1 Formeln und Fakten

b

1.1 Physikalische Grundlagen

 $J\dots$ Stromdichte, $\rho\dots$ Ladungsdichte, $q\dots$ Ladung eines Ladungsträgers, $n\dots$ Teilchendichte, $\mu\dots$ Beweglichkeit, $v_D\dots$ Driftgeschwindigkeit, $E\dots$ elektische Feldstärke, $\varsigma\dots$ spezifische Leitfähigkeit, $\varrho\dots$ spezifischer Widerstand,

$$J = \rho v_D, \ v_D = \mu E, \ \rho = qn, \ \varsigma = \rho \mu = e(\mu_p p + \mu_n n), \ \varrho = \varsigma^{-1}$$

1.2 Der abrupte pn-Übergang

Abbildung 1: Abrupter pn-Übergang

Weite der Raumladungszone:

$$w_0 = \sqrt{\frac{2\varepsilon}{e} \left(\frac{1}{N_A} + \frac{1}{N_B}\right) U_D}, \ w = w_0 \sqrt{1 - \frac{U}{U_D}}.$$

Ausdehnung der Raumladungszone ins p- und n-Gebiet

$$x_p = \frac{N_D}{N_A + N_d} w, \ x_n = \frac{N_A}{N_A + N_D}.$$

Maximale elektische Feldstärke

$$E_{\mathrm{max},0} = \sqrt{\frac{2e}{\varepsilon}} \frac{N_A N_D}{N_A + N_D} U_D = \frac{e}{\varepsilon} N_D x_n = \frac{e}{\varepsilon} N_A x_p, \ E_{\mathrm{max}} = E_{\mathrm{max},0} \sqrt{1 - \frac{U}{U_D}}.$$

Spannungsabfall über der Raumladungszone

$$U_D = E_{\text{max}} \frac{w}{2}, \ U_{D,p} = E_{\text{max}} \frac{x_p}{2}, \ U_{D,n} = E_{\text{max}} \frac{x_n}{2}.$$

Diffusionslängen der Minoritätsträger im Bahngebiet

$$L_p = \sqrt{D_p \tau_p}, \ L_n = \sqrt{D_n \tau_n}.$$

Diffusionskonstanten:

$$D_p = \mu_p U_T, \ D_n = \mu_n U_T.$$

Einteilung der Bahngebiete

Kurzes Bahngebiet: Es gilt $w_n = W_n - x_n \ll L_p$ bzw. $w_p = W_p - x_p \ll L_n$. Sättigungsstromdichte:

$$J_S = e\left(\frac{D_p p_{n0}}{w_n} + \frac{D_n n_{p0}}{w_p}\right) = e n_i^2 \left(\frac{D_p}{N_D w_n} + \frac{D_n}{N_A w_p}\right).$$

Unendlich langes Bahngebiet: Es gilt $w_n \gg L_p$ bzw. $w_p \gg L_n$. Sättigungsstromdichte:

$$J_S = e\left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n}\right).$$

Endlich langes Bahngebiet: ??

Sättigungsstrom:

$$I_S = J_S A$$
.

Spezifische Leitwert (durch Majoritäten):

$$\varsigma_p = eN_A\mu_p(N_A)\,\varsigma_n = eN_D\mu_n(N_D).$$

Spezifischer Widerstand (durch Majoritäten):

$$\varrho_p = \varsigma_p^{-1}, \ \varrho_n = \varsigma_n^{-1}.$$

Bahnwiderstand (Reihenschaltung):

$$R_S = R_n + R_p = \frac{1}{A}(\varrho_p w_p + \varrho_n w_n).$$

2 Aufgaben

Übung D.1. Gegeben ist ein linearer pn-Übergang für den die Störstellenverteilung $N_D-N_A=ax$ innerhalb der Raumladungszone $(-x_p \leq x \leq x_p)$ angenommen wird. Der Parameter a bezeichnet hier den Störstellengradienten. Für diesen pn-Übergang sollen elektrische Feldstärke E und Potential ψ in Abhängigkeit des Ortes x bestimmt werden.

Folgende Annahmen werden getroffen:

- 1. Die Raumladungszone ist frei von beweglichen Ladungsträgern.
- 2. Die Bahngebiete $(-W_p \le x \le -x_p \text{ und } x_n \le x \le W_n)$ sind feldfrei und somit neutral.
- 3. Über dem pn-Übergang liege die Spannung U an.

Folgende Zahlenwerte sind gegeben: $a = 5 \cdot 10^{21}$ cm, $U_T = 26$ mV, $U_D = 0.7$ V, $\varepsilon_{r,\mathrm{Si}} = 11, 9.$

Lösung. Die benötigte Gleichung (GAUSS'sches Gesetz) lautet

$$\operatorname{div} D = \rho$$
,

oder für das elektrische Feld formulier
t $\frac{\partial E}{\partial x}=\frac{\rho}{\varepsilon}.$ Wir müssen also zunächst die Ladungsdichte
 $\rho(x)$ bestimmen, welche gegeben ist durch $\rho(x) = e(N_D - N_A) = eax$ (innerhalb der Raumladungszone). Diese ist also eine lineare Funktion. Damit ergibt sich die Feldstärke zu $E(x) = E(-x_p) + \frac{1}{\varepsilon} \int_{-x_p}^x \rho(x) \, \mathrm{d}x = \frac{ea}{2\varepsilon} (x - x_p) (x + x_p) \, \left(\mathrm{da} \, E(-x_p) = 0 \right)$ angenommen wurde). Man sieht damit, dass hier implizit $x_p = x_n$ angenommen wird, denn dies sind die beiden sich ergebenden Nullstellen der Feldstärkefunktion.

Man erhält ein entsprechendes Diagramm

Es ergibt sich $E_{\min} = E\left(\frac{-x_p + x_n}{2}\right) = -\frac{eax_p^2}{2\varepsilon}$ (da $x_n = x_p$), also

$$|E|_{\max} = \frac{eax_p^2}{2\varepsilon}.$$

Das Potential ergibt sich dann mit der Poisson-Gleichung $\Delta \psi = -\frac{\rho}{\varepsilon}$. Es ergibt sich also zu $\psi(x)=\psi(-x_p)-\int_{-x_p}^x E(x)\,\mathrm{d}\,x=\psi(-x_p)-\frac{ea}{6\varepsilon}(x^3-3x_p^2x-2x_p^3)$ Um den Potentialwert an den Stellen $\pm\frac{w}{2}$ zu errechnen benötigt man zu-

nächst ein Gleichung für die Weite der Raumladungszone (wie z.B. beim abrupten Übergang $w = w_0 \sqrt{1 - \frac{U}{U_D}}$.

Wir leiten diese noch kurz her. Zunächst ist die gesamte über der Raumladungszone abfallende Spannung gleich U_D-U (wobei U die eingeprägte Spannung ist). Dies ergibt dann

$$\psi(x_n) - \psi(-x_p) = \frac{2eax_p^3}{3\epsilon} = U_D - U,$$

was zu

$$w_0 = 2x_p = 2\sqrt[3]{\frac{3\varepsilon U_D}{2ea}}$$

und

$$w = w_0 \sqrt[3]{1 - \frac{U}{U_D}}$$

führt.

Damit erhält man die Zahlenwerte $w_0=222,78$ nm, $w(U=-5{\rm V})=448,21$ nm, $w(U=0,4{\rm V})=167,96$ nm. Analog ergibt sich für die Feldstärke

$$|E|_{\text{max}} = |E|_{\text{max},0} \left(1 - \frac{U}{U_D}\right)^{\frac{2}{3}}.$$

Man erhält $|E|_{\max} (U=0) = -190, 7 \cdot 10^3 \frac{\text{V}}{\text{cm}}, |E|_{\max} (U=0) = -190, 7 \cdot 10^3 \frac{\text{V}}{\text{cm}}.$

Übung D.2. In dieser Aufgabe soll die Sperrschichtkapazität eines linearen pn-Übergangs unter Verwendung von Aufgabe D1 hergeleited und grafisch dargestellt werden. Nehmen Sie dazu die Raumladungszone als einen Plattenkondensator an, mit Plattenabstand w und Ladung Q der Ladung auf der n-Seite dieser entsprechend. Wieder gelte $N_D - N_A = ax$, $x_p = x_p$.

dieser entsprechend. Wieder gelte $N_D-N_A=ax,~x_p=x_n$. Zahlenwerte sind: $n_i=9,65\cdot 10^9 {\rm cm}^{-3},~a=5\cdot 10^{21} {\rm cm}^{-4},~U_T=26 {\rm mV},~U_D=0,7 {\rm V},~\varepsilon_{r,{\rm Si}}=11,9$ und $A=100 \mu {\rm m}$.

Lösung. Es gilt grundsätzlich C=Q/U bei einem Plattenkondensator. Die Ladung auf dem Kondensator ergibt sich über $Q=A\int_0^{x_n}\rho(x)\,\mathrm{d}\,x$. Also

$$Q = Aea \frac{x_p^2}{2}.$$

Mit der Lösung von Aufgabe D1 liefert dies

$$C_j = \frac{Aea}{2} \left(\frac{3\varepsilon}{2ea}\right)^{\frac{2}{3}} \frac{1}{\sqrt[3]{U_D - U}}.$$

Man sieht also auch, dass

$$C_j = C_{j0} \frac{1}{\sqrt[3]{1 - \frac{U}{U_D}}},$$

wobei sich C_{j0} zu

$$C_{j0} = \frac{A}{2} \sqrt[3]{\frac{9\varepsilon^2 ea}{4U_D}}$$

Es ergibt sich dann $C_{j0}=47,3$ fF, $C_j(U=-5\mathrm{V})=23,5$ fF und $C_j(U=0,4)=62,7$ fF.

Übung D.3. Gegeben ist ein pn-Übergang mit der Fläche $A=1000\mu\text{m}^2$, den Dotierungen $N_A=10^{16}\text{cm}^{-1}$, $N_D=10^{18}\text{cm}^{-1}$, den Lebensdauern $\tau_n(10^{16}\text{cm}^{-3})=40\mu\text{s}$, $\tau_n(10^{18}\text{cm}^{-3})=5\mu\text{s}$ der Elektronen und $\tau_p(10^{16}\text{cm}^{-3})=18\mu\text{s}$, $\tau_p(10^{18}\text{cm}^{-3})=0$, $9\mu\text{s}$ der Löcher, den metallurgischen Weiten $W_p=10\mu\text{m}$ und $W_n=5\mu\text{m}$ und der Temperaturspannung $U_T=26\text{mV}$. Weiterhin ist folgendes Diagramm gegeben, dass die Beweglichkeit der Ladungsträger in Abhängigkeit der Dotierung (egal ob p- oder n-dotiert) angibt.

Abbildung 2: Ladungsträgerbeweglichkeit in Abhängigkeit der Dotierung

- (a) Entscheiden Sie mithilfe eine einfachen Abschätzung, ob es sich um ein unendlich langes oder kurzes Bahngebiet handelt. Gehen Sie von einem abrupten pn-Übergang aus.
- (b) Berechnen Sie den Sättigungsstrom I_S der Diode (Formel, Zahlenwert).
- (c) Berechnen Sie den gesamten Bahnwiderstand R_S für den pn-Übergang (Formel, Zahlenwert).

Lösung.

- (a) a.
- (b) b.

(c) Der Bahndwiderstand ergibt sich nach der Formel aus der Formelsammlung zu:

$$R_s = R_n + R_p = \frac{1}{A}(\varrho_p w_p + \varrho_n w_n),$$

mit

$$\varrho_p = \varsigma_p^{-1} = (eN_A\mu_p(N_A))^{-1}, \ \varrho_n = \varsigma_n^{-1} = (eN_D\mu_n(N_D))^{-1}.$$

Zahlenmäßig erhält man $R_p = 6,25\Omega, R_n = 23,5\Omega, R_S = 29,8\Omega.$

Wichtig: Der Bahnwiderstand entsteht nur durch den Driftstrom der Majoritäten, da die Minoritätsträger nahezu keinen Drift haben und nur diffundieren.

Übung D.4. In Aufgabe G1 der ersten Übung wurde die Temperaturabhängigkeit der Eigenleitungsdichte diskutiert und hergeleitet. Da die Eigenleitungsdichte n_i auch Bestandteil des Sättigungsstroms I_S ist, miss I_S auch temperaturabhängig sein. Es werde der Sättigungsstrom eines kurzen abrupten pn-Übergangs betrachtet. Für diesen gilt:

$$I_S = eAn_i^2 \frac{\mu_p U_T}{N_D w_n}.$$

Hinweise: Die Temperaturabhängigkeit der Weite w_n sei vernachlässigbar. Für die Temperaturabhängigkeit der Ladungsträgerbeweglichkeit gilt: $\mu \propto T^{-a_{\mu}}$.

- (a) Berechnen Sie zahlenmäßig den Sättigungsstrom I_S .
- (b) Leiten Sie den temperaturabhängigen Sättigungsstrom $I_S(T)$ her. Normieren Sie I_S auf $I_S(T_0)$ (T_0 sei die Bezugstemperatur).

Lösung.

- (a) Direktes Einsetzen ergibt: $I_S = 0.787 fA$.
- (b) Wir haben $I_S(T) = \frac{A}{N_D w_n} n_i^2(T) k T \mu_p(T)$. Daraus ergibt sich mit der Formel

$$n_i(T) = n_i(T_0) \left(\frac{T}{T_0}\right)^{\frac{3}{2}} \exp\left(\frac{E_{g0}}{2kT_0} \left(1 - \frac{T_0}{T}\right)\right)$$

aus Aufgabe G1 (bei der wir eine lineare Näherung $E_g = E_{g0} - a_g T$ mit extrapolierter Referenzenergie E_{g0} angenommen haben), dass

$$I_S(T) = I(T_0) \left(\frac{T}{T_0}\right)^{4-a_\mu} \exp\left(\frac{U_{g0}}{U_{T0}} \left(1 - \frac{T_0}{T}\right)\right).$$

Übung D.5. Gegeben ist ein abrupter pn-Übergang im thermischen Gleichgewicht ($N_A = 10^{17} \text{cm}^{-1}$, $U_T = 26 \text{mV}$, $U_D = 0,934 \text{V}$).

- (a) Berechnen Sie die Dotierung N_D (Formel, Zahlenwert).
- (b) Berechnen sie die maximale Feldstärke $E_{\rm max}$ und die Weite w der Raumladungszone (Formel, Zahlenwert).
- (c) Berechnen Sie die Ausdehnungen x_n, x_p der Raumladungszone im n- und p-Gebiet (Formel, Zahlenwert).

 $L\ddot{o}sung.$

(a) Nach der Formel aus Aufgabe D4 gilt

$$U_D = U_T \log \left(\frac{N_A N_D}{n_i^2} \right)$$

und wir erhalten

$$N_D = \frac{n_i^2}{N_A} \exp\left(\frac{U_D}{U_T}\right).$$

Zahlenmäßig erhält man $N_D = 0, 9 \cdot 10^{19} \text{cm}^{-3}$.

(b) Die maximale Feldstärke $E_{\rm max,0}$ und die Weite w_0 der Raumladungszone ergeben sich nach den Formeln aus der Formelsammlung für den abrupten pn-Übergang zu

$$w_0 = \sqrt{\frac{2\varepsilon}{e} \left(\frac{1}{N_A} + \frac{1}{N_B}\right) U_D}, \ w = w_0 \sqrt{1 - \frac{U}{U_D}}.$$

und

$$|E|_{\text{max},0} = \frac{2U_D}{w} = \sqrt{\frac{2e}{\varepsilon} \left(\frac{N_A N_D}{N_A + N_D}\right) U_D}$$

und zahlenmäßig ergibt sich $|E|_{\text{max},0} = 169 \text{kVcm}^{-1}$, $w_0 = 110,5 \text{nm}$.

(c) Die Ausdehnungen x_{p0} und x_{n0} verhalten sich nach der Formelsammlung reziprok zu den den Dotierungen N_A und N_D und addieren sich zur Weite der Raumladungszone. Es gilt also

$$x_{p0} = \frac{N_D}{N_A + N_D} w_0, \ x_{n0} = \frac{N_A}{N_A + N_D} w_0.$$

Zahlenmäßig ergibt sich $x_{p0} = 109, 4$ nm und $x_{n0} = 1, 1$ nm.

Übung D.6. Eine Si-Diode mit abruptem pn-Übergang wird auf einem mit Bor vordotierten Substrat hergestellt ($N_{\text{Bor}} = N_A = 10^{16} \text{cm}^{-3}$, $U_T = 26 \text{mV}$, $|E|_{\text{max},0} = 7,7 \cdot 10^4 \text{Vcm}^{-1}$). An der Diode liegt keine Spannung an.

- (a) Wie weit dehnt sich die Raumladungszone in das Substrat aus (Formel, Zahlenwert)?
- (b) Wie hoch muss die Dotierstoffkonzentration in der über dem Substrat liegenden Schicht gewählt werden, damit die Weite der Raumladungszone $w=750\mathrm{nm}$ beträgt (Formel, Zahlenwert)? Mit welchem Dotantentyp ist zu dotieren?
- (c) Wie groß ist die Diffusionsspannung U_D (Formel, Zahlenwert)?

Lösung.

(a) Wir wenden die Formel

$$|E|_{\max} = \frac{e}{\varepsilon} N_A x_p = \frac{e}{\varepsilon} N_D x_n$$

aus der Formelsammlung an. Dies ergibt

$$x_p = \frac{\varepsilon}{e} |E|_{\text{max}}$$

und zahlenmäßig $x_p = 498$ nm.

(b) Es gilt $w=x_p+x_n$. Damit muss $x_n=w-x_p=252$ nm gelten. Wieder wenden wir die Formel $|E|_{\max}=\frac{e}{\varepsilon}N_Dx_n$ an und erhalten

$$N_D = \frac{\varepsilon |E|_{\text{max}}}{ex_n},$$

was zu $N_D=2\cdot 10^{16}{\rm cm}^{-1}$ führt. Damit handelt es sich nicht um einen abrupten pn-Übergang, da $N_A\not\ll N_D$.

(c) Die Diffusionsspannung ergibt sich dann aus der Formel

$$U_D = U_T \log \left(\frac{N_A N_D}{n_i^2} \right)$$

also $U_D = 0,712$ V. Die Formel $2U_D = |E|_{\text{max}} w$ führt hier zum falschen Ergebnis (da kein abrupter Übergang?).

C_j/fF	U/V
1,6312	-2,5
1,8096	-1,875
2,0633	-1,25
2,4661	-0,625
3,2623	0

Übung D.7. Aus Messungen der Sperrschichtkapazität einer abrupten Si-pn-Diode resultiert nachfolgende Tabelle. Es ist bekannt, dass das n-Gebiet höher als das p-Gebiet dotiert ist, also $N_D \gg N_A$. Zahlenwerte sind: $U_T = 26 \text{mV}$, $A = 10 \mu \text{m}^2$.

- (a) Berechnen Sie näherungsweise unter Zuhilfenahme der Tabelle die Diffusionsspannung U_D (Formel, Zahlenwert).
- (b) Bestimmen Sie die Dotierungen des n- und p-Gebietes (Formel, Zahlenwert).

Lösung.