Лекция 16. Коды, исправляющие одну ошибку. Коды Хэмминга и их свойства. Мощность кода, исправляющего одну ошибку.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Рассмотрим один вид кодов, исправляющих одну ошибку.

Они основаны на свойствах представления натуральных чисел в позиционной системе счисления.

Такие коды называются кодами Хэмминга.

Вспомогательные множества

Пусть $n \ge 3$, $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$, и $N_n = \{1, 2, \dots, n\}$.

Любое число $s \in N_n$ можно представить в двоичной системе счисления с k разрядами:

$$s_{k-1}\ldots s_1s_0,$$

где
$$s_{k-1}, \ldots, s_1, s_0 \in B$$
 и $s = \sum_{i=0}^{k-1} s_i \cdot 2^i$.

Для каждого i = 0, 1, ..., k - 1 положим:

$$D_i = \{s \in N_n \mid s_i = 1\}.$$

Другими словами, в D_i содержатся все натуральные числа, не превосходящие n, в двоичном представлении которых i-й разряд равен 1.

Вспомогательные множества

Например, пусть n = 5. Тогда $2^2 < n < 2^3$ и

$$N_5 = \{1, 2, 3, 4, 5\}.$$

Рассмотрим представление чисел из N_5 в двоичной системе счисления:

$s \in N_5$	<i>s</i> ₂	s_1	<i>s</i> ₀
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1

Получаем:

$$\begin{array}{rcl} D_0 & = & \{1,3,5\}, \\ D_1 & = & \{2,3\}, \\ D_2 & = & \{4,5\}. \end{array}$$

Свойства вспомогательных множеств

Предложение 16.1. Пусть $D_0, D_1, \ldots, D_{k-1}$ — введенные выше множества. Тогда:

- 1) $2^{i} \in D_{i}$ и $2^{j} \notin D_{i}$ при $j \neq i$;
- $2) \min_{s \in D_i} s = 2^i.$

00000000000000000

Коды Хэмминга

Пусть $n \ge 3$ и $2^{k-1} < n < 2^k$, где $k \in \mathbb{N}$.

Множество $H \subseteq B^n$ называется **кодом Хэмминга** порядка n, если для любого набора $\beta \in H$ верна система уравнений:

$$\begin{cases}
\bigoplus_{j \in D_0} \beta_j &= 0, \\
\bigoplus_{j \in D_1} \beta_j &= 0, \\
\dots \\
\bigoplus_{j \in D_{k-1}} \beta_j &= 0,
\end{cases} (*)$$

и, кроме того, H содержит все наборы из B^n , для которых эта система (*) верна.

Пример. Проверим, принадлежат ли коду Хэмминга H порядка 5 слова $\beta_1=11100$ и $\beta_2=00111?$

Мы уже построили множества D_0 , D_1 и D_2 :

$$D_0 = \{1, 3, 5\}, D_1 = \{2, 3\}, D_2 = \{4, 5\}.$$

1. Для слова $\beta_1 = 11100$:

11100:
$$1 \oplus 1 \oplus 0 = 0$$
,
11100: $1 \oplus 1 = 0$,
11100: $0 \oplus 0 = 0$.

Значит, $\beta_1 \in H$.

2. Для слова $\beta_2 = 00111$:

$$\begin{array}{ll} 00111: & 0 \oplus 1 \oplus 1 = 0, \\ 00111: & 0 \oplus 1 = \frac{1}{1}, \\ 00111: & 1 \oplus 1 = 0. \end{array}$$

Теорема 16.1. Пусть $n \geqslant 3$ и $2^{k-1} < n < 2^k$. Код Хэмминга порядка n содержит 2^{n-k} слов и исправляет одну ошибку.

00000000000000000

Коды Хэмминга

д /\Siminina

Доказательство. Пусть $H \subseteq B^n$ — код Хэмминга.

1. Сначала найдем число слов в коде H. По определению кода Хэмминга для любого $\beta \in H$ верна система:

$$\begin{cases}
\bigoplus_{j \in D_0} \beta_j &= 0, \\
\bigoplus_{j \in D_1} \beta_j &= 0, \\
\vdots \\
\bigoplus_{j \in D_{k-1}} \beta_j &= 0.
\end{cases} (*)$$

Доказательство. Перепишем систему (*) в виде:

$$\begin{cases}
\beta_{2^{0}} &= \bigoplus_{j \in D_{0}, j \neq 2^{0}} \beta_{j}, \\
\beta_{2^{1}} &= \bigoplus_{j \in D_{1}, j \neq 2^{1}} \beta_{j}, \\
\vdots \\
\beta_{2^{k-1}} &= \bigoplus_{j \in D_{k-1}, j \neq 2^{k-1}} \beta_{j}.
\end{cases} (**)$$

Отметим, что $\beta_{2^0},\beta_{2^1},\dots,\beta_{2^{k-1}}$ в правых частях системы (**) не встречаются.

Поэтому если заданы $\beta_j \in B$ при $j \in N_n$, $j \neq 2^0, 2^1, \dots, 2^{k-1}$, то $\beta_{2^0}, \beta_{2^1}, \dots, \beta_{2^{k-1}}$ однозначно определяются из системы (**).

Доказательство. Число возможностей задать $\beta_i \in B$ при $i \in N_n, i \neq 2^0, 2^1, \dots, 2^{k-1}$ равно 2^{n-k} .

Каждая из них определяет одно слово из H, а все они — все слова из H.

Значит,
$$|H| = 2^{n-k}$$
.

Доказательство. 2. Теперь покажем, что код H исправляет одну ошибку замещения.

Пусть $\beta \in H$, в слове β произошла ошибка в s-м разряде и оно перешло в слово $\beta' \in B^n$.

Отметим, что

$$\beta_i' = \left\{ \begin{array}{ll} \beta_i, & i \neq s, \\ \bar{\beta}_i, & i = s. \end{array} \right.$$

Пусть в двоичной системе счисления число $s,\ 1\leqslant s\leqslant n,$ записывается как $s_{k-1}\dots s_1s_0$, где $s_{k-1},\dots,s_1,s_0\in B$ и

$$s = \sum_{i=0}^{k-1} s_i \cdot 2^i.$$

Доказательство. Для каждого $i = 0, 1, \dots, k-1$ рассмотрим проверочную сумму:

$$\bigoplus_{j\in D_i} \beta'_j.$$

Возможны два случая.

Доказательство. 1) Если $s_i = 0$, то $s \notin D_i$.

Поэтому $\beta'_i = \beta_j$ для всех $j \in D_i$.

Алгоритмы

Получаем:

$$\bigoplus_{j\in D_i}\beta'_j = \bigoplus_{j\in D_i}\beta_j = 0.$$

Значит, в этом случае верно:

$$\bigoplus_{i\in D_i}\beta_j'=s_i.$$

Доказательство. 2) Если $s_i = 1$, то $s \in D_i$.

Поэтому $\beta_i'=\beta_j$ для всех $j\in D_i$, $j\neq s$, $\beta_s'=\bar{\beta}_s=\beta_s\oplus 1$.

Получаем:

$$\bigoplus_{j \in D_i} \beta'_j = \left(\bigoplus_{j \in D_i, j \neq s} \beta_j \right) \oplus \beta'_s = \left(\bigoplus_{j \in D_i, j \neq s} \beta_j \right) \oplus (\beta_s \oplus 1) = \\
= \left(\bigoplus_{j \in D_i} \beta_j \right) \oplus 1 = 1.$$

Значит, и в этом случае верно:

$$\bigoplus_{i\in D_i}\beta_j'=s_i.$$

Доказательство. Итак, верны равенства:

$$\begin{cases} s_0 &= \bigoplus_{j \in D_0} \beta'_j, \\ s_1 &= \bigoplus_{j \in D_1} \beta'_j, \\ \dots \\ s_{k-1} &= \bigoplus_{j \in D_{k-1}} \beta'_j. \end{cases}$$

Значит, по неправильному слову β' можно найти все s_0,s_1,\dots,s_{k-1} и разряд $s=\sum\limits_{i=0}^{k-1}s_i\cdot 2^i$, в котором произошла ошибка в слове β .

Доказательство. Теперь если s=0, то ошибки не было, а если $s\neq 0$, то можно восстановить правильное слово β :

$$\beta_i = \left\{ \begin{array}{ll} \beta_i', & i \neq s, \\ \bar{\beta}_i', & i = s. \end{array} \right.$$

Информационные и проверочные разряды

При рассмотрении кодов Хэмминга обычно в словах разряды с номерами, являющимися степенями двойки, называют проверочными, а остальные разряды — информационными.

Построение кода Хэмминга

В доказательстве теоремы 16.1 показано, как для заданного n найти код Хэмминга H порядка n.

Построение кода Хэмминга

Пример. Найдем код Хэмминга H порядка 5. Мы знаем:

$$D_0 = \{1,3,5\}, D_1 = \{2,3\}, D_2 = \{4,5\}.$$

Поэтому:

$$\begin{cases} \beta_1 &= \beta_3 \oplus \beta_5, \\ \beta_2 &= \beta_3, \\ \beta_4 &= \beta_5. \end{cases}$$

Получаем:

β_3	β_5	$\beta \in H$
0	0	00000
0	1	10011
1	0	11100
1	1	01111

Значит,

$$H = \{00000, 10011, 11100, 01111\}.$$

Алгоритмы

Из доказательства теоремы 16.1 можно извлечь алгоритмы кодирования, исправления ошибки и декодирования в коде Хэмминга.

Пусть
$$n \ge 3$$
, $2^{k-1} < n < 2^k$ и $m = n - k$.

Если H — код Хэмминга порядка n, то H содержит 2^m слов и исправляет одну ошибку.

Поэтому найдется такое разделимое кодирование

$$\varphi_H: A^m \to B^n$$
,

что
$$C_{\varphi_H} = H$$
.

Кодирование в коде Хэмминга

Опишем алгоритм кодирования в коде Хэмминга.

Вход: слово
$$\alpha \in A^m$$
, где $m = n - k$, $n \geqslant 3$, $2^{k-1} < n < 2^k$.

$$B$$
ыход: слово $\beta=\varphi_H(\alpha)\in H$, где $\beta\in B^n$.

Кодирование в коде Хэмминга

Описание алгоритма.

1. Заполнение информационных разрядов. Для всех $i \in N_n, i \neq 2^0, 2^1, \dots, 2^{k-1}$ положить:

$$\beta_j = \alpha_{j - \lceil \log_2 j \rceil}.$$

2. Заполнение проверочных разрядов. Для всех i = 0, 1, ..., k - 1 положить:

$$\beta_{2^i} = \bigoplus_{j \in D_i, j \neq 2^i} \beta_j.$$

3. Выдать $\beta \in H$.

Окончание описания алгоритма.

Пример. Закодируем в коде Хэмминга слово $\alpha = 0011$.

1. Заполняем информационные разряды:

$$\beta_3 = 0, \ \beta_5 = 0, \beta_6 = 1, \beta_7 = 1.$$

Значит, n = 7 и k = 7 - 4 = 3.

2. Заполняем проверочные разряды:

$$\begin{array}{lll} \beta_1 &=& \beta_3 \oplus \beta_5 \oplus \beta_7 = 0 \oplus 0 \oplus 1 = 1, \\ \beta_2 &=& \beta_3 \oplus \beta_6 \oplus \beta_7 = 0 \oplus 1 \oplus 1 = 0, \\ \beta_4 &=& \beta_5 \oplus \beta_6 \oplus \beta_7 = 0 \oplus 1 \oplus 1 = 0. \end{array}$$

3. Выдаем: $\beta = 1000011 \in H$.

Исправление ошибки в коде Хэмминга

Опишем алгоритм исправления ошибки в коде Хэмминга

Bход: слово $\beta' \in B^n$, полученнюе из некоторого слова $\beta \in H$, в котором могла произойти одна ошибка замещения, где $n \geqslant 3$, $2^{k-1} < n < 2^k$.

Bыход: слово $\beta \in H$, где $\beta \in B^n$.

Исправление ошибки в коде Хэмминга

Описание алгоритма.

1. Вычисление проверочных сумм.

Для всех i = 0, 1, ..., k - 1 найти:

$$s_i = \bigoplus_{j \in D_i} \beta'_j,$$

затем положить: $s = \sum_{i=0}^{k-1} s_i \cdot 2^i$.

2. Исправление ошибки.

Если s=0, то *ошибки нет*, положить:

$$eta_j = eta_j'$$
 при $j = 1, \dots, n$.

Если $s \neq 0$, то *ошибка в s-м разряде*, положить:

$$eta_j=eta_j'$$
 при $j=1,\ldots,$ $n,j
eq s$ и $eta_s=areta_s'.$

3. Выдать $\beta \in H$.

Окончание описания алгоритма.

Исправление ошибки в коде Хэмминга

Пример. Исправим ошибку в слове $\beta' = 1010011$.

1. Вычисляем проверочные суммы:

$$\begin{array}{lll} s_0 & = & \beta_1' \oplus \beta_3' \oplus \beta_5' \oplus \beta_7' = 1 \oplus 1 \oplus 0 \oplus 1 = 1, \\ s_1 & = & \beta_2' \oplus \beta_3' \oplus \beta_6' \oplus \beta_7' = 0 \oplus 1 \oplus 1 \oplus 1 = 1, \\ s_2 & = & \beta_4' \oplus \beta_5' \oplus \beta_6' \oplus \beta_7' = 0 \oplus 0 \oplus 1 \oplus 1 = 0, \end{array}$$

поэтому
$$s = 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 = 1 + 2 = 3$$
.

2. Исправляем ошибку: ошибка в 3-м разряде, значит,

$$\beta_3 = \bar{\beta}_3' = \bar{1} = 0.$$

3. Выдаем: $\beta = 1000011 \in H$.

Опишем алгоритм декодирования в коде Хэмминга.

Bход: слово $\beta \in H$, где $\beta \in B^n$, $n \geqslant 3$, $2^{k-1} < n < 2^k$.

Bыход: слово $\alpha \in A^m$, где $\beta = \varphi_H(\alpha)$, m = n - k.

Декодирование в коде Хэмминга

Описание алгоритма.

- 1. Вычеркивание проверочных разрядов. Вычеркнуть в слове β разряды β_i для всех $j=2^0,2^1,\ldots,2^{k-1}$, затем оставшееся слово обозначить α .
- 2. Выдать $\alpha \in A^m$.

Окончание описания алгоритма.

Декодирование в коде Хэмминга

Коды Хэмминга

Пример. Декодируем слово $\beta = 1000011 \in H$.

1. Вычеркиваем проверочные разряды:

$$\alpha = 1000011.$$

2. Выдаем: $\alpha = 0011$.

Напомним, что $M_t(n)$ обозначает наибольшее число кодовых слов в коде C, $C \subseteq B^n$, исправляющем t ошибок замещения.

Мы показали, что

$$\frac{2^n}{S_{2t}(n)} \leqslant M_t(n) \leqslant \frac{2^n}{S_t(n)},$$

где $S_r(n)$ обозначает число наборов в шаре радиуса r из B^n .

Уточним оценку $M_1(n)$ для кодов, исправляющих одну ошибку.

Теорема 16.2. При $n \geqslant 1$ справедливы следующие неравенства:

$$\frac{2^n}{2n}\leqslant M_1(n)\leqslant \frac{2^n}{n+1}.$$

Доказательство. 1. Верхняя оценка. Известно, что

$$M_1(n)\leqslant \frac{2^n}{S_1(n)}.$$

Заметим, что $S_1(n) = n + 1$.

Поэтому

$$M_1(n) \leqslant \frac{2^n}{n+1}$$
.

Доказательство. 2. Нижняя оценка. Если $n \leq 2$, то оценка верна. Поэтому пусть $n \geqslant 3$.

Сначала пусть $2^{k-1} < n < 2^k$, тогда $k = \lceil \log_2 n \rceil$.

Рассмотрим код Хэмминга H порядка n. Он содержит 2^{n-k} слов и исправляет одну ошибку.

Значит,

$$M_1(n)\geqslant |H|=2^{n-k}.$$

Получаем:

$$M_1(n) \geqslant 2^{n-k} = \frac{2^n}{2^{\lceil \log_2 n \rceil}} \geqslant \frac{2^n}{2^{1 + \log_2 n}} = \frac{2^n}{2^n}.$$

Доказательство. 2. Нижняя оценка.

Теперь пусть $n = 2^k$, тогда $k = \log_2 n$.

Рассмотрим код Хэмминга H порядка (n-1) и построим по нему код $C\subseteq B^n$, добавив к каждому кодовому слову из H в конце 0.

Код C содержит 2^{n-1-k} слов и исправляет одну ошибку.

Значит,

$$M_1(n) \geqslant |C| = 2^{n-1-k} = \frac{2^n}{2^{1+\log_2 n}} = \frac{2^n}{2n}.$$

Увеличение длины слов в коде Хэмминга

Пусть $n \ge 3$, $2^{k-1} < n < 2^k$, где $k = \lceil \log_2 n \rceil$, и m = n - k.

Закодируем слово $\alpha \in A^m$ в коде Хэмминга: $\beta = \varphi_H(\alpha) \in H$, где $\beta \in B^n$.

Посмотрим, насколько увеличивается длина слова при кодировании в коде Хэмминга:

$$\frac{|\beta|}{|\alpha|} = \frac{n}{m} = 1 + O\left(\frac{\log_2 n}{n}\right).$$

 T . e. при росте n отношение длины кода слова к длине слова стремится к единице.

Предложение 16.2. Код Хэмминга $H \subseteq B^n$ является линейным кодом, $n \geqslant 3$.

Доказательство. Если H — код Хэмминга, то он содержит в точности наборы из B^n , являющиеся решениями однородной системы линейных уравнений (*).

Множество решений любой однородной системы линейных уравнений над полем является линейным пространством над этим полем.

Следовательно, H — линейное пространство, а значит, H — линейный код.

Коды, исправляющие ошибки

Коды Хэмминга применяются, в частности, в некоторых типах цифровой памяти и при хранении данных.

Рассматриваются и применяются другие виды кодов, исправляющих ошибки, например:

- коды Рида-Маллера, которые основаны *на представлении* функций алгебры логики в виде полиномов Жегалкина;
- коды Боуза-Чоудхури-Хоквингема (БЧХ-коды), которые основаны на свойствах конечных полей;
- а также другие.

Задачи для самостоятельного решения

1. Покажите, что множество $D_i \subseteq N_n$ можно построить следующим образом:

начать с числа 2^{i} и, пока не закончится множество N_{n} , повторить: 2^i последовательных чисел включить в D_i , затем 2^i последовательных чисел пропустить.

Например, пусть n = 10 и $N_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

Для D_1 начинаем с числа $2^1 = 2$ и далее включаем по два последовательных числа и пропускаем по два последовательных числа, пока не достигнем числа 10:

$$D_1 = \{2, 3, 6, 7, 10\}.$$

Задачи для самостоятельного решения

Проверочной матрицей кода Хэмминга порядка n называется матрица H_n из нулей и единиц размера $k \times n$, в которой столбцами являются числа от 1 до n, записанные сверху вниз в двоичной системе счисления:

$$H_n = (1 \mid 2 \mid \ldots \mid n).$$

Например, проверочная матрица H_5 :

$$H_5 = \left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

Задачи для самостоятельного решения

- 2. Покажите, как можно найти множества D_0, D_1, \dots, D_{k-1} по проверочной матрице H_n .
- 3. Опишите алгоритм вычисления проверочных разрядов $\beta_{2^0}, \beta_{2^1}, \ldots, \beta_{2^{k-1}}$ с помощью проверочной матрицы H_n .
- 4. Опишите алгоритм исправления ошибки в слове β' с помощью проверочной матрицы H_n .

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 58-60.
- 2. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа. 2001. С. 288–296.
- 3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. VII 3.21, 3.22, 3.23.