Data Science con R

Instituto de Estadística PUCV - Magister en Estadística

Dae-Jin Lee < dlee@bcamath.org >

Página principal		
Presentación "Data Visualization in Social S	Sciences"	
Versión en *.pdf		
Chambers et al. (1983)		

"No existe una herramienta estadística tan poderosa como un gráfico bien escogido"

Visualización de datos

- $\bullet\,$ Una de las principales razones por las que los analistas de datos recurren a R es por su gran capacidad gráfica.
- Esta sección proporciona una introducción completa sobre cómo representar datos mediante el sistema de gráficos por defecto de R.
- Las posibilidades gráficas de R son enormes (casi infinitas).
- Muchas librerías disponen de representaciones gráficas muy útiles para la representación de datos y de modelos.
- Veamos a continuación algunos ejemplos.

Objetivos de este tema

- $\bullet\,$ Conocer las capacidades gráficas básicas de R
- Aprender a personalizar gráficos, y conocer los tipos de gráficos más complejos desde el punto de vista estadístico.
- Trabajar con datos reales y realizar análisis descriptivos y gráficos.
- Realizar gráficos con librerías como ggplot2
- $\bullet\,$ Guardar gráficos en los diferentes formatos para utilizarlos posteriormente en presentaciones, informes etc . . .

Preliminares

• Instalar las siguientes librerías de 'R

```
install.packages("DAAG")
install.packages("calibrate")
install.packages("corrplot")
install.packages("gplots")
install.packages("HSAUR2")
```

```
install.packages("sp")
install.packages("maps")
install.packages("maptools")
install.packages("RColorBrewer")
install.packages("RgoogleMaps")
```

Datos cuantitativos

Vamos a comenzar con el conjunto de datos en el data.frame: pressure (ver ?pressure)

```
?pressure
head(pressure)
```

```
##
     temperature pressure
                    0.0002
## 1
## 2
               20
                    0.0012
## 3
               40
                    0.0060
               60
                    0.0300
## 4
## 5
               80
                    0.0900
## 6
              100
                    0.2700
```

Función plot

plot(pressure)

Función text

```
plot(pressure)
text(150, 600,
    "Pressure (mm Hg)\nversus\nTemperature (Celsius)")
```


La opción cex permite aumentar el tamaño de la fuente

```
plot(pressure)
text(150, 600, cex = 2,
     "Pressure (mm Hg)\nversus\nTemperature (Celsius)")
```


La opción log = "y", representa la variable y en escala logarítmica. xlab e ylab permite añadir texto a los ejes y main el título del gráfico.

```
plot(pressure, xlab = "Temperature (deg C)", log = "y",
    ylab = "Pressure (mm of Hg)",
```

pressure data: Vapor Pressure of Mercury

Datos mtcars

?mtcars

```
head(mtcars)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                               160 110 3.90 2.620 16.46
                                                                        4
## Mazda RX4 Wag
                     21.0
                            6
                               160 110 3.90 2.875 17.02
                                                                        4
## Datsun 710
                     22.8
                                   93 3.85 2.320 18.61
                            4
                               108
                                                                        1
## Hornet 4 Drive
                     21.4
                            6
                               258 110 3.08 3.215 19.44
                                                          1
                                                                   3
                                                                        1
## Hornet Sportabout 18.7
                               360 175 3.15 3.440 17.02
                                                                   3
                                                                        2
## Valiant
                     18.1
                               225 105 2.76 3.460 20.22
                                                                        1
names(mtcars)
## [1] "mpg"
               "cyl"
                      "disp" "hp"
                                     "drat" "wt"
                                                   "qsec" "vs"
                                                                  "am"
                                                                         "gear"
## [11] "carb"
```

Scatterplot ó gráfico X-Y

```
attach(mtcars)
plot(wt, mpg);
abline(lm(mpg~wt)); title("Regression of MPG on Weight")
```

Regression of MPG on Weight

Scatterplot matrix (ver?pairs)

Simple Scatterplot Matrix

Diagrama de barras (ver ?barplot)

```
tab <- table(mtcars[,c("cyl")]) # convertir a tabla
barplot(tab)</pre>
```


Piechart o diagrama de tarta (ver ?pie)

pie(tab)

Datos VADeaths

- El data.frame VADeaths contiene las tasas de mortalidad por cada 1000 habitantes en Virginia (EEUU) en 1940
- Las tasas de mortalidad se miden cada 1000 habitantes por año. Se encuentran clasificadas por grupo de edad (filas) y grupo de población (columnas).
- Los grupos de edad son: 50-54, 55-59, 60-64, 65-69, 70-74 y los grupos de población: Rural/Male, Rural/Female, Urban/Male and Urban/Female.

data(VADeaths) VADeaths

Rural Male Rural Female Urban Male Urban Female ## 50-54 11.7 8.7 15.4 8.4

```
## 55-59
                              11.7
                                         24.3
                                                       13.6
                18.1
                26.9
                              20.3
                                         37.0
## 60-64
                                                       19.3
## 65-69
                41.0
                              30.9
                                         54.6
                                                       35.1
## 70-74
                66.0
                              54.3
                                         71.1
                                                       50.0
```

• Calcula la media por grupo de edad y la media por grupo de población (**Pista:** puedes usar la función apply)

Función apply

• Resultado

```
apply(VADeaths,1,mean)

## 50-54 55-59 60-64 65-69 70-74

## 11.050 16.925 25.875 40.400 60.350

apply(VADeaths,2,mean)

## Rural Male Rural Female Urban Male Urban Female
## 32.74 25.18 40.48 25.28
```

Data rainforest

```
library(DAAG)
head(rainforest)
```

```
dbh wood bark root rootsk branch
##
                                                  species
## 27
        6
            NA
                  NA
                        6
                             0.3
                                      NA Acacia mabellae
                            13.0
## 61
       23
           353
                  NA
                      135
                                      35 Acacia mabellae
## 62
       20
           208
                  NA
                       NA
                              NA
                                      41 Acacia mabellae
## 63
       23
                                      50 Acacia mabellae
           445
                  NA
                       NA
                              NA
## 65
       24
           590
                              NA
                                      NA Acacia mabellae
                  NA
                       NA
                        2
                             2.4
                                      NA Acacia mabellae
## 80
        5
                  NA
            14
```

- Crear una tabla de conteos para cada species y realiza un gráfico descriptivo.
- Resultado:

```
table(rainforest$species)
##
```

Diagrama de barras

```
barplot(table(rainforest$species))
```


Acacia mabellae C. fraseri Acmena smithii B. myrtifolia

?subset

• El data.frame Acmena está creado a partir de rainforest mediante la función subset.

```
Acmena <- subset(rainforest, species == "Acmena smithii")
```

- Vamos a realizar un gráfico que relacione la biomasa de la madera (wood) y el diámetro a la altura del pecho (dbh).
- Utiliza también la escala logarítmica.

par y mfrow

```
par(mfrow=c(1,2))
plot(wood~dbh,data=Acmena,pch=19, main="plot of dbh vs wood")
plot(log(wood)~log(dbh),data=Acmena,pch=19,main="log transformation")
```


log transformation

Histograma

```
hist(Acmena$dbh,col="grey")
```

Histogram of Acmena\$dbh

Más sobre gráficos XY

• Datos mammals

```
library(MASS)
data("mammals")
?mammals
head(mammals)
##
                      body brain
## Arctic fox
                     3.385 44.5
## Owl monkey
                     0.480 15.5
## Mountain beaver
                     1.350
                            8.1
                   465.000 423.0
## Cow
## Grey wolf
                    36.330 119.5
## Goat
                    27.660 115.0
attach(mammals)
species <- row.names(mammals)</pre>
x <- body
y <- brain
library(calibrate)
# scatterplot
plot(x,y, xlab = "body weight in kgr", ylab = "brain weight in gr",
     main="Body vs Brain weight \n for 62 Species of Land Mammals", xlim=c(0,8500))
textxy(x,y,labs=species,col = "blue",cex=0.85)
```

Body vs Brain weight for 62 Species of Land Mammals

identify

Identificar un punto en el scatterplot

```
identify(x,y,species)
```

En escala logarítmica

log Body vs log Brain weight for 62 Species of Land Mammals

Matrices de correlación

- La función corrplot de la librería corrplot permite visualizar una matriz de correlaciones calculada mediante la función cor
- Vamos a generar unos datos de manera aleatoria.
- Mediante set.seed(1234) generaremos números aleatorios a partir de la misma semilla.

```
set.seed(1234)
uData <- rnorm(20)
vData <- rnorm(20,mean=5)
wData <- uData + 2*vData + rnorm(20,sd=0.5)
xData <- -2*uData+rnorm(20,sd=0.1)
yData <- 3*vData+rnorm(20,sd=2.5)
d <- data.frame(u=uData,v=vData,w=wData,x=xData,y=yData)

pairs
pairs(d)</pre>
```


corrplot

u 1.00000000 -0.2765719 0.2927511 -0.99868977 -0.04024035 ## v -0.27657193 1.0000000 0.7924159 0.27353287 0.75719956 ## w 0.29275113 0.7924159 1.0000000 -0.29680269 0.67192135 ## x -0.99868977 0.2735329 -0.2968027 1.00000000 0.03090972 ## y -0.04024035 0.7571996 0.6719213 0.03090972 1.00000000

corrplot(M, method="circle",type="upper")

UCBAdmissions

• El conjunto de datos de R, UCBAdmissionscontiene los datos agregados de los solicitantes a universidad de Berkeley a los seis departamentos más grandes en 1973 clasificados por sexo y admisión.

```
data("UCBAdmissions")
?UCBAdmissions
apply(UCBAdmissions, c(2,1), sum)
##
           Admit
            Admitted Rejected
## Gender
                1198
##
                          1493
     Male
                          1278
##
     Female
                 557
prop.table(apply(UCBAdmissions, c(2,1), sum))
##
           Admit
## Gender
             Admitted Rejected
##
     Male
            0.2646929 0.3298719
##
     Female 0.1230667 0.2823685
ftable(UCBAdmissions)
##
                   Dept
                           Α
                               В
                                   С
                                       D
                                           Ε
                                               F
## Admit
            Gender
## Admitted Male
                         512 353 120 138
                                          53
                                              22
##
            Female
                          89
                              17 202 131
```

```
## Rejected Male 313 207 205 279 138 351
## Female 19 8 391 244 299 317
```

Con ftable podemos presentar la información con mayor claridad

```
ftable(round(prop.table(UCBAdmissions), 3),
    row.vars="Dept", col.vars = c("Gender", "Admit"))
```

##	Gender	Male		Female	
##	Admit	${\tt Admitted}$	Rejected	${\tt Admitted}$	Rejected
## Dept					
## A		0.113	0.069	0.020	0.004
## B		0.078	0.046	0.004	0.002
## C		0.027	0.045	0.045	0.086
## D		0.030	0.062	0.029	0.054
## E		0.012	0.030	0.021	0.066
## F		0.005	0.078	0.005	0.070

Resulta más intereseante mostrar la información por género Gender y Dept combinados (dimensiones 2 y 3 del array). Nótese que las tasas de admisión por male y female son más o menos similares en todos los departamentos, excepto en "A", donde las tasas de las mujeres es mayor.

```
ftable(round(prop.table(UCBAdmissions, c(2,3)), 2),
         row.vars="Dept", col.vars = c("Gender", "Admit"))
```

##		Gender	Male		Female	
##		Admit	${\tt Admitted}$	Rejected	${\tt Admitted}$	Rejected
##	Dept					
##	Α		0.62	0.38	0.82	0.18
##	В		0.63	0.37	0.68	0.32
##	C		0.37	0.63	0.34	0.66
##	D		0.33	0.67	0.35	0.65
##	E		0.28	0.72	0.24	0.76
##	F		0.06	0.94	0.07	0.93

Datos de admisiones agregados por Sexo/Departamento

```
apply(UCBAdmissions, c(1, 2), sum)
```

```
## Gender

## Admit Male Female

## Admitted 1198 557

## Rejected 1493 1278

apply(UCBAdmissions, c(1, 2), sum)
```

```
## Gender
## Admit Male Female
## Admitted 1198 557
## Rejected 1493 1278
```

Representación gráfica datos categóricos (spineplot)

Paradoja de Simpson

- Estos datos ilustran la denominada paradoja de Simpson.
- Este hecho ha sido analizado como un posible caso de discriminación por sexo en las tasas de admisión en Berkeley.
- De los 2691 hombres que solicitaron se admitidos, 1198 (44.5%) fueron admitidos, comparado con las 1835 mujeres de las cuales tan sólo 557 (30.4%) fueron admitidas.
- Se podría por tanto concluir que los hombres tienes tasas de admisi?n mayores que las mujeres.
- Wikipedia: Gender Bias UC Berkeley.
- \bullet Ver animación en link

Datos faithful

• Consideremos los datos del geyse Old Faithful en el parque nacional de Yellowstone, EEUU.

head(faithful)

##		eruptions	waiting
##	1	3.600	79
##	2	1.800	54
##	3	3.333	74
##	4	2.283	62
##	5	4.533	85

plot(faithful)

Histograma (hist)

hist(faithful\$eruptions,50)

Histogram of faithful\$eruptions

Estimación de densidades

• Estimación de densidad construye una estimación dada una distribucion de probabilidad para una muestra dada.

```
library(graphics)
d <- density(faithful$eruptions)</pre>
##
## Call:
    density.default(x = faithful$eruptions)
##
##
## Data: faithful$eruptions (272 obs.); Bandwidth 'bw' = 0.3348
##
##
                              :0.0002262
    {\tt Min.}
            :0.5957
##
                      Min.
    1st Qu.:1.9728
                      1st Qu.:0.0514171
##
    Median :3.3500
                      Median :0.1447010
##
            :3.3500
                      Mean
                              :0.1813462
##
    3rd Qu.:4.7272
                      3rd Qu.:0.3086071
    Max.
            :6.1043
                      Max.
                              :0.4842095
plot(d)
```

density.default(x = faithful\$eruptions)

Histograma y Densidad

```
hist(faithful$eruptions,freq=FALSE, col = "lightblue", xlim = c(1,6))
lines(d, col = "red", lwd = 2)
```

Histogram of faithful\$eruptions

Histograma bivariante


```
h2
##
##
## 2-D Histogram Object
##
##
## Call: hist2d(x = faithful, nbins = 30, xlab = "Duration in minutes",
##
       ylab = "Waiting")
##
## Number of data points: 272
## Number of grid bins: 30 x 30
## X range: ( 1.6 , 5.1 )
## Y range: (43,96)
class(h2)
## [1] "hist2d"
names(h2)
## [1] "counts"
                  "x.breaks" "y.breaks" "x"
                                                    "y"
                                                               "nobs"
## [7] "call"
```

Estimación de densidades bivariantes (kde2d)

```
Dens2d<-kde2d(faithful$eruptions,faithful$waiting)
image(Dens2d,xlab="eruptions",ylab="waiting")
contour(Dens2d,add=TRUE,col="black",lwd=2,nlevels=5)</pre>
```


persp

persp(Dens2d,phi=30,theta=20,d=5,xlab="eruptions",ylab="waiting",zlab="",shade=.2,col="lightblue",expan

Ejemplo: Forbes 2000 (ranking de las empresas líderes en 2004)

• La lista Forbes 2000 para el año 2004 recogida por la revista Forbes. Esta lista está disponible originalmente en www.forbes.com

```
library("HSAUR2")
data("Forbes2000")
dim(Forbes2000)

## [1] 2000 8
names(Forbes2000)

## [1] "rank" "name" "country" "category" "sales"
## [6] "profits" "assets" "marketvalue"

library(knitr)
kable(head(Forbes2000))
```

rank	name	country	category	sales	profits	assets	marketvalue
1	Citigroup	United States	Banking	94.71	17.85	1264.03	255.30
2	General Electric	United States	Conglomerates	134.19	15.59	626.93	328.54
3	American Intl Group	United States	Insurance	76.66	6.46	647.66	194.87
4	ExxonMobil	United States	Oil & gas operations	222.88	20.96	166.99	277.02
5	BP	United Kingdom	Oil & gas operations	232.57	10.27	177.57	173.54
6	Bank of America	United States	Banking	49.01	10.81	736.45	117.55

Los datos consisten en 2000 observaciones sobre las 8 variables siguientes.

- rank: el ranking de la empresa.
- name: el nombre de la empresa.
- country: un factor que determina el país en el que está situada la empresa.

- category: un factor que describe los productos que produce la empresa.
- sales: el importe de las ventas de la empresa en miles de millones de dólares.
- profits: los beneficios de la empresa en miles de millones de dólares.
- assets: los activos de la empresa en miles de millones de dólares.
- marketvalue: el valor de mercado de la empresa en miles de millones de dólares.

str(Forbes2000)

```
## 'data.frame':
                    2000 obs. of 8 variables:
##
   $ rank
                 : int 1 2 3 4 5 6 7 8 9 10 ...
                 : chr "Citigroup" "General Electric" "American Intl Group" "ExxonMobil" ...
##
   $ name
                 : Factor w/ 61 levels "Africa", "Australia",..: 60 60 60 60 56 60 56 28 60 60 ...
   $ country
##
##
   $ category
                 : Factor w/ 27 levels "Aerospace & defense",..: 2 6 16 19 19 2 2 8 9 20 ...
                        94.7 134.2 76.7 222.9 232.6 ...
   $ profits
                        17.85 15.59 6.46 20.96 10.27 ...
##
                 : num
                        1264 627 648 167 178 ...
   $ assets
                 : num
                        255 329 195 277 174 ...
   $ marketvalue: num
```

• ¿Cuántos países diferentes están en el ranking del año 2000?

```
nlevels(Forbes2000[,"country"])
```

[1] 61

• Cuáles son éstos países?

levels(Forbes2000[,"country"])

```
[1] "Africa"
##
                                         "Australia"
##
    [3] "Australia/ United Kingdom"
                                         "Austria"
##
    [5] "Bahamas"
                                         "Belgium"
   [7] "Bermuda"
                                         "Brazil"
                                         "Cayman Islands"
##
    [9] "Canada"
## [11]
       "Chile"
                                         "China"
## [13] "Czech Republic"
                                         "Denmark"
## [15] "Finland"
                                         "France"
## [17] "France/ United Kingdom"
                                         "Germany"
## [19]
       "Greece"
                                         "Hong Kong/China"
## [21] "Hungary"
                                         "India"
## [23] "Indonesia"
                                         "Ireland"
## [25] "Islands"
                                         "Israel"
## [27] "Italy"
                                         "Japan"
## [29] "Jordan"
                                         "Kong/China"
## [31] "Korea"
                                         "Liberia"
##
  [33]
       "Luxembourg"
                                         "Malaysia"
##
  [35]
       "Mexico"
                                         "Netherlands"
                                         "New Zealand"
## [37] "Netherlands/ United Kingdom"
                                         "Pakistan"
## [39] "Norway"
  [41]
       "Panama/ United Kingdom"
                                         "Peru"
## [43]
       "Philippines"
                                         "Poland"
## [45]
        "Portugal"
                                         "Russia"
## [47]
        "Singapore"
                                         "South Africa"
## [49]
       "South Korea"
                                         "Spain"
## [51] "Sweden"
                                         "Switzerland"
## [53] "Taiwan"
                                         "Thailand"
  [55] "Turkey"
                                         "United Kingdom"
## [57] "United Kingdom/ Australia"
                                         "United Kingdom/ Netherlands"
```

```
## [59] "United Kingdom/ South Africa" "United States"
## [61] "Venezuela"
  • Cuáles en el top 20?
top20 <- droplevels(subset(Forbes2000,rank<=20))</pre>
levels(top20[,"country"])
## [1] "France"
                                       "Japan"
## [3] "Netherlands"
                                       "Netherlands/ United Kingdom"
## [5] "Switzerland"
                                       "United Kingdom"
## [7] "United States"
  • Como un simple resumen estadístico, las frecuencias de los niveles de dicha variable factorial se pueden
     encontrar en
table(top20[,"country"])
##
##
                         France
                                                         Japan
##
                               2
                    Netherlands Netherlands/ United Kingdom
##
##
                               1
##
                    Switzerland
                                               United Kingdom
##
##
                  United States
##
                              11
  • ¿Qué tipo de empresas?
levels(Forbes2000[,"category"])
    [1] "Aerospace & defense"
                                              "Banking"
##
    [3] "Business services & supplies"
                                              "Capital goods"
    [5] "Chemicals"
                                              "Conglomerates"
   [7] "Construction"
##
                                              "Consumer durables"
    [9] "Diversified financials"
                                              "Drugs & biotechnology"
## [11] "Food drink & tobacco"
                                              "Food markets"
## [13] "Health care equipment & services"
                                              "Hotels restaurants & leisure"
## [15] "Household & personal products"
                                              "Insurance"
## [17] "Materials"
                                              "Media"
## [19] "Oil & gas operations"
                                              "Retailing"
## [21] "Semiconductors"
                                              "Software & services"
## [23] "Technology hardware & equipment"
                                              "Telecommunications services"
## [25] "Trading companies"
                                              "Transportation"
## [27] "Utilities"

    ¿Cuántas de cada categoría?

table(Forbes2000[,"category"])
##
##
                 Aerospace & defense
                                                                 Banking
##
                                                                     313
##
       Business services & supplies
                                                           Capital goods
##
                                   70
##
                            Chemicals
                                                           Conglomerates
```

Consumer durables

50

Construction

##

##

```
79
##
                                                                       74
             Diversified financials
##
                                                  Drugs & biotechnology
##
                                  158
                                                                       45
##
                Food drink & tobacco
                                                            Food markets
##
##
   Health care equipment & services
                                          Hotels restaurants & leisure
##
                                                               Insurance
##
      Household & personal products
##
                                                                      112
##
                           Materials
                                                                   Media
##
                                   97
                                                                       61
##
                Oil & gas operations
                                                               Retailing
##
##
                      Semiconductors
                                                    Software & services
##
                                   26
##
    Technology hardware & equipment
                                            Telecommunications services
##
                                                                       67
                                                          Transportation
##
                   Trading companies
##
                                   25
                                                                       80
##
                           Utilities
##
                                  110
```

• Un simple resumen estadístico como la media, la mediana, los cuantiles y el rango se puede encontrar a partir de variables continuas como las ventas (sales).

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.010 2.018 4.365 9.697 9.548 256.300

• Histogramas y boxplots

par(mfrow=c(1,2))
hist(Forbes2000$marketvalue, col="lightgrey",main="Histogram of market value")
boxplot(Forbes2000$marketvalue, col="lightgrey",main="Boxplot of market value")
```

Histogram of market value

Boxplot of market value

Forbes2000\$marketvalue

Histogram of log(market value)

Boxplot of log(market value)

log(Forbes2000\$marketvalue)

```
par(mfrow=c(1,2))
plot(marketvalue ~ sales, data = Forbes2000, pch = ".")
plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".")
                                                         9
         300
                                                   log(marketvalue)
   marketvalue
         200
                                                         ^{\circ}
                                                         0
         100
                                                                                 2
                   50
                              150
                                        250
                                                                      -2
                                                                                       4
               0
                                                                            0
                          sales
                                                                        log(sales)
library(calibrate)
profits_all = na.omit(Forbes2000$profits) # all_profts without No data
order_profits = order(profits_all)
                                          # index of the profitable companies
                                               in decreasing order
                                          # top 50 profitable companies
top_50 = rev(order_profits)[1:50]
sales = Forbes2000$sales[top_50]
                                          # sales of the 50 top profitable companies
```

countries = Forbes2000\$country[top_50] # countries where the 50 top profitable

textxy(assets, sales, abbreviate(countries, 2), col = "blue", cex=0.5) # used to put the

USD \n of the 50 most profitable companies ", col.main = "gray")

assets of the 50 top profitable companies

countries where the companies are

companies are found

assets = Forbes2000\$assets[top_50]

title(main = "Sales and Assets in billion

plot(assets,sales,pch =1)

Sales and Assets in billion
USD
of the 50 most profitable companies

Gráficos por factor

Boxplots de los logaritmos del valor de mercado para cuatro países seleccionados, el ancho de las cajas es proporcional a las raíces cuadradas del número de empresas.

Scatterplots by country

Preguntas

1. Calcular el beneficio medio de las empresas en EE.UU. y el beneficio medio de las empresas en el Reino Unido, Francia y Alemania.

- 2. Encuentre todas las empresas alemanas con beneficios negativos.
- 3. ¿A qué categoría de negocios pertenecen la mayoría de las compañías de las islas Bermuda?
- 4. Encuentre el valor promedio de las ventas de las compañías en cada país en el conjunto de datos de Forbes, y encuentre el número de compañías en cada país con ganancias superiores a 5 mil millones de dólares estadounidenses.

Melanoma maligno en los Estados Unidos

Fisher y Belle (1993) reportan tasas de mortalidad por melanoma maligno de la piel en hombres blancos durante el período 1950-1969, en cada estado del territorio continental de los Estados Unidos.

```
data("USmelanoma",package="HSAUR2")
```

Los datos consisten en 48 observaciones sobre las siguientes 5 variables.

- mortality número de varones blancos muertos por melanoma maligno entre 1950 y 1969 por cada millón de habitantes.
- latitude: latitud del centro geográfico del estado.
- longitude: longitud del centro geográfico de cada estado.
- ocean: variable binaria que indica la contigüidad a un océano a niveles 'no' o 'sí'.

Gráficos de las tasas de mortalidad

```
xr <- range(USmelanoma$mortality) * c(0.9, 1.1)
```

Boxplot

```
#layout(matrix(1:2, nrow = 2))
boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE,xlab = "Mortality")
```



```
hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "",axes = FALSE, ylab = "")
axis(1)
```


Tasas de mortalidad por melanoma maligno por contigüidad a un océano

Los histogramas a menudo pueden ser engañosos a la hora de mostrar distribuciones debido a su dependencia

del número de clases elegidas. Una alternativa es estimar formalmente la función de densidad de una variable y luego graficar la estimación resultante.

Contiguity to an ocean

Las densidades estimadas de las tasas de mortalidad por melanoma maligno por contigüidad a un océano se ven así:

```
dyes <- with(USmelanoma, density(mortality[ocean == "yes"]))
dno <- with(USmelanoma, density(mortality[ocean == "no"]))
plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018))
lines(dno, lty = 2)
legend("topright", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n")</pre>
```


Ahora podríamos pasar a ver cómo se relacionan las tasas de mortalidad con la ubicación geográfica de un estado representada por la latitud y longitud del centro del estado.

```
layout(matrix(1:2, ncol = 2))
plot(mortality ~ -longitude, data = USmelanoma)
plot(mortality ~ latitude, data = USmelanoma)
```


Los datos contienen la longitud y latitud de los centroides.

plot(-USmelanoma\$longitude, USmelanoma\$latitude, asp=1.5, cex=.3, pch=19, col="blue")


```
library("sp")
library("maps")
library("maptools")
library("RColorBrewer")
map("state")
points(-USmelanoma$longitude, USmelanoma$latitude, asp=1.5, cex=.3, pch=19, col="blue")
```



```
# Crear una función para generar una paleta de colores continua
rbPal <- colorRampPalette(c('blue','grey','red'))
# Esto añade una columna de valores de color
# basado en los valores de y
USmelanoma$Col <- (rbPal(10)[as.numeric(cut(USmelanoma$mortality,breaks = 10))])
map("state",xlim=c(-135,-65))
points(-USmelanoma$longitude,USmelanoma$latitude,col=USmelanoma$Col,asp=1.5,pch=19,cex=1.2)
legend("topleft",title="Decile",legend=quantile(USmelanoma$mortality,seq(0.1,1,l=10)),col =rbPal(10),pcd</pre>
```



```
states <- map("state", plot = FALSE, fill = TRUE)
IDs <- sapply(strsplit(states$names, ":"), function(x) x[1])
rownames(USmelanoma) <- tolower(rownames(USmelanoma))
us1 <- map2SpatialPolygons(states, IDs=IDs,proj4string = CRS("+proj=longlat +datum=WGS84"))
us2 <- SpatialPolygonsDataFrame(us1, USmelanoma)
col <- colorRampPalette(c('blue', 'gray80','red'))
spplot(us2, "mortality", col.regions = col(200),par.settings = list(axis.line = list(col = 'transparen')</pre>
```


Gráficos avanzados con la librería ggplot2

- Toma como referencia una metodología de visualización de datos llamada The Grammar of Graphics, (Wilkinson, 2005).
- La idea es describir los mapeos visuales para poder armar visualizaciones complejas sin preocuparnos por la parte dificil.
- Gramática consistente basada en grammar of graphics (Wilkinson, 2005)
- Librería muy flexible
- Mantenimiento muy activo de la librería
- Gran lista de distribución y con mucha participación
- Es posible crear gráficos visualmente atractivos y elegantes
- Simple gestión de leyendas

Más información

```
library(ggplot2)
?qplot
qplot(displ, hwy, data = mpg, colour = factor(cyl))
```


qplot(mpg, wt, data = mtcars, size = cyl, alpha = I(0.7))


```
p <- ggplot(mtcars)
p <- p + aes(wt, hp)
p</pre>
```



```
p <- ggplot(mtcars, aes(mpg, wt))
p + geom_point(colour = "darkblue")</pre>
```



```
filepath <- "http://idaejin.github.io/bcam-courses/azti-2016/introR/data/ggplot2_data.txt"
myData<-read.table(file=url(filepath),header=TRUE,sep="\t")
str(myData)</pre>
```

```
## 'data.frame': 218 obs. of 4 variables:
## $ Tribe: Factor w/ 8 levels "Aepycerotini",..: 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ Hab : Factor w/ 4 levels "F","H","L","O": 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ...
## $ BM : num 56.2 56.2 56.2 56.2 56.2 ...
## $ var1 : num 36.5 40.9 37 36.2 36.6 37.7 37.3 39 37.7 35.3 ...
qplot(data=myData,x=BM,main="Histogram of BodyMass")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of BodyMass

qplot(data=myData,x=BM,y=var1,log="xy",color=Tribe)

Maps

Paquetes para Regresión Espacial / Geoestadística / Métodos de Patrones de Puntos Espaciales

- sp, maptools, spatstat
- maps

```
library(maps)
```

Sintaxis básica

```
map(database = "world",regions=".")
```


Hay bases de datos disponibles para EE.UU., Francia, Italia y Nueva Zelanda. Para otros países, es necesario importar una base de datos con el mapa correspondiente.

map(database = "usa")

map("state")

Con el paquete ${\tt RgoogleMaps},$ puedes dibujar un fondo desde Google Maps!

```
library(RgoogleMaps)
lat <- -33.447487
lon <- -70.673676
center <- c(lat, lon)
zoom <- 18
MyMap <- GetMap(center=center, zoom=zoom)
PlotOnStaticMap(MyMap)
text(lat,lon, "X")</pre>
```


ggmap ofrece capacidades gráficas como 'ggplot2".

```
library(ggmap)
geocode("Alameda, Santiago de Chile, Chile")
qmap("Santiago, Chile", zoom = 14)
mapdist("Valparaíso", "Santiago")
route("Valparaíso, Chile", "Santiago, Chile", alternatives = FALSE)
```

Ejemplo de uso de qmap y ggplot2

```
desde <- 'Valparaíso, Chile'
hasta <- 'Santiago, Chile'

rutas <- route(desde, hasta, alternatives = FALSE)
head(rutas)

ggplot() +
   geom_segment(aes(x = startLon, y = startLat, xend = endLon, yend = endLat, colour = route), size = 1.</pre>
```