(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 September 2001 (20.09.2001)

(10) International Publication Number WO 01/68867 A1

(51) International Patent Classification7: C12N 15/52, 15/76, C12P 17/18, 19/44, 19/62, C12Q 1/68, C07H 17/08, 19/01

Road, Cambridge CB2 2ET (GB). OLIYNYK, Marko [UA/GB]; Cambridge University, Department of Biochemistry, Tennis Court Road, Cambridge CB2 1QW (GB).

- (21) International Application Number: PCT/GB00/02072
- (74) Agents: STUART, Ian et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).
- 30 May 2000 (30.05.2000) (22) International Filing Date:
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language:

- English
- (26) Publication Language:

English

(30) Priority Data:

9912563.5

28 May 1999 (28.05.1999)

- (71) Applicant (for all designated States except US): BIOTICA TECHNOLOGY LIMITED [GB/GB]; 181A Huntingdon Road, Cambridge CB3 0DJ (GB).
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEADLAY, Peter, Francis [GB/GB]; 17 Clarendon Road, Cambridge CB2 2BH (GB). STAUNTON, James [GB/GB]; 29 Porson

Published:

with international search report

[Continued on next page]

(54) Title: POLYKETIDES AND THEIR SYNTHESIS

monensin A: R=ethyl monensin B: R=methyl

(57) Abstract: The complete sequence of the gene cluster for the monensin type I polyketide synthase, from S. cinnamonensis, is provided. Thus variant polyketides containing monensin-derived elements can be genetically engineered. Furthermore there are features, e.g. a regulatory protein mon RI, which are of wide utility.

WO 01/68867 A1

 with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

10

15

20

25

POLYKETIDES AND THEIR SYNTHESIS

The present invention relates to processes and materials (including enzyme systems, nucleic acids, vectors and cultures) for preparing polyketides, particularly polyethers but including polyenes, macrolides and other polyketides by recombinant synthesis, and to the polyketides so produced, particularly novel polyketides. (N.B the term "polyketide" is being used in its conventional sense to include structures notionally derived by the reduction and/or other processing or modification of one or more Ketide units). Furthermore the invention provides the entire nucleic acid sequence of the biosynthetic gene cluster that governs the production of the ionophoric antibiotic polyether polyketide monensin in Streptomyces cinnamonensis, and the use of all or part of the cloned DNA first, in the specific detection of other polyether biosynthetic gene clusters; secondly in the engineering of mutant strains of S. cinnamonensis and of other actinomycetes which are suitable host strains for the high level production of novel recombinant polyketides; and thirdly in the provision of recombinant biosynthetic genes which lead to such novel polyketide products.

Polyketides are a large and structurally diverse

5

10

15

20

25

class of natural products that includes many compounds possessing antibiotic or other pharmacological properties, such as erythromycin, tetracyclines, rapamycin, avermectin, monensin, epothilones and FK506. In particular, polyketides are abundantly produced by Streptomyces and related actinomycete bacteria. They are synthesised by the repeated stepwise condensation of acylthioesters in a manner analogous to that of fatty acid biosynthesis. The greater structural diversity found among natural polyketides arises from the selection of (usually) acetate or propionate as "starter" or "extender" units; and from the differing degree of processing of the β -keto group observed after each condensation. Examples of processing steps include reduction to β -hydroxyacyl-, reduction followed by dehydration to 2-enoyl-, and complete reduction to the saturated acylthioester. The stereochemical outcome of these processing steps is also specified for each cycle of chain extension. In addition, the biosynthetic pathways to many polyketides involve additional enzymecatalysed modifications which may include; methylation by O- and C-methyltransferases, hydroxylation by cytochrome P450 enzymes, other oxidation or reduction processes, and the biosynthesis and attachment of novel sugars and/or deoxy sugars.

The biosynthesis of polyketides is initiated by a group of chain-forming enzymes known as polyketide synthases. Two classes of polyketide synthase (PKS) have been described in actinomycetes. One class, named Type I PKSs, represented by the PKSs for the macrolides erythromycin, oleandomycin, avermectin and rapamycin, consists of a different set or "module" of enzymes for each cycle of polyketide chain extension. (For examples see Cortés, J. et al. Nature (1990) 348:176-178; Donadio, S. et al. Science (1991) 252:675-679; Swan, D.G. et al. Mol. Gen. Genet. (1994) 242:358-362; MacNeil, D.J. et al. Gene (1992) 115:119-125; Schwecke, T. et al. Proc. Natl. Acad. Sci. USA (1995) 92:7839-7843.)

5

10

15

20

25

The term "extension module" as used herein refers to the set of contiguous domains, from a β -ketoacyl-ACP synthase ("KS") domain to the next acyl carrier protein ("ACP") domain, which accomplishes one cycle of polyketide chain extension. The term "loading module" is used to refer to any group of contiguous domains which accomplishes the loading of the starter unit onto the PKS and thus renders it available to the KS domain of the first extension module. The length of polyketide formed has been altered, in the case of erythromycin biosynthesis, by specific relocation using genetic engineering of the enzymatic domain of the erythromycin-

producing PKS that contains the chain releasing thioesterase/cyclase activity (Cortés J. et al. Science (1995) 268:1487-1489; Kao, C.M. et al. J. Am. Chem. Soc. (1995) 117:9105-9106).

5

10

15

20

25

In-frame deletion of the DNA encoding part of the ketoreductase domain in module 5 of the erythromycin-producing PKS (also known as 6-deoxyerythronolide B synthase, DEBS) has been shown to lead to the formation of erythromycin analogues 5,6-dideoxy-3-α-mycarosyl-5-oxoerythronolide B, 5,6-dideoxy-5-oxoerythronolide B and 5,6-dideoxy,6-β-epoxy-5-oxoerythronolide B (Donadio, S. et al. Science (1991) 252:675-679). Likewise, alteration of active site residues in the encylreductase domain of module 4 in DEBS, by genetic engineering of the corresponding PKS-encoding DNA and its introduction into Saccharopolyspora erythraea, led to the production of 6,7-anhydroerythromycin C (Donadio, S. et al. Proc. Natl. Acad. Sci. USA (1993) 90:7119-7123).

International Patent Application number WO 93/13663 describes additional types of genetic manipulation of the DEBS genes that are capable of producing altered polyketides. However many such attempts are reported to have been unproductive (Hutchinson, C.R. and Fujii, I. Annu. Rev. Microbiol. (1995) 49:201-238, at p. 231). The complete DNA sequence of the genes from Streptomyces

hygroscopicus that encode the modular Type I PKS governing the biosynthesis of the macrocyclic immunosuppressant polyketide rapamycin has been disclosed (Schwecke, T. et al. (1995) Proc. Natl. Acad. Sci. USA 92:7839-7843). The DNA sequence is deposited in the EMBL/Genbank Database under the accession number X86780.

5

10

15

20

25

WO 98/01546 discloses that a PKS gene assembly (particularly of Type I) encodes a loading module which is followed by at least one extension module. The first open reading frame encodes the first multi-enzyme or cassette (DEBS1) which consists of three modules: the loading module (ery-load) and two extension modules (modules 1 and 2). The loading module comprises an acyltransferase and an acyl carrier protein. This may be contrasted with Figure 1 of WO 93/13663 (referred to above). This shows ORF1 as only two modules, the first of which is in fact both the loading module and the first extension module.

WO 98/01546 describes in general terms the production of a hybrid PKS gene assembly comprising a loading module and at least one extension module. It also describes (see also Marsden, A.F.A. et al. Science (1998) 279:199-202) construction of a hybrid PKS gene assembly by grafting the wide-specificity loading module for the avermectin-producing polyketide synthase onto the first

multi-enzyme component (DEBS1) for the erythromycin PKS in place of the normal loading module. Certain novel polyketides can be prepared using the hybrid PKS gene assembly, as described for example in WO 98/01571.

5

10

15

20

25

WO 98/01546 further describes the construction of a hybrid PKS gene assembly by grafting the loading module for the rapamycin-producing polyketide synthase onto the first multi-enzyme component (DEBS1) for the erythromycin PKS in place of the normal loading module. The loading module of the rapamycin PKS differs from the loading modules of DEBS and the avermectin PKS in that it comprises a CoA ligase domain, an enoylreductase ("ER") domain and an ACP, so that suitable organic acids including the natural starter unit 3,4dihydroxycyclohexane carboxylic acid may be activated in situ on the PKS loading domain and, with or without reduction by the ER domain, transferred to the ACP for intramolecular loading of the KS of extension module 1 (Schwecke, T. et al. Proc. Natl. Acad. Sci. USA (1995) 92:7839-7843). WO 98/51695 and WO 98/49315 describe

The second class of PKS, named Type II PKSs, is represented by the synthases for aromatic compounds. Type II PKSs contain only a single set of enzymatic activities

genes that are capable of producing altered polyketides.

additional types of genetic manipulation of the DEBS

5

10

15

20

25

for chain extension and these are re-used as appropriate in successive cycles (Bibb, M.J. et al. EMBO J. (1989) 8:2727-2736; Sherman, D.H. et al. EMBO J. (1989) 8:2717-2725; Fernandez-Moreno, M.A. et al. J. Biol. Chem. (1992) 267:19278-19290). The "extender" units for the Type II PKSs are usually acetate units, and the presence of specific cyclases dictates the preferred pathway for cyclisation of the completed chain into an aromatic product (Hutchinson, C.R. and Fujii, I. Ann. Rev. Microbiol. (1995) 49:201-238). Hybrid polyketides have been obtained by the introduction of cloned Type II PKS gene-containing DNA into another strain containing a different Type II PKS gene cluster, for example by introduction of DNA derived from the gene cluster for actinorhodin, a blue-pigmented polyketide from Streptomyces coelicolor, into an anthraquinone polyketide-producing strain of Streptomyces galileus (Bartel, P.L. et al. J. Bacteriol. (1990) 172:4816-4826).

The minimal number of domains required for polyketide chain extension on a Type II PKS when expressed in a Streptomyces coelicotor host cell (the "minimal PKS") has been defined for example in WO 95/08548 as containing the following three polypeptides which are products of the actI genes: firstly KS; secondly a polypeptide termed the CLF with end-to-end

5

10

15

20

25

amino acid sequence similarity to the KS but in which the essential active site residue of the KS, namely a cysteine residue, is substituted either by a glutamine residue or, in the case of the PKS for a spore pigment such as the whiE gene product (Davis, N.K. and Chater, K.F. Mol. Microbiol. (1990) 4:1679-1691) by a glutamic acid residue; and finally an ACP. The CLF has been stated (for example in WO 95/08548) to be a factor that determines the chain length of the polyketide chain that is produced by the minimal PKS. However it has been found (Shen, B. et al. J. Am. Chem. Soc. (1995) 117:6811-6821) that when the CLF for the octaketide actinorhodin is used to replace the CLF for the decaketide tetracenomycin in host cells of Streptomyces glaucescens, the polyketide product is not found to be altered from a decaketide to an octaketide, so the exact role of the CLF remains unclear. An alternative nomenclature has been proposed in which KS is designated KSα and CLF is designated KSβ, to reflect this lack of knowledge (Meurer, G. et al. Chemistry & Biology (1997) 4:433-443). The mechanism by which acetate starter units and acetate extender units are loaded onto the Type II PKS is not known, but it is speculated that the malonyl-CoA: ACP acyltransferase of the fatty acid synthase of the host cell can fulfil the same function for the Type II PKS (Revill, W.P. et al. J.

Bacteriol. (1995) 177:3946-3952).

5

10

15

20

25

WO 95/08548 describes the replacement of actinorhodin PKS genes by heterologous DNA from other Type II PKS gene clusters, to obtain hybrid polyketides. It also describes the construction of a strain of Streptomyces coelicolor which substantially lacks the native gene cluster for actinorhodin, and the use in that strain of a plasmid vector pRM5 derived from the low-copy number vector SCP2* isolated from Streptomyces coelicolor (Bibb, M.J. and Hopwood, D.A. J. Gen. Microbiol. (1981) 126:427-442) and in which heterologous PKS-encoding DNA may be expressed under the control of the divergent actI/ actIII promoter region of the actinorhodin gene cluster (Fernandez-Moreno, M.A. et al. J. Biol. Chem. (1992) 267:19278-19290). The plasmid pRM5 also contains DNA from the actinorhodin biosynthetic gene cluster encoding the gene for a specific activator protein, ActII-orf4. The ActII-orf4 protein is required for transcription of the genes placed under the control of the actI/actIII bidirectional promoter and activates gene expression during the transition from growth to stationary phase in the vegetative mycelium (Hallam, S.E. et al. Gene (1988) 74:305-320).

Type II clusters in Streptomyces are known to be activated by pathway-specific activator genes (Narva,

5

10

15

20

25

K.E. and Feitelson, J.S. J. Bacteriol. (1990) 172:326-333; Stutzman-Engwall, K.J. et al. J. Bacteriol. (1992) 174:144-154; Fernandez-Moreno, M.A. et al. Cell (1991) 66:769-780; Takano, E. et al. Mol. Microbiol. (1992) 6:2797-2804; Gramajo, H.C. et al. Mol. Microbiol. (1993) 7:837-845). The DnrI gene product complements a mutation in the actII-orf4 gene of S. coelicolor, implying that DnrI and ActII-orf4 proteins act on similar targets. A gene (srmR) has been described (EP 0 524 832 A2) that is located near the Type I PKS gene cluster for the macrolide polyketide spiramycin. This gene specifically activates the production of the macrolide antibiotic spiramycin, but no other examples have been found of such a gene. Also, no homologues of the ActII-orf4/DnrI/RedD family of activators have been described that act on Type I PKS genes. WO 98/01546 describes the use of the ActIIorf4 family of activators in conjunction with their cognate promoters (e.g actII-orf4 with the actI promoter) in a heterologous actinomycete to obtain high level expression of recombinant Type I polyketide synthase genes.

Although large numbers of therapeutically important polyketides have been identified, there remains a need to obtain novel polyketides that have enhanced properties or possess completely novel bioactivity. The complex

polyketides produced by Type I PKSs are particularly valuable, in that they include compounds with known utility as anthelminthics, insecticides, immunosuppressants, antifungal agents or antibacterial agents. Because of their structural complexity, such novel polyketides are not readily obtainable by total chemical synthesis, nor by chemical modifications of known polyketides.

5

10

15

20

25

There is also a need to develop reliable and specific ways of deploying individual genes and portions of genes in practice so that all, or a large fraction, of hybrid PKS genes that are constructed, are viable and produce the desired polyketide product. This includes the development of advantageous host strains for expression of such genes. For example many polyketides are rendered bioactive by the action of further enzymes other than the polyketide synthase, and host strains that contain and are able to express the genes for such enzymes are particularly convenient for the efficient synthesis of the bioactive material. In those cases where the construction of a known or a novel polyketide requires specialised precursors, host strains containing and able to express the genes for key enzymes that enhance the production of such specialised precursors are equally valuable and desirable. There is also a need to develop

rational methods of increasing the expression level of all the genes required for production of a specific polyketide. Clearly also a host cell which is advantageous for the above reasons, and/or because of other favourable characteristics including but not limited to its speed of growth, excellent handling characteristics in fermentation, and ease of transformation with DNA by various techniques, can be made even more favourable by the cloning into that cell of such auxiliary genes for polyketide modification, or gene activation, or post-translational modification, or precursor supply.

5

10

15

20

25

The DNA sequences have been disclosed for several Type I PKS gene clusters that govern the production of 16-membered macrolide polyketides, including the tylosin PKS from Streptomyces fradiae (application EP 0 791 655 A2), the niddamycin PKS from Streptomyces caelestis (Kavakas, S.J. et al. J. Bacteriol. (1997) 179:7515-7522) and the spiramycin PKS from Streptomyces ambofaciens (application EP 0791 655 A2). DNA sequences have also been disclosed for Type I PKS gene clusters that govern the production of further complex polyketides, for example rifamycin from Amycolatopsis mediterranei (WO 98/07868), and soraphen from Sorangium cellulosum (US

5716849), but so far no DNA sequence has been disclosed for one of the most widespread and important classes of complex polyketides, the polyethers.

5

10

15

20

25

Polyethers form an important group of complex polyketide antibiotics (Westley, J.W. in "Antibiotics IV. Biosynthesis" (Corcoran, J.W. Ed.), Springer-Verlag, New York (1981) p. 41-73). They are polyoxygenated carboxylic acids which act as selective ionophores transporting cations across the cell membrane of target cells and thereby causing depolarisation and cell death. Certain polyethers including monensin, lasalocid and tetronasin are in widespread use in animal husbandry as coccidiostats (principally targetted against Eimeria spp.) and as growth promoters. Polyethers have also been reported to be active in vitro and in vivo against the malarial parasite Plasmodium falciparum (Gumila, C. et al. Antimicrobial Agents and Chemotherapy (1997) 41: 523-529).

Polyethers contain multiple asymmetric centres and are characterised by the presence of tetrahydrofuran and tetrahydropyran rings, producing a characteristic shape which is non-polar on its outer surface and therefore well adapted for transport of material across bacterial membranes; and provides on its inner surface polar coordinating ligands for a centrally-bound metal ion. In

addition to tetrahydrofuran and tetrahydropyran rings, other groups which are often present include spiroketal, dispiroketal, and substituted benzoic acid moieties and occasionally other groups for example a tetronic acid or a 6-membered carbocyclic ring

5

10

15

20

25

Monensins A and B are produced by the actinomycete Streptomyces cinnamonensis. Their structures are shown in Figure 1. Monensin B differs from monensin A only in the presence of a methyl sidechain at C-16 rather than an ethyl sidechain. Monensin selectively binds and transports sodium ions. In addition to its antibacterial and antifungal properties monensin has some activity against protozoal parasites such as the malarial parasite Plasmodium falciparum. Although the structures of polyethers differ significantly from those of other complex polyketides such as the polyhydroxylated and polyene macrolides, their biosynthesis appears to take place by a metabolic pathway which has many common elements. Thus experiments using carbon 14-labelled precursors have shown that monensin A is synthesised from five acetate, one butyrate and seven propionate units (Day, L.E. et al. Antimicrob. Agents Chemother. (1973) 4:410-414). Similarly experiments using precursors doubly-labelled with carbon-13 and oxygen-18 have shown that oxygens (0)1, (0)3, (0)4, (0)5, (0)6 and (0)10 of

5

10

15

20

25

monensin arise from the carboxylate oxygens of either propionate or acetate, while growth in the presence of oxygen-18 oxygen gas demonstrated that the three remaining ether oxygens (0)7, (0)8 and (0)9 are derived from molecular oxygen (Cane, D.E. et al., J. Am. Chem. Soc. (1981) 103:5962-5965; Cane, D.E. et al. J. Am. Chem. Soc. (1982) 104:7274 - 7281; Ajaz, A.A. and Robinson, J.A. J. Chem. Soc. Chem. Commun. (1983) 12:679-680). These findings have been rationalised by proposing that the biosynthesis of monensin proceeds via an acyclic triene intermediate (1) in which the geometry of all three carbon-carbon double bonds is E (entgegen) rather than Z (zusammen). The triene is then proposed to be subject to epoxidation to a tri-epoxide (2) and then ring opening is proposed to occur with concomitant sequential formation of the five ether rings as shown in Figure 2A. Such a biosynthetic pathway, first mooted by Westley in 1974 (Westley J.W. et al., J. Antibiot. (1974) 27:597-604) accounts for the observed stereochemistry at the multiple asymmetric centres in monensin, (Cane, D.E. et al. J. Am. Chem. Soc. (1982) 104:7274-7281; Sood, G.R. et al. J. Chem. Soc. Chem. Commun. (1984) 21:1421-1424) and analogous schemes can be used to account for the biosynthesis of other known polyethers. such as lasalocid A (Hutchinson C.R. et al., J. Am. Chem. Soc. (1981)

103:5953-5956), tetronasin (ICI 139603) (Demetriadou, A.K. et al. J. Chem. Soc. Chem. Commun. (1985) 7:408-410) and narasin (Spavold, Z. et al. Tetrahedron Letters (1986) 27:3299-3302). The hydroxylation at C-26 and the introduction of an O-methyl group on oxygen 3-are proposed to occur as late steps in the biosynthesis, after formation of the polyether structure.

5

10

15

20

25

Unfortunately key aspects of the biosynthetic scheme shown in Figure 2A have so far eluded experimental confirmation. No biosynthetic intermediates have been isolated from mutants of S. cinnamonensis that are blocked in early stages of monensin production. 26deoxymonensin A has been isolated from a S. cinnamonensis mutant partially blocked in monensin production (Ashworth, D.M. et al. J. Antibiot. (1989) 42:1088-1099) and 3-0-demethylmonensins A and B have been recovered as minor components from the fermentation broth of a monensin-producing strain (Pospisil, S. et al. J. Antibiot. (1987) 40:555-557). When fed to cells of S. cinnamonensis in radio-labelled form, neither 26-deoxymonensin A, nor 3-0-demethylmonensin A, nor 3-0demethyl, 26-deoxymonensin A were significantly incorporated into monensin A (Ashworth, D.M. et al. J. Antibiot. (1989) 42:1088-1099), either because they are actively excluded or because these modifications in fact

occur earlier in the biosynthetic pathway so that these metabolites are shunt products not readily converted into the final antibiotic by the respective hydroxylase or methyltransferase. Similarly, the putative all (E)-triene precursor (1) has been synthesised and shown not to become incorporated into monensin when fed to growing cells of S. cinnamonensis (Holmes, D.S. et al. Helv. Chim. Acta (1990) 73:239-259). An alternative pathway has been proposed, as shown in Fig 2B, based on the transition-metal-mediated oxidation of 1,5-dienes (Walba, D.M. and Edwards, P.D. Tetrahedron Lett. (1980) 21:3531-3534). The triene intermediate (4) would different from that of Figure 2A (1) only in that each carbon-carbon double bond would have the (Z)-configuration (Townsend, C.A. and Basak, A. Tetrahedron (1991) 47:2591-2602) and not the (E) - configuration.

5

1.0

15

20

25

The genetic basis of secondary metabolite
biosynthesis essentially exists in the genes which code
for the individual biosynthetic enzymes and in the
regulatory elements which control the expression of the
biosynthetic genes. The genes encoding biosynthesis of
polyketides in actinomycetes have hitherto been found as
clusters of adjacent genes, ranging in size from
20 kilobasepairs (kbp) to over 100 kbp. The clusters
often contain specific regulatory genes and genes

conferring resistance of the producing strain to its own antibiotic.

In various of its aspects the invention provides the following:-

- (1) a DNA sequence encoding at least one-peptide necessary for the biosynthesis of monensin, preferably comprising one or more of the following genes: mon BI, mon BII, mon CI, mon CII, mon H, mon RI, mon RII, mon T, mon AIX and mon AX as depicted in the appended sequence data or an allele or mutation thereof;
- (2) a DNA sequence according to the first aspect comprising all of the genes listed therein or an allele or mutation thereof;
- (3) a DNA sequence according to the first aspect comprising the complete monensin gene cluster;
- (4) a DNA sequence coding for one or more of the peptides set out below, said peptide having the amino acid sequence as set out in the appended sequence data or being a variant thereof having the specified activity:

20 <u>peptide</u> <u>activity</u>

5

10

- mon CII epoxyhydrolase/cyclase
 - mon E S-adenosylmethionine-dependent methyltransferase
 - mon T monensin resistance gene
 - mon RII repressor protein
- 25 mon AIX thioesterase

mon AI polyketide synthase multienzyme polyketide synthase multienzyme mon AII mon AIII polyketide synthase multienzyme polyketide synthase multienzyme mon AIV polyketide synthase multienzyme 5 mon AVI mon AVII polyketide synthase multienzyme mon AVIII polyketide synthase multienzyme regulatory protein mon H mon CI flavin-dependent epoxidase carbon-carbon double bond isomerase mon BII 10 carbon-carbon double bond isomerase mon BI mon D cytochrome P450 hydroxylase activator protein mon RI mon AX thioesterase

15

20

- (5) a recombinant cloning or expression vector comprising a DNA sequence according to any of aspects 1-4;
- (6) a transformant host cell which has been transformed to contain a DNA sequence according to any of aspects 1-4 and is capable of expressing a corresponding peptide;
- (7) a hybridization probe comprising a polynucleotide which binds specifically to a region of the monensin gene cluster selected from mon BI, mon BII, mon CI, mon CII, mon H, mon RI, mon RII, mon T, mon AIX and mon AX;

(8) use of a probe according to aspect (7) in a method of detecting the presence of a gene cluster which governs the synthesis of a polyether, and optionally isolating a gene cluster detected thereby;

5

10

15

20

- (9) Use of a probe comprising a polynucleotide which binds specifically to a gene responsible for levels of activity of the monensin gene cluster, preferably a regulatory gene, resistance gene or thioesterase gene, more preferably the regulatory gene mon RI, in a method of detecting an analogous gene in a gene cluster of another polyketide, preferably a polyether, and optionally manipulating the gene detected thereby to alter the level of expression of said other polyketide;
- (10) a host cell, preferably Streptomyces

 cinnamonensis, containing a heterologous gene under the

 control of the mon RI gene and a monensin promoter;
- (11) use of a portion of the monensin gene cluster having chain terminating activity, preferably comprising at least one of mon AIX and mon AX or a mutant or allele thereof having chain terminating activity, to effect chain release of a peptide other than one required for monensin biosynthesis;
 - (12) use of a portion of the monensin gene cluster having carbon-carbon double bond isomerase activity, preferably comprising at least one of mon BI and mon BII

or a mutant or allele thereof having isomerase activity to provide a desired stereochemical outcome in the synthesis of a polyketide other than monensin;

(13) a polypeptide encoded by a portion of the monensin gene cluster, preferably comprising at least one of mon BI and mon BII or a mutant or allele thereof, having carbon-carbon double bond isomerase activity;

5

10

15

20

25

- (14) an epoxidase enzyme encoded by mon CI or a derivative or variant thereof having epoxidase activity;
- (15) a cyclase enzyme encoded by mon CII or a derivative or variant thereof having cyclase activity.

Some embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:

Fig 1 shows the structure of monensins A and B;

Fig 2 illustrates proposed biosynthetic pathways;

Fig 3 illustrates the proposed organization of the monensin polyketide synthase (PKS) enzyme complex; and

Fig 4 illustrates the proposed organization of the monensin biosynthetic gene cluster.

The overall gene organization of the monensin biosynthetic gene cluster, as shown in Fig 4, is similar to that previously found for many macrolide biosynthetic gene clusters, which have one or more open reading frames (ORFs) encoding large multifunctional PKSs flanked by

other genes which encode functions required for the biosynthesis of the antibiotic. In the case of monensin, there is an unusually high number of distinct ORFs encoding PKS multi-enzymes (eight in total, labelled monAI to monAVIII) but there is again a separate module of enzymes for each cycle of polyketide chain extension, exactly as found for modular PKSs for macrolide biosynthesis (see Fig 3). Thus there are 12 condensations predicted to be required for the production of the carbon skeleton of monensin, and in agreement with this there are found to be 12 extension modules of PKS enzymes distributed among the 8 PKS ORFs. However, as mentioned in detail below, the other genes in the monensin cluster include genes which have not previously been found in any other gene cluster for the biosynthesis of a complex polyketide, and which are not significantly similar to any genes in published sequence databases. The cloned DNA for these genes is useful to allow the diagnosis that a polyketide biosynthetic gene cluster in any actinomycete, uncovered previously by conventional hybridization against a PKS gene probe from (say) the DEBS or some other characterised PKS gene cluster, is one that governs the synthesis of a polyether; and these genes are also valuable either singly or in combination as specific hybridization probes for the specific detection and

10

15

20

isolation of additional polyether biosynthetic gene clusters. Examples of these previously-unknown genes are the genes monBI, monBII, monCI and monCII. In addition the regulatory genes monH monRI, and monRII and the resistance gene monT and the thioesterase genes monAIX and monAX are all useful for the detection of analogous genes in other polyether clusters which are required for the rational manipulation of such genes in order to increase levels of the specific product.

5

10 The cloned and sequenced cluster of genes for monensin biosynthesis is useful secondly in the engineering of mutant strains of S. cinnamonensis and of other actinomycetes which are suitable strains for the high level production of either natural or novel 15 recombinant polyketides. The sequence of the monensin cluster disclosed here shows the surprising fact, that the gene cluster contains a gene monRI whose gene product has an amino acid sequence highly similar to that of actIIorf4, the pathway-specific activator gene which activates 20 the actI and other promoters of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor. The recognition of this aspect of the natural regulation of a Type I PKS cluster is important and valuable because first, it is possible to increase the yield of monensin by 25 increasing the level of the activator MonRI, either by

5

10

15

20

25

placing the gene monRI under the control of a powerful promoter or arranging for the presence within the cells of one or more additional copies of the monRI gene (as exemplified below); secondly, it will be possible to use the monRI gene as a specific hybridisation probe to locate similar genes in other complex PKS gene clusters, especially other polyether PKS gene clusters but also polyene and macrolide gene clusters and all other Type I modular PKS gene clusters; even in cases where (as for rapamycin and erythromycin) no such gene has been previously found within the currently accepted physical limits of the relevant biosynthetic gene cluster. In such cases the monRI gene probe might be expected to uncover the activator even if it resides on the chromosome at some distance from the main body of the gene cluster; and simple experiments would then show whether the activator(s) so uncovered are involved in regulation of the biosynthesis of those particular metabolites; thirdly, increasing the copy number of the monRI gene or of any of the activator genes uncovered will tend to increase the yield of a heterologous polyketide by "crosstalk" where the activator mimics the presence of the normal activator for the transcription of the genes for that heterologous polyketide synthase. It is clear from recently published work (Wietzorrek, A. and Bibb, M. Mol. Microbiol. (1997)

5

10

15

20

25

25:1181-1184) that the ActII-orf4 family of activators exert their effects by binding to promoter regions within the target gene cluster, so it will be possible to use the monRI gene together with monensin promoter regions to drive the high-level transcription and translation of heterologous genes in Streptomyces cinnamonensis, and perhaps in other host strains too; such genes need not be PKS genes or even involved in polyketide biosynthesis. Monensin promoter regions are found at the 5' end of genes or groups of genes in the cluster and their location is clear from the sequence analysis disclosed here. Thus a useful vector would provide the monensin promoter and the ribosome binding site and continue up to the start of the open reading frame, after which the monensin ORF naturally found there would be replaced by the heterologous gene. The relative strength of the monensin promoters can be readily determined using any one of a number of known promoter probes, i.e. genes whose expression gives rise to readily measurable and quantifiable effects, such as Green Fluorescent Protein (GFP); or beta-galactosidase in the presence of a chromogenic substrate. It should be possible to mutate randomly the small region of the monensin promoters especially likely to interact with the MonRI activator (identified by the presence of tandem heptanucleotide repeats with a common consensus sequence

- 25 - .

5

10

15

20

25

between the various monensin promoters) (Wietzorrek, A. and Bibb, M. Mol. Microbiol. (1997) 25:1181-1184), and to determine the optimal DNA sequence for the maximal activation effect using either S. cinnamonensis (preferably - in case there are other unknown factors that make the activation function better in this strain than in other heterologous systems), or even in another host actinomycete strain. If the natural monensin promoters were mutated to have this optimal recognition sequence, then this would further increase the production of monensin. By extension, the use of this modified monensin promoter in conjunction with the monRI gene in heterologous systems could form the basis of further improvements in expression of polyketide synthases or other genes, either by appropriate chromosomal alterations to introduce the altered promoter and also the monRI gene; or by provision of vectors containing these optimised signals linked to specific genes and housed in suitable host cells.

The sequencing of the monensin cluster has uncovered another strategy for gene regulation in such Type I clusters. The previously-sequenced genes for the rapamycin biosynthetic pathway in *Streptomyces hygroscopicus* included a gene of unknown function (rapH). A closely similar gene has now been found in the monensin

5

10

15

20

25

biosynthetic gene cluster (monH), and it is clear from this recurrence (and the comparison of the sequences with those of database proteins) that this gene is potentially an important DNA-binding sensor gene which acts to regulate the transcription of the cluster in concert with other regulatory signals. Simple experimentation is needed in order to define whether the gene is an activator, in which case putting in another copy or increasing its transcription will have the potential to increase polyketide biosynthesis; or alternatively the rapH gene product may be a negative regulator, whereupon deletion of this gene may release the biosynthetic pathway from this inhibitory effect and increase yields.

There is a continuing need to develop new methods of high-level production of bioactive metabolites and other valuable gene products in actinomycetes. Streptomyces cinnamonensis is a recognised and very valuable industrial strain for the production of very high levels of monensin, it is readily transformable with DNA by standard methods of conjugation or of protoplast transformation, it is a host for numerous known broad range plasmids including well-known expression plasmids of both high- and low-copy number, it also grows quickly relative to other actinomycete strains (for example about three times faster than wild type Saccharopolyspora erythraea the

5

10

15

20

25

erythromycin producer, under comparable conditions) and sporulates relatively easily. Heterologous polyketides can be expressed in Streptomyces cinnamonensis using for example the low-copy number plasmid pCJR24 (which has no origin of replication active in actinomycetes so is maintained by integration into the chromosome) (Rowe, C. et al. Gene (1998) 216:215-223) or the related plasmid pCJR29 in which the polyketide synthase gene(s) are placed under the control of the actI promoter which is activated by the ActII-orf4 activator; or alternatively the monAI promoter can be substituted together with the MonRI activator; or some other pairing of activator and cognate promoter chosen from either a Type II or a Type I polyketide synthase gene cluster. As an example, the wild type strain of Streptomyces cinnamonensis has been used to express the plasmid pCJR29 (Rowe, C. et al. Gene (1998) 216:215-223) containing as insert the three ORFs for the PKS governing the production of 6-deoxyerythronolide B, the macrolide precursor of erythromycin A in Saccharopolyspora erythraea, these genes being placed under the control of the pathway-specific actI promoter from Streptomyces coelicolor together with its cognate activator gene actII-orf4. The transformed strain when cultivated in a suitable liquid medium produced 6deoxyerythronolide B in good yield.

5

10

15

20

25

It is well known to the person skilled in the art that it is possible to use standard vectors unable to replicate in actinomycetes to introduce DNA into a Streptomyces cell, such DNA comprising two portions of contiguous DNA which are each identical to one of two portions of the cell's chromosome that are spaced up to 100 kbp apart; and that through recombination between the incoming DNA and the chromosome occurring in both portions of DNA the net result is that the chromosomal sequence is replaced by the defective sequence originally that of the incoming DNA. Such a procedure has been applied to the monensin-producing strain of S. cinnamonensis as described in detail below, and a strain of S. cinnamonensis has been obtained that carries a specific deletion in the monensin cluster and which is unable to produce the antibiotic. The use of such a strain facilitates the production of heterologous polyketides by removal of the background of monensin production.

The multiple uses of portions of the cloned and sequenced DNA from the monensin cluster will readily occur to the person skilled in the art. A surprising feature of the PKS of the monensin cluster is an unusual mechanism of polyketide chain initiation. We have found that the monensin PKS loading module has three domains, which from the amino-terminus of the protein are: a KSq domain, an

5

10

15

20

25

acyltransferase domain and an ACP domain. We have uncovered this organisation in the PKS for the 14-membered macrolide oleandomycin as well as in the monensin PKS, an organisation of the loading module previously only found for the 16-membered macrolides and in which the KSg domain (which looks like a ketosynthase or condensation domain except that the active site cysteine residue is substituted by a glutamine for which the single letter notation is Q) had been previously speculated to have no function. It was realised that the acyltransferase of the loading module actually has malonyl-CoA and not acetyl-CoA as a substrate and that KSq is an active decarboxylase. It appears that a better discrimination can be achieved in the selection of the smaller acetate unit over propionate if the choice is made initially between methylmalonyl- and malonyl-CoA.

An unprecedented feature of the monensin PKS genes is that no integral chain-terminating domain is present as a C-terminal appendage of the PKS extension module that catalyzes the twelfth and final chain extension. Because the product of the monensin PKS is a carboxylic acid, it would have been firmly predicted that chain release would have been catalyzed by such a C-terminal domain containing a "thioesterase" activity. Previously sequenced PKS gene sets have been of two sorts: first, those macrolide PKSs

5

10

15

20

25

typified by erythromycin, spiramycin, tylosin, niddamycin which have a readily recognisable C-terminal "thioesterase" domain, which in these enzymes functions as a specific cyclase rather than releasing the polyketide product as a free carboxylic acid; secondly, those macrolide PKSs typified by rapamycin, FK506, and rifamycin, where there is an alternative and recognised mode of chain termination by transfer of the polyketide chain to an acceptor moiety, catalyzed by a specific enzyme (eg pipecolate incorporating enzyme for rapamycin (Schwecke T. et al. Proc. Natl. Acad. Sci. USA (1995) 92:7839-7843) and FK506 (Mothamedi H. and Shafiee A, Eur. J. Biochemistry (1998) 256:528-534); arylamine synthetase for rifamycin (August P.R. et al. Chemistry & Biology (1998) 5:69-79).

The monensin PKS surprisingly falls into neither category, and therefore seems to be the first example of a novel mode of chain termination. It is novel and noteworthy in this connection that the monensin PKS gene cluster contains two small genes that encode discrete, monofunctional thioesterase enzymes. Although many PKS gene clusters have been previously shown to contain one such discrete thioesterase, none have been shown to have two. The role of such thioesterases is not known, although in the case of methymycin/pikromycin PKS, which has been

PCT/GB00/02072 WO 01/68867

5

10

15

20

25

reported to be responsible for the biosynthesis of both the 12-membered macrolide methymycin and the 14-membered macrolide pikromycin (Xue Y.Q. Proc. Natl. Acad. Sci. USA (1998) 95:12111-12116) the disruption of this thioesterase reportedly caused a ten-fold drop in the amount of both macrolides produced. A similar finding has been reported for the discrete thioesterase of the tylosin PKS gene cluster (Cundliffe E. et al. Chemistry & Biology in press). Additional copies of such thioesterases may therefore accelerate the production of specific polyketide, but this has not yet been demonstrated. However, the presence of the discrete thioesterase is not completely essential for polyketide production.

It is highly desirable to have a broadly effective method of catalysing the release of polyketide gene products from a PKS as the free acid. The well-studied integral thioesterase domain in the erythromycin PKS thioesterase has a broad specificity in cyclization to form a lactone (assuming that a hydroxy group is present in the growing polyketide chain at an appropriate - position), but hydrolysis to form the free acid is very slow. The recognition of the unusual arrangement of the monensin PKS means that it is now possible to harness either the entire PKS module that catalyses the twelfth and final extension cycle in monensin biosynthesis, or the

5

10

15

20

25

C-terminal portion of it, and graft it onto a different polyketide synthase by genetic engineering, so as to allow the release mechanism characteristic of monensin to operate in a different context. The use of this portion only of the monensin PKS suffices to allow the novel mechanism of chain release to operate successfully. The speed of the polyketide chain hydrolysis in a given case can depend on the additional presence of one or both of the discrete thioesterase genes (monAIX and monAX) from the monensin gene cluster. The use of this novel method of chain termination represents a valuable way of generating a large number of novel engineered polyketides that are currently inaccessible, and ensuring that the products have a specified chain length.

The genes monBI and monBII appear to encode very similar enzymes with significant amino acid sequence similarity to authentic ketosteroid isomerases which are known to catalyse the migration of an activated carbon-carbon double bond. The conservation of active site residues makes it very likely that these mon genes govern a reaction involving activated double bonds in the biosynthetic pathway to monensin and this surprising observation can be accommodated if the initial product of the polyketide chain growth on the monensin PKS is a linear precursor in which the double bonds were initially

5

10

15

20

25

formed with a conventional trans or E (entgegen) geometry; but before the polyketide chain was extended by insertion of the next unit the monBI and/or the monBII gene product(s) catalyse the specific rearrangement of the newly-created double bond into the cis or Z (zusammen) geometry. This new view of the monensin biosynthetic pathway allows the deduction that the monBI and monBII genes, perhaps in combination with specific portions of the monensin modules where they normally exert their effects (namely modules 3, 5 and 7) might be used in order to achieve the extremely desirable targetted biosynthesis of novel polyketides containing double bonds with Z geometry at specified point(s) along the chain. Thus for example it should be possible to provide for the direct biosynthesis of C22-C23 cis or Z double bond in avermectins, thus avoiding tedious and expensive chemical conversion of an initial fermentation product into this important anthelminthic. Only limited experimentation is needed to see whether the monBI and/or monBII gene products are sufficient or whether the mon PKS at modules 3, 5 and 7 forms part of the specific docking site(s) for the isomerases and therefore must also be used in the creation of the hybrid PKS that will insert the cis or Z double bond at the desired position. The substrate specificity of the isomerases need not be limited to 2,3-

5

10

15

20

25

unsaturated thioesters. The purified enzymes could also be used to effect such isomerisations in vitro, depending on the position of the equilibrium or whether further enzymes are used to achieve the further transformation of the product as it is formed (vide infra).

The product of the monCI gene is a novel oxidative enzyme with some sequence similarity to authentic examples of such enzymes in the databases; and with a clearly definable role in the monensin biosynthetic pathway, the epoxidation of the double bonds at three separate positions in the initially-formed acyclic intermediate in monensin biosynthesis. This epoxidase could therefore be used in conjunction with monBI/monBII gene products to effect oxidative reactions on suitable substrates in vitro and in vivo. Similarly the monCII gene product is a putative cyclase that opens the epoxides and causes the formation of ether rings in monensin.

Any or all of the monBI, monBII, monCI or monCII

genes may be introduced into a heterologous strain

containing the gene cluster for another polyether, in

order to divert the biosynthetic pathway and produce a

polyketide of altered structure. In these experiments the

analogues of these monB genes could either be present or

(once located and characterised using the mon genes as

probes) they may be deleted prior to the introduction of

experiment in which analogues of the monB and monC genes from other strains are introduced into S. cinnamonensis likewise has the potential to produce novel oxidised polyketides. Also, the monB and monC genes or their analogues may be introduced into a strain that normally produces a macrolide or a polyene or some other complex polyketide and expressed there, when they may effect the diversion of the growing polyketide chain on a heterologous modular PKS towards a new product, which may or may not have the structure of a polyether.

5

10

15

20

25

The availability of the monensin gene sequence allows the institution of domain swaps to alter the acyltransferase (AT) specificity of a given module, for example the ethylmalonyl-CoA specific extender found in one of the modules of the monensin PKS can be used to replace one of the other ATs to generate an ethyl side branch at that position in the chain, or the AT can be used to substitute in any other (e.g. macrolide) PKS, as described in WO 98/O1571 and WO 98/O1546. Similarly the alteration of the level of reduction in a module, by manipulation of the reductive enzymes, can be applied to the monensin genes and here it will produce, depending on which module is affected, either an altered monensin, or a

5

10

15

species which is only partly cyclised, or a polyether with an altered pattern of cyclisation, or even a linear polyketide.

In general the targetted alteration of the pattern of substitution of sidechains or reduction level-along the polyketide chain produced by the monensin PKS will, like the disruption or deletion of the oxidative enzymes mentioned above, lead to non-polyether polyketide products. It should be possible, by introduction of the DEBS thioesterase at the C-terminus of one of the later modules of the monensin PKS, together with an appropriately placed hydroxy group earlier in the chain, to produce novel macrolide products from this polyether PKS system, or alternatively novel polyenes of defined chain length and chosen ring size.

Example 1

5

10

15

20

25

Cloning of the monensin A biosynthetic gene cluster using

DNA probes derived from the erythromycin-producing

polyketide synthase of Saccharopolyspora erythraea

A genomic library of the monensin A producing strain Streptomyces cinnamonensis ATCC 15413 was constructed using methods well-known in the art, namely, the production of high molecular weight genomic DNA, followed by the partial cleavage of this DNA using the frequentcutting restriction enzyme Sau3A, fractionation of the fragments on a sucrose gradient and selection of fragments of average size 35-40 kbp, and the cloning of these fragments into the cosmid vector pWE15 (Evans, G.A. et al. Gene (1989) 79:9-20) which had been previously digested with BamHI and treated with shrimp alkaline phosphatase. The library was packaged and transfected into Escherichia coli XL-1 Blue MR cells. The library was plated out on 2xTY agar medium (10 g tryptone, 10 g yeast extract, 5 g NaCl, 15 g bactoagar per litre containing ampicillin 50 μ g/ml) for cosmid selection and the colonies were allowed to grow overnight. The library was then screened by hybridisation using as a probe DNA encoding the ketosynthase domain of module 1 of the erythromycinproducing PKS (6-deoxyerythronolide B synthase, DEBS) of Saccharopolyspora erythraea. The colonies giving a

positive hybridisation signal in the hybridisation were selected and the cosmid DNA from each colony was purified and mapped by restriction digestion. The presence of the target biosynthetic genes on a cosmid was verified by sequencing of the ends of the cosmid inserts using the commercially available T3 and T7 primers which hybridise specifically to the respective ends of each cosmid insert (Evans, G.A. et al. Gene (1989) 79:9-20).

Example 2

5

15

20

25

Sequencing of the biosynthetic gene cluster for monensin A from Streptomyces cinnamonensis

Three cosmids obtained by screening of the genomic library of *S. cinnamonensis* were used to obtain the entire DNA sequence of the monensin biosynthetic gene cluster. These cosmids, MO.CN02, MO.CN11 and MO.CN33 between them contain the entire DNA sequence of the cluster and the adjacent regions of the chromosome. They have been deposited in NCIMB, 23 St Machair Drive, Aberdeen AB24 3RY, UK, under the NCIMB accession numbers 40956 (MO-CN11); 40957 (MO-CN33) and 40958 (MO-CN02) respectively.

The DNA of each cosmid was separately subjected to partial digestion with Sau3A and fragments of approximately 1.5-2.0 kbp were separated by agarose gel electrophoresis. The fragments were then ligated into the

plasmid vector pUC18 (Messing, 1982), previously digested with BamHI and treated with shrimp alkaline phosphatase. The library was transformed into E. coli strain XL1-Blue MR and plated on 2xTY agar medium containing ampicillin (100 µg/ml) to select for plasmid-containing cells. Plasmid DNA was purified from individual colonies and sequenced using the Sanger dye-terminator procedure on an ABI 377 automated sequencer (Sanger, F. Science (1981) 214:1205-1210). The sequence data obtained from single random subclones of a cosmid was assembled into a single continuous sequence and edited using GAP4.1 program of the STADEN gene analysis package (Staden, R. Molecular Biotechnology (1996) 5:233-241).

The sequence is set out in the appended sequence listing.

Tables I and II contain data about individual genes and gene products.

Example 3

5

10

20

25

Inactivation of the monensin A biosynthetic gene cluster

A chromosomal gene disruption experiment was used to verify the identity of the cloned polyketide synthase gene cluster. Plasmid pMOB6314 is a pUC18 sequencing subclone of the presumed monensin A biosynthetic gene cluster prepared as described in Example 1, whose inserted DNA comprises the DNA sequence from nucleotide 9763 to

5

10

15

20

25

nucleotide 10108 in SEQ ID 1, and which therefore contains a region of DNA wholly internal to orfE, a putative 3-0methyltransferase. A HindIII fragment containing the thiostrepton resistance gene tsr from plasmid pIJ702 (Katz, E. et al. J. Gen. Microbiol. (1983) 129:2703-2714) was cloned into the HindIII site of plasmid pMOB6314 and the ligation mixture was used to transform E. coli cells. Transformants bearing the required plasmid pMOAE01 were identified by isolation of plasmid DNA and analysis by restriction digestion. pMOAE01. Plasmid pMOAE01 was used to transform protoplasts of Streptomyces cinnamonensis as described by (Hopwood D.A. et al. (1985)). Since plasmid $pMO\Delta E01$ lacks an origin of replication that is active in Streptomyces, growth in the presence of thiostrepton (25 μg/ml) in the regeneration medium led to the isolation of stable integrants. Isolated putative integrants were tested for the presence of integrated pMOAE01 sequences by Southern hybridisation. A clone of Streptomyces cinnamonensis identified by its restriction pattern in Southern hybridisation as bearing pMOAE01 integrated in the region of monE of the monensin A biosynthetic gene cluster was designated S. cinnamonensis MO-DD01.

Detection of production of the monensin A related metabolites produced by S. cinnamonensis MO-DD01 was performed by GC-MS analysis of methanol extracts of the

entire broth harvested in 72 hours of growth of the strain. No significant amounts of monensin A-related metabolite production were detectable.

Example 4

10

20

- 5 Overproduction of erythromycin aglycone in Streptomyces
 cinnamonensis
 - S. cinnamonensis is a suitable system for overproduction not just of monensin A but also of other polyketide metabolites. Established techniques of genetic transformation allow fast introduction of foreign polyketide producing genes sets into this host. Fast growth of S. cinnamonensis in liquid culture and optimal precursor supply favour high yield of polyketide metabolites.

15 Construction of pIB061

- S. erythraea NRRL2338 was transformed with pCJR30 (Rowe, C. J., et al. (1998) Gene 216:215-223) using a routine protoplast transformation technique as described by Hopwood et al. (1985). A stable integrant of S. erythraea [pCJR30] was identified and the production of 10mg/L of the triketide lactone (delta lactone of (2S,3R,4R,5R)-2,4-dimethyl-3,5-dihydroxy-heptanoic acid) in addition to erythromycins was confirmed by MS analysis.
- Total DNA of S. erythraea [pCJR30] was purified and

approximately 200 ng was digested with EcoRI endonuclease. The digestion mixture was precipitated with isopropanol and the resulting DNA was treated with T4 DNA-ligase for 16 hours at 16°C. The ligation mixture was used to transform E.coli DH10B cells. The transformants were screened for the presence of the plasmid. A clone containing a 44.7kb plasmid was identified and confirmed by restriction analysis to contain three complete genes: eryAI, eryAII and eryAIII. The plasmid was named pIB061.

Transformation of S. cinnamonensis

5

10

15

20

25

Protoplasts of S. cinnamonensis were prepared by a modified procedure of Hopwood et al. (1985). Plasmid pIB061 was transformed into the protoplasts of S. cinnamonensis and stable thiostrepton resistant colonies were isolated. Individual colonies were checked for their plasmid content and the presence of plasmid pIB061 was confirmed by its restriction pattern. S. cinnamonensis (pIB061) was inoculated into 250 ml of M-C3 minimal production medium containing 10 μ g/ml of thiostrepton and allowed to grow for 72 hours at 30 °C. After this time the mycelia were removed by filtering. The broth was extracted with two volumes of ethyl acetate and the combined ethyl acetate extracts were washed with an equal volume of saturated sodium chloride, dried over anhydrous sodium sulphate, and the ethyl acetate was removed under reduced

pressure to give about 200 mg of crude product. The product was analysed by LCQ and mass was confirmed to that of erythronolide B.

This example demonstrates the importance of S.

cinnamonensis for production of high levels of foreign

polyketide antibiotics. Introduction of the complete

erythromycin gene cluster or other gene clusters into this

system are likely to produce high levels of the

corresponding metabolites.

10 Example 5

5

15

20

25

Construction of plasmid pCJW58 containing the monensin activator gene under the ermE* promoter

The ermE* promoter derived from the ermE resistance methyltransferase gene of S. erythraea (Bibb et al. Gene (1985) 38:215-226) was amplified by PCR as a SpeI-XbaI fragment using the following oligonucleotides 5'-CCACTAGTATGCATGCGAGTGTCCGTTCGAGT-3' and 5'-TTGTATACACCTAGGATGGTTGGCCGTGC-3' with pRH3 (Dhillon et al. Molecular Microbiology (1989) 3:1405-1414 as a template and cloned into SmaI-digested, phosphatase-treated pUC18, to produce plasmid pIB135. The integrative plasmid pSET152 (Bierman, M. et al. (1992) Gene 116:43-49)) was digested with XbaI and the backbone was dephosphorylated and ligated to the SpeI-XbaI fragment of pIB135 containing the ermE* promoter. The ligation mixture was used to

transform *E. coli* DH10B and the orientation of the insert in the plasmids from individual clones was checked by using restriction analysis. A plasmid with the *ermE** promoter oriented so that the *NdeI* and *XbaI* sites are adjacent to the apramycin resistance gene was-selected and named pIB139.

5

10

15

20

25

The monR gene from the monensin biosynthetic gene cluster was amplified and NdeI and XbaI restriction sites introduced at 5' and 3' ends respectively, by PCR using as primers the following oligonucleotides:

5'-AGA TAC CAT ATG CTG GGC CCG CTC CGC AT -3' and 5'-AAT GCT CTA GAC TGT CAG CGA CCG GAC AGG GCC AA-3' and cosmid MO.CN11 as template. The PCR product was ligated into SmaI-treated and phosphatase-treated plasmid pUC18 and the ligation mixture was used to transform E. coli DH10B cells. Transformant colonies were analysed for the presence of plasmid and the identity of the plasmid inserts was verified by sequencing. A plasmid whose insert contained the monR gene flanked by NdeI and XbaI restriction sites was selected and designated pCJW57.

Plasmid pCJW57-was digested with NdeI and XbaI and the fragment containing the monR gene was ligated together with the backbone of plasmid pIB139 which had been digested with the same two restriction enzymes, and purified by gel elution. The ligation mixture was used to

5

10

15

20

25

transform *E. coli* strain DH10B cells. Transformant colonies were analysed for the presence of plasmid and the identity of the plasmid inserts was verified by restriction analysis. One such recombinant was selected and named plasmid pCJW58.

Plasmid pCJW58 was used to transform the methylation-deficient *E. coli* strain ET 12567 (MacNeil D. J. et al. (1992) Gene 111:61-68) and the recovered, unmethylated plasmid was then used to transform the same *E. coli* strain ET12567 housing the plasmid pUB307, a derivative of RP4 which is mob and which contains a gene for kanamycin resistance (Piffaretti, J. C. et al. (1988) Mol. Gen. Genet. 212:215-218). Recombinants were plated on 2 x TY agar medium containing apramycin and kanamycin at final concentrations of 50 micrograms per ml and 50 micrograms per ml respectively. The plasmid content of recombinants was checked isolation of plasmid DNA and checking of the identity of these plasmids by restriction analysis. One such clone which contained both pUB307 and plasmid pCJW58 was selected and used for further experiments.

Construction of Streptomyces cinnamonensis (pCJW58) and production of monensins

A single colony of *E. coli* ET12567 housing both pUB307 and pCJW58 was toothpicked into 3 ml of TY liquid medium, containing apramycin and kanamycin at 25 and 25

micrograms respectively, and grown overnight at 37°C. This culture was used to inoculate 25 ml of TY medium, supplemented with the same antibiotics at the same concentrations, and growth was continued until the absorbance at 600 nm (1 cm pathlength) was between 0.3-0.6. The cells were centrifuged (room temperature, 7 minutes, 2000 x g), resuspended in TY liquid medium (10 ml) containing no added antibiotics, re-centrifuged as before, then resuspended in 2ml of TSB medium and placed on ice. Meanwhile, 0.5 ml of TSB medium was added to 100 microL containing approximately 10^8 spores of S. cinnamonensis. After a brief heat shock, at 50°C for 10 minutes, the suspension was briefly cooled, mixed with 0.5 ml of donor E. coli cells, and plated on solid A medium, which has composition as follows:

A medium

5

10

15

	Sigma wheat starch	5g
	Corn steep powder	1.25g
20	Yeast extract	1.5g
	CaCO ₃	1.5g
	FeSO ₄	6 mg
	DIFCO agar	10g
	H ₂ O	to 500 ml

pH adjusted to pH 7 with KOH.

And to which in addition was added 10 mM $MgCl_2$ to a final concentration of 10 mM.

The plates were allowed to dry overnight at room temperature, and were then allowed to incubate a further 18 hours at 30°C. After this time each 25 ml plate was overlaid with a solution of apramycin (final concentration 50 micrograms per ml) and nalidixic acid (final concentration 20 micrograms per ml), and the plates were allowed to incubate for four days at 30°C. At this time individual colonies were toothpicked onto solid A medium and allowed to grow. Four representative colonies from the A medium plate were grown up in liquid modified YEME medium, which has composition as follows:

15 <u>Modified YEME medium</u>

5

10

20

25

Sucrose 100g
DIFCO Yeast extract 3g
Bacto peptone 5g
Oxoid Malt extract 3g
Glucose 10g

H₂O to 1L

pH adjusted to pH 7.2 with NaOH.

These cultures were used to provide a 2% vol/vol inoculum for 30 ml of modified YEME which was grown for 7 days, and then transferred to SM16 medium, which has

composition as follows:

SM16 medium

3-[N-Morpholino]-propane sulfonic acid

5	(MOPS) buffer	20.9g
	L-proline	10.0g
	Glucose	20g
	NaCl	0.5g
	K_2HPO_4	2.1g
10	Ethylenediaminetetraacetic acid, sodium	•
	salt	0.25g
	MgSO ₄ .7H ₂ O	0.49g
	CaCl ₂ .2H ₂ O	0.029g
	Trace elements solution (Hopwood,	
15	D. A. et al. (1985) Genetic Manipulation	
	of Streptomyces - a Laboratory Manual,	
	at p.235)	2 ml
	0.5 M CoCl ₂ solution	2 microlitres
	${ m H_20}$ to 1L	

pH adjusted to pH 7 with NaOH.

25

After growth for a further 7 days, mycelium was collected by centrifugation at 2000 x g for 30 minutes, and the supernatant was extracted three times with 300 ml of ethyl acetate. The combined extracts were concentrated by evaporation under reduced pressure to an oil, which was

mixed with 1 ml of methanol. Samples were applied to an LCQ liquid chromatograph fitted with a mass spectrometer detector unit. The column used was a C18 reversed phase column, equilibrated with a mixture of 80% 20mM ammonium acetate/20% acetonitrile, and the column was eluted with a gradient of increasing acetonitrile, reaching 100% acetonitrile over 24 minutes. Monensins A and B emerged from the column with retention times respectively of 8.2 minutes and 9.2 minutes. The relative amounts of monensin produced by three independent clones (A-C) containing an additional copy of the monR gene were compared to a control fermentation of the wild type S. cinnamonensis strain, with the results shown in the Table below:

Table showing increased monensin production in strains

15 <u>bearing additional copy of monR gene</u>

	Strain	monensin A	monensin B
		concentration	concentration
		(arbitrary units)	(arbitrary units)
	Control	188	861
20	A	430	1 800
•	В	450	1 300
	С	249	1 300

Example 6

5

10

Construction of S. cinnamonensis M12AT5

A region lying immediately 5' of the DNA encoding the

acyltransferase (AT12) domain of module 12 of the monensin polyketide synthase in the monensin biosynthetic gene cluster was amplified with the following primers: 5'-GGTGGCCACGGAAACACCCAACACCGGACCCGCGCC-3', and 5'-CTCTCGGAGGCCCGGCGCAACGGCCACAA-3', 3' using cosmid MO-CN11 5 as a template. The PCR product was ligated into Smal digested and phosphatase-treated plasmid pUC18 and the ligation mixture was used to transform E. coli DH10B cells. Transformant colonies were analysed for the 10 presence of plasmid and the identity of the plasmid inserts was verified by sequencing. A plasmid whose insert contained a fragment upstream of the AT12-encoding sequence from about 82.3kb to 83.2kb of the mon cluster was designated pMO81. Similarly a region lying immediately 3' of the DNA encoding the acyltransferase (AT12) domain 15 of module 12 of the monensin polyketide synthase in the monensin biosynthetic gene cluster was amplified with the following primers: 5'-GGCCTAGGGCTGCCTCGGGTGGTGGATCTGCCGA-3' and 5'- TGGTCGGGCGCGGTGCGTGCGATACGT-3', using cosmid 20 MO-CN11 as a template. The PCR product was ligated into Smal-treated and dephosphorylated pUC18 and the ligation mixture was used to transform DH10B E.coli cells. Transformant colonies were analysed for the presence of plasmid and the identity of the plasmid inserts was verified by sequencing. A plasmid whose insert contained 25

5

10

15

20

25

a fragment downstream of the AT12-encoding sequence, from 80.5kb to 81.4kb of the mon cluster, was designated pMO82.

The DNA encoding AT of module 5 was amplified and MscI and AvrII restriction enzyme recognition sites were introduced at the ends by PCR using the following primers: 5'-CCTGGCCAGGGCGGCCAGTGGGTGGGCATG-3' and 5'-GGCCTAGGGGTCGGCCGGGAACCAGCGCCGCCAGT-3' and the cosmid MO-CN33 as a template. The PCR product was ligated into SmaI-treated and dephosphorylated pUC18 and the ligation mixture was used to transform DH10B E.coli cells.

Transformant colonies were analysed for the presence of plasmid and the identity of the plasmid inserts was verified by sequencing. A plasmid whose insert DNA, with sequence from about 44.2kb to 45.2kb of the mon cluster, encoded the AT5 domain was designated pMO83.

pMO81 was digested with MscI and HindIII and ligated to the 0.9kb MscI - HindIII fragment of pMO82. A clone containing both fragments was designated pMO84. Plasmid pMO84 was cleaved with AvrII and HindIII, treated with phosphatase, and ligated together with the 1.0 kb AvrII - HindIII fragment of pMO83 to produce pMO85, which contains the DNA encoding the AT5 domain flanked by DNA from either side of the DNA encoding the AT12 domain of the monensin PKS. The thiostrepton resistance gene tsr, derived from plasmid pIJ702 (Katz, E. et al., J. Gen. Microbiol.

1983), was cloned into the *Hin*dIII site of pMO85. The resulting plasmid pMO86 was analysed by its restriction pattern and confirmed to contain all the desired elements.

Plasmid pMO86 was used to transform S. cinnamonensis protoplasts as described by Hopwood, D. A. (1985). Stable thiostrepton-resistant transformants were isolated and checked for the desired integration of the pMO85 into the AT12 flanking regions by Southern blot hybridisation. One such integrant, S. cinnamonensis MO-08, containing pMO85 integrated upstream of the AT12, was passed through 4 cycles of sporulation on a non-selective nutrient medium. Spores obtained after the fourth cycle were replica-plated onto media with and without thiostrepton. DNA of clones that had lost thiostrepton resistance was analysed by Southern blot hybridisation. Clones in which the DNA encoding the AT12 domain had been replace by the DNA encoding the AT5 domain was designated S. cinnamonensis M12-AT5. At this time individual colonies were toothpicked onto solid A medium and allowed to grow. Four representative colonies from the A medium plate were grown up in liquid modified YEME medium, which has composition as follows:

Modified YEME medium

5

10

15

	Sucrose	100g		
	DIFCO Yeast extract	3g		
	Bacto peptone	5g		
	Oxoid Malt extract	3g		
5	Glucose	10g	-	
	${ m H_2O}$ to 1L			
	pH adjusted to pH 7.2 with NaOH.			
	These cultures were used to provide a 2% vol/vol			
	inoculum for 30 ml of mo	dified YEME who	ich was grown for 7	
10	days, and then transferred to SM16 medium, which has			
	composition as follows:			
	SM16 medium			
	3-[N-Morpholino]-propane	sulfonic	•	
15	acid (MOPS) buffer		20.9g	
	L-proline		10.0g	
	Glucose		20g	
	NaCl		0.5g	
	K₂HPO₄	ų.	2.1g	
20	Ethylenediaminetetraacet	ic acid,		
	sodium salt	* ** · · · · · · · · · · · · · · · · ·	0.25g	
	$MgSO_4.7H_2O$		0.49g	
	CaCl ₂ .2H ₂ O	t	0.029g	
	Trace elements solution	(Hopwood,		

25 D. A. et al. (1985) Genetic

Manipulation of Streptomyces - a

Laboratory Manual, at p.235) 2 ml

0.5 M $CoCl_2$ solution 2 microlitres

H₂0 to 1L

pH adjusted to pH 7 with NaOH.

5

10

15

20

25

After growth for a further 7 days, mycelium was collected by centrifugation at 2000 x g for 30 minutes, and the supernatant was extracted three times with 300 ml of ethyl acetate. To confirm presence of the C-2-ethyl substituents of both monensin A and B the combined extracts were concentrated by evaporation under reduced pressure to an oil, which was mixed with 1 ml of methanol. Samples were applied to an LCQ liquid chromatograph fitted with a mass spectrometer detector unit. The column used was a C18 reversed phase column, equilibrated with a mixture of 80% 20mM ammonium acetate/20% acetonitrile, and the column was eluted with a gradient of increasing acetonitrile, reaching 100% acetonitrile over 24 minutes. Mass ions 14 mass units above those expected for both monensin A and B confirmed production of the respective C-2-ethyl substituents.

Example 7. Construction of pSGK005 and its use in the production of C-13 propyl-erythromycin

Plasmid pSGK005 is a pCJR24 based plasmid containing a PKS gene comprising a loading module plus the first and

second extension modules and the chain terminating thioesterase of the PKS responsible for the production of erythromycin (DEBS). The loading module comprises the KS and ethyl-malonyl CoA specific AT from module 5 of the monensin PKS linked to the DEBS loading ACP domain. In addition, the active site cysteine of this module 5 KS has been mutated to glutamine to convert an extender di-domain to a loading di-domain. Plasmid pSGK005 was constructed as follows.

5

20

10 A 2769bp DNA segment of the monensin cluster of S. cinnamonensis extending from nucleotide 42438 to 45207 was amplified by PCR using the following oligonucleotide primers. 5'-GTGACGTCATATGTCGAGTGCTGAAGAGTCG-3' and 5'-GGGGTCGCCTAGGAACCAGCGCCGCCAGTCGA-3'

15 The design of these primers introduced Nde I and Avr II sites at the ends of the amplifed fragment. Monensin cosmid 05 was used as a template for the reaction. resulting 2769bp fragment was digested with Nde I and Xho I and a 656bp fragment (Fragment A) purified by preparative gel electrophoresis.

A second PCR reaction was used with the same template to amplify DNA from nucleotide 43098 to 45207. The primers used were

5'-CGGCCTCGAGGGCCCGTCGGTCAGTGTCGACACGGCGCAGTCCTCCTCGC-3'

and 5'-GGGGTCGCCTAGGAACCAGCGCCGCCAGTCGA-3' 25

The design of the upstream oligonucleotide primer incorporated a change of the codon specifying the KS active site cysteine (nucleotides 43135-43137, TGC) to glutamine (CAG). The resulting 2109bp DNA fragment (Fragment B) was digested with Xho I and Avr TI and purified by preparative gel electrophoresis.

5

10

15

20

25

Plasmid pCJW80 is derived from pCJR24 and DEBS1-TE in which Msc I and Avr II sites have been introduced to flank the AT of the DEBS loading module. This plasmid was digested with Nde I and Avr II and the larger fragment (Fragment C) purified by preparative gel electrophoresis.

The three fragments (Fragments A, B, C) were ligated together using T4 DNA ligase and the ligation mixture used to transform electrocompetent *E. coli* DH10B cells.

Individual clones were checked for the presence of the desired plasmid pSGK005. The identity of pSGK005 was confirmed by restriction pattern and sequence analysis.

Plasmid pSGK005 was used to transform *S. erythraea*NRRL2338 using a routine protoplast transformation

technique. Thiostrepton resistant colonies were selected

on R2T20 media containing g/ml thiostrepton. Further

analysis confirmed that pSGK005 had integrated into the *S.*erythraea NRRL2338 chromosome by Southern blot

hybridisation of their genomic DNA with DIG-labelled DNA

containing the actII orf4 promoter. The culture *S.*

erythraea NRRL2338 (pSGK005) was inoculated into 5ml tap water medium in a 30ml flask. After three days incubation at 29°C this flask was used to inoculate 30ml of Ery-P medium in a 300ml flask. The broth was incubated at 29°C at 200rpm for 6 days. After this time the whole broth was adjusted to pH8.5 with NaOH, and then extracted twice with an equal volume of ethyl acetate. The ethyl acetate extract was evaporated to dryness at 45°C under a nitrogen stream using a Zymark Turbovap LV evaporator. The product identities were confirmed by LC/MS. A peak was observed with a m/z value of 734 (M+H)⁺ required for erythromycin A. A second peak was observed with a m/z value of 748 (M+H)⁺, required for 13-propyl erythromycin A.

15

10

References

5

10

15

 Ajaz, A.A. and Robinson, J.A. (1983) The utilization of oxygen atoms from molecular oxygen during the biosynthesis of Monensin-A. Journal of the Chemical Society-Chemical Communications, 12, 679-680.

- Ashworth, D.M., Holmes, D.S., Robinson, J.A., Oikawa, H. and Cane, D.E. (1989) Selection of a specifically blocked mutant of Streptomyces cinnamonensis isolation and synthesis of 26-deoxymonensin-A. Journal of Antibiotics, 42, 1088-1099.
- 3. August, P.R., Tang, L., Yoon, Y.J., Ning, S., Muller, R., Yu, T.W., Taylor, M., Hoffmann, D., Kim, C.G., Zhang, X.H., Hutchinson, C.R. and Floss, H.G. (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chemistry & Biology, 5, 69-79.
- Bartel, P.L., Zhu, C.B., Lampel, J.S., Dosch, D.C.,
 Connors, N.C., Strohl, W.R., Beale, J.M. and Floss, H.G.
 (1990) Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in Streptomycetes clarification of actinorhodin gene functions. Journal of Bacteriology, 172, 4816-4826.
- 5. Bibb, M.J., Biro, S., Motamedi, H., Collins, J.F. and
 Hutchinson, C.R. (1989) Analysis of the nucleotide sequence
 of the Streptomyces glaucescens Tcml genes provides key
 information about the enzymology of polyketide antibiotic

biosynthesis. EMBO Journal, 8, 2727-2736.

5

- 6. Bibb, M.J. and Hopwood, D.A. (1981) Genetic studies of the fertility plasmid SCP2 and its SCP2* variants in Streptomyces coelicolor A3(2). Journal of General Microbiology, 126, 427-442.
- 6a. Bibb M.J., Janssen G.R. and Ward J.M. (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ErmE) of Streptomyces erythraeus.

 'Gene, 38, 215-226.
- 6b. Bierman, M., Logan, R., O'Brien, K., Seno, E.T., Rao
 R.N. and Schoner B.E. (1992)

 Plasmid cloning vectors for the conjugal transfer of DNA
 from Escherichia coli to Streptomyces spp. Gene, 116,
 43-49.
- 7. Cane, D.E., Liang, T.C. and Hasler, H. (1981) Polyether biosynthesis origin of the oxygen atoms of Monensin-A.

 Journal of the American Chemical Society, 103, 5962-5965.
 - 8. Cane, D.E., Liang, T.C. and Hasler, H. (1982) Polyether biosynthesis 2. Origin of the oxygen atoms of monensin A.

 Journal of the American Chemical Society, 104, 7274-7281.
 - 9. Cortés, J., Haydock, S.F., Roberts, G.A., Bevitt, D.J. and Leadlay, P.F. (1990) An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythraea. Nature, 348, 176-178.
- 25 10. Cortés, J., Wiesmann, K.E.H., Roberts, G.A., Brown, M.J.B., Staunton, J. and Leadlay, P.F. (1995) Repositioning

of a domain in a modular polyketide synthase to promote specific chain cleavage. *Science*, **268**, 1487-1489.

11. Davis, N.K. and Chater, K.F. (1990) Spore color in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Molecular Microbiology, 4, 1679-1691.

- 12. Day, L.E. (1973) Antimicrobial Agents and Chemotherapy, 4, 410-414.
- 13. Demetriadou, A.K., Laue, E.D., Staunton, J., Ritchie,

 G.A.F., Davies, A. and Davies, A.B. (1985) Biosynthesis of
 the polyketide polyether antibiotic ICI-139603 in

 Streptomyces longisporoflavus from O-18-labeled acetate and
 propionate. Journal of the Chemical Society Chemical

 Communications, 7,408-410.
- 13a. Dhillon, N., Hale, R.S., Cortes, J. and Leadlay P.F.

 (1989) Molecular characterization of a gene from

 Saccharopolyspora erythraea (Streptomyces erythraeus)

 which is involved in erythromycin biosynthesis.

 Molecular Microbiology 3, 1405-1414.
- 14. Donadio, S., McAlpine, J.B., Sheldon, P.J., Jackson, M. and Katz, L. (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 90, 7119-7123.
- 25 15. Donadio, S., Staver, M.J., McAlpine, J.B., Swanson, S.J. and Katz, L. (1991) Modular organization of genes required

for complex polyketide biosynthesis. Science, 252, 675-679.

- 16. Evans, G.A., Lewis, K. and Rothenberg, B.E. (1989) High efficiency vectors for cosmid microcloning and genomic analysis. *Gene*, **79**, 9-20.
- 5 17. Fernandez-Moreno, M.A., Caballero, J.L., Hopwood, D.A. and Malpartida, F. (1991) The Act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA transfer-RNA gene of Streptomyces. Cell, 66, 769-780.
- 18. Fernandez-Moreno, M.A., Martinez, E., Boto, L., Hopwood, D.A. and Malpartida, F. (1992) Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. Journal of Biological Chemistry, 267, 19278-19290.
 - 19. Gramajo, H.C., Takano, E. and Bibb, M.J. (1993) Stationary phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Molecular Microbiology, 7, 837-845.
- 20. Gumila, C., Ancelin, M.L., Delort, A.M., Jeminet, G. and Vial, H.J. (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrobial Agents and Chemotherapy, 41, 523-529.
- 21. Hallam, S.E., Malpartida, F. and Hopwood, D.A. (1988)
 Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in
 Streptomyces coelicolor. Gene, 74, 305-320.

5

10

22. Holmes, D.S., Sherringham, J.A., Dyer, U.C., Russell, S.T. and Robinson, J.A. (1990) Synthesis of putative intermediates on the monensin biosynthetic pathway and incorporation experiments with the monensin-producing organism. Helvetica Chimica Acta, 73, 239-259.

- 23. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. and Schrempf, H. (1985) Genetic manipulation of Streptomyces, a laboratory manual. John Innes Institution, Norwich, UK.
- 24. Hutchinson, C.R. and Fujii, I. (1995) Polyketide synthase gene manipulation - a structure function approach in engineering novel antibiotics. Annual Review of Microbiology, 49, 201-238.
- 15 25. Hutchinson, C.R., Sherman, M.M., Vederas, J.C. and Nakashima, T.T. (1981) Biosynthesis of macrolides .5. Regiochemistry of the labeling of lasalocid a by C-13,0-18labeled precursors. Journal of the American Chemical Society, 103, 5953-5956.
- 26. Kakavas, S.J., Katz, L. and Stassi, D. (1997) Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis. Journal of Bacteriology, 179, 7515-7522.
- 27. Kao, C.M., Luo, G.L., Katz, L., Cane, D.E. and Khosla, C.
 (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. Journal of the American Chemical Society, 117, 9105-9106.

28. Katz, E., Thompson, C.J. and Hopwood, D.A. (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. Journal of General Microbiology, 129, 2703-2714.

- 5 29. MacNeil, D.J., Occi, J.L., Gewain, K.M., Macneil, T., Gibbons, P.H., Ruby, C.L. and Danis, S.J. (1992) Complex organization of the *Streptomyces avermitilis* genes encoding the avermectin polyketide synthase. *Gene*, **115**, 119-125.
- 29a. MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G.,
 Gibbons, P.H. and MacNeil, T. (1992) Analysis of
 Streptomyces avermitilis genes required for avermectin
 biosynthesis utilizing a novel integration vector. Gene
 111, 61-68.
 - 30. Marsden, A.F.A., Wilkinson, B., Cortés, J., Dunster, N.J., Staunton, J. and Leadlay, P.F. (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science, 279, 199-202.

15

20

- 31. Meurer, G., Gerlitz, M., Wendt Pienkowski, E., Vining, L.C., Rohr, J. and Hutchinson, C.R. (1997) Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. Chemistry & Biology, 4, 433-443.
 - 32. Motamedi, H. and Shafiee, A. (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. European Journal of Biochemistry, 256, 528-534.
 - 33. Narva, K.E. and Feitelson, J.S. (1990) Nucleotide sequence and transcriptional analysis of the RedD locus of

Streptomyces coelicolor A3(2). Journal of Bacteriology, 172, 326-333.

33a. Piffaretti J.C., Arini A. and Frey J. (1988)

pUB307 mobilizes resistance plasmids from Escherichia

coli into Neisseria gonorrhoeae.

Mol Gen Genet.212, :215-218.

5

- 34. Pospisil, S., Sedmera, P., Vokoun, J., Vanek, Z. and Budesinsky, M. (1987) 3-O-Demethylmonensin-A and 3-O-demethylmonensin-B produced by Streptomyces cinnamonensis.

 Journal of Antibiotics, 40, 555-557.
- 35. Revill, W.P., Bibb, M.J. and Hopwood, D.A. (1995)

 Purification of a malonyltransferase from Streptomyces

 coelicolor A3(2) and analysis of its genetic determinant.

 Journal of Bacteriology, 177, 3946-3952.
- 36. Rowe, C.J., Cortés, J., Gaisser, S., Staunton, J. and Leadley, P.F. (1998) Construction of new vectors for highlevel expression in actinomycetes. Gene, 216, 215-223.
 - 37. Sanger, F. (1981) Determination of nucleotide sequences in DNA. Science, 214, 1205-1210.
- 38. Schwecke, T., Aparicio, J.F., Molnár, I., König, A., Khaw, L.E., Haydock, S.F., Oliynyk, M., Caffrey, P., Cortés, J., Lester, J.B., Böhm, G.A., Staunton, J. and Leadlay, P.F. (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proceedings of the National Academy of Sciences of the United States of America, 92, 7839-7843.

39. Shen, B., Summers, R.G., Wendtpienkowski, E. and
Hutchinson, C.R. (1995) The Streptomyces glaucescens TcmKl
polyketide synthase and TcmN polyketide cyclase genes govern
the size and shape of aromatic polyketides. Journal of the
American Chemical Society, 117, 6811-6821.

- 40. Sherman, D.H., Malpartida, F., Bibb, M.J., Kieser, H.M. and Hopwood, D.A. (1989) Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tu22. EMBO Journal, 8, 2717-2725.
- 10 41. Sood, G.R., Robinson, J.A. and Ajaz, A.A. (1984)

 Biosynthesis of the polyether antibiotic Monensin-A
 incorporation of [2-2-2H-2]-propionate, (R)-[2-2H-1]
 propionate and (S)-[2-2H-1]- propionate. Journal of the

 Chemical Society-Chemical Communications, 21, 1421-1423.

5

- 42. Spavold, Z., Robinson, J.A. and Turner, D.L. (1986) Biosynthesis of the polyether antibiotic narasin origins of the oxygen atoms and the mechanisms of ring formation. Tetrahedron Letters, 27, 3299-3302.
 - 43. Staden, R. (1996) The Staden sequence analysis package.

 Molecular Biotechnology, 5, 233-241.
 - 44. Stutzman-Engwall, K.J., Otten, S.L. and Hutchinson, C.R. (1992) Regulation of secondary metabolism in Streptomyces Spp and overproduction of daunorubicin in Streptomyces peucetius.

 Journal of Bacteriology, 174, 144-154.
- 25 45. Swan, D.G., Rodriguez, A.M., Vilches, C., Mendez, C. and Salas, J.A. (1994) Characterization of a Streptomyces antibioticus gene encoding a type I polyketide synthase which

has an unusual coding sequence. Molecular & General Genetics, 242, 358-362.

46. Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J. and Bibb, M.J. (1992) Transcriptional regulation of the redD transcriptional activator gene accounts for growth phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2).
Molecular Microbiology, 6, 2797-2804.

5

20

- 47. Townsend, C.A. and Basak, A. (1991) Experiments and

 speculations on the role of oxidative cyclization chemistry
 in natural product biosynthesis. Tetrahedron, 47, 2591-2602.
 - 48. Walba, D.M. and Edwards, P.D. (1980) Tetrahedron Letters, 21, 3531-3534.
 - 49. Westley, J.W. (1974) Journal of Antibiotics, 27, 597-604.
- 50. Westley, J.W. (1981) Antibiotics IV. Biosynthesis.

 Springer-Verlag, New York.
 - 51. Wietzorrek, A. and Bibb, M. (1997) A novel family of proteins that regulates antibiotic production in Streptomycetes appears to contain an OmpR-like DNA-binding fold. Molecular Microbiology, 25, 1181-1184.
 - 52. Xue, Y.Q., Zhao, L.S., Liu, H.W. and Sherman, D.H. (1998)

 A gene cluster for macrolide antibiotic biosynthesis in

 Streptomyces venezuelae: Architecture of metabolic diversity.

 Proceedings of the National Academy of Sciences of the United

 States of America, 95, 12111-12116.

TABLE I

		start er	nd
9	function	1038	0
gdhA	glutamate dehydrogenase (partial)	2140	1220
dapA	dihydrodipicolinate synthase	2211	3152
orf3	putative transcriptional activator	3264	3680
orf4	hypothetical protein		3684
orf5	hypothetical protein	4307	4758
orf6	hypothetical protein	4570 ·	5612
orf7	hypothetical protein	5058	5693
acpX	acyl carrier protein	6010	6045
ksX	ketoacyl synthase	8531	8643
monCl		9542 10426	9596
monE	methyltransferase		12191
monT	monensin resistance gene (ABC-	10656 12205	12780
monRl	•		13023
monAl	thioesterase	13829	23198
monAl	polyketide synthase loading &	14121	15486
	KS-L	14172	
•	AT-L malonate specific	15777	16880
	ACP-L	17019	17276
	KS1	17358	18626
	AT1 methylmalonate specific	18960	19976
	DH1 (potential)	20019	20519
	KR1 (inactive)	21636	22241
	ACP1	22536	22793
monAl	polyketide synthase module 2	23205	29921
	KS2	23307	24569
	AT2 methylmalonate specific	24891	25913
	DH2	25953	26369
	ER2	27600	28463
	KR2	28485	29042
	ACP2	29313	29570
monA	polyketide synthase modules 3 & 4	29974	42372
	KS3	30076	31347
	AT3 malonate specific	31798	32838
	DH3	32884	33465
	KR3	34692	35181
	ACP3	35553	35811
	KS4	35899	37170
	AT4 methylmalonate specific	37489	38511
,	DH4	38557	38982
	ER4	40123	40986
	KR4	41005	41562
	ACP4	41848	42105
monA		42448	54564
***************************************	KS5	42628	43890
	AT5 ethylmalonate specific	44221	45243
	DH5	45289	45744
	KR5	46785	47337
	ACP5	47593	47850
	· · · · ·		

	KS6	47947	49218
	AT6 malonate specific	49579	50601
	DH6	50644	51075
	ER6	52222	53102
	KR6	53101	53661
	ACP6	54052	54306
monA	polyketide synthase modules 7 & 8	54614	66934
HIOHA	KS7	54716	55978
	AT7 methylmalonate specific	56300	57319
	DH7	57358	57802
		59048	59608
	KR7 ACP7	59867	60124
	KS8		61453
		61808	62839
	AT8 malonate specific	62882	63316
	DH8	64577	65437
•	ER8	65456	66016
	KR8 ACP8	66404	66661
		66952	72054
monA	polyketide synthase module 9	67075	68340
	KS9	68698	69729
	AT9 malonate specific	70735	71262
	KR9 (potential)	71536	71783
	ACP9	72051	74993
monH	probable regulator	76541	75051
monCl	FAD containing epoxidase	76960	76538
monBl	double bond isomerase	77450	77016
monBl	double bond isomerase	88708	77447
monA	polyketide synthase modules 11 &	88612	87344
	KS11	87022	85993
	AT11 methylmalonate specific	85111	84562
	KR11	84292	84035
	ACP11	83962	82694
	KS12	82354	81335
	AT12 methylmalonate specific	81286	80855
	DH12 (potential) delta	79618	78914
	ER12 (potential)	78895	78337
	KR12 ACP12	78070	77812
	polyketide synthase module 10	93741	88816
monA	KS10	93636	92368
	AT10 methylmalonate specific	92040	91021
	KR10	90132	89584
		89322	89068
D	ACP10	94081	95273
monD		96141	95338
monR	•	96941	96138
monA	cell wall biosynthesis capK	97580	98953
orf29		99983	98991
lipB	lipase B ion pump	101433	100507
orf31 orf32	membrane structural protein	102581	101490
amtA	glycine amidinotransferase	102924	103450
amuA	gryonic armenoranoreraso	•	

TABLE II

GdhA, glutamate dehydrogenase (partial coding sequence) Length: 346 amino acids

- 1 LTTRPDTKTA LSQKTALSQL LTEIEHRNPA QPEFHQAARE VLETLAPVIA
- 51 ARPEYAEAGL IERLCEPERQ IVFRVPWQDD HGRVRVNRGF RVEFNSALGP
- 101 YKGGLRFHPS VNLGVIKFLG FEQIFKNALT GLGIGGGKGG SDFDPRGRSD
- 151 AEVMRFCQSF MTELYRHIGE HTDVPAGDIG VGGREIGYLF GQYRRITNRW
- 201 EAGVLTGKGR NWGGSLIRPE ATGYGNVLFA AAMLRERGET LEGRTAVVSG
- 251 SGNVAIYTIQ KLAALGANAV TCSDSSGYVV DEKGIDLDLL KQVKEVERAR
- 301 VDTYAQRRGA SARFVPGRRV WEVPADIALP SATQNELDAD DATALI

DapA, dihydrodopicolinate synthase Length: 307 amino acids

- 1 MTLASSLEPT TEPLFNGLYV PLVTPFTDDL RLAPEALARL ADEALSAGAS
- 51 GLVALGTTAE AATLTAEERE TVIRVCSAAC RAHGAPLIVG VGTNDTATAI
- 101 TALRELAARG DVAAALVPAP PYIRPGEAGT LAHFAALAEH GGLPLVVYDI
- 151 PYRTGQTLGA GTITALGRLP EVVGIKHATG SIDPTTMELL DSPLPGFAVL
- 201 GGDDIVLSPL VAAGAHGGIV ASANLRTADY AEMIALWRRG SAAPARALGA
- 251 DLARLSAALF TEPNPTVIKG VLHAQNRIPS PAVRMPLLAA SADSVRRAAP
- 301 LAASRK*

ORF3, putative transcriptional activator protein Length: 314 amino acids

- 1 MLDVRRLHLL RELDRRGTIA AVAEALTFTA SAVSQQLGVL EREAGVPLLE
- 51 RSGRRVVLTP AGRSLVAHAD AVLNRLEQAV AELAGARDGI GGPLRIGTFP
- 101 SGGHTIVPGA LAELASRHPA LEPMVREIDS ARVSDGLRAG ELDVALVHDY
- 151 DFVPATPDTT VDEVPLLEEP MYLVTHAADT ATDSGSGSTL AALLGPCAEV
- 201 PWITARDGTT GHAMAVRACQ AAGFQPRIRH QVNDFRTVLA LVAAGQGAGF
- 251 VPRMAAEPSP AGVVLTKLPL FRRSKVAFRA GGGAHPAIAA FVAAATTAVE

301 RMAGSRGPAG GSE*

ORF4, hypothetical protein Length: 139 amino acids

- 1 MADDAYLFLL PDRHPRLGAA LAAVGALECT ETPAVHAWLQ AHEASVSSEQ
- 51 VRILPADAET LIPKDAERLP VPLSEEEALK VEQECAPQTV TDMESELLAF
- 101 RETTQDWQAL VHRALTAGIP AQRIARLTGL DPEEIGRL*

ORF5, hypothetical protein Length: 208 amino acids

- 1 LAVAACAAVV LPIDAVVRIS AADVGVLVFF AYLLPYLAIT MTVFVSVAPE
- 51 QVRSWARREA RGTFLQRYVL GTAPGPGGSL FIAAAALVVA VLWLPGHLST
- 101 TFSALPRTLV ALALVVAAWI CVVVAFAVTF QADNLVENER ALEFPGERSP
- 151 AWADYVYFAL AAMTTFGTTD VDVTSRDMRR TVAANTVIAF VFNTVTVAIL
- 201 VSALGGR*

ORF6, hypothetical protein Length: 63 amino acids

- 1 MTVMDKLKQM LKGHEDKAGQ GIDKAGDFVD GKTQGKYSGQ VDTAQDKLRD
- 51 QFGSDQQEPP QR*

ORF7, hypothetical protein Length: 185 amino acids

- 1 MGTAQSQEQA AAPGACAAFV RFVLCGGGVG LASSFAVVAL ASWVPWALAN
- 51 ALVAVVSTVV ATELHARFTF GAGGRATWRQ HAQSAGSAAA AYAVTCVAMF
- 101 VLQQLVAAPG AVLEQVVYLS ASALAGVARF VVLRLVVFAR NRSLPAAAAV
- 151 RTARPVRRVP APVPATVAHA ASRPAGPAAL CPAA*

AcpX, acyl carrier protein (ACP) Length: 106 amino acids

- 1 MTSTDHTSGQ DATELEKQLA AATPEEREKL LTDTIRTQAG TLLNTTLSDD
- 51 SNFLENGLNS LTALELTKTL MTLTGMEIAM VAIVENPTPA QLAHHLGQEL
- 101 AHTTA*

KsX, ketoacyl-ACP synthase Length: 829 amino acids

1 VANEEKLVEY LKWTTAELHQ AQQQLRELKA AQHEPIAVVS MACRLPGKTR TPDDLWDLVS EGRDAVTGFP DDRAWELPEE RPYAELGGFL DDAAGFDAGF 101 FDISDTEAVA TEPLQRLMLH LAWETVERGH IAPHTLRSTL TGVYVGATGH 151 DYATRLETAP DELLPYLGGG TSGSLVSGRI AYALGLEGPA ISVDTACSSS 201 LVALHLACQA LRRGECGLAL AGGGTVMSTP HTFHAFAHQK SLAQDGRCKP 251 FAAAADGMGL GEGVGLVLLE RLGDARKNGH PVLAVIRGSA VNQDGAGYGL 301 AAPNGPSQQH VIRAALADAG LTPDQIDAVE AHGTGTPIGD AIEVQALLAT 351 YGADRSPDRP LWLGSVKSNT GHTQGAAGAA ALIKMVQAFR HGTLPPTLHV 401 DRPTPLAAWK KGAVRLLTEA VDWPRREEPR RVGISAFATS GTNAHLILEE 451 PPVDEAPVPD AARDQTSPVA PELPVAWSLS ARTPEALRAQ AKALVTHLAA TDPAPSPAEV AYSLAATRSP LEHRAVLTGT DHTELLAAAR ALAAGEDHPD 501 551 LVRSTPGAGP KKIAWHFDGR PADGVTTGAA PGAKPGATFG ATFGAAFGGA 601 EFHSAFPLFA SAFDEARALL DTHLPTPLPT PHSELARFAV HTALARLLLE TGVRPHTLTG DGVGHIAAAY AAGILTLDDA CRLAAAHAAA AQAAEGEQPA 651 701 PPDAYEPVLK QLTFQRATLT LTSTAPADTP IASADYWHHH LTSPAPTAPP TPETHTLLHL GALSPEGTQT SAVSALLTAL ARLHTTGGTV DWTPLVRRTP 751 HPRTIDLPTY SFQATRYWLH DHTAHAAV*

MonCII, probable epoxyhydrolase/cyclase Length: 300 amino acids

- 1 VKNLRIPVSQ TVSLNVRYRP ADGPGAPGRP FLLLHGMLSN ARMWDEVAAR
- 51 LAAAGHPAYA VDHRGHGESD TPPDGYDNAT VVTDLVAAVT ALDLSGALVA
- 101 GHSWGAHLAL RLAAEHPDLV AGLALIDGGW YEFDGPVMRA FWERTADVVR
- 151 RAQQGTTSAA DMRAYLRATH PDWSPTSIEA RLADYRVGPD GLLIPRLTST
- 201 QVMSIVAGLQ REAPADWYPK VTVPVRLLPL IPAIPQLSDQ VRAWVAAAEA

251 ALEQVSVRWY PGSDHDLHAG APDEIAADLL LLARSCEAMP GGKAGVRPA*

MonE, S-adeonosylmethionine-dependent methyltransferase Length: 277 amino acids

- 1 VNKTVAPEPS DIGHÝYDHKV FDLMTQLGDG NLHYGYWFDG GEQQATFDEA
- 51 MVQMTDEMIR RLDPAPGDRV LDIGCGNGTP AMQLARARDV EVVGISVSAR
- 101 QVERGNRRAR EAGLADRVRF EQVDAMNLPF DDGSFDHCWA LESMLHMPDK
- 151 QQVLTEAHRV VKPGARMPIA DMVYLNPDPS RPRTATVSDT TIYAALTDIG
- 201 DYPDIFRAAG WTVLELTDIT RETAKTYDGY VEWIRAHRDE YVDIIGVEGY
- 251 ELFLHNQAAL GKMPELGYIF ATAQRP*

MonT, putative monensin resistance gene (ABC-transporter) Length: 512 amino acids

- 1 MSADLGARRW WAVGALVLAS MVVGFDVTIL SLALPAMADD LGANNVELQW
- 51 FVTSYTLVFA AGMIPAGMLG DRFGRKKVLL TALVIFGIAS LACAYATSSG
- 101 TFIGARAVLG LGAALIMPTT LSLLPVMFSD EERPKAIGAV AGAAMLAYPL
- 151 GPILGGYLLN HFWWGSVFLI NVPVVILAFL AVSAWLPESK AKEAKPFDIG
- 201 GLVFSSVGLA ALTYGVIQGG EKGWTDVTTL VPCIGGLLAL VLFVMWEKRV
- 251 ADPLVDLSLF RSARFTSGTM LGTVINFTMF GVLFTMPQYY QAVLGTDAMG
- 301 SGFRLLPMVG GLLVGVTVAN KVAKALGPKT AVGIGFALLA AALFYGATTD
- 351 VSSGTGLAAA WTAAYGLGLG IALPTAMDAA LGALSEDSAG VGSGVNQSIR
- 401 TLGGSFGAAI LGSILNSGYR GKLDLDGVPE QAHGAVKDSV FGGLAVARAI
- 451 KSNGLADSVR SAYVHALDVV LVVSGGLGLL GVVLAVVWLP RHVGQSTAKT
 - 501 AESEHEAADA V*

MonRII, probable repressor protein Length: 192 amino acids

- 1 VPGLRERKKA RTKAAIQREA VRLFREQGYT ATTIEQIAEA AEVAPSTVFR
- 51 YFATKODLVF SHDYDLPFAM MVQAQSPDLT PIQAERQAIR SMLQDISEQE

101 LALQRERFVL ILSEPELWGA SLGNIGQTMQ IMSEQVAKRA GRDPRDPAVR

151 AYTGAVFGVM LQVSMDWAND PDMDFATTLD EALHYLEDLR P*

MonAIX, thioesterase Length: 269 amino acids

- 1 MDRGTAARAP QIGDEFGAAT GNGVWLRRYH AAAEAPVRLV CFPFAGGSAS
- 51 YYFGLSGLLA PGVEVLAVQY PGRQDRHAEP CLASVAELAD GVVPHLPCDG
- 101 KPFALFGHSL GAIVAFEVAR RLRGPAGPGL PVHLFVSGGL ARPYRPAGRS
- 151 GAFGDADILA HLRAMGGTDE RFFRSPELQE LVLPALRADY RAVATYEAPG
- 201 PGRLDCPITA LIGDADERTS PEQAATWRER TGAAFDLRVL PGGHFYLDGC
- 251 QEQVAAVVTE ALTAGPGV*

MonAI, polyketide synthase multi-enzyme MONS1, housing loading module and extension module 1 Length: 3026 amino acids

- 1 MAASASASPS GPSAGPDPIA VVGMACRLPG APDPDAFWRL LSEGRSAVST
- 51 APPERRRADS GLHGPGGYLD RIDGFDADFF HISPREAVAM DPQQRLLLEL
- 101 SWEALEDAGI RPPTLARSRT GVFVGAFWDD YTDVLNLRAP GAVTRHTMTG
- 151 VHRSILANRI SYAYHLAGPS LTVDTAQSSS LVAVHLACES IRSGDSDIAF
- 201 AGGVNLICSP RTTELAAARF GGLSAAGRCH TFDARADGFV RGEGGGLVVL
- 251 KPLAAARRDG DTVYCVIRGS AVNSDGTTDG ITLPSGQAQQ DVVRLACRRA
- 301 RITPDQVQYV ELHGTGTPVG DPIEAAALGA ALGQDAARAV PLAVGSAKTN
- 351 VGHLEAAAGI VGLLKTALSI HHRRLAPSLN FTTPNPAIPL ADLGLTVQQD
- 401 LADWPRPEQP LIAGVSSFGM GGTNGHVVVA AAPDSVAVPE PVGVPERVEV
- 451 PEPVVVSEPV VVPTPWPVSA HSASALRAQA GRLRTHLAAH RPTPDAARVG
- 501 HALATTRAPL AHRAVLLGGD TAELLGSLDA LAEGAETASI VRGEAYTEGR
- 551 TAFLFSGQGA QRLGMGRELY AVFPVFADAL DEAFAALDVH LDRPLREIVL ...
 601 GETDSGGNVS GENVIGEGAD HQALLDQTAY TQPALFAIET SLYRLAASFG

LKPDYVLGHS VGEIAAAHVA GVLSLPDASA LVATRGRLMQ AVRAPGAMAA 651 WQATADEAAE QLAGHERHVT VAAVNGPDSV VVSGDRATVD ELTAAWRGRG 701 751 RKAHHLKVSH AFHSPHMDPI LDELRAVAAG LTFHEPVIPV VSNVTGELVT 801 ATATGSGAGQ ADPEYWARHA REPVRFLSGV RGLCERGVTT FVELGPDAPL SAMARDCFPA PADRSRPRPA AIATCRRGRD EVATFLRSLA QAYVRGADVD 901 FTRAYGATAT RRFPLPTYPF QRERHWPAAA GVGQQPETPE LPESSESSEQ 951 AGHEREEGAR AWGGPEGRLA GLSVNDQERV LLGLVTKHVA VVLGDASGTV 1001 QAARTFKQLG FDSMAAAELS ERLGTETGLP LPATLTFDYP TPLAVAAHLR AELTGTPAPA GSAPATGALG AGDLGTDEDP VAIVAMSCRY PGGAGTPEDL 1051 WRLVADGADA IGDFPTDRGW DLARLFHPDP DRSGTSCTRQ GGFLYDAADF 1101 DAEFFDISPR EALAVDPQQR LLLECAWEAF ERAGLDPRAL KGSPTGVFVG 1151 MTGQDYGPRL HEPSQATDGY LLTGSTPSVA SGRLSFSFGL EGPALTVDTA 1201 CSSSLVTLHL AAQALRRGEC DLALAGGATV LATPGMFTEF SRQRGLAPDG 1251 1301 RCKPFAAGAD GTGWAEGVGL VLLERLSEAR RKGHAVLAVI RGSAINQDGA SNGLTAPNGP SQQRVIRAAL AAARLTADEV DVVEAHGTGT TLGDPIEAQA 1351 1401 LLATYGQGRS AERPLWLGSV KSNIGHTQAA AGVAGVIKMV MAMRHDLLPA TLHVDEPSGH VDWSTGAVRL LTEPVVWPRG ERPRRAAVSS FGISGTNAHL 1451 VLEEAGQDEY VAGAADDAGP VDGAVLPWVV SGRTGAALRE QARRLRELVT 1501 GGSADVSVSG VGRSLVTTRA VFEHRAVVVG RDRDTLIGGL EALAAGDASP 1551 1601 DVVCGVAGDV GPGPVLVFPG QGSQWVGMGA QLLGESAVFA ARIDACEQAL 1651 SPYVDWSLTE VLRGDGRELS RVDVVQPVLW AVMVSLAAVW ADHGVTPAAV 1701 VGHSQGEIAA VVVAGALTLE DGAKIVALRS RALRQLSGGG AMASLGVGQE QAAELVEGHP GVGIAAVNGP SSTVISGPPE QVAAVVADAE ARELRGRVID 1751 VDYASHSPQV DAITDELTHT LSGVRPTTAP VAFYSAVTGT RIDTAGLDTD 1801

YWVTNLRRPV RFADAVTALL ADGHRVFIEA SSHPVLTLGL QETFEEAGVD 1851 AVTVPTLRRE DGGRARLARS LAQAFGAGCA VRWENWFPAT GTSTVELPTY 1901 1951 AFQRRRYWLE APTGTQDAAG LGLAAAGHPL LGAATEIADG DIRLLTGRIS RHSHPWLAQH TLFGAAVVPA SVLAEWALRA ADEAGCPRVD DLTLRTPLVL 2001 PETAGVQVQI VVGPADARDG HRDFHVYARP DGKDASEGEG IAEGEGASEG 2051 EGASGGTDAP WTCHADGRLV AEPTGTASED SPDTVWPPPG AEPVDLGDFY 2101 2151 ERAAATGVGY GPVFTGLRAL WRRDGELFAE AVLPQEAPET AGFGMHPALL 2201 DAALHPALLG ERPAEEDKVW LPFTLTGVTL WATGATSVRV RLTPLDDDPD 2251 ASADGRAWRV GVSDPTGAEV LTCEALVAVA AGRRELRAAG ERVSDLYAVE WVPVPGPGPV GEGADFSGWA GLGECGERWE CVGRVERWYE DLDALGAAVE 2301 2351 GGASVPSVVL ATAAAAPGGA GDGAADALSA VRWTGALLDQ WLADARFADA 2401 RLVVITSGAV ATGDDFLPDP AAAAVRGLVE QAQVRHPGRI LLVDTEAGAG 2451 LGVGAGVDDA LLEQAVAMAL GADEPQLALR AGRVLAPRLT APQDAAVTEA ARPLDPDGTV LITGPAGAPV ADLAEHLVRT GQCRHLLLLP GDGELEEMAE 2501 ELRGLGATVD LSTADPADPT ALAEVVAAVE GDHPLTGVIH ATGVVDAFDP 2551 2601 GDSASDLMID SASDSFAEAW SSRAGVTAAL HTATAHLPLD LFAVLSPAGA DLGIARSAAA AGADAFSAAL ALRRHTTVTT DTTAPPRTTA PPRTTASPRT 2651 TALSSSRTTG VALAYGPPTA PRPGIKGTAP GRIPVLLDAA RAHGGGSPLL 2701 GARLAARALA AESAAEGVAG LPAPLRALAV AAAAAGAPTR RTAADRKPPA 2751 2801 DWPARLAPLS APEQLELLID AVETHAAAVL GRTDPEALEG DATFKQLGLD 2851 SLTAVELRNR LVEDTGLRLP TALVFRYPTP AAIAAHLRER LTSPSETTAT 2901 QRSGGQTPAA GQASSALAPG GSAAGPPAAD TVLSDLTRME NTLSVLAAQL 2951 PHTETGEITT RLEALLTRWK TTNATANDSG DGNGGDDDAA ERLKAASADQ 3001 IFDFIDNELG VGHGTSRVTP TPKAG*

MonAII, polyketide synthase multi-enzyme MONS2, housing extension module 2 Length: 2239 amino acids

1	MASEEQLVEY	LRRVTTELHD	TRRRLVQEED	RRQEPVALVG	MACRFPGGVA
51	SPEDLWDLVA	AGKDAIEDFP	TDRGWDLEAL	YDPDPAAYGT	SYVRHGGFVD
101	DAGSFDADFF	GISPREALAM	DPQQRLMLET	SWELFERAGI	EPVSLKGSRT
151	GVYAGVSSED	YMSQLPRIPE	GFEGHATTGS	LTSVISGRVA	YNYGLEGPAV
201	TVDTACSASL	VAIHLASQAL	RQRECDLALA	GGVLVLSSPL	MFTEFCRQRG
251	LAPDGRCKPF	AAAADGTGFS	EGIGLLLLER	LSDARRNGHK	VLAVIRGSAV
301	NQDGASNGLT	APNDAAQEQV	IRAALDNARL	TPSEVDAVĘA	HGTGTKLGDP
351	IEAGALLATY	GQHRARPLLL	GSLKSNIGHT	HATAGVAGVI	KTVMAIRNGL
401	. LPATLHVEEL	SPHVDWDAGA	VEVVTEPTPW	PETGHPRRAG	VSAFGISGTN
451	AHLILEEAPP	EEDVPAPVVV	ESGGVVPWVV	SGRTPEALRE	QARRLGEFVA
501	GDTDALPNEV	GWSLATTRSV	FEHRAVVVGR	DRDALTAGLG	ALAAGEASAG
551 ·	VVAGVAGDVG	PGPVLVFPGQ	GAQWVGMGAQ	LLDESAVFAA	RIAECERALS
601	AHVDWSLSAV	'LRGDGSELSR	VEVVQPVLWA	. VMVSLAAVWA	DYGVTPAAVI
651.	GHSQGEMAAA	CVAGALSLED	AARIVAVRSD	ALRQLQGHGD	MASLSTGAEQ
701	AAELIGDRPG	; vvvaavngps	STVISGPPEH	VAAVVADAEA	RGLRARVIDV
751	GYASHGPQIL	QLHDLLTERL	ADIRPTNTDV	AFYSTVTAER	C LTDTTALDTD
801	YWVTNLRQPV	/ RFADTIEALI	ADGYRLFIEA	SAHPVLGLGM	1 EETIEQADMP
851	ATŸVPTLRRI	HGDTTQLTRA	AAHAFTAGAD	VDWRRWFPAL	PAPRTIDLPT
901	YAFQRRRYWI	ADTVKRDSGV	DPAGSGHAQI	. PTAVALADGO	3 VVLNGRVSAE
95 <u>1</u>	RGGWLGGHV	/ AGTVLVPGA/	LVEWVĻRAGI	EAGCPSLEE	TLQAPLVLPE
1001	sgglqvqv	VV GAADEQGGI	R DVHVYSRSE	EQ DASAVWQCE	HA VGELGRASVA
1057	RPVROAGO	WP PAGAEPVE	JG GFYEGVAAJ	AG YEYGPAFRO	GL RAMWRHGDDI

LAEVELPEEA GSPAGFGIHP ALLDAALHPL LAQRSRDGAG AGAHGGQVLL 1101 PFSWSGVSLW ASEATTVRVR LTGLGGGDDE TVSLTVTDPA GGPVVDVAEL 1151 RLRSTSARQV RGSAGPGADG LYELRWTPLP EPLPVPAPAN GRDVAADLSG 1201 CAVLGELVAE PGPGIDLEGC PCYPGVGALA DNASPPSMIL APVHSDTTGG 1251 DGLALTERVL RVIQDFLAAP SLEQKQTRLA FVTRGAADTG STTGGSAAPA 1301 EAVDPAVAAV WGLVRSAQSE NPGRFVLLDT DAPLDQASVA PLVDAVRSAV 1351 EADEPQVALR GGRLLVPRWA RAGEPVELAG PAGARAWRLV GGDSGTLEAV 1401 VAEACDDIVL RPLAPGOVRV AVHTAGVNFR DVLIALGMYP DPDALPGTEA 1451 AGVVTEVGPG VTRLSVGDRV MGMMDGAFGP WAVADARMLA PVPPGWGTRQ 1501 AAAAPAAFLT AWYGLVELAG LKAGERVLIH AATGGVGMAA VQIARHVGAE 1551 VFATASPGKH AVLEEMGIDA AHRASSRDLA FEDAFRQATD GRGVDVVLNS 1601 LTGELLDASL RLLGDGGRFV EMGKSDPRDP ELVALEHPGV SYEAFDLVAD AGPERLGLML DRLGELFAGG SLVPLPVTAW PLGRAREALR HMSQARHTGK 1701 LVLDVPAPLD PDGTVLVTGG TGTIGAAVAE HLARTGESKH LLIVSRSGPA 1751 AHGAEELVSR IAEFGAEATF VAADVSEPDA VAALIEGIDP AHPLTGVVHA 1801 AGVLDNALIG SQTTESLTRV WAAKAAAAQQ LHEATRESRL GLFVMFSSFA STMGTPGQAN YSAANAYCDA LAALRRAEGL AGLSVAWGLW EATSGLTGTL SAADRARIDR YGIRPTSAAR GCALLAAARA HGRPDLLAMD LDARVPAASD 1951 2001 APVPAVLRTL AAAGAPATAR PTAAAAADGA TDWSGRLAGL TEEARLELLT ELVCTHAAGV LGHADAGAVQ VDAPFKELGF DSLTAVELRN RIAAATGLKL PAALVFDYPQ ARVLAAHLAE RLVPEGAGAM GGVSGAEGVR DAYGAGGPGG 2101 DMTAQVLLEV ARVEHTLSAA VPHGLDRAAV AARLEALLAR CTATTAATGA 2151 2201 AGAAVEGDGD SDGDGAVDQL ETATAEQVLD FIDNELGV*

MonAIII, polyketide synthase multi-enzyme MONS3, housing extension modules 3 and 4 Length: 4133 amino acids

1.	MVSEEKLVDY	LKRVSADLHA	TRORLREAEE	RGQEPVAVVE	AACRYPGGIR
51	TPEDLWDLVA	AGGNALGAFP	DNRGWDLRRL	FHPDPDHPGT	TYAREGGFLH
101	DADLFDPEFF	GISPREAAVL	DPQQRLLLEC	AWEALERAGI	DPRSLQGSRT
151	GVYAGAALPG	FGTPHIDPAA	EGHLVTGSAP	SVLSGRLAYT	FGLEGPAVTI
201	DTACSSSLVA	VHLAAHALRQ	RECDLALAGG	VTVMTTPYVF	TEFSRQRGLA
251 ⁻	ADGRCKPFAA	AADGTAFSEG	AGLLVLERLS	DARRAGHRVL	AVIRGSAVNQ
301	DGASNGLTAP	NGPAQQRVIR	AALAGARLSP	AEVDAVEAHG	TGTRLGDPIE
351	ADALLATYGQ	ERHGGRPLWL	GSVKSNIGHT	QGAAGAAGLI	KMVQALRHET
401	LPATLYADEP	TPHADWESGA	VRLLSAPVAW	PRGEHGEHTR	RAGISSFGIS
451	GTNAHLILEE	APAADAEGAG	GDGDGDGGGV	RPVVRVGATG	PREEQGQGQG
501	QEQHQQQRQQ	RQRSSMMPTP	HLPWLLSARS	PAALRAQADA	LANHVAHADH '
551	SIADIGGTLL	RRTLFEHRAV	VLGTDRDERA	AALAALAAGR	AHPALTRAAG
601	PARNGGTAFL	FTGQGSQRPG	MGRQLYDTFD	VFAESLDETC	ARLDPLLEQP
651	LKPVLFAPAD	TAQAAVLHGT	GMTQAALFAL	EVALYRQVTS	FGIAPSHLTG
701	HSVGEIAAAH	VAGVFSLADA	CTLVAARGRL	MQALPAGGAM	LAVQAAEDDV
751 ·	LPLLAGQEER	LSLAAVNGPI	AVVVSGEAAA	VGEVEKALRG	RGLKTKRLNV
801	SHAFHSPLIE	PMLDDFREVA	RGLTFHAPTL	. PVVSNLTGRI	ADAELMADAE
851	YWVRHVRRPV	RFHDGLRALS	EQGVVRYLEI	GPDPVLATMV	QDGLPAPAEG ·
901	EEPEPVVAAA	LRSKHDEGRI	LLGAVAALHT	DGQPADLTAI	FPADAGQVPL
951	PTYRFQRRRY	WRVAPDAAAI	ARAAGLQETO	HPLLPAVIRÇ) ADGGILLAGR
1001	LSLRTHPWI	LA DHTIAGGVE	PL PATAFVEL	AL LAGRHAACI	T IDDLTLETPL
1051	LLDDTGTG	VG AAVGAGADA	AL VDAIEVQL	al gapdgsgri	RA LTVHSRPADD
1101	AADDGDAAI	DA ADAAGRGGI	PG GSGDLGDPO	GD ÞGDÞGDGGG	S RGWRRHATGI

1151	LSAGPAAEPA APDAAPWPPA DATALDVDAL YARLDAQGYS YGPAFRAVHA
1201	AWRHGDDLYA DVRLADEQRA EADAFALHPA LLDAALHAVD ELYRGSEGRG
1251	QEQGQGGQEP EQGRGDADAP VRLPFSFSDI RHHATGATRL WVRLSPQGDD
1301	RLRLSLTDGE GGQVATVDAL QLRLIPADRW RAARPTTAAP LYHLDWHELP
1351	LPEPAETDPA AHSWAVLGAH DAGLAPAAHY PDLAALKAAV EAGEPVPDIV
1401	FAPFPAQGTE TDVPAQVRAH ARHALELLRD WLTTEAFAAA RLVVLTTGAV
1451	TARPEDGPAD LATAPVWGLV RAAQAEQPDH VVLVDIDKDI DKDTDEETDQ
1501	ATDAGTASRH ALPAALAAAA AQAETQLALR AGTVLVPRLA VVPPRTDTPA
1551.	LHATAPESTT DTVDSTGIAG AAESGGTVLI TGGTGGLGQA VARHLAAAHG
1601	ARHLLLVSRR GDAAEGVAEL RADLADDGVD VRVAACDITD RDALAGLLAD
1651	IPAAHPLTAV VHTAGVIDDS LITAMTPERL DAVLAPKADA AWHLHELTRD
1701	KDLSAFVLFS SGASVLGNGG QANYAAANTF LNTLAEHRRA AGLAATSVAW
1751	GLWESASGGM AARLGDADRA RIHRTGVTGL TDEQALALFD AALTAEHPTV
1801	LATRFDRAVL RGQAAARTLQ PALRGLVRTP RPTASAGAIG STAATGSATD
1851	ENAPSSWAAR LARLSAADRD RALNELIREQ IATVLAHPSP DTIELGRAFQ
1901 ⁻	THE CONTROL OF THE PARTIES DEPOSITALVE HILLSHIPDEA
1951	QHTSPTAPGA SAEGTAATAT GIDDDPIAIV GMACRYPGGV TSPEQLWQLV
2001	ATGTDAIGPF PEDRGWDTAG LFDPDPDQVG HSYTREGGFL YDAARFDAGF
2051	FGISPREAAA TDPQQRLLLE TAWQAFEHAG IDPAALRGTP CGVITGIMYD
2101	DYGSRFLARK PDGFEGRIMT GSTPSVASGR VAYTFGLEGP AITVDTACSS
2151	TAGGETTANT DATEVERSRO RGLAPDGRCK
2201	THE GRAPHIC HRITIALINGS AVNODGASNG
2251	CREDEDIDIA EAHGTGTTLG DPIEAQALLA
2301	TOUTON AGVIKMVMAL RHEQLPTTLH
	· · · · · · · · · · · · · · · · · · ·

2351	ADEPTPHVQW DGGGVRLLTE PVPWSRGERT RRAGVSSFGI SGTNAHLILE
2401	EPPEEDLPEP VAAEPGGVVP WVVSGRTPDA LREQARRLGE FVVGAGDVSA
2451.	AEVGWSLATT RSVFEHRAVV AGRDRDDLVA GMQALAAGET PTDVVSGAAA
2501	SSGAGPVLVF PGQGSQWVGM GAQLLDESPV FAARIAECEQ ALSAYVDWSL
2551	SDVLRGDGSE LSRVEVVQPV LWAVMVSLAA VWADYGVTPA AVVGHSQGEM
2601	AAACVAGALS LEDAARIVAV RSDALRQLQG HGDMASLGTG AEQAAELIGD
2651	RPGVVVAAVN GPSSTVISGP PEHVAAVVAE AEARGLRARV IDVGYASHGP
2701	QIDQLHDLLT EGLADIRPAN TDVAFYSTVT AERLTDTTAL DTDYWVTNLR
2751	QPVRFADTIE ALLADGYRLF IEASAHPVLG LGMEETIEQA DIPATVVPTL
2801	RRDHGDTTQL TRAAAHAFTA GADVDWRRWF PADPTPRTVD LPTYAFQHQH
2851	YWLEEPSGLT GDAADLGMVA AGHPLLGACV ELAESDSYLF TGRLSRRAPS
2901	WLAEHVVAGT VLVPGAALVE WVLRAGDEAG CPTIEELTLQ APLVLPESGG
2951	LQVQVVVGAT DEQSGRRDVH VYSRSEQDAS AVWVCHAVGV VSSEMPEAAA
3001	ELSGQWPPAG AEAVDVEDFY ARAAEAGYAY GPAFQGLRAL WRHGTELFAE
3051	VVLPEQAGGH DGFGIHPALL DAALHPLMLL DRPADGQMWL PFAWSGVSLN
3101	ADRATHVRVR LSPRGEAAER DLRVVIADAT GAPVLTVDAL TLRAADPGRL
 3151	GAAARGGVDG LYTVDWTPLP LPQPLPLPRT DAGGSADWVI LSDNSSAALA
3201	DAVSSATAAG GGAPWALLAP VGGGSADDGL PVVRRTLSLV QEFLAAPELT
3251	ESRLVIVTRG AVATDADGDV AASAAAVWGL IRSAQSENPG RFVLLDVEEE
3301	HLHPDGGELP YAALRHAVEE LDEPQLALRS GKFLVPRMTP AAAPEELVPP
3351	VGTSGWRLGT SGTATLENLS VIDAPEAFAP LEPGQVRISV RAAGMNFRDV
	LIALGMYPDK GTFAGSEGAG HVTEVGPGVT HLSVGDRVMG LFEGAFAPLA
	VADARMVVPI PEGWSFQEAA AVPVVFLTAW YGLVDLGRLR AGESLLIHAG
3501	TGGVGMAATQ IARHLGAEVF ATASPAKHGV LDGMGIDAAH RASSRDLDFE

ETLRAATGGR GMDVVLNSLA GEFTDASLRL LAEGGRMVDM GKTDKRDPDR 3551 3601. VAAEHAGAWY RAFDLVPHAG PDRIGEMLAE LGELFASGAL APLPVQTWPL GRAREAFRFM SQAKHTGKLV LEIPPALDPD GTVLITGGTG VLAAAVAEHL 3651 VREWGVRHLL LAGRRGSEAP GSSELAEELT ELGAEVTFAA ADVSDPDAVA 3701 ELVGKTDPAH PLTGVIHAAG VLDDAVVTAQ TPESLARVWA AKATAAHLLH 3751 EATREARLGL FLVFSSAAAT LGSPGQANYA AANAYCDALV RQRRAEGLAG 3801 LSIGWGLWQT ASGMTGHLGE TDLARMKRTG FTPLTTEGGL ALLDAARAHG 3851 RPHVVAVDLD ARAVAAQPAP SRPALLRALA AGATPGARTA RRTAAAGSVA 3901 PAGGLADRLA GLPHPERRRL LLDLVRGNVA GVLGHSDHDA VRPDTSFKEL. GFDSLTAVEL RNRLAAATGL KLPAALVFDY PESATLVDHL LERLSPDGAP 4001 PPVKDAADPV LNDLGRIESS LDALALDADA RSRVTRRLNT LLSKLNGAAT .4051 4101 AGSPADVTDL DALDALDDVS DDEMFEFIDR EL*

MonAIV, polyketide synthase multi-enzyme MONS4, housing extension modules 5 and 6 Length: 4039 amino acids

MSSAEESSPD VSGTGVSGTG ESATGTSSTE AKLRQYLKRV TVDLGQARRR LREVEERAQE PIAIVSMACR FPGDTRTPEA LWDLVAEGGD AIDDFPTNRG 51 WDLESLYHPD PDHPGTSYVR RGGFLYDAPA FDASFFGISP REALAMDPQQ 101 RVLMETAWQL LERAGIDPAS LKLSATGVYI GAGVLGFGGA QPDKTVEGHL 151 LTGSALSVLS GRISFTLGLE GPSVSVDTAC SSSLVSMHLA AQALRQGECD 201 LALAGGVTVM STPGAFTEFS RQGALSPDGR SKAFAASADG TGFSEGAGLL 251 LLERLSDARR NGHKVLAVIR GSAVNQDGAS NGLTAPNGPS QERVIRAALA 301 NAGLGAAEVD AVEAHGTGTK LGDPIEAGAL LATYGRDRDE DRPLWLGSVK 351 SNIGHPQGAA GVAGVIKMVM ALQRELLPAT LYVDEPTPHV DWSSGSVRLL 401 TEPVPWTRGE RPRRAGVSAF GMSGTNAHVI LEEAPPEEAA AAETPAEGTG 451 AVVPWVVSGR GEEALRAQAA QLAEHVRDDD QRPASPLEVG WSLATTRSVF 501

551	ENRAVVVGDD RDALLDGLRS LAAGEASPDV VSGAVGPTGP GPVMVFPGQG
601	GQWVGMGARL LDESPVFAAR IAECEQALSA YVDWSLTDVL RGDGSELARI
651	DVVQPVLWAV MVALAAVWAD QGIEPAAVVG HSQGEIAAAC VVGAISLDEA
701	ARIVAVRSVL LRQLSGRGGM ASLGMGQEQA ADLIDGHPGV VVAAVNGPSS
751	TVISGPPEGI AAVVADAQER GLRARAVASD VAGHGPQLDA ILDQLTEGLA
801	GIRPAATDVA FYSTVTAGHL TDTTELDTAY WVRNVRRTVR FADTIDALLA
851	DGYRLFIEVS PHPVLNLALE GLIERAAVPA TVVPTLRRDH GDTTQLARAA
901	AHAFAAGADV DWRRWFPADP APRTVDLPTY AFQRQDFWPA PAGGRSGDPA
951	GLGLAASGHP LLGASVGLAS GDVHLLSGRV SRQSAAWLDD HVVAGQALVP
1001	GAAQVEWVLR AGDDAGCSAL EELTLQTPLV LPDTGGLRIQ VVVEAADAHG
1051	RRDVRLFSRP DDDDAFASTH PWTCHATGVL APAPTDGTNG TRDAADTLDG
1101	AWPPADAEPV PADDLYAQAD RTGYGYGPAF RGVRALWRHG KDVLAEVTLP
1151	KEAGDPDGFG IHPALLDAVL QPAALLLPPT DAEQVWLPFA WNDVALHAVR
1201	ATTVRVRLTP LGERIDQGLR ITVADAVGAP VLTVRDLRSR PTDTGRLAAA
1251	ATRORHGLFO LEWIAPENAA ENAAGPARDA SEGWVTLGED AASLADLLAS
1301	VEAGAPAPQL VAAPVEPDRT DDGLALATHV LDLVQTWLAS PLHDSRLVLV
1351	TRGAVTDADV DVAAAAVWGL VRSAQSEHPG RFTLIDLGPD DTLAAAMQAA
1401	HLEEPQLAVH GGEIRVPRLV RATTDPTAPN GTPEADRTAD PSEGLHRNGT
1451	VLITGGTGVL GRLVAEHLVT EWGVRHLLLA SRRGDQAPGS AELRARLSEL
1501	GASVEIAPAD VGDAEAVAAL IASVDPAHPL TGVIHAAGVL DDAVITAQTP
1551	L ESLARVWATK ATAARHLHEA TRETPLDFFV VFSSAAASLG SPGQANYAAA
1601	L NAYCDALVQH RRAQGLAGLS IAWGLWQATS GMTGQLSETD LARMKRTGFA
1651	L ALTDEGGLAL LDAARAHDRA YVVAADLDPR AVTDGLSPLL RALTAPATRR
170	RVASEGLADG ALATRLAGLD ADGRLRLLTD VVREYVAAVL GHGSAARVGV

1751	DIAFKDLGFD SLTAVELRNR LSAACDVRLP ATLIFDHPTP QALATHLVDR
1801	LAGSTSATTT VNATAPAAAH VAAGADVDAD TDDPVAIVAM TCRFPGGVAS
1851	PDDLWDLLDA RKDAMGAFPT DRGWDLERLF HPDPDHPGTS YTDQGGFLPD
1901	AGDFDAAFFG INPREALAMD PQQRLLLEAS WEVLERAGID PTTLKGTPTG
1951	TYVGLMYHDY AKSFPTADAQ LEGYSYLAST GSMVSGRVAY TLGLEGPAVT
2001	VDTACSSSLV SIHLATQALR HGECDLALAG GVTVMADPDM FAGFSRQRGL
2051	SPDGRCKAYA AAADGVGFSE GVGVLLLERL SDARRHGRRV LGVVRGSAVN
2101	QDGASNGLTA PNGPSQERVI RQALASGGLS SVDVDVVEGH GTGTTLGDPI
2151	EAQALLATYG QGRPEDRPLW LGSVKSNIGH TQAAAGVAGV IKMVMAMRHG
2201	VVPASLHVDV PSPHVEWDSG AVRLAVESVP WPQVEGRPRR AGVSSFGASG
2251	TNAHVIVESV PDGLEEDSVS VGGEALETET DGRLVPWVVS ARSPQALRDQ
2301	ALRLRDFASD ASFRAPLADV GWSLLKTRAL HEHRAVVVGA ERAELIAALE
2351	ALATGEPHAA LVGPACSQAR VGGDDVVWLF SGQGSQLVGM GAGLYERFPV
2401	FAAAFDEVCG LLEGPLGVEA GGLREVVFRG PRERLDHTVW AQAGLFALQV
2451	GLARLWESVG VRPDVVLGHS IGEIAAAHVA GVFDLADACR VVGARARLMG
2501	GLPEGGAMCA VQATPAELAA DVDGSAVSVA AVNTPDSTVI SGPSDEVDRI
2551	
2601	NVSGERAGEE ITDPEYWARH VRNAVLFQPA IAQVADSAGV FVELGPAPVL
2651	TTAAQHTLDE SDSQESVLVA SLAGERPEES AFVEAMARLH TAGVAVDWSV
2701	
2751	
2801	•
2851	
2901	YGYGPAFRGL RAVWRHGQDL LAEVVLPEAA GAHDGYGIHP ALLDATLHPI

:	2951	LAARFMDGSE	DDQLYVPFGW	AGVSLRAVGA	TTVRVRLRPV	GESVDQGLSV
	3001	TVTDATGGPV	LSVDSLQTRP	VKPSQLAAAQ	QPDVRGLFTV	EWTPLPQTDA
	3051	DGEADWVVLS	DGVGRLADVV	SAAGGEAPWA	VVAPVDASVG	DGREGLDGRL
	3101	VVERVLSLVQ	EFLALPELAE	SRLLVVTRGA	VATGVDGDGD	VDASAAAVWG
	3151	LVRSAQSENP	GRFILLDVDG	DGDDQGPDLN	GRHLPHATLR	HAAEELDEPQ
	3201	LALREGTLYV	PRLTQARQSA	ELVVPPGEPA	WRLRMVHDGS	LDALAAVACP
	3251	EALEPLAPGQ	VRIAVHAAGI	NFRDVLVALG	MVPAYGAMGG	EGAGVVTEVG
	3301	PEVTHVSVGD	RVMGVFEGAF	GPVVIAEARM	VTPVPQGWDM	REAAGIPAAF
	3351	LTAWYGLVEL	AGLKAGERVL	VHAATGGVGM	AAVQIARHVG	AEVFATASPG
	3401	KHAVLEEMGI	DAAHRASSRD	LAFEGTFREA	TGGRGMDVVL	NSLAGEFIDA
	3451	SLRLLGDGGR	FLEMGKTDVR	AAEEVAAEHA	DVSYTAYDLV	GDAGPDRISN
	3501	MLDKLVELFA	SERLKPLPVR	SWPLDKAQEA	FRFMSQAKHT	GKLVLEIPPA
	3551	LDPEGTVLVT	GGTGALGQVV	AEHLVREWGV	RHLLLASRRG	PEAPGSDELA
	3601	SKLTGLGAEV	TIVAADVSDP	ASVVELVGKT	DPSHPLTGVV	HAAGVLEDGV
	3651	VTAQTPEGLA	RVWAAKAAAA	ANLHEATREM	RLGLFVVFSS	AAATLGSPGQ
	3701	ANYAAANAYC	DALMQHRRAV	GQVGLSVGWG	LWEAPDAKPG	VAADAKASAA
	3751	TVGKASALSD	GTNGSAPQDT	TGTAPQGMTG	GLTDTDVARM	ARIGVKGMSN
	3801	AHGLALFDAA	HRHGRPHLVG	FNLDLRTLAT	HPLHTRPALL	RGLATPTAGG
	3851	ASRPTATAGG	QPADLAGRLA	ALSPSDRHHT	LVRLIREQAA	TVLGHHPDSL
	3901	TTGSTFKELG	FDSLTAVELR	NRLSAATGLR	LIPAGLVFDHP	DADILAEHLG
	3951	AQLAPDGDTP	AGAEATDPVI	RDLAKLENAL	SSTLVEHLDA	DAVTARLEAL
	4001	LSNWKAASAA	PGSGSTKEQL	. QVATTDQVLD	FIDKELGV*	

MonAV, polyketide synthase multi-enzyme MONS5, housing extension modules 7 and 8 Length: 4107 amino acids

MASEEELVDY LKRVAAELHD TRQRLREVED RRQEPVAVVG MACRFPGGIE TPEGLWELVA AGDDAIEPFP TDRGWDLEGI YHPDPDHPGT CYVREGGFLA 51 APDRFDSDFF GFSPREALAS SPQLRLLLET SWEALERAGI NPASLKGSPT 101 GVYVGAATTG NQTQGDPGGK ATEGYAGTAP SVLSGRLSFT LGLEGPAVTV 151 ETACSSSLVA MHLAANALRQ GECDLALAGG VTVMSTPEVF TGFSRQRGLA 201 PDGRCKPFAA AADGTGWGEG AGLILLERLS DARRKGHKVL AVIRGSAINQ 251 DGASNGFTAP NGPSQRRVIR QALSSAHLST SEIDVVEAHG TGTRLGDPIE 301 AEALIATYGK EREDDRPLWL GSVKSNIGHT QAAAGVAGVI KMVMALQREL LPATLNVDEP TPHVQWEGGG VRLLTEPVPW SRGERPRRAG ISSFGISGTN 451 AHVVLEEAPP EEDVPGPVAA EPEGVVPWVV SARTEEALSE QARRLGEFVA DTDPSTADVG WSLTTSRAIL EHRAVVVGRD RDALTAGLAA LAAGEESADV VAGVAGDVGP GPVLVFPGQG SQWVGMGAQL LDESPVFAAR IAECEQALSA 551 YVDWSLSAVL RGDGSELSRV EVVQPVLWAV MVSLAAVWAD YGVTPAAVIG 601 651 HSQGEMAAAC VAGALSLEDA ARVVAVRSDA LRQLMGQGDM ASLGASSEQA AELIGDRPGV CIAAVNGPSS TVISGPPEHV AAVVADAEER GLRARVIDVG 701 YASHGPQIDQ LHDLLTDRLA DIRPATTDVA FYSTVTAERL TDTTALDTDY 751 801 WVTNLRQPVR FADTIDALLA DGYRLFIEAS AHPVLGLGME ETIEQADIPA TVVPTLRRDH GDTTQLTRAA AHAFTAGATV DWRRWFPADP TPRTIDLPTY . 851 AFQRRSYWLP VDGVGDVRSA GLRRVEHSLL PAALGLADGA LVLTGRLAAS 901 GGGGGWLADH AVAGTTLVPG AALVEWALRA ADEAGCPSLE ELTLQAPLVL 1001 PGSGGLQVQV VVGPADGQGG RREVRVFSRV DSDDEAAGQD EGWSCHATGV 1051 LSPEPGAVPD GLSGQWPPTG AEPLEISDLY EQAASAGYEY GPSFRGLRSV 1101 WRHGHNLLAE VELPEQAGAH DDFGIHPVLL DAALHPALLL DQNAPGEEQE 1151 PAQPALRLPF VWNGVSLWAT GAATVRVRLA PHGGGETDDS AGLRVTVADA

1201	TGAPVLSVDS LALRPADPEL LRTAGRAGSG TNGLFTVEWT ALPPADVADH
1251	AAGDGWAVLG QDVPDWAGAD MPRHPDMASL SAALDEGTQA PAAVFVETTA
1301	TSHATPNTAA DVTLDASGRA VAERTLHLLR DWLAEPRLAE TRLVLITHHA
1351	VTTPADDDVN AAPLDVPAAA LWGLIRSAQA EHPDRFVLLD TDAKANTDPG
1401	PDTSTDHSTA SGTYRTVIAR ALATGEPQLA VRAGELLAPR LARAATPTPE
1451	TPTPETQPDT GSGSEAGAGS GSGPGATLDP DGTVLIAGGT GMMGGLVAEH
1501	LVRAWSVRHL LLVSRQGPDA PDARDLADRL VGLGATVRIV AADLTDGRAT
1551	ADLVASVDPA HPLTGVIHAA GVLDDAVVTA QTSDQLARVW AAKASVAANL
1601	DAATSELPLG LFLMFSSAAG VLGNAGQAGY AAANAFVDAL VGRRRATGLP
1651	GLSIAWGLWA RGSAMTRHLD DADLARLRAG GVKPLLDEQG LALLDAARAT
1701	AAHTSLVVAA GIDVRGLNRD DVPAILRDLA GRTRRAAAD STVDQAALER
1751	RLTGLDEAER RAVVTDVVRE CVAAVLGHRS AADVRTEANF KDLGFDSLTA
1801	VQLRNRLSAA SGLRLPATLA FDHPTPQALA AYLGTRLSGR TATPVAPVAP
1851	SAAATDEPVA IVAMACKYPG GATSPEGLWD LVAEGVDAVG AFPTGRGWDL
1901	ERLFHPDPDH PGTSYADEGA FLPDAGDFDA AFFGINPREA LAMDPQQRLL
1951	LEASWEVLER AGIDPTTLKG TPTGTYVGVM YHDYAAGLAQ DAQLEGYSML
2001	AGSGSVVSGR VAYTLGLEGP AVTVDTACSS SLVSIHLAAQ ALRQGECTLA
2051	LAGGVTVMAT PEVFTGFSRQ RGLAPDGRCK PFAAAADGTG WGEGVGVLLL
2101	ERLSDARRHG RRVLGVVRGS AVNQDGASNG LTAPNGPSQE RVIRQALASG
2151	GLSSVDVDVV EGHGTGTTLG DPIEAQALLA TYGQGRPVDR PLWLGSVKSN
2201	IGHTQAAAGV AGVIKMVMAM RHGVVPASLH VDVPSPHVEW DSGAVRLAVE
2251	SVPWPEVEGR PRRAGVSSFG ASGTNAHVIV ESVPDGLGED SVSVSGEAPE
2301	TETDGRLVPW VVSARSPQAL RDQALRLRDA VAADSTVSVQ DVGWSLLKTR
2351	ALFEQRAVVV GRERAELLSG LAVLAAGEEH PAVTRSREDG VAASGAVVWL

	ERFP VFAAAFDEVC GLLEGPLGVE AGGLREVVFR
	FALQ VGLARLWESV GVRPDVVLGH SIGEIAAAHV
	ARLM GGLPEGGAMC AVQATPAELA ADVDDSGVSV
2551 AAVNTPDSTV ISGPSG	EVDR IAGVWRERGR KTKALSVSHA FHSALMEPML
	TVSLI SNVSGLEAGE EIASPEYWAR HVRQTVLFQP
2651 GIAQVASTAG VFVELO	SPGPV LTTAAQHTLD DVTDRHGPEP VLVSSLAGER
2701 PEESAFVEAM ARLHTA	AGVAV DWSVLFAGDR VPGLVELPTY AFQRERFWLS
2751 GRSGGGDAAT LGLVA	AGHPL LGAAVEFADR GGCLLTGRLS RSGVSWLADH
2801 VVAGAVLVPG AALVEV	WALRA GDEVGCVTVE ELMLQAPLVV PEASGLRVQV
	YSRPD ADAVSGDDSW ICHATGTLTP QHTDAPNDGL
	GFYER VADAGYAYGP GFQGLRAVWR HGQDLLAEVV
2951 LPEAAGAHDG YGIHP	ALLDA TLHPALLLDW PGEVQDDDGK VWLPFTWNQV
3001 SLRAAGAATV RVRLS	PGEHD EAEREVQVLV ADATGTDVLS VGSVTLRPAD
3051 IRQLQAVPGH DDGLF	SVDWT PLPLSRTDVS QTDADGDADW VVLSDGVGSL
	VAPVG ASAGGGLAGF DRREGLDGRL VVERVLSLVQ
3151 EFLAAPELAE SRLLV	LTRGA VATGGDGDGD VDASAAAVWG LVRSAQSENP
3201 GRFILLDVDM DVDVD	DVDMDV DVDVDVDVDV DGDGNGSDLD PDLNGRRLPH
3251 ATLRHAAEEL DEPQI	ALRDG QLLVPRLVRA TGGGLVVAPT DRAWRLDKGS
3301 AETLESVAPV AYPGV	MEPLG PGQVRLGIHA AGINFRDVLV SLGMVPGQVG
3351 LGGEGAGVVT ETGPI	OVTHLS VGDRVMGVLH GSFGPTAVAD TRMVAPVPQG
3401 WDMRQAAAMP VAYL	TAWYGL VELAGLKAGE RVLIHAATGG VGMAAVQIAR
3451 HLGAEVFATA SAAKI	HVVLEE MGIDAAHRAS SRDLAFEDTF ROATDGRGMD
3501 VVLNSLTGEF IDAS	LRLLGD GGRFLEMGKT DVRTPEEVAA EYPGVTYTVY
3551 DINTDAGPDR IAVM	MSELGE RFASGALDPL PVRSWPLDKA REAFRFMSQA

KHTGKLVLDV PAPLDPDGTV LITGGTGALG QVVAEHLVRE WGVRHLLLAS 3601 RRGLDAPGSG ELADRLSDLG AEVTVAAADV SDPASVVELV GKTDPSHPLT 3651 GVVHAAGVLE DGIVTAQTPE GLARVWAAKA AAAANLHEAT REMRLGLFVV 3701 FSSAAATLGS PGQANYAAAN AYCDALMQRR RAAGQVGLSV GWGLWEAPDA 3751 KPGVAADAKP DVAADAKTGV AADGTPQGMT GTLSGTDVAR MARIGVKAMT 3801 SAHGLALLDA AHRHGRPHLV AVDLDTRVLA HKPAPALPAL LRAFAGDQGG 3851 QGGGRGGGRG GGPARPAAAT TRQNVDWAAK LSVLTAEEQH RTLLDLVRTH 3901 AAAVLGHAGT DAVRADAAFQ DLGFDSLTAV ELRNRLSAST GLRLPATFIF 3951 RHPTPSAIAD ELRAQLAPAG ADPAAPLFGE LDKLETVITG HAHDESTRTR 4001 LAARLQNLLW RLDDTSARSD HAAGASDADG DAVENRDLES ASDDELFELI 4051 DRELPS* 4101

MonAVI, polyketide synthase multi-enzyme MONS6, housing extension module 9 Length: 1701 amino acids

MPGTNDMPGT EDKLRHYLKR VTADLGQTRQ RLRDVEERQR EPIAIVAMAC RYPGGVASPE QLWDLVASRG DAIEEFPADR GWDVAGLYHP DPDHPGTTYV REAGFLRDAA RFDADFFGIN PREALAADPQ QRVLLEVSWE LFERAGIDPA 101 151 TLKDTLTGVY AGVSSQDHMS GSRVPPEVEG YATTGTLSSV ISGRIAYTFG LEGPAVTLDT ACSASLVAIH LACQALRQGD CGLAVAGGVT VLSTPTAFVE 201 FSRQRGLAPD GRCKPFAEAA DGTGFSEGVG LILLERLSDA RRNGHQVLGV 251 VRGSAVNQDG ASNGLTAPND VAQERVIRQA LTNARVTPDA VDAVEAHGTG 301 TTLGDPIEGN ALLATYGKDR PADRPLWLGS VKSNIGHTQA AAGVAGVIKM 351 VMAMRHGELP ASLHIDRPTP HVDWEGGGVR LLTDPVPWPR ADRPRRAGVS 401 SFGISGTNAH LIVEQAPAPP DTADDAPEGA ATPGASDGLV VPWVVSARSP 451 QALRDQALRL RDFAGDASRA PLTDVGWSLL RSRALFEQRA VVAGRERAEL 501 LAGLAALAAG EEHPAVTRSR EEAAVAASGD VVWLFSGQGS QLVGMGAGLY

ERFPVFAAAF DEVCGLLEGE LGVGSGGLRE VVFWGPRERL DHTVWAQAGL 601 FALQVGLARL WESVGVRPDV VLGHSIGEIA AAHVAGVFDL ADACRVVGAR 651 ARLMGGLPEG GAMCAVQATP AELAADVDGS SVSVAAVNTP DSTVISGPSG 701 EVDRIAGVWR ERGRKTKALS VSHAFHSALM EPMLGEFTEA IRGVKFRQPS . 751 IPLMSNVSGE RAGEEITSPE YWARHVRQTV LFQPGVAQVA AEARAFVELG 801 851 PGPVLTAAAQ HTLDHITEPE GPEPVVTASL HPDRPDDVAF AHAMADLHVA 901 GISVDWSAYF PDDPAPRTVD LPTYAFQGRR FWLADIAAPE AVSSTDGEEA GFWAAVEGAD FQALCDTLHL KDDEHRAALE TVFPALSAWR RERRERSIVD AWRYRVDWRR VELPTPVPGA GTGPDADTGL GAWLIVAPTH GSGTWPQACA 1001 RALEEAGAPV RIVEAGPHAD RADMADLVQA WRASCADDTT QLGGVLSLLA 1051 1101 LAEAPATSSD TTSHTSTSCG TGSLASHGLT GTLTLLHGLL DAGVEAPLWC ATRGAVSCGD ADPLVSPSQA PVWGLGRVAA LEHPELWGGL VDLPADPESL 1151 DASALYAVLR GDGGEDQVAL RRGAVLGRRL VPDATPDVAP GSSPDVSGGA 1201 AHADATSGEW QPHGAVLVTG GVGHLADQVV RWLAASGAEH VVLLDTGPAN 1251 SRGPGRNDDL AAEAAEHGTE LTVLRSLSEL TDVSVRPIRT VIHTSLPGEL 1301 APLAEVTPDA LGAAVSAAAR LSELPGIGSV ETVLFFSSVT ASLGSREHGA YAAANAYLDA LAQRAGADAA SPRTVSVGWG IWDLPDDGDV ARGAAGLSRR 1401 QGLPPLEPQL ALGALRAALD GGKGHTLVAD IEWERFAPLF TLARPTRLLD 1451 GIPAAQRVLD ASSESAEASE NASALRRELT ALPVRERTGA LLDLVRKQVA 1501 AVLRYEPGQD VAPEKAFKDL GFDSLVVVEL RNRLRAATGL RLPATLVYDY 1551 PTPRTLAAHL LDRVLPDGGA AELPVAAHLD DLEAALTDLP ADDPRRKGLV 1601 1651 RRLQTLLWKQ PDAMGAAGPA DEEEQAAPED LSTASADDMF ALIDREWGTR 1701

MonH, probable regulatory protein Length: 981 amino acids

1 VSGVERGVGS AGPVEQGDGL AGLVERAEAL AALRGAFDGS PGTGGSLVVL SGAVGTGKTA LLRAWADRIG ADADALVLTA TACRAERDLP LGVLEQLVRS 51 PGLPPASAER ALAWWDEEAS ATPGKTDANG TSANGTDANG TGAGQTGAGQ 101 AGVGQTGVGG EPVLAASALR GLCEVLRDLL AERPVVVAVD DAHHADAASL 151 QCLLSVVRRL RSARLHVLFT EYAHQKAQNA LLSSEFLHEP ALRRIRLEPL 201 SKAGVEALLA RHLDERTAQD LTPVVHGMSA GHPLLVRALA EDHRAAGGAG 251 EAYGRAVLSF LYRHETPVTQ VARAIAALGA HAGPGQVGRL LDVDAASVER. 301 AVRQLTVAEV LHEGRLCHPÄ FAAAVLDGMP PEERRALHGR VADLLHEEGA 351 PATEVAAHLV AADRSDAPWA VPVFQEAAQL ALDEDQVETG VDYLRAAHQR CRGAAQRAAV VGALADAEWR LDPAKVLRHL PDPAAMAPQT DPAALAPHTD 451 PAPTAAPTAA PTPTPIPTTP PLPTHLLWHG RVEEGLDAIG TLTGPGPNPA 501 551 GAPPMNPADL DTPWLWGAYL YPGHVKERLG SGALSPQRST PPAVTPELQG 601 AGTLMNDLLH GGERDATEAA ERALNRYRLG PRTIAVQTAA LAALTYRDRP 651 HRAAAWCDGL VAQADERNSP TWRALFTAWR ALLHLRQGDP AAAEQRAETA 701 LALLGSKGWG AAIGLPLAAA VQAKAALGDV DGAAALLERP VPQAVFQTRT 751 GLHYLAARGR YHLATGCHYA ALCDFYACGT RMSSWGVDLP ALEPWRLGAA 801 EAYLALGEGL LARQLVDGQL PLPTPDDGRT WGMTLRLRAA TSPAPARAEL 851 LDEAVAVLRE SGDTFELARA VADQAVAVRE GGEAERARLL ARKAELLARR 901 WGSAPAPATV PEPPERPGPA TPDAELTSAE RRVAELAAEG FTNREISRKL 951 CVTVSTVEQH LTRIYRKLDV RRLDLQAALG *

MonCI, flavin-dependent epoxidase Length: 496 amino acids

- 1 VTTTRPAHAV VLGASMAGTL AAHVLARHVD AVTVVERDAL PEEPQHRKGV
- 51 · PQARHAHLLW SNGARLIEEM LPGTTDRLLA AGARRLGFPE DLVTLTGQGW
- 101 QHRFPATQFA LVASRPLLDL TVRQQALGAD NITVRQRTEA VELTGSGGGS

PCT/GB00/02072 WO 01/68867

GGRVTGVVVR DLDSGRQEQL EADLVIDATG RGSRLKQWLA ALGVPALEED 151

- VVDAGVAYAT RLFKAPPGAT THFPAVNIAA DDRVREPGRF GVVYPIEGGR 201
- 251 WLATLSCTRG AQLPTHEDEF IPFAENLNHP ILADLLRDAE PLTPVFGSRS
- 301 GANRRLYPER LEQWPDGLLV IGDSLTAFNP IYGHGMSSAA RCATTIDREF
- 351 ERSVQEGTGS ARAGTRALQK AIGAAVDDPW ILAATKDIDY VNCRVSATDP
- 401 RLIGVDTEQR LRFAEAITAA SIRSPKASEI VTDVMSLNAP QAELGSNRFL
- 451 MAMRADERLP ELTAPPFLPE ELAVVGLDAA TISPTPTPTP TAAVRS

MonBII, carbon-carbon double bond isomerase Length: 141 amino acids

- 1 MPDEAARKQM AVDYAERINA GDIEGVLDLF TDDIVFEDPV GRPPMVGKDD
- 51 LRRHLELAVS CGTHEVPDPP MTSMDDRFVV TPTTVTVQRP RPMTFRIVGI
- 101 VELDEHGLGR RVQAFWGVTD VTMDDPAGPA DTTHPEGIRA *

MonBI, carbon-carbon double bond isomerase Length: 144 amino acids

- MNEFARKKRA LEHSRRINAG DLDAIIDLYA PDAVLEDPVG LPPVTGHDAL
- RAHYEPLLAA HLREEAAEPV AGQDATHALI QISSVMDYLP VGPLYAERGW 51
- LKAPDAPGTA RIHRTAMLVI RMDASGLIRH LKSYWGTSDL TVLG 101

MonAVIII, polyketide synthase multi-enzyme MONS8, housing extension modules 11 and 12 Length: 3754 amino acids

- MSNEEKLLDH LKWVTAELRQ ARQRLHDKES TEPVAIVGMA CRYPGGARSA
- 51 EDLWELVRDG GDAVAGFPDD RGWDLESLYH PDPEHPATSY VRDGAFLYDA
- 101 GHFDAEFFGI SPREATAMDP QQRLLLETAW EAIEHAGMNP HALKGSDTGV
- FTGVSAHDYL TLISQTASDV EGYIGTGNLG SVVSGRISYT VGLEGPAVTV
- DTACSSSLVA IHLASQALRQ GECSLALAGG STVMATPGSF TEFSRQRGLA 201
- 251 PDGRCKPFAA AADGTGWGEG AGVVALELLS EARRGHKVL AVIRGSATNQ
- 301 DGTSNGLAAP NGPSQERVIR AALANARLSA EDIDAVEAHG TGTTLGDPIE

351	AQALIATYGQ	GRPEDRPLWL	GSVKSNIGHT	QAAAGVAGVI	KMVMAMRNGL
101	LPTSLHIDAP	SPHVQWEQGS	VRLLSEPVDW	PAERTRRAGI	SAFGISGTNA
151	HLILEEAPPE	EDAPGPVAAE	PGGVVPWVVS	GRTPDALREQ	ARRLGEFAAG
501	LADASVSEVG	WSLATTRALF	DQRAVVVGRD	LAQAGASLEA	LAAGEASADV
551	VAGVAGDVGP	GPVLVFPGQG	SQWVGMGAQL	LDESPVFAAR	IAECEQALSA
501	HVDWSLSDVL	RGDGSELSRV	EVVQPVLWAV	MVSLAAVWAD	YGITPAAVIG
551	HSQGEMAAAC	VAGALSLEDA	ARIVAVRSDA	LRQLQGHGDM	ASLSTGAEQA
701	AELIGDRPGV	vvaavngpsŝ	TVISGPPEHV	AAVVADAEAQ	GLRARVIDVR
751	YASHGPQIDQ	LHDLLTDRLA	DIQPTTTDVA	FYSTVTAERL	DDTTALDTAY
801	WVTNLRQPVR	FADTIEALLA	DGYRLFIEAS	PHPVLNLGIQ	ETIEQQAGAA
851	GTAVTIPTLR	RDHGDTTQLT	RAAAHAFTAG	APVDWRRWFP	ADPTPRTVDL
901	РТҮАГОНКНҮ	WVEPPAAVAA	VGGGHDPVEA	RVWQAIEDLD	IDALAGSLEI
951	EGQAESVGAL	ESALPVLSAW	RRRHREQSTV	DSWRYQVTWK	HLPDVPAPEL
1001	SGAWLLLVP	A AHADHPAVL	A TAQTLTAHG	G EVRRHVVDA	R AMERTELAQE
1051	LRVLMDGAA	F AGVVNLLAL	D EEPHPEHSA	V PAGLAATTA	L VQALADNGAD
1101	IAVRTLTQG	A VSTSAGDAL	T HPVQAQVWG	L GRVAALEYP	R LWGGLVDLPA
1151	RIDHQTLAR	L AAALVPQDE	D QISIRPSGV	H ARRLAHAPA	N TVGSGLGWRP
1201	DGTTLITGG	T GGIGAVLAR	W LARAGAPHI	L LTSRRGPDA	P GAQELAAELT
1251	ELGAAVTVI	A CDVGDREQV	R RLIDDVPAE	H PLTAVIHAA	G VPNYIGLGDV
1301	SGAELDEVI	R PKALAAHHI	H ELTRELPLS	BA FVMFSSGAG	V WGSGQQGAYG
1351	AANHFLDAI	A EHRRAEGLE	A TSIAWGPWA	AE AGMAADQAA	L TFFSRFGLHP
1401					RP SPLLADLPEN
1451				•	R SQAAATLGHS
1501	ער ער אינוער	CD FORTGEDST	T AVELENEL	K STGLTLPT	TV VFDHPTPDAI

TDVLRAELSG DAAASADPVR AAGASRGAAD DEPIAIVGMA CRYPGDVRSA 1551 EELWDLVAAG KDAMGAFPDD RGWDLETLYD PDPESRGTSY VREGGFLYDA 1601 GDFDAGFFGI SPREAVAMDP QQRLLLETAW EAIERAGLDR ETLKGSDAGV 1651 1701 FTGLTIFDYL ALVGEQPTEV EGYIGTGNLG CVASGRVSYV LGLEGPAMTI DTGCSSSLVA IHQAAHALRQ GECSLALAGG ATVMATPGSF VEFSLQRGLA 1751 KDGRCKPFAA AADGTGWAEG VGLVVLERLS EARRNGHNVL AVIRGSAINQ 1801 DGTSNGLTAP NGQAQQRVIR QALANARLSA EDVDAVEAHG TGTMLGDPIE 1.851 ASALVATYGK ERPADRPLWL GSIKSNIGHA QASAGVAGVI KMVMALRNEQ 1901 LPASLHIDAP TPHVDWDGSG VRLLSEPVSW PRGERPRRAG VSAFGISGTN 1951 AHLILEQAPD APEPVTAPAE DAAAPAGVVP WVVSARGEEA LRAQARLLAD 2001 2051 RATADPRLAS PLDVGWSLVK TRSVFENRAV VVGKDRQTLL AGLRSLAAGE 2101 PSPDVVEGAV QGASGAGPVL VFPGQGSQWV GMGAQLLDES PVFAARIAEC ERALSAHVDW SLSAVLRGDG SELSRVEVVQ PVLWAVMVSL ASVWADYGIT 2151 2201 PAAVIGHSQG EMAAACVAGA LSLEDAARIV AVRSDALRQL MGQGDMASLG AGSEQVAELI GDRPGVCVAA VNGPSSTVIS GPPEHVAAVV ADAEARGLRA 2251 2301 RVIDVGYASH GPQIDQLHDL LTERLADIRP TTTDVAFYST VTAERLDDTT 2351 TLDTDYWVTN LRQPVRFADT IEALLADGYR LFIEASPHPV LNLGMEETIE 2401 RADMPATVVP TLRRDHGDAA QLTRAAAQAF GAGAEVDWTG WFPAVPLPRV 2451 VDLPTYAFQR ERFWLEGRRG LAGDPAGLGL ASAGHPLLGA AVELADGGSH 2501 LLTGRISPRD QAWLAEHRVM DTVLLPGSAF VELALQAAVR AGCAELAELT 2551 LHTPLAFGDE GAGAVDVQVV VGSVAEDGRR PVTVHSRPTG EGEEAVWTRH 2601 AAGVVAPPGP DAGDASFGGT WPPPGATPVG EQDPYGELAS YGYDFGPGSQ GLVSAWRLGD DLFAEVALPE AESGRADRYQ VHPVLLDATL HALILDAVTS 2651 SADTDQVLLP FSWSGLRVHA PGAEKLRVRI ARTAPDQLAL TAVDGGGGGE 2701

PVLTLESLTV RPVAAHQIAG ARAADRDALF RLVWMEVAAR AEETGGGAPR AAVLAPVESG PMGGTSAGAL ADALSDALAA GPVWDTFGAL RDGVAAGGEA 2801 PDVVLAVCAA PGAGAGAVAD ADGRGGDPAG YARLATVSLL SLLKEWVDDP 2851 AFAATRLVVV TRGAVAARPG ETAGDLAGAS LWGLVRSAQA ENPGRLTLLD 2901 VDGLESSPAT LTGVLASGEP ELALRDGRAY VPRLVRDDAS VRLVPPVGSL 2951 TWRLARCQEA GGGQQLSLVD APEAGRALEP HEVRVAVRAA APGPLTAGQV 3001 EGAGVVTEVG GEVGSVAVGD RVMGLFDAVG PVAVTDAALL MPVPAGWSWA 3051 QAAGSLGAYV SAYHVLADVV APRGGETLLV GEETGSVGRA VLRLALAGRW 3101 RVEAVDGAST ADDSGAERAA DVTLRHEGAL VVHRAGGRPD EGQAVVPPEP 3151 GRVREILAEL TELTELAEIT ESAEPGLPAE RGDSRALTPL DITVWDIRQA 3201 PAAMAAPPSA GTTVFSLPPA FDPEGTVLVT GGTGALGSLT ARHLVERYGA 3251 RHLLLSSRRG ADAPGALELA ADLSALGARV TFAACDPGDR DEAAALLAAV 3301 PSDHPLTAVF HCAGTVNDAV VQNLTAEQVE EVMRVKADAA WHLHELTRDA 3351 DLSAFVLYSS VAGLLGGPGQ GSYTAANAFL DALARHRHDG GAAATSLAWG 3401 YWELASGMSG RLTDADRARH ARAGVVGLGA DEGLALLDAA WAGGLPLYAP 3451 VRLDLARMRR QAQSHPAPAL LRDLVRGGSK SGGGAVSAGA AALLKSLGAM 3501 SDPEREEALL DLVCTHIAAV LGYDAATPVN ATQGLRELGF DSLTAVELRN 3551 RLSAATGLKL PATFVFDHPN PAELAAQLRQ ELAPRAADPL ADVLAEFERI 3601 EDSLLSVSSK DGSARAELAG RLRATLARLD APQDTAGEVA VATRTRIQDA 3651 SADEIFAFID RDLGRDGASG QGNGQPTGQG NGHGNGNGNG NGNGHGQAVE 3701 GQR* 3751

MonAVII, polyketide synthase multi-enzyme MONS7, housing extension module 10 Length: 1642 amino acids

- 1 MAHTEEKLLE YLKRVTADLR QTERRLQDVE SAGHEPVAVI GMACRLPGGV
- 51 RSPEEFWELV STGGDAVAPL PGNRNWDLDS LYDPDPESTG TSYVREGGFV

101	YDAGDFDPTF	FGIGPTEAAA	MAPQQRLALE	TAWEAIERAG	IDPLSLRSSD
151	TSTFIGCDGL	DYALGASEVP	EGTAGYFTIG	NSGSVTSGRV	AYTLGLEGPA
201	VTVDTACSSS	LVSLHLATQA	LRTQECSLAL	AGGTYVMSSP	APLIGFSELR
251	GLAPDGRCKP	FSASSDGMGM	AEGTGVVLLE	RLSDARRKGH	KVLAVIRGSA
301	INQDGASNGL	TAPNGPAQER	VIRAALANAR	LAPEDIDAVE	AHGTGTTLGD
351	PIEAGALISA	YGRERPEDRP	LWVGAVKSNI	GHTQIAAGVA	GVIKMVLALR
401	HDLLPAILHV	DAPSPHVEWD	GSGLRLLTDP	VKWPRGERPR	RAGVSSFGFS
451	GTNAHLILEE	APPEEEDVPG	SVAEEPGGVV	PWVVSGRTPD	ALRAQARRLG
501	EFAAGPADAS	AADVGWSLTT	TRSVFEHRAV	VVGRDRDALT	AGLGALAAGE
551	ASAGVVAGVA	GDVGPGPVLV	FPGQGSQWVG	MGAQLLDESP	VFAARIAECE
601	RALSAYVDWS	LSAVLRGDGS	ELSRVEVVQP	VLWAVMVSLA	AVWADYGVTP
651	AAVIGHSQGE	MAAACVAGAL	SLEDAARIVA	VRSDALRRLQ	GHGDMASLST
701	GAEQAAELIG	DRPGVVVAAV	NGPSSTVISG	PPEHVAAVVA	DAEARGLRAR
751 .	VIDVGYASHG	PQIDQLHDLL	TERLADIRPA	. NTDVAFYSTV	TAERLTDTTA
801	LDTDYWVTNL	RQPVRFADTI	EALLADGYRL	FIEASAHPVL	GLGMEETIEQ
851	ADIPATVVPT	LRRDHGDTTQ	LTRAAAHAFT	AGAPVDWRRW	FPADPTPRTV
901 [.]	DLPTYAFQHQ	HYWLERSASA	· SGAVSGEQSA	AEAQLWHAVE	ELDLGLLAET.
951	LGSEEGSEEA	. VRALEPALPV	LKGWRRRHQD	QATIDSWRYR	VTWKQRSDGP
1001	APELGGDWL	L FVPADKAEH	IP AVRATAEAL	S EHGAAAVRI	H PVETGRAGRQ
1051	ELAAVDTAG	L AGIVNLLAI	D EEPHPEHPA	V PAGLAATTA	L LQALGDNGTT
1101	APLHTVTQG	a vstgatdpi	T HPLQAHVWO	EL GRVAALEHE	PR LWAGLVDLPA
1151	RIDRHTLPR	L AAALLPQDI	DE DQTAVRPTO	HHRRLTHA	G SIQNPVHSEA
1201	TWRPRGTTI	I TGGTGGIG	AV LARWLARQO	A PRLHLTSRF	RG PDAPGARELA
1251	AELDGLGTA	V TITACDVSI	OP RQLSGLIDI	OM PAEHPLTAV	VI HAAGMTDLTA

1301 IGDLTTARLG EVLGSKSDAA WNLHELTRDL DLSAFVMFSS GAGVWGSGQQ

- 1351 GAYGAANHFL DALAEHRRAQ GLPATSIAWG PWAEAGMSAD PESLTYFKRF
- 1401 GLLPIAPDLC VKALHQAVDA GDATLTVANF DWAKFTPTFT AQRPSPFLDD
- 1451 LPENQREAEQ TGTAAETSAF REELAKTPAS QRLGFLVQQV RTYAAATLGR
- 1501 TVEDIPAAKP FQELGFDSLT AVQLRNQLNT TTGLSLPATV IFDHPTPEAL
- 1551 ATHLRGQLGD GAEVAGEGDV LAALDKWDTA FGAAEVDEAA RRRIVGRLQV
- 1601 LVSKWSPAQD GPEGTDSAHA DLEAASADDI FDLISSEFGK S*

MonD, cytochrome P450 hydroxylase Length: 431 amino acids

- 1 VGLTVGPDNA KRGIVPITDS KPAATFPDLV DPSFWARPHA ERVALFEEMR
- 51 GLPRPAFIRQ NMPGVPWTFG YHALVKYADI VEVSRRPQDF SSNGATTIIG
- 101 LPPELDEYYG SMINMDNPEH SRLRRIVSRS FGRNMIPEFE AVATRTARRI
- 151 IDELIARGPG DFIRPVAAEM PIAVLSDMMG IPAEDHDFLF DRSNTIVGPL
- 201 DPDYVPDRAD SERAVIEASR ELGDYIAGLR AERLAAPGND LITKLVQVQA
- 251 DGEQLTRQEL VSFFILLVIA GMETTRNAIS HALVLLTEHP EQKQLLLSDF
- 301 DTHAPNAVEE ILRVSTPINW MRRVATRDCD MNGHRFRRGD RIFLFYWSGN
- 351 RDESVFPDPY RFDITRGTNA HVTFGAVGPH VCLGAHLARM EITVLYRELL
- 401 AALPQIHAVG QPRRLDSSFI EGIKHLHCAF *

MonRI, probable activator protein Length: 268 amino acids

- 1 VRYEMLGPLR IKDGNDYATI NAQKVEIVLT VLLIRADRVV SLEQLMREIW
- · 51 GEDLPRRATA GLHVYISQLR KFLKVPGSAG NPVETRAPGY VLHKRDDDQI
- 101 DAQIFPELVD VGRSLLREKR FDEAASCFGQ ALALWRGPIL GQGGNGPGTN
- 151 GPIIDGFSTW LTEIRLECQE MLVECQLQLG RHREAVGMLY ALTAENPMCE
- 201 AFYRQLMLAL YRSERQADAL KVYQSVRKTL NDELGLEPGR PLQELQRAIL
- 251 AGDMHLMSPP PLALSGR*

MonAX, thioesterase Length: 278 amino acids

- 1 LSAFLAKGKI LSAFPPPDMS DPWIRRFRPR PEAVVRLVCF PHAGGSASYY
- 51 HPLAQSPTLP TDSEVLAVQY PGRQDRRRER LLDDIGELAD LITDALGPFD
- 101 DRPLAFFGHS MGAVLAYEVA QRLRERTGKQ PCRLFVSGRR APSRFRRGTV
- 151 HLLDDTELAA ELRRAGGTDP RFLDDEELLA EIIPVVRNDY RAVELYRWNP
- 201 SPPLSCPITA LVGDRDPQAP LDEVEAWQQH TEGPFDLKVF AGGHFYLNTH
- 251 QQGVTEVISK ALADSAQQRA TARGNAR*

ORF29, a homologue of CapK involved in cell wall biosynthesis Length: 428 amino acids

- 1 LADLVAHARS ASPYYRELYH GLPERIEDPT LLPVTDKKQL MDHFDDWPTD
- 51 RDITFEKVRA FTDDPELIGR RFLGRYLVAT TSGTSGRRGL FVLDDRYMNV
- 101 SSAVSSRVLA SWLGPLGIAR AVVHGGRFAQ LVATEGHYVG FAGYSRLRQD
- 151 GEARSKLVRA FSVHEPMSRL VAELNEYRPA FVIGYASTIM LFTAEQEAGR
- 201 LHIDPVLVEP AGETMTESDT DRIAAAFGAK VRTMYSATEC TYLSHGCAEG
- 251 WYHVNDDWAV LEPVDADHRP TPPGEFSHTT LISNLANRVQ PFLRYDLGDS
- 301 VMLRPDPCPC GTPSPAIRVQ GRSGDILTFP SGRGDDVSLA PLAFSSLFDR
- 351 MPGVELFQIE QTAPSTLRVR VVQAPGADAD HVWQRAHDGL THLLADNKLD
- 401 NVTVERGEEP PRQASGGKYR TIIPLAA*

LipB, lipase B Length: 338 amino acids

- 1 VKVPVEVTVR LSSWLGGLVA AVLAATVLPA SAASAADVSS PPLEIPAAEL
- 51 AKALHCGTEL GDLRDAGDKP TVLFVPGTGL KGEENYAWNY MAELKKKGYQ
- 101 SCWVDSPGRG LRDMQESVEY VVYATRAIQE ATGRKVDLVG HSQGGLLTAW .
- 151 ALRFWPDLPG KVDDMVTLGS PFQGTRLASP CRPIAEVAGC PASVLQFARD
- 201 SNWSKALGAD GTPMPAGPSY TTIYSYADES VVADGEAPSL PGAHRIGVQD

251 ICPGRPWPTH IAMVVDQVSY DLVADAIEHP GPADTSRIDR AHCAKPVMPL

301 NSQEAVDALP GLLNFPIELL IHSQPWVDEE PPLRPYAR

ORF31, putative ion pump Length: 309 amino acids

- 1 MGHDHGPSAG AAGGTLSGTY RKRLLWTIGI SGSITVIQVV GALLSGSLAL
- 51 LADAAHSLTD AVGVSLALGA ITLAQRAPTP RRTFGFCRVE IFSAVLNALL
- 101 LVVIFAWVLW SAIGRFSEPV EVKGGLMFVV ALGGLAANLV GLWLLRDAKE
- 151 KSLNLRGAYL EVLGDALGSV AVIVGGLVIL LTGWQAADPI ASIVIGLLIV
- 201 PRAYGLLRDS LHVLLEATPQ DVDLGEVRRH LLEERGVVAV HDLHGWTVTS
- 251 GMPVLTAHVV VTEEALASGY GELLGRLQRC VGGHFDVAHS TIQLEPEGHV
- 301 EEDGALHT*

ORF32, hypothetical membrane protein Length: 364 amino acids

- 1 MTRALTLHDW IVAGIAVVAG VVAGLLLRAL LRWLGERASK TRWSGDDVIV
- 51 DALRTLVPCA AITAGLAAAA GALPLTPRTG RNVTMTLTAL LILAATLTAA
- 101 RIVTGLVKAV AQSRSGVAGS ATIFVNITRV VVLAMGFLIV LQTLGISIAP
- 151 LLTALGVGGL AVALALQDTL ANLFAGVHIL AAKTVQPGDY IQLSSGEEGY
- 201 VVDINWRNTT VRQLSNNLVI IPNAKLAGTN MTNYSRPEQE LSIMVQVGVS
- 251 YDSDLEQVEK VTTEVVDEVM AEITGAVPDH EAAIRFHTFG DSRISFTVIL
- 301 GVGEFSDQYR IKHEFIKRLH QRYRAEGIRV PAPVRTVRVQ QGELPPPLGI
- 351 PHQRDTSTQA RLH*

AmtA, glycine amidinotransferase (partial coding sequence) Length: 131 amino acids

- 1 MSPVNSHNEW DPLEEIIVGR LEGATIPSSH PVVACNIPTW AARLQGLAAG .
- 51 FEYPORLIEP AQQELDQFIA LLQSLDVTVR RPAAVDHKHR FGTPDWQSRG
- 101 FCNSCPRDSM LVVGDEIIET PMAWPCRCFE T

PCT/GB00/02072 WO 01/68867

CLAIMS:

5

25

- A DNA sequence which is (a) at least part of the sequence set out in the appended sequence listing; or (b) a variant of a sequence (a) which encodes a polypeptide which is at least 80%, preferably at least 90%, identical with the corresponding peptide as set out in table II; provided that it is not a sequence encoding all or part of the polypeptide consisting of amino acids 1-920 encoded by mon AI as set out in table II. 10
 - 2. A DNA sequence according to claim 1 comprising the complete monensin gene cluster or a variant thereof.
- 15 3. A DNA sequence encoding at least part of at least one polypeptide which is necessary for the biosynthesis of monensin, and which is encoded by DNA included in the appended sequence listing or an allele, mutation or other variant thereof; provided that said polypeptide is not all or part of amino acids 1-920 encoded by mon AI as set 20 out in table II.
 - A DNA sequence according to claim 3 which 4. comprises at least part of one or more of the following genes: mon BI, mon BII, mon CI, mon CII, mon H, mon RI, mon RII, mon T, mon AIX and mon AX.

5. A DNA sequence according to claim 4 comprising all of the genes listed therein or an allele, mutation or other variant thereof.

6. A DNA sequence according to claim 3 encoding at least part of one or more of the polypeptides set out below, said polypeptide having the amino acid sequence as set out in the appended sequence data or being a variant thereof having the specified activity:

10 peptide activity

- mon CII epoxyhydrolase/cyclase
- mon E S-adenosylmethionine-dependent methyltransferase
- mon T monensin resistance gene
- . mon RII repressor protein
- 15 mon AIX thioesterase
 - mon AI polyketide synthase multienzyme
 - mon AII polyketide synthase multienzyme
 - mon AIII polyketide synthase multienzyme
 - mon AIV polyketide synthase multienzyme
- 20 mon AV polyketide synthase multienzyme
 - mon AVI polyketide synthase multienzyme
 - mon AVII polyketide synthase multienzyme
 - mon AVIII polyketide synthase multienzyme
 - mon H regulatory protein
- 25 mon CI flavin-dependent epoxidase
 - mon BII carbon-carbon double bond isomerase

mon BI carbon-carbon double bond isomerase

mon D cytochrome P450 hydroxylase

mon RI activator protein

mon AX thioesterase

5

20

25

- 7. A DNA sequence according to claim 6 encoding a single enzyme activity of a multienzyme encoded by any of mon AI-mon AVIII or a variant or part thereof.
- 8. A DNA sequence according to any preceding claim encoding any one or more of the domains as set out in Table I or a variant or part thereof.
- 9. A DNA sequence according to any preceding claim
 15 which has a length of at least 30, preferably at least 60,
 bases.
 - 10. A recombinant cloning or expression vector comprising a DNA sequence according to any preceding claim.
 - 11. A transformant host cell which has been transformed to contain a DNA sequence according to any of claims 1-9 and which is capable of expressing a corresponding polypeptide.

12. A hybridisation probe which is a DNA sequence according to any of claims 1-9.

- 13. Use of a probe according to claim 12 to detect a

 PKS cluster, optionally followed by isolation of the detected cluster.
 - 14. Use of a probe according to claim 12 which encodes at least part of a polypeptide having a known function to detect genes encoding polypeptides having analogous function.

10

15

20

· 25·

- 15. Use according to claim 14 wherein the polypeptide of known function is AT of module 5 or the regulatory protein encoded by mon RI.
- 16. A hybridization probe comprising a polynucleotide which binds specifically to a region of the monensin gene cluster selected from mon BI, mon BII, mon CI, mon CII, mon H, mon RI, mon RII, mon T, mon AIX and mon AX.
- 17. Use of a probe according to claim 16 in a method of detecting the presence of a gene cluster which governs the synthesis of a polyether, and optionally isolating a gene cluster detected thereby.

5

15

20

25

18. Use of a probe according to claim 12 which comprise a polynucleotide which binds specifically to a gene responsible for levels of activity of the monensin gene cluster, in a method of detecting an analogous gene in a gene cluster for biosynthesis of another polyketide, optionally followed by a step of manipulating the gene detected thereby to alter the level of expression of said other polyketide.

- 10 19. Use according to claim 18 wherein the gene is a regulatory gene, resistance gene or thioesterase gene.
 - 20. Use of the mon RI gene or variant and a monensin promoter to control expression of a heterologous gene in S. cinnamonensis.
 - 21. Use of a portion of the monensin gene cluster encoding a polypeptide having chain terminating activity, preferably comprising at least one of mon AIX and mon AX or a mutant, allele or other variant thereof encoding a polypeptide having chain terminating activity, to effect chain release of a peptide other than monensin.
 - 22. Use of a portion of the monensin gene cluster encoding a polypeptide having carbon-carbon double bond isomerase activity, preferably comprising at least one of

mon BI and mon BII or a mutant, allele or other variant thereof having isomerase activity to provide a desired stereochemical outcome in the synthesis of a polyketide other than monensin.

5

10

15

- 23. A polypeptide encoded by a portion of the monensin gene cluster, preferably comprising at least one of mon BI and mon BII or a mutant, allele or other variant thereof, having carbon-carbon double bond isomerase activity, or at least one of mon AIX and mon AX or a mutant, allele or other variant thereof having chain terminating activity.
- 24. An epoxidase enzyme encoded by mon CI or a derivative or variant thereof having epoxidase activity.
 - 25. A cyclase enzyme encoded by mon CII or a derivative or variant thereof having cyclase activity.
- 26. Use of a portion of the monensin gene cluster encoding a peptide having epoxidase or cyclase activity, preferably comprising mon CI or mon CII or a mutant, allele or other variant thereof encoding a polypeptide
- having epoxidase or cyclase activity to provide a said

 25 activity in the biosynthesis of a polypeptide other than
 - monensin.

5

27. A process for producing a polyketide containing a desired starter unit comprising providing a PKS gene having a loading module and a plurality of extension modules, wherein the loading module includes a KS_q domain derived from a KS domain of a monensin extension module.

- 28. A process according to claim 27 wherein the $KS_{\rm q}$ domain is derived from KS of module 5 of monensin.
- 29. A process according to claim 27 or claim 28 wherein the starter unit also includes an AT_q domain derived from an AT domain which is naturally associated with the KS domain.
- one PKS loading module and a plurality of PKS extension modules, and which can be expressed to produce a polyketide; wherein at least one of said modules or at least one domain thereof is a monensin module or domain or a variant thereof and is contiguous to a further one of said modules or a domain to which it is not naturally contiguous; provided that the sequence is not an ery loading module, the first and second extension modules of the ery PKS and the ery chain-terminating thioesterase in which the DNA encoding AT of the first extension module has been substituted by DNA encoding an ethyl malonyl-CoA

AT from the monensin gene cluster.

- 31. A DNA sequence according to claim 30 wherein said further module or domain is also a monensin module or domain or variant thereof.
 - 32. A DNA sequence according to claim 30 wherein said further module or domain is a module or domain of a PKS of a polyketide other than monensin or a variant thereof.
 - 33. A DNA sequence according to claim 30, 31 or 32 wherein said loading module is adapted to load a starter unit other than a starter unit normally received by the adjacent extension module.
 - 34. A DNA sequence according to claim 33 wherein said loading module is derived from a monensin extension module or variant thereof.

20

10

. 15

- 35. A polyketide synthase encoded by the DNA sequence of any of claims 30-34.
- 36. A polyketide compound as produced by a synthase according to claim 35.

37. A vector containing a DNA sequence of any of claims 30-34.

- 38. A transformant cell transformed to contain a DNA sequence of any of claims 30-34.
 - 39. A method of producing S. cinnamonensis capable of enhanced levels of production of monensin comprising engineering it to overexpress the mon RI gene.

10

40. A method according to claim 39 wherein said engineering comprises introducing at least one additional copy of the mon RI gene as shown in the appended sequence data or a variant thereof.

15

41. S. cinnamonensis containing multiple copies of the mon RI gene as shown in the appended sequence data and/or variant(s) thereof.

20

- 42. A method of producing monensin comprising culturing the organism of claim 41 and/or an organism produced by the method of claim 39 or claim 40.
- 43. A process for expressing a gene heterologous to

 S. cinnamonensis comprising transforming S. cinnamonensis

 with DNA encoding a heterologous gene and expressing said

gene under control of the activator gene mon RI or actII/orf4.

44. A process according to claim 43 wherein said heterologous gene is a PKS gene.

45. 13-Propyl erythromycin A.

monensin A : R = ethyl monensin B : R = methyl

Fig 1

Figure 2. Proposed mechanisms for monensin biosynthesis.

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

1 GATCAGCGCG GTGGCGTCGT CGGCGTCCAG CTCGTTCTGC GTGGCGGACG 51 GCAGCGCGAT GTCGGCAGGC ACCTCCCAGA CCCGGCGGCC CGGCACGAAG 101 CGGGCCGAGG CGCCGCGCG CTGGGCGTAG GTGTCCACGC GGGCGCGTTC 151 GACCTCCTTG ACCTGCTTGA GGAGGTCCAG GTCGATGCCC TTCTCGTCGA 201 CGACGTAACC GGAGGAGTCC GAACACGTCA CGGCGTTGGC GCCCAGGGCG 251 GCGAGCTTCT GGATGGTGTA GATGGCGACG TTCCCGGAGC CGGACACGAC 301 CGCCGTCCGG CCTTCGAGGG TCTCGCCGCG CTCACGCAGC ATCGCCGCCG CGAAGAGGAC GTTGCCGTAG CCGGTCGCCT CCGGACGGAT CAGGGAGCCG 351 401 CCCCAGTTGC GGCCCTTGCC GGTGAGGACG CCCGCCTCCC AGCGGTTGGT GATGCGCCGG TACTGACCGA ACAGATAGCC GATCTCCCGG CCGCCGACGC CGATGTCGCC CGCGGCACG TCCGTGTGTT CGCCGATGTG CCGGTACAGC 551 TCCGTCATGA ACGACTGGCA GAAACGCATG ACTTCCGCGT CGCTGCGGCC . 601 GCGCGGTCG AAGTCGCTGC CGCCCTTGCC GCCGCCGATG CCGAGGCCCG TCAGCGCGTT CTTGAAGATC TGCTCGAAGC CCAGGAACTT GATGACGCCG AGGTTCACCG ACGGGTGGAA GCGCAGGCCG CCCTTGTACG GGCCGAGGGC 751 GCTGTTGAAC TCCACCCGGA AGCCGCGGTT GACCCGCACG CGACCGTGGT CGTCCTGCCA CGGCACCCGG AAGACGATCT GGCGCTCCGG TTCGCACAGG 801 CGCTCGATCA GGCCGGCTTC GGCGTACTCG GGGCGAGCCG CGATGACCGG 901 CGCCAGGGTC TCGAGGACCT CGCGGGCGGC CTGGTGGAAC TCCGGCTGGG 951 CCGGGTTGCG GTGTTCGATC TCGGTGAGCA GCTGGGAGAG TGCTGTCTTC 1001 TGCGAGAGAG CTGTCTTCGT GTCGGGTCGC GTGGTCAAAG GAGCCCTTTC 1051 TGGCACGCC GGCGTAGGCG CTCGGCGCCG TTGCCGTGCG CAGGGAGACG 1101 CTCGAGCCGC AAGTATGACG CGCATGTAAA CACAGCGACC AGCCCCCGG 1151 TCCAGGGAGT GACCACCATG CGAGACCGGG CCACCGGTAG GGCCACCGGT 1201 CCGGCCTGCG GACCCCGTGT CACTTCCGGC TCGCGGCCAG GGGTGCCGCC

	1251	CGGCGGACCG	AATCGGCGG	A GGCGGCCAGC	: AGTGGCATGC	GGACGGCCGG
	1301	GCTGGGAAT	GGGTTCTGG(GTGCAGCAC	: TCCCTTGATC	ACCGTCGGGT
	1351	TCGGTTCGGT	GAAGAGGCC	GCGGAAAGGC	GGGCGAGGTC	GGCTCCGAGA
	1401	GCGCGGGCGG	GTGCGGCGGZ	A GCCGCGTCGC	CACAGCGCGA	TCATCTCGGC
	1451	GTAGTCGGCG	GTACGCAGAT	TGGCCGACGC	CACGATTCCG	CCGTGGGCGC
	1501	CCGCAGCGAC	CAGCGGCGAG	AGGACGATGT	CGTCACCGCC	GAGCACGGCG
	1551	AAGCCGGGCA	GGGGCGAGTC	GAGCAACTCC	ATGGTGGTCG	GGTCGATCGA
	1601	GCCGGTCGCG	TGCTTGATGC	CGACGACCTC	CGGCAGGCGG	CCGAGTGCGG
•	·1651	TGATCGTGCC	CGCGCCGAGC	GTCTGCCCGG	TGCGGTAAGG	GATGTCGTAC
	1701	ACGACCAGGG	GGAGGCCGCC	GTGCTCGGĊC	AGCGCGGCGA	AATGAGCCAG
	1751	GGTCCCCGCT	TCCCCGGGGC	GGATGTAGGG	CGGCGCGGG	ACCAGCGCGG
	1801	CGGCGACGTC	ACCCCGGGCC	GCCAGCTCTC	GCAGGGCCGT	GATGGCGGTG
	1851	GCGGTGTCGT	TGGTGCCCAC	CCCGACGATG	AGCGGTGCCC	CGTGTGCCCG
	1901	GCACGCGGCC	GAGCAGACGC	GGATCACCGT	CTCTCTCTCC	TCGGCGGTCA
	. 1951	GTGTGGCGGC	CTCGGCGGTC	GTACCGAGGG	CGACGAGCCC	GGAGGCGCCG
	2001	GCCGACAGCG	CCTCGTCGGC	GAGTCGGGCC	AGCGCCTCGG	GGGCCAGGCG.
٠.	2051	CAGATCGTCG	GTGAACGGAG	TTACCAGGGG	GACGTACAGG	CCGTTGAAGA
	2101	GCGGTTCGGT	GGTCGGTTCG	AGGCTCGATG	CGAGGGTCAT	GCTCTTACCC
	2151	TGGCCCACGC	CACTCGGTAG	ATCCATTTCA	GATTCCTGCC	GTCACACCTA
	2201	AGCTGAACTT	ATGCTCGATG	TCCGTCGCCT	CCATCTGCTC	CGCGAACTCG
	2251	ACCGGCGGGG	CACCATCGCC	GCCGTGGCCG	AAGCGCTGAC	CTTCACCGCG
-	2301	TCCGCCGTCT	CCCAGCAGCT	CGGCGTGCTG	DDADDDADAD	CGGGCGTGCC
	2351	GCTGTTGGAA	CGCAGCGGCA	GGCGCGTGGT	CCTCACGCCC	GCAGGACGCT
	2401	CCCTCGTCGC	ACACGCCGAC	GCGGTGCTGA	ACCGTCTCGA	ACAGGCGGTC ·
	2451	GCCGAGCTGG	CGGGCGCACG	GGACGGCATC	GGGGGGCGGC	TGCGCATCGG .
•	2501	GACGTTCCCT	TCCGGCGGCC	ACACCATCGT	CCCCGGCGCG	CTGGCCGAAC

255	1 TGGCCTCTCG TCACCCCGCG TTGGAGCCGA TGGTGCGGGA GATCGACTCC
260	
265	
270:	
2751	GCCACGGACT CCGGCTCCGG GAGCACACTG GCAGCGCTGC TCGGGCCCTG
2801	TGCCGAGGTT CCGTGGATCA CGGCGCGGGA CGGCACGACC GGTCACGCGA
2851	TGGCTGTACG CGCCTGTCAG GCCGCCGGGT TCCAGCCCAG GATCCGCCAC
2901	CAGGTCAACG ACTTCCGCAC GGTGCTGGCT CTGGTCGCCG CCGGGCAGGG
2951	GGCCGGGTTC GTGCCGCGGA TGGCCGCCGA GCCGAGCCCC GCGGGCGTGG
3001	TGCTCACGAA GCTGCCGCTG TTCCGTCGCT CGAAGGTCGC GTTCCGTGCG
3051	GGCGGCGGTG CCCATCCGGC GATCGCCGCT TTCGTGGCCG CGGCGACGAC
3101	CCCGGCCGGC GGCTCTGAGT
3151	18181816CC CTGGGCCGCA CCATTCGTGG
3201	TOTAL TOTAL TOTAL GICCIGACGI CCIGATGICC GAACGAGAAG
3251	CCTGTTCCTC CTCCCCGACC
3301	Neroddaded Geeenedeed Cegregatge Cttggaatge
3351	CAGGCTCATG AGGCCTCCGT
3401	GTCCTCGGAA CAGGTCAGGA TTCTGCCCGC CGATGCCGAG ACACTCATCC
3451	CGAAGGACGC CGAGCGGCTG CCGGTGCCGT TGAGCGAGGA GGAGGCGCTC
3501	AAGGTCGAGC AGGAGTGCGC GCCCCAGACC GTCACGGACA TGGAGAGCGA
3551	ACTGCTCGCG TTCCGGGAGA CGACCCAGGA CTGGCAGGCC CTCGTGCACC
3601	GGGCCCTGAC CGCGGGCATC CCCGCGCAGC GCATCGCCCG GCTGACCGGA
3.651	CTCGACCCGG AGGAGATCGG CCGCCTGTAG GCGCTAGCGG CCGCCCAGTG
3701	CGGACACCAG GATGGCGACC GTGACGGTGT TGAAGACGAA GGCGATGACC
3751	GTGTTCGCCG CCACGGTCCG TCGCATGTCG CGTGAGGTGA CGTCGACATC
3801	GGTGGTGCCG AACGTCGTCA TCGCGGCCAG GGCGAAATAG ACGTAGTCGG

3851	CCCAGGCGG	ACTCCGCTCC	CCGGGGAAT	r ccagtgccc	CTCGTTCTCC
3901	ACGAGGTTGT	CGGCCTGGA	GGTGACGGC	AAGGCCACGA	CCACGCAGAT
3951	CCAGGCGGC	ACGACCAGGG	CGAGCGCCAC	CAGGGTGCGG	GGGAGCGCGG
4001	AGAAGGTGGT	GCTGAGGTGG	CCGGGAAGC	CACAGCACCGC	CACCACCAGC
4051	GCGGCAGCCG	GATGAAGAG	CGAACCCCC	GGGCCGGGCG	CGGTTCCGAG
4101	GACGTAACGC	TGCAGGAATG	TGCCGCGGG	TTCGCGCCGC	GCCCAGGÃGC
4151	GGACCTGCTC	CGGAGCGACG	CTCACGAAGA	CGGTCATGGT	GATGGCGAĠG
4201	TAGGGCAGCA	GGTAGGCGAA	GAAGACGAGC	: ACGCCGACAT	CCGCTGCCGA
4251	AATCCGCACC	ACGGCGTCGA	TGGGGAGGAC	CACTGCCGCG	CACGCCGCGA
4301	CGGCCAGGCT	CACCGCCGAC	CGGCGCCGTT	' CGGAAAGCCA	GCGATGCACG
4351	GACGAGCCTC	TCTGGTCGGG	CGTCGGGCCT	CGTGTGATCG	TGACCGGCTC
4401	CGCGCCCGCC	GAAAGCGCGG	TGCGATCTCC	TGCCCTCGAA	CGAGCGAAAC
4451	GCTTGCGCCG	GAAAGCCTCC	CTGCTGATGC	CGACGGCGGC	GGCAGTGGCT
4501 -	GCGGATGCGG	ATCGTGCGCT	GTGCCCTGAC	CCTGGATGGG	GGGAGGAACG
4551	CAGAGAGGCA	GGTGCGCCCA	TGACGGTCAT	GGACAAGCTC	AAGCAGATGC
4601	TCAAGGGGCA	CGAGGACAAG	GCCGGCCAGG	GAATCGACAA	GGCGGGCGAC
4651	TTCGTCGACG	GGAAGACGCA	GGGCAAGTAC	AGCGGTCAAG	TCGÀCACGGC
4701	CCAGGACAAG	CTCCGGGACC	AGTTCGGCTC	GGATCAGCAG	GAGCCTCCGC
4751	AGAGGTAGGC	AGCGTCAGGG	CGGAATCGGT	CCGGGCGACC	GCTGACCGCT
4801	GATGCAGATG	CCGCAGACGT	CGGCCCCGCA	CTCCTCCGGG	TAAATCGGAG
4851	CGTAGGCGGG	GCCGACGTGT	GCGCGTGCGG	CCTCGTCTCT	GCCGCCCCTC
4901	TCCGCCCCGT	CTCTGGCCCC	TTGGTGCCAG	TCTGACGGGA	AAATGGCACC
4951	ACTTGGTGCC	ACGCATGTGC	CATGATGGCG	TCATCGAGAG	CGCGCTGCCC
5001	CGACTCGCGG	GCAGGAAGGG	CGCGTTCCGC	GGAGTCGGCC	GTCGGAGGGG
5051	TTGCATCATG	GGGACAGCAC	AGAGCCAGGA	GCAGGCCGCC	GCGCCCGGTG
5101	CCTGCGCCGC	CTTCGTCCGC	TTCGTGCTCT	GCGGTGGCGG	AGTGGGCCTC

5151	GCCTCCAGCT	TCGCCGTGGT	CGCCCTCGCC	TCCTGGGTTC	CCTGGGCGCT
5201	GGCCAACGCC	CTGGTCGCCG	TGGTCTCCAC	CGTCGTCGCC	ACCGAGCTCC
5251	ACGCCCCCTT	CACCTTCGGT	GCGGGCGGGC	GCGCGACCTG	GCGGCAGCAC
5301	GCGCAGTCGG	CCGGGTCCGC	GGCGGCCGCG	TACGCGGTGA	CCTGCGTGGC
5351	GATGTTCGTC	CTGCAGCAGC	TGGTGGCGGC	GCCCGGCGCG	GTGCTCGAGC
5401	AGGTCGTGTA	CCTGTCGGCC	TCCGCGCTCG	CCGGTGTCGC	GCGGTTCGTG
5451	GTGCTGCGCC	TCGTCGTCTT	CGCCCGGAAC	CGCTCGCTGC	CCGCCGCGGC
5501	CGCCGTGCGC	ACCGCGCGTC	CCGTGCGTCG	CGTGCCGGCG	CCCGTGCCCG
5551·	CGACCGTGGC	CCACGCCGCA	TCGCGCCCGG	CCGGCCCCGC	GGCGCTCTGC
5601	CCCGCCGCAT	GACTCCGTGC	CCGCATGTTT	GTGCCCCGG	TGCTCCGTGC
5651	GTCCGGGGGC	GGGGTGGGCG	TCGTGCCCGG	GTGGTCCAGG	GGTCACGCGG
5701	TGGTGTGTGC	CAGTTCCTGG	CCGAGGTGGT	GGGCGAGCTG	TGCGGGCGTG
5751	GGGTTCTCGA	CGATGGCGAC	CATCGCGATC	TCCATCCCGG	TCAGÇGTCAT
5801	CAGTGTCTTG	GTGAGCTCAA	GGGCGGTGAG	GGAGTTGAGA	CCGTTCTCGA
5851	GGAAGTTGCT	GTCGTCGCTG	AGGGTGGTGT	TCAGAAGGGT	GCCGGCCTGG
5901	GTGCGGATGG	TGTCGGTGAG	GAGCTTCTCG	CGCTCCTCGG	GGGTGGCCGC
5951	GGCGAGCTGC	TTCTCCAGCT	CGGTGGCGTC	CTGGCCGGAG	GTGTGGTCGG
6001	TGCTGGTCAT	GACTGCTCCT	GTGTGAGTGA	GGTGTTGGCG	GGGGTCACAC
6051	CGCGGCGTGC	GCGGTGTGGT	CGTGCAGCCA	GTAACGCGTG	GCCTGGAAGG
6101	AGTACGTCGG	GAGGTCGATG	GTCCGGGGGT	GGGGGGTGCG	CCGGACGAGA
6151	GGGGTCCAGT	CGACGGTGCC	GCCCGTGGTG	TGAAGCCGCG	CGAGGGCGGT
6201	CAACAGGGCG	CTTACGGCGG	·AGGTTTGCGT	GCCTTCCGGT	GAGAGCGCGC
6251	CCAGGTGGAG	AAGCGTGTGG	GTCTCGGGGG	TGGGGGGTGC	GGTGGGGGCC
6301	GGCGAGGTG	A GGTGGTGGTG	CCAGTAGTCG	GCGGAGGCG	A TGGGGGTGTC
6351	GGCCGGGGCI	A GTGCTGGTGA	GCGTGAGCGT	GGCGCGTTGG	AACGTCAGCT
6401	GCTTCAGCAG	GGGCTCGTAG	GOGTCGGGCG	GAGCCGGTT	TTCACCCTCG

6451 GCGGCCTGGG CGGCAGCGGC GTGGGCGGCG GCCAGGCGGC ACGCGTCGTC 6501 GAGGGTCAGG ATTCCCGCGG CGTACGCGGC GGCGATGTGG CCGACACCGT 6551 CGCCGGTGAG GGTGTGGGGG CGTACCCCCG TTTCCAGGAG CAGCCGCGCG 6601 AGCGCGGTGT GGACCGCGAA GCGCGCCAGT TCGGAGTGGG GAGTGGGGAG 6651 GGGAGTCGGC AGATGGGTGT CGAGGAGCGC GCGCGCTTCG TCGAAGGCGG 6701 ACGCGAAGAG CGGGAACGCC GAGTGGAACT CGGCACCTCC GAAAGCCGCG 6751 CCGAATGTAG CGCCGAATGT CGCGCCGGGT TTGGCTCCGG GTGCCGCCCC 6801 CGTCGTCACC CCGTCGGCCG GGCGGCCGTC GAAGTGCCAG GCGATCTTCT TCGGGCCGGC CCCGGGCGTG GACCTGACCA GGTCCGGGTG GTCCTCTCCG 6851 6901 GCGGCCAGGG CGCGGGCGGC GGCGAGGAGT TCGGTGTGGT CGGTGCCGGT 6951 GAGGACGGCG CGGTGTTCCA GGGGGCTGCG GGTGGCGGCG AGCGAGTAGG 7001 CGACCTCGGC GGGGGAGGGC GCGGGGTCGG TGGCCGCCAG GTGGGTGACG 7051 AGGGCCTTCG CCTGTGCCCG CAGGGCCTCG GGTGTACGAG CGGACAGGCT 7101 CCAGGCCACC GGGAGTTCCG GGGCAACGGG CGACGTCTGG TCGCGGGCGG 7151 CATCCGGCAC CGGAGCCTCG TCCACCGGCG GCTCTTCGAG GATGAGGTGC 7201 GCGTTCGTGC CGGACGTGGC GAAGGCGGAG ATGCCGACCC GGCGGGGCTC 7251 CTCGCGGCGG GGCCAGTCGA CCGCCTCGGT GAGCAGCCGT ACCGCGCCCT 7301 TCTTCCAGGC GGCGAGGGGC GTCGGGCGGT CGACGTGGAG GGTCGGCGGC 7351 AGGGTGCCGT GCCGGAACGC CTGGACCATC TTGATGAGCG CGGCCGCACC 7401 CGCGGCCCCC TGCGTGTGCC CCGTGTTGGA CTTGACGGAG CCGAGCCACA 7451 GGGGCCGGTC GGGGGAGCGG TCGGCCGCT AGGTGGCGAG GAGGGCCTGG 7501 ACCTCGATGG CGTCGCCGAT GGGGGTGCCC GTCCCGTGCG CCTCGACGGC 7551 GTCGATCTGG TCCGGGGTGA GCCCGGCGTC GGCGAGGGCG GCGCGGATCA 7601 CATGCTGCTG GGAGGGGCCG TTGGGGGCCGG CGAGGCCGTA TCCGGCGCCG 7651 TCCTGGTTGA CCGCGGAGCC GCGGATGACG GCGAGCACCG GGTGGCCGTT 7701 CTTCCTGGCG TCGCCGAGCC GCTCAAGCAG GACGAGGCCG ACGCCTTCAC

7751	CGAGGCCCAT GCCGTCGGGG GGGGGGGGG
	TOTAL TOTAL TOTAL CONTROL OF THE CANACAGE CONTROL OF T
7801	TGCGCGAGCG ACTTCTGGTG GGCGAAGGCG TGGAAGGTGT GCGGCGTCGA
7851	CATGACGGTG CCGCCGCCGG CGAGGGCGAG GCCGCACTCC CCGCGGCGCA
7901	GCGCCTGGCA GGCCAGGTGG AGGGCGACCA GGGAGGACGA GCAGGCCGTG
7951	TCCACGCTGA TGGCGGGGCC CTCGAGGCCG AGGGCGTAGG CGATGCGGCC
8001	GGAGACGAGG CTGCCGGACG TGCCGCCGCC CAGATAGGGC AGCAGCTCGT
8051	CGGGCGCGGT CTCGAGCCGT GTCGCGTAGT CGTGCCCGGT GGCGCCGACG
8101	TAGACGCCGG TGAGGGTGGA GCGCAGGGTG TGCGGGGCGA TGTGGCCGCG
8151	TTCGACGGTC TCCCACGCGA GGTGGAGCAT GAGGCGCTGG AGGGGTTCGG
8201	TGGCCACGGC CTCGGTGTCG CTGATGTCGA AGAAGCCCGC GTCGAAGCCG
8251	GCCGCGTCGT CCAGGAACCC GCCGAGCTCC GCGTACGGGC GTTCCTCGGG
8301	GAGTTCCCAG GCGCGGTCGT CGGGGAAGCC GGTGACGGCG TCGCGGCCCT
8351	CGGACACCAG ATCCCACAGG TCGTCCGGGG TGCGGGTCTT GCCGGGCAGC
8401	CGGCAGGCCA TGGAGACGAC GGCGATCGGC TCGTGCTGTG CGGCCTTCAG
8451	TTCGCGCAGC TGCTGCTGGG CCTGGTGGAG CTCGGCCGTC GTCCACTTGA
8501	GGTATTCGAC GAGCTTCTCT TCGTTCGCCA CGGGAATGGT CAGCCTTCCT
8551	GTTCTCGCGC GTGAAGCCTC AGGTGGGACG AGGTCGGGCA AGGTGGGCAG
8601	GCAGGAGCCG CGCGCTGTGG GTGCCAGGGT CGCCGCGGCT GCTTAAGCGG
8651	GTCTAACTCC CGCCTTGCCG CCGGGCATCG CCTCGCACGA GCGGGCCAGC
8,701	AGCAGGAGGT CGGCGGCGAT CTCGTCGGGT GCGCCGGCGT GCAGATCGTG
8751	GTCGGAGCCC GGGTACCAGC GCACGCTCAC CTGCTCCAGG GCCGCCTCGG
8801	CGGCGGCCAC.CCAGGCCCGT ACCTGGTCGG ACAGTTGGGG GATGGCGGGG
· ·8851	ATGAGGGGCA GCAGCCGCAC CGGCACGGTG ACCTTGGGAT ACCAGTCGGC
8901	CGGTGCCTCC CGTTGCAGGC CGGCGACGAT CGACATGACC TGTGTCGAGG
8951	TCAGGCGGGG GATGAGCAGG CCGTCCGGCC CGACGCGGTA GTCCGCCAGG
9001	CGTGCCTCGA TGGACGTGGG CGACCAGTCG GGATGGGTGG CCCGCAGGTA

	9051	1 GGCGCGCATG TCGGCGGCGC TGGTGGTGCC CTGCTGGGCG CGCCGGACCA
	9101	CGTCGGCGGT GCGCTCCCAG AAGGCGCGCA TCACCGGTCC GTCGAACTCG
	9151	TACCAGCCGC CGTCGATCAG GGCGAGACCG GCCACCAGGT CCGGGTGCTC
	9201	GGCCGCCAGG CGCAGCGCGA GGTGCGCGCC CCAGGAGTGC CCGGCCACCA
	9251	GTGCGCCGGA CAGGTCGAGG GCGGTGACGG CCGCCACCAG GTCGGTGACG
	9301	ACCGTCGCGT TGTCGTACCC GTCGGGCGGG GTGTCCGACT CGCCGTGGCC
	9351	GCGGTGGTCG ACGGCGTAGG CCGGGTGTCC GGCGGCGGCG AGACGGGCGG
	9401	CGACCTCGTC CCACATCCGG GCGTTCGACA GCATGCCGTG CAGCAGCAGG
	9451	AACGGACGGC CCGGGGCTCC CGGCCCGTCC GCGGGCCGGT ACCTGACATT
	9501	GAGGGAGACG GTCTGCGACA CGGGGATGCG GAGGTTCTTC ACAGGCGGGC
	9551	CCTTGTGATC CCTTGTGCTG GGGGAGGAAA GCGGGGGGGG CACGCTCAGG
	9601	GGCGCTGCGC GGTCGCGAAG ATGTATCCGA GCTCGGGCAT CTTGCCGAGG
	9651	GCCGCCTGGT TGTGCAGGAA CAGCTCGTAT CCCTCTACGC CGATGATGTC
	9701	GACGTACTCG TCCCGGTGGG CGCGGATCCA CTCGACGTAA CCGTCGTAGG
	9751	TCTTGGCGGT CTCGCGGGTG ATGTCGGTCA GTTCGAGGAC GGTCCAGCCG
	9801	GCGGCGCGA AGATGTCGGG GTAGTCCCCG ATGTCGGTGA GCGCGGCGTA
	9851	GATCGTGGTG TCGCTGACGG TGGCGGTCCG GGGCCGGCTG GGATCGGGGT
	9901	TGAGGTAGAC CATGTCGGCG ATCGGCATCC GCGCGCCGGG CTTCACGACG
	9951	CGGTGGGCCT CGGTGAGCAC CTGCTGCTTG TCCGGCATGT GCAGCATGGA
	10001	CTCCAGGGCC CAGCAGTGGT CGAAGGAGCC GTCGTCGAAC GGCAGGTTCA
	10051	TGGCGTCGAC CTGCTCGAAG CGGACCCGGT CGGCGAGGCC GGCCTCGCGC
	10101	GCCCGGCGGT TGCCGCGCTC GACCTGGCGG GCGCTGACGG AGATGCCGAC
	10151	CACCTCGACG TCGCGGGCGC GGGCCAGCTG CATGGCCGGG GTGCCGTTGC
٠.	10201	CGCAGCCGAT GTCGAGGACG CGGTCGCCGG GGGCCGGGTC GAGGCGGCGG
	10251	ATCATCTCGT CGGTCATCTG GACCATGGCC TCGTCGAACG TGGCCTGCTG
	10301	CTCGCCGCCG TCGAACCAGT AGCCGTAGTG CAGATTGCCG TCTCCGAGCT

·10351	GAGTCATCAG	GTCGAAGACC	TTGTGGTCG	r agtagtggc	C GATGTCGCTG
10401	GGCTCGGGGG	CGACGGTCTI	GTTCACCGT	C GGGGGCTTC	TGGTCGTCGC
10451	GTTCTTCGTC	ACGGCTTCAG	CGTCACCGTC	G CGGCGGCAGC	GCCACAACC
10501	CCACCCCCGC	CCCTCAAAAG	CCCCTATGGG	CCCTCCTCG	CCGCCCCTAG
10551	GGAGCTGCTC	TTGACGCGTT	CCATACGGAZ	CGGGTGGTAC	CCCTCCGAAA
10601	AAAATGAGAG	TACGCTCCCA	CTAGATATTO	AGCTCTCTT	AGGAGGTCGA
. 10651	CTCCCATGTC	TGCTGATCTG	GGTGCGCGGC	GGTGGTGGGC	CGTCGGTGCT
10701	CTCGTACTCG	CCTCGATGGT	CGTGGGCTTC	GATGTGACGA	TCCTGAGCCT
10751	GGCGTTGCCC	GCCATGGCCG	ACGACCTCGG	CGCGAACAAC	GTCGAGCTGC
10801	AGTGGTTCGT	GACGTCGTAC	ACGCTGGTGT	TCGCGGCCGG	CATGATCCCG
10851	GCCGGCATGC	TCGGTGACCG	GTTCGGACGC	AAGAAGGTCC	TGCTCACCGC
10901	CCTGGTGATC	TTCGGTATCG	CCTCGCTGGC	. CTGTGCCTAC	GCGACGTCCT
10951	CCGGCACCTT	CATCGGCGCG	CGTGCGGTGC	TCGGTCTGGG	CGCCGCGCTG
11001	ATCATGCCGA	CGACGCTGTC	GCTGCTGCCG	GTCATGTTCT	CCGACGAGGA
11051	GCGGCCGAAG	GCCATCGGAG	CGGTGGCCGG	TGCGGCGATG	CTCGCCTATC
11101	CGCTCGGCCC	GATCCTCGGC	GGCTACCTGC	TCAACCACTT	CTGGTGGGGC
¹¹¹⁵¹	TCCGTCTTCC	TGATCAACGT	GCCGGTGGTG	ATCCTCGCCT	TCCTCGCGGT
11201	CTCCGCCTGG	CTGCCCGAGT	CCAAGGCCAA	GGAGGCCAAG	CCGTTCGACA
11251	TCGGCGGCCT	GGTGTTCTCC	AGCGTCGGTC	TCGCCGCGCT	GACCTACGGC
11301	GTGATCCAGG	GCGGCGAGAA	GGGCTGGACG	GACGTCACCA	CGCTGGTGCC
11351	GTGCATCGGC	GGTCTGCTCG	CCCTCGTGCT	GTTCGTGATG	TGGGAGAAGC
11401	GGGTGGCGGA	CCCGCTGGTC	GACCTCTCGC	TGTTCCGCTC	GGCCCGGTTC
11451	ACCTCCGGCA	CCATGCTCGG	CACCGTCATC	AACTTCACGA	TGTTCGGCGT
11501	GCTCTTCACG	ATGCCGCAGT	ACTACCAGGC	GGTCCTCGGC	ACCGACGCGA
11551	TGGGCAGCGG (CTTCCGGCTG 4	CTCCCGATGG	TCGGCGGTCT	GCTCGTGGGT
11601	GTGACGGTCG	CCAACAAGGT (CGCCAAGGCC	CTCGGCCCGA	AGACCGCGGT

11651 [.]	CGGCATCGGC	TTCGCCCTCC	TCGCCGCCGC	CCTGTTCTAC	GGCGCCACCA
11701	CGGACGTCAG	CAGCGGCACC	GGCCTGGCGG	CCGCCTGGAC	CGCGGCCTAC
11751	GGACTCGGCC	TCGGCATCGC	CCTGCCGACC	GCCATGGACG	CCGCCCTCGG
11801	CGCGCTCTCC	GAGGACTCCG	CCGGCGTCGG	ATCCGGCGTC	AACCAGTCCA
11851	TCCGTACCCT	CGGCGGCAGC	TTCGGCGCGG	CCATCCTCGG	TTCCATCCTC
11901	AACTCCGGCT	ACCGCGGCAA	GCTCGACCTC	GACGGCGTGC	CCGAGCAGGC
11951	ACACGGCGCG	GTCAAGGACT	CCGTCTTCGG	CGGCCTCGCG	GTGGCCCGGG
12001	CGATCAAGTC	CAACGGACTG	GCCGACTCGG	TGCGTTCCGC	GTACGTCCAC
12051	GCCCTGGACG	TGGTGCTCGT	GGTCTCCGGC	GGCCTCGGAC	TGCTGGGTGT
12101	GGTGCTGGCG	GTGGTGTGGC	TGCCCCGCCA	TGTTGGTCAG	AGCACCGCCA
12151	AGACAGCAGA	ATCTGAGCAT	GAAGCCGCAG	ACGCAGTCTG	ACCAGGGCAA
12201	AACAGTGCCT	GGTCTGAGAG	AACGCAAGAA	GGCCCGGACG	AAGGCCGCGA
12251	TTCAGCGGGA	GGCGGTGCGC	TTGTTCAGGG	AACAGGGCTA	CACCGCCACG
12301	ACCATCGAGC	AGATCGCCGA	AGCCGCCGAG	GTCGCTCCCA	GCACCGTCTT
12351	CCGCTACTTC	GCGACCAAGC	AGGACCTGGT	CTTCTCGCAC	GACTACGATC
12401	TGCCCTTCGC	GATGATGGTC	CAGGCCCAGT	CACCCGACCT	GACGCCGATC
12451	CAGGCCGAGC	GGCAGGCCAT	CCGCTCGATG	TTGCAGGACA	TCAGCGAGCA
12501	GGAACTGGCC	CTGCAGCGCG	AGCGGTTCGT	CCTGATTCTC	TCCGAGCCGG
12551	AGCTCTGGGG	CGCCAGCCTC	GGCAACATCG	GCCAGACCAT	GCAGATCATG
12601	AGTGAGCAGG	TGGCCAAACG	GGCCGGGCGC	GACCCGCGGG	ACCCCGCGGT
12651	CCGCGCCTAC	ACCGGAGCCG	TGTTCGGAGT	GATGCTCCAG	GTCTCGATGG
12701	ACTGGGCCAA	CGATCCGGAC	ATGGACTTCG	CGACCACGCT	GGACGAGGCA
12751	CTCCACTACC	TGGAAGACCT	GCGGCCCTGA	CCGAAGGGGC	GGGCGCACAC
12801	CACAGAGCCC	GCCCCGGCCA	GACGTCGTAC	GAGGCGCCAT	CGGCCGTCGC
12851	GTACGACCCC	: cececccee	ATTCCCCCGC	GGGGCGCGGG	GTCAAGGGAA
12901	AAGAGACGAC	: CGCACGCGGC	. CACTGTTCCC	CCGGCTGCCG	CGTCCGGTCC

12951	AACCTGGCGT	GCTCCGGCTT	CCCTCGACGG	AGCACGCCAG	GGGTCTGTCC
13001	GGCCCTCTCC	CGGCGGCTCC	CGTCAGACGC	ccgcccccc	CGTCAGCGCC
13051	TCGGTCACGA	CGGCCGCCAC	CTGCTCCTGA	CAGCCGTCGA	GGTAGAAGTG
13101	CCCGCCGGGC	AGCACCCGCA	GATCGAACGC	CGCGCCGGTC	CGCTCCCGCC
13151	ACGTGGCGGC	CTGCTCCGGC	GACGTCCGCT	CGTCGGCGTC	CCCGATCAGC
13201	GCCGTGATCG	GGCAGTCGAG	CCGGCCGGGT	CCCGGCGCCT	CGTAGGTGGC
13251	CACGGCCCGG	TAGTCGGCCC	GCAGCGCGGG	CAGGACGAGC	TCCTGCAGCT
13301	CGGGACTGCG	GAAGAACCGC	TCGTCGGTGC	CGCCCATCGC	CCGCAGATGG
13351	GCCAGGATGT	CCGCGTCCCC	GAACGCCCCC	GAACGCCCCG	CGGGACGGTA
13401	GGGCCGCGCG	AGCCCCCGG	AAACGAACAG	GTGCACGGGA	AGGCCGGGCC
13451	CGGCCGGTCC	CCGCAGCCGC	CGCGCCACCT	CGAACGCCAC	GATGGCGCCC
13501	AGGCTGTGCC	CGAACAGCGC	GAATGGCTTC	CCGTCGCACG	GCAGGTGGGG
13551	CACGACGCCG	TCGGCGAGCT	CGGCCACCGA	CGCCAGGCAC	GGCTCCGCAT
13601	GACGGTCCTG	CCGCCCGGA	TACTGCACGG	CGAGCACCTC	GACGCCGGGC
13651	GCGAGCAGCC	CGGAGAGCCC	GAAGTAGTAA	CTCGCCGAAC	CGCCCGCGAA
13701	CGGAAAGCAG	ACCAGCCGCA	CCGGCGCCTC	TGCCGCAGCG	TGGTACCGCC
13751	GCAACCACAC	CCCGTTTCCG	GTGGCTGCAC	CGAACTCGTC	ACCGATCTGT
13801	GGTGCCCGCG	CCGCCGTGCC	CCTGTCCATC	GTTCTCCCTC	TCCTCGCGTC
13851	GCTCCGCGGG	CGCTGTCCTG	cccccccc	AAAGCCCGAT	GCCGGCCAAG
13901	CCCCGATGCT	GGCCAAACCC	CGATGCCGGC	CAAGCCCCGA	TGCTGGCCGC
13951	GGCCCATAGC	GCCCGGCTAA	AGCCGCAGGC	GGCTAGCCGG	GGTTTGGTTC
14001	GCCTTTAGAC	AGCCCACCCA	CGATGAGCCC	GGTACTCGAA	GCGATCTCCG
14051	ATTTCGGACC	GGGAGCGCCG	TTGATGTTTT	GTGGCAGCCA	GTTGTTCAGC
14101	GCCCGACCGC	AGCTGACGTG	ATGGCCGCAT	CCGCGTCAGC	GTCCCCCTCG
14151	GGACCGAGCG	CAGGACCCGA	CCCGATCGCC	GTCGTCGGQA	TGGCCTGCCG.
14201	CCTGCCCGGA	GCACCTGACC	CCGACGCGTT	CTGGCGGCTG	CTCAGCGAGG

14251	GGCGCAGCGC	GGTGAGCACC	GCACCGCCCG	AGCGGCGGCG	AGCCGACTCC
14301	GGCCTCCACG	GGCCGGGCGG	CTACCTGGAC	CGGATCGACG	GCTTCGACGC
14351	GGACTTCTTC	CACATCAGCC	CGCGCGAGGC	CGTGGCGATG	GACCCCCAGC
14401	AGCGGCTGCT	CCTCGAACTG	AGCTGGGAGG	CCCTCGAAGA	CGCGGGCATC
14451	CGGCCGCCCA	CCCTGGCGCG	CAGCCGCACC	GGCGTCTTCG	TCGGCGCGTT
14501	CTGGGACGAC	TACACCGACG	TCCTGAACCT	GCGGGCGCCG	GGCGCCGTCA
14551	CCCGCCACAC	CATGACCGGC	GTGCACCGCA	GCATTCTGGC	CAACCGCATC
14601	TCGTACGCGT	ACCACCTGGC	CGGTCCGAGC	CTCACCGTCG	ACACCGCACA
14651	GTCCTCCTCG	CTCGTCGCCG	TCCACCTGGC	CTGCGAGAGC	ATCCGCAGCG
14701	GCGACTCCGA	CATCGCCTTC	GCGGGCGGCG	TCAACCTCAT	CTGCTCGCCG
14751	CGCACCACCG	AGCTGGCCGC	GGCCCGCTTC	GGCGGTCTCT	CGGCCGCAGG
14801	CCGCTGCCAC	ACCTTCGACG	CCCGCGCCGA	CGGTTTCGTA	CGCGGCGAGG
14851	GCGGCGGCCT	CGTGGTGCTC	AAGCCCCTCG	CGGCGGCACG	·GCGCGACGGC ·
14901	GACACGGTGT	ACTGCGTGAT	CCGGGGGAGC	GCCGTCAACA	GCGACGGTAC
14951	GACCGACGGA	ATCACCCTGC	CCAGCGGGCA	GGCGCAGCAG	GACGTGGTGC
15001	GCCTCGCCTG	CCGACGGGCG	CGGATCACGC	CGGACCAGGT	GCAGTACGTC
15051	GAACTGCACG	GCACCGGCAC	GCCCGTCGGG	GACCCGATCG	AGGCCGCCGC.
15101	· GCTCGGCGCC	GCCCTCGGGC	AGGACGCCGC	CCGCGCCGTG	CCGCTGGCCG
15151	TCGGCTCCGC	CAAGACGAAC	GTCGGCCACC	TCGAAGCCGC	CGCCGGAATC
15201	GTCGGACTGC	TCAAGACCGC	CCTGAGCATC	CACCACCGGC	GGCTGGCGCC
15251	GAGCCTGAAC	TTCACCACCC	CCAATCCGGC	CATCCCGCTC	GCCGACCTCG
15301	GCCTGACCGT	CCAGCAGGAC	CTGGÇCGACT	·GGCCGCGCCC	CGAACAGCCC
15351	CTGATCGCCG	GGGTGTCGTC	CTTCGGCATG	GGCGGCACGA	ACGGTCACGT
15401	TGTCGTGGCG	- GCGGCGCCG	ATTCGGTGGC	GGTACCTGAG	CCGGTGGGGG
15451	TGCCTGAGCG	GGTGGAAGTG	CCTGAGCCGG	TGGTGGTTTC	TGAGCCGGTG
15501	GTGGTGCCGA	CGCCATGGCC	CGTGAGCGCT	CACAGCGCTT	CCGCGCTGCG

15551	CGCGCAGGCC	GGTCGCCTGC	GGACGCACCT	CGCCGCCCAC	CGCCCCACCC
15601	CCGACGCCGC	GCGGGTCGGC	CACGCGCTCG	CCACCACCCG	TGCGCCCCTC
15651	GCCCACCGCG	CGGTCCTGCT	CGGCGGCGAC	ACCGCCGAAC	TGCTGGGCTC
15701	CCTGGACGCG	CTGGCCGAGG	GCGCGGAGAC	CGCGTCCATC	GTGCGCGGCG
15751	AGGCGTACAC	CGAGGGCAGG	ACGGCCTTCC	TCTTCAGTGG	GCAGGGAGCG
15801	CAACGCCTCG	GCATGGGGCG	GGAGTTGTAT	GCCGTGTTCC	CCGTCTTCGC
15851	CGACGCTCTC	GACGAGGCGT	TCGCCGCCCT	GGACGTACAT	CTGGACCGCC
15901	CACTGCGCGA	GATCGTCTTG	GGCGAGACCG	ACTCGGGTGG	GAACGTCTCG
15951	GGTGAGAATG	TCATCGGCGA	GGGTGCCGAC	CATCAGGCAC	TCCTCGACCA
16001	GACCGCCTAC	ACCCAGCCCG	CGCTCTTCGC	GATCGAGACG	AGCCTGTACC
16051	GGCTGGCAGC	CTCCTTCGGC	CTGAAGCCGG	ACTACGTCCT	CGGCCACTCG
16101	GTCGGCGAGA	TCGCCGCCGC	GCACGTCGCC	GGTGTCCTCT	CGTTGCCGGA
16151	CGCGAGCGCT	CTGGTGGCCA	CGCGGGGACG	GCTCATGCAG	GCGGTTCGCG
16201	CGCCCGGCGC	GATGGCCGCG	TGGCAGGCCA	CGGCGGACGA	GGCGGCCGAA
16251	CAGCTCGCCG	GGCACGAGCG	GCACGTCACC	GTGGCCGCCG	TCAACGGCCC
16301	CGACTCCGTG	GTCGTCTCCG	GCGACCGCGC	CACCGTCGAC	GAACTGACCG
16351	CCGCCTGGCG	GGGACGCGGC	CĠĊAAGGCCC	ACCACCTGAA	GGTCAGCCAC
16401	GCCTTCCACT	CCCCGCACAT	GGACCCCATC	CTCGACGAGC	TGCGCGCGGT
16451	CGCCGCCGGC	CTGACCTTCC	ACGAGCCGGT	CATTCCCGTC	GTCTCCAACG
16501.	TCACCGGTGA	ACTGGTGACC	GCGACCGCGA	CCGGGAGCGG	CGCCGGGCAG
16551	GCCGACCCCG	AGTACTGGGC	GCGGCATGCG	CGCGAGCCCG	TGCGGTTCCT
16601	GTCCGGGGTG	CGGGGGCTGT	GCGAGCGCGG	GGTGACCACG	TTCGTCGAGC
16651	TCGGCCCGGA	CGCACCGCTG	TCCGCGATGG	CCCGCGACTG	CTTCCCCGCC
16701	CCCGCGGACC	GGAGCCGTCC	GCGCCCCGCC	GCCATCGCCA	CATGCCGCCG
16751	CGGGCGCGAC	GAGGTGGCCA	CGTTCCTGAG	GTCGCTGGCC	CAGGCGTACG
16801	TCCGCGGCGC	CGATGTCGAC	.TTCACCCGGG	CCTACGGCGC	CACCGCCACG

16851	CGCCGCTTCC	CCCTCCCCAC	GTATCCCTTC	CAGCGCGAGC	GCCATTGGCC
16901	TGCCGCTGCC	GGGGTGGGGC	AGCAGCCGGA	GACCCCGGAA	CTTCCGGAAT
16951	CCTCGGAGTC	CTCGGAGCAG	GCAGGGCATG	AGCGGGAGGA	GGGGGCGCGC
17001	GCGTGGGGCG	GGCCTGAAGG	GCGGCTTGCC	GGGCTCTCCG	TGAACGACCA
17051	GGAGCGGGTC	CTCCTCGGCC	TGGTCACCAA	GCACGTGGCC	GTCGTGCTCG
17101	GGGACGCCTC	GGGCACGGTA	CAAGCCGCCC	GCACCTTCAA	GCAGTTGGGC
17151	TTCGACTCGA	TGGCCGCCGC	CGAGCTGAGC	GAACGGCTCG	GCACGGAGAC
17201	GGGCCTGCCG	TTGCCCGCCA	CCCTCACCTT	CGACTACCCG	ACCCCTCTGG
17251	CCGTCGCCGC	GCACCTGCGC	GCGGAGCTCA	CCGGTACGCC	CGCCCGGCC
17301	GGCTCCGCGC	CCGCCACGGG	CGCCCTCGGC	GCGGGTGACC	TCGGCACGGA
17351	CGAGGACCCG	GTCGCCATCG	TGGCCATGAG	CTGCCGCTAT	CCCGGCGGCG
17401	CAGGCACGCC	CGAGGACCTG	TGGCGGCTGG	TCGCGGACGG	CGCCGACGCG
17451	ATCGGAGACT	TCCCCACCGA	CCGCGGCTGG	GACCTGGCGC	GGCTGTTCCA
17501	CCCCGACCCC	GACCGGTCGG	GCACCAGCTG	CACGCGGCAG	GGCGGATTCC
17551	TGTACGACGC	CGCCGACTTC	GACGCCGAGT	TCTTCGACAT	CAGCCCGCGC
17601	GAGGCCCTGG	CCGTCGACCC	GCAGCAGCGG	CTGCTCCTCG	AGTGCGCCTG
17651	GGAGGCCTTC	GAACGGGCGG	GCCTGGACCC	GCGGGCGCTC	AAGGGCAGCC
17701	CCACCGGCGT	GTTCGTCGGC	ATGACGGGGC	AGGACTACGG	CCCCCGTCTG
17751	CACGAGCCGT	CCCAGGCCAC	CGACGGCTAT	CTGCTGACCG	GCAGCACGCC
17801	GAGCGTGGCC	TCGGGCCGCC	TGTCGTTCAG	CTTCGGCCTT	GAGGGGCCCG
17851	CCCTGACGGT	GGACACGGCC	TGCTCGTCGT	CGCTGGTCAC	GCTCCATCTC
17901	GCGGCGCAGG	CGCTGCGGCG	CGGCGAGTGC	GACCTGGCCC	TCGCCGGCGG
17951	CGCCACCGTC	CTGGCCACGC	CGGGCATGTT	CACCGAGTTC	TCGCGGCAGC
18001	GGGGCCTGGC	CCCCGACGGC	CGCTGCAAGC	CGTTCGCGGC	GGGCGCCGAC
18051	GGCACGGGCT	GGGCCGAGGG	CGTGGGCCTG	GTCCTCCTCG	AAAGGCTCTC
18101	CGAGGCCCGG	CGCAAGGGGC	ACGCCGTCCT	CGCGGTGATC	CGGGGTTCGG

18151	CGATCAACCA	GGACGGCGCG	AGCAACGGCC	TGACCGCGCC	CAACGGCCCC
18201	TCGCAGCAAC	GCGTCATCCG	TGCCGCGCTC	GCGGCCGCCC	GGCTCACCGC
18251	GGACGAGGTC	GACGTAGTGG	AGGCGCACGG	CACCGGCACC	ACGCTCGGCG
18301	ACCCGATCGA	GGCGCAGGCC	CTGCTCGCCA	CGTACGGCCA	AGGGCGTTCG
18351	GCGGAGCGGC	CGTTGTGGCT	CGGGTCGGTG	AAGTCGAACA	TCGGTCACAC ·
18401	GCAGGCCGCC	GCGGGTGTCG	CGGGCGTCAT	CAAGATGGTG	ATGGCGATGC
18451	GCCACGACCT	GCTCCCGCC	ACCCTGCACG	TCGACGAGCC	GAGTGGCCAC
18501	GTGGACTGGT	CCACCGGCGC	GTGCGACTG	CTCACCGAGC	CGGTCGTCTG
18551	GCCGCGCGGC	GAACGTCCGC	GCCGCGCCGC	GGTGTCGTCC	TTCGGCATCT
18601	CCGGCACGAA	CGCGCACCTG	GTGCTCGAAG	AGGCGGGGCA	GGACGAGTAC
18651	GTTGCGGGAG	CCGCCGACGA	CGCCGGGCCG	GTGGACGGTG	CTGTGCTGCC
18701	GTGGGTGGTT	TCCGGACGGA	CCGGAGCGGC	GCTGCGCGAA	CAGGCCCGCC
18751	GTTTGCGTGA	GTTGGTGACC	GGCGGCTCGG	CCGATGTCTC	TGTGTCCGGG
18801	GTGGGCCGGT	CGCTGGTCAC	CACGCGGGCG	GTGTTCGAGC	ACCGGGCCGT
18851	GGTCGTGGGC	CGCGACCGGG	ACACGCTGAT	CGGCGGCCTC	GAGGCCCTTG
18901	CGGCGGGTGA	CGCGTCGCCG	GACGTCGTGT	GCGGGGTCGC	GGGCGATGTC
18951	GGCCCCGGCC	CGGTGCTGGT	GTTCCCCGGG	CAGGGCTCGC	AGTGGGTGGG
19001	CATGGGAGCC	CAACTCCTTG	GCGAGTCCGC	GGTGTTCGCG	GCGCGGATCG
19051	ACGCGTGCGA	GCAGGCGCTG	TCCCCGTACG	TCGACTGGTC	ACTGACAGAG
19101	GTCCTGCGCG	GGGACGGGCG	CGAACTGTCG	CGCGTCGACG	TCGTCCAGCC
19151	CGTGCTGTGG	GCGGTGATGG	TCTCGCTCGC	CGCCGTCTGG	GCGGACCACG
19201	GCGTCACCCC	GGCCGCCGTC	GTCGGGCACT	CCCAGGGAGA	GATCGCCGCT
19251	GTGGTCGTCG	CCGGCGCGCT	CACCCTGGAG	GACGGCGCCA	AGATCGTGGC
19301	CCTGCGCAGC	CGGGCGCTGC	GTCAGCTCTC	GGGCGGGGGC	GCCATGGCCT.
19351	CCCTCGGGGT	GGGCCAGGAA	CAGGCAGCCG	AACTCGTCGA	GGGCCACCCC
19401	GGAGTGGGCA	TOGCOGCOGT	CAACGGCCCG	TCATCGACCG	TCATTTCAGG

19451	CCCGCCCGAG	CAAGTCGCCG	CCGTCGTCGC	CGACGCCGAG	GCGCGCGAGC
19501	TGAGAGGCCG	CGTCATTGAC	GTGGACTACG	CCTCGCACAG	CCCCCAGGTC
19551	GACGCCATCA	CCGACGAACT	CACCCACACC	CTGTCCGGCG	TCCGCCCCAC
19601	CACGGCCCCG	GTGGCGTTCT	ACTCGGCCGT	GACCGGAACC	CGCATCGACA
19651	CGGCGGGCCT	CGACACCGAC	TACTGGGTCA	CCAACCTGCG	CCGCCCGGTC
19701	CGGTTCGCCG	ACGCCGTCAC	CGCGCTCCTC	GCCGACGGCC	ACCGGGTCTT
19751	CATCGAGGCC	AGCAGCCACC	CCGTCCTCAC	CCTCGGCCTC	CAGGAGACCT
19801	TCGAGGAGGC	CGGGGTCGAC	GCCGTCACCG	TCCCCACCCT	GCGGCGCGAG
19851	GACGGCGGCC	GGGCACGCCT	GGCCCGCTCG	CTGGCACAGG	CCTTCGGCGC
19901	CGGGTGCGCG	GTGAGGTGGG	AGAACTGGTT	TCCGGCCACC	GGTACGTCCA
19951	CCGTGGAGCT	GCCGACGTAC	GCCTTCCAGC	GTCGCCGTTA	CTGGCTGGAG
20001	GCCCCCACGG	GCACCCAGGA	CGCGGCGGGC	CTGGGCCTCG	CCGCTGCGGG
20051	GCACCCGCTC	CTCGGGGCGG	CCACCGAGAT	CGCGGACGGC	GACATCCGCC
20101	TGCTCACCGG	CCGTATCAGC	AGGCACAGCC	ACCCCTGGCT	CGCTCAGCAC
20151	ACCCTCTTCG	GTGCCGCGGT	CGTGCCCGCC	TCCGTCCTCG	CGGAATGGGC
20201	GCTGCGCGCC	GCCGACGAGG	CCGGCTGCCC	GCGTGTCGAC	GACCTCACGC
20251	TGCGCACCCC	GCTGGTGCTG	CCCGAGACCG	CGGGCGTGCA	GGTGCAGATC
20301	GTGGTCGGCC	CGGCCGACGC	GCGGGACGGG	CACCGCGACT	TCCACGTCTA
20351	CGCCCGCCCC	GACGGCAAGG	ACGCCTCTGA	GGGCGAGGGC	ATCGCCGAGG
20401	GCGAGGGTGC	CTCTGAGGGC	GAGGGTGCCT	CCGGCGGCAC	CGATGCGCCG
20451	TGGACCTGCC	ATGCCGACGG	CCGACTGGTC	GCCGAGCCCA	CCGGCACGGC
20501	CTCGGAGGAC	TCCCCGGACA	CGGTGTGGCC	GCCGCCCGGC	GCCGAACCCG
20551	TCGACCTGGG	CGACTTCTAC	GAGCGGGCCG	CCGCCACCGG	AGTCGGCTAT
20601	GGACCGGTCT	TCACGGGGCT	GCGCGCCCTG	TGGCGGCGGG	ACGGCGAGCT
20651	GTTCGCCGAG	GCGGTGCTGC	CGCAAGAAGC	CCCGGAAACC	GCCGGGTTCG
20701	GCATGCACCC	GGCGCTCCTC	GACGCCGCAC	TGCACCCCGC	ACTCCTCGGC

20751	GAGCGGCCGG	CCGAGGAGGA	CAAGGTGTGG	CTGCCGTTCA	CGCTGACCGG
20801	AGTGACCCTG	TGGGCCACCG	GTGCCACCTC	TGTACGCGTC	CGTCTCACCC
20851	CGCTGGACGA	CGACCCCGAC	GCGTCGGCGG	ACGGGCGGGC	CTGGCGGGTC
20901	GGCGTGAGCG	ACCCGACCGG	CGCGGAGGTG	CTGACCTGCG	AGGCCCTGGT
20951	CGCGGTGGCG	GCGGGCCGCC	GCGAGCTGCG	GGCCGCGGGG	GAGCGGGTGT
21001	CCGATCTGTA	CGCGGTGGAG	TGGGTGCCGG	TGCCGGGCCC	GGGGCCGGTG
21051	GGTGAGGGTG	CTGACTTCTC	GGGCTGGGCC	GGTCTGGGGG	AGTGCGGGGA
21101	GCGTTGGGAG	TGCGTGGGGC	GCGTGGAGCG	CTGGTACGAG	GACCTGGACG
21151	CTCTCGGCGC	GGCTGTCGAG	GGTGGGGCTT	CGGTGCCCTC	TGTCGTTCTC
21201	GCCACCGCGG	CTGCCGCCCC	TGGTGGAGCG	GGCGACGGAG	CCGCCGATGC
21251	GCTGAGCGCG	GTGCGGTGGA	CCGGCGCGCT	CCTCGATCAG	TGGCTCGCCG
21301	ACGCGCGGTT	CGCCGACGCC	CGGCTGGTGG	TGATCACGTC	CGGCGCGGTC
21351	GCCACGGGTG	ACGATTTCCT	TCCCGACCCG	GCCGCCGCGG	CGGTACGAGG
21401	ACTGGTCGAG	CAGGCGCAGG	TCAGGCACCC	CGGCCGCATC	CTCCTCGTCG
21451	ACACGGAAGC	CGGGGCCGGG	CTCGGGGTCG	GCGCCGGAGT	GGATGACGCG
21501	CTCCTGGAAC	AGGCCGTGGC	CATGGCTCTC	GGCGCCGACG	AACCGCAACT
21551	CGCCCTGCGC	GCGGGGCGGG	TCCTGGCGCC	CCGCCTCACC	GCACCCCAGG
21601	ATGCGGCCGT	CACCGAAGCG	GCGCGACCGC	TCGACCCGGA	CGGCACCGTA
21651	CTCATCACAG	GGCCGGCCGG	TGCTCCGGTG	GCCGACCTCG	CCGAACACCT
21701	CGTACGCACC	GGGCAGTGCA	GGCATCTGCT	GCTCCTGCCT	GGAGACGGTG
21751.	AACTGGAGGA	AATGGCCGAG	GAGTTGCGGG	GCCTCGGCGC	CACCGTGGAC
21801	CTGAGTACCG	CCGACCCGGC	GGACCCGACC	GCCCTCGCCG	AAGTGGTCGC
21851	CGCCGTCGAG	GGGGACCATC	CTCTTACGGG	GGTCATCCAC	GCCACCGGAG
21901	TCGTGGACGC	GTTCGATCCC	GGCGACTCGG	CGAGCGACTT	GATGATCGAC
21951	TCGGCGAGCG	ATTCGTTCGC	CGAGGCATGG	TCGTCGAGGG	CGGGCGTCAC
22001	CGCCGCACTG	CACACCGCGA	CCGCCCACCT	TCCCCTGGAC	CTGTTCGCCG

22051	TCCTGTCCCC	GGCGGGCGCG	GACCTGGGCA	TTGCCCGGTC	GGCGGCCGCC.
22101	GCGGGCGCCG	ACGCCTTCAG	CGCGGCACTC	GCCCTGCGCC	GGCACACGAC
22151	CGTCACGACG	GACACGACAG	CCCCGCCGCG	CACGACAGCC	CCGCCGCGAA
22201	CGACAGCCTC	GCCGCGCACG	ACAGCCCTGT	CGTCGTCGCG	CACGACGGGC
22251	GTGGCCCTCG	CCTACGGGCC	GCCCACCGCG	CCGAGGCCCG	GCATCAAGGG
22301	GACGGCGCCC	GGTCGGATCC	CCGTGCTGCT	CGACGCCGCT	CGCGCTCACG
22351	GGGGCGGTTC	GCCCTGCTC	GGGGCCCGCT	TGGCCGCGCG	TGCCCTGGCC
22401	GCCGAGTCCG	CCGCCGAGGG	CGTCGCCGGC	CTGCCCGCGC	CGCTGCGCGC
22451	GCTGGCAGTG	GCCGCAGCCG	CGGCCGGAGC	ACCGACCCGG	CGCACCGCCG
22501	CCGACCGCAA	GCCCCCGCG	GACTGGCCGG	CCCGACTGGC	CCCCTGTCC
22551	GCCCCCGAAC	AACTCCGTCT	GCTCATCGAC	GCCGTACGCA	CCCACGCCGC
22601	CGCGGTCCTC	GGCCGCACCG	ACCCGGAAGC	GCTGCGCGGG	GACGCCACCT
22651	TCAAGCAGCT	, CGGCCTTGAC	TCGCTGACCG	CCGTGGAGCT	GCGCAACCGG
22701	CTCGTGGAGG	ACACCGGTCT	GCGCCTGCCC	ACCGCCCTCG	TCTTTCGCTA
22751	CCCGACCCCC	GCGGCGATCG	CCGCGCACCT	CCGCGAGCGG	CTGACCAGCC
22801	CGAGCGAGAC	GACCGCCACA	CAGAGGTCCG	GAGGGCAGAC	GCCCGCAGCG
22851	GGGCAGGCGT	CGTCCGCGCT	CGCCCCGGC	GGATCGGCCG	CCGGACCGCC
22901	CGCCGCAGAC	ACCGTGCTGA	GCGACCTGAC	CCGCATGGAG	AACACCCTCT
22951	CCGTGCTCGC	CGCCCAGCTG	CCCCACACCG	AGACGGGTGA	GATCACCACC
23001	CGGCTCGAAG	CGCTCCTCAC	GCGCTGGAAG	ACCACGAACG	CCACGGCGAA
23051	CGACAGCGGC	GACGGCAACG	GCGGCGATGA	CGACGCCGCC	GAACGCCTCA
23101	AGGCCGCGTC	CGCCGACCAG	ATCTTCGACT	TCATCGACAA	CGAGCTTGGT
23151	GTCGGGCACG	GCACÇTCGCG	CGTGACCCCC	ACTCCGAAGG	CCGGGTGACC
23201	GCACATGGCG	AGTGAAGAGC	AACTGGTCGA	ATATCTGCGC	AGGGTGACCA
23251	CCGAGCTCCA	TGACACGCGT	•CGGCGCCTGG	TGCAGGAGGA	GGACCGCAGG
23301	CAGGAACCGG	TGGCCCTGGT	CGGCATGGCC	TGCCGCTTCC	CGGGCGCGT

, 2	23351	GGCCTCACCG	GAGGACCTCT	GGGACCTGGT	CGCCGCGGGC	AAGGACGCCA		٠.,
2	23401	TCGAGGACTT	TCCCACCGAC	CGGGGCTGGG	ACCTGGAGGC	GCTCTACGAC ·		
· 2	23451	CCGGACCCGG	CCGCGTACGG	GACCAGCTAT	GTCCGCCACG	GCGGGTTCGT		
2	23501	GGACGACGCG	GGCTCCTTCG	ACGCCGACTT	CTTCGGCATC	AGCCCGCGAG		
2	23551	AAGCCCTGGC	GATGGACCCG	CAGCAGCGGC	TGATGCTGGA	GACGTCCTGG		
2	23601	GAGCTGTTCG	AGCGCGCCGG	CATCGAACCC	GTCTCCCTCA	AGGGCAGCCG		
2	23651	TACGGGCGTC	TACGCCGGGG	TGTCCAGCGA	GGACTACATG	TCCCAACTGC		
2	23701	CCCGCATCCC	CGAGGGGTTC	GAGGGGCACG	CCACCACCGG	CAGCCTCACC		
:	23751	AGCGTCATCT	CGGGCCGGGT	CGCGTACAAC	TACGGCCTCG	AAGGCCCGGC		
:	23801	CGTCACCGTC	GACACAGCCT	GTTCCGCCTC	GCTCGTCGCC	ATCCACCTGG		
:	23851	CGAGCCAGGC	GCTGCGCCAG	CGTGAGTGCG	ACCTCGCCCT	CGCGGGCGGT		
:	23901	GTGCTCGTAC	TGTCCAGCCC	GCTCATGTTC	ACCGAGTTCT	GCCGCCAGCG		
:	23951	GGGCCTTGCT	CCCGACGGCC	GCTGCAAGCC	GTTCGCCGCC	GCGGCGGACG		
:	24001	GCACCGGCTT	CTCGGAGGGC	ATCGGTCTGC	TCCTCCTGGA	GCGCCTGTCC	,	
:	24051	GACGCGCGCC	GCAACGGCCA	CAAGGTGCTC	. GCGGTGATCC	GCGGCTCCGC	•	
. :	24101	CGTCAACCAG	GACGGCGCGA	GCAACGGCCT	GACCGCCCCC	AACGACGCCG	•	
!	24151	CGCAGGAACA	GGTCATCCGC	GCCGCCCTCG	ACAACGCCCG	CCTCACCCCG		
;	24201	TCCGAGGTGG	ACGCCGTCGA	GGCGCACGGC	ACCGGCACCA	AACTGGGCGA		
;	24251	CCCCATCGAG	GCCGGAGCGC	TGCTCGCCAC	CTACGGGCAA	CACCGCGCCC		
	24301	GGCCCCTCCT	CCTCGGCTCC	CTCAAGTCCA	ACATCGGCCA	CACCCACGCC	·	
	24351	. ACCGCGGGCG	TCGCCGGTGT	CATCAAGACC	GTCATGGCGA	TCCGCAACGG		
	24401	TCTGCTCCCC	GCCACCCTCC	ACGTCGAGGA	ACTGAGCCCG	CACGTCGACT		
	24451 ·	GGGACGCGGG	· CGCGGTCGAG	GTCGTCACGG	AGCCCACCCC	GTGGCCCGAG		
	24501	ACCGGCCACC	CCCGGCGCGC	GGGCGTCTCC	GCGTTCGGGA	TCTCCGGGAC		
	24551	GAATGCGCAC	TTGATCCTGG	AGGAGGCGCC	: GCCGGAGGAG	GATGTGCCCG		
	24601	CCCCGTGGT	TGTGGAGTCG	GGCGGGGTCG	TTCCGTGGGT	GGTGTCCGGG		

•••

	24651	CGGACGCCGG	AGGCGCTGCG	TGAACAGGCC	CGGCGACTCG	GCGAGTTCGT
	24701	GGCAGGCGAC	ACGGACGCAC	TGCCGAACGA	GGTCGGCTGG	TCCTTGGCCA
	24751	CGACCCGGTC	GGTGTTCGAG	CACCGGGCTG	TGGTCGTGGG	GCGTGACCGG
	24801	GATGCGTTGA	CGGCTGGCCT	GGGGGCGTTG	GCTGCGGGTG	AGGCTTCGGC
	24851	GGGTGTGGTG	GCCGGGGTGG	- CCGGTGATGT	GGGTCCTGGG	CCGGTGTTGG
	24901	TGTTTCCGGG	GCAGGGGGCG	CAGTGGGTGG	GCATGGGTGC	CCAGCTGTTG
	24951	GACGAGTCTG	CGGTGTTCGC	GGCGCGGATC	GCGGAGTGTG-	AGCGGGCCCT
	25001	GTCGGCGCAT	GTGGACTGGT	CGCTGAGTGC	GGTGTTGCGC	GGGGACGGGA
	25051	GTGAGCTGTC	CCGGGTGGAA	GTGGTGCAGC	CGGTGCTGTG	GGCGGTGATG
	25101	GTCTCGCTGG	CTGCGGTGTG	GGCGGATTAC	GGGGTCACTC	CGGCTGCCGT
	25151	GATCGGGCAC	TCGCAGGGTG	AGATGGCTGC	CGCGTGTGTG	GCGGGGGCGC
	25201	TGTCGCTGGA	GGATGCGGCG	CGGATCGTAG	CGGTACGCAG	TGACGCGCTT
	25251	CGTCAGCTGC	AAGGGCACGG	CGACATGGCC	TCGCTCAGCA	CCGGTGCCGA
•	25301	GCAGGCCGCT	GAGCTGATCG	GTGACCGGCC	GGGCGTGGTC	GTCGCGGCGG
	25351	TCAATGGGCC	GTCGTCTACG	GTGATTTCAG	GGCCGCCGGÄ	GCATGTGGCA
	25401	GCCGTGGTCG	CGGATGCGGA	GGCACGTGGT	CIGCGCGCCC	GTGTCATCGA
	25451	CGTCGGCTAT	GCCTCGCATG	GCCCCAGAT	CGACCAGCTC	CACGATCTGC
	25501	TGACCGAACG	CCTGGCCGAC	ATCCGGCCCA	CGAACACGGA	CGTGGCCTTC
٠	25551	TATTCGACGG	TCACCGCCGA	GCGCCTGACG	GACACCACGG	CCCTGGACAC.
	25601	GGATTACTGG	GTCACCAACC	TCCGTCAGCC	CGTCCGGTTC	GCCGACACCA
	25651	TCGAAGCCCT	TCTCGCGGAC	GGCTACCGCC	TGTTCATCGA	GGCCAGCGCC
	25701	CACCCCGTGC	TGGGCCTGGG	CATGGAGGAG	ACCATCGAGC	AGGCGGACAT
	25751	GCCCGCCACC	GTCGTCCCCA	CCCTCCGCCG	CGACCACGGC	GACACCACCC
•	25801	AGCTCACCCG	CGCCGCCGCC	CACGCCTTCA	CCGCCGGCGC	CGATGTCGAC
	25851	TGGCGGCGCT	GGTTCCCGGC	CGACCCCGCC	CCCCGCACGA	TCGATCTCCC
	25901	CACCTACGCC	TTCCAGCGCC .	GCCGCTACTG	GCTGGCCGAC	ACAGTGAAGC

	25951	GGGACAGCGG	ATGGGACCCG	GCCGGGTCGG	GGCATGCCCA	GTTGCCGACC
	26001	GCGGTCGCCC	TCGCCGACGG	GGGAGTGGTG	· CTGAACGGCC	GGGTGTCCGC
	26051	CGAGCGCGGT	GGCTGGCTGG	GCGGGCATGT	GGTGGCGGGG	ACGGTTCTGG
	26101	TGCCGGGTGC	GGCGTTGGTG	GAGTGGGTGT	TGCGGGCCGG	TGATGAGGCG
	26151	GGTTGCCCCT	CGCTTGAGGA	GTTGACGCTC	CAGGCGCCGT	TGGTGTTGCC
	26201	CGAGTCGGGT	GGGTTGCAGG	TTCAGGTGGT	CGTGGGTGCG	GCTGATGAGC
	26251	AGGGCGGCCG	TCGTGACGTA	CATGTGTATT	CGAGGTCTGA	GCAGGACGCG
	26301	TCGGCGGTGT	GGCAGTGCCA	TGCCGTCGGT	GAGCTCGGGC	GCGCGTCGGT
	26351	GGCGCGGCCG	GTGCGGCAGG	CCGGGCAGTG	GCCTCCGGCG	GGGGCCGAGC
	26401	CGGTGGAGGT	GGGCGGCTTC	TACGAGGGGG	TCGCGGCCGC	CGGTTACGAG
•	26451	TACGGTCCGG	CGTTCCGTGG	GCTGCGCGCG	ATGTGGCGGC	ACGGTGATGA
	26501	CCTCCTTGCG	GAGGTCGAGC	TGCCGGAGGA	GGCCGGTTCG	CCGGCCGGTT
	26551	TCGGCATCCA	CCCGGCGCTG	CTGGACGCCG	CCCTGCACCC	GCTGCTCGCA
	26601	CAGCGGAGCC	GGGACGGGC	CGGGGGGG	GCCCACGGCG	GGCAGGTGCT
	26651	GCTGCCTTTC	AGCTGGAGCG	GTGTTTCCCT	GTGGGCCAGC	GAGGCCACCA
	26701	CTGTGCGGGT	GCGGCTCACC	GGGCTGGGAG	GAGGGGACGA	CGAGACGGTG
	26751	TCCCTGACGG	TAACCGACCC	CGCCGGTGGC	CCCGTGGTGG	ACGTGGCAGA
•	26801	GCTGCGGTTG	CGGTCGACGA	GCGCCCGGCA	GGTGCGGGGT	TCGGCAGGCC
	26851	CCGGCGCGGA	CGGGCTCTAC	GAGCTGCGGT	GGACACCGTT	GCCCGAGCCG
	26901	CTTCCCGTAC	CGGCCCCCGC	GAACGGTCGC	GATGTGGCCG	CCGACCTGTC
	26951	CGGATGCGCG	GTGCTCGGCG	AACTGGTCGC	GGAACCGGGC	CCGGGCATCG
	27001	ACCTGGAGGG	CTGCCCCTGC	TACCCGGGCG	TCGGCGCGCT	CGCCGACAAC
	27051	GCCTCCCCGC	CCTCCATGAT	CCTCGCCCCC	GTGCACAGCG	ACACCACAGG
	27101	CGGCGACGGA	CTCGCCCTGA	CGGAACGGGT	GTTGCGCGTC	ATCCAGGACT
	27151	TCCTGGCTGC	ACCGAGTCTG	GAACAGAAAC	AGACGCGCCT	GGCCTTCGTG
:	.27201	ACCCGGGGCG	CGGCGGACAC	AGGTAGCACG	ACGGGAGGCT	CGGCTGCCCC

27251	GGCAGAGGCA	GTCGACCCGG	CGGTCGCGGC	CGTATGGGGC	CTAGTACGCA
27301 .	GCGCGCAGTC	GGAGAACCCC	GGCCGCTTCG	TACTGCTGGA	CACCGACGCG
27351	CCCCTCGACC	AGGCGTCCGT	TGCCCCTCTC	GTGGACGCGG	TGCGGTCTGC
27401	CGTGGAGGCG	GACGAGCCCC	AAGTCGCCCT	GCGCGGGGGA	CGGTTGCTCG
27451	TGCCCAGGTG	GGCGCGGGCC	GGCGAGCCCG	TCGAGCTGGC	CGGGCCGGCC
27501	GGAGCGCGGG	CGTGGCGGCT	GGTGGGCGGA	GACTCCGGGA	CGCTGGAGGC
27551	CGTCGTGGCG	GAGGCTTGCG	ACGACATTGT	GCTGCGCCCG	TTGGCGCCGG
27601	GCCAGGTCCG	CGTCGCCGTC	ČĀTACGGCCG	GGGTCAATTT	CCGTGACGTC
27651	CTGATCGCCC	TGGGCATGTA	CCCGGACCCG	GACGCGCTGC	CCGGCACCGA
27701	GGCGGCCGGC	GTGGTGACGG	AGGTCGGGCC	GGGCGTCACC	CGTCTGTCGG
27751	TGGGCGACCG	CGTGATGGGC	ATGATGGACG	GCGCCTTCGG	CCCGTGGGCC
27801	GTCGCCGACG	CGCGCATGCT	GGCCCCGGTC	CCGCCCGGCT	GGGGCACCCG
27851	GCAGGCGGCC	GCCGCTCCCG	CCGCGTTCCT	GACGGCTTGG	TACGGGCTGG
27901	TGGAGCTGGC	CGGTCTGAAG	GCGGGCGAGC	GTGTGTTGAT	CCATGCCGCC
27951	ACGGGTGGTG	TGGGGATGGC	GGCGGTGCAG	ATCGCCCGGC	ATGTGGGTGC
28001	CGAGGTGTTC	GCCACCGCGA	GTCCGGGCAA	GCACGCCGTG	CTGGAGGAGA
28051	TGGGCATCGA	CGCCGCCCAC	CGCGCCTCGT	CGCGCGACCT	CGCCTTCGAG
28101	GACGCCTTCC	GGCAGGCCAC	CGACGGCCGT	GGCGTGGACG	TCGTCCTCAA
28151	CAGCCTCACC	GGTGAACTGC	TCGACGCGTC	CCTGCGATTG	CTCGGCGACG
28201	GCGGGCGCTT	CGTGGAGATG	GGCAAGAGCG	ATCCGCGCGA	CCCCGAGCTG
28251	GTCGCGCTGG	AGCACCCCGG	GGTGTCGTAC	GAGGCCTT.CG	ACCTCGTCGC
28301.	CGACGCCGGG	CCCGAGCGGC	TCGGGCTGAT	GCTCGACAGG	CTCGGCGAGC
28351	TCTTCGCCGG	CGGATCACTG	GTACCGCTGC	CGGTCACCGC	ATGGCCGCTG
28401	GGGCGGCGC	GAGAGGCGCT	CCGCCACATG	AGTCAGGCGA	GGCACACCGG
28451	CAAGCTGGTG	CTCGACGTGC	CCGCGCCGCT	CGACCCCGAC	GGCACCGTCC
28501	TCGTCACCGG	GGGTACCGGC	ACCATCGGCG	CCGCCGTGGC	CGAACACCTG

	28551	GCGCGTACCG.	GGGAGAGCAA	GCACCTGCTC	ATCGTCAGCC	GCAGCGGGCC	
	28601	GGCCGCCCAC	GGCGCCGAGG	AACTTGTCTC	TCGTATAGCC	GAGTTCGGGG	
٠.	28651	CCGAAGCCAC	CTTCGTCGCT	GCCGACGTGA	GTGAGCCCGA	CGCGGTCGCC	
	28701	GCCCTGATCG	AAGGGATCGA	TCCGGCCCAT	CCGCTGACCG	GTGTCGTGCA	
	28751	TGCCGCCGGA	GTACTCGACA	ACGCTCTGAT	CGGCTCCCAG	ACCACCGAAA	
	28801	GCCTCACCCG.	CGTATGGGCG	GCGAAGGCCG	CCGCCGCGCA	GCAACTCCAC	
	2,885,1	GAGGCCACGA	GGGAGTCGAG	GCTGGGACTG	TTCGTGATGT	TCTCCTCCTT	
	28901	CGCCTCCACC	ATGGGCACCC	CAGGGCAGGC	CAACTACTCC	GCCGCCAACG	
	28951	CCTATTGCGA	CGCGCTGGCC	GCTCTCCGAC	GCGCGGAGGG	GCTCGCCGGC	
	29001	CTGTCCGTGG	CGTGGGGGTT	GTGGGAGGCC	ACCAGCGGCC	TGACCGGGAC	
	29051	GTTGTCGGCG	GCCGACCGGG	CCCGCATCGA	CCGGTACGGC	ATCAGGCCGA	
	29101	CCAGCGCGGC	ACGCGGCTGC	GCCCTGCTGG	CAGCGGCACG	CGCCCACGGG	
	29151	CGCCCCGACC	TGCTCGCCAT	GGACCTGGAC	GCCCGCGTAC	CCGCCGCGTC	
	29201	CGACGCTCCG	GTCCCCGCCG	TGCTGCGCAC	TCTGGCGGCC	GCCGGAGCGC	
	29251	CCGCCACCGC	CCGTCCCACC	GCGGCGGCGG	CCGCTGACGG	GGCGACGGAC	
	29301	TGGTCCGGCA	GGCTCGCCGG	CCTCACCGAG	GAGGCACGGC	TCGAACTCCT	
	29351	CACCGAGTTG	GTGTGCACCC	ACGCGGCAGG	GGTGCTCGGG	CACGCCGACG	
	29401	CGGGCGCGGT	CCAGGTGGAC	GCGCCGTTCA	AGGAACTCGG	CTTCGACTCG	
	29451	CTGACCGCCG	TCGAACTGCG	CAACCGGATC	GCCGCCGCGA	CCGGCCTGAA	
	29501	ACTGCCCGCC	GCCCTCGTCT	TCGACTACCC	GCAGGCTCGC	GTTCTCGCCG	
	29551	CCCACCTGGC	CGAACGGCTC	GTCCCGGAGG	GCGCGGGGGC	CATGGGCGGT	
	29601	GTGAGCGGTG	CGGAGGCGT	GAGGGACGCG	TACGGGGCAG	GCGGTCCGGG	
	29651	CGGCGACATG	ACCGCCCAGG	TCTTGCTGGA	GGTGGCCCGC	GTCGAGCACA	, •
	29701	CCCTGTCCGC	CGCCGTCCCG	CACGGCCTGG	ACCGGGCGGC	CGTCGCGGCC	
	29751	CGCCTGGAGG	CGCTGCTCGC	CCGCTGCACG	GCGACGACGG	CGGCCACGGG	
	29801	GGCCGCGGGA	GCCGCGGTGG	AGGGTGACGG	CGACAGCGAC	GGCGACGGCG	

298	51	CCGTGGATCA	GCTGGAGACG	GCCACCGCCG	AGCAAGTACT	GGACTTCATC
299	01	GACAACGAAC	TCGGGGTGTG	AGCCGCGTGC	CGGCCGCACA	CCÀGGCGATC
299	51	ACGGGCGGG	AGCTGCAGCG	CACATGGTGA	GCGAAGAGAA	ACTGGTCGAC
.300	01	TACCTCAAGC	GTGTCTCCGC	GGACCTGCAC	GCCACCCGGC	AGCGGCTGCG
300	51	CGAGGCGGAG	GAGCGCGGCC	AGGAACCCGT	GGCCGTGGTG	GAGGCCGCCT
301	01	GCCGCTACCC	CGGCGGCATC	CGCACCCCCG	AAGACCTGTG	GGACCTGGTC
301	51	GCCGCGGGCG	GCAACGCCCT	GGGCGCCTTC	CCCGACAACC	GCGGCTGGGA
302	01	CCTGCGACGC	CTCTTCCACC	CCGACCCCGA	CCACCCCGGG	ACGACCTACG
302	51	CCCGCGAGGG	CGGCTTCCTC	CACGACGCCG	ACCTGTTCGA	CCCGGAGTTC
303	01	TTCGGCATCA	GCCCCGCGA	GGCCGCGGTC	CTCGACCCGC	AGCAGCGACT
303	51	GCTCCTGGAG	TGCGCCTGGG	AGGCACTGGA	GCGCGCGGGC	ATCGACCCGC
304	01	GGTCCCTCCA	GGGCAGCCGT	ACCGGCGTGT	ACGCGGGTGC	CGCCCTGCCC
304	51	GGCTTCGGCA	CCCCGCACAT	CGACCCCGCC	GCCGAGGGCC	ACCTGGTCAC
305	01	CGGCAGCGCC	CCGAGCGTCC	TCTCGGGCCG	GCTCGCCTAC	ACCTTCGGCC
305	51	TCGAAGGGCC	CGCGGTGACG	ATCGACACCG	CCTGCTCGTC	GTCGCTCGTC.
306	01	GCCGTGCACC	TGGCGGCCCA	CGCGCTGCGG	CAGCGCGAGT	GCGATCTGGC
306	51	GCTCGCGGGC	GGTGTCACCG	TCATGACCAC	CCCGTACGTG	TTCACCGAGT
307	01	TCTCGCGCCA	GCGCGGCCTG	GCCGCCGACG	GCCGGTGCAA	GCCCTTCGCG
307	51	GCCGCCGCGG	ACGGCACGGC	CTTCTCCGAG	GGCGCCGGAC	TCCTCGTACT
308	01	GGAACGCCTC	TCCGACGCCC	GCCGGGCCGG	CCACCGGGTG	CTCGCCGTCA
308	51	TCCGCGGCTC	GGCCGTCAAC	CAGGATGGCG	CGAGCAACGG	CCTCACCGCC
309	01	CCCAACGGCC	CCGCCCAGCA	GCGCGTGATC	CGCGCCGCCC	TCGCCGGGGC
309	951	GCGGCTCTCG	CCCGCGGAGG	TGGACGCGGT	CGAGGCGCAC	GGCACCGGCA
310	01.	CCCGGCTGGG	CGACCCCATC	GAGGCCGACG	CGCTCCTCGC	CACCTACGGT
310	51	CAGGAGCGCC	ACGGGGGCCG	GCCGCTGTGG	CTCGGCTCGG	TGAAATÇCAA
. 311	101	CATCGGCCAC	ACGCAGGGCG	CGGCCGGTGC	CGCGGGCCTG	ATCAAGATGG

	31151	TCCAGGCACT	GCGGCACGAG	ACGCTGCCCG	CCACGTTGTA	CGCCGACGAG
	31201	CCCACCCCGC	ACGCCGACTG	GGAGTCGGGC	GCGGTGCGCC	TGCTCAGCGC ·
	31251	GCCGGTCGCC	TGGCCGCGCG	.GGGAGCACGG	GGAGCACACC	CGCAGGGCCG ·
	31301	GCATCTCCTC	CTTCGGCATC	TCCGGCACGA	ACGCCCACCT	CATCCTGGAG
	31351	GAGGCGCCCG	CGGCCGACGC	CGAAGGAGCG	GGTGGCGACG	GCGATGGCGA
	31401	CGGGGGAGGG	GTGCGGCCGG	TGGTGCGGGT	CGGCGCCACG	eecccccccc
	31451	AAGAGCAGGG	CCAAGGACAG	GGCCAAGAGC	AGCACCAACA	GCAACGTCAG
	31501	CAGCGGCAGC	GGTCGTCGAT	GATGCCGACG	CCGCACCTCC	CGTGGCTGCT
	31551	GTCCGCCCGC	AGCCCCGCCG	CGCTCCGCGC	CCAGGCCGAC	GCGCTGGCGA
	31601	ACCATGTCGC	CCACGCGGAC	CACTCCATCG	CCGACATCGG	CGGCACACTG
	31651	CTGCGCCGCA	CCCTGTTCGA	GCACCGGGCG	GTCGTCCTCG	GAACCGACCG
	31701	TGATGAGCGT	GCCGCAGCGC	TTGCCGCCCT	CGCGGCAGGA	CGCGCACACC
	31751	CCGCGCTGAC	CCGGGCCGCA	GGGCCGGCGA	GGAACGGCGG	CACCGCCTTC
	31801	CTGTTCACCG	GCCAGGGAAG	CCAACGCCCA	GGCATGGGCA	GGCAGTTGTA
	31851	CGACACCTTC	GACGTCTTCG	CCGAGTCGCT	CGACGAGACC	TGCGCCCGGC
	31901	TCGACCCCCT	GCTCGAACAG	CCGCTGAAGC	CCGTCCTGTT	CGCCCCCGCC
,	31951	GACACCGCGC	AGGCCGCCGT	GCTGCACGGG	ACCGGCATGA	CGCAGGCCGC
	32001	GCTGTTCGCC	CTCGAAGTCG	CCCTGTACCG	CCAGGTCACC	TCCTTCGGGA
	32051	TCGCCCCCAG	CCACCTGACC	GGGCACTCCG	TCGGCGAGAT	CGCCGCCGCC
	32101	CACGTCGCCG	GGGTGTTCTC	CCTGGCGGAC	GCCTGCACGC	TGGTCGCGGC
	32151	ccegegccec	CTCATGCAGG	CCCTGCCCGC	AGGTGGCGCC	ATGCTCGCCG
	32201	TCCAGGCGGC	CGAGGACGAC	GTACTGCCGC	TGCTCGCCGG	GCAGGAGGAA
	32251	CGTCTCTCCC	TCGCCGCCGT	CAACGGCCCC	ACCGCCGTCG	TCGTGTCCGG
	32301	TGAGGCCGCT	GCCGTCGGGG	AGGTGGAGAA	GGCGCTGCGC	gggcgcggac
	32351	TGAAGACCAA	GCGGCTCAAC	GTCAGTCACG	CCTTCCACTC	GCCGCTCATC
	32401	GAGCCGATGC	TCGACGACTI	CCGCGAAGTG	GCCCGCGGGC	TGACCTTCCA

32451	CGCGCCGACG	CTGCCCGTCG	TCTCCAACCT	CACCGGCCGC	CTCGCCGACG
32501	CGGAGCTGAT	GGCCGACGCC	GAGTACTGGG	TGCGGCACGT	ÄCGCCGGCCG
32551	GTGCGGTTCC	ACGACGGGCT	GCGCGCTCTC	AGCGAGCAAG	GCGTCGTGCG
32601	CTACCTGGAG	TTGGGGCCCG	ACCCGGTCCT	CGCCACCATG	GTCCAGGACG
32651	GTCTCCCGGC	CCCGGCGGAG	GGAGAGGAGC	CCGAGCCGGT	CGTCGCCGCG
32701	GCGCTGCGCT	CCAAGCACGA	CGAGGGACGC	ACCCTGCTGG	GTGCCGTCGC
32751	CGCGCTCCAC	ACCGACGGAC	AGCCGGCCGA	CCTCACCGCC	CTCTTCCCCG
32801	CCGACGCCGG	GCAAGTGCCG	CTCCCCACCT	ACCGGTTCCA	GCGGCGACGG
.32851 ·	TACTGGCGCG	TCGCGCCCGA	CGCCGCCGCG	cceecccee	CCGCCGGCCT
32901	CCAGGAGACC	GGCCACCCGC	TGCTGCCCGC	CGTCATCCGG	CAGGCCGACG
32951	GCGGCATCCT	GCTCGCGGGA	CGCCTGTCCC	TGCGTACGCA	TCCATGGCTC
33001	GCCGACCACA	CCATCGCGGG	CGGCGTCCCG	CTGCCCGCCA	CCGCCTTCGT
33051	CGAACTCGCC	CTGCTCGCAG	GGCGGCACGC	CGCCTGCGAC	ACGATCGACG
33101	ATCTGACGCT	GGAGACGCCG	CTGCTGCTCG	ACGACACCGG	TACCGGTGTC
33151	GGGGCGGCTG	TGGGCGCGGG	CGCCGATGCC	CTCGTCGATG	CCATAGAAGT
33201	GCAGCTTGCC	CTCGGCGCTC	CCGACGGTTC	CGGCCGCCGT	GCTCTCACCG
33251	TCCACTCCCG	TCCTGCCGAC	GATGCGGCTG	ACGACGGCGA	CGCGGCCGAC
33301	GCGGCCGATG	CGGCAGGCCG	GGGAGGCCCG	GGCGGCTCGG	GTGACCTGGG
33351	CGATCCTGGC	GATCCGGGCG	ATCTGGGCGA	CGGCGGGGC	TCCCGCGGCT
33401	GGCGCCGTCA	CGCCACCGGC	ATCCTCAGCG	CCGGCCCGGC	CGCCGAACCG
33451	GCCGCCCCG	ACGCCGCTCC	CTGGCCGCCC	GCCGACGCCA	CCGCCCTCGA
·33501	CGTCGACGCG	CTGTACGCCC	GGCTCGACGC	GCAGGGCTAC	AGCTACGGGC
33551	CCGCCTTCCG	GGCCGTCCAC	GCCGCCTGGC	GGCACGGCGA	CGACCTCTAC
33601	GCCGATGTCC	GCCTCGCCGA	CGAACAGCGC	GCTGAAGCCG	ACGCGTTCGC
33651	CCTCCACCCG	GCCCTGCTCG	ACGCCGCCCT	GCATGCCGTC	- GACGAGCTGT .
33701	ACCGCGGCAG	TGAGGGGCGG	GGGCAGGAGC	AGGGGCAGGG	TGGTCAGGAG

33751	CCGGAGCAGG	GCCGTGGCGA	CGCGGACGCC	CCGGTACGGC	TGCCGTTCTC
33801	CTTCAGCGAC	ATACGCCACC	ACGCCACCGG	GGCCACACGG	CTGTGGGTCC
33851	GC(^ 'AGCCC	CCAGGGCGAC	GATCGGCTGC	GGCTGTCCCT	GACCGACGGC
33901	GAGGGCGGGC	AGGTCGCGAC	AGTCGACGCC	CTCCAACTGC	GGTTGATCCC
33951	CGCCGACCGG	TGGCGCGCGG	CCCGCCCCAC	CACAGCCGCC	CCCCTGTACC
34001	ACCTGGACTG	GCACGAGCTG	CCGTTGCCCG	AGCCGGCCGA	GACGGACCCG
34051	GCCGCCCACT	CCTGGGCTGT	GCTCGGAGCG	CACGACGCGG	GCCTCGCTCC
34101	CGCCGCGCAC	TACCCGGACC	TGGCGGCCCT	GAAAGCCGCC	GTCGAGGCCG
34151	GCGAGCCCGT	GCCGGACATC	GTCTTCGCAC	CGTTCCCCGC	GCAGGGGACG
34201	GAGACCGATG	TCCCGGCTCA	GGTACGAGCC	CACGCCCGGC	ACGCCCTGGA
34251	GCTGCTGCGC	GACTGGCTCA	CCACGGAAGC	TTTCGCCGCC	GCCCGCCTCG
34301	TCGTCCTCAC	GACCGGTGCG	GTCACCGCCC	GCCCAGAGGA	CGGGCCCGCC
34351	GACCTGGCCA	CCGCACCTGT	ATGGGGCCTG	GTCCGAGCCG	CCCAGGCCGA
34401	ACAACCCGAC	CATGTCGTCC	TGGTGGACAT	CGACAAGGAC	ATCGATAAGG
34451	ACACCGACGA	GGAGACCGAC	CAGGCCACCG	ACGCGGGCAC	CGCATCGCGC
34501	CACGCTCTGC	CCGCCGCCTT	GGCCGCGGCG	GCCGCCCAAG	CCGAGACACA
34551	GCTCGCCCTG	CGCGCGGGCA	CCGTGCTCGT	GCCGCGCCTC	GCCGTCGTCC
34601	CGCCCCGGAC	CGACACCCCA	GCGCTGCACG	CCACCGCCCC	GGAGAGCACC
34651	ACGGACACTG	TGGACTCCAC	GGGCATCGCG	GGCGCTGCGG	AATCCGGCGG
34701	CACCGTCCTG	ATCACCGGCG	GAACCGGCGG	CCTCGGGCAG	GCCGTCGCCC
34751	GTCACCTCGC	CGCCGCGCAT	GGCGCCGCC	ACCTGCTCCT	CGTCAGCCGC
34801	AGGGGCGACG	CCGCCGAGGG	CGTCGCCGAG	TTGCGCGCCG	ACCTCGCGGA
34851	CGACGGCGTC	GACGTACGCG	TCGCCGCCTG	CGACATCACC	GACCGCGACG
34901	CGCTGGCCGG	GCTCCTCGCG	GACATCCCCG	CCGCGCACCC	GCTCACCGCG
34951	GTCGTGCACA	CCGCGGGGGT	CATCGACGAC	AGCCTCATCA	CGGCGATGAC
35001	CCCCGAGCGG	CTCGACGCCG	TCCTCGCACC	CAAGGCCGAC	GCGGCCTGGC

35051	ACCTGCACGA	ACTCACCCGC	GACAAGGACC	TGTCGGCCTT	CGTCCTCTTC
35101	TCCTCGGGCG	CCTCCGTCCT	CGGCAACGGC	GGCCAGGCCA	ACTACGCGGC
35151	.CGCCAACACC	TTCCTCAACA	CCCTCGCCGA	ACACCGCCGC	GCGGCCGGCC
35201	TCGCCGCCAC	CTCCGTGGCC	TGGGGCCTGT	·GGGAGTCCGC	GTCCGGCGGC
35251	ATGGCCGCCC	GGCTCGGCGA	CGCCGACCGC	GCCCGCATCC	ACCGCACCGG
35301	CGTGACGGGC	CTGACCGACG	AGCAGGCCCT	GGCCCTCTTC	GACGCGGCCC
35351 -	TGACCGCCGA	GCACCCCACG	GTCCTCGCCA	CCCGCTTCGA	CCGCGCCGTG
35401	CTGCGCGGCC	AGGCCGCCGC	CCGCACCCTG	CAGCCCGCCC	TGCGCGGCCT
35451	GGTACGCACT	CCGCGCCCCA	CCGCGTCCGC	CGGGGCCATC	GGGTCCACCG
35501	CAGCCACCGG	GTCCGCCACG	GACGAGAACG	CGCCCTCCTC	GTGGGCCGCC
35551	CGGCTCGCCC	GGCTGTCCGC	CGCCGACCGC	GACCGCGCCC	TCAACGAACT
35601	CATTCGCGAG	CAGATCGCGA	CCGTCCTGGC	ACACCCCTCA	CCCGACACCA
35651	TCGAACTGGG	CCGCGCCTTC	CAGGAGTTGG	GCTTCGACTC	GCTCACCGCC
35701	CTGGAACTCC	GCAACCGCCT	CTCCACGGCC	ACCGGCATCC	GGCTGCCCGC
35751	CACCCTCGTC	TTCGACCACC	CGAGCCCCAC	CGCCCTCGTA	CGCCATCTCC
35801	ACAGCCATCT	CCCCGACGAG	GCCCAGCACA	CGTCCCCGAC	CGCCCCCGGC
35851 [.]	GCCTCTGCGG	AGGGCACCGC	CGCCACGGCC	ACCGGCATCG	ACGACGACCC
35901	GATCGCCATC	GTCGGCATGG	CGTGCCGCTA	CCCGGGCGGC	GTGACCTCGC
35951	CCGAGCAGCT	GTGGCAGCTC	GTGGCCACCG	GCACCGACGC	CATCGGCCCG
36001	TTCCCCGAGG	ACCGCGGCTG	GGACACGGCC	GGACTGTTCG	ATCCCGACCC
36051	CGACCAGGTC	GGCCACAGCT	ACACCCGCGA	AGGCGGCTTC	CTCTACGACG
36101	CCGCCCGCTT	CGACGCGGGC	TTCTTCGGCA	TCAGCCCGCG	CGAGGCCGCC
36151	GCCACCGACC	CGCAGCAGCG	CCTGCTCCTG	GAAACCGCCT	GGCAGGCGTT
36201	CGAACACGCG	GGCATCGACC	CCGCCGCCCT	GCGCGGCACC	CCGTGCGGCG
36251	TCATCACCGG	AATCATGTAC	GACGACTACG	GATCCCGCTT	CCTCGCGCGC
36301	AAACCGGACG	GCTTCGAGGG	CCGCATCATG	ACCGGCAGCA	CGCCGAGCGT

36351	GGCCTCCGGC	CGGGTCGCGT	ACACCTTCGG	CCTGGAGGGC	CCCGCCATCA
36401	CGGTGGACAC	CGCGTGCTCC	TCCTCGCTGG	TCGCGATGCA	CCTGGCGGCG
36451	CAGGCGCTGC	GGCAGGGCGA	GTGCGAACTG	GCCCTGGCCG	GGGGTGTGAC
36501	CGTGATGGCC	ACCCCGAACA	CCTTCGTGGA	GTTCTCCCGC	CAGCGCGGCC
36551	TGGCCCCCGA	CGGCCGCTGC	AAGCCGTTCG	CCGCCGCGGC	GGACGGCACĆ
36601	GGCTGGGGCG	AGGGCGCCGG	ACTCGTCGTC	CTGGAGCGCC	TCTCCGACGC
36651	GCGCCGCAAG	GGACACCGCG	TCCTCGCCCT	GCTGCGCGGT	TCGGCCGTGA
36701	ACCAGGACGG	CGCGAGCAAC	GGCATGACCG	CCCCGAACGG	TCCCTCGCAG
36751	GAACGGGTCA	TCCGCACCGC	CCTGGCCGGC	GCGGGCCGTG	GTCCCGAGGA
36801	CATCGACGTG	GTGGAGGCGC	ACGGCACCGG	CACCACGCTC	GGCGACCCGA
36851	TCGAGGCGCA	GGCCCTGCTC	GCCACGTACG	GGCAGGGGCG	CCCGGAGGAC
36901	CGCCCGCTCT	GGCTCGGCTC	GGTGAAGTCG	AACATCGGCC	ACACGCAGGC
36951	CGCCGCCGGT	GTCGCGGGCG	TCATCAAGAT	GGTCATGGCA	CTGCGCCACG
37001	AGCAACTGCC	CACGACCCTG	CACGCCGACG	AGCCGACCCC	CCACGTGCAA
37051	TGGGACGGCG	GCGGCGTACG	TCTCCTGACC	GAACCGGTCC	CGTGGTCGCG
37101	CGGCGAGCGC	ACGCGGCGCG	CCGGGGTGTC	GTCCTTCGGG	ATCTCCGGGA
37151	CGAACGCGCA	CCTGATCCTG	GAGGAGCCGC	CGGAGGAGGA	CCTGCCCGAG
37201	CCCGTGGCGG	CGGAGCCGGG	TGGGGTGGTG	CCGTGGGTGG	TGTCCGGGCG
37251	GACGCCGGAC	GCGTTGCGTG	AACAGGCGCG	GCGGCTCGGC	GAGTTTGTCG
. 37301	TCGGTGCCGG	GGATGTGTCG	GCAGCCGAGG	TGGGATGGTC	ACTGGCCACG
37351	ACGCGGTCGG	TGTTCGAGCA	CCGGGCCGTG	GTGGCGGGCC	GGGACCGGGA
37401	CGATCTGGTT	GCCGGGATGC	AGGCGCTGGC	GGCAGGGGAG	ACGCCGACAG .
37451	ATGTCGTGTC	CGGTGCGGCG	GCTTCCTCCG	GTGCGGGGCC	GGTGTTGGTG
37501	TTCCCGGGGC	AGGGGTCGCA	GTGGGTGGGC	ATGGGTGCCC	AGCTCCTTGA
37551	CGAGTCCCCC	GTCTTCGCGG	CGCGGATCGC	GGAGTGTGAG	CAGGCGCTGT
37601	CGGCGTACGT	GGACTGGTCG	CTGAGTGATG	TCCTGCGCGG	GGACGGGAGT

37651	GAGCTGTCCC	GGGTCGAGGT	CGTGCAGCCC	GTGTTGTGGG	CGGTAATGGT
37701	CTCGCTGGCT	GCCGTCTGGG	CGGATTACGG	GGTCACTCCG	GCCGCTGTGG
37751	TGGGGCATTC	GCAGGGTGAG	ATGGCTGCCG	CGTGTGTGGC	GGGGGCGCTG
37801	TCGCTGGAGG	ATGCGGCGCG	GATTGTGGCG	GTACGCAGTG	ACGCGCTTCG
37851	TCAGCTGCAA	GGGCACGGCG	ACATGGCCTC	ACTCGGCACT	GGTGCCGAGC
37901	AGGCCGCTGA	GCTGATCGGT	GATCGGCCGG	GAGTGGTCGT	CGCGGCAGTC
37951	AACGGGCCGT	CGTCTACCGT	GATTTCGGGG	CCGCCGGAGC	ATGTGGCCGC
38001	TGTGGTCGCG	GAGGCGGAGG	CACGTGGTCT	GCGCGCCCGT	GTGATCGACG
38051 -	TCGGGTATGC	CTCGCACGGC	CCCCAGATCG	ACCAGCTCCA	CGACCTCCTC
38101	ACCGAGGGCC	TGGCTGACAT	CCGGCCCGCG	AACACGGACG	TGGCCTTCTA
38151	TTCGACGGTC	ACCGCCGAGC	GCCTGACGGA	CACCACAGCC	CTGGATACGG
38201	ATTACTGGGT	GACCAACCTC	CGCCAGCCGG	TCCGGTTCGC	CGACACCATC
38251	GAAGCGCTTC	TCGCGGACGG	CTATCGCCTG	TTCATCGAGG	CCAGCGCGCA
38301	CCCGGTGTTG	GGCCTGGGCA	TGGAGGAGAC	CATCGAGCAG	GCGGACATCC
38351	CTGCCACGGT	CGTCCCCACC	CTGCGCCGCG	ACCACGGCGA	CACCACCCAG
38401	CTCACCCGCG	CCGCCGCCCA	CGCCTTCACC	GCCGGCGCCG	ATGTCGACTG
38451	GCGACGCTGG	TTCCCGGCCG	ACCCCACCCC	CCGTACCGTC	GACCTCCCCA
38501	CCTACGCCTT	CCAGCACCAG	CACTACTGGC	TGGAGGAGCC	CAGTGGGCTC
38551	ACCGGAGACG	CCGCCGACCT	CGGCATGGTG	GCCGCCGGGC	ATCCGCTGCT
38601	CGGTGCCTGT	GTGGAACTCG	CGGAGAGCGA	CTCGTACTTG	TTCACCGGGC
38651	GGCTCTCGCG	CAGGGCTCCG	TCCTGGCTGG	CCGAACACGT	GGTGGCGGG
38701	ACGGTTCTGG	TGCCGGGTGC	GGCGTTGGTG	GAGTGGGTGC	TGCGGGCCGG
38751	CGATGAGGEG	GGATGCCCGA	CGATTGAGGA	ACTGACGCTC	CAGGCGCCGT
38801	TGGTGCTGCC	CGAGTCGGGC	GGGTTGCAGG	TTCAGGTGGT	CGTGGGTGCG
38851	ACCGATGAGC	AGAGCGGCCG	TCGTGACGTA	CACGTGTATT	CGAGGTCTGA
38901	GCAGGACGCG	TCGGCGGTGT	GGGTGTGCCA	TGCCGTCGGT	GTGGTGAGCT

38951 CCGAAATGCC AGAAGCGGCA GCCGAGTTGA GTGGGCAGTG GCCTCCTGCC	
39001 GGGGCCGAAG CCGTGGATGT CGAGGACTTC TACGCGCGGG CCGCGGAGGC	
39051 CGGATACGCC TACGGTCCGG CGTTCCAGGG GCTGCGGGCG CTGTGGCGGC	
39101 ACGGGACGGA GCTGTTCGCC GAGGTGGTGC TGCCCGAACA GGCGGGTGGG	
39151 CACGACGGTT TCGGCATCCA CCCGGCGCTG CTGGACGCCG CCCTGCATCC	
39201 GCTGATGCTC CTCGACCGGC CCGCGGACGG GCAGATGTGG CTGCCGTTCG	
39251 CGTGGAGCGG GGTGTCGCTG AACGCGGACC GGGCGACCCA CGTCCGTGTC	
39301 CGGCTCTCCC CGCGGGGGGA GGCGGCCGAG CGTGACCTGC GGGTCGTCAT	
39351 CGCCGACGCG ACCGGCGCGC CCGTCCTGAC GGTCGACGCC CTGACCCTGC	
39401 GCGCGGCCGA TCCCGGCCGG CTGGGTGCGG CGGCCCGTGG CGGTGTCGAC	
39451 GGCCTCTACA CCGTCGACTG GACCCCGCTG CCCCTGCCCC AGCCCCTTCC	
39501 GCTGCCGCGG ACGGATGCAG GGGGGAGTGC CGACTGGGTC ATACTCTCGG	
39551 ACAACTCCAG TGCAGCTCTG GCTGATGCCG TGTCGTCCGC GACGGCGGCA	
39601 GGTGGCGGAG CGCCGTGGGC ATTGCTCGCT CCCGTGGGTG GCGGCTCTGC	
39651. CGATGACGGG CTGCCGGTGG TGCGGCGGAC CCTCTCCCTC GTACAGGAGT	
39701 TCCTGGCCGC CCCGGAGCTG ACCGAGTCCC GTCTCGTCAT CGTGACACGC	
39751 GGTGCCGTGG CCACCGACGC CGATGGTGAC GTCGCGGCGT CCGCGGCAGC	
39801 GGTATGGGGC CTGATCCGCA GCGCCCAGTC GGAGAACCCG GGCCGCTTCG	
39851 TCCTGCTCGA CGTCGAGGAG GAGCACCTCC ACCCGGACGG CGGGGAACTG	
39901 CCGTACGCCG CCCTGCGCCA CGCCGTAGAG GAGCTCGACG AGCCTCAACT	
39951 TGCCCTCCGC AGCGGCAAAT TCCTCGTACC GCGCATGACG CCCGCCGCCG	
40001 CCCCCGAGGA GCTCGTCCCG CCGGTCGGTA CGTCCGGCTG GCGCCTCGGC	
40051 ACCTCCGGTA CGGCCACCCT GGAGAATCTG TCGGTGATCG ACGCTCCCGA	
40101 GGCGTTCGCG CCGCTGGAGC CCGGGCAGGT GCGGATCTCC GTACGGGCGG	,
40151 CGGGCATGAA CTTCCGTGAC GTGCTGATCG CGTTGGGCAT GTATCCCGAC	
40201 AAGGGCACGT TOGCGGGAAG CGAGGGCGCC GGACATGTGA CGGAGGTGGG	į

40251	ACCGGGCGTC	ACTCATCTGT	CGGTCGGTGA	CCGGGTGATG	GGTCTGTTCG
40301	AGGGCGCGTT	CGCTCCGCTG	GCCGTCGCGG	ACGCCCGGAT	GGTCGTCCCG
40351	ATTCCGGAGG	GCTGGAGCTT	CCAGGAGGCC	GCGGCGGTGC	CCGTGGTGTT
40401	CCTCACGGCC	TGGTACGGCC	TCGTGGACCT	CGGCCGCCTC	CGGGCGGGCG
40451	AATCGCTGCT	CATCCACGCG	GGCACCGGCG	GAGTGGGCAT	GGCCGCCACC
40501	CAGATCGCCC	GCCACCTGGG	CGCCGAGGTG	TTCGCCACCG	CGAGCCCCGC
40551	CAAGCACGGC	GTGCTCGACG	GCATGGGCAT	CGACGCGGCC	CACCGCGCCT
40601	CCTCCCGTGA	CCTCGACTTC	GAGGAGACCT	TGCGGGCGGC	GACGGGCGGG
40651	CGCGGCATGG	ACGTCGTACT	CAACAGTCTG	GCCGGGGAGT	TCACCGACGC '
40701	CTCGCTGCGG	CTGCTCGCCG	AGGGCGGGCG	CATGGTGGAC	ATGGGCAAGA
40751	CCGACAAGCG	CGACCCCGAC	CGGGTCGCGG	CCGAGCACGC	GGGCGCGTGG
40801	TACCGGGCCT	TCGACCTCGT	GCCGCACGCG	GGGCCCGACC	GGATCGGGGA
40851	AATGCTGGCG	GAGCTGGGCG	AGTTGTTCGC	CTCCGGCGCC	CTGGCGCCGC
40901	TGCCCGTCCA	GACCTGGCCG	CTGGGCCGGG	CGCGTGAGGC	GTTCCGGTTC
40951	ATGAGCCAGG	CGAAGCACAC	CGGCAAGCTG	GTGCTGGAGA	TCCCGCCCGC
41001	CCTCGATCCG	GACGGCACGG	TGCTCATCAC	CGGCGGCACC	GGGGTCCTCG
41051	CCGCCGCGGT	GGCCGAGCAT	CTGGTGAGGG	AGTGGGGCGT	ACGACACCTG
41101	CTGCTGGCCG	GGAGGCGCGG	TTCCGAGGCG	CCCGGGAGCA	GTGAACTCGC
41151	CGAGGAACTG	ACCGAGTTGG	GGGCCGAGGT	GACCTTTGCC	GCGGCCGATG
41201	TCAGTGATCC	GGACGCCGTG	GCGGAGCTCG	TCGGCAAGAC	CGATCCGGCG
41251	CACCCGCTGA	CCGGTGTGAT	CCACGCGGCC	C GGTGTGCTGG	ACGACGCCGT
41301	GGTCACCGCA	CAGACCCCGG	AGAGCCTCGC	GCGGGTGTGG	·GCGGCGAAGG·
41351	CGACGGCCGC	CACACCTGCTC	G CACGAGGCG	A CCCGGGAGGC	GCGCCTCGGT
41401	CTCTTCCTGG	TGTTCTCCTC	GGGGGGGGC	ACACTCGGCA	GTCCGGGACA
41451	GGCCAACTAC	c GCGGGGGCCI	A ACGCCTATTC	GGACGCCCTC	GTCCGGCAAC
41501	GGCGTGCCG	A GGGCCTGGC	C GGTCTCTCG	A · TCGGCTGGGC	TCTGTGGCAG

41551	ACGGCGAGCG	GCATGACCGG	ACACCTCGGC	GAGACGGACC	TGGCACGCAT
41601	GAAGCGCACC	GGGTTCACCC	CGCTGACCAC	CGAAGGTGGC	TTGGCCCTCC.
41651	TCGACGCCGC	CCGCGCCCAC	GGCGGCCCGC	ACGTGGTCGC	GGTGGACCTC
41701	GACGCGCGCG	CCGTCGCCGC	GCAGCCCGCC	CCGTCCCGGC	CCGCGCTCCT
41751	GCGCGCCCTG	GCCGCGGGTG	CGACCCCGGG	GGCCCGCACC	GCCCGGCGCA
41801	CCGCGGCCGC	GGGCAGCGTC	GCCCCGGCGG	GCGGTCTCGC	CGACCGGCTC
41851	GCCGGCCTGC	CGCATCCCGA	ACGGCGCCGG	CTGCTGCTCG	ACCTCGTACG
41901	TGGCAACGTC	GCCGGCGTCC	TCGGGCACAG	CGACCACGAC	GCCGTCCGCC
41951	CGGACACGTC	GTTCAAGGAG	CTCGGCTTCG	ACTCCCTGAC	CGCCGTGGAA
42001	CTGCGCAACC	GGCTGGCCGC	CGCCACCGGC	CTGAAGCTGC	CCGCGGCGCT
42051	CGTCTTCGAC	TACCCCGAGT	CGGCCACCCT	CGTCGACCAC	CTCCTGGAGC
42101	GTCTGTCGCC	CGACGGCGCG	CCGCCGCCCG	TCAAGGACGC	CGCGGACCCC
42151	GTTCTCAACG	ACCTCGGCAG	GATCGAGTCC	TCCCTGGACG	CGCTCGCCCT
42201	CGACGCGGAC	GCGCGCAGCC	GGGTCACCAG	GCGTCTGAAC	ACCCTGCTGT
42251	CGAAGCTGAA	CGGAGCCGCC	ACCGCCGGCT	CCCCGGCGGA	CGTCACGGAC
42301	CTGGACGCGC	TGGACGCGCT	GGACGACGTG	TCCGACGACG	AGATGTTCGA
42351	GTTCATCGAC	CGAGAGCTGT	GACCCCCTG	CCCGCCCCGT	CCCCTTCCC.
42401	CGCCCCCACG	TTCCCCGTGC	CCTTCGCTGA	TGGAGAAGTG	ACGTTCGATG
42451	TCGAGTGCTG	AAGAGTCGAG	TCCTGATGTG	TCCGGCACGG	GTGTGTCCGG
42501	TACGGGAGAG	TCCGCTACGG	GTACGTCGAG	TACGGAAGCC	AAGCTTCGGC
42551	AGTATCTGAA	GCGGGTCACG	GTGGACCTCG	GCCAGGCCCG	CCGGCGGCTG
42601	CGCGAGGTGG	AGGAGCGGGC	CCAGGAGCCG	ATCGCCATCG	TCTCCATGGC
4265.1	GTGCCGCTTC	CCCGGCGACA	CCCGCACGCC	CGAGGCCCTG	TGGGACCTGG
42701.	TCGCCGAGGG	CGGCGACGCC	ATCGACGACT	TCCCCACCAA	TCGCGGCTGG
42751	GACCTGGAGA	GCCTCTACCA	CCCCGACCCC	GACCACCCCG	GCACCAGCTA
42801	CGTCCGACGC	GGCGGGTTCC	TGTACGACGC	CCCCGCCTTC	GACGCGTCGT

42851	TCTTCGGGAT	CAGCCCGCGC	GAAGCCCTGG	CCATGGACCC	GCAGCAGCGG
42901	GTGCTCATGG	AGACGGCCTG	GCAGCTCCTG	GAGCGGGCCG	GCATCGACCC
42951	GGCCTCGCTG	AAGCTGAGCG	CCACCGGCGT	CTACATCGGC	GCGGGCGTGC
43001	TCGGGTTCGG	CGGCGCGCAG	CCCGACAAGA	CGGTAGAGGG	CCACCTCCTG
43051	ACCGGCAGCG	CGCTGAGTGT	CCTGTCCGGC	CGCATCTCCT	TCACGCTCGG
43101	CCTCGAGGGC	CCGTCGGTCA	GTGTCGACAC	GGCGTGCTCC	TCCTCGCTGG
43151	TCTCCATGCA	CCTGGCGGCC	CAGGCGCTGC	GGCAGGGGGA	GTGCGATCTC
43201	GCGCTGGCCG	GCGGTGTCAC	CGTGATGTCG	ACGCCCGGCG	CGTTCACCGA
43251	GTTCTCCCGC	CAGGGCGCGC	TGTCTCCGGA	CGGCCGCTCG	AAGGCTTTCG
43301	CGGCCTCGGC	CGACGGCACC	GGTTTCTCGG	AGGGCGCGGG	ACTGCTCCTC
43351	CTGGAGCGGC	TCTCCGACGC	GCGCCGCAAC	GGCCACAAGG	TGCTCGCGGT
43401	GATCCGCGGC	TCGGCCGTCA	ACCAGGACGG	CGCGAGCAAC	GGTCTCACCG
43451	CCCCCAACGG	CCCCTCCCAG	GAACGCGTGA	TCCGCGCCGC	CCTCGCCAAC
43501	GCGGGCCTGG	GCGCCGCCGA	GGTCGACGCG	GTCGAGGCAC	ACGGCACCGG
43551	CACGAAGCTC	GGCGACCCCA	TCGAGGCCGG	TGCGCTGCTC	GCCACCTACG
43601	GCCGCGACAG	GGACGAGGAC	CGGCCGCTGT	GGCTGGGCTC	GGTCAAGTCG
43651	AACATCGGTC	ACCCGCAGGG	CGCAGCAGGC	GTCGCGGGCG	TCATCAAGAT
43701	GGTGATGGCG	CTGCAGCGCG	AACTGCTCCC.	CGCCACCCTG	TACGTCGACG
43751	AGCCCACCCC	GCACGTCGAC	TGGTCCTCGG	GCTCCGTCAG	GCTCCTCACC
43801	GAACCGGTCC	CGTGGACCCG	CGGCGAGCGC	CCGCGCCGCG	CGGGCGTGTC
43851	CGCCTTCGGC	ATGTCCGGGA	CGAACGCCCA	CGTGATCCTG	GAGGAGGCAC '
43901	CGCCCGAGGA	GGCAGCGGCC	GCGGAGACAC	CGGCGGAAGG	GACAGGCGCA
43951	GTCGTCCCGT	GGGTCGTCTC	CGGCCGGGGC.	GAGGAAGCGC	TGCGGGCCCA
44001	GGCCGCACAG	CTCGCCGAGC	ACGTGCGCGA	CGACGACCAG	CGGCCGGCGT
44051	CACCGCTGGA	GGTGGGGTGG	TCGCTCGCCA	CGACACGGTC	GGTGTTCGAG
44101	AACCGGGCCG	TCGTCGTCGG	GGACGACCGC	GACGCGCTCC	TCGACGGCCT

44151	CCGGTCGCTG	GCGGCAGGTG	AGGCGTCGCC	GGACGTGGTG	TCCGGGGCGG
44201	TCGGCCCCAC	GGGGCCCGGG	CCGGTCATGG	TGTTCCCCGG	CCAGGGCGGC
44251	CAGTGGGTGG	GCATGGGGGC	CCGGCTCCTC	GACGAGTCCC	CGGTGTTCGC
44301	GGCCCGGATC	GCCGAGTGCG	AGCAGGCCCT	GTCGGCGTAC	GTGGACTGGT
44351	CCCTGACCGA	CGTGCTGCGC	GGGGACGGGT	CGGAGCTGGC	CCGGATCGAC
44401	GTCGTCCAGC	CCGTGCTGTG	GGCCGTCATG	GTCGCGCTCG	CCGCCGTCTG
44451	GGCGGACCAG	GGAATCGAAC	CCGCCGCCGT	CGTCGGCCAC	TCGCAGGGCG
44501	AGATAGCCGC	GGCGTGCGTC	GTGGGCGCCA	TCTCCCTGGA	CGAGGCGGCC
44551 ·	CGCATCGTCG	CCGTACGCAG	TGTGCTGCTG	CGGCAGCTGT	CCGGACGCGG
44601	CGGCATGGCG	TCCCTGGGGA	TGGGCCAGGA	GCAGGCCGCC	GACCTGATCG
44651 [.]	ACGGACACCC	GGGTGTGGTC	GTCGCGGCCG	TCAACGGGCC	GTCGTCCACC
44701	GTCATCTCGG	GCCCGCCCGA	GGGCATCGCC	GCCGTCGTCG	CCGACGCCCA
44751	GGAGCGGGGC	CTTCGCGCCA	GGGCCGTCGC	CTCCGACGTC	GCGGGCCACG
44801	GCCCGCAGCT	GGACGCGATC	CTGGACCAGC	TCACGGAGGG	CCTGGCCGGC
44851	ATCCGGCCCG	CCGCGACCGA	CGTCGCGTTC	TACTCCACCG	TCACCGCCGG
44901	GCACCTCACC	GACACCACCG	AACTCGACAC	CGCGTACTGG	. GTGCGGAACG
44951	TGCGCCGGAC	GGTGCGTTTC	GCCGACACGA	TCGACGCGCT	GCTCGCGGAC
45001	GGGTACCGCC	TGTTCATCGA	GGTGAGCCCC	CACCCCGTCC	TCAACCTCGC
45051	GCTGGAAGGC	CTCATCGAAC	GGGCGGCCGT	GCCCGCCACG	GTCGTGCCCA
45101	CCCTGCGCCG	CGACCACGGC	GACACCACCC	AGCTCGCCCG	CGCCGCGGCC
45151	CACGCCTTCG	CCGCCGGCGC	GGACGTCGAC	TGGCGGCGCT	GGTTCCCGGC
45201	CGACCCCGCC	CCCCGTACCG	TCGACCTGCC	CACCTACGCC	TTCCAGCGCC
45251	AGGACTTCTG	.ecceeccc	GCCGGCGGC	GGTCCGGCGA	CCCTGCCGGG
45301	CTCGGCCTCG	CCGCCTCCGG	ACACCCGCTC	CTGGGCGCCT	CCGTGGGCCT
45351	CGCGAGCGGG	GACGTACACC	TGCTGAGCGG	GCGGGTGTCC	CGGCAGTCCG
45401	CCGCGTGGCT	GGACGACCAC	GTCGTGGCGG	GCCAGGCCCT	GGTGCCCGGC

45451	GCGGCGCAGG	TGGAGTGGGT	GCTGCGGGCC	GGCGACGACG	CGGGCTGCTC	
45501	CGCCCTGGAG	GAGCTGACGC	TCCAGACGCC	GCTCGTGCTG	CCCGACACCG	
45551	GCGGCCTGCG	GATCCAGGTC	GTCGTCGAAG	CGGCCGACGC	ACACGGCCGG	
45601	CGCGACGTCC	GGCTGTTCTC	CCGCCCCGAT	GACGACGACG	CCTTCGCGTC	
45,651	GACGCACCCC	TGGACCTGCC	ACGCCACGGG	CGTGCTCGCC	CCCGCCCCGA	
45701	CGGACGGCAC	CAACGGAACG	CGGGACGCCG	CCGACACCCT	GGACGGCGCA	
45751	TGGCCCCCGG	CCGACGCCGA	ACCCGTCCCC	GCCGACGACC	TCTACGCGCA	
45801	GGCCGACCGC	ACCGGATACG	GCTACGGCCC	CGCCTTCCGG	GGCGTACGGG	
45851	CGCTGTGGCG	CCACGGCAAG	GACGTCCTGG	CCGAGGTGAC	GCTGCCCAAG	
45901	GAGGCCGGCG	ACCCGGACGG	CTTCGGTATC	CACCCGGCCC	TCCTCGACGC	
45951	CGTCCTGCAA	CCCGCCGCAC	TGCTGCTGCC	CCCGACCGAC	GCCGAACAGG	
46001	TCTGGCTGCC	GTTCGCCTGG	AACGACGTGG	CGCTGCACGC	CGTACGGGCC	
46051	ACCACGGTCC	GGGTGCGCCT	CACCCCGCTC	GGCGAGCGGA	TCGACCAGGG	
46101	GCTGCGCATC	ACCGTGGCCG	ACGCCGTGGG	CGCGCCCGTG	CTCACCGTCC.	
46151	GCGACCTGCG	CTCGCGCCCG	ACCGACACAG	GCCGCCTCGC	CGCGGCCGCG	
46201	ACCCGCGACC	GGCACGGGCT	GTTCGACCTG	GAGTGGATCG	CGCCGGAGAA	
46251	CGCGGCGGAG	AACGCGGCGG	GTCCGGCCCG	GGACGCGTCC	GAAGGGTGGG	
46301	TGACACTCGG	CGAGGACGCC	GCGAGCCTCG	CGGACCTGCT	GGCGTCCGTC	
46351	GAGGCGGGCG	CTCCGGCGCC	GCAGCTCGTG	GCCGCCCCG	TCGAACCCGA	
46401	CCGGACCGAC	GACGGCCTGG	CACTCGCCAC	CCACGTCCTC	GACCTCGTAC	
46451	AGACCTGGCT	CGCCTCGCCC	CTGCACGACT	CCCGCCTGGT	CCTGGTGACG	
46501	CGAGGGGGCAG	TGACGGATGC	GGATGTGGAT	GTGGCTGCCG	CGGCCGTTTG	
46551	GGGTCTGGTA	CGCAGCGCCC.	AGTCGGAGCA	CCCCGGCCGC	TTCACGCTGA	
46601	TCGACCTCGG	CCCCGACGAC	ACGCTTGCCG	CAGCCATGCA	GGCGGCGCAC	
46651	CTGGAAGAGC	CGCAACTGGC	GGTGCACGGC	GGCGAGATAC	GAGTGCCGCG	
46701	ACTGGTCCGC	GCCACGACCG	ACCCGACCGC	CCCGAACGGG	ACACCGGAGG	

	CCGACCGGAC GGCGGACCCG TCCGAAGGAC TCCACCGGAA .CGGTACGGTT
46751	
46801	CTCATCACCG GCGGCACCGG CGTACTCGGC CGACTGGTGG CCGAACACCT
46851	GGTCACGGAG TGGGGCGTAC GCCACCTGCT GCTCGCGAGC CGACGCGGCG
46901	ACCAGGCGCC GGGTAGCGCC GAACTCCGCG CCCGCCTGAG CGAATTGGGA
46951	GCATCGGTCG, AGATCGCCCC GGCCGATGTC GGCGACGCGG AAGCGGTCGC
47001	CGCACTGATC GCGTCGGTCG ACCCGGCGCA CCCGCTCACC GGTGTGATCC
47051	ACGCGGCCGG TGTCCTGGAC GACGCCGTGA TCACCGCCCA GACCCCCGAG
47101	AGCCTCGCGC GGGTGTGGGC GACGAAGGCG ACGGCGGCCC GCCATCTGCA
47151	CGAGGCGACA CGGGAGACAC CCCTCGACTT CTTCGTGGTG TTCTCCTCGG
47201	CGGCCGCCTC GCTCGGCAGC CCCGGCCAGG CCAACTACGC GGCGGCCAAC
47251	GCCTATTGCG ACGCCCTCGT CCAGCACCGC CGCGCCCAAG GGCTCGCGGG
47301	CCTCTCGATC GCCTGGGGCC TGTGGCAGGC GACCAGCGGC ATGACCGGGC
47351	AGCTGAGCGA GACCGACCTG GCGCGCATGA AGCGCACCGG GTTCGCCGCG
47401	CTGACCGACG AGGGCGGCCT GGCCCTGCTC GACGCCGCCC GTGCCCACGA
47451	CCGGGCCTAC GTGGTCGCGG CCGACCTCGA CCCGCGCGCCC GTGACCGATG
47501	GCCTGTCCCC GCTCCTGCGC GCCCTCACGG CGCCCGCCAC GCGGCGGCGC
47551	GTGGCCTCCG AAGGCCTCGC CGACGGGCCG CTCGCGACCC GCCTGGCCGG
47601	CCTCGACGCG GACGGCCGCC TAAGGCTCCT CACCGATGTC GTACGCGAGT
47651	ACGTCGCGGC CGTCCTCGGC CATGGTTCCG CCGCCCGGGT GGGCGTCGAC
47701	ATCGCCTTCA AGGACCTGGG TTTCGACTCG CTGACCGCGG TGGAGCTGCG
47751	CAACCGGCTG TCGGCCGCCT GTGACGTGCG GCTGCCCGCC ACACTGATCT
47801	TCGACCACCC CACCCCGCAG GCTCTCGCCA CCCACCTGGT GGACCGCTTG
47851	. GCGGGCAGCA CCTCCGCGAC CACGACGGTG AATGCGACGG CGCCGGCAGC
47901	CGCCCACGTC GCCGCAGGGG CCGACGTCGA CGCAGACACC GACGACCCGG
47951	TCGCCATCGT CGCCATGACG TGCCGGTTCC CGGGCGGCGT CGCGTCCCCG
48001	GACGACCTGT GGGACCTGCT CGACGCACGC AAGGACGCGA TGGGCGCCTT

48051	CCCCACCGAC	CGCGGCTGGG	ACCTGGAACG	CCTCTTCCAC	CCCGACCCGG '
48101	ACCACCCCGG	CACCAGCTAC	ACCGACCAGG	GCGGATTTCT	TCCCGACGCG
48151	GGTGATTTCG	ATGCGGCGTT	CTTCGGGATC	AATCCGCGGG	AGGCGCTGGC
48201	GATGGATCCG	CAGCAGCGGT	TGTTGCTGGA	GGCGTCGTGG	GAGGTGTTGG
48251	AGCGTGCGGG	TATCGATCCG	ACGACGCTCA	AGGGCACCCC	GACCGGCACC
48301	TACGTGGGCC	TCATGTACCA	CGACTACGCC	AAGTCCTTCC	CCACGGCCGA
48351	CGCCCAGTTG	GAGGGCTACT	CCTACTTGGC	GAGCACCGGC	AGCATGGTCT.
48401	CCGGCCGCGT	CGCCTACACC	CTGGGCCTTG	AAGGTCCGGC	GGTGACGGTC
48451	GACACCGCGT	GCTCCTCCTC	CCTGGTCTCC	ATCCACCTGG	CGACGCAGGC
48501	ACTCCGGCAC	GGCGAGTGCG	ACCTCGCCCT	GGCAGGCGGT	GTGACCGTCA
48551	TGGCCGACCC	GGACATGTTC	GCGGGCTTCT	CGCGCCAGCG	CGGCCTCTCA
48601	CCTGACGGCC	GCTGCAAGGC	CTACGCCGCC	GCGGCCGACG	GAGTCGGATT
48651	CTCCGAGGGA	GTGGGCGTAT	TGCTCCTTGA	GCGGTTGTCG	GATGCGCGGC
48701	GTCATGGGCG	TCGGGTGTTG	GGTGTGGTGC	GGGGTTCGGC	GGTGAATCAG
48751	GACGGTGCGA	GTAATGGGTT	GACGGCGCCG	-AATGGTCCGT	CGCAGGAGCG .
48801	GGTGATTCGT	CAGGCGTTGG	CCAGTGGTGG	GTTGTCGTCG	GTGGATGTTG
48851	· ATGTGGTGGA	GGGGCATGGG	ACGGGGACCA	CGTTGGGTGA	. TCCGATCGAG
48901	GCGCAGGCTC	TGCTGGCCAC	ATATGGGCAG	GGGCGTCCGG	AGGACCGTCC
48951	GTTGTGGTTG	GGGTCGGTGA	AGTCGAACAI	TGGTCATACO	CAGGCGGCTG
49001	CGGGTGTTGC	GGGTGTCATC	AAGATGGTGA	TGGCGATGC	GCATGGTGTG
.49051	GTGCCGGCG <i>I</i>	A .GTTTGCATGT	GGATGTGCCG	TCGCCGCAT	TGGAGTGGGA
49101	TTCGGGTGC	GTGCGGTTG(GGTTGAGT	GGTGCCATG	G CCGCAGGTGG
49151	AGGGTCGTC	C GCGTCGGGC	GGTGTGTCG1	CGTTCGGCG	C TTCGGGGACG
49201	AATGCGCAC	TGATCGTGG	A GTCTGTTCCC	GATGGGCTG	G AGGAGGACTC
49251	GGTATCGGT	C GGCGGTGAG	G CTCTTGAGA	C GGAGACTGA	C GGGCGCTTGG
49301	TGCCGTGGG'	r GGTGTCGGC	C CGCAGCCCG	C AGGCCCTGC	G CGACCAGGCA

49351	CTACGCCTGC	GTGACTTTGC	CAGTGACGCG	TCGTTCCGCG	CGCCGCTCGC
49401	CGACGTGGGC	TGGTCGCTGC	TGAAGACGCG	TGCGCTGCAT	GAGCATCGCG
49451	CCGTTGTGGT	GGGCGCGGAG	CGGGCAGAGC	TGATCGCCGC	TCTGGAGGCG
49501	CTGGCGACGG	GTGAGCCGCA	TGCGGCGCTG	GTCGGCCCGG	CTTGCTCGCA
49551	GGCTCGGGTG	GGTGGCGATG	ACGTGGTGTG	GCTGTTCAGT	GGTCAGGGCA
49601	GTCAGTTGGT	CGGTATGGGT	GCTGGTTTGT	ATGAGCGGTT	CCCGGTGTTT
49651	GCGGCTGCGT	TTGATGAGGT	GTGCGGCCTG	TTGGAGGGGC	CGTTGGGCGT
49701	GGAGGCGGGT	GGGTTGCGGG	AGGTGGTGTT	CCGTGGCCCG	CGGGAGCGGT
49751	TGGATCACAC	GGTGTGGGCG	CAGGCGGGGT	TGTTTGCGCT	GCAGGTGGGG
49801	TTGGCCCGGT	TGTGGGAGTC	GGTCGGGGTG	CGGCCGGATG	TGGTGCTCGG
49851	GCATTCGATC	GGTGAGATCG	CGGCCGCGCA	TGTGGCGGGG	GTTTTTGATC
49901	TGGCGGATGC	GTGTCGGGTG	GTGGGTGCGC	GGGCGCGTTT	GATGGGTGGG
49951	CTGCCTGAGG	GTGGGGCGAT	GTGCGCGGTG	CAGGCCACGC	CCGCCGAGCT
50001	GGCCGCCGAC	GTGGACGGAT	CGGCTGTAAG	TGTGGCGGCA	GTCAACACCC
50051	CCGACTCCAC	GGTGATTTCG	GGCCCGTCGG	ACGAGGTGGA	CCGGATTGCT
50101	GGGGTGTGGC	GGGAGCGTGG	GCGCAAGACG	AAGGCGCTGA	GCGTCAGTCA
50151	TGCCTTCCAT	TCGGCGTTGA	TGGAGCCGAT	GCTCGCGGAG	TTCACCGAAG
50201	CGATACGAGG	GGTCAAGTTC	AGGCAGCCGT	CGATCCCGCT	CATGAGCAAT
50251	GTCTCCGGAG	AGCGGGCCGG	CGAGGAGATC	ACGGATCCGG	AGTACTGGGC
50301	GAGGCATGTA	CGTAATGCGG	TGCTCTTCCA	GCCCGCCATC	GCCCAAGTAG
50351	CGGATTCAGC	GGGCGTGTTT	GTGGAGCTCG	GCCCGCGCC	. TGTGCTGACC
50401	ACGGCCGCCC	AGCACACCCT	GGACGAGTCG	GACAGCCAGG	AGTCGGTGCT
50451	GGTCGCGTCT	CTCGCCGGTG	AGCGTCCTGA	GGAGTCGGCG	TTTGTGGAGG
50501	CGATGGCTCG	TCTGCATACC	GCTGGTGTTG	CTGTGGACTG	GTCGGTGTTG
50551	TTCGCGGGTG	ATCGTGTGCC	TGGGCTGGTG	GAGTTGCCGA	CGTATGCGTT
50601	CCAGCGGGAG	CGGTTCTGGT	TGAGTGGCCG	TTCTGGGGGT	GGGGATGCGG

50651	CGACTTTGGG	GTTGGTGGCG	GCGGGGCATC	CGTTGTTGGG	TGCGGCGGTG
50701	GAGTTCGCGG	ACCGGGGTGG	GTGTCTGCTG	ACCGGTCGTC	TGTCGCGGTC
50751	TGGGGTGTCG	TGGCTTGCTG	ATCATGTGGT	GGCGGGTGCG	GTTTTGGTGC
50801	CGGGTGCTGC	GTTGGTGGAG	TGGGCGTTGC	GGGCCGGTGA	TGAGGTCGGT
50851	TGTGTGACGG	TGGAGGAGTT	GATGTTGCAG	GCGCCTTTGG	TGGTGCCTGA
50901	GGCGTCGGGT	CTGCGGGTTC	AGGTGGTGGT	TGAGGAGGCG	GGTGAGGACG
50951	GGCGGCGCGG	TGTTCAGATC	TACAGCCGGC	CCGACGCGGA	CGCCGTGGGC
51001	GGCGATGACT	CGTGGATCTG	CCACGCGACC	GGCGTACTGT	CACCCGAAAG
51051	CGCTCGTCTG	GACACGGAGT	TGGGTGGCGT	CTGGCCACCG	GCCGGTGCCG
51101	AACCGCTGGA	TGTCGACGGC	TTCTACGCGC	AGGCCGGTGA	GGCCGGGTAC
51151	GGATACGGTC	CGGCGTTCCG	GGGGCTGCGT	GCCGTGTGGC	GGCACGGCCA
51201	GGACCTGCTG	GCCGAGGTCG	TCCTGCCCGA	AGCCGCCGGT	GCCCATGACG
51 251	GCTACGGGAT	CCACCCCGCC	CTCCTCGACG	CCACCCTCCA	TCCGCTGCTC
51301	GCCGCCCGCT	TCATGGACGG	TTCCGAGGAC	GATCAGCTCT	ACGTACCGTT
51351	CGGGTGGGCC	GGAGTGTCTC	TGCGGGCGGT	GGGAGCCACG	ACTGTGCGCG
51401 [.]	TGCGCCTCCG	TCCGGTCGGG	GAGAGCGTCG	ACCAAGGGCT	GAGCGTGACG
51451	GTCACCGATG	CGACCGGCGG	TCCCGTTCTG	AGCGTCGACT	CCCTCCAGAC
51501	CCGCCCCGTG	AAGCCGAGCC	AATTGGCTGC	GGCCCAACAG	CCGGACGTAC
51551	GCGGTCTGTT	CACTGTGGAG	TGGACGCCGC	TGCCGCAGAC	GGATGCCGAC
51601	GGGGAGGCCG	ACTGGGTTGT	GCTCTCGGAC	GGTGTTGGCC	GTCTGGCTGA
51651	TGTGGTGTCG	GCGGCGGGTG	GTGAAGCGCC	GTGGGCAGTG	GTCGCTCCTG
51701	TCGATGCGTC	TGTGGGCGAC	GGCCGTGAGG	GTCTTGACGG	TCGGCTGGTC
51751	GTGGAGCGGG	TGCTGTCACT	CGTACAGGAG	TTCCTGGCCC	TGCCGGAGCT
51801	GGCCGAGTCC	CGTCTCCTCG	TGGTGACGCG	CGGTGCGGTG	GCCACCGGCG
51851	TCGACGGTGA	CGGTGACGTG	GACGCGTCCG	CCGCAGCTGT	ATGGGGCCTG
51901	GTCCGCAGTG	CTCAGTCCGA	GAATCCGGGC	CGCTTCATCC	TGCTCGACGT

51951	GGACGGCGAC GGCGACGACC AGGGCCCGGA CCTGAACGGC CGGCATCTGC
52001	CCCACGCCAC CCTGCGTCAC GCCGCCGAGG AACTCGACGA GCCCCAACTC
52051	GCCCTGCGGG AAGGGACGCT CTACGTCCCC CGACTGACCC AGGCGCGCCA
52101	GTCCGCCGAA CTCGTCGTGC CGCCCGGTGA ACCGGCGTGG CGCCTGCGGA
52151	TGGTGCACGA CGGCTCGCTG GACGCCCTGG CGGCAGTGGC CTGCCCGGAG
52201	GCCCTGGAGC CCTTGGCGCC GGGGCAGGTG CGTATCGCCG TACACGCCGC
52251	GGGCATCAAC TTCCGTGACG TACTGGTGGC CTTGGGTATG GTCCCCGCGT
52301 _c .	ACGGGGCCAT GGGTGCCGAA GGTGCCGGTG TCGTGACGGA GGTCGGTCCC
,52351	GAGGTCACCC ATGTCTCGGT GGGCGACCGC GTGATGGGCG TGTTCGAGGG
52401	CGCGTTCGGC CCTGTGGTGA TCGCCGAGGC GCGGATGGTC ACACCTGTCC
52451	CGCAGGGCTG GGACATGCGG GAGGCGGCCG GTATTCCGGC GGCCTTCCTG
52501	ACGGCTTGGT ACGGGTTGGT GGAGCTGGCC GGTCTGAAGG CGGGCGAGCG
52551	GGTGCTGGTC CATGCCGCGA CGGGTGGTGT GGGGATGGCG GCGGTGCAGA
52601	TCGCCCGGCA TGTGGGTGCC GAGGTGTTCG CCACCGCGAG TCCGGGCAAG
52651	CACGCCGTGC TGGAGGAGAT GGGCATCGAC GCCCCCACC GCGCCTCCTC
52701	CCGGGACCTC GCCTTCGAGG GCACGTTCAG GGAAGCAACG GGCGGCCGCG
52751	GCATGGACGT CGTGCTCAAC AGCCTTGCCG GCGAGTTCAT CGACGCCTCT
52801	CTGCGGTTGC TCGGCGACGG CGGCCGGTTC CTGGAGATGG GCAAGACCGA
52851	TGTGCGGGCC GCCGAAGAGG TGGCTGCGGA GCACGCGGAC GTCTCGTACA
52901	
	CTGGACAAGC TCGTCGAATT GTTCGCCTCA GAACGGCTTA AGCCGCTGCC
	GGTACGTTCC TGGCCGCTGG ACAAGGCGCA GGAGGCGTTC CGGTTCATGA
	GTCAGGCGAA GCACACCGGC AAGCTGGTGC TTGAGATCCC GCCTGCCCTC
	GACCCCGAGG GCACGGTTCT GGTCACCGGG GGCACCGGTG CGCTGGGGCA
	GGTCGTGGCC GAGCATCTGG TCCGGGAGTG GGGCGTACGG CACCTGCTGC
53201	TGGCCAGCCG TCGCGGTCCG GAGGCGCCGG GCAGCGACGA ACTGGCCTCG

53251	AAGCTCACCG	GGTTGGGTGC	CGAGGTCACC	ATTGTCGCGG	CCGATGTCAG
53301	CGACCCGGCC	TCGGTGGTGG	AGCTGGTCGG	CAAGACGGAT	CCCTCGCATC
53351	CGTTGACGGG	TGTCGTGCAC	GCGGCGGGCG	TGTTGGAGGA	CGGTGTCGTG
. 53401	ACCGCTCAGA	CGCCTGAGGG	GCTGGCGCGG	GTGTGGGCGG	CCAAGGCTGC
~53451	TGCGGCGGCG	AATCTCCATG	AGGCGACCCG	GGAGATGCGT	CTCGGCCTGT
53501	TCGTGGTGTT	CTCCTCGGCG	GCCGCCACGC	TCGGCAGTCC	GGGCCAGGCC
53551	AACTACGCGG	CCGCCAATGC	CTATTGCGAC	GCGCTGATGC	AGCACCGACG
53601	GGCGGTGGGC	CAGGTCGGCC	TGTCGGTCGG	CTGGGGTCTC	TGGGAGGCGC
53651	CGGACGCCAA	GCCGGGTGTT	GCCGCCGACG	CCAAGGCGAG	TGCTGCCACC
53701	GTCGGCAAGG	CGAGTGCTCT	ATCCGACGGC	ACGAACGGCA	GCGCTCCCCA
53751	GGACACGACC	GGCACCGCCC	CCCAGGGCAT	GACCGGCGGA	CTCACCGACA
53801	CCGACGTAGC	CCGCATGGCA	CGTATCGGCG	TCAAGGGCAT	GAGCAACGCC
53851	CACGGTCTCG	CCCTGTTCGA	CGCCGCGCAC	CGCCACGGCC	GCCCCACCT
53901	GGTCGGCTTC	AACCTCGACC	TGCGCACCCT	GGCCACGCAC	CCCCTGCACA
53951	CCCGGCCCGC	CCTTCTGCGC	GGCCTGGCCA	CCCCCACCGC	CGGCGGGGCG
54001	. AGCAGGCCGA	CCGCGACGGC	GGGCGGACAG	CCCGCCGACC	TGGCGGGCCG
54051	GCTGGCCGCG	CTGTCGCCGT	CGGACCGGCA	CCACACGCTG	GTCCGGCTCA
54101	TCAGGGAACA	GGCCGCCACC	GTGCTCGGGC	ACCACCCGGA	CAGTCTCACC
54151	ACGGGCAGCA	CCTTCAAGGA	ACTCGGATTC	GACTCCCTGA	CCGCGGTCGA
54201	ACTGCGCAAC	AGGCTGTCCG	CCGCCACCGG	TCTCCGGCTC	CCCGCCGGCC
. 54251	TGGTCTTCGA	CCACCCGGAC	GCCGACATCC	TGGCCGAACA	CCTCGGCGCG
54301	CAACTCGCCC	CCGACGGGGA	CACCCCCCCC	GGTGCGGAAG	CCACCGACCC
54351	GGTCCTCCGC	GACCTGGCGA	AACTCGAGA	A CGCCCTCTCC	TCCACCCTCG
54401	TCGAGCACCT	CGACGCCGAC	GCGGTCACG	CCCGACTGG	AGCACTCCTG
54451	TCGAACTGGA	AGGCGGCGAT	deceececc	GGCTCGGGC	A GCACGAAGGA
54501	GCAGCTCCAG	GTTGCCACGA	COGACCAGG	r CCTCGACTT	2 ATCGACAAAG

54551	AACTGGGTGT	GTGAAACGAC	CGTGCACGGC	GCGACAACCA	CGCTGAAGGC
54601	TGGGTGAACT	CTCATGGCGA	GTGAAGAGGA	ACTGGTCGAC	TACCTCAAGC
54651	GGGTCGCCGC	CGAACTGCAC	GACACCCGGC	AGCGCCTGCG	CGAGGTCGAG
54701	GACCGGCGGC	AGGAGCCGGT	GGCCGTCGTC	GGCATGGCCT	GCCGTTTCCC
54751	CGGCGGCATC	GAGACGCCCG	AGGGACTGTG	GGAGCTGGTC	GCGGCCGGCG
54801	ACGACGCCAT	TGAGCCCTTC	CCCACCGACC	GGGGCTGGGA	CCTGGAAGGC
54851	ATCTACCACC	CGGACCCCGA	CCACCCGGGT	ACCTGCTACG	TCCGGGAGGG
54901	CGGGTTCCTA	GCCGCCCTG	ACCGGTTCGA	CTCCGACTTC	TTCGGCTTCA
54951	GCCCGCGCGA	GGCCCTGGCC	AGCAGCCCGC	AACTGCGACT	GCTCCTGGAG
55001	ACGTCCTGGG	AGGCCCTCGA	ACGGGCGGGC	ATCAACCCCG	CCTCGCTCAA
55051	GGGCAGCCCC	ACCGGCGTCT	ACGTCGGCGC	CGCGACCACC	GGCAACCAGA
55101	CGCAGGGCGA	CCCGGCGGC	AAGGCGACCG	AGGGTTACGC	GGGCACCGCG
55151	CCCAGCGTCC	TCTCGGGCCG	CCTCTCGTTC	ACGCTCGGCC	TGGAGGGCCC
55201	GGCGGTGACC	GTCGAGACAG	CGTGCTCCTC	CTCGCTGGTG	GCGATGCACC
55251	TGGCGGCCAA	CGCCTGCGC	CAGGGCGAGT	GCGACCTCGC	CCTCGCGGGC
55301	GGCGTCACCG	TCATGTCCAC	CCCCGAGGTG	TTCACAGGCT	TCTCGCGTCA
55351	GCGGGGACTG	GCCCCGACG	GCCGCTGCAA	GCCGTTCGCC	GCCGCGGCCG
55401	ACGGCACGGG	CTGGGGCGAG	GGCGCGGGCC	TGATCCTCCT	GGAGCGCCTC
55451	TCCGACGCCC	GCAGGAAGGG	CCACAAGGTC	CTCGCGGTGA	TCCGGGGCTC
55501	GGCGATCAAC	CAGGACGGCG	CGAGCAACGG	CTTCACCGCG	CCCAACGGCC
55551	CCTCGCAGCG	CCGCGTCATC	CGCCAGGCAC	TCTCCAGCGC	: CCACCTCTCC
55601	ACGTCGGAGA	TCGACGTCGT	CGAGGCGCAC	GGCACCGGC	CCAGGCTCGG
55651	CGACCCCATC	: GAGGCCGAGG	CGCTCATCGC	CCACCTACGGC	AAGGAGCGCG
.55701	AGGACGACC	TCCCCTGTGG	CTCGGCTCGC	TCAAGTCCA	A CATCGGCCAC
55751	ACGCAGGCC	CCGCGGGCG1	CGCCGGAGT	C ATCAAGATGO	TGATGGCGCT
55801	ACAGCGCGAI	A CIGCTICCC	CCACCCTGAI	A CGTCGACGA	CCGACCCCGC

55851	ACGTCCAGTG	GGAGGGCGGC	GGCGTACGCC	TCCTGACCGA	ACCGGTCCCG
55901	TGGTCGCGCG	GCGAACGCCC	GCGCCGCGCC	GGAATCTCCT	CCTTCGGCAT
55951	ATCGGGCACG	AACGCGCACG	TGGTCCTGGA	GGAGGCGCCG	CCGGAGGAGG
56001	ACGTGCCGGG	CCCCGTGGCT	GCGGAGCCGG	AAGGGGTGGT	GCCGTGGGTG
56051	GTCTCCGCGC	GGACCGAGGA	GGCGTTGAGC	GAACAGGCGC	GGCGCCTGGG
56101	CGAGTTCGTG	GCCGACACGG	ACCCGTCGAC	CGCTGACGTC	GGGTGGTCÂC
56151	TGACCACGAG	CAGGGCGATC	CTTGAACACC	GCGCTGTGGT	GGTGGGGCGT
56201	GATCGGGATG	CGCTGACGGC	CGGCCTGGCG	GCGTTGGCCG	CGGGTGAGGA
56251	GTCGGCGGAT	GTGGTGGCTG	GGGTGGCCGG	TGATGTGGGT	CCTGGGCCGG
56301	TGTTGGTGTT	TCCGGGGCAG	GGGTCGCAGT	GGGTGGGCAT	GGGCGCCCAG
56351	CTCCTTGACG	AGTCGCCCGT	CTTCGCGGCG	CGGATCGCGG	AGTGTGAGCA
56401	GGCGCTGTCG	GCGTACGTGG	ACTGGTCGCT	GAGTGCGGTG	TTGCGCGGGG
56451	ATGGGAGTGA	ACTGTCCCGG	GTCGAGGTCG	TGCAGCCGGT	GTTGTGGGCG
56501	GTGATGGTCT	CGCTGGCTGC	CGTCTGGGCG	GATTACGGGG	TCACCCCGGC
56551	CGCTGTGATC	GGGCACTCGC	AGGGCGAGAT	GGCCGCGCG	TGCGTGGCGG
56601	GGGCGCTGTC	TTTGGAGGAT	GCGGCGCG	TCGTGGCCGT	ACGCAGTGAC
56651	GCGCTTCGTC	AGCTGATGGG	GCAGGGCGAC	ATGGCGTCGT	TGGGCGCCAG
56701	CTCGGAGCAG	GCGGCTGAGC	TCATCGGTGA	TCGGCCGGGC	GTATGCATCG
56751	CAGCGGTCAA	CGGGCCGTCC	TCGACAGTCA	TTTCAGGACC	GCCGGAGCAT
56801	GTGGCAGCCG	TGGTCGCGGA	TGCGGAGGAA	CGTGGTCTGC	GCGCCCGTGT
56851	CATCGATGTC	GGCTATGCCT	CGCACGGTCC	CCAGATCGAT	CAGCTCCACG
56901	ACCTCCTCAC	CGACCGGCTC	GCCGACATCC	GGCCCGCGAC	CACGGACGTG
56951	GCCTTCTATT	CGACGGTCAC	CGCCGAGCGC	CTGACGGACA	CCACGGCCCT
57001	GGATACGGAT	TACTGGGTTA	CCAACCTCCG	CCAGCCGGTC	CGTTTCGCCG
57051	ACACCATCGA	TGCGCTTCTC	GCGGACGGCT	ATCGCCTGTT	CATCGAGGCC
57101	AGCGCGCACC	CGGTGCTGGG	TCTGGGCATG	GAGGAGACCA	TCGAGCAGGC

57151	GGACATCCCC	GCCACGGTCG	TCCCCACCCT	GCGCCGCGAT	CACGGTGACA
57201	CCACCCAGCT	CACCCGTGCC	GCAGCGCACG	CCTTCACCGC	CGGCGCCACC
57251	GTCGACTGGC	GGCGCTGGTT	CCCGGCCGAC	CCCACCCCCC	GCACGATCGA
57301	CCTGCCCACC	TACGCCTTCC	AGCGCCGCAG	CTACTGGTTG	CCGGTGGACG
57351	GTGTCGGAGA	TGTGCGGTCG	GCCGGGCTGC	GGCGGGTGGA	ACACTCGCTG
57401	TTGCCCGCGG	CGCTCGGTCT	CGCCGATGGT	GCGCTCGTGC	TGACCGGACG
57451	GCTCGCGGCG	TCCGGTGGTG	GTGGCGGTTG	GCTCGCGGAT	CACGCGGTGG
57501	CGGGCACGAC	GCTCGTCCCC	GTGCCGCGC	TGGTCGAGTG	GGCGTTGCGG
57551	GCCGCCGACG	AGGCGGGCTG	CCCCTCCCTT	GAGGAGCTGA	CGCTCCAGGC
57601	ACCTCTGGTG	CTGCCCGGCT	CCGGGGGCCT	CCAGGTCCAA	GTGGTCGTGG
57651	GTCCGGCCGA	CGGACAGGGC	GGCCGGCGTG	AGGTGCGCGT	CTTCTCGCGT
57701	GTCGACTCGG	ACGACGAGGC	AGCGGGGCAG	GACGAGGGGT	GGTCGTGTCA
57751	CGCGACCGGT	GTGCTGAGCC	CCGAGCCCGG	TGCGGTACCG	GACGGGCTCA
57801	GCGGACAGTG	GCCCCGACG	GGCGCCGAGC	CGCTGGAGAT	CAGTGATCTC
57851	TACGAGCAGG	CGGCATCGGC	GGGATACGAG	TACGGGCCGT	CGTTCCGGGG
57901	CCTGCGCTCC	GTGTGGCGGC	ACGGGCATAA	CCTGCTGGCA	GAGGTGGAGC
57951	TGCCCGAACA	GGCAGGTGCG	CACGACGACT	TCGGCATCCA	CCCCGTACTG
58001	CTGGACGCCG	CGCTGCACCC	GGCGCTGCTG	CTCGACCAGA	ACGCGCCCGG
58051	CGAAGAGCAA	GAGCCAGCCC	AGCCCGCTCT	TCGCCTGCCG	TTCGTGTGGA
58101	ACGGCGTCTC	CCTGTGGGCC	ACCGGCGCCG	CGACCGTGCG	GGTACGGCTG
58151	GCCCGCACG	GGGGAGGGGA	GACGGACGAT	AGCGCCGGGC	TGCGCGTGAC
58201	GGTCGCCGAC	GCCACCGGAG	CACCGGTGCT	GAGCGTGGAC	TCCCTCGCTC
58251	TGCGCCCCGC	TGACCCCGAA	CTGCTGCGCA	CGGCCGGTCG	GGCGGGCAGC
58301	GGCACCAACG	GCTTGTTCAC	GGTGGAGTGG	ACCGCTCTGC	CCCCGGCGGA
58351	CGTGGCCGAC	CACGCCGCAG	GCGACGGCTG	GGCGGTGCTC	GGTCAGGACG
58401	TACCCGACTG	GGCCGGAGCG	GACATGCCCC	GGCATCCCGA	CATGGCCTCC

58451	CTGTCGGCCG	CGCTGGACGA	GGGAACGCAG	GCCCCTGCGG	CCGTCTTCGT
58501	GGAGACCACA	GCCACATCGC	ACGCCACACC	GAACACCGCA	GCGGACGTGA
58551	CGCTCGACGC	GTCCGGCCGG	GCGGTCGCCG	AGCGCACCCT	GCACCTGCTG
58601	CGGGACTGGC	TCGCCGAACC	GCGCCTCGCC	GAGACCCGGC	TCGTCCTCAT
58651	CACCCACCAC	GCGGTGACGA	CCCCGGCGGA	CGACGACGTG	AACGCCGCAC
58701	CCCTCGACGT	CCCGGCCGCC	GCCCTGTGGG	GACTGATCCG	CAGCGCACAG
58751	GCCGAACACC	CGGACCGCTT	CGTTCTGTTG	GACACCGACG	CGAAGGCCAA
58801	CACCGACCCC	GGCCCCGACA	ĆĆAGTACTGA	CCACAGCACC	GCATCGGGTA
58851	CGTACCGAAC	CGTCATCGCG	CGGGCCCTCG	CCACCGGGGA	GCCACAGCTG
58901	GCCGTGCGCG	CGGGAGAACT	GCTGGCTCCC	CGCCTCGCCC	GAGCCGCCAC
58951	CCCCACACCC	GAGACCCCCA	CACCCGAGAC	ACAGCCCGAC	ACCGGATCCG
59001	GGTCCGAGGC	CGGGGCCGGG	TCCGGATCTG	GACCCGGCGC	GACACTGGAC
59051	CCCGACGGCA	CCGTCCTCAT	CGCGGGCGGC	ACCGGCATGA	TGGGTGGTCT
59101	CGTCGCCGAA	CACCTGGTCC	GCGCCTGGTC	GGTGCGGCAC	CTCCTGCTCG
59151	TCAGCCGGCA	AGGGCCCGAC	GCGCCGGACG	CCCGCGACCT	CGCCGACCGG
59201	CTGGTCGGCC	TGGGCGCGAC	GGTACGGATC	GTCGCGGCCG	ACCTGACGGA
59251	CGGGCGGGCC	ACCGCGGACC	TCGTCGCGTC	GGTCGACCCG	GCGCACCCGC
59301	TCACCGGTGT	GATCCACGCG	GCCGGCGTCC	TGGACGACGC	CGTGGTCACC
59351	GCGCAGACCT	CCGACCAGCT	GGCCAGGGTG	TGGGCGGCCA	AGGCGTCCGT
59401	CGCCGCCAAC	CTGGACGCGG	CCACGTCGGA	GCTGCCGCTC	GGCTTGTTCC
59451	TGATGTTCTC	GTCCGCCGCC	GGTGTCCTCG	GCAACGCGGG	CCAGGCCGGT
59501	TACGCGGCCG	CCAACGCCTT	CGTCGACGCC	CTGGTCGGCC	GCCGTCGCGC
59551	CACCGGCCTG	CCCGGCCTGT	CGATCGCCTG	GGGCCTGTGG	GCGCGCGGCA
59601	GCGCCATGAC	CCGGCACCTG	GACGACGCCG	ACCTCGCGCG	GCTGCGTGCC
59651	GGCGGGGTCA	AGCCCCTGCT	GGACGAGCAG	GGCCTCGCCC	TCCTCGACGC
59701	GGCGCGCGCC	ACCGCCGCGC	ACACCTCGCT	GGTGGTCGCG	GCCGGTATCG

	59751	ACGTACGCGG	ACTGAACAGG	GACGACGTCC	CCGCGATCCT	CCGCGACCTG
	59801	GCGGGCCGGA	CCCGCCGCAG	GGCGGCCGCC	GACTCCACCG	TCGACCAGGC
	59851	CGCGCTGGAG.	CGGCGCCTCA	CGGGCCTGGA	CGAGGCCGAG	CGCCGGGCTG
	59901	TCGTCACCGA	CGTCGTACGC	GAATGCGTGG	CGGCCGTGCT	CGGCCACCGG
	59951	TCGGCGGCCG	ACGTACGCAC	CGAGGCCAAC	TTCAAGGACC	TCGGCTTCGA
	60001	CTCGCTCACT	GCGGTGCAGC	TGCGCAACCG	CCTCTCGGCG	GCGAGCGGCC
	60051	TCCGCCTGCC	CGCCACCCTG	GCCTTCGACC	ACCCCACCCC	CCAGGCGCTG
	60101	GCGGCGTACC	TEGGCACGCG	ČCTGAGCGGC	CGGACCGCCA	CCCCGTCGC
	60151	ACCCGTGGCG	CCTTCCGCGG	CCGCGACGGA	CGAGCCGGTG	GCGATCGTCG
	60201	CGATGGCCTG	CAAGTACCCG	GGTGGAGCGA	CCTCGCCGGA	AGGCCTCTGG
	60251	GACCTGGTCG	CGGAGGGCGT	GGACGCGGTC	GGCGCCTTCC	CGACGGGCCG
	60301	CGGCTGGGAC	CTCGAACGGC	TCTTCCACCC	CGACCCGGAC	CACCCGGCA
	60351	CGAGTTACGC	CGACGAAGGG	GCCTTCCTTC	CTGACGCGGG	CGATTTCGAT
	60401	GCGGCGTTCT	TCGGGATCAA	TCCGCGGGAG	GCGCTGGCGA	TGGATCCGCA
	60451	GCAGCGGCTG	TTGCTGGAGG	CGTCGTGGGA	GGTGTTGGAG	CGTGCGGGTA
	60501	TCGACCCGAC	GACGCTCAAG	GGCACCCCGA	CCGGCACGTA	CGTCGGCGTG
	60551	ATGTACCACG	ACTACGCGGC	AGGCCTCGCC	CAGGACGCCC	AACTGGAGGG
	60601	CTACTCCATG	CTCGCCGGCT	CCGGCAGCGT	GGTGTCCGGC	CGCGTCGCCT
	60651	ACACCCTGGG	GCTTGAGGGT	CCTGCGGTGA	CGGTCGACAC	CGCGTGCTCC
	60701	TCGTCCCTGG	TCTCCATCCA	CCTGGCCGCG	CAAGCACTGC	GACAGGGCGA
•	60751	GTGCACTCTC	GCCCTCGCGG	GCGGCGTGAC	CGTCATGGCC	ACGCCCGAGG
	60801	TGTTCACCGG	ATTCTCGCGC	CAGCGCGGCC	TGGCCCCGA	CGGCCGCTGC
	60851	AAGCCGTTCG	CCGCCGCCGC	CGACGCCACC	GGCTGGGGCG	AGGGTGTCGG
	60901	TGTGTTGTTG	CTCGAGCGGT	TGTCGGATGC	GCGGCGTCAT	GGGCGTCGGG
	60951	TGTTGGGTGT	GGTGCGGGGT	TCGGCGGTGA	ATCAGGACGG	TGCGAGTAAT
	61001	GGGTTGACGG	CGCCGAATGG	TCCGTCGCAC	GAGCGGGTGA	TTCGTCAGGC

61051	GTTGGCCAGT	GGTGGGTTGT	CGTCGGTGGA	TGTTGATGTG	GTGGAGGGC
61101	ATGGGACGGG	GACCACGTTG	GGTGATCCGA	TCGAGGCGCA	GGCTCTGCTG
61151	GCCACGTATG	GGCAGGGGCG	TCCGGTGGAT	CGTCCGTTGT	GGTTGGGGTC
61201	GGTGAAGTCG	AATATTGGTC	ATACGCAGGC	GGCTGCGGGT	GTTGCGGGTG
61251	TCATCAAGAT	GGTGATGGCG	ATGCGGCATG	GTGTGGTGCC	GGCGAGTTTG
61301	CATGTGGATG	TGCCGTCGCC	GCATGTGGAG	TGGGATTCGG	GTGCGGTGCG
61351	GTTGGCGGTT	GAGTCGGTGC	CATGGCCGGA	GGTGGAGGGT	CGTCCGCGTC
61401	GGGCGGGTGT	GTCGTCGTTC	GGGGCTTCGG	GAACGAATGC	GCACGTGATC
61451	GTGGAGTCTG	TGCCCGATGG	GCTGGGGGAG	GACTCGGTAT	CGGTCAGTGG
61501	TGAGGCTCCC	GAGACTGAGA	CTGACGGGCG	CTTGGTGCCG	TGGGTGGTAT
61551	CGGCCCGCAG	CCCGCAGGCC	CTGCGCGACC	AGGCACTACG	CCTGCGTGAT
61601	GCGGTGGCGG	CCGACTCAAC	GGTGTCGGTG	CAGGATGTGG	GCTGGTCGCT
61651	GCTGAAGACG	CGTGCGCTGT	TCGAGCAGCG	GGCGGTGGTG	GTGGGGCGTG
61701	AGAGGGCTGA	ACTCCTGTCG	GGGCTTGCTG	TGTTGGCCGC	TGGCGAGGAG
61751	CACCCGGCTG	TGACGCGGTC	CCGTGAGGAC	GGGGTTGCTG	CGAGCGGTGC
61801	TGTGGTGTGG	CTGTTCAGTG	GTCAGGGCAG	TCAGTTGGTC	GGTATGGGTG
61851	CTGGTTTGTA	TGAGCGGTTC	CCGGTGTTTG	CGGCTGCGTT	TGATGAGGTG
61901	TGCGGCCTGT	TGGAGGGGCC	GTTGGGCGTG	GAGGCGGGTG	GGTTGCGGGA
61951	GGTGGTGTTC	CGTGGCCCGA	GGGAGCGGTT	GGATCACACG	ATGTGGGCGC
62001	AGGCGGGGTT	GTTTGCGCTG	CAGGTGGGGT	TGGCCCGGTT	GTGGGAGTCG
62051	GTCGGGGTGC	GGCCGGATGT	GGTGCTCGGG	CATTCGATCG	GTGAGATCGC
62101	GGCCGCGCAT	GTGGCGGGG	TCTTTGATCT	GGCGGATGCC	TGTCGGGTGG
62151	TGGGGGCGCG	GGCCCGTTTG	ATGGGTGGGC	TGCCTGAGGG	CGGGGCGATG
62201	TGCGCGGTGC	AGGCCACGCC	CGCCGAGCTG	GCCGCCGACG	TGGACGACTC
62251	TGGTGTGAGT	GTGGCGGCGG	TCAACACACC	TGATTCGACG	GTGATTTCAG
62301	GGCCGTCTGG	TGAGGTGGAT	CGGATTGCTG	GGGTGTGGCG	GGAGCGTGGG

62351	CGTAAGACGA AGGCGCTGAG CGTCAGTCAT GCCTTCCACT CGGCGTT	GAT
62401	GGAGCCGATG CTCGCGGAGT TCACCGAAGC GATACGAGAG GTCAAGT	TCA
62451	CGCGGCCGAA GGTGTCGTTG ATCAGCAACG TCTCTGGTCT GGAGGCC	€GGT
62501	. GAGGAGATCG CGTCCCCGGA GTACTGGGCA CGCCATGTAC GCCAGA	CAGT
62551	. GCTCTTCCAG CCCGGCATCG CCCAAGTGGC TTCCACGGCA GGCGTG	TTG
62601	TCGAGCTCGG CCCCGGCCCC GTACTGACTA CTGCCGCCCA GCACAC	CTG
62651	GACGACGTAA CCGATAGGCA TGGCCCCGAA CCGGTACTGG TGTCCT	CGCT
62701	GGCCGGTGAG CGTCCTGAGG AGTCGGCGTT CGTGGAGGCG ATGGCT	CGTC
62751	L TGCATACCGC TGGTGTTGCT GTGGACTGGT CGGTGTTGTT CGCGGG	rgat.
62801	L CGTGTGCCTG GGCTGGTGGA GTTGCCGACG TATGCGTTCC AGCGGG.	AGCG
62851	1 GTTCTGGTTG AGCGGCCGTT CTGGGGGTGG GGATGCGGCG ACTTTG	GGTC
62901	1 TGGTGGCGGC GGGGCATCCG TTGTTGGGTG CGGCGGTGGA GTTCGC	GGAC
62951	1 CGGGGTGGGT GTCTGCTGAC CGGTCGGCTG TCGCGGTCTG GGGTGT	CGTG
6300	1 GCTTGCTGAT CATGTGGTGG CGGGTGCGGT TTTGGTGCCG GGTGCT	GCGT ·
6305	1 TGGTGGAGTG GGCGTTGCGG GCCGGTGATG AGGTCGGTTG TGTGAC	GGTG
6310	1 - GAGGAGTTGA TGTTGCAGGC GCCTTTGGTG GTGCCTGAGG CGTCGG	GTCT
6315	1 GCGGGTTCAG GTGGTGGTCG AGGAGGCGGG TGAGGACGGG CGGCGC	GGTG:
6320	1 TCCAGATCTA TAGCCGGCCT GACGCGGACG CCGTGAGCGG CGACGA	CTCG ·
6325	1 TGGATCTGCC ACGCGACCGG CACCCTCACC CCCCAGCACA CCGACC	CTCC
6330	1 GAACGACGGA CTGGCCGGCG CGTGGCCCGC GGCGGGCGCC GTGCCC	GTGG
6335	1 ACCTGGCGGG CTTCTACGAG CGCGTGGCGG ACGCGGGCTA TGCGT	ACGGC
6340	1 CCGGGGTTCC AGGGGCTGCG TGCCGTGTGG CGGCACGGTC AGGAC	CTGCT
6345	GGCCGAGGTC GTCCTGCCCG AAGCCGCGGG TGCCCATGAC GGCTA	CGGCA
6350	1 TCCACCCGC CCTCCTCGAC GCCACCCTCC ACCCGGCCCT GCTCC	rcgac
6355	TGGCCCGGGG AGGTGCAGGA CGACGACGGG AAGGTCTGGC TGCCT	TTCAC
6360	O1 CTGGAACCAG GTCTCCTTGC GGGCTGCGGG. AGCCGCCACC GTACG	CGTAC

63651	GTCTCTCGCC	CGGCGAGCAC	GACGAGGCGG	AACGGGAAGT	ACAGGTACTG
63701	GTGGCCGACG	CCACCGGGAC	CGACGTCCTG	AGCGTGGGGT	CGGTGACGTT
63751	GCGTCCCGCC	GACATCCGGC	AACTGCAGGC	CGTGCCGGGT	CACGACGACG
63801	GTCTGTTCTC	GGTGGACTGG	ACGCCGCTGC	CGCTGTCGCG	GACGGATGTG
63851	TCGCAGACGG	ATGCCGACGG	.GGATGCCGAC	TGGGTTGTGC	TCTCGGACGG
63901	TGTCGGCAGC	CTGGCTGATG	TGGTGTCGGC	GGCGGGTGGT	GAAGCGCCGT
63951	GGGCAGTGGT	CGCTCCCGTC	GGTGCATCCG	CGGGCGGCGG	CCTTGCCGGC
64001	TTTGACCGCC	GTGAGGGTCT	TGACGGTCGG	CTGGTCGTGG	AGCGGGTGTT
64051	GTCACTCGTA	CAGGAGTTCC	TGGCCGCGCC	GGAGCTGGCC	GAGTCCCGGC
64101	TCCTCGTGCT	GACCCGCGGC	GCCGTGGCGA	CCGGCGGCGA	CGGCGACGGT
64151	GATGTGGACG	CGTCCGCCGC	AGCCGTATGG	GGCCTGGTCC	GCAGTGCTCA
64201	GTCCGAGAAC	CCGGGCCGCT	TCATCCTGCT	CGACGTGGAC	ATGGACGTGG
64251	ACGTCGACGT	GGACATGGAC	GTGGACGTCG	ACGTGGACGT	CGACGTGGAC
64301	GTGGACGGAG	ACGGCAATGG	CAGCGACCTG	GACCCGGACC	TGAACGGCCG
64351	ACGACTTCCC	CACGCCACCC	TGCGTCACGC	CGCCGAGGAA	CTCGACGAGC
64401	CCCAACTCGC	CCTGCGCGAC	GGACAACTGC	TCGTTCCGCG	GCTGGTCCGC
64451	GCCACCGGCG	GCGGACTCGT	CGTGGCGCCC	ACCGACCGTG	CCTGGCGCCT
64501	GGACAAGGGA	AGCGCCGAGA	CGCTGGAGAG	CGTCGCGCCG	GTCGCGTACC
64551	CCGGAGTCAT	GGAACCCCTG	GGCCCCGGCC	AGGTCCGCCT	·CGGCATCCAC
646.01	GCCGCGGGCA	TCAACTTCCG	CGACGTCCTG	GTCAGCCTCG	GCATGGTGCC.
64651	CGGCCAGGTC	GGCCTGGGCG	GCGAAGGCGC	CGGTGTCGTG	ACGGAGACAG
64701	GCCCCGATGT	CACCCACCTG	TCGGTCGGCG	ACCGCGTGAT	GGGCGTCCTC
64751	CACGGCTCCT	TCGGCCCGAC	GGCCGTGGCG	GACACCCGCA	TGGTCGCGCC
64801	GGTTCCGCAG	GGCTGGGACA	TGCGGCAGGC	GGCCGCGATG	CCCGTCGCGT
64851	ATCTGACGGC	TTGGTACGGG	TTGGTGGAGC	TGGCCGGTCT	GAAGGCGGGC
64901	GAGCGCGTGC	TGATCCACGC	AGCCACGGGT	GGTGTGGGA	TGGCGGCGGT

 64951	GCAGATCGCC	CGTCACCTGG	GTGCCGAGGŢ	GTTCGCCACC	GCCAGTGCAG	
65001	CCAAGCACGT	CGTACTGGAA	GAGATGGGCA	TCGACGCCGC	CCACCGCGCC	
65051	TCCTCCCGGG	ACCTCGCCTT	CGAGGACACC	TTCCGGCAGG	CCACCGACGG	
65101	GCGCGGCATG	GACGTCGTCC	TCAACAGCCT	GACCGGCGAG	TTCATCGACG	
65151	CATCTCTGCG	GTTGCTCGGC	GACGGCGGCC	GGTTCCTGGA	GATGGGCAAG	
65201	ACCGATGTGC	GCACGCCGGA	GGAGGTGGCC	GCGGAGTACC	CGGGTGTCAC	
65251	CTACACCGTG	TACGACCTCG	TCACCGACGC	GGGGCCGGAT	CGCATCGCGG	
65301	TCATGATGAG	TGAGCTGGGC	GAGAGGTTCG	CTTCCGGTGC	CCTTGACCCT	
65351	CTGCCGGTGC	GTTCCTGGCC	GCTGGACAAG	GCGCGTGAGG	CGTTCCGGTT	
65401	CATGAGTCAG	GCCAAGCACA	CCGGCAAACT	CGTACTCGAC	GTGCCCGCAC	
65451	CGCTCGACCC	CGACGGGACC	GTCCTGATCA	CCGGAGGCAC	GGGGGCGCTG	
65501	GGGCAGGTCG	TGGCCGAGCA	TCTGGTGCGG	GAGTGGGGCG	TACGGCACCT	
65551	GCTGCTGGCC	AGCCGCCGTG	GACTGGACGC	CCCCGGCAGC	GGTGAACTCG	
65601	CCGACAGGCT	GTCGGACTTG	GGCGCCGAGG	TGACCGTCGC	GGCGGCCGAT	
65651	GTGAGCGACC	CGGCCTCGGT	GGTGGAGCTG	GTCGGCAAGA	CGGATCCCTC	
65701	GCATCCGTTG	ACGGGTGTCG	TGCACGCGGC	GGGCGTGCTT	GAGGACGGGA.	
 65751	TCGTGACGGC	TCAGACGCCT	GAGGGGCTGG	CGCGGGTGTG	GGCGGCCAAG	
65801	GCCGCTGCGG	CGGCGAATCT	CCATGAGGCG	ACCCGGGAGA	TGCGTCTCGG	
65851	TCTGTTCGTG	GTGTTCTCCT	CGGCGGCCGC	CACGCTCGGC	AGTCCGGGCC	:
65901	AGGCCAACTA	. CGCGGCTGCC	AATGCCTATT	GTGACGCGCT	GATGCAGCGC	
65951	CGACGGGCGG	CGGGCCAGGT	CGGCCTGTCG	GTCGGCTGGG	GTCTCTGGGA	
66001	GGCACCGGAC	GCCAAGCCGG	GTGTTGCCGC	CGACGCCAAA	CCGGATGTTG	
66051	CCGCCGACGC	CAAGACGGGA	GTTGCCGCCC	ACGGCACTCC	CCAGGGCATG	
66101	ACCGGCACCC	: TGAGCGGCAC	CGACGTGGC	C CGCATGGCAC	C GCATCGGCGT	
66151	CAAGGCGATG	ACCAGCGCAC	C ACGGTCTCGC	CCTGCTCGA(C GCCGCACACC	
66201	GCCACGGCCG	CCCCCACCT	C GTCGCCGTCC	3 ACCTCGACA	CCGCGTCCTG	

66251	GCGCACAAAC	ccgccccggc.	CCTCCCCGCC	CTCCTGCGCG	CCTTCGCCGG .
66301	AGACCAGGGA	GGCCAGGGAG	GCGGCCGAGG	CGGCGGTCGG	GGCGGCGGCC
66351	CGGCACGACC	GGCGGCCGCC	ACCACCCGGC	AGAACGTCGA	CTGGGCCGCG
66401	AAGCTCTCCG	TCCTGACAGC	CGAGGAACAG	CACCGCACCC	TCCTCGACCT
66451	GGTACGGACG	CACGCGGCAG	CCGTCCTCGG	GCACGCGGGC	ACCGACGCCG
66501	TACGCGCCGA	CGCCGCCTTC	CAGGATCTCG	GCTTCGACTC	CCTCACCGCG
66551	GTCGAACTGC	GCAACCGCCT	CTCCGCCTCC	ACCGGCCTGC	GCCTGCCCGC
66601	CACGTTCATC	TTCCGGCACC	CGACCCCGTC	GGCCATCGCC	GACGAACTGC
66651	GCGCACAGCT	GGCCCCGCG	GGGGCCGACC	CGGCCGCGCC	GCTCTTCGGT
66701	GAĄCTGGACA	AGCTGGAGAC	GGTGATCACG	GGGCACGCGC	ACGACGAGAG
66751	CACCCGGACC	CGCCTGGCGG	CACGCCTGCA	GAACCTGCTG	TGGCGCCTGG
66801	ACGACACTTC	.GGCCCGCTCG	GACCACGCGG	CCGGCGCGAG	CGACGCCGAC
66851	GGCGACGCCG	TCGAGAACCG	AGACCTCGAG	TCCGCGTCGG	ACGACGAGCT
66901	CTTCGAGCTG	ATCGACCGAG	AACTGCCTTC	TTGATCAGGA	GTGGAGAAGA
66951	CATGCCGGGT	ACGAACGACA	TGCCGGGTAC	CGAGGACAAG	CTCCGCCACT
67001	ACCTGAAGCG	AGTGACCGCG	GATCTCGGAC	AGACCCGTCA	GCGCCTGCGC
67051	GACGTGGAGG	AGCGCCAGCG	GGAACCGATC	GCCATCGTCG	CGATGGCCTG
67101	CCGCTACCCG	GGCGGGGTGG	CCTCCCCGA	GCAGCTGTGG	GACCTGGTCG
67151	CCTCACGCGG	CGACGCCATC	GAGGAGTTCC	CCGCCGACCG	CGGCTGGGAC
67201	GTGGCGGGCC	TCTACCACCC	CGACCCGGAC	CACCCCGGCA	CGACCTATGT
67251	ACGAGAGGCC	GGATTCCTGC	GGGACGCCGC	CCGCTTCGAC	GCCGACTTCT
67301	TCGGCATCAA	CCCGCGCGAG	GCGCTCGCCG	CCGACCCGCA	GCAACGGGTG
67351	CTCCTCGAAG	TGTCGTGGGA	ACTGTTCGAG	CGGGCGGGCA	TCGACCCCGC
67401	CACGCTCAAG	GACACCCTCA	CCGGCGTGTA	CGCGGGGGTG	TCCAGCCAGG
67451	ACCACATGTO	: CGGGAGCCGG	GTCCCGGCGG	AGGTCGAGGG	CTACGCCACC
67501	ACGGGAACCC	TCTCCAGCGT	CATCTCCGGC	CGCATCGCCT	ACACCTTCGG

	67551	CCTGGAGGGC	CCGGCGGTGA	CGCTCGACAC	GGCGTGCTCG	GCATCGCTGG
	67601	TCGCGATCCA	CCTCGCCTGC	CAGGCCCTGC	GCCAGGGCGA	CTGCGGCCTG
	67651	GCGGTGGCGG	GAGGCGTGAC	CGTACTGTCC	ACGCCGACGG	CGTTCGTGGA
	67701	GTTCTCACGC	CAGCGCGGAC	TCGCACCGGA	CGGCCGCTGC	AAGCCGTTCG
	67751	CCGAGGCCGC	CGACGGCACC	GGATTCTCCG	AGGGCGTCGG	CCTGATCCTC
	67801	CTGGAACGCC	TCTCCGACGC	CCGCCGCAAC	GGACATCAAG	TACTCGGCGT
	67851	CGTACGCGGA	TCGGCCGTCA	ACCAGGACGG	CGCGAGCAAC	GGCCTGACCG
	67901	CCCCGAACGA	CGTCGCCCAG	GAACGCGTGA	TCCGCCAGGC	CCTGACCAAC
,	67951	GCCCGCGTCA	CCCCGGACGC	CGTCGACGCC	GTGGAGGCAC	ACGGCACCGG
	68001	CACCACGCTC	GGCGACCCGA	TCGAGGGGAA	CGCACTCCTC	GCGACGTACG
	68051	GAAAGGACCG	CCCCGCCGAC	CGGCCGCTGT	GGCTCGGCTC	TGTGAAGTCG
	68101	AACATCGGCC	ACACGCAGGC	GGCTGCGGGC	GTCGCAGGCG	TCATCAAGAT
	68151	GGTGATGGCG	ATGCGCCACG	GCGAGCTGCC	CGCCTCCCTG	CACATCGACC
	68201	GGCCCACGCC	CCACGTGGAC	TGGGAGGGCG	GGGGAGTGCG	GTTGCTCACC
	68251 [.]	GATCCCGTGC	CGTGGCCACG	GGCCGACCGC	ccccccccc	CGGGGGTCTC
	68301	CTCCTTCGGC	ATCAGCGGCA	. CCAACGCCCA	CCTGATCGTG	GAACAGGCCC
	68351	ccaccccacc	: CGACACGGCC	GACGACGCCC	CGGAAGGCGC	CGCAACCCCC
	68401	GGCGCTTCCG	ACGGCCTCGT	GGTGCCGTGG	GTGGTGTCGG	CCCGTAGTCC
	68451	GCAGGCCCTG	CGTGATCAGG	CCCTGCGTCT	GCGCGACTT	GCCGGTGACG
	68501	CGTCCCGAGC	GCCGCTCACC	GACGTGGGCT	GGTCTTTGC1	GCGGTCGCGT
	68551	GCGCTGTTCC	AGCAGCGGG	GGTGGTGGCG	GGGCGTGAG	A GGGCTGAACT
	68601	GCTGGCGGG	GTGGCTGCG	TGGCCGCTGG	TGAGGAGCA	CCGGCTGTGA
	68651	CGCGGTCCC	TGAGGAAGC	GCGGTTGCTC	GAGCGGTG	A TGTGGTGTGG
	68701	CTGTTCAGT	GTCAGGGCA	TCAGTTGGTC	GGTATGGGT	G CTGGTTTGTA
	68751	TGAGCGGTT	C CCGGTGTTT	G CGGCTGCGT	TGATGAGGT	g TGCGGCTTGC
	68801	TGGAGGGGG	A GCTGGGGGT	r ggttegggt	GGTTGCGGG	A GGTGGTGTTC

68851	TGGGGCCCGC	GGGAGCGGTT	GGATCACACG	GTGTGGGCGC	AGGCGGGGTT
68901	GTTTGCGTTG	CAGGTGGGGT	TGGCCCGGTT	GTGGGAGTCG	GTCGGGGTGC
68951	GGCCGGATGT	GGTGCTCGGG	CATTCGATCG	GTGAGATCGC	GGCCGCGCAT
69001	GTGGCGGGG	TCTTTGATCT	GGCGGATGCG	TGTCGGGTGG	TGGGGGCGCG
69051	GGCGCGTTTG	ATGGGTGGGT	TGCCTGAGGG	TGGGGCGATG	TGTGCGGTGC
69101	AGGCCACGCC	CGCCGAGCTG	GCCGCGGATG	TGGATGGCTC	GTCCGTGAGT
6915 1	GTGGCGGCGG	TCAACACACC	TGACTCGACG	GTGATTTCAG	GTCCGTCGGG
69201 [°]	TGAGGTGGAT	CGGATTGCTG	GGGTGTGGCG	GGAGCGTGGG	CGTAAGACGA
69251	AGGCGCTGAG	CGTGAGTCAT	GCTTTCCATT	CGGCGTTGAT	GGAGCCGATG
69301	CTCGGGGAGT	TCACGGAAGC	GATACGAGGG	GTCAAGTTCA	GGCAGCCGTC
69351	GATCCCGCTC	ATGAGCAATG	TCTCCGGAGA	GCGGGCCGGC	GAGGAGATCA
69401	CATCCCCGGA	GTACTGGGCG	AGGCATGTAC	GCCAGACAGT	GCTCTTCCAG
69451	CCCGGCGTCG	CCCAAGTGGC	CGCTGAGGCA	CGCGCGTTCG	TCGAACTCGG
69501	ccccgcccc	GTACTGACCG	CCGCCGCCCA	GCACACCCTC	GACCACATCA
69551	CCGAGCCGGA	AGGCCCCGAG	CCGGTCGTCA	CCGCGTCCCT	CCACCCGAC
69601	CGGCCGGACG	ACGTGGCCTT	CGCGCACGCC	ATGGCCGACC	TCCACGTCGC
69651	CGGTATCAGC	GTGGACTGGT	CGGCGTACTT	CCCTGACGAC	cccccccc
69701	GCACCGTCGA	CCTGCCCACC	TACGCCTTCC	AGGGGCGGCG	CTTCTGGCTG
69751	GCGGACATCG	CGGCGCCCGA	GGCCGTGTCC	: TCGACGGACG	GTGAGGAGGC
69801	CGGGTTCTGG	GCCGCCGTCG	AAGGTGCGGA	CTTCCAGGCG	CTCTGCGACA
69851	CCCTGCACCI	CAAGGACGAC	GAGCACCGCG	GGCTCTGG!	GACGGTGTTC
69901	CCCGCGCTGT	CCGCGTGGCG	GCGCGAACGA	CGTGAGCGG1	CGATCGTCGA
69951	TGCCTGGCGG	TACCGGGTCG	ACTGGCGGCG	GTCGAGCTC	CCGACACCCG
70001	TTCCGGGCGC	CGGTACCGGT	CCCGACGCCC	ACACGGGCC	CGGGGCGTGG
70051	CTGATCGTG	. CTCCCACGC	A CGGGTCGGGT	r actiggcos	C AAGCCTGTGC
70101	CCGGGCGTTC	GAGGAGGCG	GCGCGCCGG	r acgtatcgt	GAGGCCGGCC

70151	CGCACGCCGA	CCGGGCGGAC	ATGGCGGACC	TGGTCCAGGC	ATGGCGGGCA
70201	AGCTGTGCGG	ACGACAÇCAC	CCAGCTCGGA	GGAGTGCTCT	CCCTGCTGGC
70251	TCTCGCCGAG	GCACCGGCCA	CCAGTTCCGA	CACCACTTCC	CACACCAGTA
70301	CCAGTTGCGG	TACCGGCTCT	CTCGCGTCCC	ACGGCCTCAC	CGGCACCTTG
70351	ACGCTGCTGC	ACGGTCTGCT	GGATGCGGGC	GTCGAAGCGC	CTCTCTGGTG
70401	TGCCACGCGC	GGCGCCGTGT	CGTGCGGCGA	CGCCGATCCG	CTCGTCTCCC
70451	CGTCGCAGGC	CCCGGTCTGG	GGACTCGGAC	GCGTGGCCGC	CÇTGGAGCAT
70501	CCGGAGTTGT	GGGGCGCCT	ĞĞTCGACCTG	CCCGCCGACC	CGGAGTCGCT
70551	CGACGCGAGC	GCGTTGTATG	CGGTTCTGCG	CGGAGACGGC	GGCGAGGATC
70601	AGGTCGCGCT	GCGCCGGGGC	GCGGTCCTCG	GCCGTCGCCT	GGTGCCCGAC
70651	GCAACCCCGG	ACGTGGCCCC	CGGCTCGTCC	CCGGACGTGT	CCGGAGGCGC
70701	AGCCCATGCC	GACGCGACCT	CCGGGGAGTG	GCAGCCGCAT	GGTGCCGTCC
70751	TCGTCACCGG	AGGCGTCGGC	CACCTGGCCG	ATCAGGTCGT	ACGGTGGCTC
70801	GCCGCGTCCG	GCGCCGAACA	CGTCGTACTC	CTGGACACGG	GCCCCGCCAA
70851	CAGCCGTGGT	CCCGGCCGGA	ACGACGACCT	CGCCGCGGAA	GCCGCCGAAC
70901	ACGGCACCGA	GCTGACGGTC	CTGCGGTCCC	TGAGCGAGCT	GACAGACGTA
70951	TCCGTACGTC	CCATACGGAC	CGTCATCCAC	ACATCGCTGC	CCGGCGAGCT ·
71001	CGCGCCGCTG	GCCGAGGTCA	CCCCCGACGC	GCTCGGCGCG	GCCGTGTCCG
71051	CCGCCGCGCG	GCTGAGCGAA	CTCCCCGGCA	TCGGGTCAGT	GGAGACCGTG
71101	CTGTTCTTCI	CCTCCGTGAC	: GGCTTCGCTC	: GGCAGTAGGG	AGCACGGCGC
71151	GTACGCCGCC	: GCCAACGCCT	ACCTCGACGC	: CCTGGCGCAA	CGGGCCGGTG
71201	CCGATGCTGC	GAGCCCCCGG	ACGGTCTCGG	TCGGGTGGG	CATCTGGGAT
71251	CTGCCGGACG	ACGGTGACGT	GGCACGCGG	gccgccggg(TGTCCCGGAG
71301	GCAGGGACTO	CCGCCGCTGC	AACCGCAGT	GGCGCTCGGC	GCCCTGCGCG
71351	CGGCGCTCGI	CGGGGGCAA	- GGGCACACG(C TGGTCGCCG#	A CATCGAGTGG
71401	GAGCGGTTCC	GCCGCTGT	CACGCTGGC	AGGCCCACCC	GGCTGCTCGA

71451	CGGGATCCCC	GCGGCCCAGC	GGGTCCTCGA	CGCCTCCTCG	GAGAGCGCCG
71501	AGGCCTCGGA	GAACGCCTCG	GCCCTCCGTC	GCGAACTGAC	GGCCCTGCCC
71551	GTGCGGGAGC	GGACCGGGGC	ACTTCTCGAC	CTGGTCCGCA	AACAGGTGGC
71601	CGCCGTCCTG	CGCTACGAGC	CGGGCCAAGA	CGTGGCGCCC	GAGAAGGCCT
71651	TCAAGGACCT	GGGCTTCGAC	TCGCTCGTGG	TCGTGGAGCT	GCGCAACCGG
71701	CTGCGCGCCG	CCACCGGGCT	CCGGCTGCCC	GCCACCCTGG	TCTACGACTA
71751	CCCCACACCC	CGCACCCTCG	CCGCACACCT	GCTGGACAGG	GTGCTGCCCG
71801	ACGGCGGCGC	GGCAGAGCTC	CCCGTGGCCG	CCCACCTGGA	CGACCTGGAG
71851	GCGGCCCTCA	CCGACCTGCC	GGCCGACGAC	CCCCGGCGCA	AGGGCCTGGT
71901	CCGGCGTCTA	CAGACGCTGC	TGTGGAAGCA	GCCCGACGCC	ATGGGGGCGG
71951	CGGGCCCCGC	CGACGAGGAG	GAGCAAGCCG	CGCCCGAGGA	CCTGTCGACC
72001	GCGAGCGCCG	ACGACATGTT	CGCCCTGATC	GACCGGGAGT	GGGGCACGCG
72051	GTGAGCGGGG	TGGAGCGGGG	TGTGGGGTCG	GCGGGCCCTG	TGGAACAGGG
72101	TGACGGACTC	GCGGGCCTGG	TCGAGCGGGC	CGAGGCGCTG	GCCGCTCTGC
72151	GGGGCGCCTT	CGACGCTCC	CCGGGCACCG	GCGGCAGCCT	CGTCGTGCTC
.72201	AGCGGCGCGG	TGGGCACCGG	CAAGACCGCG	CTGCTACGGG	CGTGGGCCGA
72251	CCGCATCGGC	GCCGATGCCG	ACGCCCTGGT	CCTGACCGCC	ACCGCCTGCC ·
72301	GCGCCGAGCG	CGACCTGCCG	CTTGGCGTCC	TGGAACAGCT	GGTACGCAGC
72351	CCCGGCCTGC	CCCCGGCCAG	CGCCGAGCGC	GCGCTGGCGT	GGTGGGACGA
72401	GGAGGCCTCG	GCCACCCCG	GAAAGACGGA	CGCGAACGGG	ACGAGTGCCA
72451	ACGGGACGGA	CGCCAACGGG	ACGGGCGCGG	GACAGACGGG	CGCGGGGCAG
72501	GCGGGCGTGG	GACAGACGGG	CGTGGGCGGA	GAGCCCGTCC	TGGCCGCCTC
72551	CGCCCTGCGA	GGCCTGTGCG	AGGTGCTGCG	GGACCTGCTC	GCCGAGCGGC
72601	CCGTCGTGGT	CGCCGTCGAC	GACGCGCACC	ATGCCGACGC	GGCGTCGCTC
72651	CAGTGCCTGC	TCTCCGTGGT	GCGCCGGCTG	CGGTCGGCAC	GACTCCATGT
72701	GCTGTTCACC	GAGTACGCCC	ATCAGAAGGC	GCAGAACGCC	CTGCTGAGCA

72751	GCGAGTTCCT	GCACGAGCCC	GCCCTGCGGC	GGATCCGCCT	GGAACCGCTG
72801	TCGAAGGCGG	GCGTGGAGGC	CTTGCTCGCC	CGGCACCTCG	ACGAGCGGAC
72851	GGCACAAGAC	CTCACCCCCG	TCGTCCACGG	CATGAGCGCG	GGCCACCCGC
72901	TCCTCGTACG	GGCGCTGGCC	GAGGACCACC	GTGCGGCGGG	CGGCGCCGGG
72951	GAGGCGTACG	GTCGTGCCGT	CCTCAGCTTT	CTGTACCGGC	ACGAGACTCC
73001	GGTCACCCAA	GTCGCCCGCG	CCATCGCTGC	GTTGGGCGCG	CACGCCGGAC
73051	CCGGTCAGGT	CGGGCGGCTG	CTCGATGTCG	ACGCGGCGTC	CGTCGAGCGG
73101	GCCGTGCGGC	AGCTGACCGT	CGCGGAGGTG	CTGCACGAGG	GCCGCCTGTG
73151	CCACCCGGCG	TTCGCGGCGG	CGGTCCTGGA	CGGCATGCCG	CCCGAGGAAC
73201	GCCGCGCCCT	GCACGGACGG	GTCGCCGACC	TCCTGCACGA	GGAGGGGGCG
73251	CCGGCCACCG	AAGTGGCCGC	CCACCTCGTC	GCCGCCGACC	GGTCCGACGC
73301	CCCGTGGGCG	GTACCCGTCT	TCCAGGAAGC	GGCCCAACTC	GCCCTGGACG
73351	AGGACCAGGT	GGAGACCGGC	GTCGACTATC	TGCGCGCGGC	CCACCAGCGG
73401	TGCCGGGGCG	CCGCGCAGCG	TGCCGCGGTC	GTCGGTGCGC	TCGCCGACGC
73451	CGAGTGGCGG	CTCGACCCAG	CAAAGGTCCT	GCGCCACCTG	CCCGACCCTG
73501	CAGCCATGGC	CCCACAAACG	GACCCTGCCG	CCCTGGCCCC	ACACACGGAC
73551	CCCGCACCCA	CAGCCGCACC	CACAGCCGCC	CCCACCCCCA	CCCCCATCCC
73601	GACCACCCCA	CCCCTCCCCA	CCCACCTGCT	CTGGCACGGG	CGGGTCGAGG
73651	AAGGCCTGGA	CGCCATCGGC	ACGCTCACCG	GGCCCGGACC	CAACCCGGCG
73701	GGTGCGCCGC	CGATGAACCC	CGCGGACCTG	GACACCCCAT	GGCTGTGGGG
73751	CGCCTACCTC	TATCCCGGGC	ACGTCAAGGA	GCGCCTGGGA	TCCGGCGCCC
73801	TGTCCCCGCA	GCGCTCGACC	CCGCCGGCGG	TCACGCCGGA	GCTCCAAGGC
73851	GCGGGCACGC	TGATGAACGA	CCTGCTGCAC	GGCGGCGAAC	GCGACGCCAC
73901	CGAGGCCGCC	GAGCGCGCCC	TCAACCGCTA	CCGGCTCGGC	CCCGCACCA
73951	TCGCGGTCCA	GACGGCCGCG	CTGGCCGCCC	TCACCTACCG	CGACCGGCCG
74001	CACCGCGCGG	CCGCCTGGTG	CGACGGCCTC	GTCGCCCAGG	CCGACGAGCG

74051	CAACAGCCCC	ACCTGGCGGG	CCCTGTTCAC	CGCGTGGCGT	GCCCTGCTCC
74101	ACCTGCGGCA	GGGCGACCCG	GCCGCAGCGG	AACAGCGCGC	CGAAACCGCC
74151	CTCGCCCTGC	TCGGATCGAA	GGGCTGGGGC	GCCGCGATCG	GCCTGCCGCT
74201	GGCAGCCGCC	GTACAGGCCA	AGGCGGCCCT	CGGCGATGTC	GACGGGGCGG
74251	CGGCCCTCCT	GGAACGGCCC	GTGCCCCAGG	CGGTCTTCCA	GACCCGCACC
74301	GGACTGCACT	ACCTGGCGGC	CCGGGGCCGC	TATCACCTCG	CCACCGGCTG
74351	CCACTACGCC	GCACTGTGCG	ACTTCTACGC	CTGCGGGACC	CGCATGAGCA
74401	GCTGGGGAGT	GGACCTGCCC	GCGCTGGAGC	CGTGGCGCCT	CGGCGCGCG
74451	GAAGCGTACC	TGGCCCTCGG	CGAAGGACTC	CTGGCACGCC	AACTCGTCGA '
74501	CGGCCAGCTG	CCGTTGCCCA	CGCCTGACGA	CGGCCGCACC	TGGGGCATGA
74551	CGTTGCGCCT	GCGGGCGGCC	ACGTCCCCCG	CGCCGGCCCG	GGCCGAACTC
74601	CTCGACGAGG	CCGTGGCGGT	GCTCCGGGAG	AGCGGCGACA	CCTTCGAGCT
74651	GGCGCGGGCC	GTCGCCGACC	AGGCTĠTTGC	CGTACGCGAA	GGGGGCGAGG
74701	CGGAACGCGC	CCGGCTGCTG	GCCCGCAAGG	CGGAGCTGCT	GGCCCGGCGC
74751	TGGGGCAGCG	ccccccccc	CGCCACCGTC	CCCGAACCGC	CGGAGCGGCC
74801	AGGACCGGCC	ACTCCGGACG	CCGAACTGAC	CAGTGCGGAG	CGGAGGGTGG
74851	CCGAGCTGGC	CGCCGAAGGG	TTCACCAACC	: GGGAGATCTC	CCGGAAGCTG.
74901	TGCGTCACGG	TCAGCACCGT	GGAACAGCAC	CTGACCCGGA	TCTACCGGAA
74951	GCTCGACGTC	AGGCGACTGG	ACCTCCAGGC	AGCCCTCGGC	TGACCTTCAG
75001	GCGGCCCTCG	GCTGACCGC	A GGCCACGCGC	CTACGGTCAG	CCTTCCTGAG
75051	TCAGGACCGT	ACAGCCGCCC	e taggtgtägg	G TGTAGGCGTC	GGCGAGATCG
75101	TCGCCGCGTC	CAGACCCAC	C ACGGCCAGC	CCTCCGGAAG	GAACGGGGGA
75151	GCGGTCAGCT	CCGGGAGGC	TTCGTCGGC	G CGCATCGCC	A TCAGGAAACG
75201	GTTGGAGCC	C AGTTCGGCC	r geggegeet	r gaggctcato	CACGTCCGTGA
75251	CGATCTCGG	A CGCCTTCGG	G GAACGGATC	G ACGCCGCGG	r gatggcctcg
75301	GCGAACCGC	A GACGCTGCT	C GGTGTCCAC	A CCGATGAGC	C GCGGATCCGT

75351	CGCCGAGACA	CGGCAGTTGA	CGTAGTCGAT	GTCCTTGGTC	GCGGCGAGGA
75401	TCCACGGGTC	GTCCACGGCC	GCGCCGATCG	CCTTCTGCAG	GGCGCGGGTG
75451	CCGGCGCGGG	CGGACCCCGT	ACCCTCCTGC	ACGCTCCGCT	CGAACTCGCG
75501	GTCGATCGTG	GTGGCGCAGC	GCGCGGCCGA	GCTCATGCCG	TGGCCGTAGA
75551	TCGGGTTGAA	AGCGGTCAGC	GAGTCGCCGA	TGACGAGCAG	ACÇGTCGGGC
75601	CACTGTTCGA	GGCGCTCCGG	ATAGAGGCGG	CGGTTGGCGC	CGGAGCGGGA
75651	ACCGAAGACG	GGGGTGAGTG	GTTCGGCGTC	CCGGAGCAGG	TCGGCGAGGA
75701	TCGGGTGGTT	CAGGTTCTCG	GCGAAGGGGA	TGAACTCGTC	CTCGTGTGTG
75751	GGCAGTTGCG	CGCCCCGCGT	GCAGGAGAGC	GTCGCGAGCC	AGCGGCCGCC
75801	CTCGATGGGG	TAGACCACGC	CGAAGCGGCC	GGGTTCGCGC	ACCCGGTCGT
75851	CGGCGGCGAT	GTTCACGGCG	GGGAAGTGCG	TCGTAGCGCC	CGGCGGGGCC
75901	TTGAAGAGCC	GGGTGGCGTA	GGCGACGCCC	GCGTCCACGA	CGTCTTCCTC
75951	CAGTGCCGGC	ACGCCGAGGG	CGGCGAGCCA	CTGCTTGAGG	CGGGAGCCGC
76001	GCCCGGTGGC	GTCGATCACC	AGGTCGGCCT	CCAGCTGCTC	CTGCCGACCG
76051	CTGTCGAGGT	CGCGGACGAC	GACACCGGTG	ACCCGGCCGC	CACTGCCACC
76101	ACCACTTCCC	GTCAGCTCGA	CGGCCTCGGT	GCGCTGCCGG	ACGGTGATGT
76151	TGTCGGCTCC	CAAGGCCTGC	TGACGTACCG	TCAAGTCCAG	CAGCGGGCGG
76201	CTGGCGACCA	GCGCGAACTG	GGTGGCGGGG	AAGCGGTGCT	GCCACCCCTG
76251	ACCGGTCAGC	GTCACCAGGT	CCTCGGGGAA	GCCGAGGCGG	CGGGCGCCGG
76301	CCGCGAGGAG	GCGGTCGGTG	GTGCCGGGCA	GCATCTCCTC	GATGAGGCGG
76351	GCGCCGTTGG	ACCACAGGAG	GTGCGCGTGG	CGGGCCTGCG	GGACCCCCTT
76401	GCGGTGCTGG	GGCTCCTCGG	GCAGCGCGTC	ACGTTCCACG	ACGGTGACGG
76451	CGTCGACGTG	CCGGGCCAGG	ACGTGGGCCG	CCAGGGTGCC	TGCCATGCTG
76501	GCACCCAGGA	CGACGGCATG	TGCGGGTCGG	GTGGTGGTCA	CGCGCGTATC
76551	CCTTCGGGGT	GGGTGGTGTC	GGCGGGCCCG	GCCGGATCGT	CCATGGTCAC
76601	GTCCGTGACG	CCCCAGAACG	CCTGGACCCG	GCGGCCGAGC	CCGTGCTCGT

76651	CGAGTTCGAC	GATGCCGACG	ATGCGGAAGG	TCATCGGCCG	CGGCCGCTGC
76701	ACGGTGACCG	TGGTCGGCGT	CACCACGAAA	CGGTCGTCCA	TCGACGTCAT
76751.	CGGCGGGTCC	GGCACCTCGT	GCGTACCGCA	GGAGACGGCC	AGTTCGAGAT
76801	GGCGGCGGAG	ATCGTCCTTG	CCCACCATCG	GGGGCCGCCC	CACGGGGTCC
76851	TCGAAGACGA	TGTCGTCCGT	GAACAGGTCG.	AGGACGCCTT	CGATGTCACC
76901	GGCGTTGATG	CGCTCGGCGT	AGTCGACGGC	CATCTGCTTG	CGCGCGCCT
76951	CGTCGGGCAT	GGCACCTCCA	GGAAGGGTGG	GCAGACCTTG	TGAAAGTCAT
77001	CGAGGGCCGT	TCGGTTCAGC	CGAGGACCGT	GAGATCGGAT	GTGCCCCAGT
77051	ACGACTTCAG	ATGCCGGATG	AGGCCGGACG	CGTCGATGCG	GATCACGAGC
77101	ATCGCCGTGC	GGTGTATGCG	GGCCGTCCCC	GGGGCGTCGG	GGGCCTTGAG
77151	CCAGCCCCGC	TCCGCGTAGA	GCGGGCCCAC	GGGCAGGTAG	TCCATGACGG
77201	AGGAAATCTG	GATCAGCGCG	TGCGTGGCGT	CCTGCCCGGC	GACGGGCTCG
77251	GCCGCCTCCT	CGCGCAGGTG	CGCGGCGAGC	AGCGGTTCGT	AGTGGGCGCG
77301	CAGCGCGTCG	TGCCCGGTGA	CGGGCGGGAG	GCCGACCGGG	TCCTCGAGGA
77351	CCGCGTCGGG	CGCGTACAGA	TCGATGATCG	CGTCCAGGTC	CCCGGCGTTG
77401	ATCCGCCGGC	TGTGCTCCAG	GGCCCGCTTC	TTGCGGGCGA	ACTCGTTCAT
77451	CGCTGCCCCT	CCACTGCCTG	ACCGTGTCCG	TTGCCGTTGC	CGTTGCCGTT
77501	GCCGTTGCCG	TGTCCGTTGC	CCTGCCCGGT	GGGCTGTCCG	TTGCCCTGTC
77551	CGCTCGCGCC	GTCCCTGCCG	AGGTCCCGGT	CGATGAACGC	GAAGATCTCG
77601	TCCGCCGACG	CGTCCTGGAT	ACGTGTACGA	GTGGCCACCG	CGACCTCGCC
77651	GGCCGTGTCC	TGCGGCGCGT	CGAGCCTGGC	CAGCGTCGCG	CGCAGCCGCC
77701	·CCGCCAGTTC	GGCCCGCGCC	GAGCCGTCCT	TCGAGGAGAC	CGAGAGCAGC
77751	GAGTCCTCGA	TGCGCTCGAA	CTCCGCCAGG	ACGTCGGCGA	GCGGATCCGC
77801	CGCGCGCGG	GCCAGCTCCT	GCCGCAGCTG	CGCGGCGAGC	TCCGCCGGGT
77851·	TGGGATGGTC	GAAGACGAAC	GTGGCGGCA.	GCTTCAGCCC	CGTCGCGGCC
77901	GAGAGCCGGT	TGCGCAGCTC	CACCGCGGTC	AGGGAGTCGA	AGCCGAGTTC

77951	CCGCAGCCCC	TGCGTCGCGT	TGACGGGCGT	GGCCGCGTCG	TAGCCGAGGA
78001	CGGCCGCGAT	ATGGGTGCAC	ACCAGGTCGA	GCAGCGCCTC	CTCCCGCTCG
78051	GGGTCGGACA	TCGCGCCGAG	CGACTTGAGC	AGCGCGGCCG	CCCCCGCCGA
78101	CACGGCACCG	CCGCCGCTCT	TGCTCCCCC	GCGCACCAGG	TCGCGCAGCA
78151	GCGCCGGTGC	GGGGTGGCTC	TGGGCCTGCC	GGCGCATCCG	GGCCAGGTCC
78201	AGACGGACCG	GCGCGTACAG	GGGCAGTCCG	CCGGCCCACG	CCGCGTCGAG
78251	GAGGGCGAGT	CCCTCGTCGG	CGCCGAGCCC	GACCACGCCG	GCGCGGGCAT
78301	GGCGCGCCCG	GTCGGCGTCG	GTGAGCCGTC	CCGACATGCC	GCTCGCCAGC
78351	TCCCAGTAGC	CCCACGCCAG	GGAGGTCGCC	GCCGCACCGC	CGTCGTGCCG
78401	GTGCCGGGCC	AGCGCGTCCA	AGAAGGCGTT	GGCGGCCGTG	TAGCTGCCCT
78451	GGCCGGGGCC	GCCGAGCAGC	CCGGCGACCG	AGGAGTACAG	GACGAACGCG
78501	GACAGGTCCG	CGTCCCGCGT	CAGCTCGTGC	AGGTGCCACG	CGGCGTCCGC
78551	CTTCACGCGC	ATCACCTCCT	CGACCTGCTC	GGCCGTGAGG	TTCTGCACCA
78601	CGGCGTCGTT	CACGGTGCCC	GCGCAGTGGA	AGACGGCGGT	CAGCGGGTGG
78651	TCCGAGGGCA	CCGCCGCGAG	GAGGGCGGCG	GCTTCGTCCC	GGTCGCCCGG
78701	GTCGCACGCG	GCGAAGGTGA	CTCGCGCGCC	GAGCGCGGAG	AGGTCGGCGG
78751	CCAGTTCGAG	TGCGCCCGGC	GCGTCGGCTC	CCCGCCTGCT	GGACAGCAAC
78801	AGGTGCCTGG	CTCCGTACCG	TTCCACCAGG	TGACGGGCCG	TCAGCGAGCC
78851	GAGTGCTCCG	GTGCCGCCGG	TGACCAGCAC	GGTGCCCTCG	GGGTCGAAGG
78901	· CGGGAGGCAG	CGAGAACACG	GTCGTGCCCG	CCGAGGGCGG	GGCCGCCATC
78951	GCGGCGGGCG	CCTGCCGGAT	GTCCCACACG	GTGATGTCGA	GCGGCGTCAG
79001	AGCACGGCTG	TCACCCCGTT	CCGCGGGCAG	CCCGGGCTCC	GCCGACTCCG
79051	TGATCTCGGC	AAGCTCGGTC	AGCTCGGTCA	GCTCCGCGAG	GATTTCCCGT
79101	ACGCGCCCGG	GCTCGGGCGG	CACGACAGCC	TGTCCCTCGT	CCGGACGACC
79151	GCCCGCACGG	TGGACCACCA	GGGCCCCTC	: GTGGCGGAGG	GTGACGTCGG
79201	CCGCGCGCTC	GGCGCCCGAA	TCATCCGCCG	TCGACGCACC	GTCCACGGCC

79251	TCGACCCGCC	ACCGCCCGGC	AAGAGCAAGA	CGCAGCACGG	CACGGCCGAC
79301	GGAACCGGTT	TCCTCCCCGA	CGAGCAGAGT	CTCGCCGCCG	CGCGGCGCCA
79351	CGACATCCGC	CAGCACGTGA	TACGCGGACA	CATAGGCCCC	CAAGGACCCG
79401	GCCGCCTGCG	CCCAACTCCA	GCCCGCCGGA	ACCGGCATAA	GCAGCGCGGC
79451	ATCGGTGACG	GCCACCGGGC	CCACCGCGTC	GAACAACCCC	ATCACCCGGT
79501	CGCCCACGGC	CACCGAACCG	ACCTCGCCGC	CGACTTCCGT	CACCACACCG
79551	GCACCCTCGA	CCTGGCCCGC	CGTGAGCGGC	CCCGGCGCCG	CGGCCCGCAC
79601	CGCCACCCGC	ACCTCGTGEG	GCTCCAGCGC	CCGTCCGGCC	TCGGGAGCGT
79651	CGACAAGGGA	CAACTGCTGT	CCGCCGCCCG	CCTCTTGGCA	CCGAGCCAGC
79701	CGCCACGTGA	GCGATCCGAC	CGGCGGCACC	AGCCGCACCG	ACGCGTCGTC
79751	GCGCACGAGC	CGTGGCACGT	AGGCGCGCCC	GTCACGCAGC	GCCAATTCCG
79801	GTTCGCCGGA	GGCCAGTACG	CCGGTCAGCG	TGGCCGGAGA	AGACTCCAGT
79851	CCGTCCACGT	CGAGCAGCGT	GAGGCGACCG	GGATTCTCGG	CCTGCGCGCT
79901	GCGCACCAGA	CCCCACAGCG	ACGCGCCCGC	CAGATCACCG	GCGGTCTCAC
79951	CCGGCCGCGC	GGCGACCGCG	CCTCGGGTGA	CGACGACGAG	ACGGGTCGCC
80001	GCGAACGCCG	GGTCGTCCAC	CCACTCCTTG	AGCAGCGACA	GAAGGGACAC
80051	GGTGGCCAGC	CGCGCGTACC	CGGCCGGGTC	GCCGCCCCTC	CCATCGGCAT
80101	CCGCAACGGC	CCCGGCACCI	r GCGCCGGGCG	GGGCGCACAC	GGCGAGCACG
80151	ACATCGGGCG	CTTCGCCCCC	· AGCCGCCACT	CCGTCCCGG	A GCGCACCGAA
80201	CGTGTCCCAC	ACGGGGCCG	GGCCAGCG	C ATCGGACAA	GCGTCGGCCA
80251	GCGCACCGGC	CGACGTACC	G CCCATCGGG(CACTCTCGA	C CGGCGCGAGG
80301	ACCGCGGCAC	c eceeeecec	C GCCGCCCGT	C TCCTCGGCC	C.GCGCGGCGAC
80351	CTCCATCCAC	C ACGAGCCGG	A ACAGCGCGT	C ACGGTCCGC	C GCACGGGCGC
80401	*CCGCGATCTC	GTGGGCGGC	C. ACCGGCCGT	A CCGTGAGCG	A CTCCAGCGTG
80451	AGAACCGGC	r ccccccctc	c GCCCCCGTC	C ACGGCCGTG	A. GGGCCAGCTG
80501	GTCGGGCGC	GTGCGTGCG	A TACGTACCC	G CAACTTCTC	A GCGCCCGGCG

	80551	CGTGCACCCG	CAACCCGCTC	CAGGAGAACG	GCAGCAGCAC	TTGGTCGGTG
	80601	TCGGCGGACG	ACGTGACCGC	GTCCAGGATC	AGCGCGTGCA	GCGTGGCGTC
•	80651	GAGCAACACC	GGGTGCACCT	GGTAGCGGTC	GGCCCTGCCG	CTCTCCGCCT
	80701	CGGGCAGCGC	CACCTCGGCG	AAAAGGTCGT	CCCCGAGCCG	CCACGCGCTC
	80751	ACCAGTCCCT	GTGAGCCGGG	CCCGAAGTCA	TAGCCGTACG	AAGCGAGTTC
٠	80801	CCCGTACGGA	TCCTGCTCGC	CGACCGGTGT	GGCGCCCGGG	GGCGGCCACG
	80851	TCCCGCCGAA	CGAGGCGTCC	CCGGCGTCGG	GCCCCGGGGG	AGCGACCACG
	80901	CCCGCGGCAT	GCCGGGTCCA	CACGGCCTCC	TCGCCCTCAC	CCGTGGGCCG
	80951	CGAATGGACG	GTCACGGGAC	GCCGCCCGTC	CTCGGCCACG	GAACCGACCA
	81001	CCACCTGCAC	GTCGACCGCG	CCCGCACCCT	CGTCCCCGAA	GGCGAGCGGA
	81051	GTGTGCAGCG	TCAGCTCCGC	CAACTCCGCG	CAGCCGGCCC	GCACCGCGGC
	81101	CTGCAGCGCG	AGCTCCACGA	ACGCCGAACC	GGGCAGCAGC	ACCGTGTCCA
	81151	TGACCCGGTG	CTCGGCCAGC	CACGCCTGGT	CCCGCGGAGA	GATCCGGCCG
,	81201	GTCAGCAGGT	GACTGCCGCC	GTCCGCGAGT	TCCACGGCGG	CTCCGAGCAG
	81251	CGGATGCCCC	GCGGACGCGA	GCCCGAGCCC	CGCCGGGTCC	CCGGCGAGCC
	81301	CCCTGCGCCC	CTCCAGCCAG	AACCGCTCCC	GCTGGAAGGC	GTACGTCGGC
	81351	AGATCCACCA	CCCGAGGCAG	CGGCACGGCC	GGGAACCAGC	CCGTCCAGTC
	81401	GACCTCCGCC	CCCGCGCCGA	AGGCCTGGGC	GGCCGCGCGG	GTGAGCTGCG
	81451	CGGCGTCGCC	GTGGTCGCGG	CGCAGGGTGG	GCACGACGĢT	GGCGGGCATG
	81501	TCGGCCCGCT	CGATGGTCTC	CTCCATGCCG	AGGTTGAGGA	CGGGGTGGGG
	81551	GCTGGCCTCG	ATGAACAGGC	GGTAGCCGTC	GGCCAGCAGC	GCTTCGATGG
	81601	TGTCGGCGAA	GCGGACGGGC	: TGGCGGAGGT	.TGGTGACCCA	GTAATCCGTG
	81651	TCGAGGGTGG	TGGTGTCGTC	: GAGGCGTTCG	GCGGTGACCG	TGGAGTAGAA
	.81701	GGCGACGTCC	GTGGTCGTGG	GCCGGATGTC	GGCCAGGCGC	TCGGTGAGGA
	81751	GGTCGTGGAG	CTGGTCGATC	TGGGGGCCGI	GGGAGGCGTA	TCCGACGTCG
	81801	ATGACGCGGG	CGCGCAGGCC	TCGCGCCTCC	GCATCCGCGA	CCACGGCTGC

	81851	CACATGCTCC	GGCGGCCCTG	AAATGACCGT	AGAGGAGGGC	CCGTTGACGG
	81901 [.]	CAGCGACACA	CACGCCGGGC	CGGTCGCCGA	TGAGCTCAGC	AACCTGCTCC
	81951	GAGCCGGCCC	CCAACGACGC	CATGTCGCCC	TGCCCCATGA	GCTGACGGAG
	82001	CGCGTCACTG	CGTACGGCCA	CGATCCGCGC	CGCATCCTCC	AGTGACAGTG
	82051	CCCCCGCCAC	ACACGCGGCG	GCCATCTCGC	CCTGCGAGTG	CCCGATGACG
	82101	GCAGCCGGGG	TGATGCCGTA	ATCGGCCCAC	ACCGAAGCCA	GCGAGACCAT
	82151	CACCGCCCAC	AACACGGGCT	GCACGACCTC	GACCCGGGAC	AGCTCACTCC
	82201	CGTCCCCGCG	CAACACCGCA	CTCAGCGACC	AGTCCACATG	CGCCGACAGG
	82251	GCCCGCTCAC	ACTCCGCGAT	CCGCGCGCG	AAGACGGGGG	ACTCGTCAAG
	82301	GAGCTGGGCA	CCCATGCCCA	CCCACTGCGA	CCCCTGCCCC	GGAAACACCA
	82351	ACACCGGACC	CGCGCCGGAG	GCGCCCTGTA	CGGCGCCCTC	GACGACGTCC
	82401	GGTGACGGCT	CGCCCGCCGC	CAGGGACCGT	AGCCCGGCGA	GGAGAGTCTG
	82451	GCGGTCCTTG	CCCACGACGA	CGGCTCGGTT	CTCGAACACC	GACCGGGTCT
	82501	TGACCAGGGA	CCAGCCCACG	TCCAGCGGCG	ACGCGAGCCG	CGGGTCGGCG
-	82551	GTGGCGCGGT	CGGCCAGCAG	GCGGGCCTGG	GCCCGCAGCG	CCTCCTCGCC
	82601	GCGCGCCGAC	ACCACCCAGG	GCACCACTCC	GGCCGGCGC	GCGGCGTCCT
	82651	CCGCCGGAGC	GGTCACGGGC	TCCGGCGCGT	CCGGGGCCTC	TTCCAGGATG
	82701	AGGTGCGCGT	TGGTGCCGGA	GATGCCGAAG	GCGGACACC	CGGCGCGGCG
	82751	CGGGCGTTCG	CCGCGCGGC	AGGAGACCGC	TTCGGACAG	C AGGCGGACGC
	82801	CACTGCCGTC	CCAGTCCAC	TGCGGCGTGC	GCGCGTCGA'	I GTGCAGGGAG
	82851	GCGGGCAGCT	GTTCGTTGC	CAGCGCCAT	ACCATCTTG	A TCACACCGGC
	82901	GACACCGGC	GACGCCTGC	GTGCCCGA	r GTTCGACTT	G ATCGAGCCGA .
	·· 82951	GCCACAGCG	CCGGTCCGC	G GGCCGCTCC	r TGCCGTAGG	T GGCGACGAGC
	83001	GCGCTGGCT	r cgatggggt	C GCCCAGCAT	G GTGCCGGTG	C CGTGCGCCTC
	. 83051	CACCGCGTC	G ACGTCCTCG	G CGGAGAGCC	G CGCGTTGGC	G AGTGCCTGCC
	83101	GGATCACCO	G CTGCTGCGC	C TGCCCGTTG	G GTGCCGTGA	G CCCGTTGCTC

83151	GTGCCGTCCT	GGTTGATGGC	CGAACCCCGG	ATCACCGCCA	GGACGTTGTG
83201	GCCGTTGCGC	CGGGCCTCCG	AGAGCCGTTC	GAGTACGACC	AGGCCGACTC
83251	CCTCGGCCCA	GCCGGTGCCG	TCGGCGGCGG	CCGCGAACGG	CTTGCACCGG
83301	CCGTCCTTGG	CGAGCCCGCG	CTGCAGCGAG	AACTCGACGA	ACGAGCCCGG
83351	CGTGGCCATC	ACCGTCGCGC	CGCCCGCGAG	AGCGAGCGAG	CACTCGCCCT
83401	GGCGCAGCGC	GTGCGCCGCC	TGGTGGATCG	CCACCAGGGA	CGAAGAGCAG
83451	CCGGTGTCGA	TCGTCATGGC	GGGGCCTTCT	AGGCCGAGTA	CGTACGACAC
83501	CCTGCCGGAG	GCGACACAGC	CGAGGTTGCC	GGTGCCGATG	TAGCCCTCGA
83551	CCTCGGTGGG	CTGTTCACCG	ACGAGCGCGA	GGTAGTCGAA	GATGGTCAGG
83601	CCCGTGAACA	CCCCGGCGTC	GCTGCCCTTG	AGGGTCTCCC	GGTCGAGGCC
83651	CGCGCGTTCG	ATCGCCTCCC	ACGCGGTCTC	CAGGAGCAGC	CGCTGCTGCG
83701	GGTCCATCGC	GACGGCCTCG	CGGGGGCTGA	TGCCGAAGAA	TCCGGCGTCG
83751	AAGTCGCCCG	CGTCGTAGAG	GAACCCGCCT	TCGCGCACAT	AGCTGGTGCC
83801	GCGGCTCTCC	GGGTCCGGGT	CGTACAGCGT	CTCCAGGTCC	CAGCCCCGGT
83851	CGTCGGGGAA	GGCCCCCATG	GCGTCCTTGC	CGGCCGCGAC	CAGATECCAC
83901	AGCTCCTCGG	CGGAGCGGAC	GTCGCCCGGA	TAGCGGCAGG	CCATGCCGAC
83951	GATCGCGATC	GGCTCGTCGT	CGGCGGCGCC	CCTGGAGGCC	CCGGCCGCCC
84001	GCACCGGGTC	GGCGGAGGCC	GCCGCGTCAC	CGGACAGCTC	GGCCCGCAGG
84051	ACGTCGGTGA	GCGCGTCGGG	GGTGGGGTGG	TCGAAGACGA	CCGTGGTCGG
84101	CAGTGTCAGG	CCGGTGCTCT	TGTTCAGCCT	GTTGCGCAGC	TCCACCGCGG
84151	TCAGCGAGTC	GAAGCCCAGC	TCCTGGAACG	GCTTGGTGGC	GGGCACCGCG
84201	TCGACGTCCG	AGTGCCCCAG	CGTGGCCGCC	GCCTGGGAGC	GCACGTGCTG
84251	CAGCAGCAAC	TGCCGCTGCT	GCGCCGGCTT	CGCCTCCGTC	AGCTCCTGCT
84301	GGAGCGACGA	TGCCTCCGTG	GCGTCTTCCT	GCTGTGCCGC	GGGTGCGCTG
84351	GCCGCCGGT	TCTCGGGCAG	ATCGGCGAGG	AGCGGGCTGG	GCCGCTGCGC
84401	GGTGAACGTC	GACGTGAACT	GCGCCCAGTC	GAAGTTCGCC	ACGGTCAGCG
	83201 83251 83301 83351 83401 83451 83501 83551 83601 83751 83701 83751 83801 83901 83951 84001 84051 84101 84151 84201 84251 84301 84351	83201 GCCGTTGCGC 83251 CCTCGGCCCA 83301 CCGTCCTTGG 83351 CGTGGCCATC 83401 GGCGCAGCGC 83451 CCTGGCGGAG 83551 CCTCGGTGGG 83551 CCTCGGTGGG 83601 CCCGTGAACA 83651 CGCGCGTTCG 83701 GGTCCATCGC 83751 AAGTCGCCCG 83851 CGTCGGGGAA 83901 AGCTCCTCGG 83951 GATCGCGATC 84001 GCACCGGGTC 84101 CAGTGTCAGG 84101 CAGTGTCAGG 84151 TCAGCGAGTC 84251 CAGCAGCAAC 84301 GGAGCGACGA	83201 GCCGTTGCGC CGGGCCTCCG 83251 CCTCGGCCCA GCCGGTGCCG 83301 CCGTCCTTGG CGAGCCCGCG 83351 CGTGGCCATC ACCGTCGCGC 83401 GGCGCAGCGC GTGCGCCCCC 83451 CCTGCCGGAG GCGACACAGC 83551 CCTCGGTGGG CTGTTCACCG 83551 CCTCGGTGGG CTGTTCACCG 83601 CCCGTGAACA CCCCGGCGTC 83701 GGTCCATCGC GACGGCCTCG 83701 GGTCCATCGC GACGGCCTCG 83701 GGTCCATCGC GGGTCCGGGT 83851 CGTCGGGGAA GGCCCCCATG 83851 CGTCGGGGAA GGCCCCCATG 83851 CGTCGGGGAA GGCCCCCATG 83901 AGCTCCTCGG CGGAGCGGAC 83951 GATCGCGTTC GGCTCGTTCGT 84001 GCACCGGGTC GGCGGAGCGC 84051 ACGTCGTGAG CCGGTCCGGG 84101 CAGTGTCAGG CCGGTGCTCT 84151 TCAGCGAGTC GAAGCCCAGC 84251 CAGCAGCAAC TGCCGCTGCT 84301 GGAGCGAAC TGCCCCATG 84351 GGAGCGACGA TGCCTCCGTG 84301 GGAGCGACGA TGCCTCCGTG	83201 GCCGTTGCGC CGGGCCTCCG AGAGCCGTTC 83251 CCTCGGCCCA GCCGGTGCCG TCGGCGGCGG 83301 CCGTCCTTGG CGAGCCCGCG CTGCAGCGAG 83351 CGTGGCCATC ACCGTCGCGC CGCCCGCGAG 83401 GGCGCAGCGC GTGCGCCGC TGGTGGATCG 83451 CCGGTGTCGA TCGTCATGGC GGGGCCTTCT 83501 CCTCGGTAG GCGACACAGC CGAGGTTGCC 83551 CCTCGGTAG CTGTTCACCG ACGAGCGCGA 83601 CCCGTGAACA CCCCGGCGTC GCTGCCCTTG 83651 CGCGCGTTCG ATCGCCTCC ACGCGGTCTC 83701 GGTCCATCG GACGGCCTCG CGGGGCTGA 83701 GGTCCATCGC GACGGCCTCG CGGGGGCTGA 83801 GCGGCTTCC GGGTCCGGGT CGTACAGCGT 83801 GCGCCTTCC GGGTCCGGGT CGTACAGCGT 83801 GCGCCTCCC GGGTCCGTG GCGCCCCGGA 83951 GATCGCCGG CGGAGCGGAC GTCGCCCGGA 83951 GATCGCGGTC GGCGGGAC GTCGCCCGGA 84001 GCACCGGGTC GGCGGGAGCC GCCGCGCCC 84101 CAGTGTCAG CGGCGGAGCC GCCGCGTCAC 84151 TCAGCGAGT GAAGCCCAGC TCCTGGAACG 84201 TCGACGTCG AGTGCCCAG CGTGGCCGCC 84251 CAGCAGCACA TGCCCCAG GCGCCCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGGCT 84301 GGAGCGACGA TGCCTCGT GCGCCGGCT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGGCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCGCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGCGCTT 84301 GGAGCGACGA TGCCTCCGT GCGCCGGCTT	83201 GCCGTTGCGC CGGGCCTCCG AGAGCCGTTC GAGTACGACC 83251 CCTCGGCCCA GCCGGTGCCG TCGGCGGCGG CCGCGAACGG 83301 CCGTCCTTGG CGAGCCCGCG CTGCAGCGAG AACTCGACGA 83351 CGTGGCCATC ACCGTCGCGC CGCCGCGAG AGCGAGCGAG 83401 GGCGCAGCG GTGCGCGCC TGGTGGATCG CCACCAGGGA 83451 CCGGTGTCGA TCGTCATGGC GGGGCCTTCT AGGCCGAGTA 83501 CCTGCCGGAG GCGACACAGC CGAGGTTGCC GGTGCCGATG 83551 CCTCGGTGGG CTGTTCACCG ACGAGCGCA GGTAGTCGAA 83601 CCCGTGAACA CCCCGGCGTC GCTGCCCTTG AGGGTCTCCC 83651 CGCGCGTTCG ATCGCCTCCC ACGAGGGTTC CAGGAGCAGC 83701 GGTCCATCGC GACGGCCTCC CGGGGGCTGA TGCCGAAGAA 83701 GGTCCATCGC GACGGCCTCG CGGGGGCTGA TGCCGAAGAA 83751 AAGTCGCCCG CGTCGTAGAG GAACCCGCCT TCGCGCACAT 83801 GCGCTCTCC GGGTCCGGGT CGTACAGCGT CTCCAGGTCC 83851 CGTCGGGGAA GGCCCCCATG GCGTCCTTGC CGGCCGCAC 83901 AGCTCCTCG CGGAGCGGAC GTCGCCCGGA TAGCGGCAGG 8391 GATCGCGATC GGCGCGGAC GTCGCCCGGA TAGCGGCAGG 83951 GATCGCGATC GGCGGAGGCC CCTGGAAGCAC 84001 GCACCGGGTC GGCGGAGGCC GCCGCGTCAC CGGACAGCTC 84001 ACGTCGGTGA GCGCGTCGGG GGTGGGGTGG TCGAAGACGA 84001 CCACTGGTGA GCGCGTCGG GGTGGGGTGG TCGAAGACGA 84001 CCACTGGTGA GCGCGTCCTC TGTTCAGCCT GTTGCAGCGAGCAGACCGACCCCCTCGGTGAGGCC CCTGGAAGACGA 84001 CCACTGGTGA GCGCGTCCTC TGTTCAGCCT GTTGCAGCGAGCAGCCCCCTCGCGAGCCC CCTGGAAGACGACCCCCCTCGGTGGG GGTGGGGTGG

84451	TCGTCTCACC	CGCGTCCAGG	GCCTGCTGCA	GCGCCTTGAC	GCACAGCTCC
84501	GGGCTGAGCG	GGTGCAGGCC	GAAGCGGCTG	AAGAACGTCA	ACGCGGCCTG
84551	GTCCGCCGCC	ATGCCCGCCT	CGGCCCAGGG	CCCCCAGGCG	ATGGAGGTGG
84601	CGGGCAGGCC	CTCGGCGCGG	CGGTGCTCGG	CGAGGGCGTC	GAGGAAGTGG
84651	TTGGCCGCAC	CATAGGCGCC	CTGCTGGCCA	CTGCCCCACA	CGCCTGCGCC
84701	CGACGAGAAC	ATCACGAACG	CCGAGAGCGG	CAACTCCCGG	GTCAGTTCAT
84751	GCAGATGGTG	AGCGGCGAGC	GCCTTCGGAC	GCAGCACCTC	GTCCAGCTCG
84801	GCACCCGACA	CGTCGCCGAG	ACCGATGTAG	TTCGGCACGC	CGGCCGCGTG
84851	GATGACGGCG	GTCAGCGGGT.	GCTCGGCGGG	GACATCGTCG	ATGAGGCGTC
84901	GCACCTGCTC	GCGGTCGCCG	ACGTCGCAGG	CGGTGACGGT	GACGGCGGCC
84951	CCCAACTCCG	TCAGTTCCGC	GGCGAGTTCC	TGTGCTCCCG	GGGCGTCGGG
85001	GCCGCGGCGG	CTGGTCAGGA	GGAGGTGCGG	GGCGCCCGCA	CGGGCGAGCC
85051	ACCGCGCGAG	GACGGCGCCG	ATGCCGCCGG	TCCCGCCGGT	GATGAGAGTG
85101	GTGCCGTCGG	GCCGCCAACC	AAGCCCGCTG	CCGACCGTGT	TGGCGGGCGC
85151	GTGTGCAAGG	CGACGGGCAT	GGACGCCGGA	CGGCCGGATG	GAGATCTGGT
85201	CCTCGTCCTG	CGGAACCAGC	GCGGCGGCCA	GCCGGGCCAG	CGTCTGATGG
85251	TCGATACGAG	CGGGCAGATC	GACCAGCCCG	CCCCACAGCC	GCGGATACTC
85301	CAGCGCAGCG	ACGCGCCCCA	GCCCCACAC	CTGAGCCTGC	ACCGGGTGGG
85351	TGAGGGCGTC	GCCGGCGCTC	GTGGAAACAG	CCCCTGCGT	GAGAGTGCGT
85401	ACGGCGATGT	CGGCGCCGTT	GTCCGCGAGG	GCCTGGACGA	GAGCGGTCGT
85451	CGCGGCGAGT	CCGGCGGGCA	CGGCCGAGTG	CTCGGGATGC	GGCTCCTCGT
85501	CCAGGGCCAG	CAGATTGACG	ACTCCGGCAA	ACGCGGCCCC	GTCCATCAGG
85551	ACACGCAGCT	CCTGCGCCAA	CTCCGTACGC	TCCATGGCAC	GTGCGTCGAC
85601	CACGTGGCGT	CGCACCTCGC	CACCATGGGC.	GGTCAGCGTC	TGCGCGGTCG
85651 · ·	CGAGGACGGC	CGGGTGGTCG	GCGTGCGCGG	CGGGCACGAG	CAGCAGCCAG
85701	GCCCCGCTGA	GCTCCGGCGC	CGGCACGTCG	GGCAGATGCT	TCCAAGTGAC

85751	CTGATAACGC CAGGAGTCGA CGGTGGACTG CTCGCGGTGC CGACGCCGCC
85801	AGGCCGAGAG GACGGGCAGC GCGGACTCCA GCGCTCCGAC GCTCTCCGCC
85851	TGCCCCTCGA TCTCCAGACT GCCGGCGAGG GCGTCGATGT CCAGGTCCTC
85901	GATCGCCTGC CACACCCGGG CCTCGACCGG ATCGTGCCCA CCACCCACGG
85951	CTGCGACCGC CGCGGGCGGC TCCACCCAGT AGTGCTTGTG CTGGAAGGCG
86001	TAGGTGGGGA GGTCGACGGT ACGGGGGGTG GGGTCGGCCG GGAACCAGCG
86051	CCGCCAGTCG ACGGGGGCGC CGGCGGTGAA. GGCGTGGGCG GCCGCGCGGG
86101	TGAGCTGGGT GGTGTCACCG TGGTCGCGAC GCAGGGTGGG GATGGTGACG
86151	GCCGTCCCCG CAGCACCGGC CTGCTGCTCG ATGGTCTCCT GGATGCCGAG
86201	GTTGAGGACG GGGTGGGGGC TGGCCTCGAT GAACAGGCGG TAGCCGTCGG
86251	CCAGCAGCGC TTCGATGGTG TCGGCGAAGC GGACGGGCTG GCGGAGGTTG
86301	GTGACCCAGT AGGCGGTGTC TAGGGCGGTG GTGTCGTCGA GGCGCTCTGC
86351	GGTGACCGTC GAGTAGAACG CCACGTCGGT GGTGGTCGGC TGGATGTCGG
86401	CGAGCCGGTC GGTGAGGAGG TCGTGGAGCT GGTCGATCTG GGGACCGTGG
86451	GAGGCGTACC TGACGTCGAT GACGCGGGCC CTGAGTCCCT GCGCCTCCGC
86501	ATCGGCGACG ACGGCTGCCA CATGCTCCGG CGGGCCCGAA ATCACGGTCG
86551	ACGACGGTCC GTTGACGGCC GCGACGACTA CGCCCGGCCG GTCGCCGATC
86601	AGCTCTGCGG CCTGCTCGGC ACCGGTGCTG AGCGAGGCCA TGTCGCCGTG
86651	CCCTTGCAGC TGACGAAGCG CGTCGCTGCG TACGGCTACG ATCCGTGCCG
86701	CATCCTCCAG TGACAGTGCC CCCGCCACAC ACGCGGCAGC CATCTCGCCC
86751	TGCGAGTGCC CGATGACGGC AGCCGGGGTG ATGCCGTAAT CGGCCCACAC
86801	CGCAGCCAGC GAGACCATCA CCGCCCACAG CACGGGCTGC ACGACCTCGA
86851	CCCGGGACAG CTCGCTCCCG TCCCCGCGCA AGACATCACT CAGCGACCAG
86901	TCCACATGCG CCGACAGCGC CTGCTCACAC TCCGCGATCC GCGCCGCGAA
86951	GACGGGCGAC TCGTCAAGGA GCTGGGCGCC CATGCCCACC CACTGCGACC
87001	CCTGCCCGG AAACACCAAC ACCGGCCCAG GACCCACATC ACCGGCCACC

87051 CCGGCCACCA CATCCGCCGA CGCCTCACCC GCGGCCAATG CCTCCAGGCT 87101 GGCACCAGCC TGAGCCAAGT CCCGCCCCAC GACCACGGCC CGCTGATCGA 87151 ACAACGCGCG TGTCGTGGCC AGCGACCAGC CCACCTCGGA GACCGACGCA TCCGCCAGCC CGGCCGCAA CTCGCCCAGC CGCCGCGCCT GTTCACGCAA 87201 87251 CGCGTCCGGC GTCCGCCCGG ACACCACCCA CGGCACGACC CCACCCGGCT CAGCCGCCAC GGGGCCCGC GCGTCCTCTT CCGGCGGCGC CTCCTCCAGA 87301 ATCAGGTGCG CGTTCGTCCC GGAGATCCCG AACGCCGAGA TGCCTGCCCG 87351 CCGCGTGCGC TCCGCCGGCC AGTCCACGGG CTCGGAGAGC AGTCGTACGC 87401 TGCCCTGTTC CCACTGGACG TGCGGTGACG GGGCGTCGAT GTGCAGGGAG GTCGGGAGGA GACCGTTGCG CATCGCCATG ACCATCTTGA TGACGCCCGC 87501 87551 GACACCGGCG GCGGCCTGCG TGTGGCCGAT GTTGGATTTC ACCGAGCCGA 87601 GCCAGAGCGG ACGGTCCTCC GGGCGCCCCT GGCCGTACGT GGCGATCAGG 87651 GCCTGCGCCT CGATGGGGTC GCCGAGCGTG GTGCCGGTGC CGTGCGCCTC 87701 TACGGCGTCG ATGTCCTCGG CGGAGAGGCG GGCGTTGGCG AGGGCGGCGC 87751 GGATGACGCG TTCCTGGGAG GGGCCGTTGG GGGCGGCGAG CCCGTTGCTC 87801 GTACCGTCCT GGTTGGTGGC CGAACCCCGT ATCACCGCAA GGACCTTGTG 87851 GCCGCGGCGC CGCGCTTCGG AGAGCAGCTC CAGCGCCACC ACCCCGGCGC 87901 CCTCGCCCA GCCGGTGCCG TCGGCGGCGG CCGCGAACGG CTTGCACCGC 87951 CCGTCGGGCG CGAGCCCCCG CTGCCGGGAG AACTCGGTGA ACGAACCCGG 88001 CGTCGCCATC ACCGTCGAAC CGCCCGCCAG CGCGAGCGAG CACTCGCCCT 88051 GCCGCAGCGC CTGACTTGCC AGATGGATCG CCACCAGGGA CGACGAGCAC 88101 GCCGTGTCGA CGGTGACCGC GGGACCTTCG AGCCCCACCG TGTAGGAGAT 88151 CCGGCCCGAC ACCACACTGC CGAGGTTGCC GGTGCCGATG TACCCCTCGA 88201 CGTCGCTGGC CGTCTGGCTG ATCAGCGTCA GGTAGTCGTG GGCGCTCACT 88251 CCGGTGAAGA CGCCGGTGTC GCTGCCCTTC AGCGCGTGCG GGTTCATGCC 88301 CGCGTGCTCG ATCGCCTCCC ACGCGGTCTC CAGGAGCAGC CGCTGCTGCG

88351	GATCCATCGC	CGTGGCCTCG	CGCGGGCTGA	TGCCGAAGAA	CTCGGCGTCG
88401	AAATGGCCGG	CGTCGTACAG	GAAGGCGCCG	TCCCGCACAT	AGCTGGTGGC
88451	CGGATGCTCC	GGATCCGGGT	GATACAGCGA	CTCCAGGTCC	CAGCCCCGGT
88501	CGTCGGGGAA	CCCCGCGACC	GCGTCACCCC	CGTCGCGCAC	GAGTTCCCAG
88551	AGGTCCTCCG	CCGACCGGGC.	GCCGCCGGG	TAGCGGCAGG	CCATGCCGAC
88601	GATGGCGACC	GGCTCGGTCG	ATTCCTTGTC	GTGGAGCCGT	TGCCGGGCCT
88651	GGCGCAGCTC	CGCGGTGACC	CACTTGAGGT	GATCGAGAAG	CTTCTCCTCG
88701	TTCGACATCT	GACCCAGGCT	CCTTGGCGCT	ACGTGGTGAT	CGGGGCGTAT
88751	GAGGTTGGGG	GAGGGCAAGG	GGGCCGGTGT	GGCCGGGGCT	CATCGCGCTC
88801	AGGACTGATC	GCTGCTCAGG	ACTTCCCGAA	CTCACTGGAG	ATGAGGTCGA
88851	AGATGTCGTC	CGCGCTCGCC	GCCTCCAGAT	CGGCATGGGC	CGAATCAGTG
88901	CCTTCCGGCC	CGTCCTGCGC	CGGACTCCAC	TTCGACACAA	GGACCTGCAG
88951	CCGGCCCACG	ATGCGGCGCC	GGGCCGCCTC	GTCCACCTCG	GCCGCTCCGA
89001	ACGCCGTGTC	CCACTTGTCG	AGCGCCGCGA	GCACGTCGCC	CTCACCTGCG
89051	ACCTCGGCGC	CGTCGCCGAG	CTGTCCGCGC	AAGTGCGTGG	CGAGGGCCTC
89101	GGGCGTGGGA	TGGTCGAAGA	TCACGGTGGC	GGGGAGCGAG	AGTCCGGTCG
89151	TGGTGTTGAG	CTGGTTGCGC	AGCTGGACCG	CGGTGAGCGA	GTCGAAGCCC
89201	AGCTCCTGGA	ACGGCTTCGC	GGCGGGAATG	TCCTCCACCG	TGCGGCCGAG
89251	CGTCGCGGCC	GCGTATGTCC	GGACCTGCTG	GACCAGGAAG	CCGAGCCGCT
89301	GTGATGCGGG	CGTCTTCGCC	AGCTCCTCGC	GGAACGCGCT	CGTCTCGGCG
89351	GCGGTCCCCG	TCTGCTCGGC	CTCCCGCTGG	TTCTCCGGAA	GGTCGTCGAG
89401	GAACGGACTG	GGCCGCTGCG	CGGTGAACGT	CGGCGTGAAC	TTCGCCCAGT
89451	CGAAGTTCGC	CACGGTCAGC	GTGGCGTCGC	CCGCGTCGAC	CGCCTGGTGC
89501	AGCGCCTTGA	CGCACAGATC	CGGAGCGATC	GGGAGCAGAC	CGAAGCGCTT
89551	GAAGTACGTC	AGTGACTCCG	GGTCGGCGGA	CATGCCCGCC	TCGGCCCAGG
89601	GCCCCAGGC	GATGGAGGTG	GCGGGCAGGC	CCTGGGCGCG	GCGGTGCTCG

89651	GCGAGGGCGT	CĢAGGAAGTG	GTTGGCCGCA	CCATAGGCGC	CCTGCTGGCC
89701	ACTGCCCCAC	ACGCCGGCGC	CCGACGAGAA	CATCACGAAC	GCCGAGAGGT
89751	CCAGGTCGCG	CGTCAACTCG	TGCAGGTTCC	AGGCCGCGTC	GGACTTCGAC
89801	CCCAGCACCT	CGCCGAGGCG	CGCGGTCGTC	AGATCACCGA	TCGCGGTCAG
89851	ATCGGTCATG	CCCGCCGCGT	GGATGACGGC	TGTGAGGGGA	TGCTCGGCCG
89901	GCATGTCGTC	GATGAGGCCG	CTCAGTTGGC	GGGGATCGCT	GACGTCGCAG
89951	GCGGTGATGG	TGACGGCGGT	GCCGAGCCCG	TCGAGCTCGG	CGGCGAGTTC
90001	CCGGGCGCCG	GGCGCGTCGG	GCCCGCGACG	GCTGGTGAGG	TGAAGACGGG
90051	GGGCGCCCTG	CCGGGCCAGC	CAACGGGCGA	GGACGGCACC	GATGCCGCÇG
90101	GTCCCGCCGG	TGATCAGGGT	GGTGCCCCGA	GGCCGCCAGG	TGGCCTCGCT
90151	GTGCACGGGA	TTCTGAATGC	TTCCGACGGC	GTGCGTGAGG	CGCCGGTGGT
90201	GGATTCCGGT	GGGGCGGACG	GCGGTCTGGT	CCTCGTCGTC	CTGGGGGAGG
90251	AGAGCGGCGG	CGAGGCGGGG	GAGGGTGTGG	CGGTCGATAC	GAGCGGGGAG
90301	GTCGACGAGT	CCGGCCCAGA	GGCGCGGGTG	TTCGAGGGCT	GCGACGCGGC
90351	CGAGCCCCCA	GACGTGAGCC	TGGAGGGGT	GGGTGAGTGG	GTCGGTGGCG
90401	GCCGTGGACA	CGGCACCCTG	CGTGACGGTG	TGCAGGGGTG	CGGTCGTGCC
90451	GTTGTCGCCG	AGGGCCTGGA	GGAGAGCGGT	CGTCGCGGCG	AGCCCCGCGG
90501	GCACGGCGGG	GTGCTCGGGG	TGCGGCTCCT	CGTCCAGCGC	CAGCAGATTG
90551	ACGATTCCGG	CAAGACCGGC	CGTGTCCACC	GCGGCCAGCT	CCTGACGTCC
90601	CGCCCGGCCG	GTCTCGACCG	GATGCAGCCG	GACGGCGGCC	GCCCCGTGCT
90651	CGCTCAACGC	CTCGGCGGTG	GCTCGTACGG	CGGGGTGCTC	CGCCTTGTCG
90701	GCAGGGACGA	ACAGCAGCCA	GTCGCCGCCG	AGTTCCGGTG	CGGGCCCGTC
90751	GGACCGCTGT	TTCCACGTGA	CGCGGTACCG	CCAGGAGTCG	ATGGTCGCCT
90801	GGTCCTGGTG	CCGACGCCGC	CAGCCCTTGA	GCACCGGCAA	CGCGGGCTCC
90851	AGCGCCCGGA	CCGCCTCCTC	GCTGCCCTCC	TCCGACCCCA	GCGTCTCGGC
90901	CAGCAGACCG	AGATCGAGCT	CCTCGACGGC	GTGCCACAGC	TGGGCCTCGG

	90951	CCGCACTCTG	CTCACCGCTG	ACGGCGCCCG	AGGCGGACGC	GGAACGTTCG
	91001	AGCCAGTAGT	GCTGGTGTTG	GAAGGCGTAG	GTGGGGAGGT	CGACGGTGCG
	91051	GGGGGTGGGG	TCGGCCGGGA	ACCAGCGCCG	CCAGTCGACG	GGGGCGCCGG
	91101	CGGTGAAGGC	GTGGGCGGCG	GCACGGGTGA	GCTGGGTGGT	GTCGCCGTGG ·
	91151	TCGCGGCGGA	GGGTGGGGAC	GACGGTGGCG	GGGATGTCCG	CCTGCTCGAT
	91201	GGTCTCCTCC	ATGCCCAGGC	CCAGCACGGG	GTGGGCGCTG	GCCTCGATGA
	91251	ACAGGCGGTA	GCCGTCCGCG	AGAAGGGCTT	CGATGGTGTC	GGCGAACCGG
	91301	ACCGGCTGGC	GGAGGTTGGT	CACCCAGTAA	TCCGTATCCA	GGGCTGTGGT
	91351 ·	GTCCGTCAGA	CGCTCGGCGG	TGACCGTCGA	ATAGAAGGCC	ACGTCCGTGT
	91401	TCGCGGGCCG	GATGTCAGCC	AGGCGTTCGG	TCAGCAGATC	GTGGAGCTGG
	91451	TCGATCTGGG	GGCCATGCGA	GGCGTACCCG	ACGTCGATGA	CACGGGCGCG
	91501	CAGACCACGT	GCCTCCGCAT	CGGCGACCAC	GGCAGCCACA	TGCTCCGGCG
•	91551	GCCCTGAAAT	CACCGTAGAC	GACGGCCCAT	TGACCGCCGC	GACGACCACG
	91601	CCCGGCCGGT	CACCGATCAG	CTCAGCGGCC	TGCTCGGCAC	CGGTGCTCAG
	91651	CGAGGCCATG	TCACCGTGCC	CTTGCAGCCG	- ACGAAGCGCG	TCACTGCGTA
	91701	CGGCTACGAT	GCGCGCCGCA	TCCTCCAGCG	ACAGCGCCCC	CGCGACGCAC.
	91751	GCGGCAGCCA	TCTCACCCTG	CGAGTGCCCG	ATCACAGCAG	CCGGAGTGAC
	91801	CCCGTAATCA	GCCCACACCG	CAGCCAGCGA	GACCATCACC	GCCCACAACA
	91851	CCGGCTGCAC	GACCTCGACC	CGGGACAGCT	CACTCCCATC	CCCGCGCAAC
	91901	ACCGCACTCA	GCGACCAGTC	CACATACGCC	GACAGCGCCC	GCTCACACTC
-	91951	CGCAATCCGC	GCCGCGAAGA	CGGGGGACTC	GTCCAGCAGC	TGGGCACCCA .
	92001	TGCCCACCCA	CTGCGACCCC	TGCCCCGGAA	ACACCAACAC	: CGGCCCAGGA
	92051	CCCACATCAC	CAGCAACCCC	GGCCACCACA	CCCGCCGAAG	CCTCACCCGC .
	92101	AGCCAACGCC	CCCAGGCCAG	CCGTCAACGC	: ATCGCGGTCA	CGCCCCACCA
	92151	CCACAGCCCG	GTGCTCGAAC	ACCGACCGG	TCGTGGTCA	CGACCAGCCC
	92201	ACATCAGCCG	CCGACGCATC	: agaagaacaa	GCCGCGAACT	CGCCCAGCCG

92251	CCGCGCCTGT	GCACGCAGCG	CGTCCGGCGT	CCGCCCGGAC	ACCACCCACG
92301	GAACGACCCC	ACCCGGCTCC	TCGGCCACGG	AGCCCGGCAC	GTCCTCCTCC
92351	TCCGGTGGTG	CCTCCTCCAG	GATCAGATGC	GCGTTCGTCC	CCGAGAAGCC
92401	GAACGAGGAC	ACCCCCGCCC.	GGCGCGGGCG	CTCGCCCCGG	GGCCACTTCA
92451	CCGGGTCGGT	GAGCAGGCGC	AGCCCGCTGC	CGTCCCACTC	CACGTGGGGC
92501	GAGGGGGCGT	CGACGTGCAG	GATGGCGGGC	AGCAGGTCGT	GCCGCAGGGC
92551	CAGGACCATC	TTGATGACAC	CGGCCACACC	GGCGGCGATC	TGCGTGTGGC
92601	CGATGTTGGA	CTTCACCGCT	CCCACCCACA	· GCGGCCGGTC	CTCCGGCCGT
92651	TCCCGGCCGT	AGGCGGAGAT	GAGAGCCCCG	GCCTCGATGG	GGTCGCCGAG
92701	CGTGGTGCCG	GTGCCGTGCG	CCTCCACGGC	GTCGATGTCC	TCGGGGGÇGA
92751	GGCGGGCGTT	GGCGAGGGCG	GCGCGGATGA	CGCGTTCCTG	GGCGGGGCCG
92801	TTGGGGGCGG	TCAGGCCATT	GCTCGCGCCG	TCCTGGTTGA	TCGCCGAACC
92851	CCGGATCACC	GCGAGGACCT	TGTGGCCCTT	CCTGCGGGCG	TCGGAGAGAC
92901	GCTCAAGGAG	AACCACCCC	GTACCCTCCG	CCATGCCCAT	GCCGTCGCTG
92951	CTCGCCGAGA	ACGGCTTGCA	CCGTCCGTCG	GGGGCCAGGC	CGCGCAGTTC
93001	GCTGAAGCCG	ATCAGCGGGG	CGGGCGACGA	CATCACGTAC	GTGCCGCCG
93051	CCAGCGCCAG	CGAGCACTCC	TGTGTGCGCA	GGGCCTGGGT	GGCGAGGTGA
93101	AGGGAGACCA	GCGACGAGGA	GCACGCCGTG	TCGACCGTCA	CCGCGGGGCC
93151	TTCGAGGCCC	AGGGTGTAGG	CGACGCGGCC	GGAGGTGACG	CTGCCGGAGT
93201	TGCCGATGGT	GAAGTATCCG	GCGGTGCCCI	CGGGGACCTC	GGACGCGCCG
93251	AGGGCGTAGT	CGAGTCCGTC	ACAGCCGATG	AAGGTGCTGG	TGTCGCTGGA
93301	GCGGAGGCTG	AGGGGGTCGA	TGCCGGCCCG	TTCGATCGCC	TCCCACGCCG
93351	TCTCCAGGGC	GAGCCGCTGC	TGCGGCGCCA	TGGCCGCGG	CTCGGTGGGT
93401	CCGATGCCGA	AGAAGGTGGG	GTCGAAGTC	CCGGCGTCG1	AGACGAAGCC
93451	GCCTTCCCGG	ACGTAACTGG	TGCCGGTGC	CTCGGGGTCC	C GGGTCGTAGA
93501	GGGAATCGAG	GTCCCAGTTC	CGGTTGCCG	GCAGGGGCG	C GACGGCGTCG

PCT/GB00/02072 WO 01/68867

	93551	CCGCCGGTGG	AGACCAGCTC	CCAGAACTCT	TCGGGAGACC	GGACTCCGCC
	93601	GGGCAGCCGG	CAGGCCATGC	CGATGACCGC	GACCGGTTCG	TGGCCCGCCG
•	93651	ACTCGACGTC	CTGCAGCCGG	CGTTCCGTCT	GACGCAGGTC	CGCGGTGACA
	93701 [.]	CGCTTGAGGT	ATTCCAGAAG	TTTCTCTTCG	GTGTGCGCCA	TCCCGGTGAC
	93751	AACCGCCCCT	CTCCGCGAGA	ACAGACCGCA	GACTCGTCGA	CGGCGCTAAA
	93801	GCCCTCCTAA	TACTCGGCTG	TGTACCGCTC	GCTGCCACĢG	GTGTCCGCAC
	93851	TGGTCGGAGG	CTCCGGCCCA	GGGAACAGGG	GCTTTCTTAG	GGGCGCTTAA
	93901	GCGGTGCCTG	CCAGGGTGTG	ĆĆGGTGTCAG	GCCGTCACGC	CCTGATCAGC
	93951	GGCGTCGCCC	GTGCCGTGCC	CGTGCGGTCG	GTGGGCCTGA	CCGTCGGTCC
	94001	GGACAACGCG	AAGCGAGGCA	TCGTGCCCAT	CACGGATAGC	AAGCCGGCCG
	94051	CCACATTCCC	CGACCTGGTC	GACCCGTCGT	TCTGGGCGCG	GCCGCACGCG
	94101	GAACGCGTGG	CGCTGTTCGA	GGAGATGCGC	GGGCTGCCGC	GGCCGGCGTT
• • !	94151	CATCCGGCAG	AACATGCCCG	GCGTGCCCTG	GACGTTCGGC	TACCACGCGC
	94201	TGGTCAAGTA	CGCGGACATC	GTGGAGGTGA	GCCGCCGCCC	GCAGGACTTC
	94251	TCCTCGAACG	GCGCGACCAC	CATCATCGGT	CTGCCGCCCG	AGCTGGACGA
•	94301	GTACTACGGC	TCGATGATCA	ACATGGACAA	CCCGGAACAC	TCGCGGCTGC
	94351	GGCGCATCGT	CTCGCGTTCC	TTCGGCCGCA	ACATGATCCC	CGAGTTCGAG
•	94401	GCCGTGGCGA	CCCGCACCGC	CCGCCGCATC	ATCGACGAGC	TCATCGCGCG
	94451	GGGACCCGGC	GACTTCATCA	GGCCCGTCGC	CGCGGAGATG	CCCATCGCCG
	94501	TGCTCAGCGA	CATGATGGGC	ATCCCGGCGG	AGGACCACGA	CTTCCTCTTC
	94551	GACCGGTCCA	ACACGATCGT	CGGCCCCTC	GACCCGGACT	ACGTGCCGGA
	94601	CCGGGCGGAC	TCCGAACGCG	CGGTGATCGA	GGCGTCACGC	GAACTCGGCG
	94651	ACTACATCGC	TGGCCTTCGT	· GCGGAACGGC	TCGCCGCCCC	CGGCAACGAC.
	94701	CTCATCACCA	AGCTCGTGC	AGTCCAGGCG	GACGGCGAG	C AGTTGACGCG
	94751	GCAGGAACTC	GTCTCCTTC1	TCATCCTGCT	-CGTCATCGCC	GGGATGGAGA
:	94801	CCACCGCAA	GCCATCTCC	CACGCGCTGG	TACTGCTGAC	CGAGCATCCC

. . . .

94851	GAGCAGAAGC	AGCTGCTGCT	CTCGGACTTC	GACACGCACG	CGCCGAACGC	
94901	GGTCGAGGAG	ATCCTCAGGG	TCTCCACGCC	CATCAACTGG	ATGCGGCGCG	
94951	TCGCCACCCG	CGACTGCGAC	ATGAACGGCC	ACAGGTTCCG	CAGGGGCGAC	
95001	CGGATCTTCC	TGTTCTACTG	GTCGGGCAAC	CGGGACGAAT	CCGTCTTCCC	
95051	TGACCCGTAC	CGGTTCGACA	TCACGCGCGG	GACGAACGCG	CACGTCACGT	
95101	TCGGCGCGGT	GGGCCCGCAC	GTCTGCCTCG	GGGCCCACCT	CGCCCGTATG	
95151	GAGATCACCG	TCCTGTACCG	GGAGCTGCTC	GCGGCGCTGC	CCCAGATCCA	•
95201	TGCCGTGGGG	CAGCCCCGCA	GGCTGGACTC	CAGCTTCATC	GAAGGGATCA	
95251	. AGCACCTGCA	CTGCGCCTTC	TGAGCACATA	CGCTTCCCTC	TGCGCATGTG	
95301	CGCTCACGAC	GCTCCGATCA	GCGACTGCCA	ACGACTGTCA	GCGACCGGAC	
95351	AGGGCCAAGG	GCGGTGGGGA	CATCAGGTGC	ATGTCACCCG	CGAGTATGGC	•
95401	CCGCTGCAGC	TCCTGGAGCG	GGCGCCCGGG	TTCGAGCCCC	AGCTCGTCGT	•
95451	TGAGCGTCTT	GCGCACCGAC	TGGTACACCT	TCAGCGCGTC	CGCCTGCCGC	
95501	TCGGAGCGGT	AGAGCGCCAG	CATCAGCTGG	CGGTAGAACG	CCTCGCACAT	
95551	CGGGTTCTCC	GCGGTGAGGG	CGTACAGCAT	GCCCACGGCC	TCGCGGTGCC	
95601	GGCCGAGCTG	GAGCTGGCAC	TCGACGAGCA	TCTCCTGACA	CTCCAGGCGG	
95651	ATCTCGGTCA	GCCAGGTCGA	GAAGCCGTCG	ATGATCGGGC	CGTTGGTGCC	
95701	GGGACCGTTC	CCGCCCTGCC	CGAGGATCGG	GCCGCGCCAC	AGCGCGAGCG	
95751	CCTGCCCGAA	ACAGGAGGCC	GCCTCGTCGA	ACCGCTTCTC	CCTGAGCAAC	
95801	GACCGCCCCA	CGTCCACCAG	TTCGGGGAAG	ATCTGGGCAT	CGATCTGGTC	
95851	GTCGTCCCGC	TTGTGCAGGA	CGTACCCCGG	CGCACGGGTC	TCGACGGGGT	,
95901	TGCCCGCCGA	ACCGGGCACC	TTGAGGAACT	TGCGGAGCTG	GGAGATGTAC	
95951	ACATGCAGTC	CCGCCGTGGC	GCGCCGCGGC	AGGTCCTCGC	CCCAGATCTC	
96001	CCGCATCAGC	TGCTCCAGGG	AGACCACCCG	GTCGGCGCGG	ATGAGGAGCA	· . ·
96051	CGGTGAGGAC	GATCTCCACC	TTCTGGGCGT	TGATGGTGGC	GTAGTCGTTT	
96101	CCGTCCTTGA	TGCGGAGCGG	GCCCAGCATT	TCGTATCTCA	CCGAGCGTTC	

96151	CCCCTTGCTG	TCGCACGCTG	CTGCGCACTG	TCGGCCAGGG	CCTTGGAGAT
96201	GACTTCCGTG	ACGCCCTGCT	GGTGCGTGTT	CAGATAGAAG	TGGCCCCGG
96251	CGAAGACCTT	GAGGTCGAAG	GGGCCTTCCG	TGTGCTGCTG	CCAGGCCTCG
96301	ACCTCGTCCA	GCGGCGCCTG	CGGGTCCCGG	TCGCCCACCA	GGGCGGTGAT
96351	GGGGCAGGAC	AGCGGCGGCG	ACGGGTTCCA	CCGGTACAGC	TCGACCGCCC
96401	GGTAGTCGTT	GCGGACGACC	GGGATGATCT	CCGCGAGCAG	TTCCTCGTCG
96451	TCCAGGAACC	GCGGGTCAGT	GCCACCGGCC	CGGCGCAGCT	CGGCGGCCAA
96501	CTCGGTGTCG	TCGAGGAGGT	GTACGGTGCC	GCGCCGGAAG	CGGGACGGCG
96551	CGCGGCGTCC	CGAGACGAAC	AGCCGGCAGG	GCTGCTTCCC	CGTGCGCTCG
96601	CGGAGCCGCT	GGGCGACTTC	GTAGGCGAGG	ACGGCGCCCA	TGCTGTGGCC
96651	GAAGAACGCC	AACGGGCGGT	CGTCGAACGG	GCCGAGCGCA	TCGGTGATGA
96701	GGTCGGCGAG	TTCCCCGATG	TCGTCCAGGA	GCCGCTCTCT	GCGGCGGTCC
96751	TGTCGCCCGG	GGTACTGCAC	CGCGAGGACC	TCGCTGTCGG	TCGGGAGAGT
96801	GGGGGATTGC	GCAAGGGGGT	.GGTAGTAGGA	GGCCGAGCCG	CCCGCGTGGG
96851	GGAAGCAGAC	CAGGCGAACG	ACGGCTTCCG	GTCGGGGCCG	GAAGCGACGT
96901	ATCCAAGGGT	CCGACATATC	GGGTGGGGG	AAGGCAGACA	AGATCTTTCC
96951	CTTCGCCAGG	AACGCTGACA	ACGGTGTGTC	GCCACATCAC	ATAGCCGCTC
97001	CTGATCATGC	GCAGCTCAAA	GTTTAAACGG	CAACGTCGCT	AACGGGGGAG
97051	CAGGGCGGAA	TCAGACATTC	CCCATCCTTT	ATTCCGCGAT	TCTTACGTGA
97101	TCGAATCCCG	GCGGCCAAGA	TGGAGTAAAT	TTCAATATGA	ATGCTTAACG
97151	CCGCACAGCT	TGTACGGCGG	GCCGCCCGGG	CGGTGACTGG	CGTCCCTGCC
97201	AGCCGTGATG	GCCTGACGAG	GCCTCCGGGA	TCCATCCCCC	GCCCGCTGTC
97251	GCCGAGTTCT	TTGCGGGATT	ATTACGTTGC	ATTGGTTTGC	TTCGTGGCCC .
97301	GGGCCGTTGG	CCTGCGCTAT	TTGGCAGCCT	TCCGTCATGG	GTGGTAAAAG
97351	ATCGCCTTTC	CCCTCTGGGG	· TGCCGGTCGA	GCTGGCCTCG	ACCGCGATTG
97401	TGGCTTGTTG	TTTTCTTGTG	GCGCCGCGTG	TGAAACAGCG	GCAGTTGGCC

-	97451	ACTCGCTCTG	ACAGGCTCCG	GGGACGGGGT	TGTCACCTTT	TGGGGTGACT
•	97501	GGCCTCGTTC	AAGGCGTCCT	GGCCCGTGGT	GCATCCGCGA	TCGTCGTGCC .
	97551 [.]	ATGGGTGAAG	TGGGAAGGAG	CACAGAACGA	TGAGCGAGAG	CATGGCGTGG
	97601	CTGACGCGGG	ACGTCCGCAA	GGCCCGCAAG	GAGGGCAGTG	. CGGGGACCGC *-
	97651	GCGGCGCCGA	GCCGACÇGGC	TGGCGGACCT	GGTCGCCCAC	GCCCGCTCGG
	97701	CGTCGCCGTA	CTACCGGGAG	CTCTACCACG	GCCTGCCCGA	GCGGATCGAG
	97751	GACCCGACGC	TGCTGCCGGT	GACGGACAAG	AAGCAGCTGA	TGGACCACTT
	97801	CGACGACTGG	CCGACGGACC	GCGACATCAC	CTTCGAGAAG	GTCCGCGCGT
	97851	TCACCGACGA	CCCCGAGCTG	ATCGGGCGGC	GCTTCCTCGG	CCGCTATCTG
	97901	GTGGCCACCA	CGTCGGGCAC	CAGCGGCAGG	CGCGGCCTGT	TCGTGCTCGA
	97951	CGACCGGTAC	ATGAACGTGT	CCTCCGCCGT	CTCCTCCCGG	GTGCTCGCCT
	98001	CCTGGCTCGG	CCCCTCGGC	ATCGCCCGGG	CCGTCGTCCA	CGGCGGCCGC
	98051	TTCGCCCAAC	TCGTCGCCAC	CGAGGGACAT	TACGTCGGCT	TCGCCGGATA
	9.8101	CTCCCGCCTG	CGCCAGGACG	GCGGAGCGCG	CAGCAAGCTC	GTCCGCGCCT
,	98151	TCTCTGTGCA	CGAGCCGATG	TCACGTCTGG	TCGCCGAACT	CAACGAGTAC
	98201	CGGCCCGCGT	TCGTCATCGG	CTACGCCAGT	ACGATCATGO	TGCTCACCGC
	98251	CGAACAGGAA	GCGGGCCGGC	TGCACATCGA	CCCGGTGCTG	GTCGAGCCCG
	98301	CGGGCGAGAC	GATGACCGAG	AGCGACACCG	ACCGCATCGC	TGCGGCGTTC
	98351	GGCGCCAAGG	TGCGCACGAT	GTACAGCGCG	ACCGAGTGC	CCTACCTCAG
	98401	CCACGGCTGC	GCCGAGGGCT	GGTACCACGT	CAACGACGAC	TGGGCCGTGC
	98451 [.]	TCGAACCGGT	CGACGCCGAC	CACCGGCCC	CCCCGCGGG	GGAGTTCTCG
	98501	CACACCACCC	TGATCAGCAA	CCTCGCCAAC	CGCGTCCAG(CGTTCCTCCG
	98551	CTACGACCTG	GGCGACAGCG	TCATGCTCC	CCCCGACCC	TGCCCCTGCG
	98601	GCACCCCTC	GCCCGCGATC	CGGGTCCAG	GCAGGTCGG	GGACATCCTC
	98651	. ACCTTCCCCT	CGGGCCGGG	- CGACGACGT(C AGCCTCGCC	C CGCTCGCCTT
	98701	CAGCAGCCTC	: TTCGACCGC	TGCCCGGAG	r cgagctctt	C CAGATCGAGC

98751 AG	PACCGCGCC GTCGACCCTG CGCGTCCGCG TGGTCCAGGC GCCCGGCGCC
98801 GA	ACGCGGACC ACGTGTGGCA GCGGGCCCAC GACGGGCTGA CCCACCTCCT
98851 CG	CCGACAAC AAGCTCGACA ACGTAACCGT CGAACGGGGC GAGGAGCCGC
98901 CC	GCGGCAGGC ATCCGGCGGC AAGTACCGGA CGATCATCCC GCTCGCCGCC
98951 T	GAACGCTCG CCGACTAGCC GCGCGCCGCC TGAGCTGCTC TCACCGCGCG
99001 T	ACGGGCGCA GCGGAGGCTC CTCGTCGACC CACGGCTGGC TGTGGATCAG
99051 C	AGCTCGATC GGGAAGTTCA GCAGGCCGGG CAGGGCGTCG ACGGCCTCCT
99101 G	GCTGTTGAG CGGCATGACC GGCTTGGCGC AGTGCGCGCG GTCGATGCGG
99151 C	TCGTGTCGG CGGGACCGGG GTGCTCGATC GCATCGGCGA CCAGGTCGTA
99201 G	CTGACCTGG TCGACGACCA TGGCGATGTG GGTCGGCCAC GGCCGACCCG
99251 G	ACAGATGTC CTGGACGCCG ATGCGGTGGG CGCCCGGCAG CGACGGCGCC
99301 I	CCCCGTCGG CCACCACGGA CTCGTCGGCG TATGAATAGA TCGTGGTGTA
99351 0	CGACGGTCCT GCGGGCATGG GCGTGCCGTC GGCGCCCAGA GCCTTCGACC
99401 <i>F</i>	AGTTCGAGTC GCGGGCGAAC TGCAGGACCG ACGCCGGGCA GCCCGCCACC
99451 7	TCGGCGATCG GGCGGCAGGG CGAGGCCAGC CGGGTCCCCT GGAACGGGGA
99501 (GCCCAGGGTC ACCATGTCGT CGACCTTCCC CGGCAGGTCC GGCCAGAAGC
99551 (GCAGGGCCCA CGCCGTGAGG AGGCCGCCCT GGCTGTGCCC GACGAGATCG
99601	ACCTTCCGGC CGGTGGCCTC CTGGATCGCG CGGGTCGCGT ACACCACGTA
99651	CTCGACGGAC TCCTGCATGT CACGGAGCCC GCGACCGGGA GAATCCACCC
99701	AACAGGACTG GTAGCCCTTC TTCTTCAACT CGGCCATGTA GTTCCAGGCG
99751	TAGTTCTCCT CGCCCTTGAG GCCGGTCCCG GGCACGAAGA GGACGGTCGG
99801	CTTGTCACCG GCGTCACGCA GGTCCCCCAG CTCCGTCCCG CAGTGCAGCG
99851	CCTTGGCGAG CTCGGCCGCC GGTATCTCCA ACGGGGGAGA GGAAACATCC
. 99901	GCCGCCGAAG CGGCGGAGGC CGGAAGCACG GTGGCGGCCA GCACGGCCGC
99951	CACGAGTCCG CCGAGCCATG AGGACAAGCG CACGGTGACC TCCACAGGAA
100001	CCTTCACGAG TGAGCGGAAA CTCCCTCCGG AGGGAGCACC TCATCGTGCG

100051 GCGGCGCCAC AGTAGCCGTC AACTGCCCCA CGGGGCTGAG TAGTTGACAG
100101 TTGGCCGGGC TCGGCCGGCG AAGCGCCCGG GCCCCGCCGC CCCGCGCCGT
100151 GCGCGAGGGG TCCGTGACCT GGGTGGACGG TCCGGTTGGA CATCCCGGGG
100201 GAGCCTCTGG CATGGTCGCC CGTCCGTCCC CCTCAAGAAC CGAAGGGAGC
100251 GTCACGATCA CGATGATCGA AGTCAGCACG CGCAGCATGA AGGAAGCGGC
100301 TGCCGCCGAG CAGCTCCGCG CGGAGACCAC GACACTGGAC ATTCCAAAGG
100351 GTTTCGACCT GTGGACGGCC GACGAGATCG CGGAGTGGCT CGACGGCGTC
100401 GAGGACGACC CGGCAGTCTC CGACGCCGAC TTCTACGCGG CCCAGCAGCG
100451 GTGCGACGGG TCCTCGGCAC CGAGGGCACC TGACCCGCCG GCGGCCCTGC
100501 GCGGCCCTAC GTGTGCAGCG CCCCGTCCTC CTCCACATGC CCCTCCGGCT
100551 CCAGCTGGAT CGTCGAGTGG GCCACGTCGA AGTGGCCCCC GACACACCGC
100601 TGAAGGCGCC CCAGGAGCTC CCCGTACCCG CTCGCGAGAG CCTCCTCCGT
100651 GACCACCACG TGCGCGGTGA GCACCGGCAT CCCCGAGGTG ACCGTCCAGC
100701 CGTGCAGATC GTGCACGGCG ACCACGCCCC GCTCCTCCAG CAGGTGCCGG
100751 CGCACCTCGC CGAGGTCGAC GTCCTGCGGG GTCGCCTCCA GCAGGACGTG
100801 CAAGGAGTCC CGCAGCAGGC CGTACGCGCG CGGCACGATC AGCAGGCCGA
100851 TGACGATCGA CGCGATCGGG TCGGCGGCCT GCCACCCCGT GAGCAGGATG
100901 ACCAGGCCGC CCACGATCAC CGCGACCGAG CCGAGCGCGT CGCCCAGCAC
100951 CTCCAGGTAC GCGCCCCGCA GATTGAGGCT CTTCTCCTTG GCGTCCCGCA
101001 GCAGCCACAG GCCCACCAGG TTGGCGGCGA GCCCGCCCAG CGCGACCACG
101051 AACATCAGGC CGCCCTTCAC CTCCACCGGC TCGCTGAACC GGCCGATCGC
101101 CGACCACAGG ACCCAGGCGA AGATGACGAC CAGGAGCAGC GCGTTCAGGA
101151 CCGCGGAGAA GATCTCCACG CGGTAGAACC CAAAGGTGCG CCGCGGCGTC
101201 GGCGCCCGCT GGGCGAGGGT GATGGCACCG AGGGCCAGCG AGACGCCGAC
101251 CGCGTCGGTC AGGCTGTGCG CGGCGTCGGC GAGCAGCGCG AGGCTGCCGG
101301 ACAGGAGCGC GCCGACCACC TGGATGACGG TGATCGAGCC GCTGATGCCG

101351 ATG	GTCCACA GCAGGCGCTT GCGGTACGTG CCGCTGAGAG TGCCGCCCGC
101401 CGC	CCCGGCG GACGGACCGT GGTCGTGCCC CATGCCCGCG AGTGGACCAC
101451 GGC	CGGCGCGG CACCCGCCAC CGAGCGGCCG CCGGTCGGCT CAGTGCAGCC
101501 GGG	SCCTGGGT GGAGGTGTCG CGCTGGTGCG GGATGCCGAG CGGCGGCGGC
101551 AG	CTCGCCCT GCTGCACCCT GACCGTGCGC ACGGGGGCGG GGACCCGGAT
101601 GC	CCTCGGCG CGGTAACGCT GGTGCAGGCG CTTGATGAAC TCGTGCTTGA
101651 TG	CGGTACTG GTCGCTGAAC TCGCCGACGC CGAGGATCAC CGTGAAGCTG
101701 AT	CCGCGAGT CGCCGAAGGT GTGGAAGCGG ATCGCCGCCT CGTGGTCGGG
101751 GA	CCGCGCCG GTGATCTCGG CCATCACCTC GTCCACCACC.TCGGTCGTGA .
101801 CC	TTCTCGAC CTGCTCCAGG TCGCTGTCGT AGCTGACCCC GACCTGCACC
101851 AT	GATCGACA GCTCCTGCTC GGGGCGGCTG TAGTTGGTCA TGTTGGTGCC
101901 GG	CGAGCTTC GCGTTGGGGA TGATGACGAG GTTGTTGGAG AGCTGGCGGA
101951 CC	GTGGTGTT GCGCCAGTTG ATGTCGACGA CGTAGCCCTC CTCCCCGCTG
102001 CT	GAGCTGGA TGTAGTCGCC GGGCTGCACG GTCTTCGCGG CGAGGATGTG
102051 CA	ACGCCCGCG AAGAGATTGG CGAGCGTGTC CTGCAGTGCG AGGGCGACCG
102101 CG	PAGACCTCC CACGCCGAGG GCGGTGAGCA GCGGTGCGAT GGAGATGCCG
102151 AG	GGTCTGAA GGACGATGAG GAAGCCCATC GCGAGCACCA CGACGCGGGT
102201 GA	ATGTTCACG AAGATGGTGG CCGATCCGGC CACTCCGGAG CGGGACTGTG
102251 C	CACGGCCTT CACCAGGCCG GTGACGATCC GGGCCGCCGT GAGCGTGGCG
102301 G	CCAGGATGA GCAGCGCGT CAGCGTCATG GTGACGTTGC GTCCGGTGCG
102351 C	GGCGTGAGC GGCAGCGCGC CCGCCGCGGC GGCGAGCCCG GCGGTGATGG
	CGCGCAGGG CACGAGGGTG CGCAGGGCGT CGACGATGAC GTCGTCACCG
	TCCACCGGG TTTTGCTCGC CCGTTCGCCG AGCCACCTCA GAAGTGCGCG
102501 G	AGCAGCAGC CCGGCGACGA CGCCGGCGAC GACCGCGATA CCGGCCACGA
	CCAGTCGTG CAGTGTGAGG GCACGGGTCA TCAGTTCGCT CCCGTCGTAC
102601 G	GGGGGAGTG CGCCTGTGTG GGGCGTATGT GATGTGACGT CACCTTGTGA

102651	TACCTGCTCG	ATTCCGGGGA	GTGCGGTCAC	GCCGGGACGA	GAGCTCGGTT
102701	CCGGCGCGGA	CGTCATCCTG	CCCCATCCGC	CCACGGCAGG	CGTGCATACC
102751	CCCACCTGGA	TCTTCACAGA	CCGGCCACGT	CTGTCCATGC	GCCGATGAGC
102801	GCGCTGCCCG	TGGTAAAGCA	TTGAGTCAGG	CGATTTGGCC	ACTCGGCACT
102851	CGGCGGACCG	GTCGAGCCGG	TCGATCTACG	TGAGCGGAGG	CGGTTGAGCA
102901	TGGCGTCCAT	GTGCAGACCC	GGAATGTCAC	CCGTCAATTC	GCACAACGAG
102951	TGGGATCCGC	TGGAGGAGAT	CATCGTCGGG	CGGCTGGAGG	GCGCGACCAT
103001	TCCCTCCAGC	CATCCGGTCG	TGGCGTGCAA	CATCCCGACC	TGGGCGGCAC
103051	GGCTGCAGGG	TCTCGCCGCC	GGGTTCGAGT	ATCCGCAGCG	GCTGATCGAG
103101	CCGGCGCAGC	AGGAGCTCGA	CCAGTTCATC	GCTCTCCTGC	AATCCCTCGA
103151	CGTCACAGTG	AGACGGCCGG	CGGCCGTCGA	CCACAAGCAC	CGCTTCGGGA
103201	CCCCGACTG	GCAGTCGCGC	GGCTTCTGCA	ATTCCTGTCC	GCGGGACAGC
103251	ATGCTCGTCG	TCGGCGACGA	GATCATCGAG	ACCCCGATGG	CGTGGCCGTG
103301	CCGCTGTTTC	GAGACGCACT	CGTACCGCGA	ACTCCTCAAG	GACTACTTCC
103351	GGCGCGGCGC	GCGCTGGACG	GCGGCGCCGC	GCCCCAGCT	CACCGAGGCC
103401	CTGTACGAGA	AGGACTTCCG	CCCTCCCGAG	GAGGGCGAAC	GATGCGCTAC
103451	ATCCTCACCG	AGTTCGAGCC	GGTGTTCGAC	GCGGCGGATT	TCGTGCGGGC
103501	GGGCCGCGAC	CTGTTCGTGA	CGCGGAGCAA	CGTCGCCAAC	CTGCTGGGCA
103551	TCGAGTGGCT	GCGCCGCCAC	CTTCGGGCCG	GAGTACCGCG	TGCCACGAGA

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMIS FOR THE PURPOSES OF PATENT PROCEDURE

Professor P.F. Leadlay, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge. CB2 1GA

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

OF DEPOSITOR	
I. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:
Escherichia coli	
XL1-Blue MR (MO-CN11)	NCIMB 40956
2	
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TA	XONOMIC DESIGNATION
The microorganism identified under I above was accompanied by	r:
a scientific description	
a proposed taxonomic designation	
(Mark with a cross where applicable)	
III. RECEIPT AND ACCEPTANCE	
III. RECENT AND ACCESTANCE	
This International Depositary Authority accepts the microorganis 1 July 1998 (date of the original deposit) 1	im identified under I above, which was received by it on
IV. RECEIPT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this (date of the original deposit) and a request to convert the original (date of receipt of request	I deposit to a deposit under the Budapest Treaty was received by it on
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: NCIMB Ltd.,	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorised official(s):
Address:23 St Machar Drive, Aberdeen, AB24 3RY, Scotland.	Date: 9 July 1998

Where Rule 6/4(d) applies, such date is the date on which the status of International Depositary Authority was acquired. Form BP/4 (sole page)

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANI...IS FOR THE PURPOSES OF PATENT PROCEDURE

Professor P.F. Leadlay, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge. CB2 1GA

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

NAME AND ADDRESS

OF DEPOSITOR	
I. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:
Escherichia coli	
XL1-Blue MR (MO-CN33)	NCIMB 40957
The Blad III (III of 195)	
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TA	XONOMIC DESIGNATION
The microorganism identified under I above was accompanied by	:
,	
a scientific description	
a scientific description	
(co	
X a proposed taxonomic designation	
OA In the company that In	
(Mark with a cross where applicable)	į
III. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganis	m identified under I above, which was received by it on
1 July 1998 (date of the original deposit) ¹	
IV. RECEIPT OF REQUEST FOR CONVERSION	
in industrial and and in the contraction	
The microorganism identified under I above was received by this	International Depositary Authority on
(date of the original deposit) and a request to convert the original (date of receipt of request	deposit to a deposit under the Budapest Treaty was received by it on
(date of receipt of request	ioi conversion)
V. INTERNATIONAL DEPOSITARY AUTHORITY	
	·
	Si da Carretta de la companya del companya de la companya del companya de la comp
Name: NCIMB Ltd.,	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorised
	official(s):
	photol
Address:23 St Machar Drive,	1
Aberdeen,	Date July 1998
AB24 3RY, Scotland.	

Where Rule 6/4(d) applies, such date is the date on which the status of International Depositary Authority was acquired. Form BP/4 (sole page)

BUDAPEST TREATY ON THE INTERNATIONAL COGNITION OF THE DEPOSIT OF MICROORGANISTIS FOR THE PURPOSES OF PATENT PROCEDURE

Professor P.F. Leadlay,
Department of Biochemistry,
University of Cambridge,
80 Tennis Court Road,
Cambridge.
CB2 1GA

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

NAME AND ADDRESS

OF DEPOSITOR	
I. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:
Escherichia coli	
XL1-Blue MR (MO-CN02)	NCIMB 40958
ALL DIEGING (MO OF COL)	
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TA	VONOMIC DESIGNATION
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TA	AONOMIC DESIGNATION
The microorganism identified under I above was accompanied by	:
a scientific description	
a proposed taxonomic designation	
O. A. J. With a common with one complete field.	
(Mark with a cross where applicable)	
III. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganis	m identified under I above, which was received by it on
1 July 1998 (date of the original deposit)	,
IV. RECEIPT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this	International Depositary Authority on
(date of the original deposit) and a request to convert the original (date of receipt of request	deposit to a deposit under the Budapest Treaty was received by it on
(date of receipt of request	Tot conversion,
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: NCIMB Ltd.,	Signature(s) of person(s) having the power to represent the
Trainer Treating Start,	International Depositary Authority or of authorised
	official(s):
Address:23 St Machar Drive,	Marie
Aberdeen,	Date July 1998
AB24 3RY, Scotland.	
Scottand.	

Where Rule 6/4(d) applies, such date is the date on which the status of International Depositary Authority was acquired. Form BP/4 (sole page)

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

Dr. P.F. Leadlay,
Department of Biochemistry,
University of Cambridge,
80 Tennis Court Road,
Cambridge.
CB2 1GA

INTERNATIONAL FORM

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified on the following page

NAME AND ADDRESS OF THE PARTY TO WHOM THE VIABILITY STATEMENT IS ISSUED

I.	DEPOSITOR	II.	IDENTIFICATION OF THE MICROORGANISM
Name:	AS ABOVE	INTE	sion number given by the RNATIONAL DEPOSITARY AUTHORITY: NCIMB 40956 of the deposit or of the transfer 1:
			1 July 1998
III.	VIABILITY STATEMENT		
	ability of the microorganism identified under II above was organism was:	tested o	on 1 July 1998 2. On that date, the said
X	viable		
	no longer viable		

- Indicate the date of the original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
- 2 In the cases referred to in Rule 10.2(a)(ii) and (iii), refer to the most recent viability test.
- 3 Mark with a cross the applicable box.

Form BP/9 (first page)

IV.	NDITIONS UNDER WHICH THE VIABILITY TES	ST HAS BEEN PERFORMED ⁴
v.	INTERNATIONAL DEPOSITARY AUTHORITY	
	NCIMB Ltd., 23 St Machar Drive, Aberdeen, A24 3RY, Scotland.	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorised official(s): Date: 9 July 1998

Fill in if the information has been requested and if the results of the test were negative.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

Dr. P.F. Leadlay,
Department of Biochemistry,
University of Cambridge,
80 Tennis Court Road,
Cambridge.
CB2 1GA

INTERNATIONAL FORM

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified on the following page

NAME AND ADDRESS OF THE PARTY TO WHOM THE VIABILITY STATEMENT IS ISSUED

ī.	DEPOSITOR	II.	IDENTIFICATION OF THE MI	CROORGANISM
Name:	AS ABOVE	INTER	ion number given by the NATIONAL DEPOSITARY AU NCIMB 40957	THORITY:
	•	Date o	f the deposit or of the transfer1:	
			1 July 1998	
III.	VIABILITY STATEMENT			
	ability of the microorganism identified under II above was organism was:	tested o	n 1 July 1998	2. On that date, the said
:	3			
X	viable			
	no longer viable			
ì				

- Indicate the date of the original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
- In the cases referred to in Rule 10.2(a)(ii) and (iii), refer to the most recent viability test.
- 3 Mark with a cross the applicable box.

Form BP/9 (first page)

IV.	NDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED ⁴		
V.	INTERNATIONAL DEPOSITARY AUTHORIT	Y	
	NCIMB Ltd., 23 St Machar Drive, Aberdeen, A24 3RY, Scotland.	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorised official(s): Date: 9 July 1998	

⁴ Fill in if the information has been requested and if the results of the test were negative.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

Dr. P.F. Leadlay,	
Department of Biochemistry,	
University of Cambridge,	
80 Tennis Court Road,	
Cambridge.	
CB2 1GA	
Į	

INTERNATIONAL FORM

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified on the following page

NAME AND ADDRESS OF THE PARTY TO WHOM THE VIABILITY STATEMENT IS ISSUED

I.	DEPOSITOR	II.	IDENTIFICATION OF THE MI	CROORGANISM
Name Addre	AS ABOVE	INTER	ion number given by the NATIONAL DEPOSITARY AU NCIMB 40958	THORITY:
i		Date of	f the deposit or of the transfer 1:	
			1 July 1998	
III.	VIABILITY STATEMENT			
	iability of the microorganism identified under II above was organism was:	tested o	n 1 July 1998	2. On that date, the said
	3			
X	viable 3			
	no longer viable			

- Indicate the date of the original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
- In the cases referred to in Rule 10.2(a)(ii) and (iii), refer to the most recent viability test.
- 3 Mark with a cross the applicable box.

Form BP/9 (first page)

IV.	NDITIONS UNDER WHICH THE VIABILITY	TEST HAS BEEN PERFORMED ⁴
v.	INTERNATIONAL DEPOSITARY AUTHORIT	Y
Address:	NCIMB Ltd., 23 St Machar Drive, Aberdeen, A24 3RY, Scotland.	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorised official(s): Date: 9 July 1998

⁴ Fill in if the information has been requested and if the results of the test were negative.

Interi 121 Application No PCT/GB 00/02072

a. classification of subject matter IPC 7 C12N15/52 C12N15/76 C12P17/18 C12P19/44 C12P19/62 C1201/68 C07H17/08 C07H19/01 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12P C12Q C07H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, MEDLINE, STRAND, EMBL, BIOSIS, EMBASE, WPI Data, PAJ, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X DONOVAN M J ET AL.: "Isolation of DNA 1-3.6-14 involved in monensin biosynthesis by Streptomyces cinnamonensis;" ABSTR. ANNU. MEET. AM. SOC. MICROBIOL. 88 MEET., 1988, page 261 XP000949887 Y abstract 30-38 ARROWSMITH T J ET AL.: "Characterisation χ 1-3,6-14 of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis." MOLECULAR AND GENERAL GENETICS, vol. 234, no. 2, August 1992 (1992-08), pages 254-264, XP002149754 Y page 263, right-hand column, line 1-5 30-38 -/--| X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filling date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 08. 01. 2001 16 October 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlean 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 851 epo nl, Fax: (+31-70) 340-3016 van de Kamp, M

Inter al Application No
PCT/GB 00/02072

0.00	NO. INC. WELLING CO. (CITATION CO.)	PCT/GB 00/02072			
C.(Continuetion) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate of the relevant page age.					
- Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
X	MALPARTIDA F ET AL: "Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes" NATURE, vol. 325, no. 6107, 26 February 1987 (1987-02-26), pages 818-821, XP002075972	1-3,6-14			
Υ	abstract page 819, left-hand column, line 16 -right-hand column, line 1; figure 1	30-38			
X	ASHWORTH D M ET AL.: "Selection of a specifically blocked mutant of Streptomyces cinnamonensis: isolation and synthesis of 26-deoxymonensin A." THE JOURNAL OF ANTIBIOTICS, vol. 42, no. 7, July 1989 (1989-07), pages 1088-1099, XP002149776 cited in the application	1-3, 6-14,36			
Y	abstract page 1088, line 10-15 scheme 1,2	30-38			
x	WO 98 49315 A (KOSAN BIOSCIENCES INC ;UNIV LELAND STANFORD JUNIOR (US)) 5 November 1998 (1998-11-05)	36,45			
γ	figure 6G compound #102 example 6 claims 1-10	30-38			
X	HOPWOOD D A: "Genetic contributions to understanding polyketide synthases" CHEMICAL REVIEWS, vol. 97, no. 7, November 1997 (1997-11), pages 2465-2497, XP002130647 figures 3,13 table 1 page 2486, paragraph C	36			
Y	WO 98 01546 A (CORTES JESUS ; LEADLAY PETER F (GB); STAUNTON JAMES (GB); BIOTICA T) 15 January 1998 (1998-01-15) cited in the application page 5, line 12 -page 10, line 11 claims 1-6	30-38			
	-/				

Intern al Application No
PCT/GB 00/02072

		PCT/GB 00/02072					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	ZERBE-BURKHARDT K ET AL.: "Cloning, sequencing, expression, and insertional inactivation of the gene for the large subunit of the coenzyme B12-dependent isobutyryl-CoA mutase from Streptomyces cinnamonensis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 11, 13 March 1998 (1998-03-13), pages 6508-6517, XP002149755 abstract						
4	ROWE C J ET AL: "Construction of new vectors for high-level expression in actinomycetes" GENE, vol. 216, no. 1, August 1998 (1998-08), pages 215-223, XP004149299 cited in the application abstract						
Γ	WO 00 00500 A (LEADLAY PETER FRANCIS; CORTES JESUS (GB); STAUNTON JAMES (GB); BIO) 6 January 2000 (2000-01-06) Note: 100.0 % aa seq identity of SEQ ID NO:23 with SEQ ID NO:19 in 920 aa overlap. page 14, line 15-17 page 17, line 15-20 page 24, line 16-20 examples 1,3,26 claim 18	1-3, 6-14, 30-38					

PCT/GB 00/02072

BoxI	Observations where cortain deline way found in the contraint of the contra							
	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)							
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:								
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
2.	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:							
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)							
This Inter	national Searching Authority found multiple inventions in this international application, as follows:							
	see additional sheet							
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.							
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report sovers only those claims for which fees were paid, specifically claims Nos.:							
	No required additional search fees were timely pald by the applicant. Consequently, this International Search Report is estricted to the invention first mentioned in the claims; it is covered by claims Nos.: See further information sheet invention 1							
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.							

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,8-12,14,43,44 (all partially); 2-7,13,15-42, 45 (all completely)

A DNA sequence comprising the complete monensin (mon) gene cluster, or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with one of the peptides according to SEQ ID NOs 12-33 (AcpX to MonAX as set out in table II), provided that said polypeptide is not all or part of amino acid 1-920 encoded by monAI. Vectors, transformed cells, hybridization probes and their uses.

Use of mon genes to control expression (monRI), to effect chain release (monAIX and monAX), to provide a desired stereochemical outcome (monBI and monBII), or to provide epoxidase or cyclase activity (monCI and monCII). Mon polypeptides having isomerase activity (MonBI and MonBII), or having chain terminating activity (MonAIX or MonAX), or having epoxidase activity (MonCI), or having cyclase activity (MonCII).

Processes for producing polyketides involving monensin loading or extension modules or domains. DNA sequences encoding hybrid polyketide synthases containing one or more monensin modules or domains (provided that it is not encoding an ery loading module, the first and second ery extension modules and the ery chain-terminating thioesterase in which the AT domain of the first ery extension module has been substituted by the ethyl malonyl-CoA AT from the monensin synthase), polyketide synthases encoded by said DNA sequences, and polyketide compounds produced by said polyketide synthases. Vectors and transformed cells.

Methods of producing S. cinnamonensis capable of producing enhanced levels of monensin by overexpressing or amplifying the monRI gene, S. cinnamonensis strains produced thereby, and use of said strains in monensin production.

Process for expressing a heterologous gene, e.g., a PKS gene, in S. cinnamonensis under the control of monRI.

2. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:5 (GdhA as set out in table II), vectors, transformed cells, hybridization probes and their uses.

3. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:6 (DapA as set out in table II), vectors, transformed cells, hybridization probes and their uses.

4. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:7 (Orf3 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

5. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:8 (Orf4 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

6. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:9 (Orf5 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

7. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:10 (Orf6 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

8. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:11 (Orf7 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

9. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:34 (Orf29 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

10. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:35 (LipB as set out in table II), vectors, transformed cells, hybridization probes and their uses.

11. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:36 (Orf31 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

12. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:37 (Orf32 as set out in table II), vectors, transformed cells, hybridization probes and their uses.

13. Claims: 1,8-12,14 (all partially)

A DNA sequence or a part or a variant of it which encodes a polypeptide (or part of it) which is at least 80%, preferably at least 90% identical with a peptide according to SEQ ID NO:38 (AmtA as set out in table II), vectors, transformed cells, hybridization probes and their uses.

14. Claims: 43,44 (both partially)

Process for expressing a heterologous gene, e.g., a PKS gene, in S. cinnamonensis under the control of actII/orf4.

Information on patent family members

Inter al Application No
PCT/GB 00/02072

D-tt-1		FC1/GB 00/020/2			
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9849315	A 	05-11-1998	AU EP US	7172298 A 0979286 A 6117659 A	24-11-1998 16-02-2000 12-09-2000
WO 9801546	A	15-01-1998	AU BBR CA CN EP WO BO PL SKU EPO WO	3450997 A 3451497 A 103133 A 9710209 A 2259420 A 2259463 A 1229438 A 0909327 A 0910633 A 9801571 A 2331518 A 990012 A 331285 A 182498 A 7666198 A 0983348 A 9854308 A	02-02-1998 02-02-1998 28-04-2000 11-01-2000 15-01-1998 15-01-1998 22-09-1999 21-04-1999 28-04-1999 15-01-1998 26-05-1999 23-02-1999 05-07-1999 16-05-2000 30-12-1998 08-03-2000 03-12-1998
WO 0000500	A	06-01-2000	AU AU WO	4524599 A 4524799 A 0000618 A	17-01-2000 17-01-2000 06-01-2000