Potentiel de Hénon-Heiles et chaos

Romain Marcelin

Sommaire

- ♦ Introduction
- Description mathématique du problème
- Méthodes numériques
- Résultats et analyse
- ♦ Conclusion

Introduction

Michel Hénon 1931-2013

Carl Heiles 1939

Description mathématique

♦ Potentiel:

$$V(x,y) = \frac{1}{2}(x^2 + y^2) + \epsilon \left(x^2y - \frac{y^3}{3}\right)$$

$$\frac{dx}{dt^2} = -\frac{x + 2\epsilon xy}{m}$$

♦ Equations du mouvement :

$$\frac{dy}{dt^2} = -\frac{y + \epsilon(x^2 - y^2)}{m}$$

Description mathématique

♦ Exposant de Lyapunov :

$$|\Delta r| = e^{\lambda \cdot t}$$

- ♦ Négatif (fini ou infini)
- ♦ Nul
- ♦ Positif (fini ou infini)

Espace des phases :

$$E=(x,y,\dot{x},\dot{y})$$

Méthode numérique

- Discrétisation du temps
- ♦ Transformation des équations du mouvement :

$$\frac{dx}{dt} = \dot{x}$$

$$\frac{d\dot{x}}{dt} = -\frac{x + 2\epsilon xy}{m}$$

$$\frac{dy}{dt} = \dot{y}$$

$$\frac{d\dot{y}}{dt} = -\frac{y + \epsilon(x^2 - y^2)}{m}$$

Méthode numérique

♦ Méthode d'intégration RK45

Détermination des exposants de Lyapunov à chaque temps

Choix trajectoire de référence :

Coordonnées: (0.201, 0, 0, 0.48)

Vérification de la stabilité

Stable au-delà de t = 10000 s

Figure 1. Trajectoire au bout de t = 100 s

Figure 2. Trajectoire au bout de t = 1000 s

Recherche des points critiques (positifs)

Coordonnée de position variée								
X			У					
Valeur en x	λ final	temps final	Valeur en y	λ final	temps final			
0,901	-2,659	100	0,3	-5,6	100			
0,911	-3,108	100	$0,\!4$	-4,781	100			
0,916	-1,682	100	0,423	-0,474	100			
0,921	1,353	100	0,4235	1,815	100			
0,931	38,05	94,45	0,425	38,15	$94,\!15$			

Coordonnée de vitesse variée								
v_x			v_y					
Valeur en v_x	λ final	temps final	Valeur en v_y	λ final	temps final			
1,475	-1,123	100	0,612	-5,046	100			
1,485	-1,551	100	0,6125	-0,117	100			
1,489	3,985	100	0,6126	0,496	100			
1,49	5,749	100	0,6127	1,123	100			
1,5	82,44	96,55	0,615	62,72	92,1			

$$dx = [0.916; 0.921]$$

$$dy = [0.423; 0.4235]$$

$$dv_x = [1.485; 1.489]$$

$$dv_y = [0.6125; 0.6126]$$

♦ Comportement de l'exposant avec le temps

Disparition de la phase de retour

Figure 3. Exposant au cours du temps avec x = 0.4

Figure 4. Exposant au cours du temps avec x = 1

Figure 5. Exposant au cours du temps avec x = 2

Figure 6. Exposant au cours du temps avec x = 4

Décalage du pic vers les temps courts

Figure 7. Variation du temps d'apparition du pic en fonction de la différence de positon des particules

- Variation de la constante de non-linéarité :
 - \diamond Conditions des trajectoires test : (1, 0, 0, 0.48)

Figure 8. Exposant au cours du temps avec epsilon = 2

Figure 9. Exposant au cours du temps avec epsilon = 6

Figure 10. Exposant au cours du temps avec epsilon = 50

Figure 11. Exposant au cours du temps avec epsilon = 100

Augmentation de l'aspect chaotique du système

Figure 12. Variation du temps d'apparition des pics en fonction de la constante de non-linéarité

Conclusion

- ♦ Grande sensibilité aux conditions initiales
- ♦ Constante de non-linéarité responsable du chaos
- Apparition de structures récurrentes
 - ♦ Peut être signe de phénomènes d'auto-organisation
 - ♦ Signes encourageants