Pattern Recognition in Road Accidents

ADWAIT SAHASRABHOJANEE

XUE YU

SREEJITH SREEKUMAR
XUEXIAN LI

Introduction

- Importance to evaluate road accident pattern
- Data complexity
 - Both categorical and numerical data
 - Temporal and spatial characteristics

Image courtesy: https://www.colourbox.com/vector/car-crash-accident-with-two-damaged-auto-vector-293/757

Approach

Data collection

- -- U.K. Department of Transportation
- -- 1 million accidents and 6 years of traffic flow

Unsupervised machine learning

- -- Exploratory Data Analysis
- -- Association analysis
- -- PCA
- -- Clustering

Association analysis

X = Condition of the accident

Y = 'Police_officer_attend = Yes'

Support(X \rightarrow Y) =
$$\frac{P(X \cup Y)}{P(I)} = \frac{\text{num}(X \cup Y)}{\text{num}(I)}$$

Interesting Findings

Number of Vehicles = 1, Police Officer Attend = Yes

Number of Vehicles >= 3, Police Officer Attend = Yes

Exploratory Data Analysis

Spatial Distribution of Accidents

Scope of the Project

Studying Traffic Density in London

Segregation of accidents in London using numeric attributes

Principal Component Analysis

DBSCAN on first six components

Clustering on Nominal Variables

- Variables are one-hot encoded
- Manhattan distances are calculated
- 3. The K-medoids algorithm is used to cluster the data

Why doesn't K-means work?

The centroids in K-means can be points that do not exist in the data.

Results of clustering

Cluster	Road_Surface_Conditions	Light_Conditions	Carriageway_Hazards	Special_Conditions_at_Site
1	Wet/Damp	Darkness: Street lights present and lit	None	None
2	Dry	Darkness: Street lights present and lit	None	None
3	Dry	Daylight: Street light present	None	None
4	Wet/Damp	Daylight: Street light present	None	None

Hierarchical clustering

Algorithm

- -- Evaluate the variable contributions
- -- Separate quantitative and qualitative variables
- -- hierarchical/k-means clustering
 - -- PCAMIX
- -- Bootstrap to evaluate cluster numbers

Results for hierarchical clustering

- -- Three clusters
- -- generally grouped as:
 - -- Weather condition
 - -- Accident condition
 - -- Road condition

Cluster Dendrogram

Conclusions

Pattern recognition results

- -- PCA
- -- Clustering analysis with k-means, DBSCAN, and k-medoids algorithms
- -- Hierarchical analysis of variables weight

Suggested future work

- -- Incorporate socio-demographic data into analysis
- -- Build interactive visualizations of pattern recognition

