8-DIGIT FLUORESCENT DISPLAY DRIVER FOR MICROCOMPUTOR

DESCRIPTION

The M54844P, a semiconductor integrated circuit fabricated with using IIL technology, is designed for driving an 8-digit, 8-segment fluorescent display.

FEATURES

- Can be used in either an 8-digit or 7-digit plus a decimal point.
- 4-bit data input
- Mode-input controllable display mode
- Internal clock generator
- Wide operating voltage (V_{CC}=5~12V)

APPLICATION

Micro computer display Digital equipment for industrial and consumer use

FUNCTION

The M54844p, a decoder/driver for fluorescent displays, has a 4-bit \times 8-digit memory. Employing the dynamic lighting method, it can light an 8-segment, 8-digit device. Two indication modes can be selected, by the setting of the MODE input.

8-DIGIT FLUORESCENT DISPLAY DRIVER FOR MICROCOMPUTOR

DESCRIPTION OF OPERATION

Output after reset and during reset.
Outputs during reset (RES=high-state) is shown in the following chart.

Output pin	Output pin			
Digit output	To	Н		
Digit output	T ₁ ~T ₇	L		
Soomant autnut	1 ₁ ~1 ₇	L		
Segment output	DP	L		

After reset, the outputs $T_0 \sim T_7$ are scanned beginning with T_0 . Outputs $S_a \sim S_1$ and DP remain in low-state until CTL has been input for 8 cycles.

2. Decimal point setting

The location of the decimal point depends on the contents of the data memory corresponding to T_0 . When the decimal point is to be displayed, digit T_0 cannot be used.

The display position of the decimal point is as follows.

Content of digit T ₀	Display position of decimal point
0 or 8	T ₁
1 or 9	T ₂
2 or A	T ₃
3 or B	T ₄
4 or C	T ₅
5 or D	T ₆
6 or E	T ₇
7 or F	T _o

3. Operation timing

(1) Data programming

- Reset input is necessary before data programming input.
- S₀~S₃ data is read at the leading edge of the CTL.

(2) Output timing

■ 6249827 0015278 530 ■MIT3 MITSUBISHI BIPOLAR DIGITAL IC M54844P

8-DIGIT FLUORESCENT DISPLAY DRIVER FOR MICROCOMPUTOR

DISPLAY CHARACTERS

Hexadecimal code Mode		1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
I	С	,	7	ר	닉	<u></u>	<i>_</i> -	-,	רו	a	_	E	Ĺ	-	<u></u>	
п	Li	İ	ר' ב'	_i	L¦_	וב' ו	i_i	j	ដ	כ	5	P	С	cl	E	+

Mode I is displayed when MODE input is low-state. Mode $I\!I$ is displayed when MODE input is high-state.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	eter Conditions		Unit	
V _{cc}	Supply voltage		−0.3~+15	V	
Vı	Input voltage		−0.3~V _{cc}	V	
V _{CC} -V _O	Voltage between the power supply and output pin	Output off-state	−0.3~+35	V	
Topr	Operating temperature		−30~+85	υ ν	
Tstg	Storage temperature		−55∼+125	ొ	

RECOMMENDED OPERATING CONDITIONS ($\tau_a = -30 \sim +85$ °C, unless otherwise noted)

Symbol Parameter			Unit		
	Parameter	Min	Тур	Max	Ulik
Vcc	Supply voltage	4.5	10	12	٧
Vcc-Vc	Voltage between the power supply and output pin			33	V

ELECTRICAL CHARACTERISTICS ($\tau_a = -30 \sim +85 \, ^{\circ}$ C, $v_{cc} = 10 V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
			Min	Тур	Max	Unit	
VIH	High-level input voltage		2		V _{CC}	v	
VIL	Low-level input voltage		0		0.7	v	
I _{IH}	High-level input current	V _{IH} =10V			20	μA	
I _{IL}	Low-level input current	V _{IL} =0.5V			-200	μA	
V _{OH}	High-level output voltage	I _{OH} =-10mA	8			v	
lork	Output leak current	V ₀ =-20V			-30	μA	
Icc	Supply current	Display off-state		12	18	mA	
tws	Segment output width	C _{ext} =1000pF	130	260	520	μs	
twe	Segment blank width	C _{ext} =1000pF	20	40	80	μs	
t _{WD}	Digit output width	C _{ext} =1000pF	150	300	600	μs	
t _{CY}	Digit period	C _{ext} =1000pF	1.2	2. 4	4.8	ms_	

8-DIGIT FLUORESCENT DISPLAY DRIVER FOR MICROCOMPUTOR

TIMING REQUIREMENTS ($T_a = -30 \sim +85\%$, $V_{CC} = 4.5 \sim 12V$, unless otherwise noted)

Symbol Parameter	Test conditions		Limits			
		Min	Тур	Max	Unit	
tisc	Input setup time in relation to CLK		5			μs
tiHC	Input hold time in relation to CLK		10			μs
twH	High-level CTL width		5			μs
t _{WL}	Low-level CTL width		10	-		μs
t _{isw}	Input setup time in relation to WR		0			μS
tiHW	Input hold time in relation to WR		5			μS
tww	WR width		5			μs
twc	WR→CTL		5			μs
t _{cw}	CTL→WR		15			μs

OUTPUT TIMING DIAGRAM

DIGIT OUTPUT WIDTH t_{wo} =15 t_{osc} SEGMENT OUTPUT WIDTH t_{ws} =13 t_{osc} SEGMENT BLANK WIDTH t_{we} =2 t_{osc} (t_{osc} is oscillation period of the oscillator circuit.)

INPUT TIMING DIAGRAM

