In effect, the Corollary says that fi,..., for is a partial sequence of coordinate functions at p iff their linear approximations at p are homogeneous and linearly independent.

Example: Verify that the function f(x,y,z) = yz - 65x + 1 is a partial sequence of coordinate functions at p=(0,0,1) and extend it to a full sequence using some of the standard coordinate functions at p, namely, x, y, Z-1.

Solution: We have f(p)=0 and Df=[Sinx z y], so Df(p)=[0 1 0]. As Df(p) \$0 (i.e., has rank 1) f forms a partial sequence. To extend it to a full sequence we use f, x, z-1 because for F = (f, x, 2-1), we have $DF(p) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ which is invertible.

In the above example, if we translate p to the origin by using $\tilde{z} := z-1$, then $f = y(\tilde{z}+1) - cosx + 1 = y + y\tilde{z} + 1 - cosx$, so that its linear part is just y. Clearly y, x, \tilde{z} form a full system of coordinate functions and so do f, x, \tilde{z} .

We can use the above ideas and concepts to discuss the implicit function theorem, mostly in \mathbb{R}^2 and \mathbb{R}^3 . Let us first look at the linear picture which is quite neat and clean.

(i) Consider a line in \mathbb{R}^2 , e.g., the x-axis. It is parametrised by $t\mapsto (t,0)$, while as a level curve it is given by y=0.

(ii) Consider a line in \mathbb{R}^3 , e.g., the z-axis. It is parametrised by $t\mapsto (0,0,t)$, while as a level curve it is given by x=0=y.

(iii) Consider a plane in \mathbb{R}^3 , e.g., the (x-y)-plane. It is parametrised by $(x,t)\mapsto (x,t,0)$ and it is the level surface z=0.

The implicit function theorem for a general curve in \mathbb{R}^2 or \mathbb{R}^3 or for a general surface in \mathbb{R}^3 works by <u>locally</u> reducing to the linear situations (i), (ii), (iii) above via a suitable change of coordinates. In particular, a curve in \mathbb{R}^2 or a surface in \mathbb{R}^3 is locally given by one equation in each case while a curve in \mathbb{R}^3 is locally given by 2 independent equations.

Let $S \subseteq \mathbb{R}^m$ be a subset. A function $f: S \to \mathbb{R}^n$ is said to be smooth if for every x ∈ S, I an open neighbourhood V of x in \mathbb{R}^m and a smooth function $F: \mathcal{V} \to \mathbb{R}^n$ such that Fluns = fluns. In other words, around any x ∈ S, fadnits an extension to a smooth function around x in R. The local extension F and the open set V are not uniquely determined by f. (For example, let $S = \{p\}$ where $p \in \mathbb{R}^n$.)

Let $S \subseteq \mathbb{R}^m$, $T \subseteq \mathbb{R}^n$ be subsets. A function $f: S \longrightarrow T$ is said to be a <u>diffeomorphism</u> if f is bijective and both f, f are smooth. Examples:

(i) Any line in \mathbb{R}^m is diffeomorphic to any line in \mathbb{R}^n (Exercise). (ii) The map $t \mapsto (t, t^2)$ from \mathbb{R} to the parabola $y = x^2$ is a diffeomorphism with the inverse being given by $(x, y) \mapsto x$. (iii) There is no diffeomorphism from R to the singular curve C given by $y^2 = x^3$. Indeed, if $R = \frac{3}{9}$ C are smooth inverse bijections with f(0) = (0,0), then $D(f) = \vec{0}$, so that $D_o(gf) = 0$, a contradiction.

(Exercise 6, page 19) Let $p \in \mathbb{R}^n$ and let $f_1, ..., f_{n-1}$ be a partial system of coordinate functions at p (i.e., $f_i(p) = 0$ to and $Df_i(p)$ are linearly independent). Let C denote the locus $f_i = f_2 = ... = f_{n-1} = 0$. Then there is an open reighbourhood V of p in \mathbb{R}^n such $V \cap C$ is diffeomorphic to an open interval in \mathbb{R} . In particular, $V \cap C$ admits a regular parametrisation.

Proof: Let for be a smooth function to R around p so that f,,...,for form a full sequence of coordinate functions at p, i.e., for $F = (f_1, ..., f_n)$, $D_p(F)$ is invertible and $f_n(p) = 0$. Then $F(p) = \vec{0}$ and there exists a diffeomorphism F:U -> V for suitable open neighbourhood U, V of p, \overrightarrow{o} respectively. If $\widetilde{x}_1,...,\widetilde{x}_n$ are standard coordinate functions on $V \subseteq \mathbb{R}^n$, then it follows from the definition of F that F(Unc) is the locus $\tilde{x}_i = \dots = \tilde{x}_{n-1} = 0$ in V, i-e., F(Unc) = Vn the xn-axis, the latter being an open subset of the Xn-axis (= R). Its connected component through o) is an open interval and hence by shrinking V, V if necessary,

we may arrange that Unc is diffeomorphic (via F) to

an open interval around of in the xn-axis.

We may parametrise the open interval in the \Re_{n} -axis by $t \xrightarrow{\propto} (0,0,...,0,t)$. Composing $\alpha(t)$ with F^{-1} gives a smooth parametrisation $\gamma(t) = F^{-1}\alpha(t)$ of $T\cap C$ with $\gamma(0) = p$. Since $F \circ \gamma = \alpha$ we see by Chair Rule that $\gamma'(0) \neq \overline{O}$. Q.E.D.

Since F-1 in the above proof may be hard to calculate, hence the parametrisation I may be difficult to write down in terms of the initially given functions fi, ..., for-However the tangent vector at p can be calculated since $\gamma'(0) = \mathcal{D}_{\overrightarrow{O}}(F^{-1}) \cdot \mathcal{D}_{o}(\alpha) = \mathcal{D}_{p}(F)^{-1} e_{n} \text{ (where } e_{n} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. To calculate Dp(F) we still need to find fn. Here we may use the fact that for can be chosen from one among the standard coordinate functions $\{x_i-c_i,\ldots,x_n-c_n\}$, $c_i=x_i\cdot c_i$). (Choose the one that makes Dp (F) invertible).