RELAZIONE DI ELETTRONICA

Bozza di analisi dati

Francesco Forcher

Università di Padova, Facoltà di Fisica francesco.forcher@studenti.unipd.it Matricola: 1073458

DAVIDE CHIAPPARA

Università di Padova, Facoltà di Fisica davide.chiappara@studenti.unipd.it Matricola: 1070160

Gabriele Labanca

Università di Padova, Facoltà di Fisica gabriele.labanca@studenti.unipd.it Matricola: 1069556

31 gennaio 2015

I. MISURE DIRETTE DI RESISTENZE

I valori riportati in tabella (valori in Ω) sono quelli delle misure dirette delle resistenze, prese col multimetro FLUKE 111; il fondo scala è di 200mA per le correnti e di 600mV per le tensioni.

Per stimare gli errori si è usata la formula seguente:

$$\sigma_{R} = 0.58 \sqrt{\sigma_{sist} + \sigma_{stat}} = 0.58 \sqrt{(R \cdot \Delta P + n_{digit} \cdot min(FS))}$$

Infatti gli errori legati alla misurazione sono dovuti sia a errori di scala ($R = k_R \cdot R^{(r)}$), sia a errori casuali connessi al numero di digit. Per chiarezza di notazione, $\sigma^{(r)}$ è considerato errore statistico, mentre con σ si intende l'errore totale.

Per quanto riguarda le resistenze R_5 e R_6 in serie, da una misurazione diretta effettuata col multimetro FLUKE 111 risulta che $R_{S,sper}=(402\pm$

OK

	R	σ_{R}	R_{FS}
R_1	67.8	0.4	600
R ₂	67.9	0.4	600
R ₃	561	3	600
R ₄	1890	10	6000
R ₅	149.8	0.8	600
R ₆	252.0	1.32	600

Tabella 1: Misure dirette resistenze

controllare il sigma_Rs sperim.

^{->} 4)Ω. Col calcolo teorico, il valore di tale resistenza equivalente risulta invece $R_{S, \, \text{teor}} = (402 \pm 2)\Omega$, dove per l'errore teorico è stato considerato che $R_{S, \text{teor}} = k \cdot (R_1^{(r)} + R_2^{(r)})$, infatti la k è costante in misurazioni successive, mantenendo il medesimo fondo scala. Con semplice propagazione degli errori risulta che

$$\sigma_{R_{S,teor}} = \sqrt{(R_1 + R_2)^2 \cdot \sigma_k^2 + \sigma_{R_1^{(r)}}^2 + \sigma_{R_2^{(r)}}^2}$$

dove σ_k è stata ricavata dall'errore percentuale fornito dal costruttore del multimetro e considerando k distribuito uniformemente: $\sigma_k = 0.58 \cdot \text{Err}\%$. È stata calcolata la correlazione tra le due diverse stime della resistenza, considerando che la loro differenza dovrebbe essere nulla:

$$\lambda = \frac{\left| (R_{S,teor} - R_{S,sper}) - 0 \right|}{\sigma_{R_{S,teor} - R_{S,sper}}} = 0.3$$

con $R_{S,teor}-RS, sper=k\cdot (R_{S,sper}^{(r)}-R_1^{(r)}-R_2^{(r)})$, da cui per propagazione si ricava che

$$\sigma_{R_{S,teor}} - \sigma R_{S,sper} = \sqrt{(R_{S,teor} - R_{S,sper})^2 \sigma_k^2 + 3\sigma_R^{(r)2}}$$

Per il calcolo della resistenza equivalente a R_5 e R_6 in parallelo, il valore misurato con il multimetro FLUKE 111 è $R_{P,sper}=(94\pm\frac{4}{4})\Omega$. Il valore teorico anche questo e' è $R_{P,teor}=(94\pm0.5)\Omega$: considerando che $R_{P,teor}=k\frac{R_5^{(r)}R_6^{(r)}}{R_5^{(r)}+R_6^{(r)}}$ e propagando, sbagliato... riutilizzando la medesima semplificazione sull'errore di scala, si ottiene

$$\sigma_{P,teor} = \sqrt{\left(\frac{R_5 R_6}{R_5 + R_6}\right)^2 \sigma_k^2 + \frac{R_5^4 + R_6^4}{(R_5 + R_6)^4} \sigma_{R_{P,teor}^{(r)2}}^{}}.$$

Per il calcolo della compatibilità, si sono utilizzate le medesime formule che per le resistenze in serie, opportunamente adattate:

$$\lambda = \frac{\left| (R_{P,teor} - R_{P,sper}) - 0 \right|}{\sigma_{R_{P,teor}} - \sigma_{R_{P,sper}???}} = \underbrace{0.14}_{\sim \sim}.$$
 si metta la sigma della differenza, non la diff. delle sigma!!!

Nota bene: tutti i calcoli sono stati effettuati mantenendo un numero superiore di cifre significative, riducendone il numero solo in sede di presentazione dati.

II. MISURA VOLTAMPEROMETRICA DI UNA RESISTENZA

Per misurare una resistenza piccola è stato costruito un circuito come in figura (da aggiungersi). Una prima misura diretta è stata effettuata utilizzando il multimetro FLUKE 111, che è risultata $R_{x}=(3.0\pm0.1)\Omega.$ Costruito il circuito, si è variata la resistenza di carico e la potenza erogata dal generatore per indagare di quanto fosse la caduta di potenziale al variare della corrente che attraversa R. I dati ottenuti sono riportati in tabella.

In grafico sono riportate tali misure esprimendo V in funzione di I, sovrapposte a un fit lineare ottenuto col metodo della massima verosimiglianza.

I coefficienti della retta interpolante y = mx + c sono:

$$m = (2.809 \pm 0.004)\Omega \quad \ref{eq:cosmo} 2.798 \mbox{ +- 0.017 : cosmo} \mbox{ avete usato?}$$

$$c = (0.2 \pm 0.2) mV. \qquad \ref{eq:cosmo} \ref{eq:cosmo} \ref{eq:cosmo}$$

Si è calcolata la correlazione

$$\rho(m,c) = \frac{\text{cov}(m,c)}{\sigma_m \sigma_c} = -0.11 \, \frac{\text{NO, e' circa -0.9}}{\text{}}$$

e l'errore a posteriori sulla caduta di tensione è di $\sigma_V = 0.6V$.

A seguire il grafico dei residui: si è rappresentata la differenza tra il valore di tensione misurato e quello ricavato teoricamente dalla retta interpolante in corrispondenza del suo valore di corrente.

Una stima della resistenza è data dalla pendenza della retta interpolante. basso... Tale retta ha un errore che è composizione di un errore sistematico e di uno statistico, infatti si può scrivere $\mathfrak{m}=\frac{k_V(V_2^{(r)}-V_1^{(r)})}{k_i(\mathfrak{i}_2^{(r)}-\mathfrak{i}_1^{(r)})}=\frac{k_V}{k_i}\mathfrak{m}^{(r)}.$ Da una propagazione risulta che l'errore su tale grandezza è $\sigma_m = \sqrt{\sigma_{m,fit}^2 + \sigma_{k_V}^2 m^2 + \sigma_{k_i}^2 m^2}~$ e' molto piu' con $\sigma_{m,fit}$ errore casuale ottenuto dall'interpolazione. Risulta che l'incertezza piccolo di 0.4... sulla resistenza è quasi completamente data dall'errore sistematico. Il risultato ricontrollate i finale è $R = (2.8 \pm 0.4)\Omega$; l'errore percentuale è del 13%.

Si possono confrontare il risultato teorico e quello sperimentale con un calcolo di compatibilità. Dato che sono state usate strumentazioni differenti per le due stime, se ne può applicare la definizione: $\lambda = \frac{|R_x - R|}{\sqrt{\sigma_{R_x}^2 + \sigma_R^2}} = 0.5$.

-> un po' alto: il previsto e' 0.2 e di solito viene anche piu'

conti

Tabella 2: *Misure caduta di potenziale*

25.0 70.5	
30.6 86.2	
37.5 106.4	
49.6 140.3	
60.8 171.7	
69.7 182.0 -> questo e' stato giustamente tolt	ma
72.9 204.3 non lo avete scritto	
81.8 230.1	
100.0 280.1	
90.5 254.8	

III. RESISTENZE INTERNE DEGLI STRUMENTI DI MISURA

Attraverso costruzioni di circuiti o misure dirette, si sono stimate le resistenze interne degli strumenti utilizzati. Per la stima della resistenza interna del generatore si è costruito un circuito come in figura (da aggiungersi) e utilizzato il voltmetro AGILENT U1232A con l'amperometro BECKMAN T110B. Dalle misure risulta che

$$V_0 = (5.01 \pm 0.01) V \text{ con } V_{FS} = 6V$$
 (1)

$$i = (124.9 \pm 0.5) \text{mA con } i_{FS} = 200 \text{mA}$$
 ok (2)

$$V = (5.00 \pm 0.01)V \text{ con } V_{FS} = 6V.$$
 (3)

Da uno studio del circuito si ricava la formula $R_G = \frac{V_0 - V}{V}$. Stimandone l'errore, per evitare problemi di correlazione si può scrivere $R_G = \frac{k_\nu(V_0^{(\tau)} - V^{(\tau)})}{i}$, da cui propagando:

$$\sigma_{R_G} = \sqrt{R_G^2 \sigma_{k_V}^2 + \frac{(\sigma_{V^{(r)}}^2 + \sigma_{V_0^{(r)}}^2)}{i^2} + \frac{(V_0 - V)^2}{i^4} \sigma_i^2},$$

ricordando che per σ_i si intende l'errore strumentale totale. Concludendo, $R_G = (0.10 \pm 0.16)\Omega$. sigma >> del dovuto: rivedete i conti...

Un diverso circuito è stato costruito per stimare la resistenza interna dell'AGILENT U1232A utilizzato come voltmetro. Una misurazione diretta di R_V è stata ottenuta utilizzando come ohmetro il BECKMAN T110B: $R_{V,\,\rm sper}=(11.2\pm0.1)M\Omega$, con fondo scala di $20M\Omega$. Le misure prese a circuito chiuso sono:

$$R_S = (0.990 \pm 0.005) M\Omega \text{ con } R_{FS} = 6M\Omega$$
 (4)

$$V_0 = (5.01 \pm 0.01) V \text{ con } V_{FS} = 6V$$
 ok (5)

$$V = (4.60 \pm 0.01)V \text{ con } V_{FS} = 6V$$
 (6)

Studiando il circuito, si può dimostrare che

$$R_{V, \text{ teor}} = \frac{R_S V}{V_0 - V}.$$

Portando fuori dai valori il coefficiente k_V e semplificandolo, si ha $R_{V, \text{teor}} = \frac{R_S V^{(r)}}{V_0^{(r)} - V^{(r)}}$ da cui, propagando, si ottiene

$$\sigma_{R_{V,teor}} = \sqrt{\sigma_{R_S}^2 \left(\frac{V}{(V_0 - V)^2}\right)^2 + \sigma_{V_{(r)}}^2 \left(\frac{R_S V_0}{(V_0 - V)^2}\right)^2 + \sigma_{V_0^{(r)2}}^2 \left(\frac{R_S V}{(V_0 - V)^2}\right)^2}.$$

Risulta $R_{V, \text{ teor}} = (11.19 \pm 0.08) M\Omega$. OK

Per misurare la resistenza interna del BECKMAN T110B, usato come amperometro, si è semplicemente effettuato un collegamento con il FLUKE 111 usato come ohmetro. I valori sono riportati in tabella.

Tabella 3: Resistenze dell'amperometro BECKMAN

I _{FS}	$R(\Omega)$	$\sigma_R(\Omega)$	$R_{FS}(\Omega)$
200 mA	1002	5	6000
2 mA	102.1	0.5	600
20 mA	11.4	0.6	600
200 mA	1.8	0.6	600
2 A	1.2	0.6	600

attenzione!