Review

Program Verification => Satisfiability

```
method Eg1 (x, y, z: bool) {
    var result : bool;
    if (x)
        result := y;
    else
        result := z;
    assert result;
}

(x,y,z) is a counterexample iff
    (x,y,z) is a counterexample iff
```

Demo

```
method Sum (N: int)
    returns (sum : int)
    requires N > 0;
    ensures sum == N*(N+1)/2;
    var i := 0; sum := 0;
    while (i < N)
       invariant (sum == i*(i+1)/2)
          && (i \ge 0) && (i <= N)
        i := i + 1;
        sum := sum + i;
```


sum =
$$i*(i+1)/2$$
 && (i >= 0) && (i <= N)

$$i := i+1$$

sum := sum + i;

Desired Post-Condition:

sum = N*(N+1)/2

sum =
$$i*(i+1)/2$$
 && (i >= 0) && (i <= N)

Review

Propositional Logic

Syntax

A formal language for expressing some class of assertions

Semantics

What do we mean by these assertions?

- M is a model for ϕ
 - M⊨φ
- ϕ is satisfiable
- ϕ is a tautology
 - ⊨φ

Propositional Satisfiability

- How can we check if
 - ϕ is a tautology?
 - ϕ is satisfiable?
- Decidable
 - Only finitely many cases to check
- Efficiency?
 - Original NP-Complete problem
 - But very good SAT solvers have been developed over the years ...

Syntax
A formal language
for expressing
some class of assertions

Semantics
What do we mean
by these assertions?

Proofs & Proof Systems
What consitutes a
valid proof
of an assertion?

 $M \models \phi$ $\models \phi$

Formal Proofs & Proof Systems

- Exhaustive checking does not work, e.g., when we reason about integers:
 - For all x,y,z, $(x < y) \land (z = x + y/2) \Rightarrow (z < y)$
- Need other approaches to proofs

Goal: Finite reasoning about infinitely many possibilities

First Order Logic aka Predicate Calculus

Example

- Consider whole numbers (the universe)
- Assertions are written using the symbols
 - 0, 1 : constant symbols
 - + (addition), × (multiplication): function symbols
 - ≤ : predicate symbols
 - x, y, z: (logical) variables
 - ∃ : existential quantification
 - ∀ : universal quantification

(Informal) Semantics

- Existential Quantification
 - $\exists x. \varphi(x)$
 - There exists some element x (in the universe) such that $\varphi(x)$ holds

- Universal Quantification
 - $\forall x. \varphi(x)$
 - For every element x (in the universe) $\varphi(x)$ holds

Example

- Consider the natural numbers
 - Let × denote multiplication
- What does the following say?
 - $\exists z. \ x \times z = y$
 - y is a multiple of x
 - In this assertion (formula), z is a bound variable and x and y are free (unbound) variables
- What does the following say?
 - $\forall x \forall y \quad x \times y = z \Rightarrow (x=1) \lor (x=z)$
 - z is a prime number

Propositional Logic +

- Variables: *x*, *y*, *z*, ...
- Function symbols: $f, g, +, \times, \cdot$
 - arity: number of operands
 - prefix notation: f(x,y)
 - infix notation: x+y
 - constant symbols: 0, 1, ...
- Predicate symbols: $p, q, >, \ge$
 - Equality predicate: x=y (Predefined "predicate" with a fixed meaning/interpretation)
- Quantification (Universal/Existential)

First Order Logic: Syntax

The set of terms is defined by:

$$\tau ::= f(\tau \downarrow 1 \cdots, \tau \downarrow n) \mid x$$

- Examples: x+1, $x\times(y+z)$
- The set of formula is defined by:

$$\phi ::= p(\tau \downarrow 1, \dots, \tau \downarrow n) \mid \tau \downarrow 1 = \tau \downarrow 2 \mid$$

$$\neg \phi \mid \phi \downarrow 1 \land \phi \downarrow 2 \mid \phi \downarrow 1 \lor \phi \downarrow 2 \mid \forall x. \phi \mid \exists x. \phi$$

- Examples: $x \ge y + z$, $\forall x \forall y (x \ge y) \land (y \ge x) \Rightarrow (x = y)$
- A sentence is a formula with no free variables

Example

- Consider set theory
 - ∈ : predicate symbol
- What does the following say?
 - $\forall z. \ z \in x \Rightarrow z \in y$
 - "x is a subset of y"
- What does the following say?
 - $\forall w. (w \in z) \Leftrightarrow (w \in x) \lor (w \in y)$
 - "z is the union of x and y"

Examples

- Natural numbers (Peano arithmetic)
 - Constant symbol: 0
 - Function symbol: S (successor function)
- Natural numbers:
 - Constant symbol: 0
 - Function symbol: S (successor function)
 - Function symbols: +, ×
- Set theory
 - Constant symbol: ϕ (optional)
 - Predicate symbol: ∈

Quantification: Exercise

What's the difference between:

- ∀*x*. ∃*y*. (*x*≤*y*)
- $\exists y. \forall x. (x \leq y)$
- Conversions between ∃ and ∀
 - $\neg \exists x. \phi(x)$ equivalent to $\forall x. \neg \phi(x)$
 - $\neg \forall x. \ \phi(x)$ equivalent to $\exists x. \ \neg \phi(x)$

More Exercises

- What do the following mean?
 - a) $\exists x \forall y x \oplus y = y$
 - b) $\exists x \forall y (x \oplus y = y) \land (y \oplus x = y)$
 - c) $\forall x \forall y x \oplus y = y \oplus x$
- Does (a) hold
 - If we consider the set of integers and interpret ⊕ as integer-addition?
- Find an example of a set and an operation
 that does not satisfy (a)

First Order Logic: Semantics

- We can interpret terms and formulae ...
- ... given the meaning of the function symbols and predicate symbols
 - A set A (the universe)
 - For every function-symbol fof arity n, a function M[f]:Aîn→A representing the interpretation of f
 - For every predicate-symbol p of arity n, a function $M[p]:A \uparrow n \to \{T,F\}$ representing the interpretation of p
 - (called a structure or interpretation for the underlying language)
 - We will refer to the structure as M

First Order Logic: Semantics

- Extend the interpretation-function to define the value $M[\tau] \in A$ for any term τ inductively.
- Extend this to evaluate any sentence φ as being true of false in M.
- We write $M \models \phi$ to denote that ϕ holds true in the interpretation M.
- We define $M \models \phi$ inductively.

Inductive Definitions

Syntax

```
\phi := P / \phi \downarrow 1 \lor \phi \downarrow 2 / \phi \downarrow 1 \land \phi \downarrow 2
```

Inductive Definitions

- Let $\Sigma = P \cup \{ \land, \lor, \neg \}$
- Let $\Sigma \mathcal{I}*$ denote the set of all sequences of symbols from Σ
- The set of formulas is the smallest subset S of Σ /* that satisfies:
 - If $x \in P$, then $x \in S$
 - If $\phi \downarrow 1 \in S$ and $\phi \downarrow 2 \in S$ then $\phi \downarrow 1 \lor \phi \downarrow 2 \in S$
 - If $\phi \downarrow 1 \in S$ and $\phi \downarrow 2 \in S$ then $\phi \downarrow 1 \land \phi \downarrow 2 \in S$

Inductive Definitions

Syntax

$$\phi := P / \phi \downarrow 1 \lor \phi \downarrow 2 / \phi \downarrow 1 \land \phi \downarrow 2$$

Antecedent

 $M \models \phi \downarrow 1$, $M \models \phi \downarrow 2 / M \models \phi \downarrow 1 \land \phi \downarrow 2$

Semantics

Consequent

Inductive Definitions

Syntax

$$\phi := P / \phi \downarrow 1 \lor \phi \downarrow 2 / \phi \downarrow 1 \land \phi \downarrow 2$$

Antecedent

 $M \models \phi \downarrow 1$, $M \models \phi \downarrow 2 / M \models \phi \downarrow 1 \land \phi \downarrow 2$

Semantics

Consequent

- Similarly for
 - Proof rules
 - Type systems

Example

- Consider the language with
 - function symbols \oplus and \otimes of arity 2, and
 - function (constant) symbols $c \downarrow 0$ and $c \downarrow 1$ of arity 0
- Let M denote the following structure
 - The universe is the set of integers
 - M[⊕] is integer-addition
 - $M[\otimes]$ is integer-multiplication
 - $M[c \downarrow 0]$ is 0
 - $M[c \downarrow 1]$ is 1

Example

• Does $M \models \neg \exists x$. $(x \otimes x) \oplus c \downarrow 1 = c \downarrow 0$ hold?

• Is there any structure N such that $N \models \exists x. (x \otimes x) \oplus c \downarrow 1 = c \downarrow 0$

Semantic Concepts

- *M* is said to be a model for ϕ iff $M \models \phi$
- We say M is a model of a set $\{\psi\downarrow 1, \psi\downarrow 2, \cdots\}$ if M is a model of every $\psi\downarrow i$ in the set
- ϕ is said to be satisfiable if it has a model
- ϕ is said to be unsatisfiable if it has no model
- ϕ is said to be valid (or a tautology) if every interpretation M is a model for ϕ
- We write $\models \phi$ iff ϕ is a tautology

Syntax
A formal language
for expressing
some class of assertions

Semantics
What do we mean
by these assertions?

Proofs & Proof Systems
What constitutes a
valid proof
of an assertion?

 $M \models \phi$ $\models \phi$

Axiomatic Reasoning

- Consider the language (of group theory)
 - one nullary function symbol e
 - one unary function symbol I(I(a)) denotes $a \uparrow -1$)
 - one binary function symbol ⊕
- Consider the following "axioms":
 - $A \downarrow 1$: $\forall x \forall y \forall z. x \oplus (y \oplus z) = (x \oplus y) \oplus z$
 - $A\downarrow 2$: $\forall x. e \oplus x = x$
 - $A\downarrow 3$: $\forall x. I(x) \oplus x = e$
 - $A\downarrow2\uparrow'$: $\forall x. x \oplus e=x$
 - $A \downarrow 3'$: $\forall x. x \oplus I(x) = e$

Example

- Let ϕ denote the formula $\forall x \forall y \forall z$. $(x \oplus y = x \oplus z) \Rightarrow y = z$
- What does ϕ say?
- Let M be a structure such that
 - *M*⊨*A*↓1
 - *M*⊨*A*↓2
 - *M*⊨*A*↓3
- Does $M \models \phi$ hold?

Axiomatization

- We write $\{A\downarrow1, A\downarrow2, A\downarrow3\} \models \varphi$ to mean that
 - Every model of $\{A\downarrow1, A\downarrow2, A\downarrow3\}$ is a model of φ
 - I.e., if M is any structure such that $M \models A \downarrow 1$, and $M \models A \downarrow 2$ and $M \models A \downarrow 3$ then $M \models \varphi$.
- Let Ψ be a set of formula (axioms or axiom schemas)
- We write $\Psi \models \varphi$ to mean that
 - Every model of Ψ is a model of φ
 - Thus, φ is a semantic consequence of Ψ
 - A semantic concept ... no easy way to check.
- The theory of Ψ is the set of all φ such that $\Psi \models \varphi$

Axiomatization

- Suppose we "axiomatize" M using a set Ψ of formula (axioms)
 - That is, $M \models \psi$ for every $\psi \in \Psi$
 - That is, M is a model of Ψ

Problem reduction:

Theory Completeness

- For every φ (with no free variables)
 - Either $M \models \varphi$ or $M \models \neg \varphi$
 - It is possible that neither $\Psi \models \varphi$ nor $\Psi \models \neg \varphi$
- We say that Ψ is complete (or the theory of Ψ is complete) if
 - for every φ either $\Psi \models \varphi$ or $\Psi \models \neg \varphi$

Syntax
A formal language
for expressing
some class of assertions

<u>Semantics</u>

What do we mean by these assertions?

Proofs & Proof Systems
What constitutes a
valid proof
of an assertion?

Proofs & Proof Systems

- A proof system (or deduction system) is used to define what a valid proof is
- A proof is a tree-like structure
 - Leafs: axioms (or axiom instances)
 - Internal nodes: compose sub-proofs using inference rules
 - Root: the theorem that is proven
 - (convenient to draw upside-down)

Proofs & Proof Systems

- A proof-system S is an inductive definition of judgements of the form $\vdash JS \phi$ or $\Psi \vdash JS \phi$
- We use the judgement $\vdash \downarrow S \phi$ to denote that ϕ can be proven to be valid (in system S)
- The judgement $\Psi \vdash \phi$ denotes that ϕ can be proven given proofs of all $\psi \in \Psi$ (in system S).

Example

$$\Psi \vdash \phi \downarrow 1$$
, $\Psi \vdash \phi \downarrow 1 \Rightarrow \phi \downarrow 2 / \Psi \vdash \phi \downarrow 2$ (modus ponens)

$$\Psi, \phi \downarrow 1 \vdash \phi \downarrow 2 / \Psi \vdash \phi \downarrow 1 \Rightarrow \phi \downarrow 2$$

$$\Psi \vdash \phi \downarrow 1$$
, $\Psi \vdash \phi \downarrow 2 / \Psi \vdash \phi \downarrow 1 \land \phi \downarrow 2$

Soundness & Completeness

- A proof system is said to be sound if all provable formulae are valid: that is,
 - $\Psi \vdash \phi$ implies $\Psi \models \phi$
- A proof system is said to be complete if all valid formulae are provable: that is,
 - $\Psi \models \phi$ implies $\Psi \vdash \phi$

Syntax
A formal language
for expressing
some class of assertions

<u>Semantics</u>

What do we mean by these assertions?

Proofs & Proof Systems
What constitutes a
valid proof

of an assertion?

 $M \models \phi$ $\Psi \models \phi$ $\models \phi$

Ψ⊢*φ* ⊢*φ*

Godel's Completeness & Incompleteness Theorems

Summary

- By design [of formal proof systems]
 - Correctness of a given proof can be easily machine-checked
 - But can be tedious for us to write
 - The set of proofs (for a chosen set of axioms) is recursively enumerable
 - Can automate search for proofs
 - Challenges
 - Efficiency
 - Choosing a set of axioms

Satisfiability Modulo Theories (SMT Solvers)

 Extend SAT solvers to check satisfiability modulo one or more theories

```
method Eg2 (x, y : int)
  returns (z : int)
{
    assume x < y;
    z := (x+y)/2;
    assert x < z;
}</pre>
```

```
Valid iff for all x, y, z:
((x < y) \land (z = x + y/2) \Rightarrow (x < z))
(x,y,z) \text{ is a counterexample iff}
(x < y) \land (z = x + y/2) \land (x \ge z)
```