Any linear combination of normal random variables is again normal.

 X_1, X_2, \dots, X_n normal n

$$\Rightarrow$$
 a + $\sum_{i=1}^{n} a_i X_i$ normal

 This includes linear transformations of single normal random variables.

$$X \sim N(\mu, \sigma^2) \Rightarrow Z := \frac{X - \mu}{\sigma}$$

$$Z \sim N(0, 1) \Rightarrow X := \sigma Z + \mu \sim N(0, 1)$$

$$X \sim N(\mu, \sigma^2)$$

$$\Rightarrow f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$Z \sim N(0, 1)$$

$$\Rightarrow f_{Z}(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^{2}}$$

The cdf can not be written down in closed form.

Notation:

$$Z \sim N(0, 1)$$
 "standard normal"

$$\Phi(z) = P(Z \le z)$$

Can be integrated numerically.

standard normal table

Rcode: pnorm()

Example: pnorm(1.23) will give you 0.891.

Example 1:

Suppose that $X \sim N(1, 4)$.

Find $P(X \leq 2)$.

$$P(X \le 2) = P\left(\frac{X - \mu}{\sigma} \le \frac{2 - 1}{\sqrt{4}}\right)$$

$$= P(Z \le 0.5)$$

$$\approx 0.6915$$

R Code: pnorm(0.5)

Example 2:

Suppose that $X_1, X_2, X_3 \sim N(1, 4)$.

Find
$$P(X \leq 2)$$
.

- X has a normal distribution
- $E[\overline{X}] = E[X_1] = 1$

$$Var[\overline{X}] = \frac{Var[X_1]}{n} = \frac{4}{3}$$

Example 2, continued:

$$P(\overline{X} \le 2) = P\left(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} \le \frac{2 - 1}{2/\sqrt{3}}\right)$$

$$= P\left(Z \le \sqrt{3}/2\right)$$

 ≈ 0.8068

R Code: pnorm(sqrt(3)/2)

Convergence in Distribution

Let $X_1, X_2, X_3, ...$ be a sequence of random variables where X_n has some cdf $F_n(x) = P(X_n \le x)$.

Let X be a random variable with cdf $F(x) = P(X \le x)$.

The sequence converges in distribution if

$$\lim_{n\to\infty} F_n(x) = F(x)$$

at all points of continuity of F.

Convergence in Distribution

We write $X_n \stackrel{d}{\rightarrow} X$.

This is a "weak" form of convergence.

The random variables in the sequence are not getting closer to each other.

Their distributions are getting close!

Example:
$$X_1, X_2, X_3, ...$$
with $X_n \sim N(1/n, \sigma^2)$
 $X_n \xrightarrow{d} Z$
where $Z \sim N(0,1)$.

The Central Limit Theorem

Let $X_1, X_2, X_3, ...$ be a sequence of random variables from any distribution with mean μ and variance $\sigma^2 < \infty$.

Let

$$\frac{1}{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\frac{\overline{X}_{n} - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} N(0, 1)$$

Definition/Notation:

A random variable X_n is asymptotically normal if there exists sequences $\{a_n\}$ and $\{b_n\}$ of real numbers such that

$$\frac{X_n - a_n}{\sqrt{b_n}} \stackrel{d}{\to} N(0, 1)$$

We write $X_n^{asymp} \sim N(a_n, b_n)$.

Note: This does not mean that $X_n \rightarrow N(a_n, b_n)$.

The CLT is saying that X_n is "asymptotically normal".

We write

$$\overline{X}_{n}^{\text{asymp}} N(\mu, \sigma^{2}/n)$$

Example:

Let \overline{X} be the sample mean for a random sample of size 100 from the $\Gamma(3,2)$ distribution.

What is the approximate probability that \overline{X} is greater than 1.49 ?

We already know that \overline{X} has

• mean $E[\overline{X}] = E[X_1] = 3/2$

• variance
$$Var[\overline{X}] = \frac{Var[X_1]}{n} = \frac{3/4}{100} = \frac{3}{400}$$

By the CLT, for this large sample" (n>30), the distribution of \overline{X} is approximately normal.

So, we have that \overline{X} has an approximately normal distribution with mean 3/2 and variance 3/400.

$$P(\overline{X} > 1.4) = P\left(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} > \frac{1.4 - 1.5}{\sqrt{3/400}}\right)$$

$$\approx P(Z > -1.15)$$

$$\approx 0.87$$

$$P(Z > -1.15) = 1 - P(Z \le -1.15)$$

$$= 1 - \Phi(-1.15)$$

Computed in R using:

1-pnorm(-1.15)

Note that:

$$\frac{\overline{X} - \mu_{X}}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$