Research question 1.

Can health, demographical, and behavioural factors of non-institutionalized adults in the US, impact on predicting the Coronary heart diseases (CHD)?

1) Selected health, demographical, and behavioural factors.

```
# Research Question 1
#Can health, demographical, and behavioural factors of non-institutionalized adults in the US, impact on
#predicting the Coronary Heart Diseases (CHD)?

#_RFCHOL - Calculated variable for adults who have had their cholesterol checked and have been told by a doctor, nurse, or other
#_RFHYPES - Calculated variable for adults who have been told they have high blood pressure by a doctor, nurse, or other health ;
#_KNOKERS - Calculated variable for four-level smoker status: everyday smoker, someday smoker, former smoker, non-smoker
#_HABEGSYR - Calculated variable for four-level smoker status: everyday smoker, someday smoker, former smoker, non-smoker
#_HABEGSYR - Calculated variable for fourteen-level age category.
#_HTJUDA1 - Calculated variable for fourteen-level age category.
#_HEBANDAY - Calculated variable for bean intake in times per day
#_GRENDAY - Calculated variable for bean intake in times per day
#_MORNGDAY - Calculated variable for dark green vegetable intake in times per day
#_MORNGDAY - Calculated variable for vegetable intake in times per day
#_MORNGDAY - Calculated variable for vegetable intake in times per day
#_TOTINDA - Calculated variable for adults who reported doing physical activity or exercise during the past 30 days other than tl
#_DRNKANY5 - Calculated variable for adults who reported having had at least one drink of alcohol in the past 30 days.
#_RFBING5 - Calculated variable for binge drinkers (males having five or more drinks on one occasion, females having four or more
#_RRBHYS - Calculated variable for heavy drinkers (adult men having more than 14 drinks per week and adult women having more than
#_MICHO - Calculated variable for respondents that have ever reported having coronary heart disease

HeartDiseaseDataset = HeartDiseaseDataset.rename({'FRCHOL': 'Colestrol', '_RFHYPES': 'High Blood Pressure', '_SMOKER3': 'Smoker

HeartDiseaseDataset = HeartDiseaseDataset.rename({'FTJUDA1_': 'Fruit juice intake', 'BEANDAY_': 'Bean intake', 'GRENDAY_': 'Dark

HeartDiseaseDa
```

2) The column description, including not null count of each column and its data type.

```
#
     Column
                                       Non-Null Count Dtype
 0
     Colestrol
                                      12338 non-null object
    High Blood Pressure
                                      12338 non-null object
 1
    Smoker Status
                                     12338 non-null object
                                     12338 non-null object
 3
     DIABETE3
    Age Category 12338 non-null object
Fruit juice intake 11052 non-null float64
Bean intake 11028 non-null float64
 4
 5
     Dark green vegetable intake 11042 non-null float64
 7
     Orange color vege.intake 11022 non-null float64
Vegetable intake 10916 non-null float64
Regular Exercise 12338 non-null object
 9
 10 Regular Exercise
                                    12338 non-null object
 11 Drunker status
 12 Being Drinkers
                                      12338 non-null object
                                     12338 non-null int64
 13 Heavy Drinkers
 14 Heart Disease
                                     12338 non-null object
dtypes: float64(5), int64(1), object(9)
memory usage: 1 /1+ MR
```

3) New not Null count after imputing NaN values to missing values.

#	Column	Non-Null Count	Dtype				
0	Colestrol	10763 non-null	object				
1	High Blood Pressure	12294 non-null	object				
2	Smoker Status	11666 non-null	object				
3	DIABETE3	12325 non-null	object				
4	Age Category	12141 non-null	object				
5	Fruit juice intake	11052 non-null	float64				
6	Bean intake	11028 non-null	float64				
7	Dark green vegetable intake	11042 non-null	float64				
8	Orange color vege. intake	11022 non-null	float64				
9	Vegetable intake	10916 non-null	float64				
10	Regular Exercise	10955 non-null	object				
11	Drunker status	11528 non-null	object				
12	Being Drinkers	11385 non-null	object				
13	Heavy Drinkers	12338 non-null	int64				
14	Heart Disease	12239 non-null	object				
dtypes: float64(5), int64(1), object(9)							
men	ory usage: 1.4+ MB						

4) Number of null values of each column.

Colestrol	1575
High Blood Pressure	44
Smoker Status	672
DIABETE3	13
Age Category	197
Fruit juice intake	1286
Bean intake	1310
Dark green vegetable intake	1296
Orange color vege. intake	1316
Vegetable intake	1422
Regular Exercise	1383
Drunker status	810
Being Drinkers	953
Heavy Drinkers	0
Heart Disease	99
dtype: int64	

5) Null Value representation.

6) Null Values percentage of each column.

Colestrol	12.67
Vegetable intake	11.45
Regular Exercise	11.15
Orange color vege. intake	10.60
Bean intake	10.52
Dark green vegetable intake	10.44
Fruit juice intake	10.32
Being Drinkers	7.66
Drunker status	6.51
Smoker Status	5.39
Age Category	1.55
High Blood Pressure	0.33
DIABETE3	0.07
Heart Disease	0.00
Heavy Drinkers	0.00
dtype: float64	

7) Null percentage after imputing the categorical values with mode and numerical columns with 'interpolate' method.

Heart Disease	0.0
Heavy Drinkers	0.0
Being Drinkers	0.0
Drunker status	0.0
Regular Exercise	0.0
Vegetable intake	0.0
Orange color vege. intake	0.0
Dark green vegetable intake	0.0
Bean intake	0.0
Fruit juice intake	0.0
Age Category	0.0
DIABETE3	0.0
Smoker Status	0.0
High Blood Pressure	0.0
Colestrol	0.0

8) The statistical measurements of numerical columns.

	Fruit juice intake	Bean intake	Dark green vegetable intake	Orange color vege. intake	Vegetable intake	Heavy Drinkers
count	12239.000000	12239.00000	12239.000000	12239.00000	12239.000000	12239.000000
mean	42.601642	27.12881	63.536727	31.32568	77.132936	1.658796
std	68.082406	42.41291	59.162108	38.02846	62.603325	2.115614
min	0.000000	0.00000	0.000000	0.00000	0.000000	1.000000
25%	0.000000	3.00000	28.500000	8.50000	33.000000	1.000000
50%	14.000000	14.00000	50.000000	17.00000	67.000000	1.000000
75%	71.000000	33.00000	100.000000	43.00000	100.000000	1.000000
max	2500.000000	2200.00000	800.000000	500.00000	700.000000	9.000000

9) The counter plots of the categorical variable.

According to the following figure, having cholesterol had been reasoned to have coronary heart diseases (CHD) of adults. High blood pressure has been a reason to having CHD. When checked the smoker

status, former smokers have reported a higher CHD amount, when compared to never or current smokers. Diabetes seems not a very good attribute to predict CHD. People who have not reported diabetes have reported the highest CHD amount. Age seems a good indication to predict the heart disease. People above age 35 had started to report CHD. Having physical activities seems not a good indication to predict CHD. People who do regular physical activities have reported higher rate of CHD than those who do not do regular physical activities. People who are not binge drinkers are mostly not CHD patients.

10) Removed the outliers of the numerical attributes. The outliers were imputed with minimum and maximum floor values of each column.

```
#plt.figure(figsize=(10,10))
#h=sns.boxplot(data=HeartDiseaseDataset_numerical)
#h.tick_params(axis='x', rotation=30)
# Categorical Data
a = 5 # number of rows
b = 2 # number of columns
c = 1 # initialize plot counter
fig = plt.figure(figsize=(15,25))
plt.subplots_adjust(hspace = 2)
for col in HeartDiseaseDataset:
    if (not is_string_dtype(HeartDiseaseDataset[col])):
        lower=HeartDiseaseDataset[col].quantile(0.10)
        max=HeartDiseaseDataset[col].quantile(0.90)
        HeartDiseaseDataset[col] = np.where(HeartDiseaseDataset[col] <lower, lower, HeartDiseaseDataset[col])</pre>
        HeartDiseaseDataset[col] = np.where(HeartDiseaseDataset[col]) >max, max,HeartDiseaseDataset[col])
        plt.subplot(a, b, c)
        plt.title('{} counter plot'.format(HeartDiseaseDataset[col].name))
        plt.xlabel(HeartDiseaseDataset[col].name)
        #Replace missing values from the mode in categorical variables
        g=sns.boxplot(x='Heart Disease',y=HeartDiseaseDataset[col], data=HeartDiseaseDataset)
        g.tick_params(axis='x', rotation=30)
        c = c + 1
plt.show()
```

11) The boxplots of numerical attributes used to heart disease prediction.

When checked the above diagram, dark green vegetable intake seems like a good indicator to predict the CHD patients. The median of dark green intake seems lower for people with CHD and higher for people with no CHD. The other boxplots seem similar to each other.

12) Numerical Encoding was used to categorical data, so now the whole dataset consists with numerical values.

	Colestrol	High Blood Pressure	Smoker Status	DIABETE3	Age Category	Fruit juice intake	Bean intake	Dark green vegetable intake	Orange color vege. intake	Vegetable intake	Regular Exercise	Drunker status	Being Drinkers	Heavy Drinkers	Heart Disease
0	0	1	3	0	2	29.0	3.0	33.0	10.0	71.0	0	1	1	1.0	0
2	1	0	3	0	2	0.0	0.0	43.0	29.0	43.0	0	1	0	1.0	0
3	0	0	3	0	0	0.0	50.0	100.0	50.0	71.5	0	0	0	1.0	0
4	0	0	3	0	1	0.0	67.0	100.0	71.0	100.0	0	1	1	1.0	0
5	1	0	1	0	3	0.0	55.0	100.0	37.0	75.0	0	1	1	1.0	0

13) Used correlation Coefficient plot to check whether there are highly correlated columns with each other and there were no such columns

14) The classes variable is highly imbalanced.

According to the below results we can conclude that the target cariable is highly imbalanced Did not report having MI or CHD 92.180734

Reported having MI or CHD 7.819266

Name: Heart Disease, dtype: float64

15) Using under sampling, over sampling, SMOTE techniques to have a balanced dataset and Logistic regression model was used to make the predictions.

Oversampling the minority class accuracy, recall and F1-score

Accuracy 0.7058823529411765 Recall 0.78099173553719 F1 score 0.2957746478873239

0 10 1971 8471 53 189

Under Sampling the Majority class accuracy, recall and F1-score

Accuracy 0.6934640522875817 Recall 0.7851239669421488 F1 score 0.28831562974203345

0 1 0 1932 886 1 52 190

SMOTE sampling approach

Accuracy 0.7058823529411765 Recall 0.6198347107438017 F1 score 0.25

	0	1
0	2010	808
1	92	150

According to the above results, the oversampling the minority class had worked well and given the best recall, F1-score and accuracy.