10/647,624

DE 19733239

1/3,AB,LS/3 (Item 1 from file: 351)
DIALOG(R)File 351:Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

012316189

WPI Acc No: 1999-122295/ 199911

XRAM Acc No: C99-035988 XRPX Acc No: N99-089326

Godet roller - has passive or active radial and axial magnet bearings for

a long life and low wear in use

Patent Assignee: EAAT ELEKTRISCHE AUTOMATISIERUNGS & ANTR (EAAT-N)

Inventor: BUDIG P K; WERNER R

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
DE 19733239 A1 19990204 DE 1033239 A 19970801 199911 B

Priority Applications (No Type Date): DE 1033239 A 19970801

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19733239 A1 9 D02J-001/22

Abstract (Basic): DE 19733239 A

The bearing mounting system, for heated and unheated godet rollers, uses an active and/or passive magnetic bearing in the radial and axial directions. The drive motor is between the radial bearings, and the axial bearing is outside the assembly.

USE - The godet roller is for drawing yarn and filament materials, where they pass round the roller a number of times in their path through the unit.

ADVANTAGE - The magnet bearing system has a longer life with less wear and giving a smooth running, in comparison with conventional roller bearings.

Dwg.4/8

?

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

[®] Offenlegungsschrift[®] DE 197 33 239 A 1

② Aktenzeichen:② Anmeldetag:

197 33 239.0 1. 8. 97

(43) Offenlegungstag:

4. 2.99

⑤ Int. Cl.⁶: **D** 02 J 1/22

D 02 J 13/00 F 16 C 32/04 H 02 K 17/00 H 02 K 19/00 H 02 K 7/08

7) Anmelder:

Elektrische Automatisierungs- und Antriebstechnik EAAT GmbH Chemnitz, 09120 Chemnitz, DE

(72) Erfinder:

Budig, Peter Klaus, Prof.Dr.sc.techn.Dr.h.c, 09122 Chemnitz, DE; Werner, Ralf, Dr.-Ing., 09117 Chemnitz, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) Antrieb und Lagerung von Galetten
- Beheizte und unbeheizte Galetten werden vollständig magnetisch gelagert. Das bedeutet, daß die Lagerung durch radiale und axiale magnetische Lager erfolgt. Diese können sowohl aktiver als auch passiver Art sein. Die radiale und axiale Lagerung kann auch durch Magnetanordnungen mit konischem Luftspalt erfolgen. Für die radiale Lagerung und das Antreiben der Galette können kombinierte Motor-Lager-Einheiten verwendet werden. Im letzteren Fall ist auch die Lagerung in x-, y- und z-Richtung durch eine kombinierte Motor-Lager-Einheit und ein Wälzlager möglich.

BNCDOOLD: -DE 10733330A1 I

Beschreibung

In der Textilindustrie werden Galette zum Verstrecken von Fäden eingesetzt. Hierzu werden die Fäden ein oder mehrerer Male um in die rotierende Oberfläche der Galette gewickelt. Die Galettenoberfläche kann beheizt oder unbeheizt sein. Die Lagerung der rotierenden Teile kann erfolgen

Tabelle 1

Wälzlager für axiale und radiale Fixierung Gleitlager für axiale und radiale Fixierung Luftlager für axiale und radiale Fixierung Hydrodynamische Lager für axiale und radiale Fixierung Hydrostatische Lager für axiale und radiale Fixierung

In der praktischen Anwendung haben sich Wälzlager

durchgesetzt.

wurde mit der Europapatentschrift Neuerdings EP 0 770 719 A1 eine hybride Lagerung bekannt, bei der 20 die radiale und axiale Lagerung so erfolgt, daß ein magnetisches Lager und ein Wälzlager eingesetzt werden. Ersteres dient der radialen, letzteres der radialen und axialen Fixierung der rotierenden Teile.

Wälzlager haben den Nachteil begrenzter Lebensdauer, 25 die mit steigender Galettendrehzahl mehr als proportional abnimmt. Erhöhte Temperatur der Umgebung, wie sie die Heizung bedingt, verursacht eine weitere Verringerung der Lebensdauer von Wälzlagern.

Die genannten Nachteile haften auch der, in der Patent- 30 schrift EP 0 770 719 A1 dargestellten Lösung an.

Ziel der vorliegenden Schrift ist es, die genannten Nachteile zu vermeiden. Das erfolgt dadurch, daß die Galettenlagerung in radialer und axialer Richtung durch magnetische Lager erfolgt.

Als magnetische Lager können sowohl elektromagnetische als auch permanentmagnetische Anordnungen (1) eingesetzt werden. Dabei sind (1) bzw. (2) die Permantmagneten, die wahlweise, so wie dargestellt, verwendet werden können. Im ersteren Fall spricht man von aktiven und im 40 letzteren Fall von passiven Magnetlagem. Im ersten Fall erfolgt die Lagerung durch Ausnutzung der Anziehungskräfte an ferromagnetischen Trennflächen gemäß

$$F = \frac{1}{2\mu_0} AB^2$$

mit
$$\mu_0 = 1,256 \cdot 10^{-6} \frac{Vs}{Am}$$

A = Oberfläche

B = magnetische Induktion $\frac{Vs}{m^2}$

Derartige Anordnungen sind mechanisch instabil. Eine stabile mechanische Fixierung erfordert:

- die Messung der Position und

- die Regelung der Lage des rotierenden Teiles durch Aufbau einer Regelschleife (closed loop).

Die praktische Anordnung für ein elektromagnetisches radiales Lager zeigt Fig. 3 mit den elektromagnetischen Halbpolen (1) dem Jochring (2) und der Welle (3).

Für elektromagnetische Axiallager zeigt Fig. 4 mit (1) in stehenden elektrisch erregten Systeme, die Welle (2) und eine ferromagnetische Scheibe (3).

Im Fall der permanentmagnetischen Lagerung werden abstoßende Kräfte genutzt, die zwischen magnetischen Polen gleicher Polarität entstehen Fig. 1.

Die Permanentmagnete 1 bzw. 2 erfahren die abstoßenden Kräfte F, die gemäß action = reactio in gleicher Größe an beiden Magneten auftreten. Soll der Effekt genutzt werden, so ist eine rotationssymmetrische Anordnung (Fig. 2) zu schaffen. In dieser herrscht stabiles Gleichgewicht.

Es sind in Fig. 2 (1) die zu lagernden Welle (2) die auf der Welle befestigenden Magnetringe mit radialer Polarisation und 3 die stehenden Magnetringe ebenfalls mit radialer Polarisation. So wie in Fig. 2a dargestellt, stehen sich axiale wechselnde Polaritäten und in Fig. 2b axiale nicht wechselnde Polaritäten gegenüber. Diese Anordnung dient der radialen Fixierung. Für die axiale Fixierung mit Permanentmagneten kann die in der Patentschrift DE 44 23 492 A1 beschriebene Anwendung ebenfalls verwendet werden.

Es ist möglich, die folgenden technischen Ausführungen vollständig mit magnetisch gelagerten Galetten zu realisie-

Radiale aktives Magnetlager passives Magnetlager aktives Magnetlager passives Magnetlager axiale Fixierung aktives Magnetlager aktives Magnetlager passives Magnetlager passives Magnetlager

Galettenträger, Welle, Lagerung und Antriebsmotor sollen eine Monoblockeinheit bilden. Diese kann gemäß den in Fig. 5a und b dargestellten Prinzipien aufgebaut werden. Dort sind vorhanden, die zu lagernde Welle (1) auf der sich die rotierenden Teile (3) und (5) der magnetischen radialen Lager und das rotierende Teil (8) des axialen Lagers und der Rotor (10) des Antriebsmotors befinden.

Das stehende Rohr (12) trägt die nicht rotierenden Baugruppen (2) und (4) der radialen und (6) und (7) des axialen Magnetlagers und der Stator (9) des Antriebsmotors. An der Außenseite des Rohres befinden sich die Heizanordnung (11) für den Galettenkörper (13).

In Fig. 5a ist die Anwendung für außen liegenden Motor mit Innenläufer dargestellt. In Fig. 6 ist die Anordnung dargestellt, wenn der Motor zwischen den Radiallagern angeordnet ist. Es gelten die gleichen Bezeichnungen wie in Fig. 5a. Das stehende Rohr (12) trägt die nicht rotierenden Baugruppen (2) und (4) der radialen und (6) und (7) des axialen Magnetlagers und der Stator (9) des Antriebsmotors.

An der Außenseite des Rohres befinden sich die Heizanordnung (11) für den Galettenkörper (13).

In Fig. 5 können die Typen der magnetischen Lager (wie in Tabelle 1 angegeben) miteinander kombiniert werden.

Es ist auch möglich, die axiale und radiale Fixierung der Welle mittels konischer Magnetlager aktiven oder passiven Art zu realisieren. In diesem Fall ist die Geometrie wie in Fig. 6 ausgebildet. Es entsteht ein Kraftvektor (F1) bzw. (F2), der senkrecht auf der Oberfläche des Luftspaltes steht und in eine radiale (FR1) bzw. (FR1) und eine axiale (Fa1) bzw. (Fa2) Komponente zerlegt werden kann. Dadurch wird es möglich mit nur 2 magnetischen Lagern anstelle der oben beschriebenen 3 magnetischen Lagern (2 radialen, 1 axiales Lager) auszukommen. Das betrifft die Ausführung aktiver wie auch passiver magnetischer Lager. Mit einem vollständig magnetisch gelagertem System kann auch ein Außenläu25

30

45

fermotor für den Galettenantrieb benutzt werden. In Fig. 7 ist das für den der Fall "Motor befindet sich zwischen den Lagern" dargestellt. Es ist auch möglich, den Fall "Motor befindet sich außerhalb der magnetischen Lager" realisierbar. Auf der stehenden Welle (1) befinden sich die stehenden Teile (4) und (5) der Radiallager und (6) und (8) des Axiallagers und der Innenstator (9) des Motors. Letzterer trägt die Wicklung des Motors, die in außen liegenden Nuten eingelegt ist. Das rotierende Galettenrohr (11) trägt am Innendurchmesser die Bauteile (2) und (3) der radialen Lager und 10 (7) des Axiallagers. Diese Anordnung mit Außenläufermotor kann auch mit konischen Magnetlagern ausgeführt wer-

Der Antriebsmotor der Galette kann sowohl ein Asynchron- als auch ein Synchronmotor sein. Das ist unabhängig 15 von der Motorbauweise (Außen- oder Innenläufermotor).

Bekannt geworden sind auch magnetische Lageranordnungen bei denen das bewickelte Blechpaket des Antriebsmotors die Funktion von Antriebsmotor und aktiven Magnetlager übernimmt. Das ist für asynchrone und synchrone 20 Bauweise des Motors realisierbar.

Mit einer derart kombinierten Magnetanordnung Antrieb und Lager lassen sich die folgenden Bauweisen für Galetten realisieren:

1. 2 kombinierte Magnetanordnung für radiale Fixierung und 1 axiales Magnetlager für axiale Fixierung

2. 1 kombinierte Magnetanordnung für radiale Fixierung und 1 Wälzlager für radiale und axiale Fixierung.

In Fig. 8a und b sind diese Anordnungen dargestellt. Im Fall 1 befindet sich auf der Welle (1) befinden sich die rotierenden Teile (3) und (5) der kombinierten Magnetanordnung sowie die Scheibe (7) des Axiallagers. In dem stehenden Rohr (9) befinden sich die Statoren (2) und (4) der kombinierten Magnetanordnung und die Statoren (6) und (8) des

Die Anordnung 2 zeigt Fig. 8b. Auf der Welle (1) befinden sich der rotierende Teil der kombinierten Magnetanordnung (3) und der Innenring des Wälzlagers (4). Im stehen- 40 den Rohr (6) befindet sich der Stator (2) der kombinierten Magnetanordnung und der Außenring des Wälzlagers (5).

Patentansprüche

1. Magnetische Lagerung und Antriebe von beheizten und unbeheizten Galetten für das Verziehen von textilen Fasern dadurch gekennzeichnet, daß die Funktion der Lagerung in radialer und axialer Richtung durch aktive und/oder passive magnetische Lager erfolgt, 50 wobei der Antriebsmotor zwischen den radialen Lagern angeordnet ist und sich das axiale Lager außerhalb dieser Anordnung befindet.

2. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 1 dadurch gekennzeichnet, daß sich der 55 Antriebsmotor neben den radialen Lagern und dem

axialen Lager befindet.

3. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 2 dadurch gekennzeichnet, daß sich das Axiallager am Wellenende auf der Motorseite befindet. 60.

- 4. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 2 dadurch gekennzeichnet, daß sich das Axiallager am Wellenende auf der Seite der Radialla-
- 5. Magnetische Lagerung und Antrieb von Galetten 65 nach Anspruch 1 dadurch gekennzeichnet, daß die radialen und das axiale Lager aktive magnetische Lager

- 6. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 1 dadurch gekennzeichnet, daß die radialen und das axiale Lager passive magnetische Lager sind.
- 7. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 1 dadurch gekennzeichnet, daß kombinierte Lösungen verwendet werden bei denen ein Teil der Lager aktive und ein Teil der Lager passive magnetische Lager sind.
- 8. Anordnung nach Anspruch 1 dadurch gekennzeichnet, daß die Antriebsmotoren Asynchronmotoren sind. 9. Anordnung nach Anspruch 1 dadurch gekennzeichnet, daß die Antriebsmotoren Synchronmotoren sind. 10. Anordnung nach Anspruch 1 dadurch gekennzeichnet, daß eine stehende Welle die Baugruppen des Motors und der Lager trägt und daß das diese umgebende Rohr die rotierenden Baugruppen des Motors und der Lager trägt, wobei der Antriebsmotor ein Au-Benläufermotor ist.
- 11. Anordnung nach Anspruch 10, dadurch kennenzeichnet, daß der Antriebsmotor ein Asynchronmotor
- 12. Anordnung nach Anspruch 10 dadurch gekennzeichnet, daß der Antriebsmotor ein Synchronmotor
- 13. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 1 dadurch gekennzeichnet, daß die magnetische Lagerung und der Antriebsmotor in einer kombinierten Anordnung zusammengezogen sind, so daß zwei solcher Anordnungen die radialen Lagerung und die Antriebsaufgabe erfüllen und die axiale Lagerung durch ein axiales Magnetlager realisiert wird.
- 14. Magnetische Lagerung und Antrieb von Galetten nach Anspruch 13 dadurch gekennzeichnet, eine kombinierte Lager/Antriebseinheit vorhanden ist und als zweites Radiallager und zur axialen Fixierung ein Wälzlager verwendet wird.

Hierzu 6 Seite(n) Zeichnungen

- Leerseite -

DE 197 33 239 A1 D 02 J 1/22 4. Februar 1999

Fig. 1 Passives Magnetlager

Fig. 2 Passives radiales magnetisches Lager

DE 197 33 239 A1 D 02 J 1/224. Februar 1999

Fig. 3 Aktives magnetisches Lager

Fig. 6 Konisches Magnetlager

DE 197 33 239 A1 D 02 J 1/22 4. Februar 1999

Fig. 4 Aktives magnetisches Axiallager

DE 197.33 239 A1 D 02 J 1/22 4. Februar 1999

Fig. 5a Monoblockeinheit mit außen liegendem Motor

Fig. 5b Monoblockeinheit mit innen liegendem Motor

DE 197 33 239 A1 D 02 J 1/22 4. Februar 1999

Offenlegungstag: 4. Februar 1999

Fig. 7 Galettenlagerung mit Außenläufermotor

DE 197 33 239 A1 D 02 J 1/22 4. Februar 1999

Fig. 8 Magnetisch gelagerte Galette mit kombinierter Magnetanordnung

b. mit einer aktiven Lagerung und einem mechanischen Lager

Fig. 8b