Equivariant localization, parity sheaves, and cyclic base change

Tony Feng

MIT/IAS

September 17, 2020

Global Langlands correspondence

Notation:

- $F = \text{global function field, e.g. } \mathbb{F}_{\ell}(t)$
- G = reductive group over F, e.g. SL_n
- $k = \overline{\mathbb{F}}_p$ (coefficients), $p \neq \operatorname{char}(F)$

Global Langlands correspondence

Notation:

- $F = \text{global function field, e.g. } \mathbb{F}_{\ell}(t)$
- G = reductive group over F, e.g. SL_n
- $k = \overline{\mathbb{F}}_p$ (coefficients), $p \neq \operatorname{char}(F)$

Vincent Lafforgue constructed

$$\left\{ \begin{array}{l} \text{irreducible cuspidal} \\ \text{automorphic representations} \\ \text{of } \textit{G} \text{ over } \textit{k} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \text{Langlands parameters} \\ \text{Gal}(\textit{F}^{\textit{s}}/\textit{F}) \rightarrow {}^{\textit{L}}\textit{G}(\textit{k})/\sim \end{array} \right\}.$$

Does it have expected properties?

Global Langlands correspondence

$$\left\{ \begin{array}{c} \text{irreducible} \\ \text{automorphic representations} \\ \text{of } G \text{ over } k \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{Langlands parameters} \\ \text{Gal}(F^s/F) \rightarrow {}^L G(k)/\sim \end{array} \right\}.$$

Langlands functoriality:

Global base change

$$\left\{ \begin{array}{c} \text{irreducible} \\ \text{automorphic representations} \\ \text{of } G \text{ over } k \end{array} \right\} \xrightarrow{\operatorname{GLC}(G)} \left\{ \begin{array}{c} \operatorname{Langlands \ parameters} \\ \operatorname{Gal}(F^s/F) \to {}^LG(k)/\sim \end{array} \right\}.$$

Suppose

- H reductive over F,
- E/F field extension, $G := Res_{E/F}(H_E)$.

There's a diagonal embedding ϕ_{BC} : ${}^LH \rightarrow {}^LG$.

Global base change

$$\left\{ \begin{array}{c} \text{irreducible} \\ \text{automorphic representations} \\ \text{of } \textit{G} \text{ over } \textit{k} \end{array} \right\} \xrightarrow{\operatorname{GLC}(\textit{G})} \left\{ \begin{array}{c} \text{Langlands parameters} \\ \text{Gal}(\textit{F}^{\textit{s}}/\textit{F}) \rightarrow {}^{\textit{L}}\textit{G}(\textit{k})/\sim \end{array} \right\}.$$

Suppose

- H reductive over F,
- E/F field extension, $G := Res_{E/F}(H_E)$.

There's a diagonal embedding $\phi_{\rm BC}$: ${}^LH \to {}^LG$.

Theorem 1 (Existence of global base change)

Assume p is good for \widehat{G} and $\operatorname{Gal}(E/F) \approx \mathbb{Z}/p\mathbb{Z}$. Then $\rho \in \operatorname{Im} \operatorname{GLC}(H) \implies \phi_{\operatorname{BC}} \circ \rho \in \operatorname{Im} \operatorname{GLC}(G)$.

Base change

Not optimal: should be true even with characteristic 0 coefficients.

- Follows from bijectivity of GLC for $G = GL_n$ by L. Lafforgue.
- Known for GL_n over number fields by Arthur-Clozel.

All proofs use the trace formula.

Base change

Not optimal: should be true even with characteristic 0 coefficients.

- Follows from bijectivity of GLC for $G = GL_n$ by L. Lafforgue.
- Known for GL_n over number fields by Arthur-Clozel.

All proofs use the trace formula.

Novelty for general G: can have

f, f' generating isomorphic automorphic representations \rightarrow different L-parameters.

Indistinguishable by the trace formula!

Local Langlands correspondence

Notation:

- $F_{\nu} = \text{local function field, e.g. } \mathbb{F}_{\ell}((t)).$
- $H = \text{reductive group over } F_v$.

Local Langlands correspondence

Notation:

- $F_{\nu} = \text{local function field, e.g. } \mathbb{F}_{\ell}((t)).$
- $H = \text{reductive group over } F_v$.

Genestier-Lafforgue constructed:

$$\left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of } H(F_v) \text{ over } k \end{array} \right\} / \sim \longrightarrow \left\{ \begin{array}{c} \text{semi-simple} \\ \text{Langlands parameters} \\ \text{Weil}(F_v) \to {}^L H(k) / \sim \end{array} \right\}.$$

Local base change

Notation:

- E_v/F_v extension, $Gal(E_v/F_v) \approx \mathbb{Z}/p = \langle \sigma \rangle$.
- $\bullet \ \ \textit{G} = \mathsf{Res}_{\textit{E}_{\textit{v}}/\textit{F}_{\textit{v}}}(\textit{H}_{\textit{E}_{\textit{v}}})$

$$\left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of } H(F_{\nu}) \text{ over } k \end{array} \right\} \stackrel{\text{BC}}{\longrightarrow} \left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of } G(F_{\nu}) \text{ over } k \end{array} \right\}$$

Im (BC) should be
$$\{\Pi \colon \Pi \circ \sigma \approx \Pi\} \implies G \rtimes \sigma \curvearrowright \Pi$$
.

$$BC^{-1}(\Pi) = ?$$

Local base change

Tate cohomology. $\sigma \curvearrowright \Pi$

$$0 = \sigma^p - 1 = (\sigma - 1)(\underbrace{1 + \sigma + \ldots + \sigma^{p-1}}_{N})$$

Local base change

Tate cohomology. $\sigma \curvearrowright \Pi$

$$0 = \sigma^p - 1 = (\sigma - 1)(\underbrace{1 + \sigma + \dots + \sigma^{p-1}}_{N})$$

$$T^0(\Pi) := \frac{\ker(\sigma - 1 \mid \Pi)}{\operatorname{Im}(N \mid \Pi)}$$

$$T^1(\Pi) := \frac{\ker(N \mid \Pi)}{\operatorname{Im}(\sigma - 1 \mid \Pi)}$$

Treumann-Venkatesh Conjecture

Conjecture (Treumann-Venkatesh)

Let Π be an irreducible σ -fixed representation of $G(F_v)$. Then any irreducible subquotient of $T^i(\Pi)$ transfers under LLC to

$$\Pi^{(p)} := \Pi \otimes_{k, \mathsf{Frob}_p} k.$$

Treumann-Venkatesh Conjecture

Conjecture (Treumann-Venkatesh)

Let Π be an irreducible σ -fixed representation of $G(F_v)$. Then any irreducible subquotient of $T^i(\Pi)$ transfers under LLC to

$$\Pi^{(p)} := \Pi \otimes_{k, \mathsf{Frob}_p} k.$$

Theorem 2 (F.)

Assume p is good for \widehat{G} . Then any irreducible subquotient of $T^i(\Pi)$ transfers under the Genestier-Lafforgue correspondence to $\Pi^{(p)}$.

Treumann-Venkatesh Conjecture

Conjecture (Treumann-Venkatesh)

Let Π be an irreducible σ -fixed representation of $G(F_{\nu})$. Then any irreducible subquotient of $T^{i}(\Pi)$ transfers under LLC to

$$\Pi^{(p)} := \Pi \otimes_{k, \mathsf{Frob}_p} k.$$

Theorem 2 (F.)

Assume p is good for \widehat{G} . Then any irreducible subquotient of $T^i(\Pi)$ transfers under the Genestier-Lafforgue correspondence to $\Pi^{(p)}$.

Previously proved by Ronchetti for depth zero supercuspidals of GL_n induced from cuspidal Deligne-Lusztig representations.

Summary of Lafforgue's correspondence

 Γ = a group.

Excursion algebra $\operatorname{Exc}(\Gamma, \widehat{G})$

 \sim Functions on $\mathsf{Hom}(\Gamma,\widehat{G})/\widehat{G}$.

$$\{\mathsf{Exc}(\Gamma,\widehat{G}) \to k\} \leftrightarrow \{\mathsf{semi\text{-}simple L-parameters }\Gamma \to \widehat{G}(k)\}.$$

$$[G] := G(F) \backslash G(\mathbf{A}_F).$$

Idea: construct $\operatorname{Exc}(\operatorname{Gal}(F^s/F), \widehat{G}) \curvearrowright C_c^{\infty}([G]; k)$.

The excursion algebra

Can present $\operatorname{Exc}(\Gamma,\widehat{G})$ explicitly by generators and relations.

Generators: $S_{n,f,(\gamma_i)_{i=1,...,n}}$

The excursion algebra

Can present $\operatorname{Exc}(\Gamma,\widehat{G})$ explicitly by generators and relations.

- 4.2.2. Relations. Next we describe the relations. (Compare Laf18a, §10].)
 - (i) $S_{\emptyset,f,*} = f(1_G)$.
- (ii) The map $f \mapsto S_{I,f,(\gamma_i)_{i\in I}}$ is a k-algebra homomorphism in f, i.e.

$$\begin{split} S_{I,f+f',(\gamma_i)_{i\in I}} &= S_{I,f,(\gamma_i)_{i\in I}} + S_{I,f',(\gamma_i)_{i\in I}}, \\ S_{I,ff',(\gamma_i)_{i\in I}} &= S_{I,f,(\gamma_i)_{i\in I}} \cdot S_{I,f',(\gamma_i)_{i\in I}}, \end{split}$$

and

$$S_{I,\lambda f,(\gamma_i)_{i\in I}} = \lambda S_{I,f,(\gamma_i)_{i\in I}}$$
 for all $\lambda \in k$.

(iii) For all maps of finite sets $\zeta \colon I \to J$, all $f \in \mathcal{O}(\widehat{G}_k \setminus ({}^L G_k^{\mathrm{alg}})^I / \widehat{G}_k)$, and all $(\gamma_j)_{j \in J} \in \Gamma^J$, we have

$$S_{J,f^{\zeta},(\gamma_j)_{j\in J}} = S_{I,f,(\gamma_{\zeta(i)})_{i\in I}}$$

where $f^{\zeta} \in \mathcal{O}(\widehat{G}_k \setminus ({}^L G_k^{\mathrm{alg}})^J / \widehat{G}_k)$ is defined by $f^{\zeta}((g_j)_{j \in J}) := f((g_{\zeta(i)})_{i \in I})$.

(iv) For all $f \in \mathcal{O}(\widehat{G}_k \setminus ({}^L G_k^{\text{alg}})^I / \widehat{G}_k)$ and $(\gamma_i)_{i \in I}, (\gamma_i')_{i \in I}, (\gamma_i'')_{i \in I} \in \Gamma^I$, we have

$$S_{I\sqcup I\sqcup I,\widetilde{f},(\gamma_i)_{i\in I}\times(\gamma_i')_{i\in I}\times(\gamma_i'')_{i\in I}}=S_{I,f,(\gamma_i(\gamma_i')^{-1}\gamma_i'')_{i\in I}},$$

where $\tilde{f} \in \mathcal{O}(\hat{G}_k \setminus ({}^LG_k^{alg})^{I \sqcup I \sqcup I}/\hat{G}_k)$ is defined by

$$\widetilde{f}((g_i)_{i \in I} \times (g'_i)_{i \in I} \times (g''_i)_{i \in I}) = f((g_i(g'_i)^{-1}g''_i)_{i \in I}).$$

Actions of the excursion algebra

How to construct $\operatorname{Exc}(\Gamma, \widehat{G}) \curvearrowright ?$

Actions of the excursion algebra

How to construct $\operatorname{Exc}(\Gamma, \widehat{G}) \curvearrowright ?$

Tannakian construction: given a family of functors

$$\operatorname{\mathsf{Rep}}(\widehat{\mathsf{G}}^I) \xrightarrow{\mathsf{H}_I} \operatorname{Mod}(\Gamma^I)$$

Actions of the excursion algebra

How to construct $\operatorname{Exc}(\Gamma, \widehat{G}) \curvearrowright ?$

Summary of Lafforgue's correspondence

Where does this structure come from?

 $F \leftrightarrow X$ smooth projective curve.

Summary of Lafforgue's correspondence

Where does this structure come from?

Geometric Satake equivalence:

$$\operatorname{\mathsf{Rep}}_k(\widehat{G}) \cong P_{G(\mathcal{O}_v)}(\underbrace{G(F_v)/G(\mathcal{O}_v)}_{\mathsf{Gr}_G}).$$

Sht_I
$$\begin{cases} (x_i)_{i \in I} \in X^I(S) \\ \mathcal{E} = G\text{-bundle over } X \times S \\ \varphi \colon \mathcal{E}|_{X \times S - \bigcup_{i \in I} \Gamma_{x_i}} \xrightarrow{\sim} {}^{\sigma} \mathcal{E}|_{X \times S - \bigcup_{i \in I} \Gamma_{x_i}} \end{cases}$$

$$\downarrow X^I \qquad \{x_i\}_{i \in I}$$

Lafforgue's correspondence

$$\begin{aligned} \mathsf{Sht}_{\emptyset} &= \mathsf{Bun}_{G}(\mathbb{F}_{\ell}) \overset{\mathit{Weil}}{\sim} \mathit{G}(F) \backslash \mathit{G}(\mathbf{A}_{F}) / \prod \mathit{G}(\mathcal{O}_{v}) \\ \Longrightarrow \mathit{H}_{\emptyset}(\mathbb{1}) &= \mathit{H}_{c}^{0}(\mathsf{Bun}_{G}(\mathbb{F}_{\ell}); \mathit{k}) \sim \mathit{C}_{c}([\mathit{G}] / \prod \mathit{G}(\mathcal{O}_{v})) \end{aligned}$$

$$\implies$$
 get $\operatorname{Exc}(\Gamma, {}^LG) \curvearrowright C_c(\operatorname{Bun}_G(\mathbb{F}_\ell)).$

Equivariant localization

$$S=$$
 set with $\mathbb{Z}/p\mathbb{Z} pprox \langle \sigma \rangle$ -action.

$$T^0C_c(S)\cong T^0C_c(S^{\sigma}).$$

Equivariant localization and automorphic forms

$$T^0C_c(S)\cong T^0C_c(S^{\sigma}).$$

Take
$$S = [\mathsf{Bun}_G(\mathbb{F}_\ell)] \implies S^\sigma = [\mathsf{Bun}_H(\mathbb{F}_\ell)].$$

$$T^0C_c(\operatorname{Bun}_G(\mathbb{F}_\ell))\cong T^0C_c(\operatorname{Bun}_H(\mathbb{F}_\ell)).$$

Equivariant localization and excursion operators

Excursion operators:

$$T^0H_c^0(\operatorname{Sht}_G;\operatorname{Sat}(\mathbb{1})) \longrightarrow T^0(\operatorname{Sht}_G;\operatorname{Sat}(W)) \longrightarrow \dots$$

$$\downarrow ?$$

$$T^0H_c^0(\operatorname{Sht}_H;\operatorname{Sat}(\mathbb{1})) \longrightarrow T^0(\operatorname{Sht}_H,\operatorname{Sat}(\operatorname{Res}(W))) \longrightarrow \dots$$

Equivariant localization and excursion operators

Excursion operators:

Want to identify all steps of the excursion.

- **Topological** aspect: relating (Tate) cohomology of a space with (Tate) cohomology of its fixed points.
- Representation-theoretic aspect: geometric interpretation of restriction functor on dual groups.

Tate cohomology

Suppose $\langle \sigma \rangle \approx \mathbb{Z}/p \curvearrowright X$, $\mathcal{F} \in D^b_\sigma(X; k)$.

$$\begin{split} & \mathcal{T}^i(X;\mathcal{F}) := \\ & \mathcal{H}^i(\mathrm{Tot}(\dots \xrightarrow{N} C^*(X;\mathcal{F}) \xrightarrow{1-\sigma} C^*(X;\mathcal{F}) \xrightarrow{N} C^*(X;\mathcal{F}) \xrightarrow{1-\sigma} \dots)) \end{split}$$

Smith theory

(Smith, Quillen, Treumann, etc.)

$$T^i(X; \mathcal{F}) \cong T^i(X^{\sigma}; \mathcal{F}|_{X^{\sigma}}).$$

Representation-theoretic aspects

Treumann-Venkatesh construct Brauer homomorphism

Hecke algebra for
$$G$$
 \longrightarrow Hecke algebra for H \parallel \parallel Representation ring of LG \longrightarrow Representation ring of LH

Representation-theoretic aspects

Treumann-Venkatesh construct Brauer homomorphism

Hecke algebra for
$$G$$
 \longrightarrow Hecke algebra for H \parallel \parallel \parallel Representation ring of LG \longrightarrow Representation ring of LH

With Lonergan we construct a categorification

Hecke category for
$$G$$
 \longrightarrow Hecke category for H \parallel \parallel Representation category of LG \longrightarrow Representation category of LH

using recent tools in geometric representation theory

- parity sheaves (Juteau-Mautner-Williamson)
- Smith-Treumann theory (Treumann, Leslie-Lonergan).