BANK PROFITABILITY, SOLVENCY AND RISK IN THE CONTEXT OF STRESS TESTS, PAYOUT POLICY AND BANK COST STRUCTURES

PH.D. THESIS

SUPERVISED BY DR. GERMÁN LÓPEZ ESPINOSA

SYLVIA B. SADAKOVA

University of Navarra

February 12, 2021

TABLE OF CONTENTS

- Introduction
- Chapter 1: Supervisory Stress Tests and Bank Risk-Taking
- Chapter 2: The Puzzle of Dividend Payouts
- Chapter 3: Cost Structure and Lending Quality
- Concluding Remarks

Note: Full research report is published at https://dadun.unav.edu/handle/10171/60979

Introduction

	Bank Risk Mitigation is an	important com	nonent of the	financial stability	Aduation
\Box	Dalik Kisk Milligation is all	illiportant com	ponent or the	illialicial Stability	equation.

- Excessive risk appetite threatens the safety and soundness of individual institutions as well as the stability of the entire financial sector (Srivastav and Hagendorff, 2016).
- The Global Financial Crisis (GFC) is an example of the need to improve risk-governance mechanisms.
- Despite regulatory and supervisory efforts to improve risk practices and controls, excessive risk-taking prevails.
- ☐ Competition, the macroeconomic environment, market pressure, bank-specific factors, and business model characteristics can exacerbate excessive risks.

Introduction

Bank Risk-taking, through	various	measures	and	interpretations,	forms t	he basis	of this
thesis.							

- Explore profitability, solvency, risk-taking, and lending quality implications in the context of the (1) US supervisory stress-testing framework, (2) dividend payout policies, and (3) business model characteristics.
- Aim to shed light on how fairly recent developments in the U.S. regulatory framework, financial system, and bank business models influence bank decision-making.
- Ample evidence of the role of bank-specific characteristics, regulatory developments, and macro-economic conditions in overall economic resiliency.

CHAPTER 1

SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

WITH DR. GERMÁN LÓPEZ ESPINOSA

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Motivation

Financial Sector's Importance for Macroeconomic Stability Social Costs of Large Bank Risk & Failures

Research Questions

- 1. US Stress Tests' Impact on Risk-taking and Solvency
- 2. Influence of Projected Capital Positions on Risk-taking and Solvency
- 3. Explanatory Power of Bank Characteristics for Stress Test Outcomes
- 4. Low Interest Rate Environments' Impact on Risk-Taking
- 5. Adjustment Channels for Higher Regulatory Capital Requirements

Findings

- 1. Less Risk-taking among ST Banks: Primarily among ex-ante safer, risk-averse, better capitalized banks.
- 2. BHCs with low-risk aversion and insufficient projected capital ratios remain relatively risky.
- 3. Some Bank characteristics can anticipate Stress Test Outcomes.
- 4. Low interest rates lead well-capitalized, ST banks to take on more risk.
- 5. Equity and risk-weighted asset reductions primary channels in achieving higher capital ratios; Asset Reductions among banks with projected capital shortfalls.

1. Supervisory Stress Tests and Bank Risk-Taking

Basel III Capital and Liquidity Framework
Heightened Supervisory oversight (Stress Tests)

SUMMARY	Introduction	BACKGROUND	DATA	METHODOLOGY & RESULTS	CONCLUSIONS

	the midst of the Global Financial Crisis, 13 of the 25 largest US institutions failed, required									
go	overnment assistance, merged or changed business structure to avoid failure (Gorton, 2015).									
	Controversy over bank risk portfolios and capital adequacy									
	Rising concerns that significant bank failures $\underline{\text{pose systemic risks}}$ to the market which could cripple the entire economy									
	Unprecedented Federal <u>Interventions</u> :									
	 Troubled Asset Relief Program (TARP): U.S. Department of the Treasury to buy up toxic assets & bank shares 									
	o \$245.1B. in TARP assistance									
	Unmasked urgent need for regulatory improvements:									

1. Supervisory Stress Tests and Bank Risk-Taking

Summary Introduction Background Data Methodology & Results Conclusions

Post-Crisis Prudential Regulation in the US: Stress Tests

ST Results

- Stress-testing provides a mechanism through which the performance and viability of large and systematically important financial institutions and the resilience of the financial system can be assessed, reinforced, and communicated.
 - Forward-looking assessment of the potential impact of various hypothetical adverse macroeconomic scenarios on the consolidated earnings, losses, and capital of banks over a set planning horizon
 - 1. $\underline{\text{Quantitative}}$ assessment of the impact of potential downturns on capital and lending
 - 2. <u>Qualitative</u> assessment of risk management and payout strategies
 - Aggressive regulatory response to substantial market concerns during the crisis:
 - o Tie results to specific actions
- o Limit supervisory discretion and enhance the credibility of the supervisory regime

SCAP	CCAR	DFAST
2009	2011 –	2013 -
TARP	Capital Plan Rule	Dodd-Frank Act

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Stress Tests in the Literature

Implications & Proposals of Stress Test Model Design, Implementation, & Governance (Hirtle
et al. 2016: Guerrieri and Welch. 2012: Kupiec et al. 2017: Greenwood et al. 2017: Bolotow et al. 2014)

□ Debate on the Effectiveness, Costs, & Consequences of Stress Tests (Hirtle et al., 2009; Schuermann, 2016; Gallardo et al., 2016; Goldstein and Sapra, 2014)

☐ Financial Variable & Balance Sheet Effects of Stress Tests

- Market Reactions around Stress Test Announcements & Result Disclosures (Morgan et al., 2010; Glasserman and Wang, 2011; Petrella and Resti, 2013; Morgan et al., 2014; Candelon and Sy, 2015; Fernandes, 2015; Igan and Pinheiro, 2015; Gerhardt and Vander Vennet, 2016; Flannery et al., 2017; Bird et al., 2018)
- Balance Sheet Adjustments to Artificially Increase Capital Ratios (Shahhosseini, 2014; Acharya, Pedersen, Philippon and Richardson, 2017; Lambertini and Mukherjee, 2016; Mésonnier and Monks, 2014; Eber and Minoiu, 2016; Gropp et al., 2016)
- Lending and Credit Implications of Stress Tests (Eber and Minoiu, 2016; Gropp et al., 2016; Covas, 2018; Mésonnier and Monks, 2014; Fernandes, 2015; Lambertini and Mukherjee, 2016)
- Risk-Taking and Solvency Implications (Largely Overlooked)

1. Supervisory Stress Tests and Bank Risk-Taking

INTRODUCTION

SUMMARY

Pouruman 2012)

BACKGROUND

En	Empirical Studies: Risk-Taking and Solvency Implications of Stress Tests							
	Mega-banks have not reduced risk-taking (Ignatowski and Korte, 2014)							
	Banks remain quite risky despite strict prudential capital requirements. (Acharya et al., 2014)							
	Bank risk is statistically lower for ST Banks (reduced credit supply to relatively risky borrowers). Most of the risk reductions are for safer banks (Acharya et al., 2018)							
	Stress test disclosures have a negative effect on systematic and/or systemic risk via reduced Market volatility of adequately capitalized banks (Neretina et al., 2015)							

DATA

METHODOLOGY & RESULTS

Theoretical Background: Risk-Taking and Capital Regulation

Bouwman, 2013)
Capital Adequacy Regulation exhibits effects opposite to those intended by regulators (Kahane
1977; Koehn and Santomero, 1980; Kim and Santomero, 1988; Rochet, 1992; Shrieves and Dahl, 1992; Besanko
and Kanatas, 1993; Boot and Greenbaum, 1992; Blum, 1999)

Capital Adequacy Regulation reduces risk-taking incentives (Furlong and Keeley, 1989; Berger and

☐ U-shaped relationship between capital and risk-taking (Calem and Rob, 1999; Park, 1996)

CONCLUSIONS

1. Supervisory Stress Tests and Bank Risk-Taking

Summary Introduction Background Data Methodology & Results Conclusions

Hypotheses

ST effects on Solvency and Risk-Taking are conditional on ex-ante risk preferences and capital positions.

H1: Ex-ante safer & risk-averse banks are more likely to reduce future risk-taking

- ☐ Ex-ante safer, riks-averse banks prefer lower leverage and asset risk and high capital (Kim and Santomero, 1988).
- ☐ Because regulatory capital ratios are based on the amount of risk-weighted assets, safer banks would prefer to reduce the amount of risky assets than to raise equity.

H2: ST banks with higher projected capital levels more likely to reduce risk-taking

- Safer banks with sufficient capital positions, have substantially more to lose in the event of default.
- ☐ Higher capital ratios raise banks' charter values via a reduction in leverage, which may also encourage reduced risk-taking.
 - o Risk-taking could increase among well-capitalized banks if charter values are not at risk.

Chapter 1

DATA

METHODOLOGY & RESULTS

1. Supervisory Stress Tests and Bank Risk-Taking

1994 - 2016 (Stress Test Horizon Emphasis: 2009-2016)

INTRODUCTION

BACKGROUND

116.943 Obs. for 3.489 BHCs (26 BHCs subject to Stress Tests)

Bank Holding Company Data

SUMMARY

Data Sample

Commercial Banks and Bank Holding Company Regulatory Database

The Federal Reserve Bank of Chicago

Quarterly Regulatory Reports (FR Y-9C)

Stress Test Data

Annual CCAR Result Disclosures

The Federal Reserve Bank of Chicago

Available Data on 26/33 ST-Participating BHCs

Macroeconomic & Recapitalization Data

FRED Dataset - Federal Reserve Bank of St. Louis

Monthly Reports to Congress - US Department of Treasury

CONCLUSIONS

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Dependent Variables

ZScore_F3Y¹ Future Solvency (Financial Soundness)

 σ ROA_F3Y¹ Future Risk-Taking

Variables of Interest

CCAR Bank subject to CCAR

FedST Bank subject to SCAP and CCAR

Buffer² Capital Position

Pass² Favorable Stress Test Result ZScore_L3Y¹ Past Financial Soundness

 σ ROA_L3Y¹ Past Risk-Taking

Bank Controls

Size Relative Size

ETA Capitalization
LTA Specialization

LLPTA Level of Loss Provisions

NPLLTL Credit Quality
STWSFTA Liquidity

ROA Profitability MSTA Market Risk

Recap Recapitalization
NPLLTL_Chg Quality Change

Interaction Effects

ZScore_L3Y 1 × ST 2 σ ROA_L3Y 1 × ST 2 ZScore_L3Y 1 × Buffer 2 σ ROA_L3Y 1 × Buffer 2 ZScore_L3Y 1 × Pass 2 σ ROA_L3Y 1 × Pass 2

Macroeconomic Controls

UNRATE UnemploymentRate
GDP_Growth GDP Growth Rate
VIXCLS Market Volatility

$$ZScore_FXY = In \frac{ETA_{q=X} + \mu ROA_FXY}{\sigma ROA_FXY}$$

Descriptive Stats 11/5

Alternative 5-year rolling window specification also considered.

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Stress Tests and Risk-Taking

- 1. Analyze differences in Future Risk-Taking among ST and Non-ST BHCs.
- 2. Analyze differences in Future Risk-taking among ST BHCs with ex-ante high risk-tolerance.

Dynamic Panel Model with Driscoll and Kraay Standard Errors

 $\label{eq:Future Risk-Taking} \begin{aligned} \textit{Future} \quad \textit{Risk} - \textit{Taking} &= \alpha + \beta_1 \textit{Past} \quad \textit{Risk} - \textit{Taking} \\ &\times \quad \textit{Stress} \quad \textit{Test} \quad \textit{Dummy} + \gamma \textit{Bank} \quad \textit{Controls} + \delta \textit{Macroeconomic} \quad \textit{Controls} + \eta_i + \upsilon_q + \epsilon_{iq} \end{aligned}$

Data

1996 - 2016 100,945 Observations 3.349 BHCs

Variables

Risk-Taking: σ ROA_F(L)3Y & σ ROA_F(L)5Y Stress Test Dummy: CCAR (2011 – 2016) & FedST (2009 – 2016)

Results

- 1. Lower Future Risk-Taking among ST BHCs ($\beta_2 < 0$)
- 2. But, Higher Future Risk-Taking among ST BHCs with Ex-ante High Risk Preferences ($\beta_3 > 0$)

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Stress Tests and Risk-Taking								
		CCAR Exercises		SCAP and CCAR Exercises				
VARIABLES	All Banks (1) σ ROA_F3Y	Listed (2) σ ROA_F3Y	Non-listed (3) σ ROA_F3Y	All Banks (4) σ ROA_F3Y	Listed (5) σ ROA_F3Y	Non-listed (6) σ ROA_F3Y		
σROA_L3Y	-0.066 (-1.098)	-0.142* (-1.850)	-0.058 (-1.164)	-0.066 (-1.094)	-0.144* (-1.845)	-0.058 (-1.165)		
σ ROA_L3Y $ imes$ CCAR	0.177*** (3.121)	0.204** (2.604)	0.209*** (3.386)					
CCAR	-0.001** (-2.401)	-0.001** (-2.452)	-0.001 (-1.637)					
σ ROA_L3Y $ imes$ FedST				0.090* (1.822)	0.118* (1.705)	0.098 (1.249)		
FedST				-0.001*** (-2.928)	-0.002*** (-3.083)	-0.001 (-1.425)		
Constant	-0.006 (-1.592)	-0.007 (-1.653)	-0.005 (-1.636)	-0.006 (-1.604)	-0.007* (-1.681)	-0.005 (-1.636)		
R ²	0.144	0.164	0.129	0.145	0.166	0.129		
Observations	100,945	31,911	69,034	100,945	31,911	69,034		
Number of groups	3,349	1,055	2,716	3,349	1,055	2,716		
FE Controls	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Stress Tests and Risk-Taking

- Stress Tests \rightarrow Reduced risk-taking,
- In line with reduced risk in the presence of stress tests (Acharya et al., 2018; Shahhosseini, 2014); and the inverse relation between capital requirements and risk-taking (Furlong and Keeley, 1989; Berger and Bouwman, 2013).
- Likely due to (1) more stringent supervisory & payout restrictions and more comprehensive monitoring;
 and (2) Market discipline (Result Publications reduce opaqueness)
- But, despite the overall reduction in risk-taking among ST banks, **ex-ante risk-tolerant banks** have significantly **higher future risk-taking**
- In line with positive impact among safer banks (Acharya et al., 2018; Ignatowski and Korte, 2014); and the inverse relation between capital regulation and bank risk-taking (Flannery, 1989; Kahane, 1977; Koehn and Santomero, 1980; Kim and Santomero, 1988; Rochet, 1992; Shrieves and Dahl, 1992).
- Likely due to Strong ex-ante preferences. Risk-tolerant banks favor high leverage (low capital) and high
 asset risk. Increased capital requirements → increase in asset risk (to reach preferred risk thresholds).

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS

CONCLUSIONS

Does the Interest Rate Environment Influence Bank Risk-Taking?

Do monetary policy environments influence risk-taking?

Does this relation differ based on the stress test designation and the stress exercises' outcomes?

Dynamic panel model with Driscoll and Kraay robust standard errors

$$\label{eq:Future Risk-Taking} \begin{split} \text{Future} \quad \text{Risk} - \text{Taking} &= \alpha + \beta_1 \text{Past} \quad \text{Risk} - \text{Taking} + \beta_2 \text{Fedfunds(Chg)} + \beta_3 \text{ST} * \text{FedFunds(Chg)} \\ &+ \beta_4 \text{ST} + \gamma \text{Bank} \quad \text{Controls} + \delta \text{Macroeconomic} \quad \text{Controls} + \epsilon_{iq} \end{split}$$

Data

Full Sample (1996 - 2016): 100,945 Obs. ST Sample (2009 - 2016): 453 Obs.

Variables

FedFunds: US Federal Funds Rate.
FedFundsChg: \(\Delta\) US Federal Funds Rate.
ST: CCAR or FedST (1) Dummy: (2) Buffer: (3) Pass.

Results

Higher Future Risk-Taking among ST BHCs in Low-interest-rate Environments ($\beta_3 < 0$)

Higher Future Risk-Taking among well-capitalized ST BHCs in Low-interest-rate Environments ($\beta_3 < 0$)

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Interest Rate Implications

Risk-Taking and Interest Rates							
	CCAR Exercises			SCAP and CCAR Exercises			
	CCAR	Buffer	Pass	FedST	Buffer	Pass	
VARIABLES	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	
σROA_L3Y	-0.058	0.108***	0.100***	-0.058	0.058***	0.052**	
	(-1.012)	(3.690)	(3.587)	(-1.013)	(2.603)	(2.314)	
FedFunds	0.000**	-0.001	0.006**	0.000**	-0.001	-0.000	
	(2.397)	(-1.581)	(2.257)	(2.404)	(-1.596)	(-0.107)	
FedFunds × ST	-0.001**			-0.001*			
	(-1.995)			(-1.717)			
ST	-0.001**			-0.001***			
	(-2.141)			(-3.013)			
FedFunds × Buffer		-0.000			0.000		
		(-0.290)			(0.386)		
Buffer		-0.000*			-0.000*		
		(-1.867)			(-1.694)		
FedFunds × Pass			-0.007**			-0.000	
			(-2.476)			(-0.136)	
Pass			0.000			-0.000	
			(0.578)			(-0.874)	
Constant	-0.012**	-0.060***	-0.046***	-0.012**	-0.035***	-0.032***	
	(-2.467)	(-7.550)	(-5.767)	(-2.478)	(-6.184)	(-5.593)	
R ²	0.168	0.397	0.455	0.168	0.535	0.540	
Observations	100,945	387	387	100,945	453	453	
FE	Yes	Yes	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Interest Rate Implications

Ш	Empirical Evidence: Banks are willing to take on more risk when interest rates are low to offset
	NIM reductions (Delis and Kouretas, 2011; Altunbas et al., 2012; Maddaloni and Peydró, 2011).

- □ Banks subject to stress tests exhibit higher future risk-taking when interest rates are low.
 - Under CCAR, safer, well-capitalized banks are more likely to respond to low-interest rates by increasing risk-taking.
 - Likely due to implicit bailout guarantees for the ST designation.
- Small changes in interest rates are associated with higher risk-taking across safer and generally better capitalized ST Banks.
 - o β_3 < 0: FedFunds_Chg × Buffer & FedFunds_Chg × Pass.

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Can Stress Test Results & Capital Buffers be Predicted?

CCAR Pass Dummy

- Specialization (LTA)

Liquidity Exposure (STWSF_TA)

Market Risk (MSTA)

FedST Pass Dummy

Loan Quality (NPLLTL)

Liquidity Exposure (STWSF_TA)

Recapitalization

CCAR & FedST Projected Capital Buffer

+ Risk-Taking - Size

Solvency - Specialization(LTA)

+ Leverage (ETA) - Credit Quality(NPLLTL)

Profitability (ROA) - Liquidity (STWSF_TA)

+ Provisions (LLPTA) - Market Risk(MSTA)

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

- ☐ Post-crisis rise in capital ratios, especially among ST BHCs
 - Primarily met through ↓RWA and ↑Equity
 - o But, different adjustment channels among ST banks.

1. Supervisory Stress Tests and Bank Risk-Taking

SUMMARY	INTRODUCTION	BACKGROUND	DATA	METHODOLOGY & RESULTS	Conclusions

- ☐ While largely successful in improving the overall health of the US Financial System, Federal Reserve Stress Tests have not fully mitigated risk-taking among ex-ante risk-tolerant banks with poor projected capital levels.
 - The positive effects of stress tests on bank solvency are primarily driven by the safest banks, but lowinterest rate environments have forced these relatively safe banks to engage in more risk-taking to make up for NIM reductions.
- ☐ Several bank characteristics foresee stress test outcomes.
 - First empirical evaluation of how bank risk-taking and solvency evolve in the context of:
 - Stress-test designation and results
 - Monetary environment
 - o Adjustment Channels to higher capital requirements
- Empirical Contribution to the literature on bank risk-taking, stress tests, capital regulation, and post-crisis reforms.

CHAPTER 2

THE PUZZLE OF DIVIDEND PAYOUTS

WITH DR. GERMÁN LÓPEZ ESPINOSA & DR. ANDRÉS MESA TORO

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Motivation

- ☐ Strong impact of Dividends on Bank Soundness
- ☐ Moral Hazard Implications of Dividend Policy in Highly Leveraged Industry
- ☐ The role of Regulators & Creditors as important stakeholders

Research Questions

- ☐ Payout Policy Effects on future (1) Profitability. (2) Solvency, and (3) Risk-taking
- ☐ Attempt to answer whether dividend decisions are based on firm-specific expectations.
- ☐ Sample of US BHCs, CBs, & CUs (1998-2017)

Findings

- Banks: Risk-shifting and Increased Information Asymmetry
- Payouts and Performance Expectations Misalignment ← Managerial Overoptimism;
- -Dividend Change Avoidance ← Market Discipline
- □ Credit Unions:
 - -Payout policy more reactive to and in line with expected future performance ← Signalling

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Dividends in Banks: A Historical Overview

- □ Banking sector among the industries with largest dividend ratios (Dickens et al., 2002; Guntay et al., 2015).
 - In 2000, 92% of US banks paid dividends compared with only 49% of non-financial firms (Dickens et al., 2002; Forti and Schiozer, 2015).
 - In the 15 years preceding the financial crisis, banks paid dividends 4× more often than industrial firms and 33% more frequent than non-bank financial firms (Guntay et al., 2015).
 - During the same period, banks continuously increased dividends: 3 to 4x higher and 35% to 50% more frequent than industrial firms and non-bank financial firms. (Guntay et al., 2015).
- ☐ Reluctance to cut dividends (Lintner, 1956)
- ☐ Strong market reactions to dividend decreases and omissions (Pettit, 1972).

Chapter 2

DATA

METHODOLOGY & RESULTS

2. THE PUZZLE OF DIVIDEND PAYOUTS INTRODUCTION

Dividends in Banks: Post-Crisis Scrutiny

SUMMARY

Drained capital from the banking system in a time of extreme stress (Hirtle, 2014) Severe impact on the soundness of the financial system (Acharya, Le and Shin, 2017; Rosengren, 2010; Scharfstein and Stein, 2008).

- Continued payouts despite poor performance and capital levels Largest 21 banks distributed \$130B, in dividends (Acharva and Richardson, 2009) → excessive leverage.
- inadequate capital ratios, and risk-shifting (Srivastay et al., 2014; Acharya et al., 2014).

BACKGROUND

- o Accounted for > 50% of TARP funds through 2008 (Acharya and Richardson, 2009).
- Safe(r) assets sell-off to accommodate dividend distributions \rightarrow increased proportion of riskier assets (Acharva et al., 2011)

Regulations and Supervisory Programs to limit capital distributions for under-capitalized and

Dividends in Banks: Post-Crisis Regulatory Response

- risky banks (Caruana, 2014). Basel III's capital conservation buffer
- Federal Reserve's Comprehensive Capital Analysis and Review (CCAR).
- Introduction of RWA capital adequacy requirements to mitigate risk-shifting (Acharya et al., 2011; Kanas, 2013; Onali, 2014).
 - Forces banks to internalize excessive risk-taking.

CONCLUSIONS

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Dividends: Institutional Differences

Dividends in Banks

- Shareholders entitled to dividends regardless of deposit holdings.
- **Depositors entitled to interest** regardless of share holdings
- Clear distinction between shareholders and debt-holders.
 - o Debt-to-Equity Priority in Liquidation
 - "Moral Hazard" Implications: Risk-Shifting to (1) avoid adverse market reactions and (2) protect managerial remuneration interests.

Dividends in Credit Unions

- Dividends are the Interest rate paid on deposits, but not all deposits are entitled to a dividend (Gómez-Biscarri et al., 2020).
- □ Debt-holders are also shareholders.
 - Each account is entitled to one share and one voting right.
- Intertwined interests of debt-holders and shareholders.
 - Moral hazard implications and Adverse Signalling Incentives should be lower

2. THE PUZZLE OF DIVIDEND PAYOUTS

Summary Introduction Background Data Methodology & Results Conclusions

Bank Dividend Policy in the Literature

	Increased Regulatory	Polovanco and	Oversight o	f Dividond	Davout	Policy (EDE	2 2011 DCDC 2011	١
ш	increased Regulatory	Relevance and	Oversignt o	Dividend	Payout	PULICY (FRE	3, 2011, BCBS, 2011.)

- Distinctive nature and characteristics of payout policy in Banking (Acharya et al., 2011; Floyd et al., 2015)
- ☐ Factors that influence dividend decisions (Abreu and Gulamhussen, 2013; Hirtle, 2014)
- Dividend Decisions in Periods of Crisis. (Oliveira, 2015; Hoshi and Kashyap, 2004; Forti and Schiozer, 2015)
 Managerial incentives behind dividend payout decisions.
 - o Signaling Power and Risk-Shifting

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Determinants of Dividend Policy: Signalling Hypothesis

- ☐ Arises from Information gaps between managers and investors (Bhattacharya, 1979; Miller and Rock, 1985)
 - In a world of asymmetric information, better-informed insiders use the dividend policy as a signal to convey future prospects to less informed outsiders such that a dividend increase (decrease) conveys managerial optimism (pessimism) about a firm's future prospects.
 - Extensively analyzed (Brealey et al., 1977; Ross, 1977; Forti and Schiozer, 2015; Bessler and Nohel, 1996, 2000; Filbeck and Mullineaux, 1993; Collins et al., 1995; Boldin and Leggett, 1995; Kauko, 2012; Abreu and Gulamhussen, 2013; Huang and Ratnovski, 2011; Oliveira, 2015)
 - Positive association between dividend changes and share prices.
 - o High Sensitivity to Dividend Changes Among Institutional Investors and/or in periods of crises.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Determinants of Dividend Policy: Risk-Shifting Hypothesis

- Arises from Bondholder-Shareholder Conflicts.
- Limited Liability Protection for Shareholders lead to wealth transfers from creditors (Jensen and Meckling, 1976)
- Particularly Strong Risk-shifting Incentives in Banking
 - Due to government guarantees and asset opaqueness (Becht et al., 2011)
 - Lower Risk-Shifting Incentives and Higher Probability of Dividend Reductions among CEOs with higher inside debt-to-equity proportions. (Srivastav et al., 2014)
 - o Higher Risk in Banks → Larger Dividend Payouts (Onali, 2014)
 - o Positive relation between payout ratios and risk of default (Kanas, 2013)

SUMMARY

INTRODUCTION BACKGROUND DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Data Sample

1994 - 2017

27,602 Top-Holder BHC Obs. (8,311 Listed); 44,883 CB Obs. (337 Listed) & 43,481 CU Obs.

Exclude Net Income < 0; Dividend-to-Income > 100%.

Bank Holding Company & Commercial Bank Data

Commercial Banks and Bank Holding Company Regulatory Database

The Federal Reserve Bank of Chicago

Quarterly Regulatory Reports (FR Y-9C)

Credit Union Data Quarterly Call Reports - National Credit Unions Administration (NCUA)

Fxcludes TA < \$50M1

Macroeconomic & Recapitalization Data

FRFD Dataset - Federal Reserve Bank of St. Louis

Monthly Reports to Congress - US Department of Treasury.

^{28/53}

DATA

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

CONCLUSIONS

Dependent Variables

 μ ROA_FXY¹ Future Profitability σ ROA_FXY¹ Future Risk-Taking ZScore FXY¹ Future Solvency

Variables of Interest

DivNI Dividend-to-Net Income Ratio

DPS_%Chg DPS Change

Div Init Payout Ratio Change
Div Init Dividend Initiations

 μ ROA_LXY¹ Past Profitability σ ROA_LXY¹ Past Risk-Taking Past Solvency

Bank Controls

Size Relative Size

ETA Capitalization LTA Specialization

METHODOLOGY & RESULTS

LLPTA Level of Loss Provisions

NPLLTL Credit Quality

STWSFTA Liquidity

ROA Profitability
MSTA Market Risk

Recap Recapitalization

TCBuffer Regulatory Capital Position

Loans_Chg Loans Growth

Macroeconomic Controls

UNRATE GDP_Growth

VIXCLS

Unemployment Rate GDP Growth Rate Market Volatility

TB3MS Risk-Free Rate

Considers 3-Year and 5-Year rolling windows

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

DATA N

METHODOLOGY & RESULTS

CONCLUSIONS

Dividends and Profitability

Examine the relation between dividend-to-income ratios (DivNI) and profitability (μ ROA) among top-holder BHCs, CBs, and CUs

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Profitability_{it} =
$$\alpha + \beta_1$$
Past Profitability_{it-1} + β_2 Dividend Ratio_{it-1} + γ' Bank Controls_{it-1} + δ' Macroeconomic Controls_{t-1} + ϵ_{it}

Data

1996 - 2017 16,713 BHC Obs. (5,287 Listed) 24,461 CB Obs. (255 Listed) 31.014 CU Obs.

Variables

Profitability: μ ROA_F(L)3Y & μ ROA_F(L)5Y DivNI Ratio: In Banks, Dividends Declared to Net Income; In CUs Dividend expenses for ordinary shares (or share certificates) to Net Income

Results

Negative relation between dividend ratios and future profitability among Banks (β_2 < 0). Higher β_2 for Listed Banks.

Positive relation between dividend ratios and future profitability among CUs ($\beta_2 > 0$). Higher β_2 than in BHCs.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

DATA N

METHODOLOGY & RESULTS

CONCLUSIONS

Dividend Ratios and Future Profitability

Yes
ROA_F5Y

Bank Holding Companies	Listed		Non-Listed		
DivNI	-0.001**	-0.001***	-0.000**	-0.000***	
	(-2.806)	(-4.441)	(-2.889)	(-3.303)	
Constant	0.023**	0.017**	0.023***	0.019***	
	(2.300)	(2.461)	(3.107)	(3.493)	
R^2	0.389	0.333	0.354	0.290	
Observations	5,287	5,287	11,426	11,426	

Commercial Banks	Lis	ited	Non-Listed		
DivNI	-0.001	-0.004***	-0.000**	-0.000***	
	(-0.349)	(-4.231)	(-2.611)	(-3.017)	
Constant	0.012*	0.003	0.014***	0.013***	
	(2.067)	(0.793)	(4.204)	(5.018)	
R^2	0.574	0.556	0.175	0.153	
Observations	255	255	24,206	24,206	

Credit Unions	Regular	Regular Shares		Share Certificates		
DivNI	0.003***	0.002***	0.001**	-0.000		
	(9.435)	(11.207)	(2.344)	(-0.262)		
Constant	0.017**	0.012**	0.032***	0.030***		
	(2.659)	(2.731)	(3.240)	(4.133)		
R^2	0.383	0.338	0.444	0.501		
Observations	32,014	32,014	30,178	30,179		

- Higher dividends ↔ lower future profitability in Banks.
- Stronger in listed banks.
- Exacerbate Information asymmetry.Due to Managerial over-optimism;
- market discipline; risk-shifting.
 - ☐ In CUs: Dividends as a Signalling Mechanism

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Dividends and Risk-Taking

Analyze the relation between dividend ratios and risk-taking, measured as the volatility of ROA (σ ROA_FXY) for top-holder US BHCs, CBs, and CUs

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future
$$Risk-Taking_{it}=\alpha+\beta_1 Past$$
 $Risk-Taking_{it-1}+\beta_2 Dividend$ $Ratio_{it-1}+\gamma' Bank$ $Controls_{it-1}+\delta' Macroeconomic$ $Controls_{t-1}+\epsilon_{it}$

Data

1996 - 2017 16,545 BHC Obs. (5,214 Listed)

23,938 CB Obs. (246 Listed)

31,945 CU Obs.

Variables

Risk-Taking: σ ROA_F(L)3Y & σ ROA_F(L)5Y **DivNI** Ratio: In Banks, Dividends Declared to Net Income; In CUs Dividend expenses for ordinary shares (or share certificates) to Net Income.

Results

Positive relation between dividend ratios and risk-taking across both listed BHCs, CBs, and CUs ($\beta_2 > 0$). Weaker β_2 among non-listed BHCs.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

 σ ROA_F5Y

DATA I

 σ ROA_F5Y

METHODOLOGY & RESULTS

CONCLUSIONS

Dividend Ratios and Future Risk-Taking

Controls	Yes	Yes	Yes	Yes
Bank Holding Companies	Lis	ted	Non-	Listed
DivNI	0.001***	0.001***	0.000**	0.000
	(4.472)	(3.291)	(2.171)	(0.995)
Constant	-0.016*	-0.008*	-0.014***	-0.010***
	(-2.076)	(-1.788)	(-2.970)	(-3.051)
R ²	0.270	0.269	0.198	0.150
Observations	5 214	5 214	11 331	11 332

	(-2.076)	(-1./88)	(-2.970)	(-3.051)
R^2	0.270	0.269	0.198	0.150
Observations	5,214	5,214	11,331	11,332
Commercial Banks	Lis	Listed		Listed
DivNI	0.003**	0.004***	0.000	-0.000
	(2.538)	(5.905)	(1.056)	(-0.158)
Constant	-0.010***	-0.001	-0.004*	-0.000
	(-3.579)	(-0.278)	(-1.796)	(-0.247)
R^2	0.304	0.323	0.0658	0.0657
Observations	246	246	23,692	23,692
Crodit Unions	Pogular	r Sharoc	Sharo Co	rtificatos

Credit Unions	Regular	Regular Shares		Share Certificates		
DivNI	0.002***	0.002***	0.003***	0.002***		
	(9.110)	(13.923)	(4.517)	(3.659)		
Constant	-0.003	0.004**	0.012	0.022***		
	(-1.327)	(2.403)	(1.568)	(3.345)		
R^2	0.355	0.314	0.608	0.569		
Observations	31,944	31,945	30,093	30,095		

- Higher dividend ratios ↔ higher future risk-taking.
- Strong influence of market participants. Investors require risk-return premiums.
- ☐ Managers consider **upward profit potential** of risk strategies.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BA

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Dividends and Solvency

Analyze the relation between dividend ratios and solvency, measured as the Distance to Default (ZScore_FXY) for top-holder US BHCs, CBs, and CUs

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Solvency_{it} =
$$\alpha + \beta_1$$
Past Solvency_{it-1} + β_2 Dividend Ratio_{it-1} + γ' Bank Controls_{it-1} + δ' Macroeconomic Controls_{t-1} + ϵ_{it}

Data

1996 - 2017 12,716 BHC Obs. (4,275 Listed); 16,576 CB Obs. (121 Listed); 26,868 CU Obs.

Variables

Solvency: ZScore_F(L)3Y & ZScore_F(L)5Y **DivNI** Ratio: In Banks, Dividends Declared to Net Income; In CUs Dividend expenses for ordinary shares (or share certificates) to Net Income.

Results

Negative relation between dividend ratios (DivNI) and future solvency (Z-Score) for BHCs, CBs, & CUs ($\beta_2 < 0$). Largest β_2 among Listed CBs and CUs.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Dividend Ratios and Future Solvency

VARIABLES	ZScore_F3Y	ZScore_F5Y	ZScore_F3Y	ZScore_F5Y
Controls	Yes	Yes	Yes	Yes

Bank Holding Companies	Listed		Non-Listed		
DivNI	-0.687***	-0.076	-0.244**	-0.046	
	(-3.612)	(-0.308)	(-2.585)	(-0.519)	
Constant	11.640**	7.567***	12.289***	7.940***	
	(2.837)	(3.097)	(3.742)	(3.372)	
R^2	0.286	0.334	0.226	0.258	
Observations	4,275	3,389	8,441	6,516	

Commercial Banks	Listed		Non-Listed		
DivNI	-2.183***	-2.355***	-0.097***	-0.040***	
	(-4.373)	(-6.771)	(-6.612)	(-5.508)	
Constant	15.151**	12.122	8.967***	8.297***	
	(2.567)	(1.636)	(7.390)	(8.523)	
R ²	0.359	0.577	0.0750	0.116	
Observations	121	84	16,455	12,944	

Credit Unions	Regular	Regular Shares		Share Certificates		
DivNI	-0.728***	-0.852***	-1.253***	-0.816***		
	(-7.346)	(-9.526)	(-6.731)	(-4.039)		
Constant	6.929***	1.791	-0.491 -5.576* (-0.187) (-2.843			
	(3.897)	(1.362)				
R^2	0.475	0.465	0.613	0.625		
Observations	26,868	22,241	25,228 20,753			

- Higher dividend ratios \leftrightarrow lower future solvency
- In CUs, managerial over-optimism ; existence of depositor discipline (Gómez-Biscarri et al., 2020).
- □ In BHCs, reluctance to cut dividends; managerial overoptimism; market discipline; managerial remuneration incentives.

2. THE PUZZLE OF DIVIDEND PAYOUTS

SUMMARY INTRODUCTION BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS The results point to significant differences in payout policies across financial institutions. Distinct nature of dividends Different shareholder objectives and market reactions. Within banks, emphasis on stakeholder and market demands. Within credit unions, emphasis on transparency. First study to provide a comparative analysis of payout policy within BHCs, CBs, and CUs. While shareholders are a vital component of the financial industry, dividends should more closely convey managerial (insider) expectations about banks' future prospects.

Oversight and restrictions of bank payouts can mitigate risk-shifting and adverse signalling.

CHAPTER 3

COST STRUCTURE AND LENDING QUALITY

WITH DR. MARÍA DEL CARMEN ARANDA LEÓN & DR. JAVIER ARELLANO GIL

Chapter 3

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Motivation

Importance of non-performing loans for the viability of the financial system.

Longest credit expansion in recent history; NPL implications to follow Increased presence of online banks (lightweight cost structures)

Cost-Cutting: Solution for Low Profitability?

Research Questions

- 1. Do all banks have the same capability of achieving healthy growth? Identify if cost structures influence lending quality.
- 2. What are the reasons for low efficient banks to lack the skills needed to screen and monitor borrowers? Identify the determinants of efficiency.
- 3. Is it worth for banks to have a more rigid cost-structure?
- 4. Do lending growth timing and volume dynamics influence lending quality?

Findings

- 1. Credit Expansions lead to lower lending quality. The effect is weaker among banks with more fixed cost structures.
- 2. Several Bank Characteristics seem to determine Cost Efficiency.
- 3. Banks with more fixed cost structures have smaller short-run cost increases in response to the same lending growth level (Banker et al., 2014), yet reduce future NPL to a greater extent.
- 4. Lending growth too late or too quickly exert negative influence on lending quality.

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Prolonged period of growth in commercial and industrial loans leading up to the Global

- Financial Crisis.
- o Loan volume doubled to \$1,509.84 Billion by 2008 from \$879.85 Billion in 2004
- Excessive risk-taking arising from favorable macroeconomic environment and weak regulatory oversight
 - o 1 in 20 loans deemed delinquent while collateral assets severely impaired
 - o 7x NPL increase (from 0.73% in 2006 to 5.30% in 2010)

3. COST STRUCTURE AND LENDING QUALITY

et al., 2014)

SUMMARY	Background	DATA	METHODOLOGY & RESULTS	CONCLUSIONS
	re on the long-term ling growth affects len		poral determinants of lending of all banks equally.	quality.
Negative rela	tion between lendi	ng volume	and lending quality (Clair, 1992;	Keeton, 1999).
 Excessive Le banks(Clair, 	O .	ng Quality af	ter a three-year lag. Especially at u	nder-capitalized
			g volume due to (1) increased composic expansion. (Keeton, 1999).	etition and (2)
 Fast acceleration failures (Kee 	0.0	n could lead	to a surge in loan losses, reduce pr	ofits, and cause bank
Existence of (Congestion Costs, w	hich incre	ase with more flexible cost stru	ıctures (Banker

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY E

BACKGROUND DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Efficiency and Risk relationship: Four Main Hypotheses

'Bad luck'	'Skimping'	'Bad management'	'Moral Hazard'
↑ NPL↓ Efficiency	↑ Efficiency>↑ NPL	↓ Efficiency→↑ NPL	↓ Capital→↑ NPL
External events influence the number of resources needed and expenses incurred in managing problem loans. Bad Loan Exogeneity triggers inefficiency. Lower cost efficiency is a result of extra monitoring cost of increased (through exogenous shock) number of bad borrowers.	Deliberate managerial restrictions on loan monitoring resources to improve short-run cost-efficiency. ↓ Costs→↑ Efficiency Trade-off between short-term efficiency and long-term lending quality.	Insufficient managerial capacities in overseeing operations. Poor cost-performing banks would probably also have poor skills in credit screening and/or monitoring, and thus, larger proportion of problem loans. Berger and DeYoung (1997); Delis et al. (2017); Fiordelisi et al. (2011); Ghosh (2015); Podpiera	Less capitalized banks may respond to moral hazard incentives by increasing (credit) risk.
Berger and DeYoung (1997); Rossi et al. (2005)	Berger and DeYoung (1997)	and Weill (2008); Williams (2004)	Berger and DeYoung (1997)

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS

CONCLUSIONS

Increased NPL variability across banks points to differences in the quality of banks' lending growth.

Two decision channels as important components of proper credit risk management within banks:

Momentum: Banks' ability to optimally time lending growth.

Measured via a spectrum of lending growth dynamics indicators (when and how fast lending grows)

Alleviate competitive pressures and reduce "panic" lending and "Fear of Missing Out" when credit demand becomes too saturated.

Vision: Banks' ability to anticipate optimal opportunities and market conditions and the capability to cease on them.

Measured via banks' <u>capacity</u> (cost structure rigidity) to pursue optimal lending growth strategies.

A good 'vision' enables banks to pinpoint good lending growth prospects. BUT, strong and robust cost structures condition banks to take optimal advantage of convenient opportunities.

3. Cost Structure and Lending Quality

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Hypotheses

H1: Lending Quality is Conditional on Banks' Cost Structure

H1a: Banks with Higher Cost Rigidity¹ will have Lower increases in NPL.

- □ Soft Information Advantage (Berger and Udell, 2002; Petersen, 2004):
 - Requires an extensive net of premises to capture the information and an extensive set of structures and processes to transmit, store, and use it. These resources are mainly fixed.
 - The collection of 'Soft' information could not be increased in the short-run by adding new discrete amounts of resources.

H1b: The reduction of NPLs upon an increase in ST Costs is higher for banks with more rigid cost structures.

- Lower Congestion Costs: Cost structures affect the collection and processing of hard information from additional costumers. More flexible short-run cost structures, with higher variable and lower fixed costs, suffer from congestion costs (Banker et al., 2014).
- Due to the limited capacity of the fixed input, the congestion in the additional costs gets worse with higher increases in volume.
- o An increase in the fixed input relieves the congestion for the variable input, making it more productive.

¹Cost rigidity is measured as employee salaries and office expenses, which are relatively fixed throughout time, as a fraction of operating expenses.

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Hypotheses

NPL Ratios	ın
H2a: Earlier lending growth will have smaller negative impact on lending quality.	
☐ Early growth likely to be characterized by higher choices of borrower profiles and risk scores.	
Higher loan demand during Early stages of credit cycles relieves pressure to take on high risk credit During the final stretches of credit expansions, fewer quality borrowers forces banks to grab for wha can.	
H2b: Rapid lending growth will have larger negative impact on lending quality.	
☐ Lax risk management practices or insufficient resources for adequate borrower screening.	
The effect could be especially strong among banks with less fixed cost structures (to be empirically tes	sted)

DATA

METHODOLOGY & RESULTS

BACKGROUND

Bank Holding Company

1994 - 2017 (Emphasis on 1998-2010) Annualized Year-Fnd Data

Unbalanced Sample: 14,872 observations corresponding to 2,179 BHCs Balanced Sample: 3,571 observations for 347 BHCs textcolorgray(1998 - 2010)

Commercial Banks and Bank Holding Company Regulatory Database

The Federal Reserve Bank of Chicago

Ouarterly Regulatory Reports (FR Y-9C)

Alternative Data

SUMMARY

Data Sample

Commercial Banks (FFIEC 031/041) - The Federal Reserve Bank of Chicago

Credit Unions (Call Reports) - National Credit Unions Administration (NCUA)¹ Bank Annual Reports - Compustat

Macroeconomic Data

Open Data Repository - World Bank

CONCLUSIONS

 $^{^{}m 1}$ Excludes CUs with assets below \$50 million (inconsistent reporting frequency across our sample period) $^{
m 2}$.

Chapter 3

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Dependent Variables

 Δ NPL Lending Quality Indicator

Change in NPL-to-TL Ratio

Variables of Interest

Prem

Δ Loans Lending Growth

Cost Structure Indicator

Fixed-to-Total Costs Ratio Banker Slope β of Δ Loans = $\alpha + \beta \Delta$ Cost

 σ Cost/Loans Cost-to-Loans Variance

A Cost Short-run Cost Changes Distance When Lending Grows?

Distance from peak (0-1) Current Year/ (Max - Min Year)

Lend. Growth How Fast Lending Grows? (Normalized) Current Growth/Total Growth Log Growth Horizon How Long Lending Grows? Log (Max - Min Years)

Interaction Effects

H1a: $\Delta loans \times Prem$ H1b: $\triangle Cost \times Prem$

H2: Lend. Growth (Normalized) × Distance

Bank Controls

Size Relative Size Solv Capitalization ITA Specialization

Macroeconomic Controls

Change in Unemployment △ Unemp Δ Int Change in Real Int. Rate Inf % Change in CPI

3. Cost Structure and Lending Quality

SUMMARY

BACKGROUND DATA METHODOLOGY & RESULTS

CONCLUSIONS

Do Cost Structures Influence Lending Quality?

Explore Inter-temporal relations among lending quality and (1) Lending Growth; (2) Short-run cost changes; and (3) how cost structures influence the results of (1) and (2).

Panel model (Bank and Year FEs & Robust Variance Estimator SEs)

$$\begin{split} \Delta \textit{NPL}_{it} &= \sum_{j=0}^{2} \beta_{1j} \Delta \textit{Loans}_{it-j} + \sum_{j=1}^{2} \beta_{2j} \Delta \textit{Loans}_{it-j} \times \textit{Prem}_{it-j} + \sum_{j=1}^{2} \beta_{3j} \Delta \textit{Cost}_{it-j} \times \textit{Prem}_{it-j} + \sum_{j=1}^{2} \beta_{4} \textit{Prem}_{it-j} \\ &+ \beta_{5j} \textit{Cost}_{it-j} + \gamma' \textit{Bank} \quad \textit{Controls}_{it} + \delta' \textit{Macroeconomic} \quad \textit{Controls}_{t} + \mu_{i} + \lambda_{t} + \epsilon_{it} \end{split}$$

Data

1998 - 2010

14,751 BHC Observations

Variables

Short-run Cost Changes (Δ Cost): changes in costs w.r.t. changes in lending.

Cost Structure (Prem): fixed to total costs Interaction Effects: Δ Cost \times Prem & Δ Loans \times

Prem

Results

Positive Relation for Lagged values of lending growth $(\beta_{1i} > 0);$

Negative relation for the interaction between lending growth and cost rigidity with future NPLs ($\beta_{2i} < 0$);

Negative relation for the interaction between short-run cost changes and cost rigidity with future NPLs ($\beta_{3i} < 0$).

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Do Cost Structures Influence Lending Quality? (Panel)

VARIABLES	Δ NPL $_t$				
Lending Growth _t	-0.057	-0.057	-0.057	-0.058	-0.058
	(-0.800)	(-0.800)	(-0.797)	(-0.808)	(-0.810)
Lending Growth _{t-1}	0.332***	0.332***	0.318	0.329***	0.258
	(5.162)	(5.162)	(1.212)	(5.103)	(0.974)
Lending Growth _{t-2}	0.360***	0.360***	0.863***	0.357***	0.910***
	(5.473)	(5.473)	(2.860)	(5.403)	(3.098)
$Prem_{t-1}$			0.801	0.821	0.755
			(1.369)	(1.489)	(1.289)
$Prem_{t-2}$			-0.804	-1.295**	-0.753
			(-1.289)	(-2.322)	(-1.212)
Lending Growth $_{t-1} \times Prem_{t-1}$			0.121		0.516
			(0.065)		(0.275)
Lending Growth $_{t-2} \times Prem_{t-2}$			-3.690*		-4.003*
			(-1.676)		(-1.855)
$\Delta \operatorname{Cost}_{t-1}$				0.002**	0.002**
				(2.336)	(2.547)
$\Delta \operatorname{Cost}_{t-2}$				0.020***	0.019***
				(3.250)	(3.075)
$\Delta \operatorname{Cost}_{t-1} \times \operatorname{Prem}_{t-1}$				-0.015	-0.016
				(-0.989)	(-1.086)
$\Delta \operatorname{Cost}_{t-2} \times \operatorname{Prem}_{t-2}$				-0.130**	-0.127**
				(-2.386)	(-2.285)
R ²	0.0665	0.0665	0.0672	0.0678	0.0681
Observations	14,751	14,751	14,751	14,751	14,751

Chapter 3

3. Cost Structure and Lending Quality

METHODOLOGY & RESULTS SUMMARY BACKGROUND DATA CONCLUSIONS

Do Cost Structures Influence Lending Quality?

- Ex-ante high lending growth lead to higher non-performing loans in the future.
 - o In line with Clair (1992); Keeton (1999); Ghosh (2015).
- Short-run cost increases lead to decreases in lending quality.
 - In line with 'Bad management' hypothesis.
 - Low cost efficiency is due to lackluster managerial competence.
 - Inadequate loan underwriting and monitoring lead to high non-performing loans.
 - Lower increases in NPLs among banks with higher cost-rigidity
 - Banks with higher fixed costs are better equipped to cope with increased lending demand due to Soft Informational Advantages and Lower Congestion Costs. (Banker et al., 2014).
 - Banks with **higher fixed costs** achieve higher short-term cost efficiency while maintaining changes in future NPLs to relatively low proportions.

3. Cost Structure and Lending Quality

SUMMARY

BACKGROUND

DATA

METHODOLOGY & RESULTS

CONCLUSIONS

Do Lending Growth Dynamics Influence Lending Quality?

Inter-temporal relationships among lending quality and (4) Relative Distance of Lending Growth; (5) Relative Change of Lending Growth; and the interaction of (4) and (5).

Panel model (Bank and Year FEs & Robust Variance Estimator SEs)

$$\Delta \textit{NPL}_{it} = \sum_{j=0}^{2} \beta_{1j} \Delta \textit{Loans}_{it-j} + \sum_{j=1}^{2} \beta_{2j} \Delta \textit{Loans}_{it-j} \times \textit{Prem}_{it-j} + \sum_{j=1}^{2} \beta_{3j} \Delta \textit{Cost}_{it-j} \times \textit{Prem}_{it-j} + \sum_{j=1}^{2} \beta_{4} \textit{Prem}_{it-j} + \beta_{5j} \textit{Cost}_{it-j}$$

$$+\gamma^{\prime}$$
 Bank Controls $_{it}+\delta^{\prime}$ Macroeconomic Controls $_t+\mu_i+\lambda_t+\epsilon_{it}$

$$+\beta_{12}$$
Distance_{it-1} + $\beta_{13}\Delta$ Loans_Normalized_{it-1} + β_{14} Distance_{it-1} × Δ Loans_Normalized_{it-1}

Data

1998 - 2010

14,751 BHC Observations

Variables

Distance from peak (0-1) (Current Year/ (Max - Min Year))

Lend. Growth (Normalized): How Fast Lending Grows? (Current Growth/Total Growth)

Results

Distance is negatively related to NPLs ($eta_{12} < 0$);

Faster Growth is positively associated with NPLs ($\beta_{13}>0$);

Faster growth at the beginning of the growth cycle has a smaller negative effect on NPLs. ($\beta_{14} < 0$)

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Do Lending Growth Dynamics Influence	Lending (Quality? (P	anel)	
Lending Growth _{t-2}	0.910***	1.058**	1.057**	1.103**
	(3.098)	(2.154)	(2.150)	(2.056)
Prem _{t-1}	0.755	-0.014	-0.052	0.061
	(1.289)	(-0.013)	(-0.049)	(0.051)
$Prem_{t-2}$	-0.753	0.777	0.780	1.421
	(-1.212)	(0.753)	(0.757)	(1.269)
Lending Growth $_{t-1} \times Prem_{t-1}$	0.516	2.175	2.294	1.726
	(0.275)	(0.610)	(0.644)	(0.407)
Lending Growth $_{t-2} \times Prem_{t-2}$	-4.003*	-6.123*	-6.079*	-6.554
	(-1.855)	(-1.667)	(-1.653)	(-1.622)
$\Delta \operatorname{Cost}_{t-1}$	0.002**	0.010***	0.010***	-0.000
	(2.547)	(3.219)	(3.167)	(-0.008)
$\Delta \operatorname{Cost}_{t-2}$	0.019***	0.034***	0.034***	0.034***
	(3.075)	(7.124)	(6.973)	(6.383)
$\Delta \operatorname{Cost}_{t-1} \times \operatorname{Prem}_{t-1}$	-0.016	-0.077**	-0.075**	0.066
	(-1.086)	(-2.252)	(-2.182)	(0.471)
$\Delta \operatorname{Cost}_{t-2} \times \operatorname{Prem}_{t-2}$	-0.127**	-0.274***	-0.270***	-0.255***
	(-2.285)	(-4.650)	(-4.542)	(-4.009)
Distance _{t-1}		-0.140*	-0.132*	-0.029
		(-1.956)	(-1.831)	(-0.320)
Lending Growth $_{t-1}$ (Normalized)				0.704***
				(2.896)
Lending Growth _{t-1} (Normalized) \times Distance _{t-1}				-0.806***
				(-3.218)
Lending Growth $_{t-1} \times Distance_{t-1}$			-0.333	
			(-1.089)	
R ²	0.068	0.102	0.102	0.097
Observations	14,751	7,950	7,950	6,969

3. COST STRUCTURE AND LENDING QUALITY

SUMMARY BACKGROUND DATA METHODOLOGY & RESULTS CONCLUSIONS

Do Lending Growth Dynamics Influence Lending Quality?

- Lending Growth closer to the peak of the lending growth horizon is associated with lower Lending Quality.
- ☐ More rapid growth is associated with increases in non-performing loans.
 - Consistent with Congestion Costs Hypothesis: Sharp Increases in lending volume strain banks' ability to
 adequately process loan applications (limited resources → relaxed standards → high risk score borrowers).
- ☐ But, Rapid growth further from the cycle peak have a smaller impact on Lending Quality.
- But, hapid growth further from the cycle peak have a smaller impact on zending quality.
 - Robustness Analyses: 2-Step GMM Model (Alt. Proxies (Linear Model)

3. COST STRUCTURE AND LENDING QUALITY

METHODOLOGY & RESULTS SUMMARY BACKGROUND DATA CONCLUSIONS The 'Bad Management' phenomenon that happens in the short-run seems to be the result of 'Skimping' in the long-run cost structure decisions (deliberate managerial decision to limit the costs associated with fixed assets) Avoiding long-term 'Skimping' by adopting a more fixed cost structure allows banks to achieve both higher short-term increases in cost efficiency and lower future NPL. Contribution to the literature on the determinants of lending quality. First study to analyze how bank operational characteristics influence the relation between lending growth and lending quality. First empirical evaluation of the congestion costs hypothesis. Importance of results for novel business models with lightweight cost-structures and the predominant low-interest rate monetary policies.

CONCLUDING REMARKS

Substantial regulatory and supervisory contributions in strengthening the financial system since the onset of the Global Financial Crisis.
But, more effort is needed, especially for banks with generally weak financial conditions; overly ambitious risk-taking strategies; opaque payout policies; and inefficient cost-cutting strategies.
Especially now, in a period characterized by deficient profitability, high competition, ever-increasing market pressures, and the rise of new entrants with low-cost business models
Unprecedented challenges pave the road ahead. As the COVID-19 crisis develops, (EU) banks are likely to face growing non-performing loan (NPL) volumes, which can reach levels similar to those recorded in the aftermath of the sovereign debt crisis (EBA, 2021).
Dividend Restrictions during Covid-ignited economic slowdown particularly effective as a means to ensure that banks continue to provide funds to households and firms. Especially given the 'Moral Hazard' Implications of Dividends in this highly leveraged industry.

1. SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

CCAR

19 + Largest BHCs

SCAP

19 Largest BHCs

mote market confidence.

10/19 BHCs Shortfall: \$185B

Payout Restrictions & Recap.

TA > \$100B	Quantitative Assesment: TA > \$50B	Fed-run ST: TA > \$10B
	+ Qualitative Layers: TA > \$250B	+ Company-run ST: TA > \$50B
Baseline and Adverse Scenarios	Baseline and Adverse Scenarios	Baseline and Adverse Scenarios
2-year horizon	9-quarter horizon	9-quarter horizon
Objectives: Quantify effect on capital and extent of capital needs; o Assess BHCs' capital sufficiency to absorb losses while continuing to operate "normally";	Objectives: Provide Fed with tools and authority to determine if BHCs have sufficient capital to resume or increase payouts o Restrictions on dividend distri-	Objectives: Assess sufficient capital to absorb losses; maintain access to funding and credit intermediation; meet counter-party and creditor obligations;
Avert further distress;	butions if payouts would erode capital positions.	 Help market participants identify downside risks and assess
o Reduce uncertainty and pro-		capital adequacy.

DFAST

19 + Largest BHCs

o Disclosures enhance trans-

discipline.

parency and promote market

Domestic SIFIs	RSSD ID	US Owned	Initial Stress Test	Listed	Data
Ally Financial Inc.*	1562859	Yes	2009	-	Yes
American Express Company	1275216	Yes	2009	Yes	Yes
Bancwest Corporation	5005998	Yes	2016	Yes	-
BB&T Corporation	1074156	Yes	2009	Yes	Yes
BMO Financial Corp.	1245415	-	2014	Yes	-
Capital One Financial Corporation	2277860	Yes	2009	Yes	Yes
Comerica Incorporated	1199844	Yes	2014	Yes	Yes
Discover Financial Services	3846375	Yes	2014	Yes	Yes
Fifth Third Bancorp	1070345	Yes	2009	Yes	Yes
Huntington Bancshares Incorporated	1068191	Yes	2014	Yes	Yes
KeyCorp	1068025	Yes	2009	-	Yes
M&T Bank Corporation	1037003	Yes	2014	Yes	Yes
MetLife, Inc.	2945824	-	2009	Yes	Yes**
Northern Trust Corporation	1199611	Yes	2014	Yes	Yes
The PNC Financial Services Group, Inc.	1069778	Yes	2009	Yes	Yes
RBS Citizens Financial Group, Inc.	1132449	-	2014	Yes	Yes****
Regions Financial Corporation	3242838	Yes	2009	Yes	Yes
SunTrust Banks, Inc.	1131787	Yes	2009	Yes	Yes
TD Group US Holdings LLC	3606542	-	2016	Yes	-
U.S. Bancorp	1119794	Yes	2009	Yes	Yes
Zions Bancorporation	1027004	Yes	2014	Yes	Yes

Global SIFIs	RSSD ID	US Owned	Initial Stress Test	Listed	Data
Bank of America Corporation	1073757	Yes	2009	Yes	Yes
The Bank of New York Mellon Corporation	3587146	Yes	2009	Yes	Yes
BBVA Compass Bancshares, Inc.	1078529	-	2014	Yes	-
Citigroup Inc.	1951350	Yes	2009	-	Yes
Deutche Bank	1032473	-	2015	Yes	-
The Goldman Sachs Group, Inc.	2380443	Yes	2009	Yes	Yes
HSBC North America Holdings Inc.	3232316	-	2014	Yes	-
JPMorgan Chase & Co.	1039502	Yes	2009	Yes	Yes
Morgan Stanley	2162966	Yes	2009	Yes	Yes
MUFG Americas Holdings Corporation***	1378434	-	2014	Yes	-
Santander Holdings USA, Inc.	3981856	-	2014	Yes	-
State Street Corporation	1111435	Yes	2009	Yes	Yes
Wells Fargo & Co.	1120754	Yes	2009	Yes	Yes

No data on foreign-owned BHCs: BMO Financial Corp., TD Group, BBVA Compass Bankshares Inc., Deutche Bank, HSBC North America Holdings Inc., MUFG Americas Holdings Corporation, and Santander Holdings USA Inc.

	2009	2012	20	13	20	14	20	15	20	16
omestic SIFIs	SCAP	CCAR	DFAST	CCAR	DFAST	CCAR	DFAST	CCAR	DFAST	CCAI
lly Financial Inc.*	-	-	_	-	+	+	+	+	+	+
merican Express Company	+	+	+	-	+	+	+	+	+	+
Sancwest Corporation									+	+
B&T Corporation	+	+	+	-	+	+	+	+	+	+
MO Financial Corp.***					+	+	+	+	+	+
apital One Financial Corporation	+	+	+	+	+	+	+	+	+	+
omerica Incorporated					+	+	+	+	+	+
Discover Financial Services					+	+	+	+	+	+
ifth Third Bancorp	-	+	+	+	+	+	+	+	+	+
luntington Bancshares Incorporated					+	+	+	+	+	+
leyCorp	-	+	+	+	+	+	+	+	+	+
N&T Bank Corporation					+	+	+	+	+	+
MetLife, Inc. **	+	-								
Iorthern Trust Corporation					+	+	+	+	+	+
he PNC Financial Services Group, Inc.	-	+	+	+	+	+	+	+	+	+
BS Citizens Financial Group, Inc.					+	-	+	+	+	+
legions Financial Corporation	-	+	+	+	+	+	+	+	+	+
unTrust Banks, Inc.	-	-	+	+	+	+	+	+	+	+
D Group US Holdings LLC***									+	+
J.S. Bancorp	+	+	+	+	+	+	+	+	+	+
ions Bancorporation					-	-	+	+	+	+

	2009	2012	20	13	20	14	20	15	20:	16
Global SIFIs	SCAP	CCAR	DFAST	CCAR	DFAST	CCAR	DFAST	CCAR	DFAST	CCAR
Bank of America Corporation	-	+	+	+	+	+	+	+	+	+
The Bank of New York Mellon Corporation	+	+	+	+	+	+	+	+	+	+
BBVA Compass Bancshares*** Inc.					+	+	+	+	+	+
Citigroup Inc.	-	-	+	+	+	-	+	+	+	+
Deutche Bank***							+	-	+	-
The Goldman Sachs Group, Inc.	+	+	+	-	+	+	+	+	+	+
HSBC NA Holdings Inc.****					+	-	+	+	+	+
JPMorgan Chase & Co.	+	+	+	-	+	+	+	+	+	+
Morgan Stanley	-	+	+	+	+	+	+	+	+	+
MUFG Americas Holdings Corporation***					+	+	+	+	+	+
Santander USA, Inc.****					+	-	+	-	+	-
State Street Corporation	+	+	+	+	+	+	+	+	+	+
Wells Fargo & Co.	-	+	+	+	+	+	+	+	+	+

Summary Statistics

All Banks					
	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	min	max
CCAR	112,611	0.00	0.07	0.00	1.00
FedST	112,611	0.01	0.08	0.00	1.00
σROA_F3Y	113,083	0.00	0.00	0.00	0.04
ZScoreF3Y	79,012	4.86	1.02	0.05	7.58
σ ROA_L3Y	107,999	0.00	0.00	0.00	0.04
ZScore_L3Y	107,516	4.95	1.05	-0.12	14.29
Size	112,611	13.45	1.37	5 96	21.67
FTA	112.611	0.09	0.04	0.03	0.84
LTA	112.610	0.65	0.13	0.00	0.99
STWSF_TA	111,475	0.05	0.06	0.00	0.45
MS_TA	112,611	0.19	0.12	0.00	0.80
Recap'd	112,611	0.03	0.16	0.00	1.00
NPLLTL	112,595	0.01	0.02	0.00	0.11
ROA	111,270	0.00	0.00	-0.02	0.03
QLLP_TA	111,197	0.00	0.00	0.00	0.02
NPLLTL_Chg	106,740	0.29	2.51	-1.00	54.75
UNRATE	112.611	5.78	1.50	3.90	9.90
VIXCLS	112,611	20.26	7.20	11.03	58.60
GDP_Chg	112,611	0.67	0.59	-2.11	1.89

ress Test Banks	(1)	(2)	(3)	(4)	(
VARIABLES	N	mean	sd	min	m
Buffer (CCAR)	414	2.34	1.89	-3.48	8.
Buffer (FedST)	489	2.00	2.38	-7.29	8.
σROA_F3Y	621	0.00	0.00	0.00	0.
ZScoreF3Y	368	5.02	0.77	2.65	6.
σ ROA_L3Y	641	0.00	0.00	0.00	0.
ZScore_L3Y	641	4.67	1.01	2.07	11.
Size	647	19.58	1.10	17.82	21.
ETA	647	0.11	0.02	0.05	0.
LTA	647	0.50	0.24	0.02	0.
STWSF_TA	647	0.11	0.08	0.00	0.
MS_TA	647	0.22	0.11	0.03	0.
Recap'd	647	0.12	0.32	0.00	1.
NPLLTL	647	0.02	0.02	0.00	0.
ROA	646	0.00	0.00	-0.02	0.
QLLP_TA	646	0.00	0.00	0.00	0.
NPLLTL_Chg	630	0.09	2.17	-0.99	53.
UNRATE	647	7.34	1.73	4.90	9.
VIXCLS	647	19.40	6.81	12.74	45.

1. SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

Summary Statistics

Listed Banks

	(1)	(2)	(3)	(4)	(5)
VARIABLES	N	mean	sd	min	max
CCAR	34,510	0.01	0.12	0.00	1.00
FedST	34,510	0.02	0.13	0.00	1.00
σ ROA_F3Y	33,822	0.00	0.00	0.00	0.02
ZScoreF3Y	24,126	4.93	1.12	0.43	7.58
σ ROA_L3Y	33,526	0.00	0.00	0.00	0.04
ZScore_L3Y	33,505	5.06	1.10	0.05	11.54
Size	34,510	14.51	1.66	11.54	21.67
ETA	34,510	0.10	0.05	0.03	0.84
LTA	34,509	0.65	0.13	0.00	0.96
STWSF_TA	34,409	0.08	0.07	0.00	0.45
MS_TA	34,510	0.18	0.11	0.00	0.80
Recap'd	34,510	0.05	0.22	0.00	1.00
NPLLTL	34,497	0.01	0.02	0.00	0.11
ROA	34,310	0.00	0.00	-0.02	0.03
QLLP_TA	34,301	0.00	0.00	0.00	0.02
NPLLTL_Chg	33,230	0.18	1.89	-1.00	54.75
UNRATE	34,510	5.86	1.57	3.90	9.90
VIXCLS	34,510	20.13	7.41	11.03	58.60
GDP_Chg	34,510	0.63	0.61	-2.11	1.89

Listed Stress Test Banks

	(1)	(2)	(3)	(4)	(5
VARIABLES	N	mean	sd	min	max
Buffer (CCAR)	386	2.46	1.77	-0.20	8.21
Buffer (FedST)	454	2.15	2.28	-7.29	8.21
σROA_F3Y	570	0.00	0.00	0.00	0.01
ZScoreF3Y	328	5.07	0.67	2.77	6.78
σROA_L3Y	591	0.00	0.00	0.00	0.01
ZScore_L3Y	591	4.73	0.95	2.46	11.2
Size	595	19.66	1.10	17.82	21.6
ETA	595	0.11	0.02	0.05	0.10
LTA	595	0.48	0.25	0.02	0.8
STWSF_TA	595	0.11	0.08	0.00	0.33
MS_TA	595	0.23	0.11	0.03	0.58
Recap'd	595	0.11	0.32	0.00	1.00
NPLLTL	595	0.02	0.02	0.00	0.0
ROA	595	0.00	0.00	-0.02	0.0
QLLP_TA	595	0.00	0.00	0.00	0.0
NPLLTL_Chg	579	0.10	2.26	-0.99	53.3
UNRATE	595	7.28	1.74	4.90	9.90
VIXCLS	595	19.34	6.83	12.74	45.00
GDP_Chg	595	0.46	0.50	-1.39	1.22

Stress Tests and Solvency

- 1. Analyze differences in Future Solvency among ST and Non-ST BHCs.
- 2. Analyze differences in Future Solvency among ST BHCs with ex-ante high solvency.

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Solvency =
$$\alpha + \beta_1 Past$$
 Solvency + $\beta_2 Stress$ Test Dummy + $\beta_3 Past$ Solvency *Stress Test Dummy + $\gamma Bank$ Controls + $\delta Macroeconomic$ Controls + $\eta_i + \upsilon_q + \epsilon_{iq}$

Data

1996 - 2016 70,263 Observations 2,455 BHCs

Variables

Solvency: ZScore_F(L)3Y & ZScore_F(L)5Y Stress Test Dummy: CCAR (2011 – 2016) & FedST (2009 – 2016)

Results

- 1. Lower Future Solvency among ST BHCs ($\beta_2 < 0$)
- 2. Higher Future Solvency among ST BHCs with Ex-ante High Solvency ($\beta_3 > 0$)

1. SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

		CCAR Exercises		SCAP and CCAR Exercises			
VARIABLES	All Banks (1) ZScore_F3Y	Listed (2) ZScore_F3Y	Non-listed (3) ZScore_F3Y	All Banks (4) ZScore_F3Y	Listed (5) ZScore_F3Y	Non-listed (6) ZScore_F3	
ZScore_L3Y	-0.026	-0.047	-0.030	-0.026	-0.049	-0.030	
	(-0.899)	(-1.295)	(-1.174)	(-0.908)	(-1.334)	(-1.161)	
ZScore_L3Y × CCAR	0.298***	0.368***	0.211				
	(3.266)	(3.846)	(1.397)				
CCAR	-0.584**	-0.943***	-0.290				
	(-2.109)	(-3.436)	(-0.531)				
ZScore_L3Y × FedST				0.273***	0.346***	0.129	
				(3.345)	(3.906)	(1.167)	
FedST				-0.399	-0.793**	0.085	
				(-1.660)	(-2.586)	(0.167)	
Constant	9.722***	10.605***	9.483***	9.746***	10.671***	9.479***	
	(3.987)	(3.888)	(4.301)	(3.990)	(3.893)	(4.298)	
R ²	0.170	0.180	0.168	0.171	0.180	0.168	
Observations	70,263	22,745	47,518	70,263	22,745	47,518	
Number of groups	2,455	788	1,970	2,455	788	1,970	
FE	Yes	Yes	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	

1. SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

Do Stress-Tested Banks Exhibit Different Solvency Characteristics Ex-ante?

ST Banks are the Largest and Most Systematically Important Institutions. Could our results simply be a reflection of size and importance?

Match and Rank 100 Non-ST BHCs with ST BHCs based on 2008Q3 distance matrices.

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Solvency =
$$\alpha + \beta_1$$
Past Solvency + β_2 Post2009(2005) + β_3 Post2009(2005) × ST + β_4 ST + γ Bank Controls + δ Macroeconomic Controls + η_i + υ_q + ϵ_{iq}

2009 - 2016; 2005-2008 ST BHCs (18 Banks) Non-ST BHCs (100 Banks)

Variables

Post2009: Dummy = 1 for years \geq 2009 Post2005: Dummy = 1 if 2005 \leq year \geq 2008 ST: Dummy = 1 for BHCs s.t. Sress Tests

Results

Higher Future Solvency among ST BHCs after 2009 ($\beta_3 < 0$)

No evidence of differences in solvency among ST and Similar Non-ST BHCs between 2005 and 2008!

Do Stress-Tested Banks Exhibit Different Solvency Characteristics?

VARIABLES	Original Sample ZScore_F3Y	100 Similar Banks ZScore_F3Y	50 Similar Banks ZScore_F3Y
Post2009	0.635***	0.887***	0.973***
	(3.790)	(3.313)	(3.740)
ST × Post2009	0.671***	0.435***	0.228*
	(4.730)	(3.940)	(1.929)
ZScore_L3Y	-0.022	0.048	-0.006
	(-0.648)	(0.852)	(-0.109)
Constant	11.803***	11.397***	12.288***
	(4.312)	(3.337)	(4.044)
R ²	0.170	0.178	0.207
Observations	70,263	6,993	4,317
Number of groups	2,455	116	68
FE	Yes	Yes	Yes
Controls	Yes	Yes	Yes

Robustness

VARIABLES	Original Sample ZScore_F3Y	100 Similar Banks ZScore_F3Y	50 Similar Banks ZScore_F3Y
Post2005	-0.758***	-1.184***	-1.093***
	(-6.524)	(-9.291)	(-10.689)
ST × Post2005	-0.388**	-0.013	-0.069
	(-2.324)	(-0.098)	(-0.779)
ZScore_L3Y	-0.021	0.037	0.002
	(-0.701)	(0.761)	(0.033)
Constant	6.414***	3.819**	3.895***
	(3.698)	(2.134)	(3.396)
R ²	0.226	0.318	0.324
Observations	70,263	6,993	4,317
Number of groups	2,455	116	68
FE	Yes	Yes	Yes
Controls	Yes	Yes	Yes

1. SUPERVISORY STRESS TESTS AND BANK RISK-TAKING

Do Stress-Tested Banks Exhibit Different Risk-Taking Characteristics Ex-ante?

ST Banks are the Largest and Most Systematically Important Institutions.

Could our results simply be a reflection of size and importance?

Match and Rank 100 Non-ST BHCs with ST BHCs based on 2008Q3 distance matrices.

(Size; Capitalization; Credit Quality; Liquidity; Specialization; and Risk-Taking

Dynamic Panel Model with Driscoll and Kraay Standard Errors

$$\begin{aligned} \textit{Future} \quad \textit{Risk} - \textit{Taking} &= \alpha + \beta_1 \textit{Past} \quad \textit{Risk} - \textit{Taking} + \beta_2 \textit{Post2009(2005)} + \beta_3 \textit{Post2009(2005)} \times \textit{ST} \\ &+ \beta_4 \textit{ST} + \gamma \textit{Bank} \quad \textit{Controls} + \delta \textit{Macroeconomic} \quad \textit{Controls} + \eta_i + \upsilon_q + \epsilon_{iq} \end{aligned}$$

Data

2009 - 2016; 2005-2008 ST BHCs (18 Banks) Non-ST BHCs (100 Banks)

Variables

Post2009: Dummy = 1 for years \geq 2009 Post2005: Dummy = 1 if 2005 \leq year \geq 2008 ST: Dummy = 1 for BHCs s.t. Sress Tests

Results

Lower Future Risk-Taking among ST BHCs after 2009 ($\beta_3 < 0$)

No evidence of differences in risk-taking among ST and Similar Non-ST BHCs between 2005 and 2008!

Do Stress-Tested Banks Exhibit Different Risk-Taking Characteristics?

VARIABLES	Original Sample σROA_F3Y	100 Similar Banks σROA_F3Y	50 Similar Banks σROA_F3Y
Post2009	-0.001***	-0.001**	-0.002***
	(-3.539)	(-2.254)	(-2.701)
ST × Post2009	-0.001***	-0.001***	-0.001***
	(-3.822)	(-4.094)	(-3.803)
σ ROA_L3Y	-0.047	0.069	-0.077
	(-0.849)	(0.714)	(-1.118)
Constant	-0.011***	-0.012*	-0.012**
	(-2.682)	(-1.887)	(-2.361)
R ²	0.161	0.213	0.223
Observations	100,945	8,145	5,007
Number of groups	3,349	118	69
FE	Yes	Yes	Yes
Controls	Yes	Yes	Yes

Robustness

VARIABLES	Original Sample σROA_F3Y	100 Similar Banks σROA_F3Y	50 Similar Banks σROA_F3Y
Post2005	0.001***	0.002***	0.002***
	(3.077)	(7.188)	(6.886)
ST × Post2005	0.001***	0.000	0.000
	(3.248)	(0.003)	(0.090)
σROA_L3Y	-0.068	0.036	-0.084
	(-1.143)	(0.321)	(-0.983)
Constant	-0.004	-0.000	0.000
	(-1.423)	(-0.054)	(0.109)
R^2	0.175	0.317	0.322
Observations	100,945	8,145	5,007
Number of groups	3,349	118	69
FE	Yes	Yes	Yes
Controls	Yes	Yes	Yes

Statistically significant differences in risk-taking among ST and Non-ST Banks after the implementation of Stress Tests (Post2009) but not before (Post2005).

Stress-testing has influenced risk-taking in banks which had similar characteristics and behaved alike prior to the implementation of stress-testing.

Do Stress-Tested Banks Exhibit Different Solvency Characteristics?

- Statistically significant differences in solvency among ST and Non-ST Banks after the implementation of Stress Tests (Post2009).
 - ST banks exhibit significantly higher solvency
 - These differences are not driven by fundamental characteristics.
 - o ST and Non-ST banks did not diverge in terms of solvency prior to 2009.
- □ Stress-testing has influenced solvency in banks that were very similar prior to stress-testing

Stress Test Results and Risk-Taking

Previous Results are independent of ST Outcomes. Do Projected Capital Levels Influence Risk-Taking?

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Risk — Taking =
$$\alpha + \beta_1$$
Past Risk — Taking + β_2 Buffer(Pass)

 $+eta_3$ Past Risk — Taking * Buffer(Pass) + γ Bank Controls + δ Macroeconomic Controls + ϵ_{iq}

Data

2012 - 2016; 2009 - 2016 453 Observations (26 ST BHCs) CCAR (2011 - 2016) & FedST (2009 - 2016)

Variables

Risk-Taking: σ ROA_F(L)3Y & σ ROA_F(L)5Y Buffer: Projected Capital Ratio in excess of Regulatory Minimums Pass: Dummy = 1 if Favorable Quantitative ST Result

Results

Higher Future Risk-Taking among ST BHCs with Ex-ante Lower ST-Projected Capital Buffers ($\beta_3 < 0$)

Higher Future Risk-Taking among ST BHCs who failed previous Stress Test Exercise ($\beta_3 < 0$)

Do Projected Capital Levels Influence Risk-Taking?

	CCAR E	xercises	SCAP and CC	AR Exercises
VARIABLES	Buffer (1)	Pass (2) σROA_F3Y	Buffer (3) σROA_F3Y	Pass (4) σROA_F3\
σ ROA_L3Y	0.237***	0.387***	0.095***	0.196***
	(6.966)	(9.426)	(4.273)	(6.819)
σ ROA_L3Y $ imes$ Buffer	-0.037***		-0.027***	
	(-6.418)		(-5.752)	
Buffer	0.000		0.000	
	(1.376)		(1.138)	
σ ROA_L3Y × Pass		-0.377***		-0.278***
		(-8.813)		(-7.276)
Pass		0.000		0.000*
		(1.447)		(1.788)
Constant	-0.032***	-0.015*	-0.022***	-0.013**
constant	(-3.789)	(-1.922)	(-3.914)	(-2.236)
R ²	0.444	0.538	0.564	0.588
Observations	387	387	453	453
Number of entity	26	26	26	26
FE	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes

Stress Test Results and Risk-Taking

- Risk-taking among ST banks is conditional on the projected capital levels.
- o Weaker under SCAP
- Ex-ante risk-tolerant ST banks, with inadequate capital levels, and ex-ante risk-averse banks with sufficient capital ratios exceeding regulatory minimums exhibit increased levels of ROA volatility in the future.
 - o Smaller incentives to avoid default (Blum, 1999; Calem et al., 2020).
 - High costs of raising equity = \uparrow Risk today $\rightarrow \uparrow$ Capital tomorrow (Blum, 1999).
 - o Risk-shifting benefits of deposit insurance (Calem and Rob, 1999)
 - o Charter value preservation among low-buffer banks (Blum, 1999; Calem and Rob, 1999)
 - Well-capitalized banks → more likely to increase risk-taking (lower default risk, higher charter values, and (likely) lower supervisory scrutiny).

Stress Tests and Solvency

☐ **ST BHCs** exhibit **lower future solvency** than non-ST BHCs.

- o Stronger under CCAR
- Likely due to implicit guarantees and Too-Systematically-Important-To-Fail designation.
- o Could trigger higher moral hazard incentives among ST banks.
- But, result is conditional on ex-ante solvency.
 - Low (high) ex-ante solvency → lower (higher) future solvency.
 - o Consistent with safest banks' contribution in restoring overall stability (Hirtle et al., 2009).

Stress Test Results and Solvency

Future Solvency is conditional on the projected capital levels.

- Ex-ante more solvent banks with high projected capital levels are more prone to have higher future solvency.
 - o Positive Capital Buffers × Solvency and Future Solvency relation under CCAR

Stress Test Results and Solvency

Previous Results are independent of ST Outcomes. Do Projected Capital Levels Influence Solvency?

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future Solvency =
$$\alpha + \beta_1$$
Past Solvency + β_2 Buffer(Pass) + β_3 Past Solvency * Buffer(Pass) + γ Bank Controls + δ Macroeconomic Controls + ϵ_{iq}

Data

2012 - 2016; 2009 - 2016 209 Observations (19 ST BHCs) CCAR (2011 - 2016) & FedST (2009 - 2016)

Variables

Solvency: ZScore_F(L)3Y & ZScore_F(L)5Y Buffer: Projected Capital Ratio in excess of Regulatory Minimums Pass: Dummy = 1 if Favorable Quantitative ST Result

Results

Higher Future Solvency among ST BHCs with Ex-ante Higher ST-Projected Capital Buffers ($\beta_3 > 0$)

Higher Future Risk-Taking among ST BHCs who passed previous Stress Test Exercise ($\beta_3 > 0$)

Do Projected Capital Levels Influence Solvency?

	CCAR Ex	cercises	SCAP and CC	AR Exercises
VARIABLES	Buffer (1) ZScore_F3Y	Pass (2) ZScore_F3Y	Buffer (3) ZScore_F3Y	Pass (4) ZScore_F3Y
ZScore_L3Y	-0.490*** (-5.760)	0.070 (0.379)	-0.103 (-1.492)	0.311***
ZScore_L3Y × Buffer	0.072*** (4.400)	,,	-0.005 (-0.370)	,,
Buffer	-0.285*** (-3.619)		0.057 (0.867)	
ZScore_L3Y × Pass		-0.326 (-1.633)		-0.609*** (-4.519)
Pass		1.676* (1.865)		2.935*** (4.903)
Constant	60.317*** (3.900)	28.693* (1.740)	24.596*** (3.179)	5.370 (0.649)
R ²	0.497	0.421	0.608	0.654
Observations	144	144	209	209
Number of entity	18	18	19	19
FE	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes

Stress Test Results and Solvency

- □ Solvency among ST banks is conditional on the projected capital levels.
 - o $\,$ Positive relation between Capital Buffers imes PSolvency and future Solvency
 - o Significant under CCAR
- Ex-ante more solvent banks with high projected capital levels are more prone to have higher solvency in the future.

Can Stress Test Results and Capital Buffers be Predicted?

Analyze potential indicators of future stress test outcomes

Two-stage Heckmann Selection Model

1. Selection (Probit) Equation tests whether bank characteristics and past risk-taking predict ST results:

$$Pass^* = \Phi(\beta Bank_Fundamentals + \epsilon_{ia})$$

2. Heckmann selection model (OLS observation equation) for Buffer examines the factors that influence the size of the capital buffer or shortfall while controlling for selection bias:

Buffer =
$$\alpha + \beta Bank_Fundamentals + \lambda_{ia} + \epsilon_{ia}$$

 Φ follows a cumulative normal density function, $[0, \sigma^2]$; effect of unobserved factors on the likelihood of failure to meet required regulatory minimum capital ratios is captured by the residual (λ). The residual is used to construct a selection bias control factor in the second stage of the selection model.

Data

2009 - 2016

453 Observations (24 ST BHCs)

Results

Bank Fundamentals do serve as signals for ST outcomes.

Can Stress Test Results & Capital Buffers be Predicted?

	CCAR Exer	cises (437 Obser	vations)	SCAP and CCAR Exercises (499 Observations)				
VARIABLES	Pass	Buffer	Mill's	Pass	Buffer	Mill's		
σROA_L3Y	28.067	661.228***		-91.645	669.964***			
	(0.09)	(3.68)		(-0.42)	(5.23)			
ZScore_L3Y	1.309	0.534***		0.780	0.540***			
	(1.54)	(3.02)		(1.58)	(3.88)			
Size	-0.545	-0.277**		-0.079	-0.285***			
	(-0.99)	(-2.12)		(-0.36)	(-2.70)			
ETA	-5.326	20.370***		14.884	22.262***			
	(-0.29)	(3.05)		(1.50)	(4.21)			
LTA	-24.020**	-7.797***		-3.849	-8.281***			
	(-2.21)	(-8.22)		(-1.55)	(-11.25)			
QLLP_TA	-57.745	281.757***		21.749	242.697***			
	(-0.27)	(2.91)		(0.29)	(4.69)			
NPLL_TL	-3.242	-22.483***		-26.627**	-23.643***			
	(-0.21)	(-2.99)		(-2.56)	(-3.76)			
NPLL Chg	-0.118	-0.068**		0.329	-0.071***			
_	(-0.07)	(-2.34)		(0.39)	(-2.80)			
STWSF_TA	-23.453**	-9.106***		-7.309**	-9.053***			
	(-2.34)	(-5.18)		(-2.08)	(-6.27)			
ROA	24.652	157.233***		-8.926	135.579***			
	(0.27)	(2.67)		(-0.22)	(3.97)			
Recap'd	4.195	-0.441		-1.429***	-0.408			
	(.)	(-0.46)		(-3.10)	(-0.94)			
MS_TA	-35.308**	-4.681**		-0.098	-5.261***			
	(-2.14)	(-2.54)		(-0.02)	(-3.61)			
λ		,	1.542**		,	1.293**		
			(2.05)			(2.38)		

Interest Rate Implications

Risk-Taking and Interest Rate Changes

risk-taking and interest Rate	- J	CCAR Exercises		SCAI	P and CCAR Exerc	ises
	CCAR	Buffer	Pass	FedST	Buffer	Pass
VARIABLES	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y	σ ROA_F3Y
σ ROA_L3Y	-0.064	0.123***	0.086***	-0.064	0.069***	0.059***
	(-1.072)	(4.157)	(3.082)	(-1.072)	(3.120)	(2.691)
FedFundsChg	-0.000*	0.000**	0.001***	-0.000*	0.000	0.001***
	(-1.686)	(2.295)	(4.012)	(-1.686)	(1.612)	(3.611)
FedFundsChg × ST	0.000			0.000**		
	(1.191)			(2.082)		
ST	-0.001**			-0.001***		
	(-2.304)			(-3.295)		
FedFundsChg × Buffer		-0.000***			-0.000***	
		(-2.779)			(-3.736)	
Buffer		-0.000**			-0.000**	
		(-2.154)			(-2.197)	
FedFundsChg × Pass			-0.001***			-0.001***
			(-3.967)			(-4.019)
Pass			-0.000***			-0.000***
			(-4.202)			(-2.912)
Constant	-0.006	-0.053***	-0.042***	-0.006*	-0.037***	-0.035***
	(-1.659)	(-6.820)	(-5.500)	(-1.671)	(-6.629)	(-6.084)
R ²	0.148	0.392	0.459	0.149	0.546	0.553
Observations	100,945	387	387	100,945	453	453
FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes	Yes

The Importance of Dividend Policy for Firm Value

"[relevance Theorem" (Miller and Modigliani, 1961)							
0	Modified to include varying market imperfections	(Lease	et al.,	1999):	tax	rates,	information	n

- asymmetries (Bhattacharya, 1979; Miller and Rock, 1985) and agency costs (Easterbrook, 1984); the role of the legal framework (La Porta et al., 2000); catering incentives (Baker and Wurgler, 2004); firms' life-cycle stage (DeAngelo et al., 2006)
- Mixed empirical results on the impact of tax clienteles, signalling effects, and life-cycle factors (Farrar et al., 1967; Brennan, 1970; Healy and Palepu, 1988; Grullon et al., 2005; DeAngelo et al., 2006; Denis and Osobov, 2008; Von Eije and Megginson, 2008; De Cesari, 2012)
 - Information content of dividends is more important than agency, catering, or behavioral determinants of dividend policy (Turner et al., 2013)
- Differences in agency problems, capital structures, and regulatory environments raise questions about the extent to which these theories apply to the financial industry (Foerster and Sapp, 2005)

D	eterminants of Dividend Policy: Risk-Shifting Hypothesis	
	Institutional Investors Influence Payout Policy (Ben-David, 2010).	

- □ Bank Dividend Payouts = Risk-shifting Mechanism. Continued high dividend payments during the financial crisis were an attempt to shift value from creditors to shareholders.
- □ Negative Externalities of Bank Dividend Payouts: one banking company's dividend payments affect the risk of default and equity values of other banking companies, who are creditors of the first bank (Acharya, Le and Shin, 2017)
- ☐ Lower Risk-Shifting Incentives and Higher Probability of Dividend Reductions among CEOs with higher inside debt-to-equity proportions. (Srivastav et al., 2014)
- Higher dividends are associated with higher risk in the cross-section before and during the GFS (Onali, 2014; Kanas, 2013)
 - Higher Risk in Banks → Larger Dividend Payouts (Onali, 2014); positive relation between dividend payout ratios and risk of default (Kanas, 2013)

Determinants of Dividend Policy: Signalling Hypothesis

- ☐ Stock price responses to dividend changes, initiations, and omissions to gauge the informational content of dividends (Forti and Schiozer, 2015)
 - Dividend Change Announcements → ↑Stock Returns in non-financial firms (Aharony and Swary, 1980; Asquith and Mullins Jr, 1983; Bajaj and Vijh, 1990; Kalay and Loewenstein, 1985)
 - ↓Dividends/Omissions → ↓ Stock Prices in Banks (Bessler and Nohel, 1996, 2000)
 - Extreme Market Sensitivity to Bank Dividend Decreases during Crises.
 - Dividends = Signaling Mechanism in banks (Filbeck and Mullineaux, 1993; Collins et al., 1995; Boldin and Leggett, 1995)
 - Dividends = Essential source of profitability & liquidity information for depositors (Kauko, 2012)
 - Signaling = significant determinant of payout rates for BHCs during GFC, but not before (Abreu and Gulamhussen, 2013)
 - o Depositors sensitivity to bank liquidity due to negative effects of bank runs and fire sales.
 - o Dividend Increases to Keep Depositors Calm and Prevent Bank Runs. (Kauko, 2012)
 - Institutional investors are more sensitive in periods of high information asymmetry and more prone to engage in runs. (Huang and Ratnovski, 2011; Oliveira, 2015)

Summary Statistics: BHCs

Bank-Specific and Macroeconomic Controls

Non-Listed	BHCs		Listed BHCs				
mean sd	min	max	N	mean	sd	min	max
0.01 0.01	-0.05	0.07	7933	0.01	0.01	-0.05	0.07
0.01 0.1	0.00	1.00	7933	0.05	0.22	0.00	1.00
0.00 0.00	0.00	0.03	7932	0.00	0.00	0.00	0.03
0.01 0.01	0.00	0.11	7931	0.01	0.01	0.00	0.11
0.02 0.06	-0.41	1.55	7855	0.04	0.1	-0.41	1.55
12.99 0.89	10.1	20.12	7933	14.55	1.67	11.73	21.67
0.09 0.03	0.03	0.83	7933	0.1	0.04	0.03	0.84
0.64 0.13	0.00	0.99	7933	0.65	0.14	0.00	0.96
0.04 0.05	0.00	0.45	7910	0.08	0.07	0.00	0.45
0.19 0.12	0.00	0.79	7933	0.19	0.11	0.00	0.76
0.07 0.06	-0.13	1.2	5649	0.07	0.06	-0.07	1.52
5.66 1.37	3.97	9.61	7933	5.71	1.41	3.97	9.61
20.67 5.58	12.39	32.69	7933	19.94	5.82	12.39	32.69
2.87 1.53	-2.54	4.75	7933	2.75	1.53	-2.54	4.75
2.86 2.05	0.03	5.82	7933	2.74	2.13	0.03	5.82
2.86	2.05	2.05 0.03	5 2.05 0.03 5.82	5 2.05 0.03 5.82 7933	5 2.05 0.03 5.82 7933 2.74	i 2.05 0.03 5.82 7933 2.74 2.13	; 2.05 0.03 5.82 7933 2.74 2.13 0.03

Summary Statistics: BHCs

Variables of Interest												
		Non	-Listed BI	HCs			Listed BHCs					
VARIABLES	N	mean	sd	min	max	N	mean	sd	min	max		
DivNI	14377	0.19	0.25	0.00	1.00	7039	0.23	0.24	0.00	1.00		
DivNI_%Chg	5657	0.10	1.08	-1.00	13.24	3551	0.09	0.82	-1.00	13.24		
DPS_%Chg	30	0.41	1.08	-0.62	5.08	3787	0.11	0.60	-1.00	5.08		
Div_Init	19291	0.05	0.22	0.00	1.00	8311	0.05	0.21	0.00	1.00		
μROA_F3Y	19286	0.25	0.21	-2.33	3.02	8311	0.21	0.26	-2.33	3.02		
μ ROA_F5Y	19286	0.24	0.21	-2.33	3.02	8311	0.20	0.26	-2.33	3.02		
μ ROA_L3Y	17028	0.27	0.17	-2.33	3.02	7866	0.26	0.19	-2.28	3.02		
μ ROA_L5Y	17115	0.27	0.16	-2.33	2.87	7866	0.26	0.18	-2.28	3.02		
σROA_F3Y	19089	0.11	0.16	0.00	2.67	8159	0.12	0.19	0.00	1.91		
σ ROA_F5Y	19093	0.13	0.17	0.00	2.67	8159	0.15	0.21	0.00	1.91		
σ ROA_L3Y	16574	0.09	0.13	0.00	2.09	7783	0.09	0.14	0.00	2.60		
σ ROA_L5Y	16667	0.10	0.13	0.00	1.64	7785	0.10	0.14	0.00	2.60		
ZScore_F3Y	14008	4.89	0.94	0.19	7.54	6022	5.00	1.09	0.49	7.43		
ZScore_F5Y	10949	4.69	0.93	-0.08	6.94	4728	4.71	1.04	0.66	7.20		
ZScore_L3Y	16522	4.97	0.88	0.48	12.28	7779	5.18	0.96	0.08	9.25		
ZScore_L5Y	16529	4.87	0.86	0.58	12.28	7783	5.00	0.93	0.08	9.25		

Summary Statistics: CBs

Bank-Specific and Macroeconomic Controls

Non-Listed CBs							Listed CBs				
VARIABLES	N	mean	sd	min	max	N	mean	sd	min	max	
ROA	32450	0.01	0.01	-0.05	0.07	308	0.01	0.01	-0.05	0.04	
Recap'd	39512	0.00	0.04	0.00	1.00	308	0.04	0.19	0.00	1.00	
LLPTA	32449	0.00	0.00	0.00	0.03	308	0.00	0.00	0.00	0.03	
NPLLTL	34970	0.00	0.01	0.00	0.11	308	0.00	0.00	0.00	0.03	
Loans_Chg	37473	0.04	0.21	-0.41	1.55	305	0.04	0.05	-0.22	0.39	
Size	39144	11.58	1.7	2.3	19.02	308	12.9	1.25	8.84	17.56	
ETA	32467	0.14	0.11	0.03	0.84	308	0.1	0.05	0.03	0.67	
LTA	39135	0.55	0.23	0.00	0.99	308	0.68	0.13	0.12	0.94	
STWSFTA	39073	0.02	0.06	0.00	0.45	308	0.02	0.04	0.00	0.27	
MSTA	39144	0.16	0.17	0.00	0.8	308	0.15	0.11	0.00	0.52	
TCBuffer	26758	0.23	1.44	-0.06	170.47	260	0.06	0.08	0.00	1.32	
Unemployment	39512	5.76	1.44	3.97	9.61	308	5.53	1.25	3.97	9.61	
VIXCLS	39512	19.9	5.85	12.39	32.69	308	20.1	5.75	12.39	32.69	
GDP_Chg	39512	2.89	1.55	-2.54	4.75	308	3.06	1.42	-2.54	4.75	
TB3MS	39512	3.24	2.04	0.03	5.82	308	3.46	1.88	0.05	5.82	

Summary Statistics: CBs

Variables of Interest												
		No	n-Listed C	Bs			Listed CBs					
VARIABLES	N	mean	sd	min	max	N	mean	sd	min	max		
DivNI	27150	0.22	0.27	0.00	1.00	275	0.21	0.22	0.00	0.95		
DivNI_%Chg	13177	0.03	0.83	-1.00	13.24	150	0.16	1.24	-1.00	13.24		
DPS_%Chg	1	-0.15	-	-0.15	-0.15	150	0.19	0.78	-1.00	5.08		
Div_Init	44546	0.02	0.14	0.00	1.00	337	0.06	0.23	0.00	1.00		
μROA_F3Y	36899	0.21	0.33	-2.33	3.02	337	0.20	0.27	-1.73	1.05		
μ ROA_F5Y	36903	0.21	0.32	-2.33	3.02	337	0.20	0.25	-1.73	0.93		
μ ROA_L3Y	32047	0.22	0.37	-2.33	3.02	307	0.23	0.25	-2.33	1.08		
μ ROA_L5Y	32054	0.21	0.37	-2.33	3.02	307	0.20	0.28	-2.33	1.08		
σROA_F3Y	36106	0.16	0.22	0.00	3.24	326	0.14	0.23	0.00	1.41		
σ ROA_F5Y	36111	0.17	0.23	0.00	3.24	326	0.15	0.23	0.00	1.42		
σ ROA_L3Y	31626	0.15	0.21	0.00	3.79	304	0.13	0.21	0.01	1.74		
σ ROA_L5Y	31631	0.18	0.22	0.00	3.79	304	0.17	0.25	0.01	1.74		
ZScore_F3Y	24627	4.71	0.95	-0.62	9.12	171	4.83	1.16	0.47	7.21		
ZScore_F5Y	19252	4.59	0.90	0.71	9.38	116	4.61	1.09	0.72	6.65		
ZScore_L3Y	31552	4.80	0.90	0.18	9.57	304	4.91	1.02	0.89	7.21		
ZScore_L5Y	31566	4.66	0.91	0.18	9.57	304	4.63	1.05	0.89	7.16		

Summary Statistics: CUs

Bank-Specific and Macroeconomic Controls Non-Listed CUs Listed CUs VARIABLES Ν sd min Ν mean sd min max max ROA 40944 -0.01 38800 0.01 -0.01 Recap'd 41736 1.00 39591 0.01 1.00 LLPTA 39591 41736 0.00 0.00 NPLLTL 41736 0.01 0.00 0.06 39591 0.01 0.01 0.00 0.06 Loans_Chg 40881 0.03 -0.07 0.16 38737 0.01 0.03 -0.07 0.16 41736 0.99 10.82 18.19 39591 0.99 10.82 18.19 Size 0.24 0.24 FTA 41736 0.11 39591 0.11 0.92 0.92 ITA 41736 0.15 0.17 39591 0.15 0.17 STWSFTA 41736 0.00 0.12 39591 0.02 0.12 MSTA 41736 0.12 0.00 0.6 39591 0.08 0.12 0.00 0.6 TCBuffer 33690 0.03 -0.07 0.42 31857 0.03 0.03 -0.07 0.42 Unemployment 41736 6.04 1.63 3.97 9.61 39591 6.05 1.62 3.97 9.61 VIXCLS 41736 20.09 6.01 12.39 39591 20.08 5.98 12.39 GDP Chg 41736 1.62 -2.544.75 39591 2.4 1.61 4.75 TB3MS 41736 2.15 0.03 5.82 39591 2.12 2.1 0.03 5.82

Summary Statistics: CUs

Variables of Interest											
		No	n-Listed C	Us			Listed CUs				
VARIABLES	N	mean	sd	min	max	N	mean	sd	min	max	
DivNI	38115	0.15	0.16	0.00	1.00	35970	0.27	0.20	0.01	1.00	
DivNI_%Chg	34820	0.06	0.86	-1.00	10.05	32860	0.11	0.82	-1.00	9.29	
DPS_%Chg	38830	-0.08	0.34	-0.84	2.47	36580	0.04	0.57	-0.83	4.12	
Div_Init	43481	0.00	0.02	0.00	1.00	41336	0.00	0.03	0.00	1.00	
μ ROA_F3Y	43481	0.25	0.22	-1.03	2.70	41160	0.32	0.21	-0.97	2.22	
μ ROA_F5Y	43481	0.24	0.20	-1.03	2.70	41182	0.30	0.20	-0.97	2.22	
μ ROA_L3Y	41089	0.30	0.22	-1.03	2.70	38800	0.36	0.20	-0.97	1.85	
μ ROA_L5Y	41109	0.32	0.22	-1.03	2.70	38820	0.37	0.20	-0.97	1.85	
σ ROA_F3Y	43358	0.26	0.23	0.00	2.64	41047	0.32	0.23	0.00	2.13	
σROA_F5Y	43363	0.25	0.21	0.00	2.64	41072	0.32	0.22	0.00	2.13	
σ ROA_L3Y	40887	0.31	0.25	0.00	1.91	38582	0.35	0.23	0.00	1.64	
σ ROA_L5Y	40907	0.33	0.24	0.00	1.91	38602	0.38	0.20	0.00	1.64	
ZScore_F3Y	37789	4.00	0.87	1.57	7.15	35719	3.72	0.84	1.46	7.13	
ZScore_F5Y	32904	3.88	0.75	1.58	6.78	31031	3.57	0.73	1.55	9.73	
ZScore_L3Y	40816	3.90	0.88	1.19	10.04	38513	3.68	0.83	1.06	11.54	
ZScore_L5Y	40825	3.74	0.77	1.19	10.04	38522	3.54	0.72	1.06	11.54	

Dividend Initiations and Solvency

Analyze the relation between dividend initiations and solvency for top-holder BHCs, CBs, and CUs.

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Future
$$Solvency_{it} = \alpha + \beta_1 Past$$
 $Solvency_{it-1} + \beta_2 Dividend$ $Initiations_{it-1} + \gamma' Bank$ $Controls_{it-1} + \delta' Macroeconomic$ $Controls_{t-1} + \epsilon_{it}$

Data

1996 - 2017 13,697 BHC Obs. (4,453 Listed) 17,084 CB Obs. (123 Listed) 27,733 CU Obs.

Variables

Solvency: ZScore_F(L)3Y & ZScore_F(L)5Y **Div_Init**: Dummy equal to 1 for first ever dividend distribution; 0 otherwise.

Results

Positive relation between dividend initiations and solvency for both listed and non-listed BHCs ($\beta_2 > 0$). Larger β_2 among listed BHCs.

Dividend Initiations and Future Solvency

VARIABLES	ZScore_F3Y	ZScore_F5Y	ZScore_F3Y	ZScore_F5Y
Controls	Yes	Yes	Yes	Yes

Bank Holding Companies	Lis	ted	Non-l	Listed
Div_Init	0.533***	0.498***	0.295***	0.314***
	(4.424)	(7.958)	(4.502)	(4.845)
Constant	9.025*	5.995**	10.176***	6.740**
	(2.055)	(2.682)	(2.996)	(2.743)
R^2	0.290	0.354	0.227	0.264
Observations	4,453	3,527	9,244	7,011

Commercial Banks	Lis	ted	Non-	Listed
Div_Init	0.183	-0.272*	0.015	0.029
	(0.691)	(-2.141)	(0.394)	(1.290)
Constant	15.324**	11.490	8.466***	7.649***
	(2.446)	(1.639)	(7.133)	(7.742)
R^2	0.283	0.421	0.0724	0.110
Observations	123	86	16,961	13,311

Credit Unions	Regular	Shares	Share Certificates		
Div_Init	0.126	0.110	-0.179	-0.063	
	(1.220)	(1.616)	(-1.658)	(-0.873)	
Constant	6.185***	1.292	0.772	-4.191*	
	(3.492)	(0.961)	(0.253)	(-1.998)	
R^2	0.464	0.444	0.552	0.592	
Observations	27,733	23,045	26,070	21,539	

- Higher Dividend Initiations ↔ Higher future solvency
- ☐ In BHCs, conservative dividend changes policies: Dividend Initiations solely in the presence of favorable solvency expectations.
- ☐ In CUs & CBs, Insignificant results: Dividend Initiations when necessary.

Dividend Changes

Supplemental Analysis on the relation between dividend changes and profitability, risk-taking, and solvency for top-holder BHCs, CBs, and CUs

Dynamic Panel Model with Driscoll and Kraay Standard Errors

Replaces Dividend Payout Ratios with Quarterly Dividend-Per-Share Percentage Changes

Dividend Changes & Profitability	Dividend Changes & Risk-Taking	Dividend Changes & Solvency
1996 - 2017	1996 - 2017	1996 - 2017
3,232 Obs. for Listed BHCs 142 Obs. for Listed CBs 32,340 Obs. for CUs	3,189 Obs. for Listed BHCs 139 Obs. for Listed CBs 32,268 Obs. for CUs	2,702 Obs. for Listed BHCs 78 Obs. for Listed CBs 27,179 Obs. for CUs
Positive relation between dividend-per-share changes and future profitability for credit	Negative relation between future ROA Volatility and dividend changes for listed BHCs.	Positive relation between dividend changes and future solvency among listed BHCs.
unions. Non-significant results among banks	Positive relation among non-listed BHCs, listed CBs, and Credit Unions.	More strongly pronounced negative relation among CUs and listed CBs.

Dividend-Per-Share Percentage Changes

DPS Changes and Future Profitability

	Listed	BHCs	Liste	d CBs	CUs - Re	g. Shares	CUs - Sh	are Cert.
VARIABLES	μ ROA_F3Y	μ ROA_F5Y						
DPS_%Chg	0.000	0.000	0.000	-0.000	0.000**	0.000***	0.000***	0.000***
	(1.157)	(1.195)	(0.224)	(-0.114)	(2.635)	(3.593)	(3.056)	(3.287)
Constant	0.036***	0.024***	0.016*	0.002	0.019**	0.014**	0.031***	0.030***
	(3.380)	(3.609)	(2.109)	(0.282)	(2.772)	(2.892)	(3.562)	(4.272)
R ²	0.447	0.335	0.760	0.703	0.362	0.327	0.458	0.508
Observations	3,232	3,232	142	142	32,340	32,340	30,490	30,490

DPS Changes and Future Risk-Taking

VARIABLES	σ ROA_F3Y	σ ROA_F5Y						
DPS_%Chg	-0.000*	-0.000**	0.000***	0.000*	0.000**	0.000	0.001***	0.000**
	(-2.109)	(-2.409)	(3.489)	(1.783)	(2.138)	(1.702)	(3.029)	(2.833)
Constant	-0.025***	-0.010**	-0.028***	-0.010***	-0.002	0.005**	0.008	0.020***
	(-3.765)	(-2.546)	(-5.204)	(-3.387)	(-0.750)	(2.637)	(1.229)	(3.803)
R ²	0.336	0.311	0.546	0.351	0.340	0.297	0.576	0.551
Observations	3,189	3,189	139	139	32,268	32,269	30,429	30,430

DPS Changes and Future Solvency

VARIABLES	ZScore_F3Y	ZScore_F5Y	ZScore_F3Y	ZScore_F5Y	ZScore_F3Y	ZScore_F5Y	ZScore_F3Y	ZScore_F5Y
DPS_%Chg	0.055*	0.108***	-0.161*	-0.058**	-0.081**	-0.124***	-0.329***	-0.235***
	(1.792)	(9.232)	(-2.029)	(-2.938)	(-2.442)	(-3.270)	(-5.194)	(-3.236)
Constant	16.344***	8.111***	24.946***	3.782	6.204***	1.135	1.109	-3.820**
	(5.408)	(4.958)	(3.233)	(1.159)	(3.508)	(0.845)	(0.444)	(-2.341)
R ²	0.410	0.380	0.322	0.665	0.467	0.450	0.604	0.620
Observations	2,702	2,083	78	56	27,179	22,566	25,547	21,069

Dividend Changes and Profitability

Banks are reluctant to change dividends despite promising profitability expectations. Unsustainable higher payouts could lead to strong market reactions. In the absence of enforced dividend reductions, banks may prefer continued payouts despite inadequate capital positions & debt-to-equity violations. Market reactions and subsequent negative market price consequences seem to be a severe constraint in dividend policy changes.

Dividend Changes and Risk-Taking

Banks are reluctant to change dividend policy, even when managerial expectations of higher risk-taking (i.e., higher upward potential for profitability, but also losses) exist. Exposure to such losses could lead to dividend cuts, which in turn could be met with share price pressures.

Dividend changes in CUs are aligned with higher risk-taking. The result could be due to the interest-like nature of such payouts.

Dividend Changes and Solvency

Dividend changes within credit unions have a greater impact on future solvency. Given the existence of depositor discipline in credit unions (Gómez-Biscarri et al., 2020), a credit union with potential solvency issues may decide to keep dividends to avoid a run on deposits (shares).

Listed BHCs would be penalized by investors in the long run (in the form of stock price reductions) if they choose to implement a dividend increase that could not be feasible to maintain in the future (Martinez Peria and Schmukler, 2001). Dividends increase only when managers are confident in the increase's future viability and when increases would not erode the capital position of the bank.

The negative relation, which indicates that higher dividends today lead to lower solvency in the future, is consistent with debt expropriation or cheating among commercial banks.

Descriptive Statistics										
		1998-2010)		1998-2004	+		2005-2010		
VARIABLES	N	μ	σ	N	μ	σ	N	μ	σ	
Δ NPL	14,751	0.099	0.957	8,938	-0.041	0.893	5,813	0.314	1.010	
Lend. Growth Δ Cost Prem σCost/Loans Banker Slope	14,751 14,751 14,751 4,802 4,858	0.092 0.212 0.143 0.006 0.361	0.140 15.708 0.034 0.004 0.615	8,938 8,938 8,938 2,744 2,776	0.103 0.029 0.146 0.006 0.361	0.135 4.374 0.034 0.004 0.616	5,813 5,813 5,813 2,058 2,082	0.073 0.493 0.139 0.006 0.361	0.147 24.426 0.033 0.004 0.616	
Size Solv LTA	14,751 14,751 14,751	13.547 0.091 0.659	1.299 0.034 0.125	8,938 8,938 8,938	13.334 0.092 0.639	1.277 0.031 0.123	5,813 5,813 5,813	13.875 0.089 0.688	1.265 0.037 0.122	
Δ Unemp Δ Int	14,751 14,751 14,751	0.035 -0.009 2.439	0.161 0.393 0.966	8,938 8,938 8,938	0.011 -0.167 2.360	0.121 0.175 0.566	5,813 5,813 5,813	0.073 0.234 2.562	0.203 0.496 1.361	

Robustness: Lending Quality & Cost Rigidity

Robustness Analysis: Alternative Model

Arellano and Bond's Two-step GMM Dynamic Panel Data Estimator

$$\begin{split} \Delta \textit{NPL}_{\textit{it}} &= \Delta \textit{NPL}_{\textit{it}-1} + \sum_{j=0}^{2} \beta_{1j} \Delta \textit{Loans}_{\textit{it}-j} + \sum_{j=1}^{2} \beta_{2j} \Delta \textit{Loans}_{\textit{it}-j} \times \textit{Prem}_{\textit{it}-j} + \sum_{j=1}^{2} \beta_{3j} \Delta \textit{Cost}_{\textit{it}-j} \times \textit{Prem}_{\textit{it}-j} \\ &+ \sum_{j=1}^{2} \beta_{4} \textit{Prem}_{\textit{it}-j} + \beta_{5j} \textit{Cost}_{\textit{it}-j} + \gamma' \textit{Bank} \quad \textit{Controls}_{\textit{it}} + \delta' \textit{Macroeconomic} \quad \textit{Controls}_{\textit{t}} + \mu_{\textit{i}} + \lambda_{\textit{t}} + \epsilon_{\textit{it}} \end{split}$$

Data

1998 - 2010 12,234 Observations for 1,894 BHCs

Variables

Short-run Cost Changes (Δ Cost): changes in costs w.r.t. changes in lending. Cost Structure (Prem): fixed to total costs Interaction Effects: Δ Cost \times Prem & Lending Growth \times Prem

Results

Positive Relation for Lagged values of lending growth $(\beta_{1i} > 0)$;

Negative relation for the interaction between lending growth and cost rigidity with future NPLs ($\beta_{2j} < 0$);

Negative relation for the interaction between short-run cost changes and cost rigidity with future NPLs ($eta_{3j} <$ 0).

Robustness: Lending Quality & Cost Rigidity (2-Step GMM)

VARIABLES	Δ NPL $_t$	Δ NPL $_{\dot{t}}$	Δ NPL $_t$
Lending Growth _{t-1}	-0.235	0.157	-0.903
	(-0.316)	(1.313)	(-1.166)
Lending Growth _{t-2}	1.016**	0.150*	1.204***
	(2.486)	(1.703)	(3.142)
Prem _{t-1}	-2.141	-2.053	-3.384
	(-0.828)	(-0.959)	(-1.402)
$Prem_{t-2}$	-0.648	-1.202	0.021
	(-0.343)	(-0.697)	(0.011)
Lending Growth _{$t-1$} × Prem _{$t-1$}	2.602		6.997
	(0.478)		(1.253)
Lending Growth $_{t-2} \times Prem_{t-2}$	-6.281**		-7.698***
	(-2.094)		(-2.701)
$\Delta \operatorname{Cost}_{t-1}$		0.010	0.012
		(1.054)	(1.439)
$\Delta \operatorname{Cost}_{t-2}$		0.027***	0.027***
		(3.250)	(3.656)
$\Delta \operatorname{Cost}_{t-1} \times \operatorname{Prem}_{t-1}$		-0.139	-0.161
		(-0.892)	(-1.214)
$\Delta \operatorname{Cost}_{t-2} \times \operatorname{Prem}_{t-2}$		-0.192***	-0.191***
		(-2.600)	(-2.732)
Observations	12,234	12,234	12,234
Number of gvkey	1,894	1,894	1,894

Robustness: Lending Quality & Cost Rigidity

Robustness Analysis: Alternative Cost Structure Measures

Linear Regression

$$\begin{aligned} \textit{Avg.} \Delta \textit{NPL}_i &= \beta_1 \textit{Avg.} \Delta \textit{Loans}_i + \beta_{2j} \textit{Avg.} \Delta \textit{Loans}_i \times \textit{Avg.} \Delta \textit{BankerSlope}_i \\ &+ \beta_4 \textit{Avg.} \Delta \textit{Prem}_i + \beta_5 \textit{Avg.} \Delta \textit{Cost}_i + \gamma^{'} \textit{Avg.Bank} \quad \textit{Controls}_i + \delta^{'} \textit{Avg.Macroeconomic} \quad \textit{Controls} + \mu_i \end{aligned}$$

Data

2005 - 2010

790 BHC Observations

Variables

Banker Slope: Pre-2005 slope between changes in lending and changes in costs;

 σ Cost-to-Loans: Pre-2005 St.Dev. of the cost to loans ratio;

Transform baseline variables to average value over the lending growth horizon.

Results

Positive Relation for average lending growth $(\beta_{1j} > 0)$;

Negative relation for the interaction between average lending growth and Banker's Slope with future NPLs ($\beta_{2i} < 0$);

Negative relation for the interaction between average short-run cost changes and Banker's Slope with future NPLs ($\beta_{3j} < 0$).

3. Cost Structure and Lending Quality

Robustness: Lending Quality & Cost Rigidity (Banker Slope)

VARIABLES	Avg. △ NPL	Avg. △ NPL	Avg. △ NPL
Avg. Lending Growth	1.013**	0.608*	0.970**
	(2.464)	(1.708)	(2.354)
Avg. Size	0.026**	0.023**	0.024**
	(2.432)	(2.244)	(2.281)
Avg. Solvency	-0.035	0.002	-0.088
	(-0.050)	(0.003)	(-0.124)
Avg. Loan-to-Assets	0.110	0.055	0.083
	(0.862)	(0.438)	(0.652)
Avg. △ Int	0.312*	0.259	0.270
	(1.739)	(1.415)	(1.496)
Avg. △ Unemp	1.279**	1.295**	1.297**
	(2.406)	(2.413)	(2.441)
Avg. Inflation	0.113*	0.117**	0.124**
	(1.948)	(1.983)	(2.126)
Banker Slope	0.034	-0.054***	0.040
	(0.750)	(-2.883)	(0.845)
Avg. △ Cost		0.007***	0.008***
		(4.060)	(4.299)
Avg. △ Cost × Banker Slope		-0.073	-0.090*
		(-1.459)	(-1.862)
Avg. △ Lending × Banker Slope	-1.131**		-1.153**
	(-1.980)		(-1.992)
Constant	-0.574**	-0.488**	-0.551**
	(-2.278)	(-1.985)	(-2.209)
R ²	0.103	0.099	0.114
Observations	789	789	789

Robustness: Lending Quality & Cost Rigidity (σ Cost-to-Loans)

VARIABLES	Avg. △ NPL	Avg. △ NPL	Avg. △ NPL
Avg. Lending Growth	-0.248	0.373	-0.210
	(-0.293)	(0.963)	(-0.252)
Avg. Size	0.018*	0.018*	0.017*
	(1.806)	(1.688)	(1.697)
Avg. Solvency	-0.172	-0.122	-0.122
	(-0.228)	(-0.162)	(-0.161)
Avg. Loan-to-Assets	0.090	0.053	0.060
	(0.649)	(0.379)	(0.429)
Avg. △ Int	0.260	0.272	0.265
	(1.363)	(1.442)	(1.391)
Avg. △ Unemp	1.492***	1.469***	1.480***
	(2.667)	(2.632)	(2.659)
Avg. Inflation	0.154*	0.147*	0.147*
	(1.918)	(1.828)	(1.833)
σ Cost-to-Loans	-10.232	-1.334	-9.562
	(-0.817)	(-0.369)	(-0.793)
Avg. △ Cost		-0.097**	-0.096**
		(-2.094)	(-2.061)
Avg. Δ Cost $ imes \sigma$ Cost-to-Loans		13.245***	12.948***
		(2.744)	(2.782)
Avg. Δ Lending $ imes \sigma$ Cost-to-Loans	99.428		91.371
	(0.794)		(0.745)
Constant	-0.470*	-0.472	-0.425
	(-1.673)	(-1.642)	(-1.492)
R ²	0.067	0.072	0.075
Observations	790	790	790

Do Lending Growth Dynamics Influence Lending Quality?

Robustness: Alternative Model

Arellano and Bond's Two-step GMM Dynamic Panel Data Estimator

$$\begin{split} \Delta \textit{NPL}_{it} &= \Delta \textit{NPL}_{it-1} + \sum_{j=0}^{2} \beta_{1j} \Delta \textit{Loans}_{it-j} + \sum_{j=1}^{2} \beta_{2j} \Delta \textit{Loans}_{it-j} \times \textit{Prem}_{it-j} + \sum_{j=1}^{2} \beta_{3j} \Delta \textit{Cost}_{jt-j} \times \textit{Prem}_{it-j} \\ &+ \sum_{j=1}^{2} \beta_{4} \textit{Prem}_{it-j} + \beta_{5j} \textit{Cost}_{it-j} + \gamma' \textit{Bank} \quad \textit{Controls}_{it} + \delta' \textit{Macroeconomic} \quad \textit{Controls}_{t} + \mu_{i} + \lambda_{t} + \epsilon_{it} \end{split}$$

 $+\beta_{12}$ Distance_{it-1} $+\beta_{13}\Delta$ Loans_Normalized_{it-1} $+\beta_{14}$ Distance_{it-1} \times Δ Loans_Normalized_{it-1}

Data

1998 - 2010 (Balanced) 12,234 BHC Observations

Variables

Distance from peak (0-1) (Current Year/ (Max - Min Year))

Lend. Growth (Normalized): How Fast Lending Grows? (Current Growth/Total Growth)

Results

Negative relation between Distance in t-1 and Changes in Non-Performing Loans and Leases in t.

Positive relation between the pace of lending growth and changes in non-performing loans and leases.

Robustness: Lending Quality, Lending Growth Dynamics & Cost Rigidity (2-Step GMM)

Lending Growth _{t-2}	1.204***	1.379***	1.339***
	(3.142)	(3.759)	(3.004)
Prem _{t-1}	-3.384	-1.058	1.737
	(-1.402)	(-0.365)	(0.645)
$Prem_{t-2}$	0.021	0.576	-1.368
	(0.011)	(0.294)	(-0.576)
Lending Growth _{t-1} x Prem _{t-1}	6.997	3.784	9.099
	(1.253)	(0.411)	(0.830)
Lending Growth $_{t-2}$ x Prem $_{t-2}$	-7.698***	-7.920***	-7.815**
- 12 12	(-2.701)	(-2.715)	(-2.146)
$\Delta \operatorname{Cost}_{t-1}$	0.012	0.089	-0.043
	(1.439)	(1.008)	(-0.453)
$\Delta \operatorname{Cost}_{t-2}$	0.027***	0.039***	0.047***
	(3.656)	(5.085)	(6.417)
$\Delta \operatorname{Cost}_{t-1} \operatorname{x} \operatorname{Prem}_{t-1}$	-0.161	-0.818	0.609
	(-1.214)	(-1.055)	(0.646)
$\Delta \operatorname{Cost}_{t-2} \operatorname{x} \operatorname{Prem}_{t-2}$	-0.191***	-0.307***	-0.406***
	(-2.732)	(-3.064)	(-4.289)
Distance _{t-1}		-0.088	-0.091
		(-0.591)	(-0.533)
Lending Growth _{t-1} (Normalized)			1.290**
			(2.494)
Lending Growth $_{t-1}$ (Normalized) \times Distance $_{t-1}$			-1.420***
			(-2.715)
Lending Growth _{t-1} \times Distance _{t-1}		-0.960	
		(-1.545)	
Observations	12,234	6,115	5.263

Robustness: Lending Quality, Lending Growth Dynamics & Cost Rigidity

Robustness Analysis: Alternative Measures of Lending Growth Dynamics

Linear Regression with Clustered FEs

Data

2005 - 2010 (Balanced) 412 BHC Observations 1 Observation per BHC

Variables

Log growth horizon: Log the number of years in the lending growth horizon.

Average lending growth over the lending growth horizon.

Results

Negative relation between Log Growth Horizon and Average Change in NPLs ($\beta_4 < 0$).

Positive relation between Avg. Percentage Growth in Lending and Average Change in NPLs ($eta_5>0$).

Negative relation between Log Growth Horizon \times Avg. Percentage Growth in Lending and Average Change in NPLs ($\beta_6 <$ 0).

Robustness: Lending Quality, Lending Growth Dynamics & Cost Rigidity

VARIABLES	Avg. △ NPL	Avg. △ NPL	Avg. △ NPL
Avg. Lending Growth	4.381**	4.935*	3.396*
	(2.430)	(1.858)	(1.912)
Ratio Premises (Pre-Growth)	2.374*	2.368	2.381*
	(1.872)	(1.592)	(1.915)
Avg. Lending Growth × Prem (Pre-Growth)	-25.888**	-25.611*	-23.116*
	(-2.039)	(-1.654)	(-1.899)
Avg. △ Cost	0.017***	0.019***	0.025***
	(5.866)	(5.041)	(7.704)
Avg. △ Cost × Prem (Pre-Growth)	-0.112***	-0.120***	-0.160***
	(-6.251)	(-5.267)	(-7.782)
Avg. Percent Growth Per Year			2.023**
			(2.193)
Log Growth Horizon		-0.037	-0.220**
		(-0.374)	(-2.202)
Log Growth Horizon × Avg. Percent Growth Per Year			-0.897*
			(-1.948)
Avg. Lending Growth × Log Growth Horizon		-0.354	
		(-0.399)	
Constant	-0.672*	-0.621	-0.112
	(-1.739)	(-1.364)	(-0.248)
R ²	0.106	0.110	0.204
Observations	412	407	345

Robustness: Lending Quality, Lending Growth Dynamics & Cost Rigidity

- ☐ Banks with higher levels of average annual lending growth have higher levels of non-performing loans in the future.
- ☐ But, the association is lower for banks that grew more slowly (i.e., banks with longer log growth horizons).
- ☐ Supports the congestion costs hypothesis.

Determinants of Efficiency

Explore bank fundamentals which could be potential drivers of operational efficiency.

Panel model (Bank and Year FEs & Robust Variance Estimator SEs

$$\begin{split} \textit{Efficiency}_{it} \quad (\Delta \textit{Efficiency}_{it}) &= \beta_1 \Delta \textit{Cost}_{it} + \beta_2 \textit{Diversification}_{it} + \beta_3 \textit{LTA}_{it} + \beta_4 \textit{TDTL}_{it} \\ &+ \beta_5 \textit{Size}_{it} + \beta_6 \textit{Solv}_{it} + \beta_7 \textit{LTA}_{it} + \beta_8 \textit{Unemp}_{it} + \beta_9 \textit{Inf}_{it} + \beta_1 \textit{Inf}_{it} + \mu_i + \lambda_t + \epsilon_{it} \end{split}$$

Data

1998 - 2010

17,881 Observations for 2,802 BHCs

Variables

Efficiency: Gross Margin (Int + Non-Int. Income) to Total Non-Interest Expense

 Δ Efficiency: Annual Log Change of Efficiency

Diversification: Non-Int. Income to Total Income

 Δ Cost: Log Change Non-Int. Exp scaled by Log Change Loans

Results

Short-run cost changes negatively associated with both efficiency and annual changes in efficiency (β_1 < 0).

Inflation $(\beta_9 > 0)$, size $(\beta_5 > 0)$, and loan portfolio size $(\beta_3 > 0)$ are positively associated with both the level and changes in efficiency.

Diversification, Deposits to Liabilities , and Solvency affect the level of efficiency differently from efficiency changes.

eterminants of Efficiency					
VARIABLES	Efficiency	△ Efficiency	Efficiency	Δ Efficiency	
$\Delta \operatorname{Cost}_t$	-0.145***	-0.183***	-0.099***	-0.181***	
	(-8.507)	(-13.109)	(-5.485)	(-12.772)	
Diversif	-0.161**	0.273***	-0.312***	0.219***	
	(-2.326)	(8.444)	(-5.847)	(8.721)	
LTA	0.229***	0.126***	0.126***	0.083***	
	(6.261)	(7.737)	(3.392)	(5.225)	
DTL	-0.053	-0.046*	-0.116**	-0.000	
	(-1.211)	(-1.709)	(-2.557)	(-0.005)	
Size	0.119***	-0.016***	-0.017***	-0.042***	
	(10.446)	(-3.600)	(-2.691)	(-13.995)	
Solv	2.128***	-0.120	1.891***	-0.171	
	(12.058)	(-0.985)	(10.006)	(-1.391)	
∆ Int	0.015	-0.019	-0.007**	0.016***	
	(0.636)	(-0.830)	(-1.991)	(6.439)	
Inf	0.090***	0.014**	-0.000	0.004***	
	(10.316)	(2.268)	(-0.245)	(3.617)	
∆ Unemp	0.025	-0.069*	-0.092***	0.035***	
	(0.693)	(-1.854)	(-8.657)	(4.296)	
Constant	-0.429**	0.141**	1.711***	0.481***	
	(-2.429)	(2.057)	(16.825)	(9.914)	
R ²	0.144	0.0790	0.0555	0.0487	
Observations					
Number of BHCs	17,881	17,881	17,881	17,881	
Time FE	2,802 Yes	2,802 Yes	2,802	2,802	

Determinants of Efficiency

- ☐ Short-run cost changes are significantly and negatively associated with both efficiency and its annual changes.
- ☐ Inflation, size, and loan portfolio size are positively associated with both the level and changes in efficiency.
- ☐ Diversification, Deposits to Liabilities, and Solvency affect the level of efficiency differently from efficiency changes.

- Abreu, J. F. and Gulamhussen, M. A. (2013). Dividend payouts: Evidence from US bank holding companies in the context of the financial crisis, *Journal of Corporate Finance* 22: 54–65.
- Acharya, V., Engle, R. and Pierret, D. (2014). Testing macroprudential stress tests: The risk of regulatory risk weights, *Journal of Monetary Economics* 65: 36–53.
- Acharya, V. and Richardson, M. P. (2009). Restoring financial stability: how to repair a failed system, Vol. 542, John Wiley & Sons.
- Acharya, V. V., Berger, A. N. and Roman, R. A. (2018). Lending implications of US bank stress tests: Costs or benefits?, *Journal of Financial Intermediation* 34: 58–90.
- Acharya, V. V., Gujral, I., Kulkarni, N. and Shin, H. S. (2011). Dividends and bank capital in the financial crisis of 2007-2009. *National Bureau of Economic Research Working Paper*.
- Acharya, V. V., Le, H. T. and Shin, H. S. (2017). Bank capital and dividend externalities, *The Review of Financial Studies* 30(3): 988–1018.
- Acharya, V. V., Pedersen, L. H., Philippon, T. and Richardson, M. (2017). Measuring systemic risk, *The Review of Financial Studies* 30(1): 2–47.
- Aharony, J. and Swary, I. (1980). Quarterly dividend and earnings announcements and stockholders' returns: An empirical analysis. *The Journal of Finance* 35(1): 1–12.
- Altunbas, Y., Gambacorta, L. and Marques-Ibanez, D. (2012). Do bank characteristics influence the effect of monetary policy on bank risk?, *Economics Letters* 117(1): 220–222.

- Asquith, P. and Mullins Jr, D. W. (1983). The impact of initiating dividend payments on shareholders' wealth, *Journal of Business* pp. 77–96.
- Bajaj, M. and Vijh, A. M. (1990). Dividend clienteles and the information content of dividend changes, *Journal of Financial Economics* 26(2): 193–219.
- Baker, M. and Wurgler, J. (2004). Appearing and disappearing dividends: The link to catering incentives, *Journal of Financial Economics* 73(2): 271–288.
- Banker, R. D., Byzalov, D. and Plehn-Dujowich, J. M. (2014). Demand uncertainty and cost behavior, The Accounting Review 89(3): 839–865.
- Becht, M., Bolton, P. and Röell, A. (2011). Why bank governance is different, Oxford Review of Economic Policy 27(3): 437–463.
- Ben-David, I. (2010). Dividend policy decisions, Wiley Online Library.
- Berger, A. N. and Bouwman, C. H. (2013). How does capital affect bank performance during financial crises?, *Journal of Financial Economics* 109(1): 146–176.
- Berger, A. N. and DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks, Journal of Banking & Finance 21(6): 849–870.
- Berger, A. N. and Udell, G. F. (2002). Small business credit availability and relationship lending: The importance of bank organisational structure, *The Economic Journal* 112(477): F32–F53.

- Besanko, D. and Kanatas, G. (1993). Credit market equilibrium with bank monitoring and moral hazard, *The review of financial studies* 6(1): 213–232.
- Bessler, W. and Nohel, T. (1996). The stock-market reaction to dividend cuts and omissions by commercial banks, *Journal of Banking & Finance* 20(9): 1485–1508.
- Bessler, W. and Nohel, T. (2000). Asymmetric information, dividend reductions, and contagion effects in bank stock returns, *Journal of Banking & Finance* 24(11): 1831–1848.
- Bhattacharya, S. (1979). Imperfect information, dividend policy, and "the bird in the hand" fallacy, The Bell Journal of Economics 10(1): 259–270.
- Bird, A., Ertan, A., Karolyi, S. A. and Ruchti, T. (2018). Short-termism spillovers from the financial industry, *Available at SSRN 2859169*.
- Blum, J. (1999). Do capital adequacy requirements reduce risks in banking?, Journal of Banking & Finance 23(5): 755–771.
- Boldin, R. and Leggett, K. (1995). Bank dividend policy as a signal of bank quality, *Financial Services Review* 4(1): 1–8.
- Bolotnyy, V., Edge, R. M. and Guerrieri, L. (2014). Stressing bank profitability for interest rate risk, Federal Reserve Board Memo.
- Boot, W. A. and Greenbaum, S. I. (1992). Bank regulation, reputation and rents: Theory and policy implications, JSTOR.

- Brealey, R., Leland, H. E. and Pyle, D. H. (1977). Informational asymmetries, financial structure, and financial intermediation, *The Journal of Finance* 32(2): 371–387.
- Brennan, M. J. (1970). Taxes, market valuation and corporate financial policy, *National Tax Journal* 23(4): 417–427.
- Calem, P., Correa, R. and Lee, S. J. (2020). Prudential policies and their impact on credit in the United States, *Journal of Financial Intermediation* 42: 100826.
- Calem, P. and Rob, R. (1999). The impact of capital-based regulation on bank risk-taking, Journal of Financial Intermediation 8(4): 317–352.
- Candelon, B. and Sy, A. N. (2015). How did markets react to stress tests?, International Monetary Fund.
- Caruana, J. (2014). Financial regulation, complexity and innovation, Speech at Promontory Annual Lecture.
- Clair, R. T. (1992). Loan growth and loan quality: some preliminary evidence from texas banks, Economic Review, Federal Reserve Bank of Dallas, Third Quarter 1992: 9–22.
- Collins, J. H., Shackelford, D. A. and Wahlen, J. M. (1995). Bank differences in the coordination of regulatory capital, earnings, and taxes, *Journal of Accounting Research* 33(2): 263–291.
- Covas, F. (2018). Capital requirements in supervisory stress tests and their adverse impact on small business lending, *Available at SSRN 3071917*.

- De Cesari, A. (2012). Expropriation of minority shareholders and payout policy, *The British Accounting Review* 44(4): 207–220.
- DeAngelo, H., DeAngelo, L. and Stulz, R. M. (2006). Dividend policy and the earned/contributed capital mix: a test of the life-cycle theory, *Journal of Financial Economics* 81(2): 227–254.
- Delis, M. D., Hasan, I. and Mylonidis, N. (2017). The risk-taking channel of monetary policy in the US: Evidence from corporate loan data, *Journal of Money, Credit and Banking* 49(1): 187–213.
- Delis, M. D. and Kouretas, G. P. (2011). Interest rates and bank risk-taking, *Journal of Banking & Finance* 35(4): 840–855.
- Denis, D. J. and Osobov, I. (2008). Why do firms pay dividends? international evidence on the determinants of dividend policy, *Journal of Financial Economics* 89(1): 62–82.
- Dickens, R. N., Casey, K. M. and Newman, J. A. (2002). Bank dividend policy: explanatory factors, Ouarterly Journal of Business and Economics 42(1/2): 3–12.
- Easterbrook, F. H. (1984). Two agency-cost explanations of dividends, *The American Economic Review* 74(4): 650–659.
- Eber, M. and Minoiu, C. (2016). How do banks adjust to stricter supervision?, Available at SSRN 2662502.
- Farrar, D. E., Farrar, D. F. and Selwyn, L. L. (1967). Taxes, corporate financial policy and return to investors, *National Tax Journal* 20(4): 444–454.

- Fernandes, M. (2015). March Madness in Wall Street, International Monetary Fund.
- Filbeck, G. and Mullineaux, D. J. (1993). Regulatory monitoring and the impact of bank holding company dividend changes on equity returns, *Financial Review* 28(3): 403–415.
- Fiordelisi, F., Marques-Ibanez, D. and Molyneux, P. (2011). Efficiency and risk in European banking, Journal of banking & finance 35(5): 1315–1326.
- Flannery, M., Hirtle, B. and Kovner, A. (2017). Evaluating the information in the Federal Reserve stress tests. *Journal of Financial Intermediation* 29: 1–18.
- Flannery, M. J. (1989). Capital regulation and insured banks choice of individual loan default risks, Journal of Monetary Economics 24(2): 235–258.
- Floyd, E., Li, N. and Skinner, D. J. (2015). Payout policy through the financial crisis: The growth of repurchases and the resilience of dividends, *Journal of Financial Economics* 118(2): 299–316.
- Foerster, S. R. and Sapp, S. G. (2005). Valuation of financial versus non-financial firms: a global perspective, *Journal of International Financial Markets, Institutions and Money* 15(1): 1–20.
- Forti, C. and Schiozer, R. F. (2015). Bank dividends and signaling to information-sensitive depositors, Journal of Banking & Finance 56: 1–11.
- Furlong, F. T. and Keeley, M. C. (1989). Capital regulation and bank risk-taking: A note, *Journal of banking & finance* 13(6): 883–891.

- Gallardo, G. G., Schuermann, T. and Duane, M. (2016). Stress testing convergence, *Journal of Risk Management in Financial Institutions* 9(1): 32–45.
- Gerhardt, M. and Vander Vennet, R. (2016). Bank bailouts in Europe and bank performance, *Finance Research Letters* .
- Ghosh, A. (2015). Banking-industry specific and regional economic determinants of non-performing loans: Evidence from US states, *Journal of Financial Stability* 20: 93–104.
- Glasserman, P. and Wang, Z. (2011). Valuing the Treasury's capital assistance program, Management Science 57(7): 1195–1211.
- Goldstein, I. and Sapra, H. (2014). Should banks' stress test results be disclosed? an analysis of the costs and benefits. Foundations and Trends® in Finance 8(1): 1–54.
- Gómez-Biscarri, J., López-Espinosa, G. and Toro, A. M. (2020). Cobbler, stick to thy last: the disciplining of risky growth in credit unions, *University of Saint Andrews Working Papers in Responsible Banking & Finance* 19(008).
- Gorton, G. B. (2015). Banking panics and business cycles, *The Maze of Banking: History, Theory, Crisis* p. 200.
- Greenwood, R., Oliver, C., Lawrence, T. B. and Meyer, R. E. (2017). The Sage handbook of organizational institutionalism, Sage.

- Gropp, R., Mosk, T., Ongena, S. and Wix, C. (2016). Bank response to higher capital requirements: Evidence from a natural experiment, *Technical report*, Working Paper.
- Grullon, G., Michaely, R., Benartzi, S. and Thaler, R. H. (2005). Dividend changes do not signal changes in future profitability, *The Journal of Business* 78(5): 1659–1682.
- Guerrieri, L. and Welch, M. (2012). Can macro variables used in stress testing forecast the performance of banks? *FEDS Working Paper*.
- Guntay, L., Jacewitz, S. and Pogach, J. (2015). Proving approval: Dividend regulation and capital payout incentives, FDIC Center for Financial Research Paper 5.
- Healy, P. M. and Palepu, K. G. (1988). Earnings information conveyed by dividend initiations and omissions, *Journal of Financial Economics* 21(2): 149–175.
- Hirtle, B. (2014). Bank holding company dividends and repurchases during the financial crisis, FRB of New York Staff Report 666.
- Hirtle, B., Kovner, A., Vickery, J. and Bhanot, M. (2016). Assessing financial stability: the capital and loss assessment under stress scenarios (CLASS) model, *Journal of Banking & Finance* 69: S35–S55.
- Hirtle, B., Schuermann, T. and Stiroh, K. J. (2009). Macroprudential supervision of financial institutions: lessons from the SCAP, FRB of New York Staff Report 409.

- Hoshi, T. and Kashyap, A. (2004). Corporate financing and governance in Japan: The road to the future, The MIT Press.
- Huang, R. and Ratnovski, L. (2011). The dark side of bank wholesale funding, *Journal of Financial Intermediation* 20(2): 248–263.
- Igan, D. and Pinheiro, M. (2015). Delegated Portfolio Management, Benchmarking, and the Effects on Financial Markets, International Monetary Fund.
- Ignatowski, M. and Korte, J. (2014). Wishful thinking or effective threat? tightening bank resolution regimes and bank risk-taking, *Journal of Financial Stability* 15: 264–281.
- Jensen, M. C. and Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure, *Journal of Financial Economics* 3(4): 305–360.
- Kahane, Y. (1977). Capital adequacy and the regulation of financial intermediaries, *Journal of Banking & Finance* 1(2): 207–218.
- Kalay, A. and Loewenstein, U. (1985). Predictable events and excess returns: The case of dividend announcements. *Journal of Financial Economics* 14(3): 423–449.
- Kanas, A. (2013). Bank dividends, risk, and regulatory regimes, *Journal of Banking & Finance* 37(1): 1–10.
- Kauko, K. (2012). External deficits and non-performing loans in the recent financial crisis, Economics Letters 115(2): 196–199.

- Keeton, W. R. (1999). Does faster loan growth lead to higher loan losses?, Economic Review Federal Reserve Bank of Kansas City 84: 57–76.
- Kim, D. and Santomero, A. M. (1988). Risk in banking and capital regulation, *The Journal of Finance* 43(5): 1219–1233.
- Koehn, M. and Santomero, A. M. (1980). Regulation of bank capital and portfolio risk, *The Journal of Finance* 35(5): 1235–1244.
- Kupiec, P., Lee, Y. and Rosenfeld, C. (2017). Does bank supervision impact bank loan growth?, *Journal of Financial Stability* 28: 29–48.
- La Porta, R., Lopez-de Silanes, F., Shleifer, A. and Vishny, R. W. (2000). Agency problems and dividend policies around the world. *The Journal of Finance* 55(1): 1–33.
- Lambertini, L. and Mukherjee, A. (2016). Is bank capital regulation costly for firms?-evidence from syndicated loans, *Technical report*, Memo.
- Lease, R. C., John, K., Kalay, A., Loewenstein, U. and Sarig, O. H. (1999). Dividend policy: Its impact on firm value. *OUP Catalogue*.
- Lintner, J. (1956). Distribution of incomes of corporations among dividends, retained earnings, and taxes, *The American Economic Review* 46(2): 97–113.
- Maddaloni, A. and Peydró, J.-L. (2011). Bank risk-taking, securitization, supervision, and low interest

- rates: Evidence from the Euro-area and the US lending standards, the review of financial studies 24(6): 2121–2165.
- Martinez Peria, M. S. and Schmukler, S. L. (2001). Do depositors punish banks for bad behavior? market discipline, deposit insurance, and banking crises, *The Journal of Finance* 56(3): 1029–1051.
- Mésonnier, J.-S. and Monks, A. (2014). Did the EBA capital exercise cause a credit crunch in the Euro Area?, Banque de France Working Paper.
- Miller, M. H. and Modigliani, F. (1961). Dividend policy, growth, and the valuation of shares, *The Journal of Business* 34(4): 411–433.
- Miller, M. H. and Rock, K. (1985). Dividend policy under asymmetric information, *The Journal of Finance* 40(4): 1031–1051.
- Morgan, D. P., Peristiani, S. and Savino, V. (2010). The information value of the stress test and bank opacity, Federal Reserve Bank of New York Staff Reports 460.
- Morgan, D. P., Peristiani, S. and Savino, V. (2014). The information value of the stress test, *Journal of Money, Credit and Banking* 46(7): 1479–1500.
- Neretina, E., Sahin, C. and De Haan, J. (2015). Banking stress test effects on returns and risks.
- Oliveira, E. (2015). Brazil's mandatory dividend rule: A potential solution to agency conflicts around corporate payouts: Evidence from Brazilian corporate reality and empirical analysis, *Ph.D. Thesis, Harvard Law School*.

- Onali, E. (2014). Moral hazard, dividends, and risk in banks, *Journal of Business Finance & Accounting* 41(1-2): 128–155.
- Park, S. (1996). Banking and deposit insurance as a risk transfer mechanism, *Journal of Financial Intermediation* 5(3): 284–304.
- Petersen, M. A. (2004). Information: Hard and soft.
- Petrella, G. and Resti, A. (2013). Supervisors as information producers: do stress tests reduce bank opaqueness?, *Journal of Banking & Finance* 37(12): 5406–5420.
- Pettit, R. R. (1972). Dividend announcements, security performance, and capital market efficiency, The Journal of Finance 27(5): 993–1007.
- Podpiera, J. and Weill, L. (2008). Bad luck or bad management? emerging banking market experience, Journal of Financial Stability 4(2): 135–148.
- Rochet, J.-C. (1992). Capital requirements and the behaviour of commercial banks, *European Economic Review* 36(5): 1137–1170.
- Rosengren, E. S. (2010). Asset bubbles and systemic risk, Federal Reserve Bank of Boston Technical Report .
- Ross, S. A. (1977). The determination of financial structure: the incentive-signalling approach, *The Bell Journal of Economics* 8(1): 23–40.

- Rossi, S. P., Schwaiger, M. and Winkler, G. (2005). Managerial behavior and cost/profit efficiency in the banking sectors of Central and Eastern European countries, *Technical report*, Working Paper.
- Scharfstein, D. S. and Stein, J. C. (2008). This bailout doesn't pay dividends, New York Times, Oct. 20, 2008.
- Schuermann, T. (2016). Stress testing in wartime and in peacetime, Available at SSRN 2735895.
- Shahhosseini, M. (2014). The unintended consequences of bank stress tests, *Available at SSRN 295*1425 .
- Shrieves, R. E. and Dahl, D. (1992). The relationship between risk and capital in commercial banks, Journal of Banking & Finance 16(2): 439–457.
- Srivastav, A., Armitage, S. and Hagendorff, J. (2014). CEO inside debt holdings and risk-shifting: Evidence from bank payout policies, *Journal of Banking & Finance* 47: 41–53.
- Srivastav, A. and Hagendorff, J. (2016). Corporate governance and bank risk-taking, Corporate Governance: An International Review 24(3): 334–345.
- Turner, J. D., Ye, Q. and Zhan, W. (2013). Why do firms pay dividends?: Evidence from an early and unregulated capital market, *Review of Finance* 17(5): 1787–1826.
- Von Eije, H. and Megginson, W. L. (2008). Dividends and share repurchases in the European Union, Journal of Financial Economics 89(2): 347–374.

Williams, J. (2004). Determining management behaviour in European banking, Journal of Banking &

Finance 28(10): 2427-2460.