Homework 1

Problem 1. Decide whether the following is a λ term (or an abbreviation of a λ term). If it is not, explain the reason.

- (a) $\lambda x.xxx$
- (b) $\lambda \lambda x.x$
- (c) $\lambda y.(\lambda x.x)$
- (d) $\lambda uv.((xxy)xy)y$

Solution. (a) Yes

- (b) No, the first λ is not matched.
- (c) Yes.
- (d) No, the number of parentheses are not matched.

Problem 2. Compute the terms represented by the following substitutions:

- (a) (xyz)[y/z].
- (b) $(\lambda x.x)[y/z]$.
- (c) $(\lambda y.xy)[yy/x]$.

Solution. (a) xyy

- (b) $\lambda x.x$
- (c) $\lambda z.yyz$

Problem 3. Prove the following equalities in the theory of $\lambda\beta$. You need to draw the "proof tree" using the rules we defined in the lecture.

- (a) $\lambda uv.v = \lambda u.(\lambda x.x)(\lambda u.u).$
- (b) $\lambda uv.(\lambda xy.y)uv = \lambda ab.b.$

Solution. (a)

(abs)
$$\frac{(\beta) \frac{(\lambda x.x)(\lambda v.v) = \lambda v.v}{(\lambda u.(\lambda x.x)(\lambda v.v) = \lambda u.(\lambda v.v)}}{\frac{\lambda u.(\lambda x.x)(\lambda v.v) = \lambda u.(\lambda x.x)(\lambda v.v)}{\lambda u.(\lambda v.v) = \lambda u.(\lambda x.x)(\lambda v.v)}}$$

Use α conversion to obtain the final result.

(b)

Homework 1 Student Name

$$(app) \frac{(\lambda xy.y)u = \lambda y.y}{(tran)} \frac{(refl) \overline{v = v}}{(\lambda xy.y)uv = (\lambda y.y)v} \qquad (\beta) \frac{(\lambda y.y)v = v}{(\lambda y.y)uv = v}$$

$$(abs) \frac{(\lambda xy.y)uv = v}{\lambda v.(\lambda xy.y)uv = \lambda v.v}$$

$$(abs) \frac{\lambda v.(\lambda xy.y)uv = \lambda v.v}{\lambda uv.(\lambda xy.y)uv = \lambda uv.v}$$

Use α conversion to obtain the final result.

Please note that when writing proof trees, each reduction should be of the *exactly* same structure as the five rules. Operations like merging multiple abs together/only applying β rule to the first term is not allowed.

Problem 4.

- (a) Find a λ term s such that the equality stu = ut holds in $\lambda\beta$ for all terms t and u.
- (b) Show that there is a λ term s such that for all term t, $\lambda \beta \vdash st = ss$.

Solution. (a) $s = \lambda yx.xy$

- (b) two possible solutions:
- 1. $\lambda x.s, x \notin FV(s)$.
- 2. Note that we are trying to find s that satisfies $s = \lambda y.ss$, or equivalently, s is the fixed point for $\lambda xy.xx$. Take any fixed point combinator Θ , and set $s = \Theta(\lambda xy.xx)$.

Problem 5. Show that there is a term G such that all fixed-point combinators can be *characterized* as the fixed points of G. That is, s is a fixed-point combinator if and only if $\lambda \beta \vdash Gs = s$.

Solution. $G = \lambda yx.x(yx)$.

If: Gs = s implies $s = \lambda x.x(sx)$. Thus for any f, sf = f(sf).

Only if: First we assume $s = \lambda x.t$.

$$Gs = \lambda x. x(sx) = \lambda x. sx = \lambda x. ((\lambda y. t[y/x])x) = \lambda x. (t[x/x]) = s$$

First equality by def of G and β conversion, second by that s is a fixed point. third by α conversion, fourth by β conversion.

To provide a full proof for the only if direction, we need to use the Church-Rosser theorem from Lecture 2. Here we give some hints, and left the full proof as an exercise.

2

Homework 1 Student Name

Note that we want to prove $s=\lambda x.t$ without using the η rule. Since β reduction satisfies the Church-Rosser property, we have that u=v iff there exists some w such that $u \twoheadrightarrow w$ and $v \twoheadrightarrow w$. Now we set u=f(sf), v=sf, and discuss the structure of w. Hint: Consider u first. Since f is an arbitrary term, checking through all rules for $\twoheadrightarrow_{\beta}$, what should w looks like?