ų,

一、填空题(每小题4分,共20分)↓

- - 3、设总体 ${\bf X}$ 服从正态 $N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 为其子样, \overline{X} 为子样平均值, 则

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
服从______. \leftarrow

- 5、在非线性回归问题中,如果要将指数方程 $Y=\frac{1}{b_0+b_1e^{-x}}$ 化为一元线性回归方程,应该采用变形
 - 二(10分)、设总体X的密度函数为 \rightarrow

$$f(x) = \begin{cases} \theta X^{\theta-1}, & 0 < x < 1, \\ 0, & \text{其它.} \end{cases}$$

其中 $\theta > 0$ 未知参数,求 θ 的矩估计量与极大似然估计量. ϕ

三 **(10 分)**、(10 分) 设母体 $X\sim N(\mu,\sigma^2)$, (X_1,X_2,X_3) 是从此母体中抽取的子样,对下面三个统计量: (1) $\hat{\mu}_1=\frac{1}{5}X_1+\frac{3}{10}X_2+\frac{1}{2}X_3$, ν

$$(2) \quad \hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3 \, ; \quad (3) \quad \hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3 + \frac{1}{2}$$

1、证明他们均为 μ 的无偏估计。2、哪一个更有效? μ

四 (10 分)、两台机床加工同一种轴,分别加工 200 根和 150 根,测量其椭圆度,经计算得到: →

第一台机床:
$$n_1 = 200, \overline{x_1} = 0.081$$
毫米, $s_1 = 0.025$ 毫米; \leftrightarrow

第二台机床:
$$n_2 = 150, \overline{x_2} = 0.062$$
毫米, $s_2 = 0.062$ 毫米. 4

给定置信度为 95%,试求两台机床平均椭圆度之差的置信区间($u_{0,025}=1.96$). $\ensuremath{\,{\psi}}$

五 (10 分)、已知某种电子台秤称重质量的方差为 3 (单位:克),使用一段时间后再用它称量一个物品 5 次,得到(单位:克): ↩

1004, 997, 998, 1002, 1001. ↔

假设称重的质量服从正态分布,问在显著性水平 $\alpha=0.1$ 情况下,可否认为该秤的方差已经有所改变($\chi^2_{0.95}=0.711, \chi^2_{0.05}=9.488$). 4

六 (10分)、__骰子掷 120 次,得下述结果↓

ķ	. 数₽	1∻	2₽	3₽	4₽	5₽	6₽	¢
出	现次数←	23₽	26₽	21₽	20₽	15₽	15₽	¢

试在 α =0.05 下检验这颗骰子是否均匀对称.(已知 $X_{0.05}^2(5)=11.071$, $X_{0.05}^2(6)=12.592$) \leftrightarrow

七(15 分)、某研究者想比较市场上五种品牌灯泡的寿命是否有差别,分别取五种规格的灯泡做实验,每个品牌的每个规格中抽取一个灯泡测试寿命如下表↵

inth .	灯泡 B↩							
规格 A↩	B₁₽	B ₂ ₽	B ₃ € ²	B ₄ € ³	B 5€ ²			
A_{1}	2580₽	3210₽	3525₽	3005₽	2950₽			
$A_2 ^{_{\not \!$	2755₽	3015₽	3255₽	3415₽	2585₽			
A_3 4 $^{\circ}$	2655₽	3105₽	3455€	3210₽	3045₽			
A_4 47	2980₽	3250₽	3650₽	3025₽	3000₽			
A ₅ ₽	2955₽	3455₽	3600₽	3240₽	2795₽			

经初步计算得其"二元方差分析表"如下: ₽

来源₽	离差平方和₽	自由度₽	均方离差₽	F 值₽	Ç
因子 A₽	146246₽	₽	ė.	P	٦
因子B₽	ą.	P	P	P	٦
误差₽	441284₽	₽	₽	₽	٦
总和₽	2211426₽	P	e e	P	٦

- (1) 请将二元方差分析表填写完整. ₽
- (2) 如知 $P_{0.05}(4,16) = 3.006917$,试问在显著性水平 $\alpha = 0.05$ 下,不同规格水平和不同品牌灯泡的寿命有无显著差异? →

一、填空题(每小题4分,共20分)↓

- 1、若从<u>某总体</u>中抽取容量为 7 的样本: 1.1, 2.1, -2.1, 1.2, 0, -0.1, 1.2, 则样本众数为_____. ↩
- 3、设总体为 X,其简单随机样本为: $X_1,X_2,...,X_{x}$, 则样本具有的性质为: 样本中随机变量相互独立且与总体 X

二 (10 分)、<u>设总体</u> X 的概率分布为: →

已知 X 的下列样本值: 3 < 1 < 3 < 0 < 3 < 1 < 2 < 3,求 θ 的极大似然估计值。 $\theta \in \left(0, \frac{1}{2}\right)$

三(10分)、设总体 $X\sim N(\mu,1)$, (X_1,X_2) 是从此总体中抽取的样本,对下面三个统计量。

(1)
$$\hat{\mu}_1 = \frac{2}{3}X_1 + \frac{1}{3}X_2$$
; (2) $\hat{\mu}_2 = \frac{3}{4}X_1 + \frac{1}{4}X_2$; ψ
(3) $\hat{\mu}_3 = \frac{1}{2}X_1 + \frac{1}{2}X_2\psi$

- 1、证明他们均为 μ 的无偏估计。2、指出哪一个估计量最有效,其方差为多少?
- **四(10 分)**、设某公司所属的两个分店的月营业额分别服从 $N(\mu_i,\sigma^2)$, i=1,2 。 现从第一分店抽取了容量为 20 的样本,求得平均月营业额为 $\overline{X}_1=22653$ 元,样本标准差为 $S_1=64.8$ 元,第二分店抽了容量为 20 的样本,求得平均月营业额为 $\overline{X}_2=12291$ 元,样本标准差为 $S_2=62.2$ 元。求 $\mu_1-\mu_2$ 的置信水平为 0.95 的区间估计。 $(t_{0.025}(38)=2.0244)$ φ

五(10 分)、某种导线的电阻服从 $N(\mu,\sigma^2)$,μ未知,其中一个质量指标是电阻标准差 不得大于 0.005 Ω 。现从中抽取了九根导线测其电阻,测得样本标准差 S=0.0066,问在 $\alpha=0.05$ 水平上能否认为这批导线的电阻波动合格?($\chi^2_{0.05}(8)=15.507$) ω

六(10 分)、在 π 的前 800 位小数的数字中,0,1,2,...,9相应地出现了 74,92,83,79,80,73,77,75,76,91 次,用 χ^2 检验法检验 0,1,2,...,9这十个数字是等可能出现的假设。 (取 α = 0.05, $\chi^2_{0.05}(9)$ = 16.919) \leftrightarrow

七(15 分)、一火箭使用四种燃料,三种推进器作射程试验。每种燃料与每种推进器的组合各发射两次,得射程数据。在显著性水平 0.05 下,做双因素方差分析检验不同燃料(因素 A)、不同推进器(因素 B)是否有显著差异,交互作用是否显著,得如下方差分析表: \bullet

		73/42/7/1/	1464.	
方差来源↩	平方和↩	自由度↩	均方₽	Ftt.e €
因 素 A ⊷	261.675↔	₊		F _A =
(燃料)↓	ų	ė.	ė.	2 A
因素 B↩			185.491↩	F _B =
(推进器)↩	Ą	ė.	4	
交互作用 <i>A×B ↔</i>	1768.693↓	·		F _{A×B} =
误差₽	₽	·	19.746₽	
总和₽		23₽	÷2	ę ę

方差分析表₹

- (1) 将表格中数据补充完整, ₽
- (2) 判断不同燃料 (因素 A)、不同推进器 (因素 B) 是否有显著差异,交互作用是否显著? ($F_{0.05}(3,12)=3.49, F_{0.05}(2,12)=3.89, F_{0.05}(6,12)=3.00$) \leftrightarrow

八(15 分)、在腐蚀刻线试验中,已知腐蚀深度y与腐蚀时间x有关,现收集到如下数据 $_{:} ilde{}$

X (s) ₽	5⇔	10₽	15₽	20₽	30₽	40₽	50₽	60₽	70₽	90₽	47
y (µm) ↔	64⊃	10↩	10₽	13₽	16₽	17₽	19₽	23₽	25₽	29₽	₽

- 求(1)画出散点图,能否认为y与x间有线性相关关系?↓
 - (2) 求出 y 关于 x 的一元线性回归方程。