

Copyright © 2013 John Smith

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

First printing, March 2013

-1	Part One	
1	Logika Matematika	. 9
1.1	Pernyataan Berkuantor	9
1.2	Pernyataan Penyangkal (Lingkaran)	9
1.3	Penarikan Kesimpulan	10
1.3.1 1.3.2 1.3.3	Numbered List Bullet Points Descriptions and Definitions	10
2	Induksi Matematika	11
2.1	Metode Pembuktian Langsung dan Tidak Langsung	11
2.1.1 2.1.2	Several equations	
2.2	Kontradiksi	11
2.3	Induksi Matematis	12
2.4	Remarks	12
2.5	Corollaries	12
2.6	Kontradiksi	12
2.6.1 2.6.2	Several equations	
2.7	Examples	12
2.7.1 2.7.2	Equation and Text	

2.8	Exercises	13
2.9	Problems	13
2.10	Vocabulary	13
3	Pertidaksamaan Linear Dua Variabel	15
3.1	Pengertian Pertidaksamaan Linear Dua Variabel	15
3.2	Penerapan Pertidaksamaan Linear Dua Variabel	15
4	Program Linear Dua Variabel	17
4.1	Pengertian Program Linear Dua Variabel	17
4.2	Sistem Pertidaksamaan Linear Dua Variabel	17
4.3	Nilai Optimum Fungsi Objektif	17
4.4	Penerapan Program Linier Dua Variabel	17
5	Matriks	19
5.1	Pengertian Matriks	19
5.2	Operasi Matriks	19
5.3	Determinan dan Invers Matriks Berorde 2x2 dan 3x3	19
5.4	Pemakaian Matriks Pada Pransformasi Geometri	19
6	Barisan dan Deret	21
6.1	Pola Bilangan	21
6.2	Barisan dan Deret Aritmatika	21
6.3	Barisan dan Deret Geometri	21
Ш	Part Two	
7	Limit Fungsi Aljabar	25
7.1	Table	25
7.2	Figure	25
8	Turunan Fungsi Aljabar	27
8.1	Pengertian Turunan	27
8.2	Sifat-Sifat Turunan Fungsi Aljabar	27
8.3	Penerapan Turunan Fungsi Aljabar	27
8.4	Nilai-Nilai Stasioner	27
8.5	Aplikasi Turunan	27
8.5.1	Fungsi Naik dan Fungsi Turun	27
8.5.2 8.5.3	Aplikasi Turunan dalam Permasalahan Fungsi Naik dan Fungsi Turun Aplikasi Konsep Turunan dalam Permasalahan Maksimum dan Minimum	28 32
8.6	Persamaan Garis Singgung dan Garis Normal	37

9	Integral Tak Tentu Fungsi Aljabar	39
9.1	Pengertian Integral Tak Tentu Fungsi Aljabar	39
9.2	Sifat-Sifat Integral Tak Tentu Fungsi Aljabar	39
9.3	Penerapan Integral Tak Tentu Fungsi Aljabar	39
	Bibliography	41
	Books	41
	Articles	41

Part One

	Logika Matematika 9
1.1	Pernyataan Berkuantor
1.2	Pernyataan Penyangkal (Lingkaran)
1.3	Penarikan Kesimpulan
2	Induksi Matematika 11
2.1	Metode Pembuktian Langsung dan Tidak Langsung
2.2	Kontradiksi
2.3	Induksi Matematis
2.4	Remarks
2.5	Corollaries
2.6	Kontradiksi
2.7	Examples
2.8	Exercises
2.9 2.10	Problems Vocabulary
2.10	vocabalary
2	B
3	Pertidaksamaan Linear Dua Variabel . 15
3.1	Pengertian Pertidaksamaan Linear Dua Variabel
3.2	Penerapan Pertidaksamaan Linear Dua Variabel
4	
4	Program Linear Dua Variabel 17
4.1	Pengertian Program Linear Dua Variabel
4.2	Sistem Pertidaksamaan Linear Dua Variabel
4.3	Nilai Optimum Fungsi Objektif
4.4	Penerapan Program Linier Dua Variabel
E	Advantage 100
5	Matriks
5.1	Pengertian Matriks
5.2 5.3	Operasi Matriks
5.3	Determinan dan Invers Matriks Berorde 2x2 dan 3x3
5.4	Pemakaian Matriks Pada Pransformasi Geometri
J.,	
6	Barisan dan Deret
6.1	Pola Bilangan
6.2	Barisan dan Deret Aritmatika
6.3	Barisan dan Deret Geometri

1.1 Pernyataan Berkuantor

Kuantor dari suatu pernyataan adalah istilah yang digunakan untuk menyatakan "berapa banyak" objek di dalam suatu kalimat atau pembicaraan. Selain untuk menyatakan kuantifikasi, kuantor juga biasa digunakan untuk mengubah kalimat terbuka menjadi suatu kalimat deklaratif.

Definisi: Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Perhatikan dua pernyataan berikut: 1. Semua planet dalam sistem tata surya mengelilingi matahari. 2. Ada ikan di laut yang menyusui. Pernyataan yang mengandung kata semua atau setiap seperti pada pernyataan (1) disebut pernyataan berkuantor universal (kuantor umum). Ungkapan untuk semua atau untuk setiap, disebut kuantor universal atau kuantor umum. Sedangkan pernyataan yang mengandung kata ada atau beberapa seperti pada pernyataan (2) disebut pernyataan berkuantor eksistensial (kuantor khusus). Ungkapan beberapa atau ada disebut kuantor eksistensial atau kuantor khusus.

1.2 Pernyataan Penyangkal (Lingkaran)

Dari sebuah pernyataan tunggal (atau majemuk), kita bisa membuat sebuah pernyataan baru berupa "ingkaran" dari pernyataan itu. "ingkaran" disebut juga "negasi" atau "penyangkalan". Ingkaran menggunakan operasi uner (monar) "" atau "".

Jika suatu pernyataan p benar, maka negasinya p salah, dan jika sebaliknya pernyataan p salah, maka negasinya p benar.

Perhatikan cara membuat ingkaran dari sebuah pernyataan serta menentukan nilai kebenarannya!

- 1. p : kayu memuai bila dipanaskan (S)
- p: kayu tidak memuai bila dipanaskan (B)
- 2. r: 3 bilangan positif (B)
- r: (cara mengingkar seperti ini salah)
- 3 bilangan negative
- (Seharusnya) 3 bukan bilangan positif (S)

Nilai kebenaran

Jika p suatu pernyataan benilai benar, maka p bernilai salah dan sebaliknya jika p bernilai salah maka p bernilai benar

Konjungsi

Gabungan dua pernyataan tunggal yang menggunakan kata penghubung "dan" sehingga terbentuk pernyataan majemuk disebut konjungsi. Konjungsi mempunyai kemiripan dengan operasi irisan () pada himpunan. Sehingga sifat-sifat irisan dapat digunakan untuk mempelajari bagian ini.

1.3 Penarikan Kesimpulan

Lists are useful to present information in a concise and/or ordered way¹.

1.3.1 Numbered List

- 1. The first item
- 2. The second item
- 3. The third item

1.3.2 Bullet Points

- The first item
- The second item
- The third item

1.3.3 Descriptions and Definitions

Name Description Word Definition Comment Elaboration

¹Footnote example...

2.1 Metode Pembuktian Langsung dan Tidak Langsung

This is an example of theorems.

2.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 2.1.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$
 (2.1)

$$||\sum_{i=1}^{n} \mathbf{x}_{i}|| \leq \sum_{i=1}^{n} ||\mathbf{x}_{i}|| \quad \text{where } n \text{ is a finite integer}$$
(2.2)

2.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 2.1.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

2.2 Kontradiksi

This is an example of a definition. A definition could be mathematical or it could define a concept.

Definition 2.2.1 — Definition name. Given a vector space E, a norm on E is an application, denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{2.3}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}|| \tag{2.4}$$

$$||x + y|| \le ||x|| + ||y|| \tag{2.5}$$

2.3 Induksi Matematis

Notation 2.1. Given an open subset G of \mathbb{R}^n , the set of functions φ are:

- 1. Bounded support G;
- 2. Infinitely differentiable;

a vector space is denoted by $\mathcal{D}(G)$.

2.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.

2.5 Corollaries

This is an example of a corollary.

Corollary 2.5.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

2.6 Kontradiksi

This is an example of propositions.

2.6.1 Several equations

Proposition 2.6.1 — Proposition name. It has the properties:

$$\left| ||\mathbf{x}|| - ||\mathbf{y}|| \right| \le ||\mathbf{x} - \mathbf{y}|| \tag{2.6}$$

$$\left|\left|\sum_{i=1}^{n} \mathbf{x}_{i}\right|\right| \leq \sum_{i=1}^{n} \left|\left|\mathbf{x}_{i}\right|\right| \quad \text{where } n \text{ is a finite integer}$$
(2.7)

2.6.2 Single Line

Proposition 2.6.2 Let $f, g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G), (f, \varphi)_0 = (g, \varphi)_0$ then f = g.

2.7 Examples

This is an example of examples.

2.7.1 Equation and Text

Example 2.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (2.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \varepsilon\}$ for all $\varepsilon \in]0; 5/2 - \sqrt{2}[$.

2.8 Exercises

2.7.2 Paragraph of Text

■ Example 2.2 — Example name. Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.8 Exercises

This is an example of an exercise.

Exercise 2.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

2.9 Problems

Problem 2.1 What is the average airspeed velocity of an unladen swallow?

2.10 Vocabulary

Define a word to improve a students' vocabulary. **Vocabulary 2.1 — Word.** Definition of word.

- 3.1 Pengertian Pertidaksamaan Linear Dua Variabel
- 3.2 Penerapan Pertidaksamaan Linear Dua Variabel

- 4.1 Pengertian Program Linear Dua Variabel
- 4.2 Sistem Pertidaksamaan Linear Dua Variabel
- 4.3 Nilai Optimum Fungsi Objektif
- **4.4** Penerapan Program Linier Dua Variabel

- 5.1 Pengertian Matriks
- 5.2 Operasi Matriks
- 5.3 Determinan dan Invers Matriks Berorde 2x2 dan 3x3
- 5.4 Pemakaian Matriks Pada Pransformasi Geometri

6.1 Pola Bilangan

6.2 Barisan dan Deret Aritmatika

Pengertian Barisan Aritmatika Sebelum memahami pengertian barisan aritmatika kita harus mengetahui terlebih dahulumengenai pengertian basiran bilangan. Barisan bilangan merupakan sebuah urutan dari bilangan yang dibentuk dengan berdasarkan kepada aturan-aturan tertentu. Edangkan barisan aritmetika dapat didefinisikan sebagai suatu barisan bilangan yang tiap-tiap pasangan suku yang berurutan mengandung nilai selisih yang sama persis, contohnya adalah barisan bilangan: 2, 4, 6, 8, 10, 12, 14, ...

Barisan bilangan tersebut dapat disebut sebagai barisana aritmatika karena masing-masing suku memiliki selisih yang sama yaitu 2. Nilai selisih yang muncul pada barisan aritmatika biasa dilambangkan dengan menggunakan huruf b. Setiap bilangan yang membentuk urutan suatu barisan aritmatika disebut dengan suku. Suku ke n dari sebuah barisan aritmatika dapat disimbolkan dengan lambang Un jadi untuk menuliskan suku ke 3 dari sebuah barisan kita dapat menulis U3. Namun, ada pengecualian khusus untuk suku pertama di dalam sebuah barisan bilangan, suku pertama disimbolkan dengan menggunakan huruf a.

Maka, secara umum suatu barian aritmatika memiliki bentuk :

U1,U2,U3,U4,U5,... Un-1 a, atb, a+2b, a+3b, a+4b,... a+(n-1)b

Cara Menentukan Rumus suku ke-n dari Sebuah Barisan Pada barisan aritmatika, mencaru rumus suku ke-n menjadi lebih mudah karena memiliki nilai selisih yang sama, sehingga rumusnya adalah:

```
U2 = a + b U3 = u2 + b = (a + b) + b = a + 2b U4 = u3 + b = (a + 2b) + b = a + 3b U5 = u4 + b = (a + 3b) + b = a + 4b U6 = u5 + b = (a + 4b) + b = a + 5b U7 = u6 + b = (a + 5b) + b = a + 6b.
```

6.3 Barisan dan Deret Geometri

Part Two

7 7.1 7.2	Limit Fungsi Aljabar Table Figure	25
8.1 8.2 8.3 8.4 8.5 8.6	Turunan Fungsi Aljabar Pengertian Turunan Sifat-Sifat Turunan Fungsi Aljabar Penerapan Turunan Fungsi Aljabar Nilai-Nilai Stasioner Aplikasi Turunan Persamaan Garis Singgung dan Garis Normal	27
9.1 9.2 9.3	Integral Tak Tentu Fungsi Aljabar Pengertian Integral Tak Tentu Fungsi Aljabar Sifat-Sifat Integral Tak Tentu Fungsi Aljabar Penerapan Integral Tak Tentu Fungsi Aljabar	39
	Bibliography Books Articles	41

7.1 Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table 7.1: Table caption

7.2 Figure

Placeholder Image

Figure 7.1: Figure caption

8. Turunan Fungsi Aljabar

- 8.1 Pengertian Turunan
- 8.2 Sifat-Sifat Turunan Fungsi Aljabar
- 8.3 Penerapan Turunan Fungsi Aljabar
- 8.4 Nilai-Nilai Stasioner
- 8.5 Aplikasi Turunan

Konsep turunan adalah subjek yang banyak berperan dalam aplikasi matematika di kehidupan sehari-hari di berbagai bidang. Konsep turunan digunakan untuk menentukan interval fungsi naik/turun, keoptimalan fungsi dan titik belok suatu kurva.

8.5.1 Fungsi Naik dan Fungsi Turun

Coba bayangkan ketika kamu pergi ke plaza atau mall, di sana kita temukan ekskalator atau lift. Gerakan lift dan ekskalator saat naik dapat diilustrasikan sebagai fungsi naik. Demikian juga gerakan lift dan ekskalator saat turun dapat diilustrasikan sebagai fungsi turun. Amatilah beberapa grafik fungsi naik dan turun di bawah ini dan coba tuliskan cirri-ciri fungsi naik dan fungsi turun sebagai ide untuk mendefinisikan fungsi naik dan turun.

Beberapa grafik fungsi turun dari kiri ke kanan

Beberapa grafik fungsi naik dari kiri ke kanan

Dari beberapa contoh grafik fungsi naik dan turun di atas,mari kita definisikan fungsi naik dan turun sebagai berikut.

Misalkan fungsi,

- Fungsi f dikatakan naik jika ∀ x₁, x₂ ∈ S, x₁ < x₂ ⇒ f(x₁) < f(x₂)
- Fungsi f dikatakan turun jika ∀ x₁, x₂₁ ∈ S, x₁ < x₂ ⇒ f(x₁) > f(x₂)

Tunjukkan grafik fungsi $f(x) = x^3$, $x \in R$ dan x > 0 adalah fungsi naik.

Iternatif Penyelesaian

 $f(x) = x^3, x \in R \text{ dan } x > 0$ Ambil sebarang $x_1, x_2 \in R \text{ dengan } 0 < x_1 < x_2$

$$x = x_1 \Rightarrow f(x_1) = x_1^3$$

$$x = x_1 \Rightarrow f(x_2) = x_2^3$$

Karena $0 < x_1 < x_2$ maka $x_1^3 < x_2^3$

Karena $x_1^3 < x_2^3$ maka $f(x_1) < f(x_2)$

Dengan demikian $\forall x_1, x_2 \in S, x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$

Dapat disimpulkan f adalah fungsi naik. Bagaimana jika

 $f(x) = x^3$, $x \in R$ dan x < 0, apakah grafik fungsi f adalah

fungsi naik? Selidiki!

8.5.2 Aplikasi Turunan dalam Permasalahan Fungsi Naik dan Fungsi Turun

Mari kita bahas aplikasi turunan dalam permasalahan fungsi naik dan fungsi turun dengan memperhatikan dan mengamati permasalahan berikut.

Masalah 1

Seorang nelayan melihat seekor lumba-lumba sedang berenang mengikuti kecepatan perahu mereka. Lumba-lumba tersebut berenang cepat, terkadang menyelam dan tiba-tiba melayang ke permukakaan air laut. Pada saat nelayan tersebut melihat lumba-lumba menyelam maka ia akan melihatnya melayang ke permukaan 15 detik kemudian dan kembali ke permukaan air laut setelah 3 detik di udara. Demikan pergerakan lumba-lumba tersebut diamati berperiode dalam beberapa interval waktu pengamatan.

Dari ilustrasi diatas, dapatkah kamu sketsa pergerakan lumba-lumba tersebut dalam 2 periode? Ingat pengertian periode pada pelajaran trigonometri di kelas X. Dapatkah kamu tentukan pada interval waktu berapakah lumbalumba tersebut bergerak naik atau turun? Dapatkah kamu temukan konsep fungsi naik/turun?

Alternatif Penyelesaian:

Sketsa pergerakan lumba-lumba dalam pengamatan tertentu

Sketsa pergerakan naik/turun lumba-lumba dalam pengamatan tertentu

Secara geometri pada sketsa di atas, lumba-lumba bergerak turun di interval 0 < t < 7,5 atau 16,5 < t < 25,5 atau 34,5 < t < 36 dan disebut bergerak naik di interval 7,5 < t < 16,5 atau 25,5 < t < 34,5. Coba kamu amati beberapa garis singgung yang menyinggung kurva di saat fungsi naik atau turun di bawah ini. Garis singgung 1 dan 3 menyinggung kurva pada saat fungsi naik dan garis singgung 2 dan 4 menyinggung kurva pada saat fungsi turun.

Garis singgung di interval fungsi naik/turun

Selanjutnya, mari kita bahas hubungan persamaan garis singgung dengan fungsi naik atau turun. Pada konsep persamaan garis lurus, gradien garis adalah tangen sudut yang dibentuk oleh garis itu sendiri dengan sumbu x positif.Pada persamaan garis singgung, gradien adalah tangen sudut garis tersebut dengan sumbu positif sama dengan nilai turunan pertama di titik singgungnya. Pada gambar di atas, misalkan besar masing-masing sudut adalah $0 < \infty 1 < 900 < \infty 2 < 900 < \infty 3 < 900 < \infty 4 < 900$ sehingga nilai gradien atau tangen sudut setiap garis singgung ditunjukkan pada tabel

berikut:

-					
PGS	Sudut	Nilai tangen	Menyinggung di		
PGS 1	$\alpha_{_1}$	$m = \tan(\alpha_1) = f'(x) > 0$	Fungsi Naik		
PGS 2	$360^{0} - \alpha_{2}$	$m = \tan (360^{\circ} - \alpha_2) =$ f'(x) < 0	Fungsi Turun		
PGS 3	α_3	$m = \tan(\alpha_3) = f'(x) > 0$	Fungsi Naik		
PGS 4	$360^{0} - \alpha_{4}$	$m = \tan (360^{\circ} - \alpha_4) =$ f'(x) < 0	Fungsi Turun		

Coba kamu amati Gambar diatas dan Tabel sebelumnya Apakah kamu melihat konsep fungsi naik/turun. Coba kamu perhatikan kesimpulan berikut:

Jika garis singgung menyinggung di grafik fungsi naik maka garis singgung akan membentuk sudut terhadap sumbu x positif di kuadran I. Hal ini menyebabkan besar gradien adalah positif atau m = f'(x) > 0.

Jika garis singgung menyinggung di grafik fungsi turunmaka garis singgung akan membentuk sudut terhadap sumbu x positif di kuadran IV. Hal ini menyebabkan besar gradien adalah negatif atau m = f'(x) < 0.

Dengan demikian, dapat kita simpulkan bahwa fungsi f(x) yang dapat diturunkan pada interval I, akan mempunyai kondisi sebagai berikut:

No.	Nilai turunan pertama	Keterangan
1	f'(x) > 0	Fungsi selalu naik
2	f'(x) < 0	Fungsi selalu turun
3	$f'(x) \ge 0$	Fungsi tidak pernah turun
4	$f'(x) \leq 0$	Fungsi tidak pernah naik

Misalkan f adalah fungsi bernilai real dan dapat diturunkan pada setiap $x \in I$ maka

- 1. Jika f'(x) > 0 maka fungsi selalu naik pada interval I.
- 2. Jika f'(x) < 0 maka fungsi selalu turun pada interval I.
- 3. Jika f'(x) ≥ 0 maka fungsi tidak pernah turun pada interval I.
- 4. Jika f'(x) ≤ 0 maka fungsi tidak pernah naik pada interval I.

Konsep di atas dapat digunakan jika kita sudah memiliki fungsi yang akan dianalisis. Tetapi banyak kasus seharihari harus dimodelkan terlebih dahulu sebelum dianalisis. Perhatikan kembali permasalahan berikut!

Masalah:

Tiga orang anak sedang berlomba melempar buah mangga di ketinggian 10 meter. Mereka berbaris menghadap pohon mangga sejauh 5 meter. Anak pertama akan melempar buah mangga tersebut kemudian akan dilanjutkan dengan anak kedua bila tidak mengenai sasaran. Lintasan lemparan setiap anak membentuk kurva parabola. Lemparan anak pertama mencapai ketinggian 9 meter dan batu jatuh 12 meter dari mereka. Lemparan anak kedua melintas di atas sasaran setinggi 5 meter. Anak ketiga berhasil mengenai sasaran. Tentu saja pemenangnya anak ketiga, bukan?

Permasalahan!

Dapatkah kamu mensketsa lintasan lemparan ketiga anak tersebut? Dapatkah kamu membuat model matematika lintasan lemparan? Dapatkah kamu menentukan interval jarak agar masing-masing lemparan naik atau turun berdasarkan konsep turunan?

Alternatif Penyelesaian

a. Sketsa Lintasan Lemparan

Permasalahan di atas dapat kita analisis setelah kita modelkan fungsinya. Misalkan posisi awal mereka melempar adalah posisi titik asal O(0,0) pada koordinat kartesius, sehingga sketsa permasalahan di atas adalah sebagai berikut.

b. Model Lintasan Lemparan

Kamu masih ingat konsep fungsi kuadrat, bukan? Ingat kembali konsep fungsi kuadrat yang melalui titik puncak $P(x_p, y_p)$ dan titik sembarang P(x, y) adalah $y - y_p = a(x - x_p)^2$ sementara fungsi kuadrat yang melalui akar-akar x1, x2 dan titik sembarang P(x, y) adalah $y = a(x - x_1)(x - x_2)$, dengan $x_p = \frac{x_1 - x_2}{2}$ dan a $\neq 0$, a bilangan real. Jadi, model lintasan lemparan setiap anak tersebut adalah:

Lintasan lemparan anak pertama

Lintasan melalui titik O(0,0) dan puncak $p_1(6,9)$.

$$y - 0 = a(x - 5)^2$$
 $\Leftrightarrow 0 - 10 = a(0 - 5)^2$
 $\Leftrightarrow a = -0.4$

Fungsi lintasan lemparan anak pertama adalah $y = -0.25x^2 + 3x$.

Lintasan lemparan anak kedua

Lintasan melalui titik O(0,0) dan puncak $P_2(5,15)$.

$$y - 15 = a(x - 5)^2$$
 $\Leftrightarrow 0 - 15 = a(0 - 5)^2$
 $\Leftrightarrow a = -0.6$

Fungsi lintasan lemparan anak kedua adalah $y = -0.6x^2 + 6x$.

Lintasan lemparan anak ketiga

Lintasan melalui titik O(0,0) dan puncak P3(5,10).

$$y - 0 = a(x - 5)^2 \qquad \Leftrightarrow 0 - 10 = a(0 - 5)^2$$

$$\Leftrightarrow a = -0.4$$

Fungsi lintasan lemparan anak ketiga adalah $y = -0.4x^2 + 4x$.

c. Interval Fungsi Naik/Turun Fungsi Lintasan

Coba kamu amati kembali Gambar seketsa lintasan lemparan Secara geometri,jelas kita lihat interval fungsi naik/turun pada masingmasing lintasan, seperti pada tabel berikut:

Lintasan	Eungei	Secara Geometri		
ke	Fungsi	Interval Naik	Interval Turun	
1	$y = -0.25x^2 + 3x$	0 < x < 6	6 < x < 12	
2	$y = -0.6x^2 + 6x$	0 < x < 5	5 < x < 10	
3	$y = -0.4x^2 + 4x$	0 < x < 5	5 < x < 10	

Mari kita tunjukkan kembali interval fungsi naik/turun dengan meng-gunakan konsep turunan yang telah kita pelajari sebelumnya.

Fungsi naik/turun pada lintasan lemparan anak 1

Fungsi yang telah diperoleh adalah $y = -0.25x^2 + 3x$ sehingga $y = -0.5x^2 + 3x$. Jadi,

fungsi akan naik: $y = -0.5x^2 + 3x \Leftrightarrow x < 6$

fungsi akan turun: $y = -0.5x + 3 < 0 \Leftrightarrow x > 6$

Menurut ilustrasi, batu dilempar dari posisi awal O(0,0) dan jatuh pada posisi akhir Q(12,0) sehingga lintasan lemparan akan naik pada 0 < x < 6 dan turun pada 6 < x < 12.

Bagaimana menunjukkan interval fungsi naik/turun dengan konsep turunan pada fungsi lintasan lemparan anak 2 dan anak 3 diserahkan kepadamu.

Contoh Soal: Tentukanlah interval fungsi naik/turun fungsi $f(x) = x^4 - 2x^2$

Alternatif Penyelesaian

Berdasarkan konsep, sebuah fungsi akan naik jika f'(x) > 0 sehingga:

f'(x) =
$$4x^3 - 4x > 0 \Leftrightarrow 4x(x-1)(x+1) > 0 \Leftrightarrow x = 0$$
 atau x = 1 atau x = -1

Dengan menggunakan interval.

Jadi, kurva fungsi tersebut akan naik pada interval 1-1 < x < 0 atau x > 1 tetapi turun pada interval x < -1 atau 0 < x < 1. Perhatikan sketsa kurva $f(x) = x^4 - 2x^2$ tersebut.

Gambar Fungsi naik/turun kurva f(x) = x4 - 2x2

8.5.3 Aplikasi Konsep Turunan dalam Permasalahan Maksimum dan Minimum

Setelah menemukan konsep fungsi naik dan turun, kita akan melanjutkan pembelajaran ke permasalahan maksimum dan minimum serta titik belok suatu fungsi. Tentu saja, kita masih melakukan pengamatan terhadap garis singgung kurva. Aplikasi yang akan dibahas adalah permasalahan titik optimal fungsi dalam interval terbuka dan tertutup, titik belok, dan permasalahan kecepatan maupun percepatan.

1.Menemukan konsep maksimum dan minimum di interval terbuka

Masalah: Seorang anak menarik sebuah tali yang cukup panjang. Kemudian dia membuat gelombang dari tali dengan menghentakkan tali tersebut ke atas dan ke bawah sehingga terbentuk sebuah gelombang berjalan. Dia terus mengamati gelombang tali yang dia buat. Dia melihat bahwa gelombang tali memiliki puncak maksimum maupun minimum. Dapatkah kamu menemukan konsep nilai maksimum ataupun minimum dari sebuah fungsi?

Penyelesaian : Gradien garis singgung adalah tangen sudut yang dibentuk oleh garis itu sendiri dengan sumbu x positif atau turunan pertama dari titik singgungnya.

Gambar Sketsa gelombang tali

Coba kamu amati gambar di atas. Garis singgung (PGS 1, PGS 2, PGS 3 dan PGS 4) adalah garis horizontal atau y = c, c konstan, sehingga gradiennya adalah m = 0. Keempat garis singgung tersebut menyinggung kurva di titik puncak/optimal, di absis $x = x_1, x = x_2, x = x_3, danx = x_4$. Dari pengamatan, dapat disimpulkan bahwa sebuah fungsi akan mencapai optimal(maksimum/minimum) pada suatu daerah jika m = f'(x) = 0. Titik yang memenuhi f'(x) = 0 disebut titik stasioner. Berikutnya, kita akan mencoba menemukan hubungan antara titik stasioner dengan turunan kedua fungsi. Pada Gambar sketsa gelombang tali, $f'(x_1) = 0, f'(x_2) = 0, f'(x_3) = 0 dan f'(x_4) = 0$. Artinya kurva turunan pertama fungsi melalui sumbu x di titik $A(x_1,0), B(x_2,0), C(x_3,0) dan D(x_4,0)$.

Coba kamu amati kurva turunan pertama fungsi dan garis singgungnya sebagai berikut. Kesimpulan apa yang kamu dapat berikan?

Gambar Hubungan garis singgung kurva m = f'(x) dengan titik stasioner

Titik $A(x_1, y_1)$ adalah titik maksimum pada Gambar sketsa gelombang tali sehingga titik dengan absis x = x1 adalah titik stasioner karena $f'(x_1) = 0$. Per-samaan garis singgung kurva dengan gradien M pada fungsi m = f'(x) menyinggung di titik $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif. Hal ini mengakibatkan $x = x_1$ membentuk sudut di kuadran IV sehingga nilai tangen sudut bernilai negatif.

Kesimpulan: Lihat Gambar hubungan garis singgung kurva, misalkan gradien persamaan garis singgung kurva m = f'(x) adalah M sehingga M = m' = f''(x) maka hubungan turunan kedua dengan titik stasioner adalah:

PGS	Gradien $M = m' = f''(x)$	Jenis Titik	Pergerakan kurva
а	$M_a = f''(x_1) < 0$	Max	Naik-Max-Turun
b	$M_b = f''(x_2) > 0$	Min	Turun-Min-Naik
С	$M_c = f''(x_3) < 0$	Max	Naik-Max-Turun
d	$M_d = f''(x_4) > 0$	Min	Turun-Min-Naik
р	$M_p = f''(x_5) = 0$	T. Belok	Turun-Belok-Turun
q	$M_q = f''(x_\delta) = 0$	T. Belok	Naik-Belok-Naik
r	$M_r = f''(x_7) = 0$	T. Belok	Turun-Belok-Turun

Tabel Hubungan turunan kedua fungsi dengan titik optimal (stasioner)

Sifat:Misalkan f adalah fungsi bernilai real yang kontinu dan memiliki turunan pertama dan kedua pada $x_1 \in I$ sehingga:

- 1. Jika f' $(x_1) = 0$ makatitik $(x_1, f(x_1))$ disebut stasioner/kritis
- 2. Jika f' $(x_1) = 0 dan f''(x_1) > 0 makatit k(x_1, f(x_1))$ disebut titik balik minimum fungsi
- 3. Jika f' $(x_1) = 0$ dan $f''(x_1) < 0$ makatitik $(x_1, f(x_1))$ disebut titik balik maksimum fungsi
- 4. Jika f " $(x_1) = 0$ makatitik $(x_1, f(x_1))$ disebut titik belok

Contoh Soal: Tentukanlah titik balik fungsi kuadrat $f(x) = x^2 - 4x + 3$

Penyelesaian 1 (Berdasarkan Konsep Fungsi Kuadrat)

Dengan mengingat kembali pelajaran fungsi kuadrat. Sebuah fungsi $f(x) = ax^2 + bx + c$ mempunyai titik balik $B(-\frac{b}{2a}, -\frac{D}{4a})$ dimana fungsi mencapai maksimum untuk a < 0 dan mencapai minimum untuk a > 0 sehingga fungsi $f(x) = x^2 - 4x + 3$ mempunyai titik balik minimum pada $B(-\frac{-4}{2(1)}, -\frac{(-4)^2 - 4(1)(3)}{4(1)} = B(2,-1)$.

Penyelesaian 2 (Berdasarkan Konsep Turunan)

Dengan menggunakan konsep turunan di atas maka fungsi $f(x) = x^2 - 4x + 3$ mempunyai stasioner: f'(x) = 2x - 4 = 0 atau x = 2 dan dengan mensubstitusi nilai x = 2 ke fungsi $y = f(x) = x^2 - 4x + 3$ diperoleh y = -1 sehingga titik stasioner adalah B(2, -1). Mari kita periksa jenis keoptimalan fungsi tersebut dengan melihat nilai turunan keduanya pada titik tersebut. f''(x) = 2 atau f''(2) = 2 > 0. Berdasarkan konsep, titik tersebut adalah titik minimum. Jadi, titik balik fungsi kuadrat $f(x) = x^2 - 4x + 3$ adalah minimum di B(2, -1).

Gambar Titik balik fungsi kuadrat $f(x) = x^2 - 4x + 3$

Contoh Soal:

Analisislah kurva fungsi y = f(x) berdasarkan sketsa kurva turunan pertamanya berikut.

Gambar Sketsa turunan pertama suatu fungsi y = f(x)

Alternatif Penyelesaian

Secara geometri sketsa turunan pertama fungsi di atas,nilai setiap fungsi di bawah sumbu x adalah negatif dan bernilai positif untuk setiap fungsi di atas sumbu x.

Gambar Sketsa turunan pertama suatu fungsi y = f(x)

Dengan demikian, melalui pengamatan dan terhadap grafik turunan pertama dan konsep turunan maka fungsi y = f(x)akan:

- Naik (f'(x) > 0) pada a < x < c, c < x < e dan x > i
- Turun (f'(x) < 0) pada x < a, e < x < g dan g < x < i
- Stasioner (f'(x) = 0) pada absis x = a, x = c, x = e, x = g dan x = i
- Optimal maksimum (f'(x) = 0 dan f''(x) < 0) pada absis x = e
- Optimal minimum (f'(x) = 0 dan f''(x) > 0) pada absis x = a dan x = i.

• Titik belok (f''(x) = 0) pada absis x = b, x = c, x = d, x = f, x = g dan x = h

2.Menemukan konsep maksimum dan minimum di interval terbuka

Contoh Masalah:

Coba kamu amati posisi titik maksimum dan minimum dari beberapa gambar berikut.

Gambar Titik maksimum dan minimum suatu fungsi

Kesimpulan apa yang kamu peroleh?

Alternatif Penyelesaian:

Gambar A di atas telah kita bahas pada permasalahan sebelumnya. Jika kamu amati dengan teliti, perbedaan antara gambar A dengan ketiga gambar lainnya (B, C dan D) adalah terdapat sebuah daerah yang membatasi kurva. Dengan demikian, gambar A adalah posisi titik maksimum/minimum sebuah fungsi pada daerah terbuka dan ketiga gambar lainnya adalah posisi titik maksimum/minimum sebuah fungsi pada daerah tertutup. Nilai maksimum dan minimum fungsi tidak hanya bergantung pada titik stasioner fungsi tersebut tetapi bergantung juga pada daerah asal fungsi.

Contoh Soal:

Sebuah pertikel diamati pada interval waktu (dalam menit)tertentu berbentuk kurva $f(t) = t^3 9t^2 + 24t - 16$ pada $0 \le t \le 6$. Tentukanlah nilai optimal pergerakan partikel tersebut.

Alternatif Penyelesaian:

Daerah asal fungsi adalah t $| 0 \le t \le 6$ Titik stasioner f'(t) = 0

$$f(t) = t^3 9t^2 + 24t - 16$$
 sehingga f'(t) = $3(t^2 - 6t + 8)$ dan

$$f''(t) = 6t - 18$$

$$f'(t) = 3(t-2)(t-4) = 0$$

$$t = 2 \rightarrow f(2) = 4dant = 4 \rightarrow f(4) = 0$$

Karena daerah asal t $\mid 0 \le t \le 6$ dan absis t = 2, t = 4 ada dalam daerah asal sehingga:

$$t = 0 \rightarrow f(0) = -16 \text{ dan } t = 6 \rightarrow f(6) = 20$$

Nilai minimum keempat titik adalah -16 sehingga titik minimum kurva pada daerah asal adalah A(0,-16) dan nilai maksimum keempat titik adalah 20 sehingga titik maksimum kurva pada daerah asal adalah B(6,20). Perhatikan gambar.

Gambar Titik optimal kurva $f(t) = t^3 9t^2 + 24t - 16$ untuk $0 \le t \le 6$.

Contoh Masalah:

Seorang anak berencana membuat sebuah tabung dengan alas berbentuk lingkaran tetapi terbuat dari bahan yang berbeda. Tabung yang akan dibuat harus mempunyai volume 43.120 cm3. Biaya pembuatan alas adalah Rp150,- per cm2, biaya pembuatan selimut tabung adalah Rp80,- per cm2 sementara biaya pembuatan atap adalah Rp50,- per cm2. Berapakah biaya minimal yang harus disediakan anak tersebut?

Alternatif Penyelesaian:

Mari kita sketsa tabung yang akan dibuat. Misal-kan r adalah radius alas dan atap tabung, t adalah tinggi tabung $\Pi = \frac{22}{7}$.

Gambar Tabung

Gambar Tabung

$$V = \frac{22}{7}r^2t = 43120 \Leftrightarrow t = \frac{7}{22} \times \frac{43120}{r^2}$$
Biaya = (Luas alas × biaya alas) + (Luas selimut × biaya selimut) + (Luas atap × biaya atap)

Biaya = $\frac{22}{7}r^2 \times 50 + \frac{22}{7}rt \times 80 + \frac{22}{7}r^2 \times 50$

Biaya = $\frac{22}{7}r^2 \times 150 + \frac{22}{7}r \times \frac{7}{22} \times \frac{43120}{r^2} \times 80 + \frac{22}{7}r^2 \times 50$

Biaya = $\frac{22}{7}r^2 \times 200 + \frac{43120}{r} \times 80$

Biaya B(r) adalah fungsi atas radius r (dalam Rupiah).

$$B(r) = \frac{4400}{7}r^2 + \frac{3449600}{r^2}$$

B'(r) = $\frac{8800}{7}r - \frac{3449600}{r^2} = 0$
 $\frac{88}{7}r^3 = \frac{34496}{r^2}$
 $r^3 = 2744 = 143 \Leftrightarrow r = 14$

Jadi biaya minimum

$$B(r) = \frac{4400}{7}r^2 + \frac{3449600}{r}$$

$$B'(r) = \frac{8800}{7}r - \frac{3449600}{r^2} = 0$$

$$\frac{88}{7}r^3 = \frac{34496}{r^2}$$

$$r^3 = 2744 = 143 \Leftrightarrow r = 14$$
Jadi biaya minimum
$$= \frac{22}{7} \times 14^2 \times 200 + \frac{43120}{14} \times 80$$

$$= 616 \times 200 + 3080 \times 80$$

$$= 123200 + 246400$$

$$= 369.600$$

Biaya minimum adalah Rp369.600,-

Persamaan Garis Singgung dan Garis Normal

- 9.1 Pengertian Integral Tak Tentu Fungsi Aljabar
- 9.2 Sifat-Sifat Integral Tak Tentu Fungsi Aljabar
- 9.3 Penerapan Integral Tak Tentu Fungsi Aljabar

Books Articles