3.6 为什么

2024年3月5日

注 3.6.3

①单射

对任意 $x_1 \in X, x_2 \in X, x_1 \neq x_2, f(x_1) = 2x_1, f(x_2) = 2x_2$,乘法是交换的(引理 2.3.2)如果 $f(x_1) = f(x_2)$ 则 $2x_1 = 2x_2$,由乘法的消去律 (推论 2.3.7) 可知, $x_1 = x_2$,与题设矛盾,所以 f 是单射的。

②满射

对任意 $y \in Y$,由于 Y 是偶数集,所以 Y 总的元素都需要符合偶数的 定义,即:对任意的 Y 中元素 y,当且仅当 y=2n,n 是自然数。由此可得 f 是满射。

注 3.6.6

需要找到 $X = \{i \in N : i < n\} \rightarrow Y = \{i \in N : 1 \le i \le n\}$ 的双射函数 f. 我们定义 $f: X \rightarrow Y, \{f(x) : x \in X, f(x) = x + +\}$

现在证明 f 是双射函数。

①单射

对任意 $i_1 \in X, i_2 \in X, i_1 \neq i_2, f(i_1) = i_1 + +, f(i_2) = i_2 + +,$ 若 $f(i_1) = f(i_2)$,则 $i_1 + + = i_2 + +$,由洛必达公理 2.4 可知 $i_1 = x_2$,与 $i_1 \neq i_2$ 矛盾,所以 $f(i_1) \neq f(i_2)$,所以 f 是单射的

(2)满射

对任意 $y \in Y$,可知 y 是正数,而正数可以由一个自然数加 1 得到,假设 y = b + +,又 $y \le n$,所以 b < n,所以 $b \in X$,所以 f 是满射至此,命题得证

引理 3.6.8

证明:不存在从空集到一个非空集合的双射

由函数的满射定义可知,对值域中的任意元素 y,定义域中都存在一个元素 x,使得函数 y=f(x),而如果定义域是空集,那么 x 是不存在的,所以无法满足满射定义。

引理 3.6.9

证明: 定义的 g 函数是双射函数

说明. g 构造书中说的不够直观, 其实就是比 f(x) 小的, 保持不变, 比 f(x) 大的, 向左平移 1 下, 也就是 f(x) - 1。这样就能保证值域不超过 n, 且为 $\{i \in N : 1 \le i \le n - 1\}$

证明.

不妨设 $Z = X - \{x\}, Y_{n-1} = \{i \in N : 1 \le i \le n-1\}, Y_n = \{i \in N : 1 \le i \le n\}$ 。

(I)q 是单射

对任意 $x_1 \in Z, x_2 \in Z, x_1 \neq x_2$,假设 $g(x_1) = g(x_2)$,由函数 g 的构造方式可知,要么 $g(x_1) = g(x_2) = f(x_1) = f(x_2)$,要么 $g(x_1) = g(x_2) = f(x_1) - 1 = f(x_2) - 1$,这都与 f 是单射函数矛盾,所以 $g(x_1) \neq g(x_2)$,所以 g 是单射的。

(2)q 是满射

对任意 $y \in Y_{n-1}$, $y \in Y_n$, 由于 f 是满射的,则存在 $a \in X$ 使得 y = f(a),若 f(a) < f(x),那么 y = g(a) = f(a);若 $f(a) \ge f(x)$,则由于 f 是单射,所以存在 $b \in X$ 使得 y++=f(b),有 $f(b) > f(a) \ge f(x)$ 可知 f(b) > f(x),所以 g(b) = f(b) - 1 = (y++) - 1 = y;由此可知,对任意 y 都会存在 Z 中的元素 i,使得 y = g(i)。(特别说明下,y++ 不可能取到 n++ 的,因为 $y \in Y_{n-1}$)至此,g 是满射得证。

综上, 命题得证。