ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Кафедра дискретного аналізу

Теорія прийняття рішень Лабораторна робота №5 Задача протидії коаліції з урахуванням факторів ризику

Виконав Студент групи ПМІ-43 Заречанський Олексій Викладач Доц. Хімка У.

Варіант 4.

Вихідні дані:

Функціональні залежності:

№ варі- анта	х, у	$I'_{12}(x,y)$	$I'_{21}(x,y)$	
4	$x \in [0;3], y \in [0;2]$	$\frac{8,3x - 7,6xy - 12y + 25,2}{98,6}$	$\frac{-3,9x+12,5xy+13,9y+12,6}{76,4}$	

Функціональні залежності збитків:

Таблиця 4.2. Функціональні залежності збитків

№ варі- анта	$J_{12m}(x,y), \ \ J_{12m}(x,y), \ \ J_{12m}(x,y)$	$J_{21m}(x,y), \ J_{21jm}(x,y), \ J_{21m}(x,y)$
4	$J_{12ns}(x,y) = \frac{2,3y - 3,8xy + 0,63x - 0,6}{9,2}$	$J_{21ns}(x,y) = \frac{-4,7y+9,1xy+5,2x+1,3}{11,6}$
	$J_{12/m}(x,y) = \frac{2,9y - 6,9xy + 1,7x - 2,9}{3,9}$	$J_{21/m}(x,y) = \frac{-14,4y+9,2xy+7,1x-2,8}{7,2}$
	$J_{122n}(x,y) = \frac{1,6y - 3,6xy - 4,3x - 7,4}{2,5}$	$J_{21in}(x,y) = \frac{-6,5y+8,2xy+3,5x+5,8}{3,2}$

Ситуаційні матриці ймовірностей факторів ризику:

Таблиця 4.3. Ситуаційні матриці ймовірностей факторів ризику

№ варіанта	Ситуаційні матриці ймовірностей факторів ризику					
4	S_1 S_2 S_3	S_1 S_2 S_3 S_4				
	$\ 0,01 - 0,13 - 0,08\ \eta_{ns}$	$\ 0,11 0,08 0,06 0,19 \ \eta_{ax}$				
R_{i}	$= 0.07 0.1 0.12 \eta_{fm}$	$R_2 = \begin{bmatrix} 0.02 & 0.07 & 0.15 & 0.03 \end{bmatrix} \eta_{fm}$				
	0,15 0,01 0,03 η _{in}	$0,09 0,09 0,01 0,02 \eta_{in}$				
	y = 0 $y = 1$ $y = 2$	x = 0 $x = 1$ $x = 2$ $x = 3$				

Хід роботи

Знайду гарантований результат для кожної з коаліцій, що протидіють. Знаходиться вона знаходженням максимального мінімуму.

$$I_{12}^* = \max_{x} \min_{y} I_{12}'(x, y);$$

$$I_{21}^* = \max_{y} \min_{x} I'_{21}(x, y);$$

Напишу програму яка обрахує це.

	- -			1 0		
			0	1	2	3
	0	0,	255578	0,339757	0,423935	0,508114
	1	0,	133874	0,140974	0,148073	0,155172
	2	0	,01217	-0,057809	-0,127789	-0,197769
	0	0,	164921	0,113874	0,062827	0,01178
	1		346859	0,459424	0,57199	0,684555
l	2	0,	528796	0,804974	1,081152	1,35733

Відповідно

$$I_{12}^* = I_{12}'(0, 2) = 0.01217$$

 $I_{21}^* = I_{21}'(0, 2) = 0.5288$

Обрахую значення цільових функцій враховуючи фактори ризику в точці гарантованого результату для обох протидіючих коаліцій.

$$\begin{split} \overline{F}_{\Sigma 12}(\overline{x}_{01}, \tilde{\overline{x}}_{02}, \overline{\alpha}_{1}, \eta) &= (1 - \eta_{ns})(1 - \eta_{fm})(1 - \eta_{in})I'_{12}(\overline{x}_{01}, \tilde{\overline{x}}_{02}) - \\ &- (\eta_{ns}\overline{J}_{12ns} + \eta_{fm}\overline{J}_{12fm} + \eta_{in}\overline{J}_{12in}). \end{split}$$

Значення η_{ns} , η_{fm} , η_{in} отримуємо з матриць імовірностей факторів ризику, значення обраховуєм J_{ns} , J_{fm} , J_{in} з функціональних залежностей збитків.

$$J_{12ns}(0, 2) = 0.4348$$

$$J_{12fm}(0, 2) = 0.7436$$

$$J_{12in}(0, 2) = -1.68$$

$$\eta_{ns} = 0.08$$

$$\eta_{fm} = 0.12$$

$$\eta_{in} = 0.03$$

Згідно з формулою вище $F_{12}(0, 2) = -0.064$ Для другої коаліції:

$$J_{21ns}(0, 2) = -0.6983$$

$$J_{21fm}(0, 2) = -4.389$$

$$J_{21in}(0, 2) = -2.25$$

$$\eta_{ns} = 0.11$$

$$\eta_{fm} = 0.02$$

$$\eta_{in} = 0.09$$

Згідно з формулою вище $F_{21}(0, 2) = 0.7868$

Оберемо найбільш несприйнятну подію з урахуванням факторів ризику. Для цього нам необхідна матриця імовірностей факторів ризику. Для першої коаліції:

$$P(S_1) = 0.01 \cdot 0.07 \cdot 0.15 = 0.000105$$

 $P(S_2) = 0.13 \cdot 0.1 \cdot 0.01 = 0.00013$
 $P(S_3) = 0.08 \cdot 0.12 \cdot 0.03 = 0.000288$

Найбільш несприйнятна для S_3 , Для y = 2, значення функції максимальне в x = 0.

$$I'_{12}(0, 2) = 0.01217$$

Для другої коаліції:

$$P(S_1) = 0.11 \cdot 0.02 \cdot 0.09 = 0.000198$$

 $P(S_2) = 0.08 \cdot 0.07 \cdot 0.09 = 0.000504$
 $P(S_3) = 0.06 \cdot 0.15 \cdot 0.01 = 0.00009$
 $P(S_4) = 0.19 \cdot 0.03 \cdot 0.02 = 0.000114$

Найбільш несприйнятна для S_2 , Для x = 1, значення функції максимальне в y = 2.

$$I'_{21}(1, 2) = 0.805$$

Так само обраховуємо значення цільової функції з урахуванням факторів ризику.

Для першої коаліції це вже було обраховано: $F_{12}(0, 2) = -0.064$ Для другої коаліції:

$$J_{21ns}(1, 2) = 1.319$$

 $J_{21fm}(1, 2) = -0.8472$
 $J_{21in}(1, 2) = 3.96875$
 $\eta_{ns} = 0.08$
 $\eta_{fm} = 0.07$
 $\eta_{in} = 0.09$
 $F_{21}(1, 2) = 0.2234$

Висновки

Відповідно до принципу гарантованого результату, значення цільової функції другої коаліції більше за значення першої.

$$I'_{21}(0, 2) = 0.5288 > I'_{12}(0, 2) = 0.01217$$

Під дією факторів ризику в точці гарантованого результату значення першої функції спадає, а другої зростає, тому значення другої коаліції залишається більшим.

$$F_{21}(0, 2) = 0.7868 > F_{12}(0, 2) = -0.064$$

Очевидно що фактори ризику набагато сильніше впливають на першу коаліцію ніж на другу. Найбільш несприятливою для першої коаліції буде ситуація S_3 , а для другої ситуація S_2 .

У цих ситуаціях значення цільової функції першої коаліції не зміниться, а для другої зросте і буде більша за гарантований результат.

$$I'_{12}(0, 2) = 0.01217$$

 $I'_{21}(1, 2) = 0.805$

Якщо врахувати фактор ризику, то значення функцій зменшиться, для першої коаліції буде рівним з гарантованим результатом, а для другої зменшиться у кілька разів.

$$F_{12}(0, 2) = -0.064$$

 $F_{21}(1, 2) = 0.2234$