Math 323 HW20

Minh Bui

June 19, 2017

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say f is bounded if: $\exists m > 0 \text{ s.t } \forall x \in \mathbb{R}$ $\mathbb{R}, |f(x)| \leq m.$

1. Prove that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2+1}$ is bounded.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2+1}$ is bounded. Let $x \in \mathbb{R}$. So then $x^2+1 \geq 1$ and thus $\frac{1}{x^2+1} \leq 1$. We know $\frac{1}{x^2+1} > 0$ and thus $\frac{1}{x^2+1} \geq -1$. So we have $-1 \leq \frac{1}{x^2+1} \leq 1$. This means $|\frac{1}{x^2+1}| \leq 1$.

2. Prove that $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $g(x) = \frac{1}{x-1}$ is not bounded.

Proof. Let $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $g(x) = \frac{1}{x-1}$. We want to show: $\forall m > 0$, $\exists x \in \mathbb{R} \text{ s.t } |\frac{1}{x-1}| > m$. Let m > 0. Let $x = \frac{m+2}{m+1} \in \mathbb{R}$.

$$|g(\frac{m+2}{m+1})| = |\frac{1}{\frac{m+2}{m+1} - 1}| = |\frac{1}{\frac{m+2-m-1}{m+1}}| = m+1 > m$$