Algorithms and Datastructures Graphs, Depth-/Breadth-first Search, Graph-Connectivity

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Datastructures, January 2017

Structure

Feedback

Exercises

Lecture

Graphs

Introduction

Implementation

Application example

Structure

Feedback

Exercises

Lecture

Graphs

Introduction Implementation Application example

Feedback from the exercises

The upcoming exercise sheet 12 and 13 will be merged together (finding largest connected component + Dijkstra)

Some people were asking for more solution sheets for the exercises

We are working on it.

Feedback from the lecture

Code in the lecture will be a litte bit different from exercise sheet.

One person asked for additional explanations regarding proofs.

Structure

Feedback

Exercises

Lecture

Graphs

Introduction Implementation Application example

Structure

Feedback

Exercises

Lecture

Graphs

Introduction

Implementation

Application example

Graphs - Overview:

▶ Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)
- Depth first search (DFS)

- Besides arrays, lists and trees the most common datastructure (Trees are a special type of graph)
- Representation of graphs in the computer
- Breadth first search (BFS)
- Depth first search (DFS)
- Connected components of a graph

Introduction

Introduction

Introduction

Terminology:

▶ Each Graph G = (V, E) consists of:

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - ▶ A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)
 - ▶ Directed edge: e = (u, v) (tuple)

Introduction

- ▶ Each Graph G = (V, E) consists of:
 - A set of vertices (nodes) $V = \{v_1, v_2, \dots\}$
 - ▶ A set of edges (arcs) $E = \{e_1, e_2, \dots\}$
- ▶ Each edge connects two vertices $(u, v \in V)$
 - ▶ Undirected edge: $e = \{u, v\}$ (set)
 - ▶ Directed edge: e = (u, v) (tuple)
- ▶ Self-loops are also possible: e = (u, u) or $e = \{u, u\}$

Introduction

Weighted graph:

Introduction

Weighted graph:

Introduction

Weighted graph:

▶ Each edge is marked with a real number named weight

Introduction

Weighted graph:

- ► Each edge is marked with a real number named weight
- ► The weight is also named length or cost of the edge depending on the application

Example: Road network

Example: Road network

► Intersections: vertices

Example: Road network

► Intersections: vertices

► Roads: edges

Example: Road network

► Intersections: vertices

► Roads: edges

► Travel time:

costs of the edges

Example: Road network

► Intersections: vertices

► Roads: edges

Travel time: costs of the edges Wengarten C. Freiburg im Principal Court Oberal Wenter State Coorpor

Wengarten C. Freiburg im Principal Court Oberal Court Co

Figure: Map of Freiburg © OpenStreetMap

Structure

Feedback

Exercises

Lecture

Graphs

Introduction

Implementation

Application example

Graphs Implementation

How to represent this graph computationally?

Implementation

How to represent this graph computationally?

► Two classic variants

Implementation

How to represent this graph computationally?

- Two classic variants
 - 1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Implementation

How to represent this graph computationally?

- Two classic variants
 - 1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Implementation

How to represent this graph computationally?

- Two classic variants
 - 1. Adjacency matrix with space consumption $\Theta(|V|^2)$

Figure: Weighted graph with |V| = 4, |E| = 6

		ena-vertice			
		0	1	2	3
<u>S</u>	0		2		3
vertice	1			9	
٦.	2				-1
start	3		7	-2	

Figure: Adjacency matrix

Implementation

How to represent this graph computationally?

Implementation

How to represent this graph computationally?

- Two classic variants
 - 2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$

Implementation

How to represent this graph computationally?

- Two classic variants
 - 2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - ► Each list item stores the target vertice and the cost of the edge

Implementation

How to represent this graph computationally?

- Two classic variants
 - 2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - ► Each list item stores the target vertice and the cost of the edge

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Implementation

How to represent this graph computationally?

- Two classic variants
 - 2. Adjacency list / fields with space consumption $\Theta(|V| + |E|)$
 - ► Each list item stores the target vertice and the cost of the edge

Figure: Weighted graph with |V| = 4, |E| = 6

<u>o</u>	1, 2	3, 3
verti	2, 9	
.5 (2)	3, -1	
start (3)	1, 7	2, -2

Figure: Adjacency list

Implementation

Graph: Arrangement

Implementation

Graph: Arrangement

► Graph is fully defined through the adjacency matrix / list

Implementation

Graph: Arrangement

- ► Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Implementation

Graph: Arrangement

- Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with

$$|V| = 4$$
, $|E| = 6$

Implementation

Graph: Arrangement

- ► Graph is fully defined through the adjacency matrix / list
- ▶ The arrangement is not relevant for visualisation of the graph

Figure: Weighted graph with |V| = 4, |E| = 6

Figure: Same graph ordered by number - outer planar graph

Implementation - Python

```
class Graph:
    def __init__(self):
        self.vertices = []
        self.edges = []
    def addVertice(self, vert):
        self.vertices.append(vert)
    def addEdge(self, fromVert, toVert):
        self.edges.append((fromVert, toVert))
```

Implementation - Python

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2 $\,$

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

► Indegree of a vertex u is the number of edge heads adjacent to the vertex

$$\deg^+(u) = |\{(v, u) : (v, u) \in E\}|$$

Degrees (Valency)

Degree of a vertex: Directed graph: G = (V, E)

Figure: Vertex with in- / outdegree of 3 / 2

► Indegree of a vertex u is the number of edge heads adjacent to the vertex

$$\deg^+(u) = |\{(v, u) : (v, u) \in E\}|$$

Outdegree of a vertex u is the number of edge tails adjacent to the vertex

$$\deg^{-}(u) = |\{(u, v) : (u, v) \in E\}|$$

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

Degrees (Valency)

Degree of a vertex: Undirected graph: G = (V, E)

Figure: Vertex with degree of 4

▶ Degree of a vertex u is the number of vertices adjacent to the vertex

$$\deg(u) = |\{\{v, u\} : \{v, u\} \in E\}|$$

Paths

Paths

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Paths

Paths in a graph: G = (V, E)

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

▶ A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with

Paths

Figure: Undirected path of length 3 P = (0, 3, 2, 4)

Figure: Directed path of length 3 P = (0, 3, 1, 4)

- ▶ A path of G is a sequence of edges $u_1, u_2, ..., u_i \in V$ with
 - ▶ Undirected graph: $\{u_1, u_2\}, \{u_2, u_3\}, \dots, \{u_{i-1}, u_i\} \in E$
 - ▶ Directed graph: $(u_1, u_2), (u_2, u_3), \dots, (u_{i-1}, u_i) \in E$

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Figure: Directed path of length 3 P = (0, 3, 1, 4)

Figure: Weighted path with cost 6 P = (2,3,1)

Paths

Paths in a graph: G = (V, E)

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2,3,1)

► The length of a path is: (also costs of a path)

Paths

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2, 3, 1)

- ► The length of a path is: (also costs of a path)
 - ▶ Without weights: number of edges taken

Paths

Figure: Directed path of length 3 P = (0,3,1,4)

Figure: Weighted path with cost 6 P = (2, 3, 1)

- ► The length of a path is: (also costs of a path)
 - ▶ Without weights: number of edges taken
 - With weights: sum of weigths of edges taken

Paths

Shortest path in a graph: G = (V, E)

Paths

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

Paths

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = ?

► The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Paths

Shortest path in a graph: G = (V, E)

Figure: Shortest path from 0 to 2 with cost / distance d(0,2) = 6P = (0,1,4,3,2)

► The shortest path between two vertices u, v is the path P = (u, ..., v) with the shortest length d(u, v) or lowest costs

Paths

Diameter of a graph: G = (V, E)

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u,v)$

Figure: Diameter of graph is d = ?

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u,v)$

Figure: Diameter of graph is d = ?

► The diameter of a graph is the length / the costs of the longest shortest path

Paths

Diameter of a graph:
$$G = (V, E)$$
 $d = \max_{u,v \in V} d(u,v)$

Figure: Diameter of graph is d = 10, P = (3, 2, 5)

► The diameter of a graph is the length / the costs of the longest shortest path

Connected Components

Connected Components

Connected components: G = (V, E)

Figure: Three connected components

Undirected graph:

Connected Components

Figure: Three connected components

- Undirected graph:
 - All connected components are a partition of V

$$V = V_1 \cup \cdots \cup V_k$$

Connected Components

Connected components: G = (V, E)

Figure: Three connected components

- Undirected graph:
 - ▶ All connected components are a partition of *V*

$$V = V_1 \cup \cdots \cup V_k$$

► Two vertices *u*, *v* are in the same connected component if a path between *u* and *v* exists

Connected Components

Connected Components

Connected components: G = (V, E)

Directed graph:

Connected Components

- Directed graph:
 - ► Named strongly connected components

Connected Components

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded

Connected Components

- Directed graph:
 - Named strongly connected components
 - Direction of edge has to be regarded
 - Not part of this lecture

Connected Components - Graph Exploration

Connected Components - Graph Exploration

Graph Exploration: (Informal definition)

▶ Let G = (V, E) be a graph and $s \in V$ a start vertex

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s
- ▶ Depth-first search: in sequence of the largest distance to s

Connected Components - Graph Exploration

- ▶ Let G = (V, E) be a graph and $s \in V$ a start vertex
- We visit each reachable vertex connected to s
- Breadth-first search: in sequence of the smallest distance to s
- ▶ Depth-first search: in sequence of the largest distance to *s*
- Not a problem on its own but is often used as subroutine of other algorithms

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Idea:

1. We start with all vertices unmarked and mark visited vertices

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- 4. Mark all unmarked vertices connected to a level 1-vertex (level 2)

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- 4. Mark all unmarked vertices connected to a level 1-vertex (level 2)
- 5. Iteratively mark reachable vertices for all levels

Connected Components - Breadth-First Search

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s (level 0)
- 3. Mark all unmarked connected vertices (level 1)
- Mark all unmarked vertices connected to a level 1-vertex (level
 2)
- 5. Iteratively mark reachable vertices for all levels
- 6. All connected nodes are now marked and in the same connected component as the start vertex s

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Breadth-First Search

Figure: spanning tree of a breadth-first search

Connected Components - Depth-First Search

Connected Components - Depth-First Search

Idea:

1. We start with all vertices unmarked and mark visited vertices

Connected Components - Depth-First Search

Idea:

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s

Connected Components - Depth-First Search

Idea:

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s
- 3. Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)

Connected Components - Depth-First Search

Idea:

- 1. We start with all vertices unmarked and mark visited vertices
- 2. Mark the start vertex s
- Pick an unmarked connected vertex and start a recursive depth-first search with the vertex as start vertex (continue on step 2)
- 4. If no unmarked connected vertex exists go one vertex back (reduce the recursion level by one)

Connected Components - Depth-First Search

Connected Components - Depth-First Search

Depth-first search:

► Search starts with long paths (searching with depth)

Connected Components - Depth-First Search

- Search starts with long paths (searching with depth)
- ► Marks like breadth-first search all connected vertices

Connected Components - Depth-First Search

- Search starts with long paths (searching with depth)
- ► Marks like breadth-first search all connected vertices
- ▶ If the graph is acyclic we get a topological sorting

Connected Components - Depth-First Search

- Search starts with long paths (searching with depth)
- ► Marks like breadth-first search all connected vertices
- ▶ If the graph is acyclic we get a topological sorting
 - Each newly visited vertex gets marked by an increasing number

Connected Components - Depth-First Search

- Search starts with long paths (searching with depth)
- ► Marks like breadth-first search all connected vertices
- ▶ If the graph is acyclic we get a topological sorting
 - ► Each newly visited vertex gets marked by an increasing number
 - ▶ The numbers increase with path from the start vertex

Connected Components - Depth-First Search

Connected Components - Depth-First Search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Connected Components - Depth-First Search

Figure: spanning tree of a depth-first search

Why is this called Breadth - and Depth First Search?

Connected Components - Breadth-/Depth-First Search

Connected Components - Breadth-/Depth-First Search

Runtime complexity:

Constant costs for each visited vertex and edge

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- ▶ Let V' and E' be the reachable vertices and edges
- All vertices of V' are in the same connected component as our start vertex s

Connected Components - Breadth-/Depth-First Search

- Constant costs for each visited vertex and edge
- We get a runtime complexity of $\Theta(|V'| + |E'|)$
- Let V' and E' be the reachable vertices and edges
- ► All vertices of V' are in the same connected component as our start vertex s
- This can only be improved by a constant factor

Structure

Feedback

Exercises

Lecture

Graphs

Introduction

Implementation

Application example

Image processing

Image processing

Connected component labeling

Image processing

- Connected component labeling
- Counting of objects in an image

Image processing

- Connected component labeling
- ► Counting of objects in an image

Image processing

What's object, what's background?

Image processing

Convert to black white using threshold:

value = 255 if value > 100 else 0

Image processing

Interpret image as graph:

Image processing

Interpret image as graph:

► Each white pixel is a node

Image processing

Interpret image as graph:

- Each white pixel is a node
- ► Edges between adjacent pixels (normally 4 or 8 neighbors)

Image processing

Interpret image as graph:

- Each white pixel is a node
- ► Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array

Image processing

Interpret image as graph:

- ► Each white pixel is a node
- Edges between adjacent pixels (normally 4 or 8 neighbors)
- Edges are not saved externally, algorithm works directly on array
- Breadth- / depth-first search find all connected components (particles)

Image processing

Image processing

Image processing

Find connected components:

 Search pixel-by-pixel for non-zero intensity

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1

Image processing

- ► Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels

Image processing

- ► Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- ► Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- ► Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- ► Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 1
- Check neighbors of all new labeled pixels
- ► Label non-zero pixels as component 1

Image processing

- Search pixel-by-pixel for non-zero intensity
- ► Label found pixel as component 2
- **.** . .

Image processing

Result of connected component labeling:

Figure: Result: particle indices instead of intensities

Further Literature

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

Graph-Search

```
[Wika] Breadth-first search
          https://en.wikipedia.org/wiki/
          Breadth-first_search
[Wikb] Depth-first search
          https:
          //en.wikipedia.org/wiki/Depth-first_search
```

Graph-Connectivity

```
[Wik] Connectivity (graph theory)
    https://en.wikipedia.org/wiki/Connectivity_
        (graph_theory)
```