Implementation

Assume that in node s the counts $a_s(x_1^{t-1})$ and $b_s(x_1^{t-1})$ are stored, as well as $\beta^s(x_1^{t-1})$. We then get the following sequence of operations:

- 1. Node 0s delivers cond. wei. probability $P_w^{0s}(X_t=1|x_1^{t-1})$ to node s.
- 2. Cond. est. probability $P_e^s(X_t = 1|x_1^{t-1})$ is determined as follows:

$$P_e^s(X_t = 1|x_1^{t-1}) = \frac{b_s(x_1^{t-1}) + 1/2}{a_s(x_1^{t-1}) + b_s(x_1^{t-1}) + 1}.$$
 (3)

- 3. Now $P_w^s(X_t = 1 | x_1^{t-1})$ can be computed as in (1).
- 4. The ratio $\beta^s(\cdot)$ is then updated with symbol x_t as follows:

$$\beta^{s}(x_{1}^{t-1}, x_{t}) = \beta^{s}(x_{1}^{t-1}) \cdot \frac{P_{e}^{s}(X_{t} = x_{t} | x_{1}^{t-1})}{P_{w}^{0s}(X_{t} = x_{t} | x_{1}^{t-1})}.$$
(4)

5. Finally, depending on the value x_t , either count $a_s(x_1^{t-1})$ or $b_s(x_1^{t-1})$ is incremented.