

https://seasawher.github.io/kitamado/

@seasawher

Some basics of algebraic number theory

Proposition 1.4

quotation. Let $\{\beta_1, \dots, \beta_n\}$ be the dual basis of $\{\alpha_1, \dots, \alpha_n\}$ with respect to $(,)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then, for any $x \in O_K$, we have $x = (x, \alpha_1)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_1 + \dots + (x, \alpha_n)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_n$.

Proof. Since the trace form $(\ ,\)_{\operatorname{Tr}_{K/\mathbb Q}}$ is degenerate, $(\ ,\alpha_i)_{\operatorname{Tr}_{K/\mathbb Q}}$ are linearly independent in $\operatorname{Hom}_{\mathbb Q}(K,\mathbb Q)=K^*$ and form $\mathbb Q$ -basis of K^* . Let $p_i\colon K\to \mathbb Q$ be a projection map such that $p_i(x_1\alpha_1+\cdots+x_n\alpha_n)=x_i$. There are $\beta_{ij}\in\mathbb Q$ such that

$$p_i = \sum_{j=1}^{n} (,\alpha_j)_{\mathrm{Tr}_{K/\mathbb{Q}}} \beta_{ij}.$$

This means $id_K = \sum_i \alpha_i p_i = \sum_j (\ ,\alpha_j)_{\operatorname{Tr}_{K/\mathbb{Q}}} \sum_i \alpha_i \beta_{ij}$, then we get $O_K \subset \mathbb{Z}\beta_1 + \cdots + \mathbb{Z}\beta_n$ for $\beta_j = \sum_i \alpha_i \beta_{ij}$. Since $id_K = \sum_j (\ ,\alpha_j)_{\operatorname{Tr}_{K/\mathbb{Q}}} \beta_j$, β_j are basis of K and $\mathbb{Z}\beta_1 + \cdots + \mathbb{Z}\beta_n$ is a free \mathbb{Z} -module. \square

Lemma 1.16

quotation. Because $(O_K)_P$ is a principal ideal domain, $(O_{K'})_P$ is a free $(O_K)_P$ -module of rank [K':K].

Proof. It remain to be answered.

Lemma 1.16

quotation. Thus

$$\dim_{O_K/P} O_{K'}/PO_{K'} = \dim_{O_K/P} (O_{K'})_P/P(O_{K'})_P$$

$$= \dim_{O_K/P} ((O_K)_P/P(O_K)_P) \otimes_{(O_K)_P} (O_{K'})_P$$

Proof. We set $A = O_K, A' = O_{K'}$. Then we get

$$A'/PA' \cong A' \otimes_A A/P$$

$$\cong A' \otimes_A \operatorname{Frac} A/P$$

$$\cong A' \otimes_A \operatorname{Coker}(PA_P \to A_P)$$

$$\cong \operatorname{Coker}(A' \otimes_A PA_P \to A' \otimes_A A_P)$$

$$\cong (A')_P/P(A')_P$$

$$(A')_P/P(A')_P \cong A' \otimes_A \operatorname{Coker}(PA_P \to A_P)$$

$$\cong A' \otimes_A A_P/PA_P$$

$$\cong (A' \otimes_A A_P) \otimes_{A_P} A_P/PA_P$$

$$\cong (A')_P \otimes_{A_P} A_P/PA_P.$$

Adjacent to Lemma 1.17

quotation. We take a integral basis $\{\omega_1, \dots, \omega_n\}$ of O_K , we denote by $\{\beta_1, \dots, \beta_n\}$ the dual basis with respect to $(\ ,\)_{\mathrm{Tr}_{K/\mathbb{Q}}}$. Then we have $\mathcal{M} = \mathbb{Z}\beta_1 + \dots + \mathbb{Z}\beta_n$.

Proof. It remain to be answered.

Adjacent to Lemma 1.17

quotation. The difference of K is defined by $\mathcal{D}_K = \mathcal{M}^{-1}$. Because $O_K \subset \mathcal{M}$, we have $\mathcal{D}_K \subset O_K$, so \mathcal{D}_K is an ideal of O_K .

Proof.
$$O_K = \mathcal{M} \mathcal{M}^{-1} = \mathcal{D}_K \mathcal{M} \supset \mathcal{D}_K O_K \supset \mathcal{D}_K.$$