15. Opáčko před čtvrtletkou

Úloha 1. Nalezněte všechna řešení těchto velmi zajímavých rovnic:

(a)
$$3 \cdot \frac{3^{x+2}}{9^{2x}} = \sqrt{3^{-x} \cdot 27}$$

(b)
$$4^x = 13 - 4^{x+2}$$

(c)
$$2^{x+1} - 7 \cdot (\sqrt{2})^x + 3 = 0$$

(d)
$$2^x - 6 \cdot 2^{-x} = -1$$

(e)
$$2 - \log_3(x - 2) = \log_3(2x + 3)$$

(f)
$$\log_5(\log_2 x) = 1$$

(g)
$$2\log(x+1) = 2 + \log(2x+23)$$

(h)
$$\log_5(x^3) + 2\log_5(25x) - \log_5(\sqrt{x}) = 13$$

Úloha 2. Vyjádřete x pomocí a,b,c,d (předpokládáme, že jsou všechna čísla kladná), je-li

$$\log x = 3 \left(\log a - \log \sqrt{b}\right) - 2 + \frac{1}{2} \log c - \log(2d).$$

Úloha 3. Nalezněte předpisy těchto (posunutých) exponenciálních funkcí:

Úloha 4. Nalezněte předpis funkce inverzní k funkci o předpisu (a) $y=3^{x+3}+7$, (b) $y=\log_2(2x-1)-3$.

Úloha 5. Ve 12:00 se ve zkoumaném vzorku nacházelo 5000 bakterií; ve 13:00 jich tam bylo 13000. Předpokládáme, že se velikost populace bakterií zvětšuje exponenciálně.

- (a) Odhadněte velikost populace v 14:00.
- (b) Odhadněte velikost populace v 12:30.
- (c) Odhadněte, za jak dlouho se populace zdvojnásobí.
- (d) Odhadněte, za jak dlouho se populace ztrojnásobí.
- (e) Odhadněte, v kolik hodin bude v populaci 100 000 bakterií.

Úloha 6. Připojíme-li nabitý kondenzátor ke spotřebiči se stálým odporem, bude jeho náboj klesat v čase exponenicálně (jak snadno vyplyne z příslušné diferenciální rovnice). Předpokládejme, že se kondenzátor vybije na polovinu své kapacity za $0.25 \, \mathrm{s}$.

- (a) Za jak dlouho se vybije na setinu své kapacity?
- (b) Z kolika % své kapacity byl nabit před jednou sekundou, jestliže je v tuto chvíli nabit ze 3 %?

 \star Úloha 7. Vyřešte v $\mathbb R$ následující ještě mnohem zajímavější rovnice či nerovnice:

(a)
$$2^x - 3^x = 2^{x-1} + 5 \cdot 3^{x-1}$$

(b)
$$7 \cdot 6^x - 2 \cdot 4^x = 6 \cdot 9^x$$

(c)
$$\left(\frac{1}{2}\right)^{-x} - \left(\frac{1}{2}\right)^{x-1} \ge 1$$

(d)
$$2^x - 3^x > 2^{x+1} - 3^{x+1}$$

- **1.** (a) $\{\frac{3}{5}\}$ (b) $\{\log_4 \frac{13}{17}\}$ (c) $\{-2; \log_{\sqrt{2}} 3\}$ (d) $\{1\}$ (e) $\{3\}$ (f) $\{32\}$ (g) $\{209\}$ (h) $\{25\}$
- **2.** $x = \frac{1}{200}a^3b^{-\frac{3}{2}}c^{\frac{1}{2}}d^{-1}$
- **3.** $f(x) = 2^{x-3} + 1$; $g(x) = \left(\frac{1}{3}\right)^x 2$; $h(x) = \left(\sqrt{5}\right)^{x+1}$; $i(x) = 3 4^{x+4}$
- **4.** (a) $y = \log_3(x-7) 3$ (b) $y = \frac{1}{2}(2^{x+3} + 1)$
- **5.** (a) 33 800 (b) cca 8062 (c) $\log_{13/5} 2$ hodin, což je cca 43,5 minuty (d) $\log_{13/5} 3$ hodin, což je cca 69 minut (e) nastane to za $\log_{13/5} \frac{100\,000}{5\,000}$ hodin, tedy cca v 15:08
- **6.** (a) $0.25 \cdot \log_2 100 = 1.66 \,\mathrm{s}$ (b) $3\% \cdot 2^4 = 48\%$
- **7.** (a) $\{\log_{2/3} \frac{16}{3}\}$ (b) $\{-1; \log_{2/3} 2\}$ (c) $(1; \infty)$ (d) $(\log_{2/3} 2; \infty)$