Performance Analysis of MPI Over Cluster

Presented by:

Achuth P V, Aniruddh Rao K, Avishkar P

Introduction

- Cluster: Widely used in HPC to scale computing
- MPI: Message Passing Interface (Standard)
 - OPENMPI
 - MVAPICH
 - MPICH
- Communication methods
 - Ethernet
 - InfiniBand
 - Shared Memory
 - RDMA
- CUDA and CUDA aware MPI
 - CPU-GPU
 - GPU-GPU (GPU Direct)

Tools and Methods for MPI

- Cluster of 2 machines each with 16 CPU cores connected by
 - IP over InfiniBand
 - Ethernet
- MPI Implementations used:
 - OPENMPI v 1.8.4
 - MVAPICH2 v 2.1
- Modes of communication:
 - InfiniBand
 - Ethernet
 - Shared Memory
- Matrix Multiplication test code
 - Matrix size from 2000x2000 to 10000x10000
 - With number of processes ranging from 8 to 32

Tools and Methods for CUDA aware MPI

- Setup cluster of 2 machines each with 4 CPU cores, GT 640 NVIDIA CUDA card
 - CUDA Aware MPI
 - CUDA Over MPI
- MPI Implementations used:
 - OPENMPI v 1.8.8
 - MVAPICH2 v 2.1
- Modes of communication:
 - Ethernet
 - Shared Memory
- Test code
 - Message sending code and Matrix multiplication
 - Message size varying from 1 Byte to 4MB

Code flow and Plots for MPI

- Code flow : At Each Node
 - Broadcast B
 - Transfer part of A from PE 0 to others
 - Compute part of C
 - Transfer part of C from all processes to PE 0
- **Plotting**: (with fixed number of processes: 8, 16 and 32 for matrix size from 2000x2000 to 10000x10000 and different modes of communication Viz InfiniBand, Ethernet and Shared Memory)
 - Plot for Full timing of code
 - Plot for time taken to transfer A
 - Plot for time taken to broadcast B
 - Plot for time taken to transfer C

Plots for full timing of Code

Plots for time taken to transfer A

Plots for time taken to Broadcast B

Plots for time taken to transfer C

Observations and Inference

- InfiniBand Communication faster than Ethernet
 - Clear in OpenMPI
 - Not so clear in MVAPICH2
- Intra process Communication faster than both InfiniBand and Ethernet
- For Small N (matrix size), InfiniBand comparable to Intra Process
- With increased np, computation time per node decreases, but communication time remains almost same
 - Each node gets lesser number of computations
 - Time to Bcast B is largest among all communications and remains same
- OpenMPI has better performance than MVAPICH
 - May be due to configuration of MVAPICH (was setup by us –without much knowledge of configuration)
- Non Blocking vs Blocking
 - Non-blocking is faster
 - But Non-blocking is inconsistent

Code flow and Plots for CUDA over MPI

- Code Flow of matrix multiplication
 - Send Parts of A and B to other processes
 - Use GPU to compute
 - Send back Computed part of C to main process
- Plotting (Done for 4 processes: with 2 machines having GPU or only one machine)
 - Plots for BW measurement for CUDA over MPI and CUDA aware MPI
 - Plots for time taken to transfer A and B
 - Plots for time taken to transfer C
 - Plots for time taken for complete code execution

Bandwidth vs Data transferred for CUDA Over and Aware MPI

Plots for time taken to transfer A and B, time taken to transfer C

Plot for complete execution time

Observations and Inference

- Communication was over GbE network
 - Bandwidth in CUDA-Aware-MPI is relatively higher than CUDA-over-MPI for same node.
 - Bandwidth was same for small matrices and then CUDA-over-MPI Bandwidth got deteriorated for big matrices for different nodes
- Transfer over network is slower compared to intra node inter process transfer
 - For larger matrices inter node transfer is getting slower may be due to shared memory/virtual memory access