THEME SESSION: Physical and Mathematical Science

First Principles Calculations of Co₂FeAl and Fe₂CoAl Heusler Alloys

Ashish Pathak*#

*Corresponding author # Presenting author

Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad – 500058

*Email: ashishpathak@dmrl.drdo.in, ashishpathak1980@gmail.com

Abstract

Ternary intermetallic alloys with X₂YZ stoichiometric composition are known as full Heusler alloys where X and Y are transition elements and Z is p type element. These materials have attracted attention due to several applications such as half-metallicity, ferromagnetism, magnetocaloric, magneto optical, thermoelectric properties, ferromagnetic shape memory, spintronic applications, etc. Direct Heusler alloys with space group Fmm (No. 225) crystallize in ordered L2₁ structure whereas inverse Heusler alloys with space group F3m (No. 216) crystallize in ordered C1_b structure. The atomic number of atom X is higher than that of Y in L2₁ structure whereas opposite trend is followed in C1_b structure. Present work describes an elucidation of the electronic structure, magnetic and elastic properties of L2₁ structure of Co₂FeAl and C1_b structure of Fe₂CoAl heusler alloys using density functional theory (DFT) within generalized gradient approximation (GGA). The band structures, density of states and magnetic moment have been calculated. These results indicate the presence of half-metallicity in Co₂FeAl whereas full metallic behaviour in Fe₂-CoAl alloys. Both materials satisfy stability criteria in terms of elastic constants and are associated with ductile behaviour based on G/B ratios.

Keywords: density functional theory, electronic structure, magnetism, elastic properties