Feuille 2 de TD Ensembles, raisonnement, indices

Exercice 1 Les propositions suivantes sont-elles vraies ou fausses. Justifier.

- a) $\forall x \in \mathbb{R}, (x = |x| \text{ ou } x = -|x|)$ b) $(\forall x \in \mathbb{R}, x = |x|) \text{ ou } (\forall x \in \mathbb{R}, x = -|x|)$ c) $\exists x \in \mathbb{R}, (x = |x| \text{ et } x = -|x|)$ d) $(\exists x \in \mathbb{R}, x = |x|) \text{ et } (\exists x \in \mathbb{R}, x = -|x|)$ e) $\exists x \in \mathbb{R}^*, (x = |x| \text{ et } x = -|x|)$ f) $(\exists x \in \mathbb{R}^*, x = |x|) \text{ et } (\exists x \in \mathbb{R}^*, x = -|x|)$

Exercice 2 Soient $A = \{3, 5\}$, et $B = \{2, 5, 9\}$. Calculer $A \times B$ et $B \times A$.

Exercice 3 (ensembles: définitions) Soit $E = \{a\}$ un ensemble à un élement. Déterminer $\mathcal{P}(E)$ et $\mathcal{P}(\mathcal{P}(E)).$

Exercice 4 (Cours) (propriétés des ensembles) Soient A un ensemble, et X, Y et Z des parties de A. Démontrer les propriétés suivantes : a) $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$; b) $C_A(C_A(X)) = X$; c) $C_A(X \cup Y) = C_A(X) \cap C_A(Y)$; d) $X \subset Y \iff C_A(Y) \subset C_A(X)$

Exercice 5 (ensembles, équivalence) Soient A et B des ensembles. Montrer que $A \cap B = A \Leftrightarrow$ $A \cup B = B$.

Exercice 6 (preuve par contraposée) Montrer par contraposée que pour tout entier naturel n, si n^2 est pair alors n est pair.

Exercice 7 (Cours) Soit x un réel positif ou nul. Montrer que si pour tout réel y strictement positif, $x \leq y$, alors x = 0.

Exercice 8 (preuve par l'absurde) Soit $n \in \mathbb{N}^*$. Démontrer par l'absurde que $n^2 + 1$ n'est pas le carré d'un entier.

Exercice 9 (preuve cyclique) Soit E un ensemble. Soient A et B des parties de E. Soient A^c et B^c leur complémentaires dans E respectifs. Montrer que les 8 propositions suivantes sont équivalentes :

- $(i)\,A\subset B \qquad \qquad (ii)A\cap B=A \qquad (iii)A^c\cup B^c=A^c \qquad (iv)A\cap B^c=\emptyset$

- $(v)A^c \cup B = E$ $(vi)B^c \subset A^c$ $(vii)A^c \cap B^c = B^c$ $(viii)A \cup B = B^c$

Exercice 10 (indices: définitions) Pour tout entier relatif k, on pose $A_k = [k, k+10]$. Que valent les unions et intersections suivantes?

1

- a) $\bigcup_{k=3}^{9} A_k$; b) $\bigcup_{k \in \mathbb{N}} A_k$; c) $\bigcap_{k=3}^{9} A_k$; d) $\bigcap_{k \in \mathbb{N}} A_k$

Exercice 11 (indices, union, intersection) Que valent les unions et intersections suivantes?

- a) $\bigcup_{x \in \mathbb{R}} [\sin x, 1 + \sin x];$ b) $\bigcup_{x \in [1, +\infty[}] \frac{1}{x}, x = 0$ c) $\bigcap_{x \in [1, +\infty[}] \frac{1}{x}, x = 0$ d) $\bigcap_{x \in [1, +\infty[]} \frac{1}{x}, x = 0$

Exercice 12 (indices, propriétés de l'union et de l'intersection) Soient A un ensemble, I un ensemble d'indices et $(B_i)_{i \in I}$ une famille d'ensembles indexée par I (c'est à dire, la donnée pour tout i dans I d'un ensemble B_i). Montrer que :

$$A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} (A \cup B_i) \quad \text{et} \quad A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i)$$

Exercice 13 (différence entre l'ensemble vide, et l'ensemble contenant uniquement l'ensemble vide). Soit $E = \{0, 1, 2\}$. Quel est l'ensemble des solutions des problèmes suivants?

Problème 1 : quels sont les sous-ensembles de E qui ont au moins 4 éléments distincts?

Problème 2 : quels sont les sous-ensembles de E inclus dans $C_E(E)$?

Exercice 14 (ensembles) Soient A un ensemble et X, Y, Z des parties de A.

- a) Donner un exemple où : $X \cup Y = X \cup Z$ et $Y \neq Z$.
- b) Donner un exemple où : $X \cap Y = X \cap Z$ et $Y \neq Z$.
- c) Démontrer que

$$(X \cup Y = X \cup Z \text{ et } X \cap Y = X \cap Z) \implies Y = Z.$$

Exercice 15 (ensembles, quantificateurs) On considère les ensembles

$$E = \left\{ x \in [0, 1], \exists n \in \mathbb{N}, x < \frac{1}{n+1} \right\} \text{ et } F = \left\{ x \in [0, 1], \forall n \in \mathbb{N}, x < \frac{1}{n+1} \right\}$$

L'ensemble E a-t-il un, une infinité, ou aucun élément? Même question pour l'ensemble F.

Exercice 16 Pour tout entier naturel p, on note $p\mathbb{N}$ l'ensemble des entiers relatifs de la forme pn avec n dans \mathbb{N} .

a) Montrer que pour tous entiers naturels p et q,

$$p\mathbb{N} \subset q\mathbb{N} \Leftrightarrow p \in q\mathbb{N}$$

b) Montrer que pour tous entiers naturels p et q,

$$p\mathbb{N} = q\mathbb{N} \Leftrightarrow p = q$$

Exercice 17 Soit E un ensemble et A, B, C des parties de E. Soit A^c le complémentaire de A dans E. Montrer les propriétés suivantes :

a)
$$(A \setminus B) \setminus C = A \setminus (B \cup C)$$
 b) $A \cap (A^c \cup B) = A \cap B$

Exercice 18 (Différence symétrique de deux parties.) Soit E un ensemble. Pour A et B des parties de E, on note $A\Delta B$ l'ensemble $(A \cup B) \setminus (A \cap B)$. Soient A, B et C des parties de E. Montrer que :

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

$$A\Delta \emptyset = A, \ A\Delta B = B\Delta A, \ A\Delta (B\Delta C) = (A\Delta B)\Delta C$$

$$A\cap (B\Delta C) = (A\cap B)\Delta (A\cap C)$$

Exercice 19 Soit $(a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ une famille de réels. On définit

$$A = \min_{1 \le i \le n} (\max_{1 \le j \le p} a_{ij}), \quad B = \max_{1 \le j \le p} (\min_{1 \le i \le n} a_{ij})$$

Montrer que $B \leq A$.

Exercice 20 (difficile) Soit $(A_{ij})_{(i,j)\in I\times J}$ une famille de parties d'un ensemble E. Les ensembles $\bigcap_{i\in I} \left(\bigcup_{j\in J} A_{ij}\right)$ et $\bigcup_{j\in J} \left(\bigcap_{i\in I} A_{ij}\right)$ sont-ils égaux? L'un est-il inclus dans l'autre.

Exercice 21 Montrer que :

$$\forall n \in \mathbb{N}, n \ge 4 \Rightarrow n! \ge 2^n$$
.

Exercice 22 (réindexation d'une somme) : Soient x un réel et n un entier naturel. Calculer les sommes $\sum_{k=2}^{n+2} x^{k-2}$ et $\sum_{k=4}^{n+3} x^{k-2}$.

Feuille 3 de TD Applications

Exercice 1 Les applications suivantes sont-elles bien définies? Si oui, sont-elles injectives? surjectives? bijectives?

- 1) $f: \{0, 1, 2\} \to \{1, 8, -1, 24\}$ telle que f(0) = -1, f(1) = 24, f(2) = 1.
- $2) f: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto -n$
- 3) $f: \mathbb{N} \to \mathbb{N}$
 - $n \mapsto n+1$
- $4) f: \mathbb{N} \to \mathbb{N}$ $n \mapsto n 1$
- 5) $f: \mathbb{N} \to \{-1, +1\}$ qui à tout n de \mathbb{N} associe 1 si n est pair, et -1 si n est impair.

Exercice 2 a) Quelle est l'allure du graphe des applications suivantes? Ces applications sont-elles injectives, surjectives, bijectives? (note aux chargés de TD : c'est l'occasion d'expliquer comment on lit sur le graphe de f les solutions dans de l'équation f(x) = y, et si f est injective, surjective ou ni l'un ni l'autre. Attention : répondre lors d'un examen : "l'application f est injective car son graphe a telle propriété", sans prouver rigoureusement que le graphe a cette propriété ne vaudra pas tous les points.)

- b) Pour celles qui sont bijectives, quelle est leur application réciproque?
- c) Pour chacune de ces applications, déterminer l'image et l'image réciproque de l'intervalle [2, 3].

1)
$$f_1: \mathbb{R} \to \mathbb{R}$$
 2) $f_2: \mathbb{R} \to \mathbb{R}_+$ 3) $f_3: \mathbb{R} \to \mathbb{R}_+$ 4) $f_4: \mathbb{R} \to \mathbb{R}$ 5) $f_5: \mathbb{R}^* \to \mathbb{R}^*$ $x \mapsto x^2$ $x \mapsto x^2 + 1$ $x \mapsto x^3 + 1$ $x \mapsto 1/x^2$

Exercice 3 Les applications suivantes sont elles-bien définies? Si oui, sont-elles injectives, surjectives, bijectives?

1)
$$g_1: \mathbb{R} \to \mathbb{N}$$
 2) $g_2: \mathbb{Z} \to \mathbb{N}$ 3) $g_3: \mathbb{N} \to \mathbb{R}$ 4) $g_4: \mathbb{R} \to \mathbb{N}$ $x \mapsto x^2$ $x \mapsto x^2$

Exercice 4 Soit f une application de A vers B. Démontrer que $A = \bigcup_{y \in B} f^{-1}(\{y\})$.

Exercice 5 Soient $f: E \to F$ et $g: F \to G$ des applications (pas forcément bijectives). Soient $A \subset E$ et $C \subset G$. Montrer que $g \circ f(A) = g(f(A))$ et que $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.

Exercice 6 Soit $f: E \to E$ telle que $f \circ f = f$. Soit $x \in E$. Montrer que f(x) = x si et seulement si $x \in f(E)$.

Exercice 7 Sans justifier, dire quelles applications de \mathbb{R}^2 dans \mathbb{R}^2 correspondent aux transformations du plan suivantes (le plan est supposé muni du repère orthonormé usuel) :

- a) la symétrie orthogonale par rapport à la première bissectrice du plan;
- b) la symétrie orthogonale par rapport à la seconde bissectrice du plan;
- c) la rotation de centre l'origine et d'angle $\pi/2$;
- d) La projection sur l'axe des ordonnées;
- e) La translation de vecteur $2\vec{i} + \vec{j}$, où \vec{i} et \vec{j} sont respectivement les vecteurs directeurs usuels de l'axe des abscisses et de l'axe des ordonnées.

Exercice 8 (Fonction caractéristique)

Soit E un ensemble. A toute partie A de E on associe l'application f_A de E dans $\{0,1\}$ définie par $f_A(x) = 1$ si $x \in A$ et $f_A(x) = 0$ sinon. L'application f_A est appelée fonction caractéristique de A. Soient A et B deux parties de E. Exprimer en fonction de f_A et de f_B les fonctions caractéristiques de $C_E(A)$, $A \cap B$, $A \cup B$ et $A \setminus B$.

Exercice 9 L'application

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto xe^{-x}$$

est-elle injective, surjective? (On pourra avec profit construire le tableau de variation de g et utiliser des résultats d'analyse). Calculer $g^{-1}(\{-e\})$, $g^{-1}(\{1\})$, $g(\mathbb{R}_+)$ et $g^{-1}(\mathbb{R}_+)$.

Exercice 10 Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ des applications. On considère l'application

$$h: \mathbb{R} \to \mathbb{R}^2$$

 $x \mapsto (f(x), g(x))$

- a) Montrer que si f ou g est injective, alors h est injective.
- b) On suppose f et g surjectives. A-t-on forcément h surjective?
- c) Montrer que si h est surjective, alors f et g sont surjectives.
- d) Donner un exemple où h est injective mais ni f ni g ne sont injectives.

Exercice 11 Soient

$$f: \mathbb{R}_{-} \to \mathbb{R}_{+}$$
 et $h: \mathbb{R}_{-} \to \mathbb{R}_{+}$ $x \mapsto \sqrt{|x|}$

- a) l'application $h \circ f$ est-elle bien définie?
- b) Prouver que f et h sont bijectives, et déterminer leur réciproques.

Exercice 12 Soient E, F, G des ensembles. Soient $f: E \to F$ et $g: F \to G$ des applications.

- a) Montrer que si $g \circ f$ est injective et f est surjective, alors g est injective.
- b) Montrer que si $g \circ f$ est surjective et g injective, alors f est surjective.

Exercice 13 L'application suivante est-elle injective? surjective? bijective?

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
$$(n,p) \mapsto n+p$$

Déterminer $f^{-1}(\{3\})$, $f(\mathbb{N} \times \{2\})$ et $f(2\mathbb{N} \times 3\mathbb{N})$ où $k\mathbb{N} = \{kn, n \in \mathbb{N}\}$.

Exercice 14 Soient E, F, G, H des ensembles et f, g, h des applications telles que : $E \xrightarrow{f} F \xrightarrow{g} G \xrightarrow{h} H$. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h sont bijectives.

Exercice 15 Soit $f: \mathbb{R} \to \mathbb{R}$ une application strictement monotone. Montrer que f est injective. Donner un exemple d'application de \mathbb{R} dans \mathbb{R} injective mais non monotone.

Exercice 16 L'application

$$\begin{array}{cccc} f: & \mathbb{R} \times \mathbb{R} & \to & \mathbb{R} \times \mathbb{R} \\ & (x,y) & \mapsto & (x+y,xy) \end{array}$$

est-elle injective, surjective? bijective?

Exercice 17 Sans justifier, pour chacune des applications suivantes, dire si elle est injective, surjective, bijective, ni injective ni surjective.

1)
$$f_1: \mathbb{R} \to \mathbb{R}$$
 2) $f_2: \mathbb{R} \to [-1,1]$ 3) $f_3: [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}$ 4) $f_4: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1,1]$ $x \mapsto \sin x$ $x \mapsto \sin x$ $x \mapsto \sin x$

Exercice 18 Soit f une application de E vers F. Démontrer les équivalences suivantes :

$$f$$
 est injective $\Leftrightarrow \forall A \subset E, A = f^{-1}(f(A))$
 f est surjective $\Leftrightarrow \forall B \subset F, B = f(f^{-1}(B))$

Exercice 19 Soit f une application de E vers F et A une partie de E.

- a) Démontrer qu'il n'y a en général pas d'inclusion entre $f(C_E(A))$ et $C_F(f(A))$.
- b) Toutefois, démontrer : f bijective $\Leftrightarrow \forall A \in \mathcal{P}(E), \ f(C_E(A)) = C_F(f(A)).$

Exercice 20 a) Existe-t-il une application $f: \mathbb{N} \to \mathbb{N}$ strictement décroissante?

- b) Donner un exemple d'application $f: \mathbb{N} \to \mathbb{N}$ injective mais non strictement croissante.
- c) Donner un exemple d'application $f:\mathbb{N}\to\mathbb{N}$ involutive $(f\circ f=Id_{\mathbb{N}})$ mais différente de l'identité.
- d) (relativement difficile) Soit $f: \mathbb{N} \to \mathbb{N}$ une application injective. Montrer que $f(n) \to +\infty$ quand $n \to +\infty$.

Exercice 21 (relativement difficile) Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f = f$. Montrer que f est injective ou f est surjective si et seulement si $f = Id_E$.

Exercice 22 (relativement difficile) Soit E un ensemble et $f: E \to E$ une application telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Université Paris-Dauphine DUMI2E 1e année Algèbre linéaire 1

Feuille 4 de TD Relations d'ordre, relations d'équivalence

Exercice 1 (équivalence) Soient E et F des ensembles. Soit $f: E \to F$ une application. Soit \mathcal{R} la relation sur E définie par : pour tous x et y dans E, $x\mathcal{R}y$ ssi f(x) = f(y). Montrer que \mathcal{R} est une relation d'équivalence.

Exercice 2 (équivalence) On considère une partition $(A_i)_{i\in I}$ d'un ensemble E, c'est-à-dire une famille $(A_i)_{i\in I}$ de sous-ensembles non vides de E telle que :

$$E = \bigcup_{i \in I} A_i$$
 et $\forall i \in I, \forall j \in I, i \neq j \Rightarrow A_i \cap A_j = \emptyset$

On définit alors la relation \mathcal{R} sur E par : $x\mathcal{R}y \Leftrightarrow \exists i \in I, (x \in A_i \text{ et } y \in A_i)$ Montrer qu'il s'agit d'une relation d'équivalence. Quelles en sont les classes d'équivalence?

Exercice 3 (équivalence) Notation : si n et p sont des entiers relatifs, on dit que n divise p, et on note n|p, s'il existe un entier relatif k tels que p=kn. Par exemple, 6 divise 12 et 30, mais ne divise pas 10. Soit $n \in \mathbb{N}^*$. Soit \mathcal{R} la relation sur \mathbb{N} définie par : pour tous entiers naturels p et q,

$$p\mathcal{R}q \Leftrightarrow n|(p-q)$$

(on dit alors que p est congru à q modulo n). Montrer que \mathcal{R} est une relation d'équivalence et que $p\mathcal{R}q$ si et seulement si le reste de la division euclidienne de p par n est le même que le reste de la division euclidienne de q par n. Quelles sont les classes d'équivalences de la relation \mathcal{R} ?

Exercice 4 Sur l'ensemble des parties de \mathbb{N} , on considère la relation \mathcal{R} définie par, pour toutes parties A et B de \mathbb{N} , $A\mathcal{R}B$ si et seulement s'il existe une bijection de A dans B. Montrer que \mathcal{R} est une relation d'équivalence.

Feuille 5 de TD Nombres complexes

Si besoin est, on pourra admettre le résultat suivant, qui sera démontré dans la suite du cours : si une application $f: \mathbb{C} \to \mathbb{C}$ est une fonction polynôme, alors il existe un complexe z tel que f(z) = 0.

Exercice 1 Mettre sous la forme a + ib $(a, b \in \mathbb{R})$ les nombres :

$$\frac{3+6i}{3-4i}$$
 ; $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$; $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Exercice 2 Calculer le module et l'argument des nombres complexes suivants, ainsi que de leurs conjugués :

- 1. $1 + i(1 + \sqrt{2})$.
- 2. $\sqrt{10+2\sqrt{5}}+i(1-\sqrt{5})$.
- 3. $\frac{\tan \varphi i}{\tan \varphi + i}$ où φ est un angle donné.

Exercice 3 Représenter sous forme trigonométrique les nombres :

$$1+i$$
 ; $1+i\sqrt{3}$; $\sqrt{3}+i$; $\frac{1+i\sqrt{3}}{\sqrt{3}-i}$.

Exercice 4 Déterminer le module et l'argument des nombres complexes :

$$e^{e^{i\alpha}}$$
 et $e^{i\theta} + e^{2i\theta}$.

Exercice 5 Déterminer le module et l'argument de $\frac{1+i}{1-i}$. Calculer $(\frac{1+i}{1-i})^{32}$.

Exercice 6 Calculer les puissances n-ièmes des nombres complexes :

$$z_1 = \frac{1 + i\sqrt{3}}{1 + i}$$
 ; $z_2 = 1 + j$; $z_3 = \frac{1 + i\tan\theta}{1 - i\tan\theta}$.

Exercice 7 Mettre sous forme trigonométrique $1 + e^{i\theta}$ où $\theta \in]-\pi,\pi[$. Donner une interprétation géométrique.

Exercice 8 Résoudre dans \mathbb{C} les équations suivantes :

$$z^{2} + z + 1 = 0 \quad ; \quad z^{2} - (1+2i)z + i - 1 = 0 \quad ; \quad z^{2} - \sqrt{3}z - i = 0 \quad ;$$

$$z^{2} - (5-14i)z - 2(5i+12) = 0 \quad ; \quad z^{2} - (3+4i)z - 1 + 5i = 0 \quad ; \quad 4z^{2} - 2z + 1 = 0 \quad ;$$

$$z^{4} + 10z^{2} + 169 = 0 \quad ; \quad z^{4} + 2z^{2} + 4 = 0.$$

Exercice 9 1. Pour quelles valeurs de $z \in \mathbb{C}$ a-t-on |1 + iz| = |1 - iz|.

2. On considère dans C l'équation

$$\left(\frac{1+iz}{1-iz}\right)^n = \frac{1+ia}{1-ia}$$

où $a \in \mathbb{R}$. Montrer, sans les calculer, que les solutions de cette équation sont réelles. Trouver alors les solutions.

8

3. Calculer les racines cubiques de $\frac{\sqrt{3}+i}{\sqrt{3}-i}$.

Exercice 10 Déterminer les nombres complexes $z \in \mathbb{C}^*$ tels que les points d'affixes $z, \frac{1}{z}$ et (1-z) soient sur un même cercle de centre O.

Exercice 11 1. Calculer $\cos 5\theta$, $\cos 8\theta$, $\sin 6\theta$, $\sin 9\theta$, en fonction des puissances de $\cos \theta$ et $\sin \theta$.

2. Calculer $\sin^3 \theta$, $\sin^4 \theta$, $\cos^5 \theta$, $\cos^6 \theta$, à l'aide des cosinus et sinus des multiples entiers de θ .

Exercice 12 Montrer que tout nombre complexe z non réel de module 1 peut se mettre sous la forme $\frac{1+ir}{1-ir}$, où $r \in \mathbb{R}$.

Exercice 13 Que dire de trois complexes a, b, c non nuls tels que |a + b + c| = |a| + |b| + |c|.

Exercice 14 On définit une fonction f de $\mathbb{C}\setminus\{i\}$ dans $\mathbb{C}\setminus\{1\}$ en posant

$$f(z) = \frac{z+i}{z-i}.$$

- 1. On suppose z réel. Quel est le module de f(z)?
- 2. Trouver les nombres complexes z tels que f(z) = z.

Exercice 15 Montrer que si a et b sont deux nombres complexes de module 1 tels que $ab \neq -1$, alors $\frac{a+b}{1+ab}$ est réel.

Exercice 16 Que dit la formule de Moivre ? Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. Calculer $\sum_{k=0}^{n} \cos(k\theta)$, $\sum_{k=0}^{n} \sin(k\theta)$, $\sum_{k=0}^{n} C_n^k \cos(k\theta)$ (indication : $\cos(k\theta) = Re\left(e^{ik\theta}\right)$). Calculer $\sum_{k=-n}^{n} e^{ik\theta}$.

Exercice 17 Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n \cos(x + (2k\pi/n))$ et $\sum_{k=1}^n \sin(x + (2k\pi/n))$.

Exercice 18 Démontrer l'égalité du parallélogramme :

$$\forall (a,b) \in \mathbb{C}, |a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$$

Exercice 19 Trouver l'ensemble des nombres complexes z tels que les points d'affixes z, z^2 , z^3 soient alignés.

Exercice 20 Soit f l'application de \mathbb{C}^* dans \mathbb{C}^* définie par :

$$\forall z \in \mathbb{C}^*, \ f(z) = \frac{2}{\bar{z}}.$$

- a) Montrer que : $\forall z \in \mathbb{C}^*, f \circ f(z) = z$.
- b) f est-elle bijective? Si oui, calculer f^{-1} .
- c) Soit R un réel strictement positif, et C le cercle $\{z \in \mathbb{C}, |z| = R\}$. Calculer f(C).
- d) Quel est l'ensemble $\{z \in \mathbb{C}^*, f(z) = z\}$?

Exercice 21 Soit f l'application de \mathbb{C} dans \mathbb{C} qui à tout nombre complexe z = x + iy, avec x et y réels, associe :

$$f(z) = \frac{1}{2}(e^{-y}e^{ix} + e^{y}e^{-ix}).$$

- a) Montrer que pour tout z réel, $f(z) = \cos(z)$.
- b) Soit z dans \mathbb{C} . Montrer que $f(z+2\pi)=f(z)$, que f(-z)=f(z), et que $f(2z)=2(f(z))^2-1$.
- c) f est-elle injective?
- d) Calculer $f^{-1}(\{0\})$.

Exercice 22 Soit f l'application de \mathbb{C}^* dans \mathbb{C} définie par :

$$\forall z \in \mathbb{C}^*, \ f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).$$

- a) L'application f est-elle injective? surjective?
- b) Calculer l'image réciproque de $\{i\}$ par f.
- c) Déterminer l'image directe du cercle unité U par f.
- d) On note H le complémentaire dans \mathbb{C} du segment [-1,1], et on note D l'ensemble $\{z \in \mathbb{C}^*, |z| < 1\}$. Montrer que l'on peut définir l'application :

$$g: D \longrightarrow H$$
$$z \mapsto f(z)$$

e) Montrer que g est bijective. (On pourra remarquer que le produit des racines de l'équation $z' = \frac{1}{2} \left(z + \frac{1}{z}\right)$ est 1).

Exercice 23 Calculer les racines carrées de $-2 + 2\sqrt{3}i$, puis celles de 9i.

Exercice 24 Résoudre l'équation $z^2 + (1 - i\sqrt{3})z - (1 + i\sqrt{3}) = 0$.

- a) Exprimer les racines z_1 et z_2 en fonction des nombres complexes $a=(\sqrt{3}+i)/2$ et $b=(-1+i\sqrt{3})/2$.
 - b) Déterminer le module et l'argument de ces racines.

En déduire les valeurs de $\cos(5\pi/12)$, $\sin(5\pi/12)$, $\cos(11\pi/12)$ et $\sin(11\pi/12)$.

Exercice 25 Soit δ une racine carrée du nombre complexe z. Trouver les racines carrées de -z, (1+i)z et z^3 en fonction de δ .

Exercice 26 Résoudre dans \mathbb{C} l'équation : $z^6 + z^3 + 1 = 0$.

Exercice 27 Soit $n \in \mathbb{N}$. Résoudre l'équation d'inconnue $x \in \mathbb{R}$:

$$(x+i)^n = (x-i)^n$$

Exercice 28 Soit $\theta \in \mathbb{R}$. Développer $(\cos \theta + i \sin \theta)^n$; en déduire que $\cos(n\theta)$ est un polynôme en $\cos \theta$ et calculer ce polynôme pour n = 1, 2, 3.

Exercice 29 Exprimer $(\cos 5x)(\sin 3x)$ en fonction de $\sin x$ et $\cos x$

Exercice 30 Soit U^* le cercle unité de $\mathbb C$ privé du point -1:

$$U^* = \{z \in \mathbb{C}, |z| = 1, z \neq -1\}$$

On considère l'application :

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

$$x \longmapsto f(x) = \frac{1-ix}{1+ix}$$

- i) Calculer, pour tout réel x, le module de f(x). L'application f est-elle surjective? injective? Peut-on avoir f(x) = -1?
 - ii) Soit g l'application de \mathbb{R} dans U^* telle que : $\forall x \in \mathbb{R}, g(x) = f(x)$. Montrer que g est bijective.
 - iii) On considère la relation $\mathcal R$ définie sur U^* par :

$$z\mathcal{R}t$$
 si et seulement si $g^{-1}(z) \leq g^{-1}(t)$

 \mathcal{R} est-elle réflexive? transitive? une relation d'ordre?