

Questions we ask

- Location: What is at . . .?
- This question seeks to find what exists at a particular location
- · A location can be described in many ways
 - place name
 - postal code
 - geographic reference
 - longitude/latitude
 - x and y.

Questions we ask

- Condition: Where is it . . .?
- This question is the converse of the first and requires spatial data to answer
- Instead of identifying what exists at a given location, you may want to find locations where certain conditions are satisfied
 - e.g., a packet of land that contains Ordovician turbidites and black shales, has been metamorphosed and is within 100m of a 400myo granite

Questions we ask

- Trends: What has changed since. . .?
- This question might involve both Location and Condition queries
- Seeks to find the differences within an area over time
 - e.g., changes in forest cover due to climate change

Questions we ask

- Modeling: What if . . .?
- This question is posed to determine what happens if some events take place or a series of conditions are met
 - Modeling flow of toxic material in goundwater after a spill
- Answering this type of question requires both geographic and other information (as well as specific models)

Fundamental questions of GIS

- What is where?
 - Querying
- Why is it there?
 - Explaining distributions, finding new relationships
- Need information that we can query
 - Databases
 - Storage, management
 - Attributes
 - Analysis
 - · Presentation Layer
 - Display

Attributing Data

- · Databases work with attributes
 - whats in "what is where?" question
- Attribute = measurement or value for the feature
- Different types (called "levels" of measurement)
 - labels (IDs)
 - qualitative categories ("good", "red", "warm")
 - quantitative categories (amounts)
 - special cases: dates, time, degrees of slope, addresses
- Features are stored in Feature Attribute Tables (e.g., AAT, PAT, etc)
 - Features are stored in rows, called records
 - Attributes are stored in columns, called fields

Attribute types in GIS

- Integers (1, -8, 357)
- Floats (3,125 = 3.125 x 103 = 3.125E3)
 - Regular floats store only 4-bit numbers (<=7 significant digits)
 - Double (floats) 8-bit is enough to store (<=15 significant digits)
- Text ("Wonga Schist")
- Date mm/dd/yyyy hh:mm:ss
 - e.g., 12/06/2004 10:20:35 am
- BLOB binary large object can store images, pictures, any binary computer code
- GlobalID unique number identifier for the feature

Levels of Measurement

- · Not all attributes are equal
 - Stevens (1946) in Science defined "levels of measurement"
- Attempt to structure observations about reality
 - Nominal scale named objects
 - Ordinal scale ordered data
 - Interval scale thermometer
 - Ratio scale true zero
- · Compare appropriate data
 - Comparing polyID with RockType makes no sense
 - Comparing alteration with gold grade does

Nominal Scale

- · This is the simplest level of scaling
- · Essentially, an ID (e.g. a name)
- · Can be words OR numbers!
- There are no mathematical operations that can be performed between classes
- · The data are purely qualitative
- Examples: "Zoning code R-1", "alfisol", "spruce forest", gender (M/F), MN 56301, SSN

Nominal records • You can search for: - exact match (DepEnv= "marine") - select a group (e.g., select all drill holes labeled with a MD prefix) • Stawell Gold Mine – Magdala Deep Holes • Examples of queries: - Find all places called "Sesame Street" - Find all rocks with prospectivity code of "1" - Find all exploration leases owned by "New Bendigo Mines" - Queries are written in a formal query language SQL - ([Rock_type]="Granite" OR "Granodiorite")

Other SQL statements • INSERT statement lets you insert information into a database as a new row at the bottom of the table - INSERT INTO emp VALUES (7, 'Uncle Bill', 2) • DELETE statement removes records or column values from a database - DELETE FROM emp WHERE name = 'Jason' • UPDATE statement updates (or replaces) specified values - UPDATE emp SET Dept_ID = 5 WHERE (name = 'Luke' AND ID = 3) • DISTINCT, ORDER, MAX, MIN, AVG, SUM, COUNT(), etc.

Relational Databases • Relational databases obtain their flexibility from being based on set theory (relational calculus) which enables sets or relations to be combined in various ways, including: – join/intersection – union (i.e. the sum of 2 sets); – exclusive "OR" (i.e. the difference between 2 sets) – and outer-join which is a combination of intersecting and exclusive "or"-ing.

Metadata • Metadata is simply data about data • Information about: - Content - Projection and coordinate system - Source - Quality - Condition - Other relevant characteristics of the data • e.g. Geological data, MGA 94, from Geoscience Victoria, locations accurate to 20m, extrapolated beneath cover

Analysis: not why is it there, but why is it there?

• Spatial analysis is a study of the pattern and relationships between points, lines, areas, and surfaces
• It is about discovering/creating new relationships! (as opposed to merely searching for existing stuff)
• Creates new maps (shapefiles, coverages)

Overlay Operations Arithmetic Includes addition, subtraction, multiplication, square roots, etc. Works only with ratio and sometimes with interval scale data Logical (same as Boolean) Finding areas where a specified set of conditions occurs or does not occur (True or False) Works with any data, most frequently with nominal data

Network Connected linear features Each segment is called a link Impedance is the speed (cost) of traversing the link Some links may be one-way only There can be forbidden turns The goal is usually to find shortest and/or fastest route connecting two or multiple points

