Построение прямолинейных программ с помощью декартовых деревьев

Евгений Курпилянский

20 июня 2012 года

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует несколько подходов, например:

- Алгоритмы эффективного ввода-вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует несколько подходов, например:

- Алгоритмы эффективного ввода-вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует несколько подходов, например:

- Алгоритмы эффективного ввода-вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Сокращение размера входа за счет предварительной обработки.

Способы сжатия

Существует различные способы сжатия данных, например:

- прямолинейные программы (ПП);
- антисловари;
- коллаж-системы и др.

Если сжатое представление хорошо структурировано, то существуют алгоритмы, способные решать классические задачи без распаковки данных.

Способы сжатия

Существует различные способы сжатия данных, например:

- прямолинейные программы (ПП);
- антисловари;
- коллаж-системы и др.

Если сжатое представление хорошо структурировано, то существуют алгоритмы, способные решать классические задачи без распаковки данных.

Определение прямолинейной программы

Определение

Прямолинейная программа (ПП) строки S – это контекстно-свободная грамматика в нормальной форме Хомского, выводящая в точности одно слово S.

Пример

Рассмотрим $\Pi\Pi X$, выводящую строку «abaabaabaab».

$$X_1 = b$$

 $X_2 = a$
 $X_3 = X_2 \cdot X_1$
 $X_4 = X_3 \cdot X_2$
 $X_5 = X_4 \cdot X_3$
 $X_6 = X_5 \cdot X_4$
 $X_7 = X_6 \cdot X_5$

Определение прямолинейной программы

Определение

Прямолинейная программа (ПП) строки S – это контекстно-свободная грамматика в нормальной форме Хомского, выводящая в точности одно слово S.

Пример

Рассмотрим ПП X, выводящую строку «abaababaabaab».

$$X_1 = b$$
 $X_2 = a$
 $X_3 = X_2 \cdot X_1$
 $X_4 = X_3 \cdot X_2$
 $X_5 = X_4 \cdot X_3$
 $X_6 = X_5 \cdot X_4$
 $X_7 = X_6 \cdot X_5$

Пример Графическое изображение ПП: X_7 X_3 X_3 X_3 X_1 X_2 X_1 X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_1 X_2

Как строить ПП?

Утверждение.

Задача построения минимальной ПП, выводящей заданную строку S – NP-трудная.

Для построения ПП требуется использовать приближенные алгоритмы.

Как строить ПП?

Утверждение.

Задача построения минимальной ПП, выводящей заданную строку S – NP-трудная.

Для построения ПП требуется использовать приближенные алгоритмы.

Определение

Факторизация строки S – это набор строк w_1, w_2, \ldots, w_k такой, что $S = w_1 \cdot w_2 \cdot \ldots \cdot w_k$.

Определение

LZ-факторизация строки S - 0 это факторизация $S = w_1 + w_2 + \cdots + w_k$ такая, что для любого $j \in 1...k$

- w_j состоит из одной буквы, не встречающейся в $w_1 \cdot w_2 \cdot \cdot \cdot w_{j-1}$; или
- w_j наибольший префикс $w_j \cdot w_{j+1} \cdots w_k$, встречающийся в $w_1 \cdot w_2 \cdots w_{j-1}$.

Факторизации строки «abaababaabaab»

- a · b · a · aba · baaba · ab

Определение

Факторизация строки S – это набор строк $w_1, w_2, ..., w_k$ такой, что $S = w_1 \cdot w_2 \cdot ... \cdot w_k$.

Определение

LZ-факторизация строки S — это факторизация $S = w_1 \cdot w_2 \cdot \cdots \cdot w_k$ такая, что для любого $j \in 1..k$

- w_j состоит из одной буквы, не встречающейся в $w_1 \cdot w_2 \cdot \cdot \cdot w_{j-1}$; или
- w_j наибольший префикс $w_j \cdot w_{j+1} \cdots w_k$, встречающийся в $w_1 \cdot w_2 \cdots w_{j-1}$.

Факторизации строки «abaababaabaab»

- a · b · a · aba · baaba · ab

Определение

Факторизация строки S – это набор строк $w_1, w_2, ..., w_k$ такой, что $S = w_1 \cdot w_2 \cdot ... \cdot w_k$.

Определение

LZ-факторизация строки S — это факторизация $S = w_1 \cdot w_2 \cdot \cdots \cdot w_k$ такая, что для любого $j \in 1..k$

- ullet w_j состоит из одной буквы, не встречающейся в $w_1 \cdot w_2 \cdot \cdot \cdot w_{j-1}$; или
- w_j наибольший префикс $w_j \cdot w_{j+1} \cdots w_k$, встречающийся в $w_1 \cdot w_2 \cdots w_{j-1}$.

Факторизации строки «abaababaabaab»

- a · b · a · aba · baaba · ab;

BХОД: Строка T и ее LZ-факторизация F_1, F_2, \ldots, F_k . BЫХОД: $\Pi\Pi$, выводящая строку T.

- Дерево вывода ПП представляется в виде AVL-дерева.
- Предложены алгоритмы конкатенации двух AVL-деревьев и вырезания подстроки из AVL-дерева.
- Размер полученной ПП всего в $O(\log n)$ больше размера минимальной ПП

ВХОД: Строка T и ее LZ-факторизация F_1, F_2, \ldots, F_k . Выход: ПП, выводящая строку T.

- Дерево вывода ПП представляется в виде AVL-дерева.
- Предложены алгоритмы конкатенации двух AVL-деревьев и вырезания подстроки из AVL-дерева.
- Размер полученной ПП всего в $O(\log n)$ больше размера минимальной ПП

ВХОД: Строка T и ее LZ-факторизация F_1, F_2, \ldots, F_k . Выход: ПП, выводящая строку T.

- Дерево вывода ПП представляется в виде AVL-дерева.
- Предложены алгоритмы конкатенации двух AVL-деревьев и вырезания подстроки из AVL-дерева.
- Размер полученной ПП всего в $O(\log n)$ больше размера минимальной ПП

ВХОД: Строка T и ее LZ-факторизация F_1, F_2, \ldots, F_k . Выход: ПП, выводящая строку T.

- Дерево вывода ПП представляется в виде AVL-дерева.
- Предложены алгоритмы конкатенации двух AVL-деревьев и вырезания подстроки из AVL-дерева.
- Размер полученной ПП всего в $O(\log n)$ больше размера минимальной ПП

Мысль

Почему бы для построения ПП не использовать другое сбалансированное двоичное дерево?

- Декартово дерево двоичное дерево поиска, в каждой вершине которого хранится ее приоритет. При этом всегда выполняется свойство: приоритет в потомках меньше, чем приоритет самой вершины.
- Доказано, что если приоритеты выбираются случайно, высота декартова дерева $O(\log n)$.
- Над декартовым деревом определены две стандартные операции: конкатенация и разрезание.

Мысль

Почему бы для построения ПП не использовать другое сбалансированное двоичное дерево?

- Декартово дерево двоичное дерево поиска, в каждой вершине которого хранится ее приоритет. При этом всегда выполняется свойство: приоритет в потомках меньше, чем приоритет самой вершины.
- Доказано, что если приоритеты выбираются случайно, высота декартова дерева $O(\log n)$.
- Над декартовым деревом определены две стандартные операции: конкатенация и разрезание.

Мысль

Почему бы для построения ПП не использовать другое сбалансированное двоичное дерево?

- Декартово дерево двоичное дерево поиска, в каждой вершине которого хранится ее приоритет. При этом всегда выполняется свойство: приоритет в потомках меньше, чем приоритет самой вершины.
- Доказано, что если приоритеты выбираются случайно, высота декартова дерева $O(\log n)$.
- Над декартовым деревом определены две стандартные операции: конкатенация и разрезание.

Мысль

Почему бы для построения ПП не использовать другое сбалансированное двоичное дерево?

- Декартово дерево двоичное дерево поиска, в каждой вершине которого хранится ее приоритет. При этом всегда выполняется свойство: приоритет в потомках меньше, чем приоритет самой вершины.
- Доказано, что если приоритеты выбираются случайно, высота декартова дерева $O(\log n)$.
- Над декартовым деревом определены две стандартные операции: конкатенация и разрезание.

Модификации декартовых деревьев

Были исследованы следующие модификации:

- Рандомизированные двоичные деревья поиска (C. Martinez, S. Roura, 1998)
- Декартовы деревья по неявному ключу (Н. Дуров, А. Лопатин, 2002)
- Персистентные деревья

Новая модификация

Модификации декартовых деревьев

Были исследованы следующие модификации:

- Рандомизированные двоичные деревья поиска (C. Martinez, S. Roura, 1998)
- Декартовы деревья по неявному ключу (Н. Дуров, А. Лопатин, 2002)
- Персистентные деревья

Новая модификация

Модификации декартовых деревьев

Были исследованы следующие модификации:

- Рандомизированные двоичные деревья поиска (C. Martinez, S. Roura, 1998)
- Декартовы деревья по неявному ключу (Н. Дуров, А. Лопатин, 2002)
- Персистентные деревья

Новая модификация

Модификации декартовых деревьев

Были исследованы следующие модификации:

- Рандомизированные двоичные деревья поиска (C. Martinez, S. Roura, 1998)
- Декартовы деревья по неявному ключу (Н. Дуров, А. Лопатин, 2002)
- Персистентные деревья

Новая модификация

Рандомизированные ПП

Определение

Дерево вывода некоторой ПП будем называть рандомизированным, если оно удовлетворяет одному из следующих условий:

- Это дерево состоит ровно из одного узла и в нем хранится, выводимый терминал.
- Оба поддерева являются независимыми рандомизированными деревьями, и размер левого дерева может быть любым с равной вероятностью.

^Результать

- Было доказано, что высота рандомизированного дерево вывода в среднем $O(\log n)$.
- Были модифицированы операции конкатенации и разрезания.

Рандомизированные ПП

Определение

Дерево вывода некоторой ПП будем называть рандомизированным, если оно удовлетворяет одному из следующих условий:

- Это дерево состоит ровно из одного узла и в нем хранится, выводимый терминал.
- Оба поддерева являются независимыми рандомизированными деревьями, и размер левого дерева может быть любым с равной вероятностью.

Результаты

- Было доказано, что высота рандомизированного дерево вывода в среднем $O(\log n)$.
- Были модифицированы операции конкатенации и разрезания.

Рандомизированные ПП

Определение

Дерево вывода некоторой ПП будем называть рандомизированным, если оно удовлетворяет одному из следующих условий:

- Это дерево состоит ровно из одного узла и в нем хранится, выводимый терминал.
- Оба поддерева являются независимыми рандомизированными деревьями, и размер левого дерева может быть любым с равной вероятностью.

<u>Резу</u>льтаты

- Было доказано, что высота рандомизированного дерево вывода в среднем $O(\log n)$.
- Были модифицированы операции конкатенации и разрезания.

Идея алгоритма совпадает с идеей алгоритма Риттера.

Результат

Было доказано, что, если n — длина строки S, а LZ-факторизация содержит k факторов, то:

- Размер полученной ПП в $O(\log n)$ раз больше минимальной.
- ullet Время работы алгоритма $O(k \log n)$ и требуемая память $O(k \log n)$.

Идея алгоритма совпадает с идеей алгоритма Риттера.

Результат

Было доказано, что, если n – длина строки S, а LZ-факторизация содержит k факторов, то:

- Размер полученной ПП в $O(\log n)$ раз больше минимальной.
- ullet Время работы алгоритма $O(k \log n)$ и требуемая память $O(k \log n)$.

Идея алгоритма совпадает с идеей алгоритма Риттера.

Результат

Было доказано, что, если n — длина строки S, а LZ-факторизация содержит k факторов, то:

- Размер полученной ПП в $O(\log n)$ раз больше минимальной.
- Время работы алгоритма $O(k \log n)$ и требуемая память $O(k \log n)$.

Идея алгоритма совпадает с идеей алгоритма Риттера.

Результат

Было доказано, что, если n — длина строки S, а LZ-факторизация содержит k факторов, то:

- Размер полученной ПП в $O(\log n)$ раз больше минимальной.
- ullet Время работы алгоритма $O(k \log n)$ и требуемая память $O(k \log n)$.

Практические результаты

Алгоритмы были протестированы на:

- строках Фибоначчи;
- случайных строках;
- ДНК, взятых с сайта http://www.ddbj.nig.ac.jp/.

Скорость работы на строках ДНК

- алгоритм Риттера;
- модернизированный алгоритм Риттера;
- алгоритм построения рандомизированной ПП.

Коэффициенты сжатия на строках ДНК

Результаты и дальнейшие планы

Результаты

- Новый алгоритм построения ПП.
- Практические результаты сравнения алгоритмов по двум параметрам: скорость работы и степень сжатия.

Исходные коды алгоритмов можно посмотреть здесь: http://code.google.com/p/overclocking

Плань

• Применить эвристику оптимизации порядка конкатенаций в алгоритме построения рандомизированных ПП

Результаты и дальнейшие планы

Результаты

- Новый алгоритм построения ПП.
- Практические результаты сравнения алгоритмов по двум параметрам: скорость работы и степень сжатия.

Исходные коды алгоритмов можно посмотреть здесь: http://code.google.com/p/overclocking

Плань

• Применить эвристику оптимизации порядка конкатенаций в алгоритме построения рандомизированных ПП

Результаты и дальнейшие планы

Результаты

- Новый алгоритм построения ПП.
- Практические результаты сравнения алгоритмов по двум параметрам: скорость работы и степень сжатия.

Исходные коды алгоритмов можно посмотреть здесь: http://code.google.com/p/overclocking

Планы

 Применить эвристику оптимизации порядка конкатенаций в алгоритме построения рандомизированных ПП