Example: Suppose that 0.1% of individuals in a population have a particular disease. There is a diagnostic test for the disease, however, the test is not completely accurate: 95% of those who have the disease will test positive and 90% of those who don't have the disease will test negative. Suppose a person is randomly selected from the population and given the test.

$$P(\text{has disease}) = 0.001$$
 $P(\text{doesn't have disease}) = 1.0.001$ $= 0.999$

$$P(\text{positive} | \text{has disease})$$
 $P(\text{negative} | \text{doesn't have disease})$

$$= 0.95 \qquad = 0.9$$

False negative
$$P(\text{negative} | \text{has disease})$$
 False Positive $P(\text{positive} | \text{doesn't have disease})$

$$= 1 - 0.95 = 1 - 0.9 = 0.1$$

$$= 0.05$$

doesn't have disease and positive

doesn't have disease and negative

conditional probabilities

$$P(\text{ has disease } \cap \text{ positive})$$
= $P(\text{ has disease })P(\text{ positive } | \text{ has disease}) = (0.001)(0.95)$
= $P(\text{ has disease } \cap \text{ negative})$
= $P(\text{ has disease } \cap \text{ negative } | \text{ has disease}) = (0.001)(0.05)$
= $P(\text{ has disease })P(\text{ negative } | \text{ has disease}) = (0.001)(0.05)$
= $P(\text{ doesn't have disease } \cap \text{ positive } | \text{ doesn't have disease})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease } \cap \text{ negative})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease})$
= $P(\text{ doesn't have disease } \cap \text{ negative } | \text{ doesn't have disease})$

	Test positive	Test negative	Total
Has disease	0.00095	0.00005	0.001
Doesn't have disease	0.0999	0.8991	0.999
Total	0.10085	0.89915	1

a) What is the probability that this person will test positive?

$$P(\text{positive})$$
= $P(\text{has disease } \cap \text{ positive}) + P(\text{doesn't have disease } \cap \text{ positive})$
= $0.00095 + 0.0999 = 0.10085$

b) What is the probability that this person has the disease, given that they have tested positive?

$$P(\text{has disease} | \text{positive}) = \frac{P(\text{has disease } \cap \text{ positive})}{P(\text{positive})} = \frac{0.00095}{0.10085}$$

$$\approx 0.0094$$

$$\text{disease only has a 0.94% chance of having the disease}$$

Probability Rules:

Let S be a sample space of a random phenomenon and let A and B be two events consisting of outcomes of S.

• Total Probability Rule:

$$P(S) = 1$$

• Complement Rule:

$$P(A) = 1 - P(A^{C})$$

• General Addition Rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Disjoint Events:

$$P(A \cap B) = 0$$

• Addition Rule for Disjoint Events:

$$P(A \cup B) = P(A) + P(B)$$

• Conditional Probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• General Multiplication Rule:

$$P(A \cap B) = P(B)P(A|B)$$
$$= P(A)P(B|A)$$

• Independent Events:

$$P(A|B) = P(A)$$

• Multiplication Rule for Independent Events:

$$P(A \cap B) = P(A)P(B)$$

Chapter 13: Random Variables

A random variable is a variable that associates a numerical value with Co capital letters X each outcome of a random event.

A random variable is said to be:

- discrete if its set of possible values is finite or countably infinite (isolated points on a number line).

• continuous if its set of possible values is uncountably infinite (an entire interval on a number line).

- body temperature of a hospital patient
 fuel efficiency of an automobile
 length of time an employee is late for work
 - distance traveled by a student from home to the university

Example: Flip a coin.

X = number of heads observed.

Outcome	Value of X
Т	0
Н	1

The **probability distribution** (or probability model) of a random variable is a function that associates a probability to:

- \bullet each value of a discrete random variable X.
- any interval of values of a continuous random variable X (using a density curve). —) Chapter 5

Notation: P(X = x) or P(x)

The probability distribution P(x) of a discrete random variable satisfies:

- $0 \le P(x) \le 1$, for each value x of X
- $\sum_{x} P(x) = 1$? Sum using all values x of X

Example: Flip a fair coin.

X = number of heads observed.

Probability
$$\begin{array}{c|cccc}
x \mid P(x) & P(x) & \text{Histogram} \\
\hline
0 & \frac{1}{2} = 0.5 & 1 \\
\hline
1 & \frac{1}{2} & \\
\hline
0 & 1 & \\
\end{array}$$

$$6 \times 6 = 36$$

Example: Roll two fair dice.

Outcomes:

$$(1,1)$$
 $(1,2)$ $(1,3)$ $(1,4)$ $(1,5)$ $(1,6)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$ $(2,5)$ $(2,6)$ $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$ $(3,5)$ $(3,6)$ $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$ $(4,5)$ $(4,6)$ $(5,1)$ $(5,2)$ $(5,3)$ $(5,4)$ $(5,5)$ $(5,6)$ $(6,1)$ $(6,2)$ $(6,3)$ $(6,4)$ $(6,5)$ $(6,6)$

a) X = sum of the two dice

$$b(x=9)$$

Compute the following:

i)
$$P(X \le 4) = P(2) + P(3) + P(4)$$

include = $\frac{1}{36} + \frac{2}{36} + \frac{3}{36}$
 $\frac{3}{36} + \frac{3}{36} = \frac{3}{36}$
 $\frac{3}{36} + \frac{3}{36} = \frac{3}{36}$

ii)
$$P(6 \le X < 11) = P(6) + P(7) + P(8) + P(9) + P(10)$$

include don't = $\frac{5}{36} + \frac{6}{36} + \frac{5}{36} + \frac{4}{36} + \frac{3}{36}$
include = $\frac{23}{36} \sim 0.639$

iii)
$$P(X \ge 10) = \rho(10) + \rho(11) + \rho(12)$$

= $\frac{3}{36} + \frac{2}{36} + \frac{1}{36}$
= $\frac{6}{36} \sim 0.167$

b) X = maximum of the numbers showing on the two dice

$x \mid P(x)$		
1		
36	P(x) 0 3	
2 3	0 25	
36		
3 5 36	0.5	
2 3/36 3 5/36 4 3/36 5 9/36	0.15-	
36	0.05	
5 9	0.05	
36	1 2 3 4 5 6	— ×
6 11 36		
36		
total = 1		Page 4

Expected Value or Mean

To describe the center and spread of a probability distribution of a random variable, we often use the mean and the standard deviation, respectively.

The probability distribution is a model, so the mean and the standard deviation are parameters of this model.

Notation: $\mu = \text{mean}$ $\sigma = \text{standard deviation}$

Let X be a discrete random variable with probability distribution P(x). The mean or **expected value** of X is given by

$$\mu = E(X) = \sum_{x} x P(x)$$

Example: Roll two fair dice.

a) X = sum of the two dice.

$$E(X) = 2(\frac{1}{36}) + 3(\frac{2}{36}) + 4(\frac{3}{36}) + 5(\frac{4}{36}) + 6(\frac{5}{36}) + 7(\frac{6}{36}) + 8(\frac{5}{36}) + 9(\frac{4}{36}) + 10(\frac{3}{36}) + 11(\frac{2}{36}) + 12(\frac{1}{36}) + 12(\frac{$$

b) X = maximum of the numbers showing on the two dice

$$E(X) = 1\left(\frac{1}{36}\right) + 2\left(\frac{3}{36}\right) + 3\left(\frac{5}{36}\right) + 4\left(\frac{7}{36}\right) + 5\left(\frac{9}{36}\right) + 6\left(\frac{11}{36}\right)$$

$$= 161 \quad \simeq 4.47$$

Example: You draw a card from a standard deck of 52 cards. If you draw a black card, you win nothing. If you draw a diamond, you win \$5. If you draw a heart, you win \$10, unless it is the Queen of Hearts. You win \$30 for the Queen of Hearts.

a) Create a probability distribution for the amount of money you win at this game. X = amount of Winnings

Outcome	x	P(x)	
black	0	12	(36)
diamond	5	4	$\left(\frac{13}{52}\right)$
heart (not queen)	10	12/52	
Queen of Hearts	30	52	
	ł.		

b) Find your expected winnings.

$$E(x) = o(\frac{1}{3}) + 5(\frac{1}{4}) + 10(\frac{12}{53}) + 30(\frac{1}{53})$$

$$= 0 + \frac{5}{4} + \frac{120}{52} + \frac{30}{52}$$

$$= \frac{215}{52} \approx 14.13$$

c) Would you pay \$6 to play this game? How about \$2?

\$16: No, \$67
$$E(x) = $44.13$$

\$12: Yes, \$12 \tau \text{E(x)} = \$44.13

a) Create a probability distribution for the number of females chosen to fill the two positions. $\chi = \text{number of females hired}$

	0:	mm
$x \qquad P(x)$		$\frac{3}{5} \cdot \frac{2}{4} = \frac{6}{20} = 0.3$
0 0.	3	5 4 20
0.	6 1:	mf or fm
3 0-		$\frac{3}{5} \cdot \frac{2}{4} + \frac{2}{5} \cdot \frac{3}{4}$ = $\frac{12}{30} = 0.6$
1	9:	$\frac{ff}{3} \cdot \frac{1}{4} = \frac{2}{20} = 0.1$

b) Find the expected number of females hired.

$$E(x) = o(0.3) + 1(0.6) + 2(0.1)$$

= 0.8

Variance and Standard Deviation

The variance of a random variable is the expected value of the squared deviations from the mean.

Let X be a discrete random variable with probability distribution P(x) and mean μ . The **variance** of X is:

$$\sigma^2 = \operatorname{Var}(X) = \sum_{x} (x - \mu)^2 P(x)$$

and the standard deviation is

$$\sigma = SD(X) = \sqrt{\operatorname{Var}(X)}$$

Alternative formula for variance:

$$\sigma^2 = \operatorname{Var}(X) = \sum_x x^2 P(x) - \mu^2$$

Example: Card Game

$$M = E(x) = \frac{215}{52} \approx 4.13$$

			•	0 0
Outcome	x	P(x)	$(x-\mu)^2 P(x)$	
Black	0	$\frac{1}{2}$	(0-312)37	SD(x)
Diamond	5	$\frac{1}{4}$	(5-215)2.1	= J Var(x)
Heart (not queen)	10	$\frac{3}{13}$	$(10 - \frac{215}{52})^2 \cdot \frac{3}{13}$	= 5 29.54 ~ 5.44
Queen of Hearts	30	$\frac{1}{52}$	$(30 - \frac{215}{50})^2 \cdot \frac{1}{50}$	

Example: Roll two fair dice.

$$M = E(x) = \frac{161}{36}$$

X = maximum of the numbers showing on the two dice