THE UNIVERSITY OF TEXAS AT AUSTIN

McCombs School of Business

STA 372.5 Spring 2018

HOMEWORK #9 - Due Wednesday, April 18

1. Consider the following regression model with AR(1) errors:

$$y_t = \gamma x_t + \varepsilon_t$$

where

$$\varepsilon_t - \mu = \beta(\varepsilon_{t-1} - \mu) + a_t$$
 $a_t \text{ iid } N(0, \sigma_a^2).$

The parameters of this model are estimated using the data set shown below (only the first six and last six observations are shown).

Data

First six rows of the data table are: Y X 1 -0.165 0.039 2 0.358 0.737 3 0.575 0.948 4 0.254 0.307 5 0.087 0.825 6 0.379 0.736 Last six rows of the data table are: Y X 35 -0.417 0.201 36 0.056 0.606 37 0.091 0.254 38 0.334 0.886 39 0.028 0.007 40 0.035 0.239

The R commands and output to estimate μ , β , γ and σ_a are shown below. Note that the one-and two-step ahead forecasts and confidence intervals have been replaced with asterisks.

Using all available information, answer parts (a) and (b).

```
y_time_series <- ts(data_table[,1])
result <- Arima(y_time_series, xreg=data_table$X, order=c(1, 0, 0))
print (result)
cat ("\n", "Forecasts and confidence intervals are:", "\n", "\n")
result_forecast <- forecast(result, xreg=c(0.5, 0.8), h=2)
print (result forecast)</pre>
```

Series: y_time_series

Regression with ARIMA(1,0,0) errors

Coefficients:

sigma^2 estimated as 0.03824: log likelihood=9.9 AIC=-11.81 AICc=-10.66 BIC=-5.05

Forecasts and confidence intervals are:

- (a) What is the one-month ahead forecast and 95% confidence interval for y_{41} given $x_{41} = 0.5$?
- (b) What is the two-month ahead forecast and 95% confidence interval for y_{42} given $x_{41} = 0.5$ and $x_{42} = 0.8$?

2. Read the case "Harmon Foods, Inc." The data for this case is in the file STA372_Homework9_Question2.dat on the *Data sets* page of the Canvas class website.

The data are available for a 48-month period and the goal is to predict the sales of Treat cereal in months 49 and 50 given information through month t = 48, and to compute 80% confidence intervals for the predictions.

The variables in the Excel file are:

Month: Month from 1 to 48 (four years of monthly data)

Shipments: Shipments of Treat cereal in month t

SeasonalIndex: Seasonal index for $Shipments_t$ in month t – The indices are computed using a multiplicative model and classical seasonal decomposition

ConsumerPack: Consumer packs (coupons) in month t

ConsumerPack_Lag1: Consumer packs lagged one month (i.e. ConsumerPack_{t-1})

ConsumerPack_Lag2: Consumer packs lagged two months (i.e. ConsumerPack_,2)

DealerAllowance: Dealer allowances in month t

DealerAllowance_Lag1: Dealer allowances lagged one month (i.e. DealerAllowance_t_1)

DealerAllowance_Lag2: Dealer allowances lagged two months (i.e. DealerAllowance 1.2)

Harmon Foods will set $ConsumerPack_{49} = 300,000$, $ConsumerPack_{50} = 200,000$, $DealerAllowance_{49} = \$200,000$, and $DealerAllowance_{50} = \$100,000$.

(a) Plot Shipments, vs. Month, Is there evidence of a trend and/or seasonality in Shipments,?

(b) Seasonally adjust *Shipments*, using the seasonal indices in the data file. Let

$$ShipmentsSA_t = Shipments_t / SeasonalIndex_t$$

represent the seasonally adjusted values. Did the classical seasonal decomposition procedure do a good job removing the seasonal component of Treat cereal?

(c) Run the following regression assuming AR(2) errors:

$$ShipmentsSA_{t} = \gamma_{1}Month_{t}$$

$$+ \gamma_{2}ConsumerPack_{t} + \gamma_{3}ConsumerPack_{t-1} + \gamma_{4}ConsumerPack_{t-2}$$

$$+ \gamma_{5}DealerAllowance_{t} + \gamma_{6}DealerAllowance_{t-1} + \gamma_{7}DealerAllowance_{t-2} + \varepsilon_{t}$$

where

$$\varepsilon_t - \mu = \beta_1(\varepsilon_{t-1} - \mu) + \beta_2(\varepsilon_{t-2} - \mu) + a_t \qquad a_t \text{ iid } N(0, \sigma_a^2).$$

To run this regression, use the following set of R commands (note that data_table[,10] contains *ShipmentsSA*).:

Use the autocorrelation function to determine whether the residuals a_t from this regression are independent.

(d) Now run the regression

$$ShipmentsSA_t = \gamma_1 Month_t + \gamma_5 Dealer Allowance_t + \gamma_6 Dealer Allowance_{t-1} + \varepsilon_t$$

where

$$\varepsilon_t - \mu = \beta_1(\varepsilon_{t-1} - \mu) + a_t$$
 $a_t \text{ iid } N(0, \sigma_a^2).$

This is essentially the regression in part (c) with the variables removed that were not statistically significant.

To run this regression, use the following set of R commands:

```
X <- cbind(data_table$Month, data_table$DealerAllowance, data_table$DA_lag1)
colnames(X) <- c("Month", "DealerAllowance", "DA_lag1")
result <- Arima(y_time_series, xreg=X, order=c(1, 0, 0))
print (result)</pre>
```

Use the autocorrelation function to determine whether the residuals a_t from this regression are independent.

Should the model in part (c) or part (d) be used for forecasting purposes?

- (e) Predict *ShipmentsSA*, (i.e. predict seasonally adjusted *Shipments*,) in months t = 49 and 50, and compute the 80% analytical confidence intervals for the predictions.
 - It is fine to compute the forecasts and confidence intervals using R but be sure to know how to compute them by hand as well (as in Problem #1 on this homework).
- (f) Using the results from part (e), predict *Shipments*, (not seasonally adjusted *ShipmentsSA*,) in months t = 49 and 50, and compute the 80% analytical confidence intervals for the predictions.

You will need to compute these forecasts and confidence intervals by hand using the results from part (e).