Solution	Marks	Remarks
$\frac{d}{dx}(\sin 2x) = \lim_{h \to 0} \frac{\sin 2(x+h) - \sin 2x}{h}$	1M	
$= \lim_{h \to 0} \left(\frac{2}{h} \cos \frac{2x + 2h + 2x}{2} \sin \frac{2x + 2h - 2x}{2} \right)$	1M	
$= \lim_{h \to 0} \left[2\cos(2x+h) \frac{\sin h}{h} \right]$		
$=2\lim_{h\to 0}\cos(2x+h)\cdot\lim_{h\to 0}\frac{\sin h}{h}$	1M	
Alternative Solution $= \lim_{h \to 0} \frac{\sin 2h \cos 2x + \cos 2h \sin 2x - \sin 2x}{h}$	1M	
$= \lim_{h \to 0} \frac{\sin 2h \cos 2x - \sin 2x \cdot 2\sin^2 h}{h}$	1 171	
$= \lim_{h \to 0} \frac{1}{h}$ $= 2\cos 2x \cdot \lim_{h \to 0} \frac{\sin 2h}{2h} - 2\sin 2x \cdot \lim_{h \to 0} \sin h \cdot \lim_{h \to 0} \frac{\sin h}{h}$	1M	
$=2\cos 2x$	1A	
	(4)	
$(1+ax)^n = 1 + C_1^n ax + C_2^n (ax)^2 + \cdots$		OR general term = $C_r^n(ax)$
$\begin{cases} na = -20 &(1) \\ \frac{n(n-1)}{2}a^2 = 180 &(2) \end{cases}$	1M	
$\frac{(2) \div (1)^2}{2n} = \frac{180}{400}$	1M	
$2n 400$ $n = 10$ $\therefore a = -2$	1A	
u = -2	1A (4)	
For $n=1$,		
L.H.S. $1 + \frac{1}{1 \times 4} = \frac{5}{4}$ and R.H.S. $= \frac{4(1)+1}{3(1)+1} = \frac{5}{4}$		
\therefore L.H.S. = R.H.S. and the statement is true for $n=1$.	1	
Assume $1 + \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{4k+1}{3k+1}$, where k is a positive in	iteger. 1	
$1 + \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3k-2)(3k+1)} + \frac{1}{[3(k+1)-2][3(k+1)+1]}$		
$= \frac{4k+1}{3k+1} + \frac{1}{(3k+1)(3k+4)}$ by the assumption	1	
$=\frac{(12k^2+19k+4)+1}{(3k+1)(3k+4)}$		
$=\frac{(3k+1)(4k+5)}{(3k+1)(3k+4)}$		
$=\frac{4(k+1)+1}{3(k+1)+1}$	1	
Hence the statement is true for $n = k + 1$. By the principle of mathematical induction, the statement is true for all positive integers n .	1	Follow through
79	(5)	

Since the curve passes through the point $(1, e)$, $e = e^1 - 1 + C$. i.e. $C = 1$ $\therefore y = e^x - x + 1$ (b) The curve cuts the y-axis at $(0, 2)$. When $x = 0$, $\frac{dy}{dx} = 0$. Hence the equation of tangent to the curve at $(0, 2)$ is $ y - 2 = 0(x - 0) $	1A 1M 1A	-4 -3 -2 -1 0 1 2
	(5)	
$3-3r^2$		
maximum point is (0, 1),	1A 1A	For both
(b) Since $x^2 + 3 > 0$, there is no vertical asymptote. $f(x) = -3 + \frac{12}{x^2 + 3}$	1M	OR $f(x) = \frac{\frac{3}{x^2} - 3}{\frac{3}{x^2} + 1}$
When $x \to \pm \infty$, $y \to -3$. Hence $y = -3$ is a horizontal asymptote.	1A	X
(c) $y = f(x)$ $y = f(x)$ $x \rightarrow x \rightarrow$		
	1A 1A	For shape of $y = f(x)$ For all correct
-4†	(6)	
	(0)	

	11.00	Solution	Marks	Remarks
6.	(a)	Area = $\int_0^4 \left[\left(\frac{-x^2}{2} + 2x + 4 \right) - 4 \right] dx + \int_4^5 \left[4 - \left(\frac{-x^2}{2} + 2x + 4 \right) \right] dx$	1M	у,
		$= \int_{0}^{4} \left(\frac{-x^{2}}{2} + 2x \right) dx + \int_{4}^{5} \left(\frac{x^{2}}{2} - 2x \right) dx$		L_1
		$= \left[\frac{-x^3}{6} + x^2 \right]_0^4 + \left[\frac{x^3}{6} - x^2 \right]_0^5$	1M	
		$=\frac{13}{2}$	1A	
	(b)	Volume = $\pi \int_0^5 \left(\frac{-x^2}{2} + 2x + 4 - 4 \right)^2 dx$	1M+1A	
		$= \pi \int_0^5 \left(\frac{x^4}{4} - 2x^3 + 4x^2 \right) dx$		
		$= \pi \left[\frac{x^5}{20} - \frac{x^4}{2} + \frac{4x^3}{3} \right]^5$		
		$=\frac{125\pi}{12}$	1A	
			(6)	
7.	(a)	$R.H.S. = \frac{\sin 2x}{1 + \cos 2x}$		
		$= \frac{2\sin x \cos x}{1 + 2\cos^2 x - 1}$ $= \frac{\sin x}{1 + 2\cos^2 x - 1}$	1M	For either formula
		$= \frac{\cos x}{\cos x}$ $= \tan x$ $= L.H.S.$	1	
	(b)	R.H.S. = $\frac{\sin 8y \cos 4y \cos 2y}{(1 + \cos 8y)(1 + \cos 4y)(1 + \cos 2y)}$		
		$= \tan 4y \cdot \frac{\cos 4y \cos 2y}{(1 + \cos 2y)} $ by (a)	1M	
		$=\frac{\sin 4y \cos 2y}{(1+\cos 4y)(1+\cos 2y)}$	1M	
		$= \tan 2y \cdot \frac{\cos 2y}{1 + \cos 2y} \text{by (a)}$	4	
		$=\frac{\sin 2y}{1+\cos 2y}$		
	Г	$= \tan y$ by (a)	1	
		Alternative Solution $= \frac{\sin 8y \cos 4y \cos 2y}{\left(\frac{\sin 8y}{\tan 4y}\right)\left(\frac{\sin 4y}{\tan 2y}\right)\left(\frac{\sin 2y}{\tan y}\right)} $ by (a)	1M	
		$= \frac{\sin 8y}{\sin 8y} \cdot \frac{\tan 4y \cos 4y}{\sin 4y} \cdot \frac{\tan 2y \cos 2y}{\sin 2y} \cdot \tan y$		
	L	$= \tan y$	1M + 1	$1M ext{ for } \tan x \cos x = \sin x$
		= L.H.S.		
		81	(5)	
		· ·		

		Solution	Marks	Remarks
	(a)	$\begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0 \end{pmatrix}^{-1} = \frac{1}{\begin{vmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0 \end{vmatrix}} \begin{pmatrix} 0 & k & -k \\ 0 & 0 & k^2 \\ k & -1 & 1 \end{pmatrix}^{T}$ $= \frac{1}{k^2} \begin{pmatrix} 0 & 0 & k \\ k & 0 & -1 \\ -k & k^2 & 1 \end{pmatrix}$	1M+1A	1M for minors
		$=\frac{1}{k^2} \begin{vmatrix} k & 0 & -1 \\ k & k^2 & 1 \end{vmatrix}$	1A	
	(b)	$\begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ 1 \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} x \\ 1 \\ z \end{pmatrix} = \frac{1}{k^2} \begin{pmatrix} 0 & 0 & k \\ k & 0 & -1 \\ -k & k^2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \text{by (a)}$ $= \frac{1}{k^2} \begin{pmatrix} k \\ 2k - 1 \\ 2k^2 - 2k + 1 \end{pmatrix}$ From the second row, we have $\frac{2k - 1}{k^2} = 1$.	1 M	
		Alternative Solution $(x+k)$ (2)		
			1M	
		1		
		From the first and third rows, we have $x + k = 2$ and $x = \frac{1}{k}$.		
		$\therefore \frac{1}{k} + k = 2 .$		
	,	i.e. $k^2 - 2k + 1 = 0$		
		k = 1	1A	
			(5)	
•	(a)	The augmented matrix is $\begin{pmatrix} 1 & -a & 1 & 2 \\ 2 & 1-2a & 2-b & a+4 \\ 3 & 1-3a & 3-ab & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & -a & 1 & 2 \\ 0 & 1 & -b & a \\ 0 & 1 & -ab & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & -a & 1 & 2 \\ 0 & 1 & -b & a \\ 0 & 1 & -b & a \\ 0 & 0 & ab-b & a+2 \end{pmatrix}$ Hence the system has infinitely many solutions when $\begin{pmatrix} b(a-1) = 0 \end{pmatrix}$	1M	
		$\begin{cases} b(a-1) = 0 \\ a+2=0 \end{cases}$	1M	
		i.e. $a = -2$ and $b = 0$	1A	For both
			1	}

9.

Solution	Marks	Remarks
(b) The system becomes $\begin{cases} x + 2y + z = 2 \\ 2x + 5y + 2z = 2 \\ 3x + 7y + 3z = 4 \end{cases}$ i.e. $\begin{cases} x + z = 6 \\ y = -2 \end{cases}$	1M	
$\begin{cases} y = -2 \\ (x, y, z) = (6 - t, -2, t) \text{ for any real number } t \end{cases}$	1A	OR $(t, -2, 6-t)$
	(5)	
(a) $\overrightarrow{ON} = \frac{\overrightarrow{kOA} + \overrightarrow{OB}}{k+1}$ $= \frac{k(2\mathbf{i}) + (\mathbf{i} + 2\mathbf{j})}{k+1}$	1M	\bigwedge^{B}
$=\frac{k+1}{(2k+1)\mathbf{i}+2\mathbf{j}}$ $=\frac{(2k+1)\mathbf{i}+2\mathbf{j}}{k+1}$	1A	A A
(b) $\therefore \overrightarrow{MB} = 2\mathbf{j}$, $\therefore BM \perp OA$ Since A , N , P and M are concyclic, $ON \perp AB$.	1M	O M
$\overrightarrow{ON} \cdot \overrightarrow{AB} = 0$ $\frac{(2k+1)\mathbf{i} + 2\mathbf{j}}{k+1} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{i}) = 0$ $-(2k+1) + 2 \cdot 2 = 0$	1M	
$k = \frac{3}{2}$	1A (5)	
(a) $\frac{d}{d\theta} \ln(\sec \theta + \tan \theta) = \frac{\sec \theta \tan \theta + \sec^2 \theta}{\sec \theta + \tan \theta}$ $= \sec \theta$	1M	
Hence $\int \sec \theta d\theta = \int \frac{d}{d\theta} \ln(\sec \theta + \tan \theta) d\theta$ = $\ln(\sec \theta + \tan \theta) + C$	1	
Alternative Solution $\int \sec \theta d\theta = \int \frac{\sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta} d\theta$ Let $u = \sec \theta + \tan \theta$ which gives $du = (\sec \theta \tan \theta + \sec^2 \theta) d\theta$.	1M	
$\therefore \int \sec \theta d\theta = \int \frac{du}{u}$		
$= \ln u + C$		

(b) (i) Let $u = \sec \theta$, where $0 < \theta < \frac{\pi}{2}$. $\therefore du = \sec \theta \tan \theta d\theta$ $\int \frac{du}{\sqrt{u^2 - 1}} = \int \frac{\sec \theta \tan \theta d\theta}{\sqrt{\sec^2 \theta - 1}}$ $= \int \sec \theta d\theta \text{since } \tan \theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(\sec \theta + \tan \theta) + C \text{by (a)}$ $= \ln(\sec \theta + \sqrt{u^2 - 1}) + C \text{since } \tan \theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(u + \sqrt{u^2 - 1}) + C \text{inc}$ (ii) $\int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx$ Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^2 \frac{du}{\sqrt{(x^2 + 2)^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1})\right]_0^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 + \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ $= \frac{1}{1 + t^2}$ 1A
$ \begin{array}{c} \therefore \ du = \sec\theta \tan\theta \ d\theta \\ \int \frac{du}{\sqrt{u^2-1}} = \int \frac{\sec\theta \tan\theta \ d\theta}{\sqrt{\sec^2\theta - 1}} \\ = \int \sec\theta \ d\theta \text{since} \tan\theta > 0 \text{for} 0 < \theta < \frac{\pi}{2} \\ = \ln(\sec\theta + \tan\theta) + C \text{by (a)} \\ = \ln(\sec\theta + \tan\theta) + C \text{by (a)} \\ = \ln(\sec\theta + \sqrt{\sec^2\theta - 1}) + C \text{since} \tan\theta > 0 \text{for} 0 < \theta < \frac{\pi}{2} \\ = \ln(u + \sqrt{u^2 - 1}) + C \\ \text{(ii)} \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} \ dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} \ dx \\ \text{Let } u = x^2 + 2 \text{which gives } du = 2x \ dx \ . \\ \text{When } x = 0 \ , \ u = 2; \ \text{when } x = 1, \ u = 3 \ . \\ \therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} \ dx = \int_0^3 \frac{du}{\sqrt{u^2 - 1}} \\ = \left[\ln(u + \sqrt{u^2 - 1})\right]_0^3 \text{by (i)} \\ = \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3}) \\ = \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}}, \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right) \\ = \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6}) \end{array} \qquad \text{IM} \qquad \text{For primitive function} $ $\text{(c)} t = \tan\phi \\ \frac{dt}{d\phi} = \sec^2\phi \\ = 1 + \tan^2\phi \\ \therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2} \\ \cos^2\phi = \frac{1}{\sec^2\phi} \end{aligned} \qquad 1$
$\int \frac{du}{\sqrt{u^2 - 1}} = \int \frac{\sec\theta \tan\theta d\theta}{\sqrt{\sec^2\theta - 1}}$ $= \int \sec\theta d\theta \text{since } \tan\theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(\sec\theta + \sqrt{\sec^2\theta - 1}) + C \text{by (a)}$ $= \ln(\sec\theta + \sqrt{\sec^2\theta - 1}) + C \text{since } \tan\theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(u + \sqrt{u^2 - 1}) + C \qquad 1$ (ii) $\int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx$ Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^3 \frac{du}{\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1})\right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan\phi$ $\frac{dt}{d\phi} = \sec^2\phi$ $= 1 + \tan^2\phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2\phi = \frac{1}{\sec^2\phi}$
$ = \int \sec \theta d\theta \qquad \text{since } \tan \theta > 0 \text{for } 0 < \theta < \frac{\pi}{2} $ $ = \ln(\sec \theta + \tan \theta) + C \qquad \text{by (a)} $ $ = \ln(\sec \theta + \sqrt{\sec^2 \theta - 1}) + C \qquad \text{since } \tan \theta > 0 \text{for } 0 < \theta < \frac{\pi}{2} $ $ = \ln(u + \sqrt{u^2 - 1}) + C \qquad 1 $ $ \text{(ii)} \qquad \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx $ $ \text{Let } u = x^2 + 2 \text{which gives } du = 2x dx . $ $ \text{When } x = 0 , u = 2 ; \text{when } x = 1 , u = 3 . $ $ \therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_2^3 \frac{du}{\sqrt{u^2 - 1}} $ $ = \left[\ln(u + \sqrt{u^2 - 1}) \right]_2^5 \text{by (i)} $ $ = \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3}) $ $ = \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right) $ $ = \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6}) \qquad 1 $ $ \text{(c)} t = \tan \phi $ $ \frac{dt}{d\phi} = \sec^2 \phi $ $ = 1 + \tan^2 \phi $ $ \therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2} $ $ \cos^2 \phi = \frac{1}{\sec^2 \phi} $
$= \ln(\sec\theta + \tan\theta) + C \text{by (a)}$ $= \ln(\sec\theta + \sqrt{\sec^2\theta - 1}) + C \text{since } \tan\theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(u + \sqrt{u^2 - 1}) + C \qquad 1$ (ii) $\int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx$ Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_2^3 \frac{du}{2\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1}) \right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan\phi$ $\frac{dt}{d\phi} = \sec^2\phi$ $= 1 + \tan^2\phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2\phi = \frac{1}{\sec^2\phi}$
$= \ln(\sec\theta + \sqrt{\sec^2\theta - 1}) + C \text{since } \tan\theta > 0 \text{ for } 0 < \theta < \frac{\pi}{2}$ $= \ln(u + \sqrt{u^2 - 1}) + C$ $(ii) \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx$ Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^3 \frac{du}{2\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1})\right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 $(c) t = \tan\phi$ $\frac{dt}{d\phi} = \sec^2\phi$ $= 1 + \tan^2\phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2\phi = \frac{1}{\sec^2\phi}$
$= \ln(u + \sqrt{u^2 - 1}) + C$ (ii) $\int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^1 \frac{2x}{\sqrt{(x^2 + 2)^2 - 1}} dx$ Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_0^2 \frac{du}{\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1})\right]_2^2 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}}, \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 1 1 1 1
(ii) $\int_{0}^{1} \frac{2x}{\sqrt{x^{4} + 4x^{2} + 3}} dx = \int_{0}^{1} \frac{2x}{\sqrt{(x^{2} + 2)^{2} - 1}} dx$ Let $u = x^{2} + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_{0}^{1} \frac{2x}{\sqrt{x^{4} + 4x^{2} + 3}} dx = \int_{2}^{3} \frac{du}{\sqrt{u^{2} - 1}}$ $= \left[\ln(u + \sqrt{u^{2} - 1}) \right]_{2}^{3} \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^{2} \phi$ $= 1 + \tan^{2} \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^{2}}$ $\cos^{2} \phi = \frac{1}{\sec^{2} \phi}$
Let $u = x^2 + 2$ which gives $du = 2x dx$. When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_2^3 \frac{du}{\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1})\right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 1 1 1 1
When $x = 0$, $u = 2$; when $x = 1$, $u = 3$. $\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_2^3 \frac{du}{\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1}) \right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\therefore \int_0^1 \frac{2x}{\sqrt{x^4 + 4x^2 + 3}} dx = \int_2^3 \frac{du}{\sqrt{u^2 - 1}}$ $= \left[\ln(u + \sqrt{u^2 - 1}) \right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 Image For primitive function 1 (5)
$= \left[\ln(u + \sqrt{u^2 - 1})\right]_2^3 \text{by (i)}$ $= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 Image in the function of the primitive
$= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 1 1 1
$= \ln(3 + \sqrt{8}) - \ln(2 + \sqrt{3})$ $= \ln\left(\frac{3 + 2\sqrt{2}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}}\right)$ $= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 1 1 1
$= \ln\left(\frac{3+2\sqrt{2}}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}}\right)$ $= \ln(6+4\sqrt{2}-3\sqrt{3}-2\sqrt{6})$ 1 (c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1+\tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1+t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$ 1 1 1
$= \ln(6 + 4\sqrt{2} - 3\sqrt{3} - 2\sqrt{6})$ $(c) t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
(c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
(c) $t = \tan \phi$ $\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\frac{dt}{d\phi} = \sec^2 \phi$ $= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$= 1 + \tan^2 \phi$ $\therefore \frac{d\phi}{dt} = \frac{1}{1 + t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\therefore \frac{d\phi}{dt} = \frac{1}{1+t^2}$ $\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\cos^2 \phi = \frac{1}{\sec^2 \phi}$
$\int_{0}^{\frac{\pi}{4}} \frac{\tan \phi}{\sqrt{1 + 2\cos^{2}\phi}} d\phi = \int_{0}^{1} \frac{t}{\sqrt{1 + \frac{2}{1 + t^{2}}}} \cdot \frac{1}{1 + t^{2}} dt \text{where } t = \tan \phi$
$= \int_0^1 \frac{t}{\sqrt{(3+t^2)(1+t^2)}} \mathrm{d}t$
$= \frac{1}{2} \int_0^1 \frac{2t}{\sqrt{t^4 + 4t^2 + 3}} \mathrm{d}t$
$= \frac{1}{2}\ln(6+4\sqrt{2}-3\sqrt{3}-2\sqrt{6})$ 1A OR $\ln\sqrt{6+4\sqrt{2}-3\sqrt{3}-2\sqrt{6}}$
2 (5)
84

	Solution	Marks	Remarks
2. (a) (i)	$T = \frac{PQ}{7} + \frac{QB}{1.4}$	1M	
	$= \frac{x}{7} + \frac{5\sqrt{30^2 + (40 - x)^2}}{7}$ $= \frac{x + 5\sqrt{x^2 - 80x + 2500}}{7}$	1A	OR $\frac{x}{7} + \frac{\sqrt{x^2 - 80x + 250}}{1.4}$
(ii)	When T is minimum, $\frac{dT}{dx} = 0$. $\frac{1}{7} \left[1 + \frac{5(2x - 80)}{2\sqrt{x^2 - 80x + 2500}} \right] = 0$	1M	A 40 m
	$5(x-40) = -\sqrt{x^2 - 80x + 2500}$ $25x^2 - 2000x + 40000 = x^2 - 80x + 2500$ $2x^2 - 160x + 3125 = 0$	1	P xm Q
	$x = 40 - \frac{5\sqrt{6}}{2} \text{ or } 40 + \frac{5\sqrt{6}}{2} \text{ (rejected by checking)}$ $x = 40 - \frac{5\sqrt{6}}{2} x = 40 - \frac{5\sqrt{6}}{2} x > 40 - \frac{5\sqrt{6}}{2}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M	
	$QB = \sqrt{30^2 + \left[40 - \left(40 - \frac{5\sqrt{6}}{2}\right)\right]^2}$		
	$=\frac{25\sqrt{6}}{2} \text{ m}$	(6)	
(b) (i)	$\sin \beta = \frac{30}{\frac{25\sqrt{6}}{2}} = \frac{2\sqrt{6}}{5}$	1A	
	$\cos \beta = \frac{40 - \left(40 - \frac{5\sqrt{6}}{2}\right)}{\frac{25\sqrt{6}}{2}} = \frac{1}{5}$	1Å	$ \begin{array}{c c} A & 40 \text{ m} \\ \hline $
	In ΔMAB , $\frac{MB}{\sin \alpha} = \frac{AB}{\sin(\pi - \alpha - \beta)}$.	1M	30 m
	$MB = \frac{40 \sin \alpha}{\sin(\alpha + \beta)}$ $= \frac{40 \sin \alpha}{\sin \alpha \cos \beta + \cos \alpha \sin \beta}$ $= \frac{40 \sin \alpha}{\sin \alpha}$	1M	$P \times m Q$
	$= \frac{1}{\frac{1}{5}\sin\alpha + \frac{2\sqrt{6}}{5}\cos\alpha}$ $= \frac{200\tan\alpha}{\tan\alpha + 2\sqrt{6}}$	1	
	$\tan \alpha + 2\sqrt{6}$		

	Solution	Marks	Remarks
(ii)	$\frac{dMB}{dt} = 200 \cdot \frac{(\tan \alpha + 2\sqrt{6})\sec^2 \alpha - \tan \alpha \sec^2 \alpha}{(\tan \alpha + 2\sqrt{6})^2} \cdot \frac{d\alpha}{dt}$ $= \frac{400\sqrt{6}\sec^2 \alpha}{(\tan \alpha + 2\sqrt{6})^2} \cdot \frac{d\alpha}{dt}$ $\therefore -1.4 = \frac{400\sqrt{6}\sec^2 0.2}{(\tan 0.2 + 2\sqrt{6})^2} \cdot \frac{d\alpha}{dt}$ $\frac{d\alpha}{dt} \approx -0.0357 \text{ rad s}^{-1}$	1M	
3. (a) (i)	$MN = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ $= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$ $tr(MN) = ae + bg + cf + dh$ $NM = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $= \begin{pmatrix} ea + fc & eb + fd \\ ga + hc & gb + hd \end{pmatrix}$ $tr(NM) = ea + fc + gb + hd$ $\therefore tr(MN) = tr(NM)$	1A •	Either one
(ii)	$tr(BAB^{-1}) = 1 + 3$ $tr(AB^{-1}B) = 4$ by (a)(i) tr(A) = 4	1M 1	$OR tr(B^{-1}BA) = 4$
(iii)	$BAB^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ $\begin{vmatrix} BAB^{-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix}$ $\begin{vmatrix} B \cdot A \cdot B^{-1} = 1 \cdot 3 - 0 \cdot 0$ $\begin{vmatrix} B \cdot A \cdot B ^{-1} = 3$ $ A = 3$	1M 1A (6)	

Solution	T	
(b) (i) $C \binom{x}{y} = \lambda_1 \binom{x}{y}$ $\binom{px + qy}{rx + sy} = \binom{\lambda_1 x}{\lambda_1 y}$	Marks	Remarks
$\begin{cases} (p - \lambda_1)x + qy = 0 \\ rx + (s - \lambda_1)y = 0 \end{cases}$	1A	
Since this system of equations has non-zero solutions $\begin{pmatrix} x \\ y \end{pmatrix}$, $\begin{vmatrix} p - \lambda_1 & q \\ r & s - \lambda_1 \end{vmatrix} = 0$. Similarly, $C \begin{pmatrix} x \\ y \end{pmatrix} = \lambda_2 \begin{pmatrix} x \\ y \end{pmatrix}$ gives $\begin{vmatrix} p - \lambda_2 & q \\ r & s - \lambda_2 \end{vmatrix} = 0$.	1	
(ii) By (b)(i), λ_1 and λ_2 are the roots of the equation $\begin{vmatrix} p - \lambda & q \\ r & s - \lambda \end{vmatrix} = 0$ $(p - \lambda)(s - \lambda) - qr = 0$ $\lambda^2 - (p + s)\lambda + ps - qr = 0$	} 1M	
$\lambda^2 - \operatorname{tr}(C) \cdot \lambda + C = 0$	(5)	
(c) $A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$ for some non-zero matrices $\begin{pmatrix} x \\ y \end{pmatrix}$ $\lambda^2 - \text{tr}(A) \cdot \lambda + A = 0$ by (b)(ii) $\lambda^2 - 4\lambda + 3 = 0$ by (a)(ii) & (a)(iii) $\lambda = 1$ or 3	} 1M 1A (2)	For either one

		Solution	Marks	Remarks
14. (a)) (i)	$\overrightarrow{AP} \cdot \overrightarrow{BP} = (\mathbf{p} - \mathbf{a}) \cdot (\mathbf{p} - \mathbf{b})$	1M	For p-a or p-b
		$= \mathbf{p} \cdot \mathbf{p} - \mathbf{a} \cdot \mathbf{p} - \mathbf{b} \cdot \mathbf{p} + \mathbf{a} \cdot \mathbf{b}$ $= \mathbf{p} \cdot \mathbf{p} - (\mathbf{a} + \mathbf{b}) \cdot \mathbf{p} \qquad (\because \mathbf{a} \cdot \mathbf{b} = 0)$	1	A
	(ii)	$\overrightarrow{AP} \cdot \overrightarrow{BP} + \overrightarrow{BP} \cdot \overrightarrow{CP} + \overrightarrow{CP} \cdot \overrightarrow{AP} = 0$ By (i) and some similar results, we have $\mathbf{p} \cdot \mathbf{p} - (\mathbf{a} + \mathbf{b}) \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{p} - (\mathbf{b} + \mathbf{c}) \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{p} - (\mathbf{c} + \mathbf{a}) \cdot \mathbf{p} = 0$ $3\mathbf{p} \cdot \mathbf{p} - 2(\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot \mathbf{p} = 0$ $3\mathbf{p} \cdot \mathbf{p} - 2(3\mathbf{d}) \cdot \mathbf{p} = 0$ $\mathbf{p} \cdot \mathbf{p} = 2\mathbf{p} \cdot \mathbf{d} \qquad (*)$	1M 1M 1	B C
	(iii)	$ \mathbf{p} - \mathbf{d} ^2 = (\mathbf{p} - \mathbf{d}) \cdot (\mathbf{p} - \mathbf{d})$ $= \mathbf{p} \cdot \mathbf{p} - 2\mathbf{p} \cdot \mathbf{d} + \mathbf{d} \cdot \mathbf{d}$ $= \mathbf{d} \cdot \mathbf{d} \text{by (*)}$	1M	
		$= \mathbf{d} ^{2}$ Hence $ \mathbf{p} - \mathbf{d} = \mathbf{d} $. $\therefore \overrightarrow{DP} = \overrightarrow{OD} $ $\therefore PD = OD$	1	
		Thus, the distance between P and D is a constant and therefore P lies on the sphere centred at D with fixed radius.	(8)	
(b) (i)	Yes. Since O satisfies (**), O lies on the sphere mentioned in (i).	1A	OR "Since OD is equal to the radius of the sphere,"
	(ii)	Yes. Since $\overrightarrow{DP_1} \times \overrightarrow{DP_2} = \overrightarrow{DP_2} \times \overrightarrow{DP_3}$, the normal vector of the plane containing D , P_1 and P_2 equals the normal vector of the plane containing D , P_2 and P_3 . Thus the plane containing D , P_1 and P_2 is parallel to the plane containing D , P_2 and P_3 . Since D and P_2 are common points of the planes, D , P_1 , P_2 and P_3 are on the same plane.] IM	
		Since D is the centre of the sphere and P_1 , P_2 and P_3 lie on the largest circle on the sphere, the radius of the circle equals the radius of the sphere, which is OD .	(4)	Follow through
				- E