Práctica 1: R Markdown

Escribiendo informes reproducibles

6 de Junio, 2017

Enunciado

La **privación material** es un concepto sociológico que se corresponde con la 'falta de bienes, servicios, recursos y comodidades que son habituales, o están ampliamente extendidos, en una sociedad determinada'. Un problema habitual a la hora de estudiar este concepto es que la privación no puede ser medida directamente y, por tanto, tiene que ser medida de forma indirecta a partir de otras variables que sean reflejo de la presencia o ausencia de este concepto en la población.

En el archivo de datos datos_practicas.RData encontrarás el banco de datos privacion_valencia y el objeto espacial carto_valencia con la cartografía de la ciudad de Valencia. El banco de datos privacion_valencia contiene una serie de indicadores sociales para las 598 secciones censales de la ciudad de Valencia. Estos indicadores son en este orden: desempleo, instrucción insuficiente, instrucción insuficiente en jóvenes (16-29 años), trabajadores manuales, envejecimiento, trabajadores eventuales, residentes extranjeros, hogares mono-parentales, problemas de ruido, problemas de contaminación, problemas de limpieza, problemas de comunicación, problemas de zonas verdes, problemas de delincuencia y problemas de aseo. Todas las variables han sido medidas como el porcentaje de población (en cada sección) que pertenece a estos colectivos o que dice observar dichos problemas. Todos estos indicadores podrían ser reflejo de la privación económica de cada una de las secciones censales de la ciudad de Valencia.

Tareas

- 1. Crea un proyecto de RStudio en un nuevo directorio con el nombre practica_01_rmarkdown. Este directorio debe tener una estructura de carpetas adecuada para la realización de esta práctica.
- 2. Descarga el archivo de datos datos_practicas.RData del repositorio figshare cuya url es https://ndownloader.figshare.com/files/8455721, guárdalo en la carpeta adecuada del directorio de tu proyecto y carga los datos en R.
- 3. Construye a partir de la información disponible en el banco de datos privacion_valencia un índice de privación que cuantifique este factor en cada sección censal de la ciudad de Valencia. Para ello, debes realizar un análisis de componentes principales utilizando la función princomp de R. Resume los resultados obtenidos mediante:
 - Una tabla con la desviación estándar, la proporción de varianza explicada y la varianza acumulada de las componentes principales.
 - Otra tabla con los pesos de las variables originales en cada una de las componentes.
- 4. Representa gráficamente las 4 primeras componentes principales del análisis en el mapa de la ciudad de Valencia. La primera componente principal resumirá la privación material de cada sección censal. Considera 5 grupos para categorizar las variables y utiliza la siguiente función para realizar la representación gráfica:

```
pinta_mapas <- function(cartografia, variable, n_grupos) {
  if (!require(RColorBrewer)) {
    install.packages("RColorBrewer")
    library(RColorBrewer)
}
if (!require(sp)){</pre>
```

5. Genera un informe PDF que contenga el código de R y los resultados obtenidos utilizando R Markdown. No olvides tener en cuenta las normas de sintaxis estudiadas en la sesión 2 de este curso.

Resolución

```
# Establezco el directorio raíz del documento y las opciones globales del código
knitr::opts_knit$set(root.dir = normalizePath("../"))
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
# Tarea 1
## Establezco la estructura de directorios del proyecto
if (!dir.exists("datos")) dir.create("datos")
if (!dir.exists("informes")) dir.create("informes")
# Tarea 2
## Descargo los datos de figshare
if (!file.exists("datos/datos_practicas.RData")) {
 file_url <- "https://ndownloader.figshare.com/files/8455721"</pre>
 download.file(file_url, destfile = "datos/datos_practicas.RData", mode = "wb")
}
## Cargo las librerías necesarias y los datos
library(pander)
load("datos/datos_practicas.RData")
# Tarea 3
## Realizo ACP
ACP <- princomp(privacion_valencia[, 2:16])
## Resumen del análisis
standard_dev <- ACP$sdev
prop_variance <- (ACP$sdev ^ 2) / sum(ACP$sdev ^ 2)</pre>
cumulative_prop <- cumsum(prop_variance)</pre>
tab_summary <- data.frame(standard_dev, prop_variance, cumulative_prop)</pre>
colnames(tab_summary) <- c("Desviación estandar", "Proporción de varianza explicada",</pre>
                    "Varianza acumulada")
pandoc.table(tab_summary, justify = 'centre', round = 3,
      caption = "Resumen del análisis de componentes principales.")
```

Tabla 1: Resumen del análisis de componentes principales.

	Proporción de varianza				
	Desviación estandar	explicada	Varianza acumulada		
Comp.1	26.43	0.377	0.377		
Comp.2	19.47	0.205	0.581		
Comp.3	16.8	0.152	0.734		
Comp.4	12.38	0.083	0.816		
Comp.5	11.55	0.072	0.888		
Comp.6	8.82	0.042	0.93		
Comp.7	7.027	0.027	0.957		
Comp.8	5.028	0.014	0.971		
Comp.9	3.883	0.008	0.979		
Comp.10	3.71	0.007	0.986		
Comp.11	2.865	0.004	0.991		

	Proporción de varianza			
	Desviación estandar	explicada	Varianza acumulada	
Comp.12	2.512	0.003	0.994	
Comp.13	2.337	0.003	0.997	
Comp.14	2.109	0.002	1	
Comp.15	0.959	0	1	

```
## Peso de las variables originales en las componentes principales
panderOptions('table.continues', "Continuación.")
panderOptions('table.continues.affix', "(continúa en la página siguiente).")
pandoc.table(as.table(ACP$loadings), justify = 'centre', round = 3,
caption = "Peso de las variables originales en las componentes principales")
```

Tabla 2: Peso de las variables originales en las componentes principales (continúa en la página siguiente).

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7
${\mathrm{desempt}}$	-0.073	-0.088	0.049	0.076	-0.038	-0.001	-0.053
insufict 16	-0.345	-0.379	0.034	0.198	-0.121	0.131	-0.272
inst 1629	-0.156	-0.159	0.042	0.088	-0.035	0.048	-0.027
$\operatorname{manualest}$	-0.524	-0.506	-0.024	-0.005	-0.187	0.02	0.361
${f envejet}$	0.002	-0.03	0.069	0.316	0.046	0.209	-0.669
eventualt	-0.139	-0.151	0.046	0.113	-0.057	0.006	-0.051
resexj	-0.01	-0.008	0.018	0.061	-0.036	-0.061	-0.054
monomart	0.024	0.01	0.076	0.136	0.021	0.022	-0.23
ruido	0.047	0.259	0.176	-0.003	-0.636	0.176	0.238
contamina	-0.05	0.246	0.113	0.039	-0.611	0.137	-0.208
limpieza	-0.258	0.12	0.144	-0.117	-0.151	-0.883	-0.246
comunica	-0.2	-0.011	-0.236	-0.842	-0.04	0.236	-0.34
$\mathbf{z}\mathbf{v}\mathbf{e}\mathbf{r}\mathbf{d}\mathbf{e}\mathbf{s}$	-0.605	0.603	-0.393	0.244	0.188	0.11	0.078
delicuencia	-0.282	0.195	0.84	-0.17	0.32	0.188	0.066
aseo	-0.01	0.004	0.009	0.009	-0.005	0.001	-0.028

Tabla 3: Continuación.

	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12	Comp.13
desempt	-0.047	-0.155	-0.05	0.666	0.703	0.082
insufict 16	-0.157	0.088	0.506	-0.328	0.248	-0.066
inst 1629	-0.141	-0.716	0.271	0.01	-0.261	0.229
$\operatorname{manualest}$	0.166	0.227	-0.252	0.256	-0.304	0.056
${f envejet}$	-0.099	0.385	-0.172	0.172	-0.224	0.155
${\it eventualt}$	-0.109	-0.186	-0.584	-0.435	0.302	-0.432
resexj	-0.01	-0.14	-0.401	-0.277	0.113	0.782
$\mathbf{monomart}$	-0.185	-0.389	-0.253	0.29	-0.354	-0.322
${f ruido}$	-0.618	0.143	-0.006	0.028	-0.034	0.043
contamina	0.678	-0.148	0.024	-0.025	0.012	-0.061
limpieza	-0.098	0.066	0.044	0.021	-0.048	-0.018
comunica	-0.116	-0.048	-0.076	0.017	0.015	0.016
zverdes	-0.044	-0.012	-0.003	0.002	0.023	-0.002
delicuencia	0.054	0.024	0.007	-0.03	0.014	0.017

	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12	Comp.13
aseo	-0.017	0.003	-0.012	0.022	0.012	0.023

	Comp.14	Comp.15
desempt	-0.038	0.029
${f insufict 16}$	0.359	0.003
inst 1629	-0.457	0.003
${f manualest}$	-0.003	-0.002
${f envejet}$	-0.331	0.032
${f eventualt}$	-0.285	-0.003
${f resexj}$	0.325	0.019
${f monomart}$	0.599	0.008
${f ruido}$	-0.033	0.011
${f contamina}$	0.021	-0.003
limpieza	-0.057	0.011
comunica	0.002	0.006
${f zverdes}$	0.016	0.005
delicuencia	0.014	0.005
aseo	-0.001	-0.999

```
## Construcción de las componentes principales
Ind_privacion <- list()

for (i in 1:15) {
    Ind_privacion[[i]] <- as.matrix(privacion_valencia[, 2:16]) %*% ACP$loadings[, i]
}</pre>
```

Representación gráfica de las 4 primeras componentes principales del análisis.

```
# Tarea 4
## Función para realizar la representación gráfica de una variable en un mapa
pinta_mapas <- function(cartografia, variable, n_grupos) {</pre>
  if (!require(RColorBrewer)) {
    install.packages("RColorBrewer")
    library(RColorBrewer)
  }
  if (!require(sp)) {
    install.packages("sp")
    library(sp)
  paleta <- brewer.pal(n_grupos, "BrBG")</pre>
  grupos <- quantile(variable, probs = seq(0, 1, 1 / n_grupos))</pre>
  pcorte <- c(grupos[1] - 0.5, grupos[2:n_grupos], grupos[n_grupos + 1] + 0.5)</pre>
  colores <- paleta[</pre>
    findInterval(variable[match(cartografia@data$cusec, privacion_valencia[, 1])], pcorte)
  leyenda <- c()</pre>
  for (j in 2:length(pcorte)) {
    leyenda[j] <- paste0(round(pcorte[j - 1], 2), " - ", round(pcorte[j], 2))</pre>
```


Índice de privación

- **■** -155.99 -115.76
- **■** -115.76 -99.42
- -99.42 -83.63 -83.63 -67.05 -67.05 -23.49

8

Índice de privación

-39.35 - 1.32

1.32 - 13.55

13.55 - 22.51

22.51 - 31.86

31.86 - 72.97

