Cheat Sheet for Hypothesis Tests

Steps:

- 1. State null and alternate hypotheses (H₀ includes the equal sign, H_a does not)
- 2. State the significance level, α
- 3. Determine the critical value (use the appropriate table)
- 4. Determine the Test Statistic (use table below for the correct formula)
- 5. Sketch distribution and mark the rejection regions and test statistic
- 6. Make a decision (if z, t, χ^2 is in the rejection region, reject H₀. Otherwise fail to reject H₀)
- 7. Interpret the decision in the context of the original claim.

Test for	Sample Statistic	Test Statistic	Rejection region p-value	Use When
One population mean, μ	\bar{x}	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	Z-Test	σ is known
One population mean, μ	\bar{x}	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$ $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ $df = n - 1$	T-Test	σ is unknown
One population proportion, p	ĝ	$df = n - 1$ $z = \frac{\hat{p} - p}{\sqrt{pq/n}}$ $\chi^2 = \frac{(n - 1)s^2}{\sigma^2}$	1-PropZTest	$n\hat{p} \ge 10$ $n\hat{q} \ge 10$
One population standard deviation, σ	S	df = n - 1	χ^2 Test	X is normal
Difference of two population means $(\mu_1 - \mu_2)$	$\bar{x}_1 - \bar{x}_2$	$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	2-SampZTest	σ_1, σ_2 are known
Difference of two population means $(\mu_1 - \mu_2)$	$\bar{x}_1 - \bar{x}_2$	$t = \frac{\sqrt{n_1 + n_2}}{\sqrt{\frac{s_1^2 - \bar{x}_2}{n_1} - (\mu_1 - \mu_2)}}$ $df = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$ $t = \frac{\bar{x}_d - \mu_d}{s_d/\sqrt{n}}$	2-SampTest	σ_1, σ_2 are unknown
		$df = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$		
Difference between two means (dependent samples)	$\bar{d} = \bar{x}_1 - \bar{x}_2$	$t = \frac{\bar{x}_d - \mu_d}{s_d / \sqrt{n}}$ $df = n - 1$	TTest	σ_1, σ_2 are unknown
Difference of two proportions $(p_1 - p_2)$	$\hat{p}_1 - \hat{p}_2$	$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\bar{p}\bar{q}}(1/n_1 + 1/n_2)}$ $\bar{p} = \frac{x_1 + x_2}{n_1 + n_2}$	2-PropZtest	$\begin{array}{l} n_1 \hat{p}_1 \geq 10; n_1 \hat{q}_1 \\ \geq 10 \\ n_2 \hat{p}_2 \geq 10; n_2 \hat{q}_2 \\ \geq 10 \end{array}$