Cvičení 13. Neparametrické testy, testy dobré shody

Testy dobré shody

Název testu	Předpoklady testu	Testová statistika
χ^2 test dobré shody	Očekávané četnosti ≥ 2 , alespoň 80% očekávaných četností > 5	$G = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$

Analýza závislosti v kontingenční tabulce

Název testu	Předpoklady testu	Testová statistika
Analýza závislosti v kontingenční tabulce	Očekávané četnosti ≥ 2 , alespoň 80% očekávaných četností > 5	$K = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

- Koeficient korelace $CC = \sqrt{\frac{K}{K+n}}$ (pro čtvercové kontingenční tabulky)
- Korigovaný koeficient kontingence $CC_{cor} = \frac{CC}{CC_{max}}$, kde $CC_{max} = \sqrt{\frac{min(r;s)-1}{min(r;s)}}$ (pro obdélníkové kontingenční tabulky)
- Cramerův koeficient $V = \sqrt{\frac{K}{n(min(r;s)-1)}}$.

Tyto koeficienty se mohou vyskytovat v intervalu (0;1). Čím blíže jsou 1, tím je závislost mezi X a Y těsnější.

Analýza závislosti v asociační tabulce

- Odhad poměru šancí: $\widehat{OR} = \frac{ad}{bc}$
- Intervalový odhad OR: $\left\langle \widehat{OR} \cdot e^{-\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \cdot z_{1-\frac{\alpha}{2}}; \widehat{OR} \cdot e^{\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \cdot z_{1-\frac{\alpha}{2}}} \right\rangle$
- Odhad relativního rizika: $\widehat{RR} = \frac{a(c+d)}{c(a+b)}$
- Intervalový odhad RR: $\left\langle \widehat{RR} \cdot e^{-\sqrt{\frac{b}{a(a+b)} + \frac{d}{c(c+d)}} \cdot z_{1-\frac{\alpha}{2}}}; \widehat{RR} \cdot e^{\sqrt{\frac{b}{a(a+b)} + \frac{d}{c(c+d)}} \cdot z_{1-\frac{\alpha}{2}}} \right\rangle$

PF(Klad T. 7

Xi	1	1		4	5	6
0,	979	1002	1015	980	106	984
π̈́.	16	1 8	1	1 6	1 6	1 6
Ei	1000	7000	1000 (^00p	1000	1000
Ho: bostra je ferra =) TT = TT						
HA: 7 Ho						
J-ded						
$G = \frac{6}{2} \left(\frac{0}{1} - \frac{E}{1} \right) = 2,926$						

Priklad 2.

X . \		1	2	3	y a me
) <u>,</u>	52	48	36	10	4
Ti,	O_1 30)	0,361	91217	1,087	01034
E,	45,2	54,2	ns	15,0	5,7

dpois $(X; \lambda t = 1, 1)$

dure jour 2 Poi $(\lambda + = \frac{1}{2})$ $E(x) = \lambda + \qquad x = \frac{\sum_{i=1}^{2} x_i \cdot 0_i}{\sum_{i=1}^{2} 0_i} = 1,07$

HA: 7 HD

Příklad 4.
· 0P ~ .
Ho: dara portanej 2 nom. vor.
HA: 7 Ho
test dobje sludy (pearson.test)
p-hodrole < (0,00) (dt=12)
=) Familine Ho -) doch repudinj 2 nom.
Priklad E.S:

Explorion posuren:

FONT. tabella TETOLANÍ

POHLAVÍ MAR 13 199

Zem 58 331

kont.tab

Cromerour V = 0,121

-) EXPL. possion =) slehn savished

Ho: Avla jsvu resemble

(Nest dobré stody v last. tat chisq. test)

orelinne cet:

	má tetování	nemá tetování
muž	24.6594	182.3406
žena	46.3406	342.6594

Ex =) Predpobledy jour orthany P-hodhole = 0,003 (x=0,0s) =) nom/mul Ho

=) existinge stal. vpr. navistast mesi pollorism a printomorst Net. (steelie raintest (V = 0,12) Priklad 6,

velmi nespokojen spíše nespokojen spíše spokojen velmi spokojen Praha 10 25 50 15 Venkov 20 10 130 40

	Praha.	Venkov
velmi nespokojen		
spíše nespokojen		
spíše spokojen		
velmi spokojen		

Crumerut V = 0,296

=) Stredni silm navislost

Ho: Avlu jan resanstu

HA: 7 HO

	velmi nespokojen	spíše nespokojen	spíše spokojen	velmi spokojen
Praha	10	11.66667	60	18.33333
Venkov	20	23.33333	120	36.66667

$$(m-1).(m-1)$$
 $df=3$

Detiolije Alul. Oppnoma navislust mesi mislem prare a opolojenské

Příklad c.7:

a)	NE MOL+	TD RAU>	
KUŽÁK	171	3264	3435
NEKUNAK	117	4320	4437

kuták mekuták

8

2

CtamerovoV = 0,061

) velmi slobu (råden ravisled

$$\left\langle \cdot \right\rangle$$

$$\widehat{RR} = \frac{P_K}{P_N} = 1,89$$

°/°

	Outcome +	Outcome -	Total		0dds
Exposed +	171	3264	3435	$100. p_{k} = 4.98$	0.0524
Exposed -	117	4320	4437	2.64	0.0271
Total	288	7584	7872	3.66	0.0380

Point estimates and 95% CIs:

Inc risk ratio	RR = 1.89 (1.50, 2.38) & 957, [D
Odds ratio OR	in = 1.93 (1.52, 2.46)
Attrib risk *	2.34 (1.47, 3.21)
Attrib risk in population *	1.02 (0.39, 1.65)
Attrib fraction in exposed (%)	47.03 (33.27, 57.95)
Attrib fraction in population (%)	27.92 (17.32, 37.17)

Test that OR = 1: chi2(1) = 30.110 Pr> chi2 = <0.001

Wald confidence limits CI: confidence interval

* Outcomes per 100 population units

P(1,50 LRR(2,38) = 0,95

$$\left(\begin{array}{c} \frac{\int K}{\int N} \right)$$

P(1,52 LOR < 2,46) 20,45

g) Ho: daler jær rosaveisla Hp: 1 Ho

(HISQ. +=5T)

_		ano	ne
PREDPORLANY	kuřák	125.6707	3309.329
	nekuřák	162.3293	4274.671

p-hod nota << 0,001

Frankam Ho =) lesshije stal. Njemoma ravistost mesi havirim a riphfon senovi