Geomatic Techniques to Support Phytosanitary Products Tests whithin the EPPO Standard Framework

Samuele Bumbaca

University of Turin

August 28, 2025

The Traditional Approach to Agricultural Trials

ANOVA Model:

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

Where:

- $y_{ij} = \text{response}$
- \bullet $\mu = \text{overall mean}$
- $\alpha_i = \text{treatment effect}$
- β_i = block effect
- $\varepsilon_{ij} = \text{random error}$

Note:

terms: $\alpha_i \times \beta_i$

This is the additive model. Modern approaches may include interaction

Key Assumptions of Traditional ANOVA

Statistical Assumptions:

- Randomization: Treatments randomly assigned within blocks
- Replication: Each treatment appears in each block
- Independence: Observations are independent given the design
- Homoscedasticity: Equal variances across treatments
- Normality: Residuals follow normal distribution

Consequences of Assumption Violations:

 Invalid conclusions of parametric tests: Need for non-parametric tests leading to reduced statistical power

Based on R. A. Fisher, Statistical Methods for Research Workers, in S. Kotz & N. L. Johnson (eds.), Breakthroughs in Statistics: Methodology and Distribution, pp. 66–70, Springer, New York, 1992.

The Right Blocking: Capturing Environmental Variability

- **C** Control
- T Tested Product
- R Reference Product

Success of Blocking Strategy:

- Within-block homogeneity: Treatments compared under similar conditions
- Between-block heterogeneity: Environmental gradient captured by block effects

The Wrong Blocking: Assumption Violation

Reference Product

Tested Product

Heteroscedasticity Assumption Violation Problem:

R

- Blocks fail to capture environmental variability: Treatments compared under different conditions
 - **Invalid parametric test**: Residual variance differs across treatments

Current Limitations in Statistics for Agricultural Trials

Traditional Approach Issues:

- Human-dependent blocking: Environmental variability assessment relies on experimenter experience
- A priori identification: Must identify variance sources BEFORE data collection

The Challenge:

How can we capture environmental variability mathematically rather than through human judgment?

Geostatistical Approach: Spatial Linear Mixed Models

C/T/R Control/Tested/Reference
Georeferenced observations

Spatial LMM:

$$y(s_i) = \mu + \alpha_j + f(s_i) + \varepsilon_i$$

Where

- $y(s_i) = \text{response at } s_i$
- \bullet $\mu = \text{overall mean}$
- α_i = treatment effect
- $f(s_i) = \text{spatial random field}$
- $\varepsilon_i = \text{error}$
- $s_i = (x_i, y_i) = \text{coordinates}$

Benefits:

- No blocking: Spatial correlation captures variability
- Post-hoc: No a priori variance identification
- Homoscedasticity: Assumption satisfied in more cases in respect blocking

The Missing Link: Spatial Coordinates

Geostatistical Methods Advantages:

- Mathematical modeling of environmental variability
- ✓ Post-hoc analysis no need for prior knowledge of the environment variables and of their distribution
- √ Superior performance in handling spatial heterogeneity
- √ EPPO recognized approach

Current Barrier:

- Requires spatially referenced observations
- Traditional manual assessments lack coordinates
- Implementation gap in practical field trials

Central Research Question

Can geomatics technologies provide spatially referenced observations that enable geostatistical analysis within EPPO-compliant Plant Protection Product trials?

Specific Objectives:

- Establish which geomatics technologies can be used to collect spatially referenced observations
- ② Demonstrate the feasibility of collect spatially referenced observations in compliant with EPPO standards
- 3 Validate performance against traditional methods
- Provide practical implementation guidelines

Georeferencing EPPO Standard Assessments

Table: Different modes of observation and types of variables

Type of Variable	Measurement	Ranking	Scoring
Binary			Χ
Nominal			Χ
Ordinal		Х	Χ
Discrete	X		
Continuous limited	X		
Continuous not limited	Χ		

Summary from EPPO PP 1/152: Design and analysis of efficacy evaluation trials

Current State of Georeferencing in Agricultural Trials:

EPPO's continuous, unbounded measurements are typically tool-collected and easily georeferenced (e.g., yield harvesters), whereas other regulated variables depend on experimenters' visual assessments, complicating spatial integration.

Statistical Analysis Methods in Field Trials

Traditional Approach

Randomized Complete Block Design (RCBD)

- Assumes blocks capture all spatial variation
- Fixed block effects
- Cannot model continuous spatial patterns
- Residual spatial structure ignored

Geostatistical Approach

Spatial Analysis Methods

- Model spatial correlation explicitly
- Continuous spatial trends
- Better residual structure
- Improved precision

Research Question

Can geostatistical methods provide better estimates when environmental variation is not perfectly captured by experimental blocks?

Simulated Trial Design

Experimental Setup

- 3 treatments × 3 blocks (9 plots)
- ullet 15m imes 10m plots with 17 measurement points each
- Spatial gradient: -1.5 to +1.5 t/ha across field
- Treatment effects: Control (0), Test (+2), Reference (+1) t/ha

Block 1	Block 2	Block 3
Test	Control	Reference
Reference	Test	Control
Control	Reference	Test

Table: Randomization Layout

Spatial Pattern

Environmental gradient:

West \rightarrow East: 10.3 \rightarrow 14.2 t/ha

Key Issue

Blocks are not perfectly aligned with environmental gradient, creating spatial confounding

RCBD Analysis Results

Model Specification

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

- \bullet μ : overall mean
- τ_i : treatment effect
- β_i : block effect
- ε_{ii} : random error

Treatment Estimates

Treat ment	Effect	SE
Control	0.00	_
Reference	+2.03	0.089
Test	+2.41	0.089

ANOVA Table

Source	DF	MS	F	P-value
Treatment	2	5.034	316.2	< 0.001
Block	2	0.623	39.1	0.002
Error	4	0.016	-	-

Model Performance

- $R^2 = 0.994$
- Residual SE = 0.126
- Spatial structure in residuals ignored

Variogram Analysis

Geostatistical Approach

- Model spatial correlation explicitly
- Variogram:

$$\gamma(h) = \frac{1}{2}E[(Z(s) - Z(s+h))^2]$$

- Fitted model: Linear variogramParameters:
 - Nugget: 0.000
 - Sill: 0.121Range: 1.35m

Spatial Model

$$Y(s) = \mu + X(s)\beta + Z(s)$$

where Z(s) follows spatial covariance

Advantages over RCBD

- Continuous spatial modeling
- Better prediction at unsampled locations
- Accounts for spatial autocorrelation
- More efficient parameter estimation

Treatment Effects

- Similar estimates to RCBD but with:

 Spatial correction applied
 - Reduced standard errors
 - Better residual structure

P-Splines Analysis (SpATS)

Spatial Splines Model

- Smooth spatial trends using
- P-splines
 Flexible non-parametric
 - Automatic smoothing parameter selection
- Handles complex spatial patterns

Model Specification

approach

$$Y = X\beta + f(x, y) + \varepsilon$$

Penalized B-splines basis

• f(x, y): smooth spatial surface

- Model Results
 - Spatial variance explained: 6.8%
 - Error variance: 0.068
 - Effective dimensions:f(x,y)|x: 0.790
 - f(x,y)|y: 1.344Deviance: -231.86

Interpretation

- Moderate spatial pattern detected
- Stronger trend in Y direction
- Complements RCBD block structure

Methods Comparison Summary

Method	Spatial Modeling	Flexibility	Assumptions
RCBD	Discrete blocks	Low	Blocks capture all variation
Variogram	Continuous correlation	Medium	Stationary covariance
P-Splines (SpATS)	Smooth surfaces	High	Minimal assumptions

When RCBD Fails

- Blocks don't align with gradients
- Complex spatial patterns
- Residual spatial autocorrelation
- Underestimated treatment precision

Geostatistical Benefits

- Model true spatial structure
- Improved parameter estimation
- Better experimental precision
- Spatial prediction capability

Conclusion

Geostatistical methods provide superior analysis when environmental variation exceeds the capacity of experimental blocking

Practical Implications for PPP Trials

Current Practice

- RCBD widely used in regulatory trials
- Fixed blocking strategies
- Spatial information often ignored
- Conservative approach to meet EPPO standards

Recommended Approach

- Collect spatial coordinates
- Use RCBD as baseline
- Apply geostatistical diagnostics
- Consider spatial methods when:
 Residual spatial correlation
 - Complex field gradients
 - Precision requirements

Regulatory Requirements

- $R^2 > 0.85$ for model acceptance
- All methods achieved this threshold
- Focus on treatment effect precision

Future Directions

- Integration in regulatory guidelines
- Automated spatial analysis tools
- Training for practitioners

RCBD: Trial Design and Block Effects

Model Formula

 $Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$

 μ : Overall mean

 au_i : Treatment effect

 β_j : Block effect

 ε_{ij} : Random error

Variogram: Trial Design and Spatial Effects

Model Formula

$$Y(s) = \mu + X(s)\beta + Z(s)$$

 μ : Overall mean

 $X(s)\beta$: Treatment effect

Z(s): Spatial effect (covariance)

SpATS: Trial Design and Spline Effects

Model Formula

$$Y = X\beta + f(x, y) + \varepsilon$$

 $oldsymbol{X}eta$: Treatment effect

f(x,y): Smooth spatial surface

arepsilon : Random error

Summary of Estimated Effects

Model	Treatment Effect (Test)	Treatment Effect (Reference)	Environment
RCBD	+2.41	+2.03	Block (0.47
Variogram	+2.41	+2.03	Spatial (Sill: 0.121,
SpATS	+2.41	+2.03	Spline (6.8%

Table: Comparison of estimated effects for each model