Nástroje pro pokročilou manipulaci s daty

Pomocí knihovny Pandas

Vojtěch MRÁZEK

Fakulta informačních technologií, Vysoké učení technické v Brně Brno, Czech Republic mrazek@fit.vutbr.cz

Motivace

- Ukázali jsme si, že datová struktura seznamu (list) Pythonu není příliš efektivní.
- Je možné používat NumPy, co ale s daty ve více sloupcích?
- Proč ale využívat jazyk Pythonu?
 - Je efektivní v oblasti získávání dat,
 - rychlá implementace,
 - data se snadno upravují (čistí),
 - známe jej...
- Co potřebujeme umět dělat s daty:
 - vybírat (selection),
 - slučovat a agregovat (grouping),
 - třídit (*filtering*),
 - spojovat (merging, joining, concatenation),
 - měnit a otáčet tabulky (reshaping, pivoting, stacking)

Knihovna Pandas

- Knihovna z roku 2008 (od roku 2011 2014 masivní rozšíření)
- Vychází z implementace data.frame v jazyce R.
- Výkonná (numpy, numexpr, bottleneck, cython).
- Základní prvek pro datovou analýzu v Pythonu.
- Původně určena pro finančnický průmysl.

Vlastnosti

- Komplexní API
 - Series má 417 veřejných metod/atributů
 - Dataframe má 425 veřejných metod/atributů
 - Podpora 21 formátů
- Uživatelská základna
 - 5 10 milionů uživatelů
 - 2,000 přispěvatelů
 - 24 full-time vývojářů
 - 24,567 commitů na GitHub

Original author(s) Wes McKinney

Developer(s) Community

Initial release 11 January 2008; 13 years

ago[citation needed]

Stable release 1.3.0^[1] / 2 July 2021; 3 months

ago

Repository github.com/pandas-dev/pandas ☑

Written in Python, Cython, C

Operating system Cross-platform

Type Technical computing

License New BSD License

Website pandas.pydata.org ☑

Základní struktury

- Série indexovaných dat Series
- Soubor sérií (tabulka) DataFrame

Základní struktury: Series

- Series je struktura:
 - jednodimenzionální
 - homogenní
 - oproti NumPy rozšířená o index
 - obsahuje in-memory operace (podobně jako NumPy)
- Díky homogennímu rozložení je možné bez zvýšené náročnosti exportovat data do NumPy pole (a zpět)
- Z implementačního hlediska se u čísel jedná kombinaci
 - NumPy pole
 - asociativního pole (dict)

Series - Indexování

- Binární operace se vážou indexy
- Indexy mohou být:
 - unikátní => hashovací pole O(1)
 - duplicitní
 - první "B" se spáruje s prvním "B"
 - druhé "B" se spáruje s druhým "B"
 - vede k O(log N) (seřazené), případně O(N) (musíme projít všechny)
 - seřazené / neseřazené => rychlost vyhledávání

Jedním z operandů může být i np.ndarray, v té chvíli se však není možné operaci vázat indexy.

Α	0		В	0		Α	NA
В	1		С	1		В	1
С	2	+	D	2	=	С	3
D	3		Е	3		D	5
Е	4		F	4		Е	7
		•			•	F	NA

Základní struktury: Series – vytváření

```
# z NumPy nd-array / z pole
pd.Series(np.random.rand(6))
#>> 0     0.733545
#>> 1     0.041656
#>> 2     0.829660
#>> 3     0.168460
#>> 4     0.930627
#>> 5     0.958148
#>> dtype: float64
```

```
# Specifikace indexu
pd.Series(np.random.rand(6), index=['a', 'b', 'c', 'd', 'e', 'f'])

#>> a     0.802457

#>> b     0.248572

#>> c     0.141543

#>> d     0.100682

#>> e     0.842970

#>> f     0.176431

#>> dtype: float64
```

Datové typy

Pandas dtype	Python type	NumPy type	Využití
object	str, mixed	string_, unicode_, mixed types	Textové řetězce nebo mix hodnot
int64	int	<pre>int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64</pre>	Celá čísla
float64	float	float_, float16, float32, float64	Čísla s plovoucí desetinnou čárkou
bool	bool	bool_	True/False hodnoty
datetime64	NA	datetime64[ns]	Hodnoty data a času (pro časové řady)
timedelta[ns]	NA	NA	Rozdíl mezi dvěma datetime
category	NA	NA	Konečný seznam (textových) hodnot (enum)

Datový typ category

- Analogie enumerate typu v C/C++.
- Vytváří interní mapování číselných hodnot na textové hodnoty series.astype("category")
- Pokud se hodnoty opakují, tak se jedná o efektivní ukládání (a zpracování).
- Existuje možnost kategorizovat i numerická data pomocí funkce pd.cut(x, bins, ...).

0	"modrá"
1	"červená"
2	"žlutá"

Další poznámky k datovým typům

Konverze Series.astype(dtype) konvertuje datový typ se zachováním hodnot

```
s = pd.Series(["1", 2, 3, 4])
# >> 0   1 (str)
# >> 1   2
# >> 2   3
# >> 3   4
# >> dtype: object
s.astype("int8")
# >> 0   1 (int)
# >> 1   2
# >> 3   4
# >> dtype: int8
```

Analýza paměti Series.memory_usage(deep=True)

Int8, Int16, Int32 a Int64 (i varianty UIntX) umožňují ukládat i NaN.

Základní struktury: DataFrame

- Tabulková reprezentace dat.
- Kombinace více sérií, kde každá série je jeden sloupec.
- Série sdílí jeden index řádků.
- Sloupce jsou také indexované.
- Každý sloupec má stejnou velikost a index, ale může mít různé datové typy.
 - funkce df.info() nám řekne detaily o tabulce a její velikost v paměti.
- Celá řada operací
 - jednoduché přidávání sloupců
 - matematické operace mezi sloupci
 - reorganizování dat
 - vyhledávání v datech
 - řazení dat

Uložení dat – v homogenních blocích podle datového typu

DataFrame

	date	number_of_game	day_of_week	v_name	v_league	v_game_number	h_name	h_league	h_game_number	v_score	h_score	length_outs
0	01871054	0	Thu	CL1	na	1	FW1	na	1	0	2	54.0
1	18710505	0	Fri	BS1	na	1	WS3	na	1	20	18	54.0
2	18710506	0	Sat	CL1	na	2	RC1	na	1	12	4	54.0

IntBlock

	0	1	2	3	4	5
0	01871054	0	1	1	0	2
1	18710505	0	1	1	20	18
2	18710506	0	2	1	12	4

ObjectBlock FloatBlock

		0	1	2	3	4
C)	Thu	CL1	na	FW1	na
1	l	Fri	BS1	na	WS3	na
2	2	Sat	CL1	na	RC1	na

Limitace knihovny Pandas

Práce s daty v paměti (in-memory) => použitelné do stovek tisíc až milionu řádků

***	Sloupce						
řádků	int64; float64; str(10)	2x int64; 4x float64	4x int64; 4x float64	8x int64; 8x float64			
100	7.84 KiB	2.47 KiB	4.81 KiB	9.50 KiB			
1_000	77.27 KiB	23.56 KiB	47.00 KiB	93.88 KiB			
10_000	771.61 KiB	234.50 KiB	468.88 KiB	937.62 KiB			
100_000	7.53 MiB	2.29 MiB	4.58 MiB	9.16 MiB			
1_000_000	75.34 MiB	22.89 MiB	45.78 MiB	91.55 MiB			
10_000_000	753.40 MiB	228.88 MiB	457.76 MiB	915.53 MiB			

DataFrame – vytváření z pole

- Přímočaré vytváření z 2D polí (NumPy i klasický list)
- Typicky specifikujeme názvy sloupců.
- Můžeme určit i indexy, případně se použije výchozí celočíselné indexování

```
pd.DataFrame(np.random.random(size=(6, 4)),
   columns=["col_1", "col_2", "col_3", "col_4"])
         col 1
                  col 2
                            col 3
                                     col 4
#>>
#>> 0
      0.987477
               0.544273 0.914710 0.115794
#>> 1
      0.987215
               0.627147 0.547343 0.871113
      0.552167
               0.042253
                         0.281974
                                  0.521386
#>> 2
               0.370970
      0.374902
                         0.868235 0.187717
#>> 3
#>> 4
      0.668802
               0.183973
                         0.369614
                                  0.554067
#>> 5
      0.002002
               0.742656
                         0.262801
                                  0.759456
```

```
pd.DataFrame(np.random.random(size=(6, 4)),
   columns=["col 1", "col 2", "col 3", "col 4"],
   index=["A", "B", "C", "D", "E", "F"])
         col 1
                  col 2
                            col 3
                                     col 4
#>>
      0.393709
               0.962003 0.172676 0.971163
#>> A
#>> B
      0.491043
                0.910839
                         0.699413
                                  0.145003
               0.596928
#>> C 0.198114
                         0.227296 0.370077
#>> D
     0.197594
               0.974489 0.370042
                                  0.415160
#>> E 0.364902
                0.161861
                         0.991155
                                  0.399498
#>> F 0.586258
                0.925872 0.556381
                                   0.964225
```

DataFrame – vytváření ze sérií

```
s1 = pd.Series(np.random.random(6), name="teplota")
s2 = pd.Series(np.random.random(6), name="vlhkost")
s3 = pd.Series(np.random.random(8), name="oblacnost")
```

- Seznam (list) definuje jednotlivé řádky.
- Pomocí asoc. pole (dict) specifikujeme sloupce (možno použít i list nebo ndarray).
- U sérií dojde k zarovnání indexů.

```
pd.DataFrame({"teplota": s1, "vlhkost": s2, "oblacnost": s3})
       teplota vlhkost oblacnost
#>>
      0.684456 0.652168
#>> 0
                           0.863086
#>> 1
      0.709938 0.634678
                           0.983394
#>> 2
      0.023831 0.744319
                           0.743858
#>> 3
      0.343873 0.540563
                           0.245281
      0.870008 0.530810
#>> 4
                           0.402906
#>> 5
      0.026573 0.375137
                           0.457101
#>> 6
           NaN
                     NaN
                           0.010125
                           0.244775
#>> 7
           NaN
                     NaN
```

DataFrame – vytváření z asoc. polí (dict)

```
data = {f"gid_{g}": {
   f"iid {i}": np.random.randint(0, 10) for i in range(6)
   } for g in range(4) }
#>> {'gid_0': {'iid_0': 2, 'iid_
                               pd.DataFrame.from dict(data)
    'gid 1': {'iid 0': 5, 'iid
                               #>> gid_0 gid_1 gid_2 gid_3
    'gid_2': {'iid_0': 0, 'iid_
                               #>> iid 0
#>> 'gid 3': {'iid 0': 4, 'iid
                               #>> iid 1
                               #>> iid_2 3
 Parametr orient říká, zda hlavní
                               #>> iid 3
 klíče odpovídají sloupcům
                               #>> iid 4
  (defaultní) či řádkovému indexu.
                                                                   4
                               #>> iid 5
```

- Podobné chování u pd.DataFrame.from_tuples , kde musíme navíc specifikovat názvy vnitřních indexů.
- Často neřešíme indexy řádků, stačí nám potom pole asociativních polí (list[dict])

DataFrame – vytváření ze souborů (a ukládání)

- Nativní podpora 21 formátů a různých kompresí.
- Pro řadu formátů je potřeba instalovat další knihovny (pytables pro HDF5, pyarrow pro Parquet a Feather, x1rd pro XLS, kompresní knihovny, ...).
- Pro optimalizaci přístupu k velkým datům je možné použít tzv. columnar datové typy (Parquet, HDF (nekdy), Feather, ...) – nemusíme načítat do paměti všechny sloupce, ale jen ty, které potřebujeme.
- Zápis: pd.read_* a df.to_*, kde * je požadovaný datový typ.
- Celá řada formátově-specifických parametrů viz dokumentace.

Srovnání výkonnosti

Pickle

- nativní podpora v Pythonu
- může být problém ve verzích a zpětnou kompatibilitou (lze specifikovat).

HDF – formát

- **fixed**: Fixní formát pro rychlý zápis a čtení, není možné přidávat data (musí se přepsat celý), není columnar. Defaultní
- table: Tabulkový formát, s horším výkonem, ale je možné přidávat data bez přepsání všeho a je columnar.

Feather

- formát z nástroje Apache Hadoop
- pro krátkodobé ukládání
- rychlejší, columnar.

Parquet

- formát z nástroje Apache Arrow
- pro velká data, dlouhodobé ukládání
- menší, pomalejší zápis
- v budoucnu podpora operací in-memory!
- vhodný pro big-data, columnar.

Popis experimentů:

https://pandas.pydata.org/docs/user_guide/io.html#io-peri

Adresace dat v DataFrame (df)

Zápis df[A], kde typ A rozhoduje o chování:

- str -> Series
 - vrací sloupec
- List[str]->DataFrame
 - vrací skupinu sloupců
- List[bool]->DataFrame
 - vrací vybrané řádky
 - seznam může být list,
 np.ndarray, pd.Series
- slice -> DataFrame
 - indexujeme řádky
 - buď rozsah indexů "row_0":
 "row_7" nebo celočíselný rozsah 0: 6
 - není intuitivní při celočíselných indexech a sloupcích!

	col_0	col_1	col_2	col_3	col_4	col_5	col_6	col_7
row_0	0	1	2	3	4	5	6	7
row_1	8	9	10	11	12	13	14	15
row_2	16	17	18	19	20	21	22	23
row_3	24	25	26	27	28	29	30	31
row_4	32	33	34	35	36	37	38	39
row_5	40	41	42	43	44	45	46	47
row_6	48	49	50	51	52	53	54	55
row_7	56	57	58	59	60	61	62	63
row_3 row_4 row_5 row_6	32 40 48	25 33 41 49	34 42 50	35 43 51	36 44 52	37 45 53	38 46 54	

Poznámka: df[0] nemůžeme u této tabulky napsat, ale df[0:1] ano – proč?

Jaký může být problém při zápisu **df.col_1**?

Adresace dat v DataFrame (df) - řádková

- Pomocí atributu df.loc (dle názvu)
- Zápis df.loc[řádky, sloupce]
 - řádky
 - hodnota (typu indexu řádků)
 - seznam (typu indexu řádků)
 - bool list
 - bool series
 - slice (stejného typu, jako indexy)
 - sloupce
 - hodnota
 - seznam
 - bool list
 - slice (stejného typu, jako hlavičky)
- Existuje podobný zápis .at, který vrací pouze skalární hodnotu a je o kousek rychlejší

- Pomocí atributu df.iloc (podle pořadí)
- Zápis df.iloc[řádky, sloupce]
 - řádky
 - celočíselné pořadí
 - seznam celých čísel
 - bool list
 - bool series
 - slice (stejného typu, jako indexy)
 - sloupce
 - seznam
 - bool list
 - slice (celých čísel)
- Existuje podobný zápis .iat, který vrací pouze skalární hodnotu a je o kousek rychlejší

Adresace dat - shrnutí


```
df["nazev_sloupce"] # -> Series
df[["sloupec1", "sloupec2"]] # -> DataFrame
```


Adresace dat - shrnutí


```
df[df["sloupcec1"] < 42] # -> DataFrame
df.loc["id_radku"] # -> Series pokud neni duplicitni index
df.loc["id_radku"] # -> DataFrame pokud je duplicitni index
```


Adresace dat - shrnutí


```
df.loc[["id_radku", "id_radku2"], ["sloupec1", "sloupec2"]]
df.loc[df["sloupec1"] < 42, ["sloupec2", "sloupec3"]]
df.loc[df["sloupec1"] < 42, "sloupec1" : "sloupec15"]
df.iloc[0:5:2 , [1, 2]]</pre>
```


Pokročilé indexování

- Použití
 - Agregace dat,
 - Rychlé hledání podle více parametrů,
 - Přeskupování tabulek.
- Pomocí funkce df.set_index(columns, inplace=True) můžeme nastavit nový index podle sloupce.
- Sloupec může být jeden, nebo je jich více – tzv. multiindexing.
- Vhodné pro manipulaci s daty, ovšem pro vizualizaci často musíme indexy zrušit pomocí funkce df.reset_index (indexy převedeme na sloupce).

```
df = pd.DataFrame({
    "mesto": ["Brno"]*3+["Praha"]*3+["Ostrava"]*3,
    "typ" : ["prumer", "min", "max"] *3,
    "teplota": [10, 8, 15, 12, 7, 18, 13, 8, 16]})
#>>
         mesto
                   typ teplota
#>> 0
          Brno
                prumer
#>> 1
                   min
          Brno
#>> 2 Brno
                   max
#>> 3 Praha
                             12
                prumer
df.set_index(["mesto", "typ"], inplace=True)
#>>
                    teplota
#>> mesto
            typ
#>> Brno
            prumer
                         10
#>>
            min
#>>
            max
#>> Praha
            prumer
#>>
            min
#>>
                         18
            max
#>> Ostrava prumer
                         13
                          8
#>>
            min
#>>
                         16
            max
```

Pokročilé indexování – adresace prvků

Indexace je pomocí n-tic.

```
df.loc[("Brno", "min")]
#>> teplota 8
#>> Name: (Brno, min), dtype: int64
```

Nemusíme specifikovat vše

```
df.loc["Ostrava"]
#>> teplota
#>> typ
#>> prumer 13
#>> min 8
#>> max 16
```

Poznámka: Hodnota "min" musí být definovaná ve všech položkách prvního indexu!
Pokud není, je vhodnější používat podmínky.

Indexovat můžeme i rozsahem (pozor na zápis)

```
df.loc[(:, "min")]
#>> df.loc[(:, "min")]
#>> ^
#>> SyntaxError: invalid syntax
```

```
df.loc[(slice(None), "min"), :]
#>> teplota
#>> mesto typ
#>> Brno min 8
```

Pokročilé indexování – transformace dat

Transformace jednoho řádkového indexu na sloupcový index se provádí pomocí funkce unstack

```
df
#>>
                     teplota
#>> mesto
          typ
                          10
#>> Brno
            prumer
            min
#>>
#>>
                          15
            max
#>> Praha
                          12
            prumer
#>>
            min
                          18
#>>
            max
#>> Ostrava prumer
                          13
#>>
            min
                          16
#>>
            max
```

```
df.unstack(level="typ")
           teplota
#>>
#>> typ
               max min prumer
#>> mesto
#>> Brno
                15
                          10
#>> Ostrava
                16 8
                          13
                          12
#>> Praha
                18
```

```
Ze sloupcového indexu se nyní stal multiindex!
df.unstack(level="typ")["teplota", "min"]
#>> mesto
               Brno Ostrava Praha
#>> typ
#>> max
                          16
                                 18
#>> min
                 10
                          13
                                 12
#>> prumer
```


Pokročilé indexování – transformace dat

Inverzní proces – přesunutí jednoho sloupcového indexu do řádků se provádí pomocí funkce stack.
df.stack(level="mesto")

df			
#>>	teplota		
#>> mest	o Brno	Ostrava	Praha
#>> typ			
#>> max	15	16	18
#>> min	8	8	7
#>> prun	mer 10	13	12

df.stack(level="mesto") teplota #>> #>> typ mesto #>> max Brno 15 Ostrava 16 #>> #>> Praha 18 #>> min Brno Ostrava #>> #>> Praha #>> prumer Brno 10 Ostrava 13 #>> Praha 12 #>>

Brno Ostrava

Praha

#>> typ #>> max teplota 15 16

df.stack(level=0)

Nepojmenovaný index => sloupec také nemá jméno

Výběr dat podle podmínek

Přes boolean lokátor

```
df[df["mesto"] == "Brno"]
#>> mesto typ teplota
#>> 0 Brno prumer 10
#>> 1 Brno min 8
#>> 2 Brno max 15
```

Alternativní zřetězený zápis <u>query</u>
 (složitější parsování, vhodný pro velká data)

```
df.query("mesto == 'Brno'")
```

Skládání podobně jako v NumPy (&, |, ~ operátory, pozor na závorky!)

```
df[(df["mesto"] == "Brno") & (df["typ"].isin(["min", "max"]))]
#>> mesto typ teplota
#>> 1 Brno min 8
#>> 2 Brno max 15
```


Výběr dat – pokračování

 Další výběr je možný pomocí funkce where (nejméně efektivní) – nahrazení ostatních dat pomocí NaN

```
df.where(df["mesto"] == "Brno")
    mesto
         typ teplota
#>>
         prumer 10.0
#>> 0 Brno
#>> 1 Brno
         min 8.0
#>> 2 Brno max 15.0
#>> 3 NaN
         NaN
               NaN
#>> ...
                   NaN
#>> 8 NaN
            NaN
```

- Kdy vlastně Pandas kopíruje data a kdy vytváří pouze pohled?
 - Nejsme to schopni jednoznačně říct, protože se snaží data co nejvíce využívat mezivýsledky.

```
df["teplota"] # <-- pohled
df["teplota"].astype("f") # <-- kopie

df["teplota"][0] = 2 # SettingWithCopyWarning; data se zapíšou do df
df["teplota"].astype("f")[1] = 2 # zápis bez chyby, výsledky se ztratí</pre>
```


Výběr dat – index vs Boolean

- Výběr pomocí indexu je rychlejší než vytvoření Boolean pole (ideálně O(1) vs O(N))
- Jenže vytváření indexu nás také něco stojí!
- Je potřeba volit rozvážně.

Přidávání dat

Přidávání sloupce je přirozená operace, která nevyžaduje přeskupení dat.

```
df["new_column_1"] = "Hodnota" # broadcasting
df["new_column_2"] = np.random.normal(size=(10)) # musí sedět délka
```

- Přidávání jednoho řádku
 - je nutné ignorovat indexy (append totiž mí připojit i celý DataFrame ekvivalent pd.concat).
 - vytváří nový DataFrame, nejedná se o inplace operátor a nemůžeme jej tak ani vyvolat.

```
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
#>> A B
#>> 0 1 2
#>> 1 3 4
```

```
df = df.append({"A":4, "B": 8}, ignore_index=True)
#>> A B
#>> 0 1 2
#>> 1 3 4
#>> 2 4 8
```


Práce s hodnotami

binární operace (+, -, *, /, ...)

```
df["c"] = df["a"] + df["b"]
df["d"] = df["b"]
df.loc[df["a"] != 0, "d"] = df["b"] / df["a"]
```

získání unikátních hodnot

```
df["mesto"].unique()
#>> array(['Brno', 'Praha'], dtype=object)
```

získání četnosti hodnot

```
df["mesto"].value_counts()
#>> Brno     3
#>> Praha     2
#>> Name: mesto, dtype: int64
```

- statistika Series.{mean, median, describe, sum, ...} více v příští přednášce
- razení DataFrame.{sort_values, n_largest, ...}

Složitější úprava dat pomocí funkce apply

- df
 #>> A B
 #>> 0 1 2
 #>> 1 3 4
- Volání funkce nad všemi daty v sérii či všemi řádky v tabulce (DataFrame).
- Pomalejší, než přímé binární operace, zejména u numerických typů.
- Můžeme volat nad sérií

```
df["C"] = df["A"].apply(lambda x: x**2) # jednodussi df["A"]**2
#>> A B C
#>> 0 1 2 1
#>> 1 3 4 9
```

Nebo nad celým rámcem (nutné specifikovat osu)

```
- axis = 0 (výchozí) - parametrem funkce je sloupec
df.apply(lambda x: x.sum())
#>> A 4; B 6; C 10; D 10; dtype: int64
```

axis = 1 - parametrem funkce je každý samostatný řádek

```
df["D"] = df.apply(lambda x: x["A"] + x["B"], axis=1) # jednodussi df["A"] + df["B"]
#>> A B C D
#>> 0 1 2 1 3
#>> 1 3 4 9 7
```

Složitější úprava dat pomocí funkce eval

- Vhodná pro velmi velká data (režie volání parseru příkazu)
- Podpora omezeného množství <u>operací</u>
- Získání série z existujících

```
df.eval("A+B")
#>> 0     3
#>> 1     7
#>> dtype: int64
```

- Zápis do dalších sloupců
 - vrací zase nový DataFrame!
 - umožňuje více operací

```
df = df.eval("X = A + B")
#>> A B C D X
#>> 0 1 2 1 3 3
#>> 1 3 4 9 7 7
```


Accessor objects

- V závislosti na datovém typu uloženého objektu.
- Rychlý přístup k objektům.

Data Type	Accessor
Datetime, Timedelta, Period	<u>dt</u>
String	<u>str</u>
Categorical	<u>cat</u>
Sparse	<u>sparse</u>

- Tento koncept umožňuje snadné rozšíření Pandas o další datové typy (např. GeoPandas (GIS data), cyberpandas (pro IP adresy), ...)
- V některých případech může být apply rychlejší.

Změna rozměrů tabulky


```
df = pd.DataFrame({"mesto": ["Brno", "Brno", "Praha", "Praha"],
                 "parametr": ["teplota", "vlhkost", "teplota", "vlhkost"],
                 "hodnota": [15.6, 85, 17.3, 89 ] })
#>>
      mesto parametr hodnota
#>> 0 Brno teplota 15.6
#>> 1 Brno vlhkost 85.0
#>> 2 Praha teplota 17.3
#>> 3 Praha vlhkost 89.0
pd.pivot(df, columns="parametr", values="hodnota", index="mesto")
#>> parametr teplota vlhkost
#>> mesto
                                         Funkce pivot_table nám navíc umoňuje zvolit
#>> Brno 15.6 85.0
                                         agregační funkci pro různé hodnoty
#>> Praha 17.3 89.0
```


Změna rozměrů tabulky

```
pd.pivot(df, columns="parametr", values="hodnota", index="mesto")
ValueError: Index contains duplicate entries, cannot reshape
```

```
pd.pivot_table(df, columns="parametr",
   values="hodnota", index="mesto",
   aggfunc="mean")

#>> parametr teplota vlhkost

#>> mesto

#>> Brno 17.8 85.0

#>> Praha 17.3 89.0
```

```
pd.pivot_table(df, columns="parametr",
    values="hodnota", index="mesto",
    aggfunc="max")
#>> parametr teplota vlhkost
#>> mesto
#>> Brno 20.0 85.0
#>> Praha 17.3 89.
```

Opačnou funkcí k pivot je funkce melt


```
df.melt(id_vars="mesto", var_name="parametr", value_name="hodnota")
#>> mesto parametr hodnota
#>> 0 Praha teplota 14.0
#>> 1 Brno teplota 16.0
#>> 2 Praha vlhkost 85.0
#>> 3 Brno vlhkost 89.0
```


Agregace dat

split
(col_1, col_2)

apply mean

combine

Funkce groupby

Funkce agg

Seskupení dat pomocí groupby

Co je návratovou hodnotou funkce groupby?

```
df.groupby(["col_1", "col_2"])
#>> <pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f00373a71c0>
```


Agregace dat po groupby pomocí agg

Použijeme agregační funkci na všechny ostatní sloupce

Nebo můžeme na každý sloupec použít jinou, není potřeba specifikovat všechny sloupce

Agregace dat po groupby pomocí agg

Indexovat můžeme i jedním sloupcem. Kam se ztratil sloupec col_1?

```
df.groupby("col_2").agg("mean")
#>> col_3 col_4
#>> col_2
#>> x 3 13
#>> x B 6 16
#>> y 4 14
df.groupby("col_2").agg("last")
#>> col_1 col_3 col_4
#>> x B 6 16
#>> y B 7 17
```

Funkcí můžeme použít více:

```
df.groupby("col_2").agg([np.mean, "last", "max"])
#>> col_3 col_4
#>> mean last max mean last max
#>> col_2
#>> x 3 6 6 13 16 16
#>> y 4 7 7 14 17 17
```

Pokud nám (multi-)index nesedí, můžeme se ho zbavit

Další zpracování dat po groupby

- Není potřeba pokaždé používat funkci agg.
- Můžeme přistoupit k jednotlivým sloupcům ve split a na ně zavolat libovolnou funkci.
 - Příklad: cumsum, shift, ...
- Funkce se volá separátně na každý rozdělený rámec po split.
- Nativně pak můžeme přiřadit data zpět díky zachování indexů.

```
df
      col_1 col_2 col_3 col_4
#>>
#>> 0
                                10
                 X
#>> 1
                                11
#>> 2
                                12
                 X
#>> 3
                                13
#>> 4
                                14
                 Χ
                                15
#>> 5
#>> 6
                         6
                                16
                 X
                                17
#>> 7
```

```
df["col3_shifted"]=df.groupby("col_1").col_3.shift(-1)
      col 1 col 2 col 3 col 4 col3 shifted
#>>
#>> 0
                              10
                                            1.0
                X
#>> 1
                У
                              11
                                            2.0
#>> 2
                              12
                                            3.0
                X
#>> 3
                              13
                                            NaN
#>> 4
                              14
                                            5.0
                X
                              15
                                            6.0
#>> 5
#>> 6
                              16
                                            7.0
                X
#>> 7
                              17
                                            NaN
```

Spojování datových rámců

- Spojení rámců za sebe
 - může vést k duplicitním řádkovým indexům, pokud není ignore_index=True

pd.concat([df1, df2, df3])

Spojování datových rámců

- Spojení rámců za sebe
 - nebo můžeme vytvořit multiindex

pd.concat(frames, keys=['x', 'y', 'z'])

Spojování datových rámců

Na základě indexů můžeme spojit rámce i ve směru sloupců

```
pd.concat([df1, df4], axis=1, sort=False)
```

Definicí typu spojení na inner zachováme pouze řádky, které jsou v obou rámcích (2 a 3)

	п		
ш	-		
	-		

	D
Œ	D0
1	D1
2	D2
3	D3

	В	D	F
2	B2	D2	F2
3	В3	D3	F3
6	B6	D6	F6
7	В7	D7	F7

df4

	Α	В	С	D	В	D	F
0	A0	BO	0	D0	NaN	NaN	NaN
1	A1	B1	C1	D1	NaN	NaN	NaN
2	A2	B2	C2	D2	B2	D2	F2
3	АЗ	В3	В	D3	В3	D3	F3
6	NaN	NaN	NaN	NaN	В6	D6	F6
7	NaN	NaN	NaN	NaN	В7	D7	F7

Result

Operace obecného spojení datových rámců

- Nespojujeme jenom podle indexů, ale podle sloupců (tzv. spojovací klíč).
- Spojovacích klíčů může být více, na obou stranách stejný index.
- Musí být definovaný atribut on (v obou rámcích) nebo *_on nebo *_index pro levý i pravý rámec.
- V případě duplicitních sloupců se přidají oba sloupce a k názvu se doplní sufix
 - často používáme suffixes=("", "_y")
- Můžeme specifikovat atribut validate (string, default None)
 - one_to_one nebo 1:1 testuje, zda je spojovací klíč unikátní na obou stranách.
 - one_to_many nebo 1:m testuje, zda je spojovací klíč unikátní na levé straně.
 - many_to_one nebo m:1 testuje, zda je spojovací klíč unikátní na pravé straně.
 - many to many nebo m:m nic netestuje.

Ukázka dat z CHMI

Z historických teplot v Brně-Tuřanech určíme různé ukazatele

Zadání je k dispozici v podpůrných souborech jako Jupyter notebook. Pro otestování správného pochopení problematiky je doporučeno úkoly reprodukovat.

Optimalizace časových nároků

Použití dalších nástrojů jako Cython nebo Numba Funkce eval vs apply

Zřetězené příkazy

```
(df[['fl_date', 'tail_num', 'dep_time', 'dep_delay']]
    .dropna()
    .assign(hour=lambda x: x.dep_time.dt.hour)
    .query('5 < dep_delay < 600'))</pre>
```


Škálování pro velké datasety

- Načítat jen nezbytné množství dat (pouze sloupce, které potřebujeme viz columnar datové formáty)
- Používat efektivní datové typy (category, bitová šířka, omezení PyObject).
- Rozdělení dat do skupin (chunks), se kterými pracujeme samostatně.
- Využití dalších paralelních knihoven např. <u>Dask</u>, který má kompatibilní API.

	Peak memory use	Wallclock time	CPU time
Pandas (chunked)	26 MiB	5.9 seconds	6.1 seconds
Pandas (naive)	334 MiB	6.7 seconds	6.9 seconds
Dask	88 MiB	3.9 seconds	6.5 seconds

But first, it's worth considering not using pandas. Pandas isn't the right tool for all situations. If you're working with very large datasets and a tool like PostgreSQL fits your needs, then you should probably be using that. Assuming you want or need the expressiveness and power of pandas, let's carry on

Další zdroje

- Základní příkazy
 https://pandas.pydata.org/docs/getting_started/intro_tutorials/index.html
- Přechod z SQL
- Komplexní uživatelská příručka https://pandas.pydata.org/docs/user_guide/index.html
- Cheatsheet https://pandas.pydata.org/Pandas Cheat Sheet.pdf

