

BLC FSM Overview

DRAWN BY

RYAN EGGERT

TITLE

JK Flip Flop

DESCRIPTION

NAND implementation of JK flip-flop with Set and Reset [as seen at http://userpages.umbc.edu/~squire/download/jkff.gif] COST: 21

INPUTS

J, K, CLK [Clock input], SET [Async. resets Q to 1, active low], CLR [Async. resets Q to 0, active low] OUTPUTS

Q [output], ~Q [inverse of Q]

ITEM	QTY.	COST PER	TOTAL COST
2-in NAND	4	2	8
3-in NAND	4	3	12
Inverter	1	1	1

TITLE

Finite State Machine Schematic

DESCRIPTION

Implementation of state machine. States advance on the positive edge of btn_press. The CLK is divided to a 2 Hz. signal for BLINK state. COST: 219 INPUTS

CLK [input clock signal], btn_press [signal asserted at negedge of button press]

OUTPUTS

Int_sel [control signal used to select which signal is used to drive LED. Corresponds to intensity]

ITEM	QTY.	COST PER	TOTAL COST
D Flip-Flop	2	13	26
Inverter	2	1	2
Clock Divider	1	182	182
2-in NOR	1	2	2
2d MUX	1	7	7

Clock Divider Schematic

13

COST PER

QTY.

14

TITLE

ITEM

D Flip-Flop

examp as a 2 TOTAL COST asynch not con

182

DESCRIPTION

Divides an input clock by a factor of 2^14. For example, a 32768 Hz. clock input will be output as a 2 Hz. signal. For frequency division purposes, this asynchronous counter of D-flip-flops will work; we are not concerned with effects of a rippling clock edge across the counter. COST: 182

INPUTS

CLK_IN [input clock signal]

OUTPUTS

CLK_OUT [divided clock signal]

