

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF BARISAL Final EXAMINATION

Course Title: Digital Logic Design

Course Code: CSE-2103

3rd Semester

Session: 2020-21 (Admission Session 2019-20)

K N. K.

Marks: 60

[2]

[2]

Time: 3 hour

Answer any five Questions from the followings.

- 1. a) Mention the Duality Principle.
 - b) Implement the function using NAND gate –

F = A'B + BC'

c) Simplify the following Boolean function F using don't care condition – [5]

F = B'DE' + A'BE + B'C'E' + A'BC'D'

Simplify the following Boolean function D in product of Sums -

D = BDE' + CD'E'

List the limitation of K-map.

- · ·
- 2. a) Show that the dual of the exclusive-OR is also its complement. [3]
 - b) Implement the following Boolean expression with exclusive-OR and AND gates: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D [3]
 - c) Write the Boolean equations and draw the logic diagram of the circuit whose outputs are defined by the following truth table:

f ₂	a	ь	c
0	0	0	0
O	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
11	1	0	1
1	1	1	0
0	Î	1	1
	f ₂ 0 0 1 1 1 1 0	f ₂ a 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1	f2 a b 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1

- 3. a) How a NAND/NOR latch store a bit?
 - Explain a clocked S-R FlipFlop with waveforms? [4]
 - c) Define Race Around condition in J-K FlipFlop. How can you overcome the problem? Explain [6] with an appropriate figure and waveforms.

[2]

		어떤 아들이 그 그는 그렇게 살아왔다. 그 그런 그를 사용할 수 있다면 어린 아들이 아들이 살아 있다.		
4.	a)	Design and explain the working principle of a 8-bit parallel adder	[6]	
	b)	Using 2's complement system perform the following operations:	[2]	
		i) -65-88 ii) 34+55		
	c)	Draw a 8-bit parallel adder using 74LS283 ICs which will be able to perform both subtraction and addition operation.	[4]	
5.	a)	Explain the working principle of a 3-bit ripple counter with timing diagram.	[5]	
	b)	What is Mod number? What is the method of designing a counter with "Mod Number" <2 ^N .		
	c)	Draw the diagram of a Mod-13 down counter with state diagram.	[4]	
6.	a)	Explain the working principle of CMOS NAND and NOR gates.	[5]	
	b)	Draw the circuit diagrams of TTL NAND and NOR gates.	[4]	
	c)	Compare various characteristics of TTL and CMOS logic gate.	[3]	
7.	a)	Draw the logic diagram of a 1-of-16 decoder and explain its operation. Consider an enable input in your design.	[5]	
	b)	Use 74LS138 ICs to design a 1 of 40 decoder.	[5]	
	c)	Draw the logic diagram of 7442 IC.	[2]	
8.	a)	What is Multiplexer? Using 74HC151 ICs, design a 16-input MUX and explain its operation.	[5]	
ent de	b)	With appropriate diagram explain the working principle of a 1 line to 16 line Demultiplexer.	[4]	

[3]

c) Draw the diagram and truth table of an Octal to binary encoder.