

LABORATORIO

b
K
,

OP-AMP:

AMPLIFICADOR DE INSTRUMENTACIÓN

OBJETIVOS:

Estudiar desde el punto de vista práctico como pueden construirse amplificadores de instrumentación a partir de circuitos de las configuraciones básicas de amplificadores operacionales en lazo cerrado.

En esta experiencia, el estudiante desarrollará las siguientes destrezas:

- Completar el análisis y el diseño del circuito de un amplificador de instrumentación.
- Implementar el circuito experimentalmente y comparar los resultados teóricos y experimentales.
- Realizar la simulación del circuito y compararla con los resultados teóricos y experimentales.

MATERIALES:

- Tres Op-Amp 741 y su hoja de especificaciones (data-sheet)
- Placa de pruebas (Protoboard or Breadboard)
- Resistores: de acuerdo a su diseño
- Multímetro
- Alambres para conexiones
- 2 generadores de funciones (function generator)
- 1 osciloscopio (oscilloscope)
- 2 fuentes de voltaje DC (también puede usar fuentes duales)

PARTE I: DISEÑO Y ANÁLISIS

- 1.1 Diseñe el circuito de la figura L3.1 con una ganancia diferencial $A_{\it dm}=10~{\rm V/~V}$. Para ello, considere $R_1=1~{\rm k}\Omega$ y seleccione los otros resistores de manera que la ganancia de la primera etapa sea $2~{\rm V/~V}$ y de la segunda etapa sea $-5~{\rm V/~V}$. Ajuste las fuentes de polarización DC de la siguiente manera: $V+=15~{\rm V}$ y $V-=-15~{\rm V}$.
- 1.2 Escriba los valores calculados de los resistores:

$R_{2(\text{calculada})} = \underline{\hspace{1cm}}$	$R_{2(\text{utilizada})} = \underline{\hspace{1cm}}$
$R_{3(\text{calculada})} = $	$R_{3(\text{utilizada})} = $
$R_{4(\text{calculad a})} = \underline{\hspace{1cm}}$	$R_{4(\mathrm{utilizada})} = $

- 1.3 Conecte v_{I2} a 1 V (DC) y conecte otra fuente DC a v_{I1} . Varíe v_{I1} desde 0.5 V hasta 1.5 V en incrementos 0.25 V. Registre los valores de v_{O} y grafique los resultados.
- 1.4 Ajuste las señales de entrada v_{I1} y v_{I2} para que tengan amplitud de $500\,\mathrm{m\,V_{pk}}$ y frecuencia de $1\,\mathrm{kHz}$, pero que entre ellas tengan una diferencia de fase de 180° . Capture y muestre el voltaje de salida.

Figura L3.1: Circuito de un amplificador de instrumentación con tres Op-Amp 741.

1.5 Calcule el common-mode rejection ratio (CMRR) del circuito. Expréselo en decibeles y explique cualquier discrepancia con el valor ideal.

PARTE 2: SIMULACIÓN (PARA INCLUIR EN EL INFORME)

2.1 Simule el amplificador de instrumentación y todos los experimentos prácticos. Compare los resultados simulados con los teóricos y los experimentales.