 4
bw_dir_pi, 6
bw_dir_rot (bw_dir_pi), 6
c_h (kde_dir), 10
conv, 8
d_L (kde_dir), 10
d_mixvmf (vmf), 13
DirStats (DirStats-package), 2
DirStats-package, 2
int, 9
int_cir(int), 9
int_hypsph(int), 9
int_sph (int), 9
kappa_ml (vmf), 13
kde_dir, 10
lambda_L (kde_dir), 10
lebedev, 12
Lebedev quadrature, 9
movMF, 3
mu_ml (vmf), 13
norm2 (conv), 8
normalize (conv), 8
optim, 4, 6
R_Psi_mixvmf (bw_dir_pi), 6
```