Idempotence

Definition

Let R be a ring and $a \in R$. To say that a is idempotent in R means: $a^2 = a$.

Theorem

Let R be a commutative ring and $I=\{a\in R\mid a \text{ is idempotent in }R\}.$ I is closed under multiplication.

Proof

Assume
$$a,b \in I$$

$$a^2 = a$$

$$b^2 = b$$

$$(ab)^2 = a^2b^2 = ab$$

$$ab \in I$$

 \therefore *I* is closed under multiplication.

Theorem

Let $\phi:R\to R'$ be a homomorphism of rings: a idempotent in $R\implies \phi(a)$ idempotent in R'

<u>Proof</u>

Assume a is idempotent in R

$$a^{2} = a$$

$$\phi(a^{2}) = \phi(a)$$

$$\phi(a^{2}) = \phi(a)^{2}$$

$$\phi(a)^{2} = \phi(a)$$

 $\therefore \phi(a)$ is idempotent in R'.