An Adaptive Differential Evolution Algorithm Based on Archive Reuse (Supplementary Materials)

Zhihua Cui^a, Ben Zhao^{a,*}, Tianhao Zhao^a, Xingjuan Cai^{a,b,*}, Jinjun Chen^c

^aShanxi Key Laboratory of Big Data Analysis and Parallel Computing, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
^bState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
^cDepartment of Computing Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia

Abstract

This document provides supplementary information for the main article. It includes the details of the three test suites used in the experiments and the tables of performance evaluation and comparison results referred to but not included in the main article.

Keywords:

Differential evolution(DE), archive update, archive reuse, parameter adaptation

^{*}Corresponding author Email addresses: cuizhihua@tyust.edu.cn (Zhihua Cui), 1350990606@qq.com (Ben Zhao), xingjuancai@163.com (Xingjuan Cai)

Table 1: The results of AR-IMadDE and six comparison algorithms in the CEC2020 problem set(5D)

5D	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	1.37E-01	8.11E-02 +	1.46E+01 -	1.71E-01 =	2.39E-01 -	8.24E-02 =	4.35E-01 -
F3	5.18E+00	5.15E+00+	5.60E+00 -	4.69E+00 =	5.07E+00 +	5.15E+00 +	4.90E+00 +
F4	8.94E-02	1.19E-01 -	1.04E-01 =	1.08E-01 =	9.35E-02 =	1.20E-01 -	9.77E-02 =
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	6.24E-02 =	0.00E+00 =	0.00E+00 =
F6	0.00E+00	0.00E+00 =	0.00E+00 =	1.04E-02 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F7	NAN	0.NAN	NAN	NAN	NAN	NAN	NAN
F8	0.00E+00	0.00E+00 =	2.34E+01 -	6.67E+00 =	0.00E+00 =	0.00E+00 =	3.68E+00 =
F9	2.00E+01	3.00E+01 =	2.33E+01 =	1.07E+02 -	9.82E+01 -	6.16E+00 =	1.00E+02 -
F10	3.08E+02	2.55E+02+	3.33E+02 =	3.39E+02 =	3.36E+02 -	2.99E+02 =	3.44E+02 -
	-	3/1/5	0/3/6	0/1/8	1/3/5	1/1/7	1/3/5

Table 2: The results of AR-IMadDE and six comparison algorithms in the CEC2020 problem set(10D)

10D	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	1.74E+00	3.98E+00 -	5.86E+00 -	8.92E+00 -	2.95E+00 =	4.44E+00 -	5.75E+00 -
F3	1.12E+01	1.21E+01 -	1.32E+01 -	1.07E+01 +	1.15E+01 -	1.25E+01 -	1.19E+01 -
F4	3.64E-02	9.54E-02 -	2.85E-01 -	2.91E-01 -	2.71E-01 -	4.10E-03 +	2.95E-01 -
F5	3.02E-01	7.86E-01 -	1.11E-01 +	4.86E-02 +	2.78E-01 =	9.37E-01 -	2.22E-01 =
F6	5.16E-02	9.50E-02 =	1.42E-01 -	5.27E-02 -	2.19E-01 -	1.57E-01 -	2.17E-01 -
F7	1.11E-02	1.22E-03 =	2.00E-02 -	1.06E-02 +	1.04E-01 =	1.16E-03 =	2.22E-01 -
F8	7.70E+01	6.52E+01 =	9.26E+01 -	1.00E+02 -	1.00E+02 -	3.58E+00+	1.00E+02 -
F9	8.00E+01	8.67E+01 =	8.67E+01 =	2.58E+02 -	2.92E+02 -	6.12E+01 =	3.08E+02 -
F10	3.98E+02	3.68E+02+	3.98E+02 +	4.09E+02 -	4.06E+02 -	3.68E+02+	4.13E+02 -
-	1/4/5	2/6/2	3/6/1	0/6/4	3/4/3	0/8/2	

Table 3: The results of AR-IMadDE and six comparison algorithms in the CEC2020 problem set (15D)

15D	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	1.59E+00	4.77E+00 -	7.60E-01 =	4.98E+01 -	8.42E+00 -	3.14E+00 -	5.60E+00 -
F3	1.57E+01	1.61E+01 -	1.57E+01 +	1.68E+01 -	1.63E+01 -	1.64E+01 -	1.66E+01 -
F4	3.82E-01	4.39E-01 -	3.73E-01 =	5.21E-01 -	3.74E-01 =	4.13E-01 -	3.62E-01 =
F5	3.70E+00	8.81E+00 -	2.09E+00 =	1.89E+00 +	2.10E+00 =	9.66E+00 -	1.34E+00+
F6	1.57E+00	3.77E+00 -	3.99E+00 -	1.46E+00 =	9.21E-01 +	7.35E+00 -	1.15E+00 +
F7	2.43E-01	3.05E-01 =	6.12E-01 -	2.70E-01 =	8.40E-01 -	9.39E-01 -	4.72E+00 -
F8	1.00E+02	7.85E+01 +	1.00E+02 =	1.00E+02 =	1.00E+02 =	2.21E+00 +	1.00E+02 =
F9	9.67E+01	1.00E+02 =	1.00E+02 =	3.63E+02 -	3.89E+02 -	9.24E+01 =	3.90E+02 -
F10	4.00E+02	4.00E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =
-	1/5/4	1/2/7	1/4/5	1/4/5	1/6/3	2/4/4	

Table 4: The results of AR-IMadDE and six comparison algorithms in the CEC2020 problem set (20D)

20D	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	1.31E-01	5.93E-01 -	1.40E-01 =	8.06E+00 -	7.47E-01 -	6.87E-01 -	2.48E+00 -
F3	2.04E+01	2.04E+01 =	2.04E+01 +	2.20E+01 -	2.12E+01 -	2.06E+01 -	2.08E+01 -
F4	4.65E-01	5.69E-01 -	4.38E-01 =	7.29E-01 -	4.84E-01 =	5.18E-01 -	4.75E-01 =
F5	2.06E+00	8.64E+00 -	2.21E+00 =	1.24E+01 -	5.10E+00 -	1.59E+01 -	3.41E+01 -
F6	9.51E-02	2.10E-01 -	1.62E-01 -	2.11E-01 -	1.07E+00 -	3.01E-01 -	3.10E-01 -
F7	8.09E-01	2.61E-01 +	6.74E-01 +	6.51E-01 =	1.15E-01 +	7.06E-01 +	1.07E+00 -
F8	1.00E+02	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 =	8.48E+01+	1.00E+02 =
F9	2.94E+02	1.97E+02 =	2.13E+02 =	4.06E+02 =	4.00E+02 =	9.93E+01 +	4.03E+02 =
F10	4.07E+02	4.08E+02 =	4.14E+02 -	4.06E+02+	4.14E+02 -	4.00E+02+	4.14E+02 -
	-	1/4/5	2/2/6	1/5/4	1/5/4	4/5/1	0/6/4

Table 5: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (10D, 000)

10D(000)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F3	0.00E+00	0.00E+00 =	0.00E+00 =	1.05E+01 -	8.05E+02 -	0.00E+00 =	1.09E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	2.47E-01 -	2.50E+01 -	0.00E+00 =	1.94E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	9.19E-01 -	0.00E+00 =	0.00E+00 =
F6	0.00E+00	0.00E+00 =	0.00E+00 =	1.53E-02 -	5.26E+00 -	0.00E+00 =	5.57E-02 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	1.23E-04 -	3.37E+00 -	0.00E+00 =	5.12E-04 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.18E+00 -	0.00E+00 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.00E+02 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	4.80E+01 -	3.51E+02 -	0.00E+00 =	4.80E+01 -
	-	0/0/10	0/0/10	0/5/5	0/8/2	0/0/10	0/5/5

Table 6: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (10D, 001)

10D(001)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	1.53E+00 -	0.00E+00 =	2.52E-01 -	6.32E+00 -
F3	0.00E+00	0.00E+00 =	0.00E+00 =	1.08E+01 -	8.05E+02 -	1.60E-01 -	1.21E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	3.65E-01 -	2.50E+01 -	0.00E+00 =	3.54E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	2.26E-01 -	9.19E-01 -	0.00E+00 =	6.31E-01 -
F6	0.00E+00	0.00E+00 =	4.76E-07 =	1.15E-01 -	5.26E+00 -	3.05E-02 -	7.98E-01 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	2.86E-02 -	3.37E+00 -	0.00E+00 =	2.52E-01 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	2.57E-08 =	1.18E+00 -	6.24E-08 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.00E+02 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	1.72E-04 =	0.00E+00 =	6.18E+01 -	3.51E+02 -	1.81E+00 -	6.64E+01 -
-	-	0/0/10	0/0/10	0/7/3	0/8/2	0/4/6	0/7/3

Table 7: The results of AR-IMadDE and six	comparison algorithms in the	CEC2021 problem set (10D, 010)
---	------------------------------	--------------------------------

10D(010)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	2.08E-03	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F3	1.09E+01	1.02E+01 =	1.09E+01 =	1.09E+01 =	8.05E+02 -	1.09E+01 =	1.09E+01 =
F4	1.63E-01	2.72E-01 -	1.92E-01 -	2.20E-01 -	2.50E+01 -	3.06E-01 -	1.89E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	9.19E-01 -	0.00E+00 =	0.00E+00 =
F6	1.78E-02	1.79E-02 =	1.87E-02 =	6.39E-03 +	5.26E+00 -	2.96E-02 -	2.02E-02 =
F7	8.86E-04	1.36E-03 =	1.12E-03 =	7.25E-03 -	3.37E+00 -	2.51E-03 -	9.54E-04 =
F8	8.33E+01	4.05E+01+	8.79E+01 =	8.67E+01 =	1.18E+00 +	7.20E+00+	1.00E+02 -
F9	9.67E+01	9.33E+01 =	9.33E+01 =	2.63E+02 -	1.00E+02 -	8.53E+01 =	2.93E+02 -
F10	4.00E+02	3.90E+02 =	4.00E+02 =	4.00E+02 =	3.51E+02 +	4.00E+02 =	4.00E+02 =
	-	1/1/8	0/1/9	1/3/6	2/6/2	1/3/6	0/3/7

Table~8:~The~results~of~AR-IMadDE~and~six~comparison~algorithms~in~the~CEC2021~problem~set~(10D,011)

10D(011)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	7.09E+00	2.00E+01 =	1.18E+01 =	1.30E+01 =	0.00E+00 +	1.27E+01 -	6.99E+00 =
F3	1.34E+01	1.34E+01 =	1.37E+01 =	1.13E+01 +	8.05E+02 -	1.40E+01 -	1.21E+01 +
F4	1.74E-01	2.25E-01 =	3.54E-01 -	3.56E-01 -	2.50E+01 -	4.96E-02 +	3.67E-01 -
F5	1.10E+00	3.75E+00 -	9.77E-01 =	2.14E-01 +	9.19E-01 =	2.26E+01 -	4.60E-01 +
F6	2.48E-01	3.08E-01 =	2.98E-01 =	6.14E-02 +	5.26E+00 -	5.78E-01 -	3.19E-01 -
F7	8.19E-02	1.03E-01 =	1.64E-01 -	3.20E-02 +	3.37E+00 -	4.63E-01 -	3.43E-01 -
F8	9.18E+01	6.25E+01+	9.60E+01 =	9.67E+01 =	1.18E+00 +	2.79E+01 +	1.00E+02 =
F9	1.04E+02	9.08E+01 =	9.00E+01 =	2.61E+02 -	1.00E+02 +	8.42E+01+	3.01E+02 -
F10	3.99E+02	2.79E+02 +	3.98E+02 +	4.13E+02 =	3.51E+02 +	3.88E+02 =	4.09E+02 -
	-	2/1/7	1/2/7	4/2/4	4/4/2	3/6/1	2/5/3

Table 9: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (10D, 100)

10D(100)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	3.33E-13 -	0.00E+00 =	0.00E+00 =
F3	0.00E+00	0.00E+00 =	0.00E+00 =	1.05E+01 -	1.09E+01 -	0.00E+00 =	1.09E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	2.19E-01 -	2.10E-01 -	0.00E+00 =	1.95E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	6.94E-03 =	0.00E+00 =	0.00E+00 =
F6	0.00E+00	0.00E+00 =	0.00E+00 =	1.29E-02 -	1.51E-01 -	0.00E+00 =	5.71E-02 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	1.38E-04 -	1.47E-02 -	0.00E+00 =	6.40E-04 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	4.80E+01 -	4.80E+01 -	0.00E+00 =	4.80E+01 -
	-	0/0/10	0/0/10	0/5/5	0/6/4	0/0/10	0/5/5

Table 10: The results of AR-IMadDI	E and six comparisor	algorithms in the C	EC2021 problem set	(10D, 101)

10D(101)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	1.53E+00 -	1.16E+01 -	1.98E-01 -	6.54E+00 -
F3	0.00E+00	0.00E+00 =	0.00E+00 =	1.07E+01 -	1.17E+01 -	1.38E-01 -	1.22E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	3.59E-01 -	3.49E-01 -	0.00E+00 =	3.57E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	1.73E-01 -	4.88E-01 -	0.00E+00 =	6.47E-01 -
F6	0.00E+00	0.00E+00 =	2.14E-04 =	1.02E-01 -	5.56E-01 -	3.86E-02 -	8.39E-01 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	2.89E-02 -	2.45E-01 -	0.00E+00 =	2.20E-01 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	2.28E-04 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	6.18E+01 -	4.31E+01 -	4.37E-02 -	6.64E+01 -
	-	0/0/10	0/0/10	0/7/3	0/7/3	0/4/6	0/7/3

 $Table\ 11: The\ results\ of\ AR-IMadDE\ and\ six\ comparison\ algorithms\ in\ the\ CEC 2021\ problem\ set\ (10D,\ 110)$

			1 0		1 '		
10D(110)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	4.16E-03 =	0.00E+00 =	1.04E-02 -	0.00E+00 =	0.00E+00 =
F3	1.09E+01	1.09E+01 =	1.09E+01 =	1.09E+01 =	1.09E+01 =	1.09E+01 =	1.09E+01 =
F4	1.78E-01	2.77E-01 -	1.90E-01 =	2.21E-01 -	2.02E-01 -	3.17E-01 -	1.90E-01 =
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	2.08E-02 =	0.00E+00 =	0.00E+00 =
F6	1.49E-02	1.84E-02 =	1.77E-02 =	5.07E-03 +	4.65E-02 -	3.18E-02 -	2.08E-02 =
F7	8.78E-04	1.33E-03 =	1.83E-03 =	7.37E-03 -	1.39E-03 =	7.26E-03 -	1.18E-03 -
F8	8.33E+01	5.00E+01+	9.40E+01 =	8.67E+01 =	1.00E+02 -	1.06E+00+	1.00E+02 -
F9	9.00E+01	9.67E+01 =	9.33E+01 =	2.63E+02 -	3.00E+02 -	8.63E+01 =	2.93E+02 -
F10	4.00E+02	3.73E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =	4.00E+02 =
	-	1/1/8	0/0/10	1/3/6	0/5/5	1/3/6	0/3/7

Table 12: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (10D, 111)

10D(111)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	6.82E+00	1.05E+01 -	1.39E+01 =	1.29E+01 =	2.75E+01 =	1.63E+01 -	6.58E+00 =
F3	1.38E+01	1.38E+01 =	1.40E+01 =	1.13E+01 +	1.18E+01 +	1.39E+01 =	1.20E+01 +
F4	1.62E-01	1.86E-01 =	3.71E-01 -	3.82E-01 -	3.74E-01 -	4.67E-02 +	3.44E-01 -
F5	1.43E+00	3.88E+00 -	9.32E-01 =	2.80E-01 +	6.28E-01 =	2.10E+01 -	4.62E-01 +
F6	2.38E-01	3.60E-01 -	3.51E-01 -	6.64E-02 +	6.72E-01 -	6.20E-01 -	3.30E-01 -
F7	7.20E-02	1.83E-01 -	1.66E-01 -	3.23E-02 +	4.22E-01 -	4.37E-01 -	3.62E-01 -
F8	9.39E+01	6.62E+01+	9.21E+01 =	9.67E+01 =	1.00E+02 -	2.44E+01 +	1.00E+02 =
F9	1.08E+02	9.41E+01 =	9.00E+01 +	2.60E+02 -	3.01E+02 -	8.16E+01 +	3.01E+02 -
F10	3.99E+02	2.79E+02 +	3.98E+02 +	4.13E+02 =	3.66E+02+	3.84E+02 =	4.09E+02 -
	-	2/4/4	2/3/5	4/2/4	2/5/3	3/5/2	2/5/3

Table 13: The results of AR-IMadDE and six co	comparison algorithms in the CEC2021 t	problem set (20D, 000)

20D(000)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	1.04E-03 =	2.75E+01 -	0.00E+00 =	0.00E+00 =
F3	0.00E+00	0.00E+00 =	0.00E+00 =	2.02E+01 -	1.18E+01 -	0.00E+00 =	2.02E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	5.82E-01 -	3.74E-01 -	0.00E+00 =	4.06E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	6.28E-01 -	0.00E+00 =	0.00E+00 =
F6	0.00E+00	0.00E+00 =	0.00E+00 =	2.50E-01 -	6.72E-01 -	2.06E-02 -	6.37E-01 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	6.29E-02 -	4.22E-01 -	2.62E-03 -	2.32E-01 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.00E+02 -	0.00E+00 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	3.01E+02 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	4.88E+01 -	3.66E+02 -	5.00E-04 -	4.88E+01 -
	-	0/0/10	0/0/10	0/5/5	0/9/1	0/3/7	0/5/5

 $Table\ 14: The\ results\ of\ AR-IMadDE\ and\ six\ comparison\ algorithms\ in\ the\ CEC 2021\ problem\ set\ (20D,001)$

20D(001)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	2.31E+00 -	2.75E+01 -	2.30E-01 -	2.63E+00 -
F3	0.00E+00	0.00E+00 =	0.00E+00 =	2.11E+01 -	1.18E+01 -	7.57E-02 -	2.17E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	7.90E-01 -	3.74E-01 -	0.00E+00 =	5.56E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	4.08E+00 -	6.28E-01 -	0.00E+00 =	4.14E+00 -
F6	0.00E+00	0.00E+00 =	0.00E+00 =	4.38E-01 -	6.72E-01 -	9.28E-02 -	2.83E+00 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	3.90E-01 -	4.22E-01 -	6.03E-08 =	1.11E+00 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	5.47E+01 -	1.00E+02 -	2.63E+02 -	5.53E+00 -
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	3.01E+02 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	4.48E-04 =	0.00E+00 =	6.26E+01 -	3.66E+02 -	6.02E+01 -	6.24E+01 -
	-	0/0/10	0/0/10	0/8/2	0/9/1	0/5/5	0/8/2

Table 15: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (20D, 010)

20D(010)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	2.75E+01 -	0.00E+00 =	0.00E+00 =
F3	2.02E+01	2.02E+01 =	2.02E+01 =	2.02E+01 =	1.18E+01 +	2.02E+01 =	2.02E+01 =
F4	4.14E-01	5.51E-01 -	4.60E-01 -	5.66E-01 -	3.74E-01 =	8.11E-01 -	4.34E-01 =
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	6.28E-01 -	0.00E+00 =	0.00E+00 =
F6	5.76E-02	7.71E-02 =	6.23E-02 =	9.49E-02 =	6.72E-01 -	2.04E-01 -	9.25E-02 -
F7	4.26E-02	3.86E-02 =	2.52E-02 +	3.54E-02 +	4.22E-01 -	1.86E-01 -	6.34E-02 -
F8	1.00E+02	9.41E+01 =	1.00E+02 =	1.00E+02 =	1.00E+02 -	9.61E+01 =	1.00E+02 =
F9	2.88E+02	1.80E+02 +	2.40E+02 +	3.00E+02 =	3.01E+02 -	1.01E+02 +	3.94E+02 -
F10	4.00E+02	4.00E+02 =	4.00E+02 =	4.68E+02 -	3.66E+02+	4.00E+02 =	4.86E+02 -
	-	1/1/8	2/1/7	1/2/7	2/6/2	1/3/6	0/4/6

Table 16: The results of AR-IMadDE and six comparison algorithms in the CEC2	021 problem set (20D, 011)
--	----------------------------

20D(011)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.37E-08 -	0.00E+00 =
F2	2.27E+00	5.16E+00 -	2.73E+00 =	1.31E+01 -	2.75E+01 -	1.87E+01 -	2.44E+00 =
F3	2.14E+01	2.17E+01 =	2.11E+01 +	2.30E+01 -	1.18E+01 +	2.29E+01 -	2.18E+01 =
F4	6.07E-01	7.79E-01 -	6.16E-01 =	8.23E-01 -	3.74E-01 +	1.08E+00 -	5.62E-01 +
F5	1.17E+01	3.02E+01 -	2.36E+01 -	1.07E+01 +	6.28E-01 +	2.31E+02 -	4.95E+01 =
F6	2.53E-01	5.33E-01 -	3.45E-01 -	2.78E-01 =	6.72E-01 -	8.79E-01 -	5.40E-01 -
F7	3.13E+00	6.17E+00 -	3.36E+00 -	2.21E+00 =	4.22E-01 +	1.04E+02 -	9.60E-01 =
F8	1.00E+02	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 -	1.00E+02 =	1.00E+02 =
F9	3.81E+02	1.95E+02 +	3.26E+02+	4.05E+02 -	3.01E+02 +	9.90E+01 +	4.03E+02 -
F10	4.07E+02	4.10E+02 -	4.14E+02 -	4.06E+02+	3.66E+02 +	4.10E+02 -	4.14E+02 -
	-	1/6/3	2/4/4	2/4/4	6/3/1	1/8/1	1/3/6

Table 17: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (20D, 100)

			1 0		1 '	, ,	
20D(100)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.82E-13 =	0.00E+00 =	0.00E+00 =
F3	0.00E+00	0.00E+00 =	0.00E+00 =	2.02E+01 -	2.02E+01 -	0.00E+00 =	2.02E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	5.24E-01 -	4.23E-01 -	0.00E+00 =	4.17E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F6	0.00E+00	0.00E+00 =	0.00E+00 =	1.73E-01 -	1.96E+00 -	1.47E-02 -	6.48E-01 -
F7	0.00E+00	1.99E-09 =	0.00E+00 =	7.51E-02 -	5.29E-01 -	1.86E-03 -	2.22E-01 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	4.24E-13 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	4.88E+01 -	4.88E+01 -	3.70E-04 -	4.88E+01 -
	_	0/0/10	0/0/10	0/5/5	0/6/4	0/3/7	0/5/5

Table 18: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (20D, 101)

20D(101)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	2.43E+00 -	5.27E+02 -	2.59E-01 -	2.80E+00 -
F3	0.00E+00	0.00E+00 =	0.00E+00 =	2.14E+01 -	2.50E+01 -	2.16E-02 -	2.17E+01 -
F4	0.00E+00	0.00E+00 =	0.00E+00 =	7.56E-01 -	9.69E-01 -	0.00E+00 =	5.64E-01 -
F5	0.00E+00	0.00E+00 =	0.00E+00 =	4.58E+00 -	4.22E+00 -	0.00E+00 =	4.19E+00 -
F6	0.00E+00	0.00E+00 =	0.00E+00 =	4.56E-01 -	3.66E+00 -	8.68E-02 -	2.86E+00 -
F7	0.00E+00	0.00E+00 =	0.00E+00 =	3.95E-01 -	1.34E+00 -	4.39E-09 =	7.99E-01 -
F8	0.00E+00	0.00E+00 =	0.00E+00 =	5.62E+01 -	0.00E+00 =	2.04E+02 -	5.53E+00 -
F9	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	3.79E-13 -	0.00E+00 =	0.00E+00 =
F10	0.00E+00	0.00E+00 =	0.00E+00 =	6.26E+01 -	4.94E+01 -	5.68E+01 -	6.24E+01 -
	-	0/0/10	0/0/10	0/8/2	0/8/2	0/5/5	0/8/2

Table 19: The results of AR-IMadDE an	d six comparison algorithms in t	the CEC2021 problem set (20D, 110)

20D(110)	AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
F1	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F2	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.21E-13 =	0.00E+00 =	0.00E+00 =
F3	2.02E+01	2.02E+01 =	2.02E+01 =	2.02E+01 =	2.02E+01 =	2.02E+01 =	2.02E+01 =
F4	4.16E-01	5.55E-01 -	4.55E-01 -	5.69E-01 -	4.36E-01 =	8.05E-01 -	4.19E-01 =
F5	0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =
F6	4.79E-02	8.42E-02 -	5.97E-02 -	9.80E-02 -	1.54E+00 -	2.18E-01 -	9.59E-02 -
F7	3.93E-02	3.51E-02 =	3.16E-02 =	3.15E-02 +	4.92E-01 -	1.87E-01 -	7.06E-02 -
F8	1.00E+02	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 =	9.66E+01 =	1.00E+02 =
F9	2.95E+02	1.80E+02+	2.40E+02 +	3.00E+02 =	3.37E+02 -	1.01E+02 +	3.94E+02 -
F10	4.00E+02	4.00E+02 =	4.00E+02 =	4.68E+02 -	4.00E+02 =	4.00E+02 =	4.86E+02 -
-	-	1/2/7	1/2/7	1/3/6	0/3/7	1/3/6	0/4/6

Table 20: The results of AR-IMadDE and six comparison algorithms in the CEC2021 problem set (20D, 111)

		1 0		1 ' ' '		
AR-IMadDE	APGSK-IMODE	MadDE	EA4eig	APSM-jSO	IMODE	LSHADE
0.00E+00	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	8.27E-09 -	0.00E+00 =
2.91E+00	4.42E+00 =	2.30E+00 =	1.34E+01 -	8.05E+02 -	1.74E+01 -	2.49E+00 =
2.14E+01	2.16E+01 -	2.10E+01 +	2.30E+01 -	2.50E+01 -	2.28E+01 -	2.16E+01 =
5.69E-01	7.87E-01 -	6.16E-01 =	7.88E-01 -	9.19E-01 -	1.11E+00 -	5.70E-01 =
1.05E+01	3.05E+01 -	2.17E+01 -	9.14E+00 +	5.26E+00+	2.23E+02 -	5.63E+01 =
2.69E-01	4.81E-01 -	4.10E-01 -	3.91E-01 =	3.37E+00 -	8.36E-01 -	5.45E-01 -
4.07E+00	8.41E+00 -	2.15E+00 =	1.21E+00 =	1.18E+00 =	9.54E+01 -	9.82E-01 =
1.00E+02	9.81E+01 =	1.00E+02 =	1.00E+02 =	1.00E+02 -	9.77E+01 =	1.00E+02 =
4.02E+02	2.09E+02 +	3.27E+02 +	4.05E+02 -	3.51E+02 +	1.00E+02 +	4.03E+02 -
4.07E+02	4.10E+02 -	4.14E+02 -	4.06E+02 +	6.41E+02 -	4.09E+02 -	4.14E+02 -
-	1/6/3	2/3/5	2/4/4	2/6/2	1/8/1	0/3/7
	0.00E+00 2.91E+00 2.14E+01 5.69E-01 1.05E+01 2.69E-01 4.07E+00 1.00E+02 4.02E+02	0.00E+00	0.00E+00 0.00E+00 = 0.00E+00 = 2.91E+00 4.42E+00 = 2.30E+00 = 2.14E+01 2.16E+01 - 2.10E+01 + 5.69E-01 7.87E-01 - 6.16E-01 = 1.05E+01 3.05E+01 - 2.17E+01 - 2.69E-01 4.81E-01 - 4.10E-01 - 4.07E+00 8.41E+00 - 2.15E+00 = 1.00E+02 9.81E+01 = 1.00E+02 = 4.02E+02 2.09E+02 + 3.27E+02 + 4.07E+02 4.10E+02 - 4.14E+02 -	0.00E+00 0.00E+00 = 0.00E+00 = 0.00E+00 = 2.91E+00 4.42E+00 = 2.30E+00 = 1.34E+01 - 2.14E+01 2.16E+01 - 2.10E+01 + 2.30E+01 - 5.69E-01 7.87E-01 - 6.16E-01 = 7.88E-01 - 1.05E+01 3.05E+01 - 2.17E+01 - 9.14E+00 + 2.69E-01 4.81E-01 - 4.10E-01 - 3.91E-01 = 4.07E+00 8.41E+00 - 2.15E+00 = 1.21E+00 = 1.00E+02 9.81E+01 = 1.00E+02 = 1.00E+02 = 4.02E+02 2.09E+02 + 3.27E+02 + 4.05E+02 - 4.07E+02 4.10E+02 - 4.06E+02 +	0.00E+00 0.00E+00 = 0.00E+00 =	0.00E+00 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 8.27E-09 - 2.91E+00 4.42E+00 = 2.30E+00 = 1.34E+01 - 8.05E+02 - 1.74E+01 - 2.14E+01 2.16E+01 - 2.10E+01 + 2.30E+01 - 2.50E+01 - 2.28E+01 - 5.69E-01 7.87E-01 - 6.16E-01 = 7.88E-01 - 9.19E-01 - 1.11E+00 - 1.05E+01 3.05E+01 - 2.17E+01 - 9.14E+00 + 5.26E+00 + 2.23E+02 - 2.69E-01 4.81E-01 - 4.10E-01 - 3.91E-01 = 3.37E+00 - 8.36E-01 - 4.07E+00 8.41E+00 - 2.15E+00 = 1.21E+00 = 1.18E+00 = 9.54E+01 - 1.00E+02 9.81E+01 = 1.00E+02 = 1.00E+02 = 1.00E+02 - 9.77E+01 = 4.02E+02 2.09E+02 + 3.27E+02 + 4.05E+02 - 3.51E+02 + 1.00E+02 - 4.07E+02 4.10E+02 - 4.14E+02 - 4.06E+02 + 6.41E+02 - 4.09E+02 -