ESTRUTURAS DE DADOS II

MSC. DANIELE CARVALHO OLIVEIRA

DOUTORANDA EM CIÊNCIA DA COMPUTAÇÃO - USP

MESTRE EM CIÊNCIA DA COMPUTAÇÃO – UFU

BACHAREL EM CIÊNCIA DA COMPUTAÇÃO - UFJF

DIJKSTRA

	Α	В	С	D	E	F	G
Dist	0	∞	∞	∞	∞	∞	∞
Predecessor							

4 PROBLEMA DO CAMINHO MÍNIMO

 De forma a reduzir seus custos, uma empresa de transporte de cargas deseja oferecer aos motoristas de sua frota um mecanismo que os auxilie a selecionar o menor caminho entre quaisquer duas cidades por ela servidas.

5 ALGORITMO DIJKSTRA

- Calcula o caminho de custo mínimo entre dois vértices.
- Simples e com bom nível de performance. Não garante exatidão com arcos com valores negativos.

6 ALGORITMO DIJKSTRA

- Atribua valor zero à estimativa do custo mínimo do vértice s (a raiz da busca) e infinito às demais estimativas;
- Atribua um valor qualquer aos precedentes (o precedente de um vértice t é o vértice que precede t no caminho de custo mínimo de s para t);
- Enquanto houver vértice aberto:
 - seja k um vértice ainda aberto cuja estimativa seja a menor dentre todos os vértices abertos;
 - feche o vértice **k**
 - Para todo vértice **j** ainda aberto que seja sucessor de **k** faça:
 - some a estimativa do vértice k com o custo do arco que une k a j;
 - caso esta soma seja melhor que a estimativa anterior para o vértice **j**, substitua-a e anote **k** como precedente de **j**.

	Α	В	С	D	E	F	G
Dist	0	I	6	∞	7	∞	∞
Predecessor		A	A		A		

	Α	В	С	D	E	F	G
Dist	0	I	6	3	7	∞	∞
Predecessor		A	A	В	Α		

	Α	В	С	D	E	F	G
Dist	0	I	4	3	6	∞	8
Predecessor		A	D	В	D		

	Α	В	С	D	E	F	G
Dist	0	I	4	3	6	∞	∞
Predecessor		A	D	В	D		

	Α	В	С	D	Е	F	G
Dist	0	ı	4	3	6	8	13
Predecessor		A	D	В	D	E	E

	Α	В	С	D	E	F	G
Dist	0	I	4	3	6	8	13
Predecessor		A	D	В	D	E	Е

	Α	В	С	D	E	F	G
Dist	0	I	4	3	6	8	13
Predecessor		A	D	В	D	E	E

	Α	В	С	D	E	F	G
Dist	0	I	4	3	6	8	13
Predecessor		A	D	В	D	E	Ш

CONJUNTOS ESTÁVEIS

16 CONJUNTOS ESTÁVEIS

• Um conjunto de um grafo S é estável (ou independente) se seus elementos não são adjacentes em G.

 Todo grafo tem ao menos um conjunto estável: o conj. vazio

17 CONJUNTO ESTÁVEL MÁXIMO

- Um conj. estável maximal: se não faz parte de um conj estável maior.
- Se S é um conjunto independente de G e não existe um conjunto independente de G maior que S, diz-se que S é um conjunto estável máximo de G. O problema de, dado um grafo G, determinar se há um conjunto independente de tamanho k é um problema NP-completo.

18 CRIÁNDO UM CONJ. ESTÁVEL MAXIMAL

- Comece com um conj. estável X
- Examine os outros vértices um a um
- Se o vértice for adjacente a outro no X descarte-o
- Caso contrário acrescente-o a X.

X é máximo se |X| >= |Y| para todo conj. estável Y

- O grafo I mostra um conj. estável com I vértice
- O grafo 2 mostra um conj. estável maximal.
- O grafo 3 mostra um conj. estável máximo.

20 CONJUNTO ESTÁVEL

 O tamanho do maior conjunto independente é chamado índice de estabilidade denotado por

CLIQUES

22 CLIQUES

- Ou conjunto completo é qualquer conjunto de vértices dois a dois adjacentes.
- X é uma clique se grafo induzido G(X) é completo.
- A cardinalidade é dada por $\omega(G)$

Trabalho

Implementar o Dijkstra

Extra

- URI:
 - 1085; 1123; 1148; 1931; 1977; 1427; 2477
- UVA
 - https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2299

FIM DA AULA 12

Próxima aula:

Grafos: Cobertura, Emparelhamento