Міністерство освіти і науки України

Національний університет "Львівська політехніка"

Кафедра ЕОМ

3BiT

3 лабораторної роботи №2

3 дисципліни: «Моделювання комп'ютерних систем»

На тему: «Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan3A FPGA»

Варіант 15

Виконав: ст. гр. КІ-201

Коростенська С.В

Прийняв:

ст. викладач

Козак Н.Б

Мета роботи:

На базі стенда реалізувати цифровий автомат світлових ефектів

Варіант виконання роботи:

Варіант 3

Пристрій повинен реалізувати комбінацій вихідних сигналів згідно таблиці:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
2	0	0	1	1	0	0	0	0
3	0	0	0	1	1	0	0	0
4	0	0	0	0	1	1	0	0
5	0	0	0	0	0	1	1	0
6	0	0	0	0	0	0	1	1
7	0	0	0	0	0	0	0	1

- Пристрій повинен використовувати тактовий сигнал 12MHz від мікроконтролера і знижувати частоту за допомогою внутрішнього подільника Мікроконтролер є частиною стенда Elbert V2 Spartan3A FPGA. Тактовий сигнал заведено на вхід LOC = P129 FPGA.
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (MODE):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - Якщо MODE=1 то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
 - Інтерфейс пристрою повинен мати однорозрядний вхід (SPEED):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ ВИЩОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів.
- Для керування сигналами RESET/SPEED використати будь які з PUSH BUTTON кнопок.

Виконання роботи:

VHDL опис логіки переходів

VHDL опис вихідних сигналів

Згенеровані схематичні символи

Інтеграція всіх створених компонентів разом з пам'яттю стану автомата

Результати симуляції логіки переходів в ISim

Результати симуляції логіки вихідних сигналів в ISim

Pезультати симуляції автомата (MODE = 0, RESET = 0)

Результати симуляції автомата (MODE = 1, RESET = 0)

Результати симуляції автомата (MODE = 0, RESET = 1)

Результати симуляції автомата (MODE = 1, RESET = 1)

Результати симуляції фінальної схеми (MODE = 0, SPEED = 0, RESET = 0)

Результати симуляції фінальної схеми (MODE = 1, SPEED = 0, RESET = 0)

Результати симуляції фінальної схеми (MODE = 0, SPEED = 1, RESET = 0)

Результати симуляції фінальної схеми (MODE = 1, SPEED = 1, RESET = 0)

Результати симуляції фінальної схеми (MODE = 0, SPEED = 0, RESET = 1)

Результати симуляції фінальної схеми (MODE = 1, SPEED = 0, RESET = 1)

Результати симуляції фінальної схеми (MODE = 0, SPEED = 1, RESET = 1)

Результати симуляції фінальної схеми (MODE = 1, SPEED = 1, RESET = 1)

TEST BENCH:

```
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
USE ieee.numeric std.ALL;
LIBRARY UNISIM;
USE UNISIM. Vcomponents. ALL;
ENTITY TOP SCHEME TOP SCHEME sch tb IS
END TOP_SCHEME_TOP_SCHEME_sch_tb;
ARCHITECTURE behavioral OF TOP_SCHEME_TOP_SCHEME_sch_tb IS
 COMPONENT TOP_SCHEME
 PORT( CLOCK : IN STD LOGIC;
    RESET: IN STD LOGIC;
    SPEED: IN STD_LOGIC;
    OUTPUT: OUT STD LOGIC VECTOR (7 DOWNTO 0);
    MODE: IN STD LOGIC);
 END COMPONENT;
 SIGNAL CLOCK: STD LOGIC:= '0';
 SIGNAL RESET: STD_LOGIC;
 SIGNAL SPEED: STD LOGIC;
```

```
SIGNAL OUTPUT: STD LOGIC VECTOR (7 DOWNTO 0);
 SIGNAL MODE: STD_LOGIC;
BEGIN
 CLOCK <= not CLOCK after 83ns;
 UUT: TOP_SCHEME PORT MAP(
  CLOCK => CLOCK,
  RESET => RESET,
  SPEED => SPEED,
  OUTPUT => OUTPUT,
  MODE => MODE
 );
-- *** Test Bench - User Defined Section ***
 tb: PROCESS
 BEGIN
  MODE <= '0';
  SPEED <= '0';
  RESET <= '1', '0' after 200ms;
  wait until RESET = '0';
  assert OUTPUT = "00000011";
  wait for 696255us;
  assert OUTPUT = "00000110";
  wait for 1392509us;
  assert OUTPUT = "00001100";
  wait for 1392509us;
  assert OUTPUT = "00011000";
  wait for 1392509us;
  assert OUTPUT = "00110000";
  wait for 1392509us;
  assert OUTPUT = "01100000";
  wait for 1392509us;
  assert OUTPUT = "11000000";
  wait for 1392509us;
  assert OUTPUT = "10000000";
  wait for 1392509us;
  SPEED <= '1';
  MODE <= '1';
  RESET <= '1', '0' after 1ms;
  wait until RESET = '0';
  assert OUTPUT = "00000011";
  wait for 175065us;
  assert OUTPUT = "10000000";
  wait for 348149us;
  assert OUTPUT = "11000000";
  wait for 348149us;
  assert OUTPUT = "01100000";
  wait for 348149us;
```

```
assert OUTPUT = "00110000";
wait for 348149us;
assert OUTPUT = "00011000";
wait for 348149us;
assert OUTPUT = "00001100";
wait for 348149us;
assert OUTPUT = "00000110";
wait for 348149us;
MODE <= '0';
SPEED <= '1';
RESET <= '1', '0' after 1ms;
wait until RESET = '0';
assert OUTPUT = "00000011";
wait for 175065us;
assert OUTPUT = "10000000";
wait for 348149us;
assert OUTPUT = "11000000";
wait for 348149us;
assert OUTPUT = "01100000";
wait for 348149us;
assert OUTPUT = "00110000";
wait for 348149us;
assert OUTPUT = "00011000";
wait for 348149us;
assert OUTPUT = "00001100";
wait for 348149us;
assert OUTPUT = "00000110";
wait for 348149us;
MODE <= '1';
SPEED <= '0';
RESET <= '1', '0' after 1ms;
wait until RESET = '0';
assert OUTPUT = "00000011";
wait for 696255us;
assert OUTPUT = "00000110";
wait for 1392509us;
assert OUTPUT = "00001100";
wait for 1392509us;
assert OUTPUT = "00011000";
wait for 1392509us;
assert OUTPUT = "00110000";
wait for 1392509us;
assert OUTPUT = "01100000";
wait for 1392509us;
assert OUTPUT = "11000000";
wait for 1392509us;
assert OUTPUT = "10000000";
```

```
wait for 1392509us;

MODE <= '0';
SPEED <= '0';
RESET <= '1', '0' after 1ms;
wait until RESET = '0';

END PROCESS;

...-- *** End Test Bench - User Defined Section ***
```

END;

Результати TEST BENCH

Автомат світлових сигналів та подільник тактового сигналу

Висновок:

В ході виконання цієї лабораторної роботи я реалізувала на базі стенда Elbert V2 – Spartan3A FPGA цифровий автомат світлових ефектів згідно заданих вимог