Exercise 4.

- (a) If $\{\mathscr{T}_{\alpha}\}$ is a family of topologies on X, show that $\cap \mathscr{T}_{\alpha}$ is a topology on X. Is $\cup \mathscr{T}_{\alpha}$ a topology on X?
- (b) Let \mathscr{T}_{α} be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathscr{T}_{α} , and a unique largest topology contained in all \mathscr{T}_{α} .
- (c) If $X = \{a, b, c\}$, let

$$\mathscr{T}_1 = \{\varnothing, X, \{a\}, \{a, b\}\}$$
 and $\mathscr{T}_2 = \{\varnothing, X, \{a\}, \{b, c\}\}$

Find the smallest topology containing \mathscr{T}_1 and \mathscr{T}_2 , and the largest topology contained in \mathscr{T}_1 and \mathscr{T}_2 .

Proof.

(a) Since \mathscr{T}_{α} is a topology for all α , it contains both X and \varnothing . These two sets are thus elements of $\cap \mathscr{T}_{\alpha}$.

Let $(U_{\beta})_{\beta \in J}$ be a family of elements of $\cap \mathscr{T}_{\alpha}$. For all \mathscr{T}_{α} and all $\beta \in J$, $U_{\beta} \in \mathscr{T}_{\alpha}$, which is a topology; therefore $\cup_{\beta \in J} U_{\beta} \in \mathscr{T}_{\alpha}$. This implies that $\cup_{\beta \in J} U_{\beta} \in \cap \mathscr{T}_{\alpha}$.

Similarly, for all \mathscr{T}_{α} and all finite collection $\{U_1, \ldots, U_n\}$ of elements of \mathscr{T}_{α} , $U_1 \cap \cdots \cap U_n$ is an element of \mathscr{T}_{α} , and therefore an element of $\cap \mathscr{T}_{\alpha}$.

From the above we conclude that $\cap \mathcal{T}_{\alpha}$ is a topology.

Let $X = \{a, b\}$, $T_1 = \{\emptyset, X, \{a\}\}$ and $T_2 = \{\emptyset, X, \{b\}\}$. Then $\{a\}$ and $\{b\}$ are elements of $T_1 \cup T_2$, but $\{a, b\}$ is not. Therefore $\cup \mathscr{T}_{\alpha}$ is not in general a topology.

(b) Let $T = \cap \mathscr{T}_{\alpha}$; it is a topology contained in all \mathscr{T}_{α} . Let T' be a topology contained in all \mathscr{T}_{α} , and let $U \in T'$. For all $\alpha, U \in \mathscr{T}_{\alpha}$, so that $T' \subset T$, and T is then the largest topology contained in all \mathscr{T}_{α} .

Let $S = \cup \mathscr{T}_{\alpha}$, we have $\cup_{v \in S} v = X$, since X is an element of \mathscr{T}_{α} for all α . Let T be the topology generated by the subbasis S; T contains all elements of S, and therefore contains \mathscr{T}_{α} for all α . Conversely, let T' be a topology containing \mathscr{T}_{α} for all α . Then T' contains S, and therefore all unions of finite intersections of elements of S; from this we deduce that T' contains T, and T is the smallest topology containing all \mathscr{T}_{α} .

(c) Applying the above, and noting $\tau(A)$ for the topology generated by a subbasis A, we find that the largest topology containing \mathcal{T}_1 and \mathcal{T}_2 is

$$\mathscr{T}_1 \cap \mathscr{T}_2 = \{\varnothing, X, \{a\}\}$$

For $\tau(\mathscr{T}_1 \cup \mathscr{T}_2)$, the finite intersections of elements of \mathscr{T}_1 and \mathscr{T}_2 are

$$\emptyset, X, \{a\}, \{a,b\}, \{b\}, \{b,c\}$$

and their unions are

$$\tau(\mathscr{T}_1 \cup \mathscr{T}_2) = \{\varnothing, X, \{a\}, \{a, b\}, \{b\}, \{b, c\}\}\$$