## Leishmania donovani

Lillyanna Azevedo



#### Taxonomy

Domain: Eukaryota

Kingdom: Protista

Phylum: Euglenozoa

Class: Kinetoplastea

Order: Trypanosomatida

Family:Trypanosomatidae

Genus: Leishmania

Species: Leishmania naiffi species complex



#### History

- 1903 discovered by William
   Leishman and Charles Donovan
- 1903 Ronald Ross discovered transmission
- 1940s- less toxic pentavalent antimonials
- 1980s- rise of drug-resistant strains
- 2023- new lineages with abnormal pathologies





## Morphology: Promastigote

- Found in the sand fly (intermediate host)
- Flagellated
  - Motility and attachment
- Elongated
- Single nucleus
- Kinetoplast



Fig: Promastigote of L.Donovani

shutterstock.com · 2260263073

## Morphology: Amastigote

- Round/oval
- Develop in vertebrate hosts
- Single nucleus
- No flagella
- Kinetoplast
- Pellicular microtubules
- Definitive stage



Fig: Amastigote of L.donovai

shutterstock.com · 2260264381

## General Biology and Life Cycle

- 1. Sandfly takes a blood meal, infects human with promastigotes
- 2. Promastigotes phagocytosed by macrophage and transform into amastigotes
- 3. Amastigotes multiply
- 4. Macrophage bursts and amastigotes infect other macrophages
- 5. Sand fly bites and ingests amastigotes
- 6. Become promastigotes in the fly





## Epidemiology

- Global distribution
- Mostly found in tropical and subtropical climates
  - India, Sudan, Bangladesh, Nepal, Brazil
- More infections:
  - In warmer months
  - Rainy season
  - Due to climate change
- Reservoir hosts





## Pathogenesis

- Second deadliest parasitic disease, causes visceral leishmaniasis
- Incubation period can range from 10 days to 1 year
- Can be found in the spleen, bone marrow, liver, lymph nodes, intestine, etc.



## Pathogenesis

#### Symptoms:

- Fever, vomiting, weakness, anemia
- Protrusion of the abdomen
  - Enlarged spleen, liver, bone marrow
- Weak inflammatory response
- Death in 1-2 years, can fluctuate



## Pathogenesis

Severity of infection dependent on:

- Evading immune system
- Replication
- Temperature preference
  - $37^{\circ}\text{C} + (98.6^{\circ}\text{F} +) \rightarrow$  visceral leishmaniasis
- Asymptomatic cases are very prevalent



| Country     | Ratio |
|-------------|-------|
| Sudan       | 1:2.4 |
| Kenya       | 4:1   |
| Ethiopia    | 5.6:1 |
| Brazil      | 18:1  |
| Spain       | 50:1  |
| Bangladesh  | 4:1   |
| India/Nepal | 8.9:1 |

## Diagnosis

- Bone marrow aspiration or biopsy is most common
  - Light microscopy of stained slides
  - Specialized culture techniques
  - Polymerase chain reaction (PCR)
  - Xenodiagnosis





#### Treatment

#### Liposomal amphotericin B vs. amphotericin B



| Feature                           | Liposomal Amphotericin B (Ambisome)              | Regular Amphotericin B (Deoxycholate)                 |
|-----------------------------------|--------------------------------------------------|-------------------------------------------------------|
| Formulation                       | Encased in <b>liposomes</b> for better targeting | Free drug (not encapsulated)                          |
| Effectiveness                     | More <b>effective</b> , lower doses needed       | Effective but requires <b>higher</b> doses            |
| Toxicity                          | Lower toxicity, better tolerated                 | <b>Higher toxicity</b> , more damage to healthy cells |
| Side Effects                      | Milder (fever, chills possible)                  | More severe (strong infusion reactions)               |
| Dosing                            | Lower doses, shorter treatment                   | Higher doses, longer treatment                        |
| Cost & Access                     | More expensive, limited availability             | Cheaper, more widely accessible                       |
| FDA Approval for<br>Leishmaniasis | FDA-approved                                     | Not FDA-approved (but still used in some cases)       |



#### Treatment

- Miltefosine (oral)

- Pentavalent antimonials (IV, IM)
  - Decreasing usage
  - Cheaper and more accessible





#### Prevention

- Prevent possible exposure to sand flies:
- Stay in well screened and air conditioned areas
- Use bed nets in unprotected areas
- Wear protective clothing
- Use repellents
- Avoid nighttime outdoor exposure
- Safe traveling





- 68-year-old man from mountainous region in China

#### Patient presented with:

- Fever (102.2°F)
- Weight loss (about 22 pounds in 6 months)
- Sweating
- Fatigue
- Inability to walk



**Blood Component** 

Labs from initial visit: February 16th

| Hemoglobin (Hgb)                    | 92 g/L (9.2 g/dL) | 130–177 g/L     | 29.2% lower |  |  |  |
|-------------------------------------|-------------------|-----------------|-------------|--|--|--|
| White Blood Cells (WBC)             | 1.35 × 10°/L      | 3.5-9.5 × 10°/L | 61.4% lower |  |  |  |
| Platelets (PLT)                     | 21 × 10°/L        | 125-350 × 10°/L | 83.2% lower |  |  |  |
| Low Hgb (Anemia): weakness, fatigue |                   |                 |             |  |  |  |

Low PLT (Thrombocytopenia): trouble clotting if injury were to occur

**Normal Range** 

% Lower than Normal

Patient's Value

Low WBC (Leukopenia): weakened immune system

#### Bone marrow aspiration smear:

- Revealed granulocytopenia and megakaryocyte maturation disorder
- Bone marrow dysfunction
  - Pancytopenia
  - Lack of immune cells (neutrophils)
  - Bleeding tendencies (low platelets)

# Found *Leishmania donovani* in bone marrow smear



Findings from an Abdominal Ultrasound:

- Enlarged spleen (splenomegaly)
- No tumors, cysts, or masses in liver, gallbladder, or kidneys
  - Organ damage due to infection and inflammation

5 days after admission: *L. donovani* and secondary hemophagocytic lymphohistiocytosis (HLH)



#### Treatment:

- Amphotericin B (5 mg/day, IV)
- Dexamethasone sodium phosphate injection (10mg/day, IV)
  - HLH

#### Discontinued amphotericin B:

- "6 day plan" of antimony sodium gluconate
  - 6ml/day, IM→ condition improved





March 1, 2022: Bone marrow puncture showed no abnormalities

March 4, 2022: Patient was discharged

April 20, 2022: Follow-up visit

| Blood Component            | Patient's Value (Feb<br>16th) | Patient's Value (Apr<br>20th) | Normal<br>Range    |
|----------------------------|-------------------------------|-------------------------------|--------------------|
| Hemoglobin (Hgb)           | 92 g/L (9.2 g/dL)             | 96 g/L (9.6 g/dL)             | 130–177 g/L        |
| White Blood Cells<br>(WBC) | 1.35 × 10°/L                  | 8.3 × 10°/L                   | 3.5-9.5 ×<br>10°/L |
| Platelets (PLT)            | 21 × 10°/L                    | 196 × 10°/L                   | 125–350 ×<br>10°/L |

Timeline of patient's admission to discharge



- 57-year-old man that underwent a liver transplant for alcohol-related liver disease and portal hypertension, following 2 years of sobriety
- Patient was born in Wales, UK
- Has only traveled outside of the UK 15 years prior to Calais, France





#### Transplant:

- Received transplant from brainstem death donor
- 2-day ICU stay, later he was placed on immunosuppressive therapy
- 1 month post transplant:
  - Acute cellular rejection (ACR), given pulsed steroids for three days

#### 4 months post transplant:

- Developed pancytopenia→ reduced mediation due to side effects
- Neutropenia worsened
  - Developed fever, chills, shivering
- Admitted to local hospital with neutropenic sepsis and an acute kidney injury→ transferred to liver transplant center

Test findings:

#### Blood work:

- Iron deficiency (anemia)

#### Computed Tomography (CT) scan results:

- Enlarged spleen, pleural effusion along right side of body
  - Inflammation → increase
     permeability of blood vessels
     →fluid leaks into pleural space



#### Bone marrow aspirate test:

- Amastigotes present

#### Polymerase Chain Reaction (PCR) results:

- Bone marrow PCR was positive for *L. donovani*
- Blood PCR was negative for *L. donovani*



#### Treatment:

- Liposomal amphotericin B (4 mg/kg) via IV for 21 days to treat VL
- After 6 days of treatment → ongoing infection, overactive immune response
- Fever settled and his pancytopenia gradually improved
- Remained on medication for immunosuppression

#### Outcome:

- The donor had travelled to India in the year preceding his death, most likely contracted the parasite here
- Emphasizes the importance for wider differential diagnosis in post transplantation patients



- 36-year-old woman from North Khorasan Province, Bojnurd, Iran

#### Patient presented with:

- Fever
- Weight loss (66-88 lbs)
- Fatigue
- Abdominal pain and swelling
- No medical history, no history of immigration





#### Blood test:

- Anemia and leukopenia

#### Ultrasound:

- Splenomegaly and mild hepatomegaly

#### Bone marrow aspiration and biopsy

- Presence of L. donovani amastigotes

PCR testing → Confirmed *L. donovani* causing VL







#### Treatment:

- Liposomal amphotericin B 1mg/kg for 1 month

 Symptoms gradually subsided and general condition improved



## Question from Case Study #1

What two organs of the body did the parasite infect in order to cause pancytopenia?

## Answer from Case Study #1

Bone marrow and spleen

## Question from Case Study #2

Through PCR testing, what sample from the body was *Leishmania* found in?

## Answer from Case Study #2

Bone marrow

#### References

Ashutosh, Sundar, S., & Goyal, N. (2007). Molecular mechanisms of antimony resistance in Leishmania. *Journal of medical microbiology*, *56*(2), 143-153.

Centers for Disease Control and Prevention. (n.d.). *Prevention of leishmaniasis*. U.S. Department of Health & Human Services.

Dhaliwal, A., Chauhan, A., Aggarwal, D., Davda, P., David, M., Amel-Kashipaz, R., ... & Ferguson, J. W. (2021). Donor acquired visceral leishmaniasis following liver transplantation. *Frontline gastroenterology*, *12*(7), 690-694.

Liu, D., & Uzonna, J. E. (2012). The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol. 2012; 2: 83.

Lypaczewski, P., Chauhan, Y., Paulini, K., Thakur, L., Chauhan, S., Roy, E. I., ... & Jain, M. (2024). Emerging Leishmania donovani Lineages Associated with Cutaneous Leishmaniasis, Himachal Pradesh, India, 2023. *Emerging Infectious Diseases*, *30*(9), 1957.

Mesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. *Frontiers in microbiology*, *3*, 286.

Killick-Kendrick, R. (2013). The race to discover the insect vector of kala-azar: a great saga of tropical medicine 1903-1942. *Bulletin de la Société de pathologie exotique*, *106*(2), 131-137.

Ready, P. D. (2014). Epidemiology of visceral leishmaniasis. *Clinical epidemiology*, 147-154.

Roy, L., Cloots, K., Uranw, S., Rai, K., Bhattarai, N. R., Smekens, T., ... & Van Bortel, W. (2023). The ongoing risk of Leishmania donovani transmission in eastern Nepal: an entomological investigation during the elimination era. *Parasites & Vectors*, *16*(1), 404.

Singh, O. P., Hasker, E., Sacks, D., Boelaert, M., & Sundar, S. (2014). Asymptomatic Leishmania infection: a new challenge for Leishmania control. *Clinical Infectious Diseases*, *58*(10), 1424-1429.

Taghavi, M. R., Mollazadeh, S., Seddigh-Shamsi, M., Azimian, A., Mianji, M., Mohajerzadeh Heydari, M. S., ... & Shokri, A. (2020). Visceral leishmaniasis in an adult case in Northeast of Iran: A case report and literature review. *Clinical Case Reports*, 8(12), 3207-3211.

Zhang, X., Liu, Y., Zhang, M., Wang, Z., Feng, X., Yang, L., ... & Zhao, D. (2022). Case report: Diagnosis of visceral leishmaniasis using metagenomic next-generation sequencing and bone marrow smear. *Frontiers in cellular and infection microbiology*, *12*, 1095072.