CS/S.TECH (EE)/SEM-7/EE-703D/08/(09)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 NON-CONVENTIONAL ENERGY SOURCES SEMESTER - 7

Time: 3 Hours	A STATE OF STATE OF	Full Marks: 70

GROUP - A

Multiple Choice Type Questions

Ch	oose 1	the correct alternatives for a	ny ten of th	ne following :	10 × 1 = 10			
ŋ		ogas is produced by a par	ticular typ	e of bacterial digestion.	The digestion			
	a)	Normal digestion	b)	Aerobic digestion				
	c)	Anaerobic digestion	d)	None of these.				
ti)	Th	e greenhouse gas is						
	a)	carbon dioxide	b)	methane				
	c)	nitrous oxide	d)	all of these.				
m)	Ma	ximum efficiency of a sola	r cell is ar	ound 20% when the cel	l is fabricated			
	fro							
	a)	amorphous Si	b)	monocrystalline Si				
	c)	polycrystalline Si	d)	none of these.				
iv)	Do	Dolphin mechanism is a method of extracting						
	a)	solar energy	b)	wind energy				
	c)	ocean wave energy	d)	geothermal energy.				
v)	Geo	othermal energy field is avail	lable mainly	y in which of the following	g areas ?			
	a)	Hilly	b)	Volcanic				
	c)	Offshore	d)	Desert.				

88012 (15/12)

TECH	(EE)/S	EM-7/EE-703D/06/(09)	4	
VI)	The	energy radiated by the sun o	n a brigh	it day is
	a)	2.5 kW/m ²	b)	1.0 kW/m ²
	c)	500 W/m ²	d)	200 W/m ²
vii)	On	an average the temperature	of the	earth increases per km as one m
	inwa	ard by		
	a)	60°C	b)	10°C
	(c)	150°C ≥ 55	d)	30°C.
viii)	Bio-	diesel can be mixed with whi	ch of the	following?
	a)	Petrol	b)	Diesel
£	c)	Kerosene	d)	All of these.
tx)	F1II	factor of a good silicon solar o	ell is:	
	a)	less than 0.5	b)	0.5 to 0.7
	c)	0.7 to 1.0	d)	1.0 to 2.0.
x)	Lign	in content of biomass		
	a)	delays chemical reaction	b)	quickens chemical reaction
	c)	has no effect	d)	none of these.
xd)	Proc	duces gas consists of		
•	a)	only CH 4	b)	CH ₄ and CO ₂
	c)	CO, H ₂ and N ₂	d)	none of these.
xii)	An i	lluminated solar cell is		
	a)	constant current device		
	b)	constant voltage device		
	(c)	constant power output devi	ice	
	d)	none of these.		
xiii)	The	turbine normally employed in	n tidal po	ower is
	a)	simple impulse type	b)	propeller type
	c)	reaction type	d)	reversible type.

CS/MARCH (EE)/SEM-7/EE-703D/08/(09)

Ę

GROUP - B

(Short Answer Type Questions)

			41	-541-	£_11	-E
	Answer	any	uree	or the	: IOHOM	uie.
10000					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

 $3 \times 5 = 15$

- 2. a) What is the basic principle of tidal power?
 - b) What are the limitations of tidal power schemes?

3 + 2

- 3. a) Give a list of materials used for biogas generation.
 - b) Write the main applications of biogas.

3+2

- 4. With a block diagram, describe an ethanol plant from sugarcane.
- A deep ocean wave of 2 m peak appears at a period of 8s. Find the wavelength, phase velocity, power associated with the wave. At this power rate, find the average annual wave energy in MWh/m.
- 6. An acid-lead battery bank is required for a solar generator serving a building with a load of 2542 W.h.day⁻¹ for 3 days. The rated voltage of a battery is 12 V.

Determine the battery storage capacity for battery efficiency of 83%, maximum depth of discharge 0.8 and reserve factor of 1.2. Also calculate the number of batteries connected in parallel if the capacity of a single battery is 180 A.h.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What are photovoltaic device?
 - b) Outline briefly the principle of operation of a photovoltaic device.
 - c) Describe the different types of solar energy collectors in common use along with diagram.

 2 + 5 + 8
- 8. a) A propeller wind turbine has a diameter of 120 m and runs at 1 standard atmosphere and 18°C has a velocity of 15 m/s. Calculate
 - i) the total power density in the wind stream
 - ii) the total power
 - the torque and the thrust.

88012 (15/12)

CB/B.TECH (EE)/SEM-7/EE-703D/08/(09)

- b) Describe the main components of a wind power plant.
- c) What is Magnus effect?
- d) What are the factors to be considerd for selecting wind power plant?

6 + 4 + 2 + 3

9. What is meant by geo-thermal energy? By what methods this energy is extracted? What are the difficulties and disadvantages of a geo-thermal generation? What are the possible sources of geo-thermal pollution? How are these avoided?

2 + 2 + 4 + 4 + 3

- 10. Define 'Betz Limit' and derive the expression for maximum power coefficient for wind turbine. Explain the following terms showing velocity duration and power duration curve of wind energy
 - i) cut in speed
 - ii) rated wind speed
 - iii) cut out speed.

7 + 8

11. Write short notes on any three of the following:

 3×5

- i) Bio-diesel
- ti) NCES potential: Indian perspective
- iii) Solar desalination
- iv) Electro-chemical energy storage
- v) Different components of environment suitable for non-conventional energy development.

END