

THÈSE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ SAVOIE MONT BLANC

Spécialité : Sciences pour l'Ingénieur

Arrêtée ministériel : 25 mai 2016

Présentée par

Avetissian Tigran

Thèse dirigée par Formosa Fabien et codirigéee par Badel Adrien

préparée au sein du Laboratoire SYMME : SYstèmes et Matériaux pour la MÉcatronique

dans l'École Doctorale SISEO : Sciences et Ingénierie des Systèmes, de l'Environnement et des Organisations

"Titre"

"Sous-titre"

Thèse soutenue publiquement le **"Date de soutenance"**, devant le jury composé de :

M. "Nom, Prénom"

"titre et affiliation", Examinateur

Mme. "Nom, Prénom"

"titre et affiliation", Rapporteur

M. "Nom, Prénom"

"titre et affiliation", Rapporteur

M. "Nom, Prénom"

"titre et affiliation", Directeur de thèse

M. "Nom, Prénom"

"titre et affiliation", Co-Directeur de thèse

M. "Nom, Prénom"

"titre et affiliation", Co-Encadrant de thèse

M. "Nom, Prénom"

"titre et affiliation", Invité

•••

Remerciements

MERCI

Table des matières

	Rem	erciements					
	Table	e des ma	atières	iii			
I	Intro	oduction	n générale sur la récupération d'énergie	1			
	I.1		noi faire de la récupération d'énergie	2			
		I.1.1		2			
		I.1.2	Longévité des batteries	2			
	I.2	Les gis	sements énergétiques existants	2			
	I.3		s technologiques pour l'exploitation des sources d'énergies				
	I.4		andes familles de récupérateurs d'énergie	2 2 2 3			
		I.4.1	Figures	2			
		I.4.2	Tableaux	3			
II			lier de la récupération d'énergie sur le corps humain	5			
	II.1		upération d'énergie sur le corps entier	6			
		11.1.1	Énergie thermique	6			
		II.1.2	Énergie chimique A VOIR	6			
			Énergie mécanique - cinétique	6			
	II.2		upération d'énergie autour de l'environnement de la tête	6			
		II.2.1	Énergie thermique	6			
			Énergie mécanique - cinétique	6			
	II.3		upération d'énergie dans le conduit auditif	6			
	II.4	Présent	tation des travaux (6			
Ш	Mod	álicatio	n et simulation du système de récupération d'énergie intra-auriculaire	7			
111			ter au mieux l'énergie de déformation locale du canal auditif	8			
	111.1		Maximiser l'énergie extractible	8			
		111.1.1	III.1.1.a Emmagasiner l'énergie de façon optimale				
			III.1.1.b Limiter les contraintes d'encombrement	8			
		III 1 2	Amplifier la fréquence de l'énergie source	8			
			Pertinence de la chaîne de conversion d'énergie envisagée	8			
			Solution proposée pour maximiser l'énergie récupérée	8			
	III.2		ge du mouvement de la masse dynamique du bistable : valves hydrauliques	8 8 8 8 8			
			La dynamique nécessaire au fonctionnement cyclé du récupérateur	8			
			Solutions existantes pour la gestion directionnelle de fluide en mouvement	8			
			III.2.2.a Solutions nécessitant une alimentation électrique	8			
			III.2.2.b Solutions ne nécessitant pas d'alimentation électrique	8			
		III.2.3	Solution proposée pour la gestion directionnelle de fluide en mouvement	9			

	III.3	Modéli	sation du convertisseur électromécanique					
			L'oscillateur monostable					
		III.3.2	L'oscillateur bistable	9				
		III.3.3	L'oscillateur bistable implémentant le générateur piézoélectrique	9				
			III.3.3.a Définition des grandeurs dimensionnantes et du rendement du					
			convertisseur	9				
	III.4	Modéli	isation du circuit hydraulique couplé au convertisseur électromécanique	9				
	III.5	Simula	tion et dimensionnement préliminaire du système de récupération	9				
		III.5.1	Couplage entre le circuit hydraulique et l'oscillateur bistable	9				
		III.5.2	Phase d'actionnement	9 9				
		III.5.3	Phase de conversion d'énergie	9				
		III.5.4	Critères de dimensionnement préliminaire	9				
		III.5.5	Simulation et résultats	9				
IV		_	et fabrication du convertisseur électromécanique : oscillateur bistable +					
			r piézoélectrique	10				
	IV.1		des charges (11				
			Architecture générale	11				
			Choix technologique pour les articulation du bistable	11				
	TTTO		Critères de conception du bistable	11				
	IV.2		sionnement et conception de l'oscillateur bistable	11				
			Étude de flambement	11				
		1V.2.2	Dimensionnement des articulations du bistable	11				
			IV.2.2.a Rigidité en rotation	11				
			IV.2.2.b Rigidité longitudinale	11 11				
	11/2	Fahrias	IV.2.2.c Résistance structurelle	11				
	14.3		ation et caractérisations expérimentales	11				
			Intégration du transducteur piézoélectrique à la structure monobloc	11				
			Caractérisation du convertisseur électromécanique bistable résultant	11				
		14.5.5	IV.3.3.a Analyse d'impédance	11				
			IV.3.3.b Comportement dynamique	11				
	IV4	Corréla	ation modèle - essais et recalage	11				
	1 4.1	IV.4.1	Comparaison données théoriques et expérimentales	11				
		IV.4.2	Simulations après recalage	11				
			Conclusion	11				
		2 // // //						
V	Conc	ception	et fabrication des valves hydrauliques : tubes flexibles flambés	12				
	V. 1	Cahier	des charges	13				
		V.1.1	Modèle d'approximation du tube flambé	13				
		V.1.2	Diamètre hydraulique de fermeture	13				
	V.2	Concep	otion	13				
		V.2.1	Comportement mécanique post-flambement des tubes flexibles	13				
			V.2.1.a Comportement cinématique	13				
			V.2.1.b Comportement statique	13				
		V.2.2	Intégration à l'oscillateur bistable	13				
			V.2.2.a Intégration cinématique	13				
		***	V.2.2.b Intégration statique	13				
		V.2.3	Validation numérique des tubes valve conçus	13				
			V.2.3.a Implémentation dans le modèle système	13				
			V.2.3.b Simulation du modèle système comprenant les valves	13				

	V.3	Caractérisations expérimentales	13
	V.4	Implémentation dans le modèle système global	13
	V.5		13
		<u> </u>	_
VI	Cara	ctérisation expérimentale du prototype de récupération d'énergie intra-auriculai	re
	comp		14
	VI.1	Modèle système global	15
	VI.2	Banc de test	15
	VI.3	Résultats	15
		VI.3.1 Actionnement unilatéral du bistable – 1 fermeture de mâchoire	15
		VI.3.1.a Résultats du comportement dynamique global	15
		VI.3.1.b Estimation de l'énergie récupérée sur un cycle de mastication .	15
		VI.3.2 Actionnement bilatéral du bistable – 2 fermetures de mâchoire consécutives	15
	VI.4	Corrélation modèle - essais et recalage	15
VI		clusion et perspectives	16
		Analyse critique du système	16
		Applications potentielles	16
	VII.3	Conclusion	16
D'I	1.		
BII	onogr	aphie	I
Tal	ble de	es figures	Ш
Lic	te de	s tableaux	V
	ite de	5 tuoleuu A	•
A	Anno	Topyo 1	VII
A	Anno A 1		V 111 V 111
	A.1 A.2		v III
	A.2	Conclusion	<i>i</i> 111

Introduction générale sur la récupération d'énergie

Sommaire

I.1	Pourquoi faire de la récupération d'énergie
	I.1.1 Capteurs autonomes (IOT)
	I.1.2 Longévité des batteries
I.2	Les gisements énergétiques existants
I.3	Verrous technologiques pour l'exploitation des sources d'énergies
	Verrous technologiques pour l'exploitation des sources d'énergies Les grandes familles de récupérateurs d'énergie

I.1 Pourquoi faire de la récupération d'énergie

- **I.1.1** Capteurs autonomes (IOT)
- I.1.2 Longévité des batteries

Introduction générale [Bob2000] [Agashe2008]

- I.2 Les gisements énergétiques existants
- I.3 Verrous technologiques pour l'exploitation des sources d'énergies
- I.4 Les grandes familles de récupérateurs d'énergie
- I.4.1 Figures

Figure I.1 – Figure simple

Figure I.2 – Figure double

Figure I.3 – Figure triple

I.4.2 Tableaux

Nº	A	В	C	D
1	x	X	0	0
2	0	X	0	0
3	х	0	X	0
4	х	X	0	X

Tableau I.1 – Tableau

Cas particulier de la récupération d'énergie sur le corps humain

Sommaire

II 1	La récupération d'énergie sur le corps entier
11.1	
	II.1.1 Énergie thermique
	II.1.2 Énergie chimique A VOIR
	II.1.3 Énergie mécanique - cinétique
II.2	La récupération d'énergie autour de l'environnement de la tête
	II.2.1 Énergie thermique
	II.2.2 Énergie mécanique - cinétique
II.3	La récupération d'énergie dans le conduit auditif
II.4	Présentation des travaux

II.1 La récupération d'énergie sur le corps entier

- II.1.1 Énergie thermique
- II.1.2 Énergie chimique A VOIR
- II.1.3 Énergie mécanique cinétique
- II.2 La récupération d'énergie autour de l'environnement de la tête
- II.2.1 Énergie thermique
- II.2.2 Énergie mécanique cinétique
- II.3 La récupération d'énergie dans le conduit auditif
- II.4 Présentation des travaux

Modélisation et simulation du système de récupération d'énergie intra-auriculaire

Sommaire

III.1 Exploi	ter au mieux l'énergie de déformation locale du canal auditif	8
III.1.1	Maximiser l'énergie extractible	8
	III.1.1.a Emmagasiner l'énergie de façon optimale	8
	III.1.1.b Limiter les contraintes d'encombrement	8
III.1.2	Amplifier la fréquence de l'énergie source	8
III.1.3	Pertinence de la chaîne de conversion d'énergie envisagée	8
III.1.4	Solution proposée pour maximiser l'énergie récupérée	8
III.2 Cyclag	ge du mouvement de la masse dynamique du bistable : valves hy-	
drauli	ques	8
III.2.1	La dynamique nécessaire au fonctionnement cyclé du récupérateur	8
III.2.2	Solutions existantes pour la gestion directionnelle de fluide en mouvement	8
	III.2.2.a Solutions nécessitant une alimentation électrique	8
	III.2.2.b Solutions ne nécessitant pas d'alimentation électrique	8
III.2.3	Solution proposée pour la gestion directionnelle de fluide en mouvement	9
III.3 Modél	isation du convertisseur électromécanique	9
III.3.1	L'oscillateur monostable	9
III.3.2	L'oscillateur bistable	9
III.3.3	L'oscillateur bistable implémentant le générateur piézoélectrique	9
	III.3.3.a Définition des grandeurs dimensionnantes et du rendement	
	du convertisseur	9
	isation du circuit hydraulique couplé au convertisseur électroméca-	
_	• • • • • • • • • • • • • • • • • • • •	9
	ation et dimensionnement préliminaire du système de récupération .	9
	Couplage entre le circuit hydraulique et l'oscillateur bistable	9
	Phase d'actionnement	9
	Phase de conversion d'énergie	9
	Critères de dimensionnement préliminaire	9
III.5.5	Simulation et résultats	9

III.1 Exploiter au mieux l'énergie de déformation locale du canal auditif

III.1.1 Maximiser l'énergie extractible

III.1.1.a Emmagasiner l'énergie de façon optimale

Stockage dans ressort linéaire vs dans bistable (article Fabien)

III.1.1.b Limiter les contraintes d'encombrement

Choix technologiques plus variés.

Facilité d'exploitation de l'énergie hydraulique.

III.1.2 Amplifier la fréquence de l'énergie source

Actionner un oscillateur.

Avantage du bistable pour l'actionnement statique d'un puits de potentiel vers l'autre. Le monsostable s'actionne forcément avec du frottement supplémentaire (biblio)

III.1.3 Pertinence de la chaîne de conversion d'énergie envisagée

Efficacité théorique de la chaîne de conversion (sans modèle = biblio).

Faibles pertes dans la transmission hydraulique QS.

Fort k^2 du PZT vs le PFDV.

Profit du facteur de qualité vs un récupérateur statique.

III.1.4 Solution proposée pour maximiser l'énergie récupérée

Présentation schématique du système de conversion envisagé.

Fonctionnement et rôle de chaque organe.

Mise en évidence du couplage entre tous les organes.

III.2 Cyclage du mouvement de la masse dynamique du bistable : valves hydrauliques

III.2.1 La dynamique nécessaire au fonctionnement cyclé du récupérateur

Introduction du caractère cyclique recherché dans le fonctionnement du système.

III.2.2 Solutions existantes pour la gestion directionnelle de fluide en mouvement

III.2.2.a Solutions nécessitant une alimentation électrique

Présentation des solutions existantes pour la redirection de fluide (Liste non exhaustive en biblio). Appuyer la nécessité d'alimeter en électricité.

III.2.2.b Solutions ne nécessitant pas d'alimentation électrique

On privilégie une solution qui nécessite pas d'être alimentée en élec (Liste non exhaustive en biblio).

III.2.3 Solution proposée pour la gestion directionnelle de fluide en mouvement

On propose une solutuion qui répond à nos besoins spécifiques.

III.3 Modélisation du convertisseur électromécanique

- III.3.1 L'oscillateur monostable
- III.3.2 L'oscillateur bistable
- III.3.3 L'oscillateur bistable implémentant le générateur piézoélectrique

Identifier la dimension technologique fixée : l'APA = Technologie certifiée CEDRAT. Schématisation cinématique du système bistable + APA PFD sur masse et mise en évidence du Duffing.

III.3.3.a Définition des grandeurs dimensionnantes et du rendement du convertisseur

III.4 Modélisation du circuit hydraulique couplé au convertisseur électromécanique

Schématisation hydraulique du système de ballastes + amplificateur hydraulique + switch($\Delta P = C_f * q_{ear}$) + pistons.

III.5 Simulation et dimensionnement préliminaire du système de récupération

- III.5.1 Couplage entre le circuit hydraulique et l'oscillateur bistable
- III.5.2 Phase d'actionnement
- III.5.3 Phase de conversion d'énergie
- III.5.4 Critères de dimensionnement préliminaire
- III.5.5 Simulation et résultats

Conception et fabrication du convertisseur électromécanique : oscillateur bistable + transducteur piézoélectrique

Sommaire IV1 Cabier

IV.1 Cal	nier des charges	11
IV.1	.1 Architecture générale	11
IV.1	.2 Choix technologique pour les articulation du bistable	11
IV.1	.3 Critères de conception du bistable	11
IV.2 Din	nensionnement et conception de l'oscillateur bistable	11
IV.2	£.1 Étude de flambement	11
IV.2	2.2 Dimensionnement des articulations du bistable	11
	IV.2.2.a Rigidité en rotation	11
	IV.2.2.b Rigidité longitudinale	11
	IV.2.2.c Résistance structurelle	11
IV.3 Fab	rication et caractérisations expérimentales	11
IV.3	.1 Fabrication de la structure à lames monobloc	11
IV.3	2.2 Intégration du transducteur piézoélectrique à la structure monobloc	11
IV.3	3.3 Caractérisation du convertisseur électromécanique bistable résultant	11
	IV.3.3.a Analyse d'impédance	11
	IV.3.3.b Comportement dynamique	11
IV.4 Cor	rélation modèle - essais et recalage	11
IV.4	.1 Comparaison données théoriques et expérimentales	11
IV.4	2.2 Simulations après recalage	11
IV.4	.3 Conclusion	11

IV.1	Cahier	des	charges
 	Cullici	uco	Ciiui ECD

- IV.1.1 Architecture générale
- IV.1.2 Choix technologique pour les articulation du bistable
- IV.1.3 Critères de conception du bistable

IV.2 Dimensionnement et conception de l'oscillateur bistable

- IV.2.1 Étude de flambement
- IV.2.2 Dimensionnement des articulations du bistable
- IV.2.2.a Rigidité en rotation

Modèle éléments finis

Modèle analytique

IV.2.2.b Rigidité longitudinale

Rigidité du générateur piézoélectrique prépondérante

IV.2.2.c Résistance structurelle

Adaptation des lames parallèles à la méthode de fabrication

Contraintes dans les lames pliées

IV.3 Fabrication et caractérisations expérimentales

- IV.3.1 Fabrication de la structure à lames monobloc
- IV.3.2 Intégration du transducteur piézoélectrique à la structure monobloc
- IV.3.3 Caractérisation du convertisseur électromécanique bistable résultant
- IV.3.3.a Analyse d'impédance
- IV.3.3.b Comportement dynamique
- IV.4 Corrélation modèle essais et recalage
- IV.4.1 Comparaison données théoriques et expérimentales
- IV.4.2 Simulations après recalage
- IV.4.3 Conclusion

Conception et fabrication des valves hydrauliques : tubes flexibles flambés

Sommaire V.1 13 13 V.1.2 Comportement mécanique post-flambement des tubes flexibles V.2.1 13 V.2.1.a 13 V.2.1.b 13 13 V.2.2.a 13 V.2.2.b V.2.3 13 V.2.3.a 13 V.2.3.b Simulation du modèle système comprenant les valves 13 13 13

V.1 Cahier des charges

V.1.1 Modèle d'approximation du tube flambé

Diamètre hydraulique en fonction de Cf

V.1.2 Diamètre hydraulique de fermeture

Diamètre hydraulique en fonction de la position du bistable

V.2 Conception

V.2.1 Comportement mécanique post-flambement des tubes flexibles

V.2.1.a Comportement cinématique

L'angle de fermeture de fermeture

V.2.1.b Comportement statique

Énergie de pliage et moment de rappel en rotation

- V.2.2 Intégration à l'oscillateur bistable
- V.2.2.a Intégration cinématique
- V.2.2.b Intégration statique
- V.2.3 Validation numérique des tubes valve conçus
- V.2.3.a Implémentation dans le modèle système
- V.2.3.b Simulation du modèle système comprenant les valves
- V.3 Caractérisations expérimentales
- V.4 Implémentation dans le modèle système global
- V.5 Corrélation modèle essais et recalage

Caractérisation expérimentale du prototype de récupération d'énergie intra-auriculaire complet

Sommaire

VI.2 Banc de t	est
VI.3 Résultats	
VI.3.1 A	ctionnement unilatéral du bistable – 1 fermeture de mâchoire
V	I.3.1.a Résultats du comportement dynamique global
V	I.3.1.b Estimation de l'énergie récupérée sur un cycle de mastication
VI.3.2 A	ctionnement bilatéral du bistable – 2 fermetures de mâchoire consé-
cu	ıtives

- VI.1 Modèle système global
- VI.2 Banc de test
- VI.3 Résultats
- VI.3.1 Actionnement unilatéral du bistable 1 fermeture de mâchoire
- VI.3.1.a Résultats du comportement dynamique global
- VI.3.1.b Estimation de l'énergie récupérée sur un cycle de mastication
- VI.3.2 Actionnement bilatéral du bistable 2 fermetures de mâchoire consécutives
- VI.4 Corrélation modèle essais et recalage

Conclusion et perspectives

- VII.1 Analyse critique du système
- VII.2 Applications potentielles
- VII.3 Conclusion

Bibliographie

[Agashe2008] Janhavi S. Agashe et David P. Arnold. Erratum: A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions (Journal of Physics D: Applied Physics (2008) 41 (105001)). Journal of Physics D: Applied Physics, vol. 42, no. 9, 2008.

[Bob2000] B. Bob. *Bob and Bobby*. J. Bob, vol. 2000, no. Bob 2000, page 2000, 2000.

Table des figures

I.1	Figure simple	2
	Figure double	
	Figure triple	

Liste des tableaux

I 1	Tableau																				2

Annexe 1

A.1 Introduction

A.2 Conclusion

"Titre" "Sous-titre" Résumé Mots-clés: **Abstract**

Keywords: