Using reflection to solve some differential equations

Guillaume Allais

COQTAIL Junior Laboratory ENS Lyon

August, 26th

Motivations

A simple toy example

All the features

COQTAIL defines new objects

Power series

sum an rho : R -> R

Nth derivative

n : nat f : R -> R Dnf : D n f

nth_derive f Dnf : R -> R

With specific properties

- Trivial identities
 - □ sum an rho1 == sum an rho2
 - □ sum (an + bn) rab == sum an ra + sum bn rb
- Interactions
 - □ A power series can be differentiated infinitely many times
 - □ The shape of these derivatives is simple

With specific properties

- Trivial identities
 - sum an rho1 == sum an rho2
 - □ sum (an + bn) rab == sum an ra + sum bn rb
- Interactions
 - □ A power series can be differentiated infinitely many times
 - □ The shape of these derivatives is simple

Do we really want to deal with this by hand?

Reflection

- A datatype representing formulas
- A semantics connecting the datatype to the formulas

A simple toy example

First semantics

From ASTs to power series

$$\begin{bmatrix} y(p,k) & \mathbb{R} & \rho = (\sum_{n} \rho(p) x^{n})^{(k)} \\ plus(s_{1}, s_{2}) & \mathbb{R} & \rho = [s_{1}] \mathbb{R} \rho + [s_{2}] \mathbb{R} \rho \end{aligned}$$

Second semantics

From ASTs to coefficients' sequences

Main theorem

We can talk about coefficients' sequences to prove equalities on the corresponding power series.

Main theorem

We can talk about coefficients' sequences to prove equalities on the corresponding power series.

$$\llbracket s_1 :=: s_2 \rrbracket_{\mathbb{N}} (\text{map } \pi_1 \ \rho)$$

$$\Downarrow$$

$$\llbracket s_1 :=: s_2 \rrbracket_{\mathbb{R}} \rho$$

Quoting

Normalizing

- Quoting
 - \square isconst s x: \mathbb{B}

Normalizing

- Quoting
 - \square isconst s x: \mathbb{B}
 - \square add_var an rho env: $\mathbb{N}\star\mathcal{E}$

Normalizing

- Quoting
 - \square isconst s x: \mathbb{B}
 - \square add_var an rho env: $\mathbb{N}\star\mathcal{E}$
 - $\ \square$ quote_side_equa env s x : $\mathcal{E} \star$ side_equa
- Normalizing

- Quoting
 - \square isconst s x: \mathbb{B}
 - \square add_var an rho env: $\mathbb{N}\star\mathcal{E}$
 - $\ \square$ quote_side_equa env s x : $\mathcal{E} \star$ side_equa
- Normalizing
 - normalize_rec p s x:unit
- Solving

Quoting

 isconst s x : B
 add_var an rho env : N ★ E
 quote_side_equa env s x : E ★ side_equa

 Normalizing

 normalize_rec p s x : unit

solve_diff_equa:unit

an : Rseq

sum an ra == sum an rb

```
([(an, ra)] , (y(0,0), y(0,0)))
nth_derive (sum an ra) (D_infty_Rpser an ra 0) ==
nth_derive (sum an ra) (D_infty_Rpser an ra 0)
```

an : Rseq

```
sum an ra == sum an rb

([(an, ra)] , (y(0,0), y(0,0)))

nth_derive (sum an ra) (D_infty_Rpser an ra 0) ==
```

ra : infinite_cv_radius an
rb : infinite_cv_radius an

nth_derive (sum an ra) (D_infty_Rpser an ra 0)

an == an

an : Rseq
bn : Rseq

rab : infinite_cv_radius (an + bn + bn)

ra : infinite_cv_radius an
rb : infinite_cv_radius bn
rc : infinite_cv_radius bn

sum (an + bn + bn) rab ==

sum bn rb + sum an ra + sum bn rc

- Just a toy example however...
 - Fully automatic
 - Quite reflects the actual implementation

All the features

```
Inductive side_equa : Set :=
    | cst : forall (r : R), side_equa
    | scal : forall (r : R) (s : side_equa), side_equa
    | y : forall (p : nat) (k : nat) (a : R), side_equa
    | opp : forall (s1 : side_equa), side_equa
    | min : forall (s1 s2 : side_equa), side_equa
    | plus : forall (s1 s2 : side_equa), side_equa
    | mult : forall (s1 s2 : side_equa), side_equa.
```

Any questions?

Sources: http://coqtail.sf.net