Technology Review

Machine Learning Frameworks

1. Predicting Protein-Ligand Binding

- Protein-ligand binding prediction
 - Drug discovery
 - Unsolved
- We require a machine learning API that is flexible, deep and parallelizable

2. Technologies Considered

Constraints to be considered:

- Ease of Deployment
- Level of Abstraction

- Visualization Options
- Debugging Flexibility

Other available libraries:

- MXNet
- Theano
- CNTK

3. Our Choice: PyTorch

PyTorch as a scientific computing package serves two major purposes:

- A replacement for NumPy to use the power of GPUs.
- A deep learning research platform with focus on speed and flexibility.

import torch

It provides modules and classes to create and train neural networks such as torch.nn, torch.optim, Dataset, and DataLoader.

4. Appeal of Choice

- Very flexible
- Well documented, supported by Facebook, rapidly growing ecosystem
- Very Pythonic (intuitive, readable)
- Comparable in speed to TF
- 3D-CNNs package in PyTorch

Pythonic manipulation of tensors and layers

Google Search Interest in **Tensorflow** and **PyTorch** the past 5 years – U.S.

5. Drawbacks of Choice

- Relatively new (2017)
- High flexibility is potentially confusing/intimidating
- Minimal model visualization tools for tracking and debugging

Examples of TF's "TensorBoard"

