CS2100

TUTORIAL #6

BOOLEAN ALGEBRA, LOGIC GATES & SIMPLIFICATION

(PREPARED BY: AARON TAN)

Q1. Consensus theorem

$$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$$

$$x \cdot y + x' \cdot z + y \cdot z$$

 $= x \cdot y + x' \cdot z + 1 \cdot y \cdot z$ [identity law]
 $= x \cdot y + x' \cdot z + (x + x') \cdot y \cdot z$ [complement law]
 $= x \cdot y + x' \cdot z + x \cdot y \cdot z + x' \cdot y \cdot z$ [distributive law]
 $= x \cdot y + x \cdot y \cdot z + x' \cdot z + x' \cdot y \cdot z$ [commutative law]
 $= (x \cdot y + x \cdot y \cdot z) + (x' \cdot z + x' \cdot y \cdot z)$ [associative law]
 $= x \cdot y + x' \cdot z$ [absorption theorem 1]

Q2(a)
$$F(x,y,z) = (x+y\cdot z')\cdot (y'+y) + x'\cdot (y\cdot z'+y)$$

$$= (x+y\cdot z')\cdot 1 + x'\cdot (y\cdot z'+y) \qquad \text{(by the complement law)}$$

$$= (x+y\cdot z') + x'\cdot (y\cdot z'+y) \qquad \text{(by the identity law)}$$

$$= x + (y\cdot z' + x'\cdot y) \qquad \text{(by absorption theorem 1)}$$

$$= x + x'\cdot y + y\cdot z' \qquad \text{(by the commutative law)}$$

$$= x + (y + y\cdot z') \qquad \text{(by absorption theorem 2)}$$

$$= x + y \qquad \text{(by absorption theorem 1)}$$

Q2(b)
$$5 = (0101)_2; 9 = (1001)_2; 13 = (1101)_2$$

$$G(p,q,r,s) = \Pi M(5, 9, 13)$$

$$= (p+q'+r+s') \cdot (p'+q+r+s') \cdot (p'+q'+r+s')$$
 (by definition of maxterms)
$$= ((p \cdot p') + (q'+r+s')) \cdot (p'+q+r+s')$$
 (by the distributive law)

$$(p+(q'+r+s')) \cdot (p'+(q'+r+s'))$$

= $(p\cdot p') + (q'+r+s')$
Distributive law:
 $A + (B\cdot C) = (A+B)\cdot (A+C)$
or $(B\cdot C) + A = (B+A)\cdot (C+A)$

$$5 = (0101)_2$$
; $9 = (1001)_2$; $13 = (1101)_2$

$$G(p,q,r,s) = \Pi M(5, 9, 13)$$

=
$$(p+q'+r+s')\cdot(p'+q+r+s')\cdot(p'+q'+r+s')$$
 (by definition of maxterms)

$$= ((p \cdot p')) + (q' + r + s')) \cdot (p' + q + r + s')$$
 (by

$$=(0 + (q'+r+s')) \cdot (p'+q+r+s')$$

$$= (q'+r+s') \cdot (p'+q+r+s')$$

$$= (q' \cdot (p'+q)) + (r+s')$$

$$= p' \cdot q' + r + s'$$

Absorption theorem 2:

$$A \cdot (A'+B) = A \cdot B$$

$$q' \cdot (p'+q) = q' \cdot (q+p') = q' \cdot p' = p' \cdot q'$$

Q3.

m1: 0001 = A'·B'·C'·D

Q3.

(d) How many Pls: **4**A'.D', A'.C', B'.C'.D, A.B'.D

(e) How many EPIs: 2
A'.D', A'.C'

Q3. (f) Simplified SOP: T(A,B,C,D) = A'.C' + A'.D' + B'.C'.D

$$T(A,B,C,D) = A'.C' + A'.D' + A.B'.D$$

Q3. (g) Simplified POS: T(A,B,C,D) = (A'+B').(C'+D').(A'+D)

Q3. (h) T(A,B,C,D) = A'.C' + A'.D' + B'.C'.D

2-level AND-OR circuit:

2-level NAND circuit:

Q4. For output X,

K	L	M	N	X	Y	Z	K
0	0	0	0	d	d	d	1
0	0	0	1	0	1	1	1
0	0	1	0	0	1	1	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	1

K	L	M	N	X	Y	Z
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	1	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	1	1	0

(c)
$$X = K' \cdot L \cdot M' \cdot N + K \cdot L' \cdot M \cdot N' + K \cdot L \cdot M \cdot N$$

(d)
$$KLMN = 0000 \rightarrow X = 0$$

Q4. (b)(c)(d)

K	L	M	N	X	Y	Z	K	L	M	N	X	Y	Z
0	0	0	0	d	d	d	1	0	0	0	0	0	0
0	0	0	1	0	1	1	1	0	0	1	0	0	0
0	0	1	0	0	1	1	1	0	1	0	1	1	0
0	0	1	1	0	1	1	1	0	1	1	0	1	0
0	1	0	0	0	0	1	1	1	0	0	0	0	0
0	1	0	1	1	1	1	1	1	0	1	0	0	0
0	1	1	0	0	1	1	1	1	1	0	0	0	0
0	1	1	1	0	1	1	1	1	1	1	1	1	0

Q4. (b)(c)(d)

K	L	M	N	X	Y	Z
0	0	0	0	d	d	d
0	0	0	1	0	1	1
0	0	1	0	0	1	1
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	1	1	1
0	1	1	0	0	1	1
0	1	1	1	0	1	1

K	L	M	N	X	Y	Z
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	1	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	1	1	0

(c)
$$Z = K'$$

(d)
$$KLMN = 0000 \rightarrow Z = 1$$

END OF FILE

All the best for Mid-terms

Bubble Pushing for Converting between Complete Sets of Logic

Notation: Use a bubble to represent an inverter/NOT gate

Rule 1: Can create a pair of bubbles at any input/output of a gate.

Reason: Involution Theorem $(A')' \equiv A$

Rule 2: Can push a bubble through a gate by changing the gate from AND to OR and OR to AND

Reason: De Morgan's Theorem A'B' \equiv (A + B)' and A' + B' \equiv (AB)'