Packet format of BLE

Write by Alen Xiao in Telink Semiconductor, 2017-03-06

1. Architecture of BT/BLE

Figure 2.1: Bluetooth core system architecture

GAP: General Access Protocol
GATT: General Attribute Protocol
BLE: Bluetooth Low Energy
SMP: Secure Management Protocol
AMP: Alternate MAC/Phy Protocol
BR/EDR: Basic Rate/Enhanced Data Rate

PAL: Protocol Adapter Layer ACL: Asynchronizing Connection-oriented Logical Link

HCI: Host Control Interface SCO: Synchronizing Connection-Oriented

ATT: Attribute L2CAP: Logical Link Control and Adapter Protocol

LL: Link Layer SDP: Service Discover Protocol

MIC: Message Integrity Check (Encrypt)

2. BLE Architecture:

OR Figure 2-1. The BLE protocol stack

3. Packet Format & Data Tranport Architecture

Data Transport Architecture 3.1

Figure 3.1: Bluetooth generic data transport architecture

Mapping between Packet Format and Channel

Access Address: represents the physical link

- The physical channel identifier is not contained in the link layer air interface packet, and physical channel identifiers are either fixed or are determined at connection setup.
- Access Address is used to identify communications on a physical link, and to exclude or ignore packets on different physical links that are using the same PHY channels in

physical proximity (one physical channel supports multiple physical links)

• PDU Header:

Advertising Packet Header

Figure 2.3: Advertising channel PDU Header

> PDU Type: (Logical Link Identify) represents the logical Link

PDU Type b ₃ b ₂ b ₁ b ₀	Packet Name
0000	ADV_IND
0001	ADV_DIRECT_IND
0010	ADV_NONCONN_IND
0011	SCAN_REQ
0100	SCAN_RSP
0101	CONNECT_REQ
0110	ADV_SCAN_IND
0111-1111	Reserved

Table 2.1: Advertising channel PDU Header's PDU Type field encoding

Data Packet Header

Figure 2.13: Data channel PDU header

LLID: Logical Link Identify

The LLID indicates whether the packet is an LL Data PDU or an LL Control PDU.

00b = Reserved

01b = LL Data PDU: Continuation fragment of an L2CAP message, or an Empty PDU.

10b = LL Data PDU: Start of an L2CAP message or a complete L2CAP message with no fragmentation.

L2CAP:

Link Control

3.3 Packet Format Description

LSB		MSI				
Preamble	Access Address	PDU	CRC			
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)			

Figure 2.1: Link Layer packet format

- Used for Advertising and Data Channel Packets
- Preamble (0x55, 0xAA)
 - ✓ All Link Layer packets have an eight bit preamble. The preamble is used in the receiver to perform frequency synchronization, symbol timing estimation, and Automatic Gain Control (AGC) training
 - ✓ Preamble is either 10101010b or 01010101b, depending on the LSB of the Access Address. If the LSB of the Access is 1, the preamble shall be 01010101b; otherwise the preamble shall be 10101010b.
- The Access Address
 - ✓ Access Address for all advertising channel packets shall be 0x8E89BED6
 - ✓ The Access Address in data channel packets shall be different for each Link Layer connection between any two devices
- Packet Data Unit (Defined based upon packet types)

3.3.1 Advertising Packet Data Unit

PDU Type(b ₃ b ₂ b ₁ b ₀)	Packet	Description
0000	ADV_IND	connectable undirected advertising event
0001	ADV_DIRECT_IND	connectable directed advertising event
0010	ADV_NONCONN_IND	non-connectable undirected advertising event
0011	SCAN_REQ	Scan request sent by master or client device
0100	SCAN_RSP	Scan response sent by slave(server_ device
0101	CONNECT_REQ	Connect request send by master(client) device
0110	ADV_SCAN_IND	scannable undirected advertising event
0111~1111	Reserved	

LSB					MSB
PDU Type	RFU	TxAdd	RxAdd	Length	RFU
(4 bits)	(2 bits)	(1 bit)	(1 bit)	(6 bits)	(2 bits)

Figure 2.3: Advertising channel PDU Header

- PDU Type: Advertising Packet Type
- > RFU: Reversed for Future Use
- > TxAdd: indicates whether the advertiser's address in the AdvA field is public (TxAdd = 0) or random (TxAdd = 1).
- RxAdd: indicates whether the initiator's address in the InitA field is public (RxAdd = 0) or random (RxAdd = 1).
- Length is the length of packet body (not include header)

3.3.1.1 Advertising PDU (Indirect Advertising)

PDU Type $(b_3b_2b_1b_0)$	Packet	Description
0000	ADV_IND	connectable undirected advertising event
0010	ADV_NONCONN_IND	non-connectable undirected advertising event
0110	ADV_SCAN_IND	scannable undirected advertising event

Figure 11.1: Advertising and Scan Response data format

- AdvA: Advertising Address (according to the TxAddr field in header)
- AdvData: Advertising Data
 - ♦ Format of AdvData:

- ♣ The first byte represents the number of bytes left to the end of the AD structure. This allows a receiver of this structure to know when it ends and when a new AD structure starts.
- The second byte is the ID of an AD structure type.
 https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
- The rest of the bytes are data that is structured in a predefined way depending on what AD type was defined by the previous byte.
- ♦ Format of AdvElement:

Instance:

	P.nbr.	Time (us) Channel Access Address Adv PDU Type		Adv PDU Header			der	AdvA	AdvData	CRC		ECS			
	F.IIDI.	+0	Chamilei	Access Address	Access Address Adv Fbb Type	Auv Fb0 Type	Type	TxAdd	RxAdd	PDU-Length	AuvA	02 01 1A 07 FF 4C	CRC	(dBm)	103
Ш	1	=0	0x25	0x8E89BED6	ADV_IND	0	1	0	17	0x64B411DD808E	00 10 02 0B 00	0x00005C	0	OK	

- ♦ 02 01 1A:
 - √ 02: length
 - ✓ 01: Data type for Flags,
 - ✓ 1A (0001 1010b): LE General Discoverable Mode and Simultaneous LE and BR/EDR to sample device capable.

Value	Description	Bit	Information
0x01	Flags	0	LE Limited Discoverable Mode
		1	LE General Discoverable Mode
		2	BR/EDR Not Supported (i.e. bit 37 of LMP Extended Feature bits Page 0)
		3	Simultaneous LE and BR/EDR to Same Device Capable (Controller) (i.e. bit 49 of LMP Extended Feature bits Page 0)
		4	Simultaneous LE and BR/EDR to Same Device Capable (Host) (i.e. bit 66 of LMP Extended Feature bits Page 1)
		57	Reserved

Table 18.1: Flags

- ♦ 07 FF 4C 00 10 02 0B 00:
 - ✓ 07: length
 - ✓ FF: Manufacturer Specific Data

Value	Description	Information
0xFF	Manufacturer Spe- cific Data (2 or more octets)	The first 2 octets contain the Company Identifier Code followed by additional manufacturer specific data

Table 18.11: Manufacturer Specific Data

- ✓ 4C 00 10 02 0B 00:
 - 4C 00 (0x004C): is Company Idenfier of Apple https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers
 - ◆ Telink Semiconductor Co.ltd is 529 (0x0211)
 - ◆ 10 02 0B 00 is the data of iBeacon

- ♦ 02 01 06
 - ✓ 06 (0000 0110b): LE General Discoverable Mode and Simultaneous LE and BR/EDR not support.
- ♦ 1A FF 4C 00 02 15 FD A5 06 93 A4 E2 4F B1 AF CF C6 EB 07 64 78 25 27 33 BA 1F D7
 - ✓ 0x1A (26): length
 - ✓ FF: Manufacturer Specific Data
 - √ 4C 00: Apple Company Idenfier
 - √ 02: iBeacon index
 - ✓ 0x15 (21): length of iBeacon
 - ✓ UUID: 0xFDA50693-A4E2-4FB1-AFCF-C6EB07647825
 - ✓ Version of Major: 0x2725
 - ✓ Version of Minor: 0xBA1F
 - ✓ RSSI: D7 (-41)

https://glimwormbeacons.com/learn/what-makes-an-ibeacon-an-ibeacon/

- ♦ 05 09 74 68 69 64
 - √ 09: Complete Local Name
 - √ 74 68 69 64: 't', 'h', 'i', 'd', local name is "thid"
- ♦ 02 01 05
 - ✓ 05 (0000 0101b): Limited Discoverable Mode and BR/EDR not supported.

Value	Description	Bit	Information
0x01	Flags	0	LE Limited Discoverable Mode
		1	LE General Discoverable Mode
		2	BR/EDR Not Supported (i.e. bit 37 of LMP Extended Feature bits Page 0)
		3	Simultaneous LE and BR/EDR to Same Device Capable (Controller) (i.e. bit 49 of LMP Extended Feature bits Page 0)
		4	Simultaneous LE and BR/EDR to Same Device Capable (Host) (i.e. bit 66 of LMP Extended Feature bits Page 1)
		57	Reserved

Table 18.1: Flags

- ♦ 03 19 80 01
 - √ 19: Appearance
 - √ 80 01 (0x0180 or 384d): Generic Remote Control

 https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.b

 luetooth.characteristic.gap.appearance.xml
- ♦ 05 02 12 18 0F 18
 - ✓ 02: Incomplete List of 16-bit Service Class UUIDs
 - ✓ 12 18 0F 18 (0x180F1812): UUID

3.3.1.2 Advertising PDU (Direct Advertising)

PDU Type $(b_3b_2b_1b_0)$	Packet	Description			
0001	ADV_DIRECT_IND	connectable directed advertising event			

- AdvA: Advertising Address (according to the TxAddr field in header)
- InitA: Init Address (according to the RxAddr field in header)

3.3.1.3 SCAN PDU

PDU Type $(b_3b_2b_1b_0)$	Packet	Description			
0011	SCAN_REQ	Scan request sent by master or client device			

0100 SCAN_RSP Scan response sent by slave or server device

SCAN_REQ:

- ♦ ScanA: Scanner Address (according to the TxAddr field in header)
- ♦ AdvA: Advertising recevie Address (according to the RxAddr field in header)
- SCAN_RSP:

Figure 11.1: Advertising and Scan Response data format

- Instance:
 - ♦ SCAN REQ:

- ♦ SCAN RSP:
 - ♦ SCAN RSP without data

♦ SCAN RSP with data

P.nbr.	Time (us)	Channel	Access Address	Adv PDII Type	AdvA	ScanRspData	CRC	RSSI	FCS
ranoi.	+1204	Citatilici	Access Address	Auv i bo Type	AutA	08 09 74 52 65	CIVE	(dBm)	103
690	=8672980	0x25	0x8E89BED6	ADV_SCAN_RSP	0xA1A2A3A4A5A6	6D 6F 74 65	0x00000D	-58	OK

- √ 08: length
- ✓ 09: Complete Local Name
 https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
- ✓ 74 52 65 6D 6F 74 65: 't', 'R', 'e', 'm', 'o', 't', 'e', the local name is "tRemote".

3.3.1.4 Init PDU (CONNECT)

PDU Type (b ₃ b ₂ b ₁ b ₀)	Packet	Description
0101	CONNECT_REQ	Connect request send by master or client device

				LLDa	ta				
AA	CRCInit	WinSize	WinOffset	Interval	Latency	Timeout	ChM	Нор	SCA
(4 octets)	(3 octets)	(1 octet)	(2 octets)	(2 octets)	(2 octets)	(2 octets)	(5 octets)	(5 bits)	(3 bits)

Figure 2.11: LLData field structure in CONNECT_REQ PDU's payload

The LLData consists of 10 fields:

- ♦ The AA field shall contain the Link Layer connection's Access Address determined by the Link Layer following the rules specified in Section 2.1.2.
- → The CRCInit field shall contain the initialization value for the CRC calculation for the Link Layer connection, as defined in Section 3.1.1. It shall be a random value, generated by the Link Layer.
- ♦ The WinSize field shall be set to indicate the transmitWindowSize value, as defined in Section 4.5.3 in the following manner: transmitWindowSize = WinSize * 1.25 ms.
- ♦ The WinOffset field shall be set to indicate the transmitWindowOffset value, as defined in Section 4.5.3 in the following manner: transmitWindowOffset = WinOffset * 1.25 ms.
- ♦ The Interval field shall be set to indicate the connInterval as defined in Section 4.5.1 in the following manner: connInterval = Interval * 1.25 ms.
- ♦ The Latency field shall be set to indicate the connSlaveLatency value, as defined in Section 4.5.1 in the following manner: connSlaveLatency = Latency.

Figure 4.11: Master's view on LL connection setup with a non-zero transmitWindowOffset

Figure 4.12: Master's view on LL connection setup with transmitWindowOffset set to zero

- → The Timeout field shall be set to indicate the connSupervisionTimeout value, as defined in Section 4.5.2, connSupervisionTimeout is a parameter that defines the maximum time between two received Data Packet PDUs before the connection is considered lost. in the following manner: connSupervisionTimeout = Timeout * 10 ms.
- ♦ The ChM field shall contain the channel map indicating Used and Unused data channels. Every channel is represented with a bit positioned as per the data channel index as defined in Section 1.4.1. The LSB represents data channel index 0 and the bit in position 36 represents data channel index 36. A bit value of 0 indicates that the channel is Unused. A bit value of 1 indicates that the channel is used. The bits in positions 37, 38 and 39 are reserved for Future Use. Note: When mapping from RF Channels to data channel index, care should be taken to remember that there is a gap where the second advertising channel is placed.
- ♦ The Hop field shall be set to indicate the hopIncrement used in the data channel selection algorithm as defined in Section 4.5.8.2. It shall have a random value in the range of 5 to 16.
- ♦ The SCA field shall be set to indicate the masterSCA used to determine the worst case Master's sleep clock accuracy as defined in Section 4.2.2. The value of the SCA field shall be set as defined in Table 2.2.

Instance:

- → TxAdd/InitA: Random Address, 0x4E618A8D4602
- ♦ RxAdd/AdvA: Random Address, 0x020202020201
- ♦ CRCInit: 55 55 55
- transmitWindowSize = WinSize * 1.25ms = 0x02 * 1.25ms = 2.5ms

- \diamond connSupervisionTimeout = Timeout * 10 ms = 0x0096 * 10ms = 150 * 10ms = 1500ms.
- ♦ ChM: 1F FF FF FF FF, all 37 channels will been used
- ♦ Hop: 0x0C, Channel 12 will been used.
- \Rightarrow SCA: Sleep Clock Accuracy, 05, 31ppm ~ 50ppm, (31 ~ 50) * 12M / 10⁶ = (372 ~ 600)Hz

SCA	masterSCA
0	251 ppm to 500 ppm
1	151 ppm to 250 ppm
2	101 ppm to 150 ppm
3	76 ppm to 100 ppm
4	51 ppm to 75 ppm
5	31 ppm to 50 ppm
6	21 ppm to 30 ppm
7	0 ppm to 20 ppm

Table 2.2: SCA field encoding

3.3.2 Data Packet Data Unit

The Data Channel PDU has a 16 bit header, a variable size payload, and may include a Message Integrity Check (MIC) field.

The MIC field shall not be included in an un-encrypted Link Layer connection, or in an encrypted Link Layer connection with a data channel PDU with a zero length Payload.

LLID code ^b 1 ^b 0	Logical Link	Information
00	NA	undefined
01	ACL-U	Continuation fragment of an L2CAP message
10	ACL-U	Start of an L2CAP message or no fragmentation
11	ACL-C	LMP message

The master's Link Layer may send an Empty PDU to the slave to allow the slave to respond with any Data Channel PDU, including an Empty PDU.

3.3.2.1 LL Control PDU

An LL Control PDU is a Data Channel PDU that is used to control the Link Layer connection. An LL Control PDU shall not have the Length field set to 00000b. All LL Control PDUs have a fixed length, depending on the Opcode. The Opcode field identifies different types of LL Control PDU.

3.3.2.2 LL Data PDU

L2CAP is packet-based but follows a communication model based on channels. A channel represents a data flow between L2CAP entities in remote devices. Channels may be connection-oriented or connectionless. Fixed channels other than the L2CAP connectionless channel (CID 0x0002) and the two L2CAP signaling channels (CIDs 0x0001 and 0x0005) are considered connection-oriented. All channels with dynamically assigned CIDs are connection-oriented.

- Length: 2 octets (16 bits)
 - Length indicates the size of the information payload in octets, excluding the length of the L2CAP header. The length of an information payload can be up to 65535 octets. The Length field is used for recombination and serves as a simple integrity check of the recombined L2CAP packet on the receiving end.
- Channel ID: 2 octets
 The channel ID (CID) identifies the destination channel endpoint of the packet.
- Information payload: 0 to 65535 octets
 This contains the payload received from the upper layer protocol (outgoing packet), or delivered to the upper layer protocol (incoming packet). The MTU for channels with dynamically allocated CIDs is determined during channel configuration.