Querying Relations - Division

pm jat @ daiict

Division operation

- Following are example queries that require division
 - SupplyParts database: Suppliers that supply all parts
 - Company database: List employees who work on all projects controlled by dno=4.
- Division is typically required when you want to find out entities that are interacting with all entities of a set.
- It is not supported by SQL implementations .. can be represented using other operations ... bit complex

Division- definition

Given two relations; r(x,y), s(y)

r DIV s gives all distinct values of x from r that are associated with all values of y in s.

Division – computation

- Computation of r DIV s
- Note the compatibility of R and S
- Compute following and observe the result –

$$r1 \leftarrow \Pi_{x}(r) \times s = ?$$

$$r2 \leftarrow r1 - r = ?$$

$$r2x \leftarrow \Pi_{x}(r2) = ?$$

$$r3 \leftarrow \Pi_{x}(r) - r2x = ?$$

R

X	У
101	1
102	1
101	3
103	2
102	2
101	2
	·

S

У
1
2

Division – computation

Compute following and observe the result –

$$r1 \leftarrow \Pi_{x}(r) \times s = ?$$
 $r2 \leftarrow r1 - r = ?$
 $r2x \leftarrow \Pi_{x}(r2) = ?$
 $r3 \leftarrow \Pi_{x}(r) - r2x = ?$
All possible combinate $r1 \leftarrow \pi_{x}(R) \times S$
 $x \text{ values with "incompositions", } r2x \leftarrow r2x \leftarrow r3$
and result $-\pi_{x}(R)$ -r2x

All possible combinations $r1 \leftarrow \pi_x(R) \times S$ x values with "incomplete combinations", $r2x \leftarrow \pi_x(r1-R)$

$$\pi_{\mathsf{x}}(\mathsf{R})$$
- $\pi_{\mathsf{x}}((\pi_{\mathsf{x}}(\mathsf{R}) \times \mathsf{S}) - \mathsf{R})$

Given following two relations; supplies(sid,pid)

parts(pid)

supplies DIV parts gives us SIDs that supply all PIDs?

SUPPLIES

SID	PID
101	1
102	1
101	3
103	2
102	2
101	2

PARTS

PID
1
2

 $\pi_{SID}(SUPPLIES) - \pi_{SID}((\pi_{SID}(SUPPLIES) \times PARTS) - SUPPLIES)$

Computation of Division

 Note that original relations may not be division compatible and required to brought down. As shown here!

 $\Pi_{\text{sid,pid}}$ (Supplies) div π_{pid} (Parts)

pid	pname	color
1	PART-1	RED
2	PART-2	GREEN
3	PART-3	RED
4	PART-4	BLUE
5	PART-5	GREEN

sid	pid	cost
101	1	100
102	1	120
101	3	160
103	2	210
102	2	220
102	3	150
102	4	400
102	5	500

SQL Solution (Strategy) - 1

R(x,y) DIV S(y) be expressed as

```
SELECT x FROM R

WHERE x NOT IN (

SELECT x FROM (

( All possible; i.e. S x π<sub>x</sub>(R) )

MINUS

( Actual R )

);
```

SELECT x that are

Strategy#1 applied

"Suppliers that supply all parts"

```
SELECT sid FROM Suppliers
WHERE sid NOT IN (
    SELECT sid FROM (
        ( All possible sid, pid combinations)
          MINUS
        ( Actual sid, pid pairs from Supplies )
);
```

"Suppliers that supply all parts"

```
SELECT * FROM suppliers
WHERE sid not in (
SELECT sid FROM (
  (SELECT sid, pid FROM (select pid from
 parts) as p cross join (select distinct sid
 from supplies) as sp)
 EXCEPT
  (SELECT sid, pid FROM supplies)
 ) AS r
```

R(x,y) DIV S(y) be expressed as

```
SELECT x FROM R
WHERE empty-set (
    ( all y, i.e. S )
    MINUS
    ( y that are associate with the x)
);
```

Strategy#2 applied

"Suppliers that supply all parts"

```
SELECT suppliers
WHERE empty-set (
     ( All Parts )
      MINUS
     ( Parts Supplied by the Supplier )
);
```

Strategy#2 applied

"Suppliers that supply all parts"

```
SELECT * FROM suppliers as s
WHERE NOT EXISTS (
    ( SELECT p.pid FROM parts as p )
    EXCEPT
    (SELECT sp.pid FROM supplies sp WHERE sp.sid = s.sid )
);
```

For division correlated query seems simpler to write but may expensive to execute

Division operation – example#2

Given following two relations;works(ssn,pno)proj(pno)

works DIV proj gives you SSNs that work on all PNOs?

ssn numeric(9,0)	pno smallint
101	2
101	3
101	10
101	20
101	1
102	30
102	20
103	30
103	10
104	3
105	1
105	2
106	10
106	30
107	1
107	2
108	20

- PNOs controlled by dno = 4 p4 $\leftarrow \pi_{PNO} (\sigma_{DNO=4} (PROJECTS))$
- Have ESSN, PNO project of WORKS on relation –
 SSN_PNOS (SSN, PNO) ← π_{ESSN, PNO} (WORKS_ON)
- SSN of employees works on PNOs in p4
 SSN_PNOS div p4

```
SELECT employee
WHERE empty-set (
    (all PNOs controlled by dno=4, i.e. p4)
    MINUS
    (PNOs on which the employee works)
);
```

```
SELECT * FROM employee AS e
WHERE NOT EXISTS (
  (SELECT pno FROM project WHERE dno = 4)
  EXCEPT
  (SELECT pno FROM works_on WHERE essn = e.ssn)
);
```

```
SELECT * FROM EMPLOYEE

WHERE ssn NOT IN (

SELECT essn FROM (

( All possible essn, pno combinations)

MINUS

( Actual essn, pno pairs from WORKS_ON )
);
```

```
SELECT * FROM employee AS e
WHERE ssn NOT IN (
SELECT essn FROM (
(SELECT essn, pno FROM (select pno from project where dno=4)
as p cross join (select distinct essn from works_on) as w)
EXCEPT
(SELECT essn, pno FROM works_on)
) AS r
);
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
r1 \leftarrow \sigma_{\text{iname='PMJ'}}(\text{instructor})

r2 \leftarrow \sigma_{\text{acadyr}>=2007 \text{ and acadyr}<=2011}(\text{offers})

r3 \leftarrow r1 * r2 * registers

r4 \leftarrow \Pi_{\text{sid,course,acadyear,semester}}(\text{r3})

r5 \leftarrow \Pi_{\text{course,acadyear,semester}}(\text{r3})

result \leftarrow r4 div r5
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#1]
    SELECT Students
    WHERE sid NOT IN (
        (All possible combination of sid, cno, yr, sem for PMJ and
          during specified acad-years)
          MINUS
        (actual combination of sid, cno, yr, sem in registers for PMJ
          and during specified acad-years)
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

[Using Strategy#1]

```
SELECT * FROM student AS s

WHERE studentid NOT IN (

SELECT studentid FROM (

SELECT studentid, courseno, acadyear, semester from

((select courseno, acadyear, semester FROM offers NATURAL JOIN instructor

WHERE instructorname = 'P M Jat' AND acadyear >= 2007 AND acadyear <= 2011) as co

CROSS JOIN (select distinct studentid from registers) as sr)

EXCEPT

(SELECT studentid, courseno, acadyear, semester FROM

registers WHERE acadyear >= 2007 AND acadyear <= 2011)
) as r
);
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

```
[Using Strategy#2]
    SELECT Students
    WHERE empty-set (
        ( All courses by PMJ and during specified acad-years)
            MINUS
        ( Courses taken by the StudID during specified acad-years)
        );
```

Students taken all courses that PMJ offered from academic year 2007-08 to 2011-12.

More queries requiring DIVISION

- Retrieve the names of employees, who work on all the projects that 'John Smith' works
- List supplier who supply all 'Red' Parts
- List students who registered for all courses offered for BTech
 2011 Autumn Semester