Лексикографското произведение на фундирани множества е фундирано множество

Иво Стратев

21 март 2019 г.

Твърдение:

Нека $(A, <_A)$ е фундирано множество и нека $(B, <_B)$ е фундирано множество. Тогава $(A \times B, <_{lexA,B})$ е фундирано множество, където $(\forall (a,b) \in A \times B)(\forall (a',b') \in A \times B)[(a,b) <_{lexA,B} (a',b') \longleftrightarrow a <_A a' \lor (a = a' \& b <_B b')]$

Доказателство:

Нека $(A, <_A)$ е фундирано множество и нека $(B, <_B)$ е фундирано множество. Нека $(\forall (a,b) \in A \times B)(\forall (a',b') \in A \times B)[(a,b) <_{lexA,B} (a',b') \longleftrightarrow a <_A a' \lor (a = a' \& b <_B b')]$

Ще докажем, че в $(A \times B, <_{lexA,B})$ няма безкрайни спускания, което е еквивалентно на това множеството $(A \times B, <_{lexA,B})$ да е фундирано.

Допускаме, че в $(A \times B, <_{lexA,B})$ има безкрайно спускане. Тогава е вярно, че съществува редица p_0, p_1, \ldots с елементи от $A \times B$, таква че $p_0 >_{lexA,B} p_1 >_{lexA,B} \ldots$ Нека тогава $(a_0, b_0), (a_1, b_1), \ldots$ с елементи от $A \times B$ е такава, че $(a_0, b_0) >_{lexA,B} (a_1, b_1) >_{lexA,B} \ldots$ Тогава са възможни два случая:

Случай 1:

 $(\forall i \in \mathbb{N})[a_i >_A a_{i+1}]$. Тогава $a_0 >_A a_1 >_A \dots$ е безкрайно спускане в $(A, <_A)$, но това е абсурд, понеже $(A, <_A)$ е фундирано.

Случай 2:

 $(\exists i \in \mathbb{N})[a_i =_A a_{i+1} \& b_i >_B b_{i+1}]$ Нека тогава $I := \{n \in \mathbb{N} \mid a_n =_A a_{n+1} \& b_n >_B b_{n+1}\}$. Очевидно $I \neq \emptyset$. Възможни са два под случая:

Случай 2.1:

Множеството I е крайно. Понеже множеството I е крайно множество от естествени числа, то има максимален елемент относно релацията $<_{\mathbb{N}}$, която е линейна наредба. Нека тогава i е този максимален елемент. Да допуснем, че $(\exists j \in \mathbb{N})[j>_{\mathbb{N}} i \& a_j=a_{j+1} \& b_j>_B b_{j+1}]$. Нека $j\in \mathbb{N}$ и $j>_{\mathbb{N}} i \& a_j=a_{j+1} \& b_j>_B b_{j+1}$. Тогава $j\in I$ и $i<_{\mathbb{N}} j$ значи i не е максимален, което е противоречие. Тогава е в сила $(\forall n_1\in \mathbb{N})(\forall n_2\in \mathbb{N})[i<_{\mathbb{N}} n_1 \& n_1<_{\mathbb{N}} n_2\longrightarrow a_{n_1}>_A a_{n_2}]$.

Тогава редицата $(a_i, b_i), (a_{i+1}, b_{i+1}), \dots$ попада в **Случай 1**, понеже сме премахнали само краен брой членове от оригиналната.

Случай 2.2:

Множеството I е изброимо безкрайно. Тогава са възможни два случая:

Случай 2.2.1:

 $(\exists J\subseteq I)\left[\overline{\overline{J}}=\overline{\overline{\omega}}\ \&\ (\exists a\in A)(\forall j\in J)[a_j=a]\ \&\ (\forall j_1\in J)(\forall j_2\in J)[j_1<_{\mathbb{N}}\ j_2\longrightarrow b_{j_1}>_Bb_{j_2}]\right]$ Нека тогава $J\subseteq I$, нека $a\in A$ и нека $\overline{\overline{J}}=\overline{\overline{\omega}}\ \&\ (\forall j\in J)[a_j=a]\ \&\ (\forall j_1\in J)(\forall j_2\in J)[j_1<_{\mathbb{N}}\ j_2\longrightarrow b_{j_1}>_Bb_{j_2}].$ Тогава е вярно $(\forall j_1\in J)(\forall j_2\in J)[j_1<_{\mathbb{N}}\ j_2\longrightarrow b_{j_1}>_Bb_{j_2}].$ Понеже $J\subseteq I\subseteq \mathbb{N}$ и $\overline{\overline{J}}=\overline{\overline{\omega}},$ то елементите на J могат да бъдат наредени в строго растяща редица $j_0<_{\mathbb{N}}\ j_1<_{\mathbb{N}}\dots$ Но тогава $b_{j_0}>_Bb_{j_1}>_B\dots$ е безкрайно спускане, което е абсурд, защото $(B,<_B)$ е фундирано множество.

Случай 2.2.2:

$$(\forall J\subseteq I)[(\exists a\in A)[(\forall j\in J)[a_j=a] \& (\forall j_1\in J)(\forall j_2\in J)[j_1<_{\mathbb{N}} j_2\longrightarrow b_{j_1}>_B b_{j_2}]]\longrightarrow (\exists n\in \mathbb{N})[\overline{J}=\overline{\{0,1,\dots,n-1\}}]]$$
 Тогава въвеждаме следната релация $R:=\{(i_1,i_2)\in I\times I\mid a_{i_1}=a_{i_2}\}.$

R е рефлексивна

В сила е $(\forall i \in I)[a_i = a_i] \longrightarrow (\forall i \in I)[(i,i) \in R]$, тоест R е рефлексивна.

R е симетрична

Нека $(i_1,i_2) \in R$ тогава $a_{i_1}=a_{i_2}$. Но понеже равенството е симетрично, то $a_{i_2}=a_{i_1}$ и значи $(i_2,i_1) \in R$. Следователно $(\forall (i_1,i_2) \in R)[(i_2,i_1) \in R]$, следователно R е симетрична.

R е транзитивна

Нека $(i_1,i_2) \in R$ и нека $(i_2,i_3) \in R$. Тогава $a_{i_1} = a_{i_2} \& a_{i_2} = a_{i_3}$, но понеже равенството е транзитивна релация, то $a_{i_1} = a_{i_3}$. Следователно $(i_1,i_3) \in R$ и тогава е в сила $(\forall i_1 \in R)(\forall i_2 \in R)(\forall i_3 \in R)[(i_1,i_2) \in R \& (i_2,i_3) \in R \longrightarrow (i_1,i_3) \in R]$. Тоест R е транзитивна.

Заключение R е релация на еквивалентност.

Тогава нека $K := \{[i]_R \mid i \in I\}.$

Лема:
$$(\forall J \in K)(\exists n \in \mathbb{N})[\overline{\overline{J}} = \overline{\{0,1,\dots,n-1\}}]$$
 Нека $J \in K$ и нека $j \in J$ тогава е в сила $(\forall j' \in J)[(j,j') \in R] \longrightarrow (\forall j' \in J)[a_{j'} = a_j]$. Понеже $J \subseteq I$, то е в сила $(\forall j_1 \in J)(\forall j_2 \in J)[j_1 <_{\mathbb{N}} j_2 \longrightarrow b_{j_1} >_B b_{j_2}]$. Тогава е в сила $(\exists n \in \mathbb{N})[\overline{\overline{J}} = \overline{\{0,1,\dots,n-1\}}]$. Нека тогава $n \in \mathbb{N}$ и $\overline{\overline{J}} = \overline{\{0,1,\dots,n-1\}}$.

Тогава $(\forall J \in K)(n \in \mathbb{N})[\overline{\overline{J}} = \overline{\{0, 1, \dots, n-1\}}].$

Както знаем K е разбиване на I и доказахме, че всеки елемент на K е крайно множество. Тогава K изброимо безкрайно иначе ще се окаже, че I, което е изброимо безкрайно е обединение на краен брой крайни множества, тоест е крайно, което е абсурд. Прилагаме аксиомата за избора за множеството I и получаваме функция $f:\mathcal{P}(I)\setminus\emptyset\to I$, за която $(\forall S\in\mathcal{P}(I)\setminus\emptyset)[f(S)\in S]$. K е разбиване, тогава е в сила $(\forall J_1\in K)(\forall J_2\in K)[a_{f(J_1)}=a_{f(J_2)}\longleftrightarrow J_1=J_2]$. Нека тогава $J:=\{f(k)\mid k\in K\}$. Така $(\forall j_1\in J)(\forall j_2\in J)[j_1<_\mathbb{N}\ j_2\longrightarrow (a_{j_1},b_{j_1})>_{lexA,B}$ $(a_{j_2},b_{j_2})\ \&\ a_{j_1}\neq a_{j_2}]\longrightarrow (\forall j_1\in J)(\forall j_2\in J)[j_1<_\mathbb{N}\ j_2\longrightarrow a_{j_1}>_A a_{j_2}]$. Очевидно $\overline{J}=\overline{K}=\overline{\omega}$. Тогава елементите на J могат да бъдат наредени в строго растяща редица $j_0<_\mathbb{N}\ j_1<_\mathbb{N}$ Но тогава $a_{j_0}>_A a_{j_1}>_A$. . . е безкрайно спускане, което е абсурд, защото $(A,<_A)$ е фундирано множество.

Разгледахме всички възможни случаи: когато нямаме повтарящи се първи елементи, когато имаме само краен брой повторения, когато имаме изброимо много с два подслучая (изброимо дълга поредица и изборимо много крайни поредици) и при всички достигнахме до противоречие. Няма друг възможен случай. Тогава не е вярно, че в $(A \times B, <_{lexA,B})$ има безкрайно спускане. Следователно в $(A \times B, <_{lexA,B})$ няма безкрайно спускане. Следователно $(A \times B, <_{lexA,B})$ е фундирано. Твърдението е доказано.