DIY Tutorial

Introduction: Basic Excel

Task: Working with Microsoft Excel

- This DIY exercise is for those who want to familiarize themselves with basic excel functions.
- Download the file: Excel Tutorials.xls from the unit Moodle site.
- This workbook contains 7 worksheets: Motorcycle, Addresses, DataTable, Nyse, Sales, Postage and Ski
- If you are not familiar with Excel, read through notes on Excel functions provided **BEFORE** attempting the 7 exercises OTHERWISE go directly to **page 4** to start the exercises

Excel Functions:

1. Relative, absolute and mixed addressing/referencing

The parts of a cell reference which are to be absolute (unchanging) are prefixed by a \$ sign. The following table provides examples of the different types of referencing:

Туре	Cell Reference	Meaning
Relative	A10	When copied to another row and column, both the row and column in the cell reference are adjusted to reflect the new location.
Absolute	\$A\$10	Both column and row references remain the same when you copy this cell reference
Mixed	A\$10	The column reference changes when you copy this cell reference to another column because it is relative. The row reference does not change because it is absolute.
Mixed	\$A10	The row reference changes when you copy this cell reference to another row because it is relative. The column reference does not change because it is absolute.

2. MAX, MIN, SUM and AVERAGE Functions

In a set of values, MAX function returns the largest value while MIN function returns the smallest value. SUM function adds all the numbers in that set while AVERAGE function averages all the number in that set.

Syntax: Example: Suppose A1:A5 contain 50, 20, 30, 40, 10

MAX(set of values)MAX(A1:A5) equals 50MIN(set of values)MIN(A1:A5) equals 10SUM(set of values)SUM(A1:A5) equals 150AVERAGE(set of values)AVERAGE(A1:A5) equals 30

3. IF, VLOOKUP, ISNA, COUNTIF and MATCH Functions

IF function returns one value if a condition you specify evaluates to TRUE and another value if it evaluates to FALSE.

Syntax:

IF(logical_test, value_if_true, value_if_false)

Logical_test	A log	A logical expression (condition) as either True or False						
Value_if_true	The	value retur	ned if the I	ogical test is True				
Value_if_false	The	value retur	ned if the I	ogical test is False				
Examples								
<u>-</u>		А	В					
	1	Actual	Budget					
	2	1500	900					
	3	500	900					
	4	500	925					
				"OK") equals "Over Budget" "OK") equals "OK"				

VLOOKUP function searches for a value in the leftmost column of a table and returns a value in the same row from a column you specify in the table. If a value cannot be found, an error value #N/A (value not available) is returned.

Syntax: VLOOKUP(lookup_value, table_array, col_index_num, range_lookup)

	\/alı	e to be found in the fi	rst column of ta	hle array								
Lookup_value		Value to be found in the first column of table_array										
		It can be a value, a reference or a text string										
Table_array	Tab	Table of information in which data is looked up										
Col_index_num	Colu	Column number in table_array from which the matching value must be										
	retu				9							
Range_lookup	Logi	cal value that specifie	s whether you v	want VLOOKI	JP to find an exact							
" .		ch or an approximate										
		оп от ап аррголитато										
	If TE	OUE or emitted on or	nrovimata mat	obodio roturo	ad							
		RUE or omitted, an ap			ea							
	If F#	ALSE, VLOOKUP will	find an exact m	atch								
	If no	t found, an error value	e #N/A (value n	ot available) i	s returned							
Examples			<i>,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	or aramaz.c, .								
Liamples		Δ	В	С	D							
	1	Air at 1 atm pressure										
	2 Density Viscosity Temp											
		Density										
	3 4		Viscosity (kg/m*s)*1E+05 3.55									
	3 4 5	Density (kg/cubic m) 0.457 0.525	(kg/m*s)*1E+05 3.55 3.25	(degrees C) 500 400								
	3 4 5	Density (kg/cubic m) 0.457 0.525 0.616	(kg/m*s)*1Ē+05 3.55 3.25 2.93	(degrees C) 500 400 300								
	3 4 5 6 7	Density (kg/cubic m) 0.457 0.525 0.616 0.675	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75	(degrees C) 500 400 300 250								
	3 4 5	Density (kg/cubic m) 0.457 0.525 0.616	(kg/m*s)*1Ē+05 3.55 3.25 2.93	(degrees C) 500 400 300								
	3 4 5 6 7	Density (kg/cubic m) 0.457 0.525 0.616 0.675 0.746	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75 2.57 2.38 2.17	(degrees C) 500 400 300 250 200 150								
	3 4 5 6 7 8 9 10	Density (kg/cubic m) 0.457 0.525 0.616 0.675 0.746 0.835 0.946 1.09	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75 2.57 2.38 2.17 1.95	(degrees C) 500 400 300 250 200 150 100								
	3 4 5 6 7 8 9	Density (kg/cubic m) 0.457 0.525 0.676 0.675 0.746 0.835 0.936	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75 2.57 2.38 2.17	(degrees C) 500 400 300 250 200 150								
	3 4 5 6 7 8 9 10 11 12	Density (kg/cubic m) 0.457 0.525 0.818 0.875 0.746 0.835 0.946 1.09	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75 2.57 2.38 2.17 1.95 1.71	(degrees C) 500 400 300 250 200 150 100 50								
	3 4 5 6 7 8 9 10 11 12	Density (kg/cubic m) 0.457 0.525 0.616 0.675 0.746 0.835 0.946 1.09	(kg/m*s)*1Ē+05 3.55 3.25 2.93 2.75 2.57 2.38 2.17 1.95 1.71	(degrees C) 500 400 300 250 200 150 100 50								
	3 4 5 6 7 8 9 10 11 12	Density (kg/eubic m) 0.457 0.525 0.616 0.675 0.746 0.835 0.946 1.09 1.29	(kg/m*s)*1Ē+06 3.55 3.25 2.93 2.75 2.57 2.38 2.17 1.95 1.71	(degrees C) 500 400 300 250 200 150 100 50								
	3 4 5 6 7 8 9 10 11 12 VLC	OKUP(1, A4:C12, 2)	(kg/m*s)*1Ē+06 3.55 3.25 3.25 2.93 2.75 2.39 2.17 1.95 1.71 True) equals 0.0	(degrees C) 500 400 300 250 200 150 100 50								
	3 4 5 6 7 8 9 11 12 VLC VLC VLC	Density (kg/eubie m) 0.457 0.525 0.616 0.675 0.746 0.835 0.946 1.09 1.29 0OKUP(1, A4:C12, 1, 0OKUP(1, A4:C12, 2)	(kg/m*s)*1E+06 3.55 3.25 3.25 2.93 2.75 2.38 2.17 1.95 1.71 True) equals 0.9 equals 2.17 True) equals 10	(degrees C)								
	3 4 5 6 7 7 8 9 10 11 12 VLC VLC VLC VLC	Density (kg/eubic m) 0.457 0.525 0.675 0.675 0.746 0.835 0.946 1.09 1.29 0OKUP(1, A4:C12, 1, 0) 0OKUP(1, A4:C12, 2) 0OKUP(1, A4:C12, 3, 0) 0OKUP(0.746, A4:C12	Frue) equals 0. equals 2.17 Frue) equals 0.75 Frue) equals 0.75 Frue) equals 10 1,35 1,95 1,71	(degrees C)	occurs 0.1 doos							
	3 4 5 6 7 8 10 11 12 VLC VLC VLC VLC VLC	Density (kg/eubie m) 0.457 0.525 0.616 0.675 0.746 0.835 0.946 1.09 1.29 0OKUP(1, A4:C12, 1, 0OKUP(1, A4:C12, 2)	True) equals 0.9 equals 2.17 True) equals 2.17 True) equals 10.9 e	946 #N/A error be	ecause 0.1 does							

ISNA function returns the logical value TRUE if value is #N/A (value not available), otherwise it returns FALSE.

Syntax: ISNA(value)

Example:

Suppose A2 contains a VLOOKUP function and the value returned by the VLOOKUP function is #N/A

ISNA(A2) equals TRUE

COUNTIF function counts the number of cells within a range that meet the given criteria.

Syntax: COUNTIF(range, criteria)

Range	Range of cells from which you want to count cells						
Criteria	Criteria in the form of a number, expression, or text that defines which						
	cells will be counted						
Example	Suppose A1:A5 contain 15, 10, 20, 40, 40						
-	COUNTIF(A1:A5,"=40") equals 2						

MATCH function returns the relative position of an item in an array that matches a specified value in a specified order. Use MATCH instead of VLOOKUP functions when you need the position of an item in a range instead of the item itself. If a value cannot be found, an error value #N/A (value not available) is returned.

Syntax:

MATCH(lookup_value, lookup_array, match_type)

Lookup_value	Value to be matched in lookup_array								
	It can be a value, a cell reference								
Lookup _array	Column or row containing the values								
Match_type	Number –1, 0 or 1								
	Specifies how Excel matches lookup_value with values in lookup_array								
	If match_type is 1 or omitted, MATCH finds the largest value that is <=								
	lookup_value. Lookup_array must be in ascending order								
	If match_type is 0 , MATCH finds the first value that is exactly equal to								
	lookup_value. Lookup_array can be in any order								
	If match_type is -1, MATCH finds the smallest value that is >=								
	lookup_value. Lookup_array must be placed in descending order								
	If not found, an error value #N/A (value not available) is returned.								
Examples									
	A B C								
	1 Income (in Yen) U.S. Dollars U.S. Tax Rate								
	2 ¥5,365,000.00 \$37,000.00 21.50%								
	3 ¥5,510,000.00 \$38,000.00 21.67%								
	4 ¥5,655,000.00 \$39,000.00 21.84%								
	5 ¥5,800,000.00 \$40,000.00 21.99%								
	6 ¥5,945,000.00 \$41,000.00 22.14%								
	7 ¥6,090,000.00 \$42,000.00 22.28%								
	8 ¥6,235,000.00 \$43,000.00 22.41%								
	MATCH(39000, B2:B8, 1) equals 3								
	MATCH(38000, B2:B8, 0) equals 2								
	MATCH(40500, B2:B8, 0) equals #N/A error because 40500 cannot be								
	found the range B2:B8								
	MATCH(39000, B2:B8, -1) equals #N/A error because the range B2:B8 is								
	ordered incorrectly for match type –1 (order must be descending)								

Exercise 1: Motorcycle Worksheet

	Α	В	С	D	E							
1	Motorcycle Specialities Incoporated											
2		Sales Co	mparison 2001	l with 2000								
3												
4	Region	Year2001	Year 2000	% Change Sales	% of 2001 Sales							
5	North America	\$ 365,000.00	\$ 314,330.00	16.12%	28.50%							
6	South America	\$ 354,250.00	\$ 292,120.00	21.27%	27.66%							
7	Australia	\$ 251,140.00	\$ 262,000.00	-4.15%	19.61%							
8	Europe	\$ 310,440.00	\$ 279,996.00	10.87%	24.24%							
9	Total	\$1,280,830.00	\$1,148,446.00									
10	Maximum	\$ 365,000.00										
11	Minimum	\$ 251,140.00										
40												

- i) Enter a formula in cell D5 such that it can be copied to cells D6:D8.
 % Change in Sales for North America is calculated using this formula:
 (2001 sales in North America 2000 sales in North America)/2000 sales in North America
- ii) Calculate the total sales in 2001 and 2000 in cell B9 and C9 respectively
- iii) Enter a formula in cell E5 such that it can copied be to cells E6:E8
 The formula used to calculate North America's % of total 2001 sales is:

 2001 sales in North America/Total sales in 2001
- iv) Use an Excel function to find the highest sales in 2001 in cell B10
- v) Use an Excel function to find the lowest sales in 2001 in cell B11

Exercise 2: Address Worksheet

	A	В	С	D	E	F	G	Н	I	J
1	Fresh Air	Sales Representativ	e Incentive	Program						
2										
3		Sales Goal (% Increase)	10%							
4										
5			2000		20	01				
6				1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	Total 2001	2001	% Goal
7	Territory	Name	Sales	Actual	Actual	Actual	Actual	Actual	Goal	Reached
8	Central	Oliver, Deby	\$182,018.00	\$ 66,897.00	\$ 56,874.00	\$ 66,345.00	\$ 93,234.00	\$283,350.00	\$200,219.80	142%
9	Central	Richstone, Ellen	\$176,900.00	\$ 43,658.00	\$ 65,223.00	\$ 59,087.00	\$ 38,900.00	\$206,868.00	\$194,590.00	106%
10	Central	Azevedo, Tricia	\$179,385.00	\$ 53,278.00	\$ 47,895.00	\$ 53,334.00	\$ 43,445.00	\$197,952.00	\$197,323.50	100%
11	Eastern	Gyorog, Mike	\$211,408.00	\$ 55,789.00	\$ 65,996.00	\$ 69,023.00	\$ 42,215.00	\$233,023.00	\$232,548.80	100%
12	Eastern	Haag, Candee	\$156,877.00	\$ 31,566.00	\$ 43,677.00	\$ 48,043.50	\$ 41,566.00	\$164,852.50	\$172,564.70	96%
13	Eastern	Sako, Mari	\$176,504.00	\$ 36,221.50	\$ 45,987.00	\$ 46,033.80	\$ 33,546.00	\$161,788.30	\$194,154.40	83%
14	Southern	Hess, Lisa	\$212,550.00	\$ 32,778.00	\$ 65,996.00	\$ 42,334.00	\$ 37,650.00	\$178,758.00	\$233,805.00	76%
15	Southern	Wertheim, Andrea	\$193,250.00	\$ 42,666.00	\$ 35,874.00	\$ 34,788.00	\$ 47,888.00	\$161,216.00	\$212,575.00	76%
16	Western	Massalska, Angela	\$172,894.00	\$ 35,998.00	\$ 41,566.00	\$ 44,366.00	\$ 38,071.10	\$160,001.10	\$190,183.40	84%
17	Western	Widnall, Sheila	\$172,369.00	\$ 31,567.00	\$ 45,987.00	\$ 44,024.10	\$ 33,156.00	\$154,734.10	\$189,605.90	82%
18	Western	Lahiri, Nayanjot	\$238,605.00	\$ 61,233.00	\$ 72,344.00	\$ 41,277.00	\$ 32,172.20	\$207,026.20	\$262,465.50	79%

- i) This worksheet is used to keep track the results of the sales incentive program of all sales representatives in Fresh Air Ltd. Each sales representative has been assigned a sales goal 10% higher than his or her total sales last year.
- ii) Enter a formula in cell H8 to calculate the total 2001 actual sales for each sales representative such that it can be copied to cells H9:H18.
- iii) Enter a formula in cell I8 such that it can be copied to cells I9:I18
 The formula used to calculate the 2001 Goal sales for each employee is:

 2000 Sales * (1 + Sales Goal % increase)
- iv) Enter a formula in cell J8 to calculate of the % goal reached for each employee such that it can be copied to cells J9:J18.

The formula used to calculate this is:

2001 actual / 2001 goal

Exercise 3: DataTable Worksheet

	А	В	С		D	E	F	G	Н	l l	J	K	L	М
1					F	ronto Sal	sa Compa	ny						
2		Projected Sales Impact of New Product												
3														
4		Product	Price		Cost	Units Sold	Revenue	Cost	Profit					
5		Verde Mild	\$10.89	\$	10.00	132	\$ 1,437.48	\$ 1,320.00	\$ 117.48					
6		Fresca Medium		\$	9.00	800	\$ 8,616.00	\$ 7,200.00	\$ 1,416.00					
7		Mexicana Hot	\$10.80	\$	9.50	500	\$ 5,400.00	\$ 4,750.00	\$ 650.00					
8		Picante Mild	\$20.10	\$	12.10	640	\$12,864.00	\$ 7,744.00	\$ 5,120.00					
9		de Chili Hot	\$10.65	\$	7.80	150	\$ 1,597.50	\$ 1,170.00	\$ 427.50					
10		Total				2222	\$29,914.98	\$22,184.00	\$ 7,730.98					
11														
12		One variable d	lata tabi	e: \	√erde Mi	ld (Cost)			Two variab	le data tabl	e: Fresca M	edium (Unit	Sold and	Price)
13														-
14				\$	117.48	<- Profit					Co	ost		
15			\$ 5.50	\$	711.48									
16			\$ 6.00	\$	645.48			Profit->	\$ 1,416.00	\$ 7.00	\$ 8.00	\$ 9.00	\$ 10.00	
17			\$ 6.50	\$	579.48				(650	\$2,450.50	\$1,800.50	\$1,150.50	\$500.50	
18			\$ 7.00	\$	513.48				700	\$2,639.00	\$1,939.00	\$1,239.00	\$539.00	
19			\$ 7.50	\$	447.48				750	\$2,827.50	\$2,077.50	\$1,327.50	\$577.50	
20		Cost	\$ 8.00	\$	381.48			Unit	800	\$3,016.00	\$2,216.00	\$1,416.00	\$616.00	
21		1	\$ 8.50	\$	315.48			Sold	850	\$3,204.50	\$2,354.50	\$1,504.50	\$654.50	
22			\$ 9.00	\$	249.48				900	\$3,393.00	\$2,493.00	\$1,593.00	\$693.00	
23			\$ 9.50	\$	183.48				950	\$3,581.50	\$2,631.50	\$1,681.50	\$731.50	
24			\$10.00	\$	117.48				1000	\$3,770.00	\$2,770.00	\$1,770.00	\$770.00	
25			\$10.50	\$	51.48				•					
26			\$11.00	-\$	14.52									
27														

- i) Create a one-variable data table (Data>Table) showing the profit of Verde Mild under the assumption that the price of each Verde Mild is \$10.89 and that the cost of each Verde Mild is \$5.50 to \$11.00 (in increment of \$0.50).
- ii) Create a two-variable data table showing the profit of Fresca Medium assuming that 650 to 1000 (in increment of 50) units are sold and that the cost per Fresca Medium is \$7.00, \$8,00, \$9.00 and \$10.00.

Exercise 4: Nyse worksheet

- This worksheet contains the daily closing stock indices for four subgroups (Industrial, Transportation, Utility and Finance) and a Composite index combining the values of the other four on the New York Stock Exchange (NYSE).
- ii) Enter a formula in cell C5 such that the closing value will be displayed based on the date (in cell C3) and subgroup (in cell C4) entered by user.(Hint: Use the MATCH function to replace the col_index_num parameter in the VLOOKUP function. In

(*Hint:* Use the MATCH function to replace the col_index_num parameter in the VLOOKUP function. In this way, instead of having the user indicate the column number from the lookup table, the user can enter the column title (subgroup name) and have MATCH function return the column number)

Exercise 5: Sales Worksheet

	A	В	С	D	E	F	G	Н	l l	J	K	L	M	N
1	Sales Resu	ilts - All												
2														
3	Month	1												
4	Product	3												
5	Units Sold	502												
6														
7	Products		Month											
8	1=Refrigerat		1=Jan		11=Nov									
9	2-Microwave	es	2-Feb		12-Dec									
	3=Ovens		3-Mar		13-Total									
11	4=Dishwashe		4=Apr											
	5=All produc	ts	5-May	10=Oct										
13														
14	All Regions													
15		Units S												
16	Product ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
17	1	1225	1074	1199	1003	1157	1271	1249	1295	1209	1152	1230	1278	14342
18	2	1852	1648	1670	1793	1853	1963	1898	1510	1789	2031	1723	1721	21451
19	3	502	562	472	607	570	557	450	406	501	466	513	521	6127
20	4	578	581	571	584	589	563	596	578	541	593	656	598	7028
21	5	4157	3865	3912	3987	4169	4354	4193	3789	4040	4242	4122	4118	48948

i) Enter a formula in cell B5 to extract the total unit sold based on the month number (in cell B3) and product id (in cell B4) entered by the user.

Exercise 6: Postage Worksheet

	A	В	C	D	E	F
1	Price Table:					
2	WEIGHT	MAIL	COURIER	TRUCK	BEST COST	BEST MODE
3	0	3.00	9.25	6.50	3.00	Mail
4	2	3.50	9.25	6.50	3.50	Mail
- 5	7	5.25	9.25	10.00	5.25	Mail
6	20	10.00	9.25	12.00	9.25	Courier
- 7	45	16.00	NA	14.00	14.00	Truck
8	100	35.00	NA	15.50	15.50	Truck
9						
10	Customer qu	eries: vloc				
11	WEIGHT	MAIL	BEST	BEST MODE		
12	13.7	5.25	5.25	Mail		
13	1.6	3	3	Mail		
14	185	35	15.5	Truck		
15						
16						
17	Customer qu	eries: vloc				
18	WEIGHT	MAIL	BEST COST	BEST MODE		
19	13.7	5.25	5.25	Mail		
20	1.6	3	3	Mail		
21	185	35	15.5	Truck		
22						

- i) The Price table contains cost of postage by mail, courier and truck for the appropriate weight, and also for each weight range, the best cost and best mode to take.
- ii) For each package (cells: A13, A14 and A15), use VLOOKUP function to
 - determine the cost to send the package by courier
 - determine the lowest cost to send the package
 - determine the lowest cost mode to the package
- iii) In cells B19:D21, use VLOOKUP function but replace the col_index_num parameter with the nested IF function

Exercise 7: Ski Worksheet

	l A	В	l c l	D	l E	F	G
1	Member List				Competiti	on Results	
			Ski				
2	MemberID	Name	Attendance		MemberID	Name	Ski Runs
3							
4	1010	Joseph	Present		1005	Jennifer	68
5	1009	Mary	Present		1001	Stephanie	43
6	1008	Emily	Present		1003	Samantha	90
7	1007	Peter	Present		1010	Joseph	65
8	1006	Eric	Absent		1009	Mary	54
9	1005	Jennifer	Present		1007	Peter	44
10	1004	Stuart	Absent		1008	Emily	98
11	1003	Samantha	Present				
12	1002	Anthony	Absent				
13	1001	Stephanie	Present				
14	1000	Conrad	Absent				
15							
	Number of						
16	Absentees:	4					
17							
	Average Ski						
18	Runs	66					
10							

- i) F4 should contain a formula, which provides the name of the member corresponding to the MemberID in cell E4. The formula should be written in such a way that it is easily copied to cells F5:FF10 (*Hint:* Use VLOOKUP function)
- ii) C4 should contain a formula, which enters the word "present" in cell C4 if the member in A4 attended the competition, and "absent" if the member did not attend the competition. The formula should be written in such a way that it is easily copied to C5:C14

 (Hint: Use a combination of IF, ISNA and MATCH functions)
- iii) B16 should give the total number of skiers absent from the competition (*Hint:* Use COUNTIF function)

iv) B18 should give the average number of ski runs