Bootstrap Your Own Latent

Станкевич Матвей Чураков Игорь Сухоросов Алексей Колесников Георгий

Self-supervised representation learning

• Хотим получить векторные представления картинок

Self-supervised representation learning

- Хотим получить векторные представления картинок
- Так как данные не размечены или размеченных данных мало, не можем обучиться на какую-то задачу (например, классификацию) и использовать внутренние представления

Существующие методы

Большинство существующих методов обучения представлений можно разделить на 2 группы - генеративные и дискриминативные:

- Генеративные модели пытаются выучить распределение на данных и их представлениях
- Среди дискриминативных методов наиболее популярны контрастивные методы, которые пытаются выучить такие представления, что представления аугментаций одной картинки будут близки, а разных нет. Примеры: SimCLR, MoCo

BYOL: архитектура

В BYOL используются 2 сети — **online** и **target**. Суть метода в том, чтобы online сеть по аугментации исходного изображения v обучалась предсказывать представление другой аугментации - v'.

BYOL: архитектура

Online сеть состоит из **энкодера** f_{θ} , **проектора** g_{θ} и **предиктора** q_{θ} . На вход энкодеру подаётся t(x) — аугментированное исходное изображение, $t \sim T$

BYOL: архитектура

Target сеть имеет ту же архитектуру, что и online сеть, но без предиктора. Аугментация t' выбирается из своего множества аугментаций T'.

BYOL: функция потерь

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}} \cdot \overline{q_{\theta}}(z_{\theta}) \triangleq q_{\theta}(z_{\theta}) / \|q_{\theta}(z_{\theta})\|_{2}$$

$$\overline{z}_{\xi}' \triangleq z_{\xi}' / \|z_{\xi}'\|_2$$

Итоговый лосс:

$$\mathcal{L}^{ exttt{BYOL}}_{ heta,\xi} = \mathcal{L}_{ heta,\xi} + \widetilde{\mathcal{L}}_{ heta,\xi}$$

BYOL: обучение

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta),$$

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta,$

где θ - веса online сети, ξ - веса target сети, η - learning rate.

После обучения для получения представлений оставляется только энкодер $\mathbf{f}_{\boldsymbol{\theta}}$

BYOL: имплементация

Используемые аугментации - такие же, как в SimCLR:

- random crop
- random flip
- color distortion
- grayscale
- gaussian blur
- ullet solarization: $x\mapsto x\cdot \mathbf{1}_{\{x<0.5\}}+(1-x)\cdot \mathbf{1}_{\{x\geq0.5\}}$ только для target сети

BYOL: имплементация

Используемые архитектуры:

- f_θ и f_ε ResNet (ResNet-50, ResNet-101, ResNet-152, ResNet-200)
- g_{θ} , g_{ξ} и q_{θ} MLP

Используемый оптимизатор:

 LARS - Layer-wise Adaptive Rate Scaling - адаптивный метод оптимизации для работы с большими батчами

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	_
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR [8]	ResNet-50 (2 \times)	94M	74.2	92.0
CMC [11]	ResNet-50 $(2\times)$	94 M	70.6	89.7
BYOL (ours)	ResNet-50 $(2\times)$	94 M	77.4	93.6
CPC v2 [32]	ResNet-161	305M	71.5	90.1
MoCo [9]	ResNet-50 $(4\times)$	375M	68.6	-
SimCLR [8]	ResNet-50 $(4\times)$	375M	76.5	93.2
BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

Table 1: Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet.

Для оценки self-supervised представлений обучим линейный классификатор поверх фиксированных представлений

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

Method	Top) -1	Top-5			
	1%	10%	1%	10%		
Supervised [77]	25.4	56.4	48.4	80.4		
InstDisc	-	-	39.2	77.4		
PIRL [35]	-	-	57.2	83.8		
SimCLR [8]	48.3	65.6	75.5	87.8		
BYOL (ours)	53.2	68.8	78.4	89.0		

Method	Architecture	Param.	Top	Top-1)- 5
			1%	10%	1%	10%
CPC v2 [32]	ResNet-161	305M	_	-	77.9	91.2
SimCLR [8]	ResNet-50 $(2\times)$	94M	58.5	71.7	83.0	91.2
BYOL (ours)	ResNet-50 $(2\times)$	94 M	62.2	73.5	84.1	91.7
SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	92.6
BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	92.5
BYOL (ours)	ResNet-200 (2 \times)	250M	71.2	77.7	89.5	93.7

Table 2: Semi-supervised training with a fraction of ImageNet labels.

Для оценки semi-supervised представлений дообучим энкодер на части данных вместе с линейным классификатором

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR[8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Также BYOL показывает хорошие результаты не только на ImageNet, но и на других датасетах

Method	AP_{50}	mIoU	
Supervised-IN [9]	74.4	74.4	Met
MoCo [9]	74.9	72.5	Supe
SimCLR (repro)	75.2	75.2	Sim
BYOL (ours)	77.5	76.3	BYO

Method	pct.<1.25	Lower	better rel		
Supervised-IN [83]	81.1	95.3	98.8	0.573	0.127
SimCLR (repro) BYOL (ours)	83.3 84.6	96.5 96.7	99.1 99.1	0.557 0.541	$0.134 \\ 0.129$

(b) Transfer results on NYU v2 depth estimation.

Table 4: Results on transferring BYOL's representation to other vision tasks.

Результаты BYOL также превосходят результаты других методов в других задачах CV, таких как семантическая сегментация, детекция и оценка глубины

⁽a) Transfer results in semantic segmentation and object detection.

Заключение

Статья представляет self-supervised метод обучения представлений, который не опирается на наличие негативных пар в отличие от предыдущих SOTA методов. Предложенный метод показывает SOTA результаты для self-supervised методов и также практически догоняет по результатам supervised методы.

Рецензия. Содержание

- Метод обучения представлений без учителя
- Не опирается на негативные примеры, решается задача предсказания а не дискриминации
- Две сети, одна предсказывает выходы другой и оптимизируется напрямую. Вторая обновляется скользящим средним

Рецензия. Сильные стороны

- Простота и качество: BYOL по своему устройству проще других на момент его выхода SOTA (MoCo v2, SimCLR), устойчивей к выбору аугментаций и размеру батча. С помощью него можно получить лучшее качество
- Метод не опирается на негативные примеры: нет необходимости думать о том, как их выбирать, не нужно хранить в памяти большой набор (как например в МоСо)
- Алгоритм и ход экспериментов описаны ясно и однозначно, есть псевдокод, есть код на гитхабе
- Есть сравнение с текущими SOTA, с другими популярными метода для обучения представлений без учителя

Рецензия. Слабые стороны

Нет строгих теоретических выкладок почему метод не может коллапсировать к вырожденному решению, но авторы объясняют интуицию, которая стоит за методом и опираются на результаты экспериментов.

Также можно отметить что по сути мы обучаем две модели, что затратно по памяти.

Рецензия. Оценка

Статья хорошо написана. Сам метод отлично иллюстрирован и прост для понимания.

Есть код и подробное описание экспериментов. Был опыт использования для обучения представлений облаков точек: BYOL работал немного лучше MoCo.

Моя оценка 9/10, уверенность 5/5

Исследование контекста статьи

- Когда появилась статья?
- Авторы
- Важные источники
- Дальнейшие исследования
- Конкуренты

Когда появилась статья

Препринт опубликован в середине 2020, статья прошла на NeurIPS 2020.

Moving away from negative pairs in self-supervised representation learning: our new SotA method, **Bootstrap Your Own Latent** (BYOL), narrows the gap between self-supervised & supervised methods simply by predicting previous versions of itself.

Авторы

Основные авторы:

- Jean-Bastien Grill
- Florian Strub
- Florent Altché
- Corentin Tallec
- Pierre H. Richemond

Связанная статья от похожих авторов:

Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning

Важные источники

- Continuous Control With Deep Reinforcement Learning и Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results как источники идеи обновления параметров target сети.
- Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning как источник идеи использования прошлого состояния сети в качестве target'a.

Дальнейшие исследования

- Дальнейшее исследование от тех же авторов: BYOL works even without batch statistics.
- Применение похожей идеи к обработке видео: Broaden Your Views for Self-Supervised Video Learning

Конкуренты

- МоСо (2020 март)
- SwAV (2021 январь)
- EsViT (2021 июнь)