Jason Wang jsw50

CS 250: Homework 1

Problem 1:

a. i.
$$0111_B = (1*2^0) + (1*2^1) + (1*2^2) = 7_{16}$$

$$1000_B = (1*2^3) = 8_{16}$$

$$1100_B = (1*2^2) + (1*2^3) = 12_D = C_{16}$$

$$0010_B = (1*2^1) = 2_{16}$$
Thus, $0111 \ 1000 \ 1100 \ 0010_B = 78C2_{16}$

$$65/16 = 4R1 \ so \ 1_{16}$$

$$4/16 = 0R4 \ so \ 4_{16}$$
Thus, $65_D = 41_{16}$

ii. The lowest number one can represent using 16-bit two's complement is:

$$1000\ 0000\ 0000\ 0000$$
 which is $-(0111\ 1111\ 1111\ 1111\ +\ 1) = -32768$

The highest number one can represent using 16-bit two's complement is:

iii. -17_D:

$$17/2 = 8R1$$

$$8/2 = 4R0$$

$$4/2 = 2R0$$

$$2/2 = 1R0$$

$$1/2 = 0R1$$
 so $17_D = 0001 0001$ so $-17_D = 1110 1110 + 1 = 1110 1111_B$

 $+33_{D}$:

$$33/2 = 16R1$$
 $16/2 = 8R0$ $8/2 = 4R0$ $4/2 = 2R0$ $2/2 = 1R0$ $1/2 = 0R1$

So
$$33D = 0010 \ 0001B$$

Jason Wang jsw50

iv. +15.5_D:

$$15/2 = 7R1$$
 $7/2 = 3R1$ $3/2 = 1R1$ $1/2 = 0R1$

$$0.5 * 2 = 1.0 \text{ so } 15.5 \text{ D} = 1111.12$$

$$1111.1_2 * 2^0 = 1.1111_2 * 2^3$$
 so Mantissa is 1111

Exponent is 3+127=130=10000010₂

-1.875_D:

$$0.875 * 2 = 1.75$$
 $0.75 * 2 = 1.5$ $0.5 * 2 = 1$ so $1.875D = 1.1112$

Mantissa is 111 and exponent is 0+127=127=01111111112

v. 0x40C40000:

 $0000_{16} = 0000\ 0000\ 0000\ 0000_2$, $4_{16} = 0100_2$, $C_{16} = 12_D = 1100_B$ so it is:

Sign = 0 (so positive), exponent =
$$(128+1) - 127 = 2$$
, Mantissa = 10001

$$1.10001*2^2 = 110.001 = 6.125$$

vi. In Decimal,
$$E = 069$$
, $C = 067$, $E = 069$, $2 = 050$, $5 = 053$, $0 = 048$, space $= 032$,

$$i = 105$$
, $s = 115$, space = 032, $t = 116$, $h = 104$, $e = 101$, space = 032, $b = 098$,

$$e = 101$$
, $s = 115$, $t = 116$, $! = 033$

So it is: 069 067 069 050 053 048 032 105 115 032 116 104 101 032 098 101 115

116 033

Jason Wang jsw50

- b. fdb
- c. gbfb

Problem 2:

- a. i. a lives in stack because it is a local variable
 - ii. a_ptr lives in data because it is a global variable
 - iii. b_ptr lives in heap because more memory is needed to be allocated for it using malloc
 - iv. c lives in stack because it is the return address of the instructions being called in foo
- b. main returns 0 because c is equal to 12.0
- c. Foo returns 12.0 because *y is 5.0 and *z is 7.0 and *x is 2.0 in the foo function so *y+*z is greater than *x*5