Hoja de problemas 2

20/09/2022

Curvas algebraicas

1. Sea $p(T) = T^2$ y $q(T) = T^2$ y definimos

$$f(X,Y) = \text{res}_T(p(T) - X, q(T) - Y) \in k[X,Y].$$

- (a) Calcular $f \in k[X, Y]$.
- (b) ¿Si $k = \mathbb{R}$, es verdad que $V(f) = \{(p(t), q(t)) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}$?
- (c) ¿Si $k=\mathbb{C}$, es verdad que $V(f)=\left\{(p(t),q(t))\in\mathbb{C}^2\,\big|\,t\in\mathbb{C}\right\}$?
- 2. Sea $p, q \in k[X, Y]$,

$$p(X,Y) = X^2Y - 3XY^2 + X^2 - 3XY,$$
 $p(X,Y) = YX^3 - 4Y^2 - 3Y + X^3 + 1.$

- (a) Demonstrar $res_X(p,q) \neq 0$.
- (b) Demonstrar $res_Y(p,q) = 0$.
- (c) ¿Cuáles son los factores comunes de p y q?
- 3. Sea $\lambda > 0$ un número real "bastante grande", y

$$f(X,Y) = Y - \lambda(X^3 - X),$$
 $g(X,Y) = X - \lambda(Y^3 - Y).$

Demonstrar que todos los puntos de intersección entre V(f) y V(g) son reales. Es decir, si $x,y\in\mathbb{C}$ tal que $(x,y)\in V(f)\cap V(g)$, entonces $x,y\in\mathbb{R}$.

4. Demonstrar: no hay polinomio $f(X,Y) \in \mathbb{R}[X,Y]$ tal que

$$V(f) = \{(x, y) \in \mathbb{R}^2 \mid y = \sin(x)\}.$$