Aim: To perform Exploratory Data Analysis and visualization using python.

Theory:

Exploratory Data Analysis (EDA) is the process of exploring, summarizing, and visualizing data to understand its main characteristics before applying statistical models or machine learning. It helps researchers **detect underlying structures**, **spot anomalies**, **identify relationships**, **and test hypotheses**.

The major steps include:

1. Descriptive Statistics

- Provides numerical summaries such as mean, median, variance, min/max values, and standard deviation.
- Helps detect skewness, outliers, and unusual distributions.

2. Target Variable Analysis

- The dependent variable (here: heart_disease) is visualized with count plots to check class balance.
- If the dataset is highly imbalanced, it may affect classification performance.

3. Correlation Analysis

- Pearson's correlation coefficient is calculated between numeric features.
- A heatmap helps identify strong positive/negative correlations (e.g., thalach vs. age, chol vs. bmi).
- Useful for detecting multicollinearity or redundant features.

4. Feature Distribution Analysis

- Histograms/KDE plots show how features like age, cholesterol, and bmi are distributed (normal, skewed, multimodal).
- Boxplots grouped by target show how continuous features vary between patients with and without heart disease.

5. Categorical Feature Analysis

- Countplots and bar charts show how categorical features (e.g., sex, cp, tha1) are distributed across target classes.
- This helps assess the predictive power of categorical variables (e.g., chest pain type has strong association with heart disease).

6. Multivariate Visualization

- Pairplots allow simultaneous visualization of multiple variables, highlighting clusters and class separation.
- Useful to see which combinations of features separate patients with vs.
 without heart disease.

Importance:

- Provides deeper insight into dataset structure.
- Helps select features that are most relevant for prediction.
- Reveals outliers or errors that might need special treatment.
- Builds intuition about how independent variables influence the target outcome.

Conclusion:

- Some features (like chest pain type, thalach, and oldpeak) showed strong separation between heart disease and non–heart disease patients.
- Categorical features like sex, smoking, and diabetes showed imbalances but are still relevant for prediction.
- Correlation heatmap revealed moderate correlations between variables (e.g., age vs. thalach).
- No extreme imbalance in the target variable was observed, which supports fair classification modeling.
- Overall, EDA confirmed that the dataset contains meaningful signals for predicting heart disease.

Output:

```
[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load dataset
df = pd.read_csv("heart_disease_cleaned.csv")

# General settings
pd.set_option("display.max_columns", None)
sns.set(style="whitegrid", palette="muted")
```

[3]: # Summary stats for numeric columns
df.describe().T

	count	mean	std					
			Stu	min	25%	50%	75%	max
age	3069.0	2.604629e-16	1.000163	-1.714750	-0.839175	0.036399	0.839009	1.714584
sex	3069.0	-9.723948e-17	1.000163	-1.118034	-1.118034	0.894427	0.894427	0.894427
ср	3069.0	2.778271e-17	1.000163	-1.341819	-0.441110	-0.441110	0.459599	1.360308
trestbps	3069.0	4.323684e-16	1.000163	-1.750356	-0.864200	0.021955	0.844813	1.730969
chol	3069.0	-1.834816e-16	1.000163	-1.683722	-0.900501	0.018934	0.870262	1.721590
fbs	3069.0	2.749330e-17	1.000163	-0.412893	-0.412893	-0.412893	-0.412893	2.421936
restecg	3069.0	-2.164736e-16	1.000163	-1.236922	-1.236922	-0.005217	1.226487	1.226487
thalach	3069.0	2.778271e-17	1.000163	-1.733889	-0.857225	-0.003631	0.849963	1.726627
exang	3069.0	8.219051e-17	1.000163	-0.462605	-0.462605	-0.462605	-0.462605	2.161673
oldpeak	3069.0	-2.060551e-16	1.000163	-1.769218	-0.881572	0.006074	0.838242	1.670410

[5]: plt.figure(figsize=(6,4))
sns.countplot(x="heart_disease", hue="heart_disease", data=df, palette="Set2", legend=False)
plt.title("Heart Disease Distribution (θ = No, 1 = Yes)")
plt.show()


```
[6]: plt.figure(figsize=(12,8))
    corr = df.corr()
    sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
    plt.title("Correlation Heatmap")
    plt.show()
```



```
[7]: numeric_cols = ["age", "trestbps", "chol", "thalach", "oldpeak", "bmi"]

df[numeric_cols].hist(bins=30, figsize=(12,8), color="skyblue", edgecolor="black")
plt.suptitle("Distribution of Continuous Features")
plt.show()
```

Distribution of Continuous Features


```
[8]: plt.figure(figsize=(14,8))
for i, col in enumerate(numeric_cols, 1):
    plt.subplot(2,3,i)
    sns.boxplot(x="heart_disease", y=col, data=df, hue="heart_disease", palette="Set2", legend=False)
    plt.title(f"{col} vs Heart Disease")
plt.tight_layout()
plt.show()
```


-0.8228299826378891 1.2153178920317491

1000