Programming Assignment-1

1. N – Slidding Puzzle problem

- a) using BFS: (UnInformed Search Technique)
 - It traverses level order and when child generation if we encounter with goal node, it will give us goal path rather than at time of selection and expansion (reduces space complexity).

b) <u>using DFS</u>: (UnInformed Search Technique)

- It traverses level order and when child generation if we encounter with goal node, it will give us goal path rather than at time of selection and expansion.
- It is not optimal because of Loops.
- Sometimes, for small inputs also it may exceed the Maximum Recusion Depth.

c) <u>using A*</u>: (Informed Search Technique)

- f(n)=g(n)+h(n) where $g(n)=\cos t$ to reach to n; h(n)=heuristic function=manhattan distance.
- Here it will selects minimum f(n) value state everytime.
- It will give Goal Node path at the time of selection and expansion instead of at state generation. So, it is giving optimal path cost.

d) using IDA*: (Informed Search Technique)

- f(n)=g(n)+h(n) where $g(n)=\cos t$ to reach to n; h(n)=heuristic function=manhattan distance.
- Here we have to give *maxBound*, so that when the goal is not present or our program is in infinite searching condition it will stop when it reached it.
- Here if we don't find goal node within the limited f(n) value, we will clear *frontier* and *explored lists* and we increase our limit f(n) value and again we will do searching.
- It is like IDS but implementing f(n) value. It is enqueing more same nodes again, if we don't find Goal state.
- Memory is not restricted.
- May not find solution.

Ex2:

For increasing it will take so much time to give Goal State.

	BFS		DFS		A*		IDA*	
	Ex1	Ex2	Ex1	Ex2	Ex1	Ex2	Ex1(given limit=4, maxbound =1000)	Ex2(given limit=4,m axbound= 100)
Optimal	Yes	Yes	No	No	Yes	Yes	Yes	Yes
Solution Found	Yes	Yes	No(Maxi mum Recursio n Exceeded	Yes	Yes	Yes	Yes	Yes
Frontier Size(whe n goal found)	5131	2	298(when terminate d)	6	25		24	
Explored Nodes(w hen goal found)	3172(pat hcost=11)	12	201	12	12(Pathc ost=11)		12(pathco st=11)	12
Executio n time	0:00:10 sec	0:00:00 sec (<1sec)	-	0:00:00 sec (<1sec)	0:00:00 sec (<1sec)	0:00:00 sec (<1sec)	0:00:00 sec (<1sec)	0:00:00 sec (<1sec) but more than A*

$2.\ NxN$ board coloring such that no two-neighbours are same color: using BFS and DFS search algorithms.

Ex1:

BFS:input size=n=4 (Random generation) --> same input to **DFS**(Ex1_in.txt) (complete output in Ex1_out.txt)

		BFS O/P	DFS O/P
	[1, 1, 1, 3] [2, 2, 1, 3]> [1, 3, 1, 1] [1, 2, 2, 4]	(EX 1.out.txt) [2, 1, 3, 1] [1, 2, 1, 3] [3, 1, 2, 1] [1, 2, 1, 4]	(EX 1.out.txt) [1, 2, 1, 3] [2, 1, 3, 1] [1, 3, 1, 2] [4, 1, 2, 1]
Ex2:	[1, 1, 3, 3, 2] [2, 2, 1, 4, 4] [4, 4, 2, 1, 1]> [4, 2, 4, 1, 2] [1, 4, 1, 4, 1]	(EX 2.out.txt) [2, 1, 3, 1, 2] [4, 2, 1, 3, 4] [1, 4, 2, 4, 1] [4, 2, 4, 1, 2] [1, 4, 1, 4, 1]	(EX 2.out.txt) terminated due to Maximum Recursion Depth Exceeded.

	Bl	FS	DFS		
	Ex1	Ex2	Ex1	Ex2	
Optimal	Yes	Yes	No	No	
Solution Found	Yes	Yes	Yes	No(Maximum Recursion Depth Exceeded)	
Frontier nodes(when goal state found)	2968 Nodes	9879 Nodes	1385 Nodes	6386(when terminated)	
Explored nodes(when goal state found)	167(pathcost=4)	365(pathcost=4)	82 (pathcost=82)	199(when terminated)	
Execution time	0:00:03 sec	0:00:16 sec	0:00:07 sec	More than BFS	