Medical Image Analysis

6. Medical image segmentation(1)

Taeyang Yang

Oct. 2020

https://tyami.github.io/

1. Introduction to medical image segmentation

Segmentation in medical image analysis

- Longitudinal study
 - 1년 후 특정 ROI가 어떻게 변화했는지 확인 가능
- 특정 ROI (e.g. 종양) 의 비율

1. Introduction to medical image segmentation

Contents

	Conventional methods	Deep learning methods
Segmentation	Intensity/Color-based - Thresholding - Region growing Prior information-based - Graph cut - Active contour model Learning-based - Active shape model	FCN U-Net Deep lab

Manual threshold

(Manual) Voxel intensity > Threshold

0~255

Otsu thresholding: Automatic binarization

(Automatic) Voxel intensity > Threshold

Otsu thresholding: Procedure 1/5

Split into two class (background & foreground)

Otsu thresholding: Procedure 2/5

Calculate Weight, Mean, and Variance for each class

$$W_b = \frac{10+5+6+8}{10+5+6+8+2+6+5} = \frac{29}{42} = 0.690$$

$$\mu_b = \frac{1 \times 10 + 2 \times 5 + 3 \times 6 + 4 \times 8}{10 + 5 + 6 + 8} = 2.414$$

$$\sigma_b = \frac{\left((1-2.414)^2\times 10\right) + \left((2-2.414)^2\times 5\right) + \left((3-2.414)^2\times 6\right) + \left((4-2.414)^2\times 8\right)}{10+5+6+8} = 1.484$$

Otsu thresholding: Procedure 3/5

Calculate Weight, Mean, and Variance for each class

 $\sigma_f = \frac{\left((5 - 6.231)^2 \times 2 \right) + \left((6 - 6.231)^2 \times 6 \right) + \left((7 - 6.231)^2 \times 5 \right)}{2 + 6 + 5} = 0.485$

Otsu thresholding: Procedure 4/5

$$W_b = 0.690$$

$$\mu_b = 2.414$$

$$\sigma_b = 1.484$$

Calculate
$$\frac{\sigma_W^2}{\sigma_B^2}$$

$$Maximize \frac{\sigma_B^2(T)}{\sigma_W^2(T)}$$

$$\sigma_W^2 = W_b \sigma_b^2 + W_f \sigma_f^2$$

$$\sigma_B^2 = \sigma^2 - \sigma_W^2$$

$$= W_b W_f (\mu_b - \mu_f)^2$$

$$\sigma_W^2 = 0.690 \times (1.484)^2 + 0.310 \times (0.485)^2$$

= 1.593

$$\sigma_B^2 = 0.690 \times 0.310(2.414 - 6.231)^2$$

= 3.114

$$\frac{\sigma_W^2}{\sigma_R^2} = \frac{1.593}{3.114} = 0.512$$

$$W_f = 0.310$$

$$\mu_f = 6.231$$

$$\sigma_f = 0.485$$

Otsu thresholding: Procedure 5/5

Problem of threshold-based algorithms

Noise of threshold-based algorithms

Morphological processing: Dilation

Dilation: Reverse of convolution

(Revisit) Convolution

١		ລ	t	ລ
	IJ	а	L.	а

9	9	99	()9	1 09	0
9	9	9 9	0 9	1 09	0
9	9	9 9	0 9	1 09	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

9	6	3	

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 0 \times \frac{1}{9} = 6$$

Morphological processing: Dilation and Erosion

Filters for dilation/erosion

Diverse Structural element (filter)

0	1	0
1	1	1
0	1	0

0	1	1
1	1	1
0	1	1

0	1	0
1	1	1
0	1	1

0	1	0
0	1	1
1	1	1

Morphological processing: Dilation

Morphological processing: Dilation

Morphological processing: Dilation

Morphological processing: Dilation

Morphological processing: Dilation

Dilation: Increase of foreground

Dilation: Reverse of convolution

Morphological processing: Erosion

Find overlap between 1 and background (white pixel)

Morphological processing: Erosion

Erosion: Increase of background

Dilation: Reverse of convolution

Morphological processing: Erosion

Erosion: Increase of background

Dilation: Reverse of convolution

Use of erosion

Reduction of noise, but decreased foreground size

Opening: Erosion → Dilation

Opening

Use of dilation

Reduction of hole, but increased foreground size

Reductio of hole

Closing: Dilation → Erosion

Closing

Reduction of hole

Reduction of noise Resize of foreground

Drawback of morphological processing

Region growing

Region growing

Region growing

Region growing (brain image)

Region growing in RGB image

$$|I_i - I_j| > threshold, expand$$

Drawback of region growing

Time consuming for input

Watershed algorithm: Automatic region growing

Marker → Region integrity

Watershed algorithm: 2D

Mechanism of Graph model

Mechanism of Graph model

maximize $P(x_1, x_2, ..., x_N | z_1, z_2, ..., z_N)$ Posterior probability

Mechanism of Graph model

Prior probability: 관찰된 값에 대한 분포

Likelihood: 관찰된 값을 바탕으로 예측된 Class의 확률

Mechanism of Graph model

Mechanism of Graph model

Maximization problem
$$P(x_1,x_2,\ldots,x_N|z_1,z_2,\ldots,z_N) \propto \prod_i P(z_i|x_i) \prod_{ij} P(x_i,x_j)$$
 Gibbs energy: Take negative logarithm
$$E(x_1,x_2,\ldots,x_N|z_1,z_2,\ldots,z_N) = \log \left(\prod_i P(z_i|x_i) \prod_{ij} P(x_i,x_j)\right)$$

$$= \sum_i \theta_i(z_i|x_i) + \sum_{i,j} \theta_{i,j}(x_i,x_j)$$
 Likelihood term Prior term

Goal: x_i 조합 (2^N 가지) Likelihood term과 Prior term을 모두 낮춰줄 수 있는 조건을 찾는 것

$$E(x, z, \lambda) = \sum_{i}^{N} \theta_{i}(z_{i}|x_{i}) + \lambda \sum_{i,j} \theta_{i,j}(x_{i}, x_{j})$$
Likelihood Prior

 λ 를 높이면, prior term을 고려함 (주변부를 고려하게 됨)

Max-flow Min-cut: example data

Max-flow Min-cut: procedure 1/3

Max-flow Min-cut: procedure 2/3

Max-flow Min-cut: procedure 3/3

Max-flow Min-cut: result

