Ejercicios Sobre Números Complejos

Ezequiel Remus

Índice

Problema 0.1:

Sea $w \in G_{68}^*$. Hallar $n \in \mathbb{Z}$ /

$$w^{13n+33} + \sum_{l=0}^{67} w^{4l} = w^{17} + w^{34} + w^{51}$$

Solución:

Como $w \in G_{68}^*$, se que $w^6 8 = 1$ y que cualquier otra potencia k de w tal que $k \not| 68$ nos va a dar que $w^k \neq 1$, $\forall k$.

Recordando la serie geometrica. Notemos que:

$$\sum_{l=0}^{67} w^{4l} \underbrace{=}_{w^k \neq 1} \frac{w^{68^4} - 1}{w^4 - 1} \underbrace{=}_{w^{68} = 1} \frac{1 - 1}{w^4 - 1} = 0$$

Entonces, nos queda esto:

$$w^{13n+33} = w^{17} + w^{34} + w^{51}$$

Por otro lado, notemos que $34 = 2 \cdot 17$ y $51 = 3 \cdot 17$. Por lo que podemos escribir lo siguiente:

$$w^{17} + w^{34} + w^{51} = (w^{17})^1 + (w^{17})^2 + (w^{17})^3 = \sum_{i=1}^3 \sum_{i=0}^3 w^{17i} - \sum_{i=0}^0 w^{17i} = \sum_{i=0}^3 w^{17i} - 1 = \sum_{i=0}^3 w^{17i} - 1 = \sum_{i=0}^3 w^{17i} - 1 = \frac{(w^{17})^4 - 1}{w^{17} - 1} - 1 = \frac{(w^{68} - 1)}{w^{17} - 1} - 1 = \frac{1}{w^{68} - 1} = 0$$

Luego, nos queda entonces que:

$$w^{13n+33} = -1$$

Observemos que:

- Sabemos que hay solución, pues $-1 \in G_{68}^*$ y w genera todo G_{68} .
- Sabemos que \exists ! solucion $k \in \mathbb{Z} : 0 \ge k \ge 67$ y $w^k = -1$.
- Además, si $w^k = -1$ y $w^j = -1$, entonces $k \equiv j$ (68)
- $w \in G_{68}^*$, por simetria sabemos que, como $w^0 = 1$ y $w^{68} = 1 \Rightarrow w^{34} = -1$

Entonces, si encontramos una solución las encontramos a todas!.

Luego, pedimos que:

$$13n + 33 \equiv 34 (68)$$

Como $68 = 2 \cdot 2 \cdot 17$, podemos dividir esa ecuación de congruencia en:

$$\begin{cases} 13n + 33 \equiv 34 \ (2) \\ 13n + 33 \equiv 34 \ (17) \end{cases}$$

Problema 0.2:

Hallar $n \in \mathbb{N}$ /

$$\sum_{i=2}^{n-1} w^{3i} = 0$$

Donde $w \in G_{15}^*$

Problema 0.3:

Hallar $n \in \mathbb{N}$ / $w^{5n} = w^3$; $w \in G_{15}^9$