Problem 4. Chocolate (1 point)

Timelimit: 1 second

Problem Statement

There exist a chocolate which size is $n \times m$.

We want divide it into nm pieces of 1×1 chocolate by cutting the chocolate.

In each cutting, we can pick a chocolate and divide the chocolate into two pieces.

For example, at the beginning, we have a chocolate of size $n \times m$ and divide it into two chocolates $n' \times m$ and $(n - m') \times m$ (or $n \times m'$ and $n \times (m - m')$).

As follows we pick one of two chocolates, then divide it again until the size of all of pieces become 1×1 . Cutting takes long time, and chocolate can be melted over time, thus we want to minimize the number of cutting.

Finding the minimum number of cutting to make to 1×1 nm pieces.

Input Statement

First line contains t which is the number of test cases. Each test case contains two integers n and m ($1 \le n, m \le 300$). It means the size of input chocolate.

Output Statement

For each test case, print out the minimum number of cutting.

Input Example

2

2 2

3 3

Output Example

```
3\ //\ divide\ 2x2 into two 1x2 then cut each 1x2 to 1x1.
```

Warning.

You must calculate minimum cutting at running time. Do not put precomputed results in the code except some initial cases. (ex) h[20][15] = 1000000)