

ESTS002-17: AERONÁUTICA I-A (AVIÕES)

Fernando Madeira

Roteiro da Aula

Arrasto

Capa: http://jetphotos.net/viewphoto.php?id=7334836&nseq=6

Top-side view of RAAF Museum/ Temora Aviation Museum Sabre VH-IPN (ex RAAF A94-983) at the 2012 Point Cook Air Pageant. The Sabre carries external fuel tanks and has the speed brakes open. The 'Sword' is armed with two (Inert) AIM-9B Sidewinder missiles, fitted just in time for this flying display, performed by Paul Simmons.

RESISTENCIA

TRAÎNÉE

RESISTENZA

Sempre que um avião se desloca na atmosfera, o ar produz uma força resultante aerodinâmica que é formada por duas componentes: Sustentação e Arrasto.

O arrasto é a componente paralela ao vento relativo, no sentido oposto ao deslocamento (mesmo sentido do vento relativo).

É uma componente indesejável. No projeto de uma aeronave, assim como o peso, grande esforço é realizado no sentido de minimizar o arrasto.

✓A principal função do tração é vencer o arrasto => quanto menor o arrasto, menor a tração necessária para equilibrá-lo.

- ✓ As vantagens do avião necessitar menos tração são:
 - Menor potência
 - Menor peso do grupo motopropulsor
 - Menor custo do grupo motopropulsor
 - Menor consumo de combustível
 - Menor custo operacional

Arrasto Parasita

 Arrasto não associado com a produção de sustentação Arrasto de Atrito

Arrasto de Pressão

Arrasto de Interferência

Arrasto

Arrasto Induzido

 Arrasto associado com a produção de sustentação

ARRASTO DE ATRITO (Skin Friction)

- ✓ Esse é o arrasto resultante entre as forças de atrito entre o ar e o avião devido ao deslocamento do avião no ar. Depende dos seguinte parâmetros:
 - Área molhada do avião.
 - Rugosidade das superfícies.
 - Velocidade e ângulo de ataque.
 - Grandes velocidades e grandes ângulos de ataque elevam o arrasto de atrito.

ARRASTO DE PRESSÃO (Pressure Drag/Form Drag)

- ✓ Esta forma de arrasto ocorre sempre que há descolamento na parte traseira do corpo.
- ✓ Este descolamento fará com que a pressão na parte dianteira seja maior que na parte traseira.

Resultado => Uma força na direção contrária ao movimento =>
 Arrasto de pressão.

Uma asa estolada aumenta substancialmente o arrasto de pressão.

ARRASTO DE PRESSÃO (Pressure Drag/Form Drag)

Airfoil upper surface static-pressure distributions.

REAL FLUID EFFECTS ON AN AIRFOIL

ARRASTO DE PRESSÃO

✓ Para reduzir o arrasto de pressão é necessário atrasar ao máximo o descolamento da camada limite. As superfícies aerodinâmica são projetadas com esse objetivo.

Effects of streamlining at various Reynolds numbers.

ARRASTO DE PRESSÃO

A carenagem reduz o arrasto.

ARRASTO DE INTERFERÊNCIA

- ✓ Se considerarmos o avião como um todo, seu arrasto total será maior que a soma dos arrasto das partes.
- ✓ Isto ocorre por causa da interferência do escoamento de uma superfície sobre o escoamento sobre a outra superfície vizinha. Por exemplo, na raiz da asa, o escoamento desta região interfere com o escoamento que passa pela fuselagem. O turbilhonamento formado nesta região resulta numa diferença de pressão entre a parte da frente e a parte de trás, criando, assim, um arrasto adicional, que é o arrasto de interferência.
- ✓ Esta forma de arrasto é de difícil predição, e a diminuição deste é feita através da suavização das superfícies.

ARRASTO PARASITA: Resumo

- ✓ O arrasto parasita aumenta com o aumento da velocidade.
- ✓ É proporcional ao quadrado da velocidade.
- ✓ Predomina nas grandes velocidades, sendo pouco significativo nas baixas velocidades.
- ✓ Em velocidades próximas ao estol, este arrasto representa em torno de 25% do arrasto total da aeronave; em altas velocidades, pode representar 75 a 80% do arrasto total.

ARRASTO PARASITA: Área Plana Equivalente

- ✓ O coeficiente de arrasto parasita é uma medida de eficiência aerodinâmica de uma aeronave. Ele mede o grau de "limpeza aerodinâmica".
- ✓ Outro indicador de eficiência aerodinâmica é a área plana equivalente => A área plana equivalente é a área de uma placa plana que geraria o mesmo arrasto parasita apresentado pela aeronave.

$$D_P = \frac{1}{2} \rho V^2 C_{DP} S$$

 $f = C_{DP} S$
 $f = 3$ área plana equivalente

- ✓ Esta forma de arrasto é resultado da geração de sustentação.
 - Sempre que é gerada sustentação, existirá o arrasto induzido.
- ✓ Na produção de sustentação, a pressão estática no extradorso é menor que no intradorso.

- ✓ A medida que o ar se move para o bordo de fuga, tende a se deslocar para a ponta da asa.
 - Deslocamento da área de alta pressão (intradorso) para a área de baixa pressão (extradorso).
 - Esse deslocamento gera vórtices nas pontas e nos bordos de fuga da asa.

- ✓ Nas baixas velocidades, a asa está com grandes α e, portanto, grandes C_L , a diferença de pressão entre o intra e o extra dorso é muito grande, produzindo vórtices de ponta de asa muito intensos.
- ✓ As vezes a queda de pressão nesses vórtices causa a condensação da umidade (se presente no ar), tornando-se visíveis, especialmente nas operações de pouso e decolagem de grandes aviões quando a umidade está alta.

ARRASTO INDUZIDO

A sustentação produzida pela asa é perpendicular ao vento relativo local, e inclinada em relação ao vento relativo remoto, apresentando uma componente paralela a este. Esta componente paralela é o arrasto induzido. Sempre que uma asa produzir sustentação, produzirá arrasto induzido.

UFAR

ARRASTO

ARRASTO INDUZIDO

TÉCNICAS PARA REDUÇÃO DO ARRASTO INDUZIDO

✓ ALONGAMENTO: Quanto maior o alongamento, menor o arrasto induzido.

 Aviões que voam a baixas velocidades costumam ter asas com grande alongamento.

 Cuidado: Asas com alongamento muito alto são flexíveis e exigem estruturas mais rígidas... portanto mais pesadas.

NORTHROP F-5 TIGER II

ASPECT RATIO = 3.86

ARRASTO INDUZIDO

TÉCNICAS PARA REDUÇÃO DO ARRASTO INDUZIDO

✓ ALONGAMENTO

Grumman F-14 Tomcat

ARRASTO INDUZIDO

TÉCNICAS PARA REDUÇÃO DO ARRASTO INDUZIDO

✓ AFILAMENTO (TAPER) (λ): É a razão entre a corda da ponta pela corda da raiz. Quanto menor o afilamento, menor o arrasto induzido, pois menos sustentação será produzida na ponta da asa. $\lambda = c_{tip}/c_{root}$

ARRASTO INDUZIDO

TÉCNICAS PARA REDUÇÃO DO ARRASTO INDUZIDO

✓ TORÇÃO: Alguns aviões possuem maiores ângulos de incidência na raiz que na ponta da asa (wash out). Isto reduz o arrasto induzido porque maior ângulo na raiz garante que a maior parte da sustentação será gerada próxima à raiz. Deste modo haverá uma menor diferença de pressão entre o intradorso e o extradorso próximo à ponta da asa, reduzindo os vórtices, e, consequentemente, o arrasto induzido.

Geometric and aerodynamic twist.

ARRASTO INDUZIDO

TÉCNICAS PARA REDUÇÃO DO ARRASTO INDUZIDO

✓ FORMA DA PONTA DA ASA: Modificações na ponta da asa podem reduzir o arrasto induzido. Tip tanks (tanques de ponta de asa), winglets, ponta Hoerner, ponta drooped, wing tip fence, raked tip e outras modificações dificultarão a passagem do escoamento do intradorso para o extradorso, reduzindo, assim, o arrasto induzido.

ARRASTO INDUZIDO

ARRASTO INDUZIDO: FÓRMULA

$$C_{Di} = \frac{C_L^2}{\pi e AR}$$

AR => Alongamento e => Fator de Osvald

- ✓ O fator de Osvald é uma medida da eficiência da asa, e é função do formato em planta da asa.
 - Asa elíptica => e =1
 - Asa retangular => e = 0.85

ARRASTO INDUZIDO NA NATUREZA

The V-shaped flight formation allows each trailing bird to receive lift from the wingtip vortex of the bird in front of it, saving energy and greatly extending the range of a flock of birds over that of a bird flying alone. (Photo by Russell Link.)

http://wdfw.wa.gov/living/canada_geese.html

TEORIA DE VOO

ARRASTO TOTAL

✓ O arrasto total é a soma do arrasto parasita com o arrasto induzido

$$D = \frac{1}{2} \rho V^2 S C_D$$

$$C_D = C_{Dp} + C_{Di}$$

Arrasto vs velocidade.

ARRASTO TOTAL

Condi- tion	Airplane configuration	C _D at C _L = 0.245	Reference condition (see column 1)	ΔCD
1	Airplane completely sealed and faired	0.0183		_
2	Flat plate removed from nose	0,0189	1	0,0006
3	Seals removed from flapped-cowling air exits	0,0199	2	0.0010
4	Seals removed from cowling-flap hinge-line gaps	0.0203	3	0.0004
7	Exhaust stacks replaced	0.0211	4	0.0008
He He	Canopy fairing removed, turret leaks sealed	0.0222	5	0.0011
7	Tail wheel and arresting-hook openings uncovered	0.0223	6	0.0001

8	Aerial, mast, and trailing antenna tube installed	0.0227	7	0,0004
9	Canopy and turret leak seals removed	0.0230	8	0,0003
10	Leak seals removed from shock strut, cover plate, and wing-fold axis	0.0234	9	0.0004
11	Leak seals removed from bomb-bay doors and miscellaneous leak seals removed	0.0236	10	0,0002
12	Fairings over catapult hooks removed	0.0237	11	0.0001
13	Wheel-well cover plates removed	0.0251	12	0.0014
14	Seals removed from tail-surface gaps	0.0260	13	0.0009
15	Plates over wing-tip slot openings removed. Airplane in service condition	0.0264	14	0.0004
Total-drag change				

TEORIA DE VOO

REFERÊNCIAS

- 13.1 Newton Soler Saintive, Teoria de Voo, Editora Asa, 3ª Edição, 2001.
- 13.2 Theodore A. Talay, Introduction to the Aerodynamics of Flight, NASA SP-367, 1975.
- 13.3 John D. Anderson Jr, Introduction to Flight, 5th Edition, McGraw Hill, 2005.
- 13.4 H. H. Hurt Jr, Aerodynamics for Naval Aviators, Direction of Commander, Naval Air Systems Command, 1965.
- 13.5 Luiz Pradines, Fundamentos da Teoria de Voo, Edições Inteligentes, 2004.

