Introduction to Statistical Method

Comparing Two Means and Two Variances

Comparing Two Means - A Point Estimator

We have two populations with different means μ_1 and μ_2 , the goal is to estimate the difference $\mu_1 - \mu_2$ by taking a sample from each population in independent way.

Natural point estimator: $\mu_1 - \mu_2 := \hat{\mu_1} - \hat{\mu_2} = \overline{X_1} - \overline{X_2}$

To determine confidence intervals and to test hypothesis we need to know the distribution $\overline{X}_1 - \overline{X}_2$

Theorem

The \overline{X}_1 and \overline{X}_2 be the sample means based on independent random samples of size n_1 and n_2 drawn from normal distributions with mean μ_1 and μ_2 and variance σ_1^2 and σ_2^2 .

The $\overline{X}_1-\overline{X}_2$ is normal with mean $\mu_1-\mu_2$ and variance $\sigma_1^2/n_1+\sigma_2^2/n_2$

$$rac{\overline{X}_1-\overline{X}_2-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$
 is standard normal random variable.

(Central Limit Theorem allows us to apply this result even to non-normal populations if we have really large sample sizes)

OC Curve Application

$$d=rac{|\mu_1-\mu_2|}{\sqrt{\sigma_1^2+\sigma_2^2}}$$
 , if $n=n_1=n_2$, unchanged, else $n=rac{\sigma_1^2+\sigma_2^2}{\sigma_1^2/n_1+\sigma_2^2/n_2}$

If the variances are unknown, we need some more sophisticated methods.

The unknown variances are equal, situation is much easier.

Comparing Two Variances

Consider test types of this:

• $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 > \sigma_2^2$ (right-tailed test) • $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$ (two-tailed test)

we move the σ to one side to consider only about the quotient.

 $(n-1)S^2/\sigma^2$ follows a chi-squared distribution with n-1 degree of freedom.

If the variance is put into quotient, it is easier to handle

F-Distribution

 $X_{\gamma_1}^2$ and $X_{\gamma_2}^2$ are independent chi-squared random variables with γ_1 and γ_2 degrees of freedom.

Random variable $F_{\gamma_1,\gamma_2}=\frac{X_{\gamma_1}^2/\gamma_1}{X_{\gamma_2}^2/\gamma_2}$ is said to follow a F-distribution with γ_1 and γ_2 degree of freedom.

$$P[F_{\gamma_1,\gamma_2} < x] = P[1/F_{\gamma_1,\gamma_2} > 1/x] = 1 - P[F_{\gamma_2,\gamma_1} < 1/x]$$

Then
$$f_{\gamma_1,\gamma_2}(x)=\gamma_1^{\gamma_1/2}\gamma_2^{\gamma_2/2}rac{\Gammaig(rac{\gamma_1+\gamma_2}{2}ig)}{\Gammaig(rac{\gamma_1}{2}ig)\Gammaig(rac{\gamma_2}{2}ig)}rac{x^{\gamma_1/2-1}}{(\gamma_1x+\gamma_2)^{(\gamma_1+\gamma_2)/2}}$$
 for $x\geq 0$

Define
$$f_{lpha,\gamma_1,\gamma_2}$$
 by $P[F_{\gamma_1,\gamma_2}>f_{lpha,\gamma_1,\gamma_2}]=lpha$

Then
$$\begin{aligned} 1-\alpha &= P[F_{\gamma_1,\gamma_2} \geq f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= 1-P[F_{\gamma_1,\gamma_2} < f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= P[F_{\gamma_2,\gamma_1} < 1/f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= 1-P[F_{\gamma_2,\gamma_1} \geq 1/f_{1-\alpha,\gamma_1,\gamma_2}] \end{aligned} \text{ also we can see } \alpha = P[F_{\gamma_2,\gamma_1} \geq f_{\alpha,\gamma_2,\gamma_1}].$$

So
$$f_{1-lpha,\gamma_1,\gamma_2}\cdot f_{lpha,\gamma_2,\gamma_1}=1$$
 .

Remark

Let S_1^2 and S_2^2 be sample variance based on independent random samples of size n_1 and n_2 from normal populations with means μ_1 and μ_2 and variance σ_1^2 and σ_2^2

If $\sigma_1^2=\sigma_2^2$ then the statistic S_1^2/S_2^2 follows F-distribution with n_1-1 and n_2-1 distribution.

Since
$$F_{n_1-1,n_2-1}=rac{[(n_1-1)S_1^2/\sigma_1^2]/(n_1-1)}{[(n_2-1)S_2^2/\sigma_2^2]/(n_2-1)}=rac{\sigma_2^2S_1^2}{\sigma_1^2S_2^2}$$
 , so it is trivial to require $\sigma_1^2=\sigma_2^2$

F-Test

We can derive F-Test from F-distribution that:

$$H_0:\sigma_1=\sigma_2$$
 based on $F_{n_1-1,n_2-1}=rac{S_1^2}{S_2^2}$ is a F-Test

We reject H_0 at significance level lpha

- ullet in favor of $H_1:\sigma_1>\sigma_2$ if $rac{S_1^2}{S_2^2}>f_{lpha,n_1-1,n_2-1}$
- ullet in favor of $H_1:\sigma_1<\sigma_2$ if $rac{S_2^{\overline{2}}}{S_1^2}>f_{lpha,n_2-1,n_1-1}$
- ullet in favor of $H_1:\sigma_1
 eq\sigma_2$ if $rac{\hat{S_1^2}}{\hat{S_2^2}}>f_{lpha/2,n_1-1,n_2-1}$ or $rac{S_2^2}{S_1^2}>f_{lpha/2,n_2-1,n_1-1}$

When testing to see whether two population variances are equal for the purpose of comparing their means, one hopes to not reject H_0 .

If H_0 is not rejected, one can assume that the variances are in fact equal and continue with the test for equality for means.

In this case, a small Type II error β is more important than α small.

OC Curves for F-Test

For case $n=n_1=n_2$, the OC curves plotting eta against the parameter $\lambda=rac{\sigma_1}{\sigma_2}.$

The curves are for both one- two- sided alternatives.

Comparing Two Means - Equal Variances

$$rac{\overline{X}_1-\overline{X}_2-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$
 follows standard normal distribution.

We now want to estimate σ^2 .

The pooled estimator is $S_p^2=rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$

$$X_{n_1+n_2-2}^2 = rac{(n+1+n_2-2)S_p^2}{\sigma^2} = rac{(n_1-1)S_1^2}{\sigma^2} + rac{(n_2-1)S_2^2}{\sigma^2}$$

Furthermore,
$$T_{n_1+n_2-2}=rac{Z}{\sqrt{X_{n_1+n_2-2}^2/(n_1+n_2-2)}}=rac{(\overline{X}_1-\overline{X}_2)-(\mu_1-\mu_2)}{\sqrt{S_p^2(1/n_1+1/n_2)}}$$
 follows T-distribution

with $n_1 + n_2 - 2$ degree of freedom.

So the
$$100(1-lpha)\%$$
 confidence interval for $\mu_1-\mu_2$ is $(\overline{X}_1-\overline{X}_2)\pm t_{lpha/2,n_1+n_2-2}\sqrt{S_p^2(1/n_1+1/n_2)}$

Pooled T-Test - Variance Equal

Let $X_1^{(i)} ... X_{n_i}^{(i)}$, i = 1, 2 be random samples of size n_i from two normal distributions with means μ_i and identical σ^2 .

 S_p^2 be the pooled sample variance and $(\mu_1 - \mu_2)_0$ a null value for difference of means.

Then Test
$$H_0: \mu_1-\mu_2=(\mu_1-\mu_2)_0$$
 based on $T_{n_1+n_2-2}=\dfrac{(\overline{X}_1-\overline{X}_2)-(\mu_1-\mu_2)}{\sqrt{S_p^2(1/n_1+1/n_2)}}$ is a pooled test for equality of means.

We reject H_0 at significance level α

- in favor of $H_1: \mu_1 \mu_2 \neq (\mu_1 \mu_2)_0$ if $|T_{n_1+n_2-2}| > t_{\alpha/2,n_1+n_2-2}$
- ullet in favor of $H_1: \mu_1-\mu_2>(\mu_1-\mu_2)_0$ if $T_{n_1+n_2-2}>t_{lpha,n_1+n_2-2}$
- in favor of $H_1: \mu_1 \mu_2 < (\mu_1 \mu_2)_0$ if $T_{n_1 + n_2 2} < -t_{\alpha, n_1 + n_2 2}$

OC Curves T Test - Variance Equal

Equal variance σ^2 and equal sample size $n_1=n_2=n$, $d=\frac{|\mu_1-\mu_2|}{2\sigma}$, we must use the modified sample size $n^*=2n-1$. The σ can be substitute with an estimated one or express the deviation in terms of σ .

Unequal Variances

$$\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \text{ for the unequal variance } \sigma_1 \text{ and } \sigma_2 \text{, we can estimate the variance to get the statistic}$$

$$T_{\gamma} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \text{ where the } \gamma \text{ for the degree of freedom is } \gamma = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}}$$

Pooled T-Test - Variances Unequal

We reject H_0 at significance level lpha

- ullet in favor of $H_1: \mu_1-\mu_2
 eq (\mu_1-\mu_2)_0$ if $|T_\gamma|>t_{lpha/2,\gamma}$
- ullet in favor of $H_1: \mu_1 \mu_2 > (\mu_1 \mu_2)_0$ if $T_\gamma > t_{lpha,\gamma}$
- in favor of $H_1: \mu_1-\mu_2<(\mu_1-\mu_2)_0$ if $T_\gamma<-t_{lpha,\gamma}$

Paired T-Test

In some situations, we do not take independent samples from two different populations, but rather the samples are naturally related to each other.

 $oldsymbol{X}$ and $oldsymbol{Y}$ are two random variables, we define $oldsymbol{D} = oldsymbol{X} - oldsymbol{Y}$, then

$$\mu_D = E[D] = E[X - Y] = E[X] - E[Y] = \mu_X - \mu_Y$$

Then we can analyze D using method for the mean of a single random variable.

$$H_0:\mu_D=0$$
 and $H_1:\mu_D<0$, with n for size, \overline{D} and s_D^2 , we derive test statistic $T=rac{\overline{D}}{s_D/\sqrt{n}}$

Wilcoxon Rank - Sum Test

If the sample sizes are small, the variances unequal, or the populations are not normally distributed, the T-tests may not yield good results.

The Wilcoxon Rank-sum test ranks observed measurements by size and the sum of the ranks is used to decide whether to reject the null hypothesis.

It assumes that two random variables **X** and **Y** the null hypothesis is that they follow same distribution:

$$H_0: P[X > Y] = 1/2.$$

Then it is assumed that they follow continuous distributions that differs only on location.

$$f_X(x) = f_Y(x + \delta)$$
 for all $x \in \mathbb{R}$

Let X and Y be two random samples following the same continuous distribution but with possibly shifted location. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n , $m \le n$ be random sample from X and Y and associated with rank R_i , $1 \le i \le m+n$ from smallest to largest.

So hypothesis changed to $H_0: M_X = M_Y$ and $H_1: M_X
eq M_Y$, the test is based on the statistic

$$W_m := \text{ sum of the ranks of } X_1, \dots X_m$$

$$E[W_m]=rac{1}{2}m(m+n+1)$$
 and $VarW_m=rac{1}{12}mn(m+n+1)$

The paired test, the Wilcoxon signed rank test can be applied to D = X - Y.