1 Cantor-Bernstein's theorem (without proof), Cantor's theorem

Теорема (Кантора-Бернштейна)

Пусть A, B - множества, $A \leq B$ и $B \leq A$. Тогда $A \approx B$.

Теорема (Кантора)

Для любого множества $A, A \prec \mathcal{P}(A)$ (т.е. $A \leq \mathcal{P}(A)$ и $A \not\approx \mathcal{P}$).

Доказательство

Инъективное отображение $A \ni a \mapsto \{a\} \in \mathcal{P}(A)$ показывает, что $A \leq \mathcal{P}(A)$. Предположим, что $A \approx \mathcal{P}(A)$. Тогда существует биекция $f : A \to \mathcal{P}(A)$. Теперь определим множество $B = \{a | a \notin f(a)\}$. Проверим, верно ли, что $B \in f^{-1}(B)$.

- Предположим, что $B \in f^{-1}(B)$. Тогда по определению $B, B \notin f^{-1}(B)$.
- Предположим, что $B \notin f^{-1}(B)$. Тогда по определению $B, B \in f^{-1}(B)$.

В обоих случаях имеем противоречие, поэтому такое f не может существовать.

2 Zhegalkin polynomial (ANF), theorem about ANF existence and uniqueness

Определение

Исключающее ИЛИ или **хог** - это бинарная логическая операция, обозначается как \oplus . $x \oplus y$ верно тогда и только тогда, когда логические значения x и y различны.

В полиномах Жегалкина будем использовать 1 для обозначения логической константы \top , и пустое пространство между пропозициональными переменными для \wedge .

Определение

Полином Жегалкина или алгебраическая нормальная форма - это хог-комбинация элементарных конъюнкций и констант 1.

Примеры

- $1 \oplus xy \oplus yz \oplus xyz$
- *xyzt*
- $x \oplus y \oplus z$

Теорема

Для каждой формулы ϕ существует единственный полином Жегалкина p_{ϕ} , эквивалентный ϕ .

Доказательство

Существует ровно 2^{2^n} неэквивалентных формул с n пропозициональными переменными, поскольку существует ровно 2^{2^n} различных таблиц истинности с п переменными. Теперь посчитаем Полиномы Жегалкина. Для этого сначала заметим, что существует 2^n различных элементарных конъюнкций с n переменными. Чтобы показать это, заметим, что каждой элементарной конъюнкции может быть однозначно сопоставлена функция из n элементов (переменных) в множестве $\{0,1\}$, показывающим, входит ли переменная v_i в элементарную дизъюнкцию. Каждому полиному Жегалкина может быть однозначно сопоставлено отображение, отображающее элементарную конъюнкцию (включая пустую) в 1, если она представлена в сумме, или в 0 в противном случае. Итак, мы пришли к выводу, что существует ровно 2^{2^n} Полиномов Жегалкина. Для завершения доказательства осталось показать, что все полиномы Жегалкина различны. Доказывать это будем от противного. Предположим, что существует два различных эквивалентных Полинома Жегалкина. Если применить к ним операцию хог, то мы получим Полином Жегалкина, эквивалентный \perp , но не содержащий элементарных конъюнкций (с коэффициентом 1). Возьмем такую элементарную конъюнкцию с наименьшим количеством переменных, и интерпретируем все эти переменные как 1, а все остальные как 0. Тогда значение этой элементарной конъюнкции будет равно 1, в то время как значение всех остальных будет равно 0, следовательно, значение всего Полинома будет равно 1 - противоречие.

3 Herbrandt normal form, theorem about Herbrandization

Нормальная форма Гербранда

Начнем с некоторой формулы $\phi = Q_1 x_1 \dots Q_n x_n \psi$, находящейся в пренексной нормальной форме. Определим **Нормальную форму Гербран-** да (или **Гербрендизацию** $Hb(\phi)$ формулы ϕ следующим образом.

- ullet если ϕ является \exists -формулой, то $Hb(\phi)=\phi$
- в противном случае $\phi = \exists x_1 \dots \exists x_n \forall y \psi(\bar{x}, y)$ и для некоторого нового n-местного функционального символа f возьмём

$$Sk(\phi) = Sk(\exists x_1 \dots \exists x_n \psi(\bar{x}, f(\bar{x})))$$

Отметим, что во втором пункте этого определения, параметр n моэкет быть равен 0. В таком случае символ f является нулярным, т.е. это новая константа c, и в этом случае: $\phi = \forall y \psi(y)$ и $Sk(\phi) = \psi(c)$.

Теорема (о гербрендизации)

Для любой формулы ϕ верно следующее: $\models \phi \Leftrightarrow \models Hb(\phi)$

Доказательство

Эта теорема может быть сведена к предыдущей, если заметить, что:

- ullet ϕ тождественно истинна $\Leftrightarrow \neg \phi$ невыполнима
- $Hb(\phi) \sim \neg Sk(\neg \phi)$

Тогда $\models \phi \Leftrightarrow \neg \phi$ невыполнима $\Leftrightarrow Sk(\neg \phi)$ невыполнима $\Leftrightarrow \models \neg Sk(\neg \phi) \Leftrightarrow \models Hb(\phi)$.

Теорема (о сколемизации)

Для любой формулы ϕ верно следующее: ϕ выполнима $\Leftrightarrow Sk(\phi)$ также выполнима.

Доказательство

Индукция по количеству кванторов $\exists n$. Если n=0, то $Sk(\phi)=\phi$ и доказывать нечего. Шаг индукции. Предположим, что $\forall x_1 \ldots \forall x_n \psi(\bar{x}, f(\bar{x}))$ выполнима. Тогда понятно, что $\forall x_1 \ldots \forall x_n \exists y \psi(\bar{x}, y)$ будет также выполнима, потому что значение $y=f(\bar{x})$ - следствие такой переменной y. Обратное включение, если $\forall x_1 \ldots \forall x_n \exists y \psi(\bar{x}, y)$ является выполнимой в некоторой модели \mathcal{M} , то для любого кортежа $\bar{a} \in \mathcal{M}$ (состоящего из значений x_i) существует такой элемент b (значение y) что $\mathcal{M} \models \psi(\bar{a}, b)$. Можно определить означивание f, каждому \bar{a} сопоставляя b, и в таком случае $\mathcal{M} \models \psi(\bar{a}, f(\bar{b}))$, следовательно, $Sk(\phi)$ выполнима.