Two-dimensional packing problem

Ziang Liu

November 24, 2023

Abstract

Abstract.

1 Two-dimensional packing problem

Notations

Sets and indices

- I: Set of components, $I = \{0, 1, \dots, n\}$.
- i: Index of components, $i \in I$.

Parameters

- W_{UB} : Upper bound of the width.
- L_{UB} : Upper bound of the length.
- w_i : Width of component i.
- l_i : Length of component i.

Decision variables

- W: width of the packing.
- L: length of the packing.
- x_i : X-coordinate of component i.
- y_i : Y-coordinate of component i.

 $\min WL$

- $u_{i,j}$: Binary variable indicating whether component i is placed at the left of component j.
- $v_{i,j}$: Binary variable indicating whether component i is placed at the above of component j.
- μ_i : Binary variable indicating whether component i is in rotation mode.

Optimization model

s.t.
$$x_i + w_i(1 - \mu_i) + l_i\mu_i \le x_j + W_{UB}(1 - u_{i,j}) \quad \forall i, j \in I, i \ne j$$
 (2)
 $y_i + l_i(1 - \mu_i) + w_i\mu_i \le y_j + L_{UB}(1 - v_{i,j}) \quad \forall i, j \in I, i \ne j$ (3)
 $u_{i,j} + u_{j,i} + v_{i,j} + v_{j,i} \ge 1 \quad \forall i, j \in I, i \ne j$ (4)

$$u_{i,j}, v_{i,j} \in \{0, 1\} \quad \forall i, j \in I, i \neq j$$

$$(4)$$

$$(5)$$

(1)

$$\mu_i \in \{0, 1\} \quad \forall i \in I \tag{6}$$

$$0 \le x_i \le W - w_i(1 - \mu_i) - l_i \mu_i \quad \forall i \in I \tag{7}$$

$$0 \le y_i \le L - l_i(1 - \mu_i) - w_i \mu_i \quad \forall i \in I$$
(8)