Introduction to Game Theory

B. Nebel, R. Mattmüller T. Schulte, K. Heinold Summer semester 2020 University of Freiburg Department of Computer Science

Exercise Sheet 10 — Solutions

Exercise 10.1 (Vickrey-Clarke-Groves Mechanism; 2+2 points)

In a k-item auction, k identical items are to be sold. Each bidder i = 1, ..., n can get at most one of the items and has a privately known valuation w_i for the item. For simplicity, assume that $w_1 > w_2 > \cdots > w_n$. The set of alternatives $A = N_k$ consists of all k-ary subsets of players. Each alternative represents the players who will receive an item.

(a) Formalize the k-item auction as a VCG mechanism $\mathcal{M} = \langle f, (p_i)_{i \in \mathbb{N}} \rangle$ that uses Clarke pivot functions.

Solution:

The players valuations over the alternatives $a \in A$ are

$$v_i(a) = \begin{cases} w_i, & \text{if } i \in a. \\ 0, & \text{otherwise.} \end{cases}$$

$$f(v_1, \dots, v_n) = \{i \in N | 1 \le i \le k\}$$

$$p_i(a) = \begin{cases} w_{k+1}, & \text{if } i \in a. \\ 0, & \text{otherwise.} \end{cases}$$

- (b) Consider the mechanism $\mathcal{M}' = \langle f', (p'_i)_{i \in \mathbb{N}} \rangle$ implementing a k-item auction, with
 - social choice function $f'(v_1, \ldots, v_n) = \{i \in N \mid 1 \le i \le k\}$, and
 - payment functions $p'_i(a) = \begin{cases} w_{i+1}, & \text{if } i \in a, \\ 0, & \text{otherwise,} \end{cases}$ for all $a \in A$.

Here, the *i*-th highest bidding winner has to pay the (i + 1)-st highest bid, i.e., the highest bidding player pays the second highest bid, the second highest bidder pays the third highest bid, and so on. Non-winning players pay nothing. Construct a counterexample with only three bidders that proves that \mathcal{M}' is *not* incentive compatible.

Solution:

Let k=2. Consider the following players' privately known valuations: $w_1=10, w_2=8, w_3=0$ with $p_1'(v_1,v_2,v_3)=8$. Now imagine player 1 deviates from her true valuation in the following way: $v_1'=7$ with $p_1'(v_1',v_2,v_3)=0$. Therefore: $u_1(f'(v_1,v_2,v_3))=2<10=u_1(f'(v_1',v_2,v_3))$.

Exercise 10.2 (Top trading cycle method, 2 points)

- (a) Apply the top trading cycle algorithm to the following problem and state what happens in the iterations:
 - Player 1: $1 \triangleleft_1 4 \triangleleft_1 2 \triangleleft_1 3$
 - Player 2: $3 \triangleleft_2 2 \triangleleft_2 1 \triangleleft_2 4$
 - Player 3: $2 \triangleleft_3 3 \triangleleft_3 4 \triangleleft_3 1$
 - *Player 4:* $2 \triangleleft_4 1 \triangleleft_4 4 \triangleleft_4 3$

Preferences are given from lowest (left) to highest (right).

Solution:

Assignment: $\pi = (3, 2, 1, 4)$

Exercise 10.3 (Stable matchings, 2 points)

Apply the deferred acceptance algorithm with male proposals to the following problem and state what happens in the iterations:

- Man 1: $w_4 \prec_{m_1} w_3 \prec_{m_1} w_1 \prec_{m_1} w_2$
- Man 2: $w_3 \prec_{m_2} w_2 \prec_{m_2} w_1 \prec_{m_2} w_4$
- $\bullet \ Man \ 3: \ w_4 \prec_{m_3} w_2 \prec_{m_3} w_3 \prec_{m_3} w_1$
- $\bullet \ \mathit{Man 4:} \ w_4 \prec_{m_4} w_1 \prec_{m_4} w_3 \prec_{m_4} w_2$
- $\bullet \ \ Woman \ 1: \ m_4 \prec_{w_1} m_2 \prec_{w_1} m_3 \prec_{w_1} m_1$
- Woman 2: $m_2 \prec_{w_2} m_1 \prec_{w_2} m_4 \prec_{w_2} m_3$
- Woman 3: $m_1 \prec_{w_3} m_3 \prec_{w_3} m_2 \prec_{w_3} m_4$
- Woman 4: $m_4 \prec_{w_4} m_1 \prec_{w_4} m_2 \prec_{w_4} m_3$

Preferences are given from lowest (left) to highest (right).

Solution:

i	w_1	w_2	w_3	w_4
1	m_3	m_1, m_4		m_2
2	m_1, m_3	m_4		m_2
3	m_1	m_4	m_3	m_2

Matching: $\{\langle m_1, w_1 \rangle, \langle m_2, w_4 \rangle, \langle m_3, w_3 \rangle, \langle m_4, w_2 \rangle\}$