RELACIJE

Uređen par elemenata a i b, u oznaci (a,b) je $(a,b) = \{\{a\},\{a,b\}\}$, gde je a prva komponenta, a b druga komponenta uređenog para.

Napomena:
$$(b, a) = \{\{b\}, \{a, b\}\}$$
 pa za $a \neq b \Rightarrow (a, b) \neq (b, a)$. $(a, b) = (c, d) \Leftrightarrow a = c \land b = d$.

Dekartov proizvod skupova A i B je skup svih uređenih parova čija je prva komponenta iz skupa A, a druga komponenta iz skupa B, tj. $A \times B = \{(a, b) | a \in A \land b \in B\}.$

$$\begin{array}{l} \textit{Primer: } A = \{1, 2, 3\}, \ B = \{x, y\} \\ A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\} \\ B \times A = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\} \end{array}$$

Na osnovu ovog primera može se zaključiti da Dekartov proizvod nije komutativan, tj. $A \times B \neq B \times A$.

Dekartov kvadrat skupa A je $A^2 = A \times A = \{(a_1, a_2) | a_1, a_2 \in A\}.$

$$\begin{array}{l} Primer: \ A = \left\{1, 2, 3\right\} \\ A^2 = \left\{\left(1, 1\right), \left(1, 2\right), \left(1, 3\right), \left(2, 1\right), \left(2, 2\right), \left(2, 3\right), \left(3, 1\right), \left(3, 2\right), \left(3, 3\right)\right\}. \end{array}$$

Binarna relacija je bilo koji podskup od $A \times B$, tj. $\rho \subseteq A \times B$.

Ako uređen par (x,y) pripada relaciji ρ kaže se da su x i y u relaciji ρ i piše se $(x,y) \in \rho$ ili $x \rho y$.

Binarna relacija skupa A, je bilo koji podskup od A^2 , tj. $\rho \subseteq A^2$.

Kako je $\emptyset \subseteq A^2$ i $A^2 \subseteq A^2$ to su \emptyset i A^2 sigurno relacije skupa A, i one se nazivaju prazna i puna relacija.

Relacije koje imaju konačno mnogo elemenata se mogu zadati na više načina. Neka je $A = \{1, 2, 3\}$ i $\rho \subseteq A^2$ tada se ρ može zadati na sledeće načine:

- nabrajanjem elemenata: $\rho = \{(1,1), (1,2), (1,3), (2,1), (2,2)\}$
- pomoću drugih relacija: $\rho = \left\{ (x,y) \in A^2 | x^2 + y \leq 6 \right\}$

grafički.

Relacije koje imaju beskonačno mnogo elemenata mogu se zadati pomoću drugih relacija ili se mogu opisati rečima govornog jezika.

Primer *:
$$A = \{1, 2, 3\}$$

 $\rho_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$
 $\rho_2 = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$
 $\rho_3 = \{(1, 1), (1, 3), (3, 1), (3, 2), (3, 3)\}$
 $\rho_4 = \{(1, 2), (1, 3), (2, 3)\}$
 $\rho_5 = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)\}$

Inverzna relacija relacije ρ je $\rho^{-1} = \{(y, x) \mid (x, y) \in \rho\}$

Primer: Inverzne relacije relacija iz Primera * su:

$$\begin{split} \rho_{1}^{-1} &= \left\{ \left(1,1\right), \left(2,1\right), \left(1,2\right), \left(2,2\right), \left(3,3\right) \right\} \\ \rho_{2}^{-1} &= \left\{ \left(2,1\right), \left(3,1\right), \left(2,2\right), \left(3,2\right), \left(2,3\right), \left(3,3\right) \right\} \end{split}$$

RELACIJE 2

```
\begin{split} \rho_3^{-1} &= \left\{ \left(1,1\right), \left(3,1\right), \left(1,3\right), \left(2,3\right), \left(3,3\right) \right\} \\ \rho_4^{-1} &= \left\{ \left(2,1\right), \left(3,1\right), \left(3,2\right) \right\} \\ \rho_5^{-1} &= \left\{ \left(1,1\right), \left(2,1\right), \left(3,1\right), \left(2,2\right), \left(3,2\right) \right\} \end{split}
```

Osnovne osobine binarne relacije ρ skupa $A \neq 0$:

- refleksivnost (R): $(\forall x \in A) x \rho x$
- simetričnost (S): $(\forall x, y \in A) (x\rho y \Rightarrow y\rho x)$
- antisimetričnost (A): $(\forall x, y \in A) (x\rho y \land y\rho x \Rightarrow x = y)$ ili $(\forall x, y \in A) ((x\rho y \land x \neq y) \Rightarrow] (y\rho x))$
- tranzitivnost (T): $(\forall x, y, z \in A) ((x\rho y \land y\rho z) \Rightarrow x\rho z)$

Primer: Ispitati osobine relacija iz Primera *.

Relacija je u isto vreme simetrična i antisimetrična akko za svaki njen par važi da su mu komponente jednake, jer ako se pojavi par čije su komponente različite $(a,b) \in \rho, \ a \neq b$, tada simetričnost zahteva da njemu simetričan par pripada relaciji, tj. $(b,a) \in \rho$, ali onda antisimetričnost zahteva da bude a=b što je u kontradikciji sa pretpostavkom da su komponente različite.

Relacija $\rho \subseteq A^2$ je **relacija ekvivalencije** (RST) akko je refleksivna, simetrična i tranzitivna.

Primer: relacija jednakosti = na skupu realnih brojeva, relacija paralelnosti || na skupu svih pravih u prostoru, relacija podudarnosti na skupu svih duži, relacija $\rho_1 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,4), (4,3), (5,5)\}$ na skupu $A = \{1,2,3,4,5\},...$

Svaka relacija ekvivalencije ρ definisana na skupu A vrši particiju tog skupa, tj. jednoznačno određuje neke neprazne podskupove skupa A od kojih su svaka dva disjunktna, a njihova unija je skup A. Važi i obrnuto. Za datu particiju skupa A može se definisati relacija ρ na skupu A tako što će proizvoljna dva elementa biti u relaciji ρ akko pripadaju istom podskupu te particije. Ovako definisana relacija je RST relacija.

Primer: $A = \{1, 2, 3, 4, 5\}$

- RST relaciji $\rho_1 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,2), (2,1), (4,5), (5,4)\}$ jednoznačno odgovara particija $\{\{1,2\}, \{3\}, \{4,5\}\},$
- RST relaciji $\rho_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}$ jednoznačno odgovara particija $\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\},$
- RST relaciji $\rho_3 = A^2$ jednoznačno odgovara particija $\{\{1, 2, 3, 4, 5\}\},$
- particiji $\{\{1\},\{2\},\{3,4,5\}\}$ jednoznačno odgovara relacija ekvivalencije $\rho_4 = \{(1,1),(2,2),(3,3),(4,4),(5,5),(3,4),(4,3),(3,5),(5,3),(4,5),(5,4)\}$,
- particiji $\{\{1,2,3\},\{4,5\}\}$ jednoznačno odgovara relacija ekvivalencije $\rho_5 = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(4,5),(5,4)\}$.

Na nekom konačnom skupu A može se definisati onoliko relacija ekvivalencije koliko ima particija.

Primer: Sve particije skupa $A = \{1, 2, 3\}$ su: $\{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{2\}, \{1, 3\}\}, \{\{3\}, \{1, 2\}\}, \{1, 2, 3\},$ što znači da se na skupu A može definisati najviše 5 različitih RST relacija.

Neka je $\rho \subseteq A^2$ relacija ekvivalencije skupa A, neka $x \in A$ i neka je sa C_x označen skup svih elemenata $y \in A$ koji su u relaciji ρ sa elementom x, tj. $C_x = \{y | x\rho y \land y \in A\}$. Tada se skup C_x naziva **klasa ekvivalencije** elementa x, u odnosu na relaciju ρ . Skup svih klasa ekvivalencije zove se **faktor skup** ili količnički skup i označava sa A/ρ .

Osobine klasa ekvivalencije: neka je ρ RST relacija skupa A

- klase ekvivalencije su, zbog refleksivnosti relacije ρ , neprazni skupovi jer $\forall x \in A, x \in C_x$,
- zbog simetričnosti relacije ρ važi da za $\forall x, y \in A, x \in C_y \Leftrightarrow y \in C_x$.
- klase ekvivalencije C_x i C_y skupa A se ili poklapaju ili su disjunktne, tj. $\forall x, y \in A, C_x = C_y \vee C_x \cap C_y = \emptyset$,
- \bullet unija svih klasa ekvivalencije skupa A, u odnosu na relaciju ρ je sam skup A.

RELACIJE 3

Primer: Neka je $\rho = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$ relacija ekvivalencije skupa $A = \{1,2,3\}$,. Klase ekvivalencije skupa A u odnosu na relaciju ρ su $C_1 = \{1\}, C_2 = \{2,3\} = C_3$, a faktor skup je $A/\rho = \{C_1,C_2\} = \{\{1\},\{2,3\}\}$.

Na osnovu prethodnih osobina može se zaključiti da su klase ekvivalencije neprazni podskupovi skupa A koji su međusobno disjunktni i čija unija je skup A, tj. da je faktor skup skupa A u odnosu na relaciju ρ jedna particija skupa A.

Relacija $\rho \subseteq A^2$ je **relacija poretka (RAT)** akko je refleksivna, antisimetrična i tranzitivna. Uređen par (A, ρ) je parcijalno uređen skup akko je $A \neq 0$ i ρ RAT relacija skupa A.

Primer: relacije ≤ i ≥ na skupu prirodnih brojeva, relacija deli | na skupu prirodnih brojeva, relacija $\rho_2 = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3),(1,4),(1,5),(2,4),(3,4),(3,5)\}$ na skupu $A = \{1,2,3,4,5\},...$

Neka je ρ relacija poretka skupa A. Tada je:

- $a \in A$ najmanji elemenat skupa A akko $\forall x \in A, a\rho x, tj.$
 - $a \in A$ najmanji elemenat skupa A akko je on u relaciji sa svakim elementom,
- $a \in A$ najveći elemenat skupa A akko $\forall x \in A, x \rho a, tj.$
 - $a \in A$ najveći elemenat skupa A akko je svaki elemenat u relaciji sa njim,
- $a \in A$ minimalni elemenat skupa A akko $\exists (\exists x \in A)(x \rho a \land x \neq a)$, tj.
 - $a \in A$ minimalni elemenat skupa A akko ni jedan drugi elemenat nije u relaciji sa njim osim njega samog,
- $a \in A$ maksimalni elemenat skupa A akko $(\exists x \in A)(a\rho x \land x \neq a)$, tj.
 - $a \in A$ maksimalni elemenat skupa A akko nije u relaciji ni sa jednim drugim elementom osim sa samim sobom.

Grafik relacije poretka naziva se **Haseov dijagram**. Svakoj relaciji poretka jednoznačno odgovara jedan Haseov dijagram i obrnuto, na osnovu Haseovog dijagrama se jednoznačno može rekonstruisati relacija poretka kojoj odgovara posmatrani Haseov dijagram.

Primer: Relacija $\rho = \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, c)\}$ je relacija poretka skupa $A = \{a, b, c, d\}$.

najmanji elemenat: a
najveći elemenat: nema

• minimalni elemenat: a

 \bullet maksimalni elemenat: c, d

Ako postoji najmanji elemenat on je jedinstven.

Ako postoji najveći elemenat on je jedinstven.

Minimalnih i maksimalnih elemenata može biti više.

Ako postoji njamanji elemenat on je i jedini minimalni elemenat.

Ako postoji najveći elemenat on je i jedini maksimalni elemenat.

Primer:

- Relacija ≤ u skupu N: jedini minimalni i najmanji elemenat je 1, a najvećeg i maksimalnog elementa nema. Relacija ≥ u skupu N: jedini maksimalni i najveći elemenat je 1, a najmanjeg i minimalnog elementa nema.
- Relacija deli u skupu $\mathbb N$ definisana je sa $m|n \Leftrightarrow \exists k \in \mathbb N, n=km$. Najmanji i jedini minimalni elemenat je 1, a najvećeg i maksimalnog elementa nema.
 - Relacija deli na skupu $A = \{2, 3, 5, 12\}$. Najmanji i najveći elemenat ne postoje, minimalni elementi su 2, 3 i 5, a maksimalni 5 i 12.
- Relacija \subseteq u partitivnom skupu nekog skupa $A \neq 0$. Jedini minimalni i najmanji elemenat je \emptyset , a jedini maksimalni i najveći elemenat je A.