

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT - II Vector Calculus

		Tutorial Sheet - 2		
	Sl.No.	Questions	Answer	
Part – A				
1	If $\vec{F} = x^2 \vec{i} + y^2 \vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0,0) to (1,1) along the path		$\frac{7}{12}$	
	y = x.			
2	Show that $\vec{F} = (4xy - 3x^2z^2)\vec{i} + 2x^2\vec{j} - 2x^3z\vec{k}$ is a conservative field.		0	
3	Find the wo			
	$\vec{A} = 3x^2 \vec{i} + (2x^2 + 2x^2) + (2x^2 + 2x^2)$	$\frac{13}{6}$		
4	Using Green'	0		
	is the closed of	curve of the region bounded by $y = x^2$ and $y^2 = x$.		
5	Evaluate $\iint_{S} \vec{A}$	$\hat{n} ds$, where $\vec{A} = z \vec{i} + x \vec{j} - 3y^2 z \vec{k}$ and S is surface of	of 90	
	the cylinder $z = 5$.	$x^2 + y^2 = 16$ included in the first octant below $z = 0$ and		
Part – B				
6	the scalar pot	$=(2xy+z^3)\vec{i}+x^2\vec{j}+3xz^2\vec{k}$ is a conservative field. Find tential and the work done is moving an object in this -2, 1) to (3, 1, 4).	202 units	
7	Verify G	reen's theorem in the plane for $(x + (4y - 6xy)dy)$ where C is the boundary of region	(a) $\frac{3}{2}$	
		a) $y = \sqrt{x}$; $y = x^2$ and (b) $x = 0$; $y = 0$; $x + y = 1$.	(b) $\frac{5}{3}$	
8	Verify Green's theorem in the plane for $\int_C (x^2 - 2xy)dx + (x^2y + 3)dy$ where C is the boundary of region bounded by $y^2 = 8x$; $x = 2$.		128 5	
9	$\operatorname{Find} \int_C (x^2 + y^2)$	$-2ab^2$		
	bounded by $x = 0$, $x = a$, $y = b$, $y = 0$.			
10	Evaluate $\iint_{S} \vec{A} \cdot \hat{n} ds$, where $\vec{A} = (x^2 + y^2) \vec{i} - 2x \vec{j} + 2yz\vec{k}$ and S is		81	
	the surface of the plane $2x + y + 2z = 6$ in the first quadrant.			