

UE Interfaçage Numérique

IntNum / Semestre 6
Institut d'Optique

- Génération de photons
- Conception optique / « Fabrication d'images »
- Acquisition de données
- Traitement des informations

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

Comment contrôler / piloter un système pour :

- Le rendre autonome?
- Acquérir des données ?

Comment acquérir une image numérique exploitable?

Comment préparer une image numérique pour un traitement?

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color lightemitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

IntNum / Semestre 6
Institut d'Optique

Spécificités d'un système embarqué

CONTROL UNIT

SENSORS

- regroupement d'un système matériel et d'un logiciel
- architecture spécifique / exécution d'un ensemble de tâches particulières
- réactif, autonome et en contact permanent avec son environnement

Programmation d'un système embarqué

Programmation d'un système embarqué

Programmation d'un système embarqué

Systèmes embarqués / TP

Arduino / Nucleo

Robotique

Communication

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Caméras et images

IntNum / Semestre 6
Institut d'Optique

Structure d'une caméra - stockage de charges

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Quantification

Echantillonnage

Not so bad

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Echantillonnage

8x Sampling

4x Sampling

16x Sampling

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Images

Images

Nb of pixels = $h \times v$

Each pixel is converted into **n bits**.

Images

Traitement d'images

Image from the camera

- Noise
- Bad contrast
- Inhomogeneous Lighting
- ...

Desired image with objects with **well-defined contours**

- Homogeneous zones
- Transition zones

Images

Traitement d'images

UE Interfaçage Numérique

Modalités

IntNum / Semestre 6
Institut d'Optique

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Module d'enseignement s'inscrivant dans le

déploiement de l'approche par compétences

8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte de Matlab

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Module d'enseignement s'inscrivant dans le

déploiement de l'approche par compétences

motive son choix d'une solution technologique simple

utilise les fonctions de base du logiciel selon un protocole donné

motive son choix d'une méthode numérique simple

fournit une liste pré-définie des spécifications principales

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Module d'enseignement s'inscrivant dans le

déploiement de l'approche par compétences

Etablit les grandes lignes d'un protocole de test

Réalise un test sommaire d'une partie des fonctionnalités

Mesure des grandeurs caractéristiques des performances

Rédige une analyse partielle et préliminaire des résultats des tests.

Rédige une brève auto-analyse de la conformité aux besoins

Volume horaire de 46,5h pour 5 ECTS

(European Credit Transfer and Accumulation System)

16 % du S6

Module non noté

Se former à son rythme

- Être **présent·es et actif·ves** à toutes les séances de TD et de TP
- Réaliser l'ensemble des activités proposées :
 - Test individuel systèmes embarqués (séance 3 ou 7)
 - Présentation en TD systèmes embarqués
 - Présentation en TP (IHM ou Traitement Image)

8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte de Matlab

Responsables

Fabienne BERNARD Julien VILLEMEJANE

Robot

Arduino / Nucleo

Robotique

Communication

Camera et Images

Vision Industrielle

Traitement Images

Python

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

IHM sous Python

PyQt6

Images et OpenCV

OpenCV

choisi

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Mini-projet: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage

Robot

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle Pilotage via une télécommande

Camera et Images

Vision Industrielle

Traitement Images

Python

Séance 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

Séance 2 : Prise en main d'OpenCV / Histogramme d'une image / Moyennage

choisin

séances

IHM sous Python

Python

PyQt6

Mini-projet: Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)

Images et OpenCV

Python

OpenCV

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...) – traitements bas niveau

Séance 2 : Détection de formes, couleurs... / Filtrage par TF2D / Bruits

(R)obot

(D)iag Ray

(C)améra

(I)hm (I)mage 4 x 2 séances de TP

4 bancs pour chaque bloc

	B1à4	B5à8	B9à12	B13à16
Séance 1	R	D	С	1
Séance 2	R	D	C	I
Séance 3	R	D	1	C
Séance 4	R	D	1	C
Séance 5	C	1	R	D
Séance 6	C	1	R	D
Séance 7	I	С	R	D
Séance 8	I	C	R	D

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Mini-projet: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage

Radiation Characteristics 7). 8)

 $I_{\text{erel}} = f(\phi)$

Robot

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle

Camera et Images

Vision Industrielle

Traitement Images

Python

TP 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

TP 2 : OpenCV / Histogramme d'une image / Détection de formes, couleurs... / Filtrage par TF2D

IHM sous Python

Python

PyQt6

Mini-projet : Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)

Images et OpenCV

Python

OpenCV

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...)

Séance 2 : Détection de formes, couleurs...

