

Perzeptron

Neuron im Nervensystem

Neuron im Nervensystem: viele Inputs, ein Output.

Gatter-Typen NOT **NAND AND** OR **NOR XOR XNOR** AOI OAI

Logikgatter

Typen von Logikgattern und Symbolik [Bearbeiten | Quelltext bearbeiten]

Logikgatter werden mit Schaltsymbolen bezeichnet, die nach unterschiedlichen, mehr oder weniger parallel existierenden Standards definiert sind.

Name	Sprechweise (nach DIN 66000)	Funktion	Symbol in Schaltplan			Wahrheitstabelle		belle
			IEC 60617-12 : 1997 & ANSI/IEEE Std 91/91a-1991	ANSI/IEEE Std 91/91a-1991	DIN 40700 (vor 1996)	Α	В	Y
		$Y = A \wedge B$				0	0	0
Und-Gatter	a und b	$Y = A \cdot B$	A — &	A—— aut	A-\	0	1	0
(AND)	a and b	Y = A B	В	B——out	В	1	1 0	0
		Y = A & B				1	1	1
		$Y = A \lor B$		_	_	0	0	0
Oder-Gatter (OR)	a oder b		A → ≥1	A out	A Y	0	0	1
		Y = A + B				1	1	1
		$Y = \overline{A}$			7	0	_	1
Nicht-Gatter (NOT)	nicht a	$Y = \neg A$	A — 1	A—out	A			
(****)		$Y= ilde{A}$				1	-	0
					A-T	0	0	0
XOR-Gatter (Exklusiv-ODER, Antivalenz) (EXCLUSIVE OR)	a xor b	$Y = A \ \underline{\lor} \ B$	A =1 Y	A out	oder	0	1	1
		$Y = A \oplus B$	В		A—A	1	0	1
					в——	1	1	0

AND, OR & XOR-Operationen

inp	outs	(output	S
x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
_ 1	1	1	1	0

Perzeptron

Und-Perzeptron

passenden Parametern:

einem Dreiergruppe von Zahlen (w_1, w_2, \bar{z})

Outputs (y)

eine Möglichkeit:

$$(w_1 = w_2 = 1, \bar{z} = 1.5)$$

unendliche Möglichkeiten:

$$w_1 = w_2 = 1, \bar{z} = (1, 2)$$

Input
$$(x_1 = 0, x_2 = 0) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 0 < \bar{z} = 1.5 \rightarrow y = f(x) = 0$$

Input $(x_1 = 1, x_2 = 0) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 1 < \bar{z} = 1.5 \rightarrow y = f(x) = 0$
Input $(x_1 = 0, x_2 = 1) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 1 < \bar{z} = 1.5 \rightarrow y = f(x) = 0$
Input $(x_1 = 1, x_2 = 1) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 2 > \bar{z} = 1.5 \rightarrow y = f(x) = 1$

Oder-Perzeptron

inp	uts	(outputs	
x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

passenden Parametern:

einem Dreiergruppe von Zahlen (w_1, w_2, \bar{z})

Outputs (y)

eine Möglichkeit:

$$(w_1 = w_2 = 1, \bar{z} = 0.5)$$

unendliche Möglichkeiten:

$$w_1 = w_2 = 1, \bar{z} = (0, 1)$$

Input
$$(x_1 = 0, x_2 = 0) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 0 < \bar{z} = 0.5 \rightarrow y = f(x) = 0$$

Input $(x_1 = 1, x_2 = 0) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 1 > \bar{z} = 0.5 \rightarrow y = f(x) = 1$
Input $(x_1 = 0, x_2 = 1) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 1 > \bar{z} = 0.5 \rightarrow y = f(x) = 1$
Input $(x_1 = 1, x_2 = 1) \rightarrow z = 1 \cdot x_1 + 1 \cdot x_2 = 2 > \bar{z} = 0.5 \rightarrow y = f(x) = 1$

inp	outs	outputs		
x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

passenden Parametern?

einem Dreiergruppe von Zahlen (w_1, w_2, \bar{z})

Outputs (y)

Es widerspricht den bisherigen Ergebnissen.

Input
$$(x_1 = 0, x_2 = 0) \rightarrow z = w_1 \cdot x_1 + w_2 \cdot x_2 = 0 < \bar{z} \rightarrow \bar{z} > 0$$

Input $(x_1 = 1, x_2 = 0) \rightarrow z = w_1 \cdot x_1 + w_2 \cdot x_2 = w_1 > \bar{z} \rightarrow w_1 > \bar{z}$
Input $(x_1 = 0, x_2 = 1) \rightarrow z = w_1 \cdot x_1 + w_2 \cdot x_2 = w_2 > \bar{z} \rightarrow w_2 > \bar{z}$
Input $(x_1 = 1, x_2 = 1) \rightarrow z = w_1 \cdot x_1 + w_2 \cdot x_2 = w_1 + w_2 < \bar{z} \rightarrow w_1 + w_2 < \bar{z}$

Perzeptron hatte bestimmte spezifische Unzulänglichkeiten, ein einschichtiges neuronales Netzwerk nicht kann:

- Lernen, das XOR-Gatter zu simulieren
- auf der Grundlage der (digitalen) Konnektivität solche Figuren unterscheiden wie:

Eine zusammenhängende Spiralregion

Zwei getrennte zusammenhängende Spiralregionen

Minsky & Papert, 1969

Es widerspricht den bisherigen Ergebnissen.

Gibt es Lösungen?

Eine Lösung besteht darin, ein <u>komplexeres Netz</u> zu erstellen, indem man eine <u>versteckte Schicht</u> zwischen der Eingabe- und der Ausgabeschicht.

AND, OR & XOR-Operationen

inp	outs	outputs		
x_1	x_2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

eine Möglichkeit:

$$x_1 XOR x_2 = (x_1 OR x_2) - (x_1 AND x_2)$$

alle Parameter für das XOR-Perzeptron

node	weights	bias
h_1	1, 1	1.5
h_2	1, 1	0.5
y	-1,1	0.5

Können wir diese Subtraktion irgendwie mit Hilfe des Netzes durchführen?

- nehmen die Eingangsknoten x_1 , x_2 und den versteckten Schichtknoten h_1 und wandeln diese in ein AND-Perceptron um, indem sie eingestellt werden: $\boldsymbol{w_{h1}} = [1 \ 1]^{\mathsf{T}}$, $b_{h1} = 1.5$.
- Danach können wir x_1 , x_2 und den zweitenversteckten Schichtknoten h_2 nehmen und ein OR-Perceptron bilden, indem wir einstellen: $\mathbf{w_{h2}} = [1 \ 1]^{\mathsf{T}}$, $b_{h2} = 0.5$.
- Schließlich können wir den Knoten der Ausgabeschicht y dazu bringen, **AND von OR zu subtrahieren**, indem wir einstellen: $\mathbf{w}_{v} = [-1 \ 1]^{\mathsf{T}}$, $b_{v} = 0.5$.

die großen Männer

Frank Rosenblatt (1928-1971): Psychologe

Geoff Hinton (1947-): Psychologe

Marvin Minsky (1927 -)

In 1951 he built the SNARC, the first neural network simulator.

Why is there so much excitement about Neural Networks today, and how is this related to research on Artificial Intelligence? Much has been said, in the popular press, as though these were conflicting activities. This seems exceedingly strange to me, because both are parts of the very same enterprise. What caused this misconception?

Frank Rosenblatt (gn)

Nets: www

37

Marvin Minsky (1927 -

In 1951 he built the SNARC, the first neural network simulator.

Folie von Prof. Nagy, 2011

Symbolic vs. Connectionist 1990:

Why is there so much excitement about Neural Networks today, and how is this related to research on Artificial Intelligence? Much has been said, in the popular press, as though these were conflicting activities. This seems exceedingly strange to me, because both are parts of the very same enterprise. What caused this misconception?

Marvin Minsky (1927-2016)

15

May 6, 2011 Frank Rosenblatt (gn) 37

Geschichte der KI

Cartoon-Geschichte der KI: (a) Tom (symbolische KI) besiegt Jerry (neuronale Netze). (b) Spike (Deep Learning) hält Jerry und schlägt Tom

Kautz, H., 2022

Take Home Messages

Ein einschichtiges neuronales Netzwerk nicht kann:

- Lernen, das XOR-Gatter zu simulieren
- Nicht-Lineare Klassifizieren

Lösung:

• ein komplexeres Netz zu erstellen, indem man eine *versteckte Schicht* zwischen der Eingabe- und der Ausgabeschicht.

$$x_1 XOR x_2 = (x_1 OR x_2) - (x_1 AND x_2)$$

(Nichtlineare Aktivierungsfunktionen)

Nächste Schritte:

Convolutional Neural Network (CNN) "faltendes neuronales Netzwerk"

Rumelhart, 1986

Gewichte:
$$m{w}_{h1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $m{w}_{h2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $m{w}_y = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Bias:
$$b_{h1} = 1.5$$
 $b_{h2} = 0.5$ $b_y = 0.5$.

$$h_1$$
-Knotenwerte: $\chi_1 = \boldsymbol{x}^{^{\mathsf{T}}} \cdot \boldsymbol{w_{h1}} = \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$ and $h_1 = f \ (\chi_1 > b_{h1}) = f \ (1 > 1.5) = 0$.

$$h_2$$
-Knotenwerte: $\chi_2 = \mathbf{x}^{\mathsf{T}} \cdot \mathbf{w_{h2}} = \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$ and $h_2 = f \ (\chi_2 > b_{h2}) = f \ (1 > 0.5) = 1$.

$$\mathbf{h} = (h_1, h_2)^{^{\mathsf{T}}} = (0, 1)^{^{\mathsf{T}}}$$

Output Schicht:
$$z = \boldsymbol{h}^{\mathsf{T}} \cdot \boldsymbol{w_{h2}} = \begin{pmatrix} 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 1$$
 and $y = f \ (z > b_y) = f \ (1 > 0.5) = 1$.