$$K_n(z,\alpha,a,b) = \int_a^b dx \frac{x^n}{z + \alpha x} \tag{4}$$

when $n = 0, 1, n_{max} = 10$.

a and b are numbers between 0 and 1. For simplicity you can choose a=0 and b=1.

- Derive the recursion relation between K_{n+1} and K_n .
- Then starting from K_0 you can compute all K_n up to n_{max} using the recursion. This works quite well for $|\alpha/z|>=1$.
- Implement downword recursion for $\alpha/z < 1/2$. Make sure that you start with very accurate value for $K_{n_{max}}$. You can derive a power expansion of $K_{n_{max}}$ in powers of $(\alpha/z)^k$, and evaluate as many terms as needed to achieve desired accuracy (for example 10^{-12}).