Fall 202 COMP 206

Assignment No.3

Due: Monday 23rd November

1. Simplify the boolean expression to minimum number of literals using Boolean algebra & draw circuits to implement both original & simplified version:

a.
$$xyz + x'y + xyz'$$

b.
$$(BC' + A'D)(AB' + CD')$$

- 2. Reduce the expression to 1 literal: A'B(D + C'D) + B(A + A'CD)
- 3. Find the complement of F = z + z'(v'w + xy)
- 4. Convert the following Boolean function in SOM, POF & POM form:

$$F(a,b,c) = a'b+a'c'+abc$$

5. For the following truth table

а	b	c	<i>f</i> ₁	f ₂
0	0	0	1	1
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	0	1
1	1	1	1	0

- a. Obtain expression for f1 in Sum of Minterms form.
- b. Obtain expression for f2 in product of Maxterms form & simplify using Boolean algebra