2 A small charged glass bead of weight $5.4 \times 10^{-5} \, \text{N}$ is initially at rest at point A in a vacuum. The bead then falls through a uniform horizontal electric field as it moves in a straight line to point B, as illustrated in Fig. 2.1.

Fig. 2.1 (not to scale)

The electric field strength is $1.3 \times 10^4 \, \text{V} \, \text{m}^{-1}$. The charge on the bead is $-3.7 \times 10^{-9} \, \text{C}$.

(a)	Describe how two metal plates could be used to produce the electric field. Numerical values
	are not required.

				[2]
 	 	 	 	[∠]

(b) Determine the magnitude of the electric force acting on the bead.

(c)	is 7	your answer in (b) and the weight of the bead to show that the resultant force acting on it $.2 \times 10^{-5} \text{N}$.
(-I)	-	[1]
(a)		plain why the resultant force on the bead of $7.2 \times 10^{-5}\mathrm{N}$ is constant as the bead moves ng path AB.
		[2]
(e)	(i)	Calculate the magnitude of the acceleration of the bead along the path AB.
		acceleration = ms ⁻² [2]
	(ii)	The path AB has length 0.58 m.
		your answer in (i) to determine the speed of the bead at point B.
		speed = $m s^{-1}$ [2]
		[Total: 11]