Project Development Phase Delivery

of Sprint 2

Date	01 November 2022
Team ID	PNT2022TMID05778
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Task 1:

Model Building:

Adding CNN Layers:

Code:

```
#ADDING CNN LAYERS

model.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation='relu'))#con
volution layer model.add(MaxPooling2D(pool_size=(2,2)))#MaxPooling2D
for downsampling the input
  model.add(Conv2D(32,(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
  model.add(Flatten())#flatten the dimension of the
image
```

Adding Dense Layers:

Code:

```
#ADDING DENSE LAYERS
  model.add(Dense(32))#deeply connected neural network
layers.
model.add(Dense(6,activation='softmax'))
```

Model Summary:

Code:

```
#MODEL SUMMARY

model.summary() #summary of the model
```

Output:

Configure the Learning Process:

Code:

```
#CONFIGURE THE LEARNING PROCESS
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=
['accuracy'])
```

Train the Model:

Code:

```
#TRAIN THE MODEL

model.fit_generator(generator=x_train,steps_per_epoch = len(x_train),
    epochs=10, validation_data=x_test,validation_steps = len(x_test))
```

Output:

```
| Sprint_2.jpynb | 12 | Comment | 13 | Share | 14 | Share | 15 | Share
```

Save the Model:

Code:

```
#SAVE THE MODEL model.save('ECG.h5')
```

Test the Model:

Code:

Output: