Chapitre 5

Ensembles

1 Ensembles et opérations.

1.1 Notations.

Définition 1: Naive

- Un ensemble non vide E est une collection d'objets x appelés éléments.
- On dit d'un élément x de E qu'il **appartient** à E, ce qui se note $x \in E$ Si l'objet x n'est pas un élément de l'ensemble E, on peut noter $x \notin E$
- On pose qu'il existe un ensemble n'ayant pas d'éléments et que cet ensemble est unique. On l'appelle **ensemble vide** et on note \varnothing . Pour tout objet x, l'assertion $x \in \varnothing$ est fausse.
- Signe $\ll = \gg$. Si x et y deux éléments d'un ensemble E, on notera x = y si on veut exprimer que x et y sont un seul et même élément de E.

Exemple 2: Ensembles de nombres

- 1. \mathbb{N} l'ensemble des entiers naturels : $\mathbb{N} = \{0, 1, 2, 3, 4, \cdots\}$; \mathbb{Z} l'ensemble des entiers relatifs.
- 2. \mathbb{Q} l'ensemble des nombres rationnels $\mathbb{Q} = \{\frac{a}{b} | a \in \mathbb{Z}, b \in \mathbb{N}^* \}$
- 3. \mathbb{R} est l'ensemble des nombres réels. \mathbb{R}_+^* celui des réels strictement positifs. On a $\mathbb{R}_+^* =]0, \infty[$.
- 4. Soit $n \in \mathbb{N}^*$. L'ensemble des entiers compris entre 1 et n s'écrit

$$\{1, 2, \dots, n\}$$

, ou bien $\{k \in \mathbb{N} \mid 1 \le k \le n\}$. Cet intervalle d'entiers pourra aussi être noté [1, n].

Exemple 3

Écrire de deux façons l'ensemble des couples de réels opposés.

Preuve:

En extension: $\{(x, -x), x \in \mathbb{R}_+\}$

En compréhension: $\{(a,b) \in \mathbb{R}^2 \mid a=-b\}$

Méthode: Démontrer qu'un ensemble est vide

Le raisonnement par l'absurde peut être utile : on suppose que l'ensemble n'est pas vide, on prend un élément de l'ensemble, et on cherche une contradiction.

1.2 Inclusion.

Définition 4

Soit A et B deux ensembles. On dit que A est **inclus** dans B, ce que l'on note $A \subset B$, si tout élément de A est un élément de B:

$$\forall x \in A \quad x \in B$$

Méthode

Pour prouver une inclusion $A \subset B$,

- 1. On considère un élément de A ("Soit $x \in A$ ")
- 2. puis on prouve qu'il est dans B (on devra conclure avec "donc $x \in B$ ")

Exemple 5

Justifier que $\mathbb{Z}\subset\mathbb{Q}$ puis que $\mathbb{Q}\not\subset\mathbb{Z}$

Preuve:

Soit $x \in \mathbb{Z}$, on peut écire x comme $\frac{x}{1}$ avec $x \in \mathbb{Z}$ et $1 \in \mathbb{N}^*$

Donc
$$x \in \mathbb{Q} \ (\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}, \ q \in \mathbb{N}^* \})$$

Ainsi on a donc $\mathbb{Z}\subset\mathbb{Q}$

 $\frac{3}{2} \in \mathbb{Q}$ mais $\frac{3}{2} \not \in \mathbb{Z}$

Ainsi on a donc $\mathbb{Q} \not\subset \mathbb{Z}$

On peut remarquer que pour prouver qu'il n'y a pas d'inclusion, il suffit de montrer une contradiction.

Proposition 6: Transitivité

Soient A, B, C trois ensembles.

$$(A \subset B \ et \ B \subset C) \Longrightarrow A \subset C$$

Preuve:

Supposons $A \subset B$ et $B \subset C$

Soit $x \in A$,

Donc $x \in B \ (A \subset B)$

Donc $x \in C \ (B \subset C)$

On en conclut : $A \subset C$

Théorème 7: Double-inclusion

Soient A et B deux ensembles. On a

$$A = B \Longleftrightarrow A \subset B \ et \ B \subset A$$

Preuve:

 \subseteq Suposons A = B

On a bien évidemment que $A\subset B$ et $B\subset A$

 \implies Suposons $A \subset B$ et $B \subset A$

On a bien évidemment que A=B (Tout élément de A est élément de B et réciproquement, on a donc exactement les mêmes éléments)