Additional Lecture and Reading Notes

Lecture 1f

(from lecture presention)

Definition: Suppose that \mathbb{V} is a vector space. Then \mathbb{U} is a subspace of \mathbb{V} if is satisfies the following three properties:

S0. \mathbb{U} is a non-empty subset of \mathbb{V}

S1. $\mathbf{x} + \mathbf{y} \in \mathbb{U}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{U}$ (\mathbb{U} is closed under addition)

S2. $t\mathbf{x} \in \mathbb{U}$ for all $\mathbf{x} \in \mathbb{U}$ and $t \in \mathbb{R}$ (\mathbb{U} is closed under scalar multiplication)

Note that I have modified the statement of this definition slightly from the one in the text to emphasize the need to verify that $\mathbb U$ is not the empty set, as well as emphasizing the need to show that $\mathbb U$ is actually a subset of $\mathbb V$.