cam	Registration Regi
did co. ba ba age job marr edu def bal hou loa con dur cam pre pou y dty ba	both using categorical values and using pd.dummies just to check on how the dataset performs Lumns=['job', 'marital', 'education', 'default', 'housing', 'loan', 'month', 'contact', 'duration', 'poutcome', 'y'] kk (dtypes int64 category cation category ult category ance int64 sing category nc category n
ba rreduction of the control of the	Second Content Seco
#F de A11 A2: A3 A44 A5: A66 A7: A8 A9 A9 A9 A9 A9	1 59 blue-collar married secondary no 0 yes no unknown 5 0 0 0 0 0 1 0 0 1 0
A9 4510 4511 4512	1
fi (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	33 -333 30 329 5 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
st. #u. st. pr [[andardized_final=pd.DataFrame(standardized_final) sing categorical values andardised_df= (bank_enc-bank_enc.mean()) / (bank_enc.std()) int(standardised_df) 1.11378718e-02 3.74357886e+00 -3.46449203e-027.31109995e-02 7.52480039e-02 -7.52480039e-02] 4.7268862e-03 1.01588661e+01 -5.17409555e-027.31109995e-02 7.52480039e-02 -7.52480039e-02 7.52480039e-02 -7.52480039e-02] 4.7268861e-04 2.80970794e+00 -4.10559335e-027.31109995e-02 7.52480039e-02 -7.52480039e-02]
Split tra tra pr. pr. X= Xt. y= yt. yt. pr. pr. #f. tra tra xs. ys.	the data into a trainfler's splits according to the ratios 80%:20% aning_data = standardized_final.sample(frac=0.8, random_state=3116) #86% Train sting_data = standardized_final.sample(frac=0.2, random_state=3186) sting_data = standardized_final.sample(frac=0.2, random_state=3186) int(f"No. of training_examples: {training_data.shape[0]}") int(f"No. of testing examples: {training_data.shape[0]}") int(f"No. of testing_examples: {testing_data.shape[0]}") int(f"No. of testing_examples: {testing_data.shape[0]}") int(f"No. of testing_examples: {testing_data.shape[0]}") int(int)= array(testing_data, dtype=float) int(int)= array(ty, dtype=float) int(int)= array(ty, dtype=float) int(int)= array(ty, dtype=float) int(int)= array(ty) int(int)= standardised_df.sample(frac=0.8, random_state=3116) sting_data2=standardised_df.sample(frac=0.8, random_state3116) sting_data3=standardised_df.sample(frac=0.8, random_state3116) sting_data3=standardised_df.sample(frac=0.8, random_state3116) sting_data3=standardised_df.sample(f
No . No . (36 (90 Mini de de #	The control of the co
t,#sode	<pre>N = true.shape[0]</pre>
[1, <ip A #f. co. pr.</ip 	Back_search(X,Y,Xt,Ytest) 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49] ython-input-688-7610e32a4baa>:4: RuntimeWarning: invalid value encountered in log tic=(-2)*(np.log(t))+2*p tinal=pd. DataFrame(final) tinal=pd. DataFrame(final) tint ("The list of the features remaining after Backward search feature selection is", colname) list of the features remaining after Backward search feature selection is Index(['balance', 'duration', 'pdays', 'job_admin.', 'job_entrepreneur',
Fin Fin The Shuf	'month_sep', 'poutcome_other', 'poutcome_unknown', 'contact_telephone'], dtype='object') ac_final,1,acc=6A_Logisticreg2(Xt[:,a],Ytest,0.0001,0.001,batch_size=50) ant("Final accuracy on test set",ac_final,"% and error is ",100-ac_final) al accuracy on test set 83.4070796460177 % and error is 16.592920353982294 ercise 2Regularization for Logistic Regression general procedure of K cross validation grid search is as follows: The dataset randomly. The dataset into k groups
Sum Pick de	sach urique group: (1)Take the group as a hold out or test data set (2)Take the remaining groups as a raining data set (3)Fit a model on the training set and evaluate it on the test set (4)Retain the evaluation score and discard the model marize the skill of the model using the sample of model evaluation scores a range of 00 and \(\) defined on grid. You can choose fixed batchsize = 50. for cross_validation(dataset_k): ** *different** datasets i.e. *Xtrain**, *Ytrain** will be passed and various combinations**
X_ y_ #dd #t	ytest=Y_cv[n] x_train=pd_DataFrame() y_train=pd_DataFrame() for p in range(s,k): if n!=p:
gss clallal	<pre>f gridsearch(alpha,lamda): combination_list =[] for i in range(0,len(lamda)): combination_list return combination_list gridsearch(alpha, lamda) stasifier_accu=[] hd_comb=[] r i in range (0,len(gs)): data_final=cross_valid_holdout(x_kcross,y_kcross,k=5) #data_final=pn_array(data_final) for j in range(0,k): t_i,Li,a_l=6A_Logisticreg(np_array(data_final[j]['X'],dtype=float),np_array(data_final[j]['Y'],dtype=float),0.0001,batch_size = 50) alpha_comb_append(gs[i]['alpha']) lamda_comb_append(gs[i]['lamda']) classifier_accu_append(a_1)</pre> <pre> Keep track of mean performance (i.e. Classification Accuracy value) across k - folds for each set of hyperparameters. Plot on the grid o0 vs \(\lamb \text{ the Classification Accuracy score for all combinations, [Hint; you can use a 3D plot with axes=c0, \(\lamb \text{ Acc}. \)</pre>
fiction fiction fiction fiction ax ax ax ax ax	e above alpha and lamda range, I tried various ranges but in my opinion values bigger for lamda as compared to alpha worked for the better. They gave better classification accuracies. g = plt.figure() g.set_figheight(10) g.set_figwidth(10) = plt.axes(projection= '3d') sset_valabel('alpha_comb, lamda_comb, classifier_accu, c=classifier_accu, cmap='hsv') set_valabel('alpha') set_valabel('lamda') set_valabel('classifier accuracy') s.show()
	00000 000000
op pr. The	an get the optimal value of alpha and lamda by finiding out where classifier accuracy is maximum. f optimal_classifier_accu, alpha_comb, lamda_comb): maximum_accuracy_index=classifier_accu.index(np.max(classifier_accu)) opt_alpha=alpha_comb[maximum_accuracy_index] opt_alpha=alpha_comb[maximum_accuracy_index] return opt_alpha, opt_lamda imal_a,optimal_l=optimal(classifier_accu, alpha_comb, lamda_comb) int("The optimal aplha and lambda values are: ",optimal_a, "and",optimal_l) optimal aplha and lambda values are: 1e-09 and 0.5178571428571429 class = lambda x,y,beta,alpha,lamda : beta-alpha*(-2*np.dot(x.T,y-sigmoid(x.dot(beta)))*(2*lamda)*beta) f 6A_Logisticreg2(X, Y, alpha, lamda, batch_size=50): beta = np.zeros((X.shape[i], 1)) #error_list = [] max_iters = 5
	<pre>accuracys=[] log_likelihood=[] for ifr in range(max_iters): mini_batches = create_batches(X, Y, batch_size) for mini_batch in mini_batches: X_mini, Y_mini = mini_batch beta = beta + alpha * gradient(X_mini, Y_mini, beta) beta = beta + alpha * gradient(X_mini, y_mini, beta) beta_hat = betas(X_mini, Y_mini, beta, alpha, lamda) pred_lterations=np.array(sigmini(M_mini.dot(beta_hat))) for p,row in enumerate(pred_iterations): if frow=0.5: pred_iterations[p]=0 else: pred_iterations[p]=1 accuracy_iteration=classification_accu(Y_mini,pred_iterations) accuracy_s.appen(accuracy_iteration) regularization=lamda*((beta_hat.T).dot(beta_hat)) lt=np.sum((Y_mini.T).dot(X_mini.dot(beta)) - np.log(1+np.exp(X_mini.dot(beta))))-regularization log_likelihood.append(LL) pred_xtrain=sigmoid(X_ot(beta_hat.T)) pred_xtrain=sigmoid(X_ot(beta_hat.T)) pred_xtrain=np.array(pred_xtrain,dtype=float)</pre>
pl pl pl #g	
Classification accuracy	
[ar ar ar ar ar	ray([[-7.16785834]]), ray([[-4.37960437]]), ray([[-1.316737392]]), ray([[-1.316737392]]), ray([[-1.316737392]]), ray([[-1.316737392]]), ray([-1.316737392]]), ray([-1.316737392]]), ray([-1.316737392]), ray([-1.316737392]
#n: #va. #t te pr: Yv: Yv: f (67) #t f	return x**1.25 reget_hyperparameter_config(fn,100) xining_data = standardized_final.sample(frac=0.7, random_state=3116)
im	return Loss ais function looks into the losses and returns the features with least loss nd does this until only one feature remains f Top.K(L, reducer): #Successive halving #print(reducer) L.sort() reducer-int(reducer) index_stop=int(len(L)/reducer) index_stop=int(len(L)/reducer) t=[[:index_stop] return L **Top that
the the the the the	<pre>B=(s_max+1)*R</pre>
the	best found hyperparameters are 0 best found hyperparameters are 1 best found hyperparameters are 0 best found hyperparameters are 20 best found hyperparameters are 20 best found hyperparameters are 27 **king the above 4 features and using only these hyperparameters for calculating accuracy **tire====================================
pr.	o,c,d=GA_Logisticreg2(X_hyper1, Y_hyper, optimal_a,optimal_l, batch_size=50) ed_xhyper=sigmoid(X_hyper1.dot(a)) ed_xhyper=np.array(pred_xhyper,dtype=float)