Online Signature Verification Using Machine Learning

- Basel Al-Raoush
- Supervisor: Dr. Mohammed Saleem
- Budapest University of Technology and Economics

What is Online Signature Verification?

- Biometric method for identity verification
- Dynamic traits: pressure, tilt, direction
- Harder to forge than static (offline) signatures
- Used in banking, digital signing, legal access

Datasets Used

- Main dataset: MCYT (100 users, real + forged)
- Additional: Chinese, Dutch, German, SVC datasets
- All datasets pre-split (train/test)

Insights from EDA

- Forged signatures = higher pressure, more variation
- Balanced class distribution, clean data
- Azimuth: more scattered in forgeries

Features & Preprocessing

- Key features: pressure (P), azimuth (az),
 X/Y motion
- Extracted: mean, std, min, max
- Standardized features (z-score)

Models Trained

- Baseline models: Logistic Regression, SVM, KNN, RF
- Advanced models: XGBoost, MLP
- •Ensemble methods: Voting, Stacking
- •Best (MCYT): MLP & RF \rightarrow F1 > 0.84, EER \sim 0.16

Ensemble Performance

- VotingClassifier: best balance of precision/recall
- •StackingClassifier: didn't outperform simpler models

Cross-Dataset Comparison

- Dutch: easiest dataset (F1 > 0.89)
- SVC: hardest (F1 ~ 0.71, EER > 0.3)
- MLP most consistent across datasets

Key Takeaways

- X and Y were most influential (Random Forest)
- Complex models help, but not always better than RF
- Feature engineering was critical
- Ensemble models improve robustness

Conclusion & Future Work

- •ML models can reliably detect forged signatures
- •MLP & RF are ready for deployment

• Future work:

- Temporal sequence modeling (e.g., RNNs)
- Personalized thresholds per user
- Signature augmentation for low-data users