Ai Security

Term-Project

딥러닝 기반 네트워크 트래픽 분류

GIT-HUB 용 이름, 학번 x

Table of contents

- **1** 프로젝트 개요
- 2 Train 전처리 과정
- 모델 선정
- 4 모델 학습 및 검증
- **5** Test 전처리 과정
- 6 테스트 결과
- 7 참 조 문 헌

목적

딥러닝 기반으로 네트워크 트래픽을 분류 하는것이 목적

이유 및 목적

네트워크 트래픽의 분류의 중요성과 사이버 보안 의 역할

정상 트래픽 네트워크와 공격 트래픽 네트워크를 딥러닝을 통해서 학습시키고 분류하는게 목표

트래픽 유형

정상적인 트래픽인 Normal 9가지 공격 유형이 존재

(Fuzzers, Analysis, Backdoors, Dos, Exploits, Generic, Reconnaissance, Shellcode, Worms)

Train 전처리 과정

1. 데이터 로드 및 불필요한 칼럼 제거

- 1. 데이터 셋을 로드하고, 분석에 필요 없는 칼럼을 제거하여 필요한 특성만 남김.
- 2. 데이터셋의 'id' 칼럼을 제거하여 학습에 영향을 주지 않도록 하고, attack_cat 칼럼은 타겟 변수로 사용되므로, 이를 제외한 나머지 칼럼을 학습 특성으로 사용

3. 범주형 변수 원핫 인코딩으로 처리

- 1. 범주형 데이터를 원핫 인코딩을 통해 이진 벡터로 변환하여 모델이 이를 처리할 수 있게 만듦.
- 2. 원핫 인코딩인 이유: 라벨 인코딩과 달리 각 범주를 이진벡터로 변환하고 각 범주를 독립적으로 처리하 여 잘못된 순서나 크기를 학습하지 않고 새로운 범주 는 이를 무시하고 일관성 있게 학습을 할 수 있음

2. Attack_cat 인코딩 및 결측치 처리

- 1. 모델에서 attack_cat을 처리할 수 있도록, 숫자로 변환하고 결측치도 처리하여 학습에 영향을 주지 않도록함.
- 2. attack_cat을 인코딩한 이유: attack_cat는 문자열로 되어있어 모델이 이를 처리할 수 없기 때문에 숫자로 변환하여 모델이 이해할 수 있도록 처리

4. 데이터 스케일링 및 특성 결합

- 변수들 간의 크기 차이를 줄여 학습 효율성을 높이고 모든 데이터를 일관된 형식으로 결합
- 2. 스케일링을 통해 각 특성 변수들을 정규화하여 변수 간의 크기 차이를 줄임. 원핫 인코딩으로 범주형 데이 터를 기존의 수치형 데이터와 결합하여 최종 학습데 이터를 만듦

CNN 모델 선정 이유

CNN 장점

- 1. 지역적 특징 학습: 지역적 패턴을 인식하여 이미지나 시 퀀스 데이터에서 효과적.
- 2. **파라미터 효율성**: 필터를 공유하여 학습할 파라미터 수 가 줄어듦.
- 3. **공간적 구조 보존**: 이미지의 공간적 관계를 유지하며 학습 가능.

이러한 장점을 바탕으로 네트워크 트래픽 분류라는 시계열 데이터에서 일정한 패턴을 찾아내는 것이 적합하다고 생각 하였고, CNN 특성상 레이어를 추가하거나 삭제하는 하는 등 모델을 확장에도 용이하여 선택.

Training

 Epoch 1/10, Train Loss: 0.6805, Val Loss: 0.5691, Val Acc: 78.07% Epoch 2/10, Train Loss: 0.5530, Val Loss: 0.5336, Val Acc: 79.04% Epoch 3/10, Train Loss: 0.5278, Val Loss: 0.5246, Val Acc: 78.99% Epoch 4/10, Train Loss: 0.5117, Val Loss: 0.5054, Val Acc: 80.19% Epoch 5/10, Train Loss: 0.5008, Val Loss: 0.5053, Val Acc: 80.01% Epoch 6/10, Train Loss: 0.4919, Val Loss: 0.4925, Val Acc: 80.60% Epoch 7/10, Train Loss: 0.4850, Val Loss: 0.4910, Val Acc: 80.46% Epoch 8/10, Train Loss: 0.4795, Val Loss: 0.4832, Val Acc: 80.89% Epoch 9/10, Train Loss: 0.4756, Val Loss: 0.4818, Val Acc: 80.91% Epoch 10/10, Train Loss: 0.4733, Val Loss: 0.4808, Val Acc: 81.00% Model saved to /content/drive/MyDrive/train_save/cnn_model_epoch.pth

학습 과정 및 정확도

모델설정: 10 Epoch, 학습율조절: 1e-4, 배치사이즈: 32로설정

1. Train Loss 와 Val Loss

Train Loss: 0.6805 -> 0.4733 로 감소

Val Loss: 0.5691 -> 0.4808 로 감소

2. 검증 정확도

Epoch: 1일때, 78.07% -> Epoch: 10일때 81%로 증가

정확도는 점진적으로 상승

이를 통해 학습을 통해서 손실율은 감소, 검증 정확도는 증가 했다는 것을 알 수 있음.

Training Loss

Training Val Accuracy

Test 전처리 과정

1. ld 컬럼 처리

- 1. Id 컬럼에서 데이터에서 분리하여, 해당 정보를 별도로 저장하고 데이터를 제거하여 모델 학습에 방해하지 않도록 함
- 2. Id 컬럼 제거한 이유 : 모델 학습에 영향을 미치지 않기에 학습에 방해되지 않도록 제거함.

3. 데이터 변환 및 스케일링

- 1. 데이터를 모델에 적합한 형태로 변환하고, 각 특성 간의 차이를 줄여 학습의 효율성을 높임
- 원핫 인코딩을 통해 인코딩 된 데이터와 기존의 수치 형 데이터가 결합된 형태로 변환
- 3. Trian code에서 저장한 scaler을 로드하여 스케일링 수 행

2. 범주형 칼럼 처리

- 1. Train code와 마찬가지로 변수들을 모델이 처리할 수 있는 형태로 변환
- 2. 가능한 범주형 변수들을 원핫 인코딩 함.
- 3. 원핫 인코딩은 미리 train_code에서 저장한 pkl를 로드하여 수행.

4. 반환 값 처리

- 1. 전처리된 데이터와 필요시 id 정보 반환
- 2. Return_ids가 참이면 id와 함께 전치리된 데이터를 반 환
- 3. Return_ids가 거짓이면 id 없이 전처리된 데이터만 반 환

Part 7 테 스 트 결 과

테스트 샘플 수 확인

💺 attack_cat counts:

Normal: 27750 samples Fuzzers: 12236 samples Analysis: 373 samples Backdoor: 1 samples DoS: 422 samples

Exploits: 18851 samples Generic: 18045 samples

Reconnaissance: 4164 samples

Shellcode: 490 samples

Worms: O samples

테스트 정확도

Test Accuracy: 75.05%

테스트 예측 결과

Train code에서 정확도가 81%라는 준수한 성능이 나와, Test code에서도 그와 비슷한 성능이 나올 거라고 예측.

예측한 칼럼과 실제 칼럼을 비교 결과 75.05%라는 결과가 나옴 하지만 Worms 공격 유형에 대한 값이 0 이라 예측일 잘 하지 못 했다 는걸 알수 있음

정확도는 높은 편이지만, 특정 공격 유형에 대한 예측은 실패함.

이를 통해, 데이터 불균형 문제나 특정 공격 유형에 대한 추가 학습이 필요하다는 걸 알 수 있음.

Part 8

참고 문헌

<Git hub>

- https://github.com/2hyes/security_ml
- https://github.com/Hashehri/Network-Traffic-Classification-UNSW-NB15/blob/main/code/ML/testmodeling.ipynb

<사이트>

• https://research.unsw.edu.au/projects/unsw-nb15-dataset < UNSW 대학 NB15 데이터셋>

<논문>

- https://arxiv.org/abs/2106.12693 <deep learning for network taffic classification>
- https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=JAKO201935236776145
- <네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구>
- https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART00 2935940
- <마이터 어택과 머신러닝을 이용한 UNSW-NB15 데이터셋 기반 유해 트래픽 분류>

<기타>

• [9주차]_AI보안_실습_NIDS 실습 소스.

