第 21 章 压力弹簧管

1 压力弹簧管的类型与用途

压力弹簧管是具有椭圆形、扁平形或偏心圆等不同形状的截面(图 12-21-2),且一端固定,一端自由并封闭的金属管。工作时,一般将管的开口端固定,当管的内腔受流体压力 P 作用时,管的曲率改变,自由端产生直线位移。因此,它能用作测量压力的敏感元件。与其他测压元件相比,压力弹簧管具有测压范围广的优点,同时结构简单,制造容易,使用可靠。

压力弹簧管一般做成如图 12-21-1 所示的 C 形管。为了增大灵敏度,还可以做成 S 形管、盘簧管和螺旋管等,而盘簧管和螺旋管的自由端可获得较大的转角。

2 压力弹簧管的材料

表 12-21-1

材料	抗拉强度 σ _b /MPa	比例极限 σ _p /MPa	弹性模量 E/MPa	硬 度/HV	
QSn4-3	784	540	107800		
QBe2	1226	1000	136000	380	
1Cr18Ni9Ti	539	107. 8	203000	155	
50CrVA	1273	1000	212000	450	
3J53 (Ni42CrTiAl)	1372	1000	181300	411	

3 压力弹簧管计算公式

表 12-21-2

项 目	单位	公式及	及 数 据			
曲率半径增量 ΔR	mm	$\frac{\Delta R}{R} \times \frac{E}{p} = \frac{a^3}{h^3} \times \frac{k_3}{1 + x^2 k_1}, \ \Delta R = \frac{a^3}{h^3} \times \frac{k_3}{1 + x^2 k_1} \times \frac{Rp}{E}$				
牵引力矩 T	N · mm	$\frac{T}{pa^3} = \frac{a}{R} \times \frac{1}{R}$	$\frac{a^2}{h^2} \times \frac{k_4}{1 + x^2 k_2}$			
最大应力 σ_{\max}	MPa	$\frac{\sigma_{\text{max}}}{p} = \frac{a^2}{h^2} \times \frac{k_5}{1 + x^2 k_1}$				
管端牵引力 F	N	$\frac{FR}{T} = \frac{\sqrt{2(1-\cos\theta)}}{1-\cos\theta}$	$(s\gamma) - 2r\sin\gamma + r^2$ k_0			
管 端 位 移 量 λ、λ ₁	mm	$\frac{\lambda}{\Delta R} = \sqrt{2(1-\cos\gamma) - 2r\sin\gamma + r^2}$	$\left(\frac{\lambda_1}{\Delta R^2}\right)^2 = \left(\frac{\lambda}{\Delta R}\right)^2 + 2\frac{\lambda}{\Delta R} \times \frac{l}{R} r \sin\psi + \left(\frac{l}{R}\right)^2 r$			
管端位移方向角 ψ、ψ ₁	(°)	$\psi = \frac{3}{2}\pi - \gamma - \varphi$ $\tan \varphi = \frac{r\sin \gamma - \sin \gamma}{1 - \cos \gamma - r\sin \gamma}$	$\tan\psi_1 = \tan\varphi + \frac{\Delta R}{\lambda} \times \frac{l}{R} \times \frac{r}{\cos\psi}$			
		R——弹簧管的曲率半径, mm E——弹性模量, MPa p——工作压力, MPa a——截面长半径, mm b——截面短半径, mm x——主参数, x=a²/(Rh) h——壁厚, mm				
附 注	k_1, k_2	k_3, k_4, k_5 ——取决于截面形状和 $\frac{b}{a}$ 值的系数, γ ——压力弹簧管的中心角, $(°)$ λ ——C 形管端位移量, mm	列于图 12-21-3 及图 12-21-4			
,		λ_1 ——直尾管端位移量, mm	的夹角,(°)			
		k_0 ——取决于 r 的系数				

图 12-21-3 近似椭圆截面的 k₁~k₅ 值

图 12-21-4 扁圆截面的 $k_1 \sim k_5$ 值

图 12-21-5 $\frac{\lambda_1}{\Delta R}$ 与 γ 的关系

图 12-21-6 ψ_1 与 γ 的关系

图 12-21-7 $\frac{FR}{T}$ 与 γ 的关系

4 压力弹簧管计算示例

例 求承受压力 p=0.412 MPa 的扁圆截面弹簧管的位移、最大应力、牵引力矩、牵引力。尺寸为 a=10.39 mm, b=3.18 mm, h=0.53 mm, R=52.3 mm, $\gamma=24$ TT、 中台 和 $\gamma=10.39$ mm, $\gamma=10.39$ mm $\gamma=10.39$ mm

项目	单位	公 式 及 数 据
确定系数 k ₁ ~k ₅		$\frac{b}{a} = \frac{3.18}{10.39} = 0.306; \frac{a}{h} = \frac{10.39}{0.53} = 19.6$ 根据图 12-21-4 查得: $k_1 = 0.111, k_2 = 0.426, k_3 = 1.26, k_4 = 0.444, k_5 = 1.51$
曲率半径增量 ΔR	mm	$\Delta R = \left(\frac{a}{h}\right)^3 \times \frac{k_3}{1 + k_1 x^2} \times \frac{R}{E} p = (19.6)^3 \times \frac{1.26 \times 52.3}{(1 + 0.111 \times 15.2) \times 107800} \times 0.412 = 0.706$
管端位移量 λ	mm	因是 C 形管, 故 $\frac{l}{R}$ = 0 根据图 12-21-5 查得 当 γ = 241°, $\frac{\lambda}{\Delta R}$ = 5. 3 所以 λ = 5. 3 ΔR = 5. 3×0. 706 = 3. 74 查图 12-21-6 得管端位移方向角 ψ , ψ = 16°
牵引力矩 T	N · mm	$\frac{T}{pa^3} = \frac{a}{R} \left(\frac{a}{h}\right)^2 \frac{k_4}{1 + k_2 x^2}$
管端牵引力 F	N	根据图 12-21-7 查得 γ = 241°时 $\frac{FR}{T} = 0.62$ 所以 $F = \frac{0.62T}{R} = \frac{0.62 \times 2093}{52.3} = 24.81$
最大应力 $\sigma_{ ext{max}}$	MPa	所以 $\sigma_{\text{max}} = \left(\frac{a}{h}\right)^2 \frac{k_5}{1+k_1x^2}$ 所以 $\sigma_{\text{max}} = p\left(\frac{a}{h}\right)^2 \times \frac{k_5}{1+k_1x^2} = 0.412 \times 19.6^2 \times \frac{1.51}{1+0.111 \times 15.2} = 88.94$

5 压力弹簧管的尺寸系列

表 12-21-4

弹簧管内径/mm	适用压力表的 表壳内径/mm	测量类别	承 压 范 围	有效张 角/(°)	精度 等级
100	150	压力/10 ⁴ Pa	0~5.886,0~9.81,0~15.696,0~24.525, 0~39.24,0~58.86,0~98.1,0~156.96,0~ 245.25,0~392.4,0~588.6,0~981		
		真空/Pa	101324.72~0		
64	100	压力/Pa	101324. 7~0~79. 99×10 ⁴ , 101324. 7~0~133. 32 ×10 ⁴ , 101324. 7~0~213. 3×10 ⁴ , 101324. 7~0~ 333. 2×10 ⁴ , 101324. 7~0~533. 3×10 ⁴ , 101324. 7~ 0~799. 9×10 ⁴	270	1.5~2.
		真空/Pa	$101324.7 \sim 0 \sim 98.1 \times 10^4$, $101324.7 \sim 0 \sim 156.96 \times 10^4$, $101324.7 \sim 0 \sim 245.25 \times 10^4$	A VIIIA	1 10

弹簧管内径/mm	适用压力表的 表壳内径/mm	测量类别	承 压 范 围	有效张 角/(°)	精度 等级
37	60	压力/10 ⁴ Pa	0~9.81,0~15.696,0~24.525,0~39.24, 0~58.86,0~98.1,0~156.96,0~245.25,0~ 392.4,0~588.6,0~981	270	1.5~2.5
42. 5	60	压力/10 ⁴ Pa	0~392.4,0~2452.5	_	1.5~2.5
26	40	压力/10 ⁴ Pa	0~9.81,0~15.696,0~24.525,0~39.24, 0~58.86,0~98.1,0~156.96,0~245.25	_	1.5~4

参 考 又 献

- [1] [苏]波诺马廖夫. C. Д等著. 机器及仪表弹性元件的计算. 王鸿翔译. 北京: 化学工业出版社, 1987.
- [2] 全国弹簧标准化技术委员会编. 中国机械工业标准汇编·弹簧卷. 北京: 中国标准出版社, 1999.
- [3] 张英会,刘辉航,王德成主编.弹簧手册.北京:机械工业出版社,1997.
- [4] 辛一行主编. 现代机械设备设计手册. 北京: 机械工业出版社, 1996.
- [5] 郑国伟主编. 机修手册. 北京: 机械工业出版社, 1993.
- [6] 徐灏主编. 新编机械设计师手册. 北京: 机械工业出版社, 1995.
- [7] 航空制造工程手册总编委主编. 航空制造工程手册. 北京: 航空工业出版社, 1994.
- [8] 朱炎. 引导伞圆锥形弹簧的计算方法. 厦门: 第二届全国航空安全救生学术讨论会, 1984.
- [9] 朱琪. 等螺旋升角截锥形弹簧的计算机辅助设计. 无锡: 第八届全国弹簧学术会, 2000.
- [10] [日本] ばれ技术研究会編. ばれ. 第三版. 东京: 丸善株式会社, 1982.