HOSPITAL READMISSION PREDICTION FOR DIABETIC PATIENTS

Github Repo: Final Assessment Task

By Kuldeep Yadav

PROBLEM & OBJECTIVE

PROBLEM

MediSure Hospitals want to use Machine Learning to predict whether a patient will be readmitted within 30 days of discharge.

BUSINESS IMPORTANCE

- Reduce preventable readmissions and penalties
- Allocate follow-up resources to highest-impact patients
- Improve care continuity and patient outcomes

GOALS & TIMELINE

Hospital Readmission Prediction Project Timeline

DATASET OVERVIEW

EDA

- Loaded the diabetic encounters dataset and mapped the target to binary (readmit <30 days = 1, else 0). Replaced "?" with NaN.
- Major missingness: weight (mostly missing), max_glu_serum and AlCresult (~80% missing) handled as special/missing categories.
- Target is highly imbalanced (few readmitted cases).
- Many numeric features (num_lab_procedures, num_medications, number_outpatient/number_emergency/number_inpatient) are right-skewed with outliers; time_in_hospital is compact with a few extremes.
- Individual medication flags show near-zero linear correlation with readmission (insulin is the only weak positive signal).
- Correlation matrix and PCA/pairplots show weak linear signals and no clear class separation non-linear effects
 or interactions likely drive readmission.

PREPROCESSING

I. Missing & Irrelevant Data Handling

- Replaced'?' with NaN.
- Dropped identifiers (encounter_id, patient_nbr) and high-null columns (weight).
- Removed constant-value columns (examide, citoglipton).
- Retained clinically relevant columns (max_glu_serum, AlCresult) and imputed missing values with 'None'.

2. Missing Value Treatment

- Filled categorical missing values using appropriate strategies:
 - \circ race \rightarrow Mode
 - o max_glu_serum, AlCresult→ 'None'
 - payer_code,
 medical_specialty, diag_l-3
 → 'Unknown'

3. Encoding Categorical Variables

Target Encoding: readmitted →
 ('NO', '>30': 0, '<30': |)</p>

0000

- Label Encoding: gender, race, medical_specialty, payer_code, max_glu_serum, AlCresult.
- Medication-related features encoded ordinally (No < Down < Steady < Up).

PREPROCESSING

4. Outlier & Skewness Handling

 Applied log transformation on key numeric columns (hospital time, labs, meds, etc.) to reduce skewness and handle outliers.

5. Feature Scaling

- Standard Scaling for non-tree models.
- Robust Scaling for tree-based models.

6. Feature Engineering

- Discretized age into meaningful bins.
- Grouped diagnosis codes (diag_l-3) by disease category.
- Created new features: total_medications and num_med_changes.

Data Preprocessing and Transformation Sequence

0000

0000

0000

0000

0000

ML MODEL

Pipeline Overview:

- Preprocessing → Train/Test Split
 - \rightarrow Optional SMOTE
- Scaling applied (Robust for tree models, Standard for non-tree)
- Model Training → Performance
 Evaluation

Evaluation Metrics & Tools:

- ROC-AUC
- Confusion Matrix
- Accuracy
- Classification report
- Visual analysis via ROC & CM plots

Key Insights:

 RF & XGBoost tuning was time-intensive but improved performance

0000

Reproducibility:

 Custom src/utils modules used for consistent preprocessing, model training, and evaluation

Models Tested:

- Logistic Regression (Baseline)
- Decision Tree (Baseline)
- Support Vector Classifier
- Random Forest (Tuned)
- XGBoost (Tuned)

MODEL TRAINING

0000

Data Loading: Import dataset using custom utility load_data()

Feature & Target Split: Separate predictors and target (readmitted)

Train-Test Split: Ensure unbiased evaluation Pipeline Building:

Scaler: StandardScaler (non-tree) / RobustScaler (tree)

Optional SMOTE for class imbalance

Model: Logistic Regression / Random Forest / XGBoost / SVR

Training: Fit model with preprocessing handled automatically

Prediction: Generate classes and probabilities

Evaluation: Compute metrics via evaluate_model()

Model Saving: Export trained pipeline as .pkl for

Model Training Pipeline

MODEL COMPARISON

Model	F1 Score	ROC-AUC	Precision	Recall	Accuracy	Confusion Matrix
Logistic Regression	0.2526	0.6409	0.8341	0.6356	0.6356	[[11685, 6384], [1032, 1253]]
Decision Tree Classifier	0.1679	0.5275	0.8108	0.7907	0.7907	[[15663, 2406], [1855, 430]]
Random Forest Classifier	0.0329	0.6445	0.8421	0.8875	0.8875	[[18025, 44], [2246, 39]]
Tuned Random Forest	0.2763	0.6742	0.8393	0.6971	0.6971	[[13012, 5057], [1108, 1177]]
XGB Classifier	0.0306	0.6701	0.8496	0.888	0.888	[[18038, 31], [2249, 36]]
Tuned XGB Classifier	0.107	0.6318	0.8338	0.8827	0.8827	[[17823, 246], [2142, 143]]

CONCLUSION

0000

Key outcome

 $_{\circ}$ Best model: Tuned Random Forest (best Fl pprox 0.276, ROC-AUC pprox 0.67) — improved minority detection but room to improve.

Main predictive signals

- Prior utilization (number_inpatient) and discharge destination (discharge_disposition_id) are the dominant predictors.
- Secondary: num_lab_procedures, num_medications, time_in_hospital, age/payer/specialty.
- Individual drug flags contribute very little aggregate medication features work better.

Limitations

- Strong class imbalance and weak linear separability of features.
- \circ Many skewed numeric features and sparse medication columns \rightarrow noise risk.
- Need external / temporal validation before deployment.