FUGRO NATIONAL INC LONG BEACH CA F/6 8/13 MX SITING INVESTIGATION-PRELIMINARY GEOTECHNICAL INVESTIGATION--ETC(U) DEC 80 F04704-80-(C-0006 AD-A112 773 UNCLASSIFIED FN-TR-43-VOL-2 NL 1...2 ANA...

MX SITING INVESTIGATION GEOTECHNICAL EVALUATION

WA112773

PRELIMINARY GEOTECHNICAL INVESTIGATION PROPOSED OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

VOLUME II - GEOTECHNICAL DATA

PREPARED FOR BALLISTIC MISSILE OFFICE (BMO) NORTON AIR FORCE BASE, CALIFORNIA

	PHOTOGRAPH	THIS SHEET
D-ALLD 773	LEVEL FN-TR DOCUMENT ID	INVENTORY PENTIFICATION
a A A	This document has for public release distribution is unli	and sale: its
A	ES AND/OR SPECIAL COON TOO	MAR 2 5 1982 E DATE ACCESSIONED
	Ö n	y
	DATE RECEIVED PHOTOGRAPH THIS SHEET A	

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
FN-TR-43 IL AD: A11277	J
4. TITLE (and subside) Preliminary Geot echnical Investigation - Proposed Operational	5 TYPS OF REPORT & PERICO CO /ERSO
Investigation - Proposed Operational	Final
Bose Site - Coyote Spring Valley , Nevada Volumett - Geotechnical Data	6. PERFORMING ORG. REPORT NOWBER
7. Author(s)	FN-TR-43 3. CONTRACT OF GRANT NUMBER()
Fugro National, Inc.	,
rogico realitions) True!	FO4704-80-C-600
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT, YASK
Ertec wichtern Inc. (Jermenty Forma National)	_
1000 0000 Ca 93507	64312 F
11 CONTROLLING DEFICE NAME AND ADDRESS	12. REPORT DATE
50000 and Missile Systems or opposed with	23 Dec 80
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	100
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
·	
	15#. DECLASSIFICATION: DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	om Report)
Distribution Chlimited	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block nur. or.	1
Activity location Buring logs, Tre,	novi logs, laboratory
test results, Cune Penetrometer Test	Seismic Edition
Doto, Account Maleyers, when the car revisit in it	Comment of the commen
29. ABSTRACT (Continue on reverse side if necessary and identity by block number)	
This report contains maps of boring Trench and test,	pit logs locations.
Seismic- refraction data and electrical resistivity	data for the coyole spring
Valley area, Nevada, operating location describ	sed in Volumne I
of this report.	•

MX SITING INVESTIGATION GEOTECHNICAL EVALUATION

PRELIMINARY GEOTECHNICAL INVESTIGATION PROPOSED OPERATIONAL BASE SITE COYOTE SPRING VALLEY NEVADA

VOLUME II - GEOTECHNICAL DATA

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Fugro National, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

23 December 1980

SECTION 1.0

ACTIVITY LOCATION MAP

(IN POCKET)

23 DEC 80

made to the same wider and the

2.0 EXPLANATIONS OF BORING, TRENCH, AND TEST PIT LOGS

All data from borings, trenches, and test pits are presented on standard Fugro National logs in Sections 2.0, 3.0, and 4.0. Explanations of the column headings on the logs are as follows:

A. Designations - Borings, trenches, and test pits are identified as follows:

CE-B-1

- B abbreviation for activity (e.g., B-boring, T-trench, P-test pit)
- 1 number of activity
- B. Sample Type Different sampling techniques were used and the symbols are explained at the bottom of the boring logs. For details of sampling techniques, see Section A5.0 of Appendix in Volume I. Horizontal lines, to scale, indicate the depth where sampling was attempted.
- C. Percent Recovery The numbers shown represent the ratio (in percent) of the soil sample recovered in the sampler to the full penetration of the sampler.
- D. N Value Corresponds to standard penetration resistance, which is number of blows required to drive a standard split-spoon sampler for the second and third of three 6-inch (15-cm) increments with a 140-pound (63.5-kg) hammer falling 30 inches (76 cm) (ASTM D 1586-67).
- F. Depth Corresponds to depth below ground surface in meters and feet.

- F. Lithology Graphic representation of the soil and rock types.
- G. USCS Unified Soil Classification System symbols (see Table II-2-1 for complete details).
- H. Soil Description Except in cases where samples were classified based on laboratory test data, the descriptions are based on visual classification. The procedures outlined in ASTM D 2487-69, Classification of Soils for Engineering Purposes, and D 2488-69, Description of Soils (Visual-Manual Procedure) were followed. Solid lines across the column indicate known change in strata at the depth shown.

Definitions of some of the terms and criteria to describe soils and conditions encountered during the exploration follow.

Gradation: A coarse-grained soil is well graded if it has a wide range in grain size and substantial amounts of most intermediate particle sizes.

Poorly graded indicates that the soil consists predominantly of one size (uniformly graded) or has a wide range of sizes with some intermediate sizes obviously missing (gap-graded).

Moisture: Dry - no feel of moisture
Slightly Moist - much less than normal moisture
Moist - normal moisture for soil
Very Moist - much greater than normal
moisture

Wet - for soils below the water table

From Wagner, 1957.

* Boundary classification. Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravelisand misture with clay binder.

* All sieve sizes on this chart are U.S. standard.

**Field Identification Procedure for Friet Grained Soils or Fractions.

The procedure for the minus No. 40 serve size particles, approximately 1_{2,11} in Po filed distribution purposes, screening is not intended, served in the minus No. 40 serve size particles are the most soll served in the solution of particles are than No. 40 serve size, prepare a past of fire consistent served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not stickly a served in the solution of should not should be served in the solution of should not should shake the sh

After convoing particles larger than No. 40 seve size, prepare a past of Meter accounting particles larger than No. 40 seve size, prepare a past of most stoll with a volume of about once half cobic inch. Add enough waster in excessary to make the tool soft but not strick. A posture fraction of the appearance of safer on the turiner. A posture fraction consists of the appearance of safer on the turiner. A posture fraction consists of the appearance of safer on the turiner. A posture fraction consists of the appearance of safer on the turiner of the past which changes the past safer on the turiner of safer on the safer on the turiner of safer on the safer on the turiner of safer on the safer on the safer of the past safer of safer and gloss disappear from the safer of safer and the safer safer of safer and the safer of safer of safer and safer of safer of safer as a special rock four, show a moderater of safer safering.

nded, simply remove by hand the coarse particles that interfers with the tests

Toughoust Consistency near plaints (Illimit)

Acter removing particles target than the No. 40 seve size, a specimen of soil about one-half one-busines of soil and the specimen is not a thread about one-testin inch in standard one-busines of the specimen suffers. Act of the mostiate content is plantally reduced and the plantal intent is standard or complete the plantal one-busines when the plantal intent is standard or comblets when the plantal intent is standard or comblets of the present of the soil of the plantal intent and a sight whereading ston continued with the lamp comblet. The more position with the lamp when it has not offer the thread activity the plantal intent and quark loss of the thread at the plantal intent and quark loss of the thread at the plantal intent and quark loss of the thread at the plantal intent and quark loss of the thread at the plantal intent and quark loss of the thread of the plantal intent is a both right of the thread of the thread at the plantal intent in degrate of the thread of the thread at the plantal intent independent of the thread of the thread at the plantal intent in the soil of the plantal intent is a both right of the plantal intent.

UNIFIED SOIL CLASSIFICATION SYSTEM

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMD

TABLE II-2-1 Plasticity: Plasticity index is the range of water content, expressed as a percentage of the weight of the oven-dried soil, through which the soil is plastic. It is defined as the liquid limit minus the plastic limit. Descriptive ranges used on the logs include:

Nonplastic (PI, 0 - 4) Slightly Plastic (PI, 4 - 15) Medium Plastic (PI, 15 - 30) Highly Plastic (PI, >30)

Cobbles and Boulders

A cobble is a rock fragment, usually rounded by weathering or abrasion, with an average diameter ranging between 3 and 12 inches (8 and 30 cm).

A boulder is a rock fragment, usually rounded by weathering or abrasion, with an average diameter of 12 inches (30 cm) or more.

- Remarks This column was provided on boring and trench logs for comments regarding drilling difficulty, number and size of cobbles or boulders encountered, loss of drilling fluid in the boring, trench wall stability, and other conditions encountered during drilling and excavations.
- J. Dry Density and Moisture Content The boring logs include a graphical display of laboratory test results for dry density (ASTM D 2937-71) in pounds per cubic foot and kilograms per cubic meter and moisture content (ASTM D 2216-71) in percent from representative samples taken during drilling. The symbols are explained at the bottom of the boring logs.

- K. Sieve Analysis The numbers represent the percentage by dry weight (ASTM D 422-63) of each of the following soil components:
 - GR Gravel, rock particles that will pass a 3-inch (76 mm) sieve and are retained on No. 4 (4.75 mm) sieve.
 - SA Sand, soil particles passing No. 4 sieve and retained on No. 200 (0.075 mm) sieve.
 - FI Fines, silt or clay, soil particles passing No. 200 sieve.
- L. Atterberg Limits (LL and PI) -
 - LL Liquid Limit, the water content corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil (ASTM D 423-66).
 - PL Plastic Limit, the water content corresponding to an arbitrary limit between the plastic and the semisolid state of consistency of a soil (ASTM D 424-59).
 - PI Plasticity Index, numerical difference between the liquid limit (LL) and the plastic limit (PL) indicating the range of moisture content within which a soil-water mixture is plastic.
 - NP Nonplastic.
- M. Miscellaneous Information -
 - Elevations indicated elevations on the logs are estimated from topographic maps of the study area, within an accuracy of half the contour interval.
 - Surficial
 - Geologic Unit indicates the surficial geologic unit in which the activity is located.
 - Date Drilled indicates the period from beginning to completion of the activity.
 - Drilling
 - Method signifies the type of drilling procedure used such as rotary wash.
 - Hole Diameter nominal size of boring drilled.
 - Water Level indicates depth from ground surface to water table where encountered.

Trench Length - length at ground surface of final trench excavation.

Trench
Orientation - bearing of longitudinal trench centerline.

SECTION 3.0

TRENCH LOGS

3.0 EXPLANATIONS OF TRENCH LOGS

See Section 2.0, "Boring Logs", for explanations.

SANDY GRAVEL, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcarrous; some fine to coarse and, trace coblete to coarse and trace nonpleatis stir, trace cobblete of 5' size, stage II caliche (0.0' - 3.5'); stage III caliche (3.5' - 6.0'); stage III caliche (3.5' - 6.	BULK SAMPLE METERS O	PTH	THOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV	:18		
8 - TOTAL DEPTH 7.0' (2.1m) Cementation at 7,0' exceeded capacity of Case 580C backhoe 12 4 14 5 18 5		2 -				well graded, dry, subangular to subrounded, calcarnous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 6" size; stage I caliche (0.0" - 3.5"); stage III caliche (3.5" - 6.0");					LL	PI
-3 10- 12- -4 14- 18- 18-	-2	6 -	00000000000000000000000000000000000000			TOTAL DEPTH 7.0' (2.1m)	7,0'exceeded capacity of Case 580C					
18-	- 3	10~					backhoe					
18-	-4											
	- 5	18-										
	- 6											

TRENCH DETAILS

SURFACE ELEVATION : 2520' (768m) DATE EXCAVATED : 15 OCTOBER 1980

SURFICIAL BEOLOGIC UNIT: A5i

TRENCH LENGTH : 11.0' (3.4m)

TRENCH ORIENTATION : N-S

LOG OF TRENCH CE-T-1 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 800 FIGURE П31

SILTY SAND, light brown, fine to coarse,	•	DEPTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	1	IEV			
SM medium dense 2	100		3		N S			GR	AZ	F1	LL	P
dense dense graded, dry, subangular to subrounded, collarence demented lenses of silty clay (CL) and sendy silt (ML) throughout. SP dense SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; stage I caliche. SM dense SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic silt. TOTAL DEPTH 14.0' (4.3m) 18- 18-				SM		poorly graded, dry, subangular to subrounded,		0	54	46		2
silty clay (CL) and sandy silt (ML) throughout. 8		1 4 -				graded, dry, subangular to subrounded,						
SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; stage I caliche. SM dense SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic silt. TOTAL DEPTH 14.0' (4.3m) 18-	- 1			SP	dense							
SM dense SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic slit. TOTAL DEPTH 14.0' (4.3m)		1		SM	dense	poorly graded, dry, subangular to subrounded,						
14 poorly graced, dry, substitute to subrounded, calcareous; little nonplastic slit. TOTAL DEPTH 14.0' (4.3m)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12- 4		CM	denes	SILTY SAND, light brown, fine to coarse,		4	83	13		
18-		14-		3141	uense	calcareous; little nonplastic silt.				13		
	- !											
-6 20-		18										
	-	6 20							} } }			

TRENCH DETAILS

SURFACE ELEVATION : 2260' (689m) DATE EXCAVATED : 16 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: Tys

TRENCH LENGTH : 14,0' (4,3m)

TRENCH ORIENTATION : N-S

LOG OF TRENCH CE-T-2 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 900 F | &U #E П32

BULK SAMPLE	METERS IN	ET HI	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV LYS			
돌		<u> </u>	=	1	% C			GR	SA	F١	LL	P
	0 - 1	0				SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little to some fine to coarse sand; little nonplastic silt; trace cobbles to 10" size; stage I caliche (0.5' - 3.0'); stage II caliche (3.0' - 11.0'); stage III caliche (11.0').		68	19	13		
	- 2	6 -		GM	dense		vertical wells stable	47	39	14	i i	
11		8										
	- 3	10-				TOTAL DEPTH 11.0' (3.4m)	cementation at 11.0' exceeded					
	- 4	12-					capacity of Case 580C backhoe					
		14-										
	- 5	16-										
		18-										
İ	- 8	20-										

TRENCH DETAILS

SURFACE ELEVATION : 2480' (756m)
DATE EXCAVATED : 16 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A5y/A5i TRENCH LENGTH : 13.0' (4,0m)

TRENCH ORIENTATION : N-S

LOG OF TRENCH CE T 3
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

II 3 3

UGRO NATIONAL INC.

۱ ـ	DE PT		LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMAR	RKS		IEV			
<u> </u>	<u> </u>	FEET	5		NOC		}		GR	SA	FI	LL	P
	0	Ó 2-		GM	dense	SILTY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; some fine to coarse sand; stage II caliche.	•		37	31	32		
	1	4 8 8 8		GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 6" size; stage III caliche.	vertical stabl						
-	3 1	0-				TOTAL DEPTH 9.0' (2.7m)	cementa 9,0'exc capacit Case 5 back!	eeded ty of 80C					
	1	2-											
	1	14-											
-	5	16-											
	,	18-											
}	8 2	20-											
		1					{						

TRENCH DETAILS

SURFACE ELEVATION : 2320' (707m)

DATE EXCAVATED : 16 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: Tys

TRENCH LENSTH : 11.0' (3.4m)

TRENCH ORIENTATION : N-S

LOG OF TRENCH CE-T-4 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

F160€€ ∐-3-4

UBRO NATIONAL INC

USAF-37

BULK SAMPLE	METERS	E1 H	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMAR	IKS	l l	A LYS			
3	¥	FEET	5		80				GR	AZ	FI	LL	P
	- 1	2		GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; little nonplastic silt; trace cobbles to 6" size.			56	30	14		
	- 2	6 6				GRAVELLY SILT, light brown, dry, medium plastic, calcareous; some fine gravel; little	vertical stabl	walls e					
	- 3	10-		ML	very stiff	fine to coarse sand; stage II caliche.			22	19	59		
	- 4	12-				TOTAL DOUBLE 440/ 440/							
	- 5	18-				TOTAL DEPTH 14.0' (4.3m)					1		
		18-											
}	- 6	20-											

SURFACE ELEVATION : 2300' (701m) DATE EXCAVATED : 17 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A1

TRENCH LENGTH : 14.0' (4.3m)

TRENCH DRIENTATION : N·S

LOG OF TRENCH CE-T-5 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO FIGURE **II3**5

BULK SAMPLE	HETERS 30	PTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV ALY:	S 1 S		
2	▎≝		=	Ì	5			BR	SA	FI	LL	P
	- 1	2 -		SP- SM	medium dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little fine gravel; trace nonplastic silt.		18	70	12		
	- 2	6 -		SM	dense	SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; stage III caliche (4.0' - 9.0'); stage IIV caliche (9.0' - 10.0').	vertical walls stable					
	- 3	10-			very dense							
	-4	12-				TOTAL DEPTH 10.0' (3.0m)	cementation at 10.0' exceeded capacity of Case 580C backhoe					
	- 5	18-										
	- 6	20-										

SURFACE ELEVATION

: 2200' (671m)

BATE EXCAVATED

: 17 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: AT

TRENCH LENGTH

: 13.0' (4.0m)

TRENCH ORIENTATION : N-S

LOG OF TRENCH CE-T 6
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

гі**вият** П 3 6

<u>Vero Mational inc.</u>

48 AF-37

•	DEPTH SO O O O O O O O O O O O O O O O O O O	THOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARK	KS AI	S I E'	\$1\$	<u> </u>	
				160	SANDY SILT, light brown, dry, slightly plastic, calcareous; some fine to coarse subangular to subrounded sand.			38			P
- 1	4		ML	firm							
- 1	8 · 2					vertical w stable	valis				
- 5	3 10·				SILTY CLAY, light brown, dry, slightly plastic, calcareous; trace fine subrounded sand.		0	6	94	20	
	12- 4 14		CL	stiff					3	129	
-!	16: 5				TOTAL DEPTH 14.0' (4.3m)						
	18-										
-	8 20·										

SURFACE ELEVATION : 2225' (678m)
DATE EXCAVATED : 17 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: Tys

TRENCH LENGTH : 14.0' (4.3m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE:T-7 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMD

FIGURE

TUBRO NATIONAL INC

BULK SAMPLE	NETERS 30	PTH	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	Al	SIE'	212	<u> </u>	P
	0	2-		SP- SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse gravel; trace non-plastic silt; stage I caliche.		45	46	9		
	- 1	4 -				SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 10" size.						
	2	8 -		GP-	dense		vertical wall stable	s				
	-3	10-		GM								
	-4	14-				TOTAL DEPTH 14.0' (4.3m)	•					
	 - 5	18-										
	- 6	18-										

TRENCH DETAILS

SURFACE ELEVATION : 2800' (701m)
DATE EXCAVATED : 18 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: ASY

TRENCH LENGTH : 14.0' (4.3m)

TRENCH GRIENTATION : E-W

LOG OF TRENCH CE-T-8 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMD

F1 6VRE II-3-8

UGRO NATIONAL, INC.

BULK SAMPLE	WETERS OF	FET H	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMA	RKS	AN	IEV	\$1\$		T-
ne	-1	2		GP- GM	dense	SANDY GRAVEL, light brown, fine to coerse, poorly graded, dry, subengular to subrounded, celcareous; little fine to coerse sand; trace nonplestic silt; trace cobbles to 6" size.	vertica stal			16		LL	P
	-4	12~		ML	firm	SILT, light brown, nonplastic, dry, calcareous; trace fine sand. TOTAL DEPTH 14.0' (4.3m)			o	11	89		N
	- 5	18-											
	- 8	18- 20-											

SURFACE ELEVATION : 2300' (701m)
DATE EXCAVATED : 18 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A5y
TRENCH LENGTH : 14,0' (4,3m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE-T-9
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIEURE II-39

UGRO NATIONAL INC.

23 DEC 80

SANDY GRAVEL, light brown, fine to coarse, poorly to wrill graded, dry, subangular to subrounded, calcareous; some fine to coarse and; trace anotherised in the too state and the coarse and trace and the coarse and trace and tr	SANDY GRAVEL, light brown, fine to coarse, poorly to well graded, dry, subangular to subrounded, calcarseous; some fine to coarse sand; trace nonplastic still; stage II comentation; occasional cobblets of 8° size (0.0°, 0.0°); trace cobbles and boulders to 10° size (11.0°). GM dense 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BULK SAMPLE METERS SA	PTH	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	LYS	212	7=
124 -4 -4 -14-	124 -5 -5 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	- 1			G _M		poorly to well graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; stage II cementation; occasional cobbles to 6" size (0.0" - 7.0"); trace cobbles and boulders to 10" size					-
12- -4 14-	124 -4 -5 -5	3	8 - 1 0 -		GW- GM	dense			64	29	7	
-5	-5 18-	-4					TOTAL DEPTH 11.0' (3.4m)	of Case 580C backhoe exceeded				
		- 5	16-									

SURFACE ELEVATION : 2400' (732m)
DATE EXCAVATED : 19 OCTOBER 1980

SURFICIAL SECLOSIC UNIT: A50

TRENCH LENGTH : 14,0' (4.3m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE-T-10
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 8MO

F180EE

VORO NATIONAL INC

88AF-37

BULK SAMPLE	=	FEET	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	ı	IEV LY:			
	ME TE RS	1		1	NO.			GR	SA	FI	LL	P
	0	2 -		GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little fine to coarse sand; little non-plastic silt; stage III caliche (0.0° - 1.5°); stage IIV caliche (1.5°); trace cobbles to 6° size. TOTAL DEPTH 1.5° (0.5m)	cementation at 1.5' exceeded capacity of Case 580C	62	20	18		
ŀ	- 1	4 -				101A2 D21 1W 1.3 (0.3m)	backhoe					
						F						
ļ	- 2	6 -										
		8 –					,					
	- 3	10-										
		12-										
	- 4	14-										
	- 5	16-										
		18-										
}	- 8	20-										

SURFACE ELEVATION : 2380' (728m)
DATE EXCAVATED : 19 OCTOBER 1980

SURFICIAL GEGLOGIC UNIT: A50
TRENCH LENGTH : 8.0' (2.4m)
TRENCH GRIENTATION : E-W

LOG OF TRENCH CE-T-11
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

F180RE

ugro national inc

BULK SAMPLE	EPTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	 E SIS	T.
0			GP. GM	dense very dense	GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; trace fine to coarse sand; trace nonplastic silt; stage III caliche (0.0' - 3.0'); stage III caliche (3.0'); occasional cobbles to 6" size.	vertical walls stable	82		
1	4-				TOTAL DEPTH 3.0' (0.9m)	cementation at 3.0' a sceeded capacity of Case 580C backhoe			
- 2									
- 3	10-								
	12-								
-4	14-								
-5	16-								
- 6	18~								
	20~								

SURFACE ELEVATION : 2460' (750m)

BATE EXCAVATED : 20 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A5y/A5i TRENCH LENGTH : 10.0' (3.0m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE-T-12 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 8000

F1808E 11-3 12

vero national inc.

23 DEC 80

0 0 ເພື່ອເລື້ອງ SILTY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded,	48			1	_
TOTAL DEPTH 3.0' (0.9m) cementation at 3.0' exceeded capacity of Case 580C backhoe			ŀ	-	ļ
3.0' exceeded capacity of Case 580C backhoe		l		1	
8-					
-3 10-					
12-	j				
14-					
-5					
18-					
-6 20-					

SURFACE ELEVATION : 2490' (759m)
DATE EXCAVATED : 20 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A5i

TRENCH LENGTH : 10.0' (3.0m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE-T-13
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 840

F180FE II-3-13

UGRO MATIONAL INC

BULK SAMPLE	METERS A	PTH LIBS	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	A LY	\$1\$	LL	P
	- 1	2		SW. SM	dense	GRAVELLY SAND, light brown, fine to coarse, well to poorly graded, dry, subangular to sub-rounded, calcareous; little fine to coarse gravel; trace nonplastic silt; stage II caliche.			71			
	- 2 - 3	8-		SP	dense		vertical walls stable					
	-4	12-				TOTAL DEPTH 12.0' (3.7m)	cementation at 12.0' exceeded capacity of Case 580C backhoe					
	-5	18-										
	- 8	20-										

SURFACE ELEVATION : 2760' (841m)

SATE EXCAVATED : 21 OCTOBER 1980

SURFICIAL GEOLOGIC UNIT: A59

TRENCH LENGTH : 14.0' (4.3m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH CE-T-14
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

F14981 II-3 14

VERO NATIONAL INC.

23 DEC 80

98 M-37

٢ ×

SECTION 2.0

BORING LOGS

4.0 EXPLANATIONS OF TEST PIT LOGS

See Section 2.0, "Boring Logs", for explanations.

のでは、「「「「「「」」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というできます。「「」」というできます。「「」」という

BULK SAMPLE	PTH E	L17H0L0GY	nscs	C ONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV ALY:	E 8 S		
200	FEET			8 S		1	GR	SA	FI	LL	Ţ
- 1	1 - 2 - 3 -		GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorty graded, dry, subengular to subrounded, calcareous; some fine to coarse sand; trace to some nonplastic slit; trace cobbles to 6" size; stage II caliche.		51	27	22		
-	5-					vertical walls stable				i i	
2	6 -		GP. GM	dense			59	29	12		
-	8 -										
 -3	10-				TOTAL DEPTH 10.0' (3.0m)						

SURFACE ELEVATION: 2480' (756m) SURFICIAL GEOLOGIC UNIT: A5:

LOG OF TEST PIT CE-P-1

LOG OF TEST PIT CE-P-1
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE

UGRO NATIONAL INC.

BULK SAMPLE	NETERS F	FEET HIS	ITHOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	JEV LY:	\$18		
100		1 - 2 - 3 - 5 -		GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; little nonplastic silt; trace cobbles to 6" size; stage I caliche (0.5' - 5.0'); stage IV caliche (5.0').	vertical walls stable		36	15	L	
	- 2	8-				TOTAL DEPTH 5.0' (1.5m)	cementation at 5.0' exceeded capacity of Case 580C backhoe					
	 - 	8										
	3	10-					·					

SURFACE ELEVATION: 2500' (762m) SURFICIAL GEOLOGIC UNIT: A5y/A5i

LOG OF TEST PIT CE-P-4

LOG OF TEST PIT CE-P-4
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

F1808E 1-4-3

UGRO NATIONAL INC.

SANDY GRAVEL, light brown, fine to coarse, portly graded, dry, subangular to subrounded, calcarsour, some fine to coarse and, trace nonplantic slift, trace cobbles to 10° size, stage I calche (0.5° -6.0°), stage IX calche (6.0°). 4 - 0.0°	BULK SAMPLE	METERS	PTH	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	ı	IEV ALY	'E S 1 S		
TOTAL DEPTH 6.0' (1.8m) cementation at 6,0' exceeded capacity of Case 580C backhoe			1 -			CONS	poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand, trace nonplastic slit; trace cobbles to 10" size; stage I					u	•
7 - 8 -		-1	3		4 1	dense							
		- 2	7-				TOTAL DEPTH 6.0' (1.8m)	6,0' exceeded capacity of Case 580C					
		-											

LOG OF TEST PIT CE-P-5 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 000

110unt

VERO NATIONAL INC.

W& AF-21

BULK SAMPLE		0.000 a 000		CONSISTENC	SANDY GRAVEL, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcareous, some fine to coarse sand; trace cobbles to 6" size; stage II caliche (0.5" - 5.0"), stage III caliche (5.0" - 7.0").		GR	SA		LL	F
	1 - 2 -				well graded, dry, subangular to subrounded, calcareous, some fine to coarse sand; trace cobbles to 6" size; stage II caliche (0.5' - 5.0').		66				
-	4 5		GW	dense		vertical walls stable		30	4		
- 2	7 8 9		GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; stage II caliche (7.0' - 10.0').		54	39	7		
	10-				TOTAL DEPTH 10.0' (3.0m)						

SURFICIAL SECLOSIC UNIT: A5y/A5i LOG OF TEST PIT CE-P-6

LOG OF TEST PIT CE-P-6 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG FIGURE П 45

23 DEC 80

METERS 30 FEET HE	LITHOLOGY	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV ALY:			
	5	3 3			BR	SA	FI	LL	Ţ
3 - 1 4 - 3 - 3 10 - 3	SM	dense	SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; stage II caliche. TOTAL DEPTH 10.0 (3.0m)	vertical walls stable	4	56	40		

LOG OF TEST PIT CE-P-7 **OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA**

> MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE Ⅱ.46

BULK SAMPLE	METERS A	PTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV	E 5 1 S		
BULK	1311 0	2 - 3 - 5 -		GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 6" size; stage II caliche (0.0' - 5.0'); stage III caliche (5.0' - 6.0').	vertical walls stable	GR	SA	FI	LL	P
1	- 2	7-				TOTAL DEPTH 6.0' (1.8m)	cementation at 6.0' exceeded capacity of Case 580C backhoe					
	-	8				·						
	- 3	10-										

SURFACE ELEVATION: 2400' (732m) SURFICIAL GEOLOGIC UNIT: A5y/A5i

LOG OF TEST PIT CE-P-8

LOG OF TEST PIT CE-P-8
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 000

F180RE II-4-7

UGRO NATIONAL INC.

U\$ AF-21

BULK SAMPLE	W ETERS	PTH L	LITHOLOGY	nscs	C ONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV ALY	/E \$15		
BULKS	0 1	1 - 2 - 3 -		GP-	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 6" size; stage I caliche (0.0" - 5.0"); stage III caliche (5.0" - 7.0").	vertical walls	GR			<u> </u>	
	- 2	4 ~ 5 ~ 6 ~										
	-	8 ~				TOTAL DEPTH 7.0' (2.1m)	cementation at 7.0' exceeded capacity of Case 580C backhoe					
	- 3	9										

LOG OF TEST PIT CE P 9 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SMO FIGURE **II** 48

BULK SAMPLE	HETERS 30	PTH LEE	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REM	ARKS	AN	IEV	:18		_
76	-1	2 - 3 - 4 -		GP.	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; occasional cobbles to 6" size.		al walls		SA	E.	LL	P
	- 2	5 — 6 — 7 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1		SM	very dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; trace gravel; stage III caliche.							
	- 3	9				TOTAL DEPTH 8.0' (2.4m)	8,0° e) capac case	tation at ecceded city of 580C khoe					

SURFACE ELEVATION: 2260' (669m) SURFICIAL GEOLOGIC UNIT: A1

LOG OF TEST PIT CE-P-10

LOG OF TEST PIT CE-P 10 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 8000

II 4 9

UGRO NATIONAL INC

U\$ AF-21

The standard was the standard of the standard

BULK SAMPLE METER 33 FEET 32	LITHOLOGY	USCS	C ONSISTENCY	SOIL DESCRIPTION	REMA	RKS		IEV ALY:	ı		
	5		NO C				BR	SA	FI	LL	F
3 - 1 4 - 5	1 1	SP. SM	medium dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little fine gravel; trace nonplastic sit.	vertica stal				12		
3 10		ML	firm	SANDY SILT, light brown, dry, nonplastic, calcareous; little fine to medium sand. TOTAL DEPTH 10.0' (3.0m)			1	14	85		

LOG OF TEST PIT CE-P-11
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE

F180RE 10

VORO NATIONAL INC.

23 DEC 80

SIEVE SOIL DESCRIPTION SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, celcareous; little nonplastic silt; trace fine gravel. SM medium dense SM medium dense
SILTY SAND, light brown, fine to medium, poorly graded, dry, subangular to subrounded, celcareous; little nonplastic silt; trace fine gravel. 3 1 4 medium medium vertical walls
7-
TOTAL DEPTH 10.0' (3.0m)

SURFACE ELEVATION: 2210' (674m) SURFICIAL BEOLOGIC UNIT: Tys

LOG OF TEST PIT CE-P-12

LOG OF TEST PIT CE-P-12 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE | 4 11

UBRO NATIONAL ING

BULK SAMPLE		PTH III	LITHOLOGY	USCS	C ONSISTENCY	SOIL DESCRIPTION	REMARKS	AÑ	 SIS		_
	SW3138 0	1 - 2 - 3 3	TO HALLT		medium dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplestic silt; trace gravel; occasional cobbles to 8" size (8.0" - 10.0").	vertical walls stable	<u> </u>	 	LL	PI
,	- 3	10-				TOTAL DEPTH 10.0' (3.0m)					

SURFACE ELEVATION: 2215' (675m) SURFICIAL BEOLOGIC UNIT: Tys

LOG OF TEST PIT CE-P-13

LOG OF TEST PIT CE-P 13
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

FIGURE 12

VORO NATIONAL INC

23 DEC 80

BULK SAMPLE	METERS	FEET 3	LITHOLOGY	uscs	C ONSISTENCY	SOIL DESCRIPTION	REMA	RKS	i i	IEV ALY:			
<u>a</u>			5		3 5				BR	SA	FI	LL	I
	- 1	1 - 2 - 3 -		SP. SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine gravel; trace nonplastic silt; occasional cobbles to 6" size; stage II caliche (0.5' - 4.0').			33	60	7		
	- 2	5 - 6 - 7 - 8 -		ML.	wery stiff	SANDY SILT, light brown, dry, nonplastic, calcareous; some fine subangular to subrounded sand.	vertica stal		0	48	60		
	- 3	9				TOTAL DEPTH 10.0' (3.0m)			 				

LOG OF TEST PIT CE-P-14
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE 800

VORO NATIONAL ING.

-	ETERS HAND FEET	LITHOLOGY	NSCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	ALYS SA	SIS	Li	P
	1 2		GP-GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous, some fine to coarse sand; trace nonplastic silt, occasional cobbles to 6" size, stage I caliche.						
	5 8 2 7 8		SM	dense	SILTY SAND, light brown, fine, poorly graded, dry, subrounded, calcareous; some nonplastic silt.	vertical walls					2
† 3	10		+		TOTAL DEPTH 10.0' (3.0m)	<u> </u>	1				

SURFACE ELEVATION: 2290' (698m) SURFICIAL BEOLOGIC UNIT: A5y

LOG OF TEST PIT CE-P-15

LOG OF TEST PIT CE P-16 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 8MO

FIGURE 14 14

YERO NATIONAL ING.

23 DEC 80

BULK SAMPLI Weters =	EPTH LI	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN		SIS	ī
0	1		SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine gravel; little nonplastic silt.				14	
-1	3 - 4 - 5 - 6 - 7 -		GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt.	vertical walls stable				
-3	9 -		ML	firm	SILT, light brown, dry, nonplastic, calcareous; trace fine subrounded sand. TOTAL DEPTH 10,0* (3.0m)		o	7	93	2

LOG OF TEST PIT CE-P-16
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE 115

UGRO NATIONAL INC

BULK SAMPLI	METERS SO	FEET	LITHOLOGY	USCS	C OMSISTENCY	SOIL DESCRIPTION	REMARKS		SIEVE ANALYSIS			
ž								GR	SA	FI	LL	. IP
	. 1	3 - 4 - 4 - 4		sm	dense	GRAVELLY SAND, light brown, fine to coerse, poorly graded, dry, subangular to subrounded, calcareous; some fine gravel; some nonplastic slit; stage [II caliche (0.0' - 8.0').	vertical walls stable	28	45	27		
	. 2	5-		ML	stiff	SANDY SILT, light brown, dry, slightly plastic, calcareous; some fine to coarse subangular to subrounded sand; trace fine gravel.		5	35	60	34	
3	3	8 -		GW-	dense	SANDY GRAVEL, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic sit; stage I caliche (8.0° - 10.0°); occasional cobbles to 6" size.		47	43	10		
\neg		7				TOTAL DEPTH 10.0' (3.0m)		7 /				

SURFACE ELEVATION: 2290' (698m) SURFICIAL GEOLOGIC UNIT: A5y

LOG OF TEST PIT CE-P-17

LOG OF TEST PIT CE-P-17 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

#16URE | 16

UGRO MATIONAL INC

BULK SAMPLE	METERS =	PTH 19	LITHOLOGY	uscs	C ONSISTENCY	SOIL DESCRIPTION	REMARKS	AM	 212	_
ING	3 0	3-3-5-		SM	dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic slit; trace fine gravel; stage III celiche (2.5' - 6.0').	vertical walls stable		35	P 2
	- 3	6 6		SP	medium dense	SAND, gray, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; trace gravel.	caving			
		10-				TOTAL DEPTH 10.0' (3.0m)	. —, —, —, —, —, —, —, —, —, —, —, —, —,			

LOG OF TEST PIT CE-P-18 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIQURE **17**

UGRO NATIONAL INC

FEET	L I THOLOGY	USCS SISTEI	SOIL DESCRIPTION	REMARKS	AM	ALY:	\$ 15		
-		USCS CONSISTENCY			BR	SA	FI	ŭ	ŀ
1 - 2 - 3 - 4 - 5 - 6 -		SM den	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic sijt; trace gravel; stage III caliche.	vertical walls stable					
7 - 6 - 9 -		GP- GM	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; occasional cobbles to 10" size; age II caliche.						
					}	1			
	2 3 4 5 6 9	3-	3 SM dens	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic sit; occasional cobbles to 10" size; age II calirche.	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subsequilar to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; occasional cobbles to 10" size; ye II calinhe.	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subsquiat to subtracted calcareous; some fine to coarse and; trace nonplestic silt; occasional cobbles to 10" size; ye II caliche. TOTAL DEPTH 10.0" (3.0m)	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subengular to subrounded, calcareous, some fine to coarse and; trace nonphastic sit; occasional cobbles to 10" size; see II calinhe. GP. dense TOTAL DEPTH 10.0" (3.0m)	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subengular to subrounded, calcuracus, some fine to coarse and, trace nonplestic sit; occasional cobbies to 10" size; sign II calinche. GP. GM. dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous, some fine to coarse sand, trace nonplastic sit; occasional cobbles to 10" size; GP GP dense TOTAL DEPTH 10.0" (3.0m)

LOG OF TEST PIT CE-P-19
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 1000

71 aure 11-4 18

UGRO NATIONAL INC.

23 DEC 80

V8 AF-21

DEPTH SSS SSS SCIL DESCR SOLUTION SM SILTY SAND, light brown poorly graded, dry, subant calcareous; some nonplast or aveil; stage III (caliche (0.))	GR SA F1 LL
	gular to subrounded, ic silt; some fine 5' - 1.5'); stage vertical walls stable
very dense	26 43 31
2 - TOTAL DEPTH 1.5' (0.5	cementation at 1.5' exceeded capacity of Case 580C backhoe
3-	
4-	
5-	
8-	
7-	
9-	
3 10-	

SURFACE ELEVATION: 2560' (780m) -SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-20

LOG OF TEST PIT CE-P-20 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - DMD

FIEURE II-4-19

UGRO NATIONAL INC.

BULK SAMPLE	EPTH 🗔	LITHOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV ALY:	S I S	
3138	0 1 - 2 - 3 - 4 -	HLITH	GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace combles to 6" size.	vertical walls stable	SR	SA 25	FI	P
- 2	5 6 7				TOTAL DEPTH 7.0' (2.1m)	cementation at				
	8				TOTAL BELLITY 7.0 12.1111	7.0' exceeded capacity of Case 580C backhoe				
3	10-		(7 44 s							

LOG OF TEST PIT CE-P-21
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - DMO

FIGURE **1** 4 20

VORO NATIONAL IN

BULK SAMPLE	METERS S	FEET H	ITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN		SIS		
100	0	1 -	17	GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; occasional cobbles to 6" size; stage III caliche (0.0" - 3.0"); stage IV (3.0").	vertical walls stable	GR	SA	FI	T.	P
					very dense		1					
	- 1	3-				TOTAL DEPTH 3.0' (0.9m)	cementation at 3.0' exceeded capacity of Case 580C backhoe				i	
		5 -										
		8 –			ļ							
	- 2	7 -										
	_	8 -										
		9 -			; ; !							
	- 3	10-	ı									

SURFACE ELEVATION: 2420' (738m) SURFICIAL BEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-22

LOG OF TEST PIT CE-P-22 **OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA**

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE Ⅱ 4 21

SABPL	DEP		THOLOGY	uscs	ONS! STENCY	SOIL DESCRIPTION	REMARKS	1 -	IEV LY:		
	0	FEET		GP- GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic slift; trace cobbles to 6.0" size; stage III caliche (0.0' - 1.0'); stage IX caliche (1.0').	vertical walls	GR	SA	FI	LL !
	: -	2-				TOTAL DEPTH 1.0' (0.3m)	cementation at 1,0' exceeded capacity of Case 580C backhoe				
	-1	3-4-									
			ATION: 2460'			LOG OF TEST PIT CE-P-23					
	•	1				SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; trace nonplastic silt; trace cobbles to 6" size; stage II caliche (0.0' - 5.0'); stage IV caliche (5.0').		68	22	10	
	 	3-		GP-	dense		cementation at 5.0' exceeded capacity of				
	-1	3- 4-			dense	TOTAL DEPTH 5.0' (1.5m)	cementation at 5.0' exceeded				
URF	AGE E	3	ATION: 2460 SLOBIC UNIT:	GM (750	n)	DG OF TEST PIT CE-P-24 LOGS OF OPE	cementation at 5.0' exceeded capacity of Case 580C	E SI	TE		

23 DEC 80

VSAF-36

BULK SAMPLE	METERS	FEET	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	- 1	1EV ALY	E S I S		
198	0	1 -		GМ	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; little nonplastic silt; stage III caliche.		SR	SA	FI	LL	9
	- 1	3 - 4 - 5 - 8 - 7 - 8 - 9 -		SP- SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded; calcareous; little fine gravel; trace nonpiastic silt; stage III caliche; occasional cobbles to 10" size.	vertical walls stable	13	77	10		
	-	10-				TOTAL DEPTH 10.0' (3.0m)		1				

SURFACE ELEVATION: 2530' (771m) SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-25

LOG OF TEST PIT CE-P-25 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMB

F16086 II-4-23

UGRO NATIONAL INC

BULK SAMPLE	FEET #	L!THOLOGY	nscs	CONSISTENCY	SCIL DESCRIPTION	REMARKS	AN	IEV LYS	SIS	LL	PI
0	1 -		SW- SM		GRAVELLY SAND, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcareous; some fine gravel; trace nonplastic slit; stage Ⅲ caliche (0.0′ 4.0′), stage Ⅳ caliche (4.0′); occasional cobbles to 6″ size.	vertical walls		63			
-1	3 -				TOTAL DEPTH 4.0' (1.2m)	cementation at 4.0' exceeded					
-	5 -					capacity of Case 580C backhoe					
- 2	B -										
	7-										
	9 -	ı									
3	10-										

SURFACE ELEVATION: 2580' (786m) SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-26

LOG OF TEST PIT CE-P 26
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 0000

FIGURE 1 4 24

UGRO NATIONAL ING

H2 AF-2

BULK SAMPLE	EPTH	ITHOLOGY	uscs	C ONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV	S 1 S	_
	1 - 2 -		GM	dense	SANDY GRAVEL, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; little nonplastic silt; stage III coliche (0.0' - 3.0'); stage II caliche (3.0' - 10.0'); occasional cobbles to 6" size.	vertical walls stable	GR	SA	FI	
	8 · 9 ·		SP- SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little fine gravel; trace nonplastic silt.		14	76	10	
[10.				TOTAL DEPTH 10.0' (3.0m)					

SURFACE ELEVATION: 2620' (700m) SURFICIAL BEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-27

LOG OF TEST PIT CE-P-27 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SMO

FIGURE 11-4-25

UGRO NATIONAL INC

BULK SAIPPLE	•7H □	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		ALY:	E S ! S		
12 E	FEET	5		C 0943			BR	SA	FI	LL	F
	1		SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse gravel; little nonplastic silt; stage III caliche.		41	43	16		
1	3-4-				SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic silt; trace gravel; stage III caliche.						
	5 6		SM	dense		vertical walls stable					
	7-							:			
	9 -										
3	10-				TOTAL DEPTH 10.0" (3.0m)	*					

SURFACE ELEVATION: 2860' (811m) SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-28

LOG OF TEST PIT CE-P-28
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE 1 4 26

VORO NATIONAL INC

BULK SAMPLE	EPTH	LiyHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN		\$1\$		
1 98 1		111		Ž O			GR	SA	F١	LL	P
	1 -				SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous, little nonplastic silt; trace gravel; stage III caliche (0.0' - 10.0').						
- 1	3 -										
-	5 ~		SM	dense		vertical walls stable					
- 2	8 ? 7 -										
	8 - 9 -										
Γ,	10-				TOTAL DEPTH 10.0' (3.0m)		1				

SURFACE ELEVATION: 2680' (817m) SURFICIAL BEOLOGIC UNIT: A1

LOG OF TEST PIT CE-P-29

LOG OF TEST PIT CE P- 29
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG

F16URE 1 4 27

Vero Mational inc

BULK SAMPLE	HTG30	807	nscs	C OMSISTENCY	SOIL DESCRIPTION	REMARKS	- 1	A LY:			
		5		S S S S S S S S S S S S S S S S S S S			GR	SA	FI	LL	Ţ
	1 2 3 1 4 5 5 8 2 7		SM	dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; little fine gravel; stage I caliche (0.0' 5.0'); stage III celiche (5.0' - 7.0').	vertical walls stable	13	64	23		
	8		SP. SM	dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some fine to coarse gravel; trace nonplastic slit; stage II caliche.		43	48	9		
- 1		1	١ .		TOTAL DEPTH 10.0' (3.0m)					1	

SURFICIAL GEOLOGIC UNIT: A1

LOG OF TEST PIT CE-P-30

LOG OF TEST PIT CE P-30 **OPERATIONAL BASE SITE** COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE II 4 28

23 DEC 80

BULK SAMPLE	METERS OF		LITHOLOGY	nscs	C ONSISTENCY	SOIL DESCRIPTION	REMA	IRKS	1	IEV			
3	¥	FEET	5		CONS				BR	SA	FI	LL	Ţ
	- 1	3-3-6-		SM	dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; little fine gravel; stage II caliche.	1	al walls			22		
	. 3	7 -		SP	dense	SAND, brown, fine to coarse, poorly graded, dry, subangular to subrounded; trace gravel; stage III caliche. TOTAL DEPTH 10.0' (3.0m)							

LOG OF TEST PIT CE-P-31 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SILING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

flaurt
[] 4 29

VGRO NATIONAL INC.

BULK SAWPLE	METERS S	FEET HIL	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	•	IEV ALY:			
ᇐ			5		NO O			QR	SA	FI	LL	P
	1	2 - 3 - 4 -		SM	dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; little nonplastic silt; trace gravel; stage III caliche.	vertical walls stable					
	- 2	8 7 8 9		SW-	dense	SAND, light brown, fine to coarse, well graded, dry, subangular to subrounded; calcareous; trace fine gravel; trace nonplastic silt; stage II caliche.		12	79	9		
						YOTAL DEPTH 10.0" (3.0m)						

SURFACE ELEVATION: 2870' (875m) SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-32

LOG OF TEST PIT CE-P-32
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - DMO

FI EURE 11-4-30

UGRO NATIONAL INC

BULK SAMPLE	METERS 30	FEET HI	LITHOLOGY	nscs	CONSI STENCY	SOIL DESCRIPTION	REMARKS	AN	JEY ALY:	\$15	
ng Park	0	1 _	П	SM	dense	SILTY SAND, light brown, fine to coarse, poorly graded, dry, subangular to subrounded, calcareous; some nonplastic silt; little fine gravel; stage III caliche; trace cobbles and boulders to 30" size.				32	P
	-1	3 4 5				SANDY GRAVEL, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcareous; some fine to coarse sand; stage II calliche.	vertical walls stable				
	- 2	6 — 7 —		GW	dense			54	44	2	
	- 3	9				TOTAL DEPTH 10.0' (3.0m)	•				

SURFACE ELEVATION: 2680' (817m) SURFICIAL GEOLOGIC UNIT: A50

LOG OF TEST PIT CE-P-35

LOG OF TEST PIT CE-P- 35 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - DMD

FIGURE II-4 33

<u>vero national inc</u>

REMARKS	SGIL DESCRIPTION	CONSISTENCY	uscs	THOLOGY	-	PTH	WETERS	BULK SAMPLE
vertical walls sloughing	SANDY GRAVE L, light brown, fine to coarse, well graded, dry, subangular to subrounded, calcareous, some fine to coarse sand; trace cobbles to 10" size; stage III caliche (0.0" 2.0"); stage I caliche (2.0" 4.0"); stage II caliche (4.0" - 10.0").	dense	GW-			1334 0 1	31340	1106 E001

LOG OF TEST PIT CE-P-36 OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - MO

FISURE 11-4-34

SECTION 5.0

LABORATORY TEST RESULTS

5.0 EXPLANATIONS OF LABORATORY TEST RESULTS

Laboratory test results are presented in this section. Table II-5-1 contains a summary of laboratory test results. This table contains results of sieve analysis; plasticity data; insitu dry unit weight, moisture content, degree of saturation, and void ratio for drive and Pitcher samples; results of compaction tests; and specific gravity of solids. Other tests such as triaxial compression, unconfined compression, direct shear, consolidation, chemical, and California Bearing Ratio (CBR) are indicated on the table. Tables II-5-2 through II-5-4 and Figures II-5-1 through II-5-5 present results of triaxial compression, unconfined compression, direct shear, consolidation, chemical, and CBR tests.

All tests were performed in general accordance with the American Society for Testing and Materials (ASTM) procedures. The following list presents the ASTM designations for the tests performed during the investigation.

Type of Test	ASTM	Designations
Particle Size Analysis	D	422-63
Liquid Limit	D	423-66
Plastic Limit	D	424-59
Unit Weight	D	2937-71
Moisture Content	D	2216-71
Compaction	D	1557-70
Specific Gravity of Solids	D	854-58
Triaxial	D	2850-70
Unconfined Compression	D	2166-66
Direct Shear	D	3080-72
Consolidation	D	2435-70
Test for Alkalinity (pH)	D	1067-70
Water Soluble Sodium	D	1428-64
Water Soluble Chloride	D	512-67
Water Soluble Sulphate	D	516-68
Water Soluble Calcium	D	511-72
Calcium Carbonate	D	1126-67
California Bearing Ratio (CBR)	D	1883-73

Explanation for the tables and figures presented in this section are as follows:

- A. Activity Number Boring or trench sample designation.
- B. Sample Number Prefix indicates the type of sample; explanation is at the bottom of the table.
- C. Sample Interval This is the depth range measured from ground surface over which the sample was obtained.
- D. Percent Finer by Weight Presents the results of laboratory particle-size analysis (ASTM D 422-63) performed on representative soil samples at the depth indicated. The numbers represent the percent (by dry weight) of the total sample weight passing through each sieve size indicated.
- E. Atterberg Limits (ASTM D 423-66 and D 424-59) -
 - LL Liquid Limit, the water content (as percent of soil dry weight) corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil (ASTM D 423-66).
 - PL Plastic Limit, the water content corresponding to an arbitrary limit between the plastic and the semisolid state of consistency of a soil (ASTM D 424-59).
 - PI Plasticity Index, numerical difference between the liquid limit (LL) and the plastic limit (PL) indicating the range of moisture content within which a soil-water mixture is plastic.
 - NP Nonplastic.
- F. USCS Unified Soil Classification Symbols are given here; see Table II-2-1 in Section 2.0, "Boring Logs", for complete details of USCS system.
- G. In Situ Presents results of tests on drive and Pitcher samples.
 - Dry Unit Weight indicates dry unit weight of soil determined as per ASTM D 2937-71.

Moisture Content - weight of water reported in percent of dry weight of soil sample (ASTM D 2216-71).

Saturation - the degree of saturation in a soil sample is defined as the ratio (in percent) of the volume of water to the volume of all voids in the soil.

Void Ratio - the numerical ratio of the volume of voids to the volume of solids in a soil specimen.

- H. Compacted Indicates results of laboratory maximum dry density and optimum moisture content test as per ASTM D 1557-70.
- I. Specific Gravity of Solids (ASTM D 854-58) Indicates the ratio of 1) the weight in air of a given volume of soil solids at a stated temperature, to 2) the weight in air of an equal volume of distilled water at a stated temperature.
- J. Triaxial The triaxial compression tests were performed in accordance with the procedures of ASTM D 2850-70. The following explanations and definitions apply.

Triaxial Compression Test - a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure. An additional compressive load is then applied, directed along the axis of the specimen called the axial load.

Consolidated-Drained (CD) Test - a triaxial compression test in which the soil was first consolidated under an all-around confining stress (test chamber pressure) and was then compressed (and hence sheared) by increasing the vertical stress. "Drained" indicates that excess pore water pressure generated by strains are permitted to dissipate by the free movement of pore water during consolidation and compression.

Consolidated-Undrained (CU) Test - a triaxial compression test in which essentially complete consolidation under the confining (chamber) pressure is followed by a shear test at constant water content.

Confining Pressure (o_3) - the isotropic chamber pressure applied to the soil specimen during consolidation and compression.

Maximum Deviator Stress (o_1-o_3) - the difference between the major and minor principal stresses in the specimen at failure. The major principal stress on the specimen is equal to the unit axial load plus the chamber pressure and the minor principal stress on the specimen is equal to the chamber pressure.

Strain Rate - axial strain, , at a given stress level is defined as the ratio of the change in length (L) of the specimen to the original length of the specimen (L_0). The rate of strain was controlled during the test so that this ratio increased at equal increments for each minute of testing.

Back Pressure - pressure in excess of atmospheric applied to the pore water of a soil sample. Back pressure is usually applied to 1) increase saturation of the sample, or 2) simulate the actual in-situ pressure regime.

- K. Unconfined Compression Test procedures were as described in ASTM D 2166-66. Unconfined compressive strength is defined as the load per unit area at which an unconfined prismatic or cylindrical specimen of soil will fail in a simple compression test. In these methods, unconfined compressive strength is taken as the maximum load attained per unit area or the load per unit area at 20 percent axial strain, whichever occurred first during the performance of a test.
- L. Direct Shear The procedures of ASTM D 3080-72 were followed for direct shear testing. In this test, soil under an applied normal load is stressed to failure by moving one section of the soil container (shear box) relative to the other section. Normal stress is the value of load per unit area acting perpendicular to the plane of shearing. Maximum shear strength is defined as the maximum resistance (ksf) of a soil to shearing (tangential) stresses.

- M. Consolidation (ASTM D 2435-70) A consolidation test is a test in which a cylindrical soil specimen is laterally confined in a ring and compressed between porous plates. The term "consolidation", as used here, indicates the gradual reduction in volume of the soil mass resulting from an increase in compressive stress (axial load per unit area).
- N. Chemical The chemical tests performed on soil samples included: pH; water soluble sodium, chloride, sulphate, calcium; and calcium carbonate content. pH is an index of the acidity or alkalinity of a soil in terms of the logarithm of the reciprocal of the hydrogen ion concentration.

 ASTM test procedure designations for these chemical tests are included in the list on the first page of these Explanations.
- O. CBR California Bearing Ratio (CBR) is the ratio (in percent) of the resistance to penetration developed by a subgrade soil to that developed by a standard crushed-rock base material. The procedures for conducting a CBR test were as outlined in ASTM D 1883-73. The materials tested for CBR were also analyzed for particle-size distribution (ASTM D 422-63) and compaction characteristics (ASTM D 1557-70). The term "percentage of maximum density" indicates the ratio (as a percentage) of the compacted sample dry unit weight to maximum dry density obtained in the laboratory from ASTM D 1557-70, "Moisture-Density Relations of Soils Using 10-Pound (4.5-kg) Hammer and 18-inch (457-mm) Drop."

	(3)								PERCE	IT FIN	ER BY I	MEIGHT		_
E a		SAMPLE I	NTERVAL		S	TANDARI	SIEV	E OPEN	ING		บร	STA	NDARD	31
ACT I V I TY Number	SAMPLE NUMBER			BLDRS	COBB	LES		GRA					ND	
¥ ¥	S	FEET	METERS	24"	12"	6"	3"	1½"	3/4"	3/8"	4	10	40	Ι
CE-B-1	SS-2	1.5 - 2.5	0.46 - 0.76					100	93	61	42	29	16	Τ
	SS-5	7.0 - 7.5	2.13 - 2.29					100	92	61	46	36	28	\mathbf{L}
	D-10	30.5 - 36.3	9.30 - 11.06										<u> </u>	\mathbf{L}
	D-11	35.2 - 36.0	10.73 - 10.97						100	97	94	90	76	L
<u></u>	D-11	35.2 - 36.0	10.73 - 10.97	L					<u> </u>	Ļ	 		└	Į,
	P-12	40.6 - 41.1	12.37 - 12.53						-	<u> </u>	<u> </u>		↓	1
	P-13	45.6 - 46.2	13.90 - 14.08	-						 	100	98	87	1
<u> </u>	P-14	50.6 - 51.3	15.42 · 15.64	_					!	 	<u> </u>	<u> </u>	 	╀
<u> </u>	P-15	59.0 - 59.7	17.98 - 18.20						<u> </u>	 		<u> </u>	100	┸
	P-15	59.7 - 60.4	18.20 - 18.41	 					.	<u> </u>	├ ──	├	₩	╄
<u> </u>	P-15	60.4 · 61.1 68.0 · 68.8	18.41 - 18.62 20.73 - 20.97	├ ──┤					├ ─	100	98	00	97	╁
-	P-16 P-16	68.8 - 69.6	20.73 - 20.97	-						100	30	98	 9/ -	╁
-	D-19	99.0 - 100.0	30.18 30.48	-						 	├──	├	}	╁
	0.19	99.0 - 100.0	30.16 30.46	-						 	├──	├──	 	╁
 	-			 							 	-	├──	╄
CE-B-2	SS-1	0.0 - 1.5	0.00 - 0.46	 i				100	88	62	44	34	28	╆
1/12-0-2	D-9	19.2 - 20.0	5.85 - 6.10	 -				-30		<u>~~</u>	 	 	 -	十
-	b-12	35.0 - 36.0	10.67 - 10.97										 	十
	D-16	49.1 - 49.9	14.97 - 15.21	1					<u> </u>			 		十
	D-17	60.1 - 60.9	18.32 - 18.56	†					 	 	100	98	91	†
	P-18	62.5 - 62.9	19.05 - 19.17											1
	P-18	62.9 - 63.6	19.17 - 19.39										\vdash	十
	P-18	63.6 - 64.3	19.39 - 19.60						100	94	89	84	70	1
	P-19	66.7 - 68.0	20.33 - 20.73							100	97	94	88	
	P-20	73.0 - 73.8	22.25 - 22.49	i								100	99	T
	P-20	73.8 - 74.5	22.49 - 22.71											Т
	P-21	83.0 - 84.0	25.30 - 25.60									100	98	Γ
	P P.22	90.8 - 91.7	27.68 - 27.95											Γ
	P-23	101.6 - 102.3	30.97 - 31.18											Ι
	P-25	119.8 - 120.5	36.52 - 36.73									L		Ţ
	P-26	140.8 - 141.5	42.92 - 43.13								<u> </u>	<u> </u>	 	
	P-27	161.4 - 162.0	49.19 - 49.38	-		<u> </u>			 	 	<u> </u>	├	 	╁
CE-B-3	SS-3	4.4 - 5.5	1.34 - 1.68	t		<u> </u>		100	85	44	33	25	15	†
	D-9	18.5 - 19.2	5.64 - 5.85							<u> </u>				T
) — · · · · · · · · · · · · · · · · · ·	1					 					T
CE-B-4	D-6	10.0 - 10.8	3.05 - 3.29											T
	b-9	25.0 - 26.0	7.62 - 7.92											T
	b-14	49.0 - 50.0	14.94 - 15.24						100	95	85	63	44	Т
			· · · · · · · · · · · · · · · · · · ·						 	<u> </u>				T
CE-B-5	D-8	15.2 - 16.0	4.63 - 4.88						1					T
	D.9	20.0 - 20.5	6.10 - 6.25											П

NOTES:

(a) Sample types

(c) USCS - Unified Soil Classification System

\$\$ - Standard split spoon

P - Pitcher

(d) * Indicates that test has been performed and results are included in this report

D - Fugro Drive B,b - Bulk

(b) NP - Not Plastic

F											11	I-S I TU			C	OMPACTE)		ê	_ =
	DARD S	IEVE N	10.	PART	(mm)		TERBE IITS (USCS	DRY (TINU	MOISTURE CONTENT (\$)	SATURATION (\$)		MAXI	MUM	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION
BA	10		Sil	T OR C			1113 (.0)	(c)	WEIG	3HT	NTE (\$)	S (\$)	VOID RATIO	DRY DE	MSITY	1 (\$)	SPECIFIC GRAVITY OF SOLID	IAX	35
	40	100	200	.005	.001	L	PL	Pi		(pcf)	(kg/m³)	2 3	SAI	25	(pcf)	(kg/m ³)	2 3	222	=	3 3
Н	16	12	10						GP-GM											
	28	23	20						GM											
									GP-GM	132.0	2115	6.8	66.5	0.28						
	76	65	58					NP	ML											
									ML	88.2	1413、	10.4	30.9	0.41						
e e									SM	98.0	1570_	10.1	38.1	0.72			L			L
	87	68	48						SM	94.6	1515	9.9	34.2	0.78		<u> </u>				
						L			SM	87.5	1402	15.5	45.3	ე.93			Ĺ			
المطف	100	99	97	30	12	32	26	6	ML	88.5	1418	10.8	32.3	0.90	ļ	L	L		*	
									ML	78.7	1261	24.5	58.0	1.14		L	L		*	
									ML	87.9	1408	13.6	40.1	0.92		 			*	1
	97	96	95			44	27	17	ML	72.2	1157	30.8	62.5	1.33		 _		2.70		
		<u> </u>				<u> </u>			ML	76.5	1226	26.0	58.5	1.20		 -	 			
		<u> </u>				ļ	ļ		GP-GI.1	122.1	1956	8.3	58.9	0.38		 -	 			
		L				<u> </u>	ļ				ļ					 	 -	 i		
	20	25	10								ļ	II					 		<u> </u>	
	28	25	19						GM	120.1	2220	L- 	27.0	0.04		├	 			
		<u> </u>				-			GP-GM GM-GC	139.1	2228	2.1	27.2	0.21			 			+
			-			-			GP-GM	134.0	2147	3.0	31.6	0.26		 	 	 		1
	91	86	71			.		NP	ML	97.1	1556	9.9	36.2	0.74		 		 	 	1
	-31	- 30	-	 		-		101	SM	97.1	1556	26.0	94.9	0.74		 	 	 		1
						}		-	SM	105.9	1597	21.1	96.3	0.74		 -	 	 	*	
3	70	52	37			 		NP	SM	103.4	1656	19.4	83.4	0.63		 		 	*	1
	88	82	77			-			ML	103.0	1650	15.2	64.8	0.64		 	 	 	<u> </u>	1
9	<u> </u>	99	98					NP	ML	80.0	1281	22.7	55.2	1.11		┼	 	 	-	1
			-55						ML	79.9	1280	31.8	77.3	1.11		 	<u> </u>	1		
9	98	94	87						ML	84.4	1352	24.9	100.0	0.48		 				
									ML	84.5	1354	33.9	92.2	3.99			1	1		
									ML	98.6	1580	17.4	66.3	0.71		 				
									ML	93.5	1498	18.7	63.0	0.80						
									ML	102.7	1645	17.4	73.5	0.64						
									ML	98.2	1573	22.4	84.6	0.72						
																			<u> </u>	
5	15	11	9						GP-GM									L	L	1
									GP-GM	136.8	2192	7.2	83.5	0.23				<u> </u>		
									GP-GM	112.3	1794	5.6	30.0	0.51			1	 _	!	
									SP-SM										 	
3	44	3 5	30						SM			26.8				<u></u>		L		1
																		<u> </u>	 -	1
									GP-GM	124.4	1993	4.1	31.4	0.35					!	
									GP-GM	134,1	2148	7.5	78.8	0.26					<u></u>	_

SUMMARY O OP COYOT

MX SITION DEPARTMENT OF

Tund

1		1		I-S I TU			C	OMPACTE	7	7	-	- =		=		
	USCS (c)	DRY WELL	UNIT Ght	MOISTURE CONTENT (%)	SATURATION (%)	VOID RATIO	MAXI DRY DE	MIIM	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED Compression	DIRECT Shear	CONSOLIDATION	CHEMICAL	CBR
		(pcf)	(kg/m³)	⊒ 3	SA	25	(pcf)	(kg/m ³)	5 🗷	S 20	11) (n	2 20	5	3	5
	GP-GM															
	GM															
1	GP-GM	132.0	2115	6.8	66.5	0.28										
4	ML				-											
4	ML	88.2	1413.	10,4	30.9	0.41						*				
4	SM	98.0	1570	10.1	38.1	0.72										
H	SM	94.6	1515	9.9	34.2	0.78						ļ	*			
4	SM	87.5	1402	15.5	45.3	0.93										
+	ML	88.5	1418	10.8	32.3	0.90			}		*	L				
+	ML	78.7	1261	24.5	58.0	1.14			L		*					
H	ML	87.9 72.2	1408 1157	13.6 30.8	40.1 62.5	0.92			<u> </u>	2.70	*			*	*	
	ML	76.5	1226	26.0	58.5	1.33 1.20				2.70		<u> </u>		-		
+	GP-GI-1	122.1	1956	8.3	58.9	0.38						 				
+	01 0111	122.1	1333	0.5	56.5	J.36										
+													 	_		
+	GM															
†	GP-GM	139.1	2228	2.1	27.2	0.21										
	GM-GC	10011			27.2	0,27									*	
	GP-GM	134.0	2147	3.0	31.6	0.26							\vdash			
T	ML	£7.1	1556	9.9	36.2	0.74						*				
1	SM	97.1	1556	26.0	94.9	Ú.74					-			*		
	SM	105.9	1597	21,1	96.3	0.59					*					
	SM	103.4	1656	19.4	83.4	0.63					*	<u> </u>				
	ML	103.0	1650	15.2	64.8	0.64							*			
	ML	80.0	1281	22.7	55.2	1.11			<u> </u>					*	*	
	ML	79.9	1280	31.8	77.3	1.11										
	ML	84.4	1352	24.9	100.0	0.48							*			
	ML	84.5	1354	33.9	92.2	0.93										
	ML	98.6	1580	17.4	66.3	0.71										
1	ML	93.5	1498	18.7	63.0	0.80						L				
+	ML	102.7	1645	17.4	73.5	0.64										
1	ML	98.2	1573	22.4	84.6	0.72			l				├		*	
+]				Ļ			 - -	 		<u> </u>	igsquare
+	GP-GM GP-GM	100 -	24==						<u> </u>			<u> </u>	-	L	 	
1	GP-GM	136.8	2132	7.2	83.5	0.23			<u> </u>						 	$\vdash \vdash$
		440 -	470 :						Ļ			<u> </u>	 		<u> </u>	$ldsymbol{\sqcup}$
_	GP-GM	112.5	1794	5.6	30.0	0.51			L	 	ļ- -		ļ	<u> </u>	<u> </u>	
+	SP-SM										- -	-			*	
1	SM			26.8					 				┝──┤		 	
	CD C'4	124.4	1000						.	ļ	 -	 	-		 	$\vdash \vdash \dashv$
	GP-GM GP-GM	124.4 134.1	1993	4.1	31.4	0.35						 	┝──┤	L		$\vdash \!$
	3F -01VI	134,1	2148	7.5	78.8	0.26			l		L		L			لييسا

SUMMARY OF LABORATORY TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 5000

1.5-1 1.0F.7

UBRO NATIONAL INC.

AFV-01

	<u> </u>		· -	T					PERCE	IT FINE	R BY	VEIGHT		
Ea	E :R (a)	SAMPLE 1	NTERVAL		S	TANDARD	SIEV	E OPEN	ING		U S	STAN	DARD	SIEVI
ACT I V I TY Number	SAMPLE Number			BLDRS	COBE	LES		GRA	VEL			SA	ND	
2 2	\$ ₹	FEET	METERS	24"	12"	6"	3"	1½"	3/4"	3/8"	4	10	40	10
	b-10	25.0 · 26.0	7.62 - 7.92					100	73	44	23	12	8	6
	ხ∙15	50.0 - 51.0	15.24 - 15.54											
	b-27	159.0 - 160.0	48.45 - 48.77							100	97	66	33	28
CE-B-6	b-3	5.0 · 7.0	1.52 - 2.13	_	<u> </u>			100	47	41	34	26	19	15
CC-B-0	D-6	12.7 - 13.5	3.8/ - 4.11	╂┈┤		 -		100	4,	41	- 34		13	+
	D-7	17.4 - 18.0	5.30 - 5.49	1			 		-				 	┼─
	D-8	19.5 - 20.5	5.94 - 6.25	+		 -	 	100	98	33	68	61	54	37
	D-9	26.0 - 27.0	7.92 - 8.23	+-				100	93	87	68	49	45	36
	D-10	30.5 - 31.5	9.30 - 9.60	╂			 	100	79	62	48	3,	27	2
	0:10	30,5 - 31.0	9.30 - 9.03	╂──			 -	190	18	02	40	3,	21	 -
CE-B-7	P-1	3.6 - 1.3	0.18 - 0.40										 	
	P-2	3.5 · 5.5	1.07 1.68											\Box
I	P-3	7.3 - 8.0	2.23 - 2.44						100	98	97	94	87	6€
	SS 4	4.8 - 6. J	1.46 - 1.83						10ა	91	86	81	67	51
	D-8	10.5 - 11.5	3.20 - 3.51					100	83	67	55	43	22	9
	P-10	17.5 18.3	5.33 · 5.58									130	98	77
	P-10	18.3 - 19.5	5.58 - 5.79											
	P-11	21.3 - 22.5	6.49 - 6.71											
	P 12	22.0 23.0	6.71 - 7.01										100	93
	P-13	25.0 · 25.7	7.62 - 7.83											
	P-14	32.0 - 32.7	9.75 - 9.97						100	99	99	99	98	93
	P-15	33.3 - 34.1	10.15 - 10.39]		
	۲ 16	37.5 · 38.1	11.43 - (1.61											
	P 19	46.8 - 47.7	14.26 - 14.54		_									
	P 20	48.9 49.4	14.90 - 15.36										101	95
	P 20	49.4 50.0	15.06 i5.24											
<u> </u>			ļ	.			<u> </u>					ļ	ļ	<u> </u>
CE-B-8	SS-6	8.3 - 9.5	2.44 - 2.90	1		L	<u> </u>		133	91	71	53	<i>37</i>	<u> 25</u>
	P.7	10.2 - 10.6	3.11 3.23	-			 	L	}		<u> </u>	135		
	P-7	10.2 11.0	3.11 - 3.35	4			<u> </u>	<u> </u>				100	Ĝa	98
	P-7 P-3	11.0 · 11.5 15.5 · 16.0	3.35 - 3.51 4.72 - 4.88	1			 	<u> </u>	├	 -	100	00	06	<u> </u>
——	P-9	20.0 - 20.7	6.10 - 6.31	1			$\vdash \vdash$	 		<u> </u>	100	99 (00	99 99	77
—				1		 -		L	 		 -			<u></u> 25
	P-10	25.8 - 26.6	7.36 - 8.11	1			 	 		}	 	100	98	9€
	P-11	30.0 - 30.7	9.14 - 9.36	1			 	ļ	 		 	100	98	91
	P-11	30.7 · 31.5 36.5 · 37.5	9.37 · 0.6 .	}	 -	ļ	<u> </u>	<u> </u>	135					-
	b-13 P-18		11.13 - 11.43	╂─┤			<u> </u>	<u> </u>	100	90	94	6.5	24	15
}		60.9 61.9	18.56 - 18.87	╂		ļ <u></u>		<u> </u>		<u> </u>		<u> </u>		
<u> </u>	P-19	68.7 69.4	20.94 - 21.53	1				ļ		 		ļ	$oxed{\Box}$	-
	P-20	80.6 - 81.3	24.57 - 24.78	1		ļ	 -	ļ	<u> </u>			- 22	70	
<u> </u>	P-21	86.0 - 86.7	26.21 · 26.43	╂		 	<u> </u>	ļ	-	100	99	98	78	_28
	P-22	90.6 - 91.2	27.61 27.86			L	L	L	<u> </u>	L	L			

NOTES:

(a) Sample types

- (c) USCS Unified Soil Classification System
- SS Standard split spoon
- P Pitcher
- (d) * Indicates that test has been performed and results are included in this report
- D Fugro Drive
- B,b Bulk
- (b) NP Not Plastic

MICROCOPY RESOLUTION TEST CHART

Ç.										11	I-SITU			C	OMPACTE			€	e 5
20. S	IEVE N		PART	(mm)		TERBE IITS (uscs	DRY (MOISTURE Content (%)	SATURATION (%)	0	MAXI Dry de	MUM Y 1 2 M	OPTIMUM NOISTURE (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION
50	100	200	T OR C	.001	LL	PL	PI	(c)	(pcf)	(kg/m³)	MOIST CONTE (%)	12 C	VOID RATIO	(pcf)	(kg/m³)		SPE GRA	Œ	울등
	6	5	.003	.001		1.		GW-GM	(рст)	(KB/M)		-		(50.7	(-	
		<u> </u>						GP		 					 -	 			
33	28	25						SM		 					<u> </u>	 			
19	15	12						GP-GM											
								GP-GM	114.5	1834	1.3	7.7	0.47			 			
		- 20				} _	ļ	GP-GM	101.7	1629	4.1	17.0	0.66		}	 			├ ──┤
54	37	23	ļi			ļ	100	SM	120.9	1937	1.3	9.2	0.39		 	 			
45	36 21	28 17		 		}	NP NP	SM GM	107.4	1721 2203	4.1 5.5	19.4	0.57		 	 			
27		 '' 				 	INF	GIVI	137.5	2203	3.5	00,3	0.23		 	 	 		
-	 	 		 	-	t	 -	SM	104.2	1669	2.7	11.7	0.62		t	1			
								SM	102.1	1636	5.7	23.8	0.65						
87	66	44			23	18	5	SC-SM											
67	51	32						SM											
22	9	6						SP-SM	121.4	1945	3.1	21.4	ე. 3 9		L				
98	77	48		ļ		L	<u> </u>	SM	105.9	1697	11.6	52.8	0.59		ļ				1
	ļ			 -	 	 	 	SM	110.8	1775	11.6	59,9 68.6	0.52		 	 -			
400		72	46	20	41	22	10	SI/(I	102.9 115.9	1648 1857	16.2 11.2	66.6	0.45						
100	93	73	46	26	+++	122	19	CL	94.7	1517	17.4	60.2	0.78		 	 		 	
98	93	75	 	 -	39	20	19	CL	93.5	1498	23.1	67.7	0.80			 			
	1 33	 	 	 			'-	CL	80.1	1283	35.9	87.7	1.10	<u> </u>	 	 			
 -	 	 	 	 	·	 		CL	107.6	1724	17.0	81.2	0.57		 				
 					!			CL-ML	85.4	1368	39.3	100.0	0.97						
100	95	82	48	8	26	21	5	CL-NiL	90.3	1447	27.6	86.0	0.87						
								CL-M1	91.3	1463	27.6	88.1	0.85		!				
					L	L			L	<u> </u>	}	ļ	Ļ			 	L		└
32	25	22			<u> </u>	<u> </u>		SM		1			1	 	 	 			
	 	I		<u> </u>	├	├	112	ML	85.6	1371	8.7	24.2 25.6	0.97		ļ	 	 	 -	
99	98	89	} -	 -	├ ──	├	NP	ML ML	83.5 89. 0	1338	9.6	29.2	1.02 0.89	 	}	 			
96	77	49	 -		 	 	NP	SM	91.4	1464	10.2	32.5	0.84	 		 			•
99	35	85	 		+-	 	NP	ML	82.2	1317	14.2	36.5	1.05	<u> </u>	 	 			1
98	96	75	 -		t	1	-	ML	89.3	1431	17.3	52.8							
98	91	71	21	8	1	1	;IP	ML	95.5	1530	15.8	54.8	0.79				2.74		
	T	1	1			1		ML	95.1	1524	18.6	63.7	0.80						
24	15	12						SP-SM											
								Sid	108.6	1740	7.4	36.1	0.55			 	ļ	ļ'	↓
								3M	89,5	1434	21.3	65.1	0.88	<u> </u>	ļ				1
<u> </u>	1					ļ		SM	101.1	1620	11.1	45.1	0.67	 		 	 	 	├ ──┩
78	28	27		 	!	 	 	SM	92.6	1483	24.4	80.4	0.82		 	├		 	
ł	1	1	L	<u> </u>	J	<u> </u>	1	SM	114.4	1833	9.6	54.9	0.47	<u> </u>		يحيسا	لسبسيا		

SUMMARY O OP COYOT

MX SITH DEPARTMENT OF

SUMMARY OF LABORATORY TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

140LE 11-5-1 2 OF 7

UBRO NATIONAL ING.

40.0 - 41.0	12.19 - 12.50	
49.0 - 50.0	14.94 - 15.24	
6.2 - 7.0	1.89 - 2.13	
10.5 - 11.4	3.20 - 3.47	
1.0 - 1.6	0.30 - 0.49	
4.0 - 5.0	1.22 - 1.52	
6.5 - 7.5	1.98 - 2.29	
8.6 - 9.2	2.62 - 2.80	
10.5 - 11.5	3.20 - 3.51	
15.2 - 16.0	4.63 - 4.88	
21.5 - 22.4	6.55 - 6.83	
21.5 - 22.4	6.55 - 6.83	
24.7 - 25.3	7.53 7.71	
30.1- 30.8	9.17 - 9.39	
30.1 - 30.8	9.17 - 9.39	
35.0 · 35.7	10.67 - 10.88	
40.8 - 41.4	12,4 - 12.62	
47.1 - 47.9	14.36 - 14.60	

											I-SITU			C	OMPACTE			3	o 5	
DARD S	IEVE N		PART SIZE	(mm)		TERBE 11TS (USCS	DRY		MOISTURE Content (%)	SATURAT (S)		MAX	MUM	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (0)	UNCONFINED COMPRESSION	ا ا
		SIL	T OR C	LAY			, ',	(c)	WELL		NTE (\$)	10RA (\$)	VOID RATIO	DRY DE	MSITY		SATE	3	음류	HISSEL
40	100	200	.005	.001	LL	PL	PI		(pcf)	(kg/m³)	물망	S	22	(pcf)	(kg/q3)	6 2	S 22 P	7	35	1
								SM	88.3	1415	21.4	63.8	0.91						_	
		- "						SM	103.8	1663	14.4	62.7	0.62						†	
22	15	10						GP-GM											-	H
								SM	105.8	1695	10.1	46.1	0.59							1 7
								SM	93.6	1499	15.6	52.7	0.80							
								SM	133.7	1661	12.5	54.2	0.62							
								SM	107.9	1729	10.7	51.6	ე.56							
64	36	24						SM	112.1	1796	5.1	27.3	0.50							П
66	33	20						SM	109.4	1753	7.6	38.1	0.54							П
								GP-GM	131.4	2105	1.0	9.4	0.28							
								GP-GM	136.8	2192	3.2	37.3	0.23							
								SM	98.2	1573	4.1	15.7	0.72							
								SP-SM	100.9	1616	4.3	17.6	0.67							
								SP-SM	93.4	1496	17.2	57.7	0.80							
								SP-SM	99.6	1596	12.8	50.0	0.69							
44	14	8						SP-SM	110.6	1772	3.7	19.3	0.52							
								SP-SI.i	107.6	1724	5.2	24.8	0.57							
								SM	94.0	1506	7.1	24.3	0.79							
								SM	79.)	1266	22.4	53.3	1.13						*	
54	38	24					ΝP	SM	94.1	1507	12.5	42.8	0.79						*	
68	23	9					ΝP	SP-SIVI	108.7	1741	7.1	35.1	0.55							
								SP-SM	92.5	1482	10.9	35.9	0.82							
50	35	24			37	23	14	SC	102.1	1636	14.1	58.8	0.65						*	
								SM	89.9	1440	22.4	69.2	0.87							
93	68	54			31	18	13	CL	92.3	1479	19.0	62,2	0.83						*	
								CL	99.5	1594	15.8	61.5	0.69							
								SM		1										
87	69	52					iJP	ML	90.9	1456	13.7	43,2	0.85						*	
71 [44	32						Si√i	106.9	1713	9.3	43.7	0.58							

103.7	1661	12.5	54.2	0.62	I	I .	Ī I	l I		1 1	
107.9	1729	10.7	51.6	0.56	_					_	
112.1	1796	5.1	27.3	0.50							*
109.4	1753	7.6	38.1	0.54			 				*
103.4	1733		<u> </u>	0.04	_	 			-		-
131.4	2105	1.0	9.4	0.28	_	 			-		
136.8	2192	3.2	37.3	0.23							
				-					· -		
98.2	1573	4.1	15.7	0.72		†					
100.9	1616	4.3	17.6	0.67							
93.4	1496	17.2	57.7	0.80			1				
99.6	1596	12.8	50.0	0.69							
110.6	1772	3.7	19.3	0.52							*
137.6	1724	5.2	24.8	0.57							
94.7	1506	7.1	24.3	0.79							
79.)	1266	22.4	53.3	1.13						*	
94.1	1507	12.5	42.8	0.79						*	
108.7	1741	7.1	35.1	0.55							
32.5	1482	10.9	35.9	0.82							
102.1	1636	14.1	58.8	0.65						*	
89.9	1440	22.4	69.2	0.87							*
92.3	1479	19.0	62.2	0.83						*	
99.5	1594	15.8	61.5	0.69					l		
										L	<u> </u>
90.9	1456	13.7	43.2	0.85						*	<u> </u>
106.9	1713	9.3	43.7	0.58			<u> </u>				*
115.1	1844	8.2	47.7	J.46		<u> </u>					*
86.9	1392	20.8	59.7	0.94		L			*	 	┞—
97.0	1554	12.4	45.5	0.74			L		*	 	—
90.6	1451	17.8	55.9	0.86				L			<u> </u>
100.3	1607	10.2	40.5	ა.68			L				<u> </u>
110.7	1773	7.3	37.8	0.52		Ĺ			L	*	
											<u> </u>
		1.5								 	
126.7	2030	3.6	29.6	0.33						ļ	
129.9	2081	5.5	49.8				l			L	

29.6 - 30.2	9.02 - 9.20	
36.2 - 37:0	11.03 - 11.28	
41.8 - 42.7	12.74 - 13.01	
48.0 - 48.7	14.63 - 14.84	
50.9 - 51.8	15.51 - 15.79	
59.6 - 60.2	18.17 - 18.35	
69.2 - 69.3	21.09 - 21.12	
69.3 - 70.0	21.12 - 21.34	
70.0 - 70.7	21.34 - 21.55	
80.1 - 81.6	24.4 - 24.87	
99.2 - 100.0	30.24 - 30.48	
0.7 - 1.4	0.21 - 0.43	 - -
4.2 - 4.9	1.28 - 1.49	
6.6 - 7.4	2.01 - 2.26	100 83
9.7 - 10.5	2.96 - 3.20	
13.0 - 14.0	3.96 - 4.27	100
17.2 - 18.0	5.24 - 5.49	1
21.2 - 22.0	6.46 - 6.71	<u> </u>

					_						I-SITU			C	OMPACTE			S	
DARD S	SIEVE N	0.	PART SIZE	ICLE		TERBE			DRY			2		MAXI			ECIFIC AVITY SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION
		211	T OR C		LII	NITS ((b)	USCS (c)	WEI	BHT	MOISTURE Content (\$)	SATURATION (\$)	VOID RATIO	DRY DE	NSITY	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	X	
40	100	200	.005	.001	LL	PL	PI	(0)	(pcf)	(kg/m³)		SAT	22	(pcf)	(kg/m³)		25 EP	₹	35
	1						 	GP-GM	129.4	2373	1.6	14.4	0.30						
							t –												1
								SM			1.5								
								SM	112.3	1799	7.2	39.1	0.50						
								SM	105.9	1697	5.7	26 .0	0.59						
75	33	19						SM	111.2	1781	7.3	38.6	0.52						
								SM	108.9	1745	6.1	29.9	0.55						
7.7								SM	103.3	1655	5.9	25.4	0.63						
3								SM	99.0	1586	5.6	21.5	3.70						
e e e e e e e e e e e e e e e e e e e							L^-	SM	112.8	1807	13.1	71.8	0.49						
								SP-SM	105.9	1697	8.2	37.4	0.59						
Ž								SM	103.0	1650	11.5	48.9	0.64						
				L				SM	88.8	1423	18.6	55.9	0.90]		
								SM	78.3	1254	18.2	42.6	1.15						
								SM	87.7	1405	15.0	43.9	0.92						
								CL-ML	80.6	1291	22.7	56.2	1.09						
100	98	87	26	8	28	21	7	CLML	80.5	1290	14.9	36.9	1.09					*	
								CL-ML	77.0	1234	36.9	83.8	1.19					*	
								SM	111.2	1781	12.2	64. 4	0.52						
								SM	104.4	1672	16.0	70.4	0.61						
								SP-SM											
								SM	104.3	1671	1.5	6.6	0.62						
								SM	105.7	1693	9.7	44.)	0.59						
20	9	5						GW-GM	115.4	1849	8.3	48.8	0.46						
								GW-GM	115.7	1854	5.7	33.9	0.46						
24	8	5						SP-SM	120.0	1922	8.4	56.3	0.40						
								SP-SM	119.3	1906	3.3	21.4	0.42						
								SP-SM	105.7	1693	2.6	11.8	0.59						
I	1							SW-SM	126.9	2033	2.8	22.7	0,33						
26	12	9						SW-SM	122.:)	1954	2.4	16.9	7.38						
								SP-SM	108.9	1745	4.6	22.9	0.55						
								SP-SM	136.2	2182	6.1	69.2	0.24						
								SP-SM			7.7								
								SP-SM	111.7	1789	12.3	65.1	0.51						
<u>.i</u>								SM	111.1	1780	14.4	75.3	J.52						
26	17	13						SM	125.3	2007	3.4	26.4	0.34						
							L^-	GP-GM	112.0	1794	6.5	34.9	0.50						
30	12	9						SW-SM	115.7	1854	4.2	25.1	0.46						
\mathbb{L}^{-}								\$W-SM	115.8	1855	4.8	28.7	0.46						
							Γ	GP-GM	112.6	1804	6.1	33.5	0.50						
36	16	:0						SP-SM	113.0	1810	7.1	39.2	0.49						
								SM	1:7.8	1887	4.8	30.3	0.43						

SUMMARY OF OPE COYOTE

WX SITIMODEPARTMENT OF

*
*
*
*
*
*
*
*
*
*

┢╼╼┢╸╌┩┈╶╉┈┢╶╺┟┈╅ ╌
'

<u> </u>

}
╊╼╼╁╼═╂══╂══┼═┼═┼
▐ ▄▃▃ ▐ ▃▃▐▃▃▐▃▃
<u> </u>

The second secon

									PERCE	NT FINE	R BY	TEIGHT		4
11 m	E (a)	SAMPLE I	NTERVAL		S	TANDARD	SIEV	E OPEN	ING		U S	STAN	IDARD	\$
ACT I V I TY Number	SAMPLE Number			BLDRS	COBE	ILES		GRA	VEL			SA	ND	
A S	S	FEET	METERS	24"	12"	6"	3"	1½"	3/4"	3/8"	4	10	40	
CE-P-31	b-1	0.5 - 2.0	0.15 - 0.61						100	89	83	77	51	-
05.032	<u></u>	70.00	212 244	1					100	96	88	75		
CE-P-32	b-2	7.0 - 8.0	2,13 - 2.44	╂─┤		-	\vdash		100	30	- 00	75	34	Ŧ
CE-P-33	b-1	0.5 - 2.0	0.15 J.61					100	94	88	76	65	43	1
	b-2	5.0 - 6.0	1.52 - 1.83				100	69	35	21	14	11	6	1
CE-P-34	b-1	0.5 - 2.0	0.15 - 0.61	-		 	-	100	83	64	52	41	16	+
00.7.34	<u> </u>	0.0 - 2.0	0.13 0.01	1	 -			 -	 	<u> </u>			 '	1
CE-P-35	b-1	0.5 · 2.0	0.15 - 0.61					100	98	87	81	77	57	1
	b-2	7.0 · 8.0	2.13 - 2.44	1		L	 	100	96	71	46	24	5	1
CE-P-36	b-1	0.5 - 2.0	0.15 - 0.61	1		-	├ 	100	67	49	38	30	17	1
														I
	 		 	+		ļ	┝─┤	<u> </u>		-	ļ	<u> </u>		+
 								_	-		 	-		1
														1
													<u> </u>	1
 			 	1-1	<u> </u>	 	 	ļ	-		 	-	├	Ŧ
	<u> </u>		 	+-	 			 	 		 	\vdash		†
														1
												<u> </u>		4
			 	1	ļ		├	<u> </u>		\vdash	<u> </u>			Į
	 		 	1-		 		 -	 	 	 	 	 	1
								 						Ī
														Ţ
 	 		 	1	<u> </u>			<u> </u>		\longrightarrow	<u> </u>		 	ł
			 	1	 	 	 				 			t
														Ī
	 		<u> </u>										ļ	1
 	 			1		<u> </u>	 	<u> </u>			<u> </u>			+
 	 		 	1	 	-	-	 -	 	-	}		 	1
				1		 	 -		 		 	 		j
														I
	 _													1
	}	ļ	 	-	ļ	-	 _		<u> </u>	<u> </u>	Ļ	}		+
			<u> </u>		1	I I	I 1	1	1	(i	•	1	£	- 2

NOTES:

(a) Sample types

- (c) USCS Unified Soil Classification System
- \$\$ Standard split spoon
- P Pitcher
- (d) * Indicates that test has been performed and results are included in this remot
- D Fugro Drive
- B,b Bulk
- (b) NP Not Plastic

																				
ST 130 20 100 100 100 100 100 100 100 100 100				DADT	I PI E	AT	TFRRF	RG					2			UMPACTE	J	5	3	<u> # 3</u>
To 100 200 1001 1001 1001 1001 1001 1001	ARD S	IEVE N		SIZE	(mm)				uscs		TINU		T10		MAX	MUM	35		3	[문전
SI 30 22 SM SM SW-SM SW-			SIL	T OR C	LAY					WEIG	3HT	SE ES	E S	==	DRY DE	INSITY			3	3
51 30 22 SM 34 14 9 SW-SM 43 28 22 SM 6 3 2 GP 16 4 3 SW 57 39 32 SM 5 2 2 GW	40	100		.005		LL	PL	PI		(pcf)	(kg/m ³)	9 3	SAT	22	(pcf)	(kg/m ³)	5 =	2 2 2	#	3 2
43 28 22	51	30	22						SM											
43 28 22																				
6 3 2	34	14	9					 	SW-SM			.			L	<u></u>	-		-	<u> </u>
6 3 2	43	28	22				-	├	SM		 				 	 -	 			}
57 39 32 SM SM SM SM SM ST SM ST SM SM ST SM SM ST SM SM ST SM								-									l			
57 39 32 SM SM SM SM SM ST SM ST SM SM ST SM SM ST SM SM ST SM																				
5 2 2	16	4	3				 	<u> </u>	SW					ļ	<u> </u>	<u> </u>	 			L
5 2 2	E7	20	22					├ ─-	CM		 					 				<u> </u>
17 8 5						 	 	 		 -	 	}			 	 				
	17	8	5						GW-GM											
					ļi	<u> </u>		<u> </u>	.	<u> </u>	}	 		ļ		 	<u> </u>			
					<u> </u>		├		}					<u> </u>	<u> </u>	 				
		-				 		\vdash					 -				<u> </u>			
														L						
					 	 	<u> </u>	 	<u> </u>		 	-	 -	├ ──		<u> </u>	ļ			<u> </u>
			<u> </u>		 		 	 		 		 					<u> </u>			
			 				 	-		 		 	 -	 						
						 	├	-	 _	 	 	 		<u> </u>						
						├	├	├	 	 	 	 	├	 						
			 	-		 	 	 		 	 	 	 	 					$\neg \neg$	
										<u> </u>										
					 	 	 	—	 		 		├	 						
				<u> </u>	ł	 	 	├─	 	 -	 	 	 		<u> </u>					
					 	t	 	 	t		 	 								
		<u> </u>			<u> </u>		 	├	<u> </u>	}	}		 	ļ						
					 	├		├	 	 	} -	 -		 					{	\dashv
					├	 	 	├	 		 	 	 							
			-		 	t	 	t	<u> </u>	<u> </u>	<u>t </u>	 	 							

SUMMARY O OP COYOT

MX SITH

VOR

			11	I-SITU			C	OMPACTE)		3	_ <u>=</u>	,	3		
9	USCS (c)	DRY L	JN 1 T SHT	IISTURE Intent (%)	SATURATION (\$)	VOID Ratio	MAXI Dry de	MUM NSITY	OPTINUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION	DIRECT	CONSOLIDATION	CHEMICAL	CBR
PI	_	(pcf)	(kg/m³)	≅ 3	SA	22	(pcf)	(kg/m³)	0	S 61	1	38	<u> </u>	8	5	25
	SM															
							<u> </u>		 			<u> </u>	 		ļ	
	SW-SM	L	 					-	 			ļ. —	 -	ļ	ļ	
	SM			}								├	 -		<u> </u>	
	GP		 										<u> </u>			
	SW					L										
			}	 				 	 			ļ		<u> </u>	 -	\vdash
	SM GW		 	 		├──┤			 				 			
	0,,,		 	 				 					 	-	 	
	GW-GM															
T A CONTRACT		<u> </u>	<u> </u>	_	L				<u> </u>			<u> </u>				
		 	├		 -							ļ	 -	<u> </u>		
		 -	 	 		-							 -			
				 									 -			
3																
A. C.		<u> </u>	<u> </u>	<u> </u>	!	L										
		<u> </u>	 -	}	}				L							
		 	}	 	 			 -				 				
		 	 	┼──	 	 			<u> </u>				Ļ.—.			
		†		 												
		<u> </u>	 	 	<u> </u>			ļ								
100			 		[_		ļ								├{
			+	 		 								-		
			 	 	 						_					
												L				
			_	 _			<u> </u>	ļ	 	$\vdash \vdash \vdash$		}	ļ			
	 -		+-	+	├ ─			ļ	┞╼═┥							
			+	+	 			 	├			\vdash			\vdash	
1	 	 	+-	+	 							1				
	 -	 	 	 	†	 										

SUMMARY OF LABORATORY TEST RESULTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

TABLE Π 5 1 7 OF 7

UGRO NATIONAL INC

AFY-01

COMPRESSIVE STRESS (ksf) 2 3 4 5 6

SYMBOL	BORING NO.	SAMPLE NO.	SAMPLE	INTERVAL	SOIL TYPE		TIAL Ensity	INITIAL MOISTURE CONTENT	INITIAL VOID RATIO	INITIAL DEGREE OF SATURATION
1		LI	FEET	METERS	<u> </u>	pcf	kg∕m³	(%)	NATIO	(%)
0	CE-B-1	P-16	68.0 - 68.8	20.73 - 20.97	ML	72.2	1157	30.8	1.33	62 .5
		1 1]		I	l			

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

- - REBOUND

CONSOLIDATION TEST RESULTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO

FIGURE 1-5-3

UGRO NATIONAL, INC.

USAF-09

SYMBOL	BORING NO.	SAMPLE NO.	SAMPLE	INTERVAL	SOIL TYPE		TIAL ENSITY	INITIAL MOISTURE CONTENT	INITIAL VOID RATIO	INITIAL DEGREE OF SATURATION
		lI	FEET	METERS		pcf	kg∕m3	(°,)	RAITU	(%)
0_	CE-B-2	P.19	62.5 - 62.9	19.05 - 19.17	SM	97.1	1556	26.0	0.74	94.9
<u> </u>					 			<u> </u>		

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

- - REBOUND

CONSOLIDATION TEST RESULTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

II-5-3 2 OF 9

UGRO NATIONAL, INC.

SYMBOL	BORING S	SAMPLE No.	SAMPLE	INTERVAL	SOIL TYPE		TIAL Ensity	INITIAL MOISTURE CONTENT		INITIAL DEGREE OF SATURATION
			FEET	METERS		pcf	kg∕m³	(%)	NALIU	(%)
0	CE-B-2	P-20	73 .0 · 73.8	22.25 - 22.49	ML	80.0	1281	22.7	1.11	55.2
						ļ	<u> </u>			

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

COMPRESSION

- - REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 8M0

II-5-3

UGRO NATIONAL, INC.

SYMBOL	BORING No.	SAMPLE No.	SAMPLE	INTERVAL	SOIL	INI1 Dry Di	FIAL Ensity	INITIAL MOISTURE CONTENT	INITIAL VOID RATIO	INITIAL DEGREE OF SATURATION
!			FEET	METERS	l	pcf	kg∕m³	(%)	ARITO	(%)
0	CE-B-6	D-9	26.0 - 27.0	7.92 - 8.23	SM.	107.4	1721	4.1	0.57	19.4
					1					

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

- - REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMC

FIGURE ∏-5-3 4 OF 9

UGRO NATIONAL, INC.

SYMBOL	BORING NO.	SAMPLE NO.	SAMPLE	INTERVAL	SOIL		TIAL Ensity	INITIAL MOISTURE CONTENT	INITIAL VOID RATIO	INITIAL DEGREE OF SATURATION
			FEET	METERS	}	pcf	kg/m3	(%)	KALIU	(%)
0	CE-B-8	P-7	10.2 - 10.6	3.11 - 3.23	ML	85.6	1371	8.7	0.97	24.2
				<u> </u>	 					

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

--- - REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE 11-5-3 5 OF 9

UGRO NATIONAL, INC.

USAF-09

COMPRESSIVE STRESS (ksf)

SYMBOL	BORING NO.	SAMPLE NO.	SAMPLE	INTERVAL	SOIL TYPE	INI Dry Di	TIAL Ensity	INITIAL MOISTURE CONTENT	INITIAL VOID RATEO	INITIAL DEGREE OF SATURATION
			FEET	METERS	1	pc f	kg∕m³	(%)	RAITU	(%)
0	CE-B-3	P-11	30.0 - 30.7	9.14 - 9.36	ML	95.5	1530	15.8	0.79	54.8
										
ł i	1	i i		3	1]	l			

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

_ _ _ REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

II-5-3 6 OF 9

<u>ugro national, inc.</u>

S	YM BOL	BORING NO.	SAMPLE No.	SAMPLE	INTERVAL	SOIL		TIAL	INITIAL MOISTURE CONTENT	INITIAL VOID RATIO	INITIAL DEGREE OF SATURATION
				FEET	METERS]	pcf	kg m ³	(%)	KRITU	(*;)
	0	CE-B-11	P-9	30.1 - 30.8	9.17 - 9.39	SP-SM	92.5	1482	10.9	0.82	35 .9
L								<u> </u>			

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

____ COMPRESSION

_ _ REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMD

II 5 3

UGRO NATIONAL INC.

S	YMBOL	BORING NO.	SAMPLE No.	SAMPLE	INTERVAL	SOIL TYPE	INI [.] Dry di		INITIAL MOISTURE CONTENT		INITIAL DEGREE OF SATURATION
				FEET	METERS		pcf	kg m ³	(%)	KAIIU	(%)
	0	CE B-12	D-14	45.0 - 46.0	13.72 - 14.02	ML	100.3	1607	10.2	0.68	40.5
L											
Ĺ						[]					

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

- COMPRESSION

_ _ REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

WX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO

паня Д 5 3 в ог ч

UBRO NATIONAL INC

0 25 0.3

1

2

3

4

5

6

7

8

SAMPLE THICKNESS

CONSOLIDATION - PERCENT OF

0.5

COMPRESSIVE STRESS (ksf) 2 3 4 5 6 7 8 9 10 16 32

COMPRESSIVE STRESS (kN/m2)

200

300 400 500

80 100

O AT FIELD MOISTURE

AFTER ADDITION OF WATER

40

____ COMPRESSION

20

- - REBOUND

CONSOLIDATION TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

1000

1500

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO

FIGURE **II** 5 3

UBRO NATIONAL, INC.

SYMBOL	COMPOSITE SAMPLE	ACTIVITY	SAMPLE	INTERVAL	SOIL
SIMDUL	NUMBER	NUMBER	FEET	METERS	TYPE
	A	CE-T-1	0.5 - 2.0	0.15 - 0.61	GW-GM
	В	CE-T-2	0.5 - 2.0	0.15 - 0.61	SM
	С	CE-T-4	0.5 - 2.0	0.15 - 0.61	GM
					

GRAIN SIZE CURVES, CBR TESTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE **∏-5-4** 1 OF 3

UGRO NATIONAL, INC.

USAF-10

SYMBOL	COMPOSITE Sample	ACTIVITY	SAMPLE	INTERVAL	SOIL
SIMBUL	NUMBER	NUMBER	FEET	METERS	TYPE
	D	CE-T-7	0.5 - 2.0	0.15 - 0.61	ML
-	E	CE-T-13	0.5 · 2.0	0.15 - 0.61	GM
-					-
					1

GRAIN SIZE CURVES, CBR TESTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SETING INVESTIGATION DEPARTMENT OF THE AIR FORCE.

1154

UBRO NATIONAL, INC.

SYMBOL	COMPOSITE SAMPLE	ACTIVITY	SAMPLE	INTERVAL	SOIL
SIMPUL	NUMBER	NUMBER	FEET	METERS	TYPE
	F	CE-T-14	0.5 · 2.0	0.15 - 0.61	SW-SM
1	G	CE-P-6	0.5 · 2.0	0.15 - 0. <u>61</u>	GW
	Н	CE-P-12	0.5 - 2.0	0. <u>15 · 0.61</u>	SM
					-

GRAIN SIZE CURVES, CBR TESTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO

1154 3013

UBRO NATIONAL, INC.

SYMBOL	COMPOSITE Sample Number	SOIL TYPE
0	Α	GW-GM
	В	SM
Δ	С	GM

CALIFORNIA BEARING RATIO (CBR) CURVES
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG

FI SURE 11-5-5 1073

UGRO NATIONAL INC

US. F-0

SYMBOL	COMPOSITE SAMPLE NUMBER	SOIL TYPE
0	D	ML
۵	E	GM
Δ	F	SW-SM

CALIFORNIA BEARING RATIO (CBR) CURVES
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 8MO

FIGURE 11 5 5 2 OF :

VERO NATIONAL IN

USA F-D

SYMBOL	COMPOSITE Sample Number	SOIL TYPE
0	G	GW
	Н	SM

CALIFORNIA BEARING RATIO (CBR) CURVES
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE II-5-5 3 OF 3

UGRO NATIONAL, INC.

USA F-07

KEIGHT	DIAMETER	2.80	1.60	2.09	2.09	2.09	1.13	2.09	2.09	2.09	2.39	2.40								,						
_			1		.,	-				_			_	_	_	_		_	_	-	 _	_	_			
DEGREE OF	3	30.9	36.2	67.7	32.5	36.5	53.3	42.8	58.8	62.2	43.2	37.8														
MOISTURE	(x)	10.4	9.9	20.1	10.2	14.2	22.4	12.5	14.1	19.0	13.7	7.3														!
ORY DENSITY	kg/m3	1413	1556	1498	1464	1317	1266	1507	1636	1479	1456	1773													İ	
ORY DI	200	88.2	97.1	93.5	91.4	82.2	79.0	94.1	102.1	92.3	90.3	110.7														
UNCONFINED COMP. STRENGTH	kN/m2	330	244	235	35	72	182	98	172	407	29	172														
COMP. S	k & 1	6.9	5.1	4.9	0.7	1.5	3.8	1.8	3.6	3.5	9.0	3.6														
2011	TYPE	ML	ML	CL	SM	ML	SM	SM	SC	CL	ML	WS														
NTERVAL	METERS	10.73 - 10.97	18.32 - 18.56	9.75 - 9.97	4.72 - 4.88	6.10 - 6.31	6.55 - 6.83	7.53 - 7.71	10.67 - 10.88	14.36 - 14.60	4.33 - 4.51	15.30 - 15.54														
SAMPLE INTERVAL	FEET	35.2 - 36.0	60.1 · 60.9	32.0 - 32.7	15.5 - 16.0	20.0 - 20.7	21.5 - 22.4	24.7 - 25.3	35.0 - 35.7	47.1 - 47.9	14.2 - 14.8	50.2 - 51.0														
SAMPLE	9	0-11	D-17	P.14	P-8	P-9	p.7	P-8	P.10	P-12	P-8	D-15														
5	¥0.	CE-B-1	CE-8-2	CE-B-7		CE-B-8	CE-8-11				CE-8-12															

SUMMARY OF UNCONFINED COMPRESSION TEST RESULTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG

TABLE 11-5.2

UGRO NATIONAL, INC.
USAF-05

—							*	WATER SOLUBLE	Į.	CALCIUM
ACTIVITY SA	SAMPLE	SAMPLE INTERVAL	MIEKVAL	30 L 14 PF	Ha	8001 UM	CHLORIDE	SULPHATE	CALCIUM	CARBONATE
	2	FEET	METERS			mg/kg	mg/kg	mg.′kg	mg kg	mg/kg
, —	P - 16	68.0 - 68.8	20.73 · 20.97	۱	8.0	388	98	43	205	789
ì	b · 12	35.0 · 36.0	10.67 - 10.97	GM-GC	8.0	36	73	24	782	1280
	P . 20	73.0 - 73.8	22.25 - 22.49	MF	8.2	35	28	35	180	836
	P - 27	161.4 - 162.0	49,19 - 49.38	ML	8.0	47	97	11	225	964
	6 · q	25.0 · 26.0	7.62 - 7.92	SP-SM	7.9	118	136	39	467	1460
	b · 15	50.0 - 51.0	15.24 - 15. 54	ВР	8.0	17	64	66	298	1120
	SS - 4	5.0 - 6.0	1.52 · 1.83	SM	8.4	51	58	73	06	562
	D - 3	7.5 - 8.3	2.29 - 2.53	ВВ	8.0	141	107	121	573	1130
	B · 1	0.5 - 1.5	0.15 - 0.46	GM	7.7	485	0//	444	1170	1906
	B- 1	0.5 - 2.0	0.15 - 0.61	GP-GM	8.3	357	99	102	219	1100
	b - 1	0.5 - 2.0	0.15 - 0.61	GP-GM	7.8	97	78	385	492	959
	b-1	0.5 - 2.0	0.15 - 0.61	GP-GM	8.0	132	121	96	675	1500
_										
			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;							
_										

SUMMARY OF CHEMICAL TEST RESULTS OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE SMO

140LE 1153

VERO NATIONAL IN

USAF-06

MPOSITE	201	PERCENT PASS ING	ATTE	ATTERBERG LIMITS	SPECIFIC	MAXI ORY DE	MAXIMUM ORY DENSITY	OPT INUM	COMPACTED DRY DENSITY	CTED	COMPACTED	PERCENT OF MAXIMUM	CBR
NUMBER	ITPE	#200	11	ld	GKAVIIT	pc f	kg/m3	(%)	pcf	kg/m3	(%)	DRY DENSITY	(%)
									140.5	2251	5.3	96.3	150
	į								138.1	2212	5.3	94.6	113
∢	5	9				146.0	2339	5.9	132.0	2115	5.2	90.4	71
	5												
									111.8	1791	14.2	92.6	8
									105.2	1685	14.1	89.9	7
83	SM	46		NP		117.0	1874	13.5	101.9	1632	14.2	87.1	3
									125.7	2014	10.2	0.66	48
_									119.9	1921	10.6	94.4	19
ပ	В	32			2.70	127.0	2035	11.0	113.4	1817	11.4	89.3	8
									118.1	1892	12.0	92.6	8
_									113.2	1813	11.5	91.7	5
۵	ML	19			2.64	123.5	1978	11.5	106.5	1706	11.5	86.2	3
									_				1

CALIFORNIA BEARING RATIO (CBR)
TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG

148LE 11-5-4 1 OF 2

ubro national, inc

USAF -08

		, ,	_	_		_	_	_			,	_				_	_			_	_
883	€	09	32	0			29	30	7			06	29	40			43	21	10		
PERCENT OF MAXIMUM	DRY DENSITY	8.36	94.7	6:06			98.4	8'96	93.7			96.5	93.5	89.1			96.1	8.06	86.2		
COMPACTED Moisture	(\$)	11.1	10.3	9.3			9.6	8.6	9.8			5.0	5.1	5.0			10.5	10.2	10.3		
COMPACTED DRY DENSITY	kg/m3	1943	1921	1844			1922	1892	1833			2286	2217	2113			1870	1765	1677		
	pcf	121.3	119.9	115.1			120.0	118.1	114.4			142.7	138.4	131.9			116.7	110.2	104.7		
OPT INUM MOISTURE	(%)			10.3					10.0					5.2					10.5		
MAXIMUM ORY DENSITY	kg/≡3	2028							1954					2371				1945			
MAX ORY DE	pcf	ပွ					122.0							148.0		121.4					
SPECIFIC	BHAVIIY			2.67																	
ATTERBERG Limits	Pi													ā. Z							
	11																				
PERCENT PASS ING	#200	78							=					4			19				
1108	17.5			₩ O					SW.	No.				δ					SM		
COMPOSITE Sample	NUMBER			щ					u.					g					I		

CALIFORNIA BEARING RATIO (CBR)
TEST RESULTS
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BNO

TABLE □-5 4

ERO NATIONAL INC.

USAF -08

SECTION 6.0

CONE PENETROMETER TEST RESULTS

6.0 EXPLANATION OF CONE PENETROMETER TEST RESULTS

The results of all cone penetrometer tests are presented in this section. Explanations of the test results are as follows:

- A. Friction Resistance The resistance to penetration developed by the friction sleeve, equal to the vertical force applied to the sleeve divided by its surface area. This resistance is the sum of friction and adhesion.
- B. Cone Resistance The resistance to penetration developed by the cone, equal to the vertical force applied to the cone divided by its horizontally projected area.
- C. Friction Ratio The ratio of friction resistance to cone resistance.
- D. Designation Each cone penetrometer test is identified by a number: for example C-1.
 - C abbreviation for the CPT
 - 1 number of the test
- E. Soil Column A graphical presentation of the soil type versus depth at each cone penetrometer test location where either a boring, trench or test pit was performed. The Unified Soil Classification Symbol for each different soil type is listed immediately to the right of the soil column.

Immediately below the soil column, the activity number for the corresponding boring, trench, or test pit at each CPT location is given. SECTION 7.0
SEISMIC REFRACTION DATA

7.0 EXPLANATIONS OF SEISMIC REFRACTION DATA

Each figure shows seismic wave travel times plotted versus surface distance between the energy source (shot) and the detector (geophone) for a single seismic line. Distances are measured along the line from geophone number 1 which is designated as zero distance. Distances to the right (on the paper) of geophone 1 are positive. The direction arrow gives the approximate direction along the geophone array from geophone 1 to geophone 24.

Travel Time Versus Distance Graph (Upper Half of Figure)

This is a travel time versus distance graph. The abscissa represents distance; the ordinate, time. The six vertical lines represent the locations of shots (designated as F, G, H, I, J, and K). The symbol, X, denotes travel times at geophones that were located to the right of a shot. The symbol, 0, denotes travel times that were located to the left of shots.

Velocity Cross Section (Lower Half of Figure)

This is an interpreted velocity cross section beneath the seismic line. The top line represents the ground-surface profile. The short vertical lines crossing the top line mark the geophone positions. The depth scale is plotted relative to a point on the line which was arbitrarily chosen as "zero elevation" at the time the line was surveyed. The additional lines across the cross section represent the interpreted boundaries between layers of material with different compressional wave

velocities. These boundaries are commonly called "refractors."

The velocity interpreted to be representative of each layer is shown.

ş. Ş.

ELECTRODE SPACING - AB/2 (FEET)

	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	500	
11	3	150	
18	5	3	
			
	1		
		1	

RESISTIVITY SOUNDING CE-R-3
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMG FIBURE **□-7-14**

	INTERPRETED MODEL		
LAYE	DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	180	
24	7	50	
75	23	180	

RESIST!VITY SOUNDING CE-R-4
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMC

F14URE II-7-15

UGRO NATIONAL INC.

	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	170	
29	9	60	
	1		

RESISTIVITY SOUNDING CE-R-6
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 8

FIGURE II 7 16

<u>VGRO NATIONAL IN</u>

1847-15

	INTERPRETED MODEL		
LAYE	DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	140	
11	3	390	
	1		
			
	1		

RESISTIVITY SOUNDING CE-R-7
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE

#10URE 17 17

VORO MATIONAL INC.

MA F-11

	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	ONN-METER	
0	0	260	
6	2	120	
26	8	370	
		1	

20

40

60

ELECTRODE SPACING - AB/2 (FEET)

80 100

RESISTIVITY SOUNDING CE-R-8 SOUNDING CURVE AND INTERPRETATION OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - DNO FIGURE **II.7** 18

SECTION 8.0 ELECTRICAL RESISTIVITY DATA

8.0 EXPLANATION OF ELECTRICAL RESISTIVITY DATA

Each figure in this section presents the data obtained from a resistivity sounding and a tabulated model of resistivity layers that would produce a curve similar to the observed curve. The upper portion of the figures is a graph in which measured apparent resistivity values in ohm-meters are plotted versus one-half the distance between the current electrodes.

The interpreted model tabulated at the bottom of the figures shows a combination of true resistivity layers and thicknesses obtained by matching theoretical curves to the field curve.

Note: There were no resistivity sounding at locations CE-SR-1, CE-SR-2, CE-SR-5, CE-SR-9, CE-SR-10, and CE-SR-11.

L	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	500	
11	3	150	
18	5	3	

RESISTIVITY SOUNDING CE-R-3
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - SMO

F16VAE 11-8-1

<u>ugro national inc.</u>

(FEET)

	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	180	
24	7	50	
75	23	180	

RESISTIVITY SOUNDING CE-R-4 SOUNDING CURVE AND INTERPRETATION OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BND FIGURE П-8-2

	INTERPRETED MODEL		
LAYER	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	170	
29	9	60	

RESISTIVITY SOUNDING CE-R-6
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

FISURE

PERKINENT OF THE ATH FORCE - SMG

II-8-3

UGRO NATIONAL IN

	INTERPRETED MODEL		
LAYE	REPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	140	
11	3	390	

RESISTIVITY SOUNDING CE-R-7 SOUNDING CURVE AND INTERPRETATION OPERATIONAL BASE SITE COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BNO

FIGURE II-8-4

<u>UGRO NATIONAL INC.</u>

	INTERPRETED MODEL		
LAYE	R DEPTH	RESISTIVITY VALUES	
FEET	METERS	OHM-METER	
0	0	260	
6	2 '	120	
26	8	·370	
	Ī	T	

RESISTIVITY SOUNDING CE-R-8
SOUNDING CURVE AND INTERPRETATION
OPERATIONAL BASE SITE
COYOTE SPRING VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

Flevet II-8-5

<u>UGRO NATIONAL INC.</u>

DATE ILME