Marwin B. Alejo 2020-20221 EE274_ProgEx03

Table of Contents

A. '	The Bilateral Z-Transform	1
(a)	$x(n) = (\frac{4}{3})^n u(1-n)$	1
(b)	$x(n) = 2^{- n } + (\frac{1}{3})^{ n }$	1

Also accessible through http://www.github.com/soymarwin/ee274/EE274_ProgEx03

A. The Bilateral Z-Transform

(a)
$$x(n) = (\frac{4}{3})^n u(1-n)$$

 $x(n) = (\frac{4}{3})^n u(-n+1)$
 $X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$
 $X(z) = \sum_{n=-\infty}^{\infty} (\frac{4}{3})^n u(-n+1) z^{-n}$
Let $k = -n+1$ and $n = 1-k$
 $X(z) = \sum_{n=-\infty}^{\infty} (\frac{4}{3})^{1-k} u(k) z^{k-1}$
 $X(z) = \sum_{n=0}^{\infty} (\frac{4}{3}) \cdot (\frac{4}{3})^{-k} \cdot z^k \times z^{-1}$
 $X(z) = (\frac{4z^{-1}}{3}) \sum_{n=0}^{\infty} (\frac{3z}{4})^k$
 $X(z) = \{\frac{4z^{-1}}{3} \cdot (\frac{1-3z}{1-2z}), \frac{4}{3} > |z|$
or $X(z) = \{\frac{4z^{-1}}{3-\frac{2z}{2}}, \frac{4}{3} > |z|$
or $X(z) = \{\frac{16z^{-1}}{12z-9z}, \frac{4}{3} > |z|$
diverges, else

(b) $x(n) = 2^{-|n|} + (\frac{1}{3})^{|n|}$

Marwin B. Alejo 2020-20221 EE274_ProgEx03

Published with MATLAB® R2020a