

Congratulations! You passed!

Grade received 90%

A single unit in the output layer

Latest Submission Grade 90% To pass 80% or higher

Go to next item

1.	Which of the below are key reasons behind the current deep learning boom (select all that apply)?	1/1 point
	The amount of data available for training neural networks has grown exponentially in recent years	
	⊘ Correct	
	Computational power has increased tremendously in recently years, enabling the training of much deeper neural networks	
	⊙ Correct	
	Neural networks were only recently invented and so we are just now beginning to realize what they can do	
	Numerous researchers and practitioners have made significant efforts to label vast amounts of data for training supervised models	
	⊙ Correct	
2.	In which of the following situations would a neural network not be a good choice of algorithm to use?	1/1 point
	 We have a very large number of features, such as in computer vision where each pixel of an image can be considered a feature 	
	Interpretability of the model outputs is very important	
	O There are complex relationships between the input features and the target values	
	We have a vast amount of training data available	
	⊘ Correct	
3.	What is the key difference between neural network training using stochastic gradient descent (SGD) and batch training?	1 / 1 point
	O If we use SGD we do not need to split our data to create separate training and test sets, as we do with batch training	
	O Batch gradient descent can be used for training on very large datasets which SGD cannot	
	When training using SGD we iteratively update the model weights using one observation at a time, while in batch training we calculate the weight updates based on all observations in the training set for each iteration	
	O In SGD we can take advantage of vectorized operations to speed training, while in batch training we cannot	
	⊙ Correct	
4.	What is the advantage of using a deep neural network with many layers relative to a shallow network with only an input and output layer?	1 / 1 point
	Neural networks with many hidden layers can handle problems with very complex decision boundaries while shallow networks are more limited in their ability to represent complex relationships	
	O Deep neural networks can process large amounts of data while shallow networks cannot	
	O Deep neural networks are more interpretable than shallow networks	
	O Deep neural networks always give better performance in generalizing to predict on new data as compared to shallow networks	
	⊙ Correct	
5.	We are building a classification model using a neural network to identify five different lung diseases from chest x-ray images. How many units would be in the output layer of our neural network?	1 / 1 point

Ten units in the output layer	
The number of output units is a hyperparameter we can optimize by trying different values	
Five units in the output layer	
6. Which of the following are correct regarding the role of the learning rate in training a neural network (select all that apply)?	1 / 1 point
☑ The learning rate determines how much the model weights change during every iteration of training	
⊘ Correct	
If the learning rate is too small, the model training will converge too quickly	
If the learning rate is too large, the gradient will bounce around and may diverge, preventing the model training from converging to the optimal weights	
⊘ Correct	
☐ We should always use a learning rate of 0.01 in training neural networks	
7. Why do we commonly use transfer learning when using neural networks for tasks in computer vision or natural language processing?	1 / 1 point
We use transfer learning because it gives us access to a model which is ready to use for our specific task with no additional training needed	
It is impossible for an individual person to fully train a neural network from scratch for a single project, so we must use transfer learning	
We benefit from the significant earlier training of the model while still being able to perform fine-tuning training to enable the model to perform well on our specific task	
Transfer learning always gives us a model with better performance than training one completely from scratch	
⊘ Correct	
8. In computer vision, what is the difference between image classification and object detection?	0 / 1 point
In image classification we seek to identify what object(s) are contained in the image, whereas with object detection we also seek to identify the location of each object	
In object detection we seek to classify every pixel in the image as an object, whereas in image classification we seek only to identify the primary object in the image	
O In image classification we are classifying static images while in object detection we classify objects found in video	
Image classification and object detection refer to the same task	
⊗ Incorrect Semantic segmentation refers to the classification of each pixel in an image by the object it belongs to.	
9. What is the current dominant approach for text sequence modeling?	4/4
Bag of words	1/1 point
Transformer models	
○ GloVe	
○ Word embeddings	
⊘ Correct	
10. Which of the following are issues that are often encountered in working with neural networks (select all that apply)?	1 / 1 point

. .

⊘ Correct
Neural networks can easily overfit, particularly on small data
⊘ Correct
The output of neural networks can be difficult to interpret
⊘ Correct
Relative to other models, neural networks can struggle on problems with many features such as computer vision or natural language processing