import pandas as pd
from openpyxl.workbook import Workbook

#reading excel file

In [2]:

#Top 5 rows of the Excel file
df.head()

Out[2]

t[2]:		Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay	N
	0	1990- 01-03	55.9	49.1	48.7	45.2	50.1	0.0	0.0	56.4	54.8	56.6	
	1	1990- 01-10	55.9	47.7	46.8	49.7	47.6	0.0	0.0	56.4	54.9	56.8	
	2	1990- 01-17	55.9	53.2	53.2	49.6	53.7	0.0	0.0	55.8	54.9	56.8	
	3	1990- 01-24	55.9	53.2	53.5	49.0	52.1	0.0	0.0	55.7	54.9	56.8	
	4	1990- 01-31	55.9	51.9	52.6	48.6	49.1	0.0	0.0	55.6	54.8	56.8	

In [3]:

 $\# Datatype \ and \ Null \ Information \ about \ the \ columns \ in \ the \ Excel \ file \ df.info()$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9962 entries, 0 to 9961
Data columns (total 20 columns):

Data	columns (total 20 columns):		
#	Column	Non-Null Count	Dtype
0	Date	9962 non-null	datetime64[ns]
1	Ottawa	9962 non-null	float64
2	Toronto West/Ouest	9962 non-null	float64
3	Toronto East/Est	9962 non-null	float64
4	Windsor	9962 non-null	float64
5	London	9962 non-null	float64
6	Peterborough	9962 non-null	float64
7	St. Catharine's	9962 non-null	float64
8	Sudbury	9962 non-null	float64
9	Sault Saint Marie	9962 non-null	float64
10	Thunder Bay	9962 non-null	float64
11	North Bay	9962 non-null	float64
12	Timmins	9962 non-null	float64
13	Kenora	9962 non-null	float64
14	Parry Sound	9962 non-null	float64
15	Ontario Average/Moyenne provinciale	9962 non-null	float64
16	Southern Average/Moyenne du sud de l'Ontario	9962 non-null	float64
17	Northern Average/Moyenne du nord de l'Ontario	9962 non-null	float64

```
In [4]:
        #Creating a new dataframe
        df2 = pd.DataFrame()
In [5]:
        #Choosing rows from the original dataframe with Fuel Type "Premium Gasoline" and pasting
        df2 = df.loc[df['Fuel Type'] == 'Premium Gasoline']
In [6]:
        #Datatype and Null Information about the columns in the new dataframe
        df2.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 1675 entries, 6612 to 8286
       Data columns (total 20 columns):
          Column
                                                         Non-Null Count Dtype
       --- ----
                                                         _____
                                                         1675 non-null datetime64[ns]
           Date
        1
           Ottawa
                                                         1675 non-null float64
        2 Toronto West/Ouest
                                                         1675 non-null float64
        3 Toronto East/Est
                                                         1675 non-null float64
           Windsor
                                                         1675 non-null float64
        4
        5 London
                                                         1675 non-null float64
        6 Peterborough
                                                         1675 non-null float64
        7
          St. Catharine's
                                                         1675 non-null float64
        8 Sudbury
                                                         1675 non-null float64
        9 Sault Saint Marie
                                                         1675 non-null float64
        10 Thunder Bay
                                                         1675 non-null float64
        11 North Bay
                                                         1675 non-null float64
        12 Timmins
                                                         1675 non-null float64
        13 Kenora
                                                         1675 non-null float64
        14 Parry Sound
                                                         1675 non-null float64
        15 Ontario Average/Moyenne provinciale
                                                        1675 non-null float64
        16 Southern Average/Moyenne du sud de l'Ontario 1675 non-null float64
        17 Northern Average/Moyenne du nord de l'Ontario 1675 non-null float64
                                                         1675 non-null object
        18 Fuel Type
        19 Type de carburant
                                                         1675 non-null object
       dtypes: datetime64[ns](1), float64(17), object(2)
       memory usage: 274.8+ KB
In [7]:
        df2.head()
Out[7]:
```

9962 non-null object

object

9962 non-null

18 Fuel Type

19 Type de carburant

memory usage: 1.5+ MB

dtypes: datetime64[ns](1), float64(17), object(2)

[7]:		Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay
	6612	1990- 01-03	59.5	52.9	52.7	49.2	54.0	0.0	0.0	60.2	58.6	60.4
	6613	1990- 01-10	59.6	51.6	50.9	53.7	51.5	0.0	0.0	60.2	58.7	60.5
	6614	1990- 01-17	59.7	57.4	57.4	53.6	57.6	0.0	0.0	59.6	58.6	60.6
	6615	1990- 01-24	59.8	57.1	57.5	53.1	56.0	0.0	0.0	59.5	58.6	60.5

	Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay
6616	1990- 01-31	59.8	55.9	56.6	52.6	53.1	0.0	0.0	59.5	58.6	60.6
	_	n a new DataFra	dataframe me()								
df3	.inser	t(0,"Da	te",df2['D	ate'], T	rue)		West/Ouest		ly and p	pasting	g it int
df3	.head()									
		Date To	ronto West/O	uest							
6612	1990-0	01-03		52.9							
6613	1990-0	01-10		51.6							
6614	1990-0	01-17		57.4							
6615	1990-0	01-24		57.1							
6616	1990-0	01-31		55.9							
#th #da df3	is inc ily va .set_i	conisten lues. .ndex('D		ting th ace =Tru	e date c e)	column i	he week sta nto daily v				
	st 10		from the c	lataset							
		Date To	oronto West/0	Ouest							
1170	7 2022	-01-22		171.7							
1170	8 2022	-01-23		171.7							
1170	9 2022	-01-24		173.8							
1171	0 2022	-01-25		173.8							
1171	1 2022	-01-26		173.8							
1171	2 2022	-01-27		173.8							
1171	3 2022	-01-28		173.8							
1171	4 2022	-01-29		173.8							
1171	5 2022	-01-30		173.8							
	6 2022			170 1							

11716 2022-01-31

179.1

```
df3.isnull().values.any()
         False
Out[13]:
In [14]:
          #Splitting the "Date" column into year, month and week to explore trends
          df3['Year']=df3['Date'].dt.year
          df3['Month'] = df3['Date'].dt.month
          df3['Week']=df3['Date'].dt.isocalendar().week
In [15]:
          df3.head(10)
                Date Toronto West/Ouest Year Month Week
Out[15]:
         0 1990-01-03
                                   52.9 1990
         1 1990-01-04
                                   52.9 1990
         2 1990-01-05
                                   52.9 1990
                                                       1
         3 1990-01-06
                                   52.9 1990
                                                       1
         4 1990-01-07
                                   52.9 1990
                                                       1
         5 1990-01-08
                                   52.9 1990
                                                       2
         6 1990-01-09
                                   52.9 1990
                                                       2
         7 1990-01-10
                                   51.6 1990
                                                       2
         8 1990-01-11
                                   51.6 1990
                                                       2
         9 1990-01-12
                                                       2
                                   51.6 1990
In [16]:
          #Splitting the dataset in Train and Test
          #Train from Year 1990 to Year 2019
          #Test from Year 2020
          train = df3[(df3['Date'] > '1990-01-01') & (df3['Date'] <= '2019-12-31')]
          test = df3[df3['Date'] >= '2020-01-01']
```

Yearly Price Visualization on Train and Test Dataset

#Checking for null values

In [13]:

```
In [17]:
    import matplotlib.pyplot as plt
    from matplotlib.pyplot import figure

    yearly_train_Price = train.groupby(['Year'])['Toronto West/Ouest'].mean()
    yearly_test_Price = test.groupby(['Year'])['Toronto West/Ouest'].mean()

    figure(figsize=(15, 4), dpi=80)
    plt.plot(yearly_train_Price, label='Train',c='blue')
    plt.plot(yearly_test_Price, label='Test',c='orange')
    plt.legend(loc='best')
    plt.legend(loc='best')
    plt.suptitle('Premium Gasoline Prices for Toronto West/Ouest', fontsize=20)
    plt.xlabel('Year')
    plt.ylabel('Price (cents per litre)')
    plt.show()
```

Premium Gasoline Prices for Toronto West/Ouest

DataPrep for Time Series

```
In [18]:
    train.index = pd.DatetimeIndex(train['Date'])
    #Changing the frequency of the index to Daily
    train.index = train.asfreq('d').index

test.index = pd.DatetimeIndex(test['Date'])
#Changing the frequency of the index to Daily
    test.index = test.asfreq('d').index
```

Train and Time Series Dataset

```
In [19]:
    train_time_series = pd.DataFrame()
    train_time_series.index = train.index
    train_time_series.insert(0,"Toronto West/Ouest Gas Price Train",train['Toronto West/Ouest']

    test_time_series = pd.DataFrame()
    test_time_series.index = test.index
    test_time_series.insert(0,"Toronto West/Ouest Gas Price Test",test['Toronto West/Ouest'],

    print(train_time_series.tail())
    print(test_time_series.tail())
```

```
Toronto West/Ouest Gas Price Train
Date
2019-12-27
                                           140.0
2019-12-28
                                           140.0
2019-12-29
                                           140.0
2019-12-30
                                           141.4
2019-12-31
                                           141.4
            Toronto West/Ouest Gas Price Test
Date
2022-01-27
                                          173.8
2022-01-28
                                          173.8
2022-01-29
                                          173.8
2022-01-30
                                          173.8
2022-01-31
                                          179.1
```

ARIMA Model

To predict time series with ARIMA, we need to set the values of three parameters (p,d,q):

p: The order of the auto-regressive (AR) model (i.e., the number of lag observations)

d: The degree of differencing.

q: The order of the moving average (MA) model.

Checking if data is stationary - We can see that it is not based on the P-value - Augmented Dickey Fuller Test

```
In [20]:
    from statsmodels.tsa.stattools import adfuller
    results = adfuller(train_time_series['Toronto West/Ouest Gas Price Train'])
    print('ADF Statistic: ',results[0])
    print('p-value: ',results[1])
    print('Critical Values', results[4])

ADF Statistic: -1.6893782195924107
    p-value: 0.43659327958563665
    Critical Values {'1%': -3.4309487036285113, '5%': -2.8618045938569296, '10%': -2.566910838
1800188}
```

Taking First difference - P value is < 0.05. We can stop at the First Difference; d = 1

```
In [21]:
    train_time_series_stationary1 = train_time_series.diff().dropna()
    results1 = adfuller(train_time_series_stationary1['Toronto West/Ouest Gas Price Train'])
    print('ADF Statistic: ',results1[0])
    print('p-value: ',results1[1])
    print('Critical Values', results1[4])

ADF Statistic: -17.831642858594112
    p-value: 3.1316063696252024e-30
    Critical Values {'1%': -3.4309487036285113, '5%': -2.8618045938569296, '10%': -2.566910838 1800188}
```

The Order of Autoregressive Term p; p = 0

```
In [22]:
    plt.rcParams.update({'figure.figsize':(12,3), 'figure.dpi':120})
    from statsmodels.graphics.tsaplots import plot_pacf
    plot_pacf(train_time_series_stationary1, lags=10, title="Partial Autocorrelation 1st Orde
    plt.xlabel('Lag')
    plt.ylabel('PACF')
    plt.show()
```


The order of the Moving Average term q; q = 0

In [23]:

```
plt.rcParams.update({'figure.figsize':(12,3), 'figure.dpi':120})
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(train_time_series_stationary1, lags=20, title="Autocorrelation 1st Order Differe
plt.xlabel('Lag')
plt.ylabel('ACF')
plt.show()
```


Check the above p,d,q parameters with Auto Arima - Best Model ARIMA (0,1,0)

```
In [24]:
         import pmdarima as pm
         from pmdarima.model selection import train test split
         import numpy as np
         model1 = pm.auto arima(train time series, trace=True, error action='ignore', suppress warr
         model1.fit(train time series)
         forecast1 = model1.predict(n periods=len(test time series))
         forecast1 = pd.DataFrame(forecast1,index = test time series.index,columns=['Prediction'])
        Performing stepwise search to minimize aic
         ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=33257.281, Time=1.48 sec
         ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=33249.281, Time=0.25 sec
         ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=33251.281, Time=0.67 sec
         ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=33251.281, Time=0.82 sec
                                            : AIC=33247.868, Time=0.13 sec
         ARIMA(0,1,0)(0,0,0)[0]
         ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=33253.281, Time=1.09 sec
        Best model: ARIMA(0,1,0)(0,0,0)[0]
        Total fit time: 4.488 seconds
```

Model Summary

```
import statsmodels.api as sm
model = sm.tsa.arima.ARIMA(train_time_series, order=(0,1,0))
model_result = model.fit()
print(model_result.summary())
```

SARIMAX Results

```
Dep. Variable: Toronto West/Ouest Gas Price Train No. Observations: 1
0955

Model: ARIMA(0, 1, 0) Log Likelihood -1662
2.934
Date: Sun, 06 Mar 2022 AIC 3324
```

7.868
Time: 17:15:16 BIC 3325
5.169
Sample: 01-03-1990 HQIC 3325
0.328

Covariance Type: opg

	coef	std err		P> z	[0.025	0.975]
sigma2	1.2180	0.002	524.838	0.000	1.213	1.223
Ljung-Box (L1) Prob(Q): Heteroskedasti Prob(H) (two-s	city (H):			Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	4437271.29 0.00 1.24 101.57

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Model Prediction

```
import warnings
warnings.filterwarnings('ignore')
ARIMA_Predict = model_result.predict(start='1/1/2020', end='1/31/2022')
ARIMA_Predict_df = pd.DataFrame(ARIMA_Predict)
```

In [27]: ARIMA_Predict_df.tail()

Out[27]: predicted_mean 2022-01-27 141.4

2022-01-28 141.4

2022-01-29 141.4

2022-01-30 141.4

2022-01-31 141.4

```
In [28]:
    figure(figsize=(15, 4), dpi=80)
    plt.plot(ARIMA_Predict_df, label='Predicted Prices',c='blue')
    plt.plot(test_time_series, label='Original Prices',c='orange')
    plt.legend(loc='best')
    plt.suptitle('ARIMA Model Premium Gasoline Prices Forecast Toronto West/Ouest', fontsize=2
    plt.xlabel('Year')
    plt.ylabel('Price (cents per litre)')
    plt.show()
```

ARIMA Model Premium Gasoline Prices Forecast Toronto West/Ouest

Evaluation of the Model

Mean Absolute Error (MAE) ARIMA

```
from sklearn.metrics import mean_absolute_error
maeARIMA=mean_absolute_error(test_time_series['Toronto West/Ouest Gas Price Test'], ARIMA_I
print('Mean Absolute Error ARIMA = {}'.format(round(maeARIMA, 2)))
Mean Absolute Error ARIMA = 17.67
```

Mean squared error (MSE) ARIMA

```
In [30]:
    from sklearn.metrics import mean_squared_error
    mseARIMA=mean_squared_error(test_time_series['Toronto West/Ouest Gas Price Test'], ARIMA_Pr
    print('The Mean Squared Error ARIMA = {}'.format(round(mseARIMA, 2)))
The Mean Squared Error ARIMA = 404.84
```

Root mean squared error (RMSE) ARIMA

```
In [31]:
    from numpy import sqrt
    rmseARIMA = sqrt(mseARIMA)
    print('The Root Mean Squared Error ARIMA = {}'.format(round(rmseARIMA, 2)))
```

The Root Mean Squared Error ARIMA = 20.12

Prophet Model

forecast = forecast[(forecast['ds'] \Rightarrow '2020-01-01') & (forecast['ds'] \Leftarrow '2022-01-31')]

```
In [34]: fig, ax = plt.subplots()
    ax.plot(forecast['ds'], forecast['yhat'], label='Predicted Prices')
    ax.plot(test['Date'], test['Toronto West/Ouest'], label='Original Prices')
    plt.ylim([0,200])
    legend = ax.legend(loc='upper center', shadow=True)
    plt.title('Prophet Model Premium Gasoline Prices Forecast Toronto West/Ouest')
    plt.xlabel('Month')
    plt.ylabel('Price')
    plt.show()
```


Mean Absolute Error (MAE) Prophet

```
In [35]: maeProphet=mean_absolute_error(test['Toronto West/Ouest'], forecast['yhat'])
    print('Mean Absolute Error Prophet = {}'.format(round(maeProphet, 2)))
```

Mean squared error (MSE) Prophet

Mean Absolute Error Prophet = 17.52

The Mean Squared Error Prophet = 423.9

Root mean squared error (RMSE) Prophet

```
In [37]:
    rmseProphet = sqrt(mseProphet)
    print('The Root Mean Squared Error Prophet = {}'.format(round(rmseProphet, 2)))
```

The Root Mean Squared Error Prophet = 20.59