In [1]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]:

wine = pd.read_csv('../data/wine.csv')
wine.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6497 entries, 0 to 6496 Data columns (total 13 columns):

#	Column	Non-Null Count Dtype			
0	type	6497 non-null object			
1	fixed acidity	6497 non-null float64			
2	volatile acidity	6497 non-null float64			
3	citric acid	6497 non-null float64			
4	residual sugar	6497 non-null float64			
5	chlorides	6497 non-null float64			
6	free sulfur dioxide	e 6497 non-null float64			
7	total sulfur dioxid	e 6497 non-null float64			
8	density	6497 non-null float64			
9	рН	6497 non-null float64			
10	sulphates	6497 non-null float64			
11	alcohol	6497 non-null float64			
12	quality	6497 non-null int64			
dtypes: $float64(11)$ int64(1) object(1)					

dtypes: float64(11), int64(1), object(1)

memory usage: 660.0+ KB

In [3]:

wine.describe()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulf dioxi
count	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.0000
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.7445
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.5218
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.0000
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.0000
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.0000
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.0000
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.0000
4							>

In [4]:

wine.mean()

C:\Users\YJ\AppData\Local\Temp/ipykernel_7368/777327822.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

wine.mean()

Out[4]:

fixed acidity	7.215307
volatile acidity	0.339666
citric acid	0.318633
residual sugar	5.443235
chlorides	0.056034
free sulfur dioxide	30.525319
total sulfur dioxide	115.744574
density	0.994697
рН	3.218501
sulphates	0.531268
alcohol	10.491801
quality	5.818378
dtypo: float61	

dtype: float64

In [5]:

wine.min()

Out[5]:

type	red
fixed acidity	3.8
volatile acidity	0.08
citric acid	0.0
residual sugar	0.6
chlorides	0.009
free sulfur dioxide	1.0
total sulfur dioxide	6.0
density	0.98711
рН	2.72
sulphates	0.22
alcohol	8.0
quality	3
dtype: object	

In [6]:

wine.max()

Out[6]:

white
15.9
1.58
1.66
65.8
0.611
289.0
440.0
1.03898
4.01
2.0
14.9
9

In [7]:

wine['quality'].unique()

Out[7]:

array([5, 6, 7, 4, 8, 3, 9], dtype=int64)

In [8]:

wine['quality'].value_counts()

Out[8]:

- 6 2836
- 5 2138
- 7 1079
- 4 216
- 8 193
- 3 30
- 9 5

Name: quality, dtype: int64

In [9]:

wine['quality'].value_counts().max()

Out[9]:

2836

In [10]:

```
wine['quality'].value_counts().idxmax()
```

Out[10]:

6

In [13]:

wine.groupby('type')['quality'].value_counts()

Out[13]:

type qua	ality
red 5	681
6	638
7	199
4	53
8	18
3	10
white 6	2198
5	1457
7	880
8	175
4	163
3	20
9	5
N.I.	11. 1

Name: quality, dtype: int64

In [12]:

wine.groupby('type')['quality'].describe()

Out[12]:

	count	mean	std	min	25%	50%	75 %	max
type								
red	1599.0	5.636023	0.807569	3.0	5.0	6.0	6.0	8.0
white	4898.0	5.877909	0.885639	3.0	5.0	6.0	6.0	9.0

In [11]:

```
result = wine.groupby('type').quality.agg(['mean', 'min', 'max'])
n_groups = len(result.index)
means = result['mean'].tolist()
mins = result['min'].tolist()
maxs = result['max'].tolist()
index = np.arange(n_groups) #n_groups의 크기 6만큼 배열 생성하여 index에 저장
bar_width = 0.3
#평균 값에 대한 그래프 생성
rects1 = plt.bar(index, means, bar_width, color = 'r', label = 'Mean')
rects2 = plt.bar(index + bar_width, mins, bar_width, color = 'g', label = 'Min')
rects3 = plt.bar(index + bar_width*2, maxs, bar_width, color = 'b', label = 'Max')
plt.xticks(index, result.index.tolist())
plt.legend() #그래프에 범례를 달고 싶을 때 쓰는 함수
plt.show()
```


In [17]:

import seaborn as sns
sns.histplot(data = wine, x = "quality",binwidth = 0.5, hue = "type", multiple = "dodge")

Out[17]:

<AxesSubplot:xlabel='quality', ylabel='Count'>

In []:

In []: