Mathematics Step by Step

Show $[x^n]' = nx^{n-1}$ by using first principles.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - (x)^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\binom{n}{0} x^n \Delta x^0 + \binom{n}{1} x^{n-1} \Delta x^1 + \dots + \binom{n}{n} x^0 \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1x^n (1) + nx^{n-1} \Delta x^1 + \dots + 1(1) \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1} \Delta x + \dots + \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{Ax(nx^{n-1} + \dots + \Delta x^{n-1})}{Ax}$$

$$= nx^{n-1}$$