УДК 519.713

ЗАКОНОМЕРНОСТИ В ДЕРЕВЬЯХ ВЫВОДА СЛОВ СТОХАСТИЧЕСКОГО КОНТЕКСТНО-СВОБОДНОГО ЯЗЫКА И НИЖНЯЯ ОЦЕНКА СТОИМОСТИ КОДИРОВАНИЯ. КРИТИЧЕСКИЙ СЛУЧАЙ*)

Л. П. Жильцова

Рассматривается язык, порожденный стохастической контекстносвободной грамматикой, матрица первых моментов которой неразложима, непериодична и ее перронов корень равен 1. Для такого языка установлены закономерности в деревьях вывода фиксированной высоты t при $t \to \infty$. На основе этих закономерностей получена точная нижняя оценка стоимости двоичного кодирования.

Автором в [3, 4] рассматривались вопросы, связанные с кодированием сообщений, являющихся словами стохастического контекстно-свободного языка (стохастического КС-языка), при условии, что матрица первых моментов грамматики неразложима, непериодична и ее максимальный по модулю собственный корень (перронов корень) строго меньше единицы.

В настоящей статье рассматриваются аналогичные вопросы для случая, когда перронов корень неразложимой и непериодической матрицы первых моментов равен единице. По аналогии с теорией ветвящихся процессов этот случай будем называть критическим.

Для стохастического КС-языка в качестве слов большой длины рассматриваются слова, каждое из которых задано деревом вывода высоты t. При $t \to \infty$ найдено математическое ожидание числа применений произвольного правила грамматики на фиксированном ярусе дерева вывода, а также математическое ожидание числа применений правила для всего дерева вывода.

^{*)} Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект 01–01–00464).

На основе найденных закономерностей в применении правил грамматики получена точная нижняя оценка стоимости кодирования для КС-языка с однозначным выводом в критическом случае.

1. Основные определения

Cmoxacmuчecкой КС-грамматикой называется система $G=\langle V_T,V_N,R,s\rangle$, где V_T и V_N — конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно;

$$s\in V_N$$
 — аксиома, $R=igcup_{i=1}^k R_i$, где k — мощность алфавита V_N и

 $R_i = \{r_{i1}, \dots, r_{i,n_i}\}$ — множество правил с одинаковой левой частью A_i . Каждое правило r_{ij} из R_i имеет вид

$$r_{ij}: A_i \stackrel{p_{ij}}{\rightarrow} \beta_{ij}, \quad j = 1, ..., n_i,$$

где $A_i \in V_N, \beta_{ij} \in (V_T \cup V_N)^*$ и p_{ij} — вероятность применения правила r_{ij} , причем $0 < p_{ij} \leqslant 1$ и $\sum_{j=1}^{n_i} p_{ij} = 1$.

Для слов α и β из $(V_T \cup V_N)^*$ будем говорить, что β непосредственно выводимо из α (и записывать $\alpha \Rightarrow \beta$), если $\alpha = \alpha_1 A_i \alpha_2$, $\beta = \alpha_1 \beta_{ij} \alpha_2$ для некоторых $\alpha_1, \alpha_2 \in (V_T \cup V_N)^*$, и в грамматике G имеется правило $A_i \stackrel{p_{ij}}{\rightarrow} \beta_{ij}$.

Обозначим через \Rightarrow_* рефлексивное транзитивное замыкание отношения $\Rightarrow_.$ Язык L_G , порождаемый грамматикой G, определяется как множество слов $\{\alpha \mid s \Rightarrow_* \alpha, \alpha \in V_T^*\}.$

Пусть $s \Rightarrow_* \alpha$. Левым выводом слова α назовем вывод, в котором каждое правило в процессе вывода слова α из аксиомы s применяется к самому левому нетерминалу в слове. Последовательность правил в левом выводе будем обозначать через $\omega(\alpha)$.

Важное значение имеет понятие дерева вывода [1]. Дерево строится следующим образом.

Корень дерева помечается аксиомой s. Пусть при выводе слова α на очередном шаге в процессе левого вывода применяется правило $A \stackrel{p_{ij}}{\to} b_{i_1}b_{i_2}\dots b_{i_m}$, где $b_{i_l} \in V_N \cup V_T$ $(1 \leqslant l \leqslant m)$. Тогда из самой левой вершины-листа дерева, помеченной символом A (при обходе листьев дерева слева направо), проводится m дуг в вершины следующего яруса, которые помечаются слева направо символами $b_{i_1}, b_{i_2}, \dots, b_{i_m}$ соответственно. После построения дуг и вершин для всех правил грамматики в выводе слова языка все листья дерева помечены терминальными символами и само слово получается при обходе листьев дерева слева направо.

Высотой дерева вывода будем называть максимальную длину пути от корня к листу.

Пример. Рассмотрим грамматику $G_0 = \langle \{x, \bar{x}\}, \{N\}, R, N \rangle$, в которой множество R состоит из двух правил:

$$r_1: N \xrightarrow{p} xN\bar{x}N,$$

 $r_2: N \xrightarrow{1-p} \lambda \ (\lambda$ — пустое слово).

Грамматика G_0 порождает известный язык Дика.

На рис. 1 изображено дерево вывода в грамматике G_0 . Ему соответствует левый вывод $r_1r_1r_2r_1r_2r_2r_1r_2r_2$ и слово $\alpha = xx\bar{x}x\bar{x}\bar{x}x\bar{x}$. Высота дерева вывода равна 4.

Пусть $\omega(\alpha) = r_{i_1j_1}r_{i_2j_2}\dots r_{i_nj_n}$ — некоторый левый вывод слова $\alpha \in L$ и d_{α} — соответствующее ему дерево вывода. Определим $p(d_{\alpha})$ как произведение вероятностей правил, образующих $\omega(\alpha)$, т. е. $p(d_{\alpha}) = p_{i_1j_1}p_{i_2j_2}\dots p_{i_nj_n}$. Вероятность появления слова α определим как $p(\alpha) = \sum p(d_{\alpha})$, где суммирование ведется по всем различным деревьям вывода слова α .

Грамматика G называется coгласованной, если $\sum_{\alpha \in L_G} p(\alpha) = 1$. В дальнейшем будем рассматривать согласованные КС-грамматики. Согласованная КС-грамматика G индуцирует распределение вероятностей P_G на множестве слов языка L_G . Язык L, порожденный согласованной стохастической КС-грамматикой, с распределением вероятностей P_G на L будем называть cmoxacmuчeckum КС-языком.

В дальнейшем важное значение будет иметь матрица первых моментов, которая определяется следующим образом. Рассмотрим многомерные производящие функции

$$F_i(s_1, s_2, \dots, s_k), \ 1 \le i \le k,$$

где переменная s_i соответствует нетерминальному символу A_i [5]. Функция $F_i(s_1, s_2, \ldots, s_k)$ строится по множеству правил R_i с одинаковой левой частью A_i следующим образом. Для каждого правила $A_i \stackrel{p_{ij}}{\longrightarrow} \beta_{ij}$ вы-

писывается слагаемое

$$q_{ij}=p_{ij}s_1^{l_1}s_2^{l_2}\dots s_k^{l_k},$$

где l_m — число вхождений нетерминального символа A_m в правую часть правила $(1\leqslant m\leqslant k)$. Тогда $F_i(s_1,s_2,\ldots,s_k)=\sum_{i=1}^{n_i}q_{ij}$. Пусть

$$a_{ij} = \frac{\partial F_i(s_1, \dots, s_k)}{\partial s_j} \bigg|_{s_1 = s_2 = \dots = s_k = 1}.$$

Квадратная матрица A порядка k, образованная элементами a_{ij} , называется матрицей первых моментов грамматики G. Поскольку матрица A неотрицательна, существует максимальный по модулю действительный неотрицательный собственный корень (перронов корень) [2]. Этот корень обозначим через r.

В дальнейшем будем рассматривать грамматики, матрицы первых моментов которых неразложимы и непериодичны [2] и r=1. Для неразложимой непериодической матрицы правый и левый собственные векторы, соответствующие перронову корню, могут быть выбраны положительными [2]. Через $U=(u_1,\ldots,u_k)$ и $V=(v_1,\ldots,v_k)$ будем обозначать положительные правый и левый собственные векторы, соответствующие перронову корню. Будем полагать, что выполняется нормировка $\sum_{i=1}^k u_i v_i = 1$.

С помощью производящих функций определим вторые моменты. Вторым моментом будем называть величину

$$b_{ijm} = \frac{\partial^2 F_i(s_1, \dots, s_k)}{\partial s_j \partial s_m} \bigg|_{s_1 = s_2 = \dots = s_k = 1} (i, j, m \in \{1, 2, \dots, k\}).$$

В дальнейшем будем полагать, что $b_{ijm} \neq 0$ при некоторых $i,j,m \in \{1,\ldots,k\}$. Это означает, что в грамматике существуют правила, содержащие в правой части более одного нетерминала.

Пусть $\beta = (\beta_1, \dots, \beta_k)$ — неотрицательный целочисленный вектор и $p_{\beta}^i(t)$ — вероятность появления деревьев вывода с корнем, помеченным нетерминалом A_i , в каждом из которых на ярусе t расположено β_j вершин, помеченных нетерминалом A_j , $1 \leq j \leq k$.

Введем многомерные производящие функции $F_i(t,s) = \sum_{\beta} p_{\beta}^i(t) s^{\beta},$ $1 \leqslant j \leqslant k,$ где $s = (s_1, s_2, \dots, s_k)$ и $s^{\beta} = s_1^{\beta_1} s_2^{\beta_2} \dots s_k^{\beta_k}.$

На множестве деревьев вывода с корнем, помеченным нетерминалом A_i , рассмотрим случайную величину $\mu_{ij}(t)$ — число вершин на ярусе t дерева вывода, помеченных нетерминалом A_j . Математическое ожидание величины $\mu_{ij}(t)$ обозначим через $a_{ij}(t)$. Очевидно, что

$$a_{ij}(t) = \frac{\partial F_i(t,s)}{\partial s_j} \bigg|_{s_1 = s_2 = \dots = s_k = 1}.$$

Отметим, что $a_{ij}(t)$ — элемент матрицы A^t [6] и $a_{ij}(t) = O(1)$ при r=1, что следует из свойств неразложимой непериодической матрицы [2]. Заметим, что $F_i(1,s) = F_i(s)$ ($F_i(s)$ определено выше) и матрица первых моментов состоит из элементов $a_{ij}(1)$, которые выше обозначены через a_{ij} .

Известно необходимое и достаточное условие согласованности стохастической КС-грамматики, следующее из результатов в [6]: стохастическая КС-грамматика при отсутствии бесполезных нетерминалов (т. е. не участвующих в порождении слов языка) является согласованной тогда и только тогда, когда $r\leqslant 1$. Так как мы рассматриваем случай r=1, для обеспечения согласованности грамматики будем полагать, что нет бесполезных нетерминалов.

2. Некоторые предварительные результаты

Пусть G — стохастическая КС-грамматика и A_i — некоторый нетерминальный символ. Через L_i обозначим язык, порожденный грамматикой G_i , которая получается из исходной грамматики G заменой аксиомы на нетерминал A_i . Будем считать, что аксиомой исходной грамматики является первый нетерминальный символ A_1 и $L=L_1$ для исходной грамматики G.

Через D_i обозначим множество деревьев вывода для слов из L_i и через D_i^t — множество деревьев вывода высоты t для слов из L_i . В дальнейшем будем опускать индекс i в обозначениях, если i=1 и это не ведет к неопределенности.

Будем полагать, что D_i^1 не пусто при любом $i=1,\dots,k$. Это означает, что для любого нетерминала A_i существует правило грамматики вида $A_i \stackrel{p_{ij}}{\longrightarrow} \beta$, где β содержит только терминальные символы. Это предположение не уменьшает общности дальнейших результатов, так как при отсутствии в грамматике бесполезных нетерминалов всегда можно перейти к эквивалентной грамматике, обладающей требуемым свойством, применяя метод укрупнения правил из [4]. При этом предположении D_i^t не пусто при любом t.

Обозначим через $Q_i(t)$ вероятность появления деревьев вывода для грамматики G_i , имеющих высоту, большую t.

Лемма 1 [6]. При любом $i \in \{1,\dots,k\}$ справедливо равенство $Q_i(t) = \frac{2u_i}{Bt} \left(1+\zeta_i(t)\right)$, где $\zeta_i(t) = o(1)$, константа B задается формулой

$$B = \sum_{l,m,n} v_n u_l u_m b_{nlm},\tag{1}$$

в которой b_{nlm} — вторые моменты, а $U=(u_1,\ldots,u_k)$ и $V=(v_1,\ldots,v_k)$ — соответственно правый и левый положительные собственные векторы для перронова корня r при нормировке $\sum_{i=1}^k u_i v_i = 1$.

Доказательство леммы получается непосредственной интерпретацией результатов теории ветвящихся процессов к процессу порождения слов КС-языка.

Лемма 2. При любом $i\in\{1,\ldots,k\}$ вероятность $P\left(D_i^t\right)$ удовлетворяет соотношению

$$P\left(D_i^t\right) = \frac{2u_i}{Bt^2} \left(1 + \phi_i(t)\right),\,$$

где $\phi_i(t) = o(1)$, а B и u_i имеют тот же смысл, что и в лемме 1.

Доказательство. Сначала докажем, что

$$\sum_{i=1}^{k} v_i P(D_i^t) = \frac{2}{Bt^2} (1 + o(1)).$$

Для представления функции $R_i(s)=1-F_i(s)$ воспользуемся разложением производящей функции $F_i(s)$ в ряд Тейлора в окрестности точки $s=(1,1,\ldots,1)$. Поскольку $F_i(1)=\sum\limits_j p_{ij}=1$ и, следовательно, $R_i(1)=0$, можно записать, что

$$R_{i}(s) = \sum_{j=1}^{k} a_{ij} (1 - s_{j}) - \frac{1}{2} \sum_{j,l} b_{ijl} (1 - s_{j}) (1 - s_{l}) + \frac{1}{6} \sum_{j,l,m} c_{ijlm}(\theta) (1 - s_{j}) (1 - s_{l}) (1 - s_{m}),$$
(2)

где $c_{ijlm}(\theta)$ — значение третьей производной производящей функции $F_i(s)$ по переменным $s_j,\ s_l$ и s_m в точке θ и $c_{ijlm}(\theta)\leqslant c_{ijlm}(1)$ при $0\leqslant \theta\leqslant 1$.

Умножив (2) на v_i и просуммировав по i, получаем

$$\sum_{i=1}^{k} v_i R_i(s) = \sum_{i=1}^{k} v_i \sum_{j=1}^{k} a_{ij} (1 - s_j) - \frac{1}{2} \sum_{i=1}^{k} v_i \sum_{j,l} b_{ijl} (1 - s_j) (1 - s_l) + \frac{1}{6} \sum_{i=1}^{k} v_i \sum_{j,l,m} c_{ijlm}(\theta) (1 - s_j) (1 - s_l) (1 - s_m).$$

Так как $V=(v_1,\ldots,v_k)$ — левый собственный вектор, соответствующий перронову корню r=1, то справедливы соотношения

$$\sum_{i=1}^{k} v_i \sum_{j=1}^{k} a_{ij} (1 - s_j) = \sum_{j=1}^{k} (1 - s_j) \sum_{i=1}^{k} v_i a_{ij} = \sum_{j=1}^{k} v_j (1 - s_j).$$

Поэтому

$$\sum_{i=1}^{k} v_i R_i(s) = \sum_{i=1}^{k} v_i (1 - s_i) - \frac{1}{2} \sum_{i=1}^{k} v_i \sum_{j,l} b_{ijl} (1 - s_j) (1 - s_l)$$

$$+ \frac{1}{6} \sum_{i=1}^{k} v_i \sum_{j,l,m} c_{ijlm}(\theta) (1 - s_j) (1 - s_l) (1 - s_m).$$
(3)

Положим $F(t,s)=(F_1(t,s),F_2(t,s),\ldots,F_k(t,s))$. Подставим в (3) вместо s_i функцию $F_i(t-1,s)$ и учтем, что $F_i(F(t-1,s))=F_i(t,s)$ [6]. Тогда, применяя обозначение $R_i(t,s)=1-F_i(t,s)$, равенство (3) можно переписать в виде

$$\sum_{i=1}^{k} v_i R_i(t,s) = \sum_{i=1}^{k} v_i R_i(t-1,s) - \frac{1}{2} \sum_{i=1}^{k} v_i \sum_{j,l} b_{ijl} R_j(t-1,s) R_l(t-1,s) + \frac{1}{6} \sum_{i=1}^{k} v_i \sum_{j,l,m} c_{ijlm}(\theta) R_j(t-1,s) R_l(t-1,s) R_m(t-1,s).$$

Используя соотношения $Q_i(t) = R_i(t,0)$ [6].

$$P\left(D_i^t\right) = Q_i(t - 1) - Q_i(t),$$

лемму 1 и равенство (1), получаем

$$\sum_{i=1}^{k} v_i P(D_i^t) = \frac{1}{2} \sum_{i=1}^{k} v_i \sum_{jl} b_{ijl} u_j u_l \frac{4}{B^2 t^2} (1 + o(1)) + O\left(\frac{1}{t^3}\right)$$

$$= \frac{2}{Bt^2} (1 + o(1)). \tag{4}$$

Для завершения доказательства леммы остается показать, что

$$\lim_{t \to \infty} \frac{P(D_i^t)}{\sum_{j=1}^k v_j P(D_j^t)} = u_i.$$

Подставим в (2) величину $1-Q_j(t-1)$ вместо s_j $(1\leqslant j\leqslant k)$. Так как $1-Q_j(t-1)=F_j(t-1,0),$ то

$$R_i(1 - Q(t - 1)) = 1 - F_i(F(t - 1, 0)) = 1 - F_i(t, 0) = Q_i(t)$$

(здесь через Q(t-1) обозначен вектор $(Q_1(t-1), \ldots, Q_k(t-1))$). После подстановки уравнение (2) примет следующий вид

$$Q_{i}(t) = \sum_{j=1}^{k} a_{ij}Q_{j}(t-1) - \frac{1}{2}\sum_{j,l} b_{ijl}Q_{j}(t-1)Q_{l}(t-1) + \frac{1}{6}\sum_{i,l,m} c_{ijlm}(\theta)Q_{j}(t-1)Q_{l}(t-1)Q_{m}(t-1).$$

Вычитая это уравнение из аналогичного уравнения для $Q_i(t-1)$, после несложных преобразований получим уравнение

$$P(D_i^t) = \sum_{j=1}^k a_{ij} P(D_j^{t-1}) - \frac{1}{2} \sum_{j,l} b_{ijl} (Q_j(t-2)P(D_l^{t-1}))$$

$$+ Q_l(t-1)P(D_j^{t-1})) + \frac{1}{6} \sum_{j,l,m} c_{ijlm}(\theta) (Q_j(t-2)Q_l(t-2)P(D_m^{t-1}))$$

$$+ Q_j(t-2)Q_m(t-1)P(D_l^{t-1}) + Q_l(t-1)Q_m(t-1)P(D_j^{t-1})).$$

Рассматривая $P(D^t)$ как вектор $(P(D_1^t), \dots, P(D_k^t))$, полученное уравнение можно записать в матричном виде

$$P(D^t) = (A - E_t)P(D^{t-1}),$$

где каждый элемент матрицы E_t не превосходит $O\left(\frac{1}{t}\right)$. Раскрывая $P(D^{t-1})$, представим $P(D^t)$ в виде:

$$P(D^t) = (A - E_t)(A - E_{t-1}) \dots (A - E_1)P(D^1).$$

Положим $B_t = (A - E_t)(A - E_{t-1}) \dots (A - E_1)$. В [6] доказано следующее

Утверждение. Пусть A — неразложимая непериодическая матрица, перронов корень которой равен 1, и E_1, E_2, \ldots, E_t — последовательность таких матриц, что $0 \le E_n \le A$ $(1 \le n \le t)$ и $\lim E_t = 0$ при $t \to \infty$. Тогда

$$\lim_{t \to \infty} \frac{B_t X}{V B_t X} = U \tag{5}$$

для любого вектора $X \ge 0$, удовлетворяющего условию $B_n X \ne 0$ при любом $n \ge 1$. (U и V — соответственно правый и левый собственные векторы для r = 1).

Применяя равенство (5) к вектору $P(D^1)$, получаем

$$\lim_{t \to \infty} \frac{P(D_i^t)}{\sum_{j=1}^k v_j P(D_j^t)} = u_i.$$

Из этого утверждения и равенства (4) следует утверждение леммы 2.

Рассмотрим случайную величину $\xi_j^m(\tau)=\frac{2\mu_{mj}(\tau)}{B\tau v_j},\ j\in\{1,\ldots,k\},$ где $\mu_{mj}(\tau)$ — число вершин на ярусе τ дерева вывода из D_m^t , помеченных нетерминалом A_j . В дальнейшем через $\xi^m(\tau)$ будем обозначать

ченных нетерминалом A_j . В дальнеишем через $\xi^m(\tau)$ оудем ооозначать случайный вектор $(\xi_1^m(\tau), \dots, \xi_k^m(\tau))$ и через $\mu_m(\tau)$ — случайный вектор $(\mu_{m1}(\tau), \dots, \mu_{mk}(\tau))$.

Лемма 3 [6]. Последовательность случайных векторов $\xi^m(\tau) = (\xi_1^m(\tau), \ldots, \xi_k^m(\tau))$ при условии $\xi^m(\tau) \neq 0$ сходится по распределению при $\tau \to \infty$ к случайному вектору $\xi = (\xi_1, \ldots, \xi_k)$, не зависящему от m. При этом $\xi_1 = \xi_2 = \ldots = \xi_k$ c вероятностью 1 и

$$P(\xi_1 \leqslant y) = 1 - e^{-y}, y \geqslant 0.$$

Пусть $\xi=(\xi_1,\ldots,\xi_k)$ — случайный вектор из леммы 3 и n — неотрицательное целое число. Возьмем ε из интервала (0,1). Определим множества полуинтервалов $B_{nj}=(n\varepsilon,(n+1)\varepsilon]$ $(1\leqslant j\leqslant k)$. Пусть $M_n=B_{n1}\times B_{n2}\times\ldots\times B_{nk}$ — декартово произведение. Положим $M=\bigcup_{n=0}^\infty M_n$. Множество M таково, что все точки с равными координатами (ξ_1,\ldots,ξ_k) , т. е. $\xi_1=\ldots=\xi_k$, кроме точки $(0,0,\ldots,0)$, принадлежат M. Очевидно, что $M_n\cap M_m=\emptyset$ при $m\neq n$.

Из леммы 3 следуют равенства $P(\xi \in M_n) = e^{-n\varepsilon} (1 - e^{\varepsilon})$ и $P(\xi \in \Gamma(M_n)) = 0$, где $\Gamma(M_n)$ — граница множества M_n . Поэтому из определения сходимости по распределению [8] получаем

$$P\left(\xi^{m}(\tau) \in M_{n} | \xi^{m}(\tau) \neq 0\right) \to (1 - e^{\varepsilon}) e^{-n\varepsilon}.$$

Аналогично устанавливается соотношение $P\left(\xi^{m}(\tau) \in M | \xi^{m}(\tau) \neq 0\right) \to 1$. Определим множества полуинтервалов

$$B_{nj}^* = \left(\frac{\varepsilon nB\tau v_j}{2}, \frac{\varepsilon (n+1)B\tau v_j}{2}\right], \ 1 \leqslant j \leqslant k.$$

Положим $M_n^*=B_{n1}^*\times B_{n2}^*\times\ldots\times B_{nk}^*$ и $M^*=\cup_{n=0}^\infty M_n^*$. Очевидно, что $P\left(\mu_m(\tau)\in M_n^*|\mu_m(\tau)\neq 0\right)=P\left(\xi^m(\tau)\in M_n|\xi^m(\tau)\neq 0\right)$. Поэтому справедливо

Следствие 1. При $\tau \to \infty$

1)
$$P(\mu_m(\tau) \in M_n^* | \mu_m(\tau) \neq 0) = (1 - e^{-\varepsilon}) e^{-n\varepsilon} + \delta_n, \text{ где } \delta_n \to 0,$$

2)
$$P(\mu_m(\tau) \in M^* | \mu_m(\tau) \neq 0) = 1 + \Delta$$
, где $\Delta = \sum_{n=0}^{\infty} \delta_n \to 0$.

Положим

$$R_X(n) = \prod_{j=1}^k (1 - Q_j(n))^{x_j} - \prod_{j=1}^k (1 - Q_j(n-1))^{x_j}, \quad X = (x_1, \dots, x_k).$$

Лемма 4. Пусть $X = (x_1, \dots, x_k)$ — неотрицательный целочисленный вектор и n — натуральное число. Тогда при $n \to \infty$

$$R_X(n) = \prod_{j=1}^k (1 - Q_j(n) (1 + \psi_j(n)))^{x_j} \sum_{l=1}^k x_l P(D_l^n) (1 + \gamma_l(n)),$$

где
$$0 \leqslant \psi_j(n) \leqslant \frac{2}{n}$$
 и $0 \leqslant \gamma_l(n) \leqslant \frac{4u_l}{Bn} (j, l \in \{1, \dots, k\})$.

Доказательство. Индукцией по k легко показать, что

$$\sum_{l=1}^{k} \frac{x_l P(D_l^n)}{1 - Q_l(n-1)} \prod_{j=1}^{k} (1 - Q_j(n-1))^{x_j} \leqslant R_X(n)$$

$$\leqslant \sum_{l=1}^{k} \frac{x_l P(D_l^n)}{1 - Q_l(n)} \prod_{j=1}^{k} (1 - Q_j(n))^{x_j}.$$
(6)

Отсюда следует, что

$$R_X(n) = \prod_{j=1}^k (1 - Q_j(n) (1 + \psi_j(n)))^{x_j} \sum_{l=1}^k x_l P(D_l^n) (1 + \gamma_l(n)),$$

где $Q_j(n) \leqslant Q_j(n)(1 + \psi_j(n)) \leqslant Q_j(n-1)$ и

$$\frac{1}{1 - Q_l(n)} \le (1 + \gamma_l(n)) \le \frac{1}{1 - Q_l(n-1)}.$$

Используя лемму 1, при $n\to\infty$ получаем ограничения для функций $\psi_j(n)$ и $\gamma_l(n)$: $0\leqslant\psi_j(n))\leqslant\frac{2}{n}$ и $0\leqslant\gamma_l(n)\leqslant\frac{4u_l}{Bn}$. Лемма 4 доказана.

Лемма 5. Пусть $x\geqslant 0$. Тогда при любом натуральном n и $j=1,\ldots,k$ выполняются неравенства

$$x (1 - Q_j(n))^x \leqslant \frac{1}{Q_j(n)} \operatorname{M} x^2 (1 - Q_j(n))^x \leqslant \frac{4}{Q_j^2(n)}.$$

Доказательство. Используя две первые производные функции $f(x) = x(1-Q_j(n))^x$, убеждаемся в том, что при $x\geqslant 0$ она сначала возрастает, затем убывает и принимает максимальное значение при $x=x_0=-\frac{1}{\ln(1-Q_j(n))}$. Так как

$$-\frac{1}{\ln(1 - Q_j(n))} = \frac{1}{\sum_{s=1}^{\infty} Q_j^s(n)/s} = x_0 \leqslant \frac{1}{Q_j(n)},$$

то при любом $x \geqslant 0$

$$x (1 - Q_j(n))^x \le x_0 (1 - Q_j(n))^{x_0} \le x_0 \le \frac{1}{Q_j(n)}.$$

Аналогично доказывается второе утверждение.

3. Закономерности в деревьях вывода для критического случая

Пусть G — стохастическая КС-грамматика, матрица первых моментов которой неразложима, непериодична и ее перронов корень равен 1. Через $M_i(t,\tau)$ обозначим условное математическое ожидание числа вершин, помеченных нетерминалом A_i , в деревьях вывода высоты t на ярусе τ , $1 \le i \le k$.

Теорема 1. Пусть D_1^t — множество деревьев вывода высоты t для слов языка, порождаемого стохастической КС-грамматикой c неразложимой u непериодической матрицей первых моментов, перронов корень

которой равен единице. Тогда для любого $\varepsilon \in (0,1)$ при $t \to \infty$ и $t\sqrt{\varepsilon} \leqslant \tau \leqslant t(1-\sqrt{\varepsilon})$ выполняется равенство

$$M_i(t,\tau) = \frac{v_i B \tau(t-\tau)}{t} \left(1 + \chi_i(t,\tau,\varepsilon)\right) \ (i=1,\ldots,k), \tag{7}$$

где $|\chi_i(t,\tau,\varepsilon)| \le c_0 \varepsilon$ и c_0 — некоторая константа, не зависящая от t и τ , v_i есть i-я компонента левого собственного вектора для перронова корня и B — константа, определяемая формулой (1).

Доказательство. Будем полагать, что аксиомой исходной грамматики является нетерминал A_1 . Величину $M_i(t,\tau)$ можно записать в виде:

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{d \in D_1^t} p(d) z_i(d,\tau),$$

где $z_i(d,\tau)$ — число вершин на ярусе τ дерева d, помеченных нетерминалом $A_i, p(d)$ — вероятность появления дерева d в исходной грамматике.

Рассмотрим неотрицательный целочисленный вектор $X=(x_1,\ldots,x_k)$. Используя X, можно записать

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} \Delta_X,$$

где Δ_X — вклад в математическое ожидание тех деревьев вывода из D_1^t , которые на ярусе τ содержат x_j вершин, помеченных нетерминалом A_j , $1 \leqslant j \leqslant k$. Множество таких деревьев обозначим через $D_X^t(\tau)$.

Пусть $d \in D_X^t(\tau)$. Выделим в d поддерево d_0 и последовательность поддеревьев $d_1, d_2, \ldots d_m$, где $m = \sum_{l=1}^k x_l$. Поддерево d_0 получено из d удалением всех вершин на ярусах $\tau+1, \tau+2, \ldots, t$ и инцидентных им дуг. Последовательность $d_1, d_2, \ldots d_m$ образуют все поддеревья, корни которых расположены на ярусе τ дерева d. При этом корни поддеревьев $d_1, d_2, \ldots d_m$ расположены в дереве d последовательно в порядке обхода вершин яруса τ слева направо, и каждое дерево d_l ($l=1,\ldots,m$) содержит все дуги и вершины дерева d, лежащие на путях от корня d_l к листьям дерева d.

Выделим в $D_X^t(\tau)$ множество деревьев, имеющих в качестве поддерева d_0 одно и то же дерево. Это множество обозначим через D_0 . Нетрудно понять, что

$$P(D_0) = p(d_0) \left(\prod_{l=1}^k (1 - Q_l(t-\tau))^{x_l} - \prod_{l=1}^k (1 - Q_l(t-\tau-1))^{x_l} \right), \quad (8)$$

поскольку $(1 - Q_l(n))$ — вероятность появления деревьев вывода высоты не более n с корнем, помеченным нетерминалом A_l .

Положим

$$\delta_1(X) := \prod_{l=1}^k (1 - Q_l(t-\tau))^{x_l}$$
 и $\delta_2(X) := \prod_{l=1}^k (1 - Q_l(t-\tau-1))^{x_l}$.

В (8) величина $p(d_0)\delta_1(X)$ есть вероятность появления таких деревьев высоты не более t, определяемых поддеревом d_0 , что каждое поддерево с корнем на ярусе τ имеет высоту, не превосходящую $t-\tau$. Вторая величина $p(d_0)\delta_2(X)$ есть вероятность появления деревьев высоты не более t-1, определяемых поддеревом d_0 .

Разность $p(d_0)\delta_1(X) - p(d_0)\delta_2(X)$ равна, очевидно, вероятности появления деревьев высоты t, определяемых деревом d_0 , и значение $\delta_1(X) - \delta_2(X)$ не зависит от порядка следования вершин на ярусе τ , помеченных нетерминалами. Поэтому

$$P(D_X^t(\tau)) = (\delta_1(X) - \delta_2(X)) \sum_{d_0} p(d_0),$$

где суммирование осуществляется по всем поддеревьям d_0 деревьев вывода из $D_X^t(\tau)$.

Для каждой вершины, помеченной некоторым нетерминалом A_l , вероятность появления деревьев с корнем в этой вершине и листьями, помеченными только терминалами, равна $P(D_l)$. Легко показать, что $P(D_l)=1$ при любом l ввиду согласованности исходной грамматики G. Поэтому

$$\sum_{d_0} p(d_0) = \sum_{d_0} p(d_0) P(D_1)^{x_1} P(D_2)^{x_2} \dots P(D_k)^{x_k} = \sum_{d \in D_X(\tau)} p(d),$$

где $D_X(\tau)$ — множество деревьев из D_1 , имеющих x_j вершин на ярусе τ , помеченных нетерминалами A_j $(1 \le j \le k)$.

помеченных нетерминалами
$$A_j$$
 $(1\leqslant j\leqslant k).$ Положим $P_X(\tau):=\sum_{d\in D_X(\tau)}p(d).$ Тогда

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) \left(\delta_1(X) - \delta_2(X) \right) x_i.$$

В обозначениях раздела 2 разность $\delta_1(X) - \delta_2(X)$ есть $R_X(t-\tau)$.

Пусть M^* — множество вещественных неотрицательных векторов, определенное в разделе 2. (Напомним, что любой вектор $X \in M^*$ близок

к вектору вида bV, где V — левый собственный вектор для перронова корня и b>0.) Тогда

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \left(\sum_{X \in M^*} P_X(\tau) R_X(t-\tau) x_i + \sum_{X \in \overline{M}^*} P_X(\tau) R_X(t-\tau) x_i \right),$$

где \overline{M}^* — дополнение множества M^* до множества всех вещественных неотрицательных векторов.

Пусть

$$S_1 := \sum_{X \in M^*} P_X(\tau) R_X(t - \tau) x_i \tag{9}$$

И

$$S_2 := \sum_{X \in \overline{M}^*} P_X(\tau) R_X(t - \tau) x_i. \tag{10}$$

Отдельно вычислим эти суммы. Так как $M^* = \bigcup_{n=0}^{\infty} M_n^*$, то

$$S_1 = \sum_{n=0}^{\infty} \sum_{X \in M_n^*} P_X(\tau) R_X(t-\tau) x_i.$$

Пусть $X \in M_n^*$. В M_n^* представим x_l в виде:

$$x_l = \frac{n\varepsilon B\tau v_l}{2} + \Delta(x_l),$$
 где $0 < \Delta(x_l) \leqslant \frac{\varepsilon B\tau v_l}{2}.$

К $P_X(\tau)$ применим следствие 1 при m=1. Так как

$$\sum_{X \in M_n^*} P_X(\tau) = P(\mu_1(\tau) \in M_n^* | \mu_1(\tau) \neq 0) P(\mu_1(\tau) \neq 0),$$

а $P(\mu_1(\tau) \neq 0) = Q_1(\tau)$, то

$$\sum_{X \in M_n^*} P_X(\tau) = ((1 - e^{-\varepsilon})e^{-n\varepsilon} + \delta_n) Q_1(\tau).$$
 (11)

Применяя лемму 4 к $R_X(t-\tau)$, для S_1 получаем верхнюю оценку

$$S_1 \leqslant S_1^{\mathrm{B}} = (1 + \max_j \{\gamma_j^{\mathrm{B}}(t - \tau)\})Q_1(\tau) \sum_{j=1}^k P(D_j^{t-\tau}) \sum_{n=0}^{\infty} ((1 - e^{-\varepsilon})e^{-n\varepsilon} + \delta_n)$$

$$\times \left(\frac{(n+1)^{2} \varepsilon^{2} B^{2} \tau^{2} v_{i} v_{j}}{4} \right) \prod_{l=1}^{k} \left(1 - Q_{l}(t-\tau) (1 + \psi_{l}^{B}(t-\tau)) \right)^{n\varepsilon B \tau v_{l}/2} \\
= \left(1 + \max_{j} \{ \gamma_{j}^{B}(t-\tau) \} \right) Q_{1}(\tau) \sum_{j=1}^{k} P(D_{j}^{t-\tau}) \sum_{n=0}^{\infty} \left((1 - e^{-\varepsilon}) e^{-n\varepsilon} + \delta_{n} \right) \\
\times \left(\frac{n^{2} \varepsilon^{2} B^{2} \tau^{2} v_{i} v_{j}}{4} \right) \prod_{l=1}^{k} \left(1 - Q_{l}(t-\tau) (1 + \psi_{l}^{B}(t-\tau)) \right)^{n\varepsilon B \tau v_{l}/2} \\
\times \left(1 + \Delta(n) \right), \tag{12}$$

где
$$\gamma_j^{\mathrm{B}}(t-\tau)=\frac{4u_l}{B(t-\tau)},\ \psi_l^{\mathrm{B}}(t-\tau)=0$$
 и $\Delta(n)=\left(\frac{n+1}{n}\right)^2-1\leqslant\frac{3}{n}$ при $n>0$.

Аналогично получаем

$$S_1 \geqslant S_1^{\mathrm{H}} = Q_1(\tau) \sum_{j=1}^k P(D_j^{t-\tau}) \sum_{n=0}^{\infty} \left((1 - e^{-\varepsilon}) e^{-n\varepsilon} + \delta_n \right)$$

$$\times \frac{n^2 \varepsilon^2 B^2 \tau^2 v_i v_j}{4} \prod_{l=1}^k \left(1 - Q_l(t-\tau) (1 + \psi_l^{\mathrm{H}}(t-\tau)) \right)^{(n+1)\varepsilon B\tau v_l/2}. \tag{13}$$

где
$$\psi_l^{\mathrm{H}}(t-\tau) = \frac{2}{t-\tau}$$
.

где $\psi_l^{\mathrm{H}}(t-\tau)=\frac{2}{t-\tau}.$ Вычислим S_1^{B} и $S_1^{\mathrm{H}}.$ Представим S_1^{B} в следующем виде

$$S_1^{\mathrm{B}} = \left(1 + \max_{j} \gamma_j^{\mathrm{B}}(t - \tau)\right) \frac{B^2 v_i \varepsilon^2 \tau^2}{4} Q_1(\tau) \sum_{i=1}^{k} v_j P(D_j^{t-\tau}) \left(S_{11} + S_{12} + S_{13}\right), (14)$$

$$S_{11} = (1 - e^{-\varepsilon}) \sum_{n=0}^{\infty} e^{-n\varepsilon} n^2 \left(\prod_{l=1}^k \left(1 - Q_l(t-\tau) (1 + \psi_l^{\mathrm{B}}(t-\tau)) \right)^{\varepsilon B \tau v_l/2} \right)^n, \quad (15)$$

$$S_{12} = (1 - e^{-\varepsilon}) \sum_{n=0}^{\infty} e^{-n\varepsilon} n^2 \left(\prod_{l=1}^k (1 - Q_l(t - \tau)(1 + \psi_l^{\mathrm{B}}(t - \tau)))^{\varepsilon B \tau v_l/2} \right)^n \times \Delta(n),$$
(16)

$$S_{13} = \sum_{n=0}^{\infty} \delta_n n^2 (1 + \Delta(n)) \left(\prod_{l=1}^{k} \left(1 - Q_l(t - \tau)(1 + \psi_l^{\text{B}}(t - \tau)) \right)^{\varepsilon B \tau v_l / 2} \right)^n (17)$$

Оценим сверху слагаемые S_{11} , S_{12} и S_{13} .

Для оценки S_{11} воспользуемся равенством

$$\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3},$$

которое справедливо при любом $x, 0 \le x < 1$.

Положим

$$x = e^{-\varepsilon} \prod_{l=1}^{k} (1 - Q_l(t-\tau)(1 + \psi_l^{\text{B}}(t-\tau)))^{\varepsilon B \tau v_l/2}.$$

Тогда

$$S_{11} = (1 - e^{-\varepsilon}) \left(\prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l^{\mathrm{B}}(t - \tau)))^{\varepsilon B \tau v_l / 2} \right)$$

$$\times \frac{e^{-\varepsilon} \left(1 + e^{-\varepsilon} \prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l^{\mathrm{B}}(t - \tau)))^{\varepsilon B \tau v_l / 2} \right)}{\left(1 - e^{-\varepsilon} \prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l^{\mathrm{B}}(t - \tau)))^{v_l \varepsilon B \tau / 2} \right)^3}.$$
 (18)

Будем рассматривать значения τ , удовлетворяющие условию

$$t\sqrt[4]{\varepsilon} \leqslant \tau \leqslant t(1 - \sqrt[4]{\varepsilon}). \tag{19}$$

Из неравенств (19) следует, что ярус τ находится на достаточно большом удалении от корня дерева вывода и от последнего яруса t.

Аппроксимируем $e^{-\varepsilon}$ с помощью разложения в ряд Тейлора:

$$e^{-\varepsilon} = 1 - \varepsilon + \frac{\varepsilon^2}{2} (1 + O(\varepsilon)). \tag{20}$$

Здесь и далее запись $O(f(\varepsilon))$ применяется для обозначения величины, не превосходящей по модулю $cf(\varepsilon)$, где c>0 — некоторая константа.

Для оценки сверху выражения $\prod_{l=1}^k \left(1-Q_l(t-\tau)(1+\psi_l^{\rm B}(t-\tau))\right)^{\varepsilon B\tau v_l/2}$

воспользуемся следующим равенством (см. [7]):

$$(1 - y_1)^{n_1} \dots (1 - y_k)^{n_k} = 1 - \sum_{i=1}^k n_i y_i + R_2, \tag{21}$$

где
$$0 \leqslant R_2 \leqslant \sum_{i < j} n_i n_j y_i y_j + \sum_{i=1}^k \binom{n_i}{2} y_i^2$$
.

Используя (21), нормировку $\sum_{l=1}^{k} u_l v_l = 1$, а также неравенства

$$\left| \frac{\varepsilon B \tau v_l}{2} \right| \leqslant \frac{\varepsilon B \tau v_l}{2} < \left| \frac{\varepsilon B \tau v_l}{2} \right| + 1,$$

можно записать

$$\prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l(t - \tau)))^{\varepsilon B \tau v_l/2} = 1 - \sum_{i=1}^{k} \frac{\varepsilon \tau v_l u_l(1 + \eta_l(t - \tau))}{t - \tau} + R_2$$

$$= 1 - \frac{\varepsilon \tau (1 + \eta(t - \tau))}{t - \tau} + R_2,$$

где $\eta_l(t-\tau)=o(1)$ при $l=1,\ldots,k,\ \eta(t-\tau)=o(1)$ при $t-\tau\to\infty$ и $0\leqslant R_2\leqslant c\varepsilon^2\tau^2(t-\tau)^{-2}$ при некоторой константе c. С учетом (19) для R_2 имеем $R_2\leqslant c\varepsilon^{\frac{3}{2}}$. Поэтому

$$\prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l(t - \tau)))^{\varepsilon B\tau v_l/2} = 1 - \frac{\varepsilon \tau (1 + \eta(t - \tau))}{t - \tau} + O\left(\varepsilon^{\frac{3}{2}}\right).$$
(22)

Будем также использовать соотношение

$$\prod_{l=1}^{k} (1 - Q_l(t - \tau)(1 + \psi_l(t - \tau)))^{\varepsilon B \tau v_l/2} = 1 + O\left(\varepsilon^{\frac{3}{4}}\right).$$
 (23)

Из (15), (18), (20) и (23) после несложных преобразований с учетом соотношений (19) получаем

$$S_{11} = \frac{2 + O(\varepsilon^{\frac{3}{4}})}{\varepsilon^2 \left(\frac{t}{t-\tau} + O(\varepsilon) + O(\varepsilon^{-\frac{1}{4}})\eta(t-\tau) + O\left(\varepsilon^{\frac{1}{2}}\right)\right)^3}.$$

Так как для любого $\varepsilon > 0$ выполняется неравенство $\eta(t-\tau) \leqslant \varepsilon$, начиная с некоторого $t-\tau$, то $O(\varepsilon^{-\frac{1}{4}})\eta(t-\tau) = O(\varepsilon^{\frac{3}{4}})$. Поэтому

$$S_{11} = \frac{2(1 + O(\varepsilon^{\frac{3}{4}}))(t - \tau)^3}{\varepsilon^2 t^3 (1 + O(\sqrt{\varepsilon}))} = \frac{2(t - \tau)^3}{\varepsilon^2 t^3} (1 + O(\sqrt{\varepsilon})). \tag{24}$$

Так как $\Delta(n) \leqslant \frac{3}{n}$, то из (16) следует, что

$$S_{12} \leqslant 3(1 - e^{-\varepsilon}) \sum_{n=0}^{\infty} e^{-n\varepsilon} n \left(\prod_{l=1}^{k} \left(1 - Q_l(t - \tau) \right)^{\varepsilon B \tau v_l/2} \right)^n$$

$$\leq 3(1 - e^{-\varepsilon}) \sum_{n=0}^{\infty} e^{-n\varepsilon} n \left((1 - Q_1(t - \tau))^{\varepsilon B \tau v_1/2} \right)^n.$$

Воспользовавшись леммой 5, получим

$$S_{12} \leqslant 3(1 - e^{\varepsilon}) \sum_{n=0}^{\infty} e^{-n\varepsilon} \frac{1}{Q_1(t - \tau)} \frac{2}{\varepsilon B \tau v_1} \leqslant \frac{4(t - \tau)}{\varepsilon \tau u_1 v_1}$$
 (25)

И

$$S_{13} \leqslant \sum_{n=0}^{\infty} |\delta_n| c_2 \frac{(t-\tau)^2}{\varepsilon^2 \tau^2}$$

при некоторой константе $c_2 > 0$.

Множество M^* разобьем на два подмножества M^{*+} и M^{*-} : множество M_n^* отнесем к M^{*+} , если $\delta_n \geqslant 0$, и M_n^* отнесем к M^{*-} , если $\delta_n < 0$. Тогда можно записать следующее неравенство:

$$S_{13} \leqslant c_2 \frac{(t-\tau)^2}{\varepsilon^2 \tau^2} \left(\sum_{M^{*+}} \delta_n + |\sum_{M^{*-}} \delta_n| \right).$$

Пусть $\delta:=\sum\limits_{M^{*+}}\delta_n$ и $\delta^-:=\sum\limits_{M^{*-}}\delta_n$. Так как имеет место сходимость по распределению, то $\delta^+\to 0$ и $\delta^-\to 0$ при $\tau\to\infty$. Положим $\delta=\delta^++|\delta^-|$. Тогда

$$S_{13} \leqslant c_2 \delta \frac{(t-\tau)^2}{\varepsilon^2 \tau^2} \ \delta \to 0 \text{ при } \tau \to \infty.$$
 (26)

Пользуясь (24)–(26), получаем

$$S_{11} + S_{12} + S_{13} = \frac{2(t-\tau)^3}{\varepsilon^2 t^3} \left(1 + O(\sqrt{\varepsilon}) + O\left(\frac{\varepsilon t^3}{\tau (t-\tau)^2}\right) + O\left(\frac{\delta t^3}{\tau^2 (t-\tau)}\right) \right).$$

Поскольку либо $\frac{\tau}{t} \geqslant 1/2$, либо $\frac{t-\tau}{t} \geqslant 1/2$ и справедливо (19), имеем

$$O\left(\frac{\varepsilon t^3}{\tau(t-\tau)^2}\right)\leqslant O(\sqrt{\varepsilon})\ O\left(\frac{\delta t^3}{\tau^2(t-\tau)}\right)\leqslant O\left(\frac{\delta}{\sqrt{\varepsilon}}\right).$$

Так как $\delta \to 0$ при $\tau \to \infty$, то найдется такое t_0 , что при $t \geqslant t_0$ справедливо неравенство $\delta \leqslant \varepsilon$. Тогда

$$S_{11} + S_{12} + S_{13} = \frac{2(t-\tau)^3}{\varepsilon^2 t^3} \left(1 + O(\sqrt{\varepsilon})\right).$$
 (27)

Из (14) и (27) получаем $S_1^{\mathrm{B}} = (1 + \max_j \{\gamma_j(t-\tau)\})Q_1(\tau) \sum_{j=1}^k P\left(D_j^{t-\tau}\right) \frac{B^2 v_i v_j \tau^2(t-\tau)^3}{2t^3} (1 + O(\sqrt{\varepsilon})).$

Воспользовавшись леммами 1 и 2 для представлений $Q_1(\tau)$ и $P\left(D_j^{t-\tau}\right)$ и оценкой для $\gamma_j^{\text{B}}(t-\tau)$, следующей из леммы 4, получаем

$$S_1^{\mathrm{B}} = \left(1 + O\left(\frac{1}{n}\right)\right) \frac{2u_1}{B\tau} (1 + \zeta_1(\tau)) \sum_{j=1}^k \frac{2u_j}{B(t-\tau)^2} (1 + \phi_j(t-\tau))$$

$$\times \frac{B^2 v_i v_j \tau^2 (t-\tau)^3}{2t^3} \left(1 + O(\sqrt{\varepsilon}) \right) = 2u_1 v_i \frac{\tau (t-\tau)}{t^3} \left(1 + O(\sqrt{\varepsilon}) \right).$$

Аналогично найдем нижнюю оценку для $S_1^{\rm H}$. Для этого достаточно провести те же самые преобразования, что и для $S_1^{\rm B}$, заменив $\gamma_j^{\rm B}(t-\tau)$ на $\gamma_j^{\rm H}(t-\tau)=0,\,\psi_l^{\rm B}(t-\tau)$ на $\psi_l^{\rm H}(t-\tau)$, положив $\Delta=0$ и воспользовавшись (27). В результате получаем

$$S_1^{\text{H}} = 2u_1v_i\frac{\tau(t-\tau)}{t^3}\left(1 + O(\sqrt{\varepsilon})\right).$$

Следовательно,

$$S_1 = 2u_1v_i\frac{\tau(t-\tau)}{t^3}\left(1+O(\sqrt{\varepsilon})\right).$$

Наконец, оценим сверху величину S_2 . Применяя лемму 4 к $R_X(t-\tau)$ и лемму 5, получаем

$$S_2 \leqslant \sum_{X \in \overline{M}^*} P_X(\tau) x_i \sum_{j=1}^k P(D_j^{t-\tau}) (1 + \gamma_j (t-\tau)) x_j \prod_{l=1}^k (1 - Q_j (t-\tau))^{x_l}$$

$$\leqslant c(t-\tau)^2 \sum_{X \in \overline{M}^*} P_X(\tau) \sum_{j=1}^k P(D_j^{t-\tau}) = O(1) \sum_{X \in \overline{M}^*} P_X(\tau) \leqslant O(1) \delta Q_1(\tau)$$

(здесь c — некоторая константа).

Если $\delta \leqslant \varepsilon$, то

$$\sum_{X \in \overline{M}^*} P_X(\tau) \leqslant \varepsilon Q_1(\tau) = O\left(\frac{\varepsilon}{\tau}\right).$$

Таким образом,

$$S_1 + S_2 = \frac{2u_1v_i\tau(t-\tau)}{t^3} \left(1 + O(\sqrt{\varepsilon})\right) + O\left(\frac{\varepsilon}{\tau}\right)$$
$$= \frac{2u_1v_i\tau(t-\tau)}{t^3} \left(1 + O(\sqrt{\varepsilon}) + O\left(\frac{\varepsilon t^3}{\tau^2(t-\tau)}\right)\right).$$

При выполнении (19) очевидно, что

$$O\left(\frac{\varepsilon t^3}{\tau^2(t-\tau)}\right) = O\left(\sqrt{\varepsilon}\right).$$

Поэтому

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} (S_1 + S_2) = \frac{v_i B \tau(t-\tau)}{t} \left(1 + O(\sqrt{\varepsilon}) \right)$$

при любом ε из интервала $(0,1), t \to \infty$ и $t\sqrt[4]{\varepsilon} \leqslant \tau \leqslant t(1-\sqrt[4]{\varepsilon}).$

В качестве нового значения ε возьмем значение ε^2 . Тогда будут выполняться неравенства $t\sqrt{\varepsilon}\leqslant \tau\leqslant t(1-\sqrt{\varepsilon})$ и формула для $M_i(t,\tau)$ примет вид

$$M_i(t,\tau) = \frac{v_i B \tau(t-\tau)}{t} \left(1 + \chi_i(t,\tau,\varepsilon)\right),\,$$

где $\chi_i(t,\tau,\varepsilon) \leqslant c_0 \varepsilon$.

Так как при получении оценки $O(\varepsilon)$ для $\chi_i(t,\tau,\varepsilon)$ использовалось конечное число раз бесконечно малые величины, зависящие от t,τ и $t-\tau$, то существует такая константа $c_0>0$, не зависящая от t и τ , что $|\chi_i(t,\tau,\varepsilon)|\leqslant c_0\varepsilon$. Теорема 1 доказана.

Обозначим через $M_{ij}(t,\tau)$ условное математическое ожидание числа применений правила r_{ij} на ярусе τ в деревьях вывода из D_1^t .

Теорема 2. Пусть D_1^t — множество деревьев вывода высоты t для слов языка, порождаемого стохастической КС-грамматикой c неразложимой u непериодической матрицей первых моментов, перронов корень которой равен единице. Тогда для любого ε из интервала (0,1) при $t\to\infty$ u $t\sqrt{\varepsilon}\leqslant \tau\leqslant t(1-\sqrt{\varepsilon})$ выполняется равенство

$$M_{ij}(t,\tau) = \frac{p_{ij}v_iB\tau(t-\tau)}{t}(1+\chi_{ij}(t,\tau,\varepsilon)) \ (i=1,\ldots,k; \ j=1,\ldots,n_i),$$

где $|\chi_{ij}(t,\tau,\varepsilon)| \le c_0\varepsilon$, c_0 — некоторая константа, не зависящая от t и τ , а p_{ij} есть вероятность применения правила r_{ij} в исходной грамматике.

Доказательство. Величину $M_{ij}(t,\tau)$ можно записать в виде:

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{d \in D_1^t} p(d) z_{ij}(d,\tau),$$

где $z_{ij}(d,\tau)$ — число вершин на ярусе τ дерева d, помеченных нетерминалом A_i , к которым применено правило r_{ij} , и p(d) — вероятность появления дерева d в исходной грамматике.

Пусть $X = (x_1, \dots, x_k)$ — неотрицательный целочисленный вектор. Тогда

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} \sum_{d \in D_X^t(\tau)} p(d) z_{ij}(d,\tau).$$

Здесь $D_X^t(\tau)$ — множество деревьев вывода из D_1^t , в каждом из которых на ярусе τ содержится x_j вершин, помеченных нетерминалом A_j , $1\leqslant j\leqslant k$. Представим $z_{ij}(d,\tau)$ в виде суммы случайных величин $I_1+I_2+\ldots+I_{x_i}$, где $I_m=1$, если среди вершин, помеченных нетерминалом A_m на ярусе τ , к m-й по порядку вершине применено правило r_{ij} , и $I_m=0$ в противном случае $(m=1,2,\ldots,x_i)$. Тогда

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} \sum_{d \in D_X^t(\tau)} p(d)(I_1 + I_2 + \dots + I_{x_i}).$$

Очевидно, случайные величины $I_m \ (m=1,2,\ldots,x_i)$ одинаково распределены на $D_X^t(\tau).$ Поэтому

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P(D_{X,1}^t(\tau)) x_i,$$

где $P(D_{X,1}^t(\tau))$ — суммарная вероятность тех деревьев из $D_X^t(\tau)$, в которых правило r_{ij} применено к первой по порядку вершине на ярусе τ , помеченной нетерминалом A_i .

Подсчитаем вероятность

$$P\left(D_{X,1}^{t}(\tau)\right) = p_{ij}P_{X}(\tau)\left[\prod_{m=1}^{k}\left(1 - Q_{m}(t - \tau)\right)^{x'_{m}}\prod_{m=1}^{k}\left(1 - Q_{m}(t - \tau - 1)\right)^{s_{m}}\right]$$

$$-\prod_{m=1}^{k} (1 - Q_m(t - \tau - 1))^{x'_m} \prod_{m=1}^{k} (1 - Q_m(t - \tau - 2))^{s_m}].$$
 (28)

Здесь $X'=(x_1',\ldots,x_k')=(x_1,\ldots,x_{i-1},x_i-1,x_{i+1},\ldots,x_k)$ и s_m равно числу нетерминалов A_m в правой части правила r_{ij} $(m=1,\ldots,k)$. Выражение в квадратных скобках в (28) аналогично выражению $R_X(t-\tau)$. Множителями $(1-Q_m(t-\tau-1))^{s_m}$ и $(1-Q_m(t-\tau-2))^{s_m}$ учитывается тот факт, что к первому нетерминалу A_i на ярусе τ применено правило r_{ij} , которому на ярусе $\tau+1$ соответствует s_m вершин, помеченных нетерминалом A_m .

После несложных преобразований в (28) получаем

$$P\left(D_{X,1}^{t}(\tau)\right) = p_{ij}P_{X}(\tau)\frac{\prod_{l=1}^{k}\left(1 - Q_{l}(t - \tau - 1)\right)^{s_{l}}}{1 - Q_{i}(t - \tau)}$$

$$\times \left[\prod_{m=1}^{k}\left(1 - Q_{m}(t - \tau)\right)^{x_{m}} - \prod_{m=1}^{k}\left(1 - Q_{m}(t - \tau - 1)\right)^{x_{m}}\Delta\right],$$

где

$$\Delta = \frac{1 - Q_i(t - \tau)}{1 - Q_i(t - \tau - 1)} \prod_{m=1}^k \frac{(1 - Q_m(t - \tau - 2))^{s_m}}{(1 - Q_m(t - \tau - 1))^{s_m}}.$$

Из леммы 2 следует, что

$$\frac{1 - Q_l(n)}{1 - Q_l(n-1)} = 1 + \frac{P(D_l^n)}{1 - Q_l(n-1)} = 1 + O\left(\frac{1}{n^2}\right)$$

И

$$\left(\frac{1 - Q_l(n-1)}{1 - Q_l(n)}\right)^{s_m} = \left(1 - \frac{P(D_l^n)}{1 - Q_l(n)}\right)^{s_m} = 1 + O\left(\frac{1}{n^2}\right).$$

Поэтому $\Delta = 1 + O\left(\frac{1}{(t-\tau)^2}\right)$ и

$$P(D_{X,1)}^{t}(\tau)) = p_{ij}P_X(\tau)R_X(t-\tau)\left(1 + O\left(\frac{1}{t-\tau}\right)\right) + p_{ij}P_X(\tau)O\left(\frac{1}{(t-\tau)^2}\right).$$

Далее имеем

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} p_{ij} P_X(\tau) R_X(t-\tau) \left(1 + O\left(\frac{1}{t-\tau}\right)\right) x_i + \frac{1}{P(D_1^t)} \sum_{X \neq 0} p_{ij} P_X(\tau) x_i O\left(\frac{1}{(t-\tau)^2}\right).$$

Величина

$$\frac{1}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) R_X(t - \tau) x_i$$

есть $M_i(t,\tau)$ из теоремы 1, а величина $\sum_{X \neq 0} P_X(\tau) x_i$ равна $a_{1i}^{(\tau)} = O(1)$

[2], где $a_{1i}^{(\tau)}$ — элемент матрицы A^{τ} и A — матрица первых моментов. Следовательно,

$$M_{ij}(t,\tau) = M_i(t,\tau)p_{ij}\left(1 + O\left(\frac{1}{t-\tau}\right)\right) + O\left(\left(\frac{t}{t-\tau}\right)^2\right).$$

Применяя теорему 1 к $M_i(t,\tau)$, получаем

$$M_{ij}(t,\tau) = \frac{p_{ij}v_iB\tau(t-\tau)}{t} (1 + O(\varepsilon)) + O\left(\left(\frac{t}{t-\tau}\right)^2\right)$$
$$= \frac{p_{ij}v_iB\tau(t-\tau)}{t} (1 + O(\varepsilon))$$

при $t \to \infty$ и $t\sqrt{\varepsilon} \leqslant \tau \leqslant t(1-\sqrt{\varepsilon})$.

Заметим, что при получении оценки для $M_{ij}(t,\tau)$ мы воспользовались (7), а также тем, что суммируется конечное число бесконечно малых величин, зависящих от t, τ и $t-\tau$. Поэтому

$$M_{ij}(t,\tau) = \frac{p_{ij}v_iB\tau(t-\tau)}{t} \left(1 + \chi_{ij}(t,\tau,\varepsilon)\right),$$

где $|\chi_{ij}(t,\tau,\varepsilon)| \leqslant c_0 \varepsilon$ при некоторой константе c_0 , не зависящей от t и τ . Теорема доказана.

Пусть $S_{ij}(t)=q_{ij}(t,1)+q_{ij}(t,2)+\ldots+q_{ij}(t,t),$ где $q_{ij}(t,\tau)$ — число применений правила r_{ij} на ярусе τ в дереве вывода из D_1^t .

Теорема 3. При $t \to \infty$ выполняется асимптотическое равенство

$$M\left(S_{ij}(t)\right) \sim \frac{p_{ij}v_iBt^2}{6}.$$

Доказательство. Возьмем ε из интервала (0,1/4). Положим $\tau_1 = \lfloor t\sqrt{\varepsilon} \rfloor$ и $\tau_2 = \lfloor t (1-\sqrt{\varepsilon}) \rfloor$. Разобьем $S_{ij}(t)$ на три части:

$$S_{ij}(t) = S_{ij}^{(1)}(t) + S_{ij}^{(2)}(t) + S_{ij}^{(3)}(t),$$

где
$$S_{ij}^{(1)}(t)=\sum_{ au=1}^{ au_1}q_{ij}(t, au),~S_{ij}^{(2)}(t)=\sum_{ au= au_1+1}^{ au_2}q_{ij}(t, au)$$
 и

$$S_{ij}^{(3)}(t) = \sum_{\tau=\tau_2+1}^t q_{ij}(t,\tau)$$
. Оценим математические ожидания $M\left(S_{ij}^{(1)}(t)\right)$,

$$M\left(S_{ij}^{(2)}(t)\right)$$
 и $M\left(S_{ij}^{(3)}(t)\right)$.

Величину $M\left(S_{ij}^{(1)}(t)\right)$ можно представить в виде:

$$M\left(S_{ij}^{(1)}(t)\right) = M_{ij}(t,1) + M_{ij}(t,2) + \ldots + M_{ij}(t,\tau_1).$$

Для оценки $M_{ij}(t,\tau)$ при $\tau \leqslant \tau_1$ учтем, что $q_{ij}(t,\tau)$ не превосходит числа вершин на ярусе τ , помеченных нетерминалом A_i . Поэтому

$$M_{ij}(t,\tau) \leqslant M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) R_X(t-\tau) x_i.$$

Применяя леммы 4 и 5, получаем

$$R_X(t-\tau) \leqslant c_1(t-\tau) \sum_{m=1}^k P(D_m^{t-\tau}) \leqslant \frac{c_2}{t-\tau},$$

где c_1 и c_2 — некоторые константы. Следовательно,

$$M_{ij}(t,\tau) \leqslant \frac{c_2}{P(D_1^t)(t-\tau)} \sum_X P_X(\tau) x_i \leqslant c \frac{t^2}{t-\tau},$$

так как $\sum_{X} P_{X}(\tau) x_{i} = a_{1i}^{(\tau)} = O(1)$ (здесь c — некоторая константа).

Число слагаемых в $S_{ij}^{(1)}(t)$ равно $\tau_1 \leqslant t\sqrt{\varepsilon}$, а $t-\tau \geqslant t/2$. Поэтому

$$M\left(S_{ij}^{(1)}(t)\right) \leqslant 2c\sqrt{\varepsilon}t^2 = O(t^2\sqrt{\varepsilon}).$$

Рассмотрим au, удовлетворяющее условию $au_2+1\leqslant au\leqslant t$. Для любого такого au имеем

$$M_{ij}(t,\tau) \leqslant M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) x_i R_X(t-\tau).$$

Для оценки $R_X(t-\tau)$ применим (6):

$$R_X(t-\tau) \le \sum_{l=1}^k x_l P(D_l^{t-\tau}) (1 + \varphi_l(t-\tau)) \prod_{m=1}^k (1 - Q_m(t-\tau))^{x_m}$$

$$\leq 2 \sum_{l=1}^{k} x_l P(D_l^{t-\tau}) \prod_{m=1}^{k} (1 - Q_m(t-\tau))^{x_m}.$$

Используя лемму 5 и учитывая неравенство $1-Q_m(t-\tau) < 1$, получаем

$$M_{ij}(t,\tau) \leqslant \frac{2}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) \sum_{l=1}^k \frac{4P(D_l^{t-\tau})}{Q_l(t-\tau)Q_i(t-\tau)}.$$

Рассмотрим функцию $f_l(n) = \frac{P(D_l^n)}{Q_l(n)Q_i(n)}$. Из лемм 1 и 2 следует, что

 $\lim_{n\to\infty} f_l(n)=rac{B}{2u_i}$. Кроме того, $f_l(n)$ определена при любом натуральном n, так как $Q_l(t-\tau)>0$ при $l=1,\ldots,k$ в силу бесконечности языка. Значит, $f_l(n)$ ограничена некоторой константой $c_l>0$. Поэтому

$$M_{ij}(t,\tau) \leqslant \frac{8}{P(D_1^t)} \sum_{l=1}^k c_l \sum_{X \neq 0} P_X(\tau) = \frac{8Q_1(\tau)}{P(D_1^t)} \sum_{l=1}^k c_l.$$

Очевидно, что $Q_1(\tau) \leqslant Q_1(\tau_2)$ при $\tau > \tau_2$ и

$$M_{ij}(t,\tau) \leqslant \frac{8Q_1(\tau_2)}{P(D_1^t)} \sum_{l=1}^k c_l \leqslant \frac{ct^2}{\tau_2} \leqslant \frac{ct}{1-\sqrt{\varepsilon}}$$

(здесь c — некоторая константа).

В силу выбора ε из интервала (0,1/4) значение $1-\sqrt{\varepsilon}$ больше 1/2. Поэтому $M_{ij}(t,\tau)\leqslant 2ct$. Так как число слагаемых в $S_{ij}^{(3)}(t)$ не превосходит $\sqrt{\varepsilon}t$, то

$$M\left(S_{ij}^{(3)}(t)\right) \leqslant 2\sqrt{\varepsilon}ct^2 = O\left(t^2\sqrt{\varepsilon}\right).$$

Наконец, найдем значение $M\left(S_{ij}^{(2)}(t)\right)$, применив к $M_{ij}(t,\tau)$ теорему 2, так как в области $\tau_1 < \tau \leqslant \tau_2$ выполняются ограничения на τ , необходимые для ее применения. Можно записать

$$M\left(S_{ij}^{(2)}(t)\right) = \sum_{\tau=\tau_1+1}^{\tau_2} M_{ij}(t,\tau) = \frac{p_{ij}v_iB}{t} \sum_{\tau=\tau_1+1}^{\tau_2} \{\tau(t-\tau)(1+\chi_{ij}(t,\tau,\varepsilon))\}.$$

Очевидно, что

$$\sum_{\tau=\tau_1+1}^{\tau_2} \tau = \frac{t^2}{2} \left(1 + O\left(\sqrt{\varepsilon}\right) \right).$$

Для $\sum_{\tau=\tau_1+1}^{\tau_2} \tau^2$ справедливы неравенства

$$\int_{\tau_1+1}^{\tau_2+1} (\tau-1)^2 d\tau \leqslant \sum_{\tau=\tau_1+1}^{\tau_2} \tau^2 \leqslant \int_{\tau_1+1}^{\tau_2+1} \tau^2 d\tau.$$

Поэтому вычисляя интегралы, получаем

$$\sum_{\tau=\tau_1+1}^{\tau_2} \tau^2 = \frac{t^3}{3} \left(1 + O\left(\sqrt{\varepsilon}\right) \right).$$

Следовательно,

$$\sum_{\tau=\tau_1+1}^{\tau_2} \tau(t-\tau) = \frac{t^3}{6} \left(1 + O\left(\sqrt{\varepsilon}\right) \right).$$

С учетом оценки для $\chi_{ij}(t,\tau,\varepsilon)$ из теоремы 2, находим

$$M\left(S_{ij}^{(2)}(t)\right) = \frac{p_{ij}v_iBt^2}{6}\left(1 + O\left(\sqrt{\varepsilon}\right) + O\left(\varepsilon\right)\right) = \frac{p_{ij}v_iBt^2}{6}\left(1 + O\left(\sqrt{\varepsilon}\right)\right).$$

Суммируя оценки для $M\left(S_{ij}^{(1)}(t)\right)$, $M\left(S_{ij}^{(2)}(t)\right)$ и $M\left(S_{ij}^{(3)}(t)\right)$, получаем

$$M(S_{ij}(t)) = \frac{p_{ij}v_iBt^2}{6} (1 + O(\sqrt{\varepsilon})).$$

Так как это равенство выполняется для любого сколь угодно малого $\varepsilon > 0$, справедлива следующая асимптотика при $t \to \infty$:

$$M\left(S_{ij}(t)\right) \sim \frac{p_{ij}v_iBt^2}{6}.$$

Теорема 3 доказана.

4. Нижняя оценка стоимости кодирования

В этом разделе будем рассматривать грамматики с однозначным выводом, т. е. грамматики, в каждой из которых любое слово порождаемого языка имеет единственное дерево вывода.

Пусть L — стохастический КС-язык. Через L^t обозначим множество таких слов из L, что дерево вывода каждого слова имеет высоту t.

Для $\alpha \in L^t$ через $p_t(\alpha)$ обозначим условную вероятность появления слова α , т. е. $p_t(\alpha) = \frac{p(\alpha)}{P(L^t)}$. В силу однозначности вывода $P(L^t) = P(D^t)$.

Kodupoвaнием языка L будем называть инъективное отображение $f: L \to \{0,1\}^+$. Cmoumocmbo kodupoвaния <math>f назовем величину

$$C(L, f) = \lim_{t \to \infty} \frac{\sum_{\alpha \in L^t} p_t(\alpha) |f(\alpha)|}{\sum_{\alpha \in L^t} p_t(\alpha) |\alpha|}$$
(29)

(здесь |x| -длина последовательности x).

Величина C(L,f) равна среднему числу двоичных разрядов, используемых при кодировании одного символа слова.

Через F(L) обозначим множество таких инъективных отображений f из L в $\{0,1\}^+$, что существует C(L,f).

Стоимостью оптимального кодирования языка L назовем величину

$$C_0(L) = \inf_{f \in F(L)} C(L, f).$$
 (30)

Под энтропией множества слов L^t будем понимать величину

$$H(L^t) = -\sum_{\alpha \in L^t} p_t(\alpha) \log p_t(\alpha).$$

(Здесь и далее логарифм берется по основанию 2.)

Теорема 4. Пусть L- язык, порожденный стохастической КС-грамматикой c однозначным выводом, матрица первых моментов которой неразложима, непериодична и ее перронов корень равен 1. Тогда при $t\to\infty$

$$H(L^t) \sim \frac{Bt^2}{6} \sum_{i=1}^k v_i H(R_i),$$
 (31)

где $V=(v_1,\ldots,v_k)$ — левый собственный вектор матрицы первых моментов, соответствующий перронову корню, и $H(R_i)$ — энтропия множества правил $R_i,\ H(R_i)=-\sum\limits_{j=1}^{n_i}p_{ij}\log p_{ij}.$

Доказательство. Обозначим через $q_{ij}(\alpha)$ число применений правила r_{ij} в выводе слова α из L^t . Тогда

$$p(\alpha) = \prod_{i=1}^{k} \prod_{j=1}^{n_j} p_{ij}^{q_{ij}}(\alpha) \quad \log p(\alpha) = \sum_{i=1}^{k} \sum_{j=1}^{n_j} q_{ij}(\alpha) \log p_{ij}.$$

Очевидно, что для логарифма условной вероятности $p_t(\alpha)$ справедлива формула $\log p_t(\alpha) = \log p(\alpha) - \log P(L^t)$. Используя полученные формулы, проведем преобразования $H(L^t)$:

$$H(L^t) = -\sum_{\alpha \in L^t} p_t(\alpha) \log p_t(\alpha) = \frac{1}{P(L^t)} \left(-\sum_{\alpha \in L^t} p(\alpha) \left(\log p(\alpha) - \log P(L^t) \right) \right)$$
$$= \frac{1}{P(L^t)} \left(-\sum_{i=1}^k \sum_{j=1}^{n_j} \log p_{ij} \sum_{\alpha \in L^t} p(\alpha) q_{ij}(\alpha) \right) + \log P(L^t).$$

Так как $\log P(L^t) = O(\log t)$ по лемме 2 и

$$\sum_{\alpha \in L^t} p(\alpha) q_{ij}(\alpha) = P(L^t) M(S_{ij}(t)) = P(L^t) \frac{p_{ij} v_i B t^2}{6} (1 + o(1))$$

по теореме 3, то

$$H(L^{t}) = \frac{Bt^{2}}{6}(1 + o(1))\left(-\sum_{i=1}^{k} v_{i} \sum_{j=1}^{n_{j}} p_{ij} \log p_{ij}\right) + O(\log t)$$
$$= \frac{Bt^{2}}{6}(1 + o(1))\left(\sum_{i=1}^{k} v_{i}H(R_{i})\right) + O(\log t) \sim \frac{Bt^{2}}{6}\sum_{i=1}^{k} v_{i}H(R_{i}).$$

Теорема 4 доказана.

Теорема 5. Пусть L- язык, порожденный стохастической КС-грамматикой с однозначным выводом, матрица первых моментов которой неразложима, непериодична и перронов корень равен 1. Тогда

$$C_0(L) = -\frac{1}{h} \sum_{i=1}^k v_i \sum_{j=1}^{n_i} p_{ij} \log p_{ij},$$

где $C_0(L)$ определено в (30), $h=\sum_{i=1}^k v_i \sum_{j=1}^{n_i} p_{ij} l_{ij}, \, p_{ij}$ — вероятность правила $r_{ij},\, V=(v_1,\ldots,v_k)$ — левый собственный вектор для перронова корня r и l_{ij} — число терминальных символов в правой части правила

 r_{ij} .

Доказательство. Рассмотрим способ кодирования слов из L^t , состоящий в упорядочении слов в порядке невозрастания вероятностей их

появления и кодировании их по порядку сначала двоичными словами длины 1, затем двоичными словами длины 2, и т. д. Такое кодирование обозначим через f^* . Очевидно, что при таком f^* сумма $\sum_{\alpha \in L^t} p_t(\alpha) |f^*(\alpha)|$

минимальна среди всех возможных кодирований множества слов из L^t . Поэтому для любого кодирования f слов языка L, включающем множество L^t , выполняется неравенство

$$\sum_{\alpha \in L^t} p_t(\alpha)|f(\alpha)| \geqslant \sum_{\alpha \in L^t} p_t(\alpha)|f^*(\alpha)|.$$

Пусть
$$M_t(f^*) := \sum_{\alpha \in L^t} p_t(\alpha) |f^*(\alpha)|.$$

В [5] доказана нижняя оценка стоимости кодирования слов из конечного множества с заданным на нем распределением вероятностей, где под стоимостью кодирования понимается математическое ожидание длины закодированного слова. Применяя эту оценку к множеству слов из L^t , получаем

$$M_t(f^*) \geqslant H(L^t) - \log \log N - C, \tag{32}$$

где N — число слов в множестве L^t и C — некоторая константа.

Оценим сверху величину N. Для грамматики с однозначным выводом число слов в L^t равно числу различных деревьев вывода высоты t. Из каждой вершины дерева вывода выходит не более c_1 дуг, где c_1 равно наибольшей длине слова в правой части правила грамматики. Поэтому число вершин на ярусе τ не превосходит c_1^{τ} . Общее число вершин в дереве вывода высоты t, помеченных нетерминалами, не превосходит

$$\sum_{\tau=0}^{t-1} c_1^{\tau} \leqslant c_1^t.$$

Дерево вывода высоты t можно закодировать последовательностью номеров правил грамматики в левом выводе соответствующего слова из L^t . Очевидно, длина этой последовательности не меньше t и не превосходит c_1^t .

На каждом месте в левом выводе может стоять не более c_2 различных номеров правил грамматики, где c_2 — общее число правил в грамматике. Поэтому число N деревьев вывода высоты t не превосходит величины

$$\sum_{n=t}^{c_1^t} c_2^n \leqslant c_2^{c_1^t + 1}.$$

Значит, $\log \log N \le \log \log c_2^{c_1^t + 1} \le t \log c_1 + \log \log c_2 + 1 = O(t)$.

Учитывая найденную оценку для N и применяя теорему 4, неравенство (32) можно переписать в виде:

$$M_t(f^*) \geqslant H(L^t) + O(t) \geqslant H(L^t) \left(1 + O\left(\frac{1}{t}\right)\right).$$

Теперь вычислим $M(|\alpha|)$, когда $\alpha \in L^t$. Для этого длину слова α представим в виде:

$$|\alpha| = \sum_{i=1}^{k} \sum_{j=1}^{n_i} q_{ij}(\alpha) l_{ij},$$

где l_{ij} — число терминальных символов в правой части правила r_{ij} . Тогда при $\alpha \in L^t$ имеем

$$M(|\alpha|) = \sum_{\alpha \in L^t} p_t(\alpha) \sum_{i=1}^k \sum_{j=1}^{n_i} q_{ij}(\alpha) l_{ij} = \sum_{i=1}^k \sum_{j=1}^{n_i} l_{ij} M(S_{ij}(t)).$$

Применив теорему 3 к $M(S_{ij}(t))$, получим

$$M(|\alpha|) = \frac{Bt^2}{6}(1 + o(1)) \sum_{i=1}^{k} v_i \sum_{j=1}^{n_i} p_{ij} l_{ij}.$$

Пусть
$$h := \sum_{i=1}^k v_i \sum_{j=1}^{n_i} p_{ij} l_{ij}$$
. Тогда

$$C(L,f) = \lim_{t \to \infty} \frac{\sum\limits_{\alpha \in L^t} p_t(\alpha)|f(\alpha)|}{\sum\limits_{\alpha \in L^t} p_t(\alpha)|\alpha|} \geqslant \lim_{t \to \infty} \frac{M_t(f^*)}{M(|\alpha|)} = \frac{6M_t(f^*)}{Bt^2h}.$$

Наконец, воспользовавшись (32), а затем (31), получаем

$$C(L, f) \geqslant C_0(L) \geqslant \frac{1}{h} \sum_{i=1}^n v_i H(R_i).$$

Полученная нижняя оценка неулучшаема, поскольку из доказательства теоремы Шеннона для канала без шума [7] следует неравенство

$$M_t(f^*) \leqslant H(L^t) + 1.$$

Следовательно,

$$C_0(L) \leqslant C(L, f^*) \leqslant \frac{1}{h} \sum_{i=1}^n H(R_i).$$

Теорема 5 доказана.

Литература

- **1. Ахо А., Ульман Дж.** Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978.
- **2.** Гантмахер Ф. Р. Теория матриц. М.: Наука, 1967.
- **3.** Жильцова Л. П. Закономерности применения правил грамматики в выводах слов стохастического контекстно-свободного языка// Математические вопросы кибернетики. Вып.9. М.: Наука, 2000. С. 101–126.
- **4.** Жильцова Л. П. О нижней оценке стоимости кодирования и асимптотически оптимальном кодировании стохастического контекстно-свободного языка// Дискрет. анализ и исслед. операций. Сер. 1. 2001. Т. 8, № 3. С. 26–45.
- 5. Кричевский Р. Е. Сжатие и поиск информации. М.: Радио и связь, 1989.
- 6. Севастьянов В. А. Ветвящиеся процессы. М.: Наука, 1971.
- 7. Шеннон К. Математическая теория связи. М.: ИЛ, 1963.
- **8.** Ширяев **А. Н.** Вероятность. М.: Наука, 1980.

Адрес автора:

Статья поступила 29 апреля 2003 г.

Нижегородский государственный педагогический университет, ул. Ульянова, 1, 603005 Нижний Новгород, Россия