Applicant: Tino Hänsel **Application No.:** 10/565,088

IN THE CLAIMS

1. (Previously presented) A power transmission drive comprising a synchronous drive for an internal combustion engine, with which a rotating angle between a driven member and a drive member can be detected, wherein a member of the power transmission drive includes an electronic controller which interacts with a control system of the internal combustion engine, wherein a sensor, comprising a transducer, detects an oscillating angle deviation, a rotating angle deviation, an irregularity in rpm, or a correcting movement between the driven member and the drive member and sends a signal to the controller, which calculates a control parameter, wherein after a defined limit value is exceeded, the controller initiates an emergency program of the internal combustion engine to operate the internal combustion engine at a lower power level.

- 2. (Currently amended) Device according to claim 1, wherein a free engine clutch [[(26)]] allocated to the driven member or the drive member protects a drive for an accelerated angular velocity of the power transmission drive.
- 3. (Previously presented) Device according to claim 1, wherein, for forming a coupled drive, a power transmission means of the power transmission drive is connected to a running wheel of the power transmission drive acting as a control drive for the internal combustion engine.
- 4. (Currently amended) Device according to claim 3, wherein the power transmission drive includes, as a drive member, a fuel pump, which, in connection with an associated sensor, the controller, and a free engine clutch, prevents full load operation of the internal combustion engine above the lower power level for a

Applicant: Tino Hänsel

Application No.: 10/565,088

disruption in a function of the fuel pump.

5. (Previously presented) Device according to claim 3, wherein a free engine

clutch is arranged in a running wheel between an inner ring locked in rotation with

a pump shaft and an outer ring of the running wheel.

6. (Previously presented) Device according to claim 4, wherein the free engine

clutch is inserted within a housing of the fuel pump and connects to two journals of

the pump, which is a high-pressure pump.

7. (Previously presented) Device according to claim 2, wherein the free engine

clutch comprises a clamping body free-wheel or a clamping roller free-wheel.

8. (Previously presented) Device according to claim 1, wherein the sensor is

allocated to a unit of the power transmission drive.

9. (Previously presented) Device according to claim 1, wherein after an

oscillating angle deviation, rotating angle deviation, or irregularity in rpm set as a

limit value has been exceeded, the controller triggers an acoustic and/or optical

signal.

10. (Previously presented) Device according to claim 1, wherein measurement

values, which exceed the limit value, and also measurement values, which

correspond to a tolerance range preset for the limit value, are stored in a fault

memory of the controller.

- 4 -

Applicant: Tino Hänsel

Application No.: 10/565,088

11. (Original) Device according to claim 1, wherein the measurement of the

rotating angle deviation between the drive member and the driven member is taken

for a warm-running internal combustion engine.

12. (Previously presented) Device according to claim 1, wherein, in an operating

state of the internal combustion engine, in connection with the at least one sensor

and the controller, a continuous comparison of measurement values is performed by

the controller for determining an oscillating angle deviation, an irregularity in rpm,

or a rotating angle deviation between the driven member and the drive member.

13. (Previously presented) Device according to claim 1, wherein the power

transmission means for the power transmission drive comprises a toothed belt.

14. (Previously presented) Device according to claim 1, wherein a tensioning

device is allocated to a loose section of the power transmission drive.

15. (Previously presented) Device according to claim 4, wherein the fuel pump,

which is pivotally supported against a spring element simultaneously acts as a

tensioning device of the power transmission drive.

16. (Previously presented) Device according to claim 1, wherein the power

transmission drive includes a starter generator, with which the internal combustion

engine is started in a start mode, and the internal combustion engine drives the

power transmission drive in a generator mode.

17. (Previously presented) Device according to claim 8, wherein the unit of the

- 5 -

Applicant: Tino Hänsel **Application No.:** 10/565,088

power transmission drive comprises one of a tensioning device, a camshaft adjuster, a deflection roller or a water pump.