

IRF9310PbF

HEXFET® Power MOSFET

V _{DS}	-30	V
R _{DS(on) max} (@V _{GS} = 10V)	4.6	$m\Omega$
I _D (@T _A = 25°C)	-20	Α

results in

Applications

• Charge and Discharge Switch for Notebook PC Battery Application

Features and Benefits

Features

Low R_{DSon} ($\leq 4.6m\Omega$)
Industry-Standard SO8 Package
RoHS Compliant Containing no Lead, no Bromide and no Halogen

Resulting Benefits

Lower Conduction Losse	:S
Multi-Vendor Compatibili	ty
Environmentally Friendlie	er

Orderable part number	Package Type	Standard Pack		Note
-		Form	Quantity	
IRF9310PbF	SO8	Tube/Bulk	95	
IRF9310TRPbF	SO8	Tape and Reel	4000	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	-30	V	
V _{GS}	Gate-to-Source Voltage	± 20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-20		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-16	Α	
I _{DM}	Pulsed Drain Current ①	-160		
P _D @T _A = 25°C	Power Dissipation ④	2.5	w	
P _D @T _A = 70°C	Power Dissipation 4	1.6	VV	
	Linear Derating Factor	0.02	W/°C	
T _J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-30			٧	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.020		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.6	0	V _{GS} = -10V, I _D = -20A ③
	Static Drain-to-Source On-Resistance		5.8	6.8	mΩ	V _{GS} = -4.5V, I _D = -16A ③
V _{GS(th)}	Gate Threshold Voltage	-1.3	-1.8	-2.4	V	V V I 100··A
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.8		mV/°C	$V_{DS} = V_{GS}, I_D = -100\mu A$
I _{DSS}	Drain-to-Source Leakage Current		_	-1.0	μА	$V_{DS} = -24V, V_{GS} = 0V$
				-150	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	-100		$V_{GS} = -20V$
	Gate-to-Source Reverse Leakage		_	100	nA	V _{GS} = 20V
gfs	Forward Transconductance	39	_	_	S	$V_{DS} = -10V, I_{D} = -16A$
Q_g	Total Gate Charge ®		58	_	nC	$V_{DS} = -15V$, $V_{GS} = -4.5V$, $I_{D} = -16A$
Q _g	Total Gate Charge ®		110	165		V _{GS} = -10V
Q_{gs}	Gate-to-Source Charge ®		17		nC	$V_{DS} = -15V$
Q_{gd}	Gate-to-Drain Charge ®		28		1	$I_D = -16A$
R_G	Gate Resistance ©		2.8		Ω	
t _{d(on)}	Turn-On Delay Time		25			$V_{DD} = -15V, V_{GS} = -4.5V$ ③
t _r	Rise Time		47		ns	$I_{D} = -1.0A$
t _{d(off)}	Turn-Off Delay Time		65		ris	$R_G = 1.8\Omega$
t _f	Fall Time		70			See Figs. 20a &20b
C _{iss}	Input Capacitance		5250			$V_{GS} = 0V$
Coss	Output Capacitance		1300		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		880]	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		630	mJ
I _{AR}	Avalanche Current ①		-16	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			-2.5		MOSFET symbol	
	(Body Diode)			-2.5	A	showing the	
I _{SM}	Pulsed Source Current			-160	^	integral reverse	
	(Body Diode) ①			-100		p-n junction diode.	
V_{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -2.5A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		71	107	ns	$T_J = 25^{\circ}C$, $I_F = -2.5A$, $V_{DD} = -24V$	
Q_{rr}	Reverse Recovery Charge		12	18	nC	di/dt = 100A/µs ③	

Thermal Resistance

	Parameter	Тур.	Max.	Units	
$R_{\theta JL}$	Junction-to-Drain Lead ©		20	°C/M	
$R_{\theta JA}$	Junction-to-Ambient @		50	°C/W	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 4.9 mH, $R_G = 25\Omega$, $I_{AS} = -16 \text{A}$.
- $\ensuremath{\mathfrak{G}}$ When mounted on 1 inch square copper board.
- © For DESIGN AID ONLY, not subject to production testing.

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 13. Typical On-Resistance vs. Drain Current

Fig 16. Typical Power vs. Time

5

^{*} Reverse Polarity of D.U.T for P-Channel

www.irf.com

* V_{GS} = 5V for Logic Level Devices

Fig 17. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs

Fig 18a. Gate Charge Test Circuit

Fig 19a. Unclamped Inductive Test Circuit

Fig 20a. Switching Time Test Circuit

Fig 18b. Gate Charge Waveform

Fig 19b. Unclamped Inductive Waveforms

Fig 20b. Switching Time Waveforms

6 www.irf.com

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIM	ETERS
INIIO	MIN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
E	.1497	.1574	3.80	4.00
е	.050 B	.050 BASIC		ASIC
e 1	.025 B	ASIC	0.635 E	BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- O DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

7

SO-8 Part Marking Information

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

IRF9310PbF

SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

CONTROLLING DIMENSION : MILLIMETER.
OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information[†]

Qualification level	Cor	nsumer ^{††}
Qualification level	SD47F ^{†††} guidelines)	
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D ^{†††})
RoHS Compliant		Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information:

http://www.irf.com/whoto-call/salesrep/

††† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment		
3/18/2010	Figure 16, Power vs. Time curve is modified and updated. All other parameters remain unchanged.		

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRF9310TRPBF IRF9310PBF