

Informační systémy

Pojem informačního systému, data, informace

doc. Ing. Radek Burget, Ph.D.

burgetr@fit.vutbr.cz

Předmět IIS – Cíle předmětu

- Zvládnutí kvalifikovaného návrhu informačního systému
 - Analýza domény a procesů
 - Návrh architektury systému
- Zvládnutí souvisejících technologií
 - Databázová vrstva relační databáze
 - Aplikační vrstva
 - Prezentační vrstva webové technologie

Předmět IIS – Témata

- Data, informace, znalosti, informační systém
- Architektury IS
- Serverová část IS
 - Technologie pro implementaci aplikační logiky
 - Serverová část webového rozhraní
- Databázová vrstva
 - Analýza domény a návrh relační databáze
 - Databázová integrita a konzistence
- Klientská část webového rozhraní
- Analýza procesů, transakce

Technologie

- Cílem je zvládnout základní koncepty a principy nezávisle na implementační platformě
- Praktické ukázky (a projekt) budou využívat zejména
 - Webové klient-server technologie
 - HTTP, HTML, CSS, JavaScript, XML, JSON, REST, ...
 - Relační databáze: MySQL
 - Programování na straně serveru: PHP

Hodnocení

- Půlsemestrální zkouška: 19 bodů
- Semestrální zkouška: 51 bodů
- Projekt: 30 bodů
 - Realizace IS na dané téma v týmu (2-3 řešitelé)
 - Zadání a přihlašování přes IS VUT

Kontakty

• Doc. Ing. Radek Burget, Ph.D.

burgetr@fit.vutbr.cz C215

- Přednášky, zkoušky, všechno ostatní
- Ing. Jiří Hynek, Ph.D.

ihynek@fit.vutbr.cz

Projekty, zadání, hodnocení

Informační systém

Systémy, informace a jak to souvisí

Pojmy v názvu informační systém

- Informační
 - Abychom název vůbec pochopili, bylo by dobré si ujasnit a definovat, co je to informace
- Systém
 - Z podobných důvodů by tedy bylo dobré si definovat systém

Pojem informace

Informace z hlediska kybernetiky

- Zpráva o objektivní realitě, která funguje jako zpětná vazba systému
- Proces, kdy určitý systém předává jinému systému pomocí signálů zprávu, která nějakým způsobem mění stav přijímacího systému

Informace z hlediska přírodních věd

- Energetická veličina, jejíž hodnota je úměrná zmenšení entropie systému
- Poznatek, který omezuje nebo odstraňuje nejistotu týkající se výskytu určitého jevu z dané množiny možných jevů
- Teorie informace Claude Shannon
 - $\blacksquare H = -\sum p_i \log_2 p_i$
 - $\blacksquare I = H(výchozí stav) H(cílový stav)$

Příklad: hod kostkou

- Padne jakékoliv číslo:
 - $p_i = 0, 1666$
 - $\blacksquare H = -6 \times (0, 1666 \times \log_2 0, 1666) = 2,58 \text{ bitu}$
 - (tzn. tři bity nám bohatě stačí na zakódování informace o výsledku hodu)
- Padne číslo dělitelné třemi:
 - $p_i = 0, 5$
 - $\blacksquare H = -2 \times (0, 5 \times \log_2 0, 5) = 1 \text{ bit}$
- Informace I = 2,58 1 = 1,58 bitu

Graf funkce -log2(x)

Informace z hlediska IT

- Za informaci se považuje *interpretované* kvantitativní vyjádření obsahu zprávy
- Jednotkou informace je interpretované rozhodnutí mezi dvěma alternativami
 (0, 1) a vyjadřuje se jednotkou nazvanou bit

Data - informace - znalosti

Data

- Hodnota schopná přenosu, uchování, interpretace či zpracování
- Z hlediska IT jde o hodnoty různých datových typů
- Data sama o sobě nemají sémantiku (význam), jsou to věty nějakého formálního jazyka
 - Viz pojem databáze
- Hodnoty dat obvykle udávají stav nějakého systému

Informace

- *Informace* jsou interpretovaná data
- Mají sémantiku (význam)
- Transformaci dat na informace neprovádí informační systém, ale uživatel
 - Systém ukládá a transformuje data
 - Pro uživatele výsledek znamená informaci
- Je nezbytné zajistit shodnou interpretaci dat u všech uživatelů informace
 - Vzdělání, školení, zavedení konvencí

Příklad rozdílné interpretace dat

- Údaj 10-12-2005
 - V Evropě informace 10. prosince 2005
 - V USA informace 12. října 2005
- Pro totožná data vznikne rozdílná informace jinou interpretací dat
- Podobně např. jméno a příjmení

Znalost

- Informace zařazená do souvislostí
- Jejich interpretace je však ještě hůře definovatelná, neboť může jít o celé shluky informací
- Znalosti chápeme často jako sekundární odvozené informace
- Některé informační systémy se zabývají pouze *informacemi (transakční)*, některé pracují se *znalostmi (pro podporu rozhodování a plánování)*
- Problematika získávání znalostí z dat (knowledge discovery, data mining)
 - Předmět <u>Získávání znalostí z databází</u> (ZZN)

Příklad: jízdní řád

Systém

Systém

- *Systém* lze chápat jako množinu prvků a vazeb mezi nimi, které jsou definovány na nějakém *nosiči*
- Nosičem je tedy množina prvků systému ve vzájemných vztazích
- Prvky nosiče nazýváme zdroje

Obecné schéma systému

Stav systému

- Zpětná vazba může reprezentovat *stav systému* (sekvenční systémy), výstup pak záleží na vstupu a stavu systému
- Stavem systému jsou hodnoty zdrojů

Typické nosiče

- Fyzické (materiální)
 - osoby (HR- Human Resources),
 - materiál,
 - stroje včetně zařízení a energie,
 - finance a
- Konceptuální (pojmové)
 - informace

Dělení systémů podle typů nosiče

- Fyzické s nosičem s fyzickými zdroji (např. obchodní firma),
- *Informační* s nosičem s konceptuálními zdroji, tedy *informacemi* (zde se poprvé dostáváme k tomu, co je to *informační systém*)
- Informační systém obvykle modeluje (reprezentuje) nějaký fyzický systém

Informační systém

Schéma informačního systému

- Modifikované schéma obecného systému
- Data uchovávající stαv systému a
- Procesy realizující transformace často ve formě transakcí

Stav informačního systému

- Stavem informačního systému jsou hodnoty dat (typicky reprezentované pomocí nějakého *modelu*) a musíme se zabývat jejich
 - Persistencí (přetrváváním),
 - Konzistencí (splňování jistých pravidel o možných kombinacích hodnot údajů ve stavu) apod.

Shrnutí pojmu informační systém

- Informační systém je *otevřený* systém, jehož *nosič* používá *konceptuální* zdroje *informace*
- Nakládá s nehmotnými zdroji
- Nakládáním rozumíme provádění různých transformací nad stavem na základě vstupu a poskytování výstupu

Informační systém jako model

- Informace *modelují skutečné zdroje jiného –* obvykle *fyzického systému* (např. podniku)
- Informační systém tedy na nehmotné virtuální úrovni modeluje svůj fyzický vzor, pro jehož řízení je obvykle vytvářen. Vzhledem k tomu, že model nikdy nemůže postihnout veškeré chování a vlastnosti svého vzoru, je virtuální kopie pořizována vždy na vhodné úrovni abstrakce

Návrh informačního systému

- S jakými daty pracujeme?
- Analýza domény, model, persistence, konzistence, ...

- Jaké jsou k dispozici vstupyk je třeba data transformovajak mají vypadat výstupy?
- Jak se informace pořizují,•k¢bakjejzødáwá?cesy a postupy v cíloAléydomoéhpě? ídalo účelu systému?

Klasifikace informačních systémů

Podle podobnosti nosičů

- Existuje více podobných modelovaných fyzických nosičů, tj. existují podobné informační systémy. To vede k vzniku typových projektů:
 - geografie a zeměměřičství (spojení s počítačovou grafikou),
 - knihovna,
 - účetnictví zejména podvojné,
 - banka pokladna a platby,
 - mzdy a správa lidských zdrojů
 - majetek a odpisy,
 - pacienti a styk se zdravotními pojišťovnami.
- Takto členěné typové projekty bývají často i předmětem odděleného prodeje ve formě modulů dodávaných jako části většího informačního systému

Podle režimu činnosti

- Zpracování požadavků v reálném čase:
 - transakční zpracování (dnes nejobvyklejší, rezervace letenek, knihovny, pokladní systémy s platbou kartami),
 - technologické procesy (řízení výroby, diagnostika),
- *Dávkové* zpracování dat (tradiční na střediskových počítačích, v bankovním sektoru tradičně přetrvávalo nejdéle) nyní spíše ustupuje.

Podle datového typu dat

- *Číselné a textové* (většina ekonomických i technologických informačních systémů, postupně se přidávají i multimediální údaje),
- Speciální údaje např. geografické informační systémy

Podle úrovně rozhodování

- Klasické pyramidové schéma
- Odráží hierarchii úrovně rozhodování v organizaci:
 - Systém pro zpracování transakcí
 - Management information systems
 - Decision support systems
 - Executive information systems

Pyramidové schéma

OLTP - On-Line Transaction Processing

- Třída informačních systémů, které zpracovávají transakčně orientované aplikace
- Termín transakční je dvojznačný:
 - databázové transakce
 - komerční (business) transakce
- (mohou se ovšem překrývat)

MIS - Management Information Systems

- Překládáme Informační systémy pro podporu řízení
- Poskytují informace, které jsou potřebné pro efektivní řízení organizace
- MIS je obecně užívány pro skupinu metod zpracování informací určených k automatizaci a podpoře rozhodování
- Nemusejí nutně pracovat nad aktuálním modelem fyzického systému (povoleno zpoždění)
- Nejčastěji jde o:
 - Systémy pro podporu rozhodování (DSS)
 - Expertní systémy (ES)
 - Informační systémy pro exekutivu (EIS)
 - OLAP (Online Analytical Procesing)

A co dál?

A to je vše!

Dotazy?