CENG 280

- Chomsky hierarchy
- Language generators
- Context-free grammars

Chomsky hierarchy

• Regular (Finite automaton)

Chomsky hierarchy

- Regular (Finite automaton)
- Context-free (Non-deterministic pushdown automaton)

Chomsky hierarchy

- Regular (Finite automaton)
- Context-free (Non-deterministic pushdown automaton)
- Recursively enumerable (Turing machine)

Grammars are language generators.

Start symbol

Grammars are language generators.

- Start symbol
- The operation is not completely determined but limited to some rules.

Grammars are language generators.

- Start symbol
- The operation is not completely determined but limited to some rules.
- When the process stops, it outputs a complete string $w \in \Sigma^*$

Grammars are language generators.

- Start symbol
- The operation is not completely determined but limited to some rules.
- ullet When the process stops, it outputs a complete string $w\in \Sigma^\star$
- The language is the set of all strings that a grammar can generate.

Grammars are language generators.

- Start symbol
- The operation is not completely determined but limited to some rules.
- ullet When the process stops, it outputs a complete string $w\in \Sigma^\star$
- The language is the set of all strings that a grammar can generate.

Example

Consider $ba(ab \cup a)^*b$

Grammars are language generators.

- Start symbol
- The operation is not completely determined but limited to some rules.
- ullet When the process stops, it outputs a complete string $w\in \Sigma^\star$
- The language is the set of all strings that a grammar can generate.

Example

Consider $ba(ab \cup a)^*b$

Example

Formalize the "generator" concept with a grammar.

Definition (Context-free grammar)

Definition (Context-free grammar)

Context-free grammar is a tuple $G = (V, \Sigma, R, S)$ where V is an alphabet, $\Sigma \subset V$ is the set of terminals, $R \subset (V \setminus \Sigma) \times V^*$ is the finite set of rules, $S \in V \setminus \Sigma$ is the start symbol.

• $V \setminus \Sigma$ is the set of nonterminals

Definition (Context-free grammar)

- $V \setminus \Sigma$ is the set of nonterminals
- We write $A \rightarrow_G u$ if $(A, u) \in R$.

Definition (Context-free grammar)

- $V \setminus \Sigma$ is the set of nonterminals
- We write $A \rightarrow_G u$ if $(A, u) \in R$.
- For any two strings $u, v \in V^*$, we write $u \Rightarrow_G v$ iff there exists $x, y, v' \in V^*$, and $A \in V \setminus \Sigma$ such that u = xAy, v = xv'y, and $A \rightarrow_G v'$.

Definition (Context-free grammar)

- $V \setminus \Sigma$ is the set of nonterminals
- We write $A \rightarrow_G u$ if $(A, u) \in R$.
- For any two strings $u, v \in V^*$, we write $u \Rightarrow_G v$ iff there exists $x, y, v' \in V^*$, and $A \in V \setminus \Sigma$ such that u = xAy, v = xv'y, and $A \rightarrow_G v'$.
- \Rightarrow_G^* is the reflexive transitive closure of \Rightarrow_G .

Definition (Context-free grammar)

- $V \setminus \Sigma$ is the set of nonterminals
- We write $A \rightarrow_G u$ if $(A, u) \in R$.
- For any two strings $u, v \in V^*$, we write $u \Rightarrow_G v$ iff there exists $x, y, v' \in V^*$, and $A \in V \setminus \Sigma$ such that u = xAy, v = xv'y, and $A \rightarrow_G v'$.
- \Rightarrow_G^* is the reflexive transitive closure of \Rightarrow_G .
- $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$ is the language generated by G.

Definition (Context-free grammar)

- $V \setminus \Sigma$ is the set of nonterminals
- We write $A \rightarrow_G u$ if $(A, u) \in R$.
- For any two strings $u, v \in V^*$, we write $u \Rightarrow_G v$ iff there exists $x, y, v' \in V^*$, and $A \in V \setminus \Sigma$ such that u = xAy, v = xv'y, and $A \rightarrow_G v'$.
- \Rightarrow_G^* is the reflexive transitive closure of \Rightarrow_G .
- $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$ is the language generated by G.
- $w_0 \Rightarrow_G w_1 \Rightarrow_G \ldots \Rightarrow_G w_n$: a derivation of w_n from w_0 in G, where $w_i \in V^*$.

Definition

A language L is context-free if L = L(G) for a context-free grammar G.

Definition

A language L is context-free if L = L(G) for a context-free grammar G.

Example

Write a derivation for "baaabb" (using the grammar rules for $\mathcal{L}(ba(ab \cup a)^*b)$).

Definition

A language L is context-free if L = L(G) for a context-free grammar G.

Example

Write a derivation for "baaabb" (using the grammar rules for $\mathcal{L}(ba(ab \cup a)^*b)$).

Example

$$G = (V, \Sigma, R, S), V = \{S, a, b\}, \Sigma = \{a, b\},$$

$$R: S \rightarrow aSb, S \rightarrow e$$

Definition

A language L is context-free if L = L(G) for a context-free grammar G.

Example

Write a derivation for "baaabb" (using the grammar rules for $\mathcal{L}(ba(ab \cup a)^*b)$).

Example

$$G = (V, \Sigma, R, S), V = \{S, a, b\}, \Sigma = \{a, b\},$$

$$R: S \rightarrow aSb, S \rightarrow e$$

"Some context-free languages are not regular."

Example

Show that regular language $L = \mathcal{L}(a^\star b)$ is context free.

Example

Show that regular language $L = \mathcal{L}(a^*b)$ is context free.

Example (Mathematical expressions)

$$G = (V, \Sigma, R, E)$$

 $V = \{+, x, (,), id, T, F, E\}, \Sigma = \{+, x, (,), id, \}$,
 $R = \{E \rightarrow E + T, T \rightarrow TxF, F \rightarrow (E), E \rightarrow T, T \rightarrow F, F \rightarrow id\}$

Example

Show that regular language $L = \mathcal{L}(a^*b)$ is context free.

Example (Mathematical expressions)

$$G = (V, \Sigma, R, E)$$

 $V = \{+, x, (,), id, T, F, E\}, \Sigma = \{+, x, (,), id, \}$,
 $R = \{E \rightarrow E + T, T \rightarrow TxF, F \rightarrow (E), E \rightarrow T, T \rightarrow F, F \rightarrow id\}$

Is it regular?

Example

Show that regular language $L = \mathcal{L}(a^*b)$ is context free.

Example (Mathematical expressions)

$$G = (V, \Sigma, R, E) V = \{+, x, (,), id, T, F, E\}, \Sigma = \{+, x, (,), id, \}, R = \{E \to E + T, T \to TxF, F \to (E), E \to T, T \to F, F \to id\}$$

Is it regular?

Example

Properly balanced left and right parenthesis: $V = \{S, (,)\}, \Sigma = \{(,)\}.$ $R = \{S \rightarrow ..., S \rightarrow ..., S \rightarrow ...$

Example

Show that regular language $L = \mathcal{L}(a^*b)$ is context free.

Example (Mathematical expressions)

$$G = (V, \Sigma, R, E)$$

 $V = \{+, x, (,), id, T, F, E\}, \Sigma = \{+, x, (,), id, \}$,
 $R = \{E \rightarrow E + T, T \rightarrow TxF, F \rightarrow (E), E \rightarrow T, T \rightarrow F, F \rightarrow id\}$

Is it regular?

Example

Properly balanced left and right parenthesis: $V = \{S, (,)\}, \Sigma = \{(,)\}.$

$$R = \{S \rightarrow ..., S \rightarrow, S \rightarrow ...$$

Example

Show that $L = \{ww^R : w \in \{a, b\}^*\}$ is CFL.

Theorem

All regular languages are context-free.

Theorem

All regular languages are context-free.

Proof by direct construction: Let regular language L be accepted by $M = (K, \Sigma, \delta, s, F)$. The same language is generated by the grammar $G = (V, \Sigma, R, S)$,

- $V = K \cup \Sigma$
- S = s
- $R = \{q \rightarrow ap \mid \delta(q, a) = p\} \cup \{q \rightarrow e \mid q \in F\}$

Theorem

All regular languages are context-free.

Proof by direct construction: Let regular language L be accepted by $M = (K, \Sigma, \delta, s, F)$. The same language is generated by the grammar $G = (V, \Sigma, R, S)$,

- $V = K \cup \Sigma$
- *S* = *s*
- $R = \{q \rightarrow ap \mid \delta(q, a) = p\} \cup \{q \rightarrow e \mid q \in F\}$

Ex: Write a DFA, and then a grammar for $\mathcal{L}(a^*b)$

Theorem

All regular languages are context-free.

Proof by direct construction: Let regular language L be accepted by $M = (K, \Sigma, \delta, s, F)$. The same language is generated by the grammar $G = (V, \Sigma, R, S)$,

- $V = K \cup \Sigma$
- *S* = *s*
- $R = \{q \rightarrow ap \mid \delta(q, a) = p\} \cup \{q \rightarrow e \mid q \in F\}$

Ex: Write a DFA, and then a grammar for $\mathcal{L}(a^*b)$ Other proof methods:

- CFL are accepted by pushdown automata, which is a generalization of FA
- CFL are closed under union, concatenation, and Kleene star. \emptyset and $\{a\}$ are context-free, hence CFL has to contain RL.