$$E(Y^{2}|X) = \int y^{2} f(x) dy$$

$$= \int y^{2} (12x + 8y) dy$$

$$= (10-x)^{2} (3x + 10) \qquad 0 < x < 6$$

$$= (10-x)^{2} (3x + 10) \qquad 0 < x < 6$$

$$= (10-x)^{2} (3x + 10) \qquad 0 < x < 6$$

$$= (2+x)$$

$$= (20+7x)(10-x)$$

$$= 30(2+x)$$

$$= (10-x)^{2} (3x + 10) - (20+7x)(10-x)^{2}$$

$$= (10-x)^{2} (3x + 10) - (20+7x)(10-x)^{2}$$

$$= (10-x)^{2} (3x + 10) - (3x + 10) - (3x + 10) = (3x + 10)$$

 \mathcal{F}) Var $(Y|X) = E(Y^2|X) - [E(Y|X)]^2$

S)
$$W = X + Y$$
 $Y = W - X$
 $0 \le W - X \le 5 - 1/2$
 $1 \le W \le 5 + 1/2$
 $2 \le W \le 5 + 1/2$
 $2 \le W \le 5 + 1/2$
 $2 \le W \le 6$
 $2 \ge W \le 6$

Using
$$f_{7}(t)$$
 from t)

 $f_{7}(t)$ from $f_{7}(t)$ from

