

Análise Exploratória de Ataques por meio de Instruções em Código de Máquina em Automóveis Inteligentes

Bruno H. Labres Ovidio J S Junior

Contexto

loT em veículos inteligentes

CAN (Controller Area Network)

Crescimento

Área está em ascensão

Fomento da pesquisa de segurança na área Geração de dados na área

Instruções CAN (Controller Area Network)

Length	1 bit	12 bits		6 bits	0 to	8 b	ytes	16 bits	2 bits	7 bits	3 bits
Desc.	Start of Frame	Arbitration Field		Control Field	Data Field		CRC	ACK	End of Frame	Inter Frame Space	
		Identifier 11 bits	RTR 1 bit		Data[0] 1 byte	***	Data[7] 1 byte				

Figura: Instrução Padrão CAN utilizado como exemplo no experimento.

Instruções CAN (Controller Area Network)

timestamp	can_id	dlc	data0	data1	data2	data3	data4	data5	data6	data7	type
1.478196e+09	0545	8	d8	99	99	8a	99	99	99	99	0
1.478196e+09	0002	8	00	99	99	99	99	01	07	15	0
1.478196e+09	0153	8	99	21	10	ff	99	ff	99	99	0
1.478196e+09	0130	8	19	80	99	ff	fe	7f	07	60	0
1.478196e+09	0131	8	17	80	99	99	65	7f	07	9f	0
1.478196e+09	0140	8	99	99	99	99	02	20	27	a8	0
1.478196e+09	0350	8	05	20	14	68	78	99	99	21	0
1.478196e+09	02c0	8	15	99	99	99	99	99	99	99	0
1.478196e+09	0370	8	99	20	99	99	99	99	99	99	0
1.478196e+09	043f	8	10	40	60	ff	7d	8c	09	99	0
timestamp	can_id	dlc	data0	data1	data2	data3	data4	data5	data6	data7	type
1.478196e+09	01cd	8	d0	21	ec	f7	6.0	Ja	4-		1
		_	40			17	6a	d2	da	6e	_
1.478196e+09	0378	8	45	de	26	09	f8	48	11	51	1
1.478196e+09 1.478196e+09	0378	- 3			874.03				100	1715	
	0378	8	45	de	26	09	f8	48	11	51	1
1.478196e+09	0378 01e2	8	45 48	de 20	26 7d	09 e8	f8 62	48 34	11 61	51 7b	1 1
1.478196e+09 1.478196e+09	0378 01e2 034e	8 8 8	45 48 73	de 20 9e	26 7d b9	09 e8 77	f8 62 13	48 34 e0	11 61 e5	51 7b 23	1 1 1
1.478196e+09 1.478196e+09 1.478196e+09	0378 01e2 034e 0108	8 8 8	45 48 73 b9	de 20 9e 48	26 7d b9 4b	09 e8 77 24	f8 62 13 a0	48 34 e0 35	11 61 e5 8f	51 7b 23 27	1 1 1
1.478196e+09 1.478196e+09 1.478196e+09 1.478196e+09	0378 01e2 034e 0108 04e8	8 8 8 8	45 48 73 b9 e7	de 20 9e 48 23	26 7d b9 4b 3a	09 e8 77 24 fa	f8 62 13 a0 6d	48 34 e0 35 34	11 61 e5 8f f8	51 7b 23 27 8b	1 1 1 1
1.478196e+09 1.478196e+09 1.478196e+09 1.478196e+09 1.478196e+09	0378 01e2 034e 0108 04e8 05e1	8 8 8 8	45 48 73 b9 e7 f0	de 20 9e 48 23 51	26 7d b9 4b 3a 41	09 e8 77 24 fa f2	f8 62 13 a0 6d 69	48 34 e0 35 34 c2	11 61 e5 8f f8 ac	51 7b 23 27 8b a5	1 1 1 1 1

Figura: Amostras de instruções do dataset com exemplos benignos e maliciosos, respectivamente.

Instruções CAN (Controller Area Network)

Round	Туре	Description	# Normal	# Attack	# Rows (Total)
Preliminary	Training	Normal and four types of attacks dataset with class	3,372,743	299,408	3,672,151
	Submission	Normal and four types of attacks dataset with class (during the competition, without class)	3,358,210	393,836	3,752,046
Final	Submission	Normal and five attacks (4 spoofings, 1 fuzzing) dataset with class (during the competition, without class)	1,090,312	179,998	1,270,310

Figura: Tabela de divisão de instruções normais e ataques.

Metodologia

01

Análise dos dados

02

Pré-processamento

Extração de características

04

Treinamento e teste

Metodologia

- Coleta e pré-processamento: CSV -> dataframes; Amostragem de ataques;
 Transformações de dados.
- Extração de características: Campos de data da instrução CAN.
- Treinamento e testes: random forest, multilayer perceptron, K-Nearest Neighbors. Uso de GridSearch para testes de parâmetros. Validação cruzada com cinco pastas.

Distribuição de classes

Random Forest

Criação de árvores de decisão

K-Nearest Neighbors

Vizinhos mais próximos

Multilayer perceptron

Neuronios com pesos

Parâmetros

```
param_grid_rf = {
    "max_depth": [1,2],
    "min_samples_split": [2,3,4],
    "min_samples_leaf": [2,3,4]
}
```

A lista completa de parâmetros utilizados (escolhidos manualmente ou com a ajuda do GridSearch) é:

n_estimators: 100
criterion: gini
max_depth: 2

min_samples_split: 2
 min_samples_leaf: 2

min_weight_fraction_leaf: 0.0

max_features: auto
 max_leaf_nodes: None

min_impurity_decrease: 0.0

bootstrap: True
oob_score: True
n_iobs: None

· random_state: None

· verbose: 0

warm_start: None
 class_weight: None

· ccp_alpha: 0.0

· max_samples=None

```
param_grid_knn = {
    "n_neighbors": [2,3,5,7,9],
    "weights": ['uniform','distance'],
    "algorithm": ['ball_tree', 'kd_tree', 'brute']
}
```

A lista completa de parâmetros utilizados (escolhidos manualmente ou com a ajuda do GridSearch) é:

n_neighbors: 9

· weights: uniform

· algorithm: ball_tree

leaf_size: 30

• p: 2

· metric: minkowski

metric_params: None

n_jobs: None

Parâmetros

```
param_grid_mlp = {
    'hidden_layer_sizes': [(10,10,10), (10,10), (10,)],
    'activation': ['logistic', 'tanh'],
}{'activation': 'logistic', 'hidden_layer_sizes': (10,)}
```

A lista completa de parâmetros utilizados (escolhidos manualmente ou com a ajuda do GridSearch) é:

- hidden_layer_sizes: (10,)
- · activation: logistic
- solver: adamalpha: 0.0001
- batch size: auto
- · learning_rate: constant
- learning_rate_init: 0.001
- power_t: 0.5max_it: 200
- · shuffle: True
- · random_state: None
- tol: 1e-4
- verbose: False
- warm_start: False
 momentum: 0.9
- nesteroys_momentum: True
- · early_stopping: False
- validation_fraction: 0.1
- beta_1: 0.9
- beta_2: 0.999
- epsilon: 1e-8
 n_iter_no_change: 10
- max_fun: 15000

Random forest

KNN

MLP

Discussão

Ótimos resultados nos três algoritmos

Tipos de Ataque

Cada tipo possui especificidades

Overfitting ou outros métodos

Referencias

Hyunjae Kang, Byung II Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee and Huy Kang Kim. "Car Hacking and Defense Competition on In-Vehicle Network." Third International Workshop on Automotive and Autonomous Vehicle Security, 2021.

Hyunjae Kang, Byung II Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee, Huy Kang Kim, February 3, 2021, "Car Hacking: Attack & Defense Challenge 2020 Dataset", IEEE Dataport, doi: https://dx.doi.org/10.21227/qvr7-n418

Hyunsung Lee, Seong Hoon Jeong and Huy Kang Kim, "OTIDS: A Novel Intrusion Detection System for In-vehicle Network by using Remote Frame", PST (Privacy, Security and Trust) 2017

