CSC209 Week 9 Notes

Hyungmo Gu

May 16, 2020

Signals 1 of 2

- Introduction to Signals
 - Signals
 - * are mechanisms that allow process or the os to interrupt currently running process and notify that an event has occured

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Name SIGHUP SIGINT SIGQUIT SIGILL SIGTRAP SIGABRT SIGEMT SIGFPE SIGKILL SIGBUS SIGSEGV SIGSEGV SIGSEGV SIGSEGV SIGSEFPE SIGALRM SIGTERM SIGURG SIGSTOP SIGTSTP	Default Action terminate process terminate process create core image terminate process create core image terminate process terminate process terminate process terminate process discard signal stop process	Description terminal line hangup interrupt program quit program illegal instruction trace trap abort program (formerly SIGIOT) emulate instruction executed floating-point exception kill program bus error segmentation violation non-existent system call invoked write on a pipe with no reader real-time timer expired software termination signal urgent condition present on socket stop (cannot be caught or ignored) stop signal generated from keyboard continue after stop

- How it Works
 - 1. Using hotkey
 - * i.e. CTRL + C in terminal sends SIGINT
 - $\ast\,$ i.e. $CTRL\,+\,Z$ in terminal sends SIGSTOP
 - 2. Using kill command

Signals 2 of 2

- Signals Handling
 - sigaction
 - * Syntax: int sigaction(int signum, const struct sigaction *act, NULL);
 - * Is a part of signal.h library
 - * Is used to change the action taken by a process on receipt of a specific signal
 - * Works like try and catch in Python
 - * Don't worry about NULL:). Not knowing won't bite.

```
#include <stdio.h>
      #include <stdlib.h>
      #include <signal.h>
3
4
      void handler(int);
5
6
      int main () {
          struct sigaction newact;
          newact.sa_handler = handler; // <- like catch statement in</pre>
9
      python
          newact.sa_flags = 0;
10
          sigemptyset(&newact.sa_mask);
```

```
return(0);
}

void handler(int code) {
    fprintf(stderr, "Signal %d caught\n", code);
}
```

- * Use CTRL + Z to terminate
- * kill -KILL <PID > and kill -QUIT <PID > are two guarenteed ways to terminate a program.

Bit Manipulation 1 of 4

- Introducing Bitwise Operations
 - When to use Bitwise Operations?
 - * Lowlevel programming on embedded systems
 - Bitwise Operators in C
 - * **&:** AND

a	b	a & b
0	0	0
0	1	1
1	0	0
1	1	1

Example:

* |: OR

a	b	a b
0	0	0
0	1	1
1	0	1
1	1	1

Example:

* : NOT

a	$\sim a$
0	1
1	0

Example:

```
0 1 1 1 //<- this is 7
------
1 0 0 0 //<- this is 8

so, ~ 7 = 8
```

* : XOR

a	b	a ^ b
0	0	0
0	1	1
1	0	1
1	1	0

Example:

```
0 1 1 1 //<- this is 7
0 1 0 0 //<- this is 4

------
0 0 1 1 //<- this is 3

so, 7 ^ 4 = 3
```

* <<n: LEFT SHIFT

 \cdot Shifts all bits to left by n

Example:

* >>n: RIGHT SHIFT

 \cdot Shifts all bits to right by n

Example: