SC1015 Mini Project Identifying Hypertension

Lab Group B133, Team 5 Yong Shao En Ernest (U2221153B), Wu Rixin (U2221172G) & Li Liyi (U2220985F)

Dataset Used

We selected data from the 2021
Behavioural Risk Factor Surveillance
System Survey Data and Documentation
conducted by US Centers for Disease
Control and Prevention(CDC).

Dataset Used

Our Motivation

35.5% of Singaporeans have hypertension in 2020

No. 1 risk factor of death globally

Problem Definition

What are the variables correlated with hypertension, and how can we identify undiagnosed individuals suffering from hypertension?

Data Extraction

Factors			
ВМІ	Alcohol		
Physical Exercise	Smoker		
Diabetes	Mental Health		
High Cholesterol	Physical Health		
Junk Food Intake	Race		
Fruit Intake	Vegetables Intake		
Education Level			

Tackle missing and irrelevant values

	_TOTINDA	_BMI5	DROCDY3_	AVEDRNK3
0	2.0	1454.0	0.0	NaN
1	1.0	NaN	0.0	NaN
2	2.0	2829.0	0.0	NaN
3	1.0	3347.0	14.0	3.0
4	1.0	2873.0	0.0	NaN

Create new variables by combining existing ones

DROCDY3_

Drink occasions per day

AVEDRNK3

Number of drinks consumed

AlchoIntake

Weekly alcohol consumption

Standardise units of measurement & adjust the decimal places for numeric variables

Value	Value Label	
101 - 19	Days	
201 - 299	Weeks	
300	Less than once a month	
301 - 399	Month / Year	
555	Never	
777	Don't know/Not sure	
999	Refused	
BLANK	Not asked or Missing	

Decode categorical variables based on data description

Question: Adults who reported doing physical activity or exercise during the past 30 days other than their regular job				
Value	Value Label	Frequency	Percentage	Weighted Percentage
	Yes	330,738	75.39	75.96
2	No	107,027	24.40	23.87
9	Don't know/Refused/Missing Notes: EXERANY2 = 7 or 9 or Missing	928	0.21	0.17

Identify and remove outliers for numeric variables

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Response Variables

Hypertension

Numeric Variables		
_BMI5		
AlchoIntake		
PHYSHLTH		
_AGE80		

Categorical Variables		
_TOTINDA		
CHOLMED3		
DIABETE4		
_RFCHOL3		
_MICHD		
_EDUCAG		
_DRDXAR3		

Initial Decision Tree

- Decision tree constructs a model of decisions and their possible consequences
- The tree can accurately **predict** the class or value of new, unseen instances
- It can handle both numerical and categorical variables
- Decision trees may suffer from overfitting when the depth level or the stopping criterion is not well-defined

Confusion Matrix of Initial Model

Prediction Accuracy = 0.60871

ROC Curve

Confusion Matrix after Optimisation

Prediction Accuracy = 0.67677

Confusion Matrix of Initial Model

Prediction Accuracy = 0.60871

Confusion Matrix after Optimisation

Prediction Accuracy = 0.67677

Improvement: 6.88%

Optimised Decision Tree

Model 2: Random Forest

- Random Forest takes random data points from random variables to come up with multiple decision trees.
- Multiple decision trees allows the strengths and weaknesses of each tree to be balanced out by the other trees.
- The output of each tree is then combined to make a final prediction with a **greater accuracy** than a single decision tree
- Suitable for large datasets with a mix of categorical and numerical data

TPR = 0.50996

FPR = 0.19457

Model 2: Random Forest

Confusion Matrix of Initial Model

Prediction Accuracy = 0.69417

Model 2: Random Forest

ROC Curve & AUC Score

TPR = 0.52959

FPR = 0.19482

Model 2: Random Forest

Confusion Matrix after Optimisation

Prediction Accuracy = 0.70141

Model 2: Random Forest

Confusion Matrix of Initial Model

Prediction Accuracy = 0.69417

Confusion Matrix after Optimisation

Prediction Accuracy = 0.70141

Improvement: 0.72%

Model 3: Logistic Regression

- Logistic Regression predicts the output of a categorical variable based on one or more independent variables.
- It reveals the interrelationships between different variables and their impact on outcomes
- This helps us make accurate predictions

FPR = 0.14882

Model 3: Logistic Regression

Confusion Matrix of **Initial Model**

Prediction Accuracy = 0.73033

Model 3: Logistic Regression

Confusion Matrix after Hyperparameter Optimisation

Prediction Accuracy = 0.73042

Model 3: Logistic Regression

Confusion Matrix of Initial Model

Prediction Accuracy = 0.73033

Confusion Matrix after Optimisation

Prediction Accuracy = 0.73042

Best Model: Logistic Regression

Decision Tree

Random Forest

Logistic Regression

Accuracy	0.67677	0.70141	0.73042
TPR	0.52433	0.52959	0.52401
FPR	0.17078	0.19482	0.14875

Insight 1

Affirm

Arthritis is highly correlated with hypertension, but no explanation can be found as of now

Insight 2

Debunk

People with and without hypertension have the same average intake of fruits and vegetables

Insight 3

Discover

For all the races included in the survey except Black, the proportion of people with hypertension is smaller.

Insight 4

Observe

Most frequently used factors for classification models:

- Cholesterol
- 2. BMI
- 3. Age

Future Recommendations

1. Cholesterol Levels

Focus on reducing consumption of alcohol and food high in saturated fats, thus reducing cholesterol levels

2. Body-Mass-Index

Encourage healthy eating habits and physical exercise

3. Age

Health campaigns can be targeted more towards the elderly

Limitations & Recommendations

Data is collected from the US:

Demographic and lifestyle factors may differ from Singapore

Genetic factors:

A more in-depth survey can be conducted to identify factors contributing to hypertension in Singapore

Thank You!

Done by:

Yong Shao En Ernest (U2221153B)

Wu Rixin (U2221172G)

Li Liyi (U2220985F)