UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5535TOPICS IN NUMBER THEORY

6. PRIME NUMBER THEOREM:

- **1** a. Explain why $\psi(x)$ can be written in the form $\sum_{x \le x} \left[\frac{\log x}{\log p} \right] \log p$.
 - **b.** Deduce that $\psi(x) \leq \pi(x) \log x$ and hence

$$\frac{\psi(x)}{x} \le \frac{\pi(x)}{\frac{x}{\log x}}.$$

c. Use Theorem 2.6 from section 2 to deduce that $\psi(x) < 2x$.

- **a.** Explain why $\psi(n)$ is the logarithm of the lowest common multiple of 2, 3, ..., n.
- **b.** Use this to find $\psi(10)$.
- *3 In this question you may assume the following results from Sheet 2 Question 10.

Let n be an integer greater than 2. Write $N = \binom{2n+1}{2n}$. Let $p_{k+1}, p_{k+2}, ..., p_m$ be the primes p such that $n+2 \le p \le 2n+1$. We know that $N < 4^n$ and $\prod_{n+2 \le p \le 2n+1}$

- **a.** Prove that $\vartheta(2n+1) \vartheta(n+1) \le n \log 4$.
- **b.** By supposing that $\vartheta(k) \leq k \log 4$ for all $k \leq 2n, n > 1$ show that $\vartheta(2n+1) \leq (2n+1) \log 4$.
- **c.** Prove by induction that $\vartheta(n) \leq n \log 4$ for all n > 1.

(Hence, since ϑ is increasing, we have $\vartheta(x) \leq x \log 4$ for x > 1.)

*4 Assume that $\frac{\vartheta(x)}{x} \to 1$ as $x \to \infty$.

a. Prove that $\frac{\log x}{x} \int_2^x \frac{\vartheta(t)}{t(\log t)^2} dt \to 0$ as $x \to \infty$. (Hint: After replacing $\vartheta(x)$ as O(x), split the integral over $[2, \sqrt{x}] \cup [\sqrt{x}, x]$.)

b. Use the formula $\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^\infty \frac{\vartheta(t)}{t(\log t)^2} dt$ to prove that $\frac{\pi(x)\log x}{x} \to 1$ as $x \to \infty$.

- **a.** If f(s) has a pole of order k at $s = \alpha$, prove that $\frac{f'(s)}{f(s)}$ has a simple pole at $s = \alpha$ with residue -k.
- **b.** Deduce that $F(s) = \frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1}$ is analytic at s = 1.
- **6** Let $Z(s) = -\frac{\zeta'(s)}{\zeta(s)} = \sum_{s=1}^{\infty} \frac{\Lambda(n)}{n^s}$.
 - **a.** Use Abel's summation formula to prove that

$$Z(s) = s \int_{1}^{\infty} \frac{\psi(x)}{x^{s+1}} dx$$

where
$$\psi(x) = \sum_{n \le x} \Lambda(n)$$
.

(Note: This is the Mellin transform if $\psi(x)$.)

b. Use integration by parts to show that

$$Z(s) = s(s+1) \int_{1}^{\infty} \frac{\psi_1(x)}{x^{s+2}} dx$$

where
$$\psi_1(x) = \int_1^\infty \psi(x) dx$$
.

- 7 Let s(x) denote the number of squares less or equal to x. Use the prime number theorem to prove that $\frac{s(x)}{\pi(x)}$ tends to 0 as $x \to \infty$. (This shows that the number of primes greatly exceeds the number of squares.)
- Let c > 1

 - **a.** Prove that $\pi(cx) \sim c\pi(x)$ as $x \to \infty$. **b.** Prove that $\pi(cx) \pi(x) \sim (c-1)\frac{x}{\log x}$ as $x \to \infty$.
 - **c.** Deduce that for sufficiently large x, there are primes in the interval (x, cx]
- Prove that every interval [a, b], 0 < a < b, contains a rational number $\frac{p}{a}$ with both p, q prime.
- 10 Prove that

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{p} \frac{\log p}{p^s - 1},$$

for s > 1.

(Hint: Start with the Euler product for ζ .)

a. If $x \geq 2$, define the logarithmic integral,

$$Li(x) = \int_2^x \frac{dt}{\log t}.$$

Show that

$$Li(x) = \frac{x}{\log x} + \int_2^x \frac{dt}{(\log t)^2} - \frac{2}{\log 2}.$$

b. Show that

$$Li(x) = \frac{x}{\log x} + \frac{x}{(\log x)^2} + \dots + (n-1)! \frac{x}{(\log x)^n} + r_{n+1}(x)$$

where $r_{n+1}(x) \sim n! \frac{x}{(\log x)^{n+1}}$ as $x \to \infty$.

BRIEF SOLUTIONS

- **1 a.** $\psi(x) = \sum_{p^m < x} \log p$. Now for each prime p, since we are summing $\log p$ for $p^m \le x \Rightarrow m \le \frac{\log x}{\log p}$, then each $\log p$ will appear in the sum $\left[\frac{\log x}{\log p}\right]$ times, the result follows. **b.** Using (a), we have $\psi(x) \leq \sum_{x \leq x} \frac{\log x}{\log p} \log p = 0$ $\log x \sum_{x \in \mathbb{Z}} 1 = \pi(x) \log x$. c. This is immediate since $\pi(x) \leq 1.7 \frac{x}{\log x}$.
- Follows from the definition of ψ in terms of Λ . For (b) $\log 2520$. **a.** $\vartheta(2n+1) \vartheta(n+1) = \sum_{j=k+1}^m \log p_j = \log N \le n \log 4$. **b.** $\vartheta(n) \le n \log$ for n=2,3,4 so suppose $\vartheta(k) \le k \log 4$ for all $k \le 2n, \ n > 1$. Then $\vartheta(2n+1) \le \vartheta(n+1) + n \log 4$ (by (a)), $\le (2n+1) \log 4$ (by assumption, since n+1 < 2n. **c.** Also $\vartheta(2n+2) = \vartheta(2n+1)$ (since 2n+2 is not prime). So the required
- result is true for all $k \le 2n+2$ and so the result follows by induction. **a.** $\frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t)}{t(\log t)^{2}} dt = O\left(\frac{\log x}{x} \int_{2}^{x} \frac{dt}{(\log t)^{2}}\right)$. Now $\int_{2}^{x} \frac{dt}{(\log t)^{2}} = \int_{2}^{\sqrt{x}} \frac{dt}{(\log t)^{2}} + \int_{\sqrt{x}}^{x} \frac{dt}{(\log t)^{2}} \le \frac{\sqrt{x}}{(\log t)^{2}} + \frac{1}{\sqrt{x}} \frac{dt}{(\log t)^{2}} = \frac{1}{\sqrt{x}} \frac{dt}$ $\frac{x-\sqrt{x}}{(\log\sqrt{x})^2}$. Multiplying by $\frac{\log x}{x}$ and taking the limit as $x\to\infty$ gives the result. **b.** Multiply both sides of the given equation by $\frac{\log x}{x}$ and take the limit using (a).
- **a.** Using $A(x) = \psi(x)$ and $a_n = \Lambda(n)$, Abel's summation formula gives $Z(s) = \frac{\psi(x)}{x^s} + s \int_1^\infty \frac{\psi(x)}{x^{s+1}} dx$ and the first term on the right goes to 0 as $x\to\infty$. **b.** Integration by parts gives $Z(s)=\frac{\psi_1(x)}{x^{s+1}}|_1^\infty+s(s+1)$ 1) $\int_{1}^{\infty} \frac{\psi_1(x)}{x^{s+2}} dx$ and the result follows.
- $s(x) < \sqrt{x}$, so $\frac{s(x)}{\pi(x)} = \frac{s(x)}{\frac{x}{\log x}} \frac{\frac{x}{\log x}}{\pi(x)} \le \frac{\log x}{\sqrt{x}} \frac{\frac{x}{\log x}}{\pi(x)} \to 0$ since $\frac{\frac{x}{\log x}}{\pi(x)} \to 1$ by the PNT.
- see Jamieson p. 138
 9 Look at the interval [aq, bq] for sufficiently large prime q.

 Using the product form for $\zeta(s)$ and taking logs we have $\log \zeta(s) = -\sum_{r} \log(\frac{p^s-1}{p^s})$. Now differentiate 10 both sides w.r.t. s and the result follows.
- Simple integration by parts. 11