CPSC 323: Compilers and Languages

Chapter 3 – Syntactic Analysis

Mr. Param Venkat Vivek Kesireddy

Teaching Associate

Mail: pkesireddy@fullerton.edu

Chapter 3. Syntax Analysis I (Top-down

parsing)

- 1. Introduction
- 2. Grammar
- 3. Chomsky Hierarchy
- 4. Left-Recursion and Back-Tracking
- 5. Top-Down Parsers
 - a. Recursive Descent Parser (RDP)
 - b. Predictive Recursive Descent Parser (PRDP)
 - c. Table Driven Predictive Parser

3.1 Introduction

Syntax Analysis is a phase where the structure of source code is recognized and constructed using a finite set of rules called productions.

Ex. of Rules for a subset of English

```
<Sentence> -> <Noun Phrase> <Verb Phrase>
```

<Noun Phrase> -> <Article> <Noun>

<Verb Phrase> -> <Verb> <Noun Phrase>

<Noun> -> dog, cat, bone, school

<Article> -> the, a, an

<Verb> -> goes, has

Terms:

Production, Non-terminal Symbols, Terminal symbols

Sentence: The dog has a bone

BNF NOTATION: Backus-Naur(Normal) Form

```
A Specific notation to describe the
                                        productions.
Ex.
<Expression> ::= <Expression> + <Term> |
<Expression> - <term> | <Term>
<Term> ::= <Term> * <Factor> | <Term> / <Factor> |
<Factor>
<Factor> ::= <Identifier> | <Number> | ( <Expression> )
Extended BNF: Allows additional notations; such as
{ } 0 or more times,
[ ] optional
<Number> ::= <Digit>
{ < Digit> }
<|dentifier> ::=
<Letter> { <Letter> |
<Digit> }
```


<Factor> ::=

3.2 Grammar

a) <u>Def:</u> <u>Grammar</u> G = (T, N, S, R) where T is a finite set of terminal symbols N is a finite set of non-terminal symbols $S \in N$ is a unique Starting symbol R is a finite set of productions of the form

 $\alpha \rightarrow \beta$ where α , β are strings of terminal and non-terminal symbols

Def: The language of grammar G is the set of all sentences that can be generated by G, and it is written $L\{G\}$.

66

Ex. of a Grammar

b)

Derivation is replacing one non-terminal symbol at a time in order to recognize a sentence.

In general, we say <Expr> => a / (c-d)

Sentential Form: is a string of symbols (N or T) appearing in various steps in derivation.

Left Most Derivation(LMD): Replace the Left most Non-terminal in each step.

Right Most Derivation(RMD): Replace the Right most non-terminal in each step.

c)Ambiguity

Def: A grammar is ambiguous if there are two different parse trees for some words in L(G).

Ex: Assume Productions

<Expr> -> <Expr> + < Expr>
<Expr> -> <Expr> - <Expr> id

Consider a string a- b+c

2 different parse trees => the grammar is ambiguous

Def: A language for which NO UNAMBIGUOUS grammar exists is called Inherently ambiguous language.

3.3 Chomsky Hierarchy of Grammars

Chomsky Hierarchy shows different types of grammars based on the forms of productions. => 4 types (0,1,2 and 3).

New Convention:

- Capital Letter: A, B Non-terminal
- Lowercase letters: a,b,c ... terminals
- For Greek Letters: α , β , δ , γ ... strings of N and T

a) Type 0: Unrestricted Grammar

```
Def: Production form: \alpha -> \beta
     where both (\alpha, \beta) are <u>any</u> string of N and T
Ex.
R1) S -> ACaB
R2) Ca -> aa C
R3) CB -> DB
R4) CB -> E
R5) aD -> D a
R6) AD -> AC
R7) aE -> Ea
R8) AE -> \varepsilon
A Simple Strings:
aa, aaaa,
aaaaaaaa etc
   R1
   R2
   R4
```


14

R7

Machine for Unrestricted languages: Turing Machine (By Allen Turing 1912-1954)

Unlimited Tape

When you have a Type 0 grammar, you can use a Turing machine to accept and generate strings in the language defined by that grammar.

b) Type 1: Context Sensitive Grammar

Def: production Form: $\gamma A \delta -> \gamma \alpha \delta$,

Similar to type 0 but

1) α cannot be ϵ i.e., -> $|\gamma \alpha \delta|$ > = |

 $\gamma A\delta$ |, RHS >= LHS

2) A-> α in the context of γ , δ .

Ex.

R1) S -> aSBC

R2) S -> abC

R3) CB -> BC /* Strictly speaking is not context sensitive */

R4) bB -> bb

R6) bC -> bc

R6) cC -> cc

Sample string:

abc, aabbcc

etc

R1

R2

R3

Machine for Context Sensitive languages: LBA (Lineary Bounded Automaton): Similar to Turing but with

For recognizing and generating languages defined by context-sensitive grammars, which are a level above context-free grammars in the Chomsky Hierarchy, Linear Bounded Automata (LBA) are the appropriate computational devices.

c) Type 2: Context Free Grammar

Def: Production Form: $\alpha \rightarrow \beta$

where α is a <u>single</u> non terminal

Ex.

R1) S -> a B

R2) S -> bA

R3) A-> a

R4) A-> aS

R5) A-> bAA

R6)B->b

R7) B -> bS

R8) B -> a BB

Simple String:

ab, ba, abab, aaabbb etc

L(G) ={ w | w has same

c) Machine: Push Down Automaton (PDA)

- With the inclusion of a stack, a pushdown automaton (PDA) is a sort of finite automata that enhances the capabilities of a finite automaton.
- PDAs have a balance that makes them appropriate for a variety of realworld language processing and parsing applications.

d) Type 3: Regular Grammar

Def: α -> β where α is a single nonterminal and, β is either all terminals or at most one Non-terminal (the last symbol on the RHS, first or last symbol)

String: abab, baba, abababab, babaabab etc

(abab | baba)* which is an RE

Machine: FSM

3.4 Left-Recursion and Back-Tracking

Q: How do we build a Parser for CFL?

Initially let's briefly look at again how a parser works.

Ex. A -> Ba | bC

B -> d | eBF

C -> gC | g

Let's Consider a string bggg

Starts from the Top of the Tree and continues to parse until all token are matched. (Top-Down Parser)

Now before we build a such parser from the grammar, we have to consider 2 issues

a) Left Recursion

We have to eliminate all left-recursive productions in the grammar. A left-recursive production is when the LHS of a production occurs as the first symbol on the RHS of the same production

Why?

Let's consider the following rules:

$$R1)E->E+T$$

Given string $\mathbf{a} + \mathbf{b} + \mathbf{c}$, the parser tries to match.

=> the parser does not know when to stop expanding E -> E Since it does not know how many + the string has +T

Q: How do we eliminate left recursions?

A: By changing the productions as follows:

Assume we have the following productions.

$$A \rightarrow A\alpha$$

$$A \rightarrow \delta$$

Steps:

- 1. Introduce a new Non-terminal A'
- 2.Change A -> δ A'

3. A' ->
$$\alpha$$
A' | ϵ

=>

$$A \rightarrow \delta A$$

$$A' \rightarrow \alpha A' \mid \epsilon$$

23

Let's See what we have done

 $\delta\alpha\alpha\alpha...\alpha$ is the string

A ->
$$\delta$$
 A'
A' -> α A' | ϵ

Strings = $\delta \alpha \alpha \dots \alpha$

Note: We have two parser trees with same strings but the shapes are different

Ex. of Removing Left recursion

E-> E+

T E-> T

T -> id

Remove left recursion =>

E-> TE'

E' -> +ΤΕ' | ε

T -> id

Let's further consider the

etrina a + h + c


```
But there can be "indirect (non-immediate)" left-recursion.
Ex.
A-> BC
B-> A
C
Thus, we
need an
algorith
m to
remove
allifeths begins with a NT (A) earlier in the list then
recursigubstitute A
ns:
    - Remove any direct recursion
                            M
Ex. A -> N \mid \beta
                            e
    N -> Ay
                            h
                            0
   Then replace A =>
    N -> Ny | βy
                        (remove direct left-
1. Make
  a list
```

26

of all

Ex.

- 1) List of NT => 1. E,
- 2) TDirect Left-recursion in (R1) and (R2)

3) Need to replace E in (R3)

4) Here is Left-Recursion

$$T \rightarrow id T'$$

Therefore:

Another Round...

b)Backtracking

Backtracking is reparsing of the same/previous tokens

Ex) Assuming the following productions:

S-> bAc

S-> bAe

A -> d

 $A \rightarrow cA$

and the following

string

(Using production 1)

Does not work. **String wrong?**

=>

(Using production 4) Consider other **Possibilities**

(Using production 2)

(Using production 4)

Works!!

How to solve backtracking? =>
use of Left-Factorization =>
Factor out same symbols of RHSs of the
productions for the same Non-terminal

R3)
$$A \longrightarrow d$$

=>

CONCLUSION:

- 1) We need to eliminate Left-Recursion
 - 2) Remove Back-Tracking

before constructing the Top-Down parsers

EX:

Given the following productions, build a PDA that accepts L(G)

Sample strings: aca, abcba, abacaba

$$L(G) = \{wcw^r\}$$
 (Palindrom)

PDA = (
$$\Sigma$$
 = {a,b,c}, Q = {s,f}, q0 = s, F = {f}, Γ = {1,2}
N =
{ N1) (s,a, ϵ) -> (s,1)
N2) (s,b, ϵ) -> (s,2)
N3) (s,c, ϵ) -> (f, ϵ)
N4) (f,a,1) -> (f, ϵ)
N5) (f,b,2) -> (f, ϵ)

w = abbcbba

<u>State</u>	<u>Input</u>		
S	abbcbb £tack	$3 \angle$	1
Ş	bbcbba ^N -	ε 1	2
<u>use</u> g	bcbba	ε21	2
S	cbba	ε221	3
f	bba	221	5
f	ba	21	5
f	a	1	4
f	ε	ε	
accepting s	state empty	empty => accepted	

3.5 Top-Down Parsers

a) Recursive Descent Parser (RDP)
The basic idea is that each <u>non-terminal has an</u>
<u>associated parsing procedure</u> that can recognize any
sequence of tokens generated by that non-terminal.

For example.

2. E-> E-T

1.Remove Left-Recursion

$$T->id$$

```
Productions
                                                                  : E -> TE'
                                                                  E' -> + TE'
                                                                                      - TE'
                                                                  T - > id
                                                           Procedure T();
                             Procedure E'()
Procedure E ()
                                                             If token is id then
                             If token = + or - then
 T ();
                                                                 lexer()
  E'();
                                                          else error-message
                                    Lexer();
  If not eof marker then
                                                              (id expected)
                                   T();
     error-message
                                    E'();
}
  Ex 1) Assume we have a string a+b-c
                                                Ex 2) String a +
```


b)Predictive Recursive Descent Parser (PRDP)

A more efficient way of implementing RDP.

Assume we have the following productions (No Left-Recursion

or Back-Tracking)

$$1. S \rightarrow Ab \mid B c$$

$$2. A \rightarrow Df \mid CA$$

3. B ->
$$gA \mid e$$

4.
$$C \rightarrow dC \mid c$$

5. D ->
$$h \mid i$$

and a string "gchfc" and parse

$$S \rightarrow Ab \rightarrow Df \rightarrow no match for "g"$$

Bc

 $gA \rightarrow Df \rightarrow (no match for "c")$
 $CA \rightarrow dC (no match for "c");$

c (match) etc etc => making quite bit of function calls before

making quite bit of function calls before matching => a better way? A more efficient way?

Yes: anticipate what terminal symbols are derivable from each nonterminal symbol on the RHS of productions.

Ex). Let's compute before we construct the parser.

So, before paring look ahead of the sets which way to go:
 Ex. string "gchfc" => "g" is in (BC) route, so no need to go to the first route.
 These sets are called First
sets. First (Ab) = { h, i, d, c}
First (Bc) = {g, e}

<u>Def: First (α)</u> Consider every string derivable from α by a left most derivation.

If $\alpha => \beta$ where β begins with some terminal, then that terminal is in First (α).

Computation of First (α)

- 1) if α begins with a terminal t, then First(α) = t
- 2) If α begins with a nonterminal A, then First (α) includes First(A) ϵ
 - and if A => ε then include First (γ) where α = Aγ
 - and if $\alpha => \varepsilon$, then First(α) includes ε
- 3) First $(\varepsilon) = \varepsilon$


```
Example
s E->
TE'
E'-> + TE'| \epsilon
T -> FT'
T' -> * FT' | \epsilon
F -> id | (E)
First (F) = First
(id) U First
((E)) = \{ id, (
First(T') =
First (*FT') |
First (\varepsilon) = \{ *, 
ε }
First (T) = First
(FT') = First
(F) - \varepsilon = \{id,
```

However, there is a problem using just the First sets.

Consider the previous arithmetic grammar example and a string " a +b"

Next token = + but is not in First (T') = $\{ *, \epsilon \}$ Does that mean it is wrong? NO, because T' => ϵ

In that case, we have to consider what can follow after T' = { + } => acceptable tokens

So, because of the ε , we need to consider also Follow (N = nonterminal) = { terminals that can follow right after N}

Follow (A):

Definition: Follow (A) is the set of all terminal symbols that can come right after A in any sentential form of L(G).

If A comes at the end of, the Follow(A) includes "\$" = end of file marker

Computation:

```
IF A is the starting symbol, then include $ in Follow(A)
```

For all occurrences of A on the RHS of productions do as follows:

```
Let Q \rightarrow \alpha A \beta (means \alpha before A and \beta after A), then
```

If β begins with a terminal t, then t is in Follow(A)

If β begins with a nonterminal , then include First (β) – ϵ $\,$ If β =>

$$\varepsilon$$
 or $\beta = \varepsilon$, then include Follow (Q) in Follow(A)

(** we ignore the case
$$Q = A$$
, e.g, $A -> \alpha A \beta$)


```
Example
<u>s</u> E ->
TE'
E'-> + ΤΕ' | ε
T -> FT'
T'-> * FT' | ε
F-> id | (E)
Follow (E) =
{$} U
{ ) } = { $, )}
Follow (E') =
Follow (E) U
Follow (E')
(ignore) =
{ $, }}
Follow (T) =
```

```
<u>Predictive RDP with First and Follow Sets:</u> Procedure E' ()
                                                                                             Productions:
   Procedure E ()
                                                   If token = + then
                                                     Lexer();
   If token in First (E) then
                                                                                             E \rightarrow TE'
                                                     T();
        T();
                                                                                             E' \rightarrow +TE' | \epsilon
   E'();
                                                     E'();
                                                                                             T -> FT'
                                                  else if token not in Follow E' then
else error-message (token
                                                                                             T' \rightarrow * FT' | \epsilon
   in First
                                                         error-message (.....)
         of (E) expected)
                                                                                             F ->
                                                                                                     (E) | id
                                               }
                                               Procedure T'()
                                                   If token = '*' then
                                                       Lexer();
                                                   F();
 Procedure T()
                                                   T'();
                                                  else if token NOT in folllow (T') then
      If token in First (T) then
                                                        error-message (.....)
          F();
      T'();
  else error-message (.....)
                                              Procedure F() {
                                               ..... same ....}
```


Example:

C) Table Driven Predictive Parser

Consist of 3 components: Parsing table, Stack, Program Driver

Table : to generate a table with all t (columns) and NT (rows) Ex. For expression grammar

$E \rightarrow TE'$	
$E' \rightarrow +TE'$	
ϵ T -> FT'	
T'-> * FT'	
ε F ->	
(E) id	

	id	+	*	()	\$
Е	TE'			TE'		
E'		+TE'			ε	ε
T	FT'			FT'		
T'		ε	*FT'		ε	ε
F	id			(E)		


```
•Stack => well known with pop(), push(), etc
•Driver:
Push $ onto the stack
Put end-of-file marker ($) at the end of the input string
Push (Starting Symbol) on to the stack
While stack not empty do
    let t = TOS symbol and i=incoming token
    if t = terminal symbol then
        if t=i then
          pop(t); lexer()
        else error-message (...._
    else begin
        if Table [t, i] has entry then
           pop(t);
           push Table[t, i] in reverse order
        else error
        end
 endwhile
```


	id	+	*	()	\$
Е	TE'			TE'		
E'		+TE'			3	ε
T	FT'			FT'		
T'		ε	*FT'		3	ε
F	id			(E)		

Ex: String b + c

Ex. outling b. c		
Stack	Inpu	<u>Action</u>
	t	
\$ E	b+c\$	pop(E), Push (E', T)
\$E'T	b+c\$	pop(T), push(T', F)
\$E'T'F	b+c\$	pop(F), push (id);
\$E'T' id	b+c\$	pop(id), lexer();
\$E'T'	+c\$	pop(T'); push (ε)
\$E'	+c\$	pop(E'); push (E', T, +)
\$E'T+	+c\$	pop(+), lexer()
\$E'T	c\$	pop(T), push (T',F)
\$E'T'F	c\$	pop(F); push (id);
\$E'T'id	c\$	pop(id), lexer()
\$E'T'	\$	pop(T'), push (ε)
\$E'		$pop(E')$, push (ε)
\$	\$ \$	Stack empty

Q: How do we construct such a table? For each Non-terminal N do { Let N -> β a typical production Computer First (β); Each terminal t in First (β) except ϵ do Table [N, t] = β If First (β) has ϵ then For each terminal t in Follow (N) do Table [N, t] = ϵ }

$$\begin{array}{lll} T' -> * FT' & \mid \epsilon \\ F -> & (E) \mid id \end{array}$$

Computer First Sets:

First (F) = {(, id}
First (T') = (*,
$$\varepsilon$$
)
First (T) = First (F) – ε = {(, id}
First(E') = {+, ε }

First (E) = First(T)
$$- \varepsilon = \{(, id)\}$$

If a First set contains ε , then compute Follow sets

	id	+	*	()	\$
Е	TE'			TE'		
E'		+TE'			3	ε
T	FT'			FT'		
T'		ε	*FT'		3	3
F	id			(E)		

Conflict:

In a table driven predictive parser, a conflict occurs if a cell Table [N, t] has More than one entry.

Ex. "Dangling else" problem

1)
$$S \rightarrow if$$
 C then $S E \mid a \mid b$

2) C ->
$$x \mid y$$

Let's try to construct the table in particular for E First (E) = {else, ε }

Since it contains ε

We need to computer Follow (E) = Follow (S) = $\{ \}$ U First (E) $- \epsilon$ U Follow(E)

$$= \{S\} \cup \{else\} = \{\$, else\}$$

				else	\$
S					
С					
Е				else S	3
0				ε	

Two entries in Table [E, else] => conflict

Why Conflict?

a sample sentence:

If x then
If y then a
else b

(where does this else belong????)

Grammar is Ambiguous

=> If a grammar is ambiguous, it will create a conflict

END

