PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-190274

(43) Date of publication of application: 23.07.1996

(51)Int.CI.

G03G 15/08 G03G 15/08

G03G 15/00

(21)Application number: 07-018677

(22)Date of filing:

11.01.1995

(71)Applicant: RICOH CO LTD

(72)Inventor: KURAMOTO SHINICHI

ASAHINA YASUO MOCHIZUKI MASARU

MATSUI AKIO **TOMITA MASAMI** KATO TAKAHISA **MASUDA MINORU** SUZUKI TOMOMI

(54) IMAGE FORMING METHOD USING TWO-COMPONENT DEVELOPER

(57)Abstract:

PURPOSE: To provide a method to obtain a good copy image with a two- component developer using a small particle toner without splashing a toner.

CONSTITUTION: A two-component developer comprising a carrier and a small- size toner having 6-9µm volume average particle size is used. A replenisher toner and the carrier remaining after the toner is removed from the developer in an image forming device are mixed in a ball mill for 15 seconds to obtain the toner density controlled in the image forming device. In this process, the toner is mixed to obtain 7μ C/g to 40μ C/g absolute charge amt. or 2 × 10-9µC/one particle to 12 × 10-9µC/one particle absolute average charge amt., and then used for image forming (development).

LEGAL STATUS

[Date of request for examination]

14.12.2000

[Date of sending the examiner's decision of rejection]

25.06.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平8-190274

(43)公開日 平成8年(1996)7月23日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

G 0 3 G 15/08

507 X

505 A

15/00

303

審査請求 未請求 請求項の数7 FD (全 10 頁)

(21)出願番号

特願平7-18677

(71)出願人 000006747

株式会社リコー

(22)出願日 平成7年(1995)1月11日

東京都大田区中馬込1丁目3番6号

(72) 発明者 倉本 信一

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 朝比奈 安雄

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 望月 賢

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理士 池浦 敏明 (外1名)

最終頁に続く

(54) 【発明の名称】 二成分系現像剤を用いる画像形成方法

(57)【要約】

【目的】 小径トナーを用いた二成分系現像剤によつて、トナー飛散を生じさせることなく、良好な複写画像を得る方法を提供する。

【構成】 キャリアと体積平均粒径が6~9μmの小径トナーとからなる二成分系現像剤を用い、画像形成装置中の現像剤からトナーを除去したキャリアと、補給するトナーとを、画像形成装置中で制御しているトナー濃度に設定し、ボールミルで15秒混合した時に、帯電量の絶対値が7μC/g~40μC/g又は平均帯電量の絶対値が2×10-9μC/個~12×10-9μC/個となるようにして、画像形成(現像)を行なう。

【特許請求の範囲】

【謂求項1】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像する画像形成方法において、 該現像でトナーを消費し実質的にトナーを含まないキャ リアと、補給するトナーとを、画像形成装置中で制御し ているトナー濃度に設定し、ボールミルで15秒混合し た時の帯電量の絶対値が7μC/g~40μC/gにな るように混合し、かつトナーの体積平均粒径を6~9μ mにすることを特徴とする画像形成方法。

【請求項2】 トナー及びキャリアからなる二成分系現 10 像剤を用い静電潜像を現像する画像形成方法において、 該現像でトナーを消費し実質的にトナーを含まないキャ リアと、補給するトナーとを、画像形成装置中で制御し ているトナー濃度に設定し、ボールミルで15秒混合し*

 $-10 \leq QA - QB \leq 4$

(QA: 前記の実質的にトナーを含まないキャリア と補給するトナーとを制御トナー濃度に設定し、ボール ミルで15秒混合した時の帯電量の絶対値、

QB: 前記の実質的にトナーを含まないキャリアと 現像剤中のトナーとを制御トナー濃度に設定し、ボール 20 ミルで15秒混合した時の帯電量の絶対値。)

【請求項4】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像し、かつトナー濃度を現像剤 の透磁率を磁気ブリッジ方式トナーセンサーで測定して 制御する画像形成方法において、該現像でトナーを消費 し実質的にトナーを含まないキャリアと、補給するトナ ーとを、画像形成装置中で制御しているトナー濃度に設 定し、ボールミルで15秒混合した時の帯電量の絶対値 $が10\mu C/g \sim 40\mu C/g$ になるように混合し、か つトナーの体積平均粒径を6~9μmにすることを特徴 30 とする画像形成方法。

【請求項5】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像し、かつ制御されるトナー濃※

 $rc^{3}\rho c \cdot a/rt\rho t \cdot (rc+rt)^{2} \cdot (100-a) \ge 0.08$

(ここで、rc; キャリア粒径、ρc; キャリア真比 重、rt;トナー粒径、ρt;トナー真比重、a;トナ 一濃度(wt%)である。)

【請求項7】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像し、かつ画像形成装置の1現 像ユニット中のキャリアの表面積を15m'以下とする 画像形成方法において、該現像でトナーを消費し実質的 にトナーを含まないキャリアと、補給するトナーとを、 画像形成装置中で制御しているトナー濃度に設定し、ボ ールミルで15秒混合した時の帯電量の絶対値が10 μ $C/g\sim40\mu C/g$ になるように混合し、かつトナー の体積平均粒径を6~9μmにすることを特徴とする画 像形成方法。

【発明の詳細な説明】

[0001]

*た時の平均帯電量の絶対値が2×10.gμC/個~12 ×10₋, µC/個になるように混合することを特徴とす る画像形成方法。

【請求項3】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像する画像形成方法において、 該現像でトナーを消費し実質的にトナーを含まないキャ リアと、補給するトナーとを、画像形成装置中で制御し ているトナー濃度に設定し、ボールミルで15秒混合し た時の帯電量の絶対値が7μC/g~40μC/g、ト ナーの体積平均粒径が6~9μmで、現像剤中のトナー の帯電能力と補給トナーの帯電能力の関係が下記式(I) で表されるように混合することを特徴とする画像形成方 法。

【数1】

 $(\mu C/g)$ ···(T)

※度でのキャリア表面のトナー粒子の占める割合を20% 以上にする画像形成方法において、該現像でトナーを消 費し実質的にトナーを含まないキャリアと、補給するト ナーとを、画像形成装置中で制御しているトナー濃度に 設定し、ボールミルで15秒混合した時の帯電量の絶対 値が $10\mu C/g\sim 40\mu C/g$ になるように混合し、 かつトナーの体積平均粒径を6~9μmにすることを特 徴とする画像形成方法。

【請求項6】 トナー及びキャリアからなる二成分系現 像剤を用い静電潜像を現像し、かつ制御されるトナー濃 度が下記式(II)を満足する画像形成方法において、該現 像でトナーを消費し実質的にトナー含まないキャリア と、補給するトナーとを、画像形成装置中で制御してい るトナー濃度に設定し、ボールミルで15秒混合した時 の帯電量の絶対値が10μC/g~40μC/gになる ように混合し、かつトナーの体積平均粒径を6~9μm にすることを特徴とする画像形成方法。

【数2】

... (II)

分野における二成分系現像剤を用いた画像形成方法に関 する。

[0002]

【従来の技術】従来から、特開昭61-147261号 などに開示されているように、静電荷像をトナーを用い 40 て現像する方法には大別して、トナーとキャリアとが混 合されてなるいわゆる二成分系現像剤を用いる方法と、 キャリアと混合されずにトナー単独で用いられる一成分 系現像剤を用いる方法とがある。

【0003】とのうち二成分系現像剤を用いる方法は、 トナーとキャリアとを撹拌摩擦することにより、各々を 互いに異なる極性に帯電せしめ、この帯電したトナーに より反対極性を有する静電荷像が可視化(現像)される ものであり、トナーとキャリアの種類により、鉄粉キャ リアを用いるマグネットブラシ法、ビーズキャリアを用 【産業上の利用分野】本発明は、電子写真や静電記録の 50 いるカスケード法、ファーブラシ法等がある。これらの

各種の現像方法に適用されるトナーとしては、天然樹脂 あるいは合成樹脂からなる結着樹脂に、カーボンブラッ ク等の着色剤を分散させた微粉末が用いられている。例 えば、ポリスチレン等の結着樹脂中に、着色剤を分散さ せたものを1~30µm程度に微粉砕した粒子がトナー として用いられている。また、これらの成分にさらにマ グネタイト等の磁性材料を含有せしめたものは磁性トナ ーとして用いられる。

【0004】近年、市場における高画質化の要求から、 トナーの小粒径化が求められている。トナー小粒径化に 10 より画像のシャープ性や階調性、グレインネス(粒状 性)、ハーフトーンの均一性等は向上するが、副作用と して複写機やプリンター中でトナー粒子が飛散しやすい という問題が生じている。この現像は特にトナーの体積 平均粒径が9μm以下であると顕著になる。また、この 問題は、現像剤中のトナー濃度の制御を磁気ブリッジ方 式のトナー濃度センサーを用いて行う場合や、複写機や プリンターの小型化等を目的として、現像剤量を少なく したり、その際にさらにベタ濃度の追随性をあげるため にトナー濃度を高く設定した時に顕著に発生する。

【0005】JAPAN HARDCOPY'92予稿集(P93~96) には トナー飛散は帯電量と粒径の比q/dで規定されると報 告されている。また、特開平6-59507号には、ト ナー粒径とトナー製法、トナー粒子のキャリア表面の隠 **蔽率などを規定することによってトナー飛散が防止でき** ると報告している。しかし、単純な現像ユニット中の現 像剤の帯電量規定では完全に問題の解決にはなっていな いし、またトナーのキャリア表面で隠蔽率だけでも問題 の解決になっていないのが実情である。

[0006]

【発明が解決しようとする課題】本発明の第1目的は、 画像のシャープ性や階調性、グレインネス(粒状性)、 ハーフトーンの均一性等の向上とトナー飛散の防止を両 立させるようにした二成分系現像剤を用いる画像形成方 法を提供することにある。本発明の第2の目的は、小粒 径のトナーを用いる複写機、プリンター等の画像形成装 置の内部で生じるトナー飛散を防止する、特に、磁気ブ リッチ方式トナーセンサーを用いたトナー濃度制御を行*

 $-10 \le QA - QB \le 4$

(QA: 前記の実質的にトナーを含まないキャリア と補給するトナーとを制御トナー濃度に設定し、ボール ミルで15秒混合した時の帯電量の絶対値、

QB : 前記の実質的にトナーを含まないキャリアと 現像剤中のトナーとを制御トナー濃度に設定し、ボール ミルで15秒混合した時の帯電量の絶対値。)

【0010】(4) トナー及びキャリアからなる二成 分系現像剤を用い静電潜像を現像し、かつトナー濃度を 現像剤の透磁率を磁気ブリッジ方式トナーセンサーで測 定して制御する画像形成方法において、該現像でトナー

* う場合のトナー飛散を防止させるようにした二成分系現 像剤を用いる画像形成方法を提供することにある。本発 明の第3の目的は、機械の小型化やその際のベタの追随 性をあげるため、トナー濃度を高く設定したり、現像剤 量を少なくした時のトナー飛散を防止させるようにした 二成分系現像剤を用いる画像形成方法を提供することに ある。

[0007]

【課題を解決するための手段】本発明によれば次の (1)~(7) にあげた画像形成方法が提供される。

(1) トナー及びキャリアからなる二成分系現像剤を 用い静電潜像を現像する画像形成方法において、該現像 でトナーを消費し実質的にトナーを含まないキャリア と、補給するトナーとを、画像形成装置中で制御してい るトナー濃度に設定し、ボールミルで15秒混合した時 の帯電量の絶対値が7μC/g~40μC/gになるよ うに混合し、かつトナーの体積平均粒径を6~9μmに することを特徴とする画像形成方法。

【0008】(2) トナー及びキャリアからなる二成 20 分系現像剤を用い静電潜像を現像する画像形成方法にお いて、該現像でトナーを消費し実質的にトナーを含まな いキャリアと、補給するトナーとを、画像形成装置中で 制御しているトナー濃度に設定し、ボールミルで15秒 混合した時の平均帯電量の絶対値が2×10。。μC/個 ~12×10-,µC/個になるように混合することを特 徴とする画像形成方法。

【0009】(3) トナー及びキャリアからなる二成 分系現像剤を用い静電潜像を現像する画像形成方法にお いて、該現像でトナーを消費し実質的にトナーを含まな 30 いキャリアと、補給するトナーとを、画像形成装置中で 制御しているトナー濃度に設定し、ボールミルで15秒 混合した時の帯電量の絶対値が7μC/g~40μC/ g、トナーの体積平均粒径が6~9μmで、現像剤中の トナーの帯電能力と補給トナーの帯電能力の関係が下記 式(I)で表されるように混合することを特徴とする画像 形成方法。

【数1】

 $(\mu C/g)$ ···(I)

40 るトナーとを、画像形成装置中で制御しているトナー濃 度に設定し、ボールミルで15秒混合した時の帯電量の 絶対値が10μC/g~40μC/gになるように混合 し、かつトナーの体積平均粒径を6~9μmにすること を特徴とする画像形成方法。

【0011】(5) トナー及びキャリアからなる二成 分系現像剤を用い静電潜像を現像し、かつ制御されるト ナー濃度でのキャリア表面のトナー粒子の占める割合を 20%以上にする画像形成方法において、該現像でトナ ーを消費し実質的にトナーを含まないキャリアと、補給 を消費し実質的にトナーを含まないキャリアと、補給す 50 するトナーとを、画像形成装置中で制御しているトナー

濃度に設定し、ボールミルで15秒混合した時の帯電量 の絶対値が $10\mu C/g\sim 40\mu C/g$ になるように混 合し、かつトナーの体積平均粒径を6~9μmにすると とを特徴とする画像形成方法。

[0012] (6) トナー及びキャリアからなる二成 分系現像剤を用い静電潜像を現像し、かつ制御されるト ナー濃度が下記式(II)を満足する画像形成方法におい *

(CCで、rc;キャリア粒径、ρc;キャリア真比) 重、rt;トナー粒径、hot;トナー真比重、a;トナ 10 ナーとを、画像形成装置中で制御しているトナー濃度に ー濃度(wt%)である。)

[0013](7)トナー及びキャリアからなる二成 分系現像剤を用い静電潜像を現像し、かつ画像形成装置 の1現像ユニット中のキャリアの表面積を15m'以下 とする画像形成方法において、該現像でトナーを消費し 実質的にトナーを含まないキャリアと、補給するトナー とを、画像形成装置中で制御しているトナー濃度に設定 し、ボールミルで15秒混合した時の帯電量の絶対値が $10 \mu C/g \sim 40 \mu C/g$ になるように混合し、かつ トナーの体積平均粒径を6~9μmにすることを特徴と 20 する画像形成方法。

【0014】本発明者らは、前記のトナー飛散の発生メ カニズムについて鋭意研究した結果、少なくとも以下OD ②に示す二つの発生パターンのあることがわかった。 ●現像剤中のキャリアと補給されるトナーの帯電の立ち

上がりが低く、補給トナーに短時間で適正な帯電量が得 られなかった場合。

②現像剤中のトナーと比較して、補給されるトナーの帯 電の立ち上がりが高く、既に現像剤中にあるトナーをは じき出す場合。

【0015】前記ののメカニズムによるトナー飛散を防 止するためには、補給トナーと現像剤中のキャリアとの 帯電の立ち上がりを規定する必要がある。従来は現像剤 の帯電量での議論がなされていたが、トナー飛散に対し ては、トナーが補給された直後に、無帯電であったトナ ーがいかにすばやく電荷を持つようになるかが重要であ るかがわかった。具体的には、トナーの体積平均粒径が 6~9μmの場合、画像形成装置中の現像剤からトナー を除去したキャリア(静電潜像を顕像化でトナーを消費※

 $rc^3\rho c \cdot a / rt\rho t \cdot (rc+rt)^2 \cdot (100-a) \ge 0.08$...(II)

(ここで、rc; キャリア粒径、ρc; キャリア真比 重、 r t ; トナー粒径、ρ t ; トナー真比重、a; トナ 一濃度 (wt%) である。)----

【0018】さらに、前記ののパターンのトナー飛散は 現像剤中のトナー濃度の制御を磁気ブリッジ方式のトナ ー浪度センサーを用いて行う場合も顕著であることがわ かった。周知の通り、このセンサーでは現像剤の嵩密度 を透磁率をもって検知している。帯電の立ち上がりの低 いトナーが補給されると、極くわずかの十分な電荷を持 たないトナー粒子が現像剤間隙に入り込むため、トナー 50 の場合は、現像ユニット内や初期現像剤を作成するとき

*て、該現像でトナーを消費し実質的にトナー含まないキ ャリアと、補給するトナーとを、画像形成装置中で制御 しているトナー濃度に設定し、ボールミルで15秒混合 した時の帯電量の絶対値が10μC/g~40μC/g になるように混合し、かつトナーの体積平均粒径を6~

【数2】

 $rc^3\rho c \cdot a/rt\rho t \cdot (rc+rt)^2 \cdot (100-a) \ge 0.08$...(II)

9μmにすることを特徴とする画像形成方法。

※ し実質的にトナーを含まないキャリア) と、補給するト 設定し、ボールミルで15秒混合した時の帯電量の絶対 値が7μC/g以上であることが必要である。トナー飛 散は、トナー1個の帯電量でも規定ができる。との場 合、画像形成装置中の現像剤からトナーを除去したキャ リアと、補給するトナーとを、画像形成装置中で制御し ているトナー濃度に設定し、ボールミルで15秒混合し た時の平均帯電量の絶対値が2×10-。C/個以上であ ることが必要となる。

【0016】とのパターンでのトナー飛散は、トナー濃 度を高く設定したり、現像剤量を少なくした時に顕著に 発生するが、これは補給されたトナー粒子が帯電のため に占有できるキャリアの表面積が小さいためと考えられ る。したがって、トナー濃度はキャリア表面のトナー粒 子被覆率として、現像剤量は現像ユニット内のキャリア の表面積量として表現するのが適当である。検討の結 果、上述した帯電量が10μC/g以下で、キャリア表 面のトナー粒子被覆率が20%を越えた場合、現像ユニ ット中のキャリアの表面積が15 m'以下であった場 合、いずれもトナー飛散が急激に悪化し、単に機内での トナー飛散にとどまらず、画像上に地汚れとして発現す るに至った。これらのプロセス条件では上述した帯電量 が10μC/g以上であることが重要である。

【0017】ととで、キャリア表面のトナー粒子被覆率 は電子顕微鏡等で直接観察しても良いし、BET比表面 積計で得られたキャリア表面積とトナー粒子径から算出 しても良い。また、キャリア表面のトナー粒子被覆率2 0%以上という条件は、簡易的に下記式(II)で示すこと ができる。

【数2】

30

の補給に相応した嵩密度の低下が生じない。そのため、 若干トナー濃度が高めとなる。トナー濃度が高めになる と、次に補給されるトナーが帯電するために必要なキャ リア表面が狭くなる。すると、次に補給されたトナーの うち、十分な電荷を持たず、現像剤間隙に入り込むトナ 一粒子が増す。トナー濃度がさらに高くなる。この繰り 返しによって、弱帯電トナーが増し、トナー飛散が発生

【0019】一方、前記②のメカニズムでのトナー飛散

の熱や力によって、トナーの表面状態が変化し、現像剤 中のトナー帯電能力が低下した場合や、トナーロット間 での帯電量ばらつきによって、現像剤中のトナーより補 給トナーの帯電能力が勝るときに生じる。このパターン*

> $QA - QB \leq 4$ $(\mu C/g)$

(ここで、QAは"現像剤からトナーを除去したキャリア と補給するトナーを制御トナー濃度に設定し、ボールミ ルで15秒混合した時の帯電量の絶対値"、QBは"現像 剤からトナーを除去したキャリアと現像剤中のトナーを 制御トナー濃度に設定し、ボールミルで15秒混合した 10 6~9μmであること、もしくは、ボールミルで15秒 時の帯電量の絶対値"である。)

また、帯電量の絶対値が40 μC/gを超えたり、12× 10-, µC/個を超えると十分な画像濃度が得られない という問題が発生する。さらに、QAとQBの差が10μ C/gを超えた場合はトナーが切り替わった時に著しく画 ※

 $-10 \leq QA - QB \leq 4$

【0021】さらに、トナー濃度を高く設定したり、現 像剤量を少なくした場合、トナー濃度制御が磁気ブリッ ジ方式トナーセンサーである場合は、ボールミルで15 C/gであることが重要となる。

【0022】これまでに述べた帯電量は、直径60mm のボールミルに装置中の現像剤からトナーを除去したキ ャリア50gと、補給トナーを画像形成装置中で制御し ているトナー濃度になる量を投入し、ボールミルを10 0rpmで15秒回転させた後に、トナーとキャリアか らなる現像剤をボールミルからとりだし、ブローオフ帯 電量測定装置で測定したものである。

【0023】本発明のおいては、トナー、キャリアとも 用いられる材料については特に限定されず、公知の材料 30 すべてが使用できる。本発明に使用されるバインダー樹 脂としては、例えば、ポリスチレン、ポリワークロロス チレン、ポリビニルトルエンなどのスチレン及びその置 換体の重合体: スチレン-p-クロロスチレン共重合 体、スチレンープロビレン共重合体、スチレンービニル トルエン共重合体、スチレンービニルナフタリン共重合 体、スチレン-アクリル酸メチル共重合体、スチレン-アクリル酸エチル共重合体、スチレン-アクリル酸プチ ル共重合体、スチレン-アクリル酸オクチル共重合体、 スチレンーメタクリル酸メチル共重合体、スチレンーメ 40 タクリル酸エチル共重合体、スチレンーメタクリル酸ブ チル共重合体、スチレン-α-クロルメタクリル酸メチ ル共重合体、スチレン-アクリロニトリル共重合体、ス チレン-ビニルメチルケトン共重合体、スチレン-ブタ ジエン共重合体、スチレンーイソプレン共重合体、スチ レンーアクリロニトリルーインデン共重合体、スチレン -マレイン酸共重合体、スチレン-マレイン酸エステル 共重合体などのスチレン系共重合体;ポリメチルメタク リレート、ポリプチルメタクリレート、ポリ塩化ビニ ル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、

*でのトナー飛散を防止するためには下記式(III)の関係 を満足することが必要である。

【数3】

(III) ···

※像品質の変化が生じる等の問題を有する。 【0020】以上より、一般的な使用環境においては、 ボールミルで15秒混合した時の帯電量の絶対値が7μ C/g~40µC/gで、かつトナーの体積平均粒径が 混合した時の平均帯電量の絶対値が2×10-, μC/個 ~12×10_, μC/個であること、また、下記式(I) を満足することが重要となる。

【数1】

 $(\mu C/g)$ ···(I)

ポリエステル、エポキシ樹脂、エポキシポリオール樹 脂、ポリウレタン、ポリアミド、ポリビニルブチラー ル、ポリアクリル酸樹脂、ロジン、変性ロジン、テルベ 秒混合した時の帯電量の絶対値が10μC/g~40μ 20 ン樹脂、脂肪族叉は脂環族炭化水素樹脂、芳香族系石油 樹脂、塩素化パラフィン、パラフィンワックスなどが挙 げられ、単独あるいは混合して使用できる。

【0024】着色剤としては公知の染料及び顔料が全て 使用でき、例えば、カーボンブラック、ニグロシン染 料、鉄黒、ナフトールイエローS、ハンザイエロー(1 0G、5G、G)、カドミュウムイエロー、黄色酸化 鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイル イエロー、ハンザイエロー(GR、A、RN、R)、ピ グメントイエローL、ベンジジンイエロー(G、G R)、パーマネントイエロー(NCG)、バルカンファ ストイエロー(5G、R)、タートラジンレーキ、キノ リンイエローレーキ、アンスラザンイエローBGL、イ ソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カド ミュウムレッド、カドミュウムマーキュリレッド、アン チモン朱、パーマネントレッド4尺、パラレッド、ファ イセーレッド、パラクロルオルトニトロアニリンレッ ド、リソールファストスカーレットG、ブリリアントフ ァストスカーレット、ブリリアントカーンミンBS、パ ーマネントレッド (F2R、F4R、FRL、FRL L、F4RH)、ファストスカーレトVD、ベルカンフ ァストルピンB、ブリリアントスカーレットG、リソー ルルビンGX、パーマネントレッドF5R、ブリリアン トカーミン6B、ポグメントスカーレット3B、ボルド -5B、トルイジンマルーン、パーマネントボルドーF 2K、ヘリオボルドーBL、ボルドー10B、ボンマル ーンライト、ボンマルーンメジアム、エオシンレーキ、

ローダミンレーキB、ローダミンレーキY、アリザリン

ン、オイルレッド、キナクリドンレッド、ピラゾロンレ

レーキ、チオインジゴレッドB、チオインジゴマルー

50 ッド、ポリアゾレッド、クロームパーミリオン、ベンジ

ジンオレンジ、ペリノンオレンジ、オイルオレンジ、コ バルトブルー、セルリアンブルー、アルカリブルーレー キ、ピーコックブルーレーキ、ピクトリアブルーレー キ、無金属フタロシアニンブルー、フタロシアニンブル ー、ファストスカイブルー、インダンスレンブルー(R S、BC)、インジゴ、群青、紺骨、アントラキノンブ ルー、ファストバイオレットB、メチルバイオレットレ ーキ、コバルト紫、マンガン紫、ジオキサンバイオレッ ト、アントラキノンバイオレット、クロムグリーン、ジ ンクグリーン、酸化クロム、ピリジアン、エメラルドグ 10 ナー中に含まれる磁性材料としては、マグネタイト、ヘ リーン、ピグメントグリーンB、ナフトールグリーン B、グリーンゴールド、アシッドグリーンレーキ、マラ カイトグリーンレーキ、フタロシアニングリーン、アン トラキノングリーン、酸化チタン、亜鉛華、リトボン及 びそれらの混合物が使用できる。使用量は一般にバイン ダー樹脂100重量部に対し0.1~50重量部であ る。

【0025】本発明のトナーは、必要に応じて帯電制御 剤を含有してもよい。帯電制御剤としては公知のものが 全て使用でき、例えばニグロシン系染料、トリフェニル 20 メタン系染料、クロム含有金属錯体染料、モリブデン酸 キレート顔料、ローダミン系染料、アルコキシ系アミ ン、4級アンモニウム塩(フッ素変性4級アンモニウム 塩を含む)、アルキルアミド、燐の単体または化合物、 タングステンの単体または化合物、フッ素系活性剤、サ リチル酸金属塩及び、サリチル酸誘導体の金属塩等であ る。これらの荷電制御剤は、必要に応じて、複数が併用 されてもよい。

【0026】本発明において荷電制御剤の使用量は、バ インダー樹脂の種類、必要に応じて使用される添加剤の 30 有無、分散方法を含めたトナー製造方法によって決定さ れるもので、一義的に限定されるものではないが、好ま しくはバインダー樹脂100重量部に対して0.1~1 0重量部の範囲、好ましくは2~5重量部の範囲で用い られる。0.1重量部未満では、トナーの負帯電が不足 し実用的でない。逆に10重量部を越えると、トナーの 帯電性が大きすぎ、キャリアとの静電的吸引力の増大の*

*ため、現像剤の流動性低下や、画像濃度の低下を招く。 【0027】その他の添加物としては、例えばコロイド 状シリカ、疎水性シリカ、脂肪酸金属塩(ステアリン酸 亜鉛、ステアリン酸アルミニウムなど)、金属酸化物 (酸化チタン、酸化アルミニュウム、酸化錫、酸化アン チモンなど)、フルオロポリマー等があげられ、その適 当量が含有されてもよい。

【0028】更に本発明のトナーは更に磁性材料を含有 させ、磁性トナーとしても使用し得る。本発明の磁性ト マタイト、フェライト等の酸化鉄、鉄、コバルト、ニッ ケルのような金属あるいはこれら金属のアルミニウム、 コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチ モン、ベリリウム、ビスマス、カドミウム、カルシウ ム、マンガン、セレン、チタン、タングステン、パナジ ウムのような金属の合金およびその混合物などが挙げら れる。これらの強磁性体は平均粒径が0. 1~2μm程 度のものが望ましく、トナー中に含有させる量としては 樹脂成分100重量部に対し約20~200重量部、特 に好ましくは樹脂成分100重量部に対し40~150 重量部である。

【0029】本発明で使用されるキャリヤとしては鉄 粉、フェライト、ガラスビーズ等、従来と同様である。 なおこれらキャリヤは樹脂を被覆したものでもよい。こ の場合に使用される樹脂はポリ弗化炭素、ポリ塩化ビニ ル、ポリ塩化ビニリデン、フェノール樹脂、ポリビニル アセタール、シリコーン樹脂等である。

【0030】トナーとキャリアとの混合割合は、一般に キャリヤ100重量部に対しトナー0.5~6.0重量 部程度が適当である。

[0031]

【実施例】以下に本発明を下記の実施例によってさらに 具体的に説明するが、本発明はこれに限定されるもので はない。なお、部数はすべて重量部である。まず、いく つかの本発明に関わるトナー及びキャリアの製造例を以 下に示す。

【0032】(トナー製造例1)

スチレン-n-ブチルアクリレート共重合体(共重合比83/17) 90部

 $(Mn = 1 \ 2 \ 0 \ 0 \ 0, \ Mw/Mn = 2 \ 4, \ Tg = 5 \ 4 \ C)$

カーボンブラック

10部

含クロムアゾ染料(ボントロンS34、オリエント化学社製)

2部

ポリプロピレンワックス(サンワックス660P、三洋化成社製)

2部

からなる材料をミキサーで混合後2本ロールミルで溶融 混練した。混練物物を圧延冷却後粉砕分級を行い、体積 平均粒径9.5μm、8.5μm、7.5μm、6.5μmのトナー

4種のトナーを得た。さらに、疎水性シリカ(R97

※ 5wt%、0.6wt%添加し、ミキサーで混合トナーサンプル A1~A4を得た。なお、トナーの真比重は1.3であっ

【0033】(トナー製造例2)

2、日本アエロジル社製)を各々0.3wt%、0.4wt%、0.%

スチレン-n-ブチルアクリレート共重合体(共重合比83/17) 90部

 $(Mn = 12000, Mw/Mn = 24, Tg = 54^{\circ}C)$

カーボンブラック

10部

11

12

フェノール誘導体(ボントロンE89、オリエント化学社製)

2部

ボリプロピレンワックス(サンワックス660P、三洋化成社製)

2部

からなる材料をミキサーで混合後2本ロールミルで溶融 混練した。混練物を圧延冷却後粉砕分級を行い、体積平 均粒径9.5μm、8.5μm、7.5μm、6.5μmのトナー4 種のトナーを得た。さらに、疎水性シリカ(R972、

*%、0.6wt%添加し、ミキサーで混合トナーサンブルB 1~B4を得た。なお、トナーの真比重は1.3であっ た。

【0034】(トナー製造例3)

日本アエロジル社製)を各々0.3wt%、0.4wt%、0.5wt *

スチレン-n-ブチルアクリレート共重合体(共重合比83/17) $(Mn = 1 \ 2 \ 0 \ 0 \ 0, \ Mw/Mn = 2 \ 4, \ Tg = 5 \ 4^{\circ}C)$

カーボンブラック

10部

フェノール誘導体(ボントロンE89、オリエント化学社製)

0.5部

ポリプロピレンワックス(サンワックス660P、三洋化成社製)

2部

からなる材料をミキサーで混合後2本ロールミルで溶融 混練した。混練物を圧延冷却後粉砕分級を行い、体積平 均粒径9.5μm、8.5μm、7.5μm、6.5μmのトナー4 種のトナーを得た。さらに、疎水性シリカ(R972、 日本アエロジル社製)を各々0.3wt%、0.4wt%、0.5wt ※

※%、0.6wt%添加し、ミキサーで混合トナーサンプルC 1~C4を得た。なお、トナーの真比重は1.3であっ た。

【0035】(キャリア製造例1)

シリコン樹脂溶液(信越化学社製、KR50)

100部

3部

カーボンブラック (キャボット社製、BP2000) トルエン

100部

からなる混合物をホモミキサーで30分間分散して被覆 層形成液を調製した。この被覆層形成液を平均粒径50 µmの球状フェライト1000部の表面に流動床型塗布★

リアAの真比重は5.0であった。

★装置を用いて被覆層を形成したキャリアAを得た。キャ

【0036】(キャリア製造例2)

シリコン樹脂溶液 (信越化学社製、KR50)

100部

カーボンブラック (キャボット社製、BP2000)

3部

トルエン

100部

からなる混合物をホモミキサーで30分間分散して被覆 層形成液を調製した。との被覆層形成液を平均粒径80 μπの球状フェライト1000部の表面に流動床型塗布 装置を用いて被覆層を形成したキャリアBを得た。キャ 30 続コピーしたのち、現像部を抜き出し目視観察で行っ リアBの真比重は5.0であった。

【0037】実施例1

製造例で示したトナーA3とキャリアAを混合しトナー 濃度6wt%の二成分系現像剤を作成した。この現像剤 をリコー社製複写機(イマジオ320)の現像部を少量 現像剤に対応するよう改良した実験機に入れ、補給用の トナーを現像剤作成と同じA3を用い評価を行った。こ とで、現像剤量は100g、イマジオ320での濃度制 御は感光体上にトナーパターンを形成し、その現像量か☆ ☆ら濃度を制御する方式である。ラン評価結果をまとめて 表1に示す。ととで、トナー被覆率は電子顕微鏡写真か ら計算した。実験機内でのトナー飛散は1000枚を連 た。また、地汚れは1000枚を目視で観察判定した。 表1中のQ/Mは1000枚での現像剤の帯電量、QA は現像剤からトナーを除去したキャリアと補給するトナ ーを制御トナー濃度に設定し、ボールミルで15秒混合 した時の帯電量の絶対値、QA'はQAをトナー1個当り に換算した値である。また、トナー濃度は下記式(IV)で 計算された値である。

【数4】

rc'ρc·a/rtρt·(rc+rt) · (100-a)

...(IV)

(rc、pc、rt、pt、aは前記式(II)) と同 じ。)

QBは現像剤からトナーを除去したキャリアと現像剤中 のトナーを制御トナー濃度に設定し、ボールミルで15 **秒混合した時の帯電量の絶対値である。ここで、特に現** 像部でのシェアや現像剤作成時のシェアがかかっておら ず、また、現像剤作成トナーと補給トナーが全く同一の ため、現像剤中のトナー帯電能力QAと補給トナーの帯 電能力QBは等しいと考えることが出来る。

【0038】実施例2

製造例で示したトナーA3七キャリアAを混合しトナー 濃度6wt%の二成分系現像剤を作成した。この現像剤 をリコー社製複写機(イマジオ320)の現像部を改良 した実験機に入れ、補給用のトナー現像剤作成と同じA 3を用い評価を行った。ここで、現像部をさらに改良し 磁気ブリッジ方式トナーセンサーでトナー濃度制御を行 った。その結果、1000枚通紙しても特に実験機内で 50 のトナー飛散は発生せず、また10000枚でも特に問 題が発生しなかった。

【0039】実施例3

製造例で示したトナーB3とキャリアAを混合しトナー 濃度6wt%の二成分系現像剤を作成した。この現像剤 をリコー製複写機(イマジオ320)の現像部を改良し た実験機に入れ、補給用のトナーをA2を用い評価を行 った。ここで、現像部をさらに改良し磁気ブリッジ方式 トナーセンサーでトナー濃度制御を行った。1000枚 通紙しても特に実験機内でのトナー飛散は発生せず、ま た10000枚でも特に問題が発生しなかった。100 10 実施例11と同じ現像剤をリコー社製複写機(イマジオ 0枚通紙時の現像剤を用い、QAとQBを測定したとこ ろ、QAは7. 8μ C/q、QBは10. 7μ C/qであった。 【0040】実施例4~14

製造例で示したトナーとキャリアを組み合わせ、実施例 1と同様の評価を行った。ここで、実施例6はトナー濃 度を2.5 wt%に設定した。また、実施例7では、現 像部を変更し現像剤量400gで、さらに実施例11で は現像剤量400g、トナー濃度を2.5wt%で評価 を行った。結果をまとめて表1に示す。実施例11で は、トナー飛散の生じることなく良好であったが、連続 20 ナーをA2として評価を行った。1000枚通紙後に現 コピー時にベタ部での画像濃度低下が観測された。

【0041】比較例1

製造例で示したトナーB3とキャリアAを混合しトナー 濃度6wt%の二成分系現像剤を作成した。この現像剤 をリコー社製複写機(イマジオ320)の現像部を改良 した実験機に入れ、補給用のトナーを現像剤作成と同じ B3を用い評価を行った。その結果、1000枚通紙後 に現像部を取り出し観察したところトナー飛散が観察さ れた。

【0042】比較例2

製造例で示したトナーB3とキャリアAを混合しトナー 濃度6wt%の二成分系現像剤を作成した。この現像剤 をリコー社製複写機(イマジオ320)の現像部を改良

した実験機に入れ、補給用のトナーを現像剤作成と同じ B3を用い評価を行った。ここで、現像部をさらに改良 し磁気ブリッジ方式トナーセンサーでトナー濃度制御を 行った。その結果、1000枚通紙ではトナー濃度は大 きく変化しなかったものの実験機内でのトナー飛散が観 察された。また、10000枚ではトナー濃度が10w t%に上昇し、実験機内でのトナー飛散が非常に多く、 画像上で地汚れも発生していた。

【0043】比較例3

320)の現像部を改良した実験機に入れ、補給用のト ナーをA2を用い評価を行った。1000枚通紙後に現 像部を取り出し観察したところ大量のトナー飛散が観察 された。1000枚通紙時の現像剤を用い、QAとQBを 測定したところ、QAは10.8μC/a、QBは6.7μC /oであった。

【0044】比較例4

実施例13と同じ現像剤をリコー社製複写機(イマジオ 320)の現像部を改良した実験機に入れ、補給用のト 像部を取り出し観察したところトナー飛散はみられなか った。補給用のトナーをC2に替え引続き評価を行っ た。変更後1000枚通紙後に現像部を取り出し観察し たところトナー飛散はほとんど観察されなかったが、画 像は徐々に太り気味になり画像チリが発生し出した。そ の時の現像剤を用い、QAとQBを測定したところ、QA は6. $7 \mu \text{C/g}$ 、QBは10. $8 \mu \text{C/g}$ であった。

【0045】比較例5~10

製造例で示したトナーとキャリアを組み合わせ、実施例 1と同様の評価を行った。結果をまとめて表1に示す。 [0046]

【表1-(1)】

16

15

		17-	44	y 7		トナー護度	Γ	展	現像和量	#	帯電量 ()	μс)
	サンレ と 哲 毎	2哲節(7目)	サンプル粒色	(u n')	後度(vis	港度(v1%) 校 膜率(%) 計	計算值	百姓(1)	集位国金(f) 表面積(mB)	M/D	ΥÖ	Q A
实施例 1	A3	7.6	¥	09	9	30	1.24	1000	32.6	16.3	11.3	3.2E-09.
实施例 4	T.	9.5	¥	0\$	9	20	18.0	1000	22.6	16.8	9.8	5. TE-09
莱施例 5	A.2	8.5	A	20	9	25	1.05	1000	22.6	17.2	11.5	4.8E-09
東施例 6	V	6.5	Ą	95	9	35	1.48	1000	22.6	.13.6	10.8	2.0E-09
東施例 7	A3	7.5	¥	99	2.5	10	0.50	1000	22.4	22.6	13.1	3.8E-09
安施贸 8	A3	7.5	¥	09	9	30	1.34	100	0.6	15.1	11.6	3.3E-09
実施例 9	A3	7.5	æ	80	တ	20	2.19	1000	14.1	14.8	6.01	3.1E-09
实施 例10	B1	9.6	4	09	စ	08	0.91	1000	22.6	18.2	1.6	6.38-09
実施何!!	29	8.5	4	20	80	22	1.05	1000	32.6	17.9	8.9	3.7E-09
灾瓶例12	Α3	7.5	¥	09	2.5	10	0.60	400	9.4	15.3	11.1	3.2E-09
奥越例13	2 V	8.5	¥	90	2.5	10	0.42	1000	23.4	18.1	8.9	3.7E-09
実施例14	B3	8.5	Y	9	2.5	10	0.42	1000	23.4	15.1	4. 1	3.4E-09
比較例 1	20	8.5	¥	09	2.5	10	0.42	1000	23.4	21.1	3.1	1.5E-09
比較例 6	ຂວ	7.6	Y	99	9	30	1.24	1000	22.6	23.4	4 . l	1. 2E-09
比較例 6	83	7.5	γ	09	9	30	1.24	1000	12.6	17.1	8.5	2.4E-09
比較例 7	Bđ	6.5	¥	09	9	38	1.48	1000	32.8	15.1	8.1	1.5E-09
比較例 8	B3	7.5	A	09	5.5	10	0.50	1000	23.4	24.1	9.8	2.8E-09
比較例 9	88	7.5	Y	09	9	30	1.24	400	0.6	16.8	8.9	2.6E-09
比較例10	83	7.5	8	08	9	20	2.19	1000	14.1	14.9	8.3	2.4B-09

【0047】 【表1-(2)】 17

	トナー	地汚れ	画 傑
	飛散		グレインネス
奥施例, 1	0	0	0
実施例 4	0	0	Δ
爽施例 5	0	0	0
突施例 6	少し発生	0	0
爽施例 7	0	0	0
夹施例 8	0	0	0
奥施例 9	少し発生	0	0
夹施例10	0	0	Δ
実施例11	0	. 0	0
夹施例12	0	0	0
実施例18	少し発生	0	0
奥施例14	少し発生	0	0
比較例 1	発生	発生	0
比較例 5	発生	発生	0
比較例 6	少し発生	0	0
比較例 7	発生	発生	0
比較例 8	少し発生	0	0
比較例 9	少し発生	発生	0
比較例10	少し発生	0	0

* (注)トナー飛散、地汚れの欄で○はそれらが発生又は みられなかったことを示す。画像グレイネンスで○は良 好、△は普通を表わす。

18

[0048]

【発明の効果】本発明によれば、高画質化のために体積 平均粒径9 μm以下のトナーを用いた複写機やプリンター等の画像形成装置において、トナー飛散を防止することができ、また画像のシャーブ性や階調性、グレインネス(粒状性)、ハーフトーンの均一性等の向上も図られる。さらに、十分な画像濃度が得られ、トナー補給に伴う画像濃度変動も防止することができる。特に、磁気ブリッチ方式トナーセンサーを用いたトナー濃度制御を行う場合のトナー飛散を防止することができ、加えて、機械の小型化やその際のベタの追随性をあげるため、トナー濃度を高く設定したり、現像剤量を少なくした時のトナー飛散を防止することが可能でとなる。

*

フロントページの続きではは、当体をは、「おから、おります

(72)発明者 松井 秋雄

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 冨田 正実

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 加藤 貴久

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 増田 稔

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 鈴木 智美

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)