Funzioni

Andrea Canale

May 20, 2025

Contents

1	Retta			1
	1.1	Pende	enza di una retta f	2
2	Fun	zioni g	generiche	2
3	Monotonia di una funzione			3
	3.1	Classi	ficazione di una funzione in base alla monotonia	3
		3.1.1	Monotonia crescente	3
		3.1.2	Monotonia strettamente crescente	3
		3.1.3	Monotonia decrescente	4
		3.1.4	Monotonia strettamente decrescente	4
4	Retta tangente ad una funzione			5
5	Punti di flesso			6
	5.1 Cambi di concavità			6

1 Retta

Una retta è una funzione di equazione f(x) = mx + 1 e questi valori rappresentano:

- $\,m$ Il coefficiente angolare della retta
- $\,q$ l'ordinata dove la retta interseca l'asse

1.1 Pendenza di una retta f

La pendenza di una retta è la misura di quanto varia f nell'intervallo $[x_0, x_1]$ Possiamo definire la pendenza di una retta tra x_0 e x_1 come il rapporto incrementale o quoziente di Newton:

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
dove Δx è l'incremento tra il punto x_0 e x_1

Tuttavia la pendenza di una retta è costante in tutti punti, e semplificando otteniamo:

$$\frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = m$$

2 Funzioni generiche

Dato che sappiamo calcolare la pendenza possiamo provare a sfruttare le rette per approssimare funzioni generiche. Introduciamo la notazione di limite per calcolare la pendenza attraverso la formula delle rette:

$$p_f = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Alternativamente:

$$p_f = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

La pendenza esiste solo se il limite esiste finito. Altrimenti non può essere calcolata

Il limite permette di rimpicciolire Δx con numeri sempre più vicini allo 0 in modo da vedere a che numero si avvicina il coefficiente di Newton.

Questa definizione definisce la pendenza come una funzione di cui possiamo studiare l'andamento.

3 Monotonia di una funzione

La monotonia della funzione descrive l'andamento della funzione stessa, cioè sa è crescente o decrescente. Essa si ricava dal segno della pendenza(crescita = positiva, decrescita = negativa). Anche la monotonia può essere studiata come funzione.

3.1 Classificazione di una funzione in base alla monotonia

Classificazione di una funzione $f:A\to B$

3.1.1 Monotonia crescente

Una funzione è monotona crescente se:

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies f(x_1) \le f(x_2)$$

Notiamo che anche la funzione costante è crescente.

3.1.2 Monotonia strettamente crescente

Una funzione è monotona strettamente crescente se:

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies f(x_1) < f(x_2)$$

3.1.3 Monotonia decrescente

Una funzione è monotona decrescente se:

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies f(x_1) \ge f(x_2)$$

3.1.4 Monotonia strettamente decrescente

Una funzione è monotona strettamente decrescente se:

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies f(x_1) > f(x_2)$$

Quando possiamo classificare una funzione in base alla monotonia, la funzione viene detta monotona.

Non tutte le funzioni sono monotone:

In questo caso ci sono $3\ \mathrm{monotonie}$ diverse.

Notiamo inoltre, che la funzione costante è sia crescente che decrescente.

4 Retta tangente ad una funzione

Se esiste il limite che descrive la pendenza tra x_0 e x_1 possiamo determinare una retta tangente al punto x_0 passante per $f(x_0)$ della forma:

$$y = p_f(x_0) + f(x_0)$$

5 Punti di flesso

I punti dove la tangente attraversa il grafico sono detti **punti di flesso**

5.1 Cambi di concavità

Nei punti di flesso di una funzione, la concavità cambia:

- Se f è concava
(verso il basso), allora la pendenza è decrescente
- Se f è convessa
(verso l'alto), allora la pendenza è crescente

Questo corollario ci è molto utile quando **non** sappiamo la derivata ma vogliamo calcolare la concavità. Ad esempio una funzione con pendenza positiva e decrescente vuol dire che è concava e positiva. Infatti la convessità non cambia il segno di una funzione in un punto