MATRIX

1. If A is a square matrix of order 2 and |A| = -2, then the value of |5A'| is:

- (A) -50
- (B) -10
- (*C*) 10
- (D) 50

2. The product of matrix P and Q is equal to a diagonal matrix. If the order of matrix Q is 3×2 , then the order of matrix P is:

- (A) 2×2
- (B) 3×3
- (C) 2×3
- (D) 3×2

3. If the inverse of the matrix $\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ is the matrix $\begin{bmatrix} 1 & 3 & 3 \\ 1 & \lambda & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then the value of λ is:

- (A) -4
- (*B*) 1
- (*C*) 3
- (D) 4

4. Find the matrix A^2 , where $A = [a_{ij}]$ is a 2×2 matrix whose elements are given by $a_{ij} = \text{maximum}(i, j) - \text{minimum}(i, j)$:

- $(A) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- $(B) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- $(C) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$(D) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

- 5. If *A* is a square matrix of order 3 such that the value of |adj.A| = 8, then the value of $|A^T|$ is:
 - (A) $\sqrt{2}$
 - (*B*) $-\sqrt{2}$
 - (*C*) 8
 - (D) $2\sqrt{2}$
- 6. If A and B are events such that $P(A/B) = P(B/A) \neq 0$, then:
 - (A) $A \subset B$, but $A \neq B$
 - (B) A = B
 - (C) $A \cap B = \phi$
 - (D) P(A) = P(B)

DERIVATIONS

- 1. Derivative of $e^{\sin^2 x}$ with respect to $\cos x$ is:
 - (A) $\sin xe^{\sin^2 x}$
 - (B) $\cos xe^{\sin^2 x}$
 - (C) $-2\cos xe^{\sin^2 x}$
 - (D) $-2\sin^2 x \cos x e^{\sin^2 x}$
- 2. If $\sin(xy) = 1$, then $\frac{dy}{dx}$ is equal to:
 - $(A) \frac{x}{y}$
 - $(B) -\frac{x}{y}$
 - (C) $\frac{y}{x}$
 - $(D) -\frac{y}{x}$
- 3. The general solution of the differential equation

$$\frac{dy}{dx} = e^{x+y}$$
 is:

(A)
$$e^x + e^{-y} = c$$

(B)
$$e^{-x} + e^{-y} = c$$

$$(C) e^{x+y} = c$$

$$(D) \ 2e^{x+y} = c$$

EQUATIONS

1. Given a curve $y = 7x - x^3$ and x increases at the rate of 2 units per second. The rate at which the slope of the curve is changing, when x = 5 is:

$$(A)$$
 -60 units/sec

$$(C)$$
 -70 units/sec

(D)
$$-140 \text{ units/sec}$$

2. The area of the region bounded by the curve $y^2 = 4x$ and x = 1 is:

(A)
$$\frac{4}{3}$$

(B)
$$\frac{8}{3}$$

$$(C) \frac{64}{3}$$

(D)
$$\frac{32}{3}$$

3. The angle which the line $\frac{x}{1} = \frac{y}{-1} = \frac{z}{0}$ makes with the positive direction of Y-axis is:

(A)
$$\frac{5\pi}{6}$$

$$(B) \ \frac{3\pi}{4}$$

$$(C) \frac{5\pi}{4}$$

(D)
$$\frac{7\pi}{4}$$

FUNCTIONS

1. The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minima at x is equal to:

- (*C*) 0
- (D) -2
- 2. A function $f: |R-\rangle |R|$ defined as $f(x)=x^2-4x+5$ is:
 - (A) injective but not surjective.
 - (B) surjective but not injective.
 - (C) both injective and surjective.
 - (D) neither injective nor surjective.

INTEGRATIONS

- 1. The value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \csc^2 \theta \, d\theta$ is:
 - (A) $\frac{1}{2}$
 - $(B) -\frac{1}{2}$
 - (*C*) 0
 - (D) $-\frac{\pi}{8}$
- 2. The integral $\int \frac{dx}{\sqrt{9-4x^2}}$ is equal to:
 - (A) $\frac{1}{6} \sin^{-1} \left(\frac{2x}{3} \right) + c$
 - $(B) \quad \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + c$
 - $(C) \sin^{-1}\left(\frac{2x}{3}\right) + c$
 - $(D) \quad \frac{3}{2} \sin^{-1} \left(\frac{2x}{3}\right) + c$

VECTORS

1. The Cartesian equation of the line passing through the point (1, -3, 2) and parallel to the line:

$$\mathbf{r} = (2 + \lambda)\hat{i} + \lambda\hat{j} + (2\lambda - 1)\hat{k}$$
 is

(A)
$$\frac{x-1}{2} = \frac{y+3}{0} = \frac{z-2}{-1}$$

(B)
$$\frac{x+1}{2} = \frac{y-3}{1} = \frac{z+2}{2}$$

(C)
$$\frac{x+1}{2} = \frac{y-3}{0} = \frac{z+2}{-1}$$

(D)
$$\frac{x-1}{1} = \frac{y+3}{1} = \frac{z-2}{2}$$

- 2. The position vectors of points *P* and *Q* are **p** and **q** respectively. The point *R* divides the line segment PQ in the ratio 3:1 and *S* is the mid-point of line segment *PR*. The position vector of *S* is:
 - $(A) \ \frac{\mathbf{p}+3\mathbf{q}}{4}$
 - $(B) \ \frac{\mathbf{p}+3\mathbf{q}}{8}$
 - $(C) \ \frac{5\mathbf{p}+3\mathbf{q}}{4}$
 - (D) $\frac{5p+3q}{8}$
- 3. **Assertion** (A): The vectors

$$\mathbf{a} = 6\hat{i} + 2\hat{j} - 8\hat{k}$$

$$\mathbf{b} = 10\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\mathbf{c} = 4\hat{i} - 4\hat{j} + 2\hat{k}$$

represent the sides of a right angled triangle.

Reason (R): Three non-zero vectors of which none of two are collinear forms a triangle if their resultant is zero vector or sum of any two vectors is equal to the third.