

INSTITUTO FEDERAL DO PARANÁ

Campus Paranavaí

Rua José Felipe Tequinha, 1400 Jardim das Nações - Paranavaí - PR

Curso: Engenharia de Software

Disciplina: Matemática Discreta e Lógica

Turno: Noturno

Professor: Azuaite A. Schneider

Lista 7 – Relações e Funções

- 1. I) Enumere pares ordenados.
 - II) Represente por meio de flechas.
 - III) Faça o gráfico cartesiano das relações binárias de $A=\{-2,-1,0,1,2\}$ em $B=\{-3,-2,-1,1,2,3,4\}$ definidas por:
 - (a) $x\mathcal{R}y \Leftrightarrow x+y=2$
 - (b) $xSy \Leftrightarrow x^2 = y$
 - (c) $x\mathcal{T}y \Leftrightarrow |x| = |y|$
 - (d) $xVy \Leftrightarrow x+y>2$
 - (e) $xWy \Leftrightarrow (x-y)^2 = 1$
- 2. Dado o conjunto $A = \{m \in \mathbb{Z} : -7 \leqslant m \leqslant 7\}$, construa o gráfico cartesiano da relação binária \mathcal{R} em A definida por:

$$x\mathcal{R}y \Leftrightarrow x^2 + y^2 = 25$$

- Estabeleça o domínio e a imagem das seguintes relações:
 - (a) $\mathcal{R} = \{(1,1), (1,3), (2,4)\}$
 - (b) $\mathcal{R} = \{(1+\sqrt{2},\sqrt{2}), (1-\sqrt{3},1)\}$
 - (c) $\mathcal{R} = \{(-2,4), (-1,1), (3,-7), (2,1)\}$
 - (d) $\mathcal{R} = \left\{ \left(3, \frac{1}{2}\right), \left(\frac{5}{2}, -1\right), \left(\frac{3}{2}, 0\right) \right\}$
 - (e) $\mathcal{R} = \{(2,1), (1,-3), (5,\sqrt{2})\}$
- 4. Estabeleça o domínio e a imagem das relações binárias do exercício 1.

5. Sejam os conjuntos $A=\{-2,-1,0,1,2,3,4,5\}$, $B=\{-2,-1,0,1,2\} \text{ e } \mathcal{R} \text{ a relação binária de } A \text{ em } B \text{ definida por:}$

$$x\mathcal{R}y \Leftrightarrow x = y^2$$

- (a) Enumere os pares ordenados de \mathcal{R} .
- (b) Enumere os elementos do domínio e da imagem de \mathcal{R} .
- (c) Faça o gráfico cartesiano de \mathcal{R} .
- 6. Enumere os elementos de \mathcal{R}^{-1} , relação inversa de \mathcal{R} , nos seguintes casos:
 - (a) $\mathcal{R} = \{(1,2), (3,1), (2,3)\}$
 - (b) $\mathcal{R} = \{(1, -1), (2, -1), (3, -1), (-2, 1)\}$
 - (c) $\mathcal{R} = \{(-3, -2), (1, 3), (-2, -3), (3, 1)\}$
- 7. Enumere os elementos e esboce os gráficos de \mathcal{R} e \mathcal{R}^{-1} , relações binárias em $A = \{x \in \mathbb{N} : x \leq 10\}$, nos seguintes casos:

(a)
$$\mathcal{R} = \{(x, y) \in A^2 : x + y = 8\}$$

(b)
$$\mathcal{R} = \{(x, y) \in A^2 : x + 2y = 10\}$$

(c)
$$\mathcal{R} = \{(x, y) \in A^2 : y = (x - 3)^2 + 1\}$$

(d)
$$\mathcal{R} = \{(x, y) \in A^2 : y = 2^x \}$$

8. Dados os conjuntos $A=\{x\in\mathbb{R}:\ 1\leqslant x\leqslant 6\},$ $B=\{y\in\mathbb{R}:\ 2\leqslant y\leqslant 10\} \text{ e as seguintes}$ relações binárias:

(a)
$$\mathcal{R} = \{(x, y) \in A \times B : x = y\}$$

(b)
$$S = \{(x, y) \in A \times B : y = 2x\}$$

(c)
$$\mathcal{T} = \{(x, y) \in A \times B : y = x + 2\}$$

(d)
$$V = \{(x, y) \in A \times B : x + y = 7\}$$

dê o gráfico cartesiano dessas relações e das respectivas relações inversas.

- 9. Seja $A = \{0, 1, 2, 4, 6\}$. Verifique se as relações binárias em A são reflexivas, irreflexivas, simétricas, antissimétricas e/ou transitivas:
 - (a) $\mathcal{R} = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$
 - (b) $\mathcal{R} = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$
 - (c) $\mathcal{R} = \{(0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2)\}$
 - (d) $\mathcal{R} = \{(0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)\}$
 - (e) $\mathcal{R} = \emptyset$
- 10. Classifique as relações binárias a seguir nos conjuntos S dados como reflexivas, irreflexivas, simétricas, antissimétricas e/ou transitivas:
 - (a) $S = \mathbb{N}$ $x\mathcal{R}y \leftrightarrow x \cdot y \text{ \'e par}$
 - (b) $S = \mathbb{N}$ $x\mathcal{R}y \leftrightarrow x \text{ \'e impar}$
 - (c) S= conjunto de todos os quadrados no plano $S_1\mathcal{R}S_2 \leftrightarrow \mathrm{tamanho}\ \mathrm{do}\ \mathrm{lado}\ \mathrm{de}\ S_1=\mathrm{tamanho}\ \mathrm{do}\ \mathrm{lado}\ \mathrm{de}\ S_2$
 - (d) S = conjunto de todas as cadeias finitas de caracteres

 $x\mathcal{R}y \leftrightarrow$ número de caracteres em x = número de caracteres em y

(e) S= conjunto de todas as pessoas do Brasil $x\mathcal{R}y \leftrightarrow x \text{ \'e irm\~ao de } y$

(f)
$$S = \wp(\{1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

 $A\mathcal{R}B \leftrightarrow |A| = |B|$

(g)
$$S = \wp(\{1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

 $ARB \leftrightarrow |A| \neq |B|$

(h)
$$S = \mathbb{N} \times \mathbb{N}$$

$$(x_1, y_1) \mathcal{R}(x_1, y_2) \leftrightarrow x_1 \le x_2 \text{ e } y_1 \ge y_2$$

- 11. Para cada caso abaixo, apresente um conjunto S e uma relação binária \mathcal{R} em S (diferente das apresentadas nos exemplos e nos problemas) que satisfaça às condições pedidas.
 - (a) R é reflexiva e antissimétrica, mas não é transitiva.
 - (b) \mathcal{R} é reflexiva e transitiva, mas não é simétrica.
 - (c) \mathcal{R} não é reflexiva nem simétrica, mas é transitiva.
 - (d) \mathcal{R} é reflexiva, mas não é simétrica nem transitiva.
- 12. Um programa de computador para gerar o dicionário ou o índice de um livro será escrito. Assumiremos um tamanho máximo de n caracteres por palavra. Temos, portanto, um conjunto S com palavras de, no máximo, n caracteres e desejamos gerar uma lista ordenada alfabeticamente com estas palavras. Existe a ordem natural dos caracteres do alfabeto \preceq $(a \preceq b, b \preceq c \text{ etc.})$, e admitimos que nos-

sas palavras contenham apenas caracteres alfabéticos. Definindo uma ordenação total \leq em S (ordenação lexicográfica), que ordene S alfabeticamente, aplique a ordenação total descrita às palavras roupa, rua, remédio, rato e ruga. Perceba que cada palavra precede a próxima.

Os exercícios de 13 a 19 são dos slides

- 13. Qual é inversa da relação ">"? E da relação"="? E da relação "⊆"?
- 14. Se A é um conjunto com m elementos, quantas relações distintas existem sobre A? Se B é um conjunto com n elementos, quantas relações existem de A para B?
- 15. Seja \mathcal{R} a relação sobre o conjunto dos números inteiros positivos tal que $a\mathcal{R}b$ se e somente se existe um inteiro positivo k tal que a=kb. Mostre que \mathcal{R} é uma relação de ordem.
- 16. Seja A o conjunto dos inteiros de 0 a 9, e \mathcal{R} a relação sobre A tal que $a\mathcal{R}b$ se e somente se a é par e b é ímpar, ou ambos são pares e $a \leq b$, ou ambos são ímpares e $a \geq b$. Esta é uma relação de ordem?
- 17. Considere a relação $\mathcal R$ sobre os pares ordenados de inteiros $\mathbb Z \times \mathbb Z$ tal que

$$(a,b)\mathcal{R}(c,d) \leftrightarrow (a \le c) \lor (b \le d)$$

para quaisquer inteiros a, b, c e d. Esta é uma relação de ordem?

18. Para quaisquer relações de ordem \mathcal{R} e \mathcal{S} sobre um conjunto A, a relação $\mathcal{R} \cup \mathcal{S}$ é sempre uma

- relação de ordem sobre A? E a relação $\mathcal{R} \cap \mathcal{S}$? Prove suas respostas.
- 19. Seja A um conjunto de caixas, e \mathcal{R} a relação sobre A tal que $a\mathcal{R}b$ se e somente se a caixa a cabe dentro da caixa b. Prove que esta é uma relação de ordem estrita.
- 20. Estabeleça se cada um dos esquemas das relações abaixo define ou não uma função de $A \,=\, \{-1,0,1,2\} \text{ em } B \,=\, \{-2,-1,0,1,2,3\}.$ Justifique.

21. Quais dos esquemas abaixo definem uma função

de $A = \{0, 1, 2\}$ em $B = \{-1, 0, 1, 2\}$? Justifique.

- 23. Sejam f(x) = 3x 1 e $g(x) = x^2 + 7x$. Determine:
 - (a) $f \circ g$
 - (b) $g \circ f$
 - (c) $f \circ f$
 - (d) $g \circ g$
 - (e) f^{-1}
- 24. Dê um exemplo, representando através do diagrama de flechas, de uma função:
 - (a) que não seja nem injetiva e nem sobrejetiva.
 - (b) que seja injetiva mas não seja sobrejetiva.
 - (c) que seja sobrejetiva mas não seja injetiva.
 - (d) que seja bijetiva.

Gabarito

1. a)

$$(-2,4) \in \mathcal{R}$$
 porque $(-2) + (4) = 2$
 $(-1,3) \in \mathcal{R}$ porque $(-1) + (3) = 2$
 $(0,2) \in \mathcal{R}$ porque $(0) + (2) = 2$
 $(1,1) \in \mathcal{R}$ porque $(1) + (1) = 2$

Logo, $\mathcal{R} = \{(-2,4); (-1,3); (0,2); (1,1)\}$

d) $\mathcal{V} = \{(-1,4), (0,3), (0,4), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$

c)
$$\mathcal{T} = \{(-2, -2), (-2, 2), (-1, -1), (-1, 1), (1, -1), (1, 1), (2, -2), (2, 2)\}$$

e)
$$\mathcal{W} = \{(-2, -3), (-2, -1), (-1, -2)\}$$

(0, -1), (0, 1), (1, 2), (2, 1), (2, 3)}

2.
$$\mathcal{R} = \{(-5,0); (-4,-3); (-4,3); (0,5); (3,-4);$$

 $(3,4); (5,0); (0,-5); (-3,-4); (4,3); (4,-3);$
 $(-3,4)\}$

- 3. a) $\operatorname{Dom} \mathcal{R} = \{1, 2\} \text{ e Img } \mathcal{R} = \{1, 3, 4\}$
 - b) $\operatorname{Dom} \mathcal{R} = \{-2, -1, 3, 2\}$ e $\operatorname{Img} \mathcal{R} = \{-7, 4, 1\}$
 - c) $\operatorname{Dom} \mathcal{R} = \{2,1,5\} \ \mathrm{e} \ \operatorname{Img} \mathcal{R} = \{1,-3,\sqrt{2}\}$
 - d) Dom $\mathcal{R} = \{1 + \sqrt{2}, 1 \sqrt{3}\}$ e $\operatorname{Img} \mathcal{R} = \{\sqrt{2}, 1\}$
 - e) $\operatorname{Dom} \mathcal{R} = \left\{3, \frac{5}{2}, \frac{3}{2}\right\} e$ $\operatorname{Img} \mathcal{R} = \left\{\frac{1}{2}, -1, 0\right\}$

- 4. a) $Dom(\mathcal{R}) = \{-2, -1, 0, 1\}$ e $Img(\mathcal{R}) = \{1, 2, 3, 4\}$
 - b) $Dom(S) = \{-2, -1, 1, 2\}$ e $Img(S) = \{1, 4\}$
 - c) $Dom(\mathcal{T}) = \{-2, -1, 1, 2\}$ e $Img(\mathcal{T}) = \{-2, -1, 1, 2\}$
 - d) $Dom(V) = \{-1, 0, 1, 2\}$ e $Img(V) = \{1, 2, 3, 4\}$
 - e) $Dom(W) = \{-2, -1, 0, 1, 2\}$ e $Img(W) = \{-3, -2, -1, 1, 2, 3\}$
- 5. a) $\mathcal{R} = \{(0,0), (1,-1), (1,1), (4,-2), (4,2)\}$
 - b) $\operatorname{Dom} \mathcal{R} = \{0, 1, 4\} \text{ e}$ $\operatorname{Img} \mathcal{R} = \{-2, -1, 0, 1, 2\}$

c)

- 6. a) $\mathcal{R}^{-1} = \{(2,1), (1,3), (3,2)\}$ b) $\mathcal{R}^{-1} = \{(-1,1), (-1,2), (-1,3), (1,-2)\}$ c) $\mathcal{R}^{-1} = \{(-2,-3), (3,1), (-3,2), (1,3)\}$
- 7. a) $\mathcal{R} = \mathcal{R}^{-1} = \{(0,8), (1,7), (2,6), (3,5), (4,4), (5,3), (6,2), (7,1), (8,0)\}$
 - b) $\mathcal{R} = \{(0,5), (2,4), (4,3), (6,2), (8,1), (10,0)\}$ $e \mathcal{R}^{-1} = \{(5,0), (4,2), (3,4), (2,6), (1,8), (0,10)\}$
 - c) $\mathcal{R} = \{(0,10), (1,5), (2,2), (3,1), (4,2),$ $(5,5), (6,10)\} \in \mathcal{R}^{-1} = \{(10,0), (5,1), (2,2),$ $(1,3), (2,4), (5,5), (10,6)\}$
 - d) $\mathcal{R} = \{(0,1), (1,2), (2,4), (3,8)\}$ e $\mathcal{R}^{-1} = \{(1,0), (2,1), (4,2), (8,3)\}$

b)

c)

d)

- 9. a) Reflexiva e antissimétrica.
 - b) Irreflexiva e simétrica.
 - c) Simétrica e transitiva.
 - d) Reflexiva, simétrica e transitiva.
 - e) Irreflexiva, simétrica, antissimétrica e transitiva.
- 10. a) Simétrica e transitiva.
 - b) Transitiva.
 - c) Reflexiva, simétrica e transitiva.
 - d) Reflexiva, simétrica, transitiva.
 - e) Irreflexiva, simétrica, transitiva.
 - f) Reflexiva, simétrica, transitiva.
 - g) Irreflexiva e simétrica.
 - h) Reflexiva, antissimétrica e transitiva.
- 11. Pessoal
- 12. Ordenação:

$$\mathtt{rato} \preceq \mathtt{rem\'edio} \preceq \mathtt{roupa} \preceq \mathtt{rua} \preceq \mathtt{ruga}$$

- 20. a) Não define função de A em B, pois o elemento $2 \in A$ não está associado a nenhum elemento de B.
 - b) Não define função de A em B, pois o elemento $1 \in A$ está associado a dois elementos de B.

- c) Define função de A em B, pois todo elemento de A está associado a um único elemento de B.
- d) Define função de A em B, pois todo elemento de A está associado a um único elemento de B.
- 21. Somente d), pois o conjunto de partida é $A=\{0,1,2\}$ e o conjunto de chegada é $B=\{-1,0,1,2\}.$
- 22. a) $Dom(f) = \{0, 1, 2\} e Img(f) = \{-1, 0, 1\}$
 - b) $\text{Dom}(g) = \{-1, 0, 1, 2\} \text{ e } \text{Img}(g) = \{1, 2\}$

- c) $Dom(h) = \{-1, 0, 1\} e Img(h) = \{-2\}$
- d) $Dom(k) = \{-2, 0, 1, 2\}$ e $Img(k) = \{-2, -1, 0, 2\}$
- 3. a) $f(g(x)) = 3x^2 + 21x 1$
 - b) $g(f(x)) = 9x^2 + 15x 6$
 - c) f(f(x)) = 9x 4
 - d) $g(g(x)) = x^4 + 14x^3 + 56x^2 + 49x$
 - e) $f^{-1}(x) = \frac{x+1}{3}$
- 24. Pessoal