Lecture 35: The LSE and estimability

One of the most useful statistical models

$$X_i = \beta^{\tau} Z_i + \varepsilon_i, \qquad i = 1, ..., n, \tag{1}$$

where X_i is the *i*th observation and is often called the *i*th response;

 β is a p-vector of unknown parameters (main parameters of interest), p < n;

 Z_i is the *i*th value of a *p*-vector of explanatory variables (or covariates);

 $\varepsilon_1, ..., \varepsilon_n$ are random errors (not observed).

Data: $(X_1, Z_1), ..., (X_n, Z_n)$.

 Z_i 's are nonrandom or given values of a random p-vector, in which case our analysis is conditioned on $Z_1, ..., Z_n$.

 $X = (X_1, ..., X_n), \ \varepsilon = (\varepsilon_1, ..., \varepsilon_n)$

 $Z = \text{the } n \times p \text{ matrix whose } i\text{th row is the vector } Z_i, i = 1, ..., n$

A matrix form of model (1) is

$$X = Z\beta + \varepsilon. \tag{2}$$

Definition 3.4. Suppose that the range of β in model (2) is $B \subset \mathbb{R}^p$. A least squares estimator (LSE) of β is defined to be any $\hat{\beta} \in B$ such that

$$||X - Z\hat{\beta}||^2 = \min_{b \in B} ||X - Zb||^2.$$
 (3)

For any $l \in \mathcal{R}^p$, $l^{\tau}\hat{\beta}$ is called an LSE of $l^{\tau}\beta$.

Throughout this book, we consider $B = \mathcal{R}^p$ unless otherwise stated.

Differentiating $||X - Zb||^2$ w.r.t. b, we obtain that any solution of

$$Z^{\tau}Zb = Z^{\tau}X \tag{4}$$

is an LSE of β .

If the rank of the matrix Z is p, in which case $(Z^{\tau}Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\hat{\beta} = (Z^{\tau}Z)^{-1}Z^{\tau}X. \tag{5}$$

If Z is not of full rank, then there are infinitely many LSE's of β .

Any LSE of β is of the form

$$\hat{\beta} = (Z^{\tau}Z)^{-}Z^{\tau}X,\tag{6}$$

where $(Z^{\tau}Z)^{-}$ is called a generalized inverse of $Z^{\tau}Z$ and satisfies

$$Z^{\tau}Z(Z^{\tau}Z)^{-}Z^{\tau}Z = Z^{\tau}Z.$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $(Z^{\tau}Z)^{-} = (Z^{\tau}Z)^{-1}$ and (6) reduces to (5).

To study properties of LSE's of β , we need some assumptions on the distribution of X or ε (conditional on Z if Z is random).

Assumption A1: ε is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$.

Assumption A2: $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2 I_n$ with an unknown $\sigma^2 > 0$.

Assumption A3: $E(\varepsilon) = 0$ and $Var(\varepsilon)$ is an unknown matrix.

Assumption A1 is the strongest and implies a parametric model.

We may assume a slightly more general assumption that ε has the $N_n(0, \sigma^2 D)$ distribution with unknown σ^2 but a known positive definite matrix D.

Let $D^{-1/2}$ be the inverse of the square root matrix of D.

Then model (2) with assumption A1 holds if we replace X, Z, and ε by the transformed variables $\tilde{X} = D^{-1/2}X$, $\tilde{Z} = D^{-1/2}Z$, and $\tilde{\varepsilon} = D^{-1/2}\varepsilon$, respectively.

A similar conclusion can be made for assumption A2.

Under assumption A1, the distribution of X is $N_n(Z\beta, \sigma^2 I_n)$, which is in an exponential family \mathcal{P} with parameter $\theta = (\beta, \sigma^2) \in \mathcal{R}^p \times (0, \infty)$.

However, if the matrix Z is not of full rank, then \mathcal{P} is not identifiable (see §2.1.2), since $Z\beta_1 = Z\beta_2$ does not imply $\beta_1 = \beta_2$.

Suppose that the rank of Z is $r \leq p$.

Then there is an $n \times r$ submatrix Z_* of Z such that

$$Z = Z_*Q \tag{7}$$

and Z_* is of rank r, where Q is a fixed $r \times p$ matrix, and

$$Z\beta = Z_*Q\beta.$$

 \mathcal{P} is identifiable if we consider the reparameterization $\tilde{\beta} = Q\beta$.

The new parameter $\hat{\beta}$ is in a subspace of \mathcal{R}^p with dimension r.

In many applications, we are interested in estimating some linear functions of β , i.e., $\vartheta = l^{\tau}\beta$ for some $l \in \mathcal{R}^p$.

From the previous discussion, however, estimation of $l^{\tau}\beta$ is meaningless unless $l = Q^{\tau}c$ for some $c \in \mathcal{R}^r$ so that

$$l^{\tau}\beta = c^{\tau}Q\beta = c^{\tau}\tilde{\beta}.$$

The following result shows that $l^{\tau}\beta$ is estimable if $l = Q^{\tau}c$, which is also necessary for $l^{\tau}\beta$ to be estimable under assumption A1.

Theorem 3.6. Assume model (2) with assumption A3.

- (i) A necessary and sufficient condition for $l \in \mathcal{R}^p$ being $Q^{\tau}c$ for some $c \in \mathcal{R}^r$ is $l \in \mathcal{R}(Z) = \mathcal{R}(Z^{\tau}Z)$, where Q is given by (7) and $\mathcal{R}(A)$ is the smallest linear subspace containing all rows of A.
- (ii) If $l \in \mathcal{R}(Z)$, then the LSE $l^{\tau}\hat{\beta}$ is unique and unbiased for $l^{\tau}\beta$.

(iii) If $l \notin \mathcal{R}(Z)$ and assumption A1 holds, then $l^{\tau}\beta$ is not estimable.

Proof. (i) Note that $a \in \mathcal{R}(A)$ if and only if $a = A^{\tau}b$ for some vector b. If $l = Q^{\tau}c$, then

$$l = Q^{\tau} c = Q^{\tau} Z_*^{\tau} Z_* (Z_*^{\tau} Z_*)^{-1} c = Z^{\tau} [Z_* (Z_*^{\tau} Z_*)^{-1} c].$$

Hence $l \in \mathcal{R}(Z)$. If $l \in \mathcal{R}(Z)$, then $l = Z^{\tau} \zeta$ for some ζ and

$$l = (Z_*Q)^{\tau}\zeta = Q^{\tau}c$$

with $c = Z_*^{\tau} \zeta$.

(ii) If $l \in \mathcal{R}(Z) = \mathcal{R}(Z^{\tau}Z)$, then $l = Z^{\tau}Z\zeta$ for some ζ and by (6),

$$E(l^{\tau}\hat{\beta}) = E[l^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}X]$$

$$= \zeta^{\tau}Z^{\tau}Z(Z^{\tau}Z)^{-}Z^{\tau}Z\beta$$

$$= \zeta^{\tau}Z^{\tau}Z\beta$$

$$= l^{\tau}\beta.$$

If $\bar{\beta}$ is any other LSE of β , then, by (4),

$$l^{\tau}\hat{\beta} - l^{\tau}\bar{\beta} = \zeta^{\tau}(Z^{\tau}Z)(\hat{\beta} - \bar{\beta}) = \zeta^{\tau}(Z^{\tau}X - Z^{\tau}X) = 0.$$

(iii) Under assumption A1, if there is an estimator h(X,Z) unbiased for $l^{\tau}\beta$, then

$$l^{\tau}\beta = \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \|x - Z\beta\|^2\right\} dx.$$

Differentiating w.r.t. β and applying Theorem 2.1 lead to

$$l^{\tau} = Z^{\tau} \int_{\mathcal{R}^n} h(x, Z) (2\pi)^{-n/2} \sigma^{-n-2} (x - Z\beta) \exp\left\{-\frac{1}{2\sigma^2} ||x - Z\beta||^2\right\} dx,$$

which implies $l \in \mathcal{R}(Z)$.

Example 3.12 (Simple linear regression). Let $\beta = (\beta_0, \beta_1) \in \mathbb{R}^2$ and $Z_i = (1, t_i), t_i \in \mathbb{R}$, i = 1, ..., n.

Then model (1) or (2) is called a *simple linear regression* model.

It turns out that

$$Z^{\tau}Z = \begin{pmatrix} n & \sum_{i=1}^{n} t_i \\ \sum_{i=1}^{n} t_i & \sum_{i=1}^{n} t_i^2 \end{pmatrix}.$$

This matrix is invertible if and only if some t_i 's are different.

Thus, if some t_i 's are different, then the unique unbiased LSE of $l^{\tau}\beta$ for any $l \in \mathbb{R}^2$ is $l^{\tau}(Z^{\tau}Z)^{-1}Z^{\tau}X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression of order p in which $\beta = (\beta_0, \beta_1, ..., \beta_{p-1})$ and $Z_i = (1, t_i, ..., t_i^{p-1})$.

Example 3.13 (One-way ANOVA). Suppose that $n = \sum_{j=1}^{m} n_j$ with m positive integers $n_1, ..., n_m$ and that

$$X_i = \mu_j + \varepsilon_i, \qquad i = k_{j-1} + 1, ..., k_j, \ j = 1, ..., m,$$

where $k_0 = 0$, $k_j = \sum_{l=1}^{j} n_l$, j = 1, ..., m, and $(\mu_1, ..., \mu_m) = \beta$.

Let J_m be the *m*-vector of ones.

Then the matrix Z in this case is a block diagonal matrix with J_{n_j} as the jth diagonal column

Consequently, $Z^{\tau}Z$ is an $m \times m$ diagonal matrix whose jth diagonal element is n_i .

Thus, $Z^{\tau}Z$ is invertible and the unique LSE of β is the *m*-vector whose *j*th component is $n_j^{-1} \sum_{i=k_{j-1}+1}^{k_j} X_i$, j=1,...,m.

Sometimes it is more convenient to use the following notation:

$$X_{ij} = X_{k_{i-1}+j}, \ \varepsilon_{ij} = \varepsilon_{k_{i-1}+j}, \qquad j = 1, ..., n_i, \ i = 1, ..., m,$$

and

$$\mu_i = \mu + \alpha_i, \quad i = 1, ..., m.$$

Then our model becomes

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad j = 1, ..., n_i, i = 1, ..., m,$$
 (8)

which is called a one-way analysis of variance (ANOVA) model.

Under model (8), $\beta = (\mu, \alpha_1, ..., \alpha_m) \in \mathbb{R}^{m+1}$.

The matrix Z under model (8) is not of full rank.

An LSE of β under model (8) is

$$\hat{\beta} = \left(\bar{X}, \bar{X}_{1\cdot} - \bar{X}, ..., \bar{X}_{m\cdot} - \bar{X}\right),\,$$

where \bar{X} is still the sample mean of X_{ij} 's and \bar{X}_{i} is the sample mean of the *i*th group $\{X_{ij}, j = 1, ..., n_i\}$.

The notation used in model (8) allows us to generalize the one-way ANOVA model to any s-way ANOVA model with a positive integer s under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA). Suppose that

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \quad i = 1, ..., a, j = 1, ..., b, k = 1, ..., c,$$
 (9)

where a, b, and c are some positive integers.

Model (9) is called a two-way balanced ANOVA model.

If we view model (9) as a special case of model (2), then the parameter vector β is

$$\beta = (\mu, \alpha_1, ..., \alpha_a, \beta_1, ..., \beta_b, \gamma_{11}, ..., \gamma_{1b}, ..., \gamma_{a1}, ..., \gamma_{ab}). \tag{10}$$

One can obtain the matrix Z and show that it is $n \times p$, where n = abc and p = 1 + a + b + ab, and is of rank ab < p.

It can also be shown that an LSE of β is given by the right-hand side of (10) with μ , α_i , β_j , and γ_{ij} replaced by $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, and $\hat{\gamma}_{ij}$, respectively, where $\hat{\mu} = \bar{X}_{...}$, $\hat{\alpha}_i = \bar{X}_{...} - \bar{X}_{...}$, $\hat{\beta}_j = \bar{X}_{.j} - \bar{X}_{...}$, $\hat{\gamma}_{ij} = \bar{X}_{ij} - \bar{X}_{i..} - \bar{X}_{.j} + \bar{X}_{...}$, and a dot is used to denote averaging over the indicated subscript, e.g.,

$$\bar{X}_{.j.} = \frac{1}{ac} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{ijk}$$

with a fixed j.