Mestrado Integrado em Eng. Electrónica Industrial e Computadores

Intel MCS-51

Microcontroladores 2º Ano – A05

AT89C51RD2

- 80C52 Compatible
 - 8051 Instruction Compatible
 - Six 8-bit I/O Ports (64 Pins or 68 Pins Versions)
 - Four 8-bit I/O Ports (44 Pins Version)
 - Three 16-bit Timer/Counters
 - 256 Bytes Scratch Pad RAM
 - 9 Interrupt Sources with 4 Priority Levels
- ISP (In-System Programming) Using Standard V_{CC} Power Supply
- 2048 Bytes Boot ROM Contains Low Level Flash Programming Routines and a Default Serial Loader
- · High-speed Architecture
 - In Standard Mode:
 - 40 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 60 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
 - In X2 mode (6 Clocks/machine cycle)
 - 20 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 30 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
- 64K Bytes On-chip Flash Program/Data Memory
 - Byte and Page (128 Bytes) Erase and Write
 - 100k Write Cycles
- On-chip 1792 bytes Expanded RAM (XRAM)
 - Software Selectable Size (0, 256, 512, 768, 1024, 1792 Bytes)
 - 768 Bytes Selected at Reset for T89C51RD2 Compatibility
- On-chip 2048 Bytes EEPROM Block for Data Storage (AT89C51ED2 Only)
- 100K Write Cycles
- · Keyboard Interrupt Interface on Port 1
- · SPI Interface (Master/Slave Mode)
- · 8-bit Clock Prescaler
- · 16-bit Programmable Counter Array
 - High Speed Output
 - Compare/Capture
 - Pulse Width Modulator
 - Watchdog Timer Capabilities

Organização da memória

- Nesta arquitectura há dois tipos de memórias:
 - A memória de código/programa (tipo-ROM);
 - A memória de dados (tipo-RAM).
- Dependendo do microcontrolador, as memórias podem:
 - Estar implementadas internamente (dentro do chip CODE ou DATA);
 - Podemos implementá-las externamente usando barramentos (endereços, dados e controlo) e uma latch externa (XCODE e XDATA).

Organização da memória de dados interna - IDATA/IRAM

 Os bancos de registos permitem uma forma rápida e eficiente de comutação de contexto em que parcelas de código usam um conjunto privado de registos independentemente.

RAM

Organização da memória

- 1. Os primeiros 128 bytes da RAM interna podem ser acedidos directa ou indirectamente;
- 2. Os SFRs só podem ser acedidos por endereçamento directo;
- 3. Os segundos 128 bytes da RAM interna só podem ser acedidos indirectamente;
- 4. Os 768 bytes da RAM expandida (ERAM 00h-2FFh) são acedidos indirectamente pela instrução de MOVX e com o bit EXTRAM a zero.

SFR - Special Function Registers

Table 1. Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	OL, OR A	LTERNAT	IVE POR	T FUNCT	ION LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	_	-	<u> </u>	-	-	_	EXTRAM	AO	xxxxxxx10B
AUXR1#	Auxiliary 1	A2H	-	-	ENBOOT	-	GF2	0	-	DPS	xxxxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									xxxxxxxxB
CCAP1H#	Module 1 Capture High	FBH									xxxxxxxxB
CCAP2H#	Module 2 Capture High	FCH									xxxxxxxxB
CCAP3H#	Module 3 Capture High	FDH									xxxxxxxxB
CCAP4H#	Module 4 Capture High	FEH									xxxxxxxxB
CCAP0L#	Module 0 Capture Low	EAH									xxxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxxB
CCAP2L#	Module 2 Capture Low	ECH									xxxxxxxxB
CCAP3L# CCAP4L#	Module 3 Capture Low Module 4 Capture Low	EDH EEH									xxxxxxxxB xxxxxxxxB
	1	l									ı
CCAPM0#	Module 0 Mode	DAH	_	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
			DF	DE	DD	DC	DB	DA	D9	D8	1
CCON*#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H									00H
CL#	PCA Counter Low	E9H									00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH DPL	Data Pointer (2 bytes) Data Pointer High Data Pointer Low	83H 82H									00H 00H
DIL	Data i officer Low	0211	AF	AE	AD	AC	AB	AA	A9	A8	0011
IE*	Interrupt Enable 0	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
	· '		BF	BE	BD	BC	BB	BA	B9	B8	1
IP*	Interrupt Priority	B8H	_	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	В6	B5	B4	В3	B2	B1	В0	1
IPH#	Interrupt Priority High	В7Н	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	1
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
10	I dit d	0011	97	96	95	94	93	92	91	90	l''''
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	В6	B5	B4	В3	B2	B1	B0	1
P3*	Port 3	вон	RD	WR	T1	T0	INT1	INT0	TxD	RxD	FFH
											1
PCON#1	Power Control	87H	SMOD1	SMOD0		_	GF1	GF0	PD	IDL	00xxx000B

Table 1. Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT	BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION							ION	RESET
SYMBOL	DESCRIPTION	ADDRESS	MSB		LSB						VALUE
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000B
RCAP2H# RCAP2L#	Timer 2 Capture High Timer 2 Capture Low	CBH CAH									00H 00H
SADDR# SADEN#	Slave Address Slave Address Mask	A9H B9H									00H 00H
SBUF	Serial Data Buffer	99H	9F	9E	9D	9C	9B	9A	99	98	xxxxxxxxB
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H	8F	8E	8D	8C	8B	8A	89	88	07H
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	СС	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	-	-	_	-	_	T2OE	DCEN	xxxxxx00B
TH0 TH1 TH2# TL0 TL1 TL2#	Timer High 0 Timer High 1 Timer High 2 Timer Low 0 Timer Low 1 Timer Low 2	8CH 8DH CDH 8AH 8BH CCH									00H 00H 00H 00H 00H 00H
TMOD WDTRST	Timer Mode Watchdog Timer Reset	89H A6H	GATE	С/Т	M1	M0	GATE	C/T	M1	M0	00H

SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs. Reserved bits.

P89C51RD2

Modelo de Programação

80C51 Program Model - Calcutt

Modelo de Programação

Adaptado de:

AYALA
"8051
Microcontroller
Architecture
Programming
and Applications"

Família i8052

REGISTER	ADDRESS	DESCRIPTION	BIT-ADDRESSABLE
T2CON	C8H	Control	Yes
RCAP2L	CAH	Low-byte capture	No
RCAP2H	ÇBH	High-byte capture	No
TL2	CCH	Timer 2 low-byte	Na
TH2	CDH	Timer 2 high-byte	No

Estado do microcontrolador após *reset*

REGISTER(S)	CONTENTS
Program counter	0000H
Accumulator	00H
8 register	00H
P8W	00H
ŚP	07H
DPTR	DODOH
Ports 0-3	FFH
IP (8031/8051)	XXX00000B
IP (8032/9052)	80000000X
IE (8031/9051)	8000000X
IE (8032/9052)	0X000000B
Timer registers	00H
SCON	OOH
SBUF	00H
PCON (HMOS)	0XXXXXXXX
PCON (CMOS)	0XXX0000B
• •	

Registo(s)	Conteúdo
Program Counter	0000H
Accumulator, B register, PSW	00H
SP	07H
DPTR	0000H
Ports 0-3	FFH
IP	XXX00000B
Timer registers, SCON	00H

Notas sobre o conjunto de instruções e modos de endereçamento

Registo (R0 a R7) do banco de registos seleccionado						
Endereço directo de 8-bit de uma posição da memória interna de dados.						
Pode-se tratar da RAM de dados interna (0-127) ou de um SFR (porto I/O, reg de estado, etc (128-255))						
Endereço de 8-bit de uma posição da RAM interna, endereçada indirectamente através de R0 ou R1.						
Constante de 8-bit incluída na instrução						
Constante de 16-bit incluída na instrução						
Endereço de destino de 16-bit. Usado por LCALL e LJMP. O salto pode ser para qualquer localização da ROM.						
Endereço de destino de 11-bit. Usado por ACALL e AJMP.						
O salto pode ser para qualquer localização dentro da página de 2KB da ROM.						
Offset de destino de 8-bit com sinal. Usado por SJMP e todos os saltos condicionais.						
O alcance vai de -128 a 127 bytes relativamente ao endereço da próxima instrução.						
Bit da RAM de dados interna ou do SFR						

Instruções que afectam as flags da ALU							
	Flags				Flags		
Instrução	С	O¥	AC	Instrução	C	OV AC	
ADD	Х	X	Х	CLRC	0		
ADDC	Х	×	X	CPLC	Х		
SUBB	Х	×	Χ	ANLC,bit	Х		
MUL	0	×		ANLC,/bit	Х		
DIV	0	×		ORLC,bit	Х		
DA	Х			ORLC,/bit	Х		
RRC	Х			MOVC,bit	Х		
RLC	Х			CJNE	Х		
SETBC	1						

Mneumónica: Nome da instrução assembly

Tamanho: Nº de bytes que a mneumónica ocupa na memória de programa

Ciclos: Nº de ciclos máquina necessários para efectuar a operação. Um ciclo=12 impulsos de relógio

	Operações Aritméticas									
Mne	umónica	Tamanho	Ciclos	Descrição						
ADD	A,Rn	1	1	Somar ao Acumulador o registo						
ADD	A _i direct	2	1	Somar ao Acumulador o endereço directo de RAM						
ADD	A,@Ri	1 1	1	Somar ao Acumulador o endereço indirecto de RAM						
ADD	A.#data	2	1	Somar ao Acumulador o bute de dados directo						
ADDC	A,Rn	1 1	1	Somar ao Acumulador o registo com carry						
ADDC	A,direct	2	1	Somar ao Acumulador o endereço directo de RAM com carry						
ADDC	A,@Ri	1 1	1	Somar ao Acumulador o endereço indirecto de RAM com carry						
ADDC	A.#data	2	1	Somar ao Acumulador o bute de dados directo com carru						
SUBB	A,Rn	1 1	1	Subtrair ao Acumulador o registo com borrow						
SUBB	A _i direct	2	1	Subtrair ao Acumulador o endereço directo de RAM com borrov						
SUBB	A,@Ri	1 1	1	Subtrair ao Acumulador end. indirecto de RAM com borrow						
SUBB	A.#data	2	1	Subtrair ao Acumulador o bute de dados directo com borrow						
INC	А	1	1	Incrementar Acumulador						
INC	Rn	1 1	1	Incrementar Registo						
INC	direct	2	1	Incrementar endereço directo de RAM						
INC	@Ri	1	1	Incrementar endereco indirecto de RAM						
DEC	А	1	1	Decrementar Acumulador						
DEC	Rn	1 1	1	Decrementar registo						
DEC	direct	2	1	Decrementar endereço directo de RAM						
DEC	തRi	1	1	Decrementar endereco indirecto de RAM						
INC	DPTR	1	2	Incrementar DPTR (apontador para dados)						
MUL	AB	1 1	4	Multiplicar A por B						
DIV	AB	1 1	4	Dividir A por B						
DA	Α	1	1	Aiuste decimal ao Acumulador						

	Operações Lógicas									
	Mne	eumónica	Tamanho	Ciclos	Descrição					
	ANL	A,Rn	1	1	AND do Acumulador com registo					
	ANL	A,direct	2	1	AND do Acumulador com o endereço directo de RAM					
	ANL	A,@Ri	1	1	AND do Acumulador com endereço indirecto de RAM					
	ANL	A,#data	2	1	AND do Acumulador com o byte de dados directo					
	ANL	direct,A	2	1	AND do endereço directo de RAM com o Acumulador					
	ANL	direct.#data	3	2	AND do endereco directo de RAM com o bute de dado					
	ORL	A,Rn	1	1	OR do Acumulador com registo					
	ORL	A,direct	2	1	OR do Acumulador com o endereço directo de RAM					
1	ORL	A,@Ri	1	1	OR do Acumulador com endereço indirecto de RAM					
	ORL	A,#data	2	1	OR do Acumulador com o byte de dados directo					
	ORL	direct,A	2	1	OR do endereço directo de RAM com o Acumulador					
	QRL	direct.#data	3	2	OR do endereco directo de RAM com o bute de dados					
	XRL	A,Rn	1	1	XOR do Acumulador com registo					
	XRL	A _i direct	2	1	XOR do Acumulador com o endereço directo de RAM					
	XRL	A,@Ri	1	1	XOR do Acumulador com endereço indirecto de RAM					
	XRL	A,#data	2	1	XOR do Acumulador com o byte de dados directo					
	XRL	direct,A	2	1	XOR do endereço directo de RAM com o Acumulador					
	XRL	direct,#data	3	2	XOR do endereço directo de RAM com o byte de dados					
	CLR	А	1	1	Limpar Acumulador					
	CPL	А	1	1	Complementar Acumulador					
	RL	А	1	1	Rodar à esquerda Acumulador					
1	RLC	А	1	1	Rodar à esquerda Acumulador através do carry					
	RR	А	1	1	Rodar à direita Acumulador					
	RRC	Д	1	1	Rodar à direita Acumulador através do carry					
	SWAP	А	1	1	Trocar os nibbles do Acumulador					

	Operações de Tranferência de Dados								
Mn	eumónica	Tamanho	Ciclos	Descrição					
MOV	A,Rn	1	1	Mover para o Acumulador do registo					
MOV	A,direct	2	1	Mover para o Acumulador do endereço directo de RAM					
MOV	A,@Ri	1	1	Mover para o Acumulador do endereço indirecto de RAM					
MOV	A,#data	2	1	Mover para o Acumulador do byte de dados directo					
MOV	Rn,A	1	1	Mover para o registo do Acumulador					
MOV	Rn,direct	2	2	Mover para o registo do endereço directo de RAM					
MOV	Rn.#data	2	1	Mover para o registo do bute de dados directo					
MOV	direct,A	2	1	Mover para o endereço directo de RAM do Acumulador					
MOV	direct,Rn	2	2	Mover para o endereço directo de RAM do Registo					
MOV	direct,direct	3	2	Mover para o endereço directo de RAM do end. directo de RAM					
MOV	direct,@Ri	2	2	Mover para o endereço directo de RAM do end. indirecto de RAM					
MOV	direct.#data	3	2	Mover para o endereco directo de RAM do bute de dados directo					
MOV	@Ri,A	1	1	Mover para o endereço indirecto de RAM do Acumulador					
MOV	@Ri,direct	2	2	Mover para o endereço indirecto de RAM do end. directo de RAM					
MOV	@Ri,#data	2	1	Mover para o endereço indirecto de RAM do bute de dados directo					
MOV	DPTR,#data16	3	2	Mover para o DPTR dois bytes de dados					
MOVC	A,@A+DPTR	1	2	Mover para o Acumulador o byte de código relativo a DPTR					
MOVC	A,@A+PC	1	2	Mover para o Acumulador o byte de código relativo a PC					
MOVX	A,@Ri	1	2	Mover para o Acumulador o endereço indirecto (8-bit) de XRAM					
MOVX	A,@DPTR	1	2	Mover para o Acumulador o endereço indirecto (16-bit) de XRAM					
MOVX	@Ri,A	1	2	Mover para o endereço indirecto (8-bit) de XRAM o Acumulador					
MOVX	@DPTR,A	1	2	Mover para o endereço indirecto (16-bit) de XRAM o Acumulador					
PUSH	direct	2	2	Colocar (Push) na stack do endereço directo de RAM					
POP	direct	2	2	Retirar (Pop) da stack do endereço directo de RAM					
XCH	A,Rn	1	1	Trocar entre Acumulador e registo					
XCH	A,direct	2	1	Trocar entre Acumulador e endereço directo de RAM					
хсн	A,@Ri	1	1	Trocar entre Acumulador e endereço indirecto de RAM					
XCHD	A,@Ri	1	1	Trocar digito menor entre Acumulador e endereço indirecto de RAM					

	Operações de Manipulação sobre booleanos							
Mneu	mónica	Tamanho	Ciclos	Descrição				
CLR	C	1	1	Limpar carry				
CLR	bit	2	1	Limpar bit directo da RAM				
SETB	С	1	1	Activar carry				
SETB	bit	2	1	Acitvar bit directo da RAM				
CPL	С	1	1	Complementar carry				
CPL	bit	2	1	Complementar bit directo da RAM				
ANL	C,bit	2	2	AND do carry com o bit directo da RAM				
ANL	C,/bit	2	2	AND do carry com o complemento do bit directo da RAM				
ORL	C,bit	2	2	OR do carry com o bit directo da RAM				
ORL	C,/bit	2	2	OR do carry com o complemento do bit directo da RAM				
MOV	C,bit	2	1	Mover para o carry o bit directo da RAM				
MOV	bit,C	2	2	Mover para o bit directo da RAM o carry				
JC	rel	2	2	Saltar (para end. relativo) se o carry estiver activo				
JNC	rel	2	2	Saltar se o carry estiver limpo				
JB	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo				
JNB	bit,rel	3	2	Saltar se o bit directo da RAM estiver limpo				
JBC	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo e limpar bit				

	Operações de Salto na Execução								
Mne	eumónica	Tamanho	Ciclos	Descrição					
ACALL	addr11	2	2	Invocação end. absoluto de subrotina					
LCALL	addr16	3	2	Invocação end. longo de subrotina					
RET		1	2	Retorno de subrotina					
RETI		1	2	Retorno de interrupção					
AJMP	addr11	2	2	Salto para endereço absoluto					
LJMP	addr16	3	2	Salto para endereço longo					
SJMP	rel	2	2	Salto curto para endereço relativo					
JMP	@A+DPTR	1	2	Salto indirecto relativo a DPTR					
JZ	rel	2	2	Salto (para end. relativo) se acumulador for zero					
JNZ	rel	2	2	Salto se acumulador não for zero					
CJNE	A,direct,rel	3	2	Comparar A com end. directo de RAM e saltar se diferente					
CJNE	A,#data,rel	3	2	Comparar A com byte de dados directo e saltar se diferente					
CJNE	Rn,#data,rel	3	2	Comparar reg. com byte de dados directo e saltar se diferente					
CJNE	@Ri,#data,rel	3	2	Comp end. indirecto de RAM com byte de dados e saltar se diferente					
DJNZ	Rn,rel	2	2	Decrementar registo e saltar se registo não for zero					
DJNZ	direct,rel	3	2	Decrementar end. Directo de RAM e saltar senão for zero					
NOP		1	1	Nenhuma operação					

Fetch do opcode

Directivas assembly básicas

CSEG AT X

- coloca a próxima instrução no endereço X da memória de código/programa (ROM);
- ex: CSEG AT 0H

END

Indica ao assembler que o ficheiro fonte terminou.

"Etiquetas"

- Em vez de calcularmos o endereço de cada salto, podemos utilizar etiquetas ou labels para marcar esses endereços:
- ex:

CSEG AT 0H

JMP MAIN ;dependendo da distância do salto, o assembler escolhe a instrução de salto ideal

....

MAIN:

MOV R0,#25

Características eléctricas

Portos de Entrada/Saída

V_{OL} – tensão de saída nível lógico baixo

V_{OH} – tensão de saída nível lógico alto

Em condições de regime permanente (não transitórias), I_{OL} deve ser externamente limitada de modo a garantir:

I_{OL} máxima por pino de porto: 10mA

I_{OI} máxima por porto (8-bit): 15mA (P1, P2 e P3) e 26mA (P0)

I_{OL} total máxima para todos os pinos de saída: 71mA

Laboratórios - Interface

Problema:

 Com base no valor de 4 pinos de entrada do porto 2 (P2.4 a P2.7), ou seja, do *nibble* (4-bit) mais significativo de P2, escrever no *display* de 7-segmentos o caracter hexadecimal correspondente ao valor do *nibble*.

Hardware:

Exemplo

- O microcontrolador automaticamente coloca no endereço A0H da memória de dados interna, a representação binária das tensões lidas nos pinos de entrada P2.7 a P2.4;
- No exemplo os bits P2.7 a P2.4 foram definidos como entradas digitais e os bits P2.3 a P2.0 como saídas digitais, usando a instrução: MOV P2,#0F0H;
- Reparar que os bits foram lidos em lógica negativa devido à configuração do hardware;
- O programa lê os bits do porto E/S para o acumulador: MOV A,P2
- O programa realiza operações sobre o acumulador;
- Após as verificações e conversões o programa tem no acumulador os bits (bit a 0 LED liga, bit a 1 LED desliga) a colocar nos pinos do porto de E/S (P1);
- MOV P1,A ;acendem-se os segmentos desejados.

KIT8051- Esquema de Ligações

a	Pl 3
b	P1.2
C	P1.0
d	Pl.6
е	Pl 5
f	P1.7
g	P1.4
dp	P1.1

Escrever **0** em P1.3 liga o segmento **a**. Escrever 1 desliga