Structure-Blind Signal Recovery

Dmitry Ostrovsky* Zaid Harchaoui† Anatoli Juditsky* Arkadi Nemirovski ‡

‡Georgia Tech

*Université Grenoble Alpes †University of Washington

Problem

- ▶ Discrete-time signal $x = [x_{-T}, ..., x_0, ..., x_T]$ is observed with i.i.d. Gaussian noise: $\mathbf{y}_{\tau} = \mathbf{x}_{\tau} + \sigma \xi_{\tau}, \quad -T \leq \tau \leq T.$
- ▶ **Full recovery**: recover the whole signal x, the loss is $\|\widehat{x} x\|_2$.
- ▶ Pointwise recovery: recover one sample x_t at some $t \in \mathbb{Z}$, the loss is $|x_t \widehat{x}_t|$.
- ▶ Linear estimators: $\widehat{x}_t^{\varphi} := \sum_{\tau} \varphi_{\tau} y_{t-\tau}$.

Structure-blind recovery

Theorem (Ibragimov and Khasminskii, 1984; Donoho, 1990)

Let a set $\mathcal{X} \subset \mathbb{R}^{2T+1}$ be compact, symmetric, and convex.

- ▶ The minimax, over $x \in \mathcal{X}$, risk of recovering x_t is attained by a linear estimator φ^*
- ▶ If \mathcal{X} is known, φ^* can be found, along with its confidence interval, by cvx optim over \mathcal{X} .

What if the set \mathcal{X} is unknown? Can we "mimick" the "oracle" φ^* ?

Example. Let \mathcal{X} be a subspace, $\dim(\mathcal{X}) = s \ll T$.

- ▶ For sure there exists an estimator $\varphi = \varphi(\mathcal{X})$ with $|\widehat{x}_t^{\varphi} x_t| = \mathcal{O}_{\mathbb{P}}(\sqrt{s/T})$.
- ▶ But we don't know $\mathcal X$ and hence cannot compute φ .

Linear time-invariant filtering

Write $\varphi \in \mathbf{B}_L$ if φ vanishes outside [-L, L] for some $L \leq T$.

Then one can estimate x_t in the central region around t=0 by **convolution** with such φ :

$$\widehat{\mathbf{x}}_t^{\varphi} = \sum_{|\tau| \leq L} \varphi_{\tau} \mathbf{y}_{t-\tau} = [\varphi * \mathbf{y}]_t, \quad |t| \leq T - L.$$

Recoverable signals

For the sake of simplicity, let us assume that we want to estimate x_0 .

Definition. x is $(\mathbf{T}, \boldsymbol{\rho})$ -recoverable at t = 0 if there is a filter $\varphi^{\text{oracle}} \in \mathbf{B}_L$, $L = \mathcal{O}(T)$, which has an $\mathcal{O}(1/\sqrt{T})$ error of recovering x_{τ} in the T-L neighbourhood of t=0:

$$\mathbb{E}^{1/2}|x_{\tau}-[\varphi^{\text{oracle}}*y]_{\tau}|^{2}\leq \frac{\sigma\rho}{\sqrt{T}}, \quad |\tau|\leq T-L,$$

As a consequence, in this neighbourhood w.h.p. one has $||x - \varphi^{\text{oracle}} * y||_2 \le C\sigma\rho$.

- ▶ By simple algebra this is equivalent, up to a small constant, to:
- 1. small ℓ_2 -norm of the oracle: $\|\varphi^{\text{oracle}}\|_2 \leq \frac{\rho}{\sqrt{T}}$;
- 2. reproduction of the signal: $|x_{\tau} [\varphi^{\text{oracle}} * x]_{\tau}| \leq \frac{\sigma \rho}{\sqrt{T}}, \quad |\tau| \leq T L.$
- ▶ Of course, we can introduce the same assumption for any $t \in \mathbb{Z}$.

Example: estimation of smooth curves

Consider the problem of estimating a smooth function $f:[0,1] o \mathbb{R}$

$$y_{\tau} = f(\tau/n) + \sigma \xi_{\tau}, \quad \tau = -n, ..., n, \ \xi \sim \mathcal{N}(0, I_n).$$

The classical kernel estimator \hat{f}_t of f(t) with bandwidth h is

$$\widehat{f}(t) = \sum_{|\tau| \le n} \frac{1}{2nh} K\left(\frac{t - \tau/n}{h}\right) y_i,$$

and $K(t): [-1,1] o \mathbb{R}$ is a kernel such that

$$\int_{-1}^{1} K(t)dt = 1, \quad \int_{-1}^{1} K^{2}(t)dt = \rho^{2} < \infty.$$

Let $x_{\tau} = f(\tau/n)$, $\tau = -n, ..., n$, and let T = [nh]. Then, the kernel estimator can be rewritten for $|t| \leq n - T$:

$$\widehat{x}_t = \widehat{f}(t/n) = (\varphi * y)_t, \ \ \varphi_\tau = \frac{1}{T}K\left(\frac{\tau}{T}\right), \ \tau = -T, ..., T.$$

Note that for big enough T the ℓ_2 -norm of φ satisfies $\|\varphi\|_2 \sim \frac{\rho}{\sqrt{T}}$, and if bandwidth h is "properly chosen", the bias of the estimator is $\frac{\sigma\rho}{\sqrt{T}}$.

Main assumption: approximate shift-invariance

A set S of signals on \mathbb{Z} is called shift-invariant if it is preserved under the shift $x_t \mapsto x_{t-1}$.

Approximate Shift-Invariance Assumption (ASIA) at t = 0:

x is close to an (unknown) shift-invariant subspace $\mathcal{S} \subset \mathbb{C}^{\mathbb{Z}}$ of dimension $s \leq T$. Specifically, $x = x^{S} + \delta$, where $x^{S} \in S$ and $\|[\delta]_{-T}^{T}\|_{2} \leq \varkappa \sigma$.

 $SIA \Leftrightarrow exp.$ polynomials. x satisfying SIA can be approximated by an exponential polynomial

$$p_{ au} = \sum_{k=1}^s c_k au^{r_k} e^{i\omega_k au}$$

An exponential polynomial with s=2

SIA \Rightarrow recoverable. x satisfying SIA is (T, ρ) -recoverable at t = 0 with $\rho = (1 + \varkappa)\sqrt{s}$.

Example: sum of harmonic oscillations

Sum of s harmonic oscillations $x_{\tau} = \sum_{k=1}^{s} c_k e^{i\omega_k \tau}$ satisfies ASIA with $\varkappa = 0 \Rightarrow \rho = \sqrt{s}$.

What we want

Estimator $\widehat{\varphi}$ with the following properties:

• error of $\widehat{\varphi}$ of the same order as for φ^{oracle} ; $\triangleright \widehat{\varphi}$ can be efficiently computed.

Discrete Fourier transform

Let F_m be the $(2m+1) \times (2m+1)$ DFT matrix:

$$[F_m]_{jk}=rac{1}{\sqrt{2m+1}}\exp\left(rac{2\pi\imath jk}{2m+1}
ight).$$

For $x = [x_{-m}; ...; x_m]$ consider the Fourier norms $||x||_{p}^{F} := ||F_{m}x||_{p}.$

Estimator: spectral regularization

 $\widehat{x} := \widehat{\varphi} * y$ where $\widehat{\varphi} \in \mathbf{B}_{2L}$ is an optimal solution to:

$$\min_{\varphi \in \mathbf{B}_{2L}} \|y - \varphi * y\|_2^2 + \lambda \|\varphi\|_1^F, \tag{Pen-ℓ_2}$$

► Favourable structure: efficiently solved by Mirror Prox or Accelerated Gradient Descent.

Main result

Theorem 1 Under ASIA at t = 0, estimator (Pen- ℓ_2) with $\lambda \simeq \sigma^2 \sqrt{T} \log(T)$ achieves

$$|x_0 - [\widehat{\varphi} * y]_0| \le \frac{C\sigma\rho}{\sqrt{T}} (\rho^2 + \rho\sqrt{\log T}).$$

$$||x - \widehat{\varphi} * y||_2 \le C\sigma\rho(\rho + \sqrt{\log T}).$$

Discussion I: uniform fit estimator

Another estimator studied in [J. & N., 2009], and its ρ -adaptive version in [H. et al., 2015]

$$\min_{\varphi \in \mathbf{B}_{2L}} \| y - \varphi * y \|_{\infty}^{F}$$
such that
$$\| \varphi \|_{1}^{F} \leq \frac{\rho^{2}}{\sqrt{T}}.$$

Theorem (H. et al., 2009). If x is (T, ρ) -recoverable at t = 0, $\widehat{\varphi}$ as above satisfies

$$|x_0 - [\widehat{\varphi} * y]_0| \le \frac{C\sigma\rho}{\sqrt{T}} (\rho^3 \sqrt{\log T}).$$

$$||x - \widehat{\varphi} * y||_2 \le C\sigma\rho(\rho^3 \sqrt{\log T}).$$

► Higher adaptation price but ASIA is not needed, recoverability is enough.

Discussion II: sum of harmonic oscillations

For a sum of s harmonic oscillations, we obtain, with no frequency separation assumption,

$$\mathbb{E}^{1/2} \|\widehat{x} - x\|_2^2 \le \tilde{\mathcal{O}} \left(\frac{\sigma s}{\sqrt{T}} \right)$$

- ▶ Assuming frequency separation, s can be replaced by \sqrt{s} for the Lasso estimator of [Tang et al.]
- ▶ Our result is more general: it admits exponential polynomials instead of harmonic oscillations with separated frequencies.

Numerical experiments

We present the results of Monte-Carlo experiments on simulated data, comparing the penalized ℓ_2 -estimator with the Lasso [Tang et al.].

► Harmonic oscillations with random frequencies (RandomFreq) and random pairs of close frequencies (CoherentFreq) in 1-D and 2-D.

Signal and image denoising in scenarios RandomFreq, CoherentFreq, RandomFreq-2D, CoherentFreq-2D.

▶ In scenario *DimensionReduction* we consider the single-index regression model:

$$f(t/n) = g(\theta^T t/n), \quad g(\cdot) \in \mathcal{S}^1_{\beta}(1).$$
 (1)

where $\mathcal{S}^1_{\beta}(1)=\{g:\mathbb{R} o\mathbb{R},\|g^{(\beta)}(\cdot)\|_2\leq 1\}$ is the Sobolev ball of smooth periodic functions on [0,1], and the unknown structure is formalized as the direction θ .

Image denoising in *DimensionReduction* scenario; smoothness decreases left to right.

Bandwidth adaptation

- ▶ For each point t of the grid, and for each bandwidth $\{T_0 = 1, T_1 = 2, ..., T_K = 2^K\}$, compute a solution $\widehat{\varphi}_{T_k,t}$ of (Pen- ℓ_2).
- ▶ Compute $\widehat{x}_t[T_k] = [\widehat{\varphi}_{T_k,t} * y]_t$ and choose the "best" among them via Lepski's algorithm.
- ▶ To reduce the numerical cost, instead of proceeding point-wise, one can use block-wise update of filters, using the ℓ_2 -bound of Theorem 1.