Numbers divisible by 7

Created by Mr. Francis Hung on 20151228

Last updated: 19 January 2016

Let a be a positive integer. If a = 10x + y, where y is the unit digit of a.

The necessary and sufficient condition for a to be divisible by 7 is (x - 2y) is divisible by 7.

 (\Rightarrow) a = 7m, where m is a positive integer

$$10x + y = 7m$$

$$7(x + y) + 3(x - 2y) = 7m$$

$$3(x-2y) = 7(m-x-y)$$

3 and 7 are relatively prime

- \therefore x 2y is divisible by 7
- (\Leftarrow) x 2y = 7k, where k is an integer

$$a = 10x + y$$

$$=7(x + y) + 3(x - 2y)$$

$$= 7(x+y) + 3 \times 7k$$

$$=7(x+y+3k)$$

 \therefore a is divisible by 7

Example 1 Determine whether 98 is divisible by 7.

$$98 = 10 \times 9 + 8$$

$$x = 9, y = 8$$

$$x - 2y = 9 - 2 \times 8 = -7$$
, which is divisible by 7

∴ 98 is divisible by 7

Example 2 Determine whether 12899 is divisible by 7.

$$x = 1289, y = 9$$

$$x - 2y = 1289 - 2 \times 9 = 1271$$

Let
$$x_1 = 127$$
, $y_1 = 1$

$$x_1 - 2y_1 = 127 - 2 \times 1 = 125$$

Let
$$x_2 = 12$$
, $y_2 = 5$

$$x_1 - 2y_1 = 12 - 10 = 2$$
, which is not divisible by 7

 \therefore 12899 is not divisible by 7

Numbers divisible by 7, 11, 13

Let a be a positive integer. If a=1000x+y, where y is the number formed by the last three digits of a.

 $1001 = 7 \times 11 \times 13 = 77 \times 13 = 7 \times 143 = 91 \times 11$. The positive factors are 1, 7, 11, 13, 77, 91, 143, 1001.

Let p and q be two positive factors of 1001 such that pq = 1001

The necessary and sufficient condition for a to be divisible by p is (y - x) is divisible by p.

 (\Rightarrow) a = pm, where m is a positive integer

$$1000x + y = pm$$

$$1001x + (y - x) = pm$$

$$pqx + (y - x) = pm$$

$$(y - x) = p(m - qx)$$

$$\therefore$$
 y – x is divisible by p

 (\Leftarrow) y - x = ps, where s is an integer

$$a = 1000x + y$$

$$= 1001x + (y - x)$$

$$= pqx + ps$$

$$= p(qx - s)$$

 \therefore a is divisible by p

In other words, the remainder when 1000x + y is divided by p is y - x.

Example 3 Find the remainder when 123456789 is divided by 143.

We separate the first six-digits of 123456789 as $x_1 = 123$, $y_1 = 456$

$$y_1 - x_1 = 456 - 123 = 333 \equiv 47 \pmod{143}$$

Consider 47789. Let $x_2 = 47$, $y_2 = 789$

$$y_2 - x_2 = 789 - 47 = 27 \pmod{143}$$

The remainder is 27.

Example 4 Let *n* be a positive integer and $a = \underbrace{\overline{20152015\cdots2015}}_{n \text{ copies of } 2015}$. Find the least possible value of *n*

such that *a* is divisible by 7.

Consider the first six-digit of a, $x_1 = 20152$, $y_1 = 015$

$$y_1 - x_1 = 15 - 20152 = -20137$$
, $137 - 20 = 117 = 7 \times 16 + 5$, $y_1 - x_1 \equiv 2 \pmod{7}$

$$x_2 = 220152$$
, $y_2 = 015$, $y_2 - x_2 = 15 - 220152 = -220137$, $220 - 137 = 83 = 7 \times 11 + 6$, $220152 \equiv 6 \pmod{7}$

$$x_3 = 620152$$
, $y_3 = 015$, $y_3 - x_3 = 15 - 60152 = -60137$, $137 - 60 = 77 = 7 \times 11$, $620152 \equiv 0 \pmod{7}$

The least value of n = 3.