Section 3: Systems of Linear Equations (Expanded)

Applications of Linear Systems in Machine Learning

- 1. Linear Regression:
 - The equation $y = X\beta + \epsilon$ (where X is the feature matrix, β are coefficients, and ϵ is noise) can be solved to find β using $\beta = (X^TX)^{-1}X^Ty$.
- 2. Network Flows:
 - Optimization problems in transportation or communication networks often reduce to solving linear systems.

Section 4: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors are foundational for understanding transformations in vector spaces, with applications in **dimensionality** reduction, PCA, and more.

Core Concepts

- 1. Eigenvalues and Eigenvectors:
 - For a square matrix A, if $A\vec{v} = \lambda \vec{v}$, then:
 - \vec{v} : Eigenvector (unchanged direction under transformation).
 - λ : Eigenvalue (scales the eigenvector).
- 2. Characteristic Equation:
 - To find eigenvalues, solve $det(A \lambda I) = 0$.
- 3. Diagonalization:

• A matrix A is diagonalizable if $A = PDP^{-1}$, where D is a diagonal matrix of eigenvalues, and P contains eigenvectors as columns.

Applications in Machine Learning

- 1. Principal Component Analysis (PCA):
 - Reduces dimensionality by finding eigenvectors of the covariance matrix, selecting those with the largest eigenvalues.
- 2. Spectral Clustering:
 - Uses eigenvectors of the graph Laplacian to group data points.

Example

1. Matrix:

$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}.$$

- 2. Find eigenvalues (λ):
 - Solve $det(A \lambda I) = 0$:

$$\det\begin{bmatrix} 4-\lambda & 1\\ 2 & 3-\lambda \end{bmatrix} = 0.$$

Results: $\lambda_1 = 5$, $\lambda_2 = 2$.

- 3. Eigenvectors:
 - For $\lambda = 5$, solve $(A 5I)\vec{v} = 0$ to get $\vec{v}_1 = [1, 2]^T$.

• For $\lambda = 2$, solve $(A - 2I)\vec{v} = 0$ to get $\vec{v}_2 = [-1, 1]^T$.

Section 5: Singular Value Decomposition (SVD)

SVD is a matrix factorization method that generalizes eigenvalue decomposition to non-square matrices.

Core Concepts

- 1. Definition:
 - For a matrix A of size $m \times n$:

$$A = U\Sigma V^T$$
,

where:

- U: Orthogonal matrix of size $m \times m$ (left singular vectors).
- Σ : Diagonal matrix of singular values (σ_i).
- V^T : Transpose of an orthogonal matrix of size $n \times n$ (right singular vectors).
- 2. Properties:
 - Singular values σ_i are the square roots of eigenvalues of A^TA or AA^T .
 - ullet U and V provide the basis for column and row spaces, respectively.

Applications in Machine Learning

- 1. Dimensionality Reduction:
 - In Latent Semantic Analysis (LSA) for text data, SVD reduces matrix dimensionality.
- 2. Image Compression:
 - SVD approximates an image using the largest singular values.

Example

1. Matrix:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}.$$

2. Compute A^TA :

$$A^{T}A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}^{T} \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 13 & 12 \\ 12 & 13 \end{bmatrix}.$$

- 3. Find eigenvalues of $A^T A$: $\lambda_1 = 25, \lambda_2 = 1$.
- 4. Singular values: $\sigma_1 = 5$, $\sigma_2 = 1$.

Section 6: Optimization Techniques

Optimization is the backbone of machine learning, helping minimize or maximize objective functions.

Core Concepts

- 1. Gradient Descent:
 - Iteratively updates parameters in the direction of the negative gradient:

$$\theta \leftarrow \theta - \eta \nabla J(\theta)$$
,

where:

- θ : Parameters,
- η : Learning rate,
- $J(\theta)$: Cost function.
- 2. Convex Optimization:
 - If $J(\theta)$ is convex, gradient descent converges to the global minimum.
- 3. Lagrange Multipliers:
 - Used for optimization with constraints.

Applications in Machine Learning

- 1. Training Neural Networks:
 - Backpropagation employs gradient descent to minimize loss functions.
- 2. Support Vector Machines (SVMs):
 - Quadratic optimization is used to find the maximum-margin hyperplane.

Example

Minimize:

$$J(\theta) = (x-2)^2 + (y-3)^2.$$

1. Gradient:

$$\nabla J = [2(x-2), 2(y-3)].$$

2. Iterative updates:

$$x \leftarrow x - \eta \cdot 2(x - 2), \quad y \leftarrow y - \eta \cdot 2(y - 3).$$

Section 7: Probability and Statistics in Machine Learning

Core Concepts

- 1. Bayes' Theorem:
 - Used for probabilistic reasoning:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

- 2. Probability Distributions:
 - Gaussian Distribution:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

- 3. Expectations and Variance:
 - Expectation: $E[X] = \sum_{x} xP(x)$.
 - Variance: $Var(X) = E[X^2] (E[X])^2$.

Applications in Machine Learning

- 1. Naive Bayes Classifier:
 - Based on Bayes' theorem.
- 2. Clustering:
 - GMMs (Gaussian Mixture Models) use probabilistic distributions.

Example

Calculate the likelihood of A|B:

• Given P(B|A) = 0.8, P(A) = 0.5, P(B) = 0.6:

$$P(A|B) = \frac{0.8 \cdot 0.5}{0.6} = 0.6667.$$