Дискра

Byteihq

1 января 2022 г.

Оглавление

1	Теория		2
	1.1	Равенство множеств, операции над множествами, их свой-	
		ства: ассоциативность, коммутативность, дистрибутивность,	
		идемпотентность, законы поглощения и законы де Мор-	
		гана. Доказательство последних методом характеристиче-	
		ских функций	2

Глава 1

Теория

1.1 Равенство множеств, операции над множествами, их свойства: ассоциативность, коммутативность, дистрибутивность, идемпотентность, законы поглощения и законы де Моргана. Доказательство последних методом характеристических функций.

Равенство мн-в

A=B означает, что любой элемент множества A принадлежит множеству B и любой элемент множества B принадлежит множеству A.

Операции над мн-ми

- Объединение множеств. Обозначение $A \cup B$. Это множество, состоящее в точности из всех элементов множеств A и B.
- Пересечение множеств. Обозначение А ∩ В. Это множество, состоящее в точности из тех элементов, которые принадлежат обоим множествам А и В.
- Разность множеств. Обозначение А \ В. Это множество, состоящее в точности из тех элементов, которые принадлежат множеству А,

но не принадлежат множеству В.

• Симметрическая разность множеств. Обозначение $A \Delta B$. Это множество, состоящее в точности из тех элементов, которые принадлежат ровно одному из множеств: либо A, либо B.

Св-ва операций

Ассоциативность

- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

Коммутатичность

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$

Инволютивность

•

$$\bar{\bar{A}} = A$$

•

$$\bar{U} = \varnothing$$

•

$$\bar{\varnothing}=U$$

Дистрибутивность

- $\bullet \ (A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $\bullet \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Идемпотентность

- $A \cap A = A$
- \bullet A \cup A = A

Законы поглощения

•
$$A \cup (A \cap B) = A$$

$$\bullet \ A \cap (A \cup B) = A$$

Правила де Моргана

•

$$\overline{(A \cup B)} = \bar{A} \cap \bar{B}$$

•

$$\overline{(A\cap B)}=\bar{A}\cup\bar{B}$$

Доказательство правила де Моргана через характеристические функции

$$X_{\overline{(A \cup B)}} = 1 - (X_A + X_B - X_A * X_B) = (1 - X_A) * (1 - X_B) = X_{\bar{A} \cap \bar{B}}$$