Pose Graph

David Arnon

GTSAM StereoCamera

- StereoCamera(Pose3 leftCamPose, Cal3_S2Stereo K)
- StereoPoint2 = StereoCamera.project(Point3)
- Point3 = StereoCamera.backproject(StereoPoint2)

 Location Likelihood: gtsam.PriorFactorPose3(pose_key, base_pose, uncertainty)

Relative Nonlinear Factor

- relative_pose = pose_c0.between(pose_c1)
- $c_0 = [R_0|t_0], \quad c_1 = [R_1|t_1]$
- $R_0 \underbrace{(R_\Delta x + t_\Delta)}_{c_1 \to c_0} + t_0 = R_1 x + t_1$
- $R_{\Delta} = R_0^T R_1$
- $t_{\Delta} = R_0^T (t_1 t_0)$

BetweenFactorPose3(c0, c1, relative_pose, noiseCov)

Estimation Error

Estimation Error

Absolute Error

$$c_7 \stackrel{!}{=} \hat{c}_7$$

Absolute Error

$$c_1 \stackrel{!}{=} c$$

$$c_7 \stackrel{!}{=} \hat{c}_7$$

Relative Error

$$t_7 - t_6 \stackrel{!}{=} \Delta t_{67}$$

Relative Error

$$t_1 - t_0 \stackrel{!}{=} \Delta t_{01}$$

:

$$t_7 - t_6 \stackrel{!}{=} \Delta t_{67}$$

GaussianLinear Approximation

GaussianLinear Approximation

Relative POV Error

$$\Delta t_{01} \stackrel{!}{=} R_0^T (t_1 - t_0)$$

:

$$\Delta t_{67} \stackrel{!}{=} R_6^T (t_7 - t_6)$$

Relative Nonlinear Error

$$\Delta t_{01} \stackrel{!}{=} R_0^T (t_1 - t_0)$$

:

$$\Delta t_{67} \stackrel{!}{=} R_6^T (t_7 - t_6)$$

Robust Kernels

Robust Estimation

Kernels

•
$$L_{\delta}$$
: $L_{\delta}(x) = x^2$

• Huber:
$$L_{\delta}(x) = \begin{cases} x^2, & |x| < \delta \\ \delta(2|x| - \delta), & |x| \ge \delta \end{cases}$$

• Saturated:
$$L_{\delta}(x) = \begin{cases} x^2, & |x| < \delta \\ \delta^2, & |x| \ge \delta \end{cases}$$

• Cauchy:
$$L_{\delta}(x) = \delta^2 \log(1 + (x/\delta)^2)$$

• Cauchy distribution: $Cauchy_{0,\gamma}(x) = \frac{1}{\pi\gamma\left(1+\left(\frac{x}{\gamma}\right)^2\right)}$

Robust Estimation

Kernels

Robust EstimationGTSAM Kernels

Look Ma, No RANSAC

https://gtsam.org/2019/09/20/robust-noise-model.html

- gaussian_model = gtsam.noiseModel.Diagonal.Sigmas(np.array([1.0, 1.0, 1.0]))
- cauchy = gtsam.noiseModel.mEstimator.Cauchy.Create(2)
- cauchy_model = gtsam.noiseModel.Robust.Create(cauchy, gaussian_model)