Analisi Matematica II

Analisi complessa

Virginia De Cicco Sapienza Univ. di Roma Integrazione in campo complesso

Curve regolari

Definizione

Diremo che γ è una curva regolare in $\mathbb C$

i) se $\gamma=\gamma_1+i\gamma_2:[a,b]\to\mathbb{C}$ è una funzione di classe C^1 (derivabile con derivata continua)

ii)
$$\gamma'(t) := \gamma_1'(t) + i\gamma_2'(t) \neq 0$$
 per ogni $t \in [a, b]$.

L'immagine $\gamma([a,b])$ di γ in $\mathbb C$

$$\gamma([a,b]) = \{z \in \mathbb{C} : z = \gamma(t), t \in [a,b]\}$$

si dice sostegno (o traccia) di γ .

Curve regolari

Diremo che γ è contenuta in un aperto A, anzichè $\gamma([a,b]) \subseteq A$.

Il punto $\gamma(a)$ si dice punto iniziale ed il punto $\gamma(b)$ si dice punto finale di γ .

La funzione γ è detta anche legge~oraria con cui viene percorso il sostegno $\gamma([a,b]).$

Se $\gamma(a) = \gamma(b)$, la curva si dice *chiusa*.

Se γ , ristretta ad [a,b), è iniettiva, cioè

$$t_1 \neq t_2 \in [a, b)$$
 implies $\gamma(t_1) \neq \gamma(t_2)$,

allora γ si dice semplice.

Se γ è semplice e chiusa, viene detta *circuito*.

Si definisce la lunghezza di $\gamma = \gamma_1 + i\gamma_2$ nel seguente modo:

$$I(\gamma) := \int_a^b |\gamma'(t)| dt = \int_a^b (\gamma_1'(t)^2 + \gamma_2'(t)^2)^{1/2} dt.$$

Esempi

1) Dati $z_1, z_2 \in \mathbb{C}$, $z_1 \neq z_2$, e $t \in [0, 1]$,

la curva $\gamma:[0,1]\to\mathbb{C}$ definita da $\gamma(t):=(1-t)z_1+tz_2$ è una curva semplice e regolare con punto iniziale z_1 e punto finale z_2 .

Il suo sostegno è il segmento $[z_1, z_2] \subseteq \mathbb{C}$ e la sua lunghezza è $|z_1 - z_2|$.

2) Dato $z_0 \in \mathbb{C}$ ed $r \in \mathbb{R}$, r > 0,

la curva $\gamma:[0,2\pi]\to\mathbb{C}$ definita da $\gamma(t):=z_0+re^{it}$ è una curva semplice, chiusa e regolare,

il suo sostegno è la circonferenza di centro z_0 e raggio r e la sua lunghezza è $2\pi r$.

Appello del 17 gennaio 2013

- (i) Si dia la definizione di curva regolare in \mathbb{C} .
- (ii) Si calcoli la lunghezza della curva del piano complesso avente le seguenti equazioni parametriche

$$\gamma(t) = \frac{t}{\sqrt{1+t^2}} + \frac{1}{\sqrt{1+t^2}}i$$

dove $t \in [-1,1]$.

Soluzione: Si ha che

$$|\gamma'(t)| = \sqrt{\frac{1+t^2}{(1+t^2)^3}} = \frac{1}{1+t^2}$$

e quindi

$$I(\gamma) = \int_{-1}^1 |\gamma'(t)| \ dt = \int_{-1}^1 rac{1}{1+t^2} \ dt = \arctan(1) - \arctan(-1) = rac{\pi}{2} \ .$$

Cambiamento di parametro

Data $\gamma:[a,b]\to\mathbb{C}$ una curva regolare

e data
$$\phi: [\alpha, \beta] \to [a, b]$$
 di classe C^1 su $[a, b]$

tale che $\phi(\alpha)=a,\ \phi(\beta)=b$ e $\phi'(\tau)>0$ per ogni $\tau\in[\alpha,\beta]$ (tale ϕ viene detta cambiamento di parametro che conserva l'orientamento),

la nuova curva definita da

$$\gamma_1 := \gamma \cdot \phi : \tau \mapsto \gamma(\phi(\tau))$$

è una curva regolare che ha lo stesso sostegno di γ e lo stesso orientamento.

Cambiamento di parametro

Tutte le curve così ottenute formano una classe di equivalenza:

esse hanno in comune lo stesso sostegno,

ma è diversa la legge oraria con cui questo viene percorso.

Inoltre si possono considerare dei cambiamenti di parametro che cambiano l'orientamento:

per esempio, data $\gamma:[a,b] \to \mathbb{C}$ una curva regolare,

la curva $\gamma^-:[a,b]\to\mathbb{C}$ definita da $\gamma^-(t)=\gamma(b+(a-t))$ è ancora una curva regolare, ha la stessa traccia di γ ,

ma è percorsa in senso opposto e dunque scambia i punti estremi.

Concatenamento di curve

Date due curve regolari $\gamma_1,\ \gamma_2:[0,1] \to \mathbb{C}$ tale che $\gamma_1(1)=\gamma_2(0)$

si possono concatenare le due curve per esempio definendo

$$\gamma(t) = \begin{cases} \gamma_1(2t) & 0 \le t \le 1/2\\ \gamma_2(2t-1) & 1/2 \le t \le 1. \end{cases}$$
 (1)

Si ha $\gamma(0)=\gamma_1(0)$, $\gamma(1)=\gamma_2(1)$, γ è continua, ma in generale non è C^1 .

La concatenazione analoga di più segmenti dà una poligonale.

Definizione Una curva γ si dice regolare~a~tratti se è ottenuta concatenando due o più curve regolari.

Dati $A \subseteq \mathbb{C}$ un aperto connesso, $f: A \to \mathbb{C}$ una funzione continua e $\gamma: [a, b] \to \mathbb{C}$ una curva regolare (o regolare a tratti) la cui traccia $\gamma([a, b]) \subseteq A$,

si definisce l' integrale di f lungo γ nel seguente modo:

$$\int_{\gamma} f = \int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Si osservi che la funzione $t\mapsto f(\gamma(t))\gamma'(t)$ è una funzione di variabile reale a valori complessi.

Esempi

1) Sia $f(z) = \frac{1}{z}$ per $z \in \mathbb{C}^*$ e sia γ la circonferenza di centro 0 e raggio r, i.e.

$$\gamma_r:[0,2\pi]\to\mathbb{C}$$

$$\gamma_r(t) := re^{it}$$
.

Allora

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{re^{it}} i r e^{it} dt = 2\pi i.$$

Si noti che non dipende da r.

Esempi

2) Sia $f(z) = z^k$, $k \in \mathbb{Z}$, con $k \neq -1$ (k = -1 è il caso precedente) definita su tutto \mathbb{C} per $k \geq 0$ e su \mathbb{C}^* per k < 0.

Sia

$$\gamma_r:[0,2\pi]\to\mathbb{C}$$

,

$$\gamma_r(t) := re^{it}$$
.

Allora

$$\int_{\gamma} z^k dz = \int_0^{2\pi} r^k e^{ikt} i r e^{it} dt = i r^{k+1} \int_0^{2\pi} e^{i(k+1)t} dt = 0,$$

grazie alla periodicità di e^z in campo complesso con periodo $2\pi i$.

Elenchiamo ora alcune proprietà dell'integrale:

- 1) linearità : $\int_{\gamma} (c_1 f_1 + c_2 f_2) = c_1 \int_{\gamma} f_1 + c_2 \int_{\gamma} f_2$;
- 2) indipendenza dal cambiamento di parametro (che conserva l'orientamento):

$$\int_{\gamma} f := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{\alpha}^{\beta} f(\gamma(\phi(\tau)))(\gamma \circ \phi)'(\tau)d\tau = \int_{\gamma \circ \phi} f;$$

3) cambio di segno nel passaggio a γ^- : $\int_{\gamma} f = -\int_{\gamma^-} f$;

4) additività rispetto alla curva: $\int_{\gamma_1} f + \int_{\gamma_2} f = \int_{\gamma_1 \gamma_2} f$, dove $\gamma_1 \gamma_2$ denota la concatenazione di γ_1 e di γ_2 ;

5) se
$$M = \max_{t \in [a,b]} |f(\gamma(t))|$$
, allora $\left| \int_{\gamma} f \right| \leq M \, l(\gamma)$.

Vale inoltre il seguente teorema di passaggio al limite:

Teorema

Sia f_n una successione di funzioni continue definite in A. Supponiamo che $f_n \to f$ uniformemente in A. Allora

$$\int_{\gamma} f(z)dz = \lim_{n \to \infty} \int_{\gamma} f_n(z)dz.$$

Esercizio

Si calcoli il seguente integrale in campo complesso

$$\int_{\gamma} \bar{z} dz \qquad \gamma(t) = i + 2e^{it} \qquad t \in [0, \pi].$$

Soluzione : Utilizzando la definizione di integrale in campo complesso si ha che

$$\int_{\gamma} \bar{z} dz = \int_{0}^{\pi} \overline{i + 2e^{it}} \gamma'(t) dt$$

$$= \int_{0}^{\pi} \left(-i + 2e^{-it} \right) 2ie^{it} dt = \int_{0}^{\pi} 2e^{it} dt + \int_{0}^{\pi} 4i dt$$

$$= 2i \left(e^{it} \right) \Big|_{0}^{\pi} + 4\pi i = -2i + 2i(-1) + 4\pi i = 4(\pi - 1)i.$$

Primitiva

Sia $A \subseteq \mathbb{C}$ un aperto connesso ed $f : A \to \mathbb{C}$ una funzione continua.

Si dice che $F:A \to \mathbb{C}$ è una primitiva di f

se è derivabile in A

e se F'(z) = f(z) per ogni $z \in A$.

Come in campo reale, se F è una primitiva di f, allora per ogni $c \in \mathbb{R}$ la funzione F + c è una primitiva di f.

La conoscenza di una primitiva permette di calcolare immediatamente gli integrali curvilinei; infatti vale un analogo del teorema di Torricelli-Barrow.

Teorema di Torricelli-Barrow

Sia $A \subseteq \mathbb{C}$ un aperto connesso,

sia $\gamma:[a,b]\to\mathbb{C}$ una curva regolare (o regolare a tratti) la cui traccia $\gamma([a,b])\subseteq A$,

sia $f:A\to\mathbb{C}$ una funzione continua e $F:A\to\mathbb{C}$ una sua primitiva.

Allora

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

Per dimostrarlo basta osservare che $F(\gamma(t))$ è una primitiva di $f(\gamma(t))\gamma'(t)$ e quindi

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} (F \cdot \gamma)'(t)dt = F(\gamma(b)) - F(\gamma(a)).$$

Teorema di Torricelli-Barrow

Dal teorema segue che se f ammette una primitiva, allora l'integrale dipende solo dagli estremi $\gamma(a)$ e $\gamma(b)$ e non dalla curva che li connette.

In particolare, se γ è chiusa $(\gamma(a) = \gamma(b))$, allora $\int_{\gamma} f(z)dz = 0$.

Ritornando agli esempi precedenti, si può osservare che necessariamente la funzione $\frac{1}{z}$ non ammette una primitiva in \mathbb{C}^* , perché, come già visto, $\int_{\gamma_t} \frac{1}{z} dz = 2\pi i \neq 0$.

Inoltre il fatto che $\int_{\gamma} z^k dz = 0$ per ogni $k \neq -1$ è coerente col fatto che z^k ammette, per $k \neq -1$, la primitiva $\frac{z^{k+1}}{k+1}$, che è definita in tutto $\mathbb C$ se k > -1 e in $\mathbb C^*$ se k < -1.

Appello del 19 novembre 2012

Si calcoli

$$\int_{\gamma} z^2 dz,$$

dove γ è il segmento congiungente i punti 1 e i.

Soluzione : Tale funzione è olomorfa in $\mathbb C$ ed ammette la primitiva

$$F(z)=\frac{1}{3}z^3\,.$$

Quindi

$$\int_{\gamma} z^2 dz = F(i) - F(1) = -\frac{i}{3} - \frac{1}{3}.$$