Sania David

```
In [1]: import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

In [3]: df=pd.read_csv('Iris.csv')
df

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

```
In [5]: df["Species"].value_counts()
Out[5]: Species
         Iris-setosa
                               50
         Iris-versicolor
                               50
         Iris-virginica
                               50
         Name: count, dtype: int64
In [6]:
         df=df.drop(columns=["Id"])
         df.head(10)
Out[6]:
             SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                          Species
          0
                        5.1
                                       3.5
                                                      1.4
                                                                    0.2 Iris-setosa
          1
                        4.9
                                       3.0
                                                      1.4
                                                                    0.2 Iris-setosa
          2
                        4.7
                                       3.2
                                                      1.3
                                                                    0.2 Iris-setosa
          3
                        4.6
                                       3.1
                                                      1.5
                                                                    0.2 Iris-setosa
          4
                        5.0
                                       3.6
                                                      1.4
                                                                    0.2 Iris-setosa
          5
                        5.4
                                       3.9
                                                      1.7
                                                                    0.4 Iris-setosa
                                                                    0.3 Iris-setosa
          6
                        4.6
                                       3.4
                                                      1.4
                        5.0
                                                                    0.2 Iris-setosa
          7
                                       3.4
                                                      1.5
          8
                        4.4
                                       2.9
                                                      1.4
                                                                    0.2 Iris-setosa
                        4.9
                                       3.1
                                                      1.5
                                                                    0.1 Iris-setosa
In [7]: | df.columns
Out[7]: Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                  'Species'],
                 dtype='object')
In [8]: df.isnull().sum()
Out[8]: SepalLengthCm
                             0
         SepalWidthCm
                             0
                             0
         PetalLengthCm
         PetalWidthCm
                             0
         Species
                             0
         dtype: int64
```

```
In [10]: from sklearn.preprocessing import LabelEncoder
           le=LabelEncoder()
           df['Species'] =le.fit_transform(df['Species'])
           df["Species"]
Out[10]: 0
                    0
                    0
            1
            2
                    0
            3
                    0
            4
                    0
            145
                    2
                    2
            146
            147
                    2
            148
                    2
            149
           Name: Species, Length: 150, dtype: int32
In [12]: hue_mapping = {0:'Setosa', 1 : 'Versicolor', 2 : 'Virginica'}
           df['Species'] = df['Species'].map(hue_mapping)
           sns.pairplot(df, hue ='Species', diag_kind='kde')
           plt.show()
             SepalLengthCm
              4.5
              4.0
            SepalWidthCm
2 0.8
              2.5
              2.0
                                                                                                      Species
                                                                                                       Setosa
                                                                                                       Versicolor
                                                                                                       Virginica
             PetalLengthCm
w b G
              2.5 -
              2.0
            PetalWidthCm
1.5
              0.5
              0.0
                      SepalLengthCm
                                           SepalWidthCm
                                                               PetalLengthCm
                                                                                    PetalWidthCm
```

```
In [13]: df['SepalLengthCm'].hist()
```

Out[13]: <Axes: >


```
In [14]: df['SepalWidthCm'].hist()
```

Out[14]: <Axes: >


```
In [15]: df['PetalLengthCm'].hist()
```

Out[15]: <Axes: >


```
In [21]: df['SepalLengthCm'].hist(color='yellow')
    df['SepalWidthCm'].hist(color='red')
    df['PetalLengthCm'].hist(color='green')
    df['PetalWidthCm'].hist(color='blue')
```

Out[21]: <Axes: >

In [22]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Species'] = le.fit_transform(df['Species'])
correlation_matrix = df.corr()
print(correlation_matrix)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	\
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954	
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544	
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757	
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000	
Species	0.782561	-0.419446	0.949043	0.956464	

Species
SepalLengthCm 0.782561
SepalWidthCm -0.419446
PetalLengthCm 0.949043
PetalWidthCm 0.956464
Species 1.000000

```
In [23]: corr = correlation_matrix
fig, ax = plt.subplots(figsize=(5,4))
sns.heatmap(corr, annot=True, ax=ax, cmap='viridis')
```

Out[23]: <Axes: >


```
In [26]: from sklearn.model_selection import train_test_split
X = df.drop(columns=['Species'])
Y = df['Species']
x_train, x_test, y_train, y_test = train_test_split(X,Y, test_size=0.40)
```

```
In [27]: from sklearn.linear_model import LogisticRegression
    model=LogisticRegression()
    model.fit(x_train,y_train)
    print("Accuracy(Logistic Regression):",model.score(x_test,y_test)*100)
```

Accuracy(Logistic Regression): 98.333333333333333