(9)

GATE: EE - 47.2022

EE22BTECH11219 - Rada Sai Sujan

QUESTION

Let an input $x(t) = 2\sin(10\pi t) + 5\cos(15\pi t) +$ $7\sin(42\pi t) + 4\cos(45\pi t)$ is passed through an LTI system having an impulse response

$$h(t) = 2\left(\frac{\sin(10\pi t)}{\pi t}\right)\cos(40\pi t)$$

The output of the system is

- (a) $2\sin(10\pi t) + 5\cos(15\pi t)$
- (b) $2\sin(10\pi t) + 4\cos(45\pi t)$
- (c) $7\sin(42\pi t) + 4\cos(45\pi t)$
- (d) $5\sin(15\pi t) + 7\cos(42\pi t)$

Solution:

Given,

$$h(t) = 2\left(\frac{\sin(10\pi t)}{\pi t}\right)\cos(40\pi t)$$

$$\sin 50\pi t \quad \sin 30\pi t$$
(1)

$$= \frac{\sin 50\pi t}{\pi t} - \frac{\sin 30\pi t}{\pi t}$$
 (2)
= $h_1(t) - h_2(t)$ (3)

$$= h_1(t) - h_2(t) (3)$$

Plotting $H_1(f)$ and $H_2(f)$ we get,

Plotting H(f) from (8) and (9)

Taking Fourier transform of h(t)

$$h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(f)$$
 (4)

$$\implies h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_1(f) - H_2(f)$$
 (5)

where,

$$h_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_1(f)$$
 (6)

$$h_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_2(f)$$

(7)

Therefore, the given system is a Bandpass filter with passband:

$$15 \le |f| \le 25 \tag{11}$$

Given input impulse signal is:

$$x(t) = 2\sin(10\pi t) + 5\cos(15\pi t) + 7\sin(42\pi t) + 4\cos(45\pi t)$$
(12)

Veryfying Table I with (11), only f_3 and f_4 will

Frequency components of input	Value
f_1	5Hz
f_2	7.5Hz
f_3	21 <i>Hz</i>
f_4	22.5Hz

TABLE I FREQUENCY COMPONENTS

be passed through the system.

$$y(t) = 7\sin(42\pi t) + 4\cos(45\pi t)$$
 (13)

(: |H(f)| = 1, the amplitude of frequency components will be unchanged.)