Image Steganalysis

by Michael Dorkenwald & Sebastian Gruber

Motivation

Steganalysis is the process of detecting hidden information in images

- Typically used in espionage, thus important for law enforcement
- Prone to false positives → Steganalysis networks used to "prefilter"
- Inherently difficult task as cover images are not provided

Retrieved from https://www.kaggle.com/c/alaska2-image-steganalysis (20.07.20)

Our Task

- Distinguish manipulated from original images
 - Given a single image classify between manipulated and cover
 - → Achieve a low rate of false positives
- On a diverse dataset:
 - Different acquisition settings
 - Jpeg compressions (95, 90, 75)
 - Steganography algorithms (JUNIWARD, JMiPOD, UERD)

Jpeg compression

Retrieved from: https://www.graphicsmill.com/docs/gm/working-with-jpeg.htm (21.07.20)

Visualization

Visualization

Image Difference JPEG Compression

	JMiPOD	JUNIWARD	UERD		
JPEG 75	45.1	29.5	26.6		
JPEG 90	50.5	35.5	35.0		
JPEG 95	37.2	35.7	36.3		

→ Training on 12 classes to better explain data distribution

Model Architecture

Use EfficientNet [1] CNN architecture

- Uses neural architecture search to design architecture
- 8.4x smaller and 6.1x faster than best existing network
- Transfers well to other datasets

[1] Tan et al. ICML 2019 https://arxiv.org/abs/1905.11946

Label Smoothing

- Improves generalization and learning speed [1]
- Prevents the network of being overconfident [1]
- Used with cross entropy loss:

$$H(\boldsymbol{p}, \boldsymbol{y}) = \sum_{k=1}^{K} -y_k \log(p_k)$$

Target class is modified such:

$$y_k^{LS} = y_k(1 - \alpha) + \alpha/K$$

Attention

- [2] used attention to improve image classification
- Instead of learning the attention mask (left)
 we use high-pass filtered image

Evaluation - Weighted AUC

- Performance measure for classification problem at all thresholds settings
- Defines networks capability to distinguish between classes
- Weighted AUC where false positives are stronger weighted

Evaluation

	Drotroiped	Smoothing	Attention	weighte	ed AUC	binary Accuracy		
	Pretrained			4 classes	1 12 classes	4 classes	¦ 12 classes	
EfficientNet B0	X	X	X	0.58	0.57	54 %	54%	
EfficientNet DCT	×	X	×	0.56	0.55	53 %	53%	
EfficientNet B0		X	×	0.876	0.884	72.4 %	73.1 %	
EfficientNet B0		0.05	×	0.870	0.885	71.6 %	73.3 %	
EfficientNet B0		0.1	×	0.865	0.887	71.1 %	73.4 %	
EfficientNet B0		0.2	×	0.843	0.891	69.2 %	74.5 %	
EfficientNet B0		0.2			0.877		72.8 %	
EfficientNet B3		0.2	×		0.888		74.2 %	

Evaluation 4 and 12 Classes

Accuracy in %	Cover		JMiPOD		JUNIWARD			UERD				
	75	90	95	75	90	95	75	90	95	75	90	95
Model 4 classes		93			20			61			63	
Model 12 classes	96	93	94	25	31	26	92	85	39	64	70	59

Feature Visualization via GBP [1]

Conclusion

- In depth analysis of the problem
- Effective approach to detect hidden messages in images
- Extensive ablation study with feature visualization
- Outlook:
 - Train seperate network for JMIPOD algorithm
 - Pretrain EfficientNet for training on DCT coefficients
 - Alternative preprocessing ?