

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/050418

International filing date: 01 February 2005 (01.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 035 551.7

Filing date: 22 July 2004 (22.07.2004)

Date of receipt at the International Bureau: 05 April 2005 (05.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

BUNDESREPUBLIK DEUTSCHLAND

21 MAR 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 035 551.7

Anmeldetag:

22. Juli 2004

Anmelder/Inhaber:

Siemens Aktiengesellschaft,
80333 München/DE

Bezeichnung:

Sensor und Verfahren zu dessen Herstellung

Priorität:

06. Februar 2004 DE 10 2004 005 927.6

IPC:

G 01 N 27/414

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. März 2005
Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

A handwritten signature in black ink, appearing to read "Wallner".

Wallner

Beschreibung

Sensor und Verfahren zu dessen Herstellung

5 Die Erfindung betrifft einen Sensor, beispielsweise Gassensor, Beschleunigungssensor oder Drucksensor mit siliziumhaltigen Bauteilen mittels der elektrische Signale bei vorhandenem Analyten oder bei mechanischer Verformung auslesbar sind, sowie ein Herstellungsverfahren.

10

Die in der Luft enthaltene Feuchte bildet an der Oberfläche von siliziumhaltigem Material einen dünnen Wasserfilm, der zu erhöhter Oberflächenleitfähigkeit führt. Die durch diese Erhöhung entstehenden Leckströme stellen für viele Sensoren, die mit Luft in Kontakt stehen ein Problem bezüglich der Stabilität und des Signalverhaltes dar.

15

Um Feuchteinflüsse auf Sensorsysteme zu vermeiden, werden diese zur Zeit, falls möglich gekapselt aufgebaut. Ist der Kontakt mit der Umgebungsluft für das Sensorprinzip zwingend erforderlich, beispielsweise Gassensoren, greift man auf passive, wasserabweisende Membranen zurück. Heizen auf Temperaturen von deutlich über 100°C löst das Problem ebenso, ist jedoch mit erheblichen Energieaufwand verbunden.

20

Der Erfindung liegt die Aufgabe zugrunde einen Sensor mit einem Halbleiterkörper bereitzustellen, dessen Feuchteempfindlichkeit bzw. dessen Leckströme wesentlich reduziert ist/sind. Weiterhin ist ein Herstellungsverfahren anzugeben.

25

Die Lösung dieser Aufgaben geschieht durch die jeweilige Merkmalskombination von Anspruch 1 bzw. Anspruch XXX. Vorteilhafte Ausgestaltungen sind den Unteransprüchen entnommen werden.

30

Der Erfindung liegt die Erkenntnis zugrunde, dass das aus der Glasbeschichtung bekannte Verfahren der Silanisierung auch

auf die Halbleitertechnologie übertragen werden kann. Hierbei entsteht auf der siliziumhaltigen Oberfläche eine Monolage der gängigen, hydrophoben Molekülketten, die die Adsorption von Wassermolekülen unterbinden. Hierfür eignen sich alle 5 hydrophoben Molekülketten, die eine stabile Verbindung mit der Oberfläche eingehen. Somit kann bis zu hohen Luftfeuchtigkeiten, nahezu 100%, kein geschlossener Wasserfilm entstehen, der die unerwünschte Oberflächenleitfähigkeit begünstigt.

10 Siliziumhaltige Bauelemente können nach der Silanisierung ungeheizt und ungekapselt an Umgebungsluft betrieben werden, ohne dass störende Einflüsse durch Feuchte induzierte Oberflächenströme zum Tragen kommen.

15 Allgemein ausgedrückt wird der in dieser Siliziumtechnologie als Basis verwendete Halbleiterkörper silanisiert. Dabei können sowohl reines Silizium, als auch oberflächlich vorhandene Siliziumverbindungen behandelt werden.

20 Die Einsatzbereiche für derartige gegen Feuchtigkeit unempfindliche Halbleitersensoren auf Siliziumbasis sind beispielweise Gassensoren, Drucksensoren oder allgemein sämtliche im Betrieb mit im Wesentlichen Luftfeuchtigkeit in Kontakt kommende Sensoren. Daher werden bei Gassensoren Analyten 25 wie Zielgase detektiert und bei Druck- oder Beschleunigungssensoren mechanische Formänderungen.

30 Im Folgenden werden anhand der schematischen, die Erfindung nicht einschränkenden Zeichnungen Ausführungsbeispiele beschrieben.

35 Figur 1 zeigt eine Vergleich zwischen einem silanisierten Wasserstoffsensor und einem ohne hydrophobe Deckschicht,

Figur 2 zeigt eine Darstellung bei verschiedenen Feuchte-
werten und zusätzlichen Gasen,

5 Figur 3 zeigt den Stand der Technik in Form eines Floating-
Gate-FET.

Die Funktionsweise der Silanisierung auf Siliziumnitrid und
oxidiertem Polysilizium wurde speziell an einem Gassensor,
einem Floating-Gate-Feldeffekttransistor (FGFET) erprobt und
genauer untersucht. Ebenso können andere Ausführungen von
FETs verwendet werden, wie beispielsweise Suspended Gate
FETs. Die Fig. 3 zeigt den schematischen Aufbau des verwende-
ten FGFETs.

15

Funktionsweise

Die an der sensitiven Schicht, durch Gasbeaufschlagung ent-
stehende Potentialänderung wird über den durch das floatende
Gate und kapazitiven Well (Elektrode) aufgespannten Span-
nungsteiler zum MOSFET geleitet und führt dort zu einer
Stromänderung zwischen Drain D und Source S. Die floatende
Elektrode ist, um sie vor störenden Leckströmen zu schützen,
mit einer Nitrid-, bzw. Oxidschicht bedeckt. Dennoch können
Potentiale durch einen leitendem Feuchtefilm auf dieser Pas-
sivierung noch kapazitiv einkoppeln. Um dies zu unterdrücken
ist eine Äquipotentialfläche, der sog. Guardring, auf der
Oberfläche, um das empfindliche Gate herum, angeordnet. Bei
höheren Luftfeuchtigkeiten (>50%) treten dennoch erhöhte
Oberflächenströme auf, die zu starker Signaldrift führen. Um
dies zu verhindern, ist es notwendig die Entstehung eines
Feuchtefilms zu unterbinden. Beim Silanisieren werden nun
sehr hydrophobe Molekülketten auf der bestehenden Passivie-
rung aufgebracht, bevor das hybride Gate montiert wird. Da
die Klebeverbindung des Gates nun auf dieser Schicht nicht
mehr haftet, sind auf dem Chip zusätzliche Aluminium-Klebe-
Pads notwendig, da dort die Silanisierung nicht haftet. Durch
diesen Prozess bleiben die so hergestellten, ungeheizten Gas-

sensoren auch bei hohen Feuchten nahezu vollkommen stabil. Nachfolgende Messung zeigt, siehe **Fig. 1**, den Vergleich zwischen einem silanisierten und einem unbehandelten Wasserstoffsensor bei verschiedenen Feuchten.

5

Die starke Drift und "Verformung" der Wasserstoffsignale wird durch die Silanisierung wirkungsvoll unterbunden. Die verbleibenden kleinen Feuchte-Stufen im silanisierten Signal werden vom Dipolsignal des Wassers auf der sensiven Platin-
10 schicht verursacht und sind nicht weiter störend.

Um eine präzise Aussage über die Oberflächenleitfähigkeit machen zu können, wurde obiger FGFET mit Oberflächen ohne hybrides Gate sowohl silanisiert, wie unsilanisiert aufgebaut.

15 Um die sehr kleinen Ströme qualitativ zu messen, machte man sich die Empfindlichkeit des floatenden Gates zu Nutze. Bei beiden Chips wurde der Guardring mit einem Rechteckgenerator angesteuert und die feuchteabhängige Einkopplung auf die Transistoren gemessen. Die Frequenz wurde hierbei sehr niedrig gewählt (0,1Hz), um frequenzabhängige Effekte in den RC-Gliedern auszuschließen. Je höher die Oberflächenleitfähigkeit, desto größer ist die Einkopplung des Rechteckgenerators in den Transistor. Die Darstellung entsprechend **Fig. 2** enthält eine Gegenüberstellung dieser Messungen bei verschiedenen Feuchten und zusätzlichen Gasen. Der Strom in den Transistoren wird hierbei über eine Feedback Elektronik konstant gehalten. Die resultierenden Signale entstammen dem Feedback-Regelkreis und geben somit das am floatenden Gate anliegende Potential wieder.
20
25

30

Es ist zu erkennen, dass sämtliche Feuchteinflüsse nach der Silanisierung verschwunden sind. Die Verbleibende Einkopplung ist nur noch kapazitiv. Die Reaktion des Nitrides auf NO₂ ist bei der silanisierten Version verschwunden. Dafür zeigt sich eine erhöhte Empfindlichkeit auf NH₃. Dies ist bei dem für die Silanisierung verwendeten Trichlorsilan, insbesondere

n-Octadecyltrichlorsilan, als Ausgangssubstanz zu erwarten,
da Laugen wie Ammoniak die Bindungen an die Nitrid-
Passivierung angreifen. Gegen Säuren hingegen (wie NO₂) ist
die Schicht besonders stabil. Die Proben mit oxidiertem Poly-
silizium zeigen das selbe Verhalten.

Patentansprüche

1. Sensor mit siliziumhaltigen Bauteilen an dessen sensivem Detektionselement elektrische Signale mittels eines Siliziumhalbleitersystems auslesbar sind, dadurch gekennzeichnet, dass die siliziumhaltigen Bauteile zur Vermeidung von Störsignalen aufgrund von Feuchtigkeit mit einer Schicht aus hydrophobem Material belegt sind.
- 10 2. Sensor nach Anspruch 1, bei dem das hydrophobe Material aus Molekülketten besteht, die mit Silizium eine stabile Bindung bilden.
- 15 3. Sensor nach einem der vorhergehenden Ansprüche, bei dem die Molekülketten eine einlagige Schicht bilden.
- 20 4. Sensor nach einem der vorhergehenden Ansprüche, bei dem die siliziumhaltigen Bauteile aus Silizium, Siliziumnitrid oder oxidiertem Silizium bestehen.
- 25 5. Sensor nach einem der vorhergehenden Ansprüche, bei dem das Siliziumhalbleitersystem ein Feldeffekttransistor (FET) ist.
- 30 6. Sensor nach einem der vorhergehenden Ansprüche, wobei Gassensor, ein Drucksensor oder ein Beschleunigungssensor vorliegt.
- 35 7. Verfahren zur Herstellung eines Gassensors mit einer in einem Feldeffekttransistor (FET) mit siliziumhaltigen Bauteilen integrierten gassensitiven Schicht, an welcher elektrische Signale entsprechend einem vorhandenen Zielgas mittels des FETs auslesbar sind, bei dem
siliziumhaltige Bauteile mittels Silanisierung mit einer hydrophoben Schicht belegt werden und
weitere zum FET zugehörige Bauteile, wie eine hybride Elektrode/Gate nachträglich montiert wird.

8. Verfahren nach Anspruch 6, bei dem zur Silanisierung ein Silan verwendet wird.

5 9. Verfahren nach Anspruch 7, bei dem zur Silanisierung ein Trichlorsilan verwendet wird.

10. Verfahren nach Anspruch 8, bei dem zur Silanisierung ein n-Octadecyltrichlorsilan ($C_{18}H_{37}Cl_3Si$) verwendet wird.

10

Zusammenfassung

Sensor und Verfahren zu dessen Herstellung

5 Sensor mit siliziumhaltigen Bauteilen an dessen sensitivem
Detektionselement elektrische Signale entsprechend einem vor-
handenen Analyten mittels eines Siliziumhalbleitersystems
auslesbar sind, dadurch gekennzeichnet, dass die siliziumhal-
tigen Bauteile zur Vermeidung von Störsignalen aufgrund von
10 Feuchtigkeit mit einer Schicht aus hydrophobem Material be-
legt sind.

Sig. Fig. 1

15

200401818

1/3

FIG 1

Durch Guardansteuerung mit Rechteck +/-0,5V erhält man eine Aussage über die Oberflächenleitfähigkeit des Materials in Abhängigkeit von Feuchte und in Kombination mit Gasen.

FIG 2

FIG 3

