南方科技大学 浪潮 TS10K 集群部署普通用户手册

南方科技大学超级计算中心 2016年6月

E-mail: hpc@sustc.edu.cn

目录

1. 集群简介 3
2. 系统软件环境 3
3. 数学库 4
4. 集群节点设置说明 4
5. 登录集群 5
6. 修改账号密码 9
7. 上传文件到集群9
8. pbs 系统队列划分10
9. 通过 pbs 脚本提交作业11
10. PBS 常用命令13
11. 集群应用软件 15
12. 注意事项
附录: Linux 基本命令17

1.集群简介

该超算中心由浪潮和南方科技大学共同建立,系统峰值性能超三百万亿次。南方科技大学 作为一所创新型大学,充分借鉴世界一流大学的办学模式,创新办学体制机制,目标是迅速建 成国际化高水平研究型大学,建成中国重大科学技术研究与拔尖创新人才培养的重要基地。

该超算中心旨在满足校内科研需求,为物理、化学、生物、金融数学等领域的发展提供助力。建立面向全校的公共计算平台,集中管理和运行主要的商用软件、开源软件和自主研发软件,能够支持千核以上应用及大内存、大存储应用,对推动南方科大相关科学研究、满足南方科大学大数据及高性能计算的需求等方面产生促进作用。

集群采用 CPU+GPU 的异构计算架构,共 230 个双路刀片计算节点,7 个八路胖节点,6 个GPU 计算节点,总体计算峰值高达 326.64 万亿次,其中 CPU 峰值 256.8 万亿次,GPU 峰值 69.84 万亿次。每个刀片计算节点配备两颗主频为 2.6GHz 的 Intel Xeon E5-2690v3 12 核处理器、64GB DDR4 内存,每个胖节点配备 8 颗主频为 2.3GHz 的 Intel Xeon E7-8880v3 18 核处理器、6T DDR4 内存,每个 GPU 节点配备两颗主频为 2.6GHz 的 Intel Xeon E5-2690v3 12 核处理器、144GB DDR4 内存、4 块 Nvidia Kepler K80 GPU 加速卡,管理网络采用的是以太万兆交换网络,并行数据交互采用是业界最快的 Mellanox 100GB Infiniband 网络。

浪潮集群的存储系统上层采用 intel IEEL 分布式文件系统、下层采用 AS510H+AS1100H 共计 180 块硬盘组成,可用空间达到 428T NTEL IEEL,其高可用、高性能的特点满足了校级平台的存储需求。整个超算系统采用浪潮 Cluster Engine 和天眼特征分析软件,有效提升作业提交效率,简化集群管理应用难度。

2.系统软件环境

计算节点和管理登录节点的操作系统均为 64 位 CentOs-6.5,提供标准的 64 位 Linux 操作系统环境,用户需要熟悉一些基本的 Linux 命令行操作,并能熟练使用一种编辑器,如 vi 编译器。

大规模超级计算系统,为了有效利用众多处理器核心所提供的计算能力,需要有一个作业管理系统,统一地跟用户交互,接收提交的各类计算任务,合理分配计算资源,将用户作业指派到具体的节点执行,对用户来说,不需要关心计算具体在哪里进行的,系统会自动按照最优化原则进行调度,这不仅方便了用户的使用,更提高了整个系统的利用率。浪潮集群采用的是tsce管理套件,可以有效的提高集群利用率。

浪潮集群支持 OpenMP 和 MPI 两种并行方式,OpenMP 为共享内存方式,仅能在一个计算 节点内并行,MPI 是分布式内存并行,可以在一个或多个节点上执行作业。集群已安装 intel 编译器,方面用户调用标准化数学库。

3.数学库

开放源代码程序往往要调用大量的数学函数进行各种计算,经过长期积累,已经有一些比较成熟的标准化数学库,其中最常见的诸如线性代数方面的 BLAS、LAPACK 等。浪潮集群已部署 intel 编译器,在调用相关的数学库时可用如下命令来设定环境变量:

source/opt/intel/composer xe 2015/bin/compilervars.sh intel64

source /opt/intel/mkl/bin/intel64/mklvars intel64.sh

source /opt/intel/impi/5.0.2.044/bin64/mpivars.sh

在使用 GPU 程序时需添加可执行文件位置到 PATH: export PATH=/usr/local/cuda/bin:\$PATH添加库文件: export LD LIBRARY PATH=/usr/local/cuda/lib64:\$LD LIBRARY PATH

4.集群节点设置说明

- 1. 整个集群包含一个管理节,4个登录节点,4个 ieel 节点,230个刀片计算节点,7个胖节点,6个 gpu 节点。
- 2. 整个集群所有节点共享/opt,/home 目录。

主机命名规则:

*管理点: mu01

登陆节点: 1n01, 1n02, 1n03, 1n04 (172.18.6.68[~]71)

刀片计算节点: cu001-cu230

胖节点: fat01-fat07

gpu 节点: gpu01-gpu06。

*ieel 节点: mds01-mds02, oss01-oss02

带*号的节点普通用户禁止登陆。

IB 网段命名规则是以太网段名前加 IB, 比如 ibcu001 ibcu002 等

可参考系统下:/etc/hosts 文件

5.登录集群

安装 PC端 Xmanager 软件

直接默认下一步安装即可,注意中间输入注册码,若中间没输入注册码启动 xshell 会报错,可以在 help 里选项的 register Xshell 里再次输入注册码注册激活。

安装完后点击 Xshell 选项

点击 Xshell 后界面

添加主机

点击 file 里的 new 选项

在此界面下,Connection 选项里,Name 里随便填写一个名字用来识别你所添加的机器即可。

Host 选项填写远程主机的 IP 地址,例如: 1n01: 172.18.6.68, 1n02:172.18.6.69, 1n03:172.18.6.70, 1n04: 172.18.6.71。

Port Number: 12318.

然后点击 Authentication 选项

此选项里, user Name 填写登陆用户名, password 填写登陆密码,填完后点击 OK,添加主机完毕

直接点解 connect 即可连上远程主机的 shell 里

以后连接主机,直接点击 open 选项里所保存的主机即可直接登陆

6.修改账号密码

ssh 登录集群后执行 yppasswd,按照提示输入自己的旧密码和新密码即可。

```
[inspur@ln01 ~]$ yppasswd
Changing NIS account information for inspur on mu01.
Please enter old password:
```

7.上传文件到集群

点击绿色的 new file transfer 按钮打开 xftp 工具

右键单击需要上传的文件或者文件夹,选择 upload 即可把文件上传到用户家目录下。

由于用户空间已经做了限制,查询自己硬盘使用量的方法为: (以用户 inspur 为例)

其中 used 参数为已经使用量。

limit 参数为使用空间上限。

如果超过上限则无法继续写入文件,请及时清理。

8.pbs 系统队列划分

- ser 队列和 debug 队列共享资源 cu006-cu010, ser 队列作业最长运行时间为 24 小时, debug 队列作业最长运行时间为 5 小时
- cal-s 队列和 cal-1,资源限制在 cu001-cu320,每个节点 2 个 CPU,每个 CPU 12 核,总核数为 5520。两个队列共享计算节点 cu011-cu230,cal-s 队列作业最长运行时间为 24 小时,cal-1 队列作业最长运行时间为 72 小时。
- fat 队列,资源限制在 fat01-fat07,每个节点 8 个 CPU,每个 CPU 18 核,总核数为 1008,作业最长运行时间为 12 小时。

gpu 队列,资源限制在 gpu01-gpu06,每个节点 2 个 CPU 和 4 个 GPU 加速卡,每个 CPU 12 核, 总核数为 144,作业最长时间为 24 小时。

9.通过 pbs 脚本提交作业

一般计算任务是通过脚本文件提交到作业管理系统的,脚本文件是一个常规文本文件,可以直接在登入节点使用 vi 编辑器编写,也可异地编写上传至用户作业工作目录,但要注意 dos2unix 转换一下。

脚本文件名无特殊规定,起一个可识别的名字即可。编辑完成脚本文件后,即可提交。例如对一个名称为 mytest. pbs 的作业脚本文件,编辑完成后用 qsubmytest. pbs 来提交,待作业提交成功后,会给出提交成功的作业 ID 号,用 qstat 命令可以查看作业的运行情况。

在提交作业以前可以在登陆节点上通过"pestat"命令查看当前集群资源使用情况,查看节点是否是空闲状态, tasks 表示分配的核数。

[in	spur(amu01	~]\$ pes	tat		•	•	•	•	•	•
n	ode s	state	load	pmem	ncp	u	mem	resi	usrs	tasks	jobids/users
cu0	0 1 1	free	0.01	64374	24	1283	74	1275	1/1	Θ	
cu0	02 t	free	0.01	64374	24	1283	74	1273	1/1	Θ	
cu0	0 3 1	free	0.01	64374	24	1283	74	1274	1/1	Θ	
cu0	04 t	free	0.00	64374	24	1283	74	1277	1/1	Θ	
cu0	05 t	free	0.03	64374	24	1283	74	1270	1/1	Θ	
cu0	96 t	free	0.01	64374	24	1283	74	1272	1/1	Θ	
cu0	97 t	free	0.06	64374	24	1283	74	1269	1/1	0	
cu0	08 t	free	0.00	64374	24	1283	74	1271	1/1	Θ	
cu0	09 t	free	0.00	64374	24	1283	74	1273	1/1	Θ	
cu0	10 1	free	0.00	64374	24	1283	74	1276	1/1	Θ	
cu0	11 1	free	0.04	64374	24	1283	74	1275	1/1	Θ	
cu0	12 1	free	0.00	64374	24	1283	74	1268	1/1	Θ	
cu0	13 1	free	0.06	64374	24	1283	74	1279	1/1	Θ	
cu0	14 1	free	0.00	64374	24	1283	74	1263	1/1	Θ	
cu0	15 f	free	0.00	64374	24	1283	74	1264	1/1	Θ	
cu0	16 1	free	0.02	64374	24	1283	74	1264	1/1	Θ	
cu0	17 f	free	0.07	64374	24	1283	74	1265	1/1	Θ	
cu0	18 1	free	0.00	64374	24	1283	74	1262	1/1	Θ	
cu0	19 1	free	0.00	64374	24	1283	74	1269	1/1	0	

以下以并行程序为例

1

脚本参数含义:

#PBS - N 指的是作业名

#PBS -1 walltime=12:00:00 申请 12 小时的工作,不满足将无法继续进行计算

#PBS - q 表示要选择的队列

#PBS - V 表示将环境变量同步到计算节点

#PBS -S /bin/bash 表示让 pbs 脚本识别到 bash 命令

source /opt/intel/composer xe 2015/bin/compilervars.sh intel64

source /opt/intel/mkl/bin/intel64/mklvars intel64.sh

source /opt/intel/impi/5.0.2.044/bin64/mpivars.sh

表示的是环境变量

mpirun -genv I_MPI_DEVICE rdssm -machinefile /home/inspur/hello/host -n 24 ./hello mpirun 为执行并行程序的程序,通过 pbs 为每个进程分配多个线程

-genv I MPI DEVICE rdma 指定 infiniband 设备

-machinefile \$PBS NODEFILE 指定所运行的节点,默认在/opt/tsce/server priv nodes

10. PBS 常用命令

qsub 命令

qsubpbs 脚本名称,提交作业

qstat 命令

用于查询作业状态信息

命令格式: qatat [-f][-a][-i] [-n][-s] [-R] [-Q][-q][-B][-u] +作业号 参数说明:

- -f jobid 列出指定作业的信息
- -a 列出系统所有作业
- -i 列出不在运行的作业
- -n 列出分配给此作业的结点
- -s 列出队列管理员与 scheduler 所提供的建
- -R 列出磁盘预留信息
- -Q 操作符是 destination id, 指明请求的是队列状态
- -q 列出队列状态,并以 alternative 形式显示
- -B 列出 PBS Server 信息
- -r 列出所有正在运行的作业
- -u 若操作符为作业号,则列出其状态。

例:#

qstat 查看作业运行状态

```
[inspur@ln01 c7test]$ qsub pbs.linpack
2663.mu01
[inspur@ln01 c7test]$ qstat
Job id Name User Time Use S Queue
2663.mu01 linpack inspur 0 Q cal
[inspur@ln01 c7test]$ qstat
Job id Name User Time Use S Queue
2663.mu01 linpack inspur 0 R cal
```

qstat -f 查询作业的具体信息。

```
[inspur@ln01 c7test]$ qstat -f 2663
Job Id: 2663.mu01
   Job_Name = linpack
   Job_Owner = inspur@ln01
   job state = R
   queue = cal
   server = mu01
   Checkpoint = u
   ctime = Thu Jun 16 16:10:35 2016
   Error Path = ln01:/home/inspur/c7test/linpack.e2663
   exec \overline{host} = \frac{cu121}{0} + \frac{cu122}{0} + \frac{cu123}{0} + \frac{cu124}{0} + \frac{cu125}{0} + \frac{cu126}{0} + \frac{cu127}{0} + \frac{cu128}{0}
      7/0+cu138/0+cu139/0+cu140/0
   Hold Types = n
   Join Path = n
```

qstat - an 查询当前所有作业所在的执行节点

Job	ID	Username	Queue	Jobname	SessID	NDS	Req TSK	'd
	.mu01 fat05/0	inspur	fat	linpack	26061	1		0
	.mu01 cu001/0+cu002/0+c +cu010/0+cu011/0+c							Θ
	+cu019/0+cu020/0+ +cu028/0+cu029/0+ +cu037/0+cu038/0+	cu030/0+cu031	1/0+cu032	/0+cu033/0+cu03	4/0+cu035	/0+cu03	36/0	
	+cu046/0+cu047/0+ +cu055/0+cu056/0+ +cu064/0+cu065/0+	cu057/0+cu058	3/0+cu059	/0+cu060/0+cu06	1/0+cu062	/0+cu06	63/0	
	+cu073/0+cu074/0+ +cu082/0+cu083/0+ +cu091/0+cu092/0+	cu084/0+cu085	5/0+cu086	/0+cu087/0+cu08	8/0+cu089	/0+cu09	90/0	
	+cu100/0+cu101/0+cu109/0+cu110/0+cu118/0+cu119/0+cu19/0+cu							

qdel 命令

用于删除已提交的作业

命令格式: qdel 作业号

命令行参数:

例: # qde1 2624

其中,有一下几种状态

- C: 作业结束
- Q: 作业排队中
- R: 作业运行中

用户在使用时可用"du - sh"命令来查看当前空间、

```
[inspur@ln01 ~]$
[inspur@ln01 ~]$ du -sh
23G .
[inspur@ln01 ~]$ [
```

如果不确定作业是否运行,可以使用 qstat -an 查看该作业所运行的节点,然后 ssh 到此节点上,执行 top 来查看是否有作业在运行,并且通过 cpu 利用率和进程数来判断程序运行情况。

11. 集群应用软件

集群应用软件安装在/opt/software 下。

```
[inspur@ln01 software]$ ls
abinit-7.10.5 MATLAB openmpi-1.10.1-intel phonopy-1.6.2 vasp.5.2
gcc-5.3 netcdf-4.3.2 openmpi-1.6.3-intel python2.7 wannier90-1.2
hdf5-1.8.13 openmpi-1.10.1-gnu openmpi-1.6.5-gnu QE-5.4.0-intelmpi
[inspur@ln01 software]$ pwd
/opt/software
[inspur@ln01 software]$
```

12. 注意事项

- 1、请不要在登陆节点上跑任务
- 2、如需要使用 openmp 方式跑作业,请把 pbs 申请的核心数与 openmp 线程数设为一样。例如:

bwa 这是个典型的生命科学的应用,是个典型的 openmp 的应用,即一个进程调用多个线程的运行模式。这种模式,虽然只申请一个进程资源,但是在运行过程中会调用多个线程,每个线程对应一个物理计算核心。所以在 top 中可以看到该进程 cpu 的使用率为 100%以上。

然而像这种 openmp 程序有自己的控制线程的参数。拿 bwa 来说:

bwa-0.7.5a mem -t 24

/useropt/public/IRGSP1.0/IRGSP ./R10.read1.fq ./R10.read2.fq >./test.sam

其中"-t 24"就是指定用 24 个线程来跑。

如果你在 pbs 脚本中申请资源为 1,但是下面申请 24 个线程,这样实际使用的为 24 个物理计算核心,但是 pbs 调度器却认为你只用了一个,这样会造成资源分配异常。为了避免这种情况,对于 openmp 程序,还请按照以下方式来提交作业。

```
#PBS -N bwa
#PBS -1 nodes=1:ppn=24
#PBS -q cal-s
#PBS -q cal-s
#PBS -V
#PBS -S /bin/bash

cd $PBS_0_WORKDIR
NP=`cat $PBS_NODEFILE | wc -1`
NN=`cat $PBS_NODEFILE | sort | uniq | tee /tmp/nodes.$$ | wc -1`
cat $PBS_NODEFILE > /tmp/nodefile.$$

mpirun -genv I_MPI_DEVICE rdssm -machinefile /tmp/nodefile.$$ -np 1
/useropt/bin/bwa-0.7.5a mem -t 24 /useropt/public/IRGSP1.0/IRGSP
$PBS_0_WORKDIR/R10. read1. fq $PBS_0_WORKDIR/R10. read2. fq >$PBS_0_WORKDIR/test. sam

rm -rf /tmp/nodefile.$$
rm -rf /tmp/nodes.$$
```

解析: 就是你申请和你线程一样多的核数,但是在实际运行的时候-np 的值只跑一个进程。

附录: Linux 基本命令

名称: cd

目录操作

语法: cd [directory]

说明:把当前工作目录转到"directory"指定的目录。

实例: 进入目录 /usr/bin/:

cd /usr/bin

名称: 1s

语法: ls [options] [pathname-list]

说明:显示目录内的文件名和 "pathname-list" 中指定的文件名

实例: 列出目前工作目录下所有名称是 s 开头的文件:

1s s*

名称: pwd

语法: pwd

说明:显示当前目录的绝对路径。

名称: mkdir

语法: mkdir [options] dirName

说明: 创建名称为 dirName 的子目录。

实例: 在工作目录下, 建立一个名为 AA 的子目录:

mkdir AA

名称: rmdir

语法: rmdir [-p] dirName

说明:删除空的目录。

实例:将工作目录下,名为 AA 的子目录删除:

rmdir AA

文件操作

名称: cp

语法: cp [options] file1 file2

说明: 复制文件 file1 到 file2。

常用选项: -r 整个目录复制

实例:将文件 aaa 复制(已存在),并命名为 bbb:

cpaaabbb

名称: mv

语法: mv [options] source... directory

说明: 重新命名文件, 或将数个文件移至另一目录。

范例:将文件 aaa 更名为 bbb:

mv aaabbb

名称: rm

语法: rm [options] name...

说明:删除文件及目录。

常用选项: -f 强制删除文件

实例: 删除除后缀名为.c 的文件

rm *.c

名称: cat

语法: cat[options] [file-list]

说明: 在标准输出上连接、显示文件列表 file-list 里的文件

实例 1: 显示 file1 和 file2 的内容

cat file1 file2

实例 2: 将 file1 和 file2 合并成 file3

cat file1 file2 > file3

名称: more

语法: more[options] [file-list]

说明: 在标准输出上连接、分页显示文件列表 file-list 里的文件

实例:分页显示文件 AAA

more AAA

名称: head

语法: head[options] [file-list]

说明:显示文件列表 file-list 中的文件的起始部分,默认显示 10 行:

实例:显示文件 AAA 起始部分

head AAA

名称: tail

语法: tail[options] [file-list]

说明:显示文件列表 file-list 中的文件的尾部;默认显示 10 行;

实例:显示文件 AAA 尾部

tail AAA

名称: 1n

语法: ln[options] existing-file new-file

ln[options] existing-file-list directory

说明:为 "existing-file" 创建链接,命名为 new-file

在 directory 目录,为 existing-file-list"中包含的每个文件创建同名链接

常用选项: -f 不管 new-file 是否存在,都创建链接

-s 创建软链接

实例 1: 建立软连接 temp. soft, 指向 Chapter 3

1n -s Chapter3 temp.soft

实例 2: 为 examples 目录下的所有文件和子目录建立软连接

1n -s ~/linuxbook/examples/* /home/faculty/linuxbook/examples

名称: chmod

语法: chmod [option] mode file-list

说明: 改变或设置参数 file-list 中的读、写或执行权限

实例:添加文件 job 的可执行权限

chmod +x job

语法: chmod [option] [files]

说明: 备份文件。可用来建立备份文件,或还原备份文件。

实例 1: 备份 test 目录下的文件,并命名为 test. tar. gz,可执行命令:

tar - zcvf test. tar. gz test

实例 2: 解压缩相关的 test. tar. gz 文件, 可执行命令:

tar - zxvf test. tar. gz

其他

名称: echo

语法: echo \$variable

说明:显示变量 variable 的值。

实例 1: 显示当前用户路径 PATH 的值

echo \$PATH

名称: ps

语法: \$ps [options]

说明:用于查看当前系统中的活跃进程

实例 1: 显示当前所有进程

ps - aux

名称: kill

语法: \$kill [-signal] pid

说明:终止指定进程

实例 1: 终止 1511 号进程

kill 1511

附录 2: Vi 使用

简要使用流程

使用 "vi [选项] [文件 ..]" 命令打开要编辑的文件

使用"方向键"浏览文件

按下"i"进入编辑模式

编辑

按 "Esc" 键退出编辑模式

输入":w"回车保存,再输入":q"回车退出。或者直接输入":wq"回车,代表保存并退出两种操作模式

编辑模式:对文本进行编辑处理

命令模式:接收按键指令执行操作,如复制、粘贴、搜索、替换、保存、另存为等

编辑模式

i: 进入编辑模式

a: 进入编辑模式,将光标向后移动一位

o: 进入编辑模式, 在光标处插入一个空行

r: 按下 r 键, 再按任意字符键, 将光标所在处的字符替换成新输入的字符

Esc: 退出编辑模式

命令模式

移动光标

↑或 k: 把当前光标向上移动一行,保持光标的列位置。

↓或 j: 把当前光标向下移动一行,保持光标的列位置。

→或1: 把当前光标向右移动一个字符。

←或 h: 把当前光标向左移动一个字符。

\$: 把当前光标移动到该行行末。

î: 把当前光标移动到该行行首。

w: 把当前光标移动到该行的下一个字的首字符上。

b: 把当前光标移动到该行的上一个字的首字符上。

e: 把当前光标移动到该行的该字的末尾字符上。

^F: 向前滚动一整屏正文。

^D: 向下滚动半个屏正文。

^B: 向后滚动一整屏正文。

^U: 向上滚动半个屏正文。

搜索与替换

/word: 从光标处开始, 向后搜索文本中出现 word 的字符串

?word: 从光标处开始, 向前搜索文本中出现 word 的字符串

:1, \$s/word1/word2/g: 在第1行与最后一行之间搜索 word1,并将其替换为 word2

:n1, n2s/word1/word2/g: 在第 n1 行与第 n2 行之间搜索 word1, 并将其替换为 word2

删除(剪切)、复制与粘贴

x, X: x 为向后删除一个字符, X 为向前删除一个字符

dd: 删除光标所在行

yy: 复制光标所在行的内容

nyy: 复制光标到第 1 行的所有内容

y1G: 复制光标到第 1 行的所有内容

yG: 复制光标到最后一行的所有内容

p, P: p 为将复制或剪切的内容粘贴在光标下一行, P 为粘贴在上一行

u: 撤消上一操作

管理命令

:w:保存

:w!: 强制保存

:q:退出 vi 编辑器

:q!:强制退出

:w [文件名]:另存为..

:r[文件名]:读取另一个文档的内容,内容追加到光标所在行之后

:set nu:显示正文的行号。

:set nonu:取消行号。

:![命令]: 暂时离开 vi 编辑器,并在 shell 中执行命令