7. Mocniny s racionálními exponenty

Úloha 1. Je-li a kladné reálné číslo, vyjádřete součin $\sqrt[3]{a} \cdot \sqrt[4]{a^3} \cdot \sqrt[6]{a^3}$ ve tvaru jediné mocniny a (exponent nemusí být celý) a také pomocí odmocniny (bez použití neceločíselného exponentu).

Úloha 2. Vypočtěte následující hodnoty (ideálně s určitým zapojením vlastního intelektu, jinak souhlasím s tím, že to zvládne každá rozumná kalkulačka): (a) $\left(\frac{8}{125}\right)^{\frac{1}{3}}$ (b) $243^{\frac{1}{5}}$ (c) $1000^{-\frac{2}{3}}$ (d) $1^{-\frac{5}{4}}$ (e) $-1^{\frac{5}{4}}$ (f) $8 \cdot \left(\frac{1}{4}\right)^{\frac{1}{2}}$ (g) $16^{1,75}$ (h) $5,6^{\frac{1}{2}}$: $\left(\frac{7}{5}\right)^{\frac{1}{2}}$

Úloha 3. Vyjádřete jako jedinou mocninu dvojky: (a) $2^{\frac{1}{4}} \cdot 2^{\frac{2}{3}}$ (b) $2^{\frac{3}{4}} : 2^{\frac{1}{2}}$ (c) $\left(\left(2^{\frac{1}{2}}\right)^{\frac{1}{4}}\right)^{\frac{7}{4}}$ (d) $\left(2 \cdot 2^{\frac{1}{2}}\right)^{\frac{1}{2}} : 2^{\frac{7}{8}}$ (e) $2^{\frac{1}{2}} \cdot 4^{\frac{1}{4}} \cdot 8^{\frac{1}{8}} \cdot 16^{\frac{10}{16}}$ (f) $\left(2^{\frac{1}{3}}\right)^4 \cdot 2^{\left(\frac{1}{3}\right)^4}$

Úloha 4. Určete hodnotu výrazu $\left[a^{-\frac{3}{2}} \cdot b(ab^{-2})^{-\frac{1}{2}} \cdot (a^{-1})^{-\frac{2}{3}}\right]^3$ pro $a = \frac{\sqrt{2}}{2}$ a $b = \frac{1}{\sqrt[3]{2}}$. (Doporučuji nejprve výraz zjednodušit.)

Úloha 5. Zjednodušte tyto výrazy:

(a)
$$\frac{\left(y^{\frac{1}{2}}\right)^3 \cdot (y^2)^{\frac{1}{3}}}{y \cdot y^{\frac{2}{3}}}$$
 (b) $\frac{(xy)^{\frac{1}{2}} \cdot (x^2y)^{-\frac{1}{3}}}{(xy^2)^{-\frac{2}{3}}}$ (c) $\left(\frac{x^{\frac{2}{5}}}{y^{\frac{3}{2}}}\right)^{-2} \cdot \frac{(y^{-1}x^{-2})^{-\frac{1}{2}}}{(xy^2)^{\frac{1}{10}}}$

Úloha 6. Zjednodušte (užitím racionálních exponentů): (a) $\sqrt{3 \cdot \sqrt{3}}$ (b) $\sqrt{8 \cdot \sqrt{4 \cdot \sqrt{2}}}$ (c) $\sqrt[3]{5^2 \cdot \sqrt{5}}$ (d) $\sqrt{5 \cdot \sqrt[3]{\frac{1}{5}} \cdot \sqrt[4]{5}}$ (e) $\frac{\sqrt[3]{2 \cdot \sqrt{8}}}{\sqrt{2 \cdot \sqrt[3]{4}}}$ (f) $\frac{\sqrt[5]{u \cdot \sqrt[6]{u^2}}}{\sqrt{u}}$ (g) $\sqrt[6]{\frac{b^4}{\sqrt{b}}} \cdot \sqrt[3]{\frac{b^3}{\sqrt{b}}} \cdot \sqrt{b}$

Úloha 7. Řešte následující rovnice s neznámou $x \in \mathbb{R}$:

(a)
$$x^{\frac{1}{3}} = 0.4$$

(c)
$$x^{\frac{2}{3}} = 0.25$$

(e)
$$64x^6 - 1 = 0$$

(b)
$$\sqrt{x^3} = 8$$

(d)
$$\sqrt[5]{\sqrt[3]{x^5}} = 3$$

(f)
$$x^{-\frac{1}{3}} = 4x^{\frac{1}{4}}$$

 \star Úloha 8. (Žádná zajímavá úloha na racionální exponenty mě nenapadla, tak sem dám tuto.) Matematik Pěnkava se jednoho dne rozhodl, že bude zkoumat čísla tvaru $2^{2^n}-1$, kde n je přirozené číslo. Po dosazení jedničky mu vyšlo $2^{2^1}-1=2^2-1=3$, z čehož usoudil, že výsledek bude asi vždycky prvočíslo. Vaším úkolem je dokázat, že ze všech Pěnkavových čísel je trojka ve skutečnosti jako jediná prvočíslo.

1. $a^{\frac{19}{12}} = \sqrt[12]{a^{19}}$

2. (a) $\frac{2}{5}$ (b) 3 (c) $\frac{1}{100}$ (d) 1 (e) -1 (f) 4 (g) $2^7 = 128$ (h) 2

3. (a) $2^{\frac{11}{2}}$ (b) $2^{\frac{1}{4}}$ (c) $2^{\frac{3}{32}}$ (d) $2^{-\frac{1}{8}}$ (e) $2^{\frac{31}{8}}$ (f) $2^{\frac{109}{81}}$

4. 1

5. (a) $y^{\frac{1}{2}}$ (b) $x^{\frac{1}{2}}y^{\frac{3}{2}}$ (c) $x^{\frac{1}{10}}y^{\frac{33}{10}}$

6. (a) $3^{\frac{3}{4}}$ (b) $2^{\frac{17}{8}}$ (c) $5^{\frac{5}{6}}$ (d) $5^{\frac{11}{24}}$ (e) 1 (f) $u^{-\frac{7}{30}}$ (g) $b^{\frac{23}{12}}$

7. (a) $\frac{8}{125} = 0.064$ (b) 4 (c) $2^{-3} = 0.125$ (d) $3^3 = 27$ (e) $\pm \frac{1}{2}$ (f) $2^{-\frac{24}{7}}$