COGNOMS:	NOM:
2on Control Arquitectura de Computadors	Curs 2014-2015 Q1

- Temps: 13:30 a 15:30
- Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i el nom

Problema 1. (3 puntos)

Dado el siguiente código escrito en C:

```
typedef struct {
   int i;
   char b;
   int j;
} Str;

int sub(Str s, Str m[4][10], char *c)
{
   int i;
   char v[10];
   ...
}
```

a)	Dibuja el bloque de activación de la subrutina sub indicando claramente el tamaño y desplazamiento de cada
	campo respecto al registro %ebp.

b)	Traduce a ensamblador la sentencia $m[s.i][s.j].b = a'$; que se encuentra dentro de la rutina sub.
١.	Traduce a consendada da la contancia II 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c)	Traduce a ensamblador la sentencia "while (*c != v[i]) i++;" que se encuentra dentro de la rutina sub
c)	suponiendo que la variable i esta almacenada en el registro %esi.
c)	

(COGNOMS:	NOM:
2	2on Control Arquitectura de Computadors	Curs 2014-2015 Q1
	11 2 (4	
a)	 blema 2. (4 puntos) Define de forma clara y concisa el comportamiento una cache con pol caso de escritura de un byte con acierto y en caso de escritura de un 	
b)	Define de forma clara y concisa el comportamiento una cache con p de escritura de un byte con acierto y en caso de escritura de un byte	

Dado el siguiente código escrito en C, y suponiendo que el vector v está almacenado en la dirección física 0x00000000:

```
int v[2000000];
....
for (i=0, i<1000000, i+=256)
   v[i]=v[i+1024]-v[i+3*1024];</pre>
```

Suponiendo que la memoria utiliza **páginas de tamaño 8KB** y que utilizamos un **TLB de 4 entradas (reemplazo LRU)**, responde a las siguientes preguntas:

c) Para cada uno de los accesos (a=v[i], b=v[i+1024], c=v[i+3*1024), indica a qué página física se accede en cada una de las 17 primeras iteraciones del bucle.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а																	
b																	
С																	

d) Calcula la cantida	ad de aciertos y fallos de TLB , en todo el bucle:
Dado el siguiente 0x00000000:	código escrito en C, y suponiendo que el vector v está almacenado en la dirección física
int	v[2000000];
• • • •	•
for	(i=0, i<1000000, i++)
	v[i]=v[i+1024]-v[i+3*1024];
	dad de aciertos y fallos de cache para la ejecución de todo el bucle suponiendo una cache ociativa de 8 Kbytes y líneas de 32 bytes con política copy back + write no allocate.
	ad de aciertos y fallos de cache para la ejecución de todo el bucle suponiendo una cache directa
de 4 Rbytes y lilleas	s de 32 bytes con política copy back + write no allocate.

COGNOMS: NOM:	
2on Control Arquitectura de Computadors	Curs 2014-2015 Q1
Problema 3. (3 puntos) a) Puede una cache asociativa de 2 vías tener una tasa de aciertos menor que un parámetros son iguales? Justifica la respuesta (si la respuesta es afirmativa ba	
El desenrollado de un bucle es una optimización que usan a veces los compiladores, de un bucle N veces, y reducir el número de iteraciones por un factor de N.	, consistente en repetir el cuerpo
b) Que efecto tiene esta optimización de código en la cache de datos? Y en la de	e instrucciones?
Tenemos un cache de 1KB, asociativa de 4 vías, con líneas de 32 bytes y reemplazo	LRU. Dado el siguiente código:
<pre>for (i=0; i<n; (j="0;" +="v[j]*f(i);</pre" acum="" for="" i++)="" j++)="" j<m;=""></n;></pre>	
Todas las variables excepto el vector v están en registros. N y M son constantes muy es un múltiplo de 1024. Los elementos de v ocupan 8 bytes y sabemos que v está a función f(i) realiza un cálculo en función de la variable i; para simplificar el proble provoca fallos de cache ni interfiere con los elementos de v.	alineado a un múltiplo de 1KB. La
c) Transforma el código para minimizar los fallos de cache.	

d)	Añade el mínimo número de instrucciones de prebúsqueda (prefetch) para eliminar todos los fallos restantes, modificando el código si es necesario. La sintaxis de una instrucción de prebúsqueda es prefetch(dirección). Por ejemplo para prebúscar elemento 3 del vector v usaremos
	prefetch(&v[3]). El cálculo de f(i) requiere más tiempo de que necesita un prefetch.
e)	Demuestra que si en una cache asociativa por conjuntos con reemplazo LRU doblamos su tamaño duplicando
	el número de conjuntos, la tasa de aciertos va a ser siempre igual o mayor (nunca menor), para cualquier secuencia de referencias. Es decir que siempre que es fallo en la cache mayor, lo es también en la menor.