Projet AGIR

SOUTENANCE ET PRÉSENTATION DU DOSSIER D'ARCHITECTURE

Thin-Hinane Younsi Jordan Afonso Lounes Achab Afshin Khalghdoost

Sommaire

- ▶ I) Présentation projet
- ▶ II) Etudes et recherche de solutions
- ▶ II) Architecture système
- ► IV) Validation système
- ▶ V) Planification
- ▶ VI) Conclusion

I) Présentation du projet

Réalisation d'un réseau de systèmes électroniques programmables de contrôle de système mécanique

1) Description du système mécanique

Mécanisme de dépilage de documents

- 1 moteur contrôle 4 dépileurs (aussi appelés margeurs)
- Dépilage : mouvement du plateau + aspiration du document par une ventouse

2) Problématique

Simplicité d'utilisation

Solution peu couteuse

• Efficace et facile à faire évoluer

- ► IHM intuitive et ergonomique
- Acquisitions et traitements de données venant de capteurs en milieu industriel

II) Etude et recherche de solution

- ▶ 1) Différentes solutions
- ▶ 2) Conclusion

1) Différentes solutions

Recherches et études des solutions techniques (environ 7 semaines)

2 solutions pertinentes

Nécessité d'établir les avantages et inconvénients de chaque solution

Système initial imaginé par le client

Thin-Hinane Younsi, Jordan Afonso, Lounes Achab, Afshin Khalghdoost

Système initial imaginé par le client

Avantages	Inconvénients
Une seule carte électronique pour le système	Nombre entrées sorties + 100
••••	Système figé et non modifiable
••••	Cablage centralisé et volumineux

Système proposé par notre groupe

Système proposé par notre groupe

Avantages	Inconvénients
Modularité des sous systèmes	Développement plus long (plusieurs modules)
Possibilité d'évolution	
Facilité de vente du produit	

2) Conclusion

- Modification de la solution initiale
- Solution modulaire
- ► Solution modifiable et améliorable dans le temps
- Avantage à la vente

III) Architecture système

- ▶ 1) Macro-Design
- ▶ 2) Micro-Design
- ▶ 3) Description structurelle
- ▶ 4) Conclusion

1) Macro-Design

- Description générale de la solution
- > Représente une modélisation du système indépendante de la technologie choisie
- Description fonctionnelle du système
- > Brique de base pour le développement

1) Macro-Design

2) Micro-Design

- Module principal
 - Unité de contrôle
 - Module Bluetooth
- Module IHM
 - ▶ Protocole de communication Bluetooth
 - ► Interface et ergonomie
- Connectique
 - Bus de communication interne
 - Bus de communication externe

- Module secondaire
 - ► Circuit pilotage de LED
 - Circuit boutons poussoirs
 - Circuit pilotage de contacteurs
 - Circuit d'acquisition de données, capteurs de passage
 - Circuit combinatoire
 - Unité de contrôle

3) Description structurelle

- > 1 module principal de gestion et d'automatisation du système.
- ► [1 ... N] modules secondaires de contrôle margeur et pompe à vide et d'acquisition de données.
- > 1 module IHM: interface homme-machine
- connectique (communication entre modules)

Module principal

Module Bluetooth Vue globale du module principal Microcontrôleur MC Communication **Bus CAN** Bus de Données

Le module secondaire

IHM

Interface sur tablette Android qui communique en Bluetooth avec la carte mère

Connectique

Connexion interne

- Connexion entre les differents circuits électroniques internes au different module
- Bus série (cable blindé)
- UART

Connexion externe

- Connexion entre les differents modules
- Bus CAN
- Bluetooth

4) Conclusion

- Modularité
- Système évolutif
- ► Prix ~400 euros Vs 8000 euros automate
- ► Force de vente

IV) Validation Système

- ▶ 1) Module principal
- ▶ 2) Module secondaire
- ▶ 3) IHM

1) Validation module principal (Hardware)

► Réalisation et routage du circuit

- ▶ Validation communication interne et externe :
 - Bluetooth
 - UART
 - CAN

1) Validation module principal (Software)

- Protocole de codage/décodage d'informations
- Algorithme d'automatisation et gestion des états systèmes :
 - Reconnaissance d'erreur
 - Contrôle des cycles de fonctionnement

2) Validation module secondaire

- ► Réalisation et routage du circuit
- Validation communication interne et externe :
 - ► CAN
 - ► FPGA <-> Microcontrôleur
- ► Contrôle des capteurs, LED et boutons

3) Validation module IHM

L'ergonomie sera validée par le client

▶ Émissions et réceptions de données envoyées ou reçues par la carte principale

V) Planification

- 1) Organisation générale du projet
- 2) Gantt
- > 3) Réalisation concrète

1) Organisation générale du projet

 Création d'une boite mail commune et d'un groupe Facebook

Création d'un Dropbox pour le projet

Création d'un GitHub pour le code

1) Organisation générale du projet

1 coordinateur différent toutes les 4 semaines

 Séance de brainstorming chaque début de journée projet

 Etablissement en groupe des tâches à accomplir

- Réunions et briefing dès que nécessaire
- Communication par mail/téléphone avec le client

Organisation: Gantt

Risques

- Disponibilités du client « A »
- Changement architecture mécanique de la machine(car prototype) « A »
- Disponibilité matérielle et logicielle au sein de l'école « A »
- ► Retard sur le plan dû à la prise en main de nouvelles technologies « C »

3) Réalisation concrète

- Réalisation d'une maquette pour le pilotage de LED
- Réalisation d'une maquette pour l'acquisition de données via le bouton poussoir
- Réalisation d'une maquette de pilotage de contacteur (relais)
- Assemblage des diffèrent modules et test de compatibilité

- Validation du protocole de communication CAN sur N modules
- Validation acquisition de données via un capteur de passage.
- Mise en place des différents algorithmes de traitement pour les modules
- Réalisation des schémas du circuit électronique analogique du système

VI) Conclusion

- Apprentissage de la méthodologie de rédaction d'un cahier des charges fonctionnel
- Retranscription de la volonté du client
- Conseil technique
- Coordination d'un groupe de travail
- Apprentissage de la méthodologie de rédaction d'un cahier d'architecture

MERCI DE VOTRE ATTENTION

DES QUESTIONS?

