PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 01

MAT1106 — Introducción al Cálculo Fecha: 2020-08-19

Problema 1:

Demuestre que $-a = (-1) \cdot a$.

Solución problema 1: Se nota que es suficiente demostrar que $a + ((-1) \cdot a) = 0$, ya que el lado izquierdo de la ecuación es el inverso aditivo de a. Para esto, veamos que

$$a + ((-1) \cdot a) = (1 \cdot a) + ((-1) \cdot a)$$
$$= (1 + (-1)) \cdot a$$
$$= 0 \cdot a$$
$$= 0$$

Con lo que se tiene que $-a = (-1) \cdot a$.

Problema 2:

Demuestre que si $a \neq 0$ entonces $-(a^{-1}) = (-a)^{-1}$.

Solución problema 2: Notemos que el lado derecho es el inverso multiplicativo de (-a),

por lo que basta ver que el lado izquierdo multiplicado por (-a) da 1. Para esto, veamos que

$$(-a) \cdot -(a)^{-1} = ((-1) \cdot a) \cdot ((-1) \cdot a^{-1})$$

$$= ((-1) \cdot a) \cdot ((-1) \cdot a^{-1})$$

$$= (a \cdot (-1)) \cdot ((-1) \cdot a^{-1})$$

$$= a \cdot ((-1) \cdot ((-1) \cdot a^{-1}))$$

$$= a \cdot (((-1) \cdot (-1)) \cdot a^{-1})$$

$$= a \cdot (1 \cdot a^{-1})$$

$$= a \cdot a^{-1}$$

$$= 1$$

Para ver que $(-1) \cdot (-1) = 1$ es suficiente ver el siguiente desarrollo

$$0 = (-1) \cdot 0 \iff 0 = (-1) \cdot (1 + (-1))$$

$$\iff 0 = ((-1) \cdot 1) + ((-1) \cdot (-1))$$

$$\iff 0 = (-1) + ((-1) \cdot (-1))$$

$$\iff 1 = 1 + ((-1) + ((-1) \cdot (-1)))$$

$$\iff 1 = (1 + (-1)) + ((-1) \cdot (-1))$$

$$\iff 1 = 0 + ((-1) \cdot (-1))$$

$$\iff 1 = (-1) \cdot (-1)$$

Con lo anterior se tiene que $-(a^{-1}) = (-a)^{-1}$.

Problema 3:

(I1 2019) Sean a, b, c, d cuatro reales tales que

$$ad \neq bc$$

Pruebe que si x, y son reales tales que

$$ax + by = 0$$
 y $cx + dy = 0$

entonces x = y = 0.

Hint: Muestre que (ad)x = (bc)x para concluír que x = 0.

Solución problema 3: Se nota que no se puede tener que ad = 0 = bc, por lo que s.p.d.g. $ad \neq 0$, lo que nos dice que $a \neq 0$ y $d \neq 0$. Ahora, se multiplica la primera ecuación por d:

$$d \cdot (ax + by) = d \cdot 0 \iff (d \cdot (ax)) + (d \cdot (by)) = 0$$

$$\iff ((da) \cdot x) + ((bd) \cdot y) = 0$$

$$\iff ((ad) \cdot x) + (b \cdot (dy)) = 0$$

$$\iff ((ad) \cdot x) + (b \cdot (-cx)) = 0$$

$$\iff ((ad) \cdot x) + (b \cdot ((-1) \cdot (cx))) = 0$$

$$\iff ((ad) \cdot x) + ((b \cdot (-1)) \cdot (cx)) = 0$$

$$\iff ((ad) \cdot x) + (((-1) \cdot b) \cdot (cx)) = 0$$

$$\iff ((ad) \cdot x) + (((-1) \cdot (b \cdot (cx))) = 0$$

$$\iff ((ad) \cdot x) + ((-1) \cdot (b \cdot (cx))) = 0$$

$$\iff ((ad) \cdot x) + (-((bc) \cdot x)) = 0$$

$$\iff ((ad) \cdot x) + (-((bc) \cdot x)) + ((bc) \cdot x) = 0 + ((bc) \cdot x)$$

$$\iff ((ad) \cdot x) + 0 = (bc) \cdot x$$

$$\iff (ad) \cdot x = (bc) \cdot x$$

Ahora si $x \neq 0$ entonces existe x^{-1} tal que $x \cdot x^{-1} = 1$, por lo que

$$((ad) \cdot x) \cdot x^{-1} = ((bc) \cdot x) \cdot x^{-1} \iff (ad) \cdot (x \cdot x^{-1}) = (bc) \cdot (x \cdot x^{-1})$$
$$\iff (ad) \cdot 1 = (bc) \cdot 1$$
$$\iff ad = bc$$

Lo que es una contradicción, por lo que x=0, ahora como x=0 se tiene que $c\cdot 0+dy=0$ por lo que dy=0, recordamos que $d\neq 0$ por lo que y=0.

Problema 4:

Para $\alpha, \beta \in \mathbb{R}$, consideramos la ecuación

$$x^2 + \alpha x + \beta = 0.$$

Suponiendo que $a, b \in \mathbb{R}$ son las únicas soluciones de la ecuación, y además $a \neq b$, encuentre α y β en términos de a y b.

Bonus: Encuentre α y β si a = b.

Solución problema 4: Como a, b son soluciones se tienen la siguientes igualdades

$$a^{2} + \alpha a + \beta = b^{2} + \alpha b + \beta$$

$$a^{2} + \alpha a = b^{2} + \alpha b$$

$$\alpha a - \alpha b = b^{2} - a^{2}$$

$$\alpha(a - b) = (b - a)(a + b)$$

$$\alpha(a - b) = -(a - b)(a + b)$$

$$\alpha = -(a + b)$$

Usando que a es solución de la ecuación y reemplazando el valor encontrado de α se tiene que

$$a^{2} + (-(a+b))a + \beta = 0$$
$$a^{2} + (-a^{2}) + ab + \beta = 0$$
$$ab + \beta = 0$$
$$\beta = -ab$$

Por lo que $\alpha = -(a+b)$ y $\beta = -ab$.

Problema 5:

Demuestre que -b < -a si y solo si a < b.

Solución problema 5: Se nota que solo se necesita una implicancia, ya que -(-a) = a, con lo que si se tiene que $(-b < -a) \implies (a < b)$, entonces se puede usar para que $-(-a) < -(-b) \implies (-b < -a)$. Ahora, para demostrar que $(-b < -a) \implies (a < b)$ se

nota que -b < -a si y solo si $(-a - (-b)) \in \mathbb{R}^+_{\star}$, o sea que $(b - a) \in \mathbb{R}^+_{\star}$, y esto último nos da que a < b.

Problema 6:

Demuestre que si b < a < 0, entonces $0 < a^2 < b^2$.

Solución problema 6: Se nota que b = -(-b), que a = -(-a) y que -0 = 0, por lo que -(-b) < -(-a) < -0, por lo que 0 < (-a) < (-b). Ahora como (-a) > 0 se tiene que $0 \cdot (-a) < (-a) \cdot (-a) < (-b) \cdot (-a)$ (visto en clase), similarmente como (-b) > 0 se tiene que $(-b) \cdot a < (-b) \cdot (-a) < (-b) \cdot (-b)$. Usando transitividad se tiene que $0 < (-a) \cdot (-a) < (-b) \cdot (-b)$, como $-a = (-1) \cdot a$ y $(-1) \cdot (-1) = 1$ se tiene que $0 < a^2 < b^2$.