RATIONAL DEPLOYMENT OF CSP HEURISTICS IJCAI 2011

CONSTRAINT SATISFACTION

A constraint satisfaction problem (CSP) is defined by:

variables
$$X = \{X_1, X_2, \dots\}$$

constraints $C = \{C_1, C_2, \dots\}$

- Each $variable X_i$ has a non-empty domain D_i of possible values.
- Each constraint C_i involves some subset of the variables—the scope of the constraint—and specifies the allowable combinations of values for that subset.
- An *assignment* that does not violate any constraints is called *consistent* (or solution).

RATIONAL METAREASONING

- A problem-solving agent can perform base-level actions from a known set $\{A_i\}$.
- Before committing to an action, the agent may perform a sequence of meta-level deliberation actions from a set $\{S_i\}$.
- . At any given time there is a base-level action A_{α} that maximizes the agent's *expected utility*.

The **net VOI** $V(S_j)$ of action S_j is the intrinsic VOI Λ_i less the cost of S_i :

$$V(S_j) = \Lambda(S_j) - C(S_j)$$

The intrinsic VOI $\Lambda(S_j)$ is the expected difference between the intrinsic expected utilities of the new and the old selected base-level action, computed after the meta-level action is taken:

$$\Lambda(S_i) = E(E(U(A_{\alpha}^j)) - E(U(A_{\alpha})))$$

 $.S_{j_{\max}}$ that maximizes the net VOI is performed:

$$j_{\text{max}} = \arg \max_{j} V(S_{j})$$

if $V(S_{j_{\text{max}}}) > 0$

. Otherwise, A_{α} is performed.

ACKNOWLEDGMENTS

- IMG4 Consortium under the MAGNET program of the Israeli Ministry of Trade and Industry
- Israel Science Foundation grant 305/09
- Lynne and William Frankel Center for Computer Sciences
- Paul Ivanier Center for Robotics Research and Production Management

OVERVIEW

Heuristics are crucial tools in decreasing search effort in various areas of AI. A heuristic must provide useful information to the search algorithm, and be efficient to compute.

Overhead of some well-known heuristics may outweigh the gain. Such heuristics should be deployed selectively, based on principles of rational metareasoning.

Case Study

- . CSP backtracking search algorithms typically employ variable-ordering and value-ordering heuristics.
- Many value ordering heuristics are computationally heavy, e.g. heuristics based on solution count estimates.
- Principles of rational metareasoning can be applied to decide when to deploy the heuristics.

VALUE ORDERING

Value ordering heuristics provide information about:

 T_i —the expected time to find a solution containing an assignment $X_k = y_{ki}$; p_i —the probability that there is no solution consistent with $X_k = y_{ki}$.

The expected remaining search time in the subtree under X_k for ordering ω is given by:

$$T^{s|\omega} = T_{\omega(1)} + \sum_{i=2}^{|D_k|} T_{\omega(i)} \prod_{j=1}^{i-1} p_{\omega(j)}$$

- The current optimal base-level action is picking the ω which optimizes $T^{s|\omega}$. $T^{s|\omega}$ is minimal if the values are sorted by increasing order of $\frac{T_i}{1-p_i}$.
- The intrinsic VOI Λ_i of estimating T_i , p_i for the ith assignment is the expected decrease in the expected search time: $\Lambda_i = \mathrm{E}[T^{s|\omega_-} T^{s|\omega_+i}]$.
- Computing new estimates (with overhead T^c) for values T_i , p_i is beneficial just when the net VOI is positive: $V_i = \Lambda_i T^c$.

MAIN RESULTS

Rational Value Ordering

The intrinsic VOI Λ_i of invoking the heuristic can be approximated as:

$$\Lambda_i \approx \mathrm{E}[(T_1 - T_i)|D_k| \, \Big| \, T_i < T_1]$$

VOI of Solution Count Estimates

The net VOI V of estimating a solution count can be approximated as:

$$V \propto |D_k| e^{-\nu} \sum_{n=n_{\text{max}}}^{\infty} \left(\frac{1}{n_{\text{max}}} - \frac{1}{n}\right) \frac{\nu^n}{n!} - \gamma$$

where the constant γ depends on the search algorithm and the heuristic, rather than on the CSP instance, and can be learned offline. The infinite sum

$$\sum_{n=n_{\text{max}}}^{\infty} \left(\frac{1}{n_{\text{max}}} - \frac{1}{n}\right) \frac{\nu^n}{n!}$$
 is rapidly converging and can be computed efficiently.

ALGORITHM

SC-based Rational Value Ordering

```
procedure ValueOrdering-SC(csp, X_k, N)
D \leftarrow D_k \ , \ n_{max} \leftarrow \frac{N}{|D|}
for all i in 1..|D| do n_i \leftarrow n_{max}
while V(n_{max}) > 0
choose \ y_{ki} \in D \ arbitrarily
D \leftarrow D \setminus \{y_{ki}\}
csp \leftarrow csp \ \text{with} \ D_k = \{y_{ki}\}
n_i \leftarrow \text{EstimateSolutionCount} \ (csp)
if n_i > n_{max} \ \text{then} \ n_{max} \leftarrow n_i
end while
D_{ord} \leftarrow \text{sort} \ D_k
by \ non-increasing \ n_i
return D_{ord}
end procedure
```

EXPERIMENTS

Benchmarks

CSP benchmarks from CSP Solver Competition 2005 were used. 14 benchmarks were solved for $\gamma = 0$ and the exponential range $\gamma \in \{10^{-7},$

 10^{-6} , ..., 1}, as well as with the minimum-conflicts heuristic and the pAC heuristic.

The maximum improvement is achieved when the solution count is estimated only in a small fraction of occasions selected using rational metareasoning.

Random instances

Based on the results on benchmarks, we chose $\gamma = 10^{-3}$, and applied it to two sets of 100 problem instances. Exhaustive deployment, rational

deployment, the

minimum conflicts heuristic, and the pAC heuristic were compared.

The value of γ chosen based on a small set of hard instances gave good results on a set of instances with different parameters and of varying hardness.

Generalized Sudoku

- Real-world problem instances often have much more structure than random instances generated according to Model RB.
- We repeated the experiments on randomly generated Generalized Sudoku instances— a highly structured domain.
- Relative performance on Generalized Sudoku was similar to Model RB.

CONCLUSIONS

- This work suggests a model for adaptive deployment of value ordering heuristics in algorithms for constraint satisfaction problems.
- As a case study, the model was applied to a value-ordering heuristic based on solution count estimates, and a steady improvement was achieved compared to always computing the estimates.
- For many problem instances the optimum performance is achieved when solution counts are estimated only in a small number of search states.

FUTURE WORK

- Generalization of the VOI to deploy different types of heuristics for CSP.
- Explicit evaluation of the quality of the distribution model, coupled with a better candidate model of the distribution.
- Application to search in other domains, especially to heuristics for planning; in particular, examining whether the meta-reasoning scheme can improve reasoning over deployment based solely on learning.

