UNIT 1: THEORY OF MATRICES

1. Find the rank of the Matrices using Echelon form

Solutions

I.
$$\begin{bmatrix} 4 & 2 & -1 & 2 \\ 1 & -1 & 2 & 1 \\ 2 & 2 & -2 & 0 \end{bmatrix}$$

2

II.
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

2

III.
$$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$

3

2. Find the rank of the Matrices using normal form

I.
$$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

4

II.
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8 \end{bmatrix}$$

3

III.
$$\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$$

2

3. Examine for consistency and if consistent then solve it.

I.
$$\begin{cases} 4x - 2y + 6z = 8\\ x + y - 3z = -1\\ 15x - 3y + 9z = 21 \end{cases}$$

$$\begin{cases} x = 1 \\ y = 3t - 2 \\ z = t \end{cases}$$

II.
$$\begin{cases} 2x + z = 4 \\ x - 2y + 2z = 7 \\ 3x + 2y = 1 \end{cases}$$

$$\begin{cases} x = 2 - \frac{t}{2} \\ y = -\frac{5}{2} + \frac{3t}{4} \end{cases}$$

III.
$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8 \\ x_1 + 3x_2 - 6x_4 = -15 \\ 2x_2 - x_3 + 2x_4 = -5 \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0 \end{cases} \qquad \begin{cases} x_1 = 3 \\ x_2 = -4 \\ x_3 = -1 \\ x_4 = 1 \end{cases}$$

IV.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 5 \\ 2x_1 + 3x_2 - x_3 - 2x_4 = 2 \\ 4x_1 + 5x_2 + 3x_3 = 7 \end{cases}$$
 Inconsistent

V.
$$\begin{cases} x + 2y + 3z = 0 \\ 2x + 3y + z = 0 \\ 4x + 5y + 4z = 0 \end{cases}$$

$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

VI.
$$\begin{cases} 2x - y + 3z = 0 \\ 3x + 2y + z = 0 \\ x - 4y + 5z = 0 \end{cases}$$

$$\begin{cases} x = t \\ y = -t \\ z = t \end{cases}$$

4. Investigate for what values of a & b, the system of simultaneous equation

$$2x - y + 3z = 2$$
$$x + y + 2z = 2$$
$$5x - y + az = b$$

Have (1) No solution (2) A unique solution (3) An infinite number of solutions.

(**Solutions** (1)
$$a = 8, b \neq 6$$
 (2) $a \neq 8, b \in R$ (3) $a = 8, b = 6$)

5. Investigate for what values of k the equations

$$x + y + z = 1$$
$$2x + y + 4z = k$$
$$4x + y + 10z = k^{2}$$

Have infinite number of solutions? Hence, find solutions.

(Solutions : k = 1,2)

6. Examine for Linear dependence or independence the following system of vectors. If dependent, find the relation between them

Dependent

I.
$$x_1 = (1, -1, 1), x_2 = (2, 1, 1), x_3 = (3, 0, 2)$$
 $x_1 + x_2 = x_3$

II.
$$x_1 = (1,1,1,3), x_2 = (1,2,3,4), x_3 = (2,3,4,7)$$
 Dependent $x_1 + x_2 = x_3$

III.
$$x_1 = (3,1,-4), x_2 = (2,2,-3), x_3 = (0,-4,1)$$

Dependent

$$2x_1 = 3x_2 + x_3$$

IV.
$$x_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, x_2 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ -6 \\ -5 \end{pmatrix}$$

Dependent

$$2x_1 + x_3 = x_2$$

7. Given the transformation =
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 0 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
. Find the coordinates (x_1, x_2, x_3) corresponding to $(2,3,0)$ in Y .

$$x_1 = \frac{21}{19}$$

$$x_2 = -\frac{16}{19}$$

$$x_3 = -\frac{5}{19}$$

8. Express each of the transformation
$$x_1 = 3y_1 + 5y_2$$
 and $y_2 = z_1 + 3z_2$ $y_2 = 4z_1$

$$x_1 = 23z_1 + 9z_2$$

$$x_2 = 27z_1 - 3z_2$$

In the matrix form and find the composite transformation which expresses x_1, x_2 in terms of z_1, z_2 .

9. Verify whether the following matrices are orthogonal or not, if so write A^{-1} :

I.
$$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Yes

II.
$$A = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix}$$

No

10. If
$$A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & a \\ \frac{2}{3} & \frac{1}{3} & b \\ \frac{2}{3} & -\frac{2}{3} & c \end{bmatrix}$$
 is orthogonal, Find a,b,c.

$$a = \pm \frac{2}{3}$$
$$b = \mp \frac{2}{3}$$
$$c = \pm \frac{1}{3}$$

11. Find the Eigen values and corresponding Eigen vectors for the following matrices

I.
$$A = \begin{bmatrix} 9 & -1 & 9 \\ 3 & -1 & 3 \\ -7 & 1 & -7 \end{bmatrix}$$

(Solution: --1,0,2 and $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \\ -3 \end{bmatrix}$)

II.
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

(Solution: 0,2, -2 and $\begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$)

III.
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

(Solution: 5, -3, -3 and $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$)

IV.
$$A = \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$

(Solution: -1,1,1 and $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$)

V.
$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

(Solution: -3,2,2 and $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}$)

12. Verify Cayley-Hamilton theorem for the following matrix and use it find Inverse:

I.
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

II.
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

13. Find A^4 with the help of Cayley Hamilton theorem

If
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$
.

$$(\begin{array}{ccc} \underline{\textbf{Solution}} : - \begin{bmatrix} -49 & -50 & -40 \\ 65 & 66 & 40 \\ 130 & 130 & 81 \\ \end{bmatrix})$$

14. If $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, then express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ in terms of A.

(Solution :-
$$A + 5I$$
)

- 15. Consider the triangle with Vertices A(1,4), B(5,3) and C(1,1) then
 - I. Rotate the triangle 90° clockwise. (Solution: A'(1,-1),B'(3,-5),C'(4,-1))
 - II. Rotate the triangle 90° counter clockwise. (Solution: A'(-1,1),B'(-3,5),C'(-4,1))
 - III. Take the reflection about X-axis (Solution: A'(1,-1),B'(5,-3),C'(1,-4))
 - IV. Take its reflection about Y- axis (Solution: A'(-1,1),B'(-5,3),C'(-1,4))
 - V. Translate the triangle 6 units right and 5 units down (Solution: A'(7,-4),B'(11,-2),C'(7,-1))
- 16. Centre of the arc of the circle in a given coordinate system is (46.66,105,134.66) (100,100,100). Origin is shifted to the point (-10,-5,-2).Rotation is carried out about Y axis through an angle of 30°. Find the centre of the arc of the circle in new coordinate system.

Unit 2: Differential Calculus

Q.1) Find nth derivatives of the following functions
$$a)y = \frac{x}{(x+1)^4}$$
, $b)y = \frac{2x+3}{5x+7}$, $c)y = \frac{x}{(x+1)^4}$

$$\frac{x}{(3x-5)(1-4x^2)}$$
, $d)y = \frac{x^4}{(x-1)(x-2)}$

e)
$$y = \frac{x}{1 + x + x^2 + x^3}$$
, f) $y = \frac{x^2}{(x - 1)(x - 2)}$, g) $y = \sin^{-1}\left(\frac{2x}{1 + x^2}\right)$ h) $y = \sin 2x \cos 3x$

$$i)y = \frac{x}{(x+2)(2x+3)} \quad j) \ y = cos^{-1} \left[\frac{x-x^{-1}}{x+x^{-1}} \right], \quad k) \ y = tan^{-1} \left[\frac{\sqrt{1+x^2}-1}{x} \right]$$

$$l)\frac{x^2+x+1}{x^3-6x^2+11x-6}, \qquad m)y=\frac{x^2}{(x+2)(2x+3)}$$

Q.2) Prove that
$$\frac{d^n}{dx^n}(x^{n-1}\log x) = \frac{(n-1)!}{x}$$

Q.3) If
$$y = x log(x+1)$$
 then prove that $y_n = \frac{(-1)^{n-1}(n-2)!(x+n)}{(x+1)^n}$

Q.4) If
$$y = \frac{ax+b}{cx+d}$$
 then prove that $y_1y_3 = 3y_2^2$

Q.5) If
$$x = sint$$
, $y = sinpt$, prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2y = 0$

Q.6) If
$$f(x) = tanx$$
, then prove that

$$f^{n}(0) - n_{C_{2}}f^{n-2}(0) + n_{C_{4}}f^{n-4}(0) + - - - - = \sin(\frac{n\pi}{2})$$

Q.7) Find nth derivative of $y = tan^{-1}x$. Hence prove that the value of $D^n(tan^{-1}x)$ at x = 0 is 0,

(n-1)! or -(n-1)! according as n is of the form 2p, (4p+1) or (4p+3) respectively.

Q.8) State Leibnitz's theorem and find the n^{th} derivatives of following functions:

a)
$$x^2e^x\cos x$$
, b) $x^2e^{3x}\cos 4x$, c) $e^x(2x+3)^3$, d) x^2e^x

Q.9) $y = e^{m\cos^{-1}x}$, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$.

Hence evaluate $(y_n)_0$.

- Q.10) $y = \sin 2\theta, x = \sin \theta, \text{ show that } (1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 4)y_n = 0.$
- Q.11) y = coswt, x = sint, show that i) $(1 x^2)y_1^2 = w^2(1 y^2)$

$$ii)(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2-w^2)y_n=0.$$

- Q.12) If $x = \tan(\log y)$, prove that $(1 + x^2)y_{n+1} + (2nx + 1)y_n n(n-1)y_{n-1} = 0$.
- Q.13) If $y = [x + \sqrt{x^2 + 1}]^m$, prove that $(x^2 1)y_{n+2} + (2n + 1)xy_{n+1} (n^2 m^2)y_n = 0$
- Q.14) Expand the following functions:
 - (a) $(1+x)^x$ in a series up to a term in x^4 .
 - (b) $Log(1+x+x^2+x^3) upto x^8$.
- Q.15) Prove that

a)
$$\log(secx) = \frac{x^2}{2} + \frac{1}{3}\frac{x^4}{4} + \frac{2}{15}\frac{x^6}{6} + \cdots$$

b)
$$log(1 + sinx) = x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + \cdots$$

c)
$$e^{e^x} = e \left[1 + x + x^2 + \frac{5}{6}x^3 + \frac{5}{8}x^4 + \dots \right]$$

d)
$$\sqrt{1+\sin x} = 1 + \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{48} + \frac{x^4}{348} - \cdots$$

e)
$$xcosecx = 1 + \frac{x^2}{6} - \frac{7}{360}x^4 + \dots$$

- Q.16) Using Taylor's theorem, find the expansion of following functions in ascending powers of x
 - a) $\tan \left[x + \frac{\pi}{4}\right]$ up to terms in x^4 and find the approximately value of $\tan(43^0)$
 - b) $\log \cos(x + \frac{\pi}{4})$, hence find the value of $\log \cos(48^{\circ})$ upto three decimal places.
- Q.17) Expand

a)
$$(x-2)^4 - 3(x-2)^3 + 4(x-2)^2 + 5$$
 in powers of x

b)
$$2x^3 + 7x^2 + x - 6$$
 in ascending powers of $(x - 2)$.

c)
$$49 + 69x + 42x^2 + 11x^3 + x^4$$
 in powers of $(x+2)$.

d) If
$$x = (1 - y)(1 - 2y)$$
, then show that $y = 1 + x - 2x^3 + ...$

e) If
$$x^3 + 2xy^2 - y^3 + x = 1$$
, obtain the expansion of y in ascending powers of x

Unit 3: Partial Differentiation

1) If
$$u = x^2 \tan^{-1}(\frac{y}{x}) - y^2 \tan^{-1}(\frac{x}{y})$$
, find u_{xy} . Ans $: u_{xy} = \frac{x^2 - y^2}{x^2 + y^2}$

2) If
$$u = x^2 - y^2 - f(xy)$$
 then show that $u_{xx} + u_{yy} = (x^4 - y^4)$ f''(xy).

3) If
$$u = \log(x^3 + y^3 - x^2 y - xy^2)$$
, then prove that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y})^2 u = \frac{-4}{(x+y)^2}$

4) If
$$u = x^y$$
 then verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

5) Let
$$v = \tan^{-1}(\frac{x}{y})$$
, find $\frac{\partial^2 v}{\partial x \partial y}$ and $\frac{\partial^2 v}{\partial y \partial x}$. Is $\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$?

6) If
$$u = 3xy - y^3 + (y^2 - 2x)^{1/2}$$
 then verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

7) If
$$u = f(r)$$
 where $r = \sqrt{x^2 + y^2}$ prove that $u_{xx} + u_{yy} = f'(r) + \frac{1}{r}f'(r)$

8) If
$$u = \log \sqrt{x^2 + y^2 + z^2}$$
, show that $(x^2 + y^2 + z^2)(u_{xx} + u_{yy} + u_{zz}) = 1$
(Hint: Consider $r^2 = x^2 + y^2 + z^2$ hence $u = \log r$)

9)If
$$u = ax + by$$
, $v = bx - ay$ find the value of $\left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v \left(\frac{\partial y}{\partial v}\right)_x \left(\frac{\partial v}{\partial y}\right)_u$
Ans:1

10) If
$$x = u$$
 tanv, $y = u$ secv then prove that $\left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial v}{\partial x}\right)_y = \left(\frac{\partial u}{\partial y}\right)_x \left(\frac{\partial v}{\partial y}\right)_x$

11) If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
 then prove that

$$x^{2} \left(\frac{\partial^{2} u}{\partial x^{2}} \right) + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \left(\frac{\partial^{2} u}{\partial y^{2}} \right) = \frac{1}{4} \left(\tan^{3} u - \tan u \right)$$

12) If
$$u = \frac{x^3 + y^3}{y\sqrt{x}}$$
, find the value $x^2 \left(\frac{\partial^2 u}{\partial x^2}\right) + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \left(\frac{\partial^2 u}{\partial y^2}\right) + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at point (1,2)

13) If
$$x = e^u \tan v$$
, $y = e^u \sec v$ find the value of $\left(x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y}\right) \left(x \cdot \frac{\partial v}{\partial x} + y \cdot \frac{\partial v}{\partial y}\right)$. Ans:0

14) If
$$u = x^2 + y^2$$
 where $x = s + 3t$, $y = 2s - t$, prove that $\frac{\partial^2 u}{\partial t^2} = 2 \frac{\partial^2 u}{\partial s^2}$)

15)If
$$z = f(x,y)$$
 where $x = e^u + e^{-v}$, $y = e^{-u} - e^v$ then prove that

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v}$$

- 16) Find $\frac{du}{dx}$ given that $u = x \log xy$ and $x^3 + y^3 = -3xy$
 - 17) If $\Phi(x,y,z)=0$ then prove that $\left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial x}{\partial z}\right)_y \left(\frac{\partial y}{\partial x}\right)_z = -1$
 - 18) If $(\cos x)^y = (\sin y)^x$ then find $\frac{dy}{dx}$.
 - 19) If u.x + v.y = 0 and $\frac{u}{x} + \frac{v}{y} = 1$ then prove that

$$\frac{u}{x} \left(\frac{\partial x}{\partial u} \right)_v + \frac{v}{y} \left(\frac{\partial y}{\partial v} \right)_u = 0$$

20) If $x = r\cos\theta$, $y = r\sin\theta$ then show that

a)
$$\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 = 1$$
 b) $\left(\frac{\partial y}{\partial r}\right)_x \left(\frac{\partial y}{\partial r}\right)_{\theta} = 1$

b)
$$\left(\frac{\partial y}{\partial r}\right)_{x} \left(\frac{\partial y}{\partial r}\right)_{\theta} = 1$$

Unit 4: Application of Partial Differentiation

- 1) If $x = arsin\theta cos\emptyset$, $y = brsin\theta sin\emptyset$, $z = crcos\theta$ show that $\frac{\partial(x,y,z)}{\partial(r\theta,\theta)} = abcr^2 sin\theta$
- 2) If ux = yz, vy = zx, wz = xy find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ Answer = 4
- 3) If $u = x + 2y^2 z^3$, $v = x^2yz$, $w = 2z^2 xy$ find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,-1,0)

Answer = 6

4) If
$$x = u - v + w$$
, $y = u^2 - v^2 - w^2$, $z = u^3 v$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
Answer = $6u^2(v + w) + 2u + 2w$

- 5) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + yz + zx find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ Answer = 0
- 6) If x = a(u + v), y = b(u v) where $u = r^2 \cos 2\theta$, $v = r^2 \sin 2\theta$, a and b being constant, then find $\frac{\partial(x,y)}{\partial(r,\theta)}$.

 Answer = $-8abr^3$
- 7) If $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and $= rsin\theta cos\emptyset$, $v = rsin\theta sin\emptyset$, $z = rcos\theta$ then $find \frac{\partial(x,y,z)}{\partial(r,\theta,\emptyset)}$. Answer $= \frac{1}{4}(r^2sin\theta)$
- 8) $x = e^u \cos v$, $y = e^u \sin v$ prove that $\frac{\partial(x,y)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(x,v)} = 1$
- 9) $x = e^v \sec u$, $y = e^v \tan u$ prove that $\frac{\partial(x,y)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(x,y)} = 1$
- 10) If x = u(1 v), y = uv show that JJ' = 1
- 11) If $x = v^2 + w^2$, $y = w^2 + u^2$, $z = u^2 + v^2$ then prove that JJ' = 1
- 12) Show that JJ' = 1 for the following
 - i) x = uv, $y = \frac{u}{v}$
 - ii) u = xy, v = x + y
- 13) Check whether the following functions are functionally dependent, if so find the relation between them, $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$
- 14) Check whether the following functions are functionally dependent, if so find the relation between them, $u=\sin^{-1}x+\sin^{-1}y$, $v=x\sqrt{1-y^2}+y\sqrt{1-x^2}$
- 15) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + yz + zx examine whether the above functions are functionally dependent; if so find the relation between them.
- 16) Show that the function u = x + y + z, $v = x^2 + y^2 + z^2 2xy 2yz 2zx$, $w = x^3$ are functionally related
- 17) Under which condition $u = a_1x + b_1y + c_1$, and $v = a_2x + b_2y + c_2$ are functionally dependent.
- 18) If $f(x, y) = (50 x^2 y^2)^{\frac{1}{2}}$ then find the approximate value of f(3,4) f(2.9,4.1). Answer is 0.02

- 19) If the area of rectangular field is calculated by measuring its length and breadth. If there is an error of 2% in measuring the length and an error of 3% in measuring the breadth of the field, find the approximate % error in the calculated area of the field.

 Answer: 5%
- 20) The focal length of the mirror is found from the formula $: \frac{1}{v} \frac{1}{u} = \frac{2}{f}$ find the percentage error in f, if u and v are both in error by 2% each.

Answer is 2%

- 21) Find Maximum and minimum value of following functions
 - 1. $(x y)(x^2 + y^2)(x + y 1)$ Ans: No maxima, No Minima
 - 2. $2(x^2 y^2) x^4 + y^4$ Ans: Max at $(\pm 1,0)$ minima at $(0,\pm 1)$
 - 3. $(x^2 + y^2)^2 2(x^2 y^2)$, Ans: Min value -1 at (1,0) and (-1,0)
- 22) Divide 24 into three parts such that the continue product of the first square of second and cube of third is maximum.

Ans: 4,8,12

23) Find three positive numbers whose sum is 100 and product is maximum

Ans:
$$\frac{100}{3}$$
, $\frac{100}{3}$, $\frac{100}{3}$

- 24) Find Minimum value of $x^2 + y^2 + z^2$, given x + y + z = 3a uisng Lagrange's method. Ans: $3a^2$
- 25) Find the points on the surface $z^2 = xy + 1$ nearest to the origin, by using Lagrange's Method Ans: $(0,0,\pm 1)$
- 26) Find Maximum and minimum distance of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$, using Lagrange's Method

Ans: Maximum Distance = 14

Minimum Distance = 12