

Faculté de mathématiques.

Département d'analyse U.S.T.H.B. 2021/22

L1, MI8, Analyse 2

Séries d'exercices n°1

Formule de Taylor-Lagrange et développements limités

I- Formule de Taylor-Lagrange

Exercice 1

Calculer les dérivées successives de la fonction f dans chacun des cas suivants.

1)
$$f(x) = cosx$$
; 2. $f(x) = ln(1+x)$; 3) $f(x) = (x^3 + x + 1)e^x$; 4) $f(x) = (cosx)e^x$

Exercice 2

Démontrer à l'aide de la formule de Taylor-Lagrange que

$$\forall x \in [0, +\infty[\text{ on a, } 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 \le \frac{1}{\sqrt[3]{x+1}} \le 1 - \frac{1}{3}x + \frac{2}{9}x^2$$

Exercice 3

1) Montrer que
$$\forall x > 0$$
, $0 \le ch(x) - 1 - \frac{x^2}{2!} - \frac{x}{4!} \le \frac{x^5}{5!} sh(x)$

2) En déduire que $\frac{433}{384}$ est une valeur approchée de $ch\frac{1}{2}$ à $\frac{1}{3840}$ près.

II- Développements limités

Exercice 1

Soit *f* la fonction définie par

$$f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}$$

- 1) Montrer que f admet un développement limité à l'ordre 2 en 0.
- 2) La fonction est-elle deux fois dérivable en 0 ? Que peut-on en conclure.

Exercice 2

Etablir pour chacune des fonctions ci-dessous un développement limité en 0 à l'ordre n.

1)
$$f(x) = \sin(2x) + \cos(x^2)$$
, $n = 3$; 2) $f(x) = e^{3x} \sin(2x)$, $n = 4$; 3) $f(x) = \frac{\ln(1+x)}{e^x \sin x}$, $n = 3$.

Exercice 3

Etablir pour chacune des fonctions ci-dessous un développement limité en x_0 à l'ordre n.

1)
$$f(x) = ln(sinx), x_0 = \frac{\pi}{2}, n = 3;$$
 3) $f(x) = \frac{1+x}{2+x}, x_0 = +\infty, n = 2;$

4)
$$f(x) = x^{x-1}$$
, $x_0 = 1$, $n = 1$; 5) $f(x) = x^2 + 4x^2 + x - 1$, $x_0 = 1$, $n = 3$

Exercice 4

Déterminer le développement généralisé à l'ordre 2 en 0 de chacune des fonctions suivantes

1)
$$f(x) = \frac{\ln(1+\tan x)}{1-\cos x}$$
;

$$2) f(x) = \frac{chx}{xln(1+x)}$$

Exercice 5 (à traiter plus loin, après le chapitre sur les intégrales)

On définit la fonction f par $f(x) = \arctan\left(\frac{1+x}{1-x}\right)$

- 1) Déterminer un développement limité en 0 à l'ordre 3 de la fonction dérivée f'.
- 2) En déduire un développement limité en 0 à l'ordre 4 de la fonction f.

Exercice 6

Considérons les deux fonctions f(x) = sin(ln(1 + x)) et g(x) = ln(1 + sin(x))

Trouver un équivalement simple de f(x) - g(x) en 0.

Exercice 7

- 1) Déterminer le développement limité à l'ordre 4, au voisinage de 0 de $h(x) = \frac{\sin(x) \sinh(x)}{\sin(x^2)}$
- 2) En déduire un équivalent simple de h(x)-1 au voisinage de 0.

Exercice 8

Calculer les limites suivantes.

1)
$$\lim_{x\to 0} \frac{shx}{sinx}$$
; 2) $\lim_{x\to 0} \frac{\sin(3x)}{3x-\frac{3}{2}\sin(2x)}$; 3) $\lim_{x\to 0} \frac{e^{\cos(x)}-e^{ch(x)}}{\cos(x)-ch(x)}$; 4) $\lim_{x\to +\infty} \frac{1}{x} \frac{e^{x-1}}{x}$.

Exercice 9

Etudier localement les fonctions suivantes au point indiqué.

1)
$$f(x) = \ln 2 + \ln \left(1 + x + \frac{1}{2}x^2\right)$$
 en zéro

2)
$$f(x) = \frac{x\sqrt{1+x^2}}{4(x-1)}$$
, en $+\infty$;

Exercice 10 (devoir)

Calculer les limites suivantes

1)
$$\lim_{x \to +\infty} (\sqrt{x^2 + 3x + 2} - x)$$
; 2) $\lim_{x \to 0} (\frac{x}{\sin x})^{\frac{\sin x}{x - \sin x}}$. On pourra poser $X = \frac{x - \sin x}{\sin x}$.

Exercice 11 (devoir)

- 1) Déterminer le développement limité à l'ordre 2 en 0 de $(1+t)^{\frac{1}{t}}$.
- 2) En déduire le développement à l'ordre 2 de $\left(1+\frac{1}{X}\right)^X$ en $+\infty$.

3) En déduire
$$\lim_{x \to +\infty} x^2 \left[\left(1 + \frac{1}{x} \right)^x - 4 \left(1 + \frac{1}{2x} \right)^{2x} + 3 \left(1 + \frac{1}{3x} \right)^{3x} \right]$$

Exercice 12 (devoir)

Soit f l'application définie par f(x) = 2x + sin(x)

- 1) Déterminer un développement limité de f à l'ordre 3 en x = 0.
- 2) Montrer que f est une bijection et que sa bijection réciproque f^{-1} est de classe C^3 puis en déduire que f^{-1} a un développement limité à l'ordre 3.

3

3) En utilisant la relation $f^{-1}f(x)=x$, en déduire le développement limité de f^{-1}