Variational Inference

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Inference as optimization
 - Exact Inference revisited
 - 2. The Energy Functional
 - 3. Optimizing the Energy Functional

Need for Approximate Inference

- For many networks inference can be performed efficiently
 - But time/space complexity of the clique tree is exponential in tree width of network
 - In such cases exact algorithms become infeasible
- This motivates examination of approximate inference methods
 - Where approximation arises from constructing an approximation to target distribution P_{ϕ}
 - The approximation takes a simpler form that allows inference

Class of Approximate Algorithms

- We consider here a class of approximate inference methods that share a common principle
- Find target class Q of "easy" distributions and
 - Search for an instance within that class that best approximates P_{ϕ}
 - Queries are then answered using inference on Q rather than P_{Φ}
 - Methods optimize a target function for measuring similarity between Q and P_{ϕ}

Reformulation of Inference Problem

- Inference problem is one of optimizing an objective function over the class Q
- Problem is one of constrained optimization
 - Technique used is based on Lagrange multipliers
- Produces a set of equations that characterize the optima of the objective
 - A set of fixed-point equations that define each variable in terms of others
 - Fixed point equations derived from constrained energy optimization can be viewed as passing messages over a graph object

Categories of methods in this class

1. Message passing on Clique Tree

- Loopy belief propagation
 - Optimize approximate versions of the energy functional

2. Message passing on Clique Trees with approximate messages

- Called expectation propagation
 - Maximize exact energy functional but with relaxed constraints on Q

3. Mean-field method

- Originates in statistical physics
 - Focus on Q that has simple factorization

Exact Inference Revisited

We have a factorized distribution of the form

$$\left|P_{\Phi}\!\left(X\right) = \frac{1}{Z} \prod_{\phi \in \Phi} \! \phi\!\left(U_{\phi}\right)\right|$$

- where $U_{\phi} = Scope(\phi)$
- Factors are:
 - CPDs in a BN or
 - potentials in a MN
- We are interested in answering queries:
 - about marginal probabilities of variables and
 - about the partition function

Cluster Tree Representation

- End-product of Belief Propagation is a calibrated cluster tree
- A calibrated set of beliefs represents a distribution
- We view exact inference as searching over the set of distributions Q that are representable by the cluster tree to find a distribution Q^* that matches P_{ϕ}

Cluster graph U for factors Φ over χ is an undirected graph

Each of whose nodes i is associated with a subset $C_i \subseteq \chi$

Each edge between pair of clusters C_i and C_j is associated with a sepset $s_{i,j} \subseteq C_i \cap C_j$ A tree T is a clique tree for graph H if

Each node in T corresponds to a clique in H and each maximal clique in H is a node in T Each sepset $S_{i,i}$ separates $W_{< I_i,i}$ and $W_{< (i,i)}$ in H

Ex: Clique Tree representation

1. Gibbs Distribution

$$P(A,B,C.D) = \frac{1}{Z}\phi_1(A,B) \cdot \phi_2(B,C) \cdot \phi_3(C,D) \cdot \phi_4(D,A)$$
where
$$Z = \sum_{A,B,C.D} \phi_1(A,B) \cdot \phi_2(B,C) \cdot \phi_3(C,D) \cdot \phi_4(D,A)$$

$$Z=7,201,840$$

 $\{B,D\}$

2. *B*,*C*,*D*

$\boxed{\tilde{P}_{_{\Phi}}\Big(A,B,C,D\Big) = \phi_{_{1}}\Big(A,B\Big)\phi_{_{2}}\Big(B,C\Big)\phi_{_{3}}\Big(C,D\Big)\phi_{_{4}}\Big(D,A\Big)}$

		ssig	nme	nt	Unnormalized			
	a^0	b^0	c^0	d^0	300000			
	a^0	b^0	c^0	d^1	300000			
	a^0	b^0	c^1	d^0	300000			
	a^0	b^{0}	c^1	d^1	30			
	a^0	b^1	c^0	d^0	500			
	a^0	b^1	c^0	d^1	500			
	a^0	b^1	c^1	d^0	5000000			
	a^0	b^1	c^1	d^1	500			
	a^1	b^0	c^0	d^0	100			
	a^1	b^0	c^0	d^1	1000000			
	a^1	b^0	c^1	d^0	100			
	a^1	b^{0}	c^1	d^1	100			
	a^1	b^1	c^0	d^0	10			
	a^1	b^1	c^0	d^1	100000			
	a^1	b^1	c^1	d^0	100000			
	a^1	b^1	c^1	d^1	100000			
-					, ,			

2. Clique Tree (triangulated):

Initial Potentials:

$$\begin{aligned} \psi_1 \left(A, B, D \right) &= \phi_1 \left(A, B \right) \phi_2 \left(B, C \right) \phi_3 \left(C, D \right) \phi_4 \left(D, A \right) \\ \psi_2 \left(B, C, D \right) &= \phi_1 \left(A, B \right) \phi_2 \left(B, C \right) \phi_3 \left(C, D \right) \phi_4 \left(D, A \right) \end{aligned}$$

1.A,B,D

Beliefs (Clique and Sepset)

$$\begin{split} \beta_1 \Big(A, B, D \Big) &= \tilde{P}_{_{\Phi}} \Big(A, B, D \Big) = \sum_{C} \psi_1 \Big(A, B, D \Big) = \sum_{C} \phi_1 (A, B) \phi_2 (B, C) \phi_3 (C, D) \phi_4 (D, A) \\ \text{e.g.}, \quad \beta_1 (a^0, b^0, d^0) &= 300,000 + 300,000 = 600,000 \end{split}$$

$$\begin{split} \mu_{\text{l},2}(B,D) &= \sum_{C_1 - S_{\text{l},2}} \beta_{\text{l}} \left(C_1 \right) = \sum_{A} \beta_{\text{l}} \left(A, B, D \right) \\ \text{e.g., } \mu_{\text{l},2}(b^0,d^0) &= 600,000 + 200 = 600,200 \end{split}$$

	Ass	siani	ment	\max_C	1					Ass	signr	nent	
l	a^0	b^0	d^0	600,000						b^0	c^0	d^0	300.1
l	a^0	b^0	d^1	300,030		As	signment	$\max_{A,C}$		b^0	c^0	d^1	1,300.0
l	a^0	b^1	d^0	5,000,500		b^0	d^0	600, 200		b^0	c^1	d^0	300.1
l	a^0	b^1	d^1	1,000		b^0	d^1	1,300,130		b^0	c^1	d^1	
l	a^1	b^0	d^0	200		b^1	d^0	5, 100, 510		b^1	c^0	d^0	
Ī	a^1	b^0	d^1	1,000,100		b^1	d^1	201,000		b^1	c^0	d^1	100.3
l	a^1	b^1	d^0	100,010						b^1	c^1	d^0	5, 100.
l	$\begin{vmatrix} a^1 & b^1 & d^1 & 200,000 \end{vmatrix}$				(= =)				b^1	c^1	$ d^1 $	100,3	
l	$\beta_1(A,B,D)$					$\mu_{1,2}(B,D)$				$\beta_2(B,C,D)$			
	$\dot{eta}_1(A,B,D)$					$\mu_{1,2}(B,D)$				$eta_2(B,C,oldsymbol{D})$			

$$\begin{split} & \frac{\tilde{P}_{\Phi}\left(a^{1},b^{0},c^{1},d^{0}\right) = 100}{\beta_{1}\left(a^{1},b^{0},d^{0}\right)\beta_{2}\left(b^{0},c^{1},d^{0}\right)}{\mu_{1,2}\left(b^{0},d^{0}\right)} = \frac{200\cdot300\cdot100}{600\cdot200} = 100 \end{split}$$

Distance between Q and P_{ϕ}

- We need methods to optimize distance between Q and P_{Φ} without answering hard queries about P_{Φ}
 - The relative entropy (or K-L divergence) allows us to exploit the structure of P_{ϕ} without performing reasoning with it
 - We use Relative entropy of P_1 and P_2 defined as

$$\boxed{D\!\left(P_{\!\scriptscriptstyle 1} \mid\mid P_{\!\scriptscriptstyle 2}\right) \!= E_{P_{\!\scriptscriptstyle 1}}\!\left[\!\frac{\ln P_{\!\scriptscriptstyle 1}\!\left[\chi\right]}{\ln P_{\!\scriptscriptstyle 2}\!\left[\chi\right]}\!\right]}$$

- It is always non-negative
- Equal to θ if and only if $P_1 = P_2$
- We search for distribution Q that $minimizes D(Q \parallel P_{\Phi})$

Probabilistic Graph Summarize the discussion

- Want a distribution Q that minimizes $D(Q \parallel P_{\phi})$
- To define problem formally, we need to specify objects we want to optimize over
 - Suppose we are given:
 - a clique tree structure T for P_{Φ} , a set of beliefs

$$Q = \{\beta_i : i \in V_T\} \cup \{\mu_{i,j} : (i-j) \in E_T\}$$

where C_i are clusters in T, β_i denote beliefs over C_i and $\mu_{i,j}$ denotes beliefs $S_{i,j}$ of edges in T

- Set of beliefs in T defines a distribution Q by
- The beliefs correspond to marginals of Q
- We are now searching over a set of distributions Q
- that are representable by a set of beliefs Q over the cliques and sepsets in a particular clique tree structure Q

Statement of Inference as Optimization

• Exact inference is one of maximizing $-D(Q \parallel P_{\Phi})$ over the space of calibrated sets Q

Ctree-Optimize-KL

- Find $Q = \{\beta_i : i \in V_T\} \cup \{\mu_{i,j} : (i-j) \in E_T\}$
- Maximizing $-D(Q \parallel P_{\phi})$
- Subject to

$$\begin{split} & \mu_{i,j} \Big[s_{i,j} \Big] = \sum_{C_i - S_{i,j}} \beta_i \Big(c_i \Big) \quad \forall \Big(i - j \Big) \in E_T, \forall s_{i,j} \in Val \Big(S_{i,j} \Big) \\ & \sum_{c_i} \beta_i \Big(c_i \Big) = 1 \qquad \forall \mathbf{i} \in \mathbf{V}_T \end{split}$$

• Theorem: If T is an I-map of P_{Φ} then there is a unique solution to Ctree-Optimize-KL

Possible approach

- Examine different configurations of beliefs that satisfy marginal consistency constraints
 - Select the configuration that maximizes the objective
 - Such as exhaustive examination is impossible to perform
- Instead of searching over a space of all calibrated trees we can search over a space of simpler distributions
 - We will not find a distribution equivalent to $P_{m{\Phi}}$ but one that is reasonably close

Probabilis Defining the Energy Functional

• However directly evaluating $D(Q \parallel P_{\phi})$ is unwieldy

$$\boxed{D\!\left(P_{\!\scriptscriptstyle 1} \mid\mid P_{\!\scriptscriptstyle 2}\right) \!= E_{\scriptscriptstyle P_{\!\scriptscriptstyle 1}}\!\!\left[\!\frac{\ln P_{\!\scriptscriptstyle 1}\!\left[\chi\right]}{\ln P_{\!\scriptscriptstyle 2}\!\left[\chi\right]}\!\right] \!= \sum_{\chi} P_{\!\scriptscriptstyle 1}\!\left[\chi\right]\!\!\left[\!\frac{\ln P_{\!\scriptscriptstyle 1}\!\left[\chi\right]}{\ln P_{\!\scriptscriptstyle 2}\!\left[\chi\right]}\!\right]}$$

- Because summation over all χ is infeasible in practice
- Instead use equivalent form

$$\left|D\!\left(Q\,||\,P_{\!\scriptscriptstyle{\Phi}}\right)\!=\ln Z-F\!\left(\tilde{P}_{\!\scriptscriptstyle{\Phi}},Q\right)\!\right|$$

Where F is the energy functional

$$\left| F \! \left[\tilde{P}_{\!\scriptscriptstyle \Phi}, Q \right] \! = E_{\scriptscriptstyle Q} \! \left[\ln \tilde{P} \! \left(\chi \right) \right] \! + H_{\scriptscriptstyle Q} \! \left(\chi \right) \! = \sum_{\phi \in \Phi} E_{\scriptscriptstyle Q} \! \left[\ln \phi \right] \! + H_{\scriptscriptstyle Q} \! \left(\chi \right) \right] \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi \right) \right| + \left| H_{\scriptscriptstyle Q} \! \left(\chi$$

- Since the term ln Z does not depend on Q,
 - minimizing relative entropy $D(Q \parallel P_{\Phi})$ is equivalent to maximizing the energy functional $F(\tilde{P}_{\Phi},Q)$
- Energy functional $F[\tilde{P}_{\Phi},Q] = \sum_{\phi \in \Phi} E_Q[\ln \phi] + H_Q(\chi)$ has two terms:
 - energy term (expectation of logs of factors in Φ) and entropy term

Optimizing the Energy Functional

- From here onward we pose the problem of finding a good Q as one of maximizing the energy functional
 - Equivalently minimizing the relative entropy
 - Importantly energy functional involves expectations in Q
 - By choosing Q that allow efficient inference we can evaluate/ optimize the energy functional
- Moreover, energy Functional is a lower bound on partition function
 - Since $D(Q||P_{\Phi}) \ge 0$ we have $\ln Z \ge F[\tilde{P}_{\Phi},Q]$
 - Useful since partition function is usually the hardest part of inference
 - · Plays important role in learning

Strategies for optimizing energy functional

- Methods are referred to as Variational Methods
- Refers to a strategy in which we introduce new parameters that increase the degrees of freedom
- Each choice of these parameters gives a different approximation
- We attempt to optimize the variational parameters to get the best approximation
- Variational calculus: finding optima of a functional
 - E.g., distribution that maximizes entropy

Further Topics in Variational Methods

- Exact Inference
- Propagation-Based Approximations
- Propagation with Approximate Messages
- Structured Variational Approximations