1 Dual de L_p

Dual de L_p

Avec les propriétés hilbertiennes de L_2 couplées à certaines propriétés des espaces L_p , on montre que le dual d'un espace L_p est L_q pour $\frac{1}{p} + \frac{1}{q} = 1$, dans le cas où $p \in]1,2[$ et où l'espace est de mesure finie.

Soit (X, \mathcal{A}, μ) un espace mesuré de mesure finie.

Notation 1. On note $\forall p \in]1,2[$, $L_p = L_p(X, \mathcal{A}, \mu)$.

Lemme 2. Soient $p \in]1,2[$ et $f \in L_2$. Alors $f \in L_p$ telle que $||f||_p \le M ||f||_2$ où $M \ge 0$.

Démonstration. Comme $p \in]1,2[$, on a $\frac{2}{p} > 1$. Soit r tel que $\frac{p}{2} + \frac{1}{r} = 1$. On applique l'inégalité de Hölder à $g = |f|^p \mathbb{I}_X$ de sorte que

$$\int_X |f|^p d\mu = \||f|^p \mathbb{I}_X\|_1 \le \||f|^p\|_{\frac{2}{p}} \|\mathbb{I}_X\|_r \le \mu(X)^{\frac{1}{r}} \|f\|_2^p$$

d'où le résultat. □

Lemme 3. Soit $p \in]1,2[$. Alors L_2 est dense dans L_p pour la norme $\|.\|_p$.

Démonstration. Soit $f \in L_p$. On considère la suite de fonction (f_n) définie par

$$\forall n \in \mathbb{N}, f_n = f \mathbb{1}_{|f| \le n}$$

Clairement, (f_n) est une suite de L_2 . On va chercher à appliquer le théorème de convergence dominée à la suite de fonctions (g_n) définie pour tout $n \in \mathbb{N}$ par $g_n = |f_n - f|^p$:

- \forall *n* ∈ \mathbb{N} , g_n est mesurable.
- (g_n) converge presque partout vers la fonction nulle.
- Par convexité de la fonction $x \mapsto x^p$, on a

$$|f_n - f|^p = 2^p \left| \frac{f_n}{2} - \frac{f}{2} \right|^p \le 2^{p-1} (|f|^p + |f_n|^p) \le 2^p |f|^p \in L_1$$

On peut donc conclure

$$||f - f_n||_p^p = \int_X |f - f_n|^p d\mu \longrightarrow 0$$

ce qu'il fallait démontrer.

Théorème 4. L'application

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g: f \mapsto \int_X f\overline{g} \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

[**Z-Q**] p. 222

2 Dual de L_p

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

Démonstration. Soient $g \in L_q$ et $f \in L_p$. L'inégalité de Hölder donne

$$|\varphi_g(f)| \le ||g||_q ||f||_p$$

donc $\varphi_g \in (L_p)'$ et $\| \varphi_g \| \le \| g \|_q$. De plus, si g = 0, alors $\| \varphi_g \| = \| g \|_q = 0$. On peut donc supposer $g \neq 0$.

Soit u une fonction mesurable de module 1, telle que g=u|g|. On pose $h=\overline{u}|g|^{q-1}$. Comme q=p(q-1), on a

$$\int_{X} |h|^{p} d\mu = \int_{X} |g|^{(q-1)p} d\mu = \int_{X} |g|^{q} d\mu < +\infty$$

d'où $h \in L_p$ et $\|h\|_p^p = \|g\|_q^q = |\varphi_g(h)|$. Comme, $\frac{|\varphi_g(h)|}{\|h\|_p} \le \|\varphi_g\|$, on a en particulier,

$$\underbrace{\int_{X} |g|^{q} d\mu}_{=|\varphi_{g}(h)|} \leq \|\varphi_{g}\| \underbrace{\left(\int_{X} |g|^{q} d\mu\right)^{\frac{1}{p}}}_{=\|h\|_{p}}$$

et ainsi,

$$\|\varphi_g\| \ge \left(\int_X |g|^q d\mu\right)^{1-\frac{1}{p}} = \left(\int_X |g|^q d\mu\right)^{\frac{1}{q}} = \|g\|_q$$

donc $|||\varphi_g||| = ||g||_q$ et φ est une isométrie.

Montrons qu'elle est surjective. Soit $\ell \in (L_p)'$. D'après le Lemme 2, on a $L_2 \subseteq L_p$, donc on peut considérer la restriction $\widetilde{\ell} = \ell_{|L_2}$.

$$\forall f \in L_2, \quad |\widetilde{\ell}(f)| \le |||\ell|| ||f||_p \le M ||\ell|| ||f||_2 \implies \widetilde{\ell} \in (L_2)'$$

Comme L_2 est un espace de Hilbert, on peut appliquer le théorème de représentation de Riesz à $\widetilde{\ell}$. Il existe $g \in L_2$ telle que

$$\forall f \in L_2, \quad \widetilde{\ell}(f) = \int_X f\overline{g} \,\mathrm{d}\mu$$

Pour conclure, il reste à montrer que $g\in L_q$ et que l'égalité précédente est vérifiée sur L_p . Comme précédemment, on considère u de module 1 telle que g=u|g| et on pose $f_n=\overline{u}|g|^{q-1}\mathbb{1}_{|g|\leq n}\in L_\infty\subseteq L_2$. On a

$$\int_{X} |g|^{q} \mathbb{1}_{|g| \le n} d\mu = |\ell(f_{n})| \le ||\ell|| ||f_{n}||_{p} = ||\ell|| \left(\int_{X} |g|^{q} \mathbb{1}_{|g| \le n} d\mu \right)^{\frac{1}{p}}$$

D'où

$$\left(\int_{X} |g|^{q} \mathbb{1}_{|g| \le n} d\mu \right)^{\frac{1}{q}} = \left(\int_{X} |g|^{q} \mathbb{1}_{|g| \le n} d\mu \right)^{1 - \frac{1}{p}} \le |||\ell|||$$

D'après le théorème de convergence monotone, on a

$$\lim_{n \to +\infty} \left(\int_X |g|^q \mathbb{1}_{|g| \le n} \, \mathrm{d}\mu \right)^{\frac{1}{q}} = \left(\int_X |g|^q \, \mathrm{d}\mu \right)^{\frac{1}{q}} \le \|\|\ell\|\|$$

3 Dual de L_p

Et en particulier, $g \in L_q$ de norme inférieure ou égale à $\| \ell \|$. Ainsi, on a $\forall f \in L_2$, $\ell(f) = \varphi_g(f)$. Les applications ℓ et φ_g sont continues sur L_p et L_2 est dense dans L_p (par le Lemme 3), donc on a bien $\ell = \varphi_g = \varphi(g)$.

Remarque 5. Plus généralement, si l'on identifie g et φ_g :

- L_q est le dual topologique de L_p pour $p \in]1, +\infty[$.
- L_{∞} est le dual topologique de L_1 si μ est σ -finie.

[LI] p. 140

Bibliographie

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\verb|https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.|$

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$