UNIVERSIDAD NACIONAL DE LOJA

PERIODO ACADÉMICO: ABRIL – SEPTIEMBRE 2019 PRACTICA # 9

ASIGNATURA: SIMULACIÓN

Nombre: Deiby Patricio Calva. Fecha: 24/02/2020

Ciclo: 6 "A"

Link Archivo: https://github.com/DeibyCalva/Laboratorio_en-

R simulacion/blob/master/LABORATORIOS%20EN%20R/Practica 9DeibyCalva/class Integrator.py

1. TEMA: Simulación numérica: Integración.

2. OBJETIVOS:

- Comprende la forma de integrar usando el método de integración Monte Carlo.
- Aplica la simulación para la resolución de problemas de integración.

3. RECURSOS NECESARIOS:

- Python(NumPy), R.
- Computador de Laboratorios

4. INSTRUCCIONES:

- Prohibido consumo de alimentos
- Prohibido equipo de diversión, celulares etc.
- · Prohibido jugar
- Prohibido mover o intercambiar los equipos de los bancos de trabajo
- Prohibido sacar los equipos del laboratorio sin autorización.
- Ubicar los equipos y accesorios en el lugar dispuesto por el responsable del laboratorio, luego de terminar las prácticas.
- Uso adecuado de equipos

5. ACTIVIDADES POR DESARROLLAR:

Aprender como escribir una clase Python a traves del link: https://docs.python.org/2/tutorial/classes.html

Crea una clase "integrador" que integre numéricamente la función: $f(x) = x^{\&}e^{0}\sin(x)$

Debe proporcionar a la clase el valor mínimo **xMin**, el valor máximo **xMax** y el numero de pasos **N** para la integración. Luego, el proceso de integración debe llevarse a cabo de acuerdo con la siguiente información:

Suponga que:
$$S = \int_{xMin}^{xMax} f(x) dx \approx \sum_{i=0}^{N-1} f(x_i) \Delta x$$
 (tener en cuenta que la suma va hasta N-1) $\Delta x = \frac{xMax - xMin}{N-1}$

$$x_i = xMin + i\Delta x$$
 La

clase esta compuesta de tres métodos: _init_, integrate y show

- a. El método _init_ debe inicializar el xMin, xMax, N y otros parámetros relacionados.
- b. El método integrate debe realizar el proceso de integración con los parámetros dados
- c. El método show debe imprimir en pantalla el resultado de la integración.

Asigne los parámetros con los valores: xMin =1, xMax =3, N = 200

El resultado de la integración de f(x) deben presentarlo con 5 decimales de exactitud. A continuación, se presenta la plantilla para la clase a crear.

IMPLEMENTACIÓN

```
Practica_9DeibyCalva > 🦆 class_Integrator.py
      import numpy as np
      import math

∨ class integrador:
          def init (self, xMin, xMax, N):
              self.xMin = xMin
              self.xMax = xMax
              self.N = N
              self.suma = 0.0
          def integrate(self):
              deltaX = (self.xMax-self.xMin) / (self.N-1)
              for i in range(200):
                  xi = 1+(i*deltaX)
                  xCuadrado = math.pow(xi, 2)
                  euler = math.exp(-xi)
                  senoX = math.sin(xi)
                  self.suma += xCuadrado*euler*senoX*deltaX
              print(round(self.suma, 5))
          def show(self):
              return 0
      examp = integrador(1,3,200)
      examp.integrate()
      examp.show()
```

0.7656

PS C:\Users\Usuario\Documents\6T0 CICLO\SIMULACION\Laboratorio_en-_R_simulacion\LABORATORIOS EN R>

6. INVESTIGACIÓN COMPLEMENTARIA (a elaborar por el estudiante)

Construcción de la integral de Riemann.

Definición 9.1.1. Sea $I = [a,b] \subset R$ un intervalo cerrado y acotado (compacto).

Se llama partición de I a todo conjunto de puntos $P=\{x_0,x_1,\cdots,x_n\}$ de forma que $a=x_0< x_1<\cdots< x_{n-1}< x_n=b.$

Se llama norma de la partición P, y se denotar 'a por |P|, al m'aximo de los números x_k-x_{k-1} , con k=1,...,n.

Denotaremos por P[a, b] (o más brevemente P, si no hay confusión posible con el intervalo) al conjunto de todas las particiones de [a, b].

Figura 9.1: Suma inferior y superior de Riemann de la función $f(x) = x^2$ en el intervalo I = [0,5] respecto de la partición $P = \{0,1,2,3,4,5\}$

Definición 9.1.2. Sea $f:[a,b] \to R$ una función acotada y sea $P \in P[a,b]$ con $P = \{a = x_0 < x_1 < \dots < x_n = b\}$. Sean

$$\begin{split} m_k := & \inf\{f(x): x_{k-1} \! \leq \! x \leq \! x_k\} = & \inf & \{f(x)\} \\ M_k := & \sup\{f(x): x_{k-1} \! \leq \! x \leq \! x_k\} = & \sup & \{f(x)\}. \end{split}$$

Se llaman, respectivamente, Suma inferior y suma superior de Riemann de la función f relativas a la partición P a las siguientes sumas:

$$L(f,P) := \sum_{k=1}^{n} m_k (x_k, x_{k-1}) \qquad U(f,P) := \sum_{k=1}^{n} M_k (x_k, x_{k-1}).$$

Nota 9.1.3. Para cada $P \in P$ y cada función f, es claro que $L(f, P) \le U(f, P)$

Definición 9.1.4. Sean $P,Q \in P[a, b]$. Se dice que Q es más fina que P (o que P es menos fina que Q), y se denotara $P \subseteq Q$, cuando $P \subseteq Q$.

Teorema 9.1.5. Sean P,Q \in P[a, b] con $P \leq Q$. Entonces

$$L(f, P) \le L(f, Q)$$
 y $U(f, Q) \le U(f, P)$.

Teorema 9.1.6. Dadas P, $Q \in P[a, b]$, se cumple que $L(f, P) \le U(f, Q)$.

Corolario 9.1.7.

- (a) El conjunto $\{L(f, P) : P \in P[a, b]\}$ está acotado superiormente.
- (b) El conjunto $\{U(f, P) : P \in P[a, b]\}$ está acotado inferiormente.

Definición 9.1.8.

- (a) Se llama integral inferior de Riemann, y se denotará por $\frac{\int_a^b f(x)\,dx}{\int_a^b f(x)\,dx}$, al supremo del conjunto de sumas inferiores.
- (b) Se llama integral superior de Riemann, y se denotará por $\int_a^b f(x)\,dx$, al ´ínfimo del conjunto de sumas superiores.

Nota 9.1.9. Se cumple que $\underline{\int_a^b} f(x)\,dx \leq \overline{\int_a^b} f(x)\,dx$.

Definición 9.1.10. Sea $f:[a,b] \to \mathbb{R}$ una función acotada. Se dice que f es integrable Riemann en [a,b], cuando $\frac{\int_a^b f(x) \, dx}{\int_a^b f(x) \, dx}$. Al este valor común se le llamará integral de Riemann de f en el intervalo [a,b] y se denotara por $\int_a^b f(x) \, dx$.

Al conjunto de todas las funciones integrables Riemann en un intervalo [a,b] se le denotara por R[a,b].

Ejemplo 9.1.11. Sea $f:[0,1] \rightarrow R$ dada por

$$f(x) := \chi_{[0,1] \cap \mathbb{Q}}(x) = \begin{cases} 1 & \text{si } x \in [0,1] \cap \mathbb{Q} \text{ si } x \neq [0,1] \cap \mathbb{Q} \\ 0 & \text{R[0,1]}. \end{cases}$$

Entonces f ∕∈

Definición 9.1.12. Sea $f:[a,b] \to R$ una función acotada, $f \in R[a,b]$ con $f(x) \ge 0$ $\forall x \in [a,b]$. Consideremos el conjunto

$$S := \{(x, y) \in R^2 : a \le x \le b, 0 \le y \le f(x)\}.$$

Se define el área de S como A(S) = f(x)dx

Si fuese $f(x) \le 0 \ \forall x \in [a, b]$, entonces, por simetría, el 'área de S (sustituyendo f(x) por -f(x)) sería $-\int_a^b f(x) \, dx$

Teorema 9.1.13 (Condición de integrabilidad de Riemann). Sea $f: [a, b] \rightarrow R$ acotada. $f \in R[a, b]$

$$\iff \forall \varepsilon > 0, \exists P \in P[a,b] \text{ tal que } U(f,P) - L(f,P) < \varepsilon.$$

Corolario 9.1.14. Si $f \in R[a,b]$, su integral es el único número real que cumple lo siguiente

$$L(f,P) \leq \int_a^b f(x) \, dx \leq U(f,Q) \qquad \forall \mathsf{P}, \mathsf{Q} \in \mathsf{P}[\mathsf{a},\mathsf{b}].$$

Teorema 9.1.15. Sea $f:[a,b]\to R$ acotada. Entonces, $f\in R[a,b]$ si y solo si existe una sucesión $\{P_n\}_n\subset P[a,b]$ tal que $\lim_{n\to\infty} [U(f,P_n)-L(f,P_n)]=0$. $n\to\infty$

Además, en ese caso, se cumple además que

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n)$$

Nota 9.1.16.

- (a) En la practica, se suele tomar $P_n \in P[a, b]$ la partición del intervalo [a, b] en n partes iguales, es decir. $P_n = \left\{a + \frac{k}{n}(b-a): \ k=0,1,\ldots,n\right\}$.
- (b) Además, si para cada $\mathbf{k}=1,\cdots$,n seleccionamos $\mathbf{t_k}\in[\mathbf{x_{k-1}},\mathbf{x_k}]$, se cumple que $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}f(t_k)=\frac{1}{b-a}\int_a^{}f(x)\,dx$

7. CONCLUSIONES

- > El método Montecarlo es útil para establecer probabilidades y definir escenarios de actuación.
- El objetivo de este método no es el de brindar decisiones sino apoyar a la toma de estas.
- Es una técnica cuantitativa utilizada para obtener la respuesta más probable de un evento por medio de la simulación de un modelo matemático.

8. RECOMENDACIONES

- > Se debe conocer bien la definición y las fórmulas de la integración de numérica, para poder diseñar el programa correctamente.
- > Tener conocimiento de las librerías y funciones que Python ofrece para poder implementarlas eficientemente.

BIBLIOGRAFÍA:

- BARTLE et al. *Introducción al Análisis Matemático de una Variable (Introduction to Real Analysis*), trad., ed. Limusa S.A. 2009.
- KURTZ et al. Theories of Integration The Integrals of Riemann, Lebesgue, Henstock-Kurzweil and McShane, ed. World Scientific Publishing Co. Pte. Ltd. 2004.