

Cálculo computacional II

Unidade 4: Máximos e Mínimos

Cristina Vaz

C2-aula 08/7/25

UFPA

Sumário

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

1 Condição necessária para extremos

2 Condição suficiente para extremos

3 Problemas de otimização

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

O seguinte resultado dá uma condição necessária para que um ponto seja um extremos de f.

Teorema (condição necessária)

Sejam $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ e (x_0, y_0) um ponto interior de D_f . Se as derivadas parciais $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ existem e (x_0, y_0) é um extremo local de f, então,

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Ou seja,

$$\nabla f(x_0, y_0) = (0, 0)$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

pergunta: Todo ponto crítico é um extremo de f?

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

pergunta: Todo ponto crítico é um extremo de f?

resp.: Não. Considere o seguinte exemplo:

Exemplo

Analise os pontos críticos da função $f(x,y) = y^2 - x^2$.

Solução:
$$\frac{\partial f}{\partial x} = -2x$$
; $\frac{\partial f}{\partial y} = 2y \Rightarrow$

$$\nabla f(0,0) = (f_x(0,0), f_y(0,0)) = (0,0)$$

então P = (0,0) é o único ponto crítico de f.

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

P = (0,0) é ponto de sela!! Logo, a função f não tem máximo nem mínimo relativo em (0,0).

<u>∂f</u> ∂t

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

 $f_{\boldsymbol{x}}(0,0) = f_{\boldsymbol{y}}(0,0) = 0$ mín relativo e absoluto em (0,0)

(a)

$$\begin{split} f_{\chi}(0,0) = f_{\mathrm{y}}(0,0) = 0 \\ \mathrm{máx} \ \mathrm{relativo} \ \mathrm{e} \ \mathrm{absoluto} \ \mathrm{em} \ (0,0) \end{split}$$

(b)

 $f_{\boldsymbol{\chi}}(0,0)$ and $f_{\boldsymbol{y}}(0,0)$ não existem mín relativo e absoluto em (0,0)

(c)

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Teorema (condição suficiente)

Sejam $f:A\subset\mathbb{R}^2\to\mathbb{R}$ e (x_0,y_0) um ponto interior de D_f tais que as derivadas primeiras e segundas parciais continuas numa vizinhança aberta de (x_0,y_0) . Considere o seguinte determinante, chamado Hessiano,

$$H(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix}$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Note que:

$$H(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix}$$

$$= f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - \left(f_{xy}(x_0, y_0) \right)^2$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Teorema (condição suficiente)

Se
$$\nabla f(x_0, y_0) = (0, 0)$$
. Então

- (a) f tem um mínimo relativo em (x_0, y_0) quando $H(x_0, y_0) > 0$ e $f_{xx}(x_0, y_0) > 0$ (ou $f_{yy}(x_0, y_0) > 0$);
- (b) f tem um máximo relativo em (x_0, y_0) quando $H(x_0, y_0) > 0$ e $f_{xx}(x_0, y_0) < 0$ (ou $f_{yy}(x_0, y_0) < 0$);
- (c) f não tem extremo em (x_0, y_0) quando $H(x_0, y_0) < 0$;
- (d) Não podemos tirar nenhuma conclusão quando $H(x_0, y_0) = 0$.

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

No caso (c), quando $H(x_0, y_0) < 0$, o ponto (x_0, y_0) é chamado **ponto de sela** e o gráfico de f cruza" o plano tangente em (x_0, y_0)

No caso (d), quando $H(x_0, y_0) = 0$, o teste é inconclusivo e pode acontecer do ponto (x_0, y_0) se um extremo ou ser um ponto de sela.

Condição necessária par extremos

Condição suficiente para extremos

Problemas de otimização

Exemplo

Analise os pontos críticos da função $f(x,y) = y^4 - x^4 - 4xy + 1$.

Usar o seguinte algoritmo:

Passo 1: calcular os pontos críticos: $\nabla f(x_0, y_0) = (0, 0)$;

Passo 2: calcular o hessiano: $H(x,y) = f_{xx} f_{yy} - (f_{xy})^2$

Passo 3: analisar o sinal do hessiano e das derivadas segundas nos pontos encontrados no passo 1.

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Solução: Passo 1: $f_x = 4x^3 - 4y$ e $f_y = 4y^3 - 4x$.

$$\nabla f(x_0, y_0) = (0, 0) \Rightarrow$$

$$\begin{cases} 4x^3 - 4y = 0 \\ 4y^3 - 4x = 0 \end{cases}$$

Resolvendo o sistema encontramos os pontos $P_1 = (0,0)$, $P_2 = (1,1)$, e $P_1 = (-1,-1)$,

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Solução: Passo 2:
$$f_{xx} = 12x^2$$
; $f_{yy} = 12y^2$ e $f_{xy} = -4$

$$H(x,y) = f_{xx} f_{yy} - (f_{xy})^2 = 144 x^2 y^2 - 16$$

Passo 3:

$$H(0,0) = -16$$
 implica que $P_1 = (0,0)$ é ponto de sela;

$$H(1,1) = 128 > 0$$
 e $f_{xx}(1,1) = 12 > 0$ implica que $P_2 = (1,1)$ ponto de mínimo relativo de f .

$$H(-1,-1) = 128 > 0$$
 e $f_{xx}(-1,-1) = 12 > 0$ implica que $P_3 = (-1,-1)$ ponto de mínimo relativo de f .

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

$$z = x^4 + y^4 - 4xy + 1$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Exemplo

Uma caixa retangular sem tampa deve ser feita com $12m^2$ de papelão. Determine o volume máximo de tal caixa.

Solução: É necessário descobrir qualquer a função que descreve o volume da caixa, Como a caixa é retangular o seu volume é dado por V = área da base \times altura = xyz

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização Vamos expressar V apenas como função das variáveis x e y usando o fato de que a área dos quatro lados e do fundo da caixa é dada por

$$xy + 2xz + 2yz = 12$$

Assim,

$$2z(x+y) + xy = 12 \Rightarrow z = \frac{12 - xy}{2(x+y)}$$

Substituindo em V tem-se

$$V(x,y) = \frac{12xy - x^2y^2}{2(x+y)}$$

Condição necessária para extremos

suficiente para extremos

Problemas de otimização

Agora, vamos calcular o valor máximo de V.

Passo 1:

$$V_x = \frac{(12xy - x^2y^2)'(2x + 2y) - (12xy - x^2y^2)(2x + 2y)'}{(2x + 2y)^2}$$

$$V_{x} = \frac{(12y - 2xy^{2})(2x + 2y) - (12xy - x^{2}y^{2})(2)}{(2x + 2y)^{2}}$$

$$V_x = \frac{y^2(12 - 2xy - x^2)}{2(x+y)^2}$$

Condição necessária para extremos

suficiente para extremos

Problemas de otimização

Passo 1:

$$V_y = \frac{(12xy - x^2y^2)'(2x + 2y) - (12xy - x^2y^2)(2x + 2y)'}{(2x + 2y)^2}$$

$$V_y = \frac{(12x - 2x^2y)(2x + 2y) - (12xy - x^2y^2)(2)}{(2x + 2y)^2}$$

$$V_y = \frac{x^2(12 - 2xy - y^2)}{2(x+y)^2}$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Passo 1:
$$\nabla f(x_0, y_0) = (0, 0) \Rightarrow$$

$$\begin{cases} V_x = \frac{y^2(12 - 2xy - x^2)}{2(x+y)^2} = 0 \\ V_y = \frac{x^2(12 - 2xy - y^2)}{2(x+y)^2} = 0 \end{cases}$$

Resolvendo o sistema encontramos os pontos $P_1 = (0,0)$ e $P_2 = (2,2)$.

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Passo 1: Para $P_1 = (0,0)$ temos que V(0,0) = 0 não nos interessa por que queremos o volume máximo.

Passo 2: Calculando as segundas derivadas obtemos:

$$V_{xx} = \frac{(x+y)(-y^3 - xy^2) - (12y^2 - 2xy^3 - x^2y^2)}{(x+y)^3}$$

$$V_{yy} = \frac{(x+y)(-x^3 - x^2y) - (12x^2 - 2x^3y - x^2y^2)}{(x+y)^3}$$

$$V_{xy} = \frac{(x+y)(12y - 3xy^2 - x^2y) - (12y^2 - 2xy^3 - x^2y^2)}{(x+y)^3}$$

Condição necessária para extremos

Condição suficiente para extremos

Problemas de otimização

Passo 2: Calculando o hessiano no ponto $P_2 = (2, 2)$.

$$V_{xx}(2,2) = -\frac{5}{2}; \ V_{yy}(2,2) = -\frac{5}{2}; \ V_{xy}(2,2) = -\frac{1}{2}$$

$$H(2,2) = V_{xx} V_{yy} - (V_{xy})^2 = \left(-\frac{5}{2}\right)\left(-\frac{5}{2}\right) - \left(-\frac{1}{2}\right)^2 = \frac{23}{4} > 0.$$

Assim, H(2,2) > 0 e $V_{xx}(2,2) < 0$ implica que $P_2 = (2,2)$ é um ponto que máximo e o volume máximo da caixa é dada por

$$z = \frac{12 - xy}{2(x + y)} \Rightarrow z = \frac{8}{8} = 1$$

e
$$V(x, y, z) = xyz \Rightarrow V(2, 2, 1) = 4$$

OBRIGADA