PROBLEM STATEMENT:

TO PREDICT AND ANALYZE WHICH AGE HAS A HIGH CHANCE TO SMOKE..

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

DATA COLLECTION

In [2]:

```
df=pd.read_csv(r"C:\Users\91720\Downloads\insurance.csv")
df
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

DATA CLEANING AND PREPROCESSING

In [3]:

```
df.describe()
```

Out[3]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
#
            Non-Null Count Dtype
- - -
0
    age
              1338 non-null
                              int64
                              object
 1
              1338 non-null
    sex
 2
    bmi
              1338 non-null float64
 3
    children 1338 non-null
                              int64
 4
    smoker
              1338 non-null
                              object
 5
    region
              1338 non-null
                              object
    charges 1338 non-null
                              float64
 6
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [5]:

```
df.columns
```

Out[5]:

```
Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dt
ype='object')
```

In [6]:

```
df.tail()
```

Out[6]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29.07	0	yes	northwest	29141.3603

In [7]:

```
df.shape
```

Out[7]:

(1338, 7)

TO FIND MISSING VALUES

In [8]:

```
df.isnull().sum()
```

Out[8]:

age 0 sex 0 bmi 0 children 0 smoker 0 region 0 charges 0 dtype: int64

IN THESE DATA SET AM USING LOGISTIC REGRESSION BECAUSE ACCURACY VALUE IS VERY LESS..

```
In [9]:
```

```
convert={"sex":{"female":1,"male":0}}
df=df.replace(convert)
print(df)
```

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	yes	southwest	16884.92400
1	18	0	33.770	1	no	southeast	1725.55230
2	28	0	33.000	3	no	southeast	4449.46200
3	33	0	22.705	0	no	northwest	21984.47061
4	32	0	28.880	0	no	northwest	3866.85520
1333	50	0	30.970	3	no	northwest	10600.54830
1334	18	1	31.920	0	no	northeast	2205.98080
1335	18	1	36.850	0	no	southeast	1629.83350
1336	21	1	25.800	0	no	southwest	2007.94500
1337	61	1	29.070	0	yes	northwest	29141.36030

[1338 rows x 7 columns]

DECISIONTREECLASSIFIER

In [10]:

```
convert={"region":{"southwest":1,"southeast":2,"northeast":3,"northwest":4}}
df=df.replace(convert)
print(df)
```

```
age sex
                  bmi
                       children smoker
                                       region
                                                   charges
      19
            1 27.900
                              0
                                            1 16884.92400
0
                                  yes
1
      18
            0 33.770
                                   no
                                            2 1725.55230
2
      28
            0 33.000
                              3
                                            2
                                               4449.46200
                                   no
                                            4 21984.47061
3
      33
               22.705
                              0
                                   no
4
      32
            0 28.880
                              0
                                            4 3866.85520
                                   no
      . . .
                . . .
                                   ...
                                            4 10600.54830
      50
            0 30.970
1333
                              3
                                   no
                                               2205.98080
1334
      18
            1 31.920
                              0
                                            3
                                   no
1335
      18
            1 36.850
                              0
                                  no
                                           2 1629.83350
1336
      21
            1 25.800
                              0
                                           1 2007.94500
                                   no
                                            4 29141.36030
1337
      61
            1 29.070
                                  yes
```

[1338 rows x 7 columns]

In [11]:

```
x=["age","sex","bmi","children","charges","region"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["smoker"]
```

In [12]:

```
x\_train, x\_test, y\_train, y\_test=train\_test\_split(all\_inputs, all\_classes, test\_size=0.25)
```

In [13]:

clt=DecisionTreeClassifier(random_state=0)

In [14]:

clt.fit(x_train,y_train)

Out[14]:

DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)

In [15]:

score=clt.score(x_test,y_test)
print(score)

0.9552238805970149

DATA VISUALIZATION

In [17]:

sns.countplot(x="age",data=df)

Out[17]:

<Axes: xlabel='age', ylabel='count'>

In [29]:

```
sns.countplot(x="age",hue="smoker",data=df)
```

Out[29]:

<Axes: xlabel='age', ylabel='count'>

random forest

In [18]:

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[18]:

```
r RandomForestClassifier
RandomForestClassifier()
```

In [19]:

```
{\tt rf=RandomForestClassifier()}
```

```
In [20]:
```

```
params={'max_depth':[2,3,5,10,20],
    'min_samples_leaf':[5,10,20,50,100,200],
    'n_estimators':[10,25,30,50,100,200]}
```

In [21]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[21]:

```
► GridSearchCV

► estimator: RandomForestClassifier

► RandomForestClassifier
```

In [22]:

```
grid_search.best_score_
```

Out[22]:

0.963113613410629

In [23]:

```
rf_best=grid_search.best_estimator_
print(rf_best)
```

RandomForestClassifier(max_depth=10, min_samples_leaf=5)

In [24]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[4],class_names=['1','0'],filled=True);
```


In [25]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[6],class_names=['1','0'],filled=False);
```

In [26]:

```
rf_best.feature_importances_
```

Out[26]:

```
array([0.04300276, 0.00884958, 0.07734597, 0.01289545, 0.84491081, 0.01299544])
```

In [27]:

```
imp_df=pd.DataFrame({"Varname":x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
```

Out[27]:

	Varname	Imp
4	charges	0.844911
2	bmi	0.077346
0	age	0.043003
5	region	0.012995
3	children	0.012895
1	sex	0 008850

CONCLUSION

TO PREDICT AND ANALYZE THE DATA IN THE 20th AGE HAS HIGH CHANCE TO SMOKE..