# IP Address in Networking Subnetting in Networking

### Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

November 9, 2020





## Subnetting

- Subnetting is a process of dividing a single network into multiple subnetworks.
- The number of sub networks created depends upon the requirements.



**Big Single Network** 

Division of network into 4 subnets

#### Subnet Mask

- Subnet mask is a 32 bit number which is a sequence of 1s followed by a sequence of 0s where
  - 1s represent the global network ID part and the subnet ID part.
  - 0s represent the host ID part.



## How to Calculate Subnet Mask?

- For any given IP Address, the subnet mask is calculated-
  - By setting all the bits reserved for network ID part and subnet ID part to 1.
  - By setting all the bits reserved for host ID part to 0.

#### Subnet Mask Examples

- Consider we have a network having IP Address 200.1.2.0.
- Clearly, this IP Address belongs to class C.
- 24 bits are reserved for the Network ID part.
- 8 bits are reserved for the Host ID part.
- Subnet mask is obtained-
  - By setting the first 24 bits to 1.
  - By setting the remaining 8 bits to 0.
  - $\bullet = 11111111.111111111.111111111.000000000$ 
    - = 255.255.255.0



• **Example-02:** Consider a single network having IP Address 200.1.2.0 is divided into 4 subnets as shown-



- Now, let us calculate the mask subnet for each subnet.
  - 24 bits identify the global network.
  - 2 bits identify the subnet.
  - 6 bits identify the host.
- For each subnet, subnet mask is obtained-
  - By setting the first 26 bits to 1.
  - By setting the remaining 6 bits to 0.
  - Subnet mask

    - = 255.255.255.192
- **Note:** In fixed length subnetting, All the subnets have same subnet mask since the size of each subnet is same.

Q Consider a single network having IP Address 200.1.2.0 is divided into 3 subnets as shown-

#### For Subnet A

- 24 bits identify the global network.
- 1 bit identify the subnet.
- 7 bits identify the host.
- For subnet A, subnet mask is obtained-
  - By setting the first 25 bits to 1.
  - By setting the remaining 7 bits to 0.
  - Subnet mask

    - = 255.255.255.128

#### For Subnet B And Subnet C

- 24 bits identify the global network.
- 2 bits identify the subnet.
- 6 bits identify the host.

#### • For subnet B and subnet C, subnet mask is obtained-

- By setting the first 26 bits to 1.
- By setting the remaining 6 bits to 0.



- Subnet mask

  - = 255.255.255.192

#### NOTE

- In variable length subnetting, All the subnets do not have same subnet mask since the size of each subnet is not same.
- Default mask for different classes of IP Address are-
  - Default subnet mask for Class A = 255.0.0.0
  - Default subnet mask for Class B = 255.255.0.0
  - Default subnet mask for Class C = 255.255.255.0
- Note: 2
  - Network size is the total number of hosts present in it.
  - Networks of same size always have the same subnet mask.
  - Networks of different size always have the different subnet mask.
- Note: 3
  - For a network having larger size, its subnet mask will be smaller (number of 1s will be less).
  - For a network having smaller size, its subnet mask will be larger (number of 1s will be more).



## Arrangement Of Subnets

- All the subnets are connected to an internal router.
- Internal router is connected to an external router.
- The link connecting the internal router with a subnet is called as an interface.



## Working

- When a data packet arrives,
  - External router forwards the data packet to the internal router.
  - Internal router identifies the interface on which it should forward the incoming data packet.
  - Internal router forwards the data packet on that interface.

### Routing Table

- A table is maintained by the internal router called as Routing table.
- It helps the internal router to decide on which interface the data packet should be forwarded.
- Routing table consists of the following three fields-
  - IP Address of the destination subnet
  - Subnet mask of the subnet
  - Interface



## Q Consider a network is subnetted into 4 subnets as shown in the above picture.

- The IP Address of the 4 subnets are-
  - 200.1.2.0 (Subnet A)
  - 200.1.2.64 (Subnet B)
  - 200.1.2.128 (Subnet C)
  - 200.1.2.192 (Subnet D)

| Destination | Subnet Mask     | Interface |
|-------------|-----------------|-----------|
| 200.1.2.0   | 255.255.255.192 | а         |
| 200.1.2.64  | 255.255.255.192 | b         |
| 200.1.2.128 | 255.255.255.192 | С         |
| 200.1.2.192 | 255.255.255.192 | d         |
| Default     | 0.0.0.0         | е         |

Routing Table Example

#### • Step-01:

- Router performs the bitwise ANDing of-
- Destination IP Address mentioned on the data packet
- And all the subnet masks one by one.



#### • Step-02:

- Router compares each result with their corresponding IP Address of the destination subnet in the routing table.
- Then, following three cases may occur-
  - If there occurs only one match, then Router forwards the data packet on the corresponding interface.
  - If there occurs more than one match, then
    Router forwards the data packet on the interface corresponding to the
    longest subnet mask.
  - If there occurs no match, then
     Router forwards the data packet on the interface corresponding to the default entry.



## Important Notes

#### Note-01:

- In fixed length subnetting,
  - All the subnets have the same subnet mask.
  - So, bitwise ANDing is performed only once.
- If the result matches to any of the destination subnet IP Address,
  - Router forwards the data packet on its corresponding interface.
  - Otherwise, it is forwarded on the default interface.

#### Note-02:

- In variable length subnetting,
  - All the subnets do not have the same subnet mask.
  - So, bitwise ANDing is performed once with each subnet mask.
  - Then, the above three cases are followed.

#### Note-03:

- Subnet mask for default route = 0.0.0.0
- Subnet mask for host specific route = 255.255.255.255



## Important Notes

#### Note-04:

- A host may also be directly connected to the router.
- In that case, there exists a host specific route from the router to the host.
- Router saves the IP Address of that host in the Destination Network column.
- Router saves 255.255.255.255 in the Subnet Mask column.
- The ANDing of its destination address and subnet mask yields the IP Address of the host.
- When a data packet arrives for that specific host, bitwise ANDing is performed.
- When the result of ANDing is the IP Address of the host, packet is forwarded to its host specific route.



## Concept To Know

 When any host connects to the internet, ISP provides following 4 things to the host-

#### IP Address:

 ISP assigns an IP Address to the host so that it can be uniquely identified on the Internet.

#### • Default Gateway:

• Default router connected to the network in which the host is present is the default gateway for the host.

#### Subnet Mask:

- Subnet mask is a 32 bit number that is assigned to the host.
- It is used to determine to which network the given IP Address belongs to.

#### DNS

 Domain Name Service (DNS) is used to translate the domain name into an IP Address.

## Subnet Mask Use

- Subnet mask is used to determine to which network the given IP Address belongs to.
  - Host use its subnet mask to determine whether the other host it wants to communicate with is present within the same network or not.
  - If the destination host is present within the same network, then source host sends the packet directly to the destination host.
  - If the destination host is present in some other network, then source host routes the packet to the default gateway (router).
  - Router then sends the packet to the destination host.



#### Example

- There is a host A present in some network X.
- There is a host B.
- Host A wants to send a packet to host B.
- Before transmitting the packet, host A determines whether host B is present within the same network or not.





- To determine whether destination host is present within the same network or not, source host follows the following steps-
  - Source host computes its own network address using its own IP Address and subnet mask.
  - After computation, source host obtains its network address with respect to itself.
  - Source host computes the network address of destination host using destination IP Address and its own subnet mask.
  - After computation, source host obtains the network address of destination host with respect to itself.
- Source host compares the two results obtained in the above steps.
  - Case-01:If the results are same
    - Source host assumes that the destination host is present within the same network.
    - Source host sends the packet directly to the destination host.



#### Case-02: If the results are different

- Source host assumes that the destination host is present in some other network.
- Source host sends the packet via router to the destination host.

#### Important Points

- Each host knows only its own subnet mask.
- It does not know the subnet mask of any other host.
- The conclusion drawn by a host about the presence of other host within the same or different network might be wrong.
- Consider host A draws some conclusion about host B.
- Then, same conclusion might not be drawn by host B about host A.
- Both the hosts have to perform the above procedure separately at their ends to conclude anything.



## Thank You

