Roll Number:	Name	Group

THAPAR INSTITUTE OF ENGINEERING &TECHNOLOGY, PATIALA

Department of Computer Science & Engineering
Operating System (UCS303) – Mid Semester Examination
Date: 03/10/2024 & Time: 11:00AM
MM: 30 & MT: 120 Min

Faculty Name: Dr. Garima Singh, Dr. Shashank Sheshar Singh, Dr. Rahul Nijhawan, Dr. Javed Imran Dr. Vaibhav Pandey, Dr. Sumit Varshney, Ms. Shivani Goswami, Dr. Payal

Attempt/Answer all sub-parts like (a), (b), (c) for each question in one place. Do mention Page No. of your attempt on the front page of the answer sheet. Assume missing data (if any). Show all intermediate computations properly.

Ques	ues. No Questions			Marks	CO	BL		
Q1.	(a).	Draw a labelled diagram to showcase the various states of a process. Also, label the suitable transition arrow for Short-term, Medium-tem, and Long-term schedulers for their specific work.					CO2	L2
	(b).	What is a deadlock? Explain the dead	lock characteristi	cs.		[2]	CO2	L2
Q2.	(a).	With suitable diagrams, explain inter-process communication models. Also, explain direct and indirect message-passing inter-process communication models to establish logical links with related issues.					CO2	L2
	(b).	List and explain two system calls for each process management and file management.					CO1	L2
Q3.		Consider the below table of five processes under Multilevel Feedback Queue scheduling. Queue1 uses a round-robin scheduling algorithm having a time quantum of 2 ms, Queue2 also uses a round-robin scheduling algorithm with a time quantum of 4ms, and Queue3 uses the pre-emptive shortest job first (SRTF) algorithm for process scheduling.					CO2	L5
	higher is (Que there sched avoid proce	(Queue1>Queue2>Queue3), and there is preemptive priority scheduling between the queues to avoid larger waiting times. A new process enters Queue1 first and moves to a lower level queue if it does not finish in a given time quantum; if at Queue2 a process doesn't get complete in a given time	Process	Arrival Time	Burst Time			
			P1	2	10			
			P2	3	8			
			Р3	7	12			
			P4	12	9			
			P5	8	8			
		quantum it moves to queue3. If, at any point, the process waiting time is greater than or equal to 11 (WT >= 11 ms), it must be upgraded to a higher priority queue (1 level up). The waiting time of a process is considered after its arrival in the current ready queue (i.e., waiting in previous queues are ignored). Find out the average waiting time.						
Q4.	(a).	Differentiate between single-threaded processes and multi-threaded processes with suitable diagrams.					CO2	L4
	(b). Consider a uniprocessor system with 'n' processes in the ready queue. Round-robin scheduling with time quantum 'x' is used for process scheduling. Assume each process requires 'kx' seconds to complete, and the context switch takes 's' seconds. At what					[3]	CO2	L5

		time will the first process complete the execution? (Assume all the variables are integers).							
Q5.		Draw an annotated parent-child tree structure [including the return value of each fork ()] for the code snippet given. [Here, 1, 2, 3 denotes line number] a. Comment on the total count of occurrences for "OS Mid Semester", and "2024" using annotated parent-child tree, when x=1. b. Find out the total count of occurrences for "OS Mid Semester", and "2024", when x=2. [You can use an annotated parent-child tree when x=1 for explanation]			2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13	<pre> if ((fork() && ! fork())) { printf("OS Mid Semester"); fork(); } } fork(); printf("2024"); return 0; } </pre>	[3+2]	CO1	L3
Q6.	(a).	sections of pro stack) in memo	ocess boundary (ter ory. Complete the g storage in the varie	o represent various xt, data, heap, and iven table based on ous sections of the Program Components		<pre>int x=5; int add (int i, int j) { return i+j; } int main() { static int y=2; int z=1; int* ptr = (int*)malloc(n</pre>	[2]	CO2	L2
	with four presources (Rinstance typesequence us RAG is dead		ne given resource allocation graph (RAG) processes (P0, P1, P2, and P3) and three (R1, R2, and R3). Resources are multipres, as given in RAG. Find the safe using the safety algorithm if the given adlock-free; otherwise, find the additional resources required for each type to avoid		PI	P0 P2 P3	[3]	CO2	L4

Marks Distribution

