

A Frustratingly Easy Approach for Entity and Relation Extraction

Zexuan Zhong

Danqi Chen

Princeton University

Entity and Relation Extraction: Problem Definition

Input

Bill Smith was in the hotel room

Named Entity Recognition

Relation Extraction

Entity and Relation Extraction: Problem Definition

Input: a piece of unstructured text

- A sequence of tokens $X = x_1, \dots, x_n$
 - \circ a set of spans $S = \{s_1, \dots, s_m\}$

Output:

- A set of entities: $Y_e = \{(s_i, e) : s_i \in S, e \in \mathcal{E}\}$
 - o s: span, e: entity type
- A set of relations: $Y_r = \{(s_i, s_j, r) : s_i, s_j \in S, r \in \mathcal{R}\}$
 - s: subject/object span, r: relation type

Existing Approaches (2014+)

Existing Approaches (2014+)

Structured Prediction

Li and Ji, 2014; Zhang et al., 2017; Katiyar and Cardie, 2017; Li et al., 2019; Wang and Lu, 2020

Existing Approaches (2014+)

Structured Prediction

Li and Ji, 2014; Zhang et al., 2017; Katiyar and Cardie, 2017; Li et al., 2019; Wang and Lu, 2020

Multi-task Learning

Miwa and Bansal, 2016; Bekoulis et al., 2018; Luan et al., 2019; Wadden et al., 2019; Lin et al., 2020

This Work

1. Our model: PURE

A pipelined approach outperforming all previous joint models!

2. Why does it work well?

• **Understanding** modeling choices between entity and relation extraction

3. An efficient approximation model w/ large speedup

This Work

- 1. Our model: PURE
 - A **pipelined** approach outperforming all previous joint models!
- 2. Why does it work well:
 - Understanding modeling choices between entity and relation extraction
- 3. An efficient approximation model w/ large speedup

Input Output

Bill Smith was in the hotel room

Bill Smith hotel room

PER FAC FAC

FAC

Input | Bill | Smith | was | in | the | hotel | room

Relation Model: Inserting Markers

Relation Model: Inserting Markers

Relation Model: Inserting Markers

Experimental Settings

Datasets

ACE04, ACE05: newswire, online forums

SciERC: scientific articles

Evaluation metrics

- Entity F1
- Relation F1

Context information

- Single-sentence
- Cross-sentence

Results on SciERC

This Work

- Our model: PURE
 - A pipelined approach outperforming all previous joint models!

2. Why does it work well?

- Understanding modeling choices between entity and relation extraction
- 3. An efficient approximation model w/ large speedup

Comparison: Out Approach vs Joint Models

DYGIE++ (Wadden et al. 2019)

Comparison: Out Approach vs Joint Models

DYGIE++ (Wadden et al. 2019)

No marker

Typed markers

No marker

Untyped markers

Typed markers

No marker

Untyped markers

Markers + entity auxiliary loss

Typed markers

Relation F1

Markers + entity auxiliary loss 70.7%

1. Two encoders capture distinct information!

Does **sharing encoders** help?

1. Two encoders capture distinct information!

Does **sharing encoders** help? **No!**

2. Modeling entity-relation interaction

2. Modeling entity-relation interaction

Entity → **Relation? :**

• Use typed markers!

2. Modeling entity-relation interaction

Entity → Relation? :

Use typed markers!

Relation → **Entity?** 2

 Adding a relation auxiliary in the entity model does not help!

3. Error propagation?

3. Error propagation?

• Both **jackknifing** and **beam pruning** (Lee et al., 2017; Luan et al., 2018) didn't improve performance!

This Work

- 1. Our model: PURE
 - A pipelined approach outperforming all previous joint models!
- 2. Why does it work well:
 - Understanding modeling choices between entity and relation extraction
- 3. An efficient approximation model w/ large speedup

Improving Runtime Efficiency of PURE

Improving Runtime Efficiency of PURE

Addressing the Efficiency Issue

Key idea: re-use computations for different pairs of spans in the same sentence

Addressing the Efficiency Issue

Key idea: re-use computations for different pairs of spans in the same sentence

Approximation Model

Approximation Model with Batch Computations

Approximation Model with Batch Computations

Conclusions

PURE: A simple and effective approach for entity and relation extraction

- Learns two independent encoders
- Outperforms all previous joint model on three datasets
- An efficient approximation: 8-16x speedup with a small accuracy drop

Conclusions

PURE: A simple and effective approach for entity and relation extraction

- Learns two independent encoders
- Outperforms all previous joint model on three datasets
- An efficient approximation: 8-16x speedup with a small accuracy drop

Let's rethink the value of joint training in entity and relation extraction!

Thank You!

Paper: https://arxiv.org/pdf/2010.12812.pdf

Code: https://github.com/princeton-nlp/PURE