

Summary of CMPG223 2023 work

System Analysis and Design (North-West University)

Scan to open on Studocu

1. System Design Approaches:

- o *Model-Driven:* Emphasizes system models for documentation.
- o *Modern Structured Design:* Decomposes system processes into manageable components.
- Information Engineering: Process-sensitive technique for planning and designing information systems.
- o Prototyping: Involves an iterative process with close collaboration between designers and users.
- o *Object-Oriented:* Refines object requirements, eliminating concerns about data and process separation.
- o *RAD (Rapid Application Development):* Merges structured, prototyping, and JAD techniques for quick system development.
- o JAD (Joint Application Development): Emphasizes participative development, complementing other analysis and design techniques.

2. Tasks for In-house Development Project:

- o Application Architecture:
 - Define technologies for information systems.
 - Revise models as physical representations.
- System Databases:
 - Develop a database schema optimized for the implementation DBMS.
- System Interface:
 - Specify Input, Output, and Dialogue requirements.
- Design Specifications:
 - Develop prototypes.
- Update Project Plan:
 - Revise the project plan as needed.

Commercial Software Procurement Overview:

1. Research Technical Criteria and Options:

- o Utilize magazines, journals, and internal standards for hard/software selection.
- o Information services constantly survey the marketplace for new products.
- Trade newspapers offer insights on various hardware and software experiences.

2. Solicit Proposals or Quotes from Vendors:

- o Request for Proposals (RFP): Communicate requirements and desired features to prospective vendors.
- Request for Quotations (RFQ): Used when a specific product is already decided; vendors respond with price quotations.

3. Validate Vendor Claims and Performances:

- o Review proposals, eliminating those not meeting mandatory requirements.
- Validate vendor claims against criteria using user references, technical manuals, and demonstrations.

4. Evaluate and Rank Vendor Proposals:

- o Conduct feasibility assessment.
- Use a scoring system considering hard-dollar costs (payment to selected vendor) and soft-dollar costs (additional costs if selected).

5. Award Contract and Debrief Vendors:

- Negotiate the contract terms.
- o Debrief vendors who lost, providing information on weaknesses in their proposals.
 - No second chances for vendors.
 - Inform vendors of weaknesses in their proposals.

Information System Architecture Components:

1. Application Architecture:

- o *Definition:* Specifies technologies for information system implementation.
- Considerations:
 - Degree of centralization or distribution.
 - Distribution of stored data.

- Implementation of in-house software.
- Integration of commercial off-the-shelf software.

2. Physical Data Flow Diagram:

- o Definition: Process model communicating technical implementation characteristics.
- Purpose:
 - Communicate technical choices and design decisions.
 - Guide system construction.

3. Physical Processes:

- Components:
 - Logical processes assigned to physical processors (e.g., PCs, servers).
 - Logical processes split into multiple physical processes.
- Considerations:
 - Define aspects performed by people/computers.
 - Implement different technologies.
 - Show multiple implementations of the same process.
 - Incorporate processes for exceptions and security.

4. Physical Data Flows:

- o Definition: Planned implementation of input/output from a physical process.
- Types:
 - Database commands/actions.
 - Import/export of data.
 - Flow of data between modules or subroutines.

5. Physical External Agents:

- Transition: Carried over from logical DFD models.
- Note: Logical models should change before drawing physical models.

6. Physical Data Stores:

- o Representation: Planned implementation of:
 - Database.
 - Table in a database.
 - Computer file.
 - Media backup.
 - Temporary file.
 - Non-computerized file.

Centralized vs. Distributed Computing:

Distributed System:

- Definition: Components distributed across multiple locations and networks.
- Processing Workload: Distributed across multiple computers.
- LAN (Local Area Network): Set of client computers connected over a short distance.
- File Server System: Server hosts data; other layers implemented on clients.
 - Excessive network traffic.
 - Robust client.
 - o Database integrity maintained.

Centralized Systems:

- *Definition:* All components hosted by a central computer.
- User Interaction: Via terminals; almost all processing on the host.

Alternative Information System Design:

Computing Layers:

Presentation: UI.

- Presentation Logic: Processing for generating presentation.
- Application Logic: Supports business rules.
- Data Manipulation: Store & retrieve data.
- Data: Business data.

Client/Server Architecture:

- Thin Client: Low-power PC for UI.
- Fat Client: Powerful PC.
 - Types of Servers:
 - Database: Hosts DBs, executes all data.
 - Transaction: Ensures all DB updates for a transaction.
 - Application: Hosts application logic.
 - Msg/Groupware: Hosts services for calendaring, email, etc.
 - Web: Hosts websites.
 - o **Distributed Presentation:** Presentation & logic layers shift from server to client.
 - o **Distributed Data:** Data & manipulation layers shift to the client.
 - Distributed Data & Application:
 - Data, Manipulation & Application Logic layers on own servers.
 - Presentation & Logic on clients.
 - o **Partitioning:** Determines how to distribute components on the network.

Intra- & Internet Technologies:

- Network Computing System: Presentation & logic layers in client-side web browsers.
- Intranet: Secure network using internet tech to integrate desktop & workgroup computing.
 - Technologies:
 - Java: Programming servlets/applets.
 - HTML: Presentation layer programming.
 - XML: Data content transportation.
 - SQL: Database manipulation.
 - Web Browsers.

Strategies for Information System Architecture Development:

Data Architectures:

1. Relational Database:

- o Definition: Stores data in tabular form; each file is a table; each field is a column.
- o Characteristic: Related records are duplicated in two tables.

2. Distributed Relational Database:

o Definition: Duplicates tables to multiple servers in different geographic locations.

3. Distributed Relational Database Management System (DRDBMS):

- o Definition: Controls access to and maintenance of stored data in relational format.
- Strategies:

Data Partitioning:

 Vertical (columns) and horizontal (rows) distribution to different servers with no duplication.

Data Replication:

Duplicates some or all tables, updating all servers with duplicated data.

4. Electronic Data Interchange (EDI):

o Definition: Standardized electronic flow of business transactions between businesses.

5. Middleware:

- o Definition: Utility software enabling communication between processors in the system.
- o Types:
 - Presentation, application, and database middleware.

Process Architectures:

6. Software Development Environment (SDE):

- Definition: Language toolkit for developing apps.
- Existence for:
 - Centralized computing.
 - Distributed presentation.
 - Two-tiered client/server.
 - Multi-tiered client/server.
 - Internet and intranet client/server.

7. Clean Layering:

Design Strategy: Physically separates presentation, application, and data layers.

8. Design Units:

 Definition: Self-contained collection of processes, data stores, and data flows sharing similar characteristics.

Distinguishing Outputs:

Internal Outputs:

- Detailed Reports: Presents info with little or no filtering (e.g., listing all customers).
- Summary Reports: Categorizes info for managers with less detail, often using charts.
- Exception Reports: Filters data to report exceptions (e.g., past-due accounts).

External Outputs:

Purpose: Intended for recipients outside the organization (customers, suppliers, etc.).

Turnaround Documents:

Definition: External output that may re-enter the system for further processing.

Output Implementation Methods:

- Printed:
 - o Tabular: Presents in columns.
 - o Zoned: Places text & numbers in designated areas.
- Screen:
 - o Graphic Output.
- Others:
 - o POS Terminals.
 - o Multimedia.
 - o E-mail.
 - Hyperlinks.
 - o Microfilm (historically used).

Charts and Their Uses:

- Line:
 - o *Use:* Represents one or more series of data over a period.
- Area:
 - Use: Summarizes and shows change in data.
- Bar:
 - Use: Compares series or categories of data.
- Column:
 - o Use: Compares same categories at different times.

- Pie:
- Use: Illustrates the relationship of parts to a whole.
- Donut:
 - Use: Like a pie chart but supports multiple series.
- Radar:
 - Use: Compares different aspects of multiple series.
- Scatter:
 - o *Use:* Shows the relationship between two or more series.

General Principles for Output Design:

- Readability: Outputs should be simple to read.
- Timing: Timing of outputs is important.
- Distribution: Outputs must be distributed sufficiently to assist all relevant stakeholders.
- Acceptability: Outputs must be acceptable to the system users who will receive them.

Output Design Process:

- 1. Identify system output requirements.
- 2. Specify physical output requirements.
- 3. Design preprinted forms.
- 4. Design, validate, and test outputs using layout tools, prototyping tools, and code generating tools.

Prototyping and Design of Computer Outputs:

- 1. Tabular:
 - o Format: Rows and columns presenting data in a table.
 - Example: Spreadsheet-style output.
- 2. Graphical Report:
 - o Format: Visual representation of data using graphs or charts.
 - Example: Bar charts, pie charts.
- 3. Record-at-a-Time:
 - o Format: Displays one record at a time.
 - Example: Customer record with details.
- 4. Web Database:
 - Format: Online presentation of a database.
 - o Example: Interactive web page displaying database content.
- 5. Windows/Web Media Player:
 - o Format: Multimedia player interface.
 - o Example: Video/audio playback controls on a media player.

Appropriate Format and Media for Computer Input:

- Format: Structured layout that facilitates efficient input.
- Media: Electronic forms, online data entry interfaces.

Difference between Data Capture, Entry, and Input:

- Data Capture: Identification and acquisition of new data at its source.
- Data Entry: Translation of source data into a readable format.
- Data Processing: Occurs on the data after input, including batch, online, and remote batch processing.

Automatic Data Collection Technologies:

- Optical Mark Recognition (OMR): Captures marked fields on forms.
- Bar Codes: Alphanumeric values entered by scanning.

• Optical Character Recognition (OCR): Converts printed or handwritten text into machine-encoded text.

Human Factors in Computer Input Design:

- Instructions: Include clear instructions for completing forms.
- Handwriting: Minimize reliance on handwriting.
- Data Sequencing: Design for top-to-bottom and left-to-right flow.
- Metaphors: Use designs based on known metaphors.

Internal Controls for Computer Inputs:

- *Monitoring Inputs:* Monitor the number of inputs, use control slips for batch processing, log each transaction for online processing.
- Validation Checks: Perform checks for existence, datatype, domain, combination, self-checking, and format.

Screen-Based Controls for GUI Inputs:

- Text Boxes: Unlimited scope data values.
- Radio Buttons: Predefined set of mutually exclusive values.
- Check Boxes: Yes or No values.
- List Boxes: Large number of possible values.
- Drop Down Lists: Large number of possible values with small screen space.
- Combination Boxes: Selecting from a list or typing a new value.
- Spin Boxes: Navigate through a small set of choices or type directly.
- Buttons: User presses them.

Advanced Controls:

- Drop-down Calendars.
- Slider Edit Controls.
- Masked Edit Controls.
- Ellipsis Controls.
- Alternate Numerical Spinners.
- Check List Boxes.
- Check Tree Boxes.

Designing Web-Based Input Interface:

Refer to SU5 slides for practical application examples.

Types of Computer Users and Design Considerations:

1. Expert User:

- Characteristics:
 - Experienced and spends a lot of time with specific apps.
 - Use of the computer is non-discretionary.
 - Dedicated user.
- Design Considerations:
 - Advanced features readily accessible.
 - Shortcuts and hotkeys for efficiency.
 - Streamlined interfaces.

2. Novice User:

- Characteristics:
 - Less experienced and less frequent use of the computer.
 - Use of the computer is viewed as discretionary.
 - Casual user.

- Design Considerations:
 - Intuitive and user-friendly interfaces.
 - On-screen guidance and tooltips.
 - Clear instructions for basic functions.

Human Engineering Factors and Guidelines:

- User should be aware of what to do next.
- Instructions and messages display in the same area.
- Display messages long enough to be readable.
- Use display attributes sparingly.
- Specify default values.
- Anticipate errors and prevent users from proceeding with errors.
- Lock the keyboard when users could make catastrophic errors, providing instructions to seek assistance.

Integrating Output and Input Design into User Interface:

- Dialogue:
 - o Flow of Screens and Messages:
 - Consistent tone.
 - Use simple, grammatically correct sentences.
 - Avoid being funny or condescending.
 - Clear and simple terminology.
 - Avoid computer jargon and abbreviations.
 - Be consistent in terminology.
 - Carefully phrase instructions.

Role of Operating Systems, Web Browsers, and Technologies:

- User Interface Technology:
 - o Operating Systems & Web Browsers:
 - GUI interfaces for Windows, Macintosh, UNIX.
 - Growing importance of platform independence.
 - Display Monitors:
 - Regular PC monitors.
 - Non-GUI terminals.
 - Growing importance of devices like handhelds.
 - Paging and Scrolling:
 - Paging complete screen of characters.
 - Scrolling display info up or down a screen.
 - o Keyboards and Printers:
 - Mouse, Pens.
 - Graphical User Interfaces Styles and Considerations:
 - Windows and frames.
 - Menu-driven interfaces (pull-down, cascading, tear-off, pop-up, toolbar, iconic, hypertext, hyperlink menus).
 - Instruction-driven interfaces (language-based syntax, mnemonic syntax, natural language syntax).
 - Question-answer dialogue.

User Interface Strategies and State Transition Diagram:

Special Considerations for UI Design:

• Internal Controls:

 Authentication and authorization (User ID & Password, Privileges assigned to roles, Web certificates).

Online Help:

o HTML Help systems, Help authoring packages, Tooltips, Help Wizards, Agents (reusable software).

User Interface Design Process:

1. Chart the User Interface Dialogue:

- o State Transition Diagram (depicts the sequence and variation of screens during a user session).
- 2. Prototype Dialogue & UI:
- 3. Obtain User Feedback:
- 4. Iterate (Return to Step 1 or 2 if needed).

Prototyping for User Interface Design:

Purpose:

- Quick creation of a working model for user evaluation.
- Allows users to interact with the system.
- o Identifies issues and improvements early in the design process.

Construction and Implementation Phases:

Purpose:

- Develop, install, and test system components.
- o Ensure the system is ready for production.

Construction Implementation Phases - Major Tasks, Roles, Inputs, and Outputs:

1. Build and Test Networks:

- o Roles:
 - Network Designer (designs LAN & WAN connectivity).
 - Network Admin (builds and tests network architecture standards, security).
 - System Analyst (facilitates, ensures business requirements).
- o **Inputs:** Existing networks.
- Outputs: Tested and built networks.

2. Build and Test Databases:

- o Roles:
 - System Users (provide and/or approve test data).
 - DB Designer (builds tables, views, stored procedures).
 - DB Admin (tunes database for performance, security, backup, and recovery).
 - System Analyst (builds non-corporate, applications-oriented database, ensures compliance).
- o **Inputs:** Sample data.
- Outputs: Unpopulated database structure.

3. Install and Test New Software Packages:

- o Roles:
 - System Analyst (clarifies business requirements).
 - System Designer (clarifies program design and integration requirements).
 - Application Programmer (writes/tests software).
- Inputs: In-house and purchased/leased software.
- Outputs: Installed and tested software.

4. Write and Test New Programs:

- o Roles:
 - System Analyst (clarifies business requirements).
 - System Designer (clarifies program design and integration requirements).
 - Application Programmer (writes/tests software).
- o **Inputs:** Business requirements.

Outputs: Developed, tested, and documented programs.

Systems Implementation:

- **Conduct System Test:**
 - **Roles:**
 - System Analyst (develops system test data, communicates problems).
 - System Builders (resolve problems revealed during testing).
 - System Owners and Users (verify if the system operates correctly).

System Conversion Strategies:

- **Prepare Conversion Plan:**
 - Develop detailed conversion plan.
 - **Roles:**
 - System Analyst (develop detailed conversion plan).
 - Steering Committee (approves plan and timetable).
- **Installation Strategies:**
 - Abrupt cutover, Parallel conversion, Location conversion, Staged Conversion.
- **Install Databases:**
 - **Roles:**
 - Application Programmers (write special programs).
 - System Analyst (calculate database sizes, estimate time for install).
- **Train Users:**
 - Roles: 0
 - System Analyst (plan and conduct training, write documentation, help users).
 - System Owners (approve release time for training).
 - System Users (attend training, accept the system).

Convert New System:

- Ownership transfers from analysts and builders to end users.
 - 0 **Roles:**
 - **System Analyst:**
 - Carries out conversion.
 - Corrects shortcomings.
 - Measures system acceptance.
 - **System Owners & Users:**
 - Provide feedback.

Explanation of Application Program and System Tests:

- 1. System Acceptance Test:
 - Performed on the final system.
 - Users conduct verification, validation, and audit tests.
- 2. Verification Testing:
 - Runs the system in a simulated environment.
 - Uses simulated data.
- 3. Validation Testing:
 - o Runs the system live using real data.
- 4. Audit Testing:
 - Certifies that the system is free of errors and ready.

Application Program and System Tests:

1. Stub Test:

- o Test performed on a subset of a program.
- 2. Unit or Program Test:
 - o Test performed on the whole program.
- 3. Systems Test:
 - o Test performed on the entire system.

Definition of Systems Operation and Support:

- Systems Support:
 - Ongoing technical support for users and required maintenance.
- System Operation:
 - o Periodic execution of an information system's processes.
- Operational System:
 - System that has been placed in operation.

Roles of Repository, Program Library, and Database:

- Repository:
 - o Data stores of system knowledge and documentation during system development.
- Program Library:
 - Data stores of application programs.
- Business Data:
 - Data stores with business data.

Differentiation of System Support Activities:

- System Maintenance:
 - Corrects bugs and errors.
- System Recovery:
 - o Restoration of a system after system failure.
- Technical Support:
 - Assistance provided to users in response to unforeseen situations.
- System Enhancement:
 - o Improvement of the system to handle new business problems.

Tasks Required for Program Maintenance in Response to Bugs:

- 1. Validate the problem.
- 2. Benchmark the program.
- 3. Study and debug.
- 4. Test the program.

Tasks in System Enhancement and Relationship with Original Systems Development:

- 1. Analyse enhancement request.
- 2. Make a quick fix if appropriate (changes without restructuring or updating stored data).
- 3. Recover the existing physical system:
 - Update repository and documentation.
 - o Database recovery and restructuring.
 - Program analysis, recovery, and restructuring.

Role of Re-engineering in System Enhancement:

- Re-engineering:
 - o Process of restructuring existing computer code or system architecture.

Three Types of Re-engineering:

- 1. Code Reorganization:
 - o Modularity and/or logic.
- 2. Code Conversion:
 - o From one language to another.
- 3. Code Slicing:
 - o Create reusable software components or objects out of existing code.

