Podstawy Sztucznej Inteligencji (PSI)

Lab 3 - omówienie

Pytania? Wątpliwości? Uwagi?

Częste kwestie

Nie można zapominać o loss.backward()!

- liczy gradienty
- bez tego gradient = 0 -> sieć się nie uczy

Używanie modułów-komponentów

```
self.mlp = nn.Sequential(...)
```

można wywołać przez:

```
self.mlp(X)
```

• nie trzeba podawać jawnie . forward ()

Konwolucyjne sieci neuronowe

Computer vision

Classification Instance **Object Detection** Classification **Segmentation** + Localization CAT, DOG, DUCK CAT, DOG, DUCK CAT CAT

Single object

Multiple objects

Klasyfikacja obrazów

Wyszukiwanie wizualne

Czego chcemy w computer vision?

- automatyczne wykrywanie cech model powinien sam nauczyć się, jakie obiekty na obrazach są przydatne do danego zadania
- rozsądny koszt obliczeniowy dla MLP nie ma szans (np. mały obrazek RGB to 3 * 256 * 256 = ~200k wejść, 1000 wymiarów na wyjściu = ~200 miliardów wag)
- **translational equivariance** chcemy, żeby cecha na obrazie (np. krawędzie, kolory, proste kształty) była wykrywana w każdym miejscu tak samo
- **translational invariance** chcemy, żeby niewielkie wahania pikseli w różne strony nie zmieniały reakcji modelu
- **lokalność** model powinien uwzględniać, że na obrazie rzeczy blisko siebie są ważniejsze (**spatial locality**)

Narzędzie nr 1: konwolucja

- uwaga: każdy mówi "konwolucja", ale tak naprawdę CNNy robią korelację skrośną (cross-correlation); różnią się tylko znakiem, więc w sumie bez różnicy
- **konwolucja (convolution)** to operacja, w której sprawdzamy, jak bardzo **wejście (input)** jest interesujące dla **filtra (filter / kernel)** w poszczególnych miejscach
- tzw. sliding dot product przesuwamy, iloczyn element-wise i sumujemy (plus bias)

Konwolucja - przykład

1	0	1	
0	1	0	
1	0	1	

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Konwolucja - wiele różnych filtrów

Konwolucja - zalety

- automatyczne wykrywanie cech tę operację można różniczkować, a więc można optymalizować spadkiem wzdłuż gradientu, więc wag filtrów można się uczyć
- translational equivariance działa tak samo w każdym miejscu obrazu
- **lokalność** obejmujemy taki fragment, jak duży jest filtr

Warstwa konwolucyjna

- w sieciach neuronowych warstwa konwolucyjna (convolutional layer) składa się z wielu filtrów
- filtry często nazywa się kanałami (channels) albo reception fields
- inicjalizujemy różnymi małymi liczbami losowymi, a potem uczymy filtry nauczą się wyciągać (extract) różne cechy z obrazu
- wyjście nazywa się często mapą cech (feature map), bo duże liczby zawierają miejsca, gdzie filtr wykrył swoją cechę
- po niej następuje element-wise **aktywacja**, jak w MLP

Konwolucja + ReLU

Filtry są wielowymiarowe

- pojedynczy filtr jest tensorem 3D
- ma tyle kanałów (głębokość), ile jest kanałów w warstwie wejściowej
- w pierwszej warstwie filtry mają więc rozmiar
 F x F x 3 (bo RGB)
- zasada działania bez zmian iloczyn skalarny (mnożenie point-wise + suma), tylko że w 3D
- liczba filtrów = liczba kanałów na wyjściu

Co to robi?

- **pierwsze warstwy**, blisko obrazu, wyciągają **proste cechy** kolory, krawędzie pionowe i poziome itp.
- dalsze warstwy dostają na wejście feature mapy z poprzednich konwolucji - mogą ekstrahować bardziej złożone cechy

VGG - filtry w różnych warstwach

Warstwa konwolucyjna - hiperparametry

- **rozmiar filtra K** jak duży obszar obejmujemy, ma bezpośredni wpływ na wielkość cech i koszt obliczeniowy
- liczba filtrów C jak dużo kanałów rozważamy
- **krok (stride) S** o jak dużo przesuwamy się w prawo i w dół; często 1, zwykle mniejszy od filtra
- wypełnienie (padding) P:
 - jak nie wypełnimy krawędzi obrazu, to nie możemy wyjść poza niego -> zmniejszy się
 - często ok ważne cechy są rzadko blisko krawędzi
 - o można wypełnić dookoła np. zerami, albo średnią wartością sąsiednich pikseli

Warstwa zbierająca (pooling)

- **pooling** agreguje informacje z sąsiednich pikseli
- zwykle **max pooling** bierzemy maksymalną wartość po aktywacji z sąsiednich pikseli
- zapewnia **translation invariance**, bo wiemy tylko, że mniej więcej w danym obszarze coś wystąpiło, nie w danym pikselu
- prawie zawsze bez overlapu (kernel size K = stride S), z bardzo małym filtrem (2-3) zmniejsza obraz

Współdzielenie wag

- jeden filtr działa tak samo na całym obrazie mamy współdzielenie wag (weight sharing)
- zapewnia to też **translation equivariance**, bo filtr o tych samych wagach jest używany w różnych miejscach
- dzięki temu CNN ma też rozsądny koszt obliczeniowy

CNN - koszt obliczeniowy

Obraz: 3 x 256 x 256

Liczba parametrów:

MLP: ~200 miliardów

CNN: 64 filtry 3x3

~800k

		_		
	CONV	POOL	FC	
Illustration	$F \longrightarrow F \\ \otimes C \times K$	F max	$N_{ m in}$ $N_{ m out}$	
Input size	$I \times I \times C$	$I \times I \times C$	$N_{ m in}$	
Output size	$O \times O \times K$	$O \times O \times C$	$N_{ m out}$	
Number of parameters	$(F \times F \times C + 1) \cdot K$	0	$(N_{ m in}+1) imes N_{ m out}$	
Remarks	$ \begin{tabular}{ll} \bullet \mbox{ One bias parameter per filter} \\ \bullet \mbox{ In most cases, } S < F \\ \bullet \mbox{ A common choice for } K \mbox{ is } 2C \\ \end{tabular} $	$ \begin{tabular}{ll} \bullet \mbox{ Pooling operation done} \\ \mbox{ channel-wise} \\ \mbox{ \bullet In most cases, } S = F \\ \end{tabular} $	 Input is flattened One bias parameter per neuron The number of FC neurons is free of structural constraints 	

Warstwa spłaszczająca (flatten)

- CNN do ekstrakcji cech nazywa się często backbone, a MLP do klasyfikacji głową (head)
- wyjściem CNNa są feature maps, wejściem MLP wektory
- warstwa spłaszczająca (flattening layer) łączy wiersze po kolei w każdej feature mapie, a później konkatenuje to dla każdego kanału

Architektura prostych CNN do klasyfikacji obrazów

- **wejście:** batch N obrazów RGB, kształtu np. (N, C, H, W)
- **sekwencja** warstw konwolucyjnych i poolingowych
 - zwykle kilka (np. 2-3) konwolucje między poolingami
- **spłaszczenie** do wektora
- MLP
 - zwykle małe, góra 2 warstwy
 - bardzo często sama warstwa liniowa + softmax
 - drogie + zakładamy, że backbone sam w sobie da dobre cechy

Hiperparametry

Konwolucja:

- liczba warstw
- liczba filtrów
- rozmiar filtrów
- stride
- padding

Pooling:

- liczba warstw co ile konwolucji robić?
- rozmiar filtra

W PyTorchu

- robi się zwykle 1 klasę, która w init () tworzy 2 atrybuty, np. backbone i classifier
- między nimi robi się nn. Flatten () (uwaga funkcja flatten () działa inaczej!)
- kształt tensorów to (N, C, H, W):
 - N liczba obrazów w batchu
 - C liczba kanałów
 - H, W wymiary obrazu

Transfer learning

Trening sieci do computer vision

- **computer vision** to wymagające zadanie, wymagające modeli o dużej pojemności
- duża pojemność = potrzeba dużego zbioru danych
- np. ImageNet (~1,3 miliona obrazów treningowych, 1000 klas)
- **problem:** przy większości problemów mamy małe zbiory danych
- **obserwacja:** większość zadań wymaga podobnych umiejętności (rozpoznawanie kształtów, kolorów itp.), więc może dałoby się wykorzystać wiedzę z jednego zadania w drugim?

Podejścia do transfer learningu

zamrożony backbone

- zamrażamy (freeze) wagi CNNa i trenujemy tylko nowy head
- o bardzo obniża koszt obliczeniowy tak naprawdę to zwykła klasyfikacja tabelaryczna
- o często działa dobrze, szczególnie gdy mamy względnie podobną dziedzinę do ImageNet

trening całości

- normalnie trenujemy całą sieć, pretrening traktujemy jak inicjalizację wag
- o kosztowne, ale pozwala lepiej przenosić się do znacząco nowych domen

pośrednio

- o większy learning rate na końcu sieci, mniejszy w głębszych warstwach, freeze na początku
- złoty środek, ale nieco trudniejsze implementacyjnie + dodatkowe hiperparametry

Typowy pipeline w computer vision

- bierzemy **pretrenowane wagi**, np. z Torchvision albo TIMM (Torch IMage Models)
- ucinamy głowę, robimy nową
- **dotrenowujemy** na naszym zbiorze

- ostrożny trening, bo łatwo przeuczyć:
 - mały learning rate, np. 1e-5 1e-3
 - mała liczba epok (kilka-kilkanaście)
 - freeze na cały backbone albo dużo warstw

Ważne architektury CNN

LeNet

- pierwsza udana architektura CNN (1989)
- autor: Yann LeCun
- zastosowanie: rozpoznawanie liczb (kody pocztowe)
- cechy:
 - prostota
 - dość duże konwolucje 5x5
 - duży head
 - average pooling
 - aktywacja sigmoidą

LeNet

Image: 28 (height) × 28 (width) × 1 (channel)

Convolution with 5×5 kernel+2padding:28×28×6

 $\sqrt{}$ sigmoid

Pool with 2×2 average kernel+2 stride:14×14×6

Convolution with 5×5 kernel (no pad): $10 \times 10 \times 16$

√ sigmoid

Pool with 2×2 average kernel+2 stride: 5×5×16

√ flatten

Dense: 120 fully connected neurons

√ sigmoid

Dense: 84 fully connected neurons

√ sigmoid

Dense: 10 fully connected neurons

Output: 1 of 10 classes

AlexNet

- pierwsza bardzo znana architektura CNN

- autorzy: Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
- - wygrała konkurs ImageNet 2012, osiągając błąd testowy
 - 15.3% (drugie miejsce oparte o SVM ok. 25%)

 - cechy:

 - bardzo duża i dość głęboka sieć neuronowa

 - max pooling

aktywacja ReLU

- trening na GPU
- - - Convolution with 3×3 kernel+1 pad:12×12×384
 - - Convolution with 3×3 kernel+1 pad:12×12×256
 - - Pool with 3×3 max.kernel+2stride:5×5×256
 - √ flatten Dense: 4096 fully connected neurons

AlexNet

Image: 224 (height) × 224 (width) × 3 (channels)

Convolution with 11 × 11 kernel + 4 stride: 54 × 54 × 96

Pool with 3×3 max. kernel+2 stride: 26×26×96

Convolution with 5×5 kernel+2 pad:26×26×256

Pool with 3×3 max.kernel+2stride:12×12×256

Convolution with 3×3 kernel+1 pad:12×12×384

ReLu

ReLu

ReLu

√ ReLu

ReLu

- √ ReLu, dropout p=0.5
- Dense: 4096 fully connected neurons √ ReLu, dropout p=0.5
- Dense: 1000 fully connected neurons

Output: 1 of 1000 classes

VGG

- pierwsze bardzo głębokie architektury CNN
- autorzy: Visual Geometry Group, University of Oxford
- obserwacja: 3 konwolucje 3x3 mają większą nieliniowość niż jedna 7x7 i mniej parametrów (mniejszy overfitting)

• cechy:

- głębokie sieci
- mniejsze receptive fields
- duży head
- budowa blokowa

conv(kernel size)-(num channels)

10.9	909999	ConvNet C	onfiguration		1. *
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	12
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
	1779	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			125	1	conv3-256
	Ew Hills x		pool	40	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
100	988		pool	AA 2000-000 1000 -	W
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		S. 191 H
		100,000	4096		
		5 (677)	4096		
			1000		
		soft-	-max		

AlexNet vs VGG

Pool Softmax FC 1000 FC 4096 FC 4096 Pool Input Input

Pool Input VGG16 VGG19

FC 1000

FC 4096 FC 4096

Softmax

FC 4096

FC 4096

AlexNet

ResNet

- pierwsze masywnie głębokie sieci
- autorzy: Kaiming He et al.
- **obserwacja:** dodawanie warstw potrafi pogorszyć wynik, ale nie powoduje overfittingu (błąd treningowy i testowy rosną)
- **hipoteza:** sieci mają problem z uczeniem się identyczności
- residual connections wejście "przeskakuje" konwolucje, co daje dostęp do "prostszych" cech wyżej w sieci + usprawnia przepływ gradientu
- okazało się, że powyższe skutkuje też lepszą powierzchnią funkcji kosztu

ResNet

• cechy:

- grupa naprawdę głębokich sieci (ResNet18, 34, 50, 101, 152)
- residual connections
- mały head (warstwa liniowa + softmax)

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

relu

relu

Residual block

F(x) + x

ResNet34 vs VGG

Inne ważne architektury

MobileNetV1, V2, V3:

- o lekkie sieci, pierwotnie do zastosowań mobilnych / low-latency
- dużo optymalizacji

InceptionNetV1, V2, V3, V4 (GoogLeNet):

- o głębokie, potężne sieci o zaawansowanej budowie blokowej
- dużo różnych optymalizacji do redukcji kosztu i regularyzacji

DenseNet:

- wyjście bloku konwolucji ma skip connections do wszystkich kolejnych bloków konwolucji + do wyjścia
- maksymalne rozwinięcie skip connections + kompresja konwolucji, żeby koszt obliczeń nie wybuchł

Pytania?