Lab 3 Readings

1. $N_1 = 2000 \text{ rpm}$

y (cm)	$H_{ms}(\mathrm{ft})$	H_{md} (ft)	F (kg.f)
17	9	20	5
13	6	32	4.2
6	3	45	3.2
0	0	60	0.5

2. $N_2 = 2500 \text{ rpm}$

y (cm)	H_{ms} (ft)	H_{md} (ft)	F (kg.f)
27	13	26	8.4
18	8	52	7.9
7.5	4	72	6.5
0	0	82	2.2

Venturi data:

$$C_{d} = 0.94$$

$$Q = C_d \frac{A_{pipe} * A_{throte}}{\sqrt{A_{pipe}^2 - A_{throte}^2}} \sqrt{2 * g * h}$$

$$h = y \left[\frac{SG_u}{SG_f} - 1 \right]$$

dpipe = 10 cm

dthroat = 6.86 cm

Q = Discharge

y = U-tube manometer reading

SGu = 13.6

SGf = 1

$$\eta = (O/P) / (I/P)$$

Where,

 $O/P = \gamma water x Hm x Q$

$$I/P = S.P. = T \times \omega$$

$$T = F \times R$$

$$\omega = 2~\pi~N~/~60$$

R (brake radius) = 0.3048 m.