CSE111: Data Structures

Assignment – Algorithm complexity analysis

Name: mahros mohamed mahros alqabasy

ID: 223106831

Program: CS

A. What is the time complexity of the following code fragments?

1. What is the runtime of this code?

2. What is the runtime of this code?

3. What about this code that has an inside loop with i + 1

```
void printPairs(int[] array, int length) { O(n^2)
    for (int i = 0; i <length; i++) {
        for (int j = i + 1; j <length; j++) {
            cout<<array[i] << "," << array[j];
        }
    }
}</pre>
```

This would give us something like:

(1, 2) (1, 3) (1, 4) (1, 5)

- (2, 3) (2, 4) (2, 5)
- (3, 4) (3, 5)
- (4, 5)
- 4. What is the runtime of this code that has two different arrays?

```
void printArrays(int[] arrayA, int Asize, int[] arrayB, int Bsize) {
    for(int a= 0; a < Asize; a++) {
        for(int b= 0; b< Bsize; b++) {
            if(a > b) {
                cout<<a << ", " << b;
            }
        }
    }
}</pre>
```

5. What would happen if in the same code we introduce another internal loop that has a constant value?

```
void printArrays(int[] arrayA, int Asize, int[] arrayB, int Bsize) {
    for(int a= 0; a < Asize; a++) {
        for(int b= 0; b< Bsize; b++) {
            for (int i = 0; i < 1000000; i++) {
                cout<<a << "," << b;
            }
        }
    }
}</pre>
```

6. This code computes the product of two variables, what is the runtime of this code?

```
int product(int a, int b) { O(n)
  int sum = 0;
  for (int i = 0; i < b; i++) {
     sum += a;
  }
  return sum;
}</pre>
```

B. What is the dominating terms and the time complexity of the following expressions?

Expression	Dominant term(s)	$O(\ldots)$
$5 + 0.001n^3 + 0.025n$	0.001n^3	n^3
$500n + 100n^{1.5} + 50n\log_{10}n$	100n^1.5	2^1.5
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	2.5n^1.75	2^1.75
$n^2 \log_2 n + n(\log_2 n)^2$	n^2logn	n^2 logn
$n\log_3 n + n\log_2 n$	nlogn	nlogn
$3\log_8 n + \log_2 \log_2 \log_2 n$	3log_8_n	log8(n)
$100n + 0.01n^2$	0.01n^2	n^2
$0.01n + 100n^2$	100n^2	n^2
$2n + n^{0.5} + 0.5n^{1.25}$	0.5n^1.25	n^1.25
$0.01n\log_2 n + n(\log_2 n)^2$	n(log2(n))^2	n(log2(n))^2
$100n\log_3 n + n^3 + 100n$	n^3	n^3
$0.003\log_4 n + \log_2 \log_2 n$	0.003log4(n)	log4(n)

C. Which Algorithm is Best?

A venture capitalist is trying to decide which of 3 startup companies to invest in and has asked for your help. Here's the timing data for their prototype software on some different size test cases:

n	foo-a	foo-b	foo-c
10	10 u-sec	5 u-sec	1 u-sec
20	13 u-sec	10 u-sec	8 u-sec
30	15 u-sec	15 u-sec	27 u-sec
100	20 u-sec	50 u-sec	1000 u-sec
1000	?	?	?

Which company has the "best" algorithm?

the foo-a is the best one, because it has the lowest rate of change.