LAB 5 DOCUMENTATION

HENRY DACRES & ERIC LIU
Due March 10, 2020

CSE 379

Table of Contents

Division of Work		
Page 2		
Purpose of		
ProgramPage 3-		
0	Objective	
	Page 3	
\circ	Debugging	
	StepsPage 3	
0	Outside	
	ResourcesPage 3	
\circ	Instructions on "How to use"	
	Page 4	
Logic-		
Pa	ge N	
\circ	Summary of Flowchart	
	Page N	
0	Summary of	
	SubroutinePage N	
Flowc	hart	
\circ	Flowchart and subroutines	

Division of Work

Subroutine	Creator
lab5:	Eric Liu
lab5loop:	Eric Liu
lab5exit:	Both
outputstrings	Henry Dacres
interrupt_init	Eric Liu
UART0_Handler	Henry Dacres
Uart_handler_exit	Henry Dacres
Switches_Handler	Both
debloop	Eric Liu

switch2_clicked	Both
switch3_clicked	Both
switch4_clicked	Both
switch5_clicked	Both
switch_exit	Henry Dacres

Purpose of Program

Objective

The objective of this Lab 5 is to create an interrupt-driven program that in real-time will display the number of times each of the four switches is pressed and the number of times a keyboard key is pressed in PuTTy. The lab focuses on getting students used to the concept of interrupts as opposed to polling—the continuous listening for an event. By the end of the lab 5, tallies should be displayed on the screen: one for switch #2, one for switch #3, one for switch #4, one for switch #5, and one of the number of keystrokes pressed. All counts will be displayed in decimal notation and will be updated on every press of a switch or a key. The program will end when the user hits "q" on the keyboard. "q" represents the action of quitting the program.

Debugging Steps

The debugging process for this lab was rigorous as we did run into quite a few issues getting the strokes from the keyboard to appear in the terminal. For debugging we followed the procedural steps of setting breakpoints on values the were incorrect and looked inside of those registers to correct suspect issues. In cases of logical and runtime errors, we referred to our flowsheets which were cross-referenced with our ARM Assembly code. We also referred to outside resources referenced below to try to potentially find

routines that would shrink down our codebase.

Outside Resources

- 1. Arm Architecture Reference Manual
- 2. ARM Cortex-M4 Generic User Guide
- 3. ARM® and Thumb®-2 Instruction SetQuick Reference Card

Instructions

Important -

- The highest the count will increment to is 9999
- After a "q" is pressed the count will no longer increment
- When Pushing Push Buttons wait at least 1 second before pushing another push button

No.	Direction
1	Open Putty and load putty with the right configuration.
2	Run the program. The initial prompts will display.
3	Press the push buttons on the daughter board to increment the pushbutton count
4	Press the keys on the keyboard to update the keystroke count
5	After each press, check the Putty terminal. Following each press, the count will increment for the respective press.
6	Press "q" to quit

Summary Of Flowchart

No.	Breakdown
1	Initialize then declare global variables
2	Import library functions
3	Initialize Initial Prompt and output strings, Create Pointer to strings
4	Initialize port D(the push buttons). Initialize the interrupts
5	Unconditionally Loop
6	Output the starter prompt string along with the all the 5 counters
7	Increment each counter depending on if the pushbutton or key is pressed?
8	Exit if "q" key is pressed

Summary of Subroutines

Janiniai y	or Subroutifies
Subroutine	Summary
uart_init	Initializes UART for use with
output_character	Outputs a single character to the terminal
read_character	Read a single character from user input
output_string	Outputs a string to the terminal
read_from_push_bt ns	Gets input from push buttons.
gpio_init	Initializes port D(the push buttons)
outputstrings	Outputs the prompt again along with all the counts of the switches and keystrokes
convert_to_int	Converts the value stored at a specific address to an integer.
convert_to_ascii	Converts the value stored at a specific address to it's ASCII representation and stores the representation in memory.
lab5:	The Main
lab5loop	Unconditional loop waiting for interrupts to occur
lab5exit	Points to the end of the lab5 routine
interrupt_init	Initializes interrupts for push buttons on port D
UART0_Handler	This function allows the

	keyboard to interrupt the program
uart_handler_exit	Points to the end of the UART handler routine
Switches_Handler	This function allows the push button to interrupt the program
debloop	Dummy loop for to stall program for a couple of seconds to debounce
switch2_clicked	Increment Counter when switch 2 is pushed (Leftmost button)
switch3_clicked	Increment Counter when switch 3 is pushed (second leftmost button)
switch4_clicked	Increment Counter when switch 4 is pushed (Second rightmost button)
switch5_clicked	Increment Counter when switch 5 is pushed (Rightmost button)
switch_exit	Points to the end of the switch handler routine

Flowcharts

1. Lab 5

Read From Push Buttons

read from push btns

Store register LR on Stack
Move Clock base address into R1
Initialize the clock
Move Base Register of port d into R4
Initialize the digital register
Initialize the direction register
Store the input in R0
Load register Onto Stack Pointer
Move Register LR onto Program counter

3.Read Char

