Chapitre 24

Espaces euclidiens

Objectifs

- Définir les notions de produit scalaire, d'orthogonalité, de bases orthonormales.
- Définir les notions d'endomorphismes orthogonaux, de matrices orthogonales, étudier leurs propriétés.
- Étudier les endomorphismes orthogonaux en dimension 1, 2 et 3.

Sommaire

I)	Produit scalaire		
	1)	Définitions	1
	2)	Orthogonalité	2
	3)	Bases orthonormales	4
	4)	Projections orthogonales	4
	5)	Distance d'un vecteur à un s.e.v	5
II)	Endor	norphismes orthogonaux	6
	1)	definition	6
	2)	Matrices orthogonales	7
	3)	Espace vectoriel euclidien orienté	8
	4)	Produit mixte	9
	5)	Produit vectoriel en dimension 3	9
III)	Endor	norphismes orthogonaux en dimension 1, 2 et 3	10
	1)	En dimension 1	10
	2)	Dans le plan	10
	3)	En dimension 3	12
IV)	Exerci	ices	14

Dans tout le chapitre, E désigne un \mathbb{R} -espace vectoriel.

Produit scalaire I)

Définitions

DÉFINITION 24.1

Un produit scalaire sur E est une forme bilinéaire sur E, généralement notée (.|.), qui à tout couple de vecteurs (x, y) associe le réel (x|y), et qui vérifie :

- $\forall x, y \in E, (x|y) = (y|x)$ (symétrie).
- $\forall x \in E, (x|x) \ge 0$ (positive).
- $\forall x \in E, si(x|x) = 0, alors x = 0 (définie).$

Lorsque E est muni d'un produit scalaire (.|.), on dit que (E,(.|.)) est un espace euclidien s'il est de dimension finie, ou un espace pré-hilbertien sinon.

Exemples:

- Produit scalaire canonique de \mathbb{R}^n : $(x|y) = \sum_{i=1}^n x_i y_i$.
- $E = \mathscr{C}^0([a;b],\mathbb{R})$ et $\forall f,g \in E, (f|g) = \int_a^b f(t)g(t)dt$. E l'ensemble des fonctions continues sur \mathbb{R} et 2π -périodiques, on définit un produit scalaire sur E en posant :

$$\forall f, g \in E, (f|g) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) dt$$

- Pour $x, y \in \mathbb{R}^2$, $\varphi(x, y) = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$ est un produit scalaire sur \mathbb{R}^2 , mais pas $\psi(x, y) = x_1y_1 + x_2y_2 + x_2y_1 + 2x_2y_2$ $x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$.

THÉORÈME 24.1 (Inégalité de Cauchy-Schwarz)

 $\forall x, y \in E, (x|y)^2 \leq (x|x)(y|y).$

Preuve: $\forall \lambda \in \mathbb{R}, (x + \lambda y | x + \lambda y) \ge 0$, ce qui donne en développant : $\lambda^2(y|y) + 2\lambda(x|y) + (x|x) \ge 0$. Lorsque $(y|y) \neq 0$, alors le discriminant du trinôme en λ doit être négatif ou nul, ce qui donne l'inégalité.

Lorsque (y|y) = 0, alors y = 0 et l'inégalité est triviale.

THÉORÈME 24.2 (cas d'égalité)

 $\forall x, y \in E, (x|y)^2 = (x|x)(y|y) \iff (x,y) \text{ est liée.}$

Preuve: Celle-ci est simple et laissée en exercice.

DÉFINITION 24.2 (norme euclidienne)

Soit $x \in (E, (.|.))$, on pose $||x|| = \sqrt{(x|x)}$, c'est la norme euclidienne de x. Un vecteur de norme égale à 1 est dit unitaire.

Si x est non nul alors le vecteur $\frac{1}{\|x\|}x$ est unitaire.

Propriétés:

- $||x|| = 0 \iff x = 0.$
- $\forall \lambda \in \mathbb{R}, ||\lambda x|| = |\lambda|||x||.$
- $-\|x+y\| \le \|x\| + \|y\|$ (inégalité triangulaire).

Exemples:

- Soient $x, y \in E$ deux vecteurs non nuls, montrer que $||x + y|| = ||x|| + ||y|| \iff \exists \alpha > 0, x = \alpha y$.
- $-E=\mathbb{R}^n$, avec le produit scalaire canonique, l'inégalité de *Cauchy-Schwarz* s'écrit :

$$\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leqslant \left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}^{2}\right) \text{ et } \|x\| = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$$

 $-E = \mathscr{C}^0([a;b],\mathbb{R})$ avec le produit scalaire : $(f|g) = \int_a^b f(t)g(t)dt$, l'inégalité de Cauchy-Schwarz s'écrit : $\left(\int_a^b f(t)fg(t)dt\right)^2 \le \left(\int_a^b f^2\right)\left(\int_a^b g^2\right) \text{ et } \|f\| = \sqrt{\int_a^b f^2}.$

Relations entre le produit scalaire et la norme :

- $\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2(x|y).$
- $-\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$ (théorème de la médiane ou identité du parallélogramme).
- $-4(x|y) = ||x + y||^2 ||x y||^2$ (identité de polarisation).

Dans la suite, (E, (.|.)) désigne un espace euclidien.

Orthogonalité 2)

DÉFINITION 24.3

Soient $x, y \in E$, et soient F, G deux s.e.v de E, on dit que :

- x et y sont orthogonaux lorsque (x|y) = 0.
- F et G sont orthogonaux lorsque $\forall x \in F, \forall y \in G, (x|y) = 0$.

On appelle orthogonal de A (une partie de E), l'ensemble des vecteurs de E orthogonaux à tous les vecteurs de A, notation : $A^{\perp} = \{x \in E \mid \forall y \in A, (x|y) = 0\}$. On remarquera que dire que F et G sont orthogonaux équivaut à $F \subset G^{\perp}$, ou encore $G \subset F^{\perp}$.

Le seul vecteur orthogonal à tous les autres est le vecteur nul, i.e. $E^{\perp} = \{0\}$, car le produit scalaire est

THÉORÈME 24.3 (de Pythagore)

Deux vecteurs x et y sont orthogonaux ssi $||x + y||^2 = ||x||^2 + ||y||^2$.

√ THÉORÈME 24.4

Si F est un s.e.v de E, alors F^{\perp} est un s.e.v de E en somme directe avec F.

Preuve: Pour $y \in E$, on pose $f_y : E \to \mathbb{R}$ définie par $f_y(x) = (x|y)$, alors f_y est une forme linéaire sur E, et il est facile de voir que $F^{\perp} = \bigcap_{y \in F} \ker(f_y)$, ce qui prouve que F^{\perp} est un s.e.v de E. Si $x \in F \cap F^{\perp}$, alors on doit avoir (x|x) = 0, d'où x = 0.

Propriétés:

- Si F ⊂ G, alors G^{\perp} ⊂ F^{\perp} .
- $-F \subset (F^{\perp})^{\perp}.$ $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}.$

√ THÉORÈME 24.5

Si dim(E) = n et si F est un s.e.v de E de dimension p, alors dim $(F^{\perp}) = n - p$, on a donc :

$$E = F \oplus F^{\perp}$$
.

Preuve: On sait que $\dim(F \oplus F^{\perp}) \leq n$, d'où $\dim(F^{\perp}) \leq n - p$.

Soit $f: E \to \mathbb{R}^p$ l'application définie par $f(x) = ((e_1|x), \dots, (e_p|x))$ où $B = (e_1, \dots, e_p)$ désigne une base de F, alors il est facile de voir que f est linéaire et que $\ker(f) = F^{\perp}$. D'après le théorème du rang, on a $n = \dim(F^{\perp}) + \operatorname{rg}(f) \leq$ $\dim(F^{\perp}) + p$, ce qui donne $\dim(F^{\perp}) \ge n - p$, et donc $\dim(F^{\perp}) = n - p$.

Quelques conséquences :

- $-(F^{\perp})^{\perp}=F.$
- $-(F\cap G)^{\perp}=F^{\perp}+G^{\perp}.$

7-THÉORÈME 24.6

Soit $f: E \to \mathbb{R}$ une forme linéaire, alors il existe un unique vecteur $a \in E$ tel que $\forall x \in E, f(x) =$ (a|x).

Preuve: Pour l'existence : si f est nulle alors on peut prendre a = 0. Si f est non nulle, alors $\ker(f)$ est un hyperplan de E, donc $\ker(f)^{\perp}$ = Vect [u] est une droite vectorielle. Posons $f(u) = \lambda$ et prenons $a = \frac{\lambda}{\|u\|^2} u$. Il est facile de vérifier que pour tout $x \in E$, f(x) = (a|x).

Si b est un autre vecteur qui convient, alors $\forall x \in E, (a - b|x) = 0$, donc a - b = 0.

Bases orthonormales

Définition 24.4

Une famille $(x_1, ..., x_p)$ de E est dite orthonormale lorsque $\forall i, j \in [[1..p]], (e_i|e_j) = \delta_{ij}$. Cette famille est dite orthogonale lorsque $\forall i, j \in [[1..p]], i \neq j \Longrightarrow (e_i|e_j) = 0.$

THÉORÈME 24.7

Une famille orthogonale ne contenant pas le vecteur nul est libre. En particulier, une famille orthonormale est libre.

Preuve: Soit (e_1, \ldots, e_p) une famille orthogonale ne contenant pas le vecteur nul, si $\sum_{k=1}^{p} \lambda_k e_k = 0$, alors soit $i \in [[1..p]]$,

on a
$$(e_i|\sum_{k=1}^p \lambda_k e_k) = \sum_{k=1}^p \lambda_k (e_i|e_k) = \lambda_i ||e_i||^2 = 0$$
, ce qui entraîne $\lambda_i = 0$.

Cas particulier : si $\dim(E) = n$, alors une famille orthonormale de n vecteurs est une base de E, on dit que l'on a une **base orthonormale** (b.o.n en abrégé). Par exemple, la base canonique que \mathbb{R}^n est une base orthonormale pour le produit scalaire canonique.

🎧 - THÉORÈME 24.8

 $Si(e_1,\ldots,e_p)$ est une famille orthogonale, alors : $\|\sum_{k=1}^p e_i\|^2 = \sum_{i=1}^p \|e_i\|^2$.

Preuve: En effet, on a $\|\sum_{i=1}^{p} e_i\|^2 = \sum_{i=1}^{p} (e_i|e_j) = \sum_{i=1}^{p} \|e_i\|^2$.

THÉORÈME 24.9 (coordonnées dans une b.o.n)

Soit $\mathfrak{B} = (e_1, \dots, e_n)$ une b.o.n de E, alors $\forall x, y \in E$:

$$x = \sum_{i=1}^{n} (x|e_i)e_i \quad (x|y) = \sum_{i=1}^{n} x_i y_i \quad ||x||^2 = \sum_{i=1}^{n} x_i^2$$

avec $x_i = (x|e_i)$ et $y_i = (y|e_i)$.

Preuve: Soit Coord₂₅ $(x) = (\lambda_1, \dots, \lambda_n)$, on a $(x|e_k) = (\sum_{i=1}^n \lambda_i e_i | e_k) = \sum_{i=1}^n \lambda_i (e_i | e_k) = \lambda_k$. Pour les deux autres points, il suffit de développer le produit scalaire.

- ^ ^ THÉORÈME **24.10**

Il existe toujours des bases orthonormales.

Preuve: Par récurrence sur $n = \dim(E)$: pour n = 1, on a $E = \text{Vect}\left[e_1\right]$, une b.o.n de E est $\left(e_1'\right)$ avec $e_1' = \frac{e_1}{\|e_1\|}$.

Supposons le théorème vrai au rang n-1 $(n \ge 1)$, et soit e_1 un vecteur unitaire de E, soit $F = \text{Vect} \left[e_1 \right]^{\perp}$, alors Fest un s.e.v de dimension n-1, soit (e_2,\ldots,e_n) une b.o.n de F, il est facile de voir que (e_1,e_2,\ldots,e_n) est une b.o.n de E.

Projections orthogonales

4

ØDéfinition 24.5

Soit $p \in \mathcal{L}(E)$ une projection $(p \circ p = p)$, on dit que p est une projection orthogonale lorsque $\ker(p) = \ker(p - \mathrm{id})^{\perp}$. Si F est un s.e.v de E, la projection orthogonale sur F, notée p_F , est la projection sur F parallèlement à F^{\perp} .

Si F est un s.e.v de E, alors la projection orthogonale sur F^{\perp} est id $-p_F$.

[™]THÉORÈME 24.11

Si F est un s.e.v de E, et si (e_1, \ldots, e_p) est une b.o.n de F, alors : $\forall x \in E, p_F(x) = \sum_{i=1}^{p} (x|e_i)e_i$.

Preuve: Soit (e_{p+1}, \dots, e_n) une b.o.n de F^{\perp} , alors $\mathfrak{B} = (e_1, \dots, e_n)$ est une b.o.n de E, donc $x = \sum_{i=1}^{n} (x|e_i)e_i$, ce qui

donne $x = \sum_{i=1}^{P} (x|e_i)e_i + \sum_{i=n+1}^{n} (x|e_i)e_i$, la première somme désigne un vecteur de F, et la seconde un vecteur de F^{\perp} ,

$$\operatorname{donc} p_F(x) = \sum_{i=1}^p (x|e_i)e_i.$$

Exemple: Si D = Vect[u] est une droite vectorielle, alors $(e_1 = \frac{u}{\|u\|})$ est une b.o.n de D, donc $\forall x \in E, p_D(x) = (x|e_1)e_1$, c'est à dire : $p_D(x) = \frac{(x|u)}{\|u\|^2} . u$.

THÉORÈME 24.12 (procédé d'orthonormalisation de Schmidt 1)

Soit $(e_1, ..., e_n)$ une base de E, alors il existe une unique b.o.n $(v_1, ..., v_n)$ de E telle que :

$$\forall i \in [[1..n]], \begin{cases} \text{Vect} [e_1, \dots, e_i] = \text{Vect} [v_1, \dots, v_i] \\ (e_i | v_i) > 0 \end{cases}$$

Preuve: On pose $v_1 = \frac{e_1}{\|e_1\|}$, on a bien Vect $[e_1] = \text{Vect}[v_1]$ et $(e_1|v_1) > 0$.

Supposons les vecteurs v_1, \dots, v_i construits et vérifiant les conditions, on pose $e'_{i+1} = p_{F_i^{\perp}}(e_{i+1})$ où $F_i = \text{Vect}\left[v_1, \dots, v_i\right] = e^{-i(v_i + v_i)}$

Vect $[e_1, \dots, e_i]$, ce qui donne $e'_{i+1} = e_{i+1} - \sum_{k=1}^{\iota} (e_{i+1}|\nu_k)\nu_k$, ce vecteur e'_{i+1} est non nul et dans F_{i+1} , on pose ensuite $v_{i+1} = \frac{e'_{i+1}}{\|e'_{i+1}\|}$, il est facile de voir que Vect $[e_1, \dots, e_{i+1}] = \text{Vect}[v_1, \dots, v_{i+1}]$. D'autre part, $(e_{i+1}|v_{i+1}) = (e'_{i+1}|v_{i+1}) = (e'_$

On remarque qu'à chaque étape, il y a deux choix pour v_i , mais la condition $(e_i|v_i) > 0$ élimine une des deux possibilités, ce qui entraîne l'unicité, car on doit prendre e'_{i+1} dans $F_{i+1} \cap F_i^{\perp}$ qui est une droite vectorielle.

Exercice: Soit $E = \mathbb{R}^3$, muni du produit scalaire canonique, on pose $v_1 = (1, 1, 0)$, $v_2 = (1, 0, 1)$ et $v_3 = (0, 1, 1)$. Appliquer la méthode de Schmidt à la base (v_1, v_2, v_3) .

Réponse: On pose $e_1 = \frac{\nu_1}{\|\nu_1\|} = \frac{1}{\sqrt{2}}(1,1,0)$, puis $e_2' = \nu_2 - (\nu_2 \mid e_1) \cdot e_1 = (\frac{1}{2}, -\frac{1}{2}, 1)$ et $e_2 = \frac{e_2'}{\|e_2'\|} = \frac{1}{\sqrt{6}}(1,-1,2)$. Enfin, $e_3' = v_3 - (v_3 \mid e_1) \cdot e_1 - (v_3 \mid e_2) \cdot e_2 = \frac{2}{3}(-1, 1, 1)$ et $e_3 = \frac{e_3'}{\|e_3'\|} = \frac{1}{\sqrt{3}}(-1, 1, 1)$.

Distance d'un vecteur à un s.e.v

Soit *F* un s.e.v de *E* et soit $x \in E$, pour tout vecteur $y \in F$, on a $||x - y||^2 = ||(p_F(x) - y) + p_{F^{\perp}}(x)||^2 = ||p_F(x) - y||^2 + ||p_{F^{\perp}}(x)||^2$, on voit donc que $\forall y \in E, ||x - y||^2 \ge ||p_{F^{\perp}}(x)||^2$, et que cette valeur est un minimum atteint uniquement pour $y = p_F(x)$, d'où le théorème :

^{1.} SCHMIDT Erhard (1876 - 1959): mathématicien allemand.

<mark>જ</mark>-THÉORÈME **24.13**

Soit F un s.e.v de E, pour $x \in E$, l'ensemble $\{\|x - y\| / y \in F\}$ admet un minimum, celui-ci est atteint uniquement pour $y = p_F(x)$, et vaut $\|p_{F^{\perp}}(x)\|$. Ce minimum est appelé distance de x à F et noté d(x,F): $d(x,F) = \min_{y \in F} \|x - y\| = \|p_{F^{\perp}}(x)\| = \|x - p_F(x)\|$.

Exemples:

- Distance d'un vecteur à une droite : Soit D = Vect[u] une droite vectorielle, on sait que $p_D(x) = \frac{(x|u)}{\|u\|^2}u$, d'où $d(x,D) = \sqrt{\|x p_D(x)\|^2} = \sqrt{\|x\|^2 \frac{(x|u)^2}{\|u\|^2}}.$
- Distance d'un vecteur à un hyperplan : Soit H un hyperplan de E, alors H^{\perp} = Vect [u] est une droite vectorielle, d'où $d(x,H) = \|p_D(x)\| = \frac{\|(x|u)\|}{\|u\|}$.

II) Endomorphismes orthogonaux

1) definition

DÉFINITION 24.6

Une isométrie vectorielle de E (ou endomorphisme orthogonal de E) est une application $f \in \mathcal{L}(E)$ telle que $\forall x \in E, ||f(x)|| = ||x||$ (on dit que f conserve la norme), l'ensemble des endomorphismes orthogonaux de E est noté O(E).

Exemple: id_E , h_{-1} sont des endomorphismes orthogonaux de E.

THÉORÈME 24.14

Un endomorphisme f de E est une isométrie ssi f conserve le produit scalaire, c'est à dire : $\forall x, y \in E, (f(x)|f(y)) = (x|y).$

Preuve: Si *f* conserve le produit scalaire, il est clair que *f* conserve la norme, et donc *f* ∈ O(*E*). Réciproquement, si *f* ∈ O(*E*) : soient *x*, *y* ∈ *E*, $||f(x) + f(y)||^2 = ||x||^2 + ||y||^2 + 2(f(x)|f(y))$, mais on a aussi $||f(x) + f(y)||^2 = ||f(x + y)||^2 = ||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y)$, d'où (f(x)|f(y)) = (x|y).

THÉORÈME 24.15

O(E) est un groupe pour la loi \circ , plus précisément c'est un sous-groupe de GL(E), on l'appelle : groupe orthogonal de E.

Preuve: Si $f \in O(E)$, alors si $x \in \ker(f)$, on a ||f(x)|| = 0 = ||x||, d'où x = 0, donc f est injective, comme E est de dimension finie, on a bien $f \in GL(E)$. D'autre part, $\mathrm{id}_E \in O(E)$, soient $f, g \in O(E)$, ||f(g(x))|| = ||g(x)|| = ||x||, donc $f \circ g \in O(E)$, $||x|| = ||f(f^{-1}(x))|| = ||f^{-1}(x)||$, donc $f^{-1} \in O(E)$.

DÉFINITION 24.7 (symétrie orthogonale)

Soient $s \in \mathcal{L}(E)$ une symétrie ($s^2 = \mathrm{id}_E$), soit $F = \ker(s - \mathrm{id})$ et $G = \ker(s + \mathrm{id})$, alors on sait que s est la symétrie par rapport à F et parallèlement à G. On dit que s est une symétrie orthogonale lorsque $F = G^{\perp}$, on parle alors de la symétrie orthogonale par rapport à F (notée S_F).

THÉORÈME 24.16

Une symétrie orthogonale est une isométrie vectorielle.

Preuve: Soit s_F la symétrie orthogonale par rapport au s.e.v F, soit $p = \frac{1}{2}(s+id)$, alors on sait que p est la projection sur F parallèlement à $\ker(s+\mathrm{id}) = F^{\perp}$, donc p est une projection orthogonale. Soit $x \in E$, $||s_F(x)||^2 = ||p_F(x) - p_{F^{\perp}}(x)||^2 = ||p_F(x)||^2 + ||p_{F^{\perp}}(x)||^2 +$

Une projection orthogonale qui n'est pas l'identité, n'est pas une isométrie (elle n'est pas bijective).

DÉFINITION 24.8 (réflexion)

Une réflexion est une symétrie orthogonale par rapport à un hyperplan.

Exercice: Soient $u, v \in E$ deux vecteurs non nuls, de même norme et distincts. Montrer qu'il existe une unique réflexion qui échange u et v.

Réponse: **Réponse**: soit w = u - v, soit $H = \text{Vect}[w]^{\perp}$ et $s = s_H$, on a $(u - v|u + v) = ||u||^2 - ||v||^2 = 0$, donc $u+v\in H$, on a donc s(u-v)=v-u et s(u+v)=u+v, la résolution de ce système donne s(u)=v et s(v)=u. Si s' est une autre réflexion qui convient, alors on doit avoir s'(u-v)=v-u, donc $\ker(s'+\mathrm{id})=\mathrm{Vect}[w]$ et par conséquent, s' = s.

Remarque : l'hyperplan H s'appelle **hyperplan médiateur** de [u; v], car si $x \in H$, alors ||u - x|| = ||s(v) - s(x)|| =||v - x||.

√ THÉORÈME 24.17

Soit $f \in \mathcal{L}(E)$, alors $f \in O(E) \iff f$ transforme une b.o.n en une b.o.n de E.

Preuve: Soit $\mathfrak{B} = (e_1, \dots, e_n)$ une b.o.n de E, on a $(e_i|e_j) = \delta_{i,j}$. Si $f \in O(E)$, alors $(f(e_i)|f(e_k)) = (e_i|e_j) = \delta_{i,j}$, donc $\mathfrak{B}' = (f(e_1), \dots, f(e_n))$ est une b.o.n de E.

Réciproquement, si $\mathfrak{B}' = (f(e_1), \dots, f(e_n))$ est une b.o.n de E, alors pour $x \in E$, $||f(x)||^2 = ||\sum_{i=1}^n x_i f(e_i)||^2 = ||f(x)||^2$

$$\sum_{i=1}^{n} x_i^2 = ||x||^2, \, \text{donc} \, f \in O(E).$$

Matrices orthogonales

THÉORÈME 24.18

Soit $f \in \mathcal{L}(E)$, soit \mathfrak{B} une base orthonornale de E et soit $A = \max_{\mathfrak{D}} (f) \in \mathcal{M}_n(\mathbb{R})$, alors :

$$f \in O(E) \iff {}^{\mathsf{t}}\!A \times A = I_n.$$

Preuve: Soit $\mathfrak{B} = (e_1, ..., e_n)$, on a $[{}^t\!A \times A]_{i,j} = \sum_{k=1}^n a_{k,i} a_{k,j} = (f(e_i)|f(e_j)) = \delta_{i,j}$, donc ${}^t\!A \times A = I_n$.

DÉFINITION 24.9

Soit $A \in \mathcal{M}_n(\mathbb{R})$, on dit que A est une matrice orthogonale lorsque ${}^t\!A \times A = I_n$, l'ensemble des matrices orthogonales de taille n est noté $O_n(\mathbb{R})$.

THÉORÈME 24.19 (Caractérisations des matrices orthogonales)

Soit $A \in \mathcal{M}_n(\mathbb{R})$, les assertions suivantes sont équivalentes :

- $-A \in O_n(\mathbb{R}).$
- A est inversible et $A^{-1} = {}^{t}A$.
- Les vecteurs colonnes de A forment une b.o.n de \mathbb{R}^n .

Preuve: On sait que $[{}^t\!A \times A]_{i,j} = \sum_{k=1}^n a_{k,i} a_{k,j} = (c_i(A)|c_j(A))$ (produit scalaire canonique dans \mathbb{R}^n). Donc le troisième point équivaut $[{}^{t}A \times A]_{i,j} = \delta_{i,j}$.

Conséquences $O_n(\mathbb{R})$ est un groupe multiplicatif, c'est en fait un sous-groupe de $(GL_n(\mathbb{R}), \times)$, que l'on appelle groupe orthogonal de type n sur \mathbb{R} .

THÉORÈME 24.20

Si $f \in O(E)$, alors $\det(f) = \pm 1$. Si $A \in O_n(\mathbb{R})$ alors $\det(A) = \pm 1$.

Preuve: Si A est la matrice de f dans une base orthonormale, alors $A \in O_n(\mathbb{R})$ donc $A \times A = I_n$, on en déduit que $\det({}^{t}A \times A) = 1 = \det(A)^{2}$, et donc $\det(A) = \pm 1$.

DÉFINITION 24.10

L'application det : $(O(E), \circ) \rightarrow (\{\pm 1\}, \times)$ est un morphisme de groupes. Son noyau est donc un sous-groupe de O(E) que l'on appelle **groupe des rotations** et que l'on note SO(E) : **groupe spécial orthogonal de** E (parfois noté $O^+(E)$). On a donc :

$$SO(E) = \{ f \in O(E) / \det(f) = 1 \}.$$

L'ensemble des matrices orthogonales de déterminant égal à 1 est un sous-groupe de $O_n(\mathbb{R})$ que l'on note $SO_n(\mathbb{R})$: groupe spécial orthogonal de type n sur \mathbb{R} .

Exemples:

 $A \in O_4(\mathbb{R})$, on a det(A) = 1, donc A est la matrice d'une rotation.

- Une réflexion n'est pas dans SO(E), en effet, soit s la réflexion par rapport à un hyperplan H, soit e_n un vecteur unitaire de la droite H^{\perp} , et soit (e_1, \dots, e_{n-1}) une b.o.n de H, alors $\mathfrak{B} = (e_1, \dots, e_n)$ est une b.o.n de E et

$$\max_{\mathfrak{B}}(s) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & 1 & 0 \\ 0 & \cdots & 0 & -1 \end{pmatrix}, \text{ on voit donc que det}(s) = -1.$$

Composée d'endomorphismes orthogonaux : en raisonnant sur le déterminant, on obtient :

- La composée de deux rotations est une rotation.
- La composée d'une rotation et d'une isométrie négative (det = -1) est une isométrie négative.
- La composée de deux isométries négatives est une rotation.

it $f \in O(E)$, soit F un s.e.v de E, montrer que si F est stable par f, alors F^{\perp} aussi.

3) Espace vectoriel euclidien orienté

Soit (E,(.|.)) un espace euclidien orienté.

THÉORÈME 24.21 (caractérisation des rotations)

Un endomorphisme f de E est une rotation ssi f transforme une b.o.n.d en une b.o.n.d (on dit que f conserve l'orientation).

CFradin Patrick - http://mpsi.tuxfamily.org

Preuve: Si $f \in SO(E)$: soit $\mathfrak{B} = (e_1, \dots, e_n)$ une b.o.n.d de E, on sait que f transforme \mathfrak{B} en une b.o.n de $E, \mathfrak{B}' = (f(e_1), \dots, f(e_n))$, le déterminant de la matrice de passage est le déterminant de f qui vaut 1, donc \mathfrak{B}' est une base directe.

Réciproquement : si f transforme une b.o.n.d \mathfrak{B} en une b.o.n.d \mathfrak{B}' , alors on sait que $f \in O(E)$, le déterminant de f vaut ± 1 , or le déterminant de f est le déterminant de la matrice de passage de \mathfrak{B} à \mathfrak{B}' et celui-ci est strictement positif, donc det(f) = 1, *i.e.* f est une rotation.

4) Produit mixte

Soit \mathfrak{B} une b.o.n.d de E, soit \mathfrak{B}' une autre base orthonormale de E, alors :

- $Si \mathfrak{B}'$ est directe, alors $det_{\mathfrak{B}'} = det_{\mathfrak{B}}$.
- $Si \mathfrak{B}'$ est indirecte, alors $det_{\mathfrak{B}'} = -det_{\mathfrak{B}}$.

Preuve: Si \mathfrak{B}' est indirecte, alors la matrice de passage de \mathfrak{B} à \mathfrak{B}' a un déterminant strictement négatif, mais cette matrice est une matrice orthogonale, donc son déterminant vaut -1. Or on a la relation $\det_{\mathfrak{B}} = \det_{\mathfrak{B}}(\mathfrak{B}')\det_{\mathfrak{B}'}$, et $\operatorname{donc} \operatorname{det}_{\mathfrak{B}} = -\operatorname{det}_{\mathfrak{B}'}.$

L'espace vectoriel E est euclidien, orienté et de dimension n.

QDÉFINITION 24.11

Soit $\mathfrak{B} = (e_1, \dots, e_n)$ une b.o.n.d de E, soit (x_1, \dots, x_n) une famille de vecteurs de E. On appelle **produit mixe des vecteurs** $x_1, ..., x_n$, le réel noté $[x_1, ..., x_n]$ et défini par : $[x_1, ..., x_n]$ = $\det_{\mathfrak{B}}(x_1,\ldots,x_n)$. D'après le théorème précédent, ce nombre ne dépend pas de la b.o.n.d choisie.

Le produit mixte étant un déterminant, il hérite des propriétés de ce dernier.

Exemple: En dimension deux : soit $\mathfrak{B} = (u, v)$ une b.o.n.d de E, E peut être identifié à C. Soient $x, y \in E \setminus \{0\}$, alors $x = ||x||(\cos(\theta)u + \sin(\theta)v)$, et $y = ||y||(\cos(\theta')u + \sin(\theta')v)$, d'où $(x|y) = ||x|||y||\cos(\theta' - \theta)$, ou encore $(x|y) = ||x|| ||y|| \cos(\alpha)$ où $\alpha = (x, y)$ (mod 2π). De même, $[x, y] = ||x|| ||y|| \sin(\alpha)$, donc l'angle α entre les vecteurs x et y dans le plan orienté est défini par :

$$\cos(\alpha) = \frac{(x|y)}{\|x\| \|y\|}$$
 et $\sin(\alpha) = \frac{[x,y]}{\|x\| \|y\|}$.

5) Produit vectoriel en dimension 3

(E,(.|.)) est un espace vectoriel euclidien orienté de dimension 3.

DÉFINITION 24.12

Soit $u, v \in E$, l'application $f: E \to \mathbb{R}$ définie par f(x) = [u, v, x] est une forme linéaire sur E, donc il existe un unique vecteur $a \in E$ tel que $\forall x \in E, [u, v, x] = (a|x)$. Par définition, ce vecteur a est appelé **produit vectoriel de** u **et** v, on le note $u \wedge v$.

Propriétés du produit vectoriel

 $-u \wedge v = 0$ ssi (u, v) est liée.

Preuve: Si (u, v) est liée, alors $\forall x \in E, (u, v, x)$ est liée, donc [u, v, x] = 0, et par conséquent, $u \land v = 0$. Si (u, v) est libre, alors il existe $x \in E$ tel que (u, v, x) est une base de E, donc $[u, v, x] \neq 0$, ce qui entraîne $u \wedge v \neq 0$.

 $-u \wedge v$ est orthogonal à u et v.

Preuve: $(u|u \wedge v) = [u, v, u] = 0$ et $(u \wedge v|v) = [u, v, v] = 0$.

- Si (u, v) est libre, alors $(u, v, u \wedge v)$ est une base directe de E. **Preuve**: Soit P = Vect[u, v], alors $(u \land v)$ est une base de la droite P^{\perp} , donc $(u, v, u \land v)$ est une base de E. Soit $\mathfrak B$ une b.o.n.d de E, alors le déterminant de la famille $(u, v, u \wedge v)$ dans la base $\mathfrak B$ est le produit mixte $[u, v, u \wedge v] = ||u \wedge v||^2 > 0$, cette famille est donc bien une base directe.
- Le produit vectoriel est bilinéaire et antisymétrique.
- $||u \wedge v||^2 = ||u||^2 ||v||^2 (u|v)^2.$

Preuve: Soit
$$\mathfrak{B} = (i, j, k)$$
 une b.o.n.d de E , $[u, v, u \wedge v] = \det\begin{pmatrix} (u|i) & (v|i) & (u \wedge v|i) \\ (u|j) & (v|j) & (u \wedge v|j) \\ (u|k) & (v|k) & (u \wedge v|k) \end{pmatrix}$, soit A cette matrice, le calcul de ${}^t\!A \times A$ donne ${}^t\!A \times A = \begin{pmatrix} ||u||^2 & (u|v) & 0 \\ (u|v) & ||v||^2 & 0 \\ 0 & 0 & ||u \wedge v||^2 \end{pmatrix}$, on obtient alors $\det({}^t\!A \times A) = \det(A)^2 = \|u \wedge v\|^2 \left(\|u\|^2 \|v\|^2 - (u|v)^2 \right)$, mais ceci est égal à $[u, v, u \wedge v]^2 = \|u \wedge v\|^4$. Si la famille $[u, v]$ est liée alors la

 $||u \wedge v||^2 (||u||^2 ||v||^2 - (u|v)^2)$, mais ceci est égal à $[u, v, u \wedge v]^2 = ||u \wedge v||^4$. Si la famille (u, v) est liée alors la formule est évidente, sinon on peut simplifier par $||u \wedge v||^2$ dans l'expression ci-dessus, ce qui donne la formule. On remarquera que si u et v sont unitaires orthogonaux, alors $(u, v, u \land v)$ est une b.o.n.d de E.

Lorsque (u, v) est libre, alors d'après l'inégalité de *Cauchy-Schwarz* $\frac{(u|v)}{\|u\|\|v\|} \in [-1; 1]$, donc il existe un unique réel $\theta \in [0; \pi]$ tel que $(u|v) = ||u|| ||v|| \cos(\theta)$, on obtient alors $||u \wedge v|| = ||u|| ||v|| \sin(\theta)$. Ce réel θ est appelé **mesure de l'angle** (u, v), c'est un élément de $[0; \pi]$.

- Coordonnées de $u \wedge v$ dans une b.o.n.d : soit (i, j, k) une b.o.n.d de E, alors :

$$u \wedge v = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} k.$$

Preuve: La coordonnée sur i de $u \wedge v$ est $(i|u \wedge v) = \begin{bmatrix} i, u, v \end{bmatrix} = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix}$. Le raisonnement est le même pour les deux autres. On retient ceci en disant c'est le développement suivant la troisième colonne du

« déterminant »
$$\begin{vmatrix} u_1 & v_1 & i \\ u_2 & v_2 & j \\ u_3 & v_3 & k \end{vmatrix}$$
. On remarquera que $i \land j = k, i \land k = -j$ et $j \land k = i$.

- Formule du double produit vectoriel : $\forall x, y, z \in E, x \land (y \land z) = (x|z)y - (x|y)z$.

Preuve: On choisit (i, j, k) une b.o.n telle que $x = \alpha i$, $y = \beta i + \gamma j$ et $z = \alpha i + b j + c k$, on a alors: $y \wedge z = b\beta k - c\beta j - a\gamma k + c\gamma i$ d'où $x \wedge (y \wedge z) = -b\alpha\beta j - c\alpha\beta k + a\alpha\gamma j = [a\alpha\gamma - b\alpha\beta]j - c\alpha\beta k$. D'autre part, $(x|z) = a\alpha$ et $(x|y) = \alpha\beta$, donc on a $(x|z)y - (x|y)z = a\alpha\beta i + a\alpha\gamma j - a\alpha\beta i - \alpha\beta bj - \alpha\beta ck$ ce qui donne $[a\alpha\gamma - b\beta\alpha]j - c\alpha\beta k$, ce qui donne l'égalité.

Exercice: Soit u un vecteur unitaire de E, montrer que pour $x \in E$, $(u \wedge x) \wedge u$ est le projeté orthogonal de x sur le plan $P = \text{Vect} [u]^{\perp}$.

Réponse: Le projeté orthogonal de x sur la droite Vect [u] est (x|u)u, donc le projeté orthogonal de x sur P est x - (x|u)u qui est égal à $(u \wedge x) \wedge u$ d'après la formule du double produit vectoriel.

Endomorphismes orthogonaux en dimension 1, 2 et 3 III)

1) En dimension 1

Si $\dim(E) = 1$ et si $f \in O(E)$, alors f est une homothétie de rapport $\lambda \in \mathbb{R}$, mais f conserve la norme donc $\forall x \in E, ||\lambda x|| = ||x||$, ce qui donne en prenant $x \neq 0, |\lambda| = 1$, d'où $O(E) = \{\pm id_E\}$.

2) Dans le plan

Soit E un plan euclidien orienté et soit $f \in O(E)$, on effectue la classification suivant les invariants de $f: F = \ker(f - \mathrm{id}_F).$

- $-\dim(F) = 2$: alors $f = \mathrm{id} \in \mathrm{SO}(E)$.
- $-\dim(F) = 1$: alors F = Vect[u] est une droite vectorielle (avec u unitaire) stable par f, donc F^{\perp} est une droite vectorielle stable par f également et sur laquelle le seul vecteur invariant est 0, donc la

restriction de f à F^{\perp} est $-\mathrm{id}_{F^{\perp}}$. Soit ν un vecteur unitaire de F^{\perp} , alors $\mathfrak{B}=(u,\nu)$ est une b.o.n de Eet on a $\max_{\mathfrak{B}}(f) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, donc f est **la réflexion d'axe** F.

Soit $\mathfrak{B}' = (i, j)$ une b.o.n.d, il existe un réel θ tel que $u = \cos(\theta/2)i + \sin(\theta/2)j$, on prend alors $v = -\sin(\theta/2)i + \cos(\theta/2)j$, la matrice de passage de \mathfrak{B}' à \mathfrak{B} est $P = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix}$, et

la matrice de f dans la base \mathfrak{B}' est $\max_{\mathfrak{B}'}(f) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$. - $\dim(F) = 0$, seul le vecteur nul est invariant par f, soit $\mathfrak{B} = (i, j)$ une b.o.n.d de E, alors $\max_{\mathfrak{B}}(f) = \lim_{\mathfrak{B}} (f) = \lim_{$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ avec} \begin{cases} a^2 + c^2 &= 1 \\ b^2 + d^2 &= 1, \text{ avec les complexes } z = a + ic \text{ et } z' = b + id, \text{ on a } |z| = |z'| = 1, \\ ab + cd &= 0 \end{cases}$$

$$\text{donc } z = e^{i\theta}, z' = e^{i\theta'}, \text{ avec Re}(z\overline{z'}) = ab + cd = 0, \text{ donc } \cos(\theta - \theta') = 0, \text{ d'où } \theta' = \theta + \pi/2 + k\pi, \\ \text{ce qui donne} \begin{cases} b = \cos(\theta') = -\sin(\theta) \\ d = \sin(\theta') = \cos(\theta) \end{cases}, \text{ ou bien } \begin{cases} b = \cos(\theta') = \sin(\theta) \\ d = \sin(\theta') = -\cos(\theta) \end{cases}, \text{ mais le second cas} \end{cases}$$

correspond à une réflexion d'après l'étude précédente, il reste donc : $\max_{\mathfrak{B}}(f) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$, cette matrice est notée $R(\theta)$, c'est la matrice **d'une rotation**.

Soit u un vecteur non nul, et soit v = f(u), notons $X = \begin{pmatrix} a \\ b \end{pmatrix}$ les coordonnées de x dans la base \mathfrak{B} , alors les coordonnées de v sont $X' = \begin{pmatrix} a\cos(\theta) - b\sin(\theta) \\ a\sin(\theta) + b\cos(\theta) \end{pmatrix}$, d'où $(u|v) = (a^2 + b^2)\cos(\theta) = a\sin(\theta) + b\cos(\theta)$

 $||u|||f(u)||\cos(\theta)$, et d'autre part $[u,v] = (a^2 + b^2)\sin(\theta) = ||u|||f(u)||\sin(\theta)$, donc θ est l'angle orienté des deux vecteurs u et v. On dit que f est la rotation d'angle θ . On remarquera que la matrice de f est la même dans toutes les b.o.n.d de E.

→ SO(E) = {
$$f \in O(E) / \exists \theta \in \mathbb{R}, \max_{\mathfrak{R}} (f) = R(\theta)$$
}, où \mathfrak{B} est une b.o.n.d quelconque de E

$$\rightarrow O^{-}(E) = \{ f \in O(E) / \exists \theta \in \mathbb{R}, \max_{\mathfrak{B}} (f) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \},$$

où \mathfrak{B} est une b.o.n.d quelconque de E. Ce sont des réflexions où $u = \cos(\theta/2)i + \sin(\theta/2)j$.

$$\rightarrow SO_2(\mathbb{R}) = \{R(\theta) / \theta \in \mathbb{R}\} \text{ et } O_2^-(\mathbb{R}) = \{ \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} / \theta \in \mathbb{R} \}$$

FIGURE 24.1: Réflexion et rotation

Propriété: L'application $R: \mathbb{R} \to SO_2(\mathbb{R})$ définie par $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ est un morphisme de groupes surjectif. En particulier, on a $R(0) = I_2$ et $\forall \theta, \theta' \in \mathbb{R}, R(\theta + \theta') = R(\theta) \times R(\theta')$, d'où $R(\theta)^{-1} = R(-\theta)$.

`ó-THÉORÈME **24.23**

Le groupe des rotations, $(SO(E), \circ)$, est commutatif.

Composée de deux réflexions : Soit $\mathfrak{B} = (i, j)$ une b.o.n.d de E, soit s la réflexion d'axe Vect [u] et s' la réflexion d'axe Vect [u'] avec $u = \cos(\theta/2)i + \sin(\theta/2)j$ et $u' = \cos(\theta'/2)i + \sin(\theta'/2)j$. La matrice de $s \circ s'$ dans la base \mathfrak{B} est la matrice $A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \times \begin{pmatrix} \cos(\theta') & \sin(\theta') \\ \sin(\theta') & -\cos(\theta') \end{pmatrix} = R(\theta - \theta')$, donc $s \circ s'$ est la rotation d'angle $\theta - \theta' = 2(u', u) \pmod{2\pi}$. Ce calcul montre en même temps, qu'une rotation peut s'écrire comme la composée de deux réflexions dont une est arbitraire.

3) En dimension 3

Soit E une espace euclidien orienté de dimension 3, et soit $f \in O(E)$, la classification se fait suivant la dimension de $F = \ker(f - \mathrm{id}_F)$.

- dim(F) = 3: alors $f = id_E$, c'est une rotation.
- dim(F) = 2, alors F est un plan stable par f, donc F^{\perp} = Vect[u] (avec u unitaire) est une droite stable par f sur laquelle le seul vecteur invariant est 0, donc la restriction de f à F^{\perp} est −id $_{F^{\perp}}$, d'où f(u) = -u, f est donc la réflexion par rapport au plan F, et $f \in O^{-}(E)$.

Soit $x \in E$, le projeté orthogonal de x sur F est $(u \wedge x) \wedge u$ et son projeté sur F^{\perp} est (x|u)u, donc $x = (x|u)u + (u \wedge x) \wedge u$, on en déduit :

$$\forall x \in E, f(x) = -(x|u)u + (u \land x) \land u).$$

C'est l'expression vectorielle de la réflexion par rapport au plan Vect $[u]^{\perp}$.

- dim(F) = 1 : alors F = Vect[u] est une droite vectorielle stable par f (avec u unitaire), donc F^{\perp} est un plan stable par f sur lequel le seul vecteur invariant est 0, donc la restriction de f à F^{\perp} est une rotation. Soit (v, w) une b.o.n.d de F^{\perp} orienté par u, alors $\mathfrak{B} = (u, v, w)$ est une b.o.n.d de

$$E$$
, et la matrice de f dans la base \mathfrak{B} est : $\max_{\mathfrak{B}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$. Le déterminant de

cette matrice vaut 1, donc f est une rotation, on dit que f est la rotation d'axe Vect[u] et d'angle θ dans le plan $Vect[u]^{\perp}$ orienté par u. Soit $x \in E$, le projeté orthogonal de x sur F est (x|u)u et son projeté sur F^{\perp} est $(u \wedge x) \wedge u = (x|v)v + (x|w)w$, l'image de ce dernier vecteur dans le plan F^{\perp} par la rotation est : $(x|v)[\cos(\theta)v + \sin(\theta)w] + (x|w)[-\sin(\theta)v + \cos(\theta)w]$, c'est à dire $\cos(\theta)[(x|v)v + (x|w)w] + \sin(\theta)[(x|v)w - (x|w)v]$, ce qui donne $\cos(\theta)(u \wedge x) \wedge u + \sin(\theta)x \wedge (w \wedge v)$, ou encore : $\cos(\theta)(u \wedge x) \wedge u + \sin(\theta)u \wedge x$. Finalement :

$$\forall x \in E, f(x) = (x|u)u + \cos(\theta)(u \land x) \land u + \sin(\theta)u \land x.$$

C'est l'expression vectorielle de la rotation f. On remarquera que $\operatorname{tr}(f) = 1 + 2\cos(\theta)$, et si x est un vecteur unitaire orthogonal à u, alors $x \wedge f(x) = \sin(\theta)u$, ce qui permet de déterminer l'angle de la rotation.

- dim(F) = 0 : alors (on admet que) f^2 est une rotation d'axe Vect [y], soit x = f(y) - y on a $x \ne 0$ et f(x) = -x, donc il existe un vecteur unitaire u tel que f(u) = -u, soit D = Vect[u], alors D^{\perp} est

un plan stable par f sur lequel seul le vecteur nul est invariant, donc la restriction de f à D^{\perp} est une rotation, soit (v, w) une b.o.n.d de D^{\perp} orienté par u, alors $\mathfrak{B} = (u, v, w)$ est une b.o.n.d de E et :

$$\max_{\mathfrak{B}}(f) = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos(\theta) & -\sin(\theta)\\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix},$$

le déterminant de cette matrice vaut -1 donc $f \in O^-(E)$. Soit s la réflexion par rapport au plan D^\perp et r la rotation d'axe D = Vect[u] et d'angle θ , il est facile de vérifier que $f = s \circ r = r \circ s$. D'autre part, pour tout vecteur $x \in E$:

$$f(x) = -(x|u)u + \cos(\theta)(u \wedge x) \wedge u + \sin(\theta)u \wedge x.$$

C'est l'expression vectorielle de f. On remarquera que $\operatorname{tr}(f) = -1 + 2\cos(\theta)$, et que si x est un vecteur unitaire orthogonal à u, alors $x \wedge f(x) = \sin(\theta)u$, ce qui permet de déterminer l'angle θ .

En résumé:

$$\rightarrow SO(E) = \{ f \in O(E) / \exists \mathfrak{B}, \text{ b.o.n.d}, \exists \theta \in \mathbb{R}, \max_{\mathfrak{B}} (f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \}$$

(les invariants forment une droite vectorielle si $f \neq id_E$)

 \rightarrow Si $\det(f) = -1$, alors soit f est une réflexion (un plan invariant), soit f est la composée commutative entre une rotation d'axe $\mathrm{Vect}\,[u]$ et une réflexion par rapport au plan $\mathrm{Vect}\,[u]^\perp$.

FIGURE 24.2: réflexion, rotation, et composée commutative

7-THÉORÈME **24.24**

Toute rotation peut s'écrire comme produit de deux réflexions.

Preuve: Si f est une rotation d'axe D = Vect[u], alors la restriction de f au plan D^{\perp} est une rotation (plane) qui peut donc s'écrire comme composée de deux réflexions du plan D^{\perp} , le résultat en découle.

IV) Exercices

★Exercice 24.1

Soit $\mathfrak{B} = (i, j, k)$ la base canonique de \mathbb{R}^3 , dans les cas suivants, dire si φ est un produit scalaire, et si c'est le cas, appliquer la méthode de *Schmidt* à \mathfrak{B} :

a)
$$\varphi(x,y) = \sum_{i=1}^{3} (x_i^2 + y_i^2).$$

b)
$$\varphi(x,y) = x_1y_1 - x_2y_2 + x_3y_3$$
.

c)
$$\varphi(x,y) = (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$
.

★Exercice 24.2

Soit $\mathfrak{B} = (i, j, k)$ une b.o.n de E, soient $v_1(1, 1, 2), v_2(1, 2, -2)$ et $v_3(5, -4, 0)$ trois vecteurs de E. Montrer que $\mathfrak{B}' = (v_1, v_2, v_3)$ est une base de E, et appliquer à \mathfrak{B}' la méthode de *Schmidt*.

★Exercice 24.3

Soit $E = \mathcal{M}_n(\mathbb{R})$, on pose pour $A, B \in E$, $\varphi(A, B) = \operatorname{tr}({}^t\!A \times B)$.

- a) Montrer que φ est un produit scalaire sur E. La base canonique de E est -elle orthonormale? Comment s'écrit l'inégalité de *Cauchy-Schwarz*? Le cas d'égalité?
- b) Soit $D = \text{Vect}[I_n]$, pour $A \in E$, calculer la distance de A à D. En déduire une condition nécessaire et suffisante pour que $A \in D$ à l'aide de la trace.

★Exercice 24.4

Soit E un espace euclidien de dimension 5, soit $\mathfrak B$ une b.o.n de E et soient $v_1(1,0,0,1,-2)$, $v_2(2,0,1,0,2)$ et $v_3(0,1,2,0,1)$ trois vecteurs de E. On pose $F = \text{Vect}\left[v_1,v_2,v_3\right]$, déterminer une b.o.n de F^{\perp} .

★Exercice 24.5

Soit E un espace euclidien et soit $f \in \mathcal{L}(E)$ tel que $\forall x \in E, (x|f(x)) = 0$. Montrer que $\ker(f)$ et $\operatorname{Im}(f)$ sont supplémentaires orthogonaux.

★Exercice 24.6

Soit f un endomorphisme d'un espace euclidien E, tel que $\forall x \in E, ||f(x)|| \le ||x||$. Montrer que $\ker(f - \mathrm{id}_E)$ et $\mathrm{Im}(f - \mathrm{id}_E)$ ont supplémentaires.

Application : soit $p \in \mathcal{L}(E)$ une projection, montrer que p est une projection orthogonale ssi $\forall x \in E, ||p(x)|| \leq ||x||$.

★Exercice 24.7

Soit $\mathfrak{B} = (e_1, \dots, e_p)$ une famille libre de p vecteurs dans un espace euclidien E, on suppose que $\forall x \in E, ||x||^2 = \sum_{i=1}^p (x|e_i)^2$.

- a) Montrer que Vect $[e_1, \dots, e_p]^{\perp} = \{0\}$, en déduire que \mathfrak{B} est une base de E.
- b) Soient $x, y \in E$, montrer que $(x|y) = \sum_{i=1}^{p} (x|e_i)(y|e_i)$.
- c) Soit $x \in E$ et soit $y = \sum_{i=1}^{p} (x|e_i)e_i$. Montrer que $||x||^2 = ||y||^2 = (x|y)$. En déduire que x = y, puis que \mathfrak{B} est orthonormale.

★Exercice 24.8

Soit E un espace euclidien, pour tout s.e.v F de E, on note p_F la projection orthogonale sur F.

- a) Soient F et G deux s.e.v de E, montrer que $p_F \circ p_G = 0$ ssi F et G sont orthogonaux.
- b) Montrer que $p_{F+G} = p_F + p_G$ ssi F et G sont orthogonaux.
- c) Montrer que p_F et p_G commutent ssi F et F^{\perp} sont stables par p_G , déterminer alors $p_G \circ p_F$.

★Exercice 24.9

Soit $\mathfrak B$ une b.o.n.d d'un plan euclidien E, déterminer la nature de l'endomorphisme de E dont la matrice dans la base $\mathfrak B$ est :

$$\frac{1}{5} \begin{pmatrix} 4 & -3 \\ 3 & 4 \end{pmatrix} \quad \frac{1}{5} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \quad \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{pmatrix} \quad \frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ -1 & -\sqrt{3} \end{pmatrix}.$$

★Exercice 24.10

Soit $\mathfrak B$ une b.o.n.d d'un espace euclidien E de dimension 3, déterminer la nature de l'endomorphisme de E dont la matrice dans la base $\mathfrak B$ est :

$$\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \quad \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} \quad \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix} \\
\frac{1}{4} \begin{pmatrix} -3 & 1 & \sqrt{6} \\ 1 & -3 & \sqrt{6} \\ -\sqrt{6} & -\sqrt{6} & -2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}.$$

★Exercice 24.11

Soit E un espace euclidien de dimension 3, soit $\mathfrak{B} = (i, j, k)$ une b.o.n.d de E, déterminer la matrice dans la base \mathfrak{B} de :

- a) p, la projection orthogonale sur le plan P d'équation x + y + z = 0.
- b) s, la réflexion par rapport au plan P d'équation 2x + 3y + z = 0.
- c) s, le demi-tour d'axe Vect [u] avec u(1,1,1).
- d) r, la rotation d'axe Vect [u] et d'angle $\pi/2$, avec u(0,1,1).
- e) r, la rotation d'axe Vect [u] qui transforme i en j, avec u = i + j + k.