Package 'MCID'

October 12, 2022

Type Package
Title Estimating the Minimal Clinically Important Difference
Version 0.1.0
Date 2021-09-07
Description Apply the marginal classification method to achieve the purpose of providing the point and interval estimates for the minimal clinically important difference based on the classical anchor-based method. For more details of the methodology, please see Zehua Zhou, Leslie J. Bisson and Jiwei Zhao (2021) <arxiv:2108.11589>.</arxiv:2108.11589>
License GPL (>= 2)
Encoding UTF-8
Imports stats
RoxygenNote 7.1.0
NeedsCompilation no
Author Zehua Zhou [cre, aut], Jiwei Zhao [aut]
Maintainer Zehua Zhou <zehuazho@buffalo.edu></zehuazho@buffalo.edu>
Repository CRAN
Date/Publication 2021-09-10 11:20:12 UTC
R topics documented:
cv.imcid
Index

2 cv.imcid

cv.imcid	Selection of the tuning parameters for determining the MCID at the individual level

Description

cv. imcid returns the optimal tuning parameter δ and λ selected from a given grid by using k-fold cross-validation. The tuning parameters are selected for determining the MCID at the individual level

Usage

```
cv.imcid(x, y, z, lamseq, delseq, k = 5, maxit = 100, tol = 0.01)
```

Arguments

x	a continuous variable denoting the outcome change of interest
У	a binary variable denoting the patient-reported outcome derived from the anchor question
z	a vector or matrix denoting the patient's clinical profiles
lamseq	a vector containing the candidate values for the tuning parameter λ , where λ is the coefficient of the penalty term, used for avoiding the issue of model overfitting
delseq	a vector containing the candidate values for the tuning parameter δ , where δ is used to control the difference between the 0-1 loss and the surrogate loss. We recommend selecting the possible values from the neighborhood of the standard deviation of x
k	the number of groups into which the data should be split to select the tuning parameter δ by cross-validation. Defaults to 5
maxit	the maximum number of iterations. Defaults to 100
tol	the convergence tolerance. Defaults to 0.01

Value

a list including the combinations of the selected tuning parameters and the value of the corresponding target function

Examples

```
n <- 500
lambdaseq <- 10 ^ seq(-3, 3, 0.1)
deltaseq <- seq(0.1, 0.3, 0.1)
a <- 0.1
b <- 0.55
c <- -0.1</pre>
```

cv.pmcid 3

cv.pmcid

Selection of the tuning parameter for determining the MCID at the population level

Description

cv.pmcid returns the optimal tuning parameter δ selected from a given grid by using k-fold cross-validation. The tuning parameter is selected for determining the MCID at the population level

Usage

```
cv.pmcid(x, y, delseq, k = 5, maxit = 100, tol = 0.01)
```

Arguments

Х	a continuous variable denoting the outcome change of interest
у	a binary variable indicating the patient-reported outcome derived from the anchor question
delseq	a vector containing the candidate values for the tuning parameter δ , where δ is used to control the difference between the 0-1 loss and the surrogate loss. We recommend selecting the possible values from the neighborhood of the standard deviation of x
k	the number of groups into which the data should be split to select the tuning parameter δ by cross-validation. Defaults to 5
maxit	the maximum number of iterations. Defaults to 100
tol	the convergence tolerance. Defaults to 0.01

4 imcid

Value

a list including the selected tuning parameter and the value of the corresponding target function

Examples

```
n <- 500
deltaseq <- seq(0.1, 1, 0.1)
a <- 0.2
b <- -0.1
p < -0.5
set.seed(115)
y <- 2 * rbinom(n, 1, p) - 1
y_1 < - which(y == 1)
y_0 \leftarrow which(y == -1)
x <- c()
x[y_1] \leftarrow rnorm(length(y_1), a, 0.1)
x[y_0] \leftarrow rnorm(length(y_0), b, 0.1)
sel \leftarrow cv.pmcid(x = x, y = y, delseq = deltaseq, k = 5,
         maxit = 100, tol = 1e-02)
sel$'Selected delta'
sel$'Function value'
```

imcid

Point and interval estimation for the MCID at the individual level

Description

We formulate the individualized MCID as a linear function of the patients' clinical profiles. imcid returns the point estimate for the linear coefficients of the MCID at the individual level

Usage

```
imcid(x, y, z, n, lambda, delta, maxit = 100, tol = 0.01, alpha = 0.05)
```

Arguments

X	a continuous variable denoting the outcome change of interest
У	a binary variable indicating the patient-reported outcome derived from the anchor question
z	a vector or matrix denoting the patient's clinical profiles
n	the sample size
lambda	the selected tuning parameter λ , can be returned by cv.imcid
delta	the selected tuning parameter δ , can be returned by cv.imcid
maxit	the maximum number of iterations. Defaults to 100

pmcid 5

tol the convergence tolerance. Defaults to 0.01 alpha nominal level of the confidence interval. Defaults to 0.05

Value

a list including the point estimates for the linear coefficients of the individualized MCID and their standard errors, and the corresponding confidence intervals based on the asymptotic normality

Examples

```
n <- 500
lambdaseq <- 10 ^ seq(-3, 3, 0.1)
deltaseq <- seq(0.1, 0.3, 0.1)
a < -0.1
b <- 0.55
c <- -0.1
d <- 0.45
### True linear coefficients of the individualized MCID: ###
### beta0=0, beta1=0.5 ###
set.seed(115)
p < -0.5
y <- 2 * rbinom(n, 1, p) - 1
z < - rnorm(n, 1, 0.1)
y_1 \leftarrow which(y == 1)
y_0 \leftarrow which(y == -1)
x <- c()
x[y_1] \leftarrow a + z[y_1] * b + rnorm(length(y_1), 0, 0.1)
x[y_0] \leftarrow c + z[y_0] * d + rnorm(length(y_0), 0, 0.1)
sel \leftarrow cv.imcid(x = x, y = y, z = z, lamseq = lambdaseq,
         delseq = deltaseq, k = 5, maxit = 100, tol = 1e-02)
lamsel <- sel$'Selected lambda'</pre>
delsel <- sel$'Selected delta'
result <- imcid(x = x, y = y, z = z, n = n, lambda = lamsel,
         delta = delsel, maxit = 100, tol = 1e-02, alpha = 0.05)
result$'Point estimates'
result$'Standard errors'
result$'Confidence intervals'
```

pmcid

Point and interval estimation for the MCID at the population level

Description

pmcid returns the point estimate for the MCID at the population level

6 pmcid

Usage

```
pmcid(x, y, n, delta, maxit = 100, tol = 0.01, alpha = 0.05)
```

Arguments

x	a continuous variable denoting the outcome change of interest
У	a binary variable indicating the patient-reported outcome derived from the anchor question
n	the sample size
delta	the selected tuning parameter δ , can be returned by cv.pmcid
maxit	the maximum number of iterations. Defaults to 100
tol	the convergence tolerance. Defaults to 0.01
alpha	nominal level of the confidence interval. Defaults to 0.05

Value

a list including the point estimate of the population MCID and its standard error, and the confidence interval based on the asymptotic normality

Examples

```
n <- 500
deltaseq <- seq(0.1, 1, 0.1)
a <- 0.2
b < -0.1
p < -0.5
### True MCID is 0.5 ###
set.seed(115)
y <- 2 * rbinom(n, 1, p) - 1
y_1 < - which(y == 1)
y_0 < - which(y == -1)
x <- c()
x[y_1] \leftarrow rnorm(length(y_1), a, 0.1)
x[y_0] \leftarrow rnorm(length(y_0), b, 0.1)
sel \leftarrow cv.pmcid(x = x, y = y, delseq = deltaseq, k = 5,
         maxit = 100, tol = 1e-02)
delsel <- sel$'Selected delta'
result <- pmcid(x = x, y = y, n = n, delta = delsel,
            maxit = 100, tol = 1e-02, alpha = 0.05)
result$'Point estimate'
result$'Standard error'
result$'Confidence interval'
```

Index

```
cv.imcid, 2
cv.pmcid, 3
imcid, 4
pmcid, 5
```