

15 January, 2005

MT612X RF Transceiver IC Data Sheet

15 January, 2005 V1.3

Table of contents

	12X RF Transceiver IC Data Sheet	
Intro	duction	4
1.1	A 8/4	
1.2		
1.3		
1.4	MT612X Function Block Diagram	5
1.5	PinDescription	6
2	Functional Description	
2.1	Receiver	8
2.2		8
2.3		
2.4	1 7 7	
:	2.4.1 SynthesizerSystemDescription	
:	2.4.2 Synthesizer Frequency Programming for RX Mode	
:	2.4.3 Synthesizer Frequency Programming for TX Mode	
:	2.4.4 Digital Calibration Loop	10
2	2.4.5 Fast-AcquisitionSystem	
2.5	Voltage Control Crystal Oscillator	11
2.6	Regulator	11
3	MT612X Hardware Control Pin Descriptions	
4	Electrical Characteristics	13
4.1	AbsoluteMaximumRatings	13
4.2		
4.3	DCSpecifications	14
5	Receiver Specifications	15
6	Transmitter Specifications	18
7	Specification for TX VCO and Buffer	20
8	FrequencySynthesizerSpecifications	21
9	Voltage Control Crystal Oscillator(VCXO)Specifications	23
10	Regulator Specifications	24
11	OrderInformation	
12	Package Dimensions	26
13	FootprintDimension	27

15 January, 2005 V1.3

15 January, 2005 V1.3

Introduction

1.1 Features

Receiver

- Very low IF architecture
- Quad band differentialinputLNAs
- Quadrature RF mixers
- Fully integrated channel filter
- More than 100 dB gain
- More than 110 dB control range
- Image-reject down conversion to baseband

Transmitter

- Precision IQ modulator
- Translationlooparchitecture
- Fully integrated wideband TX VCO
- Fully integrated TX loop filter

■ Frequency Synthesizer

- Single integrated, fully p rogrammable fractional-Nsynthesizer
- Fully integrated wideband RF VCO
- Fast settling time suitable for multi-slot GPRS application

■ Voltage Control Crystal Oscillator (VCXO)

- 26 MHz crystal oscillator capable of supporting
 13 MHz / 26 MHz output clock
- Programmable capacitor array for coarse tuning
- Internal varactor for fine tuning

■ Regulators

- Built-in low-noise, low-dropout (LDO) regulators
- Lowpowerconsumption
- QFN (Quad Flat Non-lead) Package 56-pin SMD
- 3-wire serial interface
- MT612X is fabricated using a 0.35 mm BiCMOS process

1.2 Applications

E-GSM 900 / DCS 1800 dual-bandhandsets
E-GSM 900 / PCS 1900 dual-bandhandsets
GSM 850 / PCS 1900 dual -bandhandsets
EGSM 900 / DCS 1800 / PCS 1900 triple -bandhandsets
GSM 850 / DCS 1800 / PCS 1900 triple -bandhandsets
GSM 850 / E-GSM 900 / DCS 1800 / PCS 1900 quad -bandhandsets

1.3 General Description

MT612X is a highly integrated RF transceiver IC for multi-band Global Systems for Mobile communication (GSM) and General Packet Radio Service (GPRS) cellular system applications. The MT612X includes four LNAs, two RF quadrature mixers, an integrated channel filter, programmable gain amplifiers (PGA), an IQ demodulator for the receiver, a precision IQ modulator with offset PLL forthetransmitter, two internal TXV COs, a VCXO, on-chip regulators, and a fully programmable sigma-delta fractional-N synthesizer with an on-chip RF VCO. The MT612X also includes control circuits to enable different operating modes. The device is housed in a 56-pin QFN SMD package with a downset paddle for additional grounding.

A functional block diagram of the MT612X and its pin assignment are shown in Figure 1.

15 January, 2005 V1.3

1.4 MT612X Function Block Diagram

15 January, 2005 V1.3

Figure 1 MT612XFunctionBlockDiagram

1.5 Pin Description

Pin No.	PinName	Description
1	VCCTXVCO	TX VCO supply voltage and Regulator 1 (TX VCO) voltage output
2	CREG1	Regulator 1 external noise bypass capacitor
3	VBAT1	Battery supply for Regulator 1
4	VCCRF	TRX RF and TX BUF block supply voltage and Regulator 1 (TRX) voltage output
5	PCSRF	Receiver PCS 1900 RF differential positive input
6	PCSRFB	Receiver PCS 1900 RF differential negative input
7	DCSRFB,	Receiver DCS 1800 RF differential negative input
8	DCSRF.	Receiver DCS 1800 RF differential positive input
9	GSMRFB.	Receiver E-GSM 900 RF differential negative input
10	GSMRF.	Receiver E-GSM 900 RF differential positive input
11	AMPSRF.	Receiver GSM 850 RF differential negative input
12	AMPSRFB.	Receiver GSM 850 RF differential positive input
13	CREG2	Regulator 2 external noise bypass capacitor
14	ENREG	Regulator 1 & 2 enable input for TRX/ RFVCObuffer/ Synthesizer/VCXO
15	VBAT2	Battery supply for Regulator 2
16	VCCRFBUF	RF VCO buffer supply voltage and Regulator 2 (SX) voltage output
17	GNDRFBUF	RF VCObufferground
18	Reserved	Keep this pin floating
19	GNDRFVCO	RFVCOground
20	LFCAP	Loop filter main capacitor input
21	VCCRFVCO	RF VCO supply voltage and Regulator 2 (RF VCO) voltage output
22	GNDRFCP	Synthesizer charge pump and PFD ground
23	NC	No connection
24	VCCRFCP	Synthesizer charge pump and PFD supply voltage
25	VCCSYN	Synthesizersupplyvoltage
26	GNDSYN	Synthesizerground
27	VCXOCXR	VCXO internal / external output buffer control
28	VCXOCAP	VCXO coarse tuning capacitor and fine tuning varactor

15 January, 2005 V1.3

29	XTAL	26 MHz crystal referenceinput
30	VCCVCXO	VCXO supply voltage
31	REFOUT	13 MHz / 26 MHz reference buffer output
32	GNDVCXO	VCXOground
33	VCXOFRQ	Reference output buffer 13 MHz / 26 MHz selection
34	GNDMOD	SynthesizerSigma-Deltamodulatorground
35	VCCMOD	Synthesizer Sigma-Delta modulator supply voltage and Regulator 3 output
36	GNDD	3-wire digital circuit ground
37	VCCD	Supply voltage for 3 -wire digital circuit and supply voltage for Regulator 3
38	ENRFVCO	Regulator 2 enable input for RFVCO
39	EN	3-wire serial bus enable input
40	CLK	3-wire serial bus clock input
41	SDATA	3-wire serial bus data input
42	AUXOUT	Auxiliary test output
43	QB	Q path negative baseband input/output
44	Q	Q path positive baseband input/output
45	IB	I path negative baseband input / output
46	1	I path positive baseband input/output
47	VCCIQ	IF circuit supply voltage
48	VCCIF	Transmitter PFD and Receiver IF circuit supply voltage
49	VCCTXCP	Transmitter charge pump supply voltage
50	NC	No connection
51	GNDTXCP	Transmitter charge pump ground
52	TXOGSM	TXVCO buffer transmit output for GSM
53	GNDTXVCO	TXVCO ground
54	NC	No connection
55	GNDTXVCO	TXVCOground
56	TXODPCS	TXVCO buffer transmit output for DCS/PCS
50	INODECO	17 VOO bullet transmittoutputtor DOS/FGS

Table 1 MT612XPinDescription

15 January, 2005 V1.3

2 Functional Description

2.1 Receiver

The receiver section of MT612X includes Quad-band low noise amplifiers (LNAs), RF quadrature mixers, an on-chip channel filter, Programmable Gain Amplifiers (PGAs), quadrature second mixers, and a final low-pass filter. The very low-IFMT612X uses image-rejection mixers and filters to eliminate interference. With accurate RF quadrature signal generation and mixer matching techniques, the image rejection of the MT612X can reach 35 dB for all bands. The fully integrated channel filters rejects interference, blocking signals, and images without any external components. Compared to a direct conversion receiver (DCR), MT612X's very low-IF architecture improves the blocking rejection, AM suppression, as well as the adjacent channel interference performance. Moreover, the very low-IF architecture eliminates the need for complicated DC offset calibration that is necessary in a DCR architecture. In addition, the common -mode balance requirement of the SAW filter input is relaxed. The MT612X provides the analog IQ baseband output without any extra frequency conversion components.

The MT612X includes four differential LNAs for GSM 850 (869 MHz - 893 MHz), E-GSM 900 (925 MHz-960 MHz), DCS 1800 (1805 MHz-1880 MHz) and PCS 1900 (1930 MHz - 1990 MHz). The differential inputs are matched to 200 Ω SAW filters using LC networks. The gain of the LNAs can be controlled either high or low for an additional 35 dB dynamic range control. Following the LNAs are the image-rejection quadrature RF mixers that down-convert the RF signal to the IF frequency. No external components are needed at the output of the RF mixers.

The IF signal is then filtered and amplified through an image-rejection filter and a PGA. The multi-stage PGA is implemented between filtering stages to control the gain of the receiver. With 2 dB gain steps, a 78 dB dynamic range of the PGA ensures a proper signal level for demodulation. The quadrature 2 nd mixers are provided on-chip to down convert IF signal to baseband in an analog differential IQ format.

2.2 Transmitter

The MT612X transmitter section consists of two on-chip TX VCOs, buffer amplifiers, a down-converting mixer, a quadrature modulator, an analog phase detector (PD) and a digital phase frequency detector (PFD), each with a charge pump output and on chip loop filter. The dividers and loop filters are used to achieve the desired IF frequency from the down-conversion mixer and quadrature modulator. For a given transmission channel, the transmitter will select one of the two different TX reference dividing numbers. These built-in components, along with an internal voltage controlled oscillator (TX VCO) and a loop filter, implement a translation loop modulator. The TX VCO output is fed to the power amplifier (PA). A control loop, implemented externally, is used to control the PA's output power level.

2.3 TX VCO

Two power VCOs are integrated with OPLL to form a complete transmitter circuit. The TX VCO output power is typically 9 dBm with +/- 2.5dB variation in E-GSM900/ GSM850 bands and +8 dBm output power with +/- 2dB variation in DCS 1800 / PCS 1900 bands over extreme temperature conditions. Inside the chip, the VCO differential output signals are fed into the output buffer, the OPLL input feedback buffer, and the calibration circuit. The off chip signal is

15 January, 2005

V1.3

transformed into a single ended output which needs impedance matching to 50 to drive the power amplifier. Like RF VCO, the oscillation bandwidth is partitioned into 128 (or 64) sub-bands for DCS/ PCS (for E-GSM900/ GSM850) TX VCO to cover the process and temperature variation. Calibration process begins after a period of programmable time when the on chip TX VCO regulator is turned on. Total calibration time needs about 60 us maximally and the frequency error after calibration is within +/-5 MHz. For Vtune=1.2 V, the variation of kvco is about 14% and 40% for GSM and DCS/PCS TX VCO, respectively, across the desired frequency range.

2.4 FrequencySynthesizer

2.4.1 SynthesizerSystemDescription

The MT612X includes a frequency synthesizer with a fully integrated RF VCO to generate RX and TX local oscillator frequencies. The PLL locks the RF VCO to a precision reference frequency at 26 MHz. In order to reduce the inherent spur caused by fractional-N synthesizers, a 3rd-order sigma-delta modulator with dithering function is used to generate the prescaler divider number N. The prescaler is based on a multi-modulus architecture with programmable divider numbers ranging from 64 to 127. A conventional digital-type PFD with a charge pump is used for phase comparison in the PLL. By changing the output current of the charge pump, the phase detector gain can be programmed from $75/\pi \,\mu\text{A/rad}$ to $600/\pi \,\mu\text{A/rad}$.

To reduce the acquisition time or to enable fast settling time for multi-slot data services such as GPRS, a digital loop (calibration loop) along with a fast-acquisition system are implemented in the synthesizer. Once the synthesizer is programmed, the RF VCO is pre-set to the vicinity of the desired frequency by a digital calibration loop. After the calibration, a fast-acquisition system is utilized for a period of time to facilitate fast locking. Once the acquisition is done, the PLL reverts back to the normal operation mode.

2.4.2 Synthesizer Frequency Programming for RX Mode

The frequency ranges of the synthesizer for RX mode are

RX mode GSM 850 1737 MHz ~ 1788 MHz

E-GSM900 1850 MHz~1920 MHz

DCS 1800 1805 MHz ~ 1880 MHz

PCS 1900 1930 MHz ~ 1990 MHz.

And the divider number N can be decided by the following procedure.

1. Calculate LO frequency f_{VCO} from RX channel frequency f_{CH}

 $f_{VCO} = 2 * f_{CH} - 200k$

for GSM 850 and E-GSM 900

 $f_{VCO} = f_{CH} - 100k$

for DCS 1800 and PCS 1900

15 January, 2005

V1.3

2. Calculate N int and N frac

$$N = 64 + N_{int} + N_{frac}/5200 = f_{VCO}/26M$$

 N_{int} and $N_{\,\text{frac}}$ are integers

 $0 \le N_{frac} < 5200$

3. Use the binary equivalents of N int and N frac to program registers CW1-N_INT and CW1 - N_FRA.

2.4.3 Synthesizer Frequency Programming for TX Mode

The frequency ranges of the synthesizer for TX mode are

TX mode GSM850 1813 MHz ~ 1868 MHz

EGSM900 1936 MHz ~ 2059 MHz

DCS1800 1881 MHz ~ 2008 MHz

PCS1900 2035 MHz ~ 2149 MHz

And the divider number N can be decided by the following procedure.

- 1. Set the divider ratio D1 of TX reference divider = 11
- 2. Calculate LO frequency f vco from TX channel frequency f cH

 $f_{VCO} = 2 * D1 * f_{CH} / (D1-1)$

for GSM850 and E GSM900

 $f_{VCO} = D1 * f_{CH}/(D1-1)$

for DCS1800 and PCS1900

3. Calculate N_{int} and N_{frac}

 $N = 64 + N_{int} + N_{frac}/5200 = f_{NCO}/26M$

N_{int} and N_{frac} are integers

 $0 \leq N_{frac} < 5200$

- 4. If N $_{fra}$ < 400 or N $_{fra}$ > 4800, re-set D1 = 9 and repeat Step 2 and 3 to get new N $_{int}$ and N $_{frac}$.
- 5. Use the binary equivalents of N _{nt} and N _{frac} to program registers CW1-N_INT and CW1 -N_FRA.

2.4.4 Digital Calibration Loop

The MT612X uses a digital calibration technique to reduce the PLL settling time. Once the RF synthesizer is programmed through a 3-wire serial interface, the calibration loop is activated. The main function of the calibration loop is to preset the RF VCO to the vicinity of the desired frequency quickly and correctly, thus aiding the PLL to settle faster. On the other hand, since a large portion of initial frequency error is dealt with by the integrated calibration loop, the overall locking time can be drastically reduced, irrespective of the desired frequency.

2.4.5 Fast-AcquisitionSystem

After the digital calibration loop presets the RFVCO, the RF synthesizer reverts to the PLL operation and a fast-acquisition system is activated. For faster settling, the charge pump current is set to a higher current than normal setting for a period of time, typically, $20 \mu s$ or $60 \mu s$.

15 January, 2005 V1.3

2.5 Voltage Control Crystal Oscillator

Voltage Control Crystal Oscillator (VCXO) consists of an amplifier, a buffer, and a programmable capacitor array. The VCXO provides the MT612X with a selectable reference frequency of either 13 MHz or 26 MHz.

The amplifier is designed to be in series resonance with a standard 26 MHz crystal. The crystal is connected from the input pin XTAL of amplifier to ground through a series load capacitance. The buffer provides a typical 600 mVpp voltageswinga teither 13 MHz or 26 MHz. It is designed to drive a tuned load to improve harmonic contents and reduce the oscillator current consumption. The capacitor array, from 0.0625 pF to 4 pF in steps of 0.0625 pF, is used to shunt the series load capacitor for coarse tuning and remove any fixed offsets due to crystal manufacturing variations. An internal varactor that provides fine tuning combines with the capacitor array. As an alternative, the reference frequency can be provided by an external 26 MHz VCTCXO module. When pin VCXOCXR is tied to the VCCVCXO supply, the XTAL pin will accept an external signal. Furthermore, the VCXO control pin can be tied to VCCVCXO to prevent the current leakage during the sleep mode operation.

2.6 Regulator

The MT612X internal regulators provide low noise, stable, temperature and process independent supply voltages to critical blocks in the transceiver. An internal P-channel MOSFET pass transistor is used to achieve a low dropout (LDO) voltage of less than 150 mV in all regulators.

15 January, 2005

3 MT612X Hardware Control Pin Descriptions

A description of MT612X hardware control pins and their functionality are shown in the table below.

MT612X has an internal VCXO and its control.

Name	Setting	Description
ENREG	0	Power off Regulator1 and 2
LINKLG	1	Power on Regulator 1 and 2
ENRFVCO	0	Power off RFVCO
ENREVCO	1	Power on RFVCO
	0	Select internal VCXO
VCXOCXR	4	SelectexternalTCVCXO
		Note: Connect to VCCVCXO
	0	Reference output buffer 13 MHz
VCXOFRQ	1	Reference output buffer 26 MHz
	['	Note: Connect to VCCVCXO

Table 2 Hardware Control Pin Description

15 January, 2005

V1.3

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Prolonged exposure to absolute maximum ratings may reduce device reliability. Functional operation at these maximum ratings is not implied.

Item	Symbol	Min.	Max.	Unit
Power supply voltage (VBAT)	VBAT	-0.3	5.5	V
Pinvoltage	V _T	-0.3	VBAT+0.3(4.0max)	V
Maximumpowerdissipation	P_{T}		529	mW
Operatingtemperature	T _{opr}	-20	80	°C
Storagetemperature	T _{stg}	-55	125	°C

Table 3 Absolute Maximum Ratings

4.2 Recommended Operating Range

Item	Symbol	Min.	Тур.	Max	Unit
Power supply voltage (VBAT)	VBAT	3.1	3.6	4.6	V
Power supply voltage (VCCD)	VCCD	2.5	2.8	3.1	V
Operatingambienttemperature	T _{opr}	-20	25	75	°C

Table 4 Recommended Operating Range

15 January, 2005 V1.3

4.3 DCSpecifications

VBAT = 3.6 V, VCCD = 2.8 V, $Ta = 25 ^{\circ}C$ unless otherwise specified.

Item	Mode	Testcondition	Min.	Тур.	Max.	Unit
Power supply voltage (VBAT)	ALL ¹	√ _	3.1	3.6	4.6	V
Power supply voltage (VCCD)	ALL		2.5	2.8	3.1	V
Power supply current (RX)	ALL			68		mΑ
	GSM850	4.0		116		mΑ
Power supply current (TX)	GSM900	X		116		mΑ
Ower supply current (177)	DCS			100		mΑ
	PCS	C/A		100		mΑ
Power supply current (Warm-up)	ALL	IncludingVCXO		33		mΑ
Power supply current (Standby)	ALL	2 regulators + internal RFVCO+VCXO		11.9		mA
Powersupply current (VCXO)	ALL	Regulator 2 + VCXO		3.1		mΑ
Saving mode power supply current (Sleep)	ALL	ENREG = 0 V, SDATA = 0 V, CLK = 0 V, EN = 0 V		1.0		μΑ
Serial data VH (CLK, SDATA, EN)	ALL	VCCD = 2.8 V	2.5			V
Serial data VL (CLK, SDATA, EN)	ALL	VCCD = 2.8 V			0.3	V
Control pin VH (ENREG)	ALL		2.5			V
Control pin VL (ENREG)	ALL				0.3	V
Control pin VH (ENRFVCO)	ALL		2.5			V
Control pin VL (ENRFVCO)	ALL				0.3	V
IQ common mode DC output voltage	ALL	Receiver output DC	0.95	1.1	1.25	V
IQ common mode DC inputvoltage	ALL	TransmitterinputDC		1.2		V

Table 5 DCspecification

¹ ALL mode is GSM850/E-GSM900 / DCS1800 / PCS1900 mode

15 January, 2005 V1.3

5 Receiver Specifications

VBAT = 3.6 V, VCCD = 2.8 V, Ta = 25 °C unless otherwise specified.

Item	Mode	Testcondition	Min	Тур	Max	unit
	GSM850		869		894	MHz
Receiverinputfrequency	GSM900		925		960	MHz
	DCS		1805		1880	MHz
	PCS		1930		1990	MHz
	GSM850	LNA = high gain RF = 882 MHz PGA = 78 dB	102	104	106	dB
Descriverment differential valte as asia	GSM900	LNA = high gain RF = 940 MHz PGA = 78 dB	103	105	107	dB
Receiver max differential voltage gain	DCS	LNA = high gain RF = 1842 MHz PGA = 78 dB	101	103	105	dB
	PCS	LNA = high gain RF = 1960 MHz PGA = 78 dB	100	102	104	dB
	GSM850	Zin, RF = 882 MHz		71-j73 (146// 1.2 pF)		0
LNA differential input i mpedance	GSM900	Zin, RF = 945 MHz		71-j73 (146// 1.2 pF)		0
LIVA dinerentiani puti riipedance	DCS	Zin, RF = 1842 MHz		33-j85 (252// 885 fF)		0
	PCS	Zin, RF = 1960 MHz		37-j81 (214// 830 fF)		0
Front-end LNA gain difference	GSM850	LNA = high gain to low gain RF = 882 MHz	37	39	41	dB
G	GSM900	LNA = high gain to low gain RF = 940 MHz	37	39	41	dB
_	DCS	LNA = high gain to low gain RF = 1842 MHz	37	39	41	dB

15 January, 2005 V1.3

	PUS	LNA = high gain to low gain RF = 1960 MHz	37	39 41	dB
Receiver gain variation over temperature	ALL	-20 to 70 °C All gain settings		3.5	dB

	GSM850		√ 3 0	45		dBm
2 nd order input intercept point	GSM900		30	45		dBm
2 Order input intercept point	DCS		22	28		dBm
	PCS		22	28		dBm
	GSM850	40	-14	-12		dBm
Highgain 3rd order input intercept point	GSM900	X	-15	-13		dBm
ngngam studider inputintercept point	DCS		-14	-12		dBm
	PCS	74	-14	-11		dBm
	GSM850	LNA = high gain		4	5	dB
	GSM900			3.5	4.5	dB
	DCS	207		4.5	6.5	dB
Receivern oise figure	PCS			4.5	6.5	dB
Neceiver ir olse figure		LNA = low gain		37	39	dB
		¹ PGA=78 dB		37	39	dB
	DCS	Note 3.		40	42	dB
	PCS			40	42	dB
	GSM850	Blocker=-23 dBm.	9	12		dB
Receiver S/N with 3 MHz blocker	GSM900		9	12		dB
Neceiver 3/14 with 3 will 12 blocker	DCS		9	11		dB
	PCS		9	11		dB
	GSM850		30	40		dB
Receiver image rejection ratio	GSM900		30	40		dB
Receiverimagerejectionratio	DCS		30	33		dB
	PCS		30	33		dB
		@ +/-200 kHz offset	+17			dB
		@ +/-400 kHz offset	+40			dB
Receiverchannel response attenuation	ALL	@ +/-600 kHz offset	+62			dB
		@ +/-1.6 MHz offset	+80			dB
		@ +/-3.2 MHz offset	100			dB
Receiver group delay variation	ALL	For all gain settings		1.6	2	dB
Received group delay variation	ALL	0-67.7 kHz		1.0	_	uБ
Receiver channel filter 3 -dB BW	ALL	For all gain settings	90		130	kHz

15 January, 2005

ΔΙΙ	In any 20 dB setting		0.5	1	dB
ALL	For all gain settings		0.8	1.5	dB
ALL		1.75	2	2.25	dB
ALL	PGA = 0 dB to 78 dB	77	78		dB
ALL		110			dB
ALL	For all gain settings	7 (10	25	mV
ALL	For all gain settings I+jQmeasurement		6	11.3	mV ims
ALL	+-30 dB Gain setting			25	μSec
ALL	For all gain settings	1.4	1.5		V_{p-p}
ALL	For all gain settings	0.9	1.05	1.2	V
	ALL ALL ALL ALL ALL ALL	For all gain settings ALL ALL PGA = 0 dB to 78 dB ALL ALL For all gain settings ALL For all gain settings I+jQmeasurement ALL +-30 dB Gain settings ALL For all gain settings	For all gain settings ALL For all gain settings ALL PGA = 0 dB to 78 dB 77 ALL ALL For all gain settings ALL For all gain settings I+jQmeasurement ALL +-30 dB Gain settings ALL For all gain settings 1.4	ALL For all gain settings 0.8 ALL 1.75 2 ALL PGA = 0 dB to 78 dB 77 78 ALL 110 ALL For all gain settings 10 ALL For all gain settings 6 I+jQmeasurement ALL +-30 dB Gain setting ALL For all gain settings 1.4 1.5	ALL For all gain settings 0.8 1.5 ALL 1.75 2 2.25 ALL PGA = 0 dB to 78 dB 77 78 ALL 110 110 25 ALL For all gain settings 6 11.3 ALL +-30 dB Gain setting 25 ALL For all gain settings 1.4 1.5

Table 6 ACSpecification of Receiver

15 January, 2005 V1.3

6 Transmitter Specifications

VBAT = 3.6 V, VCCD = 2.8 V, Ta = 25 °C unless otherwise specified.

Item	Mode	TestConditions	Min.	Тур.	Max.	Unit
	GSM850		824		849	MHz
Frequency(RF)	GSM900		880		915	MHz
ir roquonoy(rar)	DCS		1710		1785	MHz
	PCS		1850		1910	MHz
Phaseaccuracy	ALL	RMS value, 200 kHz BW		1.5	3	degree
Thaseaccuracy	ALL	Peak value, 200 kHz BW		3.0	9	degree
Carrier suppression ratio		All '1' GMSK (Differential encode: off)	30	40		dBc
Side-bandsuppression	ALL	(baseband frequency = 67.7 kHz)	35	40		dBc
ratio	ALL I	IQ input swing = 0.5 Vp -p	33	40		abc
IM3attenuation		IQ common mode input voltage = 1.2 V	50	55		dBc
	ALL	200 kHz offset (30 kHz bandwidth)		-36	-34	dBc
	GSM8 50/ GSM900	400 kHz offset		-66	-64	_
	DCS	(30 kHz bandwidth)		-65	-63	dBc
	PCS			-64	-63	
Averagementalistics	ALL	600 kHz offset (30 kHz bandwidth)		-68	-65	dBc
Averagemodulation spectrum	ALL	1.2 MHz to 1.8 MHz offset (30 kHz bandwidth)		-72		dBc
	ALL	1.8 MHz to 3 MHz offset (100 kHz bandwidth)		-73.5		dBc
	ALL	3 MHz to 6 MHz offset (100 kHz bandwidth)		-77		dBc
60	ALL	6 MHz upward offset (100 kHz bandwidth)		-77		dBc
TX noise in RX band	GSM850	925 MHz to 935 MHz 10 MHz up from TX band			-156	dBc/Hz
4	GSM900	935 MHz to 960 MHz 20 MHz up from TX band			-162	dBc/Hz

15 January, 2005

1			ı			
	DCS	1805 MHz to 1880 MHz			151	dBc/Hz
	DCS	20 MHz up from TX band			-154	UBC/FIZ
		1930 MHz to 1990 MHz				
	PCS	20 MHz up from TX band		C	-154	dBc/Hz
IQ input swing	ALL	Singleended	0.4	0.5	0.6	Vp-p
IQ common mode	ALL		1.0	1.2	1.4	V
inputvoltage						
Lock up time	ALL		4	20		μSec

Table 7 AC Specification of OPLL

15 January, 2005 V1.3

7 Specification for TX VCO and Buffer

VBAT = 3.6 V, VCCD = 2.8 V, Ta = 25 °C unless otherwise specified.

Item	Mode	Testcondition	Min.	Тур.	Max.	Unit
	GSM850		824	A (849	
Frequencyrange	GSM900		824		915	
i requericyrange	DCS		1710		1785	MHz
	PCS		1850		1910	
	GSM850/	@ 400 kHz offset			-120	
Dhaaaaiaa	GSM900	@ 20 MHz offset			-162	-ID - /I I-
Phase noise	DCS/PCS	@ 400 kHz offset			-120	dBc/Hz
	DCS/PCS	@ 20 MHz offset			-154	
	GSM850/	Vtune = 1.2 V	11.2		15.6	
Tuning sensitivity (K_{vx})	GSM900					MHz/V
	DCS/PCS		10.1		13.9	
	GSM850/	Allahasia	8		19.2	
Tuningsensitivity variation	GSM900	All channels, all			10.2	MHz/V
	DCS/PCS	Vtune	7.9		16.1	
Pullingfigure	ALL	VSWR = 2:1 for all			2.5	MHz
3 3 1	,	phase				
Pushingfigure	ALL	$VBAT = 2.8 \pm 0.1 V$			1	MHz
Outputpowerlevel	GSM DCS/PCS	R _{load} = 50 O	7.5	9.5	11.5	dBm
			7	8.5	10	
Outputharmonics	ALL				-30	dBc

Table 8 Specification of TX VCO and Buffer

15 January, 2005 V1.3

8 FrequencySynthesizerSpecifications

VBAT = 3.6 V, VCCD = 2.8 V, Ta = 25 °C unless otherwise specified.

Item	Mode	Testcondition	Min.	Тур.	Max.	Unit
Frequencyrange	ALL		1738	20	2150	MHz
Referencefrequency	ALL			26		MHz
Frequencystepresolution	ALL			5		kHz
		CW0-SYNCP ² =00		75/π		
Dhaga datastar gain	ALL	CW0-SYNCP=01		150/π		μA
Phase detector gain	ALL	CW0-SYNCP = 10	M O	300/π		/rad
		CW0-SYNCP= 11		600/π		
Phase detector sink versus sourcemismatch	ALL	V _{CPO} =VCCRFCP/2		5		%
Phase detector gain versus voltage	ALL	0.4 < V _{CPO} < VCCRFCP - 0.4		10		%
In-band phase noise	ALL	@10 kHz offset		-85		dBc /Hz
Phasenoise	ALL	@400 kHz offset		-118		dBc
T Hase Holse	ALL	@3 MHz offset		-138		/Hz
Calibrationtime	ALL			32		μs
	GSM850/	@200 kHz offset		-37		
		@600 kHz offset		-61		
	GSM900 RX			-77		
		@>3MHzoffset		-87		
		@100 kHz offset		-25		
Spuriousperformance		@300 kHz offset		-49		dBc
	DCS/PCS	@500 kHz offset		-58		
	RX	@700 kHz offset		-64		
		@1.5 MHz offset		-70		
		@> 2.9 MHz offset		-84		
	TX	@1.6 MHz offset		-82		
		@> 3 MHz offset		-92		
Locktime	ALL	Frequency error < 1 kHz			200	μs
Varactor tuning voltage range	ALL		0.4		2.4	V

 $^{^2\,}Please\,refer to\,MT612X\,3-wire\,programming\,guide-control\,word\,register\,part\,\,descriptions$

15 January, 2005 V1.3

		1738 MHz < f _{v∞} < 1872MHz	6		18	9
$K_{v\infty}$ variation for Vtune 0.4 ~1.6 V	ALL	1872 MHz < f _∞ < 1950MHz	7		20	MHz
		1950 MHz < ∜ _∞ < 2054MHz	8	^ (24	Ν
		2054 MHz < f _∞ < 2129 MHz	9		27	
RFVCO Pullingfigure	ALL	VSWR = 2:1 for all phase			1	MHz
RFVCO Pushing figure	ALL	VBAT = 3.1~ 3.6 V	4.0		1	MHz
RFVCO long time frequency drift	ALL	60ms after digital calibration is finished, under temperature -20 °C ~65 °C			3	MHz

Table 9 Specifications of RFF requency Synthesizer

15 January, 2005 V1.3

9 Voltage Control Crystal Oscillator (VCXO) Specifications

VBAT = 3.6 V, VCCD = 2.8 V, Ta = 25 °C unless otherwise specified.

Item	Testcondition	Min.	Тур.	Max.	Unit
Operatingfrequency	Internal resonance (crystal Cload = 9.5 pF		26		MHz
Operatinghequency	/ Res = 35 O max.) / external Input		20		IVII IZ
Output frequency	Baseband clock, VCXOFRQ = 0		13		MHz
Output frequency	Baseband clock, VCXOFRQ = 1		26		MHz
Switchedcapacitorvalue	6 bits switch control from 0 to 63	0.0625		4	pF
Switched capacitor step			0.0625		pF
Varactor	Vbias=0 V		10		pF
Varacion	Vbias=3 V		5		pF
Bufferoutput level	13 MHz baseband clock (Load = 148 -				
	j1206 O@ Frequency = 13 MHz)		600		m\/nn
	26 MHz baseband clock (Load = 37 - j610	400	000		mVpp
	O@ Frequency = 26 MHz)				
Dutycycle	13 MHz / 26 MHz baseband clock	45		55	%
Buffer output 2 nd harmonic	Load = 20 pF		-20	-5	dBc
Buffer output 3 rd harmonic	Load = 20 pF		-10	-5	dBc
Inputlevel	AC coupled by external 26 MHz	0.2		1	Vpp
Inputresistance	Shunt by external 26 MHz clock	5	7.5		kO
Inputcapacitance	Shunt by external 26 MHz clock		5	10	pF
Start-up time	Including Regulator 2 power on time by ENREG pull high			5	ms

Table 10 Specification of VCXO

15 January, 2005

V1.3

10 Regulator Specifications

$V_{IN} = 3.6 \text{ V}$, $Ta = 25 ^{\circ}\text{C}$, $C_{out} = 2.2 \mu\text{F}$, $C_{bp} = 0.1 \mu\text{F}$

Item	Testcondition	Min.	Тур.	Max.	Unit
Inputvoltage		3.1	3.6	4.6	V
Outputvoltage		2.7	2.8	2.9	V
Dropoutvoltage	V _{in} -V _{out} when V _{out} = (V _{out,nominal} -100 mV)			150	mV
Lineregulation	V _{in} = 3.1 V to 4.6 V			10	mV
Loadregulation	I _{out} = 1 mA to I _{max}			10	mV
Output voltage noise	Frequency = 10 Hz to 100 kHz		30	60	μV_{rms}
Power supply ripple rejection	Frequency=216.7 Hz	50	60		dB
Temperaturecoefficient	V_{in} = 3.6 V, TC = $?V_{OUT}/[V_{out,nominal}*?T]$, $?T = 0$	1	50		ppm/°C
	80-(-20)=100				
Turn-on time of regulator	V _{out} step from 0 to V _{out, nominal} ±4 %		20	40	μSec

Table 11 Specification of Regulator

15 January, 2005 V1.3

11 OrderInformation

Part Number	Band specification	Note
MT6120	Quad-band	GSM850/GSM900/DCS1800/PCS1900
MT6126	Dual-band	GSM 850//PCS1900
MT6127	Tri-band	GSM850/DCS1800/PCS1900
MT6128	Dual -band	GSM900/DCS1800
MT6129	Tri-band	GSM900/DCS1800/PCS1900

15 January, 2005 V1.3

12 Package Dimensions

Figure 2 Packagedimension

15 January, 2005

V1.3

13 Footprint Dimension

Figure 3 QFN-56 Footprint Dimensions

15 January, 2005

V1.3

14 ReferenceApplicationCircuit

Figure 4 MT612XReferenceApplicationcircuit