Importing Libraries

```
In [1]:

1 import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

Out[2]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2018-03-01 01:00:00	1.0	1.00	0.3	1.0	1.00	1.0	29.0	31.0	1.0	1.0	1.0	2.0	1.00	1.0	28079004
1	2018-03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	0.8	28079008
2	2018-03-01 01:00:00	0.4	1.00	1.0	0.2	1.00	4.0	41.0	47.0	1.0	1.0	1.0	1.0	1.00	1.1	28079011
3	2018-03-01 01:00:00	1.0	1.00	0.3	1.0	1.00	1.0	35.0	37.0	54.0	1.0	1.0	1.0	1.00	1.0	28079016
4	2018-03-01 01:00:00	1.0	1.00	1.0	1.0	1.00	1.0	27.0	29.0	49.0	1.0	1.0	3.0	1.00	1.0	28079017
69091	2018-02-01 00:00:00	1.0	1.00	0.5	1.0	1.00	66.0	91.0	192.0	1.0	35.0	22.0	1.0	1.00	1.0	28079056
69092	2018-02-01 00:00:00	1.0	1.00	0.7	1.0	1.00	87.0	107.0	241.0	1.0	29.0	1.0	15.0	1.00	1.0	28079057
69093	2018-02-01 00:00:00	1.0	1.00	1.0	1.0	1.00	28.0	48.0	91.0	2.0	1.0	1.0	1.0	1.00	1.0	28079058
69094	2018-02-01 00:00:00	1.0	1.00	1.0	1.0	1.00	141.0	103.0	320.0	2.0	1.0	1.0	1.0	1.00	1.0	28079059
69095	2018-02-01 00:00:00	1.0	1.00	1.0	1.0	1.00	69.0	96.0	202.0	3.0	26.0	1.0	1.0	1.00	1.0	28079060

69096 rows × 16 columns

Data Cleaning and Data Preprocessing

```
In [3]:
         1 df.columns
Out[3]: Index(['date', 'BEN', 'CH4', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'NOx', 'O_3',
               'PM10', 'PM25', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [4]:
         1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 69096 entries, 0 to 69095
        Data columns (total 16 columns):
             Column
                     Non-Null Count Dtype
                      -----
         0
             date
                     69096 non-null object
         1
             BEN
                     69096 non-null float64
         2
             CH4
                     69096 non-null float64
         3
             CO
                     69096 non-null float64
         4
             EBE
                     69096 non-null float64
         5
             NMHC
                     69096 non-null float64
         6
             NO
                     69096 non-null float64
         7
             NO 2
                     69096 non-null float64
         8
             NOx
                     69096 non-null float64
         9
             0 3
                     69096 non-null float64
         10
             PM10
                     69096 non-null float64
         11
            PM25
                     69096 non-null float64
         12 SO 2
                     69096 non-null float64
         13 TCH
                     69096 non-null float64
         14 TOL
                     69096 non-null float64
         15 station 69096 non-null int64
```

dtypes: float64(14), int64(1), object(1)

memory usage: 8.4+ MB

Out[5]:

	СО	station
0	0.3	28079004
1	0.3	28079008
2	1.0	28079011
3	0.3	28079016
4	1.0	28079017
•••		
69091	0.5	28079056
69092	0.7	28079057
69093	1.0	28079058
69094	1.0	28079059
69095	1.0	28079060

69096 rows × 2 columns

Line chart

```
In [6]: 1 data.plot.line(subplots=True)
```

Out[6]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [7]: 1 data.plot.line()

Out[7]: <AxesSubplot:>

Bar chart

Histogram

CONTRACTOR CONTRACTOR

```
In [10]: 1 data.plot.hist()
```

Out[10]: <AxesSubplot:ylabel='Frequency'>

Area chart

10000 20000 30000 40000 50000 60000 70000

Box chart

```
In [12]: 1 data.plot.box()

Out[12]: <AxesSubplot:>

1e7

2.5

2.0

1.5

1.0

0.5

0.0

station
```

Pie chart

```
In [13]:    1 b.plot.pie(y='station' )
Out[13]: <AxesSubplot:ylabel='station'>
```


Scatter chart

```
In [14]: 1 data.plot.scatter(x='CO' ,y='station')
```

Out[14]: <AxesSubplot:xlabel='CO', ylabel='station'>


```
1 df.info()
In [15]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 69096 entries, 0 to 69095
         Data columns (total 16 columns):
              Column
                       Non-Null Count Dtype
                       69096 non-null object
              date
                       69096 non-null float64
          1
              BEN
                       69096 non-null float64
          2
              CH4
          3
              CO
                       69096 non-null float64
          4
              EBE
                       69096 non-null float64
          5
              NMHC
                       69096 non-null float64
              NO
                       69096 non-null float64
              NO_2
                       69096 non-null float64
          8
                       69096 non-null float64
              NOx
              0_3
                       69096 non-null float64
          9
          10
              PM10
                       69096 non-null float64
              PM25
          11
                       69096 non-null float64
                       69096 non-null float64
          12
              SO 2
          13
              TCH
                       69096 non-null float64
```

In [16]:

1 df.describe()

Out[16]:

	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3
count	69096.000000	69096.000000	69096.000000	69096.000000	69096.000000	69096.000000	69096.000000	69096.000000	69096.000000
mean	0.891049	1.034859	0.728669	0.828423	0.885822	19.819425	38.485151	68.870123	26.423932
std	0.295475	0.114176	0.348123	0.360883	0.306434	40.579600	28.532232	85.230974	30.707335
min	0.100000	0.020000	0.100000	0.100000	0.000000	1.000000	1.000000	1.000000	1.000000
25%	1.000000	1.000000	0.300000	1.000000	1.000000	1.000000	16.000000	20.000000	1.000000
50%	1.000000	1.000000	1.000000	1.000000	1.000000	5.000000	32.000000	41.000000	7.000000
75%	1.000000	1.000000	1.000000	1.000000	1.000000	18.000000	55.000000	84.000000	53.000000
max	8.400000	3.920000	3.200000	14.900000	1.000000	774.000000	276.000000	1422.000000	133.000000
4									

EDA AND VISUALIZATION

```
In [18]: 1 sns.pairplot(df1[0:50])
```

Out[18]: <seaborn.axisgrid.PairGrid at 0x1ac405261c0>

In [19]: 1 sns.distplot(df1['station'])
(a rigure-level function with similar flexibility) or historic (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

Out[19]: <AxesSubplot:xlabel='station', ylabel='Density'>


```
1 sns.heatmap(df1.corr())
In [20]:
Out[20]: <AxesSubplot:>
                                                                    - 1.00
               BEN -
                CO
                                                                     - 0.75
               EBE
                                                                     - 0.50
              NMHC
              NO 2
                                                                     - 0.25
               О 3
                                                                     0.00
              PM10
              50_2
                                                                     - -0.25
                TCH
                                                                      -0.50
                TOL
                                                                    - -0.75
             station
                                                50_2
TCH
                                                        덛
                            EBE
                                            PM10
                        8
                                 NMHC
```

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [23]:    1    from sklearn.linear_model import LinearRegression
    2    lr=LinearRegression()
    3    lr.fit(x_train,y_train)

Out[23]: LinearRegression()

In [24]:    1    lr.intercept_
Out[24]:    28079055.860388223

In [25]:    1    coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
    2    coeff
```

Out[25]:

	Co-efficient
BEN	3.542848
СО	17.357554
EBE	17.943335
NMHC	-15.918930
NO_2	- 0.118764
O_3	0.004224
PM10	0.451379
SO_2	-0.338340
тсн	-28.980378
TOL	-2.165710

```
In [26]: 1 prediction =lr.predict(x_test)
2 plt.scatter(y_test,prediction)
```

Out[26]: <matplotlib.collections.PathCollection at 0x1ac48443e80>

ACCURACY

In [27]: 1 lr.score(x_test,y_test)

Out[27]: 0.3338200820046149

In [28]: 1 lr.score(x_train,y_train)

Out[28]: 0.3426886551551521

Ridge and Lasso

In [29]: 1 from sklearn.linear_model import Ridge,Lasso

Accuracy(Ridge)

Accuracy(Lasso)

Evaluation Metrics

```
In [41]: 1  from sklearn import metrics
2  print(metrics.mean_absolute_error(y_test,prediction))
3  print(metrics.mean_squared_error(y_test,prediction))
4  print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

13.705578675622542
259.34240055641703
16.10411129359261
```

Logistic Regression

```
1 feature_matrix.shape
In [44]:
Out[44]: (69096, 10)
In [45]:
           1 target_vector.shape
Out[45]: (69096,)
           1 from sklearn.preprocessing import StandardScaler
In [46]:
In [47]:
           1 fs=StandardScaler().fit transform(feature matrix)
In [48]:
           1 logr=LogisticRegression(max_iter=10000)
           2 logr.fit(fs,target vector)
Out[48]: LogisticRegression(max iter=10000)
In [49]:
           1 observation=[[1,2,3,4,5,6,7,8,9,10]]
           1 prediction=logr.predict(observation)
In [50]:
           2 print(prediction)
         [28079008]
In [51]:
           1 logr.classes
Out[51]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
           1 logr.score(fs,target_vector)
In [52]:
Out[52]: 0.6794894060437652
           1 logr.predict proba(observation)[0][0]
In [53]:
Out[53]: 1.5372578801045127e-124
```

Random Forest

```
1 from sklearn.ensemble import RandomForestClassifier
In [55]:
           1 rfc=RandomForestClassifier()
In [56]:
           2 rfc.fit(x train,y train)
Out[56]: RandomForestClassifier()
In [57]:
             parameters={'max depth':[1,2,3,4,5],
                          'min samples leaf':[5,10,15,20,25],
           2
           3
                          'n estimators':[10,20,30,40,50]
           4
           1 from sklearn.model selection import GridSearchCV
In [58]:
           2 grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
           3 grid search.fit(x train,y train)
Out[58]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param grid={'max depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [59]:
           1 grid_search.best_score_
Out[59]: 0.66880314404135
```

```
1 rfc_best=grid_search.best_estimator_
In [60]:
           1 from sklearn.tree import plot_tree
In [61]:
             plt.figure(figsize=(80,40))
             plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d','e','f','g','h','i
```

Conclusion

Accuracy

Linear Regression:0.3426886551551521

Ridge Regression:0.34265154106894136

Lasso Regression:0.04608736375660516

ElasticNet Regression:0.1604545384821412

Logistic Regression:0.6794894060437652

Random Forest: 0.66880314404135

Logistic Regression is suitable for this dataset

```
In [ ]:
```