Problem 1 (7.6). 1. Let F be a non-trivial field and F[[x]] the set of all formal power series

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

where $a_i \in F$. Prove that F[[x]] is an integral domain under the following addition and multiplication:

$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

and

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{i+j=n} a_i b_j\right) x^n$$

Prove that f(x) is a unit if and only if the constant term of f(x) is non-zero.

- 2. Let R be a ring and S a subring of R. Prove that $M_n(S)$ is a subring of $M_n(R)$ for any integer $n \ge 1$.
- 3. Let R be a commutative ring and G a finite group.
 - (a) Prove that g is a unit of R[G] for any $g \in G$.
 - (b) Prove or disprove that $G = R[G]^X$.
 - (c) If S is a subring of R, then S[G] is a subring of R[G].
- 4. Let R be a commutative ring and G be a finite group
 - (a) Let $\Lambda = \sum_{g \in G} g$. Prove that Λ is in the center of R[G].
 - (b) Let K be a conjugacy class in G. Prove that $k = \sum_{g \in K} g$ is in the center of R[G].
 - (c) Let K_1, \ldots, K_r be the conjugacy classes of G and $k_i = \sum_{g \in K_i} g$ for $i = 1, \ldots, r$. Prove that x is in the center of R[G] if, and only if, $x = \sum_{i=1}^r a_i k_i$ for some $a_i \in R$.

Proof. 1.

2.

- 3. (a) Let $g \in G$. Then it has an inverse $g^{-1} \in G$ for which both $g, g^{-1} \in R[G]$. Thus we have $gg^{-1} = e = 1 \in R[G]$ which shows that g is a unit of R[G].
 - (b)
 - (c)
- 4. (a)
 - (b)
 - (c)

Problem 2 (7.7). For any nonzero integers a, b, prove that $(a, b) = (\gcd(a, b)), (a) \cap (b) = (lcm(a, b))$ and that (a)(b) = (ab).

Proof.

Problem 3 (7.8). Let G be a finite group and R a commutative ring. Show that the map ϵ : $R[G] \to R$ given by

$$\epsilon \left(\sum_{g \in G} a_g g \right) = \sum_{g \in G} a_g$$

is a surjective ring homomorphism and $\ker \epsilon$ is the ideal generated by the set $\{g-e|g\in G\}$.

Proof.

Problem 4 (7.10). 1. Prove that $x^2 = 0$ or 1 for all $x \in \mathbb{Z}_4$

2. Prove that the equation $x^2 + y^2 = 3z^2$ has no nontrivial integer solution.

Proof. 1. For each case we have

- $0^2 \equiv 0 \mod 4$
- $1^2 \equiv 1 \mod 4$
- $2^2 \equiv 0 \mod 4$
- $3^2 \equiv 1 \mod 4$

Therefore the polynomial $x^2 = 0$ or 1 for all $x \in \mathbb{Z}_4$.

2.

Problem 5 (7.11). Let D be a square-free integer and I the ideal $(x^2 - D)$ of $\mathbb{Q}[x]$. Prove that

$$\mathbb{Q}[x]/I \cong \mathbb{Q}(\sqrt{D})$$

as rings. Find all the ideals of $\mathbb{Q}[x]$ containing I.

 \square