Name: Mritunjoy Roy

Roll:1505071

1. Uniformity Test:

n	ppf(k=10)	Chi- squared (k=10)	Status (k=10)	ppf(k=20)	Chi- squared (k=20)	Status (k=20)
20	14.68	7.08	Not rejected	27.20	17.21	Not rejected
500	14.68	2.0	Not rejected	27.20	7.68	Not rejected
4000	14.68	6.95	Not rejected	27.20	17.34	not rejected
10000	14.68	7.08	Not rejected	27.20	17.21	Not rejected

For large n, χ 2 will have an approximate chi-square distribution with k – 1 degrees of freedom under the null hypothesis: H0 = Ui 's are IID random variables. We reject this hypothesis at level α if χ 2 > χ 2 (k-1,1- α) where χ 2 (k-1,1- α) is the upper 1 – α critical point of the chi-square distribution with k – 1 degrees of freedom.

Here for all the test it is "not rejected". So the uniformity test passes.

2.Serial test:

n	d=2,k=4 (ppf,chi-	d=2,k=4 (status)	d=2,k=8 (ppf,chi-	d=2,k=8 (status)	d=3,k=4 (ppf,chi-	d=3,k=4 (status)	d=3,k=8 (ppf,chi-	d=3,k=8 (status)
	squared)	(Status)	squared)	(Status)	squared)	(Status)	squared)	(Status)
20	22.30, 12.8	Not rejected	77.74,38.40	Not rejected	77.74,27.20	Not rejected	552.37,161.60	Not rejected
500	22.30, 130.04	rejected	77.74,152.83	rejected	77.74,240.96	rejected	552.37,378.944	Not rejected
4000	22.30,1013.45	rejected	77.74,1039.26	rejected	77.74,1803.45	rejected	552.37,1948.52	rejected
10000	22.30,2512.94	rejected	77.74,2536.47	rejected	77.74,4467.70	rejected	552.37,4620.29	rejected

The serial test, is really just a generalization of the chi-square test to higher dimensions. If the U_i 's were really IID U(0, 1) random variates, the nonoverlapping d-tuples should be IID random vectors distributed uniformly on the d-dimensional unit hypercube, $[0, 1]^d$

If the individual U_i 's are correlated, the distribution of the d-vectors U_i will deviate from d-dimensional uniformity; thus, the serial test provides an indirect check on the assumption that the individual U_i 's are independent. For example, if adjacent U_i 's tend to be positively correlated, the pairs (U_i, U_{i+1}) will tend to cluster around the southwest-northeast diagonal in the unit square. Finally, it should be apparent that the serial test for d > 3 could require a lot of memory to tally the k^d values of $f_{j1j2...jd}$.

Here ,when n is smaller the serial test is "not rejected". If we increase n the serial test rejects.

3.Run test:

n	ppf	R	status
20	10.64	0.9399	Not rejected
500	10.64	2.39	Not rejected
4000	10.64	7.27	Not rejected
10000	10.64	5.77	Not rejected

The third empirical test we consider, the runs (or runs-up) test, is a more direct test of the independence assumption. (In fact, it is a test of independence only; i.e., we are not testing for uniformity in particular.) We examine the Ui sequence (or, equivalently, the Z_i sequence) for unbroken subsequences of maximal length within which the U_i 's increase monotonically; such a subsequence is called a run up.

Here all the results are "not rejected". So the run up is distributed independently.

4. Corelation test:

n	J=1 ppf, Aj	J=1 status	J=3 ppf, Aj	J=3 status	J=5 ppf, Aj	J=5 status
20	1.64,1.49	Not rejected	1.64,0.18	Not rejected	1.64,1.33	Not rejected
500	1.64,0.42	Not rejected	1.64,1.46	Not rejected	1.64,1.32	Not rejected
4000	1.64,1.10	Not rejected	1.64,1.98	rejected	1.64,0.53	Not rejected
10000	1.64,0.98	Not rejected	1.64,1.32	Not rejected	1.64,1.30	Not rejected

Under the null hypothesis that $\rho_j=0$ and assuming that n is large, it can be shown that the test statistic

has an approximate standard normal distribution. This provides a test of zero lag j correlation at level α , by rejecting this hypothesis s if $|A_j| > Z_{1-\alpha/2}$.

The test should probably be carried out for several values of j, since it could be, for instance, that there is no appreciable correlation at lags 1 or 5, but there is dependence between the U_i 's at lag 3, due to some anomaly of the generator.