李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)· 课程资料包 @ShowMeAl

课件 一键打包下载

毛 七 官方笔记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习深度学习

批次标准化

Auto-encoder

生成式对抗网络

学习率

卷积神经网络

神经网络压缩

GAN 强化学习

元学习

白监督

Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复「添砖加页」

Machine Learning HW9

Explainable Al

ML TAs ntu-ml-2021spring-ta@googlegroups.com

Outline

- Topic I: CNN
 - Model & dataset
 - Task
 - o Lime
 - Saliency Map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradient
- Topic II: BERT
 - Attention Visualization
 - Embedding Visualization
 - Embedding Analysis

Topic I: CNN explanation

Model: food classification

- We use a trained classifier model to do some explanations
- The classifier model is a CNN model, aim to classify different kinds of food
- Dataset: 11 categories of food (same dataset in HW3)
- Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice,
 Seafood, Soup, and Vegetable/Fruit
- We only pick up 10 images in trainset for observation

Task

- Run the sample code and finish 20 questions (all multiple choice form)
- We'll cover 5 explanation approaches
 - Lime package
 - Saliency map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradients
- You need to:
 - Know the basic idea of each method
 - Run the code and observe the results
 - For some case you may need to modify a little part of the code

Task: observation

- To finish this homework, you only need to observe these ten images.
- Please make sure you got these 10 images in your code.
- We encourage you to observe other images!

Lime

Question 1 to 4

Install the Lime package > pip install lime==0.1.1.37

GitHub Repo: https://github.com/marcotcr/lime

Ref: https://goo.gl/anaxvD

Saliency Map

Question 5 to 9

Compute the gradient of output category with respect to input image.

Ref:

https://medium.com/datadriveninvestor/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

Smooth Grad

Question 10 to 13

 Randomly add noise to the input image, and get the heatmap. Just like what we did in the saliency method.

Ref:

https://arxiv.org/pdf/1706.03825.pdf

Filter Visualization

Question 14 to 17

 Use **Gradient Ascent** method to find the image that activates the selected filter the most and plot them (start from white noise).

Integrated Gradients

Question 18 to 20

Flexible baseline

$$(x_i - \bar{x_i}) \cdot \int_{\alpha=0}^{1} \frac{\partial S_c(\tilde{x})}{\partial (\tilde{x_i})} \bigg|_{\tilde{x}=\bar{x}+\alpha(x-\bar{x})} d\alpha$$

Ref:

https://arxiv.org/pdf/1703.01365.pdf

Topic II: BERT explanation

Attention Visualization

Question 21 to 24

Visualize attention mechanism of bert using

https://exbert.net/exBERT.html

Objective:

- (1) What are the functions of different attention heads?
- (2) How does the model predict masked words?

Alternative Link

https://huggingface.co/exbert

Paper: https://arxiv.org/abs/1910.05276

Tutorial: https://youtu.be/e31oyfo_thY

Embedding Visualization

Question 25 to 27

Visualize embedding across layers of bert using PCA (Principal Component Analysis)

Objective:

- (1) How does bert solve question answering?
- (2) Change of embedding before and after fine-tuning

You only need to change code in the section "TODO"!

Embedding Analysis

Question 28 to 30

Compare output embedding of bert

using (1) Euclidean distance

(2) Cosine similarity

Objective:

- (1) Observe different meanings for the same word
- (2) Observe representation in different layers

You only need to change code in the section "TODO"!

Grading

- 30 multiple choice questions
- CNN: 20 questions
 - 0.3 pt for each question
- BERT: 10 questions
 - o 0.4 pt for each question
- You have to choose ALL the correct answers for each question

Submission

- No late submission!
- Deadline: 2021/5/28 23:59

Reminder

- Please don't change the original code, unless the question request you to do so.
- If there is any confusion, email the TA with the subject "[HW9] ..."

Links

• Code:

[Colab]

• Questions:

[NTU COOL]

If any questions, you can ask us via...

- NTU COOL (recommended)
 - https://cool.ntu.edu.tw/courses/4793
- Email
 - ntu-ml-2021spring-ta@googlegroups.com
 - The title must begin with "[hw9]"
- TA hours
 - Each Monday 19:00~21:00 @Room 101, EE2 (電機二館101)
 - Each Friday 13:30~14:20 Before Class @Lecture Hall (綜合大講堂)
 - Each Friday During Class

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)· 课程资料包 @ShowMeAl

课件 一键打包下载

官方筆记翻译

件码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4v137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmegi.tech/ntu-hvlee-ml

机器学习 深度学习

Auto-encoder

生成式对抗网络

学习率 自注意力机制

卷积神经网络

白监督 GAN

Awesome Al Courses Notes Cheatsheets 是 ShowMeAI 资料库的分支系列,覆盖 最具知名度的 TOP50+ 门 AI 课程, 旨在为读者和学习者提供一整套高品质中文学习笔 记和谏杳表。

点击课程名称, 跳转至课程**资料**句页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复[添砖加页]

批次标准化

神经网络压缩

强化学习

元学习

Transformer