Corrigé de la feuille d'exercices 2

Forme algébrique 1

Exercise 1. •
$$z_1 = \frac{(5-i)(3-2i)}{1+i} = \frac{(13-13i)(1-i)}{2} = \frac{13(1-i)^2}{2} = -13i$$

- $z_2 = (2-i)(1+6i-9) = (2-i)(-8+6i) = -16+12i+8i+6 = -10+20i$
- En utilisant le binôme de Newton, on a :

$$z_3 = i^5 - 5i^4 + 10i^3 - 10i^2 + 5i - 1 = i - 5 - 10i + 10 + 5i - 1 = 4 - 4i$$

• En utilisant le binôme de Newton, on a :

$$z_4 = \frac{i^4 + 4i^3 + 6i^2 + 4i + 1}{2^4 - 4 \times 2^3 i + 6 \times 2^2 i^2 - 4 \times 2 i^3 + i^4} = \frac{1 - 4i - 6 + 4i + 1}{16 - 32i - 24 + 8i + 1} = -\frac{4}{-7 - 24i} = \frac{4(7 + 24i)}{625} = \frac{28}{625} - \frac{96}{625}i^2 + \frac{1}{2}i^2 + \frac{1}{2}$$

$$z_5 = \frac{1 + 5i + 10i^2 + 10i^3 + 5i^4 + i^5 - 1}{1 + 5i + 10i^2 + 10i^3 + 5i^4 + i^5 + 1} = \frac{5i - 10 - 10i + 5 + i}{2 + 5i - 10 - 10i + 5 + i} = \frac{-5 - 4i}{-3 - 4i} = \frac{(-5 - 4i)(-3 + 4i)}{25} = \frac{31}{25} - \frac{8}{25}i$$

• En utilisant le binôme de Newton, on a : $(1+i)^{2014} = \left(\sqrt{2}e^{i\pi/4}\right)^{2014} = (\sqrt{2})^{2014}e^{2014i\frac{\pi}{4}}.$

Or,
$$2014 = 251 \times 8 + 6$$
.
Ainsi, $(1+i)^{2014} = 2^{1007}e^{6i\frac{\pi}{4}} = -2^{1007}i$.

• $\overline{z_1} = -i(2+i)^2 = -i(4+4i-1) = -i(3+4i) = 4-3i$

•
$$\overline{z_2} = \frac{\sqrt{2}}{2-i} = \frac{\sqrt{2}(2+i)}{5} = \frac{2\sqrt{2}}{5} + i\frac{\sqrt{2}}{5}$$

Exercise 3. • $\operatorname{Re}\left(\frac{1}{z}\right) = \operatorname{Re}\left(\frac{\overline{z}}{|z|^2}\right) = \frac{1}{|z|^2}\operatorname{Re}\left(\overline{z}\right) = \frac{\operatorname{Re}z}{(\operatorname{Re}z)^2 + (\operatorname{Im}z)^2}$

•
$$\operatorname{Im}\left(\frac{1}{z}\right) = \operatorname{Im}\left(\frac{\overline{z}}{|z|^2}\right) = \frac{1}{|z|^2} \operatorname{Im}\left(\overline{z}\right) = -\frac{\operatorname{Im}z}{(\operatorname{Re}z)^2 + (\operatorname{Im}z)^2}$$

1. Soit $z \in \mathbb{C}$. On écrit z = x + iy avec $(x, y) \in \mathbb{R}^2$.

On a alors:

$$2z + 3\overline{z} = 1 \iff 5x - iy = 1$$

$$\iff \begin{cases} x = \frac{1}{5} \\ y = 0 \end{cases}$$

Ainsi, l'ensemble des solutions est $\{\frac{1}{5}\}$.

2. Soit $z \in \mathbb{C}$. On écrit z = x + iy avec $(x, y) \in \mathbb{R}^2$. On a alors :

$$2z + 6\overline{z} = 3 + 2i \quad \Longleftrightarrow \quad 8x - 4iy = 3 + 2i$$

$$\iff \quad \left\{ \begin{array}{l} x = \frac{3}{8} \\ y = -\frac{1}{2} \end{array} \right.$$

Ainsi, l'ensemble des solutions est $\{\frac{3}{8} - \frac{1}{2}i\}$.

Exercise 5. • $z_1 = (2+i)(\cos(3\theta) + i\sin(3\theta)) = (2\cos(3\theta) - \sin(3\theta)) + i(\cos(3\theta) + 2\sin(3\theta))$

- $z_2 = (1 2i)(\cos(\theta) i\sin(\theta)) = (\cos(\theta) 2\sin(\theta)) i(2\cos(\theta) + \sin(\theta))$
- $z_3 = \frac{(1+i)e^{2i\theta}}{2} = \frac{(1+i)(\cos(2\theta)+i\sin(2\theta))}{2} = \frac{(\cos(2\theta)-\sin(2\theta))}{2} + i\frac{(\cos(2\theta)+\sin(2\theta))}{2}$
- Soit $\theta \in \left] \frac{\pi}{2}; \frac{\pi}{2} \left[, \frac{1 + i \tan \theta}{1 i \tan \theta} = \frac{1 + i \frac{\sin \theta}{\cos \theta}}{1 i \frac{\sin \theta}{\cos \theta}} = \frac{\cos \theta + i \sin \theta}{\cos \theta i \sin \theta} = \frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta} = \cos(2\theta) + i \sin(2\theta).$
- On factorise par l'argument moitié : $(1+e^{i\theta})^n = e^{i\frac{n\theta}{2}}(e^{-i\frac{\theta}{2}}+e^{i\frac{\theta}{2}})^n = e^{i\frac{n\theta}{2}}(2\cos\left(\frac{\theta}{2}\right))^n = 2^n\cos\left(\frac{n\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)^n + i2^n\sin\left(\frac{n\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)^n$

2 Module

Exercice 6. Soit $z \in \mathbb{C} \setminus \{1\}$. Raisonnons par double implication :

 $Z = \frac{(z+1)(\overline{z-1})}{|z-1|^2} = \frac{(z+1)(\overline{z-1})}{|z-1|^2} = \frac{|z|^2 - z + \overline{z} - 1}{|z-1|^2} = \frac{|z|^2 - 1 - 2i\operatorname{Im}(z)}{|z-1|^2} = -2i\frac{\operatorname{Im}(z)}{|z-1|^2} \text{ car } |z| = 1.$ Or, $\frac{\operatorname{Im}(z)}{|z-1|^2} \in \mathbb{R} \text{ donc } Z \in i\mathbb{R}.$

• Supposons désormais que
$$Z \in i\mathbb{R}$$
. On a toujours :
$$Z = \frac{(z+1)(\overline{z-1})}{|z-1|^2} = \frac{(z+1)(\overline{z-1})}{|z-1|^2} = \frac{|z|^2 - z + \overline{z} - 1}{|z-1|^2} = \frac{|z|^2 - 1 - 2i\mathrm{Im}(z)}{|z-1|^2}. \text{ Or, } Z \in i\mathbb{R}. \text{ Ainsi, } \mathrm{Re}(Z) = 0.$$

Donc $\frac{|z|^2-1}{|z-1|^2}=0$ d'où $|z|^2=1$, comme un module est toujours positif, on en déduit que |z|=1.

On a ainsi prouvé l'équivalence voulue.

Exercice 7. Soit $(a, b, c) \in \mathbb{C}^3$.

On a:

$$1 = 1 + a - a - b + b + c - c = 1 + a - (a + b) + (b + c) - c.$$

Donc, d'après l'inégalité triangulaire :

$$1 = |1 + a - (a + b) + (b + c) - c| \le |1 + a| + |a + b| + |b + c| + |c|$$

Exercice 8. On a (comme $z \neq 1$ et $|z| \neq 1$):

$$\left|\frac{1-z^n}{1-z}\right| = \left|\sum_{k=0}^{n-1} z^k\right| \le \sum_{k=0}^{n-1} |z^k| \le \sum_{k=0}^{n-1} |z|^k \le \frac{1-|z|^n}{1-|z|}.$$

On a utilisé deux propriétés qui se montrent par récurrence :

• $\forall n \in \mathbb{N}, |z^n| = |z|^n$ Pour n = 0, on a $|z^0| = 1 = |z|^0$. Soit $n \in \mathbb{N}$, supposons $|z^n| = |z|^r$

$$|z^{n+1}| = |z^n \times z| = |z^n| \times |z|$$
$$= |z|^n \times |z| = |z|^{n+1}$$

Ainsi, on a prouvé que : $\forall n \in \mathbb{N}, |z^n| = |z|^n$.

 $\bullet \ \forall n \in \mathbb{N}^*, \ \left| \sum_{k=0}^{n-1} z^k \right| \leq \sum_{k=0}^{n-1} |z^k|.$ Pour n = 1, $\left| \sum_{k=0}^{1} z^k \right|^{k=0} = |z^0| = 1 = \sum_{k=0}^{0} |z^k|$.

Soit $n \in \mathbb{N}$, supposons que $\left|\sum_{k=0}^{n-1} z^k\right| \leq \sum_{k=0}^{n-1} |z^k|$.

On a alors :

$$\begin{split} \left|\sum_{k=0}^{n} z^k\right| &= \left|\sum_{k=0}^{n-1} z^k + z^n\right| \\ &\leq \left|\sum_{k=0}^{n-1} z^k\right| + |z^n| \quad \text{d'après l'inégalité triangulaire} \\ &\leq \left(\sum_{k=0}^{n-1} |z^k|\right) + |z^n| \\ &\leq \sum_{k=0}^{n} |z^k| \end{split}$$

Exercice 9. On procède par récurrence sur

Pour tout $n \in \mathbb{N}^*$, on pose : $\mathcal{P}(n)$: $\left| \prod_{k=1}^n a_k - \prod_{k=1}^n b_k \right| \le \sum_{k=1}^n |a_k - b_k|$.

• Pour
$$n = 1$$
, $\left| \prod_{k=1}^{1} a_k - \prod_{k=1}^{1} b_k \right| = |a_1 - b_1| = \sum_{k=1}^{1} |a_k - b_k| \text{ donc } \mathcal{P}(1) \text{ est vraie.}$

• Soit $n \in \mathbb{N}^*$, supposons $\mathcal{P}(n)$ vraie.

$$\left|\prod_{k=1}^{n+1}a_k - \prod_{k=1}^{n+1}b_k\right| = \left|a_{n+1}\prod_{k=1}^n a_k - b_{n+1}\prod_{k=1}^n b_k\right|$$

$$= \left|(a_{n+1} - b_{n+1}) \times \prod_{k=1}^n a_k + b_{n+1}\left(\prod_{k=1}^n a_k - \prod_{k=1}^n b_k\right)\right|$$

$$\leq |a_{n+1} - b_{n+1}| \times \prod_{k=1}^n |a_k| + |b_{n+1}| \left|\prod_{k=1}^n a_k - \prod_{k=1}^n b_k\right| \quad \text{d'après l'inégalité triangulaire}$$

$$\leq |a_{n+1} - b_{n+1}| + \sum_{k=1}^n |a_k - b_k| \quad \text{par l' hypothèse de récurrence et les hypothèses sur } a_k, b_k$$

$$\leq \sum_{k=1}^{n+1} |a_k - b_k|$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

• On a donc prouvé que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Exercice 10.

3 Trigonométrie - Linéarisation - Sommes

Exercice 11. • Soit $x \in \mathbb{R}$. On a $\cos^2(x) = \frac{\cos(2x) + 1}{2}$ (formule de trigonométrie).

• Soit $x \in \mathbb{R}$, on a :

$$\sin^4 x = \left(\frac{e^{ix} - e^{ix}}{2i}\right)^4$$

$$= \frac{1}{16}(e^{4ix} - 4e^{2ix} + 6 - 4e^{-2ix} + e^{-4ix})$$

$$= \frac{3}{8} - \frac{1}{2}\cos(2x) + \frac{1}{8}\cos(4x).$$

• Soit $x \in \mathbb{R}$, on a :

$$\begin{split} \cos^2 x \sin^3 x &= \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 \\ &= -\frac{1}{32i}(e^{2ix} + 2 + e^{-2ix})(e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}) \\ &= -\frac{1}{32i}(e^{5ix} - 3e^{3ix} + 3e^{ix} - e^{-ix} + 2e^{3ix} - 6e^{ix} + 6e^{-ix} - 2e^{-3ix} + e^{ix} - 3e^{ix} + 3e^{-3ix} - e^{-5ix}) \\ &= -\frac{1}{32i}(e^{5ix} - e^{-5ix} - e^{3ix} + e^{-3ix} - 2e^{ix} + 2e^{ix}) \\ &= \frac{1}{8}\sin x + \frac{1}{16}\sin(3x) - \frac{1}{16}\sin(5x). \end{split}$$

Exercice 12. Soit $x \in \mathbb{R}$, par la formule de Moivre, le binôme de Newton et les formules d'Euler, on a $\sin(5x) = \operatorname{Im}(e^{5ix}) = \operatorname{Im}((\cos x + i \sin x)^5)$

$$= \operatorname{Im}(\cos^5 x + 5i\cos^4 x \sin x - 10\cos^3 x \sin^2 x - 10i\cos^2 x \sin^3 x + 5\cos x \sin^4 x + i\sin^5 x)$$

$$= 5\cos^4 x \sin x - 10\cos^2 x \sin^3 x + \sin^5 x = 5(1 - \sin^2 x)^2 \sin x - 10(1 - \sin^2 x)\sin^3 x + \sin^5 x$$

$$= 5\sin x - 10\sin^3 x + 5\sin^5 x - 10\sin^3 x + 10\sin^5 x + \sin^5 x$$

$$= 16\sin^5 x - 20\sin^3(x) + 5\sin x.$$

Posant $t = \sin \frac{\pi}{5}$. On a alors $16t^5 - 20t^3 + 5t = \sin \pi = 0$. Or, $\frac{\pi}{5} \in \left]0, \frac{\pi}{4}\right[$ donc $t \in]0, \frac{\sqrt{2}}{2}[$ (croissance de la fonction sinus).

En particulier, $t \neq 0$ et on peut diviser par t dans l'équation.

On pose $T = t^2$, On a donc $16T^2 - 20T + 5 = 0$.

Le discriminant de ce polynôme vaut $20^2 - 4 \times 16 \times 5 = 4^2 \times 5^2 - 4^2 \times 5 \times 4 = 4^2 \times 5(5-4) = 4^2 \times 5$.

Ainsi les solutions de l'équation $16T^2 - 20T + 5 = 0$ sont $\frac{5 \pm \sqrt{5}}{8}$.

Or,
$$T < \frac{1}{2}$$
, donc on a $T = \frac{5 - \sqrt{5}}{8}$. Ainsi, $t = \pm \sqrt{\frac{5 - \sqrt{5}}{8}}$. Or, $t > 0$, donc $t = \sin \frac{\pi}{5} = \sqrt{\frac{5 - \sqrt{5}}{8}}$.

Posons désormais $u = \cos \frac{\pi}{10}$. On a $u = \sin \left(\frac{\pi}{2} - \frac{\pi}{10} \right) = \sin \frac{2\pi}{5}$. On a alors $16u^5 - 20u^3 + 5u = \sin 2\pi = 0$. Or,

 $\frac{2\pi}{5} \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[\text{donc } u \in]\frac{1}{2}, 1 \right[\text{(croissance de la fonction sinus)}.$ En particulier, $u \neq 0$ et on peut diviser par u dans l'équation. On pose $U = u^2$, On a donc $16U^2 - 20U + 5 = 0$. Le discriminant de ce polynôme vaut $20^2 - 4 \times 16 \times 5 = 4^2 \times 5^2 - 4^2 \times 5 \times 4 = 4^2 \times 5(5-4) = 4^2 \times 5$.

Ainsi les solutions de l'équation $16U^2 - 20U + 5 = 0$ sont $\frac{5 \pm \sqrt{5}}{\circ}$.

Or,
$$U > \frac{1}{2}$$
, donc on a $U = \frac{5 + \sqrt{5}}{8}$. Ainsi, $u = \pm \sqrt{\frac{5 + \sqrt{5}}{8}}$. Or, $u > 0$, donc $u = \cos \frac{\pi}{10} = \sqrt{\frac{5 + \sqrt{5}}{8}}$.

Exercice 13. • On a
$$A_n = \sum_{k=0}^n \text{Re}\left(e^{i(a+kb)}\right) = \text{Re}(\sum_{k=0}^n e^{i(a+kb)}) = \text{Re}(e^{ia}\sum_{k=0}^n (e^{ib})^k).$$

Or, $e^{ib} = 1 \iff b \equiv 0$ $[2\pi]$.

• Si $b \equiv 0$ [2 π], alors $e^{ib} = 1$ donc:

$$A_n = \operatorname{Re}(e^{ia} \sum_{k=0}^n 1) = \operatorname{Re}((n+1)e^{ia}) = (n+1)\operatorname{Re}(e^{ia}) = (n+1)\cos a$$

• Si $b \not\equiv 0$ [2 π]. On a alors :

$$A_{n} = \operatorname{Re}\left(e^{ia} \sum_{k=0}^{n} (e^{ib})^{k}\right)$$

$$= \operatorname{Re}\left(e^{ia} \frac{1 - e^{i(n+1)b}}{1 - e^{ib}}\right)$$

$$= \operatorname{Re}\left(e^{ia} \frac{e^{i\frac{(n+1)b}{2}}}{e^{i\frac{b}{2}}} \frac{-2i\sin\frac{(n+1)b}{2}}{-2i\sin\frac{b}{2}}\right)$$

$$= \operatorname{Re}\left(e^{i(a + \frac{nb}{2})} \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}\right)$$

$$= \operatorname{Re}\left(e^{i(a + \frac{nb}{2})} \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}\right)$$

$$= \cos\left(a + \frac{nb}{2}\right) \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}$$

On procède de même.

On a
$$B_n = \operatorname{Im}(\sum_{k=0}^n e^{i(a+kb)}) = \operatorname{Im}(e^{ia} \sum_{k=0}^n (e^{ib})^k).$$
Or, $e^{ib} = 1 \iff b = 0$ [2 π].

• Si $b \equiv 0$ [2 π], alors $e^{ib} = 1$ donc:

$$B_n = \operatorname{Im}(e^{ia} \sum_{k=0}^n 1) = \operatorname{Im}((n+1)e^{ia}) = (n+1)\operatorname{Im}(e^{ia}) = (n+1)\sin a$$

• Si $b \not\equiv 0$ [2 π]. On a alors :

$$B_{n} = \operatorname{Im}\left(e^{ia} \sum_{k=0}^{n} (e^{ib})^{k}\right)$$

$$= \operatorname{Im}\left(e^{ia} \frac{1 - e^{i(n+1)b}}{1 - e^{ib}}\right)$$

$$= \operatorname{Im}\left(e^{ia} \frac{e^{i\frac{n+1)b}{2}}}{e^{i\frac{b}{2}}} \times \frac{-2i\sin\frac{(n+1)b}{2}}{-2i\sin\frac{b}{2}}\right)$$

$$= \operatorname{Im}\left(e^{i(a + \frac{nb}{2})} \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}\right)$$

$$= \operatorname{Im}\left(e^{i(a + \frac{nb}{2})} \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}\right)$$

$$= \sin\left(a + \frac{nb}{2}\right) \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}}$$

• On a

$$C_n = \operatorname{Re}\left(\sum_{k=0}^n \binom{n}{k} e^{ia+ikb}\right)$$

$$= \operatorname{Re}\left(e^{ia} \sum_{k=0}^n \binom{n}{k} (e^{ib})^k\right)$$

$$= \operatorname{Re}\left(e^{ia} (1+e^{ib})^n\right)$$

$$= \operatorname{Re}\left(e^{ia} \times \left(2e^{ib/2} \cos \frac{b}{2}\right)^n\right)$$

$$= 2^n \left(\cos\left(\frac{b}{2}\right)\right)^n \operatorname{Re}(e^{ia+\frac{inb}{2}})$$

$$= 2^n \left(\cos\left(\frac{b}{2}\right)\right)^n \cos\left(a+\frac{nb}{2}\right)$$

Exercice 14. Soit $n \in \mathbb{N}^*$, soit $x \in \mathbb{R}$.

•
$$S_1 = \text{Re}\left(\sum_{k=0}^n \frac{1}{2^k} e^{\frac{ik\pi}{3}}\right)$$

$$= \text{Re}\left(\sum_{k=0}^n \left(\frac{e^{\frac{i\pi}{3}}}{2}\right)^k\right)$$

$$= \text{Re}\left(\frac{1 - \frac{e^{\frac{i(n+1)\pi}{3}}}{2^{n+1}}}{1 - \frac{e^{\frac{i\pi}{3}}}{2}}\right)$$
Or, $\frac{e^{\frac{i\pi}{3}}}{2} = \frac{1}{4} + i\frac{\sqrt{3}}{4} \text{ donc } 1 - \frac{e^{\frac{i\pi}{3}}}{2} = \frac{3}{4} - i\frac{\sqrt{3}}{4} = -i\sqrt{3}\left(\frac{1}{4} + i\frac{\sqrt{3}}{4}\right) = -i\sqrt{3} \times \frac{e^{\frac{i\pi}{3}}}{2}}{4}$
Ainsi,
$$\sum_{k=0}^n \frac{1}{2^k} e^{\frac{ik\pi}{3}} = \frac{\left(1 - \frac{e^{\frac{i(n+1)\pi}{3}}}{2^{n+1}}\right)}{-i\sqrt{3}e^{i\pi/3}}$$

$$= 2\frac{ie^{-i\pi/3}}{\sqrt{3}} \left(1 - \frac{e^{i(\frac{(n+1)\pi}{3})}}{2^{n+1}}\right)$$

$$= \frac{2i}{\sqrt{2}} \times \left(e^{-i\pi/3} - \frac{e^{in\pi/3}}{2^{n+1}}\right)$$

Ainsi:

$$S_1 = \operatorname{Re}\left(\frac{2i}{\sqrt{3}} \times \left(e^{-i\pi/3} - \frac{e^{in\pi/3}}{2^{n+1}}\right)\right)$$

$$= -\frac{2}{\sqrt{3}}\operatorname{Im}\left(e^{-i\pi/3} - \frac{e^{in\pi/3}}{2^{n+1}}\right)$$

$$= -\frac{2}{\sqrt{3}}\left(-\sin\left(\frac{\pi}{3}\right) - \frac{\sin\left(\frac{n\pi}{3}\right)}{2^{n+1}}\right)$$

$$= -\frac{2}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2} - \frac{\sin\left(\frac{n\pi}{3}\right)}{2^{n+1}}\right)$$

$$= 1 + \frac{\sin\left(\frac{n\pi}{3}\right)}{2^n\sqrt{3}}$$

- $S_2 = \sum_{k=0}^n \cos^k(x) \sin(kx) = \operatorname{Im} \left(\sum_{k=0}^n \cos^k(x) e^{ikx} \right)$ Or, $\cos(x) e^{ikx} = 1 \iff x \equiv 0 \ [2\pi].$
 - Si $x \equiv 0[\pi]$, alors, $S_2 = \text{Im}\left(\sum_{k=0}^{n} 1\right) = \text{Im}(n+1) = 0$.
 - Si $x \not\equiv 0$ [2 π], on a :

$$S_{2} = \operatorname{Im}\left(\frac{1 - \cos(x)^{n+1}e^{i(n+1)x}}{1 - \cos(x)e^{ix}}\right)$$

$$= \operatorname{Im}\left(\frac{e^{-ix} - \cos(x)^{n+1}e^{inx}}{e^{-ix} - \cos(x)}\right) = \operatorname{Im}\left(\frac{\cos x - i\sin x - \cos(x)^{n+1}(\cos(nx) + i\sin(nx))}{-i\sin x}\right)$$

$$= \operatorname{Im}\left(\frac{i\left(\cos x - \cos(x)^{n+1}\cos(nx)\right) + \left(\sin x + \cos(x)^{n+1}\sin(nx)\right)}{\sin x}\right)$$

$$= \frac{\cos x - \cos(x)^{n+1}\cos(nx)}{\sin x}$$

Exercice 15. • On a

$$A_n + iB_n = \sum_{0 \le 2k \le n} \binom{n}{k} (-1)^k + i \sum_{0 \le 2k+1 \le n} \binom{n}{k} (-1)^k$$
$$= \sum_{0 \le 2k \le n} \binom{n}{2k} i^{2k} + \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} i^{2k+1}$$
$$= \sum_{k=0}^n \binom{n}{k} i^k = (1+i)^n = (\sqrt{2}e^{\frac{i\pi}{4}})^n = 2^{n/2}e^{\frac{i\pi n}{4}}$$

donc $A_n = \text{Re}(2^{n/2}e^{\frac{i\pi n}{4}}) = 2^{n/2}\cos\left(\frac{\pi n}{4}\right)$ et de $B_n = \text{Im}(2^{n/2}e^{\frac{i\pi n}{4}}) = 2^{n/2}\sin\left(\frac{\pi n}{4}\right)$.

• Supposons $a \not\equiv \frac{\pi}{2}[\pi]$. Par le binôme de Newton, on a alors :

$$C_n = \operatorname{Re}\left(\sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \frac{e^{ika}}{\cos^k a}\right) = \operatorname{Re}\left(\sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \left(\frac{e^{ia}}{\cos a}\right)^k\right) = \operatorname{Re}\left(\left(-1 + \frac{e^{ia}}{\cos a}\right)^n\right) = \operatorname{Re}\left((i \tan a)^n\right)$$

et donc $C_n = 0$ si n est impair, $C_n = (-1)^{n/2} \tan^n a$ si n est pair.

Exercice 16. L'équation a un sens pour $x \not\equiv \frac{\pi}{2}[\pi]$

Supposons $x \not\equiv \frac{\pi}{2}[\pi]$.

On remarque que

$$\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k}(x)} = \sum_{k=0}^{n} \frac{\operatorname{Re}(e^{ikx})}{\cos^{k}(x)} = \operatorname{Re}\left(\sum_{k=0}^{n} \frac{e^{ikx}}{\cos^{k}(x)}\right) = \operatorname{Re}\left(\sum_{k=0}^{n} \left(\frac{e^{ix}}{\cos(x)}\right)^{k}\right)$$

ce qui apparaît comme une somme géométrique.

• Si $x \not\equiv 0[\pi]$ alors $\frac{e^{ix}}{\cos(x)} \not= 1$ et on a :

$$\sum_{k=0}^{n} \left(\frac{e^{ix}}{\cos(x)} \right)^k = \frac{1 - \frac{e^{i(n+1)x}}{(\cos x)^{n+1}}}{1 - \frac{e^{ix}}{\cos(x)}} = \frac{1}{\cos^n(x)} \times \frac{(\cos x)^{n+1} - e^{i(n+1)x}}{\cos(x) - e^{ix}}$$

Il reste à en déterminer la partie réelle. Or,

$$\sum_{k=0}^{n} \left(\frac{e^{ix}}{\cos(x)} \right)^{k} = \frac{1}{(\cos x)^{n}} \times \frac{(\cos x)^{n+1} - \cos((n+1)x) - i\sin((n+1)x)}{-i\sin(x)}$$

$$= \frac{i}{(\cos x)^{n}} \times \frac{((\cos x)^{n+1} - \cos((n+1)x) - i\sin((n+1)x))}{\sin(x)}$$

$$= \frac{1}{(\cos x)^{n}} \times \frac{\sin((n+1)x) + i((\cos x)^{n+1} - \cos((n+1)x))}{\sin(x)}$$

On obtient donc:

$$\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^k x} = \frac{\sin((n+1)x)}{\sin(x)(\cos x)^n}$$

Finalement:

$$\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k}(x)} = 0 \quad \iff \quad \sin((n+1)x) = 0$$

$$\iff \quad (n+1)x \equiv 0 \quad [\pi]$$

$$\iff \quad x \equiv 0 \quad [\frac{\pi}{n+1}]$$

- Si $x \equiv 0[2\pi]$ alors x n'est pas solution car $\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k}(x)} = n+1$.
- Si $x \equiv \pi[2\pi]$ alors x n'est pas solution car on a :

$$\sum_{k=0}^{n} \frac{\cos(k\pi)}{\cos^{k}(\pi)} = \sum_{k=0}^{n} \frac{(-1)^{k}}{(-1)^{k}} = \sum_{k=0}^{n} 1 = n+1.$$

Soit $k \in \mathbb{Z}$, on a

$$\frac{k\pi}{(n+1)} \equiv 0 \quad \left[\frac{\pi}{2}\right] \quad \Longleftrightarrow \quad k \equiv 0 \quad \left[\frac{(n+1)}{2}\right]$$

$$\iff 2k \equiv 0 \quad [(n+1)]$$

Finalement, l'ensemble des solutions est $\left\{\frac{k\pi}{(n+1)} \mid k \in \mathbb{Z} \text{ et } (n+1) \nmid (2k)\right\}$

Exercice 17. 1. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$

Soit $k \in [0, n]$, $\cos^2(kx) = \frac{1 + \cos(2kx)}{2}$, d'où (en utilisant la valeur de $\sum_{k=0}^{n} \cos(2kx)$ vue dans un exercice du cours) :

$$S_n(x) = \sum_{k=0}^n \left(\frac{1 + \cos(2kx)}{2}\right)$$

$$= \frac{1}{2} \sum_{k=0}^n 1 + \frac{1}{2} \sum_{k=0}^n \cos(2kx)$$

$$= \begin{cases} \frac{n+1}{2} + \frac{1}{2} \cos(nx) \frac{\sin(n+1)x}{\sin x} & \text{si } x \neq 0 \ [\pi] \\ \frac{n+1}{2} + \frac{n+1}{2} & \text{sinon.} \end{cases}$$

$$= \begin{cases} \frac{n+1}{2} + \frac{1}{2} \cos(nx) \frac{\sin(n+1)x}{\sin x} & \text{si } x \neq 0 \ [\pi] \\ n+1 & \text{sinon.} \end{cases}$$

2. On applique ce qui précède avec n=9 et $x=\frac{\pi}{9}$. Alors :

$$S_9(x) = 5 + \frac{1}{2}\cos(9x)\frac{\sin(10x)}{\sin x} = 5 + \frac{1}{2}\cos\pi\frac{\sin(\pi + \frac{\pi}{9})}{\sin\frac{\pi}{9}} = 5 + \frac{1}{2} = \frac{11}{2}$$

Or,

$$\begin{split} \cos^2\left(\frac{9\pi}{9}\right) &= \cos^2(\pi) = 1 = \cos(0), \\ \cos^2(\frac{8\pi}{9}) &= \cos^2(\pi - \frac{\pi}{9}) = \cos^2\frac{\pi}{9}, \\ \cos^2(\frac{7\pi}{9}) &= \cos^2(\pi - \frac{2\pi}{9}) = \cos^2\frac{2\pi}{9}, \\ \cos^2(\frac{6\pi}{9}) &= \cos^2(\pi - \frac{3\pi}{9}) = \cos^2\frac{3\pi}{9}, \\ \cos^2(\frac{5\pi}{9}) &= \cos^2(\pi - \frac{4\pi}{9}) = \cos^2\frac{4\pi}{9}. \end{split}$$

Ainsi, on a:

$$\frac{11}{2} = S_9(x) = \sum_{k=0}^{9} \cos^2\left(\frac{k\pi}{9}\right) = 2\sum_{k=0}^{4} \cos^2\left(\frac{k\pi}{9}\right) = 2\left(1 + \cos^2\frac{\pi}{9} + \cos^2\frac{2\pi}{9} + \cos^2\frac{3\pi}{9} + \cos^2\frac{4\pi}{9}\right).$$

Donc:

$$\cos^2\frac{\pi}{9} + \cos^2\frac{2\pi}{9} + \cos^2\frac{3\pi}{9} + \cos^2\frac{4\pi}{9} = \frac{11}{4} - 1 = \frac{7}{4}$$

et
$$\cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{2\pi}{9}\right) + \cos^2\left(\frac{3\pi}{9}\right) + \cos^2\left(\frac{4\pi}{9}\right)$$
 est bien rationnel.

Forme trigonométrique 4

Exercice 18. $\overline{z}=e^{-i\theta},\ -z=e^{i\pi}e^{i\theta}=e^{i(\theta+\pi)},\ iz=e^{i\frac{\pi}{2}}e^{i\theta}=e^{i(\frac{\pi}{2}+\theta)},\ z^2=e^{2i\theta}.$ $|z|+z=1+e^{i\theta}=2\cos(\frac{\theta}{2})e^{i\frac{\theta}{2}}.$ On remarque tout d'abord que $\cos(\frac{\theta}{2})$ est 4π périodique. Ainsi,

- si $\theta \in]-\pi+4k\pi,\pi+4k\pi[$ avec $k\in\mathbb{Z},$ $2\cos(\frac{\theta}{2})>0$ donc l'écriture $2\cos(\frac{\theta}{2})e^{i\frac{\theta}{2}}$ est bien la forme trigonométrique
- si $\theta \in]\pi + 4k\pi, 3\pi + 4k\pi[$ avec $k \in \mathbb{Z}, 2\cos(\frac{\theta}{2}) < 0$ donc $z + |z| = -2\cos(\frac{\theta}{2})e^{i\pi}e^{i\frac{\theta}{2}} = -2\cos(\frac{\theta}{2})e^{i(\frac{\theta}{2} + \pi)}$.
- si $\theta \equiv \pi \ [2\pi], \, |z|+z=0,$ on ne parle donc pas de l'écriture trigonométrique de |z|+z

xercice 19. 1.
$$1+i=\sqrt{2}e^{i\pi/4}$$
. Ainsi, $\frac{\pi}{4}$ est un argument de $1+i$.
2. $(1+i)^{2014}=\left(\sqrt{2}e^{i\pi/4}\right)^{2014}=(\sqrt{2})^{2014}e^{2014i\frac{\pi}{4}}$.
Or, $2014=251\times 8+6$.
Ainsi, $(1+i)^{2014}=2^{1007}e^{6i\frac{\pi}{4}}=-2^{1007}i$.

Exercise 20. Soit $\theta \in]-\pi, 2\pi[, 1+e^{i\theta}=2\cos\left(\frac{\theta}{2}\right)e^{i\theta/2}]$.

- Si $\theta \in]-\pi,\pi[$, $|1+e^{i\theta}|=\left|2\cos\left(\frac{\theta}{2}\right)\right|=2\cos\left(\frac{\theta}{2}\right)$ car $\cos\left(\frac{\theta}{2}\right)>0$. Ainsi, un argument de $1+e^{i\theta}$ est $\frac{\theta}{2}$
- Si $\theta \in]\pi, 2\pi[, |1 + e^{i\theta}| = \left| 2\cos\left(\frac{\theta}{2}\right) \right| = -2\cos\left(\frac{\theta}{2}\right) \operatorname{car} \cos\left(\frac{\theta}{2}\right) < 0.$ Ainsi, $1 + e^{i\theta} = -2\cos\left(\frac{\theta}{2}\right)\left(-e^{i(\theta/2)}\right) = -2\cos\left(\frac{\theta}{2}\right)e^{i(\theta/2+\pi)}$. Ainsi, un argument de $1 + e^{i\theta}$ est $\frac{\theta}{2} + \pi$.

1. 1+i a pour module $\sqrt{2}$ et un argument est $\frac{\pi}{4}$

 $\sqrt{3}-i$ a pour module 2 et un argument est $-\frac{\pi}{6}$.

Ainsi z_1 a pour module $\frac{\sqrt{2}}{2}$ et un argument est $\frac{5\pi}{12}$ (en utilisant les opérations sur les modules et arguments).

2. -2i(2+2i) = -4i(1+i) donc $|z_2| = 4\sqrt{2}$. De plus, un argument de -i est $-\frac{\pi}{2}$ et un argument de 1+i est $\frac{\pi}{4}$. Ainsi, un argument de z_2 est $-\frac{\pi}{4}$

3.
$$|z_3| = \frac{(\sqrt{3}+2)}{|\sqrt{6}+i\sqrt{2}|} = \frac{(\sqrt{3}+2)^4}{\sqrt{2}|\sqrt{3}+i|} = \frac{(\sqrt{3}+2)}{2\sqrt{2}}$$
. Ainsi, $\frac{z_3}{|z_3|} = \frac{2\sqrt{2}}{\sqrt{6}+i\sqrt{2}} = \frac{2}{\sqrt{3}+i} = \frac{1}{\frac{\sqrt{3}}{2}+i\frac{1}{2}} = \frac{1}{e^{i\frac{\pi}{6}}} = e^{-i\frac{\pi}{6}}$.

Ainsi, un argument de z_3 est –

4. Soit $\theta \not\equiv \frac{\pi}{2}$ $[\pi]$. $z_4 = \frac{\cos \theta + i \sin \theta}{\cos \theta}$. Ainsi, le module de z_4 est alors $\frac{1}{|\cos \theta|}$.

• Si
$$\theta \in]-\frac{\pi}{2}+2k\pi, \frac{\pi}{2}+2k\pi[$$
, avec $k \in \mathbb{Z}$, le module de z_4 est $\frac{1}{\cos \theta}$. De plus, $z_4 = \frac{e^{i\theta}}{\cos \theta}$. Ainsi, sur $]-\frac{\pi}{2}+2k\pi, \frac{\pi}{2}+2k\pi[$, un argument est θ .

- Si $\theta \in \left] -\pi + 2k\pi, -\frac{\pi}{2} + 2k\pi \right[$, avec $k \in \mathbb{Z}$, le module de z_4 est $\frac{-1}{\cos \theta}$. De plus, $z_4 = \frac{-e^{i\theta}}{-\cos \theta} = \frac{e^{i(\theta+\pi)}}{-\cos \theta}$. Ainsi, sur $\left] -\pi + 2k\pi, -\frac{\pi}{2} + 2k\pi \right[$, un argument est $\theta + \pi$.
- Si $\theta \in \left[\frac{\pi}{2} + 2k\pi, \pi\right]$, avec $k \in \mathbb{Z}$, le module de z_4 est $\frac{-1}{\cos \theta}$ et un argument est $\theta + \pi$.
- 5. Soit $\theta \not\equiv 0$ [2 π] (pour que z_5 soit bien défini) :

$$|z_6| = \sqrt{\frac{(1 + \cos \theta)^2 + \sin^2 \theta}{(1 - \cos \theta)^2 + \sin^2 \theta}} = \sqrt{\frac{2 + 2\cos \theta}{2 - 2\cos \theta}} = \sqrt{\frac{4\cos^2(\frac{\theta}{2})}{4\sin^2(\frac{\theta}{2})}} = \left| \frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \right|.$$

Pour l'argument, on a :

$$1+\cos\theta+i\sin\theta=2\cos^2\frac{\theta}{2}+2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}=2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)=2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}}$$

Par un calcul similaire, on a:

$$\begin{split} 1 - \cos \theta - i \sin \theta &= 2 \sin^2 \frac{\theta}{2} - 2i \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \sin \frac{\theta}{2} \left(\sin \frac{\theta}{2} - i \cos \frac{\theta}{2} \right) \\ &= 2 \sin \frac{\theta}{2} \left(\cos \left(\frac{\pi}{2} - \frac{\theta}{2} \right) - i \sin \left(\frac{\pi}{2} - \frac{\theta}{2} \right) \right) \\ &= 2 \sin \frac{\theta}{2} \left(\cos \left(\frac{\theta}{2} - \frac{\pi}{2} \right) + i \sin \left(\frac{\theta}{2} - \frac{\pi}{2} \right) \right) \\ &= 2 \sin \frac{\theta}{2} e^{i \frac{(\theta - \pi)}{2}} \end{split}$$

- Si $\theta \in]2k\pi, \pi + 2k\pi[$ avec $k \in \mathbb{Z}$, on a $\cos \frac{\theta}{2} > 0$ donc un argument de $1 + \cos \theta + i \sin \theta$ est $\frac{\theta}{2}$ De plus, $\sin \frac{\theta}{2} > 0$. Ainsi, un argument de $1 - \cos \theta - i \sin \theta$ est $\frac{(\theta - \pi)}{2}$. Finalement, un argument de z_6 est $\frac{\theta}{2} - \frac{(\theta - \pi)}{2} = \frac{\pi}{2}$
- Si $\theta \in]-\pi + 2k\pi, 2k\pi[$ avec $k \in \mathbb{Z}$, on a $\cos \frac{\theta}{2} > 0$ donc un argument de $1 + \cos \theta + i \sin \theta$ est $\frac{\theta}{2}$. De plus, $\sin \frac{\theta}{2} < 0$. Ainsi, un argument de $1 - \cos \theta - i \sin \theta$ est $\frac{(\theta - \pi)}{2} + \pi = \frac{(\theta + \pi)}{2}$. Finalement, un argument de z_6 est $\frac{\theta}{2} - \frac{(\theta + \pi)}{2} = -\frac{\pi}{2}$
- Si θ ≡ π [2π], z₆ = 0, on ne peut pas trouver d'argument.
 6. 1 + i a pour module √2 et un argument de 1 + i est π/4. Donc z₇ a pour module 2 n/2 et un argument est n π/4, d'après la formule de Moivre.

• $z_1 = -\sin a + i\cos a = \cos\left(\frac{\pi}{2} + a\right) + i\sin\left(\frac{\pi}{2} + a\right) = e^{i\left(\frac{\pi}{2} + a\right)}$

- $z_2 = \cos(\frac{\pi}{2} a) + i\sin(\frac{\pi}{2} a) = e^{i(\frac{\pi}{2} a)}$
- $z_3 = \cos(\pi + a) + i\sin(\pi + a) = e^{i(\pi + a)}$

•
$$z_4 = \left(\frac{\sqrt{2}e^{-i\frac{\pi}{4}}}{2e^{i\frac{\pi}{3}}}\right)^{10} = \frac{1}{2^5}\left(e^{\frac{-7i\pi}{12}}\right)^{10} = \frac{1}{2^5}e^{\frac{-35i\pi}{6}}$$
. Or, $35 = 12 \times 2 + 11$ donc $z_4 = \frac{1}{2^5}e^{-4i\pi}e^{-\frac{11\pi}{6}} = \frac{1}{2^5}e^{i\frac{\pi}{6}}$

Exercice 23. Soit $n \in \mathbb{N}$, $1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{\pi}{3}}$. Ainsi, $(1 + i\sqrt{3})^n = 2^n e^{i\frac{n\pi}{3}}$, d'après la formule de Moivre. Ainsi,

$$2^{n}e^{i\frac{n\pi}{3}} \in \mathbb{R}_{+} \quad \Longleftrightarrow \quad \frac{n\pi}{3} \equiv 0[2\pi]$$

$$\iff \quad n \equiv 0[6]$$

Ainsi, l'ensemble des solutions est $\{6k, k \in \mathbb{N}\}.$

Exercice 24. 1. $z_1 = 2e^{i\frac{\pi}{3}}$ et $z_2 = \sqrt{2}e^{-\frac{i\pi}{4}}$ donc $z_3 = \sqrt{2}e^{\frac{7i}{12}}$. De plus, $z_3 = \frac{(1+i\sqrt{3})(1+i)}{2} = \frac{(1-\sqrt{3})+i(1+\sqrt{3})}{2}$.

2. En utilisant les deux écritures précédentes, on en déduit que : $\cos\left(\frac{7\pi}{12}\right) = \frac{\operatorname{Re}(z_3)}{\sqrt{2}} = \frac{(1-\sqrt{3})}{2\sqrt{2}}$ et $\sin\left(\frac{7\pi}{12}\right) = \frac{\operatorname{Im}(z_3)}{\sqrt{2}} = \frac{(1+\sqrt{3})}{2\sqrt{2}}$

Exercice 25. 1. z = 0 est solution.

Soit $z \in \mathbb{C}^*$. On écrit $z = re^{i\theta}$ avec $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$. On a :

$$r^{5}e^{5i\theta} = re^{-i\theta} \iff r^{4}e^{5i\theta} = e^{-i\theta} \quad (\operatorname{car} r \neq 0)$$

$$\iff \begin{cases} r^{4} = 1 \\ 5\theta \equiv -\theta \ [2\pi] \end{cases}$$

$$\iff \begin{cases} r = 1 \ (\operatorname{car} r \in \mathbb{R}_{+}^{*}) \\ \theta \equiv 0 \ [\frac{\pi}{3}] \end{cases}$$

Ainsi, les solutions de l'équation sont $0, 1, e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}, -1, e^{\frac{4i\pi}{3}}, e^{-\frac{i\pi}{3}}$.

2. Soit $z \in \mathbb{C}$. On écrit z = x + iy avec $(x, y) \in \mathbb{R}^2$. On a alors :

$$\begin{split} z^2 &= -(\overline{z})^2 &\iff (x+iy)^2 = -(x-iy)^2 \\ &\iff x^2 - y^2 + 2ixy = -x^2 + y^2 + 2ixy \\ &\iff \left\{ \begin{array}{l} x^2 - y^2 = -x^2 + y^2 \\ 2xy = 2xy \end{array} \right. \\ &\iff x^2 = y^2 \\ &\iff x = \pm y \end{split}$$

L'ensemble des solutions est donc $\{a \pm ia, a \in \mathbb{R}\}.$

Exercice 26. Soit $x \in \mathbb{R}$. Posons $z = \sqrt{3} - i$. On a :

$$z = 2\left(\frac{\sqrt{3}}{2} - i\frac{1}{2}\right)$$

$$= 2e^{-i\frac{\pi}{6}}$$

$$= 2\cos\left(\frac{-\pi}{6}\right) + 2i\sin\left(\frac{-\pi}{6}\right)$$

$$= 2\cos\left(\frac{\pi}{6}\right) - 2i\sin\left(\frac{\pi}{6}\right)$$

Ainsi, on a:

$$\sqrt{3}\cos x - \sin x = 1 \iff 2\cos\frac{\pi}{6}\cos x - 2\sin\frac{\pi}{6}\sin x = 1$$

$$\iff 2\left(\cos\frac{\pi}{6}\cos x - \sin\frac{\pi}{6}\sin x\right) = 1$$

$$\iff 2\cos\left(x + \frac{\pi}{6}\right) = 1$$

$$\iff \cos\left(\frac{\pi}{6} + x\right) = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\iff \frac{\pi}{6} + x \equiv \pm\frac{\pi}{3}\left[2\pi\right]$$

$$\iff \begin{cases} x \equiv \frac{\pi}{6}\left[2\pi\right] \\ \text{ou} \\ x \equiv -\frac{\pi}{2}\left[2\pi\right] \end{cases}$$

L'ensemble des solutions est donc $\{\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}.$

1. Par analogie avec la démonstration de cours, on pose $z=1+i=\sqrt{2}e^{i\frac{\pi}{4}}$. Exercice 27.

$$\cos(x) + \sin(x) = \sqrt{2} \times \frac{\sqrt{2}}{2} \cos x + \sqrt{2} \times \frac{\sqrt{2}}{2} \sin x = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) \cos(x) + \sin\left(\frac{\pi}{4}\right) \sin(x) \right) = \sqrt{2} \cos\left(x - \frac{\pi}{4}\right).$$

Ainsi, $A=\sqrt{2}$ et $\omega=\frac{\pi}{4}$ conviennent. 2. On pose $z=1-\sqrt{3}i=2e^{-i\frac{\pi}{3}}.$ Soit $x\in\mathbb{R}.$ On a :

$$\cos(x) - \sqrt{3}\sin(x) = 2 \times \frac{1}{2}\cos x - 2 \times \frac{\sqrt{3}}{2}\sin x = 2\left(\cos\left(-\frac{\pi}{3}\right)\cos(x) + \sin\left(-\frac{\pi}{3}\right)\sin(x)\right) = 2\cos\left(x + \frac{\pi}{3}\right).$$
 Ainsi, $A = 2$ et $\omega = -\frac{\pi}{3}$ conviennent.

5 Equations de second degré

Exercice 28. Soit $x, y \in \mathbb{R}$. On a :

$$(x+iy)^2 = 1+i \iff \begin{cases} x^2 - y^2 = 1\\ 2xy = 1\\ x^2 + y^2 = |1+i| = \sqrt{2} \end{cases}$$

$$\iff \begin{cases} x^2 = \frac{1+\sqrt{2}}{2}\\ y^2 = \frac{\sqrt{2}-1}{2}\\ 2xy = 1 \end{cases}$$

$$\iff x+iy = \pm \left(\sqrt{\frac{1+\sqrt{2}}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$$

Ainsi, les racines carrées de 1+i sont $\pm \left(\sqrt{\frac{1+\sqrt{2}}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$.

De plus,
$$1+i=\sqrt{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\right)=\sqrt{2}e^{i\frac{\pi}{4}}$$
. Ainsi, ses racines carrées sont $2^{1/4}e^{i\frac{\pi}{8}}$ et $2^{1/4}e^{i\frac{\pi}{8}}$. Comme $\operatorname{Re}(e^{i\frac{\pi}{8}})=\cos\left(\frac{\pi}{8}\right)>0$ (car $\frac{\pi}{8}\in\left]0,\frac{\pi}{2}\right[$, on a $2^{1/4}e^{i\frac{\pi}{8}}=\sqrt{\frac{1+\sqrt{2}}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}$. Donc $\cos\frac{\pi}{8}=\sqrt{\frac{1+\sqrt{2}}{2\sqrt{2}}}$ et $\sin\frac{\pi}{8}=\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$

Exercice 29. • Soit $x, y \in \mathbb{R}$. On a :

$$(x+iy)^{2} = 1+6i \iff \begin{cases} x^{2} - y^{2} = 1\\ 2xy = 6\\ x^{2} + y^{2} = |1+6i| = \sqrt{37} \end{cases}$$

$$\iff \begin{cases} x^{2} = \frac{1+\sqrt{37}}{2}\\ y^{2} = \frac{\sqrt{37}-1}{2}\\ 2xy = 6 \end{cases}$$

$$\iff x+iy = \pm \left(\sqrt{\frac{1+\sqrt{37}}{2}} + i\sqrt{\frac{\sqrt{37}-1}{2}}\right)$$

Ainsi, les racines carrées de 1 + 6i sont $\pm \left(\sqrt{\frac{1+\sqrt{37}}{2}} + i\sqrt{\frac{\sqrt{37}-1}{2}}\right)$.

• Soit $x, y \in \mathbb{R}$. On a:

$$(x+iy)^{2} = -7 + 24i \iff \begin{cases} x^{2} - y^{2} = -7 \\ 2xy = 24 \\ x^{2} + y^{2} = |-7 + 24i| = \sqrt{625} = 25 \end{cases}$$

$$\iff \begin{cases} x^{2} = 9 \\ y^{2} = 16 \\ 2xy = 24 \end{cases}$$

$$\iff x + iy = \pm (3 + 4i)$$

Ainsi, les racines carrées de -7 + 24i sont $\pm (3 + 4i)$.

1. Soit $\theta \in \mathbb{R}$, Méthode 1:

$$z^2 - 2\cos\theta z + 1 = z^2 - (e^{i\theta} + e^{-i\theta}) + e^{i\theta} \times e^{-i\theta} = (z - e^{i\theta})(z - e^{-i\theta}).$$
 Donc les solutions sont $e^{i\theta}$ et $e^{-i\theta}$. **Méthode 2**:

Le discriminant associé à $z^2 - 2\cos(\theta)z + 1 = 0$ vaut $\Delta = 4\cos^2(\theta) - 4 = -4\sin^2(\theta)$. $2i\sin(\theta)$ est une racine carrée de Δ .

Ainsi, les solutions de l'équation sont $\frac{2\cos(\theta) \pm 2i\sin(\theta)}{2} = \cos(\theta) \pm \sin(\theta).$

2. Le discriminant de cette équation est -2i. Or, $-2i = 2e^{-i\pi/2}$. Ainsi, les racines carrées de -2i sont $\pm\sqrt{2}e^{-i\pi/4} = \pm(1-i)$.

On en déduit que les solutions sont $\frac{-(5-i)-(1-i)}{2(2+i)} = \frac{(-6+2i)(2-i)}{10} = -1+i$ et

$$\frac{-(5-i)+(1-i)}{2(2+i)} = \frac{(-4(2-i))}{10} = -\frac{4}{5} + \frac{2}{5}i.$$

$$z^{2n} - 2z^n \cos(n\theta) + 1 = 0 \quad \Longleftrightarrow \quad u^2 - 2u \cos \theta + 1 = 0$$

$$\iff \quad u = e^{\pm i\theta}$$

$$\iff \quad z^n = e^{i\theta} \text{ ou } z^n = e^{-i\theta}$$

Or,

$$\begin{split} z^n &= e^{i\theta} \iff \quad \left(\frac{z}{e^{i\theta/n}}\right)^n = 1 \\ &\iff \quad \exists k \in [\![0,n-1]\!], \ \frac{z}{e^{i\theta/n}} = e^{2ik\pi/n} \\ &\iff \quad \exists k \in [\![0,n-1]\!], z = e^{i(2k\pi/n + \theta/n)} \end{split}$$

De même,

$$\begin{split} z^n &= e^{-i\theta} \iff \quad \left(\frac{z}{e^{-i\theta/n}}\right)^n = 1 \\ &\iff \quad \exists k \in [\![0,n-1]\!], \ \frac{z}{e^{-i\theta/n}} = e^{2ik\pi/n} \\ &\iff \quad \exists k \in [\![0,n-1]\!], z = e^{i(2k\pi/n-\theta/n)} \end{split}$$

l'ensemble des solutions : $\left\{e^{\frac{-i\theta}{n} + \frac{2ik\pi}{n}}, 0 \le k \le n-1\right\} \cup \left\{e^{\frac{i\theta}{n} + \frac{2ik\pi}{n}}, 0 \le k \le n-1\right\}$.

4. Le discriminant de cette équation vaut $4(2+i)^2 - 4(6+8i) = 4(4+4i-1) - 4(6+8i) = -4(3+4i)$. Soit $x, y \in \mathbb{R}$. On a :

$$(x+iy)^{2} = -12 - 16i \iff \begin{cases} x^{2} - y^{2} = -12 \\ 2xy = -16 \\ x^{2} + y^{2} = |-12 - 16i| = \sqrt{144 + 256} = 20 \end{cases}$$

$$\iff \begin{cases} x^{2} = 4 \\ y^{2} = 16 \\ 2xy = -16 \end{cases}$$

$$\iff x + iy = \pm (2 - 4i)$$

Ainsi, les racines carrées de -12 - 16i sont $\pm (2 - 4i)$.

On en déduit que les solutions de l'équation sont 1 + 3i et 3 - i.

5. Soit $z \in \mathbb{C}$. On pose $u = z^2$. On a :

$$z^4 + (3-6i)z^2 - 2(4+3i) = 0 \iff u^2 + (3-6i)u - 2(4+3i) = 0$$

Le discriminant de l'équation $u^2 + (3-6i)u - 2(4+3i) = 0$ vaut $(3-6i)^2 + 8(4+3i) = 9-36i-36+32+24i = 5-12i$. On cherche donc les racines carrées de ce complexe. Soient $x, y \in \mathbb{R}$.

$$(x+iy)^{2} = 5 - 12i \iff \begin{cases} x^{2} - y^{2} = 5\\ 2xy = -12\\ x^{2} + y^{2} = |5 - 12i| = \sqrt{25 + 144} = 13 \end{cases}$$

$$\iff \begin{cases} x^{2} = 9\\ y^{2} = 4\\ 2xy = -12 \end{cases}$$

$$\iff x + iy = \pm (3 - 2i)$$

Ainsi, les racines carrées de 5-12i sont $\pm (3-2i)$. Ainsi, on a :

$$z^4 + (3-6i)z^2 - 2(4+3i) = 0$$
 \iff $u = \frac{-(3-6i) \pm (3-2i)}{2}$ \iff $z^2 = 2i \text{ ou } z^2 = -3 + 4i$

On sait que $2i = 2e^{i\pi/2}$. Ainsi, les racines carrées de 2i sont $\pm \sqrt{2}e^{i\pi/4} = \pm (1+i)$. Cherchons les racines carrées de -3+4i. Soient $a,b \in \mathbb{R}$.

$$(a+ib)^2 = -3 + 4i \iff \begin{cases} x^2 - y^2 = -3\\ 2xy = 4\\ x^2 + y^2 = |5 - 12i| = \sqrt{9 + 16} = 5 \end{cases}$$

$$\iff \begin{cases} x^2 = 1\\ y^2 = 4\\ 2xy = 4 \end{cases}$$

$$\iff x + iy = \pm (1 + 2i)$$

Ainsi, les racines carrées de -3 + 4i sont $\pm (1 + 2i)$.

Les solutions de l'équation sont donc 1+i, -1-i, 1+2i et -1-2i.

6. Soit $z \in \mathbb{C}$. On pose $u = z^3$. On a :

$$z^{6} + (-1+2i)z^{3} - 1 - i) = 0 \iff u^{2} + (-1+2i)u - 1 - i = 0$$

Le discriminant de l'équation $u^2 + (-1+2i)u - 1 - i = 0$ vaut $(-1+2i)^2 + 4(1+i) = 1 - 4 - 4i + 4 + 4i = 1$. Ainsi, les solutions de $u^2 + (-1+2i)u - 1 - i = 0$ sont -i et 1-i. Ainsi,

$$z^{6} + (-1+2i)z^{3} - 1 - i) = 0 \iff \begin{cases} z^{3} = -i \\ \text{ou} \\ z^{3} = 1 - i \end{cases}$$

De plus,

$$\begin{split} z^3 &= -i &\iff z^3 = e^{i\frac{\pi}{2}} \\ &\iff \frac{z^3}{e^{i\frac{\pi}{2}}} = 1 \\ &\iff \left(\frac{z}{e^{i\frac{\pi}{6}}}\right)^3 = 1 \\ &\iff \exists k \in \llbracket 0, 2 \rrbracket, \; \frac{z}{e^{i\frac{\pi}{6}}} = e^{\frac{2ik\pi}{3}} \\ &\iff \exists k \in \llbracket 0, 2 \rrbracket, \; z = e^{i\left(\frac{2k\pi}{3} + \frac{\pi}{6}\right)} \end{split}$$

De même, on a:

$$z^{3} = 1 - i \iff z^{3} = \sqrt{2}e^{-i\frac{\pi}{4}}$$

$$\iff \frac{z^{3}}{\sqrt{2}e^{-i\frac{\pi}{4}}} = 1$$

$$\iff \left(\frac{z}{2^{\frac{1}{6}}e^{-i\frac{\pi}{12}}}\right)^{3} = 1$$

$$\iff \exists k \in [0, 2], \ \frac{z}{2^{\frac{1}{6}}}e^{-i\frac{\pi}{12}} = e^{\frac{2ik\pi}{3}}$$

$$\iff \exists k \in [0, 2], \ z = 2^{\frac{1}{6}}e^{i\left(\frac{2k\pi}{3} + \frac{\pi}{12}\right)}$$

Finalement, l'ensemble des solutions de l'équation est : $\{e^{i(-\frac{\pi}{6}+\frac{2k\pi}{3})}, k \in [0,2]\} \cup \{2^{\frac{1}{6}}e^{i(-\frac{\pi}{12}+\frac{2k\pi}{3})}, k \in [0,2]\}$.

Exercice 31. 1. (a) Soit $t \in \mathbb{R}$.

$$2t^3 - (3+4i)t^2 - (4-7i)t + 4 + 2i = 0 \iff \begin{cases} 2t^3 - 3t^2 - 4t + 4 = 0 \\ -4t^2 + 7t + 2 = 0 \end{cases}$$

 $-4t^2 + 7t + 2 = 0$ a pour discriminant 49 + 32 = 81. Ainsi, ses solutions sont $\frac{-7 - 9}{-8} = 2$ et $\frac{-7 + 9}{-8} = -\frac{1}{4}$. Or, 2 est solution de $2t^3 - 3t^2 - 4t + 4 = 0$.

Ainsi, 2 est une solution réelle de l'équation $2t^3 - (3+4i)t^2 - (4-7i)t + 4 + 2i = 0$.

(b) D'après la question 1, il existe $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ tels que :

$$\forall z \in \mathbb{C}, \ 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = (z-2)(az^2 + bz + c) = az^3 + z^2(b-2a) + z(c-2b) - 2c.$$
 Or,

$$\forall z \in \mathbb{C}, \ 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = (z-2)(az^2 + bz + c)$$

$$\iff \forall z \in \mathbb{C}, \ 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = az^3 + z^2(b-2a) + z(c-2b) - 2c$$

$$\iff \begin{cases} a = 2 \\ b - 2a = -3 - 4i \\ c - 2b = -4 + 7i \\ -2c = 4 + 2i \end{cases}$$

$$\iff \begin{cases} a = 2 \\ b = 1 - 4i \\ c = -2 - i \end{cases}$$

Ainsi, on a:

$$\forall z \in \mathbb{C}, \ 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = (z-2)(2z^2 + (1-4i)z - 2 - i).$$

Il reste maintenant à résoudre l'équation $2z^2 + (1-4i)z - 2 - i = 0$. Son discriminant vaut $(1-4i)^2 + 8(2+i) = 1 - 16 - 8i + 16 + 8i = 1$ et les solutions de $2z^2 + (1-4i)z - 2 - i = 0$ sont donc $\frac{-(1-4i)+1}{4} = i$ et $\frac{-(1-4i)-1}{4} = -\frac{1}{2} + i$.

En conclusion l'ensemble des solutions est $\{2, i, -\frac{1}{2} + i\}$.

2. (a) Soit $t \in \mathbb{R}$. Posons z = it.

$$z^{3} + (1-2i)z^{2} + (1-i)z - 2i = 0 \iff -it^{3} - (1-2i)t^{2} + (1+i)t - 2i = 0$$

$$\iff \begin{cases} t - t^{2} = 0 \\ -t^{3} + 2t^{2} + t - 2 = 0 \end{cases}$$

$$\iff \begin{cases} t(1-t) = 0 \\ -t^{3} + 2t^{2} + t - 2 = 0 \end{cases}$$

1 est solution de $-t^3+2t^2+t-2=0.$ Ainsi, i est solution de $z^3+(1-2i)z^2+(1-i)z-2i=0.$

(b) D'après la question précédente, il existe $(a,b,c) \in \mathbb{C}^* \times \mathbb{C}^2$ tels que : $\forall z \in \mathbb{C}, \ z^3 + (1-2i)z^2 + (1-i)z - 2i = (z-i)(az^2 + bz + c) = az^3 + z^2(b-ia) + z(c-ib) - ic.$

$$\forall z \in \mathbb{C}, \ z^{3} + (1 - 2i)z^{2} + (1 - i)z - 2i = (z - i)(az^{2} + bz + c)$$

$$\iff \forall z \in \mathbb{C}, \ z^{3} + (1 - 2i)z^{2} + (1 - i)z - 2i = az^{3} + z^{2}(b - ia) + z(c - ib) - ic$$

$$\iff \begin{cases} a = 1 \\ b - ia = 1 - 2i \\ c - ib = 1 - i \\ -ic = -2i \end{cases}$$

$$\iff \begin{cases} a = 1 \\ b = 1 - i \\ c = 2 \end{cases}$$

On a donc:

$$\forall z \in \mathbb{C}, \ z^3 + (1-2i)z^2 + (1-i)z - 2i = (z-i)(z^2 + (1-i)z + 2).$$

Il reste maintenant à résoudre l'équation $z^2 + (1-i)z + 2 = 0$. Son discriminant vaut $(1-i)^2 - 8 =$ 1 - 1 - 2i - 8 = -8 - 2i.

Soient $x, y \in \mathbb{R}$.

$$(x+iy)^{2} = -8 - 2i \iff \begin{cases} x^{2} - y^{2} = -8 \\ 2xy = -2 \\ x^{2} + y^{2} = |-8 - 2i| = \sqrt{64 + 4} = \sqrt{68} = 2\sqrt{17} \end{cases}$$

$$\iff \begin{cases} x^{2} = -4 + \sqrt{17} \\ y^{2} = 4 + \sqrt{17} \\ 2xy = -2 \end{cases}$$

$$\iff x + iy = \pm \left(\sqrt{\sqrt{17} - 4} - i\sqrt{\sqrt{17} + 4}\right)$$

Ainsi, les racines carrées de -8-2i sont $\pm \left(\sqrt{\sqrt{17}-4}-i\sqrt{\sqrt{17}+4}\right)$.

Les solutions de $z^2 + (1-i)z + 2 = 0$ sont donc $\frac{i-1}{2} \pm \frac{1}{2} \left(\sqrt{\sqrt{17} - 4} - i\sqrt{\sqrt{17} + 4} \right)$.

Finalement, les solutions de $z^3 + (1-2i)z^2 + (1-i)z - 2i = 0$ sont donc $\frac{i-1}{2} \pm \frac{1}{2} \left(\sqrt{\sqrt{17} - 4} - i\sqrt{\sqrt{17} + 4} \right)$ et i.

• 0 n'est pas solution de $z^4 + z^3 + z^2 + z + 1 = 0$. Exercice 32.

On peut donc diviser par $z^2 \neq 0$.

Soit $z \in \mathbb{C}^*$, posons $Z = z + z^{-1}$. On a :

$$z^{4} + z^{3} + z^{2} + z + 1 = 0 \iff \frac{z^{4} + z^{3} + z^{2} + z + 1}{z^{2}} = 0 \quad \text{car } z \neq 0$$

$$\iff z^{2} + z + 1 + \frac{1}{z} + \frac{1}{z^{2}} = 0$$

$$\iff Z^{2} - 2 + Z + 1 = 0$$

$$\iff Z^{2} + Z - 1 = 0$$

$$\iff Z = \frac{-1 \pm \sqrt{5}}{2}$$

$$\iff z + \frac{1}{z} = \frac{-1 \pm \sqrt{5}}{2}$$

$$\iff z^{2} - \frac{(-1 \pm \sqrt{5})}{2}z + 1 = 0$$

• Le polynôme $z^2 - \frac{(-1+\sqrt{5})}{2}z + 1$ a pour discriminant : $\Delta = \left(\frac{-1+\sqrt{5}}{2}\right)^2 - 4 = \frac{6-2\sqrt{5}}{4} - 4 = \frac{-5-\sqrt{5}}{2}$. Comme $\Delta < 0$, les racines du polynôme $z^2 - \frac{(-1+\sqrt{5})}{2}z + 1$ sont donc :

$$z_1 = \frac{(-1+\sqrt{5})}{4} + \frac{i}{2}\sqrt{\frac{5+\sqrt{5}}{2}}$$
 et $z_2 = \frac{(-1+\sqrt{5})}{4} - \frac{i}{2}\sqrt{\frac{5+\sqrt{5}}{2}}$

• De même, le polynôme $z^2 - \frac{(-1-\sqrt{5})}{2}z + 1$ a pour discriminant $\frac{6+2\sqrt{5}}{4} - 4 = \frac{-5+\sqrt{5}}{2}$. Comme $\Delta<0,$ les racines du polynôme $z^2-\frac{(-1-\sqrt{5})}{2}z+1$ sont :

$$z_3 = \frac{(-1-\sqrt{5})}{4} + \frac{i}{2}\sqrt{\frac{5-\sqrt{5}}{2}}$$
 et $z_4 = \frac{(-1-\sqrt{5})}{4} - \frac{i}{2}\sqrt{\frac{5-\sqrt{5}}{2}}$

Ainsi, $z^4 + z^3 + z^2 + z + 1 = 0 \iff z \in \{z_1, z_2, z_3, z_4\}.$ Les solutions de $z^4 + z^3 + z^2 + z + 1$ sont donc z_1, z_2, z_3, z_4

• 1 n'est pas solution de l'équation. Soit $z \in \mathbb{C} \setminus \{1\}$. On a:

$$z^{4} + z^{3} + z^{2} + z + 1 = 0 \quad \Longleftrightarrow \quad \frac{z^{5} - 1}{z - 1} = 0$$

$$\iff z^{5} - 1 = 0$$

$$\iff \exists k \in [0, 4], \ z = e^{\frac{2ik\pi}{5}}$$

Les solutions de $z^4 + z^3 + z^2 + z + 1 = 0$ sont donc $\{e^{\frac{2ik\pi}{5}}, k \in [0, 4]\}$.

On a $\cos\left(\frac{2\pi}{5}\right) = \operatorname{Re}(e^{\frac{2i\pi}{5}})$. Ainsi, d'après les résultats précédents, $\cos\left(\frac{2\pi}{5}\right) = \frac{-1 \pm \sqrt{5}}{2}$. Or, $\frac{2\pi}{5} \in \left]0, \frac{\pi}{2}\right[$ donc $\cos\left(\frac{2\pi}{5}\right) > 0$. Ainsi, $\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4}$.

Exercice 33. D'après les relations coefficients-racine, (x,y) est solution de ce système si et seulement si x et y sont les solutions de l'équation $z^2 - 4z + 2 = 0$.

L'équation $z^2 - 4z + 2 = 0$ a pour discriminant 8 et ses solutions sont $\frac{4\pm\sqrt{8}}{2} = 2\pm\sqrt{2}$. Ainsi, l'ensemble des solutions de ce système est donc $\{(2-\sqrt{2},2+\sqrt{2}),(2+\sqrt{2},2-\sqrt{2})\}$.

Exercice 34. Soit $(x,y) \in \mathbb{R}^2$. (x,y) est solution de $\begin{cases} x+y=1+i \\ xy=2-i \end{cases}$ si et seulement si x et y sont les solutions de $z^2-(1+i)z+(2-i)=0$, d'après les relations coefficients-racines

Le discriminant associé à l'équation $z^2 - (1+i)z + (2-i) = 0$ vaut $(1+i)^2 - 4(2-i) = 1 - 1 + 2i - 8 + 4i = -8 + 6i$.

Cherchons les racines carrées de ce discriminant. Soient $x,y\in\mathbb{R}$.

$$(x+iy)^{2} = -8 + 6i \iff \begin{cases} x^{2} - y^{2} = -8 \\ 2xy = 6 \\ x^{2} + y^{2} = |-8 + 6i| = \sqrt{64 + 36} = 10 \end{cases}$$

$$\iff \begin{cases} x^{2} = 1 \\ y^{2} = 9 \\ 2xy = 6 \end{cases}$$

$$\iff x + iy = \pm (1 + 3i)$$

Ainsi, les racines carrées de -8+6i sont $\pm (1+3i)$. On en déduit que les solutions de $z^2-(1+i)z+(2-i)=0$ sont $\frac{1+i-(1+3i)}{2}=-i$ et $\frac{1+i+1+3i}{2}=1+2i$. Ainsi, les solutions du système sont (-i,1+2i) et (1+2i,-i).

6 Racines n-ième

Exercice 35. $\frac{-4}{1+i\sqrt{3}} = \frac{-4}{2e^{\frac{i\pi}{3}}} = -2e^{-\frac{i\pi}{3}} = 2e^{-\frac{i\pi}{3}}e^{i\pi} = 2e^{\frac{2i\pi}{3}}.$ Soit $z \in \mathbb{C}$.

$$\begin{split} z^6 &= \frac{-4}{1+i\sqrt{3}} &\iff z^6 = 2e^{\frac{2i\pi}{3}} \\ &\iff \frac{z^6}{2e^{\frac{2i\pi}{3}}} = 1 \\ &\iff \left(\frac{z}{2^{\frac{1}{6}}e^{\frac{i\pi}{9}}}\right)^6 = 1 \\ &\iff \exists k \in \llbracket 0, 5 \rrbracket, \ \frac{z}{2^{\frac{1}{6}}e^{\frac{i\pi}{9}}} = e^{\frac{2ik\pi}{6}} \\ &\iff \exists k \in \llbracket 0, 5 \rrbracket, \ z = 2^{\frac{1}{6}}e^{\frac{i\pi}{9} + \frac{ik\pi}{3}} \end{split}$$

Ainsi, l'ensemble des solutions est $\{2^{\frac{1}{6}}e^{\frac{i\pi}{9}+\frac{ik\pi}{3}}, k\in [\![0,5]\!]\}.$

Exercice 36. Tout d'abord, on remarque que i n'est pas solution de l'équation. Soit $z \in \mathbb{C} \setminus \{i\}$. On a alors :

$$(z+i)^{n} = (z-i)^{n} \iff \left(\frac{z+i}{z-i}\right)^{n} = 1$$

$$\iff \frac{z+i}{z-i} \in \mathbb{U}_{n}$$

$$\iff \exists k \in [0, n-1], \ \frac{z+i}{z-i} = e^{2ik\pi/n}$$

$$\iff \exists k \in [0, n-1], \ (z+i) = e^{2ik\pi/n}(z-i)$$

$$\iff \exists k \in [0, n-1], \ z(1-e^{2ik\pi/n}) = -i(e^{2ik\pi/n} + 1)$$

Pour k=0, l'équation devient : 0=-2i qui est impossible. On a donc

$$(z+i)^{n} = (z-i)^{n} \iff \exists k \in [1, n-1], \ z(1-e^{2ik\pi/n}) = -i(e^{2ik\pi/n}+1)$$

$$\iff \exists k \in [1, n-1], \ z = \frac{-i(e^{2ik\pi/n}+1)}{(1-e^{2ik\pi/n})}$$

$$\iff \exists k \in [1, n-1], \ z = -i\frac{e^{ik\pi/n}(e^{ik\pi/n}+e^{-ik\pi/n})}{e^{ik\pi/n}(e^{-ik\pi/n}-e^{ik\pi/n})}$$

$$\iff \exists k \in [1, n-1], \ z = -i\frac{2\cos(k\pi/n)}{-2i\sin(k\pi/n)}$$

$$\iff \exists k \in [1, n-1], \ z = \frac{\cos(k\pi/n)}{\sin(k\pi/n)}$$

Ainsi, l'ensemble des solutions est $\left\{\frac{\cos(k\pi/n)}{\sin(k\pi/n)}, k \in [\![1,n-1]\!]\right\}$

Exercice 37. 1. $4\sqrt{2}(1+i) = 8e^{i\frac{\pi}{4}}$. Soit $z \in \mathbb{C}$.

$$z^{3} = 4\sqrt{2}(1+i) \iff z^{3} = 2^{3}e^{i\frac{\pi}{4}}$$

$$\iff \frac{z^{3}}{2^{3}e^{i\frac{\pi}{4}}} = 1$$

$$\iff \left(\frac{z}{2^{3}e^{i\frac{\pi}{12}}}\right)^{3} = 1$$

$$\iff \exists k \in [0,2], \ \frac{z}{2^{3}e^{i\frac{\pi}{12}}} = e^{\frac{2ik\pi}{3}}$$

$$\iff \exists k \in [0,2], \ z = 2e^{i\left(\frac{\pi}{12} + \frac{2k\pi}{3}\right)}$$

Ainsi, l'ensemble des solutions est $\{2e^{i\left(\frac{\pi}{12}+\frac{2k\pi}{3}\right)}, k \in \llbracket 0,2\rrbracket \}$.

2. Soit $z \in \mathbb{C}$.

$$z^{5} = -i \iff z^{5} = e^{-i\frac{\pi}{2}}$$

$$\iff \frac{z^{5}}{e^{-i\frac{\pi}{2}}} = 1$$

$$\iff \left(\frac{z}{e^{-i\frac{\pi}{10}}}\right)^{5} = 1$$

$$\iff \exists k \in \llbracket 0, 4 \rrbracket, \frac{z^{5}}{e^{-i\frac{\pi}{10}}} = e^{i\frac{2k\pi}{5}}$$

$$\iff \exists k \in \llbracket 0, 4 \rrbracket, z = e^{i\left(-\frac{\pi}{10} + \frac{2k\pi}{5}\right)}$$

Ainsi, l'ensemble des solutions est $\{e^{i\left(-\frac{\pi}{10}+\frac{2k\pi}{5}\right)}, k \in [0,4]\}$.

3. Soit $z \in \mathbb{C} \setminus \{1\}$. On a :

$$\left(\frac{z+1}{z-1}\right)^n = e^{in\theta} \iff \left(\frac{z+1}{e^{i\theta}(z-1)}\right)^n = 1$$

$$\iff \exists k \in \llbracket 0, n-1 \rrbracket, \ \frac{z+1}{e^{i\theta}(z-1)} = e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in \llbracket 0, n-1 \rrbracket, \ (z+1) = (z-1)e^{i\left(\theta + \frac{2k\pi}{n}\right)}$$

$$\iff \exists k \in \llbracket 0, n-1 \rrbracket, \ z\left(e^{i\left(\theta + \frac{2k\pi}{n}\right)} - 1\right) = 1 + e^{i\left(\theta + \frac{2k\pi}{n}\right)}$$

Soit $k \in [0, n-1]$.

• si $e^{i(\theta + \frac{2k\pi}{n})} = 1$ i.e $\theta \equiv -\frac{2k\pi}{n}$ [2 π], alors, l'équation $z\left(e^{i(\theta + \frac{2k\pi}{n})} - 1\right) = 1 + e^{i(\theta + \frac{2k\pi}{n})}$ n'a pas de solution.

• si $e^{i(\theta + \frac{2k\pi}{n})} \neq 1$ i.e $\theta \not\equiv -\frac{2k\pi}{n}$ [2 π] alors, on a :

$$z\left(e^{i(\theta+\frac{2k\pi}{n})}-1\right) = 1 + e^{i(\theta+\frac{2k\pi}{n})} \iff z = \frac{e^{i(\theta+\frac{2k\pi}{n})}+1}{e^{i(\theta+\frac{2k\pi}{n})}-1}$$

$$\iff z = \frac{e^{i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}\left(e^{i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}+e^{-i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}\right)}{e^{i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}\left(e^{i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}-e^{-i\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}\right)}$$

$$\iff z = \frac{2\cos\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}{2i\sin\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}$$

$$\iff z = -i\frac{\cos\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}{\sin\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}.$$

Ainsi,

• Si : $\forall k \in [0, n-1], \theta \not\equiv -\frac{2k\pi}{n}$ [2 π] (ce qui équivant à $\frac{n\theta}{2\pi} \notin \mathbb{Z}$), l'ensemble des solutions est :

$$\left\{-i\frac{\cos\left(\frac{\theta}{2} + \frac{k\pi}{n}\right)}{\sin\left(\frac{\theta}{2} + \frac{k\pi}{n}\right)}, \ \llbracket 0, n - 1 \rrbracket \right\}$$

• Si il existe $k_0 \in [0, n-1]$, $\theta \equiv -\frac{2k_0\pi}{n}$ [2 π] (ce qui équivaut à $\frac{n\theta}{2\pi} \in \mathbb{Z}$), l'ensemble des solutions est :

$$\left\{-i\frac{\cos\left(\frac{\theta}{2} + \frac{k\pi}{n}\right)}{\sin\left(\frac{\theta}{2} + \frac{k\pi}{n}\right)}, \left[\!\left[0, n - 1\right]\!\right] \setminus \left\{k_0\right\}\right\}$$

4. Soit $z \in \mathbb{C} \setminus \{1, -1\}$. On pose $x = \left(\frac{z+1}{z-1}\right)^n$.

$$\left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta) \iff x + \frac{1}{x} = 2\cos(n\theta)$$

$$\iff x^2 - 2\cos(n\theta)x + 1 = 0$$

$$\iff x = e^{\pm in\theta}$$

On obtient ainsi:

$$\left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta) \quad \Longleftrightarrow \quad \left(\frac{z+1}{z-1}\right)^n = e^{\pm in\theta}$$

Supposons que $\frac{n\theta}{2\pi} \notin \mathbb{Z}$. Ainsi, on a :

$$\forall k \in \llbracket 0, n-1 \rrbracket, \ \theta \not\equiv -\frac{2k\pi}{n} \ [2\pi] \quad \text{ et } \forall k \in \llbracket 0, n-1 \rrbracket, \ -\theta \not\equiv -\frac{2k\pi}{n} \ [2\pi]$$

En utilisant les résultats de l'équation précédente, on trouve alors que l'ensemble des solutions est

$$\left\{-i\frac{\cos\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}{\sin\left(\frac{\theta}{2}+\frac{k\pi}{n}\right)}, k \in \llbracket 0,n-1 \rrbracket\right\} \cup \left\{-i\frac{\cos\left(-\frac{\theta}{2}+\frac{k\pi}{n}\right)}{\sin\left(-\frac{\theta}{2}+\frac{k\pi}{n}\right)}, k \in \llbracket 0,n-1 \rrbracket\right\}.$$

5. 1 n'est pas solutions de l'équation. Soit $z \in \mathbb{C} \setminus \{1\}$.

$$(z+1)^n = (z-1)^n \iff \left(\frac{z+1}{z-1}\right)^n = 1$$

$$\iff \exists k \in [0, n-1], \ \frac{z+1}{z-1} = e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ z+1 = (z-1)e^{2ik\pi/n}$$

$$\iff \exists k \in [0, n-1], \ z\left(e^{2ik\pi/n} - 1\right) = \left(1 + e^{2ik\pi/n}\right)$$

Pour k = 0, l'équation devient : 0 = 2 qui est impossible. On a donc :

$$(z+1)^n = (z-1)^n \iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = \frac{e^{2ik\pi/n} + 1}{e^{2ik\pi/n} - 1}$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = \frac{e^{\frac{ik\pi}{n}} \left(e^{\frac{ik\pi}{n}} + e^{\frac{-ik\pi}{n}} \right)}{e^{\frac{ik\pi}{n}} \left(e^{\frac{ik\pi}{n}} - e^{\frac{-ik\pi}{n}} \right)}$$

$$\iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = \frac{2\cos\left(\frac{k\pi}{n}\right)}{2i\sin\left(\frac{k\pi}{n}\right)} \iff \exists k \in \llbracket 1, n-1 \rrbracket, \ z = -i\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}$$

Ainsi, l'ensemble des solutions est $\{-i\frac{\cos\left(\frac{k\pi}{n}\right)}{\sin\left(\frac{k\pi}{n}\right)}, k \in [1, n-1]\}.$

6. -1 n'est pas solution de l'équation. Soit $z \in \mathbb{C} \setminus \{-1\}$.

$$4 ((z+i))^{4} - (z+1)^{4} = 0 \iff \left(\sqrt{2}(z+i)\right)^{4} = (z+1)^{4}$$

$$\iff \left(\frac{\sqrt{2}(z+i)}{z+1}\right)^{4} = 1$$

$$\iff \exists k \in [0,3], \ \frac{\sqrt{2}(z+i)}{z+1} = e^{\frac{ik\pi}{2}}$$

$$\iff \exists k \in [0,3], \ \sqrt{2}(z+i) = (z+1)e^{\frac{ik\pi}{2}}$$

$$\iff \exists k \in [0,3], \ \sqrt{2}(z+i) = (z+1)e^{\frac{ik\pi}{2}}$$

$$\iff \exists k \in [0,3], \ z(\sqrt{2} - e^{\frac{ik\pi}{2}}) = e^{\frac{ik\pi}{2}} - \sqrt{2}i$$

$$\iff \exists k \in [0,3], \ z = \frac{e^{\frac{ik\pi}{2}} - \sqrt{2}i}{\sqrt{2} - e^{\frac{ik\pi}{2}}} \quad \text{car } : \forall k \in [0,3], \ \sqrt{2} - e^{\frac{ik\pi}{2}} \neq 0$$

Pour
$$k = 0$$
, on a: $\frac{e^{\frac{ik\pi}{2}} - \sqrt{2}i}{\sqrt{2} - e^{\frac{ik\pi}{2}}} = \frac{1 - \sqrt{2}i}{\sqrt{2} - 1} = \frac{1}{\sqrt{2} - 1} - i\frac{\sqrt{2}}{\sqrt{2} - 1} = \sqrt{2} + 1 - i(2 + \sqrt{2})$
Pour $k = 1$, on a: $\frac{e^{\frac{ik\pi}{2}} - \sqrt{2}i}{\sqrt{2} - e^{\frac{ik\pi}{2}}} = \frac{i(1 - \sqrt{2})(\sqrt{2} + i)}{3} = \frac{(\sqrt{2} - 1)}{3} + i\frac{(\sqrt{2} - 2)}{3}$.
Pour $k = 2$, on a: $\frac{e^{\frac{ik\pi}{2}} - \sqrt{2}i}{\sqrt{2} - e^{\frac{ik\pi}{2}}} = \frac{-1}{\sqrt{2} + 1} - i\frac{\sqrt{2}}{\sqrt{2} + 1} = \sqrt{2} - 1 - i(2 - \sqrt{2})$.
Pour $k = 3$, on a: $\frac{e^{\frac{ik\pi}{2}} - \sqrt{2}i}{\sqrt{2} - e^{\frac{ik\pi}{2}}} = \frac{-i(1 + \sqrt{2})(\sqrt{2} - i)}{3} = \frac{-(1 + \sqrt{2})}{3} - i\frac{(\sqrt{2} + 2)}{3}$.

$$\left\{\sqrt{2}+1-i(2+\sqrt{2}),\frac{(\sqrt{2}-1)}{3}+i\frac{(\sqrt{2}-2)}{3},\sqrt{2}-1-i(2-\sqrt{2}),\frac{-(1+\sqrt{2})}{3}-i\frac{(\sqrt{2}+2)}{3}\right\}$$

Exercice 38. 1. On sait que la somme des racines 7-ièmes de l'unité est nulle donc 1 + u + v = 0, puis u + v = -1. D'autre part : $u^2 = z^2 + z^4 + z^8 + 2z^3 + 2z^5 + 2z^6 = z^2 + z^4 + z + 2(z^3 + z^5 + z^6) = u + 2v = 2(u + v) - u = -2 - u$. 2. Posons $t = \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$. Exercice 38.

2. Posons
$$t = \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$$
.
On a $t = \operatorname{Im}\left(e^{\frac{2i\pi}{7}}\right) + \operatorname{Im}\left(e^{\frac{4i\pi}{7}}\right) + \operatorname{Im}\left(e^{\frac{8i\pi}{7}}\right) = \operatorname{Im}\left(e^{\frac{2i\pi}{7}} + e^{\frac{4i\pi}{7}} + e^{\frac{8i\pi}{7}}\right) = \operatorname{Im}(u)$.

Or, u est solution de $u^2 + u + 2 = 0$. Le discriminant de cette équation vaut -7 et ses solutions sont $\frac{-1 \pm \sqrt{7}i}{2}$. On a donc $t = \text{Im}(u) = \pm \frac{\sqrt{7}}{2}$. On a $\sin\left(\frac{8\pi}{7}\right) = -\sin\left(\frac{\pi}{7}\right)$. Or, la fonction sinus est croissante sur $\left[0, \frac{\pi}{2}\right]$, donc $\sin\left(\frac{2\pi}{7}\right) \geq \sin\left(\frac{\pi}{7}\right). \text{ De plus, sin est positif sur } [0,\frac{\pi}{2}] \text{ donc } \sin\left(\frac{4\pi}{7}\right) \geq 0. \text{ Ainsi, } t \geq \sin\left(\frac{4\pi}{7}\right) \geq 0, \text{ donc } t \geq 0.$ $t=\frac{\sqrt{7}}{2}$.

Exercice 39. Soit $z \in \mathbb{C}$.

$$\begin{split} z^{11} &= -1 &\iff z^{11} = e^{\pi} \\ &\iff \frac{z^{11}}{e^{\pi}} = 1 \\ &\iff \left(\frac{z}{e^{\frac{\pi}{11}}}\right)^{11} = 1 \\ &\iff \exists k \in \llbracket 0, 10 \rrbracket, \; \frac{z}{e^{\frac{\pi}{11}}} = e^{\frac{2ik\pi}{11}} \\ &\iff \exists k \in \llbracket 0, 10 \rrbracket, \; z = e^{i\left(\frac{(2k+1)\pi}{11}\right)} \end{split}$$

Ainsi, l'ensemble des solutions de $z^{11}=-1$ est $\{e^{i\left(\frac{(2k+1)\pi}{11}\right)},\ k\in\llbracket0,10\rrbracket\}$. Pour tout $k\in\llbracket0,10\rrbracket$, posons $z_k=e^{i\left(\frac{(2k+1)\pi}{11}\right)}$.

On a alors :
$$\sum_{k=0}^{10} z_k = \sum_{k=0}^{10} e^{i\left(\frac{(2k+1)\pi}{11}\right)} = e^{i\frac{\pi}{11}} \times \sum_{k=0}^{10} \left(e^{\frac{2i\pi}{11}}\right)^k = e^{i\frac{\pi}{11}} \times \frac{1 - e^{\frac{2i\pi}{11}}}{1 - e^{\frac{2i\pi}{11}}} = 0.$$
 Ainsi,
$$0 = \operatorname{Re}\left(\sum_{k=0}^{10} z_k\right) = \sum_{k=0}^{10} \operatorname{Re}(z_k) = \sum_{k=0}^{10} \cos\left(\frac{(2k+1)\pi}{11}\right) = \sum_{k=0}^{4} \cos\left(\frac{(2k+1)\pi}{11}\right) - 1 + \sum_{k=6}^{10} \cos\left(\frac{(2k+1)\pi}{11}\right).$$
 Dans cette derniere somme, on effectue le changement de variable :
$$k = 10 - p.$$
 Ainsi,
$$\frac{(2k+1)\pi}{11} = \frac{22\pi}{11} - \frac{(2p+1)\pi}{11} = 2\pi - \frac{(2p+1)\pi}{11}.$$
 On obtient donc :
$$0 = \sum_{k=0}^{4} \cos\left(\frac{(2k+1)\pi}{11}\right) - 1 + \sum_{p=0}^{4} \cos\left(2\pi - \frac{(2p+1)\pi}{11}\right).$$

$$= \sum_{k=0}^{4} \cos\left(\frac{(2k+1)\pi}{11}\right) - 1 + \sum_{p=0}^{4} \cos\left(\frac{(2p+1)\pi}{11}\right).$$

$$= -1 + 2\left(\sum_{k=0}^{4} \cos\left(\frac{(2k+1)\pi}{11}\right)\right)$$

$$= -1 + 2\left(\sum_{k=0}^{4} \cos\left(\frac{(2k+1)\pi}{11}\right)\right)$$
 Ainsi,
$$\frac{1}{2} = \cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right).$$

Exercice 40. 1. Soit $p \in \mathbb{N}$:

$$S = \sum_{\omega \in \mathbb{U}_n} \omega^p = \sum_{k=0}^{n-1} \left(e^{\frac{2ip\pi}{n}} \right)^k$$

On a:

$$\begin{array}{ccc} e^{\frac{2ip\pi}{n}} & \Longleftrightarrow & \frac{2p\pi}{n} \equiv 0[2\pi] \\ & \Longleftrightarrow & p \equiv 0[n] \\ & \Longleftrightarrow & n|p \end{array}$$

Ainsi:

$$S = \sum_{\omega \in \mathbb{U}_n} \omega^p = \begin{cases} \frac{1 - e^{2ip\pi}}{2ip\pi} & \text{si } n \not | p \\ 1 - e^{n} & n \text{ sinon.} \end{cases}$$
$$= \begin{cases} 0 & \text{si } n \not | p \\ n & \text{sinon.} \end{cases}$$

2. Soit $n, p \in \mathbb{N}$,

$$S = \sum_{k=0}^{n-1} \omega^{kp} = \sum_{k=0}^{n-1} (\omega^p)^k$$

$$= \begin{cases} \frac{1 - e^{2ip\pi}}{1 - e^{n}} & \text{si } n \not p \\ n & \text{sinon.} \end{cases}$$

$$= \begin{cases} 0 & \text{si } n \not p \\ n & \text{sinon.} \end{cases}$$

Par suite,

$$\sum_{k=0}^{n-1} (1+\omega^k)^n = \sum_{k=0}^{n-1} \sum_{j=0}^n \binom{n}{j} \omega^{kj} = \sum_{j=0}^n \binom{n}{j} \sum_{k=0}^{n-1} \omega^{kj} = \left[\binom{n}{0} + \binom{n}{n} \right] \times n = 2n.$$

- 3. On a:
 - si $\omega \neq 1$:

$$\sum_{k=0}^{n-1} (k+1)\omega^k = \sum_{k=0}^{n-1} \sum_{i=0}^k \omega^k$$

Soient $k, i \in \mathbb{N}$, on a :

$$\left\{ \begin{array}{l} 0 \leq k \leq n-1 \\ 0 \leq i \leq k \end{array} \right. \iff \left\{ \begin{array}{l} i \leq k \leq n-1 \\ 0 \leq i \leq n-1 \end{array} \right.$$

Ainsi:

$$\sum_{k=0}^{n-1} (k+1)\omega^k = \sum_{i=0}^{n-1} \sum_{k=i}^{n-1} \omega^k$$

$$= \sum_{i=0}^{n-1} \left(\omega^i \times \frac{(1-\omega^{n-i})}{1-\omega}\right)$$

$$= \sum_{i=0}^{n-1} \frac{\omega^i - \omega^n}{1-\omega}$$

$$= \frac{1}{1-\omega} \times \left(\sum_{i=0}^{n-1} \omega^i\right) - \left(\sum_{i=0}^{n-1} \frac{w^n}{1-\omega}\right)$$

$$= 0 - \frac{n}{1-\omega}$$

$$= -\frac{n}{1-\omega}$$

• si
$$\omega = 1$$
, on a: $\sum_{k=0}^{n-1} (k+1)\omega^k = \sum_{k=0}^{n-1} (k+1) = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Exercice 41. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$.

1. Soit $z \in \mathbb{C}$, on a :

$$(z+1)^n = e^{2ina} \iff \frac{(z+1)^n}{e^{2ina}} = 1$$

$$\iff \left(\frac{z+1}{e^{2ia}}\right)^n = 1$$

$$\iff \exists k \in [0, n-1], \ \frac{z+1}{e^{2ia}} = e^{\frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ z+1 = e^{2ia + \frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ z = -1 + e^{2ia + \frac{2ik\pi}{n}}$$

$$\iff \exists k \in [0, n-1], \ z = e^{ia + \frac{ik\pi}{n}} \left(-e^{-ia - \frac{ik\pi}{n}} + e^{ia + \frac{ik\pi}{n}}\right)$$

$$\iff \exists k \in [0, n-1], \ z = 2i \sin\left(a + \frac{k\pi}{n}\right) e^{ia + \frac{ik\pi}{n}}$$

L'ensemble des solutions est $\{2i\sin\left(a+\frac{k\pi}{n}\right)e^{ia+\frac{ik\pi}{n}}, k\in \llbracket 0,n-1\rrbracket \}$.

2. Pour tout $k \in [0, n-1]$, on pose $z_k = 2i \sin\left(a + \frac{k\pi}{n}\right) e^{ia + \frac{ik\pi}{n}}$ D'après la question précédente, on a :

$$\forall z \in \mathbb{C}, \ \prod_{k=0}^{n-1} (z - z_k) = (z+1)^n - e^{2ina}.$$

Ainsi, en identifiant les termes constants, on trouve :

$$\prod_{k=0}^{n-1} (-z_k) = (-1)^n \prod_{k=0}^{n-1} z_k = 1 - e^{2ina} \text{ ce qui s'écrit encore} : (-1)^n \prod_{k=0}^{n-1} \left(2i \sin\left(a + \frac{k\pi}{n}\right) e^{ia + \frac{ik\pi}{n}} \right) = -e^{ina} 2i \sin\left(na\right).$$

Calculons désormais $\prod_{k=0}^{n-1} z_k$:

$$\begin{split} \prod_{k=0}^{n-1} z_k &= (-2i)^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) \times \prod_{k=0}^{n-1} e^{\frac{ik\pi}{n}} \\ &= (-2i)^n e^{ina} \left(\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)\right) \times e^{\frac{i\pi}{n} \sum_{k=0}^{n-1} k} \\ &= (-2i)^n e^{ina} \left(\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)\right) \times e^{\frac{i(n-1)\pi}{2}} \\ &= (-2i)^n e^{ina} \left(\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)\right) \times i^{n-1} \\ &= (-2i)^n (i^2)^{n-1} \times i2^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) \\ &= (-1)^n (-1)^{n-1} \times i2^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) \\ &= -i2^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) \\ &= -i2^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) \\ &= -2ie^{ina} \sin(na). \end{split}$$
 On a donc $-i2^n e^{ina} \prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right) = -2ie^{ina} \sin(na).$

7 Exponentielle complexe

Exercice 42. 1. Soit $z \in \mathbb{C}$. On a :

$$e^z = 3 \iff e^z = e^{\ln 3}$$

 $\iff \exists k \in \mathbb{Z}, \ z - \ln 3 = 2k\pi i$

Ainsi, l'ensemble des solutions est $\{i\frac{\pi}{2} + 2ik\pi, k \in \mathbb{Z}\}.$

2. Soit $z \in \mathbb{C}$. On a :

$$\begin{array}{lll} e^z = 3i & \Longleftrightarrow & e^z = 3e^{i\pi/2} \\ & \Longleftrightarrow & e^z = e^{\ln(3) + i\pi/2} \\ & \Longleftrightarrow & \exists k \in \mathbb{Z}, z - \ln 3 - i\frac{\pi}{2} = 2k\pi i \end{array}$$

Ainsi, l'ensemble des solutions est $\{\ln 3 + i\frac{\pi}{2} + 2ik\pi, k \in \mathbb{Z}\}.$

3. Soit $z \in \mathbb{C}$. On a :

$$e^{z} = 1 + i\sqrt{3} \iff e^{z} = 2e^{i\pi/3}$$

$$\iff e^{z} = e^{\ln(2) + i\pi/3}$$

$$\iff \exists k \in \mathbb{Z}, z - \ln 2 - i\frac{\pi}{3} = 2ik\pi$$

Ainsi, l'ensemble des solutions est $\{\ln 2 + i\frac{\pi}{3} + 2ik\pi, k \in \mathbb{Z}\}.$

Nombres complexes et géométrie plane

Exercice 43. Soit
$$z \in \mathbb{C}$$
. On pose $z = x + iy$ avec $(x, y) \in \mathbb{R}^2$.

$$\left|\frac{2iz-1}{z+1}\right| = 1 \iff \left|\frac{2i(x+iy)-1}{x+iy+1}\right|^2 = 1$$

$$\iff \frac{(-2y-1)^2 + 4x^2}{(x+1)^2 + y^2} = 1$$

$$\iff 4y^2 + 4y + 1 + 4x^2 = x^2 + 2x + 1 + y^2$$

$$\iff 3y^2 + 3x^2 + 4y - 2x = 0$$

$$\iff \left(y + \frac{2}{3}\right)^2 + 3\left(x - \frac{1}{3}\right)^2 - \frac{4}{3} - \frac{1}{3} = 0$$

$$\iff \left(y + \frac{2}{3}\right)^2 + \left(x - \frac{1}{3}\right)^2 = \frac{5}{9}$$

$$\iff \left(x - \frac{1}{3}\right)^2 + \left(y + \frac{2}{3}\right)^2 = \left(\frac{\sqrt{5}}{3}\right)^2$$

$$\iff |z - \omega| = \frac{\sqrt{5}}{3}$$

où $\omega = \frac{1}{3} - \frac{2}{3}i$. L'ensemble E cherché est le cercle de centre $\Omega(\omega)$ et de rayon $\frac{\sqrt{5}}{3}$.

1. (a) Le triangle formé par les points d'affixe a, b et c est équilatéral direct

si et seulement si le point d'affixe c est l'image de celui d'affixe b par la rotation de centre a et d'angle $\frac{\pi}{3}$ si et seulement si $c - a = e^{i\frac{\pi}{3}}(b - a)$ si et seulement si $c - e^{i\frac{\pi}{3}}b + (e^{i\frac{\pi}{3}} - 1)a = 0$

Comme précédemment, le triangle formé par les points d'affixe a, b et c est équilatéral indirect si et seulement si le point d'affixe c est l'image de celui d'affixe b par la rotation de centre a et d'angle $-\frac{\pi}{3}$ si et seulement si $c - a = e^{-i\frac{\pi}{3}}(b - a)$

si et seulement si $c - e^{-i\frac{\pi}{3}}b + (e^{-i\frac{\pi}{3}} - 1)a = 0$

Ainsi, le triangle formé par les points d'affixes a, b et c est équilatéral si et seulement si $c - e^{i\frac{\pi}{3}}b + (e^{i\frac{\pi}{3}} - 1)a = 0$ ou $c - e^{-i\frac{\pi}{3}}b + (e^{-i\frac{\pi}{3}} - 1)a = 0$, si et seulement si $0 = (c - e^{i\frac{\pi}{3}}b + (e^{i\frac{\pi}{3}} - 1)a)(c - e^{-i\frac{\pi}{3}}b + (e^{-i\frac{\pi}{3}} - 1)a)$ si et seulement si $c^2 - bce^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - bce^{i\frac{\pi}{3}} + b^2 - ab(1 - e^{i\frac{\pi}{3}}) + ac(e^{i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ca(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + a^2|e^{-i\frac{\pi}{3}} - 1| = e^{-i\frac{\pi}{3}} + ac(e^{-i\frac{\pi}{3}} - 1) - ab(1 - e^{-i\frac{\pi}{3}}) + ac(e^{-i\frac{\pi}{3}} - 1) - ac(e^{-i\frac{\pi}{3}} - 1) -$

si et seulement si $\left| -\frac{1}{2} - i\frac{\sqrt{3}}{2} \right| a^2 + b^2 + c^2 + ab(-1 + e^{i\frac{\pi}{3}} - 1 + e^{-i\frac{\pi}{3}}) + bc(-e^{-i\frac{\pi}{3}} - e^{i\frac{\pi}{3}}) + ac(e^{-i\frac{\pi}{3}} - 1 + e^{i\frac{\pi}{3}} - 1) = 0$ si et seulement si $a^2 + b^2 + c^2 + ab\left(-2 + 2\operatorname{Re}\left(e^{i\frac{\pi}{3}}\right)\right) - 2bc\operatorname{Re}\left(e^{i\frac{\pi}{3}}\right) + ac\left(2\operatorname{Re}\left(e^{i\frac{\pi}{3}}\right) - 2\right) = 0$

si et seulement si $0 = a^2 + b^2 + c^2 - ab - ac - bc$

(b) On suppose a, b, c deux à deux distincts.

a, b et c forment un triangle rectangle en a si et seulement si $\frac{b-a}{c-a} \in i\mathbb{R}$ si et seulement si $\operatorname{Re}\left(\frac{b-a}{c-a}\right) = 0$

- (a) Soit $z \in \mathbb{C}$. Les points $1, z, z^2$ sont deux à deux distincts si et seulement si $z \notin \{-1, 0, 1\}$. On suppose désormais $z \in \mathbb{C} \setminus \{-1, 0, 1\}$.
 - 1, z et z^2 forment un triangle rectangle en 1 si et seulement si $\frac{z^2-1}{z-1} \in i\mathbb{R}$

si et seulement si $z + 1 \in i\mathbb{R}$

si et seulement si $\operatorname{Re}(z+1)=0$

si et seulement si Rez + 1 = 0

si et seulement si Rez = -1

• 1, z et z^2 forment un triangle rectangle en z si et seulement si $\frac{z^2-z}{1-z} \in i\mathbb{R}$.

si et seulement si $z \in i\mathbb{R}$

si et seulement si $\operatorname{Re}(z) = 0$

• 1,
$$z$$
 et z^2 forment un triangle rectangle en z^2 si et seulement si $\frac{1-z^2}{z-z^2} \in i\mathbb{R}$ si et seulement si $\operatorname{Re}\left(\frac{1+z}{z}\right) = 0$ si et seulement si $\operatorname{Re}\left(\frac{(1+z)\overline{z}}{|z|^2}\right) = 0$ si et seulement si $\operatorname{Re}\left(\overline{z} + |z|^2\right) = 0$ si et seulement si $\operatorname{Re}(\overline{z}) + |z|^2 = 0$ si et seulement si $\operatorname{Re}(\overline{z}) + |z|^2 = 0$ si et seulement si $\operatorname{Re}(z) + |z|^2 = 0$

On pose z=x+iy avec $x,y\in\mathbb{R}$. On a alors 1, z et z^2 forment un triangle rectangle en z^2 si et seulement si $x+x^2+y^2=0$

si et seulement si
$$\left(x+\frac{1}{2}\right)^2+y^2=\frac{1}{4}$$
 si et seulement si $\left|z+\frac{1}{2}\right|=\frac{1}{2}$

Finalement on trouve: $(\text{Re}z = -1 \text{ ou } \text{Re}z = 0 \text{ ou } |z + \frac{1}{2}| = \frac{1}{2}) \text{ et } z \notin \{-1, 0, 1\}.$

(b) Soit $z \in \mathbb{C}$. Les points $z, \frac{1}{z}$ et -i sont deux à deux distincts si et seulement si $z \notin \{-i, i, 1, -1\}$. Supposons $z \in \mathbb{C} \setminus \{-i, i, \tilde{1}, -1\}.$

z,
$$\frac{1}{z}$$
 et $-i$ sont alignés si et seulement si $\frac{z+i}{\frac{1}{z}+i} \in \mathbb{R}$

si et seulement si
$$\frac{z(z+i)}{1+zi} \in \mathbb{R}$$

si et seulement si
$$\frac{z(z+i)(1-i\overline{z})}{|1+iz|^2} \in \mathbb{R}$$

si et seulement si
$$\frac{z(z+\overline{z}+i-i|z|^2}{|1+iz|^2}\in\mathbb{R}$$

si et seulement si
$$\frac{z(2\operatorname{Re}(z)+i-i|z|^2}{|1+iz|^2} \in \mathbb{R}$$

si et seulement si
$$z(2\text{Re}(z) + i - i|z|^2 \in \mathbb{R}$$

si et seulement si Im
$$(z(2\text{Re}(z) + i - i|z|^2) = 0$$

On pose z = x + iy avec $x, y \in \mathbb{R}$.

Ainsi, les points sont alignés si et seulement si si et seulement si Im $((x+iy)(2x+i-i(x^2+y^2))=0$.

si et seulement si
$$x - x(x^2 + y^2) + 2xy = 0$$

si et seulement si
$$x(1 - (x^2 + y^2) + 2y) = 0$$

si et seulement si
$$x = 0$$
 ou $x^2 + y^2 - 2y = 1$

si et seulement si
$$x = 0$$
 ou $x^2 + (y - 1)^2 = 2$

si et seulement si
$$\operatorname{Re} z = 0$$
 ou $|z - i|^2 = 2$

si et seulement si
$$\operatorname{Re} z = 0$$
 ou $|z - i| = \sqrt{2}$

Finalement, les points sont alignés si et seulement si Rez = 0 ou $|z - i| = \sqrt{2}$.

(c) Soit $z \in \mathbb{C}$. Les points z, z^2 , z^4 sont 2 à 2 distincts si et seulement si $z \notin \{0, 1, -1, e^{2i\pi/3}, e^{4i\pi/3}\}$. Supposons $z \in \mathbb{C} \setminus \{0, 1, -1, e^{2i\pi/3}, e^{4i\pi/3}\}$.

Les points z, z^2 et z^4 sont alignés si et seulement si si et seulement si $\frac{z^4-z^2}{z^2-z^2} \in \mathbb{R}$

si et seulement si
$$\frac{z^2(z-1)(z+1)}{z(1-z)} \in \mathbb{R}$$

si et seulement si
$$-z(z+1) \in \mathbb{R}$$

si et seulement si
$$z(z+1) \in \mathbb{R}$$

si et seulement si
$$\text{Im}(z(z+1)) = 0$$

On pose z = x + iy avec $x, y \in \mathbb{R}$.

Ainsi, les points z, z^2 et z^4 sont alignés si et seulement si si et seulement si $\operatorname{Im}((x+iy)(x+1+iy))=0$

si et seulement si Im $(x(x+1) - y^2 + iyx + yi(x+1)) = 0$

si et seulement si y(2x+1) = 0

si et seulement si y=0 ou $x=\frac{-1}{2}$

si et seulement si Imz = 0 ou $\text{Re}z = -\frac{1}{2}$

Finalement, les points sont alignés si et seulement si Imz = 0 ou $\text{Re}z = -\frac{1}{2}$.

cice 45. 1. Soit $z \in \mathbb{C}$. On pose z = x + iy avec $(x, y) \in \mathbb{R}^2$. $|z + i| = |z - 1| \iff |x + i(y + 1)|^2 = |(x - 1) + iy|^2$

$$|z+i| = |z-1| \iff |x+i(y+1)|^2 = |(x-1)+iy|^2$$

$$\iff x^2 + (y+1)^2 = (x-1)^2 + y^2$$

$$\iff x^2 + y^2 + 2y + 1 = x^2 - 2x + 1 + y^2$$

$$\iff 2y = -2x$$

$$\iff y = -x$$

Ainsi, l'ensemble E des points M(z) recherché est la droite d'équation y=-x. Ainsi, $E=\{x(1-i),x\in\mathbb{R}\}$

2. Raisonnons par analyse synthèse.

Analyse : On suppose qu'il existe $z \in \mathbb{C}$ tel que $|z| = \left|\frac{1}{z}\right| = |1+z|$.

De la première égalité, on déduit que $|z|^2 = 1$, donc |z| = 1.

De plus, avec la deuxième égalité, on a |1+z|=|z-(-1)|=|z|=1. Le point M d'affixe z appartient donc à la fois au cercle unité et au cercle de centre -1 et de rayon 1.

On trouve donc $z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ ou $z = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Synthèse : On vérifie que ces deux complexes vérifient bien $|z| = \left|\frac{1}{z}\right| = |1+z|$.

Les solutions sont donc les points $M_1\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$ et $M_2\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)$

3. Soit
$$z \in \mathbb{C}$$
. On pose $z = x + iy$ avec $(x, y) \in \mathbb{R}^2$.
$$\frac{z+1}{z-1} = \frac{(x+1)+iy}{(x-1)+iy} = \frac{((x+1)+iy)((x-1)-iy)}{(x-1)^2+y^2}$$

$$= \frac{((x+1)(x-1)+y^2)+i(y(x-1)-y(x+1))}{(x-1)^2+y^2} = \frac{((x+1)(x-1)+y^2)-2iy}{(x-1)^2+y^2}$$

Ainsi.

$$\frac{z+1}{z-1} \in \mathbb{R} \iff \operatorname{Im}\left(\frac{z+1}{z-1}\right) = 0$$

$$\iff -2y = 0.$$

Ainsi, l'ensemble des points M(z) recherché est l'axe des abscisses.

1. Le module de a vaut 2. On a alors : $a=2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)=2e^{-i\frac{\pi}{6}}$ donc un argument de a est $-\frac{\pi}{6}$. Exercice 46.

2.
$$f(z) = ze^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2}(1+i)z$$

3.
$$z_B = f(z_A) \text{ donc } z_B = 2e^{-i\frac{\pi}{6}}e^{i\frac{\pi}{4}} = 2e^{i\frac{\pi}{12}}. \text{ Et, } z_B = f(z_A) = \frac{\sqrt{2}}{2}(1+i)(\sqrt{3}-i) = \frac{(\sqrt{6}+\sqrt{2})}{2} + i\frac{(\sqrt{6}-\sqrt{2})}{2}.$$

4. On a alors
$$\cos\left(\frac{\pi}{12}\right) = \frac{\text{Re}(z_B)}{2} = \frac{(\sqrt{6} + \sqrt{2})}{4}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{\text{Im}(z_B)}{2} = \frac{(\sqrt{6} - \sqrt{2})}{4}$

xercice 47. 1. D'après le cours, $z \mapsto -\frac{1}{3}(z-4i)+4i$. Ainsi, f est donnée par $z \mapsto -\frac{1}{3}z+\frac{16}{3}i$. 2. D'après le cours, $z \mapsto e^{i\frac{3\pi}{4}}(z+2)-2$. Ainsi, g est définie par : $z \mapsto e^{i\frac{3\pi}{4}}z-2-\sqrt{2}+i\sqrt{2}$. 3. D'après le cours, on peut dire directement que la translation h est définie par : $z \mapsto e^{i\frac{3\pi}{4}}z-2-\sqrt{2}+i\sqrt{2}$.

9 Fonctions à valeurs complexes

Exercice 48. On remarque que : $\forall x \in \mathbb{R}, \ f(x) = \operatorname{Im}(e^x e^{\sqrt{3}ix}).$

Posons $q: x \mapsto e^x e^{\sqrt{3}ix} = e^{(1+i\sqrt{3})x}$. q est infiniment dérivable sur \mathbb{R} .

On a f = Im(g)) donc f est elle même infiniment dérivable.

De plus, on a : $\forall n \in \mathbb{N}, f^{(n)} = (\operatorname{Im}(g))^{(n)} = \operatorname{Im}(g^{(n)}).$

Calculons dans un premier temps les dérivées n-ièmes de $g: x \mapsto e^{(1+i\sqrt{3})x}$ Soit $n \in \mathbb{N}$, $x \in \mathbb{R}$.

$$g^{(n)}(x) = (1 + i\sqrt{3})^n e^{(1+i\sqrt{3})x}$$
 par récurrence
$$= 2^n e^{in\pi/3} e^{(1+i\sqrt{3})x}$$
$$= 2^n e^x e^{i(n\pi/3 + \sqrt{3}x)}$$

Ainsi,
$$\operatorname{Im}(g^{(n)}(x)) = \operatorname{Im}\left(2^n e^x e^{i\left(n\pi/3 + \sqrt{3}x\right)}\right) = 2^n e^x \operatorname{Im}\left(e^{i\left(n\pi/3 + \sqrt{3}x\right)}\right) = 2^n e^x \sin\left(n\pi/3 + \sqrt{3}x\right).$$
Donc:
$$f^{(n)}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto 2^n e^x \sin\left(n\pi/3 + \sqrt{3}x\right).$$

1. On remarque que : $\forall x \in \mathbb{R}$, $\cos(x) = \operatorname{Re}(e^{ix})$ et $\sin(x) = \operatorname{Im}(e^{ix})$. Exercice 49.

Posons $f: x \mapsto e^{ix}$.

f est infiniment dérivable sur \mathbb{R} .

On a : $\cos(\text{Re}(f))$ et $\sin=\text{Im}(f)$. Ainsi, cos et sin sont infiniment dérivable sur \mathbb{R} .

De plus : $\forall n \in \mathbb{N}$, $\cos^{(n)} = (\text{Re}(f))^{(n)} = \text{Re}(f^{(n)})$ et $\sin^{(n)} = (\text{Im}(f))^{(n)} = \text{Im}(f^{(n)})$.

Calculons dans un premier temps les dérivées n-ièmes de $f: x \mapsto e^{ix}$.

On a: $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f^{(n)}(x) = i^n e^{ix}$.

En effet, ce résultat se prouve par récurrence :

- Pour $n = 0 : \forall x \in \mathbb{R}, \ f^{(0)}(x) = f(x) = i^0 e^{ix}.$
- Soit $n \in \mathbb{N}$, supposons que : $\forall x \in \mathbb{R}, f^{(n)}(x) = i^n e^{ix}$. Soit $x \in \mathbb{R}$, $f^{(n+1)}(x) = (f^{(n)})'(x) = i^n \times i \times e^{ix} = i^{n+1}e^{ix}$
- Ainsi : $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f^{(n)}(x) = i^n e^{ix}$.

En utilisant la formule de Moivre, on obtient finalement que :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f^{(n)}(x) = \left(e^{i\frac{\pi}{2}}\right)^n e^{ix} = e^{i\frac{n\pi}{2}} e^{ix} = e^{i\left(x + \frac{n\pi}{2}\right)}.$$

Ainsi, en prenant les parties réelles et imaginaires, on obtient pour tout $n \in \mathbb{N}$:

$$\cos^{(n)}: \mathbb{R} \to \mathbb{R} x \mapsto \operatorname{Re}\left(f^{(n)}(x)\right) = \cos\left(x + \frac{n\pi}{2}\right)$$
et
$$\sin^{(n)}: \mathbb{R} \to \mathbb{R} x \mapsto \operatorname{Im}\left(f^{(n)}(x)\right) = \sin\left(x + \frac{n\pi}{2}\right)$$

2. On commence par linéariser \cos^3 et \sin^3 . Soit $x \in \mathbb{R}$, on a : $\cos^3(x) = \frac{1}{4}\cos(3x) + \frac{3}{4}\cos x$ et $\sin^3(x) = -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin x$.

Posons $g: x \mapsto e^{3ix}$. g est infiniment dérivable sur \mathbb{R} .

De plus, on a : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, g^{(n)}(x) = (3i)^n e^{3ix} = (3e^{i\frac{\pi}{2}})^n e^{3ix} = 3^n e^{i\frac{n\pi}{2}} e^{3ix}$ d'après la formule de Moivre.

On obtient finalement : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, g^{(n)}(x) = 3^n e^{i\left(3x + \frac{n\pi}{2}\right)}$

Soit $x \in \mathbb{R}$, on a alors

$$(\cos^3)^{(n)}(x) = \operatorname{Re}\left(\frac{1}{4} \times 3^n e^{i\left(3x + \frac{n\pi}{2}\right)}\right) + \frac{3}{4}\cos^{(n)}(x)$$
$$= \frac{3^n}{4}\cos\left(3x + \frac{n\pi}{2}\right) + \frac{3}{4}\cos\left(x + \frac{n\pi}{2}\right)$$

Puis,

$$(\sin^3)^{(n)}(x) = \operatorname{Im}\left(-\frac{1}{4} \times 3^n e^{i\left(3x + \frac{n\pi}{2}\right)}\right) + \frac{3}{4}\sin^{(n)}(x)$$
$$= -\frac{3^n}{4}\sin\left(3x + \frac{n\pi}{2}\right) + \frac{3}{4}\sin\left(x + \frac{n\pi}{2}\right)$$

Exercice 50. 1. Notons

$$\begin{array}{cccc} f: \mathbb{C} \setminus \{-i\} & \to & \mathbb{C} \setminus \{1\} \\ & z & \mapsto & \frac{z-i}{z+i} \end{array}.$$

- \bullet La fonction f est bien définie :
 - Soit $z \in \mathbb{C} \setminus \{-i\}$, alors $z + i \neq 0$. Ainsi, pour tout $z \in \mathbb{C} \setminus \{-i\}$, f(z) est bien défini.
 - Soit $z \in \mathbb{C} \setminus \{-i\}$,

$$\frac{z-i}{z+i} = 1 \iff z-i = z+i$$

$$\iff -i = i$$

Ainsi, pour tout $z \in \mathbb{C} \setminus \{-i\}, f(z) \in \mathbb{C} \setminus \{1\}.$

• Soit $a \in \mathbb{C} \setminus \{1\}$, soit $z \in \mathbb{C} \setminus \{-i\}$. On a :

$$\frac{z-i}{z+i} = a \iff z-i = a(z+i)$$

$$\iff z(1-a) = i(1+a)$$

$$\iff z = \frac{i(1+a)}{1-a} \quad \text{car } a \neq 1$$

Pour tout $a \in \mathbb{C} \setminus \{1\}$, il existe un unique $z \in \mathbb{C}$ tel que $\frac{z-i}{z+i} = a$.

• Vérifions que pour tout $a \in \mathbb{C} \setminus \{1\}, \frac{i(1+a)}{1-a} \neq -i$.

Or,
$$\frac{i(1+a)}{1-a} = -i$$
 \iff $i(1+a) = -i(1-a)$ \iff $2 = 0$

Or, cette dernière égalité n'est jamais vraie donc par équivalence : $\forall a \in \mathbb{C} \setminus \{1\}, \frac{i(1+a)}{1-a} \in \mathbb{C} \setminus \{-i\}.$

La fonction f est donc bijective de $\mathbb{C}\setminus\{-i\}$ dans $\mathbb{C}\setminus\{1\}$.

2. Posons

$$g: P \to D$$

$$z \mapsto \frac{z-i}{z+i}.$$

- q est bien définie :
 - Soit $z \in P$, alors Im z > 0 et donc Im(z+i) = Im(z) + 1 > 1. Donc $z+i \neq 0$. Ainsi, pour tout $z \in P$, f(z) est bien défini.
 - Soit $z \in P$, on a : $\left| \frac{z-i}{z+i} \right| = \sqrt{\frac{\operatorname{Re}(z)^2 + (\operatorname{Im}(z) 1)^2}{\operatorname{Re}(z)^2 + (\operatorname{Im}(z) + 1)^2}}$ Ainsi

$$\begin{split} \left| \frac{z - i}{z + i} \right| < 1 &\iff \sqrt{\frac{\text{Re}(z)^2 + (\text{Im}(z) - 1)^2}{\text{Re}(z)^2 + (\text{Im}(z) + 1)^2}} < 1 \\ &\iff \frac{\text{Re}(z)^2 + (\text{Im}(z) - 1)^2}{\text{Re}(z)^2 + (\text{Im}(z) + 1)^2} < 1 \\ &\iff \text{Re}(z)^2 + (\text{Im}(z) - 1)^2 < \text{Re}(z)^2 + (\text{Im}(z) + 1)^2 \\ &\iff \text{Re}(z)^2 + (\text{Im}(z) - 1)^2 < \text{Re}(z)^2 + (\text{Im}(z) + 1)^2 \\ &\iff -2\text{Im}(z) < 2\text{Im}(z) \\ &\iff 0 < 4\text{Im}(z) \end{split}$$

Or, $z \in P$ donc Im(z) > 0. Ainsi, $f(z) \in D$.

• Soit $z \in D$ soit $\omega \in D$, on a :

$$\frac{\omega - i}{\omega + i} = z \iff \omega = \frac{i(1+z)}{1-z}$$

d'après les calculs du 1.

• Il reste à montrer que cette solution $\frac{i(1+z)}{1-z} \in P$:
On a

$$\frac{i(1+z)}{1-z} = \frac{(i(z+1)(1-\overline{z}))}{|1-z|^2} = \frac{i(z+1-|z|^2-\overline{z})}{|1-z|^2} = \frac{i(1-|z|^2+2i\mathrm{Im}(z))}{|1-z|^2} = -2\frac{\mathrm{Im}(z)}{|1-z|^2} + i\frac{(1-|z|^2)}{|1-z|^2} + i\frac{(1-|z|^2)}{|1-z|^2} = -2\frac{\mathrm{Im}(z)}{|1-z|^2} + i\frac{(1-|z|^2)}{|1-z|^2} + i\frac{$$

Ainsi,
$$\operatorname{Im}\left(\frac{i(1+z)}{1-z}\right) = \frac{1-|z|^2}{|1-z|^2} > 0 \text{ car } |z| < 1 \text{ (car } z \in D).$$

Ainsi, g est donc bien une bijection de P sur D.