Домашняя работа №8

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

Условие задачи

Рассмотрим кривую, заданную параметрически:

$$\gamma(t) = (t, \sin(t), \cos(t)).$$

1 Найти уравнение касательной в t=0

Решение

Для нахождения уравнения касательной, найдем производную параметризации $\gamma(t)$:

$$\gamma'(t) = (1, \cos(t), -\sin(t)).$$

Подставим значение параметра t=0 в функцию $\gamma(t)$ и её производную:

$$\gamma(0) = (0, \sin(0), \cos(0)) = (0, 0, 1),$$

$$\gamma'(0) = (1, \cos(0), -\sin(0)) = (1, 1, 0).$$

Уравнение касательной в параметрическом виде задается формулой:

$$x = x_0 + t \cdot \frac{dx}{dt}$$
, $y = y_0 + t \cdot \frac{dy}{dt}$, $z = z_0 + t \cdot \frac{dz}{dt}$.

Подставляя $\gamma(0) = (0,0,1)$ и $\gamma'(0) = (1,1,0)$, получаем:

$$x = 0 + t \cdot 1$$
, $y = 0 + t \cdot 1$, $z = 1 + t \cdot 0$.

Запишем это в каноническом виде прямой:

$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{0}$$

${\bf 2}$ — Найти длину дуги кривой $\gamma(t)=(t,\sin(t),\cos(t))$ на интервале $t\in[0,2\pi].$

Решение

Для нахождения длины дуги кривой используем формулу:

$$L(\gamma) = \int_0^{2\pi} |\gamma'(t)| \ dt,$$

где $\gamma'(t)$ — производная параметрической кривой.

1. Найдём производную $\gamma'(t)$:

$$\gamma'(t) = \left(\frac{d}{dt}t, \frac{d}{dt}\sin(t), \frac{d}{dt}\cos(t)\right) = (1, \cos(t), -\sin(t)).$$

1

2. Найдём длину вектора $\gamma'(t)$:

$$|\gamma'(t)| = \sqrt{1^2 + \cos^2(t) + (-\sin(t))^2}.$$

Упростим выражение, зная тригонометрическое тождество $\cos^2(t) + \sin^2(t) = 1$:

$$|\gamma'(t)| = \sqrt{1 + \cos^2(t) + \sin^2(t)}$$

3. Вычислим длину дуги $L(\gamma)$: Подставим значение $|\gamma'(t)| = \sqrt{2}$ в формулу длины дуги:

$$L(\gamma) = \int_0^{2\pi} \sqrt{1^2 + 1} \, dt.$$

Так как $\sqrt{2}$ является константой, она выносится за знак интеграла:

$$L(\gamma) = \sqrt{2} \int_0^{2\pi} 1 \, dt.$$

Рассчитаем интеграл:

$$\int_0^{2\pi} 1 \, dt = [t]_0^{2\pi} = 2\pi - 0 = 2\pi.$$

Подставляем результат:

$$L(\gamma) = \sqrt{2} \cdot 2\pi = 2\sqrt{2}\pi.$$

Ответ:

Длина дуги кривой $\gamma(t)$ на интервале $t \in [0, 2\pi]$ равна:

$$L(\gamma) = 2\sqrt{2}\pi.$$

3 Задание

Найти базис Френеля в t=0

$$\begin{split} \left(\vec{v}, \vec{n}, \vec{b}\right) \\ \vec{v} &= \frac{\gamma'(t)}{|\gamma'(t)|} \\ \vec{n} &= \frac{\vec{v}'}{|\vec{v}'|} \\ \vec{b} &= \frac{[\vec{v}, \vec{n}]}{|[\vec{v}, \vec{n}]|} \end{split}$$

Решение

1. Найдём производную параметризации $\gamma(t)$: Производная вектора $\gamma(t)$ задается как:

$$\gamma'(t) = \left(\frac{d}{dt}t, \frac{d}{dt}\sin(t), \frac{d}{dt}\cos(t)\right).$$

Выполняем вычисления:

$$\gamma'(t) = (1, \cos(t), -\sin(t)).$$

2. Найдём длину вектора $\gamma'(t)$: Длина вектора $\gamma'(t)$ вычисляется по формуле:

$$|\gamma'(t)| = \sqrt{1^2 + \cos^2(t) + \sin^2(t)}.$$

Используя тригонометрическое тождество $\cos^2(t) + \sin^2(t) = 1$, получаем:

$$|\gamma'(t)| = \sqrt{1+1} = \sqrt{2}.$$

3. Найдём единичный касательный вектор \vec{v} : Касательный вектор определяется как:

$$\vec{v} = \frac{\gamma'(t)}{|\gamma'(t)|}.$$

Подставляя $\gamma'(t)$ и $|\gamma'(t)|$, получаем:

$$\vec{v} = \left(\frac{1}{\sqrt{2}}, \frac{\cos(t)}{\sqrt{2}}, \frac{-\sin(t)}{\sqrt{2}}\right).$$

4. Найдём производную касательного вектора \vec{v} : Производная вектора \vec{v} задается как:

$$\vec{v}' = \left(0, -\frac{\sin(t)}{\sqrt{2}}, -\frac{\cos(t)}{\sqrt{2}}\right).$$

5. Найдём длину вектора \vec{v}' : Длина вектора \vec{v}' вычисляется по формуле:

$$|\vec{v}'| = \sqrt{\left(-\frac{\sin(t)}{\sqrt{2}}\right)^2 + \left(-\frac{\cos(t)}{\sqrt{2}}\right)^2}.$$

Подставляя тригонометрическое тождество:

$$|\vec{v}'| = \sqrt{\frac{\sin^2(t)}{2} + \frac{\cos^2(t)}{2}} = \sqrt{\frac{\sin^2(t) + \cos^2(t)}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}.$$

6. Найдём единичный нормальный вектор \vec{n} : Нормальный вектор определяется как:

$$\vec{n} = \frac{\vec{v}'}{|\vec{v}'|}.$$

Подставляя \vec{v}' и $|\vec{v}'|$, получаем:

$$\vec{n} = (0, -\sin(t), -\cos(t)).$$

7. Найдём векторное произведение $[\vec{v}, \vec{n}]$: Для вычисления бинормального вектора используем векторное произведение:

$$[\vec{v}, \vec{n}] = \frac{1}{\sqrt{2}} (1, \cos(t), -\sin(t)).$$

8. Найдём длину вектора $[\vec{v}, \vec{n}]$: Длина вектора $[\vec{v}, \vec{n}]$ равна:

$$|[\vec{v}, \vec{n}]| = \sqrt{\frac{1}{2}(1 + \cos^2(t) + \sin^2(t))}.$$

Используя тригонометрическое тождество $\cos^2(t) + \sin^2(t) = 1$, получаем:

$$|[\vec{v}, \vec{n}]| = 1.$$

9. Найдём единичный бинормальный вектор \vec{b} : Бинормальный вектор определяется как:

$$\vec{b} = \frac{[\vec{v}, \vec{n}]}{|[\vec{v}, \vec{n}]|}.$$

Подставляя значения, получаем:

$$\vec{b} = \frac{1}{\sqrt{2}}(1,\cos(t), -\sin(t)).$$

10. Подставляем t = 0: Для t = 0 вычисляем:

$$\vec{n}(0) = (0, 0, -1), \quad \vec{b}(0) = \frac{1}{\sqrt{2}}(1, 1, 0).$$

Ответ:

$$\vec{n}(0) = (0, 0, -1), \quad \vec{b}(0) = \frac{1}{\sqrt{2}}(1, 1, 0).$$