experiments

May 28, 2020

```
[1]: %load_ext autoreload %autoreload 2 %matplotlib inline
```

```
[2]: import networkx as nx
import EoN
import matplotlib.pyplot as plt
from simulation import *
from analysis import *
from end_to_end import *
```

1 SIR Model on G(n,p) Network

1.0.1 Resources

- Her colleague's paper
- Daily Bruin Article
- Epidemics on Networks paper

1.0.2 Coding Documentation

- https://networkx.github.io/documentation/stable/reference/index.html
- https://epidemicsonnetworks.readthedocs.io/en/latest/

1.0.3 Assumptions:

- Removed inmates can be any state
- Avg. degree of new nodes is correlated with current prison population (aka p is constant)
- Death rate (as in time it takes people to transfer from infected to dead) is equal to the recovery rate

1.1 Possible Things to Work On:

• Simulations are stochastic, so perhaps taking the average over multiple simulations would reduce noise?

1.2 Description of Parameters

- background_inmate_turnover: background # of inmates added/released at each time step
- release_number: # of inmates to release
- **number_infected_before_release**: number of infected at which to perform release on next integer time
- rho: percent of inmates that are initially infected
- death_rate: probability of dying after being infected
- tau: transmission rate
- gamma: recovery rate
- max_time: # of time steps to run simulation
- N: # of inmates initially
- p: probability of contact between inmate and other inmates
- percent_infected: percent of general population that is infected
- percent_recovered: percent of general population that is recovered
- **save_plot**: should plot of results be saved to computer?
- **stop_inflow_at_intervention**: should we stop the background inflow of inmates at intervention time?
- title: title of plot

1.3 Constant Parameters

These parameters are held constant througout the trials. * background_inmate_turnover=20 * rho=0.0003 * death_rate=0.012 * tau=0.03 * gamma=0.07 * max_time=60 * N=3000 * p=0.02 * percent_infected=0.0035 * percent_recovered=0.0015

2 Experimental Design

The cases we shall examine are as follows:

- 1. Control case: no release intervention, no stopping of inmate intake
- 2. **Intervention A**: no release intervention, but stopping of inmate intake
- 3. **Intervention B**: release intervention and stopping of inmate intake

For case 3, Intervention B, we shall experiment with a range of release numbers and release conditions.

2.1 Control Case

Starting simulation... Simulation completed.

{'release_number': 0, 'number_infected_before_release': 5000,
'stop_inflow_at_intervention': False, 'background_inmate_turnover': 20, 'rho':
0.0003, 'death_rate': 0.012, 'tau': 0.03, 'gamma': 0.07, 'max_time': 60, 'N':
3000, 'p': 0.02, 'percent_infected': 0.0035, 'percent_recovered': 0.0015,
'save_plot': True, 'title': 'Control Case'}

Total # of infections: 3861
Total # of deaths: 40.0

Plot saved with filename: simulation_plot_release_number-0__num_inf_bf_release-5000__stp_in_at_int-False__

 $\label{lem:bck_turnover-20_rho-0.0003_death_rate-0.012_tau-0.03_gamma-0.07_max_time-60 $$ _N-3000_p-0.02_percent_infected-0.0035_percent_recovered-0.0015_title-Control Case_$$$

2.2 Intervention A: no release intervention, but stop inmate inflow

NOTE: For the intervention trials, the intervention does not occur exactly when there are number_infected_before_release infected inmates. Instead, the actual intervention occurs at the next integer-valued time step after the number_infected_before_release condition has been met. By the time it occurs, the '# of infected' may be much higher than number_infected_before_release (I've seen it being 4.5x higher). So, I have ran trials repeatedly until the intervention kicks in at a similar # of infected for each experiment case (around 110 - 120 infected people when the intervention kicks in).

```
[99]: t, S, I, R, D = (end_to_end(release_number=0,
                             number_infected_before_release=100,
                             stop_inflow_at_intervention=True,
                             save_plot=True,
                             title='Intervention A'))
    Starting simulation...
    Release intervention condition met.
           Time: 4
           # of infected: 110
    Stopping inmate inflow.
    Simulation completed.
    {'release_number': 0, 'number_infected_before_release': 100,
    'stop_inflow_at_intervention': True, 'background_inmate_turnover': 20, 'rho':
    0.0003, 'death_rate': 0.012, 'tau': 0.03, 'gamma': 0.07, 'max_time': 60, 'N':
    3000, 'p': 0.02, 'percent_infected': 0.0035, 'percent_recovered': 0.0015,
    'save_plot': True, 'title': 'Intervention A'}
    Total # of infections:
                         2948
    Total # of deaths: 32.0
```


 $\label{lem:simulation_plot_release_number-0_num_inf_bf_release-100_stp_in_at_int-True_bc $$k_turnover-20_rho-0.0003_death_rate-0.012_tau-0.03_gamma-0.07_max_time-60_N-3000_p-0.02_percent_infected-0.0035_percent_recovered-0.0015_title-Intervention A_$

2.3 Intervention B: release intervention and stopping of inmate intake

Starting simulation...

Release intervention condition met.

Time: 3

of infected: 114

Stopping inmate inflow.

Simulation completed.


```
{'release_number': 500, 'number_infected_before_release': 100,
'stop_inflow_at_intervention': True, 'background_inmate_turnover': 20, 'rho':
0.0003, 'death_rate': 0.012, 'tau': 0.03, 'gamma': 0.07, 'max_time': 60, 'N':
3000, 'p': 0.02, 'percent_infected': 0.0035, 'percent_recovered': 0.0015,
'save_plot': True, 'title': 'Intervention B: release number = 500'}
```


Total # of infections: 2457
Total # of deaths: 26.0

simulation_plot_release_number-500__num_inf_bf_release-100__stp_in_at_int-True__
bck_turnover-20__rho-0.0003__death_rate-0.012__tau-0.03__gamma-0.07__max_time-60
__N-3000__p-0.02__percent_infected-0.0035__percent_recovered-0.0015__titleIntervention B: release number = 500_

Starting simulation...

Release intervention condition met.

Time: 4

of infected: 121

Stopping inmate inflow.

Simulation completed.

{'release_number': 1000, 'number_infected_before_release': 100,
'stop_inflow_at_intervention': True, 'background_inmate_turnover': 20, 'rho':
0.0003, 'death_rate': 0.012, 'tau': 0.03, 'gamma': 0.07, 'max_time': 60, 'N':
3000, 'p': 0.02, 'percent_infected': 0.0035, 'percent_recovered': 0.0015,
'save_plot': True, 'title': 'Intervention B: release number = 1000'}

Total # of infections: 1977 Total # of deaths: 20.0

simulation_plot_release_number-1000__num_inf_bf_release-100__stp_in_at_int-True_
_bck_turnover-20__rho-0.0003__death_rate-0.012__tau-0.03__gamma-0.07__max_time-6
0__N-3000__p-0.02__percent_infected-0.0035__percent_recovered-0.0015__titleIntervention B: release number = 1000_

Starting simulation...

Release intervention condition met.

Time: 4

of infected: 110

Stopping in mate inflow.

Simulation completed.

{'release_number': 1500, 'number_infected_before_release': 100,
'stop_inflow_at_intervention': True, 'background_inmate_turnover': 20, 'rho':
0.0003, 'death_rate': 0.012, 'tau': 0.03, 'gamma': 0.07, 'max_time': 60, 'N':
3000, 'p': 0.02, 'percent_infected': 0.0035, 'percent_recovered': 0.0015,
'save_plot': True, 'title': 'Intervention B: release number = 1500'}

Total # of infections: 1471
Total # of deaths: 14.0

simulation_plot_release_number-1500__num_inf_bf_release-100__stp_in_at_int-True_
_bck_turnover-20__rho-0.0003__death_rate-0.012__tau-0.03__gamma-0.07__max_time-6
0__N-3000__p-0.02__percent_infected-0.0035__percent_recovered-0.0015__titleIntervention B: release number = 1500_