Calculus 1

Esercizi tutorato 8

1. Consideriamo la funzione f definita da

$$f(x) = \frac{\ln(e^x - e^{-x})}{\ln(e^x + e^{-x})}.$$

- (a) Calcolare il dominio e i limiti agli estremi del dominio.
- (b) Dire se esiste un punto $c \in \text{dom } f$ tale che f(c) = 0.
- (c) Calcolare gli estremi inferiore e superiore dell'immagine di f.
- (d) Dire se la funzione f ammette massimo e/o minimo.
- **2.** Dire per quali valori di β esiste una funzione $f:[0,1]\to\mathbb{R}$ per cui valgano le seguenti condizioni:
 - i) f(0) = 0;
 - ii) $f(1) = \beta$;
 - iii) $1 < f'(x) \le 2 \text{ per ogni } x \in [0, 1].$

Per i valori di β trovati, determinare una funzione per cui le condizioni i) e ii) siano vere e la condizione iii) sia falsa.

3. Stabilire per quali $\alpha \in \mathbb{R}$ la funzione $f_{\alpha} \colon \mathbb{R} \to \mathbb{R}$ definita da

$$f_{\alpha}(x) = \begin{cases} \frac{e^{x} - 1}{x} & \text{se } x < 0, \\ \alpha x + \cos x & \text{se } x \ge 0, \end{cases}$$

è derivabile.

- **4.** Applicare il metodo di bisezione alla funzione $f: [1,2] \to \mathbb{R}, f(x) = x^2 2$, per ottenere un'approssimazione di $\sqrt{2}$ a meno di un errore di 0.05.
- 5.* Siano $f(x) = x + \sin x \cos x$ e $g(x) = x(2 + \sin x) + 2\sin x \cos x + \cos x$. Calcolare

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} \qquad e \qquad \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Commentare i risultati ottenuti.