JP 404304002 A OCT 1992

(54) DIELECTRIC FILTER

(11) 4-304002 (A)

(43) 27.10.1992 (19) JP (22) 1.4.1991

(21) Appl. No. 3-68235

(71) MURATA MFG CO LTD (72) TADAHIRO YORITA(1)

(51) Int. Cl⁵. H01P1/205

PURPOSE: To reduce the axial length of a dielectric unit, that is, an integrally forming filter than that of a conventional structure by adjusting the stray capacitance so as to obtain a desired frequency thereby reducing the axial length L of a dielectric block 14.

CONSTITUTION: A dielectric unit 12 includes a dielectric block 14 on which two dielectric coaxial resonators are formed, and a board 18 projecting from an open end face 16 of the dielectric block 14 in the axial direction of the dielectric block 14 and formed integrally. A stray capacitance is formed between a capacitor electrode 28a formed on the board 18 and a ground electrode 26 formed to a lower side of the board 18 and between a capacitor electrode 28b formed on the board 18 and the ground electrode 26 respectively. The frequency adjustment of the integrally formed filter 10 is implemented by adjusting the stray capacitance.

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-304002

(43)公開日 平成4年(1992)10月27日

(51) Int,Cl.3

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 1 P 1/205

B 9183-5 J

G 9183-5 J

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

(22)出願日

特願平3-68235

平成3年(1991)4月1日

(71)出願人 000006231

株式会社村田製作所

京都府長岡京市天神二丁目26番10号

(72)発明者 寄田 忠弘

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72)発明者 宮本 博文

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(74)代理人 弁理士 山田 義人

(54) 【発明の名称】 誘電体フイルタ

(57)【要約】

【構成】 3誘電体ユニット12は、2つの誘電体同軸共振器が形成される誘電体ブロック14と誘電体ブロック14の開放端面16側から誘電体ブロック14の軸方向に突出して一体的に形成された基板18とを含む。基板18上に形成されたコンデンサ電極28aおよび28bと基板18の下面に形成されたアース電極26との間で、それぞれ浮遊容量を形成する。これらの浮遊容量を調整することによって一体成形フィルタ10の周波数調整を行う。

【効果】 浮遊容量を調整することによって所望の周波 数が得られるので、誘電体プロック14の軸方向の長さ しを短く設計できる。したがって、誘電体ユニット12 すなわち一体成形フィルタ10の軸方向の長さを従来構造より短くできる。

【特許請求の範囲】

【請求項1】誘電体同軸共振器が1つの誘電体ブロック によって構成される誘電体フィルタにおいて、少なくと も周波数調整用の浮遊容量を形成するための基板を前記 誘電体プロックの開放端側から突出して一体的に形成し たことを特徴とする、誘電体フィルタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は誘電体フィルタに関 し、特にたとえば複数の誘電体同軸共振器が1つの誘電、10 体プロックに形成された一体成形形の誘電体フィルタに 関する。

[0002]

【従来の技術】従来より、BPF(パンドパスフィル タ) やBEF (バンドエリミネーションフィルタ) に用 いられる誘電体フィルタとして、図11に示すような一 体成形フィルタ1がある。一体成形フィルタ1は筐体状 の誘電体プロック2を含み、その貫通孔3に誘電体ブッ シング4を嵌め込み、誘電体ブッシング4に差し込まれ る。そして、周波数の調整は誘電体プロック2の軸方向 の長さしを調整したり、開放端面6に電極を付加するこ とによって行っていた。

[0003]

【発明が解決しようとする課題】このような一体成形フ ィルタ1において、開放端面6に電極を付加する方法で は周波数の調整範囲は狭いので、広範囲に周波数を調整 するには、長さしを調整する方法を用いて所望の周波数 に設定していた。すなわち、周波数によって長さLが決 りすなわち一体成形フィルタ1が大型化する。さらに、 一体成形フィルタ1は金属ピン5によって結合基板に結 合されるため、構造全体の軸方向の長さがさらに長くな り、大型化してしまう。

【0004】それゆえに、この発明の主たる目的は、小 型化できる、誘電体フィルタを提供することである。

[0005]

【課題を解決するための手段】この発明は、誘電体同軸 共振器が1つの誘電体プロックによって構成される誘電 体フィルタにおいて、少なくとも周波数調整用の浮遊容 40 することによってQ。容量C5が形成される。 量を形成するための基板を誘電体プロックの開放端側か ら突出して一体的に形成したことを特徴とする、誘電体 フィルタである。

[0006]

【作用】基板によって比較的大きな浮遊容量が形成さ れ、それによって周波数を調整することができるので、 誘電体プロックの軸方向の長さを短く設定しても、所望 の周波数に設定される。

[0007]

方向の長さを短くできるので、従来より、誘電体フィル 夕を小型化することができる。この発明の上述の目的。 その他の目的、特徴および利点は、図面を参照して行う 以下の実施例の詳細な説明から一層明らかとなろう。

2

[0008]

【実施例】図1を参照して、この実施例の一体成形フィ ルタ10はたとえばBPFとして用いられるものであ り、誘電体ユニット12を含む。誘電体ユニット12 は、2つの誘電体同軸共振器が形成される箇体状の誘電 体プロック14を含み、誘電体プロック14の開放端面 16側から誘電体プロック14の軸方向に突出して基板 18が形成される。誘電体プロック14と基板18との 下面および軸方向両側面は面一になるように、誘電体ブ ロック16と基板18とは一体的に形成される。

【0009】また、誘電体プロック14の開放端面16

から短絡端面20にかけて2つの貫通孔22aおよび2 2 bが形成される。貫通孔22aおよび22bの底面は 基板18の上面と面一に形成され、したがって、貫通孔 22aおよび22bの断面形状は略かまぼこ型になる。 た金属ピン5によって結合基板(図示せず)に結合され 20 貫通孔22aと22bのそれぞれの内周面には内導体 (図示せず) が形成される。また、誘電体ブロック14 および基板18の外周面には、開放端面16、基板18 の上面および前方側面24を除いて、外導体すなわちア 一ス電極26が形成される。したがって、1つの誘電体 プロック14に2つの誘電体同軸共振器が形成される。

【0010】そして、基板18の上面には対向する2つ のコンデンサ電極28aおよび28bが形成される。ま た、コンデンサ電極28aおよび28bは、それぞれ貫 通孔22aおよび22bにまで延びて形成され、それぞ 定され、設定する周波数の値によっては長さ上が長くな 30 れ内導体に接続される。コンデンサ電極28aと28b とが対向することによって、図3の等価回路に示す結合 容量C1が形成される。コンデンサ電極28aおよび2 8 b と 基板 1 8 の 下面に 形成される アース 電極 2 6 との 間に、それぞれ浮遊容量C2およびC3が形成される。 また、基板18の上面両端部から図2に示すように下面 の一部にかけて、入出力電極30aおよび30bが形成 される。コンデンサ電極28aと入出力電極30aとが 対向することによって外部Q(Q。)容量C4が形成さ れ、コンデンサ電極28bと入出力電極30bとが対向

【0011】なお、アース電極26と入出力電極30a および30bとは電気的に絶縁するようにギャップを隔 てて形成される。この一体成形フィルタ10では、浮遊 容量C2およびC3により周波数を調整する。したがっ て、誘電体プロック14の軸方向の長さしを短く設定し ても、浮遊容量C2およびC3を調節することによって 所望の周波数に設定できる。したがって、誘電体ブロッ ク14の軸方向の長さしを短くできるので、誘電体ユニ ット12の軸方向の長さを短くでき、一体成形フィルタ・ 【発明の効果】この発明によれば、誘電体ブロックの軸 50-10の小型化が図れる。すなわち、一体成形フィルタ1

0 の軸方向の長さを、従来構造(一体成形フィルタを結 合基板に結合させたときの軸方向の全長)より短くでき

【0012】また、コンデンサ電極28aと28bとの 対向部の距離等を変更することによって結合容量C1を 任意に設定できる。したがって、結合孔やスリット等で 電界結合あるいは磁界結合させて結合係数が一義的に決 定した従来とは異なり、その結合係数を任意に設定でき るので、設計の自由度が大きくかつ高精度となる。さら に、従来のように、結合基板、誘電体ブッシングおよび 10 金属ピン等を必要とせず部品数を少なくできるので、コ ストの低減および量産性の向上が図れる。

【0013】図4を参照して、他の実施例の一体成形フ ィルタ40も同様にBPFとして用いられるものであ り、図1の一体成形フィルタ10と比べて入出力電極の 形成箇所が異なるだけで、その他の構成は同様である。 すなわち、一体成形フィルタ40の入出力電極42aお よび42岁は、基板18の上面のコンデンサ電極28a および28bと対向するように、基板18の下面に形成 される。なお、厳密には、アース電極44の形成箇所 も、入出力電極42aおよび42bと電気的に絶縁すべ く、図4および図5に示すように細部において変更され

【0014】この一体成形フィルタ40では、コンデン サ重極28aと28bとの間で図6の等価回路に示す結 合容量C6が形成され、コンデンサ電極28aおよび2 8 bとアース電極44との間に、それぞれ浮遊容量C7 およびС8が形成される。さらに、コンデンサ電極28 aと入出力電極42aとの間でQ。容量C9が、コンデ ンサ電極28bと入出力電極42bとの間でQ。容量C 10がそれぞれ形成される。この実施例においても先の 実施例と同様の効果が得られる。

【0015】図7を参照して、その他の実施例の一体成 形フィルタ50はBEFとして用いられるものである。 一体成形フィルタ50は、上述の実施例と同様の誘電体 ユニット12を含み、誘電体プロック16の2つの貫通 孔22aおよび22bには、結合端子52aおよび52 bが挿入され、内導体と電気的に接続される。また、誘 電体プロック14および基板18の外周面には、開放端 面16、基板18の上面および前方側面24を除いて、 外導体すなわちアース電極54が形成される。したがっ て、1つの誘電体プロック14に2つの誘電体同軸共振 器が形成される。

【0016】そして、基板18の上面には、たとえばチ ップ状のコンデンサ56aおよび56bが配置される。 コンデンサ56 aおよび56bの上面の電極に、それぞ れ結合端子52aおよび52bの先端部が接続され、コ ンデンサ56aおよび56bの下面の電極はコイル58 によって接続される。そして、コンデンサ56aおよび 、5.6.5の下面の電極には、それぞれ入出力端子6.0.aお、50...C2,C3,C7,C8,C13,C14…浮遊容量

よび60bが接続される。したがって、コンデンサ56 aおよび56bが、図8に示すQ。容量C11およびC 12を形成し、コンデンサ56 a および56 b のそれぞ れの下面の電極と基板18の下面に形成されたアース電 極54との間で、浮遊容量C13およびC14が形成さ れる。また、コイル58が結合インダクタレを形成し、 入出力端子60 aおよび60 b間を磁界結合する。この 実施例においても先の実施例と同様の効果が得られる。

【0017】なお、上述の各実施例では、誘電体ユニッ ト12は、誘電体プロック14と基板18とが一体成形 されたものであったが、図9に示すように、誘電体プロ ック14の開口端面16に基板18を張り合わせて形成 してもよい。また、誘電体ユニットは、図10に示すよ うに誘電体プロック62を、基板64の一方端66が突 出するように、基板64上に張り合わせて形成してもよ い。なお、図9および図10に示す誘電体プロックと基 板との材質は異なるものであってもよい。

【0018】また、上述の各実施例においては、この発 明を、1つの誘電体プロックに2つの誘電体同軸共振器 を形成した2段の一体成形フィルタに適用した場合につ いて述べたが、1つの誘電体プロックに1つの誘電体同 軸共振器を形成するディスクリートな誘電体フィルタや 1つの誘電体ブロックに3つ以上の誘電体同軸共振器を 形成する3段以上の誘電体フィルタにも適用し得ること はいうまでもない。

【0019】さらに、各誘電体同軸共振器の結合に、結 合孔やスリットを併用すれば、設計の自由度をさらに上 げることができる。また、誘電体プロックの貫通孔の断 面形状は、かまぼこ型の他、円形や角形などでもよい。

【図面の簡単な説明】

【図1】この発明の一実施例を示す斜視図である。

【図2】図1の実施例の底面図である。

【図3】図1の実施例の等価回路図である。

【図4】この発明の他の実施例を示す斜視図である。

【図5】図4の実施例の底面図である。

【図6】図4の実施例の等価回路図である。

【図7】この発明のその他の実施 例を示す斜視図であ

【図8】図7の実施例の等価回路図である。

【図9】誘電体ユニットの製造方法の一態様を示す図解 図である。

【図10】誘電体ユニットの製造方法のその他の態様を 示す図解図である。

【図11】従来技術を示す斜視図である。

【符号の説明】

10, 40, 50 …一体成形フィルタ

…誘電体ユニット 1 2

…誘電体ブロック 14, 62

18, 64 …基板

…誘電体ブロックの軸方向の長さ

