Aufgabe 4

- 1) $\left\lceil \frac{ab}{abh} \right\rceil \left\lceil \frac{bb}{b} \right\rceil$ ist eine mögliche Lösung dieser PKP-Instanz.
- 2) $\left[\frac{a}{ba}\right]$, $\left[\frac{a}{bb}\right]$, $\left[\frac{aab}{ab}\right]$, $\left[\frac{abab}{aa}\right]$ sind keine möglichen Startdominos, da sie mit unterschiedlichen Buchstaben beginnen.
 - $\left[\frac{ab}{abb}\right]$, $\left[\frac{aa}{aab}\right]$ erzeugen zwar selber gleich beginnende Worte oben und unten, jedoch endet bei beiden jedes Wort unten mit einem b mehr als oben. Zudem gibt es keinen Dominostein, der oben mit einem b beginnt. Daher sind diese auch keine möglichen Startdominos.

Da es keine möglichen Startdominos gibt, hat diese PKP-Instanz keine Lösung.

Aufgabe 5

Um die Aussage zu beweisen, zeigen wir erst, dass L_{01} rekursiv ist: Sei T eine TM mit folgender Funktionsweise:

- (i) Gehe an den Anfang des Eingabewortes.
- (ii) Ist der Buchstabe unter dem Kopf eine 1, so verwirf die Eingabe. Ist der Buchstabe unter dem Kopf ein B, so verwirf die Eingabe (Eingabe war ϵ). Ist der Buchstabe unter dem Kopf eine 0, so lösche das Zeichen, und gehe zu dem Ende des Eingabewortes.
- (iii) Ist der Buchstabe unter dem Kopf eine 0, so verwirf die Eingabe. Ist der Buchstabe unter dem Kopf eine 1, so lösche das Zeichen und gehe einen Schritt nach Links.
- (iv) Ist das Zeichen unter dem Kopf B, akzeptiere die Eingabe. Sonst fahre bei Schritt (i) fort.

Korrektheit:

- Sei ϵ das Eingabewort, $\epsilon \notin L_{01} \Rightarrow T$ verwirft die Eingabe sofort.
- Sei w das Eingabewort, $w \notin L_{01} \Rightarrow$ Durch das gleichmäßige Abbauen des Eingabewortes an beiden Seiten erkennt T in Schritten (ii) bzw. (iii) irgendwann, dass die Eingabe nicht dem Format $0^n 1^n$, n > 0 entspricht $\Rightarrow T$ verwirft
- Sei w das Eingabewort, $w \in L_{01} \Rightarrow$ Duch das gleichmäßige Abbauen des Eingabewortes an beiden Seiten wird T keine Fehler des Formates $0^n 1^n, n > 0$ an w entdecken $\Rightarrow T$ akzeptiert

T erkennt offensichtlich L_{01} , daher ist L_{01} rekursiv. Sei nun L eine Sprache.

- \Rightarrow Sei L rekursiv. Dann gilt auch $L \leq L_{01}$, da ja auch L_{01} rekursiv ist. (VL)
- \Leftarrow Gelte $L \leq L_{01}$. Da ja L_{01} rekursiv ist, muss auch L rekursiv sein. (VL)

Damit gilt die Aussage.

Aufgabe 6

a)

- b) Dieses Problem ist gleich dem PKP. Sei K eine PKP-Instanz, wobei hier k_i der i-ten Stein aus K ist. Aus K können wir nun eine Instanz K' unserer PKP-Variante konstruieren. Dazu wende folgendes Verfahren an:
 - Hat der k_i Stein oben und unten verschieden lange Wörter, so übernehme diesen auch in K'.
 - Hat der k_i Stein gleich lange Wörter oben und unten, dann ist der Stein der Form $\left[\frac{a_1...a_n}{b_1...b_n}\right]$ mit $a_j,b_j\in\Sigma$ für $0< j\leq n$. Nehme für den Stein k_i einen Buchstaben $\#_i\not\in\Sigma$ und baue aus k_i 2 neue Steine und füge diese dann K' hinzu: $x_i\coloneqq\left[\frac{\#_i a_1...a_n}{\#_i}\right],y_i\coloneqq\left[\frac{\#_i}{b_1...b_n\#_i}\right]$

Damit muss immer auf ein x_i ein y_i folgen

Gibt es also eine Folge $\langle o_1, ..., o_m \rangle$, sodass $k_{o_1}...k_{o_m}$ eine Lösung von K ist, dann gibt es eine Folge $\langle o'_1, ..., o'_p \rangle$, $p \geq m$, sodass $k'_{o_1}...k'_{o_m}$ eine Lösung von K' ist:

$$\begin{aligned} \textbf{Input:} & \langle o_1, ..., o_m \rangle \\ \textbf{i} &= 1 \\ \textbf{I} &= \langle \rangle \\ \textbf{while} (\textbf{i} < \textbf{m}) \\ & \textbf{if} (k_{o_i} \text{ oben und unten verschieden lang}) \\ & \textbf{I} &+= \text{index} (k_{o_i}) \\ & \textbf{else} \\ & \textbf{I} &+= \text{index} (x_{o_i}) \\ & \textbf{I} &+= \text{index} (y_{o_i}) \\ & \textbf{i} &++ \end{aligned}$$

Also ist diese Problem auch nicht entscheidbar.