```
In [48]: import pandas as pd
   import numpy as np
   import math
   import matplotlib.pyplot as plt
   import seaborn as sns
   from scipy.stats import norm
```

2.1 Annual Salaries US v UK

```
In [2]: df_us = pd.read_clipboard()
In [4]: df_us
```

Out[4]:

	US Base Salary	US Annual Bonus	US Option Gains
0	1.02	2.40	59.95
1	1.40	1.90	26.67
2	1.00	0.00	2.63
3	1.28	1.19	22.33
4	1.03	8.50	4.70
5	1.25	1.50	106.48
6	0.76	5.00	107.22
7	2.80	7.20	261.54
8	1.33	1.30	66.84
9	1.10	1.45	101.60

```
In [5]: df_uk = pd.read_clipboard()
```

In [6]: df_uk

Out[6]:

	UK Base Salary	UK Annual Bonus	UK Option Gains
0	0.60	0.11	0.99
1	1.43	0.79	0.02
2	0.80	0.28	0.35
3	0.91	0.52	0.04
4	1.11	0.59	4.19
5	1.50	1.45	0.87
6	0.70	0.16	0.00
7	0.76	0.32	2.58
8	1.30	1.72	119.51
9	0.94	0.00	6.07

In [7]: | df_us.describe()

Out[7]:

	US Base Salary	US Annual Bonus	US Option Gains
count	10.000000	10.000000	10.000000
mean	1.297000	3.044000	75.996000
std	0.561408	2.853054	76.816117
min	0.760000	0.000000	2.630000
25%	1.022500	1.337500	23.415000
50%	1.175000	1.700000	63.395000
75%	1.317500	4.350000	105.260000
max	2.800000	8.500000	261.540000

In [8]: df_uk.describe()

Out[8]:

	UK Base Salary	UK Annual Bonus	UK Option Gains
count	10.000000	10.000000	10.000000
mean	1.005000	0.594000	13.462000
std	0.315533	0.576738	37.317414
min	0.600000	0.000000	0.000000
25%	0.770000	0.190000	0.117500
50%	0.925000	0.420000	0.930000
75%	1.252500	0.740000	3.787500
max	1.500000	1.720000	119.510000

```
In [25]: plt.figure(figsize=(16, 10))
    df_us["US Base Salary"].hist(label="US Base Salary")
    df_uk["UK Base Salary"].hist()
    plt.vlines(df_us["US Base Salary"].mean(), 0, 4, label="Average US Base
    plt.vlines(df_uk["UK Base Salary"].mean(), 0, 4, label="Average UK Base
    plt.legend()
```

Out[25]: <matplotlib.legend.Legend at 0x1a282c5cc0>


```
In [26]: df us.median()
Out[26]: US Base Salary
                               1.175
         US Annual Bonus
                               1.700
         US Option Gains
                              63.395
         dtype: float64
In [27]: df_uk.median()
Out[27]: UK Base Salary
                              0.925
         UK Annual Bonus
                              0.420
         UK Option Gains
                              0.930
         dtype: float64
In [32]: us_total_comp = df_us.apply(lambda x: sum(x), axis=1)
In [33]: us_total_comp
Out[33]: 0
                63.37
          1
                29.97
          2
                 3.63
          3
                24.80
                14.23
          4
          5
               109.23
          6
               112.98
          7
               271.54
          8
                69.47
               104.15
          dtype: float64
In [34]: uk total comp = df uk.apply(lambda x: sum(x), axis=1)
In [35]: uk total comp
Out[35]: 0
                 1.70
          1
                 2.24
          2
                 1.43
          3
                 1.47
          4
                 5.89
          5
                 3.82
          6
                 0.86
          7
                 3.66
          8
               122.53
                 7.01
         dtype: float64
```

In [39]: sns.distplot(us total comp)

Out[39]: <matplotlib.axes._subplots.AxesSubplot at 0x1a27d56860>

In [40]: sns.distplot(uk_total_comp)

Out[40]: <matplotlib.axes. subplots.AxesSubplot at 0x1a28e8aac8>

In [44]: us_total_comp.median(), us_total_comp.mean(), us_total_comp.var(), us_to

Out[44]: (66.42, 80.337, 6145.253356666668, 78.39166637255946)

In [46]: uk_total_comp.median(), uk_total_comp.mean(), uk_total_comp.var(), uk_to

Out[46]: (2.95, 15.06099999999999, 1429.9929877777781, 37.81524808563046)

2.2 INSEAD weight sample

```
In [47]: mu = 73.69
sd = 11.46

In [50]: inseadnorm = norm(mu, sd)

In [51]: x = np.arange(0, 150)

In [56]: xsub1, x1 = mu-sd, mu+sd
    xsub2, x2 = mu-2*sd, mu+2*sd
    xsub3, x3 = mu-3*sd, mu+3*sd
```

```
In [60]: plt.figure(figsize=(16,10))
   plt.plot(x, inseadnorm.pdf(x))
   plt.vlines(xsub3, 0,0.04, label=xsub3)
   plt.vlines(xsub2, 0,0.04, label=xsub2)
   plt.vlines(xsub1, 0,0.04, label=xsub1)
   plt.vlines(x1, 0,0.04, label=x1)
   plt.vlines(x2, 0,0.04, label=x2)
   plt.vlines(x3, 0,0.04, label=x3)
   plt.legend()
```

Out[60]: <matplotlib.legend.Legend at 0x1a2904a748>

2.3 Average INSEAD Salary