MACM 101 Chapter 2.2 Homework

Alexander Ng

Monday, October 7, 2024

Question 6

Part a

```
A \cup \emptyset = A
A \cup B = \{x \mid x \in A \lor x \in B\}
By definition, A \cup \emptyset = \{x \mid x \in A \lor x \in \emptyset\}
The empty set does not contain any elements, so x \notin \emptyset
A \cup \emptyset = \{x \mid x \in A \lor \mathbf{F}\}
By the Identity Laws of Propositional Logic, p \lor \mathbf{F} = p
A \cup \emptyset = \{x \mid x \in A\}
\therefore A \cup \emptyset = A
```

Part b

$$A \cap U = A$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$
By definition, $A \cap U = \{x \mid x \in A \land x \in U\}$
Because U is the universal set, $x \in U \equiv \mathbf{T}$
So, $A \cap U = \{x \mid x \in A \land \mathbf{T}\}$
By the Identity Laws of Propositional Logic, $p \land \mathbf{T} = p$

$$A \cap U = \{x \mid x \in A\}$$

$$A \cap U = A$$

Question 8

Part a

$$A \cup A = A$$

By definition, $A \cup A = \{x \mid x \in A \lor x \in A\}$

The left and right side of the disjunction are the same set, so by the Idempotent Law of Propositional Logic, $p \lor p \equiv p$,

$$x \in A \lor x \in A \equiv x \in A$$
$$A \cup A = \{x \mid x \in A\}$$
$$\therefore A \cup A = A$$

Part b

$$A \cap A = A$$

By definition, $A \cap A = \{x \mid x \in A \land x \in A\}$

The left and right side of the conjunction are the same set, so by the Idempotent Law of Propositional Logic, $p \wedge p \equiv p$,

$$x \in A \land x \in A \equiv x \in A$$
$$A \cap A = \{x \mid x \in A\}$$
$$\therefore A \cap A = A$$

Question 10

Part a

$$A - \emptyset = A$$

$$= A \cap \overline{\emptyset}$$
The complement of the empty set is the universal set, so $\overline{\emptyset} = U$
By Question 6, Part b, $A \cap U = A$

$$= A \cap U = A$$

$$\therefore A - \emptyset = A$$

Part b

$$\therefore \emptyset - A = \emptyset$$