ARSITEKTUR SISTEM MEMORI

Pertemuan VI

KARAKTERISTIK MEMORI

- KAPASITAS
- SATUAN TRANSFER
- METODE AKSES
- KINERJA
- TIPE FISIK
- KARAKTERISTIK FISIK

KAPASITAS

- Kapasitas dinyatakan dalam byte (1 byte 8 bit) atau word
- Panjang word yang umum adalah 8, 16 dan 32 bit.

SATUAN TRANSFER

 Satuan transfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori.

Ada 3 konsep dalam satuan transfer :

- 1. Word
- 2. Addressable Unit
- 3. Unit of Transfer

METODE AKSES

- Terdapat 4 jenis metode akses:
 - Sequential Access
 - 2. Direct Access
 - 3. Random Access
 - 4. Associative

KINERJA

- Pada memori utama terdapat 3 buah parameter unjuk kerja:
 - Access Time
 - 2. Memory Cycle
 - 3. Transfer Rate

TIPE FISIK

- Memori utama dikemas dalams ebuah Chip
- Dua jenis yang umum digunakan saat ini adalah:
 - 1. Memori semi konduktor yang memakai teknologi LSI
 - Memori semi konduktor yang memakai teknologi VSLI

KLASIFIKASI MEMORI

- MemoriUtama:
 - Internal: RAM, DRAM, SDRAM
 - 2. Eksternal: ROM, PROM, EPROM, CACHE
- MemoriPembantu
 - Disk magnetik, pita magnetik, floopydisk, drum magnetik, optical disk.

MEMORI SEMI KONDUKTOR RANDOM ACCESS

Tipe Memori	Kategori	Penghapu san	Mekanisme Penulisan	Volatilitas
RAM	Read – Write Read-only	Electrically byte level	Electrically	Volatile
ROM	Read Only Memory	Tidak Mungkin	Mask	Non Volatile
PROM				
EPROM	Read mostly memory	Sinar Ultra Violet		
Flash Memory		Electrically block level		
EEPROM				

MEMORI UTAMA

- Memori utama yang digunakan untuk menyimpan dan memanggil data diklasifikasikan menjadi 2 yaitu:
 - RAM (Random Access Memory)
 - CAM (Content Address Memory)

RAM (RANDOM ACCESS MEMORY)

- RAM diakses melalui alamat,
- Semua lokasi yang dapat dialamati dapat diakses secara acak (random)
- Membutuhkan waktu akses yang sama tanpa tergantung pada lokasi fisik di dalam memori
- Ada2 jenis RAM
 - 1. RAM Dinamik
 - 2. RAM Statistik

CAM (CONTENT ADDRESS MEMORY)

- Memori diakses berdasarkan isi bukan alamat
- Pencarian data dilakukan secara simultan dan paralel
- CAM disebut juga memori asosiatif

MEMORY CACHE

- Buffer berkecepatan tinggi yang digunakan untuk menyimpan data yang diakses pada saat itu dan data yang berdekatan dalam memori utama.
- Waktu akses memori cache lebih cepat 5 -10 kali dibandingkan memori utama

PRINSIPKERJA MEMORI CACHE

- Cache berisi salinan sebagian isi memori utama
- Pada saat CPU membaca sebuah word memory, dilakukan pemeriksaan untuk mengetahui apakah word berada di cache
- Jika word berada di cache, maka akan dikirimkan ke CPU yang dikenal sebagai **proses HITT**
- Jika tidak ada, maka blok memori utama yang terdiri dari sejumlah word tetapakan diletakkan di cache yang dikenal sebagai proses MISS dan selanjutnya dikirim ke CPU.

ELEMEN-ELEMEN RANCANGAN CACHE

- Ukuran Cache
- Fungsi Pemetaan
- Algoritma Penggantian
- Ukuran Blok

UKURAN CACHE

- Disesuaikan kebutuhannya dalam membantu kerja memori utama
- Semakin besar ukuran cache, maka semakin besar pula jumlah gerbang yang terdapat dalam pengalamatan cache, yang mengakibatkan cache berukuran besar akan lebih lambat dari cache yang berukuran kecil
- Ukuran cache antara 1 K sampai 512 K

FUNGSI PEMETAAN (MAPPING)

- PEMETAAN LANGSUNG
- PEMETAAN ASOSIATIF

ALGORITMA PENGGANTIAN

- Digunakan untuk menentukan blok mana yang harus dikeluarkan dari cache untuk menyiapkan tempat bagi blok baru
- Ada 2 metode
 - 1. Write-through
 - 2. Write-Back

IMPLEMENTASI MEMORI UTAMA

- Memori Stack
- Memori Modular
- MemoriVirtual

Prinsip dasar memori virtual adalah mengalamati ruang penyimpanan logikal yang secara fisik lebih besar dari pada ruang penyimpanan riil.

MEMORI PEMBANTU (AUXILIARY MEMORY)

- Bersifat non-volatile yaitu jika tidak ada listrik, maka isi memori tidak hilang.
- Tidak mempengaruhil angsung fungsi CPU
- Yang termasuk memori pembantu adalah:
 - 1. Pita Magnetik
 - 2. Disk Magnetik
 - 3. FloopyDisk

Lanjutan

- Organisasi disk yaitu
 - Track: sejumlah lingkaran yang konsentris
 - Sektor: pembagian permukaan disk secara belahan yang mempunyai ukuran yang sama
 - 3. Silinder: dibentuk oleh track-track yang berhubungan pada setiap permukaan

SIFAT FISIK

- Statis Vs Dinamis
- Volatile Vs Non Volatile
- Read Destruktif Vs Read Non-Destruktif
- Removable Vs Permanen

ORGANISASI LOGIS

- Teralamatkan (addressed)
- Asosiatif
- Akses Urut

DESIGN MEMORI

- Kecepatan Memori Lawan Kecepatan CPU
- Ruang Alamat Memori
- Keseimbangan Antara Kecepatan Dan Biaya