Proiectarea algoritmilor

Paradigma Greedy Lucrare de laborator nr. 10

Cuprins

Cuprins

Arbori binari ponderați pe frontieră

Descriere

Algoritm pentru construirea unui arbore cu lungimea externă ponderată minimă

Interclasarea optimală

Descriere

Algoritm

Sarcini de lucru și barem de notare **Bibliografie**

Arbori binari ponderați pe frontieră - descriere

- Considerăm arbori binari cu proprietatea că orice vârf are 0 sau 2 succesori și vârfurile de pe frontieră au ca informații (etichete, ponderi) numere, notate cu info(v).
- Convenim să numim acești arbori ca fiind ponderați pe frontieră.
- Pentru un vârf v din arborele t notăm cu d_v lungimea drumului de la rădăcina lui tla vârful v.
- Lungimea externă ponderată a arborelui t este:

$$\text{LEP}(t) = \sum_{v \text{ pe frontiera lui } t} d_v \cdot info(v)$$

- Modificăm acești arbori etichetând vârfurile interne cu numere ce reprezintă suma etichetelor din cele două vârfuri fii.
- Pentru orice vârf intern v avem $info(v) = info(v_1) + info(v_2)$, unde v_1, v_2 sunt fiii lui v (Figura 1).

Arbori binari ponderați pe frontieră - exemplu

Figura 1: Arbore ponderat pe frontieră, înainte și după modificare

Lungimea externă ponderată

Lemma (1)

Fie t un arbore binar ponderat pe frontieră.

Atunci

$$LEP(t) = \sum_{v \text{ intern } \hat{i} n \ t} info(v)$$

Lemma (2)

Fie t un arbore din $\mathscr{T}(x)$ cu LEP minimă și v_1, v_2 două vârfuri pe frontiera lui t. Dacă info $(v_1) < info(v_2)$ atunci $d_{v_1} \ge d_{v_2}$.

Lemma (3)

Presupunem $x_0 \le x_1 \le \cdots \le x_{n-1}$. Există un arbore în $\mathcal{T}(x)$ cu LEP minimă și în care vârfurile etichetate cu x_0 și x_1 (vârfurile sunt situate pe frontieră) sunt frați.

Algoritm pentru construirea unui arbore cu lungimea externă ponderată minimă - descriere

- Ideea algoritmului rezultă direct din Lema 3.
- Presupunem $x_0 \le x_1 \le \cdots \le x_{n-1}$.
- Știm că există un arbore optim t în care x_0 și x_1 sunt memorate în vârfuri frate. Tatăl celor două vârfuri va memora $x_0 + x_1$.
- Prin ștergerea celor două vârfuri ce memorează x_0 și x_1 se obține un arbore t'.
- Fie t1' un arbore optim pentru secvenţa y = (x₀ + x₁, x₂,...,x_{n-1}) şi t1 arborele obţinut din t1' prin "agăţarea" a două vârfuri cu informaţiile x₀ şi x₁ de vârful ce memorează x₀ + x₁.
- Avem $LEP(t1') \leq LEP(t')$ ce implică

$$LEP(t1) = LEP(t1') + x_0 + x_1 \le LEP(t') + x_0 + x_1 = LEP(t)$$

• Cum t este optim, rezultă LEP(t1) = LEP(t) și de aici t' este optim pentru secventa v.

000

Algoritm pentru construirea unui arbore cu lungimea externă ponderată minimă - pseudocod

- Considerăm în loc de secvente de numere secvente de arbori.
- Notații: $t(x_i)$ desemnează arborele format dintr-un singur vârf etichetat cu x_i iar rad(t) rădăcina arborelui t.
- Premise: Inițial se consideră n arbori cu un singur vârf, care memorează numerele $x_i, i = 0, ..., n-1.$

```
procedure lep(x, n)
    1: B \leftarrow \{t(x_0), \dots, t(x_{n-1})\}
        while (\#B > 1) do
    2:
    3:
             alege t1, t2 din B cu info(rad(t1)), info(rad(t2)) minime
             construiește arborele t în care subarborii rădăcinii
    4:
    5:
                sunt t1, t2 si info(rad(t))=info(rad(t1))+info(rad(t2))
    6:
            B \leftarrow (B \setminus \{t1, t2\}) \cup \{t\}
end
```

Implementarea algoritmului pentru construirea unui arbore cu lungimea externă ponderată minimă

- a) Dacă mulțimea B este implementată printr-o listă liniară, atunci în cazul cel mai nefavorabil operația 3 este are timpul de execuție O(n), iar operația 6 are timpul de execuție O(1).
- b) Dacă mulțimea B este implementată printr-o listă liniară ordonată, atunci în cazul cel mai nefavorabil operația 3 are timpul de execuție O(1), iar operația 6 are timpul de execuție O(n).
- c) Dacă mulțimea B este implementată printr-un heap, atunci în cazul cel mai nefavorabil operația 3 are timpul de execuție $O(\log n)$, iar operația 6 are timpul de execuție $O(\log n)$.
 - Concluzie: heapul este alegerea cea mai bună pentru implementarea mulțimii B.

Interclasarea optimală a unei mulțimi de secvențe sortate Descrierea problemei

- Se consideră m secvențe sortate a_0, \ldots, a_{m-1} care conțin n_0, \ldots, n_{m-1} , respectiv, elemente dintr-o mulțime total ordonată.
- Interclasarea celor *m* secvențe constă în execuția repetată a următorului proces:
 - Se extrag din mulţime două secvenţe şi se pune în locul lor secvenţa obţinută prin interclasarea acestora.
- Procesul se continuă până când se obține o singură secvențe sortată cu cele $n_0 + \cdots + n_{m-1}$ elemente.
- Problema constă în determinarea unei alegeri pentru care numărul total de transferuri de elemente să fie minim.
- Un exemplu este este dat de sortarea externă
 - Presupunem că avem de sortat un volum mare de date ce nu poate fi încărcat în memoria internă.
 - Se partiţionează colecţia de date în în mai multe secvenţe ce pot fi ordonate cu unul dintre algoritmii de sortare internă.
 - Secvențele sortate sunt memorate în fișiere pe suport extern.
 - Sortarea întregii colecții se face prin interclasarea fișierelor ce memorează secvențele sortate.

• Considerăm problema interclasării a două secvențe sortate:

Fie date două secvențe sortate $x=(x_0,\dots,x_{p-1})$ și $y=(y_0,\dots,y_{q-1})$ ce conțin elemente dintr-o mulțime total ordonată. Să se construiască o secvență sortată $z=(z_0,\dots,z_{p+q-1})$ care să conțină cele p+q elemente ce apar în x și y.

- Utilizăm notația z = merge(x, y) pentru a nota faptul că z este rezultatul interclasării secvențelor x și y.
- Numărul de comparații executate de algoritmul merge(x,y) este cel mult p+q-1, iar numărul de elemente transferate este p+q.
- Revenim la problema interclasării a m secvențe.
 - Consideram un exemplu: Fie m = 5, $n_0 = 20$, $n_1 = 60$, $n_2 = 70$, $n_3 = 40$, $n_4 = 30$.
 - Un mod de alegere a secvențelor pentru interclasare este următorul:

```
b_0 = \operatorname{merge}(a_0, a_1)
b_1 = \operatorname{merge}(b_0, a_2)
b_2 = \operatorname{merge}(a_3, a_4)
b = \operatorname{merge}(b_1, b_2)
(vezi Figura 7.a)
```

- Numărul de transferuri al acestei soluții este (20+60)+(80+70)+(40+30)+(150+70)=80+150+70+220=520.
- Èxistă alegeri mai bune?
- Răspunsul este afirmativ!!

•0000

Interclasarea optimală a unei mulțimi de secvențe sortate - algoritm

- Unei alegeri i se poate atașa un arbore binar în modul următor:
 - informațiile din vârfuri sunt lungimi de secvențe;
 - vârfurile de pe frontieră corespund secvențelor inițiale a_0, \ldots, a_{m-1} ;
 - vârfurile interne corespund secvențelor intermediare.
- Se observă ușor că aceștia sunt arbori ponderați pe frontieră și numărul de transferuri de elemente corespunzător unei alegeri este egală cu LEP a arborelui asociat.
- Aşadar, alegerea optimă corespunde arborelui cu LEP minimă.
- Pentru exemplul anterior $(m = 5, n_0 = 20, n_1 = 60, n_2 = 70, n_3 = 40, n_4 = 30.)$, soluția optimă dată de algoritmul greedy este:

```
b_0 = merge(a_0, a_4)
b_1 = merge(a_3, b_0)
                     (vezi Figura 7.b)
b_2 = merge(a_1, a_2)
b = merge(b_1, b_2)
```

• Numărul de comparații este 50 + 90 + 130 + 220 = 490.

Arborii asociați celor doua moduri de alegere a secvențelor pentru interclasare

Figura 2: Arborii asociați celor doua soluții de intreclasare

- Presupunem că intrarea este memorată într-un tablou T de structuri cu două câmpuri:
 - T[i].secv conține adresa secvenței sortate a;
 - T[i].n conține numărul de elemente din secvența a_i .
- Algoritmul care urmează utilizează reprezentarea arborilor prin tablouri de structuri.
- Notăm cu H tabloul ce reprezintă arborele de interclasare.
- Tabloul H conține structuri formate din trei câmpuri:
 - H[i].elt;
 - H[i].fst = indicele fiului de pe partea stângă;
 - H[i].fdr = indicele fiului de pe partea dreaptă.
- Semnificația câmpului H[i].elt este următoarea:
 - dacă i este nod intern, atunci H[i].elt reprezintă informația calculată din nod;
 - dacă i este pe frontieră (corespunde unui mesaj), atunci H[i].elt este adresa din T a secvenței corespunzătoare.
- Notăm cu val(i) funcția care intoarce informația din nodul i, calculată ca mai sus.
- Tabloul H, care în final va memora arborele de interclasare optimală, va memora pe parcursul construcției acestuia colecțiile intermediare de arbori.

Algoritm de construcție a arborelui de interclasare optimală a unei mulțimi de secvențe sortate - descriere (continuare)

 În timpul execuției algoritmului de construcție a arborelui, H este compus din trei părți (Figura 3):

Partea I: un min-heap care va conține rădăcinile arborilor din colecție;

Partea a II-a: conține nodurile care nu sunt rădăcini;

Partea a III-a: zonă vidă în care se poate extinde partea din mijloc.

<i>heap</i> -ul rădăcinilor	noduri care nu nu sunt rădăcini	zonă vidă
-----------------------------	------------------------------------	-----------

Figura 3: Organizarea tabloului H

Algoritm de construcție a arborelui de interclasare optimală a unei mulțimi de secvențe sortate (continuare)

Un pas al algoritmului de construcție ce realizează selecția greedy presupune parcurgerea următoarelor etape:

- 1. Mutarea rădăcinii cu informația cea mai mică pe prima poziție liberă din zona a treia, să zicem k. Aceasta este realizată de următoarele operații:
 - a) copierea rădăcinii de pe prima pozitie din heap pe pozitia k:

$$H[k] \leftarrow H[1]$$

 $k \leftarrow k + 1$

b) mutarea ultimului element din heap pe prima pozitie:

$$\begin{array}{l} \texttt{H[1]} \leftarrow \texttt{H[m]} \\ \texttt{m} \leftarrow \texttt{m-1} \end{array}$$

- c) refacerea min-heapului.
- 2. Copierea rădăcinii cu informația cea mai mică pe prima poziție liberă din zona a treia, fără a o elimina din min-heap:

$$H[k] \leftarrow H[1]$$
$$k \leftarrow k + 1$$

- 3. Construirea noii rădăcini și memorarea acesteia pe prima poziție în min-heap (în locul celei copiate anterior).
- 4. Refacerea min-heapului. .
- Algoritmul rezultat are timpul de execuţie O(nlog n).

Sarcini de lucru și barem de notare

Sarcini de lucru:

- 1. Scrieți o funcție C/C++ care implementează un algoritm de construcție a arborelui de interclasare optimală a unei multimi de secvențe sortate.
- Date fiind n secvențe sortate, scriețiun program care să determine o alegere optimă în cazul interclasării a n secvențe sortate.

Barem de notare:

- 1. Implementarea algoritmului de construcție a arborelui de interclasare optimală: 6p
- 2. Determinarea unei alegeri optime în cazul interclasării a *n* secvențe sortate: 3p
- 3. Baza: 1p

Temă suplimentară:

1. Consderăm un graf G = (V, E). Scrieți un program C/C++ pentru determinarea drumurilor minime între un vârf sursă și celelalte vărfuri.

Bibliografie

Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.

Moret, B.M.E.si Shapiro, H.D., Algorithms from P to NP: Design and Efficiency, The Benjamin/Cummings Publishing Company, Inc., 1991.