Final Competition of Deep Learning (Traffic environment Contest, spring 2020)

- Sree Gowri Addepalli (sga297)
 - Amartya Prasad(ap5891)
- Sree Lakshmi Addepalli(sla410)

Baseline with Supervised techniques

- Road Map prediction Binary Classification with Resnet18 + FC Layer (Sent 6 images as 18 channels). The accuracy on validation set was 0.74 which was our baseline.
- 2. **Object Detection and Classification Faster RCNN** with **Image stitching**. We achieved an loU of **0.014** through this technique.

One of the reasons for such performance is **loss of depth info** in **monocular** images.

We also expect performance on the road tasks to have been hampered due to a relatively **small annotated dataset.**

SimCLR (Simple framework for contrastive learning of visual representations)

- SimCLR is a framework with SOTA in Self-Supervised and Semi-Supervised Image Training.
- It provides a model that learns representations by **maximizing agreement** between differently augmented views of the same data example via a contrastive loss in the latent space.

It consists of the following modules:

- 1. **Data Augmentation:** Generates two correlated views of same image using random cropping, random color distortions and random gaussian blur.
- 2. **Base Encoder:** Output of last average pooling layer used for extracting representations using resnet18.
- 3. **Projection Head:** For learned embeddings of sizes 512 and 64.
- 4. **Contrastive Loss Function:** Takes as input, set of examples (xi and xj), aims to identify xj in set for given xi. (called **NT-Xent the normalized temperature-scaled cross entropy loss**).
- 5. **LARS optimizer** We tested with Layer wise Adaptive Rate scaling and Adam for optimization.

SSL Contrastive Learning and Depth Estimation

We worked on unlabelled dataset through self supervision techniques.

- 1. **Monodepth2** Self supervised Monocular Depth estimation (Learns through **temporal dynamics**)- **6 models (6 cameras)**. It helps us calculate the **depth** of each pixel in the image.
- 2. **SIMCLR 24 channels** (**6*(3+1)**) feature embeddings of dimensions 512 with depth images being passed as the fourth channel generated through **Monodepth2**.

Results: Heavy model - Could train only for 5 epochs. Achieved a low average training loss of **0.02** on **pretext** task.

Downstream for Object detection

- 1. **Transfer learned** embeddings from SimCLR with MonoDepth2 to the Regional Proposal Network (RPN) head of the Faster RCNN, a 2D object Detection model for bounding box prediction.
- 2. **Custom loss:** Combined with IoU based loss (-log(IoU) or Generalized IoU).

$$IoU = rac{\mathcal{I}}{\mathcal{U}}$$
, where $\mathcal{U} = A^p + A^g - \mathcal{I}$ $GIoU = IoU - rac{A^c - \mathcal{U}}{A^c}$

3. **RetinaNet-** Also, Implemented transfer learning with RetinaNet, attaching the upstream prediction heads to this model.

Results - Implementation issues on downstream - issues merging the SimCLR and monodepth model with Faster RCNN/RetinaNet due to time constraints.

Downstream for Road Map prediction

Transfer learned embeddings of SimCLR with Monodepth models for RoadMap with semantic segmentation task.

 Conjoined learned embeddings with ASPP(Atrous Spatial Pyramid Pooling) Head of DeepLabv3 - (SOTA semantic segmentation model for road prediction). ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales.

Results: 0.66 (vs 0.74 supervised validation accuracy). Possible overfitting on unlabelled data.

2. Also, conjoined learned embeddings with **Linear classifier**.

Results: 0.64 (vs 0.74 supervised validation accuracy).

Miscellaneous - Experiments and ideas.

We experimented with the following architectures but hit roadblocks.

- 1. Mono Layout (Top Down View prediction using DL) Bad Quality training labels.
- 2. **Pseudo Lidar** (3D object detection Point Clouds from depth images) No access to velodyne calibration data.
- 3. **RetinaNet** With only depth images as input (Supervised) computing resource issues with GPU availability.

Other ideas:

- 1. **LSTM Layers** could help learn, temporal dynamics better possibly better performance.
- 2. Video based Contrastive Learning (eg: VINCE) for better feature learning.
- 3. **Ensembling** techniques.