POp Reading group: Signomial Optimization via Relative Entropy Cone

Based on a paper by Venkat Chandrasekaran and Parikshit Shah
Presented by: Andries Steenkamp

Outline for Section 1

- 1. AM-GM-exponentials and relative entropy
 - 1.1 Definitions
 - 1.2 Lemma
 - 1.3 Example
- The SAGE Cone
 - 2.1 Definitions
 - 2.2 Proposition
- Signomial Optimization
 - 3.1 Unconstrained Signomial Optimization
 - 3.2 Constrained Signomial Optimization
- Conclusion

Signomials

Definition

A function $g: \mathbb{R}^n \to \mathbb{R}$ is called a *signomial* if it is of the form

$$g(x) := \sum_{j=1}^{\ell} c_j \exp(\alpha^{(j)^{\mathsf{T}}} x)$$

where $c_j \in \mathbb{R}$, $\alpha^{(j)} \in \mathbb{R}^n$ for all $j \in [\ell]$.

Signomial Optimization

Definition

A signomial program is of the form

inf
$$g(x)$$

s.t.
$$g_i(x) \ge 0 \ \forall i \in [m]$$

where $g, g_1, ..., g_m$ are signomials.

a Special case of signomials

Definition

A signomial g(x) is called an AM-GM-Exponential if the following holds

- $g(x) \ge 0$ (globally nonnegative)
- All coefficients , c_j 's, with the possible exception of one are positive.

$$g(x) := b \exp(\alpha^{\mathsf{T}} x) + \sum_{j=1}^{l} c_j \exp(\alpha^{(j)^{\mathsf{T}}} x)$$

where $b \in \mathbb{R}$, $c_j \in \mathbb{R}_{++}$, α , $\alpha^{(j)} \in \mathbb{R}^n$ for all $j \in [\ell]$

AM-GM and Relative Entropy

Definition

Let $w_1, ..., w_n > 0$, $\sum_{i=1}^n w_i = w$ and $x_1, ..., x_n \ge 0$ then the (weighted) Arithmetic-Geometric mean inequality is given by

$$\frac{1}{w}\sum_{i=1}^n w_i x_i \geq \sqrt[w]{\prod_{i=1}^n x_i^{w_i}}.$$

The Relative Entropy function is defined to be

$$D: \mathbb{R}^n \times \mathbb{R}^n \ni (v,c) \mapsto \sum_{i=1}^n v_i \log(\frac{v_i}{c_i}) \in \mathbb{R} \cup \{\infty, -\infty\}$$

Result

AM-GM-Exponentials and relative entropy

Lemma

Let $b \in \mathbb{R}$, $c_j \in \mathbb{R}_{++}$, α , $\alpha^{(j)} \in \mathbb{R}^n$ for all $j \in [\ell]$ then

$$g(x) := b \exp(\alpha^{\mathsf{T}} x) + \sum_{j=1}^{\ell} c_j \exp(\alpha^{(j)^{\mathsf{T}}} x) \ge 0$$
 (1)

$$\iff$$

$$\exists v \in \mathbb{R}^{\ell}_{+} \text{ s.t. } D(v, \exp(1)c) - b \le 0$$
 (2.1)

$$[\alpha^{(1)}, ..., \alpha^{(\ell)}]v = \sum_{j=1}^{\ell} v_j \alpha^{(j)} = (\mathbb{1}^T v)\alpha$$
 (2.2)

$$(2) \Longrightarrow (1)$$

Suppose you are give a v that satisfies (2.1) and (2.2).

$$\frac{1}{1} \sum_{j=1}^{\ell} \frac{V_j / \mathbb{1}^{\top} V}{V_j / \mathbb{1}^{\top} V} c_j \exp(\alpha^{(j)^{\top}} x) \ge \left(\prod_{j=1}^{\ell} \left(\frac{c_j \exp(\alpha^{(j)^{\top}} x)}{V_j / \mathbb{1}^{\top} V} \right)^{1/2} \right)^{-1}$$

:: weighted AM-GM inequality

$$= \prod_{j=1}^{\ell} \left(\frac{c_j \exp(\frac{v_j \alpha^{(j)^T} x}{\mathbb{1}^T v})}{v_j / \mathbb{1}^T v} \right) = \prod_{j=1}^{\ell} \left(\frac{c_j}{v_j / \mathbb{1}^T v} \right)^{v_j / \mathbb{1}^T v} \exp(\alpha^T x)$$

$$\because \sum_{j=1}^{\ell} v_j \alpha^{(j)} = (\mathbf{1}^T v) \alpha \text{ by } (2.2)$$

 $(2) \Longrightarrow (1) \text{ cont.}$

$$\prod_{j=1}^{\ell} \left(\frac{c_j}{v_j / \mathbb{1}^{\mathsf{T}_{\mathsf{V}}}} \right)^{v_j / \mathbb{1}^{\mathsf{T}_{\mathsf{V}}}} = \exp(-D(\frac{\mathsf{V}}{\mathbb{1}^{\mathsf{T}_{\mathsf{V}}}}, c))$$

: Definition of relative entropy

$$\geq -\xi \left(D\left(\frac{v}{\mathbf{1}^{T_{v}}},c\right) + \log(\xi) - 1\right) \forall \, \xi > 0$$

The convex-conjugate entropy is the negative exponential, i.e., $\exp(-\rho) = \sup_{\xi \in \mathbb{R}_+} -\xi[\rho + \log(\xi) - 1].^1$

the reasoning behind this uses the Legendre transform but is apparently well know in the field as it is stated without source in the paper.

 $(2) \implies (1) \text{ cont.}$

$$-\xi \left(D(\frac{v}{1^{T}v}, c) + \log(\xi) - \log(\exp(1)) \right)$$

$$= -\xi \left(\left(\sum_{j=1}^{n} \frac{v_{j}}{1^{T}v} \log(\frac{v_{j}}{c_{j}1^{T}v}) + \log(\xi/\exp(1)) \right) \right)$$

$$= -\sum_{j=1}^{n} \frac{\xi v_{j}}{1^{T}v} \log(\frac{\xi v_{j}}{1^{T}v} \cdot \frac{1}{\exp(1)c_{j}}) = -D(\frac{\xi v}{1^{T}v}, \exp(1)c)$$

:: Definition of relative entropy

$$\geq D(v, \exp(1)c) \geq -b$$

$$(1) \implies (2)$$

$$g(x) \ge 0$$

 $\iff g(x) \exp(-\alpha^T x) \ge 0$
 $\iff \sum_{i=1}^{\ell} c_i \exp((\alpha^{(i)^T} - \alpha^T)x) \ge -b$

$\therefore \exp(-\alpha^T x) > 0$ and definition of g(x)

Now consider the following lower bound:

$$\inf_{\mathbf{x} \in \mathbb{R}^n} c^{\mathsf{T}} t$$

s.t. $\exp((\alpha^{(j)^{\mathsf{T}}} - \alpha^{\mathsf{T}}) \mathbf{x}) = t_j \ \forall \ j \in [\ell]$

$$(1) \Longrightarrow (2) \text{ cont.}$$

Which is equivelent to the bound of

$$p = \inf_{x \in \mathbb{R}^n} c^{\mathsf{T}} t$$

s.t. $\exp((\alpha^{(j)^{\mathsf{T}}} - \alpha^{\mathsf{T}})x) \le t_j \ \forall \ j \in [\ell]$

:: the c_i 's are positive.

The Lagrangian dual of this programme (modulo quite a few steps) is

$$d = \sup_{v \in \mathbb{R}_{+}^{l}} -D(v, \exp(1)c)$$
s.t.
$$\sum_{j=1}^{l} v_{j} \alpha^{(j)} = (\mathbb{1}^{T} v) \alpha$$

$$(1) \Longrightarrow (2)$$
 cont.

- By assumption, $g(x) \ge 0$, we have strict primal feasibility.
- By Slater's condition strong duality holds, i.e., $d = p \ge -b$.
- Hence there exists a $v \in \mathbb{R}^{\ell}_+$ such that $D(v, \exp(1)c) \leq b$ and $\sum_{i=1}^{\ell} v_i \alpha^{(i)} = (\mathbb{1}^T v) \alpha$.

Example

For fixed $\lambda \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ consider

$$g_{\lambda}(x) = \exp(x_1) + \exp(x_2) - \exp(\underbrace{(\frac{1}{2} + \lambda)x_1 + (\frac{1}{2} - \lambda)x_2}_{\alpha^T x})$$

By the lemma we have that $g_{\lambda}(x) \ge 0$ because

$$v := \left[\frac{1}{2} + \lambda, \frac{1}{2} - \lambda\right]^{\mathsf{T}} = \alpha \ge 0$$
 satisfies

$$D(v, \exp(1)c) - b$$

$$= (\frac{1}{2} + \lambda) \log(\frac{1 + 2\lambda}{2 \exp(1)}) + (\frac{1}{2} - \lambda) \log(\frac{1 - 2\lambda}{2 \exp(1)}) + 1 \le 0$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} v = (\mathbb{1}^{T} v)\alpha = \alpha$$

Example

Visualization of the example

Outline for Section 2

- AM-GM-exponentials and relative entropy
 - 1.1 Definitions
 - 1.2 Lemma
 - 1.3 Example
- 2. The SAGE Cone
 - 2.1 Definitions
 - 2.2 Proposition
- Signomial Optimization
 - 3.1 Unconstrained Signomial Optimization
 - 3.2 Constrained Signomial Optimization
- Conclusion

Idea

Sums of AM-GM-Exponentials

- Use AM-GM-Exponentials as the "atoms of positivity".
- Define the cone of Sums of AM-GM-Exponentials (SAGE).
- Recast SAGE into (second order) Relative Entropy cone.
- ullet Characterize the Relative Entropy cone, $\mathrm{C}_{\mathrm{SAGE}}.$

SAGE & C_{SAGE}

Definition

Given a finite collection of vectors $M \subset \mathbb{R}^n$ the

SAGE(M) :=
$$\left\{ f \mid f = \sum_{i=1}^{m} f_i, f_i$$
's are AM/GM-expo.'s in M $\right\}$

Definition

Suppose
$$M = \{\alpha^{(j)}\}_{i=1}^{\ell}$$
 then

$$C_{SAGE}(\{\alpha^{(j)}\}_{j=1}^{\ell}) := \left\{ c \in \mathbb{R}^{\ell} \mid \sum_{j=1}^{\ell} c_j \exp(\alpha^{(j)^{\mathsf{T}}} x) \in SAGE(M) \right\}$$

Counter-Example

A nonnegative non-member of SAGE

 $f(x_1, x_2, x_3) = (\exp(x_1) - \exp(x_2) - \exp(x_3))^2$ is non negative but not SAGE.

Why? Start by multiplying out: $f(x_1, x_2, x_3) =$

$$\sum_{i=1}^{3} e^{2e_i^T x} + 2e^{[0,1,1]x} - 2e^{[1,1,0]x} - 2e^{[1,0,1]x}$$

Coefficients:
$$(1, 1, 1, 2)$$
 and $-2, -2$

Coefficients: (1, 1, 1, 2) and
$$-2$$
, -2
Exponents: $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Counter-Example cont.

By the Lemma:

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 2 & 1 \end{bmatrix} w = (w_1 + w_2) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow w_1 = 0$$

$$D(w, exp(1)[1, 1]^T)$$

$$= w_2 \log(\frac{w_2}{exp(1)}) \le -2$$

$$\Rightarrow \log(w_2) \le 1 - \frac{2}{w_2}$$

Proposition

C_{SAGE} characterization

Proposition

$$\begin{aligned} \mathbf{C}_{\text{SAGE}}(\{\alpha^{(j)}\}_{j=1}^{\ell}) &= \left\{ c \in \mathbb{R}^{\ell} \mid \exists c^{(j)} \in \mathbb{R}^{\ell}, \ v^{(j)} \in \mathbb{R}^{\ell} \\ \text{s.t. } c &= \sum_{j=1}^{\ell} c_{j}, \\ \sum_{i=1}^{\ell} \alpha^{(i)} v_{i}^{(j)} &= 0, \ v_{j}^{(j)} = -\mathbb{1}^{T} v_{\setminus j}^{(j)}, \\ D(v_{\setminus j}^{(j)}, \exp(1) c_{\setminus j}^{(j)}) - c_{j}^{(j)} &\leq 0, \ v_{\setminus j}^{(j)} \in \mathbb{R}_{+}^{\ell-1} \right\} \end{aligned}$$

Rough schema

Outline for Section 3

- AM-GM-exponentials and relative entropy
 - 1.1 Definitions
 - 1.2 Lemma
 - 1.3 Example
- The SAGE Cone
 - 2.1 Definitions
 - 2.2 Proposition
- 3. Signomial Optimization
 - **3.1** Unconstrained Signomial Optimization
 - 3.2 Constrained Signomial Optimization
- Conclusion

Signomial Optimization (Unconstrained)

$$f_* = \inf_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = f_* = \sup_{\gamma \in \mathbb{R}} \gamma$$

s.t. $f(\mathbf{x}) - \gamma \ge 0$

Assume w.l.o.g. that $f(x) = \sum_{j=1}^{\ell} c_j \exp(\alpha^{(j)^T} x)$ with $\alpha^{(1)} = 0$. Relax the nonnegativity to SAGE membership

$$f_{\text{SAGE}} = \sup_{\gamma \in \mathbb{R}} \gamma$$
s.t. $f(x) - \gamma \in \text{SAGE}(\{\alpha^{(j)}\}_{j=1}^{\ell})$

$$\iff (\because \text{Lemma})$$
s.t. $(c_1 - \gamma, c_2, ..., c_{\ell}) \in C_{\text{SAGE}}(\{0, \alpha^{(2)}, ..., \alpha^{(\ell)}\})$

SAGE Optimization (Unconstrained)

Observations

$$f_{\text{SAGE}} = \sup_{\gamma \in \mathbb{R}} \gamma$$
s.t. $(c_1 - \gamma, c_2, ..., c_\ell) \in C_{\text{SAGE}}(\{0, \alpha^{(2)}, ..., \alpha^{(\ell)}\})$

- We can solve these problems using second order cone programming (SOCP).
- There is software:
 - CVXPY (modelling in Python)
 - ECOS (solver)

Signomial Optimization (Unconstrained)

A "Pólya type" hierarchy

Definition

$$f_{\text{SAGE}}^{(p)} = \sup_{\gamma \in \mathbb{R}} \gamma$$
s.t. $\left(\sum_{i=1}^{\ell} \exp(\alpha^{(i)^{T}} x) \right)^{p} \left(f(x) - \gamma \right) \in \text{SAGE} \left(E_{p+1} \left(\left\{ \alpha^{(i)} \right\}_{j=1}^{\ell} \right) \right)$

where

$$E_{p+1}(\{\alpha^{(j)}\}_{j=1}^{\ell}) := \left\{ \sum_{i=1}^{\ell} \lambda_j \alpha^{(j)} \mid \sum_{i=1}^{\ell} \lambda_j \leq p, \ \lambda_j \in \mathbb{N} \right\}$$

Signomial Optimization (Unconstrained) Observations

•
$$f_{SAGE}^{(0)} = f_{SAGE} : E_1(\{\alpha^{(j)}\}_{j=1}^t) = \{\alpha^{(j)}\}_{j=1}^t$$

• $f_{\text{SAGE}}^{(p)} \leq f_*$: A feasible solution to $f_{\text{SAGE}}^{(p)}$ would imply $f(x) - \gamma \geq 0$ since the multiplier is positive.

$$\bullet \ f_{\mathrm{SAGE}}^{(p)} \leq f_{\mathrm{SAGE}}^{(p+1)} \odot E_{p+1} \big(\{\alpha^{(j)}\}_{j=1}^t \big) \subset E_{p+2} \big(\{\alpha^{(j)}\}_{j=1}^t \big)$$

• $f_{\text{SAGE}}^{(p)} \to f_*$? as $p \to \infty$ To be proven in the sequel to this talk.

Signomial Optimization (Constrained)

Definitions

Let f(x), $g_1(x)$, ..., $g_m(x)$ be signomials in exponents $\{\alpha^{(j)}\}_{j=1}^{\ell}$. Define

$$C := \{g_i(x) | j \in [m]\}$$

and

$$K_C := \{x \in \mathbb{R}^n \mid g(x) \ge 0 \forall g \in C\}$$

$$f_* = \inf_{\mathbf{x} \in K} f(\mathbf{x}) = f_* = \sup_{\gamma \in \mathbb{R}} \gamma$$

$$\text{s.t. } f(\mathbf{x}) - \gamma > 0 \ \forall \ \mathbf{x} \in K_C$$

Signomial Optimization (Constrained)

Attack from weak duality

$$f_{WD} = \sup_{\gamma \in \mathbb{R}, \ \mu \in \mathbb{R}_{+}^{m}} \gamma$$
s.t.
$$f(x) - \gamma - \sum_{i=1}^{m} \mu_{i} g_{j}(x) \ge 0$$

However we are still stuck with two problems:

- 1. It is still intractable to check \geq 0 for general signomials.
- 2. The problem (C-SP) is non-convex in
 - Hence, we do not expect strong duality to hold
 - » So, generally $f_{WD} < f_*$

Signomial Optimization (Constrained)

Add "implied" constraints

Definition

$$R_q(C) := \left\{ \prod_{k=1}^q h_k \mid h_k \in \{1\} \cup C \right\}$$

Definition

$$f_{\text{SAGE}}^{(p,q)} = \sup_{\gamma \in \mathbb{R}, s_h \in \text{SAGE}(E_p(\{\alpha^{(j)}\}_{j=1}^{\ell}))} \gamma$$
s.t.
$$f(x) - \gamma - \sum_{h(x) \in \mathbb{R}_q(C)} s_h(x)h(x) \in \text{SAGE}(E_{p+q}(\{\alpha^{(j)}\}_{j=1}^{\ell}))$$

Outline for Section 4

- AM-GM-exponentials and relative entropy
 - 1.1 Definitions
 - 1.2 Lemma
 - 1.3 Example
- The SAGE Cone
 - 2.1 Definitions
 - 2.2 Proposition
- Signomial Optimization
 - 3.1 Unconstrained Signomial Optimization
 - 3.2 Constrained Signomial Optimization
- 4. Conclusion

Conclusion

- Basically SOS with squares replaced by AM-GM-expo.'s.
- Entropy characterization of AM-GM-expo.'s
- Obtain a double hierarchy because the constraints and objective can be relaxed independently of each other.