Physik Zusammenfassung

Christian Leser & Noa Sendlhofer cleser & nsendlhofer Version: November 2, 2023

1 Elektrizitätslehre

1.1 Ladung Q

 \bullet Elementarladung: $q_{Elektron} = e = -1.602 \cdot 10^{-19} C$

Coulomb-Kraft:

$$\vec{F_C} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 \cdot q_2}{r^2} \cdot \vec{e_r}$$

$$arepsilon_0 = 8,854 \cdot 10^{-12}$$

$${q_1}_{/2} = ext{Punktladungen}$$

$$r = ext{Abstand zw. Punktladungen}$$

 $\vec{e_r} = \text{Einheitsvektor}$

- Ladungen mit gleichem Vorzeichen stossen sich ab. $F_C < 0 \rightarrow {\sf abstossend}, \, F_C > 0 \rightarrow {\sf anziehend}$
- Ladungen leitender Körper stets an Oberfläche. → Inneres: Ladungs und Feldfrei

Liniendichte
$$\lambda$$

$$\lambda = \frac{Q}{l} \left[\frac{C}{m} \right]$$

Oberflächendichte σ

Volumendichte
$$\rho$$

$$\rho = \frac{Q}{V} \left[\frac{C}{m^3} \right]$$

1.2 Strom I

Strom A:

$$I = \frac{dQ}{dt} \left[\frac{C}{s} \right]$$

$$Q = \int_{\Delta t} I dt$$

Stromdichte i:

$$\boxed{j = \frac{I}{A} \left[\frac{A}{m^2} \right]} \longleftrightarrow$$

$$\boxed{I = \iint\limits_{A} j dA \overset{(I \text{ gleichm. auf } A)}{=} j \cdot A}$$

Flächendichte

$$j = \frac{I}{A} \left[\frac{C}{s \cdot m^2} \right]$$

1.3 Elektrischer Widerstand R

Widerstand:

$$R = \frac{U}{I}, I \sim U$$

Ohmsche Leiter $I = \frac{U}{R}$

nicht-ohmsche Leiter
$$R_{\rm diff} = rac{dU}{dI}$$

nach Grösse:

$$R = \rho \frac{l}{A}$$

l = Leiterlänge

$$A = \mbox{Leiterquerschnitt}$$
 $ho = \mbox{spezifischer Widerstand}$

$$T=rac{1}{
ho}={
m Spezifische\ Leitfähigkeit}$$

nach Temperatur:

$$\rho(T) = \rho_0(1 + \alpha(T - T_0))$$

$$ho_0=$$
 spezifischer Widerstand bei T_0
$$T_0=$$
 Bezugstemperatur
$$\alpha=\frac{1}{\kappa}=$$
 Temperaturkoeffizient

1.4 Elektrische Kapazität C

Materie (Dielektrikum mit ε_m): $C_m = \varepsilon_m C_0$

Im Vakuum:
$$0 = \frac{Q}{U} = \varepsilon_0 \frac{A}{l}$$

$$U_m = \frac{U_0}{\varepsilon_m}$$

$$\varepsilon_m = \frac{\overrightarrow{E}}{\overrightarrow{E}_2}$$

Einschieben von Dielektrika in einen Plattenkondensator:

Die Energieverteilung verändert sich bis ein Gleichgewichtszustand erreicht ist:

$$0 = dW_{\text{tot}}$$

$$= dW_{\text{Feld}} - dW_{\text{Batt}} + dW_{\text{Diel}}$$

1.5 Kirchhoffsche Regeln

Ladestrom Kondensator:

 $I(t) = I_0 \cdot e^{\left(-\frac{t}{R \cdot C}\right)}$

 $I(0) = I_0 = \frac{U}{R_{\text{tot}}}$

 $I(\infty) = 0$

Widerstände:
$$\sum_{k} I_{k} = 0$$
Kondensatoren: $\sum_{k} Q_{k} = 0$

Kondensatoren:
$$\sum_k Q_k \equiv$$

Widerstände:
$$\sum_i U_i = \sum_k R_k I_k$$
 Kondensatoren: $\sum_i U_i = \sum_k \frac{Q_k}{C_k}$

$$i=\#$$
 Spannungsquellen $k=\#$ Spannungsabfälle

$$\sum U_{\text{Quelle}} = \sum U_{\text{Abfälle}}$$

- (1) Zeichne \vec{U}_{SQ} an der Spannungsquelle ein (minus nach plus)
- (2) Wähle Stromrichtung \vec{I} (gegen U_{SQ})
- (3) Trage \vec{U}_R an Widerständen (ein gleich wie Stromrichtung)

1.6 Schaltkreis

 $\vec{I} = \mathsf{Stromrichtung}$ $R = \mathsf{Widerstand}$

 $ec{U}=$ Richtung des Spannungsabfall Spannungsquelle: von mius nach plus Widerstand: in Stromrichtung

1.6.1 Serieschaltung

Stromstärke:
$$I_{\mathrm{ges}} = I_i$$

$$\mathrm{Spannung:} \ U_{\mathrm{ges}} = \sum_i U_i$$

$$\mathrm{Widerstände:} \ R_{\mathrm{res}} = \sum_i R_i$$

$$1 \qquad \qquad 1$$

Ladung: $Q_{ges} = Q_i$

$$C_{\rm res} = \frac{\sum_i C_i}{C_i}$$
 zwei Kondensatoren: $C_{res} = \frac{C_1 \cdot C_2}{C_1 + C_2}$

1.6.2 Parallelschaltung

Stromstärke:
$$I_{ ext{ges}} = \sum_i I_i$$
 Spannung: $U_{ ext{ges}} = U_i$ Widerstände: $\frac{1}{R_{res}} = \sum \frac{1}{R_i}$ wei Widerstände: $R_{res} = \frac{R_1 \cdot R_2}{R_i}$

wei Widerstande:
$$R_{res} \equiv \frac{}{R_1 + R_2}$$

Kondensatoren: $C_{res} = \sum C_i$

1.7 Strom/Spannnungsteiler

Spannungsteiler (Kondensator/Widerstand):

Stromteiler

$$\begin{aligned} &U_1^C = U \cdot \frac{C_2}{C_1 + C_2} \\ &U_2^C = U \cdot \frac{C_1}{C_1 + C_2} \\ &U_1^R = U \cdot \frac{R_1}{R_1 + R_2} \\ &U_2^R = U \cdot \frac{R_2}{R_1 + R_2} \end{aligned}$$

$$I_{1} = I \cdot \frac{R_{1}}{R_{1} + R_{2}}$$

$$I_{2} = I \cdot \frac{R_{2}}{R_{1} + R_{2}}$$

2 Elektrostatik

2.1 Elektrisches Feld

Homogenes Feld (Plattenkondensator) Inhomogenes Feld (Punktladung)

Quick facts:

- ullet Jede Ladung erzeugt ein E Feld
- Feldlinien von + nach -
- Feldlinien immer \bot auf leitfähigen Körpern
- Feldlinien schneiden sich nie
- Innerhalb von Leitern gibt es kein Feld

2.1.1 Elektrische Feldstärke E

Inhomogen (Punktladung):

$$\vec{E} = \frac{F}{q_2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1}{|\vec{r}|^2} \cdot \vec{e}$$

 $\varepsilon_0 = 8,854 \cdot 10^{-12}$

 $ec{r}=$ Abstand zw. Punktladungen → Feld mehrer Punktladungen (- nach +)

 $\vec{e_r} = \text{Einheitsvektor Richtung Feldlinien}$

Summierbar (Vektorsumme) Homogene (Plattenkondensator)

$$\vec{E} = \frac{U}{l}\vec{e}$$

l = Abstand der Platten

2.1.2 Elektrische Flussdichte/Verschiebungsdichte D

Dichte der Ladung:

$$\vec{D} = \frac{Q}{A}\vec{e}$$

$$\vec{D} = \varepsilon \cdot \vec{E}$$

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r$$

Allgemein:

Punktladung: $\Phi(P) = -\int \vec{E} d\vec{s}$ $\Phi(r) = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r}$

2.1.4 Elektrische Spannung U

Inhomogen:

$$U = \Phi(P) - \Phi(P_0) = -\int_{P_0}^{P} \vec{E} d\vec{s}$$

Homogen:

stets selbes Potential/Spannung

 $U\,=\,E\,\cdot\,d$

2.1.5 Elektrisches Dipolmoment

Für zwei gleich stark, mit unterschiedlichem Vorzeichen geladene

$$\vec{p} = Q\vec{l}$$

$$\vec{E}_{dip} = \frac{1}{4\pi\varepsilon_0} \frac{3(\vec{p}\hat{r})\hat{r} - \vec{p}}{r^3}$$

2.2 Elektrischer Fluss Ψ

 $E = \mathsf{Elektrisches}\;\mathsf{Feld}$ $A = \mathsf{Fl\"{a}che}$, durch die das Feld hindurch-

$$\oint \vec{E} d\vec{A} = \frac{1}{\varepsilon_0} \int \rho dV = \frac{Q}{\varepsilon_0}$$
$$div(\vec{E}) = \frac{1}{\varepsilon_0} \rho$$

 $Q = \mathsf{Gesamtladung}$ innerhalb der Fläche

2.3 Kraft, Arbeit, Leistung

2.3.1 Kraft im \vec{E} Feld

$$\vec{F_E} = Q\vec{E_0}$$

Im Plattenkondensator:

Q = LadungU =Spannung

 Φ =el. Potential

E =el. Feldstärke

l = Entfernung zwischenKondensatorflächen

 $E_{pot} = Q \cdot E \cdot l$ $= Q \cdot U$

2.3.3 Arbeit im \vec{E} Feld

Die gespeicherte Energie ist jeweils die verrichtete Arbeit: $\Delta E =$ $W \text{ Arbeit} = \text{Kraft} \cdot \text{Weg}$

$$W = \int \vec{F} d\vec{s} = \int \vec{E} \cdot Q d\vec{s} = Q \Delta \Phi$$
$$= QU = CU^{2} = U \cdot I \cdot t$$
$$dW = UIdt$$

Gespeicherte Energie im Kondensator:

- Energie entspricht Fläche unter Q-U-Diagramm.
- Ladevorgang eines Kondensators verläuft linear.
- Somit: Energie entspricht Dreiecksfläche mit Seitenlänge Ladung und Spannung nach Ladevorgang.

$$\begin{split} W &= \int U dq = \frac{QU}{2} = \frac{Q^2}{2C} = \frac{CU^2}{2} \\ &= \frac{1}{2} \varepsilon_0 E_0^2 V \\ \rho_{el} &= \frac{W}{V} = \frac{1}{2} \varepsilon_0 E_0^2 \end{split}$$

Q = LadungU = Spannung

 $E_0 =$ Elektrische Feldstärke V =Volumen zwischer

Kondensatorflächer

 ρ_{e1} =Energiedichte

2.3.4 Leistung im \vec{E} Feld

$$P = \frac{W}{t} = F \cdot v = U \cdot I$$

Magnetisches Feld

3.1 Magnetische Feldstärke H

- Stromdurchflossene Leiter bauen magnetisches Feld auf
- Rechte-Hand-Regel

H = Magnetische Feldstärke $I = \mathsf{Stromst\"{a}rke}$

l = Länge der Spule

3.2 Magnetische Flussdichte B

 $\mu = \mu_0 \cdot \mu_T = \mathsf{Mag}$. Permeabilität $A = \mathsf{Durchflossene}\;\mathsf{Fläche}$ H = Mag. Feldstärke

Spule

 $\Phi = \mathsf{Mag}$. Fluss

$$B = \frac{\mu \mu_0 I}{2\pi r}$$

 $B = \mu \mu_0 I \frac{n}{I}$

Magnetischer Fluss Φ

 $= \int \vec{B} d\vec{A}$

 $\Phi = \mu A H$

 $\mu = \mu_0 \cdot \mu_T = Mag$. Permeabilität $A = \mathsf{Durchflossene}\;\mathsf{Fläche}$ H = Mag. Feldstärke

B = Mag. Flussdichte

Magnetisches Dipolmoment

$$\vec{m} = I \vec{A}$$

 $ec{A}=$ Vektor normal zu durchflossener Fläche

Induktivität L

Serie: $L_{tot} = \sum_{i} L_{i}$

 $\mu = \mu_0 \cdot \mu_r = \mathsf{Mag}$. Permeabilität $\Phi = \mathsf{Magnetischer}$ Fluss durch die Spule

n = Windungen der Spulel = Länge der Spule

 $A_i = \mathsf{Querschnittsfläche} \ \mathsf{der} \ \mathsf{Spule}$

3.6 elektromagnetische Induktion

Spannungsstoss S_U

Änderung des magnetischen Feldes erzeugt Strom in Spule $\mu = \mu_0 \cdot \mu_T = \mathsf{Mag}$. Permeabilität

$$S_U = \int U_i dt$$
$$= \mu n_i \Delta H A_i$$

 $U_i = \mathsf{Spannung}$ in der Spule i $n_i = \mathsf{Windungen} \ \mathsf{der} \ \mathsf{Spule} \ \mathsf{i}$

$$n_i = ext{Windungen der Spule i}$$
 $H = ext{Mag. Feldstärke}$
 $A_i = ext{Querschnittsfläche der Spule i}$

Induktionsgesetz

$$U_i = -n_i \frac{d\Phi}{dt} \qquad \qquad U_i$$

$$= \underbrace{-n_i \frac{d}{dt} \iint \vec{B} \vec{dA}}_{\vec{B} \text{ hom. auf } \vec{A} \text{ und } \vec{B} \parallel \vec{dA},}_{\vec{B} \text{ Induktionsspule}}$$

$$= -n_i BA$$

Minus wegen Lenzscher Regel $U_i =$ Induzierte Spannung in Spule $n_i = \mathsf{Windungen} \ \mathsf{der} \ \mathsf{Spule} \ \mathsf{i}$ B = mag. Flussdichte A = Querschnittsfläche Spule,normal zu Fläche

$$\int U_i dt = \alpha \int \vec{H} \cdot \vec{ds}
\alpha = \mu \frac{n_i}{l} A_i
B = \frac{LI}{nA}$$

$$U_i = S
\vec{H} = n
\mu = \mu
l = 1
B = n
L = 1$$

 $U_i = \mathsf{Spannung}$ in der Spule i $\vec{H} = \text{magnetische Feldstärke}$ $\mu = \mu_0 \cdot \mu_r = \mathsf{Mag}$. Permeabilität $n_i = {\sf Windungen} \ {\sf der} \ {\sf Spule} \ {\sf i}$ l = Länge der Spule B = mag. Flussdichte L = Induktivität $A = \mathsf{Querschnittsfläche\ Spule,\ normal\ zu\ Fläche}$

 $U_i = \text{induzierte Spannung}$ L = Induktivität

 $I={\sf el.}$ Strom

$$U_{i2} = L_{12} \frac{dI_1}{dt}$$

$$L_{12} = L_{21}$$

Übereinanderliegende Spulen gleicher Länge bzw. Fläche:

$$\boxed{L_{12} = n_2 \frac{\Phi_1}{I_1} = \mu_0 n_1 n_2 \frac{A_1}{l_1}}$$

• Feldspule₁: Spannung per Batterie

В

• Induktionsspule₂: Induzierte Spannung

$$U={
m el.}$$
 Spannung $L={
m Induktivit ext{it ext{t}}}$

 $n = \mathsf{Windungen} \ \mathsf{der} \ \mathsf{Spule}$

-100 -50 0 50 100 150 200 250 300 t/ms

 $\Phi = {\sf mag.}$ Fluss durch Spule $A = \mathsf{Querschnittsfläche\ Spule}$

 $l = L \ddot{a}nge Spule$

3.7 Lenzsche Regel

- System reagiert der zeitlichen Änderung des magnetischen Feldes entgegen / wehrt sich gegen Änderung des magnetis-
- Bedingung: Strom muss in System fliessen können (Bsp metallischer Ring ohne Lücken)
- Richtung des induzierten Feldes entgegengesetzt der Richtung der Änderung des äusseren Feldes.

Aus Induktionsgesetz folgt:

$$\oint \vec{E} d\vec{s} = -\frac{d}{dt} \int \vec{B} d\vec{A}$$
$$rot(\vec{E}) = -\dot{\vec{B}}$$

 $\vec{E} = \mathsf{Elektrische} \; \mathsf{Feldstärke}$ $\vec{B} = \mathsf{Magnetische} \; \mathsf{Flussdichte}$

3.8 Durchflutungsgesetz

$$\oint \vec{H} ds = n \cdot I_{tot}
= \int \vec{j} + \frac{d\vec{D}}{dt} d\vec{A}
rot(\vec{H}) = \vec{j} + \vec{D}$$

 $\vec{H} = \text{mag. Feldstärke}$ $I=j\cdot A=$ el. Strom j = Stromflächendichte $D={
m el.}$ Flussdichte

3.9 Lorenzkraft \vec{F}_L

l =Länge stromdurchflossener Leiter in Magnetfeld A =Querschnittsfläche Leiter $V = A \cdot l = Volumen Leiter$

 $j = \frac{1}{m}$ = Flächenstromdichte

ρ =Volumenladungsdichte

 $\vec{B} = Magnetfeld$

 $I = \rho A v = \text{el. Strom}$

v =Geschwindigkeit der Ladungen q =Ladung !Vorzeichen!

ACHTUNG: Richtung Bild technischer Strom! Flektronenfluss in entgegengesetzte Richtung zu Fluss des technischen Stroms

3.10 Biot-Savart Gesetz

Magnetische Wirkung eines Abschnittes eines elektrischen Leiters \vec{dl} auf einen Punkt im Abstand $|\vec{r}|$

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \vec{dl} \times \hat{r}}{r^2}$$

3.11 Energie im magnetischen Feld

$$E_p = \int_0^\infty -U_i I dt$$
$$= \frac{1}{2} L I_0^2$$
$$= \frac{1}{2} \mu_0 V H^2$$
$$\rho_m = \frac{W}{V} = \frac{\vec{B} \vec{H}}{2}$$

 $U={\sf el.}\ {\sf Spannung}$ L = Induktivität Spule V = Eingeschlossenes Volumen der Spule $H={\sf mag.}$ Feldstärke B = mag. Flussdichte

 $\rho_m = Volumenenergiedichte$

 $P = U \cdot I = \frac{W}{\cdot} = -P_i = -U_i \cdot I$

Gauss'sches Gesetz \vec{E} 2.2

$$\begin{split} \vec{\nabla} \vec{E}(\vec{r}) &= \frac{\rho \vec{r}}{\varepsilon_0} \\ \int_{\partial V} \vec{E}(\vec{r}) d\vec{A} &= \frac{1}{\varepsilon_0} \int_{V} \rho(\vec{r}) dV \end{split}$$

Gauss'sches Gesetz $ec{B}$

$$\vec{\nabla} \vec{B}(\vec{r}) = 0$$

$$\oint_{\partial V} \vec{B}(\vec{r}) d\vec{A} = 0$$

Induktionsgesetz 3.6

$$\begin{split} \vec{\nabla} \times \vec{E}(\vec{r},t) &= -\frac{\partial \vec{B}(\vec{r},t)}{\partial t} \\ U_{\rm ind} &= \oint_L \vec{E}_{\rm ind}(\vec{r}) d\vec{L} = -\frac{d}{dt} \int_A \vec{B}(\vec{r}) d\vec{A} \end{split}$$

 $\textbf{Durchflutungsgesetz}\ 3.8$

$$\begin{split} \vec{\nabla} \times \vec{B}(\vec{r}) &= \mu_0 \vec{j}(\vec{r}) + \mu_0 \varepsilon_0 \frac{\partial \vec{E}(\vec{r})}{\partial t} \\ \oint_L \vec{B}(\vec{r}) d\vec{L} &= \mu_0 \int_A \vec{j}(\vec{r}) d\vec{A} \end{split}$$

3.13 Magnetismus der Materie

Magnetische Suszeptibilität:

$$X = \mu - 1$$

Magnetisierung:

$$\vec{M} = X\vec{H}$$

- \bullet paramagnetische Materialien: X>0, Magnetisierung in gleiche Richtung wie Feld.
- \bullet diamagnetische Materialien: X<0, Magnetisierung in entgegengesetzte Richtung wie Feld.

Elektronen bewegen sich auf einer Kreisbahn im Atom -¿
magnetisches Moment entsteht. Bei angelegtem magnetischem
Feld werden die magnetischen Momente aller Atome parallel
ausgerichtet Schema mit magnetischem Moment einfügen
Hysterese: Wenn nach der Magnetisierung eines

ferromagnetischen Materials das magnetische Feld wieder ausgeschalten wird, setzt ein "Memory-Effekt ein. Eine verbleibende magnetische Wirkung im Material bezeichnet man als Remanenz. Das Feld, welches benötigt wird, um die Remanenz auszulöschen, bezeichnet man als Hoerzitivkraft

Meissner Effekt: Keine magnetischen Feldlinien treten in einen Supraleiter ein, perfektes diamagnetisches Verhalten.
Anwendung: Magnet kann auf abgekühltem supraleiter-Material schweben, bsp. Magnetschwebebahn

3.14 Wechselspannung

Komplexe Schreibweise:

$$\widetilde{I}(t) = I_0 e^{j\omega t}, \quad \widetilde{U} = \widetilde{Z} \cdot \widetilde{I} = I_0 Z \cdot e^{j\omega t} e^{j\rho}$$

Impedanz Spule:

$$\tilde{Z}_S = R + j\omega L = \sqrt{R^2 + \omega^2 L^2} \cdot e^{j\rho}$$

Phasenverschiebung ρ : $U(t) \sim I(t + \frac{\pi}{2})$

Impedanz Kondensator:

$$\tilde{Z}_C = -j\frac{1}{\omega C} = \frac{1}{\omega C} \cdot e^{j\rho}$$

Phasenverschiebung ρ : $U(t) \sim I(t-\frac{\pi}{2})$

Impedanz Widerstand:

$$\tilde{Z}_R = R = R \cdot e^{j\rho}$$

Phasenverschiebung $\rho{:}\ U(t) \sim I(t)$

Leistung:

$$P = \frac{1}{2}I_0U_0cos(\rho)$$

Winkel Phasenverschiebung im Schaltkreis:

$$\tan(\Phi) = \frac{|Z_L| - |Z_C|}{Z_R}$$

4 Elektromagnetische Wellen

4.1 Wellen Allgemein

Wellengleichung:

$$A_0 = \text{Maximale Amplitude}$$

$$\lambda = \frac{2\pi}{c} \cdot f = \frac{2\pi}{\lambda}$$

$$k = \frac{2\pi}{c} \cdot f = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c}{f}$$

$$\lambda = \frac{c}{f}$$

$$\omega = 2\pi f$$

$$A_0 = \text{Maximale Amplitude}$$

$$\omega = \text{Kreisfrequenz}$$

$$\lambda = \text{WellenZahl}$$

$$f = \text{Frequenz}$$

$$\lambda = \text{WellenZahl}$$

$$C = v = \text{Geschwindigkeit der Welle}$$

$$C = v = \text{Gesc$$

0.1.1 Gruppengeschwindigkeit v_q

4.1.2 Reflektion von Wellen

Phasensprung bei Welle im Seil mittels Superposition mit einer Welle von der anderen Seite

4.1.3 Energie von Wellen

Intensität einer Welle: Energie Potentielle Energie:

$$\Delta E_p = \int \vec{F} \vec{dx} = \frac{1}{2} D x_0^2 \mathrm{mit} D = \omega^2 m$$

Kinetische Energie:

$$\Delta E_k = \frac{1}{2} \Delta m v^2 \text{mit} v = \omega s$$

$$\rightarrow \Delta E_p = \Delta E_k$$
 Energiestromdichte:

$$\vec{j_E} = \frac{1}{A} \frac{\Delta E_k}{\Delta t} = \rho_E \vec{v_p} h$$

4.2 Herzscher Dipol

"Elektrisches Pendel": Kondensator und Spule sind Energiespeicher. Wenn das magnetische Feld abgebaut wird, so wird das elektrische aufgebaut und umgekehrt. Idealisiert (ohne Reibung) "pendelt" dieses System unendlich lange

$$\vec{p} = q\vec{l} = \vec{p_0}cos(\omega t)$$

$$\vec{E} = \vec{E_0}cos(\omega t - kr)$$

$$\vec{H} = \vec{H_0}cos(\omega t - kr)$$

 $ec{p}=$ Dipolmoment (alternierende Richtung)

Fernfeld: Entfernt man sich weit vom Sender (Herzschen Dipol), verschwindet der Phasenunterschied zwischen \vec{E} und \vec{R}

4.3 Wellengleichung

$$\frac{\partial E}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \frac{\partial E}{\partial z^2}$$

$$\frac{\partial^2 H}{\partial t^2} = \frac{1}{\varepsilon_0 \mu_0} \frac{\partial^2 H}{\partial z^2}$$

$$\frac{\partial^2 \Psi}{\partial t^2} = c^2 \frac{\partial^2 \Psi}{\partial z^2}, \quad \frac{1}{\varepsilon_0 \mu_0} = c^2$$

4.4 Energie kombinierter El. und Mag. Felder

$$\begin{split} \vec{j_E} &= \vec{S} = \vec{E} \times \vec{H} \\ |\vec{S}| &= E_0 H_0 \cos^2(\omega t - kz) \\ \rho_E &= \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2} \mu_0 H^2 \\ |\vec{S}| &\approx \rho_E \end{split} \qquad \begin{aligned} \vec{j_E} &= \vec{S} = \text{Poynting-Vektor} \\ &= \text{Energiestromdichte} \\ |\vec{S}| &= \text{Intensität einer Welle} \\ \rho_E &= \text{Energiedichte} \\ \vec{E} &= \text{EI. Feld} \\ \vec{H} &= \text{Mag. Feldstärke} \\ \omega t - kz : \text{siehe 4.1 Wellen Allgemein} \end{aligned}$$

4.5 Doppler-Effekt

4.5.1 Ohne relativistischen Effekt (Bsp. Schall)

Wenn Empfänger sich auf Sender zubewegt:

$$f' = f_0(1 + \frac{v}{c})$$

$$\lambda_0 = \frac{c}{f_0}$$

Schallgeschwindigkeit:
$$=340\frac{m}{s}$$
 Lichtgeschwindigkeit: $=3\cdot10^8\frac{m}{s}$

Empfänger auf Sender:

$$f' = f_0(1 + \frac{v}{c})$$

Empfänger von Sender weg:

$$f' = f_0(1 - \frac{v}{c})$$

Sender auf Empfänger:

$$f' = f_0 \frac{1}{1 - \frac{v}{c}}$$

Sender von Empfänger weg:

$$f' = f_0 \frac{1}{1 + \frac{v}{c}}$$

Für v << c gilt, dass es nicht drauf ankommt ob Sender oder Empfänger sich in Ruhe befindet.

4.5.2 Mit relativistischem Effekt $(v o c_0)$

Quelle und Empfänger entfernen sich (Redshift):

$$f' = f_0 \sqrt{\frac{1 - \beta}{1 + \beta}}$$

Quelle und Empfänger nähern sich (Blueshift):

$$f' = f_0 \sqrt{\frac{1+\beta}{1-\beta}}$$

4.6 DGL der harmonischen Schwingung

$$\ddot{y} + ay = 0 \Rightarrow \omega = \sqrt{a}$$

5 Variabeln und Konstanten

5.1 Variablen

\vec{B}	Magnetische Induktion	$T = \frac{Wb}{m^2} = \frac{V \cdot s}{m^2} = \frac{kg}{A \cdot s^2}$
C	Kapazität	$F = \frac{C}{V} = \frac{A \cdot s}{V} = \frac{A^2 \cdot s^4}{kg \cdot m^2}$
D	elek. Flussdichte /	$\frac{A \cdot s}{m^2}$
	Verschiebungsdichte	

$$ec{E}$$
 e. Feld
$$\frac{N}{C} = \frac{V}{m} = \frac{kg \cdot m}{s^3 \cdot A}$$

$$E \quad \text{Energie} \quad 1eV \cdot e = 1J \qquad J = Nm = CV = Ws \, \frac{kg \cdot m^2}{s^2}$$

$$ec{I}$$
 el. Strom $A=rac{C}{s}$ $ec{j}=rac{I}{A}$ Stromdichte $rac{C}{s\cdot m^2}$ k Federkonstante

$$L$$
 Induktivität $H = \frac{T \cdot m^2}{A} = \frac{V \cdot s}{A}$ $= \frac{kg \cdot m^2}{A^2 \cdot s^2}$ P Leistung $W = V \cdot A = \frac{J}{s}$

$$Q$$
 Ladung $C=A\cdot s$ R el. Widerstand $\Omega=\frac{V}{A}$ S Siemens $S=\frac{1}{\Omega}=\frac{A}{V}$

$$S$$
 Siemens T Periodendauer /

Schwingungsdauer
$$V = \frac{W}{A} = \frac{1}{2}$$
 Nm. kg·m

$$ec{v}$$
 Geschwindigkeit $\dfrac{v}{M}$ Arbeit $\dfrac{v}{M}$ Arbeit $\dfrac{v}{M}$

$$=\frac{kg\cdot m^2}{s^2}=C\cdot \mathbf{1}$$

$$\Omega = \frac{V}{4} = \frac{kg\cdot m^2}{2}$$

$$Z$$
 Impedanz $\Omega = rac{V}{A} = rac{kg \cdot m}{A^2 \cdot s^i}$ $arepsilon$ Dielektrizitätskonst. Mat. $rac{C}{V \cdot m} = rac{A \cdot s}{V \cdot m}$

$$\Psi_E$$
 elek. Fluss $V \cdot m = \frac{N \cdot n}{C}$ Φ_M magn. Fluss $Wb = T \cdot n$

$$\Phi$$
 elek. Potential $\lambda = \frac{c}{f}$ Wellenlänge

$$\mu$$
 magn. Feldk. $/$ $\frac{V \cdot s}{A \cdot m}$ Permeabilität

$$\rho$$
 spez. Widerstand
$$\omega = 2\pi f \quad {\rm Kreisfrequenz} \qquad s^{-1} {=} {\rm Hz}$$

5.2 Einheiten

$$eV$$
 Elektronenvolt (Energie) $1e\cdot 1V \approx 1.6\cdot 10^{-19}\,J$ u Atomare Masseneinheit $1,66054\cdot 10^{-27}kg$

$$1\frac{m}{s} \xrightarrow{\cdot 3.6} 1\frac{km}{h}$$

g	Fallbeschleunigung	$g \!\approx\! 9.81 \frac{m}{s^2} \!=\! \frac{N}{k g}$
ε_0	el. Feldkonst /	$\varepsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = \frac{10^7}{4\pi c_0^2}$
	Dielektrizitätskonst. /	

$$arepsilon_{r,vak}$$
 Permittivitätszahl Vakuum $arepsilon_{r,vak} = 1$

$$c_0$$
 Lichtgesch. Vakuum $\frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3 \cdot 10^8 \frac{m}{s}$

$$\mu_0 \quad \text{magn. Feldk.} \ / \qquad \qquad \mu_0 = \frac{1}{\varepsilon_0 c_0^2} = 4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$$

Permeabilität Vakuum

Permittivität Vakuum

$$\mu_{r,vak}$$
 Permeabilitätszahl Vakuum $\mu_{r,vak} = 1$

$$e$$
 Elementarladung $1,602 \cdot 10^{-19} C$ m_e Elektronenmasse $=9,11 \cdot 10^{-31} kg$

m_e Elektronenmasse

Nutzliche Formeln

Kräfte

	Marte	
F	Kraft Allgemein	$=m \cdot a$
F_g	Gewichtskraft	$=m\cdot g$
F_{Fed}	Federkraft	$=R \cdot s$
F_Z	Zentripetalkraft	$=m\frac{v^2}{r}=m\omega^2r$

Energie

E	Energie Allgemein	$=\vec{F}\cdot\vec{s}$
	Potentielle Energie	$=m \cdot q \cdot h$
E_{kin}	Kinetische Energie	$=\frac{1}{2}m \cdot v^2$

 $W=\Delta E$ Zusammenhang Arbeit Energie

$$\begin{split} |\vec{a}\times\vec{b}| & \text{ Kreuzprodukt} \\ \ddot{\vec{s}} &= \vec{v} = \vec{a} \Rightarrow \vec{s} = \vec{v} \cdot t = \frac{\vec{a}}{2}t^2 \end{split}$$

$$\begin{split} \frac{C}{V \cdot m} &= \frac{A \cdot s}{V \cdot m} &= B^a \cdot B^b = B^{a+b} & \log_B(a \cdot b) = \log_B(a) + \log_B(b) \\ \frac{V \cdot m = \frac{N \cdot m^2}{C}}{W^b = T \cdot m^2} & \frac{B^a}{B^b} = B^{a-b} & \log_B\left(\frac{a}{b}\right) = \log_B(a) - \log_B(b) \\ & [-] & (B^a)^b = B^{a \cdot b} & \log_B(a^r) = r \cdot \log_B(a) \end{split}$$

Basiswechsel: $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

5.4 Vorsilben und Exponente

Symbo	I P	Т	G	М	k	h
Silbe	Pet	a Terr	a Giga	Mega	kilo	hekto
Exponer	it 10 ¹	10^{1}	2 10^{9}	10^{6}	10^{3}	10^{2}
d	С	m	μ	n	р	f
deci	centi	milli	micro	nano	pico	femto
10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}