α) Από την ταυτότητα της διαίρεσης έχουμε $P(x) = (4x^2 - 1)(3x - 2) + 1$, οπότε η ζητούμενη εξίσωση γίνεται ισοδύναμα

$$P(x) = 1 \Leftrightarrow (4x^2 - 1)(3x - 2) + 1 = 1 \Leftrightarrow (4x^2 - 1)(3x - 2) = 0$$

Εύκολα πλέον βρίσκουμε ότι οι λύσεις της εξίσωσης είναι οι αριθμοί $\pm \frac{1}{2}$ και $\frac{2}{3}$.

β) Δείξαμε στο α) ότι αριθμοί που ικανοποιούν την εξίσωση P(x) = 1 είναι οι $\pm \frac{1}{2}$ και $\frac{2}{3}$.

Συνεπώς για να ήταν $P(\log 5) = 1$, θα έπρεπε $\log 5 = \frac{1}{2}$ ή $\log 5 = -\frac{1}{2}$ ή $\log 5 = \frac{2}{3}$.

Όμως $\log 5 \neq -\frac{1}{2}$ αφού $5 > 1 \Leftrightarrow \log 5 > 0$.

Επίσης $\log 5 = \frac{1}{2} \Leftrightarrow 5 = 10^{\frac{1}{2}} \Leftrightarrow 5 = \sqrt{10}$ το οποίο είναι άτοπο .

Τέλος $\log 5 = \frac{2}{3} \Leftrightarrow 5 = 10^{\frac{2}{3}} \Leftrightarrow 5 = \sqrt[3]{10^2}$ το οποίο επίσης είναι άτοπο.

Συνεπώς $P(\log 5) \neq 1$.

γ) Είναι $P(x) = (4x^2 - 1)(3x - 2) + 1$, οπότε $P(-1) = (4(-1)^2 - 1)(3(-1) - 2) + 1 = -14$ και P(0) = (-1)(-2) + 1 = 3.

Αφού οι τιμές P(-1), P(0) είναι ετερόσημες, η εξίσωση P(x) = 0 έχει μία τουλάχιστον ρίζα στο (-1,0) .