a) 5R/2c) 7R/2e) 9R/2

Jméno a příjmení:		Podpis:		
1.	Výraz $\sqrt{y} \cdot \sqrt[3]{y^{-2}} \cdot \sqrt[6]{y^3}$ je pro $y > 0$ roven			
	a) $\sqrt[6]{y}$	b) $\sqrt[3]{y}$	30	
	c) $y\sqrt{y}$	b) $\sqrt[3]{y}$ d) $\sqrt{y^{-1}}$	- 6	
	$e) - \sqrt[6]{y}$			
2.	Ze 60 zaměstnanců firmy jich 28 chodí do kurzu angličtiny a 17 do kurzu němčiny. 20 lidí nechodí do žádného z těchto kurzů. Kolik zaměstnanců chodí do angličtiny, a přitom nechodí do němčiny?			
	a) 21	b) 22	30	
	c) 23	d) 24	- 6	
	e) 25	,		
3.	Určete všechny hodnoty parametru p , pro které má rovnice $2x^2 - 4px - p = 0$ dva různé reálné kořeny.			
	a) $p \in (0, \infty)$	b) $p \in (-1/2, 0)$	(30)	
	c) $p \in (0, 1/2)$	d) $p \in (-\infty, 0) \cup (1/2, \infty)$	- 6	
	e) $p \in (-\infty, -1/2) \cup (0, \infty)$			
4.	Parabola o rovnici $y = x^2 - 4x + 1$ má vrchol v bodě			
	a) [2, 3]	b) $[2, -3]$	30	
	c) [-2,3]	d) $[-2, -3]$	- 6	
	e) uvedená rovnice není rovnicí paraboly	-7 [7 -1		
5.	Pro libovolná dvě čísla x,y splňující podmínku $y=x+\pi/2$ platí			
	a) $\sin x = \cos y$	b) $\sin y = \cos x$	(50)	
	c) $\sin y = -\cos x$	d) $\sin x = \sin y$	- 10	
	e) $\cos x = \cos y$	-, ,		
6.	Rovnice přímky procházející body $A = [1,3]$ a $B = [-1,4]$ je			
	a) $x + 2y - 7 = 0$	b) $x + 2y + 7 = 0$	(50)	
	c) $-x + 2y - 5 = 0$	d) $-2x + y - 1 = 0$	- 10	
	e) $2x - y + 6 = 0$			
7.	Přičteme-li totéž číslo k číslům 2, 7, 17, dostaneme první tři členy geometrické posloupnosti. Určete šestý člen této posloupnosti.			
	a) 80	b) 100	(50)	
	c) 120	d) 160	- 10	
	e) 240	,		
8.	Mezi čísly a,b,c,d,e,f platí nerovnosti: $a>b,b< c,d< e,e>a,f< a.$ Který z následujících vztahů může platit?			
	a) $b = e$	b) $e = f$	(50)	
	c) $c = f$	d) Může platit kterýkoli z předchozích vztahů.	- 10	
	e) Nemůže platit ani jeden z předchozích	,		
	vztahů.			
9.	Koule má poloměr R a válec má poloměr podstavy $r=R/2$. Jaká je výška válce, je-li jeho povrch stejný jako			
	povrch koule?		(50)	
	a) $5R/2$	b) 3 <i>R</i>	10	
	c) $7R/2$	d) 4R	- 10	

10. Řešení rovnice $\sqrt{x+5}-\sqrt{x}=3$ v oboru reálných čísel je

	a) $x = 4/9$ c) $x = 2/3$	b) $x = -4/9$ d) $x = -\sqrt{6}/3$	(50) - 10	
	e) rovnice nemá řešení			
11.	Rovnost $3 x-1 - 2x+1 = -x + 4$ plat	í pro		
	a) $x \in (-\infty, -1/2)$	b) $x \in \langle -1/2, 1 \rangle$	(50)	
	c) $x \in \langle 1, \infty \rangle$ e) neplatí pro žádné reálné x	d) každé reálné x	- 10	
12.	Řešení rovnice $\log(2x-3) = \log(x+8) - 1$ je			
	a) $x = 0$	b) $x = 2$	(50)	
	c) $x = 10$ e) rovnice nemá řešení	d) $x = 12$	- 10	
13.	Operace \ominus je definována jako $a\ominus b=ab+3a$. Čemu je rovno $3\ominus x$, jestliže $x\ominus 3=12$?			
	a) 6	b) 9	(80)	
	c) 12 e) 18	d) 15	- 16	
14.	Máše je 24 let. Má dvakrát tolik let, jako bylo Dáše, když Máše bylo tolik let, jako je Dáše dnes. Kolik let je Dáše?			
	a) 12	b) 14	(80)	
	c) 16 e) 20	d) 18	- 16	
15.	Radek koupil n kusů zboží celkem za 400 Kč. 10 kusů si nechal, zbytek prodal celkem za 300 Kč, přičemž na každém prodaném kusu vydělal 4 Kč. Za jakou cenu za kus Radek zboží nakoupil?			
	a) 2 Kč	b) 4 Kč	80	
	c) 8 Kč e) 16 Kč	d) 12 Kč	- 16	
16.	Závodu se účastnilo 5 soutěžících z týmu A a 4 soutěžící z týmu B. Kolika způsoby mohla být obsazena prvn tři místa, jestliže víme, že závod vyhrál člen týmu B a na třetím místě je člen týmu A?			
	a) 16	b) 18	(80)	
	c) 140 e) 200	d) 180	- 16	
17.	Je dána funkce $f(x) = (x+1)/(2x-1)$. Pak $f(3t+1) =$			
	a) $(5t+2)/(2t-1)$	b) $(5t+2)/(2t+1)$	80	
	c) $(3t+2)/(6t-1)$ e) $(3t+2)/(6t+1)$	d) $(3t+2)/(6t)$	- 16	
18.	Tři chlapci – Tomáš, Jan a Petr – se věnují každý jinému sportu – fotbalu, hokeji a tenisu – a chovají každy jiné zvíře – psa, papouška a rybičky. Petr hraje fotbal. Tomáš má papouška. Jan nemá psa. Hokejista nema papouška. Které tvrzení je pravdivé?			
	a) Tomáš hraje hokej.	b) Jan nehraje hokej.	80	
	c) Petr nemá psa. e) Tenista má rybičky.	d) Hokejista má rybičky.	- 16	