# Credit Debt Prediction using Multiple Regression

1<sup>st</sup> Rutuja Dinesh Mehta MSc in Data Analytics National College Of Ireland Dublin, Ireland x20129751@student.ncirl.ie

## I. INTRODUCTION

Multiple Linear Regression, which is also known as Multiple Regression, is a statistical approach that uses several exploratory variables for the prediction of a model. It is used to predict the outcome of the single response variable. The main goal of the multiple regression is to build a linear relationship between the two components: two or more exploratory (also known as the independent) variables and the response (also known as the dependent) variable.

Multiple Regression equation:

$$Y = a + b_1X_1 + b_2X_2 + b_3X_3 + ... + b_nX_n$$
 (1)

where,

Y: dependent variable

a: constant

 $X_1, X_2,..., X_n$ : independent variables

 $b_1, b_2,..., b_n$ : slope coefficients of the independent variables

# II. OBJECTIVE AND DATASET DESCRIPTION

The dataset consists of 687 rows and 9 columns. The objective of the project is to predict the Credit card debt using several multiple linear regression models based on the various attributes such income, debtinc, creddebt, otherdebt, employer, etc. The detailed description of each of the variable is given below.

| Variable  | Description of the Variable                   | Data Type | Unit             |
|-----------|-----------------------------------------------|-----------|------------------|
| age       | Age                                           | Numeric   | Years            |
| ed        | Level of education                            | Numeric   | Level: 1,2,3,4,5 |
| employ    | Years at current employer                     | Numeric   | Years            |
| address   | Years at current address                      | Numeric   | Years            |
| income    | Household income                              | Numeric   | Thousands        |
| debtinc   | Debt to income ratio                          | Numeric   | Ratio(x100)      |
| creddebt  | Credir card debt                              | Numeric   | Thousands        |
| otherdebt | Other debts                                   | Numeric   | Thousands        |
| default   | Whether the customer has previously defaulted | Numeric   | 1: Yes, 2: No    |

Fig. 1. Description of the variables

# III. Understanding and Building a Model

## A. Descriptive Statistics

Descriptive statistics summarizes all the basic features of the variables about the samples or the measures in the given dataset and identifies the potential relationship amongst the variables. The most commonly used descriptive statistics

are a measure of central tendency(mean,median, mode), dispersion(range, variation, standard deviation, skew) and the association(chi-square, correlation). Descriptive statistics for the used dataset is given below.

|                 |          |        |       | De     | scriptive : | Statistics |         |             |             |         |
|-----------------|----------|--------|-------|--------|-------------|------------|---------|-------------|-------------|---------|
|                 |          | age    | ed    | employ | address     | income     | debtinc | creddebt    | othdebt     | default |
| N               | Valid    | 837    | 837   | 837    | 837         | 837        | 837     | 837         | 837         | 68      |
|                 | Missing  | 0      | 0     | 0      | 0           | 0          | 0       | 0           | 0           | 15      |
| Mean            |          | 35.04  | 1.72  | 8.55   | 8.38        | 46.58      | 10.141  | 1.56440205  | 3.073980270 | .2      |
| Median          |          | 34.00  | 1.00  | 7.00   | 7.00        | 35.00      | 8.600   | .88283300   | 1.995136000 | .0      |
| Mode            |          | 29     | 1     | 0      | 2           | 21         | 5.4     | .085785ª    | 3.16608600ª |         |
| Std. Deviatio   | n        | 8.053  | .931  | 6.761  | 6.917       | 38.427     | 6.6801  | 2.109409171 | 3.387519187 | .44     |
| Variance        |          | 64.846 | .866  | 45.707 | 47.841      | 1476.648   | 44.623  | 4.450       | 11.475      | .19     |
| Skewness        |          | .342   | 1.207 | .874   | .930        | 3.748      | 1.130   | 3.744       | 3.217       | 1.08    |
| Std. Error of   | Skewness | .085   | .085  | .085   | .085        | .085       | .085    | .085        | .085        | .09     |
| Kurtosis        |          | 653    | .691  | .421   | .254        | 23.064     | 1.438   | 20.100      | 16.915      | 82      |
| Std. Error of I | Kurtosis | .169   | .169  | .169   | .169        | .169       | .169    | .169        | .169        | .18     |
| Range           |          | 36     | 4     | 33     | 34          | 433        | 41.2    | 20.549614   | 35.15191600 |         |
| Minimum         |          | 20     | 1     | 0      | 0           | 13         | .1      | .011696     | .0455840000 |         |
| Maximum         |          | 56     | 5     | 33     | 34          | 446        | 41.3    | 20.561310   | 35.19750000 |         |
| Percentiles     | 25       | 29.00  | 1.00  | 3.00   | 3.00        | 24.00      | 5.100   | .38008000   | 1.043060500 | .0      |
|                 | 50       | 34.00  | 1.00  | 7.00   | 7.00        | 35.00      | 8.600   | .88283300   | 1.995136000 | .0      |
|                 | 75       | 41.00  | 2.00  | 13.00  | 12.00       | 55.50      | 13.800  | 1.89689100  | 3.930448500 | 1.0     |

Fig. 2. Descriptive Statistics

The spread of the variables value namely frequency distribution, outliers and the skewness can be concluded from the histogram. The below histogram shows us that the age and debtine have a normal distribution with a small tail in the positive direction. Rest all the variables such as income, creddebt, address, otherdebt, default, ed and employ are positively skewed. Variable income has some outliers, as well.



Fig. 3. Histogram

The correlation matrix shown below depicts us the strength of the relationship between the numeric coefficients. This can be used as an input or as a diagnostic for the future advanced analysis. The widely used Pearson Correlation is used for this dataset which typically ranges from -1 to +1. The relation is said to be positive if the coefficient lies between 0 and 1 and a negative if the coefficient lies between -1 and 0. The strong relation can be seen between income and otherdebt when related to creddebt. Age and default are moderately related to creddebt. And the weakness can be seen when education and employment are in relation to creddebt.



Fig. 4. Pearson Correlation

## B. Model Building

## a) First Model:

Variables used for building the first Model are:

|       | Variables Ent    | ered/Removed | la<br>I |
|-------|------------------|--------------|---------|
|       | Variables        | Variables    |         |
| Model | Entered          | Removed      | Method  |
| 1     | default, income, |              | Enter   |
|       | ed, address,     |              |         |
|       | debtinc, age,    |              |         |
|       | employ, othdebtb |              |         |
| _     |                  |              |         |

- a. Dependent Variable: creddebt
- b. All requested variables entered.

Fig. 5. Variable Model 1

All the independent variables such as income, ed, address, debtinc, age, employ, otherdebt and default are used to build a model have linearity with the variable creddebt. It can be concluded from the below model that the four non-significant variables age, ed, address and otherdebt doesn't fulfill the criteria of p<0.05 which has a p-value of 0.194, 0.203, 0.123 and 0.139 respectively.

|       |       |          |                      |                               |                    | Cha      | nge Statistic | S   |                  |                   |
|-------|-------|----------|----------------------|-------------------------------|--------------------|----------|---------------|-----|------------------|-------------------|
| Model | R     | R Square | Adjusted R<br>Square | Std. Error of<br>the Estimate | R Square<br>Change | F Change | df1           | df2 | Sig. F<br>Change | Durbin-<br>Watson |
| 1     | .784ª | .615     | .611                 | 1.308447810                   | .615               | 135.443  | 8             | 678 | .000             | 1.99              |

Fig. 6. Model 1 Summary

The output of the Model 1 can be represented by the regression equation as :

|       |            | 4                        | ANOVA |             |         |                   |
|-------|------------|--------------------------|-------|-------------|---------|-------------------|
| Model |            | Sum of<br>Squares        | df    | Mean Square | F       | Sig.              |
| 1     | Regression | 1855.071                 | 8     | 231.884     | 135.443 | .000 <sup>b</sup> |
|       | Residual   | 1160.760                 | 678   | 1.712       |         |                   |
|       | Total      | 3015.831                 | 686   |             |         |                   |
| - 0   |            | a to a consist of a task |       |             |         |                   |

Fig. 7. Anova Table Model 1

|       |            |               |                | Co                           | efficients | a    |                |                    |              |            |
|-------|------------|---------------|----------------|------------------------------|------------|------|----------------|--------------------|--------------|------------|
|       |            | Unstandardize | d Coefficients | Standardized<br>Coefficients |            |      | 95.0% Confider | ice Interval for B | Collinearity | Statistics |
| Model |            | В             | Std. Error     | Beta                         | t          | Sig. | Lower Bound    | Upper Bound        | Tolerance    | VIF        |
| 1     | (Constant) | -1.543        | .288           |                              | -5.356     | .000 | -2.108         | 977                |              |            |
|       | age        | 011           | .009           | 044                          | -1.299     | .194 | 029            | .006               | .503         | 1.988      |
|       | ed         | 077           | .060           | 034                          | -1.274     | .203 | 195            | .041               | .794         | 1.259      |
|       | employ     | .047          | .011           | .148                         | 4.086      | .000 | .024           | .069               | .431         | 2.322      |
|       | address    | .014          | .009           | .046                         | 1.544      | .123 | 004            | .032               | .636         | 1.573      |
|       | income     | .031          | .003           | .550                         | 12.438     | .000 | .026           | .036               | .291         | 3.439      |
|       | debtinc    | .160          | .012           | .518                         | 13.350     | .000 | .136           | .184               | .378         | 2.648      |
|       | othdebt    | 045           | .030           | 070                          | -1.480     | .139 | 104            | .015               | .255         | 3.919      |
|       | default    | .659          | .132           | .138                         | 4.996      | .000 | .400           | .918               | .741         | 1.350      |

Fig. 8. Coefficient Summary Model 1

Next, the global hypothesis test is conducted to check if any of the regression coefficients are other than 0. The significance level of 0.05 can be used here.

$$H_0: b_1 = b_2 = b_3 = b_4 = b_5 = b_6 = b_7 = b_8$$

H<sub>1</sub>: Hardly any b's are 0

We reject null hypotheses since the p value in the ANOVA table is 0.000 which appears to be less than the significance level 0.05 and so arriving at the conclusion that atleast one of the regression coefficients is unequal to 0.

$$H_0: b_n = 0$$
  
 $H_1: b_n \neq 0$ 

Null hypothesis is rejected for the variables age, ed, address and otherdebt as the p-value is greater than the significance level 0.05.



Fig. 9. P-P plot and the Scatter Plot for Model 1

The better result can be obtained from the model where these four variables are removed (value with greatest p-value or with smallest t-statistic) one by one with some applied transformations.

## b) Second Model:

In this model, the independent variables age, ed, address and otherdebt, the ones with the p-value greater than 0.05 are removed and the income, debtinc and the otherdebt are transformed into their logarithmic values. The findings for the Model 2 are shown below:



Fig. 10. Model 2 Summary



b. Predictors: (Constant), othdebt\_log, income\_log, debtinc\_log

Fig. 11. Anova Table Model 2

|       |             |               |                | Co                           | efficients | i    |               |                    |              |            |
|-------|-------------|---------------|----------------|------------------------------|------------|------|---------------|--------------------|--------------|------------|
|       |             | Unstandardize | d Coefficients | Standardized<br>Coefficients |            |      | 95.0% Confide | nce Interval for B | Collinearity | Statistics |
| Model |             | В             | Std. Error     | Beta                         | t          | Sig. | Lower Bound   | Upper Bound        | Tolerance    | VIF        |
| 1     | (Constant)  | -22.619       | .365           |                              | -62.012    | .000 | -23.335       | -21.903            |              |            |
|       | income_log  | 2.940         | .052           | 1.416                        | 56.624     | .000 | 2.838         | 3.042              | .222         | 4.514      |
|       | debtinc_log | 2.923         | .051           | 1.835                        | 57.335     | .000 | 2.823         | 3.023              | .135         | 7.391      |
|       | othdebt_log | -1.903        | .048           | -1.543                       | -40.050    | .000 | -1.996        | -1.809             | .093         | 10.709     |

Fig. 12. Coefficients Summary Model 2

Again, both the hypothesis; the individual and the global, were checked. It was found that the R and the R Square value got changed with the p-value as 0.000 for the three independent coefficients. Though the R and the R Square values, 95% and 90%, respectively stands good, it can be observed from the Fig.13 that the P-P plot has datapoints far away from the fitted distribution line along with the scatter plot with a lot of noise. Thus, giving a heteroscedasity reason for rejecting this model.

Few more transformations on the independent coefficients are applied in the next model to get the best fit regression model.

## c) Third Model:

In this model, the independent variables age, ed, address and otherdebt, the ones with the p-value greater than 0.05 and the employ variable is removed and the income and debtinc are transformed into their squareroot values. Default variable



Fig. 13. P-P plot and the Scatter Plot for Model 2

with 0.002 p-value is also considered in this model. The findings for the Model 3 are shown below:



Fig. 14. Model 3 Summary

|       |            | A                 | NOVA |             |         |                   |
|-------|------------|-------------------|------|-------------|---------|-------------------|
| Model |            | Sum of<br>Squares | df   | Mean Square | F       | Sig.              |
| 1     | Regression | 152.135           | 3    | 50.712      | 461.962 | .000 <sup>b</sup> |
|       | Residual   | 74.317            | 677  | .110        |         |                   |
|       | Total      | 226.452           | 680  |             |         |                   |

b. Predictors: (Constant), debtinc\_sqrt, income\_sqrt, default

Fig. 15. Anova Table Model 3

|       |              |               |                | Co                           | efficients <sup>c</sup> | 1    |               |                    |              |            |
|-------|--------------|---------------|----------------|------------------------------|-------------------------|------|---------------|--------------------|--------------|------------|
|       |              | Unstandardize | d Coefficients | Standardized<br>Coefficients |                         |      | 95.0% Confide | nce Interval for B | Collinearity | Statistics |
| Model |              | В             | Std. Error     | Beta                         | t                       | Sig. | Lower Bound   | Upper Bound        | Tolerance    | VIF        |
| 1     | (Constant)   | -1.031        | .057           |                              | -17.935                 | .000 | -1.144        | 918                |              |            |
|       | income_sqrt  | .162          | .006           | .562                         | 25.135                  | .000 | .149          | .174               | .970         | 1.031      |
|       | default      | .097          | .032           | .073                         | 3.058                   | .002 | .035          | .159               | .843         | 1.186      |
|       | debtinc_sqrt | .339          | .013           | .605                         | 25.607                  | .000 | .313          | .365               | .867         | 1.153      |

a. Dependent Variable: creddebt\_sqrt

Fig. 16. Coefficients Summary Model 3

It can be clearly seen from the P-P plot below that though the R and R Square values 0.820 and 0.672 respectively are reduced from that of the previous model, the datapoints have almost touched the fitted distribution line. The scatter plot also got noise reduced drastically.

Thus, looking at the transformations in this model and the comparison with the previous two, it can be concluded that the Model 3 stands better in giving us the best fit multiple regression model.

## The Final Regression Equation:

 $Y = -1.O31 + 0.162(income\_sqrt) + 0.097(default) + 0.339(debtinc\_sqrt)$ 





Fig. 17. P-P plot and the Scatter Plot for Model 3

#### IV. ASSUMPTIONS

# A. Gauss Markov

The Gauss Markov theorem states that if the OLS (Ordinary Least Squares) estimate for the regression coefficients gives you the best linear unbiased estimate possible if the certain set of assumptions in the theorem are met. You will be able to build your own model which resembles closely to the Gauss Markov's if you understand the violated points and correct them. For that, it's crucial to check how the data well fits these assumptions while calculating the regression coefficients.

# 1) Linear relationship between the dependent variable and the independent variable:

The Gauss Markov theorem states that there should be a linearity amongst dependent and the independent variables. This can be concluded by plotting a scatter plot for all the variables all at once.



Fig. 18. Linearity between dependent and independent variables

Income\_sqrt, debtince\_sqrt and default has much better linearity as compared to the other independent variables with the creddebt\_sqrt variable. Thus, satisfying the assumption.

# 2) Multicollinearity:

When two or more variables are strongly related to each other, multicollinearity occurs. This can be problematic while estimating a multiple regression model and we can't easily determine to variance impact on the independent variable then. The correlation coefficient value should not lie between -0.70 and 0.70 or the VIF value should be less than 10. In the table above, all the independent variables have the VIF

|       |            | Unstandardize | d Coefficients | Standardized<br>Coefficients |        |      | 95.0% Confider | ice Interval for B | Collinearity | Statistics |
|-------|------------|---------------|----------------|------------------------------|--------|------|----------------|--------------------|--------------|------------|
| Model |            | В             | Std. Error     | Beta                         | t      | Sig. | Lower Bound    | Upper Bound        | Tolerance    | VIF        |
| 1     | (Constant) | -1.543        | .288           |                              | -5.356 | .000 | -2.108         | 977                |              |            |
|       | age        | 011           | .009           | 044                          | -1.299 | .194 | 029            | .006               | .503         | 1.98       |
|       | ed         | 077           | .060           | 034                          | -1.274 | .203 | 195            | .041               | .794         | 1.25       |
|       | employ     | .047          | .011           | .148                         | 4.086  | .000 | .024           | .069               | .431         | 2.32       |
|       | address    | .014          | .009           | .046                         | 1.544  | .123 | 004            | .032               | .636         | 1.57       |
|       | income     | .031          | .003           | .550                         | 12.438 | .000 | .026           | .036               | .291         | 3.43       |
|       | debtinc    | .160          | .012           | .518                         | 13.350 | .000 | .136           | .184               | .378         | 2.64       |
|       | othdebt    | 045           | .030           | 070                          | -1.480 | .139 | 104            | .015               | .255         | 3.91       |
|       | default    | .659          | .132           | .138                         | 4.996  | .000 | .400           | .918               | .741         | 1.35       |

Fig. 19. Multicollinearity

value less than 10 and hence there is no multicollinearity given to the regression model.

# 3) Independence of Residuals:

Durbin-Watson statistics helps in testing for the independent residual values i.e no relationship between the observations. It is used for testing the auto-correlation in between the residual values in the range of 0 and 3, value when close to 2 is considered as the good independent residual value.



Fig. 20. Independence of Residuals

Here, the Durbin-Watson value stands out to be 1.992, which has a better auto-correlation.

## 4) Homoscedasity:

Homoscedasity refers to the scattering of the residuals, for example, if the residuals are evenly distributed or they are bunched together.



Fig. 21. Homoscedasity

The noise appears very less in the above scatter plot, thus having a minor homoscedasity.

## 5) No significant outliers:

Cook's distance tests the influential datapoints by measuring the effect of each observation on the regression coefficient. So, if there are any high influential points or the leverage points, they are treated as outliers as it can affect our model and bias the predicted results. The best way to identify those is by checking whether the Cook's distance falls below 1. It can be inferred from the below table that we don't have any significant outliers as the maximum Cook's distance comes out to be 0.411.

|                                      | Resi         | duals Statistic | ·s <sup>a</sup> |                |     |
|--------------------------------------|--------------|-----------------|-----------------|----------------|-----|
|                                      | Minimum      | Maximum         | Mean            | Std. Deviation | N   |
| Predicted Value                      | -1.17969716  | 13.85119152     | 1.53800213      | 1.644440490    | 687 |
| Std. Predicted Value                 | -1.653       | 7.488           | .000            | 1.000          | 687 |
| Standard Error of<br>Predicted Value | .075         | .744            | .140            | .052           | 687 |
| Adjusted Predicted Value             | -1.19280326  | 12.80848122     | 1.53669796      | 1.630108129    | 687 |
| Residual                             | -5.472508907 | 12.87841988     | .000000000      | 1.300796002    | 687 |
| Std. Residual                        | -4.182       | 9.843           | .000            | .994           | 687 |
| Stud. Residual                       | -4.374       | 9.996           | .000            | 1.010          | 687 |
| Deleted Residual                     | -5.985161781 | 13.28428650     | .001304172      | 1.344184564    | 687 |
| Stud. Deleted Residual               | -4.434       | 10.818          | .002            | 1.029          | 687 |
| Mahal, Distance                      | 1.249        | 220.938         | 7.988           | 11.224         | 687 |
| Cook's Distance                      | .000         | .411            | .004            | .026           | 687 |
| Centered Leverage Value              | .002         | .322            | .012            | .016           | 687 |

Fig. 22. No significant outliers

# 6) Normal P-P plot of Regression:

The residuals or the errors must be approximately distributed evenly across the normal distributed fitted line with a normal mean of 0. The points should hug a diagonal line for the best normal distribution. In the P-P plot below, the datapoints almost touch the fitted distribution line.



Fig. 23. Normal P-P plot of Regression

# V. MODEL SUMMARY

The three different models were compared with each other depending on the various factors such as R and R Square value, p-value, t-statistics, VIF statistics, P-P plot, scatter plot, etc and many more. And we arrived at our conclusion that the Model 3 bests suits for the prediction.

The reasons for the above said statement are given below:

- 1) R, R Square and Adjusted R Square helps in determining the coefficients in the model summary. The R Square, proportional to the variance in the dependent coefficient has a value of 0.672. Adjusted R<sup>2</sup> stands out to be 67%. From these values, it is pretty much clear that these variables are useful in predicting the credit card debt.
- 2) The value of f-statistics is compared with the critical value to test the significance of model, which is 461.96. The degrees of freedom in the numerator is k and that in the denominator is N-(k+1).

Critical Value = 
$$k / (N-(k+1))$$
 (2)



Fig. 24. Final Model Summary

The critical value comes out to be 5.841 which is lesser than the F computed value. So, we reject the null hypothesis.

| Model |            | Sum of<br>Squares | df  | Mean Square | F       | Sig.  |
|-------|------------|-------------------|-----|-------------|---------|-------|
| 1     | Regression | 152.135           | 3   | 50.712      | 461.962 | .000Ъ |
|       | Residual   | 74.317            | 677 | .110        |         |       |
|       | Total      | 226.452           | 680 |             |         |       |

Fig. 25. Final Anova Table

3) The casewise diagnostic above provides with the actual and predicted values for the dependent variable. This gives us a picture of how our cases stand out even after having a control over all the independent variables.

| Casewise Diagnostics <sup>a</sup> |               |               |                    |          |
|-----------------------------------|---------------|---------------|--------------------|----------|
| Case Number                       | Std. Residual | creddebt_sqrt | Predicted<br>Value | Residual |
| 92                                | 3.403         | 3.14          | 2.0152             | 1.12750  |
| 231                               | 3.280         | 3.10          | 2.0117             | 1.08674  |
| 298                               | 3.065         | 3.10          | 2.0819             | 1.01542  |
| 444                               | -3.025        | .94           | 1.9445             | -1.00234 |
| 466                               | -3.912        | .91           | 2.2022             | -1.29623 |
| 500                               |               |               |                    | 4.00004  |

a. Dependent Variable: creddebt\_sqrt

Fig. 26. Casewise Diagnostic of the final model

### REFERENCES

- [1] Wiley-IEEE Press, "Multiple Regression and Model Building," 10.1002/0471756482.ch3
- [2] https://statistics.laerd.com/spss-tutorials/multiple-regression-using-spss-statistics.php