[12.4] Problem Statement: Let ξ be a vector field, Φ a scalar field, and $d\Phi$ the covector with components $\frac{\partial \Phi}{\partial x^1}$, $\frac{\partial \Phi}{\partial x^2}$, ..., $\frac{\partial \Phi}{\partial x^n}$. (i) At each point of \mathcal{M} , a (non-zero) covector α determines an (n-1) dimensional plane element. (ii) When $\alpha = d\Phi$, these (n-1) plane elements are tangential to the family of (n-1) dimensional surfaces of constant Φ .

Solution:

(i) In general,
$$\xi = \sum_{k=1}^{n} \xi_k \frac{\partial}{\partial x^k} = \langle \xi_1, ..., \xi_n \rangle$$
, $\alpha = \sum_{k=1}^{n} \alpha_k \frac{\partial}{\partial x^k} = \langle \alpha_1, ..., \alpha_n \rangle$, and $\alpha(\xi) \equiv \alpha \cdot \xi = \langle \alpha_1, ..., \alpha_n \rangle \cdot \langle \xi_1, ..., \xi_n \rangle = \sum_{k=1}^{n} \alpha_k \xi_k$.

(n-1)-dimensional plane element $\langle x^2, x^3, ..., x^n \rangle$ at P.

First, consider $\alpha = dx^1$. $\alpha(\xi) = dx^1(\xi) = \langle 1, 0, \dots, 0 \rangle \cdot \langle \xi_1, \xi_2, \dots, \xi_n \rangle = \xi_1$. Thus $\alpha(\xi) = dx^1$ represents the magnitude of the rate of change of ξ in the x^1 direction. That is, at a point $P \in \mathcal{M}$ it represents the magnitude of the rate of change of ξ at P when x^2 , x^3 , ..., x^n are held constant. Thus $[\alpha(\xi)]$ (Φ) represents the

Now consider α in general. $\alpha(\xi)$ represents the magnitude of the rate of change of ξ in the direction of ξ , namely $\sum_{k=1}^{n} \xi_k x^k$, where $\{x^k\}$ are unit vectors along the x^k -axes. That is, like $dx^1(\xi)$, $[\alpha(\xi)]$ (Φ) represents a vector at P, and thus it determines the (n-1)-dimensional plane element at P perpendicular to the vector.

(ii) Let $\alpha = d\Phi$. We know $\xi(\Phi) = \frac{d\Phi}{d\xi} = d\Phi \cdot \xi$. So when $\frac{d\Phi}{d\xi} = d\Phi \cdot \xi = \alpha \cdot \xi = 0$, ξ points along a direction of constant Φ . Thus, the (n-1)-dimensional plane element at P generated by α in part (i) is a hyperplane where Φ is constant.