PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-094483

(43) Date of publication of application: 07.04.1995

(51)Int.CI.

H01L 21/3065 H01L 21/3205

H01L 21/3213

(21)Application number: 05-238265

(71)Applicant: SUMITOMO METAL IND LTD

(22) Date of filing:

24.09.1993

(72)Inventor: NAKAMURA TOSHIYUKI

ODAJIMA NARIYA

(54) PLASMA ETCHING METHOD

(57) Abstract:

PURPOSE: To control easily an etching rate ratio between two layers to be near 1 by providing a mixed gas containing specific proportions by volume of oxygen gas and inactive gas in fluorocarbon gas in etching of a semiconductor device of a specific structure. CONSTITUTION: On the occasion of an etching treatment of a semiconductor device 12 having a structure wherein an Al wiring 22 on an Si substrate 21 is covered with an oxide film 23 and further the oxide film 23 is covered with a coating glass layer 24, the semiconductor device 12 is set on a lower electrode 13. Then, a mixed gas, which contains 0.5 to 15vol.% oxygen and 400-1000vol.% inactive gas in fluorocarbon gas, is introduced as an etching gas into a sample

chamber 11 and the etching treatment is executed. Thereby an etching rate ratio between the coating glass and the oxide film can be controlled easily to be near 1, the coating glass and the oxide film can be etched at a high etching speed and with excellent reproducibility and flattening can be performed with excellent efficiency.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-94483

(43)公開日 平成7年(1995)4月7日

(51) Int.Cl.8

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/3065 21/3205 21/3213

HO1L 21/302

F

審査請求 未請求 請求項の数1 OL (全 6 頁) 最終頁に続く

(21)出願番号

(22)出願日

特願平5-238265

平成5年(1993)9月24日

(71)出願人 000002118

住友金属工業株式会社

大阪府大阪市中央区北浜4丁目5番33号

(72)発明者 中村 敏幸

大阪府大阪市中央区北浜4丁目5番33号

住友金属工業株式会社内

(72)発明者 小田島 成也

大阪府大阪市中央区北浜4丁目5番33号

住友金属工業株式会社内

(74)代理人 弁理士 井内 龍二

(54) 【発明の名称】 プラズマエッチング方法

(57)【要約】

【構成】 半導体基板上の金属配線が酸化膜により被覆され、さらに酸化膜が塗布ガラス層により被覆された構造を有する半導体装置の表面をガスプラズマによりエッチングして平坦化するプラズマエッチング方法において、フロロカーボン系ガスに対する酸素ガスの割合が0.5~15容量%、フロロカーボン系ガスに対する不活性ガスの割合が400~1000容量%である混合ガスをエッチングガスとして用いるプラズマエッチング方法。

【効果】 塗布ガラスと酸化膜とのエッチング速度比を 1付近で容易にコントロールすることができ、しかも早 いエッチング速度で再現性よく塗布ガラスや酸化膜をエ ッチングすることができ、半導体装置の表面を効率良く 平坦化することができる。

【特許請求の範囲】

【請求項1】 半導体基板上の金属配線が酸化膜により被覆され、さらに該酸化膜が塗布ガラス層により被覆された構造を有する半導体装置の表面をガスプラズマによりエッチングして平坦化するプラズマエッチング方法において、フロロカーボン系ガスに対する酸素ガスの割合が0.5~15容量%、フロロカーボン系ガスに対する不活性ガスの割合が400~1000容量%である混合ガスをエッチングガスとして用いることを特徴とするプラズマエッチング方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はプラズマエッチング方法 に関し、より詳細には半導体基板上に金属配線を多層に 形成する際等に形成される層間絶縁膜の平坦化を可能に するプラズマエッチング方法に関する。

[0002]

【従来の技術】近年、LSI等の半導体装置の高密度 化、大規模化に伴い、多層配線技術の重要性が増大して きている。大規模論理LSIでは、配線に要する面積が チップ面積の数十%にもなり、多層配線が必須の技術と なっている。

【0003】多層配線においては、下地の素子形成時における凹凸に加え、何層ものA1配線や層間膜が積層されるため、表面の凹凸はますます大きくなる。また、素子が微細化されると、横方向のサイズは縮小されるが、A1配線の厚さや層間膜の厚さは抵抗や容量の増大をさけるため余り縮小させることができない。そのため段差は急峻となり、配線やスルーホールのアスペクト比は大きくなる。このような表面の凹凸は配線の断線、短絡、スルーホールを介したA1ーA1コンタクトの不良、リソグラフィーの解像度の低下等の問題を招く原因となる。従って、多層配線において、表面の平坦化技術は最も重要な技術の一つである。

【0004】このような多層配線を平坦化する方法としては、配線自体を平坦化することにより多層配線の凹凸を減少させる技術と、層間絶縁膜を平坦化することにより多層配線の凹凸を減少させる技術とがあり、後者の層間絶縁膜の平坦化方法としても様々な方法が考えられている。

【0005】前記層間絶縁膜の平坦化方法のなかの有効な方法の一つとしてエッチバック法が挙げられるが、このエッチバック法は、Si基板等の半導体基板上に形成されたAl等の金属配線の上に酸化膜等の層間絶縁膜が形成され、さらにこの層間絶縁膜の上に有機SOG(Spin-on Glass)等の塗布ガラスが塗布された半導体装置に対し、プラズマエッチング等により前記有機SOGと前記層間絶縁膜の一部をエッチングしてその表面を平坦化する方法である。この場合、前記有機SOGと前記層間絶縁膜のエッチング速度が同じになるように、エッチン

グガスの組成を調製する必要がある。

【0006】従来、このようなプラズマを用いたエッチング方法では、エッチングガスとして、Ar、Heなどの不活性ガスと CF_4 、 CHF_3 などのフロロカーボン系ガスの混合ガスが用いられてきており、前記有機SOGと前記層間絶縁膜のエッチング速度を同一にするために前記混合ガスを特定の組成として使用していた。

[0007]

【発明が解決しようとする課題】上記したように一定組成のエッチングガスを使用して、Si基板上のAl配線が酸化膜により被覆され、さらに該酸化膜が有機SOGにより被覆された構造を有する半導体装置の表面をエッチングする際、以下のような問題があった。

【0008】すなわち、前記組成のエッチングガスによりプラズマエッチングを開始すると、まず最初に有機SOGがエッチングされ、ある程度の深さまで前記有機SOGがエッチングされると、その下に存在する酸化膜が露出する。この露出した酸化膜は酸素を放出し、放出された酸素は前記有機SOGのエッチング速度を速めるため、そのままの組成では前記有機SOGのエッチング速度の方が速くなり、表面が均一にエッチングされないという問題があった。

【0009】従来においてはこの問題を解決するために、エッチングガス中の CF_4 と CHF_3 との混合比を変化させることにより、前記有機SOGと前記酸化膜のエッチング速度の比を1に近付けていた。

【0010】しかし、前記有機SOGと前記酸化膜のエッチング速度比(有機SOG/酸化膜)(以下、単に2層のエッチング速度比と記す)を1に近付けるためにCHF3を多量に供給すると、前記有機SOG及び前記酸化膜のエッチング速度がともに低下し、生産性が悪くなるという課題があった。

【0011】また、実際に前記有機SOGと前記絶縁膜 をエッチングする際には、前記した二つの層の下にある 金属配線の密度により、前記有機SOGと前記酸化膜を エッチングする速度の比を多少変化させる必要がある。 すなわち、金属配線の密度が高い場合は酸化膜の凸部の 幅が広いので、有機SOGより酸化膜の方を少し遅くエ ッチングした方が良く、従って2層のエッチング速度比 を1.0~1.2に設定するとより平坦化され、一方金 属配線の密度が低い場合には酸化膜の凸部の幅が狭いの で、有機SOGより酸化膜の方を少し早くエッチングす るように、2層のエッチング速度比を0.8~1.0に 設定するとより平坦化されることがわかっている。この ように金属配線の密度によりエッチングガスの組成を多 少変化させて2層のエッチング速度比をコントロールす る必要があるが、前記したCHF3 を多量に混入したエ ッチングガスの組成では、少しの組成の変化で2層のエ ッチング速度比が大きく変化するため、安定して均一に エッチングを行うことのできるプロセス条件の領域が狭

く、再現性よくエッチングを行う条件を設定することが 難しいという課題があった。

【0012】本発明者らはこのような課題に鑑み、2層のエッチング速度比を1付近で容易にコントロールすることができ、しかも早いエッチング速度で再現性よく前記有機SOGと酸化膜をエッチングすることができるエッチングガスの組成について検討を行った。

【0013】その結果、前記有機SOGは酸素プラズマのみでもエッチングされるため、この特性を利用し、酸素ガスを含まない従来のエッチングガスを用い、有機SOG膜の下層の酸化膜が露出している条件で、有機SOGのエッチング速度が酸化膜のそれよりも低くなるエッチングガス組成を求めておき(この組成ではエッチング速度自体も極めて遅い)、前記組成のガスに酸素を添加して有機SOGのエッチング速度を向上させていくことにより2層のエッチング速度比を1付近で容易にコントロールすることができ、しかも早いエッチング速度でも見出し、本発明を完成するに至ったものである。

[0014]

【課題を解決するための手段】すなわち本発明に係るプラズマエッチング方法は、半導体基板上の金属配線が酸化膜により被覆され、さらに該酸化膜が塗布ガラス層により被覆された構造を有する半導体装置の表面をガスプラズマによりエッチングして平坦化するプラズマエッチング方法において、フロロカーボン系ガスに対する酸素ガスの割合が0.5~15容量%、フロロカーボン系ガスに対する不活性ガスの割合が400~1000容量%である混合ガスをエッチングガスとして用いることを特徴としている。

【0015】本発明で使用するエッチングガスの成分であるフロロカーボン系ガスとしては、例えば CF_4 、 CHF_3 、 C_2F_6 等が挙げられる。通常これらは数種類を混合させた状態で用いるが、この混合ガスとしては CF_4 と CHF_3 との組み合わせが好ましく、その容量比は CF_4 / (CF_4+CHF_3) が $0.05\sim0.5$ が好ましい。また、前記エッチングガスの成分である不活性ガスとしては、ArやHe等が挙げられ、前記ガスは単独又は混合して使用される。

【0016】本発明で使用するエッチングガス中、酸素ガスの量はフロロカーボン系ガスに対し0.5~15v01%(容積%、以下同様)、さらには7~10v01%が好ましく、不活性ガスの量はフロロカーボン系ガスに対し400~1000v01%が好ましい。

【0017】フロロカーボン系ガスに対して酸素ガスの割合が0.5 vol%未満であるとエッチング速度が充分にとれず、また有機SOGと酸化膜とのエッチング速度比1付近で容易にコントロールできず、他方フロロカーボン系ガスに対して酸素ガスの割合が15 vol%を

超えると有機SOGの速度が速くなりすぎるために有機 SOGと酸化膜とのエッチング速度比のコントロールが 難しくなる。

【0018】フロロカーボン系ガスに対して不活性ガスの割合が400vol%未満であるとエッチング速度の均一性を保持しにくくなり、他方フロロカーボン系ガスに対して不活性ガスの割合が1000vol%を超えるとエッチング速度の均一性の悪化とともにエッチング速度の低下を招く。

[0019]

【作用】上記構成のプラズマエッチング方法によれば、 半導体基板上の金属配線が酸化膜により被覆され、さら に該酸化膜が塗布ガラス層により被覆された構造を有す る半導体装置の表面をガスプラズマによりエッチング て平坦化するプラズマエッチング方法において、フロロ カーボン系ガスに対する酸素ガスの割合が0.5~15 容量%、フロロカーボン系ガスに対する不活性ガスの割合が400~1000容量%である混合ガスをエッチングガスとして用いるので、この範囲内におけるエッチングガス組成のコントロール等により前記塗布ガラスと酸 化膜とのエッチング速度比が1付近で容易にコントロールされ、しかも早いエッチング速度で再現性よく前記塗布ガラスや前記酸化膜がエッチングされ、前記半導体装置の表面が効率良く平坦化される。

【0020】この場合、従来のエッチングガスに酸素を混入することにより、単に塗布ガラスのエッチング速度が早くなるだけでなく、酸化膜のエッチング速度も若干早くなり、従って半導体装置表面のエッチング速度自体も従来に比較して格段に向上し、充分に実用化が可能なエッチング速度となる。これは酸化膜表面に付着したエッチング副生成物を除去する効果を酸素プラズマが有するためであると考えられる。

[0021]

【実施例及び比較例】以下、本発明に係るプラズマエッチング方法の実施例及び比較例を図面に基づいて説明する。

【0022】図1は本発明の方法を実施する際に使用される平行平板型プラズマエッチング装置の模式的な断面図であり、図中、11は試料室を示している。

【0023】試料室11の側面には混合ガスを導入するガス導入口11aが、底部には排気口11bが形成されており、試料室11の下部には半導体装置12を載置するための下部電極13が配設され、一方上部には下部電極13に平行に対向電極である上部電極14が配設されている。上部電極14及び下部電極13は電源15に接続され、上部電極14及び下部電極13の間に高周波が印加されるようになっている。

【0024】このような構造の平行平板型プラズマエッチング装置を用いて、Si基板上のAl配線がSiO2膜により被覆され、さらに該SiO2膜が有機SOGに

より被覆された構造を有する半導体装置12の表面にエッチング処理を施す場合、この半導体装置12を下部電極13上に載置し、試料室11内を真空状態とする。そして、上部電極14及び下部電極13の間に高周波を印加し、ガス導入口11aから試料室11内に所定流量のCF4、CHF3、ArもしくはHe及び酸素ガスからなる混合ガスを圧力が1Torr以下となるように導入する。

【0025】次に、電源15より上部電極14及び下部電極13間に、800~850Wのパワーで400kHzの高周波を印加すると、導入された混合ガスからガスプラズマが高周波誘導され、半導体装置12表面がエッチングされ、平坦化される。そして未反応ガスや副生成ガス等は排気口11bから排出される。

【0026】上記したエッチング処理を行う半導体装置 12の構造の一部を図2に示す。

【0027】図2に示したように、この半導体装置12ではSi基板21上のA1配線22がSiO2 膜23により被覆され、さらにSiO2 膜23が有機SOG24により被覆された構成となっている。

【0028】次に、本発明の組成を有するエッチングガスを用いて実際に前記条件で半導体装置12のエッチング処理を行い、そのときのエッチング速度及び有機SOG24と SiO_2 膜23とのエッチング速度比を測定した。

【0029】なお比較例として、酸素を含まず同じフロロカーボン系ガスと不活性ガスのみからなるエッチングガスを使用して実施例と同様にエッチング処理を行い、また酸素を含むが全体のエッチングガスの組成が本発明の範囲から外れているエッチングガスを使用して実施例と同様にエッチング処理を行った。ここで前記エッチング速度及び前記エッチング速度比はSiO2膜23が50%露出した時の値である。これらの結果を図3~図6に示している。

【0030】図3及び図4はフロロカーボン系ガスに対してAr ガスの割合を600vol%に固定し、フロロカーボン系ガス中の CF_4 と CHF_3 の割合及び酸素ガスの割合を変化させた場合の2層のエッチング速度比

(有機 SOG/SiO_2 膜)及びエッチング速度をそれぞれ示したグラフである。各曲線は酸素の割合が一定の場合のデータをプロットしたものである。

【0031】また、図5及び図6はフロロカーボン系ガスに対して酸素ガスの割合を10vol%に固定し、図3及び図4と同様にフロロカーボン系ガス中の CF_4 と CHF_3 の割合及びArガスの割合を変化させた場合の2層のエッチング速度比及びエッチング速度をそれぞれ示したグラフである。

【0032】図3~図6からわかるように、酸素を含まないフロロカーボン系ガスと不活性ガスとの混合ガスや本発明の組成範囲外の組成を有する混合ガスでは、エッ

チング速度が小さく、エッチング速度比も1付近でコントロールするのが難しいのに対し、実施例に係る本発明の組成範囲内のエッチングガスを用いた場合、エッチングガスの組成をコントロールすることによりエッチング速度比を1付近(好ましくは0.8~1.2の範囲内)で容易にコントロールすることができ、かつエッチング速度が早いため、効率よく半導体装置12の表面を平坦化することができる。

[0033]

【発明の効果】以上詳述したように本発明に係るプラズマエッチング方法においては、半導体基板上の金属配線が酸化膜により被覆され、さらに該酸化膜が塗布ガラス層により被覆された構造を有する半導体装置の表面をガスプラズマによりエッチングして平坦化するプラズマエッチング方法において、フロロカーボン系ガスに対する酸素ガスの割合が0.5~15容量%、フロロカーボン系ガスに対する不活性ガスの割合が400~1000容量%である混合ガスをエッチングガスとして用いるので、前記塗布ガラスと前記酸化膜とのエッチング速度比を1付近で容易にコントロールすることができ、しかも早いエッチング速度で再現性よく前記塗布ガラスや前記酸化膜をエッチングすることができ、前記半導体装置の表面を効率良く平坦化することができる。

【図面の簡単な説明】

【図1】本発明の方法を実施する際に使用される平行平 板型プラズマエッチング装置の模式的な断面図である。

【図2】プラズマエッチング処理を行う半導体装置の構造の一部を示した断面図である。

【図3】フロロカーボン系ガスに対してAr ガスの割合を600vol%に固定し、フロロカーボン系ガス中の CF4 とCHF3 の割合及び酸素ガスの割合を変化させた場合の2層のエッチング速度比(有機SOG/SiO2 膜)を示したグラフである。

【図4】フロロカーボン系ガスに対してAr ガスの割合を600vol%に固定し、フロロカーボン系ガス中の CF_4 と CHF_3 の割合及び酸素ガスの割合を変化させた場合の有機SOGのエッチング速度を示したグラフである。

【図5】フロロカーボン系ガスに対して O_2 ガスの割合を10 v o 1%に固定し、フロロカーボン系ガス中の CF_4 と CHF_3 の割合及びAr ガスの割合を変化させた場合の2 層のエッチング速度比(有機 SOG/SiO_2 膜)を示したグラフである。

【図 6 】 フロロカーボン系ガスに対して O_2 ガスの割合を10 v o 1%に固定し、フロロカーボン系ガス中のC F4 と CHF_3 の割合及びAr ガスの割合を変化させた場合の有機 SOGのエッチング速度を示したグラフである。

【符号の説明】

12 半導体装置

21 S i 基板 22 A l 配線

23 SiO₂膜 24 有機SOG

| (図 0 3] | 上数例 (0.:0vol%) | 上数例 (0.:1vol%) | 実施例 (0.:1vol%) | 大数例 (0.:1vol%) | 比較例 (0.:1vol%) | しゅうしゃ (CF4 + CHF4) (vol%) | しゅうしゃ (CF4 + CHF4) (vol%)

【図05】

【図06】

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

HO1L 21/88

技術表示箇所

K

D