Data Communication;

Thermal Noise inwhite noise i

The amount of thermal noise to be found in bandwidth of 1 HZ in any device:

device: No=KoT (W/HZ)

Where:

No: noise power density in watts per 1 of bw k: Bolzmanns constant = 1.38x 10 3/k

Tri Temperature in Kelvins

Thermalnoise in walls persent in a bu

N= K.T.B

decible Notation,

N=10 logk + 10 log T+10 log B = -228.6 dBW+10 log T+10 log B

roise temperature of 294K and a loutz bw, the thermal noise at receiver output?

Sol: N= 10 log k + 10 log T + 10 log B =-228.6 dBw + 10 log (294) + 10 log(107)

= -228.6dBW+24.7+70 = -133.9dBW

* Nyquist Bandwith:

Data rate is simply limited by bw A if the rate of signal transmission is 2B, then a signal with frequency no greater than B is sufficient to carry the signal rate 17c°

No= K. T=1.38x10 X290

= 4x10 W/HZ

= -204dBW/HZ

ox Given a bu of B, the highest signal rate that can be carried is 2B

Note: Channel is error

Free

no huge levels the nate can be supported by DII

by BHZis 2B bps

Nyquist to Multilevel signaling,

C = 2 B Lag 2 M

Where

M: the number of discrete Signal or

to transmit digital data. Assume a bwof

Nyq. C = 2B log_M (M=8) örnek

= 2.3100 log 8= 18600 bps

SHANNON CAPACITY:

For a given level of noise, we would expect that a precents signal strength would improve the ability to receive data correctly in present of signal - to-noise

signal-to-noise Ratio (SNR) (S/R)

The ratio of power in a signal to the power Contained in the noise in any particular point of transmission

Type Measured at receives:

SNRJB = 10 Log Signal power Ratio

Note A high SNR will mean high - quality Signal and a low number of required intermediate repeators Shannon's Maximum channel capacity:

C=B. log2 (|+ SNR),

Cibps

B: HZ

of a channel is between 3MHz and 4MHZ, SNR=24dB

Soll: B= 41-3-1MHZ

SNRJB = 24JB

we have:

SURJB= lologio (SNR)

24=10 log, (SNR)

SNR = 251

C= Blog, (1+ SNR)

= 1 x log_ (1+251)

= 1 x log (252)

~ 8Mbps

odewn

consider a channel with a INHZ capacity and SNR of 63, what is the upper limit of the data rate of this channel?

Sol:

C=BXlog2(1+SNR) = 1 x log2(1+63) = 1 x log2(64)=6Mbps

Odevs!

A digital Signaling System is required to operate at 9600 bps if a signal element is encoding a 4-bit word. What is the maximum required but of the channel?

Soll

M = 41-bit, C=9600 bps C = 2BlogM 9600 = 2BlogH

girly amy = (mply)

4XB=9600

B=2400HZ

Öderzijitali ali a Asco

Capacity of 20Mbps, the bw of the channel is 3 MHZ. what signal to noise ratio is required to achieve this capacity?

So) C= 20 Mbps

B = 3 M H Z

we have: C = B X Log_(14 SNR)

20 = 3 x Log_(1+ SNR)

1+ SNR=1013 SNR=100

TXCHOUR OF P and BY

PAP = T STANDER

Kişisel Gözümdür V hocanın Gözümü degildir

of gray view a chieve one

61. 1249m 1 1 p.

Data Communication:

Gain and Loss:

Signal Streangth full of exponentially Loss is expressed in terms of DECIBEL (logartmic unit).

The decible is a measure of the ratio

Decible Gain:

where;

But: output Power level

Pininput power level

Decible Loss:

LdB = - 10 log Pout = 10 log Pin Pout

Pin = lomw , Paut = 5mw

LdB = lolog Pin = lolog 2 = 3.01 dB

Decible-watts JBW:

The absolute decible level of power in dBW is:

Powersen = 10 log <u>Powerw</u> = 10 log (powerw)

Exy 1000 W -> 30dQW

1 mw - 3 odBw

Antenna-Gain:

GB = 10 log P2 where:

GdB: anttenne gain

Privadited power from reference antenne Privadited N N directional N

has gain of 6dB over a reference antenna that has gain of 6dB over a reference antenna that radiates 700 w. How much power must reference antenna vadiate to provide Same signal power in . ___?

soll we have:

$$\frac{P_2}{700} = 10 = 3.98 \Rightarrow$$

Effective Area of an Antenna (Ae):

Ae: of an antenna is related to its Physical Size on a its Shape,

$$G = \frac{4\pi Ae}{\chi^2} = \frac{4\pi f^2 Ae}{c^2}$$

Where:

Ae: effective area (m2)

C: quitenna gain (ratio)

F: Carries Frequency (HZ)

C: speed of light (= 3x108m/s)

h: carries wave length (m)

" GdB = 10 Log G "

to the factor in the factor in the factor in the factor in the life in the life in the

Effective Area of an isotropic Antenna:

$$Ae = \frac{\lambda^2}{4\pi}$$
 with a power gain of 1

with a diametery of 2m operating at 12GHZ. What are AR and G?

$$\lambda = c/f = \frac{3x10^8}{(2x10^9)} = 0.025 \text{ m}$$

$$\triangle = \mu \iota_{5} = \nu (\iota)_{5} = \nu$$

$$= 0.5(\pi) = 0.5\pi$$

$$G = \frac{7A}{\lambda^2} = \frac{7\pi}{(0.025)^2} = 35.186$$

Gd3 = 10 log C = 10 log (35.186)

Summary

Type

Ae

Power gain

Effective Area of an parabolic

reflective with face area of A

Ae=0.5 A

Power gain is

Isotropic

x2/4T

L

Parabolic faces

0.56 A

7A/2

area A

0.50.

1.5

Infinitesmal

1.5 /2/4-1

Half wave

1.64 /2/4T

1.64

Hom/Mouth area of A

0.81 A

10A/22

Turnstile

1.15 /2/47

1.15

Data Communication:

Offical Los:

The term optical line of sight refer to the Straight line Propogation of light waves

Radio losi

The term radio line of sight or effective los, refers to propagation of radio waves bent by curvers of earth

d= 3.57Vk.h

Where:

K: is an adjustment factor to account

Maximum distance btw two antenna for los propogation:

where:

h, he are the hieghest of two antenna

two antenna, if one antenna is loom high and the other is at ground level?

h,= loom ground level (hz)=om

= 41 KM

b): Now suppose that the receiving antenny is lombigh. To achieve the same distance, how high must the transmitting antenna be?

We have d= 41 Km

$$h_1 = 46.2m$$

Juided and unquided madia

of antennas

$$\frac{P_{+}}{P_{r}} = \frac{(4\pi)^{2} \cdot J^{2}}{G_{+} \cdot G_{r} \cdot J^{2}} = \frac{(Jd)^{2}}{At \cdot Ar} = \frac{(C.d)^{2}}{P^{2}At \cdot Ar}$$
where,

Ci, gain of transsion antenna

h: carrier wavelength

d: propogation distance btw antennas

C: speed of light (3x10 m/s)

Ar: Ae of recieving antenna

LdB=20log(f)+20log(d)-169.58dB

LdB=20log(A) +20lug(d)-10log(A+Ar)

= -20/09 (D+20log(d)-10log(A)+

takey 169.541B