

Faculty of Computers and Artificial Intelligence Cairo University

Midterm Exam

Program:

Computer Science / Software Engineering

Course Name: Course Code:

Computer Organization and Architecture CS331

Instructor(s):

Dr. Amin Allam

Date:

27/11/2021

Duration: Total Marks: 1 hour

20 marks

تعليمات هامة

• حيازة التليفون المحمول مفتوحا داخل لجلة الامتحان يعتبر حالة غش تستوجب العقاب وإذا كان ضرورى الدخول بالمحمول فيوضع مغلقا في الحقائب · لا يسمح بنخول سماعة الأذن أو البلوتوث.

• لايسمع بدخول أي كتب أو ملازم أو أوراق داخل اللجنة والمخالفة تعتب حالة عث.

Exam consists of 20 multiple-choice questions in 3 pages. Each question weights 1 mark.

Record in the bubble sheet exactly ONE answer for each question.

Qa

⇒ Given the characteristic table of the JK flip-flop:

A1 :0

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q(t)}$

For questions 1 to 4, consider an electronic circuit which consists of the following items:

A positive edge-triggered JK flip-flop with inputs: clock, J₀, K₀, and output: A₀.

• Another positive edge-triggered JK flip-flop with inputs: clock, J_1 , K_1 , and output: A_1 .

Logic 1 is connected to both J₀ and K₀.

A₀ is connected to both J₁ and K₁.

1 Assuming $A_1 = 0$ and $A_0 = 0$ while clock input is logic 0. After the clock input becomes logic 1, the values of A1 and A0 become: $A_1 = 0, A_0 = 0$ $A_1 = 0, A_0 = 1$ $A_1 = 1, A_0 = 0$ $A_1 = 1, A_0 = 1$ $A_1 = 1, A_0 = 1$

$$A_1 = 0, A_0 = 1$$

$$C A_1 = 1, A_0 = 0$$

$$\boxed{\mathbf{D}}_1 = 1, A_0 = 1$$

2 Assuming $A_1 = 0$ and $A_0 = 1$ while clock input is logic 0. After the clock input becomes logic 1, the values of A_1 and A_0 become:

$$D A_1 = 1, A_0 = 1$$

3 Assuming $A_1 = 1$ and $A_0 = 1$ while clock input is logic 0. After the clock input becomes logic 1, the values of A1 and A0 become: $A_1 = 0, A_0 = 0$ $BA_1 = 0, A_0 = 1$ $CA_1 = 1, A_0 = 0$ $A_1 = 1, A_0 = 1$ $CA_1 = 1, A_0 = 1$ $CA_1 = 1, A_0 = 1$

4 The above circuit is:

Qb \Rightarrow A 4 × 1 multiplexer with selection inputs S_1 and S_0 selects input 0 when $S_1S_0 = 00$, selects input 1 when $S_1S_0 = 01$, selects input 2 when $S_1S_0 = 10$, and selects input 3 when $S_1S_0 = 11$. For questions 5 to 10, consider an electronic circuit which has: • Inputs: S_1 , S_0 , C_0 , the binary number $F = F_1F_0$, and the binary number $G = G_1G_0$ • output: the binary number $V = V_1 V_0$. The circuit consists of the following items: A 4 × 1 multiplexer with selection inputs S₁, S₀, and 4 inputs: Q₀, Q₁, Q₂, Q₃, and output: M₀. Another 4 × 1 multiplexer with selection inputs S₁, S₀, and 4 inputs: R₀, R₁, R₂, R₃, and output: M₁. A full-adder with inputs: F₀, M₀, C₀ and outputs: C₁ (carry), V₀ (sum). Another full-adder with inputs: F₁, M₁, C₁ and outputs: C₂ (carry), V₁ (sum). • G_0 is connected to Q_0 . • G_1 is connected to R_0 . • G_0 is connected to Q_1 . • G_1 is connected to R_1 . Logic 1 is connected to both Q2 and R2.
Logic 0 is connected to both Q3 and R3. 5 After $S_1 = 0$, $S_0 = 0$, $C_0 = 0$, the output V will equal to: AF+G BF-G CF+G+1 F-G-1 EF-G+16 After $S_1 = 0$, $S_0 = 0$, $C_0 = 1$, the output V will equal to: A F + G 7 After $S_1 = 0$, $S_0 = 1$, $C_0 = 1$, the output V will equal to: $A F + G \quad B F - G$ $F + G + 1 \quad D F - G - 1 \quad E F - G + 1$ 8 After $S_1 = 1$, $S_0 = 0$, $C_0 = 0$, the output V will equal to: AF+G BF-G CF+1 F-1 EF

9 After $S_1 = 1$, $S_0 = 0$, $C_0 = 1$, the output V will equal to: AF+G BF-G CF+1 DF-1

After $S_1 = 1$, $S_0 = 1$, $C_0 = 1$, the output V will equal to: A F + G B F - G F + 1 D F - 1 E F

