

Análisis del mapa de Poincaré para el oscilador de Duffing

Juan José Ochoa Duque Santiago Andrés Pérez Acevedo Bryan Pérez Múnera

Retrato de fase y mapa de Poincaré.

Caos

Ecuación de Duffing

La ecuación de Duffing es dada por:

$$\ddot{x} + \delta \dot{x} + \beta x + \alpha x^3 = \gamma \cos \omega t$$

Es una ecuación diferencial de segundo orden no lineal Sirve para modelar ciertos tipos de osciladores forzados y amortiguados

Análisis físico, constantes

- δ Se relaciona con la cantidad de amortiguamiento
- α Se relaciona con la cantidad de no linealidad en la fuerza restauradora
- β Se relaciona con la rigidez lineal
- Son amplitud y frecuencia de la fuerza restauradora periódica

Análisis físico, qué representa

En general representa un oscilador forzado, amortiguado y con un forzamiento periódico Para el caso en el que $\beta < 0$ se tiene un pozo doble de potencial en el sistema Para el caso en el que $\beta > 0$ se tiene un oscilador forzado con fuerza restauradora de la forma $F = -\beta x - \alpha x^3$

Análisis físico, caso no forzado

Análisis físico, caos

Análisis físico, parámetros para los que se encuentra caos

Como caso particular, analizaremos valores de los parámetros que determinan caos en el sistema

$$lpha=1\;,\,eta=-1\;,\,\delta=0.2\;,\;\;\gamma=0.3\;\;\omega=1$$

Resultados

Referencias

Strogatz, S.H, Nonlinear dynamics and chaos. 1994
Bronson, G. C++ para ingeniería y ciencias. 2006
Burde, R. Numerical Analsysis, 9th edition. 2011
J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos (2nd edition), 2002.
http://www.scholarpedia.org/article/Duffing_oscillator