APPLICAZIONI INDUSTRIALI ELETTRICHE ED ELETTRONICA

Ollari Ischimji Dmitri

Marzo 2022

Indice

1	Intr	roduzione
	1.1	Legge di Moore
	1.2	Trasduttore
	1.3	Segnale
		1.3.1 I segnali elettrici
	1.4	Circuiti digitali
	1.5	
	1.6	Analogico vs Digitale
		1.6.1 ADC
		1.6.2 DAC
2	Sen	niconduttori
_	2.1	Classificazione dei materiali
	2.1	2.1.1 Caratteristiche dei semiconduttori
	2.2	2.1.2 Silicio: legame covalente
	2.2	Drogaggio di un semiconduttore
		2.2.1 Silicio di tipo n
		2.2.2 Silicio di tipo p
	2.3	Corrente di "drift"
		2.3.1 Drift: metalli vs semiconduttori
	2.4	Diffusione
		2.4.1 Diffusione: elettroni
		2.4.2 Diffizione: lacune
	2.5	Legge del trasporto "drift-diffusione"
	2.0	Legge der trasporto drift-diriusione
3	Dio	do a giunzione
	3.1	Giunzione p-n
		3.1.1 FOrmazione della giunzione
		3.1.2 Regione svuotata: potenziale V
	3.2	Diodo polarizzato in diretta $(V_D > 0)$
	3.2	
	0.0	3.2.1 Caratteristiche $I_D(V_D)$ in diretta
	3.3	Diodo polarizzato in inversa e breakdown $(V_D < 0)$
		3.3.1 Breakdown a valanga
	3.4	Applicazione del diodo
		3.4.1 Raddrizzatore
		3.4.2 Rilevatori di picco
	3.5	Capacità del diodo e modello circuitale
T.	1	J-11- C
Ŀ	ien	co delle figure
	1	Livelli input output
	2	Corrente di drift
	3	
	-	Corrente
	4	Rappresentazioni regione svuotata e zona neutra
	5	Tensione built-in
	6	Diodo polarizzato direttamente

7	comportamento reale del diodo	(
8	radrizzatore	Ç
9	rilevatore di picco	10

Elenco delle tabelle

1 Introduzione

L'elettronica è la scienza e la tecnica inerente alla propagazione ed emissione degli elettroni nel vuoto o nella materia.

1.1 Legge di Moore

Il numero di transistori integrati nei chip raddopia ogni due anni.

1.2 Trasduttore

- sensore: produce un segnale elettrico per una certa grandezza fisica
- attuatore: produce una certa grandezza fisica per un segnale elettrico

1.3 Segnale

Funzione del tempo che rappresenta la variazione di una grandezza fisica.

1.3.1 I segnali elettrici

Possono essere analogici(livelli continui nel tempo) o digitali(livelli discreti).

1.4 Circuiti digitali

Figura 1: Livelli input output

- $\bullet~V_{OHmin}$ è la minima tensione in output corrispondente ad un 1 logico
- $\bullet~V_{OLmax}$ è la massima tensione in output corrispondente ad un 0 logico
- V_{IHmin} è la minima tensione per avere un 1 logico
- V_{ILmax} è la massima tensione per avere un 0 logico
- I margini di rumore sono $V_{OHmin} V_{IHmin}$
- I margini di rumore sono $V_{ILmax} V_{OLmax}$

1.5 Digitale vs Analogico

- elevata potenzialità di calcolo ed elaborazioni del segnale
- maggior robustezza a disturbi e rumore
- minor sensibilità alle variazioni di temperatura ed alle tolleranze dei parametri del dispositivo

1.6 Analogico vs Digitale

- in natura le grandezze sono continue(segnali analogici)
- sensori: grandezza fisica -¿ ingresso analogico
- attuatori: segnale -¿ uscita analogica
- si usano circcuiti di conversione A/D e D/A

1.6.1 ADC

Converte un input analogico ad un output digitale, si fa una approssimazione dell'input con il campionamento.

1.6.2 DAC

 ${\bf Converte\ digitale\ verso\ analogico.}$

2 Semiconduttori

2.1 Classificazione dei materiali

Ressitività ρ :

- $\rho < 10^{-1}\Omega \cdot cm$ è un conduttore
- $10^{-1}\Omega \cdot cm < \rho < 10^{5}\Omega \cdot cm$ è un semiconduttore
- $10^5 \Omega \cdot cm < \rho$ è un isolante

2.1.1 Caratteristiche dei semiconduttori

- resistività intermedia tra isolanti e conduttori
- \bullet possibilità di variare ρ mediante il drogaggio
- due portatori di carica liberi: elettrone(-) e lacuna(+)
- disponibili sia come cristalli che come composti

2.1.2 Silicio: legame covalente

4 elettroni poco legati(di valenza)

- non sono legati strettamente al nucleo
- risentono dell'interazione deglie altri atomi
- formano un doppio legame covalente con gli altri atomi

2.2 Drogaggio di un semiconduttore

Il drogaggio è l'aggiunta di atomi diversi, esistono 2 tipi di drogaggio:

- drogaggio di tipo n: aggiunta di elementi del quinto gruppo(As,P,Sb)
- drogaggio di tipo p: aggiunta di elementi del terzo gruppo(B)

2.2.1 Silicio di tipo n

Vengono aggiunti al silicio elementi del quinto gruppo, il quinto elettrone di valenza si lega debolmente al nucle e non è impiegato in legami covalenti. L'elettrone può facilmente liberarisi dal nucleo per effetto dell'energia termica.

Il quinto elettrone può muoversi nel cristallo.

2.2.2 Silicio di tipo p

Essendo il drogaggio effettuato con un elemento del terzo gruppo, manca un elettrone nel legame covalente(lacuna).

È facile catturare un elettrone per questa configurazione.

La cattura di un elettrone da parte di questa configurazione, crea una lacuna in una molecola vicina, viene creata una rezione a catena dove questa lacuna si "sposta" all'interno degli atomi adiacenti.

Si parla di "moto di lacune" anche se sono comunque gli elettroni a muoversi.

2.3 Corrente di "drift"

Figura 2: Corrente di drift

Forza di trascinamento sull'elettrone

$$F = -q\epsilon$$

Forza di trascinamento sulla lacuna

$$F = q\epsilon$$

Per campi elettrici moderati esiste una relazione lineare fra intensità del campo ϵ e velocità del portatore di carica

Materiali ad alta mobilità (μ) hanno una velocità media dei portatori molto alta.

Figura 3: Corrente

Dove le forse sono:

•

$$I_n = -qn(-V_{dn})A = qnV_{dn}A$$

•

$$I_p = qpV_{dp}A$$

La A sta per la superficie attraversata perchè la corrente è il numero di lacune che attraversano la superficie in un tempo.

La densità si ottiene dividendo per l'Area.

La J rappresenta la densità di corrente:

$$J = J_p + J_n = q(p_{\mu p} + n\mu_n) \cdot \epsilon$$

Da cui si ottiene la legge di **ohm locale**:

$$J = \sigma \cdot \epsilon$$

Dove la σ rappresenta la conducibilità:

$$\sigma = \frac{1}{\rho} = q(p_{\mu p} + n\mu_n) \tag{1}$$

dove ρ rappresenta la resistività.

2.3.1 Drift: metalli vs semiconduttori

Nei metalli e nei semiconduttori, il drift è simile, tranne per il fatto che nei metalli non vi sono lacune come portatori di carica. E ovviamente che la conducibilità di un metallo è molto maggiroe di quella di un semiconduttore.

2.4 Diffusione

Meccanismo di trasporto rilevante solo nei semiconduttori, simile alal diffusione dei gas causata da una differenza di concetrazione dei portatori.

2.4.1 Diffusione: elettroni

$$J_n = -(-q)D_n \frac{dn}{dx} = qD_n \frac{dn}{dx}$$
 (2)

essendo l'elettrone negativo si prende la crica q
 con carica negativa, il segno meno iniziale rappresenta il flusso verso la zona a minor intensità.

2.4.2 Diffizione: lacune

$$J_p = -qD_p \frac{dp}{dx} \tag{3}$$

2.5 Legge del trasporto "drift-diffusione"

I due meccanismi di trasporto per le due cariche sono: elettrone:

$$J_n = qn\mu_n\epsilon + qD_n\frac{dn}{dx} \tag{4}$$

lacuna:

$$J_p = qp\mu_p\epsilon - qD_p\frac{dp}{dx} \tag{5}$$

Il **DRIFT** tipicamente è dominante per i **maggioritari**: $J_{n-drift} \propto n\epsilon$. La **DIFFUSIONE** tipicamente è dominante per i **minoritari**: $J_{n-diff} \propto \frac{dn}{dx}$.

3 Diodo a giunzione

3.1 Giunzione p-n

Si ottiene al contatto tra due regioni di un semiconduttore, uno drogato con p e uno con n.

3.1.1 FOrmazione della giunzione

Il diodo è formato da due parti, anodo(A) semiconduttore drogato del tipo P e catodo(K) semiconduttore del tipo N.

Nel diodo si instaura un campo elettrico σ che ostacola il fluire delle cariche (rende la corrente nulla).

Figura 4: Rappresentazioni regione svuotata e zona neutra

3.1.2 Regione svuotata: potenziale V

$$\epsilon = -\frac{dV}{dx} \tag{6}$$

Si crea una caduta di potenziale agli estremi della regione svuotata. Se si prende come 0 l'anodo(P) si ottiene un risultato positivo di tensione $V = V_{bi}$ (potenziale di built-in).

Figura 5: Tensione built-in

3.2 Diodo polarizzato in diretta $(V_D > 0)$

Figura 6: Diodo polarizzato direttamente

Si abbassa la barriera che inpediva il fluire della corrente.

3.2.1 Caratteristiche $I_D(V_D)$ in diretta

$$I_D = I_S(e^{\frac{V_D}{V_T} - 1}) \cong I_S e^{\frac{V_D}{V_T}} \tag{7}$$

Dove la tensione del diodo della tensione termica $(V_D >> V_T)$.

Tensione termica:

$$V_T = \frac{kT}{q}$$

La tensione termica con temperatura 300K è 25,6mV. La I_S è la corrente inversa di saturazione. La tensione del diodo si approssima a circa $V_D = \cong 0,7V$

3.3 Diodo polarizzato in inversa e breakdown $(V_D < 0)$

Essendo una tensione negativa, la "barriera" che inpediva il fluire della corrente viene aumentata.

3.3.1 Breakdown a valanga

Il diodo il polarizzazione inversa, regge la tensione fin al punto di breakdown senza far passare la corrente, dopodichè cede, distruggendosi.

Figura 7: comportamento reale del diodo

3.4 Applicazione del diodo

3.4.1 Raddrizzatore

Figura 8: radrizzatore

Solitamente si utilizzano i diodi zener che hanno una tensione di breakdown enorme se si vogliono usare come radrizzatori di un segnale alternato.

3.4.2 Rilevatori di picco

Figura 9: rilevatore di picco

3.5 Capacità del diodo e modello circuitale

La capacità per la tensione del diodo(0.7V):

$$Q_J(V_D) = K_j \sqrt{V_{bi} - V_D} \tag{8}$$

Figura 10: modello del diodo