Soit G = (S, A) un graphe orienté, n = |S| et p = |A|.

I Ordre de parcours

Définition: Parcours en profondeur préfixe, postfixe

On peut ordonner les sommets de G lors d'un parcours en profondeur (DFS) complet :

- Ordre préfixe : on ajoute un sommet au début de son appel récursif (avant ses voisins).
- Ordre postfixe : on ajoute un sommet à la fin de son appel récursif (après ses voisins).

Exercice 1.

Montrer que l'inverse d'une liste de parcours préfixe n'est pas forcément un parcours postfixe.

II Ordre topologique

Définition: Ordre topologique

Un ordre topologique (ou : tri topologique) de G est une liste v_1, v_2, \ldots, v_n des sommets de G telle que si $(v_i, v_j) \in A$, alors i < j.

Théorème

Si G est acyclique alors l'inverse d'une liste de parcours postfixe est un ordre topologique de G.

 $\underline{\text{Preuve}}$:

```
let postfixe_inverse (g : int list array) =
    let n = Array.length g in
    let vus = Array.make n false in
    let l = ref [] in
    let rec dfs u =
        if not vus.(u) then (
            vus.(u) <- true;
            List.iter (fun v -> dfs v) g.(u);
            l := u :: !l
            ) in
        for u = 0 to n - 1 do
            dfs u
        done;
    !1
```

Complexité : O(n+p) pour un graphe représenté par liste d'adjacence car chaque arête est parcourue au plus deux fois O(2p) et chaque sommet est visité une fois O(2p). Remarque : on aurait aussi pu ajouter un List.rev à la fin.

Exercice 2.
1. Donner le parcours postfixe du graphe ci-dessous, en choisissant le sommet de plus petit numéro s'il y a plusieurs choix possibles.
2. En déduire un ordre topologique de ce graphe.
8 0 4 6 2 7 Th family 2
Preuve :
Remarque : Si G n'est pas acyclique, l'inverse d'un parcours postfixe donne un ordre topologique des composantes fortement onnexes de G .
Exercice 3. Soit G acyclique pondéré par $w:A\longrightarrow \mathbb{R}$ et $u\in S$. Montrer que l'on peut calculer la distance $d(u,v)$ de u à tous les sommets $v\in S$ en $O(n+p)$.

IIIAlgorithme de Kosaraju

L'algorithme de Kosaraju permet de trouver les composantes fortement connexes d'un graphe orienté.

 $\underline{\text{Id\acute{e}}}$: Si on fait un parcours de graphe depuis 6 ou 2, on obtient la composante fortement connexe $\{2,6\}$. On lance un DFS depuis chaque sommet dans l'ordre inverse du parcours postfixe de G^T (graphe obtenu en inversant les arcs de G). L'ensemble des sommets visités à chaque DFS forme une composante fortement connexe.

Algorithme de Kosaraju

Entrée : Un graphe connexe G = (S, A)

Sortie : Les composantes fortement connexes de G

 $G^T \leftarrow$ graphe transposé de G

 $L \leftarrow$ liste inverse du parcours postfixe de G^T

 $C \leftarrow \text{tableau de taille } n \text{ initialisé à } -1$

 $k \leftarrow 0$

Pour $u \in L$:

Si
$$C[u] = -1$$
:
 $C[u] \leftarrow k$

DFS(u)

 $k \leftarrow \mathbf{k} + 1$

 $\mathbf{Renvoyer} \ C \ / \ast \ C[i] \ \texttt{= numéro de la composante}$ $\hbox{fortement connexe de i}$

Complexité de l'algorithme de Kosaraju :

•	Calcul de G^1 :
•	Liste inverse du parcours postfixe de G^T :
•	Initialisation de C :

• Initialisation de C :
• DFS complet :
D'où une complexité totale en :
Exercice 4. Appliquer l'algorithme de Kosaraju au graphe ci-dessus.

	crire une fonction transpose : int list array \rightarrow int list array qui prend en argument un graphe G et rende son graphe transposé G^T .
2. Éo ta	crire une fonction kosaraju : int list array \rightarrow int array qui prend en argument un graphe G et renvoie un bleau C tel que $C[i]$ est le numéro de la composante fortement connexe de i .

Exercice 5.