

Zynq® UltraScale+™ RFSoC Example Design: ZCU111 DDS Compiler for DAC and System ILA for ADC Capture – 2020.2

Introduction

- ▶ This is an example starter design for the RFSoC.
- It uses the ZCU111 board.
- It uses a DAC and ADC sample rate of 1.47456GHz.
- ▶ The DAC will continuously play 10MHz sine wave from the DDS Compiler IP.
- ▶ The ADC output will be sent to a System ILA to be displayed in the Hardware Manager.
- ▶ DAC Tile1 Ch3 will be used (LF balun).
- ▶ ADC Tile0 Ch0 will be used (LF balun).
- ▶ 2020.2 Xilinx tools (Vivado® Design Suite and Vitis™ unified software platform).
- ▶ Design tested in the directory c:\rfsoc\ex_des\zcu111\v4\
- ▶ This kit comes with the Vivado HW project and SW source files.

Demo Block Diagram

ZCU111 Clocks

- This design automatically programs the clocks to 1.47456GHz via the SW application.
- ZCU111 ADC/DAC clocks are generated from LMK04208 feeding 3 LMX2594 in parallel. Review 'RF Data Converter Clocking' in UG1271 (ZCU111 board user guide).
- Clocking is configured via an I2C to SPI bridge.

Figure 3-18: RF Clocking Structure for ADC and DAC Banks

DAC Setup

ADC Setup

Data Converter Clocking

Board Setup for the Upcoming Designs

- ▶ Connect DAC Tile 229 Ch3 output to ADC Tile 224 Ch0 input on XM500 (low frequency balun connections).
- ▶ Set SW6 to on,on,on,on (JTAG boot mode).
- ▶ Connect USB to host for JTAG, PS UART, and System Controller UART access.

ADC Tile0 Ch0

DAC Tile1 Ch3

SW6

Design Kit Contents

- 1. Extract the design kit to an appropriate folder—be mindful of the Windows path length requirement.
- 2. Extract vv.xpr.zip, which is the Vivado® project.
- 3. Software source files in the "src" folder.
- 4. Design documentation in the .pdf file.

Open Hardware Design and Generate the Bitstream

Extract vv.xpr.zip, open the design in Vivado®, and generate the bitstream.

DAC Sine Wave Generator (DDS Compiler IP)

Export Hardware

Open Vitis™ Software Platform

Create Platform Project

This may take a few minutes.

Enable libmetal

Build Project

This may take a few minutes.

Build Complete

Create Application

Import Sources

Build Application

Build Complete

Run Design

Open a Terminal Window

Open the COM port on the compute and set the rate to 115200.

TeraTerm can be used. See <u>UG1036</u>.

Setup Run Configuration

Run Configuration Cont'd

Run Configuration Cont'd

Run Design

Application Startup

The application...

- 1. Programs the clocks.
- Issues the data converters master reset.
- Displays the Power-on Sequence Step of the data converters.

Open Hardware Manager

Open New Target

Open Hardware Target

Open Hardware Target Cont'd

Convert Data to the Analog Waveform Style

10MHz sine wave going from the DDS compiler to the DAC.

ADC capture to the System ILA.

Radix

Analog Settings

Set Row height to 100.

System ILA Capture

Automatically retrigger Trigger ILA capture HARDWARE MANAGER - localhost/xilinx_taXilinx/93275A ? X H ? _ 🗆 🗆 X hw_ila_1 × shboard_1 x ? 🗆 🖸 Q 🛨 🖨 🗊 Waveform - hw 1_1_1 ? _ 🗆 X Q + - 3 > > ■ B @ Q X • N H > ± ± + F & • F ✓ ■ localhost (1) ILA Status: Idle ✓

✓ xilinx tcf/Xilin Value 10 20 30 40 50 60 70 80 90 3 SysMon (Slot_0: dds_compiler_0_M_AXIS_DATA: Interface Active 1 hw_ila_1 (✓ Market Slot_0: dds_compiler_0_M_AXIS_DATA: T Channel Stream Beat 1 hw_vio_1 I slot_0: dds_compiler_0_M_AXIS_DATA: TVALID ∨ @ arm_dap_1 (lesson slot_0: dds_compiler_0_M_AXIS_DATA: TLAST I SysMon > Slot_0: dds_compiler_0_M_AXIS_DATA: TDATA slot 1: usp_rf_data_converter_0_m00_axis:Interface Active ✓ Mail Slot_1: usp_rf_data_converter_0_m00_axis: T Channel Stream Beat lost_1:usp_rf_data_converter_0_m00_axis:TVALID < loslot_1:usp_rf_data_converter_0_m00_axis:TREADY 1 ? _ 🗆 🗆 X laslot_1:usp_rf_data_converter_0_m00_axis:TLAST ፲ /_ila_1 ← ⇒ 🌣 Slot_1: usp_rf_data_converter_0_m00_axis: TDATA Name: Cell: Device: HW core: Capture sample count Core status: Updated at: 2021-Jun-09 11:07:04 Trigger Setup - hw_ila_1 × Capture Setup - hw_ila_1 Settings - hw_ila_1 Status - hw_ila_1 × **♂** >> >> ■ □ Q + = D Core status Press the + button to add probes. Capture status - Window 1 of 1 General Proid ▶ ≡

Boot Image

Create Boot Image

To run the application from the SD card rather than directly from Vitis™, create the boot.bin file

Create boot.bin file

Note the location of the boot.bin file to put at the root level of the SD card.

Boot from SD Card

Set SW6 to on,off,off,off (SD Card boot mode).

Load boot.bin on the SD card, insert it into the board, and turn on the power.

Thank You

