

1 Bestimmung einer Impedanz mittels Oszilloskop

An einer unbekannten Impedanz \underline{Z}_X wird eine sinusförmige Spannung angelegt. Die an \underline{Z}_X anliegende Spannung und der durch \underline{Z} hindurchfließende Strom werden mit einem Zweikanal-Oszilloskop über die folgende Schaltung gemessen:

Frequenz: f = 1 kHz

Messwiderstand: $R_M = 500 \Omega$

Scope settings:

Ch1: Generatorspannung u₀, 1V/Div Ch2: Spannung u_R über R_M, 500mV/Div

Time base: 100µs/Div

(Div = division, Schirm hat 10 x 8

divisions)

- a) Stellen Sie die allgemeine Gleichung zur Bestimmung der Impedanz \underline{Z}_x als Funktion der komplexen Amplitude $\hat{\underline{u}}_R$ und $\hat{\underline{u}}_0$ in Polarform auf.
- b) Bestimmen Sie die komplexen Amplituden $\underline{\hat{u}}_0$ und $\underline{\hat{u}}_R$ in Polarform. Bei der Phasenbestimmung wählen Sie als Startpunkt t=0 die linke Seite des Schirms.
- c) Bestimmen Sie \underline{Z}_X .
- d) Ermitteln Sie die Werte der in Serie geschalteten Bauelemente von \underline{Z}_x .

[Lösung:

a) Auflösen von $\underline{\hat{u}}_0 = \underline{\hat{u}}_x + \underline{\hat{u}}_M$, $\underline{Z}_x = \underline{\hat{u}}_x / \underline{\hat{i}}$, $\underline{\hat{u}}_R = R_M \underline{\hat{i}}$ nach \underline{Z}_x

$$\underline{\mathbf{Z}}_{\mathsf{x}} = \mathsf{R}_{\mathsf{M}} \cdot \left(\frac{\underline{\hat{\mathbf{u}}}_{\mathsf{0}}}{\underline{\hat{\mathbf{u}}}_{\mathsf{R}}} - 1 \right) = \mathsf{R}_{\mathsf{M}} \cdot \left(\frac{\widehat{\mathbf{u}}_{\mathsf{0}}}{\widehat{\mathbf{u}}_{\mathsf{R}}} \cdot \mathsf{e}^{\mathsf{j}(\varphi \mathsf{0} - \varphi \mathsf{R})} - 1 \right)$$

b) Zur präzisen Bestimmung der Amplitude wählt man den Mittelwert des unteren und oberen Scheitelwertes. Die Phase wird über t/T ·360° mit T = 1ms ermittelt. $\hat{\underline{u}}_0 = 3.35 \text{ V} \angle -86.5^\circ$, $\hat{\underline{u}}_R = 1.38 \text{ V} \angle -36^\circ$

c)
$$Z_x = 272 \Omega - j 937 \Omega$$

d) R = 272 Ω und C = 170 nF]