Билет 1.

1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Опенить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 2.

1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{y}=15,\,S\left(\vec{y}\right)=4.12.$

Баллы 17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 3.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Оценить вероятность события $\{0 < Z < 6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

| Ne sorpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 4.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{u} = 15$, $S(\vec{u}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 5.

1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 6.

1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 7.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

| Ne sorroca | 1 | 2 | $\Sigma = \max$ min | Σ

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 8.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

N	9 вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 9

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 10. **ОН-12**

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 11. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Na bonpoca | 1 | 2 | Σ = max | min | E

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 12.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7,\,S\left(\overrightarrow{u}\right)=0.22.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 13.

1. Известно, что случайная величина X имеет математическое ожидание MX = 5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

N= Bonpoca	1 2	max	min
Баллы 1	.7 17	34	20

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 16.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал vровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15,\,S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 17. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX = 4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 18.

1. Известно, что случайная величина Y имеет математическое ожидание MY = 4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 19.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 20.

1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ Bor	rpoca 1	2	$\Sigma = \max$	min
Бал	пы 17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX = -5 и дисперсию DX = 9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год OH-12 Билет 22. OH-12

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 23. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ = 9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 24.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU = 9. Оценить вероятность события $\{-10 < U < 1\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{u} = -0.7$, $S(\vec{u}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Опенить вероятность события $\{0 < X < 6\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 26

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 27.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Оценить вероятность события $\{0< Z<6\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sonpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 28.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{u} = 15$, $S(\vec{u}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 29. **ОН-12**

- 1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.99$, если после n=26 испытаний получены значения $\overline{x}=4.5$, $S\left(\vec{x}\right)=1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 30.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 31.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorroca | 1 | 2 | $\Sigma = \max$ min | Σ

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 32.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\overline{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Опенить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. годf Sujlet 34.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=-5 и дисперсию DY=9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 35. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorpoca | 1 | 2 | $\Sigma = \max$ min | $\Sigma = \max$ | $\Sigma = \max$ min | $\Sigma = \max$ | $\Sigma = \max$

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 36.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7,\,S\left(\overrightarrow{u}\right)=0.22.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 37.

1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Оценить вероятность события $\{0< X<6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 38.

1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

Баллы 17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 39.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Оценить вероятность события $\{0< Z<6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

| Ne sorpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 40.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15$, $S(\vec{u})=4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 41. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 42.

1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 43.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение	с дисперси	ей І	OY =	$=\sigma^2$. Cke	элько
нужно произвести независимых наблюдений за случайной вели	чиной Y , ч	тобі	ыс	вероятно	стью
0.99 наблюденное среднее отличалось от теоретического значени	ия ее матем	ати	ческ	ого ожид	цания
не более, чем на 0.1σ ?	№ вопроса	1	2	$\Sigma = \max$	min
,	Баллы	17	17	3/1	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 44.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

Баллы 17 17 34 20		№ вопроса	1	2	$\Sigma = \max$	min
2. 2. 2.	[Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Би}$ лет $\mathbf{46}$.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=-5 и дисперсию DY=9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 47. ОН-12

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorpoca | 1 | 2 | $\Sigma = \max$ min | $\Sigma = \max$ | $\Sigma = \max$ min | $\Sigma = \max$ | $\Sigma = \max$

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 48.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7,\,S\left(\overrightarrow{u}\right)=0.22.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf B$ илет $\mathbf 49$.

- 1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Опенить вероятность события $\{0 < X < 6\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУУ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 50.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 51.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Оценить вероятность события $\{0< Z<6\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorpoca | 1 | 2 | $\Sigma = \max$ min | $\Sigma =$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 52.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{u} = 15$, $S(\vec{u}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 53. **ОН-12**

- 1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 54.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 55.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorroca | 1 | 2 | $\Sigma = \max$ min | Σ

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 56.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\overline{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го,

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. годf Билет~58.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=-5 и дисперсию DY=9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 59. Билет 59.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Опенить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne Bonpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 60.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7,\,S\left(\overrightarrow{u}\right)=0.22.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 61.

1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Опенить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 62

1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

Баллы 17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 63.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Оценить вероятность события $\{0< Z<6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

| Ne sorpoca | 1 | 2 | $\Sigma = \max$ min | $\Sigma =$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 64.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{u} = 15$, $S(\vec{u}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 65. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУТ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 66.

1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 67.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

| Ne sorpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 68.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Би}$ лет 70.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=-5 и дисперсию DY=9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 71. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Опенить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Nh Bonpoca | 1 | 2 | | $\Sigma = \max$ | \min | E

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 72.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7,\,S\left(\overrightarrow{u}\right)=0.22.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 73.

1. Известно, что случайная величина X имеет математическое ожидание MX = 5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

Баллы 17	17	34	20

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 76.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал vровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15,\,S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 77. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX = 4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 78.

1. Известно, что случайная величина Y имеет математическое ожидание MY = 4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\bar{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 79.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 80.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX = -5 и дисперсию DX = 9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 _{Билет 82}. ОН-12

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 83. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ = 9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 84.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU = 9. Оценить вероятность события $\{-10 < U < 1\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{u} = -0.7$, $S(\vec{u}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX=0.25. Опенить вероятность события $\{0 < X < 6\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 86.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=5 и дисперсию DY=0.25. Оценить вероятность события $\{0< Y<6\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

Билет 87.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ=0.25. Опенить вероятность события $\{0< Z<6\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 88.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU=0.25. Оценить вероятность события $\{0 < U < 6\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{u} = 15$, $S(\vec{u}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 89. **ОН-12**

- 1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX=16. Оценить вероятность события $\{-4 < X < 14\}$.
- **2.** Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.99$, если после n=26 испытаний получены значения $\overline{x}=4.5$, $S\left(\vec{x}\right)=1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 90.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY=16. Оценить вероятность события $\{-4 < Y < 14\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\overline{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 91.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ=16. Оценить вероятность события $\{-4 < Z < 14\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne sorroca | 1 | 2 | $\Sigma = \max$ min | Σ

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 92.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU=16. Оценить вероятность события $\{-4 < U < 14\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	mir
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. го

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX=9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Би}$ лет $\mathbf{94}$.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY=-5 и дисперсию DY=9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 95. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ=9. Опенить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

 | Ne Bonpoca | 1 | 2 | $\Sigma = \max$ | \min | $\Sigma = \max$ |

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 96.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU=9. Оценить вероятность события $\{-10 < U < 1\}$.
- 2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=26 испытаний получены значения $\overline{u}=-0.7, S\left(\vec{u}\right)=0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX = 5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.
- **2.** Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.
- **2.** Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 100. ФН-12

- 1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15, S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 101. **ОН-12**

- 1. Известно, что случайная величина X имеет математическое ожидание MX = 4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.
- **2.** Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 102.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = 4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\bar{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 103.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 104.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	mir
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX = -5 и дисперсию DX = 9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $f Бијет \ 106.$

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.
- **2.** Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 107. (1) Н=12

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ = 9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 108.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU = 9. Оценить вероятность события $\{-10 < U < 1\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{u} = -0.7$, $S(\vec{u}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX = 5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.
- **2.** Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\vec{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.
- **2.** Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 112

- 1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал vровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15,\,S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 113. **ОН-12**

- 1. Известно, что случайная величина X имеет математическое ожидание MX = 4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.
- **2.** Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 114.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = 4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\bar{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 115.

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 116.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	mir
Баллы	17	17	34	20

- 1. Известно, что случайная величина X имеет математическое ожидание MX=-5 и дисперсию DX = 9. Оценить вероятность события $\{-10 < X < 1\}$.
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. годf Билет~118.

- 1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 119. **ОН-12**

- 1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ = 9. Оценить вероятность события $\{-10 < Z < 1\}$.
- 2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 120.

- 1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU = 9. Оценить вероятность события $\{-10 < U < 1\}$.
- **2.** Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{u} = -0.7$, $S(\vec{u}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 121.

1. Известно, что случайная величина X имеет математическое ожидание MX = 5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\overline{y}) = 4.12$.

Баллы 17	17	34	20

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 124

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал vровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15,\,S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 125. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX = 4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 126.

1. Известно, что случайная величина Y имеет математическое ожидание MY = 4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\bar{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 127.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 128.

1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S(\vec{u}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	mir
Баллы	17	17	34	20

1. Известно, что случайная величина X имеет математическое ожидание MX = -5 и дисперсию DX = 9. Оценить вероятность события $\{-10 < X < 1\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{x} = -0.7$, $S(\vec{x}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, б-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $f Бијет \ 130.$

1. Известно, что случайная величина Y имеет математическое ожидание MY = -5 и дисперсию DY = 9. Оценить вероятность события $\{-10 < Y < 1\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{y} = -0.7$, $S(\overline{y}) = 0.22$.

№ вопрос	a 1	2	$\Sigma = \max$	min
Баллы	17	7 17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 131. () Н=1 2

1. Известно, что случайная величина Z имеет математическое ожидание MZ=-5 и дисперсию DZ = 9. Оценить вероятность события $\{-10 < Z < 1\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 132.

1. Известно, что случайная величина U имеет математическое ожидание MU=-5 и дисперсию DU = 9. Оценить вероятность события $\{-10 < U < 1\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 26 испытаний получены значения $\overline{u} = -0.7$, $S(\vec{u}) = 0.22$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 133.

1. Известно, что случайная величина X имеет математическое ожидание MX=5 и дисперсию DX = 0.25. Оценить вероятность события $\{0 < X < 6\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{x}=15, S\left(\vec{x}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

1. Известно, что случайная величина Y имеет математическое ожидание MY = 5 и дисперсию DY = 0.25. Оценить вероятность события $\{0 < Y < 6\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 16 испытаний получены значения $\overline{y} = 15$, $S(\vec{y}) = 4.12$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Известно, что случайная величина Z имеет математическое ожидание MZ=5 и дисперсию DZ = 0.25. Оценить вероятность события $\{0 < Z < 6\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.9 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. годf Билет~136.

1. Известно, что случайная величина U имеет математическое ожидание MU=5 и дисперсию DU = 0.25. Оценить вероятность события $\{0 < U < 6\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9$, если после n=16 испытаний получены значения $\overline{u}=15,\,S\left(\vec{u}\right)=4.12.$

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

ОН-12 Билет 137. **ОН-12**

1. Известно, что случайная величина X имеет математическое ожидание MX=4 и дисперсию DX = 16. Оценить вероятность события $\{-4 < X < 14\}$.

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 4.5$, $S(\vec{x}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

 $\mbox{ Билет 138}.$ 1. Известно, что случайная величина Y имеет математическое ожидание MY=4 и дисперсию DY = 16. Оценить вероятность события $\{-4 < Y < 14\}$.

2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{y} = 4.5$, $S(\vec{y}) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 139.

1. Известно, что случайная величина Z имеет математическое ожидание MZ=4 и дисперсию DZ = 16. Оценить вероятность события $\{-4 < Z < 14\}$.

2. Случайная величина Y имеет нормальное распределение с дисперсией $DY = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Y, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

Билет 140.

1. Известно, что случайная величина U имеет математическое ожидание MU=4 и дисперсию DU = 16. Оценить вероятность события $\{-4 < U < 14\}$.

2. Пусть $U \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{u} = 4.5$, $S\left(\vec{u}\right) = 1.8$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ФН-12 ФН-12

ФН-12 ФН-12

ФН-12

ФН-12 ФН-12