```
In [1]:
    using JuMP, Gurobi, LinearAlgebra, CSV, DataFrames, Pkg, Distances

In [2]:
    his = CSV.read("/Users/bennetthellman/Desktop/OneDrive - Massachusetts Institute
    fut = CSV.read("/Users/bennetthellman/Desktop/OneDrive - Massachusetts Institute
    dc = CSV.read("/Users/bennetthellman/Desktop/OneDrive - Massachusetts Institute
    pred_d = CSV.read("/Users/bennetthellman/Desktop/OneDrive - Massachusetts Institute
    pred_d
In [3]:

pred_d
```

Out[3]: 99,450 rows × 16 columns (omitted printing of 8 columns)

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
1	1	9001	Connecticut	Fairfield County	41.244	-73.363	2015	27
2	2	9001	Connecticut	Fairfield County	41.244	-73.363	2015	28
3	3	9001	Connecticut	Fairfield County	41.244	-73.363	2015	29
4	4	9001	Connecticut	Fairfield County	41.244	-73.363	2015	30
5	5	9001	Connecticut	Fairfield County	41.244	-73.363	2015	31
6	6	9001	Connecticut	Fairfield County	41.244	-73.363	2015	32
7	7	9001	Connecticut	Fairfield County	41.244	-73.363	2015	33
8	8	9001	Connecticut	Fairfield County	41.244	-73.363	2015	34
9	9	9001	Connecticut	Fairfield County	41.244	-73.363	2015	35
10	10	9001	Connecticut	Fairfield County	41.244	-73.363	2015	36
11	11	9001	Connecticut	Fairfield County	41.244	-73.363	2015	37
12	12	9001	Connecticut	Fairfield County	41.244	-73.363	2015	38
13	13	9001	Connecticut	Fairfield County	41.244	-73.363	2015	39
14	14	9001	Connecticut	Fairfield County	41.244	-73.363	2015	40
15	15	9001	Connecticut	Fairfield County	41.244	-73.363	2015	41
16	16	9001	Connecticut	Fairfield County	41.244	-73.363	2015	42
17	17	9001	Connecticut	Fairfield County	41.244	-73.363	2015	43
18	18	9001	Connecticut	Fairfield County	41.244	-73.363	2015	44
19	19	9001	Connecticut	Fairfield County	41.244	-73.363	2015	45
20	20	9001	Connecticut	Fairfield County	41.244	-73.363	2015	46
21	21	9001	Connecticut	Fairfield County	41.244	-73.363	2015	47
22	22	9001	Connecticut	Fairfield County	41.244	-73.363	2015	48
23	23	9001	Connecticut	Fairfield County	41.244	-73.363	2015	49
24	24	9001	Connecticut	Fairfield County	41.244	-73.363	2015	50

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
25	25	9001	Connecticut	Fairfield County	41.244	-73.363	2015	51
26	26	9001	Connecticut	Fairfield County	41.244	-73.363	2015	52
27	27	9003	Connecticut	Hartford County	41.82	-72.718	2015	27
28	28	9003	Connecticut	Hartford County	41.82	-72.718	2015	28
29	29	9003	Connecticut	Hartford County	41.82	-72.718	2015	29
30	30	9003	Connecticut	Hartford County	41.82	-72.718	2015	30
:	:	:	:	:	:	:	:	:

In [4]: agg_county = groupby(pred_d, :FIPS_Code)

 $_{\texttt{Out}\,[\,4\,]\,:}$ GroupedDataFrame with 765 groups based on key: FIPS_Code

First Group (130 rows): FIPS_Code = 9001

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
1	1	9001	Connecticut	Fairfield County	41.244	-73.363	2015	27
2	2	9001	Connecticut	Fairfield County	41.244	-73.363	2015	28
3	3	9001	Connecticut	Fairfield County	41.244	-73.363	2015	29
4	4	9001	Connecticut	Fairfield County	41.244	-73.363	2015	30
5	5	9001	Connecticut	Fairfield County	41.244	-73.363	2015	31
6	6	9001	Connecticut	Fairfield County	41.244	-73.363	2015	32
7	7	9001	Connecticut	Fairfield County	41.244	-73.363	2015	33
8	8	9001	Connecticut	Fairfield County	41.244	-73.363	2015	34
9	9	9001	Connecticut	Fairfield County	41.244	-73.363	2015	35
10	10	9001	Connecticut	Fairfield County	41.244	-73.363	2015	36
11	11	9001	Connecticut	Fairfield County	41.244	-73.363	2015	37
12	12	9001	Connecticut	Fairfield County	41.244	-73.363	2015	38
13	13	9001	Connecticut	Fairfield County	41.244	-73.363	2015	39
14	14	9001	Connecticut	Fairfield County	41.244	-73.363	2015	40
15	15	9001	Connecticut	Fairfield County	41.244	-73.363	2015	41
16	16	9001	Connecticut	Fairfield County	41.244	-73.363	2015	42
17	17	9001	Connecticut	Fairfield County	41.244	-73.363	2015	43
18	18	9001	Connecticut	Fairfield County	41.244	-73.363	2015	44
19	19	9001	Connecticut	Fairfield County	41.244	-73.363	2015	45
20	20	9001	Connecticut	Fairfield County	41.244	-73.363	2015	46

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
21	21	9001	Connecticut	Fairfield County	41.244	-73.363	2015	47
22	22	9001	Connecticut	Fairfield County	41.244	-73.363	2015	48
23	23	9001	Connecticut	Fairfield County	41.244	-73.363	2015	49
24	24	9001	Connecticut	Fairfield County	41.244	-73.363	2015	50
25	25	9001	Connecticut	Fairfield County	41.244	-73.363	2015	51
26	26	9001	Connecticut	Fairfield County	41.244	-73.363	2015	52
27	19891	9001	Connecticut	Fairfield County	41.244	-73.363	2016	1
28	19892	9001	Connecticut	Fairfield County	41.244	-73.363	2016	2
29	19893	9001	Connecticut	Fairfield County	41.244	-73.363	2016	3
30	19894	9001	Connecticut	Fairfield County	41.244	-73.363	2016	4
:	÷	÷	:	:	:	:	÷	:
:								

Last Group (130 rows): FIPS_Code = 54109

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
1	19865	54109	West Virginia	Wyoming County	37.634	-81.539	2015	27
2	19866	54109	West Virginia	Wyoming County	37.634	-81.539	2015	28
3	19867	54109	West Virginia	Wyoming County	37.634	-81.539	2015	29
4	19868	54109	West Virginia	Wyoming County	37.634	-81.539	2015	30
5	19869	54109	West Virginia	Wyoming County	37.634	-81.539	2015	31
6	19870	54109	West Virginia	Wyoming County	37.634	-81.539	2015	32
7	19871	54109	West Virginia	Wyoming County	37.634	-81.539	2015	33
8	19872	54109	West Virginia	Wyoming County	37.634	-81.539	2015	34
9	19873	54109	West Virginia	Wyoming County	37.634	-81.539	2015	35
10	19874	54109	West Virginia	Wyoming County	37.634	-81.539	2015	36
11	19875	54109	West Virginia	Wyoming County	37.634	-81.539	2015	37
12	19876	54109	West Virginia	Wyoming County	37.634	-81.539	2015	38
13	19877	54109	West Virginia	Wyoming County	37.634	-81.539	2015	39
14	19878	54109	West Virginia	Wyoming County	37.634	-81.539	2015	40
15	19879	54109	West Virginia	Wyoming County	37.634	-81.539	2015	41
16	19880	54109	West Virginia	Wyoming County	37.634	-81.539	2015	42
17	19881	54109	West Virginia	Wyoming County	37.634	-81.539	2015	43
18	19882	54109	West Virginia	Wyoming County	37.634	-81.539	2015	44

	Column1	FIPS_Code	State.Name	County.Name	Latitude	Longitude	Year	Week
	Int64	Int64	String	String	Float64	Float64	Int64	Int64
19	19883	54109	West Virginia	Wyoming County	37.634	-81.539	2015	45
20	19884	54109	West Virginia	Wyoming County	37.634	-81.539	2015	46
21	19885	54109	West Virginia	Wyoming County	37.634	-81.539	2015	47
22	19886	54109	West Virginia	Wyoming County	37.634	-81.539	2015	48
23	19887	54109	West Virginia	Wyoming County	37.634	-81.539	2015	49
24	19888	54109	West Virginia	Wyoming County	37.634	-81.539	2015	50
25	19889	54109	West Virginia	Wyoming County	37.634	-81.539	2015	51
26	19890	54109	West Virginia	Wyoming County	37.634	-81.539	2015	52
27	59619	54109	West Virginia	Wyoming County	37.634	-81.539	2016	1
28	59620	54109	West Virginia	Wyoming County	37.634	-81.539	2016	2
29	59621	54109	West Virginia	Wyoming County	37.634	-81.539	2016	3
30	59622	54109	West Virginia	Wyoming County	37.634	-81.539	2016	4
:	:	÷	:	:	:	:	:	÷

Part D

```
In [5]:
          county_tot_d = combine(agg_county, :d_pallets => sum);
 In [6]:
          df = []
          for i in 1:size(agg_county,1)
              row_num = size(agg_county[i])[1]
              x = sum(agg_county[i][row_num-7:row_num,:d_pallets])
              append!(df, x)
          end
 In [7]:
          variable cost = Vector(dc[:,:Variable Cost]);
          fixed cost = Vector(dc[:,:Fixed Cost]);
 In [8]:
          d mat = zeros((size(fixed cost,1), size(agg county,1)))
          for i in 1:size(fixed_cost,1)
              dc lat = dc[i,:Latitude]
              dc long = dc[i,:Longitude]
              for j in 1:size(agg county,1)
                  county_lat = agg_county[j][1,:Latitude]
                  county_long = agg_county[j][1,:Longitude]
                  d mat[i,j] = haversine((dc lat,dc long),(county lat,county long), 3958.8)
              end
          end
In [44]:
          model = Model(with_optimizer(Gurobi.Optimizer, Gurobi.Env()))
```

set optimizer attribute(model, "OutputFlag", 0)

```
n = size(county_tot_d,1)
          @variable(model, b[i=1:20], Bin)
          @variable(model, u[i=1:20,j=1:n], Bin)
          @variable(model, c[i=1:20]>=0)
          @constraint(model, [i=1:3], b[i]==1)
          @constraint(model, [i=1:2], c[i]==1200000)
          @constraint(model, [i=3], c[i]==900000)
          @constraint(model, [j=1:n], sum(u[:,j]) == 1)
          @constraint(model, [i=1:20, j=1:n], u[i,j] \le b[i])
          @constraint(model, [i=1:20], c[i]*(5/13.5) >= sum(df[j]*u[i,j] for j=1:n))
          @constraint(model, [i=1:20], c[i]<=b[i]*1200000)</pre>
          @objective(model, Min, sum(variable cost[i]*c[i] for i=1:20) + sum(fixed cost[i]
              sum(sum((1.55/20)*d_mat[i,j]*county_tot_d[j,:d_pallets_sum]*u[i,j] for j=1:n
          optimize!(model)
         Academic license - for non-commercial use only - expires 2022-08-19
In [45]:
          objective_value(model)
Out[45]: 7.533748614634609e8
In [46]:
          b=value.(b)
Out[46]: 20-element Vector{Float64}:
          1.0
          1.0
          1.0
          0.0
          0.0
          0.0
          0.0
          0.0
          0.0
          0.0
          1.0
          0.0
          0.0
          1.0
          0.0
          0.0
          1.0
          1.0
          1.0
          0.0
In [47]:
          u=value.(u)
Out[47]: 20×765 Matrix{Float64}:
          0.0 1.0 0.0 1.0 1.0
                                  1.0
                                         1.0 1.0
                                                      0.0
                                                           0.0
                                                               0.0
                                                                     0.0
                                                                          0.0
                                                                               0.0
                                                                                    0.0
                              0.0 0.0
                                             0.0
          0.0
               0.0 0.0
                         0.0
                                        0.0
                                                      0.0
                                                           0.0
                                                                0.0
                                                                     0.0
                                                                          0.0
                                                                               0.0
                                                                                    0.0
              0.0 0.0 0.0 0.0 0.0 0.0 0.0
                                                      1.0 1.0
                                                               1.0
                                                                    1.0
                                                                         1.0
                                                                              1.0
                                                                                    1.0
```

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

```
0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
                                                                           0.0
                                                                                                   0.0
            0.0
                        0.0
                                    0.0
                                          0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                                       0.0
                                                                                             0.0
                  0.0
                              0.0
                                                0.0
                                                                                 0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
                  0.0
                                                0.0
                                                                                 0.0
                                                               0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                     0.0
                                                                     0.0
                                                                           0.0
                                                                                       0.0
                                                                                             0.0
                                                0.0
                                                                                 0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                                          0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                              0.0
                                    0.0
                                                0.0
                                                                                             0.0
                                                                                                   0.0
            1.0
                  0.0
                        1.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                     0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                      0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
            0.0
                  0.0
                        0.0
                              0.0
                                    0.0
                                          0.0
                                                0.0
                                                      0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                   0.0
In [48]:
            c=value.(c)
Out[48]: 20-element Vector{Float64}:
                  1.2e6
                  1.2e6
            900000.0
                  0.0
                  0.0
                  0.0
                  0.0
                  0.0
                  0.0
                  0.0
                  1.1999247319021097e6
                  0.0
                  0.0
            701461.9812655906
                  0.0
                  0.0
                  1.199839817498397e6
                  1.1992867442985747e6
                  1.1999464575535741e6
                  0.0
In [49]:
            sum(u, dims=2)
Out[49]: 20×1 Matrix{Float64}:
             57.0
            122.0
            120.0
              0.0
              0.0
              0.0
              0.0
              0.0
              0.0
              0.0
            222.0
              0.0
              0.0
             41.0
              0.0
              0.0
             27.0
```

Part E

```
In [64]:
          mod1 = Model(with optimizer(Gurobi.Optimizer, Gurobi.Env()))
          set_optimizer_attribute(mod1, "OutputFlag", 0)
          n = size(county_tot_d,1)
          @variable(mod1, c[i=1:20]>=0)
          @variable(mod1, b[i=1:20], Bin)
          @constraint(mod1, [i=1:2], c[i]==1200000)
          @constraint(mod1, [i=3], c[i]==900000)
          @constraint(mod1, [i=1:3], b[i]==1)
          @constraint(mod1, [i=1:20], c[i]<=b[i]*1200000)</pre>
          @constraint(mod1, sum(c[i]*(5/13.5) for i=1:20) >= sum(df[j] for j=1:n))
          @objective(mod1, Min, sum(fixed cost[i]*b[i] for i=1:20) + sum(variable cost[i]*
          optimize! (mod1)
         Academic license - for non-commercial use only - expires 2022-08-19
In [65]:
          objective value(mod1)
Out[65]: 5.1707796649073195e8
In [66]:
          b=value.(b)
Out[66]: 20-element Vector{Float64}:
            1.0
            1.0
           1.0
           -0.0
           -0.0
           1.0
           -0.0
           -0.0
           1.0
           -0.0
           1.0
           1.0
           -0.0
```

```
-0.0
           -0.0
           -0.0
           -0.0
           -0.0
           1.0
           -0.0
In [67]:
          c=value.(c)
Out[67]: 20-element Vector{Float64}:
                1.2e6
                1.2e6
           900000.0
                0.0
                0.0
                1.2e6
                0.0
                0.0
                1.2e6
                0.0
                1.2e6
           700237.024943693
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
                1.2e6
                0.0
In [68]:
          mod2 = Model(with optimizer(Gurobi.Optimizer, Gurobi.Env()))
          set optimizer attribute(mod2, "OutputFlag", 0)
          n = size(county tot d, 1)
          @variable(mod2,u[i=1:20,j=1:n], Bin)
          b = value.(b)
          c = value.(c)
          @constraint(mod2, [j=1:n], sum(u[:,j])== 1)
          \texttt{@constraint(mod2, [i=1:20, j=1:n], sum(df[j]*u[i,j] for j=1:n) <= 1.001*c[i]*5/1}
          @objective(mod2, Min, sum(sum(1.55/20*d_mat[i,j]*county_tot_d[j,:d_pallets_sum]*
          optimize!(mod2)
         Academic license - for non-commercial use only - expires 2022-08-19
In [69]:
          objective value(mod2)
Out[69]: 5.059191728940411e8
```