Exercice 1. Une fonction plus simple qu'il n'y paraît.

1. Une fonction auxiliaire.

Posons $u: x \mapsto \frac{1+x}{\sqrt{2}\sqrt{1+x^2}}$. Puisque arccos est définie sur [-1,1], nous allons vérifier que les images par u appartiennent à cet intervalle.

Étude des variations.

La fonction $x \mapsto \sqrt{1+x^2}$ est dérivable sur \mathbb{R}

- $-x \mapsto 1+x^2$ est dérivable sur \mathbb{R} et prend ses valeurs dans \mathbb{R}_+^*
- $-x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* .

La fonction u est dérivable sur $\mathbb R$ comme quotient de fonctions dérivables sur $\mathbb R$. Un calcul de dérivée amène

$$\forall x \in \mathbb{R} \quad u'(x) = \frac{1-x}{\sqrt{2}(1+x^2)^{3/2}}.$$

Si vous n'avez pas trouvé le bon résultat... refaites votre calcul.

Voici le tableau de variations de u:

x	$-\infty$	1	$+\infty$
u'(x)	-	- 0	_
u	$-\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$

Calcul des limites.

Il a fallu calculer f(1)=1 ainsi que les limites de u en ∞ . Puisqu'on est face à une « forme indéterminée », on factorise par x au numérateur, et sous la racine par x^2 (terme prépondérant). On obtient pour $x\neq 0$

$$u(x) = \frac{x}{|x|} \cdot \frac{\frac{1}{x} + 1}{\sqrt{2} \cdot \sqrt{\frac{1}{x^2} + 1}}.$$

Le quotient $\frac{x}{|x|}$ vaut 1 si x > 0 et -1 sinon. On peut alors faire tendre x vers $\pm \infty$ dans l'expression précédente pour trouver les limites du tableau.

Retour à f. La fonction f est bien définie comme composée de $u: \mathbb{R} \to [-1, 1]$ avec arccos : $[-1, 1] \to \mathbb{R}$.

2. La fonction f est dérivable sur $I_1 =]-\infty, 1[$ et $I_2 =]1, +\infty[$ comme composée des fonctions dérivables

$$u: I_k \to]-1,1[(k \in \{1,2\})$$
 et $\arccos:]-1,1[\to \mathbb{R}.$

Pour $x \in I_1 \cup I_2$, on calcule

$$f'(x) = u'(x) \cdot \arccos'(u(x))$$

$$= -\frac{1-x}{\sqrt{2}(1+x^2)^{3/2}} \cdot \frac{1}{\sqrt{1-\left(\frac{1+x}{\sqrt{2}\sqrt{1+x^2}}\right)^2}}$$

Or,

$$\sqrt{1 - \left(\frac{1+x}{\sqrt{2}\sqrt{1+x^2}}\right)^2} = \frac{\sqrt{1+x^2-2x}}{\sqrt{1+x^2}} = \frac{\sqrt{(x-1)^2}}{\sqrt{1+x^2}} = \frac{|x-1|}{\sqrt{1+x^2}}.$$

En simplifiant, on obtient

$$f'(x) = -\frac{x-1}{|x-1|} \cdot \frac{1}{1+x^2} = \pm \frac{1}{1+x^2}.$$

On aura un signe $+ \sin x < 1$ et un signe $- \sin x > 1$.

3. • Sur l'intervalle $I_1 =]-\infty, 1[, f-\arctan$ est de dérivée nulle donc constante :

$$\exists C \in \mathbb{R} \quad \forall x \in]-\infty, 1[\quad f(x) - \arctan(x) = C.$$

Évaluons en 0 : on obtient

$$\arccos\left(\frac{\sqrt{2}}{2}\right) - 0 = C$$
 ce qui laisse $C = -\frac{\pi}{4}$.

• Sur l'intervalle $I_2 =]1, +\infty[$, $f + \arctan$ est de dérivée nulle donc constante :

$$\exists C' \in \mathbb{R} \quad \forall x \in]1, +\infty[\quad f(x) + \arctan(x) = C'.$$

Passons à la limite en $+\infty$: on obtient

$$\arccos\left(\frac{\sqrt{2}}{2}\right) + \frac{\pi}{2} = C$$
 ce qui laisse $C' = \frac{3\pi}{4}$.

• On peut enfin calculer $f(1) = \arccos(1) = \frac{\pi}{2}$.

Conclusion.

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} \arctan(x) + \frac{\pi}{4} & \text{si } x < 1\\ \frac{\pi}{2} & \text{si } x = 1\\ -\arctan(x) + \frac{3\pi}{4} & \text{si } x > 1 \end{cases}.$$

On pourra vérifier que les limites à gauche et à droite en 1 valent $\frac{\pi}{2}$, c'est-à-dire f(1): la fonction f est continue en 1.

Exercice 3 Une équation fonctionnelle.

- 1. Soit $n \in \mathbb{N}$. On peut calculer f(f(f(n))) de deux façons. On sait que pour tout entier $X \in \mathbb{N}$, on a f(f(X)) = X + 1. On a donc
 - d'une part f(f(f(n))) = f(n+1) (en évaluant en X = n),
 - · d'autre part f(f(f(n))) = f(n) + 1 (en évaluant en X = f(n)).

Derrière ce calcul, l'associativité de la composition : $f \circ (f \circ f) = (f \circ f) \circ f$.

2. On pouvait bien entendu proposer une preuve par récurrence.

En proposant la forme « f(n+1) - f(n) » dans la question 1, l'énoncé espérait que vous vous laissiez tenter par un télescopage : pour $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n-1} (f(k+1) - f(k)) = \sum_{k=0}^{n-1} 1 \quad \text{soit} \quad f(n) - f(0) = n,$$

(le résultat étant clair pour n = 0).

3. Pour un entier n donné, on a d'après 2 que

$$f(f(n)) = f(n + f(0)) = (n + f(0)) + f(0),$$

(n+f(0)) étant un entier).

On a donc f(f(n)) = n + 2f(0) d'une part, et f(f(n)) = n + 1 d'autre part. Ceci laisse 2f(0) = 1 et donc $f(0) = \frac{1}{2}$, ce qui est absurde, attendu que f(0) est un entier.

Conclusion: il n'existe pas de fonction $f: \mathbb{N} \to \mathbb{N}$ telle que

$$\forall n \in \mathbb{N} \quad f(f(n)) = n + 1.$$