CPSC 335 – Programming Assignment 4

Pseudocode

```
First Hash Function - place in hash tables()
      temporary value ← table[position][index]
      table[position][index] ← temporary s
      temporary s ← temporary value
      if index is 1
            index ← 0
      else
            index \leftarrow 1
      position ← f(temporary_s, index)
      counter ← counter + 1
Second Hash Function
      value ← character_string[length – 0 – 1]
      value ← value % tablesize
      if value is less than 0
            value += tablesize
      if length is 1
            return value
      loop 1 to length of character string
            temp = character_string[length - i - 1
            power ← power of 31
            power ← power % tablesize
            if power is less than 0
                  power ← power + tablesize
```

```
value ← value + temp * power
              value ← value % tablesize
              if value is less than 0
                     value ← value + tablesize
       return value
Cuckoo Look-up Function
       procedure lookup(x)
              return table1[f1(x)] = x or table2[f2(x)] = x
       end
Cuckoo Insert Function
       procedure insert(x)
              if table1[f1(x)] = x or table2[f2(x)] = x then return
                     position \leftarrow f1(x);
              loop n times
                     if table1[position] = NULL
                            then {table1[position] \leftarrow x
                            return
                     x \leftarrow \rightarrow table1[position;
                     if position = f1(x)
                            then position \leftarrow f2(x)
                     else position \leftarrow f1(x);
              rehash(); insert(x)
       end
```

Table

	Table T1 – Index 0	Table T2 – Index 1
[0]	Online algorithms	
[1]		Some related problem
[2]	Self-Stabilization	Monge Properties
[3]	are known	Fullerton
[4]	Quantum Nature of Universe	Server Problem
[5]	In physics and	College of Engineering
[6]	One of the greatest	Optimal Tree Construction
[7]		
[8]		
[9]	Cuckoo Hashing	
[10]		
[11]	Algorithm Engineering	Matrix Searching
[12]	Science	
[13]		and Computer Science
[14]	Department of Computer	Dynamic Programming
[15]	emphasis on	mysteries in science
[16]	String Matching	California State University