例 0.0.1

 \mathcal{I} を Set から Set への恒等関手とする. 集合 X に対して, $\mathcal{D}(X) := X \times X$, 集合間の写像 $f: X \to Y$ に対して $\mathcal{D}(f) := f \times f$ ($(f \times f)(x, x') := (f(x), f(x'))$) とすると, \mathcal{D} は Set から Set への関手となる. すなわち,

$$\mathcal{D}$$
 : **Set** \longrightarrow **Set** 対象の対応 : $X \longmapsto X \times X$ 射の対応 : $f \longmapsto f \times f$ $((f \times f)(x, x') := (f(x), f(x')))$

である. 各 $X \in \text{Ob}(\mathbf{Set})$ に対して \mathbf{Set} の射 $\delta_X : \mathcal{I}(X) \to \mathcal{D}(X)$ を

$$\begin{array}{cccc}
\delta_X \colon & X & \longrightarrow & X \times X \\
& & & & & & & & \\
& & x & \longmapsto & (x, x)
\end{array}$$

とさだめ、その族を $\delta: \mathcal{I} \to \mathcal{D}$ とする. すると、**Set** の任意の射 $f: X \to Y$ に対して、

$$\mathcal{D}(f) \circ \delta_X(\mathcal{I}(X)) = \{ (f(x), f(x)) : x \in \mathcal{I}(X) \}$$
$$= \delta_Y \circ \mathcal{I}(f)(\mathcal{I}(X))$$

であるため, $\mathcal{D}(f) \circ \delta_X = \delta_Y \circ \mathcal{I}(f)$. よって δ は自然変換である.

$$\mathcal{I}(X) \xrightarrow{\delta_X} \mathcal{D}(X)$$

$$\mathcal{I}(f) \downarrow \quad \circlearrowright \quad \downarrow \mathcal{D}(f)$$

$$\mathcal{I}(Y) \xrightarrow{\delta_Y} \mathcal{D}(Y)$$