Why do we need image processing

- Improve the visual effect of people by improving the quality of the image.
- Machine/Robot vision
- Medical field
- Efficient storage & transmission.

So digital image processing is:

 Set of algorithms applied to digital images in order improve quality, storage, transmission and representation.

to

What's an Image

- Image is a 2D projection of 3D object.
- So image can be defined as 2D function F(x,y)
 Where:
 - x,y represent spatial coordinates
 - The amplitude of F at any point is called the intensity at that point.

Image Types

Analog Image and Digital Image

Analog Image > continuous variation in tones

Digital Image → finite set of digital values called pixels

Digital Image color models

Digital image is composed of a finite number of pixels "picture elements", each of which has a particular location and value

Digital Image color models

63 59

Grayscale

In our work we mostly work on grayscale system as RGB image has 3D while grayscale has just one, so, everything tend to be more costly in RGB system

What type of processing can be done on digital image?

- Low level processing
 - Input image
 - Output image
 - · Example: noise removal
- Mid level processing
 - Input image
 - Output Attributes(edges, contours)
 - · Example: object segmentation
- High level processing
 - Input attributes
 - Output understanding
 - · Example: scene understanding

Needed environment

- Hardware:
 - CPU (Intel i5/ i7/ Xeon recommended).
 - 8 GB RAM, 10 GB HDD Free Space.
- Software
 - Windows 8, 10, 64 bits
 - Opencv → latest release
 - Visual studio → latest release

OpenCv

- OpenCv stands for open source library for image processing and computer vision.
- OpenCv supports Windows, Linux, Android and Mac OS.
- OpenCv supports a wide variety of programming languages such as C++, Python, Java, etc..
- Primary interface of OpenCV is in C++
- Opencv 4.3.0 Download link→

https://sourceforge.net/projects/opencvlibrary/files/4.3.0/opencv-4.3.0-vc14 vc15.exe/download

visual studio

visual studio 2019 community free download link

https://visualstudio.microsoft.com/downloads/

 There are different kinds of component. What we will need is desktop development with c++ check it and goes with the install process

Add opency dll files path

1. environment variables → system variables → double click on path → write the path of the bin folder on your device. for example "E:\opencv\build\x64\vc15\bin"

2. visual studio → create new project

3. Add C++ file

4. Add opency files to your project

- Project→ properties
- Configuration → all configuration and platform → x64

- o C/C++→General
 - Additional include directory > write the path of the include folder on your device. For example "E:\opencv\build\include"

○ Linker → General

■ Additional library directories → write the path of the lib folder on your device. for example "E:\opencv\build\x64\vc15\lib"

- Configuration → Debug and platform → x64
 - Linker→input
 - Additional dependencies -> opencv_world430d.lib

- Configuration → Release and platform → x64
 - Linker→ input
 - Additional dependencies → opencv_world430.lib

Display image

```
#include<opencv2/opencv.hpp>
#include"iostream"
using namespace std;
using namespace cv;
int main()
     Mat image, gray_image;
     image = imread("C:\\Users\\Public\\Pictures\\Sample Pictures\\xx.jpg");
           //image = imread("xx.jpg");
     //Check for invalid input
                                                     RGB image 🔲 😐
                                                                                         - 0 X
                                                                              gray image
     if (image.empty())
           cout << "no image" << endl;
           system("pause");
           return -1;
     namedWindow("RGB image", 0);
     imshow("RGB image", image);
     cvtColor(image, gray_image, COLOR_BGR2GRAY);
     namedWindow("gray image", 0);
     imshow("gray image", gray_image);
     imwrite("gray_image.jpg", gray_image);
     waitKey(0);
```