

Efficient Algorithm for Vector Rotation using Quaternions

Ankit Kr. SIngh & Shubham Jindal under the Guidance of Dr. Pinaki Mitra

Abstract

- Comparison of two main techniques of rotation is done, namely:
 - o rotation using euler angle
 - rotation using quaternions
- Rotation using Euler angle is less efficient, in terms of space complexity, than rotation using quaternion, for any general case.
- Rotation using Euler angle is less costly, in terms of time complexity, than rotation using quaternion when we do small number of rotations, for both small and general angle rotation.
- For large number of rotations, rotation using quaternion is more cost effective, in terms of time complexity, than rotation using Euler angle.
- Discussion of the reason of the change in preference of rotation technique when we go for large number of rotations and disadvantages of using Euler Rotation matrix.

Problem Statement

 Comparison of 3D rotations using quaternion with 3D rotation using Euler angles.

Objective

- Propose a better approach to rotate 3D objects than the conventional 3D rotation using euler angle
- Compare the 2 approaches based on:.
 - Time required for small number of rotations.
 - Time required for large number of rotations.
 - Space required for both small and large number of rotations.
- Study of Gimbal Lock

Literature Survey

✓ Paper 1

- Rotation of a point in 3D about an arbitrary axis.
 - Rotate axis of rotation in appropriate fashion to coincide it with the z-coordinate axis.
 - Now, rotate by the angle about z-axis.
 - Rotate the axis of rotation by the inverse of the transformation done in step 1.
- Chaining of rotation matrices: Series of rotation matrices can be combined to form one composite rotation matrix.
- ✓ Paper 2
- What are Quaternions?
- Quaternions Applications
- Quaternions Algebra
 - Quaternions Arithmetic
 - Quaternion logarithm
 - Euler Form
- · Space and time complexities.
- Conjugate Normalization and Inverse

Proposed Approach

- Arbitrary axis rotation
 To rotate vector v by angle θ using quaternions: v' = qvq*, where q =e^{nα/2} & n is axis of rotation as shown.
- Chain of Quaternion vector rotation $q_2(q_1vq_1^*)q_2^* = (q_2q_1)v(q_2q_1)^*$
- Small Angle Rotation
 - \circ Approximate of sinθ to θ and cosθ to 1
 - Chaining will result in Non-Orthogonality
 - Need to normalise the matrix / quaternion
- Rotation Matrix Normalisation
 - Replace with M(M^TM)^{-1/2}
- Quaternion Normalisation
 - Division by ||q||
- Singularity and Problem of Gimbal Lock
 - About Gimbal Lock
 - When Euler Angles are used the graphic system faces the problem of gimbal lock.
 - Quaternions helps to avoid this problem.

Results & Conclusion

- Space required for chain of n quaternions vector rotations is 5n times lesser than for the rotations using euler angle.
- For single general vector rotation operations required are:
 - 45 for Euler angle vector rotation.
 - 54 for Quaternions vector rotation
- For single small angle rotation operations required are:
 - 15 for Euler angle vector rotation.
 - 52 for Quaternions vector rotation.
- For large number of rotations, quaternions vector rotation is more cost effective in terms of time.
- Problem of Gimbal Lock in case of euler angle vector rotation.

Future Work

- Fractal using self squaring procedure:
 - Quaternions can be used to model 2D,
 3D & 4D fractals geometries.

References

- 1. Gregory G Slabaugh. Computing euler angles from a rotation matrix.Retrieved on August, 6(2000):39–63, 1999
- Garrett Birkhoff and Saunders Mac Lane.
 A survey of modern algebra. AK Peters/CRC Press, 1998.
- 3. Yan Ke and Eswarahalli Sundararajan Panduranga. A journey into the fourth dimension. In Proceedings of the 1st conference on Visualization'90, pages 219–229. IEEE Computer Society Press, 1990.
- Source Code https://github.com/23Ankit11/quaternion_r otation
- 5. Quaternions: From classical mechanics to computer graphics, and beyond