

Alberto TONDA, Senior Researcher (DR)

UMR 518 MIA-PS (Applied Mathematics and Computer Science) INRAE, AgroParisTech, Université Paris-Saclay Institut des Systèmes Complexes, Paris-Ile-de-France

Outline

- Multi-objective problems
- Multi-objective optimization
- Real-world examples
- NSGA-II
- Other approaches
- Many-objective optimization...?

p. 8

Pareto-optimality

$$x$$
: solution $f_i(x)$: fitness

$$\nexists x': f_i(x') \ge f_i(x) \ \forall \ i, \exists j: f_j(x') > f_j(x),$$

Pareto for minimizing or maximizing

- Real-world problems are often MO
 - Often with A LOT of conflicting objectives
 - Plane tickets: seat position, airline, airport...
 - Production: energy, quality, price, ...
 - Distribution: speed, cost, employment, ...

- Single-objective optimization
 - Find ONE best solution

- Multi-objective optimization
 - Find THE PARETO FRONT (hard, maybe impossible)
 - Find as many non-dominated points as possible
 - Finding one point on the Pareto front is easy...
 - ...but finding many is not!

- Techniques to deal with MO
 - Assign weights to objectives, adjust weights
 - Some only work on (differential) equations
 - Multi-objective EAs (state-of-the-art)

- EAs are particularly suited
 - Population of solutions -> lots of points!
 - Black-box optimization -> easy to adopt!

- MOEAs (general idea)
 - Create population, evaluate
 - Create offspring
 - Find Pareto front
 - Remove individuals in Pareto front
 - Recompute Pareto front (iterate)
 - Obtain list of fronts
 - Kill individuals starting from worst fronts

> Example: Influence in social networks

- Advertise products in social networks
 - Use influencers (lots of followers)
 - How to choose influencers? (following overlap)
 - Spend as little as possible

- Multi-objective problem
 - Minimize influencers
 - Maximize influence

> Example: Influence in social networks

- Genome (candidate solution)
 - Set of nodes taken from a graph
 - Vector of integers of different size
 - String of bits (1=influencer, 0=not)
- Fitness function
 - (Max) influence spread in the network
 - (Min) number of nodes/influencers

> Example: Ecosystem services

- Optimize land use in agricultural regions
 - Percentage of land assigned to each use
 - Animal feed, crops, forests (carbon sequestration)
- Multi-objective problem
 - Maximize animal energy production
 - Maximize crop production
 - Maximize carbon sequestration

> Example: Ecosystem services

- Genome (candidate solution)
 - Percentage of land assigned to each task
 - For each region! (~1500 variables for "massive central")

- Fitness function
 - Model for animal energy production
 - Model for crop production
 - Model for carbon sequestration

INRAe

Multi-objec

INRA

INRAe

- Crowding can be an issue
 - Too many points too close together on the PF
 - Not really interesting...

- Crowding can be an issue
 - Ideally, you would like to explore the PF
 - Distribute points "evenly" on the PF

INRAe

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

INRAe

- Crowding distance
 - Value associated to individuals
 - Used to select for reproduction/survival

- NSGA-II (Non-Sorting Genetic Algorithm II)
 - Crowding distance is a volume for 3 objectives, hypervolume for 4+ objectives
 - For 2 or 3 objectives, it works really well

- Limitations
 - The more objectives, the less effective
 - In 10+ dimensions, all points have similar crowding distances

> Pareto-Archived Evolution Strategy (PAES)

- (1+1)-ES
 - Evolution Strategy with μ =1, λ =1
 - Uses mutation, only
- Algorithm
 - Archive has max size
 - Archive is recomputed every time new candidate is added

> Pareto-Archived Evolution Strategy (PAES)

- What about crowding?
 - PAES maintains a grid in objective space
 - Count how many candidates in same square
 - Grid size is a (hyper-) parameter (!)
 - So is the size of the archive

> MOEA/D

- «D» for «Decomposition»
 - Take the multi-objective problem
 - Convert it into N single-objective problems
 - Solve the problems in parallel
- How to decompose the MOO problem?
 - Weighted sum, change weights
 - Tchebycheff approach
 - Boundary intersection

> MOEA/D

- Tchebycheff approach
 - Set reference points in objective space
 - Try to get as close as possible to the points
 - Objective: minimize distance to reference point(s)

- How to evaluate different runs?
 - For single-objective optimization, best individual
 - Here we might have different Pareto fronts
 - We don't know where the true front is

 We can compute the hypervolume of the current Pareto front, using a reference point

> MANY-objective optimization...?

- Relatively recent research topic (2016+)
 - What do we do for 10+ objectives?
 - There's no good answer (yet)

- Clever ideas
 - Perform dimensionality reduction (NSGA-II+PCA)
 - Use individuals as references (NSGA-III)

> NSGA-III

- Same procedure as NSGA-II for non-dominated sorting
 - However, user specifies reference solutions/ "directions"
 - When candidate solutions need to be killed in a front
 - ...start by keeping at least one per reference direction
 - The closest to the reference vector

Alternatives to MOEAs?

- If all your objective functions are linear or quadratic
 - Linear programming or quadratic programming
 - Aggregate objectives in weighted sum, vary weights
 - Similar to MOEA/D
 - Guarantees finding optimal trade-offs

Questions?

Bibliography

- Deb, Multi-objective Optimization using Evolutionary Algorithms, 2011
- Deb & Jain, An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints, 2013

Images: unless otherwise stated, I stole them from the Internet. I hope they are not copyrighted, or that their use falls under the Fair Use clause, and if not, I am sorry. Please don't sue me.