Durée: 1 heure 40 minutes

Contrôle de géométrie analytique $N^{\circ}4$

	•	
NOM:		G
PRENOM:		Groupe
i itali om .		

Barème sur 20 points

1. Dans le plan muni du repère orthonormé $R_e = (O, \vec{e_1}, \vec{e_2})$, on définit la conique C par son équation cartésienne:

$$\mathcal{C}: 3x^2 + 2xy + 3y^2 - 2x + 2y = 0$$

- a) Déterminer l'équation réduite de \mathcal{C} , le repère R_u dans lequel l'équation de \mathcal{C} est réduite et la matrice de passage U de R_e à R_u .
- b) Soit la droite d dont l'équation est $\overline{y} = \frac{\sqrt{2}}{2} \overline{x}$ dans le repère réduit. Déterminer, dans le repère R_u , les coordonnées des points d'intersection de la droite d avec la conique \mathcal{C} . Pour le point d'abscisse positive dans R_u , déterminer, en utilisant la matrice de passage U, ses coordonnées dans R_e .
- c) Représenter, avec précision, la conique $\mathcal C$ dans le repère R_e . Unité 16 carrés.

8,5 pts

2. Dans le plan muni d'un repère orthonormé $R_e = (O, \vec{e}_1, \vec{e}_2)$, on définit une famille de conique par son équation cartésienne :

$$\mathcal{F}: (m+2)x^2 - 4xy + (m-1)y^2 + 2(m+2)x - 4y + m + 7 = 0, \quad m \in \mathbb{R}.$$

- a) Déterminer, en fonction du paramètre m, le genre et la dégénérescence des coniques de \mathcal{F} , (on ne demande pas l'équation des droites de dégénérescence). Pour quelles valeurs de m les coniques ont-elles un centre?
- b) Pour la valeur m=0, déterminer le centre Ω de la conique. Montrer que Ω est le centre de toutes les coniques non-dégénérées de la famille $\mathcal F$.

- c) On considère les coniques de \mathcal{F} qui sont des hyperboles et on note R_u le repère dans lequel leur équation est réduite.
 - Déterminer, en fonction de m, leur équation réduite;
 - montrer que toutes les hyperboles ont un axe réel parallèle à une direction fixe à déterminer;
 - dans le repère réduit R_u , on considère le point $A(\sqrt{5}; 0)$; déterminer la valeur du paramètre m de sorte que A est un sommet d'une hyperbole de la famille \mathcal{F} ; déterminer les coordonnées des sommets de cette hyperbole dans le repère R_e ;
 - ullet montrer que cette famille $\mathcal F$ possède une seule hyperbole équilatère et déterminer les équations cartésiennes de ses asymptotes dans le repère R_e .

11,5pts