Using DFS for Topological Sorting and Strongly Connected Components

CS 4102: Algorithms

Spring 2021

Mark Floryan and Tom Horton

Topological Sorting

Readings: CLRS 22.4

Topological Sort

• Given a *directed acyclic graph*, construct a linear ordering of the vertices such that if there is an edge from *u* to *v*, then *u* appears before *v* in the ordering.

One valid topological sort is:
 V1 V6 V8 V3 V2 V7 V4 V5

Topological Sort

- What are allowable orderings I can take all these CS classes?
 - Note there are many possible orderings
 - Unlike sorting a list

Getting Dressed

We Can Use DFS and Finish Times

Topologically sorted vertices appear in reverse order of their finish times!

Topological Sort Algorithm

 Strategy: modify the two DFS functions so that they order nodes by finish-time in reverse order. This slide: DFS "Sweep".

```
DFS(G)
0 toposort-list = [ ] // empty list
1 for each vertex u in G.V
    u.color = WHITE
     u.\pi = NIL
4 \text{ time} = 0
5 for each vertex u in G.V
     if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u
8 // toposort-list contains the result
```

Topological Sort Algorithm

```
DFS-VISIT(G, u)
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time // discovery time of u
3 u.color = GRAY // mark as seen
4 for each v in G.Adj[u] // explore edge (u, v)
     if v.color == WHITE // if unseen
5
6
       v.\pi = u
       DFS-VISIT(G, v) // explore paths out of v (i.e., go "deeper")
8 u.color = BLACK // u is finished
9 time = time + 1
10 u.f = time // finish time of u
11 toposort-list.prepend(u)
```

Forward vs. Reverse

- Topological sort is a type of sort
 - Implies an ordering
 - Can sort backwards, of course
- Forward topological order
 - If edge vw in graph, then topo[v] < topo[w]</p>
- Reverse topological order
 - If edge vw in graph, then topo[v] > topo[w]
- And, every directed graph has a transpose, which means... (see next slide)

What's an Edge Mean?

- What does our graph model?
 - Edge **uv** means do **u** first, then **v**. Or, ...
 - Edge **uv** means task **u** depends on v (i.e. **v** must be done first)

- The latter is called a dependency graph
- "forward in time" vs. "depend on this one"
- Big deal? No, we can order vertices in reverse topological order if needed

Strongly Connected Components in a Digraph

Readings: CLRS 22.5, but you can ignore the proof-y parts

Strongly Connected Components (SCCs)

- In a digraph, Strongly Connected Components (SCCs) are subgraphs where all vertices in each SCC are reachable from one another
 - Thus vertices in an SCC are on a directed cycle
 - Any vertex not on a directed cycle is an SCC all by itself
- Common need: decompose a digraph into its SCCs
 - Perhaps then operate on each, combine results based on connections between SCCs

SCC Example

- Example: digraph below has 3 SCCs
 - Note here each SCC has a cycle. (Possible to have a single-node SCC.)
 - Note connections to other SCCs, but no path leaves a SCC and comes back
 - Note there's a unique set of SCCs for a given digraph

Component Graph

- Sometimes for a problem it's useful to consider digraph G's component graph, G^{SCC}
 - It's like we "collapse" each SCC into one node
 - Might need a topological ordering between SCCs

How to Decompose Graph into SCCs

- Several algorithms do this using DFS
- We'll use CLRS's choice (by Kosaraju and Sharir)
- Algorithm is:
 - 1. Call DFS-sweep(G) to find finishing times u.f for each vertex u in G.
 - 2. Compute G^T , the transpose of diagraph G. (Reminder: transpose means same nodes, edges reversed.)
 - 3. Call DFS-sweep(G^T) but do the recursive calls on nodes in the order of decreasing u.f. (Start with the vertex with largest finish time,...)
 - 4. The DFS forest produced in Step 3 is the set of SCCs

Why Do We Care about the Transpose?

- If we call DFS on a node in an SCC, it will visit all nodes in that SCC
 - But it could leave the SCC and find other nodes ☺
 - Could we prevent that somehow?
- Note that a digraph and its transpose have the same SCCs
 - Maybe we can use the fact that edge-directions are reversed in G^T to stop DFS from leaving an SCC?
 - But this depends on the order you choose vertices to do DFS-sweep() in G^T

Why Do We Care About Finish Times?

- Our algorithm first finds DFS finish times in G
- Then calls recursive DFS <u>in transpose</u> from vertex with largest finish time (here, B)
 - Reversed edges in G^T stop it visiting nodes in other SCCs

Finish times: B:14, E:13, A:12, C:8, D:7, G:5, F:4

Why Do We Care About Finish Times?

- After recursive DFS in transpose finds SCC with containing B, next DFS will start from C
 - Nodes in previously found SCC(s) have been visited
 - Reversed edges in G^T stop it visiting nodes in SCCs yet to be found

Finish times: B:14, E:13, A:12, C:8, D:7, G:5, F:4

Ties to Topological Sorting

- Formal proof of correctness in CLRS, but hopefully from previous slides you're convinced it works!
- Note how the use of finish times makes this seem like topological sort. And it is, if you think of topological ordering for G^{SCC}
 - Topological sort controls the order we do things, and DFS finds all the reachable nodes in an SCC

Final Thoughts

- There are many interesting problems involving digraphs and DAGs
- They can model real-world situations
 - Dependencies, network flows, ...
- DFS is often a valuable strategy to tackle such problems
 - Not interested in back-edges, since DAGs are acyclic
 - Ordering, reachability from DFS can be useful