

Разреженные матрицы и маскирование в GraphBLAS

Рустам Азимов

Разреженность матриц

Разреженные форматы для матриц

- ► COO
- ► CSR, CSC
- ▶ Блочные, древовидные и т.д.

Формат СОО

COO (coordinate list)

nnz = 11(number of nonzero)

	0	1	2	3	4	5	6	7	8	9	10	11
cols:	0	3	1	3	4	0	1	3	4	2	4	
rows:	0	0	1	1	1	3	3	3	3	4	4	
vals:	2	7	3	5	5	1	1	6	9	2	3	

Память: 3×nnz

Доступ к ряду: log(nnz)

Форматы CSR и CSC

CSR (compressed sparse row)

COO row - major

cols: 0 1 2 3 4 5 6 7 8 9 10 1 cols: 0 3 1 3 4 0 1 3 4 2 4 cols: 0 0 1 1 1 1 3 3 3 3 3 4 4 cols: vals: 2 7 3 5 5 1 1 6 9 2 3

CSR

> Память: 2×nnz + (nrows + 1) Доступ к ряду: O(1)

CSC (compressed sparse column)

COO column - major

cols: 0 0 1 2 3 4 5 6 7 8 9 10 1 cols: 0 0 1 1 2 3 3 3 3 4 4 4 4 rows: 0 3 1 3 4 0 1 3 1 3 4 cols: vals: 2 1 3 1 2 7 5 6 5 9 3

CSC

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 2

 0
 2
 4
 5
 8
 11
 ...
 ...
 ...
 ...

 0
 3
 1
 3
 4
 0
 1
 3
 1
 3
 4

 2
 1
 3
 1
 2
 7
 5
 6
 5
 9
 3

Память: 2×nnz + (ncols + 1) Доступ к столбцу: O(1)

rows ptr:

rows:

vals:

Пример CSR

CSR representation of **A**:

Разреженные матрицы в GraphBLAS

- ightharpoonup Стандартно используется CSR, так как в большинстве алгоритмов интересуют выходящие рёбра edge(i,j) и ячейки A(i,j)
- ▶ Также в некоторых случаях можно использовать СЅС формат
- ▶ Для CSR и CSC также имеются hypersparse версии для очень разреженных матриц
- ightharpoonup Для матрицы A размера n imes m
 - ightharpoonup CSR O(n+e) памяти
 - ightharpoonup CSC O(m+e)
 - ▶ hypersparse CSR и CSC O(e)

- Использование масок может существенно снизить сложность алгоритмов
- При правильных масках мы можем не делать кучу ненужных вычислений
- ▶ Например, в некоторых графах нам достаточно исследовать лишь небольшую их часть, но без масок нам придётся обойти весь граф

Маскирование в GraphBLAS

- Без маски
- С обычной маской
- С комплементарной маской

 $\mathbf{w} = \mathbf{f} \oplus . \otimes \mathbf{A}$

Mаскирование в GraphBLAS

- Без маски
- С обычной маской
- С комплементарной маской

Маскирование в GraphBLAS

- Без маски
- ▶ С обычной маской
- С комплементарной маской

Модификаторы операций в GraphBLAS

- ▶ Транспонирование входных матриц
- Использование аккумулятора (accumulator operator)
- Маскирование (обычное или комплементарное)
- Очистка матрицы перед записью результата (replace)

Аккумулятор

- ightharpoonup Пусть мы хотим вычислить $C = A \otimes B$
- Бывают ситуации, когда мы не хотим перезаписывать содержимое матрицы C, а хотим добавить новую информацию с помощью некоторого бинарного оператора \odot
- Аккумулятор позволяет задать такой бинарный оператор и при выполнении $C = A \otimes B$ на самом деле выполнится $C = C \odot (A \otimes B)$
- lacktriangle Пусть T результат вычисления $A\otimes B$, тогда фаза использования аккумулятора выглядит следующим образом

Accumulator Phase: compute
$$\mathbf{Z} = \mathbf{C} \odot \mathbf{T}$$
:
if accum is NULL
$$\mathbf{Z} = \mathbf{T}$$
else
$$\mathbf{Z} = \mathbf{C} \odot \mathbf{T}$$

Replace

▶ После фазы использования аккумулятора следует фаза, в которой используются маска и replace опция

```
Mask/Replace Phase: compute C(M) = Z:
       if (Grb_REPLACE) delete all entries in C
       if Mask is NULL.
              if (GrB_COMP)
                      C is not modified
               else
                      C = Z
       else
              if (GrB_COMP)
                      \mathbf{C}\langle \neg \mathbf{M} \rangle = \mathbf{Z}
               else
                      \mathbf{C}\langle \mathbf{M} \rangle = \mathbf{Z}
```

GraphBLAS C API

A. Buluç et al.: Design of the GraphBLAS C API, GABB@IPDPS 2017

Нотация GraphBLAS

symbol	operation	notation
⊕.⊗	matrix-matrix multiplication	$C\langle M\rangle\odot=A\oplus.\otimes B$
	vector-matrix multiplication	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{v}\oplus.\otimes\mathbf{A}$
	matrix-vector multiplication	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}\oplus.\otimes\mathbf{v}$
8	element-wise multiplication	$C\langle M\rangle\odot=A\otimes B$
	(set intersection of patterns)	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}\otimes\mathbf{v}$
0	element-wise addition	$C\langle M \rangle \bigcirc = A \oplus B$
	(set union of patterns)	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}\oplus\mathbf{v}$
f		$\mathbf{C}\langle \mathbf{M} \rangle \bigcirc = f(\mathbf{A})$
	apply unary operator	$\mathbf{w}\langle\mathbf{m}\rangle\bigcirc=f(\mathbf{v})$
[⊕…]	reduce to vector	$\mathbf{w}\langle\mathbf{m}\rangle\bigcirc=\left[\bigoplus_{j}\mathbf{A}(:,j)\right]$
	reduce to scalar	$s \bigcirc = [\bigoplus_{ij} \mathbf{A}(i,j)]$
\mathbf{A}^{T}	transpose matrix	$C\langle M \rangle \bigcirc = A^{\top}$
-	extract submatrix	$C\langle M \rangle \bigcirc = A(i,j)$
	extract submatrix	$\mathbf{w}\langle\mathbf{m}\rangle\bigcirc=\mathbf{v}(\mathbf{i})$
-	assign submatrix	$C\langle M\rangle(i,j)\odot=A$
	with submask for C(I, J)	$w\langle m\rangle(i)\odot=v$
-	assign submatrix	$C(i,j)\langle M\rangle\odot=A$
	with mask for C	$w(i)\langle m\rangle\bigcirc=v$
-	apply coloct operator (CvP)	$\mathbf{C}\langle\mathbf{M}\rangle\bigcirc=f(\mathbf{A},k)$
	apply select operator (GxB)	$\mathbf{w}\langle\mathbf{m}\rangle\bigcirc=f(\mathbf{v},k)$
-	Kronecker product	$C\langle M \rangle \bigcirc = kron(A, B)$

Задача подсчёта треугольников

- ► Такая задача была поставлена в IEEE GraphChallenge 2017
- ▶ По заданному графу требуется определить количество "треугольников"
- ▶ "Треугольник" множество, состоящее из трёх попарно смежных вершин графа
- Какой ответ на задачу для данного примера?

Задача подсчёта треугольников: наивный подход

Задача подсчёта треугольников: поэлементное умножение

Задача подсчёта треугольников: маскирование

Cohen's algorithm

Cohen's algorithm

$$A = L + U$$
 (hi->lo + lo->hi)
 $L \times U = B$ (wedge, low hinge)
 $A \wedge B = C$ (closed wedge)
 $sum(C)/2 = 4 \text{ triangles}$

Azad, B., Gilbert. "Parallel triangle counting and enumeration using matrix algebra". IPDPSW, 2015

Cohen's algorithm: GraphBLAS псевдокод

Input: adjacency matrix **A**

Output: triangle count *t*

Workspace: matrices L, U, B, C

1. $\mathbf{L} = \text{tril}(\mathbf{A})$

extract the lower triangle from A

2. $\mathbf{U} = \text{triu}(\mathbf{A})$

extract the upper triangle from A

3. $\mathbf{B} = \mathbf{L} \oplus . \otimes \mathbf{U}$

4. $\mathbf{C} = \mathbf{B} \otimes \mathbf{A}$

5. $t = \sum C/2$

sum the values in C and divide by 2

Cohen's algorithm: пример

Cohen's algorithm: пример с маской

Cohen's algorithm: SuiteSparce:GraphBLAS

```
* Given, L. the lower triangular portion of n x n adjacency matrix A (of and
* undirected graph), computes the number of triangles in the graph.
                                                 // L: NxN. lower-triangular . bool
uint64_t_triangle_count(GrB_Matrix_L)
  GrB_Index n:
                                                 // n = \# of vertices
 GrB Matrix prows(&n. L):
 GrB Matrix C:
 GrB_Matrix_new(&C, GrB_UINT64, n, n);
 GrB_Monoid UInt64Plus:
                                                  // integer plus monoid
 GrB_Monoid_new(&UInt64Plus, GrB_PLUS_UINT64,0 ul);
 GrB_Semiring UInt64Arithmetic:
                                                  // integer arithmetic semiring
 GrB_Semiring_new(&UInt64Arithmetic, UInt64Plus, GrB_TIMES_UINT64);
 GrB_Descriptor desc_tb:
                                                  // Descriptor for mam
 GrB_Descriptor_new(&desc_tb):
  GrB_Descriptor_set(desc_tb, GrB_INP1, GrB_TRAN); // transpose the second matrix
 GrB_mxm(C, L, GrB_NULL, UInt64Arithmetic, L, L, desc_tb): // C<L> = L *.+ L'
  uint64_t count:
 GrB-reduce(&count. GrB-NULL. UInt64Plus. C. GrB-NULL): // 1-norm of C
 GrB_free(&C):
                                    // C matrix no longer needed
 GrB_free(&UInt64Arithmetic); // Semiring no longer needed
                                 // Monoid no longer needed
 GrB_free(&UInt64Plus):
 GrB_free(&desc_tb):
                                    // descriptor no longer needed
                                                         http://graphblas.org
  return count:
```

Sandia algorithm

Input: adjacency matrix **A**

Output: triangle count *t*

Workspace: matrices L, U, B, C

1.
$$\mathbf{L} = \text{tril}(\mathbf{A})$$

- 2. $\mathbf{C}\langle \mathbf{L}\rangle = \mathbf{L} \oplus . \otimes \mathbf{L}$
- 3. $t = \sum \mathbf{C}$

extract the lower triangle from A

multiply matrices L and L using mask L

sum the values in C

Sandia algorithm: пример

Источники

- ▶ Книга: Kepner J., Gilbert J. "Graph algorithms in the language of linear algebra"
- Презентация: Gábor Szárnyas "Introduction to GraphBLAS"
- Презентация: Aydın Buluç Sparse Matrices Beyond Solvers: Graphs, Biology, and Machine Learning