Fine-grained complexity of orthogonal vectors problem and it's variants OV, OV', Max IP+, HS, ...

SUSHMA KAMUJU

Department of Computer Science and Engineering, IIT Palakkad, Kerala

May 15, 2024

Motivation |

- Linear time best runtime
- 2 Polynomial time 2nd best.
- 1 In polynomial time problems, quadratic, cubic, ...
- Cannot be solved in linear time or
- Design better algorithms.

(or)

Show that solving a problem in better than best known can improve the runtime of many others.

Polynomial time reduction.

Polynomial time reduction.

Figure: $A \leq B$

- If B can be solved in polynomial time A can also be.

Fine-grained reduction

- **O** Polynomial time reduction σ , Fine-grained Reduction σ .
- ② If B can be solved sub quadratic time then σ has be done in sub quadratic for A to be solved in sub quadratic time.

Figure: $A \leq B$

Orthogonal Vectors Problem (OV)

- Input: Collections A, B, of n vectors each from $\{0, 1\}^d$. • Output: yes, if there exists distinct vectors $v_1 \in A$, $v_2 \in B$ such that $\langle v_1, v_2 \rangle = 0$, and no otherwise.
- **Example:** n = 3, d = 4 $A = \{ [1,0,1,0], [1,0,1,0], [1,1,1,0] \}$ $B = \{ [0,0,1,1], [1,1,1,1], [0,1,0,1] \}$ For this example, OV returns yes.
- **Example:** n = 3, d = 4 $A = \{[1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 1]\}$ $B = \{[0, 1, 0, 1], [1, 1, 1, 1], [1, 1, 1, 1]\}$ For this example, OV returns no.

OV

- Brute-force algorithm $O(n^2 \cdot d)$ time
- ② Another algorithm $O(n \cdot 2^d \cdot d)$ time.
- **3** Run time of Orthogonal Vectors Problem- $O(n^2 \log n)$ for any d.

Orthogonal Vector Hypothesis

For any $\epsilon > 0$ there cannot be an algorithm running in $O(n^{2-\epsilon} \cdot poly(d))$ time solving OV.

• Last Semester: 3 SUM has this hypothesis that it cannot be solved in $O(n^{2-\epsilon})$ where $\epsilon > 0$.

- $OV' \leq_f OV$
- $OV \leq_f OV'$
- **③** $OV ≤_f OV Search$
- **4** *OVSearch* ≤ $_f$ *OV*
- **⑤** HS \leq_f OVSearch

OV' < OV

1 Input: A collection X of n vectors from $\{0,1\}^d$. **Output:** yes, if there exits distinct vectors $v_1 \in X$, $v_2 \in X$ such that $\langle v_1, v_2 \rangle = 0$, and no otherwise.

$OV \le OV'$

Figure: $OV \leq OV'$

- construct $A' \subseteq \{0, 1\}^{d+2}$ where $A' = \{(a_1, \dots, a_d, 1, 0) \mid (a_1, \dots, a_d) \in A\}$
- ② similarly, $B' = \{(b_1, \dots, b_d, 0, 1) \mid (b_1, \dots, b_d) \in B\}.$
- **1** The output of σ , $X = A' \cup B'$
- **1** *X* is passed to *OV'* which returns true if there are vectors in it with dot product 0 and no otherwise.

$OV \leq OVSearch$

1 Input: Collections A, B, of n vectors each from $\{0, 1\}^d$. **Output:** Output $(v_1, v_2) \in A \times B$ such that $\langle v_1, v_2 \rangle = 0$, if it exists and null set otherwise.

Figure: $OV \leq OV$ Search

$OVSearch \leq OV$

Figure: OV Search≤ OV

Reduction

- divide *A* into smaller sets each of size *m* (where *m* < *n*, which will be fixed later) arbitrarily.
- Repeat the same for B

Reduction

- does brute force searches over all pairs A_i and B_j to find it any one of them have an orthogonal pair using the an algorithm for OV.
- ② This involves calling the OV algorithm $\left(\frac{n}{m}\right)^2$.
- **1** If one of the pairs A_i , B_j returns a yes, we brute-force over all elements in A_i , B_j and find the orthogonal pair.
- **1** If no pair was found, we return that there is no pair. This takes $O(m^2d)$ time.

Time Complexity

- We start by assuming that there is a deterministic algorithm that solved OV in time $OV(n, d) := n^{2-\epsilon}(d)$ time for some $\epsilon > 0$.
- **②** We then show that OV*Search* can be solved in $n^{2-2\epsilon}(d)$ time.
- 24

$$\left(\frac{n}{m}\right)^2 \cdot m^{2-\epsilon} \cdot \operatorname{poly}(d) + m^2 \cdot d \le \left(\frac{n}{m}\right)^2 \cdot m^{2-\epsilon} \cdot \operatorname{poly}(d) + m^2 \cdot \operatorname{poly}(d)$$

$$\le \left(\left(\frac{n}{m}\right)^2 \cdot m^{2-\epsilon} + m^2\right) \operatorname{poly}(d)$$

• $m = n^{(\frac{2}{2+\epsilon})}$, the time complexity is $n^{(2-2\epsilon)} \cdot \text{poly}(d)$

$HS \leq_f OVSearch$

Hitting Set HS

1 Input: Collections A, B, of n vectors each from $\{0, 1\}^d$. **Output:** yes, if there exists $v_1 \in A$ for all $v_2 \in B$ such that $\langle v_1, v_2 \rangle \neq 0$, and no otherwise.

Reduction

- divide *A* into smaller sets each of size *m* (where *m* < *n*, which will be fixed later) arbitrarily.
- Repeat the same for B

- each $i \in \{1, 2, ..., n/m\}$ and for each $j \in \{1, 2, ..., n/m\}$, do OVSearch on the pair (A_i, B_j)
- e removes all the vectors in A_i (to get A'_i) for which the inner product with some element in B_i is zero
- This can be found from the result of OVSearch
- We repeat this for all the B_i 's
- **②** Once all the B_j 's are checked, if the resulting A_i is non-empty, return yes. Else proceed to the next A_i
- \bullet At the end, if all A_i 's turned out to be empty, return no.


```
B1 B2 .....
                          B(n/m)
Α1
B1
         B2 .....
                          B(n/m)
=
A2
           B2 . . . . . . . B(n/m)
 В1

        An/m - OV
        An/m - OV
        An/m - OV

        Search(A2,B1)
        Search(A2,B2)
        Search(A2,B3)

                                              An/m
```


Time complexity

- $m \cdot \text{OV Search}(m, d) \cdot \left(\frac{n}{m}\right)$ instead OV Search $(m, d) \cdot m \cdot \left(\frac{n}{m}\right)^2$
- 2

$$n \cdot m^{2-\epsilon} \cdot \text{poly}(d) + n \le n \cdot m^{2-\epsilon} \cdot \text{poly}(d) + n \cdot \text{poly}(d)$$

= $(n \cdot m^{2-\epsilon} + n) \cdot \text{poly}(d)$

3 Choosing $m = n^{\frac{1}{1+\left(\frac{1}{1-\epsilon}\right)}}$, we get the above runtime to be $O(n^{2-\epsilon}(d))$.

- Non-Orthogonal Vectors NOV **Input:** Collections A, B, of n vectors each from $\{0, 1\}^d$. **Output:** yes, if there exists distinct vectors $v_1 \in A$, $v_2 \in B$ such that $\langle v_1, v_2 \rangle \neq 0$, and no otherwise.
- Always Orthogonal AOV Input: Collections A, B, of n vectors each from $\{0, 1\}^d$. Output: yes, if there exists $v_1 \in A$ for all $v_2 \in B$ such that $\langle v_1, v_2 \rangle = 0$, and no otherwise.

variants of OV

Problem	Quantification	on	Quantification	on	$\langle v_1, v_2 \rangle$ check
	$v_1 \in A$		$v_2 \in B$		
\overline{OV}	3		3		$\langle v_1, v_2 \rangle = 0$
NOV	3		3		$\langle v_1, v_2 \rangle \neq 0$
HS	3		\forall		$\langle v_1, v_2 \rangle \neq 0$
AOV	3		A		$\langle v_1, v_2 \rangle = 0$

Table: Variants of Orthogonal Vectors Problem

• In total, there should have been eight variants, but the other four variants will essentially be complement of the above four problems and hence are not listed.

Results

- O NOV
- 40V

THANK YOU

SUSHMA KAMUJU 112001014

Problems of Interest

Orthogonal vectors Problem and its varinats

- Orthogonal Vectors OV
- Non-Orthogonal Vectors NOV
- 4 Hitting Set HS
- Always Orthogonal AOV
- OV'
- Maximum Inner Product MaxIP
- Minimum Inner Product MinIP
- Maximum Inner Product MaxIP+
- Search Orthogonal Vectors OVSearch
- Count Orthogonal Vectors countOV

Fine-Grained Reductions

THANK YOU

SUSHMA KAMUJU 112001014

OV'

Let n, d be non-negative integers.

- Input: A collection X of n vectors from $\{0, 1\}^d$.
- **Output:** yes, if there exits distinct vectors $v_1 \in X$, $v_2 \in X$ such that $\langle v_1, v_2 \rangle = 0$, and no otherwise.

Figure: $OV \leq OV'$

Working of reduction

- construct $A' \subseteq \{0, 1\}^{d+2}$ where $A' = \{(a_1, \dots, a_d, 1, 0) \mid (a_1, \dots, a_d) \in A\}$
- ② similarly, $B' = \{(b_1, \dots, b_d, 0, 1) \mid (b_1, \dots, b_d) \in B\}.$
- **3** The output of σ , $X = A' \cup B'$
- Y is passed to OV' which returns true if there are vectors in it with dot product 0 and no otherwise.

Proof Of Reduction

(A,B) is an yes instance of $OV \iff X$ (where $X = \sigma(A,B)$) is an yes instance of OV'

Forward direction

- suppose (A, B) is a yes instance of OV. Hence, there exists $v_1 \in A$ and $v_2 \in B$ such that $\langle v_1, v_2 \rangle = 0$.
- By the map σ defined above, there exists v'_1 and v'_2 in X where v'_1 is v_1 concatenated with (1,0) and v'_2 is v_2 concatenated with (0,1).
- By construction, $\langle v'_1, v'_2 \rangle = \langle v_1, v_2 \rangle$ Since $\langle v_1, v_2 \rangle = 0$, we can conclude that X is a yes instance of OV'.

Reverse direction

- Suppose X is a 'yes' instance of OV', indicating there exist vectors v'_1 and v'_2 such that their dot product is 0.
- ② Let v'_1 be (v_1, a, b) and v'_2 be (v_2, c, d) , where a, b and $c, d \in \{(0, 1), (1, 0)\}.$
- Since $\langle v_1', v_2' \rangle = 0$, then $\langle (v_1, (a, b)), (v_2, c, d) \rangle = 0$.
- **1** This expands to $\langle v_1, v_2 \rangle + \langle (a, b), (c, d) \rangle = 0$.
- To ensure the whole term is 0, as both terms are positive, the only possibility is to make both terms 0.
- **1** Therefore, $\langle v_1, v_2 \rangle = 0$ and $\langle (a, b), (c, d) \rangle = 0$.
- \bigcirc For this to be 0, (a, b) and (c, d) should be different.
- **3** This implies if $v_1 \in A$, then $v_2 \in B$, and if $v_2 \in A$, then $v_1 \in B$.

$$OV' \leq_f OV$$

How reduction works

Figure: $OV \leq OV'$

How Reduction works

X is an yes instance of $OV' \iff (A,B)$ where $(A,B) = \sigma(X)$ is an yes instance of OV

Forword direction

- Consider an yes instance X of OV'. This implies there is pair of vectors $v_1, v_2 \in X$ whose inner product is 0.
- Then there will be pair of vectors in $A \times B$ such that their inner product is 0.
- **1** Hence A, B is an yes instance of OV.

Reverse direction

- Suppose X is no instance of OV', then there are no pair of vectors in X that have inner product as 0,
- ② in which case it is not possible to get any pair of vectors in $A \times B$ whose inner product is 0.
- \bullet Hence A, B is no instance of OV.

OV Search≤ OV

Figure: OV Search≤ OV

Step1:

- divide A into smaller sets each of size m (where m < n, which will be fixed later) arbitrarily.

Step2:

- does brute force searches over all pairs A_i and B_j to find it any one of them have an orthogonal pair using the an algorithm for OV.
- This involves calling the OV algorithm $\left(\frac{n}{m}\right)^2$.
- If one of the pairs A_i , B_j returns a yes, we brute-force over all elements in A_i , B_j and find the orthogonal pair.
- If no pair was found, we return that there is no pair. This takes $O(m^2d)$ time.

Proof of reduction

Figure: OV Search \leq OV

 $(A,B) \in \mathit{OVSearch} \iff \exists i,j(A_i,B_j) \text{ is a yes instance of } \mathit{OV}.$

Forward direction proof:

- Consider yes instance of OV. This implies there is pair of vectors, say, v_1, v_2 where $v_1 \in A$ and $v_2 \in B$ such that their dot product is 0.
- **2** After dividing A, B into smaller collections let $v_1 \in A_i, V_2 \in B_j$. Hence $(A_i, B_j) \in OV$, yes instance.

Reverse direction proof:

- Consider a no instance (A, B) of OV. This implies these exists no pair of vectors in (A, B) such that their dot product is 0.
- **②** Hence none of the pairs in $\{A_1, A_2, \dots, A_{\frac{n}{m}}\} \times \{B_1, B_2, \dots, B_{\frac{n}{m}}\}$ belongs to OV, no instance.

$OV \leq MaxIP +$

MaxIP +

Let n, d be non-negative integers.

- **1 Input:** Collections A, B, of n vectors each from $\mathbb{R}^d_{>0}$.
- **2 Output:** Compute $\max_{(v_1,v_2)\in A\times B}\langle v_1,v_2\rangle$.

Figure: MaxIp+ ≤ OV

- construct $A' \in \{0, 1\}^{3d}$ where A' is given as for all $a \in A$, $a' \in A'$ so a' is given by [a, 1 a, 1 a] so the length of each vector in A' becomes 3d where the length of each vector in A is d.
- ② for all $b \in B$, $b' \in B'$ such that b' is given by [1 b, 1 b, b] so the length of each vector in B' becomes 3d where the length of each vector in B is d.
- **1** MaxIP+ returns the maximum inner product for the sets A' and B'

Proof of Reduction

$$(A, B)$$
 is a yes instance of $OV \iff \text{MAXIP+ instance of } (A', B')$ (where $(A', B') = \sigma(A, B)$) returns d .

Forward Direction

- Consider A, B as yes instances of OV. This implies there is a pair of vectors, let $a \in A$ and $b \in B$, whose dot product is $0 \langle a, b \rangle = 0$.
- ② Let $a' \in A'$ and $b' \in B'$ where $a' = a||\overline{a}||\overline{a}$ and $b' = \overline{b}||\overline{b}||b$.
- $\langle a', b' \rangle = d \langle a, b \rangle = d$ (lemma proved in report)

Reverse Direction

- Consider no instance of OV this means there is no pair of vectors from A, B whose dot product is 0,this implies $\forall a \in A, \forall b \in B, \langle a, b \rangle > 0$.
- from lemma $\langle a',b'\rangle=d-\langle a,b\rangle$ as $\langle a,b\rangle>0$ there is no possibility that $\langle a',b'\rangle$ can ever become d.

$HS \leq_f OVSearch$

Hitting Set HS

Let n, d be non-negative integers.

- **Input:** Collections A, B, of n vectors each from $\{0, 1\}^d$.
- Output: yes, if there exists $v_1 \in A$ for all $v_2 \in B$ such that $\langle v_1, v_2 \rangle \neq 0$, and no otherwise.

Figure: $HS \leq OVSearch$

Step1:

- divide A into smaller sets each of size m (where m < n, which will be fixed later) arbitrarily.
- \bigcirc Repeat the same for B

Step2:

- each $i \in \{1, 2, ..., n/m\}$ and for each $j \in \{1, 2, ..., n/m\}$, do OVSearch on the pair (A_i, B_i)
- removes all the vectors in A_i (to get A'_i) for which the inner product with some element in B_i is zero
- This can be found from the result of OVSearch
- We repeat this for all the B_i 's
- Once all the B_j 's are checked, if the resulting A_i is non-empty, return yes. Else proceed to the next A_i
- At the end, if all A_i 's turned out to be empty, return no.


```
B1 B2 .....
         B(n/m)
Α1
B1
   B2 .....
         B(n/m)
=
A2
    B2 . . . . . . . B(n/m)
В1
An/m
```


Figure: $HS \leq OVSearch$

Proof of reduction

A, B is yes instance of $HS \iff \exists A_i \text{ such that } \forall j \text{ the OV search on } (A_i, B_j)$ returns a null set.

Forward direction

- Consider a yes instance of HS, this implies let $v_1 \in A$ such that for all $v_2 \in B$, $\langle v_1, v_2 \rangle \neq 0$.
- Hence, $v_1 \in A_i$ for some i. Hence, for any $j \in \{1, 2, ..., n/m\}$, if we perform an OV*Search* on (A_i, B_j) , it is bound to return a null set by the hitting set property.

Reverse direction

- Let (A, B) be a no instance of HS. Then, for any $v_1 \in A$, there exists $v_2 \in B$ such that $\langle v_1, v_2 \rangle = 0$.
- Pick any A_i and any $v_1 \in A_i$.
- By the above statement, there exists a B_j such that for some $v_2 \in B_j$ the inner product of v_1 and v_2 is 0.
- Hence OV Search on the pair (A_i, B_j) will return (v_1, v_2) and hence is not a null set.

Time complexity and analysis

Conclusion

- \bullet OV \leq Count OV
- $OV \leq_f OV$ search
- $MaxIP+ \leq OV$
- The problems NOV and AOV

