

MaizeCyc: Metabolic Networks in Corn

Marcela K Monaco¹, Taner Z. Sen^{2,3}, Palitha D Dharmawardhana⁴, Liya Ren¹, Mary Schaeffer^{5,6}, Vindhya Amarasinghe⁴, Jim Thomason¹, Lisa Harper^{2,7,8}, Jack Gardiner^{3,9}, Carolyn J. Lawrence^{2,3}, Doreen Ware^{1,10}, Pankaj Jaiswal⁴

¹ Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; ² USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA; ³ Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA; ⁴ Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR; ⁵ USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO; ⁶ Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO; ⁷ USDA-ARS Plant Gene Expression Center, Albany, CA; ⁸ Department of Molecular and Cell Biology, University of California, Berkeley, CA; ⁹ School of Plant Sciences, University of Arizona, Tucson, AZ; ¹⁰ USDA-ARS NAA Plant, Soil and Nutrition Laboratory Research Unit, Cornell University, Ithaca, NY

MaizeCyc is a genome-wide catalog of known and/or predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize, thereby supporting integrated systems biology analyses.

USDA 😂 😂

