Matrizes Ortogonais

Marcelo Dreux

Matrizes Ortogonais

Dizemos que uma matriz A é **ortogonal** se sua transposta for sua inversa, ou seja, se

$$A^{-1} = A^T$$

ou, equivalentemente, se

$$AA^T = A^TA = I$$

Matriz Ortogonal

Uma matriz é ortogonal se é formada por vetores ortonormais. Vetores ortonormais são tais que:

$$\langle v_i, v_j \rangle = 0$$
 para $i \neq j$

$$||v_i|| = 1$$

Exemplo

Verificar que a matriz de rotação de \mathbb{R}^2 por um ângulo θ é ortogonal

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Propriedades de matrizes ortogonais

Se A for ortogonal então:

 i. O produto de matrizes ortogonais é uma matriz ortogonal

ii.
$$det(A) = 1$$
 ou $det(A) = -1$

iii.
$$||A x|| = ||x||$$

iv.
$$A x . A y = x . y$$

Matriz Ortogonal

Se A for uma matriz ortogonal e T_A : $\mathbb{R}^n \to \mathbb{R}^n$ a multiplicação por A, dizemos que T_A é um operador ortogonal. Os operadores ortogonais mantêm inalterados os comprimentos de todos os vetores (propriedade iii).