Programmazione dinamica (II parte)

Progettazione di Algoritmi a.a. 2021-22

Matricole congrue a 1

Docente: Annalisa De Bonis

23

23

Subset sums

Input

- n job 1,2,...,n
 il job i richiede tempo w_i > 0.
- Un limite W al tempo per il quale il processore puo` essere utilizzato
- Obiettivo: selezionare un sottoinsieme S degli n job tale che $\sum_{i \in S} w_i$ sia quanto piu` grande e` possibile, con il vincolo $\sum_{i \in S} w_i \leq W$

Greedy 1: ad ogni passo inserisce in S il job con peso piu` alto in modo che la durata complessiva dei job in S non superi W Esempio: Input una volta ordinato [W/2+1,W/2,W/2]. L'algoritmo greedy seleziona solo il primo mentre la soluzione ottima e` formata dagli ultimi due.

Greedy 2: ad ogni passo inserisce in S il job con peso piu` basso in modo che la duranta complessiva dei job in S non superi W Esempio: Input [1,W/2,W/2] una volta ordinato . L'algoritmo greedy seleziona i primi due per un peso complessivo di 1+W/2. mentre la soluzione ottima e` formata dagli ultimi due di peso complessivo W.

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

Programmazione dinamica: falsa partenza

Def. OPT(i) = valore della soluzione ottima per $\{1, ..., i\}$.

- Caso 1: La soluzione ottima per {1, ..., i} non include i.
 La soluzione ottima per {1, ..., i} e` la soluzione ottima per {1, 2, ..., i-1}
- Caso 2: La soluzione ottima per {1, ..., i} include i.
 - Prendere i non implica immediatamente l'esclusione di altri elementi.
 - Cio` che sappiamo e` che se viene eseguito i allora rimane un tempo complessivo per eseguire i restanti job pari al tempo che avevo prima meno \mathbf{w}_i
 - Il parametro i non e` sufficiente a descrivere la sottostruttura ottima del problema
- Conclusione. Approccio sbagliato!

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

25

25

Programmazione dinamica: approccio corretto

- Per esprimere il valore della soluzione ottima per un certo i in termini dei valori delle soluzioni ottime per input piu` piccoli di i, dobbiamo introdurre un limite al tempo totale da dedicare all'esecuzione dei job che precedono i.
- Per ciascun j, consideriamo il valore della soluzione ottima per i
 job 1, ..., j con il vincolo che il tempo necessario per eseguire i
 job nella soluzione non superi un certo w.
- Def. OPT(i, w) = valore della soluzione ottima per i job 1, ..., i con limite w sul tempo di utilizzo del processore.

rogettazione di Algoritmi A.A. 2021-22 A. De Bonis

Programmazione dinamica: approccio corretto

Def. OPT(i,w) = valore della soluzione ottima per i job 1, ..., i con limite w sul tempo di utilizzo del processore.

- Caso 1: La soluzione ottima per i primi i job, con limite di utilizzo w non include il job i.
 - La soluzione ottima e` in questo caso la soluzione ottima per $\{1, 2, ..., i-1\}$ con limite di utilizzo $w \rightarrow$ in questo caso OPT(i, w) = OPT(i-1, w)
- Caso 2: La soluzione ottima per i primi i job, con limite di utilizzo w include il job i.
 - La soluzione ottima include la soluzione ottima per $\{1, 2, ..., i-1\}$ con limite di utilizzo w- $w_i \rightarrow$ in questo caso OPT(i, w) = $w_i + OPT(i-1, w-w_i)$

La soluzione ottima per i primi i job con limite di utilizzo w va ricercata tra le soluzioni ottime per i due casi. Questo pero' se i>0 e $w_i \le w$.

Se i=0, banalmente si ha OPT(i,w)=0. Se $w_i > w$, e` possibile solo il caso 1 perche' il job i non puo` far parte della soluzione in quanto richiede piu` tempo di quello a disposizione.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), w_i + OPT(i-1, w - w_i) \right\} & \text{otherwise} \end{cases}$$

27

Subset sums: algoritmo

- Versione iterativa in cui si computa la soluzione in modo bottom-up
- Si riempie un array bidimensionale nxW a partire dalle locazioni di indice di riga i piu` piccolo

```
SubsetSums(n,w<sub>1</sub>,...,w<sub>n</sub>,W)

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 0 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], w<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Progettazione di Algoritmi A.A. 2021-2

Subset sums: esempio di esecuzione dell'algoritmo

Limite W = 6, durate job $w_1 = 2, w_2 = 2, w_3 = 3$

0	0	0	l .	l .			
1	0	0	2	2	2	2	2
2	0			2		4	4
3	0	0	2	3	4	5	5
	0	1	2	3	4	5	6

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

29

Subset sums: correttezza algoritmo

Induzione sui i. Dimostriamo che dopo i iterazioni del for piu` esterno ogni riga di M con indice r compreso tra 0 e i contiene i valori OPT(r,0), OPT(r,1),, OPT(r, W)

- Base induzione. i=0: La riga 0 ha correttamente tutte le entrate uguali a 0. Per cui M[0,w]=0=OPT(0,w) per ogni w.
- . Passo induttivo:
 - Ipotesi induttiva. Supponiamo che all'iterazione i-1 ≥0, ciascuna riga con indice r compreso tra 0 e i-1 contenga correttamente i valori OPT(r,0),OPT(r,1),...,OPT(r, W).
 - L'ipotesi induttiva implica M[i-1, w]=OPT(i-1,w) ed M[i-1, w-w_i]=OPT(i-1,w-w_i)
 - . Vediamo cosa succede all'i-esima iterazione. All'i-esima iterazione, l'algoritmo setta M[i,w] come segue:

se $w_i > w$, M[i, w] = M[i-1,w] che per ipotesi induttiva e`OPT(i-1,w), altrimenti, $M[i, w] = \max \{M[i-1, w], w_i + M[i-1, w-w_i]\}$ che per ipotesi induttiva e` $\max\{OPT(i-1,w), w_i + OPT(i-1,w-w_i)\}$

Quindi anche per i, M[i,w] e` uguale al valore fornito dalla relazione di ricorrenza di OPT(i,w). Per cui M[i,w] = OPT(i,w)

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

Subset sums: tempo di esecuzione algoritmo

- Tempo di esecuzione. $\Theta(n W)$.
- Non e' polinomiale nella dimensione dell'input!
- "Pseudo-polinomiale": L'algoritmo e` efficiente quando W ha un valore ragionevolmente piccolo.

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

31

Algoritmo ricorsivo per subset sums

```
for i=0 to n

for w=0 to W

M[i,w]=empty //M array globale

SubsetSums(i,w):

if i=0

La prima volta invocata con i=n

e w=W

if M[i,w]=0

if M[i,w] ≠ empty

return M[i,w]

if w<sub>i</sub> > w

M[i,w]=SubsetSums(i-1,w)

else

M[i,w]= max{SubsetSums(i-1,w), w<sub>i</sub>+ SubsetSums(i-1, w-w<sub>i</sub>)}

return M[i,w]
```

33

Programmazione dinamica (III parte)

Progettazione di Algoritmi a.a. 2021-22

Matricole congrue a 1

Docente: Annalisa De Bonis

34

Problema dello zaino

- Input
- n oggetti ed uno zaino
- L'oggetto i pesa w_i > 0 chili e ha valore v_i > 0.
- · Lo zaino puo` trasportare fino a W chili.

 Obiettivo: riempire lo zaino in modo da massimizzare il valore totale degli oggetti inseriti senza eccedere il limite W.

Esempio: { 3, 4 } ha valore 40.

W = 11

Oggetto	Valore	Peso				
1	1	1				
2	6	2				
3	18	5				
4	22	6				
5	28	7				

Greedy: seleziona ad ogni passo l'oggetto con il rapporto v_i/w_i piu` grande in modo che il peso totale dei pesi selezionati non superi w Esempio: soluzione greedy { 5, 2, 1 } ha valore = 35 \Rightarrow greedy non e` ottimo

Progettazione di Algoritmi A.A. 2021-22 A. De Bonis

21

35

Problema dello zaino

Input

- n oggetti: l'oggetto i pesa w_i > 0 chili e ha valore v_i > 0
- limite W

Obiettivo: selezionare un sottoinsieme S degli n oggetti in modo

- da rispettare il vincolo $\sum_{i\in S} w_i \leq W$, cioe` che la somma dei pesi degli oggetti selezionati sia minore di W
- e da massimizzare $\sum_{i \in S} v_i$

Corrisponde al problema subset sums quanto v_i = w_i per ogni i.

Progettazione di Algoritmi A.A. 2021-2 A. De Bonis

Problema dello zaino: estensione approccio usato per Subset Sums

Def. $\mathsf{OPT}(\mathsf{i},\mathsf{w})$ = valore della soluzione ottima per gli $\mathsf{oggetti}\ 1,...,\mathsf{i}\ \mathsf{con}$ limite di peso totale $\mathsf{w}.$

- Caso 1: La soluzione ottima per i primi i oggetti, con limite di utilizzo w non include l'oggetto i.
 - La soluzione ottima e` in questo caso la soluzione ottima per { 1, 2, ..., i-1 } con limite di utilizzo w → in questo caso OPT(i, w) = OPT(i-1, w)
- Caso 2: La soluzione ottima per i primi i oggetti, con limite di utilizzo w include l'oggetto i.
 - La soluzione ottima include la soluzione ottima per { 1, 2, ..., i-1 } con limite di utilizzo w- w_i \rightarrow in questo caso OPT(i, w) = v_i +OPT(i-1, w- w_i)

La soluzione ottima per i primi i oggetti con limite di utilizzo w va ricercata tra le soluzioni ottime per i due casi. Questo pero` se i>0 e w_i < w

Se i=0, banalmente si ha OPT(i,w)=0. Se $w_i > w$, e` possibile solo il caso 1 perche' i non puo` far parte della soluzione in quanto ha peso maggiore del peso trasportabile.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

$$\sum_{\substack{\text{Progettazione di Algoritmi A.A. 2021-22} \\ A. De Bonis}} if w_i > w$$

37

Problema dello zaino: algoritmo

```
Knapsack (n,w<sub>1</sub>,...,w<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>,W)

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 0 to W
    if (w<sub>i</sub> > w)
        M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Progettazione di Algoritmi A.A. 2021-2 A. De Bonis

		w											
		0	1	2	3	4	5	6	7	8	9	10	11
n	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	35	40
	(1, 2, 3, 4, 3) (5,11) = OPT(4,11) (3+OPT(2,0) = v ₄ +v ₃	= V ₄ +	OPT(•			Ogge		Valore		eso)
$= v_4+v_3+OPT(0,0) = 22+18+0 = 40$							2		1		2		
Soluzione ottima : { 4, 3 } W = 11					3 18			5					
Valore soluzione ottima = 22 + 18 = 40					4 22		6						
Va									_		~~		U

39

Problema dello zaino: tempo di esecuzione algoritmo

- Tempo di esecuzione. $\Theta(n W)$.
- Non e` polinomiale nella dimensione dell'input! "Pseudo-polinomiale": L'algoritmo e` efficiente quando W ha un valore ragionevolmente piccolo.
- \blacksquare Se volessimo produrre la soluzione ottima, potremmo scrivere un algoritmo simile a quelli visti prima in cui la soluzione ottima si ricostruisce andando a ritroso nella matrice M. Tempo O(n).
- Esercizio: Scrivere lo pseudocodice dell'algoritmo che produce la soluzione ottima per un'istanza del problema dello zaino.
- Esercizio: Scrivere la versione ricorsiva dell'algoritmo di programmazione dinamica per il problema dello zaino.