I ransversals:	
we how that x 9	→ Stabg(x) G.
can we not only	find the orbit of x, but also
representatives for	find the orbit of x, but also cosets?
1	$[x, \times^{\mathfrak{g}}, \times^{\mathfrak{h}}, \times^{\mathfrak{gh}}, \times^{\mathfrak{hg}}, \dots]$
xh xh3	[1, g, h, gh, hg,]
× 1/	•

Dofn:
Transversal is the list of coset representatives
associated to orbit ×9.

Motation:

- · We will blend the notions of an orbit and a Transversal.
- If T is a fransversal for x^8 , fluen T[y] = g s.f. $x^9 = g$

ALGORITHM: ORBIT-TRANSVERSAL
INPUT: 5 - set of generators of G × - point to act on
OUTPUT: · A - orbit x5
·T - associated transversal
Desim $\Delta = Lx]$ $T = LeJ < group identity$ for $S \in \Delta$ for $S \in S$ $X = S^{S}$ if $X \notin \Delta$ push Y to Δ group elevent $T[X] = T[S] \cdot S$ which sends end end end return Δ , T end
Problem with this algorithm: storage.
1 permutation of length 210 is 8KiB
106 such permutations ~ 106:B
1 perm of longth 2 to is 1024.8 KiB = 8 HiB
512 of such is already 8GiB

Solution: Only store the minimal information required to reconstruct elements from the transversal! Definition: Let $\Delta = x^g$ (as ordered set). We say that $V = (v_1, ..., v_k) \in (Sules)^k$ Schreier vector for A iff $\triangle = [x, x^0, x^k, x^{sh}, \dots]$ 1) k = 101 V=[e, g, h, h, ...] 2) N= C 3) whenever $y \in \Delta$ and U[y] = 1then yso occurs in A before y. the entry of v associated lo y INPUT: · S - a generating set for G=<1> OUTPUT: $\Delta - x^{\alpha}$, the orbit of xV - Schreier vertor/tree $\Delta = [x], \mathcal{J} = [e]$ for SEA for ses end end end end end end end end end

return 1. r

ALGORITHM: RECONSTRUCT REPRESENTATIVE INPUT: A - orbit of x J - associated Schneier Ventor/tree y - point in A begin X = y 11 correct point r = e 11 coset representative while y + x 5 = V[X] T = 5.4 // since we're moving up the free we multiply on the left Y = X 5" return or 11 r takes x To

- Generaling set for the Stabilier Let & = <5>= <5,...,sh and let H<G be of finite index with coset representatives [", ..., tn] (we assure that 1=e). for geg there exists a unique coset st getting. We will write g for y. Let $U = \left\{ \left. \vec{r}_i \, s_j \left(\vec{r}_i \, s_j \right)^{-1} \right\}_{i=1,...,n}$ Lomma: H = < U>. U is called the set of Schreier generators Proof: 1) $r_i s_i (\overline{r_i s_i})^i \in H$ 2) let $\times \in H$, $\times = g_1 \cdots g_m$, $g_i \in S$. $X = g_1 \cdots g_m = 1 \cdot g_1 \cdot (1 \cdot g_1) \cdot (1 \cdot g_1) \cdot g_2 \cdots g_m$ = u, · 1.9, 92 (1.9, 92) (1.9, 92) 93 ... gm uze u $= \dots = u_1 \dots u_{m_i} \underbrace{\boxed{\frac{1}{9} \cdot 9} \cdot 9}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \cdot 9 \dots \cdot 9 \dots = \underbrace{\phantom{\frac{1}{9} \cdot 9}}_{1} \dots$ Claim: T. gm = 1 ×eH & u; eH ⇒ t.gm eH ⇒ t.gm =1 C= u, ...um, · Figm Fgm e < U).

Application. $H = Stab_g(x) = \{g \in G : x^g = x\}$ A = orbit of x => wests of #16. fransversal T[x3] () Hg rosel ALGORITHM: Orbit/stabilizer INPUT: · S - set of generators for g=(3) · x - a point in 12 OUTPUT: . A - the orbit of x · T - transversal for A (Schreier or not) · U - set of schreier generators begin [x] = 1 101-131-101-131-(101-1) T = [e] U=107 for Se A for ses if y ∉ A push of to D we'll enter this 121-1 times push of to T push T[S]·s·T[x] to U end end (T[6]) 1131.0 return D,T, U

Performance: (problem) · U will have $|\Delta| \cdot |S| - (|\Delta| - 1) = |\Delta| (|S| - 1) + 1$ Schreier generator that's plenty, but sometimes all are needed · remove duplicates and identity · instead of collecting all those generators simply form a group $H = \langle U \rangle$, and check if the new one already belongs to H. Ly we need membership Further applications: · Mormel closure of H<G i.e. start the orbit algorithm with $\Delta = U^{k}$ set for H Idea: under the action gh = high. ALGORITHM: Normal closure: INPUT : · S - generating set for G · U - generating set for 14 ownput : . N - generaling set for (H) N = copy (W) $g = n^{5}$ // $n^{5} := s^{-1}ns$ if $g \notin (N^{5})$ // is g in the subgroup push g bo N generaled by N? end end and end return N

Proof: 1) termination - If g is fine it's clear. 2) suppose that K = (N); since USN >> H <= K 3) every ett of N can be witten as g'ug > K < (H) 4) daim: K 1 G Let kek and geg; $k^9 = 9^7 kg = 9^7 n_1 \dots n_i g = \dots = n_1^9 \dots n_i^9$ if no ek for every nex > lock > Kag. $n^9 = n^{S_1 \cdot \dots \cdot S_k} = (n^{S_1})^{S_k \cdot \dots}$ ⇒ It's enough to prove that n' ∈ K= <N> for any $n \in \mathbb{N}$ and any $s \in S$. > but that's what we precisely do in the orbit algorithm!

Application:

The commutato subgroup:

g'= « a'b'ab | a, b e s »g

Finally: Pseudorandom elements
·
70 find Andez random elts in g one
would need to
1) access all elts of g as a list (at arbitrary locations)
2) generale random number from 1:4
and then pich the corresponding elf.
1) is infeasible (too many of them)
2) 18 impossible (no such hardware exist).
ALGORITHM: Pseudo-random
INPUT: X - a list of "sufficiently" random elts from
Output: · X - a list of
g-a roundon element
begin
i, j - two distinct integers from 1: X chosen at random
San = rand ((-1,1))
1if rand (Bool)
$X(i) = X(i) \cdot X(i)$
else $g = s \cdot \times LiJ$ $\times LiJ = \times LiJ^{sy} \cdot \times LiJ$
exex $\times li = \times li \int_{-\infty}^{\infty} \cdot \sqrt{l} dt$
$a = X(i) \cdot e$
and
g = X[i]·s and return X, g

end

ALGORITH: initialize INPUT: · S-a set of generators for g=(s) OUTPUT: X-a list of "sufficiently random" elements of g a-a pseudorandom group element $X = \text{concarkable S with isolf as long as } 1 \times 1 < 11$ a = e // the accumulator // // // // // // for _ in 1:00 / also a heuristic X, a = pseudorandom (X,a) return X,a Note: This procedure corresponds to a random wall on the schreier graph of Aut (Free(n)) action on n-generating tuples of g. Aut (Free(n)) = $\langle L_{ij}^{\pm 1}, R_{ij}^{\pm 1} \rangle$ $\langle x_1, \dots, x_n \rangle$ $Sgn = \pm 1 \quad Lij^{sgn}(x_k) = \begin{cases} x_j^{sgn} x_i, & h = i & i \neq j \\ x_k, & \text{otherwise} \end{cases}$ $Rij^{sgn}(x_k) = \begin{cases} x_i x_j^{sgn}, & h = i \\ x_k, & \text{otherwise} \end{cases}$ in SL(4, 2) $Ant^+(Z^*)$ $T_n(g) = \begin{cases} v = \ln\text{-generaling tuples of } g \end{cases}$ $E = \{(v_1, s, s(v_2)), \text{ where } s \in S\}$ Schreier graph

Fast mixing properly means that after relatively few steps starting from any vertex (here: X) we arrive close to the stationary measure -> uniform measure on the vertices (assuming aperiodicity, ergodicity, ...) -> uniformly chosen element of an "essentially uniformly chosen" n-generatingtuple is close (in distribution) to uniformly chosen group element. To learn more about this: A. Lubotshy & J. Pah

The product replacement algorithm and

Kachdan Property (T) J. of Amer Math Soc. 2000 vol 14, 347-363.