05 집적 회로

- 집적 회로(Integrated Circuit, IC)는 작은 실리콘 칩에 저항, 커패시터, 다이오드, 트랜지스터 등 전자 부품을 여러 공정을 거쳐 내부적으로 상호 연결한 것
- 칩(chip)은 실리콘 반도체로 세라믹 또는 플라스틱 기판에 부착하여 외부 핀에 연결한다.

05 집적 회로

□디지털 논리군

TTL	Transistor-Transistor Logic • 최근까지 가장 많이 사용되었다. 표준 TTL 외에도 고속 TTL, 저전력 TTL, 저전력 쇼트키 schottky TTL, 고성능 쇼트키 TTL 등이 있다. • TTL 회로의 전원은 +5V고, 0과 1의 두 논리 레벨은 각각 0V와 +3.5V다. • 기본 회로는 NAND 게이트다.	
ECL	Emitter-Coupled Logic • 슈퍼 컴퓨터 신호 처리기 같은 고속 회로에 사용된다. • ECL 게이트의 트랜지스터는 불포화 상태에서 동작하기 때문에 1~2ns의 전달 지연 시간만 갖는다. • 기본 회로는 NOR 게이트다.	
MOS	Metal-Oxide Semiconductor • 부품의 밀도가 높은 집적 회로에서 주로 사용되는 것으로 금속 산화물 반도체라고 한다. • 단상 트랜지스터인 NMOS가 사용된다.	
CMOS	Complementary Metal-Oxide Semiconductor NMOS와 PMOS를 서로 연결하여 제작하기 때문에 회로의 밀도가 높고 제조 공정이 단순하며, 전력 소비가 적어 경제적이다. 4000B 시리즈, HC 시리즈, HCT 시리즈가 있다.	

05 집적 회로

❖ 디지털 논리군의 전기적 특성

전파지연시간	gate propagation delay • 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도이다.
전력소모	power dissipation • 게이트가 동작할 때 소모되는 전력량
잡음여유도	noise margin • 최대로 허용된 잡음 마진
팬-아웃	fan-out • 하나의 게이트의 출력으로부터 다른 여러 개의 입력들로 공급되는 전류 • 정상적인 동작으로 하나의 출력이 최대 몇 개의 입력으로 연결되는가를 나타낸다.

05 집적 회로

□집적 회로의 분류

표 3-12 소자 수에 따른 집적 회로의 분류

종류	소자수
소규모 집적 회로(SSI _{Small Scale Ic})	100개 이하
중규모 집적 회로(MSI _{Medium Scale Ic})	100~1,000개
대규모 집적 회로(LSI _{Large Scale Ic})	1,000~1만개
초대규모 집적 회로(VLSI _{Very Large Scale Ic})	1만~100만 개
극초대규모 집적 회로(ULSI Ultra Large Scale Ic)	100만 개 이상

❖ 디지털 시스템의 장점

- 디지털 시스템의 소형화 및 경량화
- 생산 가격의 저렴화
- 소비 전력의 감소
- 동작 속도의 고속화
- 디지털 시스템의 신뢰도 향상

05 집적 회로

□ IC 패키지

- PCB에 장착하는 방법에 따라 **삽입 장착형**(through-hole mounted)과 **표면 실장형**(Surface-Mounted Device, SMD)으로 구분
- 삽입 장착형 IC는 DIP(Dual-In-line Package) 형태
- 표면 실장형 IC로는 SOIC(Small Outline Integrated Circuit), QFP(Quad Flat Package), PLCC(Plastic Leaded Chip Carrier) 등이 있다.

