Stream Cipher

Encrypts a digital data stream one bit or one byte at a time

Examples:

- Autokeyed Vigenère cipher
- Vernam cipher

In the ideal case a one-time pad version of the Vernam cipher would be used, in which the keystream is as long as the plaintext bit stream

If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream

- Keystream must be provided to both users in advance via some independent and secure channel
- This introduces insurmountable logistical problems if the intended data traffic is very large

For practical reasons the bitstream generator must be implemented as an algorithmic procedure so that the cryptographic bit stream can be produced by both users

> It must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream

The two users need only share the generating key and each can produce the keystream

Block Cipher

A block of plaintext is treated as a whole and used to produce a ciphertext block of equal length

Typically a block size of 64 or 128 bits is used

As with a stream cipher, the two users share a symmetric encryption key

The majority of network-based symmetric cryptographic applications make use of block ciphers

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Figure 3.1 Stream Cipher and Block Cipher

Figure 3.2 General n-bit-n-bit Block Substitution (shown with n = 4)

Mapping

		The state of the s	
Rever	sible	Man	nmo

Plaintext	Ciphertext
00	11
01	10
10	00
11	01

Irreversible Mapping

Plaintext	Ciphertext
00	11
01	10
10	01
11	01

Contd...

- Transformations are: 2ⁿ!.
- Key here is (4 bits) * 16 rows = 64 bits.
- For 64bit: $(64 \text{ bits}) * 2^64 = 2^70 = 10^21 \text{ bits}$.

Table 3.1

Encryption and Decryption Tables for Substitution Cipher of Figure 3.2

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

Next approach

```
y_1 = k_{11}x_1 + k_{12}x_2 + k_{13}x_3 + k_{14}x_4
y_2 = k_{21}x_1 + k_{22}x_2 + k_{23}x_3 + k_{24}x_4
y_3 = k_{31}x_1 + k_{32}x_2 + k_{33}x_3 + k_{34}x_4
y_4 = k_{41}x_1 + k_{42}x_2 + k_{43}x_3 + k_{44}x_4
```

Here the key sixe is n². similar to Hill Cipher.

Feistel Cipher

 Proposed the use of a cipher that alternates substitutions and permutations

Substitutions

 Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

 No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed

- Is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions
- Is the structure used by many significant symmetric block ciphers currently in use

Diffusion and Confusion

- Terms introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system
 - Shannon's concern was to thwart cryptanalysis based on statistical analysis

Diffusion

- The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext
- This is achieved by having each plaintext digit affect the value of many ciphertext digits

Confusion

- Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
- Even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce the key

Feistel Cipher Structure

Figure 3.3 Feistel Encryption and Decryption (16 rounds)

Feistel Cipher Design Features

Block size

 Larger block sizes mean greater security but reduced encryption/decryption speed for a given algorithm

Key size

 Larger key size means greater security but may decrease encryption/decryption speeds

Number of rounds

 The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security

Subkey generation algorithm

 Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis

Round function F

 Greater complexity generally means greater resistance to cryptanalysis

Fast software encryption/decryption

 In many cases, encrypting is embedded in applications or utility functions in such a way as to preclude a hardware implementation; accordingly, the speed of execution of the algorithm becomes a concern

Ease of analysis

 If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength

Feistel Example

Figure 3.4 Feistel Example

Data Encryption Standard (DES)

- Issued in 1977 by the National Bureau of Standards (now NIST) as Federal Information Processing Standard 46
- Was the most widely used encryption scheme until the introduction of the Advanced Encryption Standard (AES) in 2001
- Algorithm itself is referred to as the Data Encryption Algorithm (DEA)
 - Data are encrypted in 64-bit blocks using a 56-bit key
 - The algorithm transforms 64-bit input in a series of steps into a 64-bit output
 - The same steps, with the same key, are used to reverse the encryption

Figure 3.5 General Depiction of DES Encryption Algorithm

DES Encryption Algorithm

Table 3.2

DES Example

(Table can be found on page 75 in textbook)

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	cl1bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Table 3.3 Avalanche Effect in DES: Change in Plaintext

Round		δ
	02468aceeca86420	0
	02468aceeca86420	
1	3cf03c0fbad22845	3
	3cf03c0f9ad628c5	
2	bad2284599e9b723	11
	9ad628c59939136b	
3	99e9b7230bae3b9e	25
	9939136b768067b7	
4	0bae3b9e42415649	29
	768067b75a8807c5	
5	4241564918b3fa41	26
	5a8807c5488dbe94	
6	18b3fa419616fe23	26
	488dbe94aba7fe53	
7	9616fe2367117cf2	27
	aba7fe53177d21e4	
8	67117cf2c11bfc09	32
	177d21e4548f1de4	

Round		δ
9	c11bfc09887fbc6c	34
	548f1de471f64dfd	
10	887fbc6c600f7e8b	36
	71f64dfd4279876c	
11	600f7e8bf596506e	32
	4279876c399fdc0d	
12	f596506e738538b8	28
	399fdc0d6d208dbb	
13	738538b8c6a62c4e	33
	6d208dbbb9bdeeaa	
14	c6a62c4e56b0bd75	30
	b9bdeeaad2c3a56f	
15	56b0bd7575e8fd8f	33
	d2c3a56f2765c1fb	
16	75e8fd8f25896490	30
	2765c1fb01263dc4	
IP-1	da02ce3a89ecac3b	30
	ee92b50606b62b0b	

Table 3.4 Avalanche Effect in DES: Change in Key

Table 3.5

Average Time Required for Exhaustive Key Search

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 1013 decryptions/s
56	DES	2 56 ≈ 7.2 × 10 16	2 55 ns = 1.125 years	1 hour
128	AES	2 128 ≈ 3.4 × 10 38	2 127 ns = 5.3 × 10 21 years	5.3 × 10 17 years
168	Triple DES	2 168 ≈ 3.7 × 10 50	2 167 ns = 5.8 × 10 33 years	5.8 × 10 29 years
192	AES	2 192 ≈ 6.3 × 10 57	2 191 ns = 9.8 × 10 40 years	9.8 × 10 36 years
256	AES	2 256 ≈ 1.2 × 10 77	2 255 ns = 1.8 × 10 60 years	1.8 × 10 56 years
26 characters (permutation)	Monoalphabetic	26! = 4 × 10 26	2 × 10 26 ns = 6.3 × 10 9 years	6.3 × 10 6 years

Strength of DES

Timing attacks

- One in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts
- Exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs
- So far it appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES

Block Cipher Design Principles: Number of Rounds

The greater the number of rounds, the more difficult it is to perform cryptanalysis

In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search

Block Cipher Design Principles: Design of Function F

- The heart of a Feistel block cipher is the function F
- The more nonlinear F, the more difficult any type of cryptanalysis will be
- The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function

The algorithm should have good avalanche properties

Strict avalanche criterion (SAC)

States that any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i, j Bit independence criterion (BIC)

States that output bits j and k should change independently when any single input bit i is inverted for all i, j, and k

Block Cipher Design Principles: Key Schedule Algorithm

- With any Feistel block cipher, the key is used to generate one subkey for each round
- In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key
- It is suggested that, at a minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion

Summary

- Traditional Block
 Cipher Structure
 - Stream ciphers
 - Block ciphers
 - Feistel cipher
- The Data Encryption Standard (DES)
 - Encryption
 - Decryption
 - Avalanche effect

- The strength of DES
 - Use of 56-bit keys
 - Nature of the DES algorithm
 - Timing attacks
- Block cipher design principles
 - DES design criteria
 - Number of rounds
 - Design of function F
 - Key schedule algorithm

- DES exhibits the classic ______ block cipher structure, which consists of a number of identical rounds of processing.
- A) Feistel

B) SAC

C) Shannon

D) Rendell

- A sequence of plaintext elements is replaced by a _____ of that sequence which means that no elements are added, deleted or replaced in the sequence, but rather the order in which the elements appear in the sequence is changed.
- A) permutation

B) diffusion

C) stream

D) substitution

- A ____ cipher is one that encrypts a digital data stream one bit or one byte at a time.
- A) product

B) block

C) key

D) stream

 The vast majority of network-based symmetric cryptographic applications make use of ciphers.

A) linear

B) block

• C) permutation

D) stream

- A _____ cipher is one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.
- A) bit

B) product

• C) stream

D) block

 is when each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements.

A) Substitution

B) Diffusion

C) Streaming

D) Permutation

- Key sizes of _____ or less are now considered to be inadequate.
- A) 128 bits

B) 32 bits

• C) 16 bits

D) 64 bits

- Feistel proposed that we can approximate
 the ideal block cipher by utilizing the concept
 of a _____ cipher, which is the execution
 of two or more simple ciphers in sequence in
 such a way that the final result or product is
 cryptographically stronger than any of the
 component ciphers.
- A) linear

B) permutation

C) differential

D) product

- The criteria used in the design of the ______ focused on the design of the S-boxes and on the P function that takes the output of the S-boxes.
- A) Avalanche Attack B) Data Encryption Standard
- C) Product Cipher Key

D) Substitution

•

- The greater the number of rounds, the it is to perform cryptanalysis.
- A) easierB) less difficult
- C) equally difficult
 D) harder

- The function F provides the element of in a Feistel cipher.
- A) clarification

B) alignment

• C) confusion

D) stability

 One of the most intense areas of research in the field of symmetric block ciphers is design.

A) S-box

B) F-box

• C) E-box

D) D-box

- Mister and Adams proposed that all linear combinations of S-box columns should be which are a special class of Boolean functions that are highly nonlinear according to certain mathematical criteria.
- A) horizontal functions functions

B) angular

C) bent functions functions

D) vertical

- Allowing for the maximum number of possible encryption mappings from the plaintext block is referred to by Feistel as the _____.
- A) ideal substitution cipher
 B) round function
- C) ideal block cipher
 D) diffusion cipher

seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible so that even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex it is difficult to deduce the key.

Many block ciphers have a ______
structure which consists of a number of
identical rounds of processing and in each
round a substitution is performed on one half
of the data being processed, followed by a
permutation that interchanges the two halves.

- Feistel's is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and functions.
- The ____ criterion is defined as: "An S-box satisfies GA of order y if, for a 1-bit input change, at least y output bits change."

- In _____ the statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each plaintext digit affect the value of many ciphertext digits.
- A change in one bit of the plaintext or one bit of the key should produce a change in many bits of the ciphertext. This is referred to as the effect.

 Two areas of concern regarding the level of 	
security provided by DES are the nature of t	he
algorithm and the	

- A _____ attack exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs.
- Two alternatives to DES are AES and DES

 The cryptographic strength of a Feistel cipher derives from three aspects of the design: the function F, the key schedule algorithm, and

- Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in hexadecimal (base 16) format. Rewriting M in binary format, we get the 64-bit block of text:
- M = 0000 0001 0010 0011 0100 0101 0110 0111
 1000 1001 1010 1011 1100 1101 1110 1111
 L = 0000 0001 0010 0011 0100 0101 0110 0111
 R = 1000 1001 1010 1011 1100 1101 1110 1111

- Let K be the hexadecimal key K =
 133457799BBCDFF1. This gives us as the binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of which the last one in each group will be unused):

PC-1

```
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
```

- **K**+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
- $C_o = 1111000 0110011 0010101 0101111$ $D_o = 0101010 1011001 1001111 0001111$

Iteration Number of

Number Left Shifts

• 1 1

2 1

9 3 2

• 4 2

• 5 2

6 2

• 7 2

8 2

Round & Left shift

	• 1	1		10	2
•	2	1	•	11	2
•	3	2	•	12	2
•	4	2	•	13	2
	5	2	•	14	2
•	6			15	2
	7	2		16	
	8	2			
•	9	1			

- $C_o = 11110000110011001010101111$ $D_o = 0101010101100110011110001111$
- $C_1 = 11100001100110010101011111$ $D_1 = 1010101011001100111100011110$
- $C_2 = 11000011001100101010111111$ $D_2 = 0101010110011001111000111101$

PC 2 56 bit to 48 bit

```
• 14 17 11 24 1 5
  3 28 15 6 21 10
23 19 12 4 26 8
  16 7 27 20 13 2
  41 52 31 37 47 55
  30 40 51 45 33 48
  44 49 39 56 34 53
  46 42 50 36 29 32
```

- $K_1 = 000110 110000 001011 101111 111111 000111 000001 110010$
- For the other keys we have
- $m{K}_2 = 011110\ 011010\ 111011\ 011001\ 110100\ 101110\ 011111\ 100101\ K_3 = 010101\ 011111\ 110010\ 001010\ 010000\ 101100\ 111110\ 011001\ K_4 = 011100\ 101010\ 110111\ 010110\ 110010\ 110101\ 110101\ 101010\ 011101\ 110101\ 101010\ 001111\ 111000\ 000111\ 111000\ 000111\ 101100\ 000111\ 101101\ 101100\ 01111\ 00001\ 10001\ 101111\ 111010\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 011110\ 0111111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\ 011111\$

Encode Data - IP

```
58 50 42 34 26 18 10 2
    60 52 44 36 28 20 12 4
    62 54 46 38 30 22 14 6
    64 56 48 40 32 24 16 8
    57 49 41 33 25 17 9 1
    59 51 43 35 27 19 11 3
    61 53 45 37 29 21 13 5
    63 55 47 39 31 23 15 7
```

- $L_o = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$ $R_o = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010$
- $L_n = R_{n-1}$ $R_n = L_{n-1} + f(R_{n-1}, K_n)$
- when n=1
- $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$ $L_1 = R_0 = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010 \ R_1 = L_0 + f(R_0, K_1)$

Expansion

• f, we first expand each block R_{n-1} from 32 bits to 48 bits

```
32 1 2 3 4 5
```

- XOR the output $E(R_{n-1})$ with the key K_n
- Kn + E(Rn-1) = B1B2B3B4B5B6B7B8,
- where each Bi is a group of six bits. We now calculate
- S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B 8)
- where Si(Bi) referres to the output of the i-th S box.

- Row
- No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
- 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
- 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
- 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Permutation of 32 bits

- 16 7 20 21
- 29 12 28 17
- 1 15 23 26
- 5 18 31 10
- 2 8 24 14
- 32 27 3 9
- 19 13 30 6
- 22 11 4 25

Inverse permutation(after 16 rounds)

```
• 40 8 48 16 56 24 64 32
      39 7 47 15 55 23 63 31
      38 6 46 14 54 22 62 30
      37 5 45 13 53 21 61 29
      36 4 44 12 52 20 60 28
      35 3 43 11 51 19 59 27
      34 2 42 10 50 18 58 26
      33 1 41 9 49 17 57 25
```

DES Modes

 The DES algorithm turns a 64-bit message block M into a 64-bit cipher block C. If each 64bit block is encrypted individually, then the mode of encryption is called *Electronic Code* Book(ECB) mode.

ECB

- message is broken into independent blocks which are encrypted
- each block is a value which is substituted, like a codebook
- each block is encoded independently of the other blocks

$$C_i = DES_{K1} (P_i)$$

• uses: secure transmission of single values_

Chain Block Coding

- message is broken into blocks
- but these are linked together in the encryption operation
- each previous cipher blocks is chained with current plaintext block, hence name
- use Initial Vector (IV) to start process

$$C_i = DES_{K1} (P_i XOR C_{i-1})$$

 $C_{-1} = IV$

• uses: bulk data encryption, authentication

Cipher Feedback

- message is treated as a stream of bits
- added to the output of the block cipher
- result is feed back for next stage (hence name)
- standard allows any number of bit (1,8 or 64 or whatever) to be feed back
 - denoted CFB-1, CFB-8, CFB-64 etc
- is most efficient to use all 64 bits (CFB-64)

$$C_{i} = P_{i} \text{ XOR DES}_{K1} (C_{i-1})$$

 $C_{-1} = IV$

Output FeedBack (OFB)

Cracking DES

- "brute force"
- Deep Crack, uses 27 boards each containing 64 chips, 56 hours – 90 billion keys per second

Triple DES

 Triple-DES is just DES with two 56-bit keys applied. Given a plaintext message, the first key is used to DES- encrypt the message. The second key is used to DES-decrypt the encrypted message. (Since the second key is not the right key, this decryption just scrambles the data further.) The twicescrambled message is then encrypted again with the first key to yield the final ciphertext. This three-step procedure is called triple-DES.

- ciphertext = EK3(DK2(EK1(plaintext)))
- Decryption is the reverse:
- plaintext = DK1(EK2(DK3(ciphertext)))