РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>13</u>

дисциплина: Моделирование информационных процессов

Студент: Доре Стевенсон Эдгар

Группа: НКН-бд-01-19

МОСКВА

2020 г.

Постановка задачи

- 1. Используя теоретические методы анализа сетей Петри, проведите анализ сети с помощью построения дерева достижимости. Определите, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
 - 2. Промоделируйте сеть Петри с помощью CPNTools.
- 3. Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

Выполнение работы

1 Анализ сети Петри

1.1 Сеть

1.2 Дерево достижимости

1.3 Анализ сети

Представленная в задании сеть *безопасна* и *ограничена*, поскольку в каждой позиции не бывает более одной фишки, также сеть *не имеет тупиков*. Однако, данная сеть *не является сохраняющей*, так как при переходах t5 и t6 количество фишек меняется.

2 Построение модели при помощи CPNTools

2.1 Граф сети

2.2 Декларации

```
▼Declarations
▶ Standard priorities
▶ Standard declarations
▼ colset RAM = unit with memory;
▼ colset B1 = unit with storage1;
▼ colset B2 = unit with storage2;
▼ colset B1xB2 = product B1*B2;
▼ var ram: RAM;
▼ var b1: B1;
▼ var b2: B2;
```

2.3 Запуск модели

3 Пространство состояний

3.1 Отчет о пространстве состояний

CPN Tools state space report for:
/cygdrive/C/Users/o_ageeva/Desktop/3year/MIP/cpntools/lab13/model.cpn
Report generated: Wed Jun 3 22:22:07 2020

Statistics

--

State Space

Nodes: 5
Arcs: 10
Secs: 0
Status: Full

Scc Graph

Nodes: 1
Arcs: 0
Secs: 0

Boundedness Properties

__

```
Best Integer Bounds
                          Upper Lower
    model'p1 1
                          1
                          1
    model'p2 1
                                     0
                          1
    model'p3 1
                                     0
                                     0
    model'p4 1
                          1
    model'p5 1
                          1
                                     0
    model'p6 1
                          1
                                     0
 Best Upper Multi-set Bounds
    model'p1 1 1 inemory
model'p2 1 1 istorage1
model'p3 1 1 istorage2
model'p4 1 1 istorage1
model'p5 1 1 istorage2
model'p6 1 1 (storage1, storage2)
 Best Lower Multi-set Bounds
                1`memory
empty
empty
empty
    model'p1 1
    model'p2 1
    model'p3 1
    model'p4 1
    model'p4 1
model'p5 1
model'p6 1
                      empty
                      empty
Home Properties
 Home Markings
   All
Liveness Properties
______
 Dead Markings
    None
 Dead Transition Instances
   None
 Live Transition Instances
    All
Fairness Properties
_____
 Impartial Transition Instances
    None
 Fair Transition Instances
```

model't6 1

```
Just Transition Instances
   model't5 1

Transition Instances with No Fairness
   model't1 1
   model't2 1
   model't3 1
   model't4 1
```

Анализ отчета:

- 1. Граф пространства состояний состоит из 5 узлов (nodes) и 10 дуг (arcs), значит для данной сети возможно 5 состояний и 10 различных переходов между ними. Важно, что граф является ориентированным, поэтому между переходом из АвВ и из ВвА существует разница и для каждого будет своя дуга.
- 2. Рассмотрим ограниченность (boundedness) состояний: верхние (upper) и нижние (lower) границы позиций (places) представлены в блоке Best Integer Bounds. В данной сети максимальное количество фишек в каждой позиции 1, минимальное значение во всех позициях, кроме p1, является 0. Поскольку p1 это, по сути, оперативная память, то она не может быть свободная во время работы. В Multi-set Bounds продемонстрировано, что все фишки побывают в каждом из состояний.
- 3. Для данной сети все маркировки являются домашними (home marking), потому что для установленной начальной маркировки (initial marking) сети мы можем достичь всех маркировок из всех достижимых маркировок (reachable marking).
- 4. В данной сети отсутствуют мертвые маркировки (dead markings), потому что при любой маркировке есть включенный переход (enabled transition).
- 5. Поскольку построенная сеть Петри включает бесконечные последовательности (допускается построение бесконечных последовательностей вхождений), то появляется блок Impartial Transition Instances в котором отражены переходы, которые обязательно входят в бесконечные последовательности вхождения. В данной сети таких переходов нет. Переход t6 fair, поскольку он всегда используется, если активирован (enabled). Переход t5 just, поскольку он обязателен для того, чтобы получить бесконечную последовательность.

3.2 Граф пространства состояний

Заключение

В ходе данной лабораторной работы была построена модель сети Петри в CPNTools, там же вычислено пространство состояний, сформирован отчет по нему и построен граф состояний. Также данная сеть была проанализирована при помощи дерева достижимости.