

springtime	họrsebạcķ
pıoneer	snowilake
maęlstrom	heroically
bécalmí	scholarly

Problem: Given 2 sequences, $X = \langle x_1, \ldots, x_m \rangle$ and $Y = \langle y_1, \ldots, y_n \rangle$. Find a subsequence common to both whose length is longest. A subsequence doesn't have to be consecutive, but it has to be in order.

Brute-force algorithm:

Brute-force algorithm:

For every subsequence of X, check whether it's a subsequence of Y.

Time complexity?

Brute-force algorithm:

For every subsequence of X, check whether it's a subsequence of Y.

Time: $\Theta(n2^m)$.

- 2^m subsequences of X to check.
- Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, from there scan for second, and so on.

Dynamic Programming ?

Optimal substructure

Notation:

$$X_i = \operatorname{prefix} \langle x_1, \dots, x_i \rangle$$

$$Y_i = \operatorname{prefix} \langle y_1, \dots, y_i \rangle$$

Theorem

Let $Z = \langle z_1, \ldots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1} .

Three cases to consider:

$$Z_{k-1} = LCS(X_{m-1}, Y_{n-1})$$

$$\frac{2k-1}{2k-1}$$

$$Z = LCS(X, Y_{n-1})$$

Z = LCS (Xmy, Y)

Naive remsire algorithis LCS (X, Y): if X=empty or Y=empty: vetum empty If last Symbol (X) = last Symbol (T) return LCS (prefix(X), prefix(Y) @ lastSymbol(X) $Z_1 = LCS(prefix(x), Y)$ Zz=LCS(X, prefix(Y)) if len(2) > len(22) veturn Z, else return 22

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want c[m, n].

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want c[m, n].

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \text{ ,} \\ c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i = y_j \text{ ,} \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j>0 \text{ and } x_i \neq y_j \text{ .} \end{cases}$$

- Lots of repeated subproblems.
- Instead of recomputing, store in a table.

Compute length of optimal solution

LCS-LENGTH(
$$X,Y,m,n$$
)

for $i \leftarrow 1$ to m

do $c[i,0] \leftarrow 0$

for $j \leftarrow 0$ to n

do $c[0,j] \leftarrow 0$

for $i \leftarrow 1$ to m

do for $j \leftarrow 1$ to m

do if $x_i = y_j$

then $c[i,j] \leftarrow c[i-1,j-1] + 1$
 $b[i,j] \leftarrow m$

else if $c[i-1,j] \geq c[i,j-1]$
 $b[i,j] \leftarrow m$

else $c[i,j] \leftarrow c[i-1,j]$
 $corres$ from both.

else $c[i,j] \leftarrow c[i,j-1]$
 $corres$ from both.

Compute length of optimal solution

```
LCS-LENGTH(X, Y, m, n)
for i \leftarrow 1 to m
     do c[i, 0] \leftarrow 0
for j \leftarrow 0 to n
     do c[0, j] \leftarrow 0
for i \leftarrow 1 to m
    do for j \leftarrow 1 to n
               do if x_i = y_i
                      then c[i, j] \leftarrow c[i - 1, j - 1] + 1
                             b[i, j] \leftarrow "\"
                      else if c[i - 1, j] \ge c[i, j - 1]
                                then c[i, j] \leftarrow c[i-1, j] O(?)
                                      b[i, j] \leftarrow "\uparrow"
                                else c[i, j] \leftarrow c[i, j-1]
                                      b[i, j] \leftarrow "\leftarrow"
```


Compute length of optimal solution

```
LCS-LENGTH(X, Y, m, n)
for i \leftarrow 1 to m
     do c[i, 0] \leftarrow 0
for j \leftarrow 0 to n
    \mathbf{do}\ c[0,j] \leftarrow 0
for i \leftarrow 1 to m
   do for j \leftarrow 1 to n
              do if x_i = y_i
                     then c[i, j] \leftarrow c[i - 1, j - 1] + 1
                                                                           O(?)
                           b[i,j] \leftarrow "\"
                     else if c[i - 1, j] \ge c[i, j - 1]
                              then c[i, j] \leftarrow c[i-1, j] \mid O(n)
                                    b[i, j] \leftarrow "\uparrow"
                              else c[i, j] \leftarrow c[i, j-1]
                                   b[i,j] \leftarrow "\leftarrow"
return c and b
```


Compute length of optimal solution

```
LCS-LENGTH(X, Y, m, n)
for i \leftarrow 1 to m
     do c[i, 0] \leftarrow 0
for j \leftarrow 0 to n
    \mathbf{do}\ c[0,j] \leftarrow 0
for i \leftarrow 1 to m
   do for j \leftarrow 1 to n
              do if x_i = y_i
                     then c[i, j] \leftarrow c[i - 1, j - 1] + 1
                                                                            O(mn)
                           b[i, j] \leftarrow "\\\"
                     else if c[i - 1, j] \ge c[i, j - 1]
                              then c[i, j] \leftarrow c[i-1, j] \mid O(n)
                                    b[i, j] \leftarrow "\uparrow"
                              else c[i, j] \leftarrow c[i, j-1]
                                   b[i,j] \leftarrow "\leftarrow"
```


return c and b

X = ABCBDABY = BDCABA

LCS(X,Y) = BCBA

- Naïve approach has exponential time complexity
- Dynamic programming formulation has polynomial time complexity

- Thinking points:
 - Memoization?
 - Is memoization better than bottom-up processing? If so, why?

- Longest common sequence
 - Dynamic Programming
- Relevant material
 - MIT video lecture on dynamic programming
 - http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and -Computer-Science/6-046JFall-2005/VideoLectures/detail /embed15.htm
 - http://www.algorithmist.com/index.php/Longest_Common_Subsequence

