Лабораторная работа 3.3.5 "Эффект Холла в металлах"

20 ноября 2020 г.

Цель:

Измерение подвижности и концентрации носителей заряда в металлах

Оборудование:

Электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, магнитометр, образцы из серебра и цинка.

Теоретические сведения

Формула проводимости

$$\sigma = enb \tag{1}$$

b — подвижность, n — концентрация, e — элементарный заряд, показывает что исследование электрической проводимости проводников позволяет определить произведение nb. Как мы увидим ниже, исследование эффекта Холла позволяет находить плотность носителей n, после чего можно найти и их подвижность b. Таким образом, одновременное исследование электрической проводимости и эффекта Холла позволяет экспериментально находить важнейшие параметры, определяющие состояние электронов в металлах и полупроводниках. Эффект Холла позволяет также определить преобладающий тип проводимости — электронный или дырочный.

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течёт ток I (рис. 1).

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов. В самом деле, на электрон, движущийся со скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\pi} = -e\vec{E} - e\langle \vec{v}\rangle \times \vec{B} \tag{2}$$

где e — абсолютная величина заряда электрона, E — напряжённость электрического поля, B — индукция магнитного поля. В нашем случае сила,

обусловленная вторым слагаемым, направлена вдоль оси z:

$$F_B = e |\langle v_x \rangle| B$$

Здесь $|\langle v_x \rangle|$ — абсолютная величина дрейфовой скорости электронов вдоль оси x, возникающая под действием внешнего электрического поля.

Под действием этой силы электроны отклоняются к грани Б, заряжая её отрицательно (для простоты рассматриваем только один тип носителей). На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , И накопление электрических зарядов на боковых гранях пластины прекращается. Из условия равновесия $F_B = F_E$ найдём

$$E_z = |\langle v_x \rangle| B \tag{3}$$

Поле E_z даёт вклад в общее поле E, в котором движутся электроны. С полем E_z связана разность потенциалов $U_{\rm AB}$ между гранями A и Б:

$$U_{AB} = -E_z l = -|\langle v_x \rangle| Bl \tag{4}$$

В этом и состоит эффект Холла. Второе слагаемое в силе Лоренца (2), с которым связан эффект, часто называют «холловским».

Замечая, что сила тока

$$I = ne |\langle v_x \rangle| l \cdot a, \tag{5}$$

и объединяя (3) и (5), найдем ЭДС Холла:

$$\mathscr{E}_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a} \tag{6}$$

Константа R_x называется постоянной Холла. Как видно из (6):

$$R_x = \frac{1}{ne}$$

Экспериментальная установка:

Электрическая схема установки для измерения ЭДС Холла представлена на рис.1. В зазоре электромагнита (рис. 2а) создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Разъём K_1 позволяет менять направление тока в обмотках электромагнита. Ток питания электромагнита измеряется амперметром A_1 . Градуировка магнита проводится с помощью милливеберметра.

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (рис. 26). Ток через образец регулируется реостатом R_2 и измеряется амперметром A_2 .

Рис. 1. Схема установки для исследования эффекта Холла в металлах

Для измерений ЭДС Холла используется микровольтметр $\Phi116/1$, в котором высокая чувствительность по напряжению сочетается с малой величиной тока, потребляемого измерительной схемой: минимальный предел измерения напряжения составляет 1,5 мкВ, а потребляемый ток — всего 10^{-8} A.

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов, которая измеряется с помощью микровольтметра, если переключатель K_3 подключён к точке 2 образца. При подключении K_3 к точке 3 микровольтметр измеряет омическое падение напряжения U_{34} , вызванное основным током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Ключ K_2 позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Иногда контакты 2 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом — их разности. В этом случае ЭДС Холла \mathscr{E}_x может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение U_0 между точками 2 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_x = U_{24} \pm U_0 \tag{7}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{34} между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = \frac{IL_{34}}{U_{34}al},\tag{8}$$

где L_{34} – расстояние между контактами 3 и 4, a – толщина образца, l – его ширина.

Результаты измерений и обработка результатов

данные для калибровочной кривой электромагнита

B,mT	Im,A
123.3	0.1
356	0.29
597	0.49
705	0.6
976	0.9
1068	1.1
1107	1.2

Построим график зависимости $B(I_m)$ для того, чтобы в дальнейшем по нему считать В

Найдем ЭДС Холла и построим графики зависимостей $\mathrm{U}(\mathrm{B})$ для серебра и меди

Іобр,А	0.2		0.4			0.6		
U,0.04мкВ	Im,A	B,mT	U,0.04мкВ	Im,A	BmT	U,0.04мкВ	Im,A	BmT
0	0	0	-1.5	0	0	-3	0	0
1	0.1	123.3	1	0.2	245	1	0.2	240
2	0.3	356	4	0.39	480	5	0.4	480
3	0.6	705	6	0.6	705	8	0.6	705
5	0.8	920	9	0.9	976	11	0.8	920
6	1	1025	11	1.2	1107	13	1	1025
0.8			1					
U,0.04мкВ	Im,A	BmT	U,0.04мкВ	Im,A	BmT			
-5	0	0	-7	0	0			
0	0.2	240	0	0.2	240			
5	0.4	480	6	0.4	480			
10	0.6	705	12	0.6	705			
15	0.8	920	18	0.8	920			
17	1	1025	20	1	1025			

Рис. 1: Калмбровочный график зависимости $B({\cal I}_m)$

Рис. 2: зависимость U(B) для разных токов для серебра

Іобр,А	0.2		0.4			0.6		
U,0.04mkB	Im,A	B,mT	U,0.04mkB	Im,A	B,mT	U,0.04mkB	Im,A	B,mT
7	0	0	6	0	0	6	0	0
11	0.4	480	15	0.4	480	18	0.4	480
13	0.6	705	17	0.6	705	25	0.6	705
15	0.8	920	22	0.8	920	29	0.8	920
16	1	1025	24	1	1025	32	1	1025
17	1.2	1107	25	1.2	1107	35	1.2	1107
0.8			1					
U,0.04mkB	Im,A	B,mT	U,0.04mkB	Im,A	B,mT			
6	0	0	7	0	0			
22	0.4	480	26	0.4	480			
30	0.6	705	37	0.6	705			
38	0.8	920	46	0.8	920			
41	1	1025	50	1	1025			
44	1.2	1107	53	1.2	1107			

Рис. 3: зависимость U(B) для разных токов для меди

Рис. 4: зависимость k(I) для серебра

Рис. 5: зависимость k(I) для меди

Рис. 6: зависимость U(B) для цинка

Найдя из графиков зависимости к(I) построим графики для серебра и меди из них найдем $\frac{U}{BI}$ и подставив в формулу 6 получим:

$$|R(Ar)| = (0.95 \pm 0.15) * 10^{-10} \frac{m^3}{Kl}$$

$$|R(Cu)| = (0.8 \pm 0.2) * 10^{-10} \frac{m^3}{Kl}$$

построим аналогичный график для цинка, правда только для ${\rm I}{=}1{\rm A}$ из графика для цинка найдем R(Zn)

$$|R(Zn)| = (1.3 \pm 0.3) * 10^{-10} \frac{m^3}{Kl}$$

Для каждого из образцов рассчитаем концентрацию носителей тока n,
удельную проводимость σ_0 и подвижность носителец тока μ

$$n = \frac{1}{qR}$$

$$\sigma_0 = \frac{IL_{34}}{U_{34}al}$$

$$b = \frac{\sigma_0}{an}$$

Металл	$(R_h \pm \Delta R_h),$ $10^{-10} \frac{m^3}{Kl}$	табл R_h , $10^{-10} \frac{m^3}{Kl}$	знак	$(n \pm \Delta n),$ $10^{28} m^{-3}$	$ \begin{array}{c c} (\sigma \pm \Delta \sigma), \\ 10^7 (Om * m)^{-1} \end{array} $	$b\frac{cm^2}{B*c}$
Ar	$-(0.95 \pm 0.15)$	-0.9	-	$-(6.5 \pm 1.0)$	(4.1 ± 0.2)	(40 ± 8)
Cu	$-(0.8 \pm 0.2)$	-0.55	-	$-(7.8 \pm 2.0)$	(3.9 ± 0.2)	(31 ± 6)
Zn	(1.3 ± 0.3)	1.04	+	(4.8 ± 1.1)	(1.12 ± 0.08)	(15 ± 3)

Вывод

Мы измерили некоторые постоянные металлов с точностью порядка 30%, значения напряжения оказались завышены, на это могло повлиять несколько факторов: из-за некомпетентности лаборанта, магнитное поле менялось слишком быстро создавая дополнительное напряжение на образце, кроме того неизвестно с какой точностью были измерены параметры проводника, они могли внести дополнительную погрешность. Табличные данные брались из лабника, кроме цинка, для него данные из лабник отличались от данных из интернета в 2 раза.