

### Minkowski family of distances

$$D(i,j) \ = \ ^{1/p} \sqrt{\sum_{k=1}^N |x_{ik} - x_{jk}|^p}$$
 N features (dimensions)  $D(i,j) > 0$   $D(i,i) = 0$  properties  $D(i,j) = D(j,i)$   $D(i,j) <= D(i,k) + D(k,j)$ 

## Minkowski family of distances

Manhattan: p=1

$$|D_{Man}(i,j)\> =\> \sum_{k=1}^{N} |x_{ik} - x_{jk}|$$



## Minkowski family of distances

Euclidean: p=2

$$D_{Euc}(i,j) \ = \ \sqrt{\sum_{k=1}^{N} |x_{ik} - x_{jk}|^2}$$





### **Great Circle distance**

 $D(i,j) \ = \ R \ \arccos \left( \sin \phi_i \cdot \sin \phi_j \ + \ \cos \phi_i \cdot \cos \phi_j \cdot \cos \Delta \lambda 
ight)$ 

# features

latitude and longitude  $\phi_i, \lambda_i, \phi_j, \lambda_j$ 



### Uses presence/absence of features in data

 $M_{i=0,j=0}$  : number of features in neither

 $M_{i=1,j=1}$  : number of features in both

 $M_{i=1,j=0}$ : number of features in i but not j

 $M_{i=0,j=1}$  : number of features in j but not i

| observation <i>i</i> |     |         |         |                      |
|----------------------|-----|---------|---------|----------------------|
| ·                    |     | 1       | 0       | sum                  |
| observation j        | 1   | M11     | M10     | M11+M10              |
|                      | 0   | M01     | M00     | M01+M00              |
|                      | sum | M11+M01 | M10+M00 | M11+M00+<br>M01+ M10 |

### Uses presence/absence of features in data

### **Simple Matching Coefficient or Rand similarity**

$$SMC(i,j) \ = \ rac{M_{i=0,j=0} + M_{i=1,j=1}}{M_{i=0,j=0} + M_{i=1,j=0} + M_{i=0,j=1} + M_{i=1,j=1}}$$

|               |     | observati | on i    |                      |
|---------------|-----|-----------|---------|----------------------|
| ·             |     | 1         | 0       | sum                  |
| observation j | 1   | M11       | M10     | M11+M10              |
|               | 0   | M01       | M00     | M01+M00              |
|               | sum | M11+M01   | M10+M00 | M11+M00+<br>M01+ M10 |

### **Simple Matching Distance**

$$SMD(i,j) = 1 - SMC(i,j)$$

 $M_{i=0,j=0}$  : number of features in neither

 $M_{i=1,j=1}$  : number of features in both

 $M_{i=1,j=0}$  : number of features in  $\emph{i}$  but not  $\emph{j}$ 

 $M_{i=0,j=1}$  : number of features in j but not i

### **Jaccard similarity**

$$J(i,j) \; = \; rac{M_{i=1,j=1}}{M_{i=0,j=1} + M_{i=1,j=0} + M_{i=0,j=0}}$$

#### Jaccard distance

$$D(i,j) = 1 - J(i,j)$$



| observation <i>i</i> |     |         |         |          |
|----------------------|-----|---------|---------|----------|
| =                    |     | 1       | 0       | sum      |
| observation j        | 1 ( | M11     | M10     | M11+M10  |
|                      | 0   | M01     | M00     | M01+M00  |
|                      | sum | M11+M01 | M10+M00 | M11+M00+ |
| ok                   |     |         |         | M01+ M10 |

 $M_{i=0,j=0}$  : number of features in neither

 $M_{i=1,j=1}$  : number of features in both

 $M_{i=1,j=0}$  : number of features in i but not j

 $M_{i=0,j=1}$  : number of features in j but not i

FS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

### **Jaccard index**

$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$

Application to Deep Learning for image recognition

Convolutional Neural Nets





# Another useful package for scientific Python: SciPy



Distance functions between two boolean vectors (representing sets)  ${\tt u}$  and  ${\tt v}$ . As in the case of numerical vectors, pdist is more efficient for computing the distances between all pairs.

Compute the Dice discimilarity between two

| dice(u, v[, w])    | boolean 1-D arrays.                                                       |
|--------------------|---------------------------------------------------------------------------|
| hamming(u, v[, w]) | Compute the Hamming distance between two 1-D arrays.                      |
| jaccard(u, v[, w]) | Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays. |

Distance functions between two numeric vectors  ${\bf u}$  and  ${\bf v}$ . Computing distances over a large collection of vectors is inefficient for these functions. Use pdist for this purpose.

| braycurtis(u, v[, w]) | Compute the Bray-Curtis distance between              |  |  |
|-----------------------|-------------------------------------------------------|--|--|
| braycurus(u, v[, w])  | two 1-D arrays.                                       |  |  |
| canberra(u, v[, w])   | Compute the Canberra distance between two 1-D arrays. |  |  |
| chebyshev(u, v[, w])  | Compute the Chebyshev distance.                       |  |  |
| cityblock(u, v[, w])  | Compute the City Block (Manhattan) distance.          |  |  |

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html





# **Data whitening**



# Data can have covariance (and it almost always does!)



https://www.tylervigen.com/spurious-correlations

## Data can have covariance (and it almost always does!)

Pearson's correlation (linear correlation)

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$



Pearson's correlation = covariance/ product of the two standard deviations



# **Generic preprocessing**

Original data

Data that is not correlated appear as a sphere in the N-dimensional feature space

Standardized data





# **Generic preprocessing**

for each feature: divide by standard deviation and subtract mean

Original data

mean of each feature should be 0, standard deviation of each feature should be 1

Standardized data







# **Generic preprocessing**

For image processing (e.g. segmentation) often you need to min-max preprocess

```
from sklearn import preprocessing
Xopscaled = preprocessing.minmax_scale(op.reshape(op.shape[1] * op.shape[0], 3).astype(float), axis=1)
Xopscaled.reshape(op.shape)[200, 700]
```

#### pl.imshow(Xopscaled.reshape(op.shape));

Clipping input data to the valid range for imshow with RGB data





# Clustering



# Clustering is an unsupervised learning method

GOAL: partitioning data in maximally homogeneous,

maximally distinguished subsets.

observed

## features:

(x, y)



X

# Clustering is an unsupervised learning method

all features are observed for all objects in the sample

(x, y)



how should I group the observations in this feature space?

e.g.: how
many groups
should I
make?

# **Optimal clustering**













http://www-bcf.usc.edu/~soltanol/Applications.html

## internal criterion:

members of the cluster should be similar to each other (intra cluster compactness)

### external criterion:

objects outside the cluster should be dissimilar from the objects inside the cluster



**Tigers** 



**Whales** 





zoologist's clusters

raptors

### internal criterion:

members of the cluster should be similar to each other (intra cluster compactness)

### external criterion:

objects outside the cluster should be dissimilar from the objects inside the cluster



yellow/green

photographer's clusters

black/white/blue



# **Optimal clustering**

## the optimal clustering depends on:

- how you define similarity/distance
- the purpose of the clustering

FS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

# **Optimal clustering**

### The ideal clustering algorithm should have:

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shapes
- Minimal requirement for domain knowledge
- Deals with noise and outliers
- Insensitive to order
- Allows incorporation of constraints
- Interpretable

# How does clustering work?

- Partitional
  - **Hard clustering:** K-means (McQueen '67), K-medoids (Kaufman & Rausseeuw '87)
  - **Soft Clustering:** Expectation Maximization (Dempster,Laird,Rubin '77)
- Hierarchical
  - Agglomerative (bottom-up)
  - Divisive (top-down)
- also:
- Density based
- Grid based
- Model based





# **Clustering by partitioning**



### K-means

Choose N "centers" guesses: random points in the feature space

### repeat:

- Calculate distance between each point and each center
- Assign each point to the closest center
- Calculate the new cluster centers

## until (convergence):

when clusters no longer change

### K-means

**Objective:** minimizing the aggregate distance within the cluster.

Order: #clusters #dimensions #iterations #datapoints O(KdN)

#### CONs:

- Its non-deterministic: the result depends on the (random) starting point
- It only works where the mean is defined: alternative is K-medoids which represents the cluster by its central member (median), rather than by the mean
- Must declare the number of clusters upfront (how would you know it?)

#### PROs:

Scales linearly with d and N



### K-means

**Objective:** minimizing the aggregate distance within the cluster.

Order: #clusters #dimensions #iterations #datapoints O(KdN)

# O(KdN):

complexity scales linearly with:

- -d number of dimensions
- -N number of datapoints
- -K number of clusters

## K-means: the objective function

**Objective:** minimizing the aggregate distance within the cluster.

total intra-cluster variance 
$$\sum_k \sum_{i \in k} (ec{x_i} - ec{\mu_k})^2$$

Order: #clusters #dimensions #iterations #datapoints O(KdN)

## Must declare the number of clusters

either you know it because of domain knowledge

or

you choose it after the fact: "elbow method"

```
for i in range(1, nmaxc):
  c = KMeans(n clusters=i, random state=302).fit(X2)
  nc.append(c.inertia )
  print("i.c. variance with {} clusters {:.2f}".format(i, c.inertia ))
pl.plot(range(1, nmaxc), nc)
```



# K-means: the objective function

**Objective:** minimizing the aggregate distance within the cluster.

total intra-cluster variance

$$\sum_k \sum_{i \in k} (ec{x_i} - ec{\mu_k})^2$$

Order: #clusters #dimensions #iterations #datapoints O(KdN)

## Must declare the number of clusters upfront (how would you know it?)

either domain knowledge or after the fact: "elbow method"



# K-means hyperparameters

```
class sklearn.cluster. KMeans (n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm='auto') ¶
[source]
```

- n\_clusters : number of clusters
- init: the initial centers or a scheme to choose the center
  - 'k-means++': selects initial cluster centers for k-mean clustering in a smart way to speed up convergence.
  - 'random': choose k observations (rows) at random from data for the initial centroids.

    If an ndarray is passed, it should be of shape (n\_clusters, n\_features) and gives the initial centers.
- n\_init: if >1 it is effectively an ensemble method: runs n times with different initializations
- random state : for reproducibility

# Convergence criteria

### **General**

Any time you have an objective function (or loss function) you need to set up a tolerance: if your objective function did not change by more than ε since the last step you have reached convergence (i.e. you are satisfied)

ε is your tolerance

### For clustering:

convergence can be reached if

no more than n data point changed

cluster

n is your tolerance