PSLab 数据表

数据表版本: 0.92

名称: Pocket Science Lab

缩写: PSLab

硬件版本号: 5.01

网站: https://pslab.io

许可证: GPL v.3.0, Apache 2.0

产品描述

PSLab是适用于安卓手机或PC的小型USB供电硬件扩展,可让您测量各种事物。PSLab目前已配有内置示波器,万用表,波形发生器,逻辑分析仪和电源。虽然如此,我们会不断添加更多电子仪器。PSLab是众多设备融入一。只需将两条电线连接到相关引脚即可开始测量。您可以使用我们的开源安卓或电脑桌面的应用程序来看和收集数据。您还可以将数百个兼容的I2C标准传感器插入PSLab引脚插槽。它无需编程即可运行。那么,你做的实验只限于你的想象力!PSLab由FOSSASIA和OpnTec与全球社区的开源程序员合作开发。

顶视图 底部视图 电路图

功能

示波器	4频道,高达2MSPS。软件可选择的放大级。能够以每秒监控模拟输入最高200万个样本。包括触发和增益选择等控制。		
频率计数器	最高2 MHz		
电压表	具有可编程增益的12-bit 模拟输入(用作电压表)。输入范围为 +/-16 V,分辨率为10 mV		
电压源	3 x 12-bit 可编程, /-3.3 V, /-5 V, 0-3 V .(PV1, PV2, PV3)		
当前电压源	12-bit 可编程。 0-3.3 mA(最大电流3.3 mA,依照负载电阻)		
逻辑分析仪	4通道,4 MHz,分辨率为15 nS		
波形发生器	2x正弦/三角形任意波发生器。 5 Hz至5 KHz。 SI1, SI2, +/- 3 Volts 是手动幅度控制		
脉冲宽度调制 (PWM)	4x阶段相关PWM发生器。 15 nS分辨率,纳秒占空比。高达8 MHz, 最高频率32 MHz,阶段相差控制。		
电容	测量范围pF至uF		
传感器	连接任何I2C标准传感器,并进行物理,化学,生物学,化学和医学实验。		

应用

PSLab是一种用于测量的科学设备。应用领域包括物理和电子实验和测量,以及生物和化学测量。您是学生还是科学家,想要进行实验,设计新设备的硬件开发人员或修理数字电子设备的技术人员?使用PSLab!

与电话或PC的USB供电/ OTG数据连接

Pocket Science Lab直接通过USB连接供电。它不需要任何其他外部电源。如果您是使用应用程序的话,您只需要通过USB OTG电缆将它接到手机并能使用,如果您使用的是电脑桌面应用,则可以直接连接到笔记本电脑的USB端口。

WiFi和蓝牙

PSLab有ESP和蓝牙芯片插槽。固件已经能支持这些功能。将芯片焊接到专用插槽。对于WiFi功能 ,也不要忘记在ESP WiFi芯片上安装相关软件包,您就可以开始使用了。当通过蓝牙或WiFI使用 PSLab时,可以通过外部电池供电。

连接器/插槽

USB	USB 2.0 Micro B 型	
GPIO 连接器	2.54 mm 母头	
UART	用于加速/陀螺仪/湿度/温度模块的UART数据总线	
WiFI	ESP8266 WiFi 扩展槽	
蓝牙	蓝牙扩展槽	
I2C	8个I2C数据引脚,用于传感器	
ICSP 程序器	PICkit3 兼容的编程器插槽	

技术规格

微控制器	PIC24EP256GP204
操作电压	+/-3.3V
输入电压 (建议范围)	5-15V
输入电压(顶限)	20V
I/O pins引脚	Analog: 8, Digital: 4模拟:8,数字:4
直流电流I / O引脚	20 mA
直流电流3.3V引脚	50 mA
直流电流5.0V引脚	250 mA
计算速度	12 MHz
长度	101 mm
宽度	53 mm
高度	13 mm
重量	30 g

组件清单

主要微控制器	PIC24EP256GP204
可编程的增益放大器	MCP6S21
四频道 DAC	MCP4728
电荷泵电压逆变器	TC7660
电荷泵倍压器	TC1240A
双频道运算放大器	TL082
四频道运算放大器	LM324
3.3 V 调节器	LM1117
USB-UART 桥接	MCP2200
UART-TCP 桥接	ESP8266 (ESP-12E)
0.5 A 保险丝	0ZCJ0025FF2E
各种电阻器,电容器,电感器和二极管	0603 and MiniMELF

定影

支座 2.5mm 螺母

软件

固件

使用MicroChip x16编译器编译在MPLab IDE上 下载 GitHub

开发的C++编程代码

nithuh com/fossasia/nslah-firmware

安卓应用

安卓应用程序,版本: 2.0.6

仪器:

- □ 示波器
- □ 万用表
- □ 逻辑分析仪
- □ 波发生器
- □ 电源
- □ 勒克斯计
- □ 加速度计
- □ 晴雨表
- □ 罗盘

兼容的安卓版本:

□ 最低: API等级16(4.1)

□ 最高: API等级27(8.1)

其他:

□ 电话USB连接必须能支持OTG

F-Droid 下载

v.google.com/store/apps/details?id=io.pslab f-dr

电脑桌面

电脑桌面Python 应用程序

Github 下载

github.com/fossasia/pslab-desktop

推荐的的传感器

二极管	1N4007	https://www.onsemi.com/pub/Collateral/1N4001-D.PDF
二极管	1N4148	https://www.vishay.com/docs/81857/1n4148.pdf
湿度	FR-04	https://www.instructables.com/id/Arduino-Modules-Rain-Sensor/
光依赖电阻器	GL5528	https://pi.gate.ac.uk/pages/airpi-files/PD0001.pdf
麦克风	KY-037	http://www.datasheetcafe.com/ky-038-pdf-arduino/
磁性	KY-003	https://cdn-reichelt.de/documents/datenblatt/A300/SEN- KY003-DATASHEET.pdf
温度	LM-35	http://www.ti.com/lit/ds/symlink/lm35.pdf
气体	MQ135	https://www.olimex.com/Products/Components/Sensors/ SNS-MQ135/resources/SNS-MQ135.pdf

想知道更多兼容传感器,请到网址 https://pslab.io/sensors/

推荐的附加配件

电容器	0.1 μF, 68 μF, 470 μF	
二极管	1N4007, 1N4148	
发光二极管	绿色, 橙色, 红色	
电阻器	100 Ω , 200 Ω , 560 Ω , 1K Ω , 2.2K Ω , 5.1K Ω , 10K Ω , 100K Ω , 180K Ω , 300K Ω	
晶体管 (NPN, PNP)	2SC945, S9012	