THE Winter School

Causal Machine Learning

Anthony Strittmatter

References

- Belloni, Chernozhukov, and Hansen (2014): "High-Dimensional Methods and Inference on Structural and Treatment Effects", Journal of Economic Perspectives, 28 (2), pp. 29-50, download.
- Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2017): "Double/Debiased/Neyman Machine Learning of Treatment Effects", American Economic Review, 107 (5), pp. 261-265, download.

Estimation Target

Multivariate Linear Regression Model:

$$Y_i = D_i \delta + X_i \beta_g + U_i$$
 (structural model) $D_i = X_i \beta_m + V_i$ (selection model)

with
$$E[U_i|D_i,X_i]=0$$
 and $E[V_i|X_i]=0$.

- ightharpoonup Parameter of interest: δ
- Nuisance parameters: β_a and β_m
- $ightharpoonup X_i$ contains $p \gg N$ covariates.
- We assume controlling for $K \ll N$ covariates is sufficient to identify δ .
- Controlling for too many irrelevant covariates may reduce the efficiency of OLS.

Types of Covariates

Relation between covariates and outcome (for some $s_g > 0$):

- ▶ $|\beta_{gj}| > s_g$: covariate X_j has a **strong association** with Y_i
- $0 < |\beta_{gj}| \le s_g$: covariate X_j has a **weak association** with Y_i
- ▶ $\beta_{gj} = 0$: covariate X_j has a **no association** with Y_i

Relation between covariates and treatment (for some $s_m > 0$):

- $|\beta_{mi}| > s_m$: covariate X_i has a **strong association** with D_i
- ▶ $0 < |\beta_{mj}| \le s_m$: covariate X_j has a **weak association** with D_i
- ho $\beta_{mj} = 0$: covariate X_j has a **no association** with D_i
- → All covariates are standardised

Naive Approach I: Structural Model

Apply Lasso to the structural model

$$\min_{\beta_g} \{ E[(Y_i - D_i \delta - X_i \beta_g)^2] + \lambda \|\beta_g\|_1 \}$$

without a penalty on δ and estimate a Post-Lasso model using all covariates with non-zero β_q coefficients.

Covariates that are weakly associated with Y_i could be dropped.

ightarrow Potentially we drop "weak" confounders with 0 $<|eta_{gj}| \le s_g$ and $|eta_{mj}| > 0.$

Covariates that are strongly associated with D_i could be dropped.

 \rightarrow Potentially we drop "strong" confounders with $|\beta_{gj}| > s_g$ and $|\beta_{mj}| > s_m$.

Naive Approach II: Selection Model

Apply Lasso to the selection model

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \}$$

and estimate a Post-Lasso structural model using all covariates with non-zero β_m coefficients.

Covariates that are weakly associated with D_i could be dropped.

ightarrow Potentially we drop "weak" confounders with $0<|eta_{mj}|\leq s_m$ and $|eta_{aj}|>0$.

Double Selection Procedure

Apply Lasso to the reduced form models

$$\min_{\tilde{\beta}_g} \{ E[(Y_i - X_i \tilde{\beta}_g)^2] + \lambda \|\tilde{\beta}_g\|_1 \}, \tag{1}$$

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \}, \tag{2}$$

with $ilde{eta}_gpprox\deltaeta_m\!+\!eta_g$.

2. Take the union of all covariates \tilde{X}_i with either non-zero β_m or $\tilde{\beta}_g$ coefficients and estimate the Post-Lasso structural model

$$Y_i = D_i \delta + \tilde{X}_i \beta_g^* + u_i.$$

Double Selection Procedure (cont.)

Potentially (2) misses "weak" confounders with $0<|\beta_{mj}|\leq s_m$ and $|\beta_{gj}|>0$.

 $\tilde{\beta}_{gj} \approx \beta_g$ when $0 < |\beta_{mj}| \le s_m$, such that the missing "weak" confounders with $|\beta_{gj}| > s_g$ are likely selected in (1).

o Potentially we omit "very weak" confounders with 0 < $|eta_{gj}| \le s_g$ and 0 < $|eta_{mj}| \le s_g$.

Simulation Exercise

Distribution of Estimators

Source: Belloni, Chernozhukov, and Hansen (2014)

Asymptotic Results

Consistency and asymptotic normality

$$\sqrt{N}(\hat{\delta}-\delta)\stackrel{d}{\to}N(0,\sigma).$$

- Model selection step is asymptotically negligible for building confidence intervals.
- ▶ Optimal penalty parameter $\lambda^* = 2c \cdot \Phi^{-1} (1 \gamma/2p)/\sqrt{N}$ (e.g., c = 1.1 and $\gamma \le 0.05$) for "Feasible LASSO"

$$\min_{\beta} E[(Y_i - X_i \beta)^2] + \lambda^* ||\beta||_1.$$

Reference: Belloni, Chernozhukov, and Hansen (2014)

Summary Double Selection Procedure

Advantages:

- Standard inference
- Computationally fast

Disadvantages:

- Effect homogeneity
- Potentially too many covariates selected
- Sparsity assumptions required

Potential Outcome Framework

Notation:

- \triangleright D_i binary treatment dummy (e.g., assignment to training program)
- Y_i(1) potential outcome under treatment (e.g., earnings under participation in training)
- $ightharpoonup Y_i(0)$ potential outcome under non-treatment (e.g., earnings under non-participation in training)

Infeasible parameter:

Individual causal effect: $\delta_i = Y_i(1) - Y_i(0)$

Feasible parameters:

- ▶ Average Treatment Effect (ATE): $\delta = E[Y_i(1) Y_i(0)] = E[\delta_i]$
- Average Treatment Effect on the Treated (ATET): $\rho = E[\delta_i | D_i = 1]$

Identifying Assumptions for ATE

Stable Unit Treatment Value Assumption (SUTVA):

$$Y_i = Y_i(1)D_i + Y_i(0)(1 - D_i)$$

Exogeneity of Covariates:

$$X_i(1) = X_i(0)$$

► No Support Problems:

$$\varepsilon < Pr(D_i = 1 | X_i = x) = p(x) < 1 - \varepsilon$$

for some small $\varepsilon > 0$ and all x in the support of X_i

Conditional Independence Assumption (CIA):

$$Y_i(1), Y_i(0) \perp \perp D_i | X_i = x$$

for all x in the support of X_i

Modified Outcome Method for ATE

$$Y_{i,IPW}^* = W_i Y_i$$

with the Inverse Probability Weights (IPW)

$$W_i = \frac{D_i - p(x)}{p(x)(1 - p(x))}$$

with $p(x) = Pr(D_i = 1 | X_i = x)$.

ATE:
$$\delta = E[Y_{i,IPW}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,IPW}^*$

We can use standard ML methods to estimate $\hat{p}(x)$ (see, e.g., Goller, Lechner, Moczall, Wolff, 2019).

Proof of Identification

$$\begin{split} \delta &= E[Y_{i}(1)] - E[Y_{i}(0)] \stackrel{LiE}{=} \int E[Y_{i}(1)|X_{i} = x] - E[Y_{i}(0)|X_{i} = x] f_{X}(x) dx \\ \stackrel{CiA}{=} \int E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x] f_{X}(x) dx \\ &= \int E[Y_{i}|D_{i} = 1, X_{i} = x] - E[Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx \\ &= \int E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx \\ \stackrel{LiE}{=} \int E\left[\frac{D_{i}Y_{i}}{p(x)} \middle| X_{i} = x\right] - E\left[\frac{(1 - D_{i})Y_{i}}{1 - p(x)} \middle| X_{i} = x\right] f_{X}(x) dx \\ &= \int E\left[\frac{D_{i}Y_{i}}{p(x)} - \frac{(1 - D_{i})Y_{i}}{1 - p(x)} \middle| X_{i} = x\right] f_{X}(x) dx \\ &= \int E\left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i} \middle| X_{i} = x\right] f_{X}(x) dx \stackrel{LiE}{=} E\left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i}\right] \end{split}$$

Reference: Horvitz and Thompson (1952)

Modified Outcome Method with IPW

Advantages:

- Generic approach
- Heterogeneous treatment effects

Disadvantages:

Potentially omitting "weak outcome confounders"

Double/Debiased Machine Learning (DML)

$$Y_{i,DML}^* = \mu_1(X_i) - \mu_0(X_i) + \frac{D_i(Y_i - \mu_1(X_i))}{\rho(X_i)} - \frac{(1 - D_i)(Y_i - \mu_0(X_i))}{1 - \rho(X_i)}$$

with
$$\mu_1 = E[Y_i(1)|X_i = x]$$
 and $\mu_0 = E[Y_i(0)|X_i = x]$.

ATE:
$$\delta = E[Y_{i,DML}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^{N} \hat{Y}_{i,DML}^*$

We can use standard ML methods to estimate $\hat{\mu}_1(x)$, $\hat{\mu}_0(x)$, and $\hat{p}(x)$.

Additional Advantages compared to IPW:

- Treatment and outcome equations are modelled explicitly
- Double robustness property

Reference: Chernozhukov et al., 2017

Proof of Identification

$$\begin{split} \delta &= E \left[\mu_{1}(x) - \mu_{0}(x) + \frac{D_{i}(Y_{i} - \mu_{1}(x))}{p(x)} - \frac{(1 - D_{i})(Y_{i} - \mu_{0}(x))}{1 - p(x)} \right] \\ &= E \left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i} + \frac{(p(x) - D_{i})\mu_{1}(x)}{p(x)} - \frac{(D_{i} - p(x))\mu_{0}(x)}{1 - p(x)} \right] \\ &= \int E \left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i} + \frac{(p(x) - D_{i})\mu_{1}(x)}{p(x)} - \frac{(D_{i} - p(x))\mu_{0}(x)}{1 - p(x)} \right] X_{i} = x \right] f_{X}(x) dx \\ &= \int \left(E \left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i} \middle| X_{i} = x \right] + \frac{E[p(x) - D_{i}|X_{i} = x]}{p(x)} \mu_{1}(x) \right. \\ &\left. - \frac{E[D_{i} - p(x)|X_{i} = x]}{1 - p(x)} \mu_{0}(x) \right) f_{X}(x) dx \\ &= \int E \left[\frac{D_{i} - p(x)}{p(x)(1 - p(x))} Y_{i} \middle| X_{i} = x \right] f_{X}(x) dx = E[Y_{i}(1) - Y_{i}(0)] \end{split}$$

Reference: Robins and Rotnitzki (1995)

DML Cross-Fitting Algorithm

- 1. Partition the data randomly in samples S^A and S^B
- 2. Estimate the nuisance parameters $\hat{\mu}_1^A(x)$, $\hat{\mu}_0^A(x)$, and $\hat{p}^A(x)$ in S^A ; and $\hat{\mu}_1^B(x)$, $\hat{\mu}_0^B(x)$, and $\hat{p}^B(x)$ in S^B with ML
- 3. Calculate the efficient scores in samples S^A and S^B , respectively:

$$\begin{split} \hat{Y}_{i,DML}^{A*} &= \hat{\mu}_{1}^{B}(X_{i}^{A}) - \hat{\mu}_{0}^{B}(X_{i}^{A}) + \frac{D_{i}^{A}(Y_{i}^{A} - \hat{\mu}_{1}^{B}(X_{i}^{A}))}{\hat{p}^{B}(X_{i}^{A})} - \frac{(1 - D_{i}^{A})(Y_{i}^{A} - \hat{\mu}_{0}^{B}(X_{i}^{A}))}{1 - \hat{p}^{B}(X_{i}^{A})} \\ \hat{Y}_{i,DML}^{B*} &= \hat{\mu}_{1}^{A}(X_{i}^{B}) - \hat{\mu}_{0}^{A}(X_{i}^{B}) + \frac{D_{i}^{B}(Y_{i}^{B} - \hat{\mu}_{1}^{A}(X_{i}^{B}))}{\hat{p}^{A}(X_{i}^{B})} - \frac{(1 - D_{i}^{B})(Y_{i}^{B} - \hat{\mu}_{0}^{A}(X_{i}^{B}))}{1 - \hat{p}^{A}(X_{i}^{B})} \end{split}$$

4. Calculate ATE,

$$\hat{\delta} = \frac{1}{2} (\underbrace{\hat{E}[\hat{Y}^{A*}_{i,DML}|S^A]}_{=\hat{\delta}_A} + \underbrace{\hat{E}[\hat{Y}^{B*}_{i,DML}|S^B]}_{=\hat{\delta}_B}),$$

Asymptotic Results for ATE

- ▶ Main Regularity Condition: Convergence rate of nuisance parameters is at least $\sqrt[4]{N}$.
- ▶ ATE can be estimated \sqrt{N} -consistently

$$\sqrt{N}(\hat{\delta}-\delta) \overset{d}{\to} N(0,\sigma)$$

with
$$\sigma^2 = Var(Y_{i,DML}^*)$$
 and $Var(\hat{\delta}) = \sigma^2/N$

▶ Split sample estimator of σ^2

$$\hat{\sigma}^2 = \frac{1}{2} \left(\hat{\sigma}_A^2 + (\hat{\delta}_A - \hat{\delta})^2 \right) + \frac{1}{2} \left(\hat{\sigma}_B^2 + (\hat{\delta}_B - \hat{\delta})^2 \right)$$

for
$$\hat{\delta}=1/2(\hat{\delta}_{A}+\hat{\delta}_{B})$$

Orthogonal Score for ATET

$$Y_{i,ATET}^* = \frac{D_i(Y_i - \mu_0(x))}{p} - \frac{p(x)(1 - D_i)(Y_i - \mu_0(x))}{p(1 - p(x))}$$

with $p = Pr(D_i = 1)$.

ATET:
$$\rho = E[Y_{i,ATET}^*]$$
 and $\hat{\rho} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,ATET}^*$

Asymptotic Variance:

$$\sigma^{2} = E\left[\left(\frac{D_{i}(Y_{i} - \mu_{0}(x))}{p} - \frac{p(x)(1 - D_{i})(Y_{i} - \mu_{0}(x))}{p(1 - p(x))} - \rho \frac{D}{p}\right)^{2}\right]$$

and $Var(\hat{\rho}) = \sigma^2/N$

Reference: Chernozhukov et al., 2017

Proof of Identification for ATET

$$\begin{split} \rho &= E\left[\frac{D_{i}(Y_{i} - \mu_{0}(x))}{\rho} - \frac{\rho(x)(1 - D_{i})(Y_{i} - \mu_{0}(x))}{\rho(1 - \rho(x))}\right] \\ &= \int E\left[\frac{D_{i}Y_{i}}{\rho} - \frac{\rho(x)(1 - D_{i})Y_{i}}{\rho(1 - \rho(x))} - \frac{(D_{i} - \rho(x))\mu_{0}(x)}{\rho(1 - \rho(x))} \middle| X_{i} = x\right] f_{X}(x) dx \\ &= \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{\rho} - \frac{\rho(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{\rho(1 - \rho(x))} - \frac{E[D_{i} - \rho(x)|X_{i} = x]}{\rho(1 - \rho(x))} \mu_{0}(x)\right) f_{X}(x) dx \\ &= \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{\rho} - \frac{\rho(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{\rho(1 - \rho(x))}\right) f_{X}(x) dx \\ &= \int \frac{\rho(x)}{\rho} \left(E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x]\right) f_{X}(x) dx \\ &= \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x]) f_{X|D=1}(x) dx \\ &= \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 1, X_{i} = x]) f_{X|D=1}(x) dx \\ &= E[Y_{i}(1) - Y_{i}(0)|D_{i} = 1] \end{split}$$

Other Orthogonal Scores

- ► LATE (see Chernozhukov et al., 2018).
- ▶ Difference-in-differences (see, e.g., Chen, Nie, and Wager, 2018, Zimmert, 2019).
- ► Multiple treatments (see, e.g., Farrell, 2015).
- Continuous treatments (see, e.g., Graham and Pinto, 2018).
- ► Mediation analysis (see Tchetgen Tchetgen and Shpitser, 2012).
- Synthetic control group method (see, e.g., Arkhangelsky et al., 2018).