Chapter 9

Hypothesis Testing

- LO 9.1: Define the null hypothesis and the alternative hypothesis.
- LO 9.2: Distinguish between Type I and Type II errors.
- LO 9.3: Explain the steps of a hypothesis test using the *p*-value approach.
- LO 9.4: Explain the steps of a hypothesis test using the critical value approach.
- LO 9.5: Differentiate between the test statistics for the population mean.
- LO 9.6: Specify the test statistic for the population proportion.

9.1 Point Estimators and Their Properties

LO 9.1 Define the null hypothesis and the alternative hypothesis.

- Hypothesis tests resolve conflicts between two competing opinions (hypotheses).
- In a hypothesis test, define
 - H_0 the null hypothesis, the presumed default state of nature or status quo.
 - H_A the alternative hypothesis, a contradiction of the default state of nature or status quo.
- In statistics, we use sample information to make inferences regarding the unknown population parameters of interest.
- We conduct hypothesis tests to determine if sample evidence contradicts H_0 .
- On the basis of sample information, we either
 - "Reject the null hypothesis"
 - * Sample evidence is inconsistent with H_0 .

- "Do not reject the null hypothesis"
 - * Sample evidence is not inconsistent with H_0 .
 - * We do not have enough evidence to "accept" H_0 .

9.1.1 Defining the Null Hypothesis and Alternative Hypothesis

General guidelines:

- Null hypothesis, H_0 , states the status quo.
- Alternative hypothesis, H_A , states whatever we wish to establish (i.e., contests the status quo)
- Note that H_0 always contains the "equality".

9.1.2 One-Tailed vs Two-Tailed Hypothesis Tests

Two-Tailed Test

- Reject H_0 on either side of the hypothesized value of the population parameter.
- For example:
 - $-H_0$: $\mu = \mu_0$ versus H_A : $\mu \neq \mu_0$
 - $-H_0$: $p=p_0$ versus H_A : $p \neq p_0$
- The \neq symbol in H_A indicates that both tail areas of the distribution will be used to make the decision regarding the rejection of H_0 .

One-Tailed Test

- Reject H_0 only on one side of the hypothesized value of the population parameter.
- For example:
 - $-H_0$: $\mu \leq \mu_0$ versus H_A : $\mu > \mu_0$ (right-tail test)
 - H_0 : $\mu \ge \mu_0$ versus H_A : $\mu < \mu_0$ (left-tail test)
- Note that the inequality in H_A determines which tail area will be used to make the decision regarding the rejection of H_0 .

9.1.3 Three Steps to Formulate Hypotheses

- 1. Identify the relevant population parameter of interest (e.g., μ or p).
- 2. Determine whether it is a one- or a two-tailed test.
- 3. Include some form of the equality sign in H_0 and use H_A to establish a claim.

H_0	H_A	Test Type
=	\neq	Two-tail
>	<	One-tail, Left-tail
\leq	>	One-tail, Right-tail

9.1.4 Type I and Type II Errors

LO 9.2 Distinguish between Type I and Type II errors.

- Type I Error Committed when we reject H_0 when H_0 is actually true.
 - Occurs with probability α . α is chosen a priori.
- Type II Error Committed when we do not reject H_0 when H_0 is actually false.
 - Occurs with probability β . Power of the test = 1β
- For a given sample size n, a decrease in α will increase β and vice versa.
- Both α and β decreases as n increases.

Decision	Null hypothesis is true	Null hypothesis is false
Reject the null hypothesis	Type I error	Correct decision
Do not reject the null hypothesis	Correct decision	Type I error

9.2 Hypothesis Test of the Population Mean When σ Is Known

LO 9.3 Explain the steps of a hypothesis test using the p-value approach.

- Hypothesis testing enables us to determine whether the sample evidence is inconsistent with what is hypothesized under the null hypothesis (H_0) .
- Basic principle: First assume that H_0 is true and then determine if sample evidence contradicts this assumption.
- Two approaches to hypothesis testing:
 - The p-value approach.
 - The critical value approach.

9.2.1 The p-value Approach

• The value of the test statistic for the hypothesis test of the population mean μ when the population standard deviation σ is known is computed as

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \tag{9.1}$$

where μ_0 is the hypothesized mean value.

- p-value: the likelihood of obtaining a sample mean that is at least as extreme as the one derived from the given sample, under the assumption that the null hypothesis is true.
- Under the assumption that $\mu = \mu_0$, the *p*-value is the likelihood of observing a sample mean that is at least as extreme as the one derived from the given sample.
- The calculation of the *p*-value depends on the _____.

Alternative hypothesis	p-value
$H_A: \mu > \mu_0$	Right-tail probability: $P(Z \ge z)$
$H_A: \mu < \mu_0$	Left-tail probability: $P(Z \le z)$
$H_A: \mu \neq \mu_0$	Two-tail probability:

• Decision rule: Reject H_0 if p-value $< \alpha$.

9.2.2 Four Step Procedure Using the p-value Approach

- Step 1. Specify the null and the alternative hypotheses.
- Step 2. Specify the test statistic and compute its value.
- Step 3. Calculate the p-value.
- Step 4. State the conclusion and interpret the results.

LO 9.4 Explain the steps of a hypothesis test using the critical value approach.

9.2.3 The Critical Value Approach

- Rejection region a region of values such that if the test statistic falls into this region, then we reject H_0 .
 - The location of this region is determined by H_A .

- Critical value a point that separates the rejection region from the nonrejection region.
- The critical value approach specifies a region such that if the value of the test statistic falls into the region, the null hypothesis is rejected.
- The critical value depends on the alternative.

Alternative hypothesis	Critical Value
$H_A: \mu > \mu_0$	Right-tail critical value is z_{α} , where $P(Z \geq z_{\alpha}) = \alpha$
$H_A: \mu < \mu_0$	Left-tail critical value is $-z_{\alpha}$, where $P(Z \leq -z_{\alpha}) = \alpha$
$H_A: \mu \neq \mu_0$	Two-tail critical value $-z_{\alpha/2}$ and $z_{\alpha/2}$, where $P(Z \ge z_{\alpha/2}) = \frac{\alpha}{2}$

- Decision Rule: Reject H_0 if:
 - $-z>z_{\alpha}$ for a right-tailed test
 - $-z < -z_{\alpha}$ for a left-tailed test
 - $-z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$ for a two-tailed test

9.2.4 Four Step Procedure Using the Critical Value Approach

- Step 1. Specify the null and the alternative hypotheses.
- Step 2. Specify the test statistic and compute its value.
- Step 3. Find the critical value or values.
- Step 4. State the conclusion and interpret the results.

9.2.5 Confidence Intervals and Two-Tailed Hypothesis Tests

- Given the significance level α , we can use the sample data to construct a $100(1-\alpha)\%$ confidence interval for the population mean μ .
- Decision Rule
 - Reject H_0 if the confidence interval **does not** contain the value of the hypothesized mean μ_0 .
 - Do not reject H_0 if the confidence interval **does** contain the value of the hypothesized mean μ_0 .

9.2.6 Implementing a Two-Tailed Test Using a Confidence Interval

• The general specification for a $100(1-\alpha)\%$ confidence interval of the population mean μ when the population standard deviation σ is known as

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 or $\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$ (9.2)

• Decision Rule: Reject H_0 if $\mu_0 < \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ or if $\mu_0 > \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

9.3 Hypothesis Test of the Population Mean When σ Is Unknown

9.3.1 Test Statistic for μ When σ is Unknown

LO 9.5 Differentiate between the test statistics for the population mean.

• When the population standard deviation σ is unknown, the test statistic for testing the population mean μ is assumed to follow the t_{df} distribution with (n-1) degrees of freedom (df).

9.4 Hypothesis Test of the Population Proportion

LO 9.6 Specify the test statistic for the population proportion.