Prefix	Symbol	Value	$\int_{x}^{x_{2}} x^{n} dx = \frac{x^{n+1}}{n+1} \Big _{x_{1}}^{x_{2}} = \frac{x_{2}^{n+1}}{n+1} - $	x_1^{n+1}
yotta	Y	10^{24}	\int_{x_1} $n+1$ x_1 $n+1$	n+1
zetta	Z	10^{21}	A =	
exa	E	10^{18}	$\Delta x = x_f - x_i$ $\bar{v} = \frac{\Delta \bar{x}}{\Delta t}$	
peta	P	10^{15}		
tera	\mathbf{T}	10^{12}	$\bar{a} = \frac{\Delta \vec{v}}{\Delta t}$ $v = \frac{d\vec{x}}{dt}$	
giga	G	10^{9}	Δt dt	
mega	M	10^{6}	$v_f = v_i + a\Delta t$	
kilo	k	10^{3}	$v_f = v_i + a\Delta t$	(
hecto	h	10^{2}	1	,
deka	da	10^{1}	$\Delta x = rac{1}{2} \left(v_i + v_f ight) \Delta t$	
deci	d	10^{-1}		
centi	c	10^{-2}	$\Delta x = v_i \Delta t - \frac{1}{2} a \Delta t^2$	
milli	\mathbf{m}	10^{-3}	2	
micro	μ	10^{-6}	$v_f^2 = v_i^2 + 2a\Delta x$	
nano	n	10^{-9}	,	
pico	p	10^{-12}	$x = v_{0x}t = v_0t\cos\theta$	
femto	f	10^{-15}		
atto	a	10^{-18}	$y=v_{0y}t-\frac{1}{2}gt^2=v_0t\sin\theta-\frac{1}{2}gt^2$	
zepto	\mathbf{z}	10^{-21}	$2^{g-v_{0y}v}$ 2^{gv} 2^{gv} 2^{gv}	
yocto	y	10^{-24}		
$v_{0x} = v_0 \cos \theta$ $\vec{r} = (r, \theta)$ $v_{0y} = v_0 \sin \theta$				
$r = \vec{r} =$	$=\sqrt{r_x^2+r_y^2}$		$v_x = v_0 \cos \theta$	
$\theta = ar$	$n^{-1}\left(\frac{y}{x}\right)$		$v_y = v_0 \sin \theta - gt$	
$r_x =$	$r\cos\theta$		$t_{\rm projectile\ hits\ ground} = \frac{v_0^2}{g} \sin 2\theta$	$\oint ec{F}$
$r_y =$	$r\sin\theta$		$v_f=v_i-gt$	yr
$\hat{r} =$	$rac{ec{r}}{ ec{r} }$		$y=v_it-\frac{1}{2}gt^2$	
$\vec{r} = r_x \hat{i}$	$\hat{i} + r_y \hat{j}$		$v_f^2 = v_i^2 - 2gh$	
	$(ar, heta)$ $A_x + B_x)\hat{i} + 0$	$(A_y + B_y)$	$t_{ m object\ hits\ ground} = \sqrt{rac{2h}{g}}$	
$ec{A} - ec{B} = (A_x - B_x)\hat{i} + (A_y - B_y)\hat{j}$ $ec{a} = -g\hat{j} \implies a = g$ $ec{A} \cdot ec{B} = AB\cos\theta$				
$\theta = 0^{\circ} \iff \vec{A} \parallel \vec{B} \iff \vec{A} \cdot \vec{B} = AB$				
$\theta = 90^{\circ} \iff \vec{A} \perp \vec{B} \iff \vec{A} \cdot \vec{B} = 0$				

 $\frac{F_s}{m_a} = \frac{F - F_s}{m_b}$

 $\vec{f}_s \le \mu_s N$ $\vec{f} = \mu_k \vec{N}$

 $\vec{N} = mq \cos \theta$

₹00000r

 $\vec{v} = -\omega r \sin \theta \hat{i} + \omega r \cos \omega_J$

 $|\vec{v}| = \omega r$

$$\vec{F} = \vec{F}_A + \vec{F}_B + \vec{F}_C$$

$$\vec{r} = r\cos\theta \hat{i} + r\sin\theta \hat{j}$$

$$\vec{F} = (m_A + m_B + m_C)a$$

$$\vec{T} = \vec{F} - \vec{F}_B$$

$$\theta = 0 \iff \vec{v} = \omega r \hat{j}$$

$$F_{\rm Net}=ma$$

$$\theta = \frac{\pi}{2} \iff \vec{v} = -\omega r \hat{i}$$

$$\vec{p}=m\vec{v}$$

$$ec{F}_{
m net} = rac{mv^2}{r}$$

$$K = \frac{1}{2}mv^2$$

$$\vec{F}_{\rm net} = \frac{m\upsilon}{r}$$

$$\Delta U_{A\to B} = -\int_A^B \vec{F} \cdot d\vec{r} = -W_{A\to B}$$

$$\int \vec{F} \cdot d\vec{r} = 0 \iff W_{A\to B} + W_{B\to A} = \upsilon$$

$$U_g = mgh$$

$$\Delta U_{A \to B} = -\int_A^B \vec{F} \cdot \vec{dr} = -W_{A \to B}$$

$$U_g=mgh$$

$$F_s = -kx \qquad \qquad \vec{F}_g = mg$$

$$U_s = \frac{1}{2}kx^2$$

$$W = \vec{F} \cdot \vec{d} = F d \cos \theta$$

$$W=\Delta K=W_c+W_{nc}$$

$$W_{\mathrm{Net}} = \sum W$$

$$W_g=-mgh$$

$$W_g=mgh$$

$$W = \int_{x_i}^{x_f} F(x) dx = \int_{x_i}^{x_f} -kx dx = \frac{1}{2} k x_f^2 - \frac{1}{2} k x_i^2$$

$$F(x) = -kx$$

$$W_{nc}=0 \implies K_1+U_1=K_2+U_2$$

$$P = \frac{W}{\Delta t}$$

 $P = \vec{F} \cdot \vec{v}$ (if force is constant)