donde H es la imagen de A. Se ilustrará esto con una gráfica para el caso de n=3.

En \mathbb{R}^3 la imagen de A será un plano o una recta que pasa por el origen (ya que éstos son los únicos subespacios de \mathbb{R}^3 de dimensión uno o dos). Vea la figura 6.5. El vector que minimiza se denota por \mathbf{u} . De la figura (y del teorema de Pitágoras) se deduce que $|\mathbf{y} - A\mathbf{u}|$ es mínima cuando $\mathbf{y} - A\mathbf{u}$ es ortogonal a la imagen de A.

Es decir, si $\bar{\mathbf{u}}$ es el vector que minimiza, entonces para todo vector $\mathbf{u} \in \mathbb{R}^2$

$$A\mathbf{u} \perp (\mathbf{y} - A\overline{\mathbf{u}}) \tag{6.2.5}$$

Usando la definición de producto escalar en \mathbb{R}^n , se encuentra que (6.2.5) se vuelve

$$A\mathbf{u} \cdot (\mathbf{y} - A\overline{\mathbf{u}}) = 0$$

 $(A\mathbf{u})^{\mathsf{T}} (\mathbf{y} - A\overline{\mathbf{u}}) = 0$ fórmula (2.5.6)
 $(\mathbf{u}^{\mathsf{T}} A^{\mathsf{T}}) (\mathbf{y} - A\overline{\mathbf{u}}) = 0$ teorema 2.5.1 ii)

0

$$\mathbf{u}^{\mathsf{T}}(A^{\mathsf{T}}\mathbf{y} - A^{\mathsf{T}}A\overline{\mathbf{u}}) = 0 \tag{6.2.6}$$

La ecuación (6.2.6) se cumple para todo $\mathbf{u} \in \mathbb{R}^2$ sólo si

$$A^{\mathsf{T}}\mathbf{y} - A^{\mathsf{T}}A\bar{\mathbf{u}} = 0 \tag{6.2.7}$$

Al despejar $\overline{\mathbf{u}}$ de (6.2.7) se obtiene

Figura 6.5 y – Au es ortogonal a Au.

Solución al problema de mínimos cuadrados para un ajuste por línea recta

Si A y y son como se definieron en (6.2.3), entonces la recta y = mx + b da el mejor ajuste (en el sentido de mínimos cuadrados) para los puntos $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ cuando

$$\begin{pmatrix} b \\ m \end{pmatrix} = \overline{\mathbf{u}} = (A^{\mathsf{T}}A)^{-1} A^{\mathsf{T}} \mathbf{y} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 (6.2.8)

Aquí se ha supuesto que A^TA es invertible. Éste siempre es el caso si los n datos no son colineales. La demostración de este hecho se deja para el final de esta sección.