Análisis de métodos de buscar

Diego Quirós Artiñano
Universidad Nacional de Costa Rica

EIF-203: Estructuras Discretas (10 A.M.)

Carlos Loria-Saenz

24 de marzo, 2022

Índice

Análisis de es_simetrica()	1
Excel	4
Referencias	6

	,		_	
- 1	Indice		•	
	INAIAA	α	TIMI	Irac
				11 4 5
		\sim		4 I U U

1	Gráfica dal mátado en Eveal	 5
١.	Granca del metodo en Excer	 J

,					
	\sim	$1 \sim 10$	Δ	ton	NI O C
•	IU	ILE	uc	tab	паэ

1.	Operaciones es_	_simetrica()								-
----	-----------------	--------------	--	--	--	--	--	--	--	---

Análisis de es simetrica()

0. El algoritmo original.

```
def es_simetrica(a:list[list[int]]) -> bool:
    for i in range(len(a)):
        for j in range(i+1, len(a[i])):
            if i != j and a[i][j] != a[j][i]:
                 return False
    return True
```

1. Tamaño de los datos

s El método se construyó de manera en la que no busque la diagonal de la matriz y solo se tiene que buscar la parte de arriba, entonces el tamaño de datos es $\frac{n(n-1)}{2}$

2. Operaciones de Interés

Notación [en función de tiempo (T)]	Operación	Tipo de Operación	
$T_{range()}$	range(len(a)) or range(i+1, len(a[i]))	constante	
$T_{!=}$	i != j or a[i][j] != a[j][i]	constante	
$T_{\mathbb{Q}}$	a[i][j] or a[j][i]	constante	

Cuadro 1

Operaciones es_simetrica()

Peor caso: toas son iguales a la mas grande de todas, como supuesto Asumimos que vale 1 (unidad de tiempo), según el más alto

3. Ecuación

Separando por partes

$$T_{es_simetrica()}(n) = T_{parte1} + T_{parte2} + T_{parte3}$$

$$T_{essimetrica()}(n) = 1 + T_{for()}(n) + 0$$

$$T_{es_simetrica()}(n) = T_{for()}(n) + 1$$

Evaluando $T_{for()}(n)$: (Parte 2.1)

1 operación: del range cada vez que i cambia

Entonces:

$$T_{for()}(n) = 1 + T_{for()_{for()}} + T_{for()}(n-1)$$

$$T_{for()}(n) = 1 + T_{for()_{for()}}(n) + 1 + T_{for()_{for()}}(n-1) + 1 + T_{for()_{for()}}(n-2) + \dots + T_{for()}(0)$$

$$T_{for()}(n) = n + T_{for()_{for()}}(n) + T_{for()_{for()}}(n-1) + ...T_{for()_{for()}}(1)$$

Evaluando para $T_{for()_{for()}}(n)$: (2.2) 6 operaciones: != y los 4 []'s cada vez que cambia j

$$T_{for()_{for()}}(n) = 2 + 4 + T_{for()_{for()}}(n-1)$$

$$T_{for()_{for()}}(n) = 6 + 6 + 6 + \dots + T_{for()_{for()}}(0)$$

 $T_{for()_{for()}}(0)$ es igual a 0 porque sale del for sin verificar otra vez

$$T_{for()_{for()}}(n) = 6n$$

Metiendolo en la Parte 2.1

$$T_{for()}(n) = n + 6n + 6(n-1) + 6(n-2) + \dots + 6$$

$$T_{for()}(n) = n + 6(\frac{n * (n+1)}{2})$$

4. Volviendo a meter en la ecuación original:

$$T_{es_simetrica()}(n) = n + 6(\frac{n * (n+1)}{2}) + 1$$

$$T_{es_simetrica()}(n) = (n+1) + 6(\frac{n*(n+1)}{2})$$

$$T_{es_simetrica()}(n) = (n+1) + 3(n*(n+1))$$

$$T_{essimetrica()}(n) = (n+1) + 3(n^2 + n)$$

$$T_{essimetrica()}(n) = 3n^2 + 4n + 1$$

5. Orden de crecimiento

El orden de crecimiento es el que es cuando la ecuación de tiempo es parabólica.

6. Código

```
def es_simetrica_instrumentado(a:'list[list[int]]')-> int:
    contador_operaciones:int = 0
    contador_operaciones += 1 # range de afuera
    for i in range(len(a)):
        contador_operaciones += 1 # cada range nuevo cuando cambia el i
        for j in range(i, len(a[i])):
            contador_operaciones += 6 # 2 != y 4 []'s
            if i != j and a[i][j] != a[j][i]:
                return contador_operaciones
    return contador_operaciones
```

Excel

Para importar a Excel para hacer la gráfica, se hizo este código:

```
def test_simetrica_instrumentado(filename, init, maxi, inc):
    file = open(filename, 'w')
    file.write('n;time\n')
    for n in range(init, maxi, inc):
        a = []
        for i in range(n):
            a.append([])
            for j in range(n):
                  a[i].append(1)
            file.write(f'{n};{es_simetrica_instrumentado(a)}\n')
        file.close()
test_simetrica_instrumentado('simetrica_instrumentado.csv', 10, 200, 10)
```


Figura 1

Gráfica del método en Excel

Referencias

Loria-Saenz, C. (2022). Clase 21 de marzo, 2022. estructuras discretas. UNA.

Descargado de https://sites.google.com/site/unaloriacarlos