Generative Adversarial Nets

Paper by Ian Goodfellow et. Al, 2014

Problem Description

- Given: Dataset of similar objects
 - Images of cats, handwritten digits, abstract artworks etc
- Goal: Artificially generate similar objects

What kind of similarity?

- What we don't want:
 - Objects that have a small distance (euclidian)
- What we want:
 - Objects that come from the same probability distribution

• Example: not a good copy of an artwork but a new unique artwork.

More Formal

Generative vs. discriminative learning

- Generative learning:
 - Assumption: Samples come from one <u>unknown</u> probability distribution p_{data}
 - Goal: approximate this probability distribution as pg
 - Drawing from pg should give results similar to given dataset
- Discriminative learning:
 - Often multi class problem
 - Not learning full distribution but boundaries between classes

Other generative models

- (Deep) (Restricted) Boltzmann Machine
- Variational Autoencoders

Generative Adversarial Nets Intuitive Explanation

- Discriminator D discriminates between fake and real input
- Generator G generates fake data
- Minimax game
 - One player aims to max. its gain
 - Other player aims to min. its loss
 - Fight about D's accuracy

Generative Adversarial Nets

Intuitive Explanation

- Sample from real images
- G generates random fake
- D classifies both samples
 - D Improves so that fake is classified as fake and real as real
 - G improves so that fake is classified as real

Discriminator Network

- D(x) is in [0,1]
- D(x) = 1, if x is considered real (from p_{data})
- D(x) = 0, if x is considered fake (from p_g)
- Optimal D: $D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$
- If G is perfect D(x) converges to 0.5
 - No matter the input, D has to guess
 - $p_{data}(x)$ and $p_g(x) = 1$

Generator Network

- G(z) generates object of desired output size
- z is random noise from distribution pz
- Wants to fool discriminator D

Generative Adversarial Nets

Value function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log \boldsymbol{D(\boldsymbol{x})}] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - \boldsymbol{D(G(\boldsymbol{z}))})].$$

Training Loop

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Training steps of GANs

- 1. Training near convergence
- 2. Discriminator adapted
- 3. After Generator updated
- 4. The Discriminator is useless because the Generator is perfect

Theoretical results

Some proofs

- They proof that:
 - The minimax game has a global minimum and maximum
 - Convergence of the training algorithm

Experiments

- Datasets:
 - MNIST (handwritten digits)
 - Toronto Face Database (TFB)
 - CIFAR-10 (tiny images)
- G and D are Multilayer Perceptrons
- Hyperparameters:
 - Activation Functions:
 - G: Sigmoid, rectifier linear (ReLU)
 - D: maxout

(Dis)advantages of GANs

Pros:

- Backprop is possible
- G never sees the data
 - No copying

Cons:

- No explicit representation of pg
- Synchronization of D and G (Unstable training)
- (Mode collapse) can occur
 - G models only part of p_{data}

Results

Comparison

- No results for CIFAR-10
- Parzen window estimate
 - Estimating pg
 - Calculate likelihood of test data under pg
 - Likelihood(model | data)
- Not the best evaluation

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [5]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

Conclusion and future work

- Proof of concept of GANs
- Conditional GAN
 - Adding input C to G and D
 - C could be label of digit (0..9)
- Semi-supervised learning
 - Use Discriminator's feature to improve classifiers
 - Make D predict all labels and fake (2 modes)
- Improve coordination of G and D for efficiency
- (Improve model evaluation)

Evaluating GANs

- Cannot measure accuracy like in discriminitive models
- Do not want Distance Evaluation
- Want likelihood of pg
- Parzen Window Estimates
 - Cases where pg performs better than pdata
- Manual inspection
 - Subjective and ineffective
- FID
 - Compares pg and pdata
 - Using image analysis CNN Inception v3

Results 2014

- Yellow framed = from train-data
- Digits look ok (only 27x27px)
- Faces blurry and noisy

ResultsMoving through output space

Linearly interpolating between coordinates in input-space of Generator

Thats it

- My longest presentation ever.
- I hope it was informative.

Sources

- Paper: https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
- cGAN: https://arxiv.org/pdf/1411.1784.pdf
- sGAN: https://arxiv.org/abs/1606.01583
- GSN: https://arxiv.org/pdf/1503.05571.pdf
- DBM: http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf
- VAE Picture: https://en.wikipedia.org/wiki/Variational autoencoder
- Mathematical explanation: https://arxiv.org/pdf/2009.00169.pdf
- GAN difficulties: https://arxiv.org/pdf/2006.06900.pdf
- https://thispersondoesnotexist.com
- StyleGan2: https://arxiv.org/abs/1912.04958
- StyleGan2 Interpolation: https://www.youtube.com/watch?v=6E1 dgYlifc

Other generative models

- (Deep) (Restricted) Boltzmann Machine
 - Can be stacked (DBM)
 - Stochastic -> backprop
- Generative Stochastic Networks (GSN)
 - Based on Variational Autoencoders
 - Learnings transition probabilities of Marko
 - Reparametrization Trick enables backprop

Backpropagation

- Calculate partial derivatives of loss function with regards to parameters of last layer
- Continue backwards through the model

Gradient Descent

- Sample n samples
- Forward propagation through network
- Obtain prediction/output
- Evaluate loss function
- Calculate gradient with backprop
 - Layer by layer
- Multiply vector with learning rate
- Subtract/adding vector from model parameters
- Lots of matrix operations