Object Detection: Sliding Windows

ECS797 Machine Learning for Visual Analysis
Ioannis Patras
i.patras@ecs.qmul.ac.uk

Most slides from Jon Hays (adapted from Kristen Grauman)

Past lectures

- Category recognition
 - Bag of words using not-so-invariant local features.
- Instance recognition
 - Manifold learning with dimensionality reduction

Today

- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

Object category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- · Score the candidates

Object category recognition: representation choice

Window-based

Part-based

Window-based models Building an object model

Given the representation, train a binary classifier

Influential Works in Detection

- Sung-Poggio (1994, 1998): ~1800 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3700
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004): ~1750
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004): ~8500
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005): ~4700
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~950
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008)? ~1300
 - Excellent template/parts-based blend

Slide: Derek Hoiem

Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Slide credit: Lana Lazebnik

Viola-Jones face detector

ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola viola@merl.com Mitsubishi Electric Research Labs 201 Broadway, 8th FL Cambridge, MA 02139 Michael Jones
mjones@crl.dec.com
Compaq CRL
One Cambridge Center
Cambridge, MA 02142

Abstract

This paper describes a machine learning approach for vi-

tected at 15 frames per second on a conventional 700 MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in video sequences,

Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable "rectangular" features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$

 Only 3 additions are required for any size of rectangle!

Lana Lazebnik

Viola-Jones detector: features

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier

Kristen Grauman

Viola-Jones detector: AdaBoost

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

Outputs of a possible rectangle feature on faces and non-faces.

Resulting weak classifier:

$$h_t(x) \ = \begin{cases} +1 & \text{if} \ f_t(x) > \theta_t \\ -1 & \text{otherwise} \end{cases}$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0,1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i}=\frac{1}{2m},\frac{1}{2l}$ for $y_i=0,1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , ϵ_j $\sum_{i} w_i |h_j(x_i) - y_i|.$
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i=0$ if example x_i is classified correctly, $e_i=1$ otherwise, and $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples

For T rounds

← Evaluate weighted error for each feature, pick best.

Re-weight the examples:

← Incorrectly classified -> more weight Correctly classified -> less weight

Final classifier is combination of the weak ones, weighted according to error they had.

Freund & Schapire 1995

Viola-Jones Face Detector: Results

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- · How to make the detection more efficient?

Cascading classifiers for detection

- Form a cascade with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Train with 5K positives, 350M negatives Real-time detector using 38 layer cascade 6061 features in all layers

[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Kristen Grauman

Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Features which can be evaluated very quickly with Integral Images
 - · Cascade model which rejects unlikely faces quickly
 - Mining hard negatives

P. Viola and M. Jones. *Rapid object detection using a boosted cascade of simple features*. CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Viola-Jones Face Detector: Results

Visual Object Rec

Detecting profile faces?

Can we use the same detector?

Fund Object Becognition

Viola-Jones Face Detector: Results

Viola Jones Results

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	0.00	1 7 81	10	94.4%	9 1	lue.	-
Roth-Yang-Ahuja	()=1	(40)	-	-	(94.8%)	mer I	-

MIT + CMU face dataset

Slide: Derek Hoiem

Schneiderman later results

Schneiderman 2004

Viola-Jones 2001 Roth et al. 1999 Schneiderman-Kanade 2000

	89.7%	93.1%	94.4%	94.8%	95.7%
Bayesian Network *	1	8	19	36	56
Semi- Naïve Bayes*	6	19	29	35	46
[6]	31	65			
[7]*				78	
[16]*			65		

Table 2. False alarms as a function of recognition rate on the MIT-CMU Test Set for Frontal Face Detection. * indicates exclusion of the 5 images of hand-drawn faces.

Slide: Derek Hoiem

Speed: frontal face detector

• Schneiderman-Kanade (2000): 5 seconds

• Viola-Jones (2001): 15 fps

Slide: Derek Hoiem

Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Consumer application: iPhoto 2009 Things iPhoto thinks are faces Slide credit: Lana Lazebnik

Consumer application: iPhoto 2009

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos faces recognizes cats

Slide credit: Lana Lazebni

Discussion

What other categories are amenable to *window-based representation*?

Pedestrian detection

Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

SVM with HoGs [Dalal & Triggs, CVPR 2005]

Kristen Grauman

Boosting: pros and cons

· Advantages of boosting

- · Integrates classification with feature selection
- Complexity of training is linear in the number of training examples
- · Flexibility in the choice of weak learners, boosting scheme
- · Testing is fast
- · Easy to implement

Disadvantages

- · Needs many training examples
- Often found not to work as well as an alternative discriminative classifier, support vector machine (SVM)
 - especially for many-class problems

Slide credit: Lana Lazebni

Window-based detection: strengths

Sliding window detection and global appearance descriptors:

- · Simple detection protocol to implement
- · Good feature choices critical
- · Past successes for certain classes

Kristen Grauman

Window-based detection: Limitations

High computational complexity

- For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
- If training binary detectors independently, means cost increases linearly with number of classes

With so many windows, false positive rate better be low

Limitations (continued)

Not all objects are "box" shaped

Kristen Grauman

Limitations (continued)

Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint

Objects with less-regular textures not captured well with holistic appearance-based

Limitations (continued)

If considering windows in isolation, context is lost

Sliding window

Detector's view

Figure credit: Derek Hoiem

Kristen Grauman

Limitations (continued)

In practice, often entails large, cropped training set (expensive)

Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Summary

Basic pipeline for window-based detection

- Model/representation/classifier choice
- · Sliding window and classifier scoring

Viola-Jones face detector

- Exemplar of basic paradigm
- Plus key ideas: rectangular features, Adaboost for feature selection, cascade, hard negatives.

Pros and cons of window-based detection