Panel Data Analysis

Statistics and Econometrics

Jiahua Wu

382 Business School j.wu@imperial.ac.uk

Roadmap

- Regression analysis with cross-sectional data
 - Basics: estimation, inference, analysis with dummy variables
 - More involved: model specification and data issues
- Advanced topics
 - Binary dependent variable models
 - Panel data analysis
 - Time series analysis

Outline (Wooldridge, Chap. 13.3, 13.5, 14.1)

- Fixed effects panel model
- Estimation of fixed effects model
 - First differencing
 - Fixed effects

Outline

- Fixed effects panel model
- Estimation of fixed effects model
 - First differencing
 - Fixed effects

What is Panel Data?

- A set of panel data
 - has both a cross-sectional and a time series dimension
 - is collected by following the same individuals over a number of time periods
- Panel data allows us to address issues related to unobserved factors, which are difficult to handle with cross sectional data

Two-Period Panel Data

- Example 9.4. City Crime Rates
 - Data: crime rates (*crmrte*) and unemployment rates (*unem*) from a sample of 46 cities in 1982 (t=1) and 1987 (t=2).
 - Question: Did *unem* influence *crmrte*?
 - Regressing crmrte on unem using the sample from 1987, we have

$$\widehat{\textit{crmrte}}_{87} = \underset{(20.76)}{128.38} - \underset{(3.42)}{4.16} \, \textit{unem}_{87},$$

$$n = 46, R^2 = .033$$

 The result is likely biased because many relevant factors (e.g., city, police, ...) are not controlled for

Two-Period Panel Data

- An alternative way to look at the data
 - If the omitted variables are fixed over time, then we can decompose the error into two parts: factors that vary over time and those do not
- Consider the previous example in the panel setting

$$crmrte_{it} = \beta_0 + \delta_0 d2_t + \beta_1 unem_{it} + a_i + u_{it}, \quad t = 1, 2$$

where

- *i* is the city
- t is the time period
- $d2_t$ is the dummy variable indicating the second time period
- A time-constant component is added to the error $v_{it} = a_i + u_{it}$

Fixed Effects Model

• In general, the fixed-effects model can be written as

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 x_{it1} + \dots + \beta_k x_{itk} + a_i + u_{it}, \quad t = 1, 2$$

where

- a_i is the fixed effect (invariant to t) that represents factors specific to individual i (allowed to be correlated with \mathbf{x}_{it})
- u_{it} is called the idiosyncratic error that represents unobserved factors varying both overtime and across sections (typically assumed to be uncorrelated with \mathbf{x}_{it})

Outline

- Fixed effects panel model
- Estimation of fixed effects model
 - First differencing
 - Fixed effects

First Differencing

• Write the model separately

$$y_{i1} = \beta_0 + \delta_0 \cdot 0 + \beta_1 x_{i11} + \dots + \beta_k x_{i1k} + a_i + u_{i1}, \quad (t = 1)$$

$$y_{i2} = \beta_0 + \delta_0 \cdot 1 + \beta_1 x_{i21} + \dots + \beta_k x_{i2k} + a_i + u_{i2}, \quad (t = 2)$$

Subtracting the first equation from the second one gives

$$\Delta y_i = \delta_0 + \beta_1 \Delta x_{i1} + \dots + \beta_k \Delta x_{ik} + \Delta u_i,$$

(first-differenced equation) which is a cross-section model and is free of a_i

Panel Data Estimation in R.

- The command to perform panel data estimation in R is plm(formula, data, effect, model, index, ...)
 - effect
 - fixed effects for cross-sectional units ("individual")
 - model
 - first-differences ("fd")
 - fixed effects ("within")

First Differencing: An Example

- Example 9.7. City Crime Rates.
 - First differencing

$$\widehat{\Delta \textit{crmrte}} = \underset{(4.70)}{\widehat{15.40}} + \underset{(.88)}{2.22} \Delta \textit{unem},$$

$$n = 46, R^2 = .127$$

- There is a positive and significant relationship between unem_{it} and crmrte_{it}
- One percentage point rise in unemployment rate increases
 2.22 crimes per 1,000 people
- The crimes per 1,000 people increased by 15.4 in 1987, in comparison to 1982

Panel Data with More than Two Periods

- For the panel data with T periods
 - Subtract period 1 from period 2
 :
 - 2 Subtract period (T-1) from period T
 - $oldsymbol{3}$ We have (T-1) observations per individual
 - Estimate by OLS

Outline

- Fixed effects panel model
- Estimation of fixed effects model
 - First differencing
 - Fixed effects

Fixed Effects Estimation

- When there is an unobserved fixed effect, an alternative to first differencing is fixed effects estimation
- Consider a model with a single independent variable

$$y_{it} = \beta_0 + \beta_1 x_{it} + a_i + u_{it}$$

• The average over time for individual *i* is

$$\bar{y}_i = \beta_0 + \beta_1 \bar{x}_i + a_i + \bar{u}_i$$

• The average of a_i will be a_i . So if we subtract the average from y_{it} , we have

$$y_{it} - \bar{y}_i = \beta_1(x_{it} - \bar{x}_i) + (u_{it} - \bar{u}_i)$$

 Each individual has been "de-meaned" for all variables, which eliminates the fixed effects.

Example 9.7. City Crime Rates

	Dependent variable: crmrte	
	fd	fe
	(1)	(2)
d87		15.402***
		(4.702)
unem	2.218**	2.218**
	(0.878)	(0.878)
Constant	15.402***	
	(4.702)	
Observations	46	92
\mathbb{R}^2	0.127	0.196
Adjusted R ²	0.107	-0.663
F Statistic	$6.384^{**} (df = 1; 44)$	5.365^{***} (df = 2; 44)
Note:	*p<0.1; **p<0.05; ***p<0.01	