

Méthodes d'authentification avec un serveur Radius

Serge Bordères (Centre d'Etudes Nucléaires de Bordeaux-Gradignan)

20 mars 2007

Institut d'Astrophysique de Paris

Sommaire

- Radius, principes
- Radius et 802.1X
- Usages de Radius
 - ✓ Protocoles d'authentification
 - ✓ Réseaux virtuels
 - ✓ Programmation
 - ✓ Portails captifs
 - ✓ Transformer un serveur en client Radius

Radius – pour faire quoi?

Qu'est-ce-que Radius?

Protocole d'
$$A$$
uthentification => Qui parle ?

d' A utorisation => Quels sont ses « droits » ?

d' A ccounting => Que fait-il ?

Principe client/serveur

Le monde de Radius

Qu'est qu'une authentification?

C'est le processus qui prouve qu'une identité appartient bien à celui qui l'a présente

- Un identifiant est proposé au serveur radius.
- Il doit vérifier qu'il est bien présent dans sa base
- Il doit vérifier que celui qui présente cet identifiant peut prouver qu'il en est bien le propriétaire

<u>Méhodes les plus courantes</u>:

- ✓ Adresse MAC (faible, pas de preuve)
- ✓ Login/mot de passe
- ✓ Certificat

Qu'est-ce qu'une autorisation?

Le terme « autorisation » a un sens très large

- Accès ou refus de la connexion au réseau
- Affecter un N°de VLAN
- Donner une adresse IP

Ou encore:

- ■Positionner des ACLs
- Exécuter une commande (filtrage, routage...)

Il faut voir ces autorisations comme des attributs de connexion (Reply-item)

Les clients Radius

Pour être client Radius il faut partager un secret partagé

Principes du protocole Radius

Principes du protocole Radius

Principes du protocole Radius : Les attributs

■ Toutes les informations échangées entre le serveur Radius et le client Radius passent par des attributs.

Un attribut = Un nom et une valeur

- Certains attributs sont utilisables, d'autres non ou bien dans certains cas
- Exemples d'attributs
 - ✓ User-Name
 - ✓ Calling-Station-Id
 - ✓ Called-Station-Id

Envoyés par les clients au serveur Radius (Request-Items)

✓ Tunnel-Private-Group-Id

✓ Framed-IP-Adress

Envoyés par le serveur Radius aux clients (Reply-Items)

Pas compatible avec EAP

Attributs vendor-specific

Principes du protocole 802.1X

Le protocole EAP

- EAP (Extensible Authentication Protocol) n'est pas un protocole d'authentification
- C'est un protocole de transport de protocole d'authentification (TLS, PEAP, TTLS…)
- Les paquets du protocole d'authentification sont encapsulés dans des paquets EAP
- EAP dispose de quatre types de paquets
 - ✓ Request
 - ✓ Response
 - **√**Success
 - ✓ Failure

L'équipement réseau :

- Connaît le protocole EAP et c'est tout (il ne sait pas ce que transporte EAP)
- Redirige les paquets EAP vers un serveur d'authentification grâce au protocole Radiu

Les équipements réseau sont indépendants du protocole d'authentification utilisé

802.1X, EAP et Radius

Compatibilité EAP dans Radius

La compatibilité EAP dans Radius est réalisée au moyen d'un attribut supplémentaire:

EAP-Message

- Lorsque l'équipement réseau reçoit un paquet EAP du poste utilisateur, il le copie dans un attribut EAP-Message, lui même copié dans un paquet Access-Request.
- Lorsque le serveur Radius reçoit ce paquet il extrait le contenu de EAP-Message et le passe à un module EAP pour dérouler le protocole qu'il contient.
- Ce qui suppose que le serveur Radius dispose de ce module EAP (qui ne fait pas partie du protocole Radius)

Compatibilité EAP dans Radius

- Protocole d'authentification (charge utile)
- Encapsulage EAP
- Encapsulage Radius

Bases de données

- La base de données associée au serveur Radius contient des informations d'authentification et/ou d'autorisations.
- Cette base n'est pas spécifiée par le protocole Radius

Avec FreeRadius par exemple:

- Fichier plat (users)
- Base LDAP (avec le schéma Radius)
- Domaine Windows
- Base SQL

- → Autorisations et/ou authentification
- → Autorisations et/ou authentification
- → Authentification
- → Autorisation

L'identifiant (attribut User-Name) envoyé au serveur Radius est utilisé comme clé de recherche dans la base

L'identifiant

Type d'authentification	Emetteur de l'identifiant	Protocole
adresse MAC	l'équipement réseau	RADIUS
login/password certificat	le poste utilisateur (supplicant)	RADIUS + 802.1X + EAP

L'intérêt d'un serveur Radius

- Authentifier les machines/utilisateurs pour l'accès au réseau local
- Utilisable en filaire et sans-fil
- Placer les machines dans des sous-réseaux virtuels
- Plusieurs moyens d'authentification
- Initialiser les algorithmes de chiffrement des communications (WPA) Les communications WiFi peuvent être sécurisées
- Radius est un élément actif du réseau, pas seulement une base de donnée. Grâce aux modules ou attributs programmables.
- Interfaçage avec des logiciels de portails captifs
- Authentification distante par redirection de requêtes (proxy)
- Utilisable par d'autres types de serveurs (VPN)

Implémentations Radius

Open sources

- Freeradius
- Openradius
- Gnuradius

Commerciales

- ACS (Cisco)
- ■IAS (Microsoft)

Quelques protocoles d'authentification

Authentification par adresses MAC Radius-MAC => Equivalent à VMPS pour le filaire Pas recommandé en sans-fil => Authentification mutuelle par certificats TLS Deux phases : ✓TLS Handshake - Authentification des certificats - Création d'un tunnel chiffré ✓TLS Record Seule la première phase est utilisée L'identifiant dans la base est le CN du certificat 802.1X PEAP et TTLS => Authentification du client par login/password et authentification du serveur par son certificat

circule dans le tunnel chiffré

Met en œuvre TLS Handshake puis TLS RecordLe protocole d'authentification du mot de passe

Usage avec les réseaux virtuels

<u>Intérêt</u>: Une fois l'authentification faite, l'équipement réseau ouvre le port sur un VLAN (VLAN dynamique)

<u>Utilisation des attributs</u>:

✓Tunnel-Type (VLAN)

✓Tunnel-Medium-Type (Ethernet 802)

√Tunnel-Private-Group-Id <= Le numéro de VLAN

Processus:

- Le serveur trouve l'identifiant dans sa base
- Récupère les attributs Tunnel
- Envoie ces attributs à l'équipement réseau avec l'Access-Accept
- L'équipement réseau ouvre le port dans le VLAN contenu dans Tunnel-Private-Group-Id

Les bornes WiFi doivent être capables de gérer plusieurs VLAN par SSID

Usage avec les réseaux virtuels

Exemples de configuration avec FreeRadius

Auth-Type :=Local, User-Password == 0123456789ab 0123456789ab Tunnel-Type = VLAN, Tunnel-Medium-Type =IEEE-802, Tunnel-Private Group-Id = 3 VLAN

Authentification Par adresse MAC (Pas de 802.1x)

Adresse MAC

Authentification 802.1X/EAP.

Dupont Auth-Type := EAP

Tunnel-Type = VLAN,

Dupont peut se connecter depuis Tunnel-Medium-Type =IEEE-802/importe quel poste

Tunnel-Private-Group-Id = 3

Dupont Auth-Type := EAP, Calling-Station-Id == 0123456789ab Tunnel-Type = VLAN, Tunnel-Medium-Type =IEEE-802, Tunnel-Private-Group-Id = 3

Authentification 802.1X/EAP. Dupont peut se connecter uniquement depuis le poste d'adresse MAC 0123456789ab

Wifi Protected Access - WPA

WPA = 802.1X/EAP + méthode de chiffrement

- WPA permet :
 - ✓ Authentification
 - ✓ Chiffrement des communications (TKIP ou AES)
- L'authentification est réalisée par le serveur Radius avec EAP
- Le serveur Radius envoi à la borne une clé de chiffrement calculée à partir de la clé de session calculée dans la phase TLS Handshake.
- Cette clé est envoyée dans l'Access-Accept au moyen de l'attribut MS-MPPE-RECV-KEY
- Le rôle du serveur Radius s'arrête là
- La borne et le poste utilisateur dérivent des clés de chiffrement
- Un chiffrement symétrique est ensuite établi entre la borne et le poste utilisateur

WPA: Initialisation des clés de chiffrement

Critères d'authentification supplémentaires

Exemples avec Freeradius

Authentification suivant l'équipement réseau Called-Station-Id ou Nas-IP-Address

Identifiant Auth-Type := EAP , Called-Station-Id== "adresse mac"

- Suivant le jour et l'heure *Identifiant* **Auth-Type := EAP, Login-Time = "any0700-2000"**
- Expiration *Identifiant* Auth-Type := EAP, Expiration = "30 Mar 2007 00:00:00"
- Imposer la méthode d'authentification

Identifiant Auth-Type := EAP,EAP-Type:=PEAP

Modules et attributs programmables

Il est possible d'écrire des programmes qui sexécuteront pendant le processus d'authentification/autorisation.

Deux méthodes:

- Au moyen de modules déclarés dans la configuration Radius
- Avec l'attribut Exec-Program-Wait dans la base de données.

Exemples:

- √Générer des lignes de logs spécifiques
- ✓ Envoyer un mail avant expiration
- ✓ Faire des vérifications supplémentaires
- ✓ Modifier dynamiquement la base de données

. . .

Modules et attributs programmables

Dans le fichier de configuration du daemon FreeRadius (radiusd.conf) on défini un module spécifique.

```
exec logrecord {
    wait = yes
    program = "/usr/local/bin/logrecord %{Calling-station-Id} %{NAS-IP-ADDRESS} %{NAS-PORT} "
    input_pairs = reply
    output_pairs=none
    packet_type = Access-Accept
}
```

Ce module est appelé dans une de<u>s sections de rad</u>iusd.conf

```
post-auth {
....
logrecord
.....
}
```

Ecrire le programme appelé

/usr/local/bin/logrecord

```
#!/bin/sh

CALLING_STATION_ID=$1

NAS_IP_ADDRESS=$2

NAS_PORT=$3
logger "radiusd:ALLOW: ${CALLING_STATION_ID} -> VLAN${TUNNEL_PRIVATE_GROUP_ID//""/}, nas
${NAS_IP_ADDRESS} port ${NAS_PORT} USER ${USER_NAME}"
```

Modules et attributs programmables

■ Appel d'un programme dans les attributs stockés dans la base de données (utilisation de l'attribut Exec-Program-Wait.)

Exemple: Envoi d'un mail avant date d'expiration

```
Identifiant Auth-Type := EAP, Calling-Station-ID == 0123456789ab, Expiration = "30 Mar 2007 00:00:00"

Tunnel-Type = VLAN

Tunnel-Medium-Type = IEE-802

Exec-Program-Wait = /usr/local/bin/un-programme 3 dupont "30 Mar 2007 00:00:00"
```

Ecriture du programme correspondant

```
#!/bin/sh
# Les attributs sont passés dans des variables d'environnement
vlan=$1
mail=$2
expire=$3
..... Calcul délai avant expiration
.... Envoi d'un mail
.....

echo « Tunnel-Private-Group-Id = $vlan »
exit
```

Radius et les portails captifs

Radius et les portails captifs

- Le serveur de portail captif est déclaré comme client dans la configuration du serveur Radius
- Le serveur Radius accepte les requêtes si elles viennent du portail captif (Called-Station-Id)
- Le portail captif envoi comme identifiant le login/password.
- Le portail captif agit comme routeur / firewall / dhcp

Plusieurs stratégies possibles :

- ✓Inconnus toujours acceptés sur le portail captif (pas d'authentification)
- ✓Enregistrement dans Radis des utilisateurs autorisés
- ✓ Auto-enregistrement (par exemple avec la programmation Radius)

Proxy-Radius, principes

- Identifiant=dupont@domaineA
- C'est le serveur Radius du domaine auquel appartient l'utilisateur nomade qui l'authentifie.
- Il envoi un Access-Accept au serveur Radius du domaine d'accueil
- Le serveur d'accueil choisit le VLAN
- Principe de Eduroam

Proxy-Radius, principes

Domaine-A

Domaine-B

- clients.conf
 Déclaration du serveur du domaine B comme client
- proxy.conf Déclaration du domaine-B
- Filtrage d'attributs

clients.conf

Déclaration du serveur du domaine A comme client

- proxy.confDéclaration du domaine-A
- Filtrage d'attributs

Transformer un serveur en client Radius

<u>Utilité</u>:

- Se servir de Radius comme serveur central pour réaliser des authentifications
- Se servir de Radius pour obtenir des informations (adresse IP, règles de filtrage...)

Transformer un serveur en client Radius avec pam_radius

- Compilation/Installation du module pam_radius sur le serveur-client
- Configuration de PAM
- Déclaration du serveur-client sur le serveur Radius (secret partagé dans clients.conf)
- Création du fichier pam_radius_auth sur le serveur-client pour inscrire le secret partagé.

Limitations:

- On ne peut obtenir qu'une authentification login/password
- Pas de retour d'attributs

Transformer un serveur en client Radius avec radclient

- Radclient est un utilitaire fourni avec FreeRadius
- Il faut installer Freeradius sur le serveur client (on lance pas de daemon, pas de config)
- Permet d'interroger la base Radius et d'obtenir les attributs dans une chaîne de caractères

Transformer un serveur en client Radius avec radclient

Le fichier users du serveur Radius

```
Dupont Auth-Type := Local, User-Password == test, Nas-IP-Address == @IPdu-serveur-client Framed-IP-Address = 172.16.0.3,
Tunnel-Type = VLAN,
Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-Id = 3,
```

Sur le serveur-client

echo User-Name=Dupont,User-Password=test | radclient -x serveur-radius auth secret > tempfile

Réponse reçue par le serveur-client

```
cat tempfile
Sending Access-Request of id 229 to 172.16.0.10 port 1812

User-Name = " Dupont"

User-Password = " test"

rad_recv: Access-Accept packet from host 172.16.0.10:1812, id=229, length=42

Framed-IP-Address = 172.16.0.3

Tunnel-Type:0 = VLAN

Tunnel-Medium-Type:0 = IEEE-802

Tunnel-Private-Group-Id:0 = "3"
```

Openvpn et Radius et radclient

Premier exemple

- But : le serveur Openvpn demande à Radius si un utilisateur est connu et quelle adresse IP lui donner
- Openvpn authentifie les utilisateurs avec leur certificat Si le certificat n'est pas authentifié, l'utilisateur est rejeté
- Appel d'un script pour interroger le serveur Radius avec l'ordre client-connect
- Ce script exécute une commande radclient (utilise Radius comme base d'autorisation)
- Si Access-Reject cela signifie que cet utilisateur n'est pas autorisé à utiliser OpenVpn. (exit 1)
- Si Access-Accept, analyse de la chaîne de caractères renvoyées pour en extraire l'adresse IP.
- Ensuite on écrit dans le fichier de config temporaire géré par Openvpn

echo ifconfig adresse-envoyée-par radius adresse-server-openvpn > \$1

<u>Intérêts</u>:

- ✓ Même avec un certificat valide, un utilisateur sera autorisé à se connecter uniquement s'il est enregistré dans la base de Radius.
- ✓Un utilisateur reçoit toujours la même adresse IP.
- ✓Possibilité de mettre en œuvre un serveur VPN multi-vlan

Openvpn et Radius et radclient

Deuxième exemple

- But : Exécuter, sur le serveur Openvpn, une commande iptables pour un utilisateur particulier
- Méthode: Créer un attribut qui contient une commande Iptables qui sera envoyée par le serveur Radius au serveur Openvpn au moment de la connexion de l'utilisateur.
- Sur le serveur Radius :

```
Jean Dupont Auth-Type := Local, User-Password == test, Nas-IP-Address == @IP-du-serveur-client Ipables = « -I FORWARD -s 172.16.0.3 -j ACCEPT »,
Framed-IP-Address = 172.16.0.3,
Tunnel-Type = VLAN,
Tunnel-Medium-Type = IEEE-802,
Tunnel-Private-Group-Id = 3
```

Sur le serveur Openvpn, le script client-connect est du type :

```
echo User-Name=Dupont, User-Password=test | radclient -x serveur-radius auth secret > tempfile
```

- Recherche de l'adresse IP et affectation
- Recherche du mot clé « Iptables » dans le fichier tempfile
- Extraction de la commande Iptables
- Exécution de la commande Iptables

Openvpn et Radius et radiusplugin

- Radiusplugin permet une authentification sur le serveur Radius avec retour de certains attributs (Framed-IP-Address, Framed-Routes, Acct-Interim-Interval)
- S'utilise avec l'option plugin de Openvpn
- Projet intéressant mais pas encore au point (http://www.nongnu.org/radiusplugin) Bien moins souple que radclient

Bilan

Le serveur Radius est le « moteur » de la mobilité C'est un élément structurant du réseau

- Apporte des solutions pour authentifier sans-fil/filaire (unification)
- Apporte des solutions pour exploiter au mieux un réseau fortement structuré
- Apporte des solutions pour l'accueil des visiteurs
- Extension à d'autres services réseau

Références

- RFC 2865, RFC 2868, RFC 2869 (http://www.ietf.org)
- http://www.freeradius.org
- http://www.freeradius.org/list/users.html
- http://www.levkowetz.com/pub/ietf/drafts/eap/rfc2284bis/draft-ietf-eap-rfc2284bis-07.html (EAP)
- http://www.wi-fi.org (WiFi Alliance/WPA)
- Livre: Authentification réseau avec Radius par Serge Bordères Eyrolles