GPTIPS pareto front report

26-Apr-2019 15:38:02

Config file: Y7_config.m

Number of models on front: 6

Total models: 100

This report shows the expressional complexity/performance characteristics (on training data) of symbolic models on the pareto front.

Numerical precision is reduced for display purposes.

Click on column headers to sort models by expressional complexity and goodness of fit (R²).

Model ID	Goodness of fit (R ²)	Model complexity	Model
4	0.985	245	$6.05 x_2 - 0.295 x_1 - 0.0372 x_3 - 0.0397 x_4 + 0.335 x_1 x_2 + \\ 5.38e - 6 x_1 x_3 + 3.49e - 4 x_1 x_4 + 3.86e - 4 x_2 x_3 + 3.97e - 4 x_2 x_4 \\ + 3.14e - 4 x_3 x_4 - 0.023 x_1 x_2^2 - 5.26e - 5 x_2 x_4^2 + 1.58e - 5 x_1^2 - \\ 5.38e - 6 x_3^2 + 5.38e - 6 x_1 x_2 x_4 - 2.12e - 5 x_2 x_3 x_4 + 0.193$
19	0.986	284	$10.2 x_2 - 0.257 x_1 - 0.0137 x_3 + 0.0171 x_4 + 0.243 x_1 x_2 - 6.34e-4 x_1 x_3 - 0.00397 x_1 x_4 - 0.00387 x_2 x_3 - 0.00319 x_2 x_4 + 7.15e-4 x_3 x_4 - 0.0216 x_1 x_2^2 - 1.8e-4 x_1^2 x_2 - 1.2e-4 x_2 x_4^2 + 0.00385 x_1^2 - 2.59e-6 x_3^2 + 9.02e-5 x_1 x_2 x_3 + 6.4e-4 x_1 x_2 x_4 - 7.46e-5 x_2 x_3 x_4 + 0.438$
56	0.985	193	$5.89 \ x_2 - 0.309 \ x_1 - 0.0336 \ x_3 - 0.0336 \ x_4 + 0.342 \ x_1 \ x_2 + 6.85e-6 \ x_1 \ x_3 - 1.27e-4 \ x_2 \ x_3 - 1.13e-4 \ x_2 \ x_4 + 3.14e-4 \ x_3 \ x_4 - 0.0233 \ x_1 \ x_2^2 - 5.25e-5 \ x_2 \ x_4^2 + 9.59e-6 \ x_1^2 - 6.85e-6 \ x_3^2 + 6.85e-6 \ x_1 \ x_2 \ x_4 - 1.64e-5 \ x_2 \ x_3 \ x_4 + 0.186$
62	0.985	260	$\begin{array}{l} 5.41 \ x_2 - 0.349 \ x_1 - 0.0447 \ x_3 - 0.0442 \ x_4 + 0.351 \ x_1 \ x_2 + \\ 6.25 e - 6 \ x_1 \ x_3 - 3.51 e - 5 \ x_1 \ x_4 + 0.00223 \ x_2 \ x_3 + 0.00224 \ x_2 \ x_4 \\ + 4.67 e - 4 \ x_3 \ x_4 - 0.0244 \ x_1 \ x_2^2 + 4.59 e - 6 \ x_1^2 \ x_2 - 7.82 e - 5 \ x_2 \\ x_4^2 + 0.00123 \ x_2^2 \ x_4 + 3.29 e - 4 \ x_1^2 - 6.25 e - 6 \ x_3^2 - 4.59 e - 6 \ x_1 \\ x_2 \ x_3 + 6.25 e - 6 \ x_1 \ x_2 \ x_4 - 4.39 e - 5 \ x_2 \ x_3 \ x_4 + 0.163 \end{array}$
69	0.986	268	$\begin{array}{l} 11.0\;x_2 - 0.237\;x_1 - 0.0143\;x_3 + 0.0157\;x_4 + 0.225\;x_1\;x_2 - \\ 6.27e - 4\;x_1\;x_3 - 0.00389\;x_1\;x_4 - 0.00383\;x_2\;x_3 - 0.00317\;x_2\;x_4 \\ +\;7.07e - 4\;x_3\;x_4 - 0.0215\;x_1\;x_2^2 - 8.94e - 5\;x_1^2\;x_2 - 1.18e - 4\;x_2 \\ x_4^2 + 0.00369\;x_1^2 - 2.5e - 6\;x_2^2 - 2.5e - 6\;x_3^2 + 8.94e - 5\;x_1\;x_2\;x_3 \\ +\;6.27e - 4\;x_1\;x_2\;x_4 - 7.34e - 5\;x_2\;x_3\;x_4 + 0.496 \end{array}$
81	0.986	262	$10.8 \ x_2 - 0.225 \ x_1 - 0.0152 \ x_3 + 0.0153 \ x_4 + 0.225 \ x_1 \ x_2 - 6.19e-4 \ x_1 \ x_3 - 0.00387 \ x_1 \ x_4 - 0.00373 \ x_2 \ x_3 - 0.00308 \ x_2 \ x_4 + 7.06e-4 \ x_3 \ x_4 - 0.0215 \ x_1 \ x_2^2 - 8.84e-5 \ x_1^2 \ x_2 - 1.18e-4 \ x_2 \ x_4^2 + 0.00359 \ x_1^2 - 2.46e-6 \ x_3^2 + 8.84e-5 \ x_1 \ x_2 \ x_3 + 6.24e-4 \ x_1 \ x_2 \ x_4 - 7.33e-5 \ x_2 \ x_3 \ x_4 + 0.471$

GPTIPS - the symbolic data mining platform for MATLAB

© Dominic Searson 2009-2015