PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	131160	(11) International Publication Number: WO 99/64618			
C12P 19/00, 17/04, C12N 1/12, 1/20, 5/00, 5/04	A1	(43) International Publication Date: 16 December 1999 (16.12.99)			
(,	/US99/115	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,			
(22) International Filing Date: 26 May 199	99 (26.05.9	GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK			

US

US

(71) Applicant: DCV, INC., doing business as BIO-TECHNICAL RESOURCES [US/US]; 1035 South Seventh Street, Manitowoc, WI 54220 (US).

8 June 1998 (08.06.98)

17 March 1999 (17.03.99)

18 March 1999 (18.03.99)

(72) Inventors: BERRY, Alan; 126 Beverly Road, Bloomfield, NJ 07003 (US). RUNNING, Jeffrey, A.; 612 St. Clair Street, Manitowoc, WI 54220 (US). SEVERSON, David, K.; 1816 26th Street, Two Rivers, WI 54241 (US). BURLINGAME, Richard, P.; 808 North 9th Street, Manitowoc, WI 54220 (US).

(74) Agents: CONNELL, Gary, J. et al.; Sheridan Ross P.C., Suite 3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US).

81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

(57) Abstract

(30) Priority Data:

60/088,549

60/125,073

60/125,054

A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spáin	LS	Lesotho	SI	Slovenia
AM	Атпеліа	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin -	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	lceland	MW	Malawi	US	United States of Americ
CA	Салада	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Ci	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		·
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/64618 PCT/US99/11576

VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

FIELD OF THE INVENTION

The present invention relates to vitamin C (L-ascorbic acid) production using genetically modified microorganisms and plants. In particular, the present invention relates to the use of nucleotide sugar epimerase enzymes for the biological production of ascorbic acid in plants and microorganisms.

BACKGROUND OF THE INVENTION

Nearly all forms of life, both plant and animal, either synthesize ascorbic acid (vitamin C) or require it as a nutrient. Ascorbic acid was first identified to be useful as a dietary supplement for humans and animals for the prevention of scurvy. Ascorbic acid, however, also affects human physiological functions such as the adsorption of iron, cold tolerance, the maintenance of the adrenal cortex, wound healing, the synthesis of polysaccharides and collagen, the formation of cartilage, dentine, bone and teeth, the maintenance of capillaries, and is useful as an antioxidant.

For use as a dietary supplement, ascorbic acid can be isolated from natural sources, such as rosehips, synthesized chemically through the oxidation of L-sorbose, or produced by the oxidative fermentation of calcium D-gluconate by *Acetobacter suboxidans*. Considine, "Ascorbic Acid," *Van Nostrand's Scientific Encyclopedia*, Vol. 1, pp. 237-238, (1989). Ascorbic acid (predominantly intracellular) has also been obtained through the fermentation of strains of the microalga, *Chlorella pyrenoidosa*. See U.S. Patent No. 5,001,059 by Skatrud, which is assigned to the assignee of the present application. It is believed that ascorbic acid is produced inside the chloroplasts of photosynthetic microorganisms and functions to neutralize energetic electrons produced during photosynthesis. Accordingly, ascorbic acid production is known in photosynthetic organisms as a protective mechanism.

Therefore, products and processes which improve the ability to biosynthetically produce ascorbic acid are desirable and beneficial for the improvement of human health.

SUMMARY OF THE INVENTION

One embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism. The method includes the steps of: (a)

5

10

15

20

25

30

10

15

20

25

30

culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase; and (b) recovering the ascorbic acid or esters produced by the microorganism. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In one embodiment of the method of the present invention, the microorganism further includes a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase. Such a genetic modification can include, for example, a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.

In one embodiment, the genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, which can include GDP-D-mannose:GDP-L-galactose epimerase. In one embodiment, the epimerase binds NADPH. In one embodiment of this method, the genetic modification includes transformation of the microorganism with a recombinant nucleic acid molecule that expresses the epimerase. Such an epimerase can have a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the epimerase has a structure having an average root mean square deviation of less than about 2.5 Å, and more preferably less than about 1 Å, over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, the epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by

10

15

20

25

30

atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a substrate binding site preferably has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In another embodiment, the epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a catalytic site preferably has a tertiary structure with an average root mean square deviation of less than about 1 Å over at least about 25% of Ca positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The catalytic site preferably includes the amino acid residues serine, tyrosine and lysine and in one embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.

In yet another embodiment of this method, the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50%, and in another embodiment with at least about 75%, and in yet another embodiment with at least about 90% of non-Xaa residues in SEQ ID NO:11. In another embodiment, the epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12

10

15

20

25

30

contiguous nucleotides of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.

In yet another embodiment of this method of the present invention, the epimerase comprises an amino acid sequence having a motif. Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical, and in another embodiment, at least about 20% identical, and in another embodiment, at least about 25% identical, to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

In yet another embodiment of this method of the present invention, the recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The nucleic acid sequence encoding the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes nucleic acid sequences selected from the group of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, and the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can include an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.

In one embodiment of the method of the present invention, the microorganism is selected from the group of bacteria, fungi and microalgae. In one embodiment, the microorganism is acid-tolerant. Preferred bacteria include, but are not limited to Azotobacter and Pseudomonas. Preferred fungi include, but are not limited to, yeast, including, but not limited to Saccharomyces yeast. Preferred microalgae include, but are not limited to, microalgae of the genera Prototheca and Chlorella, with microalgae of the genus Prototheca being particularly preferred.

In yet another embodiment of the method of the present invention, the microorganism is acid-tolerant and the step of culturing is conducted at a pH of less than about 6.0, and more preferably, at a pH of less than about 5.5, and even more preferably, at a pH of less than about 5.0. The step of culturing can be conducted in a fermentation medium that comprises a carbon source other than D-mannose in one embodiment, and

10

15

20

25

30

in another embodiment, the step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.

In yet another embodiment of the present method, the step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited. Preferably, the step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase. In one embodiment, the fermentation medium includes less than about 0.5 g/L of Mg during a cell growth phase, and more preferably, less than about 0.2 g/L of Mg during a cell growth phase, and even more preferably, less than about 0.1 g/L of Mg during a cell growth phase.

Another embodiment of the present invention relates to a microorganism for producing ascorbic acid or esters thereof. The microorganism has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and even more preferably, to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a

10

15

20

25

30

CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11. Preferred microorganisms are disclosed as for the method discussed above.

Yet another embodiment of the present invention relates to a plant for producing ascorbic acid or esters thereof. Such a plant has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and in a more preferred embodiment, the genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-Dmannose: GDP-L-galactose_epimerase._Such_a_genetic_modification_includes_a_genetic modification to decrease the action of GDP-D-mannose-dehydrogenase. Such a plant also includes a plant that has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, such a plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-Dmannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

20

25

In one embodiment, a plant for producing ascorbic acid or esters thereof according to the present invention is a microalga. Preferred microalgae include, but are not limited to microalgae of the genera *Prototheca* and *Chlorella*, with microalga of the genus *Prototheca* being particularly preferred. In another embodiment, the plant is a higher plant, with consumable higher plants being more preferred.

BRIEF DESCRIPTION OF THE FIGURES

- Fig. 1A is a schematic drawing of the pathway from glucose to GDP-D-mannose in plants.
- Fig. 1B is a schematic drawing of the pathway from GDP-D-mannose to L-10 galactose-1-phosphate in plants.
 - Fig. 1C is a schematic drawing of the pathway from L-galactose to L-ascorbic acid in plants.
 - Fig. 2A is a schematic drawing of selected carbon flow from glucose in *Prototheca*.
- Fig. 2B is a schematic drawing of selected carbon flow from glucose in *Prototheca*.
 - Fig. 3 is a schematic drawing that shows the lineage of mutants derived from *Prototheca moriformis* ATCC 75669, and their ability to produce L-ascorbic acid.
 - Fig. 4 is a bar graph illustrating the conversion of substrates by resting cells of strain NA45-3 following growth in media containing various magnesium concentrations and resuspension in media containing various magnesium concentrations.
 - Fig. 5 is a line graph showing the relationship between specific ascorbic acid formation in cultures of *Prototheca* strains and the specific activity of GDP-D-mannose:GDP-L-galactose epimerase in extracts prepared from cells harvested from the same cultures.
 - Fig. 6 is a line graph showing the relationship between specific epimerase activity and the degree of magnesium limitation in two strains, ATCC 75669 and EMS13-4.
 - Fig. 7 depicts the overall catalytic mechanism of GDP-D-mannose:GDP-L-galactose epimerase proposed by Barber (1979, J. Biol. Chem. 254:7600-7603).

10

15

20

25

30

Fig. 8A depicts the catalytic mechanism of GDP-D-mannose-4,6-dehydratase (converts GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose).

Fig. 8B depicts the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (converts GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose) (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a biosynthetic method and production microorganisms and plants for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA). Such a method includes fermentation of a genetically modified microorganism to produce L-ascorbic acid. In particular, the present invention relates to the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, as well as epimerases having structural homology (e.g., by nucleotide/amino acid sequence and/or tertiary structure of the encoded protein) to GDP-4-keto-6-deoxy-D-mannose epimerase/reductases, or UDP-galactose 4-epimerases, for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

One embodiment of the present invention relates to a method to produce L-ascorbic acid by fermentation of a genetically modified microorganism. This method includes the steps of (a) culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono- γ -lactone dehydrogenase; and (b) recovering L-ascorbic acid or esters thereof. The various enzymes in this list represent the enzymes involved in the vitamin C biosynthetic pathway in plants. It is uncertain at this time

10

15

20

25

30

whether the enzyme represented by GDP-L-galactose phosphorylase is actually a phosphorylase or a pyrophosphorylase (i.e., GDP-L-galactose pyrophosphorylase). Therefore, use of the term "GDP-L-galactose phosphorylase" herein refers to either GDP-L-galactose phosphorylase or GDP-L-galactose pyrophosphorylase. In one aspect of the invention, this method includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. This aspect of the present invention is discussed in detail below.

Another embodiment of the present invention relates to a genetically modified microorganism for producing L-ascorbic acid or esters thereof. Another embodiment of the present invention relates to a genetically modified plant for producing L-ascorbic acid or esters thereof. Both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes the transformation of the microorganism or plant with the epimerase as described above.

To produce significantly high yields of L-ascorbic acid by the method of the present invention, a plant and/or microorganism is genetically modified to enhance production of L-ascorbic acid. As used herein, a genetically modified plant (such as a higher plant or microalgae) or microorganism, such as a microalga (*Prototheca*, *Chlorella*), *Escherichia coli*, or a yeast, is modified (i.e., mutated or changed) within its genome and/or by recombinant technology (i.e., genetic engineering) from its normal (i.e., wild-type or naturally occurring) form. In a preferred embodiment, a genetically modified plant or microorganism according to the present invention has been modified by

10

15

20

25

30

recombinant technology. Genetic modification of a plant or microorganism can be accomplished using classical strain development and/or molecular genetic techniques, include genetic engineering techniques. Such techniques are generally disclosed herein and are additionally disclosed, for example, in Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press; Roessler, 1995, *Plant Lipid Metabolism*, pp. 46-48; and Roessler et al., 1994, in Bioconversion for Fuels, Himmel et al. eds., American Chemical Society, Washington D.C., pp 255-70). These references are incorporated by reference herein in their entirety.

In some embodiments, a genetically modified plant or microorganism can include a natural genetic variant as well as a plant or microorganism in which nucleic acid molecules have been inserted, deleted or modified, including by mutation of endogenous genes (e.g., by insertion, deletion, substitution, and/or inversion of nucleotides), in such a manner that the modifications provide the desired effect within the plant r microorganism. As discussed above, a genetically modified plant or microorganism includes a plant or microorganism that has been modified using recombinant technology.

As used herein, genetic modifications which result in a decrease in gene expression, an increase in inhibition of gene expression or inhibition of a gene product (i.e., the protein encoded by the gene), a decrease in the function of the gene product can be referred to as inactivation (complete or partial), deletion, interruption, blockage, down-regulation, or decreased action of a gene. For example, a genetic modification in a gene which results in a decrease in the function of the protein encoded by such gene can be the result of a complete deletion of the gene encoding the protein (i.e., the gene does not exist, and therefore the protein does not exist), a mutation in the gene encoding the protein which results in incomplete or no translation of the protein (e.g., the protein is not expressed), or a mutation in the gene which decreases or abolishes the natural function of the protein (e.g., a protein is expressed which has decreased or no enzymatic activity).

Genetic modifications which result in an increase in gene expression or function can be referred to as amplification, overproduction, overexpression, activation, enhancement, addition, up-regulation or increased action of a gene. Additionally, a genetic modification to a gene which modifies the expression, function, or activity of the gene can

10

15

20

25

30

have an impact on the action of other genes and their expression products within a given metabolic pathway (e.g., by inhibition or competition). In this embodiment, the action (e.g., activity) of a particular gene and/or its product can be affected (i.e., upregulated or downregulated) by a genetic modification to another gene within the same metabolic pathway, or to a gene within a different metabolic pathway which impacts the pathway of interest by competition, inhibition, substrate formation, etc.

In general, a plant or microorganism having a genetic modification that affects L-ascorbic acid production has at least one genetic modification, as discussed above, which results in a change in the L-ascorbic acid production pathway as compared to a wild-type plant or microorganism grown or cultured under the same conditions. Such a modification in an L-ascorbic acid production pathway changes the ability of the plant or microorganism to produce L-ascorbic acid. According to the present invention, a genetically modified plant or microorganism preferably has an enhanced ability to produce L-ascorbic acid compared to a wild-type plant or microorganism cultured under the same conditions.

The present invention is based on the present inventors' discovery of the biosynthetic pathway for L-ascorbic acid (vitamin C) in plants and microorganisms. Prior to the present invention, the metabolic pathway by which plants produce L-ascorbic acid, was not completely elucidated. The present inventors have demonstrated that L-ascorbic acid production in plants, including L-ascorbic acid-producing microorganisms (e.g., microalgae), is a pathway which uses GDP-D-mannose and involves sugar phosphates and NDP-sugars. In addition, the present inventors have made the surprising discovery that both L-galactose and L-galactono-y-lactone can be rapidly converted into L-ascorbic acid in L-ascorbic acid-producing microalgae, including Prototheca and Chlorella pyrenoidosa. The entire pathway for L-ascorbic acid production in plants is set forth in Figs. 1A-1C. More particularly, Fig. 1A shows that the production of L-ascorbic acid in plants proceeds through the production of mannose intermediates to GDP-D-mannose, followed by the conversion of GDP-D-mannose to GDP-L-galactose by GDP-Dmannose: GDP-L-galactose epimerase (also known as GDP-D-mannose-3,5-epimerase) (Fig. 1B), and then by the subsequent progression to L-galactose-1-P, L-galactose, Lgalactonic acid (optional), L-galactono-y-lactone, and L-ascorbic acid (Fig. 1C). Fig. 1B

10

15

20

25

30

also illustrates alternate pathways for the use of various intermediates, such as GDP-D-mannose. Certain aspects of this pathway have been independently described in a publication (Wheeler, et al., 1998, *Nature* 393:365-369), incorporated herein by reference in its entirety.

Points within the L-ascorbic acid production pathway which can be targeted by genetic modification to affect the production of L-ascorbic acid can generally be catagorized into at least one of the following pathways: (a) pathways affecting the production of GDP-D-mannose (e.g., pathways for converting a carbon source into GDP-D-mannose); (b) pathways for converting GDP-D-mannose into other compounds, (c) pathways associated with or downstream of the action of GDP-D-mannose:GDP-L-galactose epimerase, (d) pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

Argenetically modified plant or microorganism useful in a method of the present invention typically has at least one genetic modification in the L-ascorbic acid production pathway which results in an enhanced production of L-ascorbic acid. In one embodiment, a genetically modified plant or microorganism has at least one genetic modification that results in: (a) an enhanced production of GDP-D-mannose; (b) an inhibition of pathways which convert GDP-D-mannose into compounds other than GDP-L-galactose; (c) an enhancement of action of the GDP-D-mannose:GDP-L-galactose epimerase; (d) an enhancement of the action of enzymes downstream of the GDP-D-mannose:GDP-L-galactose epimerase; (e) an inhibition of pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-l-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) an inhibition of pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway.

10

15

20

25

30

galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

An enhanced production of GDP-D-mannose by genetic modification of the plant or microorganism can be achieved by, for example, overexpression of enzymes such as hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase (PMM) and/or GDP-D-mannose pyrophosphorylase (GMP). Inhibition of pathways which convert GDP-D-mannose to compounds other than GDP-Lgalactose can be achieved, for example, by modifications which inhibit polysaccharide synthesis, GDP-D-rhamnose synthesis, GDP-L-fucose synthesis and/or GDP-Dmannuronic acid synthesis. An increase in the action of the GDP-D-mannose: GDP-Lgalactose epimerase and of enzymes downstream of the epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to: overexpression of the epimerase gene (i.e, by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof (discussed in detail below), and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene) and/or overexpression of genes downstream of the epimerase which encode subsequent enzymes in the L-ascorbic acid pathway. Finally, metabolic pathways which compete with or inhibit the L-ascorbic acid production pathway can be inhibited by deleting or mutating enzymes, substrates or products which either inhibit or compete for an enzyme, substrate or product in the L-ascorbic acid pathway.

As discussed above, a genetically modified plant or microorganism useful in the method of the present invention can have at least one genetic modification (e.g., mutation in the endogenous gene or addition of a recombinant gene) in a gene encoding an enzyme involved in the L-ascorbic acid production pathway. Such genetic modifications preferably increase (i.e., enhance) the action of such enzymes such that L-ascorbic acid is preferentially produced as compared to other possible end products in related metabolic pathways. Such genetic modifications include, but are not limited to, overexpression of the gene encoding such enzyme, and deletion, mutation, or downregulation of genes encoding competitors or inhibitors of such enzyme. Preferred enzymes for which the action of the gene encoding such enzyme can be genetically modified include: hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase

10

15

20

25

30

herein.

(PMM), GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. More preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Even more preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of GDP-D-mannose:GDP-L-galactose epimerase. These enzymes and the reactions catalyzed by such enzymes are illustrated in Figs. 1A-1C.

Prior to the present invention, without knowing the L-ascorbic acid biosynthetic (i.e., production) pathway, previous mutagenesis and screening efforts were limited in that only non-lethal mutations could be detected. One embodiment of the present invention relates to elimination of a key competing enzyme that diverts carbon flow from L-ascorbic acid synthesis. If such enzyme is absolutely required for growth on glucose, then mutants lacking the enzyme (and, therefore, having increased carbon flow to L-ascorbic acid) would have been nonwable and not have been detected during prior sesteening efforts. One such enzyme is phosphofructokinase (PFK) (See Fig. 2A). PFK is required for growth on glucose, and is the major step drawing carbon away from L-ascorbic acid biosynthesis (Fig. 2A). Elimination of PFK would render the cells nonviable on glucosebased media. Selection of a conditional mutant where PFK was inactivated by temperature shift, for example, may allow development of a L-ascorbic acid process where cell growth is achieved under permissive fermentation conditions, and L-ascorbic acid production (from glucose) is initiated by a shift to non-permissive condition. In this example, the temperature shift would eliminate carbon flow from glucose to glycolysis via PFK, thereby shunting carbon into the L-ascorbic acid branch of metabolism. This approach has application not only in natural L-ascorbic acid producing organisms, but also in L-ascorbic acid recombinant systems (genetically engineered plant or microorganisms) as discussed

10

15

20

25

30

Knowing the identity and mechanism of the rate-limiting pathway enzymes in the L-ascorbic acid production pathway allows for design of specific inhibitors of the enzymes that are also growth inhibitory. Selection of mutants resistant to the inhibitors allows for the isolation of strains that contain L-ascorbic acid-pathway enzymes with more favorable kinetic properties. Therefore, one embodiment of the present invention is to identify inhibitors of the enzymes that are also growth inhibitory. These inhibitors are then used to select genetic mutants that overcome this inhibition and produce L-ascorbic acid at high levels. In this embodiment, the resultant plant or microorganism is a non-recombinant strain which can then be further modified by recombinant technology, if desired. In recombinant L-ascorbic acid producing strains, random mutagenesis and screening can be used as a final step to increase L-ascorbic acid production.

In yet another embodiment genetic modifications are made to an L-ascorbic acid producing organism directly. This allows one to build upon a base of data acquired during prior classical strain improvement efforts, and perhaps more importantly, allows one to take advantage of undefined beneficial mutations that occurred during classical strain improvement. Furthermore, fewer problems are encountered when expressing native, rather than heterologous, genes. The most advanced system for development of genetic systems for microalgae has been developed for Chlamydomonas reinhardtii. Preferably, development of such a genetically modified production organism would include: isolation of mutant(s) with a specific nutritional requirement for use with a cloned selectable marker gene (similar to the ura3 mutants used in yeast and fungal systems); a cloned selectable marker such as URA3 or alternatively, identification and cloning of a gene that specifies resistance to a toxic compound (this would be analogous to the use of antibiotic resistance genes in bacterial systems, and, as is the case in yeast and other fungi, a means of inserting/removing the marker gene repeatedly would be required, unless several different selectable markers were developed); a transformation system for introducing DNA into the production organism and achieving stable transformation and expression; and, a promoter system (preferably several) for high-level expression of cloned genes in the organism.

Another embodiment of the present invention, discussed in detail below, is to place key genes or allelic variants and homologues thereof from L-ascorbic acid producing

10

15

20

25

30

organisms (i.e., higher plants and microalgae) into a plant or microorganism that is more amenable to molecular genetic manipulation, including endogenous L-ascorbic acid producing microorganisms and suitable plants. For example, it is possible to identify a suitable non-pathogenic organism based on the requirement of growth (on glucose) at low pH (i.e., acid-tolerant organisms, discussed in detail below).

One suitable candidate for recombinant production in any suitable host organism is the gene (nucleic acid molecule) encoding GDP-D-mannose:GDP-L-galactose epimerase and homologues of the GDP-D-mannose:GDP-L-galactose epimerase, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase, or to a UDP-galactose 4-epimerase. Many microorganisms produce GDP-D-mannose as a precursor to exopolysaccharide and glycoprotein production, even though such organisms may not make L-ascorbic acid. This aspect of the present invention is discussed in detail below.

Referring to Figs. 1A-1C, at least some of the enzymes from glucose-6-phosphate to GDP-D-mannose are present in many organisms. In fact, the entire sequence is present in bacteria such as Azotobacter vinelandii and Pseudomonas aeruginosa, and make up the early steps in the biosynthesis of the exopolysaccharide alginate. In this regard, it is possible that the only thing preventing these organisms from producing L-ascorbic acid could be the lack of GDP-D-mannose:GDP-L-galactose epimerase. The presence of PMI, PMM and GMP (see Fig. 1A) in so many organisms is important for two reasons. First, these organisms themselves could serve as alternate hosts for L-ascorbic acid production, by building on the existing early pathway enzymes and adding the required cloned genes (the epimerase and possibly others). Second, the genes encoding PMI, PMM and GMP can be cloned into a new organism where, together with the cloned epimerase, they would encode the overall pathway from glucose-6-phosphate to GDP-L- galactose.

In order to screen genomic DNA or cDNA libraries from different organisms and to isolate nucleic acid molecules encoding these enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase, one can use any of a variety of standard molecular and biochemical techniques. For example, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino

10

15

20 -

25

30

acid sequence can be determined (including, if necessary, the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism's DNA. This fragment would then be used to probe the library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

It is to be understood that the present invention discloses a method comprising the use of a microorganism with an ability to produce commercially useful amounts of Lascorbic acid in a fermentation process (i.e., preferably an enhanced ability to produce Lascorbic acid compared to a wild-type microorganism cultured under the same conditions). This method is achieved by the genetic modification of one or more genes encoding a protein involved in an L-ascorbic acid pathway which results in the production (expression) of a protein having an altered (e.g., increased or decreased) function as compared to the corresponding wild-type protein. Preferably, such genetic modification is achieved by recombinant technology. It will be appreciated by those of skill in the art that production of genetically modified plants or microorganisms having a particular altered function as described elsewhere herein (e.g., an enhanced ability to produce GDP-D-mannose:GDP-L-galactose epimerase), such as by transformation of the plant or microorganism with a nucleic acid molecule which encodes a particular enzyme, can produce many organisms meeting the given functional requirement, albeit by virtue of a variety of different genetic modifications. For example, different random nucleotide deletions and/or substitutions in a given nucleic acid sequence may all give rise to the same phenotypic result (e.g., decreased enzymatic activity of the protein encoded by the sequence). The present invention contemplates any such genetic modification which results in the production of a plant or microorganism having the characteristics set forth herein.

A microorganism to be used in the fermentation method of the present invention is preferably a bacterium, a fungus, or a microalga which has been genetically modified according to the disclosure above. More preferably, a microorganism useful in the present

10

invention is a microalga which is capable of producing L-ascorbic acid, although the present invention includes microorganisms which are genetically engineered to produce L-ascorbic acid using the knowledge of the key components of the pathway and the guidance provided herein. Even more preferably, a microorganism useful in the present invention is an acid-tolerant microorganism, such as microalgae of the genera Prototheca and Chlorella. Acid-tolerant yeast and bacteria are also known in the art. Acid-tolerant microorganisms are discussed in detail below. Particularly preferred microalgae include microalgae of the genera, Prototheca and Chlorella, with Prototheca being most preferred. All known species of Prototheca produce L-ascorbic acid. Production of ascorbic acid by microalgae of the genera Prototheca and Chlorella is described in detail in U.S. Patent No. 5,792,631, issued August 11, 1998, and in U.S. Patent No. 5,900,370, issued May 4, 1999, both of which are incorporated herein by reference in their entirety. Preferred bacteria for use in the present invention include, but are not limited to, Azotobacter, Pseudomonas, and Escherichia, although acid-tolerant bacteria are more preferred. Preferred fungi for use in the present invention include yeast, and more preferably, yeast of the genus, Saccharomyces. A microorganism for use in the fermentation method of the present invention can also be referred to as a production organism. According to the present invention, microal gae can be referred to therein either as microorganisms or as plants.

20

15

A preferred plant to genetically modify according to the present invention is preferably a plant suitable for consumption by animals, including humans. More preferably, such a plant is a plant that naturally produces L-ascorbic acid, although other plants can be genetically modified to produce L-ascorbic acid using the guidance provided herein.

25

30

The L-ascorbic acid production pathways of the microalgae *Prototheca* and *Chlorella pyrenoidosa* will be addressed as specific embodiments of the present invention are described below. It will be appreciated that other plants and, in particular, other microorganisms, have similar L-ascorbic acid pathways and genes and proteins having similar structure and function within such pathways. It will also be appreciated that plants and microorganisms which do not naturally produce L-ascorbic acid can be modified according to the present invention to produce L-ascorbic acid. As such, the principles

10

15

20

25

30

discussed below with regard to *Prototheca* and *Chlorella pyrenoidosa* are applicable to other plants and microorganisms, including genetically modified plants and microorganisms.

In one embodiment of the present invention, the action of an enzyme in the Lascorbic acid production pathway is increased by amplification of the expression (i.e., overexpression) of an enzyme in the pathway, and particularly, the GDP-Dmannose:GDP-L-galactose epimerase, homologues of the epimerase, and/or enzymes downstream of the epimerase. Overexpression of an enzyme can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the enzyme. It is preferred that the gene encoding an enzyme in the L-ascorbic acid production pathway be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of enzyme expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding a gene in the L-ascorbic acid production pathway is integrated into the chromosomes of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more enzymes in the L-ascorbic acid production pathway with improved affinity for its substrates. An enzyme with improved affinity for its substrates can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

Recombinant nucleic acid molecules encoding proteins in the L-ascorbic acid production pathway can be modified to enhance or reduce the function (i.e., activity) of the protein, as desired to increase L-ascorbic acid production, by any suitable method of genetic modification. For example, a recombinant nucleic acid molecule encoding an

10

15

20

25

30

enzyme can be modified by any method for inserting, deleting, and/or substituting nucleotides, such as by error-prone PCR. In this method, the gene is amplified under conditions that lead to a high frequency of misincorporation errors by the DNA polymerase used for the amplification. As a result, a high frequency of mutations are obtained in the PCR products. The resulting gene mutants can then be screened for enhanced substrate affinity, enhanced enzymatic activity, or reduced/increased inhibitory ability by testing the mutant genes for the ability to confer increased L-ascorbic acid production onto a test microorganism, as compared to a microorganism carrying the non-mutated recombinant nucleic acid molecule.

Another embodiment of the present invention includes a microorganism in which competitive side reactions are blocked, including all reactions for which GDP-D-mannose is a substrate other than the production of L-ascorbic acid. In a preferred embodiment, a microorganism having complete or partial inactivation (decrease in the action of) of genes encoding enzymes which compete with the GDP-D-mannose:GDP-L-galactose epimerase for the GDP-D-mannose substrate is provided. Such enzymes include GDP-D-mannase and/or GDP-D-mannose-dehydrogenase. As used herein, inactivation of a gene can refer to any modification of a gene which results in a decrease in the activity (i.e., expression or function) of such a gene, including attenuation of activity or complete deletion of activity.

As discussed above, a particularly preferred aspect of the method to produce L-ascorbic acid by fermentation of a genetically modified microorganism of the present invention includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. According to the present invention, such an epimerase can include the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, described above, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Such structural homology is discussed in detail below. Preferably, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes transformation of the

10

15

20

25

30

microorganism with a recombinant nucleic acid molecule that expresses such an epimerase.

Therefore, the epimerase encompassed in the method and organisms of the present invention includes the endogenous epimerase which operates in the naturally occurring ascorbic acid biosynthetic pathway (referred to herein as GDP-Dmannose:GDP-L-galactose epimerase), GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases, and any other epimerase which is capable of catalyzing the conversion of GDP-D mannose to GDP-L-galactose and which is structurally homologous to a GDP-4keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase. epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose according the present invention can be identified by biochemical and functional characteristics as well as structural characteristics. For example, an epimerase according to the present invention is capable of acting on GDP-D-mannose as a substrate, and more particularly, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-Lgalactose. It is to be understood that such capabilities need not necessarily be the normal or natural function of the epimerase as it acts in its endogenous (i.e., natural) environment. For example, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase in its natural environment under normal conditions, catalyzes the conversion of GDP-D-mannose to GDP-L-fucose and does not act directly on GDP-D-mannose (See Fig. 8A, B), however, such an epimerase is encompassed by the present invention for use in catalyzing the conversion of GDP-D-mannose to GDP-L-galactose for production of ascorbic acid, to the extent that it is capable of, or can be modified to be capable of, catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. Therefore, the present invention includes epimerases which have the desired enzyme activity for use in production of ascorbic acid, are capable of having such desired enzyme activity, and/or are capable of being modified or induced to have such desired enzyme activity.

In one embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the reaction depicted in Fig. 7. In another embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the first of the reactions depicted in Fig. 8B. In one embodiment, an epimerase according to the

10

15

20

25

30

present invention binds to NADPH. In another embodiment, an epimerase according to the present invention is NADPH-dependent for enzyme activity.

As discussed above, the present inventors have discovered that a key enzyme in L-ascorbic acid biosynthesis in plants and microorganisms is GDP-D-mannose: GDP-Lgalactose epimerase (refer to Figs. 1A-1C). One embodiment of the invention described herein is directed to the manipulation of this enzyme and structural homologues of this enzyme to increase L-ascorbic acid production in genetically engineered plants and/or microorganisms. More particularly, the GDP-D-mannose: GDP-L-galactose epimerase of the L-ascorbic acid pathway and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases are believed to be structurally homologous at both the sequence and tertiary structure level; a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is believed to be capable of functioning in the L-ascorbic acid biosynthetic pathway; and a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase or homologue thereof may be superior to a GDP-Dmannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, the present inventors disclose the use of a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase as a probe to identify the gene encoding GDP-D-<u>mannose:GDR-L-galactose epimerase. Similarly, the present inventors disclose the use</u> of a nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/reductase to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose: GDP-L-galactose epimerase.

Without being bound by theory, the present inventors believe that the following evidence supports the novel concept that the GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases have significant structural homology at the level of sequence and/or tertiary structure, and that the GDP-4-keto-6-deoxy-D-mannose epimerase/reductases and/or homologues thereof would be useful for production of ascorbic acid and/or for isolating the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Although prior to the present invention, it was not known that the GDP-D-mannose:GDP-L-galactose epimerase enzyme (also known as GDP-D-mannose-3,5-epimerase) plays a critical role in L-ascorbic acid biosynthesis, this enzyme was previously

10

15

20

25

30

described to catalyze the overall reversible reaction between GDP-D-mannose and GDP-L-galactose (Barber, 1971, Arch. Biochem. Biophys. 147:619-623; Barber, 1975, Arch. Biochem. Biophys. 167:718-722; Barber, 1979, J. Biol. Chem. 254:7600-7603; Hebda, et al., 1979, Arch. Biochem. Biophys. 194:496-502; Barber and Hebda, 1982, Meth. Enzymol., 83:522-525). Despite these studies, GDP-D-mannose:GDP-L-galactose epimerase has never been well characterized nor has the gene encoding this enzyme been cloned and sequenced. Since the original work by Barber, GDP-D-mannose:GDP-L-galactose epimerase activity has been detected in the colorless microalga Prototheca moriformis by the assignee of the present application, and in Arabidopsis thaliana and pea embryonic axes (Wheeler, et al., 1998, ibid.).

Barber (1979, J. Biol. Chem. 254:7600-7603) proposed a mechanism for GDP-D-mannose:GDP-L-galactose epimerase partially purified from the green microalga Chlorella pyrenoidosa. The overall conversion of GDP-D-mannose to GDP-L-galactose was proposed to proceed by oxidation of the hexosyl moiety at C-4 to a keto intermediate, ene-diol formation, and inversion of the configurations at C-3 and C-5 upon rehydration of the double bonds and stereospecific reduction of the keto group. The proposed mechanism is depicted in Fig. 7.

Based on Barber's work, Feingold and Avigad (1980, In *The Biochemistry of Plants*, Vol. 3: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, eds., Academic Press, NY) elaborated further on the proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase. This mechanism is based on the assumption that the epimerase contains tightly bound NAD⁺, and transfer of a hydride ion from C-4 of the substrate (GDP-D-mannose) to enzyme-associated NAD⁺ converts the enzyme to the reduced (NADH)form, generating enzyme-bound GDP-4-keto-D-mannose. The latter would then undergo epimerization by an ene-diol mechanism. The final product (GDP-L-galactose) would be released from the enzyme after stereospecific transfer of the hydride ion originally removed from C-4, simultaneously regenerating the oxidized form of the enzyme.

L-fucose (6-deoxy-L-galactose) is a component of bacterial lipopolysaccharides, mammalian and plant glycoproteins and polysaccharides of plant cell walls. L-fucose is synthesized *de novo* from GDP-D-mannose by the sequential action of GDP-D-mannose-

10

15

20

25

30

4,6-dehydratase (an NAD(P)-dependent enzyme), and a bifunctional GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (NADPH-dependent), also referred to in scientific literature as GDP-fucose synthetase (Rizzi, et al., 1998, *Structure* 6:1453-1465; Somers, et al., 1998, *Structure* 6:1601-1612). This pathway for L-fucose biosynthesis appears to be ubiquitous (Rizzi, et al., 1998, *Structure* 6:1453-1465). The mechanisms for GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are shown in Fig. 8A, B (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

Comparison of Figs. 7 and 8A, B reveals that Barber's proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase is analogous to the reaction mechanism for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The same mechanism has also been demonstrated for the epimerization reaction that occurs in the biosynthesis of two TDP-6-deoxy hexoses, TDP-L-rhamnose and TDP-6-deoxy-L-talose, from TDP-D-glucose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256). In the latter cases, however, the final reduction at C-4 is catalyzed by NADPH-dependent reductases that are separate from the epimerase enzyme. These reductases have opposite stereospecificity, providing either TDP-L-rhamnose or TDP-6-deoxy-L-talose (Liu and Thorson, 1994, *Ann. Rev. Microbiol.* 48:223-256).

In all of the mechanisms described above, NAD(P)H is required for the final reduction at C-4 (refer to Fig. 8B). In the work of Hebda, et al. (1979, Arch. Biochem. Biophys. 194:496-502), it was reported that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa did not require NAD, NADP or NADH for activity. Strangely, NADPH was not tested. Based on the analogous mechanisms shown in Figs. 7 and 8A, B, the present inventors believe that it is likely that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa requires NADPH for the final reduction step. Why activity was detected in vitro without NADPH addition is not known, but tight *binding of NADPH to the enzyme could explain this observation. On the other hand, if the proposed mechanism of Feingold and Avigad (1980, in The Biochemistry of Plants, Vol. 3, p. 101-170: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, ed., Academic Press, NY) is correct, the reduced enzyme-bound cofactor generated in the first oxidation step of the epimerase reaction would serve as the source of electrons for

10

15

20

25

30

the final reduction of the keto group at C-4 back to the alcohol. Thus no addition of exogenous reduced cofactor would be required for activity in vitro.

Recently, a human gene encoding the bifunctional GDP-4-keto-6-deoxy-Dmannose epimerase/reductase was cloned and sequenced (Tonetti, et al., 1996, J. Biol. Chem. 271-27274-27279). This amino acid sequence of the human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase shows significant homology (29% identity) to the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (Tonetti, et al., 1998, Acta Cryst. D54:684-686; Somers, et al., 1998, Structure 6:1601-1612, both of which are incorporated herein by reference in their entireties). Tonetti et al. and Somers et al. additionally disclosed the tertiary (three dimensional) structure of the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (also known as GDP-fucose synthetase), and noted significant structural homology with another epimerase, UDP-galactose 4-epimerase (GalE). These epimerases also share significant homology at the sequence level. Since no gene encoding a GDP-D-mannose:GDP-L-galactose epimerase has been cloned and sequenced, homology with genes encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases or with genes encoding a UDP-galactose 4-epimerase has not been demonstrated. However, based on the similarity of the reaction products for GDP-Dmannose: GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase (i.e., GDP-L-galactose and GDP-6-deoxy-L-galactose [i.e., GDP-L-fucose], respectively) and the common catalytic mechanisms (Figs. 7 and 8A, B) the present inventors believe that the genes encoding the enzymes will have a high degree of sequence homology, as well as tertiary structural homology.

Significant structural homology between GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases may allow a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or a homologue thereof, to function in the L-ascorbic acid biosynthetic pathway, and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase could potentially be even better than a GDP-D-mannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be used as a probe to identify the gene encoding GDP-D-mannose:GDP-L-galactose epimerase. Likewise, the

nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase can be used to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose:GDP-L-galactose epimerase.

5

10

15

20

25

30

The ability to substitute GDP-4-keto-6-D-mannose epimerase/reductase for GDP-D-mannose:GDP-L-galactose epimerase to enhance L-ascorbic acid biosynthesis in plants or microorganisms depends on the ability of GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase to act directly on GDP-D-mannose to form GDP-L-galactose. Evidence supporting this possibility already exists. Arabidopsis thaliana murl mutants are defective in GDP-D-mannose-4,6-dehydratase activity (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). These mutants are thus blocked in GDP-L-fucose biosynthesis, and consequently have less than 2% of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant (Zablackis, et al., 1996, Science 272:1808-1810). The murl mutants are more brittle than wild-type plants, are slightly dwarfed and have an apparently normal life cycle (Zablackis, et al., 272:1808-1810). When murl mutants are grown in the presence of exogenous L-fucose, the L-fucose content in the plant is restored to the wild-type state (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). It was discovered (Zablackis, et.al., 1996, Science 272:1808-1810) that murl mutants contain, in the hemicellulose xyloglucan component of the primary cell wall, L-galactose in place of the normal L-fucose. L-galactose is not normally found in the xyloglucan component, but in murl mutants L-galactose partly replaces the terminal L-fucosyl residue. Bonin, et al. (1997, Proc. Natl. Acad. Sci. 94:2085-2090) hypothesized that in the absence of a functional GDP-D-mannose-4,6-dehydratase in the murl mutants, the GDP-4-keto-6deoxy-D-mannose epimerase/reductase normally involved in L-fucose synthesis may be able to use GDP-D-mannose directly, forming GDP-L-galactose. Another possibility, however, is that the enzymes involved in L-ascorbic acid biosynthesis in A. thaliana are responsible for forming GDP-L-galactose in the murl mutant. If this were true, it would suggest that in the wild-type plant, some mechanism exists that prevents GDP-L-galactose formed in the L-ascorbic acid pathway from entering cell wall biosynthesis and substituting for (competing with) GDP-L-fucose for incorporation into the xyloglucan

10

15

20

25

30

component (since L-galactose is not present in the primary cell wall of the wild-type plant).

Because of the similar reaction mechanisms of GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, and because of the evidence that GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can act directly on GDP-D-mannose to form GDP-L-galactose, the present inventors believe that genes encoding all epimerases and epimerase/reductases that act on GDP-D-mannose have high homology. As such, one aspect of the present invention relates to the use of any epimerase (and nucleic acid sequences encoding such epimerase) having significant homology (at the primary, secondary and/or tertiary structure level) to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or to a UDP-galactose 4-epimerase for the purpose of improving the biosynthetic production of L-ascorbic acid.

Therefore, as described above, one embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism, which includes culturing a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Also included in the present invention are genetically modified microorganisms and plants in which the genetic modification increases the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.

According to the present invention, an increase in the action of the GDP-D-mannose:GDP-L-galactose epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to overexpression of the GDP-D-mannose:GDP-L-galactose epimerase gene, a homologue of such gene, or of any recombinant nucleic acid sequence encoding an epimerase that is homologous in primary (nucleic acid or amino acid sequence) or tertiary (three dimensional protein) structure to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, such as by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof, and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene.

According to the present invention, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/

10

15

20

25

30

reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws (Table 12). In another embodiment, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS. As used herein, a "tertiary structure" or "three dimensional structure" of a protein, such terms being interchangeable, refers to the components and the manner of arrangement of the components in three dimensional space to constitute the protein. The use of the term "substantially conforms" refers to at least a portion of a tertiary structure of an epimerase which is sufficiently spatially similar to at least a portion of a specified three dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Brookhaven Protein Data Bank Accession Code 1bws) to allow the tertiary structure of at least said portion of the epimerase to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates as a basis for estimating the atomic coordinates defining the three dimensional configuration of the conmerce.

More particularly, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein such structure has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the

10

15

20

25

30

recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Methods to calculate RMSD values are well known in the art. Various software programs for determining the tertiary structural homology between one or more proteins are known in the art and are publicly available, such as QUANTA (Molecular Simulations Inc.).

A preferred epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose according to the method and genetically modified organisms of the present invention includes an epimerase that comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the substrate binding site of the epimerase has an average root-meansquare deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions

10

15

20

25

30

as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

Another preferred epimerase according to the present invention includes an epimerase that comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the catalytic site of the epimerase has an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over 100% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

5

In one embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. In a preferred embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to the tertiary structure position of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

20

25

30

In an even more preferred embodiment, the above definition of "substantially conforms" can be further defined to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structures which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å over at least about 25% of the common amino acid side chains as

. 10

15

20

25

30

compared to the tertiary structure represented by the given set of atomic coordinates. In another embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure having the recited average root-mean-square deviation (RMSD) value over at least about 50% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such a structure has the recited average root-mean-square deviation (RMSD) value over 100% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates.

A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (A. Sali and T.L. Blundell, J. Mol. Biol., vol. 234:779-815, 1993 as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the epimerase; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. Alternatively, a tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled using data generated from analysis of a crystallized structure of the epimerase. A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement. Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, XPLOR (Brunger, et al., Science, vol. 235, p. 458, 1987). In addition, a structure can be modeled using techniques generally described by,

10

15

20

25

30

for example, Sali, Current Opinions in Biotechnology, vol. 6, pp. 437-451, 1995, and algorithms can be implemented in program packages such as Homology 95.0 (in the program Insight II, available from Biosym/MSI, San Diego, CA). Use of Homology 95.0 requires an alignment of an amino acid sequence of a known structure having a known three dimensional structure with an amino acid sequence of a target structure to be modeled. The alignment can be a pairwise alignment or a multiple sequence alignment including other related sequences (for example, using the method generally described by Rost, Meth. Enzymol., vol. 266, pp. 525-539, 1996) to improve accuracy. Structurally conserved regions can be identified by comparing related structural features, or by examining the degree of sequence homology between the known structure and the target structure. Certain coordinates for the target structure are assigned using known structures from the known structure. Coordinates for other regions of the target structure can be generated from fragments obtained from known structures such as those found in the Protein Data Bank maintained by Brookhaven National Laboratory, Upton, NY. Conformation of side chains of the target structure can be assigned with reference to what is sterically allowable and using a library of rotamers and their frequency of occurrence (as generally described in Ponder and Richards, J. Mol. Biol., vol. 193, pp. 775-791, 1987). The resulting model of the target structure, can be refined by molecular mechanics (such as embodied in the program Discover, available from Biosym/MSI) to ensure that the model is chemically and conformationally reasonable.

According to the present invention, an epimerase that has a nucleic acid sequence that is homologous at the primary structure level (i.e., is a homologue of) to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase includes any epimerase encoded by a nucleic acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. Similarly, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose or a UDP-galactose of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose or a UDP-galactose of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose or a UDP-galactose of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose or

10

15

20

25

30

galactose 4-epimerase includes any epimerase having an amino acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10.

According to one embodiment of the present invention, homology or percent identity between two or more nucleic acid or amino acid sequences is performed using methods known in the art for aligning and/or calculating percentage identity. To compare the homology/percent identity between two or more sequences as set forth above, for example, a module contained within DNASTAR (DNASTAR, Inc., Madison, Wisconsin) can be used. In particular, to calculate the percent identity between two nucleic acid or amino acid sequences, the Lipman-Pearson method, provided by the MegAlign module within the DNASTAR program, is preferably used, with the following parameters, also referred to herein as the Lipman-Pearson standard default parameters:

- (1) Ktuple = 2;
- (2) Gap penalty = 4;

(3) Gap length penalty = 1/2.

Using the Lipman-Pearson method with these parameters, for example, the percent identity between the amino acid sequence for *E. coli* GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (SEQ ID NO:4) and human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (FX) (SEQ ID NO:6) is 27.7%, which is comparable to the 27% identity described for these enzymes in Tonetti et al., 1998, *Acta Cryst.* D54:684-686.

According to another embodiment of the present invention, to align two or more nucleic acid or amino acid sequences, for example to generate a consensus sequence or evaluate the similarity at various positions between such sequences, a CLUSTAL alignment program (e.g., CLUSTAL, CLUSTAL V, CLUSTAL W), also available as a module within the DNASTAR program, can be used using the following parameters, also referred to herein as the CLUSTAL standard default parameters:

Multiple Alignment Parameters (i.e., for more than 2 sequences):

(1) Gap penalty = 10;

15

20

25

30

(2) Gap length penalty = 10;

Pairwise Alignment Parameters (i.e., for two sequences):

- (1) Ktuple = 1;
- (2) Gap penalty = 3;
- 5 (3) Window = 5;
 - (4) Diagonals saved = 5.

According to the present invention, a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from any organism, including Arabidopsis thaliana, Escherichia coli, and human. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Arabidopsis thaliana is represented herein by SEQ ID NO:1. SEQ ID NO:1 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:2. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli is represented herein by SEQ ID NO:3. SEQ ID NO:3 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:4. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:5.

According to the present invention, a UDP-galactose 4-epimerase can be a UDP-galactose 4-epimerase from any organism, including *Escherichia coli* and human. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *Escherichia coli* is represented herein by SEQ ID NO:7. SEQ ID NO:7 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:8. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *homo sapiens* is represented herein by SEQ ID NO:9. SEQ ID NO:9 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:10.

In a preferred embodiment, an epimerase encompassed by the present invention has an amino acid sequence that aligns with the amino acid sequence of SEQ ID NO:11, for example using a CLUSTAL alignment program, wherein amino acid residues in the

10

15

20

25

30

amino acid sequence of the epimerase align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11, and preferably at least about 75% of non-Xaa residues in SEQ ID NO:11, and more preferably, at least about 90% of non-Xaa residues in SEQ ID NO:11, and even more preferably 100% of non-Xaa residues in SEQ ID NO:11. The percent identity of residues aligning with 100% identity with non-Xaa residues can be simply calculated by dividing the number of 100% identical matches at non-Xaa residues in SEQ ID NO:11 by the total number of non-Xaa residues in SEQ ID NO:11. A preferred nucleic acid sequence encoding an epimerase encompassed by the present invention include a nucleic acid sequence encoding an epimerase having an amino acid sequence with the above described identity to SEQ ID NO:11. Such an alignment using a CLUSTAL alignment program is based on the same parameters as previously disclosed herein. SEQ ID NO:11 represents a consensus amino acid sequence of an epimerase which was derived by aligning at least portions of amino acid sequences SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8, as described in Somers et al., 1998, Structure 6:1601-1612, and can be approximately duplicated using CLUSTAL.

In another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, typosine and lysine. Preferably, such serine, typosine and lysine residues are located at positions in the epimerase amino acid sequence which align using a CLUSTAL alignment program with positions Ser105, Tyr134 and Lys138 of consensus sequence SEQ ID NO:11, with positions Ser109, Tyr138 and Lys142 of sequence SEQ ID NO:2, with positions Ser107, Tyr136 and Lys140 of SEQ ID NO:4, with positions Ser114, Tyr143 and Lys147 of sequence SEQ ID NO:6, with positions Ser124, Tyr149 and Lys153 of sequence SEQ ID NO:8 or with positions Ser132, Tyr157 and Lys161 of sequence SEQ ID NO:10.

In another embodiment, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes any epimerase that has an amino acid motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly, which is found, for example in positions 8 through 14 of the consensus sequence SEQ ID NO:11, in positions 12 through 18 of SEQ ID NO:2, in positions 10 through 16 of SEQ ID NO:4, in positions 14 through 20 of SEQ ID NO:6, in positions

10

15

20

25

30

7 through 13 of SEQ ID NO:8, and in positions 9 through 15 of SEQ ID NO:10. Such a motif can be identified by its alignment with the same motif in the above-identified amino acid sequences using a CLUSTAL alignment program. Preferably, such motif is located within the first 25 N-terminal amino acids of the amino acid sequence of the epimerase.

In yet another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a substrate binding site which includes amino acid residues that align using a CLUSTAL alignment program with at least 50% of amino acid positions Asn177, Ser178, Arg187, Arg209, Lys283, Asn165, Ser107, Ser108, Cys109, Asn133, Tyr136 and His179 of SEQ ID NO:4. Alignment with positions Ser107, Tyr136, Asn165, Arg209, is preferably with 100% identity (i.e., exact match of residue, under parameters for alignment).

In another embodiment of the present invention, an epimerase encompassed by the present invention comprises at least 4 contiguous amino acid residues having 100% identity with at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters. According to the present invention, the term "contiguous" means to be connected in an unbroken sequence. For a first sequence to have "100% identity" with a second sequence means that the first sequence exactly matches the second sequence with no gaps between nucleotides or amino acids.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises at least 12 contiguous nucleic acid residues having 100% identity with at least 12 contiguous nucleic acid residues of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that hybridizes under stringent

10

15

20

25

30

hybridization conditions to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989. Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety (see specifically, pages 9.31-9.62). In addition, formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting varying degrees of mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

More particularly, stringent hybridization and washing conditions, as referred to herein, refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA+DNA-hybrids are 10°C less than for DNA+RNA-hybrids, In particular embodiments, stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45°C. In particular embodiments, stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C. These values are based on calculations of a melting temperature for molecules larger than about 100 nucleotides, 0% formamide and a G+ C content of about 40%. Alternatively, T_m can be calculated empirically as set forth in Sambrook et al., supra, pages 9.31 to 9.62.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises a nucleic acid

10

15

20

25

30

sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9 or a fragment thereof, wherein the fragment encodes a protein that is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, such as under physiological conditions. In another embodiment, an epimerase encompassed by the present invention comprises an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or a fragment thereof, wherein the fragment is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. It is to be understood that the nucleic acid sequence encoding the amino acid sequences identified herein can vary due to degeneracies. As used herein, nucleotide degeneracies refers to the phenomenon that one amino acid can be encoded by different nucleotide codons.

One embodiment of the present invention relates to a method to identify an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Preferably, such a method is useful for identifying the GDP-D-mannose: GDP-L-galactose epimerase which catalyzes the conversion of GDP-D-mannose to GDP-L-galactose in the endogenous (i.e., naturally occurring L-ascorbic acid biosynthetic pathway of microorganisms and/or plants). Such a method can include the steps of: (a) contacting a source of nucleic acid molecules with an oligonucleotide at least about 12 nucleotides in length under stringent hybridization conditions, wherein the oligonucleotide is identified by its ability to hybridize under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5; and, (b) identifying nucleic acid molecules from the source of nucleic acid molecules which hybridize under stringent hybridization conditions to the oligonucleotide. Nucleic acid molecules identified by this method can then be isolated from the source using standard molecular biology techniques. Preferably, the source of nucleic acid molecules is obtained from a microorganism or plant that has an ascorbic acid production pathway. Such a source of nucleic acid molecules can be any source of nucleic acid molecules which can be isolated from an organism and/or which can be screened by hybridization with an oligonucleotide such as a probe or a PCR primer. Such sources include genomic and cDNA libraries and isolated RNA.

10

15

20

25

30

In order to screen cDNA libraries from different organisms and to isolate nucleic acid molecules encoding enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase and related epimerases, one can use any of a variety of standard molecular and biochemical techniques. For example, oligonucleotide primers, preferably degenerate primers, can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence, and such primers can be used in a polymerase chain reaction (PCR) protocol to amplify the same or related epimerases, including the GDP-D-mannose:GDP-L-galactose epimerase from the ascorbic acid pathway, from nucleic acids (e.g., genomic or cDNA libraries) isolated from a desired organism (e.g., a microorganism or plant having an L-ascorbic acid pathway). Similarly, oligonucleotide probes can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence and such probe can be used to identify and isolate nucleic acid molecules, such as from a genomic or cDNA library, that hybridize under conditions of low, moderate, or high stringency with the probe.

Alternatively, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino acid sequence can be idetermined (including the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism cDNA. This fragment would then be used to probe the cDNA library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

As discussed above in general for increasing the action of an enzyme in the L-ascorbic acid pathway according to the present invention, in one embodiment of the present invention, the action of an epimerase that catalyzes the conversion of GDP-D-mannose to GDP-L-galactose is increased by amplification of the expression (i.e., overexpression) of such an epimerase. Overexpression of an epimerase can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the epimerase. It is preferred that the gene encoding an epimerase according to

the present invention be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of epimerase expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding an epimerase according to the present invention is integrated into the chromosome of the microorganism.

10

15

5

It is another embodiment of the present invention to provide a microorganism having one or more epimerases according to the present invention with improved affinity for its substrate. An epimerase with improved affinity for its substrate can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

20

As noted above, in the method for production of L-ascorbic acid of the present invention, a microorganism having a genetically modified L-ascorbic acid production pathway is cultured in a fermentation medium for production of L-ascorbic acid. An appropriate, or effective, fermentation medium refers to any medium in which a genetically modified microorganism of the present invention, when cultured, is capable of producing L-ascorbic acid. Such a medium is typically an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. One advantage of genetically modifying a microorganism as described herein is that although such genetic modifications can significantly alter the production of L-ascorbic acid, they can be designed such that they do not create any nutritional requirements for the production organism. Thus, a minimal-salts medium containing glucose as the sole carbon source can be used as the fermentation medium. The use of a minimal-salts-glucose medium for the L-ascorbic acid fermentation will also facilitate recovery and purification of the L-ascorbic acid product.

30

25

10

15

20

25

30

In one mode of operation of the present invention, the carbon source concentration, such as the glucose concentration, of the fermentation medium is monitored during fermentation. Glucose concentration of the fermentation medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, e.g., a cell-free component of the fermentation medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial. Accordingly, when glucose is used as a carbon source the glucose concentration in the fermentation medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is preferred to maintain the carbon source concentration of the fermentation medium by addition of aliquots of the original fromentation medium. The use of aliquots of the original fermentation medium are desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the fermentation medium by addition of aliquots of the trace metals solution.

In an embodiment of the fermentation process of the present invention, a fermentation medium is prepared as described above. This fermentation medium is inoculated with

an actively growing culture of genetically modified microorganisms of the present invention in an amount sufficient to produce, after a reasonable growth period, a high cell density. Typical inoculation cell densities are within the range of from about 0.1 g/L to about 15 g/L, preferably from about 0.5 g/L to about 10 g/L and more preferably from about 1 g/L to about 5 g/L, based on the dry weight of the cells. The cells are then grown to a cell density in the range of from about 10 g/L to about 100 g/L preferably from about

10

15

20

25

30

20 g/L to about 80 g/L, and more preferably from about 50 g/L to about 70 g/L. The residence times for the microorganisms to reach the desired cell densities during fermentation are typically less than about 200 hours, preferably less than about 120 hours, and more preferably less than about 96 hours.

The microorganisms useful in the method of the present invention can be cultured in conventional fermentation modes, which include, but are not limited to, batch, fedbatch, and continuous. It is preferred, however, that the fermentation be carried out in fed-batch mode. In such a case, during fermentation some of the components of the medium are depleted. It is possible to initiate fermentation with relatively high concentrations of such components so that growth is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the fermentation by making additions as levels are depleted by fermentation. Levels of components in the fermentation medium can be monitored by, for example, sampling the fermentation medium periodically and assaying for concentrations. Alternatively, once a standard fermentation procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the fermentation. As will be recognized by those in the art, the rate of consumption of nutrient increases during fermentation as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the fermentation medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the fermentation.

The present inventors have determined that high levels of magnesium in the fermentation medium inhibits the production of L-ascorbic acid due to repression of enzymes early in the production pathway, although enzymes late in the pathway (i.e., from L-galactose to L-ascorbic acid) are not negatively affected (See Examples). Therefore, in a preferred embodiment of the method of the present invention, the step of culturing is carried out in a fermentation medium that is magnesium (Mg²⁺) limited. Even more preferably, the fermentation is magnesium limited during the cell growth phase. Preferably, the fermentation medium comprises less than about 0.5 g/L of Mg²⁺ during the cell growth phase of fermentation, and even more preferably, less than about 0.2 g/L of Mg²⁺, and even more preferably, less than about 0.1 g/L of Mg²⁺.

10

15

20

25

30

The temperature of the fermentation medium can be any temperature suitable for growth and ascorbic acid production, and may be modified according to the growth requirements of the production microorganism used. For example, prior to inoculation of the fermentation medium with an inoculum, the fermentation medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 30°C to about 38°C.

It is a further embodiment of the present invention to supplement and/or control other components and parameters of the fermentation medium, as necessary to maintain and/or enhance the production of L-ascorbic acid by a production organism. For example, in one embodiment, the pH of the fermentation medium is monitored for fluctuations in pH. In the fermentation method of the present invention, the pH is preferably maintained at a pH of from about pH 6.0 to about pH 8.0, and more preferably, at about pH 7.0. In the method of the present invention, if the starting pH of the fermentation medium is pH 7.0, the pH of the fermentation medium is monitored for significant variations from pH 7.0, and is adjusted accordingly, for example, by the addition of sodium hydroxide. In a preferred embodiment of the present invention, genetically modified microorganisms useful for production of L-ascorbic acid include acid-tolerant-microorganisms.—Such microorganisms include, for example, microalgae of the genera *Prototheca* and *Chlorella* (See U.S. Patent No. 5,792,631, *ibid.* and U.S. Patent No. 5,900,370, *ibid.*).

The production of ascorbic acid by culturing acid-tolerant microorganisms provides significant advantages over known ascorbic acid production methods. One such advantage is that such organisms are acidophilic, allowing fermentation to be carried out under low pH conditions, with the fermentation medium pH typically less than about 6. Below this pH, extracellular ascorbic acid produced by the microorganism during fermentation is relatively stable because the rate of oxidation of ascorbic acid in the fermentation medium by oxygen is reduced. Accordingly, high productivity levels can be obtained for producing L-ascorbic acid with acid-tolerant microorganisms according to the methods of the present invention. In addition, control of the dissolved oxygen content to very low levels to avoid oxidation of ascorbic acid is unnecessary. Moreover, this

15

20

25

30

advantage allows for the use of continuous recovery methods because extracellular medium can be treated to recover the ascorbic acid product.

Thus, the present method can be conducted at low pH when acid-tolerant microorganisms are used as production organisms. The benefit of this process is that at low pH, extracellular ascorbic acid produced by the organism is degraded at a reduced rate than if the fermentation medium was at higher pH. For example, prior to inoculation of the fermentation medium with an inoculum, the pH of the fermentation medium can be adjusted, and further monitored during fermentation. Typically, the pH of the fermentation medium is brought to and maintained below about 6, preferably below 5.5, and more preferably below about 5. The pH of the fermentation medium can be controlled by the addition of ammonia to the fermentation medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the fermentation medium.

The fermentation medium can also be maintained to have a dissolved oxygen content during the course of fermentation to maintain cell growth and to maintain cell metabolism for L-ascorbic acid formation. The oxygen concentration of the fermentation medium can be monitored using known methods, such as through the use of an oxygen probe electrode. Oxygen can be added to the fermentation medium using methods known in the art, for example, through agitation and aeration of the medium by stirring or shaking. Preferably, the oxygen concentration in the fermentation medium is in the range of from about 20% to about 100% of the saturation value of oxygen in the medium based upon the solubility of oxygen in the fermentation medium at atmospheric pressure and at a temperature in the range of from about 30°C to about 40°C. Periodic drops in the oxygen concentration below this range may occur during fermentation, however, without adversely affecting the fermentation.

The genetically modified microorganisms of the present invention are engineered to produce significant quantities of extracellular L-ascorbic acid. Extracellular L-ascorbic acid can be recovered from the fermentation medium using conventional separation and purification techniques. For example, the fermentation medium can be filtered or centrifuged to remove microorganisms, cell debris and other particulate matter, and L-ascorbic acid can be recovered from the cell-free supernate by conventional methods, such

10

15

20

25

30

as, for example, ion exchange, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

One such example of L-ascorbic acid recovery is provided in U.S. Patent No. 4,595,659 by Cayle, incorporated herein in its entirety be reference, which discloses the isolation of L-ascorbic acid from an aqueous fermentation medium by ion exchange resin adsorption and elution, which is followed by decoloration, evaporation and crystallization. Further, isolation of the structurally similar isoascorbic acid from fermentation medium by a continuous multi-bed extraction system of anion-exchange resins is described by K. Shimizu, Agr. Biol. Chem. 31:346-353 (1967), which is incorporated herein in its entirety by reference.

Intracellular L-ascorbic acid produced in accordance with the present invention can also be recovered and used in a variety of applications. For example, cells from the microorganisms can be lysed and the ascorbic acid which is released can be recovered by a variety of known techniques. Alternatively, intracellular ascorbic acid can be recovered by washing the cells to extract the ascorbic acid, such as through diafiltration.

Development of a microorganism with enhanced ability to produce L-ascorbic acid by genetic-modification can be accomplished using both classical strain development and molecular genetic techniques, and particularly, recombinant technology (genetic engineering). In general, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to (1) inactivate or delete at least one, and preferably more than one of the competing or inhibitory pathways in which production of L-ascorbic acid is negatively affected (e.g., inhibited), and more significantly to (2) amplify the L-ascorbic acid production pathway by increasing the action of a gene(s) encoding an enzyme(s) involved in the pathway.

In one embodiment, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to amplify the L-ascorbic acid production pathway by increasing the action of GDP-D-mannose:GDP-L-galactose epimerase, as discussed above. Such strategy includes genetically modifying the endogenous GDP-D-mannose:GDP-L-galactose epimerase such that L-ascorbic acid production is increased, and/or expressing/overexpressing a recombinant epimerase that catalyzes the conversion

10

15

20

25

30

of GDP-D-mannose to GDP-L-galactose, which includes expression of recombinant GDP-D-mannose:GDP-L-galactose epimerase and/or homologues thereof, and of other recombinant epimerases such as GDP-4-keto-6-deoxy-D-mannose epimerase reductase and epimerases that share structural homology with such epimerase as discussed in detail above.

It is to be understood that a production organism can be genetically modified by recombinant technology in which a nucleic acid molecule encoding a protein involved in the L-ascorbic acid production pathway disclosed herein is transformed into a suitable host which is a different member of the plant kingdom from which the nucleic acid molecule was derived. For example, it is an embodiment of the present invention that a recombinant nucleic acid molecule encoding a GDP-D-mannose:GDP-L-galactose epimerase from a higher plant can be transformed into a microalgal host in order to overexpress the epimerase and enhance production of L-ascorbic acid in the microalgal production organism.

As previously discussed herein, in one embodiment, a genetically modified microorganism can be a microorganism in which nucleic acid molecules have been deleted, inserted or modified, such as by insertion, deletion, substitution, and/or inversion of nucleotides, in such a manner that such modifications provide the desired effect within the microorganism. A genetically modified microorganism is preferably modified by recombinant technology, such as by introduction of an isolated nucleic acid molecule into a microorganism. For example, a genetically modified microorganism can be transfected with a recombinant nucleic acid molecule encoding a protein of interest, such as a protein for which increased expression is desired. The transfected nucleic acid molecule can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transfected (i.e., recombinant) host cell in such a manner that its ability to be expressed is retained. Preferably, once a host cell of the present invention is transfected with a nucleic acid molecule, the nucleic acid molecule is integrated into the host cell genome. A significant advantage of integration is that the nucleic acid molecule is stably maintained in the cell. In a preferred embodiment, the integrated nucleic acid molecule is operatively linked to a transcription control sequence (described below) which can be induced to control expression of the nucleic acid molecule.

10

15

20

25

30

A nucleic acid molecule can be integrated into the genome of the host cell either by random or targeted integration. Such methods of integration are known in the art. For example, an E coli strain ATCC 47002 contains mutations that confer upon it an inability to maintain plasmids which contain a ColE1 origin of replication. When such plasmids are transferred to this strain, selection for genetic markers contained on the plasmid results in integration of the plasmid into the chromosome. This strain can be transformed, for example, with plasmids containing the gene of interest and a selectable marker flanked by the 5'- and 3'-termini of the E coli lacZ gene. The lacZ sequences target the incoming DNA to the lacZ gene contained in the chromosome. Integration at the lacZ locus replaces the intact lacZ gene, which encodes the enzyme β -galactosidase, with a partial lacZ gene interrupted by the gene of interest. Successful integrants can be selected for β -galactosidase negativity.

A genetically modified microorganism can also be produced by introducing nucleic acid molecules into a recipient cell genome by a method such as by using a transducing bacteriophage. The use of recombinant technology and transducing bacteriophage technology to produce several different genetically modified microorganism of the present invention is known in the art.

According to the present invention, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, includes all nucleic acid sequences related to a natural epimerase gene such as regulatory regions that control production of the epimerase protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In another embodiment, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, can be an allelic variant that includes a similar but not identical sequence to the nucleic acid sequence encoding a given GDP-D-mannose:GDP-L-galactose epimerase gene. An allelic variant of a GDP-D-mannose:GDP-L-galactose epimerase gene which has a given nucleic acid sequence is a gene that occurs at essentially the same locus (or loci) in the genome as the gene having the given nucleic acid sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being

10

15

20

25

30

compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given microorganism or plant and/or among a group of two or more microorganisms or plants.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation). As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule can include DNA, RNA, or derivatives of either DNA or RNA. There is no limit, other than a practical limit, on the maximal size of a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, or multiple genes, or portions thereof.

An isolated nucleic acid molecule of the present invention can be obtained from its natural source either as an entire (i.e., complete) gene or a portion thereof capable of forming a stable hybrid with that gene. An isolated nucleic acid molecule can also be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated nucleic acid molecules include natural nucleic acid molecules and homologues thereof, including, but not limited to, natural allelic variants and modified nucleic acid molecules in which nucleotides have been inserted, deleted, substituted, and/or inverted in such a manner that such modifications provide the desired effect within the microorganism. A structural homologue of a nucleic acid sequence has been described in detail above. Preferably, a homologue of a nucleic acid sequence encodes a protein which has an amino acid sequence that is sufficiently similar to the natural protein amino acid sequence that a nucleic acid sequence encoding the homologue is capable of hybridizing under stringent conditions to (i.e., with) a nucleic acid molecule encoding the natural protein (i.e., to the complement of the nucleic acid strand encoding the natural protein amino acid sequence). A nucleic acid molecule homologue encodes a protein homologue. As used herein, a homologue protein includes proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation,

10

15

20

25

30

amidation and/or addition of glycosylphosphatidyl inositol) in such a manner that such modifications provide the desired effect on the protein and/or within the microorganism (e.g., increased or decreased action of the protein).

A nucleic acid molecule homologue can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid.*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologues can be selected from a mixture of modified nucleic acids by screening for the function of the protein encoded by the nucleic acid and/or by hybridization with a wild-type gene.

Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, for a nucleic acid sequence, being capable of encoding a gene involved in an L-ascorbic acid production pathway.

Knowing the nucleic acid sequences of certain nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules and/or (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions). Such nucleic acid molecules can be obtained in a variety of ways including traditional cloning techniques using oligonucleotide probes to screen appropriate libraries or DNA and PCR amplification of appropriate libraries or DNA using oligonucleotide primers. Preferred libraries to screen or from which to amplify nucleic acid molecule include bacterial and yeast genomic DNA libraries, and in particular, microalgal genomic DNA libraries. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., *ibid*.

10

15

20

25

30

The present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host microorganism of the present invention. Such a vector can contain nucleic acid sequences that are not naturally found adjacent to the isolated nucleic acid molecules to be inserted into the vector. The vector can be either RNA or DNA and typically is a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulating of nucleic acid molecules. One type of recombinant vector, referred to herein as a recombinant molecule and described in more detail below, can be used in the expression of nucleic acid molecules. Preferred recombinant vectors are capable of replicating in a transformed bacterial cells, yeast cells, and in particular, in microalgal cells.

Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection and biolistics.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules operatively linked to an expression vector containing one or more transcription control sequences. The phrase, operatively linked, refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. In the present invention, expression vectors are typically plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in a yeast host cell, a bacterial host cell, and preferably a microalgal host cell.

Nucleic acid molecules of the present invention can be operatively linked to expression vectors containing regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression

10

15

20

25

of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in yeast or bacterial cells or preferably, in microalgal cells. A variety of such transcription control sequences are known to those skilled in the art.

It may be appreciated by one skilled in the art that use of recombinant DNA technologies can improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of posttranslational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to, operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into the host cell chromosome, addition of vector stability segrences to obsmids, substitutions or modifications of transcription, control signals (ICA), promoters, operators, enhancers), substitutions or modifications of translational control signals, modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

The following experimental results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

10

15

20

25

30

EXAMPLES

Example 1

The present example describes the elucidation of the pathway from glucose to L-ascorbic acid through GDP-D-mannose in plants.

Since the present inventors have previously shown that *Prototheca* makes L-ascorbic acid (AA) from glucose, it was worthwhile to examine cultures for some of the early conversion products of glucose. In the past, the present inventors had concentrated on pathways from glucose to organic acids, based on the published pathway of L-ascorbic acid synthesis in animals and proposed pathways in plants. The present inventors demonstrate herein that the pathway from glucose to L-ascorbic acid involves not organic acids, but rather sugar phosphates and nucleotide diphosphate sugars (NDP-sugars).

Prior to the present invention, it was known that all cells synthesize polysaccharides by first forming NDP-sugars. The sugar moiety is then incorporated into polymer, while the cleaved NDP is recycled. A variety of polysaccharides are known, and are usually named based on the relative proportions of the sugar residues in the polymers. For example, a "galactomannan" contains mostly galactose, and to a lesser degree, mannose residues. The "biopolymer" from *Prototheca* strains isolated by the present inventors was analyzed and found to be 80% D-galactose, 18% rhamnose (D- or L-configuration not determined), and 2% L-arabinose. The present inventors provide evidence herein of how the respective NDP-sugars that make up the *Prototheca* biopolymer are formed, and what correlations exist between L-ascorbic acid synthesis and the formation of the NDP-sugar forms of the sugar residues found in the biopolymer.

The common NDP-sugar UDP-glucose is shown in Fig. 2B. This is formed in plants from glucose-I-P by the action of UDP-D-glucose pyrophosphorylase. UDP-glucose can be epimerized in plants to form UDP-D-galactose, using UDP-D-glucose-4-epimerase. UDP-D-galactose can also be formed by phosphorylation of D-galactose by galactokinase to form D-galactose-I-P, which can be converted to UDP-D-galactose by UDP-D-galactose pyrophosphorylase. These known routes were believed to account for the D-galactose in the *Prototheca* biopolymer. The UDP-L-arabinose can be formed by known reactions beginning with the oxidation of UDP-D-glucose to UDP-D-glucuronic acid (by UDP-D-glucose dehydrogenase), decarboxylation to UDP-D-xylose, and epimerization to UDP-L-arabinose. This accounts for the arabinose residues in the

10

15

20

25

30

biopolymer. UDP-L-rhamnose is known to be formed from UDP-D-glucose, thus all three of the sugar moieties in the *Prototheca* biopolymer can be accounted for by a pathway through glucose-1-P and UDP-glucose. Alternatively, if the rhamnose in the biopolymer is D-rhamnose, it is not formed via UDP-D-glucose, but by oxidation of GDP-D-mannose (See Fig. 1).

GDP-D-rhamnose is formed by converting glucose, in turn, to D-glucose-6-P, Dfructose-6-P, D-mannose-6-P, D-mannose-1-P, GDP-D-mannose, and GDP-D-rhamnose. It was of interest to the present inventors that this route passes through GDP-D-mannose. Exogenous mannose is known to be converted to D-mannose-6-P in plants, and can enter the path above. D-mannose is converted to L-ascorbic acid by Prototheca cells cultured by the present inventors as well or better than glucose (see Example 4). The mechanism of conversion, in Chlorella pyrenoidosa, of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose: GDP-L-galactose epimerase, has been known for years (See, Barber, 1971, Arch. Biochem. Biophys. 147:619-623, incorporated herein by reference in its entirety). The present inventors have discovered herein that L-galactose and L-galactonoγ-lactone are rapidly converted to L-ascorbic acid by strains of Prototheca and Chlorella pyrenoidosa. Prior to the present invention, it was known that L-galactono-γ-lactone is converted to Lascorbic acid in several plant systems, but the synthesis steps prior to this step were unknown. Based on the published literature and the present experimental evidence, the present inventors have determined that the L-ascorbic acid biosynthetic pathway in plants passes through GDP-D-mannose and involves sugar phosphates and NDP-sugars. The proposed pathway is shown in Fig. 1. Salient points relevant to the design and production of genetically modified microorganisms useful in the present method include:

- 1. The enzymes leading from D-glucose to D-fructose-6-P are well known enzymes in the first, uncommitted steps of glycolysis.
- 2. The enzymes involved in the conversion of D-fructose-6-P to GDP-D-mannose have been well characterized in plants, yeast, and bacteria, particularly Azotobacter vinelandii and Pseudomonas aeruginosa, which convert GDP-D-mannose to GDP-D-mannuronic acid, which is the precursor for alginate (See for example, Sa-Correia et al., 1987, J. Bacteriol. 169:3224-3231; Koplin et al., 1992, J. Bacteriol. 174:191-199; Oesterhelt et al., 1996, Plant Science 121:19-27; Feingold et al., 1980, The

15

20

25

30

Biochemistry of Plants: Vol 3: Carbohydrates, structure and function, P.K. Stampf & E.E. Conn, eds., Academic Press, New York, pp. 101-170; Smith et al., 1992, *Mol. Cell Biol.* 12:2924-2930; Boles et al., 1994, *Eur. J. Med.* 220:83-96; Hashimoto et al., 1997, *J. Biol. Chem.* 272:16308-16314, all of which are incorporated herein by reference in their entirety).

- 3. Barber (1971, supra, and 1975) identified in Chlorella pyrenoidosa the enzyme activities for the conversion of GDP-D-mannose to GDP-L-galactose and L-galactose-I-P.
- 4. The present inventors have shown herein the rapid conversion of L 10 galactose and L-galactono-γ-lactone to L-ascorbic acid by Prototheca cells.
 - 5. L-galactono-γ-lactone and L-galactonic acid can be interconverted in solution by changing the pH of the solution; addition of base shifts the equilibrium to L-galactonic acid, while addition of acid shifts the equilibrium to the lactone. Cells may have an enzymatic means for this conversion in addition to this non-enzymatic route.
 - 6. In plants, GDP-L-fucose is also formed from GDP-D-mannose, presumably for incorporation into polysaccharide. Roberts (1971) fed labeled D-mannose to corn root tips and found the label in polysaccharide, specifically in the residues of D-mannose, L-galactose, and L-fucose. No label was detected in D-glucose, D-galactose, L-arabinose, or D-xylose. Prototheca and C. pyrenoidosa cells have the ability to convert L-fucose (6-deoxy-L-galactose) to a dipyridyl-positive product that was shown by HPLC not to be L-ascorbic acid. The present inventors believe that it is was the 6-deoxy analog of L-ascorbic acid.

Example 2

This example shows that in *Prototheca*, like other plants (Loewus, F.A. 1988. In: J. Priess (ed.), The Biochemistry of Plants, 14:85-107. New York, Academic Press) and the green microalga *Chlorella pyrenoidosa* (Renstrom, *et al.*, 1983. Plant Sci. Lett. 28:299-305), ascorbic acid (AA) production from glucose proceeds by a biosynthetic pathway that allows retention of the configuration of the carbon skeleton of glucose.

Cultures of the strain UV77-247 were grown to moderate cell density in shake flasks with 1-13C-labeled glucose as 10% of the total glucose (40 g/L). Incubation was

5.

10

15

20

25

as per the standard Mg-limited screen (see Example 3). The culture supernates were clarified, deionized to remove salts, lyophilized, and subjected to nuclear magnetic resonance (nmr) analysis to determine where in the AA molecule the ¹³C was located. In each case, approximately 85% of the label was found at the C-1 position of AA, with most of the remaining label at the C-6 position. This strongly indicated that AA is synthesized from glucose by a pathway that retains the carbon chain configuration, i. e., C-1 of glucose becomes C-1 of AA. This has typically been observed in plants (Loewus, F.A. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, ed. J. Priess, 14:85-107. New York, Academic Press). Animals (Mapson, L.W. and F.A. Isherwood 1956. Biochem. J. 64:151-157; Loewus, F.A. 1960. J. Biol. Chem. 235(4):937-939) and protists such as Euglena (Shigeoka, S., et al., 1979. J. Nutr. Sci. Vitaminol. 25:299-307), on the other hand, synthesize AA by a pathway that involves the inversion of configuration, i. e., C-1 of glucose becomes C-6 of AA. Demonstration of the inversion/non-inversion nature of the pathway was an important step in determining the pathway of AA biosynthesis since the two types of pathways require different types of enzymatic reactions. The label found at C-6 of AA is thought to be due to metabolism of glucose and subsequent gluconeogenesis. The metabolism of glucose in glycolysis proceeds through triose phosphate intermediates. After this, the C-leand C-6 carbons of glucose become biochemically equivalent. Hexose phosphates can be regenerated from the triose phosphates by gluconeogenesis, which is essentially a reversal of the degradative pathway. Consequently, metabolism of C-1-labeled glucose to triose phosphates with subsequent gluconeogenesis would result in the formation of hexose phosphate molecules labeled at either or both C-1 and C-6. If those hexose phosphates were precursors to AA, one would expect the AA to be similarly labeled. Consistent with this type of "isotopic mixing" is the observation that sucrose obtained from 1-13C-labeled glucose was labeled at positions 1, 6, 1' and 6'.

Glucose can also be metabolized by the pentose phosphate pathway, the overall balanced equation for which is:

3 Glucose-6-phosphate → 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate + 3 CO₂

Based on the known biochemistry, it would then be expected that the label at each of the carbons in glucose (Table 1 left column) would appear at the positions for the other molecules shown, and that these patterns would be reflected in the AA formed from C-2-and C-3-labeled glucose.

5

TABLE 1

Predicted Carbon Labeling of Metabolites of Glucose in the Pentose Phosphate Pathway

Labeled Glucose		Position of La	beled Carbon i	n:
Carbon	CO ₂	F6P(1)	F6P(2)	G3P
1	+	-	-	
2	-	1,3	1	-
3		2	2,3	_
4	-	4	4	1
. 5	-	5	5	2
6	<u>-</u>	6	6	3

15

10

AA recovered from cultures fed glucose labeled at C-2 or C-3 was also analyzed for its labeling patterns (Table 2).

TABLE 2

Labeling Pattern in AA after Cells were Fed 2-13C and 3-13C-glucose

	Isotopic enhancement after growth on:			
Carbon Position in AA	C-2 labeled glucose	C-3 labeled glucose		
1	1.0	0.4		
2	10.0	0.9		
3	0.5	9.9		
4	0	2.8		
5	2.2	0.2		
6	0 .	0		

25

30

20

The data above again suggest a pathway from glucose to AA that proceeds by retention of configuration. As in the experiments with C-1 labeled glucose, approximately one-fifth of the label is present in "mirror image" position to the glucose label (C-5 for C-2 labeled glucose and C-4 for C-3 labeled glucose), indicating levels of gluconeogenesis consistent with those previously observed.

The small, but significant amount of enhancement observed in other positions is consistent with flux through the pentose phosphate pathway. As predicted above, carbon

10

15

flux through this pathway would result in isotopic enhancement at positions 1 and 3 when cells were grown on 2-13C glucose and enhancement at position 2 when cells were grown on 3-13C glucose. This is indeed observed. That there is twice as much enhancement at C-1 as there is at C-3 after growth on 2-13C glucose is also predicted. These data indicate a small but measurable amount of carbon flux through the pentose phosphate pathway.

Example 3

This example shows the methods for generating, screening and isolating mutants of *Prototheca* with altered AA productivities compared to the starting strain ATCC 75669.

ATCC No. 75669, identified as *Prototheca moriformis* RSP1385 (unicellular green microalga), was deposited on February 8, 1994, with the American Type Culture Collection (ATCC), Rockville, Maryland, 20852, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Initial screening of *Prototheca* species and strains was reported in U.S. Patent No. 5,900,370, *ibid*. Table 3 lists the formulations of the media for growth and maintenance of the strains. Glucose for fermentors was supplied as glucose monohydrate and calculated on an anhydrous basis. The recipe for the trace metals solution is given in Table 4. The standard growth temperature was 35°C. All organisms were cultured axenically.

20

TABLE 3

Media for Growth and Maintenance of *Prototheca* Strains
All quantities are in g/L unless otherwise specified

Liquid Agar Ingredient **Ferrozine** Standard Standard Mg-limiting Slants **Plates Piates** Potassium phosphate 0.27 1.3 1.3 2.0 2.0 monobasic 3.8 2.0 1.4 2.0 Potassium phosphate dibasic 3.8 Trisodium citrate dihydrate 7.7 2.6 1.3 2.6 7.7 Magnesium sulfate 0.40 0.4 0.01 0.4 0.02 heptahydrate Ammonium sulfate 3.7 3.7 1.0 1.0 1.0 **Trace Metals Solution** 2 mL 2 mL 2 mL 2 mL 2 mL Ferrous sulfate heptahydrate 1.5 mg 4.5 mg 1.5 mg 1.5 mg Calcium chlorid dihydrate 0.25

25

30

	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plat s	Standard Plates
Mangan us sulfate monohydrate	-	0.08		-	-
Yeast extract	-	-	2.5	-	
Agar	-	-	15	15 (Noble)	15
pH before autoclaving	7.2	7.2	7.2	7.2	7.2

Autoclave, then add

		,			
Copper sulfate, pentahydrate, 100 g/L	<u>-</u>	-	•	2 mL	-
40 g/L Ferrozine in 5 mM phosphate (pH 7.5 final)	-	-	-	8.8 mL	-
Ferric ammonium sulfate dodecahydrate, 40 g/L	-	<u>-</u>	-	3.8 mL	-
50% glucose with 25 mg/L thiamine HCl	40 mL	60 mL	10 mL	10 mL	10 mL

15

20

25

10

5

TABLE 4
Trace Metals Solution

		Conc. of Individ.	mL Indiv. Stock per
Compound	Molecular Weight	Solutions, g/L	liter of Working Stock
Distilled Water	_	-	823
Hydrochloric Acid	10/	Conc.	20
Cobalt Chloride hexahydrate	237.9	24.0	6.5
Boric acid	61.8	38.1	24
Zinc sulfate heptahydrate	287.5	35.3	50
Manganous sulfate	169.0	24.6	50
monohydrate	13		
Sodium molybdate dihydrate	242.0	23.8	2.0
Calcium chloride dihydrate	147.0	-	11.4 g
Vanadyl sulfate dihydrate	199.0	10.0	8.0
Nickel nitrate hexahydrate	290.8	5.0	8.0
Sodium selenite	173.0	5.0	8.0

30

35

Mutant isolates were generated by treatment with one or more of the following agents: nitrous acid (NA); ethyl methane sulfonate (EMS); or ultraviolet light (UV). Typically, glucose-depleted cells grown in standard liquid medium were washed and resuspended in 25 mM phosphate buffer, pH 7.2, diluted to approximately 10⁷ colony-forming units per mL (cfu/mL), exposed to the mutagen to achieve about 99% kill, incubated 4-8 hours in the dark, and spread onto standard agar medium, or agar media containing differential agents.

10

15

20

25

30

Some mutant colonies on standard agar medium were picked randomly and subcultured to master plates. Other isolation plates were inverted over chloroform to lyse cells on the surface of the colonies and allow them to release AA. Released AA was detected by spraying the treated plates with a solution of 2,6-dichrorophenol-indophenol (1.25 g/L in 70% EtOH). The ability of AA to reduce this blue redox dye to its colorless form is the basis for a standard assay of AA (Omaye, et al., 1979. Meth. Enzymol. 62:3-11.). Colonies derived from mutagenized cells were saved to master plates for further evaluation if their clear halos were significantly larger than the halos typical of the other mutants in that group. Other mutagenized cells were spread onto plates containing an AA detection system incorporated directly into the agar. This system is based on the ability of AA to reduce ferric iron to ferrous iron. The compound ferrozine (3-(2-pyridyl)-5,6- bis(4-phenylsulfonic acid)-1,2,4-triazine) was present in the agar to complex with the ferrous iron and give a violet color reaction. The ferrozine agar formulation is shown in Table 3. Colonies giving the darkest color reactions were master-plated. When screening for non-AA-producing strains (blocked mutants), white colonies were chosen against a background of relatively dark colonies.

For primary screening of tube cultures, cells were inoculated from master plates into 4 mL of Mg limiting medium in 16 x 125 mm test tubes, and tubes were shaken into a slanted position on a rotary shaker at 300 rpm for four days. After both three and four days of incubation aliquots were removed for AA assay and cell density determination. Those for AA assay were centrifuged at 1500 x g for 5 min and the resulting supernates were removed for either colorimetric assay or high pressure liquid chromatography (HPLC). Promising isolates were retested in tube culture. Those passing the tube screen were tested in shake flasks.

For secondary screening of flask cultures, cells were inoculated into 50 mL of standard flask medium in 250 mL baffled shake flasks, and incubated on a rotary shaker at 180 rpm until glucose depletion (24-48 hours). A second series of flasks of Mg-sufficient standard medium was inoculated from the first set to a cell density of 0.15 A₆₂₀, and incubated for 24 hours. A third series of Mg-limiting flask medium was inoculated from the second set by a 1/50 dilution and incubated for 96 hours. Flasks were sampled for AA analysis and cell density measurements during this time as required.

10

15

20

Aliquots for supernatant AA analysis were centrifuged at 5000 x g for 5 min. Aliquots for total whole broth AA analysis were first extracted for 15 min with an equal volume of 5% trichloroacetic acid (TCA) before centrifugation. Aliquots of the resulting supernates were removed for either colorimetric assay or HPLC analysis.

For colorimetric assay of AA, a modification of the method of Omaye, et al. (1979. Meth. Enzymol. 62:3-11) was used. Twenty-five μ L aliquots of culture supernates were added to wells of 96-well microplates, and 125 μ L of color reagent was added. The color reagent consisted of four parts 0.5% aqueous 2,2'-dipyridyl and one part 8.3 mM ferric ammonium sulfate in 27 % (v/v) o-phosphoric acid, the two components being mixed immediately before use. After one hour, the absorbance at 520 nm was read. AA concentration was calculated by comparison of the absorbances of AA standards.

HPLC analysis was based on that of Running, et al., (1994). Supernates were chromatographed on a Bio-Rad HPX-87H organic acid column (Bio-Rad Laboratories, Richmond, CA) with 13 mM nitric acid as solvent, at a flow rate of 0.7 mL/min at room temperature. Detection was at either 254 nm using a Waters 441 detector (Millipore Corp., Milford, MA), or at 245 nm using a Waters 481 detector. This system can distinguish between the L- and D- isomers of AA.

For dry weight determinations of cell density, 5 mL whole broth samples were centrifuged at 5000 x g for 5 min, washed once with distilled water, and the pellet was washed into a tared aluminum weighing pan. Cells were dried for 8-24 h at 105°C. Cell weight was calculated by difference.

Table 5 shows the abilities of various mutants of Prototheca to synthesize AA.

TABLE 5

AA Synthesizing Ability of Various Prototheca Mutants in Flask Screen

Strain	Specific AA Formation, mg AA per L/Culture A during Mg-limited Incubation		
	2 Days Incubation	4 Days Incubation	
ATCC 75669	22	35	
EMS13-4	79	166	
UV213-1	0	0	
UV218-1	0	0	
UV244-1	0	0	

25

Strain	Specific AA Formation, mg AA per L/Culture Ag		
	during Mg-limited Incubation		
	2 Days Incubati n	4 Days Incubation	
UV244-15	58	68	
UV77-247	56	83	
UV140-1	67	100	
UV164-6	91	131	
NA21-14	27	78	
UV82-21	0	0	
UV127-10	50	95	
SP2-3	3	4	

10 The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3. ATCC No. _____, identified as Prototheca moriformis EMS13-4 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms 15 for the Purpose of Patent Procedure. ATCC No. _____, identified as Prototheca moriformis UV127-10 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. 20 ATCC No. _____, identified as Prototheca moriformis SP2-3 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

25 Example 4

30

The following example shows that both growing and resting cells of *Prototheca* can rapidly convert L-galactose and L-galactono-γ-lactone to AA, and that conversion of D-mannose to AA by *Prototheca* is more rapid than conversion of D-glucose.

Shake flask cultures of the mutant strain UV77-247 were grown to glucose depletion in standard liquid medium (Table 3). Cells were washed twice and resuspended in complete medium with the glucose substituted by one of the compounds listed below.

15

20

25

30

35

Cell suspensions were incubated for 24 hours at 35° C with shaking, and the entire suspension was extracted with TCA as above and assayed for AA.

Tables 6-8 show that both growing and resting cells of strain UV77-247 can rapidly convert L-galactose and L-galactono-γ-lactone to AA. In these experiments, D-fructose and D-galactose were converted to AA at the same rate as D-glucose, suggesting that they are metabolized to AA through the same route as D-glucose. None of the organic acids suggested in the literature to be intermediates in the biosynthesis of AA were converted to AA, including sorbosone, which has been proposed as an intermediate by Saito et al. (1990 Plant Physiol. 94:1496-1500).

10 TABLE 6
Conversion of Compounds by Resting Cells of Strain UV77-247

		AA Relative to No
Substrate (50 mM)	Total AA, mg/L	Substrate Control
L-galactose	965	623
L-galactono-γ-lactone	818	476
D-fructose	590	248
D-glucosone	589	247
D-glucose	584	242
D-galactose	542	200
D-glucose (10 mM)	388	46
D-gluconolactone	382	40
D-gulono-γ-lactone	366	24
D-glucuronate	364	22
L-sorbosone	342	0
None	342	0
2-keto-D-gluconic acid	341	-1
D-isoascorbic acid (10 mM)	330	-12
D-glucuronolactone	329	-13
D-gluconic acid	309	-33
D-galacturonic acid	297	-45
L-idonate	296	-46

Since strain UV77-247 converted L-galactose and L-galactono-γ-lactone to AA much more rapidly than it did glucose, it suggests that these compounds are intermediates in the AA biosynthetic pathway and that they are "downstream" from glucose.

The data in Tables 7 and 8 also show that growing and resting cells of UV77-247 consistently convert D-mannose to AA at a rate greater than that of glucose.

TABLE 7

Conversion of Compounds t AA by Resting Cells of Strain UV77-247

	Ascorbic Acid, mg/L.			
Compound	25.5 h	30 h	47 h	
L-galactose	667	718	620	
_galactono-γ-lactone	644	681	749	
D-glucosone	465	462	354	
D-mannose	448	462	399	
D-fructose	402	408	367	
d-glucose	395	404	351	
D-galactose	352	361	337	
none	287	288	258	

35

5

TABLE 8

Conversion of Compounds to AA by Growing Cells of Strain UV77-247

		Ascorbic	Acid, mg/L	A ₆₂₀	AAVA ₆₂₀
	Compound	25.5 h		44 h	
15	L-galactose	249	506	4.5	112
	D-mannose	228	488	5.6	87
	L-galactono-γ-lactone	214	342	5.0	68
	D-glucose	178	398	5.9	67
	D=fructose	1.81	383	5:9	65
20	D-glucosone	176	362	5.7	64
	D-galactose	185	380	5.9	64
	none	182	249	4.4	57
	D-gluconic acid (K)	178	262	5.0	52
	L-idonate (Na)	182	232	4:7	49
25	2-keto-D-gluconic acid	182	255	5.3	48
	2-deoxy-D-glucose	181	227	4.8	47
	D-glucuronic acid lactone	165	218	5.0	44
	D-glucuronic acid (Na)	173	241	5.6	43
	L-gulono-γ-lactone	152	195	5.0	39
30	L-sorbosone	178	160	4.7	34
	D-glucono-δ-lactone	130	190	5.7	33
•	D-galacturonic acid	130	180	6.0	30

These cells converted L-galactose, L-galactono-γ-lactone and D-mannose to AA more rapidly than they did glucose, suggesting that mannose exerts its effect in the biosynthetic pathway "downstream" from glucose.

Example 5

Using the methods described above, a collection of mutants was assembled. The specific AA formation for representative mutants are shown in Table 5. The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3.

These isolates were tested for their ability to convert compounds which could be converted to AA by strain UV77-247. Testing was done as in Example 4. Results are shown in Table 9.

TABLE 9

Conversion of Compounds to AA by Resting Cells
of Mutant Strains of *Prototheca* of Varying Abilities to Synthesize AA

		-	Absolut	e AA, mg/L		
Strain	Buffer	Glucose	L-galactose	L-gal-γ-lact.	Mannose	Fructose
EMS13-4	53	97	191	173	139	ND
UV127-10	45	140	213	140	128	143
SP2-3	19	19	204	146	24	27
NA21-14	61	80	147	158	118	115
UV82-21	15	16	183	175	18	17
UV213-1	16	15	170	.135	17	16
UV218-1	16	18	136	176	19	21
UV244-1	16	16	164	162	16	16
UV244-15	26	77	30	21	94	89
UV244-16	28	64	53	53	53	66

ND = Not Determined

These data suggest that the mutational blocks in those strains which convert fructose and mannose to AA poorly are before ("upstream" from) L-galactose and L-galactono- γ -lactone in the pathway.

Example 6

The following example shows that magnesium inhibits early steps in the production of AA.

To address the question of whether magnesium actually inhibits AA synthesis, strain NA45-3 (ATCC 209681) was grown in magnesium (Mg)-limited and Mg-sufficient medium. ATCC No. 209681, identified as *Prototheca moriformis* NA45-3 (Source:

20

25

10

5

repeated mutagenesis of ATCC No. 75669; Eucaryotic alga. Division Chlorophyta, Class Chlorophyceae, Order Chlorococcales), was deposited on March 13, 1998, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Cells from both cultures were harvested and resuspended in the cell-free supernate from the Mg-limited culture, and to half of each cell suspension additional magnesium was added in order to bring the level in the suspension to the Mg-sufficient level. The four conditions under which assays were run were as follows.

10

5

TABLE 10

Conditions Used to Test the Effect of Magnesium on AA Production

Condition	Magnesium concer	ntration, g/L, during:
	Growth	Assay
1Mg>1Mg	0.02	0.02
1Mg>10Mg	0.02	0.2
10Mg>1Mg	0.2	0.02
10Mg>10Mg	0.2	0.2

15

20

25

30

Substrates previously shown to lead to the formation of AA, namely D-glucose, D-glucosone, D-fructose. D-galactose, D-mannose, and L-galactono-γ-lactone, were added at 20 g/L to the four cell suspensions. Accumulation of AA after 24 hours was measured and compared to a control in which no substrate was added. The results of this study are shown graphically in Fig. 4.

When cells growing under magnesium-limited conditions were incubated with substrates in low-magnesium broth (1Mg>1Mg condition), all showed significant and similar accumulation of AA over the control condition. When the same cells were incubated in high magnesium broth (1Mg>10Mg condition), the accumulation of AA was reduced about 40% for all substrates except D-mannose and L-galactono-γ-lactone, suggesting that 1) the rate-limiting step in the conversion of D-glucose, D-glucosone, D-fructose, and D-galactose to AA is inhibited by magnesium or 2) magnesium stimulates an enzyme which results in the conversion of these compounds to some other compound(s), reducing the amount of substrate available for AA synthesis. On the other

10

15

20

25

hand, conversion of D-mannose and L-galactono-γ-lactone appeared to be unaffected by the presence of magnesium in the resuspension buffer, indicating that either 1) magnesium-inhibited enzymes are not involved in the conversion of these substrates to AA or 2) D-mannose and L-galactono-γ-lactone enter the pathway far enough downstream from the point where they can be siphoned off by side reactions involving Mg-requiring enzymes.

When cells were grown under magnesium-sufficient conditions, very little AA accumulation from any of the D-sugars was observed, regardless of the level of magnesium in the resuspension broth. Accumulation of AA from L-galactono-γ-lactone, however, was enhanced over that observed when cells are grown in Mg-limited conditions. This suggests that enzymes early in the pathway are repressed under Mg-sufficient conditions. Thus, the D-substrates all behaved similarly, with the exception of the apparent lack of magnesium inhibition of D-mannose conversion to AA. This would suggest that D-mannose enters the AA biosynthetic pathway at a point other than the other D-sugars.

Figs. 2A and 2B represent some of the fates of glucose in plants. The first enzymatic step in this scheme which commits carbon to glycolysis is the conversion of fructose-6-P to fructose-1,6-diP by phosphofructokinase (PFK). This reaction is essentially irreversible, and leads to the well known TCA cycle and oxidative phosphorylation, with concomitant ATP and NADH/NADPH generation. PFK has an absolute requirement for magnesium. If magnesium is limiting, this reaction could slow and eventually stop, blocking the flow of carbon through glycolysis and beyond, and would result in cessation of cell division even in the presence of excess glucose. One would expect fructose-6-P to accumulate under these conditions, fueling AA synthesis by the pathway shown in Figs. 1 and 2.

Example 7

The following example shows the correlation in *Prototheca* between AA production and the activity levels of the enzymes in the AA pathway.

10

15

20

25

Phosphomannose isomerase (PMI) Assay

PMI activity was first assayed (See Fig. 1). Ten strains representing a range of AA productivities were grown according to the standard protocol to measure AA-synthesizing ability. Cells were harvested 96 hours into magnesium-limited incubation, washed and resuspended in buffer containing 50 mM Tris/10 mM MgCl₂, pH 7.5. The suspended cells were broken in a French press, spun at 30,000 x g for 30 minutes, and desalted through Sephadex G-25 (Pharmacia PD-10 columns). Reactions were carried out in the reverse direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 0.15 U phosphoglucose isomerase (EC 5.3.1.9). 0.5 U glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 1.0 mM NADP. Reactions were initiated by addition of 3 mM (final) mannose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₁₄₁/min. From these activities was subtracted the activities measured in identical reaction mixtures lacking the M-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reactions. Protein in the original extracts was determined by the method of Bradford, using a kit from Bio-Rad Laboratories (Hercules, CA). All enzymes and nucleotides were purchased from Sigma Chemical(Co. (St. Louis, MO).

Phosphomannomutase (PMM) Assay

Phosphomannomutase was measured in a similar manner in the same strains, but these assay reaction mixtures also contained 0.25 mM glucose-1,6-diphosphate, 0.5 U commercially available PMI, and the reactions were started with the addition of 3.0 mM (final) mannose-1-phosphate rather than mannose-6-phosphate.

Phosphofructokinase (PFK) Assay

To shed light on the possibility that the enhancement of AA concentration in cultures which were limited for magnesium was due to a diversion of carbon from normal metabolism by a reduced activity of the first committed step in glycolysis (PFK) the strains were also assayed to confirm the presence of this enzyme activity. Cells were cultured, washed and broken as above. Extracts were centrifuged at 100,000 x g for 90 min before

10

15

20

25

30

desalting. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 1.5 mM dithiothreitol, 0.86 U aldolase (EC 4.1.2.13), 1.4 U α-glycerophosphate dehydrogenase (EC 1.1.1.8), 14 U triosephosphate isomerase (EC 5.3.1.1), 0.11 mM NADH, and 1.0 mM ATP. Reactions were initiated by addition of 5 mM (final) fructose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities were subtracted the activities measured in identical reaction mixtures lacking the F-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reaction. Protein in the original extracts was determined as above.

GDP-D-mannose pyrophosphorylase (GMP) Assay

These same mutant strains were assayed for the next enzyme in the proposed pathway, GMP. Strains were grown both according to the standard Mg-limiting protocol (harvested 43-48 hours into magnesium-limited incubation) and in standard Mg-sufficient medium (harvesting all cells before glucose depletion). Washed cell pellets were resuspended in 50 mM phosphate buffer, pH 7.0, containing 20% (v/v) glycerol and 0.1 M sodium chloride (3 mL buffer/g wet cells), and broken in a French press. Crude extracts were spun at 15,000 x g for 15 minutes. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of 50 mM phosphate/4 mM MgCl, buffer, pH 7.0, containing 1 mM GTP. Reactions were initiated by addition of 1 mM (final) mannose-1-phosphate. Final reaction volume was 0.1 mL. Reaction mixtures were incubated at 30 C for 10 min, filtered through a 0.45 µm PVDF syringe filter, and analyzed for GDP-mannose by HPLC. A Supelcosil SAX1 column (4.6 x 250 mm) was used with a solvent gradient (1 mL/min) of: A - 6 mM potassium phosphate, pH 3.6; B - 500 mM potassium phosphate, pH 4.5. The gradient was: 0-3 min, 100% A; 3-10 min, 79% A; 10-15 min, 29% A. Column temperature was 30 C. Two assays that showed enzyme activity proportional to the amount of protein were averaged. Control no-substrate and no-extract reactions were also run. Specific activity was calculated by normalizing the activity for protein concentration in the reaction. Protein in the original extracts was determined as above.

10

15

20

25

GDP-D-mannose: GDP-L-galactose Epimerase Assay

Further tests measured the activities of the next enzyme in the proposed pathway, GDP-D-mannose:GDP-L-galactose epimerase. Strains were grown according to the standard protocol, harvested 43-48 hours into magnesium-limited incubation, washed, and resuspended in buffer containing 50 mM MOPS/5 mM EDTA, pH 7.2. Washed pellets were broken in a French press, and spun at 20,000 x g for 20 min. Protein determinations were made as above and a dilution series of each was made, ranging from 0.4 to 2.2 mg protein/mL. 50 µL aliquots of these dilutions were added to 10 µL aliquots of 6.3 mM GDP-D-mannose in which a portion of this substrate was universally labeled with ¹⁴C in the mannose moiety. This substrate had an activity of 16 µCi/mL before dilution into the reaction mixture. Reactions were stopped after 10 min by transferring 20 µL of the mixture into microfuge tubes containing 20 µL of 250 mM trifluoroacetic acid (TFA) containing 1.0 g/L each D-mannose and L-galactose. These tubes were sealed and boiled for 10 min, cooled, spun for 60 sec in a Beckman Microfuge E, and 5 μL of each hydrolysate was spotted on 20 x 20 cm plastic-backed EM Science Silica gel 60 thin-layer chromatography plates (#5748/7), with 1 cm lanes created by scoring with a blunt stylus. After drying, plates were twice chromatographed for 2.5 hours in ethyl acetaterisopropanol-water, 65:22.3:112.7 (figlites were diried between runs). Spots of free sugars were visualized by spraying dried plates with 0.5% p-anisaldehyde in a 62% ethanolic solution of 0.89 M sulfuric acid and 0.17 mM glacial acetic acid, and heating at 105 C for about 15 min. Spots of L-galactose and D-mannose were cut from the plates and counted in a scintillation counter (Beckman model 2800). For time-zero control counts, 16.7 µL of each extract dilution was added to 23.3 µL of the labeled substrate above, which had been diluted 1:7 with the TFA/mannose/galactose solution.

Table 11 summarizes the results of the five enzyme assays for the strains tested, along with their specific AA formations.

10

15

20

25

30

TABLE 11
Specific Enzyme Activities (mU)* of Selected Mutant *Prototheca* Strains

	44.0				G	MP	
Strain	AA Specific Form, mg/g	PMI	PMM	PFK	Mg- limited	Mg- sufficient	Epimerase
UV164-6	78.4						0.79
EMS13-4	73.7	10.8	69.6	13.5	2.6	6.8	0.78
UV140-1	69.9						0.78
NA45-3	61.4						0.58
UV77-247	44.4					<u> </u>	0.52
UV127-10	40.1	11.1	45.8	24.4	4.3	5.9	0.39
UV244-15	24.5	14.3	41.5		3.1	5.3	0.42
NA21-14	23.6	12.1	60.3	47.4	2.4	7.6	0.27
ATCC 75669	21:9						0.28
UV244-16	5.0	16.5	85.6		4.3	5.2	
SP2-3	2.0	17.7	47.0	64.5	2.0	7.5	0.03
UV218-1	0.4	15.9	72.1		2.7	7.0	0.83
UV213-1	0.1	19.7	47.7	32.6	3.2	6.7	0.60
UV82-21	0.0	14.6	70.6	30.4	4.1	7.5	0.15
UV244-1	0.0	18.2	51.1		5.5	12	0.15

Units: PMI and PMM, nmoles NADP reduced per min/mg protein; PFK, nmoles NADH oxidized per min/mg protein; GMP, nmoles GDP-D-mannose formed per min/mg protein; epimerase, nmoles GDP-L-galactose formed per min/mg protein.

The only enzyme which showed a strong correlation between activity and the ability to synthesize AA was the GDP-D-mannose:GDP-L-galactose epimerase. This correlation is depicted in Fig. 5. All of the strains which produced measurable amounts of AA had measurable amounts of epimerase activity. The converse was not true: four of the strains which synthesize little or no AA had significant epimerase activities. These strains are candidates for having mutations which affect enzymatic steps downstream from the epimerase. Since all of the strains tested can synthesize AA from L-galactose and L-galactono-γ-lactone (see Examples 4 and 5), the genetic lesion(s) in these four mutants must lie between GDP-L-galactose and free L-galactose.

Example 8

The next example shows the relationship between GDP-D-mannose:GDP-L-galactose epimerase activity and the degree of magnesium limitation in two strains, the original unmutagenized parent strain ATCC 75669, and one of the best AA producers,

35 EMS13-4 (ATCC _____).

10

15

20

25

30

Four flasks of each strain were grown according to the standard protocol. One culture of each was harvested 24 hours into magnesium-limited incubation, and every 24 hours thereafter for a total of four days. One flask of each strain was also harvested 24 hours into magnesium sufficient incubation. All cultures had glucose remaining when harvested. Fig. 6 shows graphically the AA productivity and epimerase activity in EMS13-4 and ATCC 75669 as the cultures became Mg-limited. Epimerase activity in EMS13-4 was significantly greater than that in ATCC 75669 at all time points. There was also a concurrent rapid rise in both AA productivity and epimerase activity in EMS13-4 as the cultures became increasingly Mg-limited. While there was a moderate increase in AA productivity in ATCC 75669 as Mg became more limiting, there was no effect on epimerase activity.

Example 9

The following example shows the results of epimerase assays performed with extracts of two *E. coli* strains into which were cloned the *E. coli* gene for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The *E. coli* K12 *wca* gene cluster is responsible for cholanic acid production; *wcaG* encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5 (5' TAGAATTCAGTAAACAACGAGTTTTTATTGCTGG 3'; SEQ ID NO:12) and WG Xhol 3 (5' AACTCGAGTTACCCCCAAAGCGGTCTTGATTC 3'; SEQ ID NO:13). The 973-bp PCR product was ligated into the vector pPCR-Script SK(+) (Stratagene, LaJolla, CA). The 973-bp ExoRII/XhoI fragment was moved from this plasmid into the ExoRII/XhoI sites of pGEX-5X-1 (Amersham Pharmacia Biotech, Piscataway, NJ), creating plasmid pSW67-1. Plasmid pGEX-5X-1 is a GST gene fusion vector which adds a 26-kDa GST moiety onto the N-terminal end of the protein of interest. E. coli BL21(DE3) was transformed with pSW67-1 and pGEX-5X-1, resulting in strains BL21(DE3)/pSW67-1 and BL21(DE3)/pGEX-5X-1.

The E. coli wcaG sequence (nucleotides 1 through 966 of SEQ ID NO:3) was also amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5-2 (5' CTGGAGTCGAATTCATGAGTAAACAACGAG 3'; SEQ ID NO:14) and WG PstI 3

10

15

20

25

30

(5' AACTGCAGTTACCCCCGAAAGCGGTCTTGATTC 3'; SEQ ID NO:15). The 976-bp PCR product was ligated into a pPCR-Script (Stratagene). The 976-bp ExoRII/PstI fragment was moved from this plasmid into the ExoRII/PstI sites of expression vector pKK223-3 (Amersham Pharmacia Biotech), creating plasmid pSW75-2. *E. coli* JM105 was transformed with pKK223-3 and pSW75-2, resulting in strains JM105/pKK223-3 and JM105/pSW75-2.

All six strains were grown in duplicate at 37°C with shaking in 2X YTA medium until an optical density of 0.8-1.0 at 600 nm was reached (about three hours). 2X YTA contains 16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride and 100 mg/L ampicillin. One of each culture was induced by adding isopropyl β -D-thiogalactopyranoside (IPTG) to 1 mM final concentration. All 12 cultures were incubated for an additional four hours, washed in 0.9% NaCl, and the cells were frozen at -80°C. Prior to pelleting the cells for preparation of extracts, a portion of each culture was used for a plasmid DNA miniprep to confirm the presence of the appropriate plasmids in these strains. A protein preparation of each culture was also run on SDS gels to confirm expression of a protein of the appropriate size where expected. Frozen pellets were thawed, resuspended in 2.5 mL MOPS/EDTA buffer, pH 7.2, broken in a French Press (10,000 psi), spun for 20 min at 20,000 x g, assayed for protein as above and diluted to 0.01, 0.1, 1.0 and 3 mg/mL protein.

Induction of the strain BL21(DE3)/pGEX-5X-1 resulted in high-level expression of a 26-kDa protein indicating the synthesis of the native GST protein. Induction of strain BL21(DE3)/pSW67-1 resulted in high-level expression of a 62-kDa protein, indicating the synthesis of the native GST protein (26K) fused to the wcaG gene product (36K). An aliquot of the fusion protein was treated with the protease Factor Xa (New England Biolabs, Beverly, MA), which cleaves near the GST/wcaG junction. Induction of the strain JM105/pSW75-2 resulted in high level expression of a 36-kDa protein, indicating the synthesis of the wcaG gene product. No such protein was detected in JM105/pKK223-3 (vector only).

Next, it was of interest to test extracts in the standard epimerase assay described in Example 7 to determine if any of the extracts containing the wcaG product could bring

20

25

30

35

about the conversion of GDP-D-mannose to GDP-L-galactose. The extracts to be assayed are:

BL21(DE3) Group

- 1. BL21(DE3) uninduced
- 2. BL21(DE3) induced with 1mM IPTG
 - 3. BL21(DE3)/pGEX-5X-1 uninduced
 - 4. BL21(DE3)/pGEX-5X-1 induced with 1mM IPTG
 - 5. BL21(DE3)/pSW67-1 uninduced
 - 6. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; fusion protein intact
- 10 7. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; GST moiety cleaved

JM105 Group

- 1. JM105 uninduced
- 2. JM105 induced with 1mM IPTG
- 3. JM105/pKK223-3 uninduced
- 15 4. JM105/pKK223-3 induced with 1 mM IPTG
 - 5. JM105/pSW75-2 uninduced
 - 6. JM105/pSW75-2 induced with 1 mM IPTG

Extracts 1 and 7 from the BL21(DE3) group and extracts 1 and 6 from the JM105 group were tested for GDP-D-mannose:GDP-L-galactose epimerase-like activity in a pilot experiment. In this initial experiment, no epimerase activity was detected in any of the extracts. At this time, such a result can be attributed to a number of possibilities. First, it is possible that the wcaG gene product is incapable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, although this conclusion can not be reached until several other parameters are tested. Second, it is possible that under the assay conditions which are satisfactory to measure activity for the endogenous GDP-D-mannose: GDP-Lgalactose epimerase, the wcaG gene product does not have GDP-D-mannose:GDP-Lgalactose epimerase-like activity. Therefore, alternate conditions should be tested. Additionally, confirmation experiments should be performed to confirm the accuracy of the pilot conditions. Third, although the BL21(DE3) and the JM105 clones produce proteins of the expected size, the constructs have not been sequenced to confirm the proper coding sequence for the wcaG gene product and thereby rule out PCR or cloning errors which may render the wcaG gene product inactive. Fourth, the protein formed from the cloned sequence is full-length, but inactive, for example, due to incorrect tertiary structure (folding). Fifth, the gene is overexpressed, resulting in accumulation of insoluble and inactive protein products (inclusion bodies). Future experiments will attempt to

determine whether the constructs have or can be induced to have the ability to catalyze the conversion of GDP-D-mannose to GDP-L-galactose, and to use the sequences to isolate the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Table 12 provides the atomic coordinates for Brookhaven Protein Data Bank

5 Accession Code 1bws:

TABLE 12

	HEADER	EPIMERASE/REDUCTASE 27-SEP-98 1BWS
	TITLE	CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE
	TITLE	2 EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN
10	TITLE	3 THE BIOSYNTHESIS OF GDP-L-FUCOSE
	COMPND	MOL_ID: 1;
	COMPND	2 MOLECULE: GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE;
	COMPND	3 CHAIN: A;
	COMPND	4 ENGINEERED: YES:
15	COMPND	5 BIOLOGICAL UNIT: HOMODIMER
	SOURCE	MOL_ID: 1;
	SOURCE	2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI;
	SOURCE	3 EXPRESSION SYSTEM: ESCHERICHIA COLI
	KEYWDS	EPIMERASE/REDUCTASE, GDP-L-FUCOSE BIOSYNTHESIS
20	EXPDTA	X-RAY DIFFRACTION
	AUTHOR	DE M.RIZZITONETTIFLORA
	REVDAT	1 13-JAN-99 1BWS 0
	JRNL	AUTH DE D.RIZZITONETTIVIGEVANISTURLABISSOFLORA
	JRNL	TITL GDP-4-KETO-6-DEOXYD-MANNOSE EPIMERASE/REDUCTASE
25	JRNL	TITL 2 FROM ESCHERICHIA COLL, A KEY ENZYME IN THE
	JRNL	TITL 3 BIOSYNTHESIS OF GDP-L-FUCOSE, DISPLAYS THE
	JRNL	TITL 4 STRUCTURAL CHARACTERISTICS OF THE RED PROTEIN
	JRNL	TITL 5 HOMOLOGY SUPERFAMILY
	JRNL	REF STRUCTURE (LONDON) 1998
30	JRNL	REFN 9999
	REMARK	1
	REMARK	2
	REMARK	2 RESOLUTION. 2.2 ANGSTROMS.
	REMARK	3
35	REMARK	3 REFINEMENT.
	REMARK	3 PROGRAM : TNT
	REMARK	3 AUTHORS : TRONRUD, TEN EYCK, MATTHEWS
	REMARK	3
	REMARK	3 DATA USED IN REFINEMENT.
40	REMARK	3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2
	REMARK	3 RESOLUTION RANGE LOW (ANGSTROMS) : 15.0

	REMARK 3 DATA CUTOFF (SIGMA(F)): 0.0	
	REMARK 3 COMPLETENESS FOR RANGE (%): 99.7	
	REMARK 3 NUMBER OF REFLECTIONS : 24481	
	REMARK 3	
5	REMARK 3 USING DATA ABOVE SIGMA CUTOFF.	
	REMARK 3 CROSS-VALIDATION METHOD : NONE	
	REMARK 3 FREE R VALUE TEST SET SELECTION : NULL	
	REMARK 3 R VALUE (WORKING + TEST SET) : NULL	
	REMARK 3 R VALUE (WORKING SET) : NONE	
10	REMARK 3 FREE R VALUE : NULL	
	REMARK 3 FREE R VALUE TEST SET SIZE (%): NONE	
	REMARK 3 FREE R VALUE TEST SET COUNT : NULL	
	REMARK 3	
	REMARK 3 USING ALL DATA, NO SIGMA CUTOFF.	
15	REMARK 3 R VALUE (WORKING + TEST SET, NO CUTOFF) : NULL	
	REMARK 3 R VALUE (WORKING SET, NO CUTOFF): 0,202	
	REMARK 3 FREE R VALUE (NO CUTOFF) : 0.287	
	REMARK 3 FREE R VALUE TEST SET SIZE (%, NO CUTOFF) ; NULL	
	REMARK 3 FREE R VALUE TEST SET COUNT (NO CUTOFF) : NULL	
20	REMARK 3 TOTAL NUMBER OF REFLECTIONS (NO CUTOFF) : NULL	
	REMARK 3	
	REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.	
	REMARK 3 PROTEIN ATOMS : 2527	
	REMARK 3 NUCLEIC ACID ATOMS : NULL	
25	REMARK 3 OTHER ATOMS : 109	
	REMARK 3	
	REMARK 3 WILSON B VALUE (FROM FCALC, A**2) : NULL	
	REMARK 3	
••	REMARK 3 RMS DEVIATIONS FROM IDEAL VALUES. RMS WEIGHT COUNT	
30	REMARK 3 BOND LENGTHS (A): 0.016; NULL; NULL	
	REMARK 3 BOND ANGLES (DEGREES) : 1.65 ; NULL ; NULL	
	REMARK 3 TORSION ANGLES (DEGREES) : NULL ; NULL ; NULL	
	REMARK 3 PSEUDOROTATION ANGLES (DEGREES) : NULL ; NULL ; NULL	
٥.5	REMARK 3 TRIGONAL CARBON PLANES (A): NULL ; NULL ; NULL	
35	REMARK 3 GENERAL PLANES (A): NULL : NULL : NULL	
	REMARK 3 ISOTROPIC THERMAL FACTORS (A**2) ; NULL ; NULL ; NULL	
	REMARK 3 NON-BONDED CONTACTS (A): NULL; NULL; NULL	
	REMARK 3	
	REMARK 3 INCORRECT CHIRAL-CENTERS (COUNT) : NULL	
40	REMARK 3	
	REMARK 3 BULK SOLVENT MODELING.	
	REMARK 3 METHOD USED : NULL	
	REMARK 3 KSOL : NULL	
	REMARK 3 BSOL : NULL	
45	REMARK 3	

	REMARK 3 RESTRAINT LIBRARIES.
	REMARK 3 STEREOCHEMISTRY: NULL
	REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS : NULL
E	REMARK 3
5	REMARK 3 OTHER REFINEMENT REMARKS; NULL
	REMARK 4
	REMARK 4 1BWS COMPLIES WITH FORMAT V. 2.2, 16-DEC-1996
	REMARK 5
10	REMARK 5 WARNING
10	REMARK 5 1BWS; THIS IS LAYER 1 RELEASE.
	REMARK 5
	REMARK 5 PLEASE NOTE THAT THIS ENTRY WAS RELEASED AFTER DEPOSITOR
	REMARK 5 CHECKING AND APPROVAL BUT WITHOUT PDB STAFF INTERVENTION.
15	REMARK 5 AN AUXILIARY FILE, AUXIBWS.RPT, IS AVAILABLE FROM THE
13	REMARK 5 PDB FTP SERVER AND IS ACCESSIBLE THROUGH THE 3DB BROWSER. REMARK 5 THE FILE CONTAINS THE OUTPUT OF THE PROGRAM WHAT CHECK AND
	REMARK 5 OTHER DIAGNOSTICS.
	REMARK 5 NOMENCLATURE IN THIS ENTRY, INCLUDING HET RESIDUE NAMES
20	REMARK 5 AND HET ATOM NAMES, HAS NOT BEEN STANDARDIZED BY THE PDB
20	REMARK 5 PROCESSING STAFF. A LAYER 2 ENTRY WILL BE RELEASED SHORTLY
	REMARK 5 AFTER THIS STANDARDIZATION IS COMPLETED AND APPROVED BY THE
	REMARK 5 DEPOSITOR. THE LAYER 2 ENTRY WILL BE TREATED AS A
	REMARK 5 CORRECTION TO THIS ONE, WITH THE APPROPRIATE REVDAT RECORD.
25	REMARK 5
	REMARK 5 FURTHER INFORMATION INCLUDING VALIDATION CRITERIA USED IN
	REMARK 5 CHECKING THIS ENTRY AND A LIST OF MANDATORY DATA FIELDS
	REMARK 5 ARE AVAILABLE FROM THE PDB WEB SITE AT
	REMARK 5 HTTP://www.pdb.bnL.gov/,
30	REMARK 200
	REMARK 200 EXPERIMENTAL DETAILS
•	REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
	REMARK 200 DATE OF DATA COLLECTION : AUG-1997
	REMARK 200 TEMPERATURE (KELVIN) : 120
35	REMARK 200 PH : 6.5
	REMARK 200 NUMBER OF CRYSTALS USED : 1
	REMARK 200
	REMARK 200 SYNCHROTRON (Y/N): N
	REMARK 200 RADIATION SOURCE : NONE
40	REMARK 200 BEAMLINE : NULL
	REMARK 200 X-RAY GENERATOR MODEL : RIGAKU RU200
	REMARK 200 MONOCHROMATIC OR LAUE (M/L) : M
	REMARK 200 WAVELENGTH OR RANGE (A): 1.5418
	REMARK 200 MONOCHROMATOR : NULL
45	REMARK 200 OPTICS : NULL

	REMARK 200
	REMARK 200 DETECTOR TYPE : IMAGE PLATE
	REMARK 200 DETECTOR MANUFACTURER : RAXIS
	REMARK 200 INTENSITY-INTEGRATION SOFTWARE : MOSFIM
5	REMARK 200 DATA SCALING SOFTWARE : SCALA
	REMARK 200
	REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 24481
	REMARK 200 RESOLUTION RANGE HIGH (A): 2.2
	REMARK 200 RESOLUTION RANGE LOW (A): 15.0
10	REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NONE
	REMARK 200
	REMARK 200 OVERALL.
	REMARK 200 COMPLETENESS FOR RANGE (%) : 99.7
	REMARK 200 DATA REDUNDANCY : 4.3
- 15	REMARK 200 R MERGE (I): 0.057
	REMARK 200 R SYM (I): NONE
	REMARK 200 <i sigma(i)=""> FOR THE DATA SET : 13.6</i>
	REMARK 200
	REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
20	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL
	REMARK 200 COMPLETENESS FOR SHELL (%) : NULL
	REMARK 200 DATA REDUNDANCY IN SHELL : NULL
	REMARK 200 R MERGE FOR SHELL (I) : NULL
25	
25	REMARK 200 R MERGE FOR SHELL (I) : NULL
25	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 R SYM FOR SHELL (L): NULL
25	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK-200 R-SYM-FOR-SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL : NULL</i>
	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R SYM FOR SHELL (L) : NULL REMARK 200 < I/SIGMA(I) > FOR SHELL : NULL REMARK 200
25 30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK-200-R-SYM-FOR-SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL : NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL</i>
	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 SI/SIGMA(I) FOR SHELL: NULL REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL
	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL: NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 STARTING MODEL: NULL</i>
	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL: NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL</i>
30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL : NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL</i>
	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL: NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL</i>
30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL : NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%): NULL</i>
30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL: NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL</i>
30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 <i sigma(i)=""> FOR SHELL: NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%): NULL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 280</i>
30 35	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R-SYM-FOR-SHELL : NULL REMARK 200 OLIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE; MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 200 CRYSTAL REMARK 200 CRYSTAL REMARK 200 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 200 REMARK 200 CRYSTALLIZATION CONDITIONS: NULL
30	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R-SYM-FOR-SHELL : NULL REMARK 200 - REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE; MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL; NULL REMARK 200 REMARK; NULL REMARK 200 REMARK 200 REMARK 200 REMARK 280 REMARK 280 CRYSTAL REMARK 280 CRYSTAL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 280 REMARK 280 CRYSTALLIZATION CONDITIONS: NULL REMARK 280 CRYSTALLIZATION CONDITIONS: NULL
30 35	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R-SYM-FOR-SHELL (L)-:-NULL REMARK 200 - REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK: NULL REMARK 200 REMARK: NULL REMARK 280 REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%): NULL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 280 CRYSTALLIZATION CONDITIONS: NULL REMARK 280 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION CONDITIONS: NULL
30 35	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R SYM FOR SHELL (L) -: NULL REMARK 200 < I/SIGMA(I) > FOR SHELL : NULL REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%); NULL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 280 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION SYMMETRY REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1
30 35	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R-SYM-FOR-SHELL (L)-:-NULL REMARK 200 <i sigma(i)=""> FOR SHELL : NULL REMARK 200 REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK 200</i>
30 35	REMARK 200 R MERGE FOR SHELL (I): NULL REMARK 200 - R SYM FOR SHELL (L) -: NULL REMARK 200 < I/SIGMA(I) > FOR SHELL : NULL REMARK 200 DIFFRACTION PROTOCOL: NULL REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR REMARK 200 SOFTWARE USED: NULL REMARK 200 STARTING MODEL: NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 200 REMARK; NULL REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%); NULL REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL REMARK 280 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION CONDITIONS: NULL REMARK 290 CRYSTALLIZATION SYMMETRY REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1

	REMARK 290 1555 X.Y.Z
	REMARK 290 2555 -Y,X-Y,Z+2/3
	REMARK 290 3555 Y-X,-X,2+1/3
	REMARK 290 4555 Y.XZ
5	REMARK 290 5555 X-Y,-Y,1/3-Z
	REMARK 290 6555 -X,Y-X,2/3-Z
	REMARK 290
	REMARK 290 WHERE NNN -> OPERATOR NUMBER
	REMARK 290 MMM -> TRANSLATION VECTOR
10	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS
	REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM
	REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY
	REMARK 290 RELATED MOLECULES.
15	REMARK 290 SMTRY1 1 1.000000 0.000000 0.000000 0.00000
	REMARK 290 SMTRY2 1 0.000000 1.000000 0.000000 0.00000
	REMARK 290 SMTRY3 1 0.000000 0.000000 1.000000 0.00000
	REMARK 290 SMTRY1 2 -0.500045 -0.865974 0.000000 0.00000 REMARK 290 SMTRY2 2 0.866077 -0.499955 0.000000 0.00000
20	REMARK 290 SMTRY2 2 0.866077 -0.499955 0.000000 0.00000 REMARK 290 SMTRY3 2 0.000000 0.000000 1.000000 50.58553
20	REMARK 290 SMTRY1 3 -0.499955 0.865974 0.000000 0.00000
	REMARK 290 SMTRY2 3 -0.866077 -0.500045 0.000000 0.00000
	REMARK 290 SMTRY3 3 0.000000 0.000000 1.000000 25.29276
	REMARK 290 SMTRY1 4 -0.500045 0.865922 0.000000 0.00000
25	REMARK 290 SMTRY2 4 0.866077 0.500045 0.000000 0.00000
	REMARK 290 SMTRY3 4 0.000000 0.000000 -1.000000 0.00000
	REMARK 290 SMTRY1 5 1.000000 0.000104 0.000000 0.00000
	REMARK 290 SMTRY2 5 0.000000 -1.000000 0.000000 0.00000
	REMARK 290 SMTRY3 5 0.000000 0.000000 -1.000000 25.29276
30	REMARK 290 SMTRY1 6 -0.499955 -0.866026 0.000000 0.00000
	REMARK 290 SMTRY2 6 -0.866077 0.499955 0.000000 0.00000
	REMARK 290 SMTRY3 6 0.000000 0.000000 -1.000000 50.58553
	REMARK 290
25	REMARK 290 REMARK: NULL
35	REMARK 465
	REMARK 465 MISSING RESIDUES
	REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE
	REMARK 465 EXPERIMENT. (M=MODEL NUMBER: RES=RESIDUE NAME: C=CHAIN REMARK 465 IDENTIFIER: SSSEQ=SEQUENCE NUMBER: I=INSERTION CODE):
40	REMARK 465
10	REMARK 465 M RES C SSSEQI
	REMARK 465 MET A 1
	REMARK 465 SER A 2
	REMARK 465 ASP A 317
45	REMARK 465 ARG A 318

REMARK 465 PHE A 319 REMARK 465 ARG A 320 REMARK 465 GLY A 321 REMARK 800 5 REMARK 800 SITE REMARK 800 SITE_IDENTIFIER: CAT REMARK 800 SITE_DESCRIPTION: REMARK 800 CATALYTIC RESIDUE REMARK 800	
REMARK 465 GLY A 321 REMARK 800 STE REMARK 800 SITE REMARK 800 SITE IDENTIFIER: CAT REMARK 800 SITE DESCRIPTION: REMARK 800 CATALYTIC RESIDUE REMARK 800	
REMARK 800 5 REMARK 800 SITE REMARK 800 SITE_IDENTIFIER; CAT REMARK 800 SITE_DESCRIPTION; REMARK 800 CATALYTIC RESIDUE REMARK 800	
5 REMARK 800 SITE REMARK 800 SITE IDENTIFIER: CAT REMARK 800 SITE DESCRIPTION: REMARK 800 CATALYTIC RESIDUE REMARK 800	
REMARK 800 SITE_IDENTIFIER: CAT REMARK 800 SITE DESCRIPTION: REMARK 800 CATALYTIC RESIDUE REMARK 800	
REMARK 800 SITE DESCRIPTION: REMARK 800 CATALYTIC RESIDUE REMARK 800	
REMARK 800 CATALYTIC RESIDUE	
REMARK 800	
	·····
	**
10 REMARK 600 SITE_IDENTIFIER: CAT	
REMARK 800 SITE DESCRIPTION:	
REMARK 800 CATALYTIC RESIDUE	·
REMARK 800	
REMARK 800 SITE IDENTIFIER: CAT	
15 REMARK 800 SITE DESCRIPTION:	
REMARK 800 CATALYTIC RESIDUE	
REMARK 800	
DBREF 1BWS A 3 316 SWS P32055 FCL_ECOLI	
SEORES 1 A 321 MET SER LYS GLN ARG VAL PHE ILE ALA GL	Y HIS ARG GLY
20 SEORES 2 A 321 MET VAL GLY SER ALA ILE ARG ARG GLN LE	U GLU GLN ARG
SEORES 3 A 321 GLY ASP VAL GLU LEU VAL LEU ARG THR AR	G ASP GLU LEU
SEORES 4 A 321 ASN LEU LEU ASP SER ARG ALA VAL HIS AS	P PHE PHE ALA
SEORES 5 A 321 SER GLU ARG ILE ASP GLN VAL TYR LEU AL	A ALA ALA LYS
SEORES 6 A 321 VAL GLY GLY ILE VAL ALA ASN ASN THR TY	R PRO ALA ASP
25 SEORES 7 A 321 PHE_ILE_TYR_GLN_ASN_MET_MET_ULE_GLU=SE	R-ASN-1063-1063
SEORES 8 A 321 HIS ALA ALA HIS GLN ASN ASP VAL ASN LY	S LEU LEU PHE
SEORES 9 A 321 LEU GLY SER SER CYS ILE TYR PRO LYS LE	U ALA LYS GLN
SEORES 10 A 321 PRO MET ALA GLU SER GLU LEU LEU GLN GL	
SEORES 11 A 321 PRO THR ASN GLU PRO TYR ALA ILE ALA LY	S ILE ALA GLY
30 SEORES 12 A 321 ILE LYS LEU CYS CLU SER TYR ASN ARG GI	N TYR GLY ARG
SECRES 13 A 321 ASP TYR ARG SER VAL MET PRO THR ASN LE	U TYR GLY PRO
SECRES 14 A 321 HIS ASP ASN PHE HIS PRO SER ASN SER HI	S VAL ILE PRO
SEORES 15 A 321 ALA LEU LEU ARG ARG PHE HIS GLU ALA TH	R ALA GLN ASN
SECRES 16 A 321 ALA PRO ASP VAL VAL TRP GLY SER GI	Y THR PRO MET
35 SEORES 17 A 321 ARG GLU PHE LEU HIS VAL ASP ASP MET AL	A ALA ALA SER
SECRES 18 A 321 ILE HIS VAL MET GLU LEU ALA HIS GLU VA	L TRP LEU GLU
SECRES 19 A 321 ASN THR GLN PRO MET LEU SER HIS ILE AS	N VAL GLY THR
SEORES 20 A 321 GLY VAL ASP CYS THR ILE ARG ASP VAL AL	A GLN THR ILE
SEORES 21 A 321 ALA LYS VAL VAL GLY TYR LYS GLY ARG VA	L VAL PHE ASP
46	S LEU LEU ASP
40 SEORES 22 A 321 ALA SER LYS PRO ASP GLY THR PRO ARG LY	
40 SEORES 22 A 321 ALA SER LYS PRO ASP GLY THR PRO ARG LY SEORES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TY	R HIS GLU ILE
SEORES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TY	
SECRES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TY SECRES 24 A 321 SER LEU GLU ALA GLY LEU ALA SER THR TY	

	HETSYN NDP NADP	
	FORMUL 2 NDP C21 H23 N7 O17 P3 3-	
	FORMUL 3 HOH *109 (H2 O1)	
	HELIX 1 1 MET A 14 GLN A 25 1	12
5	HELIX 2 2 SER A 44 GLU A 54 1	11
	HELIX 3 3 ILE A 69 THR A 74 1	66
	HELIX 4 4 PRO A 76 ASN A 97 1	22
	HELIX 5 5 SER A 108 ILE A 110 5	3
	HELIX 6 6 GLU A 121 GLU A 123 5	3
10	HELIX 7 7 GLU A 134 TYR A 154 1	21
	HELIX 8 8 VAL A 180 ALA A 193 1	14
	HELIX 9 9 VAL A 214 GLU A 226 1	13
	HELIX 10 10 HIS A 229 GLU A 234 1	6
	HELIX 11 11 ILE A 253 VAL A 264 1	12
15	HELIX 12 12 THR A 288 GLN A 292 1	5
	HELIX 13 13 LEU A 301 GLU A 314 1	14
	SHEET 1 A 6 VAL A 29 VAL A 32 0	
	SHEET 2 A 6 GLN A 4 ALA A 9 1 N GLN A 4 O GLU A 30	
	SHEET 3 A 6 GLN A 58 LEU A 61 1 N GLN A 58 O PHE A 7	
20	SHEET 4 A 6 LYS A 101 LEU A 105 1 N LYS A 101 O VAL A 59	
	SHEET 5 A 6 ASP A 157 PRO A 163 1 N ASP A 157 O LEU A 102	
	SHEET 6 A 6 ILE A 243 VAL A 245 1 N ILE A 243 O MET A 162	
	SHEET 1 B 2 ASN A 165 TYR A 167 0	
	SHEET 2 B 2 PHE A 211 HIS A 213 1 N LEU A 212 O ASN A 165	
25	SHEET 1 C 2 ASP A 198 TRP A 202 0	
	SHEET 2 C 2 ARG A 269 ASP A 273 1 N ARG A 269 O VAL A 199	
	SITE 1 CAT 1 TYR 136	
	SITE 2 CAT 1 LYS 140	
	SITE 3 CAT 1 SER 107	
30	CRYST1 104.200 104.200 75.880 90.00 90.00 120.00 P 32 2 1 6	
	ORIGX1 1.000000 0.000000 0.000000 0.000000	
	ORIGX2 0.000000 1.000000 0.000000 0.00000	
	ORIGX3 0.000000 0.000000 1.000000 0.00000	
2.5	SCALE1 0.009597 0.005541 0.000000 0.00000	
35	SCALE2 0.000000 0.011081 0.000000 0.00000	
	SCALE3 0.000000 0.000000 0.013179 0.00000	
	HETATM 1 0 HOH 1 55.652 -16.806 22.535 1.00 8.73	0
	HETATM 2 0 HOH 3 58.494 -10.639 18.740 1.00 13.17	0
40	HETATM 3 O HOH 4 58.230 -11.715 27.770 1.00 19.07	0
40	HETATM 4 0 HOH 5 57.252 -3.759 30.107 1.00 11.21	0
	HETATM 5 0 HOH 6 58.298 -10.011 25.527 1.00 15.74	0
	HETATM 6 0 HOH 7 49.321 6.583 38.815 1.00 19.33	0
	HETATM 7 0 HOH 8 53.785 -4.262 22.464 1.00 10.94	0
15	HETATM 8 0 HOH 10 74.652 2.888 9.141 1.00 17.80	
45	HETATM 9 0 HOH 11 49.761 0.826 32.896 1.00 22.02	0

	HETATM	10_	٥	нон	12	55.530 -11.162 28.526 1.00 11.39	0
	HETATM	_11_	0	нон	13	75.027 7.034 27.353 1.00 16.30	0
	HETATM	12	0	нон	14	49,994 -2,314 11,032 1.00 21.33	0
	HETATM	13	0	нон	15	61,323 -8.959 29.657 1.00 22.84	0
5	HETATM	14	0	нон	16	61.029 -11.560 29.131 1.00 21.24	0
	HETATM	15	٥	нон	17	50,684 5.881 10.130 1.00 15.88	0
	HETATM	16	0	нон	18	64.506 -6.302 32.989 1.00 21.05	0
	HETATM	17	0	нон	19	57.856 -16.398 25.085 1.00 22.86	0
.,	HETATM	18	0_	нон	20	38.979 26.536 19.070 1.00 21.08	0
10	HETATM	19	0	нон	21	38.042 33.487 21.909 1.00 19.01	0
	HETATM	20	0	нон	24	38.172 35.775 20.827 1.00 33.46	0
	HETATM	21	0	нон	25	70.916 -11.128 15.244 1.00 31.37	0
	HETATM	22	0	нон	26	54.205 19.360 28.396 1.00 35.76	0
	HETATM	23	0	нон	27	50.436 2.654 16.783 1.00 12.25	0
15	HETATM	24	0	нон	28	69.692 19.108 38.979 1.00 49.77	0
	HETATM	25	0	нон	29	56.432 -8.877 19.303 1.00 22.52	<u> </u>
	HETATM	26	0	нон	30	60.832 3.415 42.349 1.00 17.39	0
	HETATM	27	0	нон	31	53.889 -12.706 29.764 1.00 22.40	0
-	HETATM	28	0	нон	32	37.887 26.373 28.058 1.00 18.09	0
20	HETATM	29	0	нон	33	49.201 11.173 26.867 1.00 33.95	0
	HETATM	30	0	нон	34	46.762 -0.278 31.394 1.00 20.63	0
	HETATM	31	٥	нон	35	41.731 27.568 43.302 1.00 27.39	0
	HETATM	32	0	нон	36	66.827 11.202 28.929 1.00 13.23	0
	HETATM	_33	0	нон	37	46.834 14.396 40.819 1.00 46.02	0
.25	HETATM_	-3.4	_0_	нон	3.8	61342 10.64 43868 10.0 2.65.68	0
	HETATM	35	0	HOH	42	70,597 16,422 37,837 1.00 19.26	0
	HETATM	36	0	нон	44	72,275 -9,089 33,407 1.00 22.11	0
	HETATM	_37	0	нон	45	42.685 34.461 33.955 1.00 17.32	0
	HETATM	38	0	нон	46	53,480 13,394 38,364 1.00 20,19	0
30	HETATM	39	0	нон	47	56.085 21.757 44.744 1.00 33.50	0
	HETATM	40	0	нон	48	35.741 32.691 23.517 1.00 19.49	
	HETATM	41	0	нон	49	40,458 36.700 34.312 1.00 34.53	0
	HETATM	42	0	нон	50	75.440 7.267 29.948 1.00 18.07	0
	HETATM	43	0	нон	51	47.476 18.347 20.851 1.00 34.16	0
35	HETATM	44	0	нон	53	52.837 ~16.344 19.587 1.00 25.92	0
	HETATM	45	0	11011		44 437 0 030 00 400 4 00 01 04	0
			<u> </u>	нон	55	46,415 9.073 20.108 1.00 31.91	
	HETATM	46		нон	57	45.912 35.170 36.133 1.00 35.55	0
,	HETATM HETATM						<u> </u>
		46	0	нон	57	45.912 35.170 36.133 1.00 35.55	
40	HETATM	46 47	0	нон	57 58	45.912 35.170 36.133 1.00 35.55 60.247 -2.880 41.919 1.00 16.85	0
40	HETATM	46 47 48	0	нон Нон	57 58 60	45.912 35.170 36.133 1.00 35.55 60.247 -2.880 41.919 1.00 16.85 64.974 6.086 24.501 1.00 32.16	0
40	HETATM HETATM	46 47 48 49	0	нон нон нон	57 58 60 61	45.912 35.170 36.133 1.00 35.55 60.247 -2.880 41.919 1.00 16.85 64.974 6.086 24.501 1.00 32.16 52,103 4.683 4.978 1.00 35.72	o
40	HETATM HETATM HETATM	46 47 48 49 50	0 0 0	нон нон нон нон	57 58 60 61 62	45.912 35.170 36.133 1.00 35.55 60.247 -2.880 41.919 1.00 16.85 64.974 6.086 24.501 1.00 32.16 52.103 4.683 4.978 1.00 35.72 50.888 40.154 36.463 1.00 38.35 44.373 31.233 37.336 1.00 20.07 57.280 27.757 42.451 1.00 21.74	0 0
40	HETATM HETATM HETATM HETATM	46 47 48 49 50	0 0 0	НОН НОН НОН НОН НОН	57 58 60 61 62 63	45.912 35.170 36.133 1.00 35.55 60.247 -2.880 41.919 1.00 16.85 64.974 6.086 24.501 1.00 32.16 52.103 4.683 4.978 1.00 35.72 50.888 40.154 36.463 1.00 38.35 44.373 31.233 37.336 1.00 20.07	

	HETATM	55	0	нон	67	42.746 25.153 23.465 1.00 27.05	_0
	HETATM	56	0	нон	68	53.638 -16.457 32.292 1.00 31.71	_0
	HETATM	57	0	нон	69	33.390 41.716 31.408 1.00 29.92	٥
	HETATM	58	٥	нон	70	57.768 17.897 42.434 1.00 25.75	_0
5	HETATM	59	٥	нон	71	75,647 9.164 11,766 1.00 35,13	_0
	HETATM	60	٥	нон	72	62.032 33.292 44.749 1.00 46.18	0
	HETATM	61	_0_	нон	73	47.310 14.312 34.285 1.00 31.18	0
	HETATM	62	0	нон	74	79.660 -3.947 15.913 1.00 34.63	Q
	HETATM	63	0	нон	75	46.929 5.343 4.550 1.00 23.14	<u> </u>
10	HETATM	64	0	нон	7.6	73.475 12,039 28.412 1.00 27.26	0
	HETATM	65	0	HOH	77	46.297 -6.982 30.032 1.00 43.41	_0
	HETATM	66	0	нон	78	68.528 -3.422 40.869 1.00 38.47	0
	HETATM	67	٥	нон	79	62.080 -1.448 42.803 1.00 24.60	. 0
	HETATM	68	٥	нон	80	65.330 18.150 40.726 1.00 41.00	٥
15	HETATM	69_	٥	нон	81	51,775 16,128 37,607 1.00 25,11	0
	HETATM	70	0	нон	83	54.266 28.682 43.313 1.00 27.61	_0
	HETATM	71	0	нон	85	73,291 -15,479 20.603 1.00 37.54	_0
	HETATM	72	0	нон	86	34.760 21.479 28.544 1.00 43.87	0
	HETATM	73	0_	нон	87	37.326 24.131 29.677 1.00 24.47	ڡ
20	HETATM	74	٥	нон	88	65.168 20.148 6.735 1.00 26.10	0
	HETATM	75	٥	нон	89_	59.196 12.089 13.630 1.00 25.24	0
	HETATM	76	0	нон	91	66.576 ~6.235 40.279 1.00 43.11	0
	HETATM	77	٥	нон	93	37.339 29.394 25.515 1.00 27.56	0
	MTATAH	_78	0.	НОН	94	52.339 -17.014 42.271 1.00 48.96	0
25	HETATM	79	0	нон	95	40.511 32.927 31.717 1.00 22.46	0
	HETATM	80	0	нон	96	78.580 13.121 34.138 1.00 27.98	0
	HETATM	81	0	нон	97	65.090 15.704 34.876 1.00 18.96	0
	HETATM	82	ڡ	нон	99	84.562 2.951 27.181 1.00 35.92	0
	HETATM	83	0	нон	100	50.386 9.761 9.646 1.00 23.18	_0
30	HETATM	84	0	нон	101	67,649 -0.851 38.764 1.00 24.99	0
	HETATM	85	0	нон	102	44.001 4.293 34.315 1.00 31.13	0
	HETATM	86	؎	нон	_103	59.386 -5.071 26.211 1.00 29.10	0
	HETATM	87_	0	нон	104	77.364 4.745 41.506 1.00 35.32	0
	HETATM	88	0	нон	105	59.034 21.201 32.414 1.00 23.43	0
35	HETATM	89	_0_	нон	106	42.463 34.698 14.327 1.00 38.86	0
	HETATM	90	0_	нон	107	70.217 14.292 20.864 1.00 42.39	0
	HETATM	_91_	_0_	нон	108	76.999 8.130 25.862 1.00 32.91	0
	HETATM	92	<u> </u>	НОН	109	49.766 29.937 22.173 1.00 42.52	0
40	HETATM	93	0_	нон	110	72.473 13.536 38.823 1.00 33.32	Q
40	HETATM	94	0_	нон		64.328 -12.084 38.608 1.00 37.99	
	HETATM	95	0_	нон	112	60.161 16.382 42.682 1.00 35.68	<u></u> 0
	HETATM	96	0	нон	113	47.602 13.639 27.016 1.00 26.01	0
	HETATM	97	_0_	нон	115	64.606 11.644 40.107 1.00 30.33	0
4.5	HETATM	98	_0_	нон	116	61.231 -15.137 27.255 1.00 38.76	0
45	HETATM	99	0	нон	117	65,324 -11,223 35.098 1.00 30.45	هــــ

	HETATM 100	0	нон	119	56,602	17.219	44.932	1.00 36.53	0
	HETATM 10		нон	120	37.564	19.860	23,135	1.00 31.27	o
	HETATM 102	0_	нон	121	64.845	5.057	21.132	1.00 45.57	Q
	HETATM 103	0	нон	123	63.391	16.801	26.898	1.00 38.46	0
5	HETATM 104	Lo	нон	124	42.567	6,134	32,635	1.00 31.56	0
	HETATM 10	5 0	нон	125	72.485	13,236	35.059	1.00 29.61	0
	HETATM 10	5_0_	нон	126	65.229	3,650	44,032	1.00 36.86	0
	HETATM 10	7 0	нон	127	37.089	7,148	31.083	1.00 39.58	0
	HETATM 10	0	нон	128	73,327	10.546	12.123	1.00 34.97	0
10	HETATM 105	0	нон	129	74.450	10.299	26.598	1.00 30.80	0
	HETATM 11	A05*	NDP	<u>1</u>	67.524	13.055	26.692	1.00 36.42	0
•	HETATM 11	LAC5*	NDP	<u> 1</u>	68.089	12.297	25.614	1.00 9.30	с
	HETATM 112	AC4*	NDP	λ 1	69.601	12,124	25.858	1.00 27.73	с
	HETATM 11	3 A04*	NDP	A 1	70.193	11.258	24.848	1.00 22.67	0
15	HETATM 11	LAC3*	NDP	<u> 1</u>	70.484	13.390	25.873	1.00 17.83	с
	HETATM 115	A03*	NDP	<u> 1</u>	71.192	13.436	27.066	1.00 16.11	0
	HETATM 11	AC2*	NDP 2	A 1	71.373	13.220	24.626	1.00 11.46	C
	HETATM 11	A02*	NDP 2	A 1	72.623	13.886	24.655	1.00 31.96	0
	HETATM 11	AC1*	NDP	λ 1	71.510	11.702	24.656	1.00 19.02	
20	HETATM 119	03	NDP	A 1	65.336	13.590	26.129	1.00 20.59	Q
	HETATM 12	NO5*	NDP	<u> 1</u>	63.536	11.943	26.448	1.00 28.99	0
	HETATM 12	NC5*	NDP	A 1	64.328	10.843	25.957	1.00 24.89	с
	HETATM 12	NC4*	NDP :	A 1	63.467	9.646	25.686	1.00 31.79	c
	HETATM 123	NO4*	NDP	λ 1	62.837	9.337	26.908	1.00 28.82	0
_25	HETATM 12	_NC3*	NDP	<u> </u>	62.340	9.837	24.665	1.00 11.50	c
(A C)	HETATM 12	NO3*	NDP	λ 1	62.891	9.402	23.461	1.00 28.60	0
	HETATM 12	NC2*	NDP :	A 1	61.152	8.996	25.138	1.00 28.11	c
	HETATM 12	7 NO2*	NDP	<u> 1</u>	60.881	7,662	24.715	1.00 24.30	
	HETATM 121	NC1*	NDP	A 1	61.947	8.875	26.580	1.00 35.35	с
30	HETATM 12	AP2*	NDP	A 1	73.104	15.069	23.823	1.00 32.96	P
	HETATM 130	AOP1	NDP	A_1	74.500	15.308	24.308	1.00 37.84	0
	HETATM 13	AOP2	NDP	A 1	72.797	14.925	22.348	1.00 36.66	<u> </u>
	HETATM 13	AOP3	NDP 2	λ 1	72.163	16.217	23.958	1.00 31.97	0
	HETATM 13	AP.	NDP	A 1	66.660	14.257	26.393	1.00 26.17	xx
35	HETATM 13	<u> </u>	NDP .	A1_	66.886	14.795	25.047	1.00 15.31	XX
	HETATM 13	A02	NDP	A 1	66.439	15,207	27.521	1.00 34.39	xx
	HETATM 13	AN9	NDP	A 1	71.820	11.224	23.353	1.00 13.63	xx
	HETATM 13	AC8	NDP	A 1	71,104	11.316	22.200	1.00 12.41	XX
	HETATM 131	AN7	NDP	A 1	71.758	10.835	21.161	1.00 15.71	
40	HETATM 13	AC5	NDP	A 1		10.313		1.00 16.17	
	HETATM 140				74.053	9.657		1.00 31.35	
	HETATM 14		NDP					1.00 12.59	
	HETATM 14		NDP		75.078			1.00 17.56	
	HETATM 14				74,971			1.00 15.44	
45	HETATM 14							1.00 24.82	

	HETATM 145	AC4 NDP A	1	73.036 10.653 23.047 1.00 17.48	XX
	HETATM 146	NP NDP A	1_	64,183 13.106 27,191 1.00 25,47	N
	HETATM 147	NO1 NDP A	1	63.142 14.169 27.253 1.00 28.69	N
	HETATM 148	NO2 NDP A	1_	64.837 12.643 28.492 1.00 24.32	N
5	HETATM 149	NN1 NDP A	_1_	60.598 9.775 27.109 1.00 23.63	N
	HETATM 150	NC2 NDP A	_1	60.143 10.905 26.442-99.00 78.36	N
	HETATM 151	NC3 NDP A	1_	59.070 11.648 27.007-99.00100.00	N
	HETATM 152	NC7 NDP A	_1_	58.497 13.017 26.528-99.00100.00	N
	HETATM 153	NO7 NDP A	1	59.358 13.703 25.972-99.00100.00	N
10	HETATM 154	NN7 NDP A	1	57.207 13.400 26.912-99.00 84.38	N
	HETATM 155	NC4 NDP A	_1_	58.442 11.146 28.137-99.00100.00	N
	HETATM 156	NC5 NDP A	_1_	58.912 9.963 28.754-99.00100.00	<u>N</u>
	HETATM 157	NC6 NDP A	_1_	59.951 9.266 28.147-99.00100.00	N
	ATOM 158	N LYS A	3	76.227 -5.632 44.315 1.00 61.49	N
15	ATOM 159	CA LYS A	3	76.152 -4.302 43.684 1.00 58.00	c
	ATOM 160	C LYS A	_3_	75.985 -4.421 42.171 1.00 52.79	c
	ATOM 161	O LYS A	3	76.921 -4.737 41.419 1.00 44.76	0
ŕ	ATOM 162	CB LYS A	_3_	77.359 -3.417 44.030 1.00 59.74	<u></u> c
	ATOM 163	CG LYS A	3	77.011 -1.944 44.314 1.00 50.87	<u>c</u>
20	ATOM 164	CD LYS A	3	78.208 -1.161 44.894 1.00 61.21	c
	ATOM 165	CE LYS A	3	77.855 -0.377 46.186 1.00100.00	<u></u>
	ATOM 166	NZ LYS A	3_	78.857 -0.401 47.343 1.00 70.61	N
	ATOM 167	N GLNA	4_	74.746 -4.242 41.747 1.00 45.15	N
	ATOM 168	CA GLN A	4	74.408 -4.326 40.347 1.00 37.18	<u></u>
25	ATOM 169	C GLN A	4	74.983 -3.166 39.561 1.00 34.93	c
	ATOM 170	O GLN A	4_	75.127 -2.050 40.087 1.00 28-48	
	ATOM 171	CB GLN A	4_	72.915 -4.445 40.221 1.00 34.65	
	ATOM 172	CG GLN A	4	72.456 -5.854 40.584 1.00 31.82	c
	ATOM 173	CD GLN A	_4_	72.570 -6.788 39.405 1.00 79.25	c
30	ATOM 174	OE1 GLN A	4	72.165 -6.452 38.286 1.00100.00	0
	ATOM 175	NE2 GLN A	4	73.206 -7.925 39.623 1.00 80.24	N
	ATOM 176	N ARG A	5	75.475 -3.495 38.375 1.00 27.16	N
	ATOM 177	CA ARG A	5	76.146 -2.546 37.483 1.00 39.16	<u>c</u>
	ATOM 178	C ARG A	5	75.191 -2.018 36.433 1.00 38.22	c
35	ATOM 179	O ARG A	5	74.938 -2.698 35.438 1.00 32.44	0
	ATOM 180	CB ARG A	5	77.398 -3.163 36.826 1.00 41.76	<u>C</u>
	ATOM 181	CG ARG A	_ 5	78.692 -2.954 37.663 1.00 37.34	<u> </u>
	ATOM 182	CD ARG A	5	80.015 -3.236 36.876 1.00 32.99	<u>c</u>
	ATOM 183	NE ARG A	5	81.036 -2.203 37.125 1.00 25.71	N
40	ATOM 184	CZ ARG A	5	81.617 -1.488 36.169 1.00 32.53	c
	ATOM 185	NH1 ARG A	5	81.293 -1.704 34.904 1.00 40.07	N
	ATOM 186	NH2 ARG A	5	82.516 -0.551 36.474 1.00100.00	N
		N VAL A	6	74.743 -0.773 36.659 1.00 32.08	N
	ATOM 188	-	6	73.715 -0.082 35.881 1.00 28.89	c
45	ATOM 189		6	74.161 1.021 34.897 1.00 29.37	
				.,	

	MOTA	190	0	VAL	A 6	74.745	2.041	35.274	1.00 22.50	0
	ATOM	191	СВ	VAL	A 6	72.577	0.378	36.813	1.00 23.52	c
	ATOM	192	CG1	VAL	A 6	71.366	0.960	36.006	1.00 20.29	C
	ATOM	193	ÇG2	VAL	A 6	72,108	-0.852	37,644	1.00 18.45	c
5	ATOM	194	N_	PHE	A 7	73.948	0.749	33.615	1.00 22.92	N
	ATOM	195	CA	PHE	A_7	74.267	1.710	32.573	1.00 27.15	<u>c</u>
	ATOM	196	С	PHE	<u> 7</u>	72.975	2.423	32,192	1.00 20.24	<u>c</u>
	ATOM	197	0_	PHE	A7	71.994	1.788	31.815	1.00 20.71	<u> </u>
	MOTA	198	СВ	PHE	A_7_	74.864	1.004	31.374	1.00 18.98	<u>C</u>
10	MOTA	199	CG	PHE	A_7	74.916	1.836	30.115	1.00 21.83	c
	ATOM	200	CD1	PHE	A_7_	75,521	3.087	30,108	1.00 19.36	c
	ATOM	201	CD2	PHE	A_7_	74.483	1.284	28.886	1.00 23.50	c
	ATOM	202	CE1	PHE	A7_	75.614	3.828	28.902	1.00 27.52	<u>C</u>
	ATOM	203	CE2	PHE	A 7	74.548	1.996	27.685	1.00 19.33	c
15	MOTA	204	CZ	PHE	A_7	75.128	3,255	27.673	1.00 18.59	c
	ATOM	205	N_	ILE	A 8	72.959	3.727	32.454	1.00 18.75	N
	ATOM	206	_CA_	ILE	<u>A</u> 8	71.844	4.588	32.112	1.00 14.25	c
	MOTA	207	_c	ILE	A 8	72.337	5.351	30.909	1.00 11.22	عـــــــــــــــــــــــــــــــــــــ
	MOTA	208	0_	ILE	<u>Α β</u>	73.259	6.165	30.998	1.00 17.76	0
20	MOTA	209	СВ	ILE	<u>A B</u>	71.507	5.605	33.212	1.00 14.15	<u>c</u>
	MOTA	210	CG1	ILE	A 8	71.356	4.949	34,582	1.00 8.24	c
	MOTA	211	CG2	ILE	A 8	70.183	6.342	32.874	1.00 16.85	<u>e</u>
	MOTA	212	CD1	ILE .	A 8	71.091	5.961	35,707	1.00 10.32	<u>c</u>
	MOTA	213	N_	ALA	<u> </u>	71.896	4.906	29.752	1.00 16.42	N
25	MOTA	214	CA	ALA	λ 9	72.256	5.559	28.513	1.00 18.74	<u>c</u>
	ATOM	215	С	ALA	A 9	71.530	ც.913	29,511	1,00-29,45	୍ଜ
	MOTA	216		ALA	A_9_	70.411	7.032	29.045	1.00 22.39	0
	MOTA	217	СВ	ALA	A_9_	71.808	4.731	27.311	1.00 14.43	c
	MOTA	218	<u> N</u>	GLY	A 10	72.199	7.922	27.940	1.00 20.06	N
30	ATOM	219	CA	GLY	A 10	71.706	9,284	27.911	1,00 18.62	<u>c</u>
	ATOM	220	_ <u>C</u>	GLY	A 10	71.407	9,819	29,305	1,00 16.40	<u>c</u>
	ATOM	221	_0_	GLY	A 10	70,379	10,448	29.481	1.00 17.36	o
	ATOM	222	<u>N</u>	HIS	A_11_	72.295	9.581	30.272	1.00 10.32	N
	MOTA	223	CA	HIS	A 11	72.068	9,966	31,688	1.00 13.90	с
35	ATOM	224	_ <u>C</u>	HIS	A 11	72.008	11.504	31.916	1.00 21.52	C
	MOTA	225	0	HIS	A 11	71.700	11.994	32.983	1.00 13.22	0
	ATOM	226	СВ	HIS	A 11	73.153	9.350	32.581	1.00 14.88	c
	ATOM	227	CG	HIS	A 11	74.502	9.948		1.00 23.73	C
	MOTA	228	ND1	HIS	A 11	75.239	9.648	31.197	1,00 24.90	N
40	ATOM	229	CD2	HIS	<u>A_11</u>	75.167	10.952	32.956	1.00 16.35	c
	MOTA	230	CE1	HIS	A_11_	76,317	10.407	31,170	1.00 22.54	<u>c</u>
	MOTA	231	NE2	HIS	<u> </u>	76,271	11.240	32.197	1,00 17.56	N
	ATOM	232	N_	ARG	A 12	72.310	12.288	30,908	1.00 22.31	<u> </u>
45	MOTA	233	CA	ARG	A 12	72.147	13.693	31.122	1.00 18.90	<u>c</u>

	MOTA	235	0	ARG A	12	70.572	15,426	30.604	1.00 25.37	0
	MOTA	236	СВ	ARG A	_12	73.352	14.418	30.587	1.00 25.93	<u>C</u>
	MOTA	237	CG	ARG A	12	74.582	13,943	31,279	1.00 53.87	<u>c</u>
	ATOM	238	CD	ARG A	12	75.757	14.619	30.699	1.00 32.53	с
5	MOTA	239	NE	ARG A	12	76.359	15.576	31.605	1.00 69.90	N
	ATOM	240	CZ	ARG A	12	76.971	16.675	31.178	1.00100.00	<u>C</u>
	MOTA	241	NH1	ARG A	12	77.001	16.948	29.867	1.00100.00	N
	MOTA	242	NH2	ARG A	12	77.526	17.508	32.056	1.00100.00	N
	MOTA	243	N_	GLY A	13	70.078	13.420	29.800	1.00 18.25	N
10	MOTA	244	_CA_	GLY A	13	68.802	13.904	29.258	1.00 16.50	<u>c</u>
	MOTA	245	<u> </u>	GLY A	13	67.849	14,144	30,428	1.00 18.88	с
	MOTA	246	0	GLY A	13	68.202	13.902	31.624	1.00 14.04	0
	MOTA	247	N_	MET A	14	66.653	14.632	30.103	1.00 16.00	N
	ATOM	248	CA	MET A	14	65.688	14.981	31.128	1.00 13.49	c
15	MOTA	249	<u>c</u>	MET A	14	65.293	13.760	31.901	1.00.14.02	<u> </u>
	MOTA	250	0_	MET A	14	65.408	13.713	33.145	1.00 17.06	0
	MOTA	251	СВ	MET A	14	64.442	15.605	30.524	1.00 11.57	<u>c</u>
	MOTA	252	CG	MET A	14	63.320	15.628	31.559	1.00 20.77	C
	ATOM	253	SD	MET A	14	61.926	16,766	31.110	1.00 29.16	s
20	MOTA	254	CE	MET A	14	62.527	17,108	29.574	1.00 30.68	C
	MOTA	255	N_	VAL A	15	64.798	12.769	31.158	1.00 25.23	N
	ATOM	256	CA	VAL A	15	64.439	11.468	31.738	1.00 20.90	c
	ATOM	257	С	VAL A	_15	65,654	10.713	32.378	1.00 17.26	<u>c</u>
	ATOM	258	0	VAL A	15	65.590	10,239	33.524	1.00 18.41	0
25	MOTA	259	СВ	VAL A	_15	63,752	10.550	30.680	1.00 23.25	<u>c</u>
	MOTA	260	CG1	VAL A	15	63.330	9,253	31.310	1.00 15.71	с
	ATOM	261	CG2	VAL A	15	62.528	11.193	30.183	1.00 13.40	C
	MOTA	262	N	GLY A	16	66.784	10.642	31.665	1.00 20.39	N N
	ATOM	263	CA	GLY A	16	67.941	9.904	32.186	1.00 19.54	c
30	ATOM	264	С	GLY A	_16	68.522	10,432	33.492	1.00 29.29	c
	MOTA	265	0	GLY A	16	68.896	9.659	34.434	1.00 16.91	0
	MOTA	266	<u>N</u>	SER A	17	68.642	11.755	33.499	1.00 12.53	N
	ATOM	267	<u>CA</u>	SER A	17	69,154	12.460	34.650	1.00 21.93	c
	MOTA	268	<u></u>	SER A	17	68.209	12.214	35.818	1.00 13.35	c
35	MOTA	269		SER A	17	68.677	11.957	36,915	1.00 24.19	0
	ATOM	270	СВ	SER A	17	69.378	13.942	34.333	1.00 15.52	<u>c</u>
	ATOM	271	OG	SER A	_17	68,153	14.619	34.372	1.00 22.95	0
	MOTA	272	N_	ALA A	18	66.896	12.143	35.590	1.00 17.52	N
•	MOTA	273	_CA_	A AJA	18	65.991	11.828	36.729	1.00 13.14	c
40	ATOM	274	<u>c</u>	ALA A	18	66,220	10.393	37,307	1.00 19.29	c
	MOTA	275	0	ALA A	18	66,149	10,150	38.522	1.00 16.94	0
	MOTA	276	СВ	ALA A	18	64,460	12,046	36.334	1.00 14.33	c
	MOTA	277	N	ILE A	19	66.484	9.432	36,430	1.00 20.80	N
	MOTA	278	_CA	ILE A	19	66.705	8.078	36.900	1.00 18.08	<u> </u>
45	MOTA	279	С	ILE A	19	67.975	8.090		1.00 16.09	c

	ATOM	280	_0	ILE A	19	68.018	7,530	38,820	1.00 20.	73	Q
	MOTA	281	СВ	ILE A	19	66,804	7,079	35.710	1.00 17.	58	C
	ATOM	282	CG1	ILE A	19	65.444	6.812	35,162	1.00 10.	09	Ç
	ATOM	283	CG2	ILE A	_19	67,309	5.666	36,133	1.00 21.	60	C
5	MOTA	284	CD1	ILE A	19	65.528	6.361	33.741	1.00 19.	05	c
	MOTA	285	N	ARG A	20	68.984	8.771	37.198	1.00 18.	13	N
	MOTA	286	CA	ARG A	20	70.286	8.897	37.836	1.00 20.	25	<u>c</u>
	MOTA	287	_C	ARG A	20	70.231	9.491	39.242	1.00 30.	62	Ç
	MOTA	288	0	ARG A	20	70.957	9.091	40.129	1.00 33.	00	0
10	ATOM	289	СВ	ARG A	20	71.201	9.743	36.957	1.00 11.	71	Ç
	MOTA	290	CG	ARG A	20	72.610	9.781	37,449	1.00 23.	79	C
	ATOM	291	CD	ARG A	20	72.881	11.107	38.060	1,00 36.	76	C
	MOTA	292	NE	ARG A	20	74.297	11,443	38.062	1.00 48.	34	N
	ATOM	293	CZ	ARG A	20	74.990	11.841	36.988	1.00100.	00	٤
15	MOTA	294	NH1	ARG A	20	74.393	11.931	35.808	1.00100.	00	N
	MOTA	295	NH2	ARG A	20	76.289	12.139	37,076	1.00100.	00	N
	MOTA	296	N_	ARG A	21	69.368	10.461	39,439	1.00 22.	10	N
	ATOM	297	CA	ARG A	21	69,216	11.052	40.750	1.00 17.	45	Ç
	MOTA	298	С	ARG A	21	68.721	10.007	41.730	1.00 26.	71	ç
20	MOTA	299	0	ARG A	21	69.147	10.001	42.885	1,00 30.	27	Q
	ATOM	300	СВ	ARG A	_21	68.142	12.144	40.708	1.00 17.	93	c
	ATOM	301	CG	ARG A	21	68.682	13,522	40.321	1.00 27.	57	c
	ATOM	302	CD	ARG A	21	67.586	14.599	40.130	1.00 23.	02	C
	ATOM	303	NE	ARG A	21	67.619	15.000	38.743	1.00 55.	12	N
25	ATOM	304	CZ	ARG A	21	66.538	15.103	37,995	1.00 10.	55	C
	ATOM	305	NH1	NG A	21	<i>6</i> 5,348	14.97A	30,552	J.00_29.	90	N.
	ATOM	306	NH2	ARG A	21	66.665	15.435	36.715	1.00 61.	45	N
	ATOM	307	N_	GLN A	22	67.713	9.223	41.345	1.00 27.	48	N
	MOTA	308	CA	GLN A	22	67.167	8.257	42.313	1.00 24.	79	C
30	MOTA	309	С	GLN A	22	68.137	7.127	42.547	1,00 31.	37	C
	ATOM	310	0	GLN A	22	68.394	6.724	43,685	1.00 27.	47	Q
	MOTA	311	СВ	GLN A	22	65.818	7.706	41.894	1.00 17.		C
	MOTA	312	CG	GLN A	22	64.921	8.745	41 .243	1.00 66.	14	Ç
	ATOM	313	CD	GLN A	22	63,425	8.456	41.397	1.00 41.	27	C
35	MOTA	314	OE1	GLN A	_22	63.002	7.329	41.762	1.00 29.	34	0
	MOTA	315	NE2	GLN A	22	62.610	9.464	41.046	1.00 20.	12	N
	MOTA	316	_N	LEU A	23	68.697	6.652	41.448	1.00 27.	99	N
	MOTA	317	CA	LEU A	23	69.649	5.575	41.500	1.00 24.	48	C
	MOTA	318	С	LEU A	23	70.828	5.971	42.334	1.00 28.	87	c
40	MOTA	319	0	LEU A	23	71.288		43.165	1.00 30.	79	0
40	MOTA								1.00 30. 1.00 22.		<u>၀</u>
40		319	0	LEU A		71.288	5.218		1.00 22.	72	
40	MOTA	319 320	O CB CG	LEU A	23 23	71.288 70.036	5.218 5.107	40.089 39.658	1.00 22.	72 16	c
40	ATOM ATOM	319 320 321	O CB CG CD1	LEU A LEU A LEU A	23 23	71.288 70.036 68.966	5.218 5.107 4.072 3.083	40.089 39.658 38.481	1.00 22. 1.00 26.	72 16 80	<u>с</u>

	MOTA	325 C	A GLU	J A	24	72	.419	7.675	42.909	1.00	3.79	c
	MOTA	326	GLU	A	24	72	.363	7.388	44.412	1.00 3	5.94	c
	MOTA	327 0	GLU	J.A.	24	73	.381	7.140	45.031	1.00 3	9.07	. 0
	MOTA	328 C	B GLU	LA_	24	72	647	9.165	42.653	1.00 3	16.21	<u> </u>
5	MOTA	329 C	G GLU	LA_	24_	74	.068	9.482	42.243	1.00 4	12.54	С
	MOTA	330 C	D GLU	Į.A.	24	74	158	10.689	41.333	1.00	9.51	c
	MOTA	331 C	E1 GLU	LA_	24	73	.386	11.663	41.549	1.00	13.21	0
	ATOM	332 C	E2 GLU	<u> A</u>	24	74	.994	10.646	40.398	1.00	66.28	0
	ATOM	333N	GL)	A.P	25	71	.182	7.422	45.000	1.00	15.70	и
10	MOTA	334 0	A GL	LA_	25	71	.039	7,152	46.432	1.00	47.57	<u>c</u>
	MOTA	335 C	GLI	A. V	25	. 70	.887	5,669	46.740	1.00	57.34	c
	MOTA	336 0	GL)	Y.A.	25	70	.285	5.286	47.726	1.00	74.06	0
	MOTA	337 C	B GL	A_V	25	69	.783	7.842	46.905	1.00	51.85	c
	MOTA	338 0	G GL	A P	25	69	.500	9.084	46.109	1.00	14.91	<u>c</u>
15	ATOM	339 C	D GL	LA_	25	68	.419	9.913	46.742	1.001	00.00	c
	MOTA	340 0	E1 GL	N A	25	68	.271	9,947	47.972	1.001	00.00	0
	MOTA	341 N	E2 GL	I.A.	25	67	. 624	10.602	45.911	1.001	00.00	
	MOTA	342 N	ARC	G A	26	71	.322	4.831	45.825	1.00	75.37	N
••	MOTA	343 C	A ARG	5_A_	26		.182_	3.407	46.026	1.00	74.87	
20	ATOM	344 0	:_AR	3_A_	26	72	.568	2.791	46.147	1.00	74.08	c
	MOTA	345 0		5 A	26		.440	2.997	45.289	1.00		0
	MOTA		B ARC		26		.390	2.790	44.885	1.00		<u>c</u>
	MOTA		G ARC		26		.916	2.927	45.070	1.00		<u>c</u>
25	MOTA			3 A	26		.428	1.752	45.864	1.00		с
25	ATOM			<u> </u>	26		.200	1.176	45,338	1.00		N
	MOTA			<u> </u>	26		.126	0.508	44.196	1.00		c
	MOTA		M1 ARC		26_		.215	0.324	43.486	1.00		N
	MOTA		IH2 ARC		26		.968	0.017	43.771	1.00		N
30	MOTA	353 <u>1</u>		Y_A_	27		.778	2.114 1.531	47.266	1.00		N
30	ATOM			Y_A_	27 27		140		47.549 46.923	1.00		<u>c</u>
	ATOM	355 C		Y A Y A	27		.140	0.165 -0.453	46,877	1.00	_	<u>c</u>
	ATOM	357 N		P.A	28		.017	-0.315	46.428	1.00		N
	MOTA		A AS						45.861			R
35	ATOM			P.A				-1.536				<u>s</u>
	MOTA			P.A.					43.654			o
	ATOM	 -		P A					46.127			C
	ATOM		G AS				.503	-1.373		-		C
	ATOM		DD1 AS	_			.705	-0.140		1.00		0
40	ATOM		DD2 ASI				.383	-1.870				0
	ATOM			L A			.651	-0.329				N
	MOTA			L A			.881	-0.050		1.00		с
	MOTA			L A			.166		42.281			c
	ATOM			L A			.505	1.699				Q
45	ATOM		B VA				.696		42.000			c
												•

	ATOM	370	CG1	VAL A	29	72.935	1.088	40,549	1.00 23.65	<u>c</u>
	MOTA	371	CG2	VAL A	29	71.416	-0.028	42.156	1.00 27.95	<u>C</u>
	MOTA	372	_N	GLU A	30	75.824	0.219	41.230	1.00 30.76	N
	MOTA	373	CA_	GLU A	30	76.995	0.924	40.736	1.00 28.38	<u>C</u>
5	MOTA	374	С	GLU A	30	76.678	1.471	39.332	1.00 31.03	с
	MOTA	375	0	GLU A	30	76.368	0.720	38.397	1.00 26.64	· <u>o</u>
	MOTA	376	СВ	GLU A	30	78,199	0.006	40.722	1.00 31.84	<u> </u>
	MOTA	377	CG	GLU A	30	79.355	0.539	41.533	1.00 89.26	<u>c</u>
	MOTA	378	CD	GLU A	30	80.667	0.264	40.858	1.00100.00	<u>c</u>
10	MOTA	379	OE1	GLU A	30	61.082	-0.922	40.872	1.00 88.94	0
	MOTA	380	OE2	GLU A	30	81.202	1.206	40.219	1.00100.00	<u>Q</u>
	MOTA	381	_N	LEU A	31	76.665	2,789	39.207	1.00 22.24	N
	MOTA	382	CA	LEU A	31_	76.269	3.391	37.945	1,00 29.37	с
	ATOM	383	<u></u>	LEU A	31	77.404	_3.507	36.941	1.00 25.79	c
15	ATOM	384	0	LEU A	31	78.485	3.969	37.256	1.00 29.41	o
	MOTA	385	СВ	LEU A	31	75.632	4.760	38.191	1.00 30.20	<u>c</u>
	ATOM	386	CG	LEU A	31	74.329	4.763	38.994	1.00 29.37	С
	MOTA	387	CD1	LEU A	31	73.841	6.143	39.240	1.00 23.43	<u>C</u>
	MOTA	388	CD2	LEU A	31	73,275	3.962	38,281	1.00 23.04	<u>C</u>
20	MOTA	389	_N	VAL A	32_	77.146	3.100	35.711	1.00 21.94	N
	MOTA	390	_CA_	VAL A	32	78.143	3.265	34.685	1.00 25.48	с
	ATOM	391	_C	VAL A	32	77.535	4.242	33.669	1.00 38.76	с
	ATOM	392	_0_	VAL A	32	76,429	3.999	33.180	1.00 29.70	0
	ATOM	393	СВ	VAL A	32	78.517	1.902	34.055	1.00 34.25	с
25	AROX	3.9.4	eG1	VA6 A	32	7.9 5.8 7	207/91	32,970	1,40,0 3,0,45,6	Ę
	MOTA	395	CG2	VAL A	32	79.003	0.950	35.139	1.00 25.27	c
	ATOM	396	N_	LEU A	33	78.219	5.375	33.457	1.00 30.19	N
	ATOM	397	CA	LEU A	33	77.732	6,463	32.621	1.00 22.71	c
	ATOM	398	c	LEU A	33	78,727	6.979	31.645	1.00 29.55	С
30	MOTA	399	0	LEU A	33	79.896	7.152	31.988	1.00 30.09	0
	MOTA	400	СВ	LEU A	33	77.423	7.635	33.514	1.00 19.75	<u>c</u>
	ATOM	401	CG	LEU A	33_	76.729	7.200	34.779	1.00 19.38	c
	ATOM	402	CD1	LEU A	33	76.814	8.344	35.762	1.00 27.24	C
	ATOM	403	CD2	LEU A	33	75.271	6.913	34,444	1.00 22.07	c
35	ATOM	404	<u>n</u>	ARG A	34	78.239	7.421	30.496	1.00 15.09	N
	MOTA	405	_CA	ARG A	34	79.154	8.008	29.541	1.00 26.04	c
	ATOM	406	_ <u>c</u>	ARG A	34	78.469	9.173	28.916	1.00 36.57	с
	MOTA	407	0_	ARG A	34	77.288	9.130	28,651	1.00 38.59	o
	MOTA	408	СВ	ARG A	34	79.486	7.048	28,398	1.00 22.89	<u>c</u>
40	MOTA	409	CG	ARG A	34	80.579	6.081	28.706	1.00 23.29	с
	MOTA	410	CD	ARG A	34	81.370	6.575	29.860	1.00 52.06	C
	MOTA	411	NE	ARG A	34	81.783	5.458	30.711	1.00 80.25	N N
	MOTA	412	CZ	arg a	34	82.646	4.530	30.323	1.00 41.94	<u>.c</u>
	MOTA	413	NH1	ARG A	34	83.173	4.596	29.104	1.00 53.02	N
45	MOTA	414	NH2	ARG A	34	82,983	3.547	31,148	1.00 25.56	N

	MOTA	415	N	A RHT	35	79.248	10.156	28.539	1.00 31.58	N
	MOTA	416	CA	THR A	35	78.703	11.282	27.833	1.00 29.33	с
	MOTA	417	<u> </u>	THR A	35	78.719	10.951	26.340	1.00 32.53	С
	ATOM	418	0	THR A	35	79.350	9,944	25.962	1.00 28.08	0
5	ATOM	419	СВ	THR A	35	79.527	12.527	28.145	1.00 37.49	c
	ATOM	420	0G1	THR A	35	80.844	12.429	27.560	1.00 31.91	0
	ATOM	421	CG2	THR A	35	79.627	12.642	29,651	1.00 19.38	с
	MOTA	422	_N	ARG A	36	78.032	11.780	25.529	1.00 30.02	N
	MOTA	423	CA	ARG A	36	78.002	11.639	24.056	1.00 29.37	с
10	MOTA	424	С	ARG A	36	79.406	11.765	23.503	1.00 31.46	<u>C</u>
	MOTA	425	0	ARG A	36	79.772	11.012	22.591	1.00 36.56	0
	MOTA	426	СВ	ARG A	36	77.054	12.650	23,354	1.00 37.34	с
	ATOM	427	CG	ARG A	36	76.937	12,465	21.846-	99.00 49.47	<u>c</u>
	MOTA	428	CD	ARG A	36	76.020	13.515	21.232-	99.00 63.09	<u>c</u>
15	ATOM	429	NE	ARG A	36	75.528	13.124	19.915-	99.00 75.23	N
	ATOM	430	CZ	ARG A	36	74.381	13.549	19.391-	99.00 91.44	c
	ATOM	431	NH1	ARG A	36	73.605	14.375	20.079-	99.00 79.32	N
	ATOM	432	NH2	ARG A	36	74.009	13.144	18.185-	99.00 78.73	N
	ATOM	433	N	ASP A	37	80.217	12.677	24.063	1.00 41.30	N
20	ATOM	434	CA	ASP A	37	81.606	12.710	23.601	1.00 44.91	<u>c</u>
	MOTA	435	С	ASP A	37	82.410	11.481	24.043	1.00 24.99	<u>c</u>
	ATOM	436	0	ASP A	37	83.211	10.978	23,261	1.00 42.22	<u>Q</u>
	ATOM	437	CB	ASP A	37	82.347	14.048	23.718-	99.00 47.07	с
	MOTA	438	CG	ASP A	37	81.881	14.887	24.876	99.00 62.99	с
25	MOTA	439	OD1	ASP A	37	80.679	14.839	25.204-	99.00 64.45	0
	ATOM	440	OD2	ASP A	37	82.711	15.638	25.429	99.00 69.84	0
	ATOM_	441	N_	GLU A	38	82,129	10.950	25.235	1.00 19.39	N
	ATOM	442	_CA	GLU A	38	82,790	9.717	25.682	1.00 27.84	c
	MOTA	443	С	GLU A	38	82,203	8.527	24.901	1.00 37.14	<u>c</u>
30	ATOM	444	0_	GLU A	38	82.873	7.511	24.699	1.00 35.04	0
	MOTA	445	СВ	GLU A	38	82.691	9.435	27.207	1.00 25.18	Ç
	MOTA	446	_CG	GLU A	38	83.116	10.549	28.183	1.00 37.45	с
	MOTA	447	CD	GLU A	38	82.807	10.212	29,655	1.00 21.13	<u>c</u>
	MOTA	448	OE1	GLU A	38	81.623	9,997	30.014	1.00 55.97	0
35	MOTA	449	OE2	GLU A	38	83,757	9.978	30.419	1.00 98.78	0
	MOTA	450	N	LEU A	39	80.948	8,610	24.478	1.00 25.52	
	MOTA	451	CA	LEU A	39	80.440	7.483	23,739	1,00 18.17	c
	MOTA	452	С	LEU A	39	79,291	7.764	22.825	1.00 20.34	<u>C</u>
	MOTA	453		LEU A	39	78.152	7.810	23.259	1.00 26.35	
40	ATOM	454	СВ	LEU A	39	80,123	6.313	24.657	1.00 14.56	<u>c</u>
	ATOM	455	CG	LEU A	39	79.410	5.075	24.058		
	MOTA	456	CD1	LEU A	39	80.205	4.392	22.994	1.00 18.84	
	ATOM	457	CD2	LEU A	39	78.890	4.051	25.084		
	ATOM	458	_N_	ASN A		79,598		21.543		
45	ATOM	459	<u>CA</u>	asn a	40_	78.548	7.971	20.540	1.00 21.55	с

	ATOM	460	_عـ	ASN A	40	77.798	6.649	20,308	1.00 24.53	c
	ATOM	461	0	ASN A	40_	78.328	5.720	19.688	1.00 19.96	0
	ATOM	462	СВ	ASN A	40	79.130	8.367	19.216	1.00 18.45	<u>C</u>
	ATOM	463	CG	ASN A	40	78.054	8.727	18.225	1.00 42.19	с
5	ATOM	464	OD1	ASN A	40	78.327	9,093	17.080	1.00 38.89	0
	MOTA	465	ND2	ASN A	40	76.827	8.730	18.697	1.00 23.71	N
	MOTA	466	N_	LEU A	41	76.543	6.622	20.754	1.00 21.08	N
	MOTA	467	_CA_	LEU A	_41_	75.649	5.465	20.650	1.00 15.03	<u>C</u>
	MOTA	468	С	LEU A	41	75,225	5.068	19.213	1.00 18.22	<u>C</u>
10	MOTA	469	٥	LEU A	41	74.681	3,971	18.980	1.00 15.72	0
	MOTA	470	СВ	LEU A	41_	74.426	5.705	21.532	1.00 15.85	c
	MOTA	471	CG	LEU A	41_	74.822	6.029	22.974	1.00 21.90	C
	MOTA	472	CD1	LEU A	41	73.604	6.413	23.749	1.00 20.59	C
	MOTA	473	CD2	LEU A	41	75.481	4.796	23.609	1.00 17.97	c
15	MOTA	474	N	LEU A	42_	75.542	5.916	18.238	1.00 12.45	N
	MOTA	475	CA	LEU A	42	75.256	5,607	16.831	1.00 15.99	c
	MOTA	476	_2	LEU A	42_	76.290	4.680	16.280	1.00 26.18	c
	MOTA	477	0	LEU A	42	76.066	4.039	15.257	1.00 22.41	0
	MOTA	478	СВ	LEU A	42_	75.282	6.873	15.984	1.00 17.85	C
20	MOTA	479	CG	LEU A	42_	74.180	7.854	16.399	1.00 30.70	C
	MOTA	480	CD1	LEU A	42	74.318	9,184	15.704	1.00 24.31	c
	MOTA	481	CD2	LEU A	42_	72.764	7.241	16.208	1.00 31.13	C
	ATOM	482	N	ASP A	43	77.462	4.705	16.911	1.00 26.87	N
	MOTA	483	CA	ASP A	43_	78.579	3.875	16.486	1.00 19.29	c
25	MOTA	484	_C	_ASP_A	43	7.8.,583	25.1.9	-1 <i>7</i> 1.63=	1-0.0-13-33	
	ATOM	485	0	ASP A	43	79.051	2.348	18.297	1.00 18.75	0
	MOTA	486	СВ	ASP A	43	79.870	4.580	16.776	1.00 31.06	<u>_</u>
	MOTA	487	CG	ASP A	43	81.083	3.758	16.380	1.00 30.68	с
	ATOM	488	An 1							
30	ATOM		ODI	ASP A	43_	80.971	2.551	16.082	1.00 32.36	0
		489		ASP A	43 43	80.971 82.187		16.082 16.499	1.00 32.36 1.00 37.83	o
	MOTA	489 490				nd.	2.551			
	MOTA		OD2	ASP A	43_	82,187	2.551 4.308	16.499	1.00 37.83	0
		490	od2 N	ASP A SER A	43 44	82,187 78,139 77,978	2.551 4.308 1.544	16.499 16.377 16.789	1.00 37.83 1.00 16.89	O N
	ATOM	490 491	OD2 N CA	ASP A SER A SER A	43 44 44 44	82,187 78,139 77,978 79,237	2.551 4.308 1.544 0.173 -0.463	16.499 16.377 16.789 17.392	1.00 37.83 1.00 16.89 1.00 17.67	O N
35	ATOM ATOM	490 491 492	OD2 N CA C	ASP A SER A SER A	43 44 44 44	82,187 78,139 77,978 79,237	2.551 4.308 1.544 0.173 -0.463 -1.126	16.499 16.377 16.789 17.392	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40	O C
35	ATOM ATOM ATOM	490 491 492 493	OD2 N CA C	ASP A SER A SER A SER A	43 44 44 44 44	82,187 78,139 77,978 79,237 79,206	2.551 4.308 1.544 0.173 -0.463 -1.126	16.499 16.377 16.789 17.392 18.444 15.581	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27	O C C
35	ATOM ATOM ATOM	490 491 492 493 494	OD2 N CA C O CB	ASP A SER A SER A SER A SER A SER A	43 44 44 44 44 44	82.187 78.139 77.978 79.237 79.206 77.504	2.551 4.308 1.544 0.173 -0.463 -1.126	16.499 16.377 16.789 17.392 18.444 15.581 16.063	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85	© N C C C
35	MOTA ATOM ATOM ATOM ATOM	490 491 492 493 494 495	OD2 N CA C O CB OG	ASP A SER A SER A SER A SER A SER A SER A	43 44 44 44 44 44 45	82,187 78,139 77,978 79,237 79,206 77,504 76,800	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740	16.499 16.377 16.789 17.392 18.444 15.581 16.063	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83	0
35	MOTA MOTA MOTA MOTA MOTA MOTA	490 491 492 493 494 495 496	OD2 N CA C O CB OG	ASP A SER A SER A SER A SER A SER A SER A ARG A	43 44 44 44 44 44 45 45	82.187 78.139 77.978 79.237 79.206 77.504 76.800 80.335	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301	16.499 16.377 16.789 17.392 18.444 15.581 16.063	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63	O N C C O C
35 40	MOTA MOTA MOTA MOTA MOTA MOTA	490 491 492 493 494 495 496 497	OD2 N CA C O CB OG N CA	ASP A SER A SER A SER A SER A SER A ARG A	43 44 44 44 44 45 45	82.187 78.139 77.978 79.237 79.206 77.504 76.800 80.335 81.616	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301 -0.788	16.499 16.377 16.789 17.392 18.444 15.581 16.063 16.682 17.154 18.521	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63	O N C C O C
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	490 491 492 493 494 495 496 497 498	OD2 N CA C O CB OG N CA C	ASP A SER A SER A SER A SER A SER A ARG A ARG A	43 44 44 44 44 45 45 45 45	82,187 78,139 77,978 79,237 79,206 77,504 76,800 80,335 81,616 81,910	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301 -0.788 -0.225	16.499 16.377 16.789 17.392 18.444 15.581 16.063 16.682 17.154 18.521	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63 1.00 19.94 1.00 29.48	0 N C C Q Q Q Q
	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	490 491 492 493 494 495 496 497 498 499	OD2 N CA C O CB OG N CA C	ASP A SER A SER A SER A SER A SER A ARG A ARG A ARG A	43 44 44 44 44 45 45 45 45	82.187 78.139 77.978 79.237 79.206 77.504 76.800 80.335 81.616 81.910 82.244	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301 -0.788 -0.225 -0.937	16.499 16.377 16.789 17.392 18.444 15.581 16.063 16.682 17.154 18.521 19.457	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63 1.00 19.94 1.00 29.48 1.00 27.65	0 N C Q Q Q N C
	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	490 491 492 493 494 495 496 497 498 499 500	OD2 N CA C O CB OG N CA C O CA	ASP A SER A SER A SER A SER A SER A ARG A ARG A ARG A ARG A	43 44 44 44 44 45 45 45 45 45 45	82,187 78,139 77,978 79,237 79,206 77,504 76,800 80,335 81,616 81,910 82,244 82,684	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301 -0.788 -0.225 -0.937 -0.261	16,499 16,377 16,789 17,392 18,444 15,581 16,063 16,682 17,154 18,521 19,457 16,203 15,495	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63 1.00 19.94 1.00 29.48 1.00 27.65 1.00 27.46 1.00 92.03	O N N C C C C C C C C C C C C C C C C C
	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	490 491 492 493 494 495 496 497 498 499 500	OD2 N CA C O CB OG N CA C O CA C C O CB C O	ASP A SER A SER A SER A SER A SER A ARG A ARG A ARG A ARG A ARG A	43 44 44 44 44 45 45 45 45 45 45	82,187 78,139 77,978 79,237 79,206 77,504 76,800 80,335 81,616 81,910 82,244 82,684 83,463	2.551 4.308 1.544 0.173 -0.463 -1.126 -0.617 -1.740 -0.301 -0.788 -0.225 -0.937 -0.261 -1.338	16.499 16.377 16.789 17.392 18.444 15.581 16.063 16.682 17.154 18.521 19.457 16.203 15.495 16.077	1.00 37.83 1.00 16.89 1.00 17.67 1.00 20.40 1.00 26.27 1.00 13.85 1.00 43.83 1.00 15.63 1.00 19.94 1.00 29.48 1.00 27.65 1.00 27.46 1.00 92.03	0 N C C Q Q N C C

	MOTA	505	NH1	ARG A	45	85.791	-3.695	17.547	1.00100.00	
	ATOM	506	NH2	ARG A	45	86,773	-4.544	15.642	1.00100.00	N
	ATOM	507	<u> N</u> _	ATA A	46	81.772	1.090	18.629	1.00 31.04	N
	ATOM	508	_CA_	ALA A	46	82.045	1.743	19.881	1.00 24.72	<u>C</u>
5	ATOM	509	С	ALA A	46	81.111	1.176	20.899	1.00 17.73	c
	ATOM	510	0_	ALA A	46	81.512	0.825	22.027	1.00 22.73	o
	ATOM	511	CB	ALA A	46	81.839	3.221	19.751	1.00 27.16	<u>c</u>
	MOTA	512	_N	VAL A	47	79.835	1.119	20.531	1.00 17.54	N
	MOTA	513	CA	VAL A	47	78,878	0.608	21.508	1.00 21.41	с
10	MOTA	514	С	VAL A	47	79.262	-0.812	21.914	1.00 30.25	c
	MOTA	515	0_	VAL A	47	79.192	-1.202	23.097	1.00 15.85	0
	MOTA	516	СВ	VAL A	47_	77.470	0.668	20.989	1.00 18.59	c
	MOTA	517	CG1	VAL A	47	76.503	0.042	22.012	1.00 16.88	C
	MOTA	518	CG2	VAL A	47	77,115	2,096	20.756	1.00 16.28	c
15	MOTA	519	N_	HIS A	48	79.692	-1.585	20.920	1.00 21.00	N
	MOTA	520	CA	HIS A	48	80,028	-2.969	21,192	1.00 20.17	с
	MOTA	521	С	HIS A	48	81.268	-3.079	22,117	1.00 32.98	c
	MOTA	522		HIS A	48_	81.289	-3.850	23.102	1.00 28.20	0
	ATOM	523	СВ	HIS A	48_	80.063	-3.801	19.855	1.00 14.93	с
20	ATOM	524	CG	HIS A	48_	78.686	-4.172	19,338	1.00 26.67	C
	ATOM	525	ND1	HIS A	48	78,085	-5.394	19.600	1.00 28.83	и
	MOTA	526	CD2	HIS A	48	77.758	-3.448	18.659	1.00 25.56	<u>C</u>
	MOTA	527	CE1	HIS A	48	76.887	-5.430	19.043	1.00 20.08	c
	MOTA	528	NE2	HIS A	48	76.660	-4.260	18.475	1.00 25.22	N
25	MOTA	529	_N	ASP A	49	82.217	-2.170	21.902	1.00 22.62	N
	MOTA	530	CA	ASP A	49	83.455	-2.169	22.674	1.00 24.23	<u>C</u>
	MOTA	531	C	ASP A	49	83.171	-1.899	24,122	1.00 38.72	C
	ATOM	532	0	ASP A	49	83.708	-2.551	25.027	1.00 35.44	0
	MOTA	533	СВ	ASP A	49	84.396	-1.112	22.127	1.00 30.29	<u>c</u>
30	MOTA	534	CG	ASP_A	49	84.991	-1.503	20.775	1.00 52.45	<u>c</u>
	MOTA	535	OD1	ASP A	49_	85.007	-2.726	20,449	1.00 42.67	0
	MOTA	536	OD2	ASP A	49_	85.416	-0.587	20.029	1.00 73.76	0
	MOTA	537	N_	PHE A	50	82.294	-0.929	24.324	1.00 32.19	<u> </u>
	MOTA	538	CA_	PHE A	50_	81.902	-0.550	25.649	1.00 29.76	<u>C</u>
35	MOTA	539	c	PHE A	50	81.299	-1.765	26.359	1.00 30.31	<u>C</u>
	MOTA	540	0	PHE A	50	81.715	-2.124	27.449	1.00 29.22	0
	MOTA	541	CB	PHE A	50	80.892	0.610	25.576	1.00 23.82	<u>c</u>
	MOTA	542	CG	PHE A	50	80.137	0.843	26.859	1.00 19.13	<u>C</u>
	MOTA	543	CD1	PHE A	50	80.740	1.515	27.931	1.00 20.14	c
40	MOTA	544	CD2	PHE A	50	78.835	0.360	27.018	1.00 13.99	с
	MOTA	545	CE1	PHE A	5.0	80.034	1,742	29.129	1.00 25.81	c
	ATOM	546	CE2	PHE A	50	78.114	0.553	28.212	1.00 22.84	c
	MOTA	547	CZ	PHE A	50	78.698	1.276	29,259	1.00 23.40	c
	MOTA	548	N_	PHE A	51	80,280	-2.367	25.768	1.00 21.75	N
45	MOTA	549	CA	PHE A	51	79.655	-3.451	26.457	1.00 22.61	c

	ATOM	550	С	PHE A	51	80.646	-4.603	26.612	1.00 34.01	<u>c</u>
	ATOM	551	0	PHE A	51	80.550	-5.401	27.590	1.00 25.28	0
	ATOM	552	СВ	PHE A	51	78.389	-3.898	25.751	1.00 22.63	с
	MOTA	553	CG	PHE A	51	77.158	-3.140	26.170	1.00 27.58	с
5	ATOM	554	CD1	PHE A	51	76.426	-3.525	27,280	1.00 21.78	с
	MOTA	555	CD2	PHE A	51	76.663	-2.100	25.380	1.00 19.55	C
	MOTA	556	CE1	PHE A	51	75.267	-2.796	27.662	1.00 28.34	с
	MOTA	557	CE2	PHE A	51_	75.492	-1.403	25.734	1.00 14.47	с
	ATOM	558	CZ	PHE A	51	74.797	-1.744	26.878	1.00 14.55	с
10	MOTA	559	N	ALA A	52	81.576	-4.706	25.659	1.00 26.43	
	MOTA	560	_CA_	ALA A	52	82.587	-5.793	25.714	1.00 29.44	c
	MOTA	561	С	ALA A	52	83.687	-5.560	26.768	1.00 43.76	с
	MOTA	562	0	ALA A	52	84.502	-6.446	27.022	1.00 40.33	
	MOTA	563	СВ	ALA A	52_	83.228	-6.049	24.344	1.00 24.25	c
15	ATOM	564	N_	SER A	53	83.702	-4.382	27.385	1.00 31.96	N
	MOTA	565	CA	SER A	53	84.705	-4.090	28.377	1.00 21.06	c
	MOTA	566	С	SER A	53	84.196	-3.625	29.709	1.00 26.41	C
	ATOM	567	0	SER A	53	84.985	-3.492	30.611	1.00 36.12	0
	ATOM	568	СВ	SER A	53	85.709	-3.088	27.843	1.00 14.22	С
20	ATOM	569	QG	SER A	53_	85.140	-1.807	27,790	1.00 56.90	0
	MOTA	570	_N	GLU A	54	82.892	-3.431	29.874	1.00 22.38	N
	ATOM	571	_CA_	GLU A	54	82.380	-2.893	31.139	1.00 17.27	c
	MOTA	572	<u> </u>	GLU A	54	81.584	-3.735	32.118	1.00 26.32	c
	MOTA	573	0	GLU A	54	81.229	-3.281	33.191	1.00 37.43	0
25	MORA	574	⊈CΒ=	=GLU⇒A=	5:4	ยนล <i>6771</i>	മി പടിങ്	3.0.59.0.6	1-00-27-30	
	MOTA	575	CG	GLU A	54	82.573	-0.543	30.262	1.00 44.77	c
	MOTA	576	CD	GLU A	54	83.669	-0.142	31.194	1.00 86.31	с
	ATOM	577	OE1	GLU A	54	83.392	-0.232	32,428	1.00 50.11	0
	MOTA	578	OE2	GLU A	54	84.785	0.198	30.692	1.00 50.99	
30	ATOM	579	N	ARG A	55	81.268	-4.971	31.804	1.00 29.63	N
	MOTA	580	CA	ARG A	55	80.636	-5.748	32.854	1.00 33.32	<u>C</u>
	MOTA	581		ARG A	55	79.347	-5.149	33.378	1.00 38.45	<u>c</u>
	MOTA	582	0	ARG A	55	79.214	-4.897	34.576	1.00 40.18	0
	ATOM	583	СВ	ARG A	55	81.621	-5.875	34.045	1.00 57.61	<u>C</u>
35	MOTA	<u> 584</u>	CG	ARG A	55	82.666	7.028	33.960	1.00100.00	<u>c</u>
	MOTA									
		585	CD	ARG A	55	82.805	-7.805		1.00100.00	c
	MOTA	585 586	CD NE	ARG A ARG A		82.805 82.838		35.305	1.00100.00	и
	ATOM				55	82.838		35.305 35.146		
		586	NE CZ	ARG A	55 55	82.838 83.206	-9.270 -10.129	35.305 35.146 36.102	1.00100.00	N
40	ATOM	586 587	NE CZ NH1	ARG A	55 55 55	82.838 83.206 83.583	-9.270 -10.129 -9.681	35.305 35.146 36.102 37.301	1.00100.00 1.00100.00	N C N
40	MOTA	586 587 588	NE CZ NH1	ARG A ARG A ARG A	55 55 55 55	82.838 83.206 83.583	-9.270 -10.129 -9.681	35.305 35.146 36.102 37.301 35.855	1.00100.00 1.00100.00 1.00100.00	N N
40	MOTA MOTA MOTA	586 587 588 589	NE CZ NH1 NH2 N	ARG A ARG A ARG A	55 55 55 55 55	82.838 83.206 83.583 83.208 78.367	-9.270 -10.129 -9.681 -11.440 -5.029	35.305 35.146 36.102 37.301 35.855 32.491	1.00100.00 1.00100.00 1.00100.00 1.00100.00	N C N N N N N N
40	MOTA MOTA MOTA MOTA	586 587 588 589 590	NE CZ NH1 NH2 N	ARG A ARG A ARG A ARG A ILE A	55 55 55 55 55 56	82.838 83.206 83.583 83.208 78.367 77.064	-9.270 -10.129 -9.681 -11.440 -5.029 -4.434	35.305 35.146 36.102 37.301 35.855 32.491 32.794	1.00100.00 1.00100.00 1.00100.00 1.00100.00 1.00 42.25	N C N
40	MOTA MOTA ATOM ATOM ATOM	586 587 588 589 590 591	NE CZ NH1 NH2 N CA	ARG A ARG A ARG A ILE A	55 55 55 55 56 56	82.838 83.206 83.583 83.208 78.367 77.064	-9.270 -10.129 -9.681 -11.440 -5.029 -4.434	35,305 35,146 36,102 37,301 35,855 32,491 32,794 33,244	1.00100.00 1.00100.00 1.00100.00 1.00100.00 1.00 42.25 1.00 25.49	N C N N N

	MOTA	595	CG1	ILE A	56	77.643	-2.301	31.442	1.00 18.3	0C
	ATOM	596	CG2	ILE A	56	75.214	-3.016	31.549	1.00 19.8	4 C
	MOTA	597	CD1	ILE A	56	77.998	-1.936	30.026	1.00 60.4	2 <u> </u>
	ATOM	598	_N	ASP A	57	75.166	-5.133	34.237	1.00 16.8	4 N
5	ATOM	59 <u>9</u>	CA	ASP A	57	74.040	-5.999	34.630	1.00 16.3	3 <u>C</u>
	MOTA	600	_C	ASP A	57	72.676	-5.451	34.123	1.00 28.4	<u> </u>
	ATOM	601	_0	ASP A	57	71.836	-6.198	33.657	1.00 25.5	<u>o</u>
	MOTA	602	СВ	ASP A	_57	74.009	-6.194	36.164	1.00 16.9	4C
	ATOM	603	CG	ASP A	57	75.369	-6.720	36.703	1.00 34.2	7 <u> </u>
10	MOTA	604	OD1	ASP A	57	75.875	-7.729	36.141	1.00 31.7	<u>6</u> O
	MOTA	605	OD2	ASP A	57	76.040	-6,007	37.499	1.00 28.3	<u>6</u> O
	MOTA	606	N	GLN A	_58	72.443	-4.152	34,220	1.00 28.9	1N
	MOTA	607	CA	GLN A	58	71.183	-3,590	33.755	1.00 25.6	8 <u>C</u>
	MOTA	608	<u></u>	GLN A	58	71.425	-2.364	32.881	1.00 23.2	<u>1</u> c
15	MOTA	609	0	GLN A	58	72.403	-1.620	33.067	1.00 18.1	60
	MOTA	610	СВ	GLN A	58	70.342	-3.151	34.946	1.00 33.1	4C
	ATOM	611	CG	GLN A	5.8	69.798	-4.241	35.807	1.00 30.0	0 <u> </u>
	MOTA	612	CD	GLN A	58	69.226	-3.712	37.105	1.00 27.1	<u>8 </u>
	MOTA	613	0E1	GLN A	58	68.722	-2.601	37.161	1.00 31.2	00
20	MOTA	614	NE2	GLN A	58	69.455	-4.436	38.186	1.00 16.8	9N
	MOTA	615	N_	VAL A	59	70.496	-2,138	31.961	1.00 18.3	5 N
	MOTA	616	_CA_	VAL A	59	70.562	-0.998	31.045	1.00 15.5	9 <u> </u>
	MOTA	617	<u></u>	VAL A	59	69.238	-0.240	31.039	1.00 26.2	8 <u>C</u>
	MOTA	618	0	VAL A	59	68.178	-0.820	30.762	1.00 19.5	10
25	ATOM	619	СВ	VAL A	59	70.707	-1.456	29.601	1.00 15.3	2C
	ATOM	620	CG1	VAL A	59	70.477	-0.274	28.649	1.00 11.9	3 <u>C</u>
	MOTA	621	CG2	VAL A	59	72.080	-2.111	29.364	1.00 15.8	3 <u>C</u>
	ATOM	622	N_	TYR A	60	69.306	1.064	31.293	1.00 21.7	1 N
	MOTA	623	CA	TYR A	60	68.113	1.927	31,197	1.00 21.4	0 <u> </u>
30	MOTA	624	С	TYR A	60	68.289	2.756	29.928	1.00 18.6	9 <u> </u>
	ATOM	625	0_	TYR A	60	69.250	3.532	29.796	1.00 15.5	10
	MOTA	626	CB	TYR A	60	68.021	2.817	32.413	1.00 17.2	4 C
	ATOM	627	CG	TYR A	60	67.493	2.131	33.658	1.00 19.7	1C
	ATOM	628	CD1	TYR A	60	68.345	1.583	34.586	1.00 21.1	<u>4</u> C
35	MOTA	629	CD2	TYR A	60	66,154	2,223	33.991	1.00 20.1	.6C
	MOTA	630	CE1	TYR A	60	67.835	1.080	35.794	1.00 19.1	1c
	MOTA	631	CE2	TYR A	60	65,648	1,698	35.163	1.00 10.7	7 <u> </u>
	MOTA	632	CZ	TYR A	60	66.476	1.094	36.054	1.00 20.0	7 <u>c</u>
	MOTA	633	OH	TYR A	60	65.921	0.585	37.248	1.00 16.0	0
40	ATOM	634	N_	LEÚ A	61	67.491	2.452	28.916	1.00 17.4	6 N
	ATOM	635	_CA_	LEU A	61	67,685	3,053	27.585	1.00 20.1	.7c
	ATOM	636	С	LEU A	61	67.003	4,412	27.409	1.00 23.3	6 <u>C</u>
	ATOM	637	_0_	LEU A	61	65.925	4.526	26.799	1.00 14.8	6 0
	ATOM	638	СВ	LEU A	61	67.267	2.060	26,485	1.00 14.7	78 C
45	ATOM	639	CG	LEU A	61	68.117	2.142	25,208	1.00 15.5	2 C

	ATOM	640	CD1	LEU A	61	67.815	1.010	24.109	1.00	7.75	C
	MOTA	641	CD2	LEU A	61	68.087	3.541	24.580	1.00	15.20	C
	MOTA	642	N_	ALA A	62	67.656	5.434	27.956	1.00	20.35	N
	MOTA	643	ÇA.	ALA A	62	67.120	6,784	27.963	1.00	18.55	c
5	ATOM	644	С	ALA A	62	67.779	7.739	26.949	1.00	18.57	C
	MOTA	645	0	ALA A	62	67.455	8.924	26.920	1.00	24.31	0
	MOTA	646	СВ	ALA_A	62	67.071	7.377	29.439	1.00	11.69	C
	MOTA	647	N	ALA A	63	68.681	7.231	26.101	1.00	14.09	N
	ATOM	648	CA	ALA A	63	69.249	8.095	25.052	1.00	12.84	C
10	MOTA	649	С	ALA A	63	68.310	8.005	23.877	1.00	27.00	с
	MOTA	650	0	ALA A	63	67.845	6,916	23.511	1.00	24.51	0
	ATOM	651	СВ	ALA A	63	70.665	7.660	24.634	1.00	4.89	C
	ATOM	652	N	ALA A	64	68.076	9.148	23.262	1.00	21.05	N
	MOTA	653	CA_	ALA A	64	67.202	9.286	22.086	1.00	13.50	C
15	MOTA	654	С	ALA A	64	67.435	10.664	21.416	1.00	28.08	<u>c</u>
	MOTA	655	0	ALA A	64	67.987	11.600	22.021	1.00	26,63	0
	ATOM	656	СВ	ALA A	64	65.642	9.171	22.518	1.00	7.63	c
	MOTA	657	N	LYS A	65	66.953	10.781	20.182	1,00	23.98	N
	ATOM	658	CA	LYS A	65	66.966	12.012	19.409	1.00	20.47	<u>C</u>
20	MOTA	659	<u>c</u>	LYS A	65	65.488	12.443	19.551	1.00	24.37	C
	MOTA	660	0	LYS A	65	64,594	11.807	18,976	1.00	20.29	o
	ATOM	661	СВ	LYS A	65	67.317	11.658	17.951	1.00	25.59	с
	MOTA	662	CG	LYS A	65	66.808	12.630	16.923	1.00	27.54	C
	ATOM	663	CD	LYS A	65	67.518	13.926	17.169	1.00	21.08	c
25	AROM-	664-	GE-	_LYS_A	-65	67-316-	<u> 145905</u>	<u>-1.6~02-9</u> -	10.0	-55 _~ 15-	<u> </u>
4,,	MOTA	665	NZ	LYS A	65	67.876	16,263	16,392	1.00	81.63	N
	ATOM	666	N_	VAL A	66	65.228	13.362	20.485	1.00	22.47	N
	ATOM	667	<u>CA</u>	VAL A	66	63.873	13.850	20.755	1.00	18.99	<u>C</u>
	ATOM	668	<u> </u>	VAL A	66	63.711	15.343	20.394	1.00	31.44	c
30	ATOM	669	0	VAL A	66	64.665	16.107	20.460	1.00	34.61	0
	MOTA	670	СВ	VAL A	66	63.440	13.623	22.204	1.00	16.66	<u>c</u>
	ATOM	671	CG1	VAL A	66	64.269	12.623	22.869	1.00	15.01	c
	ATOM	672	CG2	VAL A	66	63.379	14.904	22.950	1.00	19.21	<u>;</u>
	ATOM	673	N	GLY A	67	62.514	15.755	19.994	1.00	18.03	N
35	ATOM	674	CA	GLY A	67	62.298	17.149	19,614	1.00	14.90	c
	MOTA	675	C	GLY A	67	60.792	17.518	19.585	1.00	32.35	c
	ATOM	676	0	GLY A	67	59.922	16.666	19.888	1.00	18.88	0
	ATOM	677	_N	GLY A	68	60.503	18.787	19.256	1.00	23.21	N
	ATOM	678	CA	GLY A	68	59,132	19,288	19.183	1.00	23.83	Ç
40	ATOM	679	С	GLY A	68	58.540	19.137	17.771	1.00	19.31	С
	ATOM	680	0	GLY A	68	59.165	18.550	16.870	1.00	30.64	0
	ATOM	681	N	ILE A	69	57.343	19.684	17.588	1.00	15.20	N
	ATOM	682	CA	ILE A	69	56,595	19,632	16.317	1.00	16.80	s
	ATOM	683	_c_	ILE A	69	57.387	20.153	15.112	1.00	19.33	c
45	ATOM	684	0_	ILE A	69	57.425	19.519	14.061	1.00	14.66	0

	ATOM	685	СВ	ILE A	69	55.257	20,432	16.480	1.00 30.11	c
	MOTA	686	CG1	ILE A	69	54.271	19.683	17.385	1.00 24.27	C
	MOTA	687	CG2	ILE A	69	54.610	20.749	15,181	1.00 47.53	с
	MOTA	688	CD1	ILE A	69	53.259	20,608	18.056	1.00 85.71	c
5	MOTA	689	N	VAL A	70	58.010	21.327	15.269	1.00 23.03	N
	MOTA	690	_CA_	VAL A	70	58.797	21.913	14.183	1.00 19.34	c
	MOTA	691	<u></u>	VAL A	70	59,983	21.011	13.840	1.00 24.42	C
	MOTA	692	0	VAL A	70	60.335	20.829	12.662	1.00 24.14	0
	MOTA	693	СВ	VAL A	70	59.304	23.404	14.467	1.00 21.37	<u>C</u>
10	MOTA	694	CG1	VAL A	70_	60.137	23.907	13.281	1.00 17.79	<u>C</u>
	MOTA	695	CG2	VAL A	_70_	58.136	24.410	14.678	1.00 15.74	<u>C</u>
	MOTA	696	N_	ALA A	71	60.621	20,450	14.861	1.00 19.68	N
	MOTA	697	CA	ALA A	71	61.782	19.617	14.572	1.00 16.57	c
	MOTA	698	<u>c</u>	ALA A	71	61,427	18,289	13.910	1.00 23.36	<u>c</u>
15	ATOM	699	_0	ALA A	71	61.980	17.923	12.849	1-00 21.84	0
	MOTA	700	СВ	ALA A	71	62.685	19.439	15.805	1.00 9.36	<u>C</u>
	ATOM	701	N_	ASN A	72	60.463	17,598	14.511	1.00 16.80	N
	MOTA	702	CA	ASN A	72_	59,998	16.357	13,923	1.00 18.84	<u>_</u>
	MOTA	703	_C	ASN A	72	59,608	16.539	12,440	1.00 23.87	<u>C</u>
20	MOTA	704		ASN A	72	59.919	15.696	11.593	1.00 21.52	0
	ATOM	705	CB	ASN A	72	58.835	15.806	14,738	1.00 8.60	C
	ATOM	706	CG	ASN A	72	59.309	15.013	15.911	1.00 23.75	с
	ATOM	707	OD1		72	59.558	13.809	15.810	1.00 23.98	
25	MOTA	708		ASN A	72	59.572	15,701	16,996	1.00 9.96	N
25	MOTA	709	_N	ASN_A		58.931	17.647	12.138	1.00 23.07	N
	MOTA	710	_CA_	ASN A	73	58.521	17.971	10.761	1.00 26.05	<u>c</u>
	MOTA	711	_ <u>C</u>	ASN A	73	59.665	18.454	9.817	1.00 26.95	<u>c</u>
	ATOM	712		ASN A	73	59.613	18.276	8.569	1.00 22.13	
30	MOTA	713	CB	ASN A	73	57,383	19.001	10.800	1.00 14.86	<u>c</u>
30	ATOM	714	CG	ASN A	73	56.015	18.349	10.987	1.00 19.88	<u>c</u>
	MOTA	715		ASN A	<u>73</u>	55.620	17.468	10.217	1.00 27.02	0
	ATOM	716		ASN A	<u>73</u>	55.322	18.732	12.051	1.00 20.78	N
	ATOM	717	N.	THR A	74	60.710	19.029	10.419	1.00 18.69	N
35	MOTA	718	CA_	THR A		62.968			1.00 10.07	•
33	ATOM	719	_ <u>C</u>	THR A			18.548		1.00 21.00 1.00 11.75	. —
	MOTA	720	O	THR A		63.537				<u>0</u>
	ATOM	721	CB CC1	THR A					1.00 29.10 1.00 23.24	
	ATOM	722 723		THR A	74	61.370	21.714 21.299		1.00 21.63	<u> </u>
40	MOTA	724		THR A		63.230			1.00 17.10	N
40	MOTA			TYR A					1.00 9.07	C
	MOTA MOTA	725 726	<u>CA</u>	TYR A		64.267			1.00 5.07	
	ATOM	727	0	TYR A		64.143	-		1.00 15.58	0
		728		TYR A					1.00 11.89	
45	ATOM								1.00 27.12	
7.7	ATOM_	729		TYR A	/5	03.119	10.234	111676		×

	MOTA	730	CD1	TYR A	75	66.712	18.696	10.321	1.00 28.46	C
	ATOM	731	CD2	TYR A	75	65.234	19.151	12.173	1.00 24.83	C
	ATOM	732	CE1	TYR A	75	67.117	20.045	10.305	1.00 28.34	<u>C</u>
	MOTA	733	CE2	TYR A	75	65.652	20.523	12,180	1.00 21.00	<u>C</u>
5	ATOM	734	CZ	TYR A	75	66.593	20.940	11.234	1.00 45.42	c
	MOTA	735	ОН	TYR A	75	67.066	22.230	11.215	1.00 35.37	0
	ATOM	736	N	PRO A	76	62.759	14.775	9.532	1.00 13.30	N
	MOTA	737	_CA	PRO A	76	62.185	13.438	9.742	1.00 14.64	С
	ATOM	_738	С	PRO A	76	63.209	12.264	9.618	1.00 14.40	<u>c</u>
10 _	ATOM	739	0	PRO A	76	63.157	11.335	10.409	1.00 20.54	0
	MOTA	740	СВ	PRO A	76	61.055	13.366	8.709	1.00 7.83	c
	ATOM	741	CG	PRO A	76	61.447	14.388	7.617	1.00 12.61	c
	ATOM	742	CD	PRO A	76	62.068	15.504	8.455	1.00 11.18	с
	ATOM	743	Ŋ	ALA A	77	64.163	12.339	8.681	1.00 15.25	N
15	ATOM	744	СА	ALA A	77.	65.206	11.312	8.538	1.00 6.79	<u>c</u>
	ATOM	745	_c	ALA A	77	66.053	11.166	9.820	1.00 17.22	<u> </u>
	ATOM	746	0	ALA A	77_	66.306	10.069	10.292	1.00 18.74	0
	ATOM	747	СВ	ALA A	77_	66.097	11.601	7.330	1.00 9.04	c
	ATOM	748	N	ASP A	78	66.466	12.267	10.424	1.00 10.92	N
20	ATOM	749	CA	ASP A	78	67.256	12.191	11,659	1.00 11.87	с
	ATOM	750	<u> </u>	ASP A	78	66.572	11,486	12.827	1.00 16.09	с
	ATOM	751	_0	ASP A	78	67.212	10.741	13.601	1.00 18.07	0
	ATOM	752	CB	ASP A	<u> 78</u>	67.578	13.609	12.088	1.00 19.16	с
	ATOM	752 753	CB CG	ASP A	78 78	67.578	13.609 14.325	12.088 11.068	1.00 19.16 1.00 26.82	c
25			CG							
25	ATOM	753	cg où1	ASP A	78	68.424	14.325	11.068	1.00 26.82	C
25	ATOM	753 754	cg où1	ASP A ASP A	78 78	68.424 68.836_	14.325 13.694	11.068 10.044	1.00 26.82 1.00 33.93	C
25	ATOM ATOM MOTA	753 754 755	CG OD1 OD2	ASP A ASP A	78 78 78	68.424 68.836 68.673	14.325 _13.694_ 15.514	11.068 10.044 11.316	1.00 26.82 1.00 33.93 1.00 32.06	
	MOTA MOTA MOTA	753 754 755 756	CG OD1 OD2 N	ASP A ASP A ASP A PHE A	78 - 78 - 78 - 79	68.424 68.836 68.673 65.279	14.325 -13.694 -15.514 -11.771	11.068 10.044 11.316 12.975	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70	C
25 30	ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757	CG OD1 OD2 N CA	ASP A ASP A PHE A PHE A	78 78 78 79 79	68.424 68.836 68.673 65.279 64.471	14.325 -13.694 -15.514 -11.771 -11.192	11.068 -10.044 -11.316 -12.975 -14.044	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69	
	ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758	CG OD1 OD2 N CA	ASP A ASP A PHE A PHE A	78 78 78 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224	14.325 -13.694 -15.514 -11.771 -11.192 -9.707	11.068 10.044 11.316 12.975 14.044 13.876	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69	
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759	CG OD1 OD2 N CA C	ASP A ASP A PHE A PHE A PHE A	78 78 78 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269	14.325 -13.694 -15.514 -11.771 -11.192 -9.707 -8.987	11.068 10.044 11.316 12.975 14.044 13.876 14.862	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22	
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760	CG OD1 OD2 N CA C O CB CG	ASP A ASP A PHE A PHE A PHE A PHE A PHE A	78 78 78 79 79 79 79	68.424 	14.325 -13.694 15.514 11.771 11.192 -9.707 -6.987 11.933	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38	C O O O O O O O O O O O O O O O O O O O
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761	CG OD1 OD2 N CA C O CB CG CD1	ASP A ASP A PHE A PHE A PHE A PHE A PHE A PHE A	78 78 78 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264	14.325 -13.694 -15.514 -11.771 -11.192 -9.707 -8.987 -11.933 -13.218 -13.230	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59	C O O O O O O O O O O O O O O O O O O O
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761	CG OD1 OD2 N CA C O CB CG CD1 CD2	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137	14.325 -13.694 -15.514 -11.771 -11.192 -9.707 -8.987 -11.933 -13.218 -13.230 -14.415	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49	C O O O O O O O O O O O O O O O O O O O
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763	CG OD1 OD2 N CA C O CB CG CD1 CD2	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79	68.424 -68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509	14.325 -13.694 -15.514 -11.771 -11.192 -9.707 -8.987 -11.933 -13.218 -13.230 -14.415	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 28.20	
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763	CG OD1 OD2 N CA C O CB CG CD1 CD2	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281	14.325 -13.694 15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 28.20 1.00 21.76	
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765	CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CD2	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625	14.325 -13.694 -15.514 11.771 11.192 9.707 6.987 11.933 13.218 13.230 14.415 14.413 15.593	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 15.386 14.325 17.109 15.037	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 28.20 1.00 21.76 1.00 31.48	C O O O O O O O O O O O O O O O O O O O
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765	CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CE2	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 28.20 1.00 21.76 1.00 31.48 1.00 26.31	C C C C C C C C C C C C C C C C C C C
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765 766	CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CE2 CZ	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509 63.942	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582 9.249	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 28.20 1.00 21.76 1.00 31.48 1.00 26.31 1.00 10.79	C C C C C C C C C C C C C C C C C C C
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765 766 767	CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CE2 CZ N CA	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79 79 79 79 80 80	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509 63.942 63.828	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582 9.249 7.795	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650 12.410	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 27.38 1.00 27.38 1.00 27.49 1.00 27.49 1.00 28.20 1.00 21.76 1.00 31.48 1.00 26.31 1.00 10.79 1.00 10.79 1.00 10.79	C C C C C C C C C C C C C C C C C C C
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765 766 767	CG OD1 OD2 N CA C O CB CCD1 CD2 CE1 CE2 CZ N CA C	ASP A ASP A PHE A	78 78 78 79 79 79 79 79 79 79 79 79 79 79 80 80	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509 63.942 63.828 65.197	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582 9.249 7.795 7.052	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650 12.410 12.432 13.195	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 27.38 1.00 27.38 1.00 27.49 1.00 27.49 1.00 28.20 1.00 21.76 1.00 31.48 1.00 26.31 1.00 10.79 1.00 10.79 1.00 10.79	C C C C C C C C C C C C C C C C C C C
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769	CG OD1 OD2 N CA C O CB CG CD1 CD2 CE1 CE2 CZ N CA C	ASP A ASP A PHE A ILLE A ILLE A ILLE A	78 78 78 79 79 79 79 79 79 79 79 79 79	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509 63.942 63.828 65.197 65.406	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582 9.249 7.795 7.052 6.090	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650 12.410 12.432 13.195 11.148	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 28.59 1.00 27.49 1.00 21.76 1.00 31.48 1.00 26.31 1.00 10.79 1.00 18.12 1.00 10.97 1.00 8.92	C C C C C C C C C C C C C C C C C C C
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770	CG OD1 OD2 N CA C O CB CG CD1 CP2 CE1 CF2 CZ N CA C O CB CG CG CG CG	ASP A ASP A PHE A ILLE A ILLE A ILLE A ILLE A	78 78 78 79 79 79 79 79 79 79 79 79 79 80 80 80	68.424 68.836 68.673 65.279 64.471 64.224 64.269 63.144 63.264 63.137 63.509 63.281 63.625 63.509 63.942 63.828 65.197 65.406 62.944	14.325 -13.694 -15.514 11.771 11.192 9.707 8.987 11.933 13.218 13.230 14.415 14.413 15.593 15.582 9.249 7.795 7.052 6.090 7.408	11.068 10.044 11.316 12.975 14.044 13.876 14.862 14.219 14.990 17.386 14.325 17.109 15.037 16.439 12.650 12.410 12.432 13.195 11.148	1.00 26.82 1.00 33.93 1.00 32.06 1.00 14.70 1.00 20.69 1.00 20.22 1.00 22.37 1.00 27.38 1.00 27.49 1.00 27.49 1.00 21.76 1.00 31.48 1.00 26.31 1.00 10.79 1.00 18.12 1.00 10.97 1.00 8.92 1.00 17.41	C C C C C C C C C C C C C C C C C C C

	MOTA	775	N_	A RYT	81	66.151	7.539	11.658	1.00 11.18	N
	ATOM	776	CA	TYR A	81	67.488	6.902	11.630	1.00 15.06	с
	MOTA	777	С	TYR A	81	68.237	6.782	12.959	1.00 16.83	C
	ATOM	778	0	TYR A	81	68.714	5.702	13.383	1.00 16.74	0
5	ATOM	779	СВ	TYR A	81	68,384	7.599	10.616	1.00 9.43	C
	MOTA	780	CG	TYR A	81	69.749	6.966	10.541	1.00 22.54	C
	ATOM	781	CD1	TYR A	81	69.963	5.824	9.747	1.00 22.37	C
	ATOM	782	CD2	TYR A	81	70.818	7.466	11.299	1.00 18.07	
	ATOM	783	CE1	TYR A	81	71.202	5.163	9.746	1.00 15.02	c
10	ATOM	784	CE2	TYR A	81	72.080	6.893	11.201	1.00 17.37	c
	ATOM	785	CZ	TYR A	81	72.255	5.698	10.472	1.00 24.27	с
	MOTA	786	он	TYR A	81	73.491	5,063	10.409	1.00 19.57	Q
	ATOM	787	N	GLN A	82	68.385	7.918	13.612	1.00 11.39	N
	ATOM	788	_CA_	GLN A	82	69,193	7,930	14.810	1.00 12.23	c
15	MOTA	789	С	GLN A	82	68.544	7.089	15.834	1.00 14.18	ç
	ATOM	790	0_	GLN A	82	69.180	6.415	16.631	1.00 11.35	0
	ATOM	791	СВ	GLN A	82	69.280	9.354	15.291	1.00 18.73	C
	ATOM	792	CG	GLN A	82	69.986	10,209	14.250	1.00 13.54	C
	ATOM	793	CD	GLN A	82	70.285	11.617	14.736	1.00 26.00	<u>c</u>
20	ATOM	794	0E1	GLN A	82	70,410	11.850	15.927	1.00 22.99	0
	ATOM	795	NE2	GLN A	82	70.404	12.561	13.808	1.00 16.59	N
	ATOM	796	N	ASN A	83	67.235	7.181	15.869	1.00 11.35	N N
	ATOM	797	CA_	ASN A	83	66.549	6.408	16.860	1.00 13.71	<u> </u>
	MOTA	798		ASN A	83	66,623	4.902	16.557	1.00 21.43	c
25	ATOM	799	0	ASN A	83	66.831	4.101	17.463	1.00 12.10	0
	ATOM	800	СВ	ASN A	83	65.132	6.945	17.074	1.00 13.51	<u>c</u>
	MOTA	801	CG	ASN A	83	65,131	8.245	17.871	1.00 28.91	<u>C</u>
	ATOM	802	OD1	ASN A	83	65.628	8.263	18.990	1.00 22.28	0
	MOTA	803	ND2	ASN A	83	64.756	9.354	17.237	1.00 20.17	<u>N</u>
30	ATOM	804	N	MET A	84	66.592	4.517	15.290	1.00 15.63	<u> </u>
	MOTA	805	CA,	MET A	84	66.704	3.101	15.007	1.00 15.66	<u>c</u>
	MOTA	806	c	MET A	84	68.054	2.588	15.348	1.00 14.66	<u>c</u>
	ATOM	807	0	MET A	84	68.148	1.514	15.902	1.00 11.45	0
	MOTA	808	СВ	MET A	84	66,418	2.815	13.563	1.00 17.59	<u>c</u>
35	MOTA	809	CG	MET A	84	64.911	2.894	13.220	1.00 14.40	<u>c</u>
	MOTA	810	SD	MET A	84	64.638	2.811	11.387	1.00 15.99	<u>\$</u>
	MOTA	811	CE	MET A	84	65.164	1,105	10.952	1.00 8.90	c
	MOTA	812	N	MET A	85	69.098	3.338	15.024	1.00 11.20	N
	MOTA	813	CA	MET A	85	70,468	2.879	15.321	1.00 11.67	c
40	ATOM	814	c_	MET A	85	70.779	2.831	16.774	1.00 13.04	<u>c</u>
	ATOM	815	0	MET A	85	71.359	1.893	17.265	1.00 15.26	0
	MOTA	816	СВ	MET A	85	71,525	3.798	14.693	1.00 15.07	
	ATOM	817	CG	MET A	85	71.530	3.726	13.173	1.00 32.01	с
	MOTA	818	SD	MET A	85	71,918	2,027	12.487	1.00 37.79	<u>s</u>
45	MOTA	819	CE	MET A	85	73,379	1.801	13,320	1.00 15.94	<u>c</u>

	ATOM	820	N_	ILE A	86_	70.471	3.892	17.481	1.00 13.92	N
	MOTA	821	CA	ILE A	86	70.760	3.893	18.912	1.00 12.58	c
	MOTA	822	С	ILE A	86_	70.159	2.662	19.591	1.00 21.61	<u>C</u>
	MOTA	823	0	ILE A	86	70.813	1.981	20.362	1.00 18.68	0
5	ATOM	824	СВ	ILE A	86	70.225	5.189	19.606	1.00 11.84	c
	MOTA	825	CG1	ILE A	86	70,978	6.429	19.119	1.00 19.78	<u>c</u>
	ATOM	826	CG2	ILE A	86	70,435	5.132	21.112	1.00 6.59	<u>C</u>
	MOTA	827	CD1	ILE A	86	70.505	7.694	19.772	1.00 20.37	c
	MOTA	828	N	GLU A	87_	68.893	2.383	19.316	1.00 18.78	<u> </u>
10	ATOM	829	CA	GLU A	87	68.263	1.237	19.930	1.00 14.00	C
	MOTA	830	<u> </u>	GLU A	87	68.797	-0.116	19.454	1.00 15.93	c
	ATOM	831	٥	GLU A	87_	69.017	-0.991	20.268	1.00 11.04	0
	MOTA	832	СВ	GLU A	87	66.734	1.324	19.900	1.00 14.89	C
	MOTA	833	CG	GLU A	87_	66.085	1.327	18.538	1.00 28.96	<u> </u>
15	ATOM	834	CD	GLU A	87	64.635	1.922	18.544	1.00 11.12	c
	ATOM	835	OE1	GLU A	87_	64.307	2.801	19.376	1.00 25.46	0
	ATOM	836	OE2	GLU A	87_	63.845	1.547	17.663	1.00 29.87	0
	ATOM	837	N.	SER A	88	69.054	-0.259	18.155	1.00 16.18	N
	MOTA	838	_CA	SER A	88_	69.650	-1.482	17.569	1.00 19.52	Ç
20	ATOM	839	<u></u>	SER A	68	71.029	-1.792	18,160	1.00 22.54	c
	MOTA	840	0	SER A	88	71.313	-2.929	18,592	1.00 13.80	o
	MOTA	841	СВ	SER A	88	69.815	-1.326	16.023	1.00 14.61	c
	MOTA	842	OG	SER A	88	68.551	-1.201	15.355	1.00 15.41	0
	MOTA	843	N	ASN A	89	71.884	-0.773	18.143	1.00 22.63	N
25	ATOM	844	CA.	ASN A	89	73.227	0.869	18.693	1.00 27.23	c
	ATOM	845	C	ASN A	89	73.195	-1.363	20.134	1.00 21.34	<u></u>
	MOTA	846	0	ASN A	89_	73,795	-2.384	20.476	1.00 23.68	0
	MOTA	847	СВ	ASN A	89	73.980	0.487	18.597	1.00 13.71	<u>C</u>
	MOTA	848	CG	ASN A	89	74.440	0.825	17.168	1.00 20.40	<u>C</u>
30	MOTA	849	OD1	ASN A	89	74,305	0.006	16.255	1.00 14.93	0
	MOTA	850	ND2	ASN A	89	74.937	2.067	16.960	1.00 13.32	N
	ATOM	851	N	ILE A	90	72,488	-0.646	20.979	1.00 16.55	и
	ATOM	852	CA	ILE A	90	72.437	-1.014	22.398	1.00 21,51	c
	MOTA	853	С	ILE A	90	71.876	-2.421	22,729	1.00 26.50	c
35	ATOM	854	٥	ILE A	90	72.384	-3.159	23.590	1.00 19.71	0
	MOTA	855	СВ	ILE A	90	71.670	0.070	23.233	1.00 13.32	c
	MOTA	856	CG1	ILE A	90	72.539	1.299	23.401	1.00 11.05	c
	MOTA	857	CG2	ILE A	90	71.371	-0.445	24.637	1.00 7.54	c
	ATOM	858	CD1	ILE A	90	71.749	2.597	23.668	1.00 20.71	c
40	ATOM	859	N	ILE A	91	70.755	-2.733	22.114	1.00 14.98	<u> </u>
	MOTA	860	_CA	ILE A	91	70.047	-3.953	22.442	1.00 21.33	<u>c</u>
	MOTA	861	c	ILE A	91	70.927	-5.098	21.994	1.00 26.27	c
	MOTA	862	٥_	ILE A	91	71.211	-6.011	22.751	1.00 26.56	0
	ATOM	863	СВ	ILE A	91	68.556	-3,930	21.814	1.00 20.39	с
45	ATOM	864	CG1	ILE A	91	67.692	-2.886	22.552	1.00 13.51	с

	MOTA	865	CG2	ILE A	91	67.841	-5.316	21.845	1.00 11.31	<u>c</u>
	MOTA	866	CD1	ILE A	91	66.320	-2.648	21.907	1.00 16.23	<u>C</u>
	ATOM	867	N	HIS A	92	71.446	-4.983	20.785	1.00 24.12	N
	MOTA	868	CA	HIS A	92	72.293	-6.015	20.243	1.00 26.71	<u>c</u>
5	ATOM	869	<u> </u>	HIS A	92	73.609	-6.251	21.071	1.00 29.30	c
	MOTA	870		HIS A	92	73.983	-7.366	21.443	1.00 18.58	0
	ATOM	871	СВ	HIS A	92	72.561	-5.682	18,775	1.00 22.23	с
	MOTA	872	CG	HIS A	92	73.366	-6.720	18.077	1.00 26.32	c
	MOTA	873	ND1	HIS A	92	72,798	-7.711	17.307	1.00 27.19	N
10	MOTA	874	CD2	HIS A	92	74,699	-6.978	18.106	1.00 21.95	с
	MOTA	875	CE1	HIS A	92	73.755	-8.487	16.826	1.00 23.66	<u>c</u>
	MOTA	876	NE2	HIS A	92	74.918	-8.062	17.296	1.00 17.36	N
	ATOM	877	N	ALA A	93	74.328	-5.187	21.333	1.00 15.66	N
	MOTA	878	_CA_	ALA A	93	75.530	-5.301	22.110	1.00 11.88	<u>c</u>
15	ATOM	879	_C	ALA A	93	75.222	-5.900	23,512	1.00 28.78	<u>c</u>
	MOTA	880	_0_	ALA A	93	75.912	-6.790	24.037	1.00 25.23	0
	MOTA	881	СВ	ALA A	93	76.139	-3,959	22.221	1.00 6.30	<u>C</u>
	MOTA	882	N_	ALA A	94	74.142	-5.442	24.113	1.00 18.82	N
	MOTA	883	CA	ALA A	94	73.777	-5.971	25.399	1.00 15.61	<u>c</u>
20	ATOM	884	_Ç	ALA A	94	73.593	-7.503	25.301	1.00 28.39	<u> </u>
	ATOM	885	0	ALA A	94	74.133	-8.263	26.099	1.00 21.67	0
	ATOM	886	CB	ALA A	94	72.449	-5.279	25.911	1.00 18.46	c
	ATOM	887	N_	HIS A	95	72.814	-7.966	24.329	1.00 26.35	N
	MOTA	888	_CA_	HIS A	95	72.551	-9.396	24.271	1.00 24.89	<u>c</u>
25	ATOM	889	С	HIS A	95	73.845	-10.176	24.140	1.00 22.81	с
	MOTA	890	0	HIS A	95	74.077	-11.136	24.865	1.00 21.44	0
	MOTA	891	СВ	HIS A	95	71.571	-9.778	23.129	1.00 22.39	c
	MOTA	892	CG	HIS A	95	71.554	-11.250	22.831	1.00 28.73	с
	MOTA	893	ND1	HIS A	95	70.979	-12.182	23.682	1.00 22.83	N
30	ATOM	894	CD2	HIS A	95	72.159	-11.964	21.845	1.00 25.22	<u>C</u>
	ATOM	895	CE1	HIS A	95	71,171	-13.397	23.196	1.00 22.72	<u>c</u>
	MOTA	896	NE2	HIS A	95	71.911	-13.296	22.101	1.00 24.80	N
	ATOM	897	_N	GLN A	96	74.709	<u>-9.658</u>	23.281	1.00 19.97	N
	MOTA	898	_CA_	GLN A	96	75.960	-10.299	22.917	1.00 22.27	с
35	ATOM_	899	<u>_C</u>	GLN A	96	76.877	-10.353	24.086	1.00 26.58	с
	MOTA	900	<u> </u>	GLN A	96	77,836	-11.093	24.088	1.00 24.17	
	ATOM	901	СВ	GLN A	96	76,642	-9.492	21.818	1.00 23.38	
	ATOM	902	CG	GLN A	96	77,043	-10.299	20.596	1.00 61.06	<u>C</u>
	MOTA	903	CD	GLN A	96	78.033	-9.557	19.675	1.00 75.83	с
40	ATOM	904	OE1	GLN A	96	78,999	-8.941	20.131	1.00 56.89	
	ATOM	905	NE2	GLN A	96	77.815	-9.668	18.366	1.00100.00	N
	ATOM	906	_N	ASN A	97	76.652	-9.500		1.00 22.15	N
	ATOM	907	_CA_	ASN A	97	77.537		26.208	1.00 14.74	
	ATOM	908	_C	ASN A	97		-10.022			
45	MOTA	909	_0	ASN A	97	77.049	-9.762	28.564	1.00 27.09	0

	ATOM 910 CB ASN A 97	78,241 -8,201 26,462 1.00 12.93	<u>c</u>
	ATOM 911 CG ASN A 97	79.260 -7.897 25.407 1.00 24.91	с
	ATOM 912 OD1 ASN A 97	80.331 -8.518 25.375 1.00 57.17	0
	ATOM 913 ND2 ASN A 97	78.839 -7.135 24.392 1.00 34.88	N
5	ATOM 914 N ASP A 98	75,666 -10,732 27,055 1,00 27,98	N
_	ATOM 915 CA ASP A 98	74.907 -11.361 28.089 1.00 29.25	C
	ATOM 916 C ASP A 98	74.400 -10.379 29.164 1.00 37.53	C
	ATOM 917 0 ASP A 98	74.505 -10.634 30.367 1.00 36.42	
		75.791 -12.450 28.700 1.00 36.37	
10			<u>c</u>
10	ATOM 919 CG ASP A 98		<u>s</u>
	ATOM 920 OD1 ASP A 98	73.775 -13.749 28.877 1.00 82.53	0
	ATOM 921 OD2 ASP A 98	75.656 -14.670 29.542 1.00100.00	
	ATOM 922 N VAL A 99	73.879 -9.235 28.730 1.00 27.13	и
	ATOM 923 CA VAL A 99	73.157 -8.351 29.635 1.00 21.57	c
15	ATOM 924 C VAL A 99	71.706 -8.868 29.530 1.00 16.15	ع
	ATOM 925 O VAL A 99	71.159 -9.088 28.422 1.00 19.47	0
	ATOM 926 CB VAL A 99	73.264 -6.900 29.206 1.00 24.18	<u>c</u>
	ATOM 927 CG1 VAL A 99	72.517 -6.015 30.198 1.00 14.58	c
	ATOM 928 CG2 VAL A 99	74.720 -6.515 29.225 1.00 30.10	<u>c</u>
20	ATOM 929 N ASN A 100	71.149 -9.262 30.662 1.00 17.39	N
	ATOM 930 CA ASN A 100	69.852 -9.925 30.613 1.00 25.77	c
	ATOM 931 C ASN A 100	68.648 -9.034 30.910 1.00 24.95	c
	ATOM 932 O ASN A 100	67.498 -9.377 30.582 1.00 20.88	0
	ATOM 933 CB ASN A 100	69.846 -11.157 31.527 1.00 14.98	c
25	ATOM 934 CG ASN A 100	(0.704 10.310 21.100 1.00.00.20	C
	774 CQ 754 A 1VV	68.724 -12.112 31.180 1.00 20.38	
	ATOM 935 OD1 ASN A 100	68,744 = 12,112 31,160 1,00 20,36 63,757 = 12,709 = 30,100 1,00 29,59	
	ATOM 935 OD1 ASN A 100	33,-787,-79,-709, <u>-30,-100,</u> -1, <u>-00</u> ,-29,-59	
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100	69.787 -12.709 30.100 1.00 29.89 67.716 -12.240 32.076 1.00 16.35	© N
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101	69.797 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91	
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101	67.757 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43	N N C
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101	68.797 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29	
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101	63.737 - 12.709 30.100 1.00 29.59 67.716 - 12.240 32.076 1.00 16.35 68.941 - 7.923 31.584 1.00 17.91 67.970 - 6.916 31.994 1.00 25.43 68.107 - 5.510 31.323 1.00 25.29 69.151 - 4.850 31.377 1.00 19.88	0 N N C C
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101	68.737 - 12.709 30.100 1.00 29.89 67.716 - 12.240 32.076 1.00 16.35 68.941 - 7.923 31.584 1.00 17.91 67.970 - 6.916 31.994 1.00 25.43 68.107 - 5.510 31.323 1.00 25.29 69.151 - 4.850 31.377 1.00 19.88 67.996 - 6.807 33.521 1.00 29.28 67.464 - 8.054 34.205 1.00 9.31	© N N C C C C C
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101	68.737 - 12.709 30.100 1.00 29.59 67.716 - 12.240 32.076 1.00 16.35 68.941 - 7.923 31.584 1.00 17.91 67.970 - 6.916 31.994 1.00 25.43 68.107 - 5.510 31.323 1.00 25.29 69.151 - 4.850 31.377 1.00 19.88 67.996 - 6.807 33.521 1.00 29.28 67.464 - 8.054 34.205 1.00 9.31 67.218 - 7.719 35.668 1.00 38.93	0 N N C C C
	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38	© N N C C C C C C C C
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 944 CE LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101	63.737 -12.709 30.100 1.00.29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26	© N N C C C C N N N N N N N N N N N N N
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22	0 N N C C C C C C C
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 947 CA LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40	0 N N C C C C C C C U
30 35	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 947 CA LEU A 102 ATOM 948 C LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55	© N N C C C C C C C C C C C C C C C C C
30	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 947 CA LEU A 102 ATOM 948 C LEU A 102 ATOM 948 C LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55 64.590 -3.811 30.102 1.00 18.92	0 N N C C C C C C N N C
30 35	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 948 C LEU A 102 ATOM 949 O LEU A 102 ATOM 949 O LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55 64.590 -3.811 30.102 1.00 18.92 67.465 -3.898 28.636 1.00 11.23	0 N N C C C C N N C C C C C C C C C C C
30 35	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 948 C LEU A 102 ATOM 949 O LEU A 102 ATOM 949 O LEU A 102 ATOM 950 CB LEU A 102 ATOM 950 CB LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 13.38 64.750 -3.006 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55 64.590 -3.811 30.102 1.00 18.92 67.465 -3.898 28.636 1.00 15.51	0 N N C C C C C C N N C C
30 35	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 948 C LEU A 102 ATOM 949 O LEU A 102 ATOM 950 CB LEU A 102 ATOM 950 CB LEU A 102 ATOM 951 CG LEU A 102 ATOM 951 CG LEU A 102	68.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 15.26 67.013 -5.043 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55 64.590 -3.811 30.102 1.00 18.92 67.465 -3.898 28.636 1.00 11.23 67.553	0 N N C C C C C N N C C C C
30 35	ATOM 935 OD1 ASN A 100 ATOM 936 ND2 ASN A 100 ATOM 937 N LYS A 101 ATOM 938 CA LYS A 101 ATOM 939 C LYS A 101 ATOM 940 O LYS A 101 ATOM 941 CB LYS A 101 ATOM 942 CG LYS A 101 ATOM 943 CD LYS A 101 ATOM 944 CE LYS A 101 ATOM 945 NZ LYS A 101 ATOM 946 N LEU A 102 ATOM 948 C LEU A 102 ATOM 949 O LEU A 102 ATOM 949 O LEU A 102 ATOM 950 CB LEU A 102 ATOM 950 CB LEU A 102	63.737 -12.709 30.100 1.00 29.59 67.716 -12.240 32.076 1.00 16.35 68.941 -7.923 31.584 1.00 17.91 67.970 -6.916 31.994 1.00 25.43 68.107 -5.510 31.323 1.00 25.29 69.151 -4.850 31.377 1.00 19.88 67.996 -6.807 33.521 1.00 29.28 67.464 -8.054 34.205 1.00 9.31 67.218 -7.719 35.668 1.00 38.93 66.206 -6.569 35.885 1.00 13.38 64.750 -7.006 35.825 1.00 13.38 64.750 -3.006 30.732 1.00 22.22 67.003 -3.744 30.092 1.00 15.40 65.612 -3.115 30.156 1.00 18.55 64.590 -3.811 30.102 1.00 18.92 67.465 -3.898 28.636 1.00 15.51	0 N N C C C C C C N N C C

	MOTA	955	CA.	LEU A	103	64.35	6	-1.036	30.265	1.00	16.23	c	:
	MOTA	956	<u>_C</u>	LEU A	103	64.34	6	-0.072	29.046	1.00	19.65		:
	ATOM	957		LEU A	103	65.21	5	0.789	28.875	1.00	19.68		2
	MOTA	958	СВ	LEU A	103	64.09	9	-0.289	31.562	1,00	12.28		:
5	MOTA	959	CG	LEU A	103	62.68	6	0.259	31.594	1.00	14.13		2
	ATOM	960	CD1	LEU A	103	61.64	5	-0.822	31.902	1.00	10.31		į
	MOTA	961	CD2	LEU A	103	62.64	6_	1.360	32.601	1.00	12.30		ż
	MOTA	962	<u> N</u>	PHE A	104	63.41	7	-0.333	28.140	1.00	16.41		Ī
	MOTA	963	CA	PHE A	104	63.21	5	0.486	26.956	1.00	18.32		2
10	MOTA	964	_c	PHE A	104	62.12	6	1.546	27.249	1.00	21.85		2
	MOTA	965	_0	PHE A	104	61.16	0_	1.271	27.992	1.00	18,36		2
	MOTA	966	CB	PHE A	104	62.79	6	-0.386	25.793	1.00	9.86		2
	ATOM	967	CG	PHE A	104	62.73	2	0.348	24.508	1.00	16.81		2
	MOTA	968	CD1	PHE A	104	63.89	4	0.714	23.840	1.00	25.04		2
15	ATOM	969	CD2	PHE A	104	61.51	1_	0.795	24.005	1.00	22.59		Ž
	MOTA	970	CE1	PHE A	104	63.83	6	1.448	22.619	1.00	31,26		2
	ATOM	971	CE2	PHE A	104	61.44	9	1.535	22.814	1.00	15.59		2
	ATOM	972	CZ	PHE A	104	62,62	5	1.895	22.139	1.00	11.67		2
	MOTA	973	N_	LEU A	105	62.34	1_	2.762	26.734	1.00	20.33	<u></u>	1
20	ATOM	974	CA_	LEU A	105	61.41	.6	3.897	26.904	1.00	18,10		2
	ATOM	975	<u> </u>	LEU A		60,71		4.237	25.634		17.04		2
	ATOM	976		LEU A		61.31		4.680	24.665		18.83		_
	MOTA	977	_CB_	LEU A		62.17		5.146	27.214		17.49		_
25	MOTA	978	CG	LEU A		62.43		5.544	28.644		27.17		_
25	ATOM	979		LEU A		62.63		4.349	29.574		19.16		_
	ATOM	980		LEU A		63.68		6.347	28.529		23.59		
	MOTA	981	_N	GLY A		59.40		4.153	25,652		20.66	N	
	ATOM	982	CA_	GLY A	_	58.67		4.536	24.455		21.03		
30	MOTA	983	_ <u>c_</u>	GLY A		58.08		5.935	24.597		17.32		-
50	ATOM	984		GLY A		58.69		6.858	25,113		26.89		_
	MOTA	985 986	_N	SER A		56,83		6.047	24.219		22.05 22.12		
	MOTA MOTA	987	<u></u>	SER A		56.17 54.68		7.317 7.212	24.288 23.923		19.06		_
	ATOM	988	<u> </u>	SER A		54.31			22.963				-
35	ATOM	989	CB	SER A		56.88		8,232	23.300		20.99		2
,,,	ATOM	990	OG	SER A		55.94		9.133	22.776			_	-
	ATOM	991	<u>N_</u>	SER A		53.82		7.890	24.671	-	27.42		
	MOTA	992	CA.	SER A		52.38		7.947	24.339		26.43		2
	ATOM	993		SER A		52.14		8.259	22.842		30.97		Z Z
40	ATOM	994	0_	SER A		51.24			22.217		33.46		2 2
	MOTA	995	CB	SER A		51.71		9.072	25.144				2
	MOTA	996	OG_	SER A		52,49		10.266	25.071		70.88		2
	MOTA	997	N	CYS P		52.92			22.278				
	ATOM	998	CA.	CYS A		52.72			20.880		25.61		Œ.
45	MOTA	999		CYS I		52.97			19.815				E C
	484 744			<u> </u>			<u> </u>	V 104	*****		44663		•

	ATOM	1000	0_	CYS A	109	52,967	8.737	18.623	1.00	31.31	0
	MOTA	1001	СВ	CYS A	109	53.369	10.899	20.544	1.00	39.55	<u>C</u>
	ATOM	1002	sc	CYS A	109	55.153	11.077	20.847	1.00	49.24	
	MOTA	1003	N_	ILE A	110	53.101	7.264	20.258	1.00	18.31	N
5	MOTA	1004	CA_	ILE A	110	53.329	6.150	19.379	1.00	28.10	С
	MOTA	1005	С	ILE A	110	51.977	5.489	19.082	1.00	15.38	<u>C</u>
	MOTA	1006	0	ILE A	110	51.895	4.592	18.268	1.00	16.52	0
	ATOM	1007	СВ	ILE A	110	54.154	5.153	20.206	1.00	40.45	<u>c</u>
	MOTA	1008	CG1	ILE A	110	55.604	5.510	20.136	1.00	39.02	с
10	MOTA	1009	CG2	ILE A	110	53.879	3.715	19.875	1.00	61.33	<u>c</u>
	MOTA	1010	CD1	ILE A	110	56.429	4.338	20.549	1.00	82.74	<u>c</u>
	MOTA	1011	N.	TYR A	111	50.951	5.842	19.854	1.00	14.91	N
	ATOM	1012	CA	TYR A	111	49.630	5.227	19.678	1.00	13.96	c
	MOTA	1013	С	TYR A	111	48.956	5.831	18.459	1.00	20.40	c
15	ATOM	1014	0_	TYR A	111	49.302	6.933	18.056	1.00	11.71	0
	MOTA	1015	СВ	TYR A	111	48.763	5.468	20.921	1.00	9.63	С
	MOTA	1016	CG	TYR A	111	49.117	4.550	22.065	1.00	14.94	<u>c</u>
	ATOM	1017	CD1	TYR A	<u>i11</u>	48.985	3.159	21.938	1.00	9,73	C
	MOTA	1018	CD2	TYR A	111	49.755	5.038	23.216	1.00	14.96	С
20	MOTA	1019	CE1	TYR A	111	49.344	2,273	23.014	1.00	6,53	<u> </u>
	MOTA	1020	CE2	TYR A	111	50.146	4.155	24.272	1.00	13.66	<u>C</u>
	MOTA	1021	CZ	TYR A	111	49.873	2.787	24.171	1.00	17.86	c
	MOTA	1022	OH	TYR A	111	50.266	1.927	25.157	1.00	11.37	0
	ATOM	1023	<u> N</u>	PRO A	112	47,974	5.145	17.872	1.00	22.56	N
25	MOTA	1024	CA	PRO A	112	47.279	5.743	16.721	1.00	23.44	c
	ATOM	1025	_C	PRO A	112	46.589	7,111	16.988	1.00°	17.82	C
	MOTA	1026	0	PRO A	112	46.197	7.453	18.115	1.00	19.72	<u>0</u>
	MOTA	1027	CB	PRO A	112	46.290	4.644	16.252	1.00	15.69	<u>C</u>
	MOTA	1028	ÇĢ	PRO A	112	46.895	3.343	16.769	1.00	22.83	<u>c</u>
30	MOTA	1029	CD	PRO A	112				A . V V		_
	MOTA	1020			_*^~	47.593	3.733	18.086		16.10	<u>C</u>
		1030	N_	LYS A		47.593 46.418	3.733 7.866		1.00	16.10 19.48	N
	MOTA	1030	N CA	LYS A	113			18.086	1.00		
	MOTA				113 113	46.418	7.866	18.086 15.915 15.994	1.00	19.48 23.50	N
		1031	CA	LYS A	113 113 113	46.418 45.793	7.866 9.167	18.086 15.915 15.994 16.655	1.00 1.00 1.00	19.48 23.50	N C
35	MOTA	1031 1032	CA C	LYS A	113 113 113 113	46.418 45.793 44.396	7.866 9.167 9.077 9.887	18.086 15.915 15.994 16.655	1.00 1.00 1.00 1.00	19.48 23.50 34.28	N
35	MOTA	1031 1032 1033	ca c o	LYS A LYS A	113 113 113 113 113	46.418 45.793 44.396 44.046	7.866 9.167 9.077 9.887 9.735	18.086 15.915 15.994 16.655 17.524	1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14	
35	MOTA MOTA	1031 1032 1033 1034	CA C O CB	LYS A LYS A LYS A	113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675	7.866 9.167 9.077 9.887 9.735	18.086 15.915 15.994 16.655 17.524 14.593	1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78	N C O
35	MOTA MOTA MOTA MOTA	1031 1032 1033 1034 1035	CA C O CB CG	LYS A LYS A LYS A LYS A LYS A	113 113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675 46.219	7.866 9.167 9.077 9.887 9.735 11.124	18.086 15.915 15.994 16.655 17.524 14.593	1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78	N C C O C
35	MOTA MOTA MOTA MOTA	1031 1032 1033 1034 1035 1036	CA C O CB CG CD	LYS A LYS A LYS A LYS A LYS A LYS A	113 113 113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675 46.219 45.381	7.866 9.167 9.077 9.887 9.735 11.124 11.941	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78	N C C C
35 40	ATOM ATOM ATOM ATOM ATOM ATOM	1031 1032 1033 1034 1035 1036	CA C O CB CG CD	LYS A	113 113 113 113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675 46.219 45.381 44.361	7.866 9.167 9.077 9.887 9.735 11.124 11.941 12.836 13.625	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515 14.250	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78 100.00 100.00	2 C C C C
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1031 1032 1033 1034 1035 1036 1037	CA C O CB CG CD CE	LYS A	113 113 113 113 113 113 113 113 113 114	46.418 45.793 44.396 44.046 45.675 46.219 45.381 44.361 43.480	7.866 9.167 9.077 9.887 9.735 11.124 11.941 12.836 13.625	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515 14.250 13.304	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78 100.00 100.00 26.33	N
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1031 1032 1033 1034 1035 1036 1037 1038 1039	CA C C C B C C C C C C C C C C C C C C C	LYS A	113 113 113 113 113 113 113 113 113 114 114	46.418 45.793 44.396 44.046 45.675 46.219 45.381 44.361 43.480 43.591	7.866 9.167 9.077 9.887 9.735 11.124 11.941 12.836 13.625 8.103	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515 14.250 13.304 16.250	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78 100.00 100.00 26.33	N C C C C C N N
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1031 1032 1033 1034 1035 1036 1037 1038 1039	CA C O CB CG CD CE NZ N CA	LYS A LEU A	113 113 113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675 46.219 45.381 44.361 43.480 43.591 42.267	7.866 9.167 9.077 9.887 9.735 11.124 11.941 12.836 13.625 8.103 7.957 6.792	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515 14.250 13.304 16.250 16.833 17.760	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78 100.00 100.00 26.33 20.65	N
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1031 1032 1033 1034 1035 1036 1037 1038 1039 1040	CA C O CB CG CD CE NZ N CA C	LYS A LEU A LEU A	113 113 113 113 113 113 113 113	46.418 45.793 44.396 44.046 45.675 46.219 45.381 44.361 43.480 43.591 42.267 42.083	7.866 9.167 9.077 9.887 9.735 11.124 11.941 12.836 13.625 8.103 7.957 6.792	18.086 15.915 15.994 16.655 17.524 14.593 14.477 13.515 14.250 13.304 16.250 16.833 17.760	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.48 23.50 34.28 46.14 30.04 43.78 100.00 100.00 26.33 20.65 18.44	N

	ATOM	1045	CD1	LEU A 114	40.991	8.797	13.504	1.00 49.29	2
	MOTA	1046	CD2	LEU A 114	41,139	10.512	15.300	1.00 26.85	c
	MOTA	1047	N	ALA A 115	43.103	6.473	18,527	1.00 29.00	N
	MOTA	1048	CA	ALA A 115	42.920	5.446	19.528	1.00 25.66	c
5	MOTA	1049	С	ALA A 115	41.722	5.727	20.454	1.00 28.76	C
	MOTA	1050	0	ALA A 115	41,364	6.855	20.682	1.00 24.12	0
	MOTA	1051	_CB_	ALA A 115	44.177	5.272	20.326	1.00 16.86	c
	MOTA	1052	N	LYS A 116	41.137	4.675	20,998	1.00 30.21	N
	MOTA	1053	CA	LYS A 116	40.036	4.792	21.928	1.00 25.85	с
10	MOTA	1054	<u> </u>	LYS A 116	40.668	5.248	23.195	1.00 14.18	c
	MOTA	1055	0	LYS A 116	41.750	4.781	23.535	1.00 23.51	0
	ATOM	1056	CB	LYS A 116	39.369	3.415	22.116	1.00 22.05	с
	MOTA	1057	CG	LYS A 116	39,053	3.032	23.524	1.00 55.38	c
	ATOM	1058	CD	LYS A 116	37,963	1,955	23.549	1.00100.00	c
15	MOTA	1059	CE	LYS A 116	37,120	1.953	24.835	1.00100.00	<u>c</u>
	MOTA	1060	NZ	LYS A 116	35.767	1.310	24.630	1,00100.00	N N
	MOTA	1061	N.	GLN A 117	40.021	6,208	23.856	1.00 18.23	N
	MOTA	1062	CA_	GLN A 117	40.456	6,757	25.180	1.00 21.01	<u>c</u>
	ATOM	1063	С	GLN A 117	39.695	6.178	26.383	1.00 30.96	c
20	ATOM	1064	0	GLN A 117	38.483	6,009	26.345	1.00 27.66	0
	ATOM	1065	СВ	GLN A 117	40,215	8,263	25.179	1.00 11.32	<u>c</u>
	ATOM	1066	CG	GLN A 117	40,849	8.912	23.948	1.00 12.12	c
	MOTA	1067	CD	GLN A 117	42,404	8.823	23.954	1.00 24.10	<u>c</u>
	MOTA	1068	OE1	GLN A 117	43.041	8.628	22.896	1.00 47.88	0
25	MOTA	1069	NE2	GLN A 117	43.001	8.953	25.131	1.00 14.24	N
	MOTA	1070	N	PRO A 118	40.374	5,992	27,499	1.00 30.02	N
	MOTA	1071	CA_	PRO A 118	41.826	6.194	27.655	1.00 26.44	с
	MOTA	1072	С	PRO A 118	42.450	5.050	26.899	1.00 24.37	<u>c</u>
	ATOM	1073	0	PRO A 118	41.792	4.027	26.726	1.00 25.34	0
30	MOTA	1074	CB	PRO A 118	42,055	5.994	29,167	1.00 23.89	с
	MOTA	1075	CG	PRO A 118	40,847	5.240	29.654	1.00 23.20	<u>c</u>
	MOTA	1076	CD	PRO A 118	39.695	5.519	28.709	1.00 15.79	с
	MOTA	1077	N_	MET A 119	43.684	5.228	26.432	1.00 16.00	N
	MOTA	1078	_CA_	MET A 119	44.372	4.215		1.00 10.80	<u>c</u>
35	MOTA	1079	<u>c</u>	MET A 119	45.062	3.083	26.444	1.00 23.61	Ç
	ATOM	1080	0	MET A 119	46.013	3.281	27.209	1.00 18.02	0
	MOTA	1081	CB	MET A 119	45.384	4.894	24.791	1.00 13.52	<u>c</u>
	ATOM	1082	CG	MET A 119	44.801	6.014	23.989	1.00 18.52	<u>c</u>
	MOTA	1083	SD	MET A 119	46.157	7.054	23.271	1.00 26.27	S
40	ATOM	1084	CE	MET A 119	46.264	6.524	21.845	1.00 33.79	<u>c</u>
	MOTA	1085	N	ALA A 120	44.559	1.875	26.271	1.00 26.64	N
	MOTA	1086	CA	AIA A 120	45,177	0.712	26.884	1.00 29.17	<u>C</u>
	MOTA	1087	С	ALA A 120	46.356	0.308	25.984	1.00 23.21	<u>c</u>
	MOTA	1088	0	ALA A 120	46.439	0.759	24,833	1.00 20.19	0
45	MOTA	1089	СВ	ALA A 120	44.169	-0.419	26.944	1.00 26.02	<u>C</u>

	ATOM 1090	N GLU A 121	47.238 -0.553	26,507 1.00 12.30	N
	ATOM 1091	CA GLU A 121	48.427 -1.009	25.788 1.00 9.45	Ç
	ATOM 1092	C GLU A 121	48.070 -1.697	24.450 1.00 11.68	c
	ATOM 1093	O GLU A 121	48.828 -1,670	23.450 1.00 14.84	0
5	ATOM 1094	CB GLU A 121	49.321 -1.883	26.715 1.00 16.74	c
	ATOM 1095	CG GLU A 121	50,132 -1,122	27,763 1.00 18.14	<u></u>
	ATOM 1096	CD GLU A 121	49.458 -1.000	29.137 1.00 13.00	c
	ATOM 1097	OE1 GLU A 121	48.252 -1.294	29,276 1.00 20,79	0
	ATOM 1098	OE2 GLU A 121	50.123 -0.521	30.080 1.00 17.86	Q
10	ATOM 1099	N SER A 122	46.887 -2.273	24,409 1.00 11.79	N
	ATOM 1100	CA SER A 122	46.427 -2.977	23.218 1.00 12.16	c
	ATOM 1101	C SER A 122	46,030 -2.058	22.100 1.00 11.70	C
	ATOM 1102	O SER A 122	45.717 -2.529	21.010 1.00 13.91	0
	ATOM 1103	CB SER A 122	45.186 -3.781	23.568 1.00 21.50	C
15	ATOM 1104	OG SER A 122	44.143 -2.908	23.976 1.00 28.52	0
	ATOM 1105	N GLU A 123	46.041 -0.754	22.341 1.00 14.65	N
	ATOM 1106	CA GLU A 123	45.783 0.202	21.243 1.00 17.15	<u>C</u>
	ATOM 1107	C GLU A 123	46.959 0.313	20.240 1.00 11.48	с
	ATOM 1108	O GLU A 123	46.821 0.844	19.141 1.00 11.19	o
20	ATOM 1109	CB GLU A 123	45.481 1.600	21.805 1.00 21.66	C
	ATOM 1110	CG GLU A 123	44.127 1.694	22.523 1.00 24.68	c
	ATOM 1111	CD GLU A 123	42.984 1.374	21.585 1.00 35.56	<u> </u>
	ATOM 1112	OE1 GLU A 123	43.019 1.865	20.426 1.00 41.73	0
	ATOM 1113	OE2 GLU A 123	42.158 0.497	21.940 1.00100.00	0
25	ATOM1114	NLEU_A_124	48.134 -0.185	20.618 1.00 14.02	N.
	ATOM 1115	CA LEU A 124	49,296 -0,082	19,740 1.00 15.32	C
	ATOM 1116	C LEU A 124	49.082 -0.754	18.458 1.00 17.76	c
	ATOM 1117	O LEU A 124	48.752 -1.917	18.445 1.00 18.91	0
	ATOM 1118	CB LEU A 124	50.564 -0.680	20.362 1.00 18.07	<u>c</u>
30	ATOM 1119	CG LEU A 124	51.922 -0.222	19.803 1.00 21.52	c
	ATOM 1120	CD1 LEU A 124	52.080 1.258	20.117 1.00 20.35	<u> </u>
	ATOM 1121	CD2 LEU A 124	53.042 -0.919	20.550 1.00 14.07	c
	ATOM 1122	N LEU A 125	49.514 -0.071	17.409 1.00 18.44	N
•	ATOM 1123	CA LEU A 125	49.445 -0.564	16.052 1.00 19.92	<u>c</u>
35	ATOM 1124	C LEU A 125	48.034 -0.754	15.509 1.00 25.56	c
	ATOM 1125	O LEU A 125	47.854 -1.188	14.364 1.00 18.26	o
	ATOM 1126	CB LEU A 125	50.355 -1.800	15.840 1.00 20.79	c
	ATOM 1127	CG LEU A 125	51.890 -1.511	15.778 1.00 17.21	<u>c</u>
	ATOM 1128	CD1 LEU A 125	52.744 -2.649	16.316 1.00 19.95	с
40	ATOM 1129	CD2 LEU A 125	52.334 -1.219	14.338 1.00 5.81	c
	ATOM 1130	N GLN A 126	47.027 -0.327	16.276 1.00 21.97	N
	ATOM 1131	CA GLN A 126	45.652 -0.504	15.790 1.00 19.97	
	ATOM 1132		45.213 0.447		
	ATOM 1133	O GLN A 126	44.076 0.391	14.293 1.00 47.49	o
45	ATOM 1134	CB GLN A 126	44.652 -0.404	16.911 1.00 19.87	

	MOTA	1135	CG	GLN A	126	44.949	-1.312	18.048	1.00 18.39	<u>c</u>
	MOTA	1136	CD	GLN A	126	44.319	-2.626	17.835	1.00 66.80	<u>c</u>
	MOTA	1137	OE1	GLN A	126	44.064	-3.376	18.792	1.00 40.75	0
	MOTA	1138	NE2	GLN A	126	44.015	-2. <u>952</u>	16.565	1.00 71.74	N
5	MOTA	1139	N_	GLY A	127	46.080	1,330	14.270	1.00 28.29	<u> </u>
	ATOM	1140	_CA	GLY A	127	45.627	2.260	13.252	1.00 23.31	<u>c</u>
**	MOTA	1141	<u> </u>	GLY A	127	46.662	3.315	12.953	1.00 22.90	<u> </u>
	ATOM	1142	0	GLY A	127	47.755	3.254	13.474	1.00 25.30	
	MOTA	1143	N	THR A	128	46.311	4,219	12.046	1.00 19.51	N
10	MOTA	1144	CA	THR A	128	47.149	5.314	11.588	1.00 22.12	<u> </u>
	MOTA	1145	С	THR A	128	47.705	6.219	12.695	1.00 22.60	<u> </u>
	MOTA	1146	0	THR A	128	47.061	6.461	13.731	1.00 18.58	0
	MOTA	1147	СВ	THR A	128	46.392	6.182	10.544	1.00 35.98	c
	ATOM	1148	OG1	THR A	128	46.533	5,594	9.239	1.00 58.05	0
15	ATOM	1149	CG2	THR A	128	46.942	7.639	10.542	1.00 43.41	с
	MOTA	1150	N_	LEU A	129	48,907	6.715	12.425	1.00 18.32	N.
	ATOM	1151	CA	LEU A	129	49.674	7.534	13.356	1.00 16.76	<u> </u>
	MOTA	1152	С	LEU A	129	49,504	8.959	12.967	1.00 4.89	С С
	ATOM	1153	0	LEU A	129	49,232	9.260	11.814	1.00 16.14	0
20	MOTA	1154	СВ	LEU A	129	51.205	7.191	13.261	1.00 17.91	<u>c</u>
	MOTA	1155	CG	LEU A	129	51,769	5.804	13.752	1.00 18.21	C
	MOTA	1156	CD1	LEU A	129	53,132	5.379	13.193	1.00 12.12	C
	MOTA	1157	CD2	LEU A	129	51,683	5.532	15.251	1.00 3.89	<u> </u>
	MOTA	1158	N_	GLU A	130	49.816	9.827	13.917	1.00 10.23	N N
25	MOTA	1159	CA	GLU A	130	49.912	11.268	13.691	1.00 13.22	c
	MOTA	1160	С	GLU A	130	51.128	11.544	12.775	1.00 23.44	c
	MOTA	1161	0	GLU A	130	52.249	11.162	13.090	1.00 21.23	0
	MOTA	1162	СВ	GLU A	130	50,150	11.979	15.035	1.00 18.48	C
	MOTA	1163	CG	GLU A	130	50.754	13.376	14.886	1.00 77.44	C
30	MOTA	1164	CD	GLU A	130	49.833	14.328	14.121	1.00100.00	<u> </u>
	ATOM	1165	OE1	GLU A	130	48.588	14.205	14.340	1.00 36.19	0
	ATOM	1166	OE2	GLU A	130	50.347	15.161	13.295	1.00 21.03	0
	ATOM	1167	N_	PRO A	131	50,920	12.219	11.648	1.00 21.35	<u> </u>
	MOTA	1168	CA	PRO A	131	52.023	12.409	10.731	1.00 14.78	<u> </u>
35	ATOM	1169	<u>c</u>	PRO A	131	53.201	13.132	11.265	1.00 14.96	СС
	MOTA	1170	0	PRO A	131	54.325	12.847	10.853	1.00 20.99	0
	ATOM	1171	СВ	PRO A	131	51.413	13.154	9,552	1.00 14.76	
	MOTA	1172	CG	PRO A	131	50.071	13.485	9.949	1.00 20.99	<u> </u>
	ATOM	1173	CD	PRO A	131	49.641	12,626	11.047	1.00 17.25	с
40	ATOM	1174	N.	THR A	132	52.986	14.095	12.159	1.00 18.77	<u> </u>
	MOTA	1175	CA	THR A	132	54,131	14.838	12.689	1.00 16.44	C
	MOTA	1176	С	THR A	132	55.102	13.951		1.00 21.91	
	MOTA	1177	0	THR A	132	56.317			1.00 24.17	
	MOTA	1178	СВ	THR A		53.716			1.00 23.45	
45	ATOM	1179	og1	THR A	132				1.00 31.15	
										-

	MOTA	1180	CG2	THR A 132	54.969	16.519	14.341	1.00 9.2	8 <u>C</u>
	MOTA	1181	N_	ASN A 133	54.551	12.970	14.122	1.00 28.5	9N
	MOTA	1182	CA	ASN A 133	55,359	12.007	14.875	1.00 26.3	8 <u> </u>
	MOTA	1183	С	ASN A 133	55.666	10,682	14.207	1.00 14.8	5 <u>C</u>
5	ATOM	1184	٥	ASN A 133	56,446	9.884	14.755	1.00 18.6	70
	MOTA	1185	СВ	ASN A 133	54.661	11.699	16.168	1.00 23.7	0 <u> </u>
	MOTA	1186	CG	ASN A 133	54.480	12.894	16.968	1.00 50.5	5 C
	MOTA	1187	OD1	ASN A 133	53.354	13.272	17.252	1.00 40.0	7 0
	MOTA	1188	ND2	ASN A 133	55.568	13.638	17.163	1.00 40.3	6 N
10	MOTA	1189	N	GLU A 134	55.100	10.469	13.022	1.00 9.9	8N
	MOTA	1190	_CA_	GLU A 134	55.237	9.210	12.365	1.00 9.6	6C
	MOTA	1191	_C	GLU A 134	56.648	8.530	12.274	1.00 13.8	6 <u>C</u>
	MOTA	1192	0	GLU A 134	56.814	7.388	12.706	1.00 22.8	90
	MOTA	1193	СВ	GLU A 134	54.448	9.200	11.070	1.00 17.5	5 <u>C</u>
15	MOTA	1194	CG	GLU A 134	54.750	7.930	10.227	1.00 20.8	<u>9C</u>
	MOTA	1195	CD	GLU A 134	53,926	7.868	8.970	1.00 13.5	9 <u> </u>
	MOTA	1196	OE1	GLU A 134	52.678	7.738	9.085	1.00 35.2	8 <u>Q</u>
	ATOM	1197	OE2	GLU A 134	54.497	8.048	7.869	1.00 13.4	140
	ATOM	1198	N	PRO A 135	57.680	9.222	11.789	1.00 15.7	/2 N
20	MOTA	1199	_CA_	PRO A 135	59.014	8.600	11.699	1.00 18.9)1C
	MOTA	1200	<u>C</u>	PRO A 135	59.544	8.174	13.073	1.00 18.6	8 C
	MOTA	1201	0	PRO A 135	60.072	7.069	13.271	1.00 15.6	90
	MOTA	1202	СВ	PRO A 135	59.896	9.755	11.169	1.00 13.8	<u>C</u>
	MOTA	1203	CG	PRO A 135	59.036	10.514	10.350	1.00 9.7	<u></u>
25	ATOM	1204	CD	PRO A 135	57.594	10.395	10.908	1.00 14.4	3 <u>C</u>
- Auto Auto Auto-	ATOM	1205		TYR A 136	59.449	9.117	13.994	1.00 8.6	
	MOTA	1206	_CA_	TYR A 136	59.873	8.915	15.324	1.00 13.2	
	MOTA	1207_	_ <u>C</u>	TYR A 136	59,056	7,728	15,907	1.00 16.8	4 C
20	MOTA	1208	_0	TYR A 136	59.578	6.903	16.658	1.00 12.9	
30	ATOM	1209	CB	TYR A 136	59.604	10.234	16.100	1.00 15.5	
	MOTA	1210	CG	TYR A 136	59.912	10.168	17.614	1.00 18.2	
	ATOM	1211		TYR A 136	61.200	10.062	18.072	1.00 20.5	
	MOTA	1212		TYR A 136	58,904			1.00 17.3	
25	ATOM			TYR A 136	61,484			1.00_30.4	
35	ATOM	1214		TYR A 136	59.184	10.084		1.00 9.8	· · · · · · · · · · · · · · · · · · ·
	ATOM	1215	_CZ_	TYR A 136	60,476	9.949	20.377	1.00 20.6	
	ATOM	1216	OH	TYR A 136	60.792	9.873		1.00 24.4	
	ATOM	1217	N	ALA A 137	57.760	7,687		1.00 7.1	
40	ATOM	1218	_CA_	ALA A 137	56,923	6,633		1.00 12.6	
40	ATOM	1219	_ <u>C</u>	ALA A 137	57.345	5.265		1.00 15.2	
	MOTA	1220		ALA A 137	57.425	4.272		1.00 14.5	
	MOTA	1221		ALA A 137	55.517	6.849		1.00 11.4	
	MOTA	1222	_N	ILE A 138	57.567	5.213	14.447	1.00 8.9	
45	ATOM	1223		ILE A 138	57.954	3.971		1.00 11.7	
4)	MOTA	<u> 1224 </u>	<u>. C</u>	ILE A 138	59.246	3.494	19.492	1.00 16.2	0 <u>C</u>

	ATOM 1225	5 0	ILE A 138	59.307	2.377	14.970	1.00 13.79	0
	ATOM 122	CB_	ILE A 138	58.064	4.172	12.316	1.00 17.85	c
	ATOM 122	7CG1	ILE A 138	56.680	4.473	11.757	1.00 28.21	C
	ATOM 1228	CG2	ILE A 138	58.674	2.986	11.602	1.00 9.81	с
5	ATOM 1225	CD1	ILE A 138	55.695	3.376	11.970	1.00 18.17	с
	ATOM 1230) N_	ALA A 139	60.243	4.361	14.625	1.00 11.54	
	ATOM 1231	L CA	ALA A 139	61.494	3.937	15.288	1.00 13.22	<u>C</u>
	ATOM 1232	<u> </u>	ALA A 139	61.256	3.364	16.675	1.00 18.73	с
	ATOM 123		ALA A 139	61.791	2.318	17.031	1.00 20.44	0
10	ATOM 1234	CB	ALA A 139	62.434	5.073	15.390	1.00 13.62	<u>C</u>
	ATOM 123	5_N_	LYS A 140	60.397	4.033	17.448	1.00 16.36	N
	ATOM 123	5 CA	LYS A 140	60.083	3.600	18.815	1.00 15.14	C
	ATOM 123	7C	LYS A 140	59.392	2.262	18.824	1.00 15.18	<u>c</u>
	ATOM 1238	2_0_	LYS A 140	59.824	1,346	19,475	1.00 21.42	0
15	ATOM 123	CB_	LYS A 140	59.193	4.606	19.525	1.00 17.86	<u>c</u>
	ATOM 1240) CG	LYS A 140	59,925	5.806	20.152	1.00 21.11	<u>c</u>
	ATOM 124	L CD	LYS A 140	61.208	5.478	20.958	1.00 16.75	c
	ATOM 124	CE_	LYS A 140	61.664	6.735	21.835	1.00 10.06	<u>C</u>
	ATOM 124	NZ	LYS A 140	62,688	6.496	22,921	1.00 14.40	
20	ATOM 124	1 N	ILE A 141	58.356	2.116	18.027	1.00 11.49	N
	ATOM 124	5 CA	ILE A 141	57.703	0.828	17.977	1.00 17.92	с
	ATOM 1240	5_C_	ILE A 141	58,729	-0.282	17.577	1.00 13.46	c
	ATOM 124	7 0	ILE A 141	58,730	-1.374	18.148	1.00 13.92	Q
	ATOM 1241	CB	ILE A 141	56.497	0.925	17.019	1.00 22.59	ç
25	ATOM 124	CG1	ILE A 141	55.466	1,906	17.557	1.00 17.61	ç
	ATOM 1250	CG2	ILE A 141	55.863	-0.411	16.700	1.00 10.49	С
	ATOM 125	CD1	ILE A 141	54.530	2.327	16.449	1.00 13.43	<u>c</u>
	ATOM 125	2 N	ALA A 142	59.637	0.028	16,650	1.00 10.29	N
	ATOM 125	3 CA	ALA A 142	60,657	-0,931	16,228	1.00 7.15	<u>c</u>
30	ATOM 125	<u> </u>	ALA A 142	61.456	-1.301	17.456	1.00 16.58	<u>c</u>
	ATOM 125	5 0	ALA A 142	61.839	-2.454	17.621	1.00 13.04	0
	ATOM 125	6 CB	ALA A 142	61.604	-0.288	15.130	1.00 4.44	<u>c</u>
	ATOM 125	7 N	GLY A 143	61.703	-0.307	18.316	1.00 9.56	N
	ATOM 1251	B CA	GLY A 143	62.448	-0.525	19,527	1.00 5.15	с
35	ATOM 125	<u> </u>	GLY A 143	61.770	-1.555	20.430	1.00 16.36	<u>c</u>
	ATOM 126	0 0	GLY A 143	62.392	-2.482	20.967	1.00 14.11	0
	ATOM 126	L N	ILE A 144	60.476	1.418	20.564	1.00 20.33	N
	ATOM 126	CA	ILE A 144	59.725		21,407	1.00 15.35	<u>c</u>
	ATOM 126	3_C_	ILE A 144	59.706	-3.732	20.859	1.00 19.84	<u>c</u>
40	ATOM 126	4 0	ILE A 144	59.836	-4.700	21.608	1.00 17.93	0
	ATOM 126	5 CB	ILE A 144	58.317	-1.819	21.559	1.00 10.60	<u>c</u>
	ATOM 126	6 CG1	ILE A 144	58,311	-0.610	22.516	1.00 9.80	c
	ATOM 126	7 CG2	ILE A 144	57.410	-2.928	22.122	1.00 9.60	c
	ATOM 126	CD1	ILE A 144	57.022			1.00 18.32	<u>C</u>
45	ATOM 126	9 N	LYS A 145	59.520	-3.841	19.556	1.00 7.20	N

	MOTA	1270	CA	LYS A 145	59,459	-5.139	18,926	1.00	7.64	с
	MOTA	1271	Ç	LYS A 145	60.840	-5,788	18.931	1.00 1	5.32	c
	MOTA	1272	0	LYS A 145	60.923	-6.989	18.981	1.00 1	4.76	0
	MOTA	1273	СВ	LYS A 145	58.891	-5.001	17.516	1.00 1	1.25	c
5	ATOM	1274	CG	LYS A 145	57.414	-4.581	17.489	1.00 1	2.13	с
	MOTA	1275	CD	LYS A 145	56.642	-5,434	18.495	1.00 2	5.23	с
	MOTA	1276	CE	LYS A 145	55.189	~4.995	18.692	1.00 1	3.64	с
	MOTA	1277	NZ	LYS A 145	54.441	-6.111	19,392	1.00 1	1,94	N
	MOTA	1278	N_	LEU A 146	61.934	~5.011	18.986	1.00 2	6.98	<u></u> N
10	MOTA	1279	CA	LEU A 146	63.261	-5.642	19.167	1.00 1	9.72	с
	ATOM	1280	C_	LEU A 146	63.262	-6.316	20.542	1.00 1	8.20	c
	ATOM	1281	0	LEU A 146	63,590	-7.511	20.703	1.00 1	9.86	0
	ATOM	1282	СВ	LEU A 146	64,398	-4.618	19.150	1.00 1	3.56	
	ATOM	1283	CG	LEU A 146	64.895	-4.258	17.759	1.00 2	21.84	С
15	ATOM	1284	CD1	LEU A 146	65.672	-2.945	17.817	1.00 1	17.94	c
	MOTA	1285	CD2	LEU A 146	65,745	-5:397	17.102	1.00 1	16.10	C
	ATOM	1286	N	CYS A 147	62.931	-5.523	21.548	1.00	7.91	N
	ATOM	1287	CA	CYS A 147	62.875	~6.064	22.893	1.00	9.14	C
	MOTA	1288	С_	CYS A 147	62.072	-7.378	22.945	1.00 2	22.72	c
20	ATOM	1289	0	CYS A 147	62.568	-8.401	23.383	1.00	16.90	0
	MOTA	1290	СВ	CYS A 147	62.232	-5.058	23.809	1.00	12.63	C
	MOTA	1291	SG	CYS A 147	63.411	-3.823	24.316	1.00	15.02	s
	MOTA	1292	N	GLU A 148	60.823	-7.352	22.508	1.00 2	20.03	<u>N</u>
	MOTA	1293	CA	GLU A 148	60.016	-8.555	22.567	1.00	16.09	c
25	MOTA	1294	С	GLU A 148	60.685	-9.715	21,802	1.00 2	22.61	С
	MOTA	1295	0	GLU A 148	60.651	-10.888	22.226	1.00	2.05	0
	MOTA	1296	CB	GLU A 148	58.597	-8.268	22,046	1.00	14.66	<u>c</u>
	MOTA	1297	CG	GLU A 148	57,864	-7.189	22,840	1.00	11.45	<u>C</u>
	MOTA	1298	CD	GLU A 148	56.471	-6.821	22.277	1.00	1.75	<u>C</u>
30	MOTA	1299	OE1	GLU A 148	56.117	-7.055	21.080	1.00 1	1.65	0
	ATOM	1300	OE2	GLU A 148	55.728	-6.231	23.081	1.00 2	22.56	0
	ATOM	1301	N_	SER A 149	61.368	<u>-9.377</u>	20.715	1.00 1	15.57	N
	ATOM	1302	CA	SER A 149	61,938	-10.428	19.887	1.00	10.21	<u> </u>
	MOTA	1303	С	SER A 149	63,040	-11.245	20.502	1.00	15.83	С
35	MOTA	1304	0.	SER A 149	63.102	-12.458	20.291	1.00 1	2.72	0
	MOTA	1305	СВ	SER A 149	62.270	-9.936	18.488	1.00	9.44	c
	ATOM	1306	OG	SER A 149	61.053	-9.650	17.782	1.00	15.91	0
	ATOM	1307	N	TYR A 150	63.910	-10.546	21.224	1.00	18.44	N
	MOTA	1308	CA	TYR A 150	65.065	-11.100	21.948	1.00 2	20.50	<u>c</u>
40	ATOM	1309	С.	TYR A 150	64.514	-11.848	23.158	1.00 2	21.87	C
	ATOM	1310	_0_	TYR A 150	64.939	-12.949	23.486	1.00	31.39	0
	MOTA	1311	СВ	TYR A 150	66.005	-9.950	22.425	1.00	13,71	c
	MOTA	1312	CG	TYR A 150	66.994	-9.509	21.365	1.00	14.13	c
	MOTA	1313	CD1	TYR A 150	66.611	-8.673	20.317	1.00	14.64	с
45	MOTA	1314	CD2	TYR A 150	68.288	-10.000	21.360	1.00	18.32	C

	ATOM 1315	CE1 TYR A 150	67.487 -8.390 19.278 1.00 11.91	c
	ATOM 1316	CE2 TYR A 150	69.198 -9.682 20.345 1.00 11.10	c
	ATOM 1317	CZ TYR A 150	68.804 -8.900 19.326 1.00 20.95	с
	ATOM 1318	OH TYR A 150	69,739 -8,685 18,333 1,00 27,73	Q
5	ATOM 1319	N ASN A 151	63.536 -11.249 23.801 1.00 14.83	N
	ATOM 1320	CA ASN A 151	62.903 -11.889 24.937 1.00 23.62	c
	ATOM 1321	C ASN A 151	62.417 -13.244 24.410 1.00 28.53	с
	ATOM 1322	O ASN A 151	62.630 -14.248 25.072 1.00 25.89	0
	ATOM 1323	CB ASN A 151	61.655 -11.113 25.439 1.00 20.95	с
10	ATOM 1324	CG ASN A 151	61.988 -9.867 26.284 1.00 15.07	
	ATOM 1325	OD1 ASN A 151	61.126 -9.020 26.466 1.00 26.72	0
	ATOM 1326	ND2 ASN A 151	63.231 -9.709 26.700 1.00 6.31	N
	ATOM 1327	N ARG A 152	61,731 -13,249 23,259 1,00 19,91	N
	ATOM 1328	CA ARG A 152	61.129 -14.465 22.687 1.00 17.62	c
15	ATOM 1329	C ARG A 152	62.090 -15.523 22.188 1.00 21.34	c
	ATOM 1330	O ARG A 152	61.959 -16.687 22.542 1.00 15.44	0
*	ATOM 1331	CB ARG A 152	60.086 -14.148 21.610 1.00 15.30	<u>c</u>
	ATOM 1332	CG ARG A 152	58.672 -13.754 22.157 1.00 17.22	<u>c</u>
	ATOM 1333	CD ARG A 152	57.652 -13.297 21.049 1.00 9.11	<u> </u>
20	ATOM 1334	NE ARG A 152	57.161 -14.419 20.241 1.00 21.05	N N
	ATOM 1335	CZ ARG A 152	57.159 -14.447 18.912 1.00 28.61	с
	ATOM 1336	NH1 ARG A 152	57.590 -13.387 18.221 1.00 21.98	N
	ATOM 1337	NH2 ARG A 152	56.717 -15.528 18.262 1.00 26.11	N
	ATOM .1338	N GLN A 153	63.098 -15.104 21.434 1.00 16.54	N
25	ATOM 1339	CA GLN A 153	64.044 -16.036 20.842 1.00 9.74	c
	ATOM 1340	C GLN A 153	65.082 -16.443 21.807 1.00 16.70	<u>c</u>
	ATOM 1341	O GLN A 153	65,529 -17,545 21,763 1,00 24,35	0
	ATOM 1342	CB GLN A 153	64.789 -15.372 19.714 1.00 8.99	<u> </u>
	ATOM 1343	CG GLN A 153	65,935 -16,225 19,116 1,00 4,63	<u>C</u>
30	ATOM 1344	CD GLN A 153	66.315 -15.637 17.762 1.00 14.17	c
	ATOM 1345	OE1 GLN A 153	65,611 -14,763 17.254 1.00 12.53	<u> </u>
	ATOM 1346	NE2 GLN A 153	67.466 -16.024 17.228 1.00 13.38	N
	ATOM 1347	N TYR A 154	65,566 -15,518 22,608 1,00 14,35	N
	ATOM 1348	CA TYR A 154	66.677 -15.839 23.483 1.00 12.16	с
35	ATOM 1349	C TYR A 154	66.323 -15.930 24.954 1.00 19.06	<u>c</u>
	ATOM 1350	O TYR A 154	67.185 -16.207 25.777 1.00 25.59	Q
	ATOM 1351	CB TYR A 154	67.829 -14.816 23.326 1.00 16.89	<u>C</u>
	ATOM 1352	CG TYR A 154	68.418 -14.733 21.943 1.00 17.53	<u>c</u>
	ATOM 1353	CD1 TYR A 154	69.259 -15.726 21.467 1.00 18.91	Ç
40	ATOM 1354	CD2 TYR A 154	68,080 -13.712 21.091 1.00 13.97	<u>C</u>
	ATOM 1355	CE1 TYR A 154	69.782 -15.686 20.190 1.00 10.98	<u>C</u>
	ATOM 1356	CE2 TYR A 154	68,621 -13,639 19,806 1,00 23.81	<u>C</u>
	ATOM 1357	CZ TYR A 154	69.488 -14.634 19.380 1.00 23.08	<u>C</u>
	ATOM 1358	OH TYR A 154	70.002 -14.619 18.118 1.00 23.87	0
45	ATOM 1359	N GLY A 155	65,080 -15,686 25.313 1.00 12.08	N

	MOTA	1360	_CA_	GLY A 155	64.747 -15.702	26.731	1.00 15.80	<u>c</u>
	ATOM	1361	<u> </u>	GLY A 155	65.323 -14.498	27,580	1.00 33.97	<u>c</u>
	MOTA	1362	_0	GLY A 155	65.491 -14.640	28,789	1.00 25.76	0
	ATOM	1363	N_	ARG A 156	65.564 -13.318	26,981	1.00 25.91	N
5	ATOM	1364	CA	ARG A 156	66.066 -12.146	27.734	1.00 14.13	c
	MOTA	1365	c	ARG A 156	64.971 -11.486	28,581	1.00 16.23	c
	ATOM	1366	0	ARG A 156	63.802 -11.919	28,583	1.00 22.61	0
	ATOM	1367	СВ	ARG A 156	66.601 -11.124	26.750	1.00 13.16	с
	MOTA	1368	ĊG	ARG A 156	67.875 -11.570	26.099	1.00 15.18	с
10	ATOM	1369	CD	ARG A 156	68.930 -11.418	27,121	1.00 26.42	c
	MOTA	1370	NE	ARG A 156	70.200 -11.912	26,633	1.00 21.25	и
	ATOM	1371	CZ	ARG A 156	71.092 -12.555	27.386	1.00 42.25	ç
	MOTA	1372	NH1	ARG A 156	70.870 -12.795	28,679	1.00 20.02	N
	ATOM	1373	NH2	ARG A 156	72.221 -12.966	26.843	1.00 20.88	N
15	MOTA	1374	N_	ASP A 157	65.343 -10.446	29.321	1.00 16.00	N
	MOTA	1375	CA	ASP A 157	64.370 -9.749	30,166	1.00 16.20	с
	ATOM	1376	<u> </u>	ASP A 157	64.444 -8.245	29.841	1.00 19.20	с
	MOTA	1377	0	ASP A 157	64.865 -7.429	30,650	1.00 10.71	0
	ATOM	1378	СВ	ASP A 157	64.609 -10.061	31.652	1.00 16.50	с
20	MOTA	1379	CG	ASP A 157	63.489 -9.560	32.566	1.00 26.45	C
	ATOM	1380	<u>0</u> 01	ASP A 157	62.433 -9.060	32.108	1.00 26.82	0
	MOTA	1381	OD2	ASP A 157	63.673 -9.653	33.784	1.00 21.88	0
	MOTA	1382	N	TYR A 158	64.038 -7.921	28,620	1.00 19.41	N
	MOTA	1383	CA	TYR A 158	64.099 -6.564	28.083	1.00 18.96	C
25	АЛОМ	1384	-G	TYR-A-158-	62~688 <u> </u>	28,,127	_1-00-22-62	С,
	MOTA	1385	_0	TYR A 158	61.854 -6.296	27.282	1.00 10.12	0
	ATOM	1386	СВ	TYR A 158	64.562 -6.661	26.631	1.00 16.34	c
	ATOM	1387	CG	TYR A 158	65.982 -7.166	26,484	1.00 12.04	с
	ATOM	1388	CD1	TYR A 158	66.789 -7.415	27.621	1.00 13.76	с
30	ATOM	1389	CD2	TYR A 158	66.544 -7.349	25,218	1.00 16.35	c
	ATOM	1390	CE1	TYR A 158	68.135 -7.786	27.482	1.00 8.18	C
	MOTA	1391	CE2	TYR A 158	67.886 -7.732	25,060	1.00 13.73	c
	ATOM	1392	CZ	TYR A 158	68.676 -7.942	26.186	1.00 24.45	C
	MOTA	1393	ОН	TYR A 158	69.993 -8.336	25,997	1.00 14.36	0
35	ATOM	1394	_N	ARG A 159	62.423 ~5.200	29,175	1.00 23.53	N
	MOTA	1395	CA	ARG A 159	61.105 ~4.603	29.483	1.00 21.15	c
	MOTA	1396	С	ARG A 159	60.930 -3.172	28.878	1.00 23.55	C
	ATOM	1397	0	ARG A 159	61.911 -2.566	28,424	1.00 18.12	0
	MOTA	1398	СВ	ARG A 159	60.891 -4.608	31.034	1.00 21.68	с
40	MOTA	1399	CG	ARG A 159	60.986 -6.029	31.722	1.00 16.41	c
	MOTA	1400	CD	ARG A 159	61.135 -6.052	33.233	1.00 18.10	
	MOTA	1401	NE	ARG A 159	61.305 -7.402		1.00 19.25	
	MOTA	1402	CZ	ARG A 159	61.164 -7.720			
	MOTA	1403		ARG A 159			1.00 15.32	
45	MOTA	1404	NH2	ARG A 159			1.00 11.79	

	,		
	ATOM 1405 N SER A 160	59.689 -2.661 28.859 1.00 24.44	N
	ATOM 1406 CA SER A 160	59.312 -1.393 28.200 1.00 21.59	<u>c</u>
	ATOM 1407 C SER A 160	58.242 -0.577 28.950 1.00 25.07	
	ATOM 1408 O SER A 160	57.257 -1.127 29.454 1.00 17.02	0
5	ATOM 1409 CB SER A 160	58.719 -1.747 26.797 1.00 13.05	<u>c</u>
	ATOM 1410 OG SER A 160	59.782 -1.897 25.885 1.00 37.57	0
	ATOM 1411 N VAL A 161	58.378 0.742 28.927 1.00 21.01	N
	ATOM 1412 CA VAL A 161	57.369 1.644 29.509 1.00 9.70	<u>C</u>
	ATOM 1413 C VAL A 161	57.068 2.747 28.504 1.00 16.77	
10	ATOM 1414 0 VAL A 161	57.955 3.149 27.729 1.00 16.33	0
	ATOM 1415 CB VAL A 161	57.806 2.248 30.862 1.00 17.94	<u>c</u>
	ATOM 1416 CG1 VAL A 161	57.873 1.185 31.984 1.00 16.16	c
	ATOM 1417 CG2 VAL A 161	59.137 2.992 30.750 1.00 21.10	<u></u>
	ATOM 1418 N MET A 162	55.794 3.147 28.443 1.00 22.46	N
15	ATOM 1419 CA MET A 162	55.296 4.185 27.513 1.00 19.23	c
	ATOM 1420 C MET A 162	54.880 5.312 28.397 1.00 25.19	<u>c</u>
	ATOM 1421 O MET A 162	53.788 5.269 28.961 1.00 18.35	0
	ATOM 1422 CB MET A 162	53.979 3.796 26.850 1.00 15.55	<u>c</u>
	ATOM 1423 CG MET A 162	54.013 2.630 25.949 1.00 37.79	<u>c</u>
20	ATOM 1424 SD MET A 162	54.354 3.100 24.235 1.00 52.07	
	ATOM 1425 CE MET A 162	56,193 3.134 24,410 1.00 36,30	<u>C</u>
	ATOM 1426 N PRO A 163	55.730 6.313 28.521 1.00 18.43	N
	ATOM 1427 CA PRO A 163	55.390 7.472 29.337 1.00 17.76	<u>C</u>
	ATOM 1428 C PRO A 163	54.300 8.384 28.667 1.00 21.23	ç
25	ATOM 1429 O PRO A 163	54.208 8.448 27.433 1.00 15.20	0
	ATOM 1430 CB PRO A 163	56.727 8.196 29.423 1.00 11.43	С
	ATOM 1431 CG PRO A 163	57.352 7.874 28.031 1.00 13.99	<u>c</u>
	ATOM 1432 CD PRO A 163	57.086 6.401 27.949 1.00 12.24	<u>C</u>
	ATOM 1433 N THR A 164	53,478 9,060 29,478 1.00 13,95	N
30	ATOM 1434 CA THR A 164	52,581 10,121 28,963 1,00 25,82	<u>C</u>
	ATOM 1435 C THR A 164	53,406 11,441 28,781 1.00 19,67	<u>c</u>
	ATOM 1436 O THR A 164	54.633 11.393 28.868 1.00 13.97	0
	ATOM 1437 CB THR A 164	51,373 10,391 29,903 1.00 25,51	<u>c</u>
	ATOM 1438 OG1 THR A 164	50,470 11.321 29.267 1.00 14.77	0
35	ATOM 1439 CG2 THR A 164	51.818 10.886 31.298 1.00 9.06	с
	ATOM 1440 N ASN A 165	52.751 12.589 28.556 1.00 14.99	N
	ATOM 1441 CA ASN A 165	53.448 13.901 28.481 1.00 7.83	<u>C</u>
	ATOM 1442 C ASN A 165	54.167 14.064 29.824 1.00 11.21	С
	ATOM 1443 O ASN A 165	53.554 13.929 30.894 1.00 17.66	0
40	ATOM 1444 CB ASN A 165	52.434 15.061 28.416 1.00 14.48	c
	ATOM 1445 CG ASN A 165	51.492 14.941 27.262 1.00 23.70	c
	ATOM 1446 OD1 ASN A 165	51,939 14.800 26,129 1.00 22.37	
	ATOM 1447 ND2 ASN A 165	50.173 14.925 27.539 1.00 27.22	N
	ATOM 1448 N LEU A 166	55,418 14,490 29,777 1.00 8.23	N
45	ATOM 1449 CA LEU A 166	56.187 14.604 30.994 1.00 14.40	<u>.</u>

	ATOM	1450	С	LEU A 166	56,629	16,017	31.120	1,00 25,05	C
	MOTA	1451	0	LEU A 166	56.624	16.718	30.125	1.00 25.09	o
	ATOM	1452	СВ	LEU A 166	57,460	13.743	30.870	1.00 17.48	c
	ATOM	1453	CG	LEU A 166	57.423	12,218	30.652	1.00 16.63	с
5	ATOM	1454	CD1	LEU A 166	58.837	11.639	31.000	1.00 22.52	c
	MOTA	1455	CD2	LEU A 166	56.336	11.539	31.514	1.00 7.46	c
	ATOM	1456	N_	TYR A 167	57.146	16.391	32.300	1.00 19.78	N
	ATOM	1457	CA	TYR A 167	57.678	17,760	32.511	1.00 18.58	C
	MOTA	1458	<u> </u>	TYR A 167	_58.534	17.763	33.767	1.00 15.53	c
10	MOTA	1459	0	TYR A 167	58.474	16.852	34,575	1.00 16.71	0
	MOTA	1460	СВ	TYR A 167	56,509	18.778	32.665	1.00 18.33	c
	MOTA	1461	CG	TYR A 167	55.671	18.561	33.931	1.00 14.23	c
	ATOM	1462	CD1	TYR A 167	54.624	17.618	33.977	1.00 13.35	c
	MOTA	1463	CD2	TYR A 167	55.984	19,258	35.106	1.00 16.52	c
15	MOTA	1464	CE1	TYR A 167	53.889	17.446	35,146	1.00 21.17	<u> </u>
	MOTA	1465	CE2	TYR A 167	55.302	19.084	36,264	1.00 8.26	<u>c</u>
	MOTA	1466	CZ	TYR A 167	54.228	18.203	36,296	1.00 23.56	c
	ATOM	1467	OH	TYR A 167	53.526	18.078	37.504	1.00 22.81	<u> </u>
	MOTA	1468	N	GLY A 168	59.334	18.797	33.952	1.00 16.59	N
20	ATOM	1469	CA	GLY A 168	60.158	18.817	35.152	1.00 18.21	C
	MOTA	1470	С	GLY A 168	61.534	19.428	34.880	1.00 13.69	
	MOTA	1471	0	GLY A 168	61.746	20.028	33.837	1.00 16.52	0
	ATOM	1472	N_	PRO A 169	62.473	19.263	35.817	1.00 20.33	N
	MOTA	1473	CA	PRO A 169	63.801	19.822	35.656	1.00 16.07	<u> </u>
25	Алом	1474	G	PRO-A-169	64~43.0	19,,353.	-34~38 <i>7</i> -	<u> -100-2718</u>	
·	MOTA	1475	0_	PRO A 169	64.305	18.186	33,981	1.00 21.23	Q
	MOTA	1476	СВ	PRO A 169	64.595	19.206	36,805	1.00 17.28	<u>C</u>
	MOTA	1477	CG	PRO A 169	63.649	18.919	37.830	1.00 19.89	c
	ATOM	1478	CD	PRO A 169	62.263	18.772	37,189	1.00 22.47	c
30	ATOM	1479	N_	HIS A 170	65,226	20.235	33.829	1.00 19.48	N
	MOTA	1480	CA	HIS A 170	65.952	19.877	32.638	1.00 25.56	c
	MOTA	1481	С	HIS A 170	65.096	19,707	31,428	1.00 29.15	ç
	ATOM	1482	0_	HIS A 170	65.553	19.091	36.479	1.00 29.71	. 0
	ATOM	1483	СВ	HIS A 170	66.783	18.600	32.845	1.00 28.94	c
35	MOTA	1484	CG	HIS A 170	67.703	18.671	34.034	1.00 33.88	c
	ATOM	1485	ND1	HIS A 170	68.975	19.203	33.969	1.00 25.46	<u>_</u> N
	MOTA	1486	CD2	HIS A 170	67.518	18.298	35.326	1.00 34.77	с
	MOTA	1487	CE1	HIS A 170	69,531	19.151	35,166	1.00 25,63	c
	ATOM	1488	NE2	HIS A 170	68.673	18.603	36.008	1.00 31,72	N
40	ATOM	1489	N	ASP A 171	63,881	20.245	31.440	1.00 21.52	и
	ATOM	1490	CA	ASP A 171	63.041	20.267	30.218	1.00 28.63	c
	ATOM	1491	c	ASP A 171	63.630	21.459	29.359	1.00 41.94	Ç
	ATOM	1492	٥	ASP A 171	64.534	22.171	29.835	1.00 29.69	0
	ATOM	1493	СВ	ACD A 171	61.552	20.558	30 602	1 00 26 40	с
			<u> </u>	<u>ASP A 171</u>	01.332	20.000	20.000	1.00 26.40	×

	ATOM 1495	OD1 ASP A 171	60.890 20.067 28.325 1.00 32.03	0
	ATOM 1496	OD2 ASP A 171	59,427 19,719 29,916 1,00 42,13	0
	ATOM 1497	N ASN A 172	63.141 21.712 28.137 1.00 42.08	N
	ATOM 1498	CA ASN A 172	63.616 22.893 27.388 1.00 35.95	<u>C</u>
5	ATOM 1499	C ASN A 172	62.665 24.056 27.674 1.00 33.71	<u>C</u>
	ATOM 1500	O ASN A 172	61.586 24.102 27.104 1.00 32.69	0
	ATOM 1501	CB ASN A 172	63.632 22.667 25.869 1.00 41.60	c
	ATOM 1502	CG ASN A 172	63.807 23.987 25.086 1.00 39.09	c
	ATOM 1503	OD1 ASN A 172	62.973 24.347 24.259 1.00 83.94	0
10	ATOM 1504	ND2 ASN A 172	64.855 24.740 25.418 1.00 65.07	N
	ATOM 1505	N PHE A 173	63.021 24.953 28.583 1.00 31.93	N
	ATOM 1506	CA PHE A 173	62.082 26.030 28.944 1.00 48.24	<u>c</u>
	ATOM 1507	C PHE A 173	61.989 27.260 28.045 1.00 69.01	С
	ATOM 1508	O PHE A 173	62.278 28.395 28.465 1.00 58.79	0
15	ATOM 1509	CB PHE A 173	62,225 26,459 30,390 1.00 43,43	С
	ATOM 1510	CG PHE A 173	61.867 25.399 31.356 1.00 34.19	c
	ATOM 1511	CD1 PHE A 173	62.810 24.488 31.751 1.00 24.68	c
	ATOM 1512	CD2 PHE A 173	60,621 25,354 31,925 1.00 24.84	С
	ATOM 1513	CE1 PHE A 173	62.524 23.548 32.682 1.00 23.64	с
20	ATOM 1514	CE2 PHE A 173	60.305 24.366 32.804 1.00 31.32	ç
	ATOM 1515	CZ PHE A 173	61,263 23,457 33,192 1.00 24.30	<u>C</u>
	ATOM 1516	N HIS A 174	61,510 27,036 26,831 1.00 68.16	N
	ATOM 1517	CA HIS A 174	61.401 28.109 25.871 1.00 64.53	<u>C</u>
	ATOM 1518	C HIS A 174	59.973 28.221 25.400 1.00 71.58	<u>c</u>
25	ATOM 1519	O HIS A 174	59.309 27.186 25.249 1.00 73.20	0
	ATOM 1520	CB HIS A 174	62.418 27.870 24.736 1.00 71.71	<u>C</u>
	ATOM 1521	CG HIS A 174	63.835 27.868 25.229 1.00 92.29	<u>c</u>
	ATOM 1522	ND1 HIS A 174	64.921 27.539 24.440 1.00100.00	N
	ATOM 1523	CD2 HIS A 174	64.338 28.133 26.463 1.00100.00	c
30	ATOM 1524	CE1 HIS A 174	66.032 27.628 25.160 1.00100.00	<u>c</u>
	ATOM 1525	NE2 HIS A 174	65,705 27.981 26.393 1.00100.00	N
	ATOM 1526	N PRO A 175	59,469 29,461 25,262 1.00 65,71	N
	ATOM 1527	CA PRO A 175	58.109 29.658 24.770 1.00 55.72	<u>c</u>
	ATOM 1528	C PRO A 175	58.233 29.297 23.267 1.00 75.83	c
35	ATOM 1529	O PRO A 175	57,224 29,226 22,554 1.00 69,59	0
	ATOM 1530	CB PRO A 175	57,866 31,142 25,026 1.00 49.14	<u>c</u>
	ATOM 1531	CG PRO A 175	59,258 31,790 24,901 1.00 42,23	<u>c</u>
	ATOM 1532	CD PRO A 175	60.286 30.695 25.109 1.00 49.59	<u>C</u>
	ATOM 1533	N SER A 176	59,480 28,954 22.879 1.00 85.09	N
40	ATOM 1534	CA SER A 176	59,954 28,474 21,548 1,00 81,18	<u>c</u>
	ATOM 1535	C SER A 176	59.660 26.965 21.343 1.00 73.90	с
	ATOM 1536	O SER A 176	59.617 26.458 20.213 1.00 57.03	<u> </u>
	ATOM 1537	CB SER A 176	61,493 28,666 21,447 1.00 71.32	C
	ATOM 1538	OG SER A 176	62,048 29,349 22,578 1.00 51.93	0
45	ATOM 1539	N ASN A 177	59.520 26.276 22.480 1.00 66.23	N

	MOTA	1540	CA:	ASN A	177	59.274	24.847	22.619	1.00 56.	41
	MOTA	1541	С	ASN A	177	57.810	24.497	22.353	1.00 60.	91 C
	MOTA	1542	0	ASN A	177	56.914	25.215	22.811	1.00 55.	58 0
	MOTA	1543	СВ	ASN A	177	59,619	24,469	24.065	1.00 50.	45 C
5	MOTA	1544	CG	ASN A	177	59.562	22.970	24.319	1.00 66.	57 <u> </u>
	MOTA	1545	OD1	ASN A	177	59.095	22.216	23.476	1.00100.	00 0
	MOTA	1546	ND2	ASN A	177	60.099	22.546	25.464	1.00 35.	61N
	MOTA	1547	Ŋ	SER A	178	57.583	23,387	21.627	1.00 57.	10 N
	MOTA	1548	CA_	SER A	178	56.234	22.853	21.279	1.00 50.	50 C
10	ATOM	1549	С	SER A	178	55.557	22,159	22.491	1.00 76.	24 C
	MOTA	1550	0	SER A	178	54.575	21,400	22.304	1,00 99.	63 C
	ATOM	1551	СВ	SER A	178	56,316	21.800	20.118	1.00 10.	17 C
	MOTA	1552	OG	SER A	178	57.397	22.112	19.217	1.00 71.	69 C
	MOTA	1553	N_	HIS A	179	56,134	22.284	23.694	1.00 37.	39 N
15	ATOM	1554	_CA_	HIS A	179	55.569	21,587	24.855	1.00 30.	96
	MOTA	1555	С	HIS A	179	54.961	22,616	25.767	1.00 21.	93
	ATOM	1556	0	HIS A	179	55.641	23.598	26.138	1.00 25.	17
	MOTA	1557	СВ	HIS A	179	56.634	20,683	25.575	1.00 36.	20
	MOTA	1558	CG	HIS A	179	56.973	19.419	24.835	1.00 42.	90
20	MOTA	1559	ND1	HIS A	179	56.973	19.335	23.457	1.00 49.	52 N
	MOTA	1560	CD2	HIS A	179	57.323	18.190	25.278	1.00 52.	42
	MOTA	1561	CE1	HIS A	179	57.283	18,109	23.084	1.00 44.	78
	MOTA	1562	NE2	HIS A	179	57.500	17.393	24.168	1.00 50.	49
	MOTA	1563	N_	VAL A	180	53,661	22.454	26.038	1.00 19.	14N
25	ATOM_	15.64_	_CA_	VAL_A	180	52.886	23,449	26.789	1.00 29.	03
	MOTA	1565	<u></u>	VAL A	180	53.373	23.890	28.142	1.00 31.	29 0
	MOTA	1566	_0	VAL A	180	53.348	25.075	28.447	1.00 19.	55 C
	MOTA	1567	_CB_	VAL A	180	51.403	23.115	26.914	1.00 35.	47
	MOTA	1568	CG1	VAL A	180	50,630	24.399	27,217	1.00 35.	84 C
30	ATOM	1569	CG2	VAL A	160	50.923	22.550	25.663	1.00 36.	11
	MOTA	1570	_N	ILE A	181	537684	22.935	29.005	1.00 26.	57
	MOTA	1571	<u>CA</u>	ILE A	181	54.138	23.285	30,360	1.00 24.	49
	ATOM	1572	<u>c_</u>	ILE A	181	55.371	24.213	30,361	1.00 16.	51
	MOTA	1573	0	ILE A	181	55.326	25.315	30,909	1.00 24.	42
35	MOTA	1574	CB	ILE A	181	54.285	22.018	31.264	1.00 20.	20 C
	MOTA	1575	CG1	ILE A	181	52.878	21.428	31.528	1.00 18.	22
	MOTA	1576	CG2	ILE A	181	55.014	22.315	32.581	1.00 13.	37
	ATOM	1577	CD1	ILE A	181	52.867	20.086	32,286	1.00 8.	03 (
	MOTA	1578	N_	PRO A	182	56.452	23.779	29.718	1.00 22.	21
40	ATOM	1579	CA	PRO A	182	57,664	24.605	29.640	1.00 22.	07
	MOTA	1580	<u></u>	PRO A	182	57,379	25.852	28.828	1.00 24.	18 (
	MOTA	1581	_o_	PRO A	182	57.811	26.949	29,210	1.00 18.	
	ATOM	1582	CB	PRO A	182	58.682	23.725	28,890	1.00 24.	97 (
	MOTA	1583	CG	PRO A	182	57.925	22.473	28.471	1.00 25.	77
45	MOTA	1584	ĆD	PRO A	182	56,727	22.359	29,401	1.00 18.	23

	ATOM 1585 N ALA A 183	56,628 25,707 27,729 1.00 21,45	N
	ATOM 1586 CA ALA A 183	56.261 26.896 26.943 1.00 21.66	C
	ATOM 1587 C ALA A 183	55,464 27,900 27,811 1.00 26,10	c
	ATOM 1588 O ALA A 183	55.773 29.091 27.856 1.00 19.50	0
5	ATOM 1589 CB ALA A 183	55.473 26.513 25.703 1.00 13.26	c
	ATOM 1590 N LEU A 184	54.472 27.389 28.543 1.00 23.34	N
	ATOM 1591 CA LEU A 184	53,642 28.215 29.401 1.00 19.05	
	ATOM 1592 C LEU A 184	54.312 28.693 30.655 1.00 21.91	<u>C</u>
	ATOM 1593 O LEU A 184	54.017 29.771 31.158 1.00 19.71	0
10	ATOM 1594 CB LEU A 184	52.309 27.553 29.715 1.00 14.41	c
	ATOM 1595 CG LEU A 184	51.342 27.595 28.525 1.00 23.42	c
	ATOM 1596 CD1 LEU A 184	49.918 27.244 28.928 1.00 31.06	c
	ATOM 1597 CD2 LEU A 184	51.380 28.896 27.690 1.00 21.73	c
	ATCM 1598 N LEU A 185	55.178 27.879 31.213 1.00 18.39	N
15	ATOM 1599 CA LEU A 185	55.833 28.332 32.417 1.00 16.39	
	ATOM 1600 C LEU A 185	56.669 29.528 31.985 1.00 23.67	c
	ATOM 1601 O LEU A 185	56.681 30.590 32.644 1.00 29.38	0
	ATOM 1602 CB LEU A 185	56.723 27.233 33.015 1.00 15.05	
	ATOM 1603 CG LEU A 185	56.021 26.348 34.041 1.00 15.56	c
20	ATOM 1604 CD1 LEU A 185	56.819 25.022 34.301 1.00 21.06	c
	ATOM 1605 CD2 LEU A 185	55.722 27.113 35.321 1.00 11.02	<u>c</u>
	ATOM 1606 N ARG A 186	57.337 29.397 30.852 1.00 17.09	N
	ATOM 1607 CA ARG A 186	58.137 30.523 30.429 1.00 18.82	c
	ATOM 1608 C ARG A 186	57.308 31.752 30.069 1.00 29.00	c
25	ATOM 1609 O ARG A 186	57.629 32.880 30.476 1.00 23.91	0
	ATOM 1610 CB ARG A 186	59.026 30.146 29.281 1.00 22.06	с
	ATOM 1611 CG ARG A 186	59.653 31.365 28.652 1.00 38.46	<u>c</u>
	ATOM 1612 CD ARG A 186	60.825 31.804 29.462 1.00 83.66	c
	ATOM 1613 NE ARG A 186	62.012 31.861 28.631 1.00 70.77	N
30	ATOM 1614 CZ ARG A 186	63.058 32.622 28.904 1.00 91.68	c
	ATOM 1615 NH1 ARG A 186	63.053 33.386 29.995 1.00 56.56	N
	ATOM 1616 NH2 ARG A 186	64.098 32.639 28.082 1.00100.00	N
	ATOM 1617 N ARG A 187	56.234 31.544 29.310 1.00 20.96	N
	ATOM 1618 CA ARG A 187	55,361 32,662 28,941 1.00 19.32	c
35	ATOM 1619 C ARG A 187	54.765 33.453 30.142 1.00 28.41	<u>C</u>
	ATOM 1620 O ARG A 187	54.823 34.700 30.193 1.00 17.23	0
	ATOM 1621 CB ARG A 187	54.270 32.223 27.957 1.00 17.05	<u>s</u>
	ATOM 1622 CG ARG A 187	54.813 31.546 26.720 1.00 61.42	c
	ATOM 1623 CD ARG A 187	53,696 31.244 25.757 1.00 44.57	c
40	ATOM 1624 NE ARG A 187	53.033 32.472 25.354 1.00 29.47	N
	ATOM 1625 CZ ARG A 187	51.831 32.534 24.790 1.00 17.82	c
	ATOM 1626 NH1 ARG A 187	51.136 31.427 24.544 1.00 24.95	N
	ATOM 1627 NH2 ARG A 187	51.341 33.716 24.447 1.00 37.77	<u>N</u>
	ATOM 1628 N PHE A 188	54.192 32.734 31.101 1.00 23.48	N
45	ATOM 1629 CA PHE A 188	53.604 33.399 32.259 1.00 21.24	c

	MOTA	1630	С	PHE A 188	54.638	34.080	33.095	1.00	21.39	<u>c</u>
	MOTA	1631	0	PHE A 188	54.394	35.126	33.626	1.00	23.90	_0
	ATOM	1632	CB	PHE A 188	52.723	32.466	33.077	1.00	19.95	Ç
	MOTA	1633	CG	PHE A 188	51.389	32.215	32.435	1.00	22.28	
5	ATOM	1634	CD1	PHE A 188	50.440	33.229	32.375	1.00	19,42	<u>c</u>
	MOTA	1635	CD2	PHE A 188	51.144	31.038	31.734	1.00	23.82	C
	MOTA	1636	CE1	PHE A 188	49.191	33.026	31.742	1.00	24.77	<u>c</u>
	MOTA	1637	CE2	PHE A 188	49.936	30.826	31.057	1.00	20.17	
	ATOM	1638	CZ	PHE A 188	48.945	31.815	31.068	1.00	23.14	C
10	MOTA	1639	N_	HIS A 189	55.831	33.513	33.118	1.00	24.15	_N
	MOTA	1640	_CA_	HIS A 189	56.933	34.122	33.837	1.00	28.79	<u></u> C
	MOTA	1641	C	HIS A 189	57,303	35.506	33.315	1.00	28.58	_ <u>c</u>
	MOTA	1642	0	HIS A 189	57.480	36.463	34.083	1.00	20.07	0
	MOTA	1643	СВ	HIS A 189	58.148	33.268	33.641	1.00	31.38	C
15	MOTA	1644	CG	HIS A 189	59.364	33.844	34.290	1.00	29.98	C
	MOTA	1645	ND1	HIS A 189	59.548	33.833	35.658	1,00	31.00	_N
	MOTA	1646	CD2	HIS A 189	60.449	34.464	33.766	1.00	21.79	_ <u>c</u>
	ATOM	1647	CE1	HIS A 189	60.722	34.371	35.945	1.00	24.04	_ <u>c</u>
	MOTA	1648	NE2	HIS A 189	61.257	34.815	34.821	1,00	19.53	_ <u>N</u>
20	ATOM	1649	<u> N</u>	GLU A 190	57.539	35.561	32,006	1.00	28.43	N
	MOTA	1650	_CA_	GLU A 190	57.876	36.816	31.324	1.00	27.72	_C
	MOTA	1651	<u>c_</u>	GLU A 190	56.725	37.829	31.437	1.00	32.56	С
	ATOM	1652	0	GLU A 190	56.949	38,995	31.717	1.00	27.06	0
	ATOM	1653	СВ	GLU A 190	58.122	36.529	29.849	1.00	28.55	С
25	MORA	1654-	-CG-	-GLU-A-190	59, 150	35~461	2.9,61.4	_100-	35.29	C
	MOTA	1655	CD	GLU A 190	60.553	35.941	29.892	1.00	99.81	C
	MOTA	1656	OE1	GLU A 190	60.913	36.037	31.085	1.00	86.56	_0
	MOTA	1657	OE2	GLU A 190	61.293	36.167	28.910	1.001	100.00	<u>0</u>
	MOTA	1658	N_	ALA A 191	55.493	37.391	31.196	1.00	32.67	N
30	ATOM	1659	CA	ALA A 191	54.349	38.286	31.311	1.00	25,30	<u>_</u>
	ATOM	1660	С	ALA A 191	54,287	38,795	32.742	1.00	36.20	<u></u> C
	MOTA	1661	0	ALA A 191	53,920	39,924	33.014	1.00	27.52	_0
	MOTE	1662	СВ	ALA A 191	53.055	37.563	31,000	1.00	16,48	С
	MOTA	1663	N	THR A 192	54.549	37.927	33.693	1.00	29.39	_N
35	MOTA	1664	CA	THR A 192	54.395	38.386	35.041	1.00	19.08	c
	ATOM	1665	<u>c</u>	THR A 192	55.420	39,494	35.298	1.00	44.78	
	ATOM	1666	0	THR A 192	55,094	40.550	35.839	1.00	40.58	_0
	MOTA	1667	СВ	THR A 192	54.515	37.235	35.983	1.00	18.99	
	ATOM	1668	0G1	THR A 192	53.410	36.348	35.755	1.00	34.36	_0
40	MOTA	1669	CG2	THR A 192	54.461	37.738	37.425	1,00	21.15	_ <u>c</u>
	ATOM	1670	N	ALA A 193	56.617	39.312	34.757	1.00	48.58	N
	MOTA	1671	CA	ALA A 193	57.705	40.286	34.905	1.00	50.59	_ <u>c</u>
	ATOM	1672	С	373 3 102	F7 40C	41 (12	34 145	1 00	54.42	<u></u>
	***************************************	A Y		ALA A 193	37.490	41.613	77117	1,00		
		1673	0	ALA A 193	57.496 57.952	42.698	34.553	_		0

	MOTA	1675	N	GLN A	194	56.8	10	41.530	33.022	1.00	43.16	N
	MOTA	1676	CA_	GLN A	194	56.5	86	12,722	32.242	1.00	38.03	с
	MOTA	1677	С	GLN A	194	55.2	64	43.389	32.576	1.00	40.85	c
	MOTA	1678	٥	GLN A	194	54.8	30	44.284	31.845	1.00	51,20	0
5	ATOM	1679	СВ	GLN A	194	56.5	99	42.358	30.750	1.00	35.96	c
	ATOM	1680	CG	GLN A	194	57.9	10	41.692	30,290	1.001	00.00	c
	ATOM	1681	CD	GLN A	194	57.7	15	40.661	29,158	1.001	00.00	C
	MOTA	1682	OE1	GLN A	194	56.6	19	40.546	28.579	1.001	00.00	0
	MOTA	1683	NE2	GLN A	194	58.7	82	39.904	28.848	1.001	00.00	N.
10	MOTA	1684	N,	GLY A	195	54.5	83	12.949	33.630	1.00	32.29	N
	MOTA	1685	CA	GLY A	195	53.2	36_	43.464	33.864	1.00	36.26	C
	ATOM	1686	С	GLY A	195	52.2	99	43.332	32.593	1.00	45.33	c
	ATOM	1687	0	GLY A	195	51.5	15	44.242	32.346	1.00	45.16	0
	MOTA	1688	N_	GLY A	196	52.4	05	42.245	31.788	1.00	36.33	N
15	ATOM	1689	CA	GLY A	196	51.5	15	41.965	30.608	1.00	19.06	c
	ATOM	1690	_ <u>c</u>	GLY A	196	50.0	37_	41.958	31.117	1.00	22,49	
•	MOTA	1691	0	GLY A	196	49.7	24	41.479	32.223	1.00	33.09	0
	MOTA	1692	N	PRO A	197	49.1	44	42.657	30.431	1.00	29.22	N
	MOTA	1693	_CA_	PRO A	197	47.7	90	42.732	30.953	1.00	25.29	
20	MOTA	1694	<u> </u>	PRO A	197	47.0	91	41.413	30.674	1.00	24.64	c
	MOTA	1695	٥	PRO A	197	46.1	92	40.991	31.411	1.00	24.75	0
	MOTA	1696	СВ	PRO A	197	47.1	62	43.911	30.176	1,00	26.31	<u>C</u>
	MOTA	1697	CG	PRO A	197	48.1	88	44.407	29.252	1.00	26.56	<u>C</u>
	MOTA	1698	CD	PRO A	197	49.3	07	43.454	29.203	1.00	30.25	c
25	ATOM	1699	N	ASP A	198	47.5	72	40.723	29.658	1.00	16.88	N
	MOTA	1700	_CA_	ASP A	198	47.0	67	39.418	29.405	1.00	21.65	C
	MOTA	1701	С	ASP A	198	48.0	46	38.522	28.677	1.00	31.28	c
	ATOM	1702	۰	ASP A	198	49.0	62	38.978	28.172	1.00	34.57	<u> </u>
	MOTA	1703	СВ	ASP A	198	45.7	39	39.507	28.669	1.00	32.80	c
30	ATOM	1704	CG	ASP A	198	45.8	68 4	40.055	27.256	1.00	46.13	<u>_</u>
	ATOM	1705	OD1	ASP A	198	46.9	82 -	40.230	26.725	1,00	57.45	<u>0</u>
	ATOM	1706	OD2	ASP A	198	44.8	17	40.271	26.640	1,00	67.61	
	ATOM	1707	N	VAL A	199	47.7	13	37.234	28.614	1.00	38.67	<u>N</u>
	ATOM	1708	CA	VAL A	199	48.4	99 :	36.226	27.901	1.00	27.79	<u>C</u>
35	MOTA	1709	С	VAL A	199	47.4	62	35.469	27.065	1.00	25.88	<u>c</u>
	MOTA	1710	٥	VAL A	199	46.4	60	35.023	27.598	1.00	24.22	0
٠	ATOM	1711	СВ	VAL A	199	49,1	63	35.229	28,905	1.00	24.37	C
	MOTA	1712	CG1	VAL A	199	49.8	74	34.047	28.160	1.00	20.28	<u>C</u>
	MOTA	1713	CG2	VAL A	199	50.1	21	35,942	29.835	1.00	22.25	c
40	ATOM	1714	N	VAL A	200	47.6	61	35.386	25.757	1.00	23.72	N
	MOTA	1715	CA	VAL A	200	46.7	01	34.694	24.903	1.00	23,99	c
	MOTA	1716	<u>_c</u>	·VAL A	200	47.1	67	33.286	24.499	1.00	22.85	<u>c</u>
	MOTA	1717	0	VAL A	200	48.3	21	33.108	24.188	1.00	29,77	0
	MOTA	1718	СВ	VAL A	200	46.3	58	35.548	23.680	1.00	23.11	c
45	MOTA	1719	CG1	VAL A	200	45.5	61	34.737	22.598	1.00	16.25	c

	MOTA	1720	CG2	VAL A	200	45.652	36.823	24.130	1.00 2	7.86	<u>C</u>
	ATOM	1721	N	VAL A	201	46.296	32.278	24.632	1.00 2	7.39	N
	ATOM	1722	CA	VAL A	201	46.588	30.893	24.265	1.00	9,63	<u> </u>
	ATOM	1723	C	VAL A	201	45.653	30.529	23.165	1.00 1	9.63	С
5	ATOM	1724	0	VAL A	201	44.452	30.755	23.312	1.00 1	7.61	0
	MOTA	1725	СВ	VAL A	201	46.306	29.952	25,426	1.00 1	9.95	С
	MOTA	1726	CG1	VAL A	201	46,703	28.519	25.054	1.00 2	0.85	<u>C</u>
	MOTA	1727	CG2	VAL A	201	47.086	30.439	26.661	1.00 1	6.73	c
	ATOM	1728	N	TRP A	202	46.210	30.080	22,030	1.00 1	4.36	N
10	MOTA	1729	CA	TRP A	202	45.422	29.693	20.865	1.00 1	8.97	C
	ATOM	1730	<u>c</u>	TRP A	202	44.495	28.572	21.313	1,00 3	6.22	<u>C</u>
	MOTA	1731	0	TRP A	202	44.934	27.694	22.057	1.00 3	1.46	. 0
	ATOM	1732	CB	TRP A	202	46.292	29.055	19.823	1.00 1	9.14	<u> </u>
	MOTA	1733	CG	TRP A	202	47.243	29.894	19.066	1.00 3	3.65	<u>C</u>
15	MOTA	1734	CD1	TRP A	202	48.391	29.463	18.429	1.00 3	5.28	<u>c</u>
	ATOM	1735	CD2	TRP A	202	47.126	31.282	18,772	1.00 3	9.90	<u>c</u>
	MOTA	1736	NE1	TRP A	202	48.941	30.481	17.693	1.00 3	7.86	<u>N</u>
	MOTA	1737	CE2	TRP A	202	48.228	31.624	17.922	1.00 3	8.35	с
	ATOM	1738	CE3	TRP A	202	46.206	32.281	19.138	1.00 3	9.39	<u>c</u>
20	MOTA	1739	CZ2	TRP A	202	48,380	32.884	17,367	1.00 3	6.15	<u>C</u>
	MOTA	1740		TRP A		46.356	33,542	18.578	1.00 3	9.60	
	MOTA	1741		TRP A		47.428	33.828	17.684	1.00 4		<u>c</u>
	MOTA	1742	_N	GLY A		43.245	28.564	20.842	1.00 2		N
25	ATOM	1743	<u>CA</u>	GLY A		42,332	27.483	21.169	1.00 1		C
25_	AROM			-GI-Y-A		- T4-4		22-193		Carrier Carrier Science	G
	MOTA	1745	<u> </u>	GLY A		41.340	28.815	22.886	1.00 2		0
	ATOM	1746	_N	SER A		40.270	26.919	22.262	1.00 1		— й
	MOTA	1747	_CA_	SER A		39,163	26.979	23.192	1.00 1		<u>_</u>
30	ATOM	1748	_ <u>c</u>	SER A		39.561	26.664	24.659	1.00 2		<u>c</u>
30	ATOM	1749	<u> </u>	SER A		38.888	27.096	25.604	1.00 3		0
	MOTA	1750	CB	SER A		38,053	25.998	22.740	1.00		<u>c</u>
	MOTA	1751 1752	OG	SER A		38.237	24.695	23.291	1.00 1		0
	ATOM		N_	GLY A		40.562	25.813				N
35	ATOM	1753		GLY A		40.963		26.208			
رو	MOTA	1754	<u> </u>	GLY A		40,208	24.178	26.711	1.00 1		<u>c</u>
	ATOM	1755		GLY A		40.422	23.723	27.838 25.881	1.00 1		o
	ATOM	1756 1757		THR A		39,292		26.281			N
	MOTA	1758	CA	THR A		38.432	22.594 21.221		1.001		<u>c</u>
40	ATOM ATOM	1759	<u> </u>	THR A			20.267		1.00 2		
40			<u>. 0</u>				22.562		1.00 2		<u>c</u>
	MOTA	1760 1761	CB OG1	THR A		37.124 37.438	22.395	24.082	1.00 1		0
	ATOM	1762		THR A		36.348	23.840				ç
	ATOM	1763	N_	PRO A		40.101	21.083				N
45	ATOM	1764	CA.	PRO A		40.658		25.175			K
4.			1.M								_

	MOTA	1765	<u>c</u>	PRO A 207	41.316	19.181	26.423	1.00 21.75	С
	MOTA	1766	0_	PRO A 207	41.951	19.925	27.215	1.00 20.65	0
	MOTA	1767	СВ	PRO A 207	41.638	19.909	24.013	1.00 17.51	<u>C</u>
	MOTA	1768	CG	PRO A 207	41.146	21.213	23.307	1.00 21.45	c
5	ATOM	1769	CD	PRO A 207	40.698	22.062	24.431	1.00 23.44	<u>c</u>
	MOTA	1770	_N	MET A 208	41.112	17.876	26.624	1.00 15.60	N
	MOTA	1771	_CA_	MET A 208	41.694	17.167	27.775	1.00 22.94	<u>c</u>
	MOTA	1772	_c	MET A 208	43.058	16.427	27.579	1.00 21.90	с
	MOTA	1773		MET A 208	43.248	15.677	26.633	1.00 23.16	<u>0</u>
10	MOTA	1774	СВ	MET A 208	40.645	16.273	28.386	1.00 32.86	с
	MOTA	1775	CG	MET A 208	39.630	17.057	29.223	1.00 46.17	<u>C</u>
	MOTA	1776	SD	MET A 208	38.301	15.990	29.826	1.00 57.85	<u>s</u>
	MOTA	1777	CE	MET A 208	37.999	15.028	28.343	1.00 58.23	<u>c</u>
	ATOM	1778	N_	ARG A 209	44.022	16.681	28.456	1.00 17.75	
15	MOTA	<u> 1779</u>	CA	ARG A 209	45.318	16.042	28.324	1.00 19.88	<u>C</u>
	ATOM	1780	<u>c</u>	ARG A 209	45.871	15.534	29.639	1.00 16.92	<u>c</u>
	MOTA	1781	0	ARG A 209	45,433	15.946	30.697	1.00 16.58	0
	ATOM	1782	СВ	ARG A 209	46.340	16.963	27.658	1.00 21.07	C
	MOTA	1783	CG	ARG A 209	45.980	17.478	26.275	1.00 22.57	<u>c</u>
20	ATOM	1784	CD	ARG A 209	45.833	16.357	25.282	1.00 28.26	с
	ATOM	1785	NE	ARG A 209	45,586	16.819	23.906	1.00 23.15	N
**	ATOM	1786	CZ	ARG A 209	44.420	16.742	23.267	1.00 34.52	c
	MOTA	1787	NH1	ARG A 209	43.336	16.267	23.890	1.00 18.03	N
	MOTA	1788	NH2	ARG A 209	44.339	17.175	22.012	1.00 29.78	
25	ATOM	1789	N_	GLU A 210	46.878	14.675	29.547	1.00 20.87	N
	ATOM	1790	CA_	GLU A 210	47.530	14.079	30.720	1.00 17.37	с
	MOTA	1791	<u> </u>	GLU A 210	49.031	14.490	30.851	1.00 20.96	<u>C</u>
	MOTA	1792	<u> </u>	GLU A 210	49.748	14.622	29.841	1.00 22,44	0
	MOTA	1793	CB	GLU A 210	47.400	12.562	30.571	1.00 16.26	<u>c</u>
30	ATOM	1794	CG	GLU A 210	47.807	11.785	31.809	1.00 19.91	<u>C</u>
	ATOM	1795	CD	GLU A 210	48.057	10.304	31.531	1.00 27.81	c
	ATOM	1796	OE1	GLU A 210	48.111	9.919	30.343	1.00 17.29	0
	ATOM	1797	OE2	GLU A 210	48.268	9.540	32.494	1.00 21.63	0
	MOTA	1798	<u> N</u>	PHE A 211	49.504	14.712	32.084	1.00 14.02	N
35	ATOM	1799	<u>CA</u>	PHE A 211	50.887	15.159	32.353	1.00 17.48	c
	ATOM	1800	С	PHE A 211	51.458	14.414	33.531	1.00 33.62	с
	ATOM	1801	0	PHE A 211	50.716	14.031	34,443	1.00 27.96	0
	ATOM	1802	СВ	PHE A 211	50.933	16.677	32.644	1.00 17.78	с
	MOTA	1803	CG	PHE A 211	50.303	17.490	31,541	1.00 21.49	c
40	MOTA	1804	CD1	PHE A 211	51.009	17.676	30.320	1.00 17.36	с
	MOTA	1805	CD2	PHE A 211	48.933	17.844	31.618	1.00 15.09	с
	ATOM	1806	CE1	PHE A 211	50.399	18.334	29.237	1.00 16.37	с
	MOTA	1807	CE2	PHE A 211	48.288	18.491	30.533	1.00 9.61	<u>c</u>
	MOTA	1808	CZ	PHE A 211	49.053	18.756	29.344	1.00 12.71	<u>C</u>
45	MOTA	1809	<u> N</u>	LEU A 212	52.761	14.161	33.495	1.00 23.76	N

	ATOM	1810	_CA_	LEU A 212	53.405	13.448	34.603	1.00 21.24	c
	MOTA	1811	<u> </u>	LEU A 212	54.772	14.053	34.898	1.00 14.00	c
	MOTA	1812	0_	LEU A 212	55.519	14.398	33,985	1.00 13.99	<u> </u>
	ATOM	1813	СВ	LEU A 212	53,548	11.954	34.294	1,00 21.52	<u> </u>
5	ATOM	1814	CG	LEU A 212	54.033	11.039	35.406	1.00 21.09	<u> </u>
	MOTA	1815	CD1	LEU A 212	52.866	10.634	36.280	1.00 20.84	c
	MOTA	1816	CD2	LEU A 212	54.768	9.829	34.832	1.00 13.18	c
	MOTA	1817	N_	HIS A 213	55.023	14.302	36,175	1.00 9.60	N
	MOTA	1618	CA	HIS A 213	56.290	14.864	36.555	1.00 13.66	<u>c</u>
10	ATOM	1819	С	HIS A 213	57.380	13.628	36.293	1.00 20.37	<u> </u>
	ATOM	1820	0	HIS A 213	57.238	12.614	36.542	1.00 16.08	0
	MOTA	1821	СВ	HIS A 213	56.280	15.250	38,002	1.00 18.72	c
	MOTA	1822	CG	HIS A 213	57.491	16.017	38.408	1.00 21.22	с
	MOTA	1823	ND1	HIS A 213	58.703	15.406	38.656	1.00 24.29	N
15	ATOM	1824	CD2	HIS A 213	57.716	17.353	38.499	1.00 23.67	C
	ATOM	1825	CE1	HIS A 213	59.615	16.331	38.917	1.00 19.13	c
	ATOM	1826	NE2	HIS A 213	59.041	17.523	38.847	1.00 21.99	N
	ATOM	1827	N	VAL A 214	58.459	14.295	35.698	1.00 21.07	и
	MOTA	1828	CA	VAL A 214	59,532	13.383	35.361	1.00 19.23	ç
20	ATOM	1829	С	VAL A 214	60.067	12.523	36.551	1.00 27.20	
	ATOM	1830	0	VAL A 214	60'.604	11.444	36,359	1.00 22.23	0
	MOTA	1831	СВ	VAL A 214	60.625	14.125	34,566	1.00 11.84	
	MOTA	1832	CG1	VAL A 214	61.390	15.199	35,485	1.00 8.52	<u>c</u>
	MOTA	1833	CG2	VAL A 214	61,560	13.097	33.902	1.00 12.39	<u> </u>
25	MOTA	1834	N	ASP A 215	59.893	12.984	37.790	1.00 25.29	N
	ATOM	1835	CA	ASP A 215	60,406	12.223	90-99G	_1 <u>.00</u> _10.10	
	MOTA	1836	C	ASP A 215	59.530	11.023	39.230	1.00 13.85	<u>c</u>
	MOTA	1837	٥_	ASP A 215	59.988	9.981	39.666	1.00 17.44	0
	MOTA	1838	СВ	ASP A 215	60.575	13.129	40.155	1.00 16.27	C
30	MOTA	1839	CG	ASP A 215	61'.859	13.979	40.068	1.00 30.73	c
	MOTA	1840	OD1	ASP A 215	62-, 782	13.614	39.308	1.00 23.02	<u> </u>
	ATOM	1841	OD2	ASP A 215	61,957	15.029	40.730	1.00 26.00	0
	MOTA	1842	N	ASP A 216	58,276	11.136	38.863	1.00 20.08	N
	MOTA	1843	_CA_	ASP A 216	57,378	10.017	39.016	1.00 18.78	C
35	MOTA	1844	С	ASP A 216	57.761	9.083	37.894	1.00 23.56	c
	MOTA	1845	0_	ASP A 216	57.715	7.880	38.026	1.00 20.79	0
	MOTA	1846	СВ	ASP A 216	55.912	10.457	38.821	1.00 17.18	c
	MOTA	1847	CG	ASP A 216	55,193	10.757	40.162	1.00 38.03	C
	MOTA	1848	001	ASP A 216	55.503	10.119	41.223	1.00 26.02	0
40	MOTA	1849	OD2	ASP A 216	54.249	11.587	40.124	1.00 25.41	0
	MOTA	1850	N_	MET A 217	58.092	9.653	36.755	1.00 18.11	
	MOTA	1851	_CA	MET A 217	58.394	8.785	35.636	1.00 22.41	с
	MOTA	1852	<u></u>	MET A 217	59.572	7.942	35.992	1.00 27.54	C
	MOTA	1853	0_	MET A 217	59.579	6.752	35.710	1.00 20.86	o
4-		1954	CB	MET A 217	58.637	9.592	34.345	1.00 21.24	с
45	ATOM	1027							X

				•					
	MOTA	1855	CG	MET A 217	59.478	8.918	33.287	1.00 16.37	C
	MOTA	1856	SD	MET A 217	58.962	7.412	32.473	1.00 30.51	s
	MOTA	1857	CE	MET A 217	57.465	7,608	32.391	1.00 19.57	C
	ATOM_	1858	N_	ALA A 218	60.561	8.562	36.623	1.00 19.09	N
5	MOTA	1859	CA	ALA A 218	61.774	7.841	37.002	1.00 13.65	2
	MOTA	1860	_C	ALA A 218	61.436	6.778	38.028	1.00 22.61	с
	MOTA	1861	۰	ALA A 218	61.934	5.670	37.967	1.00 19.36	0
	MOTA	1862	СВ	ALA A 218	62.809	8.780	37.579	1.00 12.23	с
	MOTA	1863	N.	ALA A 219	60,605	7,109	39,000	1.00 19.34	N
10	MOTA	1864	CA	ALA A 219	60.310	6.105	40.023	1.00 18.01	с
	MOTA	1865	<u></u>	ALA A 219	59.630	4.901	39,413	1.00 23.57	<u>c</u>
	MOTA	1866	0_	ALA A 219	59.781	3.777	39.898	1.00 22.71	0
	MOTA	1867	СВ	ALA A 219	59.387	6.678	41.083	1.00 10.11	с
	MOTA	1868	N_	ALA A 220	58,753	5,174	38,454	1.00 18.99	N
15	MOTA	1869	CA	ALA A 220	57.905	4.158	37.855	1.00 14.12	<u>c</u>
	MOTA	1870	C	ALA A 220	58.753	3.213	37.034	1.00 25.33	<u>c</u>
	MOTA	1871	۰_	ALA A 220	58.584	2.006	37.114	1.00 20.63	Q
	MOTA	1872	СВ	ALA A 220	56.796	4.798	37.023	1.00 8.53	с
	MOTA	1873	N_	SER A 221	59,770	3.772	36.379	1.00 23.92	<u> </u>
20	MOTA	1874	CA	SER A 221	60.702	3.011	35.556	1.00 18.38	с
	MOTA	1875	C_	SER A 221	61.537	1.989	36,353	1.00 20.90	c
	MOTA	1876	0	SER A 221	61.683	0.799	35,983	1.00 19.84	0
	MOTA	1877	СВ	SER A 221	61.604	3.985	34.804	1.00 10.67	с
	MOTA	1878	OG	SER A 221	60.847	4.744	33.867	1.00 15.61	0
25	MOTA	1879	N	ILE A 222	62.083	2.476	37.463	1.00 18.12	N
	MOTA	1880	CA	ILE A 222	62.866	1.644	38,381	1.00 21.56	<u>c</u>
	MOTA	1881	_c_	ILE A 222	62.020	0.554	39.068	1.00 29.10	<u>c</u>
	MOTA	1882	0_	ILE A 222	62.504	-0.566	39,307	1.00 19.03	
	MOTA	1883	CB	ILE A 222	63.467	2.516	39.432	1.00 24.56	<u>c</u>
30	MOTA	1884	CG1	ILE A 222	64.465	3.473	38.765	1.00 32.13	<u>c</u>
	MOTA	1885	CG2	ILE A 222	64.129	1.671	40.500	1.00 28.26	с
	MOTA	1886	CD1	ILE A 222	64.973	4.585	39.649	1.00 15.61	с
	MOTA	1887	N	HIS A 223	60.772	0.907	39,384	1.00 19.34	N
	MOTA	1888	CA	HIS A 223	59.829	-0.031	39,996	1.00 20.46	<u>c</u>
35	MOTA	1889	С	HIS A 223	59.599	-1.097	38.964	1.00 24.82	<u>c</u>
	MOTA	1890	0	HIS A 223	59.723	-2,283	39.270	1.00 24.66	
	MOTA	1891	СВ	HIS A 223	58.465	0.637	40.359	1.00 19.53	c
	MOTA	1892	CG	HIS A 223	57.373	-0.333	40.759	1.00 28.64	<u>C</u>
	MOTA	1893	ND1	HIS A 223	57.021	-0,564	42.082	1.00 24.16	и
40	ATOM	1894	CD2	HIS A 223	56.497	-1.062	40.004	1.00 30.39	<u>C</u>
	ATOM	1895	CE1	HIS A 223	55,983	-1.399	42.112	1.00 30.39	<u>C</u>
	MOTA	1896	NE2	HIS A 223	55,652	-1.727	40.869	1.00 28.13	N
	MOTA	1897	N	VAL A 224	59.354	-0.684	37.725	1.00 22.06	<u> </u>
	MOTA	1898	CA	VAL A 224	59.111	-1.657	36.652	1.00 19.15	c
45	MOTA	1899	С	VAL A 224	60.350	-2.490	36.333	1.00 25.89	C

	MOTA	1900	0_	VAL A 224	60.282	-3.709	36.250	1.00 22.37	0
	MOTA	1901	СВ	VAL A 224	58.559	-1.022	35.377	1.00 22.59	<u> </u>
	ATOM	1902	CG1	VAL A 224	58.512	-2.050	34.231	1.00 22.61	<u>c</u>
	MOTA	1903	CG2	VAL A 224	57.161	-0.491	35.650	1.00 23.44	<u>c</u>
5	ATOM	1904	N_	MET A 225	61.499	-1.838	36.255	1.00 27.83	N N
	MOTA	1905	_CA_	MET A 225	62.710	-2.577	36.004	1.00 23.69	<u> </u>
	ATOM	1906	С	MET A 225	62.896	-3.678	37.071	1.00 31.95	<u> </u>
	ATOM	1907	0	MET A 225	63.290	-4.805	36.785	1.00 24.33	0
	MOTA	1908	СВ	MET A 225	63.902	-1.604	36.056	1.00 21.34	<u> </u>
10	MOTA	1909	CG	MET A 225	65.295	-2,296	35,999	1.00 17.83	c
	MOTA	1910	SD	MET A 225	65,750	-2.958	34.306	1.00 23.33	s
	MOTA	1911	CE	MET A 225	67.080	-1.896	33.785	1.00 16.46	<u>. </u>
	MOTA	1912	N_	GLU A 226	62.644	-3.319	38.316	1.00 19.54	N
	ATOM	1913	CA	GLU A 226	62.988	-4.161	39,428	1.00 21.58	<u>c</u>
15	MOTA	1914	С	GLU A 226	61.999	-5,200	39.918	1.00 30.77	<u> </u>
	MOTA	1915	0	GLU A 226	62.308	-6.012	40.780	1.00 29.39	
	MOTA	1916	СВ	GLU A 226	63,613	-3.323	40,547	1.00 20.47	<u> </u>
	MOTA	1917	CG	GLU A 226	64,937	-2.673	40.122	1.00 23.03	<u> </u>
	MOTA	1918	CD	GLU A 226	65,504	-1.809	41.208	1.00 32.62	<u> </u>
20	MOTA	1919	OE1	GLU A 226	64.721	-1.455	42.122	1.00 26.12	<u> </u>
	ATOM	1920	OE2	GLU A 226	66.711	-1.479	41.152	1.00 17.67	0
	MOTA	1921	N.	LEU A 227	60.837	-5.248	39.295	1.00 34.11	N
	MOTA	1922	CA	LEU A 227	59.883	-6.296	39.642	1.00 35.26	<u> </u>
	MOTA	1923	c	LEU A 227	60.537	-7.644	39.320	1.00 27.91	c
25	MOTA	1924	0	LEU A 227	61,291	-7.766	38.340	1.00 19.89	<u> </u>
	MOTA	1925	СВ	LEU A 227	58.693	-6.236	38.678	1.00 36.48)C
	MOTA	1926	CG	LEU A 227	57.381	-5.569	38.955	1.00 40.30	<u> </u>
	ATOM	1927	CD1	LEU A 227	57,697	-4.194	39.382	1.00 42.04	<u> </u>
	MOTA	1928	CD2	LEU A 227	56.610	-5.577	37.647	1.00 46.21	<u> </u>
30	ATOM	1929	N_	ALA A 228	60.026	-8.688	39.955	1.00 27.15	<u>N</u>
	ATOM	1930	CA	ALA A 228	60,425	-10.051	39.616	1.00 25.26	<u> </u>
	ATOM	1931	С	ALA A 228	59.801	-10.435	38,279	1.00 27.93	СС
	MOTA	1932	0_	ALA A 228	58.624	~10.093	37.934	1.00 31.26	5 0
	MOTA	1933	СВ	ALA A 228	60.003	-11.052	40.703	1.00 22.05	<u> </u>
35	ATOM	1934	N_	HIS A 229	60.624	-11.160	37.539	1.00 27.05	N
	MOTA	1935	_CA	HIS A 229	60.275	-11.605	36.222	1.00 24.42	<u>c</u>
	ATOM	1936	С	HIS A 229	58,905	-12.260	36.184	1.00 21.74	<u> </u>
	ATOM	1937	0	HIS A 229	50.015	-11.851	35,398	1.00 22.23	20
	MOTA	1938	СВ	HIS A 229	61.351	-12.520	35.698	1.00 17.7	С С
40	ATOM	1939	ÇG	HIS A 229	61.284	-12.701	34.220	1.00 27.24	4 <u> </u>
	ATOM	1940	ND1	HIS A 229	61.060	-11.650	33.350	1.00 34.30	N
	ATOM	1941	CD2	HIS A 229	61.292	-13.821		1.00 31.4	
	MOTA	1942	CE1	HIS A 229	60.992	-12.113	32.115	1.00 30.50	С С
	ATOM	1943	NE2	HIS A 229	61.124	-13.427	32.159	1.00 35.2	
45	ATOM	1944	N	GLU A 230	58.681	-13.161		1.00 20.2	-

	ATOM 1945	CA GLU A 230	57.425 -13.895 37.209 1.00 29.41	C
	ATOM 1946	C GLU A 230	56.181 -13.051 37.341 1.00 22.20	с
	ATOM 1947	O GLU A 230	55.159 -13.359 36.679 1.00 17.78	0
	ATOM 1948	CB GLU A 230	57.464 -14.997 38.274 1.00 38.51	с
5	ATOM 1949	CG GLU A 230	58.085 -14.582 39.567 1.00 63.09	_с
	ATOM 1950	CD GLU A 230	57.036 ~14.473 40.661 1.00100.00	с
	ATOM 1951	OE1 GLU A 230	55.859 -14.872 40.400 1.00100.00	
	ATOM 1952	OE2 GLU A 230	57.409 -14.003 41.768 1.00 81.48	0
	ATOM 1953	N VAL A 231	56.272 -12.004 38.182 1.00 16.53	N
10	ATOM 1954	CA VAL A 231	55.202 -11.029 38.356 1.00 20.23	<u>c</u>
	ATOM 1955	C VAL A 231	55.009 -10.164 37.102 1.00 24.45	с
	ATOM 1956	O VAL A 231	53.864 -9.834 36.705 1.00 21.00	0
	ATOM 1957	CB VAL A 231	55.541 -10.057 39.426 1.00 28.61	c
	ATOM 1958	CG1 VAL A 231	54.362 -9.098 39.610 1.00 29.78	с
15	ATOM 1959	CG2 VAL A 231	55.881 -10.757 40.677 1.00 28.96	<u>c</u>
	ATOM 1960	N TRP A 232	56.133 -9.798 36.486 1.00 17.17	N
	ATOM 1961	CA TRP A 232	56.052 -9.044 35,262 1.00 21.52	с
	ATOM 1962	C TRP A 232	55.388 -9.844 34.156 1.00 20.53	с
ı	ATOM 1963	O TRP A 232	54.588 -9.306 33.380 1.00 24.31	0
20	ATOM 1964	CB TRP A 232	57.438 -8.644 34.801 1.00 29.88	c
	ATOM 1965	CG TRP A 232	57.430 -7.843 33.500 1.00 27.65	c
	ATOM 1966	CD1 TRP A 232	57.184 -6.464 33.356 1.00 25.42	<u>c</u>
	ATOM 1967	CD2 TRP A 232	57.714 -8.336 32.169 1.00 27.75	с
	ATOM 1968	NE1 TRP A 232	57,325 -6.095 32,033 1.00 22.53	N
25	ATOM 1969	CE2 TRP A 232	57.655 -7.203 31.279 1.00 25.11	с
	ATOM 1970	CE3 TRP A 232	58,037 -9.603 31.640 1.00 22.72	с
	ATOM 1971	CZZ TRP A 232	57.917 -7.316 29.879 1.00 17.23	c
	ATOM 1972	CZ3 TRP A 232	58,238 -9,720 30,223 1,00 25,97	c
	ATOM 1973	CH2 TRP A 232	58.154 -8.581 29.368 1.00 22.07	c
30	ATOM 1974	N LEU A 233	55,749 -11.121 34.018 1.00 23.80	N
	ATOM 1975	CA LEU A 233	55.141 -11.949 32.937 1.00 24.78	c
	ATOM 1976	C LEU A 233	53.652 -12.118 33.122 1.00 24.51	с
	ATOM 1977	O LEU A 233	52,865 -12.075 32.163 1.00 28.50	0
	ATOM 1978	CB LEU A 233	55.765 -13.348 32.820 1.00 26.20	c
35	ATOM 1979	CG LEU A 233	57.250 -13.505 32.503 1.00 19.39	c
	ATOM 1980	CD1 LEU A 233	57.745 -14.850 33.023 1.00 19.90	c
	ATOM 1981	CD2 LEU A 233	57.561 -13.287 31.017 1.00 16.01	c
	ATOM 1982	N GLU A 234	53.298 -12.343 34.372 1.00 25.45	N
	ATOM 1983	CA GLU A 234	51,929 -12,523 34,822 1,00 30,04	c
40	ATOM 1984	C GLU A 234	51.128 -11.319 34.367 1.00 35.69	
	ATOM 1985	O GLU A 234	49.926 -11.390 34.052 1.00 28.25	0
	ATOM 1986	CB GLU A 234	52.007 -12.468 36.344 1.00 37.30	с
	ATOM 1987	CG GLU A 234	50.908 -13.133 37.118 1.00 45.39	<u>C</u>
	ATOM 1988	CD GLU A 234	51.112 -12.881 38.601 1.00100.00	<u>C</u>
45	ATOM 1989	OE1 GLU A 234	52.240 -13.137 39.104 1.00 99.09	0

	ATOM 1990	OE2 GLU A 234	50.211 -12.257	39.211 1.00100.00	0
	ATOM 1991	N ASN A 235	51.802 -10.184	34.364 1.00 25.04	N
	ATOM 1992	CA ASN A 235	51.109 -8.986	33.992 1.00 26.17	<u>c</u>
	ATOM 1993	C ASN A 235	51.280 -8.494	32.571 1.00 30.46	<u>c</u>
5	ATOM 1994	O ASN A 235	50.824 -7.393	32,259 1.00 22,90	
	ATOM 1995	CB ASN A 235	51.427 -7.895	34.981 1.00 29.23	<u>_</u>
	ATOM 1996	CG ASN A 235	50.878 -8.197	36.342 1.00 39.27	c
	ATOM 1997	OD1 ASN A 235	49.722 -7.882	36.628 1.00 29.06	0
,	ATOM 1998	ND2 ASN A 235	51.653 -8.934	37.140 1.00 40.22	N
10	ATOM 1999	N THR A 236	51.935 -9.268	31.708 1.00 20.97	N
	ATOM 2000	CA THR A 236	52.108 -8.795	30.344 1.00 22.30	<u>C</u>
	ATOM 2001	C THR A 236	51.867 -9.943	29.419 1.00 29.74	c
	ATOM 2002	O THR A 236	51.551 -11.033	29,895 1.00 21.23	Q
	ATOM 2003	CB THR A 236	53.545 -8.306	30.161 1.00 22.73	c
15	ATOM 2004	OG1 THR A 236	54.422 -9.325	30.636 1.00 21.23	0
	ATOM 2005	CG2 THR A 236	53.801 -7.048	31.041 1.00 19.69	<u> </u>
	ATOM 2006	N GLN A 237	52.003 -9.699	28.109 1.00 22.23	и
	ATOM 2007	CA GLN A 237	52.097 -10.783	27.122 1.00 16.69	c
	ATOM 2008	C GLN A 237	53.335 -10.507	26.331 1.00 21.02	
20	ATOM 2009	O GLN A 237	53.729 -9.362	26.204 1.00 22.19	0
	ATOM 2010	CB GLN A 237	50.913 -10.999	26.189 1.00 8.23	C
	ATOM 2011	CG GLN A 237	49.639 -11.096	26.904 1.00 21.04	
	ATOM 2012	CD GLN A 237	48,907 -9.862	26.606 1.00 62.07	C
	ATOM 2013	OE1 GLN A 237	48,437 -9,712	25.460 1.00 59.32	0
<u> 25</u>	ATOM-2014	NE2_GLN_A_237	49,220 -8.847	27.388 1.00 37.82	N
	ATOM 2015	N PRO A 238	54.002 -11.579	25.917 1.00 28.76	N
	ATOM 2016	CA PRO A 238	55,275 -11,438	25.246 1.00 30.28	<u> </u>
	ATOM 2017	C PRO A 238	55.194 -10.643	23.958 1.00 29.08	c
	ATOM 2018	O PRO A 238	56.181 -10.029	23.600 1.00 15.95	0
30	ATOM 2019	CB PRO A 238	55,733 -12,879	25.011 1.00 22.54	C
	ATOM 2020	CG PRO A 238	54.898 -13.710	25.886 1.00 18.92	c
	ATOM 2021	CD PRO A 238	53.626 -12.998	26.068 1.00 11.75	c
	ATOM 2022	N MET A 239	54,041 -10,635	23.286 1.00 17.26	N
	ATOM 2023	CA MET A 239	53.924 -9.807	22.104 1.00 17.85	c
35	ATOM 2024	C MET A 239	53.109 -8.509	22,362 1.00 18.63	c
	ATOM 2025	O MET A 239	52.792 -7.741	21.419 1.00 16.82	0
	ATOM 2026.	CB MET A 239	53.460 -10.588	20.881 1.00 15.22	c
	ATOM 2027	CG MET A 239	54.536 -11.534	20.261 1.00 12.90	<u>C</u>
	ATOM 2028	SD MET A 239	53.994 -12.534	18.808 1.00 17.49	s
40	ATOM 2029	CE MET A 239	54.350 -11.357	17.422 1.00 13.12	c
	ATOM 2030	N LEU A 240	52.847 -8.252	23.646 1.00 18.55	N
	ATOM 2031	CA LEU A 240	52.159 -7.037	24.131 1.00 16.68	с
	ATOM 2031 ATOM 2032		52.159 -7.037	24.131 1.00 16.68 25.493 1.00 11.82	c
		CA LEU A 240	52.159 -7.037 52.774 -6.733		
45	ATOM 2032 ATOM 2033	CA LEU A 240 C LEU A 240	52.159 -7.037 52.774 -6.733 52.124 -6.803	25,493 1.00 11.82	с

	ATOM 2035	CG LEU A 240	49,646 -6,120 23,852 1,00 22,29	с
	ATOM 2036	CD1 LEU A 240	48.968 -5.488 25.033 1.00 25.51	с
	ATOM 2037	CD2 LEU A 240	50.070 -5.059 22.815 1.00 28.07	с
	ATOM 2038	N SER A 241	54.076 -6.467 25.456 1.00 13.09	N
5	ATOM 2039	CA SER A 241	54.842 -6.315 26.682 1.00 24.20	с
	ATOM 2040	C SER A 241	54.947 -4.938 27.377 1.00 30.52	
	ATOM 2041	O SER A 241	55.363 -4.854 28.547 1.00 17.02	0
	ATOM 2042	CB SER A 241	56.247 -6.900 26.495 1.00 14.04	<u>c</u>
	ATOM 2043	OG SER A 241	57.062 -6.144 25.598 1.00 13.95	0
10	ATOM 2044	N HIS A 242	54.661 -3.861 26.659 1.00 17.87	N
	ATOM 2045	CA HIS A 242	54,894 -2.548 27.221 1.00 13.55	<u>c</u>
	ATOM 2046	C HIS A 242	53.990 -2.254 28.373 1.00 13.70	c
	ATOM 2047	O HIS A 242	52.974 -2.885 28.539 1.00 13.29	0
	ATOM 2048	CB HIS A 242	54,826 -1,430 26,130 1,00 16,05	C
15	ATOM 2049	CG HIS A 242	53,595 -1.504 25,272 1,00 18,88	c
	ATOM 2050	ND1 HIS A 242	52.591 -0.553 25.326 1.00 23.24	N
	ATOM 2051	CD2 HIS A 242	53,165 -2,461 24,413 1,00 13.19	c
	ATOM 2052	CE1 HIS A 242	51,629 -0,887 24,483 1.00 17.44	c
	ATOM 2053	NE2 HIS A 242	51,962 -2,031 23,901 1,00 19.54	N
20	ATOM 2054	N ILE A 243	54.310 -1.203 29.095 1.00 15.84	N
	ATOM 2055	CA ILE A 243	53.492 -0.809 30.192 1.00 19.10	с
	ATOM 2056	C ILE A 243	53.336 0.714 30.191 1.00 23.23	c
	ATOM 2057	O ILE A 243	54,312 1.406 30.385 1.00 12.10	0
	ATOM 2058	CB ILE A 243	54.166 -1.273 31.482 1.00 24.62	c
25	ATOM 2059	CG1 ILE A 243	54.014 -2.783 31.576 1.00 25.60	c
	ATOM 2060	CG2 ILE A 243	53,497 -0.665 32,735 1.00 17.37	<u>c</u>
	ATOM 2061	CD1 ILE A 243	54.725 -3.365 32.714 1.00 14.82	<u>c</u>
	ATOM 2062	N ASN A 244	52.112 1.217 30.013 1.00 16.43	и
	ATOM 2063	CA ASN A 244	51.824 2.689 30.038 1.00 18.99	<u>c</u>
30	ATOM 2064	C ASN A 244	52,252 3,292 31,348 1.00 18.83	c
	ATOM 2065	O ASN A 244	51.965 2.727 32.405 1.00 19.58	0
	ATOM 2066	CB ASN A 244	50.304 2.987 29.910 1.00 15.67	c
	ATOM 2067	CG ASN A 244	49.768 2.702 28.517 1.00 14.57	с
	ATOM 2068	OD1 ASN A 244	50.546 2.583 27.580 1.00 13.64	0
35	ATOM 2069	ND2 ASN A 244	48.443 2.491 28.393 1.00 10.16	N
	ATOM 2070	N VAL A 245	52,800 4,499 31,326 1.00 13.50	N
	ATOM 2071	CA VAL A 245	53.159 5.134 32.602 1.00 13.49	c
	ATOM 2072	C VAL A 245	52.528 6.566 32.644 1.00 16.25	с
	ATOM 2073	O VAL A 245	52.786 7.405 31.770 1.00 15.20	0
40	ATOM 2074	CB VAL A 245	54,754 5,163 32.810 1.00 21.07	c
	ATOM 2075	CG1 VAL A 245	55.154 6.085 33.937 1.00 15.08	С
	ATOM 2076	CG2 VAL A 245	55.280 3.817 33.143 1.00 15.82	c
	ATOM 2077	N GLY A 246	51.696 6.843 33.649 1.00 14.03	N
	ATOM 2078	CA GLY A 246	51.027 8.136 33.707 1.00 16.87	C
45	ATOM 2079	C GLY A 246	50.146 8.203 34.939 1.00 26.95	c

	ATOM 2	080	2	GLY A	246	50.323	7.401	35.850	1.00	23.04		į
	ATOM 2	081 1	N	THR A	247	49.207	9.161	34.963	1.00	21.44	N	l
	ATOM 2	082 (CA	THR A	247	48.232	9.276	36.063	1.00	21.39	c	Ĺ
	ATOM 2	0830	<u>c</u>	THR A	247	46.868	8.677	35.673	1.00	24.08		Ļ
5	ATOM 2	084	0	THR A	247	46.069	8.306	36.508	1.00	21.03		2
	ATOM 2	085	СВ	THR A	247	47.988	10.730	36.404	1.00	22.24		i.
	ATOM 2	086	0G1	THR A	247	47.409	11.389	35.265	1.00	18.62		2
	ATOM 2	087	CG2	THR A	247	49.275	11.378	36.724	1.00	18.99		Ė
	ATOM 2	088	N	GLY A	248	46.583	8.651	34.384	1.00	24.95	N	ſ
10	ATOM 2	089	CA_	GLY A	248	45.319	8.143	33.924	1,00	22.61		Ė
	ATOM 2	090	<u> </u>	GLY A	248	44.223	9.160	34.226	1.00	21.42		Ė
	ATOM 2	091	٥	GLY A	248	43.059	8.866	34.137	1.00	25.70		5
	ATOM 2	092 1	N	VAL A	249	44.615	10.386	34.521	1.00	30.72		I
	ATOM 2	093	CA	VAL A	249	43.673	11.464	34.827	1.00	26.09		£
15	ATOM 2	094	<u> </u>	VAL A	249	43.747	12.596	33.786	1.00	32.70		£
	ATOM 2	095	<u> </u>	VAL A	249	44.853	13.006	33,387	1.00	26.92		2
	ATOM 2	096	СВ	VAL A	249	44.020	12.085	36.214	1.00	38.59		ż
	ATOM 2	097	CG1	VAL A	249	43.225	13.324	36.470	1.00	36.11		ì
	ATOM 2	098	CG2	VAL A	249	43.782	11.083	37.306	1.00	41.30		ż
20	ATOM 2	099	N	ASP A	250	42.581	13.125	33.397	1.00	27.95		
	ATOM 2	100	CA	ASP A	250	42.488	14.232	32.439	1.00	20.64		_
				ASP A		42.611	15.581	33.155		27.63		
				ASP A		42.188	15.783	34.308		26.23		_
25				ASP A		41.075	14.302	31.827		23.89		
25				ASP A		40.768	13.180	30.850		39.52		
				ASP A		41.283	13.184			39.96	6	_
			-	ASP A		39.767	12.501	31.153		45.34	S	
				CYS A		43.029	16.566	32.388	-	20.12	N	
20				CYS_A		42.962	17.906	32.851		27.20		_
30				CYS A		42.918	18,779	31.577		26.47		_
			<u> </u>	CYS A		43,699	18.560	30.633		19.45		_
				CYS A		44.148	18.157	33.778		34.86		_
	AIGH 2			CYS A		45.129		33.453			· · · · · · · · · · · · · · · · · · ·	
25		113		THR A			19.673					
35				THR A		41.834	20,588	30.335			<u>.</u>	
				THR A				30.236				
			-	THR A				31.249				0
				THR A		40.506		30.329				<u>C</u>
40				THR A				31.447				
40				THR A			20.495	30.372				
		120		ILE A		43.228		29.024				N
			CA_	ILE A			23.118	28.812			•	2
				ILE A				29.627				
45			<u>o</u>	ILE A			25.012					2
43	ATOM 2	124	UB	ILE A	233	44.404	23.452	41.302	1.00	49.05	_(C

	ATOM 2125	CG1 ILE A 253	44.862 22.200 26.561 1.00 27.33	
	ATOM 2126	CG2 ILE A 253	45.473 24.479 27.077 1.00 9.22	c
	ATOM 2127	CD1 ILE A 253	45.662 21.276 27.452 1.00 49.56	С
	ATOM 2128	N ARG A 254	42.637 24.709 29.707 1.00 19.56	N
5	ATOM 2129	CA ARG A 254	42.228 25.865 30.522 1.00 19.41	C
	ATOM 2130	C ARG A 254	42.712 25.713 31.970 1.00 18.10	C
	ATOM 2131	O ARG A 254	43.311 26.616 32.515 1.00 13.89	0
	ATOM 2132	CB ARG A 254	40.704 26.101 30.480 1.00 15.98	c
	ATOM 2133	CG ARG A 254	40.282 27.378 31.255 1.00 9.96	C
10	ATOM 2134	CD ARG A 254	38.809 27.702 31.218 1.00 24.79	<u> </u>
	ATOM 2135	NE ARG A 254	38,498 28,414 29,997 1.00 29,42	N
	ATOM 2136	CZ ARG A 254	38.693 29.723 29.794 1.00 59.85	
	ATOM 2137	NH1 ARG A 254	39.194 30.527 30.732 1.00 42.58	N
	ATOM 2138	NH2 ARG A 254	38.377 30.245 28.620 1.00 18.44	N
15	ATOM 2139	N ASP A 255	42.406 24.564 32.586 1.00 20.22	N
	ATOM 2140	CA ASP A 255	42.795 24.205 33.974 1.00 16.48	<u>c</u>
	ATOM 2141	C ASP A 255	44.321 24.372 34.069 1.00 22.43	
	ATOM 2142	O ASP A 255	44.868 24.897 35.060 1.00 18.53	0
	ATOM 2143	CB ASP A 255	42.478 22.686 34.157 1.00 19.17	<u> </u>
20	ATOM 2144	CG ASP A 255	42.144 22.246 35.610 1.00 47.08	C
	ATOM 2145	OD1 ASP A 255	41.780 23.090 36,429 1.00 49.66	0
	ATOM 2146	OD2 ASP A 255	42.020 21.016 35.880 1.00 48.12	0
	ATOM 2147	N LEU A 256	45.014 23.809 33.078 1.00 15.98	N
	ATOM 2148	CA LEU A 256	46.465 23.844 33.069 1.00 21.76	
25	ATOM 2149	C LEU A 256	47.020 25.275 33.076 1.00 16.79	<u>c</u>
	ATOM 2150	O LEU A 256	47.825 25.697 33.946 1.00 15.24	0
	ATOM 2151	CB LEU A 256	46.967 23.056 31.859 1.00 23.33	c
	ATOM 2152	CG LEU A 256	48.491 23.100 31.765 1.00 26.80	<u>C</u>
	ATOM 2153	CD1 LEU A 256	49.171 22.334 32.984 1.00 17.13	<u>c</u>
30	ATOM 2154	CD2 LEU A 256	49.040 22.724 30.346 1.00 15.42	c
	ATOM 2155	N ALA A 257	46.520 26.048 32.140 1.00 13.77	N
	ATOM 2156	CA ALA A 257	46,938 27.436 32.025 1.00 12.70	<u>c</u>
	ATOM 2157	C ALA A 257	46.656 28.237 33.267 1.00 10.73	<u>c</u>
	ATOM 2158	O ALA A 257	47.451 29.073 33.672 1.00 20.33	0
35	ATOM 2159	CB ALA A 257	46.208 28.073 30.834 1.00 13.34	c
	ATOM 2160	N GLN A 258	45,470 28.080 33.835 1.00 12.40	N
	ATOM 2161	CA GLN A 258	45.102 28.911 34.981 1.00 8.39	<u>C</u>
	ATOM 2162	C GLN A 258	45.879 28.480 36.166 1.00 13.48	с
	ATOM 2163	O GLN A 258	46,178 29,281 37,029 1.00 22,96	0
40	ATOM 2164	CB GLN A 258	43.614 28.761 35.305 1.00 16.12	<u>c</u>
	ATOM 2165	CG GLN A 258	42,674 29.096 34.130 1.00 30.19	<u>C</u>
	ATOM 2166	CD GLN A 258	42,574 30.585 33.781 1.00 37.29	c
	ATOM 2167	OE1 GLN A 258	42.911 31.471 34.610 1.00 21.24	0
	ATOM 2168	NE2 GLN A 258	42.021 30.876 32.572 1.00 15.94	N
45	ATOM 2169	N THR A 259	46.179 27.182 36.232 1.00 16.21	N

	ATOM 2	170 CA	THR A 259	46.982 26.678	8 37.336 1.00 16.85	<u>C</u>
	ATOM 2	171 C	THR A 259	48.410 27.186	6 37.233 1.00 20.56	<u> </u>
	ATOM 2	172 0	THR A 259	49.002 27.621	1 38,214 1,00 21,44	Q
	ATOM 2	173 св	THR A 259	47.066 25.192	2 37.361 1.00 27.56	<u> </u>
5	ATOM 2	174 OG	1 THR A 259	45.752 24.620	0 37.509 1.00 20.92	0
	ATOM 2	175 CG	2 THR A 259	47.936 24.79	6 38.545 1.00 12.85	c
	ATOM 2	176 N	ILE A 260	48.952 27.170	0 36.028 1.00 19.96	N
	ATOM 2	177 CA	ILE A 260	50.292 27.704	4 35.839 1.00 23.01	c
	ATOM 2	178 C	ILE A 260	50.313 29.180	0 36.225 1.00 31.73	C
10	ATOM 2	179 0	ILE A 260	51.211 29.62	7 36.993 1.00 25.90	0
	ATOM 2	180 CB	ILE A 260	50.835 27.45	6 34.390 1.00 22.46	<u> </u>
	ATOM 2	181 CG	1 ILE A 260	51.153 25.940	0 34,232 1.00 24.12	<u> </u>
	ATOM 2	182 CG	2 ILE A 260	52.099 28.36	1 34.106 1.00 13.47	<u> </u>
	ATOM 2	183 CD	1 ILE A 260	51.501 25.443	3 32.810 1.00 12.58	C
15	ATOM 2	184 N	AIA A 261	49.280 29.910	0 35.764 1.00 15.35	N
	ATOM 2	185 CA	ALA A 261	49.177 31.35	5 36.048 1.00 16.00	с
	ATOM 2	186 C	AIA A 261	49.316 31.604	4 37.550 1.00 20.58	<u> </u>
	ATOM 2	187 0	AIA A 261	50.104 32.44	3 37.987 1.00 16.09	0
	ATOM 2	188 CB	ALA A 261	47.832 31.951	8 35.487 1.00 13.65	<u> </u>
20	ATOM 2	189 N	LYS A 262	48.551 30.84	3 38.323 1.00 11.50	N N
	ATOM 2	190 CA	LYS A 262	48,578 30,90	5 39.770 1.00 10.13	С С
	ATOM 2	191 C	LYS A 262	49.968 30.460	0 40.296 1.00 28.08	c
	ATOM 2	192 0	LYS A 262	50.503 31.084	4 41.205 1.00 29.37	
	ATOM 2	193 СВ	LYS A 262	47.453 30.032	2 40.335 1.00 12.50	<u> </u>
25	ΑποΜ 2	1.9.4 GG		47-332-2996	241.8881.00_16.51	с
	ATOM 2	195 CD	LYS A 262	46.092 29.092	2 42.371 1.00 46.61	c
	ATOM 2	196 CE	LYS A 262	46.344 27.55	5 42.661 1.00 99.70	<u>C</u>
	ATOM 2	197 NZ	LYS A 262	45.157 26.70	3 43.200 1.00 36.59	<u> </u>
	ATOM 2	198 N	VAL A 263	50.589 29.443	3 39.705 1.00 17.44	N
30	ATOM 2	199 CA	VAL A 263	51,915 29,039	9 40.171 1.00 18.72	<u> </u>
	ATOM 2	200 C	VAL A 263	52.997 30.170	0 39.997 1.00 32.12	<u>c</u>
	ATOM 2	201 0	VAL A 263	53.871 30.41	2 40.834 1.00 21.18	
	ATOM 2	202 CB	VAL A 263	52.389 27.70	<u>9 ت.476 1.00 16.35</u>	<u> </u>
	ATOM 2	203 CG	1 VAL A 263	53.920 27.511	8 39.647 1.00 11.83	с
35	ATOM 2	204 CG	2 VAL A 263	51,646 26.52	2 40.093 1.00 14.99	<u> </u>
	ATOM 2	205 N	VAL A 264	52.913 30.899	9 38.909 1.00 21.75	<u> </u>
	ATOM 2	206 CA	VAL A 264	53,917 31.87	7 38.653 1.00 19.81	c
	ATOM 2	207 C	VAL A 264	53.719 33.201	8 39.377 1.00 35.79	<u> </u>
	ATOM 2	208 O	VAL A 264	54.632 34.03	2 39. 48 2 1.00 28.99	00
40	ATOM 2	209 св	VAL A 264	54.059 32.01	4 37.175 1.00 24.27	<u> </u>
	ATOM 2	210 CG	1 VAL A 264	54.728 33.26	9 36.822 1.00 33.58	<u> </u>
	ATOM 2	211 CG	2 VAL A 264	54.840 30.80	8 36.674 1.00 23.01	C
	ATOM 2	212 N	GLY A 265	52.550 33.37	8 39,969 1.00 25.30	<u> </u>
	ATOM 2	213 CA	GLY A 265	52.241 34.62	0 40.636 1.00 24.14	<u> </u>
45	ATOM 2	214 C	GLY A 265	51.730 35.69	4 39.632 1.00 35.03	<u> </u>

	MOTA	2215	0_	GLY A 265	51,773	36.911	39.962	1.00 33.71	0
	ATOM	2216	N_	TYR A 266	51.294	35.257	38.428	1.00 26.25	N.
	ATOM	2217	CA	TYR A 266	50,698	36.151	37.373	1.00 26.55	2
	MOTA	2218	<u>c</u>	TYR A 266	49.364	36.745	37.818	1.00 31.01	с
5	MOTA	2219	0	TYR A 266	48.532	36.067	38.456	1.00 27.99	0
	MOTA	2220	СВ	TYR A 266	50.501	35,463	36.008	1.00 24.31	<u>C</u>
	MOTA	2221	CG	TYR A 266	49.994	36.381	34.884	1.00 28.64	<u>C</u>
	MOTA	2222	CD1	TYR A 266	50.670	37.582	34.542	1.00 35.05	<u>C</u>
	ATOM	2223	CD2	TYR A 266	48.860	36.038	34.118	1.00 22.60	c
10	MOTA	2224	CE1	TYR A 266	50.212	38.434	33.472	1.00 20.73	<u>c</u>
	ATOM	2225	CE2	TYR A 266	48.428	36.859	33.012	1.00 20.91	<u>c</u>
	MOTA	2226	CZ	TYR A 266	49.088	38.062	32.735	1.00 23.85	c
	MOTA	2227	OH	TYR A 266	48.622	38.851	31.710	1.00 33.40	
	ATOM	2228	<u>N</u>	LYS A 267	49,217	38.043	37,604	1,00 25,72	N
15	MOTA	2229	CA_	LYS A 267	47.988	38,697	38.009	1.00 30.77	<u>c</u>
	ATOM	2230	_C	LYS A 267	47.217	39.280	36.798	1.00 28.85	<u>c</u>
	MOTA	2231	0	LYS A 267	46.179	39.894	36.949	1.00 31.17	0
	ATOM	2232	СВ	LYS A 267	48.279	39.741	39.092	1.00 27.13	<u>C</u>
	ATOM	2233	CG	LYS A 267	48.728	39.128	40,403	1.00 23.18	<u>c</u>
20	ATOM	2234	CD	LYS A 267	48.420	40.096	41.562	1.00 30.98	c
	MOTA	2235	CE	LYS A 267	47.933	39.358	42.820	1.00 48.52	c
	MOTA	2236	NZ	LYS A 267	47.005	38,208	42.505	1.00100.00	N
•	MOTA	2237	<u>N</u>	GLY A 268	47.716	39.054	35.594	1.00 22.67	и
	ATOM	2238	CA	GLY A 268	47.019	39.518	34.394	1.00 21.38	<u>c</u>
25	MOTA	2239	<u></u>	GLY A 268	45.856	38.568	34.085	1.00 31.03	c
	ATOM	2240	0	GLY A 268	45.455	37.728	34.911	1.00 19.71	0
	ATOM	2241	<u>N</u>	ARG A 269	45.387	38.645	32.849	1.00 30.40	N
	MOTA	2242	CA	ARG A 269	44.263	37.846	32.399	1.00 26.47	c
	MOTA	2243	C	ARG A 269	44.680	36.705	31.489	1.00 22.35	<u>c</u>
30	MOTA	2244	<u> </u>	ARG A 269	45.378	36,926	30.524	1.00 22.75	0
	MOTA	2245	СВ	ARG A 269	43.297	38.753	31.626	1.00 22.65	<u>C</u>
	ATOM	2246	CG	ARG A 269	42.201	39.390	32.463	1.00 24.21	c
	MOTA	2247	CD	ARG A 269	40.936	39.465	31.568	1.00 83.45	c
	MOTA	2248	NE	ARG A 269		-	31.762	1,00100.00	N
35	ATOM	2249	CZ	ARG A 269	38.808	40.751	31.431	1.00100.00	<u>C</u>
	MOTA	2250	NH1	ARG A 269	38.201	39,691	30.921	1.00 99.93	N
	ATOM	2251	NH2	ARG A 269	38.094	41.865	31.663	1.00100.00	N
	MOTA	2252	N_	VAL A 270	44,195	35.494	31.758	1.00 19.87	N
	MOTA	2253	CA	VAL A 270	44,468	34.389	30.856	1.00 24.82	c
40	MOTA	2254	_C	VAL A 270	43.319	34,456	29.824	1.00 22.51	c
	MOTA	2255	0	VAL A 270		34.501		1.00 25.79	0
	MOTA	2256	СВ	VAL A 270	44.436	32.979		1.00 24.03	<u>C</u>
	MOTA	2257	CG1	VAL A 270	44.576	31.861	30.533	1.00 20,72	<u>C</u>
	MOTA	2258	CG2	VAL À 270	45.506	32.849	32.639	1.00 11.27	<u>c</u>
45	MOTA	2259	N_	VAL A 271	43.660	34,409	28.554	1.00 25.18	N

	MOTA	2260	CA	VAL A	271	42.666	34,492	27.487	1.00	28.32	<u>c</u>
	ATOM	2261	С	VAL A	271	42.819	33.370	26.442	1.00	24.89	<u>c</u>
	MOTA	2262	0	VAL A	271	43.923	33.115	25.980	1.00	21.98	0
	MOTA	2263	СВ	VAL A	271	42.901	35.813	26.736	1.00	29.25	<u>c</u>
5	MOTA	2264	CG1	VAL A	271	42.256	35,773	25.370	1.00	31.91	<u>C</u>
	MOTA	2265	CG2	VAL A	271	42.421	36,989	27.565	1.00	18.72	С
	MOTA	2266	N_	PHE A	272	41.716	32.758	26.019	1.00	26.14	N
	MOTA	2267	CA	PHE A	272	41.752	31.747	24.963	1.00	24.34	<u>C</u>
	MOTA	2268	С	PHE A	272	41.236	32.266	23.623	1.00	28.95	<u>C</u>
10	ATOM	2269	0	PHE A	272	40.155	32.826	23.582	1.00	22.01	0
	MOTA	2270	СВ	PHE A	272	40.960	30.506	25.391	1.00	20.97	C
	MOTA	2271	CG	PHE A	272	41.764	29.570	26,243	1.00	21.77	с
	MOTA	2272	CD1	PHE A	272	41.940	29.842	27.610	1.00	14.60	<u>c</u>
	MOTA	2273	CD2	PHE A	272	42.504	28.550	25.656	1.00	22.19	<u> </u>
15	MOTA	2274	CE1	PHE A	272	42.763	29.041	28.434	1.00	17.89	C
	ATOM	2275	CE2	PHE A	272	43.336	27.726	26.454	1.00	27.64	С
	ATOM	2276	CZ	PHE A	272	43.478	27.979	27.851	1.00	25.14	<u>C</u>
	ATOM	2277	N	ASP A	273	42.012	32.114	22.542	1.00	29.45	N
	ATOM	2278	_CA_	ASP A	273	41.557	32.536	21.214	1.00	22.33	C
20	MOTA	2279	С	ASP A	273	40.896	31.365	20.493	1.00	25.67	C
	MOTA	2280	0	ASP A	273	41.539	30.570	19.793	1.00	17.81	. 0
	MOTA	2281	СВ	ASP A	273	42.672	33.114	20.343	1.00	21.45	C
	MOTA	2282	CG	ASP A	273	42.131	33.626	18.990	1.00	26.89	С
	MOTA	2283	OD1	ASP A	273	40.975	33.249	18.598	1.00	27.76	
25	ATOM	228.4_	_OD2	ASP_A	273	42.838	_34.421	18.327	1.00	30.06	<u> </u>
	MOTA	2285	N	ALA A	274	39.589	31.284	20.649	1.00	15.59	и
	MOTA	2286	_CA_	ALA A	274	38.932	30.128	20.128	1.00	23.75	<u>c</u>
	MOTA	2287	_C	ALA A	274	38.853	30.168	18.653	1.00	32.30	c
	MOTA	2288	0	ALA A	274	38.284	29,256	18,029	1.00	29.37	0
30	ATOM	2289	СВ	ALA A	274	37.567	29.905	20.777	1.00	18.87	<u>c</u>
	ATOM	2290	N	SER A	275	39.372	31.243	18,081	1.00	21.10	N
	MOTA	2291	CA	SER A	275	39.343	31.288	16.631	1.00	26.90	<u>C</u>
	MOTA	2292	С	SER A	275	40.390	30.300	16.116	1,00	43.37	c
	MOTA	2293	0	SER A	275	40.421	29.949	14.927	1.00	46.32	0
35	MOTA	2294	СВ	SER A	275	39,547	32.683	16.074	1.00	15.19	<u>c</u>
	MOTA	2295	OG	SER A	275	40,904	33.070	16.078	1.00	28.71	0
	ATOM	2296	N_	LYS A	276	41,192	29.780	17.037	1.00	22.98	N
	ATOM	2297	CA	LYS A	276	42.178	28.791	16.638	1.00	23.28	c
	MOTA	2298	С	LYS A	276	41.645	27.405	16.976	1.00	29.73	c
40	MOTA	2299	0	LYS A	276	40.992	27,206	18.010	1.00	25.10	0
	MOTA	2300	СВ	LYS A	276	43.544	29.051	17.275	1.00	19.19	c
	MOTA	2301	CG	LYS A	276	43.957	30.496	17.218	1.00	32.11	c
	MOTA	2302	CD	LYS A	276	44 062	30.852	15.798	1.00	22.43	c
						44.062					
	MOTA	2303	CE	LYS A		44.930		15.570		23.18	c
45	ATOM	2303 2304	CE		276	44.930	32.067		1.00		C

	MOTA	2305	N	PRO A 27	7 41.8	92 7	6.476	16.055	1.00	36.04		Ŋ
	ATOM	2306	CA	PRO A 27	741.4	46 2	5.087	16.170	1.00	35.93		Ç
	MOTA	2307	Ç	PRO A 27	7 42.0	22 2	4.332	17.363	1.00	29.30		Ç
	MOTA	2308	0	PRO A 27	7 43.1	03 2	4.650	17.885	1.00	30.54		Q
5	ATOM	2309	СВ	PRO A 27	741.9	75 2	4.453	14.878	1.00	39.65		C
	ATOM	2310	CG	PRO A 27	7 43.2	49 7	25.261	14.566	1.00	42.90		C
	ATOM	2311	CD	PRO A 27	7 42.7	87_2	26.670	14.892	1.00	37.84_		<u>c</u>
	MOTA	2312	N	ASP A 27	8 41.2	73 2	23,339	17.809	1.00	22.35		N
	MOTA	2313	CA	ASP A 27	8 41.7	45	22.501	18.903	1.00	22.16		C
10	ATOM	2314	_c	ASP A 27	8 42.1	84	21.189	18.272	1.00	19.66		C
	MOTA	2315	0_	ASP A 27	8 41.9	05	20.917	17.117	1.00	23.49		Q
	MOTA	2316	СВ	ASP A 27	8 40.6	36	22.241	19.971	1.00	15.09		Ç
	MOTA	2317	CG	ASP A 27	8 40,2	16	23.503	20.702	1.00	22.86		Ç
	MOTA	2318	001	ASP A 27	8 41.1	13	24.254	21.096	1.00	25.18		Q
15	MOTA	2319	OD2	ASP A 27	8 38.9	99	23.787	20.812	1.00	39.55	·	Q
	MOTA	2320	N.	GLY A 27	9 42.8	46	20.355	19.044	1.00	30.65		N
	MOTA	2321	CA	GLY A 27	9 43.2	29	19.034	18.546	1.00	33.78	·	C
	MOTA	2322	С	GLY A 27	9 42.1	15	18.099	18.944	1.00	38.10		C
	MOTA	2323	0	GLY A 27	9 40.9	63	18.517	19,068	1.00	47.52		0
20	ATOM	2324	N_	THR A 28	0 42.4	19	16.839	19.177	1.00	29.44		N
	ATOM	2325	CA	THR A 28	0 41,3	28	15.990	19.587	1.00	26.68		<u>C</u>
	ATOM	2326	С	THR A 28	0 40.8	89	16.439	20.972	1.00	23.52		Ç
	MOTA	2327	0_	THR A 28	0 41.6	70	17.067	21,713	1.00	23.62		0
*	MOTA	2328	СВ	THR A 28	0 41.6	95	14.492	19.540	1.00	40.78	<u>-</u>	Ç
25	ATOM	2329	0G1	THR A 28	0 42.8	89	14.272	20.296	1.00	25.56		<u>0</u>
	ATOM	2330	CG2	THR A 28	0 41.6	93	14.054	18.095	1.00	37.71		C
	ATOM	2331	N	PRO A 28	1 39.6	72	16.063	21.346	1.00	25.54		N
	MOTA	2332	_CA_	PRO A 28	1 39.1	29	16.454	22.628	1.00	25.72		C
	ATOM	2333	С	PRO A 28	1 39.	76	15.778	23.800	1.00	26.02		C
30	MOTA	2334		PRO A 28	1 39.7	52	16.314	24.915	1.00	22.68		<u>0</u>
	ATOM	2335	СВ	PRO A 26	1 37.6	50	15.990	22.559	1.00	28.89		c
	ATOM	2336	CG	PRO A 28	1 37.4	17	15.540	21.201	1.00	29.39		<u>c</u>
	MOTA	2337	CD	PRO A 28	1 38.		15.138	20.646		26.82		C
	MOTA	2338	N	ARG A 28	2 40.2	81	14.567	23.587	1.00	27.88	 	N
35	MOTA	2339	_CA_	ARG A 28	2 40.8	06	13.817	24.720	1.00	34.08		Ç
	MOTA	2340	<u></u>	ARG A 28	2 41.9	77_	12.918	24,384	1,00	27.62		C
	MOTA	2341	0	ARG A 28	2 41.9	313	12.182	23.425	1.00	23.83		Q
	MOTA	2342	СВ	ARG A 28	2 39.6	76	13.017	25.405	1.00	20.89		Ç
	MOTA	2343	ĊĠ	ARG A 28	2 40.0	35	12.467	26.775	1.00	22.81		Ç
40	ATOM	2344	CD	ARG A 28	2 38.	762	11.925	27.442	1.00	26.77		C
	MOTA	2345	NE	ARG A 28	2 38.9	963	11.345			36.48		N
	ATOM	2346	CZ	ARG A 28			10.139	29.164				C
	MOTA	2347	NH1	ARG A 28				28.346				Ŋ
4-	ATOM	2348		ARG A 26				30.384				N
45	MOTA	2349	_N	LYS A 28	3 43.	16	12.963	25,223	1.00	28.91	 	N

	MOTA	2350	CA	LYS A	283	44.217	12,171	25.051	1.00 24.32	<u>C</u>
	MOTA	2351	<u> </u>	LYS A	283	44.796	11.766	26.404	1.00 29.57	C
	MOTA	2352	0	LYS A	283	45.262	12.626	27.138	1.00 33.16	0
	MOTA	2353	CB	LYS A	283	45.226	13.008	24.287	1.00 21.93	<u>c</u>
5	MOTA	2354	CG	LYS A	283	46.111	12.251	23.316	1.00 32.38	C
	MOTA	2355	CD	LYS A	283	46.526	13.171	22.143	1.00 95.77	c
	ATOM	2356	CE	LYS A	283	45.710	12.937	20.836	1.00100.00	
	MOTA	2357	NZ	LYS A	283	46.418	13.332	19.535	1.00100.00	N
	MOTA	2358	N_	LEU A	284	44.747	10.467	26.734	1.00 23.37	N
10	MOTA	2359	CA	LEU A	284	45.327	9.905	27.997	1.00 16.08	с
	MOTA	2360	С	LEU A	284	45.463	8.386	28.047	1.00 20.46	c
	ATOM_	2361	0	LEU A	284	44.679	7.655	27.446	1.00 25.45	0
	ATOM	2362	СВ	LEU A	284	44.641	10.387	29.284	1.00 16.30	<u>c</u>
	MOTA	2363	CG	LEU A	284	43.334	9,700	29.714	1.00 25.97	<u>C</u>
15	ATOM	2364	CD1	LEU A	284	42.881	10.089	31.152	1.00 22.11	C
	MOTA	2365	CD2	LEU A	284	42.203	9.953	28.693	1.00 23.92	C
	MOTA	2366	N	LEU A	285	46.453	7.939	28.820	1.00 18.51	N
	MOTA	2367	CA	LEU A	285	46.792	6.527	29.003	1.00 16.77	<u>c</u>
	ATOM	2368	С	LEU A	285	45.880	5.865	30.006	1.00 30.75	<u>C</u>
20	MOTA	2369	0	LEU A	285	45.576	6,439	31.058	1.00 22.02	O
	ATOM	2370	СВ	LEU A	285	48.229	6.389	29.585	1.00 15.85	c
	ATOM	2371	CG	LEU A	285	49.307	6.970	28.672	1.00 21.51	<u>C</u>
•	ATOM	2372	CD1	LEU A	285	50.703	6.705	29,122	1.00 15.15	c
	ATOM	2373	CD2	LEU A	285	49.051	6.368	27.330	1.00 16.94	c
.25	MOTA	23.74	N_	ASP A	286	45.565	4.599	29.734	1.00 26.62	N
	ATOM	2375	CA	ASP A	286	44.945	3,726	30.698	1.00 10.90	c
	ATOM_	2376	<u> </u>	ASP A	286	46.128	3.055	31.498	1.00 20.54	C
	ATOM	2377	0	ASP A	286	46.991	2.372	30.938	1.00 23.38	0
	MOTA	2378	СВ	ASP A	286	44.073	2.702	29.970	1.00 14.65	c
30	MOTA	2379	CG	ASP A	286	43,409	1,699	30.943	1.00 24.60	с
	ATOM	2380	OD1	ASP A	286	43.932	1.437	32.083	1.00 24.60	0
	ATOM	2381	OD2	ASP A	286	42.316	1.231	30.583	1.00 26.03	0
	ATOM	2382	N	VAL A	287	46.230	3.317	32,791	1.00 15.44	N
	ATOM	2383	CA	VAL A	287	47.354	2.816	33.556	1.00 15.58	<u> </u>
35	ATOM	2384	С	VAL A	287	46.973	1.695	34.521	1.00 16.48	c
	ATOM	2385	0	VAL A	287	47.613	1.473	35.572	1.00 16.63	0
	ATOM	2386	СВ	VAL A	287	48.101	4.006	34.260	1,00 29.84	c
	MOTA	2387	CG1	VAL A	287	48.534	5.085	33.224	1.00 18.39	с
	MOTA	2388	CG2	VAL A	287	47.173	4.670	35.258	1.00 37.79	c
40	MOTA	2389	N	THR A		45.904	0.992		1.00 22.27	N
	ATOM	2390	CA	THR A		45.428	-0.152	34.956	1.00 19.34	
	MOTA	2391	c	THR A		46.561	-1.177	35.227	1.00 27.47	с
	ATOM	2392	0	THR A		46.778	-1.586		1.00 24.87	0
	ATOM	2393	СВ	THR A		44.288	-0.909		1.00 22.86	c
45	ATOM			THR A					1.00 24.84	

	ATOM 2395 CG2 THR A 288	43.916 -2.113 35.024 1.00 25.08	c
	ATOM 2396 N ARG A 289	47.290 -1.585 34.179 1.00 26.08	N
	ATOM 2397 CA ARG A 289	48.428 -2.506 34.319 1.00 16.92	<u>c</u>
	ATOM 2398 C ARG A 289	49.405 -2.037 35.408 1.00 22.96	<u>c</u>
5	ATOM 2399 O ARG A 289	49.847 -2.790 36.275 1.00 23.03	0
	ATOM 2400 CB ARG A 289	49.208 -2.607 32.976 1.00 12.43	c
	ATOM 2401 CG ARG A 289	48.934 -3.804 32.103 1.00 29.39	c
	ATOM 2402 CD ARG A 289	50.016 -4.102 31.037 1.00 25.88	c
	ATOM 2403 NE ARG A 289	49.441 -4.996 30.020 1.00 17.26	N
10	ATOM 2404 CZ ARG A 289	50.053 -5.459 28.930 1.00 38.82	c
	ATOM 2405 NH1 ARG A 289	51.306 -5.153 28.660 1.00 13.51	N
	ATOM 2406 NH2 ARG A 289	49.400 -6.262 28.096 1.00 37.68	N
	ATOM 2407 N LEU A 290	49.815 -0.786 35.306 1.00 26.60	N
	ATOM 2408 CA LEU A 290	50.809 -0.254 36.219 1.00 25.42	<u>c</u>
15	ATOM 2409 C LEU A 290	50.324 -0.376 37.656 1.00 24.17	<u>c</u>
	ATOM 2410 O LEU A 290	51.072 -0.759 38.574 1.00 19.94	<u>.</u>
	ATOM 2411 CB LEU A 290	51.000 1.219 35.876 1.00 24.66	<u> </u>
şi.	ATOM 2412 CG LEU A 290	52.281 2.019 36,066 1.00 24.67	c
	ATOM 2413 CD1 LEU A 290	51.992 3.479 36,504 1.00 29.25	
20	ATOM 2414 CD2 LEU A 290	53.450 1.335 36.788 1.00 15.82	<u>C</u>
	ATOM 2415 N HIS A 291	49.093 0.075 37.868 1.00 30.10	N
	ATOM 2416 CA HIS A 291	48.513 0.074 39.212 1.00 34.17	c
	ATOM 2417 C HIS A 291	48.411 -1.367 39.730 1.00 43.41	C
	ATOM 2418 0 HIS A 291	48.621 -1.654 40.929 1.00 38.81	0
25	ATOM 2419 CB HIS A 291	47.113 0.674 39.143 1.00 28.01	<u>c</u>
	ATOM 2420 CG HIS A 291	47.097 2.153\ 38.984 1.00 29.68	с
	ATOM 2421 ND1 HIS A 291	48.242 2.921 39.015 1.00 35.63	N
	ATOM 2422 CD2 HIS A 291	46,068 3,024 38,855 1.00 31.18	<u> </u>
	ATOM 2423 CE1 HIS A 291	47,926 4.197 38.845 1.00 24.20	<u>c</u>
30	ATOM 2424 NE2 HIS A 291	46,612 4.289 38.747 1.00 21.92	N
	ATOM 2425 N GLN A 292	48.048 -2.260 38.821 1.00 30.71	N
	ATOM 2426 CA GLN A 292	47.950 -3.654 39.181 1.00 34.82	<u>c</u>
	ATOM 2427 C GLN A 292	49.287 -4.197 39.622 1.00 36.93	c
	ATOM 2428 O GIN A 292	49.323 -5.040 40.510 1.00 27.56	0
35	ATOM 2429 CB GLN A 292	47.322 -4.487 38.069 1.00 28.23	<u>C</u>
	ATOM 2430 CG GLN A 292	45.798 -4.405 38.171 1.00 81.15	<u>c</u>
	ATOM 2431 CD GLN A 292	45.023 -4.954 36.963 1.00100.00	c
	ATOM 2432 OE1 GLN A 292	45.597 -5.410 35.951 1.00 99.65	0
	ATOM 2433 NE2 GLN A 292	43,687 -4.895 37.073 1.00 40.86	N
40	ATOM 2434 N LEU A 293	50,375 -3.658 39,058 1.00 31.75	М
	ATOM 2435 CA LEU A 293	51,750 -4,072 39,383 1,00 22.67	c
	ATOM 2436 C LEU A 293	52,238 -3,323 40,613 1.00 28,64	C
	ATOM 2437 O LEU A 293	53.420 -3.377 41.017 1.00 22.27	0
	ATOM 2438 CB LEU A 293	52,665 -3.769 38.205 1.00 25.57	C
45	ATOM 2439 CG LEU A 293	52,497 -4.703 37.016 1.00 35.11	c
		•	

	MOTA	2440	CD1	LEU A	293	53.306	-4.170	35.836	1.00 28.25	<u>c</u>
	MOTA	2441	CD2	LEU A	293	52.965	-6.110	37.439	1.00 47.81	c
	MOTA	2442	N	GLY A	294	51,316	-2.510	41.111	1.00 33.08	<u>N</u>
	MOTA	2443	CA	GLY A	294	51.488	-1.793	42.347	1.00 24.90	C
5	MOTA	2444	c_	GLY A	294	52,272	-0.512	42.326	1.00 29.31	c
	MOTA	2445	0	GLY A	294	53.070	-0.249	43.223	1.00 25.25	o
	MOTA	2446	_N	TRP A	295	52.000	0.347	41.368	1.00 27.83	N
	MOTA	2447	_CA_	TRP A	295	52.687	1.623	41.385	1.00 19.45	c
	MOTA	2448	С	TRP A	295	51.684	2.731	41.081	1.00 25.79	C
10	MOTA	2449	۰	TRP A	295	50.765	2.527	40.297	1.00 20.43	0
	MOTA	2450	СВ	TRP A	295	53,961	1.614	40.524	1.00 12.85	<u>C</u>
	ATOM	2451	CG	TRP A	295	54.750	2.911	40.618	1.00 23.04	C
	MOTA	2452	CD1	TRP A	295	55.897	3.161	41.368	1.00 23.68	с
	MOTA	2453	CD2	TRP A	295	54.415	4.159	39.979	1.00 20.72	<u>C</u>
15	MOTA	2454	NE1	TRP A	295	56.258	4.493	41.244	1.00 18.67	N
	MOTA	2455	CE2	TRP A	295	55.389	5.113	40.373	1.00 20.95	c
	ATOM	2456	CE3	TRP A	295	53.406	4.550	39.102	1.00 21.47	<u></u>
	MOTA	2457	CZ2	TRP A	295	55.338	6.439	39.958	1.00 17.58	<u>c</u>
	MOTA	2458	CZ3	TRP A	295	53.403	5.873	38.632	1.00 21.57	<u>c</u>
20	MOTA	2459	CH2	TRP A	295	54.368	6.787	39.058	1.00 19.45	<u>c</u>
	MOTA	2460	N_	TYR A	296	51.709	3,797	41.884	1.00 25.17	N
	MOTA	2461	CA	TYR A	296	50,720	4.883	41.731	1.00 24.90	<u>c</u>
	MOTA	2462	С	TYR A	296	51.517	6.178	41.857	1.00 30.85	<u>C</u>
	MOTA	2463	0	TYR A	296	52.363	6.272	42.745	1.00 21.27	0
25	ATOM	2464	_CB_	TYR-A	296	49.654	4.813	42.840	1.00 25.18	<u>.c</u>
	MOTA	2465	CG	TYR A	296	48,685	3,651	42.744	1.00 23.04	C
	MOTA	2466	CD1	TYR A	296	49.078	2.343	43.088	1.00 31.62	<u>C</u>
	MOTA	2467	CD2	TYR A	296	47,380	3.853	42.289	1.00 26.02	<u>C</u>
	MOTA	2468	CE1	TYR A	296	48.203	1.268	42.935	1.00 24.42	<u>C</u>
30	MOTA	2469	CE2	TYR A	296	46,493	2,770	42.127	1.00 24.81	<u>c</u>
	MOTA	2470	CZ	TYR A	296	46.902	1.483	42.464	1.00 39.41	c
	MOTA	2471	OH	TYR A	296	45,984	0.434	42.337	1.00 66.19	0
	MOTA	2472	<u> </u>	HIS A	297	51.324	7.123	40.924	1.00 20.95	N
	MOTA	2473	_CA_	HIS A	297	52.130	8.343	40.938	1.00 26.86	ç
35 ·	MOTA	2474	С	HIS A	297	51.947	9.175	42.210	1.00 35.01	<u>c</u>
	MOTA	2475	0	HIS A	297	50.885	9.132	42.874	1.00 26.92	0
	MOTA	2476	СВ	HIS A	297	51.819	9.192	39,733	1.00 25.77	<u>c</u>
	ATOM	2477	CG	HIS A	297	50.489	9.842	39.803	1.00 31.16	c
	MOTA	2478	ND1	HIS A	297	49.314	9.145	39.633	1.00 34.21	N
40	MOTA	2479	CD2	HIS A	297	50.135	11.094	40.167	1.00 25,83	c
	MOTA	<u> 2480</u>	CE1	HIS A	297	48.290	9.972	39.776	1.00 24.14	c
	MOTA	2481	NE2	HIS A	297	48.761	11.164	40.087	1.00 23.35	N
	MOTA	2482	N_	GLU A	298	52.983	9.926	42.554	1.00 24.98	N
	MOTA	2483	CA	GLU A	298	52.957	10.683	43.798	1.00 27.65	c
45	ATOM	2484	С	GLU A	298	52.831	12.187	43.741	1.00 36.86	c

	ATOM 2485	O GLU A 298	52.433 12.792 44.718 1.00 43.61	
	ATOM 2486	CB GLU A 298	54.153 10.319 44.686 1.00 22.02	c
	ATOM 2487	CG GLU A 298	54.004 8.943 45.285 1.00 36.42	c
	ATOM 2488	CD GLU A 298	54.999 8.664 46.406 1.00100.00	<u>c</u>
5	ATOM 2489	OE1 GLU A 298	56.223 8.561 46.152 1.00 44.79	0
	ATOM 2490	OE2 GLU A 298	54.526 8.470 47.547 1.00100.00	0
	ATOM 2491	N ILE A 299	53.232 12.800 42.639 1.00 23.49	и
	ATOM 2492	CA ILE A 299	53.268 14.244 42.562 1.00 13.25	с
	ATOM 2493	C ILE A 299	52.016 14.848 41.906 1.00 27.05	с
10	ATOM 2494	O ILE A 299	51.681 14.530 40.757 1.00 26.73	0
	ATOM 2495	CB ILE A 299	54.586 14.711 41.862 1.00 15.93	<u> </u>
	ATOM 2496	CG1 ILE A 299	55,836 14.183 42.606 1.00 23.83	c
	ATOM 2497	CG2 ILE A 299	54.596 16.213 41.541 1.00 17.37	c
	ATOM 2498	CD1 ILE A 299	57,232 14,221 41,787 1,00 21,32	c
15	ATOM 2499	N SER A 300	51.323 15.716 42.648 1.00 18.55	N
	ATOM 2500	CA SER A 300	50.177 16.449 42.091 1.00 19.58	<u>C</u>
	ATOM 2501	C SER A 300	50.714 17.415 41.042 1.00 17.29	<u>C</u>
	ATOM 2502	O SER A 300	51.824 17.941 41.178 1.00 21.06	0
	ATOM 2503	CB SER A 300	49.542 17.307 43.181 1.00 16.78	<u>C</u>
20	ATOM 2504	OG SER A 300	50.548 17.969 43.923 1.00 75.80	0
	ATOM 2505	N LEU A 301	49.870 17.755 40.075 1.00 16.13	N
	ATOM 2506	CA LEU A 301	50,246 18,675 39,014 1.00 17,70	с
	ATOM 2507	C LEU A 301	50.689 19.964 39.646 1.00 20.11	. <u> C</u>
	ATOM 2508	O LEU A 301	51,714 20,568 39,303 1,00 20,46	0
25	ATOM 2509	CB LEU A 301	48,990 18,981 38,197 1.00 17.92	<u>C</u>
	ATOM 2510	CG LEU A 301	49,182 20,030 37,112 1,00 25,15	<u>c</u>
	ATOM 2511	CD1 LEU A 301	50,233 19,552 36,086 1,00 18,82	c
	ATOM 2512	CD2 LEU A 301	47.854 20.177 36.436 1.00 25.88	c
	ATOM 2513	N GLU A 302	49.845 20.398 40.554 1.00 27.01	N
30	ATOM 2514	CA GLU A 302	50,053 21.636 41.280 1.00 37.72	C
	ATOM 2515	C GLU A 302	51,410 21.618 41.996 1.00 29.99	<u>c</u>
	ATOM 2516	O GLU A 302	52,245 22,514 41,798 1,00 27,15	0
	ATOM 2517	CB GLU A 302	48.899 21.841 42.275 1.00 43.10	<u>c</u>
	ATOM 2518	CG GLU A 302	49,061 23,061 43,174 1,00 90.85	c
35	ATOM 2519		48.451 24.324 42.580 1.00100.00	c
	ATOM 2520	OE1 GLU A 302	47,566 24.209 41.706 1.00100.00	0
	ATOM 2521	OE2 GLU A 302	48.808 25.432 43.036 1.00 64.50	0
	ATOM 2522	N ALA A 303	51.646 20.591 42.801 1.00 8.72	N
	ATOM 2523	CA ALA A 303	52.937 20.455 43.459 1.00 15.03	<u>c</u>
40	ATOM 2524	C ALA A 303	54.102 20.355 42.450 1.00 19.85	<u>c</u>
	ATOM 2525	O ALA A 303	55.104 21.090 42.553 1.00 22.24	0
	ATOM 2526	CB ALA A 303	52.938 19.258 44.410 1.00 18.97	с
	ATOM 2527	N GLY A 304	53.953 19.472 41.467 1.00 13.05	N
	ATOM 2528	CA GLY A 304	54,970 19,321 40,448 1.00 8.94	C
45	ATOM 2529	C GLY A 304	55.239 20.621 39.695 1.00 20.31	c

	MOTA	2530	۰	GLY A	304	56.394	20,900	39.322	1.00	14.30	
	MOTA	2531	N_	LEU A	305	54.191	21,383	39.361	1.00	10.76	N
	MOTA	2532	CA	LEU A	305	54.483	22.622	38.611	1.00	20.29	C
	MOTA	2533	С	LEU A	305	55.281	23,669	39.456	1.00	28.92	<u>C</u>
5	MOTA	2534	0	LEU A	305	56.194	24.385	38.974	1.00	17.69	0
	MOTA	2535	СВ	LEU A	305	53.202	23.245	38.033	1.00	24.03	с
	MOTA	2536	CG	LEU A	305	52.357	22.647	36.880	1,00	27.66	с
	MOTA	2537	CD1	LEU A	305	50.975	23.384	36.789	1.00	13.44	<u>c</u>
	MOTA	2538	CD2	LEU A	305	53.079	22.724	35.543	1,00	18.39	c
10	ATOM	2539	N	ALA A	306	54.904	23.757	40.724	1.00	19.94	<u>N</u>
	MOTA	2540	CA	ALA A	306	55.544	24.660	41.655	1.00	24.79	C
	ATOM	2541	C	ALA A	306	57.035	24.380	41.743	1.00	27.51	с
	ATOM	2542	0	ALA A	306	57.852	25.280	41.662	1.00	29.68	o
	ATOM	2543	СВ	ALA A	306	54.937	24.471	43.002	1.00	17.87	c
15	ATOM	2544	N_	SER A	307	57.378	23,137	42.011	1,00	18.46	N
	MOTA	2545	CA	SER A	307	58.793	22.756	42.162	1.00	16.31	с
	ATOM	2546	С	SER A	307	59.547	22.885	40.832	1.00	22.66	c
	ATOM	2547	0	SER A	307	60.742	23,212	40.786	1.00	28.47	o
	MOTA	2548	СВ	SER A	307	58.851	21.304	42.622	1.00	20.47	c
20	ATOM	2549	OG	SER A	307	58.517	20.454	41.526	1.00	29.03	0
	ATOM	2550	N	THR A	308	58.849	22.631	39,735	1.00	27.31	N
	MOTA	2551	CA	THR A	308	59.458	22.738	38.413	1.00	22.89	· C
	MOTA	2552	С	THR A	308	59.757	24.216	38.107	1.00	26.06	c
	ATOM	2553	0	THR A	308	60.819	24.546	37.591	1.00	29.89	0
25	ATOM	2554	СВ	THR A	308	58.536	22.115	37.318	1.00	18.72	<u>c</u>
	NTOX.	2555	ल्हा	TIR A	308	SOLDSG_	20 <i>.75</i> 19_	<i>37LFA</i> S	J.00	20പ്പി	(0)
	ATOM	2556	CG2	THR A	308	59.094	22.330	35.923	1.00	12.37	с
	ATOM	2557	N	TYR A	309	58.846	25.118	38.453	1.00	28.20	N
	MOTA	2558	CA	TYR A	309	59.110	26.549	38.241	1.00	31.09	<u>C</u>
30	MOTA	2559	c	TYR A	309	60.383	27.059	39.045	1.00	16.31	<u>C</u>
	ATOM	2560	0	TYR A	309	61.179	27.858	38.577	1.00	16.91	0
	ATOM	2561	СВ	TYR A	309	57.819	27.373	38.533	1.00	31.19	c
	ATOM	2562	CG	TYR A	309	57.944	28.895	22.392	1.00	14.57	<u>c</u>
	ATOM	2563	CD1	TYR A	309	58.397	29.457	37,224	1.00	17.51	<u> </u>
35	MOTA	2564	CD2	TYR A	309	57.575	29.757	39.442	1.00	24.99	c
	ATOM	2565	CE1	TYR A	309	58.527	30.801	37.100	1.00	18.41	C
	MOTA	2566	CE2	TYR A	309	57,744	31.129	39.351	1.00	19.04	<u>c</u>
	MOTA	2567	CZ	TYR A	309	58.212	31,641	38.164	1.00	29.13	c
	ATOM	2568	ОН	TYR A	309	58.300	33.004	37.966	1.00	28.22	0
40	MOTA	2569	N	GLN A	310	60.560	26.579	40.260	1.00	15.41	N
	ATOM	2570	CA	GLN A	310	61.705	26.964	41.087	1.00	22.35	C
	MOTA	2571	С	GLN A	310	63.001	26,492	40.446	1.00	31.46	C
	MOTA	2572	_ ه_	GLN A	310	64.009	27.191	40,442	1.00	33.42	0
	ATOM	2573	СВ	GLN A	310	61.587	26.335	42.482	1.00	17.67	c

	MOTA	2575	CD	GLN A	310	62.287	28.370	43.782	1.00	65,14		Ç
	MOTA	2576	OE1	GLN A	310	61.134	28,754	44.000	1.00	41.94		Q
	ATOM	2577	NE2	GLN A	310	63.330	29.194	43.801	1.00	99.09		N
	MOTA	2578	N_	TRP A	311	62.957	25,321	39.830	1.00	28.76		N
5	MOTA	2579	CA	TRP A	311	64.146	24.822	39.163	1.00	26.29		Ç
	MOTA	2580	С	TRP A	311	64.474	25.769	38.040	1.00	17.91		C
	ATOM	2581	0	TRP A	311	65.599	26.193	37.880	1.00	22.89		Q
	MOTA	2582	СВ	TRP A	311	63.938	23,383	38.643	1.00	27.53		C
	MOTA	2583	CG	TRP A	311	65.176	22.784	38.119	1.00	17.82		c
10	MOTA	2584	CD1	TRP A	311	66.132	22.090	38.826	1.00	20.21		Ç
	MOTA	2585	CD2	TRP A	311	65.652	22.881	36.784	1.00	17.99		c
	ATOM	2586	NE1	TRP A	311	67.197	21.776	37,992	1.00	20,39		N
	MOTA	2587	CE2	TRP A	311	66.933	22.284	36.746	1.00	19.57		c
	MOTA	2588	CE3	TRP A	311	65.141	23.461	35.621	1.00	20.26		<u>c</u>
15	ATOM	2589	CZ2	TRP A	311	67.686	22.236	35.599	1.00	14.25		c
	ATOM	2590	CZ3	TRP A	311	65.901	23,446	34,501	1.00	18.59	· · · · · · · · · · · · · · · · · · ·	C
	ATOM	2591	CH2	TRP A	311	67.169	22.831	34.494	1,00	16.86		c
	MOTA	2592	N_	PHE A	312	63.469	26.109	37.256	1,00	17.47		N
	MOTA	2593	CA.	PHE A	312	63,665	27.064	36.179	1.00	20.14		<u> </u>
20	MOTA	2594	C_	PHE A	312	64.224	28.371	36.733	1.00	18.33		Ç
	ATOM	2595	0	PHE A	312	65.080	29.024	36.104	1.00	24.76		Q
	ATOM	2596	СВ	PHE A	312	62.328	27.318	35.458	1.00	29.51		ç
	MOTA	2597	CG	PHE A	312	62.328	28.544	34.603	1,00	28.52		Ç
	ATOM	2598	CD1	PHE A	312	62.883	28.508	33.338	1.00	30.53		Ç
25	ATOM	2599	CD2	PHE A	312	61.825	29.758	35.104	1.00	29,31		Ç
	ATOM	2600	CE1	PHE A	312	62,936	29.660	32.554	1.00	34.73	· · · · · · · · · · · · · · · · · · ·	Ç
	ATOM	2601	CE2	PHE A	312	61.900	30.904	34.362	1.00	38.40		Ç
	ATOM_	2602	CZ	PHE A	312	62,432	30.860	33.063	1.00	40.73		Ç
	ATOM	2603	N.	LEU A	313	63,697	28.787	37.876	1.00	22.46	·	N
30	MOTA	2604	CA	LEU A	313	64.170	30.025	38.516	1.00	28.47	· ·	Ç
	ATOM	2605	c	LEU A	313	65.627	29.827	38.898	1.00	37.53		Ç
	ATOM	2606	0	LEU A	313	66.452	30.693	38.629	1.00	34.20		Q
	ATOM	2607	СВ	LEU A	313	63.375	30.410	39.783	1.00	20.44		Ç
	ATOM	2608	CG	LEU A	313	61,955	30.897	39,555	1.00	16.29	· ·	c
35	ATOM	2609	CD1	LEU A	313	61.499	31,399	40.871	1.00	15.94		c
	ATOM	2610	CD2	LEU A	313	61.959	31.961	38,524	1.00	14.44	·	<u>c</u>
	MOTA	2611	N	GLU A	314	65.953	28.685	39.508	1,00	30,70		N
	ATOM	2612		GLU A		67.353	28.432	39.875	1.00	24.15		c
	ATOM	2513	С	GLU A		68.291	28.149	38.703	1.00	36.34		c
40	ATOM	2614	0_	GLU A	314	69.485	28.047	38.890				Q
	MOTA	2615	СВ	GLU A	314	67.459	27.366	40.947				Ç
	MOTA			GLU A	314			42.141				<u>c</u>
	MOTA	2617	CD	GLU A			26.666					ç
	ATOM			GLU A				43.085				Q
45	ATOM			GLU A				44.125				0
												_

.,1

	ATOM 2620 N ASN A 315 67.778 28.114 37.479 1.00 40.	17 N
	ATOM 2621 CA ASN A 315 68.637 27.802 36.343 1.00 37.	76 C
	ATOM 2622 C ASN A 315 68.383 28.578 35.112 1.00 43.	75C
	ATOM 2623 O ASN A 315 68.591 28.001 34.047 1.00 39.	15 0
5	ATOM 2624 CB ASN A 315 68,425 26,360 35,884 1.00 33.	74c
	ATOM 2625 CG ASN A 315 69.028 25.383 36.801 1.00 53.	18 C
	ATOM 2626 OD1 ASN A 315 68.456 25.087 37.835 1.00 49.	13 0
	ATCM 2627 ND2 ASN A 315 70.239 24.926 36.479 1.00 97.	
	ATOM 2628 N GLN A 316 67.852 29.803 35.197 1.00 49.	
10	ATOM 2629 CA GLN A 316 67.627 30.550 33.957 1.00 77.	
	ATOM 2630 C GLN A 316 68.797 31.448 33.525 1.00100.	
	ATOM 2631 O GLN A 316 69.272 31.387 32.375 1.00 51.	
	ATOM 2632 CB GLN A 316 66,280 31,276 33,902 1.00 75.	
	ATOM 2633 CG GLN A 316 65.683 31.589 35.231 1.00 80.	
15	ATOM 2634 CD GLN A 316 65,233 33,036 35,350 1.00 54	
••	ATOM 2635 OE1 GLN A 316 64.881 33.699 34.367 1.00 46.	
	ATOM 2636 NE2 GLN A 316 65.257 33.538 36.566 1.00 33.	
	TER 2637 GLN A 316	1V
	CONECT 110 111	
20	CONECT 111 110 112	
_,	CONECT 112 111 113 114	
•	CONECT 113 112 118	
	CONECT 114 112 115 116	
	CONECT 115 114	
25	CONECT 116 114 117 118	
	CONFER JULY 1829	
	CONECT 118 113 116	
	CONECT 120 121	
	CONECT 121 120 122	
30	CONECT 122 121 123 124	
	CONECT 123 122 128	
	CONECT 124 122 125 126	
	CONECT 125 124	
	CONECT 126 124 127 128	
35	CONECT 127 126	
	CONECT 128 123 126	
	CONECT 129 117 130 131 132	
	CONECT 130 129	
	CONECT 131 129	
40	CONECT 132 129	-
.•	MASTER 208 0 1 13 10 0 3 6 2636 1 2	2 25
	END	F

5

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.

What is claimed:

5

10

15

20

25

30

- 1. A method for producing ascorbic acid or esters thereof in a microorganism, comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase; and recovering said ascorbic acid or esters thereof.
- 2. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 3. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.
- 4. A method, as claimed in Claim 3, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose: GDR-L-galactose epimerase.
- 5. The method of Claim 3, wherein said genetic modification comprises transformation of said microorganism with a recombinant nucleic acid molecule that expresses said epimerase.
- 6. The method of Claim 5, wherein said epimerase has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 7. The method of Claim 5, wherein said epimerase has a structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

20

- 8. The method of Claim 5, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 9. The method of Claim 5, wherein said epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 10. The method of Claim 9, wherein said substrate binding site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 11. The method of Claim 5, wherein said epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 12. The method of Claim 11, wherein said catalytic site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 25 13. The method of Claim 11, wherein said catalytic site comprises the amino acid residues serine, tyrosine and lysine.
 - 14. The method of Claim 13, wherein tertiary structure positions of said amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.
 - 15. The method of Claim 5, wherein said epimerase binds NADPH.

- 16. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 17. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 75% of non-Xaa residues in SEQ ID NO:11.

5..

10

15

20

- 18. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 90% of non-Xaa residues in SEQ ID NO:11.
- 19. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10.
- 20. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.
- 21. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
 - 23. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 20% identical to a nucleic acid

10

15

sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

- 24. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 25% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.
- 26. The method of Claim 25, wherein said nucleic acid sequence encoding said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
- 27. The method of Claim 25, wherein said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.
- 28. A method, as claimed in Claim 1, wherein said microorganism is selected 20 from the group consisting of bacteria, fungi and microalgae.
 - 29. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant.
 - 30. A method, as claimed in Claim 1, wherein said microorganism is a bacterium.
- 25 31. A method, as claimed in Claim 30, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 32. A method, as claimed in Claim 1, wherein said microorganism is a fungus.
 - 33. A method, as claimed in Claim 32, wherein said microorganism is a yeast.
- 34. A method, as claimed in Claim 33, wherein said yeast is selected from the group consisting of Saccharomyces yeast.

- 35. A method, as claimed in Claim 1, wherein said microorganism is a microalga.
- 36. A method, as claimed in Claim 35, wherein said microalga is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 37. A method, as claimed in Claim 36, wherein said microalga is selected from the genus *Prototheca*.

15

20

- 38. A method, as claimed in Claim 1, wherein said microorganism further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase.
- 39. A method, as claimed in Claim 38, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 40. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 6.0.
 - 41. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 5.5.
 - 42. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 5.0.
 - 43. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited.
 - 44. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase.
 - 45. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.5 g/L of Mg during a cell growth phase.
 - 46. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.2 g/L of Mg during a cell growth phase.

10

15

- 47. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.1 g/L of Mg during a cell growth phase.
- 48. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises a carbon source other than D-mannose.
- 49. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.
- 50. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 51. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
- 52. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 53. A microorganism, as claimed in Claim 50, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

20

25

- 54. A microorganism, as claimed in Claim 50, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
- 55. A microorganism, as claimed in Claim 50, wherein said microorganism is a bacterium.
- 5 56. A microorganism, as claimed in Claim 55, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 57. A microorganism, as claimed in Claim 50, wherein said microorganism is a fungus.
- 58. A microorganism, as claimed in Claim 57, wherein said microorganism is a yeast.
 - 59. A microorganism, as claimed in Claim 58, wherein said yeast is selected from the group consisting of Saccharomyces yeast.
 - 60. A plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 61. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 62. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 63. A plant, as claimed in Claim 60, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-

10

15

20

deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

- 64. A plant, as claimed in Claim 60, wherein said plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase.
- 65. A plant, as claimed in Claim 60, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 66. A plant, as claimed in Claim 60, wherein said plant is a microalga.
- 67. A plant, as claimed in Claim 66, wherein said plant is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 68. A plant, as claimed in Claim 66, wherein said microalga is selected from the genus *Prototheca*.
 - 69. A plant, as claimed in Claim 60, wherein said plant is a higher plant.
- 70. A plant, as claimed in Claim 60, wherein said plant is a consumable higher plant.
- 71. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- A plant for producing ascorbic acid or esters thereof, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEO ID NO:11.

Selected Carbon Flow from Glucose in Prototheca

Genealogy of Selected Isolates

FIG. 3

L/Culture A620 Average Specific AA Formation, mg AA per

Average Specific Epimerase Activity, mU

9/12

Proposed Mechanism for the Conversion of GDP-D-mannose to GDP-L-galactose in *Chlorella pyrenoidosa* (Barber)

Published Mechanism for the Conversion of GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose

SEQUENCE LISTING

<110> Berry, Alan
 Running, Jeffrey A.
 Severson, David K.
 Burlingame, Richard P.

<120> "VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS"

<130> 3161-24-PCT

<140> not yet assigned

<141> 1999-05-25

<150> 60/125,073

<151> 1999-03-17

<150> 60/125,054

<151> 1999-03-18

<150> 60/088,549

<151> 1998-06-08

<160> 15

<170> PatentIn Ver. 2.0

<210> 1

<211> 1583

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (49)..(993)

<400> 1

tagtetttaa titegeageg titttataat tgtgeagagg titegtee atg tet gae 57
Met Ser Asp

1

aaa tot goo aaa ato tto goo gog got cat cot got to got to 105. Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu Val Gly Ser 5 10 15

gcc att gtc cgc aag ctt cag gaa caa ggt ttc acc aat ctc gtt ctt 153
Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn Leu Val Leu
20 25 30 35

aaa	aca	cac	gcc	gag	ctt	gat	ctc	act	cgt	caa	gcc	gat	gtt	gaa	tcc	201
Lys	Thr	His	Ala	Glu	Leu	Asp	Leu	Thr	Arg	Gln	Ala	Asp	Val	Glu	Ser	
				40					45					50		
ttc	ttt	tct	caa	gag	aag	cca	att	tat	qta	atc	cta	gca	qca	act	aaa	249
		Ser			-		-		-			-	-	-		-
			55		,-			60					65		-,-	
			-					•					-			
					~~+					+	~-+					207
-		ggt			-				,			-				297
Val	GIY	Gly	TTE	HIS	Ala	Asn		Thr	туг	Pro	ALA		rne	TTE	GIA	
		70					75					80				
-		ctc	-		_							_				345
Val	Asn	Leu	Gln	Ile	Gln	Thr	Asn	Val	Ile	His	Ser	Ala	Tyr	Glu	His	
	85					90					95					
ggt	gtg	aag	aag	ctt	ctc	ttc	ctt	gga	tca.	tcc	tgc	att	tac	cct	aaa	393
Gly	Val	Lys	Lys	Leu	Leu	Phe	Leu	Gly	Ser	Ser	Cys	Ile	Tyr	Pro	Lys	
100					105					110					115	
ttt	act	cct	cag	cca	att	cct	αaα	tct	act.	tta	tta	aca	αca	t.ca	ctt	441
	~	Pro	_				-		-	-			-	-		
			~	120			Vu	501	125		u			130	200	
				120					120					130		
		- - +	3 5 +	~~~	+	+-+	~~+	~++	~a+	225	250	~c+	~~~	-++	224	490
-		act					-		-	_		-			-	489
GIU	PLO	Thr		GIU	Trp	Tyr	ALA		ALA	гàг	TTE	ALA	-	TIE	Lys	
			135					140					145			
											_					.
		cag														537
Thr	·Cys	Gln	Ala	Tyr	Arg	Ile		His	Gly	Trp	Asp		Ile	Ser	GIA	
		150					155					160				
atg	cct	act	aat	ctc	tat	ggt	cct	aat	gac	aat	ttc	cac	ccg	gag	tct	585
Met	Pro	Thr	Asn	Leu	Tyr	Gly	Pro	Asn	Asp	Asn	Phe	His	Pro	Glu	Ser	
	165					170				•	175					
cat	gtg	ctt	cct	gct	ctt	atg	agg	agg	ttc	cac	gag	gcg	aaa	gtg	aat	633
His	Val	Leu	Pro	Ala	Leu	Met	Arg	Arg	Phe	His	Glu	Ala	Lys	Val	Asn	
180					185		_			190					195	
taa	adc	gga	gga	agt	tat	aat	ata	aaa	tac	aaa	αta	atc	cca	tta	σаа	681
		Gly														
rrþ	Set	OT A	OLY	200	Çys	OLY	4 a T	GIY	205	шyэ	va1	+ 41	110	210	O_Lu	
				200					203					210		
												4		L 1	L. L.	700
	_	ttc	_						_	_	-					729
Gly	Lys	Phe		His	Val	Asp	Asp		Ala	Asp	Ala	Cys		Phe	Leu	
•			215					220					225			

ctg gat cgg ata cag cgg ggg ttg gag cat gtt aac att gga agt ggt Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile Gly Ser Gly	
230 235 240	
caa gaa gtg act att aga gag ttg gct gag ttg gtg aaa gag gtt gt	
Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys Glu Val Val	Ĺ
245 250 255	
ggt ttt gaa ggg aag ctt gga tgg gat tgc act aag cca gat ggc ace	a 873
Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro Asp Gly Th	r .
260 265 270 275	5
ccg agg aaa ctt atg gac agc tca aag ctc gcg tct ttg ggt tgg aca	a 921
Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu Gly Trp Thi	2
280 285 290	
cot and gtt tot ott aga gat ggt otg ago cam act tat gat tgg tar	969
Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr Asp Trp Tyr	
295 300 305	
tig aag aat gtt tgc aac cga taa gttaatggtt tetettetea tatatacae	a 1023
Leu Lys Asn Val Cys Asn Arg	
310 315	
actattgagt ctcaggtaaa tcagcttatc accacattgt gatttaaacc tttctttg	gag 1083
	-
attogagaat tgctttttt tttatcaaaa ttgattcatt tagagataag acttgct	ct 1143
,	2000
	vge 1203
	+- 1060
totottotat acaaattato aaaacagttg taagaagttt caagaaaaac atttgata	itc 1263
tanataatti aaatataatt aaanattaan sanataat aanaataat aanattat	1202
tcactaattt ggctatcctt gcaagttgca acgctaaaat gacaaataat gaattct	gg 1323
Cocastage tiscopando ettetisco starestana escapage etcoeta	1202
cccaatgggc ttacacaagc cttgttaaag atagcgtgaa caaaacgcgg ctcactag	JCC 1363
ctaacctgtc tetetttege ttaecttett ettegtette gttggeteag teacttga	ct 1443
- control of the cont	100 1443
tcacggcccg ctcaagctct gacacgaaac tcatttcaaa ttaatttaat	.aa 1503
	1505
tcacaaaagg ggcaaaagca atcgccggcg attatgcctt ctcctccggt gccggaga	ca 1563
	-cg 1505
gttgtgagec aaccegtteg	1583
jj-j-j uuuuuguuug	1000

<210> 2 <211> 314

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Asp Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu
1 5 10 15

Val Gly Ser Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn 20 25 30

Leu Val Leu Lys Thr His Ala Glu Leu Asp Leu Thr Arg Gln Ala Asp
35 40 45

Val Glu Ser Phe Phe Ser Gln Glu Lys Pro Val Tyr Val Ile Leu Ala
50 55 60

Ala Ala Lys Val Gly Gly Ile His Ala Asn Asn Thr Tyr Pro Ala Asp
65 70 75 80

Phe Ile Gly Val Asn Leu Gln Ile Gln Thr Asn Val Ile His Ser Ala 85 90 95

Tyr Glu His Gly Val Lys Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile 100 105 110

Tyr Pro Lys Phe Ala Pro Gln Pro Ile Pro Glu Ser Ala Leu Leu Thr 115 120 125

Ala Ser Leu Glu Pro Thr Asn Glu Trp Tyr Ala Ile Ala Lys Ile Ala 130 135 140

Gly Ile Lys Thr Cys Gln Ala Tyr Arg Ile Gln His Gly Trp Asp Ala 145 150 155 160

Ile Ser Gly Met Pro Thr Asn Leu Tyr Gly Pro Asn Asp Asn Phe His
165 170 175

Pro Glu Ser His Val Leu Pro Ala Leu Met Arg Arg Phe His Glu Ala 180 185 190

Lys Val Asn Trp Ser Gly Gly Ser Cys Gly Val Gly Tyr Lys Val Val 195 200 205

Pro Leu Glu Gly Lys Phe Leu His Val Asp Asp Leu Ala Asp Ala Cys 210 215 220

Val Phe Leu Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile 225 230 235 240

Gly Ser Gly Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys 250 245 Glu Val Val Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro 265 260 Asp Gly Thr Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu 275 280 285 Gly Trp Thr Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr 295 300 Asp Trp Tyr Leu Lys Asn Val Cys Asn Arg 310 <210> 3 <211> 966 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1)..(966) <400> 3 atg agt aaa caa cga gtt ttt att gct ggt cat cgc ggg atg gtc ggt Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly tee gee ate agg egg cag ete gaa cag ege ggt gat gtg gaa etg gta 96 Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 tta ege ace ege gae gag etg aae etg etg gae age ege gee gtg cat Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 35 45 gat tto ttt god agd gaa ogt att gad dag gtd tat etg gog gog gog Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala Ala aaa gtg ggc ggc att gtt gcc aac aac acc tat ccg gcg gat ttc atc 240 Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 65 70 75 80

tac cag aac atg atg att gag agc aac atc att cac gcc gcg cat cag

Tyr	Gln	Asn	Met	Met 85	Ile	Glu	Ser	Asn	Ile 90	Ile	His	Ala	Ala	His 95	Gln	
				aaa Lys								_			•	336
	_	-		cag Gln	_	_	-	-	-		-	_	_		-	384
_		-		aac Asn				-		-			-			432
	_	_	_	tca Ser			_	_			•	_		-		480
_	_	_		aac Asn 165	-					-				-	•	528
				atc Ile		-	_	-	_	-					-	576
			-	ccg Pro	_			-			-			_	-	624
				cac His												672
		•	-	cat His	-	-		_				-	_	_	-	720
				gtc Val 245		-		-								768
				gcc Ala										-		816
gat	gcc	agc	aaa	ccg	gat	ggc	acq	ccq	cgc	aaa	ctq	ctg	gat	gta	acg	864

WU 99/64618 PCT/US99/11576

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr
275 280 285

cgc ctg cat cag ctt ggc tgg tat cac gaa atc tca ctg gaa gcg ggg 912
Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser L u Glu Ala Gly
290 295 300

ctt gcc agc act tac cag tgg ttc ctt gag aat caa gac cgc ttt cgg 960 Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

ggg taa 966 Gly

<210> 4 <211> 321 <212> PRT <213> Escherichia coli

<400> 4
Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly
1 5 10 15

Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 30

Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His
35 40 45

Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala

Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile
65 70 75 80

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 95

Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 105 110

Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 125

Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 140

Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg S r 145 150 155 160

Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 175

Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 180 185 190

Ala Gln Asn Ala Pro Asp Val Val Val Trp Gly Ser Gly Thr Pro Met 195 200 205

Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ser Ile His Val 210 215 220

Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu 225 230 235 240

Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 255

Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe 260 265 270

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

Gly

<210> 5

<211> 1340

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (75)..(1040)

<400> 5

ctagaattca gcggccgctg aattctagct agaattcagc ggccgctgaa ttctagaacc 60

WO 99/64618 PCT/US99/11576 caggtgcaac tgac atg ggt gaa ccc cag gga tcc atg cgg att cta gtg Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val aca ggg ggc tct ggg ctg gta ggc aaa gcc atc cag aag gtg gta gca Thr Gly Gly Ser Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala 20 15 gat gga gct gga ctt cct gga gag gac tgg gtg ttt gtc tcc tct aaa 206 Asp Gly Ala Gly Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys 30 35 gac gcc gat ctc acg gat aca gca cag acc cgc gcc ctg ttt gag aag 254 Asp Ala Asp Leu Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys 45 50 gto caa coo aca cac gto ato cat ctt gct gca atg gtg ggg ggc ctg 302 Val Gln Pro Thr His Val Ile His Leu Ala Ala Met Val Gly Gly Leu 65 70 ttc cgg aat atc aaa tac aat ttg gac ttc tgg agg aaa aac gtg cac 350 Phe Arg Asn Ile Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His 80 85 atg aac gac aac gtc ctg cac tcg gcc ttt gag gtg ggg gcc cgc aag Met Asn Asp Asn Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys 100 105 95 gtg gtg tcc tgc ctg tcc acc tgt atc ttc cct gac aag acg acc tac 446 Val Val Ser Cys Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr 110 120 ccg ata gat gag acc atg atc cac aat ggg cct ccc cac aac agc aat 494 Pro Ile Asp Glu Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn 130 135 ttt ggg tac tcg tat gcc aag agg atg atc gac gtg cag aac agg gcc Phe Giy Tyr Ser Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala 145 150 155 tac ttc cag cag tac ggc tgc acc ttc acc gct gtc atc ccc acc aac Tyr Phe Gln Gln Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn 170 160 165 gtt ttc ggg ccc cac gac aac ttc aac atc gag gat ggc cac gtg ctg 638

9

180

175

Val Phe Gly Pro His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu

WO 99/64618 PCT	/US99/11 576
cet gge etc ate cae aag gtg cae etg gee aag age age gge teg gee	686
Pro Gly Leu Ile His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala	
190 195 200	
ctq acg gtg tgg ggt aca ggg aat ccg cgg agg cag ttc ata tac tcq	734
Leu Thr Val Trp Gly Thr Gly Asn Pro Arg Arg Gln Phe Ile Tyr Ser	
205 210 215 220	
ctq qac ctq gcc cag ctc ttt atc tgg gtc ctg cgg gag tac aat gaa	782
Leu Asp Leu Ala Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu	702
225 230 235	
gtg gag ccc atc atc ctc tcc gtg ggc gag gaa gat gag gtc tcc atc	
Val Glu Pro Ile Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile 240 245 250	
aag gag gca gcc gag gcg gtg gtg gag gcc atg gac ttc cat ggg gaa	878
Lys Glu Ala Ala Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu	
255 260 265	
gto acc ttt gat aca acc aag tog gat ggg cag ttt aag aag aca goo	926
Val Thr Phe Asp Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala	
270 275 280	
	074
agt aac agc aag ctg agg acc tac ctg ccc gac ttc cgg ttc aca ccc Ser Asn Ser Lys Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro	
285 290 295 300	
ttc aag cag gcg gtg aag gag acc tgt gct tgg ttc act gac aac tac	
Phe Lys Gln Ala Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr 305 310 315	
gag cag gcc cgg aag tga agctggaaga caggatcagg tgccagcgga	1070
Glu Gln Ala Arg Lys	
320	
ccateggetg gcagageeea geggeeaeea ceegteaaee etgeeaggag etgaggge	ac 1130
cacceageaa cetgggeetg cattecatee getetgeage eccaageate tttecagt	gg 1190
	1050
ggcccccatt cacgttggtc ctcagggaaa ccagggtccg gggcaggccc ggcgcttt	gc 1250
tocccacace ageococtge gegtgtocae tetgatectg cateccacte cetgggag	cc 1310
aataaagtgc attttcacag aaaaaaaaa	1340

<210> 6

WU 99/04018 PCT/US99/11576

<211> 321

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val Thr Gly Gly Ser

1 5 10 15

Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu 35 40 45

Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys Val Gln Pro Thr 50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile 65 70 75 80

Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Met Asn Asp Asn 85 95

Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys Val Val Ser Cys
100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125

Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn Phe Gly Tyr Ser

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 160

Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190

His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala Leu Thr Val Trp
195 200 205

Gly Thr Gly Asn Pro Arg Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile

225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu Val Thr Phe Asp 260 265 270

Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala Ser Asn Ser Lys 275 280 285

Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 7

<211> 1017

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1017)

<400> 7

atg aga gtt ctg gtt acc ggt ggt agc ggt tac att gga agt cat acc 48 Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr
1 5 10 15

tgt gtg caa tta ctg caa aac ggt cat gat gtc atc att ctt gat aac 96
Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn
20 25 30

ctc tgt aac agt aag cgc agc gta ctg cct gtt atc gag cgt tta ggc 144 Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly 35 40 45

ggc aaa cat cca acg ttt gtt gaa ggc gat att cgt aac gaa gcg ttg 192 Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

atg acc gag atc ctg cac gat cac gct atc gac acc gtg atc cac ttc 240 Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe

gac ggt cac gtc gtg gcg atg gaa aaa ctg gcg aac aag cca ggc gta

Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val

cac atc tac aac ctc ggc gct ggc gta ggc aac agc gtg ctg gac gtg His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val

245

250

260 265 270

gtt aat gcc ttc agc aaa gcc tgc ggc aaa ccg gtt aat tat cat ttt 864
Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe
275 280 285

gca ccg cgt cgc gag ggc gac ctt ccg gcc tac tgg gcg gac gcc agc 912
Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser
290 295 300

aaa gcc gac cgt gaa ctg aac tgg cgc gta acg cgc aca ctc gat gaa 960 Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

atg gcg cag gac acc tgg cac tgg cag tca cgc cat cca cag gga tat 1008 Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

ccc gat taa 1017 Pro Asp

<210> 8

<211> 338

<212> PRT

<213> Escherichia coli

<400> 8

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr
1 5 10 15

Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu
50 55 60

Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe 65 70 75 80

Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr 85 90 95

Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 105 110

Ala Ala Asn Val Lys Asn Phe Ile Phe Ser Ser Ser Ala Thr Val Tyr
115 120 125

Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr 130 135 140

Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg 165 170 175

Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185 190

Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200 205

Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215 220

Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala
225 230 235 240

Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 250 255

His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val
260 265 270

Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe 275 280 285

Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser 290 295 300

Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

Pro Asp

<210> 9 <211> 1047

<212> DNA <213> Homo sapiens

<220> <221> CDS <222> (1)..(1047)

<400> 9

ISDOCID: <WO 9964618A1 1 >

atg gca gag aag gtg ctg gta aca ggt ggg gct ggc tac att ggc agc 48 Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser 1 5 10 15

cac acg gtg ctg gag ctg ctg gag gct ggc tac ttg cct gtg gtc atc 96

His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile

20 25 30

gat aac ttc cat aat gcc ttc cgt gga ggg ggc tcc ctg cct gag agc 144
Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser
35 40 45

ctg cgg cgg gtc cag gag ctg aca ggc cgc tct gtg gag ttt gag gag 192 Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

atg gac att ttg gac cag gga gcc cta cag cgt ctc ttc aaa aag tac 240 Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

age ttt atg geg gte ate eac ttt geg ggg ete aag gee gtg gge gag 288 Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

tcg gtg cag aag cct ctg gat tat tac aga gtt aac ctg acc ggg acc 336 Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

atc cag ctt ctg gag atc atg aag gcc cac ggg gtg aag aac ctg gtg 384

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val

115 120 125

ttc agc agc tca gcc act gtg tac ggg aac ccc cag tac ctg ccc ctt 432
Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu
130 135 140

gat gag gcc cac ccc acg ggt ggt tgt acc aac cct tac ggc aag tcc 480 Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

wo	99/6	4618													PCT/US	S99/11 57 6
-	*	ttc Phe		gag Glu 165	-	_			gac Asp 170	-	_	_	-	-	-	528
			_	gtg Val	•	-	_							-		576
-			•	att Ile		-	-		_							624
				tcc Ser								-	-	-		672
				gac Asp												720
				gtg Val 245												768
-	_		-	cag Gln	_		-							-		816
		Tyr		gtg Val	_	_	Met	-	_	-	_	Glu	-	-		864
		275					280		-	j.		285				
	-	-		ccg Pro		_	_		-			_		-		912
				gcc Ala									_			960
				ggg Gly 325												1008
				cct Pro					_		-	tga				1047

<210> 10

<211> 348

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser
1 5 10 15

His Thr Val Leu Glu Leu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile
20 25 30

Asp Asn Phe His Asn Ala Phe Arg Gly Gly Ser Leu Pro Glu Ser 35 40 45

Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu
50 55 60

Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val 115 120 125

Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu 130 135 140

Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys

165 170 175

Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 180 185 190

Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 205

Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220

Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 235 240

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 255

Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 265 270

Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 285

Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 320

Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 11

<211> 317

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CONSENSUS

<400> 11

Xaa Xaa Arg Xaa Xaa Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa 1 5 10 15

70

75

80

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa 100 105 110

Xaa Xaa Xaa Pro Xaa Xaa Glu Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa 115 120 125

Xaa Xaa Xaa Xaa Xaa Tyr Xaa Xaa Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140

 Xaa
 X

Xaa Xaa Asn Xaa Xaa Gly Xaa His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Gly Xaa Xaa Arg Xaa 195 200 205

 Xaa
 X

Xaa Thr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315

WO 99/64618	PCT/US99/11576
<210> 12	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 12	
tagaattcag taaacaacga gtttttattg ctgg	34
<210> 13	
<211> 32	
<212> DNA	
<213> Escherichia coli	
<400> 13	
aactegagtt acccccaaag eggtettgat te	32
(010) 14	
<210> 14 <211> 30	
<211> 30 <212> DNA	
<213> Escherichia coli	
<400> 14	
ctggagtcga attcatgagt aaacaacgag	30
<210> 15	
<211> 33	
<212> DNA <213> Escherichia coli	
VEISV ESCHELICUIA COII	•
<400> 15	
aactgcagtt acccccgaaa gcggtcttga ttc	33
	33

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

	IFICATION OF SUBJECT MATTER		Ì
	12P 19/00, 17/04; C12N 1/12, 1/20, 5/00, 5/04		
US CL :43	5/72, 126, 252.1, 252.3, 410, 419 International Patent Classification (IPC) or to both	national classification and IPC	
	S SEARCHED		
	umentation searched (classification system follower	t by classification symbols	
		t by classification symbols)	
U.S. : 43	5/72, 126, 252.1, 252.3, 410, 419		
Degramantation	n searched other than minimum documentation to the	extent that such documents are included in	n the fields searched
Documentation	September Care, dreit animalism section and an are		a die liefen senienes
Electronic date	a base consulted during the international search (ne	ame of data base and where practicable	search terms used)
	INE, EMBASE, BIOSIS, SCISEARCH, BIOTECH		,
Ars, MEDE	CHIL, EMBASE, BIOSIS, SOISEARCH, DIOTECT	ibs, Kils, Wilbs, How Los	
	·		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
1	WO 85/01745 A1 (KRAFT, INC.) 25 A	April 1985 (23.04.85), see the	1-72
	entire document specially ages 4-7.		}
	NIKISHIMI et al. Occupance in		1-72
	Oxidase which is similar to a key		
	biosynthesis in animals, L-Gulonolact		
	Biophys. December 1978, Vol. 191, N		
'	entire article, specially abstract and in	troduction sections.	
A D	WO 99/33995 A1 (ASCORBX LIMIT	ED) 08 July 1000 (08 07 00)	1-72
	see the entire article.	(06.07.99), (CD) 06 July 1999 (06.07.99),	1-12
]] ;	see the entire afficie.		
}			
1 1			·
		j	
[[
[
Further	documents are listed in the continuation of Box C	Soo patent family annex.	
• Specie	al categories of cited documents:	"T" later document published after the inter	national filing data or priority
'A' doou	nent defining the general state of the art which is not considered of particular relevance	date and not in conflict with the applic the principle or theory underlying the	sation but cited to understand
"B" 4arliet	document published on or efter the international filing date	"X" document of particular relevance; the considered novel or cannot be considered	
	nent which may throw doubts on priority claim(s) or which is	when the document is taken alone	
	to establish the publication date of another citation or other l. resson (as specified)	"Y" document of particular relevance; the considered to involve an inventive	
"O" docum means	nent referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in th	documents, such combination
	nent published prior to the internstional filing date but later than nority date claimed	"&" document member of the same patent	femily
Date of the ac	tual completion of the international search	Date of mailing of the international sear	ch report
23 AUGUST	r 1999	2 2 OCT 1999	
Name and ma	iling address of the ISA/US	Authorized officer	JOYCE BRIDGERS
Commissioner Box PCT	r of Patents and Trademarks	MANAMA MONOTURE	PAPI SPECIALIET
Washington, I		MARYAM MONSHIPOURI	Chichycal MATRIX
Facsimile No.	(703) 305-3230	Telephone No. (703) 308-0196	AB for

PCT/US99/1157	4
---------------	---

This inter	
	national report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.:
	because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.:
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	and experience in a mountain from the control of th
3.	Claims Nos.:
LJ	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Dor II /	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
Pie	page See Extra Sheet.
, 	
1. X	claims.
	claims.
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee.
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report co
2.	claims. As all scarchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee.
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search foos were timely paid by the applicant, this international search report or
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search foos were timely paid by the applicant, this international search report or
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search foos were timely paid by the applicant, this international search report or
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search foos were timely paid by the applicant, this international search report or
2. 3.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pay of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report or only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report or only those claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pays of any additional fee. As only some of the required additional search foes were timely paid by the applicant, this international search report or only those claims for which foes were paid, specifically claims Nos.:
	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payr of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report couly those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payr of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report couly those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report
2.	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payr of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report couly those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This international Preliminary Examining Authority has found 2 inventions claimed in the International application covered by the claims indicated below:

Group I, claims 1-59 and 71, drawn to a method of producing ascerbic acid or esters thereof in a microorganism comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc. as well as a microorganism genetically modified for producing ascerbic acid.

Group II, claims 60-70 and 72, drawn to a plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc.

The inventions listed as Groups I-II do not relate to a single inventive concept because they are considered to be two different categories of invention and are not drawn to combination of categories (i.e. categories 1-5), specified in 37 CFR section 1.475(b).

Form PCT/ISA/210 (extra sheet)(July 1992)*

