An introduction to Reinforcement Learning

26th of July 2022

Summary

What is reinforcement learning (RL)?

- RL is a computational approach to learning from interactions with the environment
 - Trial-and-error
 - Delayed reward
- Considers whole problem of goal-directed agent interacting with an uncertain environment
- RL agents
 - Have explicit goals
 - Sense aspects of their environments
 - Choose actions to influence their environments
- Very general

How does RL compare to other types of learning?

- Association Learning
- Representation Learning
- Supervised Learning
- Unsupervised Learning
- Imitation Learning

•

Reinforcement Learning

The Machine Learning view:

Types of (machine) learning: supervised learning

Find correct labelling/prediction of data:

- That's not what we want though:
 - Want to learn from own experience by interacting with the world

Types of (machine) learning: unsupervised learning

• Find structure in data:

- That's also not what we want:
 - Don't (necessarily) want to learn hidden structure, rather: maximise reward

Basic setup: how to agents learn to act?

Based on a reward signal, agents learn values of actions/states:

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Action a_t

State S_t

Agents can learn a model of the environment to make smarter decisions, e.g.:

$$P(s_{t+1} = s | s_t = s, a_t = a)$$

Basic setup: how to agents learn to act?

Based on a reward signal, agents learn values of actions/states:

Learning to predict reward

Two simple learning algorithms:

Rescorla-Wagner Learning

E.g.: blocking

Prediction error

$$V(s_t) \leftarrow V(s_t) + \alpha \cdot (r - V(s_t))$$

Learning rate

Temporal-Difference Learning E.g.: Higher-order conditioning

$$V(s_t) \leftarrow V(s_t) + \alpha \cdot (r + \gamma \cdot V(s_{t+1}) - V(s_t))$$

Recap: Temporal Difference Learning

But what about actions?

Basic setup: how to agents learn to act?

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Action a_t

Multi-armed bandits

Greedy action selection:

$$P(a_t = a) = \begin{cases} 1 & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ 0 & \text{otherwise} \end{cases}$$

Softmax action selection:

$$P(a_t = a) = \frac{e^{V_t(a) \cdot \beta}}{\sum_{i=1}^{N} e^{V_t(a_i) \cdot \beta}}$$

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Epsilon-greedy action selection:

$$P(a_t = a) = \begin{cases} 1 - \epsilon & \text{if } a_t = \operatorname{argmax}_a V_t(a) \\ \epsilon / N & \text{otherwise} \end{cases}$$

Upper-confidence-bound

(UCB) action selection:

$$P(a_t = a) = \operatorname{argmax}_a[V_t(a) + c \cdot \sqrt{\frac{\ln t}{N_t(a)}}]$$

Limitation of multi-armed bandit problems

Your current action does not influence what happens next!!

How can we solve sequential problems?

The textbook problem:

'Cliff-World'

Optimal path

R = -1

The C I i f f

G

From classical to instrumental learning

TD Learning:

Q-Learning:

Basic setup: how do agents learn to act?

Agents can learn a model of the environment to make smarter decisions, e.g.:

$$P(s_{t+1} = s | s_t = s, a_t = a)$$

Markov Process

Most RL problems are problems where agents face sequences of states:

Fundamental property: Markov property

$$P(s_{t+1} = s \mid s_t, s_{t-1}, s_{t-2}, \dots) = P(s_{t+1} = s \mid s_t)$$

"The future is independent of the past given the present"

Markov Process

Does this problem have the Markov Property?

MDPs basis for model-based RL

$$P(s', r | s, a) = P(s_{t+1} = s', r_{t+1} = r | s_t = s, a_t = a)$$

How can we make use of such models of the world?

Planning and action selection

Learning

• Key idea: store experiences in world model $P(s', r \mid s, a)$

Two-step task: one of the most iconic RL tasks

Distinguish model-free vs. Model-based learning

Model-free RL agent: repeat what is rewarding

Model-based RL agent: repeat what is rewarding, but be clever

Really data: a mix of both

Problem: how do we find the best parameters for a given model?

Assume your participant behaves like this:

(Here: data generated with $\alpha = 0.5$ and $\beta = 5$)

$$(\alpha=0.55 \text{ and } \beta=5.06)$$

Any other Questions?