МС-20-21 Теоретический материал

Основные понятия статистической проверки гипотез

Пусть $\vec{X}=(X_1,...,X_n)$ — случайная выборка объема n из некоторого генерального распределения. Не ограничивая общности можно считать, что существует определенная схема испытаний, при осуществлении которой вычисляется случайная величина X, а X_1 , ..., X_n — это те ее значения, которые X принимает в результате серии n независимых испытаний. Таким образом, случайные величины X_1 , ..., X_n независимы и распределены по тому же закону, что и X.

Статистической гипотезой называется любое утверждение о виде или параметрах генерального распределения.

Статистическая гипотеза называется **параметрической**, если она основана на предположении, что генеральное распределение известно с точностью до конечного числа параметров.

Рассмотрим базисное предположение, состоящее в том, что генеральное распределение зависит от некоторого параметра $\theta \in \mathbb{R}^n$. Параметрическая гипотеза называется **простой**, если она имеет вид: $\theta = \theta_0$, где θ_0 – некоторое фиксированное значение параметра θ . Гипотеза вида: $\theta \in \Theta$, где Θ – какое-либо множество, содержащее, по меньшей мере, два различных элемента, называется сложной.

Пусть H_0 и H_1 — две взаимоисключающие статистические гипотезы.

Проверяемая гипотеза H_0 называется **основной**, а дополнительная гипотеза H_1 — **альтернативной**. Предполагается, что одна из этих гипотез выполняется.

Статистическим критерием с критической областью $K \subset \mathbb{R}^n$ называется правило, в соответствии с которым H_0 отвергается, если выборка попадает в критическую область, $(X_1, ..., X_n) \in K$.

Критические области задаются либо при помощи неравенств вида $K=\{t< c_1\}$ или $K=\{t>c_2\}$, либо как объединение $K=\{t< c_1\}\cup\{t>c_2\}$, где $t=t(x_1,...,x_n)$ — подходящая функция от выборочных значений, а c_1 и c_2 — некоторые константы, такие что $c_1< c_2$.

Во всех этих случаях числа c_1 и c_2 называются критическими значениями, а функция $t(x_1, ..., x_n)$ — статистикой критерия. Статистикой критерия называется также случайная величина $T=t(X_1, ..., X_n)$.

Ошибка первого рода состоит в том, что отвергается верная гипотеза H_0 . **Ошибка второго рода** состоит в том, что отвергается верная гипотеза H_1 .

Вероятность ошибки первого рода называется **уровнем значимости критерия** и обозначается α .

Вероятность ошибки второго рода обозначается β , а величина 1 – β называется мощностью критерия.

ошибка I рода	ошибка II рода
Отвергается основная (нулевая) гипо- теза, хотя она верна.	Отвергается конкурирующая гипотеза, хотя она верна.
Вероятность ошибки $P(H_1 H_0) = \alpha$, α — уровень значимости критерия (обычно α = 0,05; 0,01; 0,005; 0,001).	Вероятность ошибки $P(H_0 H_1) = \beta$ (величина β , как правило, заранее неизвестна)
Вероятность принять верную (нулевую) гипотезу $P(H_0 H_0) = 1 - \alpha$.	Вероятность принять верную (конкурирующую) гипотезу $P(H_1 H_1) = 1 - \beta,$ $(1-\beta) - мощность критерия.$

Пусть $T(\vec{X})$ — некоторая статистика, характеризующая отклонение эмпирических данных от тех гипотетических значений, которые соответствуют проверяемой гипотезе H_0 . И пусть, кроме того, распределение этой статистики, в случае справедливости гипотезы H_0 , известно (точно или хотя бы приближенно).

Обозначим $T_{\text{набл}}$ — наблюдаемое (или выборочное) значение статистики, т. е. значение статистики $T(\vec{x})$, вычисленное для полученной реализации случайной выборки $\vec{x}=(x_1,...,x_n)$. Зафиксируем достаточно малое число $\alpha\in(0;\,1)$. Разобьем множество всех возможных значений статистики T на две части: критическую область критерия K и его дополнение $\overline{K}=D$. Критическая область K выбирается так, чтобы выполнялось соотношение

$$P_{H_0}(\{T \in K\}) \leq \alpha.$$

(Через $P_{H_0}(A)$ обозначена вероятность события A, вычисленная в предположении, что гипотеза H_0 верна.) Таким образом, критическая область включает в себя маловероятные значения статистики T, при условии, что верна основная гипотеза H_0 .

Критерий проверки гипотезы теперь можно сформулировать следующим образом:

По имеющейся выборке x_1 , ..., x_n находится наблюдаемое значение статистики $T_{\text{набл}}$. Если окажется, что $T_{\text{набл}} \in K$, то делается вывод о том, что в предположении справедливости гипотезы H_0 произошло маловероятное событие. Поэтому эта гипотеза должна быть отвергнута, как противоречащая статистическим данным x_1 , ..., x_n , полученным в результате эксперимента. В противном случае (т. е. если $T_{\text{набл}} \in D = \overline{K}$) считается, что данные не противоречат H_0 .

Замечание. Если $T_{\text{набл}} \notin K$, то гипотеза H_0 принимается, но сам по себе тот факт, что $T_{\text{набл}} \notin K$, не является доказательством истинности H_0 . Также и тот факт, что $T_{\text{набл}} \in K$, не является доказательством истинности H_1 .

Способ выбора критической области K зависит от вида статистики T и гипотез H_0 и H_1 .

Как правило, критическая область задается одним из следующих трех способов.

Правосторонняя критическая область:

$$K = \{\vec{x}: T(\vec{x}) > c\}$$

Гипотеза H_0 отклоняется, если $T_{\mathrm{Ha6}\pi}>\omega_{lpha}$

Левосторонняя критическая область:

$$K = \{\vec{x}: T(\vec{x}) < c\}$$

Гипотеза H_0 отклоняется, если $T_{\rm набл} < \omega_{1-lpha}$

Двусторонняя критическая область:

$$K = {\vec{x}: T(\vec{x}) < c_1} \cup {\vec{x}: T(\vec{x}) > c_2}.$$

Гипотеза H_0 отклоняется, если $T_{\text{набл}} \in (-\infty; \omega_{1-\frac{\alpha}{2}}) \cup (\omega_{\frac{\alpha}{2}}; +\infty)$

 $\omega_q - 100 q$ %-я точка статистки критерия, α — уровень значимости.

Лемма Неймана-Пирсона

Предположим, что генеральное распределение имеет зависящую от параметра θ положительную при всех x плотность $f\left(x;\theta\right)>0$. Пусть H_0 и H_1 – простые гипотезы вида $H_0:\theta=\theta_0$ и $H_1:\theta=\theta_1$.

Запишем функции правдоподобия, соответствующие этим гипотезам:

$$L_0(\theta_0, x_1 \dots, x_n) = f(x_1; \theta_0) \cdot \dots \cdot f(x_n; \theta_0),$$

$$L_1(\theta_1, x_1 \dots, x_n) = f(x_1; \theta_1) \cdot \dots \cdot f(x_n; \theta_1)$$

Теорема (лемма Неймана–Пирсона). Для любого $\alpha \in (0,1)$ существует такая константа c_{α} , что критерий с критической областью

$$\frac{L_1(\theta_1, x_1 \dots, x_n)}{L_0(\theta_0, x_1 \dots, x_n)} > c_{\alpha},$$

является наиболее мощным критерием среди всех статистических критериев с какой-либо критической областью K, предназначенных для проверки H_0 против H_1 с уровнем значимости α .

Р-значение критерия

Пусть имеется статистический критерий $T(\vec{X})$ с критической областью K. И пусть получена реализация \vec{x} случайной выборки $\vec{X}=(X_1,...,X_n)$.

Р-значением (P-value) $p(\vec{x})$ статистического критерия $T(\vec{x})$ называется наименьшая величина уровня значимости, при котором нулевая гипотеза отклоняется:

$$p(\vec{x}) = \min\{\alpha : T(\vec{x}) \in K\}.$$

Величина $p(\vec{x})$ задает фактический уровень значимости. Для всех значений уровня значимости, таких, что $\alpha \leq p(\vec{x})$, гипотеза H_0 принимается, при всех $\alpha > p(\vec{x})$ гипотеза H_0 отклоняется. Чем меньше P-значение, тем сильнее основания отклонить нулевую гипотезу.

Теорема 1. Пусть $T = T(\vec{X})$ — статистика критерия, $T_{\text{набл}} = T(\vec{x})$ — наблюдаемое значение статистики критерия.

Если критическая область имеет вид: $\{T_{\rm набл}>\omega_{\alpha}\}$, где ω_{α} — 100 α -процентная точка статистики T (правосторонняя критическая область), то P-значение $p_1(\vec{x})$ находится по формуле:

$$p_1(\vec{x}) = P_{H_0}(\{T > T_{\text{набл}}\}),$$

где через $P_{H_0}(A)$ обозначена вероятность события A, вычисленная в предположении справедливости гипотезы H_0 .

Если критическая область имеет вид: $\{T_{\text{набл}} < \omega_{1-\alpha}\}$ (левосторонняя критическая область), то P-значение $p_2(\vec{x})$ находится по формуле:

$$p_2(\vec{x}) = P_{H_0}(\{T < T_{\text{набл}}\}) = 1 - p_1(\vec{x}).$$

Если критическая область имеет вид: $T_{\text{набл}} \in (-\infty; \omega_{1-\frac{\alpha}{2}}) \cup (\omega_{\frac{\alpha}{2}}; +\infty)$ (двусторонняя критическая область), то P-значение $p_3(\vec{x})$ находится по формуле:

$$p_3(\vec{x}) = 2 \cdot \min\{p_1(\vec{x}), p_2(\vec{x})\}.$$

Теорема 2. Если H_0 – верна, то случайная величина $PV{\sim}Unif[0;1]$ (то есть распределение с.в. PV является равномерным на [0;1]).

Проверка гипотезы об определенном значении параметра нормального распределения

1) Проверка гипотезы об определенном значении генерального среднего при известной дисперсии на уровне значимости lpha.

 $H_0: \mu = \mu_0$

против любой из трех альтернативных гипотез H_1 : 1) $\mu > \mu_0$; 2) $\mu < \mu_0$; 3) $\mu \neq \mu_0$.

Статистика
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$
.

H_1	K
$\mu > \mu_0$	$Z > z_{1-\alpha} = -z_{\alpha}$
$\mu < \mu_0$	$Z < z_{\alpha} = -z_{1-\alpha}$
$\mu \neq \mu_0$	$ Z > z_{1-\alpha/2}$

 $\overline{z_{1-\alpha/2}}$ — квантиль стандартного нормального распределения уровня $1-\alpha/2$.

2) Проверка гипотезы об определенном значении генерального среднего при неизвестной дисперсии на уровне значимости α .

 $H_0: \mu = \mu_0 \; ; \; H_1: 1) \;\; \mu > \mu_0; \, 2) \, \mu < \mu_0; \, 3) \, \mu \neq \mu_0.$

Статистика $T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t(n-1)$.

H_1	K
$\mu > \mu_0$	$t > t_{1-\alpha}(n-1)$
$\mu < \mu_0$	$t < t_{\alpha}(n-1) = -t_{1-\alpha}(n-1)$
$\mu \neq \mu_0$	$ t > t_{1-\frac{\alpha}{2}}(n-1)$

 $t_{1-lpha/2}$ (n-1) – квантиль распределения Стьюдента с n-1 степенями свободы уровня $1-rac{lpha}{2}$.

3) Проверка гипотезы об определенном значении генеральной дисперсии при известном <u>генеральном среднем</u> μ на уровне значимости α .

$$H_0: \sigma^2 = \sigma_0^2; \ H_1: 1) \ \sigma^2 > \sigma_0^2; \ 2) \ \sigma^2 < \sigma_0^2; 3) \ \sigma^2 \neq \sigma_0^2.$$

Статистика
$$\chi^2 = \frac{1}{\sigma_s^2} \sum_{i=1}^n (X_i - \mu)^2 = \frac{ns_0^2}{\sigma_s^2} \sim \chi^2(n)$$
.

30	
H_1	K
$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{1-\alpha}(n)$
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{\alpha}(n) = -\chi^2_{1-\alpha}(n)$
$\sigma^2 \neq \sigma_0^2$	$\{\chi^2 < \chi^2 \frac{\alpha}{2}(n)\} \cup \{\chi^2 > \chi^2 \frac{\alpha}{1 - \frac{\alpha}{2}}(n)\}$

 $\chi^2_{lpha}\left(n
ight)$ – квантиль распределения χ^2 с n степенями свободы уровня lpha.

4) Проверка гипотезы об определенном значении генеральной дисперсии при неизвестном генеральном среднем μ на уровне значимости α .

$$H_0: \sigma^2 = \sigma_0^2; \ H_1: 1) \ \sigma^2 > \sigma_0^2; \ 2) \ \sigma^2 < \sigma_0^2; \ 3) \ \sigma^2
eq \sigma_0^2.$$
 Статистика $\chi^2 = rac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - ar{X})^2 = rac{(n-1)s^2}{\sigma_0^2} \sim \chi^2(n-1).$

Критическая область определяется той же таблицей, что и в п.3), но с числом степеней свободы m = n - 1.

5) Гипотеза о неизвестной вероятности успеха в испытаниях Бернулли на уровне значимости lpha

$$H_0: p=p_0$$
; $H_1: 1)$ $p>p_0; 2)$ $p< p_0; 3)$ $p\neq p_0.$ Статистика $Z=\frac{w-p_0}{\sqrt{p_0(1-p_0)}/\sqrt{n}}$, где $w=m/n$ – относительная частота успехов в n наблюдениях

Далее критические точки и области для проверки выбираются так же, как при проверке гипотезы о неизвестном среднем при известной дисперсии.

Замечание. Этим методом можно пользоваться только при больших объемах выборки (порядка нескольких десятков или сотен).

Python

- 1) ztest Тест для среднего при известной дисперсии https://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.ztest.html
- 2) Для проверки гипотезы о числовом значении математического ожидания используется функция ttest_1sample(x, popmean) модуля scipy.stats.

Параметры:

x — выборка,

popmean - гипотетическое значение математического ожидания.

Функция возвращает наблюдаемое значение статистики и p-значение критерия.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ttest 1samp.html

3) Проверяется гипотеза **о вероятности р некоторого события A**, $H_0: p = p_0$ против альтернатив вида $H_1: p > p_0$, $H_2: p < p_0$, $H_3: p \neq p_0$ на уровне значимости α . Функция

binom test(x, n, p0, alternative)

модуля **scipy.stats** использует точный биномиальный тест, используя статистику T=x (x-число успехов).

Параметры:

x — число успехов,

n – число испытаний,

р0 – гипотетическое значение вероятности,

alternative – вид конкурирующей гипотезы ("two-sided", "greater", "less").

(Второй вариант задания данных: х – набор двух значений, числа успехов и числа неудач. В этом случае параметр п игнорируется).

Возвращает р-значение критерия.