Yufei Lin

Problem Set 6

Nov 4^{th} 2019

Problem Set 6

Question 1

Prove that if f(x) is differentiable at a, then it is continuous at a.

Proof:

Suppose f(x) is differentiable at a. Then, $f'(a) = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = L$ and f(a) exist. Since h is constant $\lim_{h\to 0} h$ exist. Then,

$$\lim_{h \to 0} h \cdot \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} h \cdot L$$

$$= 0 \cdot L$$

$$= 0$$

$$= \lim_{h \to 0} (f(a+h) - f(a))$$

Then we know $\lim_{h\to 0} f(a+h) = \lim_{h\to 0} f(a)$. Thus, $\lim_{x\to a} f(x) = f(a)$.

Question 2

Prove if $\forall x, f(x) = c, c \in \mathbb{R}$, then $\forall a : f'(a) = 0$.

Proof:

Suppose a is any number, then $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{c - c}{h}$$
$$= \lim_{h \to 0} 0$$
$$= 0$$

Therefore, f'(a) = 0.

Question 3

Prove if f(x) = x, then $\forall a : f'(a) = 1$.

Question 4

Prove that if f(x) and g(x) are differentiable at a, then f(x) + g(x) is differentiable at a and (f+g)'(a) = f'(a) + g'(a).

Question 5

Prove that if f(x) and g(x) are differentiable at a, then $f(x) \cdot g(x)$ is differentiable at a and $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.