Corps	Centre de masse	Moments d'inertie	Corps	Centre de masse	Moments d'inertie
z $\frac{\ell/2}{G}$ y		$I_{xx} = I_{yy} = \frac{1}{2}mr^2 + \frac{1}{12}m\ell^2$ $I_{zz} = mr^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$I_{xx} = \frac{1}{12} m (a^2 + \ell^2)$ $I_{yy} = \frac{1}{12} m (b^2 + \ell^2)$ $I_{zz} = \frac{1}{12} m (a^2 + b^2)$
$\ell/2$ $\ell/2$ χ χ χ	$\bar{x} = \frac{2r}{\pi}$	$I_{xx} = \frac{1}{2}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^{2}}\right)mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \left(1 - \frac{4}{\pi^{2}}\right)mr^{2}$	$\frac{\ell/2}{G} = \frac{\ell/2}{y} \times \frac{\zeta}{x}$	$\overline{x} = \overline{y}$ 2r	$I_{yy} = \frac{1}{12}m\ell^2$ $I_{xx} = I_{yy} = \frac{1}{2}mr^2$
$z = \frac{\ell/2}{\sqrt{2}}$		$I_{xx} = I_{yy} = \frac{1}{4}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \frac{1}{2}mr^{2}$	Z y \overline{y} Z	$= \frac{2r}{\pi}$ $\Rightarrow \overline{x} = \frac{2r}{\pi}$	$I_{zz} = mr^{2}$ $I_{xx} = I_{yy} = \frac{1}{2}mr^{2}$ $I_{zz} = mr^{2}$ $* \bar{I}_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^{2}}\right)mr^{2}$
Z X Y	$\bar{x} = \frac{3r}{8}$	$I_{xx} = \frac{2}{5}mr^{2}$ $I_{yy} = I_{zz} = \frac{83}{320}mr^{2}$	Z		$*\bar{I}_{zz} = \left(1 - \frac{4}{\pi^2}\right) m r^2$ $I_{xx} = I_{yy} = \frac{1}{2} m r^2$
$\ell/2$ Z	$\bar{x} = \frac{4r}{3\pi}$	$I_{xx} = \frac{1}{4}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{yy} = \left(\frac{1}{4} - \frac{16}{9\pi^{2}}\right)mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \left(\frac{1}{2} - \frac{16}{9\pi^{2}}\right)mr^{2}$	\overline{y} \overline{y} \overline{y} \overline{y} x x x x x x x x x	$\bar{x} = \frac{2}{3}b$ $\bar{y} = \frac{1}{3}a$	$I_{zz} = mr^{2}$ $I_{xx} = \frac{1}{6}ma^{2}$ $I_{yy} = \frac{1}{2}mb^{2}$ Triangle rectangle mince

*Demi-cercle : les moments d'inertie avec une barre sont calculés par rapport à un axe qui passe par le centre de masse de l'objet.