Integration Manual

for S32K3 OCU Driver

Document Number: IM34OCUASRR21-11 Rev0000R3.0.0 Rev. 1.0

1 Revision History	2
2 Introduction	3
2.1 Supported Derivatives	3
2.2 Overview	4
2.3 About This Manual	5
2.4 Acronyms and Definitions	6
2.5 Reference List	7
3 Building the driver	8
3.1 Build Options	8
3.1.1 GCC Compiler/Assembler/Linker Options	9
3.1.2 DIAB Compiler/Assembler/Linker Options	11
3.1.3 GHS Compiler/Assembler/Linker Options	13
3.1.4 IAR Compiler/Assembler/Linker Options	15
3.2 Files required for compilation	17
3.3 Setting up the plugins	19
4 Function calls to module	22
4.1 Function Calls during Start-up	22
4.2 Function Calls during Shutdown	22
4.3 Function Calls during Wake-up	22
5 Module requirements	23
5.1 Exclusive areas to be defined in BSW scheduler	23
5.2 Exclusive areas unavailable on this platform	25
5.3 Peripheral Hardware Requirements	25
5.4 ISR to configure within AutosarOS - dependencies	25
5.5 ISR Macro	25
5.5.1 Without an Operating System	26
5.5.2 With an Operating System	26
5.6 Other AUTOSAR modules - dependencies	26
5.7 Data Cache Restrictions	27
5.8 User Mode support	27
5.8.1 User Mode configuration in the module	27
5.8.2 User Mode configuration in AutosarOS	27
5.9 Multicore support	28
6 Main API Requirements	30
6.1 Main function calls within BSW scheduler	30
6.2 API Requirements	30
6.3 Calls to Notification Functions, Callbacks, Callouts	

7 Memory allocation	31
7.1 Sections to be defined in Ocu_MemMap.h	31
7.2 Linker command file	32
8 Integration Steps	33
9 External assumptions for driver	34

NXP Semiconductors S32K3 OCU Driver

Revision History

Revision	Date	Author	Description
1.0	31.03.2023	NXP RTD Team	Prepared for release RTD S32K3 3.0.0

Introduction

- Supported Derivatives
- Overview
- About This Manual
- Acronyms and Definitions
- Reference List

This integration manual describes the integration requirements for Ocu Driver for S32K3XX microcontrollers.

2.1 Supported Derivatives

The software described in this document is intended to be used with the following microcontroller devices of NXP Semiconductors:

- s32k310_mqfp100
- s32k310_lqfp48
- $s32k311_mqfp100 / MWCT2015S_mqfp100$
- s32k311_lqfp48
- s32k312_mqfp100 / MWCT2016S_mqfp100
- s32k312_mqfp172 / MWCT2016S_mqfp172
- s32k314_mqfp172
- s32k314_mapbga257
- s32k322_mqfp100 / MWCT2D16S_mqfp100
- s32k322_mqfp172 / MWCT2D16S_mqfp172
- $\bullet \ \ s32k324_mqfp172\ /\ MWCT2D17S_mqfp172$
- \bullet s32k324_mapbga257

Introduction

- s32k341_mqfp100
- s32k341_mqfp172
- s32k342_mqfp100
- s32k342_mqfp172
- s32k344_mqfp172
- s32k344_mapbga257
- s32k394_mapbga289
- s32k396 mapbga289
- s32k358_mqfp172
- s32k358 mapbga289
- s32k328_mqfp172
- \bullet s32k328_mapbga289
- s32k338_mqfp172
- s32k338_mapbga289
- s32k348_mqfp172
- s32k348_mapbga289
- s32m274_lqfp64
- s32m276_lqfp64

All of the above microcontroller devices are collectively named as S32K3.

Note: MWCT part numbers contain NXP confidential IP for Qi Wireless Power.

2.2 Overview

AUTOSAR (AUTomotive Open System ARchitecture) is an industry partnership working to establish standards for software interfaces and software modules for automobile electronic control systems.

AUTOSAR:

- paves the way for innovative electronic systems that further improve performance, safety and environmental friendliness.
- is a strong global partnership that creates one common standard: "Cooperate on standards, compete on implementation".
- is a key enabling technology to manage the growing electrics/electronics complexity. It aims to be prepared for the upcoming technologies and to improve cost-efficiency without making any compromise with respect to quality.
- facilitates the exchange and update of software and hardware over the service life of the vehicle.

2.3 About This Manual

This Technical Reference employs the following typographical conventions:

- Boldface style: Used for important terms, notes and warnings.
- *Italic* style: Used for code snippets in the text. Note that C language modifiers such "const" or "volatile" are sometimes omitted to improve readability of the presented code.

Notes and warnings are shown as below:

Note

This is a note.

Warning

This is a warning

2.4 Acronyms and Definitions

AUTOSAR Automotive Open System Architecture API Application Programming Interface ARTD Automotive Real Time Drivers ASR AUTOSAR BSW Basic Software DEM Diagnostic Event Manager DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pro Compile Variant PC Variant Pro Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specification XML Extensible Markup Language	Term	Definition	
API Application Programming Interface ARTD Automotive Real Time Drivers ASR AUTOSAR BSW Basic Software DEM Diagnostic Event Manager DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory SCI Serial Communication Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	AUTOSAR	Automotive Open System Architecture	
ARTD Automotive Real Time Drivers ASR AUTOSAR BSW Basic Software DEM Diagnostic Event Manager DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant PC Variant PC Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specific Module Definition	API	Application Programming Interface	
BSW Diagnostic Event Manager DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ARTD		
DEM Diagnostic Event Manager DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ASR		
DET Development Error Tracer DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SwS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	BSW	Basic Software	
DIO Digital Input Output DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SwS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	DEM	Diagnostic Event Manager	
DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	DET	Development Error Tracer	
DMA Direct Memory Access ECU Electronic Control Unit ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	DIO	Digital Input Output	
ECUC ECU Configuration EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant PC Variant PC Variant PC Variant PW Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Ength Encoding VSMD Vendor Specific Module Definition	DMA	Direct Memory Access	
EcuM ECU state Manager eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SSC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ECU	Electronic Control Unit	
eMIOS Enhanced Modular IO Subsystem FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SwS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ECUC	ECU Configuration	
FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IIP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Ength Encoding VSMD Vendor Specific Module Definition	EcuM	ECU state Manager	
FTM FlexTimer GUI Graphical User Interface HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	eMIOS	Enhanced Modular IO Subsystem	
HLD High Level Driver HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	FTM		
HW Hardware ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	GUI	Graphical User Interface	
ICU Input Capture Unit IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	HLD	High Level Driver	
IP Intellectual Property, referred as a hardware design block IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	HW	Hardware	
IPL IP Layer IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ICU	Input Capture Unit	
IPW IP Wrapper Layer ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	IP	Intellectual Property, referred as a hardware design block	
ISR Interrupt Service Routine MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	IPL	IP Layer	
MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	IPW	IP Wrapper Layer	
MCAL Microconroller Abstraction Layer MCU Micro Controller Unit N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ISR	Interrupt Service Routine	
N/A Not Applicable OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	MCAL		
OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	MCU	Micro Controller Unit	
OCU Output Compare Unit OS Operating System OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	N/A	Not Applicable	
OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	· ·		
OSIF OS Interface PB Variant Post Build Variant PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	OS		
PC Variant Pre Compile Variant PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	OSIF		
PWM Pulse Width Modulation RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	PB Variant	Post Build Variant	
RAM Random Access Memory ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	PC Variant	Pre Compile Variant	
ROM Read-only Memory SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	PWM	Pulse Width Modulation	
SCI Serial Communication Interface SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	RAM	Random Access Memory	
SoC System on Chip SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	ROM	Read-only Memory	
SPI Serial Peripheral Interface SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition	SCI	Serial Communication Interface	
SWS Software Specification VLE Variable Length Encoding VSMD Vendor Specific Module Definition		System on Chip	
VLE Variable Length Encoding VSMD Vendor Specific Module Definition	SPI	Serial Peripheral Interface	
VLE Variable Length Encoding VSMD Vendor Specific Module Definition	SWS	Software Specification	
-	VLE		
-	VSMD	Vendor Specific Module Definition	

2.5 Reference List

#	Title	Version
1	Specification of OCU Driver	AUTOSAR Release R21-11
2	Specification of Communication Stack Types	AUTOSAR Release R21-11
3	Specification of Compiler Abstraction	AUTOSAR Release R21-11
4	Specification of Platform Types	AUTOSAR Release R21-11
5	Specification of Standard Types	AUTOSAR Release R21-11
6	S32K3xx Reference Manual	Rev.6, Draft B, 01/2023
7	S32K39 and S32K37 Reference Manual	Rev. 2 Draft A, 11/2022
8	S32M27x Reference Manual	Rev.2, Draft A, 02/2023
9	S32K3xx Datasheet	Rev. 6, 11/2022
10	S32K396 Datasheet	Rev. 1.1 — 08/2022
11	S32M2xx Datasheet	Rev. 2 RC — 12/2022
11	S32K311 Errata	S32K311_0P98C Mask Set Errata, Rev. 6/March/2023, 3/2023
12	S32K312 Errata	Mask Set Errata for Mask 0P09C, Rev. 25/April/2022
13	S32K342 Errata	Mask Set Errata for Mask 0P97C, Rev. 10, 11/2022
14	S32K3x4 Errata	Mask Set Errata for Mask 0P55A/1P55A, Rev. $14/\leftarrow$ Oct/2022
15	S32K358 Errata	S32K358_0P14E Mask Set Errata – Rev. 28, 9/2022
16	S32K396 Errata	S32K396_0P40E Mask Set Errata, Rev. DEC2022, 12/2022

Building the driver

- Build Options
- Files required for compilation
- Setting up the plugins

This section describes the source files and various compilers, linker options used for building the driver.

It also explains the EB Tresos Studio plugin setup procedure.

3.1 Build Options

- GCC Compiler/Assembler/Linker Options
- DIAB Compiler/Assembler/Linker Options
- GHS Compiler/Assembler/Linker Options
- IAR Compiler/Assembler/Linker Options

The RTD driver files are compiled using:

- NXP GCC 10.2.0 20200723 (Build 1728 Revision g5963bc8)
- Wind River Diab Compiler 7.0.4
- Compiler Versions: Green Hills Multi 7.1.6d / Compiler 2021.1.4
- Compiler Versions: IAR ANSI C/C++ Compiler V8.50.10 (safety version)

The compiler, assembler, and linker flags used for building the driver are explained below.

The TS_T40D34M30I0R0 part of the plugin name is composed as follows:

- T = Target_Id (e.g. T40 identifies Cortex-M architecture)
- D = Derivative_Id (e.g. D34 identifies S32K3 platform)
- M = SW_Version_Major and SW_Version_Minor
- $I = SW_Version_Patch$
- R = Reserved

$3.1.1 \quad GCC \ Compiler/Assembler/Linker \ Options$

3.1.1.1 GCC Compiler Options

Compiler Option	Description
-mcpu=cortex-m7	Targeted ARM processor for which GCC should tune the performance of the code
-mthumb	Generates code that executes in Thumb state
-mlittle-endian	Generate code for a processor running in little-endian mode
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions
-std=c99	Specifies the ISO C99 base standard
-Os	Optimize for size. Enables all -O2 optimizations except those that often increase code size
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-Wall	Enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros
-Wextra	This enables some extra warning flags that are not enabled by -Wall
-pedantic	Issue all the warnings demanded by strict ISO C. Reject all programs that use forbidden extensions. Follows the version of the ISO C standard specified by the aforementioend -std option
-Wstrict-prototypes	Warn if a function is declared or defined without specifying the argument types
-Wundef	Warn if an undefined identifier is evaluated in an #if directive. Such identifiers are replaced with zero
-Wunused	Warn whenever a function, variable, label, value, macro is unused
-Werror=implicit-function-declaration	Make the specified warning into an error. This option throws an error when a function is used before being declared
-Wsign-compare	Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to unsigned.
-Wdouble-promotion	Give a warning when a value of type float is implicitly promoted to double
-fno-short-enums	Specifies that the size of an enumeration type is at least 32 bits regardless of the size of the enumerator values.
-funsigned-char	Let the type char be unsigned by default, when the declara- tion does not use either signed or unsigned
-funsigned-bitfields	Let a bit-field be unsigned by default, when the declaration does not use either signed or unsigned

Building the driver

Compiler Option	Description
-fno-common	Makes the compiler place uninitialized global variables in the BSS section of the object file. This inhibits the merging of tentative definitions by the linker so you get a multiple- definition error if the same variable is accidentally defined in more than one compilation unit
-fstack-usage	This option is only used to build test for generation Ram/← Stack size report. Makes the compiler output stack usage information for the program, on a per-function basis
-fdump-ipa-all	This option is only used to build test for generation Ram/← Stack size report. Enables all inter-procedural analysis dumps
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1. For example: Predefine for S32K344 will be -DS32K344.
-DGCC	Predefine GCC as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. ← c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO← RT as a macro, with definition 1. Allows drivers to be configured in user mode.
-sysroot=	Specifies the path to the sysroot, for Cortex-M7 it is /arm-none-eabi/newlib
-specs=nano.specs	Use Newlib nano specs
-specs=nosys.specs	Do not use printf/scanf

3.1.1.2 GCC Assembler Options

Assembler Option	Description	
-Xassembler-with-cpp	Specifies the language for the following input files (rather than letting the compiler choose a default based on the file name suffix)	
-mcpu=cortexm7	Targeted ARM processor for which GCC should tune the performance of the code	
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target	
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions	
-mthumb	Generates code that executes in Thumb state	

Assembler Option	Description
-c	Stop after assembly and produce an object file for each source file

3.1.1.3 GCC Linker Options

Linker Option	Description
-Wl,-Map,filename	Produces a map file
-T linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-entry=Reset_Handler	Specifies that the program entry point is Reset_Handler
-nostartfiles	Do not use the standard system startup files when linking
-mcpu=cortexm7	Targeted ARM processor for which GCC should tune the performance of the code
-mthumb	Generates code that executes in Thumb state
-mfpu=fpv5-sp-d16	Specifies the floating-point hardware available on the target
-mfloat-abi=hard	Specifies the floating-point ABI to use. "hard" allows generation of floating-point instructions and uses FPU-specific calling conventions
-mlittle-endian	Generate code for a processor running in little-endian mode
-ggdb3	Produce debugging information for use by GDB using the most expressive format available, including GDB extensions if at all possible. Level 3 includes extra information, such as all the macro definitions present in the program
-lc	Link with the C library
-lm	Link with the Math library
-lgcc	Link with the GCC library
-specs=nano.specs	Use Newlib nano specs
-specs=nosys.specs	Do not use printf/scanf

3.1.2 DIAB Compiler/Assembler/Linker Options

3.1.2.1 DIAB Compiler Options

Compiler Option	Description
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software
	double-precision floating-point)
-mthumb	Selects generating code that executes in Thumb state
-std=c99	Follows the C99 standard for C
-Oz	Like -O2 with further optimizations to reduce code size
-g	Generates DWARF 4.0 debug information
-fstandalone-debug	Emits full debug info for all types used by the program
-Wstrict-prototypes	Warn if a function is declared or defined without specifying
	the argument types
-Wsign-compare	Produce warnings when comparing signed type with un-
	signed type
-Wdouble-promotion	Give a warning when a value of type float is implicitly pro-
	moted to double

Building the driver

Compiler Option	Description
-Wunknown-pragmas	Issues a warning for unknown pragmas
-Wundef	Warns if an undefined identifier is evaluated in an #if directive. Such identifiers are replaced with zero
-Wextra	Enables some extra warning flags that are not enabled by '-Wall'
-Wall	Enables all of the most useful warnings (for historical reasons this option does not literally enable all warnings)
-pedantic	Emits a warning whenever the standard specified by the -std option requires a diagnostic
-Werror=implicit-function-declaration	Generates an error whenever a function is used before being declared
-fno-common	Compile common globals like normal definitions
-fno-signed-char	Char is unsigned
-fno-trigraphs	Do not process trigraph sequences
-V	Displays the current version number of the tool suite
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1
-DDIAB	Predefine DIAB as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO← RT as a macro, with definition 1. Allows drivers to be configured in user mode

3.1.2.2 DIAB Assembler Options

Assembler Option	Description
-mthumb	Selects generating code that executes in Thumb state
-Xpreprocess-assembly	Invokes C preprocessor on assembly files before running the assembler
-Xassembly-listing	Produces an .lst assembly listing file
-с	Stop after assembly and produce an object file for each source file
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software double-precision floating-point)

3.1.2.3 DIAB Linker Options

Linker Option	Description					
-e Reset_Handler	Make the symbol Reset_Handler be treated as a root symbol and the start label					
	of the application					
$linker_script_file.dld$	Use linker_script_file.dld as the linker script. This script replaces the default					
	linker script (rather than adding to it)					
-m30	m2 + m4 + m8 + m16					
-Xstack-usage	Gathers and display stack usage at link time					
-Xpreprocess-lecl	Perform pre-processing on linker scripts					
-Llibrary_path	Points to the libraries location for ARMV7EMMG to be used for linking					
-lc	Links with the standard C library					
-lm	Links with the math library					
-tARMCORTEXM7MG:simple	Selects target processor (hardware single-precision, software double-precision					
	floating-point)					

3.1.3 GHS Compiler/Assembler/Linker Options

3.1.3.1 GHS Compiler Options

Compiler Option	Description
-cpu=cortexm7	Selects target processor: Arm Cortex M7
-thumb	Selects generating code that executes in Thumb state
-fpu=vfpv5_d16	Specifies hardware floating-point using the v5 version of the VFP instruction set, with 16 double-precision floating-point registers
-fsingle	Use hardware single-precision, software double-precision FP instructions
-C99	Use (strict ISO) C99 standard (without extensions)
-ghstd=last	Use the most recent version of Green Hills Standard mode (which enables warnings and errors that enforce a stricter coding standard than regular C and C++)
-Osize	Optimize for size
-gnu_asm	Enables GNU extended asm syntax support
-dual_debug	Generate DWARF 2.0 debug information
-G	Generate debug information
-keeptempfiles	Prevents the deletion of temporary files after they are used. If an assembly language file is created by the compiler, this option will place it in the current directory instead of the temporary directory
-Wimplicit-int	Produce warnings if functions are assumed to return int
-Wshadow	Produce warnings if variables are shadowed
-Wtrigraphs	Produce warnings if trigraphs are detected
-Wundef	Produce a warning if undefined identifiers are used in #if preprocessor statements

Building the driver

Compiler Option	Description
-unsigned_chars	Let the type char be unsigned, like unsigned char
-unsigned_fields	Bitfelds declared with an integer type are unsigned
-no_commons	Allocates uninitialized global variables to a section and initializes them to zero at program startup
-no_exceptions	Disables C++ support for exception handling
-no_slash_comment	C++ style // comments are not accepted and generate errors
-prototype_errors	Controls the treatment of functions referenced or called when no prototype has been provided
-incorrect_pragma_warnings	Controls the treatment of valid #pragma directives that use the wrong syntax
-с	Stop after assembly and produce an object file for each source file
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1. For example: Predefine for S32K344 will be -DS32K344.
-DGHS	Predefine GHS as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO← RT as a macro, with definition 1. Allows drivers to be configured in user mode

3.1.3.2 GHS Assembler Options

Assembler Option	Description
-cpu=cortexm7	Selects target processor: Arm Cortex M7
-fpu=vfpv5_d16	Specifies hardware floating-point using the v5 version of the VFP instruction set, with 16 double-precision floating-point registers
-fsingle	Use hardware single-precision, software double-precision FP instructions
-preprocess_assembly_files	Controls whether assembly files with standard extensions such as .s and .asm are preprocessed
-list	Creates a listing by using the name and directory of the object file with the .lst extension
-с	Stop after assembly and produce an object file for each source file

3.1.3.3 GHS Linker Options

Linker Option	Description
-e Reset_Handler	Make the symbol Reset_Handler be treated as a root symbol and the start label of the application
-T linker_script_file.ld	Use linker_script_file.ld as the linker script. This script replaces the default linker script (rather than adding to it)
-map	Produce a map file
-keepmap	Controls the retention of the map file in the event of a link error
-Mn	Generates a listing of symbols sorted alphabetically/numerically by address
-delete	Instructs the linker to remove functions that are not referenced in the final executable. The linker iterates to find functions that do not have relocations pointing to them and eliminates them
-ignore_debug_references	Ignores relocations from DWARF debug sections when using -delete. DWA← RF debug information will contain references to deleted functions that may break some third-party debuggers
-Llibrary_path	Points to library_path (the libraries location) for thumb2 to be used for linking
-larch	Link architecture specific library
-lstartup	Link run-time environment startup routines. The source code for the modules in this library is provided in the src/libstartup directory
-lind_sd	Link language-independent library, containing support routines for features such as software floating point, run-time error checking, C99 complex numbers, and some general purpose routines of the ANSI C library
-V	Prints verbose information about the activities of the linker, including the libraries it searches to resolve undefined symbols
-keep=C40_Ip_AccessCode	Avoid linker remove function C40_Ip_AccessCode from Fls module because it is not referenced explicitly
-nostartfiles	Controls the start files to be linked into the executable

$3.1.4 \quad IAR \ Compiler/Assembler/Linker \ Options$

3.1.4.1 IAR Compiler Options

Compiler Option	Description
-cpu Cortex-M7	Targeted ARM processor for which IAR should tune the per-
	formance of the code
-cpu_mode thumb	Generates code that executes in Thumb state
-endian little	Generate code for a processor running in little-endian mode
-fpu VFPv5-SP	Use this option to generate code that performs floating-
	point operations using a Floating Point Unit (FPU). Single-
	precision variant.
-е	Enables all IAR C language extensions
-Ohz	Optimize for size. the compiler will emit AEABI attributes
	indicating the requested optimization goal. This information
	can be used by the linker to select smaller or faster variants
	of DLIB library functions
-debug	Makes the compiler include debugging information in the
	object modules. Including debug information will make the
	object files larger

Building the driver

Compiler Option	Description
-no_clustering	Disables static clustering optimizations. Static and global variables defined within the same module will not be arranged so that variables that are accessed in the same function are close to each other
-no_mem_idioms	Makes the compiler not optimize certain memory access patterns
-do_explicit_zero_opt_in_named_sections	Disable the exception for variables in user-named sections, and thus treat explicit initializations to zero as zero initial- izations, not copy initializations
-require_prototypes	Force the compiler to verify that all functions have proper prototypes. Generates an error otherwise
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages
-diag_suppress Pa050	Suppresses diagnostic message Pa050
-DS32K3XX	Predefine S32K3XX as a macro, with definition 1
-D \$ (DERIVATIVE)	Predefine S32K3's derivative as a macro, with definition 1. For example: Predefine for S32K344 will be -DS32K344.
-DIAR	Predefine IAR as a macro, with definition 1
-DUSE_SW_VECTOR_MODE	Predefine USE_SW_VECTOR_MODE as a macro, with definition 1. By default, the drivers are compiled to handle interrupts in Software Vector Mode.
-DD_CACHE_ENABLE	Predefine D_CACHE_ENABLE as a macro, with definition 1. Enables data cache initalization in source file system. c under the Platform driver
-DI_CACHE_ENABLE	Predefine I_CACHE_ENABLE as a macro, with definition 1. Enables instruction cache initalization in source file system.c under the Platform driver
-DENABLE_FPU	Predefine ENABLE_FPU as a macro, with definition 1. Enables FPU initalization in source file system.c under the Platform driver
-DMCAL_ENABLE_USER_MODE_SUPPORT	Predefine MCAL_ENABLE_USER_MODE_SUPPO← RT as a macro, with definition 1. Allows drivers to be configured in user mode.

3.1.4.2 IAR Assembler Options

Assembler Option	Description
-cpu Cortex-M7	Targeted ARM processor for which IAR should generate the instruction set
-fpu VFPv5-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant.
-cpu_mode thumb	Selects the thumb mode for the assembler directive CODE
-g	Disables the automatic search for system include files
-r	Generates debug information

3.1.4.3 IAR Linker Options

Linker Option	Description
-map filename	Produces a map file
-config linkerfile	Use linkerfile as the linker script. This script replaces the default linker script (rather than adding to it)
-cpu=Cortex-M7	Selects the ARM processor variant to link the application for
-fpu VFPv5-SP	Use this option to generate code that performs floating-point operations using a Floating Point Unit (FPU). Single-precision variant.
-entry _start	Treats _start as a root symbol and start label
-enable_stack_usage	Enables stack usage analysis. If a linker map file is produced, a stack usage chapter is included in the map file
-skip_dynamic_initialization	Dynamic initialization (typically initialization of C++ objects with static storage duration) will not be performed automatically during application startup
-no_wrap_diagnostics	Does not wrap long lines in diagnostic messages

3.2 Files required for compilation

This section describes the include files required to compile, assemble (if assembler code) and link the Ocu driver for S32K3XX microcontrollers. To avoid integration of incompatible files, all the include files from other modules shall have the same AR_MAJOR_VERSION and AR_MINOR_VERSION, i.e. only files with the same AUTOSAR major and minor versions can be compiled.

Ocu Files

- ../Ocu_TS_T $40D34M30I0R0/include/Ocu_EnvCfg.h$
- ../Ocu TS T40D34M30I0R0/include/Ocu Types.h
- ../Ocu_TS_T40D34M30I0R0/include/Ocu_Irq.h
- ../Ocu_TS_T40D34M30I0R0/include/Ocu.h
- ../Ocu_TS_T40D34M30I0R0/src/Ocu.c
- $\bullet \ \ ../Ocu_TS_T40D34M30I0R0/include/Ocu_Ipw_Types.h$
- ../Ocu_TS_T40D34M30I0R0/include/Ocu_Ipw.h
- ../Ocu TS T40D34M30I0R0/src/Ocu Ipw.c
- $\bullet .../Ocu_TS_T40D34M30I0R0/include/Emios_Ocu_Ip_Types.h$
- ../Ocu_TS_T40D34M30I0R0/include/Emios_Ocu_Ip_HwAccess.h
- $\bullet .../Ocu_TS_T40D34M30I0R0/include/Emios_Ocu_Ip_Irq.h$
- ../Ocu_TS_T40D34M30I0R0/src/Emios_Ocu_Ip_Irq.c
- $\bullet .../Ocu_TS_T40D34M30I0R0/include/Emios_Ocu_Ip.h$
- $../Ocu_TS_T40D34M30I0R0/src/Emios_Ocu_Ip.c$

Ocu Generated Files

Building the driver

- ../generate_tresos/include/Ocu_CfgDefines.h
- ../generate_tresos/include/Ocu_Cfg.h
- ../generate_tresos/include/Ocu_Ipw_CfgDefines.h
- ../generate_tresos/include/Ocu_Ipw_Cfg.h
- ../generate_tresos/include/Emios_Ocu_Ip_CfgDefines.h
- ../generate_tresos/include/Emios_Ocu_Ip_Cfg.h
- ../generate_tresos/include/Ocu_<VariantNo>PBcfg.h
- ../generate_tresos/src/Ocu<VariantNo>PBcfg.c
- ../generate_tresos/include/Ocu_Ipw<VariantNo>PBcfg.h
- ../generate_tresos/src/Ocu_Ipw<VariantNo>PBcfg.c
- ../generate_tresos/include/Emios_Ocu_Ip<VariantNo>PBcfg.h
- ../generate_tresos/src/Emios_Ocu_Ip<VariantNo>_PBcfg.c

Note: As a deviation from standard:

- Ocu_Ipw_<VariantNo>PBcfg.c, Ocu_Ipw<VariantNo>PBcfg.c, Emios_Ocu_Ip<VariantNo>_PBcfg.c files will contain the definition for all parameters that are variant aware, independent of the configuration class that will be selected (PC, LT, PB)
- Ocu_Cfg.h, Ocu_Ipw_Cfg.h and Emios_Ocu_Ip_Cfg.h These files contain all the elements that are not variant aware, configured and generated only once (defines). For driver compilation, this file should be generated by the user using a configuration tool

Files from Base common folder

- ../BaseNXP TS T40D34M30I0R0/include/Devassert.h
- $\bullet .../BaseNXP_TS_T40D34M30I0R0/include/Std_Types.h$
- ../BaseNXP_TS_T40D34M30I0R0/header/S32K311_EMIOS.h
- ../BaseNXP TS T40D34M30I0R0/header/S32K312 EMIOS.h
- $\bullet .../BaseNXP_TS_T40D34M30I0R0/header/S32K314_EMIOS.h$
- ../BaseNXP TS T40D34M30I0R0/header/S32K322 EMIOS.h
- ../BaseNXP_TS_T40D34M30I0R0/header/S32K324_EMIOS.h
- ../BaseNXP_TS_T40D34M30I0R0/header/S32K341_EMIOS.h
- ../BaseNXP TS T40D34M30I0R0/header/S32K342 EMIOS.h
- ../BaseNXP_TS_T40D34M30I0R0/header/S32K344_EMIOS.h
- ../BaseNXP TS T40D34M30I0R0/header/S32K358 EMIOS.h
- ../BaseNXP TS T40D34M30I0R0/header/S32K388 EMIOS.h

- ../BaseNXP_TS_T $40D34M30I0R0/header/S32K39_EMIOS.h$
- $\bullet .../BaseNXP_TS_T40D34M30I0R0/header/S32M27x_EMIOS.h$
- $\bullet .../BaseNXP_TS_T40D34M30I0R0/include/Ocu_MemMap.h$
- $../BaseNXP_TS_T40D34M30I0R0/include/Reg_eSys.h$

Files from Det folder:

• $../Det_TS_T40D34M30I0R0/include/Det.h$

Files from Rte folder:

• ../Rte_TS_T40D34M30I0R0/include/SchM_Ocu.h

Files from Mcl folder:

- ../Mcl_TS_T40D34M30I0R0/include/Emios_Mcl_Ip_Types.h
- $\bullet .../Mcl_TS_T40D34M30I0R0/include/Emios_Mcl_Ip_Irq.h$
- $../Mcl_TS_T40D34M30I0R0/include/Emios_Mcl_Ip.h$
- $\bullet .../Mcl_TS_T40D34M30I0R0/src/Emios_Mcl_Ip_Irq.c$
- ../Mcl_TS_T40D34M30I0R0/src/Emios_Mcl_Ip.c

3.3 Setting up the plugins

The Ocu driver was designed to be configured by using the EB Tresos Studio (version EB tresos Studio 27.1 or later.)

Location of various files inside the FR module folder:

- VSMD (Vendor Specific Module Definition) file in EB tresos Studio XDM format:
 - ../BaseNXP_TS_T40D34M30I0R0/config/BaseNXP.xdm
 - $.../Dem_TS_T40D34M30I0R0/config/Dem.xdm$
 - ../EcuC_TS_T40D34M30I0R0/config/EcuC.xdm
 - $../Mcl_TS_T40D34M30I0R0/config/Mcl.xdm$
 - ../Mcu_TS_T40D34M30I0R0/config/Mcu.xdm
 - ../Ocu TS T40D34M30I0R0/config/Ocu.xdm
 - ../Os TS T40D34M30I0R0/config/Os.xdm
 - ../Platform TS T40D34M30I0R0/config/Platform.xdm
 - ../Resource_TS_T40D34M30I0R0/config/Resource.xdm
- VSMD (Vendor Specific Module Definition) file(s) in AUTOSAR compliant EPD format:
 - ../BaseNXP TS T40D34M30I0R0/autosar/BaseNXP.epd

Building the driver

```
- ../Dem\_TS\_T40D34M30I0R0/autosar/Dem.epd
```

- ../EcuC_TS_T40D34M30I0R0/autosar/EcuC.epd
- ../Mcl_TS_T40D34M30I0R0/autosar/Mcl_<subderivative_name>.epd
- ../Mcu TS T40D34M30I0R0/autosar/Mcu <subderivative name>.epd
- ../Ocu_TS_T40D34M30I0R0/autosar/Ocu_<subderivative_name>.epd
- $../Os_TS_T40D34M30I0R0/autosar/Os.epd$
- ../Platform_TS_T40D34M30I0R0/autosar/Platform_<subderivative_name>.epd
- ../Resource_TS_T40D34M30I0R0/autosar/Resource.epd
- Code Generation Templates for parameters:
 - ../Ocu_TS_T40D34M30I0R0/include/Ocu_EnvCfg.h
 - ../Ocu_TS_T40D34M30I0R0/generate_PC/include/Ocu_Cfg.h
 - $../Ocu_TS_T40D34M30I0R0/generate_PC/include/Ocu_Ipw_Cfg.h$
 - ../Ocu_TS_T40D34M30I0R0/generate_PC/include/Emios_Ocu_Ip_Cfg.h
 - ../Ocu_TS_T40D34M30I0R0/generate_PB/include/Ocu_Ipw_PBcfg.h
 - ../Ocu_TS_T40D34M30I0R0/generate_PB/include/Ocu_PBcfg.h
 - $\ ../Ocu_TS_T40D34M30I0R0/generate_PB/include/Emios_Ocu_Ip_PBcfg.h$
 - $\ ../Ocu_TS_T40D34M30I0R0/generate_PB/src/Ocu_PBcfg.c$
 - ../Ocu TS T40D34M30I0R0/generate PB/src/Ocu Ipw PBcfg.c
 - ../Ocu_TS_T40D34M30I0R0/generate_PB/src/Emios_Ocu_Ip_PBcfg.c

Steps to generate the configuration:

- 1. Copy the module folders Ocu_TS_T40D34M30I0R0, DEM_TS_T40D34M30I0R0, BaseNXP_TS_T40D34 \leftarrow M30I0R0, Resource_TS_T40D34M30I0R0, Mcu_TS_T40D34M30I0R0, Mcl_TS_T40D34M30I0R0 into the Tresos plugins folder.
- 2. Set the desired Tresos Output location folder for the generated sources and header files.
- 3. Use the EB tresos Studio GUI to modify ECU configuration parameters values.
- 4. Generate the configuration files.

Dependencies:

- MCU is required to use System Clock when clock source is used as Peripheral clock source to generate Ocu Segment values.
- MCL is required to provide some common files used by configuration Masterbus for eMios peripherals.
- RESOURCE is required to select processor derivative. Current Ocu driver has support for the following derivatives, everyone having attached a Resource file:
 - Ocu_s32k310_lqfp48, Ocu_s32k310_mqfp100,
 - Ocu s32k311 lqfp48, Ocu s32k311 mqfp100,
 - Ocu s32k312 mqfp100, Ocu s32k312 mqfp172,
 - Ocu s32k314 mapbga257, Ocu s32k314 mqfp172,
 - Ocu s32k322 mqfp100, Ocu s32k322 mqfp172,
 - Ocu s32k324 mapbga257, Ocu s32k324 mqfp172,

```
Ocu_s32k328_mapbga289, Ocu_s32k328_mqfp172, Ocu_s32k338_mapbga289, Ocu_s32k338_mqfp172, Ocu_s32k341_mqfp100, Ocu_s32k341_mqfp172, Ocu_s32k342_mqfp100, Ocu_s32k342_mqfp172, Ocu_s32k344_mapbga257, Ocu_s32k344_mqfp172, Ocu_s32k348_mapbga289, Ocu_s32k348_mqfp172, Ocu_s32k358_mapbga289, Ocu_s32k358_mqfp172, Ocu_s32k388_mapbga289, Ocu_s32k388_mqfp172, Ocu_s32k394_mapbga289, Ocu_s32k394_mapbga289, Ocu_s32k396_mapbga289, Ocu_s32m274_lqfp64, Ocu_s32m276_lqfp64.
```

- ECUC is needed to allows users to configure multiple configuration.
- DET is required for signaling the development error detection (parameters out of range, null pointers, etc).
- PORT is required to configure port I/O.

Function calls to module

- Function Calls during Start-up
- Function Calls during Shutdown
- Function Calls during Wake-up

4.1 Function Calls during Start-up

Ocu shall be initialized during STARTUP phase of EcuM initialization. The API to be called for this is Ocu _Init(). The MCU module should be initialized before the Ocu is initialized.

4.2 Function Calls during Shutdown

During shutdown phase, Ocu_DeInit() function can be called. Calling this function depends on the initialization-deinitialization strategy deployed by user.

4.3 Function Calls during Wake-up

During Wake-up phase, Ocu_Init() function may be called but only if during a previous phase Ocu_DeInit() was called. Calling this function depends on the initialization deinitialization strategy deployed by user.

Module requirements

- Exclusive areas to be defined in BSW scheduler
- Exclusive areas unavailable on this platform
- Peripheral Hardware Requirements
- ISR to configure within AutosarOS dependencies
- ISR Macro
- Other AUTOSAR modules dependencies
- Data Cache Restrictions
- User Mode support
- Multicore support

5.1 Exclusive areas to be defined in BSW scheduler

In the current implementation, OCU is using the services of Schedule Manager (SchM) for entering and exiting the exclusive areas. The following critical regions are used in OCU driver:

OCU_EXCLUSIVE_AREA_00 is used in function Ocu_StartChannel to protect the updates for:

- Control Registers of Unified Channels UC Control n (C0 C23),
- Status Registers of Unified Channels UC Status n (S0 S23)

OCU_EXCLUSIVE_AREA_01 is used in function Ocu_StopChannel to protect the updates for:

- Control Registers of Unified Channels UC Control n (C0 C23)
- Status Registers of Unified Channels UC Status n (S0 S23)

OCU_EXCLUSIVE_AREA_02 is used in function Ocu SetPinAction to protect the updates for:

NXP Semiconductors S32K3 OCU Driver 23

Module requirements

- Control Registers of Unified Channels UC Control n (C0 C23)
- Status Registers of Unified Channels UC Status n (S0 S23)

OCU_EXCLUSIVE_AREA_03 is used in function Ocu_SetPinState to protect the updates for:

• Control Registers of Unified Channels - UC Control n (C0 - C23)

OCU_EXCLUSIVE_AREA_04 is used in function Ocu_SetRelativeThreshold to protect the updates for:

• Counters of Unified Channels - UC Counter n (CNT0 - CNT23)

OCU_EXCLUSIVE_AREA_05 is used in function Ocu_SetAbsoluteThreshold to protect the updates for:

• Counters of Unified Channels - UC Counter n (CNT0 - CNT23)

OCU_EXCLUSIVE_AREA_06 is used in function Ocu_SetClockMode to protect the updates for:

• Control Registers of Unified Channels - UC Control n (C0 - C23)

OCU_EXCLUSIVE_AREA_07 is used in function Emios_Ocu_Ip_IrqHandler to protect the updates for:

- Control Registers of Unified Channels UC Control n (C0 C23)
- Status Registers of Unified Channels UC Status n (S0 S23)

Exclusive Area Matrix																										
	N/A	OCU_EXCLUSIVE_AREA_00	OCU_EXCLUSIVE_AREA_01	OCU_EXCLUSIVE_AREA_02	OCU_EXCLUSIVE_AREA_03	OCU_EXCLUSIVE_AREA_04	OCU_EXCLUSIVE_AREA_05	N/A	OCU_EXCLUSIVE_AREA_06	OCU_EXCLUSIVE_AREA_07	N/A															
OCU_EXCLUSIVE_AREA_00																	x	x	х	x				x	х	
OCU_EXCLUSIVE_AREA_01																	x	x	х	x				x	х	
OCU_EXCLUSIVE_AREA_02																	x	x	x	x				x	x	
OCU_EXCLUSIVE_AREA_03																	x	X	х	X				x		
OCU_EXCLUSIVE_AREA_04																					x	x				
OCU_EXCLUSIVE_AREA_05																					x	x				
OCU_EXCLUSIVE_AREA_06																	x	x	x	x				X		
OCU_EXCLUSIVE_AREA_07																	x	x	x						x	

Figure 5.1 Exclusive Areas

The critical regions from interrupts are grouped in "Interrupt Service Routines Critical Regions (composed diagram)". If an exclusive area is "exclusive" with the composed "Interrupt Service Routines Critical Regions (composed diagram)" group, it means that it is exclusive with each one of the ISR critical regions.

5.2 Exclusive areas unavailable on this platform

None

5.3 Peripheral Hardware Requirements

For S32K3XX controllers, Ocu functionality is provided by the eMios modules

5.4 ISR to configure within AutosarOS - dependencies

The following ISR's are used by the OCU driver: The ISR table is presented below. Depending on the derivative used, some of the ISRs may not be available. For complete details please consult the Reference Manual:

ISR Name	HW INT Vector	Observations
ISR(EMIOS0_5_IRQ)	66	EMIOS0 shared interrupt for 0-3 channels
ISR(EMIOS0_4_IRQ)	65	EMIOS0 shared interrupt for 4-7 channels
ISR(EMIOS0_3_IRQ)	64	EMIOS0 shared interrupt for 8-11 channels
ISR(EMIOS0_2_IRQ)	63	EMIOS0 shared interrupt for 12-15 channels
ISR(EMIOS0_1_IRQ)	62	EMIOS0 shared interrupt for 16-19 channels
ISR(EMIOS0_0_IRQ)	61	EMIOS0 shared interrupt for 20-23 channels
ISR(EMIOS1_5_IRQ)	74	EMIOS1 shared interrupt for 0-3 channels
ISR(EMIOS1_4_IRQ)	73	EMIOS1 shared interrupt for 4-7 channels
ISR(EMIOS1_3_IRQ)	72	EMIOS1 shared interrupt for 8-11 channels
ISR(EMIOS1_2_IRQ)	71	EMIOS1 shared interrupt for 12-15 channels
ISR(EMIOS1_1_IRQ)	70	EMIOS1 shared interrupt for 16-19 channels
ISR(EMIOS1_0_IRQ)	69	EMIOS1 shared interrupt for 20-23 channels
Only for S32K314, S32K324, S32K328,	-	-
S32K338, S32K344, S32K348, S32K356	-	-
S32K358 and S32K388:	-	-
ISR(EMIOS2_5_IRQ)	82	EMIOS2 shared interrupt for 0-3 channels
ISR(EMIOS2_4_IRQ)	81	EMIOS2 shared interrupt for 4-7 channels
ISR(EMIOS2_3_IRQ)	80	EMIOS2 shared interrupt for 8-11 channels
ISR(EMIOS2_2_IRQ)	79	EMIOS2 shared interrupt for 12-15 channels
ISR(EMIOS2_1_IRQ)	78	EMIOS2 shared interrupt for 16-19 channels
ISR(EMIOS2_0_IRQ)	77	EMIOS2 shared interrupt for 20-23 channels

5.5 ISR Macro

RTD drivers use the ISR macro to define the functions that will process hardware interrupts. Depending on whether the OS is used or not, this macro can have different definitions.

Module requirements

5.5.1 Without an Operating System The macro USING_OS_AUTOSAROS must not be defined.

5.5.1.1 Using Software Vector Mode

The macro USE SW VECTOR MODE must be defined and the ISR macro is defined as:

#define ISR(IsrName) void IsrName(void)

In this case, the drivers' interrupt handlers are normal C functions and their prologue/epilogue will handle the context save and restore.

5.5.1.2 Using Hardware Vector Mode

The macro USE_SW_VECTOR_MODE must not defined and the ISR macro is defined as:

#define ISR(IsrName) INTERRUPT_FUNC void IsrName(void)

In this case, the drivers' interrupt handlers must also handle the context save and restore.

5.5.2 With an Operating System Please refer to your OS documentation for description of the ISR macro.

5.6 Other AUTOSAR modules - dependencies

Development Error Tracer:

This module is necessary for enabling Development error detection. The API function used is Det_ReportError(). The activation / deactivation of Development error detection is configurable using the 'OcuDevErrorDetect' configuration parameter.

Diagnostic Event Manager:

This module is necessary for enabling Production error detection. The API function used is Dem_ReportErrorStatus ().

Mcu:

MCU module shall be initialized before using Ocu. This module is required for setting the eMios global Pre-scalar value and clock.

Platform:

Platform module shall be initialized before using Ocu. This module is required for setting the eMios isr channels.

Mcl:

Mcl module shall be initialized before using Ocu. This module is used to obtain the common interrupts sources and required for setting the eMios Masterbus

Port:

PORT module shall configure the eMios channels which are used by the Ocu driver.

EcuC:

This module is necessary for handling Postbuild Variant. This module allows users to configure multiple configuration

Configuration dependency to other module: Care must be used not to allocate the same eMios channels to other RTD drivers (ICU/GPT/PWM).

5.7 Data Cache Restrictions

None

5.8 User Mode support

- User Mode configuration in the module
- User Mode configuration in AutosarOS

5.8.1 User Mode configuration in the module

There is no restriction when running from user mode for all OCU IPs. Therefore no further actions are needed in OCU driver.

5.8.2 User Mode configuration in AutosarOS

When User mode is enabled, the driver may has the functions that need to be called as trusted functions in AutosarOS context. Those functions are already defined in driver and declared in the header <IpName>_Ip _
_TrustedFunctions.h. This header also included all headers files that contains all types definition used by parameters or return types of those functions. Refer the chapter User Mode configuration in the module for more detail about those functions and the name of header files they are declared inside. Those functions will be called indirectly with the naming convention below in order to AutosarOS can call them as trusted functions.

```
Call_<Function_Name>_TRUSTED (parameter1, parameter2,...)
```

That is the result of macro expansion OsIf_Trusted_Call in driver code:

```
#define OsIf Trusted Call[1-6params](name,param1,...,param6) Call ##name## TRUSTED(param1,...,param6)
```

So, the following steps need to be done in AutosarOS:

- Ensure MCAL_ENABLE_USER_MODE_SUPPORT macro is defined in the build system or somewhere global.
- Define and declare all functions that need to call as trusted functions follow the naming convention above in Integration/User code. They need to visible in Os.h for the driver to call them. They will do the marshalling of the parameters and call CallTrustedFunction() in OS specific manner.
- CallTrustedFunction() will switch to privileged mode and call TRUSTED_<Function_Name>().
- TRUSTED_<Function_Name>() function is also defined and declared in Integration/User code. It will unmarshalling of the parameters to call <Function_Name>() of driver. The <Function_Name>() functions are already defined in driver and declared in <IpName>_Ip_TrustedFunctions.h. This header should be included in OS for OS call and indexing these functions.

Module requirements

See the sequence chart below for an example calling Linflexd_Uart_Ip_Init_Privileged() as a trusted function.

Figure 5.2 Example sequence chart for calling Linflexd_Uart_Ip_Init_Privileged as trusted function

5.9 Multicore support

The Ocu implements the "Autosar 4.4 RTD Multicore Distribution" according to type II, in which the mappable element is set to HW Unit. For additional details, please refer to AUTOSAR_EXP_BSWDistributionGuide.

The Ocu driver implements the "Autosar 4.4 RTD Multicore Distribution" according to type II, in which the mappable element is set to logical channel. For additional details, please refer to AUTOSAR_EXP_BSWDistributionGuide.

The Ocu driver and the mappable elements can be allocated to zero, one or several ECUC partitions, by means of "OcuEcucPartionRef". If the Ocu is mapped to zero ECUC partitions, the Ocu behavior reverts to single-core implementation, similar to previous Autosar versions (e.g. 4.3). If the Ocu is mapped to one or more ECUC partitions, the Ocu enforces the following multi-core assumptions:

- The Ocu driver assumes there is a single EcucPartition allocated per core. Internally, the module will use the Core ID returned by GetCoreID API to reference the appropriate global data and configuration elements.
- The Ocu driver assumes the EcucCoreIDs are defined in a compact/consecutive order, starting from zero. The rationale is that the number of EcucPartitions is used for dimensioning the Ocu internal variables and the EcucCoreIDs are used for indexing those variables.(AR-86601 Zero based and dense IDs for OS-Cores and OS-Applications)
- The Ocu driver assumes that initialization is performed on each core, Ocu_Init() is called separately for each core, using a different configguration structure. (Type II)
- The Ocu driver initialization expects the upper layer will pass the correct initialization pointer, specific to the partition in which the driver is to be used. For example: EcucPartition_1 is assigned to CoreID 1; Ocu_Init function will be called with Ocu_Config_EcucPartition_1 configuration structure, on Core 1.

- The Ocu driver will check upon each API call if the requested resource is configured to be available on the current core, if DET error reporting is enabled.
- The Ocu driver requires that all variables in NonCacheable MemMap sections be allocated accordingly, to avoid data corruption in multicore context.
- The Ocu driver assumes that RTE module implements the EXCLUSIVE AREAS to be core-aware only. The rationale is that the module implementation ensures data integrity by separating the mappable elements for different cores already, thus implementing the EXCLUSIVE AREAS in a blocking manner (ex: spin-lock) on a multicore scope, might affect the performance of the drivers on the two cores, although they might access separate HW elements. For single-core scope, the EXCLUSIVE AREAS keep the same purpose as on previous AUTOSAR implementations. (* to be updated per Ocu usecase, to be detailed/removed if some modules require such kind of functionality for critical features which cannot be atomically shared among cores)
- The Ocu driver assumes that each interrupt is routed by the system only to the core on which is supposed to be serviced.
- The configuration structure name shall be available in the caller scope of Ocu_Init function by being declared with EXTERN, according to its generated name.

Module specific limitation:

• In Ocu configuration, a submodule cannot be contained by upper two ECUC partitions, so if a channel is mapping with ECUC partition A, then other channels belong to submodule contains that channel will not be allowed to map other ECUC partitions, except ECUC partition A.

Main API Requirements

- Main function calls within BSW scheduler
- API Requirements
- Calls to Notification Functions, Callbacks, Callouts

6.1 Main function calls within BSW scheduler

None.

6.2 API Requirements

None.

6.3 Calls to Notification Functions, Callbacks, Callouts

The Ocu Driver provides a notification per channel that is called whenever the selected edges are generated. The notifications can be configured as pointers to user defined functions. If notification is not desired for a specific channel then 'NULL_PTR' or 'NULL' shall be configured. The syntax of this function is as follows: void Ocu_Notification — _::channel(void) An extern declaration of the notification functions is available in Ocu_PBCfg.c. The notification functions have to be implemented by the user.

Memory allocation

- Sections to be defined in Ocu_MemMap.h
- Linker command file

7.1 Sections to be defined in Ocu_MemMap.h

Tables descibe Sections to be defined in Ocu_MemMap.h:

[Section to be define]

Section name	Type of section	Description
OCU_START_SEC_CONFIG_D↔ ATA_ <alignment></alignment>	Configuration Data	Start of Memory Section for Config Data
OCU_STOP_SEC_CONFIG_DA	Code	Start of memory Section for Code
TA_ <alignment></alignment>		,
OCU_START_SEC_CODE	Code	Start of memory Section for Code in Flash.
OCU_STOP_SEC_CODE	Code	Stop of memory Section for Code in Flash.
OCU_START_SEC_RAMCODE	Code	Start of memory Section for Code in Ram.
OCU_STOP_SEC_RAMCODE	Code	Stop of memory Section for Code in Ram.
OCU_START_SEC_VAR_ <init _policy="">_<alignment></alignment></init>	Variables	Start of memory Section for Variables.
OCU_STOP_SEC_VAR_ <init_ policy="">_<alignment></alignment></init_>	Variables	Stop of memory Section for Variables.
$\begin{array}{c} \textbf{OCU_START_SEC_CONST_}{<} \textbf{A} \leftarrow \\ \textbf{LIGNMENT}{>} \end{array}$	Constant data	Start of memory Section for Constant.
$\begin{array}{c} \textbf{OCU_STOP_SEC_CONST_} \end{array}$	Constant data	Stop of memory Section for Constant.

Which the shortcut '<ALIGNMENT >' means the variable alignment. In order to avoid memory gaps in the allocation variables are allocated according their size. Possible ALIGNMENT postfixes are described in the table at the end of this section. The shortcut '<INIT_POLICY>' means the initialization policy of variables. Possible '<INIT_POLICY>' postfixes are described in the table at the end of this section.

Memory allocation

Tables descibe value range of shortcut ALIGMENT, INIT_POLICY:

$[{\bf Range~of} < {\bf ALIGNMENT} >]$

<alignment></alignment>	Description
BOOLEAN	Used for variables and constants of size 1 bit
8	Used for variables and constants which have to be aligned to 8 bit. For instance used for variables of size 8 bit or used for composite data types: arrays, structs and unions
	containing elements of maximum 8 bits
16	Used for variables and constants which have to be aligned to 16 bit. For instance used for variables of size 16 bit or used for composite data types: arrays, structs and unions containing elements of maximum 16 bits
32	Used for variables and constants which have to be aligned to 32 bit. For instance used for variables of size 32 bit or used for composite data types: arrays, structs and unions containing elements of maximum 32 bits
UNSPECIFIED	Used for variables, constants, structure, array and unions when SIZE (alignment) does not fit the criteria of 8,16 or 32 bit. For instance used for variables of unknown size

[Range of <INIT_POLICY>]

<init_policy></init_policy>	Description
NO-INIT	Used for variables that are never cleared and never initialized by start up code (BSS)
INIT	Used for variables that are initialized with values after every reset

7.2 Linker command file

Memory shall be allocated for every section defined in the driver's "<Module>"_MemMap.h.

Integration Steps

This section gives a brief overview of the steps needed for integrating this module:

- 1. Generate the required module configuration(s). For more details refer to section Files Required for Compilation
- 2. Allocate the proper memory sections in the driver's memory map header file ("<Module>"_MemMap.h) and linker command file. For more details refer to section Sections to be defined in <Module>_MemMap.h
- 3. Compile & build the module with all the dependent modules. For more details refer to section Building the Driver

NXP Semiconductors S32K3 OCU Driver 33

External assumptions for driver

The section presents requirements that must be complied with when integrating the OCU driver into the application.

External Assumption Req ID	External Assumption Text	
EA_RTD_00071	If interrupts are locked, a centralized function pair to lock and unlock interrupts shall be used.	
EA_RTD_00081	The integrator shall assure that <msn>_Init() and <msn>_DeInit() functions do not interrupt each other.</msn></msn>	
EA_RTD_00082	When caches are enabled and data buffers are allocated in cacheable memory regions the buffers involved in DMA transfer shall be aligned with both start and end to cache line size. Note: Rationale : This ensures that no other buffers/variables compete for the same cache lines.	
EA_RTD_00092	The integrator shall allocate a single EcucPartition per core or the partition in which the Ocu is allocated shall be exclusively mapped to a core. Note: Internally, the Ocu will use the Core ID returned by GetCoreID API to reference the appropriate global data and configuration elements, that is why a core should reference only one configured partition.	
EA_RTD_00093	The application shall define EcucCoreIDs in a compact/consecutive order, starting from zero.	
EA_RTD_00094	When multicore support is enabled, the application shall call Ocu_Init() for each core, using the dedicated configuration pointer for that core.	
EA_RTD_00096	The application shall pass the correct initialization pointer, specific to the partition in which the driver is to be used.	
EA_RTD_00106	Standalone IP configuration and HL configuration of the same driver shall be done in the same project	
EA_RTD_00107	The integrator shall use the IP interface only for hardware resources that were configured for standalone IP usage. Note: The integrator shall not directly use the IP interface for hardware resources that were allocated to be used in HL context.	
EA_RTD_00108	The integrator shall use the IP interface to a build a CDD, therefore the BSWMD will not contain reference to the IP interface	
EA_RTD_00113	When RTD drivers are integrated with AutosarOS and User mode support is enabled, the integrator shall assure that the definition and declaration of all RTD functions needed to be called as trusted functions follow the naming convention Call <function_name>TRUSTE←D(parameter1,parameter2,) in Integration/User code. They need to visible in Os.h for the driver to call them. They will call RTD <function_←name>() as trusted functions in OS specific manner.</function_←name></function_name>	
34	S32K3 OCU Driver NXP Semiconductors	

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and Vision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2023 NXP B.V.

