МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

ТРАНСПОРТНАЯ ЗАДАЧА Отчет Лабораторная работа №4 по дисциплине «Исследование операций»

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Коржавина А.С./

1 Задание
Решить транспортную задачу, заданную следующей матрицей перевозок

Пункты	B_1	B_2	B_3	B_4	Запасы
A_{I}	1	7	9	5	120
A_2	4	2	6	8	280
A_3	3	8	1	2	160
Потребности	130	220	60	70	480 \ 560

2 Ход решения

Заметим, что исходная задача не сбалансирована, так как

$$\sum_{i=1}^{3} A_i > \sum_{i=1}^{4} B_i,$$

т.е. объём запасов превышает потребности. Для балансирования задачи введём пункт B_5 , с потребностями $b_5 = \sum_{i=1}^3 A_i - \sum_{i=1}^4 B_i = 80$ и коэффициентами перевозок $c_{i5} = 0$

Тогда, исходная таблица примет вид

Пункты	B_I	B_2	B_3	B_4	B_5	Запасы
A_{I}	1	7	9	5	0	120
A_2	4	2	6	8	0	280
A_3	3	8	1	2	0	160
Потребности	130	220	60	70	80	560

Решим сформулированную задачу методом потенциалов

1) Найдём начальное решение методом северо-западного угла

Пункты	B_{I}		B_2		B_3		B_4		B_5		Запасы
A_{I}	1	120	7	*	9	*	5	*	0	*	120
A_2	4	10	2	220	6	50	8	*	0	*	280
A_3	3	*	8	*	1	10	2	70	0	80	160
Потребности		130		220		60		70		80	560

Суммарная стоимость f = 120 + 4 * 10 + 2 * 220 + 6 * 50 + 10 + 2 * 70 + 0 * 80 = 1050

Первый проход алгоритма

- 1. Вычислим потенциалы для базисных клеток по формулам вида $\alpha_i + \beta_j = c_{ij}$, при этом α_1 примем равным 0
- 2. Вычислим относительные оценки $\Delta_{ij} = c_{ij} (\alpha_i + \beta_j)$, затем, если среди них есть отрицательные, то найдём минимальную из них Δ_{ij} (2,5), иначе план оптимален.
- 3. Выделим цикл ((2,5), (3,5), (3,3), (2,3)) и пометим его, причём элемент, соответствующий минимальной оценке (2,5) будет помечен знаком (+), а дальше будет чередование.
- 4. В полученном цикле выделим элемент θ (50), равный минимальному из чисел (x_{ij}) на (–) позициях цикла.
- 5. Выполним сдвиг по циклу, изменив (прибавляя или вычитая, в зависимости от метки вершины) каждую вершину цикла на θ . Элемент (2, 3) помечаем * (не базисный 0), чтобы количество базисных переменных равнялось m+n-1=7

В результате получаем следующую таблицу:

Пункты	B_I	B_2	B_3	B_4	B_5	Запасы	
A_1	1 120	7 */8	9 */6	5 */1	0 */-2	120	$\alpha_1 = 0$
A_2	4 10	² 220	6 50	8 */1	0 */-5	280	$\alpha_2 = 3$
			(-)		(+)		
A_3	3 */4	8 */11	1 10	² 70	0 80	160	$\alpha_3 = -2$
			(+)		(-)		
Потребности	130	220	60	70	80	560	
	$\beta_1 = 1$	$\beta_2 = -1$	$\beta_3 = 3$	$\beta_4 = 4$	$\beta_5 = 2$	•	•

Таблица после преобразования

Пункты		B_1		B_2		B_3		B_4		B_5	Запасы
A_1	1	120	7	*/8	9	*/6	5	*/1	0	*/-2	120
A_2	4	10	2	220	6	*	8	*/1	0	50	280
						(-)				(+)	
A_3	3	*/4	8	*/11	1	60	2	70	0	30	160
						(+)				(-)	
Потребности		130		220		60		70		80	560

Выполним шаги 1-4 снова

Пункты		B_1		B_2		B_3		B_4		B_5	Запасы	
A_{I}	1	120	7	*/8	9	*/10	5	*/6	0	*/3	120	$\alpha_1 = 0$
A_2	4	10	2	220	6	*/5	8	*/6	0	50	280	$\alpha_2 = 3$
		(-)								(+)		
A_3	3	*/-1	8	*/6	1	60	2	70	0	30	160	$\alpha_3 = 3$
		(+)								(-)		
Потребности		130		220		60		70		80	560	
	ſ	$B_1 = 1$	β	2 = -1	β	3 = -2	β	ı = -1	β	5 = -3	1	

θ = 10. Выполним шаг 5

Таблица после шага 5:

Пункты		B_1		B_2		B_3		B_4		B_5	Запасы
A_1	1	120	7	*	9	*	5	*	0	*	120
A_2	4	*	2	220	6	*	8	*	0	60	280
A_3	3	10	8	*	1	60	2	70	0	20	160
Потребности		130		220		60		70		80	560

Выполним шаги 1-4 снова

Пункты	B_1	B_2	B_3	B_4	B_5	Запасы	
A_1	1 120	⁷ */7	9 */10	5 */5	0 */2	120	$\alpha_1 = 0$
A_2	4 */1	² 220	6 */5	8 */6	0 60	280	$\alpha_2 = 2$
A_3	³ 10	8 */6	1 60	² 70	0 20	160	$\alpha_3 = 2$
Потребности	130	220	60	70	80	560	
	$\beta_1 = 1$	$\beta_2 = 0$	$\beta_3 = -1$	$\beta_4 = 0$	$\beta_5 = -2$	I	I

Все оценки $\Delta_{ij} \geq 0$, значит текущий план оптимален и выполнение шагов 3–5 не требуется.

3 Результат

После отбрасывания фиктивного потребителя B_5 получаем следующий результат

$$\begin{pmatrix} 120 & 0 & 0 & 0 \\ 0 & 220 & 0 & 60 \\ 10 & 0 & 60 & 70 \end{pmatrix}$$

4 Вывод

В ходе выполнения лабораторной работы был изучен и применён табличный способ решения транспортной задачи, заданной таблицей перевозок. Как и во многих других задачах линейного программирования, сначала потребовалось найти начальный план, а затем улучшать его. Для нахождения начального плана был применён метод северо-западного угла, а для последующего улучшения был применён метод потенциалов. Достоинством использования метода северо-западного угла можно считать простоту, однако полученный начальный план никак не учитывает коэффициент (стоимость) перевозок. Таким образом, начальный план может получится менее оптимальным, что увеличит количество итераций алгоритма.