Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.				ES .	931.1	105.4	acelob life	michal exer

NÉV:

Neptun kód:

Előadó: Márkus / Sarkadi

- Egy lehorgonyzott kereskedőhajó felé kalózhajó közelít v_k sebességgel. Abban a pillanatban, amikor a két hajó távolsága l, a kereskedőhajóról α szög alatt v₀ kezdősebességű ágyúgolyót lőnek ki.
 - a) Az α szög függvényében határozza meg, mennyi időt tölt az ágyúgolyó a levegőben, (0,5)
 továbbá fejezze ki az ágyúgolyó becsapódási helyének kereskedőhajótól mért távolságát is az α szög függvényében! (0,5)

b) Fejezze ki az ágyúgolyó becsapódási helyének kalózhajótól mért távolságát az α függvényében! (1)

c) Határozza meg, milyen α szög alatt kell kilőni az ágyúgolyót, hogy az eltalálja a kalózhajót abban a speciális esetben, ha a kalózhajó áll, vagyis v_k =0 ! (1)

$$0 = \Delta x = 0$$

$$0 = \Delta x = l - \frac{2V_0 \, \text{kind}}{g} \left(0 - V_0 \, \text{Cool}\right) = l - \frac{2V_0^2 \, \text{kind} \, \text{cool}}{g}$$

$$l = \frac{2V_0^2 \, \text{kindcool}}{g} = \frac{V_6^2 \, \text{sin2d}}{g} \implies \text{kin } 2x = \frac{lg}{V_0^2}$$

$$x = \frac{l}{l} \cdot \text{anchin} \cdot \frac{lg}{V_0^2}$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.		1 E		\$5.5	Service S	25.0	sacaleb iyi	ederka vana

- 2 Egy oroszlánvadász az egyenlítőn függőlegesen felfelé elsüti a puskáját. Az m tömegű golyó a fegyverből v_0 sebességgel lép ki.
 - a) Írjuk fel a golyó sebességének függöleges összetevőjét az idő függvényében! A nehézségi erőteret tekintsük homogénnek! (1)

b) Adja meg a lövedékre ható Coriolis-erő vektorának időfüggését <u>koordinátás alakban</u> egy olyan vonatkoztatási rendszerben, melynek x tengelye kelet felé, y tengelye észak felé, z tengelye pedig függőlegesen felfelé mutat! (A Föld szögsebessége ω. A Coriolis-erő kiszámításakor a lövedék mindenkori sebesség vektorát tekinthetjük függőlegesnek.) (1)

c) Adja meg a lövedék helyvektorát <u>koordinátás alakban</u>, kicsiny Δt idővel a kilövés pillanata után! (1)

$$\overline{a} = \frac{\overline{+}_{cw}}{m} + \overline{q} = \begin{bmatrix} -2\omega(v_0 - gt) \\ -g \end{bmatrix} \approx \begin{bmatrix} -2\omega v_0 \\ 0 \\ -g \end{bmatrix}$$

$$t = \Delta t \Rightarrow igen \ \text{sign}$$

$$\overline{V}_{6} = \begin{bmatrix} 0 \\ V_{6} \end{bmatrix} \qquad \overline{V}_{(\Delta t)} = \overline{V}_{6} \cdot \Delta t + \frac{1}{2} \overline{\alpha} \cdot \Delta t^{2} = \\
\overline{V}_{(\Delta t)} = \begin{bmatrix} 0 \\ V_{6} \end{bmatrix} \cdot \Delta t + \frac{1}{2} \begin{bmatrix} -2 \omega V_{6} \\ 0 \\ -9 \end{bmatrix} \Delta t^{2} = \begin{bmatrix} -\omega \cdot V_{6} \Delta t^{2} \\ 0 \\ V_{6} \cdot \Delta t - \frac{9}{2} \cdot \Delta t^{2} \end{bmatrix}$$

$$\bar{v}(\Delta t) = \left[-\omega \cdot v_o \cdot \Delta t^2 \right] \cdot v_o \Delta t - \frac{q}{2} \Delta t^2$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.				All the	97121			

- 3. Egy l hosszúságú fonálra m tömegű testet függesztünk. Az így kapott ingát függőleges helyzetéből 45°-os szögben kitérítjük, majd v_0 kezdősebességgel elindítjuk az ábra szerint.
 - a) Mekkora az ingatest sebessége a pálya legalsó pontjában? (1)

b) Mekkora erő feszíti a kötelet a pálya legalsó pontjában? (1)

c) Mekkora erő feszíti a kötelet, amikor az inga újra 45°-os szögben tér ki? (1)

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.				E\$ 6	one	105 9	stogletulel	Minas year

Egy M tömegű elszabadult vasúti szerelvény robog v_0 sebességgel a sín végződéhez, ahol a vonat megfékezése céljából két darab m tömegű betontömböt helyeztek el az ábra szerint.

a) Határozza meg az első, és a második tömbbel bekövetkezett tökéletesen rugalmatlan ütközések után kialakuló v₁ és v₂ sebességeket! (1)

kialakuló
$$v_1$$
 és v_2 sebességeket! (1)

① ützezis $M V_0 + 0 + 0 = (M + m) V_1 + 0 \Rightarrow V_1 = \frac{M}{m + M} \cdot V_0$

② ützezis $M V_0 + 0 + 0 = (M + 2m) \cdot V_2! \Rightarrow V_2 = \frac{M}{2m + M} \cdot V_0$

b) A vonat eredeti mozgási energiájának hányad részét nyeli el az első, illetve a második akadály? (1)
$$\Delta E_{0\rightarrow 1} = E_0 - E_1 = \frac{1}{2} M V_0^2 - \frac{1}{2} (M+w) V_1^2 = \frac{1}{2} M V_0^2 - \frac{1}{2} (M+w) \frac{M^2}{(M+w)^2} V_0^2 = \frac{1}{2} M V_0^2 \cdot \frac{m^2}{M+m^2}$$

$$\Delta E_{0\rightarrow 2} = E_0 - E_2 = \frac{1}{2} M V_0^2 - \frac{1}{2} (M+w) V_2^2 = \frac{1}{2} M V_0^2 \cdot \frac{2m}{M+2m}$$

$$\frac{\Delta E_{0\rightarrow 1}}{E_{0}} = \frac{\frac{1}{2} M v_{6}^{2} \frac{m}{M+m}}{\frac{1}{2} M v_{6}^{2}} \frac{m}{M+m} \frac{\Delta E_{1\rightarrow 2}}{E_{0}} = \frac{\Delta E_{0\rightarrow 2} - \Delta E_{0\rightarrow 1}}{E_{0}} \frac{2m}{2m+M} \frac{m}{M+m}$$

c) Mekkorának kell választanunk a betontömbök m tömegét, hogy a kezdeti mozgási energia 99%-a elnyelődjék az akadályokban? (1)

$$0,99 = \frac{\Delta E_{0 \to 2}}{E_{0}} = \frac{2m}{M + 2m}$$

$$0,99M + 2.0,99m = 2m$$
 $0,99M = 2m(1-0,99)$

$$m = M \cdot \frac{9,99}{2.0,01} = \frac{99}{2}M$$

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.					(10 A)			

Kifejtendő kérdések

 Definiálja a centrifugális erő fogalmát egy mondatban. (Milyen körülmények között értelmezhető, és milyen típusú erő a centrifugális erő) (1) Vektorábrán szemléltesse a centrifugális erőteret! (0,5) Adjon meg matematikai összefüggést egy tömegpontra ható centrifugális erő meghatározására, és nevezze meg az összefüggésben szereplő fizikai mennyiségeket! (1) Miért tekinthetjük a centrifugális erőt erőtérnek? (0,5)

2. Fogalmazza meg a munkatételt! (1) Írja fel matematikai összefüggés formájában is! (0,5) Egy m tömegű testet egy h₁ magasságú pontból lefelé irányuló v₁ kezdősebességgel eldobunk homogén g nehézségi erőtérben. A test sebessége h₂ magasságban v₂ nagyságú. A mechanikai munka definícióját felhasználva határozza meg a nehézségi erőtér testen végzett munkáját! (0,5) A munkatételből kiindulva mutassa meg a fenti példán keresztül, hogy homogén nehézségi erőtérben a kinetikus, valamint az E_{pot}=mgh formában definiált potenciális

energia összege állandó! (1)
Mun Latelfel: Egy testre ható erők munkaja megegyirik a tert
kinetikus energia jának meguil tarásaíval. W= I Exim

Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
Pót nagy zárthelyi dolgozat, 2017. nov. 23.				223	on X		asomion ivi	

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

	Vektorok skaláris szorzata arányos a két vektor által közbezárt szög COMMUSOLUTEL
	Eötvös Loránd mérései szerint a testek huljos és tehytetelin tonega 7 tizedesjegy pontossággal megegyezik.
3.	Egyenletes körmozgás szögsebességének és fordulatszámának hányadosa
	Ferde hajítás során a test
5.	A Föld felszíne felett R magasságban a gravitációs gyorsulás értékeszerese a
	Föld felszínén mért gravitációs gyorsulásnak. (R a Föld sugara)
6.	Vízszintes talajon nyugszik egy m tömegű test. A testet vízszintes F erővel húzzuk, de a test nem mozdul meg. A talaj és a test között mérhető tapadási súrlódási együttható μ_0 . A tapadási súrlódási erő nagysága:
7.	A Foucault-inga lengési síkját a Cerioliserő változtatja meg.
8.	A munka, valamint a munkavégzéshez szükséges idő hányadosátteljesátmelgkelnevezzük.
9.	A rugóban tárolt energia arányos a rugó megnyúlásának
10.	Ha egy erőtér nem konzervatív, nem érvényes a Michaile cengia megnarolab törvénye.
11.	Pontrendszer . † Chreatiszáppantjahal. gyorsulása arányos a pontrendszerre ható külső erők eredőjével.
12.	Pontrendszer impulzusának i Legyközenbelató megyeltozak arányos a pontrendszerre ható külső erők eredőjével.