1. Векторы и элементарные операции над ними

Вектор — это упорядоченная пара точек (направленный отрезок), одна из которых называется *началом*, другая — концом вектора. Обозначается вектор либо одной строчной латинской буквой, например, $\bf a$, либо двумя прописными латинскими буквами (первая обозначает начало вектора, вторая — конец вектора) с чертой над ними, например, \overline{AB} .

Длина (модуль) вектора — это длина отрезка, соединяющего его точки, обозначается $|\overline{AB}|$ или $|\mathbf{a}|$.

Нулевой вектор (далее будет обозначаться, как \mathbf{O}) — это вектор, начало и конец которого совпадают, его длина, очевидно, равна 0. Вектор, длина которого равна 1, называется единичным или *ортом*.

Вектор лежит на прямой линии (плоскости), если на ней лежат его начало и конец. Векторы коллинеарны, если они лежат на одной и той же прямой линии или на разных параллельных прямых линиях. Векторы компланарны, если они лежат на одной плоскости или на разных параллельных плоскостях.

Векторы одинаково ориентированы или *сонаправлены*, если они коллинеарны и их концы располагаются по одну сторону от прямой линии, соединяющей их начала.

Векторы а и в равны, если они:

- 1) коллинеарны $(\mathbf{a} \parallel \mathbf{b})$,
- 2) одинаковой длины (|a| = |b|),
- 3) одинаково ориентированы ($\mathbf{a} \uparrow \uparrow \mathbf{b}$).

Суммой векторов \mathbf{a} и \mathbf{b} называется вектор $\mathbf{c} = \mathbf{a} + \mathbf{b}$ такой, что его начало совпадает с началом вектора \mathbf{a} , а конец совпадает с концом вектора \mathbf{b} , начало которого совмещено с концом вектора \mathbf{a} .

Операция сложения векторов обладает следующими свойствами:

- 1) a + b = b + a,
- 2) (a+b)+c=a+(b+c),
- 3) a + O = O + a = a,
- 4) для каждого вектора ${\bf a}$ существует противоположный вектор ${\bf a'}$ такой, что ${\bf a}+{\bf a'}={\bf O}$.

Следующие рисунки иллюстрируют два первых свойства операции сложения векторов и так называемый "принцип замыкания векторов".

Разностью векторов **a** *u* **b** называется вектор **c** такой, что сумма $\mathbf{b} + \mathbf{c} = \mathbf{a}$. Разность векторов обозначается $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

Теорема (о разности векторов)

Для $\forall a, b \exists ! c : c = a - b$, т.е. для любых векторов a и b существует единственный вектор c такой, что c = a - b.

Результатом *умножения вектора* **a** *на число* λ является вектор **b** = λ **a** такой, что:

- 1) вектор \mathbf{b} коллинеарен вектору \mathbf{a} ,
- 2) длина вектора $|\mathbf{b}| = |\lambda| \cdot |\mathbf{a}|$,
- 3) векторы **a** и **b** сонаправлены при $\lambda > 0$ и разнонаправлены при $\lambda < 0$.

Операция умножения вектора на число обладает следующими свойствами:

- 1) $1 \cdot a = a$
- 2) $\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}$,
- 3) $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$,
- 4) $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$.

Теорема (о коллинеарных векторах)

Для $\forall \mathbf{a} \neq \mathbf{O}$ и $\forall \mathbf{b} \parallel \mathbf{a} \exists \lambda : \mathbf{b} = \lambda \mathbf{a}$, т.е. для любого ненулевого вектора \mathbf{a} и коллинеарного ему вектора \mathbf{b} существует число λ такое, что $\mathbf{b} = \lambda \mathbf{a}$.

2. Линейная зависимость векторов

Выражение $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + ... + \lambda_n \mathbf{a}_n$ называется линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, числа $\lambda_1, \lambda_2, ..., \lambda_n - \kappa o \Rightarrow \phi \phi$ ициентами линейной комбинации.

Векторы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ называются *линейно зависимыми*, если существуют не равные одновременно нулю числа $\lambda_1, \lambda_2, ..., \lambda_n$ такие, что $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + ... + \lambda_n \mathbf{a}_n = \mathbf{O}$.

Векторы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ называются *линейно независимыми*, если их линейная комбинация $\lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + ... + \lambda_n \mathbf{a}_n = \mathbf{O}$ только, если $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$.

Элементарными преобразованиями совокупности векторов $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ называются:

- 1) умножение одного из векторов совокупности на число $\lambda \neq 0$,
- 2) прибавление одного вектора совокупности к другому.

Замечание: требование $\lambda \neq 0$ гарантирует обратимость элементарных преобразований.

Теорема (о линейной зависимости)

Справедливы следующие утверждения:

- 1. Векторы $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ линейно зависимы тогда и только тогда, когда хотя бы один из них может быть представлен в виде линейной комбинации других векторов.
- 2. Если среди векторов $a_1, a_2, ..., a_n$ имеется нулевой вектор, то они линейно зависимы.
- 3. Если какая-то часть из совокупности векторов $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ линейно зависима, то и вся совокупность векторов линейно зависима.
- 4. Если совокупность векторов $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ линейно независима, то и любая её часть линейно независима.
- 5. В результате элементарных преобразований линейно (не)зависимая совокупность векторов $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ остаётся линейно (не)зависимой.

Теорема (о признаках линейной зависимости)

Справедливы следующие утверждения:

- 1. Один вектор линейно зависимы тогда и только тогда, когда он нулевой.
- 2. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.
- 3. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.
- 4. Любые четыре вектора линейно зависимы.

Следствия (признаки линейной независимости)

- 1. Один вектор линейно независим тогда и только тогда, когда он не нулевой.
- 2. Два вектора линейно независимы тогда и только тогда, когда они неколлинеарны.
- 3. Три вектора линейно независимы тогда и только тогда, когда они некомпланарны.

08.09.2014 20:05:50 cтр. 2 из 2