Technique de résolution des équations de récurrence aux divisions finis

Andrey Martinez Cruz

- 1 Rappel
- 2 Méthode itérative
- 3 Méthode en arbre
- 4 Théorème maître

Définition

Introduction

Pour rappel, les équations de récurrence aux divisions finis sont des équations de la forme :

$$T(n) = \alpha T(\frac{n}{\beta}) + f(n) \tag{1}$$

où
$$\alpha \geq 1$$
, $\beta \geq 2$ et $f(n): \mathbb{N} \to \mathbb{R}^+$.

Exemples

Introduction

Les équations suivantes sont des exemples d'équation de récurrence aux divisions finis :

$$\rightarrow 2T(\frac{n}{5})+1$$

Introduction

Les équations suivantes sont des exemples d'équation de récurrence aux divisions finis :

$$\rightarrow 2T(\frac{n}{5})+1$$

$$\rightarrow 6T(\frac{n}{9}) + n$$

Introduction 00000

> Les équations suivantes sont des exemples d'équation de récurrence aux divisions finis:

$$\rightarrow 2T(\frac{n}{5})+1$$

$$\rightarrow 6T(\frac{n}{9}) + n$$

$$\rightarrow 4T(\frac{n}{2}) + \log n$$

Méthodes de résolutions

Introduction

Parmi les méthodes de résolutions possibles, il y a :

Méthode itérative

Méthodes de résolutions

Introduction

Parmi les méthodes de résolutions possibles, il y a :

- Méthode itérative
- Méthode en arbre

Introduction

Méthodes de résolutions

Parmi les méthodes de résolutions possibles, il y a :

- Méthode itérative
- Méthode en arbre
- Théorème maître*

Quelques pré-requis

Introduction

Voici des notion qui seront importantes pour faire l'analyse des équations de récurrence finis :

Introduction

Voici des notion qui seront importantes pour faire l'analyse des équations de récurrence finis :

 Calculer les sommations et reconnaître les sommations (surtout les sommes géométriques)

Quelques pré-requis

Voici des notion qui seront importantes pour faire l'analyse des équations de récurrence finis :

- Calculer les sommations et reconnaître les sommations (surtout les sommes géométriques)
- Savoir manipuler des logarithmes (savoir utiliser cette régle sera particulièrement utile : $a^{\log_b n} = n^{\log_b a}$ où a est une constante).

Une somme géométrique est une sommation de la forme suivante :

$$\sum_{i=0}^{n} ar^{i} = a(\frac{1-r^{n+1}}{1-r})$$
 (2)

Approche^l

Le but de la méthode itérative est de développer l'équation de récurrence afin de trouver une formule qui représente le motif.

Supposons qu'on a l'équation de récurrence suivante :

$$T(n) = 4T(\frac{n}{2}) + n \tag{3}$$

Le développement de cette équation de récurrence sera le suivante pour n=8:

$$T(8) = 4T(4) + f(8)$$

$$= 4(4T(2) + f(4)) + f(8)$$

$$= 4(4(4T(1) + f(2)) + f(4)) + f(8)$$

$$= 4(4(4f(1) + f(2)) + f(8)) + f(8)$$

$$= 4(16f(1) + 4f(2) + f(4)) + f(8)$$

$$= 64f(1) + 16f(2) + 4f(4) + f(8)$$

Substitution

En voyant un peu comment la fonction se comporte, on peut poser $n=2^p$ et avoir la sommation suivante :

$$T(n) = \sum_{i=0}^{p} 2^{2i} 2^{p-i} \tag{4}$$

Note : 2^{2i} est dû que le cofficient de chaque appel de la fonction est une puissance de 4 et 2^{p-i} représente une puissance de 2 pour l'appel à f(n).

Résolution

$$T(n) = \sum_{i=0}^{p} 2^{2i} 2^{p-i} = 2^{p} \sum_{i=0}^{p} 2^{i}$$
$$= 2^{p} (\frac{1 - 2^{p+1}}{1 - 2})$$
$$= 2^{p} (-1 + 2^{p+1})$$
$$= 2^{2p+1} - 2^{p}$$
$$= 2n^{2} - n \in \Theta(n^{2})$$

Approche

Supposant que l'on veut évaluer la complexité de cette équation de récurrence :

Méthode en arbre ●000

$$T(n) = 3T(\frac{n}{2}) + n \tag{5}$$

Supposant que l'on veut évaluer la complexité de cette équation de récurrence :

Méthode en arbre

$$T(n) = 3T(\frac{n}{2}) + n \tag{5}$$

Comment peut-on résoudre cette équation de récurrence?

Approche

Supposant que l'on veut évaluer la complexité de cette équation de récurrence :

Méthode en arbre

$$T(n) = 3T(\frac{n}{2}) + n \tag{5}$$

Comment peut-on résoudre cette équation de récurrence? Au lieu de deviner, on peut faire un dessin des appels pour voir ce qu'il se passe.

Travail total

Pour obtenir, le travaille total de l'arbre, il faut fait la sommation du niveau maximale possible à atteindre plus le coût total de tous les noeuds qui ont été explorer.

Travail total

Pour obtenir, le travaille total de l'arbre, il faut fait la sommation du niveau maximale possible à atteindre plus le coût total de tous les noeuds qui ont été explorer.

En bref, dans ce cas-ci,

$$T(n) = n^{\log_2 3} + \sum_{i=0}^{\log_2 n - 1} (\frac{3}{2})^i n \tag{6}$$

Maintenant, on peut faire une analyse classique de ce dernier.

Note : On aurait pu utiliser $T(n) = \sum_{i=0}^{\log_2 n} (\frac{3}{2})^i n$

Résolution

Posons que $n = 2^p$

$$T(n) = n^{\log_2 3} + \sum_{i=0}^{\log_2 n - 1} (\frac{3}{2})^i n = 2^{p \log_2 3} + \sum_{i=0}^{p - 1} (\frac{3}{2})^i 2^p$$

$$= 2^{p \log_2 3} + 2^p \sum_{i=0}^{p - 1} (\frac{3}{2})^i$$

$$= 2^{p \log_2 3} + 2^p (\frac{1 - (3/2)^p}{1 - (3/2)})$$

$$= n^{\log_2 3} + n(\frac{1 - n^{\log_2 \frac{3}{2}}}{-0.5})$$

$$= n^{\log_2 3} + n(-2 + \frac{n^{\log_2 \frac{3}{2}}}{0.5}) = n^{\log_2 3} - 2n + \frac{n^{\log_2 \frac{3}{2} + 1}}{0.5}$$

$$= n^{\log_2 3} - 2n + 2n^{\log_2 3} = 3n^{\log_2 3} - 2n$$

$$T(n) \in \Theta(n^{\log_2 3})$$

À date

Ce qu'on a fait c'est de développer l'équation et

À date

Ce qu'on a fait c'est de développer l'équation et "deviner" sa complexité

À date

Ce qu'on a fait c'est de développer l'équation et" deviner" sa complexité

Existe t'il un moyen de résoudre de façon exacte sans jouer à la roulette russe et sans dessiner un arbre ?

Théorème maître

Pour une éguation de récurrence de la forme suivante :

$$T(n) = \alpha T(\frac{n}{\beta}) + f(n) \tag{7}$$

On a le théorème suivant :

Théorème

Soient $c = \log_{\beta} \alpha$ et on aboutit à un des ces trois cas :

- 1 Si $f(n) \in \mathcal{O}(n^{c-\epsilon})$ pour un $\epsilon > 0$ où $\epsilon \in \mathbb{R}^+$, alors $T(n) \in \Theta(n^c)$.
- 2 Si $f(n) \in \Theta(n^c \log^k n)$ pour un k > 0, alors $T(n) \in \Theta(n^c \log^{k+1} n)$.
- 3 Si $f(n) \in \Omega(n^{c+\epsilon})$ pour un $\epsilon > 0$ où $\epsilon \in \mathbb{R}^+$ et s'il existe un k telle que 0 < k < 1 et $n_0 \in \mathbb{N}$ tels que $\forall n, n \geq n_0, \ \alpha f(\frac{n}{\beta}) \leq k \cdot f(n)$, alors $T(n) \in \Theta(f(n))$.

Raccourci

Pour $c = \log_{\beta} \alpha$ et $f(n) \in \Theta(n^{\lambda})$ où λ est une constante, alors en comparant cet λ , on peut aboutir à un de ces cas trois cas :

Cas 1

Si $c > \lambda$, alors $T(n) \in \Theta(n^c)$.

Cas 2

Si $c = \lambda$, alors $T(n) \in \Theta(n^c \log n)$

Cas 3

Si $c < \lambda$, alors $T(n) \in \Theta(n^{\lambda})$

Traduction

Les cas de théorèmes maître peuvent être formulés ainsi :

Traduction

Les cas de théorèmes maître peuvent être formulés ainsi :

 Cas 1 : le coût des appels récursifs est plus importante que la reconstruction de la solution des sous-problèmes.

Traduction

Les cas de théorèmes maître peuvent être formulés ainsi :

- Cas 1 : le coût des appels récursifs est plus importante que la reconstruction de la solution des sous-problèmes.
- Cas 2 : le coût des appels récursifs est équivalent au coût de reconstruction de la solution des sous-problèmes.

Les cas de théorèmes maître peuvent être formulés ainsi :

- Cas 1 : le coût des appels récursifs est plus importante que la reconstruction de la solution des sous-problèmes.
- Cas 2 : le coût des appels récursifs est équivalent au coût de reconstruction de la solution des sous-problèmes.
- Cas 3 : le coût de reconstruction est plus importante que les appels récursifs

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 2T(n/2) + \sqrt{n} \tag{8}$$

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 2T(n/2) + \sqrt{n} \tag{8}$$

 $\alpha=2,\ \beta=2$ et $\lambda=\frac{1}{2}$. $c=\log_{\beta}\alpha=\log_{2}2=1$ et $c>\lambda$, donc on est dans le premier cas du théorème maître et donc $T(n) \in \Theta(n)$.

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 3T(n/4) + n^2$$
 (9)

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 3T(n/4) + n^2 (9)$$

 $\alpha = 3$, $\beta = 4$ et $\lambda = 2$. $c = \log_{\beta} \alpha = \log_{4} 3$ et $c < \lambda$, donc on pourrait être dans le troisième cas du théorème maître.

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 3T(n/4) + n^2 (9)$$

 $\alpha = 3$, $\beta = 4$ et $\lambda = 2$. $c = \log_{\beta} \alpha = \log_{4} 3$ et $c < \lambda$, donc on pourrait être dans le troisième cas du théorème maître.

$$3(\frac{n}{4})^2 \le cn^2$$

$$3(\frac{n^2}{16}) \leq cn^2$$

$$\frac{3}{16}n^2 \le cn^2$$

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 3T(n/4) + n^2$$
 (9)

 $\alpha = 3$, $\beta = 4$ et $\lambda = 2$. $c = \log_{\beta} \alpha = \log_{4} 3$ et $c < \lambda$, donc on pourrait être dans le troisième cas du théorème maître.

$$3\left(\frac{n}{4}\right)^2 \le cn^2$$
$$3\left(\frac{n^2}{16}\right) \le cn^2$$
$$\frac{3}{16}n^2 \le cn^2$$

Cela fonctionne pour c=0,9 et $\epsilon=0,2$ telle que $n^2\in\Omega(n^{c+\epsilon})$. Donc. $T(n) \in \Theta(n^2)$.

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 8T(n/2) + n^3 (10)$$

Donner la complexité de l'équation de récurrence suivante en utilsant le théorème maître :

$$T(n) = 8T(n/2) + n^3$$
 (10)

 $\alpha = 8$, $\beta = 2$ et $\lambda = 3$. $c = \log_{\beta} \alpha = \log_{2} 8 = 3$ et $c = \lambda$, donc on est dans le deuxième cas du théorème maître et donc $T(n) \in \Theta(n^3 \log n)$.

Quelle est la complexité de cette équation de récurrence :

$$T(n) = 2T(\frac{n}{2}) + n\log n \tag{11}$$

Quelle est la complexité de cette équation de récurrence :

$$T(n) = 2T(\frac{n}{2}) + n\log n \tag{11}$$

Å première vue, on pourrait penser que le cas 3 s'appliquer, car $\alpha=2$, $\beta=2$ et donc, $c = \log_2 2 = 1$ et donc $n^c = n \in o(n \log n)$. Voyons si cela est vrai :

Quelle est la complexité de cette équation de récurrence :

$$T(n) = 2T(\frac{n}{2}) + n\log n \tag{11}$$

À première vue, on pourrait penser que le cas 3 s'appliquer, car $\alpha=2$, $\beta=2$ et donc, $c=\log_2 2=1$ et donc $n^c=n\in o(n\log n)$. Voyons si cela est vrai :

$$2(\frac{n}{2}\log\frac{n}{2}) \le c(n\log n)$$

$$n(\log\frac{n}{2}) \le c(n\log n)$$

$$n(\log n - \log 2) \le c(n\log n)$$

$$n\log n - n \le c(n\log n)$$

$$1 - \frac{1}{\log n} \le c$$

Ici, le cas 3 du théorème échoue, car il faudrait que $c \ge 1$, mais 0 < c < 1 et donc, $T(n) \notin \Theta(f(n))$.

Quelle est la complexité de cette équation de récurrence :

$$T(n) = 2T(\frac{n}{2}) + n\log n \tag{11}$$

À première vue, on pourrait penser que le cas 3 s'appliquer, car $\alpha=2$, $\beta=2$ et donc, $c=\log_2 2=1$ et donc $n^c=n\in o(n\log n)$. Voyons si cela est vrai :

$$2\left(\frac{n}{2}\log\frac{n}{2}\right) \le c(n\log n)$$

$$n(\log\frac{n}{2}) \le c(n\log n)$$

$$n(\log n - \log 2) \le c(n\log n)$$

$$n\log n - n \le c(n\log n)$$

$$1 - \frac{1}{\log n} \le c$$

Ici, le cas 3 du théorème échoue, car il faudrait que $c \ge 1$, mais 0 < c < 1 et donc, $T(n) \notin \Theta(f(n))$.La bonne complexité : $T(n) \in \Theta(n \log^2 n)$.

Approche à prendre

Dépendamment de ce qu'on veut faire comme analyse, les approches sont utiles pour les cas suivants

Approche à prendre

Dépendamment de ce qu'on veut faire comme analyse, les approches sont utiles pour les cas suivants :

- Analyse plus fine : Méthode itérative ou méthode en arbre
- Complexité simplifié : Théorème maître (Attention au type d'équation à traiter sinon il faudrait utiliser la méthode itérative ou en arbre).

Exercises à faire

Résoudre ces équations de récurrence avec la méthode de votre choix :

$$T(n) = 64T(\frac{n}{8}) + \log n$$

$$T(n) = 4T(\frac{n}{5}) + \sqrt[3]{n^2}$$

$$T(n) = 3T(\frac{n}{9}) + \sqrt[3]{n}$$

$$T(n) = 2T(\frac{n}{3}) + n^2 \log^2 n$$

$$T(n) = 3T(\frac{n}{3}) + n$$

$$T(n) = 3T(\frac{n}{3}) + 3n$$