OMNIDIRECTIONAL VISUAL TRACKING

By **Mark Borg**

Project Supervisor **Dr. James M. Ferryman**

September 2003

A dissertation in partial fulfilment of the requirements for the degree of Master of Science in Engineering and Information Sciences

The University of Reading School of Systems Engineering Department of Computer Science

Hand with Reflection Sphere (Self-Portrait in Spherical Mirror)
M. C. Escher, 1935 lithograph.

"The picture shows a spherical mirror, resting on a left hand. Such a globe reflection collects almost one's whole surroundings in one disk-shaped image. The whole room, four walls, the floor, and the ceiling, everything, albeit distorted, is compressed into that one small circle. Your own head, or more exactly the point between your eyes, is the absolute centre. No matter how you turn or twist yourself, you can't get out of that central point. You are immovably the focus, the unshakable core, of your world."

M. C. Escher (1898 – 1972).

Abstract

Omnidirectional vision is the ability to see in all directions at the same time. Sensors that are able to achieve omnidirectional vision offer several advantages to many areas of computer vision, such as that of tracking and surveillance. This area benefits from the unobstructed views of the surroundings acquired by these sensors and allows objects to be tracked simultaneously in different parts of the field-of-view without requiring any camera motion.

This thesis describes a system that uses an omnidirectional camera system for the purpose of detecting and tracking moving objects. We describe the methods used for detecting objects, by means of a motion detection technique, and investigate two different methods for tracking objects – a method based on tracking groups of moving pixels, commonly referred to as blob tracking methods, and a statistical colour-based method that uses a mixture model for representing the object's colours. We evaluate these methods and show the robustness of the latter method for occlusion and other problems that are normally encountered in tracking applications.

For this thesis, we make use of a catadioptric omnidirectional camera based on a paraboloidal mirror, because of its single viewpoint and its flexibility of calibration and use. We also describe the methods used to generate virtual perspective views from the non-linear omnidirectional images acquired by the catadioptric camera. This is used in combination with the tracking results to create virtual cameras that produce perspective video streams while automatically tracking objects as they move within the camera's field-of-view.

Finally, this thesis demonstrates the advantage that an omnidirectional visual tracking system provides over limited field-of-view systems. Objects have the potential of being tracked for as long as they remain in the scene, and are not lost because they exit the field-of-view as happens for the latter systems. This should ultimately lead to a better awareness of the surrounding world – of the objects present in the scene and their behaviour.

Acknowledgements

I would like to express my sincere gratitude to Dr. James M. Ferryman for his continuous guidance, valuable advice and helpful discussions. I would also like to thank him for giving me the opportunity to work on a related project during my studies, from which I learned a lot about computer vision.

I also wish to thank the company I work for, Mosaic Software, for allowing me to take extended periods of leave to pursue my studies, and my colleagues at work for having to share the extra workload during my absence from the office.

Finally, many thanks to my family for all the encouragement and support they have always given me.

Contents

1	Intro	oduction	1
	1.1	Aim	2
	1.2	Thesis Outline	3
2	Omn	nidirectional Vision	5
	2.1	Omnidirectional Vision	5
	2.2	Motivation	6
	2.3	Omnidirectional Camera Systems	7
		2.3.1 Rotating Camera Systems	7
		2.3.2 Multiple Camera Systems	8
		2.3.3 Fish-Eye Lens Systems	9
		2.3.4 Catadioptric Systems	10
		2.3.5 Others	10
	2.4	Comparison of the Omnidirectional Camera Systems	11
		2.4.1 Rotating Cameras	11
		2.4.2 Multiple Cameras	12
		2.4.3 Fish-Eye Cameras	13
		2.4.4 Catadioptric Cameras	15
	2.5	The Single Viewpoint Constraint	16
		2.5.1 Non-Central Omnidirectional Cameras	18
	2.6	Conclusion	18
3	Cata	ndioptric Systems	20
	3.1	Catadioptric Cameras	20
	3.2	Different types of Catadioptric Systems	21
		3.2.1 Planar mirror	21
		3.2.2 Conical mirror	22

		3.2.3 Spherical mirror
		3.2.4 Ellipsoidal mirror
		3.2.5 Hyperboloidal mirror
		3.2.6 Paraboloidal mirror
	3.3	Achieving a Full Sphere of View
	3.4	Simulations
	3.5	Applications using Catadioptric Cameras
	3.6	Conclusion
4	Appl	ication Scenarios 3
	4.1	Indoor and Outdoor Environments
	4.2	Datasets
	4.3	Omnidirectional Cameras – Advantages for the Program
	4.4	Omnidirectional Cameras – Restrictions for the Program 4
	4.5	Objectives
5	Impl	ementation Aspects 4
	5.1	Requirements of Computer Vision Applications
	5.2	MMX Technology
	5.3	OpenCV Library
	5.4	Windows and Threads
	5.5	Application Structure
	5.6	Conclusion
6	Cata	dioptric Geometry and Virtual View Generation 5
	6.1	Catadioptric Mirror Equations
	6.2	Paraboloidal Mirror Equation
	6.3	Resolution of the Paraboloidal Mirror
	6.4	Catadioptric Projective Geometry 6
	6.5	Re-Projection Equations for a Paraboloidal Mirror 6
	6.6	Implementation
		6.6.1 Camera Models
		6.6.2 Re-Projection Optimisation 6
		6.6.3 Interactive Control
	6.7	Conclusion

7	Cata	dioptric	Camera Calibration	76
	7.1	Camer	a Calibration	76
	7.2	Catadi	optric Camera Calibration	77
		7.2.1	Paraboloidal Mirror Calibration	78
	7.3	Review	w of Existing Methods	79
	7.4	Impler	mentation	81
		7.4.1	Method Chosen	81
		7.4.2	Boundary Detection	82
			7.4.2.1 Low-Variance Method (first attempt)	83
			7.4.2.2 Iterative Thresholding Method (second	
			attempt)	83
			7.4.2.3 Edge Detection	85
			7.4.2.4 Circle Detection	87
		7.4.3	Calculating the Paraboloid's Parameter H	89
	7.5	Result	s and Conclusions	90
8	Mov	ing Obio	ect Detection	94
O	8.1	0	l Flow	9 5
	8.2	-	Difference	95
	8.3		round Subtraction	96
	0.5	8.3.1	Simplest Form – Mean and Global Threshold Method	97
		8.3.2	Handling Noise – Normal Distribution Method	98
		8.3.3	Handling Background Motion – Mixture of Gaussians	70
		6.5.5	Method	99
		8.3.4	Post-Processing	100
	8.4		round Adaptation	100
	0.4	8.4.1	Types of Background Update	100
	8.5		w of Applications using Background Subtraction	102
	8.6		and Sources of Detection Errors	102
	8.7	• •	mentation	109
	0.7	8.7.1	Choosing a Background Model	109
		0.7.1	8.7.1.1 A Test using Mixture Models	109
			8.7.1.2 The Chosen Model	109
		8.7.2	Robustness to Shadow	111
		0.1.2		
			8.7.2.1 HSV Colour Space and Shadow Detection	114
			8.7.2.2 Low Chromaticity Conditions	115

		8.7.3 Background Initialisation
		8.7.4 Background Subtraction Algorithm
		8.7.5 Thresholding with Hysteresis
		8.7.6 Background Model Adaptation
		8.7.6.1 Background Model Failure
	8.8	Results
9	Obje	ct Tracking – an Overview 120
	9.1	Object Tracking
	9.2	Tracking Problems
	9.3	Different Tracking Methods
	9.4	Tracking for Omnidirectional Applications
	9.5	Chosen Methods – an Introduction
10	Blob	Tracking 130
	10.1	Connected Components
		10.1.1 Size Filtering
		10.1.2 Blob Clustering
	10.2	Object Features
	10.3	Similarity Measures
		10.3.1 The Overlap Measure
		10.3.2 The Centroid Distance Measure
		10.3.3 The Area Ratio Measure
		10.3.4 The Colour Similarity Measure
	10.4	Object Tracking
		10.4.1 Match Scoring
		10.4.2 Matching Blob Clusters to Objects
		10.4.3 Updating the Object
	10.5	Results
	10.6	Conclusion
11	Colou	ır-based Tracking 150
	11.1	Colour Models
	11.2	Mixture Models
		11.2.1 Gaussian Mixture Models
	11.3	Tracking with Colour Models

	11.4	Colour Model Learning	163
		11.4.1 The Expectation-Maximisation (EM) Algorithm	165
		11.4.1.1 Selecting the Initial Parameters	168
	11.5	Colour Model Update	170
	11.6	Implementation Issues	173
	11.7	Results	176
	11.8	Conclusion	179
12	3D L	ocalisation and High-Level Processing	180
	12.1	3D Localisation	180
	12.2	Automatic Target Tracking with Virtual Cameras	182
		12.2.1 Automatic Target Tracking	183
		12.2.2 Manually-Initiated Automatic Target Tracking	184
		12.2.3 Automatic Camera Control	184
	12.3	Tracking History	185
	12.4	Conclusion	186
13	Conc	lusions and Future Work	187
	13.1	Conclusions	187
	13.2	Future Work	190
Ribl	liogran	hv	191

List of Figures

2.1	A 360° panorama created by rotating a camera around its focal point
2.2	Multi-Camera systems
2.3	Fish-Eye camera systems
2.4	Catadioptric camera systems
2.5	Single Centre of Projection and Single Viewpoint
2.6	Generating virtual perspective views
3.1	Planar mirror
3.2	Conical mirror
3.3	Spherical mirror
3.4	Ellipsoidal mirror
3.5	Hyperboloidal mirror
3.6	Paraboloidal mirror
3.7	Achieving 360° by 360° with two paraboloidal mirrors
3.8	Simulations – the room
3.9	Simulations – Spherical and Conical mirrors
3.10	Simulations – Ellipsoidal mirror
3.11	Simulations – Paraboloidal mirror
3.12	Simulations – Hyperboloidal mirror
3.13	Two paraboloidal systems to achieve a full view
3.14	Panorama captured by two paraboloidal systems
4.1	Two different scenarios
4.2	Omnidirectional and conventional (linear) cameras
5.1	Libraries
5.2	Pipeline model
5.3	Node thread execution timeline
5 4	OmniTracking application pipeline

5.5	System diagram	54
6.1	Geometry of catadioptrics with single viewpoint	56
6.2	Geometry of the 2D parabolic profile of the mirror	58
6.3	Geometry of the 3D paraboloidal mirror	59
6.4	Non-uniform mirror gain of the paraboloidal mirror	60
6.5	Equivalence of parabolic projection to stereographic projection	61
6.6	The horizon and vertical lines under parabolic projection	62
6.7	Lines projected into circles and their vanishing points	62
6.8	Re-projection	63
6.9	Generating perspective and panoramic views	65
6.10	Virtual perspective camera model	66
6.11	Virtual panoramic camera model	67
6.12	Optimising the distance factor in the re-projection equations	69
6.13	Algorithm for calculating the re-projection look-up table	71
6.14	A screenshot of the OmniTracking system with virtual panoramic and	
	perspective video cameras	72
6.15	Different examples of perspective and panoramic view with camera	
	control parameters applied to them	73-74
6.16	Performance of generating virtual camera views by the OmniTracking	
	program	75
7.1	Calibration of the catadioptric internal parameters	77
7.2	Circle-based self-calibration	82
7.3	JPEG noise affecting pixel variance and boundary detection	84
7.4	Iterative thresholding for the PETS2001 dataset	85
7.5	Iterative thresholding for the PETS-ICVS dataset	86
7.6	Results of the edge detection and external contour extraction phase	87
7.7	Hierarchical Hough transform, with multi-resolution image pyramid	
	and reduction of parameter space search	88
7.8	Calculating the paraboloidal mirror's parameter H	90
7.9	Calibration results for the PETS datasets	91
7.10	Calibration algorithm	92
7.11	Calibration tests under various simulated light, noise and visibility	
	conditions	92-93

8.1	Frame differencing technique
8.2	Background subtraction technique – the basic idea
8.3	Background subtraction technique – normal distribution model 98
8.4	Background subtraction technique – Gaussian mixture model 100
8.5	Exponential forgetting for background update
8.6	Mixture models for pixels of the PETS2001 dataset
8.7	Detection errors caused by shadow
8.8	Low chromaticity thresholds for HSV colour space
8.9	Background mean and standard deviation maps
8.10	Thresholding with hysteresis – some results
8.11	Results: Detection of shadows
8.12	Results: Noise due to camera movements
8.13	Results: Camouflage and object fragmentation
8.14	Results: The ghost problem
8.15	Results: Foreground aperture problem
8.16	Results: Moved background elements
9.1	Bottom-up and top-down object tracking
9.1 9.2	
9.2 9.3	3
9.4	Corner tracking and its affine and linear translation model
10.1	Connected components and blob clustering
10.2	Blob clustering algorithm
10.3	Object features
10.4	Overlap and centroid distance measures
10.5	Colour similarity measure
10.6	Blob tracking algorithm
10.7	Matching as a graph search problem
10.8	Results: Blob clustering
10.9	Results: Occlusion and merging
10.10	Results: Colour similarity
11.1	Non-parametric statistical colour model based on a HSV-colour
	histogram
11.2	Parametric statistical colour model based on a Gaussian mixture

	model	160
11.3	Locating an object by finding the region with highest colour	
	probability	162
11.4	Combining colour tracking with motion detection	162
11.5	Using temporal constraints for the search window	163
11.6	Learning a colour model using the EM algorithm	169
11.7	Convergence of the log-likelihood value of the colour model	170
11.8	Colour tracking algorithm	173
11.9	Probability map used as a look-up table	174
11.10	Results: Tracking through partial occlusion	177
11.11	Results: Tracking through occlusion	178
11.12	Results: Poor colour model	179
12.1	3D localisation by means of back-projection from omnidirectional	
	images	181
12.2	Results of 3D localisation for the PETS2001 dataset	182
12.3	Different ways of automatically tracking objects	184
12.4	Tracking history results generated by the application and viewed in a	
	web browser	186

List of Tables

3.1	Different mirror types and applications using them	34
6.1	Solutions to the mirror equations	57
7.1	Volume searched in Hough transform parameter search for the	
	PETS-ICVS dataset	89
10.1	Match score matrix	150