Scientific Computation II HW4

Michael Nameika

May 2023

Exercise 1: Application of RBF Interpolation - 2D reconstruction from a point cloud

Consider an implicit (closed) curve in 2D

$$f(x,y) = 0$$

given by a parameterization $x=x(t),\ y=y(t),\ t\in[0,L]$. For a choice of parameter values $\{t_j\}=\{t_1,\ldots,t_N\}$, consider the "point cloud" $\{\mathbf{x}_j=(x_j,y_j)=(x(t_j),y(t_j))\}$. The goal of this exercise is to reconstruct (approximately) the implicity function from the given point cloud.

Step 1: Find an (outer) normal direction \mathbf{n}_i to the curve at each point \mathbf{x}_i .

Step 2: Fix $\alpha > 0$ small and consider the inner and outer points

$$\mathbf{x_j}^- = \mathbf{x}_j - a\mathbf{n}_j, \quad \mathbf{x}_i^+ = \mathbf{x}_j + \alpha\mathbf{n}_j.$$

Step 3: Interpolate the 3N data $(\mathbf{x}_{j}^{-}, -\alpha)$, $(\mathbf{x}_{j}, 0)$, $(\mathbf{x}_{j}^{+}, \alpha)$ using RBF interpolants, that is, find a function $F: \mathbb{R}^{2} \to \mathbb{R}$,

$$F(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

such that $F(\mathbf{x}_j) = 0$ and $F(\mathbf{x}_j^-) = -\alpha, F(\mathbf{x}_j^+) = \alpha$.

Step 4: Restrict F to the level set F(x,y) = 0 to obtain the RBF interpolation for the implicit curve f(x,y) = 0.

Implementing the pointcloud RBF interpolation in MATLAB, (see attached myPointCloudRBF.m script) we find the following level curves and surfaces for a few select point clouds:

Figure 1: Ellipse Point Cloud with $\alpha=0.4,\,r_x=3,\,r_y=2$ and IMQ RBF interpolant

Figure 2: Infinity Lissajous Curve with $\alpha=0.1$ and IMQ

Figure 3: "Skewed" ellipse with $\alpha=0.7$ and IMQ