A Case Study

In this case study we are going to use the automobile dataset, which plenty of car manufacturers withtheir specifications in in order to build a predictive model to find out the approximate car price. This dataset has 26 columns, including categorical and quantitative attributes.

In Table 1 some of the records from the above-mentioned dataset.

Table 1: Samples of the dataset records

symboling	normalized- losses	make	fuel-type	aspiration	num-of-doors	body-style	drive-wheels
3	?	alfa-romero	gas	std	two	convertible	rwd
3	?	alfa-romero	gas	std	two	convertible	rwd
1	?	alfa-romero	gas	std	two	hatchback	rwd
2	164	audi	gas	std	four	sedan	fwd
2	164	audi	gas	std	four	sedan	4wd
2	?	audi	gas	std	two	sedan	fwd
1	158	audi	gas	std	four	sedan	fwd
1	?	audi	gas	std	four	wagon	fwd
1	158	audi	gas	turbo	four	sedan	fwd
0	?	audi	gas	turbo	two	hatchback	4wd
2	192	bmw	gas	std	two	sedan	rwd
0	192	bmw	gas	std	four	sedan	rwd
0	188	bmw	gas	std	two	sedan	rwd
0	188	bmw	gas	std	four	sedan	rwd
1	?	bmw	gas	std	four	sedan	rwd
0	?	bmw	gas	std	four	sedan	rwd
0	?	bmw	gas	std	two	sedan	rwd
0	?	bmw	gas	std	four	sedan	rwd
2	121	chevrolet	gas	std	two	hatchback	fwd

You need to write descriptive answers to the questions under each task and also usea proper program written in Python and execute the code.

- 1. The missing values are presented as '?' in the dataset. Apply data wrangling techniques using Python programming language to solve missing values in all the attributes.
- 2. Check the data types of those columns with the missing values, and convert the data type if needed.
- 3. Find all the correlated features to the 'Price'.
- 4. Build a predictive model to predict the car price based on using one of the independent correlated variables.
- 5. Continue with the same built model in No.4, but choose different independent variables and discuss the result.