Distributed by:

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

M54HC540/541 M74HC540/541

OCTAL BUS BUFFER WITH 3 STATE OUTPUTS HC540: INVERTED - HC541 NON INVERTED

- HIGH SPEED
- $t_{PD} = 10 \text{ ns (TYP.)}$ at $V_{CC} = 5V$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \, ^{\circ}\text{C}$
- HIGH NOISE IMMUNITY

 V_{NIH} = V_{INL} = 28 % V_{CC} (MIN.)
- OUTPUT DRIVE CAPABILITY 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS540/541

DESCRIPTION

The M54/74HC540 and HC541 are high speed CMOS OCTAL BUS BUFFERS (3-STATE) fabricated in silicon gate C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low power consumption. The HC540 is an inverting buffer and HC541 is a non inverting buffer.

The 3 STATE control gate operates as a two input AND such that if either G1 and G2 are high, all eight output are in the high impedance state. In order to

enhance PC board layout, the HC540 and HC541 offers a pinout having inputs and outputs on opposite sides of the package.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION (top view)

October 1993 1/12

CHIP CARRIER

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (HC540)

PIN No	SYMBOL	NAME AND FUNCTION
1, 19	1G, <u>G2</u>	Output Enable Inputs
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs
18, 17, 16, 15, 14, 13, 12, 11	Y1 to Y8	Bus Outputs
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

PIN DESCRIPTION (HC541)

PIN No	SYMBOL	NAME AND FUNCTION
1, 19	1G, G2	Output Enable Inputs
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs
18, 17, 16, 15, 14, 13, 12, 11	Y1 to Y8	Bus Outputs
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

	INPUT	OUTPUT			
G1	G2	Yn (HC540) Yn (HC541			
Н	X	Х	Z	Z	
X	Н	X	Z	Z	
L	L	Н	L	Н	
L	L	L	Н	L	

X: "H" or "L"

CIRCUIT SCHEMATIC (Per Circuit)

Z: High impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T_op	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C °C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions						Value				
Symbol Parameter		V cc (V)				_A = 25 ^o C and 7		1	85 °C HC	1	125 °C HC	Unit
		()			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	4.5 V _{IH}	I _O =-20 μA	4.4	4.5		4.4		4.4		v
		6.0	or		5.9	6.0		5.9		5.9		
		4.5	V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _{IH}	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
I _{OZ}	3 State Output Off State Current	6.0		V _{IH} or V _{IL} V _{CC} or GND			±0.5		±5		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions			Value							
Symbol	Symbol Parameter		C L (pF)			_A = 25 ^c C and 7			85 °C HC		125 °C HC	Unit
		(V)	(pr)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				25	60		75		90	
t _{THL}	Time	4.5	50			7	12		19		18	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation	2.0				40	85		105		130	
t _{PHL}	Delay Time	4.5	50			10	17		21		26	ns
		6.0				9	14		18		22	
		2.0				56	115		145		175	
		4.5	150			14	23		29		35	ns
		6.0				12	20		25		30	
t _{PZL}	Output Enable	2.0				47	110		140		165	
t _{PZH}	Time	4.5	50	$R_L = 1K\Omega$		13	22		28		33	ns
		6.0				11	19		24		28	
		2.0				61	135		170		205	
		4.5	150	$R_L = 1K\Omega$		17	27		34		41	ns
		6.0				14	23		29		35	
t _{PLZ}	Output Disable	2.0				52	110		140		165	
t _{PHZ}	Time	4.5	50	$R_L = 1K\Omega$		15	22		28		33	ns
		6.0				13	19		24		28	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance					31						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8$ (per gate)

TEST CIRCUIT ICC (Opr.)

SWITCHING CHARACTERISTICS TEST CIRCUIT

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Ceramic DIP20 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			25			0.984	
В			7.8			0.307	
D		3.3			0.130		
Е	0.5		1.78	0.020		0.070	
e3		22.86			0.900		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
I	1.27		1.52	0.050		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N1			4° (min.),	15° (max.)			
Р	7.9		8.13	0.311		0.320	
Q			5.71			0.225	

SO20 MECHANICAL DATA

DIM.	mm				inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
С		0.50			0.020	
c1			45°	(typ.)		
D	12.60		13.00	0.496		0.512
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
М			0.75			0.029
S			8° (r	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

