Word Embedding

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

How to Represent Texts?

- Consider the below sentences
 - ► Today is a beautiful day.
 - ► Tomorrow will be a better day.
- How can we represent the word tomorrow and what should the representation indicate?
- Some classic methods
 - Assigning an id to each word
 - One-Hot encoding
 - Co-Occurrence matrix

Figure: One-Hot Encoding, Source

Co-Occurrence Matrix

Example

- ▶ I like deep learning.
- ▶ I like NLP
- ▶ I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Figure: Co-Occurrence Matrix, Source

Bag of Words (BoW)

- It is an approach used widely in information retrieval.
- BoW is based on counting occurrence of words in each text.
- Each word is represented by the documents it occurs in.
- It is called Bag of Words because it does not consider the order of words.
- But does it convey a meaning?

	the	red	dog	cat	eats	food
 the red dog → 	1	1	1	0	0	0
 cat eats dog → 	0	0	1	1	1	0
 dog eats food→ 	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

Figure: Example of BoW method, Source

Continuous Bag of Words (CBoW)

- To obtain a meaning for each word, a fake task should be defined.
- Consider the following incomplete sentence

S := I prefer to travel by ... rather than cars.

By using which one of the words flowers, airplanes, or lions should we fill in the above sentence? The most probable one!

$$\underset{w \in \{\text{flowers, airplanes, lions}\}}{argmax} P(w_i = w|S)$$

What if a sentence is too long? How should we deal with alternative length of sentences? Use a window. (It comes from an assumption that to guess a word, its neighbourhood should be enough.)

$$\underset{w \in \{\text{flower, airplane, lion}\}}{argmax} P(w_i = w | w_{i-l}, w_{i-l+1}, ..., w_{i-1}, w_{i+1}, ..., w_{i+l-1}, w_{i+l})$$

How to calculate the probabilities given a corpus?

Introduction Co-Occurrence Matrix Bag of Words Continuous Bag of Words

Figure: CBoW model, Source

Note that matrix W is shared. (The order is not important)

Continuous Bag of Words (CBoW)

- Considering the fake task defined earlier, how can we represent a word in a meaningful way? Hidden layer matrix. (Matrix W)
- By determining the number of the hidden layer neurons (as hyper parameter m), each word is represented by a m-dimension vector.

Figure: Obtained Feature Vector, Source

Skip-gram

It is similar to CBoW and just the fake task is inverted. (Here matrix W is the word embedding matrix)

Figure: Skip-gram model, Source

Skip-gram

Example (Source text: The man who passes the sentence should swing the sword.)

Figure: Skip-gram Method for Window Size 1 Centered Word passes, Source

References

Deep learning for natural language processing lecture 2: Word vectors. https://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf. Accessed: 2022-12-03.

Demystifying neural network in skip-gram language modeling. https://aegis4048.github.io/demystifying neural network in skip gram_language_modeling. Accessed: 2022-12-03.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space, 2013.

Thank You!

Any Question?