Numerical Computation

Vishnu Lokhande

Department of Computer Science and Engineering University at Buffalo, SUNY vishnulo@buffalo.edu

February 3rd, 2025

Overflow and Underflow

- Overflow happens when a number gets too large; While underflow happens when a number gets too small.
- The exponentiation can underflow when the argument is very negative, or overflow when it is very positive.

$$\operatorname{softmax}(\mathbf{x})_i = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

Output
How to deal with this?

Overflow and Underflow

- Overflow happens when a number gets too large; While underflow happens when a number gets too small.
- The exponentiation can underflow when the argument is very negative, or overflow when it is very positive.

$$\operatorname{softmax}(\mathbf{x})_i = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

Mow to deal with this?

$$\begin{aligned} \text{softmax}(\mathbf{x})_i &= \frac{e^{x_i}}{\sum_j e^{x_j}} = \frac{e^{x_i}/e^{\max x_{i'}}}{\sum_j e^{x_j}/e^{\max x_{i'}}} \\ &= \frac{e^{x_i - \max x_{i'}}}{\sum_j e^{x_j - \max x_{i'}}} \end{aligned}$$

Potentially gets underflow, but usually not a problem in practice because we care about the largest value.

Condition Number

- Conditioning refers to how rapidly a function changes with a small change in input.
- ② Consider $f(\mathbf{x}) = \mathbf{A}^{-1} \mathbf{x}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ has a engendecomposition with eigenvalues $\{\lambda_i\}$.
 - ▶ The condition number of **A** is defined as $\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$.
 - ▶ When this is large, the output $f(\mathbf{x})$ is very sensitive to input error (perturbation), *i.e.*, the inversion is inaccurate.
 - Poorly conditioned matrices amplify pre-existing errors when we multiply by its inverse.

Why?

Condition Number

- Conditioning refers to how rapidly a function changes with a small change in input.
- ② Consider $f(\mathbf{x}) = \mathbf{A}^{-1} \mathbf{x}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ has a engendecomposition with eigenvalues $\{\lambda_i\}$.
 - ► The condition number of **A** is defined as $\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$.
 - ▶ When this is large, the output $f(\mathbf{x})$ is very sensitive to input error (perturbation), *i.e.*, the inversion is inaccurate.
 - Poorly conditioned matrices amplify pre-existing errors when we multiply by its inverse.

$$\mathbf{A} = \mathbf{Q} \wedge \mathbf{Q}^T = \sum_i \lambda_i \underbrace{\mathbf{Q}_{:,i} \, \mathbf{Q}_{:,i}^T}_{\text{basis}}$$

$$\mathbf{A}^{-1} \, \delta = \sum_{i} \frac{\delta}{\lambda_{i}} \, \mathbf{Q}_{:,i} \, \mathbf{Q}_{:,i}^{T}$$

Gradient Descent

How to find the minimum value of a function *f*?

Critical Points

Gradient descent not always works.

Approximate Optimization

- In deep neural networks, it is found local optima is typically not a problem:
 - All local optima are global optima under some conditions.

Kawaguchi, NIPS 2016

Saddle Points

Curvature

- Local minimum/maximum has positive/negative curvature in all directions.
- Saddle points have both positive and negative curvature.

Hessian

① Second derivatives of the objective function $f(\mathbf{x})$:

$$\mathbf{H}_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x})$$

- Hessian is the Jacobian of the gradient.
- **3** The Hessian matrix is symmetric, *i.e.*, $\mathbf{H}_{ij} = \mathbf{H}_{jj}$.
 - ▶ It can be decomposed into a set of real eigenvalues and an orthogonal basis of eigenvectors: $\mathbf{H} = \sum_i \lambda_i \mathbf{v}_i \mathbf{v}_i^T$.

Pooring Conditioning

- There are different second derivatives in each direction at a single point.
- ② Condition number of **H**, *e.g.*, $\frac{\lambda_{\max}}{\lambda_{\min}}$ measures how much they differ:
 - Gradient descent performs poorly when H has a poor condition number, because dirivatives in different dimensions are uneven.
 - Step size must be small so as to avoid overshooting the minimum, but it will be too small to make progress in other directions with less curvature.

Gradient Descent with Poor Conditioning

Constrained Optimization: Example (Optional)

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A} \mathbf{x} - \mathbf{b}\|^{2}$$

s.t. $\mathbf{x}^{T} \mathbf{x} \le 1$

- Introduce the Lagrangian $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda (\mathbf{x}^T \mathbf{x} 1)$, and solve $\min_{\mathbf{x}} \max_{\lambda > 0} L(\mathbf{x}, \lambda)$
- When $\frac{\partial L(\mathbf{x},\lambda)}{\partial \mathbf{x}}|_{\mathbf{x}^*} = 0$ and $\lambda \left(\mathbf{x}^{*T}\mathbf{x}^* 1\right) \leq 0$, then \mathbf{x}_i^* is an optimal solution for the original problem $\min_{\mathbf{x}} f(\mathbf{x})$.
- The conditions $\frac{\partial L(\mathbf{x},\lambda)}{\partial \mathbf{x}}|_{\mathbf{x}^*} = 0$ and $\lambda\left(\mathbf{x}^{*T}\mathbf{x}^* 1\right) \leq 0$ are called the Karush-Kuhn-Tucker conditions (KKT).

Constrained Optimization: KKT Conditions (Optional)

$$\min_{\mathbf{x}} \max_{\lambda \geq 0} L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda \left(\mathbf{x}^T \, \mathbf{x} - 1\right)$$

- If $\mathbf{x}^T \mathbf{x} 1 \le 0$, to maximize w.r.t. λ , λ needs to be set to 0:
 - recover the original problem
- If $\mathbf{x}^T\mathbf{x} 1 > 0$, to maximize w.r.t. $\lambda, \lambda = \infty$; However, the $\min_{\mathbf{x}}$ part will change the value of \mathbf{x} to avoid L to be infinity, until the min and max reach a balance, *i.e.*, the conditions $\frac{\partial L(\mathbf{x},\lambda)}{\partial \mathbf{x}}|_{\mathbf{x}^*} = 0$ and $\lambda \left(\mathbf{x}^{*T}\mathbf{x}^* 1\right) \leq 0$ satisfy.
- 3 In practice, we can use gradient descent to approximately solve for ${\bf x}$ and λ alternatively.