Logic and Game Theory

wu

May 21, 2019

Contents

1	Lec 2 An invitation to game theory 1.1 Analysis of Nim	1 2
2	lec3: Normal form games	3
1	Lec 2 An invitation to game theory	
Every game has three main ingredients:		

- - 1. the set of players, $[n] = \{1, 2, \dots, n\}$
 - 2. the rule of game
 - 3. outcomes or winning conditions

The game arena, that gives the rules of the game, can be envisaged as a finite graph

- vertices denote game positions
- edges correspond to moves
- each vertex is labelled by the player whose turn it is to move
- winning conditions are not present in the arena

Game tree: the tree unfolding of a game arena is **extensive form** Consider two-person zero-sum games of perfect information. $N = \{1, 2\}$. $\Sigma = \{a_1, a_2, \dots, a_m\}$ is a finite set of action symbols, representing move of players, common for both players. Such games are referred as bipartisan games

A game arena is a graph $\mathcal{G} = (W, \to, s_0)$ with $W = \bigcup_{i \in N} W^i \bigcup \{W^{\text{leaf}}\}$. For $i \in N, W^i$ is the set of *game positions* for player i and W^{leaf} is the set of terminal game positions. s_0 is the initial node of the game. \to : $(W \times \Sigma) \to W$, is a partial function called the move function

If a player i owns the game position $s_0, s_0 \in W^i$ then she picks an action a' and moves to token to s', $s_0 \xrightarrow{a} s'$ A play in calg is a path $\rho : s_0 a_0 s_1 a_1 \dots$ where $\forall j : s_j \xrightarrow{a_j} s_{j+1}$

let \mathcal{G}_t denote the tree unfolding of the arena \mathcal{G} . A **strategy** for player $i, \mu = (W_{\mu}, \rightarrow_{\mu}, s_0)$ is a maximal connected subtree of \mathcal{G}_T where for each player i node, there is a unique outgoing edge and for the other player every move is included. That is, for $s \in W_{\mu}$, if $s \in W_{\mu}^i$ then there exists a unique $a \in \Sigma$ s.t. $s \xrightarrow{a}_{\mu} s'$ where we have $s \xrightarrow{a}_{T} s'$. If $s \in W_{\mu}^{j}(j \neq i)$, then for each s' s.t. $s \xrightarrow{a}_{T} s'$, we have $s \xrightarrow{a}_{\mu} s'$

A strategy profile is a pair $\langle \mu, \tau \rangle$ that fixes a strategy for each player. A winning strategy σ for player i if every strategy τ of the opponent i wins.

A win/lose game is **determined** if starting from any game position, one of the players has a winning strategy

Theorem 1.1. In every finite extensive form game of perfect information, we can compute whether player i can win. (Zermelo 1913)

Proof. Backward induction

1.1 Analysis of Nim

Lemma 1.1. For all $m, n \ge 0, (m, n)$ is winning iff $m \ne n$

Every finite extensive form game is of the form 0 or

$$g_1 + g_2 + \cdots + g_m$$

0 is the empty game, where no player can make any move , g_1, g_2, \ldots, g_m are subgames

If
$$g = g_1 + \cdots + g_m, h = h_1 + \cdots + h_m$$
, then

$$a + h = (a_1 + h) + \dots + (a_m + h) + (a + h_1) + \dots + (a + h_n)$$

When g is a subgame of h, we write $g \leq h$

 $g_1 \equiv g_2$ if for all h, $g_1 + h$ is winning(losing) iff $g_2 + h$ is winning(losing). \equiv is an equivalence relation

Lemma 1.2 (The loser's lemma). If g is losing then $g \equiv 0$

Proof. 1. fix a losing game g

- 2. prove: for all h, g + h is losing iff h is losing
- 3. Assuming this, suppose h is winning, then there is a move to h' that is losing. Hence g + h' is losing and g + h is winning

Lemma 1.3. If h and g are losing, so is g + h

Proof. IH1(inductive hypothesis): for all $g' \leq g$, if h is losing, then so is g' + h

IH2: for all $h' \leq h$, if h is losing, then so is g + h'

Every initial move in g + h is either in g or h. First consider the latter. h is losing, so every move in h to h' is winning \square

Corollary 1.1. if h is losing, then for all g, g + h = g

2 lec3: Normal form games

 $N = \{1, 2, ..., n\}$ the set of players For each $i \in N$, a finite set $S_i = \{1, ..., m_i\}$ of pure strategies