GLUCOSE MONITORING DEVICE

Peter Baccarella, Amy Leong, Catherine Chen, Vincent Wang, Jonathan Lam, Emily Yasharpour

Objective / Background

Colorimetric test strips and an accompanying app for diabetics in Kampala within constraints of <u>cost</u>, <u>manufacturability</u>, and <u>user-friendliness</u>

Background

1 4.2% or 63,297

Diabetic Prevalence and Diagnosed Diabetic Population

\$287.62

Average Household Income

Design Criteria

- Cost
- Functionality
- Usability
- Locally reproducible

Glucose Testing Process

Blood is placed on a strip and changes color based on the concentration of the glucose.

Methodology/Solution

- Colorimetric test strips with emphasis on:
 - □ Different Enzymes & Indicators
 - Improved Image Processing
 - RBC Separation

Figure 1A: Duncker Diagram (Present State)

Figure 1B: Duncker Diagram (Desired State)

Decision Matrix

	Cost	Portability	Performance	Ease of Use	Sustainability	Locally reproducible	
Weighting	100	50	100	85	60	70	Total

Design Alternatives

Bottled Solution	9 900	9 450	9 900	7 595	6 360	5 475	3680
Community glucometer	5 500	0	9 900	8 680	6 360	4 280	2720
Carbon nanotube tattoo	1 100	9 450	9 900	8 680	8 480	0	2610 9

Proposed Design

Indicators:

■ Iodine-starch (control), Redox, Acid/base

Primary chemical reaction:

■ Glucose oxidase, Yeast

Software:

- Control (eliminate RBC color and lighting)
- Statistical analyses

Proposed Design

Other improvements: Models:

- Glass Fiber Mesh
- Different Papers

- Glucose solutions
- Marker and paper optical calibration

Occam's Razor

- Reject Glucometer for Test Strips
- Reject Centrifuge for Glass Fiber Mesh

Detailed Approach

- Create standardized glucose solutions
- Systematically test all pairs of reagents and indicators
 - Test an indicator with each indicator, at same glucose concentration, for every glucose concentration
 - Repeat for every glucose concentration
- Take picture for future analysis

Do once for every reagent at every glucose concentration, take picture

Cost Analysis

Item	Cost of Item
Chemicals/Materials	<\$0.01 per strip
Software and Information Distribution	\$0

Figure 2.2A: GANTT Chart

Role	People
Leaders / Primary spokespeople	Vincent, Emily, Peter
Note-taking	Amy
Designing, modeling, prototyping (chemicals)	Catherine, Emily, Peter, Vincent
Designing, modeling, prototyping (data analysis and software)	Amy, Jon
Webmaster	Jon, Peter
Technical Report	Jon, Vincent, Catherine, Amy

Figure 2.2B: Primary Responsibility Chart

Challenges

- Finding a <u>non-toxic</u>, <u>low-cost</u>, <u>locally</u> <u>sustainable</u> alternative chemical indicator
- Accurately and reliably analyzing the color to determine blood glucose concentration

References

Ofek, Yuval et al. "The Colorimetric Test Strip." *G Cubed Solutions*, Wix.com, 2017, https://minhtyyufa.wixsite.com/gcubedsolutions/the-strip. Accessed 1 Oct 2018.

Gebel, Erika. "Anatomy of a Test Strip." Diabetes Forecast, July 2012, www.diabetesforecast.org/2012/jul/anatomy-of-a-test-strip.html. Accessed 1 Oct. 2018.

"Glucometer Test Kit." How Products Are Made, www.madehow.com/Volume-7/GlucometerTest-Kit.html. Accessed 1 Oct. 2018.

Jensen, Sarah. "How Do Glucometers Work?" Mit Engineering, 18 Oct. 2011, engineering.mit.edu/engage/ask-an-engineer/how-do-glucometers-work/. Accessed 1 Oct. 2018.

Katz, Laurence B., Mike Grady, Steven J. Setford, and Brian L. Levy. "OneTouch Blood Glucose Monitoring Systems - Impact of New Technologies on the Efficacy of Self-monitoring Blood Glucose." (n.d.): n. pag. Print.