Cross-modelling calibration experiments

- 3 static experiments with dish angle variation
- 2 rotating experiments with signal elevation variation

Processing experiment data

- Removing pulse envelop offsets
- Concatenating pulse data from different files for one sample
- FFT or not?
- Finding and retaining peaks
- Averaging across a sample
- Offsetting noise normalising output between channels?

Processing experiment data – rotating experiments

- Identifying interferences
- Retaining 'bee' signal

Summarising data

integral

Normalising

Divide each quantuple by its maximum's absolute value

It keeps the ratios between values, normalising all values to the range [0,1]

Normalised data

Normalised data

Modelling

Use existing data to predict elevation for new measurements

Measuring and predicting bee angle instead of elevation is independent of the distance

Lookup model

 Loookup model is a table of all quintuples seen in the experiment; modelling a new quintuple involves finding the one with the least square difference

Gaussian model

Gaussian model is a Gaussian function with constraints that best fits the experiment data; modelling a new quintuple involves fitting it to the Gaussian surface

Exp 22 static

Exp 26 rotating

Cross-modelling static experiments Lookup model modelling exp 21

Model from exp. 22

Model from exp. 23

Cross-modelling static experiments Lookup model modelling exp 22

Model from exp. 21

Model from exp. 23

Cross-modelling static experiments Lookup model modelling exp 23

Model from exp. 21

Model from exp. 22

100

120

Cross-modelling static experiments Gaussian model modelling exp 21

Model from exp. 21 - modelling itself

Model from exp. 22

Model from exp. 23

Cross-modelling static experiments Gaussian model modelling exp 22

Model from exp. 21

Model from exp. 22 - modelling itself

Model from exp. 23

Cross-modelling static experiments Gaussian model modelling exp 23

Model from exp. 21

Model from exp. 22

Model from exp. 23 - modelling itself

Takeaways from cross-modelling static experiments

- General shape of the modelled data is correct
- It seems the data is more consistent between exp 22 and exp 23, exp 21 differs more
- Lots of errors around the edges of the models
- Where lookup models fail, the errors are quite large, whereas Gaussian models produce smaller errors

exp. 25

exp. 26

exp. 25

exp. 26

Takeaways from modelling rotating experiments through static data

- Exp. 25 and 26 only cover a narrow range of angles
- While the test data is an ascending line, the overall shape of the predicted data is mostly horizontal: the change in angle is so small that the models do not really notice it
- Exp 25 seems to be easier to model than exp 26, the quality of the data is higher

Cross-modelling rotating experiments modelling exp 25 with the models from exp 26

Lookup model

Gaussian model

Cross-modelling rotating experiments modelling exp 26 with the models from exp 25

Lookup model

Gaussian model

Prediction error resolution

degree	1°	2°	3°
sin	0.017	0.035	0.052
100	1.75	3.49	5.23
200	3.49	6.98	10.47
300	5.24	10.47	15.70
400	6.98	13.96	20.93