- 1.
- a. The random variables for this problem are whether the table is free or not $(Y=\{0\ ,1\})$ and whether it is sunny or not $(X=\{0\ ,1\})$. Since x and y can only take two outcomes each, we have model it using Bernoulli's . Therefore, our parameters are $w=(\alpha_0\ ,\alpha_1)$ where $\alpha_0\ ,\alpha_1\in\{0,1\}$ and we can write their probabilities as the following:

$$P(Y=y|\alpha_0) = \alpha_0^y (1-p)^{1-y}$$
 and $P(X=x|\alpha_1) = \alpha_1^x (1-p)^{1-x}$
 $D = \{(x_i,y_i)\}$ from i to n

Formalizing the problem we get the following:

Argmax(P(D|w)) =
$$\sum_{i=1}^{n} \ln p((\alpha_1 y_i) | (\alpha_1, \alpha_0))$$

= $\sum_{i=1}^{n} \ln \alpha_1^{x_i} (1 - \alpha_1)^{1-x_i} + \sum_{i=1}^{n} \ln \alpha_0^{y_i} (1 - \alpha_0)^{1-y_i}$

- b. Once we get our value for w^* (i.e. ${\alpha_0}^*$, ${\alpha_1}^*$) we can evaluate P(D|w) for each of the values of w that we found and find the value of w which gives us our maximum value and that would be the probability of our table being free given that it is sunny. Therefore P(Y=1|X=1)=
- c. We would have one extra random variable Z whose values can either be {Morning, Afternoon, Evening} and as it will only have 3 values, it will be a Uniform Distribution and as such will have no extra parameters.

	- ln p(xlw) = ln (0.5 N(x \mu, o, 2) + 0.5 N(x \mu, o^2))	0	
Wa	on policy of the state of the s		
	D= {\pi; \beta; \cdot \c		
	W. (M.1 1/2, 0,902)		-
	= -> lnp(D(w)		
	ist		
	== = ln(0,5N(xi)M,,oi) +0,5N(xi M,,oi))	0	
	$-\frac{(x_{i}-\mu_{i})^{2}}{-\sum_{i}\ln\left(\frac{1}{2\sigma_{i}\sqrt{2}n}e^{-\frac{(x_{i}-\mu_{i})^{2}}{2\sigma_{i}^{2}}}+\frac{1}{2\sigma_{i}\sqrt{2}n}e^{-\frac{(x_{i}-\mu_{i})^{2}}{2\sigma_{i}^{2}}}\right)}$		
	$= \frac{1}{20\sqrt{2n}} \left(\frac{1}{20\sqrt{2n}} + \frac{1}{20\sqrt{2n}} \right)$		
	$\frac{5 \text{clw}}{8 \sigma_{\text{s}}} = \frac{\tilde{\Sigma}}{100 \text{s}} \ln \left(\frac{1}{2 \sigma_{\text{s}} \text{fm}} \right)^{2} + \frac{1}{2 \sigma_{\text{s}} \text{fm}} \left(\frac{1}{2 \sigma_{\text{s}} \text{fm}} \right)^{2} + \frac{1}{2 \sigma_{\text{s}} \text{fm}} \right)$		
	So. 12. 80, (20,52) 20, 120		
	$= \frac{2}{500} \frac{6}{500} \ln \left(\frac{e^{-\frac{(2x^2 + \mu_1)^2}{20x^2}}}{20x^2 + e^{-\frac{(2x^2 + \mu_2)^2}{20x^2}}} \right)$		
	$\frac{(x_i - \mu_i)^2}{2\sigma_i^2} - (x_i - \mu_2)^2 - 2\sigma_i \sigma_i \sigma_i$		
	- \(\sum_{\sum_{1}} \sum_{\sum_{1}} \sum_{\sum_{2}} \left[\left[\frac{(\pi_{1} - \mu_{1})^{2}}{2\sigma_{1} \sigma_{2}} \right] \right] \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	
	2 3 (h (20, 12n e 20, 12n e 20, 12) - 1		
	= - Z 50 (20212 (20212)		
	S ((x:4)20, J27) e 20, + 187e 20,)		
	$= \frac{2}{2\sigma_{3}} \frac{\left(2\pi i + \frac{1}{2}\right)^{2} - \left(2\pi i + \frac{1}{2}\right)^{2}}{\sigma_{3}^{2} + \sqrt{8}\pi e^{\frac{1}{2}\sigma_{3}^{2}}} + \frac{1}{2\sigma_{3}^{2} + 2\sigma_{3}^{2}}$		
	(x;-1/2) (x;-1/2) (-x;-1/2)		
	$\frac{S(w) - \sum_{i=1}^{n} \left(\frac{(x_i - w_i)^2}{2\sigma_i} \times \sqrt{8\eta} + \frac{(x_i - w_i)^2}{\sigma_i^2} \times 2\sigma_i \sqrt{2\eta} \times e^{\frac{(x_i - w_i)^2}{2\sigma_i^2}} \right) - 1}{2\sigma_i \sqrt{2\eta} \times e^{\frac{(x_i - w_i)^2}{2\sigma_i^2}}} - \frac{1}{\sigma_i^2}$		
	302 202 1711 x e 2011 + 20, 121) x e 202	0	
-			
1 1 1 1 1 1			

- a. Done in Julia
- b. Random Regressor

Standard Deviation of Error: 6.89002963564

Average: 38.366856218335

Mean Regressor

Standard Deviation of Error: 0.149530885382

Average: 31.651414098074

Stochastic Regressor

Standard Deviation of Error: 0.0892452780084

Average: 11.981075314047

c. Done in Julia

d. Done in Julia

e. Done in Julia

f. Mini Batch Approach:

Standard Deviation of Error: 0.0891813440887 0.0910378224164

Average: 11.976117848765 11.987213547431

Stochastic Approach

Standard Deviation of Error: 0.27268064502

Average: 13.199427112118

From this, we can see that that while we get a larger standard error (especially for the stochastic approach as it is larger by about 0.2) when using adaptive steps, we get a larger average (Not a notable change for Mini batch while for Stochastic, we get a larger difference). This mean we can cover more data within the distribution despite a larger sample error(indicated not a more closely distributed data set).