Definition 1 (PPT Decryption Robustness (DROB)). A public key encryption scheme PKE := (Keygen, Enc, Dec) satisfies Decryption Robustness (DROB-CCA) if for all efficient adversaries A there exists a negligible $negl(\cdot)$ s.t.

$$\begin{split} \Pr \Big[\mathsf{Exp}^{\mathsf{DROB-CCA}}_{\mathcal{A},\mathsf{PKE}}(\lambda) &= 1 \Big] \leq \mathsf{negl}(\lambda), \; \textit{where} \\ &\frac{\mathsf{Exp}^{\mathsf{DROB-CCA}}_{\mathcal{A},\mathsf{PKE}}(\lambda) :}{c \leftarrow \mathcal{A}(\lambda)} \\ & (pk,sk) \leftarrow \mathsf{Keygen}(\lambda) \\ & \mathsf{return} \; \mathsf{Dec}(sk,c) \neq \perp \end{split}$$

If PKE satisfies DROB-CCA, then an adversary cannot create a valid ciphertext without knowing the keypair, specifically, the public key.

Theorem 1. If PKE satisfies SROB, then it also satisfies DROB.

Proof. We prove the contrapositive, i.e., we show that if there is an efficient adversary \mathcal{B} against DROB-CCA, then there is an efficient adversary \mathcal{A} against SROB-CCA.

The SROB-CCA adversary \mathcal{A} receives the security parameter λ and two public keys pk_0, pk_1 corresponding to private keys sk_0, sk_1 , respectively. \mathcal{A} runs $c \leftarrow \mathcal{B}(\lambda)$ and submits c to the challenger. We analyze the probability of success for \mathcal{A} .

We need to show that $f(\lambda) \coloneqq \Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{PKE}}^{\mathsf{SROB-CCA}}(\lambda) = 1\right]$ is non-negligible; specifically that

$$\exists d \in \mathbb{N}, \forall n_0 \in \mathbb{N}, \exists \lambda \geq n_0 : f(\lambda) > \frac{1}{\lambda^d}$$

By assumption, $g(\lambda) := \Pr \Big[\mathsf{Exp}^\mathsf{DROB\text{-}CCA}_{\mathcal{B},\mathsf{PKE}}(\lambda) = 1 \Big]$ is non-negligible, i.e., there exists $d_\mathsf{DROB} \in \mathbb{N}$ s.t. for any $n_0 \in \mathbb{N}$ there exists $\lambda \geq n_0$ for which $g(\lambda) > \frac{1}{\lambda^{d_\mathsf{DROB}}}$. Note that

$$\begin{split} g(\lambda) &= \Pr_{\substack{(pk,sk) \sim \mathsf{Keygen}(\lambda) \\ r \sim U_{\lambda}}} \left[\mathsf{Dec}(sk,\mathcal{B}(\lambda,r)) \neq \perp \right] \implies \\ g(\lambda) &= \sum_{c \in \mathcal{C}_{\lambda}} \Pr_{\substack{r \sim U_{\lambda} \\ l}} \left[\mathcal{B}(\lambda,r) = c \right] \cdot \Pr_{\substack{(sk,pk) \sim \mathsf{Keygen}(\lambda) \\ \sim \mathsf{Keygen}(\lambda)}} \left[\mathsf{Dec}(sk,c) \neq \perp \right] > \frac{1}{\lambda^{d_{\mathsf{DROB}}}}. \end{split}$$

where $\mathcal{C}_{\lambda} \subseteq \mathcal{C}$ is the set of possible ciphertexts output by $\mathcal{B}(\lambda,\cdot)$ and r denotes the random coins for \mathcal{B} . By definition of \mathcal{A} we have

$$\begin{split} f(\lambda) &= \Pr\left[\mathsf{Exp}_{\mathcal{A},\mathsf{PKE}}^{\mathsf{SROB-CCA}}(\lambda) = 1\right] = \Pr_{\substack{(pk_0,sk_0) \sim \mathsf{Keygen}(\lambda) \\ (pk_1,sk_1) \sim \mathsf{Keygen}(\lambda) \\ r \sim U_{\lambda}}} \left[\mathsf{Dec}(sk_0,\mathcal{B}(\lambda,r)) \neq \bot \land \mathsf{Dec}(sk_1,\mathcal{B}(\lambda,r)) \neq \bot\right] \implies \\ f(\lambda) &= \sum_{c \in \mathcal{C}_{\lambda}} \Pr_{\substack{r \sim U_{\lambda} \\ (pk_0,sk_0) \sim \mathsf{Keygen}(\lambda) \\ (pk_1,sk_1) \sim \mathsf{Keygen}(\lambda)}} \left[\mathsf{Dec}(sk_0,c) \neq \bot \land \mathsf{Dec}(sk_1,c) \neq \bot\right]. \end{split}$$

Clearly, for a fixed c, the probabilities that $\mathsf{Dec}(sk_0,c) \neq \perp$ and $\mathsf{Dec}(sk_1,c) \neq \perp$ are independent since sk_0 and sk_1 are independently sampled, therefore

$$f(\lambda) = \sum_{c \in \mathcal{C}_{\lambda}} \Pr_{r \sim U_{\lambda}} \left[\mathcal{B}(\lambda, r) = c \right] \cdot \left(\Pr_{(pk, sk) \sim \mathsf{Keygen}(\lambda)} \left[\mathsf{Dec}(sk, c) \neq \bot \right] \right)^{2}. \tag{1}$$

Jensen's inequality gives us that $\psi(\mathbb{E}[X]) \leq \mathbb{E}(\psi(X))$ where ψ is a real convex function and $X: \Omega \to \mathcal{X}$ a random variable. Furthermore, $\mathbb{E}[h(X)] = \sum_{x \in \mathcal{X}} h(x) \Pr[X = x]$ for any $h: \mathcal{X} \to \mathbb{R}$. In our case

$$\begin{split} \psi(x) &:= x^2 \\ X &:= \mathcal{B}(\lambda, \cdot) : U_\lambda \to \mathcal{C}_\lambda \implies \forall c \in \mathcal{C}_\lambda : \Pr[X = c] \coloneqq \Pr_{r \sim U_\lambda}[\mathcal{B}(\lambda, r) = c] \\ h(c) &\coloneqq \Pr_{(sk, pk) \sim \mathsf{Keygen}(\lambda)}[\mathsf{Dec}(sk, c) \neq \bot] \,. \end{split}$$

Therefore, by applying Jensen's inequality to Eq. 1 we get

$$f(\lambda) \geq \left(\sum_{c \in \mathcal{C}_{\lambda}} \Pr_{r \sim U_{\lambda}}[\mathcal{B}(\lambda, r) = c] \cdot \Pr_{(sk, pk) \sim \mathsf{Keygen}(\lambda)}[\mathsf{Dec}(sk, c) \neq \bot]\right)^2 = g(\lambda)^2 > \frac{1}{\lambda^{d_{\mathsf{DROB}}^2}}.$$

In other words, we have found $d \coloneqq d_{\mathsf{DROB}}^2$ which proves that $f(\lambda) = \Pr \Big[\mathsf{Exp}_{\mathcal{A},\mathsf{PKE}}^{\mathsf{SROB-CCA}}(\lambda) = 1 \Big]$ is non-negligible.