Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Projeto e Análise de Algoritmos Parte 1

Raquel Mini raquelmini@pucminas.br

O que é um algoritmo?

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores como saída
- Sequência de passos computacionais que transformam a entrada na saída
- Sequência de ações executáveis para a obtenção de uma solução para um determinado tipo de problema
- Descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações
- Sequência não ambígua de instruções que é executada até que determinada condição se verifique

Algoritmo correto X incorreto

- Um algoritmo é correto se, para cada instância de entrada, ele para com a saída correta
- Um algoritmo incorreto pode não parar em algumas instâncias de entrada, ou então pode parar com outra resposta que não a desejada

Algoritmo eficiente X ineficiente

- Algoritmos eficientes são os que executam em tempo polinomial
- Algoritmos que necessitam de tempo superpolinomial são chamados de ineficientes

Problema tratável X intratável

- Problemas que podem ser resolvidos por algoritmo de tempo polinomial são chamados de tratáveis
- Problemas que exigem tempo superpolinomial são chamados de intratáveis

Tratabilidade

Problema decidível X indecidível

- Um problema é decidível se existe algoritmo para resolvê-lo
- Um problema é indecidível se não existe algoritmo para resolvê-lo

Decidibilidade

Análise de algoritmos

- Analisar a complexidade computacional de um algoritmo significa prever os recursos de que o mesmo necessitará:
 - Memória
 - Largura de banda de comunicação
 - Hardware
 - Tempo de execução
- Geralmente existe mais de um algoritmo para resolver um problema
- A análise de complexidade computacional é fundamental no processo de definição de algoritmos mais eficientes para a sua solução
- Em geral, o tempo de execução cresce com o tamanho da entrada

- O tempo de computação e o espaço na memória são recursos limitados
 - Os computadores podem ser rápidos, mas não são infinitamente rápidos
 - A memória pode ser de baixo custo, mas é finita e não é gratuita
- Os recursos devem ser usados de forma sensata, e algoritmos eficientes em termos de tempo e espaço devem ser projetados
- Com o aumento da velocidade dos computadores, torna-se cada vez mais importante desenvolver algoritmos mais eficientes, devido ao aumento constante do tamanho dos problemas a serem resolvidos

 Suponha que para resolver um determinado problema você tem disponível um algoritmo exponencial (2ⁿ) e um computador capaz de executar 10⁴ operações por segundo

		2 ⁿ na máquina 10 ⁴	
	tempo (s)	tamanho	
	0,10	10	
	1	13	
1 minuto	60	19	
1 hora	3.600	25	
1 dia	86.400	30	
1 ano	31.536.000	38	

 Compra de um novo computador capaz de executar 109 operações por segundo

		2 ⁿ na máquina 10 ⁴	2 ⁿ na máquina 10 ⁹	
	tempo (s)	tamanho	tamanho	
	0,10	10	27	
	1	13	30	
1 minuto	60	19	36	
1 hora	3.600	25	42	
1 dia	86.400	30	46	
1 ano	31.536.000	38	55	

Aumento na velocidade computacional tem pouco efeito no tamanho das instâncias resolvidas por algoritmos ineficientes

• Investir em algoritmo:

Você encontrou um algoritmo quadrático (n²) para resolver o problema

		2 ⁿ na máquina 10 ⁴	2 ⁿ na máquina 10 ⁹	n² na máquina 10⁴	n² na máquina 10 ⁹
	tempo (s)	tamanho	tamanho	tamanho	tamanho
	0,10	10	27	32	10.000
	1	13	30	100	31.623
1 minuto	60	19	36	775	244.949
1 hora	3.600	25	42	6.000	1.897.367
1 dia	86.400	30	46	29.394	9.295.160
1 ano	31.536.000	38	55	561.569	177.583.783

Novo algoritmo oferece uma melhoria maior que a compra da nova máquina

Porque estudar projeto de algoritmos?

- Algum dia você poderá encontrar um problema para o qual não seja possível descobrir prontamente um algoritmo publicado
- É necessário estudar técnicas de projeto de algoritmos, de forma que você possa desenvolver algoritmos por conta própria, mostrar que eles fornecem a resposta correta e entender sua eficiência

Exercício

1. Para cada função f(n) e cada tempo t na tabela a seguir, determine o maior tamanho n de um problema que pode ser resolvido no tempo t, supondo-se que o algoritmo para resolver o problema demore f(n) segundos

	1 seg.	1 min.	1 hora	1 dia	1 mês	1 ano	1 século
log n							
\sqrt{n}							
n							
n log n							
n ²							
n ³							
2 ⁿ							
n!							

Medida do Tempo de Execução de um Programa

Ziviani – págs. 1 até 11

Cormen – págs. 3 até 20

Tipos de problemas na análise de algoritmos

- Análise de um algoritmo particular
- Análise de uma classe de algoritmos

Análise de um algoritmo particular

- Qual é o custo de usar um dado algoritmo para resolver um problema específico?
- Características que devem ser investigadas:
 - Análise do número de vezes que cada parte do algoritmo deve ser executada
 - Estudo da quantidade de memória necessária

Análise de uma classe de algoritmos

- Qual é o algoritmo de menor custo possível para resolver um problema particular?
- Toda uma família de algoritmos é investigada
- Procura-se identificar um que seja o melhor possível
- Colocam-se limites para a complexidade computacional dos algoritmos pertencentes à classe

Custo de um algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema
- Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada
- Podem existir vários algoritmos para resolver o mesmo problema
- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado

Função de complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade T
- T(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n
- Função de complexidade de tempo: T(n) mede o tempo necessário para executar um algoritmo para um problema de tamanho n
- Função de complexidade de espaço: T(n) mede a memória necessária para executar um algoritmo para um problema de tamanho n
- Utilizaremos T para denotar uma função de complexidade de tempo daqui para a frente
- Na realidade, a complexidade de tempo não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada

Exemplo: Maior elemento

• Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[1..n], $n \ge 1$

```
function Max (var A: Vetor): integer;
var i, Temp: integer;
begin
  Temp := A[1];
  for i:=2 to n do if Temp < A[i] then Temp := A[i];
  Max := Temp;
end;</pre>
```

- Seja T uma função de complexidade tal que T(n) seja o número de comparações entre os elementos de A, se A contiver n elementos
- Logo T(n) = n 1 para $n \ge 1$
- Vamos provar que o algoritmo apresentado no programa acima é ótimo

Exemplo: Maior elemento

- **Teorema**: Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, $n \ge 1$, faz pelo menos n-1 comparações
- Prova: Cada um dos n 1 elementos tem de ser mostrado, por meio de comparações, que é menor que algum outro elemento
- Logo n-1 comparações são necessárias
- O teorema acima nos diz que, se o número de comparações for utilizado para medida de custo, então a função Max do programa anterior é ótima

Tamanho da entrada de dados

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada de dados
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada
- Para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada
- No caso da função \max do programa do exemplo, o custo é uniforme sobre todos os problemas de tamanho n
- Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos

Melhor caso, pior caso e caso médio

• Melhor caso:

Menor tempo de execução sobre todas as entradas de tamanho n

Pior caso:

- Maior tempo de execução sobre todas as entradas de tamanho n
- Se T é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que T(n)
- Caso médio (ou caso esperado):
 - $-\,$ Média dos tempos de execução de todas as entradas de tamanho n

Melhor caso, pior caso e caso médio

- Na análise do caso esperado, supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n e o custo médio é obtido com base nessa distribuição
- A análise do caso médio é geralmente muito mais difícil de obter do que as análises do melhor e do pior caso
- É comum supor uma distribuição de probabilidades em que todas as entradas possíveis são igualmente prováveis
- Na prática isso nem sempre é verdade

Exemplo: Registros de um arquivo

- Considere o problema de acessar os registros de um arquivo
- Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo
- O problema: dada uma chave qualquer, localize o registro que contenha esta chave
- O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial

Exemplo: Registros de um arquivo

- Seja T uma função de complexidade tal que T(n) é o número de registros consultados no arquivo (número de vezes que a chave de consulta é comparada com a chave de cada registro)
 - Melhor caso: T(n) = 1 (registro procurado é o primeiro consultado)
 - Pior caso: T(n) = n

(registro procurado é o último consultado não está presente no arquivo)

- Caso médio: $T(n) = \frac{(n+1)}{2}$

Exemplo: Registros de um arquivo

- No estudo do caso médio, vamos considerar que toda pesquisa recupera um registro
- Se p_i for a probabilidade de que o i-ésimo registro seja procurado, e considerando que para recuperar o i-ésimo registro são necessárias i comparações, então

$$T(n) = (1 \times p_1) + (2 \times p_2) + (3 \times p_3) + \dots + (n \times p_n)$$

- Para calcular T(n) basta conhecer a distribuição de probabilidades p_i
- Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então $p_i=1/n, 1 \le i \le n$
- Neste caso $T(n) = \frac{1}{n}(1+2+3+\cdots+n) = \frac{1}{n}\left(\frac{n(n+1)}{2}\right) = \frac{n+1}{2}$
- A análise do caso esperado revela que uma pesquisa com sucesso examina aproximadamente metade dos registros

Exercício

2. No problema de acessar os registros de um arquivo, seja T uma função de complexidade tal que T(n) é o número de registros consultados no arquivo. Seja q a probabilidade de que uma pesquisa seja realizada com sucesso (chave procurada se encontra no arquivo) e (1-q) a probabilidade da pesquisa sem sucesso (chave procurada não se encontra no arquivo). Considere também que nas pesquisas com sucesso todos os registros são igualmente prováveis. Encontre a função de complexidade para o caso médio.

- Considere o problema de encontrar o maior e o menor elemento de um vetor de inteiros A[1..n], n≥ 1
- Um algoritmo simples pode ser derivado do algoritmo apresentado no programa para achar o maior elemento

- Seja T(n) o número de comparações entre os elementos de A, se A tiver n elementos
- Logo T(n) = 2(n-1), para n > 0, para o melhor caso, pior caso e caso médio.

- MaxMin1 pode ser facilmente melhorado:
 - a comparação A[i] < Min só é necessária quando o resultado da comparação A[i] > Max for falso

```
procedure MaxMin2 (Var A: Vetor; Var Max, Min: integer);
var i: integer;
begin
    Max := A[1];    Min := A[1];
    for i := 2 to n do
        if A[i] > Max
        then Max := A[i]
        else if A[i] < Min then Min := A[i];
end;</pre>
```

- Para a nova implementação temos:
 - Melhor caso: T(n) = n-1 (quando os elementos estão em ordem crescente)
 - Pior caso: T(n) = 2(n-1) (quando o maior elemento está na 1ª posição)
 - Caso médio: $T(n) = \frac{3n}{2} \frac{3}{2}$
- Caso médio:
 - A[i] é maior do que Max a metade das vezes
 - Logo, $T(n) = n-1 + \frac{n-1}{2} = \frac{3n}{2} \frac{3}{2}$, para n > 0

- Considerando o número de comparações realizadas, existe a possibilidade de obter um algoritmo mais eficiente:
 - 1. Compare os elementos de A aos pares, separando-os em dois subconjuntos (maiores em um e menores em outro), a um custo de $\lceil n/2 \rceil$ comparações
 - 2. O máximo é obtido do subconjunto que contém os maiores elementos, a um custo de $\lceil n/2 \rceil 1$ comparações
 - 3. O mínimo é obtido do subconjunto que contém os menores elementos, a um custo de $\lceil n/2 \rceil 1$ comparações


```
procedure MaxMin3(var A: Vetor;
                  var Max, Min: integer);
var i,
    FimDoAnel: integer;
begin
  {Garante uma qte par de elementos no vetor para evitar caso de exceção}
  if (n mod 2) > 0
 then begin
        A[n+1] := A[n];
        FimDoAnel := n;
       end
  else FimDoAnel := n-1;
  {Determina maior e menor elementos iniciais}
  if A[1] > A[2]
 then begin
         Max := A[1]; Min := A[2];
       end
  else begin
        Max := A[2]; Min := A[1];
       end;
```

```
i:= 3;
  while i <= FimDoAnel do</pre>
    begin
    {Compara os elementos aos pares}
    if A[i] > A[i+1]
    then begin
           if A[i] > Max then Max := A[i];
           if A[i+1] < Min then Min := A[i+1];</pre>
         end
    else begin
           if A[i] < Min then Min := A[i];</pre>
           if A[i+1] > Max then Max := A[i+1];
         end;
    i := i + 2;
    end;
end;
```

- Os elementos de A são comparados dois a dois e os elementos maiores são comparados com Max e os elementos menores são comparados com Min
- Quando n é impar, o elemento que está na posição A[n] é duplicado na posição A[n+1] para evitar um tratamento de exceção
- Para esta implementação, $T(n) = \frac{n}{2} + \frac{n-2}{2} + \frac{n-2}{2} = \frac{3n}{2} 2$ para n > 0, para o melhor caso, pior caso e caso médio

Comparação entre os algoritmos MaxMin1, MaxMin2 e MaxMin3

- A tabela abaixo apresenta uma comparação entre os algoritmos dos programas MaxMin1, MaxMin2 e MaxMin3, considerando o número de comparações como medida de complexidade
- Os algoritmos MaxMin2 e MaxMin3 são superiores ao algoritmo MaxMin1 de forma geral.
- O algoritmo MaxMin3 é superior ao algoritmo MaxMin2 com relação ao pior caso e bastante próximo quanto ao caso médio

Ostrês	T (n)			
algoritmos	Melhor caso	Pior caso	Caso médio	
MaxMin1	2(n-1)	2(n-1)	2(n-1)	
MaxMin2	n-1	2(n-1)	3n/2 - 3/2	
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2	

Comparação entre os algoritmos MaxMin1, MaxMin2 e MaxMin3

Exercício

3. Apresente a função de complexidade de tempo para os algoritmos abaixo, indicando em cada caso qual é a operação relevante:

```
a)
    ALG1()
    for i ← 1 to 2 do
        for j ← i to n do
            for k ← i to j do
            temp ← temp + i + j + k
```

```
b)
    INSERTION-SORT(A)
    for j ← 2 to n do
        chave ← A[j]
        i ← j - 1
        A[0] ← chave //sentinela
        while A[i] > chave do
        A[i+1] ← A[i]
        i ← i-1
        A[i+1] ← chave
```

Exercício

```
C) BUBBLE-SORT(A)
  for i ← 1 to n do
    for j ← n downto i+1 do
       if A[j] < A[j-1] then
          A[j] ↔ A[j-1]</pre>
```

```
d)
    SELECTION-SORT(A)
    for i ← 1 to n-1 do
        Min ← i
        for j ← i+1 to n do
        if A[j] < A[Min] then
            Min ← j
        A[Min] ↔ A[i]</pre>
```

Comportamento Assintótico

Ziviani – págs. 11 até 19

Cormen - págs. 32 até 49

Comportamento assintótico de funções

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
- A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno
- Logo, a análise de algoritmos é realizada para valores grandes de n
- Estuda-se o comportamento assintótico das funções de custo (comportamento de suas funções de custo para valores grandes de n)
- Para entradas grandes o bastante, as constantes multiplicativas e os termos de mais baixa ordem de um tempo de execução podem ser ignorados

Dominação assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada
- **Definição**: Uma função f(n) **domina assintoticamente** outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos $|g(n)| \le c \times |f(n)|$

• Exemplo:

- Sejam $g(n) = (n+1)^2$ e $f(n) = n^2$
- As funções g(n) e f(n) dominam assintoticamente uma a outra, já que
- $|(n+1)^2| \le 4|(n^2)|$ para $n \ge 1$ e
- $|(n^2)| \le |(n+1)^2|$ para $n \ge 0$

Como medir o custo de execução de um algoritmo?

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se T(n) é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de tempo de algoritmo
- Se T(n) é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de espaço de algoritmo

Observação: tempo não é tempo!

 É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada

Custo assintótico de funções

- É interessante comparar algoritmos para valores grandes de
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce
- Em geral, o custo aumenta com o tamanho n do problema
- Observação:
 - Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado

Notação assintótica de funções

 Existem três notações principais na análise de assintótica de funções:

- Notação ⊕
- Notação O ("O" grande)
- Notação Ω

Notação ⊕

$$f(n) = \Theta(g(n))$$

Notação ⊕

- A notação Θ limita a função por fatores constantes
- Escreve-se $f(n) = \Theta(g(n))$, se existirem constantes positivas c_1 , c_2 e n_0 tais que para $n \ge n_0$, o valor de f(n) está sempre entre $c_1g(n)$ e $c_2g(n)$ inclusive
- Neste caso, pode-se dizer que g(n) é um limite assintótico firme (em inglês, asymptotically tight bound) para f(n)

$$f(n) = \Theta(g(n)), \exists c_1 > 0, c_2 > 0 \text{ e } n_0 \mid$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0$$

Notação ⊕: Exemplo

• Mostre que $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Para provar esta afirmação, devemos achar constantes $c_1 > 0$, $c_2 > 0$, $n_0 > 0$, tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

para todo $n \ge n_0$

Se dividirmos a expressão acima por n² temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

Notação ⊕: Exemplo

Notação ⊕: Exemplo

- A inequação mais a direita será sempre válida para qualquer valor de $n \ge 1$ ao escolhermos $c_2 \ge \frac{1}{2}$
- Da mesma forma, a inequação mais a esquerda será sempre válida para qualquer valor de $n \ge 7$ ao escolhermos $c_1 \le \frac{1}{14}$
- Assim, ao escolhermos $c_1=1/14$, $c_2=1/2$ e $n_0=7$, podemos verificar que $\frac{1}{2}n^2-3n=\Theta(n^2)$
- Note que existem outras escolhas para as constantes c_1 e c_2 , mas o fato importante é que a escolha existe
- Note também que a escolha destas constantes depende da função $\frac{1}{2}n^2 3n$
- Uma função diferente pertencente a $\Theta(n^2)$ irá provavelmente requerer outras constantes

Exercício

4. Prove que:

- $\mathbf{a)} \, 2n^2 + n = \Theta(n^2)$
- **b)** $3n^3 + 2n^2 + n = \Theta(n^3)$
- $\mathbf{C)}\log_5^n = \Theta(\log n)$
- $d) 7n \log n + n = \Theta(n \log n)$
- 5. Usando a definição formal de Θ , prove que $6n^3 \neq \Theta(n^2)$.

Notação O

$$f(n) = \mathcal{O}(g(n))$$

Notação O

- A notação O define um limite superior para a função, por um fator constante
- Escreve-se f(n) = O(g(n)), se existirem constantes positivas c e n_0 tais que para $n \ge n_0$, o valor de f(n) é menor ou igual a cg(n). Neste caso, pode-se dizer que g(n) é um limite assintótico superior (em inglês, asymptotically upper bound) para f(n)

$$f(n) = O(g(n)), \exists c > 0 \in n_0 \mid 0 \le f(n) \le cg(n), \forall n \ge n_0$$

• Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n). Lê-se f(n) é da ordem no máximo g(n)

Notação O: Exemplos

- Seja $f(n) = (n+1)^2$
 - Logo f(n) é $O(n^2)$, quando $n_0 = 1$ e c = 4, já que $(n+1)^2 \le 4n^2$ para $n \ge 1$
- Seja f(n) = n e $g(n) = n^2$. Mostre que g(n) não é O(n)
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$
 - Suponha que existam constantes c e n_0 tais que para todo $n \ge n_0$, $n^2 \le cn$. Assim, $c \ge n$ para qualquer $n \ge n_0$. No entanto, não existe uma constante c que possa ser maior ou igual a n para todo n

Notação O: Exemplos

- Mostre que $g(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$
 - A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca que dizer que g(n) é $O(n^3)$

- Mostre que $h(n) = \log_5 n$ é $O(\log n)$
 - O $\log_b n$ difere do $\log_c n$ por uma constante que no caso é $\log_b c$
 - Como $n=c^{\log_c n}$, tomando o logaritmo base b em ambos os lados da igualdade, temos que $\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c$

Notação O

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é O(n²) no pior caso
 - Este limite se aplica para qualquer entrada
- O que se quer dizer quando se fala que "o tempo de execução é $O(n^2)$ " é que no pior caso o tempo de execução é $O(n^2)$
 - ou seja, não importa como os dados de entrada estão arranjados, o tempo de execução em qualquer entrada é $O(n^2)$

Operações com a notação O

```
f(n) = O(f(n))
c \times O(f(n)) = O(f(n)) \ c = constante
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n)) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```

Operações com a notação O: Exemplos

- Regra da soma O(f(n)) + O(g(n))
 - Suponha três trechos cujos tempos de execução sejam $O(n), O(n^2)$ e $O(n \log n)$
 - O tempo de execução dos dois primeiros trechos é $O(\max(n, n^2))$, que é $O(n^2)$
 - O tempo de execução de todos os três trechos é então $O(\max(n^2, \log n))$, que é $O(n^2)$
- O produto de $[\log n + k + O(1/n)]$ por $[n + O(\sqrt{n})]$ é $n \log n + kn + O(\sqrt{n} \log n)$

Exercício

6. Mostre se f(n) = O(g(n)) para os seguintes casos.

a)
$$f(n) = \frac{1}{2}n^2 - 3n$$
 e $g(n) = n^2$

b)
$$f(n) = n \log n - 3n$$
 e $g(n) = n^2$

c)
$$f(n) = n \log n - 3n$$
 e $g(n) = n$

Notação Ω

$$f(n) = \Omega(g(n))$$

Notação Ω

- A notação Ω define um limite inferior para a função, por um fator constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas c e n_0 tais que para $n \ge n_0$, o valor de f(n) é maior ou igual a cg(n)
 - Pode-se dizer que g(n) é um limite assintótico inferior (em inglês, asymptotically lower bound) para f(n)

$$f(n) = \Omega(g(n)), \exists c > 0 \in n_0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0$$

Notação Ω

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é Ω(n) no melhor caso
 - O tempo de execução do algoritmo de ordenação por inserção é $\Omega(n)$
- O que significa dizer que "o tempo de execução" (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio) é $\Omega(g(n))$?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes g(n) para valores suficientemente grandes de n

Notação Ω: Exemplos

• Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$

Limites do algoritmo de ordenação por inserção

- O tempo de execução do algoritmo de ordenação por inserção está entre $\Omega(n)$ e $O(n^2)$
- Estes limites são assintoticamente os mais firmes possíveis
 - Por exemplo, o tempo de execução deste algoritmo não é $\Omega(n^2)$, pois o algoritmo executa em tempo $\Theta(n)$ quando a entrada já está ordenada

Teorema

• Para quaisquer funções f(n) e g(n),

$$f(n) = \Theta(g(n))$$

se e somente se,

$$f(n) = O(g(n))$$
, e

$$f(n) = \Omega(g(n))$$

Mais sobre notação assintótica de funções

- Existem duas outras notações na análise assintótica de funções:
 - Notação o ("O" pequeno)
 - Notação ω
- Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω, respectivamente

Notação o

- O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não
 - Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite $2n = O(n^2)$ não é
- A notação o é usada para definir um limite superior que não é assintoticamente firme
- Formalmente a notação o é definida como:

$$f(n) = o(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0$

• Exemplo, $2n = o(n^2)$ mas $2n^2 \neq o(n^2)$

Notação o

- As definições das notações O e o são similares
 - A diferença principal é que em f(n) = o(g(n)), a expressão $0 \le f(n) < cg(n)$ é válida para todas constantes c > 0
- Intuitivamente, a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito. Isto pode ser expresso da seguinte forma:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

Alguns autores usam este limite como a definição de o

Notação ω

- Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação o
- Formalmente a notação ω é definida como:

$$f(n) = \omega(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0$

- Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$
- A relação $f(n) = \omega(g(n))$ implica em

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

se o limite existir

Exercício

7. Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas.

a)
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

$$b) 7n^2 = O(n)$$

C)
$$2^{n+2} = O(2^n)$$

d)
$$2^{2n} = O(2^n)$$

e)
$$5n^2 + 7n = \Theta(n^2)$$

f)
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

g)
$$9n^3 + 3n = \Omega(n)$$

h)
$$9n^3 + 3n = o(n^3)$$

Comparação de programas

- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade
- Um programa com tempo de execução $\Theta(n)$ é melhor que outro com tempo $\Theta(n^2)$
 - Porém, as constantes de proporcionalidade podem alterar esta consideração
- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?
 - Depende do tamanho do problema
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n
 - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é $\Theta(n^2)$
 - Entretanto, quando n cresce, o programa com tempo de execução $\Theta(n^2)$ leva muito mais tempo que o programa $\Theta(n)$

Classes de Comportamento Assintótico Complexidade Constante

- $f(n) = \Theta(1)$
 - O uso do algoritmo independe do tamanho de n
 - As instruções do algoritmo são executadas um número fixo de vezes
 - O que significa um algoritmo ser $\Theta(2)$ ou $\Theta(5)$?

Classes de Comportamento Assintótico Complexidade logarítmica

- $f(n) = \Theta(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores
 - Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande
- Supondo que a base do logaritmo seja 2:
 - Para n = 1000, $\log_2 \approx 10$
 - Para $n = 1\ 000\ 000,\ \log_2 \approx 20$
- Exemplo:
 - Algoritmo de pesquisa binária

Classes de Comportamento Assintótico Complexidade linear

- $f(n) = \Theta(n)$
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra

Exemplo:

Algoritmo de pesquisa sequencial

Classes de Comportamento Assintótico Complexidade linear logarítmica

- $f(n) = \Theta(n \log n)$
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções
 - Caso típico dos algoritmos baseados no paradigma divisão-econquista
- Supondo que a base do logaritmo seja 2:
 - Para $n = 1\ 000\ 000,\ \log_2 \approx 20\ 000\ 000$
 - Para $n = 2\ 000\ 000$, $\log_2 \approx 42\ 000\ 000$
- Exemplo:
 - Algoritmo de ordenação MergeSort

Classes de Comportamento Assintótico Complexidade quadrática

- $f(n) = \Theta(n^2)$
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro do outro
 - Para n = 1000, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 4
 - Algoritmos deste tipo s\u00e3o \u00fateis para resolver problemas de tamanhos relativamente pequenos

• Exemplos:

Algoritmos de ordenação simples como seleção e inserção

Classes de Comportamento Assintótico Complexidade cúbica

- $f(n) = \Theta(n^3)$
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos
 - Para n = 100, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 8

Exemplo:

Algoritmo para multiplicação de matrizes

Classes de Comportamento Assintótico Complexidade Exponencial

- $f(n) = \Theta(2^n)$
 - Algoritmos desta ordem de complexidade não são úteis sob o ponto de vista prático
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los
 - Para n = 20, o tempo de execução é cerca de 1000000
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado

Exemplo:

Algoritmo do Caixeiro Viajante

Classes de Comportamento Assintótico Complexidade Exponencial

- $f(n) = \Theta(n!)$
 - Um algoritmo de complexidade $\Theta(n!)$ é dito ter complexidade exponencial, apesar de $\Theta(n!)$ ter comportamento muito pior do que $\Theta(2^n)$
 - Geralmente ocorrem quando se usa força bruta na solução do problema

Considerando:

- n = 20, temos que 20! = 2432902008176640000, um número com 19 dígitos
- -n = 40 temos um número com 48 dígitos

Comparação de funções de complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
_n 3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n ⁵	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2 ⁿ	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3 ⁿ	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

10°	Computador	Computador 100	Computador 1000
custo de tempo	atual	vezes mais rápido	vezes mais rápido
n	t_1	$100 \ t_1$	1000 t ₁
n^2	t_2	10 t_2	$31,6 t_2$
n^3	t_3	4,6 t ₃	10 t ₃
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$

Algoritmo exponencial x Algoritmo polinomial

- Funções de complexidade:
 - Um algoritmo cuja função de complexidade é $\Omega(c^n)$, c > 1, é chamado de algoritmo exponencial no tempo de execução
 - Um algoritmo cuja função de complexidade é O(p(n)), onde p(n) é um polinômio de grau n, é chamado de algoritmo polinomial no tempo de execução
- A distinção entre estes dois tipos de algoritmos torna-se significativa quando o tamanho do problema a ser resolvido cresce
- Esta é a razão porque algoritmos polinomiais são muito mais úteis na prática do que algoritmos exponenciais
 - Geralmente, algoritmos exponenciais são simples variações de pesquisa exaustiva

Algoritmo exponencial x Algoritmo polinomial

- Os algoritmos polinomiais são geralmente obtidos através de um entendimento mais profundo da estrutura do problema
- Tratabilidade dos problemas:
 - Um problema é considerado intratável se ele é tão difícil que não se conhece um algoritmo polinomial para resolvê-lo
 - Um problema é considerado tratável (bem resolvido) se existe um algoritmo polinomial para resolvê-lo
- Aspecto importante no projeto de algoritmos

Algoritmo exponencial × Algoritmo polinomial

- A distinção entre algoritmos polinomiais eficientes e algoritmos exponenciais ineficientes possui várias exceções
- Exemplo: um algoritmo com função de complexidade $f(n) = 2^n$ é mais rápido que um algoritmo $g(n) = n^5$ para valores de n menores ou iguais a 20
- Também existem algoritmos exponenciais que são muito úteis na prática
 - Exemplo: o algoritmo Simplex para programação linear possui complexidade de tempo exponencial para o pior caso mas executa muito rápido na prática.
- Tais exemplos não ocorrem com frequência na prática, e muitos algoritmos exponenciais conhecidos não são muito úteis.

Algoritmo exponencial O Problema do Caixeiro Viajante

- Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez
- Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem
- Seja a figura que ilustra o exemplo para quatro cidades $c_1,\,c_2,\,c_3$ e c_4 em que os números nas arestas indicam a distância entre duas cidades

O percurso $< c_1, c_3, c_4, c_2, c_1 >$ é uma solução para o problema, cujo percurso total tem distância 24

Exemplo de algoritmo exponencial

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas
- Há (n-1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!
- No exemplo anterior teríamos 24 adições
- Suponha agora 50 cidades: o número de adições seria 50! ≈ 10⁶⁴
- Em um computador que executa 109 adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 1045 séculos só para executar as adições
- O problema do caixeiro viajante aparece com frequência em problemas relacionados com transporte, mas também aplicações importantes relacionadas com otimização de caminho percorrido

Fundamentos Matemáticos

Cormen – págs. 835 até 844

Hierarquias de funções

 A seguinte hierarquia de funções pode ser definida do ponto de vista assintótico:

$$1 \prec \log \log n \prec \log n \prec n^{\varepsilon} \prec n \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{c^{n}}$$

onde ε e c são constantes arbitrárias com $0 < \varepsilon < 1 < c$

$$f(n) \prec g(n) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Funções Usuais

Logaritmos e Exponenciais:

$$a^{x} = y \Leftrightarrow \log_{a} y = x$$

$$\log_{a} a^{x} = x$$

$$a^{0} = 1 \implies \log_{a} 1 = 0$$

$$a^{x+y} = a^{x} \times a^{y} \implies \log_{a} p + \log_{a} q = \log_{a} pq$$

$$a^{x-y} = \frac{a^{x}}{a^{y}} \implies \log_{a} \frac{p}{q} = \log_{a} p - \log_{a} q$$

$$(a^{x})^{y} = a^{xy} \implies \log_{a} x^{y} = y \log_{a} x$$

$$(a^{x})^{y} = a^{xy} \implies \log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

Aproximação de Stirling:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Somatórios

- Notação de somatório: $\sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_n$
- Propriedades: $\sum_{i=1}^{n} (ca_i + b_i) = c \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$

Alguns somatórios

$$\sum_{i=1}^{n} 1 = n$$

Série aritmética

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Somas de quadrados e cubos

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Alguns somatórios

- Série geométrica (ou exponencial)
 - Para a ≠ 1

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n}$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

Para |a| < 1</p>

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

Integração e diferenciação de séries

- Fórmulas adicionais podem ser obtidas por integração ou diferenciação das fórmulas anteriores
 - Exemplo: diferenciando-se ambos os lados de:

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

– temos:

$$\sum_{i=0}^{\infty} ia^i = \frac{a}{(1-a)^2}$$

Técnicas de Análise de Algoritmos

Ziviani – págs. 19 até 23 e 35 até 42

Cormen – págs. 21 até 31 e 50 até 72

Técnicas de análise de algoritmos

- Determinar o tempo de execução de um programa pode ser um problema matemático complexo
- Determinar a ordem do tempo de execução, sem preocupação com o valor das constantes envolvidas, pode ser uma tarefa mais simples
- A análise utiliza técnicas de matemática discreta, envolvendo contagem ou enumeração dos elementos de um conjunto:
 - manipulação de somas
 - produtos
 - permutações
 - fatoriais
 - coeficientes binomiais
 - solução de equações de recorrência

Análise do tempo de execução

- Comando de atribuição, de leitura ou de escrita: $\Theta(1)$
- Sequência de comandos: determinado pelo maior tempo de execução de qualquer comando da sequência
- Comando de decisão: tempo dos comandos dentro do comando condicional, mais tempo para avaliar a condição, que é $\Theta(1)$
- Anel: soma do tempo de execução do corpo do anel mais o tempo de avaliar a condição para terminação (geralmente Θ(1)), multiplicado pelo número de iterações

Análise do tempo de execução

Procedimentos não recursivos:

- Cada um deve ser computado separadamente um a um, iniciando com os que não chamam outros procedimentos
- Avalia-se então os que chamam os já avaliados (utilizando os tempos desses)
- O processo é repetido até chegar no programa principal

Procedimentos recursivos:

- É associada uma função de complexidade T(n) desconhecida, onde n mede o tamanho dos argumentos
- Obtemos uma equação de recorrência para T(n)
- Resolvemos a equação de recorrência

- Considerando que a operação relevante seja o número de atribuições à variável a, qual é a função de complexidade da função exemplo1?
- Qual a ordem de complexidade da função exemplo1?

```
void exemplo1 (int n)
{
   int i, a;
   a=0;
   for (i=0; i<n; i++)
      a+=i;
}</pre>
```

- Considerando que a operação relevante seja o número de atribuições à variável a, qual é a função de complexidade da função exemplo2?
- Qual a ordem de complexidade da função exemplo2?

```
void exemplo2 (int n)
{
   int i,j,a;
   a=0;
   for (i=0; i<n; i++)
      for (j=n; j>i; j--)
      a+=i+j;
   exemplo1(n);
}
```

- Ordenação por Seleção
 - Seleciona o menor elemento do conjunto
 - Troca este com o primeiro elemento A [0]
 - Repita as duas operações acima com os n-1 elementos restantes, depois com os n-2, até que reste apenas um

```
void Ordena (int A[]) {
     /*ordena o vetor A em ordem ascendente*/
     int i, j, min, x;
     for (i = 0; i < n-1; i++) {
(1)
(2)
        min = i;
(3)
       for (j = i + 1; j < n; j++)
(4)
             if (A[j] < A[min])
(5)
               min = j;
       /*troca A[min] e A[i]*/
(6)
       x = A[min];
        A[min] = A[i];
(8)
        A[i] = x;
```

 Considerando que a operação relevante seja o número de comparações com os elementos do vetor:

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i-1+1) = \sum_{i=0}^{n-2} (n-i-1)$$

$$= \sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} i - \sum_{i=0}^{n-2} 1 = n(n-1) - \frac{(n-2)(n-1)}{2} - (n-1)$$

$$= n^2 - n - \frac{n^2 - 3n + 2}{2} - n + 1 = \frac{n^2}{2} - \frac{n}{2}$$

• Se considerarmos o número de movimentações com os elementos de \mathbb{A} , o programa realiza exatamente $\mathbb{B}(n-1)$ operações

Exercício

8. O que faz essa função ? Qual é a operação relevante? Qual a sua ordem de complexidade?

```
void p1 (int n)
{
   int i, j, k;

   for (i=0; i<n; i++)
      for (j=0; j<n; j++) {
        C[i][j]=0;
      for (k=n-1; k>=0; k--)
        C[i][j]=C[i][j]+A[i][k]*B[k][j];
   }
}
```

Exercício

9. O que faz essa função ? Qual é a operação relevante? Qual a sua ordem de complexidade?

```
void p2 (int n)
   int i, j, x, y;
  x = y = 0;
  for (i=1; i<=n; i++) {
       for (j=i; j<=n; j++)
          x = x + 1;
       for (j=1; j<i; j++)
          y = y + 1;
```

Exercício

10. Qual é a função de complexidade para o número de atribuições ao vetor x?

```
void Exercicio3(int n) {
   int i, j, a;
   for (i=0; i<n; i++) {
      if (x[i] > 10)
         for (j=i+1; j<n; j++)
            x[j] = x[j] + 2;
      else {
         x[i] = 1;
         j = n-1;
         while (j \ge 0) {
            x[i] = x[i] - 2;
            j = j - 1;
```

Algoritmos recursivos

- Um objeto é recursivo quando é definido parcialmente em termos de si mesmo
- Um algoritmo que chama a si mesmo, direta ou indiretamente, é dito ser recursivo
- Recursividade permite descrever algoritmos de forma mais clara e concisa, especialmente problemas recursivos por natureza ou que utilizam estruturas recursivas

Algoritmos recursivos

- Exemplo 1: Números naturais
 - a) 1 é um número natural
 - b) O sucessor de um número natural é um número natural
- Exemplo 2: Função fatorial
 - a) 0! = 1
 - **b)** Se n > 0 então n! = n (n 1)!
- Exemplo 3: Árvores
 - a) A árvore vazia é uma árvore
 - b) Se T₁ e T₂ são árvores então T' é uma árvore

Algoritmos recursivos

- Normalmente, as funções recursivas são divididas em duas partes
 - Chamada recursiva
 - Condição de parada
- A chamada recursiva pode ser direta (mais comum) ou indireta (A chama B que chama A novamente)
- A condição de parada é fundamental para evitar a execução de loops infinitos

Algoritmos recursivos

- Internamente, quando qualquer chamada de função é feita dentro de um programa, é criado um registro de ativação na pilha de execução do programa
- O registro de ativação armazena os parâmetros e variáveis locais da função bem como o "ponto de retorno" no programa ou subprograma que chamou essa função
- Ao final da execução dessa função, o registro é desempilhado e a execução volta ao subprograma que chamou a função

Exemplo: fatorial recursivo

```
int fat (int n) {
   if (n<=0)
     return (1);
   else
     return (n * fat(n-1));
}</pre>
```

```
int main() {
   int f;
   f = fat(5);
   printf("%d",f);
   return (0);
}
```

```
fat(5) = 5 * fat(4)

fat(4) = 4 * fat(3)

fat(3) = 3 * fat(2)

fat(2) = 2 * fat(1)

fat(1) = 1 * fat(0)

fat(0) = 1
```

Complexidade: fatorial recursivo

 A complexidade de tempo do fatorial recursivo é O(n) (em breve iremos ver a maneira de calcular isso usando equações de recorrência)

 Mas a complexidade de espaço também é O(n), devido a pilha de execução

Complexidade: fatorial iterativo

 A complexidade de espaço do fatorial não recursivo é O(1)

```
int fatiter (int n) {
   int f;
   f = 1;
   while(n > 0) {
      f = f * n;
      n = n - 1;
   }
   return (f);
}
```

Recursividade

 Portanto, a recursividade nem sempre é a melhor solução, mesmo quando a definição matemática do problema é feita em termos recursivos

Exemplo: série de Fibonnaci

Série de Fibonnaci:

```
- F_n = F_{n-1} + F_{n-2}  n > 2,

- F_0 = F_1 = 1

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...
```

```
int Fib(int n) {
   if (n<2)
     return (1);
   else
     return (Fib(n-1) + Fib(n-2));
}</pre>
```

Complexidade: série de Fibonacci

Ineficiência em Fibonacci

- Termos F_{n-1} e F_{n-2} são computados independentemente
- Número de chamadas recursivas = número de Fibonacci!
- Custo para cálculo de F_n
 - $O(\phi^n)$ onde $\phi = (1 + \sqrt{5})/2 = 1,61803...$
 - Exponencial!!!

Exemplo: série de Fibonacci iterativo

```
int FibIter(int n) {
   int i, k, F;

i = 1; F = 0;
   for (k = 1; k <= n; k++) {
     F += i;
     i = F - i;
   }
   return F;
}</pre>
```

- Complexidade: O(n)
- Conclusão: não usar recursividade cegamente!

Quando vale a pena usar recursividade?

- Recursividade vale a pena para algoritmos complexos, cuja a implementação iterativa é complexa e normalmente requer o uso explícito de uma pilha
 - Dividir para Conquistar (Ex. Quicksort)
 - Caminhamento em Árvores (pesquisa, backtracking)
- Evitar o uso de recursividade quando existe uma solução óbvia por iteração:
 - Fatorial
 - Série de Fibonacci

Exemplo: régua

```
void regua(int 1, r, h) {
  int m;

if (h > 0) {
    m = (l + r) / 2;
    marca(m, h);
    regua(l, m, h - 1);
    regua(m, r, h - 1);
}
```


Exemplo: régua

Exemplo: régua

Exercícios

11. Implemente uma função recursiva para computar o valor de 2ⁿ

12. O que faz a função abaixo?

```
int f(int a, int b) {
   // considere a > b
   if (b == 0)
      return a;
   else
      return (f(b,a%b));
}
```

Análise de procedimento recursivo

```
Pesquisa(n);

(1) if n ≤ 1

(2) then "inspecione elemento" e termine
else begin

(3) para cada um dos n elementos "inspecione elemento";

(4) Pesquisa(n-1);
end;
```

- Para cada procedimento recursivo é associada uma função de complexidade T(n) desconhecida, onde n mede o tamanho dos argumentos para o procedimento
- Obtemos uma equação de recorrência para T(n)
- Equação de recorrência: maneira de definir uma função por uma expressão envolvendo a mesma função

Análise de procedimento recursivo

- Seja T(n) uma função de complexidade que represente o número de inspeções nos n elementos do conjunto.
- O custo de execução das linhas (1) e (2) é O(1) e da linha
 (3) é O(n)
- Usa-se uma equação de recorrência para determinar o número de chamadas recursivas
- O termo T(n) é especificado em função dos termos anteriores T(1), T(2), ..., T(n-1)

$$\begin{cases} T(n) = T(n-1) + n \\ T(1) = 1 \end{cases}$$
 (para $n = 1$, fazemos uma inspeção)

Resolução de equação de recorrência

$$\begin{cases} T(n) = T(n-1) + n \\ T(1) = 1 \end{cases}$$

$$T(n) = T(n-1) + n$$

$$T(n-1) = T(n-2) + n - 1$$

$$T(n-2) = T(n-2) + n - 2$$

$$T(n-2) = T(n-2) + n - 3$$

$$\vdots$$

$$T(n-(n-1)) = 1$$

$$n + (n-1) + (n-2) + \dots + 2 + 1 = \sum_{i=1}^{n} i$$

$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

Logo, o programa do exemplo é $\Theta(n^2)$

Análise da função fat

Seja a seguinte função para calcular o fatorial de n:

```
int fat (int n) {
   if (n<=1)
      return (1);
   else
      return (n * fat(n-1));
}</pre>
```

Seja a seguinte equação de recorrência para esta função:

$$\begin{cases} T(n) = T(n-1) + c & n > 1 \\ T(1) = d & \end{cases}$$

- Esta equação diz que quando n = 1, o custo para executar fat é igual a d
- Para valores de n maiores que 1, o custo para executar fat é c mais o custo para executar T(n-1)

Resolvendo a equação de recorrência

$$\begin{cases} T(n) = T(n-1) + c & n > 1 \\ T(1) = d & \end{cases}$$

$$T(n) = T(n/-1) + c$$

$$T(n/-1) = T(n/-2) + c$$

$$T(n/-2) = T(n/-3) + c$$

$$\vdots$$

$$T(n-(n/-2)) = T(n-(n/-1)) + c$$

$$T(n-(n/-1)) = d$$

$$T(n) = c(n-1) + d$$

Logo, o programa do exemplo é O(n)

Exercícios

13. Resolva as seguintes equações de recorrência:

a)
$$\begin{cases} T(n) = T\left(\frac{n}{2}\right) + 1 & (n \ge 2) \\ T(1) = 0 & (n = 1) \end{cases}$$

b)
$$\begin{cases} T(n) = 2T\left(\frac{n}{2}\right) + n & (n \ge 2) \\ T(1) = 0 & (n = 1) \end{cases}$$

c)
$$\begin{cases} T(n) = T\left(\frac{n}{3}\right) + n & (n > 1) \\ T(1) = 1 & (n = 1) \end{cases}$$

Teorema Mestre

Recorrências das forma

$$T(n) = aT(n/b) + f(n)$$

onde $a \ge 1$ e b > 1 são constantes e f(n) é uma função assintoticamente positiva, podem ser revolvidas usando o Teorema Mestre

 Neste caso, não estamos achando a forma fechada da recorrência mas sim seu comportamento assintótico

Teorema Mestre

 Sejam as constantes a ≥ 1 e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência T(n) pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \varepsilon})$ para alguma constante $\varepsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ para alguma constante $\varepsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$

Comentários sobre o teorema Mestre

Nos três casos estamos comparando a função f(n) com a função n^{log_b a}. Intuitivamente, a solução da recorrência é determinada pela maior das duas funções.

Por exemplo:

- No primeiro caso a função $n^{\log_b a}$ é a maior e a solução para a recorrência é $T(n) = \Theta(n^{\log_b a})$
- No terceiro caso, a função f(n) é a maior e a solução para a recorrência é $T(n) = \Theta(f(n))$
- No segundo caso, as duas funções são do mesmo "tamanho". Neste caso, a solução fica multiplicada por um fator logarítmico e fica da forma $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$

Tecnicalidades sobre o teorema Mestre

- No primeiro caso, a função f(n) deve ser não somente menor que $n^{\log_b a}$ mas ser polinomialmente menor. Ou seja, f(n) deve ser assintoticamente menor que $n^{\log_b a}$ por um fator de n^{ε} , para alguma constante $\varepsilon > 0$
- No terceiro caso, a função f(n) deve ser não somente maior que $n^{\log_b a}$ mas ser polinomialmente maior e satisfazer a condição de "regularidade" que $af(n/b) \le cf(n)$. Esta condição é satisfeita pela maior parte das funções polinomiais encontradas neste curso.

Tecnicalidades sobre o teorema Mestre

- Teorema **não** cobre todas as possibilidades para f(n):
 - Entre os casos 1 e 2 existem funções f(n) que são menores que $n^{\log_b a}$ mas não são polinomialmente menores
 - Entre os casos 2 e 3 existem funções f(n) que são maiores que $n^{\log_b a}$ mas não são polinomialmente maiores

Se a função f(n) cai numa dessas condições, ou a condição de regularidade do caso 3 é falsa, então não se pode aplicar este teorema para resolver a recorrência

$$T(n) = 9T(n/3) + n$$

Temos que,

$$a = 9$$
, $b = 3$, $f(n) = n$

Desta forma,

$$n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$$

• Como $f(n) = O(n^{\log_3 9 - \epsilon})$, onde $\epsilon = 1$, podemos aplicar o caso 1 do teorema e concluir que a solução da recorrência é

$$T(n) = \Theta(n^2)$$

$$T(n) = T(2n/3) + 1$$

Temos que,

$$a = 1$$
, $b = 3/2$, $f(n) = 1$

Desta forma,

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

• O caso 2 se aplica já que $f(n) = O(n^{\log_b a}) = \Theta(1)$. Temos então que a solução da recorrência é

$$T(n) = \Theta(\log n)$$

$$T(n) = 3T(n/4) + n\log n$$

Temos que,

$$a = 3$$
, $b = 4$, $f(n) = n \log n$

Desta forma,

$$n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$$

• Como $f(n) = \Omega(n^{\log_4 3 + \varepsilon})$, onde $\varepsilon \approx 0.2$, o caso 3 se aplica se mostrarmos que a condição de regularidade é verdadeira para f(n)

Para um valor suficientemente grande de n

$$af(n/b) = 3(n/4)\log(n/4) \le (3/4)n\log n = cf(n)$$

• Para $c = \frac{3}{4}$. Consequentemente, usando o caso 3, a solução para a recorrência é:

$$T(n) = \Theta(n \log n)$$

$$T(n) = 2T(n/2) + n\log n$$

Temos que,

$$a = 2$$
, $b = 2$, $f(n) = n \log n$

Desta forma,

$$n^{\log_b a} = n$$

• Aparentemente o caso 3 deveria se aplicar já que $f(n) = n \log n$ é assintoticamente maior que $n^{\log_b a} = n$. Mas no entanto, não é polinomialmente maior. A fração $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ que é assintoticamente menor que n^{ϵ} para toda constante positiva ϵ . Consequentemente, a recorrência cai na situação entre os casos 2 e 3 onde o teorema não pode ser aplicado.

Exercício

14. Use o teorema mestre para derivar um limite assintótico ⊕ para da seguinte recorrência:

$$T(n) = 4T(n/2) + n$$

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Projeto e Análise de Algoritmos Parte 2

Raquel Mini raquelmini@pucminas.br

Força Bruta (Busca Exaustiva ou Enumeração Total)

Força Bruta

- Consiste em enumerar todos os possíveis candidatos de uma solução e verificar se cada um satisfaz o problema
- Geralmente possui uma implementação simples e sempre encontrara uma solução se ela existir
- O seu custo computacional é proporcional ao número de candidatos a solução que, em problemas reais, tende a crescer exponencialmente
- É tipicamente usada em problemas cujo tamanho é limitado ou quando não se conhece um algoritmo mais eficiente
- Também pode ser usado quando a simplicidade da implementação é mais importante que a velocidade de execução, como nos casos de aplicações críticas em que os erros de algoritmo possuem sérias consequências

Força Bruta – Clique

- Considere um conjunto P de n pessoas e uma matriz M de tamanho n x n, tal que M[i][j] = M[j][i] = 1, se as pessoas i e j se conhecem e M[i][j] = M[j][i] = 0, caso contrário
- Problema: existe um subconjunto C (Clique), de r pessoas escolhidas de P, tal que qualquer par de pessoas de C se conhecem?
- Solução usando força bruta: verificar, para todas as combinações simples (sem repetições) C de r pessoas escolhidas entre as n pessoas do conjunto P, se todos os pares de pessoas de C se conhecem

Força Bruta – Clique

X	1	2	3	4	5	6	7	8
1	1	0	1	1	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	1
4	1	0	1	1	1	1	1	1
5	1	1	0	1	1	0	0	0
6	1	0	1	1	0	1	1	1
7	1	0	1	1	0	1	1	0
8	0	1	1	1	0	1	0	1

 Existe um conjunto C de 5 pessoas escolhidas de P tal que qualquer par de pessoas de C se conhecem?

Força Bruta – Clique

 Existem 56 combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos:

12345	12468	13578	23568
12346	12478	13678	23578
12347	12567	14567	23678
12348	12568	14568	24567
12356	12578	14578	24568
12357	12678	14678	24578
12358	13456	15678	24678
12367	13457	23456	25678
12368	13458	23457	3 4 5 6 7
12378	13467	23458	3 4 5 6 8
12456	13468	23467	3 4 5 7 8
12457	13478	23468	3 4 6 7 8
12458	13567	23478	35678
12467	13568	23567	45678

Força Bruta – Clique

• Todos os pares de pessoas do subconjunto C={1,3,4,6,7} se conhecem:

X	1	3	4	6	7
1	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1

 Como enumerar todas as combinações simples de r elementos de um conjunto de tamanho n?

Força Bruta – Combinação

```
#include<iostream>
using namespace std;
void combinacao(int n, int r, int x[], int next, int k){
   int i:
   if (k == r) {
      for (i = 0; i < r; i++)
        cout<<x[i]+1<<" ";
     cout<<endl:
   } else {
      for (i = next; i < n; i++) {
         x[k] = i;
        combinacao (n, r, x, i+1, k+1);
int main () {
   int n, r, x[100];
   cout<<"Entre com o valor de n: ":
   cin>>n:
   cout<<"Entre com o valor de r: ";
   cin>>r;
   combinacao(n,r,x,0,0);
   return 0:
```

- Considere um conjunto de n cidades e uma matriz M de tamanho n x n tal que M[i][j] = 1, se existir um caminho direto entre as cidades i e j, e M[i][j] = 0, caso contrário
- Problema: existe uma forma de, saindo de uma cidade qualquer, visitar todas as demais cidades, sem passar duas vezes por nenhuma cidade e, no final, retornar para a cidade inicial?
- Se existe uma forma de sair de uma cidade x qualquer, visitar todas as demais cidades (sem repetir nenhuma) e depois retornar para x, então existe um ciclo Hamiltoniano e qualquer cidade do ciclo pode ser usada como ponto de partida

- Como vimos, qualquer cidade pode ser escolhida como cidade inicial. Sendo assim, vamos escolher, arbitrariamente a cidade n como ponto de partida
- Solução usando força bruta: testar todas as permutações das n-1 primeiras cidades, verificando se existe um caminho direto entre a cidade n e a primeira da permutação, assim como um caminho entre todas as cidades consecutivas da permutação e, por fim, um caminho direto entre a última cidade da permutação e a cidade n
- Ciclo Hamiltoniano: $n \rightsquigarrow [p_1 \rightsquigarrow p_2 \rightsquigarrow p_3 \rightsquigarrow \cdots \rightsquigarrow p_{n-1}] \rightsquigarrow n$

 Considere um conjunto de 8 cidades representado pela matriz abaixo:

X	1	2	3	4	5	6	7	8
1	0	0	1	0	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	0
4	0	0	1	1	0	0	1	0
5	1	1	0	1	1	0	0	0
6	0	0	1	1	0	0	1	1
7	1	0	0	1	0	1	1	1
8	0	1	1	1	0	1	0	1

 Existe uma forma de, a partir da cidade 8, visitar todas as demais cidades, sem repetir nenhuma e, ao final, retornar para a cidade 8?

 Existem 5040 permutações das 7 primeiras cidades da lista original:

1234567	• • • •	7652341
1234576	3645172	7652413
1234657	3645217	7652431
1234675	3645271	7653124
1234756	3645712	7653142
1234765	3645721	7653214
1235467	3647125	7653241
1235476	3647152	7653412
1235647	3647215	7653421
1235674	3647251	7654123
1235746	3647512	7654132
1235764	3647521	7654213
1236457	3651247	7654231
1236475	3651274	7654312
1236547		7654321

 Como enumerar todas as permutações de n valores distintos?

Força Bruta – Permutação

```
#include<iostream>
using namespace std;
void permutacao(int n, int x[], bool used[], int k){
   int i;
   if (k == n) {
      for (i = 0; i < n; i++)
         cout<<x[i]+1<<" ";
      cout<<endl;
   } else {
      for (i = 0; i < n; i++) {
         if (!used[i]) {
            used[i] = true;
            x[k] = i;
            permutacao(n, x, used, k+1);
            used[i] = false;
int main () {
  int i, n, x[100];
  bool used[100];
   cout<<"Entre com o valor de n: ";
   cin>>n;
   for (i = 0; i < n; i++)
     used[i] = false;
   permutacao(n,x,used,0);
   return 0:
```

Incremental

Incremental

A ordenação por inserção utiliza uma abordagem incremental: tendo ordenado o subarranjo A[1..j-1], inserimos o elemento isolado A[j] em seu lugar apropriado, formando o subarranjo ordenado A[1..j].

Incremental

```
INSERTION-SORT(A)
for j ← 2 to n do
   chave ← A[j]
   i ← j - 1
   A[0] ← chave //sentinela
   while A[i] > chave do
        A[i+1] ← A[i]
        i ← i-1
   A[i+1] ← chave
```

Exercícios

1. Implemente um algoritmo que enumere todos os arranjos de tamanho $\bf r$ dentre um conjunto de $\bf n$ elementos.

Algoritmos Tentativa e Erros (*Backtracking*)

Ziviani – págs. 44 até 48

Backtracking

- Algoritmo para encontrar todas (ou algumas) soluções de um problema computacional, que incrementalmente constrói candidatas de soluções e abandona uma candidata parcialmente construída tão logo quanto for possível determinar que ela não pode gerar uma solução válida
- Pode ser aplicado para problemas que admitem o conceito de "solução candidata parcial" e que exista um teste relativamente rápido para verificar se uma candidata parcial pode ser completada como uma solução válida

Backtracking

- Quando aplicável, backtracking é frequentemente muito mais rápido que algoritmos de forca bruta, já que ele pode eliminar um grande número de soluções inválidas com um único teste
- Enquanto algoritmos de forca bruta geram todas as possíveis soluções e só depois verificam se elas são válidas, backtracking só gera soluções válidas

- Tabuleiro com n x n posições: cavalo se movimenta segundo regras do xadrez
- Problema: partindo da posição (x₀,y₀), encontrar, se existir, um passeio do cavalo que visita todos os pontos do tabuleiro uma única vez

Tenta um próximo movimento

```
TENTA

1 Inicializa seleção de movimentos

2 repeat

3 Seleciona próximo candidato ao movimento

4 if aceitável

5 then Registra movimento

6 if tabuleiro não está cheio

7 then Tenta novo movimento

8 if não é bem sucedido

9 then Apaga registro anterior

10 until (movimento bem sucedido) ∨ (acabaram-se candidatos ao movimento)
```

- O tabuleiro pode ser representado por uma matriz n x n
- A situação de cada posição pode ser representada por um inteiro para recordar o histórico das ocupações:
 - t[x][y] = 0, campo $\langle x, y \rangle$ não visitado
 - t[x][y] = i, campo <x, y> visitado no *i*-ésimo movimento, 1 ≤ $i \le n^2$

Regras do xadrez para os movimentos do cavalo:


```
PasseioDoCavalo(n)
    ⊳ Parâmetro: n (tamanho do lado do tabuleiro)
    Variáveis auxiliares:
                                                        Contadores
      i, j
                                                        \triangleright Tabuleiro de n \times n
      t[1..n, 1..n]
                                                        ▷ Indica se achou uma solução
                                                        Movimentos identificados por um nº
      h[1..8], v[1..8]
                                                        Existem oito movimentos possíveis
 1 s \leftarrow \{1, 2, 3, 4, 5, 6, 7, 8\}
                                                        Conjunto de movimentos
 2 h[1..8] \leftarrow [2,1,-1,-2,-2,-1,1,2]
                                                        Movimentos na horizontal.
 3 v[1..8] \leftarrow [1,2,2,1,-1,-2,-2,-1]
                                                        Movimentos na vertical
   for i \leftarrow 1 to n
                                                        Inicializa tabuleiro
       do for j \leftarrow 1 to n
 5
              do t[i,j] \leftarrow 0
                                                        Escolhe uma casa inicial do tabuleiro
   t[1,1] \leftarrow 1
   TENTA(2, 1, 1, q)
                                                        Tenta o passeio usando backtracking
   if q
                                                        then print Solução
10
      else print Não há solução
11
```

```
\mathsf{TENTA}(i, x, y, q)
     \triangleright Parâmetros: i (i-ésima casa); x, y (posição no tabuleiro); q (achou solução?)
     \triangleright Variáveis auxiliares: xn, yn, m, q1
     m \leftarrow 0
     repeat
 3
       m \leftarrow m + 1
       q1 \leftarrow \mathsf{false}
       xn \leftarrow x + h[m]
 5
       yn \leftarrow y + v[m]
 6
         if (xn \in s) \land (yn \in s)
            then if t[xn, yn] = 0
 8
                     then t[xn,yn] \leftarrow i
 9
                             if i < n^2
10
                               then TENTA(i+1, xn, yn, q1)
11
                                      if \neg q1
12
13
                                         then t[xn, yn] \leftarrow 0
14
                               else q1 \leftarrow \text{true}
     until q1 \lor (m = 8)
16 q \leftarrow q1
```

Resultado do Passeio do Cavalo em um tabuleiro 8 x 8

1	60	39	34	31	18	9	64
38	35	32	61	10	63	30	17
59	2	37	40	33	28	19	8
36	49	42	27	62	11	16	29
43	58	3	50	41	24	7	20
48	51	46	55	26	21	12	15
57	44	53	4	23	14	25	6
52	47	56	45	54	5	22	13

- Dado um labirinto representado por uma matriz de tamanho n x m, uma posição inicial $p_i = (x_i; y_i)$ e uma posição final $p_f = (x_f; y_f)$, tal que $p_i \neq p_f$, determinar se existe um caminho entre p_i e p_f
- Podemos representar o labirinto como uma matriz M tal que:

$$M[x,y] = \begin{cases} -2 \text{, se a posição } (x,y) \text{ representa uma parede} \\ -1 \text{, se a posição } (x,y) \text{ não pertence ao caminho} \\ i \text{, tal que } i \geq 0 \text{, se a posição } (x,y) \text{ pertence ao caminho} \end{cases}$$

 Neste caso, vamos supor que o labirinto é cercado por paredes, eventualmente apenas com exceção do local designado como saída

A figura abaixo mostra um labirinto de tamanho 8 x 8

X	X	X	X	X	X	X	X
X	•						X
X	X		X				X
X			Χ	Χ	X		X
X		X	Χ				X
X		X				X	X
X				X			X
X	X	X	X	X	X	0	X

X: parede/obstáculo

posição inicial

o: posição final (saída do labirinto)

- Caminho encontrado usando a seguinte ordem de busca:
 - para esquerda
 - para baixo
 - para direita
 - para cima

X	Χ	Χ	Χ	Χ	Χ	Χ	X
X	00	01					Χ
X	X	02	Χ				X
X	04	03	Χ	X	X		X
X	05	X	Χ				X
X	06	X	10	11	12	X	X
X	07	80	09	X	13	14	X
X	X	X	X	X	X	15	X

- Caminho encontrado usando a seguinte ordem de busca:
 - para direita
 - para baixo
 - para esquerda
 - para cima

X	Χ	Χ	Χ	Χ	Χ	Χ	X
X	00	01	02	03	04	05	Χ
X	X		Χ			06	X
X			Χ	X	X	07	X
X		X	Χ		09	80	Χ
X		X			10	Χ	X
X				X	11	12	X
X	X	X	X	X	X	13	X

```
#include<iostream>
#include <iomanip>
#define MAX 10
using namespace std;
void imprimeLabirinto(int M[MAX][MAX], int n, int m) {
  int i, j;
  for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) {
        if (M[i][j] == -2) cout<<" XX";
        if (M[i][j] == -1) cout<<" ";
        if (M[i][j] >= 0) cout<<" "<<setw(2)<<M[i][j];</pre>
      cout<<"\n":
void obtemLabirinto(int M[MAX][MAX], int &n, int &m, int &Li, int &Ci, int &Lf, int &Cf) {
  int i, j, d;
  cin>>n; cin>>m; /* dimensoes do labirinto */
  cin>>Li; cin>>Ci; /* coordenadas da posicao inicial */
  cin>>Lf; cin>>Cf; /* coordeandas da posicao final (saida) */
  /* labirinto: 1 = parede ou obstaculo 0 = posicao livre */
  for (i = 0; i < n; i++)
      for (j = 0; j < m; j++) {
         cin>>d:
         if (d == 1)
           M[i][j] = -2;
         else
           M[i][j] = -1;
```

```
int labirinto(int M[MAX][MAX], int deltaL[], int deltaC[], int Li, int Ci, int Lf, int Cf) {
  int L, C, k, passos;
  if ((Li == Lf) && (Ci == Cf)) return M[Li][Ci];
  /* testa todos os movimentos a partir da posicao atual */
  for (k = 0; k < 4; k++) {
     L = Li + deltaL[k];
     C = Ci + deltaC[k];
     /* verifica se o movimento eh valido e gera uma solucao factivel */
     if (M[L][C] == -1) {
        M[L][C] = M[Li][Ci] + 1;
         passos = labirinto(M, deltaL, deltaC, L, C, Lf, Cf);
        if (passos > 0) return passos;
   return 0:
int main() {
   int M[MAX][MAX], resposta, n, m, Li, Ci, Lf, Cf;
   // define os movimentos validos no labirinto
   int deltaL[4] = { 0, +1, 0, -1};
   int deltaC[4] = \{+1, 0, -1, 0\};
   // obtem as informações do labirinto
   obtemLabirinto(M,n,m,Li,Ci,Lf,Cf);
   M[Li - 1][Ci - 1] = 0; /* define a posicao inicial no tabuleiro */
   /* tenta encontrar um caminho no labirinto */
   resposta = labirinto (M, deltaL, deltaC, Li - 1, Ci - 1, Lf - 1, Cf - 1);
   if (resposta == 0)
      cout<<"Nao existe solucao.\n":
   else {
      cout<<"Existe uma solucao em "<<resposta<<" passos.\n";
      imprimeLabirinto(M, n, m);
   return 0:
```

Exemplo de entrada:

```
8 8
2 2
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 0 0 0 1
1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 0 1
```

Exemplo de saída:

```
Existe uma solucao em 13 passos.

XX XX XX XX XX XX XX XX

XX 0 XX 4 5 6 7 XX

XX 1 2 3 XX 13 8 XX

XX 4 3 XX XX 12 9 XX

XX 5 XX XX 12 11 10 XX

XX 6 7 XX XX XX XX XX

XX 8 9 10 11 12 XX

XX XX XX XX XX XX 13 XX
```

Backtracking - Problemas de Otimização

- Muitas vezes não estamos apenas interessados em encontrar uma solução qualquer, mas em encontrar uma solução ótima (segundo algum critério de otimalidade préestabelecido)
- Por exemplo, no problema do labirinto, ao invés de determinar se existe um caminho entre o ponto inicial e o final (saída), podemos estar interessados em encontrar uma solução que usa o menor número possível de passos

Branch and Bound

Branch and Bound

- Refere-se a um tipo de algoritmo usado para encontrar soluções ótimas para vários problemas de otimização
- Problemas de otimização podem ser tanto de maximização quando de minimização
- Consiste em uma enumeração sistemática de todos os candidatos à solução, com eliminação de uma candidata parcial quando uma dessas duas situações for detectada (considerando um problema de minimização):
 - A candidata parcial é incapaz de gerar uma solução válida (teste similar ao realizado pelo método backtracking)
 - A candidata parcial é incapaz de gerar uma solução ótima, considerando o valor da melhor solução encontrada até então (limitante superior) e o custo ainda necessário para gerar uma solução a partir da solução candidata atual (limitante inferior)

Branch and Bound

- O desempenho de um programa branch and bound está fortemente relacionado à qualidade dos seus limitantes inferiores e superiores
 - Quando mais precisos forem esses limitantes, menos soluções parciais serão consideradas e mais rápido o programa encontrará a solução ótima
 - O nome branch and bound refere-se às duas fases do algoritmo:
 - Branch: testar todas as ramificações de uma solução candidata parcial
 - Bound: limitar a busca por soluções sempre que detectar que o atual ramo da busca é infrutífero

Branch and Bound – Labirinto

- Podemos alterar o programa visto anteriormente para encontrar um caminho ótimo num labirinto usando a técnica branch and bound
- Podemos inicialmente notar que se um caminho parcial já usou tantos passos quanto o melhor caminho completo previamente descoberto, então este caminho parcial pode ser descartado
- Mais do que isso, se o número de passos do caminho parcial mais o número de passos mínimos necessários entre a posição atual e a saída (desconsiderando eventuais obstáculos) for maior ou igual ao número de passos do melhor caminho previamente descoberto, então este caminho parcial também pode ser descartado

Branch and Bound – Labirinto

Branch and Bound – Labirinto

```
int main() {
  int M[MAX] [MAX], n, m, Li, Ci, Lf, Cf, min;
  // define os movimentos validos no labirinto
   int deltaL[4] = { 0, +1, 0, -1};
   int deltaC[4] = \{+1, 0, -1, 0\};
  // obtem as informacoes do labirinto
   obtemLabirinto (M, n, m, Li, Ci, Lf, Cf);
  M[Li - 1][Ci - 1] = 0; /* define a posicao inicial no tabuleiro */
  /* tenta encontrar um caminho no labirinto */
  min = INT MAX;
  labirinto (M, deltaL, deltaC, Li - 1, Ci - 1, Lf - 1, Cf - 1, min);
  if (min == 0)
      cout<<"Nao existe solucao.\n":
   else {
      cout<<"Existe uma solucao em "<<min<<" passos.\n";</pre>
     imprimeLabirinto(M, n, m);
   return 0:
```

Exercício

2. Proponha um algoritmo para a solução do problema das 8 rainhas utilizando *backtracking*. Dado um tabuleiro *de* xadrez (com 8 x 8 casas), o objetivo é distribuir 8 rainhas sobre este tabuleiro de modo que nenhuma delas fique em posição de ser atacada por outra rainha.

Divisão e Conquista

Ziviani - págs. 48 até 51

Cormen – págs. 21 até 28

Divisão e Conquista

- O paradigma divisão e conquista consiste em dividir o problema a ser resolvido em partes menores, encontrar soluções para as partes, e então combinar as soluções obtidas em uma solução global
- O paradigma divisão e conquista envolve três passos em cada nível de recursão:
 - Dividir o problema em um determinado número de subproblemas
 - Conquistar os subproblemas, resolvendo-os recursivamente. Se o tamanho dos subproblemas forem pequenos o bastante, basta resolver os subproblemas de maneira direta
 - Combinar as soluções dadas aos problemas a fim de formar a solução para o problema original

Divisão e Conquista - Esquema

```
void divide and conquer(Problem P, Solution S) {
   if (small(P))
      S = compute solution(P);
   else {
      divida P em problemas menores do mesmo
                                                    DIVIDIR
          tipo do original, P1, P2, ..., Pk;
      divide and conquer (P1, S1);
                                           CONQUISTAR
                                             Resolvendo
                                            subproblemas
                                           recursivamente
      divide and conquer(Pk, Sk);
      recombine S1, S2, ..., Sk em S, uma solução para P;
                                           COMBINAR
```

Divisão e Conquista

Análise de Complexidade:

- Se o tamanho do problema for pequeno o bastante $n \le c$, para alguma constante c, a solução direta demorará um tempo constante $\Theta(1)$
- Vamos supor que o problema seja dividido em a subproblemas, cada um dos quais com 1/b do tamanho do problema original
- D (n) é o tempo para dividir o problema em subproblemas
- C(n) tempo para combinar as soluções dadas aos subproblemas na solução para o problema original

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(n/b) + D(n) + C(n) & \text{caso contrário} \end{cases}$$

Exemplo: Maior e Menor Elemento

- Exemplo: encontrar o maior e o menor elemento de um vetor de inteiros, A [0..n-1], n ≥ 1
- Cada chamada de MaxMin4 atribui à max e min o maior e o menor elemento em A[esq], A[esq+1],..., A[dir], respectivamente

Exemplo: Maior e Menor Elemento

```
void MaxMin4(int A[], int esq, int dir, int &min, int &max) {
   int min1, min2, max1, max2, meio;
   if (dir-esq <= 1) {
      if (A[esq] < A[dir]) {
         min = A[esq];
         max = A[dir];
      else {
         min = A[dir];
         max = A[esq];
   else {
      meio = (esq+dir)/2;
      MaxMin4(A, esq, meio, min1, max1);
      MaxMin4(A, meio+1, dir, min2, max2);
      max = (max1 > max2) ? max1 : max2;
      min = (min1 < min2) ? min1 : min2;
```

Análise do Maior e Menor Elemento

• Seja T(n) o número de comparações entre os elementos de A

$$\begin{cases} T(n) = 2T\left(\frac{n}{2}\right) + 2 & para \ n > 2 \\ T(2) = 1 \end{cases}$$

• $T(n) = \frac{3n}{2} - 2$ para o melhor caso, pior caso e caso médio

Análise do Maior e Menor Elemento

- Conforme mostrado no início do curso, o algoritmo dado neste exemplo é ótimo
- Entretanto, ele pode ser pior que o MaxMin3 pois, a cada chamada recursiva, salva esq, dir, min e max além do endereço de retorno da chamada para o procedimento
- Além disso, uma comparação adicional é necessária a cada chamada recursiva para verificar se dir-esq≤1
- n+1 deve ser menor que a metade do maior inteiro que pode ser representado pelo compilador, para não provocar overflow na operação esq+dir

- O algoritmo de ordenação Mergesort obedece ao paradigma de dividir e conquistar
 - DIVIDIR: divide a sequência de n elementos a serem ordenados em duas subsequências de n/2 elementos cada uma
 - CONQUISTAR: ordena as duas subsequências recursivamente, utilizando o MERGE-SORT
 - COMBINAR: faz a intercalação das duas sequências ordenadas, de modo a produzir a resposta ordenada (função MERGE)


```
MERGE(A,p,q,r)
n1 \leftarrow q-p+1
n2 \leftarrow r-q
criar arranjos L[1..n1+1] e R[1..n2+1]
for i \leftarrow 1 to n1 do
    L[i] \leftarrow A[p+i-1]
for j \leftarrow 1 to n2 do
   R[j] \leftarrow A[q+j]
L[n1+1] \leftarrow \infty
R[n2+1] \leftarrow \infty
i \leftarrow 1
i \leftarrow 1
for k \leftarrow p to r do
    if L[i] \leq R[j] then
         A[k] \leftarrow L[i]
         i \leftarrow i+1
    else
         A[k] \leftarrow R[j]
         j \leftarrow j+1
```

MERGE (A,9,12,16)

MERGE (A,9,12,16)

Análise do Mergesort

- Análise de Complexidade (supondo n par e que a operação relevante seja a comparação com os elementos do vetor):
 - Dividir: a etapa de dividir simplesmente calcula o ponto médio do subarranjo e não realiza comparação
 - Conquistar: resolvemos recursivamente dois subproblemas, cada um tem o tamanho n/2 e contribui com 2T (n/2) para o tempo de execução
 - Combinar: o procedimento MERGE leva o tempo n, onde n=r-p+1 é
 o número de elementos que estão sendo intercalados

$$\begin{cases} T(n) = 2T\left(\frac{n}{2}\right) + n & \text{se } n > 1 \\ T(1) = 0 & \end{cases}$$

$$T(n) = n \log n$$

Quando Utilizar Divisão e Conquista

- Existem três condições que indicam que a estratégia de divisão e conquista pode ser utilizada com sucesso:
 - Deve ser possível decompor uma instância em subinstâncias
 - A combinação dos resultados deve ser eficiente (muitas vezes, trivial)
 - As subinstâncias devem ser mais ou menos do mesmo tamanho

Exemplo: Quicksort

```
void partition (int a[], int esq, int dir, int &i, int &j) {
   int aux, x;
   i = esq;
   j = dir;
   x = a[(i+j)/2];
   while (i \le j) {
      while (x > a[i]) i++;
      while (x < a[j]) j--;
      if (i<=j) {
         aux = a[i];
         a[i] = a[j];
         a[j] = aux;
         i++;
         j−−;
void quicksort (int a[], int esq, int dir) {
   int i, j;
   partition(a, esq, dir, i, j);
   if (esq < j)
      quicksort(a, esq, j);
   if (i < dir)
     quicksort(a, i, dir);
```

Exemplo: Seleção

Encontrar o kth menor elemento de um conjunto de números

```
int partition (int a[], int esq, int dir) {
   int i, j, aux, x;
  i = esq;
   j = dir;
  x = a[(i+j)/2];
  while (i \le j) {
     while (x > a[i]) i++;
     while (x < a[j]) j--;
      if (i<=j) {
         aux = a[i];
        a[i] = a[j];
        a[i] = aux;
        i++;
         j--;
   return (i-1);
```

```
int selection(int a[], int l, int r, int k) {
 int i;
 if (r > 1) {
     i = partition(a, l, r);
    if (i == k)
        return (i);
    if (i > 1+k-1)
        return (selection(a, l, i-1, k));
     if (i < 1+k-1)
        return (selection(a, i+1, r, k-i));
```

Exercício

3. Implemente a função merge com custo de n-1 comparações no pior caso. Encontre a função de complexidade do Mergesort quando o mesmo utiliza essa função merge.

4. Faça a análise de complexidade do melhor caso do Quicksort e do algoritmo para encontrar o kth menor elemento de um conjunto de números

Programação Dinâmica

Ziviani – págs. 54 até 57

Cormen – págs. 259 até 295

Programação Dinâmica

Divisão e Conquista

- Problema é partido em subproblemas que se resolvem separadamente
- A solução é obtida por combinação das soluções
- É top-down

Programação Dinâmica

- Resolvem-se os problemas de pequena dimensão e guardam-se as soluções
- A solução de um problema é obtida combinando as de problemas de menor dimensão
- É bottom-up
- Calcula a solução para todos os subproblemas, partindo dos subproblemas menores para os maiores, armazenando os resultados em uma tabela
- A vantagem é que uma vez que um subproblema é resolvido, a resposta é armazenada em uma tabela e nunca mais é recalculado

Encontrar o n-ésimo número de Fibonacci

```
f_0 = 0, f_1 = 1,

f_n = f_{n-1} + f_{n-2} \quad para \ n \ge 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
```

```
unsigned int FibRec (unsigned int n) {
  if (n < 2)
    return n;
  else
    return (FibRec(n-1) + FibRec(n-2));
}</pre>
```

Simples!!! Elegante!!!

Mas vamos analisar o seu desempenho!!!

Problema do algoritmo recursivo: repetição de chamadas iguais

- Análise de Complexidade:
 - Considerando que a medida de complexidade de tempo T (n) é o número de adições, então

$$\begin{cases} T(n) = T(n-1) + T(n-2) + 1 & para \ n \ge 2 \\ T(n) = 0 & para \ n \le 1 \end{cases}$$

$$T(n) = \Theta(1,618^n)$$

Algoritmo recursivo é exponencial

Problema: repetição de chamadas

Solução iterativa

```
unsigned int FibInter (unsigned int n) {
   unsigned int i = 1, k, F = 0;
   for (k = 1; k <= n; k++) {
        F += i;
        i = F - i;
        return F;
   }
        return F;
   }
</pre>
Em todo estágio,
   as soluções para
   problemas anteriores nas
   variáveis i e F
```

• Considerando que a medida de complexidade de tempo T(n) é o número de adições, então $T(n) = \Theta(n)$

Devemos evitar o uso de recursividade quando existe solução óbvia por iteração

Programação Dinâmica

- Abordagem
 - Resolva problemas menores
 - Armazene as soluções
 - Use aquelas soluções para resolver problemas maiores
- Algoritmos dinâmicos usam espaço!

 O ladrão encontra o cofre cheio de itens de vários tamanhos e valores, mas tem apenas uma mochila de capacidade limitada. Qual é a combinação de itens que deve levar para maximizar o valor do roubo?

 Considerando que a mochila tem capacidade 17, qual é a melhor combinação?

- Muitas situações de interesse comercial
 - Melhor forma de carregar um caminhão ou avião
- Tem variantes: número de itens de cada tipo pode ser limitado
- Abordagem programação dinâmica:
 - Calcular a melhor combinação para todas as mochilas de tamanho até M
 - Cálculo é eficiente se feito na ordem apropriada

- cost[i]: maior valor que se consegue com mochila de capacidade i
- best[i]: último item acrescentado para obter o máximo
- Calcula-se o melhor valor que se pode obter usando só itens tipo A, para todos os tamanhos de mochila
- Repete-se usando só A´s e B´s, e assim sucessivamente

- Quando um item j é escolhido para a mochila: o melhor valor que se pode obter é val[j] (do item) mais cost[i-size[j]] (para encher o resto)
- Se o valor assim obtido é superior ao que se consegue sem usar o item j, atualiza-se cost[i] e best[i]; senão mantêm se
- Conteúdo da mochila ótima: recuperado através do vetor best[i]
 - best[i] indica o último item da mochila
 - O restante é o indicado para a mochila de tamanho M-size [best [M]]
- Eficiência: A solução em programação dinâmica gasta tempo
 Θ(NM)

```
k
                                     8
                                        9
                                            10 11 12 13 14 15 16 17
      cost[k]
                                        12 12 12 16 16 16 20 20 20
                                 8
                                     8
j=1
      best[k]
                                         A A A
                                 Α
                                     Α
                                                    AAA
      cost[k]
                              8
                                      10
                                         12 13 14 16 17 18 20 21 22
j=2
                   A B
                                           A B
                                                  \mathbf{B}
                              \mathbf{A}
                                  В
                                      В
                                                      \mathbf{A}
                                                          В
                                                            \mathbf{B}
                                                                 \mathbf{A}
                                                                         В
      best[k]
                                 10 10 12 14 15 16 18 20 20 22 24
      cost[k]
j=3
      best[k]
                     В
                                      В
                                          Α
                                                    Α
                              Α
                                              C
                                                         C
                                      11 12 14 15 16 18 20
                                  10
      cost[k]
j=4
       best[k]
                   A B
                                       D
                                           \mathbf{A}
                                              CC
                                                     A
                                                           C
                                      11
                                          13 14 15 17
                                                         18 20
      cost[k]
j=5
                      В
                          В
                              A
                                       D
                                           E
                                                CC
                                                       E
      best[k]
                   \mathbf{A}
```

Exercício

5. Considere os seguintes itens e que a mochila tem capacidade 20, qual é a combinação de itens que devemos levar para maximizar o valor?

Item	Α	В	С	D
Tamanho	3	4	5	6
Valor	13	15	20	15

Multiplicação de uma Cadeia de Matrizes

- Dada uma sequência de matrizes de dimensões diversas, como fazer o seu produto minimizando o esforço computacional
- Exemplo:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} \begin{bmatrix} d_{11} & d_{12} \end{bmatrix} \begin{bmatrix} e_{11} & e_{12} \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ e_{21} & e_{22} \end{bmatrix} \begin{bmatrix} f_{21} & f_{22} & f_{23} \end{bmatrix}$$

- Multiplicando da esquerda para a direita: 84 operações
- Multiplicando da direita para a esquerda: 69 operações
- Qual a melhor sequência?

Multiplicação de uma Cadeia de Matrizes

- Multiplicar N matrizes $M_1M_2M_3...M_N$ na qual M_i tem r_i linhas e r_{i+1} colunas
- Multiplicação de uma matriz pxq por outra qxr produz uma matriz pxr requerendo q produtos para cada entrada, totalizando pqr operações de multiplicação
- Algoritmo em programação dinâmica:
 - Multiplicar 2 matrizes: só há uma maneira de multiplicar; registra-se o custo
 - Multiplicar 3 matrizes: o menor custo de realizar $M_1M_2M_3$ é calculado comparando os custos de multiplicar M_1M_2 por M_3 e de multiplicar M_1 por M_2M_3 ; registra-se o menor custo
 - O procedimento repete-se para sequências de tamanho crescente

No geral:

— Para $1 \le j \le N-1$ encontra-se o custo mínimo de calcular $M_i M_{i+1} \dots M_{i+j}$ encontrando, para $1 \le i \le N-j$ e para cada k entre i e i+j os custos de obter $M_i M_{i+1} \dots M_{k-1}$ e $M_k M_{k+1} \dots M_{i+j}$ somando o custo de multiplicar esses resultados

```
for(i=1; i <= N; i++)
   for (j = i+1; j \le N; j++) cost[i][j] = INT MAX;
for (i=1; i \le N; i++) cost[i][i] = 0;
for(j=1; j < N; j++)
   for( i=1; i <= N-j; i++ )
       for (k = i+1; k <= i+j; k++)
           t = cost[i][k-1] + cost[k][i+j] +
           r[i] *r[k] *r[i+j+1];
           if( t < cost[i][i+j] )
               { cost[i][i+j] = t; best[i][i+j] = k;
```

- Para $1 \le j \le N-1$ encontra-se o custo mínimo de calcular $M_i M_{i+1} \dots M_{i+j}$
 - Para $1 \le i \le N-j$ e para cada k entre i e i+j calculam-se os custos para obter $M_iM_{i+1}\dots M_{k-1}$ e $M_kM_{k+1}\dots M_{i+j}$
 - Soma-se o custo de multiplicar esses 2 resultados
- Cada grupo é partido em grupos menores
 - Custos mínimos para os 2 grupos são vistos numa tabela
- Custo da multiplicação final $M_iM_{i+1}...M_{k-1}$ é uma matriz r_ixr_k e $M_kM_{k+1}...M_{i+j}$ é uma matriz r_kxr_{i+j+1} , o custo de multiplicar as duas é $r_ir_kr_{i+j+k}$

- cost[l][r] é o custo mínimo para $M_1M_{1+1}...M_r$
- Programa obtém cost[i][i+j] para 1≤i≤N-j com j de 1
 a N-1
- Chegando a j=N-1, tem-se o custo de calcular $M_1M_2...M_N$
- Recuperar a sequência ótima
 - Guarda o registro das decisões feitas para cada dimensão
 - Permite recuperar a sequência de custo mínimo

	В	C	D	Е	F
A	24 [A][B]	14 [A][BC]	22 [ABC][D]	26 [ABC][DE]	36 [ABC][DEF]
В		6 [B][C]	10 [BC][D]	14 [BC][DE]	22 [BC] [DEF]
С			6 [C][D]	10 [C][DE]	19 [C] [DEF]
D				4 [D][E]	10 [DE] [F]
Е					12 [E] [F]

Exercícios

6. Encontre uma colocação ótima de parênteses de um produto de cadeias de matrizes cuja sequência de dimensões é <5, 10, 3, 12, 5, 50, 6>

- Em pesquisa, as chaves ocorrem com frequências diversas; exemplos:
 - Verificador ortográfico: encontra mais frequentemente as palavras mais comuns
 - Compilador de C++: encontra mais frequentemente "if" e "for" que "main"
- Usando uma árvore de pesquisa binária, é vantajoso ter mais perto do topo as chaves mais usadas
- Algoritmo de programação dinâmica pode ser usado para organizar as chaves de forma a minimizar o custo total da pesquisa

- Problema tem semelhança com o dos códigos de Huffman (minimização do tamanho do caminho externo)
 - Mas, código de Huffman não requer a manutenção da ordem das chaves
 - Na árvore de pesquisa binária, os nós à esquerda de cada nó têm chaves menores e os nos à direita têm chaves maiores
- Problema é semelhante ao da ordem de multiplicação de uma cadeia de matrizes

• Exemplo:

Custo da árvore = $1 \times 1 + 4 \times 2 + 2 \times 3 + 2 \times 2 + 3 \times 3 + 5 \times 4 + 1 \times 3 = 51$

- Custo da árvore é o comprimento do caminho interno ponderado da árvore:
 - Multiplicar a frequência de cada nó pela sua distância à raiz
 - Soma para todos os nós

Dados:

- Chaves $K_1 < K_2 < \ldots < K_n$
- Frequências r₁, . . . , r_n
- Construir árvore de pesquisa que minimize a soma, para todas as chaves, dos produtos das frequências pelas distâncias à raiz
- Abordagem em programação dinâmica
 - Calcular, para cada j de 1 a N-1, a melhor maneira de construir subárvores contendo K_i , K_{i+1} , . . . , K_{i+j} , para $1 \le i \le N-j$
 - Para cada j, tenta-se cada nó como raiz e usam-se os valores já computados para determinar as melhores escolhas para as subárvores
 - Para cada k entre i e i+j, construir a árvore ótima contendo K_i, K_{i+1},
 ..., K_{i+j} com K_k na raiz
 - A árvore com K_k na raiz é formada usando a árvore ótima para K_i , K_{i+1} , . . . , K_{k-1} como subárvore esquerda e a árvore ótima para K_{k+1} , K_{k+2} , . . . , K_{i+j} como subárvore direita

```
for (i=1; i \le N; i++)
    for( j = i+1; j \le N+1; j++) cost[i][j] = INT MAX;
for( i=1; i <= N; i++ ) cost[i][i] = f[i];
for (i=1; i \le N+1; i++) cost[i][i-1] = 0;
for (j=1; j \le N-1; j++)
    for (i=1; i \le N-j; i++)
        for (k = i; k <= i+j; k++)
             t = cost[i][k-1] + cost[k+1][i+j];
             if ( t < cost[i][i+j] )
                 \{ cost[i][i+j] = t; best[i][i+j] = k; \}
        for (k = i; k < = i+j; cost[i][i+j] + = f[k++]);
```


Custo da árvore = 3x1+4x2+2x3+1x4+5x2+2x3+1x4 = 41

- O método para determinar uma árvore de pesquisa binária ótima em programação dinâmica gasta tempo $\Theta(\mathbb{N}^3)$ e espaço $\Theta(\mathbb{N}^2)$
- Examinando o código:
 - O algoritmo trabalha com uma matriz de dimensão N² e gasta tempo proporcional a N em cada entrada
- É possível melhorar:
 - Usando o fato de que a posição ótima para a raiz da árvore não pode ser muito distante da posição ótima para uma árvore um pouco menor, no programa dado k não precisa de cobrir todos os valores de i a i+j

Programação Dinâmica - Resumo

- Tradução iterativa inteligente da recursão
 - Resolvem problemas menores
 - Armazenam as soluções para estes problemas menores numa tabela
 - Usam as soluções dos problemas menores para obterem a solução de problemas maiores
- Cada instância do problema é resolvida a partir da solução de subinstâncias da instância original
- O problema deve ter estrutura recursiva: a solução de toda instância do problema deve "conter" soluções de subinstâncias da instância

Exercícios

7. Determine o custo e a estrutura de uma árvore de pesquisa binária ótima para um conjunto de n=7 chaves com seguinte frequência de ocorrência:

	Α	В	С	D	E	F	G
f	7	4	5	1	4	8	7

Algoritmos Gulosos

Ziviani – págs. 58 até 59

Cormen – págs. 296 até 323

Algoritmos Gulosos

- Para resolver um problema, um algoritmo guloso escolhe, em cada iteração, a melhor opção para o momento
- A opção escolhida passa a fazer parte da solução que o algoritmo constrói
- O algoritmo faz uma escolha ótima local esperando que esta o leve a uma solução ótima global
- Um algoritmo guloso jamais se arrepende ou volta atrás, as escolhas que faz em cada iteração são definitivas

Árvore Geradora Mínima

- Árvore Geradora Mínima é a árvore geradora de menor peso de G
- Dado um grafo G com pesos associados às arestas, encontrar uma árvore geradora mínima de G

- As arestas no conjunto A sempre formam uma árvore única
- A árvore começa a partir de um vértice de raiz arbitrária r e aumenta até a árvore alcançar todos os vértices em V
- Em cada etapa, uma aresta leve conectando um vértice de A a um vértice em ∨-A é adicionada à árvore
- Quando o algoritmo termina, as arestas em A formam uma árvore geradora mínima
- Durante a execução do algoritmo, todos os vértices que não estão na árvore residem em uma fila de prioridade mínima Q baseada em um campo chave
- Para cada vértice v, chave[v] é o peso mínimo de qualquer aresta que conecta v a um vértice na árvore
- π[v] é o pai de v na árvore

```
MST-PRIM (G, w, r)
for cada u \in V[G] do
   chave[u] \leftarrow \infty
   \pi[u] \leftarrow NIL
chave[r] \leftarrow 0
Q \leftarrow V[G]
while Q \neq 0 do
    u ← EXTRACT-MIN(Q) INSERE NA AGM
    for cada v ∈ Adj[u] do
        if v \in Q \in w(u,v) < chave[v] then
           \pi[v] \leftarrow u
            chave[v] \leftarrow w(u,v)
```


Versões do Problema da Mochila

- Problema da Mochila 0-1 ou 0-1 Knapsack Problem:
 - O item i é levado integralmente ou é deixado
- Problema da Mochila Fracionário:
 - Fração do item i pode ser levada

Considerações sobre as duas versões

Possuem a propriedade de subestrutura ótima

Problema inteiro:

- Considere uma carga que pesa no máximo W com n itens
- Remova o item j da carga
- Carga restante deve ser a mais valiosa pesando no máximo $W-w_j$ com n-1 itens

Problema fracionário:

- Considere uma carga que pesa no máximo W com n itens
- Remova um peso w do item j da carga
- Carga restante deve ser a mais valiosa pesando no máximo W-w com n-1 itens mais o peso w_i-w do item j

Considerações sobre as duas versões

- Problema inteiro
 - Não é resolvido usando a técnica gulosa
- Problema fracionário
 - É resolvido usando a técnica gulosa
- Estratégia para resolver o problema fracionário:
 - Calcule o valor por unidade de peso v_i/w_i para cada item
 - Estratégia gulosa é levar tanto quanto possível do item de maior valor por unidade de peso
 - Repita o processo para o próximo item com esta propriedade até alcançar a carga máxima
- Complexidade para resolver o problema fracionário:
 - Ordene os itens i (i = 1,..., n) pelas frações v_i / w_i
 - $-\Theta(n \log n)$

Exemplo: Situação inicial Problema 0-1

Item Peso		Valor	V/P
1	10	60	6
2	20	100	5
3	30	120	4

Carga máxima da mochila: 50

Exemplo: Estratégia Gulosa Problema 0-1

Soluções possíveis:

#	Item (Valor)					
1	2 + 3 = 100 + 120 = 220					
2	1 + 2 = 60 + 100 = 160					
3	1 + 3 = 60 + 120 = 180					

→ Solução 2 é a gulosa.

Exemplo: Estratégia Gulosa Problema 0-1

Considerações:

- Levar o item 1 faz com que a mochila fique com espaço vazio
- Espaço vazio diminui o valor efetivo da relação v/w
- Neste caso deve-se comparar a solução do subproblema quando:
 - Item é incluído na solução X Item é excluído da solução
- Passam a existir vários subproblemas
- Programação dinâmica passa a ser a técnica adequada

Exemplo: Estratégia Gulosa Problema Fracionário

Item	Peso	Valor	Fração
1	10	60	1
2	20	100	1
3	30	80	2/3

- → Total = 240.
- → Solução ótima!

O Problema da Mochila Fracionária

 O algoritmo é guloso porque, em cada iteração, abocanha o objeto de maior valor específico dentre os disponíveis, sem se preocupar com o que vai acontecer depois. O algoritmo jamais se arrepende do valor atribuído a um componente de x

Exercício

8. Resolva o problema da mochila fracionária considerando uma mochila com capacidade 50 e 4 itens conforme peso e valor especificados na tabela abaixo

	Α	В	С	D	Ε	
Peso	40	30	20	10	20	
Valor	840	600	400	100	300	

Teoria da Complexidade

Introdução

- A maioria dos problemas conhecidos e estudados se divide em dois grupos:
 - Problemas cuja solução é limitada por um polinômio de grau pequeno
 - Pesquisa binária: Θ (log n)
 - □ Ordenação: Θ (n log n)
 - Multiplicação de matriz: Θ (n².81)
 - Problemas cujo melhor algoritmo conhecido é nãopolinomial
 - Problema do Caixeiro Viajante: Θ (n²2n)
 - □ Knapsack Problem: Θ (2^{n/2})

Algoritmos Polinomiais X Algoritmos Exponenciais

- Algoritmos polinomiais são obtidos através de um entendimento mais profundo da estrutura do problema
- Um problema é considerado tratável quando existe um algoritmo polinomial para resolve-lo
- Algoritmos exponenciais são, em geral, simples variação de pesquisa exaustiva
- Um problema é considerado intratável se ele é tão difícil que não existe um algoritmo polinomial para resolve-lo

Algoritmos Polinomiais X Algoritmos Exponenciais

- Entretanto,
 - Um algoritmo Θ (2ⁿ) é mais rápido que um algoritmo Θ (n⁵) para n \leq 20
 - Existem algoritmos exponenciais que são muito úteis na prática
 - Algoritmo Simplex para programação linear é exponencial mas, executa muito rápido na prática
 - Na prática os algoritmos polinomiais tendem a ter grau 2 ou 3 no máximo e não possuem coeficientes muito grandes n¹⁰⁰ ou 10⁹⁹n² NÃO OCORREM

Decisão x Otimização

- Em um problema de otimização queremos determinar uma solução possível com o melhor valor.
- Em um problema de decisão queremos responder "sim" ou "não".
- Para cada problema de otimização podemos encontrar um problema de decisão equivalente a ele.

Problemas "Sim/Não" ou Problemas de Decisão

- Para o estudo teórico da complexidade de algoritmos é conveniente considerar problemas cujo resultado seja "sim" ou "não"
- Exemplo: Problema do Caixeiro Viajante
 - **Dados**: Um conjunto de cidades $C = \{ c_1, c_2, \ldots, c_n \}$, uma distância $d(c_i, c_j)$ para cada par de cidades $c_i, c_j \in C$ e uma constante K.
 - Questão: Existe um roteiro para todas as cidades em C cujo comprimento total seja menor ou igual a K?

Classe P e NP

Classe P:

 Um algoritmo está na Classe P se a complexidade do seu pior caso é uma função polinomial do tamanho da entrada de dados

Classe NP:

- Classe de problemas "Sim/Não" para os quais uma dada solução pode ser verificada facilmente
- Existe uma enorme quantidade de problemas em NP para os quais não se conhece um único algoritmo polinomial para resolver qualquer um deles

Ordenação está em NP

```
VOrdenacao (A, n)
inicio
   ordenado ← verdadeiro
   para i \leftarrow 1 até n-1 faça
      se A[i] > A[i+1] então
         ordenado ← falso
      fim se
   fim para
   se ordenado = falso então
      escreva "NAO"
   senão
      escreva "SIM"
   fim se
fim
```

Complexidade: Θ (n)

Coloração de Grafos está em NP

```
VColoracao(G,C,K)
inicio
   colorido ← verdadeiro
   para i \leftarrow 1 até |E| faça
      se C[Ei.V1] = C[Ei.V2] então
         colorido ← falso
      fim se
   fim para
   se colorido = verdadeiro e |C| ≤ K então
      escreva "SIM"
   senão
      escreva "NAO"
   fim se
fim
```

Complexidade: Θ (n²), onde n é o número de vértices

Algoritmos Não-deterministas

- Um computador não-determinista, quando diante de duas ou mais alternativas, é capaz de produzir cópias de si mesmo e continuar a computação independentemente para cada alternativa
- Um algoritmo não-determinista é capaz de escolher uma dentre as várias alternativas possíveis a cada passo (o algoritmo é capaz de adivinhar a alternativa que leva a solução)

Algoritmos Não-deterministas

Utilizam

- a função escolhe (C): escolhe um dos elementos de C de forma arbitrária.
- SUCESSO: sinaliza uma computação com sucesso
- INSUCESSO: sinaliza uma computação sem sucesso
- Sempre que existir um conjunto de opções que levam a um término com sucesso então, este conjunto é sempre escolhido
- A complexidade da função escolhe é Θ (1)

Exemplo: Pesquisa

• Pesquisar o elemento x em um conjunto de elementos $A[1..n], n \ge 1$

```
j ← escolhe(A,x)
se A[j] = x então
   SUCESSO
senão
   INSUCESSO
fim se
```

- Complexidade: Θ (1)
- Para um algoritmo determinista a complexidade é Θ (n)

Exemplo: Ordenação

• Ordenar um conjunto A contendo n inteiros $n \geq 1$

```
NDOrdenacao (A,n)
inicio
   para i \leftarrow 1 até n faça B[i] = 0;
   para i←1 até n faça
   inicio
       i \leftarrow escolhe(A, i);
       se B[j] = 0 então
          B[j] = A[i];
       senão
          INSUCESSO
       fim se
   fim para
   SUCESSO
fim
```

- n B contém o conjunto ordenado
- A posição correta em
 B de cada inteiro de
 A é obtida de forma
 não-determinista

- Complexidade do algoritmo não-determinista: Θ (n)
- Complexidade do algoritmo determinista: Θ (n log n)

Algoritmos Deterministas X Algoritmos Não-deterministas

- Classe P (Polynomial-time Algorithms)
 - Conjunto de todos os problemas que podem ser resolvidos por algoritmos deterministas em tempo polinomial
- Classe NP (Nondeterministic Polinomial Time Algorithms)
 - Conjunto de todos os problemas que podem ser resolvidos por algoritmos não-deterministas em tempo polinomial

Como Mostrar que um Determinado Problema está em NP?

 Basta apresentar um algoritmo não-determinista que execute em tempo polinomial para resolver o problema

OU

 Basta encontrar um algoritmo determinista polinomial para verificar que uma dada solução é válida

Caixeiro Viajante está em NP

Algoritmo não-determinista em tempo polinomial

```
NDPCV(G, n, k)
inicio
   Soma \leftarrow 0
   para i \leftarrow 1 até n faça
       A[i] \leftarrow escolhe(G, n)
   fim para
   A[n+1] \leftarrow A[1]
   para i \leftarrow 1 até n faça
       Soma \leftarrow Soma + distancia entre A[i] e A[i+1]
   fim para
    se Soma ≤ k então
       SUCESSO
   senão
       INSUCESSO
   fim se
fim
```

- Complexidade do algoritmo não-determinista: Θ (n)
- Complexidade do algoritmo determinista: Θ (n² 2n)

Caixeiro Viajante está em NP

Algoritmo determinista polinomial para verificar a solução

```
DPCVV(G,S,n,k)
inicio
    Soma ← 0
    para i ← 1 até n faça
        Soma ← Soma + distancia entre S[i] e S[i+1]
    se Soma ≤ k então
        escreva "SIM"
    senão
        escreva "NAO"
fim
```

Complexidade: Θ (n)

P = NP ou $P \neq NP$?

 Como algoritmos deterministas são apenas um caso especial de algoritmos não-deterministas, podemos concluir que
 P ⊂ NP

$$P = NP \text{ ou } P \neq NP$$

- Será que existem algoritmos polinomiais deterministas para todos os problemas em NP?
- Por outro lado, a prova de que P ≠ NP parece exigir técnicas ainda desconhecidas

Descrição tentativa de NP

- P está contida em NP
- Acredita-se que NP seja muito maior que P

Consequências

- Existem muitos problemas práticos em NP que podem ou não pertencer a P (não conhecemos nenhum algoritmo eficiente que execute em uma máquina determinista)
- Se conseguirmos provar que um problema não pertence a P, então não precisamos procurar por uma solução eficiente para ele
- Como não existe tal prova sempre há esperança de que alguém descubra um algoritmo eficiente
- Quase ninguém acredita que NP = P
- Existe um esforço considerável para provar o contrário: MAS O PROBLEMA CONTINUA EM ABERTO!

Redução Polinomial

- Sejam ∏₁ e ∏₂ dois problemas "sim/não".
- Suponha que exista um algoritmo A2 para resolver Π_2 . Se for possível transformar Π_1 em Π_2 e sendo conhecido um processo de transformar a solução de Π_2 numa solução de Π_1 então, o algoritmo A2 pode ser utilizado para resolver Π_1
- Se estas duas transformações puderem ser realizadas em tempo polinomial então, Π_1 é polinomialmente redutível a Π_2 ($\Pi_1 \propto \Pi_2$)

Exemplo de Transformação Polinomial

Conjunto independente de vértices

- \forall ′ ⊆ \forall tal que todo par de vértices de \forall ′ é não adjacente, ou seja, se \forall , \forall ∈ \forall ′ ⇒ (\forall , \forall) \notin \exists
- a, c, b, g é um exemplo de um conjunto independente de cardinalidade 4

Clique

- \forall ′ ⊆ \forall tal que todo par de vértices de \forall ′ é adjacente, \forall ′ é um subgrafo completo, ou seja, se \forall , \forall ∈ \forall ′ ⇒ (\forall , \forall) ∈ \exists
- d, b, e é um exemplo de um clique de cardinalidade 3

Exemplo de Transformação Polinomial

- Instância I do Clique
 - Dados: Grafo G (V, E) e um inteiro K > 0
 - Decisão: G possui um clique de tamanho ≥ k?
- Instância f (I) do Conjunto Independente
 - Considere o grafo complementar G de G e o mesmo inteiro K, f é uma transformação polinomial porque:
 - 1. G pode ser obtido a partir de G em tempo polinomial
 - 2 . G possui clique de tamanho $\geq \ k$ se e somente se G possui conjunto independente de vértices de tamanho $\geq \ k$

Exemplo de Transformação Polinomial

Se existir um algoritmo que resolva o conjunto independente em tempo polinomial, este algoritmo pode ser utilizado para resolver o clique também em tempo polinomial

Clique ∞ Conjunto Independente

Satisfabilidade

- Definir se uma expressão booleana E contendo produto de adições de variáveis booleanas é satisfatível
 - Exemplo: $(x_1 + x_2) * (x_1 + \overline{x_3} + x_2) * (x_3)$ onde x_1 representa variáveis lógicas
 - + representa OR
 - * representa AND
 - \bar{x} representa NOT
- Problema: Existe uma atribuição de valores lógicos (∨ ou F) às variáveis que torne a expressão verdadeira ("satisfaça")?

$$x_1=F$$
, $x_2=V$, $x_3=V$ Satisfaz!

- Exemplo: $(x_1) * (\overline{x_1})$ não é satisfatível

Satisfabilidade

```
NDAval(E,n)
inicio
  para i<-1 até n faça
      xi <- escolhe(true, false)
  se E(x1,x2,...,xn) = true então
      SUCESSO
  senão
      INSUCESSO
  fim se
fim</pre>
```

 O algoritmo obtém uma das 2ⁿ atribuições possíveis de forma não-determinista em O (n)

Teorema de Cook

- S. Cook formulou a seguinte questão (em 1971): existe algum problema em NP tal que se ele for mostrado estar em P então este fato implicaria que P=NP.
- Teorema de Cook: Satisfabilidade está em P se, e somente se, P = NP
- Isto é: Se existe um algoritmo polinomial determinista para a satisfabilidade então, todos os problemas em NP poderiam ser resolvidos em tempo polinomial

Teorema de Cook

- SAT está em P sse P = NP
- Esboço da prova
 - 1. SAT está em NP. Logo, se P = NP então SAT está em P.
 - 2. Se SAT está em P então P = NP
 - Prova descreve como obter de qualquer algoritmo polinomial não determinista de decisão A com entrada E uma fórmula Q(A,E) de forma que Q é satisfatível se e somente se A termina com sucesso para a entrada E. Isto significa que ele mostrou que para qualquer problema ∏ ∈ NP, ∏ ∞ SAT

NP-Completo

- Um problema de decisão ∏ é denominado NP-Completo se
 - 1. ∏ ∈ NP
 - 2. Todo problema de decisão $\Pi' \in NP$ satisfaz $\Pi' \propto \Pi$
- Apenas problemas de decisão (sim/não) podem ser NP-Completo

Como Provar que um Problema é NP-Completo

- 1. Mostre que o problema está em NP
- Mostre que um problema NP-Completo conhecido pode ser polinomialmente transformado para ele
- Porque:
 - Cook apresentou uma prova direta de que SAT é NP-Completo
 - Transitividade da redução polinomial

SAT
$$\propto \Pi_1 \in \Pi_1 \propto \Pi_2 \Rightarrow$$
 SAT $\propto \Pi_2$

Descrição tentativa de NP

Assumindo que P ≠ NP

- Se alguém encontrar um algoritmo polinomial que resolva algum problema NP-Completo então, todos os problemas em NP também terão solução polinomial, ou seja, P será igual a NP.
- Se alguém provar que um determinado problema em NP não tem solução polinomial então, todos os problemas em NP-Completo também não terão solução polinomial, ou seja, P será diferente de NP.

Qual é a Contribuição Prática da Teoria de NP-Completo?

- Fornece um mecanismo que permite descobrir se um novo problema é "fácil" ou "difícil"
- Se encontrarmos um algoritmo eficiente para o problema, então não há dificuldades. Senão, uma prova de que o problema é NP-Completo nos diz que se acharmos um algoritmo eficiente então estaremos obtendo um grande resultado.

Como Resolver Problemas NP-completos?

 Quando não existe solução polinomial é necessário usar algoritmos aproximados ou heurísticas que não garantem a solução ótima mas são rápidos

Algoritmos Aproximados e Heurísticas

Algoritmos aproximados:

- Algoritmos usados normalmente para resolver problemas para os quais não se conhece uma solução polinomial
- Devem executar em tempo polinomial dentro de limites "prováveis" de qualidade absoluta ou assintótica

• Heurísticas:

- Algoritmos que têm como objetivo fornecer soluções sem um limite formal de qualidade, em geral avaliado empiricamente em termos de complexidade (média) e qualidade de soluções
- É projetada para obter ganho computacional ou simplicidade conceitual, possivelmente ao custo de precisão