

Resolução de Problemas com Portugol: Cenários para a TOTVS

Neste estudo de caso, exploraremos quatro cenários desafiadores enfrentados pela TOTVS em seus diferentes setores. Para cada situação, desenvolvemos soluções utilizando a linguagem Portugol, demonstrando sua aplicação prática e capacidade de resolução de problemas reais.

Cenário 1: RH - Otimizando o Processo de Recrutamento

Problema

A TOTVS busca automatizar o processo de recrutamento e seleção para otimizar o tempo e reduzir custos, além de garantir maior agilidade na escolha dos melhores candidatos.

Solução e Portugol

Utilizando algoritmos, o sistema identifica candidatos com perfil adequado às vagas, automatiza o envio de e-mails e agendamento de entrevistas, e facilita o processo de análise de currículos e testes.

```
cest(Fortil = thee lame)
cost(octe saxi :
cost focle fact ac New school
  alo vestur an)
costfolle tsdue (Tordantineadolle<(reantcatl(>
cestfogel "redge: Partion teraruplateacl/Coreen Gotaglication
```

Código Portugol Cenário 1

```
algoritmo "Recrutamento"
var
nome, cargo, experiencia: caractere
idade, salarioPretendido: inteiro
candidatoAprovado: logico
inicio
escreva("Nome do candidato: ")
leia(nome)
escreva("Cargo desejado: ")
leia(cargo)
escreva("Experiência profissional (anos): ")
leia(experiencia)
escreva("Idade: ")
leia(idade)
escreva("Salário pretendido: ")
leia(salarioPretendido)
se (experiencia >= 2 e idade >= 21 e salarioPretendido <= 5000)
entao
   candidatoAprovado <- verdadeiro
   escreva("Candidato ", nome, " aprovado para a vaga de ", cargo)
senao
   candidatoAprovado <- falso
   escreva("Candidato ", nome, " não atende aos requisitos da vaga")
fimse
fimalgoritmo
```

```
Area dos algoritmos ( Edição do código fonte ) -> Nome do arquivo: [semnome] :
  1 Algoritmo "semnome"
  2 // Disciplina : [Linguagem e Lógica de Programação]
  3 // Professor : Antonio Carlos Nicolodi
  4 // Descrição : Aqui você descreve o que o programa faz! (função)
  5 // Autor(a) : Nome do(a) aluno(a)
  6 // Data atual : 12/11/2024
  7 var
      nome, cargo, experiencia: caractere
      idade, salarioPretendido: inteiro
      candidatoAprovado: logico
 10
 11 inicio
      escreva ("Nome do candidato: ")
 12
      leia (nome)
 13
      escreva ("Cargo desejado: ")
 15
      leia (cargo)
      escreva ("Experiência profissional (anos): ")
 16
      leia (experiencia)
 17
      escreva ("Idade: ")
 18
      leia (idade)
 19
      escreva ("Salário pretendido: ")
      leia(salarioPretendido)
 21
 22
      se (experiencia >= 2 e idade >= 21 e salarioPretendido <= 5000) entao
 23
          candidatoAprovado <- verdadeiro
 24
 25
          escreva ("Candidato ", nome, " aprovado para a vaga de ", cargo)
 26
      senao
          candidatoAprovado <- falso
 27
          escreva ("Candidato ", nome, " não atende aos requisitos da vaga")
 28
```

29

fimse

30 fimalgoritmo

spense charts

Cenário 2: Financeiro -Controlando Despesas

Problemas

A TOTVS busca desenvolver um sistema que auxilie no controle de despesas, permitindo a análise e otimização do uso de recursos financeiros, garantindo uma gestão financeira mais eficiente.

Solução e Portugol

O sistema implementa um algoritmo para categorizar despesas, registrar entradas e saídas, e gerar relatórios com gráficos e tabelas para análise detalhada das despesas e planejamento de ações.

Código Portugol Cenário 2

```
algoritmo "ControleDespesas"
var
descricao, categoria: caractere
valor: real
totalDespesas: real
inicio
totalDespesas <- 0
enquanto (true) faca
   escreva("Descrição da despesa: ")
   leia(descricao)
   escreva("Categoria da despesa: ")
   leia(categoria)
   escreva("Valor da despesa: ")
   leia(valor)
   totalDespesas <- totalDespesas + valor
   escreva("Deseja inserir outra despesa? (s/n)")
   se (leia(caractere) == 'n') entao
     pare
   fimse
fimenquanto
escreva("Total de despesas: ", totalDespesas)
fimalgoritmo
```

А	В	С	F	
Totall	Totaled	Expense	Perfnamel	P
100	270%	\$700	110,29%	
300	390%	\$200	6,00%	
360	270%	\$800	5,10%	
350	380%	\$000	\$8.3%	Ť
200	380%	\$300	8,39%	
300	130%	\$300	1,50.7	
700	360%	\$800	5,90%	
290	250%	\$800	9,00%	
507	280%	\$000	5,19%	
500	230%	2000	7,00%	
500	257%	\$900	17,90%	
300	250%	\$500	3,75%	
500	380%	\$200	1,79%	F
600	500%	\$600	4,70%	
290	200%	\$400	2,40%	
500	500%	\$170	12,57%	
760	280%	\$400	5,38%	
450	980%	\$500	6,00%	
400	570%	\$400	18,77%	

Area dos algoritmos (Edição do código fonte) -> Nome do arquivo: [semnome] -

```
1 Algoritmo "semnome"
 2 // Disciplina
                  : [Linquagem e Lógica de Programação]
 3 // Professor : Antonio Carlos Nicolodi
 4 // Descrição : Aqui você descreve o que o programa faz! (função)
 5 // Autor(a) : Nome do(a) aluno(a)
 6 // Data atual : 12/11/2024
 7 var
     descricao, categoria: caractere
     valor: real
     totalDespesas: real
10
11 inicio
12
     totalDespesas <- 0
     enquanto (true) faca
13
         escreva ("Descrição da despesa: ")
14
15
        leia (descricao)
         escreva ("Categoria da despesa: ")
16
        leia (categoria)
17
18
        escreva ("Valor da despesa: ")
        leia (valor)
19
20
21
         totalDespesas <- totalDespesas + valor
22
23
         escreva ("Deseja inserir outra despesa? (s/n)")
         se (leia(caractere) == 'n') entao
24
25
           pare
26
         fimse
27
     fimenquanto
28
     escreva ("Total de despesas: ", totalDespesas)
29
30 fimalgoritmo
```

Cenário 3: Infraestrutura Otimizando a Manutenção de Equipamentos

1 Problema

A TOTVS busca automatizar a manutenção preventiva de seus equipamentos para garantir a operacionalidade, reduzir custos e aumentar a vida útil dos ativos.

2 Solução e Portugol

O sistema implementa um algoritmo para agendar manutenções, registrar histórico de reparos e enviar alertas para serviços preventivos, garantindo a eficiência da equipe de infraestrutura.

Egpipment Maintenance

Código Portugol - Cenário 3

```
algoritmo "ManutencaoEquipamentos"
nomeEquipamento, tipoManutencao: caractere
dataProximaManutencao, dataUltimoConserto: data
status: caractere
inicio
escreva("Nome do equipamento: ")
leia(nomeEquipamento)
escreva("Tipo de manutenção: ")
leia(tipoManutencao)
escreva("Data da última manutenção: ")
leia(dataUltimoConserto)
se (tipoManutencao == "preventiva") entao
   escreva("Data da próxima manutenção: ")
   leia(dataProximaManutencao)
   se (dataProximaManutencao < dataAtual) entao
    escreva("Alerta: Manutenção preventiva atrasada!")
    status <- "Atrasada"
   senao
    status <- "Em dia"
   fimse
   status <- "Sem necessidade de manutenção"
escreva("Status da manutenção: ", status)
fimalgoritmo
```

```
Area dos algoritmos ( Edição do código fonte ) -> Nome do arquivo: [semnome]
  1 Algoritmo "semnome"
                   : [Linguagem e Lógica de Programação]
  2 // Disciplina
  3 // Professor
                  : Antonio Carlos Nicolodi
  4 // Descrição : Aqui você descreve o que o programa faz! (função)
  5 // Autor(a)
                  : Nome do (a) aluno (a)
  6 // Data atual : 12/11/2024
  7 var
      nomeEquipamento, tipoManutencao: caractere
      dataProximaManutencao, dataUltimoConserto: data
       status: caractere
 10
 11 inicio
 12
       escreva ("Nome do equipamento: ")
       leia (nomeEquipamento)
 13
 14
       escreva ("Tipo de manutenção: ")
 15
       leia (tipoManutencao)
 16
       escreva ("Data da última manutenção: ")
 17
       leia(dataUltimoConserto)
18
 19
       se (tipoManutencao == "preventiva") entao
 20
          escreva ("Data da próxima manutenção: ")
 21
          leia (dataProximaManutencao)
          se (dataProximaManutencao < dataAtual) entao
 23
             escreva ("Alerta: Manutenção preventiva atrasada!")
 24
             status <- "Atrasada"
 25
          senao
 26
             status <- "Em dia"
 27
          fimse
 28
       senao
          status <- "Sem necessidade de manutenção"
 29
 30
       fimse
 31
 32
       escreva ("Status da manutenção: ", status)
 33 fimalgoritmo
```

Marketing canposins

Cenário 4: Marketing Analisando Dados de Campanhas

000

Problema

A TOTVS busca analisar os dados de suas campanhas de marketing para otimizar seus investimentos, entender o público-alvo e criar campanhas mais eficazes.

Solução e Portugol

O sistema implementa um algoritmo para coletar dados de diversas fontes, como anúncios online, e-mail marketing e redes sociais, e gerar relatórios personalizados com insights sobre o desempenho das campanhas.

Friendly	Play
Click	Click
larketide	Friem

Marketide Friem renpage Inves s 9,71 1,7 1,7 npagens 1,316 9,5 s click 1,80 1,2 rempaires 1,78 2,1 ck 1093 1,2 ck 1990 1,2 ting 1016 1 npigns 1,355 3,5 mplye 984 ck 1,377 2,7 vestmant 936 1,4		CITCK	CHUR
npagens 1,316 9,5 s click 1,80 1,2 r empaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 npigns 1,355 3,5 mplye 984 ck 1,377 2,7 vestment 996 1,4			
npagens 1,316 9,5 s click 1,80 1,2 r empaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 npigns 1,355 3,5 mplye 984 ck 1,377 2,7 vestment 996 1,4	s	9,71	1,7
s click 1,80 1,2 rempairs 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 mpigns 1,355 3,5 mplye 984 ck 1,377 2,7 vestment 996 1,4			
s click 1,80 1,2 rempairs 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 mpigns 1,355 3,5 mplye 984 ck 1,377 2,7 vestment 996 1,4			
rempaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 984 ck 1,377 2,7 vestmant 996 1,4	npagens	1,316	9,5
rempaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 984 ck 1,377 2,7 vestmant 996 1,4			
rempaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 984 ck 1,377 2,7 vestmant 996 1,4			
rempaims 1,78 2,1 ck 1093 1,2 ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 984 ck 1,377 2,7 vestmant 996 1,4	s		
ck 1093 1,2 ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 984 ck 1,377 2,7 vestmant 896 1,4	click	1,80	1,2
ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 384 ck 1,377 2,7 vestmant 396 1,4	r empaims	1,78	2,1
ck 1890 1,2 ting 1016 1 naigns 1,355 3,5 implye 384 ck 1,377 2,7 vestmant 396 1,4			
ting 1016 1 naigns 1,355 3,5 Implye 984 ck 1,377 2.7 vestmant 996 1,4	ck	1093	1,2
naigns 1,355 3,5 Implye 984 ck 1,377 2.7 vestmant 996 1,4	ck	1890	1,2
mplye 984 ck 1,377 2.7 vestmant 996 1,4	ting	1016	
mplye 984 ck 1,377 2.7 vestmant 996 1,4			
mplye 984 ck 1,377 2.7 vestmant 996 1,4			-
ck 1,377 2.7 vestmant 396 1,4	naigns	1,355	3,5
	implye	984	
	ck	1,377	2.7
11,010 124	vestmant	396	1,4
11,010 124			
			124

Código Portugol Cenário 4

```
algoritmo "AnaliseCampanhas"
var
nomeCampanha, tipoCampanha: caractere
clicks, conversao, custoPorClick, retornoInvestimento: real
inicio
escreva("Nome da campanha: ")
leia(nomeCampanha)
escreva("Tipo da campanha: ")
leia(tipoCampanha)
escreva("Número de cliques: ")
leia(clicks)
escreva("Taxa de conversão: ")
leia(conversao)
escreva("Custo por clique: ")
leia(custoPorClick)
retornolnvestimento <- (conversao * 100) - (clicks * custoPorClick)
escreva("Retorno sobre o investimento: ", retornolnvestimento)
fimalgoritmo
```

Área dos algoritmos (Edição do código fonte) -> Nome do arquivo: [semnome]

```
1 Algoritmo "semnome"
 2 // Disciplina : [Linquagem e Lógica de Programação]
 3 // Professor : Antonio Carlos Nicolodi
 4 // Descrição : Aqui você descreve o que o programa faz! (função)
5 // Autor(a) : Nome do(a) aluno(a)
 6 // Data atual : 12/11/2024
7 var
     nomeCampanha, tipoCampanha: caractere
 8
     clicks, conversao, custoPorClick, retornoInvestimento: real
10 inicio
     escreva ("Nome da campanha: ")
11
    leia (nomeCampanha)
12
    escreva ("Tipo da campanha: ")
13
     leia (tipoCampanha)
14
    escreva ("Número de cliques: ")
15
    leia(clicks)
16
    escreva ("Taxa de conversão: ")
17
    leia (conversao)
18
    escreva ("Custo por clique: ")
19
     leia (custoPorClick)
20
21
     retornoInvestimento <- (conversao * 100) - (clicks * custoPorClick)
22
23
     escreva ("Retorno sobre o investimento: ", retorno Investimento)
24
25 fimalgoritmo
```


Conclusão: Portugol como Ferramenta Essencial

Utilizando Portugol, podemos desenvolver soluções eficazes para os desafios enfrentados pela TOTVS em seus diferentes setores. A linguagem facilita a criação de algoritmos eficientes e legíveis, promovendo a compreensão e a colaboração entre desenvolvedores.