

SEQUENCE LISTING

<110> Harms, Jerome S Splitter, Gary A Eakle, Kurt A Bremel, Robert D <120> INDUCIBLE PROTEIN EXPRESSION SYSTEM <130> 960296.00463 <140> 10/763,976 <141> 2004-01-23 <150> US 60/442,103 <151> 2003-01-23 <160> 29 <170> PatentIn version 3.3 <210> <211> 480 <212> DNA <213> Artificial <220> <223> Engineered sequence from virus and plasmid <220> <221> promoter <222> (87)..(432) <223> BLV promoter <400> gaaaccagca gcggctatcc gcgcatccat gcccccgaac tgcaggagtg gggaggcacg 60 atggccgctt tggtcgaggc ggatcctagc agaaaaataa gacttgattc ccccttaaaa 120 ttacaactgc tagaaaatga atggctctcc cgcctttttt gagggggaat catttgtatg 180 aaagatcatg ccgacctagg cgccgccacc gccccgtaaa ccagacagag acgtcagctg 240 ccagaaaagc tggtgacggc agctggtggc tagaatcccc gtacctcccc aacttcccct 300

ttcccgaaaa atccacaccc tgagctgctg acctcacctg ctgataaatt aataaaatgc

eggeeetgte gagttagegg caccagaage gttettetee tgagaceete gtgeteaget

ctcggtcctg cctcgagaag cttgttatca caagtttgta caaaaaagct gaacgagaaa

360

420

480

<210> 2

<211> 929

<212> DNA

<213> Bovine leukemia virus

<220> <221> CDS <222> (1)(92	7)			
<400> 2 atg gca agt gtt Met Ala Ser Val 1	gtt ggt tgg Val Gly Trp 5	ggg ccc cac Gly Pro His 10	tct cta cat gc Ser Leu His Al	c tgc ccg 48 a Cys Pro 15
gcc ctg gtt ttg Ala Leu Val Leu 20				
tgc ggg ccc cat Cys Gly Pro His 35				
acc tgc gag acc Thr Cys Glu Thr 50				
ggc ctc aat gga Gly Leu Asn Gly 65				
gcc cca agg gcc Ala Pro Arg Ala	cga cga ctc Arg Arg Leu 85	tgg atc aac Trp Ile Asn 90	tgc ccc ctt cc Cys Pro Leu Pr	g gcc gtt 288 o Ala Val 95
cgc gct cag ccc Arg Ala Gln Pro 100	Gly Pro Val			g Ser Pro
ttc cag ccc tac Phe Gln Pro Tyr 115				
ccc gtc atc ggg Pro Val Ile Gly 130				
cct tgt cct cgg Pro Cys Pro Arg 145				
tta ctc ccc ccc Leu Leu Pro Pro				
gtc ttt gcc cca Val Phe Ala Pro 180	Asp Thr Arg	gga gcc ata Gly Ala Ile 185	cgt tat ctc tc Arg Tyr Leu Se 19	r Thr Leu
ttg acg cta tgc Leu Thr Leu Cys				

195		200	205	
			gac tcc aat gaa Asp Ser Asn Glu 220	
			acg ccc ggc ctg Thr Pro Gly Leu	
			ggc ccc cct tcc Gly Pro Pro Ser 255	
			gcc tta cag cgc Ala Leu Gln Arg 270	
			ggtt gct agc agg Val Ala Ser Arg 285	
			g tta gaa aat gaa Leu Glu Asn Glu 300	
ctc tcc cgc ctt Leu Ser Arg Leu 305				929
<210> 3 <211> 309 <212> PRT <213> Bovine 1	eukemia viru	s		
<400> 3				
Met Ala Ser Val 1	Val Gly Trp 5	Gly Pro His Ser 10	Leu His Ala Cys 15	Pro
Ala Leu Val Leu 20	Ser Asn Asp	Val Thr Ile Asp 25	Ala Trp Cys Pro 30	Leu
Cys Gly Pro His 35	Glu Arg Leu	Gln Phe Glu Arg	Ile Asp Thr Thr 45	His
Thr Cys Glu Thr	His Arg Ile 55	Thr Trp Thr Ala	Asp Gly Arg Pro 60	Phe
Gly Leu Asn Gly	Ala Leu Phe 70	Pro Arg Leu His	: Val Ser Arg Asp	Pro 80

Ala	Pro	Arg	Ala	Arg 85	Arg	Leu	Trp	Ile	Asn 90	Cys	Pro	Leu	Pro	Ala 95	Val
Arg	Ala	Gln	Pro 100	Gly	Pro	Val	Ser	Leu 105	Ser	Pro	Phe	Glu	Arg 110	Ser	Pro
Phe	Gln	Pro 115	Tyr	Gln	Cys	Gln	Leu 120	Pro	Ser	Ala	Ser	Ser 125	Asp	Gly	Cys
Pro	Val 130	Ile	Gly	His	Gly	Leu 135	Leu	Pro	Trp	Asn	Asn 140	Leu	Val	Thr	His
Pro 145	Суѕ	Pro	Arg	Lys	Val 150	Leu	Ile	Leu	Asn	Gln 155	Met	Ala	Asn	Phe	Ser 160
Leu	Leu	Pro	Pro	Phe 165	Asn	Thr	Leu	Leu	Val 170	Asp	Pro	Leu	Arg	Leu 175	Ser
Val	Phe	Ala	Pro 180	Asp	Thr	Arg	Gly	Ala 185	Ile	Arg	Tyr	Leu	Ser 190	Thr	Leu
Leu	Thr	Leu 195	Cys	Pro	Ala	Thr	Cys 200	Ile	Leu	Pro	Leu	Gly 205	Glu	Pro	Phe
Ser	Pro 210	Asn	Val	Pro	Ile	Cys 215	Arg	Phe	Pro	Arg	Asp 220	Ser	Asn	Glu	Pro
Pro 225	Leu	Ser	Glu	Phe	Glu 230	Leu	Pro	Leu	Ile	Gln 235	Thr	Pro	Gly	Leu	Ser 240
Trp	Ser	Val	Pro	Ala 245	Ile	Asp	Leu	Phe	Leu 250	Thr	Gly	Pro	Pro	Ser 255	Pro
Cys	Asp	Arg	Leu 260	His	Val	Trp.	Ser	Ser 265	Pro	Gln	Ala	Leu	Gln 270	Arg	Phe
Leu	His	Asp 275	Pro	Thr	Leu	Thr	Trp 280	Ser	Glu	Leu	Val	Ala 285	Ser	Arg	Lys
Leu	Arg 290	Leu	Asp	Ser	Pro	Leu 295	Lys	Leu	Gln	Leu	Leu 300	Glu	Asn	Glu	Trp

<210> <211> 1062 <212> DNA <213> Human T-cell lymphotropic virus type 1 <220> <221> CDS (1)..(1062)<222> <220> <221> promoter <222> (1)..(353)<400> 48 atg gcc cac ttc cca ggg ttt gga cag agt ctt ctt ttc gga tac cca Met Ala His Phe Pro Gly Phe Gly Gln Ser Leu Leu Phe Gly Tyr Pro 5 gtc tac gtg ttt gga gac ggc gac tgg tgc ccc tgt gta caa atc tct 96 Val Tyr Val Phe Gly Asp Gly Asp Trp Cys Pro Cys Val Gln Ile Ser 20 25 ggg gga cta tgt tcg gcc cgc cta cat cgt cac gcc cta ctg gcc acc 144 Gly Gly Leu Cys Ser Ala Arg Leu His Arg His Ala Leu Leu Ala Thr tgt cca gag cat cag atc acc tgg gac ccc atc gat gga cgc gtt atc 192 Cys Pro Glu His Gln Ile Thr Trp Asp Pro Ile Asp Gly Arg Val Ile gge tea get eta cag tie ett ate eet ega ete eec tee tie eec ace 240 Gly Ser Ala Leu Gln Phe Leu Ile Pro Arg Leu Pro Ser Phe Pro Thr 75 65 70 cag aga acc tct aag acc ctc aag gtc ctt acc ccg cca atc act cat 288 Gln Arg Thr Ser Lys Thr Leu Lys Val Leu Thr Pro Pro Ile Thr His 85 95 336 Thr Thr Pro Asn Ile Pro Pro Ser Phe Leu Gln Ala Met Arg Lys Tyr 110 100 105 384 tcc ccc ttc cga aat gga tac atg gaa ccc acc ctt ggg cag cac ctc Ser Pro Phe Arg Asn Gly Tyr Met Glu Pro Thr Leu Gly Gln His Leu 115 120 cca acc ctg tct ttt cca gac ccc gga ctc cgg ccc caa aac ctg tac 432 Pro Thr Leu Ser Phe Pro Asp Pro Gly Leu Arg Pro Gln Asn Leu Tyr 135 ace etc tgg gga gge tee gtt gtc tgc atg tac etc tac cag ett tee 480 Thr Leu Trp Gly Gly Ser Val Val Cys Met Tyr Leu Tyr Gln Leu Ser

Leu Ser Arg Leu Phe

305

145	150	155	160
		cac gtg att ttt tgc His Val Ile Phe Cys 170	
		gtt ccc tac aag cga Val Pro Tyr Lys Arg 190	
_		aca ggg gcc cta ata Thr Gly Ala Leu Ile 205	
		ttc cag cct gtt agg Phe Gln Pro Val Arg 220	=
-		ctc ctt ccg ttc cac Leu Leu Pro Phe His 235	
		ttt acc gat ggc acg Phe Thr Asp Gly Thr 250	
		cag cca tct tta gta Gln Pro Ser Leu Val 270	_ =
		caa acc aag gcc tac Gln Thr Lys Ala Tyr 285	
		cag tac tct tcc ttt Gln Tyr Ser Ser Phe 300	
		aac atc ccc att tct Asn Ile Pro Ile Ser 315	
		gac cat gag ccc caa Asp His Glu Pro Gln 330	
		aaa cat ttc cgc gaa Lys His Phe Arg Glu 350	
gtc tga Val			1062

<210> 5 <211> 353 <212> PRT

<213> Human T-cell lymphotropic virus type 1

<400> 5

Met Ala His Phe Pro Gly Phe Gly Gln Ser Leu Leu Phe Gly Tyr Pro 1 5 10 15

Val Tyr Val Phe Gly Asp Gly Asp Trp Cys Pro Cys Val Gln Ile Ser 20 25 30

Gly Gly Leu Cys Ser Ala Arg Leu His Arg His Ala Leu Leu Ala Thr 35 40 45

Cys Pro Glu His Gln Ile Thr Trp Asp Pro Ile Asp Gly Arg Val Ile 50 55 60

Gly Ser Ala Leu Gln Phe Leu Ile Pro Arg Leu Pro Ser Phe Pro Thr 65 70 75 80

Gln Arg Thr Ser Lys Thr Leu Lys Val Leu Thr Pro Pro Ile Thr His 85 90 95

Thr Thr Pro Asn Ile Pro Pro Ser Phe Leu Gln Ala Met Arg Lys Tyr 100 105 110

Ser Pro Phe Arg Asn Gly Tyr Met Glu Pro Thr Leu Gly Gln His Leu 115 120 125

Pro Thr Leu Ser Phe Pro Asp Pro Gly Leu Arg Pro Gln Asn Leu Tyr 130 135 140

Thr Leu Trp Gly Gly Ser Val Val Cys Met Tyr Leu Tyr Gln Leu Ser 145 150 155 160

Pro Pro Ile Thr Trp Pro Leu Leu Pro His Val Ile Phe Cys His Pro 165 170 175

Gly Gln Leu Gly Ala Phe Leu Thr Asn Val Pro Tyr Lys Arg Ile Glu 180 185 190

Glu Leu Leu Tyr Lys Ile Ser Leu Thr Thr Gly Ala Leu Ile Ile Leu 195 200 205

Val 225	Thr	Leu	Thr	Ala	Trp 230	Gln	Asn	Gly	Leu	Leu 235	Pro	Phe	His	Ser	Thr 240	
Leu	Thr	Thr	Pro	Gly 245	Leu	Ile	Trp	Thr	Phe 250	Thr	Asp	Gly	Thr	Pro 255	Met	
Ile	Ser	Gly	Pro 260	Cys	Pro	Lys	Asp	Gly 265	Gln	Pro	Ser	Leu	Val 270	Leu	Gln	
Ser	Ser	Ser 275	Phe	Ile	Phe	His	Lys 280	Phe	Gln	Thr	Lys	Ala 285	Tyr	His	Pro	
Ser	Phe 290	Leu	Leu	Ser	His	Gly 295	Leu	Ile	Gln	Tyr	Ser 300	Ser	Phe	His	Asn	
Leu 305	His	Leu	Leu	Phe	Glu 310	Glu	Tyr	Thr	Asn	Ile 315	Pro	Ile	Ser	Leu	Leu 320	
Phe	Asn	Lys	Lys	Glu 325	Ala	Asp	Asp	Asn	Asp 330	His	Glu	Pro	Gln	Ile 335	Ser	
Pro	Gly	Gly	Leu 340	Glu	Pro	Pro	Ser	Glu 345	Lys	His	Phe	Arg	Glu 350	Thr	Glu	
Val																
<210 <211 <212 <213	l> 3 2> I	5 353 ONA Humar	1 T-0	cell	lymp	ohoti	ropio	e vir	rus t	туре	1					
<400 tgad			catga	agcco	cc aa	aatat	cccc	c cgg	gggg	ctta	gago	ctct	ca g	gtgaa	aaaca	a 60
tttc	ccgtg	gaa a	acaga	aagto	ct ga	agaag	gtca	a ggg	gccca	igaa	taag	gcto	ctg a	acgto	tece	c 120
ccgg	gagga	aca g	gctca	agcad	cc aç	gctca	aggct	agg	gccct	gac	gtgt	cccc	ect a	aaaga	caaa	t 1 [.] 80
cata	agct	ca g	gacct	ccgg	gg aa	agcca	ccgg	g gaa	accad	cca	tttc	ctcc	ccc a	atgtt	tgtc	a 240
agco	gtco	ctc a	aggcg	gttga	ac ga	acaac	ccct	cac	ectca	aaaa	aact	tttc	cat o	ggcac	gcata	a 300
cgg	ctcaa	ata a	aata	acag	gg ag	gtcta	taaa	a ago	gtgg	gga	cagt	tcag	gga g	ggg		353

Pro Glu Asp Cys Leu Pro Thr Thr Leu Phe Gln Pro Val Arg Ala Pro 210 215 220

```
<210>
       7
<211>
      456
<212>
       DNA
<213>
       Human immunodeficiency virus type 1
<400>
ctggaagggc taatttggtc ccaaagaaga caagagatcc ttgatctgtg gatctaccac
                                                                       60
                                                                      120
acacaaggct acttccctga ttggcagaat tacacaccag ggccagggat cagatatcca
                                                                      180
ctgacctttg gatggtgctt caagctagta ccagttgagc cagagaaggt agaagaggcc
aatgaaggag agaacaacag cttgttacac cctatgagcc tgcatgggat ggaggacgcg
                                                                      240
                                                                      300
gagaaagaag tgttagtgtg gaggtttgac agcaaactag catttcatca catggcccga
                                                                      360
gagetgeate eggagtaeta caaagaetge tgacategag etttetaeaa gggaetttee
gctggggact ttccagggag gcgtggcctg ggcgggactg gggagtggcg tccctcagat
                                                                      420
                                                                      456
gctgcatata agcagctgct ttttgcctgt actggg
<210>
       8
<211>
       306
<212>
       DNA
<213>
       Human immunodeficiency virus type 1
<220>
<221>
       CDS
<222>
       (1)..(303)
<400> 8
                                                                       48
atg gag cca gta gat cct aat cta gag ccc tgg aag cat cca gga agt
Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Lys His Pro Gly Ser
                5
                                                         15
cag cct agg act gct tgt aac aat tgc tat tgt aaa aag tgt tgc ttt
                                                                       96
Gln Pro Arg Thr Ala Cys Asn Asn Cys Tyr Cys Lys Lys Cys Cys Phe
cat tgc tac gcg tgt ttc aca aga aaa ggc tta ggc atc tcc tat ggc
                                                                      144
His Cys Tyr Ala Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly
                                                                      192
agg aag cgg aga cag cga cga aga gct cct cag gac agt cag act
Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp Ser Gln Thr
    50
                        55
                                             60
cat caa get tet eta tea aag caa eee gee tee eag tee ega ggg gae
                                                                      240
His Gln Ala Ser Leu Ser Lys Gln Pro Ala Ser Gln Ser Arg Gly Asp
                    70
                                        75
65
                                                             80
                                                                      288
ccg aca ggc ccg acg gaa tcg aag aag atg gag aga gag aca gag
```

Pro Thr Gly Pro Thr Glu Ser Lys Lys Lys Val Glu Arg Glu Thr Glu 85 90 95

aca gat ccg ttc gat tag
Thr Asp Pro Phe Asp
100

306

<210> 9

<211> 101

<212> PRT

<213> Human immunodeficiency virus type 1

<400> 9

Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Lys His Pro Gly Ser 1 5 10 15

Gln Pro Arg Thr Ala Cys Asn Asn Cys Tyr Cys Lys Lys Cys Cys Phe 20 25 30

His Cys Tyr Ala Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser Tyr Gly 35 40 45

Arg Lys Lys Arg Arg Gln Arg Arg Ala Pro Gln Asp Ser Gln Thr 50 55 60

His Gln Ala Ser Leu Ser Lys Gln Pro Ala Ser Gln Ser Arg Gly Asp 70 75 80

Pro Thr Gly Pro Thr Glu Ser Lys Lys Lys Val Glu Arg Glu Thr Glu 85 90 95

Thr Asp Pro Phe Asp 100

<210> 10

<211> 7685

<212> DNA

<213> Artificial

<220>

<223> Engineered sequence from virus and plasmid

<220>

<221> LTR

<222> (149)..(737)

<223> 5' MoMuSVLTR

```
<220>
<221> CDS
<222>
      (1753)..(2148)
<223> Blasticidin resistance
<220>
<221> promoter
<222> (2257)..(3074)
<223> CMV IE promoter
<220>
<221> misc_recomb
<222>
      (3078)..(3102)
<223> attB1
<220>
<221> CDS
<222>
      (3115)..(4041)
<223> BLV Tax
<220>
<221> misc_recomb
<222>
      (4046)..(4070)
<223> attB2
<220>
<221> misc_signal
<222>
      (4082)..(4674)
<223> WPRE; woodchuck hepatitis virus post-transcriptional regulatory
       element
<220>
<221> LTR
<222> (4720)..(5313)
<223> 3' MoMuLVLTR
<400> 10
gaattaattc ataccagatc accgaaaact gtcctccaaa tgtgtccccc tcacactccc
                                                                      60
aaattcgcgg gettetgeet ettagaceae tetaceetat teeceacaet caeeggagee
                                                                     120
aaagccgcgg cccttccgtt tctttgcttt tgaaagaccc cacccgtagg tggcaagcta
                                                                     180
gcttaagtaa cgccactttg caaggcatgg aaaaatacat aactgagaat agaaaagttc
                                                                     240
                                                                     300
agatcaaggt caggaacaaa gaaacagctg aataccaaac aggatatctg tggtaagcgg
ttcctgcccc ggctcagggc caagaacaga tgagacagct gagtgatggg ccaaacagga
                                                                     360
tatctgtggt aagcagttcc tgccccggct cggggccaag aacagatggt ccccagatgc
                                                                     420
ggtccagccc tcagcagttt ctagtgaatc atcagatgtt tccagggtgc cccaaggacc
                                                                     480
tgaaaatgac cctgtacctt atttgaacta accaatcagt tcgcttctcg cttctgttcg
                                                                     540
cgcgcttccg ctctccgagc tcaataaaag agcccacaac ccctcactcg gcgcgccagt
                                                                     600
```

cttccgatag actgcgtcgc ccgggtaccc gtattcccaa taaagcctct tgctgtttgc	660
atccgaatcg tggtctcgct gttccttggg agggtctcct ctgagtgatt gactacccac	720
gacgggggtc tttcatttgg gggctcgtcc gggatttgga gacccctgcc cagggaccac	780
cgacccacca ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag	840
tgtctatgtt tgatgttatg cgcctgcgtc tgtactagtt agctaactag ctctgtatct	900
ggcggacccg tggtggaact gacgagttct gaacacccgg ccgcaaccct gggagacgtc	960
ccagggactt tgggggccgt ttttgtggcc cgacctgagg aagggagtcg atgtggaatc	1020
cgaccccgtc aggatatgtg gttctggtag gagacgagaa cctaaaacag ttcccgcctc	1080
cgtctgaatt tttgctttcg gtttggaacc gaagccgcgc gtcttgtctg ctgcagcgct	1140
gcagcatcgt tctgtgttgt ctctgtctga ctgtgtttct gtatttgtct gaaaattagg	1200
gccagactgt taccactccc ttaagtttga ccttaggtca ctggaaagat gtcgagcgga	1260
tcgctcacaa ccagtcggta gatgtcaaga agagacgttg ggttaccttc tgctctgcag	1320
aatggccaac ctttaacgtc ggatggccgc gagacggcac ctttaaccga gacctcatca	1380
cccaggttaa gatcaaggtc ttttcacctg gcccgcatgg acacccagac caggtcccct	1440
acatcgtgac ctgggaagcc ttggcttttg acccccctcc ctgggtcaag ccctttgtac	1500
accetaagee teegeeteet etteeteeat eegeeeegte teteeeett gaaceteete	1560
gttcgacccc gcctcgatcc tccctttatc cagccctcac tccttctcta ggcgccggaa	1620
ttccgatctg atcaagagac aggatgaggg agcttgtata tccattttcg gatctgatca	1680
gcacgtgttg acaattaatc atcggcatag tatatcggca tagtataata cgacaaggtg	1740
aggaactaaa cc atg gcc aag cct ttg tct caa gaa gaa tcc acc ctc att Met Ala Lys Pro Leu Ser Gln Glu Glu Ser Thr Leu Ile 1 5 10	1791
gaa aga gca acg gct aca atc aac agc atc ccc atc tct gaa gac tac Glu Arg Ala Thr Ala Thr Ile Asn Ser Ile Pro Ile Ser Glu Asp Tyr 15 20 25	1839
agc gtc gcc agc gca gct ctc tct agc gac ggc cgc atc ttc act ggt Ser Val Ala Ser Ala Ala Leu Ser Ser Asp Gly Arg Ile Phe Thr Gly 30 35 40 45	1887
gtc aat gta tat cat ttt act ggg gga cct tgt gca gaa ctc gtg gtg Val Asn Val Tyr His Phe Thr Gly Gly Pro Cys Ala Glu Leu Val Val 50 55 60	1935
ctg ggc act gct gct gcg gca gct ggc aac ctg act tgt atc gtc Leu Gly Thr Ala Ala Ala Ala Ala Gly Asn Leu Thr Cys Ile Val 65 70 75	1983

gcg atc gga aat gag aac agg ggc atc ttg agc ccc tgc gga cgg tgt Ala Ile Gly Asn Glu Asn Arg Gly Ile Leu Ser Pro Cys Gly Arg Cys 80 85 90	2031
cga cag gtg ctt ctc gat ctg cat cct ggg atc aaa gcg ata gtg aag Arg Gln Val Leu Leu Asp Leu His Pro Gly Ile Lys Ala Ile Val Lys 95 100 105	2079
gac agt gat gga cag ccg acg gca gtt ggg att cgt gaa ttg ctg ccc Asp Ser Asp Gly Gln Pro Thr Ala Val Gly Ile Arg Glu Leu Leu Pro 110 125	2127
tct ggt tat gtg tgg gag ggc taagcacttc gtggccgagg agcaggactg Ser Gly Tyr Val Trp Glu Gly 130	2178
acacgtgcta cgagatttcg attccaccgc cgccttctat gaaaggttgg gcttcggaat	2238
cgttttccgg gacgccgatc cggccattag ccatattatt cattggttat atagcataaa	2298
tcaatattgg ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata	2358
ttggctcatg tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt	2418
aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta	2478
cggtaaatgg cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga	2538
cgtatgttcc catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt	2598
tacggtaaac tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta	2658
ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg	2718
actttcctac ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt	2778
tttggcagta catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc	2838
accccattga cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat	2898
gtcgtaacaa ctccgcccca ttgacgcaaa tgggcggtag gcatgtacgg tgggaggtct	2958
atataagcag agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt	3018
ttgacctcca tagaagacac cgggaccgat ccagcctccg cggccccaag cttgttatca	3078
caagtttgta caaaaaagca ggctcccgcc gccacc atg gca agt gtt gtt ggt Met Ala Ser Val Val Gly 135	3132
tgg ggg ccc cac tct cta cat gcc tgc ccg gcc ctg gtt ttg tcc aat Trp Gly Pro His Ser Leu His Ala Cys Pro Ala Leu Val Leu Ser Asn 140 145 150	3180
gat gtc acc atc gat gcc tgg tgc ccc ctc tgc ggg ccc cat gag cga Asp Val Thr Ile Asp Ala Trp Cys Pro Leu Cys Gly Pro His Glu Arg	3228

155	160	165	170
ctc caa ttc gaa agg Leu Gln Phe Glu Arg 175	Ile Asp Thr Thr	ctc acc tgc gag acc Leu Thr Cys Glu Thr 180	cac cgt 3276 His Arg 185
		tgc ggc ctc aat gga Cys Gly Leu Asn Gly 200	
		cgc ccc caa ggg ccc Arg Pro Gln Gly Pro 215	
		gtt cgc gct cag ccc Val Arg Ala Gln Pro 230	
		ccc ttc cag ccc tac Pro Phe Gln Pro Tyr 245	
	Ser Ser Asp Gly	tgc ccc att atc ggg Cys Pro Ile Ile Gly 260	
		cat cct gtc ctc aga His Pro Val Leu Arg 280	
		tcc tta ctc ccc tcc Ser Leu Leu Pro Ser 295	
		tcc gtc ttt gcc cca Ser Val Phe Ala Pro 310	
agg gga gcc ata cgt Arg Gly Ala Ile Arg 315	tat ctc tcc acc Tyr Leu Ser Thr 320	ctt ttg acg cta tgc Leu Leu Thr Leu Cys 325	ccg gct 3708 Pro Ala 330
	Leu Gly Glu Pro	ttc tct cct aat gtc Phe Ser Pro Asn Val 340	
		ccc ccc ctt tca gaa Pro Pro Leu Ser Glu 360	
		tct tgg tct gtc ccc Ser Trp Ser Val Pro 375	
		cca tgc gac cgg tta Pro Cys Asp Arg Leu 390	

tgg tcc agt cct cag gcc tta cag cgc ttc ctt cat gac cct acg cta Trp Ser Ser Pro Gln Ala Leu Gln Arg Phe Leu His Asp Pro Thr Leu 395 400 405 410	1
acc tgg tcc gaa tta gtt gct agc aga aaa ata aga ctt gat tcc ccc Thr Trp Ser Glu Leu Val Ala Ser Arg Lys Ile Arg Leu Asp Ser Pro 415 420 425	
tta aaa tta caa ctg cta gaa aat gaa tgg ctc tcc cgc ctt ttt Leu Lys Leu Gln Leu Leu Glu Asn Glu Trp Leu Ser Arg Leu Phe 430 435 440	4041
tgagacccag ctttcttgta caaagtggtg ataacatcga taatcaacct ctggatta	aca 4101
aaatttgtga aagattgact ggtattctta actatgttgc tccttttacg ctatgtgg	gat 4161
acgctgcttt aatgcctttg tatcatgcta ttgcttcccg tatggctttc attttctc	ect 4221
ccttgtataa atcctggttg ctgtctcttt atgaggagtt gtggcccgtt gtcaggca	ac 4281
gtggcgtggt gtgcactgtg tttgctgacg caacccccac tggttggggc attgccac	ca 4341
cctgtcagct cctttccggg actttcgctt tccccctccc tattgccacg gcggaact	ca 4401
tegeegeetg cettgeeege tgetggacag gggetegget gttgggeaet gacaatte	cg 4461
tggtgttgtc ggggaaatca tcgtcctttc cttggctgct cgcctgtgtt gccacctg	ıga 4521
ttctgcgcgg gacgtccttc tgctacgtcc cttcggccct caatccagcg gaccttcc	tt 4581
cccgcggcct gctgccggct ctgcggcctc ttccgcgtct tcgccttcgc cctcagac	ga 4641
gtcggatctc cctttgggcc gcctccccgc ctgatcgata aaataaaaga ttttattt	ag 4701
tctccagaaa aaggggggaa tgaaagaccc cacctgtagg tttggcaagc tagcttaa	ıgt 4761
aacgccattt tgcaaggcat ggaaaaatac ataactgaga atagagaagt tcagatca	ag 4821
gtcaggaaca gatggaacag ctgaatatgg gccaaacagg atatctgtgg taagcagt	tc 4881
ctgccccggc tcagggccaa gaacagatgg aacagctgaa tatgggccaa acaggata	tc 4941
tgtggtaagc agttcctgcc ccggctcagg gccaagaaca gatggtcccc agatgcgg	tc 5001
cageceteag cagtttetag agaaceatea gatgttteca gggtgeecea aggaeetg	aa 5061
atgaccetgt geettatttg aactaaccaa teagtteget tetegettet gttegege	gc 5121
ttctgctccc cgagctcaat aaaagagccc acaacccctc actcggggcg ccagtcct	cc 5181
gattgactga gtcgcccggg tacccgtgta tccaataaac cctcttgcag ttgcatcc	ga 5241
cttgtggtct cgctgttcct tgggagggtc tcctctgagt gattgactac ccgtcagc	gg 5301
gggtctttca tttttccatt gggggctcgt ccgggatcgg gagacccctg cccaggga	cc 5361

5421 accgacccac caccgggagg taagctggct gcctcgcgcg tttcggtgat gacggtgaaa 5481 acctctgaca catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga 5541 5601 cccagtcacg tagcgatagc ggagtgtata ctggcttaac tatgcggcat cagagcagat 5661 tgtactgaga gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata cegeateagg egetetteeg etteeteget caetgaeteg etgegetegg tegttegget 5721 geggegageg gtateagete acteaaagge ggtaataegg ttateeacag aateagggga 5781 5841 taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc 5901 cgcgttgctg gcgtttttcc ataggctccg ccccctgac gagcatcaca aaaatcgacg 5961 ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aageteette gtgegetete etgtteegae eetgeegett aceggataee tgteegeett 6021 tetecetteg ggaagegtgg egetttetea tageteaege tgtaggtate teagtteggt 6081 gtaggtegtt egeteeaage tgggetgtgt geaegaacee eeegtteage eegaeegetg 6141 6201 egecttatee ggtaactate gtettgagte caaceeggta agacaegaet tategecaet 6261 ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct 6321 gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac 6381 cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc 6441 6501 tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta 6561 aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca 6621 6681 atgcttaatc agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc 6741 tgcaatgata ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc 6801 agccggaagg gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat 6861 taattgttgc cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt 6921 tgccattgct gcaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc 6981 eggtteecaa egateaagge gagttaeatg atececeatg ttgtgeaaaa aageggttag 7041 etectteggt ceteegateg ttgteagaag taagttggee geagtgttat eacteatggt 7101

tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac 7161 tggtgagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg 7221 cccggcgtca acacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat 7281 tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc 7341 gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc 7401 tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa 7461 atgttgaata ctcatactct tcctttttca atattattga agcatttatc agggttattg 7521 tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg 7581 cacatttccc cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac 7641 ctataaaaat aggcgtatca cgaggccctt tcgtcttcaa gaat 7685

- <210> 11
- <211> 132
- <212> PRT
- <213> Artificial
- <220>
- <223> Synthetic Construct
- <400> 11

Met Ala Lys Pro Leu Ser Gln Glu Glu Ser Thr Leu Ile Glu Arg Ala 1 5 10 15

Thr Ala Thr Ile Asn Ser Ile Pro Ile Ser Glu Asp Tyr Ser Val Ala 20 25 30

Ser Ala Ala Leu Ser Ser Asp Gly Arg Ile Phe Thr Gly Val Asn Val 35 40 45

Tyr His Phe Thr Gly Gly Pro Cys Ala Glu Leu Val Val Leu Gly Thr 50 55 60

Ala Ala Ala Ala Ala Gly Asn Leu Thr Cys Ile Val Ala Ile Gly 65 70 75 80

Asn Glu Asn Arg Gly Ile Leu Ser Pro Cys Gly Arg Cys Arg Gln Val 85 90 95

Leu Leu Asp Leu His Pro Gly Ile Lys Ala Ile Val Lys Asp Ser Asp

100 105 110

Gly Gln Pro Thr Ala Val Gly Ile Arg Glu Leu Leu Pro Ser Gly Tyr 115 120 125

Val Trp Glu Gly 130

<210> 12

<211> 309

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 12

Met Ala Ser Val Val Gly Trp Gly Pro His Ser Leu His Ala Cys Pro 1 5 10 15

Ala Leu Val Leu Ser Asn Asp Val Thr Ile Asp Ala Trp Cys Pro Leu 20 25 30

Cys Gly Pro His Glu Arg Leu Gln Phe Glu Arg Ile Asp Thr Thr Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Thr Cys Glu Thr His Arg Ile Asn Trp Thr Ala Asp Gly Arg Pro Cys 50 55 60

Gly Leu Asn Gly Thr Leu Phe Pro Arg Leu His Val Ser Glu Thr Arg 65 70 75 80

Pro Gln Gly Pro Arg Arg Leu Trp Ile Asn Cys Pro Leu Pro Ala Val 85 90 95

Arg Ala Gln Pro Gly Pro Val Ser Leu Ser Pro Phe Glu Arg Ser Pro 100 105 110

Phe Gln Pro Tyr Gln Cys Gln Leu Pro Ser Ala Ser Ser Asp Gly Cys 115 120 125

Pro Ile Ile Gly His Gly Leu Leu Pro Trp Asn Asn Leu Val Thr His 130 135 140

155 150 Leu Leu Pro Ser Phe Asp Thr Leu Leu Val Asp Pro Leu Arg Leu Ser 170 165 Val Phe Ala Pro Asp Thr Arg Gly Ala Ile Arg Tyr Leu Ser Thr Leu 180 185 190 Leu Thr Leu Cys Pro Ala Thr Cys Ile Leu Pro Leu Gly Glu Pro Phe 195 200 205 Ser Pro Asn Val Pro Ile Cys Arg Phe Pro Arg Asp Ser Asn Glu Pro 210 215 220 Pro Leu Ser Glu Phe Glu Leu Pro Leu Ile Gln Thr Pro Gly Leu Ser 225 Trp Ser Val Pro Ala Ile Asp Leu Phe Leu Thr Gly Pro Pro Ser Pro 245 250 Cys Asp Arg Leu His Val Trp Ser Ser Pro Gln Ala Leu Gln Arg Phe 260 265 Leu His Asp Pro Thr Leu Thr Trp Ser Glu Leu Val Ala Ser Arg Lys 275 280 285 Ile Arg Leu Asp Ser Pro Leu Lys Leu Gln Leu Leu Glu Asn Glu Trp 290 295 300 Leu Ser Arg Leu Phe 305 <210> 13 <211> 7685 <212> DNA <213> Artificial <220> <223> Engineered sequence form virus and plasmid <220> <221> CDS <222> (210)..(1070)<223> Ampicillin resistance

Pro Val Leu Arg Lys Val Leu Ile Leu Asn Gln Met Ala Asn Phe Ser

- 40	۸۰ ۰	1 2														
	0> : cttga		acga	aagg	gc c	tcgt	gata	c gc	ctat	tttt	ata	ggtt	aat	gtca	tgataa	60
taa	tggti	ttc 1	ttag	acgt	ca g	gtgg	cact	t tt	cggg	gaaa	tgt	gcgc	gga	accc	ctattt	120
gtt	tatt	ttt (ctaa	ataca	at to	caaa	tatg	t at	ccgc	tcat	gaga	acaa	taa	ccct	gataaa	180
tgc	ttcaa	ata a	atat	tgaaa	aa aq	ggaa	gagt							cgt Arg		233
														gct Ala		281
	_	_	_			_		_	_	-	-	_	_	ggt Gly	_	329
_					_	_	_			_		-		ctt Leu 55		377
-		_		_	_	_			_	_	_			aaa Lys	_	425
														gag Glu		473
		_	_									-	_	tac Tyr		521
														gaa Glu		569
			-									-		tta Leu 135		617
_		_				_	_				_		_	cac His		665
_		_		_		_		_	_		_	_		ctg Leu		713
														gca Ala		761
gca	aca	acg	ttg	cgc	aaa	cta	tta	act	ggc	gaa	cta	ctt	act	cta	gct	809

Ala Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr Leu Ala 185 190 195 200	
tcc cgg caa caa tta ata gac tgg atg gag gcg gat aaa gtt gca gga Ser Arg Gln Gln Leu Ile Asp Trp Met Glu Ala Asp Lys Val Ala Gly 205 210 215	857
cca ctt ctg cgc tcg gcc ctt ccg gct ggc tgg ttt att gct gat aaa Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly Trp Phe Ile Ala Asp Lys 220 225 230	905
tct gga gcc ggt gag cgt ggg tct cgc ggt atc att gca gca ctg ggg Ser Gly Ala Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu Gly 235 240 245	953
cca gat ggt aag ccc tcc cgt atc gta gtt atc tac acg acg ggg agt Pro Asp Gly Lys Pro Ser Arg Ile Val Val Ile Tyr Thr Thr Gly Ser 250 255 260	1001
cag gca act atg gat gaa cga aat aga cag atc gct gag ata ggt gcc Gln Ala Thr Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly Ala 265 270 275 280	1049
tca ctg att aag cat tgg taa ctgtcagacc aagtttactc atatatactt Ser Leu Ile Lys His Trp 285	1100
tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat	1160
aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta	1220
gaaaagatca aaggatette ttgagateet ttttttetge gegtaatetg etgettgeaa	1280
acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt	1340
tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag	1400
ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta	1460
atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca	1520
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag	1580
cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa	1640
agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga	1700
acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc	1760
gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc	1820
ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt	1880
gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt	1940
gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag	2000

2060 gaageggaag agegeetgat geggtatttt eteettaege atetgtgegg tattteacae cgcatatggt gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca 2120 2180 ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca acacccgctg 2240 acgcgccctg acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct 2300 ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagccag 2360 ettacetece ggtggtgggt eggtggtece tgggcagggg tetecegate eeggacgage ccccaatgga aaaatgaaag acccccgctg acgggtagtc aatcactcag aggagaccct 2420 2480 cccaaggaac agcgagacca caagtcggat gcaactgcaa gagggtttat tggatacacg 2540 ggtacccggg cgactcagtc aatcggagga ctggcgcccc gagtgagggg ttgtgggctc ttttattgag ctcggggagc agaagcgcgc gaacagaagc gagaagcgaa ctgattggtt 2600 agttcaaata aggcacaggg tcatttcagg tccttggggc accctggaaa catctgatgg 2660 ttctctagaa actgctgagg gctggaccgc atctggggac catctgttct tggccctgag 2720 ccggggcagg aactgcttac cacagatatc ctgtttggcc catattcagc tgttccatct 2780 gttcttggcc ctgagccggg gcaggaactg cttaccacag atatcctgtt tggcccatat 2840 tragctgttc catctgttcc tgaccttgat ctgaacttct ctattctcag ttatgtattt 2900 2960 ttccatgcct tgcaaaatgg cgttacttaa gctagcttgc caaacctaca ggtggggtct ttcattcccc cctttttctg gagactaaat aaaatctttt attttatcga tcaggcgggg 3020 3080 aggcggccca aagggagatc cgactcgtct gagggcgaag gcgaagacgc ggaagaggcc gcagagccgg cagcaggccg cgggaaggaa ggtccgctgg attgagggcc gaagggacgt 3140 3200 agcagaagga cgtcccgcgc agaatccagg tggcaacaca ggcgagcagc caaggaaagg acgatgattt ccccgacaac accacggaat tgtcagtgcc caacagccga gcccctgtcc 3260 agcagcgggc aaggcaggcg gcgatgagtt ccgccgtggc aatagggagg gggaaagcga 3320 aagtcccgga aaggagctga caggtggtgg caatgcccca accagtgggg gttgcgtcag 3380 caaacacagt gcacaccacg ccacgttgcc tgacaacggg ccacaactcc tcataaagag 3440 acagcaacca ggatttatac aaggaggaga aaatgaaagc catacgggaa gcaatagcat 3500 gatacaaagg cattaaagca gcgtatccac atagcgtaaa aggagcaaca tagttaagaa 3560 taccagtcaa tettteacaa attttgtaat ecagaggttg attategatg ttateaceae 3620 tttgtacaag aaagctgggt ctcaaaaaag gcgggagagc cattcatttt ctagcagttg 3680 taattttaag ggggaatcaa gtcttatttt tctgctagca actaattcgg accaggttag 3740

3800 cgtagggtca tgaaggaagc gctgtaaggc ctgaggactg gaccatacgt gtaaccggtc 3860 gcatggggaa gggggaccgg ttaggaatag gtcgatcgcg gggacagacc aagacaggcc 3920 gggcgtttgg ataaggggca gctcgaattc tgaaaggggg ggttcattgg agtcccgggg aaagcggcat atggggacat taggagagaa gggctcgcct aggggtagaa tacaagtagc 3980 4040 cgggcatagc gtcaaaaggg tggagagata acgtatggct cccctggtgt ctggggcaaa gacggacagc cggaggggt ccacaaggag ggtatcgaag gaggggagta aggaaaaatt 4100 4160 ggccatttga tttaatataa ggacttttct gaggacagga tgcgttacta agttgttcca 4220 gggaagaagg ccgtgcccga taatggggca accgtcgcta gaggccgagg gcaattggca 4280 ttggtagggc tggaaggggg accgctcgaa gggggaaagt gaaaccgggc cgggctgagc 4340 gcgaacggcc ggaagggggc agttgatcca gagtcgtcgg ggcccttggg ggcgggtctc 4400 qqaqacatqc agtcqaggga acaacgttcc attgaggccg caaggtcgtc catcggcggt ccagttgata cggtgggtct cgcaggtgag cgtggtgtcg atcctttcga attggagtcg 4460 ctcatggggc ccgcagaggg ggcaccaggc atcgatggtg acatcattgg acaaaaccag 4520 ggccgggcag gcatgtagag agtggggccc ccaaccaaca acacttgcca tggtggcggc 4580 gggagcctgc ttttttgtac aaacttgtga taacaagctt ggggccgcgg aggctggatc 4640 4700 ggtcccggtg tcttctatgg aggtcaaaac agcgtggatg gcgtctccag gcgatctgac ggttcactaa acgagctctg cttatataga cctcccaccg tacatgccta ccgcccattt 4760 4820 gcgtcaatgg ggcggagttg ttacgacatt ttggaaagtc ccgttgattt tggtgccaaa 4880 acaaactccc attgacgtca atggggtgga gacttggaaa tccccgtgag tcaaaccgct 4940 atccacgccc attgatgtac tgccaaaacc gcatcaccat ggtaatagcg atgactaata 5000 cgtagatgta ctgccaagta ggaaagtccc ataaggtcat gtactgggca taatgccagg 5060 cgggccattt accgtcattg acgtcaatag ggggcgtact tggcatatga tacacttgat 5120 gtactgccaa gtgggcagtt taccgtaaat actccaccca ttgacgtcaa tggaaagtcc ctattggcgt tactatggga acatacgtca ttattgacgt caatgggcgg gggtcgttgg 5180 gcggtcagcc aggcgggcca tttaccgtaa gttatgtaac gcggaactcc atatatgggc 5240 5300 tatgaactaa tgaccccgta attgattact attaataact agtcaataat caatgtcaac 5360 atggcggtaa tgttggacat gagccaatat aaatgtacat attatgatat ggatacaacg 5420 tatgcaatgg ccaatagcca atattgattt atgctatata accaatgaat aatatggcta

5480 atggccggat cggcgtcccg gaaaacgatt ccgaagccca acctttcata gaaggcggcg 5540 gtggaatcga aatctcgtag cacgtgtcag tcctgctcct cggccacgaa gtgcttagcc ctcccacaca taaccagagg gcagcaattc acgaatccca actgccgtcg gctgtccatc 5600 5660 actgtccttc actatcgctt tgatcccagg atgcagatcg agaagcacct gtcgacaccg 5720 tccgcagggg ctcaagatgc ccctgttctc atttccgatc gcgacgatac aagtcaggtt 5780 gccagctgcc gcagcagcag cagtgcccag caccacgagt tctgcacaag gtcccccagt aaaatgatat acattgacac cagtgaagat gcggccgtcg ctagagagag ctgcgctggc 5840 5900 gacgctgtag tcttcagaga tggggatgct gttgattgta gccgttgctc tttcaatgag 5960 ggtggattct tcttgagaca aaggcttggc catggtttag ttcctcacct tgtcgtatta 6020 tactatgccg atatactatg ccgatgatta attgtcaaca cgtgctgatc agatccgaaa 6080 atggatatac aagctccctc atcctgtctc ttgatcagat cggaattccg gcgcctagag 6140 aaggagtgag ggctggataa agggaggatc gaggcggggt cgaacgagga ggttcaaggg ggagagacgg ggcggatgga ggaagaggag gcggaggctt agggtgtaca aagggcttga 6200 cccagggagg ggggtcaaaa gccaaggctt cccaggtcac gatgtagggg acctggtctg 6260 ggtgtccatg cgggccaggt gaaaagacct tgatcttaac ctgggtgatg aggtctcggt 6320 6380 taaaggtgcc gtctcgcggc catccgacgt taaaggttgg ccattctgca gagcagaagg 6440 taacccaacg tetettettg acatetaccg actggttgtg agcgatecge tegacatett 6500 tccagtgacc taaggtcaaa cttaagggag tggtaacagt ctggccctaa ttttcagaca 6560 aatacagaaa cacagtcaga cagagacaac acagaacgat gctgcagcgc tgcagcagac 6620 aagacgcgcg gcttcggttc caaaccgaaa gcaaaaattc agacggaggc gggaactgtt 6680 ttaggttctc gtctcctacc agaaccacat atcctgacgg ggtcggattc cacatcgact 6740 cccttcctca ggtcgggcca caaaaacggc ccccaaagtc cctgggacgt ctcccagggt 6800 tgcggccggg tgttcagaac tcgtcagttc caccacgggt ccgccagata cagagctagt 6860 tagctaacta gtacagacgc aggcgcataa catcaaacat agacactaga caatcggaca 6920 gacacagata agttgctggc cagcttacct cccggtggtg ggtcggtggt ccctgggcag 6980 gggtetecaa ateceggaeg ageceecaaa tgaaagaeee eegtegtggg tagteaatea 7040 ctcagaggag accctcccaa ggaacagcga gaccacgatt cggatgcaaa cagcaagagg 7100 ctttattggg aatacgggta cccgggcgac gcagtctatc ggaagactgg cgcgccgagt 7160 gaggggttgt gggctctttt attgagctcg gagagcggaa gcgcgcgaac agaagcgaga

7220 agcqaactqa ttgqttagtt caaataaggt acagggtcat tttcaggtcc ttggggcacc 7280 ctggaaacat ctgatgattc actagaaact gctgagggct ggaccgcatc tggggaccat ctgttcttgg ccccgagccg gggcaggaac tgcttaccac agatatcctg tttggcccat 7340 cactcagctg tctcatctgt tcttggccct gagccggggc aggaaccgct taccacagat 7400 atcctgtttg gtattcagct gtttctttgt tcctgacctt gatctgaact tttctattct 7460 7520 cagttatgta tttttccatg ccttgcaaag tggcgttact taagctagct tgccacctac gggtggggtc tttcaaaagc aaagaaacgg aagggccgcg gctttggctc cggtgagtgt 7580 ggggaatagg gtagagtggt ctaagaggca gaagcccgcg aatttgggag tgtgaggggg 7640 7685 acacatttgg aggacagttt tcggtgatct ggtatgaatt aattc

<210> 14

<211> 286

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 14

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Val Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 120 125 115 Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 140 135 130 Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 155 Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 170 165 Asp Thr Thr Met Pro Ala Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 190 185 180 Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205 Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220 Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240 Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 250 Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 265 Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 280 <210> 15 <211> 7428 <212> DNA <213> Artificial <220> <223> Engineered sequence from virus and plasmid <220> <221> LTR

<222> (149)..(737)

```
<223> MoMuSVLTR
<220>
<221> CDS
<222> (1660)..(2454)
<223> Neomycin resistance
<220>
<221> misc_feature
<222> (3170)..(3194)
<223> attB1
<220>
<221> CDS
<222>
      (3267)..(3737)
<223> trans-dominant BLV Rex (M4)
<220>
<221> misc_feature
<222>
      (3800)..(3824)
<223> attB2
<220>
<221> misc_signal
<222>
      (3837)..(4428)
<223> WPRE; woodchuck hepatitis virus post-transcriptional regulatory
       element
<220>
<221> LTR
<222> (4474)..(5067)
<223> 3' MoMuLVLTR
<400> 15
                                                                      60
gaattaattc ataccagatc accgaaaact gtcctccaaa tgtgtccccc tcacactccc
aaattcgcgg gcttctgcct cttagaccac tctaccctat tccccacact caccggagcc
                                                                     120
aaagccgcgg cccttccgtt tctttgcttt tgaaagaccc cacccgtagg tggcaagcta
                                                                     180
                                                                     240
gcttaagtaa cgccactttg caaggcatgg aaaaatacat aactgagaat agaaaagttc
                                                                     300
agatcaaggt caggaacaaa gaaacagctg aataccaaac aggatatctg tggtaagcgg
ttcctgcccc ggctcagggc caagaacaga tgagacagct gagtgatggg ccaaacagga
                                                                     360
tatctqtqqt aagcagttcc tgccccggct cggggccaag aacagatggt ccccagatgc
                                                                     420
ggtccagccc tcagcagttt ctagtgaatc atcagatgtt tccagggtgc cccaaggacc
                                                                     480
tgaaaatgac cctgtacctt atttgaacta accaatcagt tcgcttctcg cttctgttcg
                                                                     540
cgcgcttccg ctctccgagc tcaataaaag agcccacaac ccctcactcg gcgcgccagt
                                                                     600
cttccgatag actgcgtcgc ccgggtaccc gtattcccaa taaagcctct tgctgtttgc
                                                                     660
                                                                     720
atccgaatcg tggtctcgct gttccttggg agggtctcct ctgagtgatt gactacccac
```

	780
cgacccacca ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag	840
tgtctatgtt tgatgttatg cgcctgcgtc tgtactagtt agctaactag ctctgtatct	900
ggcggacccg tggtggaact gacgagttct gaacacccgg ccgcaaccct gggagacgtc	960
ccagggactt tgggggccgt ttttgtggcc cgacctgagg aagggagtcg atgtggaatc	1020
cgaccccgtc aggatatgtg gttctggtag gagacgagaa cctaaaacag ttcccgcctc	1080
cgtctgaatt tttgctttcg gtttggaacc gaagccgcgc gtcttgtctg ctgcagcgct	1140
gcagcatcgt tctgtgttgt ctctgtctga ctgtgtttct gtatttgtct gaaaattagg	1200
gccagactgt taccactccc ttaagtttga ccttaggtca ctggaaagat gtcgagcgga	1260
tcgctcacaa ccagtcggta gatgtcaaga agagacgttg ggttaccttc tgctctgcag	1320
aatggccaac ctttaacgtc ggatggccgc gagacggcac ctttaaccga gacctcatca	1380
cccaggttaa gatcaaggte ttttcacctg gcccgcatgg acacccagac caggtcccct	1440
acatcgtgac ctgggaagcc ttggcttttg acccccctcc ctgggtcaag ccctttgtac	1500
accetaagee teegeeteet etteeteeat eegeeeegte teteeecett gaaceteete	1560
gttcgacccc gcctcgatcc tccctttatc cagccctcac tccttctcta ggcgccggaa	1620
ttccgatctg atcaagagac aggatgagga tcgtttcgc atg att gaa caa gat Met Ile Glu Gln Asp 1 5	1674
Met Ile Glu Gln Asp	1674 1722
Met Ile Glu Gln Asp 1 5 gga ttg cac gca ggt tct ccg gcc gct tgg gtg gag agg cta ttc ggc Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly	
gga ttg cac gca ggt tct ccg gcc gct tgg gtg gag agg cta ttc ggc Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly 10 15 20 tat gac tgg gca caa cag aca atc ggc tgc tct gat gcc gcc gtg ttc Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe	1722
gga ttg cac gca ggt tct ccg gcc gct tgg gtg gag agg cta ttc ggc Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly 10 15 20 tat gac tgg gca caa cag aca atc ggc tgc tct gat gcc gcc gtg ttc Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe 25 30 35 cgg ctg tca gcg cag ggg cgc ccg gtt ctt ttt gtc aag acc gac ctg Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu	1722
gga ttg cac gca ggt tct ccg gcc gct tgg gtg gag agg cta ttc ggc Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly 10 15 20 20 20 20 20 20 20 20 20 20 20 20 20	1722 1770 1818

90	95 100
ctc ctg tca tct cac ctt gct cct gcc Leu Leu Ser Ser His Leu Ala Pro Ala 105	Glu Lys Val Ser Ile Met Ala
gat gca atg cgg cgg ctg cat acg ctt Asp Ala Met Arg Arg Leu His Thr Leu 120 125	
gac cac caa gcg aaa cat cgc atc gag Asp His Gln Ala Lys His Arg Ile Glu 135	
gcc ggt ctt gtc gat cag gat gat ctg Ala Gly Leu Val Asp Gln Asp Asp Leu 150	
gcg cca gcc gaa ctg ttc gcc agg ctc Ala Pro Ala Glu Leu Phe Ala Arg Leu 170	
gag gat ctc gtc gtg acc cat ggc gat Glu Asp Leu Val Val Thr His Gly Asp 185	Ala Cys Leu Pro Asn Ile Met
gtg gaa aat ggc cgc ttt tct gga ttc Val Glu Asn Gly Arg Phe Ser Gly Phe 200 205	
gtg gcg gac cgc tat cag gac ata gcg Val Ala Asp Arg Tyr Gln Asp Ile Ala 215 220	
gaa gag ctt ggc ggc gaa tgg gct gac Glu Glu Leu Gly Gly Glu Trp Ala Asp 230	
atc gcc gct ccc gat tcg cag cgc atc Ile Ala Ala Pro Asp Ser Gln Arg Ile 250	
gag ttc ttc tga gcgggactct ggggttcg Glu Phe Phe	aa atgaccgacc aagcgacgcc 2494
caacctgcca tcacgagatt tcgattccac cg	ccgccttc tatgaaaggt tgggcttcgg 2554
aatcgttttc cgggacgccg gctggatgat cc	tccagcgc ggggatctca tgctggagtt 2614
cttcgcccac cccgggctcg atcccctcgc gag	gttggttc agctgctgcc tgaggctgga 2674
cgacctcgcg gagttctacc ggcagtgcaa at	ccgtcggc atccaggaaa ccagcagcgg 2734
ctatccgcgc atccatgccc ccgaactgca gg	
cgaggcggat cctagcagaa aaataagact tg	attccccc ttaaaattac aactgctaga 2854

aaatgaatgg ctctc	ecegee ttttt	gagg gggaatca	t tgtatgaaag atcatgccga	2914
cctaggcgcc gccac	ecgece egtaaa	ccag acagagac	gt cagetgeeag aaaagetggt	2974
gacggcagct ggtgg	gctaga atcccc	gtac ctccccaa	ct teceetttee egaaaaatee	3034
acaccctgag ctgct	gacct cacctg	octga taaattaa	ca aaatgeegge eetgtegagt	3094
tagcggcacc agaag	gegtte ttetee	tgag accctcgt	gc tcagctctcg gtcctgcctc	3154
gagaagcttg ttato	cacaag tttgta	caaa aaagcagg	ct tcgaaggaga tagaaccaat	3214
tctctaagga aatac	cttaac gtcgac	tgga teeggtae	eg aattegatee ae atg eet Met Pro 265	3272
			eg atc atc aga tgg caa ro Ile Ile Arg Trp Gln 280	3320
			et Pro Ala Arg Pro Trp 295	3368
			gt gcc ccc tct gcg ggc ly Ala Pro Ser Ala Gly 310	3416
		Lys Gly Ser Tl	ca cca cgc tca cct gcg or Pro Arg Ser Pro Ala 25 330	3464
			ac gac ctt gcg gcc tca sp Asp Leu Ala Ala Ser 345	3512
			cg aga ccc gcc ccc aag ro Arg Pro Ala Pro Lys 360	3560
			tc cgg ccg ttc gcg ctc ne Arg Pro Phe Ala Leu 375	3608
			gc ggt ccc cct tcc agc er Gly Pro Pro Ser Ser 390	3656
		Arg Pro Leu A	cg acg gtt gcc cca tta La Thr Val Ala Pro Leu 05 410	3704
tcg ggc acg gcc Ser Gly Thr Ala			ag taacgcatcc tgtcctcaga	3757

3817 aaagtcctta tattaaatca aatgggacct cgagatatct agacccagct ttcttgtaca 3877 aagtggtgat aacatcgata atcaacctct ggattacaaa atttgtgaaa gattgactgg 3937 tattettaac tatgttgete ettttaeget atgtggatac getgetttaa tgeetttgta 3997 teatgetatt getteeegta tggettteat ttteteetee ttgtataaat cetggttget gtctctttat gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt 4057 4117 tgctgacgca accccactg gttggggcat tgccaccacc tgtcagctcc tttccgggac 4177 tttcgctttc cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg ctggacaggg gctcggctgt tgggcactga caattccgtg gtgttgtcgg ggaaatcatc 4237 4297 gteettteet tggetgeteg eetgtgttge caectggatt etgegeggga egteettetg ctacgtccct tcggccctca atccagcgga ccttccttcc cgcggcctgc tgccggctct 4357 geggeetett cegegtette geettegeee teagaegagt eggateteee tttgggeege 4417 4477 ctccccgcct gatcgataaa ataaaagatt ttatttagtc tccagaaaaa ggggggaatg 4537 aaagacccca cctgtaggtt tggcaagcta gcttaagtaa cgccattttg caaggcatgg 4597 aaaaatacat aactgagaat agagaagttc agatcaaggt caggaacaga tggaacagct 4657 gaatatgggc caaacaggat atctgtggta agcagttcct gccccggctc agggccaaga 4717 acagatggaa cagctgaata tgggccaaac aggatatctg tggtaagcag ttcctgcccc 4777 ggctcagggc caagaacaga tggtccccag atgcggtcca gccctcagca gtttctagag 4837 aaccatcaga tgtttccagg gtgccccaag gacctgaaat gaccctgtgc cttatttgaa 4897 ctaaccaatc agttcgcttc tcgcttctgt tcgcgcgctt ctgctccccg agctcaataa 4957 aagageeeae aaceeeteae teggggegee agteeteega ttgaetgagt egeeegggta 5017 cccgtgtatc caataaaccc tcttgcagtt gcatccgact tgtggtctcg ctgttccttg 5077 ggagggtete etetgagtga ttgaetaece gteagegggg gtettteatt tgggggeteg teegggateg ggagaeeeet geeeagggae caeegaeeea eeaeegggag gtaagetgge 5137 5197 tgcctcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg 5257 5317 ggtgttggcg ggtgtcgggg cgcagccatg acccagtcac gtagcgatag cggagtgtat actggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat atgcggtgtg 5377 5437 aaataccgca cagatgcgta aggagaaaat accgcatcag gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 5497

cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 5557 gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 5617 5677 gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 5737 5797 ccctgccgct taccggatac ctgtataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac ctgctccaag ctgggctgtg 5857 tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 5917 ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 5977 gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 6037 ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 6097 ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca 6157 agcagcagat tacgcgcaga aaaaaaggat ctcaagaatc ctttgatctt tgatctacgg 6217 ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg agattatcaa 6277 6337 aaaggatett cacctagate ettttaaatt aaaaatgaag ttttaaatca atetaaagta 6397 tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag ataactacga 6457 tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac ccacgctcac 6517 cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc 6577 ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta 6637 gttcgccagt taatagtttg cgcaacgttg ttgccattgc tgcaggcatc gtggtgtcac 6697 6757 gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg cgagttacat 6817 gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat tctcttactg 6877 tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag 6937 aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aacacgggat aataccgcgc 6997 cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct 7057 caaggatett accgetgttg agatecagtt cgatgtaace caetegtgea eccaactgat 7117 cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga aggcaaaatg 7177

ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc ttccttttc											
aatattattg aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta											
tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg											
tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct											
ttcgtcttca a											
<210> 16 <211> 264 <212> PRT <213> Artificial											
<220> <223> Synthetic Construct											
<400> 16											
Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val 1 5 10 15											
Glu Arg Leu Phe Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser 20 25 30											
Asp Ala Ala Val Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe 35 40 45											
Val Lys Thr Asp Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala 50 55 60											
Ala Arg Leu Ser Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val 65 70 75 80											
Leu Asp Val Val Thr Glu Ala Gly Arg Asp Trp Leu Leu Gly Glu 85 90 95											
Val Pro Gly Gln Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys 100 105 110											
Val Ser Ile Met Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro 115 120 125											

Ala Thr Cys Pro Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala

Arg Thr Arg Met Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu 155 145 Glu His Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala 170 Arg Met Pro Asp Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys 185 180 Leu Pro Asn Ile Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp 200 195 Cys Gly Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala 220 210 215 Thr Arg Asp Ile Ala Glu Glu Leu Gly Glu Trp Ala Asp Arg Phe 240 235 225 Leu Val Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe 245 250 Tyr Arg Leu Leu Asp Glu Phe Phe 260 <210> 17 156 <211> <212> PRT <213> Artificial <220> Synthetic Construct <223> <400> 17 Met Pro Lys Lys Arg Arg Ser Arg Arg Pro Gln Pro Ile Ile Arg 10 15 5 Trp Gln Val Leu Leu Val Gly Gly Pro Thr Leu Tyr Met Pro Ala Arg 30 25 20 Pro Trp Phe Cys Pro Met Met Ser Pro Ser Met Pro Gly Ala Pro Ser 40 Ala Gly Pro Met Ser Asp Ser Asn Ser Lys Gly Ser Thr Pro Arg Ser 55

Pro Ala Arg Pro Thr Val Ser Thr Gly Pro Pro Met Asp Asp Leu Ala 65 70 75 80									
Ala Ser Met Glu Arg Cys Ser Leu Asp Cys Met Ser Pro Arg Pro Ala 85 90 95									
Pro Lys Gly Pro Asp Asp Ser Gly Ser Thr Ala Pro Phe Arg Pro Phe 100 105 110									
Ala Leu Ser Pro Ala Arg Leu Asp Leu Pro Pro Ser Ser Gly Pro Pro 115 120 125									
Ser Ser Pro Thr Asn Ala Asn Cys Pro Arg Pro Leu Ala Thr Val Ala 130 135 140									
Pro Leu Ser Gly Thr Ala Phe Phe Pro Gly Thr Thr 145 150 155									
<210> 18 <211> 7428 <212> DNA <213> Artificial									
<220> <223> Engineered sequence form virus and plasmid									
<220> <221> CDS <222> (206)(1066) <223> Ampicillin resistance									
<400> 18 ttgaagacga aagggcctcg tgatacgcct atttttatag gttaatgtca tgataataat 60									
ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt 120									
atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct 180									
tcaataatat tgaaaaagga agagt atg agt att caa cat ttc cgt gtc gcc Met Ser Ile Gln His Phe Arg Val Ala 1 5									
ctt att ccc ttt ttt gcg gca ttt tgc ctt cct gtt ttt gct cac cca Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro 10 15 20 25									
gaa acg ctg gtg aaa gta aaa gat gct gaa gat cag ttg ggt gca cga 328 Glu Thr Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly Ala Arg 30 35 40									

					ctg Leu											376
					cgt Arg											424
					tta Leu											472
					tat Tyr 95											520
			-		ctt Leu								-		_	568
					atg Met										_	616
	_		-		ccg Pro	_				_		_			_	664
					cgc Arg										-	712
					gag Glu 175				_	_		_	_	_	_	760
					cta Leu											808
					gac Asp		_	-		_		_	_			856
	_	_	_	_	ctt Leu	_	_					_	_			904
	_			_	ggg ggg		_				_	_	_			952
_		_			cgt Arg 255		_	_			_	_		_	_	1000

gca act atg gat gaa cga aat aga cag atc gct gag ata ggt gcc tca Ala Thr Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly Ala Ser 270 275 280	1048
ctg att aag cat tgg taa ctgtcagacc aagtttactc atatatactt Leu Ile Lys His Trp 285	1096
tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat	1156
aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta	1216
gatcaaagat caaaggattc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa	1276
acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt	1336
tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag	1396
ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta	1456
atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca	1516
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag	1576
cccagcttgg agcaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga	1636
gcttccaggg ggaaacgcct ggtatcttta tacaggtatc cggtaagcgg cagggtcgga	1696
acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc	1756
gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc	1816
ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt	1876
gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt	1936
gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag	1996
gaagcggaag agcgcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac	2056
cgcatatggt gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca	2116
ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca acacccgctg	2176
acgcgccctg acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct	2236
ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagccag	2296
cttacctccc ggtggtgggt cggtggtccc tgggcagggg tctcccgatc ccggacgagc	2356
ccccaaatga aagacccccg ctgacgggta gtcaatcact cagaggagac cctcccaagg	2416
aacagcgaga ccacaagtcg gatgcaactg caagagggtt tattggatac acgggtaccc	2476
gggcgactca gtcaatcgga ggactggcgc cccgagtgag gggttgtggg ctcttttatt	2536
gagctcgggg agcagaagcg cgcgaacaga agcgagaagc gaactgattg gttagttcaa	2596

2656 ataaggcaca gggtcatttc aggtccttgg ggcaccctgg aaacatctga tggttctcta gaaactgctg agggctggac cgcatctggg gaccatctgt tcttggccct gagccggggc 2716 2776 aggaactgct taccacagat atcctgtttg gcccatattc agctgttcca tctgttcttg gccctgagcc ggggcaggaa ctgcttacca cagatatcct gtttggccca tattcagctg 2836 2896 ttccatctgt tcctgacctt gatctgaact tctctattct cagttatgta tttttccatg 2956 ccttgcaaaa tggcgttact taagctagct tgccaaacct acaggtgggg tctttcattc 3016 3076 ccaaagggag atccgactcg tctgagggcg aaggcgaaga cgcggaagag gccgcagagc cggcagcagg ccgcgggaag gaaggtccgc tggattgagg gccgaaggga cgtagcagaa 3136 3196 ggacgtcccg cgcagaatcc aggtggcaac acaggcgagc agccaaggaa aggacgatga 3256 tttccccgac aacaccacgg aattgtcagt gcccaacagc cgagcccctg tccagcagcg 3316 ggcaaggcag gcggcgatga gttccgccgt ggcaataggg agggggaaag cgaaagtccc 3376 ggaaaggagc tgacaggtgg tggcaatgcc ccaaccagtg ggggttgcgt cagcaaacac 3436 agtgcacacc acgccacgtt gcctgacaac gggccacaac tcctcataaa gagacagcaa 3496 ccaggattta tacaaggagg agaaaatgaa agccatacgg gaagcaatag catgatacaa 3556 aggcattaaa gcagcgtatc cacatagcgt aaaaggagca acatagttaa gaataccagt caatctttca caaattttgt aatccagagg ttgattatcg atgttatcac cactttgtac 3616 3676 aagaaagctg ggtctagata tctcgaggtc ccatttgatt taatataagg acttttctga ggacaggatg cgttactaag ttgttccagg gaagaaggcc gtgcccgata atggggcaac 3736 3796 cgtcgctaga ggccgagggc aattggcatt ggtagggctg gaagggggac cgctcgaagg 3856 gggaagatct aaccgggccg ggctgagcgc gaacggccgg aagggggcag ttgatccaga gtcgtcgggg cccttggggg cgggtctcgg agacatgcag tcgagggaac aacgttccat 3916 3976 tgaggccgca aggtcgtcca tcggcggtcc agttgatacg gtgggtctcg caggtgagcg 4036 tggtgtcgat cctttcgaat tggagtcgct catggggccc gcagaggggg caccaggcat cgatggtgac atcattggac aaaaccaggg ccgggcaggc atgtagagag tggggcccc 4096 aaccaacaac acttgccatc tgatgatcgg ttgtgggcgt cttcgggacc gtcgtttttt 4156 aggcatgtgg atcgaattcg gtaccggatc cagtcgacgt taagtatttc cttagagaat 4216 tggttctatc tccttcgaag cctgcttttt tgtacaaact tgtgataaca agcttctcga 4276

4336 ggcaggaccg agagctgagc acgagggtct caggagaaga acgcttctgg tgccgctaac 4396 tcgacagggc cggcatttta ttaatttatc agcaggtgag gtcagcagct cagggtgtgg 4456 atttttcggg aaaggggaag ttggggaggt acggggattc tagccaccag ctgccgtcac 4516 cagettttet ggeagetgae gtetetgtet ggtttaeggg geggtggegg egeetaggte 4576 ggcatgatct ttcatacaaa tgattccccc tcaaaaaagg cgggagagcc attcattttc 4636 tagcagttgt aattttaagg gggaatcaag tettattttt etgetaggat eegeetegae 4696 caaagcggcc atcgtgcctc cccactcctg cagttcgggg gcatggatgc gcggatagcc 4756 gctgctggtt tcctggatgc cgacggattt gcactgccgg tagaactccg cgaggtcgtc 4816 cagcctcagg cagcagctga accaactcgc gaggggatcg agcccggggt gggcgaagaa 4876 ctccagcatg agateceege getggaggat catecageeg gegteeegga aaaegattee 4936 gaagcccaac ctttcataga aggcggcggt ggaatcgaaa tctcgtgatg gcaggttggg cgtcgcttgg tcggtcattt cgaaccccag agtcccgctc agaagaactc gtcaagaagg 4996 cgatagaagg cgatgcgctg cgaatcggga gcggcgatac cgtaaagcac gaggaagcgg 5056 tcagcccatt cgccgccaag ctcttcagca atatcacggg tagccaacgc tatgtcctga 5116 5176 tagcggtccg ccacacccag ccggccacag tcgatgaatc cagaaaaagcg gccattttcc 5236 accatgatat teggeaagea ggeategeea tgggteaega egagateete geegteggge atgcgcgcct tgagcctggc gaacagttcg gctggcgcga gcccctgatg ctcttcgtcc 5296 agatcatcct gatcgacaag accggcttcc atccgagtac gtgctcgctc gatgcgatgt 5356 5416 ttcgcttggt ggtcgaatgg gcaggtagcc ggatcaagcg tatgcagccg ccgcattgca tcagccatga tggatacttt ctcggcagga gcaaggtgag atgacaggag atcctgcccc 5476 ggcacttcgc ccaatagcag ccagtccctt cccgcttcag tgacaacgtc gagcacagct 5536 5596 gcgcaaggaa cgcccgtcgt ggccagccac gatagccgcg ctgcctcgtc ctgcagttca 5656 ttcagggcac cggacaggtc ggtcttgaca aaaagaaccg ggcgcccctg cgctgacagc 5716 cggaacacgg cggcatcaga gcagccgatt gtctgttgtg cccagtcata gccgaatagc ctctccaccc aagcggccgg agaacctgcg tgcaatccat cttgttcaat catgcgaaac 5776 5836 gatecteate etgtetettg ateagategg aatteeggeg eetagagaag gagtgaggge tggataaagg gaggatcgag gcggggtcga acgaggaggt tcaaggggga gagacggggc 5896 5956 ggatggagga agaggaggcg gaggcttagg gtgtacaaag ggcttgaccc agggaggggg 6016 gtcaaaagcc aaggcttccc aggtcacgat gtaggggacc tggtctgggt gtccatgcgg

gccaggtgaa	aagaccttga	tcttaacctg	ggtgatgagg	tctcggttaa	aggtgccgtc	6076
tcgcggccat	ccgacgttaa	aggttggcca	ttctgcagag	cagaaggtaa	cccaacgtct	6136
cttcttgaca	tctaccgact	ggttgtgagc	gateegeteg	acatctttcc	agtgacctaa	6196
ggtcaaactt	aagggagtgg	taacagtctg	gccctaattt	tcagacaaat	acagaaacac	6256
agtcagacag	agadaacaca	gaacgatgct	gcagcgctgc	agcagacaag	acgcgcggct	6316
tcggttccaa	accgaaagca	aaaattcaga	cggaggcggg	aactgtttta	ggttctcgtc	6376
tcctaccaga	accacatatc	ctgacggggt	cggattccac	atcgactccc	ttcctcaggt	6436
cgggccacaa	aaacggcccc	caaagtccct	gggacgtctc	ccagggttgc	ggccgggtgt	6496
tcagaactcg	tcagttccac	cacgggtccg	ccagatacag	agctagttag	ctaactagta	6556
cagacgcagg	cgcataacat	caaacataga	cactagacaa	tcggacagac	acagataagt	6616
tgctggccag	cttacctccc	ggtggtgggt	cggtggtccc	tgggcagggg	tctccaaatc	6676
ccggacgagc	ccccaaatga	aagacccccg	tcgtgggtag	tcaatcactc	agaggagacc	6736
ctcccaagga	acagcgagac	cacgattcgg	atgcaaacag	caagaggctt	tattgggaat	6796
acgggtaccc	gggcgacgca	gtctatcgga	agactggcgc	gccgagtgag	gggttgtggg	6856
ctcttttatt	gagctcggag	agcggaagcg	cgcgaacaga	agcgagaagc	gaactgattg	6916
gttagttcaa	ataaggtaca	gggtcatttt	caggtccttg	gggcaccctg	gaaacatctg	6976
atgattcact	agaaactgct	gagggctgga	ccgcatctgg	ggaccatctg	ttcttggccc	7036
cgagccgggg	caggaactgc	ttaccacaga	tatcctgttt	ggcccatcac	tcagctgtct	7096
catctgttct	tggccctgag	ccggggcagg	aaccgcttac	cacagatatc	ctgtttggta	7156
ttcagctgtt	tctttgttcc	tgaccttgat	ctgaactttt	ctattctcag	ttatgtattt	7216
ttccatgcct	tgcaaagtgg	cgttacttaa	gctagcttgc	cacctacggg	tggggtcttt	7276
caaaagcaaa	gaaacggaag	ggccgcggct	ttggctccgg	tgagtgtggg	gaatagggta	7336
gagtggtcta	agaggcagaa	gcccgcgaat	ttgggagtgt	gagggggaca	catttggagg	7396
acagttttcg	gtgatctggt	atgaattaat	tc			7428

<210> 19

<211> 286

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<4	Λ.	n		1	q
< 4		.,	-	- 1	٠,

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Val Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175

Asp Thr Thr Met Pro Ala Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp
195 200 205

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220

```
Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser
                                        235
225
                    230
Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile
                245
                                    250
Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn
            260
                                265
Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp
                            280
        275
                                                285
<210>
       20
<211>
       7010
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Engineered sequence from virus and plasmid
<220>
<221> LTR
<222> (149)..(737)
<223> 5' MoMuSVLTR
<220>
<221> CDS
<222>
      (1660)..(2454)
<223> Neomycin resistance
<220>
<221> promoter
<222>
      (2806)..(3150)
<223> BLV promoter
<220>
<221> misc_feature
<222>
      (3170)..(3194)
<223>
      attB1
<220>
<221>
      CDS
<222>
      (3236)..(3955)
<223> EYFP; enhanced yellow fluorescent protein
<220>
<221>
      misc_feature
<222>
      (3980)..(4004)
<223> attB2
```

<220>

<221> LTR

<222> (4056)..(4649)

<223> 3' MoMuSVLTR

<400> 20 60 gaattaattc ataccagatc accgaaaact gtcctccaaa tgtgtccccc tcacactccc aaattcgcgg gcttctgcct cttagaccac tctaccctat tccccacact caccggagcc 120 180 aaagccgcgg cccttccgtt tctttgcttt tgaaagaccc cacccgtagg tggcaagcta 240 gcttaagtaa cgccactttg caaggcatgg aaaaatacat aactgagaat agaaaagttc 300 agatcaaggt caggaacaaa gaaacagctg aataccaaac aggatatctg tggtaagcgg 360 ttcctgcccc ggctcagggc caagaacaga tgagacagct gagtgatggg ccaaacagga 420 tatctgtggt aagcagttcc tgccccggct cggggccaag aacagatggt ccccagatgc ggtccagccc tcagcagttt ctagtgaatc atcagatgtt tccagggtgc cccaaggacc 480 540 tgaaaatgac cctgtacctt atttgaacta accaatcagt tcgcttctcg cttctgttcg 600 egegetteeg eteteegage teaataaaag ageceacaac eeeteaeteg gegegecagt cttccgatag actgcgtcgc ccgggtaccc gtattcccaa taaagcctct tgctgtttgc 660 720 atccgaatcg tggtctcgct gttccttggg agggtctcct ctgagtgatt gactacccac 780 gacgggggtc tttcatttgg gggctcgtcc gggatttgga gacccctgcc cagggaccac 840 cgacccacca ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag 900 tgtctatgtt tgatgttatg cgcctgcgtc tgtactagtt agctaactag ctctgtatct 960 ggcggacccg tggtggaact gacgagttct gaacacccgg ccgcaaccct gggagacgtc 1020 ccagggactt tgggggccgt ttttgtggcc cgacctgagg aagggagtcg atgtggaatc cgaccccgtc aggatatgtg gttctggtag gagacgagaa cctaaaacag ttcccgcctc 1080 cgtctgaatt tttgctttcg gtttggaacc gaagccgcgc gtcttgtctg ctgcagcgct 1140 gcagcatcgt tctgtgttgt ctctgtctga ctgtgtttct gtatttgtct gaaaattagg 1200 1260 gccagactgt taccactccc ttaagtttga ccttaggtca ctggaaagat gtcgagcgga 1320 tegeteacaa ceagteggta gatgteaaga agagaegttg ggttacette tgetetgeag 1380 aatggccaac ctttaacgtc ggatggccgc gagacggcac ctttaaccga gacctcatca 1440 cccaggttaa gatcaaggtc ttttcacctg gcccgcatgg acacccagac caggtcccct 1500 acategtgae etgggaagee ttggettttg acceeetce etgggteaag eeetttgtae 1560 accetaagee teegeeteet etteeteeat eegeeeegte teteeeeett gaaceteete

gttcgacccc gcct	cgatcc tccctt	tate cagecete	cac teetteteta ggege	ccggaa 1620
ttccgatctg atca	agagac aggatg	gagga tegttteg	gc atg att gaa caa g Met Ile Glu Gln i 1	
			gtg gag agg cta ttc Val Glu Arg Leu Phe 20	
			tct gat gcc gcc gtg Ser Asp Ala Ala Val 35	
			ttt gtc aag acc gac Phe Val Lys Thr Asp 50	
			gca gcg cgg cta tcg Ala Ala Arg Leu Ser 65	
		Cys Ala Ala V	gtg ctc gac gtt gtc Val Leu Asp Val Val 80	
			gaa gtg ccg ggg cag Glu Val Pro Gly Gln 100	
			aaa gta tcc atc atg Lys Val Ser Ile Met 115	
	Arg Leu His	-	ecg gct acc tgc cca Pro Ala Thr Cys Pro 130	
			gca cgt act cgg atg Ala Arg Thr Arg Met 145	
		Asp Leu Asp 0	gaa gag cat cag ggg Glu Glu His Gln Gly 160	
			gcg cgc atg ccc gac Ala Arg Met Pro Asp 180	
			cgc ttg ccg aat atc Cys Leu Pro Asn Ile 195	
			gac tgt ggc cgg ctg Asp Cys Gly Arg Leu	

200 2	05 210	
	ta gcg ttg gct acc cgt gat att gc le Ala Leu Ala Thr Arg Asp Ile Al 225	
	ct gac cgc ttc ctc gtg ctt tac gg la Asp Arg Phe Leu Val Leu Tyr Gl 240 24	У
	gc atc gcc ttc tat cgc ctt ctt ga rg Ile Ala Phe Tyr Arg Leu Leu As 255 260	
gag ttc ttc tga gcgggactct ggg Glu Phe Phe	ggttcgaa atgaccgacc aagcgacgcc	2494
caacctgcca tcacgagatt tcgattc	cac cgccgccttc tatgaaaggt tgggctt	cgg 2554
aatcgttttc cgggacgccg gctggatg	gat cctccagcgc ggggatctca tgctgga	gtt 2614
cttcgcccac cccgggctcg atcccct	cgc gagttggttc agctgctgcc tgaggct	gga 2674
cgacctcgcg gagttctacc ggcagtgo	caa atccgtcggc atccaggaaa ccagcag	cgg 2734
ctatecgege atceatgece eegaacte	gca ggagtgggga ggcacgatgg ccgcttt	ggt 2794
cgaggcggat cctagcagaa aaataaga	act tgattccccc ttaaaattac aactgct	aga 2854
aaatgaatgg ctctcccgcc ttttttga	agg gggaatcatt tgtatgaaag atcatgc	cga 2914
cctaggcgcc gccaccgccc cgtaaacc	cag acagagacgt cagctgccag aaaagct	ggt 2974
gacggcagct ggtggctaga atccccgt	tac ctccccaact tcccctttcc cgaaaaa	tcc 3034
acaccctgag ctgctgacct cacctgct	tga taaattaata aaatgccggc cctgtcg	agt 3094
tagcggcacc agaagcgttc ttctcctg	gag accetegtge teageteteg gteetge	ctc 3154
gagaagcttg ttatcacaag tttgtaca	aaa aaagcaggct tcgaaggaga tagaacca	aat 3214
	tg agc aag ggc gag gag ctg ttc acc al Ser Lys Gly Glu Glu Leu Phe Th 270	
	ag ctg gac ggc gac gta aac ggc cad lu Leu Asp Gly Asp Val Asn Gly His 285 290	5
	gc gag ggc gat gcc acc tac ggc aag ly Glu Gly Asp Ala Thr Tyr Gly Lys 300 305	
	cc acc ggc aag ctg ccc gtg ccc tgg hr Thr Gly Lys Leu Pro Val Pro Trp 315 320	

ccc acc ctc Pro Thr Let 325	Val Thr					s Phe Al		3457
tac ccc gad Tyr Pro Asp 340			His Asp				_	3505
gaa ggc tad Glu Gly Tyr 355					e Lys As			553
tac aag acc Tyr Lys Thi		Glu Val					l Asn	601
cgc atc gag Arg Ile Glu			_	Lys Glu			•	649
ggg cac aag Gly His Lys 405	Leu Glu					l Tyr Il		697
gcc gac aag Ala Asp Lys 420			Ile Lys					745
aac atc gag Asn Ile Glu 435					His Ty			793
acc ccc atc		Gly Pro					r Leu	841
agc tac cag Ser Tyr Glr	_		_	Pro Asr				889
atg gtc ctg Met Val Leu 485	Leu Glu					r Leu Gl	3	937
gac gag ctg Asp Glu Leu 500	_	_	ggccgca	ctcgagat	at ctaga	acccag	3	985
ctttcttgta	caaagtgg	tg ataac	atcga ta	aaataaaa	gatttta	attt agte	ctccaga 4	045
aaaagggggg	aatgaaag	ac cccac	ctgta gg	tttggcaa	gctagct	taa gta	acgccat 4	105
tttgcaaggc	atggaaaa	at acata	actga ga	atagagaa	gttcaga	atca agg	caggaa 4	165
cagatggaac	agctgaat	at gggcc	aaaca gg	atatctgt	ggtaag	cagt tcc	gccccg 4	225

4285 gctcagggcc aagaacagat ggaacagctg aatatgggcc aaacaggata tctgtggtaa 4345 gcagttcctg ccccggctca gggccaagaa cagatggtcc ccagatgcgg tccagccctc 4405 agcagtttct agagaaccat cagatgtttc cagggtgccc caaggacctg aaatgaccct 4465 gtgccttatt tgaactaacc aatcagttcg cttctcgctt ctgttcgcgc gcttctgctc cccgagctca ataaaagagc ccacaacccc tcactcgggg cgccagtcct ccgattgact 4525 gagtcgcccg ggtacccgtg tatccaataa accctcttgc agttgcatcc gacttgtggt 4585 4645 ctcgctgttc cttgggaggg tctcctctga gtgattgact acccgtcagc gggggtcttt 4705 catttggggg ctcgtccggg atcgggagac ccctgcccag ggaccaccga cccaccaccg 4765 ggaggtaagc tggctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc 4825 agctcccgga gacggtcaca gcttgtctgt aagcggatgc cgggagcaga caagcccgtc 4885 agggcgcgtc agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt gtatactggc ttaactatgc ggcatcagag cagattgtac tgagagtgca 4945 ccatatgcgg tgtgaaatac cgcacagatg cgtaaggaga aaataccgca tcaggcgctc 5005 5065 ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 5125 5185 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 5245 tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 5305 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 5365 cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 5425 5485 caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 5545 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 5605 taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 5665 5725 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 5785 tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 5845 5905 catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagtttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 5965

6025 ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 6085 agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga 6145 gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6205 agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctgcagg 6265 6325 categtggtg teaegetegt egtttggtat ggetteatte ageteeggtt eecaaegate aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc 6385 gatcqttqtc agaaqtaaqt tqqccqcaqt qttatcactc atggttatgg cagcactgca 6445 6505 taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaacacg 6565 ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 6625 ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 6685 tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 6745 aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 6805 actetteett ttteaatatt attgaageat ttateagggt tattgtetea tgageggata 6865 catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 6925 agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata aaaataggcg 6985 tatcacgagg ccctttcgtc ttcaa 7010

<210> 21

<211> 264

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 21

Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val 1 5 10 15

Glu Arg Leu Phe Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser 20 25 30

Asp Ala Ala Val Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe

35 40

Val Lys Thr Asp Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala 50 55 60

45

Ala Arg Leu Ser Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val 65 70 75 80

Leu Asp Val Val Thr Glu Ala Gly Arg Asp Trp Leu Leu Leu Gly Glu 85 90 95

Val Pro Gly Gln Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys 100 105 110

Val Ser Ile Met Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro 115 120 125

Ala Thr Cys Pro Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala 130 135 140

Arg Thr Arg Met Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu 145 150 155 160

Glu His Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala 165 170 175

Arg Met Pro Asp Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys
180 185 190

Leu Pro Asn Ile Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp 195 200 205

Cys Gly Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala 210 215 220

Thr Arg Asp Ile Ala Glu Glu Leu Gly Gly Glu Trp Ala Asp Arg Phe 225 230 235 240

Leu Val Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe 245 250 255

Tyr Arg Leu Leu Asp Glu Phe Phe 260

<210> 22

<211> 239

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 22

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 15

Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile
35 40 45

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60

Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys 65 70 75 80

Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95

Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu
100 105 110

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140

Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 160

Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly

180	185	190

Pro '	Val	Leu 195	Leu	Pro	Asp	Asn	His 200	Tyr	Leu	Ser	Tyr	Gln 205	Ser	Ala	Leu	
Ser	Lys 210	Asp	Pro	Asn	Glu	Lys 215	Arg	Asp	His	Met	Val 220	Leu	Leu	Glu	Phe	
Val '	Thr	Ala	Ala	Gly	Ile 230	Thr	Leu	Gly	Met	Asp 235	Glu	Leu	Туг	Lys		
<210 <211 <212 <213	> 7 > I	23 7010 DNA Artif	ficia	al												
<220 <223		Engir	neere	ed se	eguer	nce i	Eorm	viru	ıs ar	nd pl	lasmi	ıd				
<220> <221> CDS <222> (206)(1066) <223> Ampicillin resistance																
<400 ttga		23 ega a	aggg	geete	eg te	gatao	egeet	att	ttta	atag	gtta	atgt	ca t	tgata	aataat	60
_															tgttt	120
attt	ttct	aa a	ataca	attca	aa at	atgt	atco	c gct	cato	gaga	caat	aaco	cct ç	gataa	aatgct	180
tcaa	taat	at t	gaaa	aaagg	ga ag	gagt					cat His 5					232
ctt (Leu :						_		_			_					280
gaa a Glu '																328
gtg (Val (_												376
ttt (-		-	-												424
cta																

Leu	Cys 75	Gly	Ala	Val	Leu	Ser 80	Arg	Val	Asp	Ala	Gly 85	Gln	Glu	Gln	Leu	
					tat Tyr 95											520
_		_	_		ctt Leu											568
_	_	_			atg Met	-	_				_				_	616
					ccg Pro											. 664
					cgc Arg											712
				_	gag Glu 175	_	_		_	_		-	~	_	_	760
	_	_	-		cta Leu				-							808
					gac Asp		_			-		_	-			856
	_	_	_	_	ctt Leu											904
					Gly ggg											952
					cgt Arg 255											1000
					cga Arg											1048
_	att Ile	_			taa	ctgt	caga	acc a	agtt	tact	c at	atat	actt	:		1096
taga	attga	att 1	caaaa	actto	ca tt	ttta	attt	: aaa	agga	tct	aggt	gaag	gat c	cttt	ttgat	1156

1216 aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta 1276 gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa 1336 acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt 1396 tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag 1456 ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca 1516 1576 agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag 1636 cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa 1696 agegecaege tteeegaagg gagaaaggeg gacaggtate eggtaagegg cagggtegga 1756 acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc 1816 gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc 1876 ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt 1936 gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt. 1996 gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag 2056 gaageggaag agegeetgat geggtatttt eteettaege atetgtgegg tattteacae cgcatatggt gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca 2116 ctccgctatc gctacgtgac tgggtcatgg ctgcgcccg acacccgcca acacccgctg 2176 acgcgccttg acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct 2236 ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagccag 2296 cttacctccc ggtggtgggt cggtggtccc tgggcagggg tctcccgatc ccggacgagc 2356 2416 ccccaaatga aagacccccg ctgacgggta gtcaatcact cagaggagac cctcccaagg 2476 aacagcgaga ccacaagtcg gatgcaactg caagagggtt tattggatac acgggtaccc 2536 gggcgactca gtcaatcgga ggactggcgc cccgagtgag gggttgtggg ctcttttatt 2596 gagetegggg ageagaageg egegaacaga agegagaage gaactgattg gttagtteaa 2656 ataaggcaca gggtcatttc aggtccttgg ggcaccctgg aaacatctga tggttctcta 2716 gaaactgctg agggctggac cgcatctggg gaccatctgt tcttggccct gagccggggc 2776 aggaactgct taccacagat atcctgtttg gcccatattc agctgttcca tctgttcttg 2836 gccctgagcc ggggcaggaa ctgcttacca cagatatcct gtttggccca tattcagctg 2896 ttccatctgt tcctgacctt gatctgaact tctctattct cagttatgta tttttccatg

2956 ccttgcaaaa tggcgttact taagctagct tgccaaacct acaggtgggg tctttcattc 3016 3076 acaagaaagc tgggtctaga tatctcgagt gcggccgctt tacttgtaca gctcgtccat 3136 gccgagagtg atcccggcgg cggtcacgaa ctccagcagg accatgtgat cgcgcttctc 3196 qttqqqqtct ttgctcaggg cggactggta gctcaggtag tggttgtcgg gcagcagcac ggggccgtcg ccgatggggg tgttctgctg gtagtggtcg gcgagctgca cgctgccgtc .3256 ctcgatgttg tggcggatct tgaagttcac cttgatgccg ttcttctgct tgtcggccat 3316 gatatagacg ttgtggctgt tgtagttgta ctccagcttg tgccccagga tgttgccgtc 3376 3436 ctccttgaag tcgatgccct tcagctcgat gcggttcacc agggtgtcgc cctcgaactt cacctcggcg cgggtcttgt agttgccgtc gtccttgaag aagatggtgc gctcctggac 3496 3556 gtagccttcg ggcatggcgg acttgaagaa gtcgtgctgc ttcatgtggt cggggtagcg 3616 qqcqaaqcac tqcaqqccqt agccqaaggt ggtcacqagg gtgggccagg gcacgggcag 3676 cttgccggtg gtgcagatga acttcagggt cagcttgccg taggtggcat cgccctcgcc 3736 ctcgccggac acgctgaact tgtggccgtt tacgtcgccg tccagctcga ccaggatggg 3796 caccacccg gtgaacagct cctcgccctt gctcaccatg gttaagtatt tccttagaga attggttcta tctccttcga agcctgcttt tttgtacaaa cttgtgataa caagcttctc 3856 gaggcaggac cgagagctga gcacgagggt ctcaggagaa gaacgcttct ggtgccgcta 3916 actcgacagg gccggcattt tattaattta tcagcaggtg aggtcagcag ctcagggtgt 3976 4036 ggatttttcg ggaaagggga agttggggag gtacggggat tctagccacc agctgccgtc accagetttt etggeagetg aegtetetgt etggtttaeg gggeggtgge ggegeetagg 4096 teggeatgat ettteataea aatgatteee eeteaaaaaa ggegggagag eeatteattt 4156 4216 tctagcagtt gtaattttaa gggggaatca agtcttattt ttctgctagg atccgcctcg 4276 accaaagcgg ccatcgtgcc tccccactcc tgcagttcgg gggcatggat gcgcggatag 4336 ccgctgctgg tttcctggat gccgacggat ttgcactgcc ggtagaactc cgcgaggtcg tccagcctca ggcagcagct gaaccaactc gcgaggggat cgagcccggg gtgggcgaag 4396 4456 aactccagca tgagatcccc gcgctggagg atcatccagc cggcgtcccg gaaaacgatt 4516 ccgaagccca acctttcata gaaggcggcg gtggaatcga aatctcgtga tggcaggttg 4576 ggcgtcgctt ggtcggtcat ttcgaacccc agagtcccgc tcagaagaac tcgtcaagaa

4636 ggcgatagaa ggcgatgcgc tgcgaatcgg gagcggcgat accgtaaagc acgaggaagc 4696 ggtcagccca ttcgccgcca agctcttcag caatatcacg ggtagccaac gctatgtcct 4756 gatagcggtc cgccacaccc agccggccac agtcgatgaa tccagaaaag cggccatttt ccaccatgat atteggcaag caggcatege catgggteac gacgagatee tegeogtegg 4816 4876 gcatgcgcgc cttgagcctg gcgaacagtt cggctggcgc gagcccctga tgctcttcgt 4936 ccagatcatc ctgatcgaca agaccggctt ccatccgagt acgtgctcgc tcgatgcgat 4996 gtttcgcttg gtggtcgaat gggcaggtag ccggatcaag cgtatgcagc cgccgcattg 5056 catcagccat gatggatact ttctcggcag gagcaaggtg agatgacagg agatcctgcc 5116 ccggcacttc gcccaatagc agccagtccc ttcccgcttc agtgacaacg tcgagcacag ctgcgcaagg aacgcccgtc gtggccagcc acgatagccg cgctgcctcg tcctgcagtt 5176 5236 cattcagggc accggacagg tcggtcttga caaaaagaac cgggcgcccc tgcgctgaca gccggaacac ggcggcatca gagcagccga ttgtctgttg tgcccagtca tagccgaata 5296 gcctctccac ccaagcggcc ggagaacctg cgtgcaatcc atcttgttca atcatgcgaa 5356 5416 acgatectea teetgtetet tgateagate ggaatteegg egeetagaga aggagtgagg gctggataaa gggaggatcg aggcggggtc gaacgaggag gttcaagggg gagagacggg 5476 gcggatggag gaagaggagg cggaggctta gggtgtacaa agggcttgac ccagggaggg 5536 gggtcaaaag ccaaggcttc ccaggtcacg atgtagggga cctggtctgg gtgtccatgc 5596 gggccaggtg aaaagacctt gatcttaacc tgggtgatga ggtctcggtt aaaggtgccg 5656 5716 tctcgcggcc atccgacgtt aaaggttggc cattctgcag agcagaaggt aacccaacgt 5776 ctcttcttga catctaccga ctggttgtga gcgatccgct cgacatcttt ccagtgacct 5836 aaggtcaaac ttaagggagt ggtaacagtc tggccctaat tttcagacaa atacagaaac 5896 acagtcagac agagacaaca cagaacgatg ctgcagcgct gcagcagaca agacgcgcgg cttcggttcc aaaccgaaag caaaaattca gacggaggcg ggaactgttt taggttctcg 5956 6016 tctcctacca gaaccacata tcctgacggg gtcggattcc acatcgactc ccttcctcag gtcgggccac aaaaacggcc cccaaagtcc ctgggacgtc tcccagggtt gcggccgggt 6076 6136 gttcagaact cgtcagttcc accacgggtc cgccagatac agagctagtt agctaactag 6196 tacagacgca ggcgcataac atcaaacata gacactagac aatcggacag acacagataa 6256 gttgctggcc agcttacctc ccggtggtgg gtcggtggtc cctgggcagg ggtctccaaa 6316 tcccggacga gcccccaaat gaaagacccc cgtcgtgggt agtcaatcac tcagaggaga

ccctcccaag gaacagcgag accacgattc ggatgcaaac agcaagaggc tttattggga 6376 atacgggtac ccgggcgacg cagtctatcg gaagactggc gcgccgagtg aggggttgtg 6436 ggctctttta ttgagctcgg agagcggaag cgcgcgaaca gaagcgagaa gcgaactgat 6496 tggttagttc aaataaggta cagggtcatt ttcaggtcct tggggcaccc tggaaacatc 6556 6616 tgatgattca ctagaaactg ctgagggctg gaccgcatct ggggaccatc tgttcttggc 6676 cccgagccgg ggcaggaact gcttaccaca gatatcctgt ttggcccatc actcagctgt ctcatctgtt cttggccctg agccggggca ggaaccgctt accacagata tcctgtttgg 6736 tattcagctg tttctttgtt cctgaccttg atctgaactt ttctattctc agttatgtat 6796 ttttccatgc cttgcaaagt ggcgttactt aagctagctt gccacctacg ggtggggtct 6856 ttcaaaagca aagaaacgga agggccgcgg ctttggctcc ggtgagtgtg gggaataggg 6916 tagagtggtc taagaggcag aagcccgcga atttgggagt gtgaggggga cacatttgga 6976 7010 ggacagtttt cggtgatctg gtatgaatta attc

<210> 24

<211> 286

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 24

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 70 75 80

Arg Val Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg

Asp Thr Thr Met Pro Ala Ala Met Ala Thr Thr Leu Arg Lys Leu Leu

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro

Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser

Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile

Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn

Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp

<210>

<211>

<212> DNA

<213> Artificial

<220>

```
<220>
<221> LTR
<222>
      (149) . . (737)
<223>
      5' MoMuSVLTR
<220>
<221> CDS
<222>
      (1660)..(2454)
<223> Neomycin resistance
<220>
<221> promoter
<222> (2806)..(3261)
<223> HIV promoter
<220>
<221> misc_feature
<222> (3281)..(3305)
<223> attB1
<220>
<221> CDS
      (3347)..(4066)
<222>
<223> EYFP; enhanced yellow fluorescent protein
<220>
<221> misc_feature
<222> (4091)..(4115)
<223> attB2
<220>
<221> LTR
<222>
      (4167)..(4760)
<223> 3' MoMuLVLTR
<400> 25
gaattaattc ataccagatc accgaaaact gtcctccaaa tgtgtccccc tcacactccc
                                                                      60
aaattcgcgg gcttctgcct cttagaccac tctaccctat tccccacact caccggagcc
                                                                     120
aaagccgcgg cccttccgtt tctttgcttt tgaaagaccc cacccgtagg tggcaagcta
                                                                     180
                                                                     240
gcttaagtaa cgccactttg caaggcatgg aaaaatacat aactgagaat agaaaagttc
agatcaaggt caggaacaaa gaaacagctg aataccaaac aggatatctg tggtaagcgg
                                                                     300
ttcctgcccc ggctcagggc caagaacaga tgagacagct gagtgatggg ccaaacagga
                                                                     360
tatctgtggt aagcagttcc tgccccggct cggggccaag aacagatggt ccccagatgc
                                                                     420
                                                                     480
ggtccagccc tcagcagttt ctagtgaatc atcagatgtt tccagggtgc cccaaggacc
tgaaaatgac cctgtacctt atttgaacta accaatcagt tcgcttctcg cttctgttcg
                                                                     540
```

<223> Engineered sequence from virus and plasmid

cgcgcttccg ctctccgagc tcaataaaag agcccacaac ccctcactcg gcgcgccagt	600
cttccgatag actgcgtcgc ccgggtaccc gtattcccaa taaagcctct tgctgtttgc	660
atccgaatcg tggtctcgct gttccttggg agggtctcct ctgagtgatt gactacccac	720
gacgggggtc tttcatttgg gggctcgtcc gggatttgga gacccctgcc cagggaccac	780
cgacccacca ccgggaggta agctggccag caacttatet gtgtetgtee gattgtetag	840
tgtctatgtt tgatgttatg cgcctgcgtc tgtactagtt agctaactag ctctgtatct	900
ggcggacccg tggtggaact gacgagttct gaacacccgg ccgcaaccct gggagacgtc	960
ccagggactt tgggggccgt ttttgtggcc cgacctgagg aagggagtcg atgtggaatc	1020
cgaccccgtc aggatatgtg gttctggtag gagacgagaa cctaaaacag ttcccgcctc	1080
cgtctgaatt tttgctttcg gtttggaacc gaagccgcgc gtcttgtctg ctgcagcgct	1140
gcagcatcgt tctgtgttgt ctctgtctga ctgtgtttct gtatttgtct gaaaattagg	1200
gccagactgt taccactccc ttaagtttga ccttaggtca ctggaaagat gtcgagcgga	1260
tcgctcacaa ccagtcggta gatgtcaaga agagacgttg ggttaccttc tgctctgcag	1320
aatggccaac ctttaacgtc ggatggccgc gagacggcac ctttaaccga gacctcatca	1380
cccaggttaa gatcaaggtc ttttcacctg gcccgcatgg acacccagac caggtcccct	1440
acatcgtgac ctgggaagcc ttggcttttg acccccctcc ctgggtcaag ccctttgtac	1500
accetaagee teegeeteet etteeteeat eegeeeegte teteeeett gaaceteete	1560
gttcgacccc gcctcgatcc tccctttatc cagccctcac tccttctcta ggcgccggaa	1620
ttccgatctg atcaagagac aggatgagga tcgtttcgc atg att gaa caa gat Met Ile Glu Gln Asp 1 5	1674
gga ttg cac gca ggt tct ccg gcc gct tgg gtg gag agg cta ttc ggc Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly 10 15 20	1722
tat gac tgg gca caa cag aca atc ggc tgc tct gat gcc gcc gtg ttc Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe 25 30 35	1770
cgg ctg tca gcg cag ggg cgc ccg gtt ctt ttt gtc aag acc gac ctg Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu 40 45 50	1818
tcc ggt gcc ctg aat gaa ctg cag gac gag gca gcg cgg cta tcg tgg Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp 55 60 65	1866
ctg gcc acg acg ggc gtt cct tgc gca gct gtg ctc gac gtt gtc act	1914

Leu 70	Ala	Thr	Thr	Gly	Val 75	Pro	Cys	Ala	Ala	Val 80	Leu	Asp	Val	Val	Thr 85	
gaa Glu	gcg Ala	gga Gly	agg Arg	gac Asp 90	tgg Trp	ctg Leu	cta Leu	ttg Leu	ggc Gly 95	gaa Glu	gtg Val	ccg Pro	ggg Gly	cag Gln 100	gat Asp	1962
ctc Leu	ctg Leu	tca Ser	tct Ser 105	cac His	ctt Leu	gct Ala	cct Pro	gcc Ala 110	gag Glu	aaa Lys	gta Val	tcc Ser	atc Ile 115	atg Met	gct Ala	2010
gat Asp	gca Ala	atg Met 120	cgg Arg	cgg Arg	ctg Leu	cat His	acg Thr 125	ctt Leu	gat Asp	ccg Pro	gct Ala	acc Thr 130	tgc Cys	cca Pro	ttc Phe	2058
gac Asp	cac His 135	caa Gln	gcg Ala	aaa Lys	cat His	cgc Arg 140	atc Ile	gag Glu	cga Arg	gca Ala	cgt Arg 145	act Thr	cgg Arg	atg Met	gaa Glu	2106
gcc Ala 150	ggt Gly	ctt Leu	gtc Val	gat Asp	cag Gln 155	gat Asp	gat Asp	ctg Leu	gac Asp	gaa Glu 160	gag Glu	cat His	cag Gln	Gly	ctc Leu 165	2154
gcg Ala	cca Pro	gcc Ala	gaa Glu	ctg Leu 170	ttc Phe	gcc Ala	agg Arg	ctc Leu	aag Lys 175	gcg Ala	cgc Arg	atg Met	ccc Pro	gac Asp 180	ggc Gly	2202
gag Glu	gat Asp	ctc Leu	gtc Val 185	gtg Val	acc Thr	cat His	ggc Gly	gat Asp 190	gcc Ala	tgc Cys	ttg Leu	ccg Pro	aat Asn 195	atc Ile	atg Met	2250
gtg Val	gaa Glu	aat Asn 200	ggc Gly	cgc Arg	ttt Phe	tct Ser	gga Gly 205	ttc Phe	atc Ile	gac Asp	tgt Cys	ggc Gly 210	cgg Arg	ctg Leu	ggt Gly	2298
gtg Val	gcg Ala 215	gac Asp	cgc Arg	tat Tyr	cag Gln	gac Asp 220	ata Ile	gcg Ala	ttg Leu	gct Ala	acc Thr 225	cgt Arg	gat Asp	att Ile	gct Ala	2346
gaa Glu 230	gag Glu	ctt Leu	ggc	ggc	gaa Glu 235	tgg Trp	gct Ala	gac Asp	cgc Arg	ttc Phe 240	ctc Leu	gtg Val	ctt Leu	tac Tyr	ggt Gly 245	2394
atc Ile	gcc Ala	gct Ala	ccc Pro	gat Asp 250	tcg Ser	cag Gln	cgc Arg	atc Ile	gcc Ala 255	ttc Phe	tat Tyr	cgc Arg	ctt Leu	ctt Leu 260	gac Asp	2442
	ttc Phe			gcg	ggac	tct ·	agaa	ttcg	aa a	tgac	cgac	c aa	gcga	cgcc		2494
caa	cctg	cca	tcac	gaga	tt t	cgat	tcca	c cg	ccgc	cttc	tat	gaaa	ggt	tggg	cttcgg	2554
aat	cgtt	ttc	cggg	acgc	cg g	ctgg	atga	t cc	tcca	gcgc	ggg	gatc	tca	tgct	ggagtt	2614
ctt	cgcc	cac	cccg	ggct	cg a	tccc	ctcg	c ga	gttg	gttc	agc	tgct	gcc	tgag	gctgga	2674

cgacctcgcg gagttctacc ggcagtgcaa atccgtcggc atccaggaaa ccagcagcgg	2734
ctatccgcgc atccatgccc ccgaactgca ggagtgggga ggcacgatgg ccgctttggt	2794
cgaggcggat cctggaaggg ctaatttggt cccaaagaag acaagagatc cttgatctgt	2854
ggatctacca cacacaaggc tacttccctg attggcagaa ttacacacca gggccaggga	2914
tcagatatcc actgaccttt ggatggtgct tcaagctagt accagttgag ccagagaagg	2974
tagaagaggc caatgaagga gagaacaaca gcttgttaca ccctatgagc ctgcatggga	3034
tggaggacgc ggagaaagaa gtgttagtgt ggaggtttga cagcaaacta gcatttcatc	3094
acatggcccg agagctgcat ccggagtact acaaagactg ctgacatcga gctttctaca	3154
agggactttc cgctggggac tttccaggga ggcgtggcct gggcgggact ggggagtggc	3214
gtccctcaga tgctgcatat aagcagctgc tttttgcctg tactgggcct cgagaagctt	3274
gttatcacaa gtttgtacaa aaaagcaggc ttcgaaggag atagaaccaa ttctctaagg	3334
aaatacttaa cc atg gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val 265 270 275	3385
ccc atc ctg gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser 280 285 290	3433
gtg tcc ggc gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu 295 300 305	3481
aag ttc atc tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu 310 315 320 325	3529
gtg acc acc ttc ggc tac ggc ctg cag tgc ttc gcc cgc tac ccc gac Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp 330 335 340	3577
cac atg aag cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr 345 350 355	3625
gtc cag gag cgc acc atc ttc ttc aag gac gac ggc aac tac aag acc Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr 360 365 370	3673
cgc gcc gag gtg aag ttc gag ggc gac acc ctg gtg aac cgc atc gag Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu 375 380 385	3721
ctg aag ggc atc gac ttc aag gag gac ggc aac atc ctg ggg cac aag Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys 390 395 400 405	3769

ctg gag tac aac tac aac agc cac aac gtc tat atc atg gcc gac aag Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys 410 415 420	3817
cag aag aac ggc atc aag gtg aac ttc aag atc cgc cac aac atc gag Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu 425 430 435	3865
gac ggc agc gtg cag ctc gcc gac cac tac cag cag aac acc ccc atc Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile 440 445 450	3913
ggc gac ggc ccc gtg ctg ctc gac aac cac tac ctg agc tac cag Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln 455 460 465	3961
tcc gcc ctg agc aaa gac ccc aac gag aag cgc gat cac atg gtc ctg Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 470 475 480 485	4009
ctg gag ttc gtg acc gcc gcc ggg atc act ctc ggc atg gac gag ctg Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu 490 495 500	4057
tac aag taa agcggccgca ctcgagatat ctagacccag ctttcttgta Tyr Lys	4106
caaagtggtg ataacatcga taaaataaaa gattttattt agtctccaga aaaagggggg	4166
aatgaaagac cccacctgta ggtttggcaa gctagcttaa gtaacgccat tttgcaaggc	4226
atggaaaaat acataactga gaatagagaa gttcagatca aggtcaggaa cagatggaac	4286
agctgaatat gggccaaaca ggatatctgt ggtaagcagt teetgeeeeg geteagggee	4346
aagaacagat ggaacagctg aatatgggcc aaacaggata tctgtggtaa gcagttcctg	4406
ccccggctca gggccaagaa cagatggtcc ccagatgcgg tccagccctc agcagtttct	4466
agagaaccat cagatgtttc cagggtgccc caaggacctg aaatgaccct gtgccttatt	4526
tgaactaacc aatcagttcg cttctcgctt ctgttcgcgc gcttctgctc cccgagctca	4586
ataaaagagc ccacaacccc tcactcgggg cgccagtcct ccgattgact gagtcgcccg	4646
ggtacccgtg tatccaataa accctcttgc agttgcatcc gacttgtggt ctcgctgttc	4706
cttgggaggg tctcctctga gtgattgact acccgtcagc gggggtcttt catttggggg	4766
ctcgtccggg atcgggagac ccctgcccag ggaccaccga cccaccaccg ggaggtaagc	4826
tggctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga	4886
gacggtcaca gcttgtctgt aagcggatgc cgggagcaga caagcccgtc agggcgcgtc	

5006 agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt 5066 gtatactggc ttaactatgc ggcatcagag cagattgtac tgagagtgca ccatatgcgg tgtgaaatac cgcacagatg cgtaaggaga aaataccgca tcaggcgctc ttccgcttcc 5126 5186 tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca 5246 5306 aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 5366 ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 5426 5486 ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 5546 5606 tgtgtgcacg aacccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 5666 gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt 5726 agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc 5786 tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt 5846 5906 tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatctttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta 5966 tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa 6026 6086 agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact 6146 6206 acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg agacccacgc 6266 tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga agctagagta 6326 6386 agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctgcagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc aaggcgagtt 6446 acatgatece ceatgttgtg caaaaaageg gttageteet teggteetee gategttgte 6506 6566 agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac caagtcattc 6626 6686 tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaacacg ggataatacc

ç	gcgccacata	gcagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	ggggcgaaaa	6746
(ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	6806
1	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	6866
ĕ	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	actcttcctt	6926
1	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	catatttgaa	6986
1	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	7046
ç	gacgtctaag	aaaccattat	tatcatgaca	ttaacctata	aaaataggcg	tatcacgagg	7106
(cctttcgtc	ttcaa					7121

<210> 26

<211> 264

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 26

Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val 1 5 10 15

Glu Arg Leu Phe Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser 20 25 30

Asp Ala Ala Val Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe 35 40 45

Val Lys Thr Asp Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala 50 55 60

Ala Arg Leu Ser Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val 65 70 75 80

Leu Asp Val Val Thr Glu Ala Gly Arg Asp Trp Leu Leu Gly Glu 85 90 95

Val Pro Gly Gln Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys 100 105 110

Val Ser Ile Met Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro

115 120 125

Ala Thr Cys Pro Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala 130 135 140

Arg Thr Arg Met Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu
145 150 155 160

Glu His Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala 165 170 175

Arg Met Pro Asp Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys 180 185 190

Leu Pro Asn Ile Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp 195 200 205

Cys Gly Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala 210 215 220

Thr Arg Asp Ile Ala Glu Glu Leu Gly Glu Trp Ala Asp Arg Phe 225 230 235 240

Leu Val Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe 245 250 255

Tyr Arg Leu Leu Asp Glu Phe Phe 260

<210> 27

<211> 239

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 27

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 15

Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60

Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys 65 70 75 80

Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95

Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140

Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 160

Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190

Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu 195 200 205

Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220

Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 225 230 235

<210> 28

<211> 7121

<212> DNA

<213> Artificial

<220> <223> Engineered sequence form virus and plasmid											
<220> <221> CDS <222> (206)(1066) <223> Ampicillin resistance											
<400> 28 ttgaagacga aagggcctcg tgatacgcct atttttatag gttaatgtca tgataataat 60											
ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt 120											
atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct 180											
tcaataatat tgaaaaagga agagt atg agt att caa cat ttc cgt gtc gcc Met Ser Ile Gln His Phe Arg Val Ala 1 5	232										
ctt att ccc ttt ttt gcg gca ttt tgc ctt cct gtt ttt gct cac cca Leu Ile Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro 10 15 20 25	280										
gaa acg ctg gtg aaa gta aaa gat gct gaa gat cag ttg ggt gca cga Glu Thr Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly Ala Arg 30 35 40	328										
gtg ggt tac atc gaa ctg gat ctc aac agc ggt aag atc ctt gag agt Val Gly Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu Glu Ser 45 50 55	376										
ttt cgc ccc gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg Phe Arg Pro Glu Glu Arg Phe Pro Met Met Ser Thr Phe Lys Val Leu 60 65 70	424										
cta tgt ggc gcg gta tta tcc cgt gtt gac gcc ggg caa gag caa ctc Leu Cys Gly Ala Val Leu Ser Arg Val Asp Ala Gly Gln Glu Gln Leu 75 80 85	472										
ggt cgc cgc ata cac tat tct cag aat gac ttg gtt gag tac tca cca Gly Arg Arg Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro 90 95 100 105	520										
gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta tgc Val Thr Glu Lys His Leu Thr Asp Gly Met Thr Val Arg Glu Leu Cys 110 115 120	568										
agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt ctg Ser Ala Ala Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu Leu 125 130 135	616										
aca acg atc gga gga ccg aag gag cta acc gct ttt ttg cac aac atg Thr Thr Ile Gly Gly Pro Lys Glu Leu Thr Ala Phe Leu His Asn Met 140 145 150	664										
ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa	712										

Gly	Asp 155	His	Val	Thr	Arg	Leu 160	Asp	Arg	Trp	Glu	Pro 165	Glu	Leu	Asn	Glu	
gcc Ala 170	ata Ile	cca Pro	aac Asn	gac Asp	gag Glu 175	cgt Arg	gac Asp	acc Thr	acg Thr	atg Met 180	cct Pro	gca Ala	gca Ala	atg Met	gca Ala 185	760
aca Thr	acg Thr	ttg Leu	cgc Arg	aaa Lys 190	cta Leu	tta Leu	act Thr	ggc Gly	gaa Glu 195	cta Leu	ctt Leu	act Thr	cta Leu	gct Ala 200	tcc Ser	808
cgg Arg	caa Gln	caa Gln	tta Leu 205	ata Ile	gac Asp	tgg Trp	atg Met	gag Glu 210	gcg Ala	gat Asp	aaa Lys	gtt Val	gca Ala 215	gga Gly	cca Pro	856
ctt Leu	ctg Leu	cgc Arg 220	Ser	gcc Ala	ctt Leu	ccg Pro	gct Ala 225	ggc Gly	tgg Trp	ttt Phe	att Ile	gct Ala 230	gat Asp	aaa Lys	tct Ser	904
gga Gly	gcc Ala 235	Gly	gag Glu	cgt Arg	Gly	tct Ser 240	cgc Arg	ggt Gly	atc Ile	att Ile	gca Ala 245	gca Ala	ctg Leu	ggg Gly	cca Pro	952
gat Asp 250	Gly	aag Lys	ccc Pro	tcc Ser	cgt Arg 255	atc Ile	gta Val	gtt Val	atc Ile	tac Tyr 260	acg Thr	acg Thr	ggg Gly	agt Ser	cag Gln 265	1000
gca Ala	act Thr	atg Met	gat Asp	gaa Glu 270	cga Arg	aat Asn	aga Arg	cag Gln	atc Ile 275	gct Ala	gag Glu	ata Ile	ggt Gly	gcc Ala 280	tca Ser	1048
			cat His 285	Trp		ctg	tcag	acc	aagt	ttac	tc a	tata	tact	t		1096
tag	attg	att	taaa	actt	ca t	tttt	aatt	t aa	aagg	atct	agg	tgaa	gat	cctt	tttgal	1156
aat	ctca	tga	ccaa	aatc	cc t	taac	gtga	g tt	ttcg	ttcc	act	gagc	gtc	agac	cccgta	a 1216
gaa	aaga	tca	aagg	atct	tc t	tgag	atcc	t tt	tttt	ctgc	gcg	taat	ctg	ctgc	ttgcaa	a 1276
aca	aaaa	aac	cacc	gcta	cc a	gcgg	tggt	t tg	tttg	ccgg	atc	aaga	gct	acca	actct	1336
ttt	ccga	agg	taac	tggc	tt c	agca	gagc	g ca	gata	ccaa	ata	ctgt	cct	tcta	gtgtag	g 1396
CCC	tagt	tag	gcca	ccac	tt c	aaga	actc	t gt	agca	ccgc	cta	cata	cct	cgct	ctgcta	a 1456
ato	ctgt	tac	cagt	ggct	gc t	gcca	gtgg	c ga	taag	tcgt	gtc	ttac	cgg	gttg	gactc	a 1516
aga	cgat	agt	tacc	ggat	aa g	gcgc	agcg	g to	gggc	tgaa	cgg	gggg	ttc	gtgc	acaca	g 1576
ccc	agct	tgg	agcg	aacg	ac c	taca	ccga	a ct	gaga	tacc	tac	agcg	tga	gcta	tgaga	a 1636
ago	gcca	cgc	ttcc	cgaa	gg g	agaa	aggc	g ga	cagg	tatc	cgg	taag	cgg	cagg	gtcgg	a 1696
aca	iggaç	gagc	gcac	gagg	ga g	cttc	cagg	g gg	aaac	gcct	ggt	atct	tta	tagt	cctgt	c 1756

gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc 1816 1876 ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt 1936 gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag 1996 gaagcggaag agcgcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac 2056 cgcatatggt gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca 2116 ctccgctatc gctacgtgac tgggtcatgg ctgcgccccg acacccgcca acacccgctg 2176 2236 acgcgccctg acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct 2296 ccgggagctg catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagccag 2356 cttacctccc ggtggtgggt cggtggtccc tgggcagggg tctcccgatc ccggacgagc ccccaaatga aagacccccg ctgacgggta gtcaatcact cagaggagac cctcccaagg 2416 aacagcgaga ccacaagtcg gatgcaactg caagagggtt tattggatac acgggtaccc 2476 gggcgactca gtcaatcgga ggactggcgc cccgagtgag gggttgtggg ctcttttatt 2536 gagctcgggg agcagaagcg cgcgaacaga agcgagaagc gaactgattg gttagttcaa 2596 ataaggcaca gggtcatttc aggtccttgg ggcaccctgg aaacatctga tggttctcta 2656 gaaactgctg agggctggac cgcatctggg gaccatctgt tcttggccct gagccggggc 2716 2776 aggaactgct taccacagat atcctgtttg gcccatattc agctgttcca tctgttcttg gccctgagcc ggggcaggaa ctgcttacca cagatatcct gtttggccca tattcagctg 2836 2896 ttccatctgt tcctgacctt gatctgaact tctctattct cagttatgta tttttccatg ccttgcaaaa tggcgttact taagctagct tgccaaacct acaggtgggg tctttcattc 2956 3016 3076 acaagaaagc tgggtctaga tatctcgagt gcggccgctt tacttgtaca gctcgtccat 3136 gccgagagtg atcccggcgg cggtcacgaa ctccagcagg accatgtgat cgcgcttctc 3196 gttggggtct ttgctcaggg cggactggta gctcaggtag tggttgtcgg gcagcagcac 3256 ggggccgtcg ccgatggggg tgttctgctg gtagtggtcg gcgagctgca cgctgccgtc 3316 ctcgatgttg tggcggatct tgaagttcac cttgatgccg ttcttctgct tgtcggccat gatatagacg ttgtggctgt tgtagttgta ctccagcttg tgccccagga tgttgccgtc 3376 3436 ctccttgaag tcgatgccct tcagctcgat gcggttcacc agggtgtcgc cctcgaactt cacctcggcg cgggtcttgt agttgccgtc gtccttgaag aagatggtgc gctcctggac 3496

3556 gtagccttcg ggcatggcgg acttgaagaa gtcgtgctgc ttcatgtggt cggggtagcg 3616 ggcgaagcac tgcaggccgt agccgaaggt ggtcacgagg gtgggccagg gcacgggcag cttgccggtg gtgcagatga acttcagggt cagcttgccg taggtggcat cgccctcgcc 3676 3736 ctcgccggac acgctgaact tgtggccgtt tacgtcgccg tccagctcga ccaggatggg caccacccg gtgaacagct cctcgccctt gctcaccatg gttaagtatt tccttagaga 3796 attggttcta tctccttcga agcctgcttt tttgtacaaa cttgtgataa caagcttctc 3856 gaggcccagt acaggcaaaa agcagctgct tatatgcagc atctgaggga cgccactccc 3916 3976 cagtcccgcc caggccacgc ctccctggaa agtccccagc ggaaagtccc ttgtagaaag ctcgatgtca gcagtctttg tagtactccg gatgcagctc tcgggccatg tgatgaaatg 4036 ctagtttgct gtcaaacctc cacactaaca cttctttctc cgcgtcctcc atcccatgca 4096 ggctcatagg gtgtaacaag ctgttgttct ctccttcatt ggcctcttct accttctctg 4156 gctcaactgg tactagcttg aagcaccatc caaaggtcag tggatatctg atccctggcc 4216 4276 ctggtgtgta attctgccaa tcagggaagt agccttgtgt gtggtagatc cacagatcaa 4336 ggatctcttg tcttctttgg gaccaaatta gcccttccag gatccgcctc gaccaaagcg 4396 gccatcgtgc ctccccactc ctgcagttcg ggggcatgga tgcgcggata gccgctgctg gtttcctgga tgccgacgga tttgcactgc cggtagaact ccgcgaggtc gtccagcctc 4456 aggcagcagc tgaaccaact cgcgagggga tcgagcccgg ggtgggcgaa gaactccagc 4516 4576 atgagatece egegetggag gateatecag eeggegteee ggaaaaegat teegaageee aacctttcat agaaggcggc ggtggaatcg aaatctcgtg atggcaggtt gggcgtcgct 4636 4696 tggtcggtca tttcgaaccc cagagtcccg ctcagaagaa ctcgtcaaga aggcgataga 4756 aggcgatgcg ctgcgaatcg ggagcggcga taccgtaaag cacgaggaag cggtcagccc 4816 attcgccgcc aagctcttca gcaatatcac gggtagccaa cgctatgtcc tgatagcggt 4876 ccgccacacc cagccggcca cagtcgatga atccagaaaa gcggccattt tccaccatga 4936 tattcggcaa gcaggcatcg ccatgggtca cgacgagatc ctcgccgtcg ggcatgcgcg 4996 ccttgagcct ggcgaacagt tcggctggcg cgagcccctg atgctcttcg tccagatcat 5056 cctgatcgac aagaccggct tccatccgag tacgtgctcg ctcgatgcga tgtttcgctt ggtggtcgaa tgggcaggta gccggatcaa gcgtatgcag ccgccgcatt gcatcagcca 5116 tgatggatac tttctcggca ggagcaaggt gagatgacag gagatcctgc cccggcactt 5176

5236 cgcccaatag cagccagtcc cttcccgctt cagtgacaac gtcgagcaca gctgcgcaag 5296 gaacgcccgt cgtggccagc cacgatagcc gcgctgcctc gtcctgcagt tcattcaggg caccggacag gtcggtcttg acaaaaagaa ccgggcgccc ctgcgctgac agccggaaca 5356 cggcggcatc agagcagccg attgtctgtt gtgcccagtc atagccgaat agcctctcca 5416 cccaagcggc cggagaacct gcgtgcaatc catcttgttc aatcatgcga aacgatcctc 5476 atcctgtctc ttgatcagat cggaattccg gcgcctagag aaggagtgag ggctggataa 5536 agggaggatc gaggcggggt cgaacgagga ggttcaaggg ggagagacgg ggcggatgga 5596 5656 ggaagaggag gcggaggctt agggtgtaca aagggcttga cccagggagg ggggtcaaaa gccaaggctt cccaggtcac gatgtagggg acctggtctg ggtgtccatg cgggccaggt 5716 gaaaagacct tgatcttaac ctgggtgatg aggtctcggt taaaggtgcc gtctcgcggc 5776 catccgacgt taaaggttgg ccattctgca gagcagaagg taacccaacg tctcttcttg 5836 5896 acatctaccg actggttgtg agcgatccgc tcgacatctt tccagtgacc taaggtcaaa 5956 cttaagggag tggtaacagt ctggccctaa ttttcagaca aatacagaaa cacagtcaga cagagacaac acagaacgat gctgcagcgc tgcagcagac aagacgcgcg gcttcggttc 6016 6076 caaaccgaaa gcaaaaattc agacggaggc gggaactgtt ttaggttctc gtctcctacc agaaccacat atcctgacgg ggtcggattc cacatcgact cccttcctca ggtcgggcca 6136 caaaaacggc ccccaaagtc cctgggacgt ctcccagggt tgcggccggg tgttcagaac 6196 6256 tcgtcagttc caccacgggt ccgccagata cagagctagt tagctaacta gtacagacgc 6316 aggcgcataa catcaaacat agacactaga caatcggaca gacacagata agttgctggc cagcttacct cccggtggtg ggtcggtggt ccctgggcag gggtctccaa atcccggacg 6376 agcccccaaa tgaaagaccc ccgtcgtggg tagtcaatca ctcagaggag accctcccaa 6436 6496 ggaacagcga gaccacgatt cggatgcaaa cagcaagagg ctttattggg aatacgggta 6556 cccgggcgac gcagtctatc ggaagactgg cgcgccgagt gaggggttgt gggctctttt attgagctcg gagagcggaa gcgcgcgaac agaagcgaga agcgaactga ttggttagtt 6616 caaataaggt acagggtcat tttcaggtcc ttggggcacc ctggaaacat ctgatgattc 6676 6736 actagaaact gctgagggct ggaccgcatc tggggaccat ctgttcttgg ccccgagccg gggcaggaac tgcttaccac agatatcctg tttggcccat cactcagctg tctcatctgt 6796 tcttggccct gagccggggc aggaaccgct taccacagat atcctgtttg gtattcagct 6856 gtttctttgt tcctgacctt gatctgaact tttctattct cagttatgta tttttccatg 6916 cettgcaaag tggcgttact taagctaget tgccacetae gggtggggte tttcaaaage 6976
aaagaaacgg aagggcgcg getttggete eggtgagtgt ggggaatagg gtagagtggt 7036
ctaagaggca gaagcccgcg aatttgggag tgtgaggggg acacatttgg aggacagttt 7096
teggtgatet ggtatgaatt aatte

<210> 29

<211> 286

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 29

Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30

Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp

Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60

Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80

Arg Val Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95

Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110

Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125

Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140

Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu

145 150 155 160

Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175

Asp Thr Thr Met Pro Ala Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190

Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205

Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220

Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240

Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255

Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270

Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 275 280 285