Assignment 3

Veton Abazovic — Michael Belmont

April 23, 2019

Question 1

Consider the following Bayesian network, where variables A through E are all Boolean valued. Note: there is a typo in the image, it should be P(A = true) = 0.2 instead of P(D = true) = 0.2.

A)

$$P(A) * P(B) * P(C) * P(D \mid A, B) * P(E \mid B, C) = .2 * .5 * .8 * .1 * .3 = 0.0024$$

B)

$$P(\neg A, \neg B, \neg C, \neg D, \neg E) = \neg P(A) * \neg P(B) * \neg P(C) * \neg P(D \mid A, B) \neg P(E \mid B, C)$$

= 0.8 * 0.5 * 0.2 * 0.1 * 0.8 = 0.0064

 \mathbf{C}

$$\begin{split} P(\neg A \mid B, C, D, E) &= \frac{P(\neg A) * P(B) * P(C) * P(D \mid \neg A, B) * P(E \mid B, C)}{P(A, B, C, D, E) + P(\neg A) * P(B) * P(C) * P(D \mid \neg A, B) * P(E \mid B, C)} \\ &= \frac{0.8 * 0.5 * 0.8 * 0.6 * 0.3}{0.0024 + 0.8 * 0.5 * 0.8 * 0.6 * 0.3} = \frac{0.0576}{0.06} \\ &= 0.96 \end{split}$$

Question 2

A)

$$P(B), P(E), P(A \mid B, E), P(J \mid A), P(M \mid A)$$

$$\sum_{B} P(B) * \sum_{E} P(E) * \sum_{A} P(A \mid B, E) * P(J \mid A) * P(M \mid A)$$

$$F1(B) * \sum_{E} F2(E) * \sum_{A} F3(A, B, E) * F3(A) * F4(A)$$

$$F1(B) = P(B) = \binom{P(b)}{P(\neg b)} = \binom{0.9}{0.05}$$

$$F2(E) = P(E) = \binom{P(e)}{P(\neg e)} = \binom{0.002}{0.998}$$

$$F4(A) = P(J \mid A) = \binom{P(g \mid a)}{P(g \mid \neg a)} = \binom{0.70}{0.05}$$

$$F5(A) = P(M \mid A) = \binom{P(m \mid a)}{P(m \mid \neg a)} = \binom{0.70}{0.01}$$

$$F3(A,B,E) = P(A \mid B,E) = \binom{P(a \mid b,e)}{P(a \mid \neg b,e)} = \binom{0.95}{0.29} \xrightarrow{0.001}$$

$$F3(\neg A,B,E) = P(\neg A \mid B,E) = \binom{P(\neg a \mid b,e)}{P(\neg a \mid \neg b,e)} = \binom{0.05}{0.71} \xrightarrow{0.999}$$

$$F6(B,E) = \sum_{A} P(A \mid B,E) * P(J \mid A)P(M \mid A)$$

$$F6(B,E) = F3(A,B,E) * F4(A) * F5(A)$$

$$F6(B,E) = F3(A,B,E) * F4(A) * F5(A) + F3(A,B,E) * F4(A) * F5(A)$$

$$F7(B) = F2(B) * F6(B,E) + F2(B) * F6(B,E)$$

$$P(B \mid J,M) = \propto *F1(B) * F7(B)$$

$$F1(B) * F7(B) = \binom{0.00059224}{0.001491857} = 479.8233$$

$$F1(B) * F7(B)(Normalizing with $\propto = \binom{0.2841718}{0.7158281}$$$

B)

Enumeration = $O(n2^{n-2})$ Variable Elimination = O(n)

Question 3

1)

First we find the probability the rover is in a hot location.

Table 1: Probability of Rover, Hot

Table 1. I lobability of flover, flot			
X_1	$P(X_1 \parallel E_1 = \mathbf{Hot})$		
A	1.0		
В	0.0		
CDEF	0.0		

Then we find where $P(X_2 \parallel E_1 = \text{Hot}, E_2 = \text{Cold})$

Table 2: Probability of Rover, Hot Cold

X_2	$P(X_2 \parallel E_1 = \text{Hot}, E_2 = \text{Cold})$
A	0.0
В	1.0
CDEF	0.0

Then we find the X_3 value and normalize it.

Table 3: Probability of Rover, Hot Cold Cold

X_3	$P(X_3 \parallel E_1 = \text{Hot}, E_2 = \text{Cold}, E_3 = \text{Cold})$
A	0.0
В	0.2
С	0.8
$D \to F$	0.0

2)

The probability of position at the end of day 2 has to be B because if day 1 is hot, it must stay at A, and if day 2 is cold and it moves a mile a day, it must be at B.

Table 4: Probability of Position at End of Day 2

X_2	$\mid \mathbf{P}(X_2 \parallel Hot_1, Cold_1, Cold_2) \mid$
A	0.0
В	1.0
CDEF	0.0

3)

The most likely sequence of positions would be day 1 is A, day 2 is B, day 3 is B.

4)

Because we already know hot_1 , $cold_2$, and $cold_3$, we know that we have to be at C so we could have hot_4 . The probability of being hot_4 would be 0.64 * 0.8, as we would have to be at C (0.64) to move to D and there is a 0.8 chance of moving to D instead of staying at C, so 0.8 times 0.64 is equal to 0.512.

Next, we have hot_5 . We have a 0.2 chance of staying at D instead of moving to E, so it is 0.2 times 0.512, or 0.1024.

Finally, to move to $cold_6$, we have a 0.8 chance. So 0.8 times 0.1024 would be 0.08192, or a 8.192% chance of this sequence.

5)

We start with the following probability distribution.

Table 5: Probability of Rover, Hot Cold Cold $X_3 \quad | \mathbf{P}(X_3 \parallel E_1 = \mathbf{Hot}, E_2 = \mathbf{Cold}, E_3 = \mathbf{Cold})$ A 0.0
B 0.2
C 0.8
D E F 0.0

Then we have the possibility of either moving to D or staying at C. If we're still at B on day 3, then we could either stay at B or move to C. If we're at C, then we could either stay at C or move to D. So we find the probability of location on day 4 as:

Table 6: Probability of Rover, Day 4 Unknown			
X_4	$P(X_3 \parallel E_1 = \text{Hot}, E_2 = \text{Cold}, E_3 = \text{Cold}, E_4 = \text{Unknown})$		
A	0.0		
В	0.04		
\mathbf{C}	0.32		
D	0.64		
$\rm E~F$	0.0		

Moving on to day 5, we have a similar situation. We could stay at any of the locations or move forward.

Table 7: Probability of Rover, Day 5 Unknown			
$P(X_3 \parallel E_1 = \text{Hot}, E_2 = \text{Cold}, E_3 = \text{Cold}, E_4, E_5 = \text{Unknown})$			
0.0			
0.008			
0.096			
0.384			
0.512			
0.0			

Question 4

 \mathbf{a}

Table	8: OC	
True	False	
0.75	0.25	

Table 9: CRP			
\mathbf{OC}	True	False	
True	0.10	0.90	
False	0.001	0.999	

Table 12: FP			
Trav	Fraud	True	False
True	True	0.90	0.10
True	False	0.10	0.90
False	True	0.90	0.10
False	False	0.01	0.99

 \mathbf{b}

$$P(Fraud=true \parallel CRP=false, IP=false, FP=false, Trav=false) \ OR \\ P(Fraud=true \parallel CRP=false, IP=false, FP=false, Trav=true) \\ = 0.01+0.004=0.0104 \ or \ 1.04\%$$

Table 13: IP			
\mathbf{OC}	Fraud	True	False
True	True	0.02	0.98
True	False	0.01	0.99
False	True	0.011	0.989
False	False	0.001	0.999
	'	'	'

P(Fraud = true || FP = true, IP = false, CRP = true) = 0.9 * (0.10 * 0.02) = 0.0018 or 0.18%