

Model Development Phase Template

Date	10 July 2024	
Team ID	740064	
Project Title	Trip-Based Modelling of Fuel Consumption in Modern Fleet Vehicles Using Machine Learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Linear regression

```
[25] #Linear Regression

inReg = LinearRegression()
linReg.fit(x_train,y_train)

LinearRegression
LinearRegression()
```

Lasso Regression

Decision Tree

```
#DecisionTree Model:

dt = DecisionTreeRegressor(random_state = 0)
dt.fit(x,y)

DecisionTreeRegressor
DecisionTreeRegressor(random_state=0)
```

Random Forest

Model Validation and Evaluation Report:

Model	Training Report	Accuracy	Metrix
Linear Regression	[35] Linkey = LinearRegression()	0.11	print("Prediction Evaluation using Linear Regression") print("Nean Absolute Error"; mean absolute error(y_test, y_pred)) print("Nean Squared Error"; mean absolute error(y_test, y_pred)) print("Root Mean Squared Error"; np.sqrt(mean squared error(y_test, y_pred))) print("R-squared:", r2_score(y_test, y_pred)) Prediction Evaluation using Linear Regression Mean Absolute Error: 0.663761182050623 Mean Squared Error: 0.663761182050623 Mean Squared Error: 0.68316572757800562 R-squared: 0.1134733714697449
Lasso Regression	" (00] lasseing = linear_model.isosoc.dphs = 0.1) lasseing. (110.7)	0.14	y_pred - lassoReg.predict(x_test) print("Prediction Evaluation using lasso Regression") print("Mean Absolute Error: , mean_apaced error(y_test, y_pred)) print("Mean Squared Error: , mean_apaced error(y_test, y_pred)) print("Not Hean Squared Error: , mean_apaced error(y_test, y_pred))) print("Not Hean Squared Error: , mean_apaced error(y_test, y_pred))) print("Not Hean Squared Error: & Mean_apaced Error: &
SVM	[43]	0.41	a] y_pred = svr.predict(x_test) print('Prediction Evaluation using svr Regression') print('Mean Absolute Error'; mean_absolute_error(y_test, y_pred)) print('Mean Squared Error'; mean_absolute_error(y_test, y_pred)) print('Rean Squared Errorr'; np.sqrt(mean_squared_error(y_test, y_pred))) print('R-squared:', r2_score(y_test, y_pred)) Prediction Evaluation using svr Regression Mean Absolute Error: 0.439633196599520446 Mean Squared Error: 0.43971337102448615 Rott Mean Squared Error: 0.63834926828722 R-squared: 0.4176454053391483
Decision Tree	(a) fit - Acciding Processor (words _ date - 4) fit - British (b)	0.98	y_pred - dt.predict(x_test) print("prediction tvaluation using decisiontree Regression") print("pean Absolute Error:', mean_aguated_error(y_test, y_pred)) print("Rean Absolute Error:', mean_aguated_error(y_test, y_pred)) print("Root Rean Squared Error:', mp.sqrt(mean_squared_error(y_test, y_pred))) print("Root Rean Squared Error: ', mp.sqrt(mean_squared_error(y_test, y_pred))) Prediction Evaluation using decisiontree Regression Pean Absolute Error: 0.01134051380513837 Rean Absolute Error: 0.01134051380513837 Root Mean Squared Error: 0.010518126333941249 R-squared: 0.9864521202267205

