

RELATÓRIO AVALIATIVO - PROJETO FINAL

GRUPO 07:

Miguel Marques Ferreira - 20180080112

Pedro Henrique Garcia - 20190112775

Maria Stefanie Moura - 20180085530

Gabriel Bordini Lira - 20180092570

João Pessoa, PB

22 de Junho de 2022

1. Introdução

A partir do estudo realizado ao longo do período, foi solicitado aos alunos que realizassem um projeto final para validar o conhecimento adquirido na disciplina. O projeto por sua vez deve propor soluções para dois problemas que envolvem: rede no tempo e circuitos em regime permanente senoidal. Dito isso, este relatório traz informações sobre o desenvolvimento do projeto.

2. Desenvolvimento

Para alcançar o objetivo estimado, foi necessário desenvolver códigos no *software* MATLAB, otimizando assim o processo de resolução dos problemas que foram são referidos como: questão 01 e 02.

A organização em equipe foi indispensável para a realização dessa atividade, sendo assim, os alunos do grupo 07 se reuniram via Google Meet para programar e calcular os circuitos, assim como a execução deste documento.

A seguir, temos a disposição da primeira questão, trazendo os resultados obtidos através de uma tabela e do gráfico obtido também a partir do código desenvolvido pela equipe. E em seguida, a questão 02 que também foi exemplificada.

2.1 Questão 1 - Circuito no Regime Permanente Senoidal

Informações Iniciais:

- Ramo
- Nó de Saída
- Nó de Entrada
- Resistência de Ramo
- Indutância de Ramo
- Corrente Inicial do Indutor
- Capacitância de Ramo
- Tensão Inicial do Capacitor
- Tipo de Fonte (não é utilizado)
- Fonte de Tensão de Ramo

- Fase da Fonte de Tensão de Ramo
- Fonte de Corrente de Ramo
- Fase da Fonte de Corrente de Ramo
- Frequência Angular

Circuito Elétrico do Grupo 07 Referente à Questão 01

Figura 1 - Circuito elétrico para a análise. Resolva para regime permanente senoidal, determine o fasor da corrente i?¶ Resolva para condições iniciais nulas e trace tensão de entrada e corrente i(t).

Tabela de Entrada do Programa

Tabela 1 - Dados de Entrada para a Análise dos Circuitos no Regime Senoidal.

Ramos	Ramo 1	Ramo 2	Ramo 3
Nó de Saída	2	1	1
Nó de Entrada	1	2	2
R	2	1	4
L	0	0	0
io	0	0	0
C	0	1	0
Vo	0	0	0
Vind	10	0	0
Iind	-1	0	0
θν	0	0	0

θί	0	0	0
ω	2	0	0

Como é ilustrado na Figura 1, ele possui 2 nós e 3 ramos e, assim, tem-se a matriz de incidência ramo-nó com dimensão 2 × 3 a seguir (Tabela 2).

Tabela 2 - Matriz de Incidência da Questão 01.

Nós	Ramo 1	Ramo 2	Ramo 3
1	1	1	1
2	-1	-1	-1

A partir disso, a questão pede o valor da corrente no resistor de 2 Ohm em série com a fonte de tensão alternada de 10cos(8t). Dessa forma, para descobrir a corrente no Ramo 1, onde o resistor de 2 Ohm se encontra, foi desenvolvido um programa que calcula a tensão em cada Ramo, no único Nó e a corrente em cada Ramo. A Tabela 1 a seguir reúne os valores calculados.

Tabela 3 - Tabela Final para a Análise do Circuito da Questão 1.

Ramo	Tensão de Ramo (V)	Tensão de Nó (V)	Corrente de Ramo (A)
1	4.2453 + 2.3585i	4.2453 + 2.3585i	-2.8774 + 1.1792i
2	4.2453 + 2.3585i	4.2453 + 2.3585i	1.7925 - 1.2264i
3	4.2453 + 2.3585i	4.2453 + 2.3585i	1.0849 + 0.0472i

De acordo com a Tabela 3 anterior, é perceptível que a tensão no único nó é igual a tensão em cada um dos ramos do circuito, ou seja, os ramos estão em paralelo com relação ao Nó 1 e o Nó 2 é o nó de referência.

Por fim, a corrente no resistor de 2 Ohm é de 2.8774 + 1.1792i A, na forma complexa, e 3.1097 ∠22.2845°. Por outro lado, a tensão em cima do resistor é de 5.7548 + 2.3584i V, na forma complexa, e 6.2193 ∠22.2845° V na forma polar, o que comprova que a tensão e a corrente no resistor estão em fase.

Figura 2 - Representação da Corrente e Tensão no Plano Complexo.

2.2 Questão 2 - Circuito no Regime do Tempo

Figura 3 - Circuito elétrico para a análise

Resolva para regime permanente senoidal, determine o fasor da corrente i? Resolva para condições iniciais nulas e trace tensão de entrada e corrente i(t). $v_s = 10\cos(8t)$

Assim como a primeira questão, o cálculo e projeção da segunda questão também foi realizado com base no circuito acima. Logo, vemos um circuito com dois nós e três ramos, possibilitando assim a existência de uma matriz de incidência 2x3 como apresentada na Tabela 2. A seguir está a Tabela 4 com os dados de entrada para o código desenvolvido.

Tabela de Entrada do Programa

Tabela 4 - Dados de Entrada para para a Análise do Circuito no Regime no Tempo.

Ramos	Ramo 1	Ramo 2	Ramo 3
Nó de Saída	1	1	1
Nó de Entrada	2	2	2
R	2	1	4
L	0	0.25	0.25
io	0	0	0
C	0	0	0
Vo	0	0	0
Vind	10	0	0
Iind	0	0	0
θv	0	0	0
θі	0	0	0
ω	8	0	0

Figura 3 - Corrente e Tensão no Resistor de 2 Ohm.

Figura 4 - Tensão e Corrente no Resistor de 2 Ohms.

Figura 5 - Tensão da Fonte e Tensão e Corrente no Resistor de 2 Ohms.

3. Conclusão

Após a execução dessa atividade, podemos evidenciar nosso domínio sobre o MATLAB para desenvolvimento de códigos, e também resolução dos circuitos no regime do tempo e no regime permanente senoidal. Concluindo assim, o ciclo de conteúdos que a disciplina fornece

4. Referências

[1] DA COSTA, V. M. Circuitos Elétricos Lineares: Enfoque Teórico e Prático. Editora Interciência, 2013.