A SET OF POINTS - EACH POINT REPRESENTS A FACEBOOK USER

HERE'S ANOTHER WAY ..

THERE ARE DIFFERENT WAYS TO DEFINE SIMILARITY. FOR EXAMPLE -

- 1. THEY LIKE/FOLLOW THE SAME THINGS
- 2. THEY ARE FROM THE SAME STATE
- 3. BOTH OF THE ABOVE

THE OBJECTIVE OF CLUSTERING IS TO DIVIDE UP THESE USERS INTO GROUPS

USERS IN A GROUP ARE SIMILAR TO ONE ANOTHER USERS FROM DIFFERENT GROUPS ARE VERY DIFFERENT FROM EACH OTHER

MAXIMIZE INTRACLUSTER SIMILARITY

MINIMIZE INTERCLUSTER SIMILARITY

HIERARCHICAL CLUSTERING

EACH INDIVIDUAL ANIMAL IS A CLUSTER

HIERARCHICAL CLUSTERING

A CROSS SECTION AT EACH LEVEL OF THE HIERARCHY IS A POSSIBLE SET OF CLUSTERS

THE BOTTOM-UP IS

USELESS

EXAMPLES:

- 1) NUMBER OF CLUSTERS
- 2) AVG(INTRACLUSTER DISTANCE)-AVG(INTERCLUSTER DISTANCE)

1. INITIALIZE A SET OF POINTS AS THE "K" MEANS (CENTROIDS OF THE CLUSTERS YOU WANT TO FIND)

1. INITIALIZE A SET OF POINTS AS THE "K" MEANS (CENTROIDS OF THE CLUSTERS YOU WANT TO FIND)

1. INITIALIZE A SET OF POINTS AS THE "K" MEANS (CENTROIDS OF THE CLUSTERS YOU WANT TO FIND)

2. ASSIGN EACH POINT TO THE CLUSTER BELONGING TO THE NEAREST MEAN

RINSE AND REPEAT STEPS 2, 3 UNTIL THE MEANS DON'T CHANGE ANY MORE 3. FIND THE NEW MEANS / CENTROIDS OF THE CLUSTERS

1. INITIALIZE A SET OF POINTS AS THE "K" MEANS (CENTROIDS OF THE CLUSTERS YOU WANT TO FIND)

2. ASSIGN EACH POINT TO THE CLUSTER BELONGING TO THE NEAREST MEAN

RINSE AND REPEAT STEPS 2, 3 UNTIL THE MEANS DON'T CHANGE ANY MORE CONVERGENCE 3. FIND THE NEW MEANS / CENTROIDS OF THE CLUSTERS

IN K-MEANS CLUSTERING - THE CLUSTERING IS BASED ON DISTANCE

DISTANCE BASED CLUSTERING DOESN'T REALLY HELP WHEN YOUR DATA LOOKS LIKE THIS...

DENSITY BASED CLUSTERING

THIS METHOD SCANS FOR DROPS IN DENSITY AND MARKS THEM AS CLUSTER BOUNDARIES

THE MOST FAMOUS DENSITY BASED CLUSTERING ALGORITHM IS CALLED

DBSCAN WILL VISIT EACH POINT AND SCAN ITS NEIGHBOURHOOD

HOW MANY POINTS ARE AROUND THIS POINT?

WHICH CLUSTER DO THEY BELONG TO?

DBSCAN
DENSITY-BASED
SPATIAL
CLUSTERING OF
APPLICATIONS
WITH NOISE

(QUITE A MOUTHFUL:))

IT THEN DECIDES IF THE POINT BELONGS TO SOME CLUSTER OR IT'S AN OUTLIER