Machine Learning

(機器學習)

Lecture 10: Support Vector Machine (1)

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?
- 5 Embedding Numerous Features: Kernel Models

Lecture 10: Support Vector Machine (1)

- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Motivation of Dual SVM
- Lagrange Dual SVM
- Solving Dual SVM
- Messages behind Dual SVM

Linear Classification Revisited

(linear separable)

data是线性功

linear (hyperplane) classifiers: $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$

Which Line Is Best?

- PLA? depending on randomness → √ 定
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{vc}}=d+1}$$
 parameter \mathcal{A}_{p} - \mathcal{A}_{p} .

You? rightmost one, possibly :-)

Large-Margin Separating Hyperplane

Why Rightmost Hyperplane?

informal argument

if (Gaussian-like) noise on future

 \mathbf{x}_n further from hyperplane

⇔ tolerate more noise

← more robust to overfitting

distance to closest x_n

⇔ amount of noise tolerance

⇔ robustness of hyperplane

rightmost one: more robust because of larger distance to closest x_n

- robust separating hyperplane: fat —far from both sides of examples
- robustness = fatness: distance to closest x

goal: find fattest separating hyperplane

Large-Margin Separating Hyperplane

max w

fatness(w)

是线性形的

subject to

w classifies every (\mathbf{x}_n, y_n) correctly

 $\frac{\text{fatness}(\mathbf{w}) = \min_{n=1,\dots,N} \text{distance}(\mathbf{x}_n, \mathbf{w})}{n}$

- fatness: formally called margin
- correctness: $y_n = \operatorname{sign}(\mathbf{w}^\intercal \mathbf{x}_n) \leftarrow$ 有 in-sample 都是 对的

goal: find largest-margin separating hyperplane

Large-Margin Separating Hyperplane


```
\begin{array}{ll} \max\limits_{\mathbf{w}} & \mathbf{margin}(\mathbf{w}) \\ \text{subject to} & \text{every } \underline{y_n \mathbf{w}^T \mathbf{x}_n > 0} \leftarrow \underline{correctnos} \\ & \mathbf{margin}(\mathbf{w}) = \min\limits_{n=1,\dots,N} \mathrm{distance}(\mathbf{x}_n,\mathbf{w}) \end{array}
```

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Questions?

Distance to Hyperplane: Preliminary

'shorten' x and w

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

b) as
$$b = w_0$$
 file w_0 file w_0 $w_$

for this part: $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$

Distance to Hyperplane

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = \mathbf{0}$

consider \mathbf{x}' , \mathbf{x}'' on hyperplane

- **1** $\mathbf{w}^{\mathsf{T}}\mathbf{x}' = -\mathbf{b}, \mathbf{w}^{\mathsf{T}}\mathbf{x}'' = -\mathbf{b}$
- 2 w ⊥ hyperplane:

$$(x'' - x')$$
 vector on hyperplane $= 0^{-b-(-b)}$

3 distance = project $(\mathbf{x} - \mathbf{x}')$ to \perp hyperplane

distance(
$$\mathbf{x}, \mathbf{b}, \mathbf{w}$$
) = $\left| \frac{\mathbf{w}^T}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{1}}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$

★ Distance to Separating Hyperplane

$$\mathsf{distance}(\mathbf{x}, \textcolor{red}{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \textcolor{red}{b}|$$

separating hyperplane: for every *n* $v_n(\mathbf{w}^T\mathbf{x}_n+b)>0$

distance to separating hyperplane:

eparating hyperplane:
$$\operatorname{distance}(\mathbf{x}_{n},b,\mathbf{w}) = \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^{T} \mathbf{x}_{n} + b)$$

max b,w

every $v_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 0$ subject to

 $\mathsf{margin}(\boldsymbol{b}, \mathbf{w}) = \min_{n=1}^{N} \frac{1}{\|\mathbf{w}\|} (\mathbf{w}^T \mathbf{x}_n + \boldsymbol{b})$

Margin of **Special** Separating Hyperplane

```
\max_{\boldsymbol{b},\mathbf{w}} \quad \text{margin}(\boldsymbol{b},\mathbf{w}) subject to \text{every } y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b}) > 0 \text{margin}(\boldsymbol{b},\mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} \underline{y_n(\mathbf{w}^T\mathbf{x}_n + \boldsymbol{b})}
```

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1 \Longrightarrow \operatorname{margin}(b, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|} \cdot 1$$

max
$$b, \mathbf{w}$$
 $\frac{1}{\|\mathbf{w}\|}$ subject to every $y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$ $\mathbf{x}_n + \mathbf{b} = 1$ $\mathbf{x}_n + \mathbf{b} = 1$ $\mathbf{x}_n + \mathbf{b} = 1$ $\mathbf{x}_n + \mathbf{b} = 1$

Standard Large-Margin Hyperplane Problem


```
necessary constraints: y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 for all n
          original constraint: \min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = 1
want: optimal (b, \mathbf{w}) here (inside)

(b, \mathbf{w}) outside, e.g. y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126 for all n
—can scale (b, \mathbf{w}) to "more optimal" (\frac{b}{1.126}, \frac{\mathbf{w}}{1.126}) (contradiction!)
                      final change: max \Longrightarrow min, remove \sqrt{\phantom{a}}, add \frac{1}{2}
                                                                       11W1 = 11W1 = WTW
                                      min
                                       b.w
                                                   V_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 for all n^{\frac{1}{2}W^TW}
                            subject to
```

Questions?

Support Vector Machine (SVM)

optimal solution:
$$(w_1 = 1, w_2 = -1, b = -1)$$

margin (b, \mathbf{w}) $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$

- examples on boundary: 'locates' fattest hyperplane
 other examples: not needed < 把途些免去掉也不影响
- call boundary example support vector (candidate)

support vector machine (SVM): learn fattest hyperplanes (with help of support vectors) Support Vector Machine

Solving General SVM

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$

subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1$ for all n

- not easy manually, of course :-)
- gradient descent? not easy with constraints
 - luckily: 原制式:W的二次function
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)
 - —quadratic programming .

quadratic programming (QP) 'easy' optimization problem

Quadratic Programming

```
optimal (b, \mathbf{w}) = ?
                                                                                       optimal u ← QP(Q, p, A, c)
业的=次函数
                                 \frac{1}{2}\mathbf{W}^T\mathbf{W}
               min
                                                                                                       min
                b.w
                                 y_n(\mathbf{w}^T\mathbf{x}_n+b)>1
                                                                                        subject to
                                                                                                                         \mathbf{a}_{m}^{T}\mathbf{u}\geq c_{m},
subject to
                                                                                                                         for m=1,2,\ldots,M
                                 for n = 1, 2, ..., N
                                                                微范的 Variable.
                                                                \mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}; Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{3} - \mathbf{1}_d \\ \mathbf{i} & \mathbf{0} - \mathbf{1}_d \end{bmatrix}
```

 $\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$; $\underline{c_n = 1}$; $\underline{M = N}$ constraints:

> SVM with general QP solver: easy if you've read the manua

objective function:

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

3 return $b \& \mathbf{w}$ as g_{SVM}

● hard-margin: nothing violate 'fat boundary'

- linear: x_n ← 裁方腐线

want non-linear?

$$\mathbf{z}_n = \Phi(\mathbf{x}_p)$$
—remember? :-)

Why Large-Margin Hyperplane?

	0 10		
- 42面			
-77215W		minimize	constraint
Ţ	regularization	<i>E</i> _{in}	$\mathbf{w}^T\mathbf{w} \leq C$
L	SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\rm in}=0$ [and more]

SVM (large-margin hyperplane): 'weight-decay regularization' within $E_{in} = 0$

Large-Margin Restricts Dichotomies

consider 'large-margin algorithm' A_{ρ} :

either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

3 input 能 Shatter

$\mathcal{A}_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

但多了限制

找介到(=11.26 百9 "Linear"

fewer dichotomies \Longrightarrow smaller VC dim \Longrightarrow better generalization

VC Dimension of Large-Margin Algorithm fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{VC}(A_{\theta})$ [data-dependent, need more than VC]

instead of $d_{VC}(\mathcal{H}_{\rho})$ [data-independent, need more than V instead of $d_{VC}(\mathcal{H})$ [data-independent, covered by VC]

generally, when
$$\mathcal{X}$$
 in radius- R hyperball: $d_{VC}(\mathcal{A}_{\rho}) \leq \min\left(\frac{R^2}{\rho^2}, d\right) + 1 \leq \underbrace{d+1}_{d_{VC}(\text{perceptrons})}$

Benefits of Large-Margin Hyperplanes

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better Ein

Questions?

Non-Linear Support Vector Machine Revisited

$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} \quad \text{ 恢 Z 転 挨}.$

s. t.
$$y_n(\mathbf{w}^T \underbrace{\mathbf{z}_n}_{\Phi(\mathbf{x}_n)} + b) \ge 1$$
, for $n = 1, 2, ..., N$

Non-Linear Hard-Margin SVM

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{\tilde{d}}^T \\ \mathbf{0}_{\tilde{d}} & \mathbf{I}_{\tilde{d}}^T \end{bmatrix}; \mathbf{p} = \mathbf{0}_{\tilde{d}+1};$$
$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{z}_n^T \end{bmatrix}; c_n = 1$$

e return $b \in \mathbb{R}$ & $\mathbf{w} \in \mathbb{R}^{\widehat{\partial}}$ with $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \Phi(\mathbf{x}) + b)$

控則模型複雜度

- demanded: not many (large-margin), but sophisticated boundary (feature transform) W dimension 张大?
- QP with $\tilde{d} + 1$ variables and N constraints —challenging if \tilde{d} large, or infinite?! :-)

goal: SVM without dependence on \tilde{d}

Todo: SVM 'without' d

Original SVM

(convex) QP of

- $\tilde{d} + 1$ variables
- N constraints

'Equivalent' SVM

只跟N有关, 了N=#ofdoca (convex) QP of

- N variables
- N+1 constraints

Warning: Heavy Math!!!!!

- introduce some necessary math without rigor to help understand SVM deeper
- 'claim' some results if details unnecessary
 - —like how we 'claimed' Hoeffding

Equivalent' SVM: based on some dual problem of Original SVM

Regularization by Constrained-Minimizing Ein

min $E_{in}(\mathbf{w})$ s.t. $\mathbf{w}^{\mathsf{T}}\mathbf{w} \leq \mathbf{C}$ 从表质不能大大

 \Leftrightarrow Regularization by Minimizing E_{aug}

 $\min_{\mathbf{w}} E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$

C equivalent to some λ ≥ 0 by checking optimality condition

$$abla E_{\mathsf{in}}(\mathbf{w}) + rac{2\lambda}{N} \mathbf{w} = \mathbf{0}$$

- regularization: view <u>λ as given parameter instead of C</u>, and solve 'easily'
- dual SVM: view λ's as unknown given the constraints, and solve them as variables instead 提入當复数

SVM有Ny constrain t.

how many λ 's as variables? N—one per constraint

Starting Point: Constrained to 'Unconstrained'

min b.w s.t. for n = 1, 2, ..., N

with Lagrange multipliers
$$\chi_{\mathcal{R}} \alpha_n$$
,
$$\frac{\mathcal{L}(b, \mathbf{w}, \alpha)}{\sum_{\text{objective}}^{1} \mathbf{w}^T \mathbf{w}} + \sum_{n=1}^{N} \alpha_n \underbrace{\left(1 - \chi_n(\mathbf{w}^T \mathbf{z}_n + b)\right)}_{\text{constraint}}$$

Claim

 $= \min_{z \in b, \mathbf{w}} \left(\infty \text{ if violate } ; \frac{1}{2} \mathbf{w}^T \mathbf{w} \text{ if feasible} \right)$

- $+\sum_{n} \alpha_{n}($ some positive $)) \stackrel{\cancel{\wedge}}{\rightarrow} \infty$ any 'violating' (b, w):
- $\Box + \sum_{n} \alpha_{n}(all non-positive)$ any 'feasible' (b, w): $\max_{\text{all }\alpha_n\geq 0}$

constraints now hidden in max constraint optimal value.

Questions?

Strong Duality of Quadratic Programming

$$\min_{\substack{b,\mathbf{w} \\ \text{equiv. to original (primal) SVM}}} \mathcal{L}(b,\mathbf{w},\boldsymbol{\alpha}) = \max_{\substack{\text{all } \alpha_n \geq 0 \\ \text{b,w}}} \mathcal{L}(b,\mathbf{w},\boldsymbol{\alpha})$$

$$= \max_{\substack{\text{all } \alpha_n \geq 0 \\ \text{b,w}}} \mathcal{L}(b,\mathbf{w},\boldsymbol{\alpha})$$

$$= \max_{\substack{\text{b,w} \\ \text{b,w}}} \mathcal{L}(b,\mathbf{w},\boldsymbol{\alpha})$$

- '=': strong duality, true for QP if
 - convex primal
 - feasible primal (true if Φ-separable) ³
 - linear constraints, Sun 非就线性

—called constraint qualification ⇒ 能直接解 RHS

exists primal-dual optimal solution $(b, \mathbf{w}, \boldsymbol{\alpha})$ for both sides

Solving Lagrange Dual: Simplifications (1/2)

inner problem 'unconstrained', at optimal:

$$\frac{\partial \mathcal{L}(b, \mathbf{w}, \alpha)}{\partial b} = 0 = -\sum_{n=1}^{N} \alpha_n y_n \sqrt{200} \cos \beta = 0$$

• no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

but wait,
$$b$$
 can be removed
$$\max_{\substack{\mathbf{all } \alpha_n \geq 0 \\ \sum y_n \alpha_n = 0}} \left(\min_{\substack{b, \mathbf{w}}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) - \sum_{n=1}^{N} \alpha_n y_n \cdot b} \right)$$

Solving Lagrange Dual: Simplifications (2/2)

$$\max_{\text{all }\underline{\alpha_n \geq 0}, \underline{\sum y_n \alpha_n = 0}} \left(\underbrace{\min_{b, \underline{\mathbf{w}}} \frac{1}{2} \underline{\mathbf{w}}^T \underline{\mathbf{w}}}_{b, \underline{\mathbf{w}}} + \sum_{n=1}^N \underline{\alpha_n} (1 - y_n (\underline{\mathbf{w}}^T \mathbf{z}_n)) \right) \mathcal{F}_{n, \underline{n}} \mathcal{F$$

• inner problem 'unconstrained', at optimal: $\frac{\partial \mathcal{L}(b, \mathbf{w}, \boldsymbol{\alpha})}{\partial w_i} = 0 = w_i - \sum_{n=1}^{N} \alpha_n y_n z_{n,i}$

· 标值發生的位置

• no loss of optimality if solving with constraint $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$

35 condition

if primal-dual optimal (b, \mathbf{w}, α) , $-\frac{1}{2} \| \mathbf{w} \|^2 + \frac{1}{2} \| \mathbf{w} \|^2$ • primal feasible: $y_n(\mathbf{w}^T \mathbf{z}_n + b) \ge 1 \quad (-\| \mathbf{x} \|^2 + 2\mathbf{x} \mathbf{w}) = \frac{1}{\| \mathbf{w} \|}$

- dual feasible: $\alpha_n \ge 0$ dual condition.
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\frac{\sqrt{2}}{\sqrt{2}} = 0$$

$$\frac{\alpha_n(1 - y_n(\mathbf{w}^T \mathbf{z}_n + b))}{\sqrt{2}} = 0$$

$$\frac{\alpha_n(1 - y_n(\mathbf{w}^T \mathbf{z}_n + b))}{\sqrt{2}} = 1$$

—called **Karush-Kuhn-Tucker (KKT) conditions**, necessary for optimality [& sufficient here]

will use KKT to 'solve' (b, \mathbf{w}) from optimal α

Questions?

Dual Formulation of Support Vector Machine

$$\max_{\substack{\alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n \\ }} \frac{\sharp \mathbf{z}_1 \min_{\substack{\alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n \\ }} \underbrace{\sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n} \|^2 + \sum_{n=1}^{N} \alpha_n \mathbf{z}_n \|^2$$

standard hard-margin SVM dual

subject to
$$\sum_{n=1}^{N} \sum_{m=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{m} \bigcirc \sum_{n=1}^{N} \alpha_{n}$$

$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0; \leftarrow 1 \text{ for } n = 1, 2, N \in \mathbb{N} \text{ for } n = 1, 2, N \in \mathbb{N} \text{ and the problem}$$

 $\alpha_n \geq 0$, for $n = 1, 2, ..., N \leftarrow N \land condition$

(convex) QP of $\frac{N \text{ variables}}{N} & \frac{N+1}{N} = 1$ constraints, as promised

how to solve? yeah, we know QP!,:-)

Dual SVM with QP Solver

optimal $\alpha = ?$

$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m$$

$$-\sum_{n=1}^{N}\alpha_{n}$$

subject to

$$\sum_{n=1}^{N} y_n \alpha_n = 0;$$

$$\alpha_n \geq 0$$
,

for
$$n = 1, 2, ..., N$$

optimal
$$\alpha \leftarrow \mathsf{QP}(\mathsf{Q},\mathsf{p},\mathsf{A},\mathsf{c})$$

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{\mathsf{T}} \mathbf{Q} \alpha + \mathbf{p}^{\mathsf{T}} \alpha$$

subject to
$$\mathbf{a}_{i}^{T} \alpha \geq c_{i}$$
, for $i = 1, 2, ...$

•
$$q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m 2 \chi \overline{\psi} \psi$$

$$ullet _{\mathbf{a}}\mathbf{a}_{\geq}=\mathbf{y}, \mathbf{a}_{\leq}=-\mathbf{y}_{\geq}$$

$$\mathbf{a}_{\geq} = \mathbf{y}, \mathbf{a}_{\leq} = -\mathbf{y};$$
 $\mathbf{a}_{n}^{T} = \underline{n}$ th unit direction,

$$^{\bullet}$$
 $c_{\geq} = 0, ^{\lor}c_{\leq} = 0; c_{n} = 0$

斯斯 plund note: many solvers treat **equality** (a_{\geq}, a_{\leq}) &

bound (a_n) constraints specially for numerical stability

Dual SVM with Special QP Solver

optimal
$$\alpha \leftarrow \mathsf{QP}(Q_{\mathsf{D}}, \mathbf{p}, \mathsf{A}, \mathbf{c})$$

$$\min_{\alpha} \quad \frac{1}{2} \alpha^T |\mathbf{Q}_{\mathsf{D}}| \alpha + \mathbf{p}^T \alpha$$

subject to special equality and bound constraints

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$, often non-zero \mathcal{T}_m
- - not storing whole Qp← 特殊から
 - utilizing special constraints properly

to scale up to large N

usually better to use special solver in practice

if primal dual entimal (b. w) 內間作物

if primal-dual optimal (b, w (a), 中間產物

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all/Lagrange terms' disappear):

$$\alpha_n(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b)) = 0 \text{ (complementary slackness)}$$

- optimal $\alpha \Longrightarrow$ optimal **w**? easy above!
- 斯林一人-震
- optimal $\alpha \Longrightarrow$ optimal b? a range from primal feasible & $\sqrt{}$ equality from **comp. slackness** if one $\alpha_n > 0 \Rightarrow b = y_n \mathbf{w}^T \mathbf{z}_n$

Questions?

Messages behind Dual SVM

Support Vectors Revisited

- examples with $\alpha_n > 0$: on boundary
- call α_n > 0 examples (z_n, y_n)
 support vectors candidates
- SV (positive α_n) \subseteq SV candidates (on boundary)

A El linear combine.

- only SV needed to compute $\underline{\mathbf{w}}$: $\underline{\mathbf{w}} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n = \sum_{SV} \alpha_n y_n \mathbf{z}_n$
- only SV needed to compute \underline{b} : $\underline{b} = y_n \underbrace{\mathbf{w}^T}_{n} \mathbf{z}_n$ with any SV (\mathbf{z}_n, y_n)

SVM: learn fattest hyperplane

by identifying support vectors all 51/with dual optimal solution

明SV共 optimal

Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

原始的
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 sub. to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$,

• $\tilde{d} + 1$ variables, N constraints —suitable when $\tilde{d} + 1$ small

for n = 1, 2, ..., N

 physical meaning: locate specially-scaled (b, w)

Dual Hard-Margin SVM

min
$$\frac{1}{\alpha} \alpha^T Q_D \alpha - \mathbf{1}^T \alpha$$

s.t. $\mathbf{y}^T \alpha = 0$;
 $\alpha_n > 0$ for $n = 1, ..., N$

- N variables,
 N + 1 simple constraints
 suitable when N small
- physical meaning: locate SVs (\mathbf{z}_n, y_n) & their α_n

both eventually result in optimal (b, \mathbf{w}) for fattest hyperplane $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \Phi(\mathbf{x}) + b) + \mathcal{H}(b, \mathbf{w}) + \mathcal{H}(b$

Are We Done Yet?

goal: SVM without dependence on \tilde{d}

$$\begin{aligned} & \min_{\boldsymbol{\alpha}} & & \frac{1}{2}\boldsymbol{\alpha}^{T}\mathbf{Q}_{\mathsf{D}}\boldsymbol{\alpha} - \mathbf{1}^{T}\boldsymbol{\alpha} \\ & \text{subject to} & & \mathbf{y}^{T}\boldsymbol{\alpha} = 0; \\ & & & \boldsymbol{\alpha}_{n} \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

- N variables, N+1 constraints: no dependence on d?
- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$ $-O(\tilde{d})$ via naïve computation!

加强开记的計算

no dependence only if avoiding naïve computation (next lecture :-))

Questions?

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 10: Support Vector Machine (1)

- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem

minimize 'length of w' at special separating scale

- Support Vector Machine
 - 'easy' via quadratic programming
- Motivation of Dual SVM
 - want to remove dependence on \tilde{d}
- Lagrange Dual SVM
 - KKT conditions link primal/dual
- Solving Dual SVM another QP, better solved with special solver
- Messages behind Dual SVM
 SVs represent fattest hyperplane