In [1]: In [47]:	<pre>import sys import rootpath sys.path.append(rootpath.detect()) import os import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.patches import Patch from testsuite.utilities import dominates from testsuite.utilities import saf from pymoo.factory import get_performance_indicator from tydm import tydm</pre>
In [3]:	<pre>from tqdm import tiqdm import time import matplotlib.image as mpimg matplotlib.rcParams['mathtext.fontset'] = 'stix'; matplotlib.rcParams['font.family'] = 'STIXGeneral'; matplotlib.rcParams['font.size'] = 15; matplotlib.rcParams['legend.fontsize'] = 15 matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 COLORS = { "a": '#ffa500', "b": '#008000',</pre>
In [4]:	
In [5]:	
n [26]:	<pre>def volume_b(y, targets, p, rp): """ do elements in y belong to volume b, True if - dominate any of targets - are dominated by any of p """ vb = np.asarray([np.any([dominates(yi, t) for t in targets]) and dominates(p, xyi) for yi in y] return vb def image_case(case, ref_volume=False, resolution=200, ax=None): """ returns figure showing volumes Va and Vb from the case desribed</pre>
	<pre>by case: :param case: dict dictionary containing case definition :param ref_volume: bool If true show the outer volumes of which Va and Vb should be calculated as a fraction. Defaults to false as calculating these is slow (due to many dominantion relation checks in the Pareto front) :param resolution: int image resoution, keep low (~50) for speed increase. """</pre>
	<pre>if ax is None: fig = plt.figure(figsize=[6, 6]) ax = fig.gca() return_fig = Tue else: return_fig = False ax.grid('on') ax.axis("scaled") ax.set_xticks(range(0,12)) ax.set_yticks(range(0,12)) ax.legend(loc="lower left")</pre>
	<pre>x_lim = ax.get_xlim() x = np.linspace(0,x_lim[1], resolution) y_lim = ax.get_ylim() y = np.linspace(*y_lim, resolution) xx, yy = np.meshgrid(x, y) xy = np.vstack((xx.flat, yy.flat)).T zz = saf(xy, case['p']).reshape(resolution, resolution) P_x = x P_y = 5/x t_ideal = case['target'].min(axis=0) t_az = case['target'] max(axis=0)</pre>
	<pre>t_az = case['target'].max(axis=0) # generate boolean masks for volumes of interest: Va and Vb va = np.asarray([dominates(case['target'], xyi) and dominates(xyi, case['ref_point']) and domin es(case['p'], xyi) for xyi in xy]) vb = np.asarray([np.any([dominates(xyi, t) for t in case['target']]) and dominates(case['p'], x) for xyi in xy]) if ref_volume: va_r = np.asarray([dominates(case['target'], xyi) and dominates(xyi, case['ref_point']) for yi in xy]) vb_r = np.asarray([np.any([dominates(pi, xyi) for pi in np.vstack((P_x, P_y)).T]) and np.an ([dominates(xyi, t) for t in case['target']]) for xyi in xy])</pre>
	<pre>a = ax.get_xlim() b = ax.get_ylim() vol_a = ax.imshow(va.reshape(resolution, resolution)[::-1, :], alpha=0.3, extent=[0, 11, 0, 11], map=CMAP_VA) vol_b = ax.imshow(vb.reshape(resolution, resolution)[::-1, :], alpha=0.3, extent=[*ax.get_xlim() *ax.get_ylim()], cmap=CMAP_VB) if ref_volume: vol_ar = ax.imshow(va_r.reshape(resolution, resolution)[::-1, :], alpha=0.1, extent=[0, 11, 11], cmap=CMAP_VA)</pre>
	<pre>vol_br = ax.imshow(vb_r.reshape(resolution, resolution)[::-1, :], alpha=0.1, extent=[0, 11, 11], cmap=CMAP_VB) ax.contour(xx, yy, zz, levels=[0.], colors="C0", alpha=0.5) ax.scatter(*case['p'].T, c="C0", label=r"\$\tilde{P}\$") ax.scatter(*case['target'].T, c="magenta", label=r"\$T\$") ax.scatter(*case['ref_point'], c="C3", label=r"\$r\$") ax.scatter(*t_ideal, c="magenta", label=r"\$\tilde{t}\$", marker="*") ax.scatter(*t_az, c="magenta", label=r"\$\check{t}\$", marker="v")</pre>
	<pre>ax.hlines(t_ideal[1], t_ideal[0], t_az[0], colors="magenta", linestyle="", alpha=0.2) ax.hlines(t_az[1], t_ideal[0], t_az[0], colors="magenta", linestyle="", alpha=0.2) ax.vlines(t_ideal[0], t_ideal[1], t_az[1], colors="magenta", linestyle="", alpha=0.2) ax.vlines(t_az[0], t_ideal[1], t_az[1], colors="magenta", linestyle="", alpha=0.2) ax.plot(P_x, P_y, c="k", label=r"\$P\$") handles, labels = ax.get_legend_handles_labels() handles += [plt.Line2D([0], [0], c="C0", alpha=0.5)] handles += [Patch(facecolor="orange", alpha=0.4), Patch(facecolor="green", alpha=0.3)] labels += [r"\$A\$", r"\$V_a\$", r"\$V_b\$"] nc = 3</pre>
	<pre>if ref_volume: handles += [Patch(facecolor="orange", alpha=0.1), Patch(facecolor="green", alpha=0.1)] labels += [r"\$V_{ar}\$", r"\$V_{br}\$"] nc = 4 ax.legend(handles, labels, loc="lower left", ncol=nc) if ref_volume: va_frac = (np.sum(va)/np.sum(va_r)).round(3) vb_frac = (np.sum(vb)/np.sum(vb_r)).round(3) also:</pre>
	<pre>else: va_frac = (np.sum(va)/len(va)).round(3) vb_frac = (np.sum(vb)/len(vb)).round(3) pos_a = np.vstack(np.where(va.reshape(resolution, resolution))).T.mean(axis=0)/resolution*(np.a) ay([x_lim[1]-x_lim[0], y_lim[1]-y_lim[0]])) pos_b = np.vstack(np.where(vb.reshape(resolution, resolution))).T.mean(axis=0)/resolution*(np.a) ay([x_lim[1]-x_lim[0], y_lim[1]-y_lim[0]])) if ref_volume: ax.text(pos_a[1], pos_a[0], fr"\$M_a={va_frac}\$", c=CMAP_VA.colors[1]) ax.text(pos_b[1], pos_b[0], fr"\$M_b={vb_frac}\$", c=CMAP_VB.colors[1]) else:</pre>
In [27]:	<pre>ax.text(pos_a[1], pos_a[0], fr"\$V_a={va_frac}\$", c=CMAP_VA.colors[1]) ax.text(pos_b[1], pos_b[0], fr"\$V_b={vb_frac}\$", c=CMAP_VB.colors[1]) ax.set_xlabel(r"\$f_1\$") ax.set_ylabel(r"\$f_2\$") if return_fig: return fig def montecarlo_case(case, samples=1e6, ax=None): """ :param case: dict dictionary containing case definition</pre>
	<pre>dictionary containing case definition :param ref_volume: bool If true show the outer volumes of which Va and Vb should be calculated as a fraction. Defaults to false as calculating these is slow (due to many dominantion relation checks in the Pareto front) :param resolution: int image resoution, keep low (~50) for speed increase. """ samples = int(samples) resolution = int(np.sqrt(samples)/5) if ax is None:</pre>
	<pre>fig = plt.figure(figsize=[6, 6]) ax = fig.gca() return_fig = Tue else: return_fig = False ax.grid('on') ax.axis("scaled") ax.set_xticks(range(0,12)) ax.set_yticks(range(0,12)) ax.legend(loc="lower left")</pre>
	<pre>x_lim = ax.get_xlim() x = np.linspace(0,x_lim[1], resolution) y_lim = ax.get_ylim() y = np.linspace(*y_lim, resolution) xx, yy = np.meshgrid(x, y) xy = np.vstack((xx.flat, yy.flat)).T zz = saf(xy, case['p']).reshape(resolution, resolution) xy = np.vstack([np.random.uniform(0, i, samples) for i in case['ref_point']]).T P_x = x P_y = 5/x t_ideal = case['target'].min(axis=0)</pre>
	<pre>t_az = case['target'].max(axis=0) va_r = xy[[dominates(case['target'], xyi) and dominates(xyi, case['ref_point']) for xyi in xy]] vb_r = xy[[np.any([dominates(pi, xyi) for pi in np.vstack((P_x, P_y)).T]) and np.any([dominates yi, t) for t in case['target']]) for xyi in xy]] va = va_r[[dominates(case['target'], xyi) and dominates(xyi, case['ref_point']) and dominates(cel'p'], xyi) for xyi in va_r]] vb = vb_r[[np.any([dominates(xyi, t) for t in case['target']]) and dominates(case['p'], xyi) for xyi in vb_r]] ax.scatter(*va_r.T, c=COLORS['v_ar'], label=r"\$V_{ar}\$", s=5) ax.scatter(*vb_r.T, c=COLORS['v_br'], label=r"\$V_{br}\$", s=5)</pre>
	<pre>ax.scatter(*va.T, c=COLORS['v_a'], label=r"\$V_{a}\$", s=5) ax.scatter(*vb.T, c=COLORS['v_b'], label=r"\$V_{b}\$", s=5) t_ideal = case['target'].min(axis=0) t_az = case['target'].max(axis=0) ax.contour(xx, yy, zz, levels=[0.], colors="CO", alpha=0.5) ax.scatter(*case['p'].T, c="CO", label=r"\$\tilde{P}\$") ax.scatter(*case['target'].T, c="magenta", label=r"\$T\$") ax.scatter(*case['ref_point'], c="C3", label=r"\$r\$")</pre>
	<pre>ax.scatter(*t_ideal, c="magenta", label=r"\$\tilde{t}\$", marker="*") ax.scatter(*t_az, c="magenta", label=r"\$\check{t}\$\$", marker="v") ax.hlines(t_ideal[1], t_ideal[0], t_az[0], colors="magenta", linestyle="", alpha=0.2) ax.hlines(t_az[1], t_ideal[0], t_az[0], colors="magenta", linestyle="", alpha=0.2) ax.vlines(t_ideal[0], t_ideal[1], t_az[1], colors="magenta", linestyle="", alpha=0.2) ax.vlines(t_az[0], t_ideal[1], t_az[1], colors="magenta", linestyle="", alpha=0.2) ax.plot(P_x, P_y, c="k", label=r"\$P\$") nc = int(np.ceil(len(ax.get_legend_handles_labels()[0])/3)) handles, labels = ax.get_legend_handles_labels()</pre>
	<pre>handles += [plt.Line2D([0], [0], c="CO", alpha=0.5)] labels += [r"\$A\$"] ax.legend(handles, labels, ncol=nc, loc="lower left") va_frac = np.round(len(va)/len(va_r), 3) vb_frac = np.round(len(vb)/len(vb_r), 3) print(va_frac) print(vb_frac) pos_a = va.mean(axis=0) pos_b = vb.mean(axis=0) ax.text(pos_a[0], pos_a[1], fr"\$M_a={va_frac}\$", c="k")</pre>
	<pre>ax.text(pos_b[0], pos_b[1], fr"\$M_b={vb_frac}\$", c="k") ax.set_xlabel(r"\$f_1\$") ax.set_ylabel(r"\$f_2\$") if return_fig: return fig</pre> Nomanclature • P: Pareto front
	• $ ilde{P}$: Approximation to Pareto front: $ ilde{P}=\{y_i\}_{i=1}^n$ • A : attainment front • r : reference point • t : targets: $T=\{t_i\}_{i=1}^{n_t}$ • t : target ideal t = $\{t_j\}_{j=1}^n$ where: $t_j=\min_{u\in T}\{u_j\}$ • t : target zenith t = $\{t_j\}_{j=1}^n$ where: $t_j=\max_{u\in T}\{u_j\}$
	• $H(Y,r)$: Volume dominated by Y referred to r Region that is dominated by a set Z in objective space: $\mathrm{dom}(Z)=\{u\ \ \exists z\in Z\ s.t.\ z\prec u\}$ Volume definitions $V_a=H(\mathrm{dom}(T)\cap\mathrm{dom}(\tilde{P}),r)$ $V_b=H(\mathrm{dom}(\tilde{P})\setminus\mathrm{dom}(\check{t}),r)$
	Reference Volume definitions $V_{ar} = H(\mathrm{dom}(T) \cap \mathrm{dom}(P), r) \\ V_{br} = H(\mathrm{dom}(P) \setminus \mathrm{dom}(\check{t}), r)$ Relative Hypervolume Scores $M_a = \frac{V_a}{V_{ar}} = \frac{H(\mathrm{dom}(T) \cap \mathrm{dom}(\tilde{P}), r)}{H(\mathrm{dom}(T) \cap \mathrm{dom}(P), r)} \\ M_b = \frac{V_b}{V_{br}} = \frac{H(\mathrm{dom}(\tilde{P}) \setminus \mathrm{dom}(\check{t}), r)}{H(\mathrm{dom}(P) \setminus \mathrm{dom}(\check{t}), r)}$
In [8]:	<pre># define test cases # single target attained case_00 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># single target unattained case_01 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># dual targets, both attained case_02 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># dual targets, both unattained case_03 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># dual targets, one unattained, one unattained case_04 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># dual targets, both attained, one beyond span of p case_08 = {'ref_point': np.array([10., 10.]),</pre>
	<pre># dual targets, both attained, overlapping volumes case_09 = {'ref_point': np.array([10., 10.]),</pre>
	<pre>'doh': (12., 4.) } case_11 = {'ref_point': np.array([10., 10.]),</pre>
	'doh': (12., 4.) } cases = [case_00,
in [29]:	<pre>case_09, case_10, case_11] # compute any single case n_samples = int(2e5) resolution = int(np.sqrt(n_samples)/5) case = case_05 tic = time.time() fig, axes = plt.subplots(1,2, figsize=[16, 8]) image_case(case, True, 200, axes[0]) toc = time.time()</pre>
	<pre>toc = time.time() montecarlo_case(case, n_samples, axes[1]) tac = time.time() axes[0].set_title("Volume definitions") axes[1].set_title(fr"Monte-Carlo sampled volumes") No handles with labels found to put in legend. <ipython-input-26-c71c711372c0>:39: RuntimeWarning: divide by zero encountered in true_divide P_y = 5/x No handles with labels found to put in legend. <ipython-input-27-781db8fff530>:40: RuntimeWarning: divide by zero encountered in true_divide</ipython-input-27-781db8fff530></ipython-input-26-c71c711372c0></pre>
Out[29]:	<pre><ipython-input-27-781db8fff530>:40: RuntimeWarning: divide by zero encountered in true_divide P_y = 5/x 0.901 0.113 Text(0.5, 1.0, 'Monte-Carlo sampled volumes') Volume definitions Monte-Carlo sampled volumes 11 10 9</ipython-input-27-781db8fff530></pre>
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0 - 500 -	Volume definitions $M_a = 1.0$ $M_a = 1.0$	Monte-Carlo sampled volumes $M_{a} = 1.0$ $M_{a} = 1.0$
1500 -	$M_b = 0.154$ $M_b $	$M_b = 0.156$
0 0 500 -	Volume definitions Volume definitions	3000 4000 Monte-Carlo sampled volumes
1000 - 1500 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 500 -	Volume definitions 11 1000 Volume definitions	0 1 2 3 4 5 6 7 8 9 10 11 sples with 200000 sammples and 89 elements of P 3000 Monte-Carlo sampled volumes
1500 -	$M_b = 0.145$ $M_b = 0.145$ $M_b = 0.145$ $M_b = 0.145$	$M_{a}=1.0$ $M_{b}=0.144$ $M_{b}=0.144$ $T \qquad T \qquad$
0	0 1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1000 - 1500 -	$M_a = 0.78$ $M_a = 0.78$	$M_a = 0.78$ $M_a = 0.78$
0	1000 2000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
500 - 1000 -	Volume definitions M _a =0.9 M _b =0.041	Monte-Carlo sampled volumes Ma=0.899 Ma=0.042
2000 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{a} V_{b} V_{a} V_{b} V_{b
500 -	Volume definitions $M_b = 0.117$ $M_u = 0.9$	Monte-Carlo sampled volumes $M_b = 0.115$ $M_a = 0.899$
2000 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{ar} V_{br} V
500 -	Volume definitions $M_a = 0.898$ $M_a = 0.898$	Monte-Carlo sampled volumes Monte-Carlo sampled volumes Ma=0.898
2000 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
500 -	Volume definitions Volume definitions M _a = 0.709	Monte-Carlo sampled volumes Monte-Carlo sampled volumes $M_a = 0.709$
1500 - 2000 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 500 -	00:06:51 seconds to compute Monte-Carlo same 1000 2000	3000 Sammples and 89 elements of P 3000 4000 Monte-Carlo sampled volumes $M_a = 1.0$
1000 - 1500 - 2000 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$M_b = 0.154$ $M_b = 0.154$ $M_b = 0.154$ $M_b = 0.154$
0 0 500 -	0 1 2 3 4 5 6 7 8 9 10 11 00:06:44 seconds to compute Monte-Carlo sam 1000 2000 Volume definitions	0 1 2 3 4 5 6 7 8 9 10 11 sples with 200000 sammples and 89 elements of P 3000 Monte-Carlo sampled volumes
1500 -	$M_b = 0.264$	$M_{b} = 0.262$ $M_{b} = 0.262$ $M_{b} = 0.262$ $V_{a} \qquad T \qquad V_{t} \qquad V_{t$
2000 -	0 1 2 3 4 5 6 7 8 9 10 11	
0		
500 -	Volume definitions $M_b = 1.0$ $M_b = 0.36$	Monte-Carlo sampled volumes Monte-Carlo sampled volumes $M_a = 1.0$ $M_b = 0.361$
2000 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
500 -	Volume definitions $M_b = 0.36$ $M_b = 0.36$	Monte-Carlo sampled volumes $ \begin{array}{cccccccccccccccccccccccccccccccccc$
1500 - 2000 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	1000 2000	3000 4000
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b are another and M_b and M_b and M_b and M_b and M_b and M_b are another another and M_b and M_b and M_b and M_b and M_b are another another another and M_b and M_b and M_b and M_b are another anot	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • store as • find the e • $M_b = \frac{v}{v_b}$	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ Mb • store as • find the e • $M_b = \frac{v}{v_b}$	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • store as • find the e • $M_b = \frac{v}{v_b}$	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • store as • find the e • $M_b = \frac{v}{v_b}$	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice dominate nondominate nondominate nondominate nondominate nondominate nondominate M_a • draw a late of the end of the en	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • store as • find the e • $M_b = \frac{v}{v_b}$	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$
Practice • dominate • nondomin Monte-Ca M_a • draw a la • reduce S • store as • find the e • $M_a = \frac{v}{v_b}$ M_b • draw a la • reduce S	cal calculation of M_a and M_b	least one element of bed by at least one element of bed by an interval $T: S \leftarrow \text{np.random.uniform}(\tilde{t}, r, 1e7)$ and $\tilde{t}: S \leftarrow \text{np.random.uniform}(0, \tilde{t}, 1e7)$ and are not dominated by any of $P: \text{nated}(S, T)$ an inated $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$ and $T: S \leftarrow \text{np.random.uniform}(S, P)$

In [52]: n_samples = int(2e5)
 resolution = int(np.sqrt(n_samples)/5)