A Tree-based Decoder for Neural Machine Translation

Xinyi Wang, Hieu Pham, Pengcheng Yin, Graham Neubig

November 4, 2018

Tree Structures for Language

- Tree structures: captures inherent hierarchical structure of language
- Hypothesis: Improve generalization for low-resource data

Previous works on Syntactic MT

- Standard sequence decoder w/ multi-task objective
 - ► CCG interleaving [Nadejde et al., 2017]

 N Jane (S[dcl])/NP had NP/N a N cat . .
 - Linearized tree [Aharoni and Goldberg, 2017]
 (ROOT (S (NP Jane)NP (VP had (NP a cat)NP)VP .)S)ROOT
 - ► Sequence decoder + RNNG multi-task [Eriguchi et al., 2017]
- Restricted to specific type of syntactic structures
 - ▶ Dependency tree [Wu et al., 2017]

TrDec

Natural integration of tree topology into decoding

While there is open non-terminal :

 Can flexibly work with any type of tree structure and compare tree topologies

Tree Structures: Syntactic

Constituency (TrDec-con)

Tree Structures: Syntactic

Constituency (TrDec-con)

null

Dependency (TrDec-dep)

Tree Structures: Ablated Syntactic Labels

• Does label information help?

Tree Structures: Ablated Syntactic Labels

- Does label information help?
- Unlabeled constituency (TrDec-con-null)

Tree Structures: Non-syntactic

• Does syntactic information help?

Tree Structures: Non-syntactic

- Does syntactic information help?
- Two types of balanced binary trees (TrDec-binary)

Figure: Left: built from top down; Right: built from bottom up

Experiments

- Data
 - or-en: small
 - ▶ de-en: medium
 - ▶ ja-en: medium
- Baselines
 - seq2seq with attention [Bahdanau et al., 2015]
 - CCG interleaving (CCG) [Nadejde et al., 2017]
 - ► NULL interleaving (CCG-null)
 - ▶ Linearized constituency tree (LIN) [Aharoni and Goldberg, 2017]

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm extbf{std)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
TrDec-con	21.59	31.93	11.43 ± 0.58
TrDec-con-null	22.72	31.21	11.35 ± 0.55
TrDec-dep	21.41	31.23	8.40 ± 0.5
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

• Syntactic tags don't have large effect

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm extbf{std)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
TrDec-con	21.59	31.93	11.43 ± 0.58
TrDec-con-null	22.72	31.21	11.35 ± 0.55
TrDec-dep	21.41	31.23	8.40 ± 0.5
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

- Syntactic tags don't have large effect
- Balanced binary trees win

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm ext{std)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
TrDec-con	21.59	31.93	11.43 ± 0.58
TrDec-con-null	22.72	31.21	11.35 ± 0.55
TrDec-dep	21.41	31.23	8.40 ± 0.5
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

- Syntactic tags don't have large effect
- Balanced binary trees win
- Constituency trees perform better than dependency trees

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm extbf{std)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
TrDec-con	21.59	31.93	11.43 ± 0.58
TrDec-con-null	22.72	31.21	11.35 ± 0.55
TrDec-dep	21.41	31.23	8.40 ± 0.5
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

Results: Other Syntactic Decoders

Model	ja-en	de-en	${f or ext{-en}}\ ({\sf mean}\pm{\sf std})$
seq2seq	21.10	32.26	10.90 ± 0.57
CCG	22.44	32.84	12.55 ± 0.60
CCG-null	21.31	33.10	11.96 ± 0.57
LIN	21.55	31.79	12.66 ± 0.61
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

Results: Other Syntactic Decoders

 TrDec-binary outperforms the alternatives for two of the three datasets

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm ext{std} \ extbf{)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
CCG	22.44	32.84	12.55 ± 0.60
CCG-null	21.31	33.10	11.96 ± 0.57
LIN	21.55	31.79	12.66 ± 0.61
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

Results: Other Syntactic Decoders

- TrDec-binary outperforms the alternatives for two of the three datasets
- Alternatives in general outperform seq2seq

Model	ja-en	de-en	$egin{aligned} extbf{or-en} \ extbf{(mean} \pm extbf{std)} \end{aligned}$
seq2seq	21.10	32.26	10.90 ± 0.57
CCG	22.44	32.84	12.55 ± 0.60
CCG-null	21.31	33.10	11.96 ± 0.57
LIN	21.55	31.79	12.66 ± 0.61
TrDec-binary	23.14*	32.65	$13.10^{**} \pm 0.61$

Why does TrDec outperform sequence decoders?

- Particular gain on longer sentences
 - ▶ Tree structures facilitate passing information over long distances?

Why syntactic trees don't work as well?

• Binary trees are better at modeling target length

• Structural bias is helpful

- Structural bias is helpful
- Identifying the right amount of bias is hard

- Structural bias is helpful
- Identifying the right amount of bias is hard
- Necessary to distinguish the gain from
 - syntactic information
 - modified model architecture

- Structural bias is helpful
- Identifying the right amount of bias is hard
- Necessary to distinguish the gain from
 - syntactic information
 - modified model architecture

Code: https://github.com/cindyxinyiwang/TrDec_pytorch

Thanks a lot for listening! Questions?

References

- Roee Aharoni and Yoav Goldberg (2017) Towards string-to-tree neural machine translation. In ACL.
- Nadejde et al. (2017) Predicting Target Language CCG Supertags Improves Neural Machine Translation. In WMT.
- Eriguchi et al. (2017) Learning to Parse and Translate Improves Neural Machine Translation. In ACL.
- Wu et al. (2017) Sequence-to-dependency neural machine translation. In ACL.
- Bahdanau et al. (2015) Neural Machine Translation by Jointly Learning to Align and Translate. In ICLR.

