

# **Medical Al Ensemble Clinical Decision Report**

Generated: 2025-09-07 Case ID: tmpqxoi3p9n Title: Custom Case Analysis

17:26

# **Primary Diagnostic Consensus**

| Diagnosis                                                                                                                                                       | ICD-10 | Agreement | Confidence | Status  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|------------|---------|
| Diabetic Nephropathy Evidence: High confidence diagnosis from both models, ICD code E11.22/E11.2 specified, Consistent with chronic kidney disease presentation | E11.22 | 0.0%      | Very Low   | PRIMARY |

## **Alternative & Minority Diagnoses**

| Diagnosis                                                                                                                               | ICD-10 | Support | Туре            |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------------|
| Hypertensive Nephrosclerosis Evidence: High confidence differential diagnosis, ICD code I12.9 specified in both models                  | l12.9  | 7.4%    | Minority (<10%) |
| Chronic Glomerulonephritis  Evidence: Moderate confidence differential diagnosis, ICD code N03.9 specified                              | N03.9  | 3.7%    | Minority (<10%) |
| Ischemic Nephropathy Evidence: Included in differential diagnosis list, Vascular etiology considered                                    | 170.9  | 3.7%    | Minority (<10%) |
| Chronic Kidney Disease Stage IV Evidence: Primary diagnosis in second model, Stage specification indicates severity                     | N18.4  | 3.7%    | Minority (<10%) |
| Diabetic Nephropathy as primary contributor<br>Evidence: Listed as differential despite being<br>primary, Different ICD coding approach | E11.2  | 3.7%    | Minority (<10%) |
| Hypertensive Nephropathy as secondary contributor<br>Evidence: Secondary contributor designation,<br>High confidence rating             | l12.9  | 3.7%    | Minority (<10%) |
| Membranous Nephropathy Evidence: Common differential for proteinuric kidney disease                                                     | N05.3  | 0.0%    | Minority (<10%) |

| Diagnosis                                                                                             | ICD-10 | Support | Туре            |
|-------------------------------------------------------------------------------------------------------|--------|---------|-----------------|
| Focal Segmental Glomerulosclerosis  Evidence: Considered in diabetic patients with nephrotic syndrome | N05.1  | 0.0%    | Minority (<10%) |
| Renal Artery Stenosis Evidence: Vascular cause of chronic kidney disease                              | 170.1  | 0.0%    | Minority (<10%) |
| Analgesic Nephropathy Evidence: Considered in patients with chronic pain medication use               | N14.0  | 0.0%    | Minority (<10%) |
| Lupus Nephritis Evidence: Autoimmune cause of glomerular disease                                      | M32.14 | 0.0%    | Minority (<10%) |
| Amyloidosis Evidence: Systemic disease causing proteinuric kidney disease                             | E85.9  | 0.0%    | Minority (<10%) |

| Analysis Overview       |
|-------------------------|
| Models Queried: 2       |
| Successful Responses: 2 |
| Consensus Level: High   |
| Total Cost: <\$0.01     |

Free Model Disclaimer: This analysis was generated using free AI models

Free models may provide suboptimal results. For improved accuracy and reliability, consider using premium models with an

API key.

# **Critical Decision Points & Evidence Synthesis**

### **Critical Decision Points**

Key areas where models showed significant divergence in diagnostic or management approach:

## **Evidence Synthesis & Clinical Correlation**

## **Symptom-Diagnosis Correlation Matrix**

| Symptom         | Diabetic | Hyperten | Chronic | Ischemic | Chronic |
|-----------------|----------|----------|---------|----------|---------|
| Proteinuria     | Strong   | -        | Medium  | -        | -       |
| Elevated creati | -        | -        | -       | Medium   | Strong  |
| Hypertension    | Medium   | Strong   | -       | -        | -       |
| Diabetes histor | Strong   | -        | -       | -        | -       |
| Reduced GFR     | -        | -        | -       | -        | Strong  |

Legend: +++ Strong association, ++ Moderate, + Weak, - Not typical

# **Diagnostic Decision Tree**

| Step | Action                   | If Positive             | If Negative                    |
|------|--------------------------|-------------------------|--------------------------------|
| 1    | Initial Laboratory Tests | → Confirm suspicion     | ightarrow Broaden differential |
| 2    | Imaging Studies          | → Identify pathology    | → Consider specialized tests   |
| 3    | Specialized Testing      | → Definitive diagnosis  | → Empiric treatment            |
| 4    | Treatment Trial          | → Continue if effective | → Reconsider diagnosis         |

## **Executive Summary**

#### **Case Description**

A 64-year-old woman with a history of poorly controlled type 2 diabetes mellitus, long-standing hypertension, and diabetic retinopathy presents with gradually worsening fatigue, generalized pruritus, anorexia, and bilateral lower-extremity edema over the past month. She also reports nocturia and frothy urine for several years, but denies gross hematuria or flank pain.

On examination, her blood pressure is 168/92 mmHg, pulse 88/min, and she has periorbital puffiness with bilateral pitting pedal edema. Cardiovascular exam reveals a nondisplaced apex beat and no murmurs, while pulmonary exam is notable for bibasilar crackles. There is evidence of scratch marks on the skin consistent with pruritus.

Laboratory studies demonstrate a serum creatinine of 3.1 mg/dL (baseline 1.6 mg/dL one year prior), eGFR 22 mL/min/1.73 m², BUN 58 mg/dL, potassium 5.6 mmol/L, and bicarbonate 17 mmol/L. Urinalysis reveals 3+ proteinuria, bland sediment, and a urine protein-to-creatinine ratio of 5.2 g/g. HbA1c is 9.2%, and hemoglobin is 9.5 g/dL with normocytic indices. Renal ultrasound shows bilaterally small, echogenic kidneys without hydronephrosis.

### **Key Clinical Findings**

#### **Primary Recommendations**

- Consider Diabetic Nephropathy among differential diagnoses
- Obtain Serum creatinine and eGFR for diagnostic confirmation

# **Primary Diagnosis Clinical Summaries**

# **■** Key Clinical Findings

| Finding                        | Supporting Evidence   | Clinical Reasoning       |
|--------------------------------|-----------------------|--------------------------|
| Proteinuria                    | Clinical presentation | Key diagnostic indicator |
| Elevated creatinine            | Clinical presentation | Key diagnostic indicator |
| Hypertension                   | Clinical presentation | Key diagnostic indicator |
| Diabetes mellitus              | Clinical presentation | Key diagnostic indicator |
| Chronic kidney disease staging | Clinical presentation | Key diagnostic indicator |

## **■** Recommended Tests

| Test Name                                    | Туре       | Priority | Rationale               |
|----------------------------------------------|------------|----------|-------------------------|
| Serum creatinine and eGFR                    | Laboratory | Urgent   | Diagnostic confirmation |
| Urine albumin-to-creatinine ratio            | Laboratory | Urgent   | Diagnostic confirmation |
| HbA1c                                        | Laboratory | Urgent   | Diagnostic confirmation |
| Complete metabolic panel (electrolytes, BUN) | Laboratory | Urgent   | Diagnostic confirmation |
| Renal ultrasound                             | Laboratory | Urgent   | Diagnostic confirmation |

# **■** Immediate Management

| Intervention                                              | Category | Urgency   | Clinical Reasoning    |
|-----------------------------------------------------------|----------|-----------|-----------------------|
| Initiate ACE inhibitor or ARB therapy                     | Medical  | Immediate | Critical intervention |
| Optimize glycemic control with target HbA1c <7%           | Medical  | Immediate | Critical intervention |
| Implement blood pressure control with target <130/80 mmHg | Medical  | Immediate | Critical intervention |
| Refer to nephrology for comprehensive management          | Medical  | Immediate | Critical intervention |

| Intervention                                    | Category | Urgency   | Clinical Reasoning    |
|-------------------------------------------------|----------|-----------|-----------------------|
| Initiate dietary sodium and protein restriction | Medical  | Immediate | Critical intervention |

### **■** Medications

| Medication                            | Dosage         | Route/Frequency | Indication                                |
|---------------------------------------|----------------|-----------------|-------------------------------------------|
| Lisinopril                            | 10-40 mg       | Oral / Daily    | Renoprotection and blood pressure control |
| SGLT2 inhibitor (e.g., Empagliflozin) | 10-25 mg       | Oral / Daily    | Renoprotection and glycemic control       |
| Statin therapy                        | As appropriate | Oral / Daily    | Cardiovascular risk reduction             |

# **Diagnostic Landscape Analysis**

### **Detailed Diagnostic Analysis**

The ensemble analysis identified **Diabetic Nephropathy** as the primary diagnosis with limited consensus among 2 models.

## **Detailed Alternative Analysis**

| Diagnosis                                                                                                                         | Support | Key Evidence | Clinical Significance |
|-----------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-----------------------|
| Hypertensive Nephrosclerosis Evidence: High confidence differential diagnosis, ICD code I12.9 specified in both models            | 7.4%    | 2 models     | Unlikely              |
| Chronic Glomerulonephritis Evidence: Moderate confidence differential diagnosis, ICD code N03.9 specified                         | 3.7%    | 1 models     | Unlikely              |
| Ischemic Nephropathy Evidence: Included in differential diagnosis list, Vascular etiology considered                              | 3.7%    | 1 models     | Unlikely              |
| Chronic Kidney Disease Stage IV Evidence: Primary diagnosis in second model, Stage specification indicates severity               | 3.7%    | 1 models     | Unlikely              |
| Diabetic Nephropathy as primary contributor Evidence: Listed as differential despite being primary, Different ICD coding approach | 3.7%    | 1 models     | Unlikely              |
| Hypertensive Nephropathy as secondary contributor  Evidence: Secondary contributor designation, High confidence rating            | 3.7%    | 1 models     | Unlikely              |
| Membranous Nephropathy Evidence: Common differential for proteinuric kidney disease                                               | 0.0%    | 0 models     | Unlikely              |
| Focal Segmental Glomerulosclerosis Evidence: Considered in diabetic patients with nephrotic syndrome                              | 0.0%    | 0 models     | Unlikely              |

# **Minority Opinions**

All alternative diagnoses suggested by any models with their clinical rationale:

• Hypertensive Nephrosclerosis (ICD-10: Unknown) - 7.4% agreement (2 models)

Supporting Models: Unknown, Unknown

• Chronic Glomerulonephritis (ICD-10: Unknown) - 3.7% agreement (1 models)

Supporting Models: Unknown

• Ischemic Nephropathy (ICD-10: Unknown) - 3.7% agreement (1 models)

Supporting Models: Unknown

• Chronic Kidney Disease Stage IV (ICD-10: Unknown) - 3.7% agreement (1 models)

Supporting Models: Unknown

• Diabetic Nephropathy as primary contributor (ICD-10: Unknown) - 3.7% agreement (1 models)

Supporting Models: Unknown

• Hypertensive Nephropathy as secondary contributor (ICD-10: Unknown) - 3.7% agreement (1 models)

Supporting Models: Unknown

• Membranous Nephropathy (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

• Focal Segmental Glomerulosclerosis (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

• Renal Artery Stenosis (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

• Analgesic Nephropathy (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

• Lupus Nephritis (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

• Amyloidosis (ICD-10: Unknown) - 0.0% agreement (0 models)

Supporting Models:

#### **Additional Diagnoses Considered:**

# **Management Strategies & Clinical Pathways**

# **Immediate Actions Required**

| Priority | Action                                                    | Rationale           | Consensus |
|----------|-----------------------------------------------------------|---------------------|-----------|
| 1        | Initiate ACE inhibitor or ARB therapy                     | Clinical indication | 50%       |
| 2        | Optimize glycemic control with target HbA1c <7%           | Clinical indication | 50%       |
| 3        | Implement blood pressure control with target <130/80 mmHg | Clinical indication | 50%       |
| 4        | Refer to nephrology for comprehensive management          | Clinical indication | 50%       |
| 5        | Initiate dietary sodium and protein restriction           | Clinical indication | 50%       |

# **Recommended Diagnostic Tests**

| Test                                         | Purpose                 | Priority | Timing       |
|----------------------------------------------|-------------------------|----------|--------------|
| Serum creatinine and eGFR                    | Diagnostic confirmation | Routine  | As indicated |
| Urine albumin-to-creatinine ratio            | Diagnostic confirmation | Routine  | As indicated |
| HbA1c                                        | Diagnostic confirmation | Routine  | As indicated |
| Complete metabolic panel (electrolytes, BUN) | Diagnostic confirmation | Routine  | As indicated |
| Renal ultrasound                             | Diagnostic confirmation | Routine  | As indicated |
| Urinalysis with microscopy                   | Diagnostic confirmation | Routine  | As indicated |

#### **Treatment Recommendations**

Treatment recommendations pending diagnostic confirmation.

# **Model Diversity & Bias Analysis**

### **Model Response Overview & Cost Analysis**

| Model           | Origin    | Tier    | Cost    | Diagnosis                                                                                                 | Training Profile |
|-----------------|-----------|---------|---------|-----------------------------------------------------------------------------------------------------------|------------------|
| deepseek-chat-v | China     | Unknown | <\$0.01 | Diabetic Nephropathy                                                                                      | General          |
| shisa-v2-llama3 | Japan/USA | Free    | Free    | Chronic Kidney Disease (Stage IV), likely diabetic nephropathy with superimposed hypertensive nephropathy | General          |

<sup>\*\*</sup>Total Estimated Cost: <\$0.01\*\*

### **Understanding Training Profiles**

Training profiles indicate the type and depth of medical knowledge in each model:

Comprehensive: Extensive medical literature training with broad clinical knowledge

Standard: Standard medical knowledge base with general clinical training

Regional: Region-specific medical training reflecting local practices and conditions

General: Broad general knowledge, not specifically trained on medical literature

Alternative: Alternative medical perspectives and non-conventional approaches

## **Al Model Bias Analysis**

Al model bias analysis is generated during orchestration (Step 2). This comprehensive analysis examines cultural, geographic, and training data biases across the Al models used.

# **Detailed Model Responses**

Complete diagnostic assessments from each model:

### 1. deepseek-chat-v (China, Released: 2024-12-26)

Primary Diagnosis: Diabetic Nephropathy (ICD-10: E11.22) - Confidence: 0.95

#### **Differential Diagnoses:**

- Hypertensive Nephrosclerosis (ICD: I12.9) 0.65
- Chronic Glomerulonephritis (ICD: N03.9) 0.45
- Ischemic Nephropathy (ICD: N28.0) 0.35

#### **Key Clinical Findings:**

- Poorly controlled diabetes (HbA1c 9.2%)
- Nephrotic-range proteinuria (UPCR 5.2 g/g)
- Rising creatinine (3.1 mg/dL) with low eGFR (22 mL/min)
- Bilateral small echogenic kidneys

### 2. shisa-v2-llama3 (Japan/USA, Released: 2024-12-20)

**Primary Diagnosis:** Chronic Kidney Disease (Stage IV), likely diabetic nephropathy with superimposed hypertensive nephropathy (ICD-10: N18.4) - Confidence: 0.95

#### **Differential Diagnoses:**

- Diabetic Nephropathy (primary contributor) (ICD: E11.2) 0.85
- Hypertensive Nephropathy (secondary contributor) (ICD: I12.9) 0.8
- Heart Failure with Renal Dysfunction (ICD: I50.9) 0.65

#### **Key Clinical Findings:**

- Rising serum creatinine (3.1 mg/dL, eGFR 22 mL/min/1.73 m<sup>2</sup>)
- 3+ proteinuria with UPCR 5.2 g/g
- Hypertension (168/92 mmHg)
- Hyperkalemia (5.6 mmol/L)