Fonctions du 2nd degré

Définition

On appelle **fonction polynôme de degré 2** toute fonction f définie sur $\mathbb R$ par une expression de la forme :

$$f\left(x\right) = ax^2 + bx + c$$

où les coefficients **a**, **b** et **c** sont des réels donnés avec $a \neq 0$.

Remarque

Une fonction polynôme de degré 2 s'appelle également fonction **trinôme du second degré** ou par abus de langage "**trinôme**".

Exemples et contre-exemples

$$f(x) = 3x^2 - 7x + 3$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec a=3 , b=-7 et c=3

$$g\left(x
ight) =rac{1}{2}x^{2}-5x+rac{3}{5}$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec $a=rac{1}{2}$, b=-5 et $c=rac{3}{5}$

$$h\left(x\right) = 4 - 2x^2$$

lacktriangle Fonction du 2 $^{
m nd}$ degré avec a=-2 , b=0 et c=4

$$k\left(x\right) = \left(x - 4\right)\left(5 - 2x\right)$$

Fonction du 2nd degré car :

•
$$(x-4)(5-2x) = 5x - 2x^2 - 20 + 8x$$

Donc
$$k(x) = -2x^2 + 13x - 20 \Rightarrow a = -2$$
 , $b = 13$ et $c = -20$

$$m\left(x\right) =5x-3$$

Fonction polynôme de degré 1 (fonction affine).

$$n\left(x\right) =5x^{4}-7x^{3}+3x-8$$

Fonction polynôme de degré 4.

Variations et représentation graphique

Exemple

Soit
$$f(x) = 2x^2 - 4x + 5$$
.

Pour représenter f dans un repère, nous pouvons calculer quelques valeurs de f(x).

•
$$f(-2) = 2 \times (-2)^2 - 4 \times (-2) + 5 = 21$$

•
$$f(-1) = 2 \times (-1)^2 - 4 \times (-1) + 5 = 11$$

•
$$f(0) = 2 \times (0)^2 - 4 \times (0) + 5 = 5$$

• . . .

\boldsymbol{x}	-2	-1	0	1	2	3	4
f(x)	21	11	5	3	5	11	21

La représentation graphique d'une fonction polynôme de degré 2 est une parabole.

Propriété: Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x)=ax^2+bx+c$, avec a
eq 0.

- Si a>0, f admet un **minimum** pour $x=\dfrac{-b}{2a}$.
 - \circ Ce **minimum** est égal à $f\left(rac{-b}{2a}
 ight)$.
- Si a < 0, f admet un **maximum** pour $x = \frac{-b}{2a}$.
 - \circ Ce **maximum** est égal à $f\left(rac{-b}{2a}
 ight)$.

On appelle α la valeur $\left(\frac{-b}{2a}\right)$ et β la valeur $f\left(\frac{-b}{2a}\right)$.

$$lpha = rac{-b}{2a} \qquad eta = f\left(rac{-b}{2a}
ight)$$

Propriété

Variations de $ax^2 + bx + c$

Il existe un moyen pour se souvenir du résultat précedent :

Méthode : Etudier les variations d'une fonction du 2^nd^ degré

Soit f définie sur $\mathbb R$ par $f\left(x
ight)=-x^2+4x-1$.

On a a=-1 , b=4 et c=-1.

$$lpha=rac{-b}{2a}=rac{-4}{2 imes(-1)}=2$$
 et $eta=f(lpha)=f(2)=-(2)^2+4 imes2-1=3$

Le sommet de la parabole est le point S(2;3).

a < 0 donc le tableau de variation de f est :

x	$+\infty$	2	$+\infty$
f(x)	$-\infty$	3	\star $-\infty$

Fonctions du 2nd degré 🞦 📝

Et sa représentation graphique est :

```
Fonctive egin{tikzp:clure}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
   \begin{axis}[x=1.0cm,y=1.0cm,axis]
   lines=middle,ymajorgrids=true,xmajorgrids=true,xmin=-0.5,xmax=4.5,ymin=-1.5,ymax=
   4.0,xtick={-0.0,1.0,...,4.0},ytick={-1.0,0.0,...,4.0},]
   \c) (4.5,4.);
   \draw[line width=2.pt,color=blue,smooth,samples=100,domain=-0.5:4.5] plot(\x,{0-})
   (\x)^{(2.0)} + 4.0*(\x)-1.0);
   \draw [line width=1.pt,dash pattern=on 2pt off 2pt] (0.,3.)-- (2.,3.);
   \draw [line width=1.pt,dash pattern=on 2pt off 2pt] (2.,3.)-- (2.,0.);
   \begin{scriptsize}
   draw [color=black] (2.,3.)--++(-2.5pt,-2.5pt) --++(5.0pt,5.0pt) ++(-5.0pt,0) --++
   (5.0pt, -5.0pt);
   \draw[color=black] (2.0951127605442115,3.252050267803505) node {S};
   \end{scriptsize}
   \end{axis}
1 Spé Vend{tikzpicture}
```

(Degin (Certer)

The statement of the solution of the solution $f(\omega)$

Fonctions du 2nd degré
$$f(x_1)=a(x_1-x_1)(x_1-x_2)=0$$
 et $f(x_2)=a(x_2-x_1)(x_2-x_2)=0$.

Exemples {-}

(1)
$$f(x) = 3(x-1)(x+2)$$

$$f(x) = 3(x-1)(x-(-2))$$

f est une fonction du 2^nd^ degré sous forme factorisée avec a=3 , $x_1=1$ et $x_2=-2$

(2)
$$f(x) = (2x - 6)(x - 12)$$

Pour faire apparaître la forme factorisée il faut modifier l'écriture de (2x-6)

$$(2x-6)=2(x-3)$$
 donc $f(x)=2(x-3)(x-12)$

f est une fonction du 2^nd^ degré avec a=2 , $x_1=3$ et $x_2=12$

1 Spé (3) h
$$f(x)$$
 Paul Paul Paul $(2x+1)$

ADCALL COLLECT

Fonctions du 2nd d
$$a$$
 gré a quad et \quad a a \end{center}

Démonstration {-}

Soit
$$x_1$$
 et x_2 les solutions de $x^2+bx+c=0$ alors $x_1=\dfrac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\dfrac{-b+\sqrt{\Delta}}{2a}$

Donc, la somme des **racines** est $S=x_1+x_2$:

$$S=x_1+x_2$$
 $=rac{-b-\sqrt{\Delta}}{2a}+rac{-b+\sqrt{\Delta}}{2a}$ $=rac{(-b-\sqrt{\Delta})+(-b+\sqrt{\Delta})}{2a}$ 1 Spé Math - Lycée Paul Painlevé $2a$

a	<	0

$\Delta>0$	$\Delta = 0$	$\Delta < 0$
{width="5cm"}	{width="5cm"}	{width="5cm"}

Fonctions of 2 nd-define
$$= 2 imes 5^2 - 20 imes 5 + 10$$
 $= 50 - 100 + 10 = 40$

On a donc
$$lpha=5$$
 et $eta=-40$ donc $f(x)=2\left(x-5
ight)^2-40$

Exemple: {-}

Soit la fonction f donnée sous sa forme canonique par : $f\left(x
ight)=2\left(x-1
ight)^{2}+3$

Alors : $f(x) \geq 3$ car $2\left(x-1\right)^2$ est positif.

Or $f\left(1\right)=3$ donc pour tout x, $f\left(x\right)\geq f(1)$.

f admet donc un minimum en x=1. Ce minimum est égal à 3.

Propriété: Minimum et maximum

Soit f une fonction polynôme de degré 2 définie par $f(x)=a\left(x-lpha
ight)^2+eta$, avec