Unveiling the Urban Divide

Novel Insights into Economic Segregation Using Fine-Grained Data

What is it?

Economic inequality

The uneven distribution of economic resources among the population

Urban economic segregation

The uneven distribution of population groups throughout the urban area on the basis of their economic status

Equally unequal, unequally segregated

Why do we care about urban economic segregation?

Threatens social cohesion **Exacerbates the regressive impact of contextual effects**

Amplifies and reinforces other forms of inequality

Why do we care now?

Inequality is (seemingly) rising

Segregation is (seemingly) rising

Research puzzles:

Several cities record diverging evolutions of inequality and segregation (Van Ham et al., 2021)

Data is often incomplete, relies on approximate proxies and is based on decennial censuses

The link between inequality and segregation is probably mediated, multi-level and time-delayed

What do we aim to study?

What do we aim to study?

Economic inequality

Economic segregation

What do we aim to study?

What is the effect of income inequality on segregation? What are the levels of income What are the levels of income inequality in the Netherlands? segregation in the Netherlands? **Economic inequality Economic segregation** How was income inequality How was income segregation evolved from 2004 to 2021? evolved from 2004 to 2021? Is there a time lag in the relationship? How long is it?

Data

Household microdata from Statistics Netherlands (CBS)

Data on the annual income of households + residential location:

- From 2004 to 2021
- Covering the entire population of the Netherlands
- Geo-coded at a very high resolution (100m x 100m grid cells)

Methodology

Household + Address microdata

Every household is assigned to a metropolitan area

35 Functional Urban Areas following Eurostat and the OECD classification:

- They capture the actual extent of urban areas
- Regardless of institutional boundaries

Measuring urban segregation

Rank-Ordered Information Theory Index

Ratio of within-unit (grid cell) income rank variation to overall (metropolitan area) income rank variation

- Adapted to a continuous/ordinal variable
- Does not rely on arbitrary thresholds and takes advantage of all income information
- Independent of actual income inequality

The Rank-Order Information Theory Index

Reardon et al. (2006) describe the rank-order information theory index in detail; we summarize its key features here. First, let p denote income percentile ranks (scaled to range from zero to one) in a given income distribution (i.e., p = F(Y), where Y measures income and F is the cumulative income density function). Now, for any given value of p, we can dichotomize the income distribution at p and compute the residential (pairwise) segregation between those with income ranks less than p and those with income ranks greater than or equal to p. Let H(p) denote the value of the traditional information theory index (Theil and Finezza 1971; Theil 1972; Zoloth 1976; James and Taeuber 1985) of segregation computed between the two groups so defined. Likewise, let E(p) denote the entropy of the population when divided into these two groups (Theil and Finezza 1971; Theil 1972; Pielou 1977). That is,

$$E(p) = p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p}$$
 (1)

and

$$H(p) = 1 - \sum_{j} \frac{t_{j} E_{j}(p)}{T E(p)}, \qquad (2)$$

where T is the population of the metropolitan area and t_j is the population of neighborhood j. Then the rank-order information theory index (H^R) can be written as

$$H^{R} = 2 \ln(2) \int_{0}^{1} E(p)H(p)dp.$$
 (3)

Extracted from Reardon & Bischoff (2011)

Measuring urban segregation

Rank-Ordered Information Theory Index

Ratio of within-unit (grid cell) income rank variation to overall (metropolitan area) income rank variation

- Adapted to a continuous/ordinal variable
- Does not rely on arbitrary thresholds and takes advantage of all income information
- Independent of actual income inequality

Measuring urban segregation

Rank-Ordered Information Theory Index

Ratio of within-unit (grid cell) income rank variation to overall (metropolitan area) income rank variation

- Adapted to a continuous/ordinal variable
- Does not rely on arbitrary thresholds and takes advantage of all income information
- Independent of actual income inequality

Time-delayed effect

Part of the impact of inequality takes time to get translated into space

Change in inequality

$$t = 0$$

Change in segregation

t = 0 + time-lag

End of the impact of inequality on segregation

Gouda

0.28

0.26

Inequality (Gini coefficient)

0.30

0.32

	(1A) Static values	(1B)	(2A) Annual changes	(2B)	(3A) 5-year intervals	(3B)	(4A) 10-year intervals	(4B)
Gini	0.2439***	0.1518***	0.0947***	0.0938***	0.6132***	0.6255***	0.0743*	0.1080***
	(0.0367)	(0.0370)	(0.0115)	(0.0113)	(0.0521)	(0.0521)	(0.0296)	(0.0256)
Change in data collection methods	0.0194***	0.0139***	0.0221***	0.0220***	-0.0143***	-0.0125***	-0.0277***	-0.0221***
	(0.0007)	(0.0001)	(0.0004)	(0.0004)	(8000.0)	(0.0014)	(0.0008)	(0.0009)
Number of households (log)		0.0136		-0.0046		0.0313929		0.0034
V-26/		(0.0118)		(0.0043)		(0.0199)		(0.01059)
Average income (log)		0.0222***		-0.0019		-0.0202*		-0.0421***
		(0.0044)		(0.0014)		(0.0083)		(0.0048)
N	630	650	595	595	455	455	280	280
Adjusted R ²	0.7279	0.7517	0.8452	0.8514	0.4612	0.4663	0.8175	0.87258

Next steps Calculate the spatial version of the Rank-Ordered Information Theory Index Testing the time lag through Granger Causality tests and/or VAR models Refine the regression models (e.g. adding FUA time-varying characteristics)

Obrigado!

j.sanmillantejedor@tudelft.nl

@javisanmillan

@ERC_SEGUE

