Package 'rWishart'

October 14, 2022

Title Random Wishart Matrix Generation
Version 0.1.2
Maintainer Ben Barnard denbarnard87@gmail.com>
Description An expansion of R's 'stats' random wishart matrix generation. This package allows the user to generate singular, Uhlig and Harald (1994) <doi:10.1214 1176325375="" aos="">, and pseudo wishart, Diaz-Garcia, et al.(1997) <doi:10.1006 jmva.1997.1689="">, matrices. In addition the user can generate wishart matrices with fractional degrees of freedom, Adhikari (2008) <doi:10.1061 (asce)0733-9399(2008)134:12(1029)="">, commonly used in volatility modeling. Users can also use this package to create random covariance matrices.</doi:10.1061></doi:10.1006></doi:10.1214>
Depends R (>= 3.3)
Imports Matrix, MASS, stats, lazyeval
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests covr, knitr, rmarkdown, testthat
<pre>URL https://rwishart.bearstatistics.com</pre>
NeedsCompilation no
Author Ben Barnard [aut, cre], Dean Young [aut]
Repository CRAN
Date/Publication 2019-11-19 23:10:02 UTC
R topics documented:
rFractionalWishart rNonsingularWishart rPsuedoWishart rSingularWishart rWishart wishart

2 rFractionalWishart

Index 8

rFractionalWishart Random Fractional Wishart Matrix

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, W_p(Sigma, df).

Usage

```
rFractionalWishart(n, df, Sigma, covariance = FALSE,
    simplify = "array")
```

Arguments

n integer: the number of replications.

df numeric parameter, "degrees of freedom".

Sigma positive definite $(p \times p)$ "scale" matrix, the matrix parameter of the distribution.

covariance logical on whether a covariance matrix should be generated

simplify logical or character string; should the result be simplified to a vector, matrix

or higher dimensional array if possible? For sapply it must be named and not abbreviated. The default value, TRUE, returns a vector or matrix if appropriate, whereas if simplify = "array" the result may be an array of "rank"

(=length(dim(.))) one higher than the result of FUN(X[[i]]).

Details

If X_1 , ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is $W_p(Sigma, m)$.

Value

A numeric array of dimension p * p * n, where each array is a positive semidefinite matrix, a realization of the Wishart distribution $W_p(Sigma, df)$

References

Adhikari, S. (2008). Wishart random matrices in probabilistic structural mechanics. Journal of engineering mechanics, 134(12), doi: 10.1061/(ASCE)07339399(2008)134:12(1029).

```
rFractionalWishart(2, 22.5, diag(1, 20))
```

rNonsingularWishart 3

rNonsingularWishart

Random Nonsingular Wishart Matrix

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, $W_p(Sigma, df)$.

Usage

```
rNonsingularWishart(n, df, Sigma, covariance = FALSE,
    simplify = "array")
```

Arguments

n integer: the number of replications.

df numeric parameter, "degrees of freedom".

Sigma positive definite $(p \times p)$ "scale" matrix, the matrix parameter of the distribution.

covariance logical on whether a covariance matrix should be generated

simplify logical or character string; should the result be simplified to a vector, matrix

or higher dimensional array if possible? For sapply it must be named and not abbreviated. The default value, TRUE, returns a vector or matrix if appropriate, whereas if simplify = "array" the result may be an array of "rank"

(=length(dim(.))) one higher than the result of FUN(X[[i]]).

Details

If X_1 , ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is $W_p(Sigma, m)$.

Value

A numeric array of dimension p * p * n, where each array is a positive semidefinite matrix, a realization of the Wishart distribution $W_p(Sigma, df)$

```
rNonsingularWishart(2, 20, diag(1, 5))
```

4 rPsuedoWishart

rPsuedoWishart	Random Psuedo Wishart Matrix

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, $W_p(Sigma, df)$.

Usage

```
rPsuedoWishart(n, df, Sigma, covariance = FALSE, simplify = "array")
```

Arguments

n integer: the number of replications.

df numeric parameter, "degrees of freedom".

Sigma positive definite $(p \times p)$ "scale" matrix, the matrix parameter of the distribution.

covariance logical on whether a covariance matrix should be generated

simplify logical or character string; should the result be simplified to a vector, matrix

or higher dimensional array if possible? For sapply it must be named and not abbreviated. The default value, TRUE, returns a vector or matrix if appropriate, whereas if simplify = "array" the result may be an array of "rank"

(=length(dim(.))) one higher than the result of FUN(X[[i]]).

Details

If X_1 , ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is $W_p(Sigma, m)$.

Value

A numeric array of dimension p * p * n, where each array is a positive semidefinite matrix, a realization of the Wishart distribution $W_p(Sigma, df)$

References

Diaz-Garcia, Jose A, Ramon Gutierrez Jaimez, and Kanti V Mardia. 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory." Journal of Multivariate Analysis 63 (1): 73–87. doi:10.1006/jmva.1997.1689.

```
rPsuedoWishart(2, 5, diag(1, 20))
```

5 rSingularWishart

rSingularWishart	Random Singular Wishart Matrix

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, W_p(Sigma, df).

Usage

```
rSingularWishart(n, df, Sigma, covariance = FALSE, simplify = "array")
```

Arguments

n integer: the number of replications. df numeric parameter, "degrees of freedom". positive definite $(p \times p)$ "scale" matrix, the matrix parameter of the distribution. Sigma covariance logical on whether a covariance matrix should be generated simplify logical or character string; should the result be simplified to a vector, matrix

or higher dimensional array if possible? For sapply it must be named and not abbreviated. The default value, TRUE, returns a vector or matrix if appropriate, whereas if simplify = "array" the result may be an array of "rank"

(= length(dim(.))) one higher than the result of FUN(X[[i]]).

Details

If X_1, ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is $W_p(Sigma, m)$.

Value

A numeric array of dimension p * p * n, where each array is a positive semidefinite matrix, a realization of the Wishart distribution W_p(Sigma, df)

References

Uhlig, Harald. 1994. "On Singular Wishart and Singular Multivariate Beta Distributions." The Annals of Statistics 22 (1): 395–405. doi:10.1214/aos/1176325375.

```
rSingularWishart(2, 5, diag(1, 20))
```

6 rWishart

r\\/	isha	rt	
r vv	rsna	r L	

Random Wishart Matrix Generation

Description

An expansion of R's 'stats' random wishart matrix generation. This package allows the user to generate singular, Uhlig and Harald (1994) <doi:10.1214/aos/1176325375>, and pseudo wishart, Diaz-Garcia, et al.(1997) <doi:10.1006/jmva.1997.1689>, matrices. In addition the user can generate wishart matrices with fractional degrees of freedom, Adhikari (2008) <doi:10.1061/(ASCE)0733-9399(2008)134:12(1029)>, commonly used in volatility modeling. Users can also use this package to create random covariance matrices.

Generate n random matrices, distributed according to the Wishart distribution with parameters Sigma and df, $W_p(Sigma, df)$.

Usage

```
rWishart(n, df, Sigma, covariance = FALSE, simplify = "array")
```

Arguments

n integer: the number of replications.

df numeric parameter, "degrees of freedom".

Sigma positive definite $(p \times p)$ "scale" matrix, the matrix parameter of the distribution.

covariance logical on whether a covariance matrix should be generated

simplify logical or character string; should the result be simplified to a vector, matrix

or higher dimensional array if possible? For sapply it must be named and not abbreviated. The default value, TRUE, returns a vector or matrix if appropriate, whereas if simplify = "array" the result may be an array of "rank"

(= length(dim(.))) one higher than the result of FUN(X[[i]]).

Details

If X_1 , ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is $W_p(Sigma, m)$.

Value

A numeric array of dimension p * p * n, where each array is a positive semidefinite matrix, a realization of the Wishart distribution $W_p(Sigma, df)$

```
rWishart(2, 5, diag(1, 20))
```

wishartTest 7

wishartTest	Test if Matrix is a Wishart Matrix

Description

Given a random Wishart matrix, B, from $W_p(Sigma, df)$ and independent random vector a, then (a' B a) / (a' Sigma a) is chi-squared with df degrees of freedom.

Usage

```
wishartTest(WishMat, Sigma, vec = NULL)
```

Arguments

 $\label{eq:wishmat} \text{WishMat} \qquad \qquad \text{random Wishart Matrix from $W_p(Sigma, df)$}$

Sigma Covariance matrix for $W_p(Sigma, df)$

vec independent random vector

Value

A chi-squared random variable with df degrees of freedom.

```
wishartTest(rWishart(1, 5, diag(1, 20), simplify = FALSE)[[1]], diag(1, 20))
```

Index

```
array, 2-6

rFractionalWishart, 2

rNonsingularWishart, 3

rPsuedoWishart, 4

rSingularWishart, 5

rWishart, 6

rWishart-package (rWishart), 6

wishartTest, 7
```