PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-266854

(43)Date of publication of application: 15.10.1998

(51)int.C1.

801D 53/4Z 801D 53/86

(21)Application number: 07-076991

(71)Applicant: MATSUSHITA ELECTRIC WORKS

LTD

(22)Date of filing:

81.03.1995

(72)Inventor: YAMAUCHI TOSHIYUKI

TANAKA YOSHIMASA KAWAMURA TADAO

(54) DEODORIZING DEVICE

(57)Abstract:

PURPOSE: To provide a deodorizing device high In deodorizing ability and also having dust removing ability. CONSTITUTION: A discharge part 1 having a discharge electrode 2 executing discharge by a high voltage impressing and a counter electrode 3 is provided. A functional material 4 executing an adsorptive decomposition of a gas component using at least one among ozone, heat and UV rays generated by the discharge is provided. A bad smell component is decomposed electrochemically by a discharge phenomenon such as corona discharge or plasma discharge at the discharge part 1. The bad smell component which is not decomposed by the discharge is adsorbed and decomposed with the functional material 4 executing the adsorptive decomposition of the gas component by using at least one among ozone, heat and UV rays generated by the discharging. Since dust is ionized by the discharge, the dust is collected to the counter electrode 3 at the discharge part 1.

LEGAL STATUS

[Date of request for examination]

10.12.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出關公開番号

特開平8-266854

(43)公開日 平成8年(1998)10月15日

(51) Int.C1*		識別記号	广内整理器 号	ΡI			技術表示箇所
BOID	53/32	ZAB		B01D	53/32	ZAB	
	53/8 6	ZAB			53/36	ZABH	

審定開求 未請求 開求項の数22 OL (全 9 頁)

(21) 出願番号	特額平7-76991	(71) 出題人 000005892
		松下電工株式会社
(22) 出顧日	平成7年(1995)3月31日	大阪府門真市大字門真1048番地
		(72)発明者 山内 佳辛
		大阪府两萬市大字門實1048灣地投下領工机
		式会社内
		(72)発明者 田中 義国
	•	大阪府門其市大字門真1048番地松下電工株
		式会社内
		(72) 强明者 柯村 忠勇
		大阪府門其市大字門真1048器地松下電工株
		式金牡内
		(74)代理人 弁理士 石田 長七 (外2名)
		3

(54) 【発明の名称】 補臭装置

(57)【要約】

【目的】 消臭能力がきわめて高い上に粉塵除去能力も 備えている。

【構成】 高電圧印加により放電を行う放電極2と対極3とを有する放電部1を備える。放電によって生じるオプン、熱、紫外線のうちの少なくとも一つを利用してガス成分の吸着分解を行う機能材料4を備える。放電部1におけるコロナ放電やプラズマ放電等の放電現象によって、裏気ガス成分を電気化学的に分解する。また放電によって分解されなかった臭気ガス成分は、上配放電によって生じるオプン、熱、紫外線のうちの少なくとも一つを利用してガス成分の吸着分解を行う機能材料4によって吸着分解する。放電により粉塵はイオン化されるために放電部1における対極3に集塵される。

- 1 放電形
- 2 BEE
- 3 77 4
- 4 在部分片

側に配設しても、放置部の放置空間中に配設してもよ

い。後否の場合、放電部の電極で囲まれている故電空間 中に充切して配設することができ、この時の敬能材料に は粒状のものが好題であり、またチタン酸バリウム等の 強酸な体材料が配合もしくは混合されていることが好ま

647

【0007】 概能物料は放電部の放電空間を囲む質控内 壁に破裂して配設してもよく、この場合、寛徳内壁の楹 能材料による復忍層がその変面に凹凸を有していること が好ましい。段挺内壁の一部に笹矶し、登板の風出面を 強すようにすることも好ましい。 優能材料は放置部の管 恋で聞きれている放置空間中に光望するとともに放宜部 の放電空間を囲む質粒内壁に被獄して配設するものであ ってもよい。

【0008】さらに、優酷材料は関風分保酸顔であるこ とが好ましく、この場合、オソン既良協威、強鋭酸化園 怒、光は嵐のいずれか、ゐるいはこれらのうちの少なく とも2粒の減み合わせを用いることができる。 微皿材料 は多孔質セラミック、活性皮、ゼオライト、宿主等の吸 澄材であってもよく、駆診材と説具分評혫餓との組み合 わせであってもよい。御敬忍のଉ韶対外を直列に配設し T6200

【0009】 放逐部の放電空間を囲む質煙は、ハニカム 松逸、樹眉松遠もしくはロール状松透、あるいは円筒状 とすることが容ましい。

[0010]

【作用】 容希朗によれば、放食部におけるコロナ放電や プラズマ放逐等の放電環境によって、具気ガス成分が電 気化学的に分類されるものであり、そして放理によって 分深されなかった具気ガス成分は、上配放冠によって生 30 じるオゾン、孫、紫外意のうちの少なくとも一つを附用 してガス取分の吸消分解を行う感能対域によって吸消分 **済される。しかも取電により汲延はイオン化されるため** に故口部における対質に負感される。

【0011】 独団部の政団空間および包括材料の配配室 間に空気を鉄路する差風器値を仰えているならば、送瓜 簔尾による馭極的な望気導入により処理兵を高めること ができる。上記認識材料は、放電部の放電空間の下記倒 に配設してもよいが、放風部の放置空間中に配設した掲 合、微館材料によって吸溶保持された具気ガス成分がそ の の後の放電現象によって分解されるために、処理能力が 高くなる。この場合、風能材料は放電部の電源で園まれ ている放气空間中に充填して配設することで多くの函能 初科を配設することができるが、並状とすることで、故 ②の旋涛と、オゾン、強、紫外辺のうちの少なくとも― つを利用したガス雌分の啜泣分階を賦予聞の別問で高効 **堅で行わせることができる。またチタン殴パリウム氨の** 強頭電体材料が配合もしくは混合された磁能材料を用い ると、放電現象を促進させることができる。

【0012】 砲段材料は放電部の放口空間を囲む電管内 50

壁に磁配して配設してもよく、この場合、圧力損失の低 忒を図ることができる。また、②極内壁の極部材料によ る徳慰恩がその設慮に凹凸を有しているものである時、 空気違に乱忍を起こさせることができるために効率の息 いガス絵士反応を望むことができる。贺榎内磔の一部に 径辺し、鼠額の逐出面を残すと、放尾現象の維持を図る ことができる。

【0013】 放電部の電纜で開まれている放電空間中に **心能材料を充ୟするとともに放竄部の放竄空間を囲む社 雹内壁に樹能材料を値似するようにしてもよい。そして** 関館材料として、オゾン関具磁瓶または協議設化磁鐵ま たは戈鼠恩のいずれか、あるいはこれらの組み合わせか ちなる以具分解は感を用いる時には、高いガス除去能力 を有するものとすることができる。松館材料は多孔質セ ラミック、栝饺皮、ゼオライト、独土笭の吸溶材であっ てもよく、この時には広障圏のガス成分の吸瀆を行うこ とができる。吸行材と脱長分母協協との組み合わせで数 陀材将を脳底した時には、上距両型の絃館材砕による各 効果を期待することができ、更に紅色の一般能材料を置 列に配設した時には、各個能材料の特徴を夫々利用して ガス成分の踏去を行うことができるものとなる。

【0014】故恆部の故位登嗣を関む復復は、ハニカム **頻道とした時、故意効率の向上を固ることができるとと** もに占有スペースに比して処理能力の高いものとするこ とができる。和母母遣るしくはロール状間違としてもや はり占有スペースに比して処理能力の高いものとするこ とができ、風に円筒状とした時には樹能材料を放逐空間 内に配設するにあたり、多くの繊維対科を配股すること ができる。

{0015}

《突施例》以下卒発明を圀示の突施例に基づいて訴述す ると、幽1あるいは幽2において、幽中1は故寝愆2と 対43からなる原電器を示し、3は放電器における放電 によって生じるオゾン、説、ほ外似のうちの少なくとも 一つを刺恩してガス威分の騒潑分爵を行う嶽龍游弾を示 している。上配放区間1は、高瓦圧の印加によって放置 雹2と対雹3との倒でコロナ放電やプラズマ放電等の放 霞を幸じさせるものであり、対意3は放行極2を囲む所 面円形乃至多角形の口状のものであることが好ましい が、平板状や風状のものであってもよい。故口虚2は破 状または微状であることが好ましい。これら飽電極2及 び四種3の材質は、記官性材料であれば何でもよいが、 ステンレス、タングステン等を好忍に用いることができ る。放鼠疫3を質状とする場合、この放鼠@3で闘ぎれ る望周の断面むは、0.01~10000mm2のうち の任意のものを用いることができるが、放電性の点から は1~100mmタが駆ましい。なお、放電部1の外部 は、シリカ、アルミナ、コーディエライト等の昼間額、 あるいはアクリル質脂、ABS、ポリステレン袋の有粒 物からなる提似体で行うことで安全性を間保するのが望

7

この場合の一部は、被獲率において10%~99%を意味する。機能材料4による被獲層の表面に、図4に示すように凹凸を設けておくと、通過する空気液に乱流を生じさせることができるために、効率の良いガス除去反応を望むことができるものとなる。

【0025】図7に示すものは、対極3を簡体が列設されたハニカム形状のものとして形成し、各空間内の中央に放電額2を配像した放電部1を示している。簡体の断面形状は、六角形だけでなく、四角、三角、あるいは丸型のものであってもよい。このようにした場合、放電空間を小さくして放電効率の向上に有利であるほか、占有スペースに比して高い処理能力を発揮するものとなる。図10は機能材料4を各セルの内面に被覆層として形成し、図12はセルの内面の被覆層とするとともに放電空間に充填した場合を示している。

【0026】図8に示すように、ロール状構造としたり 積層構造としたりした時にも、占有スペースに比して処 理能力の高いものとすることができる。図8(b)はロー ル状とされる対極3の片面に機能材料4の被覆層を設け た場合を示している。図9は対極3を円筒型としたもの 20 を示している。次に具体実施例と比較例とによって消臭 能力について説明する。

●実施例1-1

内径35mmが、長さ180mmのステンレス整円筒状の対極3の中心に直径1mmが、長さ120mmのタングステン級からなる放電極2を配置して放電部1を構成し、直流6kVの電圧を印加することで放電を生じさせた。また放電部1の下流側に12V駆動の送風装置4を、放電部1と送風装置4との間に内径35mmが、長さ50mmのセラミック製円筒管を配してこの中に平均30粒径3.5mmの二酸化マンガンを表面に添着させたオンン製典機解を見かけで約50cc元換した。

●実施例1-2

実施例1-1におけるオゾン脱臭触媒に代えて、平均粒 径2mmの燃焼酸化触媒を30ccと、平均粒径2mm の粒状活性炭20ccとを混合したものを用いた。

●実施例2-1

内径28mmが、長さ150mmのステンレス製円筒状の対極3の中心に直径0.7mmが、長さ100mmのステンレス線からなる放電極2を配置して放電部1を構成し、交流10kVの電圧を印加することで放電を生じさせた。また対極3円に平均粒径2mmのチタニア/シリカペースのオゾン脱臭触媒を約60cc充填した。対極3の両端関口面にはガラス製不織布を配して脱臭無疑の漏れを防いだ。透風強能6は下流側に配置した。

●実施例 2 - 2

実施例2-1におけるオゾン脱異触媒に代えて、平均粒 径約2mmのチタニア/シリカペースの二酸化マンガン を含んだオゾン脱臭触媒約10ccと、平均粒径2mm のチタン酸バリウム研舞(強軟管体) 40ccとの混合 8

物を用いた。また印加賀圧は12kVとした。

●実施例2-3

実施例2-1におけるオゾン脱臭触媒に代えて、平均粒程約2mmのチタニア/シリカベース+二酸化マンガンとチタン酸パリウムが全体重量比で70部となるように配合した平均粒径3mmのオゾン脱臭触媒/チタン酸パリウム磁器を調整して混合した後60ccを充填した。また印加粒圧は12kVとした。

【0027】以上のものについて、風量1.0リットル り /分の条件下で10ppmのアンモニアガスを導入し、 消臭旋電下液側で検知管による線度測定を行うことで、 ガス除去率を求めた。ガス除去率は

ガス除去平(%) = (導入濃度-下視濃度) ×100/ 導入濃度

で算出した。結果を表1に示す。なお、我中の比較例は 各実施例について放電部1のみで消異させた場合を示し ている。

[0028]

【张1】

	アンモニアガス 除士字(%)
突旋例 1 - I	98.5
北段例 1 - I	40.3
実施例 1 - 7	9 9.6
	3 8.5
实施何2·1	98.4
比股例2-1	32.6
実施例 2-2	99.3
比较例 2-2	50.1
要推開2-3	99.7
比較何2-3	39.6

【0029】●実施例3-1

内径10mm、長さ450mmのステンレス契円的状の対極3の中心に直径1.2mm、長さ180mmのステンレス線からなる放電框2を配置して放電部1を構成し、交流15kVの電圧を印加することで放電を生じさせた。また対極3の内面にコーディエライトベースの二般化マンガンを厚み2mmでコーティングしてオゾン脱臭触媒の被機構を形成した。この被覆層の表面はヤスリを用いて荒らすことで約1mmの凹凸段差を設けた。送風装置6は下波側に配置した。

●炙路例3-2

実施例3-1における放電極2を直径1.0mm、長さ 150mmのステンレス線で形成したものに代えるとと もに、印加電圧を交流11kVとし、さらに対極3内面 のオゾン脱臭触媒の被覆層の表面をヤスリを用いて気ら すことで約1mmの凹凸殻塞を設けた。

●実施例3-3

を含んだオゾン良臭触媒約10ccと、平均粒径2mm 実施例3-1における放電極2を置径1.4mm、長さのチタン散バリウム磁器(強能電体)40ccとの混合 50 200mmのステンレス銀で形成したものに代えるとと

0.5mmの厚みでセル長さ方向100mmで形成した。また下沢側にはセル内寸が約5mm角、長さ100mmのセル数20のコーディエライト製のハニカム構造物のセル内面を白金ペーストで約0.2mmのコーティングを行うことで対極3を構成し、この内面に二酸化マンガンを主触郷とするオゾン脱臭触媒層を形成した。なお、上配両対極3,3は電気的に接続した。上運像のセル内には、0.5mm×80mmのステンレス線からなる放電極2を各セルの中心に配置した。放電極2と対極3との間には交流16kVの電圧を印加した。送風装置10は下流側に配置した。

●実施例 6 ~ 3

凶llに示すように、セル内寸が約5mm角、長さ10 Ommのセル数20のコーディエライト製のハニカム構 造物のセル内面を白金ペーストで約0.2mmのコーチ イングを行うことで対極3を構成し、さらにその内面に 図5に示すような疎密となった機能材料(二酸化マンガ ン/テタン酸パリウム/無磁材料を重量比で約3/3/ 4で配合したオゾン脱臭触媒/強誘電体層)を約0.2 mmの厚みでセル長さ方向100mmで形成した。また 20 下流倒にはセル内寸が約5mm角、長さ100mmのセ ル数20のコーディエライト製のハニカム構造物のセル 内面を白金ペーストで約0.2mmのコーティングを行 うことで対極3を構成し、この内面に上記機能材料とは 別の種類の機能材料(二酸化マンガン、白金等を主収分 とした燃焼酸化触媒)をコーティングした。なお、上記 両対極3.3は包気的に接接した。上茂銀のセル内に は、0.5mm×80mmのステンレス線からなる放電 極2を各セルの中心に配置した。放電極2と対極3との 間には交流15kVの電圧を印加した。送風報道は下流 30 側に配置した。

●実施例 6 - 4

実施例6-3における上流側の機能材料として、二酸化マンガン/活性及/無機材料を重量比で約5/3/2の 割合で配合したオゾン脱臭触媒/吸着層を用い、下流側の機能材料として、活性皮を主成分とする吸着材を用いた。

【0036】これら実施例6-1~6-4について、風量1.6リットル/分の条件下で煙草(マイルドセプン)2本を燃焼させて副飛煙を導入し、消臭装置下流倒 40で正常な嗅覚をもつパネラー10人による官能試験を行った。評価法は6段階異気強度表示法(0:無臭,1:かすかに秘じる、2:やや強く感じる、3:強く感じる、4:非常に強く感じる、5:被端に強く感ずる)に基づいて実施した。また同時にオゾン融度ならびにマイナスイオン漁度も計像した。結果を受4に示す。なお、表中の比較例は各実施例について放電部1のみで消臭させた場合を示している。

【0037】 【歿4】 12

	官能試験	カアン機歴	で付えてが過度
	(平均值)	(ppm)	(個/CC)
実施例6-1	0.3	0.0	12000
比較例6-1	2.5	0.3	10500
英原例 6 - 2 比較例 6 - 2	0.2 3.1	0.0	13000
実施例6-3	0.4	0.0	12500
実施例6-4	0.1	0.0	12000
比較例6-3、4	4.0	0.2	10000

【0038】●実施例7-1

0. 1mmのポリエステル層の両側に対極となるアルミニウム層を0. 05mm厚でコーティングしたものを取得が約50mm、長さ方向が約100mmのスクロール型とし、内外層内に0.5mm×80mmのタングステン線からなる放電板を約25mm関隔で配置した。また平均程径約1.5mmのテタン酸パリワム磁器粒子を放電空間内に配置した。スクロール両端には粒子の強れを防ぐためにガラスファイバー製の不識布を配置し、送風装置は下液側に配置した。

●実施例 7 - 2

実施例7-1における放電空間内に平均収役約2.0mmのオソン脱臭触媒粒子を配置した。

●実施例7-3

実施例7-1における放電空間内に平均粒径約1.8mmの活性炭/オゾン脱集触線粒子を3/5の混合比で混ぜて配置した。

【0039】これら実施例7-1~7-3について、風量1、3リットル/分の条件下で埋草(マイルドセプン)2本を燃焼させて翻泥煙を導入し、消臭整置下滤棚で正常な嗅覚をもつパネラー10人による官能試験を行った。評価法は前述の6段階臭気強度表示法に基づいて実施した。結果を表5に示す。なお、表中の比較例は各実施例について故電部1のみで消臭させた場合を示している。

[0040]

【表5】

	(平均值)
実施例7-1	0.2
実施例7-2	0.3
医施丽7-3	8.0
出版明 7	4.0

[0041]

【発明の効果】以上のように本発明においては、放電部におけるコロナ放電やブラズマ放電等の放電現象によって、異気ガス広分が電気化学的に分解されるものであ

50 り、そして政党によって分解されなかった吴気ガス成分

⋄ NOTICES ⋄

JPO and MCIFI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.0000 shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The ozone produced by discharge in the discharge section while having the discharge section which has the discharge electrode which discharges by high-voltage impression, and a counter electrode, heat, deodorization equipment characterized by having the functional material which performs adsorption decomposition of gas constituents using at least one of ultraviolet rays.

[Claim 2] Deodorization equipment according to claim 1 characterized by having ventilation equipment which supplies air to the discharge space of the discharge section, and the configuration space of a functional material.

[Claim 3] A functional material is deodorization equipment according to claim 1 or 2 characterized by being arranged in the downstream of the discharge space of the discharge section.

[Claim 4] A functional material is deodorization equipment according to claim 1 or 2 characterized by being arranged in throughout [discharge sky / of the discharge section].

[Claim 5] A functional material is deodorization equipment according to claim 4 characterized by filling up throughout [discharge sky / which is surrounded with the electrode of the discharge section].

[Claim 6] A functional material is deodorization equipment according to claim 5 characterized by the granular thing.

[Claim 7] Deodorization equipment according to claim 5 characterized by ferroelectric ingredients, such as barium titanate, being blended or mixed by the functional material.

[Claim 8] A functional material is deodorization equipment according to claim 4 characterized by being covered by the electrode wall surrounding the discharge space of the discharge section.

[Claim 9] The enveloping layer by the functional material of an electrode wall is deodorization equipment according to claim 8 characterized by having irregularity on the front face.

[Claim 10] A functional material is deodorization equipment according to claim 8 characterized by being covered by some electrode walls.

[Claim 11] A functional material is deodorization equipment according to claim 1 characterized by being covered by the electrode wall surrounding discharge space while throughout [discharge sky / which is surrounded with the electrode of the discharge section] is filled up.

[Claim 12] A functional material is deodorization equipment according to claim 1 characterized by being a deordorization decomposition catalyst.

[Claim 13] A deordorization decomposition catalyst is deodorization equipment according to claim 12 characterized by being an ozone deodorization catalyst.

[Claim 14] A deordorization decomposition catalyst is deodorization equipment according to claim 12 characterized by being a combustion oxidation catalyst.

[Claim 15] A deordorization decomposition catalyst is deodorization equipment according to claim 12 characterized by being a photocatalyst.

[Claim 16] A deordorization decomposition catalyst is deodorization equipment according to claim 12 characterized by being at least two sorts of combination of an ozone deodorization catalyst, a combustion oxidation catalyst, and the photocatalysts.

[Claim 17] A functional material is deodorization equipment according to claim 1 characterized by being adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay.

[Claim 18] A functional material is deodorization equipment according to claim 1 characterized by being the combination of adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay, and a deordorization decomposition catalyst.

[Claim 19] Deodorization equipment according to claim 1 characterized by two or more sorts of functional materials being arranged by the serial.

[Claim 20] Deodorization equipment according to claim 1 characterized by the electrode surrounding the discharge space of the discharge section being honeycomb structure.

[Claim 21] Deodorization equipment according to claim 1 characterized by the electrode surrounding the discharge space of the discharge section being a laminated structure or roll-like structure.

[Claim 22] Deodorization equipment according to claim 1 characterized by the electrode surrounding the discharge space of the discharge section being cylindrical.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.000 shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0000]

[Industrial Application] This invention relates to removal of the odor gas constituents in a gas, and the deodorization equipment which can also remove dust further.

100021

[Description of the Prior Art] As deodorization equipment from which the odor gas in a gas is removed, although there is a thing based on wet methods, such as a scrubber soil odor treatment, since this serves as large-scale equipment, by the general thing for home use, physical or the thing to depend on the dry process using deordorization decomposition catalysts, such as the approach of carrying out adsorption treatment with a chemical adsorption process or an ozone deodorization catalyst, a photocatalyst, and a combustion oxidation catalyst, is usually used. Moreover, the electrostatic precipitator is used as a thing for removing the dust of the shape of tar by the cigarette in air.

[10003]

[Problem(s) to be Solved by the Invention] The deodorization capacity of conventional deodorization equipment is low, and it cannot remove the odor gas constituents of the amount needed by the one pass. Moreover, in performing dust removal to coincidence, since it does not have dust removal capacity, it must be used combining a dust stripper like an electrostatic precipitator, for this reason has the problem that equipment will be enlarged.

[0004] Succeeding in this invention in view of such a point, the place made into the purpose has deodorization capacity in offering the deodorization equipment which equips the very high top also with dust removal capacity.

[0005]

[Means for Solving the Problem] While having the discharge section which has the discharge electrode to which a deer is carried out and this invention discharges by high-voltage impression, and a counter electrode, it has the description to have the ozone produced by discharge in the discharge section, heat, and the functional material which performs adsorption decomposition of gas constituents using at least one of ultraviolet rays.

[0006] It is desirable to have ventilation equipment which supplies air to the discharge space of the discharge section and the configuration space of a functional material. And the above-mentioned functional material may be arranged in the downstream of the discharge space of the discharge section, or may be arranged in throughout [discharge sky / of the discharge section]. In the case of the latter, it can fill up and arrange in throughout [discharge sky / which is surrounded with the electrode of the discharge section], and a granular thing is suitable for the functional material at this time, and it is desirable that ferroelectric ingredients, such as barium titanate, are blended or mixed.

[0007] It is desirable that may cover and arrange a functional material in the electrode wall surrounding the discharge space of the discharge section, and the enveloping layer by the functional material of an electrode wall has irregularity on that front face in this case. It is also desirable to cover to some electrode walls and to leave the exposure of an electrode. It may be covered and arranged in the

electrode wall surrounding the discharge space of the discharge section while filling up with a functional material throughout [discharge sky / which is surrounded with the electrode of the discharge section]. [0008] Furthermore, as for a functional material, it is desirable that it is a deordorization decomposition catalyst, and at least two sorts of an ozone deodorization catalyst, a combustion oxidation catalyst, a photocatalyst, or combination of these can be used in this case. Functional materials may be adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay, and may be the combination of adsorption material and a deordorization decomposition catalyst. Two or more sorts of functional materials may be arranged in a serial.

[0009] It is desirable honeycomb structure, a laminated structure, roll-like structure, or for the electrode surrounding the discharge space of the discharge section to presuppose that it is cylindrical.

[0010]

(Function) According to this invention, odor gas constituents are not electrochemically decomposed by discharge phenomena in the discharge section, such as corona discharge and plasma discharge, and adsorption decomposition of the odor gas constituents which was not decomposed by discharge is carried out with the ozone produced by the above-mentioned discharge, heat, and the functional material which performs adsorption decomposition of gas constituents using at least one of ultraviolet rays. And since dust is ionized by discharge, dust is collected to the counter electrode in the discharge section. [0011] If it has ventilation equipment which supplies air to the discharge space of the discharge section, and the configuration space of a functional material, the positive air installation by ventilation equipment can raise throughput. Although the above-mentioned functional material may be arranged in the downstream of the discharge space of the discharge section, since the odor gas constituents by which adsorption maintenance was carried out with the functional material are decomposed by the subsequent discharge phenomenon when it arranges in throughout [discharge sky / of the discharge section], a throughput becomes high. In this case, although a functional material can arrange many functional materials by filling up and arranging in throughout [discharge sky / which is surrounded with the electrode of the discharge section], it can be efficient and can make adsorption decomposition of the gas constituents using at least one of maintenance of discharge, ozone and hear, and ultraviolet rays perform by supposing that it is granular in the clearance between particles. Moreover, a discharge phenomenon can be promoted if the functional material with which ferroelectric ingredients, such as barium titanate, were blended or mixed is used.

[0012] A functional material may be covered and arranged in the electrode wall surrounding the discharge space of the discharge section, and can aim at reduction of pressure loss in this case. Moreover, when the enveloping layer by the functional material of an electrode wall is what has irregularity on the front face, since airstream can be made to cause a turbulent flow, an efficient escapeof-gas reaction can be desired. If it covers to some electrode walls and leaves the exposure of an electrode, maintenance of a discharge phenomenon can be aimed at.

[0013] While filling up with a functional material throughout [discharge sky / which is surrounded with the electrode of the discharge section], you may make it cover a functional material to the electrode wall surrounding the discharge space of the discharge section. And when using the deordorization decomposition catalyst which consists of either an ozone deodorization catalyst, a combustion oxidation catalyst or a photocatalyst and such combination as a functional material, it shall have high escape-ofgas capacity. Functional materials may be adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay, and can adsorb wide range gas constituents at this time. When each effectiveness by the functional material of both the above-mentioned kinds can be expected when a functional material is constituted from combination of adsorption material and a deordorization decomposition catalyst, and two or more more sorts of functional materials are arranged in a serial, gas constituents can be removed using the description of each functional material respectively. [0014] When it considers as honeycomb structure, the electrode surrounding the discharge space of the discharge section can be made [of a throughput] high as compared with an occupancy tooth space while it can aim at improvement in discharge effectiveness. As compared with a mist beam occupancy tooth space, it can consider as the high thing of a throughput as a laminated structure or roll-like

structure, and in arranging a functional material in discharge space, when still more cylindrical, many functional materials can be arranged.

[0015]

[Example] If this invention is explained in full detail based on the example of illustration below, in drawing 1 or drawing 2, one in drawing shows the discharge section which consists of a discharge electrode 2 and a counter electrode 3, and 3 shows the ozone produced by discharge in the discharge section, heat, and the functional material which performs adsorption decomposition of gas constituents using at least one of ultraviolet rays. The above-mentioned discharge sections 1 may be plate-like and a linear thing, although discharge of corona discharge, plasma discharge, etc. is produced between a discharge electrode 2 and a counter electrode 3 by impression of the high voltage and it is desirable that it is the tubed thing of the cross-section round shape surrounding a discharge electrode 2 thru/or a polygon as for a counter electrode 3. As for a discharge electrode 2, it is desirable that they are tabular or a line. If it is a conductive ingredient, although the quality of the material of these discharge electrodes 2 and a counter electrode 3 is good, stainless steel, a tungsten, etc. can be suitably used for it anything. When making a discharge electrode 3 cylindrical, although the thing of the arbitration of 2 can be used for the cross section of the space surrounded with this discharge electrode 3 0.01-10000mm, from the noint of discharge nature, 2 is desirable (the cross section 1 1-100mm. In addition, as for the exterior of the discharge section 1, it is desirable to secure safety by covering with the insulator which consists of the organic substance, such as inorganic substances, such as a silica, an alumina, and cordierite, or acrylic resin, ABS, and polystyrene.

[0016] It does not ask any of the shape of an interval or a pulse the electrical-potential-difference classes impressed between the discharge electrode 2 of the discharge section 1 and a counter electrode 3 are about an alternating current, a direct current, or these, but a discharge phenomenon should just be accepted. The distance between electrodes determines the height of the electrical potential difference to impress. The discharge by this discharge section 1 decomposes into the odorless or harmless matter various kinds of gas constituents which exist in throughout [discharge sky] by electrochemical radical reaction, such as plasma. But a part cannot demonstrate necessary deodorization capacity only by the discharge section 1, in order to remain by un-decomposing. A functional material 4 compensates this and performs decomposition removal of the gas constituents which remained, using positively the ozone

produced by the discharge section 1, heat, and light.

[0017] As a functional material 4, adsorption material, such as a deordorization decomposition catalyst which is an ozone deodorization catalyst, a combustion oxidation catalyst, or a photocatalyst, and a porosity ceramic, activated carbon, a zeolite, clay, can be used. The ozone deodorization catalyst which is a deordorization decomposition catalyst made support support metallic oxides, such as a manganese dioxide, titanium oxide, and a zinc oxide, is generating active oxygen by decomposing ozone on the front face, and has the function which carries out decomposition removal of the odor gas constituents to which it stuck, the thing with which the combustion oxidation catalyst made support support metal support or metallic oxides, such as platinum, palladium, and a manganese dioxide, — it is — the amount of support — 1 - 40% weight section — a law — the thing made to support with a method can be used. Catalytic activity is discovered and this combustion oxidation catalyst performs oxidative degradation of the odor gas constituents to which it stuck, when that temperature becomes 100-400 degrees C. Furthermore, a photocatalyst is what carried out distributed support of the metal oxide independent or the photosensitizer which mainly has photocatalyst activity, such as titanium oxide, a zinc oxide, and tin oxide, in the support of the sense at coincidence, and when ultraviolet rays are mainly received, oxidative degradation activity discovers it.

[0018] Even if it uses the deordorization decomposition catalyst of which class, it is generated when it is made to discharge in the discharge section 1, and ozone, heat, and ultraviolet rays are arranging in the discharge space of the discharge section 1 near the discharge section 1 for this reason, and present activity. The three above-mentioned sorts of deordorization decomposition catalysts can also be used combining at least two sorts, although it is independent and or may be used someday, discharge — both ozone heat and light — although — since it is generated upwards and these yields cannot be controlled

according to an individual, it becomes most advantageous to use together the three above-mentioned sorts of deordorization decomposition catalysts.

[0019] As a functional material, adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay, can also be used as mentioned above. Although this adsorption material does not have a catalyst function like the above-mentioned deordorization decomposition catalyst in itself When it has been arranged in the discharge space of the discharge section 1 near the discharge section 1 and odor gas constituents are adsorbed, When it will expose to ozone, the hear, and light (ultraviolet rays) which are generated with these odor gas constituents in discharge upwards over a long period of time and is allotted in discharge space 1, in order to expose also to discharge, decomposition of odor gas constituents will be assisted. Since the range of the gas constituents to which it sticks is wide, especially adsorption material is advantageous when various kinds of gas constituents are mixed. Of course, you may use it combining this adsorption material and the above-mentioned deordorization decomposition catalyst.

[0020] And while arranging a functional material 4 near the discharge section 1, he forms ventilation equipment 5 and is trying for the air which passed the discharge section 1 to pass the arrangement section of a functional material 4 in what is shown in drawing 1. Moreover, in what is shown in drawing 2, while arranging a functional material 4 in throughout [discharge sky / of the discharge section 1], ventilation equipment 5 is formed. The ventilation equipment 5 in here is formed in order to raise throughput by performing air installation positively, and when installing this deodorization equipment in a part which serves as an airstream way from the first, it does not necessarily carry out the need.

[0021] In arranging a functional material 4 in discharge space 1, as shown in drawing 3 besides the restoration gestalt shown in drawing 2, you may prepare in the wall of the counter electrode 3 surrounding the discharge space of the discharge section 1 as an enveloping layer. In the case of the former, many amounts of arrangement of a functional material 4 can be taken, and when it is the latter, the pressure loss by the functional material 4 can be reduced. As shown in drawing 6, while being filled up with a functional material 4, it does not bar arranging also as an enveloping layer. Anyway, since being decomposed by the subsequent discharge phenomenon arises after adsorption maintenance of the gas constituents which remained without being decomposed by discharge is carried out with a functional material 4 when a functional material 4 is arranged in throughout [discharge sky / of the discharge section 1], a throughout becomes high.

[0022] When filling up with and arranging a functional material 4, it is desirable to make a functional material 4 granular and to make it a clearance generated between particles. It is because it is decomposed with the ozone which decomposition of the gas constituents by discharge was made in this clearance, and the gas constituents which remained were adsorbed on functional material 4 front face, and was produced in the decomposition and discharge by discharge for the second time, heat, and light. If the gestalten of a particle are configurations which can secure a clearance, such as the shape of a globular shape, a cylinder, and a ring, they are good anything. Although magnitude is based also on the magnitude of discharge space, it is 2-10mm preferably 1-30mm.

[0023] Since it is surely hard coming to generate a discharge phenomenon by restoration of a functional material 4, it is desirable to blend or mix ferroelectric ingredients, such as barium titanate, to a functional material 4. Although it comes out to apply the rate of a compounding ratio of the 0.1 sections of whole weight - 99.9 section when blending a ferroelectric ingredient with a functional material 4, it is desirable that it is the five sections from the point of the balance of a dielectric operation and adsorption disintegration - 90 section. When mixing a ferroelectric ingredient independent, the five sections - 90 section is desirable at a capacity factor.

[0024] Although thickness of an enveloping layer can be set to 0.1mm - 10mm when arranging a functional material 4 as an enveloping layer, it is required not to bar a discharge phenomenon. As the whole wall surface of a counter electrode 3 is shown in <u>drawing 5</u>, without covering with a functional material 4, when it forms an enveloping layer only in a part and the remainder exposes a counter electrode 3, the above-mentioned thickness limit may be made loose. In addition, in coverage, 10% -

99% is meant in a part of this case. If irregularity is prepared in the front face of the enveloping layer by the functional material 4 as shown in <u>drawing 4</u>, since the passing airstream can be made to produce a turbulent flow, an efficient escape-of-gas reaction can be desired.

[0025] What is shown in drawing 7 forms a counter electrode 3 as a thing of the honeycomb configuration by which barrels were installed successively, and shows the discharge section 1 which has arranged the discharge electrode 2 in the center in each space. The cross-section configuration of a barrel may be not only a hexagon but a rectangular head, a trigonum, or a round thing. When it does in this way, by making discharge space small, it is advantageous to improvement in discharge effectiveness, and also a high throughput is demonstrated as compared with an occupancy tooth space. Drawing 10 forms a functional material 4 in the inside of each cel as an enveloping layer, and drawing 12 shows the case where discharge space is filled up while considering as the enveloping layer of the inside of a cel.

[0026] As shown in drawing 8, also when it considers as roll-like structure or considers as a laminated structure, as compared with an occupancy tooth space, it can consider as the high thing of a throughput. Drawing 8 (b) shows the case where the enveloping layer of a functional material 4 is prepared in one side of the counter electrode 3 made into the shape of a roll. Drawing 9 shows what made the counter electrode 3 cylindrical. Next, a concrete example and the example of a comparison explain deodorization capacity.

- The discharge electrode 2 which takes the lead in the counter electrode 3 of one to example 1 bore 35mmphi and the shape of a cylinder made from staiiless steel with a die length of 180mm from diameter 1 mmphi and a tungsten wire with a die length of 120mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 6kV of direct currents. Moreover, it was filled up with about 50 cc of ozone deodorization catalysts which bore 35mmphi and cylinder tubing made from a ceramic with a die length of 50mm were arranged [catalysts] for the ventilation equipment 4 of 12V drive between the discharge section 1 and ventilation equipment 4, and made the downstream of the discharge section 1 install a manganese dioxide with a mean particle diameter of 3.5mm on a front face in this by appearances.
- It replaced with the ozone deodorization catalyst in one to example 2 example 1-1, and what mixed 20 cc of granular active carbon with a mean particle diameter of 2mm with 30 cc for the combustion oxidation catalyst with a mean particle diameter of 2mm was used.
- The discharge electrode 2 which takes the lead in the counter electrode 3 of two to example 1 bore 28mmphi and the shape of a cylinder made from stainless steel with a die length of 150mm from diameter 0.7mmphi and a stainless steel line with a die length of 100mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 10kV of alternating currents. Moreover, it was filled up with about 60 cc of ozone deodorization catalysts of the titania / silica base of 2mm of mean diameters in the counter electrode 3. The glass nonwoven fabric was arranged on the both-ends effective area of a counter electrode 3, and the leakage of a deordorization catalyst was prevented. Ventilation equipment 6 has been arranged to the downstream.
- It replaced with the ozone deodorization catalyst in two to example 2 example 2-1, and about ten cc of ozone deodorization catalysts containing the manganese dioxide of the titania / silica base of about 2mm of mean diameters and 40 cc [of barium titanate ceramics of 2mm of mean diameters] (ferroelectric) mixture was used. Moreover, applied voltage was set to 12kV.
- It replaced with the ozone deodorization catalyst in two to example 3 example 2-1, and it was filled up with 60 cc, after adjusting the ozone deodorization catalyst / barium titanate ceramics of 3mm of mean diameters blended so that the titania / silica base+2 manganese oxide of about 2mm of mean diameters, and barium titanate might become the 70 sections by the whole weight ratio and mixing. Moreover, applied voltage was set to 12kV.

[0027] About the above thing, 10 ppm ammonia gas was introduced under airflow the conditions for /of 1.01., and gas removal efficiency was searched for by performing density measurement by the indicator tube by the deodorization equipment downstream. Gas removal efficiency was computed by gas-

removal-efficiency (%) =(introductory concentration-down-stream concentration) x100-/installation concentration. A result is shown in Table 1. In addition, the example of a comparison of front Naka shows the case where it is made to deodorize only in the discharge section 1 about each example. 100281

	-		
Tah	le	1	1

07-05-2005 18:31

Table I	
	アンモニアガス (改主章 (公)
50161 1 - 1	9 8.5
16161 1 - 1	4 0.3
理論制 1 - 2	99.6
及证例 1 - 2	38.5
FAIS 2-1	9 & .4
KIR 2-1	3 2 -6
9111M2-2	99.3
KIRM2-2	50.1
FIIIM 2-3	99.7
KARILZ-3	39.6

[0029] - The discharge electrode 2 which takes the lead in the counter electrode 3 of the shape of a cylinder made from stainless steel with a bore [three to example 1 / of 10mm] and a die length of 450mm from a stainless steel line with a diameter [of 1.2mm] and a die length of 180mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 15kV of alternating currents. Moreover, the inside of a counter electrode 3 was coated with the manganese dioxide of the cordierite base by the thickness of 2mm, and the enveloping layer of an ozone deodorization catalyst was formed. The front face of this enveloping layer prepared the concavo-convex level difference of about 1mm by damaging using a file. Ventilation equipment 6 has been arranged to the downstream.

- While replacing the discharge electrode 2 in three to example 2 example 3-1 with what was formed by the stainless steel line with a diameter [of 1.0mm], and a die length of 150mm, applied voltage was considered as 11kV of alternating currents, and the concavo-convex level difference of about 1mm was prepared by damaging the front face of the enveloping layer of the ozone deodorization catalyst of counter electrode 3 inside using a file further.

- While replacing the discharge electrode 2 in three to example 3 example 3-1 with what was formed by the stainless steel line with a diameter [of 1.4mm], and a die length of 200mm, applied voltage was considered as 16kV of alternating currents, and the enveloping layer of counter electrode 3 inside was further formed by covering the manganese dioxide of the cordierite base with the thickness of 1mm. On the occasion of formation of this enveloping layer, the whole surface of counter electrode 3 inside was made not to be covered with carrying out addition baking of the organic substance, such as starch, into a coating agent.

[0030] About these examples 3-1, 3-2, and 3-3, 7 ppm hydrogen-sulfide gas was introduced under airflow the conditions for /of 1.01., and gas removal efficiency was searched for by performing density measurement by the indicator tube by the deodorization equipment downstream. Gas removal efficiency was computed by gas-removal-efficiency (%) =(introductory concentration-down-stream concentration) x100-/installation concentration. A result is shown in Table 2. In addition, the example of a comparison of front Naka shows the case where it is made to deodorize only in the discharge section 1 about each example.

[0031]

[Table 2]

	型化ななガス 図金部(2)
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	87.4 61.1
理算3-2	© 6-6
处理到3-2	3 9-5
FT.1 - 3 - 3	8 9.4
BURS 3 - 3	3 3.7

[0032] - The discharge electrode 2 which takes the lead in the counter electrode 3 of the shape of a cylinder made from stainless steel with a bore [example 4 / of 18mm] and a die length of 250mm from a stainless steel line with a diameter [of 1.0mm] and a die length of 160mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 14kV of alternating currents. Moreover, the inside of a counter electrode 3 was coated with the manganese dioxide of the cordierite base by the thickness of 1 mm, and the enveloping layer of an ozone deodorization catalyst was formed. Furthermore, it was filled up with about 40 cc of ozone deodorization catalysts with a mean particle diameter [of the same presentation] of 2mm in the counter electrode 3. The glass nonwoven fabric was arranged on the both-ends effective area of a counter electrode 3, and the leakage of a deordorization catalyst was prevented. Ventilation equipment 6 has

been arranged to the downstream.

- The discharge electrode 2 which takes the lead in the counter electrode 3 of the shape of a cylinder made from stainless steel with a bore [five to example 1 / of 18mm] and a die length of 240mm from a stainless steel line with a diameter [of 1.2mm] and a die length of 150mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 18kV of alternating currents. Moreover, the inside of a counter electrode 3 was coated with the manganese dioxide of the cordierite base by the thickness of 1 mm, and the enveloping layer of an ozone deodorization catalyst was formed. Furthermore, 40 cc of barium titanate ceramics which are the femoelectrics of 2mm of mean diameters, and ten cc (2mm of mean diameters) of photocatalyst porcelain which coated tranium oxide were mixed, and it was filled up in the counter electrode 3. The glass nonwoven fabric was arranged on the both-ends effective area of a counter electrode 3, and the leakage of a deordorization catalyst was prevented. Ventilation equipment 6 has been arranged to the

- The discharge electrode 2 which takes the lead in the counter electrode 3 of the shape of a cylinder made from stainless steel with a bore [five to example 2 / of 16mm] and a die length of 200mm from a stainless steel line with a diameter [of 1.5mm] and a die length of 170mm has been arranged, the discharge section 1 was constituted, and discharge was produced by impressing the electrical potential difference of 16kV of alternating currents. Moreover, the inside of a counter electrode 3 was coated with the adsorption material of the zeolite base by the thickness of 1mm. Moreover, 30 cc of barium titanate ceramics which are the ferroelectrics of 2mm of mean diameters, and 20 cc (2mm of mean diameters) of photocatalyst porcelain which coated titanium oxide were mixed, and it was filled up in the counter electrode 3. The glass nonwoven fabric was arranged on the both-ends effective area of a counter electrode 3, and the leakage of a deordorization catalyst was prevented. Ventilation equipment 6 has been arranged to the downstream.

[0033] About these examples 4, 5-1, and 5-2, 13 ppm trimethylamine gas was introduced under airflow the conditions for /of 2.01., and gas removal efficiency was searched for by performing density measurement by the indicator tube by the deodorization equipment downstream. Gas removal efficiency was computed by gas-removal-efficiency (%) =(introductory concentration-down-stream concentration) x100-/installation concentration. A result is shown in Table 3. In addition, the example of a comparison of front Naka shows the case where it is made to deodorize only in the discharge section 1 about each example.

[0034]

[Table 3]			
	トリガチルアミン ガス性会型(以)		
eniel 4	87.9		
Here 4	39.1		
#15-1	8 9.0		
#0:15-1	4 0.3		
整 造图 5-2	90.3		
处 建图 5-2	38.8		

- [0035] Example 6-1 cel inside dimension constituted the counter electrode from performing about 0.2mm coating for the cel inside of the honeycomb structure object made from cordierite with about 5mm angle and 20 cels with a die length of 100mm with a platinum paste, and formed the ozone deodorization catalyst which became irregularity to the inside further by the thickness of about 0.2mm. The discharge electrode has been arranged to the core of each cel using a 0.5mmx80mm stainless steel line, and impressed the electrical potential difference of 14kV of alternating currents between the discharge electrode and the counter electrode. Ventilation equipment has been arranged to the downstream.
- As shown in example 6-2 drawing 11, cel inside dimension constituted the counter electrode 3 from performing about 0.2mm coating for the cel inside of the honeycomb structure object made from cordierite with about 5mm angle and 20 cels with a die length of 100mm with a platinum paste, and the barium titanate layer used as roughness and fineness as further shown in the inside at drawing 5 was formed by the thickness of about 0.5mm at the 100mm of the cel die-length directions. Moreover, the counter electrode 3 was constituted from cel inside dimension performing about 0.2mm coating for the cel inside of the honeycomb structure object made from cordierite with about 5mm angle and 20 cels with a die length of 100mm to the downstream with a platinum paste, and the ozone deodorization catalyst bed which makes a manganese dioxide a main catalyst at this inside was formed. In addition, both the above-mentioned counter electrodes 3 and 3 were connected electrically. In the cel of the upstream, the discharge electrode 2 which consists of a 0.5mmx80mm stainless steel line has been arranged at the core of each cel. Between the discharge electrode 2 and the counter electrode 3, the electrical potential difference of 16kV of alternating currents was impressed. Ventilation equipment has been arranged to the downstream.
- As shown in example 6-3 drawing 11, cel inside dimension constitutes a counter electrode 3 from performing about 0.2mm coating for the cel inside of the honeycomb structure object made from cordierite with about 5mm angle and 20 cels with a die length of 100mm with a platinum paste. The functional material (a manganese dioxide / barium titanate / inorganic material a weight ratio about 3/the ozone deodorization catalyst / ferroelectric layer blended by three fourths) used as roughness and fineness as furthermore shown in the inside at drawing 5 was formed by the thickness of about 0.2mm at the 100mm of the cel die-length directions. Moreover, the counter electrode 3 was constituted from cel inside dimension performing about 0.2mm coating for the cel inside of the honeycomb structure object made from cordierite with about 5mm angle and 20 cels with a die length of 100mm to the downstream with a platinum paste, and this inside was coated with the functional material (combustion oxidation catalyst which used a manganese dioxide, platinum, etc. as the principal component) of a class different from the above-mentioned functional material. In addition, both the above-mentioned counter electrodes 3 and 3 were connected electrically. In the cel of the upstream, the discharge electrode 2 which consists of a 0.5mmx80mm stainless steel line has been arranged at the core of each cel. Between the discharge electrode 2 and the counter electrode 3, the electrical potential difference of 15kV of alternating currents was impressed. Ventilation equipment has been arranged to the downstream.
- as the functional material of the upstream in six to example 4 example 6-3 a manganese dioxide /

activated carbon / inorganic material — a weight ratio — about 5 — the adsorption material which uses activated carbon as a principal component was used as a functional material of the downstream using the blended ozone deodorization catalyst / adsorption layer out of which /3/2 came comparatively. [0036] About these examples 6-1 to 6-4, two cigarettes (mild seven) were burned under airflow the conditions for /of 1.6l., the sidestream smoke was introduced, and the organoleptics by ten panelists who have the normal sense of smell by the deodorization equipment downstream were performed, the appraisal method was enforced based on the six-step odour strength notation (0: — no odor and 1: — 2: sensed faint — 3: sensed a little strong — 4: sensed strong — 5: sensed very strong — it feels extremely strongly). Moreover, an ozone level and anion concentration were also measured to coincidence. A result is shown in Table 4. In addition, the example of a comparison of front Naka shows the case where it is made to deodorize only in the discharge section 1 about each example.

Table 41

[* arbic v]			
	(平均面)	if/III (ope)	マイアスイロア 日配 (個人OC)
建設	0.3 2.5	0.0 8.0	12000
三连接例 6-2 比较例 6-2	0.2 3.1	0.0 0.3	13000
运施例6-3 运施例6-4 比应例6-3、4	0.4 0.1 4.0	0.0 0.0 0.2	12500 12000 10000

[0038] - What coated the both sides of the polyester layer of a seven to 10.1 mm example with the aluminum layer used as a counter electrode by 0.05mm thickness was made into the scroll type whose diameter is about 50mm and whose die-length direction is about 100mm, and the discharge electrode which consists of a 0.5mmx80mm tungsten wire in an inside-and-outside layer has been arranged at intervals of about 25mm. Moreover, the barium-titanate-ceramics particle of about 1.5mm of mean diameters has been arranged in discharge space. In order to prevent the leakage of a particle in scrolling both ends, the nonwoven fabric made from glass fiber has been arranged, and ventilation equipment has been arranged to the downstream.

- The ozone deodorization catalyst particle with a mean particle diameter of about 2.0mm has been arranged in the discharge space in seven to example 2 example 7-1.

- Activated carbon / ozone decdorization catalyst particle with a mean particle diameter of about 1.8mm have been mixed and arranged with three fifths of mixing ratios in the discharge space in seven to example 3 example 7-1.

[0039] About these examples 7-1 to 7-3, two cigarettes (mild seven) were burned under airflow the conditions for /of 1.31., the sidestream smoke was introduced, and the organoleptics by ten panelists who have the normal sense of smell by the deodorization equipment downstream were performed. The appraisal method was enforced based on the above-mentioned six-step odour strength notation. A result is shown in Table 5. In addition, the example of a comparison of front Naka shows the case where it is made to deodorize only in the discharge section 1 about each example.

[0040]

[Table 5]

02	г	P.U23/U20	1-300	3-803-2300	
	• •	موس ب			

1-7 関づ寒	0.2
fine 7-2	0.3
117617-3	0.3
10 RT 7	₫.0

[0041]

[Effect of the Invention] As mentioned above, in this invention, adsorption decomposition of the odor gas constituents which was not decomposed by discharge is carried out with the ozone produced by the above-mentioned discharge, heat, and the functional material which performs adsorption decomposition of gas constituents using at least one of ultraviolet rays by odor gas constituents not being electrochemically decomposed by discharge phenomena in the discharge section, such as corona discharge and plasma discharge, and very high deodorization capacity is demonstrated [for this reason]. And since dust is ionized by discharge and dust is collected to the counter electrode in the discharge section, generating of an anion which can also expect a dust-removing function above and is made good for the health of the body by discharge is also expectable.

100421 When it shall have ventilation equipment which supplies air to the discharge space of the discharge section, and the configuration space of a functional material, throughput can be made high by positive air installation by ventilation equipment. Since it can also expect that the odor gas constituents by which adsorption maintenance was carried out with the functional material will be decomposed by the subsequent discharge phenomenon when the above-mentioned functional material is arranged in the downstream of the discharge space of the discharge section, it becomes the thing which can be made to discharge easily and a functional material is arranged in throughout [discharge sky / of the discharge section], while being able to make a throughput still higher, it can collect into a compact. In this case, a functional material is being able to arrange many functional materials by filling up and arranging in throughout [discharge sky / which is surrounded with the electrode of the discharge section], and supposing especially that it is granular. While it can be efficient and being able to make adsorption decomposition of the gas constituents using at least one of maintenance of discharge, ozone and heat, and ultraviolet rays perform in the clearance between particles, in order that contacting efficiency may improve, the engine performance can be raised also in this point. Moreover, if the functional material with which ferroelectric ingredients, such as barium titanate, were blended or mixed is used, since a discharge phenomenon can be promoted, the problem produced by having been filled up with the functional material in discharge space can be reduced.

[0043] A functional material may be covered and arranged in the electrode wall surrounding the discharge space of the discharge section, and can aim at reduction of pressure loss in this case, and also it can prevent the problem of the powder omission of a functional material. Moreover, when the enveloping layer by the functional material of an electrode wall is what has irregularity on that front face, in order that this irregularity may make airstream cause a turbulent flow, contact to a functional material and airstream will increase and the engine performance improves. If it covers to some electrode walls and leaves the exposure of an electrode, maintenance of a discharge discharge phenomenon can be made easy in spite of existence of an enveloping layer.

[0044] And although either an ozone deodorization catalyst, a combustion oxidation catalyst or a photocatalyst can be used, when using the deordorization decomposition catalyst which consists of such combination as a functional material, it has higher escape-of-gas capacity. When adsorption material, such as a porosity ceramic, activated carbon, a zeolite, and clay, is used as a functional material, wide range gas constituents can be adsorbed. Since gas constituents can be removed using the description of each functional material respectively when the engine performance improves further and two or more

more sorts of functional materials are arranged in a serial, since each effectiveness by the functional material of both the above-mentioned kinds can be expected when a functional material is constituted from combination of adsorption material and a deordorization decomposition catalyst, nearly perfect deodorization can be performed by the one pass.

[0045] The electrode surrounding the discharge space of the discharge section can be made [of a throughput] high as compared with an occupancy tooth space, while being able to aim at improvement in honeycomb structure, then discharge effectiveness. As compared with a mist beam occupancy tooth space, it can consider as the high thing of a throughput as a laminated structure or roll-like structure, and in arranging a functional material in discharge space, when still more cylindrical, many functional materials can be arranged.

[Translation done.]