6.S085 Statistics for Research Projects

IAP 2014

Lecture 2: January 22

Lecturer: Ramesh Sridharan and George Chen

Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Confidence Intervals

French baker example:

- Gaussian distribution around 950g
- skewed distribution around 1000g

Goal: estimate the parameters of a binomial random variable

Setup: $x_1, x_2, ..., x_n$

Data points are binary

There is some true distributions ("population distribution") with true parameters p

Use data to draw conclusions about p

How to estimate p?

$$\hat{p} = \frac{1}{n} \sum_{i} x_i$$

p isn't random, but x_i are random, so \hat{p} is random!

$$E[\hat{p}] = E[\frac{1}{n} \sum x_i] \tag{2.1}$$

$$=\frac{1}{n}\sum E[x_i] \tag{2.2}$$

$$= p \tag{2.3}$$

$$var[\hat{p}] = var[\frac{1}{n}\sum x_i] \tag{2.4}$$

$$=\frac{1}{n^2}\sum var[x_i] \tag{2.5}$$

$$= \frac{1}{n^2} np(1-p) \tag{2.6}$$

$$=\frac{p(1-p)}{n}\tag{2.7}$$

The variance on \hat{p} goes down with more n.

By central limit theorem, \hat{p} is approximately Gaussian: Completely characterized by mean and variance:

$$\hat{p} N(p, \frac{p(1-p)}{n})$$

Confidence intervals: loosely, we want "the range of intervals where p probably is"

If we repeat sampling (data collection) and CI computation, 95% of those repeats will give an interva that has p

Recall that, in a Gaussian, 95% of the data lies within 2 standard deviations of the mean

$$\hat{p}\pm2\sqrt{\frac{p(1-p)}{n}}$$
 . This is our 95% confidence interval

What a CI means:

Probability of getting a \hat{p} within 2 standard deviations of mean p

Since we don't actually know p, we will replace p with \hat{p} !

$$\hat{p}\pm2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$
 This is our 95% confidence interval

"With probability 0.95, \hat{p} will just such that this confidence intervals contains p

"accurate to within $2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ percentage points, 95 times out of 100."

Note that, with more n, we will have a tighter confidence interval

2.2 Hypothesis Testing

We have a hypothesis about p

Use data to see whether we can reject the hypothesis

Find out how likely the data is under the hypothesis; if it's very unlikely, reject

Null and alternative hypothesis formulation:

 $H_0: p = p^*$ (null hypothesis)

 $H_a: p > p^*, p < p^*, p \neq p^*$ (alternative hypothesis)

One-tailed test: >, <: only interested in one direction

Two-tailed test: \neq : interested in both or either side

Tail of Gaussian represented by alpha

Type I error/false positive: reject H_0 when H_0 is true

Type II error/false negative: fail to reject H_0 when H_0 is false

A hypothesis test can only tell you whether you can accept the null hypothesis or fail to accept the null hypothesis

 $\alpha = 0.05$: Probability of false positive

Lecture 2: January 22 2-3

"There is only a 5% chance that the observation happened by chance if the null observation is true"

"What is the probability of getting this value if the null hypothesis were true?"

2.2.1 p values

We have a null hypothesis value p^* , and then we observe x

We ask: "What is the probability of getting x (or something more extreme) if null hypothesis is true?" This is what a p value is

2.2.2 Statistical Power

1 - P(Type II errror)

Probability of rejecting H_0 when it's wrong

Defined with respect to a particular alternative value

Null hypothesis is centered around a particular value

The power depends on the threshold and α

Distributions that are closer together: reduces the power of the test

"If the true value is 0.4, power is the shaded area"

2.3 Continuous Hypothesis Testing, Confidence Intervals

observe $x_1, x_2, ..., x_n$ (comes from Gaussian distribution with mean μ , true variance σ^2

Start with the (unrealistic) assumption that σ is known

Want to estimate μ

$$\hat{\mu} = \frac{1}{n} \sum x_i$$

$$E[\hat{\mu}] = \mu$$

$$var\hat{\mu} = \frac{1}{n^2} \sum var[x_i] \tag{2.8}$$

$$\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n} \tag{2.9}$$

 $\frac{\sigma}{\sqrt{n}}$ is the standard error fo the mean

In general, stnadard error of a statistic is the standard deviation of its sampling distribution

$$Z = \frac{\hat{\mu} - \mu}{\sigma / sqrtn}$$

Z N(0,1) ("test statistic")

2.3.1 Hypothesis Testing

Hypothesis testing: μ is known; it's the null distance's mean

2.3.2 Confidence Intervals

$$P(-2 \le z \le 2)$$

$$P(-2 \le \frac{\hat{mu} - \mu}{sigma/\sqrt{n}} \le 2)$$

$$P(\hat{\mu} - 2\frac{\sigma}{\sqrt{n}} \le \mu \le \hat{\mu} + 2\frac{\sigma}{\sqrt{n}})$$

CI:
$$\hat{\mu} \pm 2 \frac{\sigma}{\sqrt{n}}$$

What if we don't know σ ?

Use:

$$\sigma^2 = \frac{1}{n-1} \sum (x_i - \hat{\mu}^2 \ \sigma^2 = s^2)$$

Approximate standard error: $s/\sqrt{n} / t = \frac{\hat{\mu} - \mu}{s/\sqrt{n}}$

t has a t distribution with n-1 degrees of freedom

Now we want $P(-X \le t \le +X) = 0.95$

Aside: $\frac{(n-1)}{\sigma^2} s^2 \ \chi^2$ with n-1 degrees of freedom

Student t distribution

Z N(0,1)

 $\mu \chi^2$ with r degrees of freedom

 $t = \frac{z}{\sqrt{u/r}}$ has Student t distribution

2.4 Two-Sample Tests

 $x_1, ..., x_n$

 $y_1, ..., y_n$

Matched pairs (correspondance), i.e. $x_1 \rightarrow y_1, x_2 \rightarrow y_2$

Then we can define $w_i = y_i - x_i$ run a one-sample test on w

2.4.1 Pooled Variance

"homoskedastic" - variances are the same

$$s^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}$$

Lecture 2: January 22 2-5

2.4.2 Unpooled Variances

; "heteroskedastic" - variances are not the same

Test statistic no longer exactly t-distribution

2.5 Warnings About Tests

For hypothesis tests:

- Don't say anything stronger than "the data do not support the null hypothesis"
- Avoid multiple comparisons, or correct (Bonferrnoni correction, divides p-value by the number of comparisons

False discovery rate (FDR)