1. Let function f be defined by the polynomial below:

$$f(x) = -5x^4 - 6x^3 + 3x^2 + 7x + 2$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(x) ●	$5x^4 + 6x^3 - 3x^2 - 7x - 2$
f(-x) •	$5x^4 - 6x^3 - 3x^2 + 7x - 2$
-f(-x) ◆	$-5x^4+6x^3+3x^2-7x+2$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	1	7	3
2	8	6	4
3	9	2	9
4	7	9	1
5	6	3	2
6	3	4	8
7	5	5	7
8	4	1	5
9	2	8	6

3. Evaluate f(9).

$$f(9) = 2$$

4. Evaluate $g^{-1}(3)$.

$$g^{-1}(3) = 5$$

5. Assuming f is an **even** function, evaluate f(-6).

If function f is even, then

$$f(-6) = 3$$

6. Assuming h is an **odd** function, evaluate h(-7).

If function h is odd, then

$$h(-7) = -7$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} - (-x)$$
$$p(-x) = -x^{2} + x$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + x)$$
$$-p(-x) = x^2 - x$$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 5(x-7)$$

a. Evaluate f(23).

step 1: subtract 7 step 2: multiply by 5

$$f(23) = 5((23) - 7)$$
$$f(23) = 80$$

b. Evaluate $f^{-1}(40)$.

step 1: divide by 5 step 2: add 7

$$f^{-1}(x) = \frac{x}{5} + 7$$

$$f^{-1}(40) = \frac{(40)}{5} + 7$$

$$f^{-1}(40) = 15$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(4).

$$b(4) = 6$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 7$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-8	8	8	-8
-1	5	-5	-5	5
0	0	0	0	0
1	-5	5	5	-5
2	8	-8	-8	8

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.