Association Caus

Subtle points

Outline

Association vs Causation

Arvid Sjölander

Department of Medical Epidemiology and Biostatistics Karolinska Institutet

A short course on concepts and methods in Causal Inference

Association Causation Subtle points

Outline

Association

Association

Causation

Subtle points

Association

Causation

Subtle points

- Suppose we are interested in the relation between an exposure, *A*, and an outcome, *Y*
- We assume for simplicity that both A and Y are binary
 - we use '0' for 'unexposed/no outcome', and '1' for 'exposed/outcome'
- We assume that population data are available (infinite sample size)
 - no need for p-values, confidence intervals etc
- These conditions are often unrealistic, but are useful for pedagogical purposes
 - will be relaxed later

4日 → 4団 → 4 差 → 4 差 → 9 Q (~)

Association

Joint probability

 Suppose that the population proportions of A and Y are given by

- Among all subjects, 1% are both exposed and have the outcome
- We say that the **joint probability** of (A = 1, Y = 1) is 0.01
- We denote this as Pr(A = 1, Y = 1) = 0.01

Association

Causation

Subtle poir

Conditional probability

- Among the exposed subjects, $\frac{0.01}{0.01+0.09} = 10\%$ have the outcome
- We say that the conditional probability of having the outcome, for exposed subjects, is 0.1
- We denote this as Pr(Y = 1 | A = 1) = 0.1

Marginal probability

		Y	
		0	1
Α	0	0.88	0.02
	1	0.09	0.01
	\sum	0.97	0.03

- · Among all subjects, 3% have the outcome
- We say that the **marginal probability** of Y = 1 is 0.03
- We denote this as Pr(Y = 1) = 0.03

Association

Causation

Subtle points

Definition of association and independence

• We say that A and Y are **independent** if the risk of the outcome is the same for exposed and unexposed:

$$Pr(Y = 1|A = 1) = Pr(Y = 1|A = 0) = Pr(Y = 1)$$

- we sometimes write this as Y II A
- We say that A and Y are associated if the risk of the outcome is different for exposed and unexposed:

$$Pr(Y = 1|A = 1) \neq Pr(Y = 1|A = 0) \neq Pr(Y = 1)$$

• we sometimes write this as Y 1/4 A

Example

• Are A and Y independent or associated in the table?

Association Causation Subtle points

Remark

- There may be several explanations to an association between A and Y
 - A causes Y
 - Y causes A ('reverse causation')
 - A and Y have common causes ('confounding')
- That A and Y are associated only means that certain values of A and Y tend to 'appear together'
 - why this happens is a different question

Association Causation

Solution

$$\frac{0}{A} \frac{1}{0.09} \frac{1}{0.09}$$

$$Pr(Y = 1 | A = 1) = \frac{0.01}{0.01 + 0.09} = 0.1$$

$$Pr(Y = 1 | A = 0) = \frac{0.02}{0.02 + 0.88} = 0.022$$

$$Pr(Y = 1) = 0.02 + 0.01 = 0.03$$

• $Pr(Y = 1|A = 1) \neq Pr(Y = 1|A = 0) \neq Pr(Y = 1)$, so A and Y are associated

Association Causation Subtle point

Measures of association

The risk difference

$$Pr(Y = 1|A = 1) - Pr(Y = 1|A = 0)$$

 $Y \coprod A \Leftrightarrow \text{risk difference} = 0$

The risk ratio

$$\frac{\Pr(Y = 1 | A = 1)}{\Pr(Y = 1 | A = 0)}$$

 $Y \coprod A \Leftrightarrow \text{risk ratio} = 1$

The odds ratio

$$\frac{\Pr(Y = 1 | A = 1)}{\Pr(Y = 0 | A = 1)} / \frac{\Pr(Y = 1 | A = 0)}{\Pr(Y = 0 | A = 0)}$$

 $Y \coprod A \Leftrightarrow \text{odds ratio} = 1$

Example

 Compute the risk difference, the risk ratio, and the odds ratio

Association Causation Subtle po

Conditional association/independence

- Sometimes we wish to stratify data before analysis, e.g.:
 - *L* = 'sex' (0=male, 1=female)
 - Pr(Y = 1 | A = a, L = 1) is the conditional probability of having the outcome, for women with exposure level A = a
 - Pr(Y = 1 | A = a, L = 0) is the conditional probability of having the outcome, for men with exposure level A = a
- Definition:
 - A and Y are conditionally independent, given L, if

$$Pr(Y = 1|A = 1, L) = Pr(Y = 1|A = 0, L) = Pr(Y = 1|L)$$

 $Y \coprod A \mid L$

• A and Y are conditionally associated, given L, if

$$Pr(Y = 1 | A = 1, L) \neq Pr(Y = 1 | A = 0, L) \neq Pr(Y = 1 | L)$$

Y If $A \mid L$

4□ > 4□ > 4 = > 4 = > = 900

Association Causation Subtle points

Solution

$$\frac{|Y|}{A} = \frac{|Y|}{0.088 - 0.02}$$

$$Pr(Y = 1 | A = 1) = \frac{0.01}{0.01 + 0.09} = 0.1$$

$$Pr(Y = 1 | A = 0) = \frac{0.02}{0.02 + 0.88} = 0.022$$

$$risk difference = 0.1 - 0.022 = 0.078$$

$$risk ratio = \frac{0.1}{0.022} = 4.55$$

$$odds ratio = \frac{0.1}{1 - 0.1} / \frac{0.022}{1 - 0.022} = 4.94$$

4日 → 4団 → 4 差 → 4 差 → 9 Q (~)

Association Causation Subtle points

Technical note

- In principle, we could have that
 - Pr(Y = 1|A = 1, L) = Pr(Y = 1|A = 0, L) for some values of L, and
 - $\Pr(Y = 1 | A = 1, L) \neq \Pr(Y = 1 | A = 0, L)$ for other values of L
- When we write $Y \coprod A \mid L$, we mean that Pr(Y = 1 | A = 1, L) = Pr(Y = 1 | A = 0, L) for **all** values of L
- When we write $Y \not\vdash A \mid L$, we mean that $\Pr(Y = 1 | A = 1, L) \neq \Pr(Y = 1 | A = 0, L)$ for **at least one** value of L

Association Causation Subtle po

Measures of conditional association

• Conditional risk difference, given L

$$Pr(Y = 1 | A = 1, L) - Pr(Y = 1 | A = 0, L)$$

Conditional risk ratio, given L

$$\frac{\Pr(Y = 1 | A = 1, L)}{\Pr(Y = 1 | A = 0, L)}$$

• Conditional odds ratio, given L

$$\frac{\Pr(Y = 1 | A = 1, L)}{\Pr(Y = 0 | A = 1, L)} / \frac{\Pr(Y = 1 | A = 0, L)}{\Pr(Y = 0 | A = 0, L)}$$

ssociation Causation Subtle point

Causal models

- The sufficient-component cause model (Rothman)
- Potential outcomes, counterfactuals (Rubin, Robins)
- Structural equations, causal diagrams (Pearl)

Association Causation Subtle points

Outline

Association

Causation

Subtle points

Association Causation Subtle points

Relation between models

- All common causal models are essentially equivalent, from a mathematical perspective
 - different languages, same content
- To define 'causation', we will mostly rely on the potential outcome model, but borrow from the other models as well

Association Causation Subtle points

Motivating example

- August has been smoking 5 cigs/day since he was 15 years old. At the age of 60 he develops liver cancer
- Did the smoking cause the cancer?

Association Causation Subtle points

Ideal data

- Let Y_a be the outcome that we would observe, for a given subject, if the subject potentially received exposure level a
 - Y₁ is the outcome under exposure
 - Y₀ is the outcome under non-exposure
- Y₁ and Y₀ are referred to as potential outcomes
- Ideally and very unrealistically we could observe both potential outcomes for any given subject

subject	Y_1	Y_0
August	1	0
Selma	0	0
Fjodor	1	1

Human reasoning about cause and effects

- We mentally compare two scenarios:
 - the outcome when the exposure is present
 - the outcome when the exposure is absent

everything else equal

- If the two outcomes differ, then we say that the exposure has a causal effect
 - causative or preventative

Association Causation Subtle points

Subject-specific causal effects

subject	Y_1	Y_0
August	1	0
Selma	0	0
Fjodor	1	1

- A has a causal effect on Y, for a given subject, if the potential outcomes Y_1 and Y_0 differ for this subject
 - for August, the exposure has an effect: $Y_1 \neq Y_0$
 - for Selma and Fjodor, the exposure has no effect; $Y_1 = Y_0$

- August is exposed (A = 1). Thus, for August
 - Y₁ is observed and equal to the factual outcome Y
 - Y₀ is unobserved, or **counterfactual**
- Selma and Fjodor are unexposed (A = 0). Thus, for Selma and Fjodor
 - Y₀ is observed and equal to the factual outcome Y
 - Y₁ is unobserved, or **counterfactual**

subject	Α	Y	Y_1	Y_0
August	1	1	1	?
Selma	0	0	?	0
Fjodor	0	1	?	1

Association Causation Subtle poin

From subjects to populations

- Fortunately, it is much easier to justify causal claims on population levels
 - e.g. 'if everybody would quit smoking, then the incidence of liver cancer would decrease by 15%'
 - more later

ssociation Causation Subtle po

A fundamental problem of causation

- It is very difficult to say whether the exposure causes the outcome for a specific subject
 - because we cannot observe the same subject under two exposure levels simultaneously

Association Causation Subtle points

Population causal effects

- Pr(Y_a = 1) is the proportion of subjects that would develop the outcome, if everybody would receive exposure level a
 - the probability of the outcome if everybody would receive a
- A has a population causal effect on Y if

$$Pr(Y_1 = 1) \neq Pr(Y_0 = 1)$$

A has no population causal effect on Y if

$$Pr(Y_1 = 1) = Pr(Y_0 = 1)$$

Technical note

- In statistics, we use
 - upper case letters (e.g. A, Y) for random variables
 - lower case letters (e.g. a, y) for fixed numbers
- When writing Y_a, we consider the exposure to be fixed to a (0 or 1)
- When writing $Pr(Y_a = 1)$, we consider a scenario where the exposure is fixed to *a* for everybody

Association Causation Subtle poin

Measures of causal effects

The causal risk difference

$$Pr(Y_1 = 1) - Pr(Y_0 = 1)$$

no causal effect of A on $Y \Leftrightarrow$ causal risk difference = 0

The causal risk ratio

$$\frac{\Pr(Y_1=1)}{\Pr(Y_0=1)}$$

no causal effect of A on $Y \Leftrightarrow$ causal risk ratio = 1

The causal odds ratio

$$\frac{\Pr(Y_1 = 1)}{\Pr(Y_1 = 0)} / \frac{\Pr(Y_0 = 1)}{\Pr(Y_0 = 0)}$$

no causal effect of A on $Y \Leftrightarrow$ causal odds ratio = 1

Association Causation Subtle points

Association vs Causation

Association:

Factually exposed

Factually unexposed

$$Pr(Y = 1|A = 1) \text{ vs } Pr(Y = 1|A = 0)$$

Causation:

Everybody exposed

Everybody unexposed

 $Pr(Y_1 = 1)$ vs $Pr(Y_0 = 1)$

Association Causation Subtle points

Example

subject	Y_1	Y_0
1	0	0
2	1	0
2 3	0	0
4	1	1
5	0	0
6	1	1
7	1	1
8	1	1
9	0	0
10	1	0

 Compute the causal risk difference, the causal risk ratio, and the causal odds ratio

Association

subject	Y_1	Y_0
1	0	0
2	1	0
2 3 4 5	0	0
4	1	1
5	0	0
6	1	1
7	1	1
8	1	1
9	0	0
10	1	0

$$\begin{split} \Pr(Y_1 = 1) &= 6/10 = 0.6 \\ \Pr(Y_0 = 1) &= 4/10 = 0.4 \\ \text{causal risk difference} &= 0.6 - 0.4 = 0.2 \\ \text{causal risk ratio} &= \frac{0.6}{0.4} = 1.5 \\ \text{causal odds ratio} &= \frac{0.6}{1 - 0.6} / \frac{0.4}{1 - 0.4} = 2.25 \end{split}$$

Causation

A brief remark

- We have seen that both association and causation can be quantified with risk differences, risk ratios, and odds ratios
- For convenience, we will mostly focus on risk ratios
- Everything that we say holds for risk differences and odds ratios as well

Conditional causal effects

• Conditional causal risk difference, given L

$$Pr(Y_1 = 1|L) - Pr(Y_0 = 1|L)$$

Conditional causal risk ratio, given L

$$\frac{\Pr(Y_1 = 1|L)}{\Pr(Y_0 = 1|L)}$$

• Conditional causal odds ratio, given L

$$\frac{\Pr(Y_1 = 1|L)}{\Pr(Y_1 = 0|L)} / \frac{\Pr(Y_0 = 1|L)}{\Pr(Y_0 = 0|L)}$$

Association Subtle points

Outline

Subtle points

Association Causation Subtle points

When is a counterfactual well defined?

- 'Well defined' = we have a clear understanding of what the counterfactual represents 'in real life'
- Are all counterfactuals well defined?
- If some counterfactuals are not well defined, then causal effects based on these are not well defined either

Association Causation Subtle points

Quite a vague question

- Translated into plain English, the counterfactual comparison reads
 - 'what would the risk be if everybody had BMI>30 compared to if everybody had BMI<30?'
- But what does 'if everybody had BMI>30' really mean?
 - · fat or muscles?
 - belly fat or hips fat?
- The outcome is probably very different under these alternative counterfactual scenarios
 - unless we specify more precisely what scenario we refer to, the counterfactual outcome is not well defined

Association Causation Subtle points

Example

- Define A = 1 if BMI>30, and A = 0 if BMI<30
- Certain diseases occur more frequently in obese than in non-obese, i.e.

$$Pr(Y = 1|A = 1) > Pr(Y = 1|A = 0)$$

• Does 'obesity' have a causal effect on the risk for disease?

$$Pr(Y_1 = 1) \neq Pr(Y_0 = 1)$$
?

Association Causation Subtle points

An important difference between association and causation

- In order for the causal effect of A on Y to be well defined we require that
 - we can tell whether an observed subject has A = 1 or A = 0
 - we agree on what it means that an observed subject with A = 0 would have had A = 1, and vice versa
- In order for the association between A and Y to be well defined, only the first condition is required
 - because the concept of association is only based on factual observations, not on counterfactuals

Association Causation Subtle points

'Some counterfactuals are ill-defined, most are somewhat vague, but many are useful'

Lewis, 1973

Association Causation Subtle points

Summary

- Association is not equal to causation
- To define causation, we use potential outcomes and counterfactuals
- Not all counterfactuals (and causal effects) are well defined

