Stampede2 at TACC

The "lid-driven cavity"

- A canonical,
 two-dimensional,
 steady
 incompressible flow
- Fully characterized by the Reynolds number

$$\text{Re} = UL/\nu$$

Many solutions available!

The CFD model of the flow

An indexed "control volume", where u and v are uniform

- Define a Cartesian coordinate system
- Partition the cavity into $N_x \times N_y$ (indexed) square "control volumes"
- Define appropriate boundary conditions
- Solve the equations to find u and v inside each control volume

Running an OF simulation

- Step 1. Copy over the tutorial
- Step 2. Generate the mesh (blockMesh utility)
- Step 3. Run the simulation (icoFoam solver)
- Step 4. Extract the results (sample utility)
- Step 5. Post-process the results (e.g. compute force on the lid, etc.)

Running the solution

- While the solution we seek is **steady**, we are advancing the solution in time according to the **unsteady** equations from an initial "guess" solution
- This means that you need to decide how long to run the simulation for.
 - It is customary to plot results sampled from two instants in time and compare. Do the result change in time? If not, the solution has converged to the steady solution

How does the velocity look like?

Sampling the solution...

- Always remember: "the solution (two velocity components) is uniform (i.e. constant) in over control volume"
- OpenFOAM allows to "extract" data (the solution) along "lines" with user-defined properties

...continued

- The sampling utility of OpenFOAM will return the data in ASCII tabular form (MATLAB can read it)
- First three columns:
 x,y,z coordinates of control volumes traversed by line
- Remaining columns: variable (vector components if applicable), e.g. u and v, in the traversed control volumes

Things to keep in mind

- If you need/want to start fresh, copy over the \$FOAM_TUTORIALS/ incompressible/icoFoam/cavity folder
- Start with small grids and problems. They run faster with more turnaround
- Think about what you are trying to do and sketch a plan on a piece of paper before "hitting" the keyboard
- Give yourselves plenty of time on this first assignment

Extracting stress $\partial u/\partial y$ at lid

- Extract $u(i, N_y)$ along line 1
- Extract $u(i, N_y 1)$ along line 2
- Use extracted data and u(i,y/L=1)=U to fit a parabola $u_i(y)=a_iy^2+b_iy+c$ at each x location
- Take the derivative and evaluate at y=L