### Работа 3.6.1

## Спектральный анализ электрических сигналов

Шелихов Дмитрий Группа Б01-305

18 октября 2024 г.

**Цель работы:** изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключенный к персональному компьютеру.

#### Теоретическая справка

По теореме Фурье любая периодическая функция может быть представлена в виде ряда (конечного или бесконечного) гармонических функций с кратными частотами - ряда Фурье. Одно из представлений ряда Фурье для функции с периодом Т имеет вид

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(2\pi\nu_n t) + B_n \sin(2\pi\nu_n t), (1)$$

,где  $\nu_n=\mathrm{n}\nu_0,\ \nu_0=\frac{1}{T},\ \mathrm{n}=1,2,...$  - частоты фурье-гармоник,  $A_n$  и  $B_n$  - коэффициенты разложения в ряд Фурье.

Коэффициенты находятся как:

$$A_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cdot \cos(2\pi\nu_{n}t) dt, B_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cdot \sin(2\pi\nu_{n}t) dt.$$
 (2)

На практике удобнее использовать эквивалентную форму записи ряда Фурье в "представлении амплитуд и фаз":

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi\nu_n t + \varphi_n).$$
 (3)

, где  $a_n = \sqrt{{A_n}^2 + {B_n}^2}$ , а фаза определяется соотношением  ${\rm tg}\varphi_n = \frac{B_n}{A_n}$ Соотношения неопределённостей.

Между сигналом как функцией времени f(t) и его спектром как функции частоты  $a(\nu)$  имеется взаимосвязь. Если у сигнала f(t) есть какое-то характеристическое время  $\Delta t$  (например период повторения, длительность импульса, время нарастания и т.д.), то в спектре  $a(\nu)$  в том или ином виде наблюдается характерный масштаб  $\Delta \nu \sim \frac{1}{\Delta t}$  (расстояние между пиками, ширина спектра, ширина пиков и т.д.)



Рис. 1: Периодическая последовательность импульсов и её спектр

$$\Delta \nu \cdot \Delta t \sim 1$$
 (4) - соотношение неопределённостей

Для любого сигнала с периодом T в спектре обязательно будут наблюдаться гармоники на расстоянии  $\delta \nu = 1/T$  друг от друга. В данном случае соотношение является точным и от формы сигнала не зависит.

#### Ход работы

- 1) По техническому описанию ознакомимся с устройством панели приборов: генератора сигналов произвольной формы и цифрового осциллографа/компьютерной программы, используемой для отображения сигналов с осциллографа. Изучим расположение основных кнопок и ручек настройки.
- 2) Подключим один из выходов генератора к одному из каналов осциллографа и включим приборы в сеть.

# А. Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

- 3) Следуя техническому описанию генератора, настроим генерацию прямоугольных импульсов. Параметры:  $\nu_{\text{повт}}=1$ к $\Gamma$ ц (период  $T=1/\nu_{\text{повт}}=1$ мс), и длительность импульса  $\tau=T/20=50$  мкс.
- 4) По техническому описанию получим устойчивую картину сигнала на экране осциллографа.
- 5) Следуя техническому описанию осциллографа, получим на его экране спектр (преобразование Фурье) сигнала.

Масштаб по горизонтальной оси установим меньше или порядка ожидаемой ширины спектра  $\Delta \nu \approx 20~\mathrm{k\Gamma}$ ц (ширину спектра оцениваем из соотношения неопределённостей).

Масштаб по вертикальной оси подберём так, чтобы спектральные линии не выходили за пределы экрана (кроме, может быть, «нулевой» гармоники  $\nu=0$   $\Gamma$ ц, — она отвечает за уровень постоянного смещения сигнала, и ее высота может оказаться значительно выше остальных).

Центр картины при предварительной настройке установите на 0  $\Gamma$ ц, а затем после подбора масштабов сместите его так, чтобы спектр занимал весь экран начиная от левого края.

6) Пронаблюдаем, как изменяется спектр при изменении параметров сигнала.

Наблюдения: а) При увеличении  $\nu_{\text{повт}}$  выросли амплитуды, ширина спектра не меняется.

- б) При увеличении au амплитуды гармоник вырастают, а ширина спектра уменьшается.
- 7) При фиксированных  $\nu_{\text{повт}} = 1$ к $\Gamma$ ц и  $\tau = 50$ мкс измерим амплитуды  $a_n$  и частоты  $\nu_n$  8 гармоник. Сравним значения с рассчитанными теоретически



Рис. 2:  $\nu_{\text{повт}}=1\text{к}\Gamma\text{ц},\,\tau=50\text{мкc}$ 



Рис. 3:  $\nu_{\text{повт}}=2$ к Г<br/>ц,  $\tau=50$ мкс



Рис. 4:  $\nu_{\text{повт}}=2\text{к}\Gamma\text{ц},\,\tau=25\text{мкc}$ 



Рис. 5:  $\nu_{\text{повт}}=0.5\text{к}\Gamma\text{ц},\,\tau=200\text{мкc}$ 

$$\nu_n = \frac{n}{T}, |a_n| = \frac{|\sin\frac{\pi n\tau}{T}|}{\pi n} = \frac{\tau}{T} \frac{|\sin\pi\nu_n\tau|}{\pi\nu_n\tau}$$

Результаты измерений занесём в таблицу:

| n гармоники                                        | 1               | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 | 8                 |
|----------------------------------------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $\nu_n^{\text{эксп}}$ , к $\Gamma$ ц               | 1,014           | 2,031             | 3,007             | 4,024             | 5,041             | 6,017             | 6,994             | 8,011             |
| $\nu_n^{\text{теор}}$ , к $\Gamma$ ц               | 1               | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 | 8                 |
| $ a_n^{\mathfrak{g}_{\mathrm{KCII}}} , \text{ MB}$ | $279,1 \pm 0,1$ | $275,8 \pm 0,1$   | $270,9 \pm 0,1$   | $262,7 \pm 0,1$   | $252,9 \pm 0,1$   | $241,4 \pm 0,1$   | $226,7 \pm 0,1$   | $212,0 \pm 0,1$   |
| $ a_n/a_1 ^{\mathfrak{I}_{KC\Pi}}$                 | 1               | $0.988 \pm 0.001$ | $0.967 \pm 0.001$ | $0.939 \pm 0.001$ | $0,904 \pm 0,001$ | $0.862 \pm 0.001$ | $0.814 \pm 0.001$ | $0.760 \pm 0.001$ |
| $ a_n/a_1 ^{\text{reop}}$                          | 1               | 0,988             | 0,971             | 0,941             | 0,906             | 0,865             | 0,812             | 0,760             |

8) Зафиксируем период повторения Т прямоугольного сигнала. Т = 1мс,  $\nu_{\text{повт}}$  = 1кГц. Изменяя длительность импульса  $\tau$  в диапазоне от  $\tau$  = T/50 до  $\tau$  = T/5, измерим полную ширину спектра сигнала  $\Delta \nu$  - от центра спектра ( $\nu$  = 0) до гармоники с нулевой амплитудой  $a_n \approx 0$ .

| $\tau$ , MKC | $\Delta \nu$ , к $\Gamma$ ц | $ u_{\text{повт}},  \text{к}\Gamma$ ц |
|--------------|-----------------------------|---------------------------------------|
| 30           | $27.8 \pm 1.4$              |                                       |
| 45           | $19.9 \pm 1.0$              |                                       |
| 67,5         | $13.8 \pm 0.7$              | 1                                     |
| 100          | $10.0 \pm 0.5$              | 1                                     |
| 140          | $6.0 \pm 0.3$               |                                       |
| 200          | $5.0 \pm 0.1$               |                                       |

9) Зафиксируем длительность импульса прямоугольного сигнала  $\tau=100$ мкс. Изменяя период повторения T в диапазоне от  $2\tau$  до  $50\tau$  измерим расстояния  $\delta\nu=\nu_{n+1}$  -  $\nu_n$  между соседнимим гармониками спектра. Если спектральные компоненты окажутся расположены слишком близко друг к другу, измерим расстояние между (n+m)-й и m-й гармониками (для некоторых целых n и m) и найдем  $\delta\nu=\frac{(\nu_{n+m}-\nu_n)}{m}$ .

| Т, мкс | $\delta  u_m$ , к $\Gamma$ ц | $\delta  u$ , к $\Gamma$ ц | $ u_{\text{повт}},  \text{к}\Gamma$ ц | т, шт |
|--------|------------------------------|----------------------------|---------------------------------------|-------|
| 200    | $19,98 \pm 0,02$             | $4,995 \pm 0,005$          | 5,00                                  | 4     |
| 300    | $19,98 \pm 0,02$             | $3,330 \pm 0,003$          | 3,33                                  | 6     |
| 500    | $20,00 \pm 0,02$             | $2,000 \pm 0,002$          | 2,00                                  | 10    |
| 800    | $12,52 \pm 0,02$             | $1,252 \pm 0,002$          | 1,25                                  | 10    |
| 1100   | $9,10 \pm 0,02$              | $0,910 \pm 0,002$          | 0,91                                  | 10    |
| 1500   | $6,66 \pm 0,02$              | $0,666 \pm 0,002$          | 0,67                                  | 10    |
| 2000   | $5,06 \pm 0,02$              | $0,506 \pm 0,002$          | $0,\!50$                              | 10    |
| 2500   | $4,00 \pm 0,02$              | $0,400 \pm 0,002$          | 0,40                                  | 10    |
| 3000   | $3,34 \pm 0.02$              | $0.334 \pm 0.002$          | 0,33                                  | 10    |
| 3500   | $2,86 \pm 0,02$              | $0,286 \pm 0,002$          | 0,29                                  | 10    |
| 4000   | $2,50 \pm 0,02$              | $0,250 \pm 0,002$          | 0,25                                  | 10    |
| 4500   | $2,22 \pm 0,02$              | $0,222 \pm 0,002$          | 0,22                                  | 10    |
| 5000   | $2,00 \pm 0,02$              | $0,200 \pm 0,002$          | 0,20                                  | 10    |

10) Построим графики зависимостей  $\Delta \nu(1~\tau)$  и  $\delta \nu(1/T)$ . Проведем наилучшие прямые и определим их наклон.

График зависимости ширины спектра от обратного времени импульса  $\Delta \nu (1/ au)$  :



Рис. 6: Периодическая последовательность цугов и её спектр



Получили  $k\approx 0.82\pm 0.05$ . По соотношению неопределённостей  $k\approx \Delta\nu\cdot \tau\approx 1$ . Таким образом соотношение соблюдается, поскольку получена величина по порядку совпадающая с единицей.

График  $\delta\nu(1/T)$ :



Таким образом получаем  $k=\delta \nu\cdot T=1{,}000\pm0{,}004\approx 1$ . Убеждаемся в справедливости соотношение неопределённостей.

#### Б.Наблюдение спектра периодической последовательности цугов

11) Следуя техническому описанию генератора, установим его на режим подачи периодических импульсов синусоидальной формы ("цугов"). Установим несущую частоту  $\nu_0 =$ 

50к $\Gamma$ ц, период повторения T=1мс ( $\nu_{\text{повт}}=1$ к $\Gamma$ ц), число периодов синусоиды в одном импульсе N=5 (что соответствует длительности имплульса  $\tau=N/\nu_0=100$  мкс). Получим на экране осциллографа устойчивую картину сигнала.

- 12) Получим на экране осциллографа спектр сигнала. Центр картины установим на частоту  $\nu_0$ . Масштаб по горизонтали (к $\Gamma$ ц/дел) подберем так, чтобы спектр помещался на экране.
- 13) Изменяя параметры сигнала T,  $\nu_0$  и N пронаблюдаем, как изменяется вид спектра. Сравним наблюдаемые спектры со спектрами прямоугольных импульсов.

Наблюдения: а) При изменении N число волн спектра равно 2N-1

- б) При увеличении N амплитуда растет, ширина спектра уменьшается
- в) При увеличении T амплитуда уменьшается, ширина спектра не меняется. Число гармоник увеличивается
  - г) При увеличении  $\nu_0$  амплитуда уменьшается, ширина спектра растет
- 14) При параметрах сигнала, соответствующих сохранённым в предыдущем пункте изображениям, измерим положение центра спектра, его ширину  $\Delta \nu$  и расстояние между гармониками  $\delta \nu$ .

| $\nu_0$ , к $\Gamma$ ц | $ u_{\rm центр},  \kappa \Gamma$ ц | Т, мс | $\delta \nu_m$ , к $\Gamma$ ц | т, шт | N, шт | $\delta \nu$ |
|------------------------|------------------------------------|-------|-------------------------------|-------|-------|--------------|
| 50                     | $50.02 \pm 0.02$                   | 1     | $10.01 \pm 0.02$              | 20    | 5     | 1.00         |
| 70                     | $70.00 \pm 0.02$                   | 1     | $14.04 \pm 0.02$              | 28    | 5     | 1.00         |
| 50                     | $49.94 \pm 0.02$                   | 2     | $9.94 \pm 0.02$               | 40    | 5     | 0.50         |
| 50                     | $50.00 \pm 0.02$                   | 1     | $8.00 \pm 0.02$               | 16    | 6     | 1.00         |



Рис. 7:  $\nu_0=50 \mbox{k}\Gamma\mbox{ц, } T=1 \mbox{мc}, \, N=5$ 



Рис. 8:  $\nu_0=70 \mbox{k}\Gamma\mbox{ц, } T=1 \mbox{мc}, \, N=5$ 



Рис. 9:  $\nu_0=50 \mbox{k}\Gamma\mbox{ц, } T=2 \mbox{мc}, \, N=5$ 



Рис. 10:  $\nu_0 = 50 \mbox{k} \Gamma \mbox{ц, } T = 1 \mbox{мc}, \, N = 6$