PHY 5410: Homework Week 14

5.1 Show that the matrices

$$lpha^i = \left(egin{array}{cc} 0 & \sigma^i \ \sigma^i & 0 \end{array}
ight) \;, \quad eta = \left(egin{array}{cc} 1\!\!1 & 0 \ 0 & -1\!\!1 \end{array}
ight) \;,$$

obey the algebraic relations

$$\alpha^i \alpha^j + \alpha^j \alpha^i = 2\delta^{ij} \, 1 \, , \qquad \qquad \alpha^i \beta + \beta \alpha^i = 0 \, , \qquad \qquad \alpha^{i \, 2} = \beta^2 = 1 \, .$$

5.3 Particles in a homogeneous magnetic field.

Determine the energy levels that result from the Dirac equation for a (relativistic) particle of mass m and charge e in a homogeneous magnetic field \mathbf{B} . Use the gauge $A^0 = A^1 = A^3 = 0$, $A^2 = Bx$.

- **6.2** Show, by using the transformation properties of x_{μ} , that $\partial^{\mu} \equiv \partial/\partial x_{\mu}$ ($\partial_{\mu} \equiv \partial/\partial x^{\mu}$) transforms as a contravariant (covariant) vector.
- **6.4** Derive the quadratic form of the Dirac equation

$$\left[\left(i\hbar \partial - \frac{e}{c} A \right)^2 - \frac{i\hbar e}{c} \left(\alpha \boldsymbol{E} + i \boldsymbol{\Sigma} \boldsymbol{B} \right) - m^2 c^2 \right] \psi = 0$$

for the case of external electromagnetic fields. Write the result using the electromagnetic field tensor $F_{\mu\nu} = A_{\mu,\nu} - A_{\nu,\mu}$, and also in a form explicitly dependent on E and B.

Hint: Multiply the Dirac equation from the left by γ^{ν} ($i\hbar\partial_{\nu} - \frac{e}{c}A_{\nu}$) + mc and, by using the commutation relations for the γ matrices, bring the expression obtained into quadratic form in terms of the field tensor

$$\left[\left(i\hbar \partial - \frac{e}{c} A \right)^2 - \frac{\hbar e}{2c} \sigma^{\mu\nu} F_{\mu\nu} - m^2 c^2 \right] \psi = 0.$$

The assertion follows by evaluating the expression $\sigma^{\mu\nu}F_{\mu\nu}$ using the explicit form of the field tensor as a function of the fields E and B.