Epistemic Logic with Common and Distributed Knowledge

Natasha Alechina Brian Logan

Utrecht University

n.a.alechina@uu.nl b.s.logan@uu.nl

Group or Collective Knowledge

A group of agents A can "know" that φ in several different epistemic modes:

- $E_A\varphi$: everybody in A knows that φ (or: A have mutual knowledge that φ)
- $C_A\varphi$: it is a common knowledge among A that φ
- $D_A\varphi$: A have distributed knowledge that φ

Language of epistemic logic with common and distributed knowledge

Definition (Syntax of ELCD)

$$\varphi := \rho \mid \neg \varphi \mid \varphi \wedge \psi \mid K_i \varphi \mid E_A \varphi \mid C_A \varphi \mid D_A \varphi$$

- where $p \in \mathcal{PV}$, $i \in Agt$ and $A \subseteq Agt$
- E_Aφ is not included in the name of the logic because it is easily definable as Λ_{i∈A} K_iφ
- also, $K_i \varphi$ is definable as $D_{\{i\}} \varphi$

Group Knowledge: Semantics

or truth definitions

In state q, everybody in A knows φ if and only if for every state q prime which is indistinguishable from q by a group indistinguishability relation holds φ

• $\mathcal{M}, q \models E_A \varphi$ iff $\mathcal{M}, q' \models \varphi$ for every q' such that $q \sim_A^E q'$, where $\sim_A^E = \bigcup_{i \in A} \sim_i$

$$E_{A}\varphi = \bigwedge_{i \in A} K_{i}\varphi$$

• $\mathcal{M}, q \models C_A \varphi$ iff $\mathcal{M}, q' \models \varphi$ for every q' such that $q \sim_A^C q'$, where \sim_A^C is the transitive closure of \sim_A^E

$$C_{A}\varphi = E_{A}\varphi \wedge E_{A}E_{A}\varphi \wedge E_{A}E_{A}E_{A}\varphi \wedge \dots$$

• $\mathcal{M}, q \models D_A \varphi$ iff $\mathcal{M}, q' \models \varphi$ for every q' such that $q \sim_A^D q'$, where $\sim_A^D = \bigcap_{i \in A} \sim_i$

Intuitions

- $E_A\varphi$: everyone in A knows, but not necessarily know that others know
- $D_A\varphi$: if agents in A communicate their knowledge to each other, they will all come to know φ (actually: this is only true for positive knowledge and under some additional conditions)
- $C_A\varphi$: holds for example when all agents observe the same event φ and see each other observing it; or they are playing a game and have common knowledge of the rules of the game.

 $D_{b,c}(a1 \wedge b2 \wedge c3)$

$$\mathsf{pos}_2 \to \neg E_{\{1,2\}} \mathsf{pos}_2$$

$$\mathsf{pos}_2 \to \neg E_{\{1,2\}} \mathsf{pos}_2 \\ \mathsf{pos}_2 \to E_{\{1,2\}} \neg \mathsf{pos}_1$$

Example: Common Knowledge

$$\mathsf{pos}_2 o
eg C_{\{1,2\}} \mathsf{pos}_2 \ \mathsf{pos}_2 o
eg C_{\{1,2\}}
eg \mathsf{pos}_1$$

Coordinated Attack Problem (aka Byzantine Generals)

- only simultaneous attack will succeed
- suppose General A sends General B a proposal to attack at dawn and waits for confirmation from B
- messenger may be intercepted by the enemy

 \leftarrow

 $E_{A,B}$ attack_at_dawn $\land \neg K_B K_A E_{A,B}$ attack_at_dawn

 \Rightarrow

 $E_{A,B}E_{A,B}$ attack_at_dawn $\land \neg K_AK_BE_{A,B}E_{A,B}$ attack_at_dawn

 \Leftarrow

 $E_{A,B}E_{A,B}E_{A,B}$ attack_at_dawn $\land \neg K_BK_AE_{A,B}E_{A,B}E_{A,B}$ attack_at_dawn

 $E_{A,B}^{k}$ attack_at_dawn . . . $\land \neg C_{A,B}$ attack_at_dawn

Application of epistemic logic in distributed systems

- the paper using the notion of knowledge to analyse distributed systems received Gödel prize in 1997:
- see Halpern and Moses Knowledge and Common Knowledge in a Distributed Environment. Journal of the ACM 37(3): 549-587 (1990)