UN ALGORITHME D'APPRENTISSAGE PARCIMONIEUX MAXIMISANT LE DÉSACCORD

Jean-Francis Roy 13 février 2015

Université Laval

INTRODUCTION

INTRODUCTION

Nous nous attaquons au problème de **classification binaire** en apprentissage automatique. Après une introduction au problème à résoudre, nous déduirons de **bornes** un **algorithme d'apprentissage**. En utilisant des techniques d'**optimisation**, nous rendrons cet algorithme **parcimonieux**.

PLAN DE LA PRÉSENTATION

Introduction

Motivation

Définitions de base et notation

Les méthodes d'ensemble

La C-borne

MinCq: Minimiser la C-borne

CqBoost : un algorithme de type Boosting

Conclusion

MOTIVATION

APPLICATIONS

- · Prédire si un courriel est un « spam » ou non (en fonction de son contenu)
- · Prédire si un client s'intéressera à un produit (en fonction de ses achats antérieurs)
- · Prédire si un utilisateur cliquera sur une publicité (en fonction de son comportement)
- Prédire si une protéine et une molécule se lieront ensemble (en fonction de leur description)
- · Prédire si une application Android est un « malware » (en fonction de son comportement)
- · En gros : apprendre une fonction qui catégorise un nouvel élément observé

PROPRIÉTÉ SUPPLÉMENTAIRE DÉSIRÉE

Cette fonction peut être plus ou moins complexe.

Lorsque le problème le permet, une solution **simple** (et **interprétable**) est préférable dans plusieurs applications.

Est-ce suffisant de construire une fonction de prédiction performante sur les données que nous avons ?

Ici, on ne fait aucune erreur.

Ici, on se permet quelques erreurs, mais on devrait mieux généraliser aux futurs exemples observés.

Nous supposons que les données auxquelles nous avons accès proviennent toutes de la même distribution.

Nous recherchons une fonction de classification performante sur cette distribution!

DÉFINITIONS DE BASE ET NOTATION

DÉFINITIONS

Nous considérons les problèmes de classification binaire, où

- · Un **exemple** est une paire (x, y), où
 - $\mathbf{x} \in \mathcal{X}$, où \mathcal{X} est l'espace d'entrée représentant sa description. Généralement, $\mathcal{X} = \mathbb{R}^d$
 - $y \in \mathcal{Y}$, où $\mathcal{Y} = \{-1, +1\}$ est l'étiquette de l'exemple
- · Chaque exemple est indépendamment et identiquement distribué (i.i.d.) d'une distribution inconnue D sur $\mathcal{X} \times \mathcal{Y}$.
 - · On dénote cette relation par $(x, y) \sim D$
- · L'ensemble d'entraı̂nement est $S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_m, y_m)\} \sim D^m$.
- · Un algorithme d'apprentissage reçoit en entrée l'ensemble S et produit un classificateur $h: \mathcal{X} \mapsto \mathcal{Y}$ en sortie.

LE PROCESSUS

Nous voulons trouver un classificateur *h* qui **minimise** le *risque*, c'est à dire la **probabilité de faire une erreur** sur un **nouvel exemple** tiré selon *D*.

$$R_{D}(h) \triangleq \Pr_{(\mathbf{x}, y) \sim D} (h(\mathbf{x}) \neq y)$$
$$= \mathop{\mathsf{E}}_{(\mathbf{x}, y) \sim D} I[h(\mathbf{x}) \neq y] ,$$

où I [a] est la fonction indicatrice, qui retourne 1 si le prédicat a est vrai, et 0 autrement.

· Mais nous ne connaissons pas D...

LE RISQUE EMPIRIRIQUE

Nous connaissons S! Le risque empirique est définit comme suit :

$$R_{S}(h) = \mathop{\mathsf{E}}_{(\mathbf{x}, y) \sim S} \mathbf{I} [h(\mathbf{x}) \neq y]$$
$$= \frac{1}{m} \sum_{k=1}^{m} \mathbf{I} [h(\mathbf{x}_{k}) \neq y_{k}] .$$

Mais minimiser le risque empirique **ne permet pas de bien généraliser** (et c'est NP-difficile).

LES MÉTHODES D'ENSEMBLE

LE VOTE DE MAJORITÉ

Nous considérons les classificateurs qui prennent la forme d'un vote de majorité Q-pondéré. Soit \mathcal{H} un ensemble de votants de la forme $f: \mathcal{X} \mapsto [-1,1]$ et soit Q une distribution sur \mathcal{H} , le vote de majorité B_Q est défini par

$$B_Q(\mathbf{x}) \triangleq \operatorname{sgn}\left[\underset{f\sim Q}{\mathsf{E}} f(\mathbf{x})\right],$$

où sgn[a] = 1 si a > 0 et -1 autrement.

LES VOTES DE MAJORITÉ SONT PARTOUT

- · Algorithmes de type Bagging
- · Algorithmes de type Boosting
- · Random Forests
- · Bayesian model averaging
- · Support Vector Machines

EXEMPLE JOUET

Voici un ensemble de données en deux dimensions. Chaque point rouge est un exemple négatif, et chaque point bleu un exemple positif.

LES VOTANTS

Voici la frontière de décision d'un ensemble ${\cal H}$ de 6 votants.

LE VOTE DE MAJORITÉ

Combiner ces votants avec une distribution Q soigneusement choisie permet d'obtenir le classificateur suivant :

L'EFFET DE GROUPE

- · Chaque votant est individuellement peu performant
- · Mais la combinaison Q-pondérée peu l'être!

EN RÉSUMÉ

Étant donné une distribution D sur $\mathcal{X} \times \mathcal{Y}$ et un ensemble de votants \mathcal{H} , nous cherchons une une distribution Q sur \mathcal{H} qui minimise

$$R_D(B_Q) = \underset{(\mathbf{x},y)\sim D}{\mathbf{E}} I[B_Q(\mathbf{x}) \neq y].$$

Encore une fois, nous ne connaissons pas *D*, et minimiser le risque empirique n'est pas une bonne idée. Cherchons un **substitut** (surrogate)...

LA C-BORNE

La marge M_Q d'un vote de majorité sur un exemple (\mathbf{x}, \mathbf{y}) est définie comme la proportion du vote accordée à la bonne classe, moins la proportion du vote accordée à la mauvaise classe. Dans le cas de la classification binaire, on a

$$M_{\mathbb{Q}}(\mathbf{x},y) \triangleq y \underset{f \sim \mathbb{Q}}{\mathbf{E}} f(\mathbf{x}).$$

Lorsque la marge est **positive**, le vote de majorité ne fait **pas d'erreur**. Si elle est **négative**, celui-ci fait une **erreur**. Alors,

$$R_D(B_Q) = \Pr_{(\mathbf{x},y)\sim D}(M_Q(\mathbf{x},y) \leq 0).$$

LES MOMENTS DE LA MARGE

Soit D' une distribution sur $\mathcal{X} \times \mathcal{Y}$, posons $M_Q^{D'}$ la variable aléatoire qui retourne la marge sur un exemple (\mathbf{x}, y) tiré selon D'.

Les deux premiers moments statistiques de cette variable aléatoire sont :

$$\mu_1(\mathsf{M}_{\mathsf{Q}}^{\mathsf{D}'}) \triangleq \underset{(\mathbf{x},y) \sim \mathsf{D}'}{\mathsf{E}} \mathsf{M}_{\mathsf{Q}}(\mathbf{x},y),$$

$$\mu_2(\mathsf{M}_{\mathsf{Q}}^{\mathsf{D}'}) \triangleq \underset{(\mathsf{x},\mathsf{y}) \sim \mathsf{D}'}{\mathsf{E}} \mathsf{M}_{\mathsf{Q}}(\mathsf{x},\mathsf{y})^2.$$

UNE BORNE CLASSIQUE

En appliquant l'**inégalité de Markov** sur la probabilité que la variable aléatoire M_Q^D soit négative, nous obtenons l'inégalité suivante :

$$R_D(B_Q) \leq 1 - \mu_1(M_Q^D).$$

Autrement dit, si on veut un petit risque, **les votants doivent être « confiants »** en moyenne, ce qui est possible avec des votants **forts** individuellement.

En appliquant l'**inégalité de Cantelli-Chebyshev** sur la probabilité qu'elle soit négative, nous obtenons l'inégalité suivante.

Théorème (La $\mathcal C$ -borne (Lacasse et al., 2006; Laviolette, Marchand et Roy, 2011))

$$R_{D}(B_{Q}) \leq C_{Q}^{D} \triangleq 1 - \frac{\mu_{1}(M_{Q}^{D})^{2}}{\mu_{2}(M_{Q}^{D})}.$$

En d'autres mots, si on veut un petit risque, les votants doivent être **confiants** en moyenne **et/ou** il doivent avoir un **grand désaccord** (ils doivent faire leurs erreurs à des endroits différents). Également possible avec des **votants faibles**!

ÉVALUATION EMPIRIQUE

Nous avons généré des votes de majorité en utilisant des ensembles de données, en les séparant en un ensemble d'entraînement S et un ensemble de test T.

Nous avons exécuté l'algorithme AdaBoost sur S sur des votants faibles (des souches de décision) et avons récupéré des votes de majorité pendant et après l'exécution de l'algorithme.

Pour chaque vote de majorité, nous avons calculé le premier moment de la marge via la métrique $R_T(G_Q) \triangleq \frac{1}{2}(1 - \mu_1(M_Q^T))$, la valeur de \mathcal{C}_Q^T , et le risque $R_T(B_Q)$.

ÉVALUATION EMPIRIQUE

 C_0^T 0.4 $R_T(B_Q)$

(a) Relation entre $\frac{1}{2} \left(1 - \mu_1(M_Q^T)\right)$ et $R_T(B_Q)$.

(b) Relation entre C_Q^T et $R_T(B_Q)$.

ESTIMER LA C-BORNE

La \mathcal{C} -borne dépend des deux premiers moments de la marge du vrai risque du vote de majorité. Hors, nous ne pouvons pas calculer ces valeurs, nous devons les estimer empiriquement.

Nous présentons comment **borner** ces valeurs en fonction de leur estimation empirique, **uniformément pour toute distribution** Q.

LES BORNES PAC-BAYÉSIENNES

Les bornes PAC-bayésiennes permettent de **borner le « vrai » risque** du classificateur par vote de majorité à partir d'une **estimation empirique**.

Traditionnellement, le « vrai » premier moment de la marge est borné par son estimation empirique, puis le résultat est obtenu par l'inégalité $R_D(B_Q) \leq 1 - \mu_1(M_Q^D)$.

En présence de votants forts, ces bornes peuvent être très serrées.

LES BORNES PAC-BAYÉSIENNES

En présence de votants faibles, nous devons également considérer le second moment de la marge. Le théorème suivant borne le risque du classificateur par vote de majorité en utilisant les estimations empiriques des deux premiers moments de la marge.

LES BORNES PAC-BAYÉSIENNES

Théorème

Pour toute distribution D sur $\mathcal{X} \times \mathcal{Y}$, pour tout ensemble \mathcal{H} de votants $f: \mathcal{X} \mapsto [-1,1]$, pour toute distribution a priori P sur \mathcal{H} , et pour tout $\delta \in (0,1]$, nous avons

$$\Pr_{S \sim D^m} \left(\begin{array}{c} \text{Pour toute distribution Q sur } \mathcal{H}, \\ \\ R_D(B_Q) \; \leq \; 1 - \frac{\left(\mu_1(M_Q^S) - \sqrt{\frac{2}{m} \left[\text{KL}(Q \| P) + \ln \frac{\sqrt{m}}{\delta/2} \right]} \right)^2}{\mu_2(M_Q^S) + \sqrt{\frac{2}{m} \left[2 \text{KL}(Q \| P) + \ln \frac{\sqrt{m}}{\delta/2} \right]}} \right) \geq 1 - \delta \,,$$

où $\mathrm{KL}(Q\|P)$ est la divergence Kullback-Leibler entre les distributions Q et P.

MINIMISER LA C-BORNE EMPIRIQUE

Ce résultat nous suggère que de trouver une distribution Q l'estimation empirique C_Q^S de la C-borne devrait donner un vote de majorité ayant une bonne erreur de généralisation.

¹Le terme $\mathrm{KL}(Q\|P)$ est ignoré dans cette présentation. LAVIOLETTE, MARCHAND et ROY (2011) présentent une version de cette borne qui, au prix d'une restriction supplémentaire sur les distributions Q considérées, ne contiennent pas de terme $\mathrm{KL}(Q\|P)$.

MINIMISER LA C-BORNE EMPIRIQUE

Minimiser la \mathcal{C} -borne empirique pose problème : comme nous sommes en présence d'une faible marge, sa forme est très près d'une forme indéterminée 0/0.

$$C_Q^S = 1 - \frac{\mu_1 (M_Q^S)^2}{\mu_2 M_Q^S}.$$

FIXER LE PREMIER MOMENT

LAVIOLETTE, MARCHAND et ROY (2011) ont montré que de forcer le premier moment $\mu_1(M_Q^S)$ à être égal à une petite valeur $\mu>0$ ne restreint pas l'ensemble des votes de majorité possibles.

Pour minimiser la C-borne, nous pouvons donc fixer la marge moyenne à être égale à une certaine valeur, puis se concentrer sur le deuxième moment (le désaccord).

MinCq²

Étant donné un ensemble \mathcal{H} de votants, un ensemble d'entraînement S et une valeur $\mu > 0$, MinCq consiste à trouver la distribution Q sur \mathcal{H} dont $\mu_1(M_Q^S) = \mu$ qui **minimise** $\mu_2(M_Q^S)$.

 $^{^2}$ La version de MinCq minimisant directement une borne PAC-bayésienne doit également considérer une restriction supplémentaire sur Q, et nécessite également que ${\cal H}$ soit symétrique.

CONVERSION EN PROGRAMME QUADRATIQUE

Soit \mathcal{H} un ensemble de votants $f: \mathcal{X} \mapsto [-1,1]$, \mathbf{H} une matrice de $m \times n$ éléments telle que $H_{ki} = f_i(x_k)$, \mathbf{q} un vecteur de n éléments représentant les poids Q sur les votants et \mathbf{y} un vecteur de m éléments contenant les étiquettes sur chaque exemple de l'ensemble S. Nous avons

$$\mu_{1}(M_{Q}^{S}) = \frac{1}{m} \sum_{k=1}^{m} M_{Q}(\mathbf{x}_{k}, y_{k})$$

$$= \frac{1}{m} \sum_{k=1}^{m} \left(y_{k} \sum_{i=1}^{n} q_{i} f_{i}(\mathbf{x}_{k}) \right)$$

$$= \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{n} y_{k} q_{i} H_{ki}$$

$$= \frac{1}{m} \mathbf{y}^{T} \mathbf{H} \mathbf{q},$$

et

$$\mu_{2}(M_{Q}^{S}) = \frac{1}{m} \sum_{k=1}^{m} M_{Q}^{2}(\mathbf{x}_{k}, y_{k})$$

$$= \frac{1}{m} \sum_{k=1}^{m} \left(y_{k} \sum_{i=1}^{n} q_{i} f_{i}(\mathbf{x}_{k}) \right)^{2}$$

$$= \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{k}^{2} q_{i} q_{j} H_{ki} H_{kj}$$

$$= \frac{1}{m} \mathbf{q}^{\top} \mathbf{H}^{\top} \mathbf{H} \mathbf{q}.$$

MINCQ EN TANT QUE PROGRAMME QUADRATIQUE

Résoudre :
$$\underset{\mathbf{q}}{\operatorname{argmin}} \frac{1}{m} \mathbf{q}^{\top} \mathbf{H}^{\top} \mathbf{H} \mathbf{q}$$

sous contraintes : $\frac{1}{m} \mathbf{y}^{\top} \mathbf{H} \mathbf{q} = \mu$, $\mathbf{q} \succeq \mathbf{0}$,

où **0** est un vecteur de *m* zéros.

RÉSULTATS EMPIRIQUES

Nous considérons 45 **ensembles de données** de classification binaire tirés de la base de données *MNIST* (LECUN et CORTES).

Nous comparons **MinCq** en utilisant comme votants de base des *noyaux Radial Basis Function (RBF)* à l'algorithme **Support Vector Machine (SVM)** (CORTES et VAPNIK, 1995), un algorithme à noyaux dont la performance est état de l'art.

Nous comparons ensuite **MinCq**, cette fois-ci en utilisant des souches de décisions comme votants de base, avec **AdaBoost** (E. SCHAPIRE et SINGER, 1999).

Fig. 2 : Comparaison de MinCq avec SVM (à gauche) et AdaBoost (à droite). Chaque point représente une paire de risques sur l'ensemble de test. Un point au dessus de la diagonale indique une meilleure performance de MinCq.

MAINTENANT...

MinCq est performant, mais retourne un vote de majorité **dense** (tous les votants de base sont considérés, et ont pratiquement tous un poids non nul).

Nous désirons créer une version de MinCq qui **choisit itérativement les votants à ajouter au vote de majorité**, et qui s'arrête avec une solution **parcimonieuse**.

CQBOOST: UN ALGORITHME DE TYPE BOOSTING

IDÉE

Nous désirons créer une version de MinCq qui **choisit itérativement les votants à ajouter au vote de majorité**, et qui s'arrête avec une solution **parcimonieuse**.

Pour ce faire, nous avons besoin d'une manière d'évaluer la **qualité** des votants (du point de vue de MinCq), pour décider d'un **ordre** dans lequel les considérer.

Nous avons également besoin d'une méthode d'optimisation correspondant à cette idée : ajouter itérativement les votants dans le problème d'optimisation.

LA GÉNÉRATION DE COLONNES

La génération de colonnes (column generation) est une technique d'optimisation qui a été utilisée avec succès pour rendre des algorithmes de type Boosting plus « tractables ».

Elle a notamment été utilisée pour développer LPBoost (DEMIRIZ, Kristin P BENNETT et SHAWE-TAYLOR, 2002) dans le cadre de la programmation linéaire, et CG-Boost (BI, ZHANG et Kristin P. BENNETT, 2004) pour la programmation quadratique.

LA GÉNÉRATION DE COLONNES - MOTIVATION

- · Chaque **colonne** de la matrice de classification **H** correspond à un votant de base.
- Un sous-ensemble des colonnes de cette matrice pourrait être suffisant pour obtenir l'optimalité du problème d'optimisation sous-jacent.
- · La pondération Q obtenue est alors plus parcimonieuse (« sparse »)
 - · Plus rapide d'exécution
 - · Plus facilement interprétable

LA GÉNÉRATION DE COLONNES - IDÉE GÉNÉRALE

- Étant donné un problème d'optimisation primal, seulement un sous-ensemble des classificateurs de base est considéré. On appelle ce problème le « restricted master problem »
- Résoudre le problème primal restreint correspond à résoudre une relaxation du problème dual, où les contraintes reliées aux classificateurs de base non considérés sont absentes
- · En ajoutant itérativement des colonnes à considérer, l'algorithme converge vers l'optimum du problème d'optimisation original, possiblement avant d'avoir généré toutes les colonnes
- · Si aucune colonne ne viole la contrainte du problème dual, l'algorithme s'arrête car on a optimalité

UN PROBLÈME DUAL?

Plusieurs techniques d'optimisation existent pour obtenir une formulation *duale* d'un problème d'optimisation.

Généralement, les variables du problème d'optimisation deviennent des contraintes dans le problème dual, et vice-versa.

Une formulation duale intéressante peut nous aider à voir le problème d'un différent point de vue.

UN PROBLÈME D'OPTIMISATION ALTERNATIF POUR MINCQ

Construire une formulation duale d'un problème ne donne pas toujours un problème d'optimisation **intéressant**. Il faut parfois transformer le problème primal pour obtenir un dual intéressant.

Introduisons des variables γ_k égales aux marges sur chaque exemple k.

$$\gamma_{k} = M_{Q}(\mathbf{x}_{k}, y_{k})$$

$$= y_{k} \mathop{\mathsf{E}}_{f \sim Q} f(\mathbf{x})$$

$$= y_{k} \sum_{i=1}^{n} q_{i} H_{ki}, \quad \forall k \in \{1, \dots, m\}.$$

On a donc

$$\gamma = \operatorname{diag}(y) H q$$
.

UN PROBLÈME D'OPTIMISATION ALTERNATIF

Résoudre :
$$\underset{\mathbf{q}, \boldsymbol{\gamma}}{\operatorname{argmin}} \frac{1}{m} \boldsymbol{\gamma}^{\top} \boldsymbol{\gamma}$$
 sous contraintes : $\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma} = \mu$, $\boldsymbol{\gamma} = \operatorname{diag}(y) \mathbf{H} \mathbf{q}$ $\mathbf{q} \succeq \mathbf{0}$,

où ${\bf 1}$ est un vecteur de m uns, et où ${\bf 0}$ est un vecteur de m zéros.

LA MÉTHODE DE LAGRANGE

Utilisons la méthode de Lagrange pour construire notre formulation duale.

En additionnant une somme pondérée des contraintes à la fonction objectif, nous obtenons le *Lagrangien* du problème d'optimisation.

$$\Lambda(\mathbf{q}, \boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) \triangleq \frac{1}{m} \boldsymbol{\gamma}^{\top} \boldsymbol{\gamma} + \boldsymbol{\alpha}^{\top} \left(\boldsymbol{\gamma} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q} \right) + \beta \left(\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma} - \mu \right) - \boldsymbol{\xi}^{\top} \mathbf{q} \,.$$

Les variables α , β et ξ sont nommés les multiplicateurs de Lagrange, variables duales.

LE LAGRANGIEN DUAL

Le Lagrangien dual est le minimum du Lagrangien, en fonction des variables primales ${\bf q}$ et ${m \gamma}$.

$$\Lambda^{D}(\boldsymbol{\alpha}, \beta, \boldsymbol{\xi}) \triangleq \inf_{\boldsymbol{q}, \boldsymbol{\gamma}} \Lambda(\boldsymbol{q}, \boldsymbol{\gamma}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi}).$$

LE PROBLÈME D'OPTIMISATION DUAL

Le problème d'optimisation dual est obtenu en trouvant le **maximum** du Lagrangien dual, sous contrainte que les multiplicateurs de Lagrange associés aux contraintes d'inégalité du problème primal soient non négatives.

Résoudre : $\underset{\boldsymbol{\alpha},\beta,\boldsymbol{\xi}}{\operatorname{argmax}} \Lambda^{D}(\boldsymbol{\alpha},\beta,\boldsymbol{\xi})$

sous contraintes : $\xi \succeq 0$.

Retournons à la définition du Lagrangien dual et évaluons sa valeur. Nous avons

$$\begin{split} \Lambda^{\mathbb{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) &\triangleq \inf_{\mathbf{q}, \boldsymbol{\gamma}} \ \Lambda(\mathbf{q}, \boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}) \\ &= \inf_{\mathbf{q}, \boldsymbol{\gamma}} \ \left[\frac{1}{m} \boldsymbol{\gamma}^{\top} \boldsymbol{\gamma} + \boldsymbol{\alpha}^{\top} \left(\boldsymbol{\gamma} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q} \right) + \beta \left(\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma} - \mu \right) - \boldsymbol{\xi}^{\top} \mathbf{q} \right] \,. \end{split}$$

Le minimum en fonction de \mathbf{q} et $\boldsymbol{\gamma}$ est caractérisé par les points où les gradients de $\Lambda(\mathbf{q},\boldsymbol{\gamma},\boldsymbol{\alpha},\beta,\boldsymbol{\xi})$ par rapport à \mathbf{q} et $\boldsymbol{\gamma}$ sont nuls.

DE MANIÈRE VISUELLE...

Fig. 3 : Graphique d'une fonction à maximiser et d'une contrainte d'égalité (en rouge). Source : Wikipédia.

DE MANIÈRE VISUELLE...

Fig. 4 : Courbes de niveaux (en bleu) d'une fonction à maximiser et d'une contrainte d'égalité (en rouge). Le point tangent où les courbes se recoupent est la solution optimale. Source : Wikipédia.

L'OPTIMUM DU LAGRANGIEN

Le point optimal du Lagrangien en fonction de ${\bf q}$ et ${m \gamma}$ est donc caractérisé par :

$$\mathsf{H}^{\top}\mathrm{diag}(\mathsf{y})\alpha = -\boldsymbol{\xi}$$

et

$$\gamma = -\frac{m}{2}\alpha - \frac{\beta}{2}\mathbf{1}.$$

Nous connaissons donc maintenant une **contrainte d'égalité** qui doit être respectée à l'optimum, et la **valeur optimale** de γ et que nous pouvons remplacer dans l'expression du Lagrangien.

L'OPTIMUM DU LAGRANGIEN

De laborieux (mais simples) calculs nous donne donc, sous contrainte $\mathbf{H}^{\top}\mathrm{diag}(\mathbf{y})\boldsymbol{\alpha} = -\boldsymbol{\xi}$, que :

$$\Lambda^{D}(\boldsymbol{\alpha}, \beta, \boldsymbol{\xi}) = \inf_{\mathbf{q}, \boldsymbol{\gamma}} \Lambda(\mathbf{q}, \boldsymbol{\gamma}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi})
= -\frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{\beta^{2}}{4} - \beta \mu.$$

LE PROBLÈME DUAL DE MINCQ

Résoudre :
$$\underset{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmax}} - \frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{\beta^2}{4} - \beta \mu$$
 sous contraintes : $\mathbf{H}^{\top} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha} = -\boldsymbol{\xi}$, $\boldsymbol{\xi} \succeq \mathbf{0}$.

Les variables $\pmb{\xi}$ ne faisant pas partie de la fonction objectif, celles-ci peuvent être retirées.

LE PROBLÈME DUAL DE MINCQ

Résoudre :
$$\underset{\boldsymbol{\alpha},\beta}{\operatorname{argmax}} - \frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{\beta^2}{4} - \beta \mu$$

sous contraintes : $H^{\top} \mathrm{diag}(y) \alpha \leq 0$.

LE PROBLÈME DUAL DE MINCQ

Nous remarquons que le problème d'optimisation retourne maintenant un vecteur de poids sur les exemples plutôt que sur les votants. Une variable β contrôle un compromis entre la partie quadratique et la partie linéaire de la fonction objectif.

Le terme de gauche $\mathsf{H}^{\top}\mathrm{diag}(y)\alpha$ de la contrainte d'inégalité peut être vue comme un « score » donné à chaque votant f. Cette mesure est appelée le « edge » d'un votant.

Pour chaque votant $i \in \{0, ..., n\}$, nous avons :

$$\left(\mathsf{H}^{\top}\mathrm{diag}(\mathsf{y})\,\boldsymbol{\alpha}\right)_{i} = \sum_{k=1}^{m} \alpha_{k} \mathsf{y}_{k} \mathsf{H}_{ki} = \sum_{k=1}^{m} \alpha_{k} \mathsf{y}_{k} f_{i}(\mathsf{x}_{k}).$$

VERS UN ALGORITHME DE GÉNÉRATION DE COLONNES

Cette valeur sera utilisée pour **guider le choix du prochain votant** à ajouter dans le vote de majorité. Celle-ci apparaît également dans d'autres algorithmes de génération de colonne, tels que LPBoost (DEMIRIZ, Kristin P BENNETT et SHAWE-TAYLOR, 2002) et CG-Boost (BI, ZHANG et Kristin P. BENNETT, 2004).

Algorithm 1 CqBoost

- Posons t=0, **q** un vecteur de n zéros et α un vecteur de m éléments égaux à $\frac{-1}{m}$.
- Soit $\hat{\mathbf{H}}$ une matrice vide de m lignes.

loop

- Choisir la colonne i qui maximise $\sum_{k=1}^{m} \alpha_k y_k H_{ki}$.
- If la colonne i ne viole pas la contrainte dual $\sum_{k=1}^{m} \alpha_k y_k H_{ki} \leq 0 + \epsilon$ then break.
- Ajouter la colonne i à la matrice $\hat{\mathbf{H}}$.
- Mettre à jour ${f q}$ et ${m lpha}$ avec la solution primale et duale de MinCq.

end loop

return q

EXPÉRIMENTATIONS

Sur plusieurs ensembles de données provenant du *UCI Machine Learning Repository* (BLAKE et MERZ, 1998), nous comparons CqBoost avec l'algorithme original MinCq, mais également CqBoost avec LPBoost et CG-Boost.

Nous utilisons dans un premier temps des souches de décision comme votants de base, puis ensuite des noyaux RBF.

RÉSULTATS EMPIRIQUES : SOUCHES DE DÉCISIONS

	CqBoost		MinCq	
Ens. de données	$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonne
Letter :AB	0.0039	160	0.0051	320
australian	0.1855	70	0.1855	280
balance	0.0256	17	0.0256	80
breast	0.0458	83	0.0458	180
car	0.1516	16	0.1516	120
cmc	0.2785	36	0.2785	180
credit	0.1391	84	0.1391	300
cylinder	0.3852	224	0.3741	700
ecoli	0.0714	54	0.0714	140
glass	0.2430	80	0.2617	180
heart	0.2593	65	0.2593	260
hepatitis	0.2468	78	0.2078	380
horse	0.3696	152	0.3533	520
ionosphere	0.1943	179	0.1029	680
monks	0.2361	12	0.2361	120
pima	0.2578	74	0.2656	160
tictactoe	0.3215	20	0.3215	180
titanic	0.2282	6	0.2282	60
wine	0.1685	95	0.0449	260
yeast	0.3032	67	0.2965	160
Z00	0.0200	20	0.0200	320

RÉSULTATS EMPIRIQUES : SOUCHES DE DÉCISIONS

	CqBoost		CG-Boost		LPBoost	
Ens. de données	$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonnes
Letter :AB	0.0039	160	0.0026	160	0.0129	51
australian	0.1855	70	0.2348	147	0.1449	1
balance	0.0256	17	0.0385	40	0.0288	16
breast	0.0458	83	0.0372	90	0.0430	24
car	0.1516	16	0.2569	60	0.1678	14
cmc	0.2785	36	0.3084	113	0.3084	35
credit	0.1391	84	0.1768	161	0.1333	1
cylinder	0.3852	224	0.3630	330	0.3630	1
ecoli	0.0714	54	0.0833	70	0.0893	25
glass	0.2430	80	0.2243	98	0.3645	1
heart	0.2593	65	0.2296	130	0.2741	38
hepatitis	0.2468	78	0.2078	190	0.1818	1
horse	0.3696	152	0.3696	256	0.2065	1
ionosphere	0.1943	179	0.1543	330	0.1086	63
monks	0.2361	12	0.2315	114	0.2315	21
pima	0.2578	74	0.3594	80	0.2474	40
tictactoe	0.3215	20	0.3779	90	0.3549	1
titanic	0.2282	6	0.2309	18	0.2309	1
wine	0.1685	95	0.0562	130	0.0899	1
yeast	0.3032	67	0.2992	81	0.3747	1
Z00	0.0200	20	0.1000	152	0.0400	10

RÉSULTATS EMPIRIQUES : NOYAUX RBF

Cq	Boost	MinCq	
$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonne
0.0103	20	0.0180	778
0.1449	14	0.1333	345
0.0737	10	0.0577	313
0.0458	38	0.0372	350
0.0718	34	0.2836	864
0.3043	9	0.2908	737
0.1275	72	0.1391	345
0.3037	59	0.3148	270
0.0714	40	0.0893	168
0.1963	21	0.2617	107
0.1630	3	0.1481	135
0.2078	39	0.1948	78
0.1848	15	0.1793	184
0.1486	14	0.1257	176
0.2037	43	0.3426	216
0.2474	5	0.2630	384
0.2129	19	0.3403	479
0.2164	15	0.2309	1101
0.0337	9	0.0225	89
0.2736	23	0.3369	742
0.0400	18	0.0400	51
	R _T (B _Q) 0.0103 0.1449 0.0737 0.0458 0.0718 0.3043 0.1275 0.3037 0.0714 0.1963 0.1630 0.2078 0.1848 0.1486 0.2037 0.2474 0.2129 0.2164 0.0337 0.2736	0.0103 20 0.1449 14 0.0737 10 0.0458 38 0.0718 34 0.3043 9 0.1275 72 0.3037 59 0.0714 40 0.1963 21 0.1630 3 0.2078 39 0.1848 15 0.1486 14 0.2037 43 0.2474 5 0.2129 19 0.2164 15 0.0337 9 0.2736 23	$R_T(B_Q)$ Colonnes $R_T(B_Q)$ 0.0103 20 0.0180 0.1449 14 0.1333 0.0737 10 0.0577 0.0458 38 0.0372 0.0718 34 0.2836 0.3043 9 0.2908 0.1275 72 0.1391 0.3037 59 0.3148 0.0714 40 0.0893 0.1963 21 0.2617 0.1630 3 0.1481 0.2078 39 0.1948 0.1848 15 0.1793 0.1486 14 0.1257 0.2037 43 0.3426 0.2474 5 0.2630 0.2129 19 0.3403 0.2164 15 0.2309 0.0337 9 0.0225 0.2736 23 0.3369

RÉSULTATS EMPIRIQUES : NOYAUX RBF

	CqBoost		CG-Boost		LPBoost	
Ens. de données	$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonnes	$R_T(B_Q)$	Colonnes
Letter :AB	0.0103	20	0.0116	359	0.0142	26
australian	0.1449	14	0.1333	295	0.1449	33
balance	0.0737	10	0.0288	98	0.4455	1
breast	0.0458	38	0.0430	141	0.0430	9
car	0.0718	34	0.0729	567	0.0243	90
cmc	0.3043	9	0.2948	447	0.3003	98
credit	0.1275	72	0.1333	263	0.1333	62
cylinder	0.3037	59	0.2741	194	0.2741	116
ecoli	0.0714	40	0.1012	139	0.5060	1
glass	0.1963	21	0.2804	82	0.2150	44
heart	0.1630	3	0.4815	114	0.4815	1
hepatitis	0.2078	39	0.2078	66	0.1948	12
horse	0.1848	15	0.2011	151	0.3641	8
ionosphere	0.1486	14	0.1200	142	0.1429	41
monks	0.2037	43	0.2546	163	0.5093	1
pima	0.2474	5	0.2552	202	0.2578	69
tictactoe	0.2129	19	0.3883	340	0.0480	170
titanic	0.2164	15	0.2309	769	0.3200	1
wine	0.0337	9	0.4157	85	0.0449	20
yeast	0.2736	23	0.2749	422	0.2709	66
Z00	0.0400	18	0.1000	46	0.1000	12

RÉSULTATS EMPIRIQUES : ANDROID MALWARE

Sur un ensemble de données de logiciels Android dont l'étiquette est *maliciel* ou *non-maliciel*, nous exécutons CqBoost sur des votants représentant une permission ou un comportement de l'application.

La figure suivante présente le risque sur l'ensemble d'entraînement ainsi que le risque sur l'ensemble de test, en fonction du nombre de colonnes (votants) ajoutées dans le vote de majorité.

RÉSULTATS EMPIRIQUES : ANDROID MALWARE

CONCLUSION

- · Nous avons introduit le problème de la classification binaire
- · Nous avons formalisé le problème à résoudre
- · Nous avons introduit les votes de majorité (les méthodes d'ensemble)
- · Nous avons présenté la $\mathcal C$ -borne, une borne supérieure du risque
- · Nous avons présenté MinCq, un algorithme minimisant cette borne
- · Nous avons présenté CqBoost, une méthode d'ensemble rendant les solutions plus parcimonieuses

RÉFÉRENCES

BI, Jinbo, Tong ZHANG et Kristin P. BENNETT (2004). "Column-generation boosting methods for mixture of kernels". In:

Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '04, p. 521.

BLAKE, C.L. et C.J. MERZ (1998). UCI Repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html: Department of Information et Computer Science, Irvine, CA:
University of California.

CORTES, Corinna et Vladimir VAPNIK (1995). "Support-Vector Networks". In: Machine Learning 20.3, p. 273-297.

DEMIRIZ, Ayhan, Kristin P BENNETT et John SHAWE-TAYLOR (2002). "Linear programming boosting via column generation". In: Machine Learning 46.1-3, p. 225–254.

E. SCHAPIRE, Robert et Yoram SINGER (1999). "Improved Boosting Using Confidence-rated Predictions". In: Machine Learning 37.3, p. 297–336.

LACASSE, Alexandre et al. (2006). "PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier". In: NIPS, p. 769–776.

LAVIOLETTE, François, Mario MARCHAND et Jean-Francis Roy (2011). "From PAC-Bayes Bounds to Quadratic Programs for Majority Votes". In: ICML, p. 649–656.

LECUN, Yann et Corinna Corres. "The MNIST database of handwritten digits". In : URL: http://yann.lecun.com/exdb/mnist/.