CONCOURS D'ENTREE

Première épreuve de mathématiques

Durée 4h, Supports de cours non autorisés La notation prendra en compte la qualité de la rédaction.

Notation

- $\mathbb{C}[X]$ désigne l'ensemble des polynômes à coefficients complexes.
- $M_n(\mathbb{C})$ représente l'ensemble des matrices carrées de taille n à coefficients complexes.
- I_n est la matrice identité de $M_n(\mathbb{C})$.
- 0_n est la matrice nulle de $M_n(\mathbb{C})$.
- $Gl_n(\mathbb{C})$ représente l'ensemble des matrices inversibles de $M_n(\mathbb{C})$. Pour tout $P \in Gl_n(\mathbb{C})$, on note P^{-1} son inverse.
- \mathscr{D} est l'ensemble des matrices diagonalisables de $M_n(\mathbb{C})$
- \mathcal{N} est l'ensemble des matrices nilpotentes de $M_n(\mathbb{C})$. L'indice de nilpotence d'une matrice $N \in \mathcal{N}$ est le plus petit entier p tel que $N^p = 0_n$.
- Soit M une matrice de $M_n(\mathbb{C})$. On note $P_M(X) = \det(XI_n M)$ son polynôme caractéristique.
- On appelle norme d'algèbre toute norme de $M_n(\mathbb{C})$ vérifiant

$$\forall A, B \in M_n(\mathbb{C}), \quad ||AB|| \le ||A|| \, ||B||.$$

- L(E) est l'ensemble des endomorphismes de E.
- Pour tout $f \in L(E)$ et pour tout V sous-ensemble de E, on définit l'application f restreinte à V par $f_{|V|}: V \to E$ telle que $f_{|V|}(x) = f(x)$ pour tout $x \in V$.
- Enfin, on rappelle (théorème de Bézout) que deux polynômes P et Q de $\mathbb{C}[X]$ sont premiers entre eux si et seulement s'il existe $U, V \in \mathbb{C}[X]$ tels que PU + QV = 1.

Partie 1 Définition de l'exponentielle de matrice

On se place dans $M_n(\mathbb{C})$. Si la matrice $A \in M_n(\mathbb{C})$ est telle que $A = (a_{i,j})_{1 \leq i,j \leq n}$, on pose $||A|| = n \cdot \max_{i,j} |a_{i,j}|$. Cette application définit une norme sur $M_n(\mathbb{C})$.

- 1. Montrer que $\|\cdot\|$ est une norme d'algèbre.
- 2. Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices de $M_n(\mathbb{C})$, on dit que $\sum_k A_k$ converge s'il existe une matrice $L\in M_n(\mathbb{C})$ telle que

$$\lim_{k \to \infty} \| \sum_{j=0}^{k} A_j - L \| = 0.$$

On admettra qu'une série de matrice $\sum_k A_k$ converge si la série numérique de terme général $||A_k||$ converge. Montrer que pour tout $A \in M_n(\mathbb{C})$, $\sum_k \frac{A^k}{k!}$ converge. On note $\exp(A)$ ou e^A la limite

$$\sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

3. Montrer que pour tout $A \in M_n(\mathbb{C})$ et pour tout $P \in Gl_n(\mathbb{C})$,

$$\exp(P^{-1}AP) = P^{-1}\exp(A)P.$$

En déduire la forme de $\exp(M)$ pour M une matrice diagonalisable.

- 4. Dans cette question, on considère deux matrices A et B de $M_n(\mathbb{C})$ qui commutent, i.e., AB = BA.
 - a) On définit Δ_m par :

$$\Delta_m = \left(\sum_{i=0}^m \frac{A^i}{i!}\right) \left(\sum_{j=0}^m \frac{B^j}{j!}\right) - \sum_{k=0}^m \frac{(A+B)^k}{k!}.$$

Vérifier que

$$\Delta_m = \sum_{k=m+1}^{2m} \sum_{\substack{i+j=k\\0 < i, j < m}} \frac{A^i}{i!} \frac{B^j}{j!} .$$

- b) En déduire que $\lim_{m\to\infty}\|\Delta_m\|=0$ puis que $e^{A+B}=e^Ae^B$
- 5. Montrer que, quelle que soit la matrice A de $M_n(\mathbb{C})$, la matrice e^A est inversible et donner son inverse.
- 6. Vérifier l'égalité $\det(e^A) = e^{\operatorname{tr}(A)}$ successivement
 - a) pour des matrices diagonales,
 - b) pour des matrices diagonalisables.

Partie 2 Décomposition des noyaux

Soit $A \in M_n(\mathbb{C})$ et $Q \in \mathbb{C}[X]$ tel que $Q(X) = \sum_{k=0}^d a_k X^k$. On rappelle que l'on peut définir le polynôme de matrice Q(A) par

$$Q(A) = \sum_{k=0}^{d} a_k A^k$$

où $A^0 = I_n$.

- 1. Justifier que Q(A) est une matrice de $M_n(\mathbb{C})$.
- 2. Soit Q_1 et Q_2 deux polynômes de $\mathbb{C}[X]$ premiers entre eux et A une matrice dans $M_n(\mathbb{C})$. On pose $Q = Q_1Q_2$. On se propose de montrer que

$$\ker Q(A) = \ker Q_1(A) \oplus \ker Q_2(A). \tag{1}$$

- a) Justifier que pour tout polynôme R de $\mathbb{C}[X]$ et toute matrice M de $M_n(\mathbb{C})$, ker R(M) est un \mathbb{C} -espace vectoriel.
- b) Justifier que pour i = 1, 2, $\ker Q_i(A) \subset \ker Q(A)$.
- c) Montrer l'existence de deux polynômes U et V tels que $(UQ_1+VQ_2)(A)=I_n$.
- d) En déduire l'égalité (1).

3. Soit k un entier supérieur ou égal à 2 et Q un polynôme de $\mathbb{C}[X]$ tel que $Q = Q_1 \cdots Q_k$ où les polynômes Q_i , $i = 1, \ldots, k$, sont premiers entre eux deux à deux. Montrer que pour toute matrice A de $M_n(\mathbb{C})$,

$$\ker Q(A) = \ker Q_1(A) \oplus \cdots \oplus \ker Q_k(A).$$

Partie 3 Autour de la décomposition de Dunford

Dans cette partie, on se propose de montrer le théorème suivant (décomposition de Dunford) :

Théorème: Soit $A \in M_n(\mathbb{C})$. Il existe un unique couple $(D, N) \in M_n(\mathbb{C})^2$ avec D diagonalisable et N nilpotente tel que:

- 1) A = D + N,
- 2) DN = ND.

Pour les endomorphismes de $L(\mathbb{C}^n)$, ce théorème s'énonce comme suit :

Théorème: Soit $f \in L(\mathbb{C}^n)$. Il existe un unique couple $(d, n) \in L(\mathbb{C}^n)^2$ avec d diagonalisable et n nilpotente tel que:

- 1) f = d + n,
- $2) \ d \circ n = n \circ d.$

On dit que le couple (d, n) est la décomposition de Dunford associée à f.

Dans la suite du sujet, les lettres minuscules représenteront des endomorphismes tandis que les lettres majuscules seront employées pour désigner leur expression matricielle.

Soit A une matrice de $M_n(\mathbb{C})$ et f son endomorphisme associé. Soit $\{\lambda_i, i = 1, \dots, p\}$ l'ensemble des valeurs propres de A. On supposera que chaque λ_i est de multiplicité α_i .

1. Montrer que $\mathbb{C}^n = N_1 \oplus \cdots \oplus N_p$ avec

$$N_i = \ker (A - \lambda_i I_n)^{\alpha_i}.$$

- 2. Après avoir justifié l'existence de l'endomorphisme $f_{|N_i} \in L(N_i)$, prouver l'existence d'un couple (d_i, n_i) ayant les propriétés 1) et 2) de la décomposition de Dunford associé à $f_{|N_i}$.
- 3. En déduire l'existence du couple (d, n) d'endomorphismes de $L(\mathbb{C}^n)$ vérifiant la décomposition de Dunford associée à f.
- 4. On rappelle que \mathscr{D} est l'ensemble des matrices diagonalisables de $M_n(\mathbb{C})$ et \mathscr{N} l'ensemble des matrices nilpotentes de $M_n(\mathbb{C})$. Montrer que $\mathscr{D} \cap \mathscr{N} = \{0_n\}$.
- 5. Montrer que si deux endomorphismes diagonalisables commutent, alors ils sont diagonalisables dans une même base (on pourra raisonner par récurrence sur la dimension de l'espace \mathbb{C}^n).
- 6. Dans cette question, on considère un endomorphisme f fixé et on se propose de montrer l'unicité du couple d'endormorphismes associé à la décomposition de Dunford de f. On définit le couple (d, n) comme étant la décomposition de Dunford explicitement trouvée dans la question 3 de cette partie. On suppose qu'il existe un autre couple (d', n') qui est une décomposition de Dunford pour f.
 - a) Montrer que d d' est un endomorphisme diagonalisable.
 - b) Montrer que n n' est un endomorphisme nilpotent.

c) Conclure.

Partie 4 Applications

- 1. Soit N une matrice nilpotente de $M_n(\mathbb{C})$ et q son indice de nilpotence, déterminer $\exp(N)$.
- 2. En déduire l'expression de l'exponentielle de la matrice A = D + N où (D, N) est la décomposition de Dunford de A.
- 3. Dans cette question, on se propose de calculer la décomposition de Dunford de la matrice

$$A = \left(\begin{array}{ccc} 8 & -1 & -5 \\ -2 & 3 & 1 \\ 4 & -1 & -1 \end{array}\right).$$

a) Sachant que 2 est une valeur propre de A, exprimer le polynôme caractéristique P_A sous la forme

$$P_A(X) = \prod_{i=1}^p (X - \lambda_i)^{r_i}$$

où λ_i , $i = 1, \ldots, p$, sont les valeurs propres de la matrice A.

b) Determiner U_i , i = 1, ..., p tel que

$$\frac{1}{P_A(X)} = \sum_{i=1}^p \frac{U_i}{(X - \lambda_i)^{r_i}}.$$

c) Montrer que $\sum_{i=1}^{p} U_i Q_i = 1$ avec

$$Q_i = \prod_{j \neq i} (X - \lambda_j)^{r_j}.$$

- d) On pose $D = \sum_{i=1}^{p} \lambda_i U_i(A) Q_i(A)$ et N = A D. Montrer que (D, N) est la décomposition de Dunford de la matrice A.
- 4. On définit les matrice B et C comme suit :

$$B = \begin{pmatrix} \frac{5}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & 2 & -\frac{1}{2} \\ -\frac{1}{2} & -1 & \frac{3}{2} \end{pmatrix},$$

$$C = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 6 \end{array}\right).$$

- a) Calculer la décomposition de Dunford de B et C.
- b) Calculer $\exp(C)$.
- 5. Montrer que pour toute matrice $A \in M_n(\mathbb{C})$, $\det(e^A) = e^{\operatorname{tr}(A)}$.
- 6. Qu'en est-il si A appartient à $M_n(\mathbb{R})$?