Infinitesimal Calculus 3

Lecture 15, Sunday December 4, 2022 Ari Feiglin

Proposition 15.1:

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is defined in a neighborhood and differentiable at $p \in \mathbb{R}^n$ let q = f(p). Suppose $g: \mathbb{R}^m \longrightarrow \mathbb{R}^k$ which is defined in a neighborhood and differentiable at q. Then $g \circ f: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is differentiable at p and satisfies:

$$dg \circ f\big|_p = dg\big|_q \cdot df\big|_p$$

Another way of thinking of this is if J_f is the Jacobian of f then:

$$J_{g \circ f}(p) = J_g(f(p)) \cdot J_f(p)$$

Proof:

Suppose $f(x+h) = f(x) + df|_x(h) + \varepsilon_1(h)$ and $g(x+h) = g(x) + dg|_x(h) + \varepsilon_2(h)$. Let $h \in \mathbb{R}^n$ then

$$g\circ f(p+h)-g\circ f(p)=g(f(p+h))-g(q)=g\left(q+df\big|_p(h)+\varepsilon_1\right)-g(q)=\left.dg\right|_q\left(df\big|_p(h)+\varepsilon_p(h)\right)+\varepsilon_q\left(f(p+h)-f(p)\right)$$

Now recall that by definition, differentials are linear, so this is equal to:

$$= dg \big|_{q} \circ df \big|_{p}(h) + dg \big|_{q}(\varepsilon_{p}) + \varepsilon_{q} \big(f(p+h) - f(p) \big)$$

So we will show that the right side of this is an ε function. We know that:

$$\lim_{h \to 0} \frac{dg|_q(\varepsilon_p(h))}{\|h\|} = \lim_{h \to 0} dg|_q\left(\frac{\varepsilon_p(h)}{h}\right) = dg|_q(0) = 0$$

Since differentials are continuous as finite linear transforms. And

$$\lim_{h \to 0} \frac{\varepsilon_q \left(\Delta f(p) \right)}{\|h\|} = \lim_{h \to 0} \frac{\varepsilon_q \left(\Delta f(p) \right)}{\Delta f(p)} \cdot \frac{\Delta f(p)}{\|h\|}$$

Since f is continuous at p, as h approaches 0, so too does $\Delta f(p)$. So

$$\lim_{h \to 0} \frac{\varepsilon_q(\Delta f(p))}{\Delta f(p)} = 0$$

And $\frac{\Delta f(p)}{\|h\|}$ is bounded, as it is equal to

$$\frac{df|_{p}(h) + \varepsilon_{1}(h)}{\|h\|} = \frac{df|_{p}(h)}{\|h\|} + \frac{\varepsilon_{1}(h)}{\|h\|}$$

The left is bounded since differentials are linear transforms, and the right is bounded since it converges to 0. As required.

Definition 15.2:

The contour line of a function $f: A \longrightarrow B$ is the set

$$\{a \in A \mid f(a) = b\}$$

for some $b \in B$. That is, it is the preimage of $\{b\}$.

For example, the contour lines of $f(x,y) = x^2 + y^2$ are circles. If γ is a contour line of f, if u is tangent to the contour, $D_u f = 0$. This is equivalent to saying that $\nabla f|_v$ is perpendicular to the contour line of f(v) at the point v.

Definition 15.3:

A vector v is perpendicular to a set S at a point $p \in S$ if:

$$\lim_{S\ni u\to p}v\cdot\frac{p-u}{\|p-u\|}=0$$

Proposition 15.4:

 $\nabla f|_{v}$ is perpendicular to the contour line of f(v) at the point v.

Proof:

We know that:

$$\lim_{u \to v} \nabla f \big|_v \cdot \frac{u - v}{\|u - v\|}$$

Recall that $f(v+h) = f(v) + \nabla f|_v \cdot h + \varepsilon(h)$, and so if h = u - v, then we have that $f(u) = f(v) + \nabla f|_v \cdot (u - v) + \varepsilon(u - v)$, and since f(u) = f(v) since they're on the same contour, we have that $\nabla f|_v \cdot (u - v) = -\varepsilon(u - v)$, so the limit is equal to:

$$= \lim_{u \to v} -\frac{\varepsilon(u-v)}{\|u-v\|} = 0$$

by definition of an ε function.

Theorem 15.5 (Clairut-Schwarz Theorem):

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and its partial derivatives is defined in a neighborhood of (x_1, \dots, x_n) . If its second order partial derivatives $\partial_j \partial_i f$ and $\partial_j \partial_i f$ exist in a neighborhood and are continuous at (x_1, \dots, x_n) then they are equal at (x_1, \dots, x_n) .

Since this is identical to the 2 dimensional case, we will prove it only for the 2 dimensional case. Recall that an alternative notation for partial derivatives is:

$$f_{x_i} = \partial_{x_i} f$$

And:

$$f_{x_j x_i} = \partial_{x_j} \partial_{x_i} f$$

So this theorem states that $f_{x_i x_j} = f_{x_j x_i}$ under the specified conditions.

Proof:

We define the following auxillary functions:

$$\omega(h,k) = \frac{f(x_0 + h, y_0 + h) - f(x_0 + h, y_0) - f(x_0, y_0 + h) + f(x_0, y_0)}{hk}$$
$$\varphi(x) = \frac{f(x, y_0 + k) - f(x, y_0)}{k}$$

Thus

$$\varphi'(x) = \frac{f_x(x, y_0 + k) - f_x(x, y_0)}{k}$$

And

$$\omega(h,k) = \frac{\varphi(x_0 + h) - \varphi(x_0)}{h}$$

By the mean value theorem, this means that $\omega(h,k) = \varphi'(x_0 + th)$ for some 0 < t < 1, which is equal to

$$= \frac{f_x(x_0 + th, y_0 + k) - f_x(x_0 + th, y_0)}{k}$$

And by the mean value theorem this is equal to $f_{xy}(x_0+t_1h,y_0+t_2h)$ for $0 < t_1,t_2 < 1$ $(t_1=t)$. By symmetry (we can do the same thing but swapping x and y in φ), $\omega(h,k) = f_{yx}(x_0+t_3h,y_0+t_4k)$. That is:

$$\omega(h,k) = f_{xy}(x_0 + t_1h, y_0 + t_2k) = f_{yx}(x_0 + t_3h, y_0 + t_4k)$$

Since f_{xy} and f_{yx} are continuous at (x_0, y_0) , as we take $(h, k) \to (0, 0)$ we have that:

$$\lim_{(h,k)\to 0} f_{xy}(x_0 + t_1h, y_0 + t_2k) = f_{xy}(x_0, y_0)$$

But on the other hand:

$$\lim_{(h,k)\to 0} f_{xy}(x_0 + t_1h, y_0 + t_2k) = \lim_{(h,k)\to 0} f_{yx}(x_0 + t_3h, y_0 + t_4k) = f_{yx}(x_0, y_0)$$

And therefore

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

as required.

Definition 15.6:

If $D \subseteq \mathbb{R}^n$ is open then $C^0(D)$ is the set of all continuous real-valued functions on D, and $C^n(D)$ is the set of functions which are differentiable n times (their partial derivatives have partial derivatives etc.) and the partial derivatives are continuous.