研究性问题 I:

现有n个对象 $I=\{1,2,\ldots,n\}$ 。对任意 $i=1,2,\ldots,k$, $\sigma_i=(\sigma_1^i,\sigma_2^i,\ldots,\sigma_n^i)$ 为I的一个排列,即 σ_i 为一个分量为I中不同数的n维向量, $\sigma_j^i=l$ 表示对象j在 σ_i 中居于第l位。 $\Sigma=\{\sigma_1,\sigma_2,\ldots,\sigma_k\}$ 为由k个排列组成的排列集合。

对任意两个n维向量 $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n), \mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n),$ 定义两者的 F 距离为

$$d_F(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^n |u_i - v_i|.$$

ρ距离为

$$d_0(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^n (u_i - v_i)^2$$
.

对给定的距离定义d,任一排列 σ 与排列集合 $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_k\}$ 的距离定义为

$$D(\sigma, \Sigma) = \sum_{i=1}^{k} d(\sigma_i, \sigma_i)$$

现要求对给定的Σ,求排列σ使得σ与Σ的距离最小。记该问题为 I_1 。与问题 I_1 相关的问题是,对给定的Σ,求n维实向量u,使得u与Σ的距离最小,记给问题为 I_2 。

由于 I_1 的可行域是 I_2 的可行域的一个真子集,故 I_1 和 I_2 的最优解一般不同。但对 I_2 的任一可行(最优)解 $\mathbf{u}=(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n)$,可以将其转化为 I_1 的一个可行解 $\sigma_{\mathbf{u}}=(\sigma_1^{\mathbf{u}},\sigma_2^{\mathbf{u}},\ldots,\sigma_n^{\mathbf{u}})$,使其满足若 $\mathbf{u}_j<\mathbf{u}_l$,则 $\sigma_j^{\mathbf{u}}<\sigma_l^{\mathbf{u}}$ 。但对 $\mathbf{u}_j=\mathbf{u}_l$ 的情形, $\sigma_j^{\mathbf{u}}$ 和 $\sigma_l^{\mathbf{u}}$ 的大小关系无法确定。这一过程称为保序转化。

一些算法可用于求 I_2 的可行解,如中位数法,Borda 法等。但这些算法均无法保证求得 I_1 的可行解。即使可通过保序转化得到 I_1 的可行解,但最优性一般无法保证。

对给定的问题I₁的算法A,用

$$r_{A} = \sup_{\Sigma} \frac{D(\sigma, \Sigma)}{D(\sigma^{*}, \Sigma)}$$

作为衡量算法优劣的标准。其中 σ 为应用算法A于排列集合Σ得到的排列, σ *为对问题 I_1 ,排列集合Σ的最优解。 r_A 一般为一大于 1 的数。 r_A 值越小说明算法的性能越好。在无法得到 r_A 的精确值的情况下,也可求得 r_A 的下界或者上界。

关于r_A,目前部分已知结果如下。

距离	F距离		ρ距离	
算法	下界	上界	下界	上界
中位数法	2	2	3	8
Borda 法	3	4	1	1

研究性问题:给出 F 距离下 Borda 法和ρ距离下中位数法下界和上界的改进估计。