

Основы сетевых технологий. Часть 1: Основы передачи и коммутации данных в компьютерных сетях

Сертификационный курс

Лекция 5

Лекция 5

Канальный уровень модели OSI

Лекция 5. Канальный уровень модели OSI

□ Методы коммутации;
□ Сетевые протоколы и методы коммутации;
□ Протоколы канального уровня;
□ Стандарты IEEE 802;
□ Технологии локальных сетей;
□ Технология Ethernet;
□ Физический уровень технологии Ethernet;
□ Энергоэффективный Ethernet;
□ Сменные интерфейсные модули.

Канальный уровень модели OSI

Канальный	ypo	вень	(Data	link	layer)	обе	еспечивает	перед	ачу	данных,
полученных	ОТ	выше	лежац	цего	сетево	ОГО	уровня,	через	физ	зический
уровень межд	ду н	епосре	дствен	но п	одклю	ченн	ными устро	ойствам	1И.	

Канальный уровень выполняет следующие функции:

- управление доступом к среде передачи;
- управление потоком данных;
- физическая (аппаратная) адресация;
- формирование кадров;
- достоверность принимаемых данных;
- адресация протокола верхнего уровня.

□ На канальном уровне работают следующие устройства:

- > сетевые адаптеры;
- медиаконвертеры с интеллектуальными функциями;
- коммутаторы;
- точки доступа.

- Коммутация (switching) определение направления передачи данных.
- Базовые принципы коммутации в компьютерных сетях:
 - коммутация каналов (circuit switching);
 - коммутация пакетов (packet switching).

Коммутация каналов основана на *синхронном TDM*. Она предоставляет каждой паре взаимодействующих абонентов последовательность каналов (логических) для монопольного использования.

- □ В сетях с коммутацией каналов абонентам могут быть предоставлены коммутируемые и некоммутируемые каналы.
- □ Коммутируемые или временные каналы передача данных возможна только после установления соединения между взаимодействующими системами.
 - > Достоинства:
 - ✓ небольшая стоимость.
 - > Недостатки:
 - ✓ большое время ожидания соединения;
 - ✓ возможность блокировки «занято».
- □ Некоммутируемые или выделенные каналы доступны для передачи данных на длительное время за счет постоянно существующего соединения с заданными характеристиками.
 - > Достоинства:
 - ✓ постоянно готовы к передачи данных.
 - Недостатки:
 - ✓ стоимость выше стоимости коммутируемых каналов.

Коммутация каналов

> Недостатки:

✓ неэффективное использование полосы пропускания.

- □ Технология **коммутации пакетов** основана на использовании *асинхронного* или *статистического TDM*.
- □ Она позволяет конечным системам передавать данные через сеть без монопольного использования каналов, т.е. ни один из каналов не занимается парой абонентских систем даже на время сеанса связи.

- □ Устройства связи пакетной сети (коммутаторы, маршрутизаторы) отличаются от устройств сети с коммутацией каналов тем, что имеют внутреннюю буферную память. Для предотвращения переполнения буферов коммутаторов или маршрутизаторов используются специальные методы управления потоком (flow control).
- □ В современных устройствах используются следующие методь коммутации, определяющие их поведение при получении пакета:
 - коммутация с промежуточным хранением (store-and-forward);
 - коммутация без буферизации (cut-through).

Коммутация пакетов основана на таблицах, которые хранятся в памяти и содержат информацию, позволяющую определить путь до места назначения пакета.

- □ В зависимости от используемой технологии можно выделить два типа таблиц:
 - > таблицы коммутации (Forwarding DataBase, FDB);
 - > таблицы маршрутизации (Routing table).

Сетевые протоколы и методы коммутации

- □ Сетевые протоколы делятся на две категории по типу установления соединения:
 - протоколы с установлением соединения (Connection-Oriented Protocol): эти протоколы требуют установления логического соединения между двумя устройствами до начала передачи данных;
 - протоколы без установления соединения (Connectionless Protocol): эти протоколы не устанавливают соединение между устройствами. Как только у устройства появляются данные для передачи, оно сразу начинает их передавать.

Протоколы канального уровня

Протоколы канального уровня определяют набор правил, позволяющих упорядочивать взаимодействие узлов, подключенных к одному сегменту сети.

- □ Протоколы канального уровня можно разделить на две группы:
 - протоколы для соединений типа «точка-точка»;
 - протоколы для сетей сложных топологий, к которым относятся локальные сети.
- □ Блок данных канального уровня **кадр** (frame).
- □ Структура заголовка кадра зависит от набора задач, которые решает данный конкретный протокол.

Поле, Адрес определяющее отправителя и начало кадра	Информация о протоколе сетевого уровня	Данные (Data)	Контрольная сумма	Поле, определяющее конец кадра
---	--	---------------	----------------------	--------------------------------------

□ Характеристика, используемая для определения максимального размера блока данных (в байтах), который может быть передан на канальном уровне, называется **MTU** (Maximum Transfer Unit, максимальная единица передачи данных).

D-Link°

Стандарты IEEE 802

- □ За разработку каждого стандарта отвечает отдельная рабочая группа комитета. В настоящее время в комитете IEEE 802 активными являются следующие группы:
 - > 802.1 Higher Layer LAN Protocols
 - > 802.3 Ethernet
 - > 802.11 Wireless LAN
 - > 802.15 Wireless Personal Area Network (WPAN)
 - > 802.16 Broadband Wireless Access
 - 802.18 Radio Regulatory TAG
 - > 802.19 Wireless Coexistence
 - > 802.21 Media Independent Handover Services
 - > 802.22 Wireless Regional Area Networks
 - SG ECSG Smart Grid Executive Committee Study Group
- □ Распущены группы:
 - ➤ 802.2 Logical Link Control
 - > 802.4 Token Bus
 - > 802.5 Token Ring

Стандарты IEEE 802

□ Семейство стандартов IEEE 802 включает стандарты для сетей Ethernet, Token Ring, беспроводных сетей Wi-Fi, управления, безопасности, создания мостовых соединений.

Стандарты IEEE 802

- □ В спецификации IEEE 802 канальный уровень модели OSI был разбит на два подуровня:
 - > управление логическим каналом (Logical Link Control, LLC);
 - > управление доступом к среде передачи (Media Access Control, MAC).
- □ **Подуровень LLC** обеспечивает взаимодействие с сетевым уровнем и предоставляет сервисы с установлением и без установления соединения. Этот подуровень не зависит от метода доступа к среде передачи.
- □ Подуровень МАС описывает протоколы, реализующие различные методы доступа к среде передачи, отвечает за физическую адресацию, формирование кадров и обнаружение ошибок.
- □ Физический уровень определяет электрические/оптические спецификации, механические интерфейсы, кодирование и синхронизацию битов и зависит от протокола подуровня МАС.

Протокол LLC

□ Протокол LLC:

- ▶ определен стандартом IEEE 802.2;
- занимает промежуточное положение между протоколами сетевого уровня и протоколами подуровня МАС;
- предоставляет сервисы протоколам сетевого уровня и взаимодействует с множеством протоколов МАС-подуровня (семейством протоколов Ethernet, Wi-Fi и др.);
- предоставляет сервисы с установлением и без установления соединения;
- участвует в процессе инкапсуляции.
- □ Протокол LLC помещает пакет сетевого уровня в свой кадр и добавляет адресную информацию спецификации IEEE 802.2:
 - адрес точки входа сервиса назначения (Destination Service Access Point, DSAP)
 указывает протокол верхнего уровня, которому надо передать данные для обработки;
 - > адрес точки входа сервиса источника (Source Service Access Point, SSAP) указывает протокол верхнего уровня, данные которого пересылаются в кадре.

Протокол LLC

- □ В качестве примера можно привести следующие значения SSAP:
 - 0x42 Spanning Tree Protocol (IEEE 802.1D);
 - > 0xAA SNAP;
 - OxE0 Novell;
 - \rightarrow 0x06 IP.
- □ Кадр LLC помещается в кадр MAC-подуровня, при этом флаги удаляются.

Флаг 01111110	Адрес точки входа сервиса назначения (DSAP)	Адрес точки входа сервиса назначения (SSAP)	Поле управления (Control)	Данные (Data)	Флаг 01111110
------------------	---	---	------------------------------	---------------	------------------

- □ Реализация протокола LLC зависит от конкретного стека протоколов. В современных сетях функции протокола LLC обычно выполняются протоколами транспортного уровня, такими как TCP и UDP.
- □ В настоящее время протокол LLC служит для идентификации протоколов верхнего уровня, пакеты которых пересылаются с помощью кадров протоколов МАС-подуровня семейства IEEE 802.

Подуровень МАС

□ Подуровень МАС:

- описывает протоколы, реализующие различные методы доступа к разделяемой среде;
- отвечает за физическую адресацию;
- > отвечает за формирование кадров и обнаружение ошибок.
- □ На **МАС-подуровне** реализованы следующие протоколы локальных и городских сетей, которые получили широкое распространение:
 - ▶ 802.3 семейство протоколов Ethernet;
 - > 802.11 семейство протоколов беспроводных локальных сетей;
 - № 802.15 беспроводные персональные сети (WPAN), Bluetooth;
 - ▶ 802.16 беспроводная городская сеть, WiMAX.
- □ Каждый протокол LAN/MAN семейства IEEE 802 содержит в кадре заголовок подуровня LLC.

□ Стандарты IEEE определяют МАС-адрес, длиной 48 бит (6 октетов).

1	1	22	24
I/G	U/L	Уникальный идентификатор организации (OUI)	Назначается производителем оборудования

0: глобально администрируемый адрес 1: локально администрируемый адрес

0: индивидуальный адрес

1: групповой адрес

□ Существует два вида групповых адресов:

- многоадресный или групповой (multicast) адрес, ассоциированный с группой узлов сети;
- ▶ широковещательный (broadcast) адрес, ассоциированный со всеми узлами сети. Его значение 0xFF-FF-FF-FF-FF.

Передача с использованием индивидуального МАС-адреса

Передача с использованием широковещательного МАС-адреса

Передача с использованием группового МАС-адреса

D-Link

Сетевые адаптеры

Для подключения компьютера к сети и взаимодействия с другими сетевыми устройствами используется **сетевой адаптер** (Network Interface Card, NIC).

- По конструкторской реализации сетевые адаптеры делятся на:
 - > интегрированные в материнскую плату компьютера или ноутбука;
 - внутренние, представляющие собой отдельную печатную плату, устанавливаемую в слот PCI, PCI Express, PCIe компьютера;
 - ▶ внешние, подключающиеся к компьютеру или ноутбуку через интерфейс USB или CardBus (PCMCIA).

Сетевые адаптеры

Для того чтобы узнать MAC-адрес сетевого адаптера компьютера в ОС Windows используется следующая команда:

ipconfig /all

Технология Token Ring

- Эта технология канального уровня была разработана компанией IBM в начале 1980 гг., а затем стандартизирована IEEE в проекте 802, как спецификация IEEE 802.5.
- Логически сеть Token Ring представляет собой кольцо, а физически звезду.
- Для объединения компьютеров в сетях Token Ring используются концентраторы устройства многостанционного доступа (MSAU, MultiStation Access Unit).
- Для получения доступа к среде используется метод передачи маркера (token).

Технология Token Ring

- □ Максимальная скорость передачи 4 и 16 Мбит/с;
- □ Среда передачи экранированная и неэкранированная витая пара;
- □ Максимальная длина сегмента:
 - ▶ UTP 150 м (для 4 Мбит/с) или 60 м (для 16 Мбит/с);
 - > STP − 300 м (для 4 Мбит/с) или 100 м (для 16 Мбит/с).
- □ Максимальное количество станций в сегменте:
 - ▶ UTP 72 станции;
 - > STP − 260 станций.

□ Достоинства:

- простота расчета задержки передачи между любыми двумя устройствами;
- отсутствие коллизий;

□ Недостатки:

- высокая стоимость, низкая совместимость оборудования;
- невысокая скорость передачи;

Технология FDDI

□ Стандарт FDDI (Fiber Distributed Data Interface – волоконно-оптический интерфейс передачи данных), разработанный в середине 80-х годов комитетом X3T9.5 ANSI.

Стек FDDI

	802.2 LLC	
Канальный уровень	FDDI MAC	
*	FDDI PHY	FDDI SMT
Физический уровень	FDDI PMD	

Технология FDDI

- □ Сеть FDDI строится на основе двух колец, которые образуют основной и резервный пути передачи данных между узлами сети.
- □ Основными компонентами сети FDDI являются станции и концентраторы.
- □ Для подключения станций и концентраторов к сети может быть использован один из двух способов:
 - > Одиночное подключение (Single Attachment, SA) подключение только к первичному кольцу.

> Двойное подключение (Dual Attachment, DA) – одновременное подключение к первичному и вторичному кольцам.

□ Достоинства:

> высокая отказоустойчивость.

□ Недостатки:

двойной расход кабеля.

Технология FDDI

- □ Максимальная скорость передачи 100 Мбит/с;
 □ Среда передачи одномодовый и многомодовый волоконнооптический кабель;
 □ Максимальная длина сегмента:

 > многомодовый кабель 2 км;
 > одномодовый кабель 20 км.

 □ Максимальное количество станций в кольце 500;
 - □ Максимальная протяженность сети 100 км.

D-Link°

Технология Ethernet

Технология Ethernet является самой распространенной на сегодняшний день технологией локальных сетей благодаря своей простоте и универсальности.

- ▶ В 1985 г. опубликован стандарт Ethernet (IEEE 802.3).
- В 1995 г. опубликован стандарт Fast Ethernet (IEEE 802.3u).
- В 1998 г. опубликован стандарт Gigabit Ethernet (IEEE 802.3z и 802.3ab).
- В 2002 г. опубликован стандарт 10 Gigabit Ethernet (IEEE 802.3ae).
- В 2010 г. опубликован стандарт 40 и 100 Gigabit Ethernet (IEEE 802.3ba).

Форматы кадров Ethernet

Стандарт IEEE 802.3-2012 определяет следующую структуру кадра, обязательную для всех МАС-реализаций.

7 байт	1 байт	6 байт	6 байт	2 байта	46 – 1500, 1504 или 1982 байта		4 байта	
Preamble	SFP	Destination Address	Source Address	Length/Type	Data	PAD	FCS	Extension
				64-2000 бай	іта			

- Минимальная длина кадра Ethernet 64 байта;
- 🛚 Максимальная длина:
- ➤ стандартного кадра Ethernet 1518 байт;
- ▶ кадра Ethernet с тегом стандарта IEEE 802.1Q 1522 байта;
- ▶ расширенного кадра Ethernet 2000 байт.

Форматы кадров Ethernet

- □ На практике существует четыре формата кадров Ethernet:
- кадр Ethernet II (Ethernet версии 2 или Ethernet DIX);
- ➤ кадр IEEE 802.3 /LLC;
- кадр Ethernet SNAP;
- кадр Raw 802.3 (Novell 802.3).
- □ Разные типы кадра имеют некоторые отличия в формате, но могут сосуществовать в одной физической среде.
- □ Наибольшее распространение получил кадр Ethernet II.

Кадр IEEE 802.3/LLC

- □ Заголовок кадра IEEE 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах IEEE 802.3 и IEEE 802.2.
- □ Кадр IEEE 802.3 является кадром MAC-подуровня, поэтому в соответствии со стандартом IEEE 802.2 в его поле данных вкладывается кадр подуровня LLC с удаленными флагами начала и конца кадра.

7 байт	1 байт	<mark>6 байт</mark>	6 байт	2 байта	46 – 150	00 байт	4 байта
Preamble	SFP	Destination Address	Source Address	Length	Data	PAD	FCS
				A service of the serv			
				50.			
		Значение <=0х05	БС (1500 дес.)	1 байт 1	байт 1	или 2 байта	

Кадр Ethernet II

- □ Кадр Ethernet II отличается от кадра IEEE 802.3/LLC тем, что после поля Source Address (адрес источника) следует поле Туре (тип), которое используется для указания типа протокола верхнего уровня, вложившего пакет в поле данных кадра.
- □ Поле Length в кадре отсутствует.
- □ Для правильной интерпретации, значения в поле Туре больше или равны 0x0600 (1536 в десятичной системе счисления).

7 байт	1 байт	6 <mark>байт</mark>	6 байт 6 байт		6 байт 2 <mark>б</mark> ай ⁻		a 46 – 150	00 байт	4 байта
Preamble	SFP	Destination Address	Source Address	Туре	Data	PAD	FCS		
				7					
		Значение	>=0x0600 (1536дес).	IP v4 0x0800				
		то кадр Eth		7,	IPv60x86DD				

ARP 0x0806 802.1Q 0x8100

Кадр Ethernet SNAP

- □ Кадр Ethernet SNAP является расширением кадра IEEE 802.3/LLC за счет введения дополнительного заголовка протокола SNAP, состоящего из двух полей:
 - > OUI (Organizational Unique Identifier) идентификатор организации, которая контролирует коды в поле Туре;
 - ➤ Туре (тип) аналогично полю Туре кадра Ethernet II.
- □ Так как SNAP представляет собой протокол, вложенный в протокол LLC, то в полях DSAP и SSAP записывается код 0хAA, отведенный для протокола SNAP.

7 байт	1 байт	6 байт	6 байт Source Address		6 байт 2 байта		46 – 1500 байт		
Preamble	SFP	Destination Address			Length	Data	PAD	FCS	
7/	5 58					53	**********	**********	
			1 байт	1 байт	1 6a	йт	3 байта	2 байта	
			DSAP	SSAP	Con	trol	OUI	Туре	

Кадр Raw 802.3 (Novell 802.3)

- □ Кадр Raw 802.3 (Novell 802.3) представляет собой внутреннюю модификацию IEEE 802.3 без заголовка LLC.
- □ Компания Novell долгое время не использовала поле идентификации протокола верхнего уровня в своей ОС Novell Netware, т.к. в сетях Novell единственным протоколом сетевого уровня был IPX.
- □ В настоящее время Novell использует кадр IEEE 802.3/ LLC.

7 байт	1 байт	6 байт	6 байт	2 байта	46 – 15	46 – 1500 байт	
Preamble	SFP	Destination Address	Source Address	Length	Data	PAD	FCS

Процедура распознавания формата кадров

Jumbo-фреймы

- □ В компьютерных сетях **Jumbo-фреймы** (Jumbo-frame) это кадры Ethernet, размер поля данных которых может достигать 10 000 байт. □ Jumbo-фреймы не являются частью стандарта IEEE 802.3. □ Использование Jumbo-фреймов позволяет передавать больше информации с меньшими усилиями, т.к. уменьшается нагрузка на центральный процессор и повышается пропускная способность канала связи, за счет уменьшения количества передаваемых кадров и сокращения служебной информации, добавляемой к ним.
- □ Jumbo-фреймы поддерживают многие модели коммутаторов и сетевых адаптеров Fast/Gigabit Ethernet/10 Gigabit Ethernet.

Дуплексный и полудуплексный режимы работы

- □ Стандарт IEEE 802.3-2012 определяет два режима работы МАС-подуровня:
 - полудуплексный (half-duplex) использует метод CSMA/CD для доступа узлов к разделяемой среде. Узел может только принимать или передавать данные в один момент времени, при условии получения доступа к среде передачи;
 - > полнодуплексный (full-duplex) позволяет паре узлов, имеющих соединение «точка-точка», одновременно принимать и передавать данные. Для этого каждый узел должен быть подключен к выделенному порту коммутатора.

Метод доступа CSMA/CD

- □ Метод множественного доступа с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access With Collision Detection, CSMA/CD) используется для организации доступа узлов к разделяемой среде передачи.
- □ Метод CSMA/CD основан на конкуренции (contention) узлов за право доступа к сети и включает следующие процедуры:
 - > контроль несущей;
 - обнаружение коллизий.

Узел A хочет начать передачу данных узлу Рехнологическая пауза (Inter Packet Gap)

Метод доступа CSMA/CD

Обнаружение коллизий

Если 16 последовательных попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить кадр.

Домен коллизий

- □ В полудуплексной технологии Ethernet независимо от стандарта физического уровня существует понятие **домена коллизий**.
- □ Домен коллизий (collision domain) это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети она возникла.
- □ Сеть Ethernet, построенная на повторителях и концентраторах, образует один домен коллизий.

Коммутируемая сеть Ethernet

□ Коммутируемая сеть Ethernet (Ethernet switched network) – сеть Ethernet, сегменты которой соединены мостами или коммутаторами.

Работа в полнодуплексном режиме

- □ Обеспечивает возможность одновременного приема и передачи информации, т.к. к среде передачи подключены только два устройства.
- □ Прием и передача ведутся по двум разным физическим каналам «точка-точка».

Достоинства:

- исключается возникновение коллизий в среде передачи;
- > увеличивается время, доступное для передачи данных;
- > удваивается полезная полоса пропускания канала;
- > каждый канал обеспечивает передачу на полной скорости;
- исчезло ограничение на общую длину сети и количество устройств в ней.
- □ Спецификации 10, 40 и 100 Gigabit Ethernet поддерживают только полнодуплексный режим работы.

Управление потоком в полудуплексном и полнодуплексном режимах

□ *Механизм управления потоком (Flow Control*) позволяет предотвратить потерю данных в случае переполнения буфера принимающего устройства.

- □ Для управления потоком в *полудуплексном режиме* обычно используется **метод «обратного давления»** (backpressure).
- □ Для управления потоком в п*олнодуплексном режиме* используется **стандарт IEEE 802.3x**.

Управление потоком в полудуплексном режиме

узел, чтобы приостановить его активность.

⊔ Метод	«(обратного	давлени	Я» С(СТОИТ	В	CO3L	цании	иску	сственн	ЫΧ
коллизий	В	сегменте,	который	очень	инте	энси	1ВНО	посы	лает	кадры	В
коммутатој	p.										
□ Коммута	ато	р отпр	авляет	иск\	сствен	но		созда	нную	ia	m-

последовательность, отправляемую через тот порт, к которому подключен

Управление потоком в полнодуплексном режиме

□ Согласно **стандарту IEEE 802.3х** управление потоком осуществляется между МАС-подуровнями с помощью специального кадра-паузы, который автоматически формируется МАС-подуровнем принимающего устройства.

Преамбула	Начальный ограничитель кадра	Адрес назначения	Адрес источника	Длина/тип	Код операции управления МАС (00-01)	Время паузы (от 00-00 до FF-FF)	Зарезервировано	Контрольная сумма кадра
7 байт	1 байт	6 байт	6 байт	2 байта	2 байта	2 байта	42 байта	4 байта

- □ Все технологии семейства Ethernet имеют одинаковую реализацию МАС-подуровня форматы кадров и способы доступа к среде передачи.
- □ Эти технологии отличаются реализацией физического уровня, который определяет различные скорости передачи сигналов и типы среды передачи.

MII (MEDIA INDEPENDENT INTERFACE) - независимый от физической среды интерфейс GMII (GIGABIT MEDIA INDEPENDENT INTERFACE) - гигабитный независимый от физической среды интерфейс XGMII (10 GIGABIT MEDIA INDEPENDENT INTERFACE) - 10 гигабитный независимый от физической среды интерфейс AUI (ATTACHMENT UNIT INTERFACE) - интерфейс уровня присоединения MDI (MEDIUM DEPENDENT INTERFACE) - зависимый от физической среды интерфейс

PMA (PHYSICAL MEDIUM ATTACHMENT) - подуровень физического присоединения PCS (PHYSICAL CODING SUBLAYER) - подуровень физического кодирования PHY (PHYSICAL LAYER DEVICE) - устройство физического уровня PMD (PHYSICAL MEDIUM DEPENDENT) - подуровень зависимости от физической среды FEC(FORWARD ERROR CORRECTION) - подуровень прямой коррекции ошибок AN - подуровень автосогласования

Спецификации физической среды Ethernet (10 Мбит/с)

Стандарт	Тип кабеля	Максимальная длина сегмента, м	Режим работы		
10BASE5	Коаксиальный кабель диаметром 0,5 дюйма («толстый Ethernet»)	«Шина»	Манчестерское кодирование	500	Полудуплексный (метод CSMA/CD)
10BASE2	диаметром 0,25 дюйма («тонкий Ethernet»)		Манчестерское кодирование	185	Полудуплексный (метод CSMA/CD)
10BASE-T			Манчестерское кодирование	100	Полудуплексный (метод CSMA/CD) и полнодуплексный
10BASE-F	ASE-F Многомодовый «Звезда»		Манчестерское кодирование	1000 (10BASE-FP) 2000 (10BASE-FB) 2000 (10BASE-FL)	Полудуплексный (10BASE-FP, 10BASE-FB, 10BASE- FL) и полудуплексный (10BASE-FL)

Спецификации физической среды Fast Ethernet (100 Мбит/с)

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы		
100BASE-T4	Кабель на основе неэкранированной витой пары категорий 3, 4, 5	8B6T	100	Полудуплексный (метод CSMA/CD)		
100BASE-TX	Кабель на основе неэкранированной витой пары категории 5 или экранированной витой пары	4B/5B, MLT-3	100	Полудуплексный (метод CSMA/CD) и полнодуплексный		
100BASE-FX	Многомодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм	4B/5B, NRZI	400 (полудуплекс) 2000 (полный дуплекс)	Полудуплексный (метод CSMA/CD) и полнодуплексный		

Спецификации физической среды Fast Ethernet (100 Мбит/с)

Спецификации, используемые для создания каналов связи «точка-точка»

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы		
100BASE-LX10	Одномодовый волоконно- оптический кабель (длина волны 1310 нм)	4B/5B, NRZI	10 000	Полудуплексный и полнодуплексный		
100BASE-BX10	Одномодовый волоконно- оптический кабель (длина волны: 1310 нм восходящий поток, 1550 нм нисходящий)	4B/5B, NRZI	10 000	Полудуплексный и полнодуплексный		

- □ **Автосогласование** (Auto-Negotiation) это функция Ethernet (IEEE 802.3-2012 Clause 28, Clause 37, Clause 73), позволяющая двум устройствам, подключенным к одному каналу связи выбрать общие параметры передачи, такие как скорость, режим работы (полнодуплексный/полудуплексный, энергосберегающий/обычный).
- □ Автосогласование выполняется полностью на физическом уровне.
- □ Автосогласование позволяет устройствам выполнить следующие операции:
 - > сообщить партнеру по связи о своей версии Ethernet и дополнительных возможностях;
 - > подтвердить прием и определить общие режимы работы;
 - > отказаться от режимов работы, не поддерживаемых вторым партнером;
 - настроить каждое устройство на режим наивысшего уровня, поддерживаемый обоими партнерами по связи.
- □ Автосогласование впервые появилось как дополнительная функция в спецификациях 100BASE-TX и 100BASE-T4. В стандартах 1000BASE-T, 1000BASE-X, 10GBASE-T оно является обязательной процедурой.

Спецификации физической среды Gigabit Ethernet (1000 Мбит/с)

- □ Общее с предыдущими технологиями Ethernet:
 - формат кадров;
 - полудуплексный режим работы с методом доступа CSMA/CD и дуплексный режим для работы с коммутаторами;
 - > поддержка всех основных видов кабеля.
- □ Для увеличения диаметра сети при работе в *полудуплексном режиме* используются методы:
- Carrier extension (расширение несущей): используется МАСподуровнем для увеличения времени, в течении которого может быть распознана коллизия.
- Packet burst (пакетная передача): используется МАС-подуровнем для минимизации издержек, связанных с добавлением битов расширения. Этот метод позволяет МАС-подуровню отправлять последовательность кадров, не прерывая при этом контроль над средой передачи.
- □ При работе в полнодуплексном режиме эти методы не нужны.

Спецификации физической среды Gigabit Ethernet (1000 Мбит/с)

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
1000BASE-T	Кабель на основе неэкранированной витой пары категории 5, 5е. Для передачи используются четыре пары проводников.	PAM-5	100	Полудуплексный и полнодуплексный
1000BASE-SX	Многомодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 850 нм)	8B/10B, NRZ	550 (кабель 50/125) 275 (кабель 62.5/125)	Полудуплексный и полнодуплексный
1000BASE-LX	Многомодовый и одномодовый волоконно-оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 1310 нм)	8B/10B, NRZ	550 (многомодовый кабель) 5 000 (одномодовый кабель)	Полудуплексный и полнодуплексный
1000BASE-CX	Твинаксиальный кабель	8B/10B, NRZ	25	Полудуплексный и полнодуплексный

Спецификации физической среды Gigabit Ethernet (1000 Мбит/с)

Спецификации, используемые для создания каналов «точка-точка»

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м	Режим работы
1000BASE-LX10	Многомодовый и одномодовый волоконно-оптический кабель 50/125 мкм и 62.5/125 мкм (используется два волокна, длина волны 1310 нм)	8B/10B, NRZ	550 (многомодовый кабель) 10 000 (одномодовый кабель)	Полудуплексный и полнодуплексный
1000BASE-BX10	Одномодовый волоконно- оптический кабель (используется одно волокно, длина волны: 1310 нм восходящий поток, 1490 нм нисходящий)	8B/10B, NRZ	10 000	Полудуплексный и полнодуплексный

Спецификации физической среды Gigabit Ethernet (1000 Мбит/с)

□ Следующие спецификации являются собственной разработкой производителей и не входят в стандарт:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
1000BASE-ZX	Одномодовый волоконно-оптический кабель (используется два волокна, длина волны 1550 нм)	80 000
1000BASE-LH	Одномодовый волоконно-оптический кабель (используется два волокна)	100 000

Спецификации физической среды 10 Gigabit Ethernet (10 Гбит/с)

Стандарты	семейства	10	Gigabit	Ethernet	на	МАС-подуровне
поддерживают	работу тольк	о в по	олнодупле	ксном режи	іме.	

□ Семейство 10GBASE-X:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
10GBASE-CX	Твинаксиальный кабель	15
10GBASE-LX4	Многомодовый и одномодовый волоконно- оптический кабель 50/125 мкм и 62.5/125 мкм (4 длины волны с шагом 13,4 нм во втором окне прозрачности (1310 нм))	от 240 до 300 (многомодовый кабель) 10 000 (одномодовый кабель)
10GBASE-KX4	Медный кабель. Предназначен для объединительных плат (Backplane) модульных коммутаторов/маршрутизаторов.	1

Спецификации физической среды 10 Gigabit Ethernet (10 Гбит/с)

□ Семейство 10GBASE-R:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
10GBASE-SR	Многомодовый 50/125 мкм и 62.5/125 мкм волоконно-оптический кабель (длина волны 850 нм)	от 66 до 400 (многомодовый кабель 50/125) от 26 до 33 (многомодовый кабель 62.5/125)
10GBASE-LR	Одномодовый волоконно-оптический кабель (длина волны 1310 нм)	10 000
10GBASE-ER	Одномодовый волоконно-оптический кабель (длина волны 1550 нм)	40 000
10GBASE-LRM	Многомодовый 50/125 мкм и 62.5/125 мкм волоконно-оптический кабель (длина волны 1300 нм)	220
10GBASE-KR	Медный кабель. Предназначен для объединительных плат (Backplane) модульных коммутаторов/маршрутизаторов.	1

Спецификации физической среды 10 Gigabit Ethernet (10 Гбит/с)

	Семейств	o 10GB	ASE-W	относи	тся к	WAI	N PHY	И	предназ	вна	чено	для
ад	аптации	скорости	и перед	ачи и с	форма [.]	тов Et	thernet	К	скорости	И	форма	атам
те	хнологий	SONET S	TS-192	сиSDH	IVC-4	-64c.						

- □ Без подуровня WIS семейство спецификаций 10GBASE-W не отличается от семейства спецификаций 10GBASE-R.
- □ Интерфейс 10GBASE-W может взаимодействовать только с другим интерфейсом 10GBASE-W.

Стандарт	Тип кабеля	Максимальная длина сегмента, м
10GBASE-SW	Многомодовый 50/125 мкм и 62.5/125 мкм волоконно-оптический кабель (длина волны 850 нм)	от 66 до 400 (многомодовый кабель 50/125) от 26 до 33 (многомодовый кабель 62.5/125)
10GBASE-LW	Одномодовый волоконно-оптический кабель (длина волны 1310 нм)	10 000
10GBASE-EW	Одномодовый волоконно-оптический кабель (длина волны 1550 нм)	40 000

Спецификации физической среды 10 Gigabit Ethernet (10 Гбит/с)

Стандарт	Тип кабеля	Метод кодирования	Максимальная длина сегмента, м
10GBASE-T	4-х парный кабель на основе сбалансированной витой пары Cat. 6 или Cat. 6a	64B/65B, PAM2	100 55 (неэкранированная витая пара Cat. 6a)

Спецификации физической среды 40 и 100 Gigabit Ethernet (40 и 100 Гбит/с)

□ Технологии 40 и 100 Gigabit Ethernet на настоящий момент являются
самыми высокоскоростными технологиями компьютерных сетей.
□ В технологиях 40 и 100 Gigabit Ethernet остались прежними формат кадра, а также его минимальный и максимальный размер.
□ На МАС-подуровне поддерживают работу только в полнодуплексном режиме.
□ Максимальная длина сегмента составляет 40 000 м при использовании

одномодового волоконно-оптического кабеля.

Спецификации физической среды 40 Gigabit Ethernet (40 Гбит/с)

□ Семейство 40GBASE-R:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
40GBASE-KR4	Медный кабель. Предназначен для объединительных плат (Backplane) модульных коммутаторов/маршрутизаторов.	1
40GBASE-CR4	Твинаксиальный кабель	7
40GBASE-SR4	Многомодовый 50/125 мкм волоконно- оптический кабель класса ОМЗ или ОМ4 (используется четыре волокна; длина волны 850 нм)	100 (при использовании кабеля класса ОМ3) 150 (при использовании кабеля класса ОМ4)
40GBASE-FR	Одномодовый волоконно-оптический кабель (длина волны: передача – 1550 нм, прием – 1310 нм и 1550 нм)	2 000
40GBASE-LR4	Одномодовый волоконно-оптический кабель (длины волн: 1271 нм, 1291 нм, 1311 нм и 1331 нм)	10 000

Спецификации физической среды 100 Gigabit Ethernet (100 Гбит/с)

□ Семейство 100GBASE-R:

Стандарт	Тип кабеля	Максимальная длина сегмента, м
100GBASE-CR10	Твинаксиальный кабель	7
100GBASE-SR10	Многомодовый 50/125 мкм волоконно- оптический кабель класса ОМЗ или ОМ4 (используется десять волокон; длина волны 850 нм)	100 (при использовании кабеля класса ОМ3) 150 (при использовании кабеля класса ОМ4)
100GBASE-LR4	Одномодовый волоконно-оптический кабель (длины волн: 1295.56 нм, 1300.05 нм, 1304.58 нм и 1309.14 нм)	10 000
100GBASE-ER4	Одномодовый волоконно-оптический кабель (длины волн: 1295.56 нм, 1300.05 нм, 1304.58 нм и 1309.14 нм)	40 000

Энергоэффективный Ethernet

- □ В 2010 г. институт IEEE принял стандарт на энергоэффективный Ethernet IEEE 802.3az Energy-Efficient Ethernet (EEE).
- □ В настоящее время стандарт IEEE 802.3az является частью стандарта IEEE 802.3-2012 (Clause 78).
- □ Технология EEE автоматически уменьшает потребление энергии в то время, когда по каналам связи не ведется передача данных.
- □ В ней предусмотрена возможность обмена информацией о поддержке EEE между партнерами по связи во время процедуры автосогласования.
- □ Если один из партнеров не поддерживает ЕЕЕ, то перехода в режим низкого энергопотребления не будет.

- □ Существует несколько видов сменных интерфейсные модулей:
- ➤ GBIC (Gigabit Interface Converter);
- > SFP (Small Form Factor Pluggable);
- SFP+ (Enhanced Small Form Factor Pluggable);
- > XFP (10 Gigabit Small Form Factor Pluggable);
- > QSFP (Quad Small Form Factor Pluggable).

Модули GBIC

- □ GBIC (Gigabit Interface Converter) самая первая спецификация комитета SFF (SFF-8053) на компактные сменные интерфейсные модули, описывающая конвертеры гигабитного интерфейса.
- □ Модули GBIC поддерживают стандарты Gigabit Ethernet или Fibre Channel для передачи данных, голоса и видео по медным или оптическим кабелям, но преимущественно представляют собой оптические трансиверы для приема или передачи сигнала по многомодовому или одномодовому волокну.

Модули SFP

- □ Модули SFP (Small Form Factor Pluggable) компактная модификация сменного интерфейса для волн 850, 1310 и 1550 нм.
- □ Посадочный размер SFP (форм-фактор) определяется величиной медного разъема RJ-45.
- □ Интерфейсы SFP поддерживают Ethernet (на 10, 100, 1000 Мбит/с), SONET/SDH (OC3/ 12/48 и STM 1/4/16), Fibre Channel (1 и 2 Гбит/с).
- □ Существуют модули, поддерживающие технологию WDM.
- Модули могут поддерживать систему цифровой диагностики для мониторинга состояния оптических линий.

Модули XFP

- □ Оптические трансиверы XFP (10 Gigabit Small Form Factor Pluggable) для волн 850, 1310 и 1550 нм поддерживают 10 Gigabit Ethernet.
- □ Существуют трансиверы для одномодового и многомодового оптоволокна.
- XFP имеют несколько большие размеры, чем трансиверы SFP.
- Модули могут поддерживать систему цифровой диагностики для мониторинга состояния оптических линий.
- Существуют модули, поддерживающие технологию CWDM.

Модули SFP+

- □ Оптические трансиверы SFP+ поддерживают Ethernet на скорости 10 Гбит/с.
- □ Требования к модулям SFP+, которые являются расширенной версией SFP, определены в спецификации SFF-8431.
- □ По сравнению с трансиверами XFP, модули SFP+ обладают меньшими габаритными размерами и тепловыделением, что позволяет повысить плотность размещения портов 10 Гбит/с на корпусе телекоммуникационных устройств.
- Модули могут поддерживать систему цифровой диагностики для мониторинга состояния оптических линий.
- □ Существуют модули, поддерживающие технологии WDM, CWDM.

Модули QSFP/QSFP+

- □ Первоначальная версия трансиверов поддерживала для каждого канала скорости 2,5 Гбит/с и 5 Гбит/с и называлась «QSFP».
- □ Последняя версия трансиверов называется «QSFP+». Скорость каждого канала в QSFP+ составляет 10 Гбит/с (в соответствии со спецификациями SFF-8635, SFF-8636) и 28 Гбит/с (в соответствии со спецификацией SFF-8665).
- □ Один модуль QSFP+ способен заменить четыре стандартных модуля SFP+, а занимает на корпусе оборудования примерно столько же места, сколько занимает модуль XFP.

Спасибо за внимание!