

Lecture 03 Learning via Optimization, pt_III

Announcements

- First homework posted; due Friday at 5:00 pm.
- First discussion tonight! Will help with homework.
- My office hours: Tuesday, 5:30 6:30 pm and Thursday, 12– 1 pm

Last Time

- To predict future salary:
 - Gather salaries $y_1, y_2, ..., y_n$.
 - Find a prediction h* which minimizes the mean error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

- We saw that R(h) is minimized by Median $(y_1, ..., y_n)$.
- We turned learning into a math problem and solved it.

Two things we don't like

- 1. Minimizing the mean error wasn't so easy.
- 2. Actually computing the median isn't so easy, either.

Today

Is there another way to measure the quality of a prediction that avoids these problems?

Minimizing via calculus

- Strategy: take derivative, set to zero, solve.
- Finding where the slope is zero.
- Only works if the function is differentiable.

Example: differentiable

Example: not differentiable

The mean error is not differentiable

The mean error is not differentiable

$$\frac{dR}{dh}(h) = \frac{d}{dh} \left[\frac{1}{n} \sum_{i=1}^{n} |y_i - h| \right]$$

The core issue

- ► We can't compute $\frac{d}{dh}|y_i h|$; it is **not differentiable**.
- Remember: $|y_i h|$ measures how far h is from y_i .
- ► Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i ; and
 - 2. is differentiable?

The core issue

- ▶ We can't compute $\frac{d}{dh}|y_i h|$; it is **not differentiable**.
- Remember: $|y_i h|$ measures how far h is from y_i .
- ▶ Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i ; and
 - 2. is differentiable?

Discussion Question

Which of these would work?

b) $|y_i - h|^2$

a) $e^{|y_i-h|}$ c) $|y_i - h|^3$

d) $cos(y_i - h)$

The Squared Error

Let *h* be a prediction and *y* be the right answer. The **squared error** is:

$$|y - h|^2 = (y - h)^2$$

- Like error, measures how far *h* is from *y*.
- But unlike error, the squared error is differentiable:

$$\frac{d}{dh}(y-h)^2 =$$

The Mean Squared Error

Suppose we predicted a future salary of h_1 = 150,000 before collecting data.

salary	error of h ₁	squared error of h_1	
90,000	60,000	$(60,000)^2$	
94,000	56,000	(56,000) ²	
96,000	54,000	(54,000) ²	
120,000	30,000	$(30,000)^2$	
160,000	10,000	$(10,000)^2$	

total squared error: 1.0652 × 10¹⁰ mean squared error: 2.13 × 10⁹

A good prediction is one with small mean squared error.

The Mean Squared Error

Now suppose we had predicted h_2 = 115,000.

error of h_2	squared error of h_2
25,000	(25,000) ²
21,000	(21,000) ²
19,000	(19,000) ²
5,000	(5,000) ²
45,000	(45,000) ²
	25,000 21,000 19,000 5,000

total squared error: 3.47 × 10⁹ mean squared error: 6.95 × 10⁸

► A good prediction is one with small mean squared error.

The New Idea

Make prediction by minimizing the mean squared error:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

The New Idea

Make prediction by minimizing the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

Discussion Question

Which of these is dR_{sq}/dh ?

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$$

c) $\sum_{i=1}^{n} y_i$

b) 0

c)
$$\sum_{i=1}^{n} y_i$$

Solution

$$\frac{dR_{\text{sq}}}{dh} = \frac{d}{dh} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \right]$$

The mean minimizes the mean squared error

That is:

$$\underset{h \in \mathbb{R}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 = \operatorname{Mean}(y_1, \dots, y_n)$$

Discussion Question

Suppose $y_1, ..., y_n$ are salaries. Which plot could be $R_{sq}(h)$?

The mean is easy to compute

```
def mean(numbers):
total = 0
for number in numbers:
    total = total + number
return total / len(numbers)
```

- ▶ Time complexity: $\Theta(n)$
- ▶ Median by sorting: $\Theta(n \log n)$
- ▶ But there's a $\Theta(n)$ way to find median: quickselect.
- ▶ DSC 40B.

Outliers

The mean is quite sensitive to outliers.

- $|y_4 h|$ is 10 times as big as $|y_3 h|$.
- ► But $(y_4 h)^2$ is 100 times as big as $(y_3 h)^2$.
- Squared error can be dominated by outliers.

Example: Data Science Salaries

- ▶ Data set of 1121 self-reported data science salaries in the United States from the 2018 StackOverflow survey.
- ► Median = \$100,000
- ► Mean = \$111,032
- ► Max = \$2,000,000
- ► Min = \$52
- ▶ 95th Percentile: \$200,000

Example: Data Science Salaries

Example: Data Science Salaries

Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality

A General Framework

► We started with the **mean error**:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |h - y_i|$$

► Today, we introduced the mean squared error:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$

They have the same form: average difference between h and data.

A General Framework

- Definition: A loss function L(h, y) takes in a prediction h and a right answer, y, and outputs a number measuring how far h is from y (bigger = further).
- ► The absolute loss:

$$L_{abs}(h, y) = |y - h|$$

► The square loss:

$$L_{sa}(h,y) = (y-h)^2$$

A General Framework

Suppose that y₁,..., y_n are some data points, h is a prediction, and L is a loss function. The empirical risk is the average loss:

$$R_{L}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_{i})$$

The goal of learning: find h that minimizes R_L . This is called **empirical risk minimization (ERM)**.

Designing a learning algorithm using ERM

- 1. Pick a loss function.
- 2. Pick a way to minimize the average loss (empirical risk)

Key Idea: The choice of loss function determines the properties of the result and the difficulty of finding it.

Loss	Minimizer	Outliers	Differentiable	Algorithm
L _{abs}	median	insensitive	no	not simple
L _{sq}	mean	sensitive	yes	simple, fast

Status Update

- We introduced the mean squared error because it is differentiable.
- ► The minimizer of the mean squared error is the mean.
- ► The mean error and the mean squared error fit into a general framework of **empirical risk minimization**.

Next Time

- We'll design our own loss function.
- We'll develop a general way of solving minimization problems: gradient descent.