PREDICTION OF COLOMBIAN STUDENTS' ACADEMIC SUCCESS USING DECISION TREES ALGORITHMS

Juliana Restrepo Tobar
David Vergara Patiño
Andrea Carvajal Maldonado
Medellín, June 2020

Designed Data Structure 1. Data Frame

Figure 1: Data Frame of students and their information. The student's code is the key and all information such as ID, age, genre is they key value.

	Key	Key Value		
0	Student's code	Period	Studied abroad?	1
1	SB11201220 492225	20152	YES	
2	SB11201220 492224	20131	NO	
3	SB11201220 492226	20151	NO	

Operations

Figure 2: Information access operation

Time and Complexity Analysis

	Complexity		
Method	Best case	Worst case	
iloc/loc	O(1)	O(1)	
pandas.concat	O(1)	O(1)	

Table 1: Complexity of some operations in Data Frame

Structure	Data Frame	
Space	59869502 bytes- 539116653 bytes	
Time of creation	0.41s-4.43s	
Time of access	0.000216s-0.000648s	
Time of concatenation	0.75s-0.80s	

 Table 2: Results analysis

Design Criteria

- Since the format of the input data is a matrix, it is very convenient to store it in a table-like structure.
- Data frames allow storing different data types.
- One of the most used data structures when working with big data and AI.
- Efficient and easy way of organizing and managing a large volume of information.

Time and Memory Consumption

Graph 1:Time taken to create the data frame

Memory consumption

Graph 2: Memory consumption of the data

Designed Data Structure 2. Binary Decision Tree

Figure 3: Binary Decision Tree.

Data Structure Operations

Figure 3: Creation of a binary decision tree

Figure 4: Classifying a student

Time and Complexity Analysis

	Complexity	
Operation	Average case	Worst case
Creation	O(2 ^x *n*m)	O(2 ^x *n*m)
Classify	O(log ₂ n)	O(log ₂ n)

Table 3: Complexity of the decision tree's operations.

Structure	Binary Decision Tree
Space	586452992-666603520 bytes
Time of creation	253.796-813.418 s
Time of classifying	0.706-2.148s

 Table 4: Results analysis.

Design Criteria

- CART is the latest, most used decision tree algorithm with C5.
- Consumes less memory and has a lower probability of misclassification than C5.0.

Time and Memory Consumption

Graph 3:Time taken to create the decision tree

Memory consumption

Graph 4: Memory consumption of the data

Implementation

Implementation

GitHub link: https://github.com/jrestrepot/ST0245-

032/blob/master/proyecto/codigo/proyecto_final_datos1.py

Accuracy percentage: 99.8%

Confusion matrix	Condition positive	Condition negative
Predicted condition positive	22461	21
Predicted condition negative	55	22463

Table 5: Time taken to create the decision tree

Applications

- Universities can use it to easily recognize excellent students and contact them for admission or scholarship processes.
- Also can be used to predict which active students are more likely to have a low score on their exam so they can provide them with special attention.
- Can be applied by the government to reinforce aspects in the educational system.

