Data 100, Spring 2024

Exam Prep Section #5

Flight Delay

1. Professor Norouzi is building a flight delay linear regression model using a dataset of historical flight information. Suppose the flight information dataset contains 400 flight records and 10 columns.

Of the 10 columns, 1 contains the observed flight delays in minutes, and 9 columns have non-constant numerical features related to the flight (quantitative variables).

Assume that we find the least squares estimate for parameter vector θ (with intercept) as $\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$ for a design matrix \mathbb{X} and true output vector \mathbb{Y} .

(b) Wha				
	at is the shape of the par	ameter vector θ ?		
(c) Wha	at is the shape of the tru	e output vector \	Y?	
(d) Wha	at is the shape of the pre	dicted output ve	ctor Ŷ?	

(e)	What is the residual vector? Write down the equation for calculating the residual vector using \mathbb{Y} , \mathbb{X} , and $\hat{\theta}$.
(f)	What is always true about the residuals in any Ordinary Least Squares (OLS) regression? Select all that apply.
	\square A. They are orthogonal to the column space of the design matrix (\mathbb{X}).
	\square B. Their sum is equal to the mean squared error.
	\square C. Their sum is equal to zero.
	\square D. They are orthogonal to the vector of predictions ($\hat{\mathbb{Y}}$)

Linear Regression Fundamentals

- 2. In this problem, we will review some of the core concepts of linear regression. Suppose we create a linear model with parameters $\hat{\theta} = [\hat{\theta}_0, \dots, \hat{\theta}_p]$. Given an observation \vec{x} , this model predicts $\hat{y} = \hat{\theta} \cdot \vec{x} = \hat{\theta}_0 + \hat{\theta}_1 x_1 + \hat{\theta}_2 x_2 + \dots + \hat{\theta}_p x_p$. The design matrix and observations used to construct $\hat{\theta}$ are \mathbb{X} and \mathbb{Y} .
 - (a) Suppose $\hat{\theta} = [2, 0, 1]$ and we receive an observation $\vec{x_1} = [1, 2, 5]$. What $\hat{y_1}$ value will this model predict for the given observation?

(b) Suppose the true y_1 was 3. What will be the L_2 loss for our prediction $\hat{y_1}$ from the previous part?

- (c) Which of the following statements are always true? Select all that apply
 - \square A. $\vec{x}_1^T \hat{\theta} = 0$
 - \square B. $\vec{x}_1^T \hat{\theta} = \hat{y}_1$
 - \square C. $\vec{x}_1^T \hat{\theta} y_1 = 0$
 - \square D. $\mathbb{X}\hat{\theta} \mathbb{Y} = 0$
 - $\square \to \mathbb{X}^T(\mathbb{X}\hat{\theta} \mathbb{Y}) = 0$
- (d) (T/F) Define the residuals of this model as $e_i = y_i \hat{y}_i$. For all data points x_i and y_i in \mathbb{X} , \mathbb{Y} , the sum of residuals $\sum_i e_i = 0$. Justify why.

- (e) Suppose we arbitrarily removed a feature from the design matrix. Which of the following could happen to the new optimal loss compared to the old optimal loss?
 - \bigcirc A. The optimal loss must decrease.
 - O B. The optimal loss may decrease, but it must not increase.
 - C. The optimal loss may increase, but it must not decrease.
 - O D. The optimal loss must increase.