第一章

♪2 第一部分: 概述

- 了解计算机网络的发展历程和发展趋势
- 掌握计算机网络的组成要素及功能组成

♪3 计算机网络发展的重要里程碑

- 1969年, ARPAnet(广域网)建立
- 1975年,美国XEROX公司推出第一个局域网——以太网
- 1985年,美国国家科学基金会(NSF)开始建设NSFnet
- 1986年, NSFnet与ARPAnet相连, 以此为基础形成Internet
- 20世纪90年代后, Internet迅速发展
- 进入21世纪,开始试验下一代互联网(NGI-Internet2)

」3 网络标准(体系结构)发展的重要里程碑

- 20世纪70年代中期,各家网络产品自成体系结构
- 1977 1983年, ISO组织研究并公布OSI参考模型
- 1977年, ARPA组织开始研究**TCP/IP**, 1979年成功, 1983年完成在ARPAnet上的应用

♪3 计算机网络的组成

一次完整的通信过程需要用到:**硬件协议实体**—— 低层协议族的实现(网卡,交换机,集线器,路由器,调制解调器)、**软件协议实体**—— 高层协议族的实(TCP/IP协议软件模块,服务器/客户机程序)。

♪2 第二部分: 计算机网络的类别

- 掌握计算机网络的不同分类方式,以及按照不同分类方式所分的类别和特点
- 掌握电路交换和分组交换的工作方式与特点
- 了解报文交换的工作方式
- 掌握广播式网络和点到点网络的特点及工作方式
- 掌握共享式网络与广播式网络的异同

♪3 分组交换、电路交换和报文交换

电路交换有如下特点:

- 1. 面向连接:建立连接一通信一释放连接 ——通信之前首先要拨号以建立连接(有时间延迟)
- 2. 占用通道——通话过程中始终占用已建立连接的通路
- 3. 固定带宽 ——通信线路利用率低

分组交换是指:在传输数据之前,将要传的数据划分成一个个小的数据段,并在每一个数据段前加上必要的控制信息,如目的地址、源地址、差错校验信息等,与数据段一起构成一个分组(packet),然后再将分组独立地发送到网络上。其有如下特点:

- 1. 无连接: 通信时不需事先建立连接而是随时可以发送数据
- 2. 存储转发技术:结点交换机将收到的分组先放入缓存,再查找转发表,然后确定将该分组交给端口转发出去
- 3. 灵活:每一个分组可以根据header标记而在分组交换网中独立地选择传输路径。
- 4. 网络整体效率高
- 5. 整体交换速率高(短分组存于缓存中)
- 6. 通信线路利用率高(动态分配带宽)

分组交换网提供两种服务:数据报服务、虚电路服务

功能或特征	虚电路	数据报	
目的地址	开始建立时需要	每个包都需要	
错误处理	网络负责	主机负责	
流量控制	网络负责 主机负责		
拥塞控制	子网实现	难	
路由选择 只需在建立时进行一次		每个包都需独立进行	
包顺序	按发送 <mark>顺序</mark> 到达	到达顺序不确定	
建立与释放连接	需要	不需要	
服务方式	面向 <mark>连接</mark>	无连接	
应用领域	数据量大、实时性要求 稍低、 <mark>可靠性高</mark> 的系统	<mark>数据少</mark> (多为一个短包的情况)、 <mark>实时性高</mark> 、 <mark>可靠性低</mark> 的系统	

♪3 广播式网络和点到点网络

广播式(Broadcast)网络

- [通信信道]:广播式信道
- [两类交互方式]:一台计算机向指定目的地址发送分组、一台计算机向广播地址发送广播分组
- [特点]:可以实现一对多的通信

点到点(Point-to-Point)网络

- [通信信道]:点到点信道
- [两类连接方式]:由一条物理线路直接连接,通过中间结点存储转发、选择路由——多跳转发网络
- [特点]:只能实现一对一的通信

♪3 局域网、广域网和城域网

特征	广域网 (WAN)	局域网 (LAN)
范围	跨越城市、国家甚至全球	相对较小的地理范围
传输速度	可变,从低速到高速	通常较高,可达1 Gbps或更高
拓扑结构	分布式拓扑结构	星型或总线拓扑结构
传输介质	X.25, 帧中继, 光传输网技术	以太网等高速传输介质
管理和维护	复杂	相对简单,本地管理员负责
通信技术	点到点通信技术	广播式通信技术

♪3 共享式网络和广播式网络

共享式网络必定是广播式网络; 广播式网络不一定是共享式网络。

」³ 以太网、WIFI、FDDI、ATM

以太网(Ethernet):最常见的局域网技术,使用IEEE 802.3标准,通过物理电缆(如双绞线、光纤)或无线传输数据。

无线局域网(Wireless Local Area Network, WLAN):使用IEEE 802.11标准,通常称为Wi-Fi,允许设备通过无线信号连接到局域网。

FDDI (Fiber Distributed Data Interface):主要用于高速网络通信,使用光纤作为传输媒介,通常用于连接局域网的背骨网络。

ATM (Asynchronous Transfer Mode):用于高速网络通信,特别是广域网(WAN)。使用小的、固定大小的数据单元(称为"单元")进行数据传输。

• • • • •

网络类 型	技术	描述
LAN	以太网(Ethernet)	使用双绞线、光纤或同轴电缆,支持10Mbps至10Gbps的速度。
LAN	Wi-Fi(无线局域网)	基于IEEE 802.11标准的无线网络技术。
LAN	蓝牙	主要用于连接短距离内的个人设备,如耳机、键盘、鼠标。
WAN	MPLS(多协议标签交 换)	高效指导数据包在网络中的路径,支持多种类型的网络协议。
WAN	ATM(异步传输模式)	以前用于高速广域网连接,现己较少使用。
WAN	帧中继(Frame Relay)	用于建立高速连接, 现已被更高效的技术所取代。
WAN	VPN(虚拟私人网络)	通过加密的隧道连接远程用户和网站,在互联网上创建虚拟广域网。
WAN	光纤连接	用于高速数据传输,连接不同城市或国家的数据中心。
WAN	卫星通信	用于偏远地区或移动通信。
WAN	4G/5G移动网络	用于提供无线广域网连接,适用于移动设备和远程地区。

」2 第三部分:计算机网络的拓扑结构

• 掌握各种网络拓扑结构的形式、适用性及优缺点

拓扑 结构	形式	适用性	优点	缺点
星型	中心节点与外	小型网络,集	易于管理,故障隔离,扩	中心结点失效,整个网络就会瘫痪
拓扑	围节点连接	中管理需求	展简单	
总线	中央电缆连接	小型至中型局	简单设置,易于扩展,物	单点故障,碰撞问题可能出现
拓扑	所有节点	域网	理布线简单	
环状	节点形成环形	小型至中型局	不易出现碰撞问题,添加	单点故障,故障难以定位
拓扑	连接	域网	设备相对容易	
网状 拓扑	多节点直接相	大型广域网,	高度冗余,多路径通信,	结构复杂,必须采用路由选择
	连	互联网	故障容忍性强	算法与拥塞控制方法
混合 拓扑	不同拓扑结构 组合	复杂网络环境	灵活满足各种需求,结合 优点,提供灵活性	设计和管理复杂,维护成本增加

♪2 第四部分:计算机网络的体系结构

♪3 网络协议

- 掌握计算机网络体系结构的定义及分层体系结构的优缺点
- 掌握对等层与对等实体的定义及作用
- 掌握计算机网络协议的定义及组成三要素
- 掌握封装与解封的概念

协议:通信双方对等层/对等实体之间实现相同功能应遵守的规则,协议由三要素组成:

注意:协议只与对等层有关,是负责对等实体(peer entity)之间通信的

协议是水平的,服务是垂直的

- 语法:数据与控制信息的结构或格式。
- 语义:规定各部分的含义及其操作,如需要发出何种控制信息,完成何种动作以及作出何种应答
- 时序(同步):事件实现顺序的详细说明

网络体系结构: 计算机网络的层次结构及其各层协议的集合。

网络协议分层次的优点和缺点:

- 优点:将一个复杂的大问题分解为若干个易处理的小问题,**易于设计、实现和维护**。各层之间是**独立的,灵活性好**
- 缺点:有些功能可能会在不同层次上重复出现,从而造成额外开销,降低了效率

♪3 网络服务

- 掌握面向连接的服务和无连接服务的概念与特点
- 掌握有应答和无应答服务的概念与特点
- 掌握可靠和不可靠服务的概念与特点
- 掌握服务数据单元和协议数据单元的定义
- 理解接口数据单元的定义
- 掌握服务数据单元、协议数据单元和接口数据单元之间的关系

面向连接的服务 整个通信过程包括三个阶段: 建立连接、传输数据和释放连接。 接收端接收到的数据顺序与发送顺序相同 适合于在一定期间内要向同一目的地发送大量数据的情况。 无连接服务 通信之前不需要建立连接 各分组被独立地传送到目的地,到达顺序可能不同于发送顺序,因此每个分组都必须包含地址信息 灵活方便,适合于一次传送的数据量较小的情况

- 有应答(确认)服务
 - ●接收方在收到数据后向发送方给出相应的应答(确认
 - ●传输系统内部自动实现

例:要求回执的邮件

- 无应答(确认)服务
 - 接收方不自动给出应答 (确认)

例:普通信件

服务数据单元(Service Data Unit, SDU)、协议数据单元(Protocol Data Unit, PDU)以及接口数据单元(Interface Data Unit, IDU)是重要的概念。

- PDU是在对等实体间传送的数据单元, SDU分段后再加上报头就是PDU, 报文头部信息也叫协议控制信息PCI-Protocol Control Information。
- 接口数据单元IDU (interface data unit): n层与n+1层之间传递的信息,包括SDU和接口控制信息 (ICI, Interface Control Information)

♪3 三大重要的体系结构

- 掌握OSI参考模型的组成及在计算机网络领域的地位
- 掌握TCP/IP协议族的体系结构模型及各层包含的主要协议
- 理解与OSI体系结构的关系
- 掌握EEE802系列标准及体系结构模型
- 理解与OSI体系结构、TCP/IP接口层的关系

♪ OSI参考模型

国际标准化组织 ISO (International Standard Organization)提出开放系统互联参考模型(OSI/RM),但是值得注意的是ISO只描述了OSI各层应该完成的功能,而并未确切地描述用于各层的协议。

√ TCP/IP协议族

TCP/IP是由自愿者组成的民间团体ISOC (Internet Society)管辖的一个主要部门IAB (Internet Architecture Board) 负责发布和管理的,Internet标准——RFC文档。

J⁴ IEEE 802系列标准

由电气电子工程师协会IEEE(The Institute of Electrical and Electronic Engineer)的802委员会制定,对应与OSI模型的数据链路层和物理层。

20世纪90年代后,以太网在局域网市场中已取得了垄断地位,逻辑链路控制子层LLC的作用已不大, 因此很多厂商生产的网卡上就仅装有MAC协议而没有LLC协议。

实际上,现在的网络体系结构在某些情况下已经发生了演变,特别是在工业控制系统中,一些应用程序可以直接使用 IP 层,或直接使用数据链路层。