Teste Escrito de Computação Gráfica 02/05/2022 Duração: 30 minutos

- 1. Considere duas curvas de Bézier de grau 3. P e Q, com os respectivos pontos de controle P_1 , P_2 , P_3 , P_4 , e Q_1 , Q_2 , Q_3 , Q_4 . Indique a condição necessária para o ponto Q_2 para haver continuidade da primeira derivada na junção das duas curvas, sendo $P_4 = Q_1$:
 - (a) $Q_2 = 2 \times P_4 P_3$
 - (b) $Q_2 = 2 \times P_3 P_4$
 - (c) $Q_2 = -P_3$

Desenhe um diagrama com os pontos de controle das duas curvas de acordo com a sua escolha.

2. Considere uma curva de Bézier de grau 3 em 2D com os seguintes pontos de controle: $P_0 = (0,0), P_1 = (0,1), P_2 = (2,0), P_3 = (2,1).$

Apresente o procedimento geométrico para o cálculo de P(t) considerando t=0.25. Desenhe uma aproximação da curva obtida.

3. Considere que se pretende usar uma grelha para representar um terreno, à semelhança do que foi pedido na aula prática. As coordenadas dos pontos da grelha são números inteiros e a dimensão dos lados de cada quadrícula da grelha é uma unidade. Para obter a altura dos pontos da grelha é disponibilizada a função h(x,z), sendo x,z as coordenadas inteiras de um ponto da grelha. Com base na figura, que representa uma quadrícula da grelha, apresente o processo de cálculo da altura de um ponto P no interior da quadrícula.

