Information Theory, Fall 2014	Iftach Haitner
Problem set 1	
November 9, 2014	Due: Nov 18

- Please submit the handout in class, or email the grader.
- Write clearly and shortly using sub-claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- In it ok to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")

1. Let (p_1, \ldots, p_m) and (q_1, \ldots, q_m) be probability distributions (i.e., $p_i \geq 0$ for all i and $\sum_i p_i = 1$). Prove that

$$-\sum_{i} p_{i} \log p_{i} \le -\sum_{i} p_{i} \log q_{i}$$

- 2. Prove the chain-rule for mutual information stated in class.
- 3. What is larger:
 - (a) I(X;Y|Z) or I(X;Y)?
 - (b) H(X|Y) or H(f(X)|Y)?
 - (c) H(X|Y) or H(X|g(Y))?
 - (d) H(X|Y) or H(f(X,Y)|Y)?
 - (e) H(X|Y) or H(X|g(X,Y))?
- 4. For a finite set S of random variables, let H(S) denote the joint entropy of all variables in S. Prove that for any two finite sets of random variables S and U, it holds that $H(S \cup U) + (S \cap U) \leq H(S) + H(U)$.