历届考研真题

TIT 477	fell to	学早
班级	姓名	子亏

一、单项选择题

(2005 数三)设一批零件的长度服从正态分布 $N(\mu, \sigma^2)$,其中 μ, σ^2 均未知. 现从中随机抽取 16 个零件,测得样本均值x=20 (cm),样本标准差 s=1 (cm),则 μ 的置信度为 0. 90 的置信区间是().

A.
$$\left(20 - \frac{1}{4}t_{0.05}(16), 20 + \frac{1}{4}t_{0.05}(16)\right)$$
 B. $\left(20 - \frac{1}{4}t_{0.1}(16), 20 + \frac{1}{4}t_{0.1}(16)\right)$

C.
$$\left(20 - \frac{1}{4}t_{0.05}(15), 20 + \frac{1}{4}t_{0.05}(15)\right)$$
 D. $\left(20 - \frac{1}{4}t_{0.1}(15), 20 + \frac{1}{4}t_{0.1}(15)\right)$

二、填空题

- 1. (1995 数三)设总体 X 的方差为 1,根据来自 X 的容量为 100 的简单随机样本,测得样本均值为 5,则 X 的数学期望的置信度近似等于 0.95 的置信区间为______.
- 3. (2009 数一)设 X_1, X_2, \cdots, X_m 为来自二项分布总体 B(n,p) 的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差. 若 $\overline{X} + kS^2$ 为 np^2 的无偏估计量,则 k=1

三、解答题

1. (2015 数三)设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leq x \leq 1 \\ 0, & \text{其中 } \theta \text{ 为未} \end{cases}$

知参数 $,X_1,X_2,\cdots,X_n$ 是来自总体的简单样本.

- ①求参数 θ 的矩估计量.
- ②求参数 θ 的最大似然估计量.

2. (2013 数三) 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x > 0, \\ 0, & \text{其中 } \theta \text{ 为未} \end{cases}$

知参数且大于零, X_1 , X_2 , \cdots , X_n 为来自总体 X 的简单随机样本.

- ①求 θ 的矩估计量.
- ②求 θ 的最大似然估计量.

- 3. (2012 数一) 设随机变量 X 和 Y 相互独立,且分别服从正态分布 $N(\mu, \sigma^2)$ 与 $N(\mu, 2\sigma^2)$,其中 σ 是未知参数且 $\sigma > 0$,设 Z = X Y.
 - ①求 Z 的概率密度 $f_z(z,\sigma^2)$.
 - ②设 Z_1, Z_2, \cdots, Z_n 为来自总体Z 的简单随机样本,求 σ^2 的最大似然估计量 $\hat{\sigma}^2$.
 - ③证明 $\hat{\sigma}^2$ 是 σ^2 的无偏估计.

- 4. (2011 数一)设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已知, $\sigma^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本均值和样本方差.
 - ①求参数 σ^2 的最大似然估计 $\hat{\sigma}^2$.
 - ②计算 $E(\hat{\sigma}^2)$ 和 $D(\hat{\sigma}^2)$.

概率论与数理统计习题集

5. (2010 数一)设总体 X 的概率分布为:

X	1	2	3
P	$1-\theta$	$\theta - \theta^2$	θ^2

其中 $\theta \in (0,1)$ 未知,以 N 来表示来自总体 X 的简单随机样本(样本容量为n)中等于i 的个数(i=1,2,3),试求常数 a_1,a_2,a_3 ,使 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求 T 的方差.

- 6. (2000 数三)假设 0. 50,1. 25,0. 80,2. 00 是来自总体 X 的简单随机样本值. 已 知 $Y = \ln X$ 服从正态分布 $N(\mu,1)$.
 - ①求X的数学期望E(X)[(记 E(X) 为 b)].
 - ②求μ的置信度为 0.95 的置信区间.