Matemática Computacional

Capítulo 5

Testes de Hipóteses

Licenciatura em Engenharia Informática ISEP (2024/2025)

Conteúdo

Testes de hipóteses: notação e metodologia

Testes de hipóteses envolvendo médias e proporções

Testes de hipóteses: notação e metodologia

Contexto

- Os testes de hipóteses (paramétricos), permitem-nos:
 - tirar conclusões sobre um parâmetro de uma população, θ;
 - comparar as médias ou as proporções entre duas populações.
- Por exemplo, os testes de hipóteses, fornece-nos evidências para poder responder a perguntas do tipo:
 - será que a média populacinal difere de um valor típico?
 - será que as proporções de pessoas adeptas de um determinado clube de futebol, de duas populações, diferem?
 - será que tomar café aumenta risco de cancro?
 - será que o processo de fabrico A é melhor que o processo de fabrico B?

Metodologia

- Os testes estatísticos que vamos abordar permitem decidir entre duas hipóteses complementares, ou seja, não se intersetam e abrangem todo o domínio do parâmetro que pretendemos estudar, com base em amostras das populações.
- Assim, o processo começa por formular as hipóteses estatísticas que vão ser testadas. Por exemplo, "o processo de fabrico A é equivalente ao processo de fabrico B" versus "o processo de fabrico A é melhor do que o processo de fabrico B".
- Uma vez formuladas as hipóteses, utiliza-se um método estatístico para decidir entre as hipóteses, ou seja, para averiguar se determinada hipótese para a população é plausível, sob o pressuposto aleatoriedade e independência da amostra.

Hipótese nula e alternativa

 H_0 : Hipótese nula é a hipótese que julgamos inverosímil (qeralmente, contém =).

H₁: Hipótese alternativa é a hipótese que julgamos verosímil e que se pretende verificar (geralmente, contém >, < ou \neq).

Os testes usados, para validar a hipótese, classificam-se como:

Teste	
bilatera	l:

$$H_0: \theta = \theta_0$$

$$H_0: \theta = \theta_0$$

$$H_1: \theta > \theta_0$$

$$H_0: \theta = \theta_0$$

$$H_1: \theta < \theta_0$$

Para se optar entre as duas hitóteses estatísticas H_0 e H_1 é necessário quantificar a informação contida na amostra, usando para isso o que se designa por estatística de teste.

Estatística de teste

Uma estatística de teste é uma função das observações amostrais cujo valor vai determinar a conclusão a retirar do teste estatístico.

A estatística de teste é, habitualmente, um estimador do parâmetro θ em estudo.

A distribuição da estatística de teste é definida no pressuposto de que a hipótese nula é verdadeira.

A decisão de rejeitar ou não a hipótese nula baseia-se no valor que assumir a estatística de teste.

Exemplo 5.1: Pretende-se testar se um novo processo de fabrico de parafusos é melhor do que um processo tradicional. Sabe-se que, no processo tradicional, 50% dos parafusos são defeituosos. Existe uma amostra de 100 parafusos fabricados pelo novo processo. Seja *X* a v.a. que representa o número de parafusos defeituosos encontrados na amostra.

- Defina as hipóteses estatísticas H₀ e H₁.
- Defina a estatística de teste.
- Caracterize a sua distribuição, supondo que H₀ é verdadeira

Resolução:

• É evidente que esperamos que o novo processo seja melhor do que o tradicional. Por isso, as hipóteses estatísticas são:

```
H_0: p = 0.5
H_1: p < 0.5
```

A estatística de teste é:

X = número de parafusos defeituosos encontrados na amostra.

Supondo que H₀ é verdadeira, então,

$$X \sim Bi(n = 100, p = 0.5).$$

Definidas as hipoteses estatísticas e a estatística de teste, torna-se indispensável estabelecer a regra de tomada de decisão. Ou seja, para que a decisão possa ser tomada de uma forma controlada, devemos estabelecer, previamente, o valor a partir do qual se considera improvável a validade da hipótese nula, ou seja, a partir do qual esta hipótese deve ser rejeitada.

Regra de decisão estatística

Regra de decisão estatística é o princípio que determina a conclusão a retirar (rejeitar ou não H_0) a partir da comparação do valor da estatística de teste (função da amostra) com um ou mais valores críticos.

Região de rejeição (RR) (ou região crítica)

Os valores críticos determinam o conjunto de valores da estatística de teste que conduz à rejeição da hipótese nula. Este conjunto de valores denomina-se região de rejeição (ou região crítica) da hipótese nula.

Região de rejeição de H_0 , dependendo do tipo de teste

• Teste bilateral: $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.

• Teste unilateral à direita: $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$.

• Teste unilateral à esquerda: $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$.

- Nos testes de hipóteses a tomada de decisão, para a população, é baseada na informação amostral (sujeita a variabilidade), pelo que se podem cometer erros.
- Assim, quando se opta entre duas hipóteses complementares, existe a possibilidade de se tirar a conclusão errada, isto é cometer um erro de inferência.

Erro de inferência

12/54

Um erro de inferência consiste em tirar a conclusão errada num teste estatístico, a partir da informação contida na amostra.

Quando se escolhe entre duas hipóteses complementares, das quais apenas uma é verdadeira, há a possibilidade de se cometer um de dois tipos de erros, o erro de tipo I e o erro de tipo II.

Tipo de erro de inferência	H₀ verdadeira	H_0 falsa
Não rejeitar H ₀	Decisão correta Risco 1 $-\alpha$	Erro tipo II Risco β
Rejeitar <i>H</i> ₀	Erro tipo I Risco α Nível de significância	Decisão correta Risco 1 $-\beta$ Potência do teste

Exemplo 5.2: Pretende-se testar se a altura média dos estudantes de uma escola é ou não igual a 170cm. Sabe-se que o desvio padrão populacional é de 6cm. Para tal, vai escolher-se, aleatoriamente, uma amostra de 36 estudantes e considerar-se-á que a altura média é 170cm se o valor da média amostral estiver entre 169cm e 171cm.

Defina as hipóteses nula e alternativa.

Resolução:

 $H_0: \mu = 170$ $H_1: \mu \neq 170$

Indique qual a estatística de teste e a sua distribuição.

Resolução: A estatística de teste é a média amostral, \overline{X} :

$$\overline{X} = N\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

Como $\mu = 170$, $\sigma = 6$ e n = 36, obtém-se:

$$\overline{X} = N(170, 1)$$
.

Determine a probabilidade de se cometer um erro do tipo I.

Resolução: O erro do tipo I, α , consiste em rejeitar a hipótese nula, H_0 , sendo esta verdadeira, ou seja:

$$\alpha = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0 \text{verdadeira})$$

$$\alpha = P(\overline{X} \le 169 \mid \mu = 170) + P(\overline{X} \ge 171 \mid \mu = 170) \Leftrightarrow$$

$$\Leftrightarrow \alpha = P(\overline{X} \le 169 \mid \mu = 170) + \left(1 - P(\overline{X} \le 171 \mid \mu = 170)\right)$$

$$\Leftrightarrow \alpha = 0.1587 + 0.1587 \Leftrightarrow$$

$$\Leftrightarrow \alpha = 0.3174$$

 Se a verdadeira altura média for de 172cm, qual a probabilidade de se cometer um erro do tipo II?

Resolução: O erro do tipo II, β , consiste em não se rejeitar a hipótese nula, H_0 , sendo esta falsa, ou seja:

$$\beta = P(\text{erro tipo II}) = P(\text{não rejeitar} H_0 \mid H_0 \text{falsa})$$

$$\beta = P(169 \le \overline{X} \le 171 \mid \mu = 172) \Leftrightarrow$$

$$\Leftrightarrow \beta = P(\overline{X} \le 171 \mid \mu = 172) - P(\overline{X} \le 169 \mid \mu = 172) \Leftrightarrow$$

$$\Leftrightarrow \beta = 0.1587 - 0.0013 \Leftrightarrow$$

$$\Leftrightarrow \beta = 0.1574$$

Determine a potência do teste?

Resolução: A potência do teste, $1 - \beta$ consiste em rejeitar a hipótese nula, H_0 , sendo esta falsa, ou seja:

$$1 - \beta = P(\text{rejeitar}H_0 \mid H_0 \text{falsa}) \Leftrightarrow 1 - \beta = 1 - 0.1574 = 0.8426.$$

 Defina uma regra de decisão e respetivos valores críticos, com um nível de significância de 5%.

Resolução: Como se trata de um teste bilateral, a regra de decisão é:

Rejeita-se
$$H_0$$
 se $\overline{X} < c_1$ ou $\overline{X} > c_2$,

sendo c_1 e c_2 os valores críticos, determinados pelo nível de significância $\alpha = 0.05$.

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow$$

$$\Leftrightarrow$$
 0.05 = $P(\overline{X} \le c_1 \mid \mu = 170) + P(\overline{X} \ge c_2 \mid \mu = 170)$

Devido à simetria da distribuição normal, em relação à média μ , tem-se:

$$0.05 = 2 \times P(\overline{X} \le c_1 \mid \mu = 170) \Leftrightarrow$$

$$\Leftrightarrow$$
 0.025 = $P(\overline{X} \le c_1 \mid \mu = 170) \Leftrightarrow$

$$\Leftrightarrow$$
 $c_1 = 168.04 \Rightarrow$

$$\Rightarrow$$
 $c_2 = 170 + (170 - c_1) = 171.96$

• Suponhamos que, após a realização da amostra, temos $\overline{x} = 174$ cm. Qual a conclusão estatística que retirávamos?

Resolução:

Sabemos que RR=] $-\infty$, 168.04] \cup [171.96, $+\infty$].

Como 174 \in *RR* rejeitávamos a hipóteses nula com uma confiança de 95%.

- O valor de prova ou valor-p de um teste estatístico é uma probabilidade que mede até que ponto é que os dados da amostra sugerem rejeição de H₀.
- O valor-p tem particular interesse calcular-se quando n\u00e3o se consegue rejeitar H₀ por pouco.

Valor de prova ou valor-p

O valor de prova ou valor-p é o menor nível de significância, a partir do qual se começa a rejeitar H_0 , com a amostra observada.

- Se valor-p > α , então H_0 não é rejeitada,
- Se valor-p $\leq \alpha$, então H_0 é rejeitada.

Metodologia dos testes de hipóteses

A construção e a aplicação de qualquer regra de decisão estatística envolve os seguintes passos:

- **1** Definir as hipóteses nula, H_0 , e alternativa, H_1 .
- 2 Especificar o nível de significância α do teste.
- 3 Escolher uma estatística de teste apropriada e estabelecer a região de rejeição, a partir do nível de significância α .
- Calcular o valor da estatística de teste, $\hat{\theta}$, a partir dos dados da amostra.
- **5** Decidir: rejeitar H_0 , se $\hat{\theta}$ estiver na região de rejeição; caso contrário não rejeitar H_0 .
- **1** Em alternativa ou como apoio de decisão, calcular o valor-p, a partir da amostra, e compará-lo com o nível de significância α .

Exemplo 5.3: A direção de uma escola acredita que neste ano a proporção de estudantes que utilizam dados móveis é superior à proporção de estudantes que usavam no ano anterior e que correspondia a 70%. Selecionando aleatoriamente 30 estudantes, verificou-se que 26 utilizam dados móveis. Podemos concluir, com um nível de significância de 5%, que a afirmação da direção da escola é verdadeira?

Resolução:

 Seja p a probabilidade de um estudante usar dados móveis. As hipóteses nula e alternativa são:

$$H_0: p = 0.7$$

 $H_1: p > 0.7$

- X é v.a. tal que: X = número de estudantes, em 30, que usam dados móveis (estatística de teste).
- No pressuposto de que a hipótese nula é verdadeira, tem-se:

$$X \sim B(n = 30, p = 0.7).$$

• A região de rejeição e o valor crítico são calculados com base no nível de significância, $\alpha=0.05$:

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow 0.05 = P(X \ge c \mid p = 0.7) \Leftrightarrow c = 25 \Rightarrow \text{RR} = [25, +\infty[$$
.

O número de alunos na amostra que usam dados móveis é 26. Como $26 \in RR$, rejeitámos H_0 .

No entanto, verifica-se que por pouco não rejeitámos a hipótese nula. Neste caso vamos usar o valor-p.

valor-p =
$$P(X \ge 26 \mid p = 0.7) = 0.030$$

Como $\alpha=0.05$, tem-se que valor-p $<\alpha$, logo confirma-se a rejeição de H_0 . Conclui-se que a proporção de estudantes que usam dados móveis aumentou e portanto pode ser aceite como verdadeira a afirmação da direção da escola, com uma confiança de 95%.

Testes de hipóteses envolvendo médias e proporções

Teste ao valor esperado (média) de uma população: Variância conhecida

Considere uma população com média μ e desvio padrão σ da qual se extraiu aleatoriamente uma amostra, $X_1, X_2, ..., X_n$, de dimensão n, e para a qual que pretende realizar um teste de hipóteses para a média populacional μ . A estatística de teste, neste caso, é a média amostral \overline{X} .

Para populações normais:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Para populações não normais e n ≥ 30:

$$\overline{X} \xrightarrow{\mathsf{D}} N\left(\mu, \frac{\sigma^2}{n}\right)$$

No pressuposto que H_0 : $\mu = \mu_0$ é verdadeira, as hipóteses para o valor esperado de uma população, μ , podem ser testadas usando os testes unilaterais (esquerdo/direito) ou usando um teste bilateral.

Exemplo 5.4: Uma companhia de *marketing* costuma fazer sondagens para determinar o grau de satisfação de compradores de automóveis. O inquérito usado nessas sondagens demorava, em média, 12 minutos com um desvio padrão de 3 minutos. Para o tornar mais rápido, resolveu-se reestruturá-lo e testar se o novo inquérito demorava menos tempo. Assim, escolheu-se, aleatoriamente, 36 compradores de automóveis e obteve-se um tempo de resposta médio de 11.3 minutos. Será que se pode concluir, com um nível de significância de 5%, que o novo inquérito é mais eficiente? (A companhia de *marketing* acredita que o desvio padrão, do tempo de resposta ao novo inquérito continua a ser de 3 minutos.)

Resolução:

As hipóteses a testar são:

 $H_0: \mu = 12$

 $H_1: \mu < 12$

X é v.a. tal que:

X= tempo que demora a realizar o inquérito. Sabe-se que $E(X)=\mu$ e $\sigma=3$. Não se conhece a distribuição, mas $n\geq 30$.

 A estatística de teste a usar é a média amostral X̄, para uma amostra com dimensão n = 36 e cujo valor observado, na amostra, é x̄ = 11.3 e μ₀ = 12.

$$\overline{X} \xrightarrow{\mathsf{D}} \mathcal{N}\left(\mu, \frac{3^2}{36}\right) \Leftrightarrow \overline{X} \xrightarrow{\mathsf{D}} \mathcal{N}\left(\mu, 0.5^2\right)$$

• A região de rejeição e o valor crítico são calculados com base no nível de significância, $\alpha=0.05$:

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow \Leftrightarrow 0.05 = P(\overline{X} \le c \mid \mu = 12) \Leftrightarrow c = 11.18 \Rightarrow \text{RR} =]-\infty, 11.18].$$

- Como x̄ = 11.3 está na região de não rejeição de H₀, toma-se a decisão de não rejeitar H₀. Contudo, o valor x̄ = 11.3 está muito próximo do valor crítico 11.18, o que leva a supor que o teste pode ser inconclusivo.
- Determinemos o valor-p:

valor-p=
$$P(\overline{X} \le 11.3 | \mu = 12) = 0.08$$

Como valor-p= $0.08 > \alpha = 0.05$, a decisão de não rejeitar H_0 mantém-se, apesar do valor-p= 0.08 ser um valor relativamente pequeno, isto é, supondo que a hipótese nula, H_0 , é verdadeira, a probabilidade de obtermos o valor observado \overline{x} é de apenas 8%.

 Portanto, o teste é inconclusivo. Admite-se que se a amostra fosse maior, o teste pudesse ser mais conclusivo.

Teste ao valor esperado (média) de uma população: Variância desconhecida

Considere uma população com distribuição normal com média μ e desvio padrão desconhecido da qual se extraiu aleatoriamente uma amostra, $X_1, X_2, ..., X_n$, de dimensão n, com \overline{X} e S, a média e desvio padrão amostral, respetivamente. De acordo com a amostra pretende-se realizar um teste de hipóteses para a média populacional μ . A estatística de teste a utilizar é:

$$T=\frac{\overline{X}-\mu_0}{\frac{S}{\sqrt{n}}}\sim T(n-1),$$

- T segue uma distribuição t-Student com n-1 graus de liberdade,
- μ_0 representa o valor de μ , no pressuposto que H_0 : $\mu = \mu_0$ é verdadeira.

Exemplo 5.5: Um fabricante de radiadores de automóveis garante que os seus radiadores têm uma duração média superior a 150 000 km. Uma organização de defesa dos consumidores resolveu testar 25 radiadores para determinar se o fabricante tem razão e verificou que a duração média da amostra era de 156 300 km e o desvio padrão da amostra era de 17 200 km. Indique qual foi a conclusão a que chegou a organização de defesa dos consumidores, supondo que usou um nível de significância de 5%. (Admite-se que a distribuição é normal.)

Resolução:

As hipóteses a testar são:

 $H_0: \mu = 150000$ $H_1: \mu > 150000$

X = duração, em km, dos radiadores.

$$X \sim N(\mu, \sigma^2),$$

com σ desconhecido.

- \overline{X} é a média amostral, tal que $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, com σ desconhecido.
- A estatística de teste a usar é:

$$T=\frac{\overline{X}-\mu_0}{\frac{S}{\sqrt{n}}}\sim T(n-1),$$

onde $\mu_0 = 150000$, S é um estimador de s, cuja estimativa é s = 17200, n = 25 e $T \sim T(24)$.

• A região de rejeição e o valor crítico são calculados com base no nível de significância, $\alpha=0.05$:

$$0.05 = P\left(T > \frac{c - 150000}{\frac{17200}{\sqrt{25}}}\right) \Leftrightarrow \frac{c - 150000}{\frac{17200}{\sqrt{25}}} = 1.71.$$

Resolvendo em ordem a c, obtemos:

$$\frac{c - 150000}{\frac{17200}{\sqrt{25}}} = 1.71 \Leftrightarrow c = 155885.4 \Rightarrow RR = [155885.4, +\infty[$$

• Como $\overline{x} = 156300$ é um valor que pertence a esta região, deve rejeitar-se H_0 , , concluindo que o fabricante tinha razão.

Considere duas populações, com médias μ_1 e μ_2 e desvios padrão σ_1 e σ_2 , das quais se extraíram aleatoriamente duas amostras independentes, com dimensão n_1 e n_2 . Pretende-se realizar um teste de hipóteses para comparar as duas médias populacionais μ_1 e μ_2 , isto é, para a diferença entre as duas médias $\mu_1 - \mu_2$.

Teste à diferença de médias

Teste	
bilatera	:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

Teste unilateral à direita:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$

Teste unilateral à esquerda:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$

Teste bilateral:

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Teste unilateral à direita:

 $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 > 0$

Teste unilateral à esquerda:

 $H_0: \mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 < 0$ Considere as populações com distribuição normal.

Teste à diferença de médias (σ_1^2 e σ_2^2 conhecidas)

A estatística de teste usada é:

$$\overline{X_1} - \overline{X_2} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right).$$

Teste à diferença de médias ($\sigma_1^2 \neq \sigma_2^2$ desconhecidas)

A estatística de teste usada é:

$$\overline{X_1} - \overline{X_2} \xrightarrow{\mathsf{D}} \mathcal{N}\left(\mu_1 - \mu_2, \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)$$

onde S_1 e S_2 são os desvios padrão amostrais.

Teste à diferença de médias ($\sigma_1^2 = \sigma_2^2$ desconhecidas)

Se populações com distribuição normal, a estatística de teste usada é:

$$rac{\left(\overline{X_1} - \overline{X_2}
ight) - (\mu_1 - \mu_2)}{S\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim T(n_1 + n_2 - 2).$$

Se populações forem aproximadamente normais com $n_1, n_2 \ge 30$, a estatística de teste usada é:

$$\overline{X_1} - \overline{X_2} \xrightarrow{\mathsf{D}} N\left(\mu_1 - \mu_2, S^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

•
$$S = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
 e S_1 e S_2 os desvios padrão amostrais.

Exemplo 5.6: Nos primeiros seis meses de vida, dois grupos aleatórios de crianças seguiram esquemas de alimentação diferentes: o grupo 1 seguiu o esquema *A* e o grupo 2 seguiu o esquema *B*. Apresentam-se os ganhos em peso, em kg, dessas crianças.

Sabe-se que as crianças dos dois grupos tinham, ao nascer, aproximadamente pesos iguais. Admita-se que as distribuições dos pesos seguem a distribuição Normal com variâncias $\sigma_1^2=0.36$ e $\sigma_2^2=0.32$, respetivamente. Ao nível de significância de 10%, poderá afirmar-se que o ganho médio em peso das crianças do grupo 1 é igual ao das crianças do grupo 2?

Resolução: Sejam μ_1 e μ_2 as médias desconhecidas das duas populações. As hipóteses a testar são:

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Seja X₁ v.a. que representa o ganho em peso do grupo 1:

$$X_1 \sim N(\mu_1, \sigma_1^2 = 0.36);$$

Seja X₂ v.a. que representa o ganho em peso do grupo 2:

$$X_2 \sim N(\mu_2, \sigma_2^2 = 0.32);$$

- A estatística de teste a usar é $\overline{X_1} \overline{X_2} \sim N\left(\mu_1 \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$.
- Partindo do pressuposto da hipótese nula ser verdadeira, tem-se:

$$\overline{X_1} - \overline{X_2} \sim N\left(\mu = 0, \sigma^2 = \frac{0.36}{9} + \frac{0.32}{7}\right).$$

Como $\alpha=$ 0.1 e o teste é bilateral, calculemos a região de rejeição e os pontos críticos:

0.1 =
$$P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) =$$

= $P(\overline{X_1} - \overline{X_2} \le c_1 \mid \mu_1 - \mu_2 = 0) + P(\overline{X_1} - \overline{X_2} \ge c_2 \mid \mu = \mu_1 - \mu_2 = 0)$

Devido à simetria da distribuição normal, em relação à média μ :

$$0.05 = 2 \times P(\overline{X_1} - \overline{X_2} \le c_1 \mid \mu_1 - \mu_2 = 0) \Leftrightarrow$$

$$\Leftrightarrow 0.05 = P(\overline{X_1} - \overline{X_2} \le c_1 \mid \mu_1 - \mu_2 = 0) \Leftrightarrow$$

$$\Leftrightarrow c_1 = -0.48 \Rightarrow c_2 = 0.48$$

Assim, região de rejeição é:

$$RR =]-\infty, -0.48] \cup]0.48, +\infty]$$

Os dados da amostra são:

- $n_1 = 9 e n_2 = 7$;
- $\overline{x_1} = 3.337 \text{ e } \overline{x_2} = 3.686.$

O valor da estaística de teste é:

$$\overline{x_1} - \overline{x_2} = -0.349.$$

Como $\overline{x_1} - \overline{x_2} = -0.349 \notin RR$ não se rejeita H_0 , isto é, não existe evidência estatística de que o ganho médio em peso das crianças alimentadas segundo o esquema A seja diferente do das crianças alimentadas segundo o esquema B.

Exemplo 5.7: Um laboratório farmacêutico pretende comparar o efeito de dois novos antibióticos a bactérias resistentes, que não respondem favorávelmente aos antibióticos tradicionais. Para tal, escolheu aleatoriammente e independentemente, uma amostra de 100 pacientes com a bactéria e sem outras patologias. Durante dez dias metade desses pacientes foram sujeitos ao antibiótico A e os restantes ao antibiótico B. Após os dez dias, obtiveram-se os seguintes valores, valores indicadores da presença da bactéria (u.m.) (Considere populações aproximadamente normais):

Antibiótico A:
$$\overline{x_1} = 6.3$$
 $s_1 = 1.2$
Antibiótico B: $\overline{x_2} = 5.2$ $s_2 = 1.4$

Será que se pode admitir, com um nível de significância de 5%, que o antibiótico A é mais eficaz que o antibiótico B.

Resolução: As hipóteses a testar são:

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 > 0$

- Seja X₁ v.a. que representa o valor do indicador da presença da bactéria, nos pacientes sujeitos ao antibiótico A, em u.m..
- Seja X₂ v.a. que representa o valor do indicador da presença da bactéria, nos pacientes sujeitos ao antibiótico B, em u.m..
- Dados: $n_1 = n_2 = 50$, $\overline{x_1} = 6.3$, $s_1 = 1.2$, $\overline{x_2} = 5.2$ e $s_2 = 1.4$.
- Como n₁ ≥ 50 e n₂ ≥ 50, a estatística de teste a usar

$$\overline{X_1} - \overline{X_2} \xrightarrow{\mathsf{D}} N\left(\mu_1 - \mu_2, S^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

- $S = \sqrt{\frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}}$ e S_1 e S_2 os desvios padrão amostrais.
- Partindo do pressuposto da hipótese nula ser verdadeira, tem-se:

$$\overline{X_1} - \overline{X_2} \xrightarrow{D} N\left(\mu = 0, \sigma^2 = 1.7 \times \left(\frac{1}{50} + \frac{1}{50}\right)\right).$$

Como $\alpha = 0.05$ e o teste é unilateral à direita, calculemos a região de rejeição e o ponto crítico:

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow$$

$$\Leftrightarrow 0.05 = P(\overline{X_1} - \overline{X_2} \ge c \mid \mu_1 - \mu_2 = 0)$$

$$\Leftrightarrow 0.05 = 1 - P(\overline{X_1} - \overline{X_2} \le c \mid \mu_1 - \mu_2 = 0)$$

$$\Leftrightarrow 0.95 = P(\overline{X_1} - \overline{X_2} \le c \mid \mu_1 - \mu_2 = 0)$$

$$\Leftrightarrow c = 0.43$$

Assim, região de rejeição é RR= $[0.43, +\infty]$.

O valor da estatística de teste é $\overline{x_1} - \overline{x_2} = 1.1 \in RR$, logo rejeita-se H_0 . Assim, conclui-se, com um nível de significância de 5%, que o antibiótico A é mais eficiente que o antibiótico B.

Teste de hipóteses para a proporção

Considere uma população *Bernoulli*, com parâmetro p, da qual se retirou uma amostra aleatória, suficientemente grande, e para a qual se pretende realizar um teste de hipóteses para a proporção populacional p.

Se X for o número de sucessos dessa amostra, $X \sim Bi(n,p)$, então $\hat{P} = \frac{X}{n}$, representa a proporção amostral de sucessos. Pelo Teorema do Limite Central:

$$\hat{P} \xrightarrow{D} N\left(p, \frac{p(1-p)}{n}\right),$$

e, no pressuposto de que H_0 : $p = p_0$ é verdadeira, a estatística de teste a utilizar é:

$$\hat{P} \stackrel{\mathsf{D}}{\to} N\left(p_0, \frac{p_0(1-p_0)}{n}\right),$$

onde p_0 representa o valor que se assume para p em H_0 .

Exemplo 5.8: Suspeita-se que uma larga maioria (mais de 70%) da população de uma pequena cidade é favorável à construção de um parque relvado de lazer no centro da cidade. Realizou-se um inquérito telefónico a 50 pessoas, tendo-se verificado que 42 se manifestaram favoráveis à construção do parque. Pretende-se determinar se existe, com um nível de significância de 5%, evidência estatística que suporte a suposição existente.

Resolução: Pretende-se testar:

 $H_0: p = 0.70$

 $H_1: p > 0.70$

- Seja X a v.a. que representa o número de pessoas favoráveis à construção do parque.
- Seja P a proporção de pessoas favoráveis à construção do parque, em 50.

- Dados: n = 50, $\hat{p} = \frac{42}{50} = 0.84$.
- Tem-se:

$$\hat{P} \xrightarrow{D} N\left(p, \frac{p(1-p)}{n}\right),$$

e, no pressuposto de que H_0 : p = 0.70 é verdadeira, a estatística de teste a utilizar é:

$$\hat{P} \stackrel{\mathsf{D}}{ o} \mathsf{N} \left(\mu = 0.70, \sigma^2 = \frac{0.70(1-0.70)}{50} \right).$$

Como $\alpha = 0.05$ e o teste é unilateral à direita, calculemos a região de rejeição e o ponto crítico:

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow$$
 $\Leftrightarrow 0.05 = P(\hat{P} \geq c \mid p = 0.70)$
 $\Leftrightarrow 0.95 = P(\hat{P} \leq c \mid p = 0.70)$
 $\Leftrightarrow c = 0.81$

Assim, região de rejeição é RR= $[0.81, +\infty]$.

O valor da estatística de teste é $\hat{p}=\frac{42}{50}=0.84$ \in RR, logo rejeita-se H_0 . Assim, conclui-se, com um nível de significância de 5%, que há evidência estatística para acreditar que a larga maioria da população (mais de 70%) é favorável à construção do parque.

Considere duas populações *Bernoulli*, com parâmetros p_1 e p_2 das quais se extraíram aleatoriamente duas amostras mutuamente independentes de grande dimensão n_1 e n_2 , respetivamente.

Se X_1 e X_2 representam o número de sucessos das duas amostras:

$$X_1 \sim Bi(n_1, p_1)$$
 e $X_2 \sim Bi(n_2, p_2)$.

Sejam $\hat{P}_1 = \frac{X_1}{n_1}$ e $\hat{P}_2 = \frac{X_2}{n_2}$ as proporções de sucesso:

$$\hat{P_1} \xrightarrow{D} N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right) \quad \text{e} \quad \hat{P_2} \xrightarrow{D} N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right).$$

Teste de hipóteses para a diferença de proporções

A estatística de teste usada num teste de hipóteses à diferença entre as proporções $p_1 - p_2$, é:

$$\hat{P_1} - \hat{P_2} \xrightarrow{D} N\left(p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}\right).$$

Exemplo 5.9: Num estudo nutricional para uma amostra de 55 hipertensos, foram detetados 24 com dietas pobres em sódio. Paralelamente, noutra amostra de 149 não hipertensos detetaram-se 36 com dietas pobres em sódio. Poderá concluir-se, para um nível de significância de 0.05, que a proporção de indivíduos sujeitos a dietas pobres em sódio é maior entre hipertensos?

Resolução: Pretende-se testar:

$$H_0: p_1 - p_2 = 0$$

 $H_1: p_1 - p_2 > 0$

- Seja P

 1 a v.a. que representa a proporção de hipertensos com dietas pobres em sódio.
- Seja $\hat{P_2}$ a v.a. que representa a proporção de não hipertensos com dietas pobres em sódio.

No pressuposto de que a hipóteses nula $H_0: p_1 - p_2 = 0$ ser verdadeira, a estatística de teste é:

$$\hat{P_1} - \hat{P_2} \xrightarrow{D} N\left(0, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}\right).$$

- Dados: $n_1 = 55$, $\hat{p_1} = \frac{24}{55}$, $n_2 = 149$, $\hat{p_2} = \frac{36}{149}$.
- Para os valores observados, tem-se:

$$\hat{P_1} - \hat{P_2} \xrightarrow{D} N \left(0, \frac{\frac{24}{55} \left(1 - \frac{24}{55}\right)}{55} + \frac{\frac{36}{149} \left(1 - \frac{36}{149}\right)}{149}\right).$$

Como $\alpha = 0.05$ e o teste é unilateral à direita, calculemos a região de rejeição e o ponto crítico:

$$0.05 = P(\text{erro tipo I}) = P(\text{rejeitar}H_0 \mid H_0\text{verdadeira}) \Leftrightarrow$$

$$\Leftrightarrow 0.05 = P(\hat{P}_1 - \hat{P}_2 \ge c \mid p_1 - p_2 = 0)$$

$$\Leftrightarrow 0.95 = P(\hat{P}_1 - \hat{P}_2 \le c \mid p_1 - p_2 = 0)$$

$$\Leftrightarrow c = 0.12$$

Assim, região de rejeição é RR= $[0.12, +\infty]$.

O valor da estatística de teste é $\hat{p_1} - \hat{p_2} = \frac{24}{55} - \frac{36}{149} = 0.195 \in RR$, logo rejeita-se H_0 , ou seja, com um nível de significância de 5%, há evidência estatística para concluir que a proporção de indivíduos com hipertensão sujeitos a dietas pobres em sódio é maior.