L3: Analyse matricielle

TD3

Exercice 1

Soit $A \in M_n(\mathbb{C})$. L'objectif de cet exercice est de déterminer le spectre de la matrice P(A) où $P \in \mathbb{C}[X]$, $\deg P = n \geq 1$.

Soient $\lambda_1, \dots, \lambda_n$ les valeurs propres de A dans \mathbb{C} .

1. Soit $z \in \mathbb{C}$. Établir qu'il existe n nombres complexes z_i et c tels que

$$P(A) - zId = c \prod_{i=1}^{n} (A - z_i Id).$$

- 2. En déduire que si z est dans le spectre de P(A), alors il existe $i_0 \in \{1, \dots, n\}$ tel que $P(\lambda_{i_0}) = z$.
- 3. Démontrer que

$$\operatorname{spectre}(P(A)) = \{P(\lambda_i), \lambda_i \in \operatorname{spectre}(A)\}.$$

4. En déduire que pour $k \in \mathbb{N}^*$, on a

$$\rho(A^k) = \rho(A)^k.$$

Exercice2

Soit $A \in M_n(\mathbb{C})$ une matrice hermitienne, de valeurs propres $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ et de vecteurs propres associés p_1, p_2, \cdots, p_n vérifiant $p_i^* p_j = \delta_{ij}$. Soit R_A le quotient de Rayleigh associé à la matrice A.

Pour $k=1,\cdots,n$, on note V_k le sous-espace vectoriel engendré par les vecteurs $p_i, 1 \le i \le k$ privé de 0.

- 0. Montrer que $R_A(v) \in \mathbb{R}$ pour tout $v \in \mathbb{C}^n \{0\}$.
- 1. Etablir que $\lambda_k = R_A(p_k)$ puis que $\lambda_k = \max_{v \in V_k} R_A(v)$.
- 2. Montrer que

$$\lambda_k = \min_{v \perp V_{k-1}} R_A(v).$$

3. Montrer que

$$\{R_A(v); v \in \mathbb{C}^n - \{0\}\} = [\lambda_1, \lambda_n].$$

(indication : on rappelle que l'image d'un ensemble connexe par une application continue est un ensemble connexe).

Soit $\|.\|_2$ la norme euclidienne. On considère la norme matricielle subordonnée à la norme vectorielle $\|.\|_2$.

4. Soit $A \in M_n(\mathbb{R})$. Établir que

$$||A||_2 = \sqrt{\rho({}^t A.A)}.$$

5. On suppose dans cette question que la matrice A est symétrique. Établir que

$$||A||_2 = \rho(A).$$

Exercice 3

On considère une matrice carrée, à coefficients réels A. On dit que A est monotone si elle est inversible et si la matrice A^{-1} est positive (c'est- \tilde{A} -dire que tous les coefficients de A^{-1} sont positifs).

On se propose de montrer que $A \in M_n(\mathbb{R})$ est monotone si et seulement si l'inclusion suivante est satisfaite :

$$\{v \in \mathbb{R}^n, Av > 0\} \subset \{v \in \mathbb{R}^n; v > 0\}.$$

1. Montrer que si A est monotone, l'inclusion ci-dessus est vérifiée. On suppose à présent l'inclusion satisfaite.

- 2. Montrer que le noyau de A est réduit à $\{0\}$.
- 3. Pour $j \in \{1, \dots, n\}$, on pose $b_j = A^{-1}e_j$ où e_j est le j-ième vecteur de la base canonique.

Montrer que $b_j \geq 0$, puis en déduire que A^{-1} est positive.

4. Soit c > 0. On considère la matrice $A_c = (a_{i,j})$ tridiagonale définie par $a_{ii} = 2 + c$ pour $i = 1, \dots, n$, $a_{i-1,i} = -1$ pour $i = 2, \dots, n$ et $a_{i,i+1} = -1$ pour $i = 1, \dots, n-1$ (tous les autres coefficients sont nuls).

Montrer que cette matrice est monotone.

5. On considère la matrice A_c définie à la question 4, et on pose c=0. Pour $v \in \mathbb{R}^n$, établir l'identité

$$(Av, v) = v_1^2 + v_n^2 + \sum_{i=2}^n (v_i - v_{i-1})^2.$$

En déduire que A_0 est définie positive.

6. Déduire de ce qui précède que A_0 est monotone.