Inatel

C209 – Computação Gráfica e Multimídia EC215 – Multimídia

Operações no Domínio do Espaço

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

Conteúdo

- Operações
 - Aritméticas
 - o Adição
 - Subtração
 - o Multiplicação
 - Divisão
 - Blending
 - Lógicas
 - o AND/NAND
 - o OR/NOR
 - o XOR/XNOR
 - o NOT
 - SHIFT
- Limites Inferior e Superior nas Operações
- Referências

OPERAÇÕES COM IMAGENS

Introdução

- A aritmética de imagens é a forma mais simples de processamento de imagens.
- Os operadores são aplicados de uma forma pixel-por-pixel, portanto as imagens devem ser do mesmo tamanho.
- Entretanto, uma das imagens de entrada pode ser um valor constante, como por exemplo, na adição de um deslocamento constante a uma imagem.
- A vantagem dos operadores aritméticos é processamento simples e rápido.

Introdução

- As imagens processadas são frequentemente tiradas da mesma cena em diferentes instantes:
 - Redução do ruído aleatório adicionando imagens sucessivas da mesma cena
 - Detecção de movimento subtraindo duas imagens sucessivas.
- Os operadores lógicos são frequentemente usados para combinar duas imagens (principalmente binárias). No caso de imagens inteiras, o operador lógico é normalmente aplicado bit a bit.
 - Utilização de uma máscara binária para selecionar uma determinada região de uma imagem.

OPERAÇÕES ARITMÉTICAS COM IMAGENS

$$+-\times\div\Sigma$$

Operações Aritméticas: Adição

- Este operador toma como entrada duas imagens de tamanho idêntico e produz como saída uma terceira imagem do mesmo tamanho das duas primeiras, em que cada valor de pixel é a soma dos valores do pixel correspondente de cada um das imagens de entrada.
- Também é possível usar apenas uma única imagem como entrada e somar um valor constante a todos os pixels.

$$Q(i,j) = P_1(i,j) + P_2(i,j)$$
 $Q(i,j) = P_1(i,j) + C$

Operações Aritméticas: Adição

Operações Aritméticas: Adição

Operações Aritméticas: Subtração

- Este operador toma como entrada duas imagens de tamanho idêntico e produz como saída uma terceira imagem do mesmo tamanho das duas primeiras, em que cada valor de pixel é a subtração dos valores do pixel correspondente de cada um das imagens de entrada.
- Também é possível usar apenas uma única imagem como entrada e subtrair um valor constante de todos os pixels.
- Algumas versões do operador apenas produzirão a diferença absoluta entre os valores de pixel, em vez da saída direta (com sinal).

$$Q(i,j) = P_1(i,j) - P_2(i,j)$$
 $Q = |P_1(i,j) - P_2(i,j)|$ $Q = P_1(i,j) - C$

Operações Aritméticas: Subtração

Operações Aritméticas: Subtração

Operações Aritméticas: Multiplicação

- Também é possível realizar a multiplicação de duas formas distintas.
- A primeira toma duas imagens de entrada e produz uma imagem de saída na qual os valores de pixel são os da primeira imagem, multiplicados pelos valores dos valores correspondentes na segunda imagem.
- A segunda forma toma uma única imagem de entrada e produz saída na qual cada valor de pixel é multiplicado por uma constante especificada. Esta última forma é mais utilizada e é chamada de escala.

$$Q(i,j) = P_1(i,j) \times P_2(i,j) \qquad \qquad Q(i,j) = P_1(i,j) \times C$$

Operações Aritméticas: Multiplicação

Operações Aritméticas: Divisão

- O operador de divisão de imagem toma normalmente duas imagens como entrada e produz um terceiro cujos valores de pixel são os valores de pixel da primeira imagem divididos pelos valores de pixel correspondentes da segunda imagem.
- Muitas implementações também podem ser usadas com apenas uma única imagem de entrada, caso em que cada valor de pixel na imagem é dividido por uma constante especificada.

$$Q(i,j) = P_1(i,j) \div P_2(i,j)$$
 $Q(i,j) = P_1(i,j) \div C$

Operações Aritméticas: Divisão

Operações Aritméticas: Divisão

Operações Aritméticas: Blending

- Este operador forma uma mistura de duas imagens de entrada do mesmo tamanho.
- Semelhante à adição de pixel, o valor de cada pixel na imagem de saída é uma combinação linear dos valores de pixel correspondentes nas imagens de entrada.
- Os coeficientes da combinação linear são especificados pelo usuário e definem a razão pela qual a escala de cada imagem antes de combiná-los. Estas proporções são aplicadas de modo a que os valores de pixel de saída não excedam o valor máximo de pixel.

$$Q(i,j) = X \times P_1(i,j) + (1-X) \times P_2(i,j)$$

Operações Aritméticas: Blending

Imagem original

Imagem a ser "blended"

Blending com fator 0.5 (retângulo: 0.5*32+0.5*64=48) (losango: 0.5*96+0.5*192=144)

Blending com fator 0.25 (retângulo: 0.25*32+0.75*64=56) (losango: 0.25*96+0.75*192=168)

OPERAÇÕES LÓGICAS COM IMAGENS

Operações Lógicas: AND/NAND

- AND e NAND são exemplos de operadores lógicos com as tabelas-verdade mostradas acima, à direita.
- Como pode ser visto, os valores de saída de NAND são simplesmente o inverso dos valores de saída correspondentes de AND.
- O operador AND (e similarmente o NAND) toma duas imagens binárias como entrada, e retorna uma terceira imagem cujos valores de pixel são apenas aqueles da primeira imagem, após realizar uma operação AND com os pixels correspondentes a partir da segunda.
- Em imagens vistas na forma binária, os objetos (tom preto) são representados pelo valor lógico 1, e o fundo (tom branco) por 0.
- Uma variação desse operador leva apenas uma única imagem de entrada e executa AND/NAND pixel a pixel com um valor constante especificado.

Operações Lógicas: AND/NAND

- OR e NOR são exemplos de operadores lógicos com as tabelas-verdade acima, à direita.
- Como pode ser visto, os valores de saída de NOR são simplesmente os inversos dos valores de saída correspondentes de OR.
- O operador OR (e similarmente o NOR) tipicamente toma duas imagens binárias como entrada, e retorna uma terceira imagem cujos valores de pixel são apenas aqueles da primeira imagem, após realizar uma operação OR com os pixels correspondentes a partir da segunda.
- Em imagens vistas na forma binária, os objetos (tom preto) são representados pelo valor lógico 1, e o fundo (tom branco) por 0.
- Uma variação desse operador leva apenas uma única imagem de entrada e executa OR/NOR pixel a pixel com um valor constante especificado.

Operações Lógicas: OR/NOR

Operações Lógicas: XOR/XNOR

Α	В	Q	_	Α	В	Ð
0	0	0		0	0	1
0	1	1		0	1	0
1	0	1		1	0	0
1	1	0		1	1	1
	XOR			XNOR		

- XOR e XNOR são exemplos de operadores lógicos com as tabelas-verdade acima, à direita. A função XOR é apenas verdadeira se apenas um (e apenas um, ou seja, exclusivamente) dos valores de entrada for verdadeiro, e falso caso contrário.
- Como pode ser visto, os valores de saída de XNOR são simplesmente o inverso dos valores de saída correspondentes de XOR.
- O operador XOR (e similarmente o XNOR) tipicamente toma duas imagens binárias como entrada, e retorna uma terceira imagem cujos valores de pixel são apenas aqueles da primeira imagem submetidos à uma operação XOR com os pixels correspondentes da segunda.
- Em imagens vistas na forma binária, os objetos (tom preto) são representados pelo valor lógico 1, e o fundo (tom branco) por 0.
- Uma variação deste operador toma uma única imagem de entrada e executa XOR/XNOR pixel a pixel com um valor constante especificado.

Operações Lógicas: XOR/XNOR

Α	ø
0	1
1	0

Operações Lógicas: NOT

NOT

• O operador lógico NOT (ou inversor) toma uma imagem binária ou em escala de cinza como entrada e produz seu negativo fotográfico, ou seja, áreas escuras na imagem de entrada tornam-se claras e áreas claras ficam escuras.

$$Q(i,j) = 255 - P(i,j)$$
 $Q(i,j) = 1 - P(i,j)$

Operações Lógicas: NOT

A NOT A

Operações Lógicas: NOT

NOT A

Operações Lógicas: SHIFT

- O operador de shift trabalha em imagens representadas em formato de byte de pixel ou inteiros, onde cada valor de pixel é armazenado como um número binário com uma quantidade fixa de bits.
- O operador desloca a representação binária de cada pixel para a esquerda ou para a direita por um número predefinido de posições.
- Deslocar um número binário por um bit é equivalente a multiplicar (quando se desloca para a esquerda) ou dividir (quando se desloca para a direita) o número por 2.

Shifting *i* bits to the right
$$\Leftrightarrow Q(i,j) = P(i,j) \div 2^i$$

Shifting *i* bits to the left $\Leftrightarrow Q(i,j) = P(i,j) \times 2^i$

Operações Lógicas: SHIFT

Imagem original

para a esquerda (overflow)

Deslocamento de 2 bits

Deslocamento de 1 bit

para a esquerda

Limites Inferior e Superior nas Operações

- Ao executar operações nas imagens, em alguns casos os resultados encontram-se fora dos limites de tom da imagem.
- Estes são os chamados underflow e overflow do resultado.
- Nestes casos, há três alternativas:
 - Truncar os valores que excedem os limites, transformando em 255 tudo que exceda 255 e em 0 qualquer valor negativo.
 - Truncar os valores que excedem os limites, transformando em 0 tudo que exceda 255 e em 255 qualquer valor negativo (para enfatizar o "estouro").
 - Prever a possibilidade da representação de números negativos e maiores que 255 na memória e, após a realização da operação, proceder a uma mudança de escala (reescalonamento) dos valores.

Referências & Links Interessantes

Image Processing Learning Resources. Robert Fisher, Simon Perkins,
Ashley Walker, Erik Wolfart. Disponível em

http://homepages.inf.ed.ac.uk/rbf/HIPR2/arthops.htm

Referências & Links Interessantes

- AZEVEDO, Eduardo; CONCI, Aura, Computação gráfica volume 1: geração de imagens. Rio de Janeiro, RJ. Editora Campus, 2003, 353 p. ISBN 85-352-1252-3.
- AZEVEDO, Eduardo; CONCI, Aura; LETA, Fabiana R. Computação gráfica volume 2: teoria e prática. Rio de Janeiro, RJ: Editora Elsevier, 2007, 384 p. ISBN 85-352-2329-0.
- PAULA FILHO, Wilson de Pádua, Multimídia: Conceitos e aplicações. Rio de Janeiro, RJ: LTC, 2000, 321 p. ISBN 978-85-216-1222-3.