폭발방지 및 안전대책

2018. 03. 00

CONTENTS

- I 폭발의 원리 및 특성
- Ⅲ 폭발방지대책
- III 예상문제

- 화재의 종류
 - 화재의 분류 및 소화방법 (***)

분류	구분색	가연물	주된 소화 효과	적응 소화제
A급 화재	백색	일반 가연물 화재	냉각 효과	물, 강화액소화기, 산·알칼리소화기
B급 화재	황색	유류 화재	질식 효과	포 소화기, CO ₂ 소화기, 분말소화기
C급 화재	청색	전기 화재	질식, 억제효과	CO2소화기, 분말소화기, 할로겐화물소화기
D급 화재	표시없음 (무색)	금속 화재	질식 효과	건조사, 팽창 질석, 팽창 진주암

- 연소파와 폭굉파
 - 연소파(Combustion wave)
 - ❖ 가연성 가스에 적당한 공기를 혼합하여 폭발범위 내에 이르면 화염의 전 파속도가 빨라져 그 속도가 0.1~10m/sec 정도가 되는데 이를 연소파라 한다.
 - 폭굉파
 - ❖ 충격파(shock wave) 의 일종으로 **화염의 전파속도가 음속 이상**일 경우이 며 그 속도가 1000~3500m/sec 에 이른다.
 - 폭굉유도거리(DID)가 짧아지는 요인 (*)
 - ❖ 점화에너지가 강할수록 짧다.
 - ❖ 연소속도가 큰 가스일수록 짧다
 - ❖ 관경이 가늘거나 관 속에 이물질 있을 경우 짧다.
 - ❖ 압력이 높을수록 짧다.

• 폭발의 분류

■ 폭발원인물질의 상태에 의한 분류

❖기상폭발

- ▶ 가스폭발 : 가연성 가스와 조연성 가스(산소)가 일정 비율로 혼합되어 있는 혼합 가스가 점화원과 접촉시 가스 폭발을 일으킨다.
- ▶ 예) 수소, 일산화탄소, 메탄, 에탄, 프로판, 아세틸렌 등
- ▶ 분무폭발 : 공기 중에 분출된 가연성액체의 미세한 액적이 무상으로 되어 공기 중에 부유하고 있을 때에 발생하는 폭발이다.
- ▶ 분진폭발 : 분진, mist 등이 일정 농도 이상으로 공기와 혼합시 발화원에 의해 분진 폭발을 일으킨다.
- ▶ 예) 마그네슘, 티타늄 등의 분말, 곡물가루 등

[가스폭발과 분진폭발의 비교 ☎]

가스폭발	• 화염이 크다. • 연소속도가 빠르다.	
분진폭발	• 폭발압력, 에너지가 크다. • 연소시간이 길다. • 불완전연소로 인한 중독(CO)	이 발생한다.

- 폭발의 분류
 - 폭발원인물질의 상태에 의한 분류
 - ❖기상폭발

[분진폭발의 발생 순서 ☎]

[분진폭발에 영향을 미치는 인자 ☎]

① 입도와 입도분포	입자가 작고 표면적이 클수록 폭발이 용이하다.
② 분진의 화학적 성분과 반응성	발열량이 클수록, 휘발성분이 많을수록 폭발이 용이하다.
③ 입자의 형상과 표면의 상태	입자의 형상이 구형(球形)일수록 폭발성이 약하고 입자의 표면이 산소에 대한 활성을 가질수록 폭발성이 높다.
④ 분진 속의 수분	분진 속에 수분이 있으면 부유성 및 정전기 대전성을 감소시켜 폭발의 위험이 낮아진다.
⑤ 분진의 부유성	분진의 부유성이 클수록 공기 중 체류시간이 길어 져 폭발이 용이하다.

- 폭발의 분류
 - 폭발원인물질의 상태에 의한 분류
 - ❖ 응상폭발 : 고상과 액상의 총칭이다.
 - ▶ 수증기폭발 : 액체의 폭발적인 비등현상으로 상태변화(액체 → 기체)가 일어 나며 발생하는 폭발
 - ➢ 증기폭발 : 물, 액체 등이 과열에 의하여 순간적으로 증기화되어 폭발 현상을 일으킨다.
 - ▶ 전선폭발 : 금속의 전선에 대 전류가 흘러 전선이 가열되고 용융과 기화가 급 격하게 진행되어 폭발을 일으킨다.

- 폭발의 분류
 - 폭발의 공정별 분류
 - ❖ 핵폭발 : 원자핵의 분열 또는 융합에 동반하여 일어나는 강한 에너지의 유출에 의해 발생
 - ❖물리적 폭발 : 물리변화를 주체로 한 폭발
 - ▶ 고압용기 파열
 - ▶ 탱크 감압 파손
 - ▶ 폭발적 증발 및 압력방출에 의해 발생
 - ❖ 화학적 폭발 : 화학반응에 의하여 짧은 시간에 급격 한 압력상승을 수반 할 때 압력이 급격하게 방출되며 폭발이 일어난다.
 - ▶ 산화폭발 : 연소가 비정상상태로 되는 경우로서 가연성가스, 증기, 분진, 미스트 등이 공기와 혼합하여 발생한다.
 - ▶ 분해폭발 : 가스 분자의 분해에 의하여 폭발을 일으킨다.
 - ▶ 예) 아세틸렌, 니트로셀룰로오스, 유기과산화물 등
 - ➢ 중합폭발 : 염화비닐 초산비닐 시안화수소 등이 폭발적으로 중합이 발생되면 격렬하게 발열하여 압력이 급상승하며 폭발을 일으킨다.
 - 촉매폭발 : 촉매에 의해 폭발하는 것으로 수소-산소, 수소-염소에 빛을 쬐면 폭발하는 것이 해당된다.

- 폭발의 분류
 - 폭발의 공정별 분류
 - ❖ 가스폭발
 - ❖분진폭발

분진폭발을 일으키는 물질	분진폭발을 일으키지 않는 물질
 금속분 (알루미늄, 마그네슘, 아연분말) 플라스틱 농산물 황 	 시멘트 생석회(CaO) 석회석 탄산칼슘(CaCO₃)

- ▶ 분진폭발을 일으키는 분진 입자는 크기는 약 100마이크론 이하이다
- ▶ 분진폭발의 시험장치로는 하트만식 (Hart mann) 이 널리 사용된다.
- ❖물리적 폭발과 화학적 폭발의 병립에 의한 폭발

- 폭발의 분류
 - 폭발의 형태에 의한 분류

발화원에 의한 폭발	착화파괴형 폭발	용기 내에서의 위험물의 착화에 의한 압 력상승으로 폭발한다.	
	누설발화형 폭발	용기에서 누출된 위험물의 착화에 의해 폭발한다.	
반응열	자연발화형 폭발	열 축적에 의한 발화에 의해 폭발한다.	
축적에 의한 폭발	반 응폭 주형 폭발	반응열에 의한 반응폭주로 인해 폭발이 발생한다.	
과열액체 증기폭발	열 이동형 증기폭발	저비점의 액체가 고열물과 접촉하여 순 간적인 증발로 인해 폭발이 발생한다.	
	평형 파탄형 폭발	용기 파손에 의한 고압액체의 증발로 인 해 폭발이 발생한다.	

- 폭발의 분류
 - 폭발현상 (*)
 - ❖ 슬롭오버 (Slop-over)현상: 석유화재에서 수분을 포함한 소화약제 방사시에 급작스런 기화로 인해 열유를 비산시키는 현상(위험물 저장탱크 화재시물 또는 포를 화염이 왕성한 표면에 방사할 때 위험물과 함께 탱크밖으로 흘러 넘치는 현상)
 - ❖보일오버 (Boil Over) 현상 : 유류저장탱크의 화재 중 탱크저부에 물 또는 물- 기름 에멀젼이 수증기로 변해 갑작스런 탱크 외부로의 분출을 발생시키는 현상
 - ❖ 프로스오버 (Froth-over) 현상: 저장탱크 속의 물이 점성을 가진 뜨거운 기름의 표면 아래에서 끓을 때 급격한 부피팽창에 의하여 화재를 수반하지 않고 유류가 탱크 외부로 분출되는 현상
 - ❖ 블래비 (Bleve) 현상(비등액 팽창 증기 폭발): 가연성 액화가스에서 외부 화재에 의해 탱크 내 액체가 비등하고 증기가 팽창하면서 폭발을 일으키 는 현상으로 벽면파괴를 동반한다.
 - ❖ 개방계 증기운폭발(Unconfined vapor cloud explosion. "UVCE"): 가연성 가스가 지속적으로 누출되면서 대기 중에 구름형태로 모여 바람 등의 영향으로 움직이다가 점화원에 의하여 순간적으로 모든 가스가 동시에 폭발하는 현상을 말한다.

- 폭발의 분류
 - 폭발현상 (*)

증기운 폭발의 특징

- ① 증기운의 크기가 증가하면 점화확률도 증가한다.
- ② 증기운에 의한 재해는 폭발력보다는 화재가 원인이 된다.
- ③ 폭발효율이 적다. 대략 연소에너지의 약 20%만이 폭풍파로 전환된다.
- ④ 증기와 공기의 난류혼합은 폭발력을 증대시킨다.
- ⑤ 증기 누출부로부터 먼 지점에서의 착화는 폭발의 충격을 증가시킨다.

- 가스폭발의 원리
 - 가스폭발
 - ❖기체가 빠른 반응속도로 발열반응을 일으켜 급격히 팽창하면서 충격적 인 열과 압력을 발생시켜 파괴작용을 나타내는 현상을 가스폭발이라 한 다.
 - 가스누출감지 경보기의 설치 (*)
 - ❖ 가스누출감지 경보기 를 설치할 때에는 감지대상 가스의 특성을 충분히 고려하여 가장 적절한 것을 선정한다.
 - ❖하나의 감지대상 가스가 가연성이면서 독성인 경우에는 독성가스를 기준하여 가스누출감지 경보기를 선정한다.
 - 가스누출감지 경보기를 설치하여야 할 장소
 - ❖건축물 내·외에 설치되어 있는 가연성 및 독성물질을 취급하는 압축기, 밸브, 반응기, 배관 연결부위 등 가스의 누출이 우려되는 화학설비 및 부 속설비 주변
 - ❖ 가열로 등 발화원이 있는 제조설비 주위에 가스가 체류하기 쉬운 장소
 - ❖ 가연성 및 독성물질의 충진용 설비의 접속부의 주위
 - ❖ 방폭지역내에 위치한 변전실, 배전반실, 제어실 등
 - ❖ 기타 특별히 가스가 체류하기 쉬운 장소

- 가스폭발의 원리
 - 가스누출감지 경보기의 설치위치
 - ❖ 가스누출감지 경보기는 가능한 한 가스의 누출이 우려되는 누출부위 가까이 설치하여야 한다.
 - ❖건축물 밖에 설치되는 가스누출감지 경보기는 풍향, 풍속, 가스의 비중 등을 고려하여 가스가 체류하기 쉬운 지점에 설치한다.
 - ❖ 건축물 내에 설치되는 가스누출감지 경보기는 감지대상가스의 비중이 공기보다 무거운 경우에는 건축물내의 하부에, 공기보다 가벼운 경우에 는 건축물의 환기구 부근 또는 당해 건축물내의 상부에 설치하여야 한다.
 - ❖ 가스누출감지 경보기의 경보기는 근로자가 상주하는 곳에 설치하여야 한다.
 - 가스누출감지 경보기의 경보설정치 (*)
 - ❖ 가연성 가스 누출감지 경보기는 감지 대상 가스의 폭발하한계 25%이하, 독성가스 누출감지 경보기는 해당 독성가스의 허용농도 이하에서 경보 가 울리도록 설정하여야 한다.
 - ❖ 가스누출감지 경보의 정밀도는 경보설정치에 대하여 가연성 가스누출감 지 경보기는 ±25% 이하 독성가스누출감지 경보기는 ±30%이하이어야 한다.

• 폭발등급

■ 안전간격(Safety Gap) (**): 부피 8L, 틈의 안길이 25 mm 인 구형 용기에 혼합가스를 채우고 점화시켰을 때 화염이 외부까지 전달되지 않는 한계의 틈

■ 폭발등급 (**)

폭발 등급	안전간격(mm)	해당가스
1등급	0.6mm 초과	메탄, 에탄, 프로판, 부탄
2등급	0.4mm 초과 0.6mm 이하	에틸렌, 석탄가스
3등급	0.4mm 이하	수소, 아세틸렌

- 폭발등급
 - 최고표면온도 등급 및 발화도 등급 (**)

최고표면 온도등급	전기기기의 최고표면온도(℃)
T1	450 이하(또는 300 초과 450 이하)
T2	300 이하(또는 200 초과 300 이하)
Т3	200 이하(또는 135 초과 200 이하)
T4	135 이하(또는 100 초과 135 이하)
T5	100 이하(또는 85 초과 100 이하)
T6	85 이하

- 폭발등급
 - 최고표면온도 등급 및 발화도 등급 (**)

발화도 등급	증기 또는 가스의 발화도(℃)
G1	450 초과
G2	300 초과 450 이하
G3	200 초과 300 이하
G4	135 초과 200 이하
G5	100 초과 135 이하
G6	85 초과 100 이하

- 폭발방지대책
 - 폭발예방대책
 - ❖폭발분위기 형성 방지
 - ❖착화원관리
 - ❖불활성 물질 주입
 - ❖ 가스농도 감지 및 측정
 - 폭발재해의 근본대책 (*)
 - ❖폭발봉쇄 : 공기중에 방출되어서 안되는 유독성 물질 등의 폭발시 안전 밸브나 파열판을 통해 저장소 등으로 보내어 압력 을 완화시켜 폭발을 방지한다
 - ❖폭발억제 : 압력상승시 폭발억제장치가 작동하여 소화기를 터지게 하여 큰 폭발이 되지 않도록 폭발을 진압하는 방법이다.
 - ❖ 폭발방산 : 안전밸브나 파열판 등으로 탱크 내 압력을 방출시켜 폭발을 방지하는 방법이다.

- 폭발방지대책
 - 폭발 형태에 따른 예방대책

착화파괴형 폭발	• 불활성 가스로 치환 • 혼합가스의 조성관리	 발화원 관리 열에 민감한 물질의 생성 방지
누설착화형	• 위험물의 누설방지	• 밸브의 오조작 방지
폭발	• 누설물질의 검지 경보	• 발화원 관리
반 응폭주 형 폭발	• 발열반응 특성 조사 • 냉각시설의 조작	• 반응속도 계측관리
자연발화형	• 물질의 자연발화성 조사	• 온도 계측관리
폭발	• 혼합위험 방지	• 물질의 단열특성 조사
열 이동형 증기폭발	• 수분 침입의 방지 • 주수파쇄설비 설계	• 고온 폐기물의 처치
평형 파탄형	• 용기의 강도 유지	• 반응폭주에 의한 압력상승 방지
폭발	• 화재로 인한 용기 파열 방	지

- 폭발방지대책
 - 불활성화 방법

진공퍼지 (저압퍼지) (Vacuum Purging)	 용기를 진공시킨 다음 불활성가스(Inert gas)를 주입하여 산소농도를 낮춘다. 반응기에 일반적으로 사용되는 퍼지방법이다. 큰 용기는 진공에 견디도록 설계되지 않아 큰 용기에는 사용할 수 없다.
압력퍼지 (Pressure Purging)	 용기에 불활성가스(Inert gas)를 주입하여 가압된 불활성 가스(Inert gas)가 용기내에서 충분히 확산된 후 대기중으로 방출하여 산소농도를 낮춘다. 압력퍼지는 진공퍼지에 비해 퍼지시간이 매우 짧다. 압력퍼지는 진공퍼지보다 불활성가스(Inert gas) 소모량이 많다.

- 폭발방지대책
 - 불활성화 방법

	• 용기의 한 개구부로부터 불활성가스(Inert gas)를 가하고,
	다른 개구부로 부터 대기로 혼합가스를 용기에서 배출시키는
스위프퍼지	방식이다. 즉, 퍼지가스는 상압에서 가해지고 혼합가스는 대
(Sweep	기압에서 배출된다.
Through	• 용기나 장치가 압력을 가하거나 진공으로 할 수 없을 때 사용
purging)	한다.
	• 큰 저장용기를 퍼지할 때 적합하나 많은 양의 불활성가스
	(Inert gas)를 필요로 하므로 많은 경비가 소요된다.
	• 용기에 액체(물)를 채운 다음 액체가 용기로부터 드레인될 때
	불활성가스(Inert gas)를 용기의 증기 공간에 주입한다. 주입
	되는 불활성가스(Inert gas)의 부피는 용기의 부피와 같고 퍼
사이폰퍼지	지속도는 액체를 방출하는 속도와 같게 한다.
(Siphon	• 액체를 용기에 채운 다음 용기의 상부에 잔류해 있는 산소를
Purging)	제거하기 위하여 스위프퍼지 공정을 사용하면 사이폰퍼지 공
	정외의 비용이 추가되지만 산소 농도를 매우 낮은 수준으로 줄
	이는데 유리하다.
	• 큰 저장용기를 퍼지할 때 경비를 최소화하는데 이용한다.

- 폭발하한계 및 상한계의 계산
 - 혼합가스의 폭발 범위

폭발 범위(폭발 상한계, 하한계)의 계산 : 르 샤틀리에의 공식 🖈

$$\frac{100}{L} \text{ (Vol\%)} = \frac{V_1}{L_1} + \frac{V_2}{L_2} + \frac{V_3}{L_3} \cdots \implies L = \frac{100}{\frac{V_1}{L_1} + \frac{V_2}{L_2} + \frac{V_3}{L_3} \cdots}$$

여기서, L: 혼합가스의 폭발하한계(상한계)

 L_1, L_2, L_3 : 단독가스의 폭발하한계(상한계)

 V_1, V_2, V_3 : 단독가스의 공기 중 부피

 $100: V_1 + V_2 + V_3 + \cdots$ (단독가스 부피의 합)

- 폭발하한계 및 상한계의 계산
 - 혼합가스의 폭발 범위

완전 연소 조성 농도(화학양론농도, 이론산소농도) ******

$$C_{st} = \frac{100}{1 + 4.773 \left(n + \frac{m - f - 2\lambda}{4}\right)} (\%)$$

여기서, n: 탄소 m: 수소

f: 할로겐원소 λ : 산소의 원자 수

폭발범위의 계산: Jones식

- 1. 폭발하한계 = $0.55 \times C_{st}$
- 2. 폭발상한계 = $3.50 \times C_{st}$

여기서,
$$C_{st}=rac{100}{1+4.773\left(n+rac{m-f-2\lambda}{4}
ight)}$$

 $(n: \text{탄소}, m: \text{수소}, f: \text{할로겐원소}, \lambda: 산소의 원자 수)$

- 폭발하한계 및 상한계의 계산
 - 혼합가스의 폭발 범위

◎ 예제 01 ★★

가연성 혼합가스가 메탄(CH₄) 80%, 에탄(C₂H₆) 10%, 부탄(n-C₄H₆) 10%로 구성 되어져 있다. 공기 중에서 이 3성분 혼합가스의 화학양론 조성을 구하면? (단, 각 단독가스의 화학양론 조성은 메탄 9.5%, 에탄 5.6%, 부탄 3.1%로 한다)

② 4.5%

⊕ 5.2%

⊕ 6.1%

母 7.4%

해설

혼합가스의 양론조성은
$$\frac{100}{L} = \frac{V_1}{L_1} + \frac{V_2}{L_2} + \frac{V_3}{L_3} \cdots$$

$$\frac{(80+10+10)}{L} = \frac{80}{9.5} + \frac{10}{5.6} + \frac{10}{3.1}$$

$$L = \frac{100}{\frac{80}{9.5} + \frac{100}{5.6} + \frac{10}{3.1}} = 7.4\%$$

02 xx

에틸에테르와 에틸알콜의 3:1의 혼합증기 몰비가 각각 0.75, 0.25이고, 단독가스의 폭발상한을 각각 48%, 19%라면 혼합성 가스의 폭발상한값은?

(P) 2.2%

© 3.47% © 22%

라 34.7%

(해설)

$$\frac{100}{L} = \frac{V_1}{L_1} + \frac{V_2}{L_2} + \frac{V_3}{L_3} \cdots$$
에서

몰비(부피비)가 3:1이므로

$$\frac{(3+1)}{L} = \frac{3}{48} + \frac{1}{19}$$

$$L = \frac{4}{\frac{3}{48} + \frac{1}{19}} = 34.7 \text{ Vol}\%$$

(참고)

(0.75:0.25=75%:25%=3:1, 몰비=부피비)

$$\frac{100}{L} = \frac{75}{48} + \frac{25}{19}$$

$$L = \frac{100}{\frac{75}{48} + \frac{25}{19}} = 34.7 \text{ Vol}\%$$

- 폭발하한계 및 상한계의 계산
 - 최소산소농도(MOC농도) = 화염을 전파하기 위한 최소한의 산소농도

최소 산소농도 🖈

MOC농도 = 폭발하한계 \times $\frac{\text{산소의 몰수}}{\text{여료의 목수}}$ (Vol%)

예제

프로판(C₃H₈)의 연소에 필요한 최소 산소농도의 값은? (단, 프로판의 폭발하한은 2 2%)

- ② 8.1vol%

- 나 11.1vol%다 15.1vol%라 20.1vol%

(해설) 프로판의 연소식: 1C3H8 + 5O2 = 3CO2 + 4H2O(여기서 1, 5, 4, 4 = 몰수)

프로판의 최소산소농도 = 2,2 $\times \frac{5}{4}$ = 11vol%

- 폭발하한계 및 상한계의 계산
 - 최소산소농도(MOC농도) = 화염을 전파하기 위한 최소한의 산소농도

동예제 02 x

부탄(C4H10)의 연소에 필요한 최소 산소농도의 값은? (단, 부탄의 폭발하한은 1.6%)

② 10.4vol%

(1) 11.1vol% (1) 18.4vol% (2) 22.5vol%

(해설) 부탄의 연소식: 1C4H10 + 6.5O2 = 4CO2 + 5H2O(여기서 1, 6.5, 4, 5 = 몰수)

부 탄의 최소산소농도 =
$$1.6 \times \frac{6.5}{1} = 10.4$$
vol%

- 1. 분진폭발이 일어나지 않는 물질은? (05.03.20)
 - ① 마그네슘
 - ② 스텔라이트
 - ③ 소맥분
 - ④ 질석 가루

- 2. 가스폭발에 대한 기술 중 옳지 않은 것은? (05.08.07)
 - ① 최소점화에너지는 가스 농도에 관계없이 변화하지 않는다.
 - ② 폭발범위는 측정조건을 바꾸면 변화한다.
 - ③ 점화원 에너지가 약할수록 폭굉유도거리는 길다.
 - ④ 혼합가스의 폭발한계는 르샤틀리에 식으로 변한다.

- 3. 가연성 가스가 밀폐된 용기 내에서 폭발할 때 최대폭발 압력에 영향을 주는 인자가 아닌 것은? (05.08.07)
 - ① 가연성 가스의 초기 압력
 - ② 가연성 가스의 초기 농도
 - ③ 가연성 가스의 온도
 - ④ 가연성 가스의 유량

- 4. 화염의 전파속도가 음속보다 빨라 파면선단에 충격파가 형성되며 보통 그 속도가 1,000 ~ 3,500 m/s 에 이르는 현상을 무엇이라 하는가? (06.05.14)
 - ① 폭발현상
 - ② 폭굉현상
 - ③ 파괴현상
 - ④ 폭풍현상

- 5. 가연성 가스의 연소 범위에 대한 설명으로 옳은 것은? (06.08.06)
 - ① 착화온도의 상한과 하한범위
 - ② 연소할 수 있는 최저온도
 - ③ 인화온도의 상한과 하한범위
 - ④ 연소할 수 있는 혼합가스의 농도범위

- 6. 분진폭발의 발생 순서로 옳은 것은? (06.08.06)
 - ① 퇴적분진 비산 분산 발화원발생 폭발
 - ② 퇴적분진 발화원발생 분산 비산 폭발
 - ③ 퇴적분진 분산 비산 발화원발생 폭발
 - ④ 비산 퇴적분진 분산 발화원발생 폭발

- 7. 분진폭팔에 관한 설명 중 옳지 않은 것은?(07.03.04)
 - ① 분진폭발은 가스폭발에 비하여 유독물의 발생이 많다
 - ② 분진폭발은 가스폭발과 마찬가지로 폭발범위가 존재한다
 - ③ 분진폭발은 실내를 건조시켜 점화원을 제거하는 것이 가장 효과적 인 폭발방지책이다
 - ④ 금속분말도 분진폭발을 일으킨다.

- 8. 사료공장, 금속가공공장, 종이공장 및 섬유공장에서 공통적으로 일어날 수 있는 재해는?(07.03.04)
 - ① 분진폭발
 - ② 금수성물질의 화재
 - ③ 증기폭발
 - ④ 액상폭발

9. 혼합가스의 조성이 다음 표와 같을 때 공기 중 폭발하한계 는 약 몇 vol%인가? (08.03.02)

	1	$\gamma \cap$
(\mathbf{I})		.ZU

- 2.03
- 3 3.67
- **(4) 5.30**

가스	조성	폭발 하한계 (vol%)	폭발상 한계 (vol%)
프로판	50%	2.2	9.5
이황화탄소	30%	1.2	44
일산화탄소	20%	12.5	74

- 10. 다음 중 폭발의 최소발화에너지에 대한 설명으로 틀린 것은? (08.03.02)
 - ① 불활성기체의 첨가는 최소발화에너지를 크게한다.
 - ② 최소발화에너지는 화학양론농도보다 조금 높은 농도일때 최소값이 된다.
 - ③ 혼합기체의 농도가 능가함에 따라 최소발화에너지는 상승한다.
 - ④ 혼합기체의 온도가 상승하면 최소발화에너지도 상승한다.

11. 다음 중 분진폭발에 대한 설명으로 틀린 것은? (08.03.02)

- ① 일반적으로 입자의 크기가 클수록 위험이 더 크다.
- ② 산소의 농도가 증가될 경우 폭발위험은 증가된다.
- ③ 주위 공기의 난류확산은 위험을 증가시킨다.
- ④ 가스폭발에 비하여 불완전 연소를 일으키기 쉽다.

12. 폭발범위가 1.8~8.5vol% 인 가스의 위험도는 얼마인가? (08.03.02)

- ① 0.8
- 2 3.7
- 3 5.7
- **4 6.7**

13. 다음 [표]는 공기 중 표준상태에서 가연성 물질의 연소한계를 나타낸 것이다. 위험도가 가장 높은 것은? (08.05.11)

1	豇	\equiv	豇	ŀ
(\mathbf{I})	_	ᄑ	\mathbf{L}	

- ② 메탄
- ③ 헥산
- ④ 톨루엔

물 질	상한계(vol%)	하한계(vol%)
프로판	9.5	2.1
메탄	15.0	5.0
핵산	7.4	1.2
톨루엔	6.7	1.4

14. 다음 중 가연성 가스의 폭발한계에 대한 설명으로 옳은 것은? (08.05.11)

- ① 불활성 가스를 첨가하면 폭발범위는 좁아진다.
- ② 일반적으로 압력이 증가되면 폭발범위는 좁아진다.
- ③ 일반적으로 온도가 상승되면 폭발범위는 좁아진다.
- ④ 공기 중에서 보다 산소 중에서 폭발범위는 좁아진다.

15. 가연성 가스가 발생할 우려가 있는 지하 작업장에서의 작업 시 폭발 또는 화재를 방지하기 위하여 가스의 농도가 폭발 하한계 값의 몇 % 이상으로 밝혀진 경우 즉시 근로자를 안 전한 장소에 대피시켜야 하는가? (08.05.11)

- 1 15
- 2 25
- 3 33
- **40**

16. 다음 중 증기운폭발에 대한 설명으로 틀린 것은? (08.07.27)

- ① 대기 중에 대향의 가연성 가스 및 기화하기 쉬운 가연성액체가 누출되어 발화원에 의해 발생한다.
- ② 증기운폭발은 일종의 가스폭발이다.
- ③ 증기운폭발은 주로 폐쇄공간에서 발생한다.
- ④ LNG가 누출될 때에도 증기운폭발을 할 수 있다.

17. 부피조성이 메탄 65%, 에탄 20%, 프로판 15% 인 혼합 가스의 공기 중 폭발하한계는 몇 vol% 인가? (단, 메탄, 에탄, 프로판의 폭발하한계는 각각 5.0vol%, 30.vol%, 2.1vol% 이다.) (08.07.27)

- 2.63
- ② 3.73
- 3 4.83
- **(4)** 5.93

18. 다음 중 폭발범위가 가장 넓은 것은? (09.03.01)

- ① 부탄
- ② 메탄
- ③ 프로판
- ④ 아세틸렌

19. 다음 중 폭발하한계에 대한 설명으로 틀린 것은? (09.03.01)

- ① 일반적으로 폭발한계 범위는 온도 상승에 의하여 넓어지게 된다.
- ② 공기 중 폭발하한계는 온도가 100℃ 증가함에 따라 약 8%씩 증가 한다.
- ③ 일반적으로 압력이 상승되면 폭발상한계도 증가한다.
- ④ 산소 중에서의 폭발하한계는 공기 중에서와 같다.

- 20. 폭발을 분류할 때 원인물질의 물리적 상태에 따라 기상폭발과 응상폭발로 구분하는데 다음 중 응상폭발을 하는 물질이 아닌 것은? (09.03.01)
 - ① TNT
 - ② 면화약
 - ③ 아세틸렌
 - ④ 다이너마이트

21. 부탄의 공기 중 연소하한값 1.6vol% 일 경우, 연소에 필요한 최소산소농도는 약 몇 vol% 인가? (09.05.10)

- ① 9.4
- 2 10.4
- ③ 11.4
- (4) 12.4

22. 다음 중 폭발범위에 대한 설명으로 옳은 것은? (09.05.10)

- ① 가연성 가스와 공기와의 혼합가스에 점화원을 주었을 때 폭발이 일 어나는 혼합가스의 농도범위
- ② 가연성 액체의 액면 근방에 생기는 증기가 착화할 수 있는 온도범 위
- ③ 공기밀도에 대한 폭발성가스 및 증기의 폭발가능 밀도범위
- ④ 폭발화염이 내부에서 외부로 전파될 수 있는 용기의 틈새간격범위

23. 다음 중 폭발의 종류와 해당하는 물질의 연결이 잘못된 것은? (09.05.10)

- ① 산화폭발 LPG
- ② 중합폭발 산화에틸렌
- ③ 분해폭발 아세틸렌
- ④ 분진폭발 하이드라진

- 24. 대기 중에 대량의 가연성 가스가 유출되거나 대량의 가연성 액체가 유출하여 그것으로부터 발생하는 증기가 공기와 혼 합해서 가연성 혼합기체를 형성하고, 점화원에 의하여 발생 하는 폭발을 무엇이라 하는가? (09.07.26)
 - ① UVCE
 - ② BLEVE
 - 3 Detonation
 - (4) Boil over

25. 프로판(C3H3) 1몰이 완전연소하기 위한 산소의 화학양론 계수는 얼마인가? (09.07.26)

- 2
- 2 3
- 3 4
- 4 5

Thank you