Kinshuk Jagdev

Logistic Regression

Task

Build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

```
In [1]:
```

```
import warnings
warnings.filterwarnings('ignore')
```

1: Data Loading

First and Foremost Step is loading the data. We will use **Pandas** library to load the data into pandas **Dataframe**.

Main Library Used: Pandas

```
In [2]:
```

```
#importing pandas library
import pandas as pd
#importing numpy library
import numpy as np
```

```
In [3]:
```

```
#loading training dataset into dataframe

df_train = pd.read_csv('E:\\ml data\\train.csv')
```

In [4]:

#previewing the training data

df_train.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [5]:

```
#obtaining data information

df_train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived
              891 non-null int64
              891 non-null int64
Pclass
              891 non-null object
Name
              891 non-null object
Sex
              714 non-null float64
Age
              891 non-null int64
SibSp
              891 non-null int64
Parch
              891 non-null object
Ticket
              891 non-null float64
Fare
Cabin
              204 non-null object
Embarked
              889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Analysis: Training dataset has 891 Entries

In [6]:

```
#loading the test data into dataframe

df_test = pd.read_csv('E:\\ml data\\test.csv')
```

In [7]:

```
#previewing the test data

df_test.head()
```

Out[7]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
4											>

In [8]:

```
#obtaining test data info

df_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
              418 non-null int64
PassengerId
              418 non-null int64
Pclass
Name
              418 non-null object
              418 non-null object
Sex
              332 non-null float64
Age
              418 non-null int64
SibSp
              418 non-null int64
Parch
              418 non-null object
Ticket
              417 non-null float64
Fare
              91 non-null object
Cabin
Embarked
              418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB
```

Analysis: Testing dataset has 418 Entries

2: Data Cleaning and Filling Null Values

We will be dropping Name, Ticket and Passengerld variables, as they are mostly unique and have no

significance in analysis

```
In [9]:
df_train = df_train.drop(['Name', 'Ticket', 'PassengerId'], 1)
df train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 9 columns):
           891 non-null int64
Survived
Pclass
            891 non-null int64
            891 non-null object
Sex
            714 non-null float64
Age
           891 non-null int64
SibSp
Parch
           891 non-null int64
            891 non-null float64
Fare
Cabin
            204 non-null object
           889 non-null object
dtypes: float64(2), int64(4), object(3)
memory usage: 62.8+ KB
In [10]:
passenger_data = df_test['PassengerId']
df_test = df_test.drop(['Name', 'Ticket', 'PassengerId'], 1)
df_test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 8 columns):
Pclass
           418 non-null int64
            418 non-null object
Sex
Age
           332 non-null float64
           418 non-null int64
SibSp
            418 non-null int64
Parch
            417 non-null float64
Fare
            91 non-null object
Cabin
           418 non-null object
Embarked
dtypes: float64(2), int64(3), object(3)
memory usage: 26.2+ KB
```

Getting the count of null values

```
In [11]:
```

```
df_train.isnull().sum()
Out[11]:
Survived
              0
Pclass
              0
              0
Sex
            177
Age
SibSp
Parch
              0
Fare
Cabin
            687
Embarked
dtype: int64
```

Analysis: Age and Cabin have 177 and 687 null values, while Embarked has only 2 null values

Since Cabin has roughly 77% missing data we will drop this column

Age column has roughly 20% missing data, we will simply fill null values with mean age values

```
In [12]:
```

```
df_train = df_train.drop(['Cabin'], 1)
#viewing new data
df_train.head()
```

Out[12]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

Filling null values in Embarked Column

This column has three stations from which people have boarded, so we will simply fill the null values with most common station, i.e. S

```
In [13]:
```

```
df_train["Embarked"].fillna(df_train['Embarked'].value_counts().idxmax(), inplace=True)
```

Filling null values in Age Column

Filling mean values

```
In [14]:
```

```
df_train['Age'].fillna(df_train['Age'].mean(skipna=True), inplace = True)
```

Analysing new data

In [15]:

```
df_train.isnull().sum()
```

Out[15]:

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64

Conclusion: : Data now has no null values, so we will repeat same process for testing data

In [16]:

```
df_test.isnull().sum()
```

Out[16]:

Pclass 0
Sex 0
Age 86
SibSp 0
Parch 0
Fare 1
Cabin 327
Embarked 0
dtype: int64

In [17]:

```
df_test = df_test.drop(['Cabin'], 1)
#viewing new data
df_test.head()
```

Out[17]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	34.5	0	0	7.8292	Q
1	3	female	47.0	1	0	7.0000	S
2	2	male	62.0	0	0	9.6875	Q
3	3	male	27.0	0	0	8.6625	S
4	3	female	22.0	1	1	12.2875	S

```
In [18]:
```

```
df_test["Embarked"].fillna(df_test['Embarked'].value_counts().idxmax(), inplace=True)
In [19]:
df_test['Age'].fillna(df_test['Age'].mean(skipna=True), inplace = True)
```

Fare Column

Fare Column has a missing value in test data, but not in train data, so we will simply replace it with mean value.

```
In [20]:

df_test['Fare'].fillna(df_test['Fare'].mean(skipna=True), inplace = True)
```

Checking new data

```
In [21]:
```

3: Dealing with Categorical Variables

We have SibSp and Parch variables, which tells us if an individual is travelling with family. So, we will simply create a variable, **travelling_alone** to optimize our data.

```
In [22]:
```

```
#creating travel_alone variable

df_train['travel_alone']=np.where((df_train["SibSp"]+df_train["Parch"])>0, 0, 1)

df_train.drop('SibSp', axis=1, inplace=True)

df_train.drop('Parch', axis=1, inplace=True)
```

Getting Dummy Variables

The Dummy Variables enable us to use a single regression equation to represent multiple groups

In [23]:

```
#creating dummy variables bor "Sex" column

dum1 = pd.get_dummies(df_train, columns=['Sex'], prefix = 'Sex')

df_train = pd.concat([dum1], 1)

df_train.head()
```

Out[23]:

	Survived	Pclass	Age	Fare	Embarked	travel_alone	Sex_female	Sex_male
0	0	3	22.0	7.2500	S	0	0	1
1	1	1	38.0	71.2833	С	0	1	0
2	1	3	26.0	7.9250	S	1	1	0
3	1	1	35.0	53.1000	S	0	1	0
4	0	3	35.0	8.0500	S	1	0	1

In [24]:

```
#dropping extra variable

df_train = df_train.drop(['Sex_female'], 1)
```

In [25]:

```
#checking the data

df_train.head()
```

Out[25]:

	Survived	Pclass	Age	Fare	Embarked	travel_alone	Sex_male
0	0	3	22.0	7.2500	S	0	1
1	1	1	38.0	71.2833	С	0	0
2	1	3	26.0	7.9250	S	1	0
3	1	1	35.0	53.1000	S	0	0
4	0	3	35.0	8.0500	S	1	1

In [26]:

```
#dummy variables for class and embarked variables

dm2=pd.get_dummies(df_train, columns=["Pclass","Embarked"])
dm2.head()
```

Out[26]:

	Survived	Age	Fare	travel_alone	Sex_male	Pclass_1	Pclass_2	Pclass_3	Embarked_C
0	0	22.0	7.2500	0	1	0	0	1	0
1	1	38.0	71.2833	0	0	1	0	0	1
2	1	26.0	7.9250	1	0	0	0	1	0
3	1	35.0	53.1000	0	0	1	0	0	0
4	0	35.0	8.0500	1	1	0	0	1	0

In [27]:

```
df_train = pd.concat([dm2], 1)
df_train.head()
```

Out[27]:

	Survived	Age	Fare	travel_alone	Sex_male	Pclass_1	Pclass_2	Pclass_3	Embarked_C
0	0	22.0	7.2500	0	1	0	0	1	0
1	1	38.0	71.2833	0	0	1	0	0	1
2	1	26.0	7.9250	1	0	0	0	1	0
3	1	35.0	53.1000	0	0	1	0	0	0
4	0	35.0	8.0500	1	1	0	0	1	0
4									>

Repeating same steps for test data

In [28]:

```
df_test['travel_alone']=np.where((df_test["SibSp"]+df_test["Parch"])>0, 0, 1)
df_test.drop('SibSp', axis=1, inplace=True)
df_test.drop('Parch', axis=1, inplace=True)
```

Dummy Variables for **Test** data

In [29]:

```
dum1 = pd.get_dummies(df_test, columns=['Sex'], prefix = 'Sex')
df_test = pd.concat([dum1], 1)
df_test.head()
```

Out[29]:

	Pclass	Age	Fare	Embarked	travel_alone	Sex_female	Sex_male
0	3	34.5	7.8292	Q	1	0	1
1	3	47.0	7.0000	S	0	1	0
2	2	62.0	9.6875	Q	1	0	1
3	3	27.0	8.6625	S	1	0	1
4	3	22.0	12.2875	S	0	1	0

In [30]:

```
df_test = df_test.drop(['Sex_female'], 1)
```

In [31]:

```
df_test.head()
```

Out[31]:

	Pclass	Age	Fare	Embarked	travel_alone	Sex_male
0	3	34.5	7.8292	Q	1	1
1	3	47.0	7.0000	S	0	0
2	2	62.0	9.6875	Q	1	1
3	3	27.0	8.6625	S	1	1
4	3	22.0	12.2875	S	0	0

In [32]:

```
dm2=pd.get_dummies(df_test, columns=["Pclass","Embarked"])
dm2.head()
```

Out[32]:

	Age	Fare	travel_alone	Sex_male	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarke
0	34.5	7.8292	1	1	0	0	1	0	
1	47.0	7.0000	0	0	0	0	1	0	
2	62.0	9.6875	1	1	0	1	0	0	
3	27.0	8.6625	1	1	0	0	1	0	
4	22.0	12.2875	0	0	0	0	1	0	
4									•

In [33]:

```
df_test = pd.concat([dm2], 1)
df_test.head()
```

Out[33]:

	Age	Fare	travel_alone	Sex_male	Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarke
0	34.5	7.8292	1	1	0	0	1	0	_
1	47.0	7.0000	0	0	0	0	1	0	
2	62.0	9.6875	1	1	0	1	0	0	
3	27.0	8.6625	1	1	0	0	1	0	
4	22.0	12.2875	0	0	0	0	1	0	
4									•

Both test and training data now are in desired shape, now it is time to start with outlier treatment

4: Univariate Analysis

Since our data is in good condition now, it is time to start understanding data with Univariate Analysis. Univariate Analysis is the simplest analysis method.

Main Library Used: Seaborn

In [34]:

```
#importing necessary libraries for visualuzation of data
import matplotlib.pyplot as plt
import seaborn as sns
```

Survival Based on Passenger Class

In [35]:

sns.countplot("Pclass_1", hue="Survived", data = df_train)

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x24021b93e48>

In [36]:

sns.countplot("Pclass_2", hue="Survived", data = df_train)

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x24021eb0248>

In [37]:

```
sns.countplot("Pclass_3", hue="Survived", data = df_train)
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x24021f32208>

Survival Percentages in Passenger Class

In [38]:

df_train[["Pclass_1", "Survived"]].groupby(['Pclass_1'], as_index=False).mean().sort_values

Out[38]:

	Pclass_1	Survived
1	1	0.629630
0	0	0.305185

```
In [39]:
df_train[["Pclass_2", "Survived"]].groupby(['Pclass_2'], as_index=False).mean().sort_values
Out[39]:
   Pclass_2 Survived
        1 0.472826
0
        0 0.360679
In [40]:
df_train[["Pclass_3", "Survived"]].groupby(['Pclass_3'], as_index=False).mean().sort_values
Out[40]:
   Pclass_3 Survived
0
        0 0.557500
        1 0.242363
1
In [41]:
print('*'*50)
print("Class-1 Survival Rate: 62%")
print("Class-2 Survival Rate: 47%")
print("Class-3 Survival Rate: 24%")
print('*'*50)
**************
Class-1 Survival Rate: 62%
Class-2 Survival Rate: 47%
Class-3 Survival Rate: 24%
```

Analysis: Class-1 Passengers have very high survival percentage while Class-3 Passengers have least survival rate

Survival Based on If one is travelling alone

In [42]:

```
sns.countplot('travel_alone', hue='Survived', data=df_train)
```

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x24021fbf348>

Survival Percentages in travel_alone

In [43]:

```
df_train[["travel_alone", "Survived"]].groupby(['travel_alone'], as_index=False).mean().sor
```

Out[43]:

	travel_alone	Survived
0	0	0.505650
1	1	0.303538

Analysis: Those travelling with families have had higher survival rate

Survival Based on Gender

In [44]:

```
sns.countplot('Sex_male', hue='Survived', data=df_train)
```

Out[44]:

<matplotlib.axes._subplots.AxesSubplot at 0x2402202d388>

Survival Percentages in Gender

In [45]:

df_train[["Sex_male", "Survived"]].groupby(['Sex_male'], as_index=False).mean().sort_values
Out[45]:

Sex_male		Survived	
0	0	0.742038	
1	1	0.188908	

Analysis: Females have higher survival rate than Males

Survival Based on Age

In [46]:

sns.countplot('Age', hue='Survived', data=df_train)

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x24022095888>

Survival Based on Fare

In [47]:

```
sns.countplot('Fare', hue='Survived', data=df_train)
```

Out[47]:

<matplotlib.axes._subplots.AxesSubplot at 0x24022399288>

Survival Based on Embarkment

In [48]:

```
sns.countplot("Embarked_S", hue="Survived", data = df_train)
```

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x24022c79ec8>

In [49]:

sns.countplot("Embarked_C", hue="Survived", data = df_train)

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x24022ba7d08>

In [50]:

sns.countplot("Embarked_Q", hue="Survived", data = df_train)

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x24022d1df88>

Survival Percentages in Different Boarding Locations

```
In [51]:
df_train[["Embarked_C", "Survived"]].groupby(['Embarked_C'], as_index=False).mean().sort_va
Out[51]:
   Embarked_C Survived
            1 0.553571
0
           0 0.344398
In [52]:
df_train[["Embarked_S", "Survived"]].groupby(['Embarked_S'], as_index=False).mean().sort_va
Out[52]:
   Embarked_S Survived
              0.502041
0
           1 0.339009
1
In [53]:
df_train[["Embarked_Q", "Survived"]].groupby(['Embarked_Q'], as_index=False).mean().sort_va
Out[53]:
   Embarked_Q Survived
1
              0.389610
0
            0 0.383292
In [54]:
print('*'*50)
print("Port-C Survival Rate: 55%")
print("Port-S Survival Rate: 34%")
print("Port-Q Survival Rate: 39%")
print('*'*50)
****************
Port-C Survival Rate: 55%
Port-S Survival Rate: 34%
Port-Q Survival Rate: 39%
```

Analysis: Port-C has highest survival rate while Port-S has least survival rate

Adding final categorical variable, for age, as it is important column for analysis

```
In [55]:

df_train['Minor']=np.where(df_train['Age']<=16, 1, 0)

df_test['Minor']=np.where(df_test['Age']<=16, 1, 0)</pre>
```

5: Logistic Regression Model Building

Since we are now familiar with our data, now we can finally perform Logistic Regression **Main Library Used:** Sklearn

Initially Checking The Correlation:

In [56]:

```
plt.figure(figsize = (8,6))
sns.heatmap(df_train.corr(), annot = True)
plt.show()
```


Building the model

Splitting X and Y training data

In [57]:

```
#using sklearn for Logistic Regression
from sklearn.linear_model import LogisticRegression

#getting RFE for feature selection
from sklearn.feature_selection import RFE
```

```
In [58]:
```

```
#getting initial variables
vars = ["Age","Fare","travel_alone","Pclass_1","Pclass_2","Embarked_C","Embarked_S","Sex_ma
#splitting into X and Y training datasets
X_train = df_train[vars]
y_train = df_train['Survived']
```

Feature Selection Using RFE

```
In [59]:
```

```
#creating logistic regresssion model
md = LogisticRegression()

#using rfe for feature selection
rfe = RFE(md, 8)
rfe = rfe.fit(X_train, y_train)
list(X_train.columns[rfe.support_])
```

```
Out[59]:
```

```
['Age',
  'travel_alone',
  'Pclass_1',
  'Pclass_2',
  'Embarked_C',
  'Embarked_S',
  'Sex_male',
  'Minor']
```

Finally, we have our variables ready, so we can move forward with model building

In [60]:

```
#updating training and testing datasets

vars = ['Age', 'travel_alone','Pclass_1','Pclass_2','Embarked_C', 'Embarked_S', 'Sex_male',
X_train = df_train[vars]
X_test = df_test[vars]
X_train.columns

Out[60]:
Index(['Age', 'travel_alone', 'Pclass_1', 'Pclass_2', 'Embarked_C',
```

```
localhost:8888/notebooks/Downloads/titanic survival prediction.ipynb#
```

'Embarked_S', 'Sex_male', 'Minor'],

dtype='object')

In [61]:

```
#fitting final model
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

Out[61]:

6: Testing the Model

In [62]:

```
#Testing the data and saving predictions
y_pred = logreg.predict(X_test)
```

Getting VIF values

In [63]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [64]:

```
vif = pd.DataFrame()
vif['vars'] = X_train.columns
vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[64]:

	vars	VIF
0	Age	6.84
5	Embarked_S	6.04
6	Sex_male	3.21
1	travel_alone	2.90
4	Embarked_C	2.38
2	Pclass_1	1.88
3	Pclass_2	1.48
7	Minor	1.43

Analysis: VIF values are normal, so we can continue with this model

Creating Dataframe for Submission

In [65]:

```
#passenger ids from test data
l1 = passenger_data.tolist()

#creating dataframe
#logreg_submission = pd.DataFrame({"PassengerId": L1, "Survived": y_pred})

#dataframe to csv conversion
#logreg_submission.to_csv('2ndlogreg_submission.csv', index=False)
```

7: Post Submission Analysis:

Model Score: 0.7727

The Model Score recieved is actually good, and the best the we could achieve at the moment. Although, we acknowledge that there is scope for improvement.

Thank you