Exercice 1 - (Vandermonde)

Soient $a_0, a_1, ..., a_n$ des réels non nuls deux à deux distincts. On note $\mathbb{R}_n[X]^* = \{f : \mathbb{R}_n[X] \mapsto \mathbb{R}, \text{ où } f \text{ est linéaire}\}$, le dual de $\mathbb{R}_n[X]$ qui est de dimension finie.

- 1. Montrer que $V(a_0,\ldots,a_n)=\begin{vmatrix}a_0&a_0^2&\ldots&a_0^{n+1}\\ \vdots&\vdots&\vdots&\vdots\\ a_n&a_n^2&\ldots&a_n^{n+1}\end{vmatrix}=a_0a_1\ldots a_n\prod_{i>j}(a_i-a_j).$ Que dire de la valeur de ce déterminant?
- 2. Soit $j \in [0, n]$. On note $F_j : \mathbb{R}_n[X] \to \mathbb{R}$ l'application définie par $F_j(P) = \int_0^{a_j} P(x) dx$. Montrer que $(F_0, F_1, ..., F_n)$ est une base de $\mathbb{R}_n[X]^*$.

Exercice 2 - (Polynôme de matrice)

Soit
$$M = \begin{pmatrix} A & A \\ \hline 0 & A \end{pmatrix}$$
.

- 1. Soit $P \in \mathbb{R}[X]$. Que vaut P(M).
- 2. CNS pour que M soit diagonalisable.

Exercice 3 - (Intersection de deux spectres)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\chi_A(B) \in GL_n(\mathbb{C}) \Leftrightarrow Sp(A) \cap Sp(B) = \emptyset$

Exercice 4 – (Diagonalisation d'un endomorphisme)

Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto {}^tM. \phi$ est-elle diagonalisable?

Exercice 5 - (Sous-espaces stables)

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E.

- 1. On appelle rotation du plan tout endomorphisme dont la matrice dans une base orthonormée du plan s'écrit $\left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right), \; \theta \in \mathbb{R}. \; \text{Réduire les rotations du plans}.$
- 2. Montrer qu'une droite F engendrée par un vecteur u est stable par F si et seulement si u est un vecteur propre de f.
- 3. Montrer qu'il existe au moins deux sous espaces de E stables par f. Trouver un exemple d'endomorphisme (de \mathbb{R}^2) n'admettant que deux sous-espaces stables.
- 4. Montrer que si E est de dimension finie $n \ge 2$, et si f est non nul et non injectif, alors il existe au moins 3 sev stables si n est pair, et 4 si n est impair.

Exercice 6 - (Polynômes caractéristiques)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$. On souhaite montrer que AB et BA ont même polynôme caractéristique.

- 1. Montrer le résultat dans le cas où $A \in GL_n(\mathbb{R})$.
- 2. Montrer que $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.
- 3. Conclure.

Questions de cours

- Polynôme caractéristique d'une matrice compagnon.
- Existence d'un polynome annulateur d'un endomorphisme d'espace vectoriel de dimension finie.
- Jordan.