Sheaves on Manifolds Exercise I.7 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.7, KS02] の解答です。

I Homological Algebra

問題 I.7. *C* をアーベル圏とする。

- (1) $Z \in \mathcal{C}$ を対象とする。圏 $\mathcal{P}(Z)$ を次で定義する:
 - 対象はエピ射 $f: X \to Z$ である。
 - 二つの対象 $f: X \to Z$ と $g: Y \to Z$ の間の射 $(f: X \to Z) \to (g: Y \to Z)$ は $\mathcal C$ のエピ射 $h: X \to Y$ であって $f \circ h = g$ となるものである。
 - 合成は C の合成によって定義する。

このとき、 $\mathcal{P}(Z)$ は cofiltered であることを示せ。

- (2) 対象 $X \in \mathcal{C}$ に対し、 $\tilde{h}_Z(X) := \operatorname{colim}_{Z' \in \mathcal{P}(Z)} \operatorname{Hom}_{\mathcal{C}}(Z', X)$ とおく。以下を示せ:
 - (i) 函手 $\tilde{h}_Z: \mathcal{C} \to \mathsf{Ab}$ は完全函手である。
 - (ii) $f, f' \in \operatorname{Hom}_{\mathcal{C}}(X, X')$ を二つの射とする。任意の $Z \in \mathcal{C}$ に対して $\tilde{h}_Z(f) = \tilde{h}_Z(f')$ が成り立つとき、f = f' である。
 - (iii) すべての対象 $Z \in \mathcal{C}$ に対する \tilde{h}_Z での像が Ab において完全であるような \mathcal{C} の列は完全である。

注意. [, KS02] 第一版では、(1) の問題文は次のように表記されている (引用):

For an object Z of \mathcal{C} , let $\mathscr{P}(Z)$ be the category whose objects are the epimorphisms $f: Z' \to Z$, a morphism $(f: Z' \to Z) \to (f': Z'' \to Z)$ being defined by $h: Z' \to Z''$ with $f' \circ h = f$. Prove that $\mathscr{P}(Z)$ is cofiltrant, that is, $\mathscr{P}(Z)^{\circ}$ is filtrant.

この文章をそのまま読むと、圏 $\mathscr{P}(Z)$ は、Zへの射がエピとなるものたちからなる圏 $\mathcal{C}_{/Z}$ の充満部分圏であると読める(というか、この文章は h もエピであることが想定されているようには読めないと思う)。しかし、このように読むと、 $\mathscr{P}(Z)$ は cofiltered にはならない。たとえば、k を標数が 2 でない体、C を k-線形空間の圏、Z=k として、 $\mathcal{C}_{/k}$ の対象として $p:\stackrel{\mathrm{def}}{=} \mathrm{id}_k: X:\stackrel{\mathrm{def}}{=} k \to Z$ と $q:\stackrel{\mathrm{def}}{=} \mathrm{pr}_1: Y:\stackrel{\mathrm{def}}{=} k \times k \to Z$ を考え、p,q の間の射として $f_1: X \to Y$ を $f_1(a) = (a,a)$ で定め、 $f_2: X \to Y$ を $f_2(a) = (a,-a)$ で定める。このとき、線形空間 V と射 $g: V \to X$ が $f_1 \circ g = f_2 \circ g$ を満たせば、g が 0-射であることが容易に従う(標数が 2 でないことを用いる)。従って、とくに、g はエピとはならず、従って、 $g: V \to k$ は $\mathscr{P}(Z)$ の対象となることは決してない。このことは $\mathscr{P}(Z)^{\mathrm{op}}$ が [Definition 1.11.2 (1.11.2), KS02] を満たさない(とくに cofiltered ではない)ことを示している。

証明・(1) を示す。 $\mathcal{P}(Z)$ の図式 $h_1:(f_1:X_1\to Z)\to (g:Y\to Z)\leftarrow (f_2:X_2\to Z):h_2$ を任意にとって、fiber 積 $X_1\times_Y X_2$ を考える。 $p_i:X_1\times_Y X_2\to X_i, (i=1,2)$ を射影とする。このとき、 $f_1\circ p_1=g\circ h_1\circ p_1=g\circ h_2\circ p_2=f_2\circ p_2$ であるから、 $f:\stackrel{\mathrm{def}}{=} f_1\circ p_1$ とすれば、 $f:X_1\times_Y X_2\to Z$ は圏 $\mathcal{C}_{/Z}$ における fiber 積となる。 $\mathcal{P}(Z)$ は終対象 $\mathrm{id}_Z:Z\to Z$ を持つので、従って、 $\mathcal{P}(Z)$ が cofiltered であることを示すためには、 $f:X_1\times_Y X_2\to Z$ がエピ射であることを示すことが十分である。[Exercise 1.6 (3), KS02] より、エピ射の pull-back はエピ射であるから、 p_i はエピ射であり、エピ射の合成はエピ射であるから、 $f=f_1\circ p_1$ もエピ射である。以上で (1) の解答を完了する。

(2) (i) を示す。集合の間の写像の圏において、単射の filered colimit は単射である。従って \tilde{h}_Z は左完全函手である。残っているのは \tilde{h}_Z の右完全性を証明することである。 $g:X_1\to X_3$ を C のエピ射とし、 $\tilde{r}_3\in \tilde{h}_Z(X_3)$ を任意にとる。 \tilde{r}_3 の代表元を $r_3:Z_3\to X_3$ とする。ここで Z_3 はある $\mathcal{P}(Z)$ の対象 $z_3:Z_3\to Z$ の domain であり、 $r_3:Z_3\to X_3$ は C の射である。図式 $r_3:Z_3\to X_3\leftarrow X_1:g$ の fiber 積を Z_1 とし、射影を $h:Z_1\to Z_3, r_1:Z_1\to X_1$ とする。エピ射の pull-back はエピ射であるから、h はエピである。従って、 $z_1:\stackrel{\mathrm{def}}{=} z_3\circ h:Z_1\to Z$ は $\mathcal{P}(Z)$ の対象であり、h は $\mathcal{P}(Z)$ の射である。さらに、 $g\circ r_1=r_3\circ h$ であるから、 $r_1:Z_1\to X_1$ により代表される元 $\tilde{r}_1\in \tilde{h}_Z(X_1)$ は射 $\tilde{h}_Z(X_1)\to \tilde{h}_Z(X_3)$ により \tilde{r}_3 へと写る。従って $\tilde{h}_Z(X_1)\to \tilde{h}_Z(X_3)$ は全射である。以上で (2) (i) の解答を完了する。

(2) (ii) を示す。 $f,f':X\to X'$ が任意の $Z\in\mathcal{C}$ に対して $\tilde{h}_Z(f)=\tilde{h}_Z(f')$ を満たしていると仮定する。 Z=X として、 $\mathrm{id}_X:X\to X$ により代表される元を $\tilde{i}\in\tilde{h}_Z(X)$ 、 $f,f':X\to X'$ により代表される元を $\tilde{f},\tilde{f}'\in\tilde{h}_Z(X')$ とする。このとき、

$$\tilde{f} = \tilde{h}_Z(f) \circ \tilde{i} = \tilde{h}_Z(f') \circ \tilde{i} = \tilde{f}'$$

となる。 $\mathcal{P}(Z)$ の各射はエピなので、自然な射 $\mathrm{Hom}_{\mathcal{C}}(Z,X) \to \tilde{h}_Z(X)$ は単射である。従って、等式 $\tilde{f}=\tilde{f}'$ は f=f' であることを意味する。以上で (2) (ii) の解答を完了する。

(2) (iii) を示す。C を離散圏(射が id しかない圏)とみなした圏を \bar{C} とおく。 \bar{C} から Ab への(加法的とは限らない)函手のなす圏 $[\bar{C}, Ab]$ はアーベル圏である。 $\tilde{h}: C \to [\bar{C}, Ab], X \mapsto [Z \mapsto \tilde{h}_Z(X)]$ はアーベル圏の間の加法的函手である。(2)(i) より、各 \tilde{h}_Z は完全函手であるから、 \tilde{h} も完全函手である。(2)(ii) より \tilde{h} は忠実である。従って、(2)(iii) を示すためには、アーベル圏の間の忠実な完全函手 $F: C \to \mathcal{D}$ と C の射の列 $X \xrightarrow{f} Y \xrightarrow{g} Z$ に対して、 $X \xrightarrow{f} Y \xrightarrow{g} Z$ が C で完全であることと $F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$ が \mathcal{D} で完全であることが同値であることを証明することが十分である。F は忠実なので、 $g \circ f = 0$ であることと $F(g) \circ F(f) = 0$ であることは同値である。F は完全函手なので、Im(F(f)) と F(Im(f)) は自然に同型であり、F(F(g)) と F(F(g)) を自然に同型であることは同値である。さらに F は忠実なので、自然な射 F(f) を中にのの像 F(F(g)) が同型であることと同値である。よって、F(g) が同型であることと F(g) が同型であることと F(g) が同型であることと F(g) が同型であることと F(g) が F(g)

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.