Análise matemática

Pedro Henrique de Almeida Konzen

24 de abril de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/ ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Sumário

Ca	apa		i					
Licença								
Prefácio								
Su	ımár	io	v					
Ι	Aı	nálise de funções de uma variável real	1					
1	Inti	rodução	3					
2	Fun	damentos da análise	4					
	2.1	Funções	4					
		2.1.1 Definição de função	4					
		2.1.2 Classificações elementares	5					
		2.1.3 Operações elementares	7					
3	Limites							
	3.1	Noções de topologia	9					
		3.1.1 Exercícios	11					
	3.2	Limites	11					
		3.2.1 Propriedades do limite	12					
	3.3	Limites laterais	15					
	3.4	Limites no infinito e limites infinitos	17					
4	Cor	ntinuidade	19					
	4.1	Função contínua	19					
	4.2	Propriedades de funções contínuas	21					
	4.3	Continuidade uniforme	23					

5	Diferenciação						
	5.1	Derivada	25				
	5.2	Regras operacionais	27				
	5.3	Extremos e o teorema do valor médio	29				
6	Integração						
	6.1	Integral de Riemann	31				
	6.2	Integrabilidade de funções contínuas	32				
R	e <mark>ferê</mark>	encias Bibliográficas	34				
Índice Remissivo							

Parte I Análise de funções de uma variável real

Capítulo 1

Introdução

Em construção ...

Capítulo 2

Fundamentos da análise

2.1 Funções

2.1.1 Definição de função

Definição 2.1.1. (Função) Uma **função** $f:D\to Y$ é uma relação que associa cada elemento de um dado conjunto D com um único elemento de um dado conjunto Y. O conjunto D é chamado de **domínio** da função e o conjunto Y é chamado de **contradomínio** da função.

Comumente, uma dada função $f:D\to Y$ é acompanhada de sua **lei de correspondência**, a qual muitas vezes é denotada por y=f(x). Neste caso, temos que a função f associa $x\in D$ ao elemento $y\in Y$. Neste contexto, x é chamada de **variável independente** e y de **variável dependente**. Ainda, muitas vezes uma função é descrita apenas por sua lei de correspondência e, neste caso, os conjuntos domínio e imagem são inferidos no contexto em questão.

Observação 2.1.1. Neste livro, quando não especificado ao contrário, assumiremos que o domínio e o contradomínio das funções consideradas são subconjuntos dos números reais,

Exemplo 2.1.1. Vejamos os seguintes casos:

- a) A relação $f:\{1,2,3\}\to\mathbb{R},\,y=f(x):=x^2+1,$ define uma função.
- b) A relação $g:D=\{0,1,2,3,4\}\to \mathbb{Z},\ x^2+y^2=9\ \mathrm{com}\ x\in D\ \mathrm{e}\ y\in Y,$ não é uma função. Com efeito, $0\in D$ e relaciona-se com $3\in Y$ e $-3\in Y$ no seu contradomímio.
- c) Da equação $y=\sqrt{x}$ pode-se inferir a função $h:x\in D\to y\in\mathbb{R},$ onde o domínio D é conjunto dos reais não negativos.

Definição 2.1.2. (Imagem de uma função) A **imagem** I_f de uma dada função $f: D \to Y$ é o conjunto de todos os elementos de Y que se relacionam com algum elemento de D, i.e.:

$$I_f := \{ y \in Y; \ \exists x \in D \text{ tal que } y = f(x) \}. \tag{2.1}$$

Exemplo 2.1.2. Vejamos os seguintes casos:

- a) A função $f: \{1,2,3\} \to \mathbb{R}, y = f(x) := x^2 + 1$, tem imagem $I_f = \{1,4,9\}$.
- b) A imagem da função $f: \{0\} \cup \mathbb{N} \to \mathbb{R}, y = 2x + 1$, é conjunto dos números ímpares.
- c) A imagem da função sen : $\mathbb{R} \to \mathbb{R}$, y = sen x, é $I_{\text{sen}} = [-1, 1]$.

Observação 2.1.2. Dada uma função $f: D \to Y$ e um conjunto $A \subset D$, definimos a imagem de A pela função f por

$$f(A) := \{ y \in Y; \exists x \in A \text{ tal que } y = f(x) \}. \tag{2.2}$$

Por exemplo, dada a função $f: \mathbb{R} \to \mathbb{R}, y = \sqrt{x}$, temos

$$f({0,1,4,9}) = {0,1,2,3}. (2.3)$$

Definição 2.1.3. (Gráfico) O **gráfico** de uma função $f: D \to Y$, y = f(x), é o conjunto de todos os pares ordenados (x,y) tal que $x \in D$ e y = f(x), i.e.

$$G_f := \{(x, y) \in D \times Y; \ y = f(x)\}.$$
 (2.4)

Exemplo 2.1.3. O gráfico da função $f:\{1,2,3\} \to \mathbb{R}, \, y=f(x):=x^2+1,$ é

$$G_f = \{(1,2), (2,5), (3,10)\}.$$
 (2.5)

2.1.2 Classificações elementares

Definição 2.1.4. (Função limitada) Seja dada uma função $f:D\to\mathbb{R},\,y=f(x)$. Dizemos que f é uma função limitada inferiormente (ou limitada à esquerda) quando existe $m\in\mathbb{R}$ tal que $m\leq f(x)$ para todo $x\in D$. Analogamente, dizemos que f é uma função limitada superiormente (ou limitada à direta) quando existe $M\in\mathbb{R}$ tal que $f(x)\geq M$ para todo $x\in D$. Ainda, f é dita ser limitada quando é limitada inferiormente e superiormente.

Exemplo 2.1.4. Vejamos os seguintes casos:

a) A função $f: \mathbb{R} \to \mathbb{R}, \ y = x^2 + 1$, é limitada inferiormente. De fato, para cada $x \in \mathbb{R}$ temos $x^2 \ge 0$ e, portanto, $y = x^2 + 1 \ge 1$.

b) A função seno é uma função limitada. Isto segue imediatamente da definição da função seno no círculo unitário (círculo trigonométrico).

Definição 2.1.5. Restrição/extensão de uma função Uma função $g:A\to Y$, y=g(x), é dita ser uma **restrição** da dada função $f:D\to Y$ quando $A\subset D$ e g(x)=f(x) para todo $x\in A$. Analogamente, f é uma **extensão** da função g.

Exemplo 2.1.5. A função $f: \mathbb{R} \to \mathbb{R}, \ y = x+1$, é uma extensão da função $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ y = \frac{x^2-1}{x-1}$.

Definição 2.1.6. (Função injetiva) Uma função $f: D \to Y$, y = f(x), é dita ser **injetiva** (**injetora** ou **inversível**) quando para todo $x_1, x_2 \in D$ com $x_1 \neq x_2$ temos $f(x_1) \neq f(x_2)$.

Observação 2.1.3. Uma função $f: D \to \mathbb{R}$, y = f(x), é injetiva se, e somente se, para todo $x_1, x_2 \in D$ tal que $f(x_1) = f(x_2)$ temos $x_1 = x_2$.

Exemplo 2.1.6. Vejamos os seguintes casos:

- a) A função $f(x) = x^2$ não é injetiva, pois tomando $x_1 = -1$ e $x_2 = 1$ temos $x_1 \neq x_2$, mas $f(x_1) = f(x_2)$.
- b) A função $f(x) = \sqrt{x+1}$ é injetiva. De fato, dados $x_1, x_2 \in \mathbb{D}$ tal que $f(x_1) = f(x_2)$, então $\sqrt{x_1} = \sqrt{x_2}$. Agora, tomando o quadrado dos dois lados, temos $x_1 = x_2$.

Definição 2.1.7. (Função sobrejetiva) Uma função $f: D \to Y$, y = f(x), é sobrejetiva quando f(D) = Y (ou, equivalentemente, $I_f = Y$).

Exemplo 2.1.7. A função $f:(0,\infty)\to\mathbb{R},\ f(x)=\ln(x),$ é sobrejetiva. De fato, dado qualquer $y\in\mathbb{R}$ basta escolhermos $x=e^y$ para termos f(x)=y.

Observação 2.1.4. Uma função injetiva e sobrejetiva é dita ser bijetiva.

Definição 2.1.8. (Função inversa) Dada uma função invertível (i.e. injetora) $f: D \to Y, y = f(x)$, definimos sua **inversa** por $f^{-1}: f(D) \to D$ que associa cada elemento $y \in f(D)$ com $x \in D$ tal que f(x) = y.

Exemplo 2.1.8. Vejamos os seguintes casos:

- a) A inversa da função $f:(0,\infty)\to\mathbb{R},\ y=\ln(x),$ é a função $f^{-1}:\mathbb{R}\to(0,\infty),$ $y=e^x.$
- b) A inversa da função $f: [-1,\infty] \to [0,\infty), \ y = \sqrt{x+1}$, é a função $f^{-1}: [0,\infty) \to [-1,\infty], \ y = x^2 1$. De fato, f é sobrejetiva e dado $x \in [-1,\infty]$ temos $f(x) = y = \sqrt{x+1}$ e, então $y^2 = x+1$, logo $x = y^2 1$.

Definição 2.1.9. (Função monótona) Seja dada uma função $f: D \to Y$. Dizemos que f é **crescente** quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$, temos $f(x_1) < f(x_2)$. Agora, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \le f(x_2)$, dizemos que f é uma **função não-decrescente**. Analogamente, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) > f(x_2)$ dizemos que f é uma função **decrescente**. Por fim, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \ge f(x_2)$ dizemos que f é uma função **não-crescente**.

Exemplo 2.1.9. Vejamos os seguintes casos:

- a) $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função crescente.
- b) $f: \mathbb{R} \to \mathbb{R}, y = e^{-x}$ é uma função decrescente.

Definição 2.1.10. (Paridade de uma função) Uma função $f: D \to Y$, y = f(x), é dita ser **par** quando para todo $x \in D$, temos f(x) = f(-x). Agora, quando para todo $x \in D$, temos f(x) = -f(-x), então dizemos se tratar de uma função **impar**.

Exemplo 2.1.10. Vejamos os seguintes casos:

- a) A função $f: \mathbb{R} \to \mathbb{R}, y = |x|$, é uma função par.
- b) A função $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função ímpar.

2.1.3 Operações elementares

Operações elementares envolvendo funções são comumente definidas tomando o cuidado de restringir o domínio das funções operadas para um conjunto apropriado. Por exemplo, dadas as funções $f:A\to\mathbb{R},\ y=f(x),\ e\ g:B\to\mathbb{R},\ y=g(x),$ definimos a função soma de f com g por $(f+g):A\cap B\to\mathbb{R},\ (f+g)(x):=f(x)+g(x)$. Agora, para estas mesmas função, definimos a função quociente de f com g por $(f/g):A\cap B\setminus\{0\}\to\mathbb{R},\ (f/g)(x):=f(x)/g(x)$.

Exemplo 2.1.11. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x}-|x|,$ é a subtração da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},$ com a função $f_2:\mathbb{R}\to\mathbb{R},\ y=|x|,$ i.e. $f(x)=(f_1-f_2)(x):=f_1(x)-f_2(x).$

Definição 2.1.11. (Composição de funções) Sejam dadas as funções $f: D_f \to Y_f$, y = f(x), e $g: D_g \to Y_g$, y = g(x), com $I_g \subset D_f$. Definição a **função composta** de f com g por $(f \circ g): D_g \to Y_f$ com $(f \circ g)(x) = f(g(x))$.

Exemplo 2.1.12. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x^2+1},\ \text{\'e}$ a composição da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},\ \text{com a função}\ f_2:\mathbb{R}\to\mathbb{R},\ y=x^2+1.$

Exercícios

- **E 2.1.1.** Sejam $f:D\to Y,\ y=f(x),\ \mathrm{e}\ A,B\subset D.$ Mostre que $f(A\cup B)=f(A)\cup f(B).$
- **E 2.1.2.** Construa uma função crescente, limitada superiormente e com domínio igual ao conjunto dos números reais.
- **E 2.1.3.** Mostre que $f:[1,\infty)\to \mathbb{R},\ y=\sqrt{x^3-1},$ é injetora e construa sua inversa.
- **E 2.1.4.** Mostre que se $f: D \to Y$ é injetora, então f não é par.
- **E 2.1.5.** Mostre que uma dada função $f: \mathbb{R} \to \mathbb{R}, \ y = f(x)$, é limitada quando existe $c \in \mathbb{R}$ tal que $|f(x)| < c, \ \forall x \in \mathbb{R}$.

Capítulo 3

Limites

3.1 Noções de topologia

Definição 3.1.1. (Ponto interior) Diz-se que x é um **ponto interior** de um dado conjunto C quando existe um intervalo (a,b) que contém x e está contido em C, i.e. $x \in (a,b) \subset C$. O conjunto de todos os pontos interiores de C é chamado de seu **interior**.

Exemplo 3.1.1. a) Todo elemento de um intervalo aberto (a, b) é ponto interior deste.

b) O interior de um dado intervalo fechado [a, b] é o intervalo aberto (a, b).

Definição 3.1.2. (Conjunto aberto) Diz se que C é **conjunto aberto** quando todos seus elementos são pontos interiores.

Exemplo 3.1.2. Vejamos os seguintes casos:

- a) O intervalo $(a,b) := \{x \in \mathbb{R}; \ a < x < b\}$ é um conjunto aberto. De fato, dado $x \in (a,b)$ podemos tomar $0 < \varepsilon < \min\{x a,b x\}$ de forma que $x \in (x \varepsilon, x + \varepsilon) \subset (a,b)$.
- b) O intervalo (a, b] não é aberto, pois $b \in (a, b]$ não é ponto interior.
- c) O conjunto vazio \emptyset é um conjunto aberto. Com efeito, se o conjunto \emptyset não é aberto, então existe um elemento $x \in \emptyset$ que não é ponto interior de \emptyset , o que é um absurdo pois \emptyset não contém elementos por definição.
- d) O conjunto dos números racionais Q não é aberto.

Definição 3.1.3. (Vizinhança) Uma **vizinhança** de um dado ponto x é qualquer conjunto V que contenha x como ponto interior. Também, a **vizinhança simétrica** de um ponto $x \in \mathbb{R}$ é todo intervalo $V_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon)$ com $\varepsilon > 0$. Mais estrito, a **vizinhança perfurada** de $x \in \mathbb{R}$ é uma vizinhança de x que não contém x. Aproveitamos para fixar a notação:

$$V_{\varepsilon}'(x) := V_{\varepsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}; \ 0 < |x - y| < \varepsilon\}.$$

Exemplo 3.1.3. Podemos reescrever o Exemplo 3.1.2 da seguinte forma. Um intervalo (a,b) é um conjunto aberto, pois para cada $x \in (a,b)$ podemos escolher $0 < \varepsilon < \min\{x - a, b - x\}$ tal que $V_{\varepsilon}(x) \subset (a,b)$.

Definição 3.1.4. (Ponto de acumulação) Um ponto x é chamado de **ponto de acumulação** de um dado conjunto C quando toda vizinhança de x contém infinitos pontos de C.

Exemplo 3.1.4. Vejamos os seguintes casos:

- a) O número a é ponto de acumulação do intervalo (a, b] não degenerado. De fato, dado $\varepsilon > 0$, temos $(a, a + \varepsilon) \subset V_{\varepsilon}(a)$ e $(a, a + \varepsilon) \cap (a, b]$ é um conjunto infinito.
- b) Zero é o único ponto de acumulação do conjunto $\{1, 1/2, 1/3, \dots, 1/n, \dots\}$.

Definição 3.1.5. (Ponto isolado) Diz que x é **ponto isolado** de um dado conjunto C quando $x \in C$ não é ponto de acumulação de C. Diz-se que um conjunto é **discreto** quando todos seus elementos são pontos discretos.

Exemplo 3.1.5. Vejamos os seguintes casos:

- a) O conjunto dos números naturais \mathbb{N} é discreto.
- b) O conjunto dos números racionais O não é discreto.
- c) O conjunto $\{1, 1/2, 1/3, ..., 1/n, ...\}$ é discreto.

Definição 3.1.6. (Ponto aderente) Dizemos que x é **ponto aderente** de um dado conjunto C quando toda vizinhança de x contém algum ponto de C. O conjunto de todos os pontos aderentes de C é chamado de **fecho** (ou, conjunto de aderência) de C, o qual denotamos por \overline{C} .

Observação 3.1.1. Observe que todo ponto de um conjunto é aderente ao mesmo, bem como, todos os seus pontos de acumulação.

Exemplo 3.1.6. Vejamos os seguintes casos:

a) O fecho de (a, b] é o intervalo fechado [a, b].

b) O conjunto dos números reais \mathbb{R} é o fecho do conjunto dos números racionais \mathbb{Q} , i.e. $\overline{Q} = \mathbb{R}$.

Definição 3.1.7. Conjunto fechado Dizemos que um conjunto C é **fechado** quando é igual ao seu fecho, i.e. $C = \overline{C}$.

Exemplo 3.1.7. Vejamos os seguintes casos:

- a) O intervalo [a, b] é um conjunto fechado.
- b) O conjunto vazio ∅ é fechado. Por quê?
- c) O conjunto dos números reais \mathbb{R} é fechado.
- d) O conjunto dos números racionais $\mathbb Q$ não é fechado.

Definição 3.1.8. (Conjunto denso) Dizemos que um conjunto A é **denso** no conjunto B, quando todo ponto aderente de $\overline{A} \subset B$.

Exemplo 3.1.8. O conjunto dos números racionais \mathbb{Q} é denso no conjunto dos números reais \mathbb{R} .

3.1.1 Exercícios

E 3.1.1. Seja dado um conjunto C. Mostre que x é ponto de acumulação de C se, e somente se, toda vizinhança de x contém pelo menos um elemento de C diferente de x.

Resposta. Basta considerar sucessivas vizinhanças $V_{1/n}(x)$ com $n \in \mathbb{R}$.

E 3.1.2. Seja dado um conjunto C. Mostre que x é ponto isolado de C se, e somente se, existe uma vizinhança de x tal que $(V(x) \setminus \{x\}) \cap C = \emptyset$.

Resposta. A implicação segue imediatamente por negação.

3.2 Limites

Definição 3.2.1. (Limite) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Diz-se que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.1)

Quando isso ocorre, escrevemos

$$\lim_{x \to a} f(x) = L,\tag{3.2}$$

11

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a$.

Exemplo 3.2.1. Vejamos os seguintes casos:

a) Temos $\lim_{x\to 1} x - 1 = 0$. Isto segue imediatamente, pois, neste caso, f(x) = x - 1, a = 1, L = 0 e, então, dado $\varepsilon > 0$, tomamos $\delta = \varepsilon$ de forma que

$$x \in \mathbb{R}, 0 < |x - 1| < \delta \Rightarrow |x - 1 - 0| < \varepsilon. \tag{3.3}$$

b) A função não precisa estar definida no ponto em o limite é tomado. Por exemplo, $\lim_{x\to 1} \frac{x^2-1}{x+1} = 0$. Verifique!

Observação 3.2.1. Quando nos referirmos a expressão "x tende a a" (ou similares), estaremos sempre assumindo que a é um ponto de acumulação do domínio da função de interesse.

3.2.1 Propriedades do limite

Teorema 3.2.1. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), $com \lim_{x \to a} f(x) = L$, $ent\tilde{a}o \lim_{x \to a} |f(x)| = |L|$.

Demonstração.

Seja $\varepsilon > 0$. Por hipótese, existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f(x) - L| < \varepsilon$. Tomando, então, um tal δ e observando que ||f(x)| - |L|| < |f(x) - L|, temos que para todo $x \in D$, $0 < |x - a| < \delta$, ocorre $||f(x)| - |L|| < \varepsilon$.

Teorema 3.2.2. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L$ e A < L < B, então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica A < f(x) < B.

Demonstração.

De fato, por hipótese, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f(x) - L| < \varepsilon$. Então, o resultado segue escolhendo um tal δ quando $\varepsilon = \min\{L - A, B - L\}$.

Corolário 3.2.1. (Permanência do sinal) Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L > 0$ (L < 0), então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$, implica f(x) > 0 (f(x) < 0).

Demonstração.

12

Quando L > 0 (L < 0) basta escolher A = 0 (B = 0) no teorema anterior.

Teorema 3.2.3. (Operações com limites) Sejam $f_1, f_2 : D \to \mathbb{R}, y = f_1(x), y = f_2(x)$, com $\lim_{x\to a} f_1(x) = L_1$ e $\lim_{x\to a} f_2(x) = L_2$, então (omitindo que $x\to a$)

- a) $\lim [f_1(x) + f_2(x)] = \lim f_1(x) + \lim f_2(x)$.
- b) para todo $k \in \mathbb{R}$, temos $\lim k f_1(x) = k \lim f_1(x)$.
- c) $\lim f_1(x)f_2(x) = \lim f_1(x) \cdot \lim f_2(x)$.
- d) $\lim \frac{f_1(x)}{f_2(x)} = \frac{\lim f_1(x)}{\lim f_2(x)}$, quando $L_2 \neq 0$.

Demonstração.

Seja dado $\varepsilon > 0$.

a) Seja $\delta>0$ tal que $x\in D,\ 0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/2$ e $|f_2(x)-L_2|<\varepsilon/2$. Logo, para tais δ e x temos

$$|(f_1(x) + f_2(x)) - (L_1 + L_2)| \le |f_1(x) - L_1| + |f_2(x) - L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (3.4)

- b) O resultado é imediato para k=0. Sejam $k \neq 0$ e $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f_1(x) L_1| < \varepsilon/|k|$. Então, para tais δ e x temos $|kf_1(x) kL_1| = |k||f_1(x) L_1| < |k|\varepsilon/|k| = \varepsilon$.
- c) Sejam M>0 e $\delta>0$ tal que $x\in D,$ $0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/(2|L_2|),$ $|f_1(x)|< M$ (veja Teorema 3.2.2) e $|f_2(x)-L_2|<\varepsilon/(2M)$. Então

$$|f_{1}(x)f_{2}(x) - L_{1}L_{2}| = |f_{1}(x)f_{2}(x) - f_{1}(x)L_{2} + f_{1}(x)L_{2} - L_{1}L_{2}|$$

$$= |f_{1}(x)(f_{2}(x) - L_{2}) + (f_{1}(x) - L_{1})L_{2}|$$

$$\leq |f_{1}(x)||f_{2}(x) - L_{2}| + |f_{1}(x) - L_{1}||L_{2}|$$

$$< M\frac{\varepsilon}{2M} + \frac{\varepsilon}{2|L_{2}|}|L_{2}| = \varepsilon.$$
(3.5)

d) De c), basta mostrar que $1/f_2(x) \to 1/L_2$ quando $x \to a$. Para tando, seja $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f_2(x) - L_2| < \frac{\varepsilon L_2^2}{2}$ e $|f_2(x)| > |L_2|/2$ (veja Teorema 3.2.2). Então, para tais δ e x temos

$$\left| \frac{1}{f_2(x)} - \frac{1}{L_2} \right| = \frac{|f_2(x) - L_2|}{|f_2(x)L_2|}$$

$$< \frac{\frac{\varepsilon L_2^2}{2}}{|L_2| \frac{|L_2|}{2}} = \varepsilon.$$
(3.6)

Licença CC-BY-SA 4.0

Teorema 3.2.4. O limite de uma função $f: D \to \mathbb{R}$ é L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{R}} \subset D \setminus \{a\}$ com $x_n \to a$, temos $f(x_n) \to L$.

Demonstração.

- a) Primeiramente, mostraremos que se $\lim_{x\to a} f(x) = L$, então dada qualquer sequência $(x_n)_{n\in\mathbb{R}} \subset D\setminus\{a\}$ com $x_n\to a$, temos $f(x_n)\to L$. De fato, sejam $\varepsilon>0$ e $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$. Então, por hipótese, existe $\delta>0$ tal que $x\in D$, $0<|x-a|<\delta$ implica $|f(x)-L|<\varepsilon$. Agora, como $x_n\to a$, existe N suficientemente grande tal que n>N implica $|x_n-a|<\delta$ e, portanto, $|f(x_n)-L|<\varepsilon$. Ou seja, $f(x_n)\to L$.
- b) Aqui, provaremos por absurdo que se para toda sequência $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$ temos $f(x_n)\to L$, então $\lim_{x\to a}f(x)=L$. Ou seja, vamos assumir que existe um $\varepsilon>0$ tal que para todo $\delta>0$ existe algum $x\in D$, $0<|x_n-a|<\delta$ com $|f(x)-L|>\varepsilon$. Sejam um tal ε e para cada $n\in\mathbb{N}$ um $x_n'\in D$ com $0<|x_n'-a|<1/n$ e $|f(x_n')-L|>\varepsilon$. Com isso, temos formado uma sequência $(x_n')\subset D\setminus\{a\}, x_n'\to a$, mas $f(x_n')\not\to L$.

Corolário 3.2.2. Um função $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{N}} \subset D \setminus \{a\}$ com $x_n \to a$ temos que $(f(x_n))_{n \in \mathbb{N}}$ é convergente.

Demonstração.

Segue, imediatamente, do fato de que se (y_n) é uma sequência com $y_n \to L$, então toda subsequência de (y_n) é convergente e converge para L.

Teorema 3.2.5. (Critério de convergência de Cauchy) Uma condição necessária e suficiente para que uma função $f:D\to\mathbb{R},\ y=f(x)$, tenha limite L quando $x\to a$ é que, para todo $\varepsilon>0$, exista $\delta>0$ tal que

$$x, y \in V_{\delta}'(a) \cap D \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (3.7)

Demonstração.

- a) A suficiência segue do critério de convergência de Cauchy para sequências e do Corolário 3.2.2.
- b) Exercício 3.2.4.

Exercícios

E 3.2.1. Diga se é verdadeira ou falsa a seguinte afirmação: se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = 0$, então f(a) = 0. Justifique sua resposta.

Resposta. Veja a Definição 3.2.1.

E 3.2.2. Mostre que se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = L > 0$, então $\lim_{x\to a} \sqrt{f(x)} = \sqrt{L}$.

Resposta. Use o Teorema 3.2.2 observando que

$$|\sqrt{f(x)} - \sqrt{L}| = |(\sqrt{f(x)} - \sqrt{L})\frac{\sqrt{f(x)} + \sqrt{L}}{\sqrt{f(x)} + \sqrt{L}}| = \frac{|f(x) - L|}{|\sqrt{f(x)} + \sqrt{L}|}.$$
 (3.8)

E 3.2.3. Demonstre o Teorema 3.2.3 como um corolário do Teorema 3.2.4.

Resposta. Basta usar as propriedades de limites de sequências.

E 3.2.4. Demonstre que se $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$, então para qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $x,y \in V'_{\delta}(a) \cap D$ implica $|f(x) - f(y)| < \varepsilon$.

Resposta. Observe que $x,y \in V'_{\delta/2}(a)$ implica $|x-a| < \delta/2$ e $|y-a| < \delta/2$.

3.3 Limites laterais

Definição 3.3.1. (Limite lateral) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a **pela direita** se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < x - a < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.9)

Quando isso ocorre, escrevemos

$$\lim_{x \to a^{+}} f(x) = L, \tag{3.10}$$

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a^+$. Analogamente, escreve-se $f(x) \to L$ quando $x \to a^-$, ou $\lim_{x \to a^-} f(x) = L$ se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < a - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.11)

Exemplo 3.3.1. Vejamos os seguintes casos:

- a) $\lim_{x\to 0^+}\frac{x}{|x|}=1$. De fato, dado qualquer $\varepsilon>0$ podemos escolher, por exemplo, $\delta=1$ e, com isso, para todo $x\in\mathbb{R},\,0< x-0<1$ implica $|x/|x|-1|=0<\varepsilon$.
- b) $\lim_{x\to 0^-} \frac{x}{|x|} = -1$. De fato, dado qualquer $\varepsilon > 0$ podemos escolher, por exemplo, $\delta = 1$ e, com isso, para todo $x \in \mathbb{R}, \ 0 < 0 x < 1$ implica $|x/|x| (-1)| = |-1 + 1| = 0 < \varepsilon$.

Definição 3.3.2. Ponto de acumulação lateral Seja C um conjunto. Dizemos que $a \in C$ é **ponto de acumulação à esquerda** de C se, para todo $\varepsilon > 0$ o conjunto $(a - \varepsilon, a) \cap C$ contém infinitos pontos de C. Analogamente, dizemos que $a \in C$ é **ponto de acumulação à direita** de C se, para todo $\varepsilon > 0$ o conjunto $(a, a+\varepsilon) \cap C$ contém infinitos pontos de C.

Teorema 3.3.1. Se $f: I \to \mathbb{R}$, y = f(x), é uma função monótona e limitada, definida em um intervalo I no qual a é ponto de acumulação à esquerda (ponto de acumulação à direita), então f tem limite com $x \to a^-$ ($x \to a^+$).

Demonstração.

Consideremos o caso em que f é uma função não crescente e a seja ponto de acumulação à direita. Seja, então L o supremo do conjunto formado por f(x) com $x \in I$ e x > a. Afirmamos que $f(x) \to L$ quando $x \to a^+$. De fato, dado qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $L - \epsilon < f(a + \delta) \le L$. Agora, como f é não crescente, para todo $x \in I$, $0 < x - a < \delta$, temos $L - \epsilon < f(a + \delta) \le f(x) \le L$ e, portanto, $|f(x) - L| < \varepsilon$. Os outros casos são análogos e deixados para o leitor (veja, também, Exercício 3.3.1).

Exercícios

E 3.3.1. Demonstre o Teorema 3.3.1 para o caso de uma função crescente e a ponto de acumulação à esquerda.

Resposta. Análogo ao caso da considerado na demonstração do Teorema 3.3.1.

Licença CC-BY-SA 4.0

3.4 Limites no infinito e limites infinitos

Definição 3.4.1. (Limites infinitos) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que o limite de f(x) é $+\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) > k. Analogamente, dizemos que o limite de f(x) é $-\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) < -k. Nestes casos escrevemos

$$\lim_{x \to a} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \to a} f(x) = -\infty, \tag{3.12}$$

respectivamente.

Exemplo 3.4.1. Vejamos os seguintes casos:

- a) $\lim_{x\to 0} 1/|x| = +\infty$. De fato, dado k > 0 basta tomarmos $\delta = 1/k$. Com isso, $0 < |x-0| < \delta$ implies |x| < 1/k e, portanto, 1/|x| > k, i.e. |1/|x| 0| > k.
- b) Seja $f:(-\infty,0)\to\mathbb{R},\ y=f(x):=1/x.$ Neste caso, $\lim_{x\to 0}f(x)=-\infty.$ Deixamos a verificação para o leitor.

Definição 3.4.2. (Limite no infinito) Seja $f: D \to \mathbb{R}$, y = f(x). Quando D é ilimitado superiormente dizemos que f(x) tende a L quando $x \to +\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x > k implica $|f(x) - L| < \varepsilon$. Analogamente, quando D é ilimitado inferiormente dizemos que f(x) tende a L quando $x \to -\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x < -k implica $|f(x) - L| < \varepsilon$. Nestes casos escrevemos

$$\lim_{x \to +\infty} f(x) = L \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = L, \tag{3.13}$$

respectivamente.

Exemplo 3.4.2. Vejamos os seguintes casos:

- a) $\lim_{x\to\infty} 1/x = 0$. De fato, dado $\varepsilon > 0$ escolhemos $\delta = 1/\varepsilon$. Com isso, $x > \delta$ implica $0 < 1/x < 1/\delta = \varepsilon$ e, portanto, $|1/x 0| < \varepsilon$.
- b) $\lim_{x\to\infty} 1/x = 0$. Caso análogo ao anterior, verifique!

Observação 3.4.1. Observe que definições análogas às 3.3.1, 3.4.1 e 3.4.2 se aplicam para os casos:

$$\lim_{x \to a^{+/-}} f(x) = \pm/\mp \infty \quad \text{ou} \quad \lim_{x \to \pm \infty} f(x) = L. \tag{3.14}$$

Também, consideramos definições análogas para os casos:

$$\lim_{x \to a^{+/-}} f(x) = L^{\pm/\mp} \quad \text{ou} \quad \lim_{x \to +/-\infty} f(x) = L^{\pm/\mp}. \tag{3.15}$$

17

Teorema 3.4.1. Toda função monótona e limitada superiormente (inferiormente), cujo domínio contenha $[c, +\infty)$ $((\infty, c])$, possui limite quando $x \to +\infty$ $(x \to -\infty)$.

Demonstração.

Consideremos o caso de $f:[c,+\infty)\to\mathbb{R},\ y=f(x)$, função não decrescente e limitada superiormente. Seja, então L o supremo do conjunto imagem de f. Mostraremos que $f(x)\to L$ quando $x\to+\infty$. De fato, dado $\varepsilon>0$ existe k>0 tal que $L-\varepsilon< f(k)\le L$. Agora, como f é não decrescente, para todo x>k temos $L-\varepsilon< f(k)< f(x)\le k$ e, portanto, $|f(x)-L|<\varepsilon$. Isto demostra o caso considerado e deixamos para o leitor a verificação dos demais (veja, também, Exercício 3.4.1).

Exercícios

E 3.4.1.) Demonstre o Teorema 3.4.1 para o caso de uma função decrescente e limitada inferiormente.

Resposta. Análogo ao caso demonstrado no Teorema 3.4.1.

Licença CC-BY-SA 4.0

Capítulo 4

Continuidade

4.1 Função contínua

Definição 4.1.1. (Continuidade) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que f é **contínua** no ponto a se as seguintes condições são satisfeitas:

- a) $a \in D$.
- b) existe o limite de f(x) com $x \to a$.
- c) $f(x) \to f(a)$ quando $x \to a$.

Ainda, dizemos que f é uma **função contínua** (ou, simplesmente, contínua) quando f é contínua em todos os pontos de seu domínio.

Exemplo 4.1.1. Vejamos os seguintes casos:

- a) A função f(x) = x 1 é contínua em todo o seu domínio.
- b) A função $g(x) = \frac{x^2 1}{x + 1}$ é **descontínua** (i.e., não contínua) no ponto x = -1, pois este não é um ponto no domínio da função.
- c) A função

$$h(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & , x \neq -1, \\ 1, x = -1 \end{cases}$$
 (4.1)

é descontínua no ponto x = -1, pois

$$\lim_{x \to -1} h(x) = -2 \neq 1 = h(-1). \tag{4.2}$$

Teorema 4.1.1. Se f e g são funções contínuas no ponto x=a, então são contínuas nestes pontos as funções: (a) f+g, (b) kf, $\forall k \in \mathbb{R}$, (c) f/g, dado que $g(a) \neq 0$.

Demonstração.

Decorre imediatamente da definição de função contínua (Definição 4.1.1) e do Teorema 3.2.3.

Teorema 4.1.2. (Continuidade da função composta) Sejam dadas funções $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$ com $g(D_g) \subset D_f$. Se g é contínua no ponto a e f é contínua no ponto g(a), então a função composta $f \circ g$ é contínua no ponto a.

Demonstração.

É claro do enunciado que a pertence ao domínio de $f \circ g$. Como $(f \circ g)(a) = f(g(a))$, nos resta mostrar que $(f \circ g)(x)$ tende para f(g(a)) quando $x \to a$. Seja, então, $\varepsilon > 0$. Pela continuidade da f no ponto g(a), tomemos $\delta' > 0$ tal que $y \in V'_{\delta'}(g(a)) \cap D_f$ implica $|f(y) - f(g(a))| < \varepsilon$. Agora, pela continuidade da g no ponto a, tomemos $\delta > 0$ tal que $x \in V'_{\delta}(a) \cap D_g$ implica $|g(x) - g(a)| < \delta'$. Logo, temos que se $x \in V'_{\delta}(a) \cap D_g$, então $|f(g(x)) - f(g(a))| < \varepsilon$, o que completa a demonstração.

Definição 4.1.2. (Continuidade lateral) Dizemos que f é contínua à direta (contínua à esquerda) no ponto a, se está definida neste ponto, onde seu limite à direta (à esquerda) é f(a).

Exemplo 4.1.2. Vejamos os seguintes casos:

a) A função

$$f_1(x) = \begin{cases} x/|x| & , x \neq 0, \\ -1 & , x = 0 \end{cases}$$
 (4.3)

é contínua à esquerda no ponto x=0. De fato, $f_1(0)=-1$ e dado qualquer $\epsilon>0$ podemos escolher, por exemplo, $\delta=\epsilon$ tal que $0<0-x<\delta$ implica $|f_1(x)-(-1)|=|-1-(-1)|=0<\epsilon$.

b) A função

$$f_2(x) = \begin{cases} x/|x| & , x \neq 0, \\ 1 & , x = 0 \end{cases}$$
 (4.4)

é contínua à direta no ponto x=0. Verifique!

Exercícios

E 4.1.1. Mostre que se $f: D \to \mathbb{R}$ é uma função contínua no ponto a e f(a) > 0, então existe $\delta > 0$ tal que $x \in V_{\delta}(a) \cap D$ implica f(x) > 0. Além disso, se removermos a hipótese de que f seja contínua no ponto a essa afirmação continua verdadeira? Justifique sua resposta.

Resposta. Segue imediatamente do Corolário 3.2.1.

E 4.1.2. Mostre que qualquer $f: D \to \mathbb{R}$ é contínua em no ponto a se, e somente se, f é contínua à esquerda e à direita neste ponto.

Resposta. Observe que f tem limite no ponto a se, e somente se, são iguais os limites à esquerda e à direita de f neste ponto.

4.2 Propriedades de funções contínuas

Teorema 4.2.1. Teorema do valor intermediário Seja $f: D \to \mathbb{R}$ uma função contínua no intervalo fechado $I = [a, b] \subset D$, com $f(a) \neq f(b)$. Então, dado qualquer d compreendido entre f(a) e f(b) (inclusive), existe $c \in I$ tal que f(c) = d.

Demonstração.

- 1. Primeiramente, notamos que o resultado é imediato para os casos de d = f(a) e de d = f(b).
- 2. Suponhamos f(a) < 0 < f(b) e, mostraremos que se d = 0, então existe $c \in (a, b)$ tal que f(c) = d. Para tanto, usaremos o método da bisseção. Seja $I^{(1)} := [a^{(1)}, b^{(1)}] = [a, b], l^{(1)}$ o comprimento do intervalo $I^{(1)}$ e $p^{(1)}$ o ponto médio deste. Se $f(p^{(1)}) = 0$ temos demonstrado o que queríamos. Agora, se $f(p^{(1)}) > 0$, escolhemos $I^{(2)} = [a, p^{(1)}]$. Entretanto, se $f(p^{(2)}) < 0$, escolhemos $I^{(2)} = [p^{(1)}, b]$. Em qualquer um dos casos $I^{(2)} := [a^{(2)}, b^{(2)}] \subset I^{(1)}$, $l^{(2)} = l^{(1)}/2$ e $f(a^{(2)}) < 0 < f(b^{(2)})$. Com isso, repetimos o procedimento de bisseção para o intervalo $I^{(2)}$ com $p^{(2)}$ o ponto médio deste. Se $f(p^{(2)}) = 0$ temos o resultado desejado, caso contrário escolhemos o intervalo fechado $I^{(3)} := [a^{(3)}, b^{(3)}] \subset I^{(2)}, l^{(3)} = l^{(2)}/2 \text{ e } f(a^{(3)}) < 0 < f(b^{(3)}).$ No pior dos casos, repetimos infinitamente este procedimento e, com isso, temos construído uma sequência de intervalos fechados $I^{(1)} \subset I^{(2)} \subset I^{(3)} \subset \cdots \subset I^{(n)} \subset \cdots$ cujos comprimentos tendem a zero. Logo, pelo Teorema dos intervalos encaixados $I^{(1)} \cap I^{(2)} \cap I^{(3)} \cap \cdots \cap I^{(n)} \cap \cdots = \{c\} \subset I$, o qual é o limite da sequência $a^{(n)}$ e da $b^{(n)}$. Daí, da continuidade da f e do fato de $f(a^{(n)}) < 0 < f(b^{(n)})$ temos

$$0 \ge \lim f(a^{(n)}) = f(c) = \lim f(b^{(n)}) \ge 0, \tag{4.5}$$

donde segue que f(c) = 0, como queríamos demonstrar.

- 3. Suponhamos que f(a) < f(b) e $d \in (f(a), f(b))$. Neste caso, tomamos g(x) = f(x) d e, portanto, temos g(a) < 0 < g(b). Pelo demonstrado no item 2., existe $c \in [a, b]$ tal que g(c) = 0 e, por consequência, f(c) = d.
- 4. No caso de f(a) > f(b), tomamos g(x) = -f(x), de forma que g(a) < g(b). Então, pelo item 3., temos o resultado desejado.

Lema 4.2.1. Toda função contínua $f: I = [a, b] \to \mathbb{R}$ é limitada.

Demonstração.

Demonstraremos por absurdo. Seja $f:I=[a,b]\to\mathbb{R}$ uma função contínua não limitada. Denotemos $I^{(1)}:=I$. Como f é não limitada em $I^{(1)}$, temos que f é não limitada em pelo menos uma das metades do intervalo $I^{(1)}$. Seja, então $I^{(2)}$ uma das metades de $I^{(1)}$ na qual f é não limitada. Sucessivamente, construímos uma sequência de intervalos fechados $I^{(n)}$ nos quais f é ilimitada e cujos comprimentos tendem a zero. Então, pelo Teorema dos intervalos encaixados, existe um $c\in I^{(1)}\cap I^{(2)}\cap I^{(3)}\cap \cdots\cap I^{(n)}\cap \cdots \subset I$. Agora, pela continuidade de f, temos que $f(x)\to f(c)$ quando $x\to c$ e, portanto, existe $\delta>0$ tal que $x\in V_\delta(c)$ implica f(c)-1< f(x)< f(c)+1, i.e. f é limitada no intervalo $(c-\delta,c+\delta)$. Mas, como $I^{(n)}\subset (c-\delta,c+\delta)$ para n suficientemente grande, temos f limitada em $I^{(n)}$, o que é um absurdo.

Teorema 4.2.2. Toda função contínua $f: I = [a, b] \to \mathbb{R}$ tem valor máximo e mínimo.

Demonstração.

Vamos, primeiramente, mostrar que f tem valor máximo em I. Por absurdo, seja $f: I = [a,b] \to \mathbb{R}$ função contínua, M seu supremo (pelo Lema 4.2.1, f(I) é um conjunto limitado) e f(x) < M para todo $x \in I$. Então, 1/(M - f(x)) é uma função positiva e contínua em I. Seja, então, M' > 0 seu supremo (novamente garantido pelo Lema 4.2.1) e, então, para todo $x \in I$ temos

$$\frac{1}{M - f(x)} \le M' \Rightarrow f(x) \le M - \frac{1}{M'},\tag{4.6}$$

o que é um absurdo, pois isto contradiz o fato de M ser o supremo de f(I). Logo, existe algum $x \in I$ tal que f(x) = M. Analogamente, seja m o ínfimo de f(I). Então, -m é o supremo da função g(x) = -f(x) no intervalo I. Pelo que acabamos de demonstrar, existe $x \in I$ tal que g(x) = -m e, por consequência, f(x) = m.

Licença CC-BY-SA 4.0

Teorema 4.2.3. Se $f: I = [a,b] \to \mathbb{R}$ é uma função contínua, então f(I) é um intervalo limitado e fechado.

Demonstração.

Do Teorema 4.2.2 sejam m e M os valores mínimo e máximo de f, respectivamente. Logo, $f(I) \subset [m, M]$. Agora, sejam $c, d \in I$ tal que f(c) = m e f(d) = M. Pelo Teorema do valor intermediário, dado qualquer $d \in [m, M]$ existe $x \in I$ tal que f(x) = d, i.e. $d \in f(I)$. Portanto, $[m, M] \subset f(I)$.

Exercícios

E 4.2.1. Prove que todo o polinômio de grau ímpar $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ tem no mínimo uma raiz.

Resposta. Use o Teorema do valor intermediário.

E 4.2.2. Dê um exemplo de:

- a) uma função contínua não limitada $f:I\to\mathbb{R}$ com I um intervalo limitado.
- b) uma função contínua $f: I \to \mathbb{R}$ definida em um intervalo ilimitado I no qual f tem valores mínimo e máximo.

4.3 Continuidade uniforme

Definição 4.3.1. (Continuidade uniforme) Uma função $f: D \to \mathbb{R}, y = f(x)$, é dita ser uniformemente contínua se, dado qualquer $\varepsilon > 0$ existe $\delta > 0$ tal que

$$x, y \in D, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (4.7)

Exemplo 4.3.1. Vejamos os seguintes casos:

a) $f(x) = \sqrt{x}$ é uniformemente contínua. De fato, consideremos x,y > 0 e $|x-y| < \delta$ para $\delta > 0$ arbitrário. Então, se $y < \delta$ temos $x < y + \delta < 2\delta$ e

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{x} + \sqrt{y} < \sqrt{2\delta} + \sqrt{\delta} < 3\sqrt{\delta}. \tag{4.8}$$

Agora, se $y >= \delta$, então

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{\delta}{\sqrt{y}} < \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta}. \tag{4.9}$$

23

Logo, em qualquer um dos casos $|\sqrt{x} - \sqrt{y}| < 3\sqrt{\delta}$. Por tanto, dado $\varepsilon > 0$, podemos escolher $\delta = \varepsilon^2/9$ de forma que

$$x,y > 0, |x - y| < \delta \Rightarrow |\sqrt{x} - \sqrt{y}| < \epsilon,$$
 (4.10)

o que conclui o resultado.

b) A função f(x) = 1/x não é uniformemente contínua. De fato, basta observar que, para qualquer escolha de $\delta > 0$, temos

$$\left| \frac{1}{x} - \frac{1}{x+\delta} \right| = \left| \frac{\delta}{x^2 + \delta x} \right| \to +\infty \quad \text{com} \quad x \to 0.$$
 (4.11)

Teorema 4.3.1. (de Heine) Se $f:[a,b]\to\mathbb{R}$ é contínua em [a,b]=:I, então f é uniformemente contínua.

Demonstração.

Suponhamos, por contradição, que f não é uniformemente contínua. Então, para algum $\epsilon > 0$ existem $x_n, y_n \in I$ tal que

$$|x_n - y_n| < \frac{1}{n} \quad e \quad |f(x_n) - f(y_n)| > \epsilon,$$
 (4.12)

para todo $n \in \mathbb{N}$. Agora, como $(x_n)_n$ é uma sequência limitada, pelo teorema de Bolzano-Weierstrass ela possui uma subsequência convergente. Seja, então, $(x_{n'})_{n'}$ uma tal subsequência e c o seu limite. Como $x_{n'} \in [a,b]$ para todo n', temos $c \in [a,b]$. Além disso, como $|x_{n'}-y_{n'}| \to 0$, temos $y_{n'} \to c$. Também, pela continuidade de f, temos $f(x_{n'}) \to f(c)$ e $f(y_{n'}) \to f(c)$. Logo, $|f(x_{n'}) - f(y_{n'})| \to 0$, o que é um absurdo.

Exercícios

E 4.3.1. Mostre que se f é uniformemente contínua em (a,b), então existem os limites $\lim_{x\to a+} f(x)$ e $\lim_{x\to b^-} f(x)$.

Resposta. Dica: 1) mostre que toda sequência $x_n \in (a,b)$ com $x_n \to a$ é tal que $f(x_n)$ é converge. Seja L o limite desta sequência; 2) mostre, então, que qualquer outra sequência $y_n \in (a,b)$ com $y_n \to a$ é tal que $f(y_n) \to L$.

Licença CC-BY-SA 4.0

Capítulo 5

Diferenciação

5.1 Derivada

Definição 5.1.1. (Derivada) Dizemos que uma função $f: D \to \mathbb{R}$, y = f(x), é **derivável** (ou **diferenciável**) no ponto $x = x_0 \in D$, se existe o limite da **razão** fundamental

$$\frac{f(x) - f(x_0)}{x - x_0} \tag{5.1}$$

quando $x \to x_0$. Neste caso, o valor do limite é chamado de derivada da função f no ponto x_0 e denotado por $f'(x_0)$, $Df(x_0)$ ou $\frac{df}{dx}(x_0)$.

Exemplo 5.1.1. Para $f(x) = \sqrt{x}$ temos $f'(2) = 1/(2\sqrt{2})$. De fato,

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x} + \sqrt{2})} = \frac{1}{2\sqrt{2}}.$$
 (5.2)

Observação 5.1.1. Observemos que

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (5.3)

usando a mudança de variável $x = x_0 + h$.

Definição 5.1.2. (Função derivada) Dizemos que $f:D\to\mathbb{R}$ é uma **função derivável** em todo o seu domínio (ou em toda parte) quando f é derivável em todos os pontos de seu domínio. Neste caso, definição a função derivada de f por $f':D\to\mathbb{R},\ y=f'(x),\ com$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (5.4)

Observação 5.1.2. A derivada lateral à direita ou à esquerda são definidas a partir da noção de limite lateral por

$$D_{+}f(x_{0}) = \lim_{h \to 0^{+}} \frac{f(x_{0} + h) - f(x_{0})}{h}$$
(5.5)

e

$$D_{-}f(x_{0}) = \lim_{h \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h},$$
(5.6)

respectivamente. Além disso, é imediato que $Df(x_0)$ existe se, e somente se, existem e são iguais as derivadas laterais $D_+f(x_0)$ e $D_-f(x_0)$.

Teorema 5.1.1. Toda função derivável num ponto x_0 é contínua nesse ponto.

Demonstração.

Seja $f: D \to \mathbb{R}$, y = f(x), uma função derivável no ponto $x_0 \in D$. Vamos mostrar que $f(x) - f(x_0) \to 0$ quando $x \to x_0$. De fato, para $x \neq x_0$ temos

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0).$$
 (5.7)

Agora,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R} \quad e \quad \lim_{x \to x_0} x - x_0 = 0, \tag{5.8}$$

logo $f(x) - f(x_0) \to 0$ quando $x \to x_0$.

Definição 5.1.3. (Diferencial) A diferencial de uma função derivável f no ponto x_0 é o produto $dy := f'(x_0)\Delta x$, onde $\Delta x = x - x_0$.

Observação 5.1.3. De sorte que o diferencial da função identidade y = x é $dx = \Delta x$ e, portanto, o diferencial de uma dada função y = f(x) é $dy = f'(x_0)dx$ e, também $f'(x_0) = dy/dx$.

Exercícios

E 5.1.1. Dê um exemplo de uma função contínua num ponto x_0 e não derivável neste mesmo ponto. Justifique sua resposta.

 ${\bf E}$ 5.1.2. Mostre, a partir da definição da derivada de uma função (Definição 5.1.2) que

- 1. $(x^n)' = nx^{n-1}, n \in \mathbb{N}$.
- 2. $(1/x)' = -1/x^2$.
- 3. $(\sqrt{x})' = 1/(2\sqrt{x})$.

5.2 Regras operacionais

Teorema 5.2.1. Regras operacionais Se $f: D \to \mathbb{R}$ e $g: D \to \mathbb{R}$ são funções diferenciáveis no ponto $x \in D$, então também são deriváveis no mesmo ponto as funções f+g, kf, fg e, no caso de $g(x) \neq 0$, f/g. Além disso, temos:

$$(f+g)'(x) = f'(x) + g'(x),$$

$$(kf)'(x) = kf'(x),$$

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x),$$

$$(f/g)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)}, \text{ se } g(x) \neq 0.$$
(5.9)

Demonstração.

Deixaremos como exercício a demonstração para as funções f + g e kf (veja, Exercício 5.2.1). Para o caso de fg, basta observar que:

$$\lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} g(x+h) + \lim_{h \to 0} f(x) \frac{g(x+h) - g(x)}{h}$$

$$= f'(x)g(x) + f(x)g'(x).$$
(5.10)

Agora, para mostrar que f/g é diferenciável no ponto $x \in D$ basta mostrar para o caso de $f \equiv 1$. De fato,

$$\lim_{h \to 0} \frac{1}{h} \left(\frac{1}{g(x+h)} - \frac{1}{g(x)} \right) = \lim_{h \to 0} -\frac{g(x+h) - g(x)}{h} \frac{1}{g(x+h)g(x)}$$

$$= -\frac{g'(x)}{g^2(x)}.$$
(5.11)

Teorema 5.2.2. (Regra da cadeia) Sejam $g: D_g \to \mathbb{R}$ derivável no ponto $x \in D_g$, $f: D_f \to \mathbb{R}$ com $g(D_g) \subset D_f$ e derivável no ponto y = g(x). Nestas condições, a função composta $f \circ g$ é diferenciável no ponto $x \in (f \circ g)'(x) = f'(g(x))g'(x)$.

Demonstração.

Como f é derivável em y = g(x), temos

$$\frac{f(y+k) - f(y)}{k} = f'(y) + \eta(k), \tag{5.12}$$

com $\eta(k) \to 0$ quando $k \to 0$. Rearranjando temos

$$f(y+k) - f(y) = k[f'(y) + \eta(k)]$$
(5.13)

inclusive para k=0. Agora, para todo h suficientemente pequeno, pomos k=g(x+h)-g(x) e, então

$$\frac{f(g(x+h)) - f(g(x))}{h} = \frac{f(y+k) - f(y)}{h}
= \frac{[f'(y) + \eta(k)]k}{h}
= [f'(y) + eta(k)] \frac{g(x+h) - g(x)}{h}
\to f'(g(x))g'(x), \text{ com } h \to 0.$$
(5.14)

Teorema 5.2.3. (Derivada da função inversa) Seja $f: I = (a, b) \to \mathbb{R}, y = f(x)$, uma função derivável em I com f'(x) sempre positiva ou sempre negativa. Então, sua inversa $x = f^{-1}(y)$ é derivável no intervalo J = f(I) e $(f^{-1})'(y) = 1/f'(g(x))$.

Demonstração.

Sejam $y,y_0 \in J$, $x = f^{-1}(y)$ e $x_0 = f^{-1}(y_0)$. Notemos que

$$\frac{f^{-1}(y) - f^{-1}g(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \left[\frac{f(x) - f(x_0)}{x - x_0}\right]^{-1}.$$
 (5.15)

Agora, basta observar que quando $y \to y_0$, temos $x \to x_0$ pela continuidade da f^{-1} . Logo, tomando o limite nas expressões acima, temos o resultado desejado.

Exercícios

E 5.2.1. Mostre que se $f,g:D\to\mathbb{R}$ são funções diferenciáveis num ponto $x\in D,$ então também são as funções f+g e kf, sendo:

$$(f+g)'(x) = f'(x) + g'(x)$$
 e $(kf)'(x) = kf'(x)$. (5.16)

Resposta. Segue da definição de derivada.

Licença CC-BY-SA 4.0 28

5.3 Extremos e o teorema do valor médio

Teorema 5.3.1. Se $f: D \to \mathbb{R}$ é derivável num ponto $c \in D$ no qual ela assume valor máximo ou mínimo local, então f'(c) = 0.

Demonstração.

No caso de c ser ponto de mínimo local de f, então existe $\delta > 0$ tal que $f(c+h) - f(c) \ge 0$ para todo $|h| < \delta$. Logo, temos

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \ge 0 \quad \text{e} \quad \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \le 0.$$
 (5.17)

Mas, então, como f é diferenciável no ponto c, necessariamente f'(c) = 0. Um raciocínio análogo mostra o resultado para o caso de c ser ponto de máximo local (veja o Exercício 5.3.1.

Teorema 5.3.2. (de Rolle) Se $f : [a, b] \to \mathbb{R}$ é uma função contínua em todo o seu domínio, derivável no intervalo aberto (a, b) e f(a) = f(b), então existe $c \in (a, b)$ tal que f'(c) = 0.

Demonstração.

Se f é constante, então f'(c) = 0 para todo $c \in (a, b)$. Caso contrário, f terá que assumir valores maiores ou menores que f(a) = f(b). Como f é contínua no intervalo fechado [a, b] ela assumirá valor máximo ou mínimo em algum ponto $c \in (a, b)$ (veja Teorema 4.2.2). Então, pelo Teorema 5.3.1, temos f'(c) = 0.

Teorema 5.3.3. (do valor médio) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em todo o seu domínio e derivável no intervalo (a,b), então existe $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{5.18}$$

Demonstração.

Seja

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$
 (5.19)

Observamos que g é contínua em [a, b], derivável em (a, b) e g(a) = g(b) = 0. Logo, pelo Teorema de Rolle, temos que existe $c \in (a, b)$ tal que g'(c) = 0, mas daí f'(c) satisfaz o resultado desejado.

Exercícios

- **E** 5.3.1. Mostre que se $f: D \to \mathbb{R}$ é derivável num ponto $c \in D$ no qual ela assume valor máximo local, então f'(c) = 0.
- **E 5.3.2.** Use o teorema do valor médio para mostrar que se $f:[a,b]\to\mathbb{R}$ é contínua em todo o seu domínio e f'(x)>0 para todo $x\in(a,b)$, então f é uma função crescente.
- **E 5.3.3.** Mostre que se $f:[a,b]\to\mathbb{R}$ é diferenciável em (a,b) e f' é limitada em (a,b), então f é uniformemente contínua.

Capítulo 6

Integração

6.1 Integral de Riemann

Definição 6.1.1. (Partição de um intervalo) Uma **partição** P de um intervalo [a, b] é um conjunto ordenado da forma

$$P([a,b]) = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}.$$
(6.1)

O valor $|P| = \max_{1 \le i \le n} \Delta x_i$, $\Delta x_i = x_i - x_{i-1}$, é chamado de **norma da partição**.

Definição 6.1.2. (Refinamento de uma partição) Um refinamento de uma partição $P_n([a,b]) := \{a = x_0, x_1, x_2, \dots, x_n = b\}$ é uma partição $P_m([a,b])$ com m > n tal que $P_n([a,b]) \subset P_m([a,b])$.

Definição 6.1.3. (Integral de Riemann) A **integral de Riemann** de uma função $f: D \to \mathbb{R}, y = f(x)$, num intervalo $[a,b] \subset D$, quando existe, é o número I tal que

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i, \tag{6.2}$$

onde arbitrariamente $\xi_i \in [x_{i-1}, x_i]$ e $\Delta x_i = x_i - x_{i-1}$ são tomados considerando todas as possíveis partições $P([a, b]) = \{a = x_0, x_1, x_2, \dots, x_n = b\}$, com $|P| \to 0$ quando $n \to 0$. Quando um tal I existe, dizemos que f é integrável em [a, b].

Observação 6.1.1. As somas parciais

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i \tag{6.3}$$

que aparecem na definição da integral de Riemann são chamadas de **somas de Riemann**.

6.2 Integrabilidade de funções contínuas

Teorema 6.2.1. Toda função $f:[a,b] \to \mathbb{R}$ contínua em [a,b] é integrável.

Demonstração.

Seja dado $\varepsilon > 0$. Pelo teorema de Heine, f é uniformemente contínua e, portanto, existe $\delta > 0$ tal que

$$x, y \in I := [a, b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon. \tag{6.4}$$

Seja, agora, S_n uma sequência arbitrária de somas de Riemann com norma tendo a zero quando $n \to \infty$, i.e.

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i, \tag{6.5}$$

com $\max_{1 \leq i \leq n} \Delta x_i \to 0$ quando $n \to \infty$. Queremos provar que existe $I \in \mathbb{R}$ tal que

$$I = \lim_{n \to \infty} S_n \tag{6.6}$$

independentemente da escolha dos pontos x_i e ξ_i . Para tanto, iremos usar o critério de convergência de Cauchy. Para tanto, sejam

$$S_n := \sum_{i=1}^n f(\xi_i) \Delta x_i \tag{6.7}$$

a soma de Riemann para uma dada partição $P_n := \{a = x_0 < x_1 < x_2 < \cdots < x_n = b\}$ com $|P_n| < \delta$ e

$$S_M := \sum_{i=1}^{M} f(\eta_i) \Delta y_i \tag{6.8}$$

a soma de Riemann para um refinamento $P_M := \{a = y_0 < y_1 < y_2 < \dots < y_M = b\}$ de P_n . Como P_M é um refinamento de P_n , cada subintervalo $[x_{i-1}, x_i]$ é a união de certos subintervalos $[y_{r-1}, y_r], \dots, [y_{s-1}, y_s]$ e, portanto $\Delta x_i = \Delta y_r + \dots + \Delta y_s$. Ainda, a diferença $S_n - S_M$ conterá, então, termos da forma

$$f(\xi_i) \sum_{j=r}^{s} f(\eta_i) \Delta y_j = \sum_{j=r}^{s} [f(\xi_i) - f(\eta_j)] \delta y_j.$$
 (6.9)

Agora, como $|\xi_i - \eta_j| < \delta$, temos $|f(\xi_i) - f(\eta_j)| < \varepsilon$ e, portanto

$$\left| f(\xi_i) - \sum_{j=r}^s f(\eta_j) \Delta y_j \right| < \varepsilon \sum_{j=r}^s \Delta y_j = \varepsilon \Delta x_i.$$
 (6.10)

Estendendo este resultado, temos

$$|S_n - S_M| \varepsilon \sum_{i=1}^n \Delta x_i = \varepsilon(b-a).$$
 (6.11)

Por fim, sejam S_n e S_m somas de Riemann correspondentes às partições P_n e P_m , respectivamente, com $|P_n| < \delta$ e $|P_m| < \delta$. Ainda, seja P_M um refinamento de ambas partições. Então

$$|S_n - S_m| \le |S_n - S_M| + |S_M - S_m| < 2\varepsilon(b - a).$$
 (6.12)

Isto mostra que, dada uma sequência arbitrária de partições P_n com $|P_n| \to 0$ quando $n \to \infty$, então o limite das somas de Riemann S_n destas partições existe quando $n \to \infty$. Falta mostrar que este limite é único.

Sejam, agora, S_n e T_n diferentes sequências de somas de Riemann cujas partições têm norma tendendo a zero quando $n \to \infty$. Então, por exemplo, a sequência

$$S_1, T_1, S_2, T_2, S_3, T_3, \dots, S_n, T_n, \dots$$
 (6.13)

também é uma sequência de somas de Riemann cujas partições têm norma tendo a zero quando $n \to \infty$. Logo, pelo que mostramos acima, o limite desta sequência existe. Agora, como $(S_n)_n$ e $(T_n)_n$ são subsequências destas, elas convergem para o mesmo limite.

Exercícios

E 6.2.1. Mostre que se $f:[a,b] \to \mathbb{R}$ é integrável em [a,b], então

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$
(6.14)

para qualquer $c \in [a, b]$.

Referências Bibliográficas

- [1] R.G. Bartle and D.R. Sherbert. *Introduction to real analysis*. John Wiley & Sons, 3. ed. edition, 2000.
- [2] C.I. Doering. *Introdução à análise matemática na reta*. SBM, 1. ed. edition, 2015.
- [3] E.L. Lima. Análise real. IMPA, 12. ed. edition, 2017.
- [4] G. Ávila. Análise matemática para licenciatura. Blucher, 3. ed. edition, 2006.

Índice Remissivo

Carralana 14, 20	J			
Cauchy, 14, 32	descontínua, 19			
conjunto	injetiva, 6			
discreto, 10	inversa, 6			
fechado, 11	não-decrescente, 7			
interior, 9	função contínua			
conjunto aberto, 9	à direta, 20			
conjunto de	função derivável, 25			
aderência, 10	função limitada, 5			
continuidade, 19	à direita, 5			
lateral, 20	à esquerda, 5			
uniforme, 23	inferiormente, 5			
contradomínio, 4	superiormente, 5			
	função par, 7			
definição de	função sobrejetiva, 6			
$ ext{função}, 4$	fundamentos da análise, 4			
denso, 11	,			
derivável, 25	gráfico, 5			
derivada, 25				
lateral, 26	imagem de			
diferenciável, 25	uma função, 5			
diferenciação, 25	integração, 31			
domínio, 4	integral de			
	Riemann, 31			
extensão	integral de Riemann, 31			
de uma função, 6	1 . 1			
C 1 10	lei de correspondência, 4			
fecho, 10	limite, 11			
função, 4	infinito, 17			
ímpar, 7	no infinito, 17			
bijetiva, 6	limite de			
composta, 7	função, 11			
contínua, 19	limite lateral, 15			
crescente, 7	limites			
decrescente, 7	de funções, 9			

```
método da
   bisseção, 21
norma da partição, 31
partição, 31
ponto
    isolado, 10
ponto aderente, 10
ponto de acumulação, 10
   à direita, 16
   à esquerda, 16
ponto interior, 9
restrição
    de uma função, 6
somas de
   Riemann, 31
teorema
   dos intervalos encaixados, 22
    do valor intermediário, 23
    dos intervalos encaixados, 21
teorema de
    Bolzano-Weierstrass, 24
   Rolle, 29
Teorema do
    valor intermediário, 21
variável
   dependente, 4
   independente, 4
vizinhança, 10
   perfurada, 10
   simétrica, 10
```