Metodi Matematici per l'Informatica (secondo canale) — 15 Gennaio 2025 Soluzioni di Andrea Princic. Cartella delle soluzioni.

Es 1. Dato un insieme X, indichiamo con $\mathcal{P}(X)$ l'insieme delle parti di X. Sia $A = \{2, \{4, 5\}, \{4\}, 4\}$. Allora:

$$\square_V \boxtimes_F \mathbf{A}. \{5,4\} \in \mathcal{P}(A)$$

$$\square_V \square_F \mathbf{B}. \{2,4\} \in \mathcal{P}(A)$$

$$\square_V \square_F \mathbf{C}. \{\{4\}\} \subseteq \mathcal{P}(A)$$

Es 2. Data una relazione binaria R su un insieme A, indichiamo con \hat{R} la relazione:

$$\hat{R} = R \cup \{(a,b) \mid \{(a,c),(c,b)\} \subseteq R\}$$

Allora:

Si noti che la definizione di \hat{R} è la stessa di chiusura transitiva

 $\square_V \mathbf{\nabla}_F \mathbf{A}$. R è riflessiva se e solo se lo è \hat{R}

Si prenda
$$A=\{1,2\}$$
 e $R=\{(1,2),(2,1)\}$. Allora $\hat{R}=R\cup\{(1,1),(2,2)\}$. R non è riflessiva ma \hat{R} sì.

 $\square_V \square_F$ B. R è simmetrica se e solo se lo è \hat{R}

Si prenda
$$A = \{1,2,3\}$$
 e $R = \{(1,2),(3,1),(2,3)\}$. Allora $\hat{R} = R \cup \{(2,1),(1,3),(3,2),(1,1),(2,2),(3,3)\}$. R non è simmetrica ma \hat{R} sì.

 $\square_V \square_F C$. R è transitiva se e solo se lo è \hat{R}

La chiusura transitiva serve proprio quando R non è transitiva ma la sua chisura (\hat{R}) ovviamente lo è

Es 3. Scrivere l'insieme delle parti di $A = \{1, 7, \{7\}\}$.

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{7\}, \{\{7\}\}, \{1, 7\}, \{1, \{7\}\}, \{7, \{7\}\}, A\}$$

Es 4. Sia \mathbb{Z} l'insieme dei numeri interi. L'insieme $A = \{y \in \mathbb{Z} \mid x \in \mathbb{Z} \land y = 3 - 2x\}$ è numerabile?

Sì perché y = 3 - 2x si può scrivere anche y = -2x + 3 che è l'equazione di una retta, e una retta crea una corrispondenza biunivoca tra una sola x e una sola y.

Es 5. Sia D l'insieme dei numeri dispari. Dimostrare per induzione che $\forall n \in D, n^3$ è dispari.

Caso base n = 1:

$$1^3 = 1$$
 che è dispari

Passo induttivo n > 1:

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

Per ipotesi induttiva n^3 è dispari, mentre $6n^2$, 12n, e 8 sono pari quindi $6n^2 + 12n + 8$ è pari ma sommandolo a n^3 che è dispari il risultato è dispari.

	${f T}$	\mathbf{S} \mathbf{F}	Ι			
		V		$(A \lor B) \to$	B	
	V	☑		$B \to (A \lor A)$	B)	
			$\overline{\checkmark}$	$\neg(A \lor B) \leftrightarrow$	$\rightarrow (\neg A \rightarrow B)$	
	V	 ✓ □		$(A \wedge (B \vee G))$	$(A \land B) \lor (A \land C)$	
	V	 ✓ □		$(A \leftrightarrow B)$ –	$\rightarrow (\neg A \lor B)$	
Es 7.	Se so che $A \to B$ ha valore Vero , che cosa posso concludere del valore di verità delle proposizioni seguenti?					
	Verd	o Fals	so v	Vero/Falso		
	\checkmark				$(A \vee C) \to (B \vee C)$	
	\checkmark				$(A \wedge C) \to (B \wedge C)$	
					$(\neg A \land B) \leftrightarrow (A \lor B)$	
	è false A.	Raiso. A. $\forall x \; \exists y \; A(x,y) \to \forall x \; \exists y \; A(y,x)$ Vero: Dominio: qualunque $A(x,y) = \text{Vero}$ Falso: Dominio: \mathbb{N} $A(x,y) = x \; \text{è la metà di } y$				
	B. $\forall x \ B(x) \lor \forall x \ \neg B(x)$					
		Vero: Domin $B(x)$		qualunque ero		
		Vero: Domin $B(x)$:		N è dispari		

Es 6. Le seguenti formule sono tautologie (T), soddisfacibili (S), falsificabili (F) o insoddisfacibili (I)?

Es 9. "Una propretà P verificata dai multipli di 3 e di 5 è verificata anche dai multipli di 30". Scrivere quest'affermazione nel linguaggio della logica predicativa e motivare la sua validità.

Siano:

Dominio: insieme delle proprietà dei numeri naturali

 $V_i(p) =$ la proprietà p è verificata dai multipli di i

Allora l'affermazione "Una propretà P verificata dai multipli di 3 e di 5 è verificata anche dai multipli di 30" può essere espressa come:

$$\forall p \ ((V_3(p) \land V_5(p)) \to V_{30}(p))$$

L'affermazione è valida perché 30 è multiplo sia di 3 che di 5, quindi qualunque multiplo di 30 è anche multiplo sia di 3 che di 5