

CIRCUITOS DIGITAIS EXERCÍCIOS DE FIXAÇÃO – UNIDADE 4 PROF. VICTOR MIRANDA

1. [Bre92, ex. 3.8] Determine quais das seguintes expressões são válidas. Justifique.

(a)
$$\overline{A}C + \overline{A}B + \overline{B}C + AB + A\overline{C} = A + B + C$$

(b)
$$AB + A\overline{C} + \overline{A}C = AC + BC + \overline{A}C$$

(c)
$$\overline{B}D + CD + \overline{ABC} + ABC = \overline{B}D + \overline{A}CD + ABC$$

(d)
$$A + \overline{B} = A\overline{C} + \overline{B}C + \overline{AB} + \overline{BD}$$

(e)
$$AB = (A + \overline{C})(\overline{A} + \overline{B})(\overline{A} + B)$$

2 -

[Kle11, ex. 5.15] Quais são os dois circuitos na figura abaixo que produzem equações de saída equiva-

3-

Através de manipulações algébricas, e utilizando os axiomas e os teoremas da álgebra de Boole binária que conhece, verifique as seguintes igualdades:

a)
$$(A + \overline{B} + AB)(A + \overline{B})\overline{A}B = 0;$$

b)
$$\overline{A}B(\overline{D} + D\overline{C}) + (A + D\overline{A}C)B = B;$$

c) $\overline{[(\overline{B} + \overline{C})A] + (\overline{C}\overline{D})} = CD.$

c)
$$[(\overline{\overline{B}} + \overline{C})A] + (\overline{C}\overline{D}) = CD.$$

4-

Simplifique algebricamente

a)
$$ABCD + ABC\overline{D} + \overline{A}BC\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$$
;

b)
$$\overline{X} + XY\overline{Z} + \overline{Y};$$

c)
$$XY + WXY\overline{Z} + \overline{X}Y$$
;

d)
$$\overline{X}\overline{Y}Z + YZ + XZ$$
.

Resp:

- $= ABC + \overline{A}\overline{D}$
- $\mathbf{b)} = \overline{X} + \overline{Z} + \overline{Y}$
- = Y

5 -

Simplifique as seguintes expressões:

- (a) XY + XY
- (b) $(X+Y)(X+\overline{Y})$
- (c) $XZ + XY\overline{Z}$
- (d) $(A+1) \cdot (B \cdot 0) + D \cdot D + 1$
- (e) $(A+1) \cdot B\overline{B} + A + C \cdot C + C \cdot 0 + C$

6 -

[Kle11, ex. 5.9] Desenhe o circuito lógico para as seguintes equações. Simplifique as equações e desenhe o circuito lógico simplificado.

- (a) V = AC + ACD + CD
- (b) W = (BCD + C)CD
- (c) X = (B + D)(A + C) + ABD
- (d) Y = AB + BC + ABC
- (e) Z = ABC + CD + CDE

7 -

Aplique os teoremas de DeMorgan a cada expressão:

- (a) $A + \overline{B}$
- (b) $\overline{A}B$
- (c) $\overline{A+B+C}$
- (d) \overline{ABC}

- (e) $\overline{A(B+C)}$ (f) $\overline{AB} + \overline{CD}$ (g) $\overline{AB+CD}$ (h) $\overline{(A+\overline{B})(C+D)}$

8-

[Kleitz 5.7] Escreva as equações booleanas para os circuitos da imagem abaixo. Simplifique as equações e desenhe o circuito lógico simplificado.

9 –

[Kleitz 5.8] Repita o processo para os seguintes circuitos:

10-

Prove que AND é distributiva em relação a XOR:

$$A \cdot (B \oplus C) = (A \cdot B) \oplus (A \cdot C)$$

11-

Comprove as seguintes equações logicas:

a.
$$A \oplus B = \overline{A} \oplus \overline{B}$$

b.
$$A \oplus B \oplus AB = A + B$$

c.
$$\overline{A \oplus B} = A \oplus B \oplus 1$$

d.
$$BC + \overline{A}C = \overline{A}BC$$