新安江模型程序说明

(2024年11月8日)

1. 程序简介

新安江模型程序用于模拟一个闭合流域的产汇流过程,基本计算单元为自然流域分水岭划分的计算单元。下图所示流域共有17个计算单元,各计算单元至流域出口断面由河道相连接。

程序的输入为各计算单元的面雨量、面蒸发能力;输出为流域出口断面的径流过程,以及各计算单元的蒸散量、产流量、土壤张力水量。

图 1 流域计算单元示意图

2. 安装及使用

解压后的程序结构如下图所示,其中 XAJ_Driver.exe 为模型主程序。Forcings 文件夹存放模拟所需的降雨及蒸发能力输入(详见第 5节)、Parameters 存放模型运行所需的参数(详见第 4 节)、Results 存放模型模拟结果(详见第 6 节)、Restarts 存放模型状态变量(详见第 7 节)

标准新安江模型采用 Python 编写,打包的可执行程序已包括所有运行所需的环境,在 windows 环境下可以直接双击 XAJ_Driver.exe 运行模型。

图 2 新安江模型文件结构

3. 模型配置文件

xaj.namelist 文件为模型配置文件,配置了模型运行所需的必要信息,如计算单元数量、计算时段数、时段长等,各字段的定义如下:

```
| AND | AND
```

图 3 xaj.namelist 文件示意图

4. 模型参数

parameters.csv 文件为参数配置文件,决定了各计算单元的参数,包括计算单元特征参数 2 个(表 1)以及新安江模型和马斯京根参数 参数 17 个(表 2)。

parameters.csv 文件共有(nzone+1)行*19 列,其中第一行为标题行,标题行下为 nzone 行参数,每一行代表一个计算单元,其排序与降水、蒸散发能力以及输出文件保持一致。

1	Area	DP	KC		В	С	IMP	WM	WUM	WLM	SM	EX	KG	KI	CG	CI	CS	LAG	KE	XE
2	217.28048		1	0.295	0.25	0.15	0.01756487	114.442219	22.8884438	57.2211095	8.18588105	1.2	0.2	0.5	0.995	0.83	0.7647061	0	1	0.35
3	132.450577		1	0.295	0.25	0.15	0.00910486	120.144462	24.0288923	60.0722309	9.24927019	1.2	0.2	0.5	0.995	0.83	0.78079909	0	1	0.35
4	141.256437		1	0.295	0.25	0.15	0.03062214	117.535364	23.5070727	58.7676819	8.92765384	1.2	0.2	0.5	0.995	0.83	0.7877363	0	1	0.35

图 4 parameters.csv 文件示意图

表1 计算单元特征参数

序号	模型参数	参数名称	单位
1	Area	计算单元面积	km2
2	DP	计算单元出口到流域出口 马斯京根分段数	

表 2 新安江模型及马斯京根参数

序号	模型	参数	参数名称	取值范围	默认	有效	单位
11, 4	结构				值	位数	
1		KC	蒸散发能力折算系数	[0.50,2.00]	1.00	3	
2		WUM	上层张力水蓄水容量	[5,30]	10	2	m m
3	蒸散发计	WLM	下层张力水蓄水容量	[40,90]	70	2	m m
4	算	WDM *	深层张力水蓄水容量	[35,80]	50	2	m m
5		С	深层蒸散发系数	[0.09,0.20]	0.16	2	
6		IMP	不透水面积占全流域 面积之比	[0.005,0.50]	0.01	3	
7	产流计算	WM	张力水蓄水容量	[80,200]	120	3	m m
8		В	指数型张力水蓄水容 量曲线方次	[0.1,0.4]	0.2	1	
9	水源划分	SM	自由水蓄水容量	[5,50]	10	2	m m
1 0	计算	EX	指数型自由水蓄水容	[1.0,2.0]	1.5	2	

			量曲线方次				
1 1		KI	壤中流出流系数	[0.10,0.50]	0.35	2	
1 2		KG	地下水出流系数	[0.10,0.50]	0.35	2	
1 3		CI	壤中流消退系数	[0.010,0.999]	0.800	3	
1 4		CG	地下径流流消退系数	[0.050,0.999]	0.950	3	
1 5		CS	计算单元内河网汇流 系数	[0.010,0.999]	0.99	3	
1 6	汇流计算	LAG	计算单元内河网汇流 滞时	[0, 5]	0	1	计时数
1 7		XE	马斯京根法调蓄系数	[0.10, 0.60]	0.30	2	
1 8		KE	马斯京根法传播时间	≈计算时段长	计算时段长	2	小时

^{*}注:在 parameters.csv 文件中 WDM 无需指定,模型自动根据 WM、WUM 以及 WLM 进行计算。

5. 模型输入

为了方便组织输入输出,模型的输入输出采用 CSV 文件组织。输入数据包括各计算单元的面平均降雨量以及蒸散发能力。

(1)降雨

prec.csv 为模型降雨输入文件,降雨的单位为 mm/step,即该时段内的降雨总量。

该文件共有(nstep+1)行*(nzone+1)列:

第1行为标题行,可以标识每一列代表的计算单元编号,也可以按顺序编号(1~nzone),模型不会读入该行的信息,但其顺序必须与xaj.namelist里面参数的顺序保持一致。

第 2 行至 nstep+1 行为输入模型的降雨数据,其中第 2 行的时间由 xaj.namelist 中的 START_TEAR, START_MONTH, START_DAY, START HOUR 字段确定。

(第1列为时间,标识每一行代表的时段,可以按实际时间或按1~nstep 进行标识,模型不会读入该行的信息。)

(2)蒸发能力

ep.csv 为模型降雨输入文件,蒸发能力的单位为 mm/step,即该时段内的降雨能力总量;。

该文件共有(nstep+1)行*(nzone+1)列:

第1行为标题行,可以标识每一列代表的计算单元编号,也可以按顺序编号(1~nzone),模型不会读入该行的信息,但其顺序必须与xaj.namelist里面参数的顺序保持一致。

第2行至nstep+1行为输入模型的蒸发能力数据,其中第2行的时间由 xaj.namelist 中的 START_TEAR, START_MONTH,

START_DAY, START_HOUR 字段确定。

(第1列为时间,标识每一行代表的时段,可以按实际时间或按1~nstep 进行标识,模型不会读入该行的信息。)

6. 模型输出

模型模拟结果文件包括以下 6 个文件, 其文件组织形式类似, 其中 streamflow.csv 仅输出流域出口断面流量过程; 而其他文件输出各计算单元对应模拟结果。

streamflow.csv 中输出的是计算时段的瞬时流量,若对比的实测数据为平均流量,需要对模拟结果进行平均。

结果文件第1行为标题行,第1列为时间,由 xaj.namelist 里面指定的时间配置计算得到。

表 3 模型模拟结果文件

序号	文件名	输出要素	单位	维度
1	streamflow.csv	流域出口流量	m3/s	(nstep+1)行*2 列
2	runoff_yield.csv	各计算单元产流量	mm/step	(nstep+1)行*(nzone+1)列
3	ET.csv	各计算单元蒸散发量	mm/step	(nstep+1)行*(nzone+1)列
4	WU.csv	各计算单元上层张力水	mm	(nstep+1)行*(nzone+1)列
5	WL.csv	各计算单元下层张力水	nn	(nstep+1)行*(nzone+1)列
6	WM.csv	各计算单元深层层张力 水	nn	(nstep+1)行*(nzone+1)列

7. 模型初始化文件

新安江模型模拟时,需要给定土壤含水量、产流面积、河道初始流量等初始值,该初始值由 xaj.namelist 中的 FINI 字段给定。

如果没有指定 FINI 或者指定的文件存在错误,模型将采用预设的初始值开始模拟,并在模拟时段的每天 8 点输出包含对应时段状态变量的初始化文件。在进行后续模拟时,可以采用该初始化文件对模型进行初始化。

初始化文件命名的规律为 restart_file_<YYYYMMDDHH>, 其中Y、M、D、H分别为年、月、日、小时。

当给定初始化文件后,程序会从初始化文件后开始模拟,如指定的初始化文件为 restart_file_2024112108,表示该文件存储了 2024年11月21日8时这一个时段初的状态变量,后续模拟将从 2024年11月21日8时开始,程序会自动匹配降雨及蒸发能力的时段。