MODELO ELECTROMAGNETICO HAY CUATRO VECTORES FUNDAMENTALES

CAMPO ELÉCTRICO E [V/m]

ELÉCTRICO DE FLUJO D [C/m²]

ELÉCTRICO H [A/m]

CAMPO MAGNÉTICO H [A/m]

MAGNÉTICO DENSIDAD DE FLUJO B [T]

MAGNÉTICO

EN ELECTROMAGNETISMO SE VA ATRATAR DE LOS EFECTOS MACROSCÓPICOS DE LA MATERIA

DENSIDAD DE CARGA VOLUMÉTRICA

SP = lim Δq [c/m³] $\Delta N \rightarrow 0$ ΔN

Ss = lim Δq [C/m²] DENSIDAD SUPERFICIAL DE CARGA ELECTRICA

SL= lim Aq [C/m] DENSIDAD LINEAL DE CARGA ELECTRICA

$$I = \frac{dq}{dt}$$
 [C/S] of [A] CORRIENTE

 $J = \frac{I}{S}$ [A/m²] DENSIDAD DE CORRIENTE

SISTEMA INTERNACIONAL DE UNIDADES

1	1	
LONGITUD	METRO	[m]
MASA	kg	[kg]
TIEMPO	SEGUNDO	[s]
CURRTENTE	AMPERE	[A]

MKS-A SISTEMA DEUNIDADES.

CONSTANTES UNIVERSALES

C = 3.108(m/s) EN EL VACIO

Mo = 4T. 107(H/m)

$$E_0 = \frac{1}{c^2 \mu \omega} = \frac{1}{36\pi} \cdot 10^9 (F/m)$$

 $= 8.854 \cdot 10^{-12} (F/m)$

TEOREMA DE LA DIVERGENCIA

$$\int_{V} \nabla \cdot \vec{A} dV = \int_{S} \vec{A} \cdot d\vec{S}$$

$$\operatorname{div} \overrightarrow{A} = \nabla \cdot \overrightarrow{A}$$

$$\operatorname{div} \overrightarrow{A} = \frac{\partial Ax}{\partial x} + \frac{\partial Ay}{\partial y} + \frac{\partial Az}{\partial z}$$

S: SUPERFICIE QUE CONTIENE EL VOLUME D

S(VXA). ds = & A. dl s

S: SUPERFICIE ABIERTA. C: CAMINO DE CONTORNO A LA SUPERFICIE S.

LEY DE COULOMB

CAMPO ELECTRICO

$$\vec{E} = \lim_{q \to 0} \vec{F} (V/m) \qquad F [N]$$

$$q = q \vec{E} [N] \qquad E [N/C] \cdot [V/m]$$

EN ELECTRO ESTATICA SE VAN A TENER ESTOS DOS POSTULADOS FUNDAMENTALES

$$\nabla \cdot \vec{E} = \frac{g}{g} \quad (1)$$

POR EL TEOREMA DE LA DIVERGENCIA

gE·ds = Q S

QUE ES LA LEY DE GAUSS

O: CARGA TOTAL EN , UN VOLUMEN V, CONTENIDA EN UNA SUPERFICIE S

EL CAMPO ELECTRICO ESTATICO ES

ESTO SIGNIFICA QUE ES INDEPENDIENTE DEL CAMINO UN CAMPO IRROTACIONAL.

FORMA DIFFRENCIAL FORMA INTEGRAL

POTENCIAL ELECTRICO

Vx₽zo.

SE PUEDE EXPRESAR E = - VV DONDE V ES EL POTENCIAL ELECTRICO

DEFINICION P2

W = - \(\vec{E} \) . Il [V]

 $V_2 - V_1 = -\int_{E}^{2} \cdot dl \quad [v]$

ES EL TRABAJO QUE SE REALIZA DE LLEVAR UNA CARGA DE P. A P2 NO DEPENDE DEL CAMINO

- DIFERENCIA DE POTENCIAL

$$\frac{W}{q} = -\int_{P_1}^{P_2} \cdot dl = -\int_{P_1}^{P_2} \nabla V \cdot dl = \int_{P_1}^{P_2} \nabla V \cdot \hat{a}l \cdot dl = \int_{P_1}^{P_2} dV = V_2 - V_1$$

EL TRABAJO SE REALIZA EN CONTRA DEL CAMPO ELECTRICO

CAMPO MAGNETICO:

DE LOS TRABAJOS EXPERIMENTALES DE AMPERE Y BIOT SAVART SE TIENEN LOS SIGUIENTES POSTULADOS:

POSTULADO I: UNA CORRIENTE ELEMENTAL I de SITUADA EN UN CAMPO MAGNETICO EXPERIMENTA UNA FUERZA DE

df = PxBdl

F = SIdexB

dF= IBde seno

Si 0= T1/2

dF = IBdl.

F = LBQ

ALAMBRE RECTO DE LONGITUD L

EJEMPLO: CALCULAR LAFUERZA

MOTOR DE CORRIENTE CONTÍNUA (CC)

EL PAR MOTOR SE EXPRESA COMO

T= NBIA Seno

N: NUMERO DE ESPIRAS

A . AREA DEL INDUCIDO

6 = TT/2

0=0 NO CIRCULA CORRIENTE POR EL INDUCIDO.

EL PROPOSITO DEL CONMUTADOR ES INVERTIR LA CORRIENTE PARA QUE EL PAR ACTÚE EN EL MISMO SENTIDO

GENERADOR DE CORRIENTE CONTÍNUA

SE SUSTITUYE LA BATERÍA POR UNA RESISTENCIA Y SE APLICA UNA FUERZA GIRATORIA AL INDUCIDO

UN ALAMBRE CON COPRIENTE NIB

$$V = \int \vec{E} \cdot d\vec{l} = \int \vec{F} \cdot d\vec{l} = \int \vec{r} \times \vec{B} \cdot d\vec{l} = \nabla B l$$

PARA DOS CONDUCTORES DE LONGITUD L

V = 2 NB l Seno = 2 wd Bl senwt = WBA senwt

0= wt

 $V = W \cdot \frac{d}{2}$

A=ld

V = | WBA senut |

FUERZA DEL RESORTE FRESORTE

PAR RECUPENADOR

KX = BNIA COOX

PARA CADA CORRIENTE HABRÁ UNA POSICIÓN DE EQUILIBRIO.

PAR SOBRE UNA ESPIRA

Fn = F. seno

 $T=2 F_m \frac{d}{2}$

MOMENTO DEL PAR

T= & Franod = IBl. senod = IB seno (l.d)

Area de
la espira

T= IABseno

donde I = A = m

m = I AM MOMENTO MAGNETICO.

M: VERSOR UNITARIO DE A

$$\vec{T} = \vec{m} \times \vec{B}$$

POSTULADO2

UN ELEMENTO DE CORRIENTE PRODUCE UN CAMPO MAGNETICO B QUE A UNA DISTANCIA R DEL ELEMENTO VIENE DADO POR:

MÓDULO DE CTR

LEY DE BIOT SAVART

dr JxB

GENERADOR BIPOLAR

EJEMPLO

1200 RPM

BA = 0,05 Wb

60 ESPIRAS

4 GRUPOS EN PARALELO, IS (ESPIRACEN)

V=WBA senwt

A HORA NO HAY CONMUTADOR HAY ANILLOS DESLIZANTES

TENSION PRODUCIDA EN R