CPU: comportamento de um datapath

Incluindo o controle da ALU

Campos do IR + controle ALU + mux p/ reg. destino

A função de cada sinal de controle

Nome Efeito desativado

RegDst Número do reg. destino

vem do campo rt (bits 20-16)

RegWrite Nenhum

ALUSrc O 2º operando da ALU vem

da porta de leitura n. 2

MemRead Nenhum

PCSrc O PC recebe a saída do

somador que calcula

PC+4

MemWrite Nenhum

MemtoReg O valor realimentado para

a porta de escrita vem da

ALU

Efeito ativado

Número do reg. destino

vem do campo rd (bits 15-11)

Reg. Indicado em write reg

é escrito com valor na

entrada de dados

O 2º operando da ALU

vem da extensão de sinal

A conteúdo indicado pelo

endereço é colocado na

saída de dados

O PC recebe a saída do

somador que calcula o

endereço-alvo p/ salto

O valor na entrada de dados

é armazenado na posição

indicada pelo endereço

O valor realimentado para a porta de escrita vem da

memória de dados

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
R	1	0	0	1	0	0	0	1	0

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2	
lw	0	1	1	1	1	0	0	0	0	

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
SW	X	1	Х	0	0	1	0	0	0

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
beq	X	0	Х	0	0	0	1	0	1

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
R	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	Х	1	Х	0	0	1	0	0	0
beq	Х	0	Х	0	0	0	1	0	1

Comportamento da unidade de controle

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
000000	1	0	0	1	0	0	0	1	0
100011	0	1	1	1	1	0	0	0	0
101011	Х	1	Х	0	0	1	0	0	0
000100	X	0	Х	0	0	0	1	0	1

entradas

Comportamento da unidade de controle

Instr	Reg Dst	ALU Src	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op2
000000	1	0	0	1	0	0	0	1	0
100011	0	1	1	1	1	0	0	0	0
101011	X	1	X	0	0	1	0	0	0
000100	X	0	X	0	0	0	1	0	1

Estrutura da unidade de controle (portas lógicas): veja Apêndice C.2

Incluindo a unidade de controle

Instrução tipo R: 1^{a.} fase

Instrução tipo R: 2^{a.} fase

Instrução tipo R: 3^{a.} fase

Instrução tipo R: 4^{a.} fase

Instrução load: 1^{a.} fase

Instrução load: 2^{a.} fase

Instrução load: 3^{a.} fase

Instrução load: 4^{a.} fase

Instrução load: 5^{a.} fase

Instrução store: 1^{a.} fase

Instrução store: 2^{a.} fase

Instrução store: 3^{a.} fase

Instrução store: 4^{a.} fase

Instrução beq: 1^{a.} fase

Instrução beq: 2^{a.} fase

Instrução beq: 3^{a.} fase

Instrução beq: 4^{a.} fase

Incluindo o desvio incondicional

- Concatenar:
 - 4 MSBs do PC+4 26 bits do campo imediato 00

Incluindo suporte para jump

