

Rec'd

10089057 040302

FORM PTO-1390 (Modified)
(REV 11-2000)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371**

221519US0PCT

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR

10/089057INTERNATIONAL APPLICATION NO.
PCT/JP00/06913INTERNATIONAL FILING DATE
4 October 2000PRIORITY DATE CLAIMED
4 October 1999 (earliest)

TITLE OF INVENTION

GENES FOR HEAT RESISTANT ENZYMES OF AMINO ACID BIOSYNTHETIC PATHWAY DERIVED FROM THERMOPHILIC CORYNEFORM BACTERIA

APPLICANT(S) FOR DO/EO/US

Seiko HIRANO et al.

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (24) indicated below.
4. The US has been elected by the expiration of 19 months from the priority date (Article 31).
5. A copy of the International Application as filed (35 U.S.C. 371 (c) (2))
 - a. is attached hereto (required only if not communicated by the International Bureau).
 - b. has been communicated by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
6. An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a. is attached hereto.
 - b. has been previously submitted under 35 U.S.C. 154(d)(4).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))
 - a. are attached hereto (required only if not communicated by the International Bureau).
 - b. have been communicated by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).
11. A copy of the International Preliminary Examination Report (PCT/IPEA/409).
12. A copy of the International Search Report (PCT/ISA/210).

Items 13 to 20 below concern document(s) or information included:

13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
15. A **FIRST** preliminary amendment.
16. A **SECOND** or **SUBSEQUENT** preliminary amendment.
17. A substitute specification.
18. A change of power of attorney and/or address letter.
19. A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.
20. A second copy of the published international application under 35 U.S.C. 154(d)(4).
21. A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).
22. Certificate of Mailing by Express Mail
23. Other items or information:

**Notice of Priority/ Form PTO-1449
PCT/IB/304/ Drawings (15 sheets)
PCT/IB/308/ Sequence Listing (123 sheets)**

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR 10/089057	INTERNATIONAL APPLICATION NO. PCT/JP00/06913	ATTORNEY'S DOCKET NUMBER 221519US0PCT																			
24. The following fees are submitted:		CALCULATIONS PTO USE ONLY																			
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :																					
<input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1040.00 <input checked="" type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$890.00 <input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$740.00 <input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$710.00 <input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00																					
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$890.00																			
Surcharge of \$130.00 for furnishing the oath or declaration later than months from the earliest claimed priority date (37 CFR 1.492 (e)).		<input type="checkbox"/> 20 <input type="checkbox"/> 30 \$0.00																			
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>CLAIMS</th> <th>NUMBER FILED</th> <th>NUMBER EXTRA</th> <th>RATE</th> </tr> </thead> <tbody> <tr> <td>Total claims</td> <td>80 - 20 =</td> <td>60</td> <td>x \$18.00</td> </tr> <tr> <td>Independent claims</td> <td>32 - 3 =</td> <td>29</td> <td>x \$84.00</td> </tr> <tr> <td colspan="2">Multiple Dependent Claims (check if applicable).</td> <td><input checked="" type="checkbox"/></td> <td>\$280.00</td> </tr> <tr> <td colspan="2" style="text-align: right;">TOTAL OF ABOVE CALCULATIONS</td> <td>= \$4,686.00</td> </tr> </tbody> </table>		CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	Total claims	80 - 20 =	60	x \$18.00	Independent claims	32 - 3 =	29	x \$84.00	Multiple Dependent Claims (check if applicable).		<input checked="" type="checkbox"/>	\$280.00	TOTAL OF ABOVE CALCULATIONS		= \$4,686.00	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE																		
Total claims	80 - 20 =	60	x \$18.00																		
Independent claims	32 - 3 =	29	x \$84.00																		
Multiple Dependent Claims (check if applicable).		<input checked="" type="checkbox"/>	\$280.00																		
TOTAL OF ABOVE CALCULATIONS		= \$4,686.00																			
<input type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27). The fees indicated above are reduced by 1/2.		\$0.00																			
SUBTOTAL		\$4,686.00																			
Processing fee of \$130.00 for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)).		<input type="checkbox"/> 20 <input type="checkbox"/> 30 + \$0.00																			
TOTAL NATIONAL FEE		\$4,686.00																			
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable).		<input type="checkbox"/> \$0.00																			
TOTAL FEES ENCLOSED		\$4,686.00																			
		Amount to be: refunded \$																			
		charged \$																			
a. <input checked="" type="checkbox"/> A check in the amount of <u>\$4,686.00</u> to cover the above fees is enclosed. b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of _____ to cover the above fees. A duplicate copy of this sheet is enclosed. c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>15-0030</u> A duplicate copy of this sheet is enclosed. d. <input type="checkbox"/> Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.																					
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.																					
SEND ALL CORRESPONDENCE TO:																					
Surinder Sachar Registration No. 34,423 22850		 SIGNATURE Norman F. Oblon NAME 24,618 REGISTRATION NUMBER April 3 2002 DATE																			

101 Facit PCTPTO 17 DEC 2002 45
10 / 089057

Docket No.221519US0PCT

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

IN RE APPLICATION OF : ATTN: BOX SEQUENCE

SEIKO HIRANO ET AL :

SERIAL NO. 10/089,057 :

FILED:APRIL 03, 2002 :

FOR:GENES FOR HEAT RESISTANT ENZYMES OF AMINO ACID BIOSYNTHETIC PATHWAY DERIVED FROM THERMOPHILIC CORYNEFORM BACTERIA

PRELIMINARY AMENDMENT AND STATEMENT

ASSISTANT COMMISSIONER FOR PATENTS
WASHINGTON, D.C. 20231

SIR:

Responsive to the Office Communication dated July 17, 2002, Applicants submit a substitute Sequence Listing and a corresponding computer-readable Sequence Listing.

IN THE SPECIFICATION

Please amend the specification as follows.

Page 111 (Abstract), after the last line, beginning on a new page, please replace the original Sequence Listing with the substitute Sequence Listing attached hereto.

REMARKS

Applicants have now submitted a substitute Sequence Listing and a corresponding computer-readable Sequence Listing. The sequence information recorded in the corresponding computer-readable Sequence Listing is identical to the paper copy of the substitute Sequence Listing. Support for all of the sequences listed in the substitute Sequence Listing is found in the present application as originally filed. No new matter is believed to have been introduced by the submission of the substitute Sequence Listing and the corresponding computer-readable Sequence Listing.

Applicants submit that the present application is ready for examination on the merits. Early notice to this effect is earnestly solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon
Attorney of Record
Registration No. 24,618

Daniel J. Pereira, Ph.D.
Registration No. 45,518

22850

(703) 413-3000

15/Prls

10/089057

JC13 Rec'd PCT/PTO 03 APR 2002

1

Specification

Genes for Heat resistant Enzymes of Amino Acid
Biosynthetic Pathway Derived from Thermophilic

5 Coryneform Bacteria

Technical Field

The present invention relates to heat resistant enzyme genes, in particular, genes for enzymes of biosynthetic pathway and uptake system of L-amino acids such as L-glutamic acid, of *Corynebacterium thermoaminogenes*, which is a thermophilic coryneform bacterium.

15 Background Art

The current main stream of the production of L-amino acids such as L-glutamic acid is the fermentative production utilizing coryneform bacteria. As for the fermentative production of L-amino acids, it has been attempted to reduce the cost based on breeding of strains with superior productivity and development of fermentation techniques. Although conventional attempts for realizing the cost reduction were mainly directed to achieving higher yield, energy required for cooling the fermentation heat generated during the culture cannot be ignored in addition to the raw material as the factors concerning the fermentation cost. That is, as for usual

microorganisms used for the fermentation, the temperature of the medium rises due to fermentation heat generated by the microorganism themselves during the fermentation, and hence enzymes required for the 5 fermentation may be inactivated or the productive bacteria may be killed. Therefore, it is necessary to cool the medium during the fermentation. Accordingly, in order to reduce the cooling cost, fermentation at high temperatures has been studied for many years.

10 Moreover, if high temperature fermentation becomes possible, the reaction rate may also be improved. However, as for the L-amino acid fermentation, effective high temperature culture has not been realized so far.

Corynebacterium thermoaminogenes is a bacterium 15 classified into coryneform bacteria like *Corynebacterium glutamicum* (*Brevibacterium lactofermentum*), which is commonly used for the fermentation of L-amino acids. However, it shows the optimum growth temperature of 37-43°C, which is higher than that of *Corynebacterium* 20 *glutamicum*, i.e., 30-35°C, and shows the optimum temperature for L-glutamic acid production of 42-45°C, which is considerably shifted to the high temperature region (Japanese Patent Laid-open (Kokai) No. 63-240779/1988).

25 Meanwhile, there have been developed techniques for enhancing L-amino acid producing ability of *Corynebacterium* and *Brevibacterium* bacteria by

introducing a gene coding for an L-amino acid synthesis system enzyme derived from *Escherichia coli* or *Corynebacterium glutamicum* into them. Examples of such an enzyme include, for example, citrate synthase
5 (Japanese Patent Publication (Kokoku) No. 7-121228/1995), which is an enzyme of the L-glutamic acid biosynthetic pathway, glutamate dehydrogenase (Japanese Patent Laid-open No. 61-268185/1986), isocitrate dehydrogenase, aconitate hydratase (Japanese Patent Laid-open No. 63-
10 214189) and so forth.

However, any L-amino acid biosynthesis enzymes and genes coding for them derived from thermophilic coryneform bacteria have not been reported.

15 Disclosure of the Invention

An object of the present invention is to provide genes coding for enzymes derived from *Corynebacterium thermoaminogenes*, preferably enzymes that function at a temperature higher than those of *Corynebacterium glutamicum*.
20

The inventors of the present invention extensively studied in order to achieve the aforementioned object. As a result, they successfully isolated genes coding for enzymes of the amino acid biosynthetic pathway of *Corynebacterium thermoaminogenes*, or genes coding for proteins involved in the uptake of amino acids into cells, and thus achieved the present invention.
25

That is, the present invention provides the followings.

- (1) A protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate lyase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 5 minutes.
- 10 (2) A protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which is involved in acyl Co-A carboxylase activity derived from *Corynebacterium thermoaminogenes*.
- 15 (3) A protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity derived from *Corynebacterium thermoaminogenes*.
- 20 (4) A protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity derived from *Corynebacterium thermoaminogenes*.

- (5) A protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows phosphofructokinase activity at 60°C in an equivalent or higher degree compared with the activity at 30°C.
- (6) A protein having the amino acid sequence of SEQ ID NO: 94 or the amino acid sequence of SEQ ID NO: 94 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has activity for imparting sucrose assimilating ability to *Corynebacterium thermoaminogenes*.
- (7) A protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has a function involved in glutamic acid uptake and derived from *Corynebacterium thermoaminogenes*.
- (8) A protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate dehydrogenase activity derived from *Corynebacterium thermoaminogenes*.
- (9) A protein having the amino acid sequence of SEQ ID

- NO: 24 or the amino acid sequence of SEQ ID NO: 24
including substitution, deletion, insertion, addition or
inversion of one or several amino acids residues, which
has pyruvate carboxylase activity derived from
5 *Corynebacterium thermoaminogenes*.
- (10) A protein having the amino acid sequence of SEQ ID
NO: 26 or the amino acid sequence of SEQ ID NO: 26
including substitution, deletion, insertion, addition or
inversion of one or several amino acids residues, which
10 has phosphoenolpyruvate carboxylase activity and shows
50% or more of residual activity after a heat treatment
at 45°C for 5 minutes.
- (11) A protein having the amino acid sequence of SEQ ID
NO: 28 or the amino acid sequence of SEQ ID NO: 28
15 including substitution, deletion, insertion, addition or
inversion of one or several amino acids residues, which
has aconitase activity and shows 30% or more of residual
activity after a heat treatment at 50°C for 3 minutes.
- (12) A protein having the amino acid sequence of SEQ ID
20 NO: 30 or the amino acid sequence of SEQ ID NO: 30
including substitution, deletion, insertion, addition or
inversion of one or several amino acids residues, which
has isocitrate dehydrogenase activity and shows 50% or
more of residual activity after a heat treatment at 45°C
25 for 10 minutes.
- (13) A protein having the amino acid sequence of SEQ ID
NO: 32 or the amino acid sequence of SEQ ID NO: 32

including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has dihydrolipoamide dehydrogenase activity derived from *Corynebacterium thermoaminogenes*.

5 (14) A protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has 2-oxoglutarate dehydrogenase activity and shows 30%
10 or more of residual activity after a heat treatment at 50°C for 10 minutes.

(15) A protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion,
15 insertion, addition or inversion of one or several amino acids residues, which shows glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.

(16) A protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion,
20 insertion, addition or inversion of one or several amino acids residues, which shows citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.

(17) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence

of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate lyase activity.

(18) The DNA according to (17), which is a DNA defined
5 in the following (a1) or (b1):

(a1) a DNA which comprises the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing,

(b1) a DNA which is hybridizable with the
nucleotide sequence of SEQ ID NO: 1 in Sequence Listing
10 or a primer prepared based on the nucleotide sequence
under a stringent condition, and codes for a protein
having isocitrate lyase activity.

(19) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence
15 of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and involved in acyl Co-A carboxylase activity.

(20) The DNA according to (19), which is a DNA defined
20 in the following (a2) or (b2):

(a2) a DNA which comprises the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing,

(b2) a DNA which is hybridizable with the
nucleotide sequence of SEQ ID NO: 3 in Sequence Listing
25 or a primer prepared based on the nucleotide sequence
under a stringent condition, and codes for a protein
involved in acyl Co-A carboxylase activity.

(21) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.

5 (22) The DNA according to (21), which is a DNA defined in the following (a3) or (b3):

(a3) a DNA which comprises the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing,
10 (b3) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.

15 (23) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.

20 (24) The DNA according to (23), which is a DNA defined in the following (a4) or (b4):

(a4) a DNA which comprises the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing,
25 (b4) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein

having DtsR activity.

(25) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, 5 deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphofructokinase activity.

(26) The DNA according to (25), which is a DNA defined in the following (a5) or (b5):

10 (a5) a DNA which comprises the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing,

(b5) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing or a primer prepared based on the nucleotide sequence 15 under a stringent condition, and codes for a protein having phosphofructokinase activity.

(27) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 93 or the amino acid sequence of SEQ ID NO: 93 including substitution, 20 deletion, insertion, addition or inversion of one or several amino acids residues, and having invertase activity.

(28) The DNA according to (27), which is a DNA defined in the following (a6) or (b6):

25 (a6) a DNA which comprises the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing,

(b6) a DNA which is hybridizable with the

nucleotide sequence of SEQ ID NO: 93 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having invertase activity.

5 (29) A DNA which codes for a protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and
10 having a function involved in glutamic acid uptake.

(30) The DNA according to (29), which is a DNA defined in the following (a7) or (b7):

(a7) a DNA which comprises the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing,

15 (b7) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having a function involved in glutamic acid uptake.

20 (31) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate dehydrogenase activity.

25 (32) The DNA according to (31), which is a DNA defined in the following (a8) or (b8):

(a8) a DNA which comprises the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing,

(b8) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate dehydrogenase activity.

(33) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate carboxylase activity.

(34) A DNA according to (33), which is a DNA defined in the following (a9) or (b9):

(a9) a DNA which comprises the nucleotide sequence of SEQ ID NO: 23 in Sequence Listing,

(b9) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 23 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate carboxylase activity.

(35) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having

phosphoenolpyruvate carboxylase activity.

(36) The DNA according to (35), which is a DNA defined in the following (a10) or (b10):

5 (a10) a DNA which comprises the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing,

(b10) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein 10 having phosphoenolpyruvate carboxylase activity.

(37) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or 15 several amino acids residues, and having aconitase activity.

(38) The DNA according to (37), which is a DNA defined in the following (a11) or (b11):

20 (a11) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,

(b11) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein 25 having aconitase activity.

(39) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid

sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate dehydrogenase activity.

5 (40) The DNA according to (39), which is a DNA defined in the following (a12) or (b12):

(a12) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,

10 (b12) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having isocitrate dehydrogenase activity.

15 (41) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having dihydrolipoamide dehydrogenase activity.

20 (42) The DNA according to (41), which is a DNA defined in the following (a13) or (b13):

(a13) a DNA which comprises the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing,

25 (b13) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein

having dihydrolipoamide dehydrogenase activity.

(43) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, 5 deletion, insertion, addition or inversion of one or several amino acids residues, and having 2-oxoglutarate dehydrogenase activity.

(44) The DNA according to (43), which is a DNA defined in the following (a14) or (b14):

10 (a14) a DNA which comprises the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing,

(b14) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing or a primer prepared based on the nucleotide sequence 15 under a stringent condition, and codes for a protein having 2-oxoglutarate dehydrogenase activity.

(45) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including 20 substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.

25 (46) The DNA according to (45), which is a DNA defined in the following (a15) or (b15):

(a15) a DNA which comprises the nucleotide

sequence of SEQ ID NO: 79 in Sequence Listing,

(b15) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.

(47) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.

(48) The DNA according to (47), which is a DNA defined in the following (a16) or (b16):

(a16) a DNA which comprises the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing,

(b16) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.

(49) A method for producing L-amino acid, which

comprises culturing a microorganism introduced with a DNA according to any one of (17) to (48) in a medium to produce and accumulate L-amino acid in the medium, and collecting the L-amino acid from the medium.

5 The term "DNA of the present invention" is used hereinafter for referring to either one or all of the aforementioned DNAs.

Hereafter, the present invention will be explained in detail.

10 The nucleotide sequences of the DNA of the present invention, names of the genes, and the proteins encoded by the DNA of the present invention are shown in Table 1.

Table 1

Nucleotide sequence	Name of gene	Encoded protein (abbreviation)
SEQ ID NO: 1	aceA	Isocitrate lyase (ICL)
SEQ ID NO: 3	accBC	acyl Co-A carboxylase BC subunit
SEQ ID NO: 5	dtsR1	DTSR1 protein
SEQ ID NO: 7	dtsR2	DTSR2 protein
SEQ ID NO: 9	pfk	Phosphofructokinase
SEQ ID NOS: 11, 13, 15, 93	scrB	Invertase
SEQ ID NO: 16	gluABCD	glutamic acid uptake system
SEQ ID NO: 21	pdhA	pyruvate dehydrogenase
SEQ ID NO: 23	pc	pyruvate carboxylase
SEQ ID NO: 25	ppc	phosphoenolpyruvate carboxylase
SEQ ID NO: 27	acn	aconitase
SEQ ID NO: 29	icd	isocitrate dehydrogenase
SEQ ID NO: 31	lpd	dihydrolipoamide dehydrogenase
SEQ ID NO: 33	odhA	2-oxoglutarate dehydrogenase
SEQ ID NO: 79	gdh	glutamate dehydrogenase
SEQ ID NO: 89	gltA	citrate synthase

The open reading frames (ORFs) of SEQ ID NOS: 3, 23, 25, 31 and 33 and the fourth ORF of SEQ ID NO: 16 all start from GTG. Although the amino acids encoded by these GTG are indicated as valine in Sequence Listing, they may be methionine.

The sequence of SEQ ID NO: 16 contains four ORFs, which correspond to *gluA*, *gluB*, *gluC* and *gluD* in this order from the 5' end side.

The aforementioned DNA sequences were isolated from chromosomal DNA of the *Corynebacterium thermoaminogenes* AJ12310 strain (FERM BP-1542). However, the DNA sequences shown in SEQ ID NOS: 11 and 13 were isolated from *Corynebacterium thermoaminogenes* AJ12340 strain (FERM BP-1539) and AJ12309 strain (FERM BP-1541),

respectively, which had invertase activity and sucrose assimilating property, because the AJ12310 strain did not have invertase activity and sucrose assimilating property, and the *scrB* gene isolated from the strain had
5 not any open reading frame.

The *Corynebacterium thermoaminogenes* AJ12310 strain (also referred to as YS-314 strain) and AJ12309 strain (also referred to as YS-155 strain) were deposited at the National Institute of Bioscience and
10 Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry (postal code: 305-8566, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) on March 13, 1987 and given deposition numbers of FERM P-9246 and FERM P-9245,
15 respectively. Then, they were transferred to international depositions under the provisions of the Budapest Treaty on October 27, 1987, and given deposition numbers of FERM BP-1542 and FERM BP-1541, respectively.

20 The AJ12340 strain (also referred to as YS-40 strain) was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry (postal code: 305-8566, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) on March 10,
25 1987 and given a deposition number of FERM P-9277. Then, it was transferred to an international deposition under

the provisions of the Budapest Treaty on October 27, 1987, and given a deposition number of FERM BP-1539.

The nucleotide sequences shown in SEQ ID NOS: 11, 13 and 15 are partial sequences of *scrB*, and the 5 sequences of SEQ ID NOS: 11 and 13 code for partial amino acid sequences of invertase shown in SEQ ID NOS: 12 and 14.

A DNA sequence containing a partial fragment of a target gene can be obtained by comparing already 10 reported nucleotide sequences for the target gene of various microorganisms such as *Brevibacterium lactofermentum* to select a region containing a well-conserved nucleotide sequence, and carrying out PCR using primers designed based on the nucleotide sequence 15 of the region and chromosomal DNA of *Corynebacterium thermoaminogenes* as a template. Further, by performing hybridization using the obtained DNA fragment or a probe prepared based on the sequence of the fragment to screen a chromosomal DNA library of *Corynebacterium thermoaminogenes*, a DNA fragment containing the gene in 20 its full length can be obtained. A DNA fragment containing the gene in its full length can also be obtained by performing genome walking using the obtained partial fragment of the gene. The genome walking can be 25 carried out by using a commercially available kit, for example, TaKaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo).

- For example, a partial sequence of DNA coding for glutamate dehydrogenase (henceforth the DNA is also referred to as "gdh", and the enzyme is also referred to as "GDH") can be obtained from chromosomal DNA of
- 5 *Corynebacterium thermoaminogenes* such as the *Corynebacterium thermoaminogenes* AJ12310 strain by PCR (polymerase chain reaction) using the chromosomal DNA as a template and primers having the nucleotide sequences shown in SEQ ID NOS: 77 and 78 of Sequence Listing.
- 10 Further, by performing genome walking using the obtained partial fragment, the whole *gdh* gene can be obtained.
- Further, a partial sequence of DNA coding for citrate synthase (henceforth the DNA is also referred to as "gltA", and the enzyme is also referred to as "CS")
- 15 can be obtained from chromosomal DNA of *Corynebacterium thermoaminogenes* such as the *Corynebacterium thermoaminogenes* AJ12310 strain by PCR (polymerase chain reaction) using the chromosomal DNA as a template and primers having the nucleotide sequences shown in SEQ ID NOS: 83 and 84 of Sequence Listing. Further, by
- 20 performing genome walking using the obtained partial fragment, the whole *gltA* gene can be obtained.

The nucleotide sequences of the aforementioned primers were designed based on a nucleotide sequence in

25 a region containing a well-conserved nucleotide sequence among the already reported *gdh* genes or *gltA* genes of various microorganisms, which region was found by

comparison of the genes.

As for DNA sequences coding for the other enzymes, partial fragments coding for those enzymes can be similarly obtained by using the primers mentioned in 5 Table 1, and the genes in full length can be obtained by using the obtained partial fragments.

While the DNA of the present invention was obtained as described above, it can also be obtained from a chromosomal DNA library of *Corynebacterium* 10 *thermoaminogenes* by hybridization using an oligonucleotide prepared based on the nucleotide sequences of the DNA of the present invention as a probe.

Methods for preparation of chromosomal DNA, construction of chromosomal DNA library, hybridization, 15 PCR, preparation of plasmid DNA, digestion and ligation of DNA, transformation and so forth are described in Sambrook, J., Fritsch, E.F., Maniatis, T., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1.21 (1989). Further, genome walking can be performed by 20 using a commercially available kit, for example, TaKaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo).

Specific methods for obtaining the DNA of the present invention will be explained hereafter.

First, chromosomal DNA of *Corynebacterium* 25 *thermoaminogenes* is digested with a suitable restriction enzyme, for example, *Sau3AI*, and fractionated by agarose gel electrophoresis to obtain a DNA fragment of about 4

to 6 kb. The obtained DNA fragment is inserted into a cloning vector such as pHSG399, and *Escherichia coli* is transformed with the obtained recombinant plasmid to produce a plasmid library of the chromosomal DNA.

- 5 Separately, primers are produced for use in selecting a clone containing a target gene from a plasmid library by PCR. These primers are designed based on conserved amino acid regions from various microorganisms corresponding to the gene of interest.
- 10 In the design of primers, a plurality of primer sets are designed considering the codon usage of coryneform bacteria.

Then, in order to investigate propriety of the produced primers, PCR is performed by using these 15 primers and chromosomal DNA of *Corynebacterium thermoaminogenes* as a template. Further, PCR is performed by using primers from which an amplification fragment has been obtained as primers for screening and a recombinant plasmid prepared from the plasmid library 20 as a template to select a clone containing the target DNA fragment. This operation can be quickly carried out by performing the PCR for every batch including several tens of transformant strains as primary screening and 25 performing colony PCR for the batch with which an amplification fragment was obtained as secondary screening. The fragment lengths of the amplified genes

are shown in Tables 2 to 7.

If a transformant selected as described above contains a target gene is confirmed by preparing a recombinant DNA from the transformant selected as 5 described above, determining the nucleotide sequence of the inserted fragment by the dideoxy termination method, and comparing the nucleotide sequence with a known gene sequence.

When the obtained DNA fragment contains a part of 10 the target gene, the deleted part is obtained by genome walking.

The DNA of the present invention may code for a protein including substitution, deletion, insertion, addition or inversion of one or several amino acids 15 residues, so long as the encoded protein has its original function. The number meant by the term "several" may vary depending on positions in the three-dimensional structure of protein or kinds of amino acid residues. However, in general, such a protein preferably shows homology of 30 to 40% or more, more 20 preferably 55 to 65% or more, with respect to a corresponding whole amino acid sequence of the protein. More specifically, the term "several" means a number of 25 2 to several hundreds, preferably 2 to several tens, more preferably 2 to 10.

Nucleotide and amino acid sequence were analyzed by, for example, the method developed by Lipman and

Pearson (Science, 227, 1435-1441, 1985) by using commercially available software such as Genetyx-Mac computer program (Software Development Co., Tokyo, Japan).

5 GDH may be one showing homology of 40 to 80% or more, preferably 80 to 90% or more, for the total amino acid sequence constituting GDH, and showing GDH activity at 42°C equivalent to or higher than the activity at 37°C. In this case, the term "several" means a number
10 of 2 to 30, preferably 2 to 50, more preferably 2 to 10.

CS may be one showing homology of 40 to 80% or more, preferably 80 to 90% or more, for the total amino acid sequence constituting CS, and showing CS activity at 37°C equivalent to or higher than the activity at
15 23°C. In this case, the term "several" means a number of 2 to 300, preferably 2 to 50, more preferably 2 to 10.

A DNA, which codes for the substantially same protein as the original protein as described above, can be obtained by, for example, modifying the nucleotide sequence, for example, by means of the site-directed mutagenesis so that one or more amino acid residues at a specific site should involve substitution, deletion, insertion, addition or inversion. A DNA modified as
20 described above may also be obtained by a conventionally known mutation treatment. The mutation treatment includes a method for treating DNA coding for a target gene in vitro, for example, with hydroxylamine, and a
25

method for treating a microorganism, for example, a bacterium belonging to the genus *Escherichia*, harboring DNA coding for the target gene with ultraviolet irradiation or a mutating agent usually used for the 5 mutation treatment such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and nitrous acid.

The substitution, deletion, insertion, addition, or inversion of nucleotides as described above also includes mutant or variant that naturally occurs due to 10 the difference of strains of *Corynebacterium thermoaminogenes* or the like.

A DNA coding for substantially the same protein as the original protein can be obtained by expressing DNA having a mutation in an appropriate cell, and 15 investigating activity or function of the expressed product protein. The DNA coding for substantially the same protein as the original protein can also be obtained by, for example, isolating a DNA which is hybridizable with a DNA having each of the nucleotide sequences of the sequences of which sequence numbers are 20 mentioned in Table 1 or a coding region thereof, or a probe designed based on the nucleotide sequence under a stringent condition, and which codes for a protein having the activity originally possessed by the protein, 25 from DNA coding for a protein having a mutation or from a cell harboring it. The activity preferably means each enzymatic activity at 42°C for GDH or 37°C for CS.

The aforementioned probe can be prepared from a DNA having any one of the nucleotide sequences of which sequence numbers are shown in Table 1 or a DNA having any one of the nucleotide sequences by PCR using
5 suitable primers.

The "stringent condition" referred to herein is a condition under which so-called specific hybrid is formed, and non-specific hybrid is not formed. It is difficult to clearly express this condition by using any
10 numerical value. However, for example, the stringent condition includes a condition under which DNAs having high homology, for example, DNAs having homology of not less than 50% are hybridized with each other, and DNAs having homology lower than the above are not hybridized
15 with each other. Alternatively, the stringent condition is exemplified by a condition under which DNAs are hybridized with each other at a salt concentration corresponding to an ordinary condition of washing in Southern hybridization, i.e., 60°C, 1 x SSC, 0.1% SDS,
20 preferably 0.1 x SSC, 0.1% SDS.

The gene, which is hybridizable under the condition as described above, includes those having a stop codon generated in the gene, and those having no activity due to mutation of active site. However, such
25 genes can be easily removed by ligating the genes with a commercially available activity expression vector, and measuring the activity or function.

A protein corresponding to each DNA of the present invention can be produced by expressing the DNA in a suitable host-vector system.

As the host used for the expression of a gene,
5 there can be mentioned various prokaryotic cells including *Brevibacterium lactofermentum* (*Corynebacterium glutamicum*), coryneform bacteria such as *Corynebacterium thermoaminogenes*, *Escherichia coli*, *Bacillus subtilis* and so forth, and various eucaryocytic cells including
10 *Saccharomyces cerevisiae*, animal cells and plant cells. Among these, prokaryotic cells, in particular, coryneform bacteria and *Escherichia coli* are preferred.

If the DNA of the present invention is ligated to a vector DNA autonomously replicable in cells of
15 *Escherichia coli* and/or coryneform bacteria and so forth to form a recombinant DNA, and this recombinant DNA is introduced into an *Escherichia coli* cell, the subsequent procedure becomes easy. The vector autonomously replicable in *Escherichia coli* cells is preferably a
20 plasmid vector autonomously replicable in the host cell, and examples thereof include pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010 and so forth.

As the vector autonomously replicable in coryneform bacterium cells, there can be mentioned
25 pAM330 (refer to Japanese Patent Laid-open No. 58-67699/1983), pHM1519 (refer to Japanese Patent Laid-open No. 58-77895/1983) and so forth. Moreover, if a DNA

fragment having an ability to make a plasmid autonomously replicable in coryneform bacteria is taken out from these vectors and inserted into the aforementioned vectors for *Escherichia coli*, they can be 5 used as a so-called shuttle vector autonomously replicable in both of *Escherichia coli* and coryneform bacteria.

Examples of such a shuttle vector include those mentioned below. There are also indicated 10 microorganisms that harbor each vector, and accession numbers thereof at international depositories are shown in the parentheses, respectively.

pAJ655 *Escherichia coli* AJ11882 (FERM BP-136)
Corynebacterium glutamicum SR8201 (ATCC39135)
15 pAJ1844 *Escherichia coli* AJ11883 (FERM BP-137)
Corynebacterium glutamicum SR8202 (ATCC39136)
pAJ611 *Escherichia coli* AJ11884 (FERM BP-138)
pAJ3148 *Corynebacterium glutamicum* SR8203 (ATCC39137)
pAJ440 *Bacillus subtilis* AJ11901 (FERM BP-140)
20 pHG4 *Escherichia coli* AJ12617 (FERM BP-3532)

In order to prepare a recombinant DNA by ligating the DNA of the present invention and a vector that functions in coryneform bacteria, the vector is digested 25 with a restriction enzyme that provides an end corresponding to an end of the DNA of the present invention. The ligation is normally attained by using a

ligase such as T4 DNA ligase.

To introduce the recombinant DNA prepared as described above into a host such as coryneform bacteria, any known transformation methods that have hitherto been reported can be employed. For instance, employable are a method of treating recipient cells with calcium chloride so as to increase the permeability for DNA, which has been reported for *Escherichia coli* K-12 (Mandel, M. and Higa, A., *J. Mol. Biol.*, 53, 159 (1970)), and a method of preparing competent cells from cells which are at the growth phase followed by introducing the DNA thereinto, which has been reported for *Bacillus subtilis* (Duncan, C.H., Wilson, G.A. and Young, F.E., *Gene*, 1, 153 (1977)). In addition to these, also employable is a method of making DNA-recipient cells into protoplasts or spheroplasts, which can easily take up recombinant DNA, followed by introducing the recombinant DNA into the cells, which is known to be applicable to *Bacillus subtilis*, actinomycetes and yeasts (Chang, S. and Cho, S.N., *Molec. Gen. Genet.*, 168, 111 (1979); Bibb, M.J., Ward, J.M. and Hopwood, O.A., *Nature*, 274, 398 (1978); Hinnen, A., Hicks, J.B. and Fink, G.R., *Proc. Natl. Sci. USA*, 75, 1929 (1978)). The transformation of coryneform bacteria can be effectively performed by the electric pulse method (refer to Japanese Patent Laid-open No. 2-207791).

As for the transformation of thermophilic

coryneform bacteria such as *Corynebacterium thermoaminogenes*, it can be efficiently performed by treating cells with an agent that changes the structure of cell walls of the host cells, and applying an electric pulse to a solution containing DNA and the cells of which structure of the cell walls have been changed. The aforementioned agent is an agent that can change the structure of cell walls so that the cells can uptake the DNA when an electric pulse is applied to a solution containing the cells treated with the agent and the DNA (henceforth also referred to as a "cell wall treatment agent"). Examples of such an agent include agents that inhibit normal synthesis of bacterial cell wall and agents that lyse bacterial cell walls.

Specific examples thereof include lysozyme, penicillin G, glycine and so forth.

Those cell wall treatment agents may be used each alone, or two or more kinds of them may be used in combination. Among the aforementioned agents, lysozyme and penicillin G are preferred, and lysozyme is particularly preferred.

Furthermore, the transformation of *Corynebacterium thermoaminogenes* can also be performed by applying an electric pulse to a solution containing DNA and the host cells of which cell walls has been weakened by a physical method such as ultrasonication (FEMS *Microbiology Letters*, 151, 135-138 (1987)).

In order to efficiently express a gene contained in the DNA of the present invention, a promoter that functions in the host cell such as lac, trp and P_L may be ligated upstream from the coding region of the gene.

5 If a vector containing a promoter is used as the vector, ligation of each gene, vector and promoter can be attained by one step.

The proteins of the present invention, which can be produced as described above, can be purified as required from a cell extract or medium by using usual methods for purifying enzymes such as ion exchange chromatography, gel filtration chromatography, adsorption chromatography, salting out and solvent precipitation.

15 It is expected that the proteins of the present invention are excellent in thermal stability or exhibit higher activity at high temperatures compared with the corresponding proteins of *Corynebacterium glutamicum* and so forth. For example, GDH of *Brevibacterium lactofermentum* shows the highest GDH specific activity around 37°C, and the activity is markedly reduced around 42°C. However, GDH of the present invention shows at 42°C the GDH activity equivalent to or higher than the activity at 37°C. In a preferred embodiment, GDH of the 20 present invention shows the highest specific activity around 42°C, and shows the activity even at 45°C.

The GDH activity can be measured by, for example,

adding the enzyme to 100 mM Tris-HCl (pH 8.0), 20 mM NH₄Cl, 10 mM sodium α-ketoglutarate, 0.25 mM NADPH, and determining change of absorbance at 340 nm (Molecular Microbiology 6, 317-326 (1992)).

5 Further, CS of *Brevibacterium lactofermentum* shows the highest CS specific activity around 23°C, and the activity is markedly reduced around 33°C. To the contrary, CS of the present invention shows at 37°C the CS activity equivalent to or higher than the activity at 10 23°C. In a preferred embodiment, CS of the present invention shows reaction temperature-dependently higher activity up to around 37°C, and shows, even at 40°C, about 40% of the activity with respect to the activity at 37°C.

15 The CS activity can be measured by, for example, the method described in Methods in Enzymol., 13, 3-11 (1969).

Further, other proteins of the present invention typically have the following characteristics. The 20 isocitrate lyase has 30% or more of residual activity after a heat treatment at 50°C for 5 minutes. The phosphofructokinase has, at 60°C, the activity equivalent to or higher than the activity at 30°C. The phosphoenolpyruvate carboxylase has 50% or more of 25 residual activity after a heat treatment at 45°C for 5 minutes. The aconitase has 30% or more of residual activity after a heat treatment at 50°C for 3 minutes.

The isocitrate dehydrogenase has 50% or more of residual activity after a heat treatment at 45°C for 10 minutes. The 2-oxoglutarate dehydrogenase has 30% or more of residual activity after a heat treatment at 50°C for 10 minutes.

The proteins of the present invention can also be obtained from cell extracts of *Corynebacterium thermoaminogenes* such as the *Corynebacterium thermoaminogenes* AJ12310 strain by using each activity as an index and usual purification methods for purifying enzymes such as ion exchange chromatography, gel filtration chromatography, adsorption chromatography, salting out and solvent precipitation.

Among the DNA of the present invention, *pfk*, *pdhA*, *pc*, *ppc*, *acn*, *icd*, *gdh* and *gltA* (names of the enzymes encoded by these are shown in Table 1) can be introduced into L-amino acid production bacteria such as coryneform bacteria to enhance their L-amino acid producing ability. It is also expected that coryneform bacteria introduced with the DNA of the present invention become possible to produce L-amino acid at a temperature higher than usual. The L-amino acid includes L-glutamic acid, L-aspartic acid, L-lysine, L-arginine, L-proline, L-glutamine and so forth.

For example, it is expected that L-glutamic acid production bacteria such as coryneform bacteria

introduced with the *gdh* gene or *gltA* gene come to be able to produce L-glutamic acid at a temperature higher than usual. Further, although CS of *Brevibacterium lactofermentum* may not fully function at a usual culture 5 temperature, for example, 31.5°C, the activity can be enhanced by introducing the *gltA* gene of the present invention.

Further, *dtsR1* and *dtsR2* are genes that code for proteins imparting resistance to surfactant to 10 coryneform bacteria (DTSR protein), and coryneform L-glutamic acid producing bacteria of which these genes are disrupted produce a marked amount of L-glutamic acid even under a condition where biotin is present in such an amount that a wild strain becomes to be substantially 15 unable to produce L-glutamic acid. Further, if *dtsR1* and *dtsR2* genes of coryneform L-glutamic acid producing bacteria having L-lysine producing ability are amplified, the bacteria are imparted with an ability to produce a marked amount of L-lysine (WO95/23224, Japanese Patent 20 Laid-open (Kokai) No. 10-234371/1998).

The *scrB* gene can be used for improvement of coryneform bacteria for use in the production of L-amino acids by using coryneform bacteria in a medium containing sucrose.

25 By deleting *aceA*, *accBC*, *lpd* or *odhA* of L-glutamic acid producing coryneform bacteria and so forth, their

L-glutamic acid productivity can be enhanced. Further, *gluABCD* is a gene cluster of the L-glutamic acid uptake system, and by deleting one to four of *gluA*, *gluB*, *gluC* and *gluD* in coryneform L-glutamic acid producing bacteria, the amount of L-glutamic acid accumulated in the medium can be increased. *aceA*, *accBC*, *lpd*, *odhA* and *gluABCD* of the present invention can be used for disruption of these genes on chromosome.

The medium used for producing L-amino acids by utilizing a microorganism introduced with the DNA of the present invention may be a usual medium that contains a carbon source, a nitrogen source, inorganic ions and other organic trace nutrients as required. As the carbon source, there can be used hydrocarbons such as glucose, lactose, galactose, fructose, sucrose, blackstrap molasses and starch hydrolysate; alcohols such as ethanol and inositol; or organic acids such as acetic acid, fumaric acid, citric acid and succinic acid.

As the nitrogen source, there can be used inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate and ammonium acetate, ammonia, organic nitrogen such as peptone, meat extract, yeast extract, corn steep liquor and soybean hydrolysate, ammonia gas, aqueous ammonia and so forth.

As the inorganic ions (or sources thereof), added is a small amount of potassium phosphate, magnesium

sulfate, iron ions, manganese ions and so forth. As for the organic trace nutrients, it is desirable to add required substances such as vitamin B₁, yeast extract and so forth in a suitable amount as required.

5 The culture is preferably performed under an aerobic condition attained by shaking, stirring for aeration or the like for 16 to 72 hours. The culture temperature is controlled to be at 30°C to 47°C, and pH is controlled to be 5 to 9 during the culture. As for 10 the culture temperature, the culture may be performed at a temperature suitable for culture of a microorganism not introduced with the DNA of the present invention or a temperature higher than that. For adjustment of pH, inorganic or organic acidic or alkaline substances, 15 ammonia gas and so forth can be used.

Collection of L-amino acids from fermentation broth can be attained by a combination of known methods such as techniques utilizing ion exchange resin, precipitation, crystallization and so forth depending on 20 the kind of the L-amino acids.

Brief Explanation of the Drawings

Fig. 1 shows variation with temperature in activity of glutamate dehydrogenases derived from the 25 *Corynebacterium thermoaminogenes* AJ12310 strain and the *Brevibacterium lactofermentum* 2256 strain.

Fig. 2 shows thermal stability of glutamate

dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 3 shows variation with temperature in activity of citrate synthases derived from the AJ12310 strain and the 2256 strain.

Fig. 4 shows thermal stability of citrate synthases derived from the AJ12310 strain and the 2256 strain.

Fig. 5 shows variation with temperature in activity of isocitrate lyases derived from the AJ12310 strain and the 2256 strain.

Fig. 6 shows thermal stability of isocitrate lyases derived from the AJ12310 strain and the 2256 strain.

Fig. 7 shows variation with temperature in activity of phosphofructokinases derived from the AJ12310 strain and the 2256 strain.

Fig. 8 shows thermal stability of phosphofructokinases derived from the AJ12310 strain and the 2256 strain.

Fig. 9 shows variation with temperature in activity of phosphoenolpyruvate carboxylases derived from the AJ12310 strain and the 2256 strain.

Fig. 10 shows thermal stability of phosphoenolpyruvate carboxylases derived from the AJ12310 strain and the 2256 strain.

Fig. 11 shows variation with temperature in

activity of aconitases derived from the AJ12310 strain and the 2256 strain.

Fig. 12 shows thermal stability of aconitases derived from the AJ12310 strain and the 2256 strain.

5 Fig. 13 shows variation with temperature in activity of isocitrate dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 14 shows thermal stability of isocitrate dehydrogenases derived from the AJ12310 strain and the 10 2256 strain.

Fig. 15 shows thermal stability of 2-oxoglutarate dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 16 shows construction of plasmid pSCR155 15 carrying *scrB* gene.

Fig. 17 shows construction of plasmid pPDHA-2 carrying *pdhA* gene.

Fig. 18 shows L-glutamic acid productivity of a *pdhA* gene-amplified strain: (a) 37°C and (b) 44°C.

20 Fig. 19 shows is construction of a plasmid pICD-4 carrying *icd* gene.

Fig. 20 shows L-glutamic acid productivity of an *icd* gene-amplified strain: (a) 37°C and (b) 44°C.

Fig. 21 shows construction of plasmids pHSG299YGDH 25 and pYGDH.

Fig. 22 shows construction of plasmids pHSG299YCS and pYCS.

Best Mode for Carrying out the Invention

Hereafter, the present invention will be further specifically explained with reference to the following
5 examples.

Example 1<1> Production of plasmid library of *Corynebacterium thermoaminogenes*

10 The *Corynebacterium thermoaminogenes* AJ12310 strain was cultured in CM2B liquid medium (1 g/dl of yeast extract (produced by Difco), 1 g/dl of polypeptone (produced by Nippon Seiyaku), 0.5 g/dl of NaCl, 10 µg/dl of biotin, pH 7.0 (adjusted with KOH)) at 37°C for 15
15 hours, and its chromosomal DNA was prepared from the 10 ml of the medium by using a chromosomal DNA extraction kit (Bacterial Genome DNA Purification Kit (produced by Advanced Genetic Technologies)). The obtained DNA was partially digested with a restriction enzyme Sau3AI, and
20 subjected to 0.8% agarose gel electrophoresis to fractionate the DNA. Then, a band corresponding to a DNA fragment of about 4 to 6 kb was excised from the gel, and a DNA fragment of the objective size was obtained by using a DNA gel extraction kit (GIBCO BRL, ConcertTM
25 Rapid Gel Extraction System).

The plasmid pHSG399 (produced by Takara Shuzo) was fully digested with BamHI, and its end was

dephosphorylated by using alkaline phosphatase (CIAP; produced by Takara Shuzo). This vector fragment and the aforementioned chromosomal DNA fragment were ligated by using a DNA ligation kit produced by Takara Shuzo, and 5 *Escherichia coli* JM109 was transformed with the obtained recombinant vector. Selection of transformants was performed on LB agar medium (containing 1.5 g/dl of agar) containing 30 µg/ml of chloramphenicol, 0.04 mg/ml of IPTG (isopropyl-β-D-thiogalactopyranoside) and 0.04 10 mg/ml of X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) to obtain about 4000 white colonies.

<2> Design of primers for amplification of each gene

Primers for use in selection of a clone containing 15 each target gene by PCR from the plasmid library obtained above were designed. The target genes were mentioned above.

The primers were designed based on a known gene sequence of coryneform bacteria, i.e., its sequence of a 20 region where conservation at the amino acid level was observed when compared with corresponding genes of other microorganisms. Considering the codon usage of coryneform bacteria, a plurality of primer sets were designed for each gene.

25 To examine propriety of the prepared primers, PCR was performed by using these primers and chromosomal DNA of the *Corynebacterium thermoaminogenes* AJ12310 strain

as a template to amplify each gene fragment. As a result, when the PCR was performed by using the primers shown in the upper rows of Tables 2 to 7 under the conditions indicated as "PCR conditions for obtaining 5 partial fragment" in the tables, an amplified fragment was observed for all of the genes. The parenthesized numbers after the primer sequences indicate the sequence numbers in Sequence Listing. These primers were used as primers for screening mentioned below.

CLONE 9 DE 2040302

Table 2

Gene	aceA	accBC	dtsR1
5'→3' Primer	CCTCTACCCAGCGAACTCCG (35)	CATCCACCCGGCTACGGCT (37)	ACGGCCCCAGCCCTGACCGAC (39)
3'→5' Primer	CTGCCTTGAACTCACGGTTTC (36)	CGGTGACTGGGTGTTCCACC (38)	AGCAGGCCCATGACGGCGA (40)
PCR conditions for obtaining partial fragment and PCR conditions for screening	94 °C, 5 min 98 °C, 5 sec 66 °C, 2 sec, 30 cycles Z-Taq	94 °C, 5 min 98 °C, 5 sec 66 °C, 2 sec, 30 cycles Z-Taq	94 °C, 5 min 98 °C, 5 sec 66 °C, 2 sec, 30 cycles Z-Taq
Conditions colony PCR	94 °C, 7 min	94 °C, 7 min	94 °C, 7 min
Amplified fragment	824bp	673bp	805bp

Table 3

Gene	dtsR2	pfk	scrb
5'→3' Primer	ACGGCCAGCCCTGACCGAC (41) AGCAGGCCCATGACGGGA (42)	CGTCATCCGAGGAATCGTCC (43) CGTGGGCCATGACCTCC (44)	GGNCGHYTBAAYGAYCC (45) GGRCAYTCCCCACATRTANCC (46)
PCR conditions for obtaining partial fragment and PCR conditions for screening	94°C, 5 min 98°C, 5 sec 66°C, 2 sec, 30 cycles Z-Taq	94°C, 5 min 98°C, 5 sec 66°C, 2 sec, 30 cycles Z-Taq	94°C, 5 min 98°C, 5 sec 50°C, 10 sec 72°C, 20 sec, 40 cycles Z-Taq
Conditions of colony PCR	94°C, 7 min 91°C, 30 sec 55°C, 1 sec 72°C, 2.5 min, 30 cycles Ex-Taq	94°C, 7 min 91°C 30 sec 55°C 1 sec 72°C 2.5 min 30 cycles Ex-Taq	94°C, 7 min 91°C, 30 sec 55°C, 1 sec 72°C, 2.5 min, 30 cycles Ex-Taq
Amplified fragment	805bp	472bp	500bp

Table 4

Gene	<i>gluABCD</i>	<i>pdhA</i>
5'→3' Primer	CCATCCGGATCCGGCAAGTC (47)	ACTGTGTCCATGGGTCTTGGCCC (49)
3'→5' Primer	AATCCCATCTCGTGGTAAC (48)	CGCTGGAATCCGAACATCGA (50)
PCR conditions for obtaining partial fragment	94°C, 5 min 98°C, 5 sec 50°C, 10 sec 72°C, 20 sec, 30 cycles Z-Taq	94°C, 5 min 98°C, 5 sec 50°C, 10 sec 72°C, 20 sec, 30 cycles Z-Taq
Amplified fragment	500bp	1200bp
Conditions for screening PCR and colony PCR	94°C, 5 min 94°C, 30 sec 50°C, 1 min 72°C, 2 min, 30 cycles EX-Taq	94°C, 5 min 94°C, 30 sec 50°C, 1 min 72°C, 2 min, 30 cycles EX-Taq

Table 5

Gene	<i>pc</i>	<i>ppc</i>
5'→3' Primer	GGCGAACCTACGACGTTGCAATGCG (51)	GGTCCTGGATTGGTGGAGA(53)
3'→5' Primer	TGGCCGCCTGGGATCTCGTG (52)	CCGCCATCCTGTTGGAATC(54)
PCR conditions for obtaining partial fragment	94°C, 5 min 98°C, 5 sec 55°C, 80 sec 30 cycles Z-Taq	94°C 5 min 98°C 5 sec 50°C 5 sec 72°C 10 sec 30 cycles Z-Taq
Amplified fragment	781bp	1000bp
Conditions for screening PCR	94°C, 5 min 98°C, 5 sec 55°C, 80 sec 30 cycles Z-Taq	94°C, 5 min 98°C, 5 sec 50°C, 5 sec 72°C, 10 sec, 30 cycles Z-Taq
Conditions for colony PCR	94°C, 5 min, 1 cycles 98°C, 5 sec 55°C, 80 sec, 50 cycles Z-Taq	94°C, 5 min 98°C, 5 sec 50°C, 10 sec 72°C, 20 sec, 50 cycles Z-Taq

Table 6

Gene	acn	icd	lpd
5'→3' Primer 3'→5' Primer	GTIGGIACIGAYTCSSCATAC (55) GCIGGGAGAIATGTRTCIGT (56)	GACATTTCACTCGCTGGACG (57) CCGTACTCTTCAGCCTTCTG (58)	ATCATCGCAAACCGGTTC (59) CGTCACCGATGGCGTAAT (60)
PCR conditions for obtaining partial fragment	94 °C, 1 min 96 °C, 20 sec 45 °C, 1 min 68 °C, 2 min, 30 cycles EX-Taq	94 °C, 5 min 98 °C, 5 sec 55 °C, 80 sec, 30 cycles Z-Taq	94 °C, 5 min 98 °C, 5 sec 50 °C, 10 sec 72 °C, 20 sec, 30 cycles Z-Taq
Amplified fragment	1500bp	1500bp	500bp
Conditions for screening	Same as above	Same as above	94 °C, 5 min
PCR and colony PCR			94 °C, 30 sec 57 °C, 1 min 72 °C, 1 min, 30 cycles Ex-Taq
Screening PCR			TACGAGGAGCAGATCCTCAA (63) TTGACGCCGGTGTCTCCAG (64)
5'→3' Primer 3'→5' Primer			

Table 6 (Cont.)

Gene	acn	icd	Lpd
LA cloning (N')	S1:GGTGAAGCTTAAGTAGTTAGC 65) S2:AGCTACTAACCTGCACC (66)	S1:CCGTACTCTTCAGGCCCTCTG (67) S2:TCGTCCCTTGTTCCACATC (68)	S1:ATCATCGCAACCGGGTTC (69) S2:TACGGAGCAGATCCTCAA(70)
LA Cloning (C') 5'→3' Primer	S1:GCTAACTACTTAGCTTCACC(71) S2:GAACCAGGAACTATTGAACC(72)	S1:TCCGATGTCATCATGGAC (73) S2:ATGTGGAACAAAGGACGAC (74)	
Restriction enzyme	PstI(N') HindIII(C')	SalI(N') PstII(C')	HindIII
Conditions for LA cloning	N' 94 °C, 1 min 94 °C, 30 sec 57 °C, 2 min 72 °C, 2 min, 30 cycles LA-Taq	94 °C, 1 min 94 °C, 30 sec 57 °C, 2 min 72 °C, 2.5 min, 30 cycles LA-Taq	94 °C, 1 min 94 °C, 30 sec 57 °C, 2 min 72 °C, 1 min, 30 cycles LA-Taq
C'	94 °C, 1 min 94 °C, 30 sec 57 °C, 2 min 72 °C, 2.5 min, 30 cycles LA-Taq		

Table 7

<3> Screening of plasmid library by PCR

A clone containing a target gene was selected from the plasmid library by PCR. Sixty colonies were picked up from each plasmid library, and replicated onto two LB agar medium plates. The 60 colonies of each plate were combined, inoculated to a test tube containing 4 ml of LB liquid medium and cultured for 15 hours. Then, a plasmid mixture was respectively obtained by using a plasmid DNA extraction kit produced by Promega. By 10 using this plasmid mixture as a template and primers for screening prepared for each target gene, PCR was performed with the conditions shown as "conditions for screening PCR" in each table to select a clone from which a DNA fragment of the same size as that obtained 15 by PCR using chromosomal DNA as a template had been amplified.

The nucleotide sequence of the amplified DNA fragment was determined by using a Big Dye dye terminator cycle sequencing kit produced by Perkin-Elmer, 20 and investigating its homology to known gene information to determine if the target gene was obtained or not.

As for *lpd*, since any DNA fragment was not amplified with the primers produced in <2>, other primers for screening were prepared based on the 25 determined nucleotide sequence.

<4> Selection of clone harboring target gene by colony

PCR

By using a plate that was an origin of a plasmid mixture for which amplification of the target gene fragment was confirmed, colony PCR was performed to 5 select a clone containing the gene fragment. The colony PCR was performed with the conditions shown in Tables 2-7.

Plasmid DNA was collected from a selected transformant and the nucleotide sequence of the inserted 10 DNA fragment was determined. When the full length of the target gene was not inserted in the inserted DNA fragment, and a upstream region, downstream region or the both were deleted, primers were prepared based on the determined nucleotide sequence, with which a gene 15 fragment comprising the nucleotide sequence of the target gene in its full length was obtained by using TaKaRa LA PCR in vitro Cloning Kit (Takara Shuzo). Then, its nucleotide sequence was determined.

The outline of LA PCR cloning was as follows. Two 20 kinds of primers each having one of the nucleotide sequences of two regions of the inserted DNA fragment were produced. Chromosomal DNA of *Corynebacterium thermoaminogenes* AJ12310 strain was digested with various restriction enzymes, and ligated to a cassette primer corresponding to each of the restriction enzymes. 25 By using this as a template, PCR was performed with a primer (S1) corresponding to a position distant from the

deletion region and a cassette primer (C1) corresponding to a position outside the cassette primer among the prepared primers. Then, another PCR was performed with a primer (S2) corresponding to a position near the 5 deletion region and a cassette primer (C2) corresponding to a position inside the cassette primer among the prepared primers. In this way, a DNA fragment containing the deleted region was obtained. By ligating the obtained DNA fragment with the already obtained DNA 10 fragment, a DNA fragment containing the target gene in full length could be obtained. Since 5' end of the cassette did not have a phosphate group, a nick was formed at the ligation site of the 3' end of the DNA fragment and the 5' end of the cassette. Therefore, the 15 DNA synthesis from the primer C1 stopped at this ligation site in the first PCR, and thus non-specific amplification did not occur. Therefore, specific amplification could be attained.

The primers and the reaction conditions used for 20 the LA PCR cloning are shown in Tables 2-7. In the tables, the primers mentioned with "(N)" are primers used for the cloning of an upstream deleted portion, and the primers mentioned with "(C)" are primers used for the cloning of a downstream deleted portion. PCR was 25 performed twice according to the instruction attached to the LA PCR cloning kit. Among the primers mentioned in the tables, the primers (S1) used for the first reaction

are shown in the upper row, and the primers (S2) used for the second reaction are shown in the lower row.

The nucleotide sequences of the DNA fragments containing each gene obtained as described above were 5 determined in the same manner as mentioned above. Those nucleotide sequences and amino acid sequences that can be encoded by those nucleotide sequences are shown in SEQ ID NOS: 1-34. The sequences shown with the sequence numbers are summarized in Explanation of Sequence 10 Listing mentioned hereinafter.

As for *scrB*, any open reading frame was not found. Since the *Corynebacterium thermoaminogenes* AJ12310 strain did not have the invertase activity and did not have sucrose assimilating property, an *scrB* gene 15 fragment was obtained in a similar manner from *Corynebacterium thermoaminogenes* AJ12340 and AJ12309 strains having the sucrose assimilating property. As a result, a DNA fragment having an open reading frame was obtained from the both strains.

20

Example 2: Acquisition of *gdh* and *gltA* gene

<1> Investigation of GDH activity of *Corynebacterium thermoaminogenes*

Cells of a wild strain of *Corynebacterium thermoaminogenes*, the AJ12310 strain, was grown on CM-2B agar medium (1 g/dl of yeast extract (produced by Difco), 25 1 g/dl of polypeptone (produced by Nippon Seiyaku), 0.5

g/dl of NaCl, 10 µg/dl of biotin, 1.5 g/dl of agar, adjusted to pH 7.0 with KOH). The cells were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask having the following composition and cultured 5 at 37°C for 17 hours (until the residual sugar reached about 1 g/dl).

Similarly, cells of the 2256 strain (ATCC13869) of *Brevibacterium lactofermentum* grown on CM-2B agar medium were cultured at 31.5°C for 17 hours.

10

[Medium for flask]

Glucose	3 g/dl
KH ₂ PO ₄	0.1 g/dl
MgSO ₄ · H ₂ O	0.04 g/dl
FeSO ₄ · 7H ₂ O	1 mg/dl
MnSO ₄ · 4H ₂ O	1 mg/dl
Vitamin B ₁ -HCl	200 µg/L
Biotin	50 µg/L
(NH ₄) ₂ SO ₄	1.5 g/dl
Soybean protein hydrolysis solution	48 mg/dl (Memeno (T-N))
CaCO ₃ (Official regent)	5 g/dl (separately sterilized) pH 8.0 (adjusted with KOH)

25 About 1 ml of the above culture medium was centrifuged at 1000 rpm for 1 minute to remove CaCO₃, and the cells were washed twice with 200 mM K-phosphate

buffer (pH 6.9) and suspended in 300 μ l of the same buffer. The obtained cell suspension was sonicated for 5 minutes to disrupt the cells, centrifuged at 1000 rpm for 30 minutes to obtain a crude enzyme solution as the 5 supernatant.

The optimum reaction temperature and the thermal stability of GDH activity were investigated using the aforementioned crude enzyme solution. The measurement of GDH activity was performed by adding the crude enzyme 10 solution to a reaction mixture (100 mM Tris-HCl (pH 8.0), 20 mM NH₄Cl, 10 mM sodium α -ketoglutarate, 0.25 mM NADPH) and measuring change of absorbance at 340 nm. The protein concentration of the crude enzyme solution 15 was quantified by the Bradford method (Bio-Rad Protein Assay Kit was used) using bovine serum albumin as the standard through measurement of absorbance at 595 nm. The absorbance was measured by using HITACHI U-2000 (produced by Hitachi).

The GDH activity measured at various reaction 20 temperatures is shown in Fig. 1. While the ATCC13869 strain showed the highest specific activity of GDH around 37°C and the activity markedly decreased around 42°C, the AJ12310 strain showed the highest specific activity around 42°C and it showed the activity even at 25 45°C.

Then, the thermal stability of GDH was investigated. The crude enzyme solution was left at

65°C for 0 to 30 minutes before the reaction, and then
the enzyme activity was measured at 30°C. The results
are shown in Fig. 2. As clearly seen from the results,
while GDH of the ATCC13869 strain was inactivated by the
5 heat treatment for 5 minutes, GDH of the AJ12310 strain
maintained the activity even after the heat treatment
for 30 minutes. In addition, the crude enzyme solution
of the AJ12310 strain showed substantially no change in
the GDH activity even after the heat treatment at 65°C
10 for 90 minutes (data are not shown).

<2> Examination of CS activity of *Corynebacterium*
thermoaminogenes

The optimum reaction temperature and thermal
15 stability of CS were investigated by using crude enzyme
solutions prepared from the cells of the *Corynebacterium*
thermoaminogenes AJ12310 strain and the *Brevibacterium*
lactofermentum ATCC13869 strain in the same manner as in
Example 1. The measurement of CS activity was performed
20 by adding each crude enzyme solution to a reaction
mixture (100 mM Tris-HCl (pH 8.0), 0.1 mM DTNB (5,5'-
dithiobis-(2-nitrobenzoic acid)), 200 mM sodium L-
glutamate, 0.3 mM acetyl CoA), and measuring change of
the absorbance at 412 nm.

25 The CS activity measured at various reaction
temperatures is shown in Fig. 3. The ATCC13869 strain
showed the highest specific activity of CS around 23°C

and the activity markedly decreased around 33°C. However, the AJ12310 strain showed high specific activity in a reaction temperature-dependent manner up to around 37°C and it showed the activity even at 40°C 5 in a degree corresponding to about 40% of the activity at 37°C.

Then, thermal stability of CS was investigated. The crude enzyme solution was left at 33-55°C for 5 minutes before the reaction, and then the enzyme 10 activity was measured at 30°C. The results are shown in Fig. 4. Whereas CS of the ATCC13869 strain was inactivated by the heat treatment at 35-40°C, CS of the AJ12310 strain maintained about 40% of the activity even after the heat treatment at 50°C.

15

<3> Acquisition of *gdh* gene of *Corynebacterium thermoaminogenes*

The already reported nucleotide sequences of *gdh* gene of various microorganisms were compared. A region 20 in which nucleotide sequences were well conserved was selected, and primers having the nucleotide sequences shown in SEQ ID NOS: 77 and 78 were prepared based on the nucleotide sequence of the region.

PCR was performed by using chromosomal DNA 25 prepared from the *Corynebacterium thermoaminogenes* AJ12310 strain using Bacterial Genome DNA Purification Kit (produced by Advanced Genetic Technologies) as a

template and the aforementioned primers. Based on the obtained DNA fragment, genome walking was performed by using TaKaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo) to obtain the whole *gdh* gene, of which 5 whole nucleotide sequence was determined. The result is shown in SEQ ID NO: 79. Further, the amino acid sequence deduced from this nucleotide sequence is shown in SEQ ID NO: 80.

The *gdh* gene of the *Brevibacterium lactofermentum* ATCC13869 strain was obtained in a similar manner, and its nucleotide sequence was determined. The result is shown in SEQ ID NO: 81. The amino acid sequence encoded by this nucleotide sequence is shown in SEQ ID NO: 82.

Homology was investigated for the nucleotide sequences of the *gdh* gene and the amino acid sequences of GDH of the *Corynebacterium thermoaminogenes* AJ12310 strain and the *Brevibacterium lactofermentum* ATCC13869 strain determined as described above, and the known *gdh* gene and amino acid sequence of GDH of the *Corynebacterium glutamicum* (*C. glutamicum*) ATCC13032 strain (Molecular Microbiology 6, 317-326 (1992)). The results are shown in Table 8 (for nucleotide sequences) and Table 9 (for amino acid sequences).

Table 8: Homology of nucleotide sequences of various *gdh* genes

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	94.5%	82.4%
ATCC13032	-	-	78.1%
AJ12310	-	-	-

5 Table 9: Homology of amino acid sequences of various GDH

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	90.8%	91.7%
ATCC13032	-	-	83.4%
AJ12310	-	-	-

<4> Acquisition of *gltA* gene of *Corynebacterium thermoaminogenes*

10 The already reported nucleotide sequences of *gltA* gene of various microorganisms were compared. A region in which nucleotide sequences were well conserved was selected, and primers having the nucleotide sequences shown in SEQ ID NOS: 83 and 84 were prepared based on the nucleotide sequence of the region.

15 PCR was performed by using chromosomal DNA prepared from the *Corynebacterium thermoaminogenes* AJ12310 strain (FERM BP-1542) using Bacterial Genome DNA Purification Kit (produced by Advanced Genetic Technologies) as a template and the aforementioned primers 7 and 8, and the nucleotide sequence of the amplified nucleotide sequence of about 0.9 kb was determined.

On the basis of the obtained nucleotide sequence of *gltA* gene of *Corynebacterium glutamicum* (*Microbiol.*, 140, 1817-1828 (1994)), the primers of SEQ ID NOS: 85, 86, 87 and 88 were prepared. PCR was performed in a manner similar to the above by using chromosomal DNA of AJ12310 as a template and the primers of SEQ ID NOS: 85, 86, 87 and 88, and the nucleotide sequence of the amplified DNA fragment was specified to determine the whole nucleotide sequence of the *gltA* gene. The result is shown in SEQ ID NO: 89. Further, an amino acid sequence expected from this nucleotide sequence is shown in SEQ ID NO: 90.

The *gltA* gene of the *Brevibacterium lactofermentum* 2256 strain was obtained in a similar manner, and its nucleotide sequence was determined. The result is shown in SEQ ID NO: 91. The amino acid sequence encoded by this nucleotide sequence is shown in SEQ ID NO: 92.

Homology was investigated for the nucleotide sequences of the *gltA* gene and the amino acid sequences of CS of the *Corynebacterium thermoaminogenes* AJ12310 strain and the *Brevibacterium lactofermentum* ATCC13032 strain determined as described above, and the known *gltA* gene and amino acid sequence of CS of the *Corynebacterium glutamicum* ATCC13032 strain (*Microbiol.*, 140, 1817-1828 (1994)). The results are shown in Table 10 (for nucleotide sequences) and Table 11 (for amino acid sequences).

Table 10: Homology of nucleotide sequences of various *gltA* genes

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	99.5%	85.7%
ATCC13032	-	-	85.6%
AJ12310	-	-	-

5 Table 11: Homology of amino acid sequences of various CS

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	99.3%	92.1%
ATCC13032	-	-	92.1%
AJ12310	-	-	-

Example 3: Acquisition of *scrB* gene of *Corynebacterium thermoaminogenes*

10 Since an *scrB* gene fragment was obtained from the *Corynebacterium thermoaminogenes* AJ12309 strain as shown in Example 1, it was attempted to obtain the total sequence of the gene. First, a partial fragment was obtained in the same manner as in Example 1 using the primers shown in SEQ ID NO: 45 and SEQ ID NO: 46. These 15 primers were synthesized based on the *scrB* sequence of the *Brevibacterium lactofermentum* 2256 strain (Japanese Patent Laid-open No. 08-196280/1996).

Separately, chromosomal DNA was prepared from the 20 AJ12309 strain by using Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.). Sterilized water was added to 0.5 µg of this chromosomal

DNA, 50 pmol each of the aforementioned primers, 4 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x Z-Taq Buffer (Takara Shuzo) and 2 U of Z-Taq (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 50 μ l. PCR was performed with a cycle of denaturation at 98°C for 5 seconds, association at 50°C for 10 seconds and extension reaction at 72°C for 20 seconds, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler GeneAmp PCR System 9600 (PE) to amplify a partial fragment of *scrB* of about 600 bp.

Then, the total sequence of *scrB* was determined by using an LA PCR in vitro Cloning Kit (Takara Shuzo). All of the procedure was performed in accordance with the protocol attached to the LA PCR in vitro Cloning Kit. Based on the obtained partial sequence, primers shown in SEQ ID NOS: 97, 98, 99 and 100 were synthesized. For the first PCR reaction for sequencing an upstream region, the primers shown in SEQ ID NOS: 95 and 97 and chromosomal DNA of AJ12309 strain digested with EcoT14I as a template DNA were used. For the second PCR reaction, the primers shown in SEQ ID NOS: 96 and 98 were used. For the first PCR reaction for sequencing a downstream region, the primers shown in SEQ ID NOS: 95 and 99 and chromosomal DNA of AJ12309 strain digested with SalI (Takara Shuzo) as a template DNA were used. For the second PCR reaction, the primers shown in SEQ ID

NOS: 96 and 100 were used. By the above procedure, a sequence of a full length of 1656 bp containing ORF of *scrB* was determined. This nucleotide sequence is shown in SEQ ID NO: 93, and a deduced amino acid sequence is
5 shown in SEQ ID NO: 94.

Example 4: Examination of thermal stability of
isocitrate lyase, phosphofructokinase,
phosphoenolpyruvate carboxylase, aconitase, isocitrate
10 dehydrogenase and 2-oxoglutarate dehydrogenase

Thermal stability was investigated for the following enzymes derived from *Corynebacterium thermoaminogenes*. In this Example, protein concentrations were measured by the Bradford method
15 (Bio-Rad Protein Assay Kit was used) using bovine serum albumin as a standard protein. Further, measurement of absorbance was performed by using HITACHI U-2000 (Hitachi) unless otherwise indicated.

20 <1> Isocitrate lyase

Thermal stability of activity of isocitrate lyase (henceforth also referred to as "ICL") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and ICL derived from the *Brevibacterium lactofermentum* 2256 strain (ATCC13869) was investigated. For the activity measurement, used were cells of which culture in a medium having the composition mentioned in Table 2 was

terminated before all of the carbon source was completely consumed. The method of the activity measurement was one described in Dieter J. Reinscheid et al., *J. Bacteriol.*, 176 (12), 3474 (1994). Specifically, 5 the cells were washed with 50 mM Tris buffer (pH 7.3), suspended in the same buffer, and disrupted by sonication (INSONATOR 201M produced by KUBOTA was used, 200 W, 5 minutes). After the sonication, the suspension was centrifuged (13000 x g, 30 minutes) to remove 10 undisrupted cells to prepare a crude enzyme solution.

The crude enzyme solution was added to a reaction system containing 50 mM MOPS-NaOH (pH 7.3), 5 mM dithiothreitol, 15 mM MgCl₂, 1 mM EDTA, 5 mM D-threo-isocitrate, 0.2 mM NADH and 18 U of LDH (lactate 15 dehydrogenase), and absorbance at 340 nm at various temperatures (30, 40, 50, 60 or 70°C) was measured by a Hitachi spectrophotometer U-3210. The measurement results for various reaction temperatures were shown in Fig. 5. Further, the crude enzyme solution was 20 pretreated at 50°C (pretreatment time: 5 minutes or 15 minutes), and the activity was measured at 37°C. The results are shown in Fig. 6.

As a result, ICL of the AJ12310 strain showed the maximum activity at 60°C, whereas ICL of the 2256 strain 25 showed the maximum activity around 50°C. Further, while ICL of the 2256 strain was completely inactivated after the pretreatment for 5 minutes, ICL of the AJ12310

strain maintained half of the activity after the pretreatment for 5 minutes. Thus, the stability of ICL of the AJ12310 strain at high temperatures was confirmed.

5

Table 12 Composition of medium for ICL activity measurement

Component	Concentration
$(\text{NH}_4)_2\text{SO}_4$	5 g/l
Urea	5 g/l
KH_2PO_4	0.5 g/l
K_2HPO_4	0.5 g/l
MOPS	20.9 g/l
$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	0.25 g/l
$\text{CaCl}_2 \cdot 7\text{H}_2\text{O}$	10 mM
$\text{CuSO}_4 \cdot 7\text{H}_2\text{O}$	0.2 mg/l
Biotin	0.2 mg/l
$\text{MnSO}_4 \cdot 7\text{H}_2\text{O}$	10 mg/l
$\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$	10 mg/l
$\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$	1 mg/l
Acetic acid	4%

<2> Phosphofructokinase

Thermal stability of activity of phosphofructokinase (henceforth also referred to as "PKF") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and PKF derived from the *Brevibacterium lactofermentum* 2256 strain was investigated. For the activity measurement, used were cells of which culture in a medium having the composition mentioned in Table 13 was terminated before all of the saccharide was completely consumed. The method of the activity measurement was one described in Michiko Mori et al.,

Agric. Biol. Chem., 51 (10), 2671 (1994). Specifically, the cells were washed with 0.1 M Tris buffer (pH 7.5), suspended in the same buffer, and disrupted by sonication (INSONATOR 201M produced by KUBOTA was used, 5 200 W, 5 minutes). After the sonication, the suspension was centrifuged (13000 x g, 30 minutes) to remove undisrupted cells to obtain a crude enzyme solution.

The crude enzyme solution was added to a reaction system containing 100 mM Tris buffer (pH 7.5), 0.2 mM NADH, 10 mM MgCl₂, 2 mM NH₄Cl, 10 mM KCl, 0.2 mM phosphoenolpyruvic acid, 6.4 mM fructose-6-phosphate, 1 mM ATP and 40 µg of LDH/PK (pyruvate kinase), and absorbance at 340 nm was measured at various temperatures (30, 40, 50, 60 or 70°C) by a Hitachi spectrophotometer U-3210. The measurement results for various reaction temperatures were shown in Fig. 7. Further, the crude enzyme solution was pretreated at 50°C (pretreatment time: 1, 3, 5 or 10 minutes), and the activity was measured at 37°C. The results are shown in 15 20 Fig. 8.

As a result, PKF of the AJ12310 strain showed the maximum activity around 50°C, whereas PKF of the 2256 strain showed the maximum activity around 30°C. Thus, it was confirmed that the optimum temperature of PKF of 25 the AJ12310 strain resided in a high temperature region.

Table 13 Composition of medium for
PFK activity measurement

Component	Concentration
Polypeptone	20 g/l
Yeast extract	20 g/l
Sodium chloride	5 g/l
Glucose	20 g/l

<3> Phosphoenolpyruvate carboxylase

5 Thermal stability of activity of phosphoenolpyruvate carboxylase (henceforth also referred to as "PEPC") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and PEPC of the *Brevibacterium lactofermentum* 2256 strain was examined.

10 Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask (8 g/dl of Glucose, 0.1 g/dl of KH_2PO_4 , 0.04 g/dl of $\text{MgSO}_4 \cdot \text{H}_2\text{O}$, 1 mg/dl of $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$, 5 mg/dl of $\text{MnSO}_4 \cdot 4\text{H}_2\text{O}$, 3 g/dl of 15 $(\text{NH}_4)_2\text{SO}_4$, 48 mg/dl of TN (soybean protein hydrolysis solution), 200 $\mu\text{g}/\text{L}$ of vitamin B₁, 300 $\mu\text{g}/\text{L}$ of biotin, 50 $\mu\text{l}/\text{l}$ of GD-113 (antifoaming agent), 5 g/dl of CaCO_3 (Official regent, separately sterilized), pH 8.0 (adjusted with KOH)), and cultured at 37°C. Cells of 20 the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 1000 rpm for 1 minute to remove CaCO_3 , and the cells

were washed 3 times with washing buffer (100 mM Tris/HCl pH 8.0, 10 mM MgSO₄, 1 mM DTT, 20% glycerol), sonicated to disrupt the cells, and centrifuged at 15 krpm for 10 minutes to remove cell debris. The supernatant was 5 further centrifuged at 60 krpm for 1 hour to obtain a crude enzyme solution as the supernatant.

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of the PEPC activity were investigated. The measurement of PEPC 10 activity was performed by adding the crude enzyme solution to a reaction mixture (100 mM Tris/H₂SO₄ (pH 8.5), 5 mM phosphoenolpyruvic acid, 10 mM KHCO₃, 0.1 mM acetyl-CoA, 0.15 mM NADH, 10 mM MgSO₄, 10 U of malate dehydrogenase, 0.1 mM DTT), and measuring change of the 15 absorbance at 340 nm in 800 μ l of reaction volume.

The PEPC activity measured at various reaction temperatures is shown in Fig. 9. While the activity of the 2256 strain markedly decreased at 40°C, the AJ12310 strain showed substantially no decrease of the activity 20 even at 40°C.

Then, the thermal stability of PEPC was investigated. The crude enzyme solution was left at 45°C for 0-20 minutes before the reaction, and then the enzyme activity was measured at 20°C. The results are 25 shown in Fig. 10. As clearly seen from the results, whereas the PEPC activity of the 2256 strain was substantially lost after the heat treatment for 10

minutes, PEPC of the AJ12310 strain maintained the activity even after the heat treatment for 20 minutes.

These results demonstrated the stability of PEPC of the AJ12310 strain at a high temperature.

5

<4> Aconitase

Aconitase (henceforth also referred to as "ACN") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and ACN derived from the *Brevibacterium lactofermentum* 2256 strain were measured, and thermal stability thereof was examined.

Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask having the same composition as mentioned in <3>, and cultured at 37°C. Cells of the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 20 1000 rpm for 1 minute to remove CaCO₃, and the cells were washed 3 times with 50 mM Tris/HCl pH 7.5, sonicated to disrupt the cells, and centrifuged at 15 krpm for 10 minutes to obtain a crude enzyme solution as the supernatant.

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of ACN activity were investigated. The measurement of ACN

activity was performed by adding the crude enzyme solution to a reaction mixture (20 mM Tris/HCl (pH7.5), 50 mM NaCl, 20 mM isocitrate·3Na), and measuring change of the absorbance at 240 nm in 800 μ l of reaction volume.

5 The ACN activity measured at various reaction temperatures is shown in Fig. 11. The AJ12310 strain showed higher activity at a higher temperature compared with the 2256 strain.

10 Then, the thermal stability of ACN was investigated. The crude enzyme solution was left at 50°C for 0-15 minutes before the reaction, and then the enzyme activity was measured at 30°C. The results are shown in Fig. 12. As clearly seen from the results, ACN of the AJ12310 strain showed less activity decrease due 15 to the heat treatment compared with ACN of the 2256 strain.

These results demonstrated the stability of ACN of the AJ12310 strain at a high temperature.

20 <5> Isocitrate dehydrogenase

Thermal stability of activity of isocitrate dehydrogenase (henceforth also referred to as "ICDH") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and ICDH derived from the *Brevibacterium lactofermentum* 2256 strain was examined.

Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask

containing 20 ml of a medium for flask having the same composition as mentioned in <3>, and cultured at 37°C. Cells of the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

5 The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 1000 rpm for 1 minute to remove CaCO_3 , and the cells were washed 3 times with 50 mM Tris/HCl pH 7.5, sonicated to disrupt the cells, and centrifuged at 15
10 krpm for 10 minutes to obtain a crude enzyme solution as the supernatant.

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of ICDH activity were investigated. The measurement of ICDH
15 activity was performed by adding the crude enzyme solution to a reaction mixture (35 mM Tris/HCl, 0.35 mM EDTA (pH 7.5), 1.5 mM MnSO_4 , 0.1 mM NADP, 1.3 mM isocitrate·3Na), and measuring change of the absorbance at 340 nm in 800 μl of reaction volume.

20 The ICDH activity measured at various reaction temperatures is shown in Fig. 13. While the activity of the 2256 strain markedly decreased at 70°C, substantially no activity decrease was observed even at 70°C for the AJ12310 strain.

25 Then, the thermal stability of ICDH was investigated. The crude enzyme solution was left at 45°C for 0-15 minutes before the reaction, and then the

enzyme activity was measured at 30°C. The results are shown in Fig. 14. As clearly seen from the results, while only about 15% of residual activity was observed after the heat treatment for 15 minutes for the 2256 strain, about 60% of residual ICDH activity was observed for the AJ12310 strain.

These results demonstrated the stability of ICDH of the AJ12310 strain at a high temperature.

10 <6> 2-Oxoglutarate dehydrogenase

2-Oxoglutarate dehydrogenase (henceforth also referred to as "ODHC") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and ODHC derived from the *Brevibacterium lactofermentum* 2256 strain were measured, and thermal stability thereof was examined.

For the activity measurement, used were cells of which culture in a medium having the composition mentioned in Table 14 was terminated before all of the saccharide was completely consumed. The method of the activity measurement was one described in Isamu Shiio et al., Agric. Biol. Chem., 44 (8), 1897 (1980).

Specifically, the cells were washed with 0.2% potassium chloride, suspended in 100 mM TES-NaOH (pH 7.5), 30% glycerol solution, and disrupted by sonication (ISONATOR 201M produced by KUBOTA was used, 200 W, 5 minutes). After the disruption by sonication, the suspension was centrifuged (13000 x g, 30 minutes) to

remove undisrupted cells, and subjected to gel filtration using the same buffer and Sephadex-G25 to prepare a crude enzyme solution.

The crude enzyme solution was added to a reaction system containing 100 mM TES-NaOH (pH 7.7), 5 mM MgCl₂, 5 0.2 mM Coenzyme A, 0.3 mM cocarboxylase, 1 mM α-ketoglutaric acid, 3 mM L-cysteine and 1 mM acetylpyridine-adenine dinucleotide, and absorbance at 365 nm was measured at various temperatures (30, 40, 50, 10 60 or 70°C) by a Hitachi spectrophotometer U-3210. The crude enzyme solution was pretreated at 50°C (pretreatment time: 1, 3, 5 or 10 minutes), and the activity was measured at 37°C. The results are shown in Fig. 15.

15 As a result, while ODHC of the 2256 strain was completely inactivated by the pretreatment for 10 minutes, ODHC of the AJ12310 strain showed substantially constant activity irrespective of the pretreatment time, and thus its stability against high temperature 20 treatment was confirmed.

Table 14 Composition of medium for
ODHC activity measurement

Component	Concentration
Glucose	80 g/l
KH ₂ PO ₄	1 g/l
MgSO ₄ · 7H ₂ O	0.4 g/l
FeSO ₄ · 7H ₂ O	0.01 g/l
MnSO ₄ · 7H ₂ O	0.05 g/l
(NH ₄) ₂ SO ₄	30 g/l
Soybean protein hydrolysate	480 mg/l
Thiamin hydrochloride	200 µg/l
Biotin	300 µg/l

Example 5: Impartation of sucrose assimilating ability
5 by gene transfer of *scrB* gene

Since the *Corynebacterium thermoaminogenes* AJ12310 strain did not have invertase activity and sucrose assimilating property, it was investigated if sucrose assimilating ability could be imparted to it by 10 transferring the *scrB* gene of the AJ12309 strain to the strain.

<1> Production of plasmid carrying *scrB* derived from *Corynebacterium thermoaminogenes* AJ12309 strain

To obtain an *scrB* gene fragment, the primers shown in SEQ ID NOS: 101 and 102 were synthesized, of which both ends were ligated with *Sma*I sequences, based on the nucleotide sequence shown in SEQ ID NO: 93. Sterilized water was added to 0.5 µg of chromosomal DNA of the 20 12309 strain, 50 pmol each of the aforementioned

oligonucleotides, 4 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x Pyrobest Buffer (Takara Shuzo) and 2 U of Pyrobest polymerase (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 50 μ l. PCR was 5 performed with a cycle of denaturation at 98°C for 10 seconds, association at 55°C for 30 seconds and extension reaction at 72°C for 2 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler GeneAmp PCR System 9600 10 (PE) to amplify a fragment of about 1.7 kb containing *SCRB* ORF.

Then, the above amplified fragment was digested with *Sma*I (Takara Shuzo), and ligated to plasmid pSAC4 containing a dephosphorylated replication origin 15 functioning in coryneform bacteria, which had been digested with *Sma*I, to prepare pSCR155. The construction of pSCR155 is shown in Fig. 16. pSAC4 was produced as follows. In order to make the vector for 20 *Escherichia coli* pHSG399 (Takara Shuzo) autonomously replicable in coryneform bacteria, the replication origin (Japanese Patent Laid-open No. 5-7491/1993) derived from the already obtained plasmid pHM1519 autonomously replicable in coryneform bacteria (Miwa, k. et al., Agric. Biol. Chem., 48 (1984) 2901-2903) was 25 introduced into it. Specifically, pHM1519 was digested with restriction enzymes *Bam*HI and *Kpn*I, and the obtained fragment containing the replication origin was

blunt-ended by using a Blunting kit produced by Takara Shuzo and inserted into pHSG399 at the *Sall* site by using an *Sall* linker (produced by Takara Shuzo) to obtain pSAC4.

5

<2> Transfer of plasmid carrying *scrB* gene into AJ12310 strain

pSCR155 produced above and plasmid pSSM30BS (Japanese Patent Laid-open No. 08-196280/1996) carrying the *scrB* gene derived from *Brevibacterium lactofermentum* were introduced into the *Corynebacterium thermoaminogenes* AJ12310 strain. The transformation was performed according to the following procedure. The cells were inoculated to CM-2B medium containing 20% sucrose in such an amount that OD₆₆₀ of the medium should become 0.1, and cultured at 37°C with shaking until the OD₆₆₀ become 0.3. Lysozyme was added to the medium at a concentration of 100 µg/ml, and the cells were further cultured for 2 hours. The cells were washed three times with 20% sucrose, suspended in 20% sucrose, added with the plasmid collected from *Escherichia coli* JM110, mixed sufficiently, and applied with an electric pulse (18 kV/cm, 300 msec) to be introduced with the DNA. After the cells were subjected to restoration culture overnight in CM-2B medium containing 20% sucrose, transformants were selected on CM-2B agar medium containing 5 µg/ml of chloramphenicol. Specifically,

the transformation was performed by the electric pulse method (Japanese Patent Laid-open No. 12-204236/2000, and the selection of transformants was performed on CM2B plate medium containing 5 µg/ml of chloramphenicol at 5 37°C. As a result, any transformant harboring the plasmid pSSM30BS carrying *scrB* derived from *Brevibacterium lactofermentum* was not obtained, but only a transformant harboring the plasmid pSCR155 carrying *scrB* derived from *Corynebacterium thermoaminogenes* was 10 obtained. This strain was designated as AJ12310/pSCR155.

<3> Evaluation of culture of AJ12310/pSCR155 strain using sucrose as sugar source.

AJ12310/pSCR155 prepared above was inoculated to a 15 medium having the composition shown in Table 15, and cultured at 37°C for 22 hours with shaking. The absorbance (OD) and residual sugar (RS) of the medium were measured after the culture. The results are shown in Table 16. As a result, it was confirmed that, while 20 the AJ12310 strain could not assimilate sucrose and hence could not grow, the *scrB* gene introduced strain, the AJ12310/pSCR155 strain, became to be able to assimilate sucrose.

Table 15 Medium composition

Medium composition	Concentration
Sucrose	60 g/l
KH ₂ PO ₄	1 g/l
MgSO ₄ · 7H ₂ O	0.4 g/l
FeSO ₄ · 7H ₂ O	0.01 g/l
MnSO ₄ · 7H ₂ O	0.01 g/l
(NH ₄) ₂ SO ₄	30 g/l
Soybean protein hydrolysate	480 mg/l
Thiamin hydrochloride	200 µg/l
Biotin	300 µg/l

Table 16 Result of sucrose culture

	OD (x 51)	RS (g/l)
2256	1.292	0.00
AJ12310	0.058	60.00
AJ12310/pSCR155	1.571	0.84

5 Example 6: L-glutamic acid production by *pdhA* gene-amplified strain

<1> Construction of plasmid pPDHA-2 carrying *pdhA*

The *pdhA* gene derived from the *Corynebacterium thermoaminogenes* AJ12310 strain was obtained by screening of a plasmid library. Specifically, PCR was performed with the conditions shown in Example 1, Table 4, using a plasmid library mixture as a template, and a clone p21A was selected, from which a DNA fragment of the same size is amplified as obtained in PCR using chromosomal DNA as a template. The DNA sequence of this plasmid was determined to confirm that the full length of *pdhA* was contained in it.

p21A was digested with *Xba*I and *Kpn*I to excise a DNA fragment of 4 kb containing the full length of the *pdhA* gene and a promoter region. This DNA fragment containing the *pdhA* gene was inserted into the *Xba*I and *Kpn*I sites of pHSG299 (Takara Shuzo). Then, this plasmid was digested with *Xba*I, and a fragment obtained by digesting pXK4 with *Xba*I was inserted to prepare pPDHA-2. The construction process of pPDHA-2 is shown in Fig. 17. A DNA Ligation Kit Ver.2 (Takara Shuzo) was used for the ligation reaction, and *Escherichia coli* JM109 strain (Takara Shuzo) was used as the host of genetic manipulation. The aforementioned pXK4 was produced as follows. A shuttle vector pHK4 for coryneform bacteria and *Escherichia coli* (Japanese Patent Laid-open No. 5-7491/1993) was digested with restriction enzymes *Bam*HI and *Kpn*I to obtain a DNA fragment containing the replication origin, and the obtained fragment was blunt-ended by using a DNA blunting kit (Blunting Kit produced by Takara Shuzo), ligated to an *Xba*I linker (produced by Takara Shuzo) and inserted into pHSG299 at the *Xba*I site to obtain the plasmid pXK4.

<2> Transfer of plasmid carrying *pdhA* gene into AJ12310
25 strain

The plasmid pPDHA-2 produced above was introduced into the *Corynebacterium thermoaminogenes* AJ12310 strain

to prepare a *pdhA* gene-amplified strain. The transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 µg/ml kanamycin to obtain 5 AJ12310/pPDHA-2 strain.

<3> L-glutamic acid production by *pdhA*-amplified strain
The AJ12310 strain and the *pdhA* gene-amplified strain obtained above, AJ12310/pPDHA-2 strain, both of 10 which were grown on CM-2B agar medium, were each inoculated to a 500-ml volume flask containing 20 ml of a medium for seed culture flask shown in Table 17, and cultured at 37°C with shaking until glucose was completely consumed. 2 ml of this culture broth was 15 inoculated into 500 ml-volume flask containing 20 ml of a medium for main culture flask shown in Table 17, and cultured as main culture at 37°C and 44°C. The main culture was continued until glucose was completely consumed. After the culture, OD₆₂₀ of the medium and 20 accumulated amount of L-glutamic acid were measured to examine the effect of the gene amplification on the cell formation and production of glutamic acid. The measurement of OD was performed by using a spectrophotometer HITACHI U-2000 (Hitachi), and L- 25 glutamic acid concentration was measured by using a glutamic acid analyzer AS-210 (Asahi Chemical Industry). The results are shown in Fig. 18.

The *pdhA* gene-amplified strain, AJ12310/pPDHA-2 strain, showed increased L-glutamic acid accumulation and increased OD compared with the AJ12310 strain, and thus it became clear that the amplification of the *pdhA* gene was effective for L-glutamic acid production.

Table 17 Medium for evaluation of
pdhA-amplified strain

Medium composition	Seed culture	Main culture
Sucrose	30 g/l	60 g/l
KH ₂ PO ₄	1 g/l	1 g/l
MgSO ₄ ·7H ₂ O	0.4 g/l	0.4 g/l
FeSO ₄ ·7H ₂ O	0.01 g/l	0.01 g/l
MnSO ₄ ·7H ₂ O	0.01 g/l	0.01 g/l
(NH ₄) ₂ SO ₄	15 g/l	30 g/l
Soybean protein hydrolysate	480 mg/l	480 mg/l
Thiamin hydrochloride	200 µg/l	200 µg/l
Biotin	10 µg/l	
AZ-20R (anti-foaming agent)	20 µg/l	20 µg/l
CaCO ₃ (separately sterilized)	50 g/L	50 g/L
pH 8.0 (adjusted with KOH)		

10 Example 7: L-glutamic acid production by *icd* gene-amplified strain

<1> Construction of plasmid pICD-4 carrying *icd* derived from *Corynebacterium thermoaminogenes* AJ12310 strain

Based on the *icd* gene sequence of the AJ12310 strain shown in SEQ ID NO: 29, the primers shown in SEQ ID NO: 103 and SEQ ID NO: 104 were synthesized. A *Bgl*II site was introduced into 5' end of the both primers.

Separately, genomic DNA of the *Corynebacterium thermoaminogenes* AJ12310 strain was prepared by using a Genomic DNA Purif. Kit (Edge BioSystems). Sterilized water was added to the genome DNA as a template, 100 pmol each of the aforementioned primers, 8 μ l of dNTP mixture (2.5 mM each), 10 μ l of 10 x Pyrobest Buffer II (Takara Shuzo) and 2.5 U of Pyrobest polymerase (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 100 μ l. PCR was performed with a cycle of denaturation at 98°C for 10 seconds, association at 55°C for 1 minute and extension reaction at 72°C for 4 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler TP240 (Takara Shuzo) to amplify a DNA fragment of about 3.3 kb containing the *icd* gene and its promoter.

Then, this DNA fragment containing the *icd* gene was digested with *Bgl*II, and ligated to pHSG299 (Takara Shuzo) at the *Bam*HI site. This plasmid was then treated with *Xba*I, and a fragment obtained by digesting pXK4 with *Xba*I was inserted into the plasmid to construct pICD-4. The construction procedure of pICD-4 is shown in Fig. 19. A DNA Ligation Kit Ver.2 (Takara Shuzo) was used for the ligation reaction, and *Escherichia coli* JM109 strain (Takara Shuzo) was used as the host of genetic manipulation.

strain

The plasmid pICD-4 produced above was introduced into the *Corynebacterium thermoaminogenes* AJ12310 strain to prepare an *icd* gene-amplified strain. The 5 transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 µg/ml kanamycin to obtain AJ12310/pICD-4 strain.

10 <3> L-glutamic acid production by *icd*-amplified strain

Culture evaluation was performed for the AJ12310 strain and the *icd*-amplified strain thereof, AJ12310/pICD, by the culture method described in Example 6. The results are shown in Fig. 20. The *icd* gene-15 amplified strain AJ12310/pICD-4 strain showed increased L-glutamic acid accumulation and increased OD compared with the AJ12310 strain, and thus it became clear that the amplification of the *icd* gene was effective for L-glutamic acid production.

20

Example 8: L-glutamic acid production by *gdh* gene-amplified strain

<1> Construction of plasmid carrying *gdh* derived from *Corynebacterium thermoaminogenes* AJ12310 strain

25 Based on the *gdh* gene sequence of the AJ12310 strain shown in SEQ ID NO: 79, the primers shown in SEQ ID NO: 105 and SEQ ID NO: 106 were synthesized.

Sep

arately, chromosomal DNA of the AJ12310 strain was prepared by using a Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.). Sterilized water was added to 0.5 μ g of this chromosomal DNA, 10 pmol each of the aforementioned oligonucleotides, 8 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x LA Taq Buffer (Takara Shuzo) and 2 U of LA Taq (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 50 μ l. PCR was performed with a cycle of denaturation at 94°C for 30 seconds, association at 55°C for 1 second and extension reaction at 72°C for 3 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler TP240 (Takara Shuzo) to amplify a DNA fragment of about 2 kb containing the *gdh* gene and its promoter. The obtained amplified fragment was digested with *Pst*I (Takara Shuzo), mixed with pHSG299 (Takara Shuzo) fully digested with *Pst*I and ligated to it. A DNA Ligation Kit Ver.2 produced by Takara Shuzo was used for the ligation reaction. After the ligation, competent cells of *Escherichia coli* JM109 (produced by Takara Shuzo) were transformed with the ligation product, plated on L medium (10 g/l of Bacto-tryptone, 5 g/l of Bacto-yeast extract, 5 g/l of NaCl, 15 g/l of agar, pH 7.2) containing 10 μ g/ml of IPTG (isopropyl- β -D-thiogalactopyranoside), 40 μ g/ml of X-Gal (5-bromo-4-chloro-3-indolyl- β -D-galactoside) and 40

μg/ml of chloramphenicol, and cultured overnight. The emerged white colonies were picked up and subjected to single colony separation to obtain transformants.

Plasmids were prepared from the transformants by
5 the alkali method (Text for Bioengineering Experiments,
Edited by the Society for Bioscience and Bioengineering,
Japan, p.105, Baifukan, 1992) and their restriction maps
were prepared. A plasmid having a restriction map
equivalent to that shown in Fig. 21 was designated as
10 pHSG299YGDH.

A replication origin that functions in coryneform
bacteria was introduced into this pHSG299YGDH.
Specifically, pXC4 was digested with a restriction
enzyme *Xba*I to obtain a fragment containing a
15 replication origin derived from pHM1519, and it was
mixed with pHSG299YGDH fully digested with *Xba*I and
ligated to it. Plasmids were prepared in the same
manner as above and a plasmid having a restriction map
equivalent to that shown in Fig. 21 was designated as
20 pYGDH. pXC4 was constructed in the same manner as that
for pXK4 mentioned in Example 6 except that pHSG399
(Cm^r) was used instead of pHSG299.

<2> Transfer of plasmid carrying *gdh* gene into AJ12310
25 The plasmid produced above was introduced into the
Corynebacterium thermoaminogenes AJ12310 strain to
prepare a *gdh* gene-amplified strain. The transformation

was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 µg/ml kanamycin at 31°C to obtain AJ12310/pYGDH.

5

<3> L-glutamic acid production by *gdh*-amplified strain

The AJ12310 strain and the *gdh* gene-amplified strain obtained above, AJ12310/pYGDH strain, both of which were grown on CM-2B agar medium, were each 10 inoculated to a 500-ml volume flask containing 20 ml of a medium for seed culture flask shown in Table 18, and cultured at 37°C with shaking until glucose was completely consumed. 2 ml of this culture broth was inoculated into 500 ml-volume flask containing 20 ml of 15 a medium for main culture flask shown in Table 19, and cultured as main culture at 37°C and 44°C. The main culture was continued until glucose was completely consumed. After completion of the culture, OD₆₂₀ of the medium and accumulated amount of L-glutamic acid were 20 measured to examine the effect of the gene amplification on the cell formation and production of glutamic acid. The measurement of OD was performed by using a spectrophotometer HITACHI U-2000 (Hitachi), and L- 25 glutamic acid concentration was measured by using a glutamic acid analyzer AS-210 (Asahi Chemical Industry).

Table 18 Composition of medium
for seed culture

Medium composition	Concentration
Glucose	30 g/l
Ammonium sulfate	15 g/l
KH ₂ PO ₄	1 g/l
MgSO ₄ · 7H ₂ O	0.4 g/l
FeSO ₄ · 7H ₂ O	0.01 g/l
MnSO ₄ · 7H ₂ O	0.01 g/l
Soybean protein hydrolysate	0.48 g/l
Thiamin hydrochloride	200 µg/l
Biotin	10 µg/l
AZ20R	0.02 ml/l
CaCO ₃ (separately sterilized)	1 g/L
pH 8.0 (adjusted with KOH)	

Table 19 Composition of medium
for main culture

5

Medium composition	Concentration
Glucose	60 g/l
Ammonium sulfate	30 g/l
KH ₂ PO ₄	1 g/l
MgSO ₄ · 7H ₂ O	0.4 g/l
FeSO ₄ · 7H ₂ O	0.01 g/l
MnSO ₄ · 7H ₂ O	0.01 g/l
Soybean protein hydrolysate	0.48 g/l
Thiamin hydrochloride	200 µg/l
AZ20R	0.02 ml/l
CaCO ₃ (separately sterilized)	1 g/L
pH 8.0 (adjusted with KOH)	

The results of the culture are shown in Table 20 and Table 21. At 37°C, the *gdh*-amplified strain showed higher saccharide consuming rate, better growth and

higher attained OD compared with the parent strain, the AJ12310 strain. Moreover, both of the L-glutamic acid accumulation and the yield were markedly improved, i.e., 5-7%, at 37°C. Also at 44°C, the yield was improved, and the attained OD increased. On the other hand, it was confirmed that accumulation of α-ketoglutaric acid was decreased in the *gdh*-amplified strain. These results demonstrate that the amplification of *gdh* is effective for improvement in L-glutamic acid yield and reduction of byproduct.

Table 20 Culture result of *gdh*-amplified strain (37°C)

	OD ₆₂₀ (5lx)	L-Glu accumulation (g/dl)	L-Glu yield (%)	α-KG (mg/dl)
AJ12310	0.58	1.74	30.7	53.9
AJ12310/PYGDH	0.65	2.23	39.3	4.1

Table 21 Culture result of *gdh*-amplified strain (44°C)

	OD ₆₂₀ (5lx)	L-Glu accumulation (g/dl)	L-Glu yield (%)
AJ12310	0.63	1.70	26.7
AJ12310/pYGDH	0.71	1.79	27.8

15

Example 9: L-glutamic acid production by *gltA* gene-amplified strain

<1> Construction of plasmid carrying *gltA* gene derived from *Corynebacterium thermoaminogenes*

20 Based on the *gltA* gene sequence of the AJ12310 strain shown in SEQ ID NO: 89, the primers shown in SEQ

ID NO: 107 and SEQ ID NO: 108 were synthesized.

Separately, chromosomal DNA of the AJ12310 strain was prepared by using a Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.).

5 Sterilized water was added to 0.5 µg of this chromosomal DNA, 10 pmol each of the aforementioned oligonucleotides, 8 µl of dNTP mixture (2.5 mM each), 10 µl of 10 x Pyrobest-Taq Buffer (Takara Shuzo) and 2 U of Pyrobest Taq (Takara Shuzo) to prepare a PCR reaction mixture in

10 a total volume of 100 µl. PCR was performed with a cycle of denaturation at 94°C for 30 seconds, association at 45°C for 30 seconds and extension reaction at 72°C for 3 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a

15 thermal cycler TP240 (Takara Shuzo) to amplify a DNA fragment of about 2 kb containing the *gltA* gene and its promoter. The obtained amplified fragment was digested with *Kpn*I (Takara Shuzo), mixed with pHSG299 (Takara Shuzo) fully digested with *Kpn*I and ligated to it. A

20 DNA Ligation Kit Ver.2 produced by Takara Shuzo was used for the ligation reaction. After the ligation, competent cells of *Escherichia coli* JM109 (produced by Takara Shuzo) were transformed with the ligation product, plated on L medium (10 g/l of Bacto-tryptone, 5 g/l of Bacto-yeast extract, 5 g/l of NaCl, 15 g/l of agar, pH 7.2) containing 10 µg/ml of IPTG (isopropyl-β-D-thiogalactopyranoside), 40 µg/ml of X-Gal (5-bromo-4-

chloro-3-indolyl- β -D-galactoside) and 40 μ g/ml of chloramphenicol, and cultured overnight. The emerged white colonies were picked up and subjected to single colony separation to obtain transformants.

5 Plasmids were prepared from the transformants by the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and their restriction maps were prepared. A plasmid having a restriction map
10 equivalent to that shown in Fig. 22 was designated as pHSG299YCS.

A replication origin that is replicable in coryneform bacteria was introduced into this pHSG299YCS. Specifically, pXC4 was digested with a restriction
15 enzyme XbaI to obtain a fragment containing a replication origin derived from pHM1519, and it was mixed with pHSG299YCS fully digested with XbaI and ligated to it. Plasmids were prepared in the same manner as above and a plasmid having a restriction map
20 equivalent to that shown in Fig. 22 was designated as pYCS.

<2> Transfer of plasmid carrying *gltA* gene into AJ12310 strain

25 The plasmid produced above was introduced into the *Corynebacterium thermoaminogenes* AJ12310 strain to prepare a *gltA* gene-amplified strain. The

transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 µg/ml kanamycin to obtain AJ12310/pYCS.

5

<3> L-glutamic acid production by *gltA*-amplified strain

The AJ12310 strain and the *gltA* gene-amplified strain obtained above, AJ12310/pYCS strain, both of which were grown on CM-2B agar medium, were cultured in 10 the same manner as in Example 8. The results of the culture are shown in Table 22 and Table 23. Both at the culture temperatures, 37°C and 44°C, the CS-enhanced strain showed improved glutamic acid accumulation compared with the parent strain. Further, the *gltA*-amplified strain showed decreased L-aspartic acid and L-lysine, which are synthesized from oxaloacetic acid. 15

These results demonstrate that the amplification of *gltA* is effective for improvement of L-glutamic acid yield and reduction of byproduct.

20

Table 22 Culture result of *gltA*-amplified strain (37°C)

	L-Glu accumulation (g/dl)	yield (%)	L-Asp accumulation (mg/dl)	L-Lys accumulation (mg/dl)
AJ12310	1.79	31.9	11.8	11.0
AJ12310/pYCS	2.04	36.5	8.1	7.3

Table 23 Culture result of *gltA*-amplified strain (44 °C)

	OD	L-Glu accumulation (g/dl)	Yield (%)	L-Asp accumulation (mg/dl)	L-Lys Accumulation (mg/dl)
AJ12310	0.58	1.38	21.8	23.3	29.2
AJ12310/pYCS	0.65	1.84	28.8	14.1	17.2

[Explanation of Sequence Listing]

SEQ ID NO: 1: *aceA*, nucleotide sequence
 SEQ ID NO: 2: *aceA*, amino acid sequence
 SEQ ID NO: 3: *accBC*, nucleotide sequence
 SEQ ID NO: 4: *accBC*, amino acid sequence
 SEQ ID NO: 5: *dtsR1*, nucleotide sequence
 SEQ ID NO: 6: *dtsR1*, amino acid sequence
 SEQ ID NO: 7: *dtsR2*, nucleotide sequence
 SEQ ID NO: 8: *dtsR2*, amino acid sequence
 SEQ ID NO: 9: *pfk*, nucleotide sequence
 SEQ ID NO: 10: *pfk*, amino acid sequence
 SEQ ID NO: 11: *scrB* (AJ12340), nucleotide sequence
 SEQ ID NO: 12: *scrB* (AJ12340), amino acid sequence
 SEQ ID NO: 13: *scrB* (AJ12309), nucleotide sequence
 SEQ ID NO: 14: *scrB* (AJ12309), amino acid sequence
 SEQ ID NO: 15: *scrB* (AJ12310), nucleotide sequence
 SEQ ID NO: 16: *gluABCD*, nucleotide sequence
 SEQ ID NO: 17: *gluABCD*, amino acid sequence
 SEQ ID NO: 18: *gluABCD*, amino acid sequence
 SEQ ID NO: 19: *gluABCD*, amino acid sequence
 SEQ ID NO: 20: *gluABCD*, amino acid sequence
 SEQ ID NO: 21: *pdhA*, nucleotide sequence

SEQ ID NO: 22: *pdhA*, amino acid sequence
SEQ ID NO: 23: *pc*, nucleotide sequence
SEQ ID NO: 24: *pc*, amino acid sequence
SEQ ID NO: 25: *ppc*, nucleotide sequence
SEQ ID NO: 26: *ppc*, amino acid sequence
SEQ ID NO: 27: *acn*, nucleotide sequence
SEQ ID NO: 28: *acn*, amino acid sequence
SEQ ID NO: 29: *icd*, nucleotide sequence
SEQ ID NO: 30: *icd*, amino acid sequence
SEQ ID NO: 31: *lpd*, nucleotide sequence
SEQ ID NO: 32: *lpd*, amino acid sequence
SEQ ID NO: 33: *odhA*, nucleotide sequence
SEQ ID NO: 34: *odhA*, amino acid sequence
SEQ ID NO: 79: *gdh* (AJ12310), nucleotide sequence
SEQ ID NO: 80: *gdh* (AJ12310), amino acid sequence
SEQ ID NO: 81: *gdh* (2256), nucleotide sequence
SEQ ID NO: 82: *gdh* (2256), amino acid sequence
SEQ ID NO: 89: *gltA* (AJ12310), nucleotide sequence
SEQ ID NO: 90: *gltA* (AJ12310), amino acid sequence
SEQ ID NO: 91: *gltA* (2256), nucleotide sequence
SEQ ID NO: 92: *gltA* (2256), amino acid sequence
SEQ ID NO: 93: *scrB* (AJ12309), nucleotide sequence
SEQ ID NO: 94: *scrB* (AJ12309), amino acid sequence

Industrial Applicability

According to the present invention, genes coding

for enzymes of amino acid biosynthetic pathway derived from *Corynebacterium thermoaminogenes*, or genes coding for proteins involved in the amino acid uptake into cells.

The genes of the present invention can be utilized for the production of the aforementioned enzymes or proteins, or the breeding of amino acid producing bacteria.

What is claimed is:

1. A protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate lyase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 5 minutes.

2. A protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which is involved in acyl Co-A carboxylase activity and is derived from *Corynebacterium thermoaminogenes*.

3. A protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity and is derived from *Corynebacterium thermoaminogenes*.

4. A protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8

including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity and is derived from *Corynebacterium thermoaminogenes*.

5. A protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows phosphofructokinase activity at 60°C in an equivalent or higher degree compared with the activity at 30°C.

6. A protein having the amino acid sequence of SEQ ID NO: 94 or the amino acid sequence of SEQ ID NO: 94 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has activity for imparting sucrose assimilating ability to *Corynebacterium thermoaminogenes*.

7. A protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has a function involved in glutamic acid uptake and is derived from *Corynebacterium thermoaminogenes*.

8. A protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate dehydrogenase activity and is derived from *Corynebacterium thermoaminogenes*.

9. A protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate carboxylase activity and is derived from *Corynebacterium thermoaminogenes*.

10. A protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has phosphoenolpyruvate carboxylase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 5 minutes.

11. A protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues,

which has aconitase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 3 minutes.

12. A protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate dehydrogenase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 10 minutes.

13. A protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has dihydrolipoamide dehydrogenase activity and is derived from *Corynebacterium thermoaminogenes*.

14. A protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has 2-oxoglutarate dehydrogenase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 10 minutes.

15. A protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.

16. A protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.

17. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate lyase activity.

18. The DNA according to Claim 17, which is a DNA defined in the following (a1) or (b1):

(a1) a DNA which comprises the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing,

(b1) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having isocitrate lyase activity.

19. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and involved in acyl Co-A carboxylase activity.

20. The DNA according to Claim 19, which is a DNA defined in the following (a2) or (b2):

(a2) a DNA which comprises the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing,

(b2) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein involved in acyl Co-A carboxylase activity.

21. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or

several amino acids residues, and having DtsR activity.

22. The DNA according to Claim 21, which is a DNA defined in the following (a3) or (b3):

(a3) a DNA which comprises the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing,

(b3) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.

23. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.

24. The DNA according to Claim 23, which is a DNA defined in the following (a4) or (b4):

(a4) a DNA which comprises the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing,

(b4) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.

25. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphofructokinase activity.

26. The DNA according to Claim 25, which is a DNA defined in the following (a5) or (b5):

(a5) a DNA which comprises the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing,

(b5) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphofructokinase activity.

27. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 93 or the amino acid sequence of SEQ ID NO: 93 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having invertase activity.

28. The DNA according to Claim 27, which is a DNA defined in the following (a6) or (b6):

(a6) a DNA which comprises the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing,

(b6) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having invertase activity.

29. A DNA which codes for a protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having a function involved in glutamic acid uptake.

30. The DNA according to Claim 29, which is a DNA defined in the following (a7) or (b7):

(a7) a DNA which comprises the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing,

(b7) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having a function involved in glutamic acid uptake.

31. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid

sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate dehydrogenase activity.

32. The DNA according to Claim 31, which is a DNA defined in the following (a8) or (b8):

(a8) a DNA which comprises the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing,

(b8) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate dehydrogenase activity.

33. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate carboxylase activity.

34. A DNA according to Claim 33, which is a DNA defined in the following (a9) or (b9):

(a9) a DNA which comprises the nucleotide sequence of SEQ ID NO: 23 in Sequence Listing,

(b9) a DNA which is hybridizable with the

nucleotide sequence of SEQ ID NO: 23 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate carboxylase activity.

35. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphoenolpyruvate carboxylase activity.

36. The DNA according to Claim 35, which is a DNA defined in the following (a10) or (b10):

(a10) a DNA which comprises the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing,
(b10) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphoenolpyruvate carboxylase activity.

37. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having aconitase

activity.

38. The DNA according to Claim 37, which is a DNA defined in the following (a11) or (b11):

- (a11) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b11) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having aconitase activity.

39. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate dehydrogenase activity.

40. The DNA according to Claim 39, which is a DNA defined in the following (a12) or (b12):

- (a12) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b12) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein

having isocitrate dehydrogenase activity.

41. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having dihydrolipoamide dehydrogenase activity.

42. The DNA according to Claim 41, which is a DNA defined in the following (a13) or (b13):

(a13) a DNA which comprises the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing,
(b13) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having dihydrolipoamide dehydrogenase activity.

43. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having 2-oxoglutarate dehydrogenase activity.

44. The DNA according to Claim 43, which is a

DNA defined in the following (a14) or (b14):

- (a14) a DNA which comprises the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing,
- (b14) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having 2-oxoglutarate dehydrogenase activity.

45. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.

46. The DNA according to Claim 45, which is a DNA defined in the following (a15) or (b15):

- (a15) a DNA which comprises the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing,
- (b15) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing glutamate dehydrogenase activity at 42°C in an

equivalent or higher degree compared with the activity at 37° C.

47. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing citrate synthase activity at 37° C in an equivalent or higher degree compared with the activity at 23° C.

48. The DNA according to Claims 47, which is a DNA defined in the following (a16) or (b16):

(a16) a DNA which comprises the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing,

(b16) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing citrate synthase activity at 37° C in an equivalent or higher degree compared with the activity at 23° C.

49. A method for producing L-amino acid, which comprises culturing a microorganism introduced with a DNA according to any one of Claims 17 to 48 in a medium to produce and accumulate L-amino acid in the medium,

110

and collecting the L-amino acid from the medium.

ABSTRACT

A plurality of primer sets are designed based on a region where conservation at the amino acid level is observed among various microorganisms for known gene sequences corresponding to a gene coding for an enzyme of the L-amino acid biosynthetic pathway derived from *Corynebacterium thermoaminogenes*, preferably an enzyme that functions at a higher temperature compared with that of *Corynebacterium glutamicum*. PCR is performed by using the primers and chromosomal DNA of *Corynebacterium thermoaminogenes* as a template. The primers with which an amplification fragment has been obtained are used as primers for screening to select a clone containing a target DNA fragment from a plasmid library of chromosomal DNA of *Corynebacterium thermoaminogenes*.

100089057 106089057

OBLON ET AL (703) 413-3000
DOCKET #221919US SHEET 1 OF 15

Fig. 1

Fig. 2

OBLON ET AL (703) 413-3000
DOCKET # 22519 US SHEET 2 OF 15

Fig. 3

Fig. 4

OBLON ET AL (703) 413-3000
DOCKET #221519 US SHEET 3 OF 15

Fig. 5

Fig. 6

3.0039057107089057

OBLON ET AL (703) 413-3000
DOCKET #221519 US SHEET 4 OF 15

Fig. 7

Fig. 8

OBLON ET AL (703) 413-3000
DOCKET # 221519 US SHEET 5 OF 15

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

10039057 10/08/057

OBLON ET AL (703) 413-3000

DOCKET # 22519 US SHEET 8 OF 15

Fig. 15

OBLON ET AL (703) 413-3000
DOCKET #221519US SHEET 9 OF 15

Fig. 16

OBLON ET AL (703) 413-3000
DOCKET # 221519US SHEET 10 OF 15

Fig. 17

3.0089057 10/086057

OBLON ET AL (703) 413-3000
DOCKET #221519US SHEET 11 OF 15

(a)

(b)

Fig. 18

20039057 107089057

OBLON ET AL (703) 413-3000
DOCKET # 221519US SHEET 12 OF 15

Fig. 19

3.0089057 10/089057

OBLON ET AL (703) 413-3000
DOCKET #22159US SHEET 13 OF 15

Fig. 20

Fig. 21

10/089057

OBLON ET AL (703) 413-3000
 DOCKET #221519 US SHEET 15 OF 15

Declaration, Power Of Attorney and Petition

Page 1 of 5

WE (I) the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

GENES FOR HEAT RESISTANT ENZYMES OF AMINO ACID BIOSYNTHETIC PATHWAY
DERIVED FROM THERMOPHILIC CORYNEFORM BACTERIA

the specification of which

- is attached hereto.

was filed on _____ as
Application Serial No. _____
and amended on _____

was filed as PCT international application
Number PCT/JP 00/06913
on October 4, 2000
and was amended under PCT Article 19
on _____ (if applicable).

We (I) hereby state that we (I) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Priority Claimed
11-282716	Japan	04/10/1999	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
11-311147	Japan	01/11/1999	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
2000-120687	Japan	21/04/2000	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No

We (I) hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below.

(Application Number)	(Filing Date)
(Application Number)	(Filing Date)

We (I) hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application Serial No.	Filing Date	Status (pending, patented, abandoned)

And we (I) hereby appoint: Norman F. Oblon, Registration Number 24,618; Marvin J. Spivak, Registration Number 24,913; C. Irvin McClelland, Registration Number 21,124; Gregory J. Maier, Registration Number 25,599; Arthur I. Neustadt, Registration Number 24,854; Richard D. Kelly, Registration Number 27,757; James D. Hamilton, Registration Number 28,421; Eckhard H. Kuesters, Registration Number 28,870; Robert T. Pous, Registration Number 29,099; Charles L. Gholz, Registration Number 26,395; Vincent J. Sunderdick, Registration Number 29,004; William E. Beaumont, Registration Number 30,996; Steven B. Kelber, Registration Number 30,073; Robert F. Gnuse, Registration Number 27,295; Jean-Paul Lavalleye, Registration Number 31,451; Timothy R. Schwartz, Registration Number 32,171; Stephen G. Baxter, Registration Number 32,884; Martin M. Zoltick, Registration Number 35,745; Robert W. Hahl, Registration Number 33,893; Richard L. Treanor, Registration Number 36,379; Steven P. Weihrouch, Registration Number 32,829; John T. Gookasian, Registration Number 26,142; Marc R. Labgold, Registration Number 34,651; William J. Healey, Registration Number 36,160; and Richard L. Chinn, Registration Number 34,305; our (my) attorneys, with full powers of substitution and revocation, to prosecute this application and to transact all business in the Patent Office connected therewith; and we (I) hereby request that all correspondence regarding this application be sent to the firm of OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C., whose Post Office Address is: Fourth Floor, 1755 Jefferson Davis Highway, Arlington, Virginia 22202.

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Seiko HIRANO
Seiko HIRANO

NAME OF FIRST SOLE INVENTOR

Residence: Kawasaki-shi, Kanagawa, Japan

Signature of Inventor

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho
Kawasaki-ku, Kawasaki-shi, Kanagawa
210-8681 Japan

March 19, 2002
Date

JPK

Page 4 of 5
DeclarationEiichiro KIMURA

NAME OF SECOND JOINT INVENTOR

Eiichiro Kimura

Signature of Inventor

March 19, 2002

Date

Tsuyoshi OSUMI

NAME OF THIRD JOINT INVENTOR

Tsuyoshi Osumi

Signature of Inventor

March 19, 2002

Date

Kazuhiko MATSUI

NAME OF FOURTH JOINT INVENTOR

Kazuhiko Matsui

Signature of Inventor

March 19, 2002

Date

Yoshio KAWAHARA

NAME OF FIFTH JOINT INVENTOR

Yoshio Kawahara

Signature of Inventor

March 19, 2002

Date

Residence: Kawasaki-shi, Kanagawa, Japan

JPX

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPX

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPX

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPX

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan

Gen Nonaka
Gen NONAKA

NAME OF SIXTH JOINT INVENTOR

Gen Nonaka

Signature of Inventor

March 19, 2002

Date

Yumi Matsuzaki
Yumi MATSUZAKI

NAME OF SEVENTH JOINT INVENTOR

Yumi Matsuzaki

Signature of Inventor

March 19, 2002

Date

Naoki Akiyoshi
Naoki AKIYOSHI

NAME OF EIGHTH JOINT INVENTOR

Naoki Akiyoshi

Signature of Inventor

March 19, 2002

Date

Kanae Nakamura
Kanae NAKAMURA

NAME OF NINTH JOINT INVENTOR

Kanae Nakamura

Signature of Inventor

March 12, 2002

Date

Residence: Kawasaki-shi, Kanagawa, Japan

JPK

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho,
Kawasaki-ku, Kawasaki-shi, Kanagawa

210-8681 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPK

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho,
Kawasaki-ku, Kawasaki-shi, Kanagawa
210-8681 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPK

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho,
Kawasaki-ku, Kawasaki-shi, Kanagawa
210-8681 Japan

Residence: Ho Chiminh City, Vietnam

VNK

Citizen of: Japan

Post Office Address:

902 Stanford Court 8A, Nguyen
Binh Khiem Street District 1,
HO CHIMINH City, Vietnam,

Page 5 of 5
DeclarationOsamu KURAHASHI

NAME OF TENTH JOINT INVENTOR

Residence: Kawasaki-shi, Kanagawa, Japan

Osamu KURAHASHI

Signature of Inventor

JPX

March 19, 2002

Date

Tsuyoshi NAKAMATSU

NAME OF ELEVENTH JOINT INVENTOR

Tsuyoshi Nakamatsu

Signature of Inventor

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho,
Kawasaki-ku, Kawasaki-shi, Kanagawa
210-8681 Japan

Residence: Tokyo, Japan

JPX

March 18, 2002

Date

Shinichi SUGIMOTO

NAME OF TWELFTH JOINT INVENTOR

Shinichi Sugimoto

Signature of Inventor

Citizen of: Japan

Post Office Address:

c/o Tokyo Denki University, Department
of Materials Science and Engineering,
2-2, Nishiki-cho, Kanda, Chiyoda-ku,
Tokyo 101-0054 Japan

Residence: Kawasaki-shi, Kanagawa, Japan

JPX

March 19, 2002

Date

NAME OF THIRTEENTH JOINT INVENTOR

Signature of Inventor

Citizen of: Japan

Post Office Address:

c/o Ajinomoto Co., Inc., Fermentation &
Biotechnology Laboratories, 1-1, Suzuki-cho,
Kawasaki-ku, Kawasaki-shi, Kanagawa
210-8681 Japan

Date

JC13 Rec'd PCT/PTO 03 APR 2002

1 / 123

SEQUENCE LISTING

<110> Ajinomoto Co., Inc.

<120> Genes for Heat resistant Enzymes of Amino Acid Biosynthetic Pathway Derived from Thermophilic Coryneform Bacteria

<130> OP1072B691SM

140

〈141〉 2000-10-04

<150> JP 11-282716

<151> 1999-10-04

<150> JP 11-311147

〈151〉 1999-11-01

<150> JP 2000-120687

<151> 2000-04-21

〈160〉 108

〈170〉 PatentIn Ver. 2.0

〈210〉 1

〈211〉 1980

<212> DNA

〈213〉 *Corynebacterium thermoaminogenes*

<220>

〈221〉 CDS

$\langle 222 \rangle$ (577) .. (1869)

〈400〉 1

tgcattccac cgacggtcac gcgttcggtc ttgtcagcgg cgtcaatctg ctgtatggttc 60
atgcaaagct ccttcgaagg aagagatcgg gtgtgtgcgg gcacctatcg gggaaagccc 120
tcgtcgcc ccagggggag ctggcgatgt gaccaggta agtgataacc atcaccttgc 180
caatgggtt gcgaacttta ccgtgacgct acccccgtt tttttgtatc acaccagctc 240
gaaggctgtc gcctttccga agatgcacgt gaagtggcaa atcccttgcctt cccgagggtt 300
tccccatgtaca aacgtacttag tgatgaggat cacggggAAC attgtggaga ttgcactttg 360

2/123

caatattgc	aaaaggggtg	actaccccg	cgcaaaactt	aaaaacccaa	atccgttgac	420
ggaccatgc	ccgatgaagc	aatgtgtgaa	gcacgccacc	ggaacacagg	ttgtggatca	480
ctcaccatga	tgtggggat	tgcatacaca	cagtgtgcag	ggcggcacct	ctaccgaatg	540
cgccttacag	cagcaccaag	aagaagtgac	tcttag	atg tca aac	gtt gga acg	594
				Met Ser Asn Val	Gly Thr	
				1	5	
cca cgt acc	gca cag	gaa atc	cag cag	gat tgg	gac acc aac cca	642
Pro Arg Thr	Ala Gln	Glu Ile	Gln Gln	Asp Trp	Asp Thr Asn Pro	
10				15	20	
tgg aac gga	atc acc	cgc gac	tac acc	gct gag	cag gta gct gag	690
Trp Asn Gly	Ile Thr	Arg Asp	Tyr Thr	Ala Glu	Gln Val Ala Glu Leu	
25				30	35	
cag ggc agc	gtc gtc	gag gag	cac acc	ctc gca	aag cgc ggc gcc gag	738
Gln Gly Ser	Val Val	Glu Glu	His Thr	Leu Ala	Lys Arg Gly Ala Glu	
40				45	50	
atc ctg tgg	gat gca	gtt tcc	gca gag	ggc gac	gac tac atc aac gca	786
Ile Leu Trp	Asp Ala	Val Ser	Ala Glu	Gly Asp	Asp Tyr Ile Asn Ala	
55				60	65	70
ctg ggc gcc	ctt acc	ggt aac	cag gct	gtc cag	cag gtc cgt gcc ggc	834
Leu Gly Ala	Leu Thr	Gly Asn	Gln Ala	Val Gln	Gln Val Arg Ala Gly	
75				80	85	
ctg aag gct	gtc tac	ctc tcc	ggc tgg	cag gtc	gca ggt gac gcc aac	882
Leu Lys Ala	Val Tyr	Leu Ser	Gly Trp	Gln Val	Ala Gly Asp Ala Asn	
90				95	100	
ctc gcc ggt	cac acc	tac ccc	gac cag	tcc ctg	tac ccg gcg aac tcc	930
Leu Ala Gly	His Thr	Tyr Pro	Asp Gln	Ser Leu	Tyr Pro Ala Asn Ser	
105				110	115	
gtc ccg aac	gtt gtc	cgt cgc	atc aac	aac gca	ctg ctg cgc gcc gat	978
Val Pro Asn	Val Val	Arg Arg	Ile Asn	Asn Ala	Leu Leu Arg Ala Asp	
120				125	130	
gag atc gca	cgc gtc	gag ggt	gac acc	tcc gtc	gac aac tgg ctc gtc	1026
Glu Ile Ala	Arg Val	Glu Gly	Asp Thr	Ser Val	Asp Asn Trp Leu Val	
135				140	145	150
ccg atc gtc	gcc gac	ggc gag	gcc ggc	ttc ggt	ggc gcc ctc aac gtc	1074
Pro Ile Val	Ala Asp	Gly Glu	Ala Gly	Phe Gly	Gly Ala Leu Asn Val	
155				160	165	
tac gag ctc	cag aag	ggc atg	atc acc	gct ggt	gcc gca ggc acc cac	1122
Tyr Glu Leu	Gln Lys	Gly Met	Ile Thr	Ala Gly	Ala Ala Gly Thr His	
170				175	180	
tgg gag gat	cag ctc	gct tcc	gag aag	aag tgt	ggc cac ctc ggt ggc	1170
Trp Glu Asp	Gln Leu	Ala Ser	Glu Lys	Lys Cys	Gly His Leu Gly Gly	
185				190	195	
aag gtc ctc	atc ccg	acc cag	cag cac	atc cgc	acc ctg aac tcc gcc	1218

4/123

425

430

gccgtatggc ctgacggcac cgccccccc tttgcactcc agtactcctt tgtcacatc 1949
 ggcacatcc acaccgcgcg ccccgccacc t 1980

<210> 2

<211> 431

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 2

Met	Ser	Asn	Val	Gly	Thr	Pro	Arg	Thr	Ala	Gln	Glu	Ile	Gln	Gln	Asp
1									10						15
Trp	Asp	Thr	Asn	Pro	Arg	Trp	Asn	Gly	Ile	Thr	Arg	Asp	Tyr	Thr	Ala
									25						30
Glu	Gln	Val	Ala	Glu	Leu	Gln	Gly	Ser	Val	Val	Glu	Glu	His	Thr	Leu
								40							45
Ala	Lys	Arg	Gly	Ala	Glu	Ile	Leu	Trp	Asp	Ala	Val	Ser	Ala	Glu	Gly
								55							60
Asp	Asp	Tyr	Ile	Asn	Ala	Leu	Gly	Ala	Leu	Thr	Gly	Asn	Gln	Ala	Val
								70			75				80
Gln	Gln	Val	Arg	Ala	Gly	Leu	Lys	Ala	Val	Tyr	Leu	Ser	Gly	Trp	Gln
								85			90				95
Val	Ala	Gly	Asp	Ala	Asn	Leu	Ala	Gly	His	Thr	Tyr	Pro	Asp	Gln	Ser
								100			105				110
Leu	Tyr	Pro	Ala	Asn	Ser	Val	Pro	Asn	Val	Val	Arg	Arg	Ile	Asn	Asn
								115			120				125
Ala	Leu	Leu	Arg	Ala	Asp	Glu	Ile	Ala	Arg	Val	Glu	Gly	Asp	Thr	Ser
								130			135				140
Val	Asp	Asn	Trp	Leu	Val	Pro	Ile	Val	Ala	Asp	Gly	Glu	Ala	Gly	Phe
								145			150				160
Gly	Gly	Ala	Leu	Asn	Val	Tyr	Glu	Leu	Gln	Lys	Gly	Met	Ile	Thr	Ala
								165			170				175
Gly	Ala	Ala	Gly	Thr	His	Trp	Glu	Asp	Gln	Leu	Ala	Ser	Glu	Lys	Lys
								180			185				190
Cys	Gly	His	Leu	Gly	Gly	Lys	Val	Leu	Ile	Pro	Thr	Gln	Gln	His	Ile
								195			200				205
Arg	Thr	Leu	Asn	Ser	Ala	Arg	Leu	Ala	Ala	Asp	Val	Ala	Asn	Thr	Pro
								210			215				220
Thr	Val	Val	Ile	Ala	Arg	Thr	Asp	Ala	Glu	Ala	Ala	Thr	Leu	Ile	Thr
								225			230				240
Ser	Asp	Val	Asp	Glu	Arg	Asp	Arg	Pro	Phe	Ile	Thr	Gly	Glu	Arg	Thr
								245			250				255
Ala	Glu	Gly	Tyr	Tyr	His	Val	Lys	Pro	Gly	Leu	Glu	Pro	Cys	Ile	Ala

5 / 123

	260		265		270										
Arg	Ala	Lys	Ser	Tyr	Ala	Pro	Tyr	Ala	Asp	Met	Ile	Trp	Met	Glu	Thr
	275						280					285			
Gly	Thr	Pro	Asp	Leu	Glu	Leu	Ala	Lys	Lys	Phe	Ala	Glu	Gly	Val	Arg
	290					295					300				
Ser	Glu	Phe	Pro	Asp	Gln	Leu	Leu	Ser	Tyr	Asn	Cys	Ser	Pro	Ser	Phe
	305					310				315					320
Asn	Trp	Ser	Ala	His	Leu	Glu	Ala	Asp	Glu	Ile	Ala	Lys	Phe	Gln	Lys
						325			330				335		
Glu	Leu	Gly	Ala	Met	Gly	Phe	Lys	Phe	Gln	Phe	Ile	Thr	Leu	Ala	Gly
		340					345					350			
Phe	His	Ser	Leu	Asn	Tyr	Gly	Met	Phe	Asp	Leu	Ala	Tyr	Gly	Tyr	Ala
		355					360				365				
Arg	Glu	Gly	Met	Pro	Ala	Phe	Val	Asp	Leu	Gln	Asn	Arg	Glu	Phe	Lys
			370				375			380					
Ala	Ala	Glu	Glu	Arg	Gly	Phe	Thr	Ala	Val	Lys	His	Gln	Arg	Glu	Val
		385				390				395					400
Gly	Ala	Gly	Tyr	Phe	Asp	Thr	Ile	Ala	Thr	Thr	Val	Asp	Pro	Asn	Ser
						405			410				415		
Ser	Thr	Thr	Ala	Leu	Lys	Gly	Ser	Thr	Glu	Glu	Cys	Gln	Phe	His	
					420				425				430		

<210> 3
<211> 2381
<212> DNA
<213> Cory

<220>
<221> CDS
<222> (577) . . (2349)

6/123

	1	5	
aag atc acc aag gta ctt gtc gcc aac cgt ggt gaa atc gca atc cgt			642
Lys Ile Thr Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg			
10	15	20	
gtt ttc cgc gca gca cgg gat gaa ggc atc gcc tct gtc gcc gtc tac			690
Val Phe Arg Ala Ala Arg Asp Glu Gly Ile Ala Ser Val Ala Val Tyr			
25	30	35	
gct gag ccg gac gca gat gcc cct ttc gtc gag tat gcc gat gag gcc			738
Ala Glu Pro Asp Ala Asp Ala Pro Phe Val Glu Tyr Ala Asp Glu Ala			
40	45	50	
ttc gca ctc ggt ggc cag act tcc gca gag tcc tac ctc gtc att gac			786
Phe Ala Leu Gly Gly Gln Thr Ser Ala Glu Ser Tyr Leu Val Ile Asp			
55	60	65	70
aag atc att gac gca gca cgc aag tcc ggt gca gac gct gtc cac ccc			834
Lys Ile Ile Asp Ala Ala Arg Lys Ser Gly Ala Asp Ala Val His Pro			
75	80	85	
ggc tac ggc ttc ctc gcc gag aac gcc gat ttc gct gaa gct gtc atc			882
Gly Tyr Gly Phe Leu Ala Glu Asn Ala Asp Phe Ala Glu Ala Val Ile			
90	95	100	
aac gag ggc ctg atc tgg atc gga cca tcc cct gag tcc atc cgt tcc			930
Asn Glu Gly Leu Ile Trp Ile Gly Pro Ser Pro Glu Ser Ile Arg Ser			
105	110	115	
ctc ggt gac aag gtc acc gca cgc cac atc gcc aac aac gcc aac gca			978
Leu Gly Asp Lys Val Thr Ala Arg His Ile Ala Asn Asn Ala Asn Ala			
120	125	130	
ccg atg gca ccg ggc acc aag gag cct gtc aag gac gcc gct gag gtt			1026
Pro Met Ala Pro Gly Thr Lys Glu Pro Val Lys Asp Ala Ala Glu Val			
135	140	145	150
gtc gcc ttc gcc gag gag ttc ggt ctc ccc atc gcc atc aag gct gcc			1074
Val Ala Phe Ala Glu Glu Phe Gly Leu Pro Ile Ala Ile Lys Ala Ala			
155	160	165	
ttc ggt ggc ggc gga cgt ggc atg aag gtc gcc tac gag atg gac gag			1122
Phe Gly Gly Gly Arg Gly Met Lys Val Ala Tyr Glu Met Asp Glu			
170	175	180	
gtc gcc gac ctc ttc gaa tcc gcc acc cgt gag gcc acc gcc gcc ttc			1170
Val Ala Asp Leu Phe Glu Ser Ala Thr Arg Glu Ala Thr Ala Ala Phe			
185	190	195	
ggt cgt ggt gag tgc ttc gtg gag cgc tac ctg gac aag gcc cgc cac			1218
Gly Arg Gly Glu Cys Phe Val Glu Arg Tyr Leu Asp Lys Ala Arg His			
200	205	210	
gtc gag gca cag gtc atc gcc gac aag cac ggc aac gtt gtg gtc gcc			1266
Val Glu Ala Gln Val Ile Ala Asp Lys His Gly Asn Val Val Val Ala			
215	220	225	230

SCANNED, #

7/123

ggt acc cgt gac tgc tcc ctg cag cgt cgt ttc cag aag ctc gtc gag 1314
Gly Thr Arg Asp Cys Ser Leu Gln Arg Arg Phe Gln Lys Leu Val Glu
235 240 245
gag gca ccg gca ccg ttc ctc acc gat gag cag cgt gac cgc atc cac 1362
Glu Ala Pro Ala Pro Phe Leu Thr Asp Glu Gln Arg Asp Arg Ile His
250 255 260
tcc tcc gcc aag gct atc tgc cgc gag gcc ggt tac tac ggt gcc ggc 1410
Ser Ser Ala Lys Ala Ile Cys Arg Glu Ala Gly Tyr Tyr Gly Ala Gly
265 270 275
acc gtg gag tac ctg gtc ggt tcc gac gga ctg atc tcc ttc ctg gag 1458
Thr Val Glu Tyr Leu Val Gly Ser Asp Gly Leu Ile Ser Phe Leu Glu
280 285 290
gtc aac acc cgc ctg cag gtg gag cac ccc gtc acc gag gag acc acc 1506
Val Asn Thr Arg Leu Gln Val Glu His Pro Val Thr Glu Glu Thr Thr
295 300 305 310
ggc atc gac ctg gtg cgc gag atg ttc cgc atc gcc gag ggc gcc gag 1554
Gly Ile Asp Leu Val Arg Glu Met Phe Arg Ile Ala Glu Gly Ala Glu
315 320 325
ctc tcc atc aag gag gac ccg acc cca cgc ggc cac gcc ttc gag ttc 1602
Leu Ser Ile Lys Glu Asp Pro Thr Pro Arg Gly His Ala Phe Glu Phe
330 335 340
cgc atc aac ggc gag gac gca ggc tcc aac ttc atg ccc gca cgc ggc 1650
Arg Ile Asn Gly Glu Asp Ala Gly Ser Asn Phe Met Pro Ala Pro Gly
345 350 355
aag atc acc cgc tac cgt gag ccc gcc ggc ccg ggt gtc cgc atg gac 1698
Lys Ile Thr Arg Tyr Arg Glu Pro Ala Gly Pro Gly Val Arg Met Asp
360 365 370
tcc ggc gtt gtc gag ggt tcc gag atc tcc ggc cag ttc gac tcc atg 1746
Ser Gly Val Val Glu Gly Ser Glu Ile Ser Gly Gln Phe Asp Ser Met
375 380 385 390
ctg gcc aag ctg atc gtc tgg ggc cag acc cgt gag cag cag gcc ctg gag 1794
Leu Ala Lys Leu Ile Val Trp Gly Gln Thr Arg Glu Gln Ala Leu Glu
395 400 405
cgt tcc cgt cgt gcg ctc ggc gag tac atc gtc gag ggc atg ccg acc 1842
Arg Ser Arg Arg Ala Leu Gly Glu Tyr Ile Val Glu Gly Met Pro Thr
410 415 420
gtc atc ccg itc cac tcc cac atc gtc tcc aac ccg gca ttc gtc ggt 1890
Val Ile Pro Phe His Ser His Ile Val Ser Asn Pro Ala Phe Val Gly
425 430 435
gac ggc gag ggc ttc gag gtc tac acc aag tgg atc gag gag gtc tgg 1938
Asp Gly Glu Gly Phe Glu Val Tyr Thr Lys Trp Ile Glu Glu Val Trp
440 445 450
gac aac ccg atc gag ccg ttc gtc gat gca gcc gac ctc gac gac gag 1986

8/123

Asp	Asn	Pro	Ile	Glu	Pro	Phe	Val	Asp	Ala	Ala	Asp	Leu	Asp	Asp	Glu
455				460				465				470			
gag	aag	acc	ccg	tgc	cag	aag	gtc	atc	gtc	gag	atc	gac	ggc	cgc	cgc
Glu	Lys	Thr	Pro	Ser	Gln	Lys	Val	Ile	Val	Glu	Ile	Asp	Gly	Arg	Arg
								475			480			485	
gtc	gag	gtg	gct	ctc	ccg	ggc	gac	ctc	gct	ctc	ggc	ggt	ggc	gca	ggt
Val	Glu	Val	Ala	Leu	Pro	Gly	Asp	Leu	Ala	Leu	Gly	Gly	Gly	Gly	Ala
								490			495			500	
gcc	gcc	aag	aag	ccg	aag	aag	cgt	cgc	gca	ggt	ggc	gcc	aag	gcc	
Ala	Ala	Lys	Lys	Pro	Lys	Lys	Arg	Arg	Ala	Gly	Gly	Ala	Lys	Ala	
								505			510			515	
ggt	gtc	tcc	ggt	gac	tcc	gtc	gca	gcc	ccg	atg	cag	ggc	acc	gtc	atc
Gly	Val	Ser	Gly	Asp	Ser	Val	Ala	Ala	Pro	Met	Gln	Gly	Thr	Val	Ile
								520			525			530	
aag	gtc	aac	gtt	gag	gac	ggc	gcc	gag	gtc	tcc	gag	ggt	gac	acc	gtc
Lys	Val	Asn	Val	Glu	Asp	Gly	Ala	Glu	Val	Ser	Glu	Gly	Asp	Thr	Val
								535			540			550	
gtg	gtt	ctc	gag	gcc	atg	aag	atg	gag	aac	ccg	gtc	aag	gcc	cac	aag
Val	Val	Leu	Glu	Ala	Met	Lys	Met	Glu	Asn	Pro	Val	Lys	Ala	His	Lys
								555			560			565	
tcc	ggt	acc	gtc	tcc	ggt	ctg	acc	atc	gcc	gcg	ggt	gag	ggc	gtg	acc
Ser	Gly	Thr	Val	Ser	Gly	Leu	Thr	Ile	Ala	Ala	Gly	Glu	Gly	Val	Thr
								570			575			580	
aag	ggt	cag	gtt	ctc	ctg	gag	atc	aag	taatcccttc	aggaaacaga					2369
Lys	Gly	Gln	Val	Leu	Leu	Glu	Ile	Lys							
								585			590				
cagccctgtt	ct														2381

<210> 4

<211> 591

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 4

Val	Ser	Val	Glu	Thr	Arg	Lys	Ile	Thr	Lys	Val	Leu	Val	Ala	Asn	Arg
1				5					10					15	
Gly	Glu	Ile	Ala	Ile	Arg	Val	Phe	Arg	Ala	Ala	Arg	Asp	Glu	Gly	Ile
									20				25		30
Ala	Ser	Val	Ala	Val	Tyr	Ala	Glu	Pro	Asp	Ala	Asp	Ala	Pro	Phe	Val
									35				40		45
Glu	Tyr	Ala	Asp	Glu	Ala	Phe	Ala	Leu	Gly	Gly	Gln	Thr	Ser	Ala	Glu
									50			55		60	
Ser	Tyr	Leu	Val	Ile	Asp	Lys	Ile	Ile	Asp	Ala	Ala	Arg	Lys	Ser	Gly

9/123

65	70	75	80
Ala	Asp	Ala	Val
His	Pro	Gly	Tyr
Phe	Leu	Ala	Glu
Asn	Ala	Asp	
	85	90	95
Phe	Ala	Glu	Ala
Ala	Val	Ile	Asn
Glu	Gly	Gly	Leu
Leu	Ile	Trp	Ile
	100	105	110
Pro	Glu	Ser	Ile
Glu	Arg	Ser	Leu
Ser	Asp	Lys	Gly
Leu	Lys	Val	Thr
	115	120	125
Ala	Asn	Ala	Asn
Asn	Ala	Pro	Met
Ala	Pro	Gly	Thr
	130	135	140
Lys	Asp	Ala	Ala
Glu	Glu	Val	Val
Ala	Phe	Ala	Glu
	145	150	155
Ile	Ala	Ile	Lys
Ala	Ala	Phe	Gly
Gly	Gly	Gly	Gly
	165	170	175
Ala	Tyr	Glu	Met
Glu	Asp	Glu	Val
Val	Ala	Asp	Leu
	180	185	190
Glu	Ala	Thr	Ala
Ala	Phe	Gly	Arg
Gly	Arg	Gly	Glu
	195	200	205
Leu	Asp	Lys	Ala
Ala	Arg	His	Val
Glu	Gln	Val	Val
	210	215	220
Gly	Asn	Val	Val
Val	Ala	Gly	Thr
Arg	Asp	Arg	Asp
	225	230	235
Phe	Gln	Lys	Leu
Gln	Leu	Val	Glu
	245	250	255
Gln	Arg	Asp	Arg
Arg	Ile	His	Ser
Ile	Ser	Ser	Ala
	260	265	270
Gly	Tyr	Tyr	Gly
Gly	Ala	Gly	Thr
	275	280	285
Leu	Ile	Ser	Phe
Phe	Leu	Glu	Val
	290	295	300
Val	Thr	Glu	Glu
Glu	Thr	Thr	Gly
	305	310	315
Ile	Ala	Glu	Gly
Gly	Ala	Glu	Leu
Leu	Ser	Ile	Ser
	325	330	335
Gly	His	Ala	Phe
His	Glu	Phe	Glu
Phe	Arg	Ile	Asn
	340	345	350
Phe	Met	Pro	Ala
Met	Pro	Gly	Lys
	355	360	365
Pro	Gly	Val	Arg
Gly	Val	Arg	Met
	370	375	380
Gly	Gln	Phe	Asp
Gln	Phe	Asp	Ser
	385	390	395
Arg	Glu	Gln	Ala
Glu	Ala	Leu	Glu
	405	410	415
Arg	Arg	Arg	Arg
Arg	Ala	Leu	Gly
Gly	Gly	Glu	Tyr
			Ile

10/123

Val	Glu	Gly	Met	Pro	Thr	Val	Ile	Pro	Phe	His	Ser	His	Ile	Val	Ser
420						425						430			
Asn	Pro	Ala	Phe	Val	Gly	Asp	Gly	Glu	Gly	Phe	Glu	Val	Tyr	Thr	Lys
435						440						445			
Trp	Ile	Glu	Glu	Val	Trp	Asp	Asn	Pro	Ile	Glu	Pro	Phe	Val	Asp	Ala
450						455						460			
Ala	Asp	Leu	Asp	Asp	Glu	Glu	Lys	Thr	Pro	Ser	Gln	Lys	Val	Ile	Val
465					470					475			480		
Glu	Ile	Asp	Gly	Arg	Arg	Val	Glu	Val	Ala	Leu	Pro	Gly	Asp	Leu	Ala
						485				490			495		
Leu	Gly	Gly	Gly	Ala	Gly	Ala	Ala	Lys	Lys	Lys	Pro	Lys	Lys	Arg	Arg
						500			505			510			
Ala	Gly	Gly	Ala	Lys	Ala	Gly	Val	Ser	Gly	Asp	Ser	Val	Ala	Ala	Pro
						515			520			525			
Met	Gln	Gly	Thr	Val	Ile	Lys	Val	Asn	Val	Glu	Asp	Gly	Ala	Glu	Val
						530			535			540			
Ser	Glu	Gly	Asp	Thr	Val	Val	Val	Leu	Glu	Ala	Met	Lys	Met	Glu	Asn
						545			550			555			560
Pro	Val	Lys	Ala	His	Lys	Ser	Gly	Thr	Val	Ser	Gly	Leu	Thr	Ile	Ala
						565			570			575			
Ala	Gly	Glu	Gly	Val	Thr	Lys	Gly	Gln	Val	Leu	Leu	Glu	Ile	Lys	
						580			585			590			

<210> 5

<211> 2128

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (339)..(1967)

<400> 5

gctgtcattc	cgaccacatt	cgcccccggga	tccgggctcc	accacccccc	ggaccatgc	60
cccatacctg	cggaaaccac	gggaaacacg	ggaaaaaccg	atctcatca	gaccggcggg	120
atccacctgt	ggaacagtc	gcggcgccggc	catggagggc	agcgacaggt	gacgtccgag	180
cacccggttc	cccacccgtgg	acacggcatt	gatccgacac	ggtggggata	gtttcatgt	240
aaaaaactat	cgctgtgcag	ggaggatccg	aatgtgacc	tatitcatgg	agaaatgatt	300
gtggacgata	cccccggtta	cggctaccat	tccaaaac	atg acc att	tcc tca cct	356
				Met Thr Ile Ser Ser Pro		
				1	5	

tig att gac gtc gct aac ctg cca gac atc aac acc acc	gcc ggc aag	404
Leu Ile Asp Val Ala Asn Leu Pro Asp Ile Asn Thr Thr	Ala Gly Lys	

11/123

10	15	20	
atc gcc gac ctg aag gcc cgc cg	gaa gcc cac ttc ccc atg ggt		452
Ile Ala Asp Leu Lys Ala Arg Arg	Ala Glu Ala His Phe Pro Met Gly		
25	30	35	
gaa aag gcc gta gag aag gtc cac	gac ggc aac cgc ctc acc gcg cgc		500
Glu Lys Ala Val Glu Lys Val His	Ala Ala Asn Arg Leu Thr Ala Arg		
40	45	50	
gaa cga ctt gac tac ctg ctc gat	gaa ggc tcc ttc atc gaa acc gat		548
Glu Arg Leu Asp Tyr Leu Leu Asp	Glu Gly Ser Phe Ile Glu Thr Asp		
55	60	65	70
cag ctc gca cgc cac cgc acc acc	gct ttc ggc ctc ggc aac aag cga		596
Gln Leu Ala Arg His Arg Thr Thr	Ala Phe Gly Leu Gly Asn Lys Arg		
75	80	85	
ccg gcc acc gac ggc atc gtc acc	ggc tgg ggc acc atc gac ggc cgc		644
Pro Ala Thr Asp Gly Ile Val Thr	Gly Trp Gly Thr Ile Asp Gly Arg		
90	95	100	
gag gtc tgc atc ttc tcc cag gac	ggc acc gtc ttc ggt ggc gca ctc		692
Glu Val Cys Ile Phe Ser Gln Asp	Gly Thr Val Phe Gly Gly Ala Leu		
105	110	115	
ggt gag gtc tac ggc gag aag atg	atc aag atc atg gag ctc gcc atc		740
Gly Glu Val Tyr Gly Glu Lys Met	Ile Lys Ile Met Glu Leu Ala Ile		
120	125	130	
gac acc ggc cgc cca ctc atc ggc	ctg tac gag ggt gca ggt gcc cgc		788
Asp Thr Gly Arg Pro Leu Ile Gly	Leu Tyr Glu Gly Ala Gly Ala Arg		
135	140	145	150
atc cag gac ggt gcg gtc tcc ctc	gac ttc atc tcc cag acc ttc tat		836
Ile Gln Asp Gly Ala Val Ser Leu	Asp Phe Ile Ser Gln Thr Phe Tyr		
155	160	165	
cag aac atc cag gcc tcc ggc gtg	atc ccg cag atc tcc gtg atc atg		884
Gln Asn Ile Gln Ala Ser Gly Val	Ile Pro Gln Ile Ser Val Ile Met		
170	175	180	
ggt gcc tgc gcc ggt ggc aac gcc	tac ggc ccg gcc ctc acc gac ttc		932
Gly Ala Cys Ala Gly Asn Ala Tyr	Gly Pro Ala Leu Thr Asp Phe		
185	190	195	
gtg gtc atg gtg gac aag acc tcg	aag atg ttc gtc acc ggc ccc gat		980
Val Val Met Val Asp Lys Thr Ser	Lys Met Phe Val Thr Gly Pro Asp		
200	205	210	
gtg atc aag acc gtc acc ggc gag	gag alc acc cag gag gag ctc ggc		1028
Val Ile Lys Thr Val Thr Gly Glu	Gl Glu Ile Thr Gln Glu Glu Leu Gly		
215	220	225	230
gga gca acc acc cac atg gtc acc	gcc ggc aac tcc cac tac acc gtc		1076
Gly Ala Thr Thr His Met Val Thr	Ala Gly Asn Ser His Tyr Thr Val		
235	240	245	

12/123

gcc acc gat gag gag	gcc ctc gac tgg	gtc cag gac ctc atc	tcc ttc	1124
Ala Thr Asp Glu Glu	Ala Leu Asp Trp Val	Gln Asp Leu Ile	Ser Phe	
250	255	260		
ctg ccc tcc aac aat	cgc tcc tac gcc	ccg gtg gag gag	ttc gac gag	1172
Leu Pro Ser Asn Asn	Arg Ser Tyr Ala Pro	Val Glu Glu Phe	Asp Glu	
265	270	275		
gag gac ggt ggc atc	gcc gag aac atc acc	gcc gat gac ctg aag ctg		1220
Glu Asp Gly Gly	Ile Ala Glu Asn Ile	Thr Ala Asp Asp	Leu Lys Leu	
280	285	290		
gat gag atc atc ccg	gat tcc gcc acc	gtg ccc tat gat	gtc cgc gac	1268
Asp Glu Ile Ile Pro	Asp Ser Ala Thr	Val Pro Tyr Asp	Val Arg Asp	
295	300	305	310	
gtc atc cag tgc ctg	acc gac gac ggt	gag tac ctg gag atc	cag gcc	1316
Val Ile Gln Cys Leu	Thr Asp Asp Gly	Glu Tyr Leu Glu Ile	Gln Ala	
315	320	325		
gac cga gcc gag aat	gtc gtc atc gcc ttc	ggc cgc atc gag	ggc cag	1364
Asp Arg Ala Glu Asn	Val Val Ile Ala	Phe Gly Arg Ile	Glu Gly Gln	
330	335	340		
tcc gtc ggt ttc	gtc gcc aac cag	ccg acc cag ttc	gcc ggc tgc ctg	1412
Ser Val Gly Phe Val	Ala Asn Gln Pro	Thr Gln Phe Ala	Gly Cys Leu	
345	350	355		
gac atc gac tcc tcc	gag aag gca	gcc cgc ttc gtc	cgc acc tgc gat	1460
Asp Ile Asp Ser Ser	Glu Lys Ala Ala	Arg Phe Val Arg	Thr Cys Asp	
360	365	370		
gcc ttc aac atc ccg	atc gtc atg ctt	gtc gac gtc ccc	ggc ttc ctc	1508
Ala Phe Asn Ile Pro	Ile Val Met Leu Val	Asp Val Pro	Gly Phe Leu	
375	380	385	390	
ccc ggt gcc ggc cag	gag tac ggc ggc	atc ctg cgt cgt	ggc gcc aaa	1556
Pro Gly Ala Gly Gln	Glu Tyr Gly Gly	Ile Leu Arg Arg	Gly Ala Lys	
395	400	405		
ctg ctc tac gcc tac	ggt gag gcc acc	gtc ccg aag atc	acc gtg acc	1604
Leu Leu Tyr Ala Tyr	Gly Glu Ala Thr	Val Pro Lys Ile	Thr Val Thr	
410	415	420		
atg cgc aag gcc tac	ggc ggt gcg tac	tgt gtc atg gga	tcc aag ggt	1652
Met Arg Lys Ala Tyr	Gly Ala Tyr Cys	Val Met Gly	Ser Lys Gly	
425	430	435		
ctg ggc gca gac atc	aac ctg gcc tgg	ccg acc gcg	cag atc gcc gtc	1700
Leu Gly Ala Asp Ile	Asn Leu Ala Trp	Pro Thr Ala Gln	Ile Ala Val	
440	445	450		
atg ggt gcc gcc ggc	gcf cag ttc atc	tac cgc aag	gag ctc atg	1748
Met Gly Ala Ala Gly	Ala Val Gln Phe	Ile Tyr Arg	Lys Glu Leu Met	
455	460	465	470	
gcc gct gat gcc aag	ggc ctg gac acc	gtc gcc ctg	gcc cag tcc ttc	1796

13/123

Ala Ala Asp Ala Lys Gly Leu Asp Thr Val Ala Leu Ala Gln Ser Phe			
475	480	485	
gag cgt gag tac gag gac cac atg ctc aac ccg tac ctg gcg gcc gag			1844
Glu Arg Glu Tyr Glu Asp His Met Leu Asn Pro Tyr Leu Ala Ala Glu			
490	495	500	
cgt ggc ctc atc gac gcg gtg atc ctg ccg tcc gag acc cgt ggc cag			1892
Arg Gly Leu Ile Asp Ala Val Ile Leu Pro Ser Glu Thr Arg Gly Gln			
505	510	515	
atc gca cgc aac ctg cgt ctg ctc aag cac aag aat gtc tcc cgc cct			1940
Ile Ala Arg Asn Leu Arg Leu Leu Lys His Lys Asn Val Ser Arg Pro			
520	525	530	
gcc cgc aag cac ggc aac atg cca ctg taagcacccg ggaccacccc			1987
Ala Arg Lys His Gly Asn Met Pro Leu			
535	540		
ctacgccccgc acccacggcc ctttgctggc aggtgcgggc gctgtgcgtt ttccgcgcct			2047
gccgacgccc ggccccctgc cctgtatgc gatctgcgga tgtatctgc gcccgcgcca			2107
actccccctgg ttaaacccctg c			2128

<210> 6

<211> 543

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 6

Met Thr Ile Ser Ser Pro Leu Ile Asp Val Ala Asn Leu Pro Asp Ile			
1	5	10	15
Asn Thr Thr Ala Gly Lys Ile Ala Asp Leu Lys Ala Arg Arg Ala Glu			
20	25	30	
Ala His Phe Pro Met Gly Glu Lys Ala Val Glu Lys Val His Ala Ala			
35	40	45	
Asn Arg Leu Thr Ala Arg Glu Arg Leu Asp Tyr Leu Leu Asp Glu Gly			
50	55	60	
Ser Phe Ile Glu Thr Asp Gln Leu Ala Arg His Arg Thr Thr Ala Phe			
65	70	75	80
Gly Leu Gly Asn Lys Arg Pro Ala Thr Asp Gly Ile Val Thr Gly Trp			
85	90	95	
Gly Thr Ile Asp Gly Arg Glu Val Cys Ile Phe Ser Gln Asp Gly Thr			
100	105	110	
Val Phe Gly Gly Ala Leu Gly Glu Val Tyr Gly Glu Lys Met Ile Lys			
115	120	125	
Ile Met Glu Leu Ala Ile Asp Thr Gly Arg Pro Leu Ile Gly Leu Tyr			
130	135	140	
Glu Gly Ala Gly Ala Arg Ile Gln Asp Gly Ala Val Ser Leu Asp Phe			

14/123

145	150	155	160
Ile Ser Gln Thr Phe Tyr Gln Asn Ile Gln Ala Ser Gly Val Ile Pro			
165	170	175	
Gln Ile Ser Val Ile Met Gly Ala Cys Ala Gly Gly Asn Ala Tyr Gly			
180	185	190	
Pro Ala Leu Thr Asp Phe Val Val Met Val Asp Lys Thr Ser Lys Met			
195	200	205	
Phe Val Thr Gly Pro Asp Val Ile Lys Thr Val Thr Gly Glu Glu Ile			
210	215	220	
Thr Gln Glu Glu Leu Gly Gly Ala Thr Thr His Met Val Thr Ala Gly			
225	230	235	240
Asn Ser His Tyr Thr Val Ala Thr Asp Glu Glu Ala Leu Asp Trp Val			
245	250	255	
Gln Asp Leu Ile Ser Phe Leu Pro Ser Asn Asn Arg Ser Tyr Ala Pro			
260	265	270	
Val Glu Glu Phe Asp Glu Glu Asp Gly Gly Ile Ala Glu Asn Ile Thr			
275	280	285	
Ala Asp Asp Leu Lys Leu Asp Glu Ile Ile Pro Asp Ser Ala Thr Val			
290	295	300	
Pro Tyr Asp Val Arg Asp Val Ile Gln Cys Leu Thr Asp Asp Gly Glu			
305	310	315	320
Tyr Leu Glu Ile Gln Ala Asp Arg Ala Glu Asn Val Val Ile Ala Phe			
325	330	335	
Gly Arg Ile Glu Gly Gln Ser Val Gly Phe Val Ala Asn Gln Pro Thr			
340	345	350	
Gln Phe Ala Gly Cys Leu Asp Ile Asp Ser Ser Glu Lys Ala Ala Arg			
355	360	365	
Phe Val Arg Thr Cys Asp Ala Phe Asn Ile Pro Ile Val Met Leu Val			
370	375	380	
Asp Val Pro Gly Phe Leu Pro Gly Ala Gly Gln Glu Tyr Gly Gly Ile			
385	390	395	400
Leu Arg Arg Gly Ala Lys Leu Leu Tyr Ala Tyr Gly Glu Ala Thr Val			
405	410	415	
Pro Lys Ile Thr Val Thr Met Arg Lys Ala Tyr Gly Gly Ala Tyr Cys			
420	425	430	
Val Met Gly Ser Lys Gly Leu Gly Ala Asp Ile Asn Leu Ala Trp Pro			
435	440	445	
Thr Ala Gln Ile Ala Val Met Gly Ala Ala Gly Ala Val Gln Phe Ile			
450	455	460	
Tyr Arg Lys Glu Leu Met Ala Ala Asp Ala Lys Gly Leu Asp Thr Val			
465	470	475	480
Ala Leu Ala Gln Ser Phe Glu Arg Glu Tyr Glu Asp His Met Leu Asn			
485	490	495	

15/123

Pro	Tyr	Leu	Ala	Ala	Glu	Arg	Gly	Leu	Ile	Asp	Ala	Val	Ile	Leu	Pro
															500
															505
															510
Ser	Glu	Thr	Arg	Gly	Gln	Ile	Ala	Arg	Asn	Leu	Arg	Leu	Leu	Lys	His
															515
															520
															525
Lys	Asn	Val	Ser	Arg	Pro	Ala	Arg	Lys	His	Gly	Asn	Met	Pro	Leu	
															530
															535
															540

<210> 7

<211> 2076

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (412)..(2022)

<400> 7

acgcccggcc	ccctgccttg	tgtgcgtatc	tgcggatgtg	atctgcgcc	gcccac	60
ccctgggtga	accctgccac	ataccctttag	tgcacccgg	gtggggtcac	tttccaccc	120
acggggggga	ggaggtaaca	taggcatac	gttgtactt	tgtgaagt	tggcagatc	180
gaccggggcaa	atctggaaa	taagggcct	gttgtaactag	cattcccc	agcgaagggt	240
gagcatcgcg	gaccccgca	tgtcccaacc	gttgtaaat	tcatgtgccc	ccacagcccc	300
ctcaccagg	gtcggaacc	agcccagcct	gatccggcg	tgcggaccc	caccgtgaac	360
aagtccccgc	attactcaca	gaactcacac	caggatttag	actaagaaac	c atg act	417
					Met Thr	
					1	

gca	gca	acg	aca	gca	cct	gat	ctg	acc	acc	acc	gcc	ggc	aaa	ctc	gcf	465
Ala	Ala	Thr	Thr	Ala	Pro	Asp	Leu	Thr	Thr	Thr	Ala	Gly	Lys	Leu	Ala	

5

10

15

gat	ctc	cgc	gcc	cgc	ctt	tcc	gag	acc	cag	gcc	ccc	atg	ggt	cag	gcc	513
Asp	Leu	Arg	Ala	Arg	Leu	Ser	Glu	Thr	Gln	Ala	Pro	Met	Gly	Gln	Ala	

20

25

30

tcc	gtg	gag	aag	gtg	cac	gag	gca	ggg	aag	aag	acc	gca	cgc	gag	cgc	561
Ser	Val	Glu	Lys	Val	His	Glu	Ala	Gly	Lys	Lys	Thr	Ala	Arg	Glu	Arg	

35

40

45

50

atc	gag	tac	ctg	ctc	gat	gag	ggc	tcc	tcc	gtt	gag	gtc	gat	gcc	ctc	609
Ile	Glu	Tyr	Leu	Leu	Asp	Glu	Gly	Ser	Phe	Val	Glu	Val	Asp	Ala	Leu	

55

60

65

gcc	cgc	cac	cgt	tcc	aag	aac	tcc	ggc	ctg	gac	tcc	aag	cgc	ccg	gtc	657
Ala	Arg	His	Arg	Ser	Lys	Asn	Phe	Gly	Leu	Asp	Ser	Lys	Arg	Pro	Val	

70

75

80

acc	gac	ggt	gtg	gtc	acc	ggt	tac	ggc	acc	atc	gac	gga	cgc	aag	gtc	705
Thr	Asp	Gly	Val	Val	Thr	Gly	Tyr	Gly	Thr	Ile	Asp	Gly	Arg	Lys	Val	

16/123

85	90	95	
tgc gtc ttc tcc cag gac ggc gct atc ttc ggc ggt gcc ctc ggt gag			753
Cys Val Phe Ser Gln Asp Gly Ala Ile Phe Gly Gly Ala Leu Gly Glu			
100	105	110	
gtc tac ggc gag aag atc gtc aag atc atg gac ctg gcc atc aag acc			801
Val Tyr Gly Glu Lys Ile Val Lys Ile Met Asp Leu Ala Ile Lys Thr			
115	120	125	130
ggt gtc ccc ctc atc ggc atc aac gag ggc gcc ggc gcc cgc atc cag			849
Gly Val Pro Leu Ile Gly Ile Asn Glu Gly Ala Gly Ala Arg Ile Gln			
135	140	145	
gaa ggc gtt gtc tcc ctg ggc ctg tac tcc cag atc ttc tac cgc aac			897
Glu Gly Val Val Ser Leu Gly Leu Tyr Ser Gln Ile Phe Tyr Arg Asn			
150	155	160	
acc cag gca tcc ggt gtc atc cca cag atc tcc ctc atc atg ggt gcc			945
Thr Gln Ala Ser Gly Val Ile Pro Gln Ile Ser Leu Ile Met Gly Ala			
165	170	175	
tgc gcc ggt ggc cat gtg tac tcc ccc gcc ctg acc gac ttc atc atc			993
Cys Ala Gly Gly His Val Tyr Ser Pro Ala Leu Thr Asp Phe Ile Ile			
180	185	190	
atg gtg gac aag acc tcc aag atg ttc atc acc ggc ccc gac gtg atc			1041
Met Val Asp Lys Thr Ser Lys Met Phe Ile Thr Gly Pro Asp Val Ile			
195	200	205	210
aag acc gtc acc ggc gag gag gtc acc cag gag gaa ctg ggt ggt gcc			1089
Lys Thr Val Thr Gly Glu Glu Val Thr Gln Glu Glu Leu Gly Gly Ala			
215	220	225	
tac acc cac atg gcc cag tcc ggc acc tcg cac tac acc gca gcc gat			1137
Tyr Thr His Met Ala Gln Ser Gly Thr Ser His Tyr Thr Ala Ala Asp			
230	235	240	
gac tcc gat gcc ctc gac tgg gtc cgt gag ctg gtc agc tac ctg ccg			1185
Asp Ser Asp Ala Leu Asp Trp Val Arg Glu Leu Val Ser Tyr Leu Pro			
245	250	255	
tcc aac aac cgt gcg gag acc cca cgc cag gac gcc gac atc atg gtg			1233
Ser Asn Asn Arg Ala Glu Thr Pro Arg Gln Asp Ala Asp Ile Met Val			
260	265	270	
ggc tcc atc aag gag aac atc acc gag acc gac ctc gaa ctc gac acc			1281
Gly Ser Ile Lys Glu Asn Ile Thr Glu Thr Asp Leu Glu Leu Asp Thr			
275	280	285	290
ctg atc ccg gat tcc ccg aac cag ccg tac gac atg aag gac gtc atc			1329
Leu Ile Pro Asp Ser Pro Asn Gln Pro Tyr Asp Met Lys Asp Val Ile			
295	300	305	
acc cgc atc gtc gat gat gcc gag ttc ttc gag atc cag gag ggt tac			1377
Thr Arg Ile Val Asp Asp Ala Glu Phe Phe Glu Ile Gln Glu Gly Tyr			
310	315	320	

17/123

gcc gag aac atc atc tgc ggt ttc gcc cgc gtc gag ggt cgt gcc gtg		1425	
Ala Glu Asn Ile Ile Cys Gly Phe Ala Arg Val Glu Gly Arg Ala Val			
325	330	335	
ggt atc gtg gcc aac cag ccg atg cag ttc gcc ggc tgc ctg gac atc		1473	
Gly Ile Val Ala Asn Gln Pro Met Gln Phe Ala Gly Cys Leu Asp Ile			
340	345	350	
aag gca tcc gag aag gcc gcc ttc atc cgc acc tgt gac gcc ttc		1521	
Lys Ala Ser Glu Lys Ala Ala Arg Phe Ile Arg Thr Cys Asp Ala Phe			
355	360	365	370
aac atc ccg atc atc gag ctt gtc gac gtc cca ggc ttc ctc ccg ggc		1569	
Asn Ile Pro Ile Ile Glu Leu Val Asp Val Pro Gly Phe Leu Pro Gly			
375	380	385	
acc aac cag gag ttc gac ggc atc atc cgt cgc ggc gcg aag ctg ctc		1617	
Thr Asn Gln Glu Phe Asp Gly Ile Ile Arg Arg Gly Ala Lys Leu Leu			
390	395	400	
tac gcc tac gcc gag gcc acc gtc ggc aag atc acc gtg atc acc cgc		1665	
Tyr Ala Tyr Ala Glu Ala Thr Val Gly Lys Ile Thr Val Ile Thr Arg			
405	410	415	
aag tcc tac ggc ggt gcc tac tgc gtg atg ggc tcc aag gac atg ggt		1713	
Lys Ser Tyr Gly Gly Ala Tyr Cys Val Met Gly Ser Lys Asp Met Gly			
420	425	430	
gcg gac ctc gtc ttc gca tgg ccc acc gcg cag atc gcc gtc atg ggt		1761	
Ala Asp Leu Val Phe Ala Trp Pro Thr Ala Gln Ile Ala Val Met Gly			
435	440	445	450
gcc tcc ggt gcc gtc ggc ttc atc tac cgc aag gag ctc aag cag gct		1809	
Ala Ser Gly Ala Val Gly Phe Ile Tyr Arg Lys Glu Leu Lys Gln Ala			
455	460	465	
gca gcg gcc ggc gag gat gtc acc gcg ctg atg aag aag tac gag cag		1857	
Ala Ala Ala Gly Glu Asp Val Thr Ala Leu Met Lys Lys Tyr Glu Gln			
470	475	480	
gag tac gag gag acc ctg gtc aac ccg tac atg gct gca gag cgt ggc		1905	
Glu Tyr Glu Glu Thr Leu Val Asn Pro Tyr Met Ala Ala Glu Arg Gly			
485	490	495	
tac gtc gac gcc gtc atc cca cca tcc gag acc cgt ggt cag atc atc		1953	
Tyr Val Asp Ala Val Ile Pro Pro Ser Glu Thr Arg Gly Gln Ile Ile			
500	505	510	
gag ggt ctg cgt ctg ctc gac cgc aag gtg gtc aac gtc ccg gcc aag		2001	
Glu Gly Leu Arg Leu Leu Asp Arg Lys Val Val Asn Val Pro Ala Lys			
515	520	525	530
aag cac ggt aac atc ccg ctg taaaccgtct tccccccgg caccacgccc		2052	
Lys His Gly Asn Ile Pro Leu			
535			
gagaaggctt tgccgcagc tgct		2076	

<210> 8

〈211〉 537

〈212〉 PRT

〈213〉 *Corynebacterium thermoaminogenes*

<400> 8

Met	Thr	Ala	Ala	Thr	Thr	Ala	Pro	Asp	Leu	Thr	Thr	Thr	Ala	Gly	Lys
1				5						10				15	
Leu	Ala	Asp	Leu	Arg	Ala	Arg	Leu	Ser	Glu	Thr	Gln	Ala	Pro	Met	Gly
				20					25				30		
Gln	Ala	Ser	Val	Glu	Lys	Val	His	Glu	Ala	Gly	Lys	Lys	Thr	Ala	Arg
				35				40				45			
Glu	Arg	Ile	Glu	Tyr	Leu	Leu	Asp	Glu	Gly	Ser	Phe	Val	Glu	Val	Asp
				50				55			60				
Ala	Leu	Ala	Arg	His	Arg	Ser	Lys	Asn	Phe	Gly	Leu	Asp	Ser	Lys	Arg
				65				70			75			80	
Pro	Val	Thr	Asp	Gly	Val	Val	Thr	Gly	Tyr	Gly	Thr	Ile	Asp	Gly	Arg
				85					90				95		
Lys	Val	Cys	Val	Phe	Ser	Gln	Asp	Gly	Ala	Ile	Phe	Gly	Gly	Ala	Leu
				100					105				110		
Gly	Glu	Val	Tyr	Gly	Glu	Lys	Ile	Val	Lys	Ile	Met	Asp	Leu	Ala	Ile
				115				120				125			
Lys	Thr	Gly	Val	Pro	Leu	Ile	Gly	Ile	Asn	Glu	Gly	Ala	Gly	Ala	Arg
				130				135			140				
Ile	Gln	Glu	Gly	Val	Val	Ser	Leu	Gly	Leu	Tyr	Ser	Gln	Ile	Phe	Tyr
				145				150			155			160	
Arg	Asn	Thr	Gln	Ala	Ser	Gly	Val	Ile	Pro	Gln	Ile	Ser	Leu	Ile	Met
				165					170				175		
Gly	Ala	Cys	Ala	Gly	Gly	His	Val	Tyr	Ser	Pro	Ala	Leu	Thr	Asp	Phe
				180					185				190		
Ile	Ile	Met	Val	Asp	Lys	Thr	Ser	Lys	Met	Phe	Ile	Thr	Gly	Pro	Asp
				195					200				205		
Val	Ile	Lys	Thr	Val	Thr	Gly	Glu	Glu	Val	Thr	Gln	Glu	Glu	Leu	Gly
				210				215				220			
Gly	Ala	Tyr	Thr	His	Met	Ala	Gln	Ser	Gly	Thr	Ser	His	Tyr	Thr	Ala
				225				230			235			240	
Ala	Asp	Asp	Ser	Asp	Ala	Leu	Asp	Trp	Val	Arg	Glu	Leu	Val	Ser	Tyr
				245					250				255		
Leu	Pro	Ser	Asn	Asn	Arg	Ala	Glu	Thr	Pro	Arg	Gln	Asp	Ala	Asp	Ile
				260					265				270		
Met	Val	Gly	Ser	Ile	Lys	Glu	Asn	Ile	Thr	Glu	Thr	Asp	Leu	Glu	Leu
				275					280				285		

19/123

Asp	Thr	Leu	Ile	Pro	Asp	Ser	Pro	Asn	Gln	Pro	Tyr	Asp	Met	Lys	Asp
290					295							300			
Val	Ile	Thr	Arg	Ile	Val	Asp	Asp	Ala	Glu	Phe	Phe	Glu	Ile	Gln	Glu
305					310				315					320	
Gly	Tyr	Ala	Glu	Asn	Ile	Ile	Cys	Gly	Phe	Ala	Arg	Val	Glu	Gly	Arg
					325				330					335	
Ala	Val	Gly	Ile	Val	Ala	Asn	Gln	Pro	Met	Gln	Phe	Ala	Gly	Cys	Leu
					340				345					350	
Asp	Ile	Lys	Ala	Ser	Glu	Lys	Ala	Ala	Arg	Phe	Ile	Arg	Thr	Cys	Asp
					355				360					365	
Ala	Phe	Asn	Ile	Pro	Ile	Ile	Glu	Leu	Val	Asp	Val	Pro	Gly	Phe	Leu
					370				375					380	
Pro	Gly	Thr	Asn	Gln	Glu	Phe	Asp	Gly	Ile	Ile	Arg	Arg	Gly	Ala	Lys
					385				390					400	
Leu	Leu	Tyr	Ala	Tyr	Ala	Glu	Ala	Thr	Val	Gly	Lys	Ile	Thr	Val	Ile
					405				410					415	
Thr	Arg	Lys	Ser	Tyr	Gly	Gly	Ala	Tyr	Cys	Val	Met	Gly	Ser	Lys	Asp
					420				425					430	
Met	Gly	Ala	Asp	Leu	Val	Phe	Ala	Trp	Pro	Thr	Ala	Gln	Ile	Ala	Val
					435				440					445	
Met	Gly	Ala	Ser	Gly	Ala	Val	Gly	Phe	Ile	Tyr	Arg	Lys	Glu	Leu	Lys
					450				455					460	
Gln	Ala	Ala	Ala	Ala	Gly	Glu	Asp	Val	Thr	Ala	Leu	Met	Lys	Lys	Tyr
					465				470					480	
Glu	Gln	Glu	Tyr	Glu	Glu	Thr	Leu	Val	Asn	Pro	Tyr	Met	Ala	Ala	Glu
					485				490					495	
Arg	Gly	Tyr	Val	Asp	Ala	Val	Ile	Pro	Pro	Ser	Glu	Thr	Arg	Gly	Gln
					500				505					510	
Ile	Ile	Glu	Gly	Leu	Arg	Leu	Leu	Asp	Arg	Lys	Val	Val	Asn	Val	Pro
					515				520					525	
Ala	Lys	Lys	His	Gly	Asn	Ile	Pro	Leu							
					530				535						

<210> 9

<211> 1643

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (326)..(1363)

<400> 9

20/123

agcgcgcgg cagccaccag tggatcgta cccagcggac ggtgccgga ttacggcgg 60
 tcagccaccc gccgatgaga ctgcagcga caacggtggc ggtgctgacc tggcagcgt 120
 ctttagttt catatccatg ttagacatgc taaccactct ctccgacgca tccaaatcg 180
 ctgggggtggc ggacaccatg tccgttcggg cggtccccg acgggggaaa atcgaggca 240
 gatgtgtccg atgaggata aaccacccgg ttcggcgtg tcttcggat caatggcaca 300
 gcattaaaccg tgtgggggt ttaat atg gga gcc atg cga att gcc act ctc 352
 Met Gly Ala Met Arg Ile Ala Thr Leu
 1 5

acg tca ggc ggc gac tgc ccc gga ctc aat gct gtc atc agg gga atc 400
 Thr Ser Gly Gly Asp Cys Pro Gly Leu Asn Ala Val Ile Arg Gly Ile
 10 15 20 25

gtc cgt acc gca aat gaa ttc ggt tcc acc gtc gtg ggt tat cag 448
 Val Arg Thr Ala Ser Asn Glu Phe Gly Ser Thr Val Val Gly Tyr Gln
 30 35 40

gac ggc tgg gag ggc ctg ctg gcg gac cga cgt gtt cag ctc tat gac 496
 Asp Gly Trp Glu Gly Leu Leu Ala Asp Arg Arg Val Gln Leu Tyr Asp
 45 50 55

gat gag gac atc gac cgc atc ctg ctc cgc ggt gga aca atc ctg ggc 544
 Asp Glu Asp Ile Asp Arg Ile Leu Leu Arg Gly Gly Thr Ile Leu Gly
 60 65 70

acc ggt cgt ctc cac ccc gac aag ttc aga gcc gga atc gac cag gtc 592
 Thr Gly Arg Leu His Pro Asp Lys Phe Arg Ala Gly Ile Asp Gln Val
 75 80 85

aag gcg aat ctc gcc gat gcg gga att gac gca ctc atc ccg atc ggt 640
 Lys Ala Asn Leu Ala Asp Ala Gly Ile Asp Ala Leu Ile Pro Ile Gly
 90 95 100 105

ggc gag ggc acc ctc aag gga gcg aag tgg ctc gcc gac aac ggc atc 688
 Gly Glu Gly Thr Leu Lys Gly Ala Lys Trp Leu Ala Asp Asn Gly Ile
 110 115 120

ccc gtg gtc ggt gtc ccg aaa acc atc gac aat gat gtc aac ggc acg 736
 Pro Val Val Gly Val Pro Lys Thr Ile Asp Asn Asp Val Asn Gly Thr
 125 130 135

gat ttc acc ttc ggt ttc gat tcc gcg gtc tct gtg gcc acc gac gcc 784
 Asp Phe Thr Phe Gly Phe Asp Ser Ala Val Ser Val Ala Thr Asp Ala
 140 145 150

atc gac cgg ctg cac acc acg gcg gaa tcc cac aac cgt gtg atg atc 832
 Ile Asp Arg Leu His Thr Thr Ala Glu Ser His Asn Arg Val Met Ile
 155 160 165

gtc gag gtc atg ggc cgc cac gtc ggt tgg atc gca ctg cat gcc ggc 880
 Val Glu Val Met Gly Arg His Val Gly Trp Ile Ala Leu His Ala Gly
 170 175 180 185

atg gcc ggt gga gcc cac tac acc gtc atc ccc gag gtg ccc ttc gac 928
 Met Ala Gly Gly Ala His Tyr Thr Val Ile Pro Glu Val Pro Phe Asp

21/123

190	195	200	
atc tcg gag atc tgc aag cgt atg gaa cgt cgc ttc cag atg ggg gag			976
Ile Ser Glu Ile Cys Lys Arg Met Glu Arg Arg Phe Gln Met Gly Glu			
205	210	215	
aag tac ggc atc atc gtc gtc gcg gag ggt gcc ctg ccc aag gag gga			1024
Lys Tyr Gly Ile Ile Val Val Ala Glu Gly Ala Leu Pro Lys Glu Gly			
220	225	230	
acc atg gag ctg cgt gag ggg gag gtg gat cag ttc ggt cac aag acc			1072
Thr Met Glu Leu Arg Glu Gly Glu Val Asp Gln Phe Gly His Lys Thr			
235	240	245	
tgc acc ggc atc ggc cag cag atc gcc gac gag gtg cac agg cgt ctg			1120
Phe Thr Gly Ile Gly Gln Gln Ile Ala Asp Glu Val His Arg Arg Leu			
250	255	260	265
ggt cat gat gtc cgc acc acg gtc ctg ggc cat atc cag cgt ggt ggc			1168
Gly His Asp Val Arg Thr Thr Val Leu Gly His Ile Gln Arg Gly Gly			
270	275	280	
acc ccc acc gcc ttc gac cgt gtc ctg gcc acc cgg tac ggt gtc cgc			1216
Thr Pro Thr Ala Phe Asp Arg Val Leu Ala Thr Arg Tyr Gly Val Arg			
285	290	295	
gcc gcg cgt gcc tgc cac gag ggt cag ttc aac acc gtg gtc gcg ctc			1264
Ala Ala Arg Ala Cys His Glu Gly Gln Phe Asn Thr Val Val Ala Leu			
300	305	310	
aag ggg gag cgc atc cgg atg atc tcc ttc gat gag gcc glg ggc acc			1312
Lys Gly Glu Arg Ile Arg Met Ile Ser Phe Asp Glu Ala Val Gly Thr			
315	320	325	
ctg aag aag gtg ccg atg gaa cgc tgg gtg acc gcc cag gct atg ttc			1360
Leu Lys Lys Val Pro Met Glu Arg Trp Val Thr Ala Gln Ala Met Phe			
330	335	340	345
ggt tagtcaggcc gcatccccgg ttccgcgcgc gcggggccgg gtttttcat			1413
Gly			
ccccggAAC acatcggtat gaaatcgta tatgcattac ttgacgggaa agtggggat			1473
ccgtcaccc gcgttgtcca actacagccc gcagcgctg cggaaatct tcgagcaatc			1533
cggcgattcc cggccccgtc ccgtcgccgt ccaaccgcag tacaatctgc tggcccgccg			1593
ggattatgag accgttatcc gcccggcgt ggacgagttc ggtccgcgg			1643

<210> 10

<211> 346

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 10

Met Gly Ala Met Arg Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro

22/123

Gly Leu Asn Ala Val Ile Arg Gly Ile Val Arg Thr Ala Ser Asn Glu
 20 25 30
 Phe Gly Ser Thr Val Val Gly Tyr Gln Asp Gly Trp Glu Gly Leu Leu
 35 40 45
 Ala Asp Arg Arg Val Gln Leu Tyr Asp Asp Glu Asp Ile Asp Arg Ile
 50 55 60
 Leu Leu Arg Gly Gly Thr Ile Leu Gly Thr Gly Arg Leu His Pro Asp
 65 70 80
 Lys Phe Arg Ala Gly Ile Asp Gln Val Lys Ala Asn Leu Ala Asp Ala
 85 90 95
 Gly Ile Asp Ala Leu Ile Pro Ile Gly Gly Glu Gly Thr Leu Lys Gly
 100 105 110
 Ala Lys Trp Leu Ala Asp Asn Gly Ile Pro Val Val Gly Val Pro Lys
 115 120 125
 Thr Ile Asp Asn Asp Val Asn Gly Thr Asp Phe Thr Phe Gly Phe Asp
 130 135 140
 Ser Ala Val Ser Val Ala Thr Asp Ala Ile Asp Arg Leu His Thr Thr
 145 150 160
 Ala Glu Ser His Asn Arg Val Met Ile Val Glu Val Met Gly Arg His
 165 170 175
 Val Gly Trp Ile Ala Leu His Ala Gly Met Ala Gly Gly Ala His Tyr
 180 185 190
 Thr Val Ile Pro Glu Val Pro Phe Asp Ile Ser Glu Ile Cys Lys Arg
 195 200 205
 Met Glu Arg Arg Phe Gln Met Gly Glu Lys Tyr Gly Ile Ile Val Val
 210 215 220
 Ala Glu Gly Ala Leu Pro Lys Glu Gly Thr Met Glu Leu Arg Glu Gly
 225 230 240
 Glu Val Asp Gln Phe Gly His Lys Thr Phe Thr Gly Ile Gly Gln Gln
 245 250 255
 Ile Ala Asp Glu Val His Arg Arg Leu Gly His Asp Val Arg Thr Thr
 260 265 270
 Val Leu Gly His Ile Gln Arg Gly Gly Thr Pro Thr Ala Phe Asp Arg
 275 280 285
 Val Leu Ala Thr Arg Tyr Gly Val Arg Ala Ala Arg Ala Cys His Glu
 290 295 300
 Gly Gln Phe Asn Thr Val Val Ala Leu Lys Gly Glu Arg Ile Arg Met
 305 310 320
 Ile Ser Phe Asp Glu Ala Val Gly Thr Leu Lys Lys Val Pro Met Glu
 325 330 335
 Arg Trp Val Thr Ala Gln Ala Met Phe Gly
 340 345

23/123

<210> 11

<211> 498

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (1)..(498)

<400> 11

tac tac cag cac gat cca ggt ttc ccc ttc gca cca aag cgc acc ggt	48
Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly	
1 5 10 15	
tgg gct cac acc acc acg ccg ttg acc gga ccg cag cga ttg cag tgg	96
Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp	
20 25 30	
acg cac ctg ccc gat gct ctt tac ccg gat gta tcc tat gac ctg gat	144
Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser Tyr Asp Leu Asp	
35 40 45	
gga tgc tat tcc ggc gga gcc gta ttt tct gac ggc acg ctt aaa ctt	192
Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly Thr Leu Lys Leu	
50 55 60	
ttc tac acc ggc aac cga aaa att gac ggc aag cgc cgc gcc acc caa	240
Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln	
65 70 75 80	
aac ctc gtc gaa gtc gag gac cca act ggg ctg atg ggc ggc att cat	288
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His	
85 90 95	
cgc cgc tcg cct aaa aat ccg ctt atc gac gga ccc gcc agc ggt ttt	336
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe	
100 105 110	
acg ccc cac tac cgc gat ccc atg atc agc cct gat ggg gat ggt tgg	384
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp	
115 120 125	
aag atg gtt ctt ggg gct cag cgc gaa aac ctc acc ggt gca gcg gtt	432
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val	
130 135 140	
cta tac cgc tcg gca gat ctt gaa aac tgg gaa ttc tcc ggt gaa atc	480
Leu Tyr Arg Ser Ala Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu Ile	
145 150 155 160	
acc ttt gac ctc agc gac	498
Thr Phe Asp Leu Ser Asp	
165	

24 / 123

<210> 12

<211> 166

〈212〉 PRT

<213> *Corynebacterium thermoaminogenes*

<400> 12

<210> 13

〈211〉 479

〈212〉 DNA

〈213〉 *Corynebacterium thermoaminogenes*

<220>

〈221〉 CDS

$\langle 222 \rangle$ (1) .. (477)

<400> 13

tac tac cag cac gat cca ggt ttc ccc ttc gca cca aag cgc acc ggc	48
Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly	
1 5 10 . 15	

25/123

tgg gct cac acc acc acg ccg ttg acc gga ccg cag cga ttg cag tgg	96
Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp	
20 25 30	
acg cac ctg ccc gac gct ctt tac ccg gat gca tcc tat gac ctg gat	144
Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Ala Ser Tyr Asp Leu Asp	
35 40 45	
gga tgc tat tcc ggt gga gcc gta ttt act gac ggc aca ctt aaa ctt	192
Gly Cys Tyr Ser Gly Gly Ala Val Phe Thr Asp Gly Thr Leu Lys Leu	
50 55 60	
ttc tac acc ggc aac cta aaa att gac ggc aag cgc cgc gcc acc caa	240
Phe Tyr Thr Gly Asn Leu Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln	
65 70 75 80	
aac ctc gtc gaa gtc gag gac cca act ggg ctg atg ggc ggc att cat	288
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His	
85 90 95	
cgc cgt tcg cct aaa aat ccg ctt atc gac gga ccc gcc agc ggt ttc	336
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe	
100 105 110	
aca ccc cat tac cgc gat ccc atg atc agc cct gat ggt gat ggt tgg	384
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp	
115 120 125	
aaa atg gtt ctt ggg gcc caa cgc gaa aac ctc acc ggt gca gcg gtt	432
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val	
130 135 140	
cta tac cgc tcg aca gat ctt gaa aac tgg gaa ttc tcc ggt gaa at	479
Leu Tyr Arg Ser Thr Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu	
145 150 155	

<210> 14

<211> 159

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 14

Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly	
1 5 10 15	
Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp	
20 25 30	
Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Ala Ser Tyr Asp Leu Asp	
35 40 45	
Gly Cys Tyr Ser Gly Gly Ala Val Phe Thr Asp Gly Thr Leu Lys Leu	
50 55 60	
Phe Tyr Thr Gly Asn Leu Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln	

26/123

65	70	75	80
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His			
85		90	95
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe			
100		105	110
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp			
115		120	125
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val			
130		135	140
Leu Tyr Arg Ser Thr Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu			
145		150	155

<210> 15

<211> 490

<212> DNA

<213> Corynebacterium thermoaminogenes

<400> 15

```

attttaatgg atattatcta tatttatca atattatcct tatgcacctg aatggggacc 60
aatgcattgg ggacacgcac gtagtaaaga tttagttcat tggaaacat taccgattgc 120
ttttagaacct ggagaatgaag aagaaaaatg gtgtttctc tggtacaggat atagtcaaag 180
atgataagtt gtattttattt tatacaggtc accattatta taatgacgat gatcccgatc 240
attttggca aaatcaaaaat atggcttata gtgaagatgg cattcattt caaaaatata 300
aacaaaaatgc aatcatccct accccacctg aagataatac acatcacitc agagatccaa 360
aggtatggaa acatccatgg cttaatttata catgatagta ggttagtcaa atgatagaga 420
attaggacgt attatcttat atcgttctga ggatttata agggaaattc tggtcctgag 480
atcaatccaa                                         490

```

<210> 16

<211> 4254

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (637)..(1362)

<220>

<221> CDS

<222> (1434)..(2315)

<220>

<221> CDS

<222> (2432)..(3115)

27/123

<220>

<221> CDS

<222> (3235)..(4065)

<400> 16

tacggcgcg cagattaccc agtgcgcgt agagacgcgt atcggcattc tcacgcacccg 60
 cgcagggttt gaagacgatg agatcagggg tgcaccctc cccgcgcgcg gtgttaaccgg 120
 ccccttcgag cagaccggag agacgcgtcg aatcggtggac gttcatctgg cagccgaagg 180
 tacgcacccatc ataggcggtgg gcagtgggtgc cctccgggtt ccccgccgc gggaggggtgt 240
 cggcgggggtg gtccgggtgg gatggatggg tgcgcgtatca atctgcgtcg 300
 tcacgggagg taattgtatc ggccgcgggc accctgacat aaacgtccga tccagaggaa 360
 cgcaaccctcg tggagtgtcg cagccatgca ggttgggcaa caccgttaacg gaaccttagca 420
 gagtggttggg attgacttca catttttac ctattgagct attgataaaa tccggggcga 480
 aatggaaatc accccccacaa atcaccccaa ctgaccgtgtg gaaagggcga gaaatccagg 540
 gaaattcatt tcaaaatgga cttcaatcaca ggatccaccc cacatgaccc aacatttcctt 600
 tatgttatcc ccatgacgca gaccacaaat caccgg atg atc aag atg acg ggg 654

Met Ile Lys Met Thr Gly

1 5

gtg cag aag ttc ttc gat gac ttc cag gcc ctg acc gat atc aat ctt 702
 Val Gln Lys Phe Phe Asp Asp Phe Gln Ala Leu Thr Asp Ile Asn Leu
 10 15 20

gag gtc ccc gcg gga cag gtc gtt gtt ctc ggc ccg tcc ggt tcc 750
 Glu Val Pro Ala Gly Gln Val Val Val Leu Gly Pro Ser Gly Ser
 25 30 35

gga aag tcg acg ctg tgc cgc acc atc aac cgc ctc gaa acc atc gag 798
 Gly Lys Ser Thr Leu Cys Arg Thr Ile Asn Arg Leu Glu Thr Ile Glu
 40 45 50

gag gga acc atc gag atc gat gga aaa ctg ctt ccg gag gag ggc aag 846
 Glu Gly Thr Ile Glu Ile Asp Gly Lys Leu Leu Pro Glu Glu Gly Lys
 55 60 65 70

gac ctg gcc aag atc cgt gcc gac gtg ggc atg gtg ttc cag tct ttc 894
 Asp Leu Ala Lys Ile Arg Ala Asp Val Gly Met Val Phe Gln Ser Phe
 75 80 85

aac ctc ttc ccc cac ctc acc atc aag gac aat gtc acc ctc ggc ccg 942
 Asn Leu Phe Pro His Leu Thr Ile Lys Asp Asn Val Thr Leu Gly Pro
 90 95 100

atg aag gtc cgg aag atg aag aag tcc gag gcc aat gag gtg gcc atg 990
 Met Lys Val Arg Lys Met Lys Ser Glu Ala Asn Glu Val Ala Met
 105 110 115

aag ctg ttg gaa cgc gtc ggc atc gcc aac cag gcc gag aaa tac ccg 1038
 Lys Leu Leu Glu Arg Val Gly Ile Ala Asn Gln Ala Glu Lys Tyr Pro
 120 125 130

gca cag ctc tcg ggc ggg cag cag cgc gtg gcc atc gcc cgc gca 1086

28/123

Ala Gln Leu Ser Gly Gly Gln Gln Gln Arg Val Ala Ile Ala Arg Ala			
135	140	145	150
ctg gcg atg aac ccc aag atc atg ctt ttc gac gaa cca acc tcc gcc			1134
Leu Ala Met Asn Pro Lys Ile Met Leu Phe Asp Glu Pro Thr Ser Ala			
155	160	165	
ctc gac ccc gag atg gtc aac gag gtt ctg gac gtc atg gcg agt ctg			1182
Leu Asp Pro Glu Met Val Asn Glu Val Leu Asp Val Met Ala Ser Leu			
170	175	180	
gcc aag gaa ggc atg acc atg gtg tgt gtc acc cac gag atg ggt ttc			1230
Ala Lys Glu Gly Met Thr Met Val Cys Val Thr His Glu Met Gly Phe			
185	190	195	
gca cgc agg gcc gca gac cgt gtg ctg ttc atg tct gac ggc gcc atc			1278
Ala Arg Arg Ala Ala Asp Arg Val Leu Phe Met Ser Asp Gly Ala Ile			
200	205	210	
gtc gag gac tcc gac ccg gag acc ttc ttc acc aat cca caa acc gac			1326
Val Glu Asp Ser Asp Pro Glu Thr Phe Phe Thr Asn Pro Gln Thr Asp			
215	220	225	230
cgg gcg aag gat ttc ctg ggc aag atc ctc gcc cac tgacctcccc			1372
Arg Ala Lys Asp Phe Leu Gly Lys Ile Leu Ala His			
235	240		
tcactctgtg tccaaactccc ccgcgtggcca aaatcagcga ccatgaccaa caggagcatc			1432
a atg tcg cac aaa cgc atg ttc acc cgt ctc gcc gca gcc acc agc gca			1481
Met Ser His Lys Arg Met Phe Thr Arg Leu Ala Ala Ala Thr Ser Ala			
245	250	255	
gct gtt ctc gcc ggc atc acc ctc acc gcc tgt ggt gat tcc gag ggt			1529
Ala Val Leu Ala Gly Ile Thr Leu Thr Ala Cys Gly Asp Ser Glu Gly			
260	265	270	
ggt gac ggt ctg ctc gcc gcc atc gaa aat ggc aat gtc acc atc ggc			1577
Gly Asp Gly Leu Leu Ala Ala Ile Glu Asn Gly Asn Val Thr Ile Gly			
275	280	285	290
acc aag tac gat cag ccg ggt ctg gga ctg cgt aac ccg gac aat tcc			1625
Thr Lys Tyr Asp Gln Pro Gly Leu Gly Leu Arg Asn Pro Asp Asn Ser			
295	300	305	
atg agc gga ctg gat gtc gac gtc gcg cag tac gtg gtc aac tcc atc			1673
Met Ser Gly Leu Asp Val Asp Val Ala Gln Tyr Val Val Asn Ser Ile			
310	315	320	
gcc gat gac aac ggt tgg gat cac ccc acc gtg gaa tgg cgc gag acc			1721
Ala Asp Asp Asn Gly Trp Asp His Pro Thr Val Glu Trp Arg Glu Thr			
325	330	335	
ccc tcc gcc cag cgc gag acc ctc atc cag aac ggt gag gtg gat atg			1769
Pro Ser Ala Gln Arg Glu Thr Leu Ile Gln Asn Gly Glu Val Asp Met			
340	345	350	
atc gcc gca acc tac tcc atc aac ccc gga cgc tcc gaa tcg glg aac			1817

29/123

Ile	Ala	Ala	Thr	Tyr	Ser	Ile	Asn	Pro	Gly	Arg	Ser	Glu	Ser	Val	Asn	
355						360					365				370	
tcc	ggt	gga	cca	tac	ctc	ctc	acc	cac	cag	gcc	ctc	ctg	gtc	cgc	gag	1865
Phe	Gly	Gly	Pro	Tyr	Leu	Leu	Thr	His	Gln	Ala	Leu	Leu	Val	Arg	Glu	
					375					380				385		
gac	gat	gac	cgc	atc	cag	acc	ctc	gag	gac	ctc	gat	gac	ggc	ctg	atc	1913
Asp	Asp	Asp	Arg	Ile	Gln	Thr	Leu	Glu	Asp	Leu	Asp	Asp	Gly	Leu	Ile	
					390				395				400			
ctg	tgt	tcc	gtt	acc	gga	tcc	acc	ccc	gcc	cag	aag	gtc	aag	gat	gtc	1961
Leu	Cys	Ser	Val	Thr	Gly	Ser	Thr	Pro	Ala	Gln	Lys	Val	Lys	Asp	Val	
					405				410				415			
ctc	ccc	ggc	gtc	cag	ctg	cag	gaa	tac	gac	acc	tac	tcc	tcc	tgt	gtg	2009
Leu	Pro	Gly	Val	Gln	Leu	Gln	Glu	Tyr	Asp	Thr	Tyr	Ser	Ser	Cys	Val	
					420			425			430					
gag	gca	ctg	agc	cag	ggc	aac	gtc	gat	gca	atg	acc	acc	gac	gcc	acc	2057
Glu	Ala	Leu	Ser	Gln	Gly	Asn	Val	Asp	Ala	Met	Thr	Thr	Asp	Ala	Thr	
					435			440			445			450		
atc	ctc	tcc	ggc	tac	gcg	cag	cag	cgc	gaa	ggt	gaa	tcc	cgc	gtc	gtg	2105
Ile	Leu	Phe	Gly	Tyr	Ala	Gln	Gln	Arg	Glu	Gly	Glu	Phe	Arg	Val	Val	
					455				460				465			
gag	atg	gaa	cag	gac	ggc	gag	ccg	tcc	acc	aat	gag	tac	tac	ggc	atc	2153
Glu	Met	Glu	Gln	Asp	Gly	Glu	Pro	Phe	Thr	Asn	Glu	Tyr	Tyr	Gly	Ile	
					470				475				480			
ggt	atc	acc	aag	gat	gac	acc	gaa	gcc	acc	gat	gcg	atc	aac	gca	gcg	2201
Gly	Ile	Thr	Lys	Asp	Asp	Thr	Glu	Ala	Thr	Asp	Ala	Ile	Asn	Ala	Ala	
					485			490			495					
ttg	gag	cgt	atg	tac	gcc	gac	ggt	tcc	tcc	cag	cgt	tcc	ctc	acc	gag	2249
Leu	Glu	Arg	Met	Tyr	Ala	Asp	Gly	Ser	Phe	Gln	Arg	Phe	Leu	Thr	Glu	
					500			505			510					
aac	ctc	ggc	gag	gat	tcc	cag	gtt	gtc	cag	gag	ggc	acc	ccg	ggt	gac	2297
Asn	Leu	Gly	Glu	Asp	Ser	Gln	Val	Val	Gln	Glu	Gly	Thr	Pro	Gly	Asp	
					515			520			525			530		
ctc	tcc	tcc	ctg	gac	gag	tgacctgacg	gggccgaacg	cccgatgagc								2345
Leu	Ser	Phe	Leu	Asp	Glu											
					535											
atgcgtggcc	cccgcatccc	ggggtgccac	gcatcatcac	tttaccact	gatcccctac											2405
cgttccttac	cgaggagaaa	tccccc	atg	agt	aca	ttt	tgg	gct	gtt	ctg	ggt					2458
Met	Ser	Thr	Leu	Trp	Ala	Asp	Leu	Gly								
ccg	tca	ctc	cta	ccc	gca	tcc	tgg	gtg	aca	atc	caa	ctc	acc	gtc	tat	2506
Pro	Ser	Leu	Leu	Pro	Ala	Phe	Trp	Val	Thr	Ile	Gln	Leu	Thr	Val	Tyr	
					550				555				560			
tcc	gcc	atc	gga	tcc	atg	atc	ctc	ggt	acc	atc	ctc	acc	gcc	atg	agg	2554

30/123

Ser Ala Ile Gly Ser Met Ile Leu Gly Thr Ile Leu Thr Ala Met Arg
 565 570 575
 gtg tcc ccg gtg aag atc ctg cgc agc ata tcc acc gcc tac atc aac 2602
 Val Ser Pro Val Lys Ile Leu Arg Ser Ile Ser Thr Ala Tyr Ile Asn
 580 585 590
 acg gtc cgt aac acc cca ctg acc ctg gtg atc ctg ttc tgt tcc ttc 2650
 Thr Val Arg Asn Thr Pro Leu Thr Leu Val Ile Leu Phe Cys Ser Phe
 595 600 605
 ggc ctg tat cag aat ctc ggt ctc acc ctc gcc ggt cgc gac agt tcc 2698
 Gly Leu Tyr Gln Asn Leu Gly Leu Thr Leu Ala Gly Arg Asp Ser Ser
 610 615 620 625
 acc ttt ctg gcc gat aac aac ttc cgg ctc gcg gtg ctc gga ttc atc 2746
 Thr Phe Leu Ala Asp Asn Asn Phe Arg Leu Ala Val Leu Gly Phe Ile
 630 635 640
 ctg tac acc tcc gcc ttc gti gcg gaa tca ctc cgg tca ggc atc aac 2794
 Leu Tyr Thr Ser Ala Phe Val Ala Glu Ser Leu Arg Ser Gly Ile Asn
 645 650 655
 acc gtg cac ttc ggg cag gcg gag gcc cgg tcg ctg gga ctc ggt 2842
 Thr Val His Phe Gly Gln Ala Glu Ala Ala Arg Ser Leu Gly Leu Gly
 660 665 670
 ttc agt gac atc ttc cgg tcc atc atc ttc ccc cag gcg gtg cgt gcc 2890
 Phe Ser Asp Ile Phe Arg Ser Ile Ile Phe Pro Gln Ala Val Arg Ala
 675 680 685
 gcc atc atc ccg ctg ggc aac acc ctc atc gcc ctg acc aag aac acc 2938
 Ala Ile Ile Pro Leu Gly Asn Thr Leu Ile Ala Leu Thr Lys Asn Thr
 690 695 700 705
 acg atc gcg tcc gtg atc ggc gtc ggt gag gcc tcg ctg ctg atg aag 2986
 Thr Ile Ala Ser Val Ile Gly Val Gly Glu Ala Ser Leu Leu Met Lys
 710 715 720
 tcc acg att gaa aat cat gcc aac atg ctc ttc gtc gtg ttc gcc atc 3034
 Ser Thr Ile Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala Ile
 725 730 735
 ttc gcc gtc ggc ttc atg atc ctc acc ctc ccc atg ggc ctg ggg ctt 3082
 Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu
 740 745 750
 gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtccctc ctccgtacgc 3135
 Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys
 755 760
 gcaacagtcc tctacgacgc cccccggcccc cggggacgca ggtccaaacac catcatcacc 3195
 atcgccacca ccctggggc agtggccgtc ctgtttctgg gtg ggc agt gtt ctc 3249
 Val Gly Ser Val Leu
 765
 cag gaa aac ggc cag ttg gac ggc gac aaa tgg acc ccg ttc ctc gat 3297

31/123

Gln	Glu	Asn	Gly	Gln	Leu	Asp	Gly	Asp	Lys	Trp	Thr	Pro	Phe	Leu	Asp	
770		775			780				785							
ccc	cag	acc	tgg	acc	acc	tat	ctt	ctg	ccc	ggc	ctg	tgg	gga	acc	ctg	3345
Pro	Gln	Thr	Trp	Thr	Thr	Tyr	Leu	Leu	Pro	Gly	Leu	Trp	Gly	Thr	Leu	
							790			795			800			
aag	gca	gcg	gtg	gcc	tcc	atc	ctt	ctc	gcg	ctg	atc	atg	ggc	acc	ctg	3393
Lys	Ala	Ala	Val	Ala	Ser	Ile	Leu	Leu	Ala	Leu	Ile	Met	Gly	Thr	Leu	
							805			810			815			
ctc	ggg	ctc	gga	cgc	atc	tcc	gaa	atc	cgg	ctc	ctg	cgc	tgg	ttc	tgc	3441
Leu	Gly	Leu	Gly	Arg	Ile	Ser	Glu	Ile	Arg	Leu	Leu	Arg	Trp	Phe	Cys	
							820			825			830			
ggg	atc	atc	atc	gag	acc	ttc	cgt	gcc	atc	ccg	gtg	ctg	atc	ctc	atg	3489
Gly	Ile	Ile	Ile	Glu	Thr	Phe	Arg	Ala	Ile	Pro	Val	Leu	Ile	Leu	Met	
							835			840			845			
atc	ttc	gcc	tat	cag	ttg	ttc	gcc	cgt	tac	cag	ctc	gtt	cca	tca	cgc	3537
Ile	Phe	Ala	Tyr	Gln	Leu	Phe	Ala	Arg	Tyr	Gln	Leu	Val	Pro	Ser	Arg	
							850			855			860			865
cag	ctg	gcc	ttc	gcc	gcf	gtg	gtc	ttc	ggt	ctc	acc	atg	tac	aac	ggc	3585
Gln	Leu	Ala	Phe	Ala	Ala	Val	Val	Phe	Gly	Leu	Thr	Met	Tyr	Asn	Gly	
							870			875			880			
tcc	gtc	atc	gcc	gag	atc	ctt	aga	tcg	ggt	atc	gcc	ttc	ctg	ccg	aag	3633
Ser	Val	Ile	Ala	Glu	Ile	Leu	Arg	Ser	Gly	Ile	Ala	Ser	Leu	Pro	Lys	
							885			890			895			
gga	cag	cgt	gag	gcf	gcf	atc	gcc	ctg	ggc	atg	tca	acc	cgc	cag	acc	3681
Gly	Gln	Arg	Glu	Ala	Ala	Ile	Ala	Leu	Gly	Met	Ser	Thr	Arg	Gln	Thr	
							900			905			910			
acc	tgg	tcg	atc	ctg	ctc	ccc	cag	gcf	gtg	gca	gcf	atg	ctg	ccc	gcc	3729
Thr	Trp	Ser	Ile	Leu	Leu	Pro	Gln	Ala	Val	Ala	Ala	Met	Leu	Pro	Ala	
							915			920			925			
ctg	atc	gcf	cag	atg	gtc	atc	gcf	ctg	aag	gac	tcc	gcc	ctc	ggt	tac	3777
Leu	Ile	Ala	Gln	Met	Val	Ile	Ala	Leu	Lys	Asp	Ser	Ala	Leu	Gly	Tyr	
							930			935			940			945
cag	atc	ggt	tat	atc	gag	gtg	gta	cgc	tcc	ggt	atc	cag	tcc	gca	tcc	3825
Gln	Ile	Gly	Tyr	Ile	Glu	Val	Val	Arg	Ser	Gly	Ile	Gln	Ser	Ala	Ser	
							950			955			960			
gtc	aac	cgg	aac	tac	ctg	gtt	gcc	ctc	gcf	gtg	gtc	gcf	gtc	atc	atg	3873
Val	Asn	Arg	Asn	Tyr	Leu	Ala	Ala	Leu	Ala	Val	Val	Ala	Val	Ile	Met	
							965			970			975			
atc	ctg	atc	aac	ttc	gca	ctg	acc	gca	ctg	gca	gag	cgt	atc	cag	cgt	3921
Ile	Leu	Ile	Asn	Phe	Ala	Leu	Thr	Ala	Leu	Ala	Glu	Arg	Ile	Gln	Arg	
							980			985			990			
cag	ctg	cgt	gcc	gga	cgt	gcc	cgc	agg	aac	att	gtg	gca	aag	gtg	ccc	3969
Gln	Leu	Arg	Ala	Gly	Arg	Ala	Arg	Arg	Asn	Ile	Val	Ala	Lys	Val	Pro	

32/123

995	1000	1005	
gag gaa ccc gat cag ggc ctg gat acc aag gac aat gtg aac gtg gat			4017
Glu Glu Pro Asp Gln Gly Leu Asp Thr Lys Asp Asn Val Asn Val Asp			
1010	1015	1020	1025
tgg cac gat ccc gat tac aag gaa gtc aaa cac ccg gga ccg tca ttc			4065
Trp His Asp Pro Asp Tyr Lys Glu Val Lys His Pro Gly Pro Ser Phe			
1030	1035	1040	
tgacagggtcc ctggatcccc gctgcggtca ggaggcgggt gcaacaatga agtccggctg			4125
cccagatgtc tggggcagcc ggactttgtg gcagatcaat gctgactgag gtcctcgatg			4185
cgtcatcga gagcctcccg ggccagggtcc atcgacatac ccgcggggaa tccacgacgg			4245
gcaagtgt			4254

<210> 17

<211> 242

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 17

Met Ile Lys Met Thr Gly Val Gln Lys Phe Phe Asp Asp Phe Gln Ala			
1	5	10	15
Leu Thr Asp Ile Asn Leu Glu Val Pro Ala Gly Gln Val Val Val			
20	25	30	
Leu Gly Pro Ser Gly Ser Gly Lys Ser Thr Leu Cys Arg Thr Ile Asn			
35	40	45	
Arg Leu Glu Thr Ile Glu Glu Gly Thr Ile Glu Ile Asp Gly Lys Leu			
50	55	60	
Leu Pro Glu Glu Gly Lys Asp Leu Ala Lys Ile Arg Ala Asp Val Gly			
65	70	75	80
Met Val Phe Gln Ser Phe Asn Leu Phe Pro His Leu Thr Ile Lys Asp			
85	90	95	
Asn Val Thr Leu Gly Pro Met Lys Val Arg Lys Met Lys Lys Ser Glu			
100	105	110	
Ala Asn Glu Val Ala Met Lys Leu Leu Glu Arg Val Gly Ile Ala Asn			
115	120	125	
Gln Ala Glu Lys Tyr Pro Ala Gln Leu Ser Gly Gly Gln Gln Gln Arg			
130	135	140	
Val Ala Ile Ala Arg Ala Leu Ala Met Asn Pro Lys Ile Met Leu Phe			
145	150	155	160
Asp Glu Pro Thr Ser Ala Leu Asp Pro Glu Met Val Asn Glu Val Leu			
165	170	175	
Asp Val Met Ala Ser Leu Ala Lys Glu Gly Met Thr Met Val Cys Val			
180	185	190	
Thr His Glu Met Gly Phe Ala Arg Arg Ala Ala Asp Arg Val Leu Phe			

33/123

195	200	205
Met Ser Asp Gly Ala Ile Val Glu Asp Ser Asp Pro Glu Thr Phe Phe		
210	215	220
Thr Asn Pro Gln Thr Asp Arg Ala Lys Asp Phe Leu Gly Lys Ile Leu		
225	230	235
Ala His		

<210> 18

<211> 294

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 18

Met Ser His Lys Arg Met Phe Thr Arg Leu Ala Ala Ala Thr Ser Ala			
1	5	10	15
Ala Val Leu Ala Gly Ile Thr Leu Thr Ala Cys Gly Asp Ser Glu Gly			
20	25	30	
Gly Asp Gly Leu Leu Ala Ala Ile Glu Asn Gly Asn Val Thr Ile Gly			
35	40	45	
Thr Lys Tyr Asp Gln Pro Gly Leu Gly Leu Arg Asn Pro Asp Asn Ser			
50	55	60	
Met Ser Gly Leu Asp Val Asp Val Ala Gln Tyr Val Val Asn Ser Ile			
65	70	75	80
Ala Asp Asp Asn Gly Trp Asp His Pro Thr Val Glu Trp Arg Glu Thr			
85	90	95	
Pro Ser Ala Gln Arg Glu Thr Leu Ile Gln Asn Gly Glu Val Asp Met			
100	105	110	
Ile Ala Ala Thr Tyr Ser Ile Asn Pro Gly Arg Ser Glu Ser Val Asn			
115	120	125	
Phe Gly Gly Pro Tyr Leu Leu Thr His Gln Ala Leu Leu Val Arg Glu			
130	135	140	
Asp Asp Asp Arg Ile Gln Thr Leu Glu Asp Leu Asp Asp Gly Leu Ile			
145	150	155	160
Leu Cys Ser Val Thr Gly Ser Thr Pro Ala Gln Lys Val Lys Asp Val			
165	170	175	
Leu Pro Gly Val Gln Leu Gln Glu Tyr Asp Thr Tyr Ser Ser Cys Val			
180	185	190	
Glu Ala Leu Ser Gln Gly Asn Val Asp Ala Met Thr Thr Asp Ala Thr			
195	200	205	
Ile Leu Phe Gly Tyr Ala Gln Gln Arg Glu Gly Glu Phe Arg Val Val			
210	215	220	
Glu Met Glu Gln Asp Gly Glu Pro Phe Thr Asn Glu Tyr Tyr Gly Ile			
225	230	235	240

34/123

Gly	Ile	Thr	Lys	Asp	Asp	Thr	Glu	Ala	Thr	Asp	Ala	Ile	Asn	Ala	Ala
				245					250				255		
Leu	Glu	Arg	Met	Tyr	Ala	Asp	Gly	Ser	Phe	Gln	Arg	Phe	Leu	Thr	Glu
			260					265			270				
Asn	Leu	Gly	Glu	Asp	Ser	Gln	Val	Val	Gln	Glu	Gly	Thr	Pro	Gly	Asp
			275				280				285				
Leu	Ser	Phe	Leu	Asp	Glu										
			290												

<210> 19

<211> 228

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 19

Met	Ser	Thr	Leu	Trp	Ala	Asp	Leu	Gly	Pro	Ser	Leu	Leu	Pro	Ala	Phe
1				5					10				15		
Trp	Val	Thr	Ile	Gln	Leu	Thr	Val	Tyr	Ser	Ala	Ile	Gly	Ser	Met	Ile
			20					25				30			
Leu	Gly	Thr	Ile	Leu	Thr	Ala	Met	Arg	Val	Ser	Pro	Val	Lys	Ile	Leu
			35				40				45				
Arg	Ser	Ile	Ser	Thr	Ala	Tyr	Ile	Asn	Thr	Val	Arg	Asn	Thr	Pro	Leu
			50				55			60					
Thr	Leu	Val	Ile	Leu	Phe	Cys	Ser	Phe	Gly	Leu	Tyr	Gln	Asn	Leu	Gly
			65				70			75			80		
Leu	Thr	Leu	Ala	Gly	Arg	Asp	Ser	Ser	Thr	Phe	Leu	Ala	Asp	Asn	Asn
				85				90				95			
Phe	Arg	Leu	Ala	Val	Leu	Gly	Phe	Ile	Leu	Tyr	Thr	Ser	Ala	Phe	Val
				100				105			110				
Ala	Glu	Ser	Leu	Arg	Ser	Gly	Ile	Asn	Thr	Val	His	Phe	Gly	Gln	Ala
				115				120			125				
Glu	Ala	Ala	Arg	Ser	Leu	Gly	Leu	Gly	Phe	Ser	Asp	Ile	Phe	Arg	Ser
				130				135			140				
Ile	Ile	Phe	Pro	Gln	Ala	Val	Arg	Ala	Ala	Ile	Ile	Pro	Leu	Gly	Asn
				145				150			155			160	
Thr	Leu	Ile	Ala	Leu	Thr	Lys	Asn	Thr	Thr	Ile	Ala	Ser	Val	Ile	Gly
					165				170			175			
Val	Gly	Glu	Ala	Ser	Leu	Leu	Met	Lys	Ser	Thr	Ile	Glu	Asn	His	Ala
					180			185			190				
Asn	Met	Leu	Phe	Val	Val	Phe	Ala	Ile	Phe	Ala	Val	Gly	Phe	Met	Ile
					195			200			205				
Leu	Thr	Leu	Pro	Met	Gly	Leu	Gly	Leu	Gly	Lys	Leu	Ala	Glu	Lys	Met
					210			215			220				

Ala Val Lys Lys
225

<210> 20
<211> 277
<212> PRT
<213> *Corynebacterium thermoaminogenes*

36/123

Pro Gly Pro Ser Phe
275

<210> 21
<211> 3598
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (454)..(3222)
<400> 21

agcacggcca aacatgagag aaacttcaca ttttgaattt cccctttcct gcatatggaa 60
aaccgcgggt gacacccctg ccattgggc agctcccccc acctcaccat gtccacattt 120
tccataatgt ggcctgttaac acccttgggc tcaaggcttc cacggcccac cgggaccctc 180
atcagcaggt gaaacagacc ctccgtcaat gctttgttaa aaagaaccgc cctttgtgcg 240
tatccttgcg tcaatttgtc gcgcactgcc accagcttc cttaggattt aacacggctcg 300
ggaaatccctc cccggatacc ctgcacgccc cacctccac accgacacccg gcggggaggg 360
ccgggcacgt tttagctgc gggtgatgga agcggtcgcc ggtccccgg tcgcataaac 420
gaaatgaaaa acattccaac aggagggtgtg gaa atg gcc gat caa gca aaa ctt 474

		Met	Ala	Asp	Gln	Ala	Lys	Leu
		1				5		

ggt ggc aaa ccc aca gat gac acc aac ttc gcg atg atc cgt gat ggc 522
Gly Gly Lys Pro Thr Asp Asp Thr Asn Phe Ala Met Ile Arg Asp Gly
10 15 20

gtt gca tct tat ttc aac gac tcc gac ccg gag gag acc aag gag tgg 570
Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Lys Glu Trp
25 30 35

atg gac tcc cta gac ggt cta ctg cag gat tcc tct ccg gag cgc gcc 618
Met Asp Ser Leu Asp Gly Leu Leu Gln Asp Ser Ser Pro Glu Arg Ala
40 45 50 55

cgt tac ctg atg ctg cgc ctg gag cgg gca tcc gcc aag cgt gtc 666
Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys Arg Val
60 65 70

cca ctg ccc ccg atg acg tcc acc gat tac gtc aac acc atc ccc aca 714
Pro Leu Pro Pro Met Thr Ser Thr Asp Tyr Val Asn Thr Ile Pro Thr
75 80 85

tcc atg gag ccc gat ttc ccg ggt gat gag gag atg gag aag cgc tac 762
Ser Met Glu Pro Asp Phe Pro Gly Asp Glu Glu Met Glu Lys Arg Tyr
90 95 100

cgc cgc tgg atg cgc tgg aac gcc gcc atc atg gtg cac cgt gcc cag 810
Arg Arg Trp Met Arg Trp Asn Ala Ala Ile Met Val His Arg Ala Gln
105 110 115

cgc ccg gga atc ggt gtg ggt ggg cac acg atc tcc acc tac gcc ggc 858

37/123

Arg Pro Gly Ile Gly Val Gly Gly His Ile Ser Thr Tyr Ala Gly Ala			
120	125	130	135
gcc cca ctc tac gag gtc ggt ttc aac cac ttc ttc cgc ggc aag gac			906
Ala Pro Leu Tyr Glu Val Gly Phe Asn His Phe Phe Arg Gly Lys Asp			
140	145	150	
cac ccg ggt ggc ggt gac cag gtc ttc cag ggt cac gcc tcc ccg			954
His Pro Gly Gly Asp Gln Val Phe Phe Gln Gly His Ala Ser Pro			
155	160	165	
ggc atg tac gcc cgc gcc ttc ctc gag ggc cgt ctc acc gag agc gat			1002
Gly Met Tyr Ala Arg Ala Phe Leu Glu Gly Arg Leu Thr Glu Ser Asp			
170	175	180	
ctg gac agc ttc cgc cag gag gtc tcc tac gaa ggt ggt ggc atc ccg			1050
Leu Asp Ser Phe Arg Gln Glu Val Ser Tyr Glu Gly Gly Ile Pro			
185	190	195	
tcc tac ccg cac ccg cac ggc atg ccg gac ttc tgg gag ttc ccg acc			1098
Ser Tyr Pro His Pro His Gly Met Pro Asp Phe Trp Glu Phe Pro Thr			
200	205	210	215
gtg tcc atg ggc ctc ggg ccc atg gat gcc atc tac cag gcg cgc ttc			1146
Val Ser Met Gly Leu Gly Pro Met Asp Ala Ile Tyr Gln Ala Arg Phe			
220	225	230	
aac cgc tac ctg cac aac cgt ggc atc aag gac acc tcg gag cag cac			1194
Asn Arg Tyr Leu His Asn Arg Gly Ile Lys Asp Thr Ser Glu Gln His			
235	240	245	
gtc tgg gca ttc ctc ggt gac ggc gag atg gat gag ccg gag tcc cgt			1242
Val Trp Ala Phe Leu Gly Asp Gly Glu Met Asp Glu Pro Glu Ser Arg			
250	255	260	
ggt ctc atc cac cag gct gcg ctg aac aac ctg gac aac ctc acc ttc			1290
Gly Leu Ile His Gln Ala Ala Leu Asn Asn Leu Asp Asn Leu Thr Phe			
265	270	275	
gtg atc aac tgc aac ctg cag cgt ctt gat ggc ccg gtc cgc ggt aac			1338
Val Ile Asn Cys Asn Leu Gln Arg Leu Asp Gly Pro Val Arg Gly Asn			
280	285	290	295
acc aag atc atc cag gaa ctc gag tcc ttc cgt ggt gcc ggc tgg			1386
Thr Lys Ile Ile Gln Glu Leu Glu Ser Phe Phe Arg Gly Ala Gly Trp			
300	305	310	
tcc gtc atc aag gtc atc tgg ggc cgt gag tgg gat gaa ctg ctg gag			1434
Ser Val Ile Lys Val Ile Trp Gly Arg Glu Trp Asp Glu Leu Leu Glu			
315	320	325	
aag gac cag gac ggt gct ctt gtc gag gtc atg aac aac acc tcc gac			1482
Lys Asp Gln Asp Gly Ala Leu Val Glu Val Met Asn Asn Thr Ser Asp			
330	335	340	
ggt gac tac cag acc ttc aag gcc aat gac ggt gcc tac gtc cgt gag			1530
Gly Asp Tyr Gln Thr Phe Lys Ala Asn Asp Gly Ala Tyr Val Arg Glu			

38/123

345	350	355	
cac ttc ttc ggc cgt gac ccc cgc acc ctc aag ctc gtc gag gac atg			1578
His Phe Phe Gly Arg Asp Pro Arg Thr Leu Lys Leu Val Glu Asp Met			
360	365	370	375
acc gac gag gag atc tgg aag ctg ccc cgt ggt ggc cat gac tac cgt			1626
Thr Asp Glu Glu Ile Trp Lys Leu Pro Arg Gly Gly His Asp Tyr Arg			
380	385	390	
aag gtc tac gcc gcc tac aag cgt gcg ctg gag acc aag gac cgc ccg			1674
Lys Val Tyr Ala Ala Tyr Lys Arg Ala Leu Glu Thr Lys Asp Arg Pro			
395	400	405	
acc gtc att ctc gcc cat acc atc aag ggc tac ggc ctg ggc cac aac			1722
Thr Val Ile Leu Ala His Thr Ile Lys Gly Tyr Gly Leu Gly His Asn			
410	415	420	
ttc gag ggc cgc aac gcg acc cac cag atg aag aag ctg acc ctg gat			1770
Phe Glu Gly Arg Asn Ala Thr His Gln Met Lys Lys Leu Thr Leu Asp			
425	430	435	
gac ctg aag ctg ttc cgt gac aag cag ggt ctg ccc atc acc gat gag			1818
Asp Leu Lys Leu Phe Arg Asp Lys Gln Gly Leu Pro Ile Thr Asp Glu			
440	445	450	455
gag ctg gag aag gat ccc tac ctg cct ccg tac tac cac ccg ggt gag			1866
Glu Leu Glu Lys Asp Pro Tyr Leu Pro Pro Tyr Tyr His Pro Gly Glu			
460	465	470	
gac gca ccg gag atc aag tac atg aag gag cgt cgc cag gcg ctc ggt			1914
Asp Ala Pro Glu Ile Lys Tyr Met Lys Glu Arg Arg Gln Ala Leu Gly			
475	480	485	
ggt ttc ctg ccg gag cgc cgt gag aag tac gag cca ctg cag gtt ccc			1962
Gly Phe Leu Pro Glu Arg Arg Glu Lys Tyr Glu Pro Leu Gln Val Pro			
490	495	500	
ccg ctg gac aag ctg cgg tcc gtg cgc aag ggt tcc ggc aag cag cag			2010
Pro Leu Asp Lys Leu Arg Ser Val Arg Lys Gly Ser Gly Lys Gln Gln			
505	510	515	
gtg gcc acc acc atg gcc acg gtg cgt acc ttc aag gaa ctc atg cgg			2058
Val Ala Thr Thr Met Ala Thr Val Arg Thr Phe Lys Glu Leu Met Arg			
520	525	530	535
gac aag aac ctg gcc gac cgc ttg gtc ccg atc atc ccg gat gag gcc			2106
Asp Lys Asn Leu Ala Asp Arg Leu Val Pro Ile Ile Pro Asp Glu Ala			
540	545	550	
cgc acc ttc ggc ctg gac tcc tgg ttc ccg acc ctg aaa atc tac aac			2154
Arg Thr Phe Gly Leu Asp Ser Trp Phe Pro Thr Leu Lys Ile Tyr Asn			
555	560	565	
ccg cac ggt cag aac tac gtg ccg gtc gac cat gac ctc atg ctg tcc			2202
Pro His Gly Gln Asn Tyr Val Pro Val Asp His Asp Leu Met Leu Ser			
570	575	580	

39/123

tac	cgt	gag	gcc	aag	gac	ggc	cag	atc	ctg	cat	gag	ggc	atc	aac	gag	2250
Tyr	Arg	Glu	Ala	Lys	Asp	Gly	Gln	Ile	Leu	His	Glu	Gly	Ile	Asn	Glu	
585								590					595			
gcc	ggt	tcc	gtg	gca	tcg	ttt	atc	gcc	gcc	gga	acc	tcc	tac	gcc	acc	2298
Ala	Gly	Ser	Val	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Thr	Ser	Tyr	Ala	Thr	
600							605				610			615		
cat	ggc	gag	gcc	atg	atc	ccg	ctg	tac	atc	tcc	tac	tcg	atg	tcc	ggc	2346
His	Gly	Glu	Ala	Met	Ile	Pro	Leu	Tyr	Ile	Phe	Tyr	Ser	Met	Phe	Gly	
							620			625			630			
tcc	cag	cgc	acc	ggt	gac	ggc	atc	tgg	gcc	gca	gcc	gac	cag	atg	acg	2394
Phe	Gln	Arg	Thr	Gly	Asp	Gly	Ile	Trp	Ala	Ala	Ala	Asp	Gln	Met	Thr	
							635			640			645			
cgt	ggt	tcc	ctc	ctg	ggc	acc	gcc	ggt	cgc	acc	acc	ctg	acc	ggt		2442
Arg	Gly	Phe	Leu	Leu	Gly	Ala	Thr	Ala	Gly	Arg	Thr	Thr	Leu	Thr	Gly	
							650			655			660			
gag	ggc	ctc	cag	cac	atg	gat	ggc	cac	tcc	ccg	atc	ctg	gcc	tcc	acc	2490
Glu	Gly	Leu	Gln	His	Met	Asp	Gly	His	Ser	Pro	Ile	Leu	Ala	Ser	Thr	
							665			670			675			
aac	ccc	ggt	gtg	gag	acc	tat	gac	ccg	gcg	tcc	tcc	tac	gag	atc	gcg	2538
Asn	Pro	Gly	Val	Glu	Thr	Tyr	Asp	Pro	Ala	Phe	Ser	Tyr	Glu	Ile	Ala	
							680			685			690			695
cac	ctg	gtc	cac	cgc	ggc	atc	gac	cgc	atg	tac	gga	ccg	ggc	aag	ggt	2586
His	Leu	Val	His	Arg	Gly	Ile	Asp	Arg	Met	Tyr	Gly	Pro	Gly	Lys	Gly	
							700			705			710			
gag	aat	gtc	atc	tac	tac	ctc	acc	atc	tac	aac	gag	cca	acc	ccg	cag	2634
Glu	Asn	Val	Ile	Tyr	Tyr	Leu	Thr	Ile	Tyr	Asn	Glu	Pro	Thr	Pro	Gln	
							715			720			725			
ccg	gct	gag	cct	gag	gat	ctg	gac	gtc	gag	ggc	cgt	cac	aag	ggc	atc	2682
Pro	Ala	Glu	Pro	Glu	Asp	Leu	Asp	Val	Glu	Gly	Leu	His	Lys	Gly	Ile	
							730			735			740			
tac	ctc	tac	gac	aag	gcc	gcc	gag	ggt	gag	ggc	cat	gag	gcc	tcg	atc	2730
Tyr	Leu	Tyr	Asp	Lys	Ala	Ala	Glu	Gly	Glu	Gly	His	Glu	Ala	Ser	Ile	
							745			750			755			
ctg	gcc	tcc	ggc	atc	ggc	atg	cag	tgg	gca	cgt	cgc	gcc	cgt	gac	atc	2778
Leu	Ala	Ser	Gly	Ile	Gly	Met	Gln	Trp	Ala	Leu	Arg	Ala	Arg	Asp	Ile	
							760			765			770			775
ctc	gcc	gag	gat	tac	ggc	atc	cgt	gcc	aac	atc	tcc	tcc	gcc	acc	tcg	2826
Leu	Ala	Glu	Asp	Tyr	Gly	Ile	Arg	Ala	Asn	Ile	Phe	Ser	Ala	Thr	Ser	
							780			785			790			
tgg	gtg	gag	ctg	gcc	cgc	gac	ggt	gcc	cgc	cgt	aac	ctg	gag	gcf	ctg	2874
Trp	Val	Glu	Leu	Ala	Arg	Asp	Gly	Ala	Arg	Arg	Asn	Leu	Glu	Ala	Leu	
							795			800			805			
cgc	aac	ccg	ggt	gat	gtc	ggt	gag	gca	tcc	gtg	acc	acc	cag	ctg		2922

40/123

Arg Asn Pro Gly Ala Asp Val Gly Glu Ala Phe Val Thr Thr Gln Leu			
810	815	820	
aag aag ggt tcc ggc ccc tac gtc gcg gtg tcc gac ttc gcg acc gac			2970
Lys Lys Gly Ser Gly Pro Tyr Val Ala Val Ser Asp Phe Ala Thr Asp			
825	830	835	
ctg ccg aac cag atc cgc gag tgg gtt ccc ggt gac tac atc gtc ctc			3018
Leu Pro Asn Gln Ile Arg Glu Trp Val Pro Gly Asp Tyr Ile Val Leu			
840	845	850	855
ggt gcc gac ggc ttc ggt ttc tcc gat acc cgt ccg gca gcc cgt cgt			3066
Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr Arg Pro Ala Ala Arg Arg			
860	865	870	
tac ttc aac atc gac gcc gag tcc atc gtc gtg gcg gtc ctg cgc ggc			3114
Tyr Phe Asn Ile Asp Ala Glu Ser Ile Val Val Ala Val Leu Arg Gly			
875	880	885	
ctg gtc cgc gag ggt gtc atc gat gcc tcc gtg gcg gcg cac gcg gct			3162
Leu Val Arg Glu Gly Val Ile Asp Ala Ser Val Ala Ala His Ala Ala			
890	895	900	
gag aag tac aag ctg tcc gac ccg acg gca cca cag gtc gat ccg gac			3210
Glu Lys Tyr Lys Leu Ser Asp Pro Thr Ala Pro Gln Val Asp Pro Asp			
905	910	915	
gca ccg atc gag tagacctgt tgcgacgaa aaacaccccc gccccctcac			3262
Ala Pro Ile Glu			
920			
atgatgaggg gggcgggggt gtgcgttt acggcggtta cagggggta tcagcccagc			3322
atcgccattat cggagagcgt cgccgccttg atcttggcga attccctgcag cagatcccgc			3382
acggtgagct tctgcttcac ctctgcgttg gcctcataga cgatccgtcc ctctgtgcata			3442
atgatgaggc ggttaccagg gcggatagcc tttccatgt tggttgac catgagggttg			3502
gtcagtttgc ctgcctcgac gatcttcgt gtcagggtgg tgaccagttc ggctcgctgg			3562
gggtccaggg cggcggttgt ttcgtcgaga agcatg			3598

<210> 22

<211> 923

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 22

Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Thr Asp Asp Thr Asn			
1	5	10	15
Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp			
20	25	30	
Pro Glu Glu Thr Lys Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln			
35	40	45	
Asp Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu			

41/123

50	55	60
Arg Ala Ser Ala Lys Arg Val Pro Leu Pro Pro Met Thr Ser Thr Asp		
65	70	75
Tyr Val Asn Thr Ile Pro Thr Ser Met Glu Pro Asp Phe Pro Gly Asp		80
85	90	95
Glu Glu Met Glu Lys Arg Tyr Arg Arg Trp Met Arg Trp Asn Ala Ala		
100	105	110
Ile Met Val His Arg Ala Gln Arg Pro Gly Ile Gly Val Gly Gly His		
115	120	125
Ile Ser Thr Tyr Ala Gly Ala Ala Pro Leu Tyr Glu Val Gly Phe Asn		
130	135	140
His Phe Phe Arg Gly Lys Asp His Pro Gly Gly Gly Asp Gln Val Phe		
145	150	155
Phe Gln Gly His Ala Ser Pro Gly Met Tyr Ala Arg Ala Phe Leu Glu		160
165	170	175
Gly Arg Leu Thr Glu Ser Asp Leu Asp Ser Phe Arg Gln Glu Val Ser		
180	185	190
Tyr Glu Gly Gly Ile Pro Ser Tyr Pro His Pro His Gly Met Pro		
195	200	205
Asp Phe Trp Glu Phe Pro Thr Val Ser Met Gly Leu Gly Pro Met Asp		
210	215	220
Ala Ile Tyr Gln Ala Arg Phe Asn Arg Tyr Leu His Asn Arg Gly Ile		
225	230	235
Lys Asp Thr Ser Glu Gln His Val Trp Ala Phe Leu Gly Asp Gly Glu		240
245	250	255
Met Asp Glu Pro Glu Ser Arg Gly Leu Ile His Gln Ala Ala Leu Asn		
260	265	270
Asn Leu Asp Asn Leu Thr Phe Val Ile Asn Cys Asn Leu Gln Arg Leu		
275	280	285
Asp Gly Pro Val Arg Gly Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser		
290	295	300
Phe Phe Arg Gly Ala Gly Trp Ser Val Ile Lys Val Ile Trp Gly Arg		
305	310	315
Glu Trp Asp Glu Leu Leu Glu Lys Asp Gln Asp Gly Ala Leu Val Glu		320
325	330	335
Val Met Asn Asn Thr Ser Asp Gly Asp Tyr Gln Thr Phe Lys Ala Asn		
340	345	350
Asp Gly Ala Tyr Val Arg Glu His Phe Phe Gly Arg Asp Pro Arg Thr		
355	360	365
Leu Lys Leu Val Glu Asp Met Thr Asp Glu Glu Ile Trp Lys Leu Pro		
370	375	380
Arg Gly Gly His Asp Tyr Arg Lys Val Tyr Ala Ala Tyr Lys Arg Ala		
385	390	395
		400

42/123

Leu Glu Thr Lys Asp Arg Pro Thr Val Ile Leu Ala His Thr Ile Lys
 405 410 415
 Gly Tyr Gly Leu Gly His Asn Phe Glu Gly Arg Asn Ala Thr His Gln
 420 425 430
 Met Lys Lys Leu Thr Leu Asp Asp Leu Lys Leu Phe Arg Asp Lys Gln
 435 440 445
 Gly Leu Pro Ile Thr Asp Glu Glu Leu Glu Lys Asp Pro Tyr Leu Pro
 450 455 460
 Pro Tyr Tyr His Pro Gly Glu Asp Ala Pro Glu Ile Lys Tyr Met Lys
 465 470 475 480
 Glu Arg Arg Gln Ala Leu Gly Gly Phe Leu Pro Glu Arg Arg Glu Lys
 485 490 495
 Tyr Glu Pro Leu Gln Val Pro Pro Leu Asp Lys Leu Arg Ser Val Arg
 500 505 510
 Lys Gly Ser Gly Lys Gln Gln Val Ala Thr Thr Met Ala Thr Val Arg
 515 520 525
 Thr Phe Lys Glu Leu Met Arg Asp Lys Asn Leu Ala Asp Arg Leu Val
 530 535 540
 Pro Ile Ile Pro Asp Glu Ala Arg Thr Phe Gly Leu Asp Ser Trp Phe
 545 550 555 560
 Pro Thr Leu Lys Ile Tyr Asn Pro His Gly Gln Asn Tyr Val Pro Val
 565 570 575
 Asp His Asp Leu Met Leu Ser Tyr Arg Glu Ala Lys Asp Gly Gln Ile
 580 585 590
 Leu His Glu Gly Ile Asn Glu Ala Gly Ser Val Ala Ser Phe Ile Ala
 595 600 605
 Ala Gly Thr Ser Tyr Ala Thr His Gly Glu Ala Met Ile Pro Leu Tyr
 610 615 620
 Ile Phe Tyr Ser Met Phe Gly Phe Gln Arg Thr Gly Asp Gly Ile Trp
 625 630 635 640
 Ala Ala Ala Asp Gln Met Thr Arg Gly Phe Leu Leu Gly Ala Thr Ala
 645 650 655
 Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln His Met Asp Gly His
 660 665 670
 Ser Pro Ile Leu Ala Ser Thr Asn Pro Gly Val Glu Thr Tyr Asp Pro
 675 680 685
 Ala Phe Ser Tyr Glu Ile Ala His Leu Val His Arg Gly Ile Asp Arg
 690 695 700
 Met Tyr Gly Pro Gly Lys Gly Glu Asn Val Ile Tyr Tyr Leu Thr Ile
 705 710 715 720
 Tyr Asn Glu Pro Thr Pro Gln Pro Ala Glu Pro Glu Asp Leu Asp Val
 725 730 735
 Glu Gly Leu His Lys Gly Ile Tyr Leu Tyr Asp Lys Ala Ala Glu Gly

43/123

740	745	750
Glu	Gly	
Gly	His	Glu
Glu	Ala	Ser
Ile	Leu	Ala
Ser	Gly	Ile
Gly	Ile	Gly
Met	Gln	Trp
755	760	765
Ala	Leu	Arg
Ala	Arg	Asp
Ile	Leu	Ala
Glu	Asp	Tyr
		Gly
Ile	Arg	Ala
770	775	780
Asn	Ile	Phe
Phe	Ser	Ala
Thr	Ser	Trp
Trp	Val	Glu
Val	Leu	Ala
Glu	Arg	Asp
Ala	Asn	Gly
Leu	Glu	Ala
Arg	Arg	Asn
Asn	Leu	Leu
Glu	Ala	Arg
Ala	Leu	Asn
805	810	815
Pro	Gly	Pro
Asp		Gly
Tyr		Ala
Ile		Asp
Val		Gly
Leu		Ala
Gly		Asp
Ala		Gly
Asp		Phe
		Gly
Val		Phe
Ser		Ser
Asp		Asp
Phe		Asp
Ala		Val
Thr		Thr
Asp		Gly
Leu		Pro
Pro		Asn
Asp		Gln
		Ile
Ala		Arg
Arg		Glu
Ala		Trp
820	825	830
Val	Ser	Asp
Asp	Phe	Ala
Ala	Thr	Thr
Thr	Asp	Leu
Leu	Pro	Asn
Pro	Gly	Gln
Asn	Ile	Ile
Ile	Arg	Arg
Arg	Glu	Trp
835	840	845
Pro	Gly	Asp
Asp	Tyr	Tyr
Tyr	Ile	Val
Val	Leu	Gly
Gly	Ala	Asp
Ala	Asp	Gly
Asp		Phe
		Gly
850	855	860
Thr	Arg	Pro
Pro	Ala	Ala
Ala	Arg	Arg
Arg	Tyr	Phe
Tyr	Asn	Ile
Asn	Ile	Asp
Ile	Asp	Ala
Asp		Glu
		Ser
865	870	880
Val	Val	Ala
Ala	Val	Leu
Val	Arg	Gly
Leu	Gly	Leu
Gly	Val	Arg
Leu	Glu	Gly
Arg	Val	Val
885	890	895
Ser	Val	Ala
Ala	Ala	His
Ala	Ala	Glu
Glu	Lys	Tyr
Lys	Tyr	Lys
Leu	Lys	Leu
Ser	Leu	Ser
Asp	Ser	Asp
Pro	Asp	Pro
Thr		Thr
900	905	910
Ala	Pro	Gln
Pro	Val	Asp
Asp	Pro	Asp
Ala	Pro	Ile
Ile	Glu	
915	920	

<210> 23

<211> 4013

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (319)..(3735)

<400> 23

```

gtccttttg caaattctgc aaagtggta gaggcagat gtcagcaggt cggccgatt 60
tctgttagaa agtggagccg tgggggcaa cattaacctt ccccctggta tcttagctaaa 120
cgccaatggg ggtctcgggc gggggcatt ctttcacgg caaggtggtg aaatccgca 180
ggtcactccc cggccggcgg tagagaacgg agcgaaaacg gaaagcaata cgiggtttc 240
cggaactggcc gttacgtatgt tctgaagagt gactgccatc acccaacagg ctggccctcg 300
tcgaaaggaa caaaaact gtg gtt aca aca ccc tcc acg ctg ccg gcg 351
                                Val Val Thr Thr Pro Ser Thr Leu Pro Ala
                                1           5           10
ttc aaa aag atc ctg gtg gcc aac cga ggt gaa atc gcg gtg cga gca 399

```

44/123

Phe	Lys	Lys	Ile	Leu	Val	Ala	Asn	Arg	Gly	Glu	Ile	Ala	Val	Arg	Ala	
15					20						25					
ttc	cgc	gcc	gcc	tac	gag	acc	ggg	gcc	gca	acc	gtg	gcc	atc	tac	ccc	447
Phe	Arg	Ala	Ala	Tyr	Glu	Thr	Gly	Ala	Ala	Thr	Val	Ala	Ile	Tyr	Pro	
30					35						40					
cgg	gag	gac	cgt	ggc	tcc	tac	cgc	tcc	tcc	gcc	tcc	gag	gcg	gtg		495
Arg	Glu	Asp	Arg	Gly	Ser	Phe	His	Arg	Ser	Phe	Ala	Ser	Glu	Ala	Val	
45					50						55					
agg	atc	gga	acc	gag	ggc	tca	ccc	gtc	aag	gcg	tac	ctc	gat	att	gat	543
Arg	Ile	Gly	Thr	Glu	Gly	Ser	Pro	Val	Lys	Ala	Tyr	Leu	Asp	Ile	Asp	
60					65				70				75			
gag	atc	atc	aac	gcc	gcc	aag	aag	gtg	aaa	gcg	gac	gcg	gtc	tac	ccg	591
Glu	Ile	Ile	Asn	Ala	Ala	Lys	Lys	Val	Lys	Ala	Asp	Ala	Val	Tyr	Pro	
80					85				90							
ggg	tat	ggt	ttc	cit	tcg	gaa	aat	gcc	cag	ctc	gct	cgt	gaa	tgc	gct	639
Gly	Tyr	Gly	Phe	Leu	Ser	Glu	Asn	Ala	Gln	Leu	Ala	Arg	Glu	Cys	Ala	
95					100				105							
gag	aac	ggc	att	acc	ttc	atc	ggt	ccc	acc	ccg	gag	gtg	ctc	gac	ctc	687
Glu	Asn	Gly	Ile	Thr	Phe	Ile	Gly	Pro	Thr	Pro	Glu	Val	Leu	Asp	Leu	
110					115				120							
acg	ggc	gac	aag	tcc	aag	gct	gtg	tcc	gcc	gct	aag	aag	gcc	ggg	ctg	735
Thr	Gly	Asp	Lys	Ser	Lys	Ala	Val	Ser	Ala	Ala	Lys	Lys	Ala	Gly	Leu	
125					130				135							
ccg	gtg	ctg	gct	gaa	tcc	acc	ccc	agc	acc	gac	atc	gat	gag	atc	gtc	783
Pro	Val	Leu	Ala	Glu	Ser	Thr	Pro	Ser	Thr	Asp	Ile	Asp	Glu	Ile	Val	
140					145				150			155				
aag	agt	gcc	gag	ggg	cag	acc	tac	ccg	atc	ttc	gtc	aag	gcc	gtc	gca	831
Lys	Ser	Ala	Glu	Gly	Gln	Thr	Tyr	Pro	Ile	Phe	Val	Lys	Ala	Val	Ala	
160					165				170							
ggt	ggt	ggc	ggg	cgt	ggt	atg	cgg	ttc	gtc	gag	aag	ccc	gag	gac	ctg	879
Gly	Gly	Gly	Gly	Arg	Gly	Met	Arg	Phe	Val	Glu	Lys	Pro	Glu	Asp	Leu	
175					180				185							
cgt	gag	ctg	gcc	agg	gag	gcc	tcc	cgc	gag	gct	gag	gcc	gct	ttc	ggt	927
Arg	Glu	Leu	Ala	Arg	Glu	Ala	Ser	Arg	Glu	Ala	Glu	Ala	Ala	Phe	Gly	
190					195				200							
gac	gga	tcc	gtc	tac	gtc	gaa	cgg	gcc	gtg	atc	aaa	ccc	cag	cac	atc	975
Asp	Gly	Ser	Val	Tyr	Val	Glu	Arg	Ala	Val	Ile	Lys	Pro	Gln	His	Ile	
205					210				215							
gag	gtg	cag	atc	ctc	ggt	gat	cac	acc	ggc	gat	gtc	atc	cac	ctg	tat	1023
Glu	Val	Gln	Ile	Leu	Gly	Asp	His	Thr	Gly	Asp	Val	Ile	His	Leu	Tyr	
220					225				230			235				
gaa	cgc	gac	tgt	tcc	ctg	cag	cgc	cgc	cac	cag	aag	gtc	gtg	gag	atc	1071
Glu	Arg	Asp	Cys	Ser	Leu	Gln	Arg	Arg	His	Gln	Lys	Val	Val	Glu	Ile	

45/123

240	245	250	
gca cct gcc cag cac ctc gac ccg gag ctg cgc gac cgccatc tgt gcc			1119
Ala Pro Ala Gln His Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala			
255	260	265	
gat gcc gtg aag ttc tgc aaa tcc atc gga tac cag ggc gcc ggc acc			1167
Asp Ala Val Lys Phe Cys Lys Ser Ile Gly Tyr Gln Gly Ala Gly Thr			
270	275	280	
gtg gag ttc ctc gtc gac gag gcg ggc aac cac gtc ttc att gag atg			1215
Val Glu Phe Leu Val Asp Glu Ala Gly Asn His Val Phe Ile Glu Met			
285	290	295	
aac ccc cgc atc cag gtg gaa cac acc gtt acc gag gag gtc acc tcc			1263
Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Ser			
300	305	310	315
gtc gac ctg gtc aag gcg cag atg cac ctg gcc gcc ggt gcc acc ctg			1311
Val Asp Leu Val Lys Ala Gln Met His Leu Ala Ala Gly Ala Thr Leu			
320	325	330	
aag gaa ctg ggc ctg acc cag gac aag atc acc acc cac ggt gcc gcc			1359
Lys Glu Leu Gly Leu Thr Gln Asp Lys Ile Thr Thr His Gly Ala Ala			
335	340	345	
ctg cag tgc cgc atc acc acg gag gac ccg tcc aac aac ttc cgg ccc			1407
Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ser Asn Asn Phe Arg Pro			
350	355	360	
gac acc ggt gtg atc acc gcc tac cgc tcc ccg ggt ggt gcg ggt gtg			1455
Asp Thr Gly Val Ile Thr Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val			
365	370	375	
cgt ctc gac ggc gca gcc cag ctc ggc ggc gag atc acc gca cat ttc			1503
Arg Leu Asp Gly Ala Ala Gln Leu Gly Gly Glu Ile Thr Ala His Phe			
380	385	390	395
gat tcc atg ctg gtc aag atg acc tgc cgc ggt tcc gat ttc gag acc			1551
Asp Ser Met Leu Val Lys Met Thr Cys Arg Gly Ser Asp Phe Glu Thr			
400	405	410	
gcc gtg tcc cga gcc cag cgc gcc ctg gcg gag ttc aac gtc tcc ggc			1599
Ala Val Ser Arg Ala Gln Arg Ala Leu Ala Glu Phe Asn Val Ser Gly			
415	420	425	
gtg gcc acc aac atc ggc ttc ctg cgt gcg ctg ctg cgc gag gaa gac			1647
Val Ala Thr Asn Ile Gly Phe Leu Arg Ala Leu Leu Arg Glu Glu Asp			
430	435	440	
tcc acc aag agg cgc atc gac acc ggc ttc atc ggc tcc cac cag cac			1695
Phe Thr Lys Arg Arg Ile Asp Thr Gly Phe Ile Gly Ser His Gln His			
445	450	455	
ctg ctc cag gcc cca ccg gcc gac gat gag cag ggg cgg atc ctg gaa			1743
Leu Leu Gln Ala Pro Pro Ala Asp Asp Glu Gln Gly Arg Ile Leu Glu			
460	465	470	475

46/123

tac ctg gcg gat gtc acc gtg aac aaa ccc cac ggt gaa cgc ccc gag	1791
Tyr Leu Ala Asp Val Thr Val Asn Lys Pro His Gly Glu Arg Pro Glu	
480	485
aca gcc cgt ccg ata gag aag ctg ccc gag gtg gag aac atc ccg ctg	1839
Thr Ala Arg Pro Ile Glu Lys Leu Pro Glu Val Glu Asn Ile Pro Leu	
495	500
cca cgc ggc tcc cgc gac cgc ctg aag cag ctc ggc ccg gag ggt ttc	1887
Pro Arg Gly Ser Arg Asp Arg Leu Lys Gln Leu Gly Pro Glu Gly Phe	
510	515
gcc cgc gat ctg cgc gaa cag gat gcc ctg gcc gtc acc gac acc acc	1935
Ala Arg Asp Leu Arg Glu Gln Asp Ala Leu Ala Val Thr Asp Thr Thr	
525	530
ttc cgc gat gcc cac cag tcc ctc ctt gcc acc cgc ggt cgc tcc ttc	1983
Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe	
540	545
gct ctc acc ccg gcg gct cgc gca aag ctc acc ccc gag ctg	2031
Ala Leu Thr Pro Ala Ala Arg Ala Val Ala Lys Leu Thr Pro Glu Leu	
560	565
ctg tcg gtg gag gcc tgg ggc ggt gcc acc tac gac gtg gcc atg cgc	2079
Leu Ser Val Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg	
575	580
ttc ctc ttc gag gat ccg tgg gca cgc ctg gat gag ctg cgt gag gct	2127
Phe Leu Phe Glu Asp Pro Trp Ala Arg Leu Asp Glu Leu Arg Glu Ala	
590	595
atg ccg aat gtg aac atc cag atg ctg ctg cgt ggt cgc aac acc gtc	2175
Met Pro Asn Val Asn Ile Gln Met Leu Leu Arg Gly Arg Asn Thr Val	
605	610
ggg tac acc ccg tac ccc gat tcg gtg tgc cgc gct ttt ggt cag gag	2223
Gly Tyr Thr Pro Tyr Pro Asp Ser Val Cys Arg Ala Phe Val Gln Glu	
620	625
gcc gcc aag tcc ggt gtg gac atc ttc cgc atc ttc gac gct ctc aac	2271
Ala Ala Lys Ser Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn	
640	645
gac atc tcc cag atg cgc ccg gcc atc gac gcc gtc ctg gag acc ggc	2319
Asp Ile Ser Gln Met Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Gly	
655	660
acc agt gtt gcc gag gtc gcc atg gct tac tcc ggt gac ctg tcc aat	2367
Thr Ser Val Ala Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asn	
670	675
ccg ggg gag aag ctc tac acc ctg gac tac tac ctg aac ctg gcc gag	2415
Pro Gly Glu Lys Leu Tyr Thr Leu Asp Tyr Tyr Leu Asn Leu Ala Glu	
685	690
cag atc gtc gac tcc ggt gca cac atc ctg gcc atc aag gac atg gcc	2463

47/123

Gln	Ile	Val	Asp	Ser	Gly	Ala	His	Ile	Leu	Ala	Ile	Lys	Asp	Met	Ala	
700																715
705																
ggc	ctg	ctg	cgc	cgc	gcc	gcf	gcf	ccc	aaa	ctg	gtc	acc	gcc	ctg	cgc	2511
Gly	Leu	Leu	Arg	Arg	Ala	Ala	Ala	Pro	Lys	Leu	Val	Thr	Ala	Leu	Arg	
720																730
725																
cgt	gaa	tcc	gac	ctg	ccc	gtg	cat	gtc	cac	acc	cac	gac	acc	gcc	ggc	2559
Arg	Glu	Phe	Asp	Leu	Pro	Val	His	Val	His	Thr	His	Asp	Thr	Ala	Gly	
735																745
740																
ggt	cag	ctg	gcc	acc	tac	ctg	gcc	gcc	aac	gcc	ggg	gcc	gat	gcc		2607
Gly	Gln	Leu	Ala	Thr	Tyr	Leu	Ala	Ala	Ala	Asn	Ala	Gly	Ala	Asp	Ala	
750																760
755																
gtc	gac	gcc	gcc	tcc	gca	ccc	ctg	tcc	ggt	acc	acc	tcc	cag	ccg	tcg	2655
Val	Asp	Ala	Ala	Ser	Ala	Pro	Leu	Ser	Gly	Thr	Thr	Ser	Gln	Pro	Ser	
765																775
770																
atg	tcc	gct	ctg	gtt	gcc	gcf	ttt	gcf	cac	acc	cga	cgc	gac	acc	ggc	2703
Met	Ser	Ala	Leu	Val	Ala	Ala	Phe	Ala	His	Thr	Arg	Arg	Asp	Thr	Gly	
780																795
785																
ctc	aac	ctg	cag	gcc	gtc	tcc	gac	ctg	gaa	ccg	tac	tgg	gag	gcf	gtc	2751
Leu	Asn	Leu	Gln	Ala	Val	Ser	Asp	Leu	Glu	Pro	Tyr	Trp	Glu	Ala	Val	
800																810
805																
cgc	gga	ctg	tac	ctg	ccg	ttt	gaa	tcc	ggc	acc	ccg	ggc	ccg	acc	gga	2799
Arg	Gly	Leu	Tyr	Leu	Pro	Phe	Glu	Ser	Gly	Thr	Pro	Gly	Pro	Thr	Gly	
815																825
820																
cgc	gtt	tac	cgc	cac	gag	atc	ccc	ggc	ggt	cag	ctg	tcc	aac	ctg	cgt	2847
Arg	Val	Tyr	Arg	His	Glu	Ile	Pro	Gly	Gly	Gln	Leu	Ser	Asn	Leu	Arg	
830																840
835																
gcc	cag	gcc	gtt	gca	ctg	ggt	ctg	gcc	gac	cgc	ttc	gag	ctc	atc	gag	2895
Ala	Gln	Ala	Val	Ala	Leu	Gly	Leu	Ala	Asp	Arg	Phe	Glu	Leu	Ile	Glu	
845																855
850																
gac	tac	tac	gcf	gcc	gtc	aac	gag	atg	ctg	ggt	cgt	ccg	acc	aag	gtc	2943
Asp	Tyr	Tyr	Ala	Ala	Val	Asn	Glu	Met	Leu	Gly	Arg	Pro	Thr	Lys	Val	
860																875
865																
acc	ccg	tcc	tcc	aag	gtt	gtc	ggt	gac	ctc	gca	ctg	cac	ctc	gtc	ggt	2991
Thr	Pro	Ser	Ser	Lys	Val	Val	Gly	Asp	Leu	Ala	Leu	His	Leu	Val	Gly	
880																890
885																
gcc	ggt	gtg	agc	ccg	gag	gat	ttc	gcc	gcc	gat	ccg	cag	aag	tac	gac	3039
Ala	Gly	Val	Ser	Pro	Glu	Asp	Phe	Ala	Ala	Asp	Pro	Gln	Lys	Tyr	Asp	
895																905
900																
atc	ccc	gat	tcg	gtc	atc	gcc	ttc	ctc	cgc	ggc	gaa	ctg	ggt	acc	cct	3087
Ile	Pro	Asp	Ser	Val	Ile	Ala	Phe	Leu	Arg	Gly	Glu	Leu	Gly	Thr	Pro	
910																920
915																
ccc	ggt	ggc	tgg	ccc	gaa	ccg	ctg	cgc	acc	cgt	gca	ctc	gag	ggt	cgc	3135
Pro	Gly	Gly	Trp	Pro	Glu	Pro	Leu	Arg	Thr	Arg	Ala	Leu	Glu	Gly	Arg	

48/123

925	930	935	
tcc cag ggt aag gcc ccg ctg gcg gag atc ccc gcc gag gag cag gcc			3183
Ser Gln Gly Lys Ala Pro Leu Ala Glu Ile Pro Ala Glu Glu Gln Ala			
940	945	950	955
cac ctg gat tcc gat gat tcc gcg gag cgt cgc ggc acc ctc aac cgc			3231
His Leu Asp Ser Asp Asp Ser Ala Glu Arg Arg Gly Thr Leu Asn Arg			
960	965	970	
ctg ctg ttc ccg aag ccg acc gag gag ttc ctt gag cac cgt cgc cgc			3279
Leu Leu Phe Pro Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Arg			
975	980	985	
ttc ggc aac acc tcc gcc ctg gat gac cgc gag ttc ttc tac ggc ttg			3327
Phe Gly Asn Thr Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu			
990	995	1000	
aag gag gga cgt gag gag ctg atc cga ctg acc ggt gtg tcc acc ccg			3375
Lys Glu Gly Arg Glu Glu Leu Ile Arg Leu Thr Gly Val Ser Thr Pro			
1005	1010	1015	
atg gtg gtc cgc ctg gat gcg gtg tcc gaa ccg gat gac aaa ggc atg			3423
Met Val Val Arg Leu Asp Ala Val Ser Glu Pro Asp Asp Lys Gly Met			
1020	1025	1030	1035
cgc aac gtg gtg gtc aac gtc aac ggc cag atc cgc ccg atc aag gtg			3471
Arg Asn Val Val Val Asn Val Asn Gly Gln Ile Arg Pro Ile Lys Val			
1040	1045	1050	
cgc gac cgt tcc gtg gag tcc gtc acc gcc acc gcg gag aag gcc gat			3519
Arg Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp			
1055	1060	1065	
gcc acc aac aag ggc cat gtc gcc gca cca ttc gcc ggt gtg gtc acc			3567
Ala Thr Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly Val Val Thr			
1070	1075	1080	
gtg acc gtc gcc gag ggt gat gag atc aag gct ggc gac gcc gtg gcc			3615
Val Thr Val Ala Glu Gly Asp Glu Ile Lys Ala Gly Asp Ala Val Ala			
1085	1090	1095	
atc att gag gcc atg aag atg gag gcc acc atc acc gcg cct gtc gac			3663
Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala Pro Val Asp			
1100	1105	1110	1115
ggt gtc atc gac cgc gtc gtg gtg ccc gcc gcc acc aag gtc gag ggc			3711
Gly Val Ile Asp Arg Val Val Val Pro Ala Ala Thr Lys Val Glu Gly			
1120	1125	1130	
ggc gac ctc atc gtg gtc gtg tcc tagcgactga gagccacaac ccgtccccggg			3765
Gly Asp Leu Ile Val Val Val Ser			
1135			
tgccttgtta tcaacctccc cctgatgtatg ttctcagggg gaggtctac gtacctacc			3825
gtgacgggtgc atgtataatcg tcctgttggaa gagaatgttc caggttaggaa cgccaaaccac			3885
cccacccgt gatgtccccgt gctgatccca ggcaggccgg ttggaaagaa aaaccagtga			3945

49/123

tggAACGGCC atcggacAGC gagacGGAAC caagcgtcat cggctccggt agagcggtga 4005
 ggAGCCTG 4013

<210> 24

<211> 1139

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 24

Val	Val	Thr	Thr	Thr	Pro	Ser	Thr	Leu	Pro	Ala	Phe	Lys	Lys	Ile	Leu
1					5				10					15	
Val	Ala	Asn	Arg	Gly	Glu	Ile	Ala	Val	Arg	Ala	Phe	Arg	Ala	Ala	Tyr
						20			25					30	
Glu	Thr	Gly	Ala	Ala	Thr	Val	Ala	Ile	Tyr	Pro	Arg	Glu	Asp	Arg	Gly
						35			40					45	
Ser	Phe	His	Arg	Ser	Phe	Ala	Ser	Glu	Ala	Val	Arg	Ile	Gly	Thr	Glu
						50			55					60	
Gly	Ser	Pro	Val	Lys	Ala	Tyr	Leu	Asp	Ile	Asp	Glu	Ile	Ile	Asn	Ala
						65			70			75		80	
Ala	Lys	Lys	Val	Lys	Ala	Asp	Ala	Val	Tyr	Pro	Gly	Tyr	Gly	Phe	Leu
						85			90					95	
Ser	Glu	Asn	Ala	Gln	Leu	Ala	Arg	Glu	Cys	Ala	Glu	Asn	Gly	Ile	Thr
						100			105					110	
Phe	Ile	Gly	Pro	Thr	Pro	Glu	Val	Leu	Asp	Leu	Thr	Gly	Asp	Lys	Ser
							115			120				125	
Lys	Ala	Val	Ser	Ala	Ala	Lys	Lys	Ala	Gly	Leu	Pro	Val	Leu	Ala	Glu
						130			135					140	
Ser	Thr	Pro	Ser	Thr	Asp	Ile	Asp	Glu	Ile	Val	Lys	Ser	Ala	Glu	Gly
						145			150			155		160	
Gln	Thr	Tyr	Pro	Ile	Phe	Val	Lys	Ala	Val	Ala	Gly	Gly	Gly	Gly	Arg
						165			170					175	
Gly	Met	Arg	Phe	Val	Glu	Lys	Pro	Glu	Asp	Leu	Arg	Glu	Leu	Ala	Arg
						180			185					190	
Glu	Ala	Ser	Arg	Glu	Ala	Glu	Ala	Ala	Phe	Gly	Asp	Gly	Ser	Val	Tyr
						195			200					205	
Val	Glu	Arg	Ala	Val	Ile	Lys	Pro	Gln	His	Ile	Glu	Val	Gln	Ile	Leu
						210			215			220			
Gly	Asp	His	Thr	Gly	Asp	Val	Ile	His	Leu	Tyr	Glu	Arg	Asp	Cys	Ser
						225			230			235		240	
Leu	Gln	Arg	Arg	His	Gln	Lys	Val	Val	Glu	Ile	Ala	Pro	Ala	Gln	His
						245			250					255	
Leu	Asp	Pro	Glu	Leu	Arg	Asp	Arg	Ile	Cys	Ala	Asp	Ala	Val	Lys	Phe
						260			265					270	
Cys	Lys	Ser	Ile	Gly	Tyr	Gln	Gly	Ala	Gly	Thr	Val	Glu	Phe	Leu	Val

50/123

275	280	285
Asp Glu Ala Gly Asn His Val	Phe Ile Glu Met Asn Pro Arg	Ile Gln
290	295	300
Val Glu His Thr Val Thr Glu Glu Val	Thr Ser Val Asp Leu Val Lys	
305	310	315
Ala Gln Met His Leu Ala Ala Gly Ala	Thr Leu Lys Glu Leu Gly Leu	
325	330	335
Thr Gln Asp Lys Ile Thr Thr His	Gly Ala Ala Leu Gln Cys Arg Ile	
340	345	350
Thr Thr Glu Asp Pro Ser Asn Asn	Phe Arg Pro Asp Thr Gly Val Ile	
355	360	365
Thr Ala Tyr Arg Ser Pro Gly Gly Ala	Gly Val Arg Leu Asp Gly Ala	
370	375	380
Ala Gln Leu Gly Gly Glu Ile Thr Ala His	Phe Asp Ser Met Leu Val	
385	390	395
Lys Met Thr Cys Arg Gly Ser Asp Phe	Glu Thr Ala Val Ser Arg Ala	
405	410	415
Gln Arg Ala Leu Ala Glu Phe Asn Val	Ser Gly Val Ala Thr Asn Ile	
420	425	430
Gly Phe Leu Arg Ala Leu Leu Arg	Glu Glu Asp Phe Thr Lys Arg Arg	
435	440	445
Ile Asp Thr Gly Phe Ile Gly Ser His	Gln His Leu Leu Gln Ala Pro	
450	455	460
Pro Ala Asp Asp Glu Gln Gly Arg Ile	Leu Glu Tyr Leu Ala Asp Val	
465	470	475
Thr Val Asn Lys Pro His Gly Glu Arg	Pro Glu Thr Ala Arg Pro Ile	
485	490	495
Glu Lys Leu Pro Glu Val Glu Asn Ile	Pro Leu Pro Arg Gly Ser Arg	
500	505	510
Asp Arg Leu Lys Gln Leu Gly Pro Glu Gly	Phe Ala Arg Asp Leu Arg	
515	520	525
Glu Gln Asp Ala Leu Ala Val Thr Asp	Thr Thr Phe Arg Asp Ala His	
530	535	540
Gln Ser Leu Leu Ala Thr Arg Val Arg	Ser Phe Ala Leu Thr Pro Ala	
545	550	555
Ala Arg Ala Val Ala Lys Leu Thr Pro	Glu Leu Leu Ser Val Glu Ala	
565	570	575
Trp Gly Gly Ala Thr Tyr Asp Val Ala	Met Arg Phe Leu Phe Glu Asp	
580	585	590
Pro Trp Ala Arg Leu Asp Glu Leu Arg	Glu Ala Met Pro Asn Val Asn	
595	600	605
Ile Gln Met Leu Leu Arg Gly Arg Asn	Thr Val Gly Tyr Thr Pro Tyr	
610	615	620

51/123

Pro Asp Ser Val Cys Arg Ala Phe Val Gln Glu Ala Ala Lys Ser Gly
 625 630 635 640
 Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn Asp Ile Ser Gln Met
 645 650 655
 Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Gly Thr Ser Val Ala Glu
 660 665 670
 Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asn Pro Gly Glu Lys Leu
 675 680 685
 Tyr Thr Leu Asp Tyr Tyr Leu Asn Leu Ala Glu Gln Ile Val Asp Ser
 690 695 700
 Gly Ala His Ile Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg Arg
 705 710 715 720
 Ala Ala Ala Pro Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp Leu
 725 730 735
 Pro Val His Val His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr
 740 745 750
 Tyr Leu Ala Ala Ala Asn Ala Gly Ala Asp Ala Val Asp Ala Ala Ser
 755 760 765
 Ala Pro Leu Ser Gly Thr Thr Ser Gln Pro Ser Met Ser Ala Leu Val
 770 775 780
 Ala Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Asn Leu Gln Ala
 785 790 795 800
 Val Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr Leu
 805 810 815
 Pro Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg His
 820 825 830
 Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Val Ala
 835 840 845
 Leu Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Tyr Tyr Ala Ala
 850 855 860
 Val Asn Glu Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser Lys
 865 870 875 880
 Val Val Gly Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Ser Pro
 885 890 895
 Glu Asp Phe Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser Val
 900 905 910
 Ile Ala Phe Leu Arg Gly Glu Leu Gly Thr Pro Pro Gly Gly Trp Pro
 915 920 925
 Glu Pro Leu Arg Thr Arg Ala Leu Glu Gly Arg Ser Gln Gly Lys Ala
 930 935 940
 Pro Leu Ala Glu Ile Pro Ala Glu Glu Gln Ala His Leu Asp Ser Asp
 945 950 955 960
 Asp Ser Ala Glu Arg Arg Gly Thr Leu Asn Arg Leu Leu Phe Pro Lys

52/123

965	970	975
Pro Thr Glu Glu Phe Leu Glu His Arg Arg Arg Phe Gly Asn Thr Ser		
980	985	990
Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Lys Glu Gly Arg Glu		
995	1000	1005
Glu Leu Ile Arg Leu Thr Gly Val Ser Thr Pro Met Val Val Arg Leu		
1010	1015	1020
Asp Ala Val Ser Glu Pro Asp Asp Lys Gly Met Arg Asn Val Val Val		
1025	1030	1035
Asn Val Asn Gly Gln Ile Arg Pro Ile Lys Val Arg Asp Arg Ser Val		
1045	1050	1055
Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp Ala Thr Asn Lys Gly		
1060	1065	1070
His Val Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Ala Glu		
1075	1080	1085
Gly Asp Glu Ile Lys Ala Gly Asp Ala Val Ala Ile Ile Glu Ala Met		
1090	1095	1100
Lys Met Glu Ala Thr Ile Thr Ala Pro Val Asp Gly Val Ile Asp Arg		
1105	1110	1115
Val Val Val Pro Ala Ala Thr Lys Val Glu Gly Gly Asp Leu Ile Val		
1125	1130	1135
Val Val Ser		

<210> 25

<211> 3306

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (64)..(2820)

<400> 25

gatcaacc	ta agccaggaga atccggcg	gg cggtttctac ttctacagga gctgaacccc	60
acc	gtg aat gaa ctt ctc cgt gac gat atc cgt tat ctc ggc cgg atc		108
	Val Asn Glu Leu Leu Arg Asp Asp Ile Arg Tyr Leu Gly Arg Ile		
1	5	10	15
ctg	ggc gag gtg atc tcc gag cag gag ggc cac cat gtc ttc gaa ctg		156
Leu	Gly Glu Val Ile Ser Glu Gln Glu Gly His His Val Phe Glu Leu		
20	25	30	
gtt	gaa cgc gcc cgc cgg acc tcc ttc gac atc gcc aag gga cgc gcg		204
Val	Glu Arg Ala Arg Arg Thr Ser Phe Asp Ile Ala Lys Gly Arg Ala		

53/123

35	40	45	
gag atg gac agt ctg gtg gag gtg ttc gct ggc atc gac ccg gag gac			252
Glu Met Asp Ser Leu Val Glu Val Phe Ala Gly Ile Asp Pro Glu Asp			
50	55	60	
gcc acg ccc gtg gcc cga gcc ttc acc cat ttc gcc ctg ttg gcc aac			300
Ala Thr Pro Val Ala Arg Ala Phe Thr His Phe Ala Leu Leu Ala Asn			
65	70	75	
ctc gcg gag gat ttg cat gac gca gcc cag cgg gaa cag gcc ctg aac			348
Leu Ala Glu Asp Leu His Asp Ala Ala Gln Arg Glu Gln Ala Leu Asn			
80	85	90	95
tcg ggt gag ccc gcg ccg gac agc acc ctc gag gcc acc tgg gtg aaa			396
Ser Gly Glu Pro Ala Pro Asp Ser Thr Leu Glu Ala Thr Trp Val Lys			
100	105	110	
ctg gat gat gcc ggg gtg ggc agc ggt gag gtc gcc gcg gtg atc cgc			444
Leu Asp Asp Ala Gly Val Gly Ser Gly Glu Val Ala Ala Val Ile Arg			
115	120	125	
aat gcg ctc gtc gcc ccg gtg ctc acc gcg cac ccg acg gaa acc cga			492
Asn Ala Leu Val Ala Pro Val Leu Thr Ala His Pro Thr Glu Thr Arg			
130	135	140	
cgt cgt acc gtg ttc gac gcg cag aag cac atc acc gcc ctg atg gag			540
Arg Arg Thr Val Phe Asp Ala Gln Lys His Ile Thr Ala Leu Met Glu			
145	150	155	
gaa cgc cac ctc ctc ctg gcg ctg ccc acg cat gcc cgg acc cag tcc			588
Glu Arg His Leu Leu Leu Ala Leu Pro Thr His Ala Arg Thr Gln Ser			
160	165	170	175
aag ctg gat gac atc gag cgc aac atc cgg cga cgg atc acg atc ctg			636
Lys Leu Asp Asp Ile Glu Arg Asn Ile Arg Arg Arg Ile Thr Ile Leu			
180	185	190	
tgg cag acg gcc ctc atc cgt gtg gcc cgt ccc cgc atc gag gat gag			684
Trp Gln Thr Ala Leu Ile Arg Val Ala Arg Pro Arg Ile Glu Asp Glu			
195	200	205	
gtc gag gtt gga ctg cgc tac tac aag ctc acg ctg ttg gcc gag atc			732
Val Glu Val Gly Leu Arg Tyr Tyr Lys Leu Ser Leu Leu Ala Glu Ile			
210	215	220	
ccc cgc atc aat cat gat gtg acc gtg gaa ctg gcc cgg cgt ttc ggc			780
Pro Arg Ile Asn His Asp Val Thr Val Glu Leu Ala Arg Arg Phe Gly			
225	230	235	
ggg gat atc ccc acc acg gcg atg gtc agg ccg gga tcc tgg atc ggc			828
Gly Asp Ile Pro Thr Thr Ala Met Val Arg Pro Gly Ser Trp Ile Gly			
240	245	250	255
ggg gac cat gat ggc aac ccc ttc gtc acc gcg gag act gtc acc tac			876
Gly Asp His Asp Gly Asn Pro Phe Val Thr Ala Glu Thr Val Thr Tyr			
260	265	270	

54/123

gcc acc cat cgg gcc gcg gag acc gtg ctc aag tac tac gtc aag caa		924
Ala Thr His Arg Ala Ala Glu Thr Val Leu Lys Tyr Tyr Val Lys Gln		
275 280 285		
ctg cac gcc ctg gaa cac gaa ctc agt ctc tcc gac ggg atg aac gtc		972
Leu His Ala Leu Glu His Glu Leu Ser Leu Ser Asp Arg Met Asn Val		
290 295 300		
atc agc gat gag ctg cgt gtg ctt gcc gat gcc ggc cag aat gac atg		1020
Ile Ser Asp Glu Leu Arg Val Leu Ala Asp Ala Gly Gln Asn Asp Met		
305 310 315		
ccc agc cgg gtt gat gaa ccc tac cgg cgg gcc atc cac ggc atg cgt		1068
Pro Ser Arg Val Asp Glu Pro Tyr Arg Arg Ala Ile His Gly Met Arg		
320 325 330 335		
ggc cgg atg ctg gcc acc acg gcc ctc atc ggt gag gag ggc gtc		1116
Gly Arg Met Leu Ala Thr Thr Ala Ala Leu Ile Gly Glu Glu Ala Val		
340 345 350		
gag ggc acc tgg ttc aag acc ttc acg ccc tat acc gat acc cac gag		1164
Glu Gly Thr Trp Phe Lys Thr Phe Thr Pro Tyr Thr Asp Thr His Glu		
355 360 365		
tcc aaa cgc gac ctc gat atc gtg gat ggt tcc ctc aga atg tcc cgg		1212
Phe Lys Arg Asp Leu Asp Ile Val Asp Gly Ser Leu Arg Met Ser Arg		
370 375 380		
gat gac atc atc gcc gat gac cgt ctc gcc atg ctc cgc tcg gcc ctc		1260
Asp Asp Ile Ile Ala Asp Asp Arg Leu Ala Met Leu Arg Ser Ala Leu		
385 390 395		
gac agc ttc ggg ttc aac ctc tac tcc ctc gat ctc cgc cag aat tcc		1308
Asp Ser Phe Gly Phe Asn Leu Tyr Ser Leu Asp Leu Arg Gln Asn Ser		
400 405 410 415		
gac ggt ttc gag gat gtc ctc acc gaa ttg ttc gcc acc gcc cag acc		1356
Asp Gly Phe Glu Asp Val Leu Thr Glu Leu Phe Ala Thr Ala Gln Thr		
420 425 430		
gag aag aac tac cgc ggg ttg acg gag ggc gag aag ctc gac ctc ctc		1404
Glu Lys Asn Tyr Arg Gly Leu Thr Glu Ala Glu Lys Leu Asp Leu Leu		
435 440 445		
atc cgc gaa ctc agc aca ccc cgc ccg ctc atc ccg cac ggg gac cgg		1452
Ile Arg Glu Leu Ser Thr Pro Arg Pro Leu Ile Pro His Gly Asp Pro		
450 455 460		
gac tac tcc gag gcc acc aac cgt gaa ctc ggg att ttt ctc aag gcc		1500
Asp Tyr Ser Glu Ala Thr Asn Arg Glu Leu Gly Ile Phe Ser Lys Ala		
465 470 475		
gcg gag gcc gtg cgt aaa ttc ggt cct ctc atg gtg ccg cac tgc atc		1548
Ala Glu Ala Val Arg Lys Phe Gly Pro Leu Met Val Pro His Cys Ile		
480 485 490 495		
atc tcc atg gcc tct tcc gtc acg gac atc ctc gaa ccg atg gtg ctc		1596

55/123

Ile	Ser	Met	Ala	Ser	Ser	Val	Thr	Asp	Ile	Leu	Glu	Pro	Met	Val	Leu	
									500	505					510	
ctc	aag	gag	ttc	ggt	ctg	atc	cg	gcc	aac	ggg	aag	aac	ccg	acg	ggc	1644
Leu	Lys	Glu	Phe	Gly	Leu	Ile	Arg	Ala	Asn	Gly	Lys	Asn	Pro	Thr	Gly	
									515	520					525	
agc	gtc	gac	gtg	atc	ccg	ctg	tgc	gag	acg	atc	gat	gac	ctc	cag	cgt	1692
Ser	Val	Asp	Val	Ile	Pro	Leu	Phe	Glu	Thr	Ile	Asp	Asp	Leu	Gln	Arg	
									530	535					540	
ggc	gcf	ggc	atc	ctg	gag	gaa	ttg	tgg	gac	atc	gac	ctc	tac	cgc	aat	1740
Gly	Ala	Gly	Ile	Leu	Glu	Glu	Leu	Trp	Asp	Ile	Asp	Leu	Tyr	Arg	Asn	
									545	550					555	
tac	ctt	gag	cag	cg	gac	aac	gtc	cag	gag	gtc	atg	ctg	ggg	tat	tcc	1788
Tyr	Leu	Glu	Gln	Arg	Asp	Asn	Val	Gln	Glu	Val	Met	Leu	Gly	Tyr	Ser	
									560	565					575	
gac	tcc	aac	aag	gac	ggc	ggg	tac	ttc	gcc	gcc	aac	tgg	gcf	ctt	tac	1836
Asp	Ser	Asn	Lys	Asp	Gly	Gly	Tyr	Phe	Ala	Ala	Asn	Trp	Ala	Leu	Tyr	
									580	585					590	
gac	gcf	gag	tta	cg	ctg	gaa	cta	tgc	cgg	ggc	cgt	aat	gtc	aag		1884
Asp	Ala	Glu	Leu	Arg	Leu	Val	Glu	Leu	Cys	Arg	Gly	Arg	Asn	Val	Lys	
									595	600					605	
ctc	cgt	ctc	ttc	cac	ggt	cgt	ggt	ggc	acg	gtg	ggt	cgt	ggc	ggt	ggc	1932
Leu	Arg	Leu	Phe	His	Gly	Arg	Gly	Gly	Thr	Val	Gly	Arg	Gly	Gly	Gly	
									610	615					620	
ccc	tcc	tat	gat	gcf	atc	ctg	gcc	cag	ccc	aag	ggc	gcf	gtc	cgg	ggt	1980
Pro	Ser	Tyr	Asp	Ala	Ile	Leu	Ala	Gln	Pro	Lys	Gly	Ala	Val	Arg	Gly	
									625	630					635	
gcf	gtg	cgg	gtg	act	gaa	cag	ggc	gag	atc	atc	tcc	gcf	aag	tac	ggt	2028
Ala	Val	Arg	Val	Thr	Glu	Gln	Gly	Glu	Ile	Ile	Ser	Ala	Lys	Tyr	Gly	
									640	645					655	
aac	ccg	gat	acg	gca	cgc	cgc	aac	ctt	gag	gcc	ctg	gtg	tcc	gcf	acg	2076
Asn	Pro	Asp	Thr	Ala	Arg	Arg	Asn	Leu	Glu	Ala	Leu	Val	Ser	Ala	Thr	
									660	665					670	
ctg	gag	gca	tgc	ctt	ctg	gat	gat	gtg	gaa	ctg	ccc	aat	cgg	gaa	cgc	2124
Leu	Glu	Ala	Ser	Leu	Leu	Asp	Asp	Val	Glu	Leu	Pro	Asn	Arg	Glu	Arg	
									675	680					685	
gcf	cac	cag	atc	atg	ggg	gag	atc	tgc	gag	ttg	agc	ttc	cgc	agg	tac	2172
Ala	His	Gln	Ile	Met	Gly	Glu	Ile	Ser	Glu	Leu	Ser	Phe	Arg	Arg	Tyr	
									690	695					700	
tca	tca	ctg	gtc	cat	gag	gat	ccc	gga	ttc	atc	cag	tac	ttc	acc	cag	2220
Ser	Ser	Leu	Val	His	Glu	Asp	Pro	Gly	Phe	Ile	Gln	Tyr	Phe	Thr	Gln	
									705	710					715	
tcc	acc	ccc	ctg	cag	gag	atc	gga	tcc	ctc	aac	atc	ggt	tcc	cga	ccc	2268
Ser	Thr	Pro	Leu	Gln	Glu	Ile	Gly	Ser	Leu	Asn	Ile	Gly	Ser	Arg	Pro	

56/123

720	725	730	735	
tcc tca cgt aaa cag acc aac acg gtg gag gat ctg cgt gcc atc ccg				2316
Ser Ser Arg Lys Gln Thr Asn Thr Val Glu Asp Leu Arg Ala Ile Pro				
740	745	750		
tgg gtg ctc agc tgg tcc cag tcc cgt gtc atg ctg ccg ggc tgg ttc				2364
Trp Val Leu Ser Trp Ser Gln Ser Arg Val Met Leu Pro Gly Trp Phe				
755	760	765		
ggt gtg ggt acc gca ctg cgt gag tgg atc ggt gag ggg gag ggg gct				2412
Gly Val Gly Thr Ala Leu Arg Glu Trp Ile Gly Glu Gly Glu Gly Ala				
770	775	780		
gcg gag cgc atc gcg gag ctg cag gaa ctc aac cgg tgc tgg ccg ttc				2460
Ala Glu Arg Ile Ala Glu Leu Gln Glu Leu Asn Arg Cys Trp Pro Phe				
785	790	795		
ttc acc tcg gtg ctg gac aac atg gcc cag gtg atg agc aag gcg gaa				2508
Phe Thr Ser Val Leu Asp Asn Met Ala Gln Val Met Ser Lys Ala Glu				
800	805	810	815	
ctg cgc ctg gcc agg ttg tac gcc gat ctc atc ccg gat cgc gag gtg				2556
Leu Arg Leu Ala Arg Leu Tyr Ala Asp Leu Ile Pro Asp Arg Glu Val				
820	825	830		
gcg gac cgg atc tat gag acc atc ttc ggg gag tat ttc ctg acc aag				2604
Ala Asp Arg Ile Tyr Glu Thr Ile Phe Gly Glu Tyr Phe Leu Thr Lys				
835	840	845		
gag atg ttc tgc acc atc acc ggt tcc cag gac ctg ctc gat gac aac				2652
Glu Met Phe Cys Thr Ile Thr Gly Ser Gln Asp Leu Leu Asp Asp Asn				
850	855	860		
ccg gcg ctg gcg cga tcg gtg cgc agt cgg ttc ccg tac ctg ctg ccg				2700
Pro Ala Leu Ala Arg Ser Val Arg Ser Arg Phe Pro Tyr Leu Leu Pro				
865	870	875		
ctc aat gtc atc cag gtg gag atg atg cgc cgg tac cgg tcc ggt gat				2748
Leu Asn Val Ile Gln Val Glu Met Met Arg Arg Tyr Arg Ser Gly Asp				
880	885	890	895	
gag ggc acg gct gtc cca cgt aat atc cgc ctg acc atg aat gga ttg				2796
Glu Gly Thr Ala Val Pro Arg Asn Ile Arg Leu Thr Met Asn Gly Leu				
900	905	910		
tcc acg gcc ctg cgc aac tcg ggt tagggcgcca gacgccccgg gaaccgcac				2850
Ser Thr Ala Leu Arg Asn Ser Gly				
915				
cctgtgtata ctgtctaaag ttggccggtg tcatccgggc gtgtatggata gacaacttaa				2910
cggcaaagga ttctcccac atggcactga cgcttcaa at cgtccctcggt ctgcgccagcg				2970
tgtcatgac ggtcttcgtc ctgtgtcaca agggttaaggc cggaggcttg tcaaggctct				3030
tgggtgggg cgtccagtc aaccttcgg gttccacggt ggtggagaag aacctggacc				3090
gcgtcaccat cctgaccgca gtcatctgg tgcattgcattgtcgcgctc aacctcatcc				3150
aggcgtactc ctagcacctg atcttcaag gcctgccctt cggggcaggc cttttttgc				3210

ttctccagg t gatgtccatc acccacccgt tttaaactat tgaccgatag aaacacctgc 3270
acttaggttat ctgttatgca atagaaaata gtgcatt 3306

<210> 26

〈211〉 919

<212> PRT

〈213〉 *Corynebacterium thermoaminogenes*

<400> 26

Val	Asn	Glu	Leu	Leu	Arg	Asp	Asp	Ile	Arg	Tyr	Leu	Gly	Arg	Ile	Leu
1				5					10					15	
Gly	Glu	Val	Ile	Ser	Glu	Gln	Glu	Gly	His	His	Val	Phe	Glu	Leu	Val
					20				25					30	
Glu	Arg	Ala	Arg	Arg	Thr	Ser	Phe	Asp	Ile	Ala	Lys	Gly	Arg	Ala	Glu
						35		40					45		
Met	Asp	Ser	Leu	Val	Glu	Val	Phe	Ala	Gly	Ile	Asp	Pro	Glu	Asp	Ala
						50		55				60			
Thr	Pro	Val	Ala	Arg	Ala	Phe	Thr	His	Phe	Ala	Leu	Leu	Ala	Asn	Leu
						65		70			75				80
Ala	Glu	Asp	Leu	His	Asp	Ala	Ala	Gln	Arg	Glu	Gln	Ala	Leu	Asn	Ser
						85			90					95	
Gly	Glu	Pro	Ala	Pro	Asp	Ser	Thr	Leu	Glu	Ala	Thr	Trp	Val	Lys	Leu
						100			105				110		
Asp	Asp	Ala	Gly	Val	Gly	Ser	Gly	Glu	Val	Ala	Ala	Val	Ile	Arg	Asn
						115		120				125			
Ala	Leu	Val	Ala	Pro	Val	Leu	Thr	Ala	His	Pro	Thr	Glu	Thr	Arg	Arg
						130		135			140				
Arg	Thr	Val	Phe	Asp	Ala	Gln	Lys	His	Ile	Thr	Ala	Leu	Met	Glu	Glu
						145		150			155			160	
Arg	His	Leu	Leu	Leu	Ala	Leu	Pro	Thr	His	Ala	Arg	Thr	Gln	Ser	Lys
						165			170				175		
Leu	Asp	Asp	Ile	Glu	Arg	Asn	Ile	Arg	Arg	Arg	Ile	Thr	Ile	Leu	Trp
						180			185			190			
Gln	Thr	Ala	Leu	Ile	Arg	Val	Ala	Arg	Pro	Arg	Ile	Glu	Asp	Glu	Val
						195		200			205				
Glu	Val	Gly	Leu	Arg	Tyr	Tyr	Lys	Leu	Ser	Leu	Leu	Ala	Glu	Ile	Pro
						210		215			220				
Arg	Ile	Asn	His	Asp	Val	Thr	Val	Glu	Leu	Ala	Arg	Arg	Phe	Gly	Gly
						225		230			235			240	
Asp	Ile	Pro	Thr	Thr	Ala	Met	Val	Arg	Pro	Gly	Ser	Trp	Ile	Gly	Gly
						245			250				255		
Asp	His	Asp	Gly	Asn	Pro	Phe	Val	Thr	Ala	Glu	Thr	Val	Thr	Tyr	Ala
						260			265				270		

58/123

Thr His Arg Ala Ala Glu Thr Val Leu Lys Tyr Tyr Val Lys Gln Leu
 275 280 285
 His Ala Leu Glu His Glu Leu Ser Leu Ser Asp Arg Met Asn Val Ile
 290 295 300
 Ser Asp Glu Leu Arg Val Leu Ala Asp Ala Gly Gln Asn Asp Met Pro
 305 310 315 320
 Ser Arg Val Asp Glu Pro Tyr Arg Arg Ala Ile His Gly Met Arg Gly
 325 330 335
 Arg Met Leu Ala Thr Thr Ala Ala Leu Ile Gly Glu Glu Ala Val Glu
 340 345 350
 Gly Thr Trp Phe Lys Thr Phe Thr Pro Tyr Thr Asp Thr His Glu Phe
 355 360 365
 Lys Arg Asp Leu Asp Ile Val Asp Gly Ser Leu Arg Met Ser Arg Asp
 370 375 380
 Asp Ile Ile Ala Asp Asp Arg Leu Ala Met Leu Arg Ser Ala Leu Asp
 385 390 395 400
 Ser Phe Gly Phe Asn Leu Tyr Ser Leu Asp Leu Arg Gln Asn Ser Asp
 405 410 415
 Gly Phe Glu Asp Val Leu Thr Glu Leu Phe Ala Thr Ala Gln Thr Glu
 420 425 430
 Lys Asn Tyr Arg Gly Leu Thr Glu Ala Glu Lys Leu Asp Leu Leu Ile
 435 440 445
 Arg Glu Leu Ser Thr Pro Arg Pro Leu Ile Pro His Gly Asp Pro Asp
 450 455 460
 Tyr Ser Glu Ala Thr Asn Arg Glu Leu Gly Ile Phe Ser Lys Ala Ala
 465 470 475 480
 Glu Ala Val Arg Lys Phe Gly Pro Leu Met Val Pro His Cys Ile Ile
 485 490 495
 Ser Met Ala Ser Ser Val Thr Asp Ile Leu Glu Pro Met Val Leu Leu
 500 505 510
 Lys Glu Phe Gly Leu Ile Arg Ala Asn Gly Lys Asn Pro Thr Gly Ser
 515 520 525
 Val Asp Val Ile Pro Leu Phe Glu Thr Ile Asp Asp Leu Gln Arg Gly
 530 535 540
 Ala Gly Ile Leu Glu Glu Leu Trp Asp Ile Asp Leu Tyr Arg Asn Tyr
 545 550 555 560
 Leu Glu Gln Arg Asp Asn Val Gln Glu Val Met Leu Gly Tyr Ser Asp
 565 570 575
 Ser Asn Lys Asp Gly Gly Tyr Phe Ala Ala Asn Trp Ala Leu Tyr Asp
 580 585 590
 Ala Glu Leu Arg Leu Val Glu Leu Cys Arg Gly Arg Asn Val Lys Leu
 595 600 605
 Arg Leu Phe His Gly Arg Gly Gly Thr Val Gly Arg Gly Gly Pro

59/123

610	615	620
Ser	Tyr Asp Ala Ile Leu	Ala Gln Pro Lys Gly Ala Val Arg Gly Ala
625	630	635
Val Arg Val Thr Glu	Gln Gly Glu Ile Ile Ser Ala Lys Tyr Gly Asn	640
645	650	655
Pro Asp Thr Ala Arg Arg Asn Leu	Glu Ala Leu Val Ser Ala Thr Leu	
660	665	670
Glu Ala Ser Leu Leu Asp Asp Val	Glu Leu Pro Asn Arg Glu Arg Ala	
675	680	685
His Gln Ile Met Gly Glu Ile Ser	Glu Leu Ser Phe Arg Arg Tyr Ser	
690	695	700
Ser Leu Val His Glu Asp Pro Gly Phe Ile	Gln Tyr Phe Thr Gln Ser	
705	710	715
Thr Pro Leu Gln Glu Ile Gly Ser Leu	Asn Ile Gly Ser Arg Pro Ser	
725	730	735
Ser Arg Lys Gln Thr Asn Thr Val	Glu Asp Leu Arg Ala Ile Pro Trp	
740	745	750
Val Leu Ser Trp Ser Gln Ser Arg Val	Met Leu Pro Gly Trp Phe Gly	
755	760	765
Val Gly Thr Ala Leu Arg Glu Trp Ile	Gly Glu Gly Glu Gly Ala Ala	
770	775	780
Glu Arg Ile Ala Glu Leu Gln Glu Leu	Asn Arg Cys Trp Pro Phe Phe	
785	790	795
Thr Ser Val Leu Asp Asn Met Ala Gln	Val Met Ser Lys Ala Glu Leu	
805	810	815
Arg Leu Ala Arg Leu Tyr Ala Asp Leu	Ile Pro Asp Arg Glu Val Ala	
820	825	830
Asp Arg Ile Tyr Glu Thr Ile Phe	Gly Glu Tyr Phe Leu Thr Lys Glu	
835	840	845
Met Phe Cys Thr Ile Thr Gly Ser Gln	Asp Leu Leu Asp Asp Asn Pro	
850	855	860
Ala Leu Ala Arg Ser Val Arg Ser Arg	Phe Pro Tyr Leu Leu Pro Leu	
865	870	875
Asn Val Ile Gln Val Glu Met Met Arg	Arg Tyr Arg Ser Gly Asp Glu	
885	890	895
Gly Thr Ala Val Pro Arg Asn Ile Arg	Leu Thr Met Asn Gly Leu Ser	
900	905	910
Thr Ala Leu Arg Asn Ser Gly		
915		

<210> 27

<211> 3907

<212> DNA

〈213〉 *Corynebacterium thermoaminogenes*

220

⟨221⟩ CDS

$\langle 222 \rangle$ (686) .. (3388)

<400> 27

attacttcag ctgactcagc aacattcgta tttaggtatgc aaacaacatt tggttcgta 60
aatccaagta gtagtggtaa agtaacttgg ggtattgctc aagcacttat cgccttigt 120
ttattattag ctggtggcgg agatggaact aaagcttc aacgcaattca gagtgccgct 180
attattatgt cgtttccatt ctcccttgtc gtcatattaa tgatgatcag tttctacaaa 240
gatgctaata aagaacgtaa attcttagga ttaacatcaa cgccataataa acacagatta 300
gaagaatacg ttaaataatca acaagaggat tacgaatctg atatttiaga aaaacgtgaa 360
tctagacgt atcgtgaaag agaagaataa ttgaatgaaa tatctactat aatggtggt 420
ttaaagctat caacaatttt gttgatagct attttatgt ttcaaacata taaatattat 480
ttacttgcga ttgataacca ttctcaattt ataaaaataa ctatagtac aaatgcgtt 540
taataagtt tactatact acctgattaa aaatgcgaaa tgaaaaatga ccccttata 600
tacctataca gttgtgttcg aaaacatata ataatacaat ttaactaagg catataaata 660
tatagaaatt caagggggat atcaa atg gct tct aat ttt aaa gaa aca gcg 712

Met Ala Ser Asn Phe Lys Glu Thr Ala

5

aag aaa caa ttt gat tta aat ggc caa tca tac acg tac tat gat tta 760
Lys Lys Gln Phe Asp Leu Asn Gly Gln Ser Tyr Thr Tyr Tyr Asp Leu

10 15 20 25

aaa tca tta gaa gaa caa ggt tta act aaa att tca aag tta cct tat	808	
Lys Ser Leu Glu Glu Gln Gly Leu Thr Lys Ile Ser Lys Leu Pro Tyr		
30	35	40

tca atc cgt gta tta cta gaa tca gtg tta cgt cag gaa gat gat ttt	856	
Ser Ile Arg Val Leu Leu Glu Ser Val Leu Arg Gln Glu Asp Asp Phe		
45	50	55

gta att act gat gat cac att aaa caa tta gca gaa tt ggc aaa aaa	904	
Val Ile Thr Asp Asp His Ile Lys Gln Leu Ala Glu Phe Gly Lys Lys		
60	65	70

gg t aac gaa ggt gaa gta cct ttc aaa cca tct cga gtt att tta caa 952
 Gly Asn Glu Gly Glu Val Pro Phe Lys Pro Ser Arg Val Ile Leu Gln
 75 80 85

gac ttc act ggt gta cca gca gta gtt gac tta gcg tct tta cgt aaa 1000
 Asp Phe Thr Gly Val Pro Ala Val Val Asp Leu Ala Ser Leu Arg Lys
 90 95 100 . 105

gca atg aat gat gtt ggt ggg gat att aat aaa att aac cct gaa gta 1048
 Ala Met Asn Asp Val Gly Gly Asp Ile Asn Lys Ile Asn Pro Glu Val
 110 115 120

cca gtt gac tta gtt att gac cac tct gta caa gta gat agt tat gct 1096

61/123

Pro	Val	Asp	Leu	Val	Ile	Asp	His	Ser	Val	Gln	Val	Asp	Ser	Tyr	Ala	
																135
																125
aat	cca	gat	gca	tta	caa	cgt	aac	atg	aaa	tta	gaa	ttt	gaa	cgt	aac	1144
Asn	Pro	Asp	Ala	Leu	Gln	Arg	Asn	Met	Lys	Leu	Glu	Phe	Glu	Arg	Asn	
																140
tat	gaa	cgt	tac	caa	tcc	tta	aac	tgg	gca	aca	aaa	gca	ttt	gat	aac	1192
Tyr	Glu	Arg	Tyr	Gln	Phe	Leu	Asn	Trp	Ala	Thr	Lys	Ala	Phe	Asp	Asn	
																155
tat	aat	gca	gta	cca	cct	gct	aca	ggt	att	gtc	cac	caa	gta	aac	tta	1240
Tyr	Asn	Ala	Val	Pro	Pro	Ala	Thr	Gly	Ile	Val	His	Gln	Val	Asn	Leu	
																170
gaa	tac	tta	gcg	aat	gtt	gta	cat	gtt	cgt	gac	gtt	gac	gga	gaa	caa	1288
Glu	Tyr	Leu	Ala	Asn	Val	Val	His	Val	Arg	Asp	Val	Asp	Gly	Glu	Gln	
																190
act	gct	ttc	cca	gat	aca	tta	gtt	ggt	act	gac	tca	cat	act	aca	atg	1336
Thr	Ala	Phe	Pro	Asp	Thr	Leu	Val	Gly	Thr	Asp	Ser	His	Thr	Thr	Met	
																205
att	aac	ggt	att	ggt	gta	tta	ggt	tgg	ggt	gtc	ggc	ggt	atc	gaa	gct	1384
Ile	Asn	Gly	Ile	Gly	Val	Leu	Gly	Trp	Gly	Val	Gly	Gly	Ile	Glu	Ala	
																220
gaa	gca	ggt	atg	tta	gga	caa	cca	tca	tac	tcc	cca	att	cca	gaa	gtt	1432
Glu	Ala	Gly	Met	Leu	Gly	Gln	Pro	Ser	Tyr	Phe	Pro	Ile	Pro	Glu	Val	
																235
att	ggt	gtt	aaa	tta	agt	aat	gaa	tta	cca	caa	ggt	tca	aca	gca	act	1480
Ile	Gly	Val	Lys	Leu	Ser	Asn	Glu	Leu	Pro	Gln	Gly	Ser	Thr	Ala	Thr	
																250
gac	tta	gca	tta	cgt	gta	act	gaa	gag	tta	cgt	aaa	cgt	ggt	gta	gta	1528
Asp	Leu	Ala	Leu	Arg	Val	Thr	Glu	Glu	Leu	Arg	Lys	Arg	Gly	Val	Val	
																270
ggt	aaa	tic	gtt	gag	tic	ttt	ggt	cct	ggt	gta	aca	aac	tta	cca	tta	1576
Gly	Lys	Phe	Val	Glu	Phe	Phe	Gly	Pro	Gly	Val	Thr	Asn	Leu	Pro	Leu	
																285
gct	gac	cgt	gca	aca	att	gcg	aac	atg	gcg	cct	gaa	tat	ggt	gca	act	1624
Ala	Asp	Arg	Ala	Thr	Ile	Ala	Asn	Met	Ala	Pro	Glu	Tyr	Gly	Ala	Thr	
																300
tgt	ggt	ttc	ttc	cca	gtt	gat	gaa	gaa	tca	ctt	aaa	tac	atg	aaa	tta	1672
Cys	Gly	Phe	Phe	Pro	Val	Asp	Glu	Glu	Ser	Leu	Lys	Tyr	Met	Lys	Leu	
																315
act	ggt	cgt	aaa	gat	gat	cat	att	gca	cta	gta	aaa	gaa	tat	tta	caa	1720
Thr	Gly	Arg	Lys	Asp	Asp	His	Ile	Ala	Leu	Val	Lys	Glu	Tyr	Leu	Gln	
																330
caa	aat	aat	atg	ttc	ttc	caa	gtt	gaa	aat	gaa	gat	cct	gaa	tat	act	1768
Gln	Asn	Asn	Met	Phe	Phe	Gln	Val	Glu	Asn	Glu	Asp	Pro	Glu	Tyr	Thr	

62/123

	350	355	360	
gaa gtg att gat tta gat tta tct aca gtt caa gct tct tta tca ggt Glu Val Ile Asp Leu Asp Leu Ser Thr Val Gln Ala Ser Leu Ser Gly	365	370	375	1816
cca aaa cgt cca caa gat tta atc ttc tta agt gac atg aaa act gaa Pro Lys Arg Pro Gln Asp Leu Ile Phe Leu Ser Asp Met Lys Thr Glu	380	385	390	1864
tcc gaa aaa tca gtt aca gca cca gct ggt aac caa ggt cac ggt tta Phe Glu Lys Ser Val Thr Ala Pro Ala Gly Asn Gln Gly His Gly Leu	395	400	405	1912
gat gaa agt gaa ttt gat aag aaa gca gaa atc aaa ttt aat gat ggt Asp Glu Ser Glu Phe Asp Lys Lys Ala Glu Ile Lys Phe Asn Asp Gly	410	415	420	1960
aga act tca act atg aag act ggt gat gtt gcg att gca gcg att aca Arg Thr Ser Thr Met Lys Thr Gly Asp Val Ala Ile Ala Ala Ile Thr	430	435	440	2008
tca tgt aca aat aca tct aac cct tac gtt atg tta ggt gca ggt tta Ser Cys Thr Asn Thr Ser Asn Pro Tyr Val Met Leu Gly Ala Gly Leu	445	450	455	2056
gta gct aaa aaa gca att gaa aaa ggc tta aaa gta cct gal tat gta Val Ala Lys Lys Ala Ile Glu Lys Gly Leu Lys Val Pro Asp Tyr Val	460	465	470	2104
aaa act tca tta gca cca ggt tca aaa gtt gtt act gga tat tta aga Lys Thr Ser Leu Ala Pro Gly Ser Lys Val Val Thr Gly Tyr Leu Arg	475	480	485	2152
gat tca ggt tta caa gaa tat ctt gat gac tta ggt ttc aac tta gtt Asp Ser Gly Leu Gln Glu Tyr Leu Asp Asp Leu Gly Phe Asn Leu Val	490	495	500	2200
ggt tat ggt tgt aca act tgt atc ggt aac tca ggt cca tta tta cct Gly Tyr Gly Cys Thr Thr Cys Ile Gly Asn Ser Gly Pro Leu Leu Pro	510	515	520	2248
gaa att gaa aaa gca gta gct gac gaa gat tta tta gta act tct gta Glu Ile Glu Lys Ala Val Ala Asp Glu Asp Leu Leu Val Thr Ser Val	525	530	535	2296
ctt tct ggt aac cgt aac ttt gaa ggt cgt atc cat ccg tta gtt aaa Leu Ser Gly Asn Arg Asn Phe Glu Gly Arg Ile His Pro Leu Val Lys	540	545	550	2344
gct aac tac tta gct tca cca caa tta gtt gta gct tat gca tta gct Ala Asn Tyr Leu Ala Ser Pro Gln Leu Val Val Ala Tyr Ala Leu Ala	555	560	565	2392
gga acg gtt gat atc gat tta cac aat gaa cct atc ggt aaa ggt aaa Gly Thr Val Asp Ile Asp Leu His Asn Glu Pro Ile Gly Lys Gly Lys	570	575	580	2440

63/123

gat	ggc	gaa	gat	gta	tac	ctt	aaa	gat	atc	tgg	cca	agt	atc	aaa	gaa	2488
Asp	Gly	Glu	Asp	Val	Tyr	Leu	Lys	Asp	Ile	Trp	Pro	Ser	Ile	Lys	Glu	
																590
																595
																600
gtt	gca	gac	act	gtt	gat	agt	gtc	gta	acg	cca	gaa	tta	ttc	tta	gaa	2536
Val	Ala	Asp	Thr	Val	Asp	Ser	Val	Val	Thr	Pro	Glu	Leu	Phe	Leu	Glu	
																605
																610
																615
gaa	tat	gca	aat	gta	tac	gaa	aat	aat	gaa	atg	tgg	aat	gaa	atc	gac	2584
Glu	Tyr	Ala	Asn	Val	Tyr	Glu	Asn	Asn	Glu	Met	Trp	Asn	Glu	Ile	Asp	
																620
																625
																630
gtt	act	gac	gca	cca	tta	tat	gat	ttc	gat	cca	aat	tca	act	tat	att	2632
Val	Thr	Asp	Ala	Pro	Leu	Tyr	Asp	Phe	Asp	Pro	Asn	Ser	Thr	Tyr	Ile	
																635
																640
																645
caa	aat	cca	tca	ttc	ttc	caa	ggt	tta	tct	aaa	gaa	cca	gga	act	att	2680
Gln	Asn	Pro	Ser	Phe	Phe	Gln	Gly	Leu	Ser	Lys	Glu	Pro	Gly	Thr	Ile	
																650
																655
																660
																665
gaa	cca	tta	aaa	gat	tta	cgt	att	atg	ggt	aaa	ttt	ggt	gat	tca	gtt	2728
Glu	Pro	Leu	Lys	Asp	Leu	Arg	Ile	Met	Gly	Lys	Phe	Gly	Asp	Ser	Val	
																670
																675
																680
aca	act	gac	cac	att	tct	cca	gca	ggt	gcg	atc	ggt	aaa	gat	aca	cca	2776
Thr	Thr	Asp	His	Ile	Ser	Pro	Ala	Gly	Ala	Ile	Gly	Lys	Asp	Thr	Pro	
																685
																690
																695
gca	ggt	aaa	tat	tta	tta	gac	cat	gat	gtt	cca	att	aga	gaa	ttt	aac	2824
Ala	Gly	Lys	Tyr	Leu	Leu	Asp	His	Asp	Val	Pro	Ile	Arg	Glu	Phe	Asn	
																700
																705
																710
tct	tat	ggt	tca	aga	cgt	ggt	aac	cat	gaa	gta	atg	gta	cgt	ggt	act	2872
Ser	Tyr	Gly	Ser	Arg	Arg	Gly	Asn	His	Glu	Val	Met	Val	Arg	Gly	Thr	
																715
																720
																725
ttc	gct	aat	atc	cgt	att	aaa	aac	caa	tta	gca	cca	ggc	act	gaa	ggt	2920
Phe	Ala	Asn	Ile	Arg	Ile	Lys	Asn	Gln	Leu	Ala	Pro	Gly	Thr	Glu	Gly	
																730
																735
																740
																745
gga	ttt	aca	aca	tat	tgg	cct	aca	gaa	gaa	atc	atg	cct	atc	tat	gat	2968
Gly	Phe	Thr	Thr	Tyr	Trp	Pro	Thr	Glu	Glu	Ile	Met	Pro	Ile	Tyr	Asp	
																750
																755
																760
gca	gct	atg	aga	tac	aaa	gaa	aat	ggt	act	ggt	tta	gct	gtt	tta	gct	3016
Ala	Ala	Met	Arg	Tyr	Lys	Glu	Asn	Gly	Thr	Gly	Leu	Ala	Val	Leu	Ala	
																765
																770
																775
ggt	aat	gat	tac	ggt	atg	ggt	tca	tct	cgt	gac	tgg	gca	gct	aaa	ggt	3064
Gly	Asn	Asp	Tyr	Gly	Met	Gly	Ser	Ser	Arg	Asp	Trp	Ala	Ala	Lys	Gly	
																780
																785
																790
act	aac	tta	tta	ggt	gtt	aaa	act	gtt	att	gca	caa	agt	tat	gaa	cgt	3112
Thr	Asn	Leu	Leu	Gly	Val	Lys	Thr	Val	Ile	Ala	Gln	Ser	Tyr	Glu	Arg	
																795
																800
																805
atc	cat	cgt	tca	aac	tta	gta	atg	atg	ggt	gta	tta	cca	tta	caa	ttt	3160

64/123

Ile	His	Arg	Ser	Asn	Leu	Val	Met	Met	Gly	Val	Leu	Pro	Leu	Gln	Phe
810					815				820						825
aaa	caa	ggt	gag	tca	gct	gat	tct	cta	ggt	tta	gaa	ggt	aaa	gaa	gaa
Lys	Gln	Gly	Glu	Ser	Ala	Asp	Ser	Leu	Gly	Leu	Glu	Gly	Lys	Glu	Glu
					830				835						840
att	tct	gta	gat	atc	gat	gaa	aat	gtt	aaa	cca	cat	gat	tta	gta	act
Ile	Ser	Val	Asp	Ile	Asp	Glu	Asn	Val	Lys	Pro	His	Asp	Leu	Val	Thr
					845				850						855
gtt	cat	gct	aaa	aaa	gaa	aac	gga	gaa	gtt	gtt	gat	ttt	gaa	gca	atg
Val	His	Ala	Lys	Lys	Glu	Asn	Gly	Glu	Val	Val	Asp	Phe	Glu	Ala	Met
					860				865						870
gtt	cgt	ttc	gat	tca	tta	gta	gaa	tta	gat	tat	tat	cgt	cat	ggt	ggt
Val	Arg	Phe	Asp	Ser	Leu	Val	Glu	Leu	Asp	Tyr	Tyr	Arg	His	Gly	Gly
					875				880						885
atc	tta	caa	atg	gta	tta	aga	aac	aaa	tta	gct	caa	taatcacaat			3398
Ile	Leu	Gln	Met	Val	Leu	Arg	Asn	Lys	Leu	Ala	Gln				
					890				895						900
gtgacttttg	acagtgcataa	cgttaggtt	agcactgttt	ttttatgcta	aactatatat										3458
gtaatgttaa	tagtttagga	aggatggac	ttaaatgatt	tatagtttg	ctgaaatiga										3518
accaagatat	caagagacag	ataaaatggg	cgtgatttat	catggcaatt	atgcaacatg										3578
gtttagttaga	gcgcgtacag	attacattag	aaaacttagga	tttagttatg	ctgatatgga										3638
aaagcaaggg	atcatttc	cagttacaga	cttaaatatc	aaatataaaa	aatcaatttt										3698
ttatcctgaa	aaagtaacca	ttaaaacatg	ggtgaaaaaa	tattcaagat	tacgttctgt										3758
gtatagatat	gaaatttttta	atgaacaggg	agaacttgca	actacaggt	atactgagtt										3818
aatttgtatg	aaagctgata	cctttagacc	aatttagatta	gatcgattt	tctcagatgg										3878
gcatgaaacc	tatagtaaag	ttgaagctt													3907

<210> 28

<211> 901

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 28

Met	Ala	Ser	Asn	Phe	Lys	Glu	Thr	Ala	Lys	Lys	Gln	Phe	Asp	Leu	Asn
1				5				10							15
Gly	Gln	Ser	Tyr	Thr	Tyr	Tyr	Asp	Leu	Lys	Ser	Leu	Glu	Gln	Gly	
				20				25							30
Leu	Thr	Lys	Ile	Ser	Lys	Leu	Pro	Tyr	Ser	Ile	Arg	Val	Leu	Glu	
				35				40							45
Ser	Val	Leu	Arg	Gln	Glu	Asp	Asp	Phe	Val	Ile	Thr	Asp	Asp	His	Ile
				50				55							60
Lys	Gln	Leu	Ala	Glu	Phe	Gly	Lys	Lys	Gly	Asn	Glu	Gly	Glu	Val	Pro
				65				70							80

65/123

Phe	Lys	Pro	Ser	Arg	Val	Ile	Leu	Gln	Asp	Phe	Thr	Gly	Val	Pro	Ala
					85				90						95
Val	Val	Asp	Leu	Ala	Ser	Leu	Arg	Lys	Ala	Met	Asn	Asp	Val	Gly	Gly
					100				105						110
Asp	Ile	Asn	Lys	Ile	Asn	Pro	Glu	Val	Pro	Val	Asp	Leu	Val	Ile	Asp
					115				120						125
His	Ser	Val	Gln	Val	Asp	Ser	Tyr	Ala	Asn	Pro	Asp	Ala	Leu	Gln	Arg
					130				135						140
Asn	Met	Lys	Leu	Glu	Phe	Glu	Arg	Asn	Tyr	Glu	Arg	Tyr	Gln	Phe	Leu
	145				150				155						160
Asn	Trp	Ala	Thr	Lys	Ala	Phe	Asp	Asn	Tyr	Asn	Ala	Val	Pro	Pro	Ala
					165				170						175
Thr	Gly	Ile	Val	His	Gln	Val	Asn	Leu	Glu	Tyr	Leu	Ala	Asn	Val	Val
					180				185						190
His	Val	Arg	Asp	Val	Asp	Gly	Glu	Gln	Thr	Ala	Phe	Pro	Asp	Thr	Leu
					195				200						205
Val	Gly	Thr	Asp	Ser	His	Thr	Thr	Met	Ile	Asn	Gly	Ile	Gly	Val	Leu
					210				215						220
Gly	Trp	Gly	Val	Gly	Gly	Ile	Glu	Ala	Glu	Ala	Gly	Met	Leu	Gly	Gln
	225				230				235						240
Pro	Ser	Tyr	Phe	Pro	Ile	Pro	Glu	Val	Ile	Gly	Val	Lys	Leu	Ser	Asn
					245				250						255
Glu	Leu	Pro	Gln	Gly	Ser	Thr	Ala	Thr	Asp	Leu	Ala	Leu	Arg	Val	Thr
					260				265						270
Glu	Glu	Leu	Arg	Lys	Arg	Gly	Val	Val	Gly	Lys	Phe	Val	Glu	Phe	Phe
					275				280						285
Gly	Pro	Gly	Val	Thr	Asn	Leu	Pro	Leu	Ala	Asp	Arg	Ala	Thr	Ile	Ala
					290				295						300
Asn	Met	Ala	Pro	Glu	Tyr	Gly	Ala	Thr	Cys	Gly	Phe	Phe	Pro	Val	Asp
	305				310				315						320
Glu	Glu	Ser	Leu	Lys	Tyr	Met	Lys	Leu	Thr	Gly	Arg	Lys	Asp	Asp	His
					325				330						335
Ile	Ala	Leu	Val	Lys	Glu	Tyr	Leu	Gln	Gln	Asn	Asn	Met	Phe	Phe	Gln
					340				345						350
Val	Glu	Asn	Glu	Asp	Pro	Glu	Tyr	Thr	Glu	Val	Ile	Asp	Leu	Asp	Leu
					355				360						365
Ser	Thr	Val	Gln	Ala	Ser	Leu	Ser	Gly	Pro	Lys	Arg	Pro	Gln	Asp	Leu
					370				375						380
Ile	Phe	Leu	Ser	Asp	Met	Lys	Thr	Glu	Phe	Glu	Lys	Ser	Val	Thr	Ala
	385				390				395						400
Pro	Ala	Gly	Asn	Gln	Gly	His	Gly	Leu	Asp	Glu	Ser	Glu	Phe	Asp	Lys
					405				410						415
Lys	Ala	Glu	Ile	Lys	Phe	Asn	Asp	Gly	Arg	Thr	Ser	Thr	Met	Lys	Thr

66/123

	420	425	430												
Gly	Asp	Val	Ala	Ile	Ala	Ala	Ile	Thr	Ser	Cys	Thr	Asn	Thr	Ser	Asn
	435				440						445				
Pro	Tyr	Val	Met	Leu	Gly	Ala	Gly	Leu	Val	Ala	Lys	Lys	Ala	Ile	Glu
			450			455					460				
Lys	Gly	Leu	Lys	Val	Pro	Asp	Tyr	Val	Lys	Thr	Ser	Leu	Ala	Pro	Gly
	465				470				475				480		
Ser	Lys	Val	Val	Thr	Gly	Tyr	Leu	Arg	Asp	Ser	Gly	Leu	Gln	Glu	Tyr
			485				490					495			
Leu	Asp	Asp	Leu	Gly	Phe	Asn	Leu	Val	Gly	Tyr	Gly	Cys	Thr	Thr	Cys
								500	505				510		
Ile	Gly	Asn	Ser	Gly	Pro	Leu	Leu	Pro	Glu	Ile	Glu	Lys	Ala	Val	Ala
													515		525
Asp	Glu	Asp	Leu	Leu	Val	Thr	Ser	Val	Leu	Ser	Gly	Asn	Arg	Asn	Phe
								530	535				540		
Glu	Gly	Arg	Ile	His	Pro	Leu	Val	Lys	Ala	Asn	Tyr	Leu	Ala	Ser	Pro
								545	550				555		560
Gln	Leu	Val	Val	Ala	Tyr	Ala	Leu	Ala	Gly	Thr	Val	Asp	Ile	Asp	Leu
									565		570			575	
His	Asn	Glu	Pro	Ile	Gly	Lys	Gly	Lys	Asp	Gly	Glu	Asp	Val	Tyr	Leu
									580	585				590	
Lys	Asp	Ile	Trp	Pro	Ser	Ile	Lys	Glu	Val	Ala	Asp	Thr	Val	Asp	Ser
									595	600				605	
Val	Val	Thr	Pro	Glu	Leu	Phe	Leu	Glu	Glu	Tyr	Ala	Asn	Val	Tyr	Glu
									610	615				620	
Asn	Asn	Glu	Met	Trp	Asn	Glu	Ile	Asp	Val	Thr	Asp	Ala	Pro	Leu	Tyr
									625	630				640	
Asp	Phe	Asp	Pro	Asn	Ser	Thr	Tyr	Ile	Gln	Asn	Pro	Ser	Phe	Phe	Gln
									645		650			655	
Gly	Leu	Ser	Lys	Glu	Pro	Gly	Thr	Ile	Glu	Pro	Leu	Lys	Asp	Leu	Arg
									660	665				670	
Ile	Met	Gly	Lys	Phe	Gly	Asp	Ser	Val	Thr	Thr	Asp	His	Ile	Ser	Pro
									675	680				685	
Ala	Gly	Ala	Ile	Gly	Lys	Asp	Thr	Pro	Ala	Gly	Lys	Tyr	Leu	Leu	Asp
									690	695				700	
His	Asp	Val	Pro	Ile	Arg	Glu	Phe	Asn	Ser	Tyr	Gly	Ser	Arg	Arg	Gly
									705	710				720	
Asn	His	Glu	Val	Met	Val	Arg	Gly	Thr	Phe	Ala	Asn	Ile	Arg	Ile	Lys
									725		730			735	
Asn	Gln	Leu	Ala	Pro	Gly	Thr	Glu	Gly	Gly	Phe	Thr	Thr	Tyr	Trp	Pro
									740	745				750	
Thr	Glu	Glu	Ile	Met	Pro	Ile	Tyr	Asp	Ala	Ala	Met	Arg	Tyr	Lys	Glu
									755		760			765	

67/123

<210> 29
<211> 3006
<212> DNA
<213> Cory

<220>
<221> CDS
<222> (328)..(2514)

<400> 29
 gtcgacgacg aaccggccac cgccgaacca gccggcgatc tggtgtggga gacaccggg 60
 ttctccccc tgggtgaaca ggtgccacaa ccccgcccc acaggcacac ctaccactgg 120
 atcgccgggg agagcagcat ggtcacacgc ctgcggcggt ccctggtgaa ggatcacggc 180
 ctggacagat cgccagggtggc attcatgggt tattggaggc agggagtggt catgaggggt 240
 tgcatacgct tccctgaggg tccgcaggcg tgcctcaccc tgtatcttg atagttgaac 300
 aaaagagccc acataacaag gagactc atg gct aag atc atc tgg acc cgc acc 354
 Met Ala Lys Ile Ile Trp Thr Arg Thr
 1 5
 gac gaa gca ccg ctg acc tac tcg ctg aag ccg gtc gtc gag 402
 Asp Glu Ala Pro Leu Leu Ala Thr Tyr Ser Leu Lys Pro Val Val Glu
 10 15 20 25
 gct ttc gcc gcc acc gcg ggc atc gag gtg gag acc cgc gat atc tct 450
 Ala Phe Ala Ala Thr Ala Gly Ile Glu Val Glu Thr Arg Asp Ile Ser
 30 35 40

68/123

ctc	gcc	ggt	cgc	atc	ctc	gca	cag	ttc	gcg	gac	cag	ctc	ccc	gag	gag	498
Leu	Ala	Gly	Arg	Ile	Leu	Ala	Gln	Phe	Ala	Asp	Gln	Leu	Pro	Glu	Glu	
				45				50					55			
cag	aag	gtc	tcc	gac	gcc	ctc	gcc	gag	ctc	ggc	gaa	ctg	gct	aag	acc	546
Gln	Lys	Val	Ser	Asp	Ala	Leu	Ala	Glu	Leu	Gly	Glu	Leu	Ala	Lys	Thr	
				60				65				70				
ccc	gaa	gcc	aac	atc	atc	aag	ctt	ccc	aat	atc	tcc	gca	tcc	gta	ccg	594
Pro	Glu	Ala	Asn	Ile	Ile	Lys	Leu	Pro	Asn	Ile	Ser	Ala	Ser	Val	Pro	
				75				80			85					
cag	ctc	aag	gct	gcc	gta	aag	gaa	ctg	cag	gaa	cag	ggc	tac	gac	ctg	642
Gln	Leu	Lys	Ala	Ala	Val	Lys	Glu	Leu	Gln	Glu	Gln	Gly	Tyr	Asp	Leu	
				90			95			100			105			
ccc	gag	tac	gag	gat	gcc	aag	gac	cgc	tac	gcc	gct	gtc	atc	ggc	tcc	690
Pro	Glu	Tyr	Glu	Asp	Ala	Lys	Asp	Arg	Tyr	Ala	Ala	Val	Ile	Gly	Ser	
				110				115			120					
aat	gtc	aac	ccg	gtc	ctg	cgc	gag	ggc	aat	tcc	gac	cgc	cgc	gca	ccg	738
Asn	Val	Asn	Pro	Val	Leu	Arg	Glu	Gly	Asn	Ser	Asp	Arg	Arg	Ala	Pro	
				125			130			135						
gtg	gcc	gtg	aag	aac	ttc	gtg	aag	aag	ttc	ccc	cac	cgc	atg	ggc	gag	786
Val	Ala	Val	Lys	Asn	Phe	Val	Lys	Lys	Phe	Pro	His	Arg	Met	Gly	Glu	
				140			145			150						
tgg	tcc	gcc	gac	tcc	aag	acc	aat	gtt	gcc	acc	atg	ggt	gcc	gac	gac	834
Trp	Ser	Ala	Asp	Ser	Lys	Thr	Asn	Val	Ala	Thr	Met	Gly	Ala	Asp	Asp	
				155			160			165						
ttc	cgc	agc	aat	gag	aag	tcc	gtg	atc	atg	gac	gag	ggc	gac	acc	gtg	882
Phe	Arg	Ser	Asn	Glu	Lys	Ser	Val	Ile	Met	Asp	Glu	Ala	Asp	Thr	Val	
				170			175			180			185			
gtg	atc	aag	cat	gtc	gcc	gcc	gac	ggc	acc	gag	acc	gtg	ctc	aag	gac	930
Val	Ile	Lys	His	Val	Ala	Ala	Asp	Gly	Thr	Glu	Thr	Val	Leu	Lys	Asp	
				190			195			200						
agc	ctc	ccc	ctg	ctc	aag	ggt	gag	gtc	atc	gac	ggc	acc	tcc	atc	tcc	978
Ser	Leu	Pro	Leu	Leu	Lys	Gly	Glu	Val	Ile	Asp	Gly	Thr	Phe	Ile	Ser	
				205			210			215						
gcc	aag	gca	ctg	gac	gcc	ttc	ctg	ctc	gac	cag	gtc	aaa	cgc	gcc	aag	1026
Ala	Lys	Ala	Leu	Asp	Ala	Phe	Leu	Leu	Asp	Gln	Val	Lys	Arg	Ala	Lys	
				220			225			230						
gag	gag	ggc	atc	ctc	ttc	tcc	gcc	cac	atg	aag	gcc	acc	atg	atg	aag	1074
Glu	Glu	Gly	Ile	Leu	Phe	Ser	Ala	His	Met	Lys	Ala	Thr	Met	Met	Lys	
				235			240			245						
gtc	tcc	gac	ccg	atc	atc	ttc	ggc	cac	atc	gtc	cgc	gcc	tac	ttc	gcc	1122
Val	Ser	Asp	Pro	Ile	Ile	Phe	Gly	His	Ile	Val	Arg	Ala	Tyr	Phe	Ala	
				250			255			260			265			
gat	gtc	tac	gca	cag	tac	ggt	gag	cag	ctg	ctc	gcc	ggc	ctc	aac		1170

69/123

Asp	Val	Tyr	Ala	Gln	Tyr	Gly	Glu	Gln	Leu	Leu	Ala	Ala	Gly	Leu	Asn	
					270				275						280	
ggt	gag	aac	ggt	ctc	gcc	gcc	atc	tac	gcc	ggc	ctg	gac	aag	ctg	gac	
Gly	Glu	Asn	Gly	Leu	Ala	Ala	Ile	Tyr	Ala	Gly	Leu	Asp	Lys	Leu	Asp	
					285				290						295	
aac	ggt	gcc	gag	atc	aag	gca	gcc	ttc	gac	aag	ggc	ctg	gaa	gag	ggc	
Asn	Gly	Ala	Glu	Ile	Lys	Ala	Ala	Phe	Asp	Lys	Gly	Leu	Glu	Glu	Gly	
					300				305						310	
ccc	gac	ctg	gcc	atg	gtg	aac	tcc	gcc	aag	ggc	atc	acc	aac	ctg	cat	
Pro	Asp	Leu	Ala	Met	Val	Asn	Ser	Ala	Lys	Gly	Ile	Thr	Asn	Leu	His	
					315				320						325	
gtg	ccc	tcc	gat	gtc	atc	atc	gac	gcc	tcc	atg	ccc	gcc	atg	atc	cgc	
Val	Pro	Ser	Asp	Val	Ile	Ile	Asp	Ala	Ser	Met	Pro	Ala	Met	Ile	Arg	
					330				335						345	
acc	tcc	ggc	aag	atg	tgg	aac	aag	gac	gac	cag	acc	cag	cat	gcc	ctg	
Thr	Ser	Gly	Lys	Met	Trp	Asn	Lys	Asp	Asp	Gln	Thr	Gln	Asp	Ala	Leu	
					350				355						360	
gct	gtc	atc	ccg	gac	tcc	tcc	atc	gac	gcc	ggt	gtc	tac	cag	acc	gtc	atc
Ala	Val	Ile	Pro	Asp	Ser	Ser	Tyr	Ala	Gly	Val	Tyr	Gln	Thr	Val	Ile	
					365				370						375	
gag	gac	tgc	cgc	aag	aat	ggc	gcc	ttc	gat	ccg	acc	acc	atg	ggc	acc	
Glu	Asp	Cys	Arg	Lys	Asn	Gly	Ala	Phe	Asp	Pro	Thr	Thr	Met	Gly	Thr	
					380				385						390	
gtc	ccc	aac	gtc	ggt	ctg	atg	gca	cag	aag	gcc	gag	gag	tac	ggc	tcc	
Val	Pro	Asn	Val	Gly	Leu	Met	Ala	Gln	Lys	Ala	Glu	Glu	Tyr	Gly	Ser	
					395				400						405	
cac	gac	aag	acc	ttc	cgt	atc	gag	gcc	gac	ggc	aag	gta	cag	gtc	gtc	
His	Asp	Lys	Thr	Phe	Arg	Ile	Glu	Ala	Asp	Gly	Lys	Val	Gln	Val	Val	
					410				415						425	
gcc	tcc	aac	ggt	gat	gtc	ctc	atc	gag	cac	gac	gtg	gag	aag	ggc	gac	
Ala	Ser	Asn	Gly	Asp	Val	Leu	Ile	Glu	His	Asp	Val	Glu	Lys	Gly	Asp	
					430				435						440	
atc	tgg	cgc	gcc	tgc	cag	acc	aag	gac	gcc	ccg	atc	cag	gac	tgg	gtc	
Ile	Trp	Arg	Ala	Cys	Gln	Thr	Lys	Asp	Ala	Pro	Ile	Gln	Asp	Trp	Val	
					445				450						455	
aag	ctg	gct	gtc	aac	cgc	gca	cgt	ctc	tcc	ggc	atg	ccc	gct	gtg	ttc	
Lys	Leu	Ala	Val	Asn	Arg	Ala	Arg	Leu	Ser	Gly	Met	Pro	Ala	Val	Phe	
					460				465						470	
tgg	ctg	gat	ccc	gcc	cgc	gca	cac	gac	cgc	aac	ctg	acc	aca	ctg	gtg	
Trp	Leu	Asp	Pro	Ala	Arg	Ala	His	Asp	Arg	Asn	Leu	Thr	Thr	Leu	Val	
					475				480						485	
gag	aag	tac	ctg	gca	gac	cac	gac	acc	gag	ggc	ctg	gac	atc	cag	atc	
Glu	Lys	Tyr	Leu	Ala	Asp	His	Asp	Thr	Glu	Gly	Leu	Asp	Ile	Gln	Ile	

70/123

490	495	500	505
ctc tcc ccc gtc gag gcc acc cag cac gcc atc gac cgc atc cgc cgc			1890
Leu Ser Pro Val Glu Ala Thr Gln His Ala Ile Asp Arg Ile Arg Arg			
510	515	520	
ggc gag gac acc atc tcc gtc acc ggt aac gtc ctg cgt gac tac aac			1938
Gly Glu Asp Thr Ile Ser Val Thr Gly Asn Val Leu Arg Asp Tyr Asn			
525	530	535	
acc gac ctc ttc ccg atc ctc gag ctg ggc acc tcc gcc aag atg ctc			1986
Thr Asp Leu Phe Pro Ile Leu Glu Leu Gly Thr Ser Ala Lys Met Leu			
540	545	550	
tcc gtc gtg cca ctg atg gcc ggc ggt gga ctc ttc gag acc ggt gcc			2034
Ser Val Val Pro Leu Met Ala Gly Gly Leu Phe Glu Thr Gly Ala			
555	560	565	
ggt ggc tcc gcc ccg aag cac gtc cag cag gtc atc gag gaa aac cac			2082
Gly Gly Ser Ala Pro Lys His Val Gln Gln Val Ile Glu Glu Asn His			
570	575	580	585
ctg cgc tgg gat tcc ctc ggt gag ttc ctg gcc ctg gag tcc ttc			2130
Leu Arg Trp Asp Ser Leu Gly Glu Phe Leu Ala Leu Ala Glu Ser Phe			
590	595	600	
cgc cac gag ctc aac acc cgc aac aac acc aag gcc ggt gtc ctc gcc			2178
Arg His Glu Leu Asn Thr Arg Asn Asn Thr Lys Ala Gly Val Leu Ala			
605	610	615	
gat gcc ctg gac cgt gcg acc gag aag ctc ctc aac gag gag aag tcc			2226
Asp Ala Leu Asp Arg Ala Thr Glu Lys Leu Leu Asn Glu Glu Lys Ser			
620	625	630	
ccg tcc cgc aag gtc ggc gag atc gac aac cgt ggt tcc cac ttc tgg			2274
Pro Ser Arg Lys Val Gly Glu Ile Asp Asn Arg Gly Ser His Phe Trp			
635	640	645	
ctg gcc acc tac tgg gcc gat gaa ctg gcc aac cag acc gag gac gcc			2322
Leu Ala Thr Tyr Trp Ala Asp Glu Leu Ala Asn Gln Thr Glu Asp Ala			
650	655	660	665
gag ctg gct gag acc ttc gcc cct gtc gcc gag gcc ctg aac aac cag			2370
Glu Leu Ala Glu Thr Phe Ala Pro Val Ala Glu Ala Leu Asn Asn Gln			
670	675	680	
gct gcc gac atc gac gca gca ctc atc ggt gag cag ggc aag cct gtc			2418
Ala Ala Asp Ile Asp Ala Ala Leu Ile Gly Glu Gln Gly Lys Pro Val			
685	690	695	
gac ctg ggt ggc tac tac gca ccc tcc gat gag aag acc tcc gcg atc			2466
Asp Leu Gly Gly Tyr Tyr Ala Pro Ser Asp Glu Lys Thr Ser Ala Ile			
700	705	710	
atg cgc ccg gtg gcc gca ttc aac gag atc atc gac tcc ctg aag aag			2514
Met Arg Pro Val Ala Ala Phe Asn Glu Ile Ile Asp Ser Leu Lys Lys			
715	720	725	

71/123

taacccttc tccggagccg acagccgacg gccacgc tcc cccgcccacg gggatcg tg 2574
 gccgtcgcc gtttctggca ctggagtgaa cacttcggtg ataatggtg aatgaacacg 2634
 ccccggttcc ccgcacatcc gtccgcgtt tccgcgtgg gtctgatcgc tgcgtggc 2694
 acccccgttg ccgtcgacaga caccatcacc gcggacacccg accggaaac ctgcgtggcc 2754
 agccagaatg acaactccag cgtgatcagg ttctggatg acctggaggc cgatgtccgt 2814
 gagcagcgcc tgaccgaact ggtgcacag gacccggcc tcaagaacga catcgaggcc 2874
 ttcatcgccg aggacccgtt agccccctcc gcagccgatc tccagagacg gctggatgca 2934
 aatgacgccc gtgagggctt ggccatgctg ctacctaata cccgcaccga ccccgagggtg 2994
 gtggacctgc ag 3006

<210> 30

<211> 729

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 30

Met	Ala	Lys	Ile	Ile	Trp	Thr	Arg	Thr	Asp	Glu	Ala	Pro	Leu	Leu	Ala
1				5					10						15
Thr	Tyr	Ser	Leu	Lys	Pro	Val	Val	Glu	Ala	Phe	Ala	Ala	Thr	Ala	Gly
							20			25					30
Ile	Glu	Val	Glu	Thr	Arg	Asp	Ile	Ser	Leu	Ala	Gly	Arg	Ile	Leu	Ala
							35			40					45
Gln	Phe	Ala	Asp	Gln	Leu	Pro	Glu	Glu	Gln	Lys	Val	Ser	Asp	Ala	Leu
							50			55					60
Ala	Glu	Leu	Gly	Glu	Leu	Ala	Lys	Thr	Pro	Glu	Ala	Asn	Ile	Ile	Lys
							65			70					80
Leu	Pro	Asn	Ile	Ser	Ala	Ser	Val	Pro	Gln	Leu	Lys	Ala	Ala	Val	Lys
							85			90					95
Glu	Leu	Gln	Glu	Gln	Gly	Tyr	Asp	Leu	Pro	Glu	Tyr	Glu	Asp	Ala	Lys
							100			105					110
Asp	Arg	Tyr	Ala	Ala	Val	Ile	Gly	Ser	Asn	Val	Asn	Pro	Val	Leu	Arg
							115			120					125
Glu	Gly	Asn	Ser	Asp	Arg	Arg	Ala	Pro	Val	Ala	Val	Lys	Asn	Phe	Val
							130			135					140
Lys	Lys	Phe	Pro	His	Arg	Met	Gly	Glu	Trp	Ser	Ala	Asp	Ser	Lys	Thr
							145			150					160
Asn	Val	Ala	Thr	Met	Gly	Ala	Asp	Asp	Phe	Arg	Ser	Asn	Glu	Lys	Ser
							165			170					175
Val	Ile	Met	Asp	Glu	Ala	Asp	Thr	Val	Val	Ile	Lys	His	Val	Ala	Ala
							180			185					190
Asp	Gly	Thr	Glu	Thr	Val	Leu	Lys	Asp	Ser	Leu	Pro	Leu	Leu	Lys	Gly
							195			200					205
Glu	Val	Ile	Asp	Gly	Thr	Phe	Ile	Ser	Ala	Lys	Ala	Leu	Asp	Ala	Phe

72/123

210	215	220
Leu	Leu	Asp
Gln	Val	Lys
Arg	Ala	Lys
Glu	Glu	Gly
Ile	Leu	Phe
225	230	235
240		
Ala	His	Met
Lys	Ala	Thr
Met	Met	Met
Lys	Val	Ser
245		250
255		
Gly	His	Ile
Ile	Val	Arg
Arg	Ala	Tyr
Tyr	Phe	Ala
Ala	Asp	Val
260	265	270
270		
Glu	Gln	Leu
Leu	Leu	Ala
Ala	Ala	Gly
Gly	Leu	Asn
Asn	Gly	Glu
Gly	Leu	Asn
Leu	Ala	Ala
275	280	285
285		
Ile	Tyr	Ala
Gly	Leu	Asp
Leu	Lys	Lys
Asp	Leu	Asp
290	295	300
295		
Ala	Phe	Asp
Lys	Gly	Leu
Gly	Glu	Glu
Pro	Gly	Pro
Asp	Leu	Ala
305	310	315
315		320
Ser	Ala	Lys
Gly	Ile	Thr
Ile	Asn	Leu
Asn	His	Val
325		330
330		335
Asp	Ala	Ser
Met	Pro	Ala
Met	Ile	Arg
Ile	Arg	Thr
Arg	Ser	Gly
Gly	Lys	Met
340		345
345		350
Lys	Asp	Asp
Gln	Thr	Gln
Asp	Ala	Leu
Ala	Val	Ile
Val	Ile	Pro
Ile	Pro	Asp
355		360
360		365
Tyr	Ala	Gly
Val	Tyr	Gln
Gln	Thr	Val
Thr	Ile	Glu
Ile	Asp	Cys
Asp	Cys	Arg
Cys	Arg	Lys
Arg	Lys	Asn
Asn	Gly	Gly
370		375
375		380
Ala	Phe	Asp
Pro	Thr	Thr
Thr	Met	Gly
Met	Gly	Thr
Gly	Thr	Val
Thr	Val	Pro
Val	Pro	Asn
385		390
390		395
395		400
Ala	Gln	Lys
Ala	Glu	Glu
Glu	Tyr	Gly
Tyr	Ser	His
Gly	Asp	Lys
Asp	Lys	Thr
Lys	Thr	Phe
Thr	Phe	Arg
Phe	Arg	Ile
Arg	Ile	Ile
Ile	Glu	Asp
Asp	Val	Glu
Val	Lys	Gly
Lys	Gly	Asp
Asp	Ile	Ile
Ile	Trp	Arg
Trp	Arg	Ala
Arg	Ala	Cys
Cys	Gln	Thr
Gln	Thr	435
Thr	440	445
435		
Lys	Asp	Ala
Ala	Pro	Ile
Ile	Gln	Asp
Gln	Asp	Trp
Asp	Trp	Val
Trp	Val	Lys
Val	Lys	Leu
Lys	Leu	Ala
Leu	Ala	Val
Ala	Val	Asn
Val	Asn	Arg
Asn	Arg	Ala
Arg	Ile	Ser
Ile	Ser	Gly
Ser	Gly	Met
Gly	Met	Pro
Met	Pro	Ala
Pro	Ala	Val
Ala	Val	Phe
Val	Phe	Trp
Phe	Trp	Leu
Trp	Leu	Asp
Leu	Asp	Pro
Asp	Pro	Ala
Pro	Ala	Arg
Ala	Arg	Ile
Arg	Ile	Asp
Ile	Asp	Arg
Asp	Arg	Ile
Arg	Ile	Arg
Ile	Arg	Arg
Arg	Arg	Gly
Arg	Gly	Glu
Gly	Glu	Asp
Asp	Asp	Thr
Thr	Thr	Ile
Ile	Ser	Asp
Ser	Asp	Val
Asp	Val	Glu
Val	Glu	Ala
Glu	Ala	Thr
Ala	Thr	500
Thr	505	510
500		
Gln	His	Ala
His	Ala	Ile
Ile	Asp	Arg
Asp	Arg	Ile
Arg	Ile	Arg
Ile	Arg	Arg
Arg	Arg	Gly
Gly	Gly	Glu
Glu	Glu	Asp
Asp	Asp	Thr
Thr	Thr	Ile
Ile	Ser	Asp
Ser	Asp	Leu
Asp	Leu	Phe
Leu	Phe	Pro
Phe	Pro	Ile
Pro	Ile	Leu
Ile	Leu	Asp
Asp	Asp	515
515		520
520		525
Thr	Gly	Asn
Gly	Asn	Val
Asn	Val	Leu
Val	Leu	Arg
Arg	Arg	Asp
Asp	Asp	Tyr
Tyr	Tyr	Asn
Asn	Asn	Thr
Thr	Thr	Asp
Asp	Asp	Leu
Leu	Leu	Phe
Phe	Phe	Pro
Pro	Pro	Ile
Ile	Ile	Leu
Leu	Leu	Asp
Asp	Asp	530
530		535
535		540
Glu	Leu	Gly
Leu	Gly	Thr
Gly	Thr	Ser
Thr	Ser	Ala
Ala	Ala	Lys
Lys	Met	Leu
Met	Leu	Ser
Ser	Val	Val
Val	Val	Pro
Pro	Pro	Leu
Leu	Leu	Met
Met	Met	Ala
Ala	Ala	545
545		550
550		555
555		560
560		

73/123

Gly Gly Gly Leu Phe Glu Thr Gly Ala Gly Gly Ser Ala Pro Lys His
 565 570 575
 Val Gln Gln Val Ile Glu Glu Asn His Leu Arg Trp Asp Ser Leu Gly
 580 585 590
 Glu Phe Leu Ala Leu Ala Glu Ser Phe Arg His Glu Leu Asn Thr Arg
 595 600 605
 Asn Asn Thr Lys Ala Gly Val Leu Ala Asp Ala Leu Asp Arg Ala Thr
 610 615 620
 Glu Lys Leu Leu Asn Glu Glu Lys Ser Pro Ser Arg Lys Val Gly Glu
 625 630 635 640
 Ile Asp Asn Arg Gly Ser His Phe Trp Leu Ala Thr Tyr Trp Ala Asp
 645 650 655
 Glu Leu Ala Asn Gln Thr Glu Asp Ala Glu Leu Ala Glu Thr Phe Ala
 660 665 670
 Pro Val Ala Glu Ala Leu Asn Asn Gln Ala Ala Asp Ile Asp Ala Ala
 675 680 685
 Leu Ile Gly Glu Gln Gly Lys Pro Val Asp Leu Gly Gly Tyr Tyr Ala
 690 695 700
 Pro Ser Asp Glu Lys Thr Ser Ala Ile Met Arg Pro Val Ala Ala Phe
 705 710 715 720
 Asn Glu Ile Ile Asp Ser Leu Lys Lys
 725

<210> 31
<211> 2322
<212> DNA
<213> Corynebacterium thermoaminogenes

<220>
<221> CDS
<222> (806)..(2212)

<400> 31

```

ggtaccccca cgtaccctag gccatcacag caattttac atcgatatt ttagtgtgc 60
tcataacgtc ctatgaatt tcgcaggta tagttatca aatagagaat caaactccga 120
cctagccctt gccgatgcta aaagttagct gacccttgg ggcgcctcat ttgaaactgc 180
gaccaagctc atgaatgcgc gaaagcattt ccattataag ggtaagctgt aagaatagt 240
ggagaaaaatg ttcaatcgat ttcttaactca ttggatggaaat tccattttc tggccttc 300
tcaaataaatg taatgtggccc gtatgcgtttaat tttcttagaaat attttagaagc ggcggcaactc 360
atgattatgt attgtataag cctcaaagac cgaatagatt actaacattt aatgtggacca 420
gagcgtttaga agcttggtag agtgcttattt ccgttgcgttgc ggcaagggtt tccttaccatg 480
agatagatcg gcagatagtt ggtttgtaaa aattttaag gacggtccgc aatgtcaatt 540
cttgaacaga tcatttttt catcaacacc atcttgggtt atggctgtca cgctgggttct 600

```

74/123

tccgcttcca	gcaaccttc	tcacacgatc	ggcctgttct	aggcctaatt	gtaataagg	660	
ctgtgtaca	gtcccccg	tgatttgtc	tttttaggcg	cccgcgcgg	cgtttcgg	720	
tttcatctt	tttaaatg	agtttggaa	atcaagtgcc	cccggatgca	cgacaatgct	780	
atgccgaaca	cgtatttgtt	aaatc	gtg act	gaa cat	tat gac	832	
					gta gta gta		
					Val Thr Glu His Tyr Asp Val Val Val		
			1		5		
ctc gga gct	ggc ccc	ggt ggc	tat gtc	tcc gcc	atc cgc	gcc gcg cag	880
Leu Gly Ala	Gly Pro	Gly Gly	Tyr Val	Ser Ala Ile	Arg Ala Ala	Gln	
10	15			20		25	
ctc ggt aag aaa	gtt gcg	gtt atc	gag aag	cag tac	tgg gga	ggt gtc	928
Leu Gly Lys	Lys Val	Ala Val	Ile Glu	Lys Gln	Tyr Trp	Gly Gly Val	
30	35			40			
tgc ctg aat	gtg ggt	tgt atc	cca tct	aag gcg	ttg atc	aag aac	976
Cys Leu Asn	Val Gly	Cys Ile	Pro Ser	Lys Ala	Ile Lys	Asn Ala	
45	50			55			
gag atc gcc	cac atc	ttc aac	cat gag	aag aag	acc ttc	ggc atc aac	1024
Glu Ile Ala	His Ile	Phe Asn	His Glu	Lys Lys	Thr Phe	Gly Ile Asn	
60	65			70			
ggc gag gtc	acc ttc	aac tac	gag gat	gcc cac	aag cgt	tcc cgt ggt	1072
Gly Glu Val	Thr Phe	Asn Tyr	Glu Asp	Ala His	Lys Arg	Ser Arg Gly	
75	80			85			
gtc tcc gac	aag atc	gtc ggc	ggt gtt	cac tac	ttg atg	aag aag aac	1120
Val Ser Asp	Lys Ile	Val Gly	Gly Val	His Tyr	Leu Met	Lys Lys Asn	
90	95			100		105	
aag atc acc	gag atc	gac ggt	ttc ggc	acc ttc	aag gat	gcc aag acc	1168
Lys Ile Thr	Glu Ile	Asp Gly	Phe Gly	Thr Phe	Lys Asp	Ala Lys Thr	
110	115			120			
atc gag gtg	acc gat	ggt aag	gat gcc	ggc aag	acc gtc	acc ttc gat	1216
Ile Glu Val	Thr Asp	Gly Lys	Asp Ala	Gly Lys	Thr Val	Thr Phe Asp	
125	130			135			
gac tgc atc	atc gcc	acc ggt	tcc gtg	gtc aac	tcc ctc	cgt ggt gtt	1264
Asp Cys Ile	Ile Ala	Thr Gly	Ser Val	Val Asn	Ser Leu	Arg Gly Val	
140	145			150			
gag ttc tcc	gag aac	gtg gtc	tcc tac	gag gag	cag atc	ctc aac ccg	1312
Glu Phe Ser	Glu Asn	Val Val	Ser Tyr	Glu Glu	Gln Ile	Leu Asn Pro	
155	160			165			
gtg gcg cct	aag aag	atg gtc	atc gtc	ggt ggc	ggc atc	ggt atg	1360
Val Ala Pro	Lys Lys	Met Val	Ile Val	Gly Gly	Gly Ala Ile	Gly Met	
170	175			180		185	
gaa ttc gcc	tac gtt	ctg ggc	aac tac	ggt gtg	gac gta	acc ctc atc	1408
Glu Phe Ala	Tyr Val	Leu Gly	Asn Tyr	Gly Val	Asp Val	Thr Leu Ile	
190	195			200			
gag ttc atg	gac cgc	gtt ctg	ccg aac	gag gat	cca gag	gtg tcc aag	1456

75/123

Glu	Phe	Met	Asp	Arg	Val	Leu	Pro	Asn	Glu	Asp	Pro	Glu	Val	Ser	Lys	
205									210						215	
gtt	atc	gcc	aag	gcc	tac	aag	aag	atg	ggc	atc	aag	ctc	ctc	ccg	ggc	1504
Val	Ile	Ala	Lys	Ala	Tyr	Lys	Lys	Met	Gly	Ile	Lys	Leu	Leu	Pro	Gly	
220									225					230		
cac	gca	acc	acc	gcg	gtg	cgc	gac	aat	ggc	gat	tcc	gtt	gag	gtc	gat	1552
His	Ala	Thr	Thr	Ala	Val	Arg	Asp	Asn	Gly	Asp	Ser	Val	Glu	Val	Asp	
235									240					245		
tcg	cag	aag	aag	ggc	tcg	gac	aag	acc	gag	acc	atc	acc	gtc	gac	cgt	1600
Tyr	Gln	Lys	Lys	Gly	Ser	Asp	Lys	Thr	Glu	Thr	Ile	Thr	Val	Asp	Arg	
250									255					260		265
gtt	ctt	atc	tcc	gtc	ggc	tcc	cgc	cca	cgc	gtc	gag	ggc	tcc	ggc	ctg	1648
Val	Leu	Ile	Ser	Val	Gly	Phe	Arg	Pro	Arg	Val	Glu	Gly	Phe	Gly	Leu	
270									275					280		
gag	aac	acc	ggc	gtc	aag	ctc	acc	gaa	cgc	ggt	gcc	atc	gac	att	gat	1696
Glu	Asn	Thr	Gly	Val	Lys	Leu	Thr	Glu	Arg	Gly	Ala	Ile	Asp	Ile	Asp	
285									290					295		
gag	cat	atg	cgc	acc	aac	gtc	gac	ggc	atc	tac	gcc	atc	ggt	gac	gtc	1744
Glu	His	Met	Arg	Thr	Asn	Val	Asp	Gly	Ile	Tyr	Ala	Ile	Gly	Asp	Val	
300									305					310		
acc	gcc	aag	ctg	cag	ctg	gca	cac	gtc	gcc	gag	gca	cag	ggc	att	gtc	1792
Thr	Ala	Lys	Leu	Gln	Leu	Ala	His	Val	Ala	Glu	Ala	Gln	Gly	Ile	Val	
315									320					325		
gcc	gcc	gag	aca	ctc	gcc	ggc	gca	gaa	acc	cag	acc	ctg	ggc	gac	tac	1840
Ala	Ala	Glu	Thr	Leu	Ala	Gly	Ala	Glu	Thr	Gln	Thr	Leu	Gly	Asp	Tyr	
330									335					340		345
atg	atg	atg	ccg	cgt	gcc	acc	tcc	tgc	aac	cca	cag	gtt	gcc	tcc	tcc	1888
Met	Met	Met	Pro	Arg	Ala	Thr	Phe	Cys	Asn	Pro	Gln	Val	Ala	Ser	Phe	
350									355					360		
ggt	tac	acc	gag	gag	cag	gcc	aag	gag	tgg	ccg	gat	cga	gag	atc		1936
Gly	Tyr	Thr	Glu	Glu	Gln	Ala	Lys	Glu	Lys	Trp	Pro	Asp	Arg	Glu	Ile	
365									370					375		
aag	gtg	tcc	tcc	ttc	ccg	ttc	tcc	gcg	aac	ggc	aag	gcc	gtc	ggc	ctg	1984
Lys	Val	Ser	Ser	Phe	Pro	Phe	Ser	Ala	Asn	Gly	Lys	Ala	Val	Gly	Leu	
380									385					390		
gct	gag	acc	gat	ggt	ttc	gcc	aag	atc	gtc	gcc	gac	gct	gag	ttc	ggt	2032
Ala	Glu	Thr	Asp	Gly	Phe	Ala	Lys	Ile	Val	Ala	Asp	Ala	Glu	Phe	Gly	
395									400					405		
gaa	ctg	ctg	ggt	ggc	cac	att	gtc	ggt	gcc	aac	gcc	tcc	gag	ctg	ctc	2080
Glu	Leu	Leu	Gly	Gly	His	Ile	Val	Gly	Ala	Asn	Ala	Ser	Glu	Leu	Leu	
410									415					420		425
aac	gag	ctg	gtg	ctg	gcc	cag	aac	tgg	gat	ctc	acc	acc	gag	gag	atc	2128
Asn	Glu	Leu	Val	Leu	Ala	Gln	Asn	Trp	Asp	Leu	Thr	Glu	Glu	Ile		

76/123

430	435	440	
agc cgc agc gtc cac atc cac ccg acc ctg tcg gag gct gtc aag gaa			2176
Ser Arg Ser Val His Ile His Pro Thr Leu Ser Glu Ala Val Lys Glu			
445	450	455	
gct gcc cac ggc gtc aac ggc cac atg atc aac ttc taaatccgt			2222
Ala Ala His Gly Val Asn Gly His Met Ile Asn Phe			
460	465		
cagacaaaatg caaatccct caccgatggc atatcggtga ggggattttc tcatgcacgt			2282
aaaatataa tccatggcaa ggaaagtgcga caacagcgcc			2322

<210> 32

<211> 469

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 32

Val Thr Glu His Tyr Asp Val Val Val Leu Gly Ala Gly Pro Gly Gly			
1	5	10	15
Tyr Val Ser Ala Ile Arg Ala Ala Gln Leu Gly Lys Lys Val Ala Val			
20	25	30	
Ile Glu Lys Gln Tyr Trp Gly Gly Val Cys Leu Asn Val Gly Cys Ile			
35	40	45	
Pro Ser Lys Ala Leu Ile Lys Asn Ala Glu Ile Ala His Ile Phe Asn			
50	55	60	
His Glu Lys Lys Thr Phe Gly Ile Asn Gly Glu Val Thr Phe Asn Tyr			
65	70	75	80
Glu Asp Ala His Lys Arg Ser Arg Gly Val Ser Asp Lys Ile Val Gly			
85	90	95	
Gly Val His Tyr Leu Met Lys Lys Asn Lys Ile Thr Glu Ile Asp Gly			
100	105	110	
Phe Gly Thr Phe Lys Asp Ala Lys Thr Ile Glu Val Thr Asp Gly Lys			
115	120	125	
Asp Ala Gly Lys Thr Val Thr Phe Asp Asp Cys Ile Ile Ala Thr Gly			
130	135	140	
Ser Val Val Asn Ser Leu Arg Gly Val Glu Phe Ser Glu Asn Val Val			
145	150	155	160
Ser Tyr Glu Glu Gln Ile Leu Asn Pro Val Ala Pro Lys Lys Met Val			
165	170	175	
Ile Val Gly Gly Ala Ile Gly Met Glu Phe Ala Tyr Val Leu Gly			
180	185	190	
Asn Tyr Gly Val Asp Val Thr Leu Ile Glu Phe Met Asp Arg Val Leu			
195	200	205	
Pro Asn Glu Asp Pro Glu Val Ser Lys Val Ile Ala Lys Ala Tyr Lys			

77/123

210	215	220
Lys Met Gly Ile Lys Leu Leu Pro Gly His Ala Thr	Thr Ala Val Arg	
225	230	235
Asp Asn Gly Asp Ser Val Glu Val Asp Tyr Gln Lys	Lys Gly Ser Asp	240
245	250	255
Lys Thr Glu Thr Ile Thr Val Asp Arg Val Leu Ile	Ser Val Gly Phe	
260	265	270
Arg Pro Arg Val Glu Gly Phe Gly Leu Glu Asn Thr	Gly Val Lys Leu	
275	280	285
Thr Glu Arg Gly Ala Ile Asp Ile Asp Glu His Met	Arg Thr Asn Val	
290	295	300
Asp Gly Ile Tyr Ala Ile Gly Asp Val Thr Ala Lys	Leu Gln Leu Ala	
305	310	315
His Val Ala Glu Ala Gln Gly Ile Val Ala Ala Glu	Thr Leu Ala Gly	320
325	330	335
Ala Glu Thr Gln Thr Leu Gly Asp Tyr Met Met Met	Pro Arg Ala Thr	
340	345	350
Phe Cys Asn Pro Gln Val Ala Ser Phe Gly Tyr Thr	Glu Glu Gln Ala	
355	360	365
Lys Glu Lys Trp Pro Asp Arg Glu Ile Lys Val Ser	Ser Phe Pro Phe	
370	375	380
Ser Ala Asn Gly Lys Ala Val Gly Leu Ala Glu Thr	Asp Gly Phe Ala	
385	390	395
Lys Ile Val Ala Asp Ala Glu Phe Gly Glu Leu Leu	Gly His Ile	400
405	410	415
Val Gly Ala Asn Ala Ser Glu Leu Leu Asn Glu Leu	Val Leu Ala Gln	
420	425	430
Asn Trp Asp Leu Thr Thr Glu Glu Ile Ser Arg Ser	Val His Ile His	
435	440	445
Pro Thr Leu Ser Glu Ala Val Lys Glu Ala Ala His	Gly Val Asn Gly	
450	455	460
His Met Ile Asn Phe		
465		

<210> 33

<211> 4096

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (250)..(3951)

<400> 33

ccggatcatc	gtggttgacg	ggggacgtat	catcgaggat	ggttccccacg	atgaacttct	60										
gggagcgaat	ggaacctacg	caacaatgtg	gcatttagta	gggtgacagg	atattttagg	120										
aaagacttgt	taccaaagg	tgctaatact	ggggtgctag	gtccccgcga	ccggaaccag	180										
cgttacagtg	gataaaaataa	agcccatita	gaaccctcaa	caagcaagga	aaagaggcga	240										
gtacctgcc	gtg	agc	gct	agt	act	ttc	ggc	cag	aac	gct	tgg	ctg	gtg	291		
	Val	Ser	Ser	Ala	Ser	Thr	Phe	Gly	Gln	Asn	Ala	Trp	Leu	Val		
	1		5			10										
gat	gag	atg	ttc	cag	cag	ttc	aag	aag	gac	ccc	cag	tcc	gtg	gac	aag	339
Asp	Glu	Met	Phe	Gln	Gln	Phe	Lys	Lys	Asp	Pro	Gln	Ser	Val	Asp	Lys	
15			20			25			30							
gaa	tgg	aga	gag	ctc	ttc	gag	tct	cag	ggg	ggt	ccc	cag	gct	gaa	aag	387
Glu	Trp	Arg	Glu	Leu	Phe	Glu	Ser	Gln	Gly	Gly	Pro	Gln	Ala	Glu	Lys	
35			40			45										
gct	acc	ccc	gcc	acc	ccc	gaa	gcc	aag	aag	gca	gct	tcg	tcg	cag	tcc	435
Ala	Thr	Pro	Ala	Thr	Pro	Glu	Ala	Lys	Lys	Ala	Ala	Ser	Ser	Gln	Ser	
50			55			60										
tca	act	tcc	gga	cag	tcc	acc	gcc	aag	gct	gcc	cct	gcc	gcc	aag	acc	483
Ser	Thr	Ser	Gly	Gln	Ser	Thr	Ala	Lys	Ala	Ala	Pro	Ala	Ala	Lys	Thr	
65			70			75										
gca	ccg	gcc	tct	gct	cca	gcc	aag	gct	gcc	cct	gtt	aag	caa	aac	cag	531
Ala	Pro	Ala	Ser	Ala	Pro	Ala	Lys	Ala	Ala	Pro	Val	Lys	Gln	Asn	Gln	
80			85			90										
gct	tcc	aag	cct	gcc	aag	aag	gcc	aag	gag	tcc	ccc	ctg	tcc	aag	cca	579
Ala	Ser	Lys	Pro	Ala	Lys	Lys	Ala	Lys	Glu	Ser	Pro	Leu	Ser	Lys	Pro	
95			100			105			110							
gct	gcc	atg	cct	gag	ccg	gga	acc	acc	cca	ctc	agg	ggc	atc	ttc	aag	627
Ala	Ala	Met	Pro	Glu	Pro	Gly	Thr	Thr	Pro	Leu	Arg	Gly	Ile	Phe	Lys	
115			120			125										
tcc	atc	gcc	aag	aac	atg	gac	ctc	tcc	ctc	gag	gtg	ccc	acc	gcc	acc	675
Ser	Ile	Ala	Lys	Asn	Met	Asp	Leu	Ser	Leu	Glu	Val	Pro	Thr	Ala	Thr	
130			135			140										
tcc	gtc	cgc	gac	atg	ccc	gct	cgc	ctc	atg	ttc	gag	aac	cgc	gcc	atg	723
Ser	Val	Arg	Asp	Met	Pro	Ala	Arg	Leu	Met	Phe	Glu	Asn	Arg	Ala	Met	
145			150			155										
gtc	aac	gac	cag	ctc	aag	cgc	acc	cgt	ggc	ggc	aag	atc	tcc	ttc	acc	771
Val	Asn	Asp	Gln	Leu	Lys	Arg	Thr	Arg	Gly	Gly	Lys	Ile	Ser	Phe	Thr	
160			165			170										
cac	atc	atc	ggc	tac	gcc	atg	gtg	aag	gct	gtc	atg	gca	cac	ccg	gac	819
His	Ile	Ile	Gly	Tyr	Ala	Met	Val	Lys	Ala	Val	Met	Ala	His	Pro	Asp	
175			180			185			190							
atg	aac	aac	tcc	tat	gac	atc	gtc	gac	ggc	aag	ccg	tcc	ctg	gtc	gtc	867
Met	Asn	Asn	Ser	Tyr	Asp	Ile	Val	Asp	Gly	Lys	Pro	Ser	Leu	Val	Val	

79/123

	195	200	205	
ccg gag cac atc aac ctc ggc ctg gcc atc gac ctc ccc cag aag gac				915
Pro Glu His Ile Asn Leu Gly Leu Ala Ile Asp Leu Pro Gln Lys Asp				
210	215	220		
ggc tcc cgt gcc ctc gtg gtc gcc gcc atc aag gaa acc gag aag atg				963
Gly Ser Arg Ala Leu Val Val Ala Ala Ile Lys Glu Thr Glu Lys Met				
225	230	235		
acc ttc tcc cag ttc ctg gag gcc tat gag gac gtt gtg gca cgc tcc				1011
Thr Phe Ser Gln Phe Leu Glu Ala Tyr Glu Asp Val Val Ala Arg Ser				
240	245	250		
cgc gtc ggc aag ctc acc atg gat gac tac cag ggt gtc acc atc tcc				1059
Arg Val Gly Lys Leu Thr Met Asp Asp Tyr Gln Gly Val Thr Ile Ser				
255	260	265	270	
t tg acc aac ccg ggt ggc atc ggt acc cgc cac tcc atc ccg cgt ctg				1107
Leu Thr Asn Pro Gly Gly Ile Gly Thr Arg His Ser Ile Pro Arg Leu				
275	280	285		
acc aag ggc cag ggc acc atc atc ggt gtc ggt tcc atg gac tac ccg				1155
Thr Lys Gly Gln Gly Thr Ile Ile Gly Val Gly Ser Met Asp Tyr Pro				
290	295	300		
gcc gag ttc cag ggt gcc tcc gag gac cgt ctc gcc gag ctc ggt gtg				1203
Ala Glu Phe Gln Gly Ala Ser Glu Asp Arg Leu Ala Glu Leu Gly Val				
305	310	315		
ggc aag ctc gtc acc atc acc tcc acc tac gat cac cgc gtc atc cag				1251
Gly Lys Leu Val Thr Ile Thr Ser Thr Tyr Asp His Arg Val Ile Gln				
320	325	330		
ggc gcg gaa tcc ggt gag ttc ctg cgc acc atg tcc cag ctg ctc gtg				1299
Gly Ala Glu Ser Gly Glu Phe Leu Arg Thr Met Ser Gln Leu Leu Val				
335	340	345	350	
gac gat gcg ttc tgg gat cac atc ttc gag gag atg aac gtt ccc tac				1347
Asp Asp Ala Phe Trp Asp His Ile Phe Glu Glu Met Asn Val Pro Tyr				
355	360	365		
acc ccg atg cgc tgg gca cag gac ctg ccc aac acc ggt gtg gac aag				1395
Thr Pro Met Arg Trp Ala Gln Asp Leu Pro Asn Thr Gly Val Asp Lys				
370	375	380		
aac acc cgt gtc atg cag ctc atc gag gcc tac cgc tcc cgc ggt cac				1443
Asn Thr Arg Val Met Gln Leu Ile Glu Ala Tyr Arg Ser Arg Gly His				
385	390	395		
ctc atc gcc gac acc aac cca ctg ccc tgg gtc cag ccc ggc atg ccc				1491
Leu Ile Ala Asp Thr Asn Pro Leu Pro Trp Val Gln Pro Gly Met Pro				
400	405	410		
gtc ccg gat cac cgt gac ctc gac atc gag acc cac ggc ctg acc ctg				1539
Val Pro Asp His Arg Asp Leu Asp Ile Glu Thr His Gly Leu Thr Leu				
415	420	425	430	

80/123

tgg gat ctg gac cgt acc ttc cac gtc ggt ggt ttc ggt ggc aag gag		1587
Trp Asp Leu Asp Arg Thr Phe His Val Gly Gly Phe Gly Gly Lys Glu		
435 440 445		
acc atg acc ctg cgc gag gtg ctc agc cgc ctc cgc gcc gcc tac acc		1635
Thr Met Thr Leu Arg Glu Val Leu Ser Arg Leu Arg Ala Ala Tyr Thr		
450 455 460		
ctc aag gtc ggc tcc gag tac acc cac atc ctc gac cgc gat gag cgc		1683
Leu Lys Val Gly Ser Glu Tyr Thr His Ile Leu Asp Arg Asp Glu Arg		
465 470 475		
acc tgg ctg cag gac cgc ctc gag gcc ggt atg ccc aag ccc acc gcc		1731
Thr Trp Leu Gln Asp Arg Leu Glu Ala Gly Met Pro Lys Pro Thr Ala		
480 485 490		
gcc gag cag aag tac atc ctg cag aag ctc aac gcc gcc gag gca ttc		1779
Ala Glu Gln Lys Tyr Ile Leu Gln Lys Leu Asn Ala Ala Glu Ala Phe		
495 500 505 510		
gag aac ttc ctg cag acc aag tac gtc ggc cag aag cgt ttc tcc ctc		1827
Glu Asn Phe Leu Gln Thr Lys Tyr Val Gly Gln Lys Arg Phe Ser Leu		
515 520 525		
gag ggt gcc gag tca ctg atc ccg ctg atg gac tcc gcc atc gac acc		1875
Glu Gly Ala Glu Ser Leu Ile Pro Leu Met Asp Ser Ala Ile Asp Thr		
530 535 540		
gcc gca ggc cag ggc ctt gac gag gtc gtc atc ggc atg ccc cac cgt		1923
Ala Ala Gly Gln Gly Leu Asp Glu Val Val Ile Gly Met Pro His Arg		
545 550 555		
ggt cgc ctc aac gtg ctg ttc aac atc gtc ggc aag cca ctg gcc tcg		1971
Gly Arg Leu Asn Val Leu Phe Asn Ile Val Gly Lys Pro Leu Ala Ser		
560 565 570		
atc ttc aac gag ttc gag ggc cag atg gag cag ggc cag atc ggt ggc		2019
Ile Phe Asn Glu Phe Glu Gly Gln Met Glu Gln Gly Gln Ile Gly Gly		
575 580 585 590		
tcc ggt gac gtg aag tac cac ctc ggt tcc gag ggc acc cac ctg cag		2067
Ser Gly Asp Val Lys Tyr His Leu Gly Ser Glu Gly Thr His Leu Gln		
595 600 605		
atg ttc ggc gac ggc gag atc aag gtc tcc ctc acc gcc aac ccc tcc		2115
Met Phe Gly Asp Gly Glu Ile Lys Val Ser Leu Thr Ala Asn Pro Ser		
610 615 620		
cac ctc gag gcc gtc aac ccg gtc gtg gag ggc atc gtc cgc gcc aag		2163
His Leu Glu Ala Val Asn Pro Val Val Glu Gly Ile Val Arg Ala Lys		
625 630 635		
cag gac atc ctg gac aag ggc ccg gac ggc tac acc gtc gtc ccg ctg		2211
Gln Asp Ile Leu Asp Lys Gly Pro Asp Gly Tyr Thr Val Val Pro Leu		
640 645 650		
ctg ctc cac ggt gac gcc gcc ttc gcc ggc ctg ggc atc gtg ccc gag		2259

81/123

Leu	Leu	His	Gly	Asp	Ala	Ala	Phe	Ala	Gly	Leu	Gly	Ile	Val	Pro	Glu	
655				660					665					670		
acc	atc	aac	ctc	gca	gcc	ctg	cgt	ggt	tac	gat	gtc	ggt	ggc	acc	atc	2307
Thr	Ile	Asn	Leu	Ala	Ala	Leu	Arg	Gly	Tyr	Asp	Val	Gly	Gly	Thr	Ile	
									675		680			685		
cac	atc	gtg	gtc	aac	aac	cag	atc	ggc	tcc	acc	acc	acc	ccg	gac	tcc	2355
His	Ile	Val	Val	Asn	Asn	Gln	Ile	Gly	Phe	Thr	Thr	Thr	Pro	Asp	Ser	
									690		695			700		
agc	cgt	tcc	atg	cac	tac	gcc	acc	gac	tgc	gcc	aag	gcc	ttc	ggt	tgc	2403
Ser	Arg	Ser	Met	His	Tyr	Ala	Thr	Asp	Cys	Ala	Lys	Ala	Phe	Gly	Cys	
									705		710			715		
ccg	gtg	ttc	cac	gtc	aac	ggt	gac	gac	ccc	gag	gct	gtg	gtc	tgg	gtc	2451
Pro	Val	Phe	His	Val	Asn	Gly	Asp	Asp	Pro	Glu	Ala	Val	Val	Trp	Val	
									720		725			730		
ggc	cag	ctg	gcc	acc	gag	tac	cgt	cgc	cgc	ttc	ggc	aag	gat	gtc	ttc	2499
Gly	Gln	Leu	Ala	Thr	Glu	Tyr	Arg	Arg	Arg	Phe	Gly	Lys	Asp	Val	Phe	
									735		740			745		750
atc	gac	ctc	atc	tgc	tac	cgc	ctg	cgc	ggc	cac	aac	gag	gct	gat	gac	2547
Ile	Asp	Leu	Ile	Cys	Tyr	Arg	Leu	Arg	Gly	His	Asn	Glu	Ala	Asp	Asp	
									755		760			765		
cca	tcc	atg	acc	cag	ccg	aag	atg	tac	gag	ctg	atc	acc	ggc	cgc	gac	2595
Pro	Ser	Met	Thr	Gln	Pro	Lys	Met	Tyr	Glu	Leu	Ile	Thr	Gly	Arg	Asp	
									770		775			780		
tcc	gtg	cgt	gcc	acc	tac	acc	gag	gac	ctc	ctc	ggc	cgt	ggt	gac	ctc	2643
Ser	Val	Arg	Ala	Thr	Tyr	Thr	Glu	Asp	Leu	Leu	Gly	Arg	Gly	Asp	Leu	
									785		790			795		
tcc	ccc	gag	gac	gcc	gag	gcc	gtt	gtc	cgc	gac	ttc	cac	gac	cag	atg	2691
Ser	Pro	Glu	Asp	Ala	Glu	Ala	Val	Val	Arg	Asp	Phe	His	Asp	Gln	Met	
									800		805			810		
gaa	tcc	gtg	ttc	aac	gag	gtc	aag	gaa	gcc	ggc	aag	aag	cag	cct	gat	2739
Glu	Ser	Val	Phe	Asn	Glu	Val	Lys	Glu	Ala	Gly	Lys	Lys	Gln	Pro	Asp	
									815		820			825		830
gag	cag	acc	ggc	atc	acc	ggt	tcc	cag	gaa	ctg	acc	cgt	ggc	ctg	gac	2787
Glu	Gln	Thr	Gly	Ile	Thr	Gly	Ser	Gln	Glu	Leu	Thr	Arg	Gly	Leu	Asp	
									835		840			845		
acc	aac	atc	acc	cgc	gag	gaa	ctg	gtc	gaa	ctc	ggc	cag	gcc	ttc	gtc	2835
Thr	Asn	Ile	Thr	Arg	Glu	Glu	Leu	Val	Glu	Leu	Gly	Gln	Ala	Phe	Val	
									850		855			860		
aac	acc	cca	gag	ggc	ttc	acc	tac	cac	cca	cgt	gtg	gca	ccg	gtg	gcc	2883
Asn	Thr	Pro	Glu	Gly	Phe	Thr	Tyr	His	Pro	Arg	Val	Ala	Pro	Val	Ala	
									865		870			875		
aag	aag	cgt	gcc	gag	tcc	gtc	acc	gag	ggt	ggc	atc	gac	tgg	gca	tgg	2931
Lys	Lys	Arg	Ala	Glu	Ser	Val	Thr	Glu	Gly	Gly	Ile	Asp	Trp	Ala	Trp	

82/123

880	885	890	
ggc gag ctc atc gcc ttc ggc tcc ctg gcc acc tcc ggc agg ctg gtc			2979
Gly Glu Leu Ile Ala Phe Gly Ser Leu Ala Thr Ser Gly Arg Leu Val			
895	900	905	910
cgc ctc gcc ggt gag gat tcc cgc cgt ggt acc ttc acc cag cgt cac			3027
Arg Leu Ala Gly Glu Asp Ser Arg Arg Gly Thr Phe Thr Gln Arg His			
915	920	925	
gcc gtg gcc atc gac ccg aac acc gcc gag gag ttc aac ccg ctc cac			3075
Ala Val Ala Ile Asp Pro Asn Thr Ala Glu Glu Phe Asn Pro Leu His			
930	935	940	
gag ctg gca cag gcc aag ggc ggc aag ttc ctc gtc tac aac tcc			3123
Glu Leu Ala Gln Ala Lys Gly Gly Lys Phe Leu Val Tyr Asn Ser			
945	950	955	
gcg ctg acc gag tac gcg ggt atg ggc ttc gaa tac ggc tac tcc gtg			3171
Ala Leu Thr Glu Tyr Ala Gly Met Gly Phe Glu Tyr Gly Tyr Ser Val			
960	965	970	
ggc aac ccg gac gcc gtg gtg tcc tgg gag gca cag ttc ggt gac ttc			3219
Gly Asn Pro Asp Ala Val Val Ser Trp Glu Ala Gln Phe Gly Asp Phe			
975	980	985	990
gcc aac ggt gca cag acc atc atc gat gag tac atc tcc tcc ggt gag			3267
Ala Asn Gly Ala Gln Thr Ile Ile Asp Glu Tyr Ile Ser Ser Gly Glu			
995	1000	1005	
gcc aag tgg ggc cag acc tcc tcg gtc atc ctg ctg ctg ccc cac ggt			3315
Ala Lys Trp Gly Gln Thr Ser Ser Val Ile Leu Leu Leu Pro His Gly			
1010	1015	1020	
tac gag ggc cag ggt ccg gac cac tcc tcc gca cgc atc gag cgt ttc			3363
Tyr Glu Gly Gln Gly Pro Asp His Ser Ser Ala Arg Ile Glu Arg Phe			
1025	1030	1035	
ctg cag ctg tgc gcc gag ggt tcc atg acc atc gcc cag ccg acc acc			3411
Leu Gln Leu Cys Ala Glu Gly Ser Met Thr Ile Ala Gln Pro Thr Thr			
1040	1045	1050	
ccg gcg aac tac ttc cac ctg ctg cgt cac gca ctg ggc aag atg			3459
Pro Ala Asn Tyr Phe His Leu Leu Arg Arg His Ala Leu Gly Lys Met			
1055	1060	1065	1070
aag cgc ccg ctg gtc gtc ttc acc ccg aag tcc atg ctg cgc aac aag			3507
Lys Arg Pro Leu Val Val Phe Thr Pro Lys Ser Met Leu Arg Asn Lys			
1075	1080	1085	
gcc gcc acc tcc gct ccg gag gag ttc acc gag gtc acc cgc ttc aag			3555
Ala Ala Thr Ser Ala Pro Glu Glu Phe Thr Glu Val Thr Arg Phe Lys			
1090	1095	1100	
tcc gtg atc gac gat ccg aac gtg gcg gat gcc tcc aag gtg aag aag			3603
Ser Val Ile Asp Asp Pro Asn Val Ala Asp Ala Ser Lys Val Lys Lys			
1105	1110	1115	

83/123

atc atg ctg tgc tcc ggc aag atc tac tac gaa ctg gcc aag cgc aag	3651
Ile Met Leu Cys Ser Gly Lys Ile Tyr Tyr Glu Leu Ala Lys Arg Lys	
1120 1125 1130	
gag aag gac aac cgc gac gac atc gcg atc gtg cgc atc gag atg ctg	3699
Glu Lys Asp Asn Arg Asp Asp Ile Ala Ile Val Arg Ile Glu Met Leu	
1135 1140 1145 1150	
cac ccg atc ccg ttc aac cgt ctg cgc gac gcc ttc gac ggc tac ccc	3747
His Pro Ile Pro Phe Asn Arg Leu Arg Asp Ala Phe Asp Gly Tyr Pro	
1155 1160 1165	
aac gcc gag gag atc ctg ttc gtt cag gac gag ccg gca aac cag ggt	3795
Asn Ala Glu Glu Ile Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly	
1170 1175 1180	
gcc tgg ccg ttc tac cag gag cac ctg ccc aac ctc atc gag ggc atg	3843
Ala Trp Pro Phe Tyr Gln Glu His Leu Pro Asn Leu Ile Glu Gly Met	
1185 1190 1195	
ctc ccg atg cgt cgc atc tcg cgc cgt tcc cag tcc tcg act gcg acc	3891
Leu Pro Met Arg Arg Ile Ser Arg Ser Gln Ser Ser Thr Ala Thr	
1200 1205 1210	
ggt atc gcg aag gtg cac acc atc gag cag cag aag ctg ctg gat gat	3939
Gly Ile Ala Lys Val His Thr Ile Glu Gln Gln Lys Leu Leu Asp Asp	
1215 1220 1225 1230	
gcg ttc aac gca taaacgttaa tacagcggtt gatacccttga accccggccgc	3991
Ala Phe Asn Ala	
accctttaga tgcggggcggg gttttgcctt gcctgcatacg gcgataatat tcatatacac	4051
ccatcacgtt taaggttctgc atttggatcg tgcgagcatac ccgggt	4096

<210> 34

<211> 1234

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 34

Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu	
1 5 10 15	
Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp	
20 25 30	
Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys Ala Thr	
35 40 45	
Pro Ala Thr Pro Glu Ala Lys Lys Ala Ala Ser Ser Gln Ser Ser Thr	
50 55 60	
Ser Gly Gln Ser Thr Ala Lys Ala Ala Pro Ala Ala Lys Thr Ala Pro	
65 70 75 80	
Ala Ser Ala Pro Ala Lys Ala Ala Pro Val Lys Gln Asn Gln Ala Ser	

84/123

85	90	95
Lys Pro Ala Lys Lys Ala Lys Glu Ser Pro Leu Ser Lys Pro Ala Ala		
100	105	110
Met Pro Glu Pro Gly Thr Thr Pro Leu Arg Gly Ile Phe Lys Ser Ile		
115	120	125
Ala Lys Asn Met Asp Leu Ser Leu Glu Val Pro Thr Ala Thr Ser Val		
130	135	140
Arg Asp Met Pro Ala Arg Leu Met Phe Glu Asn Arg Ala Met Val Asn		
145	150	160
Asp Gln Leu Lys Arg Thr Arg Gly Gly Lys Ile Ser Phe Thr His Ile		
165	170	175
Ile Gly Tyr Ala Met Val Lys Ala Val Met Ala His Pro Asp Met Asn		
180	185	190
Asn Ser Tyr Asp Ile Val Asp Gly Lys Pro Ser Leu Val Val Pro Glu		
195	200	205
His Ile Asn Leu Gly Leu Ala Ile Asp Leu Pro Gln Lys Asp Gly Ser		
210	215	220
Arg Ala Leu Val Val Ala Ala Ile Lys Glu Thr Glu Lys Met Thr Phe		
225	230	240
Ser Gln Phe Leu Glu Ala Tyr Glu Asp Val Val Ala Arg Ser Arg Val		
245	250	255
Gly Lys Leu Thr Met Asp Asp Tyr Gln Gly Val Thr Ile Ser Leu Thr		
260	265	270
Asn Pro Gly Gly Ile Gly Thr Arg His Ser Ile Pro Arg Leu Thr Lys		
275	280	285
Gly Gln Gly Thr Ile Ile Gly Val Gly Ser Met Asp Tyr Pro Ala Glu		
290	295	300
Phe Gln Gly Ala Ser Glu Asp Arg Leu Ala Glu Leu Gly Val Gly Lys		
305	310	320
Leu Val Thr Ile Thr Ser Thr Tyr Asp His Arg Val Ile Gln Gly Ala		
325	330	335
Glu Ser Gly Glu Phe Leu Arg Thr Met Ser Gln Leu Leu Val Asp Asp		
340	345	350
Ala Phe Trp Asp His Ile Phe Glu Glu Met Asn Val Pro Tyr Thr Pro		
355	360	365
Met Arg Trp Ala Gln Asp Leu Pro Asn Thr Gly Val Asp Lys Asn Thr		
370	375	380
Arg Val Met Gln Leu Ile Glu Ala Tyr Arg Ser Arg Gly His Leu Ile		
385	390	400
Ala Asp Thr Asn Pro Leu Pro Trp Val Gln Pro Gly Met Pro Val Pro		
405	410	415
Asp His Arg Asp Leu Asp Ile Glu Thr His Gly Leu Thr Leu Trp Asp		
420	425	430

85/123

- Leu Asp Arg Thr Phe His Val Gly Gly Phe Gly Gly Lys Glu Thr Met
 435 440 445
 Thr Leu Arg Glu Val Leu Ser Arg Leu Arg Ala Ala Tyr Thr Leu Lys
 450 455 460
 Val Gly Ser Glu Tyr Thr His Ile Leu Asp Arg Asp Glu Arg Thr Trp
 465 470 475 480
 Leu Gln Asp Arg Leu Glu Ala Gly Met Pro Lys Pro Thr Ala Ala Glu
 485 490 495
 Gln Lys Tyr Ile Leu Gln Lys Leu Asn Ala Ala Glu Ala Phe Glu Asn
 500 505 510
 Phe Leu Gln Thr Lys Tyr Val Gly Gln Lys Arg Phe Ser Leu Glu Gly
 515 520 525
 Ala Glu Ser Leu Ile Pro Leu Met Asp Ser Ala Ile Asp Thr Ala Ala
 530 535 540
 Gly Gln Gly Leu Asp Glu Val Val Ile Gly Met Pro His Arg Gly Arg
 545 550 555 560
 Leu Asn Val Leu Phe Asn Ile Val Gly Lys Pro Leu Ala Ser Ile Phe
 565 570 575
 Asn Glu Phe Glu Gly Gln Met Glu Gln Gly Gln Ile Gly Gly Ser Gly
 580 585 590
 Asp Val Lys Tyr His Leu Gly Ser Glu Gly Thr His Leu Gln Met Phe
 595 600 605
 Gly Asp Gly Glu Ile Lys Val Ser Leu Thr Ala Asn Pro Ser His Leu
 610 615 620
 Glu Ala Val Asn Pro Val Val Glu Gly Ile Val Arg Ala Lys Gln Asp
 625 630 635 640
 Ile Leu Asp Lys Gly Pro Asp Gly Tyr Thr Val Val Pro Leu Leu
 645 650 655
 His Gly Asp Ala Ala Phe Ala Gly Leu Gly Ile Val Pro Glu Thr Ile
 660 665 670
 Asn Leu Ala Ala Leu Arg Gly Tyr Asp Val Gly Gly Thr Ile His Ile
 675 680 685
 Val Val Asn Asn Gln Ile Gly Phe Thr Thr Pro Asp Ser Ser Arg
 690 695 700
 Ser Met His Tyr Ala Thr Asp Cys Ala Lys Ala Phe Gly Cys Pro Val
 705 710 715 720
 Phe His Val Asn Gly Asp Asp Pro Glu Ala Val Val Trp Val Gly Gln
 725 730 735
 Leu Ala Thr Glu Tyr Arg Arg Arg Phe Gly Lys Asp Val Phe Ile Asp
 740 745 750
 Leu Ile Cys Tyr Arg Leu Arg Gly His Asn Glu Ala Asp Asp Pro Ser
 755 760 765
 Met Thr Gln Pro Lys Met Tyr Glu Leu Ile Thr Gly Arg Asp Ser Val

86/123

770	775	780
Arg Ala Thr Tyr Thr Glu Asp Leu	Leu Gly Arg Gly Asp Leu Ser Pro	
785	790	795
Glu Asp Ala Glu Ala Val Val Arg Asp Phe His Asp Gln Met	Glu Ser	800
	805	810
Val Phe Asn Glu Val Lys Glu Ala Gly Lys Lys Gln Pro Asp Glu Gln		815
	820	825
Thr Gly Ile Thr Gly Ser Gln Glu Leu Thr Arg Gly Leu Asp Thr Asn		830
	835	840
Ile Thr Arg Glu Glu Leu Val Glu Leu Gly Gln Ala Phe Val Asn Thr		845
	850	855
Pro Glu Gly Phe Thr Tyr His Pro Arg Val Ala Pro Val Ala Lys Lys		860
	865	870
Arg Ala Glu Ser Val Thr Glu Gly Gly Ile Asp Trp Ala Trp Gly Glu		875
	885	890
Leu Ile Ala Phe Gly Ser Leu Ala Thr Ser Gly Arg Leu Val Arg Leu		895
	900	905
Ala Gly Glu Asp Ser Arg Arg Gly Thr Phe Thr Gln Arg His Ala Val		910
	915	920
Ala Ile Asp Pro Asn Thr Ala Glu Glu Phe Asn Pro Leu His Glu Leu		925
	930	935
Ala Gln Ala Lys Gly Gly Lys Phe Leu Val Tyr Asn Ser Ala Leu		940
	945	950
Thr Glu Tyr Ala Gly Met Gly Phe Glu Tyr Gly Tyr Ser Val Gly Asn		955
	965	970
Pro Asp Ala Val Val Ser Trp Glu Ala Gln Phe Gly Asp Phe Ala Asn		960
	980	985
Gly Ala Gln Thr Ile Ile Asp Glu Tyr Ile Ser Ser Gly Glu Ala Lys		990
	995	1000
Trp Gly Gln Thr Ser Ser Val Ile Leu Leu Leu Pro His Gly Tyr Glu		1005
	1010	1015
Gly Gln Gly Pro Asp His Ser Ser Ala Arg Ile Glu Arg Phe Leu Gln		1020
	1025	1030
Leu Cys Ala Glu Gly Ser Met Thr Ile Ala Gln Pro Thr Thr Pro Ala		1035
	1045	1050
Asn Tyr Phe His Leu Leu Arg Arg His Ala Leu Gly Lys Met Lys Arg		1055
	1060	1065
Pro Leu Val Val Phe Thr Pro Lys Ser Met Leu Arg Asn Lys Ala Ala		1070
	1075	1080
Thr Ser Ala Pro Glu Glu Phe Thr Glu Val Thr Arg Phe Lys Ser Val		1085
	1090	1095
Ile Asp Asp Pro Asn Val Ala Asp Ala Ser Lys Val Lys Lys Ile Met		1100
	105	1110
		1115
		1120

87/123

Leu Cys Ser Gly Lys Ile Tyr Tyr Glu Leu Ala Lys Arg Lys Glu Lys
 1125 1130 1135
 Asp Asn Arg Asp Asp Ile Ala Ile Val Arg Ile Glu Met Leu His Pro
 1140 1145 1150
 Ile Pro Phe Asn Arg Leu Arg Asp Ala Phe Asp Gly Tyr Pro Asn Ala
 1155 1160 1165
 Glu Glu Ile Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly Ala Trp
 1170 1175 1180
 Pro Phe Tyr Gln Glu His Leu Pro Asn Leu Ile Glu Gly Met Leu Pro
 185 1190 1195 1200
 Met Arg Arg Ile Ser Arg Arg Ser Gln Ser Ser Thr Ala Thr Gly Ile
 1205 1210 1215
 Ala Lys Val His Thr Ile Glu Gln Gln Lys Leu Leu Asp Asp Ala Phe
 1220 1225 1230
 Asn Ala

<210> 35

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for aceA

<400> 35

cctctaccca gcgaactccg

20

<210> 36

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for aceA

<400> 36

ctgccttgaa ctcacggttc

20

<210> 37

<211> 20

<212> DNA

<213> Artificial Sequence

88/123

<220>

<223> Description of Artificial Sequence: primer for accBC

<400> 37

catccacccc ggctacggct

20

<210> 38

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for accBC

<400> 38

cggtgactgg gtgttccacc

20

<210> 39

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for dtsRI

<400> 39

acggcccaagc cctgaccggac

20

<210> 40

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for dtsRI

<400> 40

agcagcgccc atgacggcga

20

<210> 41

<211> 20

<212> DNA

<213> Artificial Sequence

90/123

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for scrB

<220>

<221> UNSURE

<222> (3)

<223> n=a or g or c or t

<400> 45

ggncghytba aygaycc

17

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for scrB

<220>

<221> UNSURE

<222> (18)

<223> n=a or g or c or t

<400> 46

ggrcaytccc acatrtanc

20

<210> 47

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for gluABCD

<400> 47

ccatccggat ccggcaagtc

20

<210> 48

<211> 20

<212> DNA

92/123

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for pc

<400> 52

tgcccgcctg ggatctcgta

20

<210> 53

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for ppc

<400> 53

ggttccctggatttgtggaga

20

<210> 54

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for ppc

<400> 54

ccggccatcct tggtaatc

20

<210> 55

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for acn

<220>

<221> UNSURE

<222> (3, 6, 9)

<223> n=inosine

<400> 55
gtinggnacng ayt cscatac 20

<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for acn

<220>
<221> UNSURE
<222> (3, 9, 18)
<223> n=inosine

<400> 56
gcnggagana tgtgrtcngt 20

<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for icd

<400> 57
gacat ttcac tcgc tggacg 20

<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for icd

<400> 58 .
ccgtactctt cagccttcg 20

〈210〉 59

94/123

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for lpd

<400> 59

atcatcgcaa ccggtttc

17

<210> 60

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for lpd

<400> 60

cgtcaccgat ggcgtaaat

19

<210> 61

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for odhA

<400> 61

acaccgttgt cgcctcaacg

20

<210> 62

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for odhA

<400> 62

tgctaaccgg tcccacctgg

20

95/123

- <210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

- <220>
<223> Description of Artificial Sequence: primer for screening PCR of lpd

- <400> 63
tagaggagc agatcccaa 20

- <210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

- <220>
<223> Description of Artificial Sequence: primer for screening PCR of lpd

- <400> 64
ttgacgcgg tggctccag 20

- <210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

- <220>
<223> Description of Artificial Sequence: primer for LA cloning of acn

- <400> 65
ggtaagcta agtagttac 20

- <210> 66
<211> 18
<212> DNA
<213> Artificial Sequence

- <220>
<223> Description of Artificial Sequence: primer for

96/123

LA cloning of acn

<400> 66
agctactaaa cctgcacc 18

<210> 67
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for
LA cloning of icd

<400> 67
ccgtactctt cagccttctg 67

<210> 68
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for
LA cloning of icd

<400> 68
tcgtccttgt tccacatc 18

<210> 69
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for
LA cloning of lpd

<400> 69
atcatcgcaa ccggtttc 17

<210> 70
<211> 20

97/123

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of lpd

<400> 70

tacgaggagc agatcctcaa

20

<210> 71

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of acn

<400> 71

gctaactact tagttcacc

20

<210> 72

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of acn

<400> 72

gaaccaggaa ctattgaacc

20

<210> 73

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of icd

98/123

<400> 73

tccgatgtca tcatacgac

18

<210> 74

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of icd

<400> 74

atgtggaaaca aggacgac

18

<210> 75

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of odhA

<400> 75

gtacatattg tcgttagaac gcgttaatacg actca

35

<210> 76

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for
LA cloning of odhA

<400> 76

cgtttagaacg cgtaatacga ctcactatag ggaga

35

<210> 77

<211> 32

<212> DNA

99/123

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gdh gene

<400> 77

gcgcctgcag gtccgagggt gtgcgttcgg ca

32

<210> 78

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gdh gene

<400> 78

gcgcctgcag ccaccagga tgccctcaacc ag

32

<210> 79

<211> 1344

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (1)..(1341)

<400> 79

atg act gta gat gag cag gtc tcc aac tac tac gac atg ctg ctg aag 48
Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys

1 5 10 15

cgc aac gcc ggg gaa cct gag ttc cac cag gct gtc gcg gag gtt ctc 96
Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu

20 25 30

gaa tct ctg aag atc gtc ctg gag aag gac ccg cac tac gcc gac tac 144
Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr

35 40 45

gg t ctg atc cag cgt ctc tgc gaa ccg gaa cgc cag ctg atc ttc cgt 192

2008-09-27 14:03:02

100/123

Gly	Leu	Ile	Gln	Arg	Leu	Cys	Glu	Pro	Glu	Arg	Gln	Leu	Ile	Phe	Arg	
50					55					60						
gtg	ccc	tgg	gtg	gat	gac	aac	ggt	cag	gtg	cac	gtc	aac	cgt	ggt	ttc	
Val	Pro	Trp	Val	Asp	Asp	Asn	Gly	Gln	Val	His	Val	Asn	Arg	Gly	Phe	
65					70					75				80		
cgt	gtc	cag	ttc	aac	tcc	gca	ctc	ggc	ccg	tac	aag	ggt	ggt	ctg	cgt	
Arg	Val	Gln	Phe	Asn	Ser	Ala	Leu	Gly	Pro	Tyr	Lys	Gly	Gly	Leu	Arg	
					85					90				95		
ttc	cac	ccc	tcc	gtc	aac	ctc	ggc	atc	gtc	aag	ttc	ctc	ggc	ttc	gag	
Phe	His	Pro	Ser	Val	Asn	Leu	Gly	Ile	Val	Lys	Phe	Leu	Gly	Phe	Glu	
					100					105				110		
cag	atc	ttc	aag	aac	tcc	ctc	acc	ggt	ctg	ccg	atc	ggt	ggc	ggc	aag	
Gln	Ile	Phe	Lys	Asn	Ser	Leu	Thr	Gly	Leu	Pro	Ile	Gly	Gly	Gly	Lys	
					115					120				125		
ggt	ggt	tcc	gac	ttc	gac	ccg	aag	ggc	aag	tcc	gag	ctg	gag	atc	atg	
Gly	Gly	Ser	Asp	Phe	Asp	Pro	Lys	Gly	Lys	Ser	Glu	Leu	Glu	Ile	Met	
					130					135				140		
cgc	ttc	tgc	cag	tcc	ttc	atg	acc	gag	ctg	cac	cgc	cac	atc	ggc	gag	
Arg	Phe	Cys	Gln	Ser	Phe	Met	Thr	Glu	Leu	His	Arg	His	Ile	Gly	Glu	
					145					150				155		160
lac	cgg	gat	gtc	ccg	gcc	ggt	gac	atc	gga	gtc	ggt	ggc	cgc	gag	atc	
Tyr	Arg	Asp	Val	Pro	Ala	Gly	Asp	Ile	Gly	Val	Gly	Gly	Arg	Glu	Ile	
					165					170				175		
ggt	lac	ctc	ttc	ggc	cac	tac	cgc	cgt	ctg	gcc	aac	cag	cac	gag	tcc	
Gly	Tyr	Leu	Phe	Gly	His	Tyr	Arg	Arg	Leu	Ala	Asn	Gln	His	Glu	Ser	
					180					185				190		
ggt	gtg	ctc	acc	ggc	aag	ggc	ctg	acc	tgg	ggt	ggt	tcc	ctg	gtc	cgc	
Gly	Val	Leu	Thr	Gly	Lys	Gly	Leu	Thr	Trp	Gly	Gly	Ser	Leu	Val	Arg	
					195					200				205		
acc	gag	gcc	acc	ggc	ttc	ggc	acc	gtc	tac	ttc	gtc	cag	gag	atg	atc	
Thr	Glu	Ala	Thr	Gly	Phe	Gly	Thr	Val	Tyr	Phe	Val	Gln	Glu	Met	Ile	
					210					215				220		
aag	gct	gaa	ggg	gag	acc	ctc	gag	ggc	aag	aag	gtc	atc	gtc	tcc	ggt	
Lys	Ala	Glu	Gly	Glu	Thr	Leu	Glu	Gly	Lys	Lys	Val	Ile	Val	Ser	Gly	
					225					230				235		240
tcc	ggc	aac	gtg	gcc	acc	tac	gcc	atc	cag	aag	gtg	cag	gaa	ctg	ggt	
Ser	Gly	Asn	Val	Ala	Thr	Tyr	Ala	Ile	Gln	Lys	Val	Gln	Glu	Leu	Gly	
					245					250				255		
gct	gtt	gtg	gtc	ggc	ttc	tcc	gac	tcc	agc	ggc	tgg	gtc	tcc	acc	ccg	
Ala	Val	Val	Val	Gly	Phe	Ser	Asp	Ser	Ser	Gly	Trp	Val	Ser	Thr	Pro	
					260					265				270		
aac	ggt	gtt	gac	gtg	gcc	aag	ctg	cgt	gag	atc	aag	gag	gtc	cgt	cgt	
Asn	Gly	Val	Asp	Val	Ala	Lys	Leu	Arg	Glu	Ile	Lys	Glu	Val	Arg	Arg	

101/123

275	280	285	
gca cgc gtg tcc tcc tac gcc gac gag gtg gag ggt gcg gag tac cac			912
Ala Arg Val Ser Ser Tyr Ala Asp Glu Val Glu Gly Ala Glu Tyr His			
290	295	300	
acc gac ggc tcc atc tgg gat ctg acc gcc gac atc gcg ctg ccc tgc			960
Thr Asp Gly Ser Ile Trp Asp Leu Thr Ala Asp Ile Ala Leu Pro Cys			
305	310	315	320
gcc acc cag aac gaa ctg gac ggc gac aac gcc cgc acc ctc gcg gac			1008
Ala Thr Gln Asn Glu Leu Asp Gly Asp Asn Ala Arg Thr Leu Ala Asp			
325	330	335	
aac ggc tgc cgc ttc gtg gcg gag ggc gcc aac atg ccc tcc acc ccc			1056
Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro			
340	345	350	
gag gcc atc gac gtc ttc cgt gag cgt ggt gtt ctc ttc ggg ccg ggc			1104
Glu Ala Ile Asp Val Phe Arg Glu Arg Gly Val Leu Phe Gly Pro Gly			
355	360	365	
aag gct gcc aac gcc ggt ggc gtg gcc acc tcc gcc ctg gag atg cag			1152
Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln			
370	375	380	
cag aac gcc tcc cgt gat tcc tgg agc ttc gag tac acc gat gag cgt			1200
Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg			
385	390	395	400
ctc cac cgc atc atg aag aac atc ttc aag tcc tgc gcc gat acc gcc			1248
Leu His Arg Ile Met Lys Asn Ile Phe Lys Ser Cys Ala Asp Thr Ala			
405	410	415	
aag gag tac ggc cac gag aag aac tac gtg gtc ggt gcg aac atc gcc			1296
Lys Glu Tyr Gly His Glu Lys Asn Tyr Val Val Gly Ala Asn Ile Ala			
420	425	430	
gga ttc aag aag gtc gct gac gcc atg ctc gcc cag ggt gtc atc taa			1344
Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile			
435	440	445	

<210> 80

<211> 447

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 80

Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys			
1	5	10	15
Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu			
20	25	30	
Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr			

102/123

35	40	45
Gly Leu Ile Gln Arg Leu Cys	Glu Pro Glu Arg Gln Leu Ile Phe Arg	
50	55	60
Val Pro Trp Val Asp Asp Asn Gly	Gln Val His Val Asn Arg Gly Phe	
65	70	75
Arg Val Gln Phe Asn Ser Ala Leu Gly	Pro Tyr Lys Gly Gly Leu Arg	
85	90	95
Phe His Pro Ser Val Asn Leu Gly	Ile Val Lys Phe Leu Gly Phe Glu	
100	105	110
Gln Ile Phe Lys Asn Ser Leu Thr Gly	Leu Pro Ile Gly Gly Gly Lys	
115	120	125
Gly Gly Ser Asp Phe Asp Pro Lys Gly	Lys Ser Glu Leu Glu Ile Met	
130	135	140
Arg Phe Cys Gln Ser Phe Met Thr Glu	Leu His Arg His Ile Gly Glu	
145	150	155
Tyr Arg Asp Val Pro Ala Gly Asp Ile Gly	Val Gly Gly Arg Glu Ile	
165	170	175
Gly Tyr Leu Phe Gly His Tyr Arg Arg	Leu Ala Asn Gln His Glu Ser	
180	185	190
Gly Val Leu Thr Gly Lys Gly	Leu Thr Trp Gly Gly Ser Leu Val Arg	
195	200	205
Thr Glu Ala Thr Gly Phe Gly	Thr Val Tyr Phe Val Gln Glu Met Ile	
210	215	220
Lys Ala Glu Gly Glu Thr Leu Glu Gly	Lys Lys Val Ile Val Ser Gly	
225	230	235
Ser Gly Asn Val Ala Thr Tyr Ala Ile Gln	Lys Val Gln Glu Leu Gly	
245	250	255
Ala Val Val Val Gly Phe Ser Asp Ser	Ser Gly Trp Val Ser Thr Pro	
260	265	270
Asn Gly Val Asp Val Ala Lys Leu Arg Glu	Ile Lys Glu Val Arg Arg	
275	280	285
Ala Arg Val Ser Ser Tyr Ala Asp Glu Val Glu	Gly Ala Glu Tyr His	
290	295	300
Thr Asp Gly Ser Ile Trp Asp Leu Thr Ala Asp	Ile Ala Leu Pro Cys	
305	310	315
Ala Thr Gln Asn Glu Leu Asp Gly Asp	Asn Ala Arg Thr Leu Ala Asp	
325	330	335
Asn Gly Cys Arg Phe Val Ala Glu Gly	Ala Asn Met Pro Ser Thr Pro	
340	345	350
Glu Ala Ile Asp Val Phe Arg Glu Arg Gly	Val Leu Phe Gly Pro Gly	
355	360	365
Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser	Ala Leu Glu Met Gln	
370	375	380

103/123

Gln	Asn	Ala	Ser	Arg	Asp	Ser	Trp	Ser	Phe	Glu	Tyr	Thr	Asp	Glu	Arg
385					390				395				400		
Leu	His	Arg	Ile	Met	Lys	Asn	Ile	Phe	Lys	Ser	Cys	Ala	Asp	Thr	Ala
					405				410				415		
Lys	Glu	Tyr	Gly	His	Glu	Lys	Asn	Tyr	Val	Val	Gly	Ala	Asn	Ile	Ala
					420				425				430		
Gly	Phe	Lys	Lys	Val	Ala	Asp	Ala	Met	Leu	Ala	Gln	Gly	Val	Ile	
					435				440				445		

<210> 81

<211> 1344

<212> DNA

<213> Brevibacterium lactofermentum

<220>

<221> CDS

<222> (1)..(1341)

<400> 81

atg	aca	gtt	gat	gag	cag	gtc	tct	aac	tat	tac	gac	atg	ctt	ctg	aag	48
Met	Thr	Val	Asp	Glu	Gln	Val	Ser	Asn	Tyr	Tyr	Asp	Met	Leu	Leu	Lys	
1		5							10				15			
cgc	aat	gct	ggc	gag	cct	gaa	ttt	cac	cag	gca	gtg	gca	gag	gtt	ttg	96
Arg	Asn	Ala	Gly	Glu	Pro	Glu	Phe	His	Gln	Ala	Val	Ala	Glu	Val	Leu	
									20				25		30	
gaa	tct	ttg	aag	atc	gtc	ctg	gaa	aag	gac	cct	cat	tac	gtt	gat	tac	144
Glu	Ser	Leu	Lys	Ile	Val	Leu	Glu	Lys	Asp	Pro	His	Tyr	Ala	Asp	Tyr	
									35				40		45	
ggt	ctc	atc	cag	cgc	ctg	tgc	gag	cct	gag	cgt	cag	ctc	atc	ttc	cgt	192
Gly	Leu	Ile	Gln	Arg	Leu	Cys	Glu	Pro	Glu	Arg	Gln	Leu	Ile	Phe	Arg	
									50				55		60	
gtg	cct	tgg	gtt	gat	gac	cag	ggc	cag	gtc	cac	gtc	aac	cgt	ggt	ttc	240
Val	Pro	Trp	Val	Asp	Asp	Gln	Gly	Gln	Val	His	Val	Asn	Arg	Gly	Phe	
									65				70		75	80
cgc	gtg	cag	ttc	aac	tct	gca	ctt	gga	cca	tac	aag	ggc	ggc	ctg	cgc	288
Arg	Val	Gln	Phe	Asn	Ser	Ala	Leu	Gly	Pro	Tyr	Lys	Gly	Gly	Leu	Arg	
									85				90		95	
ttc	cac	cca	tct	gta	aac	ctg	ggc	att	gtg	aag	ttc	ctg	ggc	ttt	gag	336
Phe	His	Pro	Ser	Val	Asn	Leu	Gly	Ile	Val	Lys	Phe	Leu	Gly	Phe	Glu	
									100				105		110	
cag	atc	ttt	aaa	aac	tcc	cta	acc	ggc	ctg	cca	atc	ggt	ggt	ggc	aag	384
Gln	Ile	Phe	Lys	Asn	Ser	Leu	Thr	Gly	Leu	Pro	Ile	Gly	Gly	Gly	Lys	
									115				120		125	

2000-09-05 2000-09-06

104/123

ggt	gga	tcc	gac	ttc	gac	cct	aag	ggc	aag	tcc	gat	ctg	gaa	atc	atg	432
Gly	Gly	Ser	Asp	Phe	Asp	Pro	Lys	Gly	Lys	Ser	Asp	Leu	Glu	Ile	Met	
130		135								140						
cgt	ttc	tgc	cag	tcc	ttc	atg	acc	gag	ctg	cac	cgc	cac	atc	ggt	gag	480
Arg	Phe	Cys	Gln	Ser	Phe	Met	Thr	Glu	Leu	His	Arg	His	Ile	Gly	Glu	
145						150				155				160		
tac	cgc	gac	gtt	cct	gca	ggt	gac	atc	gga	gtt	ggt	ggc	cgc	gag	atc	528
Tyr	Arg	Asp	Val	Pro	Ala	Gly	Asp	Ile	Gly	Val	Gly	Gly	Arg	Glu	Ile	
										165		170		175		
ggt	tac	ctg	ttt	ggc	cac	tac	cgt	cgc	atg	gct	aac	cag	cac	gag	tcc	576
Gly	Tyr	Leu	Phe	Gly	His	Tyr	Arg	Arg	Met	Ala	Asn	Gln	His	Glu	Ser	
						180				185				190		
ggc	gtt	ttg	acc	ggt	aag	ggc	ctg	acc	tgg	ggt	gga	tcc	ctg	gtc	cgc	624
Gly	Val	Leu	Thr	Gly	Lys	Gly	Leu	Thr	Trp	Gly	Gly	Ser	Leu	Val	Arg	
						195			200				205			
acc	gag	gca	act	ggc	tac	ggc	tgc	gtt	tac	ttc	gtg	agt	gaa	atg	atc	672
Thr	Glu	Ala	Thr	Gly	Tyr	Gly	Cys	Val	Tyr	Phe	Val	Ser	Glu	Met	Ile	
						210			215				220			
aag	gct	aag	ggc	gag	agc	atc	agc	ggc	cag	aag	atc	atc	gtt	tcc	ggt	720
Lys	Ala	Lys	Gly	Glu	Ser	Ile	Ser	Gly	Gln	Lys	Ile	Ile	Val	Ser	Gly	
						225			230				235			240
tcc	ggc	aac	gta	gca	acc	tac	gcg	att	gaa	aag	gct	cag	gaa	ctc	ggc	768
Ser	Gly	Asn	Val	Ala	Thr	Tyr	Ala	Ile	Glu	Lys	Ala	Gln	Glu	Leu	Gly	
						245			250				255			
gca	acc	gtt	att	ggt	ttc	tcc	gat	tcc	agc	ggt	tgg	gtt	cat	acc	cct	816
Ala	Thr	Val	Ile	Gly	Phe	Ser	Asp	Ser	Ser	Gly	Trp	Val	His	Thr	Pro	
						260			265				270			
aac	ggc	gtt	gac	gtg	gct	aag	ctc	cgc	gaa	atc	aag	gaa	gtt	cgc	cgc	864
Asn	Gly	Val	Asp	Val	Ala	Lys	Leu	Arg	Glu	Ile	Lys	Glu	Val	Arg	Arg	
						275			280				285			
gca	cgc	gta	tcc	gtg	tac	gcc	gac	gaa	att	gaa	ggc	gca	acc	tac	cac	912
Ala	Arg	Val	Ser	Val	Tyr	Ala	Asp	Glu	Ile	Glu	Gly	Ala	Thr	Tyr	His	
						290			295				300			
acc	gac	ggt	tcc	atc	tgg	gat	ctc	aag	tgc	gat	atc	gct	ctt	cct	tgt	960
Thr	Asp	Gly	Ser	Ile	Trp	Asp	Leu	Lys	Cys	Asp	Ile	Ala	Leu	Pro	Cys	
						305			310				315			320
gca	act	cag	aac	gag	ctc	aac	ggc	gag	aac	gct	aag	act	ctt	gca	gac	1008
Ala	Thr	Gln	Asn	Glu	Leu	Asn	Gly	Glu	Asn	Ala	Lys	Thr	Leu	Ala	Asp	
						325			330				335			
aac	ggc	tgc	cgt	ttc	gtt	gct	gaa	ggc	gcg	aac	atg	cct	tcc	acc	cct	1056
Asn	Gly	Cys	Arg	Phe	Val	Ala	Glu	Gly	Ala	Asn	Met	Pro	Ser	Thr	Pro	
						340			345				350			
gag	gct	gtt	gag	gtc	ttc	cgt	gag	cgc	gac	atc	cgc	ttc	gga	cca	ggc	1104

105/123

Glu	Ala	Val	Glu	Val	Phe	Arg	Glu	Arg	Asp	Ile	Arg	Phe	Gly	Pro	Gly	
355					360						365					
aag	gca	gct	aac	gct	ggt	ggc	gtt	gca	acc	tcc	gct	ctg	gag	atg	cag	
Lys	Ala	Ala	Asn	Ala	Gly	Gly	Val	Ala	Thr	Ser	Ala	Leu	Glu	Met	Gln	
370					375						380					
cag	aac	gct	tcg	cgc	gat	tcc	tgg	agc	tac	acc	gac	gag	cgc		1152	
Gln	Asn	Ala	Ser	Arg	Asp	Ser	Trp	Ser	Phe	Glu	Tyr	Thr	Asp	Glu	Arg	
385					390				395			400				
ctc	cag	gtg	atc	atc	atg	aag	aac	atc	tcc	aag	acc	tgt	gca	gag	acc	gca
Leu	Gln	Val	Ile	Met	Lys	Asn	Ile	Phe	Lys	Thr	Cys	Ala	Glu	Thr	Ala	
					405				410			415				
gca	gag	tat	gga	cac	gag	aac	gat	tac	gtt	gtc	ggc	gct	aac	att	gct	
Ala	Glu	Tyr	Gly	His	Glu	Asn	Asp	Tyr	Val	Val	Gly	Ala	Asn	Ile	Ala	
					420				425			430				
ggc	ttt	aag	aag	gta	gct	gac	gcg	atg	ctg	gca	cag	ggc	gtc	atc	taa	
Gly	Phe	Lys	Lys	Val	Ala	Asp	Ala	Met	Leu	Ala	Gln	Gly	Val	Ile		
					435				440			445				

<210> 82

<211> 447

<212> PRT

<213> Brevibacterium lactofermentum

<400> 82

Met	Thr	Val	Asp	Glu	Gln	Val	Ser	Asn	Tyr	Tyr	Asp	Met	Leu	Leu	Lys
1				5					10				15		
Arg	Asn	Ala	Gly	Glu	Pro	Glu	Phe	His	Gln	Ala	Val	Ala	Glu	Val	Leu
					20				25				30		
Glu	Ser	Leu	Lys	Ile	Val	Leu	Glu	Lys	Asp	Pro	His	Tyr	Ala	Asp	Tyr
					35				40			45			
Gly	Leu	Ile	Gln	Arg	Leu	Cys	Glu	Pro	Glu	Arg	Gln	Leu	Ile	Phe	Arg
					50			55			60				
Val	Pro	Trp	Val	Asp	Asp	Gln	Gly	Gln	Val	His	Val	Asn	Arg	Gly	Phe
					65			70			75			80	
Arg	Val	Gln	Phe	Asn	Ser	Ala	Leu	Gly	Pro	Tyr	Lys	Gly	Gly	Leu	Arg
					85				90			95			
Phe	His	Pro	Ser	Val	Asn	Leu	Gly	Ile	Val	Lys	Phe	Leu	Gly	Phe	Glu
					100				105			110			
Gln	Ile	Phe	Lys	Asn	Ser	Leu	Thr	Gly	Leu	Pro	Ile	Gly	Gly	Gly	Lys
					115				120			125			
Gly	Gly	Ser	Asp	Phe	Asp	Pro	Lys	Gly	Lys	Ser	Asp	Leu	Glu	Ile	Met
					130			135			140				
Arg	Phe	Cys	Gln	Ser	Phe	Met	Thr	Glu	Leu	His	Arg	His	Ile	Gly	Glu

106/123

145	150	155	160
Tyr Arg Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile			
165	170	175	
Gly Tyr Leu Phe Gly His Tyr Arg Arg Met Ala Asn Gln His Glu Ser			
180	185	190	
Gly Val Leu Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg			
195	200	205	
Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile			
210	215	220	
Lys Ala Lys Gly Glu Ser Ile Ser Gly Gln Lys Ile Ile Val Ser Gly			
225	230	235	240
Ser Gly Asn Val Ala Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly			
245	250	255	
Ala Thr Val Ile Gly Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro			
260	265	270	
Asn Gly Val Asp Val Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg			
275	280	285	
Ala Arg Val Ser Val Tyr Ala Asp Glu Ile Glu Gly Ala Thr Tyr His			
290	295	300	
Thr Asp Gly Ser Ile Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys			
305	310	315	320
Ala Thr Gln Asn Glu Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp			
325	330	335	
Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro			
340	345	350	
Glu Ala Val Glu Val Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly			
355	360	365	
Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln			
370	375	380	
Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg			
385	390	395	400
Leu Gln Val Ile Met Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala			
405	410	415	
Ala Glu Tyr Gly His Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala			
420	425	430	
Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile			
435	440	445	

<210> 83

<211> 20

<212> DNA

<213> Artificial Sequence

107/123

<220>

<223> Description of Artificial Sequence:primer for
amplifying gltA gene

<220>

<221> misc_feature

<222> (9)

<223> n=inosine

<400> 83

aagatcacnt acatcgaygg

20

<210> 84

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for
amplifying gltA gene

<400> 84

tagaaggta cgttcggta

20

<210> 85

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for
amplifying gltA gene

<400> 85

gtcgacaata gcctgaatct g

21

<210> 86

<211> 21

<212> DNA

108/123

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gltA gene

<400> 86

cggtggaacc ggtgcgtgaca t

21

<210> 87

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gltA gene

<400> 87

gggtgggaa attcggtcatg t

21^c

<210> 88

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gltA gene

<400> 88

tgtcgtagcc gcggtagcgc a

21

<210> 89

<211> 1293

<212> DNA

<213> Corynebacterium thermoaminogenes

<220>

<221> CDS

<222> (1)..(1290)

109/123

<400> 89

gtg gct tct gat aac aac aag gct gta ctg cac tac cct ggc ggc gaa	48
Val Ala Ser Asp Asn Asn Lys Ala Val Leu His Tyr Pro Gly Gly Glu	
1 5 10 15	
ttc gag atg ggc atc aag cag gcc acc gag ggt aac tcc ggt gtc atc	96
Phe Glu Met Gly Ile Lys Gln Ala Thr Glu Gly Asn Ser Gly Val Ile	
20 25 30	
ctg ggt aag atg ctg tcg gaa acc ggt ctg gtc acc ttc gac ccc ggt	144
Leu Gly Lys Met Leu Ser Glu Thr Gly Leu Val Thr Phe Asp Pro Gly	
35 40 45	
tat gtc agc acc ggt tcc acc gaa tcc aag atc acc tac atc gat ggt	192
Tyr Val Ser Thr Gly Ser Thr Glu Ser Lys Ile Thr Tyr Ile Asp Gly	
50 55 60	
gat gca ggc atc ctg cgc tac cgc ggc tac gac att gcg gat ctg gcc	240
Asp Ala Gly Ile Leu Arg Tyr Arg Gly Tyr Asp Ile Ala Asp Leu Ala	
65 70 75 80	
gaa aat gcc acc ttc aat gag gtc tcc tac ctc ctg atc aag ggt gag	288
Glu Asn Ala Thr Phe Asn Glu Val Ser Tyr Leu Leu Ile Lys Gly Glu	
85 90 95	
ctc ccg acc ccg gaa gag ctc cac aag ttc aac gac gag att cgt cac	336
Leu Pro Thr Pro Glu Glu Leu His Lys Phe Asn Asp Glu Ile Arg His	
100 105 110	
cac acc ctg ctg gac gag gac ttc aag tcc cag ttc aat gtc ttc cct	384
His Thr Leu Leu Asp Glu Asp Phe Lys Ser Gln Phe Asn Val Phe Pro	
115 120 125	
cgc gat gcc cac ccg atg gcc acc ctg gcc tcc tcg gtt aac atc ctc	432
Arg Asp Ala His Pro Met Ala Thr Leu Ala Ser Ser Val Asn Ile Leu	
130 135 140	
tcc acc tac tac cag gat cag ctg gat ccc ctg gat gag gct cag ctg	480
Ser Thr Tyr Tyr Gln Asp Gln Leu Asp Pro Leu Asp Glu Ala Gln Leu	
145 150 155 160	
gac aag gca acc gtc cgc ctg atg gcg aag gtt ccg atg ctg gct gca	528
Asp Lys Ala Thr Val Arg Leu Met Ala Lys Val Pro Met Leu Ala Ala	
165 170 175	
tac gca cac cgt gcc cgc aag ggt gcg ccg tac atg tac ccg gac aac	576
Tyr Ala His Arg Ala Arg Lys Gly Ala Pro Tyr Met Tyr Pro Asp Asn	
180 185 190	
tcc ctc aat gcc cgt gag aac ttc ctg cgc atg atg ttc ggt tac ccg	624
Ser Leu Asn Ala Arg Glu Asn Phe Leu Arg Met Met Phe Gly Tyr Pro	
195 200 205	
acc gag ccg tac gag gtt gat ccg atc atg gtc aaa gcc ctc gac aag	672
Thr Glu Pro Tyr Glu Val Asp Pro Ile Met Val Lys Ala Leu Asp Lys	

110/123

210	215	220	
ctg ctc atc ctg cac gca gac cac gag cag aac tgc tcc acc tcc act			720
Leu Leu Ile Leu His Ala Asp His Glu Gln Asn Cys Ser Thr Ser Thr			
225	230	235	240
gtc cgc atg atc ggc tcc gcg cag gcg aac atg ttc gtc tcc atc gcc			768
Val Arg Met Ile Gly Ser Ala Gln Ala Asn Met Phe Val Ser Ile Ala			
245	250	255	
ggc ggc atc aac gca ctc tcc ggc ccg ctg cac ggt ggc gcc aac cag			816
Gly Gly Ile Asn Ala Leu Ser Gly Pro Leu His Gly Gly Ala Asn Gln			
260	265	270	
gct gtc ctc gag atg ctc gag gag atc gca gcc aac ggc ggc gac gca			864
Ala Val Leu Glu Met Leu Glu Glu Ile Ala Ala Asn Gly Gly Asp Ala			
275	280	285	
acc gac ttc atg aac cgc gtg aag aac aag gag aag ggt gtc cgc ctc			912
Thr Asp Phe Met Asn Arg Val Lys Asn Lys Glu Lys Gly Val Arg Leu			
290	295	300	
atg ggc ttc gga cac cgc gtc tac aag aac tac gat ccg cgt gca gcc			960
Met Gly Phe Gly His Arg Val Tyr Lys Asn Tyr Asp Pro Arg Ala Ala			
305	310	315	320
atc gtc aag gac acc gcc cac gag atc ctc gag cac ctc ggt ggc gac			1008
Ile Val Lys Asp Thr Ala His Glu Ile Leu Glu His Leu Gly Gly Asp			
325	330	335	
cca ctg ctg gat ctg gct ctc aag ctg gaa gaa atc gca ctc aac gac			1056
Pro Leu Leu Asp Leu Ala Leu Lys Leu Glu Glu Ile Ala Leu Asn Asp			
340	345	350	
gat tac ttc atc tcc cgc aag ctg tac ccg aac gtg gac ttc tac acc			1104
Asp Tyr Phe Ile Ser Arg Lys Leu Tyr Pro Asn Val Asp Phe Tyr Thr			
355	360	365	
ggc ctg atc tac cgc gcc atg ggc ttc ccg acg gac ttc ttc acc gtc			1152
Gly Leu Ile Tyr Arg Ala Met Gly Phe Pro Thr Asp Phe Phe Thr Val			
370	375	380	
ctg ttc gcc atc ggc cgc ctc ccg ggc tgg atc gcc cac tac cgc gag			1200
Leu Phe Ala Ile Gly Arg Leu Pro Gly Trp Ile Ala His Tyr Arg Glu			
385	390	395	400
cag ctc gcc gat ccg ggc gcc aag atc aac cgt cct cgc cag atc tac			1248
Gln Leu Ala Asp Pro Gly Ala Lys Ile Asn Arg Pro Arg Gln Ile Tyr			
405	410	415	
acc ggt gag acc gca cgc aag atc atc ccc cgc gaa gag cgc tag			1293
Thr Gly Glu Thr Ala Arg Lys Ile Ile Pro Arg Glu Glu Arg			
420	425	430	

<210> 90

<211> 430

111/123

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 90

Val	Ala	Ser	Asp	Asn	Asn	Lys	Ala	Val	Leu	His	Tyr	Pro	Gly	Gly	Glu
1				5				10					15		
Phe	Glu	Met	Gly	Ile	Lys	Gln	Ala	Thr	Glu	Gly	Asn	Ser	Gly	Val	Ile
				20				25					30		
Leu	Gly	Lys	Met	Leu	Ser	Glu	Thr	Gly	Leu	Val	Thr	Phe	Asp	Pro	Gly
				35				40				45			
Tyr	Val	Ser	Thr	Gly	Ser	Thr	Glu	Ser	Lys	Ile	Thr	Tyr	Ile	Asp	Gly
				50				55				60			
Asp	Ala	Gly	Ile	Leu	Arg	Tyr	Arg	Gly	Tyr	Asp	Ile	Ala	Asp	Leu	Ala
	65			70				75				80			
Glu	Asn	Ala	Thr	Phe	Asn	Glu	Val	Ser	Tyr	Leu	Leu	Ile	Lys	Gly	Glu
				85				90				95			
Leu	Pro	Thr	Pro	Glu	Glu	Leu	His	Lys	Phe	Asn	Asp	Glu	Ile	Arg	His
				100				105				110			
His	Thr	Leu	Leu	Asp	Glu	Asp	Phe	Lys	Ser	Gln	Phe	Asn	Val	Phe	Pro
				115				120				125			
Arg	Asp	Ala	His	Pro	Met	Ala	Thr	Leu	Ala	Ser	Ser	Val	Asn	Ile	Leu
				130				135				140			
Ser	Thr	Tyr	Tyr	Gln	Asp	Gln	Leu	Asp	Pro	Leu	Asp	Glu	Ala	Gln	Leu
	145				150				155				160		
Asp	Lys	Ala	Thr	Val	Arg	Leu	Met	Ala	Lys	Val	Pro	Met	Leu	Ala	Ala
				165				170				175			
Tyr	Ala	His	Arg	Ala	Arg	Lys	Gly	Ala	Pro	Tyr	Met	Tyr	Pro	Asp	Asn
				180				185				190			
Ser	Leu	Asn	Ala	Arg	Glu	Asn	Phe	Leu	Arg	Met	Met	Phe	Gly	Tyr	Pro
				195				200				205			
Thr	Glu	Pro	Tyr	Glu	Val	Asp	Pro	Ile	Met	Val	Lys	Ala	Leu	Asp	Lys
				210				215				220			
Leu	Leu	Ile	Leu	His	Ala	Asp	His	Glu	Gln	Asn	Cys	Ser	Thr	Ser	Thr
				225				230				235			240
Val	Arg	Met	Ile	Gly	Ser	Ala	Gln	Ala	Asn	Met	Phe	Val	Ser	Ile	Ala
				245				250				255			
Gly	Gly	Ile	Asn	Ala	Leu	Ser	Gly	Pro	Leu	His	Gly	Gly	Ala	Asn	Gln
				260				265				270			
Ala	Val	Leu	Glu	Met	Leu	Glu	Glu	Ile	Ala	Ala	Asn	Gly	Gly	Asp	Ala
				275				280				285			
Thr	Asp	Phe	Met	Asn	Arg	Val	Lys	Asn	Lys	Glu	Lys	Gly	Val	Arg	Leu
				290				295				300			
Met	Gly	Phe	Gly	His	Arg	Val	Tyr	Lys	Asn	Tyr	Asp	Pro	Arg	Ala	Ala

112/123

305	310	315	320
Ile Val Lys Asp Thr Ala His Glu Ile Leu Glu His Leu Gly Gly Asp			
325	330	335	
Pro Leu Leu Asp Leu Ala Leu Lys Leu Glu Glu Ile Ala Leu Asn Asp			
340	345	350	
Asp Tyr Phe Ile Ser Arg Lys Leu Tyr Pro Asn Val Asp Phe Tyr Thr			
355	360	365	
Gly Leu Ile Tyr Arg Ala Met Gly Phe Pro Thr Asp Phe Phe Thr Val			
370	375	380	
Leu Phe Ala Ile Gly Arg Leu Pro Gly Trp Ile Ala His Tyr Arg Glu			
385	390	395	400
Gln Leu Ala Asp Pro Gly Ala Lys Ile Asn Arg Pro Arg Gln Ile Tyr			
405	410	415	
Thr Gly Glu Thr Ala Arg Lys Ile Ile Pro Arg Glu Glu Arg			
420	425	430	

<210> 91

<211> 1314

<212> DNA

<213> Brevibacterium lactofermentum

<220>

<221> CDS

<222> (1)..(1311)

<400> 91

atg ttt gaa agg gat atc gtg gct act gat aac aac aag gct gtc ctg	48
Met Phe Glu Arg Asp Ile Val Ala Thr Asp Asn Asn Lys Ala Val Leu	
1 5 10 15	
cac tac ccc ggt ggc gag ttc gaa atg gac atc atc gag gct tct gag	96
His Tyr Pro Gly Gly Glu Phe Glu Met Asp Ile Ile Glu Ala Ser Glu	
20 25 30	
ggt aac aac ggt gtt gtc ctg ggc aag atg ctg tct gag act gga ctg	144
Gly Asn Asn Gly Val Val Leu Gly Lys Met Leu Ser Glu Thr Gly Leu	
35 40 45	
atc act ttt gac cca ggt tat gtg agc act ggc tcc acc gag tcg aag	192
Ile Thr Phe Asp Pro Gly Tyr Val Ser Thr Gly Ser Thr Glu Ser Lys	
50 55 60	
atc acc tac atc gat ggc gat gcg gga atc ctg cgt tac cgc ggc tat	240
Ile Thr Tyr Ile Asp Gly Asp Ala Gly Ile Leu Arg Tyr Arg Gly Tyr	
65 70 75 80	
gac atc gct gat ctg gct gag aat gcc acc ttc aac gag gtt tct tac	288
Asp Ile Ala Asp Leu Ala Glu Asn Ala Thr Phe Asn Glu Val Ser Tyr	

113/123

85	90	95	
ct a ctt atc aac ggt gaa cta cca acc cca gat gag ctt cac aag ttt			336
Leu Leu Ile Asn Gly Glu Leu Pro Thr Pro Asp Glu Leu His Lys Phe			
100	105	110	
aac gac gag att cgc cac cac acc ctt ctg gac gag gac ttc aag tcc			384
Asn Asp Glu Ile Arg His His Thr Leu Leu Asp Glu Asp Phe Lys Ser			
115	120	125	
cag ttc aac gtg ttc cca cgc gac gct cac cca atg gca acc ttg gct			432
Gln Phe Asn Val Phe Pro Arg Asp Ala His Pro Met Ala Thr Leu Ala			
130	135	140	
tcc tcg gtt aac att ttg tct acc tac tac cag gat cag ctg aac cca			480
Ser Ser Val Asn Ile Leu Ser Thr Tyr Tyr Gln Asp Gln Leu Asn Pro			
145	150	155	160
ctc gat gag gca cag ctt gat aag gca acc gtt cgc ctc atg gca aag			528
Leu Asp Glu Ala Gln Leu Asp Lys Ala Thr Val Arg Leu Met Ala Lys			
165	170	175	
gtt cca atg ctg gct gcg tac gca cac cgc gca cgc aag ggt gct cct			576
Val Pro Met Leu Ala Ala Tyr Ala His Arg Ala Arg Lys Gly Ala Pro			
180	185	190	
tac atg tac cca gac aac tcc ctc aac gcg cgt gag aac ttg ctg cgc			624
Tyr Met Tyr Pro Asp Asn Ser Leu Asn Ala Arg Glu Asn Phe Leu Arg			
195	200	205	
atg atg ttg ggt tac cca acc gag cca tac gag atc gac cca atc atg			672
Met Met Phe Gly Tyr Pro Thr Glu Pro Tyr Glu Ile Asp Pro Ile Met			
210	215	220	
gtc aag gct ctg gac aag ctg ctc atc ctg cac gct gac cac gag cag			720
Val Lys Ala Leu Asp Lys Leu Leu Ile Leu His Ala Asp His Glu Gln			
225	230	235	240
aac tgc tcc acc tcc acc gtt cgt atg atc ggt tcc gca cag gcc aac			768
Asn Cys Ser Thr Ser Thr Val Arg Met Ile Gly Ser Ala Gln Ala Asn			
245	250	255	
atg ttg gtc tcc atc gct ggt ggc atc aac gct ctg tcc ggc cca ctg			816
Met Phe Val Ser Ile Ala Gly Gly Ile Asn Ala Leu Ser Gly Pro Leu			
260	265	270	
cac ggt ggc gca aac cag gct gtt ctg gag atg ctc gaa gac atc aag			864
His Gly Gly Ala Asn Gln Ala Val Leu Glu Met Leu Glu Asp Ile Lys			
275	280	285	
aac aac cac ggt ggc gac gca acc gcg ttg atg aac aag gtc aag aac			912
Asn Asn His Gly Gly Asp Ala Thr Ala Phe Met Asn Lys Val Lys Asn			
290	295	300	
aag gaa gac ggc gtc cgc ctc atg ggc ttg gga cac cgc gtt tac aag			960
Lys Glu Asp Gly Val Arg Leu Met Gly Phe Gly His Arg Val Tyr Lys			
305	310	315	320

114/123

aac tac gat cca cgt gca gca atc gtc aag gag acc gca cac gag atc	1008
Asn Tyr Asp Pro Arg Ala Ala Ile Val Lys Glu Thr Ala His Glu Ile	
325 330 335	
ctc gag cac ctc ggt ggc gac gat ctt ctg gat ctg gca atc aag ctg	1056
Leu Glu His Leu Gly Gly Asp Asp Leu Leu Asp Leu Ala Ile Lys Leu	
340 345 350	
gaa gaa att gca ctg gct gat gat tac ttc atc tcc cgc aag ctc tac	1104
Glu Glu Ile Ala Leu Ala Asp Asp Tyr Phe Ile Ser Arg Lys Leu Tyr	
355 360 365	
ccg aac gta gac ttc tac acc ggc ctg atc tac cgc gca atg ggc ttc	1152
Pro Asn Val Asp Phe Tyr Thr Gly Leu Ile Tyr Arg Ala Met Gly Phe	
370 375 380	
cca act gac ttc ttc acc gta ttg ttc gca atc ggt cgt ctg cca gga	1200
Pro Thr Asp Phe Phe Thr Val Leu Phe Ala Ile Gly Arg Leu Pro Gly	
385 390 395 400	
tgg atc gct cac tac cgc gag cag ctc ggt gca gca ggc aac aag atc	1248
Trp Ile Ala His Tyr Arg Glu Gln Leu Gly Ala Ala Gly Asn Lys Ile	
405 410 415	
aac cgc cca cgc cag gtc tac acc ggc aag gaa tcc cgc aag ttg gtt	1296
Asn Arg Pro Arg Gln Val Tyr Thr Gly Lys Glu Ser Arg Lys Leu Val	
420 425 430	
cct cgc gag gag cgc taa	1314
Pro Arg Glu Glu Arg	
435	

<210> 92

<211> 437

<212> PRT

<213> Brevibacterium lactofermentum

<400> 92

Met Phe Glu Arg Asp Ile Val Ala Thr Asp Asn Asn Lys Ala Val Leu	
1 5 10 15	
His Tyr Pro Gly Gly Glu Phe Glu Met Asp Ile Ile Glu Ala Ser Glu	
20 25 30	
Gly Asn Asn Gly Val Val Leu Gly Lys Met Leu Ser Glu Thr Gly Leu	
35 40 45	
Ile Thr Phe Asp Pro Gly Tyr Val Ser Thr Gly Ser Thr Glu Ser Lys	
50 55 60	
Ile Thr Tyr Ile Asp Gly Asp Ala Gly Ile Leu Arg Tyr Arg Gly Tyr	
65 70 75 80	
Asp Ile Ala Asp Leu Ala Glu Asn Ala Thr Phe Asn Glu Val Ser Tyr	
85 90 95	

115/123

116/123

435

<210> 93
<211> 1656
<212> DNA
<213> Corynebacterium thermoaminogenes

<220>
<221> CDS
<222> (309)..(1595)

<400> 93

acgcccatttcaacactatcgaagagg	tcccaaccca	cgcgttgacc	cagggcttgg	60
gtactttgtc	ccgcgcgcaa	aatatcggt	tggggcaac	120
gccatccgcg	gaactgtgga	aggccatgt	actgcctt	180
atgcacaaca	acgcacccat	catcggtat	gaagcagcag	240
gaccattacc	gtctcatgga	gcaattaaag	ctgcgttaga	300
gtggggct	atg cac aca gaa	cit tcc agt ttg	cgc cct gcg tac cat	350
	Met His Thr Glu Leu Ser	Ser Leu Arg Pro	Ala Tyr His Val	
1	5	10		
act cct ccg cag ggc	aga ctc aat gat	ccc aat gga	atg tac gtc	398
Thr Pro Pro Gln Gly	Arg Leu Asn Asp	Pro Asn Gly	Met Tyr Val Asp	
15	20	25	30	
gga gat acc ctc cac gtc	tac tac cag	cac gat cca	ggt ttc ccc ttc	446
Gly Asp Thr Leu His Val	Tyr Tyr Gln His Asp	Pro Gly Phe Pro	Phe	
35	40	45		
gca cca aag cgc acc ggt	tgg gct cac acc	acc acg ccg	ttg acc gga	494
Ala Pro Lys Arg Thr Gly	Trp Ala His Thr	Thr Thr Pro	Leu Thr Gly	
50	55	60		
ccg cag cga ttg cag tgg	acg cac ctg ccc	gat gct ctt	tac ccg gat	542
Pro Gln Arg Leu Gln Trp	Thr His Leu Pro	Asp Ala Leu	Tyr Pro Asp	
65	70	75		
gta tcc tat gac ctg gat	gga tgc tat tcc	ggc gga	gcc gta tt tct	590
Val Ser Tyr Asp Leu Asp	Gly Cys Tyr Ser	Gly Gly	Ala Val Phe Ser	
80	85	90		
gac ggc acg ctt aaa ctt	ttc tac acc ggc	aac cga aaa att	gac ggc	638
Asp Gly Thr Leu Lys Leu	Phe Tyr Thr Gly	Asn Arg Lys Ile	Asp Gly	
95	100	105	110	
aag cgc cgc gcc acc caa	aac aac ctc gtc	gaa gtc gag	gac cca act ggg	686
Lys Arg Arg Ala Thr Gln	Asn Leu Val	Glu Val	Glu Asp Pro Thr	
115	120	125		
ctg atg ggc ggc att cat	cgc cgc tcg cct	aaa aat ccg ctt	atc gac	734
Leu Met Gly Gly Ile His	Arg Arg Ser Pro	Lys Asn Pro	Leu Ile Asp	

117/123

130	135	140	
gga ccc gcc agc ggt ttt acg ccc cac tac cgc gat ccc atg atc agc			782
Gly Pro Ala Ser Gly Phe Thr Pro His Tyr Arg Asp Pro Met Ile Ser			
145	150	155	
cct gat ggg gat ggt tgg aag atg gtt ctt ggg gct cag cgc gaa aac			830
Pro Asp Gly Asp Gly Trp Lys Met Val Leu Gly Ala Gln Arg Glu Asn			
160	165	170	
ctc acc ggt gca gcg gtt cta tac cgc tcg gca gat ctt gaa aac tgg			878
Leu Thr Gly Ala Ala Val Leu Tyr Arg Ser Ala Asp Leu Glu Asn Trp			
175	180	185	190
gaa ttc tcc ggt gaa atc acc ttt gac ctc agc gac gca caa cct ggt			926
Glu Phe Ser Gly Glu Ile Thr Phe Asp Leu Ser Asp Ala Gln Pro Gly			
195	200	205	
tct gcc cct gat ctc gtt cct ggc ggc tac atg tgg gaa tgc ccc aac			974
Ser Ala Pro Asp Leu Val Pro Gly Gly Tyr Met Trp Glu Cys Pro Asn			
210	215	220	
ctt ttt acg ctt cgc gat gaa aaa acc ggc gaa gac ctc gat gtg ctg			1022
Leu Phe Thr Leu Arg Asp Glu Lys Thr Gly Glu Asp Leu Asp Val Leu			
225	230	235	
att ttc tgt cca caa gga ttg gac cgt atc gat gat gag gtt act cac			1070
Ile Phe Cys Pro Gln Gly Leu Asp Arg Ile Asp Asp Glu Val Thr His			
240	245	250	
taa gca agc tct gac cag tgc gga tat gtc gtc ggc aag ctt gaa gaa			1118
Tyr Ala Ser Ser Asp Gln Cys Gly Tyr Val Val Gly Lys Leu Glu Glu			
255	260	265	270
acg acc ttc cgt gtc ctg cga gga ttc agc gag ctg gat ttc ggt cat			1166
Thr Thr Phe Arg Val Leu Arg Gly Phe Ser Glu Leu Asp Phe Gly His			
275	280	285	
gaa ttc tac gcg ccg cag gtt gca gtc aac ggt tcc gat gcc tgg ctt			1214
Glu Phe Tyr Ala Pro Gln Val Ala Val Asn Gly Ser Asp Ala Trp Leu			
290	295	300	
gtg ggc tgg atg gga ttg cct gca cag gat gat cac cca aca gtt gcg			1262
Val Gly Trp Met Gly Leu Pro Ala Gln Asp Asp His Pro Thr Val Ala			
305	310	315	
cag gaa gga tgg gtg cac tgc ctg acc gtt cct cgc agg ctt cat ttg			1310
Gln Glu Gly Trp Val His Cys Leu Thr Val Pro Arg Arg Leu His Leu			
320	325	330	
cgt aac cat gcg atc tat caa gag ctt ctt ctc cca gaa ggg gag tcg			1358
Arg Asn His Ala Ile Tyr Gln Glu Leu Leu Leu Pro Glu Gly Glu Ser			
335	340	345	350
ggg gta act aga tct gta tta ggt tct gaa cct gtc cga gta gac atc			1406
Gly Val Thr Arg Ser Val Leu Gly Ser Glu Pro Val Arg Val Asp Ile			
355	360	365	

118/123

cga gac aat gtt tcc ctc gag tgg gat ggt gtc cgg ttg tct gtg gat	1454
Arg Asp Asn Val Ser Leu Glu Trp Asp Gly Val Arg Leu Ser Val Asp	
370 375 380	
cgc gat ggc gat cgt cgt gta gct gaa gta aaa cct ggc gaa tta gtg	1502
Arg Asp Gly Asp Arg Arg Val Ala Glu Val Lys Pro Gly Glu Leu Val	
385 390 395	
atc gcg gac gat aat aca gcg att gag ata aca gca ggt cat ggc cag	1550
Ile Ala Asp Asp Asn Thr Ala Ile Glu Ile Thr Ala Gly His Gly Gln	
400 405 410	
gtt tcc ttc gct ttc cgc acc ttc aaa ggt gac act att gag aga	1595
Val Ser Phe Ala Phe Arg Thr Phe Lys Gly Asp Thr Ile Glu Arg	
415 420 425	
taagtataa aaaaggccct tctgtggcgg attgtacaaa tacttcgcaa aatcccttga	1655
t	1656

<210> 94

<211> 429

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 94

Met His Thr Glu Leu Ser Ser Leu Arg Pro Ala Tyr His Val Thr Pro	
1 5 10 15	
Pro Gln Gly Arg Leu Asn Asp Pro Asn Gly Met Tyr Val Asp Gly Asp	
20 25 30	
Thr Leu His Val Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro	
35 40 45	
Lys Arg Thr Gly Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln	
50 55 60	
Arg Leu Gln Trp Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser	
65 70 75 80	
Tyr Asp Leu Asp Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly	
85 90 95	
Thr Leu Lys Leu Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg	
100 105 110	
Arg Ala Thr Gln Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met	
115 120 125	
Gly Gly Ile His Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro	
130 135 140	
Ala Ser Gly Phe Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp	
145 150 155 160	
Gly Asp Gly Trp Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr	
165 170 175	

119/123

Gly	Ala	Ala	Val	Leu	Tyr	Arg	Ser	Ala	Asp	Leu	Glu	Asn	Trp	Glu	Phe
			180					185					190		
Ser	Gly	Glu	Ile	Thr	Phe	Asp	Leu	Ser	Asp	Ala	Gln	Pro	Gly	Ser	Ala
			195				200					205			
Pro	Asp	Leu	Val	Pro	Gly	Gly	Tyr	Met	Trp	Glu	Cys	Pro	Asn	Leu	Phe
			210			215					220				
Thr	Leu	Arg	Asp	Glu	Lys	Thr	Gly	Glu	Asp	Leu	Asp	Val	Leu	Ile	Phe
			225		230				235				240		
Cys	Pro	Gln	Gly	Leu	Asp	Arg	Ile	Asp	Asp	Glu	Val	Thr	His	Tyr	Ala
			245				250					255			
Ser	Ser	Asp	Gln	Cys	Gly	Tyr	Val	Val	Gly	Lys	Leu	Glu	Glu	Thr	Thr
			260				265					270			
Phe	Arg	Val	Leu	Arg	Gly	Phe	Ser	Glu	Leu	Asp	Phe	Gly	His	Glu	Phe
			275			280			285						
Tyr	Ala	Pro	Gln	Val	Ala	Val	Asn	Gly	Ser	Asp	Ala	Trp	Leu	Val	Gly
			290			295					300				
Trp	Met	Gly	Leu	Pro	Ala	Gln	Asp	Asp	His	Pro	Thr	Val	Ala	Gln	Glu
			305			310			315				320		
Gly	Trp	Val	His	Cys	Leu	Thr	Val	Pro	Arg	Arg	Leu	His	Leu	Arg	Asn
			325				330					335			
His	Ala	Ile	Tyr	Gln	Glu	Leu	Leu	Leu	Pro	Glu	Gly	Glu	Ser	Gly	Val
			340				345					350			
Thr	Arg	Ser	Val	Leu	Gly	Ser	Glu	Pro	Val	Arg	Val	Asp	Ile	Arg	Asp
			355				360					365			
Asn	Val	Ser	Leu	Glu	Trp	Asp	Gly	Val	Arg	Leu	Ser	Val	Asp	Arg	Asp
			370			375					380				
Gly	Asp	Arg	Arg	Val	Ala	Glu	Val	Lys	Pro	Gly	Glu	Leu	Val	Ile	Ala
			385			390			395				400		
Asp	Asp	Asn	Thr	Ala	Ile	Glu	Ile	Thr	Ala	Gly	His	Gly	Gln	Val	Ser
			405				410					415			
Phe	Ala	Phe	Arg	Thr	Phe	Lys	Gly	Asp	Thr	Ile	Glu	Arg			
			420				425								

<210> 95

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer for amplifying scrB gene

120/123

<400> 95
gtacatattg tcgttagaac gcgtaatacg actca 35

<210> 96
<211> 35
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer for
amplifying scrB gene

<400> 96
cgtagaaacg cgtaatacga ctcactatag ggaga 35

<210> 97
<211> 30
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer for
LA cloning of scrB

<400> 97
gtaaagagcg tcgggcagg t gcgtccactg 30

<210> 98
<211> 30
<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer for
LA cloning of scrB

<400> 98
ggtgtgagcc cagccggtgtgc gctttggtgtgc 30

<210> 99

121/123

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for
LA cloning of scrB

<400> 99

atcagccctg atggtgatgg ttggaaaatg

30

<210> 100

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for
LA cloning of scrB gene

<400> 100

ggtgtcaggcggttctataccgcgtcgacagat

30

<210> 101

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for
amplifying scrB gene

<400> 101

ggcccgggac gcccgttttcaacactat cg

32

<210> 102

<211> 32

<212> DNA

<213> Artificial Sequence

122/123

220

<223> Description of Artificial Sequence:primer for amplifying scrB gene

<400> 102

ggcccgaaaa tcaaggatt ttgcgaagta tt

32

〈210〉 103

〈211〉 30

<212> DNA

213 Artificial Sequence

220

<223> Description of Artificial Sequence:primer for amplifying icd gene

〈400〉 103

gaagatctct atgaccagcg catcaagctg

30

〈210〉 104

〈211〉 30

〈212〉 DNA

<213> Artificial Sequence

〈220〉

<223> Description of Artificial Sequence:primer for amplifying icd gene

〈400〉 104

gaagatctgg tcatcccaga acctgtatcac

30

〈210〉 105

<211> 32

<212> DNA

<213> Artificial Sequence

220

<223> Description of Artificial Sequence:primer for amplifying gdh gene

123/123

<400> 105

gcgcctgcag gtccgagggt gtgcgttcgg ca

32

<210> 106

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gdh gene

<400> 106

gcgcctgcag gcaccaggat gccctaacc ag

32

<210> 107

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gltA gene

<400> 107

gggttaccga tcactataac cccacagcac

30

<210> 108

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer for amplifying gltA gene

<400> 108

gggttaccct ggctgatctg aactaggcgc

30