

Distributed Databases I

南方科技大学 唐 博 tangb3@sustech.edu.cn

Lecture Objectives

An overview of the distributed database

Data replication and fragmentation

The two-phase commit protocol

Supermarket Chain

What is a distributed database?

- *A collection of data with
 - * *Distribution*: data are spread over different sites (of a network)
 - *Logical correlation: data belong to the same system; some properties tie them together

Support *global transactions*: accesses data at more than one site

Why distributed databases?

Management perspectives

- * Organizational requirement: each division / branch (of the organization) may want to maintain its own DB
- * Interconnect existing DB's: when multiple DBs already exist in an organization & need for global applications
- * *Incremental growth*: support smooth incremental growth (e.g., adding a branch) with small impact on existing DBs

Why distributed databases?

Technical perspectives

- ❖ Reduced communication overhead: run sub-transactions at different sites ⇒ sites transfer intermediate results (small) rather than entire tables
- * *Parallel executions*: can execute some transactions in parallel at the participating sites
- * Reliability and availability: can still run transactions despite failures of some sites

Recovery Manager (RM)

- Revisit DBMS issues, how to:
 - Store data?
 [study today]
 - By fragmentation, replication
- Ensure ACID properties?
 - Recovery for A, D [study today]
 - By the two-phase commit protocol
 - ❖ Concurrency for I
 [next lecture]
- Process a query fast?
 [next lecture]

Lecture Objectives

An overview of the distributed database

Data replication and fragmentation

The two-phase commit protocol

Distributed Data Storage

- * Assume relational data model
- Fragmentation
 - ❖ Relation is partitioned into several fragments stored at different sites
- Replication
 - System stores multiple copies of data at different sites
 - For faster retrieval and fault tolerance
- Replication and fragmentation can be combined
 - Relation is partitioned into several fragments
 - System stores several identical copies of each such fragment

Data Replication

- A relation (or fragment of a relation) is **replicated** if it is stored redundantly in two or more sites
- How to process queries?
 - Query either copy, OR
 - Query in parallel
- How to process updates?
 - Must update both copies?
 - * We'll discuss more about this in the next lecture

Data Replication (Cont.)

- Advantages of Replication
 - * Availability: even when a site has failure, we can access copies at other sites
 - ❖ Parallelism: queries on r may be processed by several nodes in parallel
 - \clubsuit Reduced data transfer: relation r is available locally at each site containing a replica of r

Data Replication (Cont.)

- Disadvantages of Replication
 - * Expensive **updates**: each replica of relation r must be updated
 - **Complex concurrency control**: updates to different replicas may cause inconsistent data
 - Need a concurrency control protocol for distributed DBs: E.g., choose one copy as **primary copy** and apply concurrency control operations on primary copy

Data Fragmentation

* Divide relation r into fragments $r_1, r_2, ..., r_n$ which contain *sufficient* information to reconstruct relation r

Example: relation account with schema

Account = (branch_name, customer_number, account_number, balance)

branch_name	customer_name	account_number	balance
Hillside Hillside Valleyview Valleyview Hillside Valleyview Valleyview	Lowman Camp Camp Kahn Kahn Kahn Green	A-305 A-226 A-177 A-402 A-155 A-408 A-639	500 336 205 10000 62 1123 750

Partition by Rows

Assign each tuple of *r* to one fragment

branch_name	customer_name	account_number	balance
Hillside	Lowman	A-305	500
Hillside	Camp	A-226	336
Hillside	Kahn	A-155	62

$$account_l = \sigma_{branch_name="Hillside"}(account)$$

branch_name	customer_name	account_number	balance
Valleyview	Camp	A-177	205
Valleyview	Kahn	A-402	10000
Valleyview	Kahn	A-408	1123
Valleyview	Green	A-639	750

$$account_2 = \sigma_{branch_name="Valleyview"}(account)$$

Horizontal Fragmentation

branch_name	customer_name	account_number	balance	Hillside
Hillside Hillside Hillside	Lowman Camp Kahn	A-305 A-226 A-155	500 336 62	Account
ассо	$unt_l = \sigma_{branch_nan}$	ne="Hillside" (accour	\overline{nt}	

	200		
branch_name	customer_name	account_number	balance

Valleyview Camp A-177
Valleyview Kahn A-402
Valleyview Kahn A-408
Valleyview Green A-639

balance	Valleyview
205 10000 1123	Account

750

 $account_2 = \sigma_{branch_name = "Valleyview"}(account)$

How to find out the sum of balance efficiently?

Partition by Columns

branch_name	customer_name
Hillside	Lowman
Hillside	Camp
Valleyview	Camp
Valleyview	Kahn
Hillside	Kahn
Valleyview	Kahn
Valleyview	Green

 $deposit_1 = \Pi_{branch_name, customer_name}(account)$

account_number	balance
A-305	500
A-226	336
A-177	205
A-402	10000
A-155	62
A-408	1123
A-639	750

Account =
(branch_name,
customer_number,
account_number,
balance)

Do we have *sufficient* information to reconstruct the original table?

$$deposit_2 = \Pi_{account_number, balance}(account)$$

Vertical Fragmentation

- ❖ Vertical fragmentation: split the schema for relation *r* into several smaller schemas
 - All schemas must contain a common candidate key (or superkey) to ensure lossless join property
 - May need to add a special attribute (tuple-id) to each schema as a candidate key

 $deposit_{l} = \Pi_{branch_name, \ customer_name, \ tuple_id}(account)$

tuple_id branch_name | customer_name Lowman Hillside Camp Hillside Valleyview Camp Kahn Valleyview Kahn Hillside Kahn Valleyview Green Valleyview

 $deposit_2 =$

 $\Pi_{account_number, balance, tuple_id}(account)$

account_ number	balance	tuple_id
A-305	500	1
A-226	336	2
A-177	205	3
A-402	10000	4
A-155	62	5
A-408	1123	6
A-639	750	7

Another Example

- Example: schema of an inventory relation inventory(item-id, quantity, supplier, store)
- Horizontal Fragmentation

Vertical Fragmentation

How to Improve Query Performance?

- Store together the tuples that are frequently accessed together
 - E.g., likely to access tuples at the branch "Hillside" together

branch_name	customer_name	account_number	balance	
Hillside	Lowman	A-305	500	
Hillside	Camp	A-226	336	
Hillside	Kahn	A-155	62	

- Store together the attributes that are frequently accessed together
 - E.g., likely to access the attributes account number and balance together

account_ number	balance	tuple_id
A-305 A-226 A-177	500 336 205	1 2 3

How to Improve Query Performance?

- Different transactions may access data with different access patterns
- Difficult to decide the fragmentation manually (by DB administrator)
- *Any automatic method for this problem?
 - First, extract access patterns from transactions
 - * Then, design the fragmentation accordingly

Case study

Use attribute usage to derive a good vertical fragmentation

Attribute usage matrix											Туре	Number of accesses per time period
Attributes 1 2 3 4 5 6 7 8 9 10						-	4 (A) (A) (A) (A) (A) (A)					
T1	1	0	0	0	1	0	1	0	0	0	R	Acc 1 = 25
T2	Ô	ĭ	ĭ	ŏ	ô	ŏ	ō	ĭ	ĩ	ŏ		Acc 2 = 50
T3	ŏ	ô	ō	ĭ	ŏ	ĩ	Õ	Ō	0	1	R R	Acc 3 = 25
T4	ŏ	1	Õ	Ō	Õ	0	1	1	0	0	R	Acc 4 = 35
T5	ĩ	ī	1	0	1	0	1	1	1	0	U	Acc 5 = 25
Т6	1	0	0	0	1	0	0	0	0	0	U	Acc 6 = 25
T7	ō	ŏ	1	0	0	0	0	0	1	0	U	Acc 7 = 25
Т8	0	Õ	1	1	0	1	0	0	1	1	U	Acc 8 = 15

	Fig. 1		Attribute usage matrix						
1	2	3	4	5	6	7	8	9	10
75	25	25	0	75	0	50	25	25	0
25	110	75	0	25	0	60			0
		115	15	25	15	25	75	115	15
				0	40	0	0	15	40
75						50	25	25	0
					40			15	40
		25							0
25				25	Ō				0
25									15
0	ő	15	40	ő	40	-0	0	15	40
	1 75 25 25 0 75 0 50 25 25 0	1 2 75 25 25 110 25 75 0 0 75 25 0 0 50 60 25 110 25 75	1 2 3 75 25 25 25 110 75 25 75 115 0 0 15 75 25 25 0 0 15 50 60 25 25 110 75 25 75 115	1 2 3 4 75 25 25 0 25 110 75 0 25 75 115 15 0 0 15 40 75 25 25 0 0 0 15 40 50 60 25 0 25 110 75 0 25 75 115 15	1 2 3 4 5 75 25 25 0 75 25 110 75 0 25 25 75 115 15 25 0 0 15 40 0 75 25 25 0 75 0 0 15 40 0 50 60 25 0 50 25 110 75 0 25 25 75 115 15 25	1 2 3 4 5 6 75 25 25 0 75 0 25 110 75 0 25 0 25 75 115 15 25 15 0 0 15 40 0 40 75 25 25 0 75 0 0 0 15 40 0 40 50 60 25 0 50 0 25 110 75 0 25 0 25 75 115 15 25 15	1 2 3 4 5 6 7 75 25 25 0 75 0 50 25 110 75 0 25 0 60 25 75 115 15 25 15 25 0 0 15 40 0 40 0 75 25 25 0 75 0 50 0 0 15 40 0 40 0 50 60 25 0 50 0 85 25 110 75 0 25 0 60 25 75 115 15 25 15 25	1 2 3 4 5 6 7 8 75 25 25 0 75 0 50 25 25 110 75 0 25 0 60 110 25 75 115 15 25 15 25 75 0 0 15 40 0 40 0 0 75 25 25 0 75 0 50 25 0 0 15 40 0 40 0 0 0 50 60 25 0 50 0 85 60 25 110 75 0 25 0 60 110 25 75 115 15 25 15 25 75	1 2 3 4 5 6 7 8 9 75 25 25 0 75 0 50 25 25 25 110 75 0 25 0 60 110 75 25 75 115 15 25 15 25 75 115 0 0 15 40 0 40 0 0 15 75 25 25 0 75 0 50 25 25 0 0 15 40 0 40 0 0 15 50 60 25 0 50 0 85 60 25 25 110 75 0 25 0 60 110 75 25 75 115 15 25 15 25 75 115

Example adapted from the paper: "Vertical Partionining for Database Design: A Graphical Algorithm". SIGMOD 1989.

Fig.2 Attribute affinity (AA) matrix

Advantages of Fragmentation

Horizontal:

Allows parallel processing (on fragments with different tuples)

Vertical:

- Allows parallel processing (on fragments with different attributes)
- Tuple-id attribute allows efficient joining of vertical fragments
- Vertical and horizontal fragmentation can be mixed
 - Fragments may be further fragmented to an arbitrary depth

An overview of the distributed database

Data replication and fragmentation

The two-phase commit protocol

This protocol aims to achieve the properties 'A' and 'D' Don't confuse it with the 2PL protocol (for property 'I')

CAP Theorem

- Hard to achieve all three properties together
 - C: Consistency
 - All users can access the up-to-date copy of the data
 - ❖ A: Availability
 - The system can work properly even with node failures
 - P: Partitioning tolerance
 - The system can work properly even with network/message failures

CAP Theorem

- * Example: consider replicated data at two sites
 - * Consistency: When we update data in S1, need to replicate this update in S2
 - Availability: When a site is running, we can query/update data from it (via network)
 - ❖ Partition tolerance: If the network fails, we can still query/update the local site
- When the network fails
 - ❖ Allow both sites available → data may not be up-to-date
 - ❖ Keep consistency → cannot make both sites available

Transaction System Architecture

Distributed Transactions

- Transaction may access data at several sites
- * Each site has a local transaction manager to:
 - Maintain a log for recovery purposes
 - ❖ Participate in the concurrent execution of transactions at that site
- * Each site has a transaction coordinator to:
 - Start the execution of **global transactions** that originate at the site
 - Distribute sub-transactions to appropriate sites
 - ❖ Coordinate the termination of each transaction that originates at the site, which may result in: commit the transaction at all sites / abort at all sites

System Failure Modes

- * Failures unique to distributed systems:
 - Message loss
 - Handled by network protocols (e.g., TCP-IP)
- Communication link failure
 - Handled by network protocols, by routing messages via alternative links
- Site failure
- Network partition
 - ❖ It happens when the network is split into subsystems that lack connection
 - Note: a subsystem may consist of a single node

Commit Protocols

- * Commit protocols ensure **atomicity** across sites
 - * a transaction (which executes at multiple sites) must either be committed at all sites, OR aborted at all sites.

not acceptable to have a transaction committed at one site and aborted at another

- * The two-phase commit (2PC) protocol is widely used
 - It ensures atomicity property despite network / site failures
 - Suppose that each site uses recovery protocol to ensure subtransaction atomicity

Two-phase commit: Notations

❖ *T*: a global transaction

- T_1 , T_2 , ..., T_n : sub-transactions of T
 - \bullet Ti will be executed at participant sites S_i
- \bullet C: the coordinator of T
 - ❖ This site monitors the sub-transactions and decides whether *T* should commit or not

Phase I: Obtain a Decision

(when all sub-transactions finish)

Phase II: Record the Decision

Cases for the coordinator *C*

Actions for C

(1): received a " ready <i>T</i> " from all sites	<u>decides to commit T</u>				
	• adds <commit< b=""> <i>T</i>> to its log</commit<>				
	• sends the message " commit <i>T</i> " to all sites				
(2): received an " abort <i>T</i> " from some sites	<u>decides to abort T</u>				
(3): not heard from some site S_i	• adds < abort <i>T</i> > to its log				
after a certain timeout period	• sends the message " abort <i>T</i> " to all sites				
[C assumes S_i is down]					

Phase II: Record the Decision

For each participant S_i

- Received "**commit** *T* ":
 - \diamond it adds <**commit** T> to its log and commits T_i locally
- Received "abort T":
 - \diamond it adds <**abort** T> to its log and aborts T_i locally

State Diagram

Format

coordinator C

participant S_i

Conditions:

- ua = unilateral abort
- tm = timeout

Messages:

- P = "prepare T"
- R = "ready T"
- AA = "abort T" answer
- AC = "abort T" command
- CC = "commit T" comman

- No failure → 2PC ensures that either all sub-transactions commit or all of them abort
- \Rightarrow Site / network failure \Rightarrow need to make sure that the site's recovery is consistent with the global decision for T
- * Types of failure:
 - ❖ (1) a site failure
 - * (2) a coordinator failure
 - ❖ (3) network partition failure

(1) Site Failure

- * When a site S_i recovers after a failure, it checks its log for entries for T. If it finds:
 - \diamond < commit T>: T has committed, redo T_i
 - \diamond <abord T>: T has been aborted, undo T_i
 - \bullet <**no** T>: S_i has not received the decision from C yet, but the decision must be to abort T, so **undo** T_i
 - $extrm{ < ready } T >: S_i extrm{ does not know the decision. It asks } C extrm{ to determine whether } T extrm{ has committed or aborted.}$
 - None of the above: C could not have decided to commit T. It would be safe to abort T_i (so **undo** T_i)

(2) Coordinator Failure

- ❖ If the coordinator fails and all the "living" participants are precommitted (<ready T> logged), no one knows the final decision until the coordinator recovers.
 - All "living" participants are blocked
 - * This is the *blocking problem* of 2PC
- * The blocking problem of 2PC is undesirable
 - * sub-transactions are holding locks on data items
 - * cause severe blocking to other transactions in the system

(3) Network Partition Failure

- When a network partition occurs, a participant cannot communicate with the coordinator
 - ❖ In that case, the separated participant assumes the coordinator fails, and
 - * The coordinator assumes that the separated participant fails
- So all sites execute the same 2PC protocol

- An overview of the distributed database
- Data replication and fragmentation
- The two-phase commit protocol

Readings after the class

Chapters 3 and 12.4 in the book Ozsu, and Valuriez. Principles of Distributed Database System, 3rd Ed, Springer, 2011 (free online)

谢谢!

