Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 21

Consigna

Dadas A y B matrices $n \times n$ semejantes, probar que:

- 1. $A^p y B^p$ son semejantes, $\forall p \in \mathbb{N}$.
- 2. A^t y B^t son semejantes.
- 3. A es invertible \iff B es invertible. Además, A^{-1} y B^{-1} son semejantes.

Resolución

Parte 1

Como A,B son semejantes, podemos decir que: $B=P^{-1}AP$. Entonces para $p\geq 2$:

$$B^p = (P^{-1}AP)(P^{-1}AP) \dots (P^{-1}AP)$$

Si agrupamos los P y P^{-1} terminamos con:

$$B^p = P^{-1}A^p P$$

Por lo que A^p y B^p son semejantes.

Parte 2

RECORDATORIO

Para el producto de matrices: $(AB)^t = B^t A^t$

LEMA

Sea una matriz A invertible. Entonces la matriz A^t es invertible, y su inversa es $(A^{-1})^t$

DEMOSTRACIÓN

Sabemos que A es invertible, es decir que: $A \cdot A^{-1} = (Id)$. Apliquemos la transpuesta de ambos lados:

$$(A \cdot A^{-1})^t = (Id)^t$$

Por la propiedad del recordatorio, tenemos que:

$$(A^{-1})^t \cdot A^t = (Id)$$

Esto prueba que el lema.

EJERCICIO

Como A, B son semejantes, podemos decir que: $B = P^{-1}AP$.

Usando la propiedad del recordatorio:

$$\begin{split} B^t &= (AP)^t (P^{-1})^t \\ &= P^t A^t (P^{-1})^t \end{split}$$

Entonces, como P^t es la inversa de $(P^{-1})^t$ por el lema anterior, tenemos que B^t y A^t son semejantes.

Parte 3

RECORDATORIO

Sean A, B dos matrices invertibles, entonces $(AB)^{-1} = B^{-1}A^{-1}$

EJERCICIO

Como A, B son semejantes, podemos decir que: $B = P^{-1}AP$.

Además, si A es invertible, tenemos que:

$$A \cdot A^{-1} = (Id)$$

Queremos probar que:

$$B \cdot B^{-1} = (Id)$$

$$P^{-1}AP \cdot (P^{-1}AP)^{-1} = (Id)$$

$$P^{-1}AP\cdot (AP)^{-1}(P^{-1})^{-1}=(Id)$$

$$P^{-1}P = (Id)$$

Entonces, \boldsymbol{B} es invertible. El reciproco se demuestra con el mismo argumento.