Ex 1 Quelle est la classe sur \mathbb{R}_+ de $f: x \mapsto 1 - 2x + x \sin \sqrt{x}$

- a) Par somme, composée et produit, f est continue sur \mathbb{R}_+ et de classe C^1 sur \mathbb{R}_+^* .
- b) Dérivabilité en 0: pour tout x > 0:

$$\frac{f(x) - f(0)}{x} = -2 + \sin\sqrt{x} \underset{x \to 0}{\rightarrow} 2$$

On en déduit que f est dérivable en 0 et que f'(0) = 2.

c) Continuité de f' en 0 : pour tout x > 0

$$f'(x) = -2 + \sin \sqrt{x} + \frac{x}{2\sqrt{x}}\cos(x)$$
$$= -2 + \sin \sqrt{x} + \frac{1}{2}\sqrt{x}\cos(x)$$

Donc $\lim_{x\to 0}f'\left(x\right)=-2=f'\left(0\right)$, et f' est continue en 0, ce qui assure :

$$f \in C^1\left(\mathbb{R}_+\right)$$

d) Dérivée seconde : pour tout x > 0

$$\frac{f'(x) - f'(0)}{x} = \frac{\sin\sqrt{x}}{x} + \frac{1}{2}\frac{\cos(x)}{\sqrt{x}} > \frac{1}{2}\frac{\cos(x)}{\sqrt{x}}$$

On en déduit que $\lim_{x\to 0} \frac{f'(x)-f'(0)}{x} = +\infty$ et que f' n'est pas dérivable en $0: f \notin C^2(\mathbb{R}_+)$

Ex 2 Soit $f: x \mapsto x^3 \ln x$ définie sur \mathbb{R}_+^* .

- a) Comme $\lim_{\Omega} f = 0$, f se prolonge par continuité en 0 en posant f(0) = 0. On note encore f ce prolongement, qui est de classe C^{∞} sur \mathbb{R}_{+}^{*} par produit.
- b) Classe C^1 : pour tout x > 0:

$$\frac{f(x)}{x} = x \ln x \underset{x \to 0}{\to} 0$$

 $\frac{f\left(x\right)}{x}=x\ln x\underset{x\to0}{\to}0$ Donc f est dérivable en 0 de dérivée nulle. De plus pour tout x>0 :

$$f'(x) = 3x^{2} \ln x + x^{2} \underset{x \to 0}{\to} 0 = f'(0)$$

Donc f' est continue en 0. Ainsi $f \in C^1(\mathbb{R}_+)$

c) Classe C^2 : pour tout x > 0:

$$\frac{f'(x)}{x} = 3x \ln x + x \underset{x \to 0}{\to} 0$$

Donc f''(0) existe et vaut 0. De plus pour tout x > 0:

$$f''(x) = 6x \ln x + 5x \underset{x\to 0}{\to} 0 = f''(0)$$

Donc f'' est continue en 0. Ainsi $f \in C^2(\mathbb{R}_+)$

d) Pour tout x > 0

$$\frac{f''(x)}{x} = 6\ln x + 5 \underset{x \to 0}{\to} -\infty$$

Donc $f \notin C^3(\mathbb{R}_+)$.

PCSI 1 Thiers

Ex 3 Convexité. On dit $f \in C^2(I)$ est convexe lorque $f'' \ge 0$.

a) Soit f > 0 de classe C^2 sur I. On suppose que $\ln f$ est convexe sur I. Alors

$$(\ln f)' = \frac{f'}{f}$$
 et $(\ln f)'' = \frac{f''f - f'^2}{f^2} \geqslant 0$

donc $f''f-f'^2\geqslant 0$, i.e. $f''f\geqslant f'^2\geqslant 0$. Comme f>0 sur I, il s'ensuit que $f''\geqslant 0$ sur I :

$$f$$
 est convexe sur I

La réciproque est fausse : la fonction $f: x \mapsto x^2$ est convexe sur \mathbb{R}_+^* $(f'': x \mapsto 2$ est positive sur \mathbb{R}_+^*), mais $\ln f: x \mapsto \ln (x^2)$ n'est pas convexe, car $(\ln f)': x \mapsto \frac{2}{x}$ et $(\ln f)'': x \mapsto -\frac{2}{x^2}$ est négative sur \mathbb{R}_+^* .

b) Soient f > 0 et g > 0 de classe C^2 sur I. On a vu que $\ln f$ est convexe sur I si et seulement si

$$f''f - f'^2 \geqslant 0$$

Or pour tout $t \in I$ le polynôme $P_t : x \mapsto f(t) x^2 + 2f'(t) x + f''(t)$ a pour discriminant

$$\Delta_{t} = 4 \left(f^{\prime 2} \left(t \right) - f^{\prime \prime} \left(t \right) f \left(t \right) \right)$$

Donc $\ln f$ convexe sur I si et seulement si $\forall t \in I, \ \Delta_t \leq 0$ si et seulement si $\forall t \in I, \ P_t$ est de signe constant sur \mathbb{R} . Ce signe étant celui de f(t) > 0, il vient :

$$\ln f$$
 est convexe sur I si et seulement si $\forall t \in I, \ P_t$ est positif sur $\mathbb R$

On suppose alors $\ln f$ et $\ln g$ convexes sur I. Le critère précédent assur que $\forall t \in I, \ \forall x \in \mathbb{R}$,

$$\begin{cases} f(t) x^{2} + 2f'(t) x + f''(t) \ge 0 \\ g(t) x^{2} + 2g'(t) x + g''(t) \ge 0 \end{cases}$$

Par somme

$$(f(t) + g(t)) x^{2} + 2 (f'(t) + g'(t)) x + (f''(t) + g''(t)) \ge 0$$

soit

$$\left(f+g\right)\left(t\right)x^{2}+2\left(f+g\right)'\left(t\right)x+\left(f+g\right)''\left(t\right)\geqslant0$$
 qui à son tour assure que
$$\boxed{\ln\left(f+g\right)\text{ est convexe}}.$$

c) Soit $f \in C^2(I)$ une fonction convexe sur I. Montrons que C_f est au dessus de toutes ses tangentes, c'est-à-dire

$$\forall a \in I, \ \forall x \in I, \ f(x) \geqslant f(a) + (x - a) f'(a)$$

Fixons $a \in I$ et considérons la fonction :

$$\varphi: x \mapsto f(x) - (f(a) + (x - a) f'(a))$$

Par somme de f et d'une fonction affine, φ est de classe C^2 sur I, et $\forall x \in I$,

$$\varphi'(x) = f'(x) - f'(a)$$

Or $f'' \ge 0$ sur I, donc f' est croissante sur I, et on a le tableau :

x		a	
$\varphi'(x)$	_	0	+
$\varphi(x)$	×	0	7

Il s'ensuit que $\forall x \in I, \ \varphi(x) \geqslant 0$, CQFD.

Ex 4 Soit $n \in \mathbb{N}$

a) Soit $a \in \mathbb{R}$ et $f: x \mapsto \frac{1}{x-a}$. Une récurrence donne

$$f^{(n)}: x \mapsto \frac{(-1)^n n!}{(x-a)^{n+1}}$$

b) Soit $g: x \mapsto \frac{1}{x^2 - 1}$. Pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$ on a

$$\frac{1}{x^2 - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$$

donc par linéarité

$$g^{(n)}(x) = \frac{(-1)^n n!}{2} \left(\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right)$$
$$g^{(n)}(x) = \frac{(-1)^n n!}{2} \left(\frac{(x+1)^{n+1} - (x-1)^{n+1}}{(x^2-1)^{n+1}} \right)$$

Remarque: comme

$$(x+1)^{n+1} - (x-1)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} \left(1 - (-1)^k\right) x^{n+1-k} = 2 \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {n+1 \choose 2k+1} x^{n-2k}$$

on obtient

$$g^{(n)}(x) = (-1)^n n! \frac{\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n+1}{2k+1}} x^{n-2k}}{(x^2 - 1)^{n+1}}$$

Ex 5 Soit $f: x \mapsto x^3 e^{-2x}$. Pour $n \in \mathbb{N}$, on a d'après Leibniz, pour tout $x \in \mathbb{R}$:

$$f^{(n)}(x) = x^{3} \frac{d^{n}}{dx^{n}} e^{-2x} + 3nx^{2} \frac{d^{n-1}}{dx^{n-1}} e^{-2x} + 6 \frac{n(n-1)}{2} x \frac{d^{n-2}}{dx^{n-2}} e^{-2x} + 6 \frac{n(n-1)(n-2)}{6} \frac{d^{n-3}}{dx^{n-3}} e^{-2x}$$

$$= \left(x^{3} (-2)^{n} + 3nx^{2} (-2)^{n-1} + 3n(n-1)x(-2)^{n-2} + n(n-1)(n-2)(-2)^{n-3}\right) e^{-2x}$$

$$= (-2)^{n-3} \left(x^{3} (-2)^{3} + 3nx^{2} (-2)^{2} + 3n(n-1)x(-2) + n(n-1)(n-2)\right) e^{-2x}$$

Finalement

$$f^{(n)}(x) = (-2)^{n-3} (-8x^3 + 12nx^2 - 6n(n-1)x + n(n-1)(n-2))e^{-2x}$$

Ex 6 Soit $n \in \mathbb{N}^*$. Pour $x \in \mathbb{R}$, on pose $P_n(x) = e^x \frac{d^n}{dx^n} \left(e^{-x} x^n \right)$. La formule de Leibniz donne

$$P_{n}(x) = e^{x} \sum_{k=0}^{n} \binom{n}{k} \frac{d^{k} e^{-x}}{dx^{k}} \times \frac{d^{n-k} x^{n}}{dx^{n-k}}$$
$$= e^{x} \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} e^{-x} \frac{d^{n-k} x^{n}}{dx^{n-k}}$$

On sait que si $p \in [0, n]$, $\frac{d^p x^n}{dx^p} = \frac{n!}{(n-n)!} x^{n-p}$, d'où

$$P_n(x) = \sum_{k=0}^n \binom{n}{k} (-1)^k \frac{n!}{k!} x^k$$

qui est bien une expression polynomiale.

Ex 7 Soit f une fonction de classe C^{∞} sur $]0,+\infty[$. Montrons par récurrence que

$$\forall n \in \mathbb{N}^*, \ H\left(n\right) : \forall x > 0, \ \frac{d^n}{dx^n} \left(x^{n-1} f\left(\frac{1}{x}\right)\right) = \frac{\left(-1\right)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x}\right)$$

- H(1) est vraie car $\forall x > 0$, $\frac{d}{dx} \left(f\left(\frac{1}{x}\right) \right) = \frac{-1}{x^2} f'\left(\frac{1}{x}\right)$
- Soit $n \in \mathbb{N}^*$. Supposons H(n) et montrons H(n+1):

$$\forall x > 0, \ \frac{d^{n+1}}{dx^{n+1}} \left(x^n f\left(\frac{1}{x}\right) \right) = \frac{(-1)^{n+1}}{x^{n+2}} f^{(n+1)} \left(\frac{1}{x}\right)$$

En effet, pour tout x > 0, en écrivant $x^n f\left(\frac{1}{x}\right) = x \times x^{n-1} f\left(\frac{1}{x}\right)$, on a d'après Leibniz :

$$\begin{split} \frac{d^{n+1}}{dx^{n+1}} \left(x^n f \left(\frac{1}{x} \right) \right) &= &= x \times \frac{d^{n+1}}{dx^{n+1}} \left(x^{n-1} f \left(\frac{1}{x} \right) \right) + (n+1) \frac{d^n}{dx^n} \left(x^{n-1} f \left(\frac{1}{x} \right) \right) \\ &= &x \times \frac{d}{dx} \left(\frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x} \right) \right) + (n+1) \frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x} \right) \quad (\text{d'après } H \left(n \right)) \\ &= &(-1)^n x \left[\frac{-(n+1)}{x^{n+2}} f^{(n)} \left(\frac{1}{x} \right) + \frac{1}{x^{n+1}} \frac{-1}{x^2} f^{(n+1)} \left(\frac{1}{x} \right) \right] + (n+1) \frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x} \right) \\ &= &- (n+1) \frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x} \right) + \frac{(-1)^{n+1}}{x^{n+2}} f^{(n+1)} \left(\frac{1}{x} \right) + (n+1) \frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x} \right) \\ &= &\frac{(-1)^{n+1}}{x^{n+2}} f^{(n+1)} \left(\frac{1}{x} \right) \quad \text{CQFD}. \end{split}$$

- Par récurrence, notre proposition est établie pour tout entier $n \ge 1$.

Ex 8 Pour $x \in]-1,1[$, on pose $f(x) = \frac{1}{\sqrt{1-x^2}}$.

f est bien définie sur]-1,1[(car on a sur cet intervalle $x^2<1,$ donc $x^2-1>0)$

De plus elle est la composée de fonctions de classe C^{∞} : f est donc de classe C^{∞} sur]-1,1[.

Montrons par récurrence que pour tout $n \in \mathbb{N}$, H(n): il existe un polynôme P_n tel que

$$\forall x \in]-1,1[, f^{(n)}(x) = \frac{P_n(x)}{(1-x^2)^{n+1/2}}$$

- H(0) est vraie avec le polynôme constant $P_0 = 1$ (évident).
- Soit $n \in \mathbb{N}$. Supposons H(n) et montrons H(n+1): l'hypothèse de récurrence donne

$$\forall x \in]-1,1[, f^{(n+1)}(x)] = \frac{d}{dx} \left(\frac{P_n(x)}{(1-x^2)^{n+1/2}} \right)$$

$$= \frac{P'_n(x)}{(1-x^2)^{n+1/2}} + \frac{2x\left(n+\frac{1}{2}\right)}{(1-x^2)^{n+3/2}} P_n(x)$$

$$= \frac{\left(1-x^2\right) P'_n(x) + (2n+1) x P_n(x)}{(1-x^2)^{n+3/2}}$$

En posant

$$P_{n+1}(x) = (1 - x^2) P'_n(x) + (2n+1) x P_n(x)$$
 (*)

on a bien

$$\forall x \in]-1,1[, \quad f^{(n+1)}(x) = \frac{P_{n+1}(x)}{(1-x^2)^{n+1/2}} \quad \text{CQFD}.$$

On a vu que $\forall x \in \left]-1,1\right[,\left\lceil P_{0}\left(x\right)=1\right\rceil$, et la relation (*) donne

$$P_1(x) = x$$
 puis $P_2(x) = 1 + 2x^2$

Ex 9 Pour $x \in]-1,1[$, on pose $f(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$

a) Il n'est pas difficile de dériver f (de classe C^{∞} sur]-1,1[par produit $\arcsin \times \arcsin'$):

$$\forall x \in]-1,1[, f'(x)] = \frac{1}{1-x^2} + \frac{x \arcsin x}{(1-x^2)^{3/2}}$$
$$= \frac{1}{1-x^2} + \frac{x \arcsin x}{(1-x^2)\sqrt{1-x^2}}$$
$$= \frac{1}{1-x^2} + \frac{x}{1-x^2}f(x)$$

Il vient donc:

$$\forall x \in]-1,1[, (1-x^2) f'(x) - x f(x) = 1]$$
 (*)

b) Soit $n \ge 2$. Appliquons la formule de Leibniz à l'ordre n à cette égalité : pour tout $x \in]-1,1[$:

$$\frac{d^{n-1}}{dx^{n-1}} \left[\left(1 - x^2 \right) f'(x) \right] = \left(1 - x^2 \right) f^{(n)}(x) - (n-1) 2x f^{(n-1)}(x) - \frac{(n-1)(n-2)}{2} 2f^{(n-2)}(x) + \mathbf{0}$$

$$= \left(1 - x^2 \right) f^{(n)}(x) - (2n-2) x f^{(n-1)}(x) - (n-1)(n-2) f^{(n-2)}(x)$$

et
$$\frac{d^{n-1}}{dx^{n-1}}\left[xf\left(x\right)\right]=xf^{(n-1)}\left(x\right)+\left(n-1\right)f^{(n-2)}\left(x\right)+\mathbf{0}$$
 La dérivation de $(*)$ donne ainsi

$$\frac{d^{n-1}}{dx^{n-1}} \left[\left(1 - x^2 \right) f'(x) \right] - \frac{d^{n-1}}{dx^{n-1}} \left[x f(x) \right] = 0$$

soit

$$(1-x^{2}) f^{(n)}(x) - (2n-1) x f^{(n-1)}(x) - (n-1)^{2} f^{(n-2)}(x) = 0$$

c) On pose $u_n = f^{(n)}\left(0\right)$. On substitue 0 à x dans la formule précédemment étable : $\forall n \geqslant 2$

$$u_n - (n-1)^2 u_{n-2} = 0$$
 soit $u_n = (n-1)^2 u_{n-2}$ (\$)

- i. Termes d'indice pair : montrons par récurrence que : $\forall p \in \mathbb{N}, \overline{u_{2p} = 0}$
 - On a clairement $u_0 = f^{(0)}(0) = f(0) = 0$.
 - Si $p \in \mathbb{N}$ et $u_{2p} = 0$, alors la formule (\$) donne $u_{2(p+1)} = (2p+2-1)^2 u_{2p} = 0$: récurrence établie.
- ii. Termes d'indice impair : remarquons

$$u_1 = f^{(1)}(0) = f'(0) = 1$$
 (*) nous le dit)
 $u_3 = 2^2 u_1 = 2^2$
 $u_5 = 4^2 u_3 = 2^2 4^2$

On conjecture

$$u_{2p+1} = 2^2 4^2 \cdots (2p)^2 = (2 \cdot 4 \cdots (2p))^2 = (2^p p!)^2$$

Montrons donc par récurrence : $\forall p \in \mathbb{N}, \ \left[u_{2p+1} = 2^{2p} \left(p!\right)^2\right]$

- La formule est valable pour p = 0, comme on l'a vu.
- Si $p \in \mathbb{N}$ et $u_{2p+1} = 2^{2p} \left(p! \right)^2$, alors la formule (\$) donne

$$\begin{array}{rcl} u_{2(p+1)+1} & = & u_{2p+3} \\ & = & \left(2p+2\right)^2 u_{2p+1} \quad (*) \\ & = & 2^2 \left(p+1\right)^2 2^{2p} \left(p!\right)^2 \quad (\text{HDR}) \\ & = & 2^{2(p+1)} \left[(p+1)! \right]^2 \text{ CQFD} \end{array}$$

La récurrence est donc établie