1 Задание 2

1.1 Задача 1

1. $R = (bb|b|\mathcal{E})(a^+(bb|b|\mathcal{E}))^*$ Теперь доказательство корректности регулярного выражения, пусть n = 1, для слова а, регялрное выражение считается корректно, в $(bb|b|\mathcal{E})$ будет \mathcal{E} потом считается а из a^+ потом считается \mathcal{E} и на этом закончится (для слова b получается почти аналогично), для аа, ab, bb, ba - всё очевидно, в первом случае считается две буквы а из второго скобки, для ab считается а потом b из второй скобки, для bb считается две буквы b из первой скобки, для ba считается буква b из первой скобки, потом буква а из второй. База доказана

Предположим, что это верно для слова длины n, тогда рассмотрим слово длины n+1. n > 2. Тогда получается, что первая скобка считалась. У нас слово длины n при добавлении буквы а может оканчиваться на любую букву, считывании произойдёт, т.к. во второй скобке считается просто еще одна буква а. В случае же приписывании буквы b слово длины n может оканчиваться на букву a, либо на одну b. В случае буквы а считается эта буква во второй скобке, в случае b произойдет считывание двух букв b, вместо одной буквы b. Т.к. до этого по индукции было предположено, что трех подряд букв нет. То и в новом построенном слове такой буквы не будет. Если же слово длины n будет оканчиваться на две буквы bb и новая буква b, то PB R его не считает, т.к. в указанном регулярном выражении не может быть трех букв b подряд, их разделяет хотя бы одна буква а.

1.2 Задача 2

1. Abtomat
$$\mathcal{A}$$
: $Q = \{q_0, q_1, q_2\}, \ \Sigma = \{0, 1\}, \ q_0 = q_0, \ F = q_1 \begin{vmatrix} o & 0 & 1 \\ q_0 & q_0 & q_1 \\ q_1 & q_2 & q_0 \\ q_2 & q_1 & q_2 \end{vmatrix}$

1 ТРЯП

2. Автомат \mathcal{A} является детерменированным, это видно из таблицы переходов, т.к. там однозначно определен из каждого состояния в каждое.

Автомат \mathcal{B} не является детерменированным, т.к. у него не определен однозначно переход из состояния q_1 по букве 0 (может быть q_2 , а может быть q_0), переход по букве 1 вообще не определен.

3. При старте автомат \mathcal{A} находится в состояние q_0 . По букве 0 автомат останется в состоянии q_0 , по букве 1 автомат перейдёт в состояние q_1 , по букве 1 перейдёт обратно в состояние q_0 , по букве 0 и 0 останется в состоянии q_0 , потом по букве 1 перейдёт в состоянии q_1 . Состояние q_1 является принимающим состоянием, поэтому слово $\omega \in \mathcal{L}(\mathcal{A})$. =

4.

2 ТРЯП