

International Journal of Mass Spectrometry and Ion Processes 155 (1996) 163-183

Selected ion flow tube studies of the gas-phase reactions of O⁻, O₂⁻ and OH⁻ with a variety of brominated compounds

R. Thomas, Y. Liu, C.A. Mayhew*, R. Peverall

School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Received 22 April 1996; accepted 18 June 1996

Abstract

The reactions of fourteen bromine-containing molecules, CH₃Br, CH₂Br₂, CHBr₂Cl, C₂H₅Br, CH₂BrC, CH₂BrC, CH₂BrCH₂Br, CH₂BrCH₂Cl, CF₃Br, CF₂Br₃, CFBr₃, CFBr₂Cl, CCl₃Br and CF₂BrCF₂Br, with the anions O O, O₂ and OH in a 0.5 Torr helium buffer gas have been studied at 300 K using a selected ion flow tube. Reaction rate coefficients and branching ratios are presented. Several distinct reaction processes are observed among the large number of reactions studied, including nucleophilic attack, proton transfer, abstraction, and dissociative and non-dissociative electron transfer (within or out of a reaction complex). Of the forty-two bimolecular reactions, the rates of only two are significantly below the collisional rate and, for these two, competitive three-body processes are observed. Many of the reactions reported here have not previously been studied. This study, therefore, presents new data which provide additional insight into the reactions of anions with halogenated species.

Keywords: SIFT; Gas phase ion chemistry; Kinetics

1. Introduction

The study of the reactions of negative ions with molecules is of importance because of the role such reactions play in the chemical evolution of many gaseous environments, including planetary atmospheres, surface etchant plasmas, flames, and laser discharges [1–3]. Furthermore, chemical ionisation mass spectrometry uses negative ions as sensitive probes for the detection of halogenated compounds and other pollutants in the atmosphere [4,5].

The reactions of negative ions with halogenated compounds have been the subject of many studies over the years (see the compilation

by Ikezoe et al. [6] for rate data up to 1986). Fehsenfeld et al. [7] investigated the possible contribution of negative ion reactions to limiting the atmospheric concentrations of CFCl₃ and CF₂Cl₂. Later, Dotan et al. [8] studied the reactions of anions with molecules containing chlorine. Other researchers, notably Streit [9] and Morris [3], continued this line of research, not only for the atmospheric interest but also because of their interest in understanding the fundamental ionic processes occurring in pollutant detectors which operate by using ions as probes of the environment. More recently Morris et al. [10,11] reported studies of atmospheric interest of negative ion reactions with a number of perfluorocarbons and hydrofluorocarbons. In an earlier paper we reported the results from a

^{*} Corresponding author.

comprehensive study of the reactions of the atomic oxygen radical anion O and the dioxygen radical anion O2 with a variety of fluorinated and/or chlorinated methanes [12]. Indeed, to date much of the work appearing in the literature has concentrated on reactions involving O^- and O_2^- . The reason for this lies simply in the importance of these anions in mesospheric chemistry and their use as practical reagents in atmospheric pressure negative ion mass spectrometry [13], ion-mobility spectrometry [14], microcircuit fabrication [3], and enhancing response to certain halogenated compounds in electron capture detectors [15,16]. A recent review dealing with the reactions of O and the synthesis of organic reactive intermediates has been compiled by Lee and Grabowski [17].

Of the O⁻ and O₂ reactions with halogenated compounds so far studied, little attention has been directed to those of brominated compounds. Futrell and Tiernan reported measurements of the reaction of O with CH₃Br and C₂H₅Br using a tandem mass spectrometer [18]. Except for this, and two recent investigations [3,10], other studies investigating the reactions of O and O₂ with bromine compounds have been carried out using a flowing afterglow (FA) apparatus. Tanaka et al. [19] and McDonald and Chowdhury [20] measured the rate coefficients and ionic products for the O /CH₃Br and O₂/CH₃Br reactions, respectively. Reactions of O and O with HBr, IBr, CF₃Br, CHBr₃, CBrClF₂ and C₂F₅Br were investigated, also using a FA apparatus [9], but ionic products were not unambiguously identified because of the presence of more than one anion species in the flow tube. More recently Morris [3] and Morris et al. [10] used a selected ion flow tube (SIFT) and reported the reactions of O and O₂ with CF₃Br and CHBrF₂, respectively.

Another anion of atmospheric interest, which has received little attention in terms of reaction with brominated compounds, is the hydroxyl anion OH⁻. To our knowledge, there are only a few reports in the literature. Three of these relate to an investigation of nucleophilic substitution

(S_N2) reactions with CH₃Br, two using a FA [19,21] and the other using a pulsed ion cyclotron resonance (ICR) spectrometer [22]. Another study deals with the reaction of OH⁻ (and other nucleophiles) with six bromine-containing molecules, including two investigated in this study—CH₃Br and C₂H₅Br [23]. More recently the reactions of OH⁻ with CF₃Br, CF₂Br₂ and CFBr₃ [24] have been reported.

A systematic investigation of the reactions of brominated molecules with O⁻, O₂⁻ and OH⁻ is useful for the following reasons: (i) to make a comparison with the negative ion chemistry of fluorinated and/or chlorinated compounds, (ii) to determine the role they play (if any) in the fate of bromine-containing molecules released into the atmosphere, (iii) to characterise the response in negative chemical ionisation mass spectrometers used to detect these pollutants in the environment, (iv) to improve our general understanding and knowledge of atmospheric negative ion chemistry, and finally (v) because the ion chemistry of the brominated compounds is essentially unexplored.

In our continuing studies of the reactions of negative ions with halogenated compounds, we report here a detailed SIFT study of the reactions of O, O2 and OH with fourteen brominated compounds, CH₃Br, CH₂Br₂, CHBrCl₂, CHBr₂Cl, C₂H₅Br, CH₂BrCH₂Br, CH₂BrCH₂Cl, CF₃Br, CF₂Br₂, CFBr₃, CBrClF₂, CFBr₂Cl, CCl₃Br and CF₂BrCF₂Br, many being reported here for the first time (particularly the OH reactions), significantly contributing to the body of data already reported. Where this present study overlaps other investigations there is generally good agreement, although for some of the reactions discrepancies with the reaction rate coefficients and branching ratios have been found.

2. Experimental

The SIFT, its operation and its application to the investigation of gas-phase ion-molecule reactions are reported in a detailed review by Adams and Smith [25]. Therefore, only those aspects pertinent to the present study will be mentioned here. O, O, or OH anions were generated in a high pressure electron impact chamber by using N₂O, N₂/O₂ or CH₄/N₂O as respective source gases. The anions were then mass selected and injected into a fast flowing helium carrier gas ($\approx 150 \text{ Torr } 1 \text{ s}^{-1}$) maintained at a pressure of ≈ 0.5 Torr in which they were thermalised (to 300 K) and transported along the flow tube. Neutral reactant gases, obtained commercially and used without further purification, were added in controlled amounts to the carrier gas/ion stream. The precursor and product anions were mass analysed using a second quadrupole mass spectrometer downstream of the inlet and detected by a channeltron electron multiplier. The rate coefficients and ion product distributions were then determined in the usual way (Adams and Smith [25,26]). However, it is worth mentioning that the determination of product distribution may be affected by the varying diffusional losses of the various anion products in

Table 1 Compilation of the measured rate coefficients $k_{\rm exp}$ and product anion distributions for the reactions of O with the series of halogenated compounds in Group I investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients k_{calc} are also presented. The rate coefficients (experimental and calculated) are in units of 10⁻⁹ cm³ molecule⁻¹ s⁻¹. The experimental results are considered accurate to $\pm 20\%$

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy $\Delta H/kJ \text{ mol}^{-1}$	k_{exp}	$k_{ m calc}$
CH ₃ Br	Br~	+CH ₃ O	57	-267	2.2	2.4
-	CHBr ^{-a}	$+H_2O$	40	-97		
	OH-	+CH ₂ Br	3	-33		
CH_2Br_2	Br~	+Br +CH ₂ O	52	-318	1.3	2.4
	$CHBr_2^{-b}$	+OH	38	-29		
	OBr ^{-c}	+CH ₂ Br	10	-35		
CHBrCl ₂	$CBrCl_2^{-d}$	+OH	88	< -122	2.5	
	Br~	+Cl +CHClO°	5	(-315)		
	BrCl ^{·-f}	+CHClO ^e	3	(<-351)		
	Cl~	+Br +CHClO ^e	3	(-338)		
	Cl ₂	+CHBrO ^g	≈ 1	(-402)		
CHBr ₂ Cl	CBr ₂ Cl ⁻	+OH	47	$\Delta H_f(CBr_2Cl^-) < 78$	2.1	
-	OBr^{-c}	+CHBrCl ^{·h}	20	(-68 ± 11)		
	Br~	+Cl +CHBrOg	20	(-320)		
	Cl~	+Br +CHBrOg	10	(-343)		
	OCl ⁻ⁱ	+CHBr ₂	3	-8 ± 9		
C_2H_5Br	Br	+CH ₃ CH ₂ O ^{-j}	90	-235	2.0	2.7
	$C_2H_4Br^-$	+HO	10	$\Delta H_f(C_2H_4Br^-) < 7$		
CH ₂ BrCH ₂ Br	Br -	+Br +CH ₂ OCH ₂	100	-223	2.2	2.0^{k}
CH ₂ BrCH ₂ Cl	Br -	+Cl +CH ₂ OCH ₂	68	-166	1.9	1.9 ^k
	Cl~	+Br +CH ₂ OCH ₂	32	-189		

 $^{^{}a}$ $H_{1}(CHBr^{-}) = 223 \text{ kJ mol}^{-1}$ determined from $H_{2}(CHBr) = 373 \pm 18 \text{ kJ mol}^{-1}$ [30] and EA(CHBr) = 1.556 eV [31].

^b $H_f(CHBr_2^-) = 40 \text{ kJ mol}^{-1}$ determined from $H_f(CHBr_2) = 227 \text{ kJ mol}^{-1}$ and EA(CHBr₂) = 1.94 eV [32]. ^c $H_f(OBr^-) = -101 \text{ kJ mol}^{-1}$ determined from $H_f(OBr^-) = 126 \text{ kJ mol}^{-1}$ and EA(OBr^-) = 2.35 eV [33].

 $^{^{\}rm d}H_{\rm f}({\rm CBrCl_2^-}) \le -102~{\rm kJ~mol^{-1}}$, an upper limit estimated from the reaction of OH⁻+CBrCl₃.

^e $H_f(CHCIO) = -164 \pm 1 \text{ kJ mol}^{-1}$ estimated from H/Cl exchange in CH_2O/CCl_2O .

 $^{^{4}}$ H_f(CHClO) = -164 \pm 1 kb mol estimated from H/Cl exchange in CH₂O/CCl₂O. 4 H_f(BrCl⁻) ≤ -107 \pm 21 kJ mol⁻¹, an upper limit estimated from the reaction OH⁻+CFBr₂Cl. 8 H_f(CHBrO) = -111 \pm 1 kJ mol⁻¹ estimated from H/Br exchange in CH₂O/CBr₂O. 4 H_f(CHBrCl) = 175 \pm 8 kJ mol⁻¹ estimated from the average Br/Cl exchange in CHBr₂/CHCl₂ and CH₂Br /CH₂Cl.

 $^{^{1}}H_{1}(OCl^{-}) = -118 \text{ kJ mol}^{-1} \text{ determined from } H_{1}(OCl^{-}) = 101 \text{ kJ mol}^{-1} \text{ and EA}(OCl^{-}) = 2.27 \text{ eV } [33].$

 $^{^{1}}H_{2}(CH_{3}CH_{2}O) = -25 \pm 8 \text{ kJ mol}^{-1} [34].$

k No dipole moment data available; the calculated rate is the Langevin rate coefficient.

the flow tube—an effect which depends on mass but in the opposite sense to that of discrimination in the detector. Nevertheless, diffusional losses are unlikely to have much effect on the branching ratios presented here because of the large masses involved. It is worth noting, however, that care must be taken when using the standard technique [26] to determine the product ratios allowing for mass discrimination of the detection system only. Importantly, for negative ion work, the Faraday plate detector is indirectly used to determine whether electron detachment occurs. A decrease in the current at the Faraday plate, subsequent to the introduction of the neutral reagent into the flow tube, is attributed to the production of free electrons which diffuse quickly to the walls of the instrument before they can be detected. However, a decrease in the Faraday plate current will also occur if the parent anion is converted in the reaction to a daughter anion of smaller mass. This is a result of the greater diffusional loss of the daughter anion to the SIFT walls compared with the

parent anion. Hence care must be taken when looking for electron detachment processes when dealing with negative ion-molecule reactions. In all the studies presented here, no decrease in the Faraday plate current was detected, suggesting that if electron detachment did occur it was slight.

3. Results and discussion

To facilitate discussion, the neutral reactant molecules have been placed into one of two groups I and II: (I) CH₃Br, CH₂Br₂, CHBrCl₂, CHBr₂Cl, C₂H₅Br, CH₂BrCH₂Br and CH₂BrCH₂Cl (the hydrogen-containing halocarbons), and (II) CF₃Br, CF₂Br₂, CFBr₃, CBrClF₂, CFBr₂Cl, CCl₃Br and CF₂BrCF₂Br (the fully halogenated halocarbons). The experimental rate coefficients and the anion product distributions for the O⁻, O₂⁻ and OH⁻ anion reactions with the group I molecules are listed

Table 2 Compilation of the measured rate coefficients $k_{\rm exp}$ and product anion distributions for the reactions of O_2^- with the series of halogenated compounds in Group I investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients $k_{\rm calc}$ are also presented. The rate coefficients (experimental and calculated) are in units of 10^{-9} cm³ molecule⁻¹ s⁻¹. The experimental results are considered accurate to $\pm 20\%$

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy $\Delta H/kJ \text{ mol}^{-1}$	$k_{\rm exp}$	$k_{\rm calc}$
CH ₃ Br	Br ⁻	+CH ₃ O ₂ °a	100	-105	1.3	1.8
CH ₂ Br ₂	Br ⁻	+CH ₂ O+OBr ^{-b}	100	-154	1.6	1.8
CHBrCl ₂	Br ⁻	+CCl ₂ O+OH	91	-303	1.3	
	Cl-	+CBrClO ^c +OH	4	(-264)		
	CHBrCl ₂	$+O_2$	4	$\Delta H_f(CHBrCl_2^-) < -91$		
	BrCl ^d	+CClO ^{·e} +OH	1	$<\hat{1} \pm 16$		
CHBr ₂ Cl	Br -	+CBrClO ^c +OH	95	(-190)	1.0	
	Cl-	+CBr ₂ O+OH	5	-268		
C_2H_5Br	Br ⁻	+CH ₃ O +CH ₂ O	100	-201	1.3	1.8
CH ₂ BrCH ₂ Br	Br ⁻	+Br +CH2O+CH2O	85	-238	1.9	1.5 ^f
	\mathbf{Br}_2^{-}	+CH ₂ O+CH ₂ O	15	-346		
CH ₂ BrCH ₂ Cl	Br ⁻	+Cl+CH2O+CH2O	93	-180	1.9	1.4^{f}
	Cl-	+Br +CH2O+CH2O	7	-204		

 $^{^{}a}H_{f}(CH_{3}O_{2}) = 28 \text{ kJ mol}^{-1} [35].$

^b $H_{\rm f}({\rm OBr}) = 126 \text{ kJ mol}^{-1} [33].$

 $^{^{\}circ}H_{\rm f}({\rm CBrClO}) = -167 \pm 1 \text{ kJ mol}^{-1}$ estimated from Br/Cl exchange in CBr₂O/CCl₂O.

 $^{^{\}rm d}H_{\rm f}({\rm BrCl}^-) \le -107 \pm 21 \;{\rm kJ}\;{\rm mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CBr₂CIF.

 $^{^{}e}H_{1}(CClO) = -22 \pm 3 \text{ kJ mol}^{-1} [36].$

f No dipole moment data available; the calculated rate is the Langevin rate coefficient.

Table 3 Compilation of the measured rate coefficients kexp and product anion distributions for the reactions of OH- with the series of halogenated compounds in Group I investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients k_{calc} are also presented. The rate coefficients (experimental and calculated) are in units of 10⁻⁹ cm³ molecule⁻¹ s⁻¹. The experimental results are considered accurate to

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy $\Delta H/\text{kJ mol}^{-1}$	k_{exp}	$k_{ m calc}$
CH₃Br	Br	+CH₃OH	100	-240	2.3	2.3
CH_2Br_2	$CHBr_2^{-a}$	+H ₂ O	95	-65	1.5	2.3
	Br -	+HBr+CH ₂ O	5	-221		
CHBrCl ₂	CBrCl ₂ -b	+H ₂ O	96	< -158	1.2	
	Br -	+H ₂ O+CCl ₂	4	-106		
CHBr ₂ Cl	CBr ₂ Cl ^{-c}	+H ₂ O	96	$< -36 \pm 8$	1.2	
	Br -	+HBr+CHClO ^d	3	(-288)		
	Cl ⁻	+HBr+CHBrO ^e	1	(-228)		
C₂H₅Br	Br-	+CH ₂ O+CH ₄	100	-197	2.3	2.7
CH ₂ BrCH ₂ Br	Br ⁻	+CH ₂ O+CH ₃ Br	89	-228	2.2	1.9 ^h
	HOBr ⁻-f	+CH ₂ BrCH ^g	11	< -32		
CH ₂ BrCH ₂ Cl	Br -	+CH ₂ O+CH ₃ Cl	68	-180	2.3	1.9 ^h
	Cl-	+CH ₂ O+CH ₃ Br	32	-150		

 $^{^{}a}H_{f}(CHBr_{2}^{-}) = 40 \text{ kJ mol}^{-1} \text{ determined from } H_{f}(CHBr_{2}^{+}) = 227 \text{ kJ mol}^{-1} \text{ and } EA(CHBr_{2}^{+}) = 1.94 \text{ eV } [32].$

in Tables 1–3, respectively, and in Tables 4-6 for the reactions with the group II molecules, respectively. For those brominated molecules with known polarisabilities and (for the polar molecules) known dipole moments, the calculated collisional rate coefficients k_{calc} are also given in the tables for comparison with the experimental values. These were calculated using the Langevin theory for non-polar molecules [27] or the average dipole orientation theory for those reactions involving polar molecules [28]. Also presented in the tables are suggested neutrals, inferred where possible from mass balance and thermodynamics and the enthalpies of the reactions (estimated values are given in brackets). Thermochemical data used to determine these enthalpies have mainly been taken from the compilation by Lias et al. [29], but also from Refs. [30-44] (see Tables 1-6 for details).

3.1. Group I reactions

3.1.1. CH₃Br

The reactions of O^- , O_2^- and OH^- with CH_3Br are all fast, resulting in Br being the major (O reaction) or the only (O₂ and OH reactions) ionic product. Formation of the Br anion presumably takes place via an S_N 2 mechanism, because dissociative electron transfer (DET), defined $A^- + BC \rightarrow A + (BC^-)^* \rightarrow A +$ B + C, to form Br and CH3 is endothermic for the three reactant anions; CH₃Br has an electron affinity of 0.4 ± 0.1 eV [32], lower than those of O $(1.46 \pm 0.01 \text{ eV})$ and OH $(1.829 \pm 0.010 \text{ eV})$, and comparable with that of O_2 ($\approx 0.45 \text{ eV}$) [37]. In comparison, electron attachment, defined as: $e^- + BC \rightarrow (BC^-)^*$, to CH_3Br leads to Br^- as the only observed anionic product [45].

The other products observed for the O reaction, CHBr (40%) and OH (3%), result from

 $^{^{}b}H_{f}(CBrCl_{2}^{-}) \leq -102 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CBrCl₃.

 $^{^{}c}H_{1}(CBr_{2}Cl^{-}) \leq 78 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of O⁻+CHBr₂Cl.

^d H_1 (CHClO) = -164 ± 1 kJ mol⁻¹ estimated from H/Cl exchange in CH₂O/CCl₂O.

^e $H_f(CHBrO) = -111 \pm 1 \text{ kJ mol}^{-1}$ estimated from H/Br exchange in CH₂O/CBr₂O.

 $^{^{\}rm f}$ $H_{\rm f}({\rm HOBr}^-) \le -387 \pm 20 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CBr₃F. $^{\rm g}$ $H_{\rm f}({\rm CH_2BrCH_2}) = 141 \pm 16 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, estimated using the C–Br bond strength [37], the electron affinity of Br and the exothermicity of the Br channel from electron attachment to CH₂BrCH₂Br [38,39].

h No dipole moment data available; the calculated rate is the Langevin rate coefficient.

Table 4 Compilation of the measured rate coefficients kexp and product anion distributions for the reactions of O with the series of halogenated compounds in Group II investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients k_{calc} are also presented. The rate coefficients (experimental and calculated) are in units of 10^{-9} cm³ molecule⁻¹ s⁻¹. The experimental results are considered accurate to $\pm 20\%$

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy $\Delta H/kJ$ mol ⁻¹	$k_{\rm exp}$	$k_{ m ADO}$
CF ₃ Br	Br-	+F +CF ₂ O	38	-235	1.7	1.8 ^b
	OBr^{-a}	+CF ₃	31	-19		
	F-	+Br +CF ₂ O	24	-232		
	BrF ^{·-c}	+CF ₂ O	7	-402		
CF_2Br_2	Br ⁻	+Br +CF ₂ O	50	-467	1.9	1.9
	OBr_2^-	+CF ₂	43	$\Delta H_{\rm f}({\rm Br_2O}^-) < -66$		
	OBr⁻a	+CF ₂ Br ^{·d}	7	-29		
CFBr ₃	$CFBr_2^{-e}$	+OBr ·a	80	$< -59 \pm 29$	2.2	
	OBr^{-a}	+CFBr ₂	11	$\Delta H_{\rm f}({\rm CFBr_2}) < -27$		
	Br ⁻	+Br +CFBrO ^f	9	(-350)		
CCl ₃ Br	$CBrCl_2^{-g}$	+OCl ^{·h}	71	$< -66 \pm 5$	1.8	2.1 i
	CCl ₃	+OBr ^{·a}	11	-81		
	OBr^{-a}	+CCl ₃	10	-87		
	OCl ^{-h}	+CCl ₂ Br ^{·j}	5	-53 ± 12		
	Br ⁻	+Cl +CCl ₂ O	1	-337		
	Cl-	+Br +CCl ₂ O	1	-400		
	Cl ₂	+CBrClO ^k	≈ 1	(-464)		
CBrClF ₂	OBrCl -	+CF ₂	80	$\Delta H_{\rm f}({\rm BrClO}^{-}) < -125 \pm 20$	1.7	
	OBr⁻a	+CF ₂ Cl	11	-146		
	Br ⁻	+Cl +CF ₂ O	6	-402		
	BrCl ^{·-l}	+CF ₂ O	2	< -417		
	Cl-	+Br +CF ₂ O	1	-425		
CFBr ₂ Cl ^m	OBr_2^{-n}	+CFCl	47	$(< -20 \pm 42)$	1.7	
	$CFBr_2^{-e}$	+OCl ^{·h}	27	$(< -146 \pm 33)$		
	CFBrCl⁻⁰	+OBr ^{·a}	16	(-59 ± 36)		
	OBr ^{-a}	+CFBrCl ^p	4	(-98 ± 13)		
	BrCl ^{·-l}	+CFBrO ^f	2	(< -411)		
	Br ⁻	+Cl +CFBrO ^f	2	(-403)		
	OCl ^{-h}	+CFBr ₂ ^q	≈ 1	(< -72+13)		
	Cl-	+Br +CFBrO ^f	≈ 1	(-426)		
CF ₂ BrCF ₂ Br	Br ⁻	+Br +CF ₂ O+CF ₂	72	-265	2.4	
	OBr_2^{-n}	$+C_2F_4$	21	< -66		
	OBr^{-a}	+CF ₂ BrCF ₂ ^T	7	-29 ± 16		

 $^{^{}a}H_{1}(OBr^{-}) = -101 \text{ kJ mol}^{-1} \text{ determined from } H_{1}(OBr^{-}) = 126 \text{ kJ mol}^{-1}, \text{ EA}(OBr^{-}) = -2.35 \text{ eV} [33].$

^b Polarisability of $CF_3Br = 6.78 \text{ Å}^3 [3]$.

 $^{^{}c}H_{f}(BrF^{-}) = -384 \text{ kJ mol}^{-1} [3].$

 $^{^{}d}H_{1}(CF_{2}Br) = -226 \pm 16 \text{ kJ mol}^{-1} [40].$

 $^{^{\}circ}$ $H_f(CFBr_2) \le -313 \pm 15 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CFBr₃, $^{\circ}$ $H_f(CFBrO) = -377 \pm 1 \text{ kJ mol}^{-1}$, estimated from F/Br exchange in CF₂O/CBr₂O.

 $[^]gH_f(CBrCl_2) \le -102 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CBrCl₃.

 $^{^{\}rm h}H_{\rm f}({\rm OCl}^{-}) = -118~{\rm kJ~mol}^{-1}$, determined from $H_{\rm f}({\rm OCl}) = 101~{\rm kJ~mol}^{-1}$ and EA(OCl) = 2.37 eV [33].

ⁱ Polarisability and dipole moment of CCl₃Br = 12 Å³ and 0.2 D [41].

 $^{^{1}}$ H₁(CBrCl₂) = 130 ± 8 kJ mol $^{-1}$ determined using the C-Cl bond strength [37], the electron affinity of Cl and the exothermicity of the Cl channel from electron attachment to CBrCl₃ [42].

 $^{^{}k}H_{f}(CBrClO) = -167 \pm 1 \text{ kJ mol}^{-1}$, estimated from Br/Cl exchange in CBr₂O/CCl₂O.

 $^{^{1}}H_{1}(BrCl^{-}) \le -107 \pm 21 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of OH +CBr₂ClF.

^m $H_1(CFB_1/CI) = -181 \pm 13 \text{ kJ mol}^{-1}$, estimated using the average value from (i) F/Cl exchange calculated from CCl₄/CF₄ and CF₂Cl₂/CF₄ in CBr₂F₂, (ii) Cl/Br exchange calculated from CCl₄/CBr₄ and CBr₂Cl₂/CCl₄ with CFCl₃, and (iii) F/Br exchange calculated from CF₂Br₂/CF₄ and CF2Br2/CBr4 with CF2BrCl.

 $^{^{}n}H_{1}(OBr_{2}) \leq -66 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of O $^{-}+CF_{2}Br_{2}$.

H₂ and H transfer, respectively. Although not observed, the abstraction of Br to produce BrO⁻+CH₃ is exothermic ($\Delta H = -25 \text{ kJ mol}^{-1}$). Therefore, it appears that nucleophilic attack by O on the carbon, leading to the Br product, and on hydrogen, leading to the CHBr and OH products, is more favoured than attack on the bromine. Our measured rate coefficient for the O reaction is an order of magnitude larger than that reported by Futrell and Tiernan (2.1 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹) [18] and is also larger than that reported by Tanaka et al., $(1.1 \pm 0.1) \times$ 10⁻⁹ molecule⁻¹ cm³ s⁻¹ [19]. Furthermore, Futrell and Tiernan report OH as the major product (52%), with CHBr (33%) and Br (14%) being the minor products. Discrepancies between our results and those of Futrell and Tiernan are likely to be due to the differences in collisional energies of anions with neutral molecules within the tandem mass spectrometer compared with those within the SIFT. Tanaka et al. observe Br, CHBr and OH as products from the reaction with O,, but do not present distribution

Our measured rate coefficient for the O_2^- reaction is in exact agreement with that determined by McDonald and Chowdhury [20] using a FA. For the OH⁻ reaction, our rate coefficient is higher than those published by Bohme and MacKay, $(1.0 \pm 0.2) \times 10^{-9}$ molecule⁻¹ cm³ s⁻¹ [21], and Tanaka et al., $(0.99 \pm 0.09) \times 10^{-9}$ molecule⁻¹ cm³ s⁻¹ [19], although it is in better agreement with the results of Olmstead and Brauman, $(1.9 \pm 0.4) \times 10^{-9}$ molecule⁻¹ cm³ s⁻¹ [22], and DePuy et al., $(2.2 \pm 0.2) \times 10^{-9}$ molecule⁻¹ cm³ s⁻¹ [23].

3.1.2. CH_2Br_2

O reacts with CH₂Br₂ with a rate coefficient

approximately 50% of the collisional value. The three observed ionic products, Br (52%), $CHBr_2^-$ (38%) and BrO^- (10%), are formed via nucleophilic substitution, proton transfer and Br abstraction mechanisms, respectively. Energetically it is possible to form the Br₂ molecular anion and formaldehyde (H2CO) but no Br₂ was observed, although it is possible that Br could be formed from dissociation of $(Br_2)^{T}$. The decomposition of Br⁻+Br requires 110 kJ mol⁻¹, and redistribution of the available energy from the reaction of O with CH₂Br₂ within an intermediate complex, and then between the products according to the number of degrees of freedom, would provide only 61 kJ mol⁻¹, leaving the decomposition endothermic. Therefore, for Br₂⁻ to be an intermediate in the formation of Br-, it must be formed with considerably more internal energy than expected from simple equipartition of energy ideas, and then all the Br2 would have to dissociate to Br and Br. Thus, the formation of Br is unlikely to be from the decomposition of Br₂. Decomposition of (CHBr₂)* to Br and CHBr is endothermic, as too is DET. Hydrogen abstraction leading to OH⁻ and CHBr₂ is exothermic ($\Delta H = -18 \text{ kJ mol}^{-1}$) but is not observed.

 O_2 reacts with CH_2Br_2 to form Br^- via nucleophilic attack on carbon. Although DET yielding Br^- is thermoneutral, with $\Delta H = 3 \pm 4$ kJ mol $^{-1}$, and hence cannot be completely ruled out, it is nevertheless unlikely that it competes with nucleophilic substitution. In comparison, electron attachment to CH_2Br_2 forms the Br^- anion and the CH_2Br radical [45].

The OH⁻ reaction yields two anionic products, namely CHBr₂, by proton transfer, and Br⁻ by nucleophilic substitution, DET to form Br⁻

 $^{^{\}circ}$ $H_{\rm f}({\rm CFBrCl}^{-}) \leq -258 \pm 16 \, {\rm kJ \ mol}^{-1}$, an upper limit estimated from the reaction of OH⁻+CFBr₂Cl.

 $^{^{}p}H_{1}(CFBrCl) = -63 \text{ kJ mol}^{-1}$, estimated from the average Br/Cl exchange in CBr₃/CCl₃, CHBr₂/CHCl₂ and CH₂Br /CH₂Cl and average Br/F exchanges in CBr₃/CF₃, CHBr₂/CHF₂ and CH₂F/CH₂F.

^q H₁(CFBr₂) ≤ -27 kJ mol⁻¹, determined from the exothermicity of the Br⁻ channel from electron attachment to CFBr₃ [38].

 $^{^{\}text{T}}H_{1}(\text{CF}_{2}\text{BrCF}_{2}) = -609 \pm 16 \text{ kJ mol}^{-1}$ from the use of the C-Br bond strength [37], the electron affinity of Br and the exothermicity of the Br channel from electron attachment to CF₂BrCF₂Br [38,39].

Table 5 Compilation of the measured rate coefficients $k_{\rm exp}$ and product anion distributions for the reactions of O_2^- with the series of halogenated compounds in Group II investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients $k_{\rm calc}$ are also presented. The rate coefficients (experimental and calculated) are in units of 10^{-9} cm³ molecule⁻¹ s⁻¹. The experimental results are considered accurate to $\pm 20\%$

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy $\Delta H/\text{kJ mol}^{-1}$	$k_{\rm exp}$	$k_{\rm calc}$
CF ₃ Br	CF ₃ Br	+O ₂	53	-48	1.1	1.3 ^b
	Br	+CF ₃ O ₂ ^a	47	-139		
CF ₂ Br ₂	Br ~	+CF ₂ O+OBr ^c	100	-306	0.98	1.4
CFBr ₃	Br -	+CFBrO ^d +OBr ^{-c}	100	(-186)	1.9	
CCl₃Br	Br	$+CCl_3+O_2$	95	-49	1.3	1.6 e
	Cl-	$+CCl_2Br^{-f}+O_2$	5	-12		
CBrClF ₂	Br ⁻	+CF ₂ O+OCl ^{-g}	≈ 89	-272	1.2	
	CF ₂ BrCl	+O ₂	10	$\Delta H_{\rm f}({\rm CF_2BrCl}^-) < -480$		
	BrO_2^-	+CF ₂ Cl	≈ 1	$\Delta H_{\rm f}({\rm BrO_2^-}) < -205$		
CFBr₂Cl ^h	Br -	+CFClO+OBr c	95	-290	1.2	
	Cl-	+CFBrO ^d +OBr ^{-c}	5	(-255)		
CF ₂ BrCF ₂ Br	Br ₂ -	+CF ₂ O+CF ₂ O	94	-659	1.9	
-	Br	+Br +CF ₂ O+CF ₂ O) 6	-550		

 $^{^{}a}H_{f}(CF_{3}O_{2}) = -618 \text{ kJ mol}^{-1} [43].$

being endothermic. The product distribution shows that the less exothermic proton transfer channel is much faster than the thermodynamically more favoured nucleophilic substitution channel. The formation of Br⁻ via the dissociation of (CHBr₂) can be ruled out, as the channel is endothermic, i.e. $OH^- + CH_2Br_2 \rightarrow Br^- + CHBr + H_2O$, with $\Delta H = 78 \text{ kJ mol}^{-1}$, where $\Delta H_f(CHBr) = 373 \pm 18 \text{ kJ mol}^{-1}$ [30].

3.1.3. CHBrCl₂

The major pathway for the O⁻ reaction produces $CBrCl_2^-$ by proton transfer. Four minor ionic species, $Br^-(5\%)$, $Cl^-(3\%)$, $BrCl^-(3\%)$ and $Cl_2^-(\approx 1\%)$ are also produced, probably via nucleophilic attack on carbon. An alternative exothermic route to the production of Br^- is via the decomposition of $(CBrCl_2^-)^*$, i.e.

 $O^- + CHBrCl_2 \rightarrow (CBrCl_2^-)^* + OH \rightarrow Br^- +$ $CCl_2 + OH$, $\Delta H = -70 \text{ kJ mol}^{-1}$. It is uncertain whether Cl⁻ can be produced by a similar route, as $\Delta H_f(CBrCl)$ is unknown. However, it should be noted that for such a small branching percentage associated with Cl⁻, an impurity in our sample reacting with the anion with unit efficiency could be forming the Cl⁻ product. It cannot be ruled out that the formation of Br and Cl results from the decomposition of (BrCl⁻) and (Cl₂)*, although the dihalides must both be formed from the reaction with an excess of energy greater than equipartition of energy suggests. Although a possible reaction channel yielding BrO and CHCl2 is exothermic by 52 kJ mol⁻¹, the absence of any BrO⁻ as an ionic product suggests that proton transfer is kinetically favoured over the transfer of a heavy Br

^b Polarisability of $CF_3Br = 6.78 \text{ Å}^3$ [3].

 $^{^{}c}H_{t}(OBr) = 126 \text{ kJ mol}^{-1} [33].$

 $^{^{\}rm d}H_{\rm f}({\rm CFBrO}) = -377 \pm 1 \text{ kJ mol}^{-1}$, estimated from F/Br exchange in CF₂O/CBr₂O.

^e Polarisability and dipole moment of $CCl_3Br = 12 \text{ Å}^3$ and 0.2 D[41].

 $^{^{\}rm f}$ $H_{\rm (CCl_2Br)} = 130 \pm 8 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, determined using the C-Cl bond strength [37], the electron affinity of Cl and the exothermicity of the Cl-channel from electron attachment to CBrCl₃ [42].

 $^{^{\}rm g}H_{\rm f}({\rm OCl}^{-}) = -118~{\rm kJ~mol}^{-1}$, determined from $H_{\rm f}({\rm OCl}^{+}) = 101~{\rm kJ~mol}^{-1}$ and EA(OCl) = 2.37 eV [33].

^h H_1 (CFB₂CI) = −181 ± 13 kJ mol⁻¹ estimated using the average from (i) F/Cl exchange calculated from CCl₄/CF₄ and CF₂Cl₂/CF₄ in CBr₂F₂, (ii) Cl/Br exchange calculated from CCl₄/CBr₄ and Br₂Cl₂/CCl₄ with CFCl₃, and (iii) F/Br exchange calculated from CF₂Br₂/CF₄ and CF₂Br₂/CBr₄ with CF₂BrCl.

Table 6 Compilation of the measured rate coefficients $k_{\rm exp}$ and product anion distributions for the reactions of OH $^-$ with the series of halogenated compounds in Group II investigated using the SIFT apparatus at 300 K. The calculated collisional rate coefficients k_{calc} are also presented. The rate coefficients (experimental and calculated) are in units of 10^{-9} cm³ molecule⁻¹ s⁻¹ and the three-body rate [] is in units of 10^{-26} cm⁶ molecule⁻² s⁻¹. The experimental results are considered accurate to ± 20%

Molecule	Products	Suggested neutrals	Product percentages	Reaction enthalpy \$\textit{\Delta H} / \text{kJ mot}^{-1}\$	k exp	k eale
CF ₃ Br	Br=	+CF₃OHª	100	=333	0.0029	1.7 ⁶
	CF₃Bf:OH=	Three-body reaction	=	< =787	[1.1]	
CF ₂ Bf ₂	HOBr ₂ e	+CF ₂	94	< =36 ± 14	1.6	1.9
	Br=	+HBf+CF ₂ O	6	=373		
CFBr ₃	CFBr ₂	+HOBr [∉]	62	$\Delta H_i(CFBr_2) \leqslant -313 \pm 15$	1.9	
	HOBr ₂ e	+CFBr ^e	29	$(\Delta H_1(\mathrm{Bf}_2\mathrm{OH}^-) \leqslant -347)$		
	Br"	+HBr+CFBrO ^f	8	(=253)		
	HOBr =	+CFBr#	≈ 1	$\Delta H_{\rm f}({\rm BrOH}^-) \leqslant -346 \pm 8$		
CCl ₃ Br	CCI ₃	+HOBr [∉]	64	$=21 \pm 35$	1.8	2.1 h
	OBr=i	+CHCl ₃	19	=26		
	Cl*	+HBr+CCl₂O	10	=303		
	CBrCl ₂	+HOCI	4	$\Delta H_f(CBrCl_2) \leqslant =102$		
	Br=	+HCl+CCl2O	3	=346		
CBrClF ₂	HOBrCl=	+CF ₂	75	$\Delta H_{\rm f}({\rm BrClOH}^{-}) \leqslant -370$	0.0028	
	Br=	+HCl+CF2O	18	=370		
	Cl-	+HBr+CF2O	7	=328		
	CF2BrCl:OH=	Three-body reaction	=	-575	[2:4]	
CFBr ₂ Cl ^j	HOBr ₂ e	+CCIF	82	< =49 ± 32	1.1	
	CBrClF=	+HOBr [#]	7	$(\Delta H_i(CBrClF^*) \leqslant -258 \pm 16)$		
	Br⁼	+HBr+CClFO	4	=376		
	\mathbf{Br}_{2}^{-}	+HCI+CFO	3	(=159)		
	CBr₂F ^{=k}	+HOCl	1	$(=73 \pm 20)$		
	BrCl**	+HBr+CFO	≋ i	$(\Delta H_f(\mathbf{B}f\hat{\mathbf{C}}1^{-}) \leqslant =107 \pm 21)$		
	OBr ⁼ⁱ	+CHBrCIF ¹	1	(=6 ± 14)		
	Cl-	+HBr+CFBrO ^f	1	(=322)		
CF2BfCF2Bf	HOBr ₂ e	≠C₂F₄	60	=44	2.4	
	Br⁼ _	+CF2O+CHF2Bt#	40	=352		

 $^{^{*}}H_{1}(CF_{3}OH) = -907 \text{ kJ mol}^{-1} [43].$

^b Polarisability of $CF_3Dr = 6.78 \text{ Å}^3 [3]$.

⁶ H₆(HOBr₂) ≤ =347 kJ mol⁻¹, an upper limit estimated from the reaction of OH⁻+CFBr₃.

 $^{^{}d}H_{1}(HOBr) = -60 \pm 7 \text{ kJ mol}^{-1} [44].$

^e H₁(CFBr) ≤ -26 kJ mol⁻¹, estimated from the observation of Br₂ from electron attachment to CFBr₃ [38].

 $^{^{\}dagger}H_{0}(CFBrO) = -377 \pm 1 \text{ kJ mol}^{-1}$, estimated from F/Br exchange in $CF_{2}O/CBr_{2}O$.

BH(CFBr2) ≤ -27 kJ mol-1, an upper limit estimated from the reaction of O +CFBr3.

^h Polarisability and dipole moment of CCl₃Br \approx 12 Å³ and 0.2 D [41]. ⁱ $H_1(OBr^-) = -101$ kJ mol⁻¹, determined from $H_1(OBr) = 126$ kJ mol⁻¹ and EA(OBr) = 2.35 eV [33].

¹ H(CFBr₂CI) = 181 ± 13 kJ mol⁻¹, estimated using the average values from (i) F/CI exchange calculated from CCI₄/CF₄ and CF₂CI₃/CF₄ in CBr₂F₂, (ii) Cl/Br exchange calculated from CCl₄/CBr₄ and CBr₂Cl₂/CCl₄ with CFCl₃, and (iii) F/Br exchange calculated from CF₂Br₂/CF₄ and CF2Bt2/CBt4 with CF2BtCl.

 $^{^{}k}H_{0}(CFBr_{2}^{2}) = -313 \pm 15 \text{ kJ mol}^{-1}$, an upper limit estimated from the reaction of OH +CFBr₃.

 $^{^{1}}$ H₄(CHBrClF) = -223 \pm 6 kJ mol⁻¹, estimated using the average F/Cl exchange from CHCl₂/CHF₃ in CHBrF₂.

 $^{^{}m}H_{6}(CHF_{2}Br) = -425 \text{ kJ mol}^{-1} [10].$

atom. In addition, the proton transfer channel is more exothermic.

The major ionic product from the O_2^- reaction is $Br^-(91\%)$. Traces of $Cl^-(4\%)$, $CHBrCl_2^-(4\%)$ and $BrCl^-(1\%)$ are also observed. Although the DET channel ($\Delta H = -14 \text{ kJ mol}^{-1}$) leading to Br^- , $CHCl_2$ and O_2 is possible, the competitive $S_N 2$ channel may well be the major mechanism for the formation of Br^- . Certainly it is more favoured in terms of reaction thermodynamics, and the observation of other anion products implies that an intimate interaction takes place, so that nucleophilic processes can or do compete with electron transfer.

The two products from the OH⁻ reaction are CBrCl₂ (96%), by proton transfer, and Br⁻ (4%). Two mechanisms are possible for the production of Br⁻, i.e. $S_N 2$ and/or by the less exothermic pathway resulting from the decomposition of $(CBrCl_2)^*$, i.e. $OH^- + CHBrCl_2 \rightarrow H_2O + (CBrCl_2)^* \rightarrow Br^- + CCl_2 + H_2O$ ($\Delta H = -58 \pm 16 \text{ kJ mol}^{-1}$). Br formation via DET is endothermic by 120 kJ mol⁻¹.

3.1.4. CHBr₂Cl

O reacts with CHBr₂Cl to yield five ionic species; CBr₂Cl (47%), Br (20%), BrO (20%), ClO (10%) and Cl (3%). CBr₂Cl, BrO and ClO are formed via the abstractions of a proton, Br and Cl, respectively. Both Br and Cl may be formed either via nucleophilic substitution or by the decomposition of (CBr₂Cl). It is observed that the percentages of BrO and ClO decrease with increasing CHBr₂Cl number density, whereas the CBr₂Cl signal increases. This suggests that there are secondary reactions of both BrO and ClO with CHBr₂Cl, leading to the production of CBr₂Cl.

Only two ionic products, Br⁻ (95%) and Cl⁻ (5%), are observed for the O₂⁻ reaction with CHBr₂Cl. It is unknown whether Br⁻ can result from DET because of the uncertainty in the enthalpy of the reaction, whereas the production of Cl⁻ via DET is definitely endothermic

 $(\Delta H = 33 \pm 8 \text{ kJ mol}^{-1})$. We therefore suggest that nucleophilic attack on carbon is the most probable reaction mechanism for the production of both these anions.

OH⁻ reacts to yield CBr₂Cl⁻ (96%) as the major product by proton transfer. Traces of Br⁻ (3%) and Cl⁻ (1%) are also observed, and these may be formed via the decomposition of (CBr₂Cl⁻)* or by nucleophilic substitution. DET leading to Br⁻ or Cl⁻ is endothermic.

$3.1.5.\ C_2H_5Br$

Ethyl bromide reacts rapidly with O⁻, yielding $Br^{-}(96\%)$ and $C_{2}H_{4}Br^{-}(4\%)$ anions. $C_{2}H_{4}Br^{-}$ is formed via a proton transfer mechanism. Two mechanisms can be proposed for the Br formation. One is S_N2 and the second is elimination from (C₂H₄Br⁻)* following proton transfer to O⁻, i.e. O⁻ + $C_2H_5Br \rightarrow OH + (C_2H_4Br^-)^* \rightarrow$ $Br^{-} + C_2H_4 + OH (\Delta H = -168 \text{ kJ mol}^{-1})$ with a small percentage of $(C_2H_4Br^-)^*$ stabilised by collisional or radiative relaxation and detected. To ascertain which mechanism is responsible for the formation of Br from the reaction between O and C₂H₅Br, it would be desirable to determine whether ethylene or CH₃CH₂O is produced, and/or to ascertain if an increase in buffer gas pressure changes the product distribution by enhancing the collisional relaxation of $(C_2H_4Br^-)^*$ before decomposition. (It is worth noting that in the reaction of F with C₂H₅Cl, leading to the anion Cl⁻, the neutral products have been positively identified, with the result that the substitution channel leading to C₂H₅F is preferred over the elimination channel leading to C₂H₄+HF [46,47]). DET to produce Br is endothermic and can therefore be ruled out as a reaction pathway. The abstraction of a hydrogen or bromine atom leading to the production of OH or BrO, respectively, is energetically allowed but is not observed. However, in the tandem mass spectrometric study [18], H-atom abstraction was found to be a significant channel (39%), with the only other channel being nucleophilic displacement to

form Br⁻. In addition, discrepancies exist in the values of the reaction rate coefficient between this study ($(2.0 \pm 0.4) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹) and that by Futrell and Tiernan [18] (3.6×10^{-10} cm³ molecule⁻¹ s⁻¹). These disagreements may be rationalised, as for the differences in the results for the O⁻/CH₃Br reaction, by considering the fact that anions in a tandem mass spectrometer usually possess higher translational energies than those in a SIFT apparatus.

Ethyl bromide undergoes efficient nucleophilic substitution when reacting with O_2^- to form Br⁻, DET leading to this anion being endothermic by 9 ± 2 kJ mol⁻¹.

Br⁻ is also the only observed ionic product from the reaction with OH^- . Although proton transfer is not observed, Br⁻ could be produced via the decomposition of $(C_2H_4Br^-)^*$, as the reaction channel is exothermic, $OH^- + C_2H_5Br$ CH₂BrCH₂ having been determined to be $141 \pm 16 \text{ kJ mol}^{-1}$ using the C-Br bond strength, the electron affinity of Br and the exothermicity of the Br⁻ channel from electron attachment to CH₂BrCH₂Br [38,39]).

The reaction with O_2^- proceeds to produce Br⁻ (85%) and Br₂ (15%). These two anions are also observed from electron attachment to this molecule [39,40], with Br⁻ also being the major product (97%) [38]. However, although DET to form Br₂ is exothermic, DET to form Br is nearly thermoneutral and could be endothermic with $\Delta H = 9 \pm 16 \text{ kJ mol}^{-1}$. Therefore, to account for the large Br signal from the O_2^- reaction, we propose that nucleophilic attack of O_2^- on a carbon rather than electron transfer is the initial step. The second step is the displacement of a Br atom on the adjacent carbon atom by oxygen, as illustrated below:

 \rightarrow (C₂H₄Br⁻)* + H₂O \rightarrow Br⁻ + C₂H₄ + H₂O with $\Delta H = -203$ kJ mol⁻¹. Therefore, it cannot be established whether this mechanism or nucleophilic attack is the major production route to Br⁻, although the lack of any observed C₂H₄Br⁻ might suggest that the nucleophilic attack mechanism is preferred. Br⁻ cannot be produced by DET, this being endothermic by 143 kJ mol⁻¹. Our measured reaction rate coefficient is in good agreement with that of (2.6 ± 0.3) × 10⁻⁹ cm³ molecule⁻¹ s⁻¹ obtained in the study by DePuy et al. [23].

3.1.6. CH_2BrCH_2Br

O⁻ reacts with CH₂BrCH₂Br to produce Br⁻ only. This product probably results from nucleophilic attack on carbon, as the production of Br⁻ via DET is endothermic (the heat of formation of

The final neutral product is probably formaldehyde H₂CO. Obviously, the above reaction mechanism preferentially yields Br⁻ because of the consecutive ejection of Br⁻ and Br, whereas the small amount of Br⁻ may still be produced via the competing electron transfer mechanism, presumably within the reaction complex.

The observed products from the OH⁻ reaction are Br⁻ (89%) and BrOH⁻ (11%). The production of Br⁻ could take place via several competing mechanisms. For example, the decomposition of $(C_2H_3Br_2^-)^*$, resulting from proton transfer, to Br⁻ is exothermic, i.e. OH⁻ + CH₂BrCH₂Br \rightarrow $(C_2H_3Br_2^-)^* + H_2O \rightarrow Br^- + C_2H_3Br + H_2O$ with $\Delta H = -200$ kJ mol⁻¹. There are also several exothermic nucleophilic attack mechanisms, e.g. OH⁻ + CH₂BrCH₂Br \rightarrow Br⁻ + CH₂O + CH₃Br, with $\Delta H = -183$ kJ mol⁻¹, or

the elimination of Br⁻ from $(C_2H_4Br^-)^*$, following extraction of Br⁺ by OH⁻, OH⁻ + CH₂BrCH₂Br \rightarrow BrOH + $(C_2H_4Br^-)^* \rightarrow$ Br⁻ + BrOH + C_2H_4 , with $\Delta H = -45$ kJ mol⁻¹.

3.1.7. CH₂ClCH₂Br

Reactions of O⁻, O₂⁻ and OH⁻ with CH₂ClCH₂Br produce the same two ionic products, namely Br⁻ and Cl⁻, with Br⁻ being the dominant product for each of the reactant anions; 68% (O⁻), 93% (O₂⁻) and 62% (OH⁻). As DET pathways are endothermic, the two ion products can be produced only via nucleophilic attack mechanisms. In comparison, Br⁻ (80%) and Cl⁻ (20%) are also the only observed ion products from electron attachment to CH₂ClCH₂Br [39].

3.2. Group II reactions

3.2.1. CF₃Br

O' is found to react with CF3Br with a rate coefficient of $(1.7 \pm 0.3) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹, in good agreement with values reported by Morris ((1.4 \pm 0.3) \times 10⁻⁹ cm³ molecule⁻¹ s⁻¹) [3] and by Streit ((1.3 \pm 0.4) \times 10⁻⁹ cm³ molecule⁻¹ s⁻¹) [9]. F⁻ (24%), Br⁻ (38%), BrO⁻ (31%) and BrF (7%) are the observed ionic products, which are the same as those observed by Morris but with different reported percentages [3]. BrOis formed via Br abstraction by O'-. It is likely that Br and F are formed via nucleophilic substitution, as DET is endothermic. It cannot be ruled out that Br and F could be formed from the decomposition of nascent (BrF'=)* (formed via the concerted breaking of C-F and C-Br bonds and the formation of C=O and Br-F bonds), although BrF' would have to acquire an energy in excess of 250 kJ mol⁻¹ for this to occur.

For the reaction of O_2^- with CF_3Br , the measured rate coefficient is $(1.1 \pm 0.2) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹, in excellent agreement with two other published values of $(1.0 \pm 0.2) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹ [3] and $(1.1 \pm 0.3) \times 10^{-9}$ cm³

molecule⁻¹ s⁻¹ [9]. Furthermore, the two anionic products we observe are also reported by Morris, with a similar product distribution, CF₃Br⁻ (55%), by electron transfer, and Br⁻ (45%) [3]. The production of Br via the decomposition of (CF₃Br'=)* is endothermic by 19 kJ mol⁼¹, and so Br must be produced exclusively via nucleophilic attack. This differs from electron attachment to CF3Br, which is known to produce Br as the only ionic product [45]. That non-dissociative electron transfer and nucleophilic attack products are observed implies that the transfer mechanism is occurring not via a long-range process, but through a reaction complex, so that the shortrange nucleophilic attack mechanisms can compete with it.

The bimolecular reaction with OH⁻, forming Br⁻ by nucleophilic attack on carbon, is slow and is in competition with a fast three-body associative reaction forming CF₃Br·OH⁻. Electron transfer from OH⁻, leading to the production of CF₃Br⁻, is endothermic by 86 kJ mol⁻¹. In a recent study by Staneke et al. [24], no products from this reaction were observed. It was suggested that this is because the presence of the fluorines in CF₃Br alters the charge distribution of the molecule, such that S_N2 attack by OH⁻ on carbon is hindered.

3.2.2. CF₂Br₂

O'= is found to react at the collisional rate coefficient with CF₂Br₂, leading to the ionic products Br (50%), Br₂O' (43%) and BrO (7%). The abstraction of two bromine atoms from CF₂Br₂ results in the formation of Br₂O⁻. which is enhanced by the formation of stable difluorocarbene (:CF2). The formation of both Br and BrO from the decomposition of (Br₂O'=)* can be discounted, as the processes endothermic bv $\Delta H = 77$ and $\Delta H = 163 \text{ kJ mol}^{-1}$, respectively. Thus, the production of all the observed anions occurs via competing nucleophilic attack mechanisms.

The O_2^- reaction with CF_2Br_2 , as found for the electron attachment process [38], produces

only Br⁻. DET to produce Br⁻ cannot be ruled out, the enthalpy change being $\Delta H = -18 \pm 16 \text{ kJ mol}^{-1}$. However, there are far more exothermic nucleophilic attack channels available for the production of Br⁻.

The observed ionic products from the reaction with OH^- are Br_2OH^- (94%) and Br^- (6%). In comparison, Staneke et al. observe only Br_2OH^- as a product from this reaction [24]. The formation of a stable : CF_2 carbene is important to the abstraction of two Br atoms by OH^- from the CF_2Br_2 molecule. Br^- cannot be formed from the decomposition of $(Br_2OH^-)^*$ because of the endothermicity of the process or from DET ($\Delta H = 146 \text{ kJ mol}^{-1}$). This leaves nucleophilic attack on carbon as the only possible mechanism for the production of Br^- .

3.2.3. CFBr₃

O reacts quickly with CFBr₃ to yield CFBr₂ (80%), BrO (11%) and Br (9%) as the ionic products. The first two products are linked to each other via a single electron switch process and proceed via Br and Br abstraction, respectively. The formation of Br from the decomposition of (CFBr₂) cannot be ruled out because of the uncertainties in $\Delta H_{\rm f}$ (CFBr) < -26 kJ mol [38], but it could equally be a result of nucleophilic attack on carbon.

The efficient reaction of O_2^- with CFBr₃ occurs most probably via nucleophilic attack, with Br⁻ as the only ionic product. Uncertainties in the enthalpy of the DET channel, because of the unknown heat of formation of CFBr₂ ($\Delta H_f < -27 \text{ kJ mol}^{-1}$ [38]), means that this channel cannot be ruled out as a route to produce Br⁻. In comparison, instead of producing Br⁻ only, electron attachment to CFBr₃ yields both Br⁻ (90%) and Br⁻₂ (10%) [38].

OH⁻ reacts with CFBr₃, leading to the formation of four ionic species, namely CFBr₂⁻ (62%), Br₂OH⁻ (29%), Br⁻ (8%) and BrOH⁻ (< 1%). Staneke et al. observed the first three of these products; CFBr₂⁻ (60%), Br₂OH⁻ (30%) and Br⁻ (10%) [24]. The formation of Br⁻ from the

decomposition of $(Br_2OH^-)^*$ or $(CFBr_2^-)^*$ can be ruled out as these pathways are endothermic.

3.2.4. CBrCl₃

O reacts with CBrCl₃ to form the products CBrCl₂ (71%), CCl₃ (11%), BrO (10%) and ClO^{-} (5%). In addition, traces of Cl_{2}^{-} ($\approx 1\%$), Br⁻ ($\approx 1\%$) and Cl⁻ ($\approx 1\%$) are detected. It is obvious that the dominant reactions involve the nucleophilic abstraction of halogen atoms and cations. Nucleophilic attack on carbon seems to be suppressed, possibly because of the shielding of the C atom in CBrCl₃ by the four reactive halogen atoms. DET pathways leading to the production of Br⁻, Cl⁻ and CCl₃ are endothermic by 50 kJ mol^{-1} , 87 kJ mol^{-1} and 155 kJ mol^{-1} , respectively (where for the Cl⁻ channel the heat of formation for CBrCl₂ has been determined to be 130 kJ mol⁻¹ using the C-Cl bond strength (295 kJ mol⁻¹) [37], the electron affinity of Cl, and the exothermicity of electron attachment to CBrCl₃ [41]).

For the O₂ reaction two ionic products are observed, Br⁻ (95%) and Cl⁻ (5%). Nucleophilic attack on carbon and electron transfer do have exothermic reaction channels to produce these products. Which of these two mechanisms is preferred (if any) is difficult to say; however, it is worth mentioning that electron attachment to CBrCl₃ also only yields Br⁻ and Cl⁻, although the Cl⁻ channel is preferred (55%) [41]. We conclude that the reduced exothermicity in the O₂ reaction, compared with the electron attachment process, results in the more exothermic channel leading to Br⁻ being favoured.

The OH⁻ reaction results in five ionic products: CCl_3^- (64%), BrO^- (19%), Cl^- (10%), $CBrCl_2^-$ (4%) and Br^- (3%). The formation of Cl^- from the decomposition of $(CCl_3^-)^*$ is endothermic and hence cannot occur, $\Delta H = 52 \text{ kJ mol}^{-1}$. The formation of Br^- from the decomposition of $(CBrCl_2^-)^*$ is also impossible, $\Delta H = 66 \text{ kJ mol}^{-1}$. Formation of Cl^- or Br^- via nucleophilic attack on carbon by OH^- is possible but is almost certainly hindered by the four

surrounding halogen atoms. DET is endothermic to Br⁻, CCl₃ and Cl⁻ and does not occur. The observation of BrO implies that there is extraction of Br⁺ with the subsequent proton transfer from BrOH to CCl₃. It was observed that as the number density of CBrCl₃ in the flow tube is raised, the percentage of CCl₃ decreases and that of CBrCl₂ increases, indicating that the folsecondary reaction takes $CCl_3^- + CBrCl_3 \rightarrow CBrCl_2^- + CCl_4$, with $\Delta H < -15 \pm 28 \text{ kJ mol}^{-1}$. We have determined a rate coefficient of $(4.6 \pm 0.9) \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹ for this reaction from the decreasing CCl₃ signal as a function of CBrCl₃ number density.

3.2.5. CBrClF₂

Our measured rate coefficient for the reaction of O with CBrClF₂ is higher than that reported by Streit, $(7.2 \pm 2.2) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ [9]. Furthermore, there are discrepancies in the observed ionic products between the two studies which cannot be explained by the presence of both O and O anions simultaneously in the FA apparatus of Streit. The major ionic product we observe, but not observed by Streit, is BrClO⁻. This is presumably formed from the simultaneous abstraction of Br and Cl from CBrClF₂. The minor ionic products observed are BrO (11%), Br (6%), BrCl (2%), and Cl⁻ (1%). The formation of BrO⁻, Br⁻ and Cl⁻ from the decomposition of (BrClO⁻)* is endothermic, $\Delta H = 145$, $\Delta H = 13 \pm 14$ and $\Delta H = 23 \pm 14 \text{ kJ mol}^{-1}$, respectively. However, as has been suggested before, it cannot be ruled out that both Br and Cl are formed from the decomposition of (BrCl⁻)* provided that BrCl is formed with a distribution of energies some of which are sufficient to result in dissociation.

The rate coefficient for the reaction between O_2^- and $CBrClF_2$ is significantly higher than that of $(5.2 \pm 1.6) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ obtained by Streit [9]. Three ionic species, namely Br^- (89%), $CBrClF_2^-$ (10%) and

 $O_2 \cdots Br^-$ ($\approx 1\%$), are formed. The molecular anion $CBrClF_2^-$ is formed via electron transfer from O_2^- to $CBrClF_2$ followed by collisional or radiative relaxation of nascent $(CBrClF_2^-)^*$. However, most of the $(CBrClF_2^-)^*$ is likely to decompose into Br^- , some of which may be clustered with O_2 generated from the electron transfer so as to produce $O_2 \cdots Br^-$ within the lifetime of the precursor ion-molecule complex $[O_2^- \cdots CBrClF_2]$. Nucleophilic substitution may also be a reaction mechanism for Br^- production.

The bimolecular reaction of OH⁻ with CBrClF₂, resulting in the products BrClOH⁻ (75%), Br⁻ (18%) and Cl⁻ (7%), is slow and is in competition with a fast three-body associative reaction. BrClOH⁻ is formed via abstraction of Br and Cl, the driving force for this process again being the formation of a stable difluorocarbene. The formation of the two halide anions, Br⁻ and Cl⁻, from the decomposition of (BrClOH⁻)* is endothermic by $\Delta H = 79$ and $\Delta H = 83$ kJ mol⁻¹, respectively. Furthermore, DET leading to Cl⁻ or Br⁻ is endothermic. Therefore, both halide anions must be formed by nucleophilic attack on carbon.

3.2.6. CBr₂ClF

O reacts with CBr₂ClF to yield Br₂O (47%), CBr₂F⁻ (27%) and CBrClF⁻ (16%). Traces of BrO (4%), Br (2%), BrCl (2%), Cl (1%) and ClO (1%) are also observed. The formation of BrO from the decomposition of (Br₂O)* is endothermic by $\Delta H = +68 \text{ kJ mol}^{-1}$. Thus, the extraction of Br and of Br₂ is in competition. The observed Br can be formed via a variety of mechanisms; for examples the decomposition of (Br₂O⁻)* and/or (CBrClF⁻)* could lead to Br⁻, e.g. $O^- + CBr_2ClF \rightarrow Br^- + BrO^- + CFCl$ $(\Delta H = -59 \text{ kJ mol}^{-1})$. It cannot be ruled out that Br is formed from the decomposition of (Br₂)*, but this would require that all the (Br₂)* be formed with more than the 83 kJ mol⁻¹ predicted by equipartition of energy within the reaction complex, and that none of the $(Br_2^-)^*$ is collisionally stabilised.

Two ionic species, namely Br (95%) and Cl

(5%), are observed for the reaction of O_2^- with CBr₂ClF. It is possible that both Br⁻ and Cl⁻ are formed via DET, e.g. $O_2^- + \text{CBr}_2\text{ClF} \rightarrow \text{Cl}^- + \text{CBr}_2\text{F} + O_2$ ($\Delta H \leq -31 \text{ kJ mol}^{-1}$), although there are competing exothermic nucleophilic attack pathways available.

OH reacts with CBr₂ClF to yield predominantly Br₂OH⁻ (82%) via abstraction of two bromine atoms, leaving a carbene :CClF. The abstraction of two bromine atoms may proceed in a stepwise fashion. The first step may be the abstraction of Br⁺ by OH⁻, forming an intermediate ionic complex [HOBr.:-···CBrClF⁻]. The second step may be the release of a Br from CBrClF, leading to the formation of a relatively stable :CCIF carbene and Br₂OH⁻. Minor products observed are CBrClF⁻ (7%) (via abstraction of Br⁺), Br⁻ (4%), Br₂⁻ (3%), and traces of CBr₂F⁻ (1%), BrCl⁻ (1%), BrO⁻ (1%) and Cl⁻ (1%) were also observed. The Br⁻ anion could be produced via several channels; for example the decomposition of $(Br_2OH^-)^*$ or $(CBr_2F^-)^*$ may be exothermic, i.e. $OH^- +$ CBr₂ClF→ $(Br_2OH^-)^* +$ $CClF \rightarrow Br^- +$ BrOH + CClF with $\Delta H = 25 \pm 33 \text{ kJ mol}^{-1}$ and $OH^- + CBr_2ClF \rightarrow (CBr_2F^-)^* + ClOH \rightarrow Br^- +$ ClOH + CBrF with $\Delta H \leq -1 \pm 13 \text{ kJ mol}^{-1}$. It cannot be ruled out that the production of Brarises from the decomposition of $\left(Br_{2}^{-}\right)^{*}$ and (BrCl⁻)*. However, this requires (Br₂)* to be formed with more than the 32 kJ mol⁻¹ predicted by the equipartition of energy, and the enthalpy of the decomposition channel of (BrCl⁻)* has enough uncertainty to render it either just exothermic just endothermic or $(OH^- + CBr_2ClF \rightarrow Br^- + Cl^- +$ HBr + CFO $(\Delta H = 1 \pm 21 \text{ kJ mol}^{-1})$). Nevertheless, there are several independent channels to the production of Br and Cl via nucleophilic attack on carbon.

3.2.7. CF₂BrCF₂Br

O⁻ reacts with CF₂BrCF₂Br to produce three ionic products: Br⁻ (72%), Br₂O⁻ (21%) and BrO⁻ (7%). Abstraction of two bromine atoms

from CF₂BrCF₂Br, to produce Br₂O⁻, probably occurs via a five-atom-centred transition state, as illustrated below:

The decomposition of $(Br_2O^{-})^*$ to BrO^{-} is endothermic $(O^{-} + CF_2BrCF_2Br \rightarrow (Br_2O^{-})^* +$ C_2F_4 BrO-+ Br + $(\Delta H = +33 \text{ kJ mol}^{-1})$). Therefore, formed by nucleophilic attack of O on a Br atom in the CF₂BrCF₂Br molecule. Hence, the production of Br₂O⁻ and BrO⁻ takes place through two competing reaction channels. Br cannot be produced by DET because such a process is endothermic and thus must be formed via a nucleophilic attack mechanism. It cannot be ruled out that the decomposition of (Br₂O⁻) leads to Br +BrO because the exothermicity of the reaction is $\Delta H = -65 \text{ kJ mol}^{-1}$.

O₂ reacts with CF₂BrCF₂Br to produce two ion products only: Br_2^- (94%) and Br_2^- (6%). It is difficult to explain the much higher yield of Br₂ than of Br from nucleophilic attack by O₂ on a carbon atom in the CF₂BrCF₂Br molecule. The concerted displacement of Br_2 by O_2 , which would involve a six-atom-centred transition state, seems unlikely because of the rapid rotation of the two CF₂Br groups about the C-C single bond of CF₂BrCF₂Br at room temperature. Therefore, it is likely that the initial step is a single electron transfer within the ionic complex $[CF_2BrCF_2Br\cdots O_2^-]$, at a larger distance than required for nucleophilic attack of O₂ on a carbon atom. The electron transfer causes the dissociation of (CF₂BrCF₂Br⁻)*, yielding a nascent $(Br_2^-)^*$, in a fashion similar to electron attachment to CF₂BrCF₂Br [38,39]. The (Br₂)* formed in this way will be energetically unable to dissociate to Br⁻ and Br ($\Delta H = 71 \text{ kJ mol}^{-1}$). One cannot say with any certainty that DET to produce Br,

CF₂BrCF₂ and O₂ occurs because the heat of this reaction is $\Delta H = +9 \pm 16 \text{ kJ mol}^{-1}$. However, Br could be formed within the complex, to produce Br, Br and 2CF₂O, in a fashion similar to the reaction of O₂ with CH₂BrCH₂Br. Therefore, it cannot be ruled out that $(Br_2^-)^*$ is an intermediate in the production of Br-. It is interesting to compare the above results with those of electron attachment. Both anion products are observed in the electron attachment process, but Br is by far the dominant anion with a branching ratio of 80% [39]. This must be due to the fact that the formation of Br and CF₂BrCF₂ following electron attachment is exothermic, but for which in the O₂ electron transfer reaction the exothermicity is reduced by the electron affinity of O_2 , possibly rendering the reaction endothermic. Electron attachment to form Br₂ and C₂F₄ is energetically more favourable than the production of Br and CF₂BrCF₂. However, the former would require a complex rearrangement of the molecular bonds, involving the bridging of the carbon-carbon bond in the $(CF_2BrCF_2Br^-)^*$ anion by the two bromine atoms, followed by the elimination of Br₂ (which will have insufficient energy to dissociate to Br⁻ and Br) and the formation of the π bond in C₂F₄. On the other hand, electron attachment to form Br and CF₂BrCF₂ requires only the breaking of one C-Br bond in (CF₂BrCF₂Br⁻) with the retention of the electron on the departing Br atom. Taking all the above considerations into account, it is therefore not too surprising that Br is the dominant anion in the electron attachment process and Br_2^- is the dominant anion in the $O_2^$ reaction.

OH⁻ has a fast reaction with CF₂BrCF₂Br to produce two ionic species, Br⁻ (40%) and Br₂OH⁻ (60%). It is possible for the Br⁻ to come from the decomposition of $(Br_2OH^-)^*$, i.e. OH⁻ + CF₂BrCF₂Br \rightarrow $(Br_2OH^-)^*$ + C₂F₄ \rightarrow Br⁻ + BrOH + C₂F₄ ($\Delta H = -6 \pm 11 \text{ kJ mol}^{-1}$). It is, however, more likely that the formation of Br⁻ occurs via a more exothermic nucleophilic attack mechanism. DET pathways leading to the production of Br⁻ or Br₂⁻ are endothermic.

4. Discussion

4.1. Electron transfer reactions

4.1.1. O and OH reactions

DET is endothermic for all the molecules studied. Energetically, non-dissociative electron transfer can be ruled out only in the reactions with CH_3Br and CF_3Br , because these are the only molecules studied with known electron affinities, $EA(CH_3Br) = 0.4 \pm 0.1 \text{ eV}$ [32] and $EA(CF_3Br) = 0.9 \pm 0.2 \text{ eV}$. However, even if non-dissociative electron transfer is exothermic to the other molecules, the lack of any parent anions indicates that it does not compete with nucleophilic attack. Thus electron transfer does not occur to any of the molecules studied.

4.1.2. O_2^- reactions

Non-dissociative electron transfer is observed for the reactions with CF3Br, CHBrCl2 and CF₂BrCl. The electron affinities of the latter two molecules are not reported, but they must obviously be greater than 0.45 eV. Although CH_3Br has a similar electron affinity to O_2 , with the enthalpy of the reaction $O_2^- + CH_3Br \rightarrow CH_3Br^- + O_2$ being $\Delta H =$ $4 \pm 10 \text{ kJ mol}^{-1}$, no parent anion is observed. DET is exothermic to produce Br from the reaction with CF₂Br₂, to produce Br⁻ and Cl⁻ from the reactions with CBrCl₃ and CBr₂ClF and to produce Br₂ from the reactions with CF₂BrCF₂Br and CH₂BrCH₂Br. On the other hand, DET to produce Br is endothermic from the reactions with CH₃Br, C₂H₅Br, CH₂BrCH₂Cl and CF₃Br, and is also endothermic to produce Cl⁻ from CH₂BrCH₂Cl. For the reactions with CH₂Br₂, CHBrCl₂, CHBr₂Cl, CH₂BrCH₂Br, CBrClF₂ and CF₂BrCF₂Br, errors in the reaction energetics make decisions on the production of Br by DET inconclusive. This is also true for Cl from CHBrCl₂. The production of Cl⁻ via DET to CHBr₂Cl and CF₂BrCl is, however, definitely endothermic. When DET is endothermic, the observed atomic anion products must be produced via nucleophilic attack. Whether DET or nucleophilic attack is the preferred mechanism for the reactions when both are energetically viable is difficult to say. Electron transfer is usually a long-range process, i.e. transfer occurs at impact parameters considerably larger than those needed for nucleophilic attack. However, presumably only when the potential surface of the neutral is crossed at its minimum by that of the corresponding anions' potential surface, i.e. there is little or no activation energy, will this long-range electron transfer process occur with any efficiency. Nevertheless, if this is the case,

$$O^{-} + CCl_3Br \rightarrow [O - Br - CCl_3]^{-} \rightarrow OBr^{-}$$

+ CCl_3^{-} (4.2)

For many of the reactions, products such as OBr₂, OBrCl⁻, HOBr₂ and HOBrCl⁻ are observed, requiring the formation of difluorocarbene or tetrafluoroethene, with the exception of O⁻ and OH⁻ with CFBr₂Cl (CFCl) and OH⁻ with CFBr₃ (CFBr). For the methanes, presumably this occurs via a four-atom-centred transition state as illustrated below for the reaction of O⁻ with CF₂BrCl:

$$O^{-} + CF_2BrCl \longrightarrow O \longrightarrow Cl \longrightarrow F$$
 $Cl \longrightarrow F$
 $Cl \longrightarrow F$
 $Cl \longrightarrow F$

the long-range nature of the electron transfer mechanism leading to an excited parent anion, with sufficient energy to dissociate, will generally take place to the exclusion of other more intimate reaction pathways leading to the dissociative products; and this is unlikely for the majority of the neutral molecules studied here. We therefore conclude that when an electron transfer mechanism, leading to non-dissociative or dissociative products, is observed in parallel or in competition with nucleophilic attack, e.g. the reaction of O_2^- with CF_3Br , then these processes must both be proceeding through a reaction complex.

4.2. Nucleophilic attack on bromine and chlorine

4.2.1. O and OH reactions

Attack on bromine and chlorine can be envisaged to proceed through an intermediate complex, followed by complex decomposition, for example:

$$O^{-} + CCl_3Br \rightarrow [O - Br - CCl_3]^{-} \rightarrow OBr^{-}$$

+ CCl_3^{-} (4.1)

Similarly, for the reaction with CF₂BrCF₂Br, a five-atom-centred transition state must be involved. When this type of reaction occurs, it is a substantial, if not dominant, mechanism. This is probably because of the presence of fluorine in the neutral product.

For some of the reactions with O, OBr (or OCl⁻) is observed in addition to OBr₂⁻ (or OBrCl⁻). It is thermodynamically impossible to produce these products via the dissociation of OBr₂ etc. Therefore, when OBr₂ and OBr are observed as products from the same reaction, they are produced via competing reaction pathways. Although the production of OBr etc. is endothermic via this mechanism, for some of these reactions the production of Br is exothermic. However, it is unlikely that $(OBr_2^-)^*$ etc. gain enough energy from the reaction to enable dissociation to take place. For the analogous reactions with OH⁻, the ΔH_1 (OHBr⁻) is unreported and, therefore, no conclusions can be drawn concerning the energetics of the reactions.

Some separate comments are now made on the reactions of O and OH with the molecules studied.

4.2.2. O⁻ reactions

The production of OBr is exothermic for all the molecules studied and is observed for all reactions, except for those with CH₃Br, CHBrCl₂, CH₂BrCH₂Br and CH₂BrCH₂Cl, for which no nucleophilic attack on bromine is observed. This is presumably because of an alternative proton transfer channel and/or less steric hindrance to attack on carbon. Nucleophilic attack on chlorine is observed for all but two of the chlorinated molecules, the exceptions being the reactions with CH₂BrCH₂Cl and CHBrCl₂.

The abstraction of Br⁺ is found to be the more favoured mechanism over the abstraction of Br when both are observed to occur. Similarly, for nucleophilic attack on chlorine, abstraction of Cl⁺ is a more favoured mechanism than abstraction of Cl. Thus it appears that the carbon preferentially retains both the bonding electrons when the C-Br/C-Cl bond is ruptured, indicating that the electron affinities of the carboncontaining neutral are greater than that of OBr/OCl.

4.2.3. OH reactions

Abstraction of (only) Cl is not observed from any of the chlorine-containing molecules, whereas extraction of Br is observed from several of the molecules. One product of note, observed from the reaction with CBrCl₃ and CFBr₂Cl, is OBr⁻ and not HOBr. To explain this product, we propose that a reaction complex is formed and that either hydrogen transfer or proton transfer from OH⁻ to the methane under attack is occurring during the abstraction of Br or Br⁺, respectively. As the electron affinity of OBr must be greater than that of HOBr, the preferred initial mechanism is extraction of Br⁺ followed by proton transfer.

4.2.4. O_2^- reactions

Although exothermic reaction pathways are available, nucleophilic attack on bromine or chlorine is not observed from the reactions with O_2^- . However, for some of the reactions, possible

neutral products are OBr and OCl, although it is probable that these are formed only after preferential attack on carbon by O_2^- .

4.3. Nucleophilic attack on hydrogen

4.3.1. O and OH reactions

Attack on hydrogen-containing molecules can be envisaged to proceed through an intermediate complex. Proton transfer from the neutral molecule to the anion is the dominant process for the reactions with singly hydrogenated molecules. The minor reaction channels involve nucleophilic attack on carbon. In the reactions with the multiply hydrogenated methanes, proton transfer from CH₂Br₂ is observed to both O⁻ and OH⁻. Proton transfer from CH₃Br to O⁻ and OH⁻ is endothermic and is therefore not observed. Although proton transfer from CH₃Br to O is endothermic, nucleophilic attack on hydrogen is still observed to occur, via the extraction of both H^{-} (to form OH^{-}) and H_{2}^{+} (to form $H_{2}O$). Unlike the singly hydrogenated methanes studied, it is important to note for the reactions of the multiply hydrogenated methanes that, although nucleophilic attack on hydrogen is observed, the most dominant reaction mechanism is nucleophilic attack on carbon. A possible reason for this is that the increased hydrogen content provides the attacking nucleophile with greater access to the carbon, i.e. there is less of a steric hindrance.

In the reactions with the hydrogenated ethanes, direct evidence of nucleophilic attack on hydrogen is observed only from the reaction of O with C₂H₅Br, for which proton transfer occurs. However, it cannot be ruled out that the only other product observed (Br) in the reactions with both O and OH , could result from initial proton transfer, followed by dissociation of the anion product.

4.3.2. O_2^- reactions

Proton transfer from the multiply hydrogenated molecules to O_2^- (forming HO_2) is endothermic and is therefore not observed. Of

the two singly hydrogenated molecules, proton transfer is exothermic from CHBrCl₂ but it is not observed.

4.4. Nucleophilic attack on carbon

4.4.1. O reactions

For the reactions of the molecules investigated with O⁻, seven of the observed anionic products are considered to result from nucleophilic attack by the anion on carbon; these are Br-, Br-, Cl-, Cl2, BrCl2, F and BrF2. A mixture of atomic and dihalide anion products was observed in our study of O and O with several CFCs [12]. There, we suggested that if each of these anions is produced independently from the same transition complex, then this would require the complex to have many exit pathways; and the simplicity of the systems under investigation mitigates against this. We also suggested that where the atomic and dihalide anions are observed as products from the same reaction, the atomic anions could be produced from the decomposition of the excited dihalide anion. We concluded that this was possible only if the dihalide anion was formed with more energy than predicted by the QET and the equipartition of energy. To resolve this, we suggested that the QET was not applicable because of how the bonds broke in the intermediate complex. As the bond(s) between the dihalide anion and the neutral gradually lengthen, bond breakage preferentially occurs closest to the neutral. This means that more of the energy contained in the bond is retained by the anion, suggesting that the dihalide anions are created with a distribution of energies, some with enough energy to result in dissociation [12]. In this study, this explains the observation of Br and F from (BrF)*, from the reaction of O with CF₃Br and the observation of Br and Cl from (BrCl , , from the reactions of O with CF2BrCl and CFBr₂Cl.

4.4.2. O_2^- and OH^- reactions

For the reactions with O_2^- and OH^- , nucleophilic attack is the only viable reaction mechanism. This leads to less diversity in the observed products. Br⁻ is the only atomic anion observed from the reactions with OH^- and, with the exception of the reaction with $CHBrCl_2$ (where $BrCl^-$ is also observed), reactions with O_2^- produce only Br^- and Cl^- . Therefore, a simpler reaction process for nucleophilic attack by O_2^- and OH^- must be occurring than for O^- .

For the reactions with the methanes, this is envisaged to proceed through a complex which then dissociates to give Br⁻ and, to allow for an energetically favourable pathway, an alcohol or peroxide (substitution) or HBr (OBr) plus another neutral (elimination). For examples

$$OH^- + CH_3Br \rightarrow Br^- + CH_3OH$$
 (Substitution) (4.3)

and

$$O_2^- + CH_2Br_2 \rightarrow Br^- + CH_2O + OBr^-$$
(Elimination) (4.4)

Similarly, the reactions with the ethanes probably proceed through a complex which then dissociates to give Br⁻. For the reactions with OH⁻, the most exothermic reaction pathways involve breaking the C-C bond in the ethane, with the O and H bonded to different carbons, e.g.

$$OH^- + CF_2BrCF_2Br \rightarrow Br^- + CF_2O + CHF_2Br$$

$$(4.5)$$

For the reactions with O_2^- , the most exothermic reactions again involve elimination of Br⁻, with the subsequent elimination of Br⁻ and the breaking of the C-C bond with an O bonded to either carbon, e.g.

$$O_2^{\cdot -} + CH_2BrCH_2Br \rightarrow Br^{-} + Br^{\cdot} + CH_2O$$

+ CH_2O (4.6)

5. Summary

A comprehensive study of the reactions of O, O₂ and OH with a variety of brominated compounds has been presented. With the exception of two reactions, namely OH with CF3Br and with CF₂BrCl, the measured bimolecular rate coefficients are at, or close to, the collisional value. For the two slow bimolecular reactions, there is direct competition with fast ternary association reactions. For O₂, because of the low electron affinity of O2, electron transfer occurs for a significant number of reactions; non-dissociative electron transfer occurs in the reactions with CF₃Br, CHBrCl₂ and CF₂BrCl. It is also possible for a number of anion products to be produced by dissociative electron transfer from O_2^- , for the CF₂BrCF₂Br reactions with $(Br_2,$ CH₂BrCH₂Br (Br₂, Br), CBrCl₃ (Br, Cl⁻), CF₂BrCl (Br⁻), CHBrCl₂ (Br⁻), CHBr₂Cl (Br⁻), CH_2Br_2 , CH_2Br_2 (Br⁻), CF_2Br_2 (Br⁻) and CBr₂ClF (Br⁻, Cl⁻), although nucleophilic attack can also explain these observed products. However, for some of the above mentioned reactions, nucleophilic attack pathways are definitely occurring in parallel with DET, suggesting that most of the reactions proceed through a reaction complex. Comparison of the number and variety of product channels shows that the strongest nucleophile in this study is O⁻, followed closely by OH⁻, with the weakest being O₂⁻. This is simply because energetics demand that O and OH react by nucleophilic attack rather than by electron transfer processes. It is noticed from several reactions that the most favoured reaction channel is governed by the neutral rather than the anionic product. This is highlighted in the reactions of both O and OH with CF2Br2, CF2BrCl and CF₂BrCF₂Br. In all of these reactions the major neutral product is $C_n F_{2n}$ (n = 1, 2), allowing the formation of products such as Br₂O⁻/Br₂OH⁻ and BrClO -/BrClOH-.

Acknowledgements

We are very grateful to the Chemical and Biological Defence Establishment (CBDE), Ministry of Defence, UK, for the financial support of this work. One of us (Yong Liu) especially thanks the CBDE for a postdoctoral position. Robert Peverall also thanks the CBDE for a studentship. Richard Thomas thanks the School of Physics and Space Research, University of Birmingham, for a studentship. Finally we thank Dr P. Watts (CBDE), Dr K. Giles (CBDE) and Professor J. Dyke (Chemistry Department, Southampton University) for critically reading the manuscript and for providing us with a number of useful comments.

References

- [1] E.E. Ferguson, F.C. Fehsenfeld and D.L. Albritton, in M.T. Bowers (Ed.), Gas Phase Ion Chemistry, Vol. 1, Academic Press, New York, 1979, Vol. 1, Chapter 2.
- [2] D. Smith and N.G. Adams, Top. Curr. Chem., 89 (1980) 1.
- [3] R.A. Morris, J. Chem. Phys., 97 (1992) 2372.
- [4] K.R. Jennings, in M.T. Bowers (Ed.), Gas Phase Ion Chemistry, Vol. 2, Academic Press, New York, 1979, Chapter 2.
- [5] A.G. Harrison, Chemical Ionization Mass Spectrometry, CRC Press, Boca Raton, FL, 1983.
- [6] Y. Ikezoe, S. Matsuoka, M. Takebe and A.A. Viggiano, Gas Phase Ion-Molecule Reaction Rate Constants Through 1986, Maruzen, Tokyo, 1987.
- [7] F.C. Fehsenfeld, P.J. Crutzen, A.L. Schmeltekopf, C.J. Howard, D.L. Albritton, E.E. Ferguson, J.A. Davidson and H.I. Schiff, J. Geophys. Res., 81 (1976) 4454.
- [8] I. Dotan, D.L. Albritton, F.C. Fehsenfeld, G.E. Streit and E.E. Ferguson, J. Chem. Phys., 68 (1978) 5414.
- [9] G.E. Streit, J. Phys. Chem., 86 (1982) 2321.
- [10] R.A. Morris, A.A. Viggiano, S.T. Arnold, J.F. Paulson and J.F. Liebman, J. Phys. Chem., 99 (1995) 5992.
- [11] R.A. Morris, T.M. Miller, A.A. Viggiano, J.F. Paulson, S. Solomon and G. Reid, J. Geophys. Res., 100 (1995) 1287.
- [12] C.A. Mayhew, R. Peverall and P. Watts, Int. J. Mass Spectrom. Ion Processes, 125 (1993) 81.
- [13] M.W. Siegal and W.L. Fite, J. Phys. Chem., 80 (1976) 2871.
- [14] P. Watts, Int. J. Mass Spectrom. Ion Processes, 121 (1992) 141.
- [15] E.P. Grimsrud and D.A. Miller, Anal. Chem., 50 (1978) 1141.
- [16] D.A. Miller and E.P. Grimsrud, Anal. Chem., 51 (1979) 851.
- [17] J. Lee and J.J. Grabowski, Chem. Rev., 92 (1992) 1611.

- [18] J.H. Futrell and T.O. Tiernan, in J.L. Franklin (Ed.), Ion-Molecule Reactions, Vol. 2, Plenum Press, New York, 1972, Chapter 11.
- [19] K. Tanaka, G.I. Mackay, J.D. Payzant and D.K. Bohme, Can. J. Chem., 54 (1976) 1643.
- [20] R.N. McDonald and A.K. Chowdhury, J. Am. Chem. Soc., 107 (1985) 4123.
- [21] D.K. Bohme and G.I. MacKay, J. Am. Chem. Soc., 103 (1981) 978
- [22] W.N. Olmstead and J.I. Brauman., J. Am. Chem. Soc., 99 (1977) 4219.
- [23] C.H. DePuy, S. Gronert, A. Mullin and V.M. Bierbaum, J. Am. Chem. Soc., 112 (1990) 8650.
- [24] P.O. Staneke, G. Groothuis, S. Ingemann and N.M.M. Nibbering, Int. J. Mass Spectrom. Ion Processes, 149/150 (1995) 99.
- [25] N.G. Adams and D. Smith, in Techniques for the Study of Ion—Molecule Reactions, Wiley, New York, 1988, Chapter 4.
- [26] N.G. Adams and D. Smith, Int. J. Mass Spectrom. Ion Phys., 21 (1976) 349.
- [27] G. Gioumousis and D.P. Stevenson, J. Chem. Phys., 92 (1958) 294.
- [28] T. Su and M.T. Bowers, in M.T. Bowers (Ed.), Gas Phase Ion Chemistry, Vol. 1, Academic Press, 1979, Chapter 3.
- [29] S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin and W.G. Mallard, J. Phys. Chem. Ref. Data, 17 (Suppl. 1) (1988).
- [30] M. Born, S. Ingemann and N.M.M. Nibbering, J. Am. Chem. Soc., 116 (1994) 7210.
- [31] K.K. Murray, D.G. Leopold, T.M. Miller and W.C. Lineberger, J. Chem. Phys., 89 (1988) 5442.

- [32] A.M.C. Moulthino, J.A. Aten and J. Los, Chem. Phys., 5 (1974) 84.
- [33] M.K. Gilles, M.L. Polak and W.C. Lineberger, J. Chem. Phys., 96 (1992) 8012.
- [34] G.B. Ellison, P.C. Engelking and W.C. Lineberger, J. Phys. Chem., 86 (1982) 4873.
- [35] S.W. Benson, Thermochemical Kinetics, 2nd edn., Wiley-Interscience, New York, 1976.
- [36] J.M. Nicovich, K.D. Kreutter and P.H. Wine, J. Chem. Phys., 92 (1990) 3543.
- [37] Handbook of Chemistry and Physics, D.R. Lide (Editor-in-Chief), 72nd edn., CRC Press, 1991.
- [38] D. Smith, C.R. Herd, N.G. Adams and J.F. Paulson, Int. J. Mass Spectrom. Ion Processes, 96 (1990) 341.
- [39] D.R. Zook, W.B. Knighton and E.P. Grimsrud, Int. J. Mass Spectrom. Ion Processes, 104 (1991) 63.
- [40] G. Baum and J.R. Huber, Chem. Phys. Lett., 213 (1993) 427.
- [41] W.B. Knighton and E.P. Grimsrud, J. Am. Chem. Soc., 114 (1992) 2336.
- [42] N.G. Adams, D. Smith and C.R. Herd, Int. J. Mass Spectrom. Ion Processes, 84 (1988) 243.
- [43] W.F. Scheider and T.J. Wallington, J. Phys. Chem., 97 (1993) 12783.
- [44] M.P. McGrath and F.S. Rowland, J. Phys. Chem., 98 (1994) 4773.
- [45] E. Alge, N.G. Adams and D. Smith, J. Phys. B: At. Mol. Phys., 17 (1984) 3827.
- [46] C.A. Lieder and J.I. Brauman, J. Am. Chem. Soc., 96 (1974) 4028
- [47] C.A. Lieder and J.I. Brauman, Int. J. Mass Spectrom. Ion Phys., 16 (1975) 307.