

QF609 Risk Analysis

VaR parameters

Time Horizon

1-Day

Reporting Currency

USD

Significance Level

5%

(95% Confidence)

Stock Portfolio Overview

—AAPL —MSFT —F —BAC

0 31/10/2022 31/12/2022 28/2/2023 30/4/2023 30/6/2023 31/8/2023

Holdings @ 30th Oct 2023

Value: \$1,000,000

Shares: 5,887 @ \$169.85

Value: \$1,000,000

Shares: 2,970 @ \$336.63

Value: \$1,000,000

Shares: 103,950 @ \$12.74

Value: \$1,000,000

Shares: 39,236 @ \$25.49

0.5

Parametric

Monte Carlo

Swap Portfolio Overview

Payer Swap Valuation @ 30th Oct 2023

Start Date: 30th October 2023

Notional: \$100 Million, Fixed Rate: 4.2%

Float Leg Frequency: Annual Float Leg = 1 - D(0.10Y)

Fixed Leg Frequency: Annual Fixed Leg = $4.2\% * \sum_{i=1}^{10} D(0, i)$

Swap Value Today

Notional * (Float Leg - Fixed Leg) \$2,442,902

Risk Factors

Stock

Risk Factor: Price

SOFR Rates

Risk Factor: 1-10y Zero Rates

Absolute Daily SOFR Rate Change

EDA (Missing Data)

Stock

Date	Adj Close
14/6/2023	183.2264
15/6/2023	185.2783
16/6/2023	184.1926
19/6/2023	
20/6/2023	184.2823
21/6/2023	183.2364
22/6/2023	186.2644
*AAPL Data	

19th June 2023

7th April 2023

SOFR Rates

Tenor	20231005	20231006	20231009	20231010	20231011
1D	0.052979	0.052939		0.052965	0.053028
1M	0.053099	0.053121		0.05309	0.053101
2M	0.053335	0.053462		0.053304	0.053256
3M	0.053532	0.053725		0.053488	0.053444
6M	0.053658	0.053969		0.053555	0.053602
9M	0.053223	0.053644		0.053028	0.053118
1Y	0.052471	0.05294		0.052191	0.052308
2Y	0.04805	0.048569		0.047529	0.047714
3Y	0.045262	0.045783		0.044683	0.044764

9th October 2023

11th November 2023

Solution

Linear Interpolation

251 > 253 rows

Parametric

— Monte Carlo

Assumes a certain distribution (typically normal)

 $\mu \& \sigma$ to estimate VaR

Simple & Fast Calculations

Parametric VaR (Stock)

Mean Returns

Stock_rets = Stocks.pct_change()

	Mean Return
AAPL	0.000568
MSFT	0.001692
F	-0.000619
BAC	-0.001105

Parametric mean $w * \mu = 536.21$

Covariance of Returns

Stock_rets = Stock_rets.cov()

	AAPL	MSFT	F	BAC
AAPL	0.000252	0.000183	0.000135	0.000075
MSFT	0.000183	0.000320	0.000134	0.000070
F	0.000135	0.000134	0.000508	0.000168
BAC	0.000075	0.000070	0.000168	0.000268

Parametric Standard Deviation $\sqrt{w * \sum * w^T} = 53,662.35$

Parametric VaR (Swap)

Computing KR01 (For Every Tenor)

Tenor	20231030		20231030		Discount		Tenor	KR01/%
1Y	0.052245		0.052345		0.949001		1Y	3,986,007
2Y	0.047904		0.047904	Compute	0.908638	Change In	2Y	7,631,797
3Y	0.045429	+1bp	0.045429	Discount	0.872592	Swap	3Y	10,993,001
4Y	0.044345		0.044345	Factor	0.837461	Value	4Y	14,066,554
5Y	0.043928		0.043928		0.802808		5Y	16,854,751
6Y	0.043794		0.043794	Continuous	0.768923		6Y	19,371,056
7Y	0.043779		0.043779	compounding	0.736053		7Y	21,632,336
8Y	0.043828		0.043828	e^{-rt}	0.704249		8Y	23,653,228
9Y	0.043915		0.043915		0.673522		9Y	25,447,769
10Y	0.044023		0.044023		0.643888		10Y	670,595,263

Mean Absolute Change In Rates

Tenor	Mean	
1 Y	0.000023	
2Y	0.000013	
3Y	0.000014	
4Y	0.000016	
5Y	0.000019	$w * \mu = 20,927.25$
6Y	0.000021	•
7Y	0.000023	
8Y	0.000025	
9Y	0.000026	
10Y	0.000027	Q
Overview		Parametric

Covariance Of Absolute Change In Rates

	1Y	2Y	•••	9Y	10Y
1Y	0.0000006434	0.0000006910	0.00	00003809	0.0000003612
2 Y	0.0000006910	0.0000008367	0.00	00005335	0.0000005078
•••	•••	•••	•••		•••
9Y	0.000003809	0.0000005335	0.00	00005202	0.0000005079
10Y	0.0000003612	0.0000005078	0.00	00005079	0.0000004972

$$\sqrt{w * \sum * w^T} = 53,662.35$$

Overview

Parametric

Monte Carlo =

Parametric VaR (Portfolio)

Mean Change In Risk Factors

	W		μ
1 Y	3,986,007	1Y	0.000023
2Y	7,631,797	2Y	0.000013
3Y	10,993,001	3Y	0.000014
4Y	14,066,554	4Y	0.000016
5Y	16,854,751	5Y	0.000019
6Y	19,371,056	6Y	0.000021
7Y	21,632,336	7Y	0.000023
8Y	23,653,228	8Y	0.000025
9Y	25,447,769	9Y	0.000026
10Y	670,595,263	10Y	0.000027
AAPL	1,000,000	AAPL	0.000568
MSFT	1,000,000	MSFT	0.001692
F	1,000,000	F	-0.000619
BAC	1,000,000	BAC	-0.001105

Parametric Mean: $w * \mu = 21,291.78$

Covariance Risk Factors

	1y	2 y		9y	10y	AAPL	MSFT	F	BAC
1y	6.4e-07	6.8e-07		3.8e-07	3.6e-07	-2.7e-07	-1e-06	1.8e-06	4.5e-06
2 y	6.8e-07	8.3e-07	•••	5.3e-07	5e-07	-8.4e-07	-1.5e-06	1.4e-06	4.5e-06
•••		•••		•••					•••
9у	3.8e-07	5.3e-07	•••	5.1e-07	5e-07	-1.4e-06	-1.2e-06	-7.7e-07	1.7e-06
10y	3.6e-07	5e-07		5e-07	4.9e-07	-1.4e-06	-1.1e-06	-9.2e-07	1.6e-06
AAPL	-2.7e-07	-8.4e-07		-1.4e-06	-1.4e-06	0.00025	0.00018	0.00013	7.5e-05
MSFT	-1e-06	-1.5e-06	•••	-1.2e-06	-1.1e-06	0.00018	0.00032	0.00013	6.9e-05
F	1.8e-06	1.4e-06	•••	-7.7e-07	-9.2e-07	0.00013	0.00013	0.0005	0.00017
BAC	4.5e-06	4.5e-06	•••	1.7e-06	1.6e-06	7.5e-05	6.9e-05	0.00017	0.00027

Parametric SD: $\sqrt{w * \sum * w^T} = 576,604.50$

95% Parametric VaR

$$|\mu + z * \sigma| = |21,291.78 + (-1.644) * 576,604.50| = $927,138.23$$

Q

Monte Carlo VaR Simulation

Simulate possible portfolio outcomes using μ , σ^2 , & ρ

Does not require normal distribution

Ability to model complex, non-linear relationships & path-dependent options accurately

Monte Carlo VaR Simulation

Sample Generation

np.random.default_rng().multivariate_normal(portfolio_mean,
 portfolio_cov, size = 2 ** 14 - 1, method = 'cholesky')

	1y	2 y	3y	4y	5y	6y	7 y	8y	9y	10y	AAPL	MSFT	F	BAC
0	-0.000122	0.000058	0.000197	0.000307	0.000348	0.000393	0.000442	0.000463	0.000465	0.000466	0.002634	0.023410	0.007983	0.029459
1	0.000453	0.000345	0.000203	0.000072	0.000058	0.000049	0.000015	-0.000004	-0.000009	-0.000012	0.011222	0.005479	0.001908	0.004710
2	-0.000696	-0.000712	-0.000590	-0.000531	-0.000554	-0.000581	-0.000586	-0.000574	-0.000559	-0.000561	0.004697	0.011977	0.006328	0.018192
3	0.002262	0.002291	0.002028	0.001801	0.001675	0.001612	0.001574	0.001554	0.001544	0.001535	0.012298	0.011177	-0.013796	-0.003296
4	-0.001105	-0.001044	-0.000730	-0.000555	-0.000374	-0.000294	-0.000293	-0.000301	-0.000300	-0.000290	0.041934	0.016775	0.034330	-0.011176
•••			•••	•••		•••					•••			
16378	0.000674	0.000660	0.000488	0.000427	0.000372	0.000315	0.000260	0.000204	0.000153	0.000114	-0.000379	-0.001437	0.011634	0.004586
16379	0.000783	0.000265	-0.000119	-0.000191	-0.000314	-0.000387	-0.000411	-0.000435	-0.000461	-0.000484	0.050214	0.040602	0.018115	0.013311
16380	0.000743	0.000816	0.000483	0.000206	-0.000041	-0.000197	-0.000283	-0.000354	-0.000414	-0.000453	0.029472	0.011619	0.004441	0.011247
16381	0.000489	0.000928	0.000804	0.000702	0.000579	0.000477	0.000410	0.000334	0.000263	0.000219	0.012512	-0.021983	0.000260	-0.016049
16382	0.000148	0.000434	0.000600	0.000557	0.000551	0.000597	0.000635	0.000631	0.000599	0.000565	-0.017340	-0.005116	0.013078	0.010021
										_				

Monte Carlo

Parametric

Monte Carlo VaR Methodology (Stock)

Full Revaluation

Stock

Applying Risk Factor Current Stock Price *(1 + Sim Return)

Computing New Stock Value Share Holding * New Stock Price

Computing Stock PnL Change New Portfolio Value — \$1,000,000

Monte Carlo Full Revaluation Stock Value Delta

Risk-Based

Stock

Computing Stock PnL Change \$1,000,000 * *Sim* Return

Monte Carlo

\$-200,000

\$-100,000

\$200,000

\$100,000

Monte Carlo VaR Methodology (Swap)

Full Revaluation

Swap

Applying Risk Factor Current Rates + Sim Rate Change

Computing New Discount Factor $Exp(-New\ Rate*Tenor)$

Computing New Swap Value
Notional * (Float Leg - Fixed Leg)

Computing Swap PnL Change New Swap Value — \$2,442,902

Risk-Based

Swap

Computing Swap PnL Change KR01 * Sim Rate Change

Monte Carlo VaR (Portfolio)

Full Revaluation

abs(np.percentile(MC_full_reval_portfolio, 5))

Full Revaluation 95% VaR \$936,402.89

Risk-Based

abs(np.percentile(MC_Risk_Based_portfolio, 5))

Risk-Based 95% VaR \$930,680.76

Q onto Carlo

Calculates VaR directly from **historical** returns, assuming historical movements are a good indicator of future risks

No assumptions about return distribution

straightforward & easy to understand

Backwards-looking, may not be as effective in capturing the risk of new or unprecedented market events

Less responsive to recent market conditions if the historical window is too long.

Historical VaR Methodology (Stock)

Full Revaluation

Stock

Applying Risk Factor Current Stock Price * (1 + Hist Return)

Computing New Portfolio Value
Share Holding * New Stock Price

Computing Stock PnL Change New Portfolio Value — \$1,000,000

Risk-Based

Stock

Computing Stock PnL Change \$1,000,000 * **Hist** Return

Historical VaR Methodology (Swap)

Full Revaluation

Swap

Applying Risk Factor
Current Rates + **Hist** Rate Change

Computing New Discount Factor $Exp(-New\ Rate*Tenor)$

Computing New Swap Value
Notional * (Float Leg - Fixed Leg)

Computing Swap PnL Change New Swap Value — \$2,442,902

Risk-Based

Swap

Computing Swap PnL Change KR01 * Hist Rate Change

Historical VaR (Portfolio)

Full Revaluation

abs(np.percentile(Hist_full_reval_portfolio, 5))

Full Revaluation 95% VaR \$984,781.39

Risk-Based

abs(np.percentile(Hist_Risk_Based_portfolio, 5))

Risk-Based 95% VaR \$978,693.27

VaR Model Evaluation

Parametric

Ease of application

- Assumes risk factors normally distributed, market tend to have fatter tails (leptokurtosis)
- Poor at handling non-linear exposures.

Monte Carlo

- Accounts for both linear & non-linear risks.
- Incorporate various scenarios, including extreme events not seen in the historical data.

- Many assumptions on distribution, most computational effort
- Results can vary significantly based on model assumptions
- Requires detailed data on all portfolio components

Historical

No need to assume any particular distribution (Nonparametric)

- Backwards-looking: Assumes past performance is representative of the future
- Less responsive to recent market conditions.

Need to Weigh

Available computational resources

Acceptable level of approximation vs detail in risk estimation

Q

1 Day 95% Value-at-Risk

Parametric	\$927,138.23							
	Full Revaluation	Risk-Based						
Monte Carlo	\$936,402.89	\$930,680.76						
Historical	\$984,781.39	\$978,693.27						