Tema 1

Problemas complementarios

Ejercicio 1. Clasificar todos los grupos de orden 4.

Solución. Si G es un grupo de orden 4, todo elemento suyo ha de tener orden 2 o 4, por el teorema de Lagrange.

- a) Si exite en G algún elemento a de orden 4, entonces el gubgrupo $\langle a \rangle$ generadopoa, tiene 4 elementos $\{1, a, a^2, a^3\}$ con lo que ha de coincidir con G, y éste es por tanto el grupo cíclico de orden 4.
- b) Si no existe en G ningún elemento de orden 4, todos los elementos, salvo el neutro, tienen orden 2, con lo que podemos escribir

$$G = \{1, a, b, c\} \text{ con } a^2 = b^2 = c^2 = 1.$$

Además como el producto ab ha de ser un elemento de G y no puede ser ni a ni b, (ya que entonces se simplificaría una de las letras y quedaría la otra igualada a 1), se tiene

$$ab = c$$
, y análogamente $ba = c$. ((*))

De esta forma, el grupo G está generado por $a, b: G = \langle a, b \rangle$; como estos generadores conmutan entre sí, se concluye que G es abeliano.

Multiplicando ahora la primera relación de (*) por a se tiene $a \cdot ab = ac$, lo que dice ac = b. Análogamente mutiplicando la segunda relaciónpor b se obtiene $b \cdot ba = bc$, esto es bc = a.

Se obtiene así el 4-grupo de Klein, como aquel en que excluyendo al elemento neutro, todo elemento es de orden 2, y y el producto de dos de elementos cualesquiera es el tercero.

Ejercicio 2. Determinar todos los subgrupos finitos del grupo

$$G = Z \times Z/(2) \times Z/(2)$$
.

Solución. Sea H un subgrupo de G. Supongamos que $(a,b,c) \in H$ con $a \in H \setminus \{0\}$. Entonces $\forall m \in Z^+$, se tiene que $(ma,mb,mc) \in H$, con lo que H es infinito. De esta forma, los subgrupos finitos de H son los subgrupos del grupo

$$\{0\} \times \mathbb{Z}/(2) \times \mathbb{Z}/(2).$$

Esto es, son los de la forma $\{0\} \times A$ donde A es subgrupo del grupo finito $Z/(2) \times Z/(2)$. Los casos posibles son

$$A = \{(0,0\}.$$

$$A = \{(1,0),(0,0)\}.$$

$$A = \{(0,1),(0,0)\}.$$

$$A = \{(1,1).(0,0)\}.$$

$$A = Z/(2) \times Z/(2).$$

Ejercicio 3. Sea N un subgrupo de un grupo G y $t \in G$ un elemento de orden finito

$$o(t) = r$$
.

Sea h el mínimo entero positivo h tal que $t^h \in N$. Demostrar que h existe y que divide a r.

Solución. Como $t^r = 1 \in N$, el conjunto

$$\{h \in Z^+: t^h \in N\}$$

es distinto del vacío, y en consecuencia tiene un elemento mínimo h. Veamos que h divide a r. Dividiendo r entre h tenemos r=qh+s con $0 \le s < h$. De esta forma

$$1 = t^r = t^{qh}t^s$$

de donde $t^s = t^{-qh} \in \mathbb{N}$, con s < h; como h es mínimo s = 0, con lo que r = qh.

Ejercicio 4. Sea $G = D_3$ el grupo de simetrías del triángulo equilátero. Determinar el centralizador

$$C_G(q)$$
.

Solución. Es $D_3 = \{1, f, f^2, g, gf, gf^2\}$, y por definición

$$C_G(g) = \{ x \in D_3 : xg = gx \}.$$

Ciertamente $1 \in C_G(g)$, y $g \in C_G(g)$. Por otra parte, sabemos que se cumple

$$f^k \circ g \circ f^k = g$$
, para $k = 1, 2$.

En particular para, k=1, tenemos $f \circ g \circ f = g$, esto es, $f \circ g = g \circ f^{-1} = g \circ f^2$, con lo que $f, f^2 \notin C_G(g)$. De esta forma, como $C_G(g)$ es un grupo y ya contiene a g, ha de ser $gf, gf^2 \notin C_G(g)$. Así concluimos, $C_G(g) = \{1, g\}$.

Ejercicio 5. Sea $G=D_4$ el grupo de simetrías del triángulo equilátero. Determinar el centralizador

$$C_G(g)$$
.

Solución. Es $D_4 = \{1, f, f^2, f^3, g, gf, gf^2, gf^3\}$. Obviamente $1 \in C_G(g)$, y $g \in C_G(g)$. Puesto que

$$f^k \circ g \circ f^k = g$$
, para $k = 1, 2, 3$

se tiene $f \circ g \circ f = g$, lo que implica $f \circ g = g \circ f^{-1} = g \circ f^3$, con lo que $f, f^2 \notin C_G(g)$, lo que implica que $gf, gf^2 \notin C_G(g)$ (pues g sí pertenece a este grupo). Por otra parte $f^2 \circ g \circ f^2 = g$, lo que implica $f^2 \circ g = g \circ f^{-2} = g \circ f^2$. De esta forma $f^2 \in C_G(g)$ con lo que también $gf^2 \in C_G(g)$, y por tanto

$$C_G(g) = \{1, g, f^2, gf^2\}.$$

(Nótese que este grupo $C_G(g)$ no es otro que el 4-grupo de Klein: está generado por dos elementos de orden 2, que conmutan entre sí.)

Ejercicio 6. Sean A, B y K subgrupos de un grupo G tales que $A \subset B$, $A \cap K = B \cap K$ y AK = BK entonces A = B.

Solución. Puesto que $A \subset B$ para ver que de hecho A = B, bastará ver que tienen el mismo número de elementos. Ahora bien sabemos que:

$$card(AK) = \frac{o(A)o(K)}{o(A \cap K)},$$

 $card(BK) = \frac{o(B)o(K)}{o(B \cap K)},$

que junto con las condiciones del enunciado implica o(A) = o(B) y se concluye.

Ejercicio 7. Sea G un grupo y supongamos que existe un entero positivo n tal que la aplicación

$$f: G \longrightarrow G: x \longmapsto x^n$$
.

es un automorfismo del grupo G. Probar que para todo $x \in G$, se tiene que $x^{n-1} \in Z(G)$.

Solución. Sean $x, z \in G$, puesto que f(xz) = f(x)f(z), se tiene que $(xz)^n = x^n z^n$, lo que simplificando la primera de las x y la última de las z proporciona $(zx)^{n-1} = x^{n-1}z^{n-1}$.

Así pues para probar el enunciado, hemos de ver que

$$x^{n-1}y = yx^{n-1},$$

para todo $y \in G$. Puesto que f es un automorfismo, podemos escribir $y = z^n$, para cierto $z \in G$. Ahora

$$x^{n-1}y = x^{n-1}z^n = x^{-1}(xz)^n = z(xz)^{n-1},$$

y también

$$yx^{n-1} = z^n x^{n-1} = zz^{n-1} x^{n-1} = z(xz)^{n-1},$$

con ello se concluye.