ECE365: Introduction to NLP

Spring 2021

Lecture 7: Word Embeddings

[Reading J&M Chapter 6]

Logistics

Quiz 2 Tuesday 05/04, 05/05

Distributional Hypothesis

Distributional hypothesis, stated by linguist John R. Firth (1957) as:

"You shall know a word by the company it keeps."

≈ "words that occur in similar contexts tend to have similar meanings"

One of the most successful ideas of modern statistical NLP!

Distributional Semantic Models

 Vector semantics = {distributional idea (defining a word by counting what other words occur in its environment) } + {meaning of a word as a vector (a point in N-dimensions)}

- Popularly called word embeddings
 - Various versions depending on how the vector components are computed
 - Latent Semantic Analysis, Word2vec, GloVe

Why model words as vectors?

- We need to model word meaning
- As a way for computing similarity between words
- Useful for unknown words

Why model words as vectors?

- We need to model word meaning
- As a way for computing similarity between words
- Similar words
 - not synonyms, but share some element of meaning
 - Car- bicycle, cow-horse

Human-rated similarity on scale of 1-10

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex -999 (Hill et al. 2015)

Why not use a thesaurus?

- We don't have a thesaurus for every language
- We can't have a thesaurus for every year

Distributional Semantics

- What is tesgüino?
- (a) A bottle of tesgüino is on the table
- (b) People like tesgüino.
- (c) Don't have tesgüino before you drive.
- (d) Tesgüino is made out of corn
- •Intuition for algorithm: Two words are similar if they have similar word contexts.
- •How do we model context of a word?

Two kinds of vector models

Sparse representation

weighted word co-occurrence matrices

Dense representation

Singular Value Decomposition (LSA)

Prediction-based models (Word2vec, GloVe)

Brown clusters

Two kinds of vector models

Sparse representation

weighted word co-occurrence matrices

Co-occurrence matrices

Represent how often a word occurs with other words

Term-term matrix or word-word co-occurrence matrix or word-context matrix

Word-word matrix (or "term-context matrix")

- Fix a context
 - Paragraph
 - Context window of size k

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and **information** necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

More common: word-word matrix (or "term-context matrix")

- Each vector of dimension | V |
- The word-word matrix is |V|x|V|

	Aardvark	Computer	Data	Pie	Result	sugar
pineapple	0	2	8	442	9	25
strawberry	0	0	0	1	60	19
digital	0	2	1683	5	85	4
information	0	3325	3982	5	378	13

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions

More common: word-word matrix (or "term-context matrix")

- We show only 4 x 6, but real matrix is 50,000 x 50,000
- Very sparse (most values are zero)
- That's OK, since there are lots of efficient algorithms for sparse matrices

	Aardvark	Computer	Data	Pie	Result	sugar
cherry	0	2	8	442	9	25
strawberry	0	0	0	1	60	19
digital	0	2	1683	5	85	4
information	0	3325	3982	5	378	13

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions

Reminders from Linear Algebra

dot-product
$$(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

vector length
$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Measuring similarity

- Given word vectors v and w
- Need to measure their similarity

We know from linear algebra:

Dot-product (inner product) can measure vector similarity

- High when two vectors have large values in same dimensions
- Low (infact 0) for **orthogonal vectors** with zeros in complementary distribution

Problem with dot product

dot-product
$$(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

Vector length:

$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

 v_i is the count for word v in context i w_i is the count for word w in context i.

Vectors are longer if they have higher values in each dimension

- Frequent words have higher values in each dimension
- Dot-product then favors frequent words
- That's bad: We don't want similarity between words sensitive to word frequency (How do we handle this?)

Solution: Cosine Similarity

Divide dot-product by vector lengths!

This turns out to be the cosine of the angle between the vectors.

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2 \sqrt{\sum_{i=1}^{N} w_i^2}}}$$

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = |\vec{a}||\vec{b}|\cos\theta$$

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \cos\theta$$

Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

• Frequency is non-negative, so cosine range 0-1

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Which pair of words is more similar? cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

	large	data	computer
apricot	1	0	0
digital	0	1	2
information	1	6	1

But raw frequency is a bad representation

 Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.

 But overly frequent words like the, it, or they are not very informative about the context

Need a function that resolves this frequency paradox!

tf-idf: combine two factors

• tf: term frequency. frequency count (usually log-transformed):

$$tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

idf: inverse document frequency:

tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

So far

Co-occurrence matrix

Similarity between vectors

More common: word-word matrix (or "term-context matrix")

- We show only 4 x 6, but real matrix is 50,000 x 50,000
- Very sparse (most values are zero)
- That's OK, since there are lots of efficient algorithms for sparse matrices

	Aardvark	Computer	Data	Pie	Result	sugar
cherry	0	2	8	442	9	25
strawberry	0	0	0	1	60	19
digital	0	2	1683	5	85	4
information	0	3325	3982	5	378	13

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions

Dense Representation

weighted vectors are

- **long** (length |V|= 20,000 to 50,000)
- sparse (most elements are zero)

Alternative: learn vectors which are

- **short** (length 200-1000)
- dense (most elements are non-zero)

Sparse vs. Dense vectors

- Why dense vectors?
 - Short vectors may be easier to use as features in machine learning (less weights to tune)
 - Dense vectors may generalize better than storing explicit counts
 - They may do better at capturing synonymy:
 - car and automobile are synonyms; but are represented as distinct dimensions; this fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor

Three Methods for Dense Vectors

- Singular Value Decomposition (SVD)
 - A special case of this is called LSA Latent Semantic Analysis
- "Neural Language Model"-inspired predictive models
 - skip-grams and CBOW
- Brown clustering

Prediction-based models

- Word2vec (Mikolov et al.)
- https://code.google.com/archive/p/word2vec/
- Fasttext http://www.fasttext.cc/
- Glove (Pennington, Socher, Manning)
- http://nlp.stanford.edu/projects/glove/

How to learn word2vec (skip-gram) embeddings

- Start with V random 300-dimensional vectors as initial embeddings
- Use logistic regression (the second most basic classifier used in machine learning after naïve Bayes)
 - Take a corpus and take pairs of words that co-occur as positive examples
 - Take pairs of words that don't co-occur as negative examples
 - Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
 - Throw away the classifier code and keep the embeddings.

- Instead of counting how often each word w occurs near "apricot"
- •Train a classifier on a binary prediction task:
 - Is w likely to show up near "apricot"?
- We don't actually care about this task
 - But we'll take the learned classifier weights as the word embeddings

How to learn word2vec (skip-gram)

word	dim0	dim1	dim2	dim3	 dim300
today	0.35	-1.3	2.2	0.003	
cat	-3.1	-1.7	1.1	-0.56	
sleep	0.55	3.0	2.4	-1.2	
watch	-0.09	0.8	-1.8	2.9	
bird	2.0	0.16	-1.9	2.3	

Evaluating embeddings

- Have a vocabulary and a set of word embeddings
- Need to know how good the vectors are
- Intrinsic:
 - Compare to human scores on word similarity-type tasks:
 - WordSim-353 dataset
 environment ecology 8.8
- Extrinsic

Properties of embeddings

Similarity depends on window size C

- C = ±2 The nearest words to *Hogwarts*:
 - Sunnydale
 - Evernight
- C = ±5 The nearest words to Hogwarts:
 - Dumbledore
 - Malfoy
 - halfblood

Properties of embeddings

word	=	"swed	len"
WULL	_	\mathbf{S}	

Word	Cosine	distance
norway		0.760124
denmark		0.715460
finland		0.620022
switzerland		0.588132
belgium		0.585835
netherlands		0.574631
iceland		0.562368
estonia		0.547621
slovenia		0.531408

Analogy: Embeddings capture relational meaning

 $vector('king') - vector('man') + vector('woman') \approx vector('queen')$ $vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')$

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and phrases, showing that words with similar meanings are nearby in space. The original 60-dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015).

Summary

- Distributional (vector) Models of meaning
 - Sparse vectors:
 - tf-idf weighted word-word co-occurrence matrix
 - Dense vectors:
 - Prediction-based: Word2vec