Report – Mandatory Assignment: Supply chain network design

Task 1

Model

Sets:

SSet: Set of suppliers (counties).

PSet: Set of potential plants (biorefineries).

Parameters:

Supply_s: Supply of biomass from supplier s (tonne).

Yield = 232: Conversion yield of bioethanol (liters per tonne of biomass).

 $PlantCap = 152\ 063\ 705$: Annual conversion capacity for each plant (liters).

Demand = 500 000 000: *Total bioethanol demand (production target) (liters).*

 $InvCost_p$: $Investment\ cost\ to\ maintain\ a\ plant\ at\ location\ p\ (\$)$.

 $TransCost_{sp}$: $Transportation\ cost\ from\ supplier\ s\ to\ plant\ p\ \left(\frac{\$}{tonne}\ per\ km\right)$.

 $Dist_{sp}$: $Distance\ from\ supplier\ s\ to\ plant\ p\ (km)$.

LoadCost = 10000: Combined loading and unloading cost for each trip (\$).

TruckCap = 500: Capacity of truck (tonne).

Decision Variables:

 x_p : Binary variable = $\begin{cases} 1 & Plant is built at location p \\ 0 & Otherwise \end{cases}$

 y_{sp} : The amount of biomass transported from county s to biorefinery p (tonne).

 $trips_{sp}$: Integer variable. Number of truck trips needed to transport biomass from supplier s to plant p.

Objective Function:

Investment cost + transportation cost + loading cost.

$$\begin{aligned} \textit{Minimize } \zeta &= \sum_{p \in \textit{PSet}} \textit{InvCost}_p * x_p + \sum_{s \in \textit{SSet}, p \in \textit{PSet}} \left(\textit{TransCost}_{sp} * \textit{Dist}_{sp} * y_{sp} \right) \\ &+ \sum_{s \in \textit{SSet}, p \in \textit{PSet}} \textit{LoadCost} * \textit{trips}_{sp} \end{aligned}$$

Constraints:

Supply constraints: A supplier can only supply the amount of biomass that it has available.

$$\sum_{p \in PSet} y_{sp} \le Supply_s, \quad \forall s \in SSet$$

INF170

03.11.2023

Plant constraints: A plant can only process biomass up to its capacity, and only after it is built.

$$\sum_{s \in SSet} Yield * y_{sp} \leq PlantCap * x_p, \quad \forall p \in PSet$$

<u>Bioethanol production requirement:</u> Ensure that the total bioethanol produced meets the demand.

$$\sum_{s \in SSet, p \in PSet} Yield * y_{sp} \ge Demand$$

Truck trips constraints: Ensures the number of truck trips needed.

$$y_{sp} \leq TruckCap * trips_{sp}, \qquad \forall s \in SSet, p \in PSet$$

Binary constraints: Ensures that x_p is binary.

$$x_p \in \{0,1\}, \quad \forall p \in PSet$$

<u>Integer constraints:</u> Ensures that $trips_{sp}$ is a non-negative integer. $\mathbb{Z}_{\geq} = \{0,1,2,...\}$.

$$trips_{sp} \in \mathbb{Z}_{\geq}$$

Non-negativity constraint: Ensures that all biomass transported, and number of trips is non-negative.

$$y_{sp} \ge 0$$
, $\forall s \in SSet, h \in HSet$

$$trips_{sp} \ge 0$$
, $\forall s \in SSet, h \ge HSet$

Result

Optimal Solution:

Total cost: \$8 501 421 861

Total bioethanol produced: 500 000 000 liters

Total biomass used: 2 155 172 tonne

Total number of open plants: 11

Open Facilities:

Location
541
9063
9071
9102
9107
9155
9178
9183
9203
10058
10066

03.11.2023

Flow of Biomass from Suppliers to Plants (Part 1): Flow of Biomass from Suppliers to Plants (Part 1)					Dlants (Dant 2).
		Flow (tonne)			Flow (tonne)
48001	9063	13 131.97	48245	9178	21 409.90
48007	10066	308.18	48249	10066	13 373.97
48009	9203	19 802.14	48251	9102	19 463.88
48015	9178	17 336.34	48255	10066	15 171.99
48021	541	13 091.86	48257	9071	22 038.75
48023	10058	8 499.47	48259	541	12 872.84
48025	10066	19 158.32	48273	10066	22 665.90
48027	541	23 892.32	48277	9183	25 697.27
48029	541	9 920.54	48281	541	16 681.00
48031	541	12 994.53	48285	10066	25 734.28
48035	9102	22 418.59	48287	9063	12 660.40
48039	9155	40 515.13	48289	9063	21 352.90
48041	9063	14 630.92	48291	9178	14 693.94
48049	9203	16 532.73	48293	9063	26 796.15
48051	9063	16 489.00	48297	10066	14 654.24
48053	541	18 196.87	48299	541	16 968.95
48055	541	10 856.18	48307	9102	20 408.12
48057	10066	15 211.35	48309	9107	31 254.14
48059	9102	18 068.53	48313	9063	14 092.38
48063	9183	2 444.57	48319	541	15 500.00
48071	9178	13 382.16	48321	9155	38 552.25
48073	9063	10 109.57	48331	9063	26 627.08
48077	9102	25 528.76	48333	541	16 684.33
48083	9102	24 381.26	48337	9183	18 557.11
48085	9183	19 739.69	48339	9178	5 612.19
48089	9178	24 916.71	48343	9183	3 542.48
48091	541	7 004.34	48349	9071	30 659.84
48093	9203	14 186.85	48355	10066	30 669.33
48097	9183	23 662.35	48361	9178	2 692.72
48099	9107	22 389.68	48363	9203	20 991.00
48113	9071	4 701.77	48367	9203	16 140.04
48119	9183	8 402.84	48373	9178	4 674.47
48121	9183	19 303.58	48379	9071	4 338.88
48123	10066	20 410.85	48387	9183	20 920.46
48133	9203	12 072.45	48391	10066	25 089.06
48139	9071	28 926.45	48395	9063	19 015.77
48143	9203	17 013.47	48397	9071	3 112.52
48145	9063	33 452.80	48399	9102	10 861.21
48147	9183	28 447.25	48407	9178	3 798.86
48149	9178	21 806.70	48409	10066	24 653.38
48155	10058	14 605.36	48411	541	20 076.02
48157	9178	25 380.59	48417	9203	16 592.12
48159	9183	4 382.27	48423	9071	8 037.38
48161	9071	18 570.48	48425	9107	2 976.96
48167	9155	5 468.82	48429	9203	17 321.41
48175	10066	18 902.89	48439	9203	5 453.29
48177	10066	20 945.06	48447	9203	18 246.35
48181	9183	23 869.32	48449	9183	6 119.62
48183	9071	1 255.06	48453	541	11 662.93
48185	9178	18 602.03	48459	9071	6 682.33
48187	541	14 521.50	48467	9071	13 771.58
48193	9102	17 843.20	48469	10066	27 555.55
48197	10058	13 061.60	48471	9178	11 203.68
48201	9178	12 916.53	48473	9178	13 990.84
48209	541	8 833.26	48477	9178	17 817.90
48213	9071	13 595.33	48481	9178	45 431.14
48217	9107	34 471.54	48485	9102	11 898.75
48221	9203	6 619.83	48487	10058	24 852.43
48223	9183	17 434.18	48491	541	30 142.91
48225	9063	17 712.96	48493	10066	12 042.40
48231	9071	21 721.83	48497	9203	18 499.44
48237	9203	19 014.92	48499	9071	6 658.24
48239	10066	34 219.81	48503	9203	20 167.74

03.11.2023

Task 2

Model

Sets:

SSet: *Set of suppliers (counties).*

PSet: *Set of potential plants (biorefineries).*

HSet: Set of potential hubs.

Parameters:

Supply_s: Supply of biomass from supplier s (tonne).

Yield = 232: Conversion yield of bioethanol (liters per tonne of biomass).

 $PlantCap = 152\ 063\ 705$: Annual conversion capacity for each plant (liters).

 $HubCap = 300\ 000$: Annual biomass processing capacity for each hub (tonne).

 $Demand = 500\ 000\ 000$: Total bioethanol demand (production target) (liters).

 $InvCost_p$: $Investment\ cost\ to\ maintain\ a\ plant\ at\ location\ p\ (\$)$.

 $HubInvCost_h$: $Investment\ cost\ to\ maintain\ a\ hub\ at\ location\ h\ (\$)$.

 $TransCostSH_{sh}$: $Transportation\ cost\ from\ supplier\ s\ to\ hub\ h\ igg(\frac{\$}{tonne}\ per\ kmigg).$

 $TransCostHP_{hp}$: $Transportation cost from hub h to plant p <math>\left(\frac{\$}{tonne} per km\right)$.

 $DistSH_{sh}$: $Distance\ from\ supplier\ s\ to\ hub\ h\ (km)$.

 $DistSP_{sp}$: $Distance\ from\ hub\ h\ to\ plant\ p\ (km)$.

 $LoadCostTruck = 10\,000$: Combined loading and unloading cost for each truck trip (\$).

 $LoadCostTrain = 60\ 000$: Combined loading and unloading cost for each train trip (\$).

TruckCap = 500: Capacity of truck (tonne).

 $TrainCap = 20\ 000$: $Capacity\ of\ train\ (tonne)$.

Decision Variables:

$$x_p : Binary \ variable = \begin{cases} 1 \ Plant \ is \ built \ at \ location \ p \\ 0 \ Otherwize \end{cases}$$

 $z_h \text{: Binary variable} = \begin{cases} 1 & Hub \text{ is built at location } h \\ 0 & Otherwize \end{cases}$

 ySH_{sh} : The amount of biomass transported from supplier s to hub h (tonne).

 yHP_{hn} : The amount of biomass transported from hub h to plant p (tonne).

 $tripsSH_{sh}$: Integer variable. Number of truck trips needed to transport biomass from supplier s to hub h.

 $tripsHP_{hn}$: Integer variable. Number of train trips needed to transport biomass from hub h to plant p.

Objective Function:

Plant investment cost + hub investment cost + transport cost from s to h + loading cost from s to h + transport cost from h to p + loading cost from h to p.

$$\begin{split} \textit{Minimize } \zeta &= \sum_{p \in PSet} \textit{InvCost}_p * x_p + \sum_{h \in HSet} \textit{HubInvCost} * z_h \\ &+ \sum_{s \in SSet, h \in HSet} (\textit{TransCostSH}_{sh} * \textit{DistSH}_{sh} * \textit{ySH}_{sh}) \\ &+ \sum_{s \in SSet, h \in HSet} (\textit{LoadCostTruck} * \textit{tripsSH}_{sh}) \\ &+ \sum_{h \in HSet, p \in PSet} (\textit{TransCostHP}_{hp} * \textit{DistHP}_{hp} * \textit{yHP}_{hp}) \\ &+ \sum_{h \in HSet, p \in PSet} (\textit{LoadCostTrain} * \textit{tripsHP}_{hp}) \end{split}$$

Constraints:

Supply constraints: A supplier can only supply the amount of biomass that it has available.

$$\sum_{h \in HSet} ySH_{sh} \le Supply_s, \quad \forall s \in SSet$$

Hub constraints: A hub can only receive and send biomass after it is built.

$$\sum_{s \in SSet} ySH_{sh} \leq HubCap * z_h, \qquad \forall h \in HSet$$

$$\sum_{s \in SSet} yHP_{hp} \leq HubCap * z_h, \qquad \forall h \in HSet$$

Hub balance constraints: Quantity biomass received equals quantity biomass sent.

$$\sum_{S \in SSet} ySH_{Sh} = \sum_{p \in PSet} yHP_{hp}, \quad \forall h \in HSet$$

Plant constraints: A plant can only process biomass up to its capacity, and only after it is built.

$$\sum_{h \in HSet} Yield * yHP_{hp} \leq PlantCap * x_p, \qquad \forall p \in PSet$$

Bioethanol production requirement: Ensure that the total bioethanol produced meets the demand.

$$\sum_{h \in HSet, p \in PSet} Yield * yHP_{hp} \ge Demand$$

Truck trips constraints: Ensures the number of truck trips needed.

$$ySH_{sh} \leq TruckCap * tripsSH_{sh}, \quad \forall s \in SSet, h \in HSet$$

INF170

03.11.2023

<u>Train trips constraints:</u> Ensures the number of train trips needed.

 $yHP_{hp} \leq TrainCap * tripsHP_{hp}, \quad \forall h \in HSet, p \in PSet$

Binary constraints: Ensures that x_p and z_h is binary.

 $x_p \in \{0,1\}, \forall p \in PSet$

 $z_h \in \{0,1\}, \quad \forall h \in HSet$

<u>Integer constraints:</u> Ensures that $tripSH_{Sh}$ and $tripsHP_{hp}$ is a non-negative integer. $\mathbb{Z}_{\geq} = \{0,1,2,...\}$.

 $tripsSH_{sh} \in \mathbb{Z}_{\geq}, \quad \forall s \in SSet, h \geq HSet$

 $tripsHP_{HP} \in \mathbb{Z}_{\geq}, \quad \forall s \in SSet, h \geq HSet$

Non-negativity constraint: Ensures that all biomass transported, and number of trips is non-negative.

 $ySH_{sh} \ge 0$, $\forall s \in SSet, h \in HSet$

 $yHP_{hp} \ge 0$, $\forall h \in HSet, p \in PSet$

 $tripsSH_{sh} \ge 0$, $\forall s \in SSet, h \ge HSet$

 $tripsHP_{hp} \ge 0$, $\forall h \in HSet, p \in PSet$

Result

Total cost: \$5 135 420 807

Total bioethanol produced: 500 000 000 liters Total biomass used: 2 155 172 tonne

Total number of open plants: 8 Total number of open hubs: 31

	Plant	Flow (tonne)
17201	9183	108 245.57
	9183	45 271.35
17359		45 431.14
17372	541	125 485.89
	9060	107 241.07
	10066	31 058.15
	9178	45 983.95
	9203	103 000.38
	541	97 756.08
	9047	126 223.64
	9091	47 513.87
17679	10066	130 240.08
17717	9060	33 452.80
17784 I	9091	57 229.65
17792 İ	9183	50 169.08
17822	9060	23 892.32
17829	9178	146 831.35
17896	9047	62 702.62
17931	9091	59 860.69
17934	9203	167 480.44
17942	10066	37 981.14
17943	10066	44 555.57
18029	9178	38 552.25
18042	9178	62 062.48
18063	9047	31 254.14
18082	10066	34 219.81
18127	10066	75 347.49
18286	9047	26 796.15
18288	9060	87 603.47
18294	9047	62 659.12
18303	9060	39 070.68

0pen	Facilities:	
Type		

Location

Plant	541
	9047
Plant	9060
Plant	9091
Plant	
Plant	9183
	9203
	10066
Hub	
	17404
	17447
	17466
Hub	
	17592
Hub	
Hub	
	17717
	17784
,	17792
	17822
Hub	
Hub	
Hub	17931
Hub	
Hub	
	17943
	18029
	18042
Hub	
Hub	
Hub	
Hub	
	18288
	18294
Hub	18303

03.11.2023

Flow of Biomass from Suppliers to Hubs (Part 1): Flow of Biomass from Suppliers to Hubs (Part				Hubs (Dont 3).	
Supplier		Flow (tonne)	Supplier		Flow (tonne)
	Hub	(conne)			
48001	18288	13 131.97	48231	17792	21 721.83
48007	17943	308.18	48237	17934	19 014.92
48009	17784	19 802.14	48239	18082	34 219.81
48015	17829	17 336.34	48249	18127	13 373.97
48021	17507	13 091.86	48251	17896	19 463.88
48023	17620	22 661.44	48253	17466	19 911.01
48025	17943	19 158.32	48255	17679	15 171.99
48027	17822	23 892.32	48257	18294	22 038.75
48031	17372	12 994.53	48261	17942	37 853.94
48035	17896	22 418.59	48273	18127	22 665.90
48037	17201	12 619.55	48277	17201	25 697.27
48039	17447	40 515.13	48281	18303	16 681.00
48041	17395	14 630.92	48285	18042	25 734.28
48047	17942	127.20	48287	17395	12 660.40
48051	17395	16 489.00	48289	18288	21 352.90
48053	17507	18 196.87	48291	17829	14 693.94
48055	17507	10 856.18	48293	18286	26 796.15
48057	17679	15 211.35	48297	18127	14 654.24
48059	17466	18 068.53	48299	17372	16 968.95
48063	17201	2 444.57	48307	17372	20 408.12
48071	17829	13 382.16	48309	18063	31 254.14
48073	18288	10 109.57	48313	18288	14 092.38
48077	17784	25 528.76	48319	17372	15 508.80
48085	17218	19 739.69	48321	18029	38 552.25 26 627.08
48089	17829	24 916.71	48331 48333	17395 17372	16 684.33
48091	17507	4 972.08	48337	17931	18 557.11
48093	17934	14 186.85	48339	17829	5 612.19
48097	17218	1 662.35	48343	17201	3 542.48
48097	17931	22 000.00	48349	17592	30 659.84
48099	18303	22 389.68	48355	17404	30 669.33
48113	18294	4 701.77	48363	17934	20 991.00
48119	17201	8 402.84	48367	17934	16 140.04
48121	17931	19 303.58	48379	18294	4 338.88
48123	17679	20 410.85	48387	17201	20 920.46
48131	17404	388.82	48391	17943	25 089.06
48133	17934	12 072.45	48395	17395	19 015.77
48139 48143	17592 17934	28 926.45 17 013.47	48397	18294	3 112.52
48145	17717	33 452.80	48409	18127	24 653.38
48147	17792	28 447.25	48411	17372	20 076.02
48149	18042	21 806.70	48417	17466	16 592.12
48151	17466	8 034.70	48423	18294	8 037.38
48157	17829	25 380.59	48425	17896	2 976.96
48159	17201	4 382.27	48429	17934	17 321.41
48161	17592	18 570.48	48439	17934	5 453.29
48167	17447	5 468.82	48441	17466	18 818.67
48171	17372	22 845.15	48449	17201	6 119.62
48175	17679	18 902.89	48453	17507	11 662.93
48177	17679	20 945.06	48459	17201	6 682.33
48181	17218	23 869.32	48467 48469	18294 17679	13 771.58 27 555.55
48185	17829	18 602.03	48471	18288	11 203.68
48187	18042	14 521.50	48473	17829	13 990.84
48193	17896	17 843.20	48477	17395	17 817.90
48201	17829	12 916.53	48481	17359	45 431.14
48207	17466	21 575.34	48485	17784	11 898.75
48209	17507	8 833.26	48487	17620	24 852.43
48213	17592	13 595.33	48491	17507	30 142.91
48217	17592	34 471.54	48493	17679	12 042.40
48221	17934	6 619.83	48497	17934	18 499.44
48223	17201	17 434.18	48499	18294	6 658.24
48225	18288	17 712.96	48503	17934	20 167.74

INF170

03.11.2023

Task 3

Model

Sets:

SSet: *Set of suppliers (counties).*

PSet: Set of potential plants (biorefineries).

HSet: Set of potential hubs.

TPSet: Set of the single third party supplier.

Parameters:

Supplys: Supply of biomass from supplier s (tonne).

Yield = 232: Conversion yield of bioethanol (liters per tonne of biomass).

 $PlantCap = 152\ 063\ 705$: Annual conversion capacity for each plant (liters).

 $HubCap = 300\ 000$: Annual biomass processing capacity for each hub (tonne).

 $Demand = 500\ 000\ 000$: Total bioethanol demand (production target) (liters).

 $InvCost_p$: Investment cost to maintain a plant at location <math>p (\$).

 $HubInvCost_h$: $Investment\ cost\ to\ maintain\ a\ hub\ at\ location\ h\ (\$)$.

 $TransCostSH_{sh}$: $Transportation\ cost\ from\ supplier\ s\ to\ hub\ h\ \left(\frac{\$}{tonne}\ per\ km\right)$.

 $TransCostHP_{hp}$: $Transportation cost from hub h to plant <math>p\left(\frac{\$}{tonne} per km\right)$.

 $DistSH_{sh}$: $Distance\ from\ supplier\ s\ to\ hub\ h\ (km)$.

 $DistSP_{sp}$: $Distance\ from\ hub\ h\ to\ plant\ p\ (km)$.

 $LoadCostTruck = 10\,000$: Combined loading and unloading cost for each truck trip (\$).

 $LoadCostTrain = 60\ 000$: Combined loading and unloading cost for each train trip (\$).

TruckCap = 500: Capacity of truck (tonne).

 $TrainCap = 20\ 000$: $Capacity\ of\ train\ (tonne)$.

ThirdPartyCost = 2000: $Cost\ of\ 1\ tonne\ biomass\ from\ the\ third\ party\ supplier\ (\$).$

Decision Variables:

 x_p : Binary variable = $\begin{cases} 1 & Plant is built at location p \\ 0 & Otherwize \end{cases}$

 $z_h \text{: Binary variable} = \begin{cases} 1 & \text{Hub is built at location } h \\ 0 & \text{Otherwize} \end{cases}$

 ySH_{sh} : The amount of biomass transported from supplier s to hub h (tonne).

 yHP_{hp} : The amount of biomass transported from hub h to plant p (tonne).

Trym Døssland Bjerkvik INF170 03.11.2023

 yTP_h : The amount of biomass transported from the third party supplier to hub h (tonne).

 $tripsSH_{sh}$: Integer variable. Number of truck trips needed to transport biomass from supplier s to hub h. $tripsHP_{hp}$: Integer variable. Number of train trips needed to transport biomass from hub h to plant p.

Objective Function:

Plant investment cost + hub investment cost + transport cost from s to h + loading cost from s to h + transport cost from h to p + loading cost from h to p + third party cost.

$$\begin{split} \textit{Minimize } \zeta &= \sum_{p \in PSet} InvCost_p * x_p + \sum_{h \in HSet} HubInvCost * z_h \\ &+ \sum_{s \in SSet, h \in HSet} (TransCostSH_{sh} * DistSH_{sh} * ySH_{sh}) \\ &+ \sum_{s \in SSet, h \in HSet} (LoadCostTruck * tripsSH_{sh}) \\ &+ \sum_{h \in HSet, p \in PSet} (TransCostHP_{hp} * DistHP_{hp} * yHP_{hp}) \\ &+ \sum_{h \in HSet, p \in PSet} (LoadCostTrain * tripsHP_{hp}) + \sum_{h \in H} ThirdPartyCost * yTP_h \end{split}$$

Constraints:

Supply constraints: A supplier can only supply the amount of biomass it has available.

$$\sum_{h \in HSet} ySH_{sh} \le Supply_s, \quad \forall s \in SSet$$

Hub constraints: A hub can only receive and send biomass after it is built.

$$\sum_{s \in SSet} (ySH_{sh}) + yTP_h \le HubCap * z_h, \quad \forall h \in HSet$$

$$\sum_{p \in PSSet} yHP_{hp} \le HubCap * z_h, \quad \forall h \in HSet$$

Hub balance constraints: Quantity biomass received equals quantity biomass sent.

$$\sum_{S \in SSet} (ySH_{Sh}) + yTP_h = \sum_{p \in PSet} yHP_{hp}, \quad \forall h \in HSet$$

Plant constraints: A plant can only process biomass up to its capacity, and only after it is built.

$$\sum_{h \in HSet} Yield * yHP_{hp} \leq PlantCap * x_p, \quad \forall p \in PSet$$

<u>Bioethanol production requirement:</u> Ensure that the total bioethanol produced meets the demand.

$$\sum_{h \in HSet, p \in PSet} Yield * yHP_{hp} \ge Demand$$

INF170

03.11.2023

<u>Truck trips constraints:</u> Ensures the number of truck trips needed.

$$ySH_{sh} \leq TruckCap * tripsSH_{sh}, \quad \forall s \in SSet, h \in HSet$$

Train trips constraints: Ensures the number of train trips needed.

$$yHP_{hp} \leq TrainCap * tripsHP_{hp}, \quad \forall h \in HSet, p \in PSet$$

Binary constraints: Ensures that x_p and z_h is binary.

$$x_p \in \{0,1\}, \quad \forall p \in PSet$$

$$z_h \in \{0,1\}, \quad \forall h \in HSet$$

<u>Integer constraints:</u> Ensures that $tripSH_{Sh}$ and $tripsHP_{hp}$ is a non-negative integer. $\mathbb{Z}_{\geq} = \{0,1,2,...\}$.

$$tripsSH_{Sh} \in \mathbb{Z}_{\geq}, \quad \forall s \in SSet, h \geq HSet$$

$$tripsHP_{HP} \in \mathbb{Z}_{\geq}, \quad \forall s \in SSet, h \geq HSet$$

Non-negativity constraint: Ensures that all biomass transported, and number of trips is non-negative.

$$ySH_{sh} \ge 0$$
, $\forall s \in SSet, h \in HSet$

$$yHP_{hp} \ge 0$$
, $\forall h \in HSet, p \in PSet$

$$yTP_h \ge 0$$
, $\forall h \in HSet$

$$tripsSH_{sh} \ge 0$$
, $\forall s \in SSet, h \ge HSet$

$$tripsHP_{hp} \ge 0$$
, $\forall h \in HSet, p \in PSet$

Total number of open hubs: 23

Result

Optimal Solution:
Total Cost: \$7 144 532 489
Total bioethanol produced: 800 000 000 liters
Total biomass used (including third party): 3 448 276 tonne
Total biomass sourced from third party supplier: 2 052 787 tonne
Total biomass used (excluding third party): 1 395 489 tonne
Total number of open plants: 7

Flow of	Biomass	from	Third	Party	Supplier	to	Hubs:

Third Party	Hub	Flow (tonne)
ThirdParty	17218 17359 17395 17447 17592 17679 17792 17829 17934	213 425.07 229 652.15 210 707.75 254 016.05 173 776.36 217 919.36 229 823.18 230 375.70 192 008.34
ThirdParty	17943	101 083.22

Туре	Location
Plant	9044
Plant	9047
Plant	9060
Plant	9178
Plant	9183
Plant	9203
Plant	10066
Hub	17201
Hub	17218
Hub	17359
Hub	17395
Hub	17404
Hub	17447
Hub	17507
Hub	17592
Hub	17679
Hub	17717
Hub	17792
Hub	17822
Hub	17829
Hub	17896
Hub	17934
Hub	17943
Hub	18029
Hub	18042
Hub	18063
Hub	18082
Hub	18286
Hub	18288
Hub	18294

Open Facilities:

03	11	20	22
U.S		. 70	1/3

Flow of Biomass from Suppliers to Hubs (Part 1):		Flow of Biomass from Suppliers to Hubs (Part 2):			
Supplier 	Hub	Flow (tonne)	Supplier	Hub	Flow (tonne)
48001	18288	13 131.97	48217	17592	34 471.54
18007	17943	308.18	48221	17896	6 619.83
18015	17829	17 336.34	48223	17201	17 434.18
18021	18042	7 906.02	48231	17792	21 721.83
18025	17943	19 158.32	48237	17934	19 000.00
18027	17822	23 892.32	48239	18082	34 219.81
18035	17896	22 418.59	48251	17896	19 463.88
18039	17447	40 515.13	48257	18294	22 038.75
18041	17395	14 500.00	48277	17201	25 697.27
18051	17395	16 489.00	48285	18042	25 734.28
18053	17507	18 194.16	48287	17395	12 660.40
18057	17679	15 211.35	48289	18288	21 352.90
18085	17218	19 739.69	48293	18286	26 796.15
18089	17359	24 916.71	48309	18063	31 254.14
18097	17218	23 662.35	48313	18288	14 092.38
8099	17822	22 389.68	48321	18029	38 552.25
8113	18294	4 701.77	48331	17395	26 627.08
8119	17201	8 402.84	48349	17592	30 659.84
8121	17218	19 303.58	48355	17404	30 669.33
18123	17679	20 410.85	48363	17934	20 991.00
	'	•	48367	17934	16 140.04
8133	17934	12 072.45	48379	18294	4 338.88
18139	17592	28 926.45	48387	17201	20 920.46
18143	17934	17 013.47	48391	17943	25 089.06
8145	17717	33 452.80	48395	17395	19 015.77
8147	17792	28 447.25	48397	18294	3 112.52
8149	18042	21 806.70	48409	17943	24 653.38
8157	17829	25 380.59	48425	17896	2 976.96
8159	17201	3 000.00	48429	17934	17 321.41
8161	17592	18 570.48	48439	17934	5 453.29
8167	17447	5 468.82	48453	17507	11 662.93
8175	17679	18 902.89	48467	18294	13 771.58
8181	17218	23 869.32	48469	17679	27 555.55
18193	17896	17 843.20	48473	17829	13 990.84
18201	17829	12 916.53	48481	17359	45 431.14
18213	17592	13 595.33	48491	17507	30 142.91

Flow of Biomass from Hubs to Plants:

Hub	Plant	Flow (tonne)
17201	9183	75 454.75
17218	9183	300 000.00
17359	9178	300 000.00
17395	9060	300 000.00
17404	10066	30 669.33
17447	9044	300 000.00
17507	9060	60 000.00
17592	9047	300 000.00
17679	10066	300 000.00
17717	9060	33 452.80
17792	9183	279 992.26
17822	9060	46 282.01
17829	9178	300 000.00
17896	9047	69 322.45
17934	9203	300 000.00
17943	10066	170 292.16
18029	9044	38 552.25
18042	9178	55 447.00
18063	9047	31 254.14
18082	10066	34 219.81
18286	9047	26 796.15
18288	9060	48 577.26
18294	9047	47 963.50