Soluciones a la tarea en equipo de la unidad 1

Nombres:

Fecha:

1

Enunciado: Sean u, v y w vectores distintos de un espacio vectorial V. Muestra que si $\{u, v, w\}$ es una base para V, entonces $\{u + v + w, v + w, w\}$ también es una base para V.

Enunciado: Sea V el conjunto de vectores $(v,w,x,y,z) \in \mathbb{R}^5$ tales que

$$v + w = x + y + z$$

- (a) Demuestra que V es un subespacio de $\mathbb{R}^5.$
- (b) Da una base de V y a partir de ello enuncia la dimensión de V.
- (c) Completa la base encontrada en b) a una base de \mathbb{R}^5 .

Enunciado: Sea $\mathbb{R}_1[x]$ el espacio de los polinomios con coeficientes reales de grado a lo más 1. Considera la transformación lineal $T: \mathbb{R}_1[x] \to \mathbb{R}_1[x]$ definida por T(p(x)) = p'(x) la derivada de p(x). Sea \mathcal{B} la base $\{1, x\}$ de $\mathbb{R}_1[x]$ y \mathcal{B}' la base $\{1 + 2x, 1 - 2x\}$ de $\mathbb{R}_1[x]$.

- (a) Encuentra $Mat_{\mathcal{B}'}(\mathcal{B})$.
- (b) Encuentra $Mat(T)_{\mathcal{B}',\mathcal{B}}$.

Enunciado: Sea T una transformación lineal en \mathbb{R}^3 cuya matriz asociada con respecto a la base canónica es:

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ -6 & 4 & 2\\ 3 & -1 & 1 \end{array}\right)$$

- (a) Verifica que $A^2 = 2A$.
- (b) Deduce que T(v) = 2v para todo $v \in \text{Im}(T)$.
- (c) Prueba que ker (T) y $\mathrm{Im}(T)$ están en posición de suma directa en $\mathbb{R}^3.$
- (d) Encuentra bases para ker (T) e $\operatorname{Im}(T)$, y escribe la matriz asociada a T con respecto a la base de \mathbb{R}^3 deducida de completar las bases de $\ker(T)$ e $\operatorname{Im}(T)$, respectivamente.

Enunciado del problema:

(a) Prueba que para cualquier matriz $A \in M_n(\mathbb{R})$ se tiene que

$$rank(A) = rank(^tAA)$$

Sugerencia: Si $x \in \mathbb{R}^n$ es un vector columna tal que ${}^t AAx = 0$, escribe ${}^t x^t AAx = 0$ y expresa el lado izquierdo como una suma de cuadrados.

(b) Considera la matriz $A=\begin{pmatrix}1&i\\i&-1\end{pmatrix}$ de $M_2(\mathbb{C})$. Encuentra el rango de Ay^tAAy concluye que el inciso a) de este problema no es necesariamente cierto si \mathbb{R} es reemplazado por \mathbb{C} .