DEEP SEMANTIC ANALYSIS OF TEXT

JAMES ALLEN

MARY SWIFT

WILLIAM DE BEAUMONT

WHAT WE MEAN BY DEEP REPRESENTATION

□ WORD SENSE DISAMBIGUATION*
 □ SEMANTIC ROLES*
 □ ENTITY IDENTIFICATION, MODIFIER DEPENDENCIES
 □ QUANTIFICATION & OPERATOR SCOPING
 □ CO-REFERENCE

*all with respect to some defined ontology

TOWARDS A UNIVERSAL SEMANTIC REPRESENTATION

THE TRIPS LOGICAL FORM

Three large dogs bark

TOWARDS A UNIVERSAL SEMANTIC REPRESENTATION

MAPPING TO MRS-STYLE REPRESENTATION

(LF::F v2 (:* LF::NONVERBAL-EXPRESSION bark) :agent v3 :mods

(v4 v5 v6) :tma ((W::TENSE W::PRES)))

h1: Bark(v2) & agent(v2,v3)

(LF::SOME v3 LF::SET :of v6)

h2: Set(v3) & MemberType(v3, v6)

h2.1:Some(v3,h3,h4) h3=q h2

(LF::KIND v6 (:* LF::ANIMAL dog))

h2: Dog(v6)

(LF::OP v5 (:* LF::FREQUENCY usually) :core v2)

h3: Usually(h4) h4 = q h1

(LF::F v6 LF::FREQUENCY :val v9 :of v2)

h5: Frequency(v2, v9)

(LF::EVERY v9 (:* LF::TIME-OBJECT morning)) h6: Morning(v9)

h6.1: Every(v9, h8, h9) h8 = q h6

Some dogs usually bark every morning

TOWARDS A UNIVERSAL SEMANTIC REPRESENTATION

CAN WE MAP ANY MRS REPRESENTATION TO AN LF-GRAPH?

- ☐ NOT IN GENERAL, BUT
- ☐ IF WE RESTRICT OURSELVES TO "PRACTICAL MRS": THE MRS STRUCTURES THAT CAN BE GENERATED BY THE GRAMMAR
 - ☐ as described in Copestake et al, 2005
- ☐ THEN WE CAN PROVE THAT PRACTICAL MRS AND LF GRAPHS ARE EQUIVALENT

EXAMPLE OF LF GRAPH PRODUCED BY PARSER

TRIPS LANGUAGE PROCESSING

"Let me show you how to find a restaurant"

SEMANTIC LEXICON

D	OMAIN GENERAL LINGUISTIC ONTOLOGY
	"DEEPER" THAN ARGUMENT STRUCTURE
	LESS FINE-GRAINED THAN WORDNET
	STRONGLY INFLUENCED BY FRAMENET AND EUROWORDNET
	REFINE SENSES ONLY TO THE LEVEL OF LINGUISTIC RELEVANCE
	BASED ON EXPERIENCE BUILDING SYSTEMS TO SUPPORT REASONING

Sense	Example	# wordnet senses	Type Specific Semantic Roles
CONSUME	Take an aspirin	I	:agent :theme
MOVE	MOVE Take it to the store		:agent :theme :to-loc
ACQUIRE	Take a picture	16	:theme :recipient :cost
SELECT	I'll take that one	4	:agent :theme
COMPATIBLE-WITH	The projector takes 100 volts	2	:affected :theme
TAKE-TIME	It took three hours		:theme :duration

GRAMMAR & PARSING

□ AUGMENTED CONTEXT FREE GRAMMAR WITH FEATURE UNIFICATION SIMULTANEOUS SYNTACTIC AND SEMANTIC PROCESSING SUBCATEGORIZATION IS LEXICALIZED PASSIVES, DATIVE SHIFTS, GERUNDS, GAPS, ETC. HANDLED **EXPLICITLY IN GRAMMAR** ☐ SEARCH IS PREFERENCE-BASED BEST-FIRST SEARCH USING RULE AND LEXICAL PREFERENCES **BASED ON A DECADE OF EXPERIENCE** □ PRODUCES CHART OF SEMANTIC HYPOTHESES BEST FIRST, STOPS WHEN DESIRED # INTERPRETATIONS FOUND (OR TIMES OUT ON UPPER LIMIT ON # CONSTITUENTS) **MEANING EXTRACTION** SEARCH CHART FOR "BEST" SEQUENCE OF SEMANTIC UNITS

ATTAINING BROAD-COVERAGE "DEEP" PARSING

PREPROCESSING

	The	New	York	Times	is	at	125	Main
regular input to lexicon	word/the	word/new	word/york	word/times	word/is	word/at	word/125	word/main
POS preference	ART/the	ADJ/new	N/york	N/times	V/is	P/at	N/125	ADJ/main
NIED	NAME/The	New York Tir	ne/LF::ORGA	NIZATION				NAME/Main/
NER	NAME/New York/ LF::GEO-REGION							LF::GEO- REGION
Address Recognizer								125 Main/ ODRESS

LEXICON ON DEMAND

STATISTICAL GUIDANCE*

SYNTACTIC PREFERENCES

	The	New	York	Times	is	at	125	Main
Preferred constituent boundary	[NP]	[VP	[PP	[NP	1111

Parser boosts constituents that match predicted constituent boundaries (Swift, Allen & Gildea, 2005)

SEMANTIC PREFERENCES

LF::CONSUME :agent LF::PERSON :theme LF::FOOD

LF::CAUSE-TO-MOVE :agent LF::PERSON :theme LF::VEHICLE

LF::PART-OF :theme LF::PHYS-STRUCTURE :affected LF::PHYS-STRUCTURE

...

Parser boosts constituents that match predicted LF forms

* preferences we not used in the evaluation reported here

EVALUATION

☐ COMPUTING PRECISION AND RECALL ON LF GRAPHS

PARSER OUTPUT

(F (:* LF::NON-VERBAL-EXPRESSION)) bark)

GOLD GRAPH

EVALUATION

- ☐ NEED SCORING FUNCTION FOR NODE & ARC MATCHING
- FIND THE NODE ALIGNMENT THAT MAXIMIZES THE CUMULATIVE SCORE

PARSER OUTPUT

GOLD GRAPH

CURRENT EVALUATION SCHEME

☐ GIVEN AN ALIGNMENT FUNCTION AG FROM □ NODES IN A TEST GRAPH T --> NODES IN A GOLD GRAPH G □ NODE SCORE SCAG(N) ☐ 1 IFF SPECIFIER(N)=SPECIFIER(AG(N)) PLUS \square 1 IFF TYPE(N)=TYPE(AG(N)) \Box EDGE SCORE SC_{AG}(E) = 1 ☐ IFF GOLD GRAPH CONTAINS THE EDGE AG(START(E)) -- LABEL(E) --> AG(END(E))☐ SCORE FOR TEST GRAPH T GIVEN GOLD GRAPH G \square SCORE(T,G) = MAXAG(SUMN SCAG(N) + SUME SCAG(E)) \square PRECISION = SCORE(T,G)/SCORE(T,T) \square RECALL = SCORE(T,G)/SCORE(G,G)

PERFORMANCE AGAINST GOLD STANDARDS

Text	Base S	System	Final System		
	Prec	Recall	Prec	Recall	
1 "physics"	70.1%	70.1%	70.7%	76.0%	
2 "cancer"	62.1%	71.9%	62.8%	72.8%	
3 "dining"	86.7%	90.4%	90.8%	94.6%	
4 "dogs"	63.0%	68.6%	63.8%	67.7%	
5 "guns"	55.0%	64.0%	60.3%	69.5%	
6 "gardens"	47.4%	53.6%	56.2%	62.1%	
7 "wind"	n/a	n/a	65.8%	76.3%	
Average	64.1%	69.7%	67.1%	74.1%	