MOASEI

LEEN-KIAT SOH, UNIVERSITY OF NEBRASKA ADAM ECK, OBERLIN COLLEGE PRASHANT DOSHI, UNIVERSITY OF GEORGIA

Participating via Zoom

https://go.unl.edu/moaseizoom

Agenda

2:00 PM: Introduction and Welcome (Organizers and Finalists)

2:20 PM: Team Presentations (15 minutes each)

3:20 PM: Competition Results

3:45 PM: Coffee Break

4:30 PM: Discussions on Improvement/Revision

5:30 PM: Concluding Remarks

5:45 PM: Adjourned

INTRODUCTION & WELCOME

Team Members

PIs

- Prashant Doshi University of Georgia
- Adam Eck Oberlin College
- Leen-Kiat Soh University of Nebraska

Students

- Daniel Redder University of Georgia
- Ceferino Patino IV University of Nebraska
- Tyler Billings University of Nebraska
- Alireza Saleh Abadi University of Nebraska

Openness in **Environment**

In many real-world applications of AI, the set of actors and tasks are *not* constant, but instead **change over time**

- Robots tasked with suppressing wildfires
 eventually run out of limited suppressant
 resources and need to temporarily disengage
 from the collaborative work in order to
 recharge, or they might become damaged and
 leave the environment permanently
- In a large business organization, objectives and goals change with the market, requiring workers to adapt to perform different sets of tasks across time

Open Agent
Systems
(OASYS)

We call these multiagent systems **open** agent systems

The *openness* of the sets of agents and tasks necessitates new capabilities and modeling for decision making compared to planning and learning in *closed* environments

Agent Openness

Agent openness, where the set of agents acting in the world change over time

This could include

- agents temporarily disengaging from the environment before returning (e.g., autonomous ride-sharing cars recharging when low on energy)
- new groups of agents joining over time (e.g., new attackers appearing globally in a cybersecurity defense application)
- existing agents leaving permanently (e.g., firefighting robots becoming damaged and needing to leave the operations to recover valuable hardware)

Task Openness

Task openness, where the set of tasks that agents aim to accomplish change over time

This could include

- new tasks appearing that are novel compared to existing tasks (e.g., transporting ride-sharing passengers for unique events)
- popular existing tasks disappearing forever
- a gradual shift in the requirements of tasks over time so that tasks gradually become different from their initial context

Type Openness

Type openness, where the types (e.g., capabilities) of agents change over time.

This could include

- agents learning new skills and gaining new responsibilities (e.g., promotions of office workers)
- robots losing abilities over time (e.g., modeling damage to robots engaged in the field)
- agents changing preferences or priorities over time

Modeling

Openness in MAS makes *modeling* challenging

An agent has to simultaneously answer several questions:

- how to measure the level or amount of openness,
- how to reason about existing agents (or tasks) that leave and the new agents (or tasks) that arrive, and their associated properties or capabilities,
- Ultimately how to represent the unknown including the bounds of what is possible and what is not possible?

Planning

Openness in MAS makes *planning* challenging

Maintaining the required information about changes to the system increases

- size of the problem representation being considered by the agent
- amount of uncertainty the agent faces, requiring more deliberations to ascertain accurately the expected rewards

Together, these pose significant challenges to the *computational scalability* of planning algorithms

Reinforcement Learning

Openness in MAS makes reinforcement learning challenging

Learning from the rewards is made more difficult due to increase in

- uncertainty about the causes behind changes in the outcomes
- amount of training experience to learn stable, optimal behavior rules (or policies)

Reinforcement Learning 2 Most importantly, the **tradeoff of balancing exploration and exploitation** is complicated in critical ways by openness

- In an open environment, it might be difficult to simulate all of the causes of openness, necessitating online learning
- Furthermore, previously optimal policies may be rendered largely useless if other agents and their actions have left the environment while new agents and their actions are now impacting the environment
- Understanding where in the policy space does an agent need to explore more versus what knowledge it can still exploit is an open problem

To Probe Further

Eck, A., Soh, L.-K., & Doshi, P. 2023. Decision Making in Open Multiagent Systems. AI Magazine. 44(4), 508-523. [link]

Kakarlapudi, A., Anil, G., Eck, A., Doshi, P., & Soh, L.-K. 2022. Decision-Theoretic Planning with Communication in Open Multiagent Systems. Proceedings of the 2022 Conference on Uncertainty in Artificial Intelligence (UAI'22), Eindhoven, Netherlands, August 1-5, 2022 [link][Open Review with Appendices] [Code]

Eck, A., Shah, M., Doshi, P., & Soh, L.-K. 2020. Scalable Decision-Theoretic Planning in Open and Typed Multiagent Systems. Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence (AAAI'2020), New York City, NY, February 8-12, 2020. [link] [Preprint with Appendices] [Code]

Chandrasekaran, M., Eck, A., Doshi, P., & Soh, L.-K. 2016. Individual Planning in Open and Typed Agent Systems. Proceedings of the 2016 Conference on Uncertainty in Artificial Intelligence (UAI'16), New York City, NY, June 25-29, 2016. [link]

TEAM PRESENTATIONS

Hossein Savari; Ali Jahani; Afsaneh Habibi

Teams

11 teams registered 4 teams submitted solutions

Markov Mayhem

- University of Utah, Utah, USA
- · Varun Raveendra, Yanxi Lin, Seongil Heo

University of Tehran

- University of Tehran, Tehran, Iran
- · Hossein Savari, Ali Jahani, Afsaneh Habibi

BitStudent

- Beijing University of Technology, Beijing, China
- Yu Zou, Tianjiao Yi, Yinuo Zhao, Yuxiang Song, Chi Harold Liu

Zana-Cyber

- Carleton University, Ottawa, Canada
- Thomas Kunz, Azad Jalalian

TEAM PRESENTATIONS MARKOV MAYHEM

TEAM PRESENTATIONS UNIVERSITY OF TEHRAN

TEAM PRESENTATIONS **BIT STUDENT**

TEAM PRESENTATIONS ZANA-CYBER

COMPETITION RESULTS

COMPETITION RESULTS EVALUATION METHODOLOGY

Methodology - Wildfire

Evaluation Metrics

rewards

Simulation Setup

256 evaluation runs / configuration

Baselines Compared

- noop agents take no actions
- random agents take random actions
- smallest agents attack the fire closest to being put out
- largest agents attack the task closest to burning out

Evaluation Procedure

- 1. Each team's solution tested on same 256-seed set per configuration
- 2. Collected average and variance across 256 total trials
- 3. Visualizations generated after all evaluations for post-hoc analysis

WS1

- base spread rate: 0.1
- random ignition probability: 0.05
- single initial fire, all agents present

WS3

- base spread rate: 0.5
- random ignition probability: 0.25
- four initial fires, no agents present

WS2

- base spread rate: 0.5
- random ignition probability: 0.25
- two initial fires, all agent present

Wildfire

Methodology - Cybersecurity

Evaluation Metrics

rewards

Simulation Setup

256 evaluation runs / configuration

Baselines Compared

- noop agents take no actions
- random agents take random actions
- exploited agents patch the node which is most exploited for 3 consecutive steps, then retarget
- patched agents patch the node which is closest to completely patched for 3 consecutive steps, then retarget

Evaluation Procedure

- 1. Each team's solution tested on same 256-seed set per configuration
- 2. Collected average and variance across 256 total trials
- 3. Visualizations generated after all evaluations for posthoc analysis

CS1

persist probability: 0.5return probability: 0.25fully-connected network

CS2

persist probability: 0.5return probability: 0.25central-node network

CS3

persist probability: 0.5return probability: 0.25

linear network

Cybersecurity

COMPETITION RESULTS PERFORMANCES & PLACINGS

Policy	WS1	¥	WS2	¥	WS3	¥	Total 🔻
noop	-2.54 ± 0.05		-4.20 ± 0.08		-6.00 ± 0.00		-12.73 ± 0.12
random	-1.23 ± 0.15		-2.38 ± 0.17		-4.27 ± 0.12		-7.88 ± 0.44
smallest	5.23 ± 0.16		6.46 ± 0.23	!	-0.34 ± 0.18		11.35 ± 0.57
largest	4.52 ± 0.18		3.26 ± 0.22		-2.80 ± 0.17		4.98 ± 0.57
bit_student	3.75 ± 0.09		3.97 ± 0.18		crash		7.71 ± 0.27
markov_mayhem	5.18 ± 0.16		6.48 ± 0.23		-0.30 ± 0.22		11.36 ± 0.61
university_of_tehran	5.27 ± 0.16		6.53 ± 0.25		-0.39 ± 0.21		11.41 ± 0.63

Rewards

No statistically significant differences between the University of Tehran and Markov Mayhem

Wildfire

Wilcoxon test for statistical significance

Policy v. Burnouts

Burnouts

Policy v. Putouts

Putouts

Policy v. Simulation Length

Simulation Length

Policy v. Fights	WS1	WS2	¥	WS3	v	Average	w
noop	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$		$0.00\% \pm 0.00\%$		$0.00\% \pm 0.00\%$	
random	40.46% ± 0.01%	40.31% ± 0.01%		25.91% ± 0.01%		35.56% ± 0.02%	
smallest	71.44% ± 0.01%	72.01% ± 0.01%		45.68% ± 0.01%		63.05% ± 0.03%	
largest	48.63% ± 0.01%	69.10% ± 0.01%		65.98% ± 0.01%		61.24% ± 0.02%	
bit_student	36.63% ± 0.02%	62.82% ± 0.01%		65.41% ± 0.01%		54.95% ± 0.04%	
markov_mayhem	71.24% ± 0.01%	72.21% ± 0.01%		47.20% ± 0.01%		63.55% ± 0.03%	
university_of_tehran	72.48% ± 0.01%	69.39% ± 0.01%		47.16% ± 0.01%		63.01% ± 0.03%	
Policy v. Noop	WS1	WS2	¥	WS3	~	Average	₩.
noop	100.00% ± 0.00%	100.00% ± 0.00%)	100.00% ± 0.00%	,)	100.00% ± 0.00%	%
random	59.54% ± 0.01%	59.69% ± 0.01%		74.09% ± 0.01%		64.44% ± 0.02%	
smallest	28.56% ± 0.01%	27.99% ± 0.01%		54.32% ± 0.01%		36.95% ± 0.03%	
largest	51.37% ± 0.01%	30.90% ± 0.01%		34.02% ± 0.01%		38.76% ± 0.02%	
bit_student	63.37% ± 0.02%	37.18% ± 0.01%		34.59% ± 0.01%		45.05% ± 0.04%	
markov_mayhem	28.76% ± 0.01%	27.79% ± 0.01%		52.80% ± 0.01%		36.45% ± 0.03%	
university_of_tehran	27.52% ± 0.01%	30.61% ± 0.01%		52.84% ± 0.01%		36.99% ± 0.03%	

Policy Action Preferences

Policy Action Preferences v. Rewards

WS1

Wildfire

Policy Action Preferences v. Rewards

WS2

Wildfire

Policy Action Preferences v. Rewards

WS3

BIT Student

Configuration: WS2

Episoda: 0.oov Stap: 0/21

Wildfire

Markov Mayhem

Configuration: WS2

Episodic: 26.sov Otep: 0/24

Wildfire

University of Tehran

Configuration: WS2

Wildfire

Policy -	CS1	▼ CS2	▼ CS3	▼ Total
noop	282.56 ± 47.15	154.30 ± 25.18	131.41 ± 24.36	568.27 ± 96.69
random	406.83 ± 43.52	144.64 ± 24.51	168.70 ± 22.91	720.16 ± 90.94
patched	680.41 ± 45.16	353.91 ± 21.49	340.04 ± 21.30	1374.36 ± 87.95
exploited	605.30 ± 40.87	241.08 ± 24.79	347.99 ± 20.10	1194.37 ± 85.75
zana_cyber	743.65 ± 42.58	386.37 ± 22.39	386.34 ± 20.14	1516.36 ± 85.11

Rewards

Zana Cyber has statistically significant difference with patched (most competitive baseline) in CS3 (p = 0.0500)

Cybersecurity

Wilcoxon test for statistical significance

Policy v. Move	CS1 v	CS2	CS3	Average -
noop	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$
random	24.47% ± 0.00%	24.57% ± 0.00%	24.61% ± 0.00%	24.55% ± 0.00%
patched	22.22% ± 0.00%	22.24% ± 0.00%	22.08% ± 0.00%	22.18% ± 0.00%
exploited	22.12% ± 0.00%	22.04% ± 0.00%	21.91% ± 0.00%	22.02% ± 0.00%
zana_cyber	19.89% ± 0.00%	19.77% ± 0.00%	19.71% ± 0.00%	19.79% ± 0.00%
Policy v. Noop	CS1 v	CS2 ▼	CS3 ▼	Average 🔻
поор	100.00% ± 0.00%	100.00% ± 0.00%	100.00% ± 0.00%	100.00% ± 0.00%
random	71.46% ± 0.00%	71.29% ± 0.00%	71.34% ± 0.00%	71.36% ± 0.00%
patched	68.36% ± 0.00%	68.39% ± 0.00%	68.45% ± 0.00%	68.40% ± 0.00%
exploited	68.47% ± 0.00%	68.42% ± 0.00%	68.53% ± 0.00%	68.47% ± 0.00%
zana_cyber	68.44% ± 0.00%	68.48% ± 0.00%	68.57% ± 0.00%	68.49% ± 0.00%
Policy v. Monitor	CS1 🔻	CS2 ▼	CS3	Average ~
noop	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$
random	1.14% ± 0.00%	1.14% ± 0.00%	1.11% ± 0.00%	1.13% ± 0.00%
patched	$6.60\% \pm 0.00\%$	6.56% ± 0.00%	6.64% ± 0.00%	$6.60\% \pm 0.00\%$
exploited	6.59% ± 0.00%	6.70% ± 0.00%	6.72% ± 0.00%	6.67% ± 0.00%
zana_cyber	3.87% ± 0.00%	3.84% ± 0.00%	3.88% ± 0.00%	3.86% ± 0.00%
Policy v. Patch	CS1 ▼	CS2 ▼	CS3	Average
noop	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$	$0.00\% \pm 0.00\%$
random	2.94% ± 0.00%	3.01% ± 0.00%	2.95% ± 0.00%	2.96% ± 0.00%
patched	2.82% ± 0.00%	2.81% ± 0.00%	2.82% ± 0.00%	$2.82\% \pm 0.00\%$
exploited	2.82% ± 0.00%	2.84% ± 0.00%	2.85% ± 0.00%	2.84% ± 0.00%
zana_cyber				

Policy Action Preferences

Policy Action Preferences v. Rewards

CS1

Policy Action Preferences v. Rewards

CS2

Policy Action Preferences v. Rewards

CS3

Zana Cyber Configuration CS3

Cybersecurity

Rideshare

Animations of Renderings

MOHITO

Configuration DR3

Placings

Wildfire Track

Winner: University of Tehran University of Tehran, Tehran, Iran

Hossein Savari, Ali Jahani, Afsaneh Habibi

Winner: Markov Mayhem

University of Utah, Utah, USA Varun Ravendra, Yanxi Lin, Seongil Heo

Honorable Mention: BitStudent

Beijing University of Technology, Beijing, China Yu Zou, Tianjiao Yi, Yinuo Zhao, Yuxiang Song, Chi Harold Liu

Cybersecurity Track

Winner: Zana-Cyber

Carleton University, Ottawa, Canada Thomas Kunz, Azad Jalalian

COFFEE BREAK

COMING UP NEXT: DISCUSSIONS ON IMPROVEMENT/REFINEMENT OF MOASEI

DISCUSSIONS ON IMPROVEMENT/REFINEMENT

Contributing to shared notes

https://go.unl.edu/moaseinotes

Increase in Environment Size

WILDFIRE

Larger grid sizes, exacerbating the number of tasks which can appear and disappear. More agents and tasks requiring greater cooperation and planning.

CYBERSECURITY

Greater number of subnetwork nodes and agents, increasing the complexity of possible interactions.

Smarter Attacker
Heuristics for
Cybersecurity

Smarter attacker heuristics may be used, which make full use of the observations to maximize their attack surface.

Incorporation of Type Openness in Wildfire

Agent abilities and skills can be added, removed, or modified, increasing the difficulty and environmental complexity of task and agent openness.

Manifestation:

Agents can damage their equipment over time, and have capabilities slowly degrade. Agents might also receive different equipment on return to the environment.

Rideshare

Domain:

Passengers periodically appear around the map with a random initial location, destination, and fare. Agents must travel to the passenger's location and deliver them to their destination.

Key Components:

 Competitive Domain: Direct competition against other submissions, encouraging submissions which can take advantage of natural Nash equilibria.

CONCLUDING REMARKS

Summary of Approaches

Teams	Approaches	Domains
Zana-Cyber (Winner) Prioritizes tasks using a weighted scoring function, focusing on the most critical tasks.		Cybersecurity
University of Tehran (Winner)	Processes a spatial grid that represents the environment, while using historical data to prioritize actions based on urgency.	Wildfire
Markov Mayhem (Winner)	Leverages GNNs to handle openness by modifying observations into flexible graph-structured data.	Wildfire
Bit Student (Honorable Mention)	Uses an iterative process with multiple- sampling from LLM models to continuously improve upon a baseline policy.	Wildfire

Moving Forward ...

Organizing the 2nd Annual MOASEI Competition at AAMAS'2026

- With similar deadlines
- With more complex configurations
- Open to discussions and ideas from this year's teams to improve the competition

Expanding on research in OASYS

- Developing domains and benchmarks
- Conducting comparative studies
- Co-authoring papers

Acknowledgments

This research was supported by a collaborative NSF Grant #IIS-2312657 (to P.D.), #IIS-2312658 (to L.K.S.), and #IIS-2312659 (to A.E.). Additionally, this work was completed utilizing the Holland Computing Center of the University of Nebraska, which receives support from the UNL Office of Research and Economic Development, and the Nebraska Research Initiative.

Congratulations & Thank You!!

Zana-Cyber | Carleton University, Ottawa, Canada | Thomas Kunz, Azad Jalalian

Markov Mayhem | University of Utah, Utah, USA | Varun Raveendra, Yanxi Lin, Seongil Heo

University of Tehran | University of Tehran,
Tehran, Iran | Hossein Savari, Ali Jahani, Afsaneh
Habibi

BitStudent | Beijing University of Technology, Beijing, China | Yu Zou, Tianjiao Yi, Yinuo Zhao, Yuxiang Song, Chi Harold Liu

Hope that you will participate again next year!

Please also help us encourage others to

participate

Contact Info

https://oasys-mas.github.io

https://oasys-mas.github.io/moasei.html

tbillings4@huskers.unl.edu

Survey

https://go.unl.edu/moaseisurvey

ADJOURNED

OASYS

University of Nebraska - Lincoln

Oberlin College

University of Georgia - Athens