

Oxygen vacancies engineering of Fe doped LaCoO₃ perovskite catalysts for efficient H₂S selective oxidation

Xiaohai Zheng ^{a,b}, Bang Li ^a, Lijuan Shen ^d, Yanning Cao ^{a,b,*}, Yingying Zhan ^{a,b,*}, Shoutian Zheng ^{c,**}, Shiping Wang ^{a,b}, Lilong Jiang ^{a,b}

^a National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China

^b Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China

^c State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China

^d College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China

ARTICLE INFO

Keywords:

LaCoO₃ perovskite
Fe doped
Oxygen vacancy
Density functional theory
H₂S selective oxidation

ABSTRACT

Fe-doped LaCoO₃ perovskite catalysts synthesized via a facile citric acid-assisted sol-gel route have been applied for the H₂S selective oxidation. The as-synthesized LaFe_xCo_{1-x}O₃ perovskites exhibit a randomly macroporous structure formed by the accumulation of nanoparticles. Characterization studies reveal that appropriate Fe substitution effectively enhances the formation of oxygen vacancies, and thus improves the lattice oxygen mobility and H₂S adsorbability, respectively. The obtained LaFe_{0.4}Co_{0.6}O₃ exhibited remarkable catalytic activity, with the H₂S conversion and sulfur yield of 100% at 190 °C. A combined approach of *in-situ* FT-IR and *in-situ* Raman experiments disclosed that the plausible reaction pathway of H₂S selective oxidation over LaFe_xCo_{1-x}O₃ perovskites follows the Mars-van Krevelen mechanism. The density functional theory calculations revealed that Fe-doping improves the formation of oxygen vacancy and enhances the adsorption of H₂S. This study offers new insights for the design of highly efficient perovskites for the selective oxidation of H₂S.

1. Introduction

Hydrogen sulfide (H₂S), is a highly toxic and noxious air pollutant produced from chemical processes such as coal chemicals, oil refinery and natural gas exploitation [1,2]. Owing to the extreme toxicity and corrosiveness, the proper removal of H₂S before its emission is of critical importance to environmental protection and industrial production. The Claus technology is commonly utilized to convert H₂S into elemental sulfur in industrial processes [3]. Nevertheless, limited by thermodynamics, about 2–5% of H₂S still maintains in the off-gas [4]. Among the developed desulfurization processes, selective oxidation of H₂S is highly promising due to low capital requirement and thermodynamic completeness [5]. The reaction equations of H₂S selective oxidation are as follows (Eq. (1) is the main reaction, Eqs. (2) and (3) are the side reactions) [6]:

Metal oxides, such as Fe₂O₃, Al₂O₃ and V₂O₅, were applied for the selective oxidation of H₂S but the results were far from perfect [7]. For instance, the low selectivity of Fe₂O₃ and the high toxicity of V₂O₅ are the main issues that prevent them from widespread applications [8].

Owing to the diverse chemical properties and high electron mobility, the metal oxide perovskite materials with ABO₃ structure have been studied in various catalytic reactions [9,10]. However, limited by weak oxygen mobility, the perovskite oxides exhibit poor catalytic performance for the oxidation reaction. Our previous works proved that the presence of oxygen vacancies could enhance oxygen mobility [11]. Benefiting from the excellent structural stability, the A or B site of perovskite could be substituted by foreign cations with different ionic radii, leading to the generation of crystal distortions and abundant oxygen vacancies [12]. For example, Zheng et al. introduced boron species into LaCoO₃ perovskites by sol-gel method, which induces the distortion of LaCoO₃ structure and creates oxygen vacancies [13]. As a result, the

* Corresponding authors at: National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China.

** Corresponding author.

E-mail addresses: yncao@fzu.edu.cn (Y. Cao), zhanyingying@fzu.edu.cn (Y. Zhan), stzheng@fzu.edu.cn (S. Zheng).

boron-dispersed LaCoO₃ exhibited high catalytic performance for C₃H₈ oxidation. Meanwhile, Co₃O₄ is rich in oxygen vacancies and Fe-based materials are active for the H₂S selective oxidation [14]. For instance, Sun et al. reported the synthesis of cobalt decorated N-doped hollow carbon nanofibers (Co-NHCFs) for H₂S selective oxidation. The introduction of cobalt enhances the formation of reactive oxygen species, further promoting the catalytic activity of H₂S oxidation [15]. Therefore, it is promising to fabricate a desired catalyst by combining the advantages of perovskites and the prominent properties of iron and cobalt. Moreover, Fe-doped LaCoO₃ perovskite has rarely been studied in the H₂S selective oxidation.

In the present work, a series of LaFe_xCo_{1-x}O₃ perovskite catalysts were prepared by a facile citric acid sol-gel route, and tested in H₂S selective oxidation. The doping of Fe species into the LaCoO₃ crystal lattices induces the formation of oxygen vacancies without destroying the perovskite structure, which improves the process of reactant adsorption and dissociation. Simultaneously, the formed oxygen vacancies could promote the migration of oxygen species, thus facilitating the oxidation of H₂S. *In-situ* FT-IR and *in-situ* Raman experiments were further performed to disclose the mechanism of H₂S oxidation over LaFe_xCo_{1-x}O₃ perovskites. This work may provide new guidance for the design of efficient perovskites for H₂S selective oxidation.

2. Materials and methods

2.1. Synthesis of catalysts

LaFe_xCo_{1-x}O₃ perovskites were synthesized as follows: 3.75 mmol of Co(OAc)₂·4H₂O, 3.75 mmol of La(NO₃)₃·6H₂O and a certain amount of Fe(NO₃)₃·9H₂O were dissolved in 40 mL of aqueous solution (a mixture containing 4 mL of HNO₃, 16 mmol of CO(NH₂)₂ and 16 mmol of citric acid). The mixed solution was stirred at 35 °C for 15 min, then it was heated to 80 °C and kept at this temperature until a gel was formed. The obtained solution was dried at 120 °C for 20 h in an oven to form a dry gel. The resulting gel was put in a furnace with the calcination at 600 °C for 6 h. The final samples were named as LaFe_xCo_{1-x}O₃ (x = 0, 0.2, 0.4 or 0.6). To ensure the purity and crystallinity of perovskites, cobalt acetate was used instead of cobalt nitrate in the synthesis process because of the chelation of CH₃COO⁻ ions.

2.2. Instrumental characterizations

The X-ray powder diffraction (XRD) patterns were obtained by a Bruker D8-Advance X-ray diffractometer with Cu K α radiation (40 mA, 45 kV). The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were taken by a JEOL-JEM-2011 microscope equipped with energy-dispersive X-Ray spectroscopy (EDX) operated at 200 kV. The scanning electron microscopy (SEM) images were acquired on a Hitachi S-4800 field-emission microscope. The N₂ adsorption-desorption isotherms were determined by a 3Flex analyzer (Micromeritics). The X-ray photoelectron spectrometry (XPS) spectra were acquired by an ESCALab MKII X spectrometer. Inductively coupled plasma optical emission spectrometry (ICP-OES) was conducted on a Perkin-Elmer Optima 8000 to analyze the content of metal elements. The electron paramagnetic resonance (EPR) experiment was performed by a Bruker A300 spectrometer provided by Sci-go Instrument Testing Platform. The temperature-programmed desorption of oxygen (O₂-TPD) and H₂-temperature programmed reduction (H₂-TPR) experiments were performed using a Micromeritics Autochem 2920II chemisorption analyzer. The normal and *in-situ* Fourier transform infrared (FT-IR) spectra were collected by a Thermo Fisher Nicolet 6700 spectrometer. The normal and *in-situ* Raman spectra were acquired by a Renishaw Viat spectrometer with a laser beam of λ = 532 nm. Further details on the characterization procedures were provided in the Supporting Information.

2.3. Catalytic activity evaluation

The catalytic activity of the perovskites was evaluated for H₂S selective oxidation. The experiments were performed in a continuous fixed-bed quartz reactor (Fig. S1). Typically, 0.2 g catalyst (40–60 meshes) was loaded into a quartz reactor with a 7 mm inner diameter. The feed gas consisting of 2500 ppm O₂ and 5000 ppm H₂S balanced by N₂ was fed into the reactor at 30 mL·min⁻¹ with a weight hourly space velocity (WHSV) of 9000 mL·g⁻¹·h⁻¹ (T = 90–220 °C). Each temperature point was held for 60 min before H₂S conversion was recorded. To trap the formed sulfur in the off-gas, a condenser with ice water was placed downstream of the reactor. A gas chromatography (GC9720II) equipped with TC-detector was applied to analyze the outlet gases. The H₂S conversion (X_{H₂S}), S selectivity (S_{sulfur}) and S yield were defined as follows:

$$X_{H_2S} = \frac{(H_2S)_{in} - (H_2S)_{out}}{(H_2S)_{in}} \times 100\% \quad (4)$$

$$S_{sulfur} = \frac{(H_2S)_{in} - (H_2S)_{out} - (SO_2)_{out}}{(H_2S)_{in} - (H_2S)_{out}} \times 100\% \quad (5)$$

$$\text{Sulfur yield} = (X_{H_2S}) \times (S_{sulfur}) \quad (6)$$

The reaction rate (r_{H₂S}) was calculated as follows:

$$r_{H_2S} = \frac{X_{H_2S} \times C \times V_{gas}}{22.4 m_{cat}} \left(mol \cdot g^{-1} \cdot s^{-1} \right) \quad (7)$$

Where X_{H₂S} and m are the H₂S conversion at 220 °C and the catalyst mass. C and V_{gas} represent the H₂S concentration and molar flow rate in the inlet gas.

2.4. DFT calculations

All spin-polarized DFT calculations were carried out by employing the Vienna *ab initio* simulation package (VASP) [16,17]. The generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was employed, and the interactions between electron and ion were described by the projector augmented wave (PAW) potentials. The PBE plus on-site repulsion U (PBE+U) method was adopted to properly treat the electron correlation of partially occupied Co and Fe 3d states, and the U_{eff} parameters of 3.0 and 4.0 eV were used respectively. The kinetic energy cut-off for the plane-wave expansion was set to 400 eV.

3. Results and discussions

3.1. Structural and morphological characteristics

Fig. 1A shows the XRD patterns of the obtained LaCoO₃ synthesized by the sol-gel method. The diffraction peaks of the product correspond to a typical rhombohedral perovskite LaCoO₃ phase (JCPDS No. 48-0123, R-3c). The absence of La or Co oxides implies the presence of a pure LaCoO₃ phase. As Co is gradually substituted by Fe, the diffraction peaks shift to small angles (Fig. S2). This phenomenon is due to the ion radius of Fe³⁺ (0.64 Å) being larger than that of Co³⁺ (0.61 Å). This indicates that the substitution of Co by Fe in the LaCoO₃ lattice leads to the increase of crystal interplanar distances and lattice distortion [18]. In ABO₃ perovskite oxides, the B sites with six-fold coordination may be occupied by transition-metal cations with r_B > 0.51 Å [19]. Owing to the high stability of perovskite structure, B site cations could be partially substituted by metals with different oxidation states. As a result, structural defects including cationic or anionic vacancies will be formed in the perovskite structure. The tolerance factor of ABO₃ type perovskite is a useful crystal-chemistry tool, which is expressed as t = (r_O + r_A)/ $\sqrt{2}$ ·(r_O + r_B) (r_O, r_A and r_B represent the ion radii of O, A and B ions)

Fig. 1. (A) XRD patterns, (B) FT-IR spectra, (C) EPR spectra and (D) Raman spectra of LaFe_xCo_{1-x}O₃ perovskite catalysts.

[20]. According to the formula, perovskite could be formed as long as $0.8 \leq t \leq 1$ is satisfied. Due to the larger ionic radius of Fe³⁺ than that of Co³⁺ (the radii of La³⁺, Co³⁺, Fe³⁺ and O²⁻ are 1.03, 0.61, 0.64 and 1.40 Å, respectively), the tolerance factors decrease with the Fe doping (Table 1). Meanwhile, the calculated tolerance factors indicate that they still possess stable perovskite structures. The decrease in tolerance factors means that Fe doping facilitates the formation of structural defects [21]. It is noted that the signals of Fe oxides cannot be found over the LaFe_{0.2}Co_{0.8}O₃, LaFe_{0.4}Co_{0.6}O₃, and LaFe_{0.6}Co_{0.4}O₃, which suggests that the Fe species are too small to be detected or finely dispersed in the catalysts. In addition, the crystallite size of catalysts was calculated by the Scherrer equation, which follows the order of LaFe_{0.6}Co_{0.4}O₃ < LaFe_{0.4}Co_{0.6}O₃ < LaFe_{0.2}Co_{0.8}O₃ < LaCoO₃. The result implies that the incorporation of Fe ions hinders the grain growth of LaFe_xCo_{1-x}O₃. The textural characteristics of the LaFe_xCo_{1-x}O₃ perovskites were depicted in Fig. S3. The adsorption isotherms (Fig. S3A) of LaFe_xCo_{1-x}O₃ catalysts could be ascribed to IV-type with an H3 hysteresis loop, reflecting the rich mesoporous structure. As presented in Fig. S3B, the pore size distributions of catalysts also confirm the mesoporous structure of LaFe_xCo_{1-x}O₃ perovskites. The textural properties of catalysts (Table 1) indicate that Fe-doping has little effect on the pore volume and specific surface area of LaCoO₃ perovskite.

Table 1
Tolerance factor, crystal size and textural properties of LaFe_xCo_{1-x}O₃ perovskites.

Samples	Tolerance factor (nm)	Crystal size	Surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
LaCoO ₃	0.8549	33.4	14.8	0.082	20.7
LaFe _{0.2} Co _{0.8} O ₃	0.8524	30.8	16.5	0.084	18.6
LaFe _{0.4} Co _{0.6} O ₃	0.8499	27.6	17.4	0.091	16.5
LaFe _{0.6} Co _{0.4} O ₃	0.8474	25.9	17.7	0.093	14.8

The functional groups of LaFe_xCo_{1-x}O₃ perovskites were investigated by FT-IR analysis (Fig. 1B). As for LaCoO₃, the absorption peak at ca. 410, 594 and 661 cm⁻¹ are assigned to the Co-O stretching vibration (E_u vibration mode), La-O-Co stretching vibration (A_{2u} vibration mode) and La-O vibration [22]. The peaks at 675 and 808 cm⁻¹ are ascribed to the Co-O bending vibration (δ_{O-Co-O}) and Co-O-Co vibration, respectively. The peaks at 1000–1118 and 3450 cm⁻¹ are related to the distortion in H₂O and OH stretching vibration. For LaFe_xCo_{1-x}O₃ perovskites, new peaks appear at 486 and 561 cm⁻¹, which correspond to the stretching mode of Fe-O bonds [23]. Compared with LaCoO₃, the peaks of LaFe_xCo_{1-x}O₃ perovskites at around 410 and 594 cm⁻¹ exhibit a blue shift to the larger wave numbers, suggesting that the force constants (*k*) of Co-O and Co-O-La bonds are decreased [24]. This result demonstrates that Fe-doping causes lattice distortion and therefore leads to better surface oxygen migration. To determine the surface defect state in LaFe_xCo_{1-x}O₃ catalysts, the EPR technique was performed and the obtained spectra are illustrated in Fig. 1C. Obviously, all of the catalysts display a strong axial sign at $g_{av}=2.003$, which is related to the superoxide anion (O²⁻) signal [25]. The peak intensity of the catalysts follows the order of LaFe_{0.4}Co_{0.6}O₃ > LaFe_{0.6}Co_{0.4}O₃ > LaFe_{0.2}Co_{0.8}O₃ > LaCoO₃, indicating the highest number of surface oxygen defects of LaFe_{0.4}Co_{0.6}O₃. The abundant oxygen defects would facilitate the activation of oxygen species over LaFe_xCo_{1-x}O₃ catalysts.

The structural information of LaFe_xCo_{1-x}O₃ catalysts was further investigated by Raman spectra. As displayed in Fig. 1D, LaCoO₃ exhibits five bands located at 160, 410, 485, 558 and 689 cm⁻¹. In detail, the band at 160 cm⁻¹ is ascribed to the E_g vibration mode of La atoms along *a* and *b* axis. The peaks at 410, 485 and 558 cm⁻¹ are related to the E_g bending mode, semiconducting state and E_g quadrupole mode of LaCoO₃. The strong Raman peak at 689 cm⁻¹ corresponds to the Co-O stretching vibration [26]. In addition, Fe-modified LaCoO₃ catalysts exhibit a new peak at 324 cm⁻¹, which could be attributed to the Fe-O stretching mode. It is accepted that the change of the Raman band at

ca. 689 cm⁻¹ is related to the change of mean Co-O bond length, which may result from the epitaxial strain-induced structure distortion of CoO₆ regular octahedrons. With the increase of Fe content, the position of Co-O stretching vibration over LaFe_xCo_{1-x}O₃ catalysts shifts to the lower wavenumbers, which indicates an increase in the mean Co-O bond length [27]. This result weakens the Co-O bonds and finally promotes the reactivity of the lattice oxygen.

The electronic structure and elements state of the targeted LaFe_xCo_{1-x}O₃ catalysts are characterized by XPS. The survey scans illustrated in Fig. 2A show that the LaFe_xCo_{1-x}O₃ perovskites exhibit the typical signals of La, Fe, O and Co elements. As for Co 2p spectra (Fig. 2B), the Co 2p_{3/2} and Co 2p_{1/2} peaks split into two pairs of signals, which correspond to Co³⁺ (779.8/794.6 eV) and Co²⁺ (782.3/796.2 eV) species [28]. The Co²⁺/Co³⁺ ratio calculated by the integrated XPS peak area follows the sequence of LaFe_{0.4}Co_{0.6}O₃ (0.77) > LaFe_{0.6}Co_{0.4}O₃ (0.72) > LaFe_{0.2}Co_{0.8}O₃ (0.67) < LaCoO₃ (0.64), indicating that Co²⁺ species could be enriched on the surface by Fe substitution. Additionally, the Co 2p peaks shifts to the larger BEs, which is caused by the variation of Co³⁺ → Co²⁺. The Fe 2p XPS spectra of LaFe_xCo_{1-x}O₃ perovskites display two peaks at Fe 2p_{1/2} and Fe 2p_{3/2} at 723.3 and 710.9 eV, which could be divided into eight peaks by spin-orbit splitting (Fig. 2C). The peak at about 709.3 eV is related to the Fe²⁺ species, and the presence of Fe²⁺ is due to the redox equilibrium of Fe³⁺ + Co²⁺ ⇌ Fe²⁺ + Co³⁺ [29]. It is obvious that the majority of Fe species on the LaFe_xCo_{1-x}O₃ perovskites surface is trivalent.

As presented in Fig. 2D, O 1s XPS spectra are deconvoluted into two peaks at ca. 528.9 and 531.1 eV, which could be identified as lattice oxygen (O_{lat}) and chemisorbed oxygen (O_{ads}) species. In the ABO₃ perovskites, the O_{ads} content corresponds to the oxygen vacancies concentration [30]. The relative O_{ads} content, defined as O_{ads}/O_{total}, is calculated by integrating the peak area of the XPS spectra. The calculated results indicate that LaFe_{0.4}Co_{0.6}O₃ shows the largest O_{ads}/O_{total} value (0.64), followed by LaFe_{0.6}Co_{0.4}O₃ (0.61) and LaFe_{0.2}Co_{0.8}O₃ (0.59).

(0.59), with LaCoO₃ (0.57) the least active. The obtained data imply the richness of oxygen vacancies in LaFe_{0.4}Co_{0.6}O₃. It is worth noting that O 1s BE of LaFe_{0.4}Co_{0.6}O₃ shifts to a lower value than other catalysts. The phenomenon is due to the increase of electron density around oxygen species resulting from Fe-doping, and that eventually causes the oxygen to become more active [31]. The La 3d XPS spectra presented in Fig. S4 show that the La 3d_{5/2} and La 3d_{3/2} peaks are located at around 833.7 and 850.5 eV (spin-orbital splitting of 16.8 eV) with their satellite peaks at about 837.9 and 854.5 eV. These values imply that La³⁺ ions are the main lanthanum species in the LaFe_xCo_{1-x}O₃ perovskite [32].

As presented in Fig. 3, LaFe_xCo_{1-x}O₃ catalysts exhibit well-defined morphology with agglomeration of submicron particles. There are some gaps and voids in the net structure of catalysts formed by the gridding of fused particles. The formation of gaps and voids could be due to the exfoliation of the final product and the release of CO₂ during calcination. The particles of LaCoO₃ appear to be denser than those of LaFe_xCo_{1-x}O₃ catalysts. As for LaFe_{0.6}Co_{0.4}O₃, the well-defined morphology has suffered a destroy. The network structure with abundant voids and gaps is conducive to the easy access of reactants to active sites [33].

TEM characterization was applied to further analyse the detailed structure of LaFe_{0.4}Co_{0.6}O₃. As presented in Fig. 4A, LaFe_{0.4}Co_{0.6}O₃ possesses a randomly macroporous structure formed by the accumulation of nanoparticles, which is in consistent with the SEM result. Meanwhile, the mean particle size of irregular nanoparticle is about 40 nm (Fig. 4B). The HRTEM image (Fig. 4C) display distinct interplanar distance of 0.27 and 0.38 nm, which are ascribed to the (110) and (012) planes of rhombohedral LaCoO₃ [34], respectively. Additionally, an obvious crystal defect is found (as indicated by a red circle), which may be formed by Fe-doping. The EDX mapping images shown in Fig. 4D indicate that La, Co, O and Fe species are uniformly dispersed on the LaFe_{0.4}Co_{0.6}O₃. Moreover, the mole content of metal elements in LaFe_xCo_{1-x}O₃ perovskites was determined by ICP-OES (Table S1). The

Fig. 2. (A) Survey scans, (B) Co 2p, (C) Fe 2p, and (D) O 1 s XPS spectra of LaFe_xCo_{1-x}O₃ catalysts.

Fig. 3. SEM images of $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ catalysts: (A) LaCoO_3 , (B) $\text{LaFe}_{0.2}\text{Co}_{0.8}\text{O}_3$, (C) $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ and (D) $\text{LaFe}_{0.6}\text{Co}_{0.4}\text{O}_3$. (The acceleration voltage, current and magnification value of SEM images are 5 kV, 7 μA and 20000X, respectively).

Fig. 4. (A, B) TEM images, (C) HRTEM image and (D) EDX maps (La, Co, O and Fe) of $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst.

results indicates that the actual mole content of metal elements is close to the theoretical addition amount.

3.2. Catalytic performance

The catalytic activities in the H_2S oxidation over perovskites were evaluated as a function of temperature under a WHSV of

9000 mL·g⁻¹·h⁻¹. As illustrated in Fig. 5A, the LaCoO₃ catalyst shows 81% H₂S conversion at 220 °C. After depositing iron on LaCoO₃, the catalytic activities of the catalysts are significantly improved. Among all the as-prepared catalysts, the LaFe_{0.4}Co_{0.6}O₃ catalyst achieves the complete H₂S conversion at 190 °C. Meanwhile, the LaFe_{0.4}Co_{0.6}O₃ catalyst presents nearly 100% S selectivity in the whole reaction temperature ranges (Fig. 5B). The S selectivity of LaCoO₃, LaFe_{0.2}Co_{0.8}O₃ and LaFe_{0.6}Co_{0.4}O₃ decreases from 100% to 85%, 91% and 95% at 220 °C, which results from the side reactions (S + O₂ → SO₂ and 2H₂S + 3O₂ → 2H₂O + 2SO₂) [35]. Fig. 5C depicts the S yield of the as-obtained perovskite catalysts. With the increase of temperature, the S yield of LaFe_{0.4}Co_{0.6}O₃ raises and reaches 100% at 190 °C. LaCoO₃, LaFe_{0.2}Co_{0.8}O₃ and LaFe_{0.6}Co_{0.4}O₃ show 69%, 91% and 95% S yield at 220 °C, respectively. The formation of product sulfur is confirmed by the yellow solid obtained from the effluent (Fig. S5). The above results demonstrate that the Fe modification improves the catalytic performance of perovskite in H₂S selective oxidation.

The H₂S conversions ($X_{H_2S} < 20\%$) of LaFe_xCo_{1-x}O₃ perovskites for the evaluation of apparent activation energy (E_a) and reaction rate are presented in Table S2, and the corresponding Arrhenius plots are displayed in Fig. 5D. Based on the slope of the Arrhenius plot, the apparent activation energy value of the catalysts increases in the order of LaFe_{0.4}Co_{0.6}O₃ (26.8 kJ/mol) < LaFe_{0.6}Co_{0.4}O₃ (33.5 kJ/mol) < LaFe_{0.2}Co_{0.8}O₃ (42.3 kJ/mol) < LaCoO₃ (56.3 kJ/mol), in consistent with their catalytic activity. Additionally, the reaction rates of catalysts were also calculated, which follows the order of LaFe_{0.4}Co_{0.6}O₃ (4.37×10^{-3} mol·g⁻¹·s⁻¹) > LaFe_{0.6}Co_{0.4}O₃ (3.92×10^{-3} mol·g⁻¹·s⁻¹) > LaFe_{0.2}Co_{0.8}O₃ (3.61×10^{-3} mol·g⁻¹·s⁻¹) > LaCoO₃ (3.03×10^{-3}

mol·g⁻¹·s⁻¹). Being the lowest in E_a value and the largest in reaction rate, LaFe_{0.4}Co_{0.6}O₃ is the most active catalyst among the LaFe_xCo_{1-x}O₃ perovskites. These results highlight the impact of Fe modification of LaFe_xCo_{1-x}O₃ perovskites for H₂S selective oxidation.

The LaFe_{0.4}Co_{0.6}O₃ catalyst was selected to study the effect of H₂S/O₂ molar ratio, WHSV, water vapor and SO₂ on catalytic activity. The effect of H₂S/O₂ molar ratio is illustrated in Fig. 6A. With the decrease of H₂S/O₂ molar ratio from 3:1 to 1:2, the H₂S conversion of LaFe_{0.4}Co_{0.6}O₃ increases from 89% to nearly 100% and then keeps stable, whereas the sulfur selectivity decreases from 100% to 88%. These results demonstrate that insufficient oxygen supply leads to low H₂S conversion, while excess O₂ causes the decrease of S selectivity since it favors the deep oxidation of H₂S [36]. Namely, a stoichiometric proportion (H₂S/O₂ molar ratio is 2:1) facilitates the H₂S selective oxidation over the LaFe_xCo_{1-x}O₃ perovskites. As shown in Fig. 6B, the S selectivity of LaFe_{0.4}Co_{0.6}O₃ keeps constant at 100% at WHSV below 10, 500 mL·g⁻¹·h⁻¹, and then decreases to 91% at 13,500 mL·g⁻¹·h⁻¹. Nearly a unity conversion H₂S efficiency of about 100% is achieved at WHSV = 9000 mL·g⁻¹·h⁻¹, and it gradually decreases with the rise of WHSV. The results indicate that WHSV largely influence the catalytic performance in H₂S selective oxidation.

Industrial H₂S-containing exhaust usually contains H₂O and SO₂, which leads to the deactivation of catalysts [37]. Therefore, the effect of H₂O and SO₂ on the catalytic performance over LaFe_{0.4}Co_{0.6}O₃ and LaCoO₃ was investigated at 220 °C (Fig. 6C). After the introduction of 10 vol% H₂O, the H₂S conversion of LaFe_{0.4}Co_{0.6}O₃ and LaCoO₃ gradually decrease ($\Delta X_{H_2S} = 8.9\%$ and 14.7%). Then H₂O was shut down and SO₂ (500 ppm) was introduced to the reactor. The H₂S conversion of

Fig. 5. (A) H₂S conversion, (B) sulfur selectivity, (C) sulfur yield, and (D) Arrhenius plots for H₂S oxidation of LaFe_xCo_{1-x}O₃ perovskites. Test conditions: H₂S/O₂/N₂ = 0.5/0.25/99.25 wt%, m = 0.2 g, WHSV = 9000 mL·g⁻¹·h⁻¹, v = 30 mL·min⁻¹.

Fig. 6. Effect of (A) H₂S/O₂ molar ratio and (B) WHSV on the catalytic activities of LaFe_{0.4}Co_{0.6}O₃; (C) 10 vol% H₂O and 500 ppm SO₂ tolerance tests and (D) cyclic stability of LaFe_{0.4}Co_{0.6}O₃ (S_{Sulfur} and X_{H2S} are the S selectivity and H₂S conversion).

LaFe_{0.4}Co_{0.6}O₃ and LaCoO₃ continue to decrease ($\Delta X_{H2S} = 11.4\%$ vs 16.8%) and recovers to 88.3% and 56.1% after the removal of SO₂, respectively. The partial deactivation of the catalyst is caused by the competition between H₂O/SO₂ and H₂S at the active sites [38]. The result implies that LaFe_{0.4}Co_{0.6}O₃ exhibits better SO₂ and H₂O resistance than LaCoO₃. Fig. 6D depicts the catalytic stability of LaFe_{0.4}Co_{0.6}O₃ and LaCoO₃ at 220 °C. The H₂S conversion of LaFe_{0.4}Co_{0.6}O₃ was kept at 100% for 10 h and then decreased gradually to 95.1%, while that of LaCoO₃ decreased from 81% to 72.1% during the 20 h reaction.

To investigate the cyclic stability of LaFe_{0.4}Co_{0.6}O₃, the used sample was regenerated by calcined at 350 °C under N₂ (30 mL·min⁻¹) for 90 min to remove elemental sulfur and then calcined at 600 °C under 30 mL·min⁻¹ airflow (21% O₂ and 79% N₂) for 90 min to decompose ferric sulfate [39]. As shown in Fig. 6D, the H₂S conversion of LaFe_{0.4}Co_{0.6}O₃ and LaCoO₃ keeps stable at 100% and 81.2% for 10 h and 6 h in the first run, respectively. During the first two regenerations, the stability of LaCoO₃ and LaFe_{0.4}Co_{0.6}O₃ remain unchanged, while there is only a slight decline of H₂S conversion and S selectivity over these two catalysts after the third run. This result indicates that the deposited sulfur and sulfate could be effectively removed through the initial staged regeneration process. After fifth run, the LaFe_{0.4}Co_{0.6}O₃ exhibits 90.1% H₂S conversion and 92.3% S selectivity, whereas those of LaCoO₃ are 56.1% and 78.3%. This phenomenon may be due to the accumulation of sulfate in the pores caused by the long-time reaction, which is difficult to remove completely by regeneration, and thus leads to the decrease in the number of active sites and the decline of catalytic activities. The data also suggest that Fe-doping promotes the recycled catalytic activity for

the H₂S selective oxidation.

Note that the catalytic activities for H₂S selective oxidation over LaFe_{0.4}Co_{0.6}O₃ are better than that of many reported materials in the literature. As for H₂S conversion, the LaFe_{0.4}Co_{0.6}O₃ in our work displayed 100% H₂S conversion at 190 °C. However, many reported works cannot achieve 100% H₂S conversion. For instance, FeO_x/GFC synthesized by Mikinen et al. displayed 95% H₂S conversion at 250 °C [S1], and Fe/Al₂O₃ prepared by Nguyen et al. exhibited 97.7% H₂S conversion at 250 °C [S2]. On the other hand, the LaFe_{0.4}Co_{0.6}O₃ showed 100% S selectivity and yield under the feed gas of H₂S/O₂/N₂ = 0.5/0.25/99.25. However, under the same reaction gas condition, many works got poor results. For example, Zheng et al. reported the synthesis of MIL-53 (Fe), which displayed 92% S selectivity and yield at 180 °C [S3]. 5% V₂O₅/Ce-Lap catalyst synthesized by Zhang et al. displayed 88% S yield at 220 °C [S4]. For catalytic stability of H₂S oxidation, the synthesized LaFe_{0.4}Co_{0.6}O₃ maintained 100% H₂S conversion for 10 h and then decreased gradually to 95.1% after reaction for 20 h under H₂S/O₂/N₂ = 0.5/0.25/99.25. Ghasemy et al. reported the synthesis of Mo15/N-CNT nanocatalyst, which displayed 92% H₂S conversion and S selectivity after reaction for 10 h under the feed gas of H₂S/O₂/N₂ = 0.3/0.15/99.55 [S5]. The 8%Fe/Zr-Lap catalyst prepared by Zhang et al. exhibited 98.5% H₂S conversion for 10 h at 180 °C under H₂S/O₂/N₂ = 0.5/0.25/99.25 [S6]. The regeneration property of catalysts is also an important aspect of catalytic performance. In the present work, the LaFe_{0.4}Co_{0.6}O₃ still exhibited 90.1% H₂S conversion and 92.3% S selectivity after five rounds of regeneration-testing under WHSV = 9000 mL·g⁻¹·h⁻¹. Lei et al. studied the catalytic performance of

graphitic carbon nitride for H_2S oxidation, which only showed 80% S yield after five regenerations under $\text{WHSV} = 3000 \text{ mL}\cdot\text{g}^{-1}\cdot\text{h}^{-1}$ [S7]. Overall, the as-synthesized $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ exhibits excellent performance for H_2S selective oxidation.

3.3. Catalytic mechanisms

3.3.1. Oxidation-reduction properties and *in-situ* characterizations

It is accepted that the reducibility and active oxygen species of perovskites are crucial for their catalytic reactivity. Therefore, we applied $\text{H}_2\text{-TPR}$ and $\text{O}_2\text{-TPD}$ measurements to assess these properties of the $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites. The $\text{H}_2\text{-TPR}$ profiles were illustrated in Fig. 7A. For LaCoO_3 , a weak peak below 300 °C is ascribed to the reduction of adsorbed oxygen species. Two peaks located at 366 and 620 °C could be assigned to the reduction of $\text{Co}^{3+} \rightarrow \text{Co}^{2+}$ and $\text{Co}^{2+} \rightarrow \text{Co}^0$, respectively [40]. As for $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites, new peaks appear at around 400 and 680 °C, which are related to the stepwise reduction of $\text{Fe}^{3+} \rightarrow \text{Fe}^{2+}$ and $\text{Fe}^{2+} \rightarrow \text{Fe}^0$, respectively [41]. Compared with LaCoO_3 , the peaks ascribed to the reduction of Co ions over $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites shift to lower temperatures. This implies that Fe-doping improves the mobility of oxygen species and the reduction of cobalt species, finally promoting the redox property of $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites [42]. According to the location of the reduction temperatures, the $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst exhibits the highest reducibility.

To determine the oxygen species in the $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites, the $\text{O}_2\text{-TPD}$ measurements were performed and the results are presented in Fig. 7B. The $\text{O}_2\text{-TPD}$ profiles are divided into three types of peaks at 50–300, 300–600 and 600–900 °C, which are ascribed to the physisorbed oxygen on the surface, the chemisorbed oxygen on the oxygen vacancies, and the lattice oxygen [43]. As for the $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst, the desorption peak assigned to the surface lattice oxygen appears at 710 °C, which is lower than that of LaCoO_3 . This result indicates that

Fe-doping would improve the mobility of surface lattice oxygen. Thereafter, active lattice oxygen is easy to react with H_2S , oxidizing it into sulfur at reaction temperature. Among the $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites, $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ exhibits the largest desorption peak area of chemisorbed oxygen. In general, oxygen vacancies are the reactive sites to adsorb, activate, and migrate the oxygen species [44,52]. That is, $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ exhibits the largest concentration of oxygen vacancies, which is consistent with the XPS results. During the reaction of H_2S oxidation, gaseous O_2 could be dissociated and transferred into active lattice oxygen at oxygen vacancies, which enhances the oxygen mobility to effectively oxidize H_2S [45]. The metal-oxygen binding energy and oxygen mobility would be affected by the difference of electronegativity between metal and oxygen. The electronegativity of Fe, Co and O are 1.83, 1.88 and 3.44, respectively. The larger electronegativity difference of Fe and O causes the Co 3d energy band to be closer to the O 2p orbital, which increases the covalent component and promotes oxygen mobility.

To study the reaction pathway of H_2S oxidation, we conducted an *in-situ* FT-IR analysis of $\text{H}_2\text{S}/\text{O}_2$ co-adsorption on $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ (Fig. 7C). After adsorption at 100 °C, new adsorption peaks corresponding to the adsorbed H_2S (δ_{HSH}) are detected at 1208 and 1407 cm^{-1} . As for the reaction at 150 °C, a new peak assigned to the water (δ_{HOH}) appears at 1638 cm^{-1} , which correlates to the reaction between H_2S and O_2 ($\text{H}_2\text{S} + 1/2 \text{O}_2 \rightarrow \text{S} + \text{H}_2\text{O}$). With the increase of reaction temperature (180 °C), the peak intensity of H_2O decreases due to the desorption of H_2O at high temperatures. After the reaction at 220 °C, several new peaks located at 800–1050 cm^{-1} could be related to the sulfate species [46]. The result demonstrates that the high temperature causes the formation of sulfates resulting from the decrease of sulfur selectivity.

In-situ Raman spectra of $\text{H}_2\text{S}/\text{O}_2$ adsorption were performed further to disclose the reaction process of H_2S oxidation. As illustrated in Fig. 7D, the Raman spectrum at 150 °C presents two weak bands ascribed to the elemental S at 216 (ν_2) and 468 cm^{-1} (ν_1), which could

Fig. 7. (A) $\text{H}_2\text{-TPR}$ profiles and (B) $\text{O}_2\text{-TPD-MS}$ profiles of $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites; (C) *in-situ* FT-IR and (D) *in-situ* Raman spectra of $\text{H}_2\text{S}/\text{O}_2$ adsorption over $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ performed at different temperatures.

be formed by the reaction of $\text{H}_2\text{S} + 1/2 \text{O}_2 \rightarrow \text{S} + \text{H}_2\text{O}$ [47]. The Raman band of sulfur is still maintained after the reaction at 180 °C, implying the further reaction of H_2S selective oxidation. Further increase of reaction temperature (220 °C) causes the formation of sulfates (1390 cm^{-1}), which agrees well with the result of *in-situ* FT-IR experiment. Additionally, the deposition of sulfur and H_2O on the window of *in situ* pool also verifies the selective oxidation of H_2S on the $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ perovskite (Fig. S6).

3.3.2. DFT calculations and reaction mechanism

As shown in Fig. 8A and B, a $(2 \times 2 \times 2)$ supercell was used to simulate the LaCoO_3 , where the Co atoms are six-fold coordinated. The average Co-O bond length is 1.91 Å in the optimized structure. The formation energy of oxygen vacancy (E_{vac}) for LaCoO_3 was calculated by the formula: $E_{\text{vac}} = E_{\text{LaCoO}_3-x} - E_{\text{LaCoO}_3} + 0.5E_{\text{O}_2}$, where E_{O_2} means the energy of O_2 molecule, E_{LaCoO_3-x} and E_{LaCoO_3} represent the total energy of LaCoO_3 with and without an O_v . The calculated E_{vac} value of pure LaCoO_3 is 2.72 eV. After the introduction of an iron atom into the structure (Fig. 8C), the six Fe-O bonds possess an average bond length of 1.92 Å. After optimization calculation, the most stable Fe-doped LaCoO_{3-x} with an O_v is presented in Fig. 8D, and the calculated E_{vac} value is 1.82 eV. The decrease of E_{vac} value indicates that the Fe doping facilitates the formation of oxygen defects over LaCoO_3 [48].

DFT calculations were conducted to study the adsorption behaviors of H_2S on the defective Fe-doped LaCoO_3 surface. Fig. S7 depicts four models for H_2S adsorption at Fe, Co, O_v and O sites of the Fe-doped LaCoO_3 surface. The calculated data show that V- $\text{H}_2\text{S}(\text{O}_v)$ is the most energetically stable configuration. In this structure, H_2S is atop an O_v site with a H_2S adsorption energy of -0.63 eV. This result indicates that H_2S prefers to be adsorbed to the O_v site [49]. The dissociation process of H_2S on the defective Fe-doped LaCoO_3 surface was also investigated. As displayed in Fig. 8E, H_2S adsorption on the O_v site is chosen as the initial state. The S-H bond lengths of adsorbed H_2S are 1.352 Å and 1.356 Å, larger than that of a free H_2S (1.328 Å), indicating the breakage of S-H bond. After the fracture of S-H bond in absorbed H_2S , the first dissociation procedure ($\text{H}_2\text{S} \rightarrow \text{H} + \text{SH}$) occurs with a dissociation energy of -0.98 eV. Subsequently, the second dissociation process ($\text{SH} \rightarrow \text{H} + \text{S}$) proceeds with a dissociation energy of -0.51 eV. The negative values suggest that the H_2S dissociation on the defective Fe-doped LaCoO_3 surface process is favorable.

As above discussed, we proposed a possible reaction pathway (Mars-van Krevelen mechanism) for the H_2S selective oxidation on the $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites. As presented in Fig. 9, H_2S molecule diffuses into the pores and adsorbs on the surface oxygen vacancy. The adsorbed H_2S is oxidized to S by the surface lattice oxygen near the O_v site with the formation of a synergistic oxygen vacancy. Then the synergistic oxygen vacancy is replenished by feed O_2 , leaving an oxygen adatom (O_{ads}) outside the synergistic oxygen vacancy [50]. Finally, the adsorbed O_{ads} could be abstracted by H_2S to form the second sulfur.

Fig. 8. The optimized structures of (A) pure LaCoO_3 and (B) the most stable structure for pure LaCoO_3 with an O_v ; (C) Fe-doped LaCoO_3 , (D) the most stable structure for Fe-doped LaCoO_3 with an O_v ; (E) Schematic of energy profile of H_2S dissociation on defective Fe-doped LaCoO_3 surface. (Red, blue, green and yellow spheres represent O, Co, La and Fe atoms, respectively. The blue circle represents the O_v site.).

3.4. Catalyst stability

To elucidate the reason that is responsible for catalyst deactivation, the used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst was characterized by XRD, XPS and SEM. As depicted in Fig. 10A, the XRD pattern of the used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst is similar to that of the fresh sample, indicating the phase structure was maintained well during the reaction. The SEM image of the used catalyst shown in Fig. 10B further certifies the structural stability of $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$. It is obvious that the $\text{O}_{\text{ads}}/\text{O}_{\text{total}}$ ratio of the used catalyst increased from 0.64 to 0.88 after the stability test (Fig. 10C), implying that O_{lat} species were involved in the reaction. The $\text{S} 2p$ XPS spectra illustrated in Fig. 10D indicate that there are two discernible sulfur components on the used catalyst, the peaks at 163.4 and 168.9 eV are related to the elemental S and sulfate, respectively [51]. The result demonstrates that the deposition of sulfate and sulfur results in the decrease of H_2S oxidation activity.

4. Conclusions

In summary, a series of $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskites were synthesized via a citric acid assisted sol-gel method. The substitution of Co by Fe at the B sites reduces the formation energy of oxygen vacancy and increases the O_v concentration, which facilitates the H_2S adsorption and promotes oxygen mobility that benefits the H_2S selective oxidation. Among the $\text{LaFe}_x\text{Co}_{1-x}\text{O}_3$ perovskite catalysts, $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ perovskite exhibited an optimized H_2S conversion and S selectivity of 100% at 190 °C. The results of DFT calculations also demonstrate that Fe-doping enhances the formation of O_v and the adsorption of H_2S . The findings provide deep insights into designing high-performance perovskite catalysts for oxidative desulfurization.

CRediT authorship contribution statement

Xiaohai Zheng: Conceptualization, Methodology, Funding acquisition, Investigation, Writing - original draft. **Bang Li :** Data curation. **Lijuan Shen :** Formal analysis. **Yanning Cao:** Supervision, Writing - review & editing. **Yingying Zhan:** Resources, Funding acquisition, Methodology. **Shoutian Zheng:** Resources, Formal analysis, Writing - review & editing. **Shiping Wang:** Data curation. **Lilong Jiang:** Supervision, Funding acquisition, Project administration, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Fig. 9. Schematic of H_2S selective oxidation on the $\text{LaFe}_{\text{x}}\text{Co}_{1-\text{x}}\text{O}_3$ perovskites.

Fig. 10. (A) XRD patterns of as-prepared and used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$; (B) SEM image of used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$; (C) O 1s XPS spectra of as-prepared and used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ and (D) S 2p XPS spectra of used $\text{LaFe}_{0.4}\text{Co}_{0.6}\text{O}_3$ catalyst.

Data availability

The authors are unable or have chosen not to specify which data has been used.

Acknowledgements

The authors gratefully acknowledge the National Science Fund for Distinguished Young Scholars of China (21825801), National Natural Science Foundation of China (NSFC) (22178060, 22208060, 22278073 and 22208055), National Key Research and Development Program of China (2018YFA0209403), China Postdoctoral Science Foundation

(2022M720740), Qingyuan Innovation Laboratory Testing Fund of Precious Apparatus (QYT2023001) and Major Program of Qingyuan Innovation Laboratory (00121003).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.122526.

References

- [1] Y. Pan, M. Chen, Z. Su, K. Wu, Y. Zhang, D. Long, Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H₂S oxidation, *Appl. Catal. B Environ.* 280 (2021), 119444.
- [2] S. Chen, Y. Guo, J. Zhang, Y. Guo, X. Liang, CuFe₂O₄/activated carbon adsorbents enhance H₂S adsorption and catalytic oxidation from humidified air at room temperature, *Chem. Eng. J.* 431 (2022), 134097.
- [3] F. Zhang, Z. Wei, G. Jiang, G. Li, M. Zhao, Z. Zhang, J. Cheng, Z. Hao, Synergistic conversion of acid gases (H₂S and CO₂) to valuable chemicals: carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts, *Appl. Catal. B Environ.* 319 (2022), 121912.
- [4] S. Lyu, W. Wu, R. Xiong, C. Yang, B. Sa, J. Zhang, Y. Hou, X. Wang, Carbon-rich carbon nitride nanocatalysts for H₂S selective oxidation, *J. Catal.* 413 (2022) 992–1004.
- [5] X. Zheng, J. Cai, Y. Cao, L. Shen, Y. Zheng, F. Liu, S. Liang, Y. Xiao, L. Jiang, Construction of cross-linked δ-MnO₂ with ultrathin structure for the oxidation of H₂S: structure-activity relationship and kinetics study, *Appl. Catal. B Environ.* 297 (2021), 120402.
- [6] X. Zhang, Z. Wang, Y. Tang, N. Qiao, Y. Li, S. Qu, Z. Hao, Catalytic behaviors of combined oxides derived from Mg/Al_xFe_{1-x}Cl layered double hydroxides for H₂S selective oxidation, *Catal. Sci. Technol.* 5 (2015) 4991–4999.
- [7] X.Y. Zhang, L. Cui, D.H. An, J.P. Fu, J. Liu, Y. Dong, H₂S-selective catalytic oxidation to sulfur over iron oxide sorbent supported on semi-Coke, *Energy Fuels* 34 (2020) 2315–2322.
- [8] X. Zheng, J. Cai, W. Zhao, S. Liang, Y. Zheng, Y. Cao, L. Shen, Y. Xiao, L. Jiang, Porous α-Fe₂O₃/SnO₂ nanoflower with enhanced sulfur selectivity and stability for H₂S selective oxidation, *Chin. Chem. Lett.* 32 (2021) 2143–2150.
- [9] Y. Wang, H. Arandiyani, H.A. Tahini, J. Scott, X. Tan, H. Dai, J.D. Gale, A.L. Rohl, S. C. Smith, R. Amal, The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts, *Nat. Commun.* 8 (2017) 1–7.
- [10] Y. Xu, J. Dhainaut, J.-P. Dacquin, A.-S. Mamede, M. Marinova, J.-F. Lamoulier, H. Vezin, H. Zhang, S. Royer, La_{1-x}(Sr, Na, K)_xMnO₃ perovskites for HCHO oxidation: the role of oxygen species on the catalytic mechanism, *Appl. Catal. B Environ.* 287 (2021), 119955.
- [11] X. Zheng, Y. Li, S. Liang, Z. Yao, Y. Zheng, L. Shen, Y. Xiao, Y. Zhang, C. Au, L. Jiang, Promoting effect of Cu-doping on catalytic activity and SO₂ resistance of porous CeO₂ nanorods for H₂S selective oxidation, *J. Catal.* 389 (2020) 382–399.
- [12] H. Wang, X. Dong, T. Zhao, H. Yu, M. Li, Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(Co_xNi_{1-x})_{0.5}Fe_{0.5}O₃ perovskite precursor: catalytic activity and coking resistance, *Appl. Catal. B Environ.* 245 (2019) 302–313.
- [13] Y. Zheng, Y. Chen, E. Wu, X. Liu, B. Huang, H. Xue, C. Cao, Y. Luo, Q. Qian, Q. Chen, Amorphous boron dispersed in LaCoO₃ with large oxygen vacancies for efficient catalytic propane oxidation, *Chem. Eur. J.* 27 (2021) 4738–4745.
- [14] Y. Li, C. Yang, H. Fan, Y. Wang, M. Duan, Y. Feng, J. Lin, Enhanced sulfur selectivity for H₂S catalytic oxidation over Fe₂O₃/UiO-66 catalyst, *Sep. Purif. Technol.* 289 (2022), 120791.
- [15] M. Sun, X. Wang, Y. Li, Z. Zhao, J. Qiu, Selective catalytic oxidation of pollutant H₂S over Co-decorated hollow N-doped carbon nanofibers for high-performance Li-S batteries, *Appl. Catal. B Environ.* 317 (2022), 121763.
- [16] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, *Phys. Rev. B* 49 (1994) 14251.
- [17] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Comp. Mater. Sci.* 6 (1996) 15–50.
- [18] T. Wang, C. Zhang, J. Wang, H. Li, Y. Duan, Z. Liu, J.Y. Lee, X. Hu, S. Xi, Y. Du, The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO₃ perovskite oxides, *J. Catal.* 390 (2020) 1–11.
- [19] P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, AFeO₃ (A=La, Nd, Sm) and LaFe_{1-x}Mg_xO₃ perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties, *Appl. Catal. B Environ.* 29 (2001) 239–250.
- [20] P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, P. Porta, La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion, *Appl. Catal. B Environ.* 33 (2001) 193–203.
- [21] A. Bhalla, R. Guo, R. Roy, The perovskite structure-a review of its role in ceramic science and technology, *Mater. Res. Innov.* 4 (2000) 3–26.
- [22] H. Liu, B. Guo, K. Zheng, R. Xie, X. Zhang, X. Wu, Y. Zhang, C. Li, Novel visible-light-driven photoconductive properties of LaCoO₃ epitaxial nano-thin films, *Mater. Lett.* 209 (2017) 446–449.
- [23] S. Ajmal, I. Bibi, F. Majid, S. Ata, K. Kamran, K. Jilani, S. Nouren, S. Kamal, A. Ali, M. Iqbal, Effect of Fe and Bi doping on LaCoO₃ structural, magnetic, electric and catalytic properties, *J. Mater. Res. Technol.* 8 (2019) 4831–4842.
- [24] H. Liu, W. Jia, X. Yu, X. Tang, X. Zeng, Y. Sun, T. Lei, H. Fang, T. Li, L. Lin, Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural, *ACS Catal.* 11 (2021) 7828–7844.
- [25] L. Kang, B. Wang, Q. Bing, M. Zalibera, R. Büchel, R. Xu, Q. Wang, Y. Liu, D. Gianolio, C.C. Tang, Adsorption and activation of molecular oxygen over atomic copper (I/II) site on ceria, *Nat. Commun.* 11 (2020) 1–11.
- [26] J.-C. Ding, H.-Y. Li, Z.-X. Cai, X.-D. Zhang, X. Guo, LaCoO₃-based sensors with high sensitivity to carbon monoxide, *RSC Adv.* 5 (2015) 65668–65673.
- [27] Y. Zhang, H. Liu, H. Hu, R. Xie, G. Ma, J. Huo, H. Wang, Orientation-dependent structural and photocatalytic properties of LaCoO₃ epitaxial nano-thin films, *Roy. Soc. Open Sci.* 5 (2018), 171376.
- [28] J.G. Kim, Y. Kim, Y. Noh, S. Lee, Y. Kim, W.B. Kim, Bifunctional hybrid catalysts with perovskite LaCo_{0.8}Fe_{0.2}O₃ nanowires and reduced graphene oxide sheets for an efficient Li-O₂ battery cathode, *ACS Appl. Mater. Interfaces* 10 (2018) 5429–5439.
- [29] H. Chang, E. Bjørgum, O. Mihai, J. Yang, H.L. Lein, T. Grande, S. Raaen, Y.-A. Zhu, A. Holmen, D. Chen, Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation, *ACS Catal.* 10 (2020) 3707–3719.
- [30] M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, J.M. Tarascon, Reversible anionic redox chemistry in high-capacity layered-oxide electrodes, *Nat. Mater.* 12 (2013) 827–835.
- [31] H. Wang, Z. Qu, H. Xie, N. Maeda, L. Miao, Z. Wang, Insight into the mesoporous Fe_xCe_{1-x}O_{2-δ} catalysts for selective catalytic reduction of NO with NH₃: regulable structure and activity, *J. Catal.* 338 (2016) 56–67.
- [32] P. García-Muñoz, C. Lefevre, D. Robert, N. Keller, Ti-substituted LaFeO₃ perovskite as photoassisted CWPO catalyst for water treatment, *Appl. Catal. B Environ.* 248 (2019) 120–128.
- [33] W. Li, Y. Hu, H. Jiang, N. Jiang, W. Bi, C. Li, Litchi-peel-like hierarchical hollow copper-ceria microspheres: aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation, *Nanoscale* 10 (2018) 22775–22786.
- [34] Y. Shen, M.J.M. de Vidales, G. Gorni, M.J. Rivero, I. Ortiz, A.J. Dos santos-García, Enhanced peroxyxonosulfate activation in the morphotropic phase boundary of molybdenum doped LaCoO_{3-δ} perovskite, *Chem. Eng. J.* (2022), 137352.
- [35] S. Li, Y. Liu, H. Gong, K.-H. Wu, H. Ba, C. Duong-Viet, C. Jiang, C. Pham-Huu, D. Su, N-doped 3D mesoporous carbon/carbon nanotubes monolithic catalyst for H₂S selective oxidation, *ACS Appl. Nano Mater.* 2 (2019) 3780–3792.
- [36] F. Zhang, X. Zhang, Z. Hao, G. Jiang, H. Yang, S. Qu, Insight into the H₂S selective catalytic oxidation performance on well-mixed Ce-containing rare earth catalysts derived from MgAlCe layered double hydroxides, *J. Hazard. Mater.* 342 (2018) 749–757.
- [37] K.V. Bineesh, D.-K. Kim, M.-I. Kim, M. Selvaraj, D.-W. Park, Design, synthesis and characterization of vanadia-doped iron-oxide pillared montmorillonite clay for the selective catalytic oxidation of H₂S, *Dalton Trans.* 40 (2011) 3938–3945.
- [38] X. Zheng, G. Zhang, Z. Yao, Y. Zheng, L. Shen, F. Liu, Y. Cao, S. Liang, Y. Xiao, L. Jiang, Engineering of crystal phase over porous MnO₂ with 3D morphology for highly efficient elimination of H₂S, *J. Hazard. Mater.* 411 (2021), 125180.
- [39] M. Wu, T. Li, H. Li, H. Fan, J. Mi, Desulfurization of hot coal gas over regenerable low-cost Fe₂O₃/mesoporous Al₂O₃ prepared by the sol-gel method, *Energy Fuels* 31 (2017) 13921–13932.
- [40] Y. Luo, Y. Zheng, X. Feng, D. Lin, Q. Qian, X. Wang, Y. Zhang, Q. Chen, X. Zhang, Controllable P doping of the LaCoO₃ catalyst for efficient propane oxidation: optimized surface Co distribution and enhanced oxygen vacancies, *ACS Appl. Mater. Interfaces* 12 (2020) 23789–23799.
- [41] X. Zheng, Y. Li, Y. Zheng, L. Shen, Y. Xiao, Y. Cao, Y. Zhang, C.-T. Au, L. Jiang, Highly efficient porous Fe_xCe_{1-x}O_{2-δ} with three-dimensional hierarchical nanoflower morphology for H₂S-selective oxidation, *ACS Catal.* 10 (2020) 3968–3983.
- [42] J.A. Onrubia-Calvo, B. Pereda-Ayo, I. Cabrejas, U. De-La-Torre, J.R. González-Velasco, Ba-doped vs. Sr-doped LaCoO₃ perovskites as base catalyst in diesel exhaust purification, *Mol. Catal.* 488 (2020), 110913.
- [43] S. Wang, X. Xu, J. Zhu, D. Tang, Z. Zhao, Effect of preparation method on physicochemical properties and catalytic performances of LaCoO₃ perovskite for CO oxidation, *J. Rare Earth.* 37 (2019) 970–977.
- [44] J. Yang, S. Hu, L. Shi, S. Hoang, W. Yang, Y. Fang, Z. Liang, C. Pan, Y. Zhu, L. Li, Oxygen vacancies and lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides, *Environ. Sci. Technol.* 55 (2021) 9243–9254.
- [45] T. Gao, J. Chen, W. Fang, Q. Cao, W. Su, F. Dumégnil, Ru/Mn_xCe_{1-x}O_y catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation, *J. Catal.* 368 (2018) 53–68.
- [46] S. Kataoka, E. Lee, M.I. Tejedor-Tejedor, M.A. Anderson, Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO₂, *Appl. Catal. B Environ.* 61 (2005) 159–163.
- [47] T. Raabe, H. Rasser, S. Nottebaum, A. Groß, H. Krause, S. Kureti, Mechanistic study on H₂S and subsequent O₂ adsorption on iron oxides and hydroxides, *Appl. Surf. Sci.* 565 (2021), 150504.
- [48] X. Zheng, Y. Li, L. Zhang, L. Shen, Y. Xiao, Y. Zhang, C. Au, L. Jiang, Insight into the effect of morphology on catalytic performance of porous CeO₂ nanocrystals for H₂S selective oxidation, *Appl. Catal. B Environ.* 252 (2019) 98–110.
- [49] S. Zhao, L. Ling, B. Wang, R. Zhang, D. Li, Q. Wang, J. Wang, Theoretic insight into the desulfurization mechanism: removal of H₂S by ceria (110), *J. Phys. Chem. C* 119 (2015) 7678–7688.
- [50] X. Zheng, Y. Li, W. You, G. Lei, Y. Cao, Y. Zhang, L. Jiang, Construction of Fe-doped TiO_{2-x} ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H₂S, *Chem. Eng. J.* 430 (2021), 132917.
- [51] C. Yang, H. Ye, J. Byun, Y. Hou, X. Wang, N-rich carbon catalysts with economic feasibility for the selective oxidation of hydrogen sulfide to sulfur, *Environ. Sci. Technol.* 54 (2020) 12621–12630.
- [52] X. Zheng, P. Yu, Y. Liu, Y. Ma, Y. Cao, Z. Cai, L. Zhou, K. Huang, S. Zheng, L. Jiang, Efficient Hydrogenation of Methyl Palmitate to Hexadecanol over Cu/m-ZrO₂ Catalysts: Synergistic Effect of Cu Species and Oxygen Vacancies, *ACS Catal.* 13 (2023) 2047–2060.