MSO_integrated

Valentin Lauret

08/03/2021

Contents

An ounce of theory	1
Format and visualise data	2
SAMM	2
GDEGeM	
Joining the dataset and formatting for Bayesian analyses	5
Simplest integrated MSO	7
BUGS model	7
Full model w/ constant natural parameters, and GAM sur lat/long; detection is function of	
sampling effort plus dolphin detection function of pres/abs of fishing boats	11
NIMBLE	11
JAGS	12

An ounce of theory

We consider a two-species static occupancy model à la Rota et al. (2016).

Ignoring the site index, we use the following notation for the occupancy probabilities:

- ψ_{11} is the prob. that species A and species B are both present;
- ψ_{10} is the prob. that species A is present and species B is absent;
- ψ_{01} is the prob. that species A is absent and species B is present;
- ψ_{00} is the prob. that species A and species B are both absent, with avec $\psi_{11} + \psi_{10} + \psi_{01} + \psi_{00} = 1$.

The marginal probabilities of occupancy are:

- $Pr(z_A = 1) = Pr(species A is present) = \psi_{10} + \psi_{11}$
- $Pr(z_B = 1) = Pr(species B is present) = \psi_{01} + \psi_{11}$
- $Pr(z_A = 0) = Pr(species A is absent) = \psi_{01} + \psi_{00}$
- $Pr(z_B = 0) = Pr(species B \text{ is absent}) = \psi_{10} + \psi_{00}$

And the conditional probabilities (reminder: Pr(A|B) = Pr(A and B)/Pr(B)):

- $Pr(z_A = 1|z_B = 0) = \psi_{10}/(\psi_{10} + \psi_{00}) = Pr(\text{species A is present given species B is absent});$
- $\Pr(z_A = 1 | z_B = 1) = \psi_{11}/(\psi_{11} + \psi_{01}) = \Pr(\text{species A is present given species B is present)};$
- $\Pr(z_B = 1 | z_A = 0) = \psi_{01}/(\psi_{01} + \psi_{00}) = \Pr(\text{species B is present given species A is absent});$
- $\Pr(z_B = 1 | z_A = 1) = \psi_{11}/(\psi_{11} + \psi_{10}) = \Pr(\text{species B is present given species A is present)}.$

In this document, we adapted the multi-species occupancy to integrate two datasets. We considered dataset S (e.g SAMM aerial line transects), and dataset G (e.g. GDEGeM boat search-encounter program). Both

monitoring collected detection / non-detection about species A and B. Then, each species has a different detection probability depending on the monitoring program considered. For example, p_{Ag} is the probability of detecting species A by monitoring program 'g'. Then, 16 observation 'event' can occur. We coded them:

- 1 for none species detected neither by G nor S
- 2 for species A detected by G, nothing by S
- 3 for species B detected by G, nothing by S
- 4 for both species detected by G, nothing by S
- 5 for none species detected neither by G, species A detected by S
- 6 for species A detected by G, species A detected by S
- 7 for species B detected by G, species A detected by S
- 8 for both species detected by G, species A detected by S
- 9 for none species detected neither by G, species B detected by S
- 10 for species A detected by G, species B detected by S
- 11 for species B detected by G, species B detected by S
- 12 for both species detected by G, species B detected by S
- 13 for none species detected neither by G, both species detected by S
- 14 for species A detected by G, both species detected by S
- 15 for species B detected by G, both species detected by S
- 16 for both species detected by G, both species detected by S

From the 4 ecological states and the 16 observation events, we obtain the observation process with the following 4x16 matrix.

Let's go for the analysis.

Format and visualise data

Load grid and occupancy data.

```
load("pays.rdata")
grid <- st_read("Grid/grid.shp") %>% st_transform(crs = st_crs(pays))
# focus Golfe du Lion
grid <- grid %>% st_crop(xmin = 700000, xmax = 900000, ymin = 6140000, ymax = 6300000)
pays <- pays %>% st_crop(st_bbox(grid))

# SAMM data
load('msoccu_samm.rdata')
multioccu_samm$dauphins <- st_transform(multioccu_samm$dauphins, st_crs(grid))
multioccu_samm$effort <- st_transform(multioccu_samm$effort, st_crs(grid))
multioccu_samm$effort <- st_transform(multioccu_samm$effort, st_crs(grid))

# GDEGeM data
load('msoccu_gd.rdata')
multioccu_gd$dauphins <- st_transform(multioccu_gd$dauphins, st_crs(grid))
multioccu_gd$chalut <- st_transform(multioccu_gd$chalut, st_crs(grid))
multioccu_gd$effort <- st_transform(multioccu_gd$fort, st_crs(grid))</pre>
```

SAMM

Visualise data.

```
st_crop(st_bbox(grid))
```

Build datasets.

```
# sampling effort
effortS <- multioccu_samm$effort %>%
  st crop(st bbox(grid)) %>%
  select(autumn:summer) %>%
  as tibble() %>%
  select(-geometry) %>%
  as.matrix()
# dolphin detections/non-detections
y_dolphinS <- dfS %>%
  filter(species == "dauphin") %>%
  select(autumn:summer) %>%
  as_tibble() %>%
  select(-geometry) %>%
  as.matrix()
y_dolphinS[effortS == 0] <- NA</pre>
## ind_dolphinS \leftarrow apply(y_dolphinS, 1, function(x) all(is.na(x)))
## y_dolphinS <- y_dolphinS[ !ind_dolphinS, ]
# fishing boats detections/non-detections
y fishingS <- dfS %>%
  filter(species == "chalutier") %>%
  select(autumn:summer) %>%
  as tibble() %>%
  select(-geometry) %>%
  as.matrix()
y_fishingS[effortS == 0] <- NA</pre>
## ind_fishingS \leftarrow apply(y_fishingS, 1, function(x) all(is.na(x)))
## y_fishingS <- y_fishingS[ !ind_fishingS, ]</pre>
# grid cells coordinates
coordS <- dfS %>%
  filter(species == "dauphin") %>%
  select(autumn:summer) %>%
  st_centroid() %>%
  st coordinates() %>%
  as_tibble() %>%
  mutate(easting = (X - mean(X)) / sd(X),
         northing = (Y - mean(Y)) / sd(Y)) %>%
  select(easting, northing) %>%
  as.matrix()
## maskS <- apply(effortS == 0, 1, sum) == 4
## coordS <- coordS[!maskS,]</pre>
dim(coordS)
# means and standard deviations used to standardise the grid cells coordinates
tempS <- dfS %>%
 filter(species == "dauphin") %>%
  st_centroid() %>%
```

```
st_coordinates() %>%
as.matrix()
meanXS <- mean(tempS[,1])
sdXS <- sd(tempS[,1])
meanYS <- mean(tempS[,2])
sdYS <- sd(tempS[,2])</pre>
```

GDEGeM

Visualise data.

Build datasets.

```
# sampling effort
effortG <- multioccu_gd$effort %>%
  st_crop(st_bbox(grid)) %>%
  select(autumn:summer) %>%
  as_tibble() %>%
  select(-geometry) %>%
  as.matrix()
# dolphin detections/non-detections
y_dolphinG <- dfG %>%
  filter(species == "dauphin") %>%
  select(autumn:summer) %>%
  as tibble() %>%
  select(-geometry) %>%
  as.matrix()
y_dolphinG[effortG == 0] <- NA</pre>
## ind_dolphinG \leftarrow apply(y_dolphinG, 1, function(x) all(is.na(x)))
## y_dolphinG <- y_dolphinG[ !ind_dolphinG, ]</pre>
# fishing boats detections/non-detections
y_fishingG <- dfG %>%
  filter(species == "chalutier") %>%
  select(autumn:summer) %>%
  as_tibble() %>%
  select(-geometry) %>%
  as.matrix()
y_fishingG[effortG == 0] <- NA</pre>
## ind_fishingG \leftarrow apply(y_fishingG, 1, function(x) all(is.na(x)))
## y_fishingG <- y_fishingG[ !ind_fishingG, ]</pre>
# grid cells coordinates
coordG <- dfG %>%
  filter(species == "dauphin") %>%
  select(autumn:summer) %>%
  st_centroid() %>%
  st_coordinates() %>%
  as_tibble() %>%
```

```
mutate(easting = (X - mean(X)) / sd(X),
         northing = (Y - mean(Y)) / sd(Y)) %>%
  select(easting, northing) %>%
  as.matrix()
## maskG \leftarrow apply(effortG == 0, 1, sum) == 4
## coordG <- coordG[!maskG,]
dim(coordG)
# means and standard deviations used to standardise the grid cells coordinates
tempG <- dfG %>%
  filter(species == "dauphin") %>%
  st_centroid() %>%
  st coordinates() %>%
  as.matrix()
meanXG <- mean(tempG[,1])</pre>
sdXG <- sd(tempG[,1])</pre>
meanYG <- mean(tempG[,2])</pre>
sdYG <- sd(tempG[,2])</pre>
```

Joining the dataset and formatting for Bayesian analyses

Format data.

```
yS <- list(y_dolphinS, y_fishingS)
yG <- list(y_dolphinG, y_fishingG)
names(yS) <- names(yS) <- c('dolphin','fishing')

## ind_effortS <- apply(effortS, 1, sum)
cov_effortS <- effortS
cov_effortS[cov_effortS == 0] <- NA
st_effortS <- matrix(scale(cov_effortS), ncol = 4)

## ind_effortG <- apply(effortG, 1, sum)
cov_effortG <- effortG
cov_effortG[cov_effortG == 0] <- NA
st_effortG <- matrix(scale(cov_effortG), ncol = 4)</pre>
```

Let's format the data in a matrix with N rows (sites) and J columns (surveys) with in each cell a 1:16 for the observation (or event in the capture-recapture terminology) none species detected, species A detected, species B detected, both species detected and each of these event by either by SAMM only, by GDEGeM only, or by both monitoring programs.

```
str(yS)
str(yG)
N <- nrow(yS[[1]])
J <- ncol(yG[[1]])
y_jagsS <- y_jagsG <- y_jags <- matrix(NA, nrow = N, ncol = J)

# SAMM
for (j in 1:N){ #nsites
   for (k in 1:J){ #nocc
      if (is.na(yS[[1]][j,k])) next # if cell j is not sampled at occasion k, then next
      if (yS[[1]][j,k] == 0 & yS[[2]][j,k] == 0) y_jagsS[j,k] <- 1
      if (yS[[1]][j,k] == 1 & yS[[2]][j,k] == 0) y_jagsS[j,k] <- 2</pre>
```

```
if (yS[[1]][j,k] == 0 \& yS[[2]][j,k] == 1) y_jagsS[j,k] <- 3
    if (yS[[1]][j,k] == 1 & yS[[2]][j,k] == 1) y_jagsS[j,k] <- 4
  }
}
# GDEGeM
for (j in 1:N){ #nsites
 for (k in 1:J){ #nocc
    if (is.na(yG[[1]][j,k])) next # if cell j is not sampled at occasion k, then next
    if (yG[[1]][j,k] == 0 & yG[[2]][j,k] == 0) y_jagsG[j,k] <- 1</pre>
    if (yG[[1]][j,k] == 1 & yG[[2]][j,k] == 0) y_jagsG[j,k] <- 2
    if (yG[[1]][j,k] == 0 & yG[[2]][j,k] == 1) y_jagsG[j,k] <- 3
    if (yG[[1]][j,k] == 1 & yG[[2]][j,k] == 1) y_jagsG[j,k] <- 4
}
head(y_jagsS, 25)
dim(y_jagsS)
dim(y_jagsG)
dim(st_effortG)
dim(st_effortS)
# Before joining, we do a trick to deal with NAs. We replace the NAs by 0 in where the couple site x oc
# for SAMM
backgdG <- st effortG
backgdG[!is.na(backgdG)] <- 0 # create a background matrix with the sampling effort of GDEGeM
y2S <- backgdG
y2S[!is.na(y_jagsS)] <- y_jagsS[!is.na(y_jagsS)] # add the detection of SAMM
# for GDEGeM
backgdS <- st_effortS</pre>
backgdS[!is.na(backgdS)] <- 0 # create a background matrix with the sampling effort of SAMM
y2G <- backgdS
y2G[!is.na(y_jagsG)] <- y_jagsG[!is.na(y_jagsG)] # add the detection of GDEGeM
\#length(which(y2G==0))/4
# Join the two matrix
# reminder 1 -> no detection, 2 -> dolphin, 3 -> fishing, 4 -> both species, ++ 0 -> no detection but
for (j in 1:N){ #nsites
  for (k in 1:J){ #nocc
    if (is.na(y2G[j,k]) & is.na(y2S[j,k])) next
    if (y2G[j,k] <= 1 & y2S[j,k] <= 1) y_jags[j,k] <- 1
    if (y2G[j,k] == 2 \& y2S[j,k] <= 1) y_jags[j,k] <- 2
    if (y2G[j,k] == 3 & y2S[j,k] <= 1) y_jags[j,k] <- 3
    if (y2G[j,k] == 4 \& y2S[j,k] <= 1) y_jags[j,k] <- 4
    if (y2G[j,k] <= 1 & y2S[j,k] == 2) y_jags[j,k] <- 5</pre>
    if (y2G[j,k] == 2 \& y2S[j,k] == 2) y_jags[j,k] <- 6
    if (y2G[j,k] == 3 \& y2S[j,k] == 2) y_jags[j,k] <- 7
    if (y2G[j,k] == 4 \& y2S[j,k] == 2) y_jags[j,k] <- 8
    if (y2G[j,k] <= 1 & y2S[j,k] == 3) y_jags[j,k] <- 9</pre>
    if (y2G[j,k] == 2 & y2S[j,k] == 3) y_jags[j,k] <- 10
    if (y2G[j,k] == 3 & y2S[j,k] == 3) y_jags[j,k] <- 11</pre>
    if (y2G[j,k] == 4 & y2S[j,k] == 3) y_jags[j,k] <- 12
```

```
if (y2G[j,k] <= 1 & y2S[j,k] == 4) y_jags[j,k] <- 13</pre>
    if (y2G[j,k] == 2 & y2S[j,k] == 4) y_jags[j,k] <- 14</pre>
    if (y2G[j,k] == 3 & y2S[j,k] == 4) y_jags[j,k] <- 15</pre>
    if (y2G[j,k] == 4 & y2S[j,k] == 4) y_jags[j,k] <- 16
 }
# apply mask to remove site without sampling effort from none of the monitoring program
ind_effort <- apply(y_jags, 1, function(x) all(is.na(x)))</pre>
y <- y_jags[!ind_effort,]</pre>
seffG <- st_effortG[ !ind_effort, ]</pre>
seffS <- st_effortS[ !ind_effort, ]</pre>
effindG <- seffG
 effindG[is.na(effindG)] <- 0
effindG[effindG !=0] <- 1
 effindS <- seffS
 effindS[is.na(effindS)] <- 0</pre>
effindS[effindS !=0] <- 1
 seffG[is.na(seffG)] <- 0
seffS[is.na(seffS)] <- 0</pre>
# same mask with coordG, coordS
coordMask <- coordG[ !ind_effort, ]</pre>
```

Simplest integrated MSO

BUGS model

JAGS

I did not display JAGS process although I made it work in the .Rmd file.

Initial values.

Parameters to be monitored.

MCMC settings

Run Jags from R.

Check convergence.

NIMBLE

```
IMSO <- nimbleCode({

## state process
for(j in 1:nsite) {
    z[j] ~ dcat(psi[1:4])
}

# occupancy probabilities
psi[1] <- 1 / (1 + sum(prop[1:3])) # unoccupied
psi[2] <- prop[1] / (1 + sum(prop[1:3])) # occupied by species A and not B</pre>
```

```
psi[3] <- prop[2] / (1 + sum(prop[1:3])) # occupied by species B and not A
psi[4] <- prop[3] / (1 + sum(prop[1:3])) # occupied by both species A and B
## observation process
for(j in 1:nsite) {
 for(k in 1:nyear) {
    y[j, k] ~ dcat(obs[j, k, 1:16, z[j]])
 }
}
# detection matrix with obs for observations and state = true states
# obs take values:
## VL: INSANE
## Let's have a bit of explanation, we have species A, and B. We have monitoring S through SAMM, and
## Then, we have 16 different situations
# 1 for none species detected neither by G nor S
# 2 for species A detected by G, nothing by S
\# 3 for species B detected by G, nothing by S
# 4 for both species detected by G, nothing by S
# 5 for none species detected neither by G, species A detected by S
# 6 for species A detected by G, species A detected by S
# 7 for species B detected by G, species A detected by S
\# 8 for both species detected by G, species A detected by S
# 9 for none species detected neither by G, species B detected by S
# 10 for species A detected by G, species B detected by S
# 11 for species B detected by G, species B detected by S
# 12 for both species detected by G, species B detected by S
# 13 for none species detected neither by G, both species detected by S
# 14 for species A detected by G, both species detected by S
# 15 for species B detected by G, both species detected by S
# 16 for both species detected by G, both species detected by S
# given state = unoccupied,
for(j in 1:nsite) {
 for(k in 1:nyear) {
    # state 1 = no species use the site
    obs[j, k, 1, 1] \leftarrow 1 # prob obs = 1
    obs[j, k, 2, 1] <- 0 # prob obs = 2
    obs[j, k, 3, 1] \leftarrow 0 # prob obs = 3
    obs[j, k, 4, 1] \leftarrow 0 \# prob obs = 4
    obs[j, k, 5, 1] \leftarrow 0 \# prob obs = 5
    obs[j, k, 6, 1] \leftarrow 0 # prob obs = 6
    obs[j, k, 7, 1] \leftarrow 0 # prob obs = 7
    obs[j, k, 8, 1] \leftarrow 0 \# prob obs = 8
    obs[j, k, 9, 1] \leftarrow 0 # prob obs = 9
    obs[j, k, 10, 1] \leftarrow 0 # prob obs = 10
    obs[j, k, 11, 1] \leftarrow 0 \# prob obs = 11
    obs[j, k, 12, 1] \leftarrow 0 \# prob obs = 12
    obs[j, k, 13, 1] \leftarrow 0 \# prob obs = 13
    obs[j, k, 14, 1] \leftarrow 0 \# prob obs = 14
```

```
obs[j, k, 15, 1] \leftarrow 0 \# prob obs = 15
obs[j, k, 16, 1] \leftarrow 0 \# prob obs = 16
# qiven state 2 = occupied by species A and not B,
obs[j, k, 1, 2] <- 1 - pAg[j,k] - pAs[j,k] + pAg[j,k] * pAs[j,k] # prob obs = 1 obs[j, k, 2, 2] <- pAg[j,k] * (1 - pAs[j,k]) # prob obs = 2
obs[j, k, 3, 2] \leftarrow 0 # prob obs = 3
obs[j, k, 4, 2] <-0 \# prob obs = 4
obs[j, k, 5, 2] <- pAs[j,k] * (1 - pAg[j,k]) # prob obs = 5
obs[j, k, 6, 2] \leftarrow pAs[j,k] * pAg[j,k] # prob obs = 6
obs[j, k, 7, 2] \leftarrow 0 # prob obs = 7
obs[j, k, 8, 2] <-0 \# prob obs = 8
obs[j, k, 9, 2] \leftarrow 0 # prob obs = 9
obs[j, k, 10, 2] \leftarrow 0 \# prob obs = 10
obs[j, k, 11, 2] \leftarrow 0 # prob obs = 11
obs[j, k, 12, 2] \leftarrow 0 \# prob obs = 12
obs[j, k, 13, 2] \leftarrow 0 \# prob obs = 13
obs[j, k, 14, 2] \leftarrow 0 \# prob obs = 14
obs[j, k, 15, 2] \leftarrow 0 # prob obs = 15
obs[j, k, 16, 2] \leftarrow 0 \# prob obs = 16
# given state 3 = occupied by species B and not A,
obs[j, k, 1, 3] \leftarrow 1 - pBg[j,k] - pBs[j,k] + pBg[j,k] * pBs[j,k] * prob obs = 1
obs[j, k, 2, 3] \leftarrow 0 \# prob obs = 2
obs[j, k, 3, 3] \leftarrow pBg[j,k] * (1 - pBs[j,k]) # prob obs = 3
obs[j, k, 4, 3] \leftarrow 0 \# prob obs = 4
obs[j, k, 5, 3] <-0 \# prob obs = 5
obs[j, k, 6, 3] <-0 \# prob obs = 6
obs[j, k, 7, 3] \leftarrow 0 # prob obs = 7
obs[j, k, 8, 3] \leftarrow 0 # prob obs = 8
obs[j, k, 9, 3] \leftarrow pBs[j,k] * (1 - pBg[j,k]) # prob obs = 9
obs[j, k, 10, 3] <- 0 # prob obs = 10
obs[j, k, 11, 3] \leftarrow pBs[j,k] * pBg[j,k] # prob obs = 11
obs[j, k, 12, 3] \leftarrow 0 \# prob obs = 12
obs[j, k, 13, 3] \leftarrow 0 \# prob obs = 13
obs[j, k, 14, 3] \leftarrow 0 \# prob obs = 14
obs[j, k, 15, 3] \leftarrow 0 # prob obs = 15
obs[j, k, 16, 3] \leftarrow 0 \# prob obs = 16
# given state 4 = occupied by both species B and A,
# VL: Now it's fun...
obs[j, k, 1, 4] \leftarrow (1 - pAs[j,k]) * (1 - pAs[j,k]) * (1 - pBs[j,k]) * (1 - pBs[j,k]) * prob obs =
obs[j, k, 2, 4] \leftarrow (1 - pAs[j,k]) * (1 - pBs[j,k]) * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 2
obs[j, k, 3, 4] \leftarrow (1 - pAs[j,k]) * (1 - pBs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) # prob obs = 3
obs[j, k, 4, 4] \leftarrow (1 - pAs[j,k]) * (1 - pBs[j,k]) * pAg[j,k] * pBg[j,k] * prob obs = 4
obs[j, k, 5, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k])*(1 - pAg[j,k])*(1 - pBg[j,k])*(1 - pB
obs[j, k, 6, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k]) * pAg[j,k] * (1 - pBg[j,k]) # pr ### # prob obs = 6
obs[j, k, 7, 4] <- pAs[j,k]*(1 - pBs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) # pro ### # prob obs = 7
obs[j, k, 8, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k]) * pAg[j,k] * pBg[j,k] # prob obs ### # prob obs = 8
obs[j, k, 9, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * (1 - pAg[j,k]) * (1 - pBg[j,k]) # prob obs = 9
obs[j, k, 10, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 10
obs[j, k, 11, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) # prob obs = 11
obs[j, k, 12, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * pAg[j,k] * pBg[j,k] # prob obs = 12
```

```
obs[j, k, 13, 4] <- pAs[j,k] * pBs[j,k] * (1 - pAg[j,k]) * (1 - pBg[j,k]) # prob obs = 13
      obs[j, k, 14, 4] \leftarrow pAs[j,k] * pBs[j,k] * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 14
      obs[j, k, 15, 4] <- pAs[j,k] * pBs[j,k] * pBs[j,k] * (1 - pAg[j,k]) # prob obs = 15
      obs[j, k, 16, 4] \leftarrow pAs[j,k] * pAg[j,k] * pBs[j,k] * pBg[j,k] # prob obs = 16
    }
  }
 ## priors for...
  # occupancy probabilities
  for (i in 1:3){
    log(prop[i]) <- theta[i]</pre>
    theta[i] ~ dnorm(0,1)
  }
  # detection probabilities (pA function of pres/abs of B, as in Waddle et al 2010 page 1470)
  # VL: There are four detections probabilities now pAs, pAq, pBq, pBs
  for(j in 1:nsite) {
    for(k in 1:nyear) {
    pAs[j, k] \leftarrow exp(beta[1] + beta[2] * effS[j, k])/(1 + exp(beta[1] + beta[2] * effS[j, k]))*effindS[j, k]
    pBs[j, k] \leftarrow exp(beta[3] + beta[4] * effS[j, k])/(1 + exp(beta[3] + beta[4] * effS[j, k]))*effindS[
    pAg[j, k] \leftarrow exp(beta[5] + beta[6] * effG[j, k])/(1 + exp(beta[5] + beta[6] * effG[j, k]))*effindG[f]
    pBg[j, k] \leftarrow exp(beta[7] + beta[8] * effG[j, k])/(1 + exp(beta[7] + beta[8] * effG[j, k])) * effindG[f]
  }
  for (i in 1:8){
    beta[i] \sim dnorm(0,1)
  }
})
```

Bundle data Specify data, initial values, parameters to be monitored and various MCMC details:

```
# nimble
y[is.na(y)] <- 1
data \leftarrow list(y = y,
             effS = seffS,
             effG = seffG,
             effindS = effindS,
             effindG = effindG)
constants <- list(nsite = dim(y)[1],</pre>
             nyear = dim(y)[2]
# Initial values for z {1:4} have to be consistent with the detection {1:16}
# To remain simple with put z = 4 as initial value if smth is detected
zinit <- apply(data$y, 1, max, na.rm = TRUE)</pre>
zinit[zinit>1] <- rep(4,length(zinit[zinit>1]))
inits <- list(z = zinit,</pre>
                            beta = rnorm(8, 0, 1),
                            theta = rnorm(3, 0, 1))
```

```
Rmodel <- nimbleModel(IMSO, constants, data, inits)
Rmodel$initializeInfo()</pre>
```

```
Rmodel$calculate()

conf <- configureMCMC(Rmodel)
conf$printMonitors()
conf$printSamplers(byType= TRUE)

# Build and compile MCMC
Rmcmc <- buildMCMC(conf)
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project = Cmodel)

t <- system.time(samples <- runMCMC(Cmcmc, niter = 1000, nburnin = 300, nchains = 1, samplesAsCodaMC
str(samples)

output <- coda::as.mcmc.list(samples)
mcmcplots::denplot(output)</pre>
```

Build model

Full model w/ constant natural parameters, and GAM sur lat/long; detection is function of sampling effort plus dolphin detection function of pres/abs of fishing boats

Get the ingredients for GAMs using package jagam developed by Simon Wood and basically hacks what is built by the package mgcv.

NIMBLE

In this one, I did not display the NIMBLE process because I did not succeed to deal with the NIMBLE output. I'm not very confident with the GAM process... I just copy / paste Olivier's lines. :)

BUGS model

Bundle data

Specify data, initial values, parameters to be monitored and various MCMC details:

Build model

Deal with output

First, get the whole grid.

Second, get linear predictor.

Third, get occupancy probabilities.

JAGS

BUGS model

```
model <- function(){</pre>
  ## state process
  for(j in 1:nsite) {
   z[j] ~ dcat(psi[j, 1:4])
  # occupancy probabilities
  for(j in 1:nsite) {
   psi[j, 1] <- 1 / (1 + sum(prop[j, 1:3])) # unoccupied</pre>
   psi[j, 2] <- prop[j, 1] / (1 + sum(prop[j, 1:3])) # occupied by species A and not B
   psi[j, 3] <- prop[j, 2] / (1 + sum(prop[j, 1:3])) # occupied by species B and not A
   psi[j, 4] <- prop[j, 3] / (1 + sum(prop[j, 1:3])) # occupied by both species A and B
  ## observation process
  for(j in 1:nsite) {
   for(k in 1:nyear) {
     y[j, k] ~ dcat(obs[j, k, 1:16, z[j]])
  }
  # detection matrix with obs for observations and state = true states
  # obs take values:
  ## VL: INSANE
  ## Let's have a bit of explanation, we have species A, and B. We have monitoring S through SAMM, and
  ## Then, we have 16 different situations
  # 1 for none species detected neither by G nor S
  # 2 for species A detected by G, nothing by S
  # 3 for species B detected by G, nothing by S
  # 4 for both species detected by G, nothing by S
  # 5 for none species detected neither by G, species A detected by S
  # 6 for species A detected by G, species A detected by S
  # 7 for species B detected by G, species A detected by S
  # 8 for both species detected by G, species A detected by S
  # 9 for none species detected neither by G, species B detected by S
  # 10 for species A detected by G, species B detected by S
  # 11 for species B detected by G, species B detected by S
  # 12 for both species detected by G, species B detected by S
  # 13 for none species detected neither by G, both species detected by S
```

```
# 14 for species A detected by G, both species detected by S
 # 15 for species B detected by G, both species detected by S
 # 16 for both species detected by G, both species detected by S
 # given state = unoccupied,
 for(j in 1:nsite) {
   for(k in 1:nyear) {
      # state 1 = no species use the site
      obs[j, k, 1, 1] \leftarrow 1 # prob obs = 1
      obs[j, k, 2, 1] <- 0 # prob \ obs = 2
      obs[j, k, 3, 1] \leftarrow 0 # prob obs = 3
      obs[j, k, 4, 1] < 0 # prob obs = 4
      obs[j, k, 5, 1] \leftarrow 0 # prob obs = 5
      obs[j, k, 6, 1] \leftarrow 0 \# prob obs = 6
      obs[j, k, 7, 1] \leftarrow 0 # prob obs = 7
      obs[j, k, 8, 1] \leftarrow 0 # prob obs = 8
      obs[j, k, 9, 1] \leftarrow 0 # prob obs = 9
      obs[j, k, 10, 1] \leftarrow 0 \# prob obs = 10
      obs[j, k, 11, 1] <- 0 # prob obs = 11
      obs[j, k, 12, 1] \leftarrow 0 \# prob obs = 12
      obs[j, k, 13, 1] \leftarrow 0 \# prob obs = 13
      obs[j, k, 14, 1] \leftarrow 0 \# prob obs = 14
      obs[j, k, 15, 1] <- 0 # prob obs = 15
      obs[j, k, 16, 1] <- 0 # prob obs = 16
      # given state 2 = occupied by species A and not B,
      obs[j, k, 1, 2] \leftarrow 1 - pAg[j,k] - pAs[j,k] + pAg[j,k] * pAs[j,k] # prob obs = 1
      obs[j, k, 2, 2] \leftarrow pAg[j,k] * (1 - pAs[j,k]) # prob obs = 2
      obs[j, k, 3, 2] <- 0 # prob \ obs = 3
      obs[j, k, 4, 2] \leftarrow 0 \# prob obs = 4
      obs[j, k, 5, 2] \leftarrow pAs[j,k] * (1 - pAg[j,k]) # prob obs = 5
      obs[j, k, 6, 2] \leftarrow pAs[j,k] * pAg[j,k] # prob obs = 6
      obs[j, k, 7, 2] <- 0 # prob obs = 7
      obs[j, k, 8, 2] <-0 \# prob obs = 8
      obs[j, k, 9, 2] \leftarrow 0 # prob obs = 9
      obs[j, k, 10, 2] \leftarrow 0 \# prob obs = 10
      obs[j, k, 11, 2] \leftarrow 0 \# prob obs = 11
      obs[j, k, 12, 2] \leftarrow 0 \# prob obs = 12
      obs[j, k, 13, 2] \leftarrow 0 # prob obs = 13
      obs[j, k, 14, 2] \leftarrow 0 \# prob obs = 14
      obs[j, k, 15, 2] \leftarrow 0 \# prob obs = 15
      obs[j, k, 16, 2] \leftarrow 0 \# prob obs = 16
      # given state 3 = occupied by species B and not A,
      obs[j, k, 1, 3] < 1 - pBg[j,k] - pBs[j,k] + pBg[j,k] * pBs[j,k] # prob obs = 1
      obs[j, k, 2, 3] \leftarrow 0 \# prob obs = 2
      obs[j, k, 3, 3] <- pBg[j,k] * (1 - pBs[j,k]) # prob obs = 3
      obs[j, k, 4, 3] \leftarrow 0 \# prob obs = 4
      obs[j, k, 5, 3] <-0 \# prob obs = 5
      obs[j, k, 6, 3] <-0 \# prob obs = 6
      obs[j, k, 7, 3] \leftarrow 0 # prob obs = 7
      obs[j, k, 8, 3] \leftarrow 0 \# prob obs = 8
      obs[j, k, 9, 3] <- pBs[j,k] * (1 - pBg[j,k]) # prob obs = 9
```

```
obs[j, k, 10, 3] \leftarrow 0 \# prob obs = 10
     obs[j, k, 11, 3] \leftarrow pBs[j,k] * pBg[j,k] # prob obs = 11
     obs[j, k, 12, 3] \leftarrow 0 # prob obs = 12
     obs[j, k, 13, 3] \leftarrow 0 \# prob obs = 13
     obs[j, k, 14, 3] \leftarrow 0 \# prob obs = 14
     obs[j, k, 15, 3] \leftarrow 0 \# prob obs = 15
     obs[j, k, 16, 3] \leftarrow 0 \# prob obs = 16
     # given state 4 = occupied by both species B and A,
     # VL: Now it's fun...
     obs[j, k, 1, 4] \leftarrow (1 - pAs[j,k]) * (1 - pAs[j,k]) * (1 - pBs[j,k]) * (1 - pBs[j,k]) * prob obs =
     obs[j, k, 2, 4] <- (1 - pAs[j,k]) * (1 - pBs[j,k]) * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 2
     obs[j, k, 3, 4] \leftarrow (1 - pAs[j,k]) * (1 - pBs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) * prob obs = 3
     obs[j, k, 4, 4] \leftarrow (1 - pAs[j,k]) * (1 - pBs[j,k]) * pAg[j,k] * pBg[j,k] * prob obs = 4
     obs[j, k, 5, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k]) * (1 - pAg[j,k]) * (1 - pBg[j,k]) ### # prob obs = 5
     obs[j, k, 6, 4] - pAs[j,k]*(1 - pBs[j,k])* pAg[j,k]*(1 - pBg[j,k]) # pr ### # prob obs = 6
     obs[j, k, 7, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) * pro ### # prob obs = 7
     obs[j, k, 8, 4] \leftarrow pAs[j,k]*(1 - pBs[j,k])*pAg[j,k]*pBg[j,k] # prob obs ### # prob obs = 8
     obs[j, k, 9, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k])*(1 - pAg[j,k])*(1 - pBg[j,k]) # prob obs = 9
     obs[j, k, 10, 4] <- pBs[j,k]*(1 - pAs[j,k]) * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 10
     obs[j, k, 11, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * pBg[j,k] * (1 - pAg[j,k]) * prob obs = 11
     obs[j, k, 12, 4] \leftarrow pBs[j,k]*(1 - pAs[j,k]) * pAg[j,k] * pBg[j,k] # prob obs = 12
     obs[j, k, 13, 4] <- pAs[j,k] * pBs[j,k] * (1 - pAg[j,k]) * (1 - pBg[j,k]) # prob obs = 13
     obs[j, k, 14, 4] <- pAs[j,k] * pBs[j,k] * pAg[j,k] * (1 - pBg[j,k]) # prob obs = 14
     obs[j, k, 15, 4] <- pAs[j,k] * pBs[j,k] * pBs[j,k] * (1 - pAs[j,k]) # prob obs = 15
     obs[j, k, 16, 4] \leftarrow pAs[j,k] * pAg[j,k] * pBs[j,k] * pBg[j,k] # prob obs = 16
}
## priors for...
# occupancy probabilities
for(j in 1:nsite) {
  log(prop[j, 1]) <- theta1[j]</pre>
  log(prop[j, 2]) <- theta2[j]</pre>
  log(prop[j, 3]) <- theta3[j]</pre>
}
theta1[1:nsite] <- X[1:279,1:33] %*% b1[1:33] ## linear predictor
theta2[1:nsite] <- X[1:279,1:33] %*% b2[1:33] ## linear predictor
theta3[1:nsite] <- X[1:279,1:33] %*% b3[1:33] ## linear predictor
  b1[1] ~ dnorm(0,0.01)
  b2[1] \sim dnorm(0,0.01)
  b3[1] \sim dnorm(0,0.01)
## prior for s(coordx, coordy)...
K11[1:32,1:32] <- S1[1:32,1:32] * lambda[1, 1] + S1[1:32,33:64] * lambda[2, 1]
K12[1:32,1:32] \leftarrow S1[1:32,1:32] * lambda[1, 2] + S1[1:32,33:64] * lambda[2, 2]
K13[1:32,1:32] \leftarrow S1[1:32,1:32] * lambda[1, 3] + S1[1:32,33:64] * lambda[2, 3]
b1[2:33] ~ dmnorm(zero[2:33], K11[1:32,1:32])
b2[2:33] ~ dmnorm(zero[2:33], K12[1:32,1:32])
b3[2:33] ~ dmnorm(zero[2:33], K13[1:32,1:32])
## smoothing parameter priors CHECK...
for (i in 1:2) {
```

```
for (kk in 1:3){
                                    lambda[i, kk] ~ dgamma(.05,.005)
                                    rho[i, kk] <- log(lambda[i, kk])</pre>
                       }
            }
            # detection probabilities (pA function of pres/abs of B, as in Waddle et al 2010 page 1470)
            # VL: There are four detections probabilities now pAs, pAg, pBg, pBs
            for(j in 1:nsite) {
                             B_{present[j]} \leftarrow equals(z[j], 3) + equals(z[j], 4)
                       for(k in 1:nyear) {
                       pAs[j, k] \leftarrow exp(beta[1] + beta[2] * effS[j, k] + beta[9] * B_present[j] + beta[10] * (1 - B
                      pBs[j, k] \leftarrow exp(beta[3] + beta[4] * effS[j, k])/(1 + exp(beta[3] + beta[4] * effS[j, k]))*effindS[j, k]
                       pAg[j, k] \leftarrow exp(beta[5] + beta[6] * effG[j, k] + beta[9] * B_present[j] + beta[10] * (1 - B_present[f] + beta[formula formula formul
                       pBg[j, k] \leftarrow exp(beta[7] + beta[8] * effG[j, k])/(1 + exp(beta[7] + beta[8] * effG[j, k])) * effindG[f]
           }
           for (i in 1:10){
                       beta[i] ~ dnorm(0,1)
            }
}
```

Bundle data and run

```
data <- list(y = y,
             effS = seffS,
             effG = seffG,
             effindS = effindS,
             effindG = effindG,
             X = res$jags.data$X, # gam para
             S1 = res$jags.data$S1,
             zero = res$jags.data$zero,
             nsite = dim(y)[1],
             nyear = dim(y)[2]
zinit <- apply(data$y, 1, max, na.rm = TRUE)</pre>
zinit[zinit>1] <- rep(4,length(zinit[zinit>1]))
inits <- function() { list(z = zinit,</pre>
              beta = rnorm(10, 0, 1),
              lambda = cbind(res$jags.ini$lambda, res$jags.ini$lambda, res$jags.ini$lambda),
              b1 = res$jags.ini$b,
              b2 = res$jags.ini$b,
              b3 = res$jags.ini$b)}
params <- c("beta", "b1", "b2", "b3", "lambda")</pre>
# MCMC settings
ni <- 1000
nb <- 300
nc <- 2
```

Run

Deal with the output

```
load("res_test.rdata")
beta1 <- c(out$BUGSoutput$sims.array[,,'beta[1]'])
beta2 <- c(out$BUGSoutput$sims.array[,,'beta[2]'])
beta3 <- c(out$BUGSoutput$sims.array[,,'beta[3]'])

beta4 <- c(out$BUGSoutput$sims.array[,,'beta[4]'])
beta5 <- c(out$BUGSoutput$sims.array[,,'beta[5]'])
beta6 <- c(out$BUGSoutput$sims.array[,,'beta[6]'])
beta7 <- c(out$BUGSoutput$sims.array[,,'beta[7]'])
beta8 <- c(out$BUGSoutput$sims.array[,,'beta[8]'])
beta9 <- c(out$BUGSoutput$sims.array[,,'beta[9]'])
beta10 <- c(out$BUGSoutput$sims.array[,,'beta[10]'])</pre>
```

First, get the whole grid.

Warning in $st_centroid.sf(.)$: $st_centroid$ assumes attributes are constant over ## geometries of x

Second, get linear predictor.

```
mu1 <- matrix(NA, nrow = nrow(Xp), ncol = nrow(b1))</pre>
mu2 <- matrix(NA, nrow = nrow(Xp), ncol = nrow(b2))</pre>
mu3 <- matrix(NA, nrow = nrow(Xp), ncol = nrow(b3))</pre>
for (i in 1:nrow(b1)){
  mu1[1:nrow(Xp), i] <- Xp %*% b1[i,]
  mu2[1:nrow(Xp), i] <- Xp %*% b2[i,]
 mu3[1:nrow(Xp), i] <- Xp %*% b3[i,]
}
Third, get occupancy probabilities.
prop1 <- apply(exp(mu1), 1, mean)</pre>
prop2 <- apply(exp(mu2), 1, mean)</pre>
prop3 <- apply(exp(mu3), 1, mean)</pre>
psi1 <- plogis(prop1) / (1 + plogis(prop1) + plogis(prop2) + plogis(prop3))</pre>
psi2 <- plogis(prop2) / (1 + plogis(prop1) + plogis(prop2) + plogis(prop3))</pre>
psi3 <- plogis(prop3) / (1 + plogis(prop1) + plogis(prop2) + plogis(prop3))</pre>
psi0 \leftarrow 1 - (psi1 + psi2 + psi3)
# Marginal probabilities.
#psi1 + psi3 # Pr(dolphin present)
#psi2 + psi3 # Pr(fishing present)
#psi2 + psi0 # Pr(dolphin absent)
#psi1 + psi0 # Pr(fishing absent)
# Conditional probabilities.
#psi1 / (psi1 + psi0) # Pr(dolphin present | fishing absent) ?= Pr(dolphin present)
#psi3 / (psi3 + psi2) # Pr(dolphin present | fishing present) ?= Pr(dolphin present)
\#psi2 / (psi2 + psi0) \# Pr(fishing present | dolphin absent) = Pr(fishing)
#psi3 / (psi3 + psi1) # Pr(fishing present | dolphin present) = Pr(fishing)
coc \leftarrow unique(c(which(y[,1] \%in\% c(4,8,12,16)), which(y[,2] \%in\% c(4,8,12,16)), which(y[,3] \%in\% c(4,8,12,16)))
                  which(y[,4] %in% c(4,8,12,16))))
 ggplot() +
 geom_sf(data = grid, lwd = 0.1, aes(fill = psi3)) +
  geom_sf(data = pays) +
  scale_fill_viridis_c(name = "") +
  geom_sf(data = grid %>% slice(cooc), fill = "red")
```


labs(title = "Probabilité de co-occurrence dauphins et chalutiers",
 subtitle = "estimée avec un modèle d'occupancy à 2 espèces",
 caption = "Source : Données SAMM")