Traitement des Images Numériques

Traitements locaux - contours 2019-2020

Convolution discrète

$$f \otimes g(i,j) = \sum_{\alpha = -\infty}^{+\infty} \sum_{\beta = -\infty}^{+\infty} f(i-\alpha, j-\beta) \cdot g(\alpha, \beta)$$

- Une image a un support borné et est définie par une matrice de valeurs (f_{ij})_{ij} où i est l'indice de ligne et j indice de colonne
- Si le support de la fonction de référence est un carré de côté 2p+1 centré à l'origine

$$f \otimes g(i,j) = \sum_{\alpha=-p}^{+p} \sum_{\beta=-p}^{+p} f_{i-\alpha,j-\beta} \cdot g(\alpha,\beta) = \sum_{\alpha=-p}^{+p} \sum_{\beta=-p}^{+p} f_{i-\alpha,j-\beta} \cdot a_{\alpha,\beta}$$

Définition d'un traitement

- Choix d'un voisinage
 - Sa forme
 - Sa taille p ou (2p+1)
- Choix de la fonction de référence, des coefficients aij qui définissent un masque de convolution

•
$$Q_{ij} = a_{00}P_{ij} + a_{10} P_{i-1,j} + a_{11} P_{i-1,j-1} + a_{01} P_{i,j-1} + a_{-11} P_{i+1j-1} + a_{-10} P_{i+1j} + a_{-1-1} P_{i+1j+1} + a_{0-1} P_{i,j+1} + a_{1-1} P_{i-1j+1}$$

$$a_{-11} \quad a_{01} \quad a_{11}$$

$$a_{-10} \quad a_{0,0} \quad a_{10}$$

$$a_{-1-1} \quad a_{0-1} \quad a_{1-1}$$

images - 2019/2020

Filtres de convolution

- Taille du masque
- Traitement linéaire
- Détermination automatique de l'opérateur en fonction de l'objectif
- Parallélisable
- L'image transformée s'écrit :

$$I' = I \otimes m$$

Lissage

 Remplacer le niveau de gris d'un pixel par la moyenne des niveaux des pixels voisins

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

• La somme des coefficients est égale à 1 pour conserver la dynamique de l'image

Régularisation

- Défocalisation de l'objectif fonction de la taille du filtre – dégradation des contours
- Diminution de l'effet de flou

$$\frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Filtre médian

- Ce n' est pas un filtre de convolution
- La moyenne est un paramètre moins robuste que la médiane
- Plus adapté au bruit implusionnel
- Remplace le niveau de gris du pixel central d'une fenêtre par la valeur médiane des niveaux de gris des pixels de la fenêtre

Filtre médian

25	77	71		
77	253	81		
77	75	79		

25	71	75	77	77	77	79	81	253
----	----	----	----	----	----	----	----	-----

25	77	71	
77	77	81	
77	75	79	

Restauration d'images

Suppression du bruit sans altération des contours

pondérer les points de la région du pixel plus fortement que ceux d'une région voisine dans le masque $O = \sum \sum D$

$$Q_{i,j} = \sum_{k} \sum_{l} P_{i+k,j+l} \cdot a_{k,l}$$

$$d(k,l) = \frac{1}{P_{i+k,j+l} - P_{i,j}} \quad d(0,0) = 2 \qquad a_{k,l} = \frac{d(k,l)}{2\sum_{k}\sum_{l}d(k,l)} \quad a_{0,0} = \frac{1}{2}$$

Composition

• Filtre moyenneur et filtre de contour

 $m \otimes g$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

images - 2019/2020

Contours

Contours

- Discontinuités locales des niveaux de gris
- Recherche des points de forte dérivée
- Recherche des points de faible Laplacien
- Détection de points de contour
- Rehaussement de contours

Dérivée discrète

• Recherche des points de gradient maximum

$$\overrightarrow{grad} \ f \ en \ M(x,y) : \begin{vmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{vmatrix}$$

- Pour une fonction d'une variable f(i+1)-f(i)
- Pour une fonction de deux variables

$$\frac{\partial f}{\partial x}(i,j) \approx \frac{f(i+1,j) - f(i,j)}{1} \approx \frac{f(i,j) - f(i-1,j)}{1}$$

Extraction de contour

Vertical

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Horizontal

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Maximisation de la norme euclidienne $\sqrt{Q_{ij}^{1^2} + Q_{ij}^{2^2}}$

Filtre de

$$Q_{i,j}^{1} \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

Filtre de Sobel
$$Q_{i,j}^1 \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $Q_{i,j}^2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Gradient simple

Norme du gradient : G(x,y)

•
$$G(x,y) = |Gx| + |Gy|$$

Filtre de Sobel

Filtre de Sobel

Opérateurs de gradient

Prewitt

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Kirsh avec 8 masques

$$\begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{bmatrix} \qquad \begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{bmatrix} \qquad \begin{bmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{bmatrix} \qquad \begin{bmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -3 \\ -3 \\ 5 \end{bmatrix} \begin{bmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{bmatrix}$$
Images - 2019/2020

$$\begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{bmatrix}$$

Extracteur de Sobel

- Sommé sur chaque composante
- Résultat tronqué au-delà de 255

Dérivée discrète

• Recherche des points de gradient maximum

$$\overrightarrow{grad} \ f \ en \ M(x,y) : \begin{vmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{vmatrix}$$

- Pour une fonction d'une variable f(i+1)-f(i)
- Pour une fonction de deux variables

$$\frac{\partial f}{\partial x}(i,j) \approx \frac{f(i+1,j) - f(i,j)}{1} \approx \frac{f(i,j) - f(i-1,j)}{1}$$

Le Laplacien

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y)$$

- Recherche des points de faible Laplacien
- Expression dans le discret

$$\frac{\partial^2 f}{\partial x^2}(i,j) = \frac{\partial f}{\partial x}(i+1,j) - \frac{\partial f}{\partial x}(i,j) = f(i+1,j) - 2f(i,j) + f(i-1,j)$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Contour par Laplacien

Images - 2019/2020