	Sprawozdanie – WEAIIB, AiR		
	Podstawy Automatyki 2		
Ćwiczenie 11: Analiza nielin	iowego systemu II rzędu na płaszczyźnie fazowej, 1 metoda Lapunova.		
Czwartek, 14:30	Data wykonania: 15.06.2023		
Roman Nowak	Data zaliczenia:		
	Ocena:		

Cel ćwiczenia

Zapoznanie z analizą dynamiki systemów nieliniowych II rzędu opisanych w przestrzeni stanu z wykorzystaniem metody płaszczyzny fazowej.

W ramach ćwiczenia będziemy analizować stabliność nieliniowego systemu drugiego rzędu - ciężarka na sprężynie. Ten układ opisuje poniższe równanie:

$$\ddot{x}(t) + b\dot{x}(t) + cx(t) - dx^{3}(t) = 0$$

W trakcie ćwiczenia będziemy zmieniać wartości parametrów b, c i d, zgodnie z tabelą 1 i obserwować wpływ tych zmian na portret fazowe obiektu.

Tabela 1. Proponowane zestawy parametrów układu

nr	1	2	3	4	5	6	7	8	9
b	1	3	3	3	1	1	1	0	0.1
С	1	1	1	1	2	2	2	1	2
d	0	-1	-0.1	-5	-1	-0.1	-5	-1	-1

Pierwsza metoda Lapunova

Pozwala ona ocenić stabilność punktu równowagi układu nieliniowego na podstawie stabilności punktu równowagi w wersji zlinearyzowanej badanego ukladu. Linearyzacja odbywa się przez rozwinięcie w szereg Taylora. O ile asymptotyczna stabilność i niestabiność punktu układu zlinearyzowanego oznacza odpowiednio asymptotyczną stabilność i niestabilność układu nieliniowego, o tyle o stabilności nieasymptotycznej nie możemy wnioskować w ten sposób.

```
b=1; %b>2sqrt(c) żeby układ liniowy (d=0) był aperiodyczny
c=1;
d=0; %współcznynnik częsci nieliniowej wg równania z instrukcji. Powinien być < 0
phase_surface2;</pre>
```


b = 3, c = 1, d = -1,

b = 3

c = 1

d = -1

phase_surface2;

b = 3, c = 1, d = -0.1,

b = 3

c = 1

d = -0.1000

b = 3, c = 1, d = -5,

b = 3

c = 1d = -5

phase_surface2;

b = 1, c = 2, d = -1,

b = 1

c = 2

d = -1

$$b = 1$$
, $c = 2$, $d = -0.1$,

b = 1

c = 2

d = -0.1000

phase_surface2;

b = 1, c = 2, d = -5,

b = 1

c = 2

d = -5

b = 0, c = 1, d = -1,

b = 0

c = 1

d = -1

phase_surface2;

b = 0.1, c = 2, d = -1,

b = 0.1000

c = 2

d = -1

Kod skryptu "phase_surface2.m" wyrysowywującego płaszczyznę fazową:

```
%parametry b,c>0:
%parametr d<0,
% |c|<|d|
T=10; %końcowy czas symulacji
P=20; %ilość warunków początkowych do testu. Mniejsza ilość daje lepszą czytelność, ale większa ilość
% pozwala dokładniej oszacować obszar przyciągania asymptotycznego.
%pusty wykres:
figure; hold on; grid on;
%wrysowanie punktow równowagi na wykresie:
if d<0
%punkty niestabilne:
 plot(sqrt(-c/d),0,'+','linewidth',3,'color',[.5 0 0]);
 plot(-sqrt(-c/d),0,'+','linewidth',3,'color',[.5 0 0]);
 %punkt stabilny:
 plot(0,0,'*','linewidth',3,'color',[0 .5 0]);
%Wyznaczanie zbioru warunków poczatkowych obejmujących całą pł. fazową:
a=0:(pi/P):(2*pi);
X1=[cos(a);sin(a)];
X2=X1./[max(abs(X1));max(abs(X1))];
M=size(X2,2);
for m=1:M
 x0=X2(:,m);
 %tu wpisujemy nazwę funkcji z modelem układu n-1:
 out = sim('lab11.slx', T);
 %plot(out.x1(:,1),out.x2(:,2),'k-');
 plot(out.x1,out.x2,'k-');
%tu dodać resztę
 % opis wykresu
 % title('a='num2str(a), 'b='num2str(b), 'c=', num2str(c));
xlabel('x_1');ylabel('x_2');
end
```

Wnioski

- Udało się zrealizować ćwiczenie poznać metodę Lapunova, lepiej zrozumieć płaszczyzny fazowe układów nieliniowych
- Pierwszy z badanych układów to układ liniowy d = 0

- Układy 1-7 są układami stabilnymi asymptotycznie Linie portretu fazowego zmierzają do jednego punktu w początku układu współrzędnych
- Układy 8 i 9 są niestabilne asymptotycznie linie rozchodzą się od środka układu stabilnego punktu równowagi