ANÁLISIS MATEMÁTICO III

Guía de Trabajos Prácticos

NÚMEROS COMPLEJOS

Calcule la suma, la diferencia, el producto y el cociente de cada par de complejos:

2.
$$(1+i)$$
; i

3.
$$(1+i)$$
; $(1-i)$

4. 5;
$$2 + i$$

5.
$$(3-2i)$$
; $(4+i)$

5.
$$(3-2i)$$
; $(4+i)$ **6.** $(4+5i)$; $(1-i)$

Realice las operaciones indicadas y exprese el resultado en forma binómica:

7.
$$\frac{(1-i)^3}{2-i}$$

8.
$$(3-4i)(3-4i)(3+4i)(3+4i)$$

9.
$$(1+2i)^4$$

10.
$$(1+i)^{-2}$$

10.
$$(1+i)^{-2}$$
 11. $(\sqrt{2}-i)-i(1-i\sqrt{2})$

12.
$$\frac{5}{(1-i)(2-i)(3-i)}$$

Halle todas las raíces de:

13.
$$z^2 - 2z + 2 = 0$$

14.
$$z^2 + 2z + 2 = 0$$

15.
$$z^2 + iz - 1 = 0$$

16.
$$z^2 + (3+i)z + 4 + 3i = 0$$

Calcule el módulo de:

17.
$$(3 + 4i)$$

18.
$$\frac{(3+4i)(1+i)}{(3-4i)}$$

18.
$$\frac{(3+4i)(1+i)}{(3-4i)}$$
 19. $\left(\frac{x+iy}{x-iy}\right)^n$, $n > 0$ entero

Si $z, z_1, z_2 \in \mathbb{C}$, compruebe que:

20.
$$Re(z) = \frac{1}{2}(z + \bar{z})$$

22.
$$Re(z_1 + z_2) = Re(z_1) + Re(z_2)$$

24.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$26.\,\overline{z_1}\overline{z_2}=\overline{z_1}\overline{z_2}$$

21.
$$Im(z) = \frac{1}{2i}(z - \bar{z})$$

23.
$$Im(z_1 - z_2) = Im(z_1) - Im(z_2)$$

25.
$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$27. \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} , z_2 \neq 0$$

Represente en forma polar:

28.
$$\{i, i^2, i^3, i^4, \dots\}$$

29.
$$1 + i$$

30.
$$\sqrt{3} + i$$

Empleando la forma polar, calcule:

31.
$$i(1-i\sqrt{3})(\sqrt{3}+i)$$

32.
$$\frac{5}{1+i}$$

33.
$$(-1+i)^7$$

34.
$$(-\sqrt{3}+i)^3$$

35.
$$i^3(1+i)$$

36.
$$\frac{(-3+i\sqrt{3})(2-2i)^2}{2i}$$

Halle todos los valores de:

37.
$$i^{1/2}$$

38.
$$i^{2/3}$$

39.
$$(-16)^{1/4}$$

40.
$$(1+i)^{1/2}$$

41.
$$(1-i)^{-1/2}$$

42.
$$(-1+i)^{8/3}$$

43.
$$\left(-1 + i\sqrt{3}\right)^{3/2}$$

44.
$$\frac{\left(\sqrt{3}+i\right)^{1/2}}{(1+i)^2}$$

45.
$$(-4)^{3/4}$$

REGIONES EN EL PLANO Z

Describa geométricamente los siguientes conjuntos, y diga cuáles de ellos constituyen un dominio:

46.
$$Re(z) = 3Im(z)$$

47.
$$-\pi < arg(z) < \pi$$
, $|z| = 2$

48.
$$Im(z^2) > 0$$

49.
$$3 < |z + 1 + i| < 4$$

50.
$$|1 + iz| \le 3$$

51.
$$|z-4| > |z|$$

52.
$$Im(z) < 2|z|$$

53.
$$|z-1| < |z+i|$$

54.
$$Re(z) = -2$$

55.
$$|z - 3 + i| < 3$$

56.
$$|2z + 3| > 4$$

$$57. Re\left(\frac{1}{z}\right) > \frac{1}{2}$$

58.
$$|z - 3 + 4i| \ge 5$$

59.
$$z\bar{z} \geq 2Re(z)$$

60.
$$Im\left(\frac{1}{z}\right) \leq \frac{1}{4}$$

FUNCIÓN COMPLEJA Y SU DERIVADA

Exprese w = f(z) en forma binómica, es decir como w = u(x, y) + iv(x, y):

61.
$$w = (z - i)^2$$
 62. $w = |z|^2 + i$ **63.** $w = z - 1 + i$

62.
$$w = |z|^2 + i$$

63.
$$w = z - 1 + i$$

64.
$$w = (\bar{z})^{-2} + i$$
 65. $w = z^3$

65.
$$w = z^3$$

66.
$$w = \frac{1}{z} + 1$$

Exprese f(z) como función de z, \bar{z} y constantes:

67.
$$f(z) = -3y + i(x^2 + y^2)$$

68.
$$f(z) = -2xy + i(x^2 + y^2)$$

69.
$$f(z) = x^2 + iy^2$$

70.
$$f(z) = x^2 + y^2$$

Dé el dominio de definición de f(z):

71.
$$f(z) = |z|$$

72.
$$f(z) = \frac{1}{|z|}$$

73.
$$f(z) = z - 1 + i$$

74.
$$f(z) = x^2 - y^2 + i2xy$$

75.
$$f(z) = \frac{z}{z - \bar{z}}$$

76.
$$f(z) = \frac{1}{z^2 + 1}$$

77.
$$f(z) = (z - i)^2$$

78.
$$f(z) = \frac{z^4 - z^2}{z^8 + z^5 - z^4 - z}$$

79.
$$f(z) = z^3 + i2z$$

Para las siguientes funciones determine los puntos del plano z donde son derivables, obtenga una expresión de f'(z), y diga cuáles de ellas son analíticas en algún dominio:

80.
$$f(z) = e^{|z-1|^2}$$

81.
$$f(z) = z\bar{z}$$

82.
$$f(z) = \frac{1}{z}$$

83.
$$f(z) = x^3 - i(y-1)^3$$

84.
$$f(z) = x^2 + iy^2$$

85.
$$f(\mathbf{z}) = e^x \cos(y) + i e^x \sin(y)$$

86.
$$f(z) = zIm(z)$$

87.
$$f(z) = x^2 - y^2 + i(2xy + x^2 - y^2)$$

88.
$$f(z) = C$$
 (cte compleja)

89.
$$f(z) = z$$

90.
$$f(z) = 2x + ixy^2$$

91.
$$f(z) = z^2$$

92.
$$f(z) = \frac{1}{z}$$

93.
$$f(z) = z^3$$

94.
$$f(z) = |z + 1|^2$$

95.
$$f(z) = sen(x)cosh(y) + icos(x)senh(y)$$

96.
$$f(z) = \overline{z^2}$$

97.
$$f(z) = x^3 - 3y^2 + 2x + i(3x^2y - y^3 + 2y)$$

98.
$$f(z) = xy + iy$$

99.
$$f(z) = (z^2 - 2)e^{-z}$$

100.
$$f(z) = 3x + y + i(3y - x)$$

101.
$$f(z) = x^2 - (y+1)^2 + i2xy$$

102.
$$f(z) = (z - 2i)e^{2z}$$

103.
$$f(z) = e^{-x} cos(y) - ie^{-x} sen(y)$$

104.
$$f(z) = x^2 + iy$$

105.
$$f(z) = x^3 + xy^2 - i(x^2y + y^3)$$

106.
$$f(z) = x^2 + iy^3$$

107.
$$f(z) = (1+i)(z^2 - \bar{z}^2)$$

FUNCIONES ARMÓNICAS

¿Para qué valores de z se satisface la ecuación de Laplace?:

108.
$$\phi(x,y) = x^4 + y^3$$
 ¿Por qué no es armónica?

Determine si las siguientes funciones son armónicas y en qué dominio:

109.
$$\phi(x, y) = x + y$$

110.
$$\phi(x, y) = xy$$

ARMÓNICAS CONJUGADAS

Compruebe si u(x,y) es armónica en todo el plano. Encuentre (si es posible) su conjugada armónica v(x,y) tal que w=u+iv sea analítica en todo el plano:

111.
$$u(x, y) = 2x(1 - y)$$

112.
$$u(x,y) = senh(x)sen(y)$$

113.
$$u(x,y) = 2x - x^3 + 3xy^2$$

114.
$$u(x,y) = x^3 - 3xy^2$$

115.
$$u(x, y) = x(y + 4)$$

116.
$$u(x,y) = e^y sen(x) - e^x sen(y) + \frac{x^2}{2} - \frac{y^2}{2}$$

FUNCIONES ELEMENTALES

Exprese como w = u + iv:

117.
$$w = e^{3+4i}$$

118.
$$w = e^{4-7i}$$

119.
$$w = e^i$$

120.
$$w = e^{i\pi}$$

121.
$$w = e^{i\frac{\pi}{2}}$$

122.
$$w = e^{-i\frac{\pi}{4}}$$

123.
$$w = e^{2+3\pi i}$$

124.
$$w = e^{\frac{2+3\pi i}{4}}$$

125.
$$w = e^{\frac{1}{1-i}}$$

Determine todos los valores de z tales que:

126.
$$e^z = -2$$

127.
$$e^z = 1 - i$$

128.
$$e^{2z-1} = 1$$

129.
$$e^z = 1$$

130.
$$e^z = 1 + i$$

131.
$$e^z = -4i$$

132.
$$e^z = -3$$

133.
$$e^{iz} = 1 + i$$

134.
$$e^z = ie$$

Halle todos los valores de z que satisfacen:

135.
$$cos(z) = 2$$

136.
$$cosh(z) = \frac{1}{2}$$

137.
$$cosh(z) = -1$$

138.
$$senh(z) = i$$

139.
$$cosh(z) = i$$

140.
$$cosh(z) = -2$$

141.
$$sen(z) = cosh(4)$$

142.
$$cos(z) = isenh(4)$$

143.
$$senh(z) = -i$$

Halle todos los valores de:

145.
$$Log(-1)$$

146.
$$log(i^{\frac{1}{2}})$$

147.
$$log(1+i\sqrt{3})$$

148.
$$Log(2 - i2)$$

Halle todos los valores z tales que:

150.
$$log(z) = 1 + i\frac{2\pi}{3}$$

151.
$$log(z) = \frac{\pi}{2}i$$

$$152. log(z) = \pi i$$

Usando logaritmo obtenga todos los valores de z tales que:

153.
$$e^z = e^{2+i}$$

154.
$$(e^z - 1)^2 = e^{2z}$$

155.
$$e^{(e^z)} = 1$$

Halle todos los valores de:

158.
$$(1+i)^i$$

159.
$$(1-i)^{4i}$$

160.
$$2^{\pi}$$

161.
$$(-1)^{\frac{1}{\pi}}$$

162.
$$(\sqrt{3}+i)^{1+i}$$

163.
$$(ei)^{\frac{1}{\pi}}$$

164.
$$(\pi i)^i$$

INTEGRACIÓN EN EL PLANO COMPLEJO

Obtenga el valor de las siguientes integrales de línea complejas:

165.
$$\int_C (z^2 + 1) dz$$

donde C es el tramo de la parábola $y = x^2$ que va

desde
$$z = 0$$
 a $z = 1 + i$.

166.
$$\int_{C} (y - x - 3x^{2}i) dz$$

donde C es el segmento de recta que va desde z = 0 a z = 1 + i.

167.
$$\int_{C} (y-x-3x^{2}i) dz$$

donde C es la poligonal que une los puntos z=0, $z=i \ y \ z=1+i$.

168.
$$\int_C (x^2 - 2y + i(xy - 3)) dz$$
 donde *C* es el contorno constituido por la unión del

tramo de parábola $y = x^2$ con $-1 \le x \le 1$ y del segmento de recta que va de z = 1 + i a z = 3 + i.

169.
$$\int_{\mathcal{C}} e^z dz$$

siendo *C* el segmento de recta:

a)
$$y = 0$$
 de $z = 0$ a $z = 1$.

b)
$$x = 1 \text{ de } z = 1 \text{ a } z = 1 + i$$
.

c)
$$y = x$$
 de $z = 0$ a $z = 1 + i$.

170.
$$\int_C \bar{z} dz$$

siendo \mathcal{C} el contorno que va desde z=i a z=1 sobre las siguientes curvas:

a)
$$y = 1 - x$$
.

b)
$$y = (1 - x)^2$$
.

c)
$$y = 1 - x^2$$
.

d)
$$x^2 + y^2 = 1$$
.

171.
$$\int_{C} \frac{z+2}{z} dz$$

siendo C:

- a) la semicircunferencia $z=2e^{i\theta}\,\cos-\pi\leq\theta\leq0$.
- b) la semicircunferencia $z = 2e^{i\theta} \cos 0 \le \theta \le \pi$.
- c) la semicircunferencia $z = 2e^{i\theta} \cos -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

172.
$$\int_{C} (z-1) dz$$

siendo *C*:

- a) la semicircunferencia z $1 = e^{i\theta}$ con $-\pi \le \theta \le 0$.
- b) el segmento de recta y = 0 con $0 \le x \le 2$.

FÓRMULAS INTEGRALES DE CAUCHY

Empleando la fórmula integral de Cauchy y/ó la fórmula integral de la n-derivada, obtenga el valor de las siguientes integrales:

173.
$$\oint_C \frac{z}{z-1} dz$$
, con $C: |z| = 2$

174.
$$\oint_C \frac{sen(z)}{(z-1)(z-i)} dz$$
, con $C: |z| = 2$

175.
$$\oint_C \frac{e^{iz}}{z^4} dz$$
, con $C: |z| = 1$

176.
$$\oint_C \frac{\cos h(z)}{z^2 - z - 2} dz$$
, con $C: |z - 1| = 4$

177.
$$\oint_C \frac{\cos(z)}{z^2+9} dz$$
, con $C: |z-i| = 3$

177.
$$\oint_C \frac{\cos(z)}{z^2+9} dz$$
, con $C: |z-i| = 3$ **178.** $\oint_C \frac{tg(\frac{z}{2})}{(z-z_0)^2} dz$, con $|z_0| < 3$ y $C: |z| = 3$

179.
$$\oint_{\mathcal{C}} \frac{1}{z^3 - i2z^2 - z} dz$$
, con \mathcal{C} : $|z - i| = \sqrt{2}$

179.
$$\oint_C \frac{1}{z^3 - i2z^2 - z} dz$$
, con $C: |z - i| = \sqrt{2}$ **180.** $\oint_C \frac{z - 1}{z(2z^2 - 18)} dz$, con $C: |z - 2| = 3$

181.
$$\oint_C \frac{z^2}{z-3} dz$$
, con $C: |z| = 4$

182.
$$\oint_C \frac{e^z}{z(1-z)^3} dz$$
, con $C: |z-1| = 2$

183.
$$\oint_C \frac{e^{-z}}{z - i\frac{\pi}{2}} dz$$
, con $C: |z| = \pi$

184.
$$\oint_C \frac{1}{(z^2+4)^2} dz$$
, con $C: |z-i| = 2$

185.
$$\oint_C \frac{z}{e^z(z-1)} dz$$
, con $C: |z| = 2$

186.
$$\oint_C \frac{\cos(z)}{z^2(z-1)^3} dz$$
, con $C: |z-1| = 2$

187.
$$\oint_C \frac{sen(z)}{z^2+4} dz$$
, con $C: |z| = 3$

188.
$$\oint_C \frac{\cos(z)}{z^2+8} dz$$
, con $C: |z| = 3$

189.
$$\oint_C \frac{\cos(z)}{z(z^2+8)} dz$$
, con $C: |z| = 1$

190.
$$\oint_C \frac{\cos(z)}{z(z^2+8)} dz$$
, con $C: |z-3i| = 4$

191.
$$\oint_C \frac{ze^z}{(z-i)^3} dz$$
, con $C: |z| = 3$

192.
$$\oint_C \frac{\operatorname{sen} h(z)}{z^2 (2z-4)^3} dz$$
, con $C: |z-1-i| = 2$

193.
$$\oint_{\mathcal{C}} \frac{e^z}{z(1-z)^3} dz$$
, con $\mathcal{C}: |z-1| = \frac{1}{2}$

194.
$$\oint_C \frac{1}{(z^2+1)(z^2+iz)} dz$$
, con $C: |z+i| = \frac{3}{2}$

195.
$$\oint_C \frac{4}{(2z^2+2)^2} dz$$
, con $C: |z-i| = 1$ **196.** $\oint_C \frac{1}{z-z^3} dz$, con $C: |z| = 2$

196.
$$\oint_C \frac{1}{z-z^3} dz$$
, con $C: |z| = 2$

197.
$$\oint_{\mathcal{C}} \frac{1}{z^4 + 4z^2} dz$$
, con \mathcal{C} : $|z + 3i| = 4$

197.
$$\oint_C \frac{1}{z^4 + 4z^2} dz$$
, con $C: |z + 3i| = 4$ **198.** $\oint_C \frac{1}{(z-i)^2(z+i)} dz$, con $C: |z - i| = 1$

<u>SERIES DE TAYLOR Y LAURENT</u>

Obtenga la serie de Taylor de las siguientes funciones en potencias de $z-z_0$ e indique la región de convergencia:

199.
$$f(z) = cos(z); \quad z_0 = \frac{\pi}{2}$$

200.
$$f(z) = \frac{1}{z}$$
; $z_0 = 1$

201.
$$f(z) = \frac{1}{z}$$
; $z_0 = -2$

202.
$$f(z) = \frac{1}{z^2}$$
; $z_0 = 1$

203.
$$f(z) = z^2$$
; $z_0 = 1$

204.
$$f(z) = senh(z); \quad z_0 = \pi i$$

Para cada una de las siguientes funciones, obtenga la serie de Laurent alrededor de la singularidad indicada, clasifique el tipo de singularidad, dé la región de convergencia de la serie y determine el residuo:

205.
$$f(z) = \frac{sen(z)}{z}$$
; $z_0 = 0$

206.
$$f(z) = \frac{sen(z)}{z^2}$$
; $z_0 = 0$

207.
$$f(z) = e^{3/z}$$
; $z_0 = 0$

206.
$$f(z) = \frac{sen(z)}{z^2}$$
; $z_0 = 0$
208. $f(z) = \frac{z}{(z+1)(z+2)}$; $z_0 = -2$

209.
$$f(z) = \frac{1}{z(z-3)^2}$$
; $z_0 = 3$

210.
$$f(z) = \frac{e^{2z}}{(z-1)^3}$$
; $z_0 = 1$

211.
$$f(z) = \frac{z - sen(z)}{z^3}$$
; $z_0 = 0$

212.
$$f(z) = (z-3)sen\left(\frac{1}{z+2}\right); z_0 = -2$$

213.
$$f(z) = \frac{e^z - 1}{z}$$
; $z_0 = 0$

214.
$$f(z) = \frac{sen(z) - (z-1)^2}{z^3}$$
; $z_0 = 0$

Exprese f(z) en una serie de Taylor o Laurent, según corresponda, válida para la región indicada:

215.
$$f(z) = \frac{1}{(z+1)(z+3)}$$

a)
$$1 < |z| < 3$$

b)
$$|z| > 3$$

c)
$$0 < |z+1| < 2$$

d)
$$|z| < 1$$

216.
$$f(z) = \frac{1}{z(z-1)}$$

a)
$$0 < |z| < 1$$

b)
$$|z| > 1$$

c)
$$0 < |z - 1| < 1$$

d)
$$|z - 1| > 1$$

e)
$$1 < |z - 2| < 2$$

217.
$$f(z) = \frac{1}{z(z-3)}$$

a)
$$0 < |z| < 3$$

b)
$$0 < |z - 3| < 3$$

c)
$$1 < |z - 4| < 4$$

218.
$$f(z) = \frac{1}{(z-1)(z-2)}$$

a)
$$1 < |z| < 2$$

b)
$$0 < |z - 1| < 1$$

219.
$$f(z) = \frac{z}{(z+1)(z-2)}$$

a)
$$0 < |z + 1| < 3$$

b)
$$1 < |z| < 2$$

220.
$$f(z) = \frac{1}{z+1}$$

a)
$$|z - i| < \sqrt{2}$$

b)
$$|z - i| > \sqrt{2}$$

221.
$$f(z) = \frac{z}{(z-1)(z-2)}$$

a)
$$|z| < 1$$

b)
$$1 < |z| < 2$$

c)
$$|z| > 2$$

222.
$$f(z) = \frac{1}{(z-1)^2(z-3)}$$
; $0 < |z-1| < 2$

223.
$$f(z) = \frac{8z+1}{z(1-z)}$$
; $0 < |z| < 1$

224.
$$f(z) = \frac{7z-3}{z(z-1)}$$
; $0 < |z| < 1$

CEROS, POLOS Y RESIDUOS

Encuentre la posición y el orden de los ceros de las siguientes funciones:

$$225. f(z) = cos(z)$$

226.
$$f(z) = \frac{e^z - 1}{z}$$

227.
$$f(z) = z^3 sen(z)$$

228.
$$f(z) = Log(z)$$

229.
$$f(z) = (z-1)^3(z-i)^2 Log(z)$$

230.
$$f(z) = (z-1)^3 sen^2(z)$$

Encuentre la posición y el orden de los polos de las siguientes funciones:

231.
$$f(z) = \frac{(z-1)^2}{(z-3)(z-2)^2(z-1)}$$

$$233. f(z) = \frac{1}{sen^{2}(z)}$$

235.
$$f(z) = \frac{\cos h(z) - 1}{\sin h(z) - \sin(z)}$$

232.
$$f(z) = \frac{e^{2z}}{z^2 - z + 1}$$

234.
$$f(z) = \frac{z}{z - sen(z)}$$

236.
$$f(z) = \frac{tg(z)}{sen(z) - z + \frac{z^3}{6}}$$

Calcule los residuos de las siguientes funciones en todos sus polos:

237.
$$f(z) = \frac{z-1}{z+1}$$

239.
$$f(z) = \frac{1}{(z^2-1)^2}$$

241.
$$f(z) = \frac{e^z}{e^z - 1}$$

243.
$$f(z) = \frac{3e^{2z}}{z^4}$$

245.
$$f(z) = \frac{z^2}{z - sen(z)}$$

$$238. f(z) = tg(z)$$

240.
$$f(z) = \frac{1}{z^3 - i}$$

$$242. f(z) = \frac{z}{\cos(z)}$$

244.
$$f(z) = \frac{1 - \cos h(z)}{z^3}$$

246.
$$f(z) = \frac{1}{(z^2+1)Log(z)}$$

CÁLCULO DE INTEGRALES APLICANDO EL MÉTODO DE LOS RESIDUOS

Empleando el teorema de los residuos obtenga el valor de las siguientes integrales:

247.
$$\oint_C \frac{z}{z-1} dz$$
, con $C: |z| = 2$

248.
$$\oint_{C} \frac{1}{sen(z)} dz$$
, con $C: |z-6| = 4$

249.
$$\oint_C \frac{(z-1)e^{1/z}}{z} dz$$
, $con C: |z| = \frac{1}{2}$

250.
$$\oint_{\mathcal{C}} \frac{1}{e^{z}(z^{2}-1)} dz$$
, con \mathcal{C} : $|z-1| = \frac{3}{2}$

251.
$$\oint_C z^2 e^{1/z} dz$$
, con C : $|z| = \frac{1}{2}$

252.
$$\oint_C \frac{1}{e^{z-1}(z-1)^2} dz$$
, con $C: |z-1| = 1$

253.
$$\oint_C \frac{1}{z^{3}(z-1)} dz$$
, con $C: |z-1| = 2$ **254.** $\oint_C \frac{e^z}{\cos h(z)} dz$, con $C: |z| = 5$

254.
$$\oint_C \frac{e^z}{\cos h(z)} dz$$
, con $C: |z| = 5$

255.
$$\oint_C \frac{e^z}{z^2 \cos(z)} dz$$
, con $C: |z+1| = 2$ **256.** $\oint_C \frac{1-\cos(z)}{z^3(z-1)} dz$, con $C: |z| = \frac{1}{2}$

256.
$$\oint_C \frac{1-\cos(z)}{z^3(z-1)} dz$$
, con $C: |z| = \frac{1}{2}$

257.
$$\oint_C \frac{1}{(z-i)(z+i)^2} dz$$
, con $C: |z+i| = 1$

257.
$$\oint_C \frac{1}{(z-i)(z+i)^2} dz$$
, con $C: |z+i| = 1$ **258.** $\oint_C \frac{1}{z(e^z-1)} dz$, con $C: |z-1-i| = 6$

259.
$$\oint_{\mathcal{C}} tg(z) dz$$
, con \mathcal{C} : $|z| = 2$

260.
$$\oint_{C} \frac{1}{senh(2z)} dz$$
, con $C: |z| = 2$

Empleando residuos obtenga el valor de las siguientes integrales reales:

261.
$$\int_0^{2\pi} \frac{1}{5 - 4\cos(\theta)} d\theta$$

262.
$$\int_0^{\pi} \frac{1}{3 + 2\cos(\theta)} d\theta$$

263.
$$\int_0^{2\pi} \frac{1}{5-4sen(\theta)} d\theta$$

265.
$$\int_0^{2\pi} \frac{1}{3+sen(\theta)} d\theta$$

267.
$$\int_0^{\pi} \frac{1}{(5-4\cos(\theta))^2} d\theta$$

269.
$$\int_0^{2\pi} \frac{1}{2 + sen(\theta)} d\theta$$

271.
$$\int_0^{2\pi} \frac{1}{3-2\cos(\theta)+\sin(\theta)} d\theta$$

273.
$$\int_0^\infty \frac{1}{(1+x^2)^2} dx$$

275.
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 - 2x + 2)^2} dx$$

277.
$$\int_0^\infty \frac{1}{(1+x^2)(4+x^2)} dx$$

279.
$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 8x^2 + 16} dx$$

$$281. \int_{-\infty}^{\infty} \frac{\cos(3x)}{x^2+4} dx$$

283.
$$\int_0^\infty \frac{\cos(x)}{(x^2+1)^2} dx$$

285.
$$\int_{-\infty}^{\infty} \frac{sen(x)}{x^2 + x + 1} dx$$

287.
$$\int_{-\infty}^{\infty} \frac{\cos(2x)}{x^4 + 16} dx$$

289.
$$\int_{-\infty}^{\infty} \frac{x^3 sen(3x)}{x^6 + 1} dx$$

291.
$$\int_{-\infty}^{\infty} \frac{\cos(\sqrt{3}x)}{(x^2 - 4x + 7)^2} dx$$

264.
$$\int_0^{\pi} \frac{\cos^2(\theta)}{13 - 5\cos(2\theta)} d\theta$$

266.
$$\int_{-\pi}^{\pi} \frac{1}{1+sen^{2}(\theta)} d\theta$$

268.
$$\int_0^{2\pi} \frac{\cos^2(\theta)}{10 - 6\sin(2\theta)} d\theta$$

270.
$$\int_0^{2\pi} \frac{\cos^2(3\theta)}{5-4\cos(2\theta)} d\theta$$

272.
$$\int_0^{2\pi} \frac{1}{(5-3sen(\theta))^2} d\theta$$

274.
$$\int_{-\infty}^{\infty} \frac{x}{(x^2 - 2x + 2)^2} dx$$

276.
$$\int_{-\infty}^{\infty} \frac{1+x^2}{1+x^4} dx$$

278.
$$\int_0^\infty \frac{x^2}{(x^2+9)(x^2+4)^2} dx$$

280.
$$\int_{-\infty}^{\infty} \frac{x}{(x^2+1)(x^2+2x+2)} dx$$

282.
$$\int_{-\infty}^{\infty} \frac{x \operatorname{sen}(3x)}{(x^2+4)^2} dx$$

284.
$$\int_{-\infty}^{\infty} \frac{x \cos(\pi x)}{x^2 + 2x + 5} dx$$

286.
$$\int_0^\infty \frac{x \, sen(x)}{x^4 + 1} dx$$

288.
$$\int_0^\infty \frac{x \, sen(4x)}{x^2 + 25} \, dx$$

290.
$$\int_0^\infty \frac{(x^2+3)\cos(x)}{(x^2+1)^2} dx$$

292.
$$\int_{-\infty}^{\infty} \frac{x \, sen (\pi x)}{x^2 + 2x + 5} \, dx$$

SERIES TRIGONOMÉTRICAS DE FOURIER

Obtenga la serie trigonométrica de Fourier de las siguientes funciones:

293.
$$f(x) = \begin{cases} 1, & si - \pi < x < 0 \\ \frac{1}{2}, & si & 0 \le x < \pi \end{cases}$$

294.
$$f(x) = |x|, -\pi < x < \pi$$

295.
$$f(x) = \begin{cases} -1, & si - \pi < x < 0 \\ 1, & si 0 \le x < \pi \end{cases}$$

296.
$$f(x) = |sen(x)|, -\pi < x < \pi$$

297.
$$f(x) = x$$
, $-\pi < x < \pi$

298.
$$f(x) = e^x, -\pi < x < \pi$$

299.
$$f(x) = \begin{cases} -2, & si - 3 < x < 0 \\ 4, & si - 0 \le x < 3 \end{cases}$$

299.
$$f(x) = \begin{cases} -2, & si - 3 < x < 0 \\ 4, & si - 0 \le x < 3 \end{cases}$$
 300. $f(x) = \begin{cases} -1, & si - 3 < x < -1 \\ 2, & si - 1 \le x < 1 \\ 1, & si - 1 \le x < 3 \end{cases}$

$$\mathbf{301.} \ f(x) = \begin{cases} 5, & si - 1 < x < -\frac{1}{4} \\ -3, & si - \frac{1}{4} \le x < \frac{1}{4} \\ 5, & si \frac{1}{4} \le x < 1 \end{cases} \qquad \mathbf{302.} \ f(x) = \begin{cases} -1, \ si - \pi < x < -\frac{\pi}{2} \\ 0, \ si - \frac{\pi}{2} \le x < \frac{\pi}{2} \\ 1, \ si \frac{\pi}{2} \le x < \pi \end{cases}$$

$$\mathbf{302.}\,f(x) = \begin{cases} -1, \ si - \pi < x < -\frac{\pi}{2} \\ 0, \ si -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ 1, \ si \frac{\pi}{2} \le x < \pi \end{cases}$$

303.
$$f(x) = \begin{cases} x + \pi, & si - \pi < x < 0 \\ \pi - x, & si \end{cases}$$
 $0 \le x < \pi$

$$\mathbf{303.}\,f(x) = \begin{cases} x + \pi, \, si & -\pi < x < 0 \\ \pi - x, \, si & 0 \le x < \pi \end{cases} \qquad \mathbf{304.}\,f(x) = \begin{cases} 1, & si & -2 < x < -1 \\ |x|, & si & -1 \le x < 1 \\ 1, & si & 1 \le x < 2 \end{cases}$$

305.
$$f(x) = \begin{cases} -\pi, & si - 2\pi < x < -\pi \\ x, & si - \pi \le x < \pi \\ \pi, & si & \pi \le x < 2\pi \end{cases}$$

306.
$$f(x) = cos(x), -\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$305. f(x) = \begin{cases} -\pi, & si - 2\pi < x < -\pi \\ x, & si - \pi \le x < \pi \\ \pi, & si - \pi \le x < 2\pi \end{cases}$$

$$306. f(x) = \cos(x), -\frac{\pi}{2} < x < 2\pi$$

$$307. f(x) = \begin{cases} x + 2, & si - 2 < x < -1 \\ 1, & si - 1 \le x < 1 \\ 2 - x, & si - 1 \le x < 2 \end{cases}$$

$$308. f(x) = x^{2}, -1 < x < 1$$

308.
$$f(x) = x^2, -1 < x < 1$$

309.
$$f(x) = \begin{cases} -\pi - x, & si - \pi < x < 0 \\ x, & si 0 \le x < \pi \end{cases}$$

310.
$$f(x) = x|x|, -4 < x < 4$$

$$\mathbf{311.} f(x) = \begin{cases} -\frac{\pi}{2}, & si - \pi < x < -\frac{\pi}{2} \\ |x|, & si - \frac{\pi}{2} \le x < \frac{\pi}{2} \\ -\frac{\pi}{2}, & si & \frac{\pi}{2} \le x < \pi \end{cases} \qquad \mathbf{312.} f(x) = \pi^2 - x^2, -\pi < x < \pi$$

312.
$$f(x) = \pi^2 - x^2$$
, $-\pi < x < \pi$

$$\mathbf{313.}\,f(x) = \begin{cases} 0, & si - 4 < x < -2 \\ -x, & si - 2 \le x < 2 \\ 0, & si - 2 \le x < 4 \end{cases} \qquad \mathbf{314.}\,f(x) = \begin{cases} x - 2, & si - \pi < x < 0 \\ x + 2, & si - 0 \le x < \pi \end{cases}$$

314.
$$f(x) = \begin{cases} x - 2, & si - \pi < x < 0 \\ x + 2, & si & 0 \le x < \pi \end{cases}$$

$$\mathbf{315.}\,f(x) = \begin{cases} -\frac{\pi}{2}, & si - 2\pi < x < -\pi \\ -\pi - x, & si - \pi \le x < 0 \\ \pi - x, & si & 0 \le x < \pi \\ \frac{\pi}{2}, & si & \pi \le x < 2\pi \end{cases}$$

316.
$$f(x) = x^3$$
, $-1 < x < 1$

$$\mathbf{317.} f(x) = \begin{cases} \pi, & si - \pi < x < -\frac{\pi}{2} \\ -\pi, & si -\frac{\pi}{2} \le x < -\frac{\pi}{4} \\ -2\pi, & si -\frac{\pi}{4} \le x < 0 \\ 2\pi, & si & 0 \le x < \frac{\pi}{4} \\ \pi, & si & \frac{\pi}{4} \le x < \frac{\pi}{2} \\ -\pi, & si & \frac{\pi}{2} \le x < \pi \end{cases}$$

318.
$$f(x) = 1 - |x|, -1 < x < 1$$

TRANSFORMADA DE LAPLACE

Aplicando el método de la transformada de Laplace obtenga la solución de las siguientes ecuaciones diferenciales, con las condiciones iniciales fijadas:

319.
$$y''(t) - 4y(t) = 0$$
 ; $y(0) = 0$, $y'(0) = -6$

320.
$$y'(t) + y(t) = 2$$
 ; $y(0) = 0$, $y'(0) = 3$

321.
$$y''(t) + 2y'(t) + y(t) = e^t$$
 ; $y(0) = -1$, $y'(0) = 1$

322.
$$9y''(t) - 6y'(t) + y(t) = 0$$
 ; $y(0) = 3$, $y'(0) = 1$

323.
$$y''(t) - y(t) = sen(3t)$$
 ; $y(0) = 0$, $y'(0) = 0$

324.
$$y''(t) - y(t) = cos(2t)$$
 ; $y(0) = 0$, $y'(0) = 0$

325.
$$y''(t) - 4y(t) = e^{3t} + 3e^{-t}$$
 ; $y(0) = 0$, $y'(0) = 0$

326.
$$y''(t) + y(t) = t + 1$$
 ; $y(0) = 0$, $y'(0) = 0$

327.
$$y''(t) + y(t) = 4te^t$$
 ; $y(0) = 0$, $y'(0) = 0$

328.
$$y''(t) - 6y'(t) + 9y(t) = t$$
 ; $y(0) = 0$, $y'(0) = 1$

329.
$$y''(t) - y(t) = e^{-5t}$$
 ; $y(0) = 0$, $y'(0) = 2$

330.
$$y''(t) - 3y'(t) + 2y(t) = 4t + 12e^{-t}$$
 ; $y(0) = 6$, $y'(0) = -1$

331.
$$y''(t) - y'(t) = e^{\frac{t}{2}} sen(2t)$$
 ; $y(0) = 0$, $y'(0) = 0$

332.
$$y''(t) - 4y(t) = t^2$$
 ; $y(0) = 0$, $y'(0) = 0$

333.
$$y''(t) - 4y'(t) = e^{2t} \cos(3t)$$
 ; $y(0) = 0$, $y'(0) = 0$

334.
$$y''(t) - y(t) = e^{2t} sen(3t) + 1$$
 ; $y(0) = 0$, $y'(0) = 0$

335.
$$y''(t) - 3y'(t) + 2y(t) = 4e^{2t}$$
 ; $y(0) = -3$, $y'(0) = 5$

336.
$$y''(t) + 9y(t) = 6e^{3t} + 1$$
 ; $y(0) = 0$, $y'(0) = 0$

337.
$$y''(t) - 2y(t) = cos(3t) + 2$$
 ; $y(0) = 0$, $y'(0) = 0$

338.
$$y''(t) + 2y'(t) - 3y(t) = 3te^{-2t}$$
 ; $y(0) = 0$, $y'(0) = 0$

339.
$$y''(t) - y(t) = e^{t} (sen(t) + cos(t))$$
; $y(0) = 0$, $y'(0) = -1$

340.
$$y''(t) + 3y'(t) + 2y(t) = t + sen(2t)$$
 ; $y(0) = -1$, $y'(0) = 0$

341.
$$y''(t) - y(t) = 5sen(-3t)$$
 ; $y(0) = 1$, $y'(0) = -2$

342.
$$y''(t) + 2y'(t) = 4t + 4$$
 ; $y(0) = 0$, $y'(0) = 1$

f(t)	F(s)
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
eat	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
cos(bt)	$\frac{s}{s^2 + b^2}$
sen(bt)	$\frac{b}{s^2 + b^2}$
e ^{at} cos(bt)	$\frac{s-a}{(s-a)^2+b^2}$
e ^{at} sen(bt)	$\frac{b}{(s-a)^2+b^2}$

$$\mathcal{L}{y(t)} = Y(s)$$

$$\mathcal{L}{y'(t)} = sY(s) - y(0)$$

$$\mathcal{L}{y''(t)} = s^2Y(s) - sy(0) - y'(0)$$

RESPUESTAS A LOS EJERCICIOS

NÚMEROS COMPLEIOS

1.
$$2 + i$$
, $-2 + i$, $2i$, $\frac{1}{2}i$

5.
$$7 - i$$
, $-1 - 3i$, $14 - 5i$, $\frac{10}{17} - \frac{11}{17}i$

7.
$$-\frac{2}{5} - \frac{6}{5}i$$

$$9. -7 - 24i$$

11.
$$0 - 2i$$

13.
$$1 + i$$
, $1 - i$

15.
$$\frac{\sqrt{3}}{2} - \frac{1}{2}i$$
, $-\frac{\sqrt{3}}{2} - \frac{1}{2}i$

29.
$$\sqrt{2} \preceq \frac{\pi}{4}$$

31.
$$4 \pm \frac{\pi}{3}$$

33.
$$8\sqrt{2} \preceq \frac{21}{4}\pi$$

35.
$$\sqrt{2} \neq \frac{7\pi}{4}$$

37.
$$e^{i\frac{\pi}{4}}$$
, $e^{i\frac{5\pi}{4}}$

39.
$$2e^{i\frac{\pi}{4}}$$
, $2e^{i\frac{3\pi}{4}}$, $2e^{i\frac{5\pi}{4}}$, $2e^{i\frac{7\pi}{4}}$

41.
$$\frac{1}{\sqrt[4]{2}}e^{i\frac{\pi}{8}}$$
, $\frac{1}{\sqrt[4]{2}}e^{-i\frac{7\pi}{8}}$

43.
$$2\sqrt{2}e^{i\pi}$$
, $2\sqrt{2}e^{i4\pi}$

45.
$$2\sqrt{2}e^{i\frac{3\pi}{4}}$$
, $2\sqrt{2}e^{i\frac{9\pi}{4}}$, $2\sqrt{2}e^{i\frac{15\pi}{4}}$, $2\sqrt{2}e^{i\frac{21\pi}{4}}$

2.
$$1 + 2i$$
, 1 , $-1 + i$, $1 - i$

4.
$$7 + i$$
, $3 - i$, $10 + 5i$, $2 - i$

6. 5 + 4*i*, 3 + 6*i*, 9 + *i*,
$$-\frac{1}{2} + \frac{9}{2}i$$

8.
$$625 + 0i$$

10.
$$0 - \frac{1}{2}i$$

12.
$$0 + \frac{1}{2}i$$

14.
$$-1 + i$$
, $-1 - i$

16.
$$-1 - 2i$$
, $-2 + i$

$$18.\sqrt{2}$$

28.
$$1 \neq \frac{\pi}{2}$$
, $1 \neq \pi$, $1 \neq -\frac{\pi}{2}$, $1 \neq 0$, ...

30.
$$2 \not = \frac{\pi}{6}$$

32.
$$\frac{5}{\sqrt{2}} \not \Delta - \frac{\pi}{4}$$

34. 8
$$\neq \frac{5}{2}\pi$$

36.
$$8\sqrt{3} \not = -\frac{\pi}{6}$$

38.
$$e^{i\frac{\pi}{3}}$$
, $e^{i\frac{5\pi}{3}}$, $e^{i3\pi}$

40.
$$\sqrt[4]{2}e^{i\frac{\pi}{8}}$$
, $\sqrt[4]{2}e^{i\frac{9\pi}{8}}$

42.
$$\sqrt[3]{16}e^{i2\pi}$$
, $\sqrt[3]{16}e^{i\frac{22\pi}{3}}$, $\sqrt[3]{16}e^{i\frac{38\pi}{3}}$

44.
$$\frac{\sqrt{2}}{2}e^{-i\frac{5\pi}{12}}$$
, $\frac{\sqrt{2}}{2}e^{i\frac{7\pi}{12}}$

REGIONES EN EL PLANO Z

46.

$$y = \frac{1}{3}x$$

47.

$$x^2 + y^2 = 2^2$$
, $(x, y) \neq (-2, 0)$

48.

49.

$$3^2 < (x+1)^2 + (y+1)^2 < 4^2$$

50.

$$x^2 + (y - 1)^2 \le 3^2$$

51.

 $4x^2 + 3y^2 > 0$

54.

55.

 $(x-3)^2 + (y+1)^2 < 3^2$

56.

57.

$$(x-1)^2 + y^2 < 1$$

No es dominio

$$(x-3)^2 + (y+4)^2 \ge 5^2$$

59.

No es dominio

$$(x-1)^2 + y^2 \ge 1^2$$

No es dominio

$$(x^2 + (y+2)^2 \ge 2^2, (x,y) \ne (0,0)$$

FUNCIÓN COMPLEJA Y SU DERIVADA

61.
$$w = \underbrace{x^2 - (y-1)^2}_{u(x,y)} + i \underbrace{2x(y-1)}_{v(x,y)}$$

63.
$$w = \underbrace{x-1}_{u(x,y)} + i \underbrace{(y+1)}_{v(x,y)}$$

65.
$$w = \underbrace{x^3 - 3xy^2}_{u(x,y)} + i\underbrace{(3x^2y - y^3)}_{v(x,y)}$$

67.
$$f(z) = f^*(z, \bar{z}) = \left[\frac{3}{2}(z - \bar{z}) + z\bar{z}\right]i$$

69.
$$f(z) = f^*(z, \bar{z}) = \frac{1}{4}[(z + \bar{z})^2 - i(z - \bar{z})^2]$$
 70. $f(z) = f^*(z, \bar{z}) = z\bar{z}$

62.
$$w = \underbrace{x^2 + y^2}_{u(x,y)} + i \underbrace{1}_{v(x,y)}$$

64.
$$w = \underbrace{\frac{x^2 - y^2}{(x^2 + y^2)^2}}_{u(x,y)} + i \underbrace{\left(\frac{2xy}{(x^2 + y^2)^2} + 1\right)}_{v(x,y)}$$

66.
$$w = \frac{x}{\underbrace{x^2 + y^2}} + 1 + i \underbrace{\left(\frac{-y}{x^2 + y^2}\right)}_{v(x,y)}$$

68.
$$f(z) = f^*(z, \bar{z}) = \left(\frac{z^2 - \bar{z}^2}{2} + z\bar{z}\right)i$$

70.
$$f(z) = f^*(z, \bar{z}) = z\bar{z}$$

71.
$$D_f = \mathbb{C}$$

71.
$$D_f = \mathbb{C}$$
 72. $D_f = \mathbb{C} - \{0\}$

73.
$$D_f = \mathbb{C}$$

74.
$$D_f = \mathbb{C}$$

74.
$$D_f = \mathbb{C}$$
 75. $D_f = \{z \in \mathbb{C} \mid Im(z) \neq 0\}$

76.
$$D_f = \mathbb{C} - \{i, -i\}$$

77.
$$D_f = \mathbb{C}$$

77.
$$D_f = \mathbb{C}$$
 78. $D_f = \mathbb{C} - \left\{0, 1, -1, i, -i, \frac{1}{2} + \frac{\sqrt{3}}{2} i, \frac{1}{2} - \frac{\sqrt{3}}{2} i\right\}$ **79.** $D_f = \mathbb{C}$

80. f es derivable sólo en z = 1.

$$f'(z) = u_x + iv_x = 2(x-1)e^{(x-1)^2+y^2} + i \ 0 \ (v\'alida\ s\'olo\ para\ z = 1 + i0 = 1).$$

$$f^{'}(1) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

81. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = 2x + i \ 0 \ (v\'alida\ s\'olo\ para\ z = 0);$$

$$f'(0) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

82. f es derivable en: $\{z \in \mathbb{C} \mid z \neq 0\}$.

$$f'(z) = u_x + iv_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i\frac{2xy}{(x^2 + y^2)^2}$$
 (válida para $\forall z \neq 0$).

f es analítica en el dominio: $\{z \in \mathbb{C} \mid z \neq 0\}$.

83. f es derivable sólo en z = i.

$$f'(z) = u_x + iv_x = 3x^2 + i \ 0 \ (v\'alida\ s\'olo\ para\ z = i); \qquad f'(i) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

84. f es derivable en $\{z \in \mathbb{C} \mid Re(z) = Im(z)\}$.

$$f'(z) = u_x + iv_x = 2x + i \ 0 \ (v\'alida\ s\'olo\ para\ \{z \in \mathbb{C} \mid Re(z) = Im(z)\ \}).$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

85. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = e^x cos(y) + i e^x sen(y) = e^z$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

86. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = y + i \ 0 \ (v\'alida\ s\'olo\ para\ z = 0); \qquad f'(0) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

87. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = 2x + i \ 2(x + y) \ (v\'alida\ s\'olo\ para\ z = 0); \qquad f'(0) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

88. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = 0 + i \ 0 = 0 \ (v \text{\'a}lida \ \forall z).$$

f es entera (anlítica en todo el plano z).

89. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = 1 + i \ 0 = 1 \ (valida \ \forall z).$$

f es entera (anlítica en todo el plano z).

90. f no es derivable en punto alguno del plano z.

f no es analítica en ningún dominio ni en punto alguno del plano z.

91. f es derivable en C.

$$f'(z) = u_x + iv_x = 2x + i \ 2y = 2(x + iy) = 2z \ (v lpha lida \ \forall z).$$

f es entera (anlítica en todo el plano z).

92. f no es derivable en punto alguno del plano z.

f no es analítica en ningún dominio ni en punto alguno del plano z.

93. f es derivable en C.

$$f'(z) = u_x + iv_x = 3x^2 - 3y^2 + i 6xy = 3(x^2 - y^2 + i2xy) = 3z^2$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

94. f es derivable sólo en z = -1.

$$f'(z) = u_x + iv_x = 2(x+1) + i \ 0 \ (v\'alida\ s\'olo\ para\ z = -1); \qquad f'(-1) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

95. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = cos(x)cosh(y) - i sen(x)senh(y)$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

96. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = 2x - i \ 2y \ (v\'alida \ s\'olo \ para \ z = 0);$$
 $f'(0) = 0.$

f no es analítica en ningún dominio ni en punto alguno del plano z.

97. f es derivable en $\{z \in \mathbb{C} \mid Im(z) = 0\}$.

$$f'(z) = u_x + iv_x = 3x^2 + 2 + i 6xy \text{ (v\'alida s\'olo para } \{z \in \mathbb{C} \mid Im(z) = 0 \}).$$

$$f'(x+i0) = 3x^2 + 2.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

98. f es derivable sólo en z = i.

$$f^{'}(z) = u_x + iv_x = y + i0$$
 (válida sólo para $z = i$); $f^{'}(i) = 1$.

f no es analítica en ningún dominio ni en punto alguno del plano z.

99. f es derivable en C.

$$f'(z) = 2ze^{-z} - (z^2 - 2)e^{-z} = e^{-z}(2 + 2z - z^2)$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

100. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = 3 - i1 \quad (v \pm i da \ \forall z).$$

f es entera (anlítica en todo el plano z).

101. f no es derivable en punto alguno del plano z.

f no es analítica en ningún dominio ni en punto alguno del plano z.

102. f es derivable en \mathbb{C} .

$$f'(z) = e^{2z} + 2(z - 2i)e^{2z} = (2z + 1 - 4i)e^{2z}$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

103. f es derivable en \mathbb{C} .

$$f'(z) = u_x + iv_x = -e^{-x}cos(y) + i e^{-x}sen(y) = -e^{-z}$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

104. f es derivable en $\left\{z \in \mathbb{C} \mid Re(z) = \frac{1}{2}\right\}$.

$$f'(z) = u_x + iv_x = 2x + i \ 0 \ \left(v \text{\'a} lida \ s \text{\'o} lo \ para \left\{ z \in \mathbb{C} \ \middle| \ Re(z) = \frac{1}{2} \right\} \right).$$

$$f^{'}\left(\frac{1}{2}+iy\right)=1$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

105. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = 3x^2 + y^2 - i \ 2xy \ (v\'alida \ s\'olo \ para \ z = 0); \qquad f'(0) = 0$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

106. f es derivable en $\left\{z \in \mathbb{C} \mid Re(z) = \frac{3}{2}Im^2(z)\right\}$.

$$f'(z) = u_x + iv_x = 2x + i \ 0 \ \left(v \text{\'a} lida \ s \text{\'o} lo \ para \left\{ z \in \mathbb{C} \ \middle| \ Re(z) = \frac{3}{2} Im^2(z) \right\} \right).$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

107. f es derivable sólo en z = 0.

$$f'(z) = u_x + iv_x = -4y + i \, 4y \, (v\'alida \, s\'olo \, para \, z = 0); \qquad f'(0) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

FUNCIONES ARMÓNICAS

108. Las derivadas parciales de segundo orden de ϕ son continuas en todo el plano pero la ecuación de Laplace se satisface sólo en el conjunto: $\{z \in \mathbb{C} \mid Im(z) = -2Re^2(z)\}$, el cual no constituye un domino, por lo tanto $\phi(x,y)$ no es armónica.

109. ϕ es armónica en todo el plano.

110. ϕ es armónica en todo el plano.

ARMÓNICAS CONJUGADAS

111. u es armónica en todo el plano, $v(x, y) = x^2 + 2y - y^2 + c$.

112. u es armónica en todo el plano, v(x, y) = -cosh(x)cos(y) + c.

113. *u* es armónica en todo el plano, $v(x, y) = -3x^2y + 2y + y^3 + c$.

114. u es armónica en todo el plano, $v(x, y) = 3x^2y - y^3 + c$.

115. *u* es armónica en todo el plano, $v(x, y) = -\frac{x^2}{2} + \frac{y^2}{2} + 4y + c$.

116. u es armónica en todo el plano, $v(x,y) = e^x cos(y) + e^y cos(x) + xy + c$.

FUNCIONES ELEMENTALES

117.
$$w = e^3 \cos(4) + i \underbrace{e^3 sen(4)}_{v}$$

$$\mathbf{119}. w = \underbrace{\cos(1)}_{u} + i \underbrace{sen(1)}_{v}$$

121.
$$w = \underbrace{0}_{u} + i \underbrace{1}_{v}$$

123.
$$w = \underbrace{-e^2}_{u} + i \underbrace{0}_{v}$$

125.
$$w = \underbrace{\sqrt{e} \cos\left(\frac{1}{2}\right)}_{u} + i \underbrace{\sqrt{e} \sin\left(\frac{1}{2}\right)}_{v}$$

118.
$$w = \underbrace{e^4 \cos(7)}_{u} + i \left(\underbrace{-e^4 sen(7)}_{v}\right)$$

120.
$$w = \underbrace{-1}_{u} + i \underbrace{0}_{v}$$

$$122. w = \frac{\sqrt{2}}{2} + i \left(\underbrace{-\frac{\sqrt{2}}{2}}_{v} \right)$$

$$124. w = \underbrace{-\frac{\sqrt{2e}}{2}}_{u} + i \underbrace{\frac{\sqrt{2e}}{2}}_{v}$$

$$\mathbf{126}.\,z = \underbrace{ln(2)}_{x} + i\left(\underbrace{\pi + 2k\pi}_{y}\right);\,\,k \in \mathbb{Z} \qquad \mathbf{127}.\,z = \underbrace{ln(\sqrt{2})}_{x} + i\left(\underbrace{-\frac{\pi}{4} + 2k\pi}_{y}\right);\,\,k \in \mathbb{Z}$$

128.
$$z = \frac{1}{2} + i \underbrace{k\pi}_{y}; k \in \mathbb{Z}$$

129.
$$z = \underbrace{0}_{x} + i \underbrace{2k\pi}_{y}$$
; $k \in \mathbb{Z}$

130.
$$z = \underbrace{ln(\sqrt{2})}_{x} + i\left(\underbrace{\frac{\pi}{4} + 2k\pi}_{y}\right); \ k \in \mathbb{Z}$$

$$\mathbf{130}.\,z = \underbrace{ln(\sqrt{2})}_{x} + i\left(\underbrace{\frac{\pi}{4} + 2k\pi}_{y}\right);\,\,k \in \mathbb{Z} \qquad \mathbf{131}.\,z = \underbrace{ln(4)}_{x} + i\left(\underbrace{-\frac{\pi}{2} + 2k\pi}_{y}\right);\,\,k \in \mathbb{Z}$$

132.
$$z = \underbrace{ln(3)}_{x} + i \left(\underbrace{\pi + 2k\pi}_{y}\right); \ k \in \mathbb{Z}$$

132.
$$z = \underbrace{ln(3)}_{x} + i\left(\underbrace{\pi + 2k\pi}_{y}\right); \ k \in \mathbb{Z}$$
 133. $z = \underbrace{\frac{\pi}{4} + 2k\pi}_{x} + i\left(\underbrace{-ln(\sqrt{2})}_{y}\right); \ k \in \mathbb{Z}$

134.
$$z = \underbrace{1}_{x} + i \left(\underbrace{\frac{\pi}{2} + 2k\pi}_{y} \right); \ k \in \mathbb{Z}$$

135.
$$z = \underbrace{2k\pi}_{x} + i\left(\underbrace{-ln(2\pm\sqrt{3})}_{y}\right) = \underbrace{2k\pi + i\left(\pm ln(2-\sqrt{3})\right)}_{y}; \quad k \in \mathbb{Z}$$

136.
$$z = \underbrace{0}_{x} + i \left(\underbrace{\pm \frac{\pi}{3} + 2k\pi}_{y} \right); \quad k \in \mathbb{Z}$$

137.
$$z = \underbrace{0}_{x} + i \left(\underbrace{\pi + 2k\pi}_{y} \right); \ k \in \mathbb{Z}$$

138.
$$z = \underbrace{0}_{x} + i \left(\underbrace{\frac{\pi}{2} + 2k\pi}_{y} \right); k \in \mathbb{Z}$$

138.
$$z = \underbrace{0}_{x} + i \left(\underbrace{\frac{\pi}{2} + 2k\pi}_{y} \right); k \in \mathbb{Z}$$
 139. $z = \underbrace{\pm ln(\sqrt{2} + 1)}_{x} + i \left(\underbrace{\pm \frac{\pi}{2} + 2k\pi}_{y} \right); k \in \mathbb{Z}$

$$\mathbf{140}.\,z = \underbrace{\pm ln(2+\sqrt{3})}_{x} + i\left(\underbrace{\pi+2k\pi}_{y}\right);\,\,k\in\mathbb{Z} \qquad \mathbf{141}.\,z = \underbrace{\frac{\pi}{2}+2k\pi}_{x} + i\left(\underbrace{\pm 4}_{y}\right);\,\,k\in\mathbb{Z}$$

141.
$$z = \underbrace{\frac{\pi}{2} + 2k\pi}_{x} + i\left(\underbrace{\pm 4}_{y}\right); \ k \in \mathbb{Z}$$

142.
$$z = \underbrace{\pm \frac{\pi}{2} + 2k\pi + i\left(\underbrace{\mp 4}_{y}\right)}_{x}; k \in \mathbb{Z}$$

143.
$$z = \underbrace{0}_{x} + i \left(\underbrace{-\frac{\pi}{2} + 2k\pi}_{y} \right); k \in \mathbb{Z}$$

144. $2k\pi i; k \in \mathbb{Z}$

145. πi

146.
$$\left(k + \frac{1}{4}\right)\pi i; k \in \mathbb{Z}$$

147.
$$ln(2) + \left(\frac{\pi}{3} + 2k\pi\right)i; k \in \mathbb{Z}$$

148.
$$ln(2\sqrt{2}) - \frac{\pi}{4}i$$

149.
$$1 + \left(\frac{\pi}{2} + 2k\pi\right)i; \ k \in \mathbb{Z}$$

150.
$$z = \underbrace{-\frac{e}{2}}_{x} + i \underbrace{\frac{e\sqrt{3}}{3}}_{y}$$

$$\mathbf{151}.\,z = \underbrace{0}_{x} + i \underbrace{1}_{y}$$

152.
$$z = \underbrace{-1}_{x} + i \underbrace{0}_{y}$$

153.
$$z = \underbrace{2}_{x} + i \left(\underbrace{1 + 2k\pi}_{y}\right); k \in \mathbb{Z}$$

154.
$$z = \underbrace{ln\left(\frac{1}{2}\right)}_{x} + i\underbrace{2k\pi}_{y}$$
; $k \in \mathbb{Z}$

155.
$$z = \underbrace{ln|2k\pi|}_{x} + i\left(\underbrace{\frac{k}{|k|}\frac{\pi}{2} + 2n\pi}_{y}\right), k = \pm 1, \pm 2, \cdots; n \in \mathbb{Z}$$

156.
$$e^{-\left(\frac{1}{2}+2k\right)\pi} + i0$$
; $k \in \mathbb{Z}$

157.
$$2e^{-2k\pi}\cos(\ln(2)) + i2e^{-2k\pi}\sin(\ln(2))$$
; $k \in \mathbb{Z}$

158.
$$e^{-\left(\frac{1}{4}+2k\right)\pi}\cos\left(\ln(\sqrt{2})\right) + ie^{-\left(\frac{1}{4}+2k\right)\pi}\sin\left(\ln(\sqrt{2})\right); \ k \in \mathbb{Z}$$

159.
$$e^{(1-8k)\pi}cos(ln(4)) + ie^{(1-8k)\pi}sen(ln(4)); k \in \mathbb{Z}$$

160.
$$2^{\pi} cos(2k\pi^2) + i2^{\pi} sen(2k\pi^2)$$
; $k \in \mathbb{Z}$

161.
$$cos(1+2k) + isen(1+2k); k \in \mathbb{Z}$$

162.
$$2e^{-\left(\frac{1}{6}+2k\right)\pi}\cos\left(\frac{\pi}{6}+\ln(2)\right)+i2e^{-\left(\frac{1}{6}+2k\right)\pi}\sin\left(\frac{\pi}{6}+\ln(2)\right);\ k\in\mathbb{Z}$$

163.
$$e^{\frac{1}{\pi}}cos\left(\frac{1}{2}+2k\right)+ie^{\frac{1}{\pi}}sen\left(\frac{1}{2}+2k\right); k \in \mathbb{Z}$$

164.
$$e^{-\left(\frac{1}{2}+2k\right)\pi}cos(ln(\pi)) + ie^{-\left(\frac{1}{2}+2k\right)\pi}sen(ln(\pi)); k \in \mathbb{Z}$$

INTEGRACIÓN EN EL PLANO COMPLEJO

165.
$$\frac{1}{3} + \frac{5}{3}i$$

166.
$$1 - i$$

167.
$$\frac{1}{2} - \frac{1}{2}i$$

168.
$$\frac{16}{5} - 8i$$

169. a)
$$e-1$$

b)
$$e \cos(1) - e + e \sin(1)i$$
 c) $e \cos(1) - 1 + e \sin(1)i$

c)
$$e \cos(1) - 1 + e \sin(1)i$$

170. a)
$$-i$$

b)
$$-\frac{2}{3}i$$
 c) $-\frac{4}{3}i$

c)
$$-\frac{4}{3}i$$

d)
$$-\frac{\pi}{2}i$$

171. a)
$$4 + 2\pi i$$

b)
$$-4 + 2\pi i$$
 c) $(4 + 2\pi)i$

c)
$$(4 + 2\pi)t$$

173.
$$2\pi i$$

$$174.\pi \big(senh(1) - sen(1)\big) + \pi \big(senh(1) + sen(1)\big)i$$

175.
$$\frac{\pi}{3}$$

$$176.\frac{2\pi}{3}\big(\cosh(2)-\cosh(1)\big)i$$

$$177.\frac{\pi}{3}cosh(3)$$

178.
$$\pi \sec^2\left(\frac{z_0}{2}\right)i$$

180.
$$\frac{2}{9}\pi i$$

181.
$$18\pi i$$
 182. $-(e-2)\pi i$

183.
$$2\pi$$
 184. $\frac{\pi}{16}$

185.
$$\frac{2\pi}{a}i$$
 186. $(5\cos(1) + 4\sin(1) - 6)\pi i$

198. $\frac{\pi}{2}i$

187.
$$\pi$$
senh(2) i **188**. 0

189.
$$\frac{\pi}{4}i$$
 190. $\left(\frac{1}{4} - \frac{\cos h(2\sqrt{2})}{8}\right)\pi i$

191.
$$-(cos(1) + 2sen(1))\pi + (2cos(1) - sen(1))\pi i$$

192.
$$\left(\frac{1}{128}(e^2 - 9e^{-2}) - \frac{1}{32}\right)\pi i$$
 193. $-e\pi i$

194.
$$\frac{\pi}{2}$$
 195. $\frac{\pi}{2}$

196. 0 **197**.
$$\frac{\pi}{8}$$

SERIES DE TAYLOR Y LAURENT

199.
$$\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} \left(z - \frac{\pi}{2}\right)^{2k+1}$$
, $v\'alida\ para\ \left|z - \frac{\pi}{2}\right| < \infty$

200.
$$\sum_{k=0}^{\infty} (-1)^k (z-1)^k$$
, válida para $|z-1| < 1$

201.
$$\sum_{k=0}^{\infty} \frac{(-1)}{2^{k+1}} (z+2)^k$$
, $v ilde{a} lida para |z+2| < 2$

202.
$$\sum_{k=0}^{\infty} (-1)^k (k+1) (z-1)^k$$
, válida para $|z-1| < 1$

203.
$$1 + 2(z - 1) + (z - 1)^2$$
, *válida* $\forall z \in \mathbb{C}$

204.
$$\sum_{k=0}^{\infty} \frac{(-1)}{(2k+1)!} (z-\pi i)^{2k+1}$$
, válida para $|z-\pi i| < \infty$

205.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k}$$
, válida para $|z| > 0$; $z_0 = 0$ punto singular evitable $Res(f(z),0) = 0$

206.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k-1}$$
, válida para $|z| > 0$; $z_0 = 0$ polo de orden 1

Res $(f(z), 0) = 1$

207.
$$\sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{3}{z}\right)^k$$
, válida para $|z| > 0$; $z_0 = 0$ punto singular esencial $Res(f(z), 0) = 3$

208.
$$\frac{2}{z+2} + \sum_{k=0}^{\infty} (z+2)^k$$
, válida para $0 < |z+2| < 1$; $z_0 = -2$ polo de orden 1
$$Res(f(z), -2) = 2$$

209.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{3^{k+1}} (z-3)^{k-2}$$
, válida para $0 < |z-3| < 3$; $z_0 = 3$ polo de orden 2
$$Res(f(z),3) = -\frac{1}{9}$$

210.
$$\sum_{k=0}^{\infty} \frac{2^k e^2}{k!} (z-1)^{k-3}$$
, válida $\forall z \neq 1$; $z_0 = 1$ polo de orden 3
$$Res(f(z), 1) = 2e^2$$

- **211**. $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+3)!} z^{2k}$, válida para |z| > 0; $z_0 = 0$ punto singular evitable Res(f(z), 0) = 0
- **212.** $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z+2)^{-2k} + \sum_{k=0}^{\infty} \frac{5(-1)^{k+1}}{(2k+1)!} (z+2)^{-(2k+1)}$, $v\'{a}lida \ \forall z \neq -2$ $z_0 = -2 \ punto \ singular \ esencial$ $Res \ (f(z), -2) = -5$
- **213**. $\sum_{k=0}^{\infty} \frac{1}{(k+1)!} z^k$, válida para |z| > 0; $z_0 = 0$ punto singular evitable Res(f(z), 0) = 0
- **214**. $-\frac{1}{z^3} + \frac{3}{z^2} \frac{1}{z} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+3)!} z^{2k}$, válida para |z| > 0; $z_0 = 0$ polo de orden 3 Res(f(z), 0) = -1
- **215. a)** $\sum_{k=0}^{\infty} \frac{1}{2} \left(-\frac{1}{3}\right)^{k+1} z^k + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2} \frac{1}{z^k}$, serie de Laurent válida para 1 < |z| < 3
 - **b)** $\sum_{k=1}^{\infty} \frac{(-1)^k (3^{k-1}-1)}{2} \frac{1}{z^k}$, serie de Laurent válida para |z| > 3
 - c) $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^{k+1}} (z+1)^{k-1}$, serie de Laurent válida para 0 < |z+1| < 2
 - **d)** $\sum_{k=0}^{\infty} \frac{(-1)^k}{2} \left(1 \frac{1}{3^{k+1}}\right) z^k$, serie de Taylor válida para |z| < 1
- **216. a)** $\sum_{k=0}^{\infty} (-1)z^{k-1}$, serie de Laurent válida para 0<|z|<1
 - **b)** $\sum_{k=0}^{\infty} \frac{1}{z^{k+2}}$, serie de Laurent válida para |z| > 1
 - **c)** $\sum_{k=0}^{\infty} (-1)^k (z-1)^{k-1}$, serie de Laurent válida para 0<|z-1|<1

d)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(z-1)^{k+2}}$$
, serie de Laurent válida para $|z-1|>1$

e)
$$\sum_{k=0}^{\infty} \left(-\frac{1}{2}\right)^{k+1} (z-2)^k + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(z-2)^k}$$
, serie de Laurent válida para $1 < |z-2| < 2$

217. a)
$$\sum_{k=0}^{\infty} \frac{(-1)}{3^{k+1}} z^{k-1}$$
 , serie de Laurent válida para $0 < |z| < 3$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{3^{k+1}} (z-3)^{k-1}$$
, serie de Laurent válida para $0<|z-3|<3$

c)
$$\sum_{k=0}^{\infty} \frac{1}{3} \left(-\frac{1}{4} \right)^{k+1} (z-4)^k + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{3} \frac{1}{(z-4)^k}$$
, serie de Laurent válida para $1 < |z-4| < 4$

218. a)
$$\sum_{k=0}^{\infty} \frac{(-1)}{2^{k+1}} z^k + \sum_{k=1}^{\infty} \frac{(-1)}{z^k}$$
, serie de Laurent válida para $1 < |z| < 2$

b)
$$\sum_{k=0}^{\infty} (-1)(z-1)^{k-1}$$
 , serie de Laurent válida para $0<|z-1|<1$

219. a)
$$\frac{1}{3(z+1)} + \sum_{k=0}^{\infty} \frac{(-2)}{3^{k+2}} (z+1)^k$$
, serie de Laurent válida para $0 < |z+1| < 3$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)}{3(2^k)} z^k + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{3z^k}$$
, serie de Laurent válida para $1 < |z| < 2$

220. a)
$$\sum_{k=0}^{\infty}\frac{(-1)^k}{(1+i)^{k+1}}(z-i)^k$$
 , serie de Taylor válida para $|z-i|<\sqrt{2}$

b)
$$\sum_{k=0}^{\infty} \frac{(-1-i)^k}{(z-i)^{k+1}}$$
, serie de Laurent válida para $|z-i| > \sqrt{2}$

221. a)
$$\sum_{k=0}^{\infty} \left(1 - \frac{1}{2^k}\right) z^k$$
 , serie de Taylor válida para $|z| < 1$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)}{2^k} z^k + \sum_{k=1}^{\infty} \frac{(-1)}{z^k}$$
, serie de Laurent válida para $1 < |z| < 2$

c)
$$\sum_{k=0}^{\infty} (2^k-1)z^{-k}$$
 , serie de Laurent válida para $|z|>2$

222.
$$\sum_{k=0}^{\infty} \frac{(-1)}{2^{k+1}} (z-1)^{k-2}$$
 , serie de Laurent válida para $0<|z-1|<2$

223.
$$\frac{1}{z} + \sum_{k=0}^{\infty} 9z^k$$
 , serie de Laurent válida para $0 < |z| < 1$

224. $\frac{3}{z} + \sum_{k=0}^{\infty} (-4)z^k$, serie de Laurent válida para 0 < |z| < 1

CEROS, POLOS Y RESIDUOS

- **225**. f tiene ceros de orden n=1 en $z=\frac{\pi}{2}+k\pi$, $k\in\mathbb{Z}$.
- **226**. f tiene ceros de orden n = 1 en $z = i2k\pi$, $k = \pm 1, \pm 2, ...$
- **227**. f tiene un cero de orden n=4 en z=0, y tiene ceros de orden n=1 en $z=k\pi$, $k = \pm 1, \pm 2, ...$
- **228**. f tiene un cero de orden n = 1 en z = 1.
- **229**. f tiene un cero de orden n = 4 en z = 1, y un cero de orden n = 2 en z = i.
- **230**. f tiene un cero de orden n=3 en z=1 y ceros de orden n=2 en $z=k\pi, k\in\mathbb{Z}$.
- **231**. f tiene un polo de orden n = 2 en z = 2 y un polo de orden n = 1 en z = 3.
- **232**. *f* tiene polos de orden n = 1 en $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ y en $z = \frac{1}{2} i \frac{\sqrt{3}}{2}$.
- **233**. f tiene polos de orden n=2 en $z=k\pi, k\in\mathbb{Z}$.
- **234**. f tiene un polo de orden n = 2 en z = 0.
- **235**. f tiene un polo de orden n = 1 en z = 0.
- **236**. f tiene un polo de orden n=4 en z=0 y polos de orden n=1 en $z=\frac{\pi}{2}+k\pi$,
- **237**. Res(f(z), -1) = -2 (polo de orden 1) **238**. $Res(f(z), \frac{\pi}{2} + k\pi) = -1, k \in \mathbb{Z}$ (polos de orden 1)
- **239**. $Res(f(z), -1) = \frac{1}{4}$, $Res(f(z), 1) = -\frac{1}{4}$ (polos de orden 2)
- **240**. $Res\left(f(z), e^{i\frac{\pi}{6}}\right) = \frac{1}{6} i\frac{\sqrt{3}}{6}$, $Res\left(f(z), e^{i\frac{5\pi}{6}}\right) = \frac{1}{6} + i\frac{\sqrt{3}}{6}$, $Res\left(f(z), e^{i\frac{3\pi}{2}}\right) = -\frac{1}{3}$ (polos de orden 1)
- **241**. $Res(f(z), i2k\pi) = 1$, $k \in \mathbb{Z}$ (polos de orden 1)
- **242**. $Res(f(z), \frac{\pi}{2} + k\pi) = (-1)^{k+1}(\frac{\pi}{2} + k\pi), k \in \mathbb{Z}$ (polos de orden 1)

243. Res(f(z), 0) = 4 (polo de orden 4)

244. $Res(f(z), 0) = -\frac{1}{2}$ (polo de orden 1)

245. Res(f(z), 0) = 6 (polo de orden 1)

246. $Res(f(z), \pm i) = -\frac{1}{\pi}$ (polos de orden 1), $Res(f(z), 1) = \frac{1}{2}$ (polo de orden 1)

CÁLCULO DE INTEGRALES APLICANDO EL MÉTODO DE LOS RESIDUOS

247. $2\pi i$

248. $-2\pi i$

249.0

250. $\frac{\pi}{a}i$

251. $\frac{\pi}{2}i$

252. $-2\pi i$

253. 0

254. 8π*i*

255. $\left(2\pi + \frac{8}{\pi}e^{-\frac{\pi}{2}}\right)i$ **256**. $-\pi i$

257. $\frac{\pi}{2}i$

258. $1 - \pi i$

259. $-4\pi i$

260. $-\pi i$

261. $\frac{2}{3}\pi$

262. $\frac{\sqrt{5}}{5}\pi$

263. $\frac{2}{3}\pi$

264. $\frac{\pi}{20}$

265. $\frac{\sqrt{2}}{2}\pi$

266. $\sqrt{2}\pi$

267. $\frac{5}{27}\pi$

268. $\frac{\pi}{9}$

269. $\frac{2\sqrt{3}}{2}\pi$

270. $\frac{3}{9}\pi$

271. *π*

272. $\frac{5}{32}\pi$

274. $\frac{\pi}{2}$

275. π

276. $\sqrt{2}\pi$

278. $\frac{\pi}{200}$

279. $\frac{5}{16}\pi$

280. $-\frac{\pi}{5}$

281. $\frac{\pi}{2}e^{-6}$

282. $\frac{3}{4}\pi e^{-6}$

283. $\frac{\pi}{2}e^{-1}$

284. $\frac{\pi}{2}e^{-2\pi}$

285. $-\frac{2\pi\sqrt{3}}{2}e^{-\frac{\sqrt{3}}{2}}sen(\frac{1}{2})$

286. $\frac{\pi}{2}e^{-\frac{\sqrt{2}}{2}}sen(\frac{\sqrt{2}}{2})$ **287**. $\frac{\sqrt{2}\pi}{16}e^{-2\sqrt{2}}(cos(2\sqrt{2}) + sen(2\sqrt{2}))$

288. $\frac{\pi}{2}e^{-20}$

289. $\frac{\pi}{3}e^{-3}\left(e^{\frac{3}{2}}cos\left(\frac{3\sqrt{3}}{2}\right)+\sqrt{3}e^{\frac{3}{2}}sen\left(\frac{3\sqrt{3}}{2}\right)-1\right)$ **290.** $\frac{3\pi}{2}e^{-1}$ **291**. $\frac{2\sqrt{3}\pi}{9}e^{-3}cos(2\sqrt{3})$

292. $-\pi e^{-2\pi}$

SERIES TRIGONOMÉTRICAS DE FOURIER

293.
$$f(x) \sim \frac{3}{4} + \frac{1}{2\pi} \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n} \right) sen(nx)$$

294.
$$f(x) \sim \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{(-1)^n - 1}{n^2} \right) \cos(nx)$$

295.
$$f(x) \sim \frac{2}{\pi} \sum_{n=0}^{\infty} \left(\frac{1 - (-1)^n}{n}\right) sen(nx)$$

296.
$$f(x) \sim \frac{2}{\pi} + \frac{2}{\pi} \sum_{n=2}^{\infty} \left(\frac{1 + (-1)^n}{1 - n^2} \right) \cos(nx)$$

297.
$$f(x) \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} sen(nx)$$

298.
$$f(x) \sim \frac{2senh(\pi)}{\pi} \left[\frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} \left(cos(nx) - nsen(nx) \right) \right]$$

299.
$$f(x) \sim 1 + \frac{6}{\pi} \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n} \right) sen\left(\frac{n\pi}{3} x \right)$$

300.
$$f(x) \sim \frac{2}{3} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left[2sen\left(\frac{n\pi}{3}\right) cos\left(\frac{n\pi}{3}x\right) + \left(cos\left(\frac{n\pi}{3}\right) - (-1)^n\right) sen\left(\frac{n\pi}{3}x\right) \right]$$

301.
$$f(x) \sim 3 - \frac{16}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} sen\left(\frac{n\pi}{4}\right) cos(n\pi x)$$

302.
$$f(x) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\cos \left(\frac{n\pi}{2} \right) - (-1)^n \right) \operatorname{sen}(nx)$$

303.
$$f(x) \sim \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n^2} \right) \cos(nx)$$

$$304. f(x) \sim \frac{3}{4} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{\cos\left(\frac{n\pi}{2}\right) - 1}{n^2} \right) \cos\left(\frac{n\pi}{2}x\right)$$

305.
$$f(x) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{2sen\left(\frac{n\pi}{2}\right) - (-1)^n n\pi}{n^2} \right) sen\left(\frac{n}{2}x\right)$$

306.
$$f(x) \sim \frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{1 - 4n^2} \right) \cos(2nx)$$

307.
$$f(x) \sim \frac{3}{4} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{\cos\left(\frac{n\pi}{2}\right) - (-1)^n}{n^2} \right) \cos\left(\frac{n\pi}{2}x\right)$$

308.
$$f(x) \sim \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} cos(n\pi x)$$

309.
$$f(x) \sim \sum_{n=1}^{\infty} \left(\frac{2((-1)^n - 1)}{\pi n^2} \right) cos(nx) + \left(\frac{1 - (-1)^n}{n} \right) sen(nx)$$

310.
$$f(x) \sim \frac{32}{\pi^3} \sum_{n=1}^{\infty} \left(\frac{(-1)^n (2 - n^2 \pi^2) - 2}{n^3} \right) sen\left(\frac{n\pi}{4} x \right)$$

311.
$$f(x) \sim -\frac{\pi}{8} + \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{\cos\left(\frac{n\pi}{2}\right) + n\pi sen\left(\frac{n\pi}{2}\right) - 1}{n^2} \right) \cos(nx)$$

312.
$$f(x) \sim \frac{2\pi^2}{3} + 4\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n^2}\right) \cos(nx)$$

$$313. f(x) \sim \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{n\pi \cos\left(\frac{n\pi}{2}\right) - 2sen\left(\frac{n\pi}{2}\right)}{n^2} \right) sen\left(\frac{n\pi}{4}x\right)$$

314.
$$f(x) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{2 - (-1)^n (\pi + 2)}{n} \right) sen(nx)$$

$$\mathbf{315}. f(x) \sim \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{n\pi \cos\left(\frac{n\pi}{2}\right) - 4sen\left(\frac{n\pi}{2}\right) - n\pi((-1)^n - 2)}{n^2} \right) sen\left(\frac{n}{2}x\right)$$

316.
$$f(x) \sim \frac{2}{\pi^3} \sum_{n=1}^{\infty} \left(\frac{(6-n^2\pi^2)(-1)^n}{n^3} \right) sen(n\pi x)$$

$$317. f(x) \sim 2 \sum_{n=1}^{\infty} \left(\frac{2 + (-1)^n - 2\cos\left(\frac{n\pi}{2}\right) - \cos\left(\frac{n\pi}{4}\right)}{n} \right) sen(nx)$$

318.
$$f(x) \sim \frac{1}{2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1 - (-1)^n}{n^2} \right) \cos(n\pi x)$$

TRANSFORMADA DE LAPLACE

319.
$$y(t) = -3senh(2t)$$

320.
$$y(t) = 2 - 2cos(t) + 3sen(t)$$

321.
$$y(t) = \left(-\frac{1}{2}t - \frac{5}{4}\right)e^{-t} + \frac{1}{4}e^{t}$$

322.
$$y(t) = 3e^{\frac{1}{3}t}$$

323.
$$y(t) = \frac{3}{10} senh(t) - \frac{1}{10} sen(3t)$$

324.
$$y(t) = \frac{1}{5}cosh(t) - \frac{1}{5}cos(2t)$$

325.
$$y(t) = \frac{1}{5}e^{3t} - e^{-t} + \frac{4}{5}e^{-2t}$$

326.
$$y(t) = 1 + t - cos(t) - sen(t)$$

327.
$$y(t) = 2cos(t) + 2(t-1)e^{t}$$

328.
$$y(t) = \left(\frac{10}{9}t - \frac{2}{27}\right)e^{3t} + \frac{1}{9}t + \frac{2}{27}$$

329.
$$y(t) = \frac{13}{12}e^t - \frac{9}{8}e^{-t} + \frac{1}{24}e^{-5t}$$

330.
$$y(t) = 3e^t + 2e^{-t} - 2e^{2t} + 2t + 3t$$

331.
$$y(t) = -\frac{4}{17}e^{\frac{t}{2}}sen(2t) + \frac{8}{17}e^{t} - \frac{8}{17}e^{t}$$

332.
$$y(t) = \frac{1}{8} \cosh(2t) - \frac{1}{4}t^2 - \frac{1}{8}$$

333.
$$y(t) = \frac{1}{26}e^{4t} - \frac{1}{13}e^{2t}\cos(3t) + \frac{1}{26}e^{4t} - \frac{1}{13}e^{2t}\cos(3t) + \frac{1}{26}e^{4t} - \frac{1}{13}e^{4t}\cos(3t) + \frac{1}{26}e^{4t} - \frac{1}{26$$

334.
$$y(t) = -\frac{1}{15}e^{2t}\cos(3t) - \frac{1}{30}e^{2t}\sin(3t) + \frac{5}{12}e^{-t} + \frac{13}{20}e^{t} - 1$$

335.
$$y(t) = (4t+4)e^{2t} - 7e^t$$

336.
$$y(t) = \frac{1}{9} + \frac{1}{3}e^{3t} - \frac{4}{9}cos(3t) - \frac{1}{3}sen(3t)$$

337.
$$y(t) = \frac{12}{11} cosh(\sqrt{2} t) - \frac{1}{11} cos(3t) - 1$$

338.
$$y(t) = \left(\frac{2}{3} - t\right)e^{-2t} - \frac{3}{4}e^{-3t} + \frac{1}{12}e^{t}$$

339.
$$y(t) = \frac{3}{5}e^{-t} + \frac{1}{5}e^{t}sen(t) - \frac{3}{5}e^{t}cos(t)$$

340.
$$y(t) = -\frac{3}{20}cos(2t) - \frac{1}{20}sen(2t) - \frac{3}{5}e^{-t} + \frac{1}{2}e^{-2t} + \frac{1}{2}t - \frac{3}{4}$$

341.
$$y(t) = \frac{1}{2}sen(3t) + \frac{9}{4}e^{-t} - \frac{5}{4}e^{t}$$

342.
$$y(t) = t^2 + t$$