Zusammenfassung Stochastik I

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Der abstrakte Maßbegriff

Definition. Eine **Ereignisalgebra** oder **Boolesche Algebra** ist eine Menge $\mathfrak A$ mit zweistelligen Verknüpfungen \wedge ("und") und \vee ("oder"), einer einstelligen Verknüpfung $\overline{}$ (Komplement) und ausgezeichneten Elementen $U \in \mathfrak A$ (unmögliches Ereignis) und $S \in \mathfrak A$ (sicheres Ereignis), sodass für $A, B, C \in \mathfrak A$ gilt:

Definition. Sei A eine Boolesche Algebra. Dann definiert

$$A \leq B$$
: $\iff A \wedge B = B$

eine Partialordnung auf \mathfrak{A} , gesprochen A impliziert B.

Definition. Eine **Algebra** (auch Mengenalgebra) $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operationen stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Durchschnitt: $A, B \in \mathfrak{A} \implies A \cap B \in \mathfrak{A}$
- Komplementbildung: $A \in \mathfrak{A} \implies A^c := \Omega \setminus A \in \mathfrak{A}$

Satz (Isomorphiesatz von Stone). Zu jeder Booleschen Algebra $\mathfrak A$ gibt es eine Menge Ω derart, dass $\mathfrak A$ isomorph zu einer Mengenalgebra $\mathfrak A$ in $\mathcal P(\Omega)$ ist.

Definition. Eine σ -Algebra ist eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$, die nicht nur unter endlichen, sondern sogar unter abzählbaren Vereinigungen stabil ist, d. h.

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A} \implies \bigcup_{n=0}^{\infty} A_n \in \mathfrak{A}$.

Bemerkung. Es gilt damit:

- $\Omega = \emptyset^c \in \mathfrak{A}$
- Abgeschlossenheit unter abzählbaren Schnitten:

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A} \implies \bigcap_{n=0}^{\infty} A_n = \left(\bigcup_{n=0}^{\infty} (A_n)^c\right)^c \in \mathfrak{A}$.

Definition. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in einer σ -Algebra \mathfrak{A} . Setze

$$\limsup_{n \to \infty} A_n \coloneqq \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n \in \mathfrak{A}, \quad \liminf_{n \to \infty} A_n \coloneqq \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n \in \mathfrak{A}.$$

Bemerkung. In einer σ -Algebra, in der die Mengen mögliche Ereignisse beschreiben, ist der Limes Superior das Ereignis, das eintritt, wenn unendlich viele Ereignisse der Folge A_n eintreten. Der Limes Infinum tritt genau dann ein, wenn alle bis auf endlich viele Ereignisse der Folge A_n eintreten.

Definition. Ein Ring $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operation stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Differenz: $A, B \in \mathfrak{A} \implies B \setminus A = B \cap A^c \in \mathfrak{A}$

Ein Ring, der nicht nur unter endlicher, sondern sogar unter abzählbarer Vereinigung stabil ist, heißt σ -Ring.

Bemerkung. $\mathfrak{A}(\sigma)$ Algebra $\iff \mathfrak{A}(\sigma)$ Ring und $\Omega \in \mathfrak{A}$.

Satz. Sei $(\mathfrak{A}_i)_{(i\in I)}$ eine Familie von $(\sigma$ -) Ringen / $(\sigma$ -) Algebren über einer Menge Ω . Dann ist auch $\bigcup_{i\in I}\mathfrak{A}_i$ ein $(\sigma$ -) Ring / eine $(\sigma$ -) Algebra über Ω .

Satz. Sei \Re ein Ring und μ ein Inhalt. Es gelten für $n \in \mathbb{N}$ und $A_1, ..., A_n \in \Re$ die Ein- und Ausschlussformeln

$$\mu(A_1 \cup ... \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < ... < i_k \le n} \mu(A_{i_1} \cap ... \cap A_{i_k}),$$

$$\mu(A_1 \cap ... \cap A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < ... < i_k \le n} \mu(A_{i_1} \cup ... \cup A_{i_k}).$$

Bemerkung. Sei μ ein W-Maß auf $\mathcal{L}(\mathbb{R}^1)$. Dann definiert $x\mapsto F_{\mu}(x):=\mu(]-\infty,x])$ eine VF. Für eine VF $F:\mathbb{R}\to[0,1]$ definiert umgekehrt $\mu_F(]a,b]):=F(b)-F(a)$ ein W-Maß auf $\mathcal{L}(\mathbb{R}^1)$. Analog funktioniert dies auf dem \mathbb{R}^d .

Definition (Wichtige Verteilungsfunktionen).

• Normalverteilung (Gaußverteilung) mit EW μ und Varianz σ^2 :

$$F_{\mu\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right) dt$$

erfüllt $F'_{\mu\sigma^2}(x) = \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right), F_{\mu\sigma^2}(\mu-x) = 1 - F_{\mu\sigma^2}(\mu+x)$

• Exponential verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \begin{cases} 0, & \text{für } x \le 0\\ 1 - \exp(-\lambda x), & \text{für } x > 0 \end{cases}$$

• Poisson-Verteilung mit Parameter $\lambda > 0$:

$$F_{\lambda}(x) = \sum_{0 \le n \le x} \frac{\lambda^n}{n!} \exp(-\lambda)$$

Definition. Ein Ereignis $A \in \mathfrak{A}$ trete bei n Versuchen genau $h_n(A) \in \mathbb{N}$ mal auf. Dann heißt

- $h_n(A)$ absolute Häufigkeit von A,
- $H_n(A) := \frac{h_n(A)}{n}$ relative Häufigkeit von A.

Bemerkung. Unmittelbar klar:

- $H_n(A) \in [0,1]$
- $H_n(A) \leq H_n(B)$ für $A \subset B$

• $H_n(A \sqcup B) = H_n(A) + H_n(B)$ für $A \cap B = \emptyset$

Bemerkung. Bei wachsendem n stabilisiert sich normalerweise der Wert $H_n(A)$. Dieser Grenzwert ist die Wahrscheinlichkeit von A.

Definition. Seien $A,B\in\mathfrak{A}$ Ereignisse, $n\in\mathbb{N}$ die Anzahl der Versuche. Dann heißt

$$H_n(A \mid B) := \frac{H_n(A \cap B)}{H_n(B)} = \frac{h_n(A \cap B)}{h_n(B)}$$

die relative Wahrscheinlichkeit von A unter der Bedingung B.

Bemerkung. Offenbar gilt:

- $H_n(A \mid B) \in [0,1]$ $H_n(A_1 \mid B) \le H_n(A_2 \mid B)$ für $A_1 \subset A_2$
- $H_n(A_1 \sqcup A_2 \mid B) = H_n(A_1 \mid B) + H_n(A_2 \mid B)$ für $A_1 \cap A_2 = \emptyset$

Definition. Sei $\Omega \in \mathcal{L}(\mathbb{R}^d)$ mit $\lambda_d(\Omega) > 0$. Dann heißt das W-Maß

$$\mathbb{P}: \mathcal{L}(\Omega) \to [0,1], \quad A \mapsto \frac{\lambda_d(A)}{\lambda_d(\Omega)}$$

auf $(\Omega, \mathcal{L}(\Omega))$ Gleichverteilung.

Definition. Sei Ω eine endliche Menge. Dann definiert

$$\mathbb{P}: \mathcal{P} \to [0,1], \quad A \mapsto \frac{|A|}{|\Omega|} = \frac{\text{\# günstige F\"{a}lle}}{\text{\# m\"{o}gliche F\"{a}lle}}$$

ein W-Maß auf $(\Omega, \mathcal{P}(\Omega))$, genannt Laplace'sche Wkt.

Bemerkung. Damit sind Berechnungen von W
kten mit kombinatorischen Überlegungen möglich.

Lemma (Fundamentalprinzip des Zählens). Seien $A_1, ..., A_n$ endliche Mengen. Dann gilt $|A_1 \times ... \times A_n| = |A_1| \cdots |A_n|$.

Lemma. Sei A eine endliche Menge, $r \le n := |A| < \infty$. Dann ist die Anzahl der r-Tupel mit Elementen aus A gleich

Mit Wdh. Ohne Wdh.

Mit Ordnung
$$n^r \frac{n!}{(n-r)!}$$
Ohne Ordnung $\frac{(n+r-1)!}{r!} \binom{n}{r} \coloneqq \frac{n!}{r!(n-r)!}$

Lemma. Sei A eine endliche Menge, $n := |A| < \infty$. Dann ist die Anzahl der möglichen Zerlegungen von A in disjunkte Mengen $B_1, ..., B_k$ mit $|B_i| = n_i$ und $n_1 + ... + n_k = n$ gleich

$$\binom{n}{n_1,...,n_k} \coloneqq \frac{n!}{n_1!\cdots n_k!}.$$
 (Multinomialkoeffizient)

Modell. Eine Urne enthalte N Kugeln, darunter $M \leq N$ schwarze. Dann ist ist die Wkt für das Ereignis A_m^n , dass sich unter n gezogenen Kugeln genau $m \leq \min(n, M)$ schwarze Kugeln befinden,

$$\mathbb{P}(A_m^n) = \frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}}.$$
 (hypergeometrische Verteilung)

Bemerkung. Für Maximum-Likelihood-Schätzungen:

- Der Ausdruck $\binom{N-M}{n-m}/\binom{N}{n}$ wird maximal bei $N\coloneqq\lfloor\frac{n-M}{m}\rfloor.$
- Der Ausdruck $\binom{M}{m}\cdot \binom{N-M}{n-m}$ wird maximal bei $M\coloneqq \lfloor \frac{m(N-1)}{n}\rfloor.$

Modell. Eine Urne enthalte N Kugeln in $k \leq N$ verschiedenen Farben, darunter N_1 in der ersten Farbe, ..., N_k in der k-ten Farbe, $N_1 + \ldots + N_k = N$. Dann ist ist die Wkt für das Ereignis $A^n_{n_1,\ldots,n_k}$, dass sich unter n gezogenen Kugeln genau $n_1 \leq N_1$ Kugeln der ersten Farbe, ..., und $n_k \leq N_k$ Kugeln der k-ten Farbe befinden, $n_1 + \ldots + n_k = n$, gleich

$$\mathbb{P}(A_{n_1,\dots,n_k}^n) = \frac{\binom{N_1}{n_1} \cdots \binom{N_k}{n_k}}{\binom{N}{n}}.$$

Diese W-Verteilung heißt polyhypergeometrische Verteilung.

Definition. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A, B \in \mathfrak{A}$. Dann heißt

$$\mathbb{P}(A \mid B) \coloneqq \begin{cases} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, & \text{falls } \mathbb{P}(B) > 0\\ 0, & \text{falls } \mathbb{P}(B) = 0 \end{cases}$$

Wahrscheinlichkeit von A unter der Bedingung B.

Bemerkung. Falls $\mathbb{P}(B)>0$ gilt, so ist $\mathbb{P}(-\mid B)$ ein W-Maß über Bauf der Spur- $\sigma\text{-Algebra}\ \mathfrak{A}|_B.$

Lemma. Seien $A_1, ..., A_k \in \mathfrak{A}$, dann gilt die Pfadregel:

$$\mathbb{P}(A_1 \cap \dots \cap A_k) = \mathbb{P}(A_1) \cdot \prod_{i=2}^k \mathbb{P}(A_i \mid A_1 \cap \dots \cap A_{i-1}).$$

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $A_1, ... \in \mathfrak{A}$ ein vollständiges Ereignissystem, d. h. paarweise disjunkt mit

$$\Omega = \bigsqcup_{i=1}^{\infty} A_i.$$

Dann gilt für jedes $B \in \mathfrak{A}$ mit $\mathbb{P}(B) > 0$

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i) \quad \text{(Formel der totalen Wkt)}$$

$$\mathbb{P}(A_n \mid B) = \frac{\mathbb{P}(B \mid A_n) \cdot \mathbb{P}(A_n)}{\sum\limits_{i=1}^{\infty} \mathbb{P}(B \mid A_i) \cdot \mathbb{P}(A_i)}$$
 (Bayessche Formel)

Sprechweise. In der Bayesischen Statistik heißt

- $\mathbb{P}(A_i)$ A-priori-Wahrscheinlichkeit,
- $\mathbb{P}(A_i \mid B)$ A-posteriori-Wahrscheinlichkeit.

Definition. Zwei Ereignisse $A, B \in \mathfrak{A}$ heißen (\mathbb{P} -)unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Bemerkung. • $A \in \mathfrak{A}$ mit $\mathbb{P}(A) = 0$ ist unabhängig zu jedem $B \in \mathfrak{A}$.

• Wenn $A, B \in \mathfrak{A}$ unabhängig, dann sind auch unabhängig:

$$(A^{c}, B), (A, B^{c}), (A^{c}, B^{c})$$

Satz. $A, B \in \mathfrak{A}$ unabhängig $\iff \mathbb{P}B \mid A = \mathbb{P}(B)$.

Definition. Sei $(A_i)_{i\in I}$ (I bel.) eine Familie von Ereignissen in \mathfrak{A} .

vollständig unabhhängig, falls

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_n})$$

für alle $i_1, ..., i_n \in I$ mit $2 \le n < \infty$ und

paarweise unabhängig, falls

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j)$$
 für alle $i, j \in I, i \neq j$.

Achtung. Aus paarweiser Unabhängigkeit folgt nicht vollständige Unabhängigkeit (Gegenbeispiel: Bernsteins Tetraeder).

Definition. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum und $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ Ereignissysteme. Dann heißen \mathfrak{A}_1 und \mathfrak{A}_2 unabhängig, falls

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$$
 für alle $A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2$.

Satz. Seien $\mathfrak{A}_1,\mathfrak{A}_2\subset\mathfrak{A}$ unabhängige Ereignissysteme, die Algebren sind. Dann sind auch die σ -Algebren $\sigma(\mathfrak{A}_1)$ und $\sigma(\mathfrak{A}_2)$ unabhängig.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $(A_i)_{i \in \mathbb{N}}$ Folge von unabhängigen Ereignissen mit gleicher Erfolgswkt $\mathbb{P}(A_i) = p$ für alle $i \in \mathbb{N}$. Für $k \leq n, \, k, n \in \mathbb{N}$ ist dann die Wahrscheinlichkeit, dass genau k Stück der Ereignisse $A_1, ..., A_n$ eintreten, genau

$$B(k, n, p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Die zugehörige VF $x\mapsto \sum\limits_{0\leq k\leq x} B(k,n,p)$ heißt Binomialverteilung.

Lemma. Voraussetzung wir im vorherigen Satz. Sei $r,k\in\mathbb{N},\,1\leq r,$ dann ist die Wkt für das Ereignis $A_k^{(r)}$, dass beim Versuch A_{k+r} der r-te Erfolg eintritt, gleich

$$\mathbb{P}(A_k^{(r)}) = {\binom{k+r-1}{r-1}} p^r (1-p)^k.$$

Im Spezialfall r = 1 ist $\mathbb{P}(A_k^{(1)}) = p(1-p)^k$.

Satz. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein W-Raum, $A_1, ..., A_r \in \mathfrak{A}$ mit $p_i := \mathbb{P}(A_i)$ für i = 1, ..., k und $p_1 + ... + p_r = 1$. Dann ist die Wahrscheinlichkeit, dass bei $n \in \mathbb{N}$ Versuchen A_1 genau n_1 -mal, A_2 genau n_2 -mal, ..., A_r genau n_r -mal auftritt $(n_1 + ... + n_r = n)$, genau

$$B(n_1,...,n_r,n,p_1,...,p_r) := \binom{n}{n} p_1^{n_1} \cdots p_r^{n_r}.$$

Diese W-Verteilung heißt Multinomialverteilung.

Satz. Für $0 \le m \le n, p \in [0,1]$ gilt

$$\frac{\binom{M}{m}\binom{N-M}{n-m}}{\binom{N}{n}} \xrightarrow{M,N\to\infty} \binom{n}{M/N\to p} \binom{n}{m} p^m (1-p)^{n-m}.$$

Satz (GWS von Poisson). Für $k \in \mathbb{N}, \lambda \in \mathbb{R}_{>0}$ gilt

$$\binom{n}{m} p_n^m (1 - p_n)^{n-m} \xrightarrow[np_n \to \lambda]{n \to \infty} \frac{\lambda^k}{k!} \exp(-\lambda).$$

Satz (von Lusin). $f:([a,b],\mathfrak{L}([a,b])) \to (\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ ist Borel-messbar $\iff \forall \epsilon > 0: \exists K\epsilon \subset [a,b]$ abgeschlossen mit $\lambda_1(\mathbb{R}^1 \setminus K_{\epsilon})$ und $f|_{K_{\epsilon}}$ stetig.

Satz. Folgerung: Es sind messbar

- monotone Funktionen
- Funktionen mit endlicher Variation
- Càdlàg-Funktionen, das sind Funktionen $f:[a,b]\to\mathbb{R}$ mit $\lim_{\epsilon\to 0}f(x+\epsilon)=f(x)$ für alle $x\in[a,b[$.

Lemma (Borel-Cantelli). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von Ereignissen über $(\Omega, \mathfrak{A}, \mathbb{P})$. Dann gilt für $A=\lim_{n\to\infty}$

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A) = 0.$$

Falls die Ereignisse $(A_n)_{n\in\mathbb{N}}$ unabhängig sind, so gilt

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1.$$

Definition. Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ Folge von σ-Algebren über Ω . Dann ist

$$\mathcal{T}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{T}_n \quad \text{mit} \quad \mathcal{T}_n \coloneqq \sigma\left(\bigcup_{k=n}^{\infty} \mathfrak{A}_k\right)$$

die terminale σ -Algebra von $(\mathfrak{A}_n)_{n\in\mathbb{N}}$.

Satz (Null-Eins-Gesetz von Kolmogorow). Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ eine Folge von unabhängigen Unter- σ -Algebren in einem W-Raum $(\Omega,\mathfrak{A},\mathbb{P})$. Dann gilt $\mathbb{P}(A)\in\{0,1\}$ für alle Ereignisse $A\in\mathcal{T}_\infty$ der terminalen σ -Algebra.

Definition. Eine \mathfrak{A} -messbare numerische Funktion X über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, \mathbb{P})$ heißt **Zufallsgröße** (ZG) oder **Zufallsvariable**.

Definition. Die durch die ZG X auf $(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ induzierte Bildmaß P_X

$$P_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\})$$

heißt Verteilung der ZG X.

$$F_X(x) = P_X(]-\infty, x]) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le x\})$$

heißt die Verteilungsfunktion (VF) der ZG X.

Satz. F sei eine VF auf \mathbb{R}^1 . Dann existiert ein Wahrscheinlichkeits-Raum $(\Omega, \mathfrak{A}, \mathbb{P}$ und eine ZG X derart, dass

$$F_X(x) = F(x) \text{ für } x \in \mathbb{R}^1$$

Notation. Sei X eine Zufallsgröße und $B \in \mathfrak{L}(\overline{\mathbb{R}}^1)$. Dann schreibe $\{X \in B\} = X^{-1}(B)$.

Definition. Eine endliche Familie von Zufallsgrößen $X_1, ..., X_n$ heißt stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^n \{X_i \in B_i\}) = \prod_{i=1}^n \mathbb{P}(\{X_i \in B_i\}) \text{ für alle } B_i \in \mathcal{L}(\overline{R}^1), i=1,...,n.$$

Satz. Seien $X_1, ..., X_n$ unabhängige Zufallsgrößen über $(\Omega, \mathfrak{A}, \mathbb{P})$ von $g_1, ..., g_n$ Borel-messbare Funktionen von \mathbb{R}^1 nach \mathbb{R}^1 . Dann sind auch die Zufallsgrößen $Y_i := g_i \circ X_i$ unabhängig über $(\Omega, \mathfrak{A}, \mathbb{P})$.

Satz. Sei $0 \le f_1 \le f_2 \le \dots$ eine isotone Folge elementarer Funktionen über (Ω, \mathfrak{A}) . Dann gilt für jede elementare Funktion f mit $f \le \sup_{n \in \mathbb{N}} f_n$ die Ungleichung $\int\limits_{\Omega} f \,\mathrm{d}\mu \le \sup_{n \in \mathbb{N}} \int\limits_{\Omega} f_n \,\mathrm{d}\mu$.

Satz. Seien $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ isotone Folgen elementarer Funktionen mit $\sup_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} g_n$. Dann ist $\sup_{n\in\mathbb{N}} \int f_n \,\mathrm{d}\mu = \sup_{n\in\mathbb{N}} \int g_n \,\mathrm{d}\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{R}^1,\mathfrak{L}(\mathbb{R}^1))$ sein \mathfrak{A} -messbar, numerisch. Dann sind äquivalent:

- f ist μ -integrierbar
- f^+ und f^- sind μ -integrier bar mit $\int\limits_{\Omega} f^\pm \,\mathrm{d}\mu < \infty$
- $\int_{\Omega} |f| \, \mathrm{d}\mu < \infty$
- $\int\limits_{\Omega} g \, \mathrm{d}\mu < \infty$ für eine $\mathfrak{A}\text{-messbare},$ numerische Funktion mit $|f| \leq g$

Satz. Seien $f, g: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ μ -integrierbar. Dann sind $f \pm g$, $f \vee g$, $f \wedge g$ und $\alpha \cdot f$ für $\alpha \in \mathbb{R}^1$ μ -integrierbar und es gilt

$$\int_{\Omega} \alpha \cdot f + \beta \cdot g \, d\mu = \alpha \int_{\Omega} f \, d\mu + \beta \int_{\Omega} g \, d\mu, \quad \left| \int_{\Omega} f \, d\mu \right| \le \int_{\Omega} |f| \, d\mu,$$
$$f \le g \implies \int_{\Omega} f \, d\mu \le \int_{\Omega} g \, d\mu$$

Definition. Mit $L^p(\mu) = L^p(\Omega, \mathfrak{A}, \mu)$ bezeichnen wir den normierten Vektorraum der aus den Funktionen $f:(\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ mit $\int\limits_{\Omega} |f|^p \,\mathrm{d}\mu < \infty$ für $1 \le p \le \infty$ besteht. Die Norm in diesem Raum wird durch

$$||f||_p := \left(\int_{\Omega} |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

definiert. Es kann gezeigt werden, dass die Normeigenschaften erfüllt sind

Bemerkung. Der $L^p(\mu)$ ist ein vollständiger normierter Raum, d. h. jede Cauchy-Folge bzgl. der Norm $\|\cdot\|_p$ ist auch konvergent. Im Spezialfall p=2heißt $L^p(\mu)$ Hilbertraum der quadratisch integrierbaren Funktionen mit Skalarprodukt $\langle f,g\rangle=\int\limits_{\Omega}f\cdot g\,\mathrm{d}\mu.$ Es gilt in diesem Fall außerdem die Cauchy-Schwarz-Bunjakowski-Ungleichung:

$$||f \cdot g||_1 \le ||f||_2 \cdot ||g||_2$$

Höldersche Ungleichung:

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

wobei $p, q \in [1, \infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$.

Satz. Sei $f_n:(\Omega,\mathfrak{A},\mu)\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ \mathfrak{A} -messbar und $0\leq f_1\leq f_2\leq\dots$ Dann gilt

$$\int_{\Omega} \sup_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz (von Beppo Levi). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge monotoner nichtnegativer, \mathfrak{A} -messbarer, numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$. Dann gilt:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz. f sei \mathfrak{A} -messbar, nichtnegativ und μ -integrierbar. Dann ist

$$\nu(A) := \int_A f \, \mathrm{d}\mu = \int_\Omega f \cdot \chi_A \, \mathrm{d}\mu$$

ein endliches Maß auf (Ω, \mathfrak{A}) .

Satz (Lemma von Fatou). Sei $f_n: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ eine Folge \mathfrak{A} -messbarer, nichtnegativer Funktionen. Dann gilt:

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz. Seien $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, (Ω', \mathfrak{A}') ein messbarer Raum und $f: \Omega' \to \Omega$ messbar. Bezeichne mit $\mu' \coloneqq \mu \circ f^{-1}$ das Bildmaß von μ unter f. Dann gilt für alle μ' -integrierbaren Funktionen $g: \Omega' \to \mathbb{R}$:

$$\int_{\Omega'} g \, \mathrm{d}\mu' = \int_{\Omega} g \circ f \, \mathrm{d}\mu$$

Satz (Transformations satz). Sei $U,\widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi: U \to \widetilde{U}$ ein \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f:\widetilde{U} \to \overline{\mathbb{R}}$ genau dann auf \widetilde{U} Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\int_{U} (f \circ \phi) \cdot |\det(D\phi)| \, d\mu_{LB} = \int_{\phi(U)} f \, d\mu_{LB} = \int_{\widetilde{U}} f \, d\mu_{LB}.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \geq 0$ gilt (also $f \in \overline{\mathbb{E}}(\widetilde{U}, \mathfrak{B}(\widetilde{U}))$; dann kann das Integral auch den Wert ∞ annehmen).

Definition. Für eine ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\overline{\mathbb{R}}^1,\mathcal{L}(\overline{\mathbb{R}}^1))$ heißt die Zahl

$$\mathbb{E}X := \int_{\Omega} X \, \mathrm{d}\mathbb{P} = \int_{\mathbb{R}^1} \mathrm{id} \, \mathrm{d}P_X$$

der Erwartungswert der ZG X, wobei $P_X = \mathbb{P} \circ X^{-1}$.

Korollar. Sei $g:\mathbb{R}^1\to\mathbb{R}^1$ Borel-messbar und P_X -integrierbar. Dann gilt

$$\mathbb{E}g(X) = \int_{\mathbb{R}^1} g \, dP_X = \int_{-\infty}^{\infty} g(x) \, dF_X(x),$$

wobei das rechte Integral das uneigentliche Riemann-Stieltjes-Integral bzgl. F_X ist.

Definition. Für Zufallsvektoren $X=(X_1,...,X_k)$ mit Werten in \mathbb{R}^k ist

$$\mathbb{E}X = (\mathbb{E}X_1, ..., \mathbb{E}X_k)$$

Sei $g:\mathbb{R}^k\to\mathbb{R}$ Borel-messbar und $P_{(X_1,...,X_k)}$ -integrierbar. Dann ist

Bemerkung. Für diskrete F_X , also

 $\mathbb{E}g(X_1, ..., X_k) = \int_{\mathbb{D}^k} g(x_1, ...) \, dP_{(X_1, ..., X_k)} = \int_{-\infty}^{\infty} g(x_1, ..., x_k) \, dF_X(x_1, ..., f_{W}^*)_{x_1, ...} \in \mathbb{R} \text{ und } c_1, ... \in \mathbb{R} \text{ gilt}$

$$F = F_X$$
 sei die VF einer ZG $X: (\Omega, \mathfrak{A}, \mathbb{P}) \to (\mathbb{R}^1, \mathcal{L}(\mathbb{R}^1), P_X)$

Definition. • F_X heißt diskret, falls F_X höchstens abzählbar viele Sprünge $x_1, x_2, \ldots \in \mathbb{R}$ mit $p_k := F(x_k) - \lim_{x \uparrow x_k} F(x) > 0$ mit

 $\sum\limits_{k=1}^{\infty}p_{k}=1$ besitzt (dann ist $F_{X})$ zwischen den Sprüngen konstant) item

- F_X heißt stetig (diffus, atomlos), wenn F_X in jedem Punkt stetig ist. Dann gilt $P_X(\{X=x\})=0$.
- F_X heißt absolut stetig (totalstetig), wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass für abzählbare viele, disjunkte Intervalle $I_k =]a_k, b_k]$ mit $\sum\limits_k (b_k a_k) < \delta$ sich $\sum\limits_k (F_X(b_k) F_X(a_k)) \le \epsilon$ ergibt.
- ullet singulärstetig (stetig, aber nicht absolutstetig), wenn die Wachstumspunkte VF F_X eine Lebesgue-Nullmenge bilden, also

$$\lambda_1(\{x \in \mathbb{R}^2 \mid \forall \epsilon > 0 : F(x+\epsilon) - F(x-\epsilon) > 0\}) = 0$$

Satz. $F'_X(x)$ existiert für Lebesgue-fast-alle $x \in \mathbb{R}^1$.

Satz. Jede VF F auf \mathbb{R}^1 besitzt eine eindeutige Zerlegung (Lebesgue-Zerlegung) als konvexe Linearkombination einer diskreten, singulär-stetigen und absolut-stetigen VF:

$$F = \alpha_d F_d + \alpha_s F_s + \alpha_a F_a$$

mit $\alpha_d, \alpha_s, \alpha_a \ge 0$ und $\alpha_d + \alpha_s + \alpha_a = 1$.

 ${\bf Definition.}$ Falls F_X absolut-stetig, dann heißt die nicht-negative, Lebesgue-messbare Funktion

$$ff_X(x) := \begin{cases} F_X'(x) & \text{falls Ableitung ex.} \\ 0 & \text{sonst,} \end{cases} \text{ welche } \int_{\mathbb{R}^1} f_X \, \mathrm{d}\lambda_1 = 1 \text{ erfüllt,}$$
 die W-Dichte von F_X .

$$\mathbb{E}X = \int_{\mathbb{R}^1} x \, dF_X = \int_{\mathbb{R}^1} id \cdot f_X \, d\lambda = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

$$F(x) = c_i$$
 für alle $x \in]x_i, x_{i+1}[$

$$\mathbb{E}X = \sum_{i=1}^{n} (x_i)$$

Deutung der $\mathbb{E}X$ als Massenschwerpunkte

 $F(X_1,...,X_k)$ heißt **absolut stetig**, falls für alle $\epsilon>0$ ein $\delta>0$ existiert, sodass für $I_\alpha=]a_j,b_j],\ j=1,2,...$ mit $\sum\limits_{i>1}\lambda_k(I_j)\leq \delta$ gilt:

$$\sum\limits_{j\geq 1}\mathbb{P}_{(X_1,...,X_k)}(I)=\sum\limits_{j\geq 1}(triangleF_{(X_1,...,X_k)})I_j\leq \epsilon$$

Genau dann existiert eine (Lebesgue-) Borel-messbare Funktion

$$f_{(X_1,...,X_k)}(x_1,...,x_k) \ge 0$$
 mit $\int_{\mathbb{R}^1} f_{(X_1,...,X_k)} d\lambda_k = 1$

Sei $q: \mathbb{R}^k \to \mathbb{R}^1$ Borel-messbar

$$\mathbb{E}g(X_1,...,X_k) = \int_{\mathbb{P}^1} g \cdot f_{(X_1,...,X_k)} \, \mathrm{d}\lambda_k$$

Falls $F_{(X_1,...,X_k)}$ "hinreichend glatt", so ergibt sich

$$f_{X_1,...,X_k}(x_1,...,x_k) = \frac{\partial^k}{\partial_{x_1} \cdot \partial_{x_k}} F_{(X_1,...,X_k)}(x_1,...,x_k)$$

 $F_{X_1,...,X_k}$ heißt singulär-stetig, falls $P_{(X_1,...,X_k)}(\{x\}) = 0 \forall x \in \mathbb{R}^k$ und es existiert eine Lebesgue-messbare Menge S mit $\lambda_k(S) = 0$ und $P((X_1, ..., X_k))(S) = 1.$

 $F_{(X_1,...,X_k)}$ heißt diskret, falls eine höchstens abzählbare

Punktmenge $S = \{x_1, ...\} \subset \mathbb{R}^k$ und $p_i = P_{(X_1, ..., X_k)}(\{x_i\}) > 0$ mit

Sei
$$x_i = (x_i^{(1)}, ..., x_i^{(k)}) \in \mathbb{R}^k$$

 $\mathbb{E}g(X_1, ..., X_k) = \sum_{i>1} g(x_i^{(1)}, ..., x_i^{(k)}) p_i$

 $g: \mathbb{R}^1 \to \mathbb{R}^1$ sei zunächst beliebig (stetig oder hinreichend glatt)

Sei
$$a = \xi_0^{(n)} < \xi_1^{(n)} < \ldots < x_{k_n}^{(n)}$$
 und $x_k^{(n)} \in \left] \xi_{k-1}^{(n)}, \xi_k^{(n)} \right[.$

Definition. (ξ_n) sei eine Zerlegungsfolge mit $\max_{1 \le k \le k} (x_k^{(n)} - x_{k-1}^{(n)}) \xrightarrow{n \to \infty} 0$

 $(x_k^{(n)})$ sei eine Zwischenwertfolge

$$\lim_{n \to \infty} \sum_{k=1}^{k_n} g(x_k^{(n)}) (F(x_k^{(n)}) - F(x_{k-1}^{(n)})) = \int_a^b g(x) \, \mathrm{d} F(x) = \int_{[a,b]} g \, \mathrm{d} F \lambda_1$$

wobei $F: \mathbb{R}^1 \to \mathbb{R}^1$ zunächst beliebig (monoton oder von beschränkter Variation)

Sei q bzgl. F R-S-integrierbar, d. h. der Grenzwert oben existiert Dann ist auch F bzgl. q R-S-integrierbar und es gilt

$$\int_a^b g(x) dF(x) = [g(x) \cdot F(x)]_a^b - \int_a^b F(x) dg(x)$$

Ausnutzen der partiellen Integration zur Berechnung von Erwartungswerten

$$\mathbb{E}X = \int_{-\infty}^{\infty} x \, \mathrm{d}F(x)$$

$$\int_{a}^{b} x \, \mathrm{d}F_X(x) = \lim_{a \to -\infty, b \to \infty} [x \cdot F_X(-x)]_0^{-a} - \int_{0}^{-a} F_X(-x) \, \mathrm{d}x + [x(F_X(x) - 1)]_0^{-a} - \int_{0}^{a} F_X(-x) \, \mathrm{d}x$$

Falls $\lim x \to \infty x F_X(-x) = \lim x \to \infty x (1 - F_X(x)) = 0$, so gilt

$$\mathbb{E}X = \int_{0}^{\infty} 1 - F_X(x) - F_X(-x) \, \mathrm{d}x, \text{ falls } \mathbb{E}|X| < \infty$$

$$\mathbb{E}|X| = \int_{0}^{\infty} 1 - F_X(x) - F_X(-x) \, \mathrm{d}x$$

Genauso werden Erwartungswerte von Funktionen von X berechnet z.B. mit $x^2 F_X(-x) \xrightarrow{x \to \infty} 0$ und $x^2 (1 - F_X(x)) \xrightarrow{x \to \infty} 0$

$$\mathbb{E}X^{2} = 2\int_{0}^{\infty} x(1 - F_{X}(x) + F_{X}(-x)) \, dx = \mathbb{P}(|X| > x) \text{ (falls } F_{X} \text{ stetig)}$$

$$\mathbb{E}|X|^{k} = k \int_{0}^{\infty} x^{k-1} (1 - F_X(x) + F_X(-x)) dx$$

 $\int\limits_{a}^{b} x \, \mathrm{d}F_X(x) = \lim_{a \to -\infty, b \to \infty} [x \cdot F_X(-x)]_0^{-a} - \int\limits_{0}^{-a} F_X(-x) \, \mathrm{d}x + [x(F_X(x)-1)]_0^{b} X. \text{ Lex}(x) = D^2 X = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 \text{ heißt Streuung (Dispersion, for the properties of th$ Varianz) der ZG X.