Data: 22/04/2019	Matemática Discreta I - BCC101	Valor: 10 pontos
DECOM - UFOP	Prova 1	Nota:
Nome (letra de forma):		
Assinatura:	Matrícula:	
Questão 1 [Valor: 2,0 pontos - a tabela verdade.	Nota:]: Verifique se as sentenças são equival	lentes logicamente. Constru
(a) $[p \land (\neg(\neg p \lor q))] \lor (p \land (\mathbf{b}) (p \to r) \lor (q \to r)$ e		
Questão 2 [Valor: 1,5 ponto - lé o valor verdade de cada u	Nota:]: Seja o universo de discurso o conjuntuma das sentenças a seguir:	o dos números inteiros. Qua
() $\forall x, (x^2 > 0)$ () $\forall x \exists y, (x + y = x)$ () $\exists y \forall x, (y + x = y)$ () $\forall x \exists y, (x + y = 0)$ () $\exists y \forall x, (x + y = 0)$ () $\exists x \exists y, (x + y = x)$ () $\forall x \exists y, (x + y = x)$ () $\exists y \forall x, (y + x = y)$ () $\forall x \forall y, (x + y = 0)$ () $\exists y \forall x, (x + y = y + y)$ () $\exists y \forall x, (x + y = y + y)$	(x) Nota:]: Verifique, usando as regras de deduç	ão natural se os argumento
são válidos.	$\rightarrow \neg p, \neg w, u \lor w \vdash \neg t \land \neg w$	
b) $p \land \neg q \to r, p \lor q, q \to$	$p \vdash r$	
Questão 4 [Valor: 1,5 ponto - I sua contrapositiva:	Nota:]: Para cada uma das afirmações seguin	tes escreva a sua negação e a
(a) Para todo n inteiro, se	\boldsymbol{n} é primo então \boldsymbol{n} é ímpar ou \boldsymbol{n} é igual a 2.	
(b) Para todos os inteiros	a,b e c , se $(a-b)$ é par e $(b-c)$ é par, então $(a-c)$ é p	par.
Questão 5 [Valor: 2.0 pontos -	Nota: l: O famoso detetive Percule Hoirot fo	oi chamado para resolver un

- Questão 5 [Valor: 2,0 pontos Nota: _____]: O famoso detetive Percule Hoirot foi chamado para resolver un assassinato misterioso. Ele determinou os seguintes fatos:
 - (a) Lord Charles, o homem assassinado, foi morto com uma pancada na cabeça com um castiçal.
 - (b) Ou Lady Camila ou a empregada Sara estavam na sala de jantar no momento do assassinato.
 - (c) Se o cozinheiro estava na cozinha no momento do assassinato, então o açougueiro matou Lord Charles com uma dose fatal de arsênico.
 - (d) Se Lady Camila estava na sala de jantar no momento do assassinato, então o motorista matou Lord Charles.
 - (e) Se o cozinheiro não estava na cozinha no momento do assassinato, então Sara não estava na sala de jantar quando o assassinato ocorreu.
 - (f) Se Sara estava na sala de jantar no momento do assassinato, então o ajudante pessoal de Lord Charles o matou.
 - É possível para o detetive Percule Hoirot deduzir quem matou Lorde Charles? Se sim, quem é o assassino?