Sverdrup balance and stream function

Lecture Notes

Aslak Grinsted

AIM: understand large scale ocean circulation.

• Assume:

- Rotating earth (coriolis bodyforce)
- Steady and Incompressible
- Large horizontal scales... small horizontal gradients in v.
- "2d" $v_z = 0$
- Wind-driven (by some average windstress)

 Q: what circulation would that give in the ocean?

•
$$\rho \frac{Dv}{Dt} = \rho g - \nabla P + \frac{\partial \tau}{\partial z} - 2\rho \Omega \times v$$

•
$$\nabla \cdot \boldsymbol{v} = 0$$

•
$$0 = \rho \mathbf{g} - \nabla P + \frac{\partial \tau}{\partial z} - 2\rho \mathbf{\Omega} \times \mathbf{v}$$

•
$$au = \sigma_{iz}$$

Why dtau/dz

We have not talked about internal friction.

- we have assumed
 - Wind driven
 - horizontal flow.
- Seems reasonable to expect
 - Differential velocities between layers.
 - Viscous Friction
 - i.e. we have some $au = \sigma_{iz}$

V=0 at Ocean bottom?

We want x-y directions.

• X-eqn:
$$-\rho f v_y = -\frac{\partial p}{\partial x} + \frac{\partial \tau_x}{\partial z}$$

• Y-eqn: $\rho f v_x = -\frac{\partial p}{\partial y} + \frac{\partial \tau_y}{\partial z}$

• Y-eqn:
$$ho f v_{\chi} = -rac{\partial p}{\partial y} + rac{\partial au_y}{\partial z}$$

• Where $f = 2\Omega \sin \theta$

•
$$\Omega = \frac{2\pi}{86400 \text{ s}} = 7.27 \cdot 10^{-5} \text{s}^{-1}$$

•
$$0 = \rho \mathbf{g} - \nabla P + \frac{\partial \tau}{\partial z} - 2\rho \mathbf{\Omega} \times \mathbf{v}$$

Integrate vertically...

• Define level of no motion z_0 . Here pressure gradients and shear stresses are zero.

•
$$-\rho f v_y = -\frac{\partial p}{\partial x} + \frac{\partial \tau_x}{\partial z}$$

• $\rho f v_x = -\frac{\partial p}{\partial y} + \frac{\partial \tau_y}{\partial z}$

•
$$\rho f v_{\chi} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{y}}{\partial z}$$

•
$$-f \int_{z_0}^0 \rho v_y \, dz = -\int_{z_0}^0 \frac{\partial p}{\partial x} + \tau_{wind}^x$$

•
$$-f\rho U_y = -\int_{z_0}^0 \frac{\partial p}{\partial x} dz + \tau_{wind}^x$$

And similarly:

•
$$f\rho U_{x} = -\int_{z_{0}}^{0} \frac{\partial p}{\partial y} dz + \tau_{wind}^{y}$$

the integral is just the difference between top and bottom

 We can get rid of the pressure terms if we 'cross'differentiate and subtract the two equations

•
$$\frac{\partial f \rho U_x}{\partial x} + \frac{\partial f \rho U_y}{\partial y} = \frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}$$

•
$$f\left(\frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y}\right) + U_y \frac{\partial f}{\partial y} + U_x \frac{\partial f}{\partial x} = \frac{1}{\rho} \left(\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}\right)$$

Mass balance / div=0

f is a function of latitude only (df/dx=0)

From previous slides

•
$$-f\rho U_y = -\int_{z_0}^0 \frac{\partial p}{\partial x} dz + \tau_{wind}^x$$

•
$$f\rho U_x = -\int_{z_0}^0 \frac{\partial p}{\partial y} dz + \tau_{wind}^y$$

•
$$f = 2\Omega \sin \theta$$

•
$$U_y = \frac{1}{\beta \rho} \nabla \times \boldsymbol{\tau_{wind}}$$

•
$$U_y \beta = \frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}$$

• U_y : Northward volume transport per unit distance in the x direction.

• Where
$$\beta = \frac{\partial f}{\partial y}$$

• If curl is zero, then there is no northward transport.

SKIP

- ullet Given the winds stress you can calculate $U_{\mathcal{V}}$
- And from that obtain U_x

•
$$U_x = -\int \frac{\partial U_y}{\partial y} dx + k(y)$$

• k(y): U_x should be zero at eastern boundary.

•
$$U_y = \frac{1}{\beta \rho} \nabla \times \tau_{wind}$$

And mass conservation:

$$\cdot \frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y} = 0$$

Now link to stream function...

•
$$\psi = \int U_y dx$$

•
$$\psi = \frac{1}{\beta \rho} \int \nabla \times \tau_{wind} \ dx$$

•
$$U_x = -\frac{\partial \psi}{\partial y}$$
 and $U_y = \frac{\partial \psi}{\partial x}$

•
$$U_y = \frac{1}{\beta \rho} \nabla \times \tau_{wind}$$

•
$$U_x = \int \frac{\partial U_y}{\partial y} dx + k(y)$$