

Курс лекций «Линейная алгебра»

Лекция 4. Резольвента и задача на собственные значения

Пусть A – квадратная матрица размера $n \times n$.

Определение. Матрицу

$$(A - \lambda E)^{-1}$$

называют резольвентой матрицы A, обозначается как $R(\lambda)$.

Задача 1. Найдите резольвенту матрицы

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}$$
.

Решение. По определению искомая резольвента — матрица, обратная к матрице

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 4 \\ -2 & 1 - \lambda \end{pmatrix}$$

Определитель этой матрицы равен

$$(1-\lambda)^2+8,$$

Поэтому

$${\begin{pmatrix} 1-\lambda & 4 \\ -2 & 1-\lambda \end{pmatrix}}^{-1} = \frac{1}{(1-\lambda)^2 + 8} {\begin{pmatrix} 1-\lambda & -4 \\ 2 & 1-\lambda \end{pmatrix}}.$$

Ответ:

$$\frac{1}{(1-\lambda)^2+8}\binom{1-\lambda}{2}-\frac{-4}{1-\lambda}.$$

Задача 2. Найдите резольвенту матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$
.

Решение. По определению искомая резольвента — матрица, обратная к матрице

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\lambda - 2 & 3 & 5 \\ 1 & 3 - \lambda & 3 \\ 2 & 2 & 8 - \lambda \end{pmatrix}$$

Ответ:

$$\begin{pmatrix}
-\lambda - 2 & 3 & 5 \\
1 & 3 - \lambda & 3 \\
2 & 2 & 8 - \lambda
\end{pmatrix}^{-1}$$

$$= \begin{pmatrix}
\lambda - 9 & 3\lambda - 14 & 5\lambda - 6 \\
\frac{\lambda - 9}{31 + 7\lambda - \lambda^2} & -\lambda^3 + 9\lambda^2 + 17\lambda - 62 & -\lambda^3 + 9\lambda^2 + 17\lambda - 62 \\
\frac{1}{31 + 7\lambda - \lambda^2} & \frac{\lambda^2 - 6\lambda - 26}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{3\lambda + 11}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} \\
\frac{2}{31 + 7\lambda - \lambda^2} & \frac{2\lambda + 10}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62} & \frac{\lambda^2 - \lambda - 9}{-\lambda^3 + 9\lambda^2 + 17\lambda - 62}
\end{pmatrix}$$

Теорема 1. Резольвенту матрицы A размера $n \times n$ всегда можно представить в виде

$$(A - \lambda E)^{-1} = \frac{B(\lambda)}{\det(A - \lambda E)},$$

где элементы матрицы B — многочлены относительно переменной λ , степень которых не превосходит n-1.

Матрица обратима тогда и только тогда, когда ее определитель отличен от нуля. Поэтому резольвента определена только там, где

$$\det(A - \lambda E) \neq 0.$$

Определение. Корни уравнения

$$\det(A - \lambda E) = 0$$

называют собственными значениями матрицы A.

Пример. Собственными значениями матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$

будут корни уравнения

$$\det\left(\begin{pmatrix} -2 & 3 & 5\\ 1 & 3 & 3\\ 2 & 2 & 8 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}\right) = 0$$

После раскрытия определителя получаем уравнение:

$$-\lambda^3 + 9 \lambda^2 + 17 \lambda - 62 = 0$$

Поэтому матрица имеет три собственных значения:

$$\lambda = 2$$
 или $\lambda = \frac{7 - \sqrt{173}}{2}$ или $\lambda = \frac{\sqrt{173} + 7}{2}$

Собственные значения матрицы – особые точки ее резольвенты.

Теорема 2. Если $\lambda = c$ — собственное значение матрицы A, то $\lim_{\lambda \to c} \det R(\lambda) = \infty$.

Доказательство. По определению (
$$R = (A - \lambda E)^{-1}$$
) $(A - \lambda E)R = E$

По теореме об определителе произведения матриц имеем $\det(A - \lambda E) \det R = 1$,

Следовательно
$$\det R = \frac{1}{\det(A - \lambda E)}$$
, то есть $\lim_{\lambda \to c} \det R = \infty$.

Из теоремы 2 не следует, что все элементы резольвенты стремятся к бесконечности, но некоторые действительно бесконечно велики в точке $\lambda = c$.

Пример. Найдем резольвенту матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$

Решение. Резольвента имеет вид:

$$\begin{pmatrix}
\frac{\lambda - 9}{31 + 7\lambda - \lambda^{2}} & \frac{3\lambda - 14}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62} & \frac{5\lambda - 6}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62} \\
\frac{1}{31 + 7\lambda - \lambda^{2}} & \frac{\lambda^{2} - 6\lambda - 26}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62} & \frac{3\lambda + 11}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62} \\
\frac{2}{31 + 7\lambda - \lambda^{2}} & \frac{2\lambda + 10}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62} & \frac{\lambda^{2} - \lambda - 9}{-\lambda^{3} + 9\lambda^{2} + 17\lambda - 62}
\end{pmatrix}$$

Элемент

$$r_{11} = \frac{\lambda - 9}{31 + 7\lambda - \lambda^2}$$

не имеет особенности при $\lambda=2$, поскольку

$$r_{11}(2) = \frac{2-9}{31+7\cdot 2-2^2} = -\frac{7}{41}.$$

Согласно теореме 1 элемент r_{ij} резольвенты можно представить как отношение многочленов:

$$r_{ij} = \frac{b_{ij}(\lambda)}{\det(A - \lambda E)}$$

В данном случае не только знаменатель, но и числитель b_{11} делятся на $\lambda-2$.

Кратность собственного значения

Теорема 3. Если $\lambda = c$ — собственное значение матрицы A, то найдется такое натуральное число k, что

$$\lim_{\lambda \to c} (\lambda - c)^k R(\lambda) = P \neq 0 \text{ или } \infty.$$

Число k называют кратностью собственного значения $\lambda =$

Кратность собственного значения

Доказательство. В силу теоремы 1 элемент резольвенты можно представить как отношение многочленов:

$$r_{ij} = \frac{b_{ij}(\lambda)}{\det(A - \lambda E)}.$$

По сокращению на общие множители, по крайней мере некоторые из r_{ij} сохранят в знаменателе множитель $(\lambda-c)$ в силу теоремы 2.

Кратность собственного значения

Примем за k наибольшую из степеней, в которых этот множитель появляется в знаменателях, тогда

$$r_{ij} = \frac{1}{(\lambda - c)^k} \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)},$$

где $q_{ij}(c) \neq 0$ для всех i,j, а $p_{ij}(c) \neq 0$ хотя бы для некоторых индексов.

В пределе имеем

$$\lim_{\lambda \to c} (\lambda - c)^k r_{ij}(\lambda) = \frac{p_{ij}(c)}{q_{ij}(c)}.$$

Составляя из чисел $\frac{p_{ij}(c)}{q_{ij}(c)}$ матрицу P, получим утверждение теоремы.

При умножении столбца (вектора) на матрицу получается другой столбец. Среди всех столбцов выделяют те, умножение которых на матрицу эквивалентно умножению на некоторое число.

Определение. Столбец f, среди элементов которого имеются отличные от нуля, называют собственным вектором матрицы A, если он удовлетворяет уравнению

$$Af = \lambda f$$

при некотором значении $\lambda = c$.

Перенесем все члены выписанного выше уравнения в одну сторону, получим уравнение:

$$(A - \lambda E)f = 0$$

Если λ отлично от собственных значений матрицы A, и умножим это уравнение слева на резольвенту, получим

$$R(A - \lambda E)f = 0$$

или

$$f=0$$
.

Стало быть, в обсуждаемом определении в качестве значений параметра λ могут выступать только собственные значения матрицы.

Теорема 4. Если $\lambda = c$ — собственное значение матрицы A, то имеется хотя бы один собственный вектор f, для которого верно

$$Af = cf$$
;

такой вектор называют собственным вектором, отвечающим собственному значению $\lambda = c$.

Доказательство. В силу теоремы 3 найдется такое натуральное число k, что

$$\lim_{\lambda \to c} (\lambda - c)^k R(\lambda) = P \neq 0.$$

Возьмем такой столбец g, что $Pg \neq 0$. Тогда из

$$(A - \lambda E)R = E$$

следует

$$(A - \lambda E)(\lambda - c)^k Rg = (\lambda - c)^k g.$$

в пределе $\lambda \to c$ имеем

$$(A - cE)Pg = 0$$

Приняв f = Pg, видим, что

$$Af = cf$$
,

то есть f – искомый собственный вектор и теорема доказана.

Задача. Найдите один из собственных векторов матрицы

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}$$

отвечающий собственному значению $\lambda=2$.

Решение. Значение $\lambda = 2$ действительно является собственным, поскольку

$$\det\left(\begin{pmatrix} -2 & 3 & 5\\ 1 & 3 & 3\\ 2 & 2 & 8\end{pmatrix} - 2\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}\right) = 0.$$

По теореме 4 ему должен отвечать хотя бы один собственный вектор

$$f = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Неизвестные x, y, z можно найти из самого определения собственного вектора:

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Российский университет

$$\begin{bmatrix} \begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\begin{pmatrix} 5z + 3y - 4x \\ x + y + 3z \\ 2x + 2y + 6z \end{pmatrix} = 0$$
или
$$\begin{cases} 5z + 3y - 4x = 0 \\ x + y + 3z = 0 \\ 2x + 2y + 6z = 0 \end{cases}$$

В этой системе два уравнения совпадают, поэтому одно из них можно выкинуть и написать

$$\begin{cases} x + y + 3 z = 0 \\ 5 z + 3 y - 4 x = 0 \end{cases}$$

Определить z из этой системы нельзя. Придавая этой переменной различные значения, будем получать различные собственные векторы. В задаче требуется найти один любой, поэтому примем z=1 и найдем оставшиеся переменные

$$\begin{cases} x + y + 3 = 0 \\ 5 + 3y - 4x = 0 \end{cases}$$

$$\begin{cases} x + y + 3 = 0 \\ 5 + 3y - 4x = 0 \end{cases}$$

$$\begin{cases} x = -\frac{4}{7}, \\ y = -\frac{17}{7} \end{cases}$$

$$f = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix}$$

Проверка:

$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix} \begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{8}{7} \\ -\frac{34}{7} \\ 2 \end{pmatrix}$$

$$Af = 2f$$

Ответ: одним из собственных векторов будет

$$\begin{pmatrix} -\frac{4}{7} \\ -\frac{17}{7} \\ 1 \end{pmatrix}.$$

Замечание. Задача об отыскании собственных векторов имеет бесконечно много решений.

Множество решений однородной СЛАУ

Если $\det A = 0$, то уравнение

$$Ax = 0$$

имеет нетривиальное решение x=f. Столбцы x=2f, x=3f и вообще x=cf тоже являются его решениями. Поэтому множество решений однородной системы бесконечно велико.

Определение. Подмножество M линейного пространства L называется линейным подпространством этого пространства, если сложение элементов M и умножение их на число не выводят за множество M, то есть верно

из $f \in M$ и $g \in M$ следует $f + g \in M$; из $f \in M$ и $c \in \mathbb{R}$ следует $cf \in M$.

Множество решений однородной СЛАУ

Теорема 6. Множество всех решений однородной системы линейных уравнений является линейным подпространством пространства столбцов, его называют пространством решений системы.

Доказательство. Если столбцы f и g — решения уравнения Ax=0, то

$$A(f+g) = Af + Ag = 0$$

И

$$A(cf) = cAf = 0,$$

поэтому f+g и cf - тоже решения этого уравнения.

Задача на собственные значения. Найти такие значения параметра λ при которых уравнение

$$Ax = \lambda x$$

имеет нетривиальные решения. Для каждого такого параметра указать пространства решений уравнения.

Теорема 5 означает, что искомые значения параметра - это собственные значения матрицы, а соответствующие им пространства решений образованы собственными векторами.

Алгоритм решения задачи на собственные значения

Шаг 1. Найти собственные значения матрицы из уравнения $\det(A - \lambda E) = 0$

скажем, λ_1 , λ_2 , ...

Шаг 2. Для каждого k описать пространство Z_k решений уравнения $Ax = \lambda_k x$.

Пример. Решим задачу на собственные значения

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}.$$

Решение. Шаг 1.

$$\det\begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = 0$$
$$\lambda^2 - 2\lambda - 3 = 0$$
$$\lambda_1 = -1 \text{ и } \lambda_2 = 3$$

Шаг 2. При $\lambda_1 = -1$ имеем

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} x \\ y \end{pmatrix}$$

или

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Если записать это уравнение в виде системы линейных уравнений, получится два раза одно и то же уравнение

$$x + y = 0$$
.

Поэтому первому собственному значению отвечает пространство решений

$$Z_1 = \{ x = -y, \qquad y \in \mathbb{R} \},$$

собственный вектор

$$v_1 = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

При $\lambda_2 = 3$ имеем

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$$

ИЛИ

$$\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Поэтому второму собственному значению отвечает пространство решений

$$Z_2 = \{ x = y, \qquad y \in \mathbb{R} \},$$

собственный вектор $v_2 = c_2 \binom{1}{1}$

