

Bridge Model for Individualized Digital NasoAlveolar Molding using Uniform Cross-Section Elliptic Segment

H. Parakarn¹, B. Wangsrimongkol¹, N. Eua-Anan², and T. Katanyukul²
¹Faculty of Dentistry and ²Faculty of Engineering, Khon Kaen University, Thailand

ITTA 2024, 23-25 April, Baku, Azerbaijan

Cleft Lip and Palate (CLP)

- * Congenital craniofacial defect.
- * Approximately 1 in 700 births.
- * Caused by various factors, inc. genetic, environmental, or combination of both.
- * NasoAlveolar Molding (NAM) is a well-adopted adjunctive therapy before lip surgery.

Conventional and Digital NAMs

Take impression

Risks of aspiration

Take intraoral scan

Decrease risks from taking impression

Fabricate NAM plate using self-cure acrylic resin

Conventional workflow

Digital workflow

NAM plate

Selective grinding to mold the arch and incorporating nasal stent manually

Design via 3D software and 3D-printed

Manually incorporates nasal stent

Individual Digital NAM

Issues

Need a personnel with both craniofacial expertise and proficiency in 3D modeling

Step 2

Export STL file to 3D printer

Step 4

Print the NAM plate

3D printed NAM plate

Import STL files to Blender 3D software

Design and construct

the NAM plate virtually

Our Proposed Solution

Project Phases

The Bridge Model

Intra-Oral Scan

Bridge

Bridge

- * Its shape agrees with curvature of a patient's alveolar ridge.
- * It connects the gap.
- * Its volume loosely fits to the alveolar ridge.

Our Approach

Uniform Cross-Section Elliptic Segment

Shape: ellipse model

Cross-section

Bridge: shape + cross-section

Working with 3D Geometry Data

Intraoral scan = 3D Geometry data
* vertices, edges, faces

Face

- * Vertices and edges
- * Face normal vector
- * Face center

Face center, c = (x, y, z)

Elliptic Segment

Ridge identification (shown in blue)

* Face u is identified as ridge if its z > 0

Shape approximation

* Polar coordinate Face center $(x_n, y_n, z_n) \rightarrow (r_n, \theta_n, z_n)$.

* Elliptic model (fixed center)

$$\hat{r} = \frac{c}{\sqrt{\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}}}.$$

* Fit the model: $\min_{a,b,c} \sum_{n} (\hat{r}(\theta_n, a, b, c) - r_n)^2$

Cross Section: Learn from a Natural Ridge

How do we model the cross section?

* Learn from the natural cross section.

Circle shape

Ellipse shape

Cross Section: Natural Ridge

What we have learned:

- * Ellipse captures the natural shape much better than circle.
- * Having datapoints in $(z_n, \Delta r_n)$ reveals a natural outline of the ridge.

Natural Ridge to Cross-Section Outline

- * Ridge datapoints $(z_n, \Delta r_n)$ form pointcloud data.
- * The outline of the cross-section is obtained by discretization (blue dashed).
 - * M bins
 - * bin height, $h_i = \max(\{z: z \in bin_i\})$

Note: with correction for global height.

* Smoothen out by linear interpolation (red).

Cross-Section: Discretization

The higher resolution (more bins) we use, the closer the approximation to the natural outline.

A bridge with * elliptic shape * uniform crosssection

can be created using a common CAD operation, e.g., bevel in Blender.

Creating The Bridge Model

Subjective assessment by experts

- * Average quantitative score: 6.75
- * Major concerns:
- 1. The coverage of the bridge is not sufficient.
- 2. Adjustability of the segment.

Assessment

Conclusion

- * A pilot study on generating a 3D geometry of the bridge model---precursor to the iDNAM design.
- * Achieving 3D geometry generation using low computation techniques: coordination transformation, ellipse modeling, discretization, linear interpolation, and common CAD operations.
- * Assessment shows viability of the key mechanisms in the approach, yet reveals rooms for improvement.

image: https://commons.wikimedia.org/wiki/File:%E0%B8%A7%E0%B8%B1%E0%B8%94%E0%B8%9E%E0%B8%9E0%B8%B0%E0%B8%98%E0%B8%98%E0%B8%95%E0%B8%B3%E0%B8%82%E0%B8%B2%E0%B8%A1%E0%B9%81%E0%B8%81%E0%B8%81%E0%B9%88%E0%B8%99.jp

