উত্তরমালা

বহনিবাচনি প্রশ্ন

1.	U	2.	*	3.	ঘ	4.	₹	5.	ক	6.	*
7.	খ	8.	51	9.	*	10.	ক	11.	4	12.	*
-	-									18.	
19.	ক	20.	4	21.	51	22.	খ	23.	ঘ	24.	घ
25.	₹ 75	26.	খ	27.	ক	28.	21	29.	ঘ	30.	গ
31.	*	32.	ঘ	33.	ক	34.	ঘ	35.	ক	36.	ঘ
37.	*	38.	9	39.	क	40.	ঘ	41.	51	42.	ক
										48.	
49.	- / -	-									

সুজনশীল প্রশ্ন

1.
$$\sqrt{\frac{2}{5}}$$
; $\sqrt[4]{\frac{9(y-3)^2}{16}} - \frac{9(x-2)^2}{20} = 1$;
 $\sqrt[4]{5}y = \pm (2x-4) + 3\sqrt{5}$

2.
$$\mathbf{\overline{4}}$$
, 2: $\sqrt{3}$; $\mathbf{\overline{4}}$, $\frac{5}{2}$

3. **4.** 18; **4.** $a = \frac{1}{2}$; b = 2; c = 5

4.
$$\P.\left(\pm\frac{1}{\sqrt{6}},0\right)$$
 $\P.$ $5x = \pm 16;$

6. **4.**
$$\left(-\frac{61}{40}, -\frac{3}{2}\right)$$
; **4.** $\sqrt{\frac{61}{5}}$

7.
$$\mathbf{\overline{q}}$$
. $x + y = 0$; $\mathbf{\overline{q}}$. $x - y + 2 = 0$
 $\mathbf{\overline{q}}$. $(x + y)^2 - 2x + 2y - 1 = 0$

1.
$$(x + y)^2 - 2x + 2y - 1 = 0$$

8. **4.**
$$\frac{2\sqrt{7}}{3}$$
; **1.** $\frac{x^2}{64} - \frac{y^2}{36} = 1$

9.
$$\mathbf{\overline{4}}$$
. $\frac{\sqrt{41}}{5}$; $\mathbf{\overline{4}}$. $(4x - 3y)^2 - 44x - 42y + 49 = 0$

প.
$$4x^2 + 11y^2 - 24xy - 50x - 225 = 0$$

10. **4.**
$$\pm 27$$
; **1.** $\frac{x^2}{9} - \frac{y^2}{720} = 1$

11. **4.** 10,
$$2\sqrt{10}$$
;

সপ্তম অধ্যায়: বিপরীত ত্রিকোণমিতিক ফাংশন ও ত্রিকোণমিতিক সমীকরণ

বহুনির্বাচনি প্রশ্ন

1. tan^{-1} 7 ও $tan^{-1}\frac{4}{3}$ এর মূখ্যমানের সমষ্টি কত?

ক.
$$-\frac{\pi}{4}$$

ক.
$$-\frac{\pi}{4}$$
 খ. $-\frac{3\pi}{4}$ গ. $\frac{\pi}{4}$ ঘ. $\frac{3\pi}{4}$

2. $\sin^{-1}\frac{2x}{\sqrt{1+4x^2}}$ কে নিচের কোনটির সাহায্য প্রকাশ করা

$$\Phi. \cos^{-1}(\sqrt{1+4x^2}) \qquad \forall. \ \tan^{-1}(\sqrt{2x})$$

$$\forall . \tan^{-1}(\sqrt{2x})$$

গ.
$$\cot^{-1}(2x)$$

$$\forall$$
. $tan^{-1}(2x)$

3. cot cos⁻¹ ½ এর মান কত?

খ.
$$\frac{1}{2}$$

গ.
$$\frac{1}{\sqrt{3}}$$

ক. 0 খ.
$$\frac{1}{2}$$
 গ. $\frac{1}{\sqrt{3}}$ ঘ. $\sqrt{3}$

4. $\sin \cot^{-1} \tan \cos^{-1} \frac{3}{4}$ এর মান নিচের কোনটি?

$$\overline{\Phi}$$
. $\frac{3}{4}$

খ.
$$\frac{\sqrt{7}}{3}$$
 গ. $\frac{4}{3}$

গ.
$$\frac{4}{3}$$

$$\forall . \frac{3}{\sqrt{2}}$$

5. tanx ফাংশনটি কোন ব্যবধিতে এক এক?

খ.
$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
গ. $[0,\pi]$ ঘ. $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

ঘ.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

সমাধান কোনটি?

খ.
$$\frac{n\pi}{2}$$

খ.
$$\frac{n\pi}{2}$$
 গ. $\frac{n\pi}{7}$ ঘ. $(2n+1)\frac{\pi}{2}$

7. $\sqrt{3}\sin\theta + \cos\theta = \sqrt{2}$ সমীকরণের অবাস্তর মূল কোনটি?

$$\Phi$$
. $\frac{7\pi}{12}$

খ.
$$\frac{\pi}{12}$$
 গ. $-\frac{7\pi}{12}$ ঘ. $-\frac{17\pi}{12}$

8. $\theta = \sin^{-1}\left(\frac{3}{5}\right)$ where $\theta = ?$

$$\overline{\Phi}$$
. $\frac{5}{4}$

$$\overline{\Phi}$$
. $\frac{5}{4}$ $\forall . \frac{4}{5}$, $. \hat{\eta}$. $\frac{3}{5}$ $\forall . \frac{3}{4}$

9.
$$\frac{1}{2}\cos^{-1}\frac{4}{5} + \cot^{-1}x = \frac{\pi}{2}$$
 (4)

$$\Phi$$
. $\frac{1}{3}$

ক.
$$\frac{1}{3}$$
 খ. $\frac{4}{3}$ গ. $\frac{4}{5}$ ঘ. $\frac{3}{4}$

ঘ.
$$\frac{3}{4}$$

10. $\sin \left[\cos^{-1} \left(-\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \right]$ এর মান কত?

খ.
$$\frac{1}{2}$$

খ.
$$\frac{1}{2}$$
 গ. $\frac{1}{\sqrt{2}}$

11. cotx tanα = 1 এবং n ∈ ℤ হলে x এর মান নিচের কোনটি?

$$\Phi$$
. $2n\pi + \alpha$

$$\nabla$$
. $n\pi + \alpha$

12. $\tan^{-1} \sin \tan^{-1} x = \cos^{-1} \sqrt{\frac{3}{5}}$ সমীকরণের সমাধান কোনটি?

ক.
$$\frac{1}{\sqrt{2}}$$
 খ. $\sqrt{2}$ গ. $\frac{1}{\sqrt{3}}$ ঘ. $\sqrt{3}$

13. $\theta = \cos^{-1} \frac{4}{5} \sqrt[3]{\cot^2 \theta - 1} = \sqrt[3]{2}$

$$\Phi$$
. $\frac{6}{25}$

$$9, \frac{9}{25}$$

14. বিপরীত ত্রিকোণমিতিক ফাংশন কোনটি?

$$\mathbf{\Phi}. \quad \mathbf{x}^2 - 6\mathbf{x} + 5 = \mathbf{0}$$

$$\forall . \ \ln(x+y) = a^x$$

$$9. \ \tan^{-1} x = \cot^{-1} \frac{1}{x}$$

$$9. \ \sin^{2} x + \cos^{2} x = 1$$

$$\forall . \sin^2 x + \cos^2 x = 1$$

15. x = tan y বর্থন x ≥ 0 কাংশনের মুখ্যমান কত?

$$\mathbf{\Phi}. \quad 0 \le \tan^{-1}(x) < \frac{\pi}{2} \qquad \forall , \ -\frac{\pi}{2} < \tan^{-1}(x) < 0$$

$$\forall . -\frac{\pi}{2} < \tan^{-1}(x) < 0$$

$$\P. \quad 0 < \tan^{-1}(x) < \frac{\pi}{2} \qquad \P. \quad -\frac{\pi}{2} \le \tan^{-1}(x) < 0$$

$$\forall . -\frac{\pi}{2} \le \tan^{-1}(x) < 0$$

16. cot-1x = 季5?

$$\mathbf{\Phi}. \cot^{-1}\frac{1}{x} \qquad \qquad \forall. \tan^{-1}\frac{1}{x}$$

₹.
$$tan^{-1}\frac{1}{x}$$

$$\nabla$$
. $2\tan^{-1}\frac{1}{x}$

17. $\sin^{-1}x + \cos^{-1}x = \overline{\Phi}$

ক.
$$-\frac{\pi}{2}$$
 খ. $\frac{\pi}{2}$ গ. π

₹.
$$\frac{\pi}{2}$$

18. $tan^{-1}x + tan^{-1}y + tan^{-1}z = \overline{\Phi}$?

$$\overline{\Phi}. \quad \tan^{-1} \frac{x + y + z + xyz}{1 + xy + yz + zx} \quad \forall . \quad \tan^{-1} \frac{x + y + z - xyz}{1 - xy - yz - zx}$$

$$\forall . \ \tan^{-1} \frac{x+y+z-xyz}{1-xy-yz-zx}$$

9.
$$\tan^{-1} \frac{x+y+z+xyz}{1-xy-yz-zx}$$
 9. $\tan^{-1} \frac{x+y+z-xyz}{1+xy+yz+zx}$

$$\sqrt{1 + xy + z - xyz}$$

19. $y = \cot^{-1}x$ কাংশনের ডোমেন কত?

20. sin cot⁻¹tan cos⁻¹x এর মান কড?

♥.
$$x^2$$
 • গ. x ▼. $\frac{1}{2}x$

$$\nabla I = \frac{1}{2}X$$

21.
$$\sec^{-1}2 + \csc^{-1}2 = \overline{\Phi}$$

$$\overline{\Phi}$$
, $\frac{\pi}{2}$

গ.
$$\frac{2\pi}{2}$$

22. $\sin^{-1}(-\cos x) + \sin^{-1}(\cos 3x) = \overline{\Phi}$?

23. $tan^2x + sec^2x = 3$ হলে সমীকরণটির সমাধান কত?

$$\mathbf{\Phi}. \quad \mathbf{x} = \mathbf{n}\mathbf{\pi} \pm \frac{\mathbf{\pi}}{2}$$

$$\forall x = n\pi + \frac{\pi}{2}$$

গ.
$$x = n\pi \pm \frac{\pi}{4}$$

$$\forall . \ \ x = n\pi + \frac{\pi}{4}$$

24. cotθ = 0 হলে θ এর মান কত?

$$\mathbf{\Phi}$$
. $\theta = n\pi$

$$\forall . \ \theta = \frac{(2n+1)\pi}{2}$$

$$9. \quad \frac{(4n+1)\pi}{2}$$

$$\nabla \theta = 2n\pi$$

25. $\cos\theta - \sin\theta = 0$ যখন $0^{\circ} < \theta < 90^{\circ}$ হলে θ এর মান কত?

$$\mathbf{\Phi}. \quad 2n\pi + \frac{2\pi}{3}$$

$$\forall$$
. $2n\pi \pm \frac{\pi}{3}$

গ.
$$2n\pi \pm \frac{2\pi}{3}$$

$$\P. (2n+1)\frac{\pi}{4}$$

27. $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ এর মুখ্যমান–

i.
$$\frac{4\pi}{3}$$

ii.
$$\frac{-\pi}{3}$$

iii. তৃতীয় চতুম্কোণে অবস্থিত

নিচের কোনটি সঠিক?

28.
$$P = \frac{\pi}{2}$$
 হলে —

i.
$$\sin^{-1} x + \cos^{-1} x = P$$
; $[-1 \le x \le 1]$

ii.
$$tan^{-1}x + cot^{-1}x = P$$
; $[x \ge 0]$

iii.
$$\csc^{-1} x + \sec^{-1} x = P$$
; $[x \le -1, x \ge 1]$

নিচের কোনটি সঠিক?

季 . i g ii ર્ય. ાં ઉ iii જે. ii ઉ iii ધ i, ii ઉ iii

29.
$$\sin^{-1} x = ?$$

i.
$$\sec^{-1} \frac{1}{\sqrt{1-x^2}}$$

ii.
$$\cos^{-1}\sqrt{1-x^2}$$

iii.
$$\cot^{-1} \frac{\sqrt{1-x^2}}{x}$$

নিচের কোনটি সঠিক?

ર્ય. ાં ઉ iii જે. ii ઉ iii ધિ. i, ii ઉ iii **ず**. i ଓ ii

30. $y = \cos^{-1}x$ —

একটি বিপরীত ত্রিকোণমিতিক ফাংশন

ii. এর ডোমেন [- 1, 1] iii. এর রেঞ্জ [0, π]

নিচের কোনটি সঠিক?

খ. i ও iii গ. ii ও iii ঘ. i, ii ও iii **ず**. i g ii নিচের তথ্যের আলোকে (31 ও 32) নং প্রয়ের উত্তর দাও:

31. উপরের শেখচিত্রটি কোন ফাংশনের লেখচিত্র?

$$\mathbf{\Phi}. \quad \mathbf{y} = \sin^{-1}\mathbf{x}$$

খ.
$$y = \cos^{-1} x$$

গ.
$$y = tan^{-1}x$$

$$\forall . y = \sec^{-1} x$$

32. উপরের শেখচিত্রটির y এর মুখ্যমান কত?

$$\Phi$$
. $\left(0,\frac{\pi}{2}\right)$

খ.
$$\left[0, \frac{\pi}{2}\right]$$

নিচের তথ্যের ভিত্তিতে (33 ও 34) নং প্রশ্নের উত্তর দাও:

$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - A)$$

33.
$$x^2 + y^2 = 1$$
 হলে A এর মান কত?

34.
$$x = \frac{1}{3}$$
 এবং $y = \frac{1}{4}$ ছলে A এর মান কত?

$$\Phi$$
. $\frac{1}{12}$

শ.
$$\sqrt{30}$$

$$\sqrt{17+\sqrt{2}}$$

নিচের তথ্যের আলোকে (35 ও 36) নং প্রশ্নের উন্তর দাও: $p(x) = \sin 3x$ একটি বৃত্তীয় ফাংশন।

35.
$$p(x) = \frac{1}{2}$$
 হলে, সাধারণ সমাধান কোনটি?

$$\overline{\Phi}. \ \frac{1}{3} n\pi + (-1)^n \frac{\pi}{6} \qquad \forall i. \ \frac{1}{3} n\pi + \frac{\pi}{6}$$

খ.
$$\frac{1}{3} n\pi + \frac{\pi}{6}$$

গ.
$$\frac{1}{3} n\pi - \frac{\pi}{18}$$
 $\sqrt{1} \cdot \frac{1}{3} n\pi + (-1)^n \frac{\pi}{18}$

36. $p(\frac{1}{3}x) = -1$ হলে x এর মান কোনটি?

$$\Phi$$
. $\frac{-\pi}{2}$

খ.
$$\frac{\pi}{2}$$

ক. $\frac{-\pi}{2}$ খ. $\frac{\pi}{2}$ গ. π . ঘ. $-\frac{2\pi}{3}$

নিচের তথ্যের আলোকে (37 ও 38) নং প্রশ্নের উত্তর দাও:

$$\cos^{-1}\frac{1}{\sqrt{5}}$$
, $\frac{1}{2}\sin^{-1}\frac{3}{5}$ এবং $\tan^{-1}\frac{1}{3}$ তিনটি বিপরীত ত্রিকোণমিতিক

37. ৩য় ফাংশন = $\frac{1}{2}\sin^{-1} x$ হলে $x = \overline{\Phi}$ ত?

$$\Phi$$
. $\frac{3}{5}$

$$\frac{4}{5}$$

38. ১ম ফাংশন – ২য় ফাংশন + ৩য় ফাংশন = কত?

ঘ.
$$\frac{1}{2}$$
 ১ম ফাংশন

নিচের তথ্যের আলোকে (39 ও 40) নং প্রশ্নের উত্তর দাও:

$\tan x = \sqrt{3} ; 0 < x < 2\pi$

39. প্রদন্ত ত্রিকোণমিতিক সমীকরণের সাধারণ সমাধান কোনটি?

$$\mathbf{\Phi}_{\cdot, \mathbf{x}} = \mathbf{n}\pi + \frac{\pi}{3}$$

$$\forall. \ \ x=n\pi-\frac{\pi}{3}$$

$$\mathfrak{N}. \quad \mathbf{x} = \mathbf{n}\boldsymbol{\pi} \pm \frac{\boldsymbol{\pi}}{3}$$

$$\forall x = -n\pi + \frac{\pi}{3}$$

40. নিৰ্দিষ্ট সীমার মধ্যে সমাধান কত?

$$\overline{\Phi}$$
. $-\frac{\pi}{3}$, $-\frac{4\pi}{3}$

$$\forall . -\frac{\pi}{3}, \frac{4\pi}{3}$$

গ.
$$\frac{\pi}{3}$$
, $\frac{4\pi}{3}$

$$\nabla$$
, $\frac{\pi}{3}$, $\frac{4\pi}{3}$, $\frac{\pi}{2}$

নিচের তথ্যের আলোকে (41 ও 42) নং প্ররের উত্তর দাও:

$$\cot^{-1}\frac{1}{x} + \cot^{-1}\frac{1}{y} + \cot^{-1}\frac{1}{z}$$
 একটি রাশি।

41. শেষ দুইটি পদের যোগফল কত?

$$\mathbf{\Phi}. \quad \tan^{-1}\frac{\mathbf{x}+\mathbf{y}}{1-\mathbf{x}\mathbf{y}}$$

$$4. \tan^{-1} \frac{y+z}{1-yz}$$

গ.
$$tan^{-1}\frac{x-y}{1+xy}$$
 ঘ. $tan^{-1}\frac{y-z}{1+yz}$

$$\nabla$$
, $\tan^{-1} \frac{y-z}{1+yz}$

42. তিনটি পদের যোগফল কত?

$$\Phi. \ \ \tan^{-1}\frac{x+y+z-xyz}{1-yz-zx-xy} \ \ \ \ \ \ \ \ \ \tan^{-1}\frac{x+y+z+xyz}{1-xy-yz-zx}$$

গ.
$$\tan^{-1} \frac{x + y + z + xyz}{1 - xy - yz + zx}$$

v. $\tan^{-1} \frac{-x - y - z + xyz}{1 + xy + yz + zx}$

সৃজনশীল প্রশ্ন

1.
$$A = \cos^{-1} x$$
, $B = \cot^{-1} y$ 43% $g(\theta) = \cos \theta$

ক.
$$\sin\left(2\tan^{-1}\frac{1}{3}\right)$$
 এর মান নির্ণয় কর।

খ.
$$x = \frac{1}{3}$$
 এবং $y = \frac{1}{4}$ হলে দেখাও যে, $\sec^2 A + \csc^2 B = \frac{161}{16}$

গ.
$$g(\theta) - g(9\theta) = \sin 5\theta$$
 হলে θ এর মান নির্ণয় কর।

2.
$$f(x) = \sin x$$
 এবং $g(x) = \sec^{-1} \frac{x}{a} - \sec^{-1} \frac{x}{b}$

ক. দেখাও যে,
$$x = \frac{1}{2}\cos^{-1}\frac{3}{5}$$
 হলে $\tan x = \frac{1}{2}$

খ.
$$g(x) = \sec^{-1}b - \sec^{-1}a$$
 হলে দেখাও যে, $x = ab$

গ. সমাধান কর:
$$\frac{f(x)}{\sqrt{1-f^2(x)}} + \frac{f(3x)}{\sqrt{1-f^2(3x)}} + \sqrt{3} \frac{f(x)f(3x)}{\sqrt{\{1-f^2(x)\}\{1-f^2(3x)\}}} = \sqrt{3}$$

ক.
$$\sin^2\left(\cos^{-1}\frac{1}{3}\right)$$
 – $\cos^2\left(\sin^{-1}\frac{1}{\sqrt{3}}\right)$ এর মান

খ. প্রমাণ কর যে,
$$\tan \{2f(x)\} = 2\tan \{f(x) + f(x^3)\}$$

গ.
$$2f(x) = \sin^{-1} \frac{2a}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2}$$
 হলে
দেখাও যে, $x = \frac{a-b}{1+b}$

বিপরীত ত্রিকোণমিতিক ফাংশন $f(x) = \frac{1}{2} \tan^{-1} x$.

ক.
$$f(\sqrt{3})$$
 নির্ণয় কর।

খ. দেখাও যে,
$$f(x) = \frac{1}{4} \csc^{-1} \frac{1+x^2}{2x}$$

$$= \frac{1}{4} \sec^{-1} \frac{1 + x^2}{1 - x^2}$$

গ.
$$f(x) = \tan^{-1} \frac{1-x}{1+x}$$
 হলে x নির্ণয় কর।

একটি বিপরীত ত্রিকোণমিতিক ফাংশন: 5.

 $\sin(\pi\cos\theta) = \cos(\pi\sin\theta)$

একটি ত্রিকোণমিতিক সমীকরণ: $2\sin^2 x = 3\cos x$

- দেখাও যে, cot cos i sin tan x = x
- খ. প্রথম ত্রিকোণমিতি সমীকরণের ক্ষেত্রে দেখাও যে, $\theta = \pm \frac{\pi}{4} + \cos^{-1} \frac{1}{2\sqrt{2}}$
- গ. 0 < x < 2π ব্যবধিতে সমীকরণটির সমাধান নির্ণয় কর।
- 6. $f(x) = \sin x \, 4 \, \Re g(x) = \tan^{-1} x$
 - ক. দেখাও যে, $\csc^2\left(\tan^{-1}\frac{1}{2}\right) 3\sec^2$ $(\cot^{-1}\sqrt{3}) = \sin\frac{\pi}{2}$
 - খ. $g(x) + g(y) + g(z) = \pi$ হলে প্রমাণ কর যে, x + y + z = xyz
 - গ. সমাধান কর : $f\left(\frac{\pi}{2} + \theta\right) + \sqrt{3} f(\theta) = \sqrt{2}$
- $f(x) = \sin^{-1} x$
 - ক. দেখাও যে, $f(x) = \csc^{-1} \frac{1}{x}$ যখন $-1 \le x \le 1$
 - খ. দেখাও যে, $f(\sqrt{2}\sin\theta) + f(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$
 - গ. $f(x) + f(y) + f(z) = \pi$ হলে দেখাও যে, $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$
- $f(\theta) = \sin^2 2\theta 3\cos^2 \theta$; $g(\theta) = 3\tan\theta + \cot\theta$; $h(\theta) = 5 \csc\theta$
 - **হলে f(θ) এর মান নির্ণয় কর**।

- খ. $f(\theta) = 0$ হলে θ এর মান নির্ণয় কর।
- গ.– $g(\theta) = h(\theta)$ হলে θ এর মান নির্ণয় কর।
- 9. $A = 1 + \sqrt{3} \tan^2 \theta$, $B = (1 + \sqrt{3}) \tan \theta$ এবং $C = \tan 2\theta \tan \theta$
 - $\sin\left(2\tan^{-1}\frac{3}{7}\right)$ এর মান নির্ণয় কর।
 - খ. A=B হলে $0<\theta<2\pi$ ব্যবধিতে θ এর মান নির্ণয় কর।
 - গ. C = 1 সমীকরণটি সমাধান কর।
- 10. $f(x) = \cos^{-1}x$ এবং $g(x) = 3\tan^2 x 4\sqrt{3}\sec x + 7$
 - ক. $f(x) + f(y) = \frac{\pi}{2}$ হলে দেখাও যে, $x^2 + y^2 = 1$
 - খ. দেখাও যে, f $\left(\sqrt{\frac{2}{3}}\right)$ f $\left(\frac{\sqrt{6+1}}{2\sqrt{3}}\right)$ = $\frac{\pi}{6}$
 - গ. g(x) = 0 সমীকণের সমাধান কর, যখন $0 < x < 2\pi$
- 11. $f(\theta) = \tan^{-1}\theta$, $g(\theta) = \cos^{-1}\theta$
 - ক, দেখাও যে, $f(\sqrt{x}) = \frac{1}{2}g\left(\frac{1-x}{1+x}\right)$
 - খ. দেখাও যে, $2f\left(\sqrt{\frac{a-b}{a+b}}\tan\frac{\theta}{2}\right) = g\left(\frac{b+a\cos\theta}{a+b\cos\theta}\right)$

গ. x এর ঞান কোন মানের জন্য

$$f(x+2) + f(x-2) - f(\frac{1}{2}) = 0$$
 R(4?

- 12. $f(\theta) = \sqrt{3} \sin\theta \cos\theta$; $g(\theta) = \cos\theta \cos 7\theta$
 - ক. দেখাও যে, $\cos^{-1}\frac{4}{5} + \cot^{-1}\frac{5}{3} = \tan^{-1}\frac{27}{11}$
 - $f(\theta) = 2$ হলে $-2\pi < \theta < 2\pi$ ব্যবধিতে θ এর মান নির্পা কর।
 - গ. θ এর কোন মানের জন্য $g(\theta)$ এর মান $\sin 4\theta$ এর
- 13. f(x) = tan ' x একটি ত্রিকোণমিতিক ফাংশন।
 - ক. $tan^{-1}\frac{2}{3} + sec^{-1}\frac{\sqrt{13}}{2}$ এর মান নির্ণয় কর। •
 - খ. প্রমাণ কর যে,

$$2\tan^{-1}\left\{\operatorname{cosec}(f(x))-\tan\left(f\left(\frac{1}{x}\right)\right)\right\}=f(x)$$

সমাধান কর: f(x+1) + f(x) + f(x-1) = f(3x)

উত্তরমালা

বহুনির্বাচনি প্রশ্ন

	-			10000							
1.	ঘ	2.	ঘ	3.	গ	4.	क	5.	খ	6.	2
7.	গ	8.	ঘ	9.	季	10.	খ	11.	ঘ	12.	*
13.	খ	14.	গ	15.	क	16.	খ	17.	খ	18.	শ
19.	গ	20.	গ	21.	क	22.	क	23.	গ	24.	4
25.	গ	26.	4	27.	গ	28.	च	29.	ঘ	30.	ঘ
31.	*	32.	ঘ	33.	গ	34.	গ	35.	ঘ	36.	4
37.	吞	38.	क	39.	क	40.	গ	41.	খ	42.	क

সূজনশীল প্রশ্ন

- 1. $\Phi = \frac{3}{5}$; $\Phi = \frac{n\pi}{5}, \frac{n\pi}{4} + (-1)^n \frac{\pi}{24}$
- 2. $\forall x = \frac{n\pi}{4} + \frac{\pi}{12}$ 3. $\mathbf{\Phi}$. $\frac{2}{9}$
- 4. $\overline{\Phi}$, $\frac{\pi}{6}$ $\overline{\Psi}$, $\pm \frac{1}{\sqrt{3}}$
- 5. 9. $\frac{\pi}{3}$, $\frac{5\pi}{3}$
- গ. $2n\pi + \frac{7\pi}{12}$, $2n\pi + \frac{\pi}{12}$, যখন n এর মান শূন্য বা যেকোনো পূর্ণ সংখ্যা।
- 8. $= \frac{-99}{625} = (2n+1)\frac{\pi}{2}, n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z} = 2n\pi \pm \frac{\pi}{3}; n \in \mathbb{Z}$
- 9. ক. $\frac{35}{37}$; খ. $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{7\pi}{6}$, $\frac{5\pi}{4}$ খ. $n\pi \pm \frac{\pi}{6}$, যেখানে $n \in \mathbb{Z}$
- 10. $\P, \frac{\pi}{6}, \frac{11\pi}{6}$ 11. $\P, 1$
- 12. $\forall ... \frac{4\pi}{3}, \frac{2\pi}{3}; \forall ... \frac{n\pi}{4}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$. (श्रचीतन, $n \in \mathbb{Z}$
- 13. $\mathbf{\bar{q}}, \frac{\pi}{2}; \mathbf{\bar{q}}, 0, \pm \frac{1}{2};$