Analytic Geometry

by Mr. Muzsi's two favourite students:)

Introduction

What is Analytical Geometry

 A type of geometry that involves coordinates!

Supposed to learn it in Grade 9 and10, but it got taken out

• We gotchu! B)

Description	Formula
Slope of a line through points (x_1,y_1) and (x_2,y_2)	$\frac{y_2-y_1}{x_2-x_1}$
Two perpendicular lines with slopes m_1 and m_2	$m_2=-rac{1}{m_1}$
Standard form of an equation of a line with slope $-\frac{A}{B}$, x -intercept $-\frac{C}{A}$, and y -intercept $-\frac{C}{B}$	Ax+By+C=0
Equation of a line with slope m through the point (x_0,y_0)	$y-y_0=m(x-x_0)$
Equation of a line with intercepts at $(a,0)$ and $(0,b)$	$rac{x}{a} + rac{y}{b} = 1$
Formula for the midpoint of $A(x_1,y_1)$ and $B(x_2,y_2)$	$\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2} ight)$
Distance D between points $A(x_1,\!y_1)$ and $B(x_2,\!y_2)$	$D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
(Minimum) distance D between the line $Ax+By+C=0$ and the point (x_0,y_0)	$D=rac{ Ax_0+By_0+C }{\sqrt{A^2+B^2}}$
Area of a triangle with vertices $A(x_1,y_1)$, $B(x_2,y_2)$, and $C(x_3,y_3)$	$oxed{rac{1}{2} x_1y_2+x_2y_3+x_3y_1-x_2y_1-x_3y_2-x_1y_3 }$
Equation of a circle centred at (h,k) with radius r	$(x-h)^2+(y-k)^2=r^2$

Slope of a Perpendicular Line

 Given a line with slope m, a line perpendicular to it will have a slope of -1/m

• $m_2 = -1/m_1$ where m_1 and m_2 are slopes of perpendicular lines

Midpoint Formula

• $M(x,y) = ((x_1+x_2)/2, (y_1+y_2)/2)$

 This formula finds the midpoint of a line segment

 Idea is to find the midpoint with respect to the x-axis and midpoint with respect to the y-axis

Pythagorean Theorem

A popular analytical geometry formula

$$\bullet \quad A^2 + B^2 = C^2$$

• Applies to all right triangles

Proof of Pythagorean Theorem

- A smaller square with side length c is inscribed in a larger square with side length a + b so that it forms 4 right angle triangles
- Total Area_{Four Triangles} = $4(\frac{1}{2} ab) = 2ab$
- Area_{Small Square} = c^{2}
- Area_{Large Square} = $(a+b)(a+b) = 2ab + c^2$
- $a^2 + 2ab + b^2 = 2ab + c^2$
- $a^2 + b^2 = c^2$ (proof)

Distance Formula

•
$$\Delta d = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}$$

 Idea is to build a right triangle and use pythagorean theorem to find our hypotenuse (our distance)

Distance Formula

Distance Formula

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(7 - 1)^2 + (6 - 3)^2}$$

$$= \sqrt{6^2 + 3^2}$$

$$= \sqrt{36 + 9}$$

$$= \sqrt{45}$$

$$= 6.7085$$

Equation of a circle

• The equation of a circle is as follows:

$$(x-h)^2 + (y-k)^2 = r^2$$

- Horizontally shifted h units, vertically shifted k units → centre at (h,k)
- o Circle has radius r

Sample Problems

Find all value(s) of k so that the circle with equation $x^2 + y^2 = k^2$ will intersect the circle with equation $(x - 5)^2 + (y + 12)^2 = 49$ in exactly one point.

Solution

Second circle is shifted 5 units right and 12 units down $\rightarrow \sqrt{(5^2+12^2)} = 13 \rightarrow$ circle is 13 units away from origin

Second circle has radius 7

First circle has centre at origin \rightarrow 13-7=6 \rightarrow k = 6

If triangle ABC has vertices A(0,0), B(3,3), and C(-4,4), determine the equation of the bisector of $\angle CAB$.

Solution

$$y = 2 \rightarrow m = 0$$

Perpendicular line is x = 0

Find the equation of the set of points equidistant from C(0,3) and D(6,0)

Solution

$$y = m_1x + b_1$$

$$m_1 = (0-3)/(6-0)$$

$$b_1 = 3$$

$$y = -0.5x+3$$

$$y = m_2x + b_2$$

$$m_2 = -1/m_1 = 2$$

$$y = 2x + b_2$$

$$(6-0)/2 = 2(3-0)/2 + b_2$$

$$y = 2x - 4.5$$

