

AD-A189 092 AN INTERPRETATION OF THE ETHYLENIC CARBIDIC AND
GRAPHITE AUGER LINESHAPES. (U) GEORGE WASHINGTON UNIV
WASHINGTON D C DEPT OF CHEMISTRY F L HUTSON ET AL
UNCLASSIFIED DEC 87 IR-39 N08814-88-X-0052 F7G 772

1/1

RE

END
DATE
FILED
- 8 -

© 2000 Vision Research, Inc. All rights reserved.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE	
1a REPORT SECURITY CLASSIFICATION Unclassified	1b RESTRICTIVE MARKINGS
1c SECURITY CLASSIFICATION AUTHORITY	1d DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.
1b DECLASSIFICATION/DOWNGRADING SCHEDULE	
4 PERFORMING ORGANIZATION REPORT NUMBER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)
Technical Report # 39	
6a NAME OF PERFORMING ORGANIZATION Dept. of Chemistry (George Washington Univ.)	6b OFFICE SYMBOL (If applicable)
6c ADDRESS (City, State, and Zip Code)	7a NAME OF MONITORING ORGANIZATION Office of Naval Research (Code 413)
Washington, D.C. 20052	7b ADDRESS (City, State, and Zip Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217
8a NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b OFFICE SYMBOL (If applicable)
8c ADDRESS (City, State, and Zip Code) Chemistry Program Arlington, VA 22217	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract N00014-80-K-0852
10 SOURCE OF FUNDING NUMBERS	
PROGRAM ELEMENT NO. RR013-08 WORK UNIT NO. 08-01 ACCESSION NO. NR 036-081	
11 TITLE (Indicate Security Classification) "Graphitic" Auger lineshapes of chemisorbed carbon species. (Inclass.)	
12 PERSONAL AUTHOR(S) F. J. Hutson and D.E. Ramaker	
13a TYPE OF REPORT Interim Technical	13b TIME COVERED From _____ To _____
14 DATE OF REPORT (Year, Month, Day) December 1987	
15a SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Auger Spectroscopy Graphite Ethylene Chemisorption Carbides	
15b PREPARED FOR Journal Of Vacuum Science & Technology	
16. SUPPLEMENTARY NOTATION Prepared for publication in the Journal of Vacuum Science and Technology	
17. COAT CODES FIELD GROUP SUB-GROUP	
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) George Washington University Department of Chemistry Washington, D.C. 20052 December, 1987	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Recently, Koel reported the C KVV Auger lineshapes for C ₂ H ₄ on Ni(100) at a temperature of 100 K and for the decomposition products at 250, 300, and 600 K. We present detailed interpretations of these lineshapes, as well as for other previously reported carbodic and graphitic lineshapes.	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> OTIC USERS	
21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a NAME OF RESPONSIBLE INDIVIDUAL Dr. David L. Nelson	
22b TELEPHONE (Include Area Code) (202) 696-4110	
22c OFFICE SYMBOL	
22d SECURITY CLASSIFICATION OF THIS PAGE Unclassified	

OFFICE OF NAVAL RESEARCH

Contract N00014-80-K-0852

REF Code _____

Technical Report No. 39

An Interpretation Of The "Ethylenic", "Carbodic", And
"Graphitic" Auger Lineshapes Of Chemisorbed Carbon Species

By

F. J. Hutson and D. E. Ramaker

Prepared for Publication

in the

Journal Of Vacuum Science & Technology

George Washington University
Department of Chemistry
Washington, D.C.
20052

December, 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government
This document has been approved for public release
and sale; its distribution is unlimited.

AD-A189 092

AN INTERPRETATION OF THE "ETHYLENIC", "CARBIDIC", AND "GRAPHITIC"
AUGER LINESHAPES OF CHEMISORBED CARBON SPECIES

F.L. Hutson* and D.E. Ramaker*
Chemistry Department, George Washington University
Washington, DC 20052

Recently, Koef [1] reported the C KVV Auger lineshapes for C_2H_4 on $\text{Ni}(100)$ at a temperature of 100 K and for the decomposition products at 250, 300, and 600 K. We present detailed interpretations of these lineshapes, as well as for other previously reported carbidic and graphitic lineshapes [2].

The most significant results of this work can be summarized briefly as follows:
1) Although the lineshapes for the chemisorbed and comparable gas phase species are similar, they are composed of very different principal and satellite contributions; and 2) The Auger intensity arising from C-H bonds appear at much higher two-hole binding energy than that from C-M (metal) bonds. Thus the amount of C-H and C-M bond character in the surface species can be determined directly from the carbodic lineshapes. CH character is seen to remain even at 600 K on the Ni(100) surface.

An interpretation of the theoretical gas phase ethylene Auger lineshape was reported previously [3]. It consists of the normal kvv component, and the resonantly excited (ke-vv), initial-state shake (kv-vvv), and final-state shake (k-vvv) satellite components. Each component lineshape was determined as described previously [3]. The relative intensities of the components are determined by a least squares fit to the experimental lineshape, and are given in Table I.

The components of the ethylenic (chemisorbed ethylene) lineshape are very different. This is because of transfer of an electron from the metal to the ethylene π orbital to screen the holes left by the Auger process. The ethylenic lineshape can be divided into the VV , $\text{V}\pi^*$, and $\pi^*\pi^*$ contributions, where V indicates collectively the normally occupied valence orbitals. The VV contribution should be directly related to that utilized for gas phase ethylene; however, the charge transfer decreases the effective number of holes, i.e., the transferred electron effectively cancels one hole. Therefore, we can model the principal kvv contribution in the ethylenic lineshape by utilizing the ke-vv contribution from ethylene. Similarly the kv-vvv contribution in the ethylenic lineshape can be modeled by utilizing the kvv contribution from ethylene. The k-vvv contribution does not appear in the experimental ethylenic lineshape because it has been removed by the background subtraction and deconvolution processes [3]. The ke-v contribution from ethylene can be utilized to model the $\text{V}\pi^*$ contribution since it reflects the one-electron ethylene DOS. We must fold this with the π^* DOS. In the LCAO-MO approximation, the π^* orbital mixes with much of the Ni 3d valence band, indeed the hole left by the Auger decay involving the π^* orbital probability ends up on the Ni. Therefore we fold the ethylene DOS with the Ni 3d DOS as obtained from band calculations. Similarly, we model the $\pi^*\pi^*$ lineshape by utilizing the Ni L_{2,3}VV Auger lineshape. The relative intensity of these components, as given in Table I, is determined by a fit to the experimental lineshape. Note the very different magnitudes of the various components, compared with the gas phase. If 1.3 electrons transferred from the Ni to the ethylene π orbital in the Auger final state, we should have $\text{VV:V}\pi^*:\pi^* = 55:38:7$, in reasonable agreement with that in Table I.

Previous Auger studies of the transition metal carbides indicate that correlation effects should be negligible in the NiC lineshape [4]. Utilizing theoretical DOS [5], we find that the DOS self-folded, modulated with the appropriate atomic Auger matrix elements and allowing for core-hole screening, accounts for the experimental lineshape.

Comparison of the carbide lineshape with the carbidic lineshapes

resulting from decomposition of $C_2H_4/Ni(100)$, or hydrogenation of $CO/Ni(100)$ or $Ni(111)$ [2], reveal large differences. These differences suggest that the carbidic lineshapes result from hydrogenated C species (CH_x) on the surface.

To confirm this, the lineshapes were fit to three components, which can be characterized as $M\#M$, $M\#H$, and $H\#H$, representing the respective folds of either the H-C or M-C DOS. The H-C DOS was taken to be that of methane gas [3]. The M-C DOS was that reported by Feibelman [5] for a metal carbide.

Excellent agreement with experiment is found; the results are summarized in Table 1. For comparison, the expected component ratios for $=CH_2$ and $\#CH$ are given in Table 1. They indicate that at 600 K the dominant decomposition product of $C_2H_4/Ni(100)$ is $\#CH$. For $CO_2H_2/Ni(100)$ or $Ni(111)$, both $\#CH$ and $=CH_2$ are present, consistent with that suggested by XPS and EELS data [2].

Using similar techniques, the spectra obtained at 250 and 300 K in the decomposition of $C_2H_4/Ni(100)$ [1] were interpreted. The results indicate that the 250 K spectra is consistent with di- σ bonded acetylene as suggested by EELS data [6]. The 300 K [1] spectra indicate a mixture consisting of about 65% di- σ bonded acetylene and 35% $\#CH$. A similar interpretation of the graphitic Auger spectra [2], obtained from the hydrogenation of $CO/Ni(111)$ above 650 K, indicates that the graphite is weakly π bonded to the surface.

Table 1. Percent of each component for the Auger Lineshapes

Lineshape	$k-vvv$	$k-vvv$	kvv	$ke-vve$	$ke-v$
Ethylenic:	$\frac{1}{5}$	$\frac{20}{20}$	$\frac{54}{54}$	$\frac{13}{13}$	$\frac{2}{2}$
B_3 hylenic: C_2H_4/Ni 100K	0	0	$\frac{VV}{56}$		$\frac{V\pi\pi}{34}$

Carbide, Ni,C

	$M\#M$	$M\#H$	$H\#H$
	100		
Carbidic:			
C_2H_4/Ni 600K	58	39	3
CO_2H_2/Ni (100)*	56	33	11
CO_2H_2/Ni (111)*	48	43	9
Theory:			
$=CH_2$	56	38	6
$\#CH_2$	44	44	11

* Although the surface was heated to 600 K, the Auger data was taken after cooling back down to room temperature [2].

REFERENCES

- 1. Supported in part by the Office of Naval Research
- 2. B.E. Koel, unpublished.
- 3. J.E. Houston, D.E. Peebles, and D.W. Goodman, *J. Vac. Sci. Technol. A3*, 1315 (1985); and to be published.
- 4. F.L. Hutton and D.E. Ramaker, *J. Chem. Phys.*, In press.
- 5. P.J. Feibelman, *Phys. Rev. B26*, 5347 (1982).
- 6. F. Zaera and R.B. Hall, *Surf. Sci.* 180, 1 (1987).

By _____
Aerospace Quality Control
Division and / or
First Special

A-1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No.	Copies	No.	Copies
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39629	1
Dr. Bernard Dauda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L ² Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	U.S. Army Research Office Attn: CRD-Aa-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DINSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center 19112 Philadelphia, Pennsylvania	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division 91232 San Diego, California	1

Q/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 056/625/629

No.	Copies	No.	Copies
Dr. F. Carter Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000	1	Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260	
Dr. Richard Colton Code 6170 Naval Research Laboratory Washington, D.C. 20375-5000		Dr. R. Stanley Williams Department of Chemistry University of California Los Angeles, California 90024	
Dr. Dan Pierce National Bureau of Standards Optical Physics Division Washington, D.C. 20234		Dr. R. P. Messmer Materials Characterization Lab. General Electric Company Schenectady, New York 22217	
Dr. R. G. Hallis Department of Physics University of California Irvine, California 92664		Dr. J. T. Keiser Department of Chemistry University of Richmond Richmond, Virginia 23173	
Dr. D. Ramaker Chemistry Department George Washington University Washington, D.C. 20052		Dr. R. W. Plummer Department of Physics University of Pennsylvania Philadelphia, Pennsylvania 19104	
Dr. J. C. Hemminger Chemistry Department University of California Irvine, California 92717		Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 44106	
Dr. N. Winograd Chemistry Department University of Rochester Rochester, New York 14627		Dr. T. F. George Chemistry Department University of Rochester Rochester, New York 14627	
Dr. G. Rubloff IBM Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, New York 10598		Dr. Roald Hoffmann Department of Chemistry Cornell University Ithaca, New York 14853	
Dr. J. Baldeschwieler Department of Chemistry and Chemical Engineering California Institute of Technology Pasadena, California 91125		Dr. Robert L. Whetten Department of Chemistry University of California Los Angeles, CA 90024	
Dr. Galen D. Stucky Chemistry Department University of California Santa Barbara, CA 93106		Dr. Daniel M. Neumark Department of Chemistry University of California Berkeley, CA 94720	
Dr. A. Steckel Department of Electrical and Systems Engineering Rensselaer Polytechnic Institute Troy, New York 12181		Dr. G. H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853	

Q/1113/87/2

Q/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 056/625/679ABSTRACTS DISTRIBUTION LIST, 056/625/679

Dr. J. E. Jensen
Hughes Research Laboratory
1011 Malibu Canyon Road -
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. M. Grunze
Laboratory for Surface Science
and Technology
University of Maine
Orono, Maine 04369

Dr. J. Butler
Naval Research Laboratory
Code 6115
Troy, New York 12181

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. Bruce King
Department of Chemistry
University of Georgia
Athens, Georgia 30602

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. Theodore E. Mathey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and
Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60237

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Richard J. Saykally
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. Bruce King
Department of Chemistry
University of Georgia
Athens, Georgia 30602

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. Robert Gomer
Physics Department
University Of Oregon
Eugene, Oregon 97403

Dr. David M. Halba
Department of Chemistry
University of Colorado
Boulder, CO 80309-0215

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton SO9 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. H. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91105

