Deep Latent Generative Models For Energy Disaggregation

Gissella Bejarano, David Defazio, Arti Ramesh

- Motivation
- Related Work
- My Contribution
 - Main differences
 - VRNN applied to Generation/Disaggregation
- Results

Energy Disaggregation Problem

- Also called non-intrusive load monitoring or NILM (Hart, 1992)
 - An alternative to submeters
- Disaggregated bills can help reduce consumption
 - Home savings
 - Reduce environmental impact

Energy Disaggregation Problem

Given Aggregated signal

$$\mathbf{x} = (x_1, x_2, ..., x_T) \qquad x_t \in \mathbb{R}_+$$

Infer Disaggregated signal of the appliances

$$\mathbf{y} = (y_1, y_2, ..., y_T) \qquad y_t \in \mathbb{R}_+^I$$

Relation between x and y

$$x_t = \sum_{i=1}^{I} y_t^{(i)}$$

time

4

time

- Motivation
- Related Work
- My Contribution
 - Main differences
 - VRNN applied to Generation/Disaggregation
- Future Work

Probabilistic and Deep Learning approaches

- Factorial Hidden Markov Model (FFHM)
 - Discrete states (ON/OFF/..)
- Hinge-Loss Markov Random Field (HL-MRF)
 - Discrete states (ON/OFF/..)
 - Discrete intervals
- Latent Bayesian Melding
 - Require 2 datasets (population and individual)

^{1.} Kolter and Jaakkola, 2012, AISTATS. Approximate Inference in Additive Factorial HMMs with Application to Energy Disaggregation.

^{2.} Tomkins et al., 2017, IJCAI. Disambiguating Energy Disaggregation: A Collective Probabilistic Approach 3. Mingjun Zhong, Nigel Goddard, Charles Sutton, 2015, NIPS. Latent Bayesian melding for integrating individual and population models.

Deep Learning approaches

- Denoising Auto-Encoders (AE)
 - One appliance at a time
 - Deterministic result
- Recurrent Neural Networks (bidirectional LSTM)
 - One appliance at a time
 - Deterministic result

- Motivation
- Related Work
- My Contribution
 - Main differences
 - VRNN applied to Generation/Disaggregation
- Future Work

What do I do differently?

- Do Disaggregation (inference) and generation jointly
- Model continuous values of all the appliances at the time
- Deep latent generative models
 - Stochastic transformation of input
 - Better understanding of the essence
- Deep learning + Probabilistic Models

Contributions

- 1) Adapt the Variational Recurrent Neural Network model (VRNN) for energy consumption signal generation (i.e. synthetic data)
- 2) Propose an Energy disaggregation model through a generation model (VRNN)*
 - One appliance at the time
 - All appliances at the time

^{*}VRNN only has been used for generation

- Motivation
- Related Work
- My Contribution
 - Main differences
 - VRNN applied to Generation/Disaggregation
- Future Work

VAE

- AE model for dimensionality reduction, denoising: Encoder + Decoder
- VAE Introduces a latent variable to learn:

- Parameters ϕ of the variational approximation $q_{\phi}(z|x)$ to the intractable posterior $p_{\theta}(z|x)$

VRNN

- It contains a VAE at each time step
- Intermediate layers outputs: Gaussian Mixture Model $[\mu_{x,t},\sigma_{x,t}^2] = \sum_{i=1}^k \pi_i \phi_{i,\tau}^{dec}$

Sample z, x' from those distribution parameters

Cost – VAE vs VRNN

- Maximize Variational Lower bound
 - Kullback–Leibler divergence (q p) minimization
 - Negative log-likelihood to better explain decoding
- VRNN cost includes previous time-step values

LOG-LIKELIHOOD	
VAE	$\log p_{\theta}(x z)$
VRNN	$\log p_{\theta}(x_t z_{\leq t}, x_{< t})$

KL divergence	
VAE	$\mathrm{D}_{KL}(q_{\phi}(z x)\ p_{ heta}(z))$
VRNN	$D_{KL}(q_{\phi}(z_t x_{\leq t},z_{< t}) p_{\theta}(z_t x_{< t},z_{< t}))$

General VRNN for Disaggregation

VAE at each time step

VRNN-DIS-ALL \hat{y}_t^0 \hat{y}_t^I \hat{y}_t^1 (TRAINING) $ertarphi_{ au}^{prior}$ $arphi_{ au}^{dec_0}$ $arphi_{ au}^{dec_{I}}$ $\left(arphi_{ au}^{dec_{1}}
ight)$ Sampling from distribution of KL each appliance Log-likelihood $arphi_{ au}^{enc}$ z_t \mathbf{h}_t \mathcal{X}_t Sampling from **ENCODER distribution**

16

 y_t

VRNN-DIS-ALL (TESTING)

17

- Motivation
- Related Work
- My Contribution
 - Main differences
 - VRNN applied to Generation/Disaggregation
- Results

Datasets

REDD

- 4 buildings
- 4 appliances
- Samples every 1 minute
- ~2 months

Dataport (Pecan-Street)

- 5 buildings
- 8 appliances
- Samples every 1 minute
- 1 year

Preprocessing

- 1) Slide not overlapped window
- 2) Filtering moments with no activation
- 3) Split in train-validation-test: 0.5-0.25-0.25

MAE

- Dataport (left): Our model outperforms all the other models in average across all the appliances and all the buildings
- REDD (right): Our model outperforms other for appliances such as dishwasher and lights

$$\% Total Energy = \frac{y_{1:T}^i}{x_{1:T}}$$

Dataport

Building 2859 0.75 0.5 0.25 0 Air Furnace Refrigerator Dryer Others **Building 6990** 0.75 0.5 Percentage of Total Energy Consumption Dryer Furnace Refrigerator Others Air **Building 7951** Furnace Air Refrigerator Dryer Others **Building 8292** Furnace Refrigerator Dryer Air Others **Building 3413** 0.75 0.5 0.25 0 Air Furnace Refrigerator Dryer Others Real Predicted

REDD

Dataport

• Building 8292

Air-conditioner

Refrigerator

- Furnace

REDD

- Building 1
 - Light

- Refrigerator

- Microwave

Thank you!