COMP 9602: Convex Optimization

Convex Function

Dr. C Wu

Department of Computer Science The University of Hong Kong

Convex functions

- Definition and basic properties
- Operations that preserve convexity
- Conjugate function
- Quasi-convex function
- log-concave and log-convex functions

Definition

Convex function

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$

□ Strictly convex

f is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Concave function

f is concave iff -f is convex

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

f is strict concave iff -f is strictly convex

$$f(\theta x + (1 - \theta)y) > \theta f(x) + (1 - \theta)f(y)$$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbb{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- ullet powers of absolute value: $|x|^p$ on ${\bf R}$, for $p\geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on Rⁿ

- Affine functions are both convex and concave
- all norms are convex

examples

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

Epigraph of a function

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{lpha} = \{x \in \operatorname{\mathbf{dom}} f \mid f(x) \leq lpha \}$$
 a subset $\in \operatorname{\mathsf{dom}} f$ in $\operatorname{\mathsf{R}}^{\mathsf{n}}$

sublevel sets of convex functions are convex

if all sublevel sets of a function are convex, is the function necessarily convex?

epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \leq t\} \qquad \text{a set in } \mathbf{R}^{n+1}$$

f is convex if and only if epi f is a convex set

Differentiable convex functions

Differentiable functions

f is **differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$abla f(x) = \left(rac{\partial f(x)}{\partial x_1}, rac{\partial f(x)}{\partial x_2}, \ldots, rac{\partial f(x)}{\partial x_n}
ight)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

- f (defined on an open domain) is convex => f is continuous
- f is convex >> differentiable at all points

First-order condition

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

first-order approximation of f is always underestimator

- strictly convex: ≥ ⇒ >
- proof:

Second-order condition

f is **twice differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$abla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

• if $\nabla^2 f(x)\succ 0$ for all $x\in \operatorname{dom} f$, then f is strictly convex converse not true, e.g., $f(x)=x^4$

Second-order condition

Examples

quadratic functions

$$f(x)=x^2$$

$$f(x)=(1/2)x^TPx+q^Tx+r \ (\text{with }P\in \mathbf{S}^n)$$

$$\nabla f(x)=Px+q, \qquad \nabla^2 f(x)=P$$
 convex iff $P\succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

Global minimum

- (1) If f is convex, differentiable, and $\nabla f(x^*) = 0$, then $f(y) \ge f(x^*)$, $\forall y$, i.e., x^* is the global minimum of f(x)
- (2) If f is twice differentiable and $\nabla f(x^*) = 0$, $\nabla^2 f(x) \geq 0$, then $f(y) \geq f(x^*)$, $\forall y$, i.e., x^* is a global minimum of f(x)

Note:

a function may not have a global minimum even if it is convex,

e.g.
$$f(x) = x$$
 $f(x) = e^x$

these properties only apply to unconstrained minimization,

e.g.,
$$f(x,y) = x^2 + y^2$$

Local minimum

Local minimum: x* is a local minimum of unconstrained function f if it is no worse than its neighbors, i.e.,

$$\exists \epsilon > 0, \text{ s.t.}, f(x^*) \leq f(x), \forall x \text{ with } \parallel x - x^* \parallel_2 \leq \epsilon$$

Property: Let x^* be a local minimum of $f: R^n \to R$. Suppose f is twice differentiable, then $\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$

practical methods for establishing convexity of a function

- 1. verify definition
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+b) is convex iff f is convex $\forall A \in R^{m \times n}, b \in R^m$

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x),$$
 $\mathbf{dom} f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$

• (any) norm of affine function: f(x) = ||Ax + b||

pointwise maximization:

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex how about $f(x)=\min\{f_1(x), \ldots, f_m(x)\}$?

examples

- ullet piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex $(x_{[i]})$ is ith largest component of x

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

pointwise supremum:

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

• distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• distance to a set: $\mathbf{dist}(x,S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex

Composition of scalar functions:

composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

extended-value extension \tilde{f} of f is $\tilde{f}(x)=f(x),\quad x\in \operatorname{\mathbf{dom}} f,$ $\tilde{f}(x)=\infty,\quad x\not\in \operatorname{\mathbf{dom}} f$

f is convex if $\begin{array}{c} g$ convex, h convex, \tilde{h} nondecreasing g concave, h convex, \tilde{h} nonincreasing

• discover composition rules for n=1, twice differentiable g, h

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

(very similar rules hold in the general case, p. 84 textbook)

examples

- $\bullet \exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition:

composition of $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $egin{array}{ll} g_i & {
m convex}, \ h & {
m convex}, \ ilde{h} & {
m nondecreasing} & {
m in} \ {
m each} \ {
m argument} \\ g_i & {
m concave}, \ h & {
m convex}, \ ilde{h} & {
m nonincreasing} & {
m in} \ {
m each} \ {
m argument} \end{array}$

• discover composition rules for n=1, twice differentiable g, h

see appendix A.4 for chain rule

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

(very similar rules hold in the general case, p. 86 textbook)

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex (p. 74)

Perspective:

the **perspective** of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t), \qquad \mathbf{dom}\, g = \{(x,t) \mid x/t \in \mathbf{dom}\, f, \ t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if *f* is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\}$

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

f* is convex (even if f is not)

Pointwise supremum of a family of affine functions of y

 $(0,-f^*(y))$

f*(y) is the max. gap

Examples:

- Affine function. f(x) = ax + b. $f^*(y) = \sup_{x} (yx ax b)$
- Negative logarithm. $f(x) = -\log x$, with $\operatorname{dom} f = \mathbf{R}_{++}$.

$$f^*(y) = \sup_{x>0} (xy + \log x)$$

$$= \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

Quasi-convex functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$C'_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \le \alpha\}$$

are convex for all α

- ullet f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Quasi-convex functions

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- ullet $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- ullet $\log x$ is quasilinear on ${f R}_{++}$
- $f(x_1, x_2) = x_1x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 $dom f = \{x \mid c^T x + d > 0\}$

is quasilinear

Quasi-convex functions

Properties

for quasiconvex $f: 0 \le \theta \le 1 \implies f(\theta x + (1-\theta)y) \le \max\{f(x), f(y)\}$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$

Operations that preserve quasi-convexity: Chapter 3.4.4

Log-concave and log-convex functions

log-concave:

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

log-convex:

f is log-convex if $\log f$ is convex

example:

powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$

- Reference
 - Chapter 3, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto