3 Lokale Eigenschaften

§14 Lokale Ringe zu Punkten

Erinnerung / Definition + Bemerkung 3.14.1

Sei V eine Varietät (über einem algebraisch abgeschlossenen Körper k) und $x \in V$.

(a)

$$\mathcal{O}_{V,x} := \{ [(U,f)] : U \subseteq V \text{ offen, } x \in U, f \in \mathcal{O}_V(U) \}$$

heißt $\pmb{lokaler}$ \pmb{Ring} von V in x, dabei sei $(U,f)\sim (U',f') \Leftrightarrow f|U\cap U'=f'|U\cap U'$

(b) $\mathcal{O}_{V,x}$ ist ein lokaler Ring mit maximalem Ideal

$$m_x = \{ [(U, f)] \in \mathcal{O}_{V,x} : f(x) = 0 \}.$$

(c)
$$\mathcal{O}_{V,x} = \varinjlim_{U \subseteq V \text{ offen, } x \in U} \mathcal{O}_V(U)$$

Bemerkung 3.14.2

Seien $V, x \in V$ wie in 3.14.1, sei weiter $V_0 \subseteq V$ offen und affin mit $x \in V_0$. Dann gilt:

- (a) $\mathcal{O}_{V,x} \cong k[V_0]_{m_x^{V_0}}$, wobei $k[V_0]$ der affine Koordinatenring von V_0 sei und $m_x^{V_0}$ das zu x gehörige maximale Ideal in $k[V_0]$, das heißt $m_x^{V_0} = \{f \in k[V_0] : f(x) = 0\}$.
- (b) Ist V irreduzibel, so ist $\mathcal{O}_{V,x} \cong \{f = \frac{g}{h} \in k(V) : g, h \in k[V_0], h(x) \neq 0\}.$

Beweis Übung.

Proposition 3.14.3

Seien V, W Varietäten, $x \in V, y \in W$. Ist $\mathcal{O}_{V,x} \cong \mathcal{O}_{W,y}$ (als k-Algebra), so gibt es (affine) offene Umgebungen $U_1 \subseteq V$ von x und $U_2 \subseteq W$ von y mit $U_1 \cong U_2$.

Beweis Übungsblatt 7 Aufgabe 1. □

Bemerkung 3.14.4

Sei $\varphi:V\longrightarrow W$ ein Morphismus von Varietäten. Für jedes $x\in V$ induziert φ einen k-Algebrenhomomorphismus

$$\varphi_x^{\sharp}: \mathcal{O}_{W,\varphi(x)} \longrightarrow \mathcal{O}_{V,x} \quad \text{mit} \quad \varphi_x^{\sharp}(m_{\varphi(x)}) \subseteq m_x.$$

Beweis $\times V, W$ affin (geeignet einschränken!).

Dann induziert φ einen k-Algebrenhomomorphismus

$$\varphi^{\sharp}: \begin{array}{ccc} k[W] & \longrightarrow & k[V] \\ f & \longmapsto & f \circ \varphi \end{array}$$

Dabei gilt für $f \in k[W]$:

$$(*) \quad f \in m_{\varphi(x)}^W \Leftrightarrow f(\varphi(x)) = 0 \Leftrightarrow (f \circ \varphi)(x) = 0 \Leftrightarrow \varphi^{\sharp}(f) \in m_x^V$$

 $\Rightarrow \varphi^{\sharp}$ induziert einen Homomorphismus

$$\varphi_x^{\sharp}: \underbrace{k[W]_{m_{\varphi(x)}^W}} \longrightarrow \underbrace{k[V]_{m_x^V}}_{\cong \mathcal{O}_{V,x}}.$$

Aus (*) folgt weiter:

$$\varphi_x^{\sharp}(\underbrace{m_{\varphi(x)}^W \cdot k[W]_{m_{\varphi(x)}^W}}_{=m_{\varphi(x)}}) \subseteq m_x^V k[V]_{m_x^V} = m_x \qquad \Box$$

§15 Dimension einer Varietät

Definition 3.15.1

Sei X ein topologischer Raum $(\neq \emptyset)$. Dann heißt

$$\dim(X) := \sup\{n \in \mathbb{N} : \text{ Es gibt irreduzible Teilmengen } \emptyset \neq V_0 \subsetneq \ldots \subsetneq V_n \subseteq X\}$$

die (Krull-)Dimension von X.

Erinnerung / Definition 3.15.2

Sei R ein Ring (kommutativ mit Eins).

(a) Für ein Primideal $\wp \subseteq R$ heißt

$$ht(\wp) := \sup\{n \in \mathbb{N} : \text{ Es gibt Primideale } \wp_0 \subsetneq \ldots \subsetneq \wp_n = \wp\}$$

die $H\ddot{o}he$ von \wp .

(b) dim $R := \sup\{\operatorname{ht}(\wp) : \wp \subset R \text{ Primideal}\}\ \text{heißt } (Krull-)Dimension \text{ von } R.$

Bemerkung 3.15.3

Sei V eine affine Varietät. Dann ist $\dim(V) = \dim(k[V])$.

Beweis Nach Proposition 1.3.2 ist eine abgeschlossene Teilmenge Z von V genau dann irreduzibel, wenn ihr Verschwindungsideal I(Z) ein Primideal ist. Nach Satz 2 ist das eine Bijektion.

Proposition 3.15.4

- (a) $\dim(k[X_1, ..., X_n]) = n$
- (b) Ist A eine nullteilerfreie k-Algebra, so haben alle maximalen Primidealketten die gleiche Länge.

Beweis Algebra 2.

Bemerkung + Definition 3.15.5

Sei V eine Varietät, $x \in V$, $V_0 \subseteq V$ eine offene und affine Umgebung von x.

- (a) dim $\mathcal{O}_{V,x} = \text{ht}(m_x^{V_0}) (= \text{ht}(m_x^{V_0} \cdot k[V_0]_{m_x^{V_0}}))$
- (b) Ist V irreduzibel, so ist

$$\dim \mathcal{O}_{V,x} = \dim \mathcal{O}_{V,y} = \dim V$$
 für alle $x, y \in V$.

- (c) $\dim_x V := \dim \mathcal{O}_{V,x}$ heißt **lokale Dimension** von V in x.
- (d) $\dim_x V = \max\{\dim Z : Z \text{ irreduzible Komponente von } V, x \in Z\}$

Beweis b) Ist V affin (also $V = V_0$), so folgt die Aussage aus a) und Proposition 3.15.4(b). Im allgemeinen Falle überdecke V durch affine Varietäten V_i (i = 1, ..., n). Da V irreduzibel ist, ist $V_i \cap V_j \neq \emptyset \ \forall i, j$.

 \Rightarrow dim $\mathcal{O}_{V,x}$ ist unabhängig von x, also gleich dim V_i für jedes $i=1,\ldots,n$. noch zu zeigen: dim V_i = dim V.

Sei $Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_d = V$ eine maximale Kette von irreduziblen Teilmengen. Dabei ist $Z_0 = \{z_0\}$ einpunktig. Es folgt $d = \dim \mathcal{O}_{V,z_0}$.

d) Œ sei V affin. Die irreduziblen Komponenten Z_1,\ldots,Z_n von V entsprechen den minimalen Primidealen in k[V]. Es gilt $x\in Z_i\Leftrightarrow m_x^V\supseteq I(Z_i)=:\mu_i$. Weiter ist $k[Z_i]=k[V]/\mu_i$. Es folgt: $\dim \mathcal{O}_{V,x}=\operatorname{ht}(m_x^V)=\max_{i=1;\mu_i\subseteq m_x^V}^n\{\text{maximale L\"ange einer Primidealkette }\mu_i\subsetneq\wp_1\subsetneq\ldots\subsetneq m_x^V\}=\max_{i=1;\mu_i\subseteq m_x^V}^n\{\underbrace{\dim k[Z_i]}\}.$

§16 Der Tangentialraum

Zunächst einige einführende Beispiele:

Beispiele

1.) $V = V(Y^2 - X^3 + X), x = (0,0).$

Die Tangente in x an V ist die y-Achse, also V(X). Der Tangentialraum in x=(1,0) ist derselbe, d.h. der Tangentialraum ist nicht als affiner Raum, sondern als Vektorraum zu verstehen.

- 2.) $V = V(Y^2 X^3 + X^2)$ (Newton-Knoten), x = (0,0). Hier kann man an den Nullpunkt 2 Tangenten anlegen (y = x und y = -x). Der Tangentialraum, wie wir ihn definieren werden, ist der davon aufgespannte $\mathbb{A}^2(k)$.
- 3.) $V = V(Y^2 X^3)$, x = (0,0). Ist jeder beliebige eindimensionale Unterraum im Tangentialraum enthalten?
- 4.) $V = V(X^2 + Y^2 Z^2)$ (doppelter Kegel), x = (0, 0, 0), y = (1, 0, 1).

Definition + Bemerkung 3.16.1

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $x \in V$, I = I(V).

- (a) Für $f \in I$ sei $f^{(1)} := f_x^{(1)} := \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) \cdot X_i$. Weiter sei I_x das von den $f^{(1)}$, $f \in I$, erzeugte Ideal in $k[X_1, \dots, X_n]$ und $T_x := T_{V,x} := V(I_X)$. $T_{V,x}$ heißt **Tangentialraum** an V in x.
- (b) T_x ist ein linearer Unterraum von $\mathbb{A}^n(k)$.
- (c) Sind f_1, \ldots, f_r Erzeuger von I, so wird I_x erzeugt von $f_1^{(1)}, \ldots, f_r^{(1)}$.

Beispiele von oben:

- 1.) $I_x = (X), \quad T_x = V(X)$
- 2.) $I_x = (0), \quad T_x = \mathbb{A}^2(k)$
- 3.) $I_x = (0), \quad T_x = \mathbb{A}^2(k)$
- 4.) $I_x = (0), \quad T_x = \mathbb{A}^3(k);$ $I_y = (2X - 2Z) = (X - Z), \quad T_y = V(X - Z)$

Bemerkung 3.16.2

Jeder Morphismus $\varphi: V \to W$ von affinen Varietäten induziert für jedes $x \in V$ eine k-lineare Abbildung $d_x \varphi: T_{V,x} \to T_{W,\varphi(x)}$.

Beweis $\times x = 0$, $\varphi(x) = 0$.

Schreibe $\varphi = (\varphi_1, \dots, \varphi_m)$. Brauche k-Algebrenhomomorphismus:

$$(d_x\varphi)^{\sharp}: k[Y_1,\ldots,Y_m]/I_{\varphi(x)} \to k[X_1,\ldots,X_n]/I_x$$

Für j = 1, ..., m ist $\varphi^{\sharp}(Y_j) = Y_j \circ \varphi = \varphi_j \Rightarrow (\varphi^{\sharp}(Y_j)^{(1)}) = \sum_{i=1}^n \frac{\partial \varphi_j}{\partial X_i}(0) \cdot X_i =: (d_x \varphi)^{\sharp}(Y_j)$. Sei $f \in I_{\varphi}$, Œ $f = g^{(1)}$ für ein $g \in I(V)$.

Schreibe $g^{(1)} = \sum_{j=1}^m a_j Y_j$, $a_j \in k = (d_x \varphi)^\sharp(f) = \sum_{j=1}^m a_j \sum_{i=1}^n \frac{\partial \varphi_i}{\partial X_i}(0) \cdot X_i = \sum_{i=1}^n (\sum_{j=1}^m a_j \frac{\partial \varphi_i}{\partial X_i}(0)) \cdot X_i = (g \circ \varphi)^{(1)}$

$$\operatorname{da} \frac{\partial (g \circ \varphi)}{\partial X_i}(0) = \sum_{j=1}^m \underbrace{\frac{\partial g}{\partial Y_j}(\varphi(0))}_{=a_j} \underbrace{\frac{\partial \varphi_j}{\partial X_i}(0)}_{=a_j}$$

Proposition + Definition 3.16.3

Sei $V \subseteq \mathbb{A}^n(k)$ eine affine Varietät, $x \in V$. Dann ist T_x in natürlicher Weise isomorph zu dem Dualraum $(m_x/m_x^2)^{\vee}$ von m_x/m_x^2 . Der k-Vektorraum $(m_x/m_x^2)^{\vee}$ heißt **Zariski-Tangentialraum** an V in x.

 m_x/m_x^2 ist ein k-Vektorraum: Zunächst ist m_x/m_x^2 ein R-Modul für $R=\mathcal{O}_{V,x}$. Weiter ist $R/m_x=k$.

Da $m_x \cdot (m_x/m_x^2) = 0$ ist, hat m_x/m_x^2 eine Struktur als R/m_x -Modul.

Definition + Bemerkung 3.16.4

Sei V eine Varietät, $x \in V$.

(a) x heißt nichtsingulärer Punkt (oder regulärer Punkt), wenn

$$\dim T_{V,x} = \dim_x V.$$

(b) (Jacobi-Kriterium) Sei $U \subseteq V$ eine offene, affine Umgebung von $x, f_1, \ldots, f_r \in$ $k[X_1,\ldots,X_n]$ Erzeuger des Verschwindungsideals I(U). Dann gilt:

$$x$$
 nichtsingulär $\Leftrightarrow \operatorname{Rang}\left(\frac{\partial f_i}{\partial X_j}(x)\right)_{i,j} = n - \dim_x V$

(c) Ist x singulär, so ist dim $T_{V,x} > \dim_x V$.

b) Sei $x \in V$, $V = V(f_1, ..., f_r) \subseteq \mathbb{A}^n(k)$. Beweis

$$\mathcal{J}_f(x) := \left(\frac{\partial f_i}{\partial X_j}(x)\right)_{\substack{i=1,\dots,r\\j=1,\dots,n}}$$

 $T_{V,x}$ ist die Lösungsmenge des LGS $\mathcal{J}_f(x) \cdot X = 0$, denn $f_i^{(1)} = \sum_{j=1}^n \frac{\partial f_i}{\partial X_j}(x) \cdot X_j$.

- c) Sei $\mathcal{J}_f := \left(\frac{\partial f_i}{\partial X_j}\right)_{i,j}$.
 - $\Rightarrow \operatorname{Rang}(\mathcal{J}_f(x)) = \max\{d: \exists (d \times d) \text{-Minor } M \text{ von } \mathcal{J}_f \text{ mit } \det M(x) \neq 0\}$
 - \Rightarrow Es gibt eine offene Teilmenge U von V, auf der Rang $(\mathcal{J}_f(x))$ maximal ist.

Beispiele 3.16.5

(a)
$$V = (Y^2 - X^3 - X^2) =: V(f)$$

$$\mathcal{J}_f = \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}\right) = (-3X^2 - 2X, 2Y)$$

$$Rang(\mathcal{J}_f(x)) = \begin{cases} 0 &, -3X^2 - 2X = 0 \text{ und } Y = 0\\ 1 &, \text{ sonst} \end{cases}$$

(b) $V = V(f) \subseteq \mathbb{A}^n(k)$ mit einem Polynom $f \in k[X_1, \dots, X_n]$. $x \in \mathbb{A}^n(k)$ singulärer Punkt von $V \Leftrightarrow 0 = f(x) = \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x)$

Proposition 3.16.6

$$\mathcal{T}_{V,x} \cong \left(\frac{m_x}{m_x^2}\right)^* \qquad \mathcal{O}_{V,x}/m_x \cong k$$

(in natürlicher Weise)

Beweis Sei I = I(V) das Verschwindungsideal von V in $k[X_1, ..., X_n]$. Œ x = (0, ..., 0)

Dann ist
$$\mathcal{M} := m_x^{\mathbb{A}^n} = (x_1, ..., x_n)$$

Dann ist
$$\mathcal{M} := m_x^{\mathbb{A}^n} = (x_1, ..., x_n)$$

 $\Rightarrow m_x^V = \frac{\mathcal{M}_x}{I} \cap \mathcal{M}_x = \frac{\mathcal{M}_x}{I}$, da $I \subseteq \mathcal{M}_x$

Beh. 1:
$$m_x/m_x^2 \cong m_x^V/(m_x^V)^2$$

Denn: $\mathcal{O}_{x,V} \cong k[v]_{m_x^V}$
 $m_x = m_x^V k[V] m_x^V$

Denn:
$$\mathcal{O}_{x,V} \cong k[v]_{m_x^V}$$

$$m_x = m_x^V k[V] m_x^V$$

 $a\mapsto \frac{a}{1}$ ist ein Homomorphismus $\rho: m_x^V\to m_x\to m_x/m_x^2$ mit Kern $(m_x^V)^2$ ρ ist surjektiv: Sei $p=q\cdot \frac{a}{b}\in m_x$ mit $q\in m_x^V,\ a,b\in k[V],\ b\notin m_x^V$

Ansatz: Wähle $\tilde{a}(=q\cdot\tilde{b})\in m_x^V\Rightarrow p-\frac{\tilde{a}}{1}=q\cdot\frac{a}{b}-\frac{q\cdot\tilde{b}}{1}=q\frac{a-\tilde{b}b}{b}$ Hätte gerne: $a - b\tilde{b} \in m_x^V$

??????????????????????

Beh. 2:
$$m_x/(m_x^V)^2 \cong \mathcal{M}_x/\mathcal{M}_x^2 + I = \mathcal{M}_x/\mathcal{M}_x^2 + I_x$$
denn: $m_x/(m_x^V)^2 \cong \mathcal{M}_x/I/(\mathcal{M}_x/I)^2$

$$\cong (\mathcal{M}_x/I)/(\mathcal{M}_x^2/I \cap \mathcal{M}_x^2)$$

$$\cong (\mathcal{M}_x/I)/(\mathcal{M}_x^2 + I/I)$$

$$\cong \mathcal{M}_x/\mathcal{M}_x^2 + I$$
Probability of the state of \mathcal{M}_x is the state of \mathcal{M}_x .

Definiere k-lineare Abbildung: $\alpha:(m_x/m_x^2)^*\to \mathcal{T}_x$ durch $l\mapsto (l(\overline{X_1}),...,l(\overline{X_n}))\in k^n$

Zu zeigen: α ist wohldefiniert, d.h. $\alpha(l) \in \mathcal{T}_x$

Sei also $f \in I_x$. Zu zeigen: $f(\alpha(l)) = 0$

Set also
$$f \in I_x$$
. Zu zeigen. $f(\alpha(t)) = 0$

$$f = g_x^{(1)} \text{ für ein } g \in I$$

$$\Rightarrow f(L(l)) = \sum_{\substack{\frac{\partial g}{\partial X_i}}} (x) l(\overline{X_i})$$

$$= l(\overline{\sum_{i=1}^n \frac{\partial g}{\partial X_i}}(x) X_i)$$

$$= l(g_x^{(1)}) = 0 \text{ weil } g_x^{(1)} \in I_x \subseteq \mathcal{M}_x^2 + I_x$$
Umkahrabbildung:

Umkehrabbildung:

$$\beta: \begin{array}{ccc} \mathcal{T}_x & \longrightarrow & (m_x/m_x^2)^* \\ (l_1, ..., l_n) & \longmapsto & (\overline{X}_i \mapsto l_i) \end{array}$$

Wohldefiniertheit von β : Ist $\sum \lambda_i X_i \in I_X$, so ist $\sum \lambda_i l_i = 0$, da jedes Polynom in I_x auf dem Tangentialraum verschwindet, $l_i \in \mathcal{T}_x$

Definition 3.16.7

- (a) Ein lokaler Ring heißt **regulär**, wenn dim $R = \dim_{R/m}(m/m^2)$ ist.
- (b) Sei V eine Varietät. Ein Punkt $x \in V$ ist genau dann nichtsingulär, wenn $\mathcal{O}_{V,x}$ ein regulärer, lokaler Ring ist.

Definition + Bemerkung 3.16.8

Sei $V = V(f_1, \ldots, f_r) \subseteq \mathbb{A}^n(k)$ eine affine Varietät.

(a) Für $i = 1, \ldots, r$ sei

$$f_i^1 := \sum_{j=1}^n \frac{\partial f_i}{\partial X_j} \cdot Y_j \in k[X_1, \dots, X_n, Y_1, \dots, Y_n]$$

Dann heißt

$$\mathcal{T}_V = V(f_1, \dots, f_r, f_1^1, \dots, f_r^1) \subseteq \mathbb{A}^n \times \mathbb{A}^n = \mathbb{A}^{2n}$$

Tangentialbündel über V.

- (b) Sei $p: \mathbb{A}^n \times \mathbb{A}^n \to \mathbb{A}^n$ die Projektion auf die ersten n Komponenten. Dann ist $p(\mathcal{T}_V) = V$.
- (c) Für jedes $x \in V$ ist $p^{-1}(x) \cong T_{V,x}$.
- (d) Ist V eine beliebige Varietät und V_1, \ldots, V_m eine affine Überdeckung von V, so verkleben sich die Tangentialbündel $\mathcal{T}_{V_1}, \dots, \mathcal{T}_{V_m}$ zu einer Varietät \mathcal{T}_V , dem **Tangentialbündel** über V.

Beispiele 3.16.9

Beispiele 3.16.9
$$V = V(\underline{Y^2 - X^3 - X^2})$$
 $\mathcal{T} = V(Y^2 - X^3 - X^2, -(2X + 3X^2)W + 2YZ) \subseteq \mathbb{A}^4$

$$X^{2}(W^{2}(2+3X)^{2}-4Z^{2}(X+1))=$$

$$V = V(Y^{2} - X^{3} - X^{2}) \qquad \mathcal{T} = V(Y^{2} - X^{3} - X^{2}, -(2X + 3X^{2})W + 2YZ) \subseteq \mathbb{A}^{4}$$

$$\underline{\text{Beh}} : \mathcal{T}_{V} \text{ hat 2 irreduzible Komponenten } \mathcal{T}_{1} \text{ und } \mathcal{T}_{2}.$$

$$\ddot{\text{Aquivalent dazu: }} I := I(Y^{2} - X^{3} - X^{2}, -(2X + 3X^{2})W + 2YZ) \text{ ist kein Primideal.}}$$

$$\underline{X^{2}}(W^{2}(2 + 3X)^{2} - 4Z^{2}(X + 1)) = \underbrace{(WX(2 + 3X) - 2YZ)(WX(2 + 3X) + 2YZ) - 4Z^{2}X^{2}(X + 1) + 4Z^{2}Y^{2}}_{=4Z^{2}}$$

$$\underline{Y^{2} - X^{2}(X + 1)}$$

$$\Rightarrow \mathcal{T}_{1} = V(Y^{2} - X^{3} - X^{2}, W^{2}(2 - 3X)^{2} - 4Z^{2}(X + 1)) \subset \mathcal{T}_{V}$$

$$\Rightarrow \mathcal{T}_1 = V(Y^2 - X^3 - X^2, W^2(2 - 3X)^2 - 4Z^2(X + 1)) \subset \mathcal{T}_V$$

$$\mathcal{T}_2 = V(Y^2 - X^3 - X^2, X) \subset \mathcal{T}_V = V(X, Y) = \mathbb{A}^2 \text{ "uber dem Nullpunkt.}$$

$$\mathcal{T}_1 \cap \mathcal{T}_2 = V(X, Y, W^2 - Z^2)$$

§17 Der singuläre Ort einer Varietät

Definition 3.17.1

Für eine Varietät V heißt

$$Sing(V) := \{x \in V : x \text{ ist singulärer Punkt}\}$$

der **singuläre** Ort von V.

Satz 6

Sei V eine Varietät über k. Dann ist Sing(V) echte Untervarietät von V.

Beweis Œ sei V affin in $\mathbb{A}^n(k)$, V irreduzibel. Sei $d = \dim V$.

Sing(V) ist abgeschlossen: Sei
$$V = V(f_1, ..., f_r), \ \mathcal{J} = (\frac{\partial f_i}{\partial X_j})_{\substack{i=1,...,r\\j=1,...,n}}^{i=1,...,r}$$

$$\overline{\mathrm{Dann ist Sing}(V) = \{x \in V : \mathrm{Rg}(\mathcal{J}(x)) < n - d = d'\}} =$$

$$\{x \in V : \det(M(x)) = 0 \text{ für alle } (d' \times d') - \text{Minoren } M \text{ von } \mathcal{J}\} = 0$$

 $\left(\bigcap_{M(d'\times d')-\text{Minoren }M\text{ von }\mathcal{J}}V(\det(M))\right)\cap V.$

 $Sing(V) \neq V$:

<u>Fall 1</u>: V = V(f) Hyperfläche, f quadratfreies Polynom

$$\Rightarrow \operatorname{Sing}(V) = \{x \in V : \frac{\partial f}{\partial X_j}(x) = 0, j = 1, ..., n\}$$

Wäre
$$\mathrm{Sing}(V) = V$$
, so wäre $\frac{\partial f}{\partial X_j} \in I(V) = (f)$ für $j = 1, ..., n \Rightarrow \frac{\partial f}{\partial X_j} = 0$ für $j = 1, ..., n \Rightarrow$

$$\int \operatorname{char}(k) = 0: \quad f \in k, \text{Wid!}$$

$$\begin{cases} \operatorname{char}(k) = 0: & f \in k, \text{Wid!} \\ \operatorname{char}(k) = p: & f(X_1, ..., X_n) = g(X_1^p, ..., X_n^p) = g^p, \text{Wid!} \end{cases}$$

Fall 2 V ist beliebig. Dann folgt die Behauptung aus der folgenden Proposition.

Proposition 3.17.2

Jede irreduzible Varietät V der Dimension d ist birational Äquivalent zu einer Hyperfläche in $\mathbb{A}^{d+1}(k)$

Beweis Ziel: Finde eine irreduzible Hyperfläche $W \subseteq \mathbb{A}^{d+1}(k)$ mit $k(W) \cong k(V)$. Dann folgt die Proposition aus Korollar 7.5.

Sei $X_1,...,X_d$ Transzendenzbasis von k(V) (Noether-Normalisierung von k(V)).

Dann ist $k(V)/k(X_1,...,X_d)$ endlich.

Sei $k(V)/k(X_1,...,X_d)$ einfach (falls char(k)=p, so gibt es eine Transzendenzbasis mit dieser Eigenschaft).

Sei $y \in k(V)$ ein primitives Element.

Sei $y^m + a_{m-1}y^{m-1} + ... + a_1y + a_0$ das Minimalpolynom. Sei $a_i = \frac{f_i}{g_i}$ mit $f_i, g_i \in k[X_1, ..., X_d]$.

Sei $g = \Pi g_i, W := V(g^m y^m + g^m a_{m-1} y^{m-1} + \dots + g^m a_0).$

W ist eine Hyperfläche in $\mathbb{A}^{d+1}(k)$

$$k[W] = k[X_1, ..., X_d, gY]/(...) \Rightarrow k(W) \cong k(V)$$

Bemerkung 3.17.3

Sei V eine Varietät, $x \in V$. Dann gilt:

 $\mathcal{O}_{V,x}$ nullteilerfrei \Leftrightarrow es gibt genau eine irreduzible Komponente Z von V mit $x \in Z$.

Beweis Œ V affin. Seien $V_1 \neq V_2$ irreduzible Komponenten von V. Dann gilt:

$$x \in V_1 \cap V_2$$

 $\Leftrightarrow I(V_1) + I(V_2) \subseteq m_x^V$
 $\Leftrightarrow \mu_{i,x} := I(V_i) \cdot \mathcal{O}_{V,x}$ ist minimales Promideal in $\mathcal{O}_{V,x}$ $(i = 1, 2)$ mit $\mu_{1,x} \neq \mu_{2,x}$
 $\Leftrightarrow (0)$ nicht Primideal in $\mathcal{O}_{V,x}$
 $\Leftrightarrow \mathcal{O}_{V,x}$ nicht nullteilerfrei

(das vorletzte "
$$\Leftarrow$$
" folgt mit der Übung: $\bigcap_{\mathfrak{p} \text{ Primideal in } R} \mathfrak{p} = \sqrt{(0)}$)

Proposition 3.17.4

Sei V eine Varietät, $x \in V$. Gibt es irreduzible Komponenten $V_1 \neq V_2$ von V mit $x \in V_1 \cap V_2$, so ist x singulärer Punkt von V.

Beweis Es genügt zu zeigen:

Proposition 3.17.5

Jeder reguläre lokale Ring R ist nullteilerfrei.

Beweis (mit Import von $(1), \cdot, (3)$; siehe unten) Sei $d = \dim R$. Induktion über d:

d=0:
$$m/m^2 = 0 \Rightarrow m = 0$$
 (Nakayama)

d=1: $\dim(m/m^2) = 1 \Leftrightarrow R$ ist diskreter Bewertungsring, also insbesondere nullteilerfrei.

d>1: Seien $\mathfrak{p}_1,\ldots,\mathfrak{p}_r$ die minimalen Primideale von R. $\mathfrak{p}_i\neq m,$ da dim $R\geq 1,$ außerdem

$$\stackrel{(2)}{\Rightarrow} \ \exists a \in m \ \mathrm{mit} \ a \notin \mathfrak{p}_i, i = 1, \cdots, r$$

Behauptung

a ist ein Primelement in R.

Dann gibt es ein i mit $\mathfrak{p}_i \subseteq (a)$

Für jedes $b \in \mathfrak{p}_i$ gibt es also $q \in R$ mit $b = q \cdot a$

$$\Rightarrow q \in \mathfrak{p}_i, \text{ da } \mathfrak{p}_i \text{ Primideal } , a \notin \mathfrak{p}_i$$

$$\Rightarrow \mathfrak{p}_i \subseteq \mathfrak{p}_i \cdot (a) \subseteq \mathfrak{p}_i \cdot m$$

$$\stackrel{(Nakayama)}{\Rightarrow} \mathfrak{p}_i = 0$$

Beweis (der Behauptung) Zeige: S := R/(a) ist regulärer lokaler Ring der Dimension d-1.

Es ist
$$m_S = \frac{m}{a}$$
 und $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{a}$ $\frac{m_S}{m_S^2} = \frac{m}{m_S^2}$ $\frac{m_S}{m_S^2} = \frac{m}{m_S^2} = \frac{m_S}{m_S^2} = \frac{m_S}{m_S^2}$

Sei \mathfrak{p} minimales Primideal in R, das in einer Kette der Länge d vorkommt und $R' := R/\mathfrak{p}$. Dann ist dim $R' = \dim R = d$ und R' nullteilerfrei. Da $a \notin \mathfrak{p}$, ist $\bar{a} \neq 0$ in $R' \Rightarrow \operatorname{ht}(\mathfrak{p}) = 1$ für jedes minimale (Primideal \mathfrak{q} in R' mit $\bar{a} \in \mathfrak{q}$)

$$\Rightarrow \dim S = \dim R' / (\bar{a}) = \dim R' / \mathfrak{q} = d - 1$$

Import:

- (1) Jeder noethersche Ring hat nur endlich viele minimale Primideale.
- (2) Vermeiden von Primidealen: Sei R ein Ring, $\mathfrak{p}_0 \subseteq R$ ein Ideal, $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ Primideale. Ist $I \subseteq R$ Ideal mit $I \nsubseteq \mathfrak{p}_i, i = 0, \dots, r$, so ist $I \nsubseteq \bigcap_{i=0}^r \mathfrak{p}_i$
- (3) Krullscher Hauptidealsatz: Sei R nullteilerfrei, noethersch, $x \in R, x \neq 0, x \neq R^{\times}$. Dann hat jedes Primideal, das x enthält und minimal mit dieser Eigenschaft ist, Höhe 1.