The geometry of the space of vortex-antivortex pairs

Martin Speight (Leeds) joint with Nuno Romão (Augsburg) arXiv:1807.00712

Keio University, 26/9/18

Motivation

- Vortices:
 - simplest topological solitons in gauge theory (2D, U(1), \mathbb{C})
 - topology comes from winding at spatial infinity
 - have a BPS regime
- Sigma model lumps:
 - even simpler topological solitons (2D, no gauge theory, BPS)
 - \bullet topology comes from "wrapping" of space around target space $\mathbb{R}^2 \to S^2$
- Gauged sigma models: have both types of topology
 - Lumps split into vortex antivortex pairs
 - Two species of vortex
 - BPS! Vortices and antivortices ins stable equilibrium
 - Moduli space of vortex-antivortex solutions has interesting geometry.

The gauged O(3) sigma model

- $\mathbf{n}: \Sigma \to S^2$ ($\Sigma = \mathbb{R}^2$, physical space)
- Fix $\mathbf{e} \in S^2$ (e.g. $\mathbf{e} = (0, 0, 1)$) G = U(1) acts on S^2 by rotations about \mathbf{e}
- Gauge field $A \in \Omega^1(\Sigma)$

$$d_A \mathbf{n} = d\mathbf{n} - A\mathbf{e} \times \mathbf{n}$$

Magnetic field $F_A = dA \in \Omega^2(\Sigma)$

Energy

$$E = \frac{1}{2} \int_{\Sigma} \left(|d_A \mathbf{n}|^2 + |F_A|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

Aside: $\mu(\mathbf{n}) = -\mathbf{e} \cdot \mathbf{n}$ is moment map for gauge action

Magnetic flux quantization

$$E = \frac{1}{2} \int_{\Sigma} \left(|d_A \mathbf{n}|^2 + |F_A|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

ullet As $r o\infty$, ${f e}\cdot{f n} o 0$: ${f n}:S^1_\infty o S^1_{equator}$

$$\mathbf{n}_{\infty}(\theta) = (\cos\chi(\theta), \sin\chi(\theta), 0)$$

- $ullet |\mathrm{d}_A \mathbf{n}| o 0$ also, $A_\infty = \chi'(heta) \mathrm{d} heta$
- $\bullet \int_{\Sigma} F_{A} = \oint_{S^{1}_{\infty}} A_{\infty} = \chi(2\pi) \chi(0) = 2\pi n$
- Two topological charges:

$$n_+ = \sharp \{ \mathbf{n}^{-1}(\mathbf{e}) \}, \qquad n_- = \sharp \{ \mathbf{n}^{-1}(-\mathbf{e}) \}.$$

Constraint: $n = n_+ - n_-$

(Anti)vortices

"north" vortex

$$n_{+}=1, n_{-}=0$$

"south" vortex

$$n_{+}=0, n_{-}=-1$$

"north" antivortex

$$n_{+} = -1, \ \underline{n} = 0$$

"south" antivortex

$$n_{+}=0, n_{-}=1$$

"Bogomol'nyi" bound (Schroers)

• Given (n, A) define a two-form on Σ

$$\Omega(X,Y) = (\mathbf{n} \times d_A \mathbf{n}(X)) \cdot d_A \mathbf{n}(Y)$$

• Let $e_1, e_2 = Je_1$ be a local orthonormal frame on Σ (e.g. $e_1 = \partial_x, e_2 = \partial_y$). Then

$$\mathcal{E} = \frac{1}{2}(|d_{A}\mathbf{n}(\mathbf{e}_{1})|^{2} + |d_{A}\mathbf{n}(\mathbf{e}_{2})|^{2}) + \frac{1}{2}|B|^{2} + \frac{1}{2}(\mathbf{e} \cdot \mathbf{n})^{2}$$

$$= \frac{1}{2}|d_{A}\mathbf{n}(\mathbf{e}_{1}) + \mathbf{n} \times d_{A}\mathbf{n}(\mathbf{e}_{2})|^{2} + \frac{1}{2}|F_{A} - *\mathbf{e} \cdot \mathbf{n}|^{2}$$

$$+ *(\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

$$\Rightarrow \quad E \geq \int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

Claim: last integral is a homotopy invariant of (n, A)

"Bogomol'nyi" bound

- Suffices to show this in case $D = \mathbf{n}^{-1}(\{\mathbf{e}, -\mathbf{e}\}) \subset \Sigma$ finite
- On $\Sigma \backslash D$ have global one-form $\xi = \mathbf{e} \cdot \mathbf{n} (A \mathbf{n}^* d\varphi)$ s.t.

$$\Omega + \mathbf{e} \cdot \mathbf{n} F_A = d\xi$$

Hence

$$\int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A) = \int_{\Sigma \setminus D} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A)$$

$$= \lim_{\varepsilon \to 0} \sum_{p \in D} - \oint_{C_{\varepsilon}(p)} \xi$$

$$= 2\pi (n_+ + n_-)$$

"Bogomol'nyi" bound

• Hence $E \ge 2\pi(n_+ + n_-)$ with equality iff

$$\overline{\partial}_A \mathbf{n} = 0 \quad (V1)$$

* $F_A = \mathbf{e} \cdot \mathbf{n} \quad (V2)$

• Note solutions of (V1) certainly have D finite (and $n_{\pm} \geq 0$)

Existence: Yang

• An **effective divisor** is an unordered, finite list of points in Σ , possibly with repetition,

e.g.
$$[2,0,1+i,2] = [0,2,2,1+i] \neq [2,0,1+i]$$

The degree of the divisor is the length of the list

- Theorem: Let $n_+ \geq n_- \geq 0$. For each pair of disjoint effective divisors D_+ , D_- in Σ of degrees n_+ , n_- there exists a unique gauge equivalence class of solutions of (V1), (V2) with $\mathbf{n}^{-1}(\pm \mathbf{e}) = D_{\pm}$.
- Moduli space of vortices: $M_{n_+,n_-} \equiv M_{n_+} \times M_{n_-} \setminus \Delta_{n_+,n_-}$
- Simple case: space of vortex-antivortex pairs

$$M_{1,1} = \{(z_+, z_-) \in \Sigma \times \Sigma : z_+ \neq z_-\} = (\Sigma \times \Sigma) \setminus \Delta$$

The "Taubes" equation

$$u = \frac{n_1 + in_2}{1 + n_3}, \qquad h = \log|u|^2$$

- h finite except at \pm vortices, $h = \mp \infty$.
- $(V1) \Rightarrow A_{\bar{z}} = -i \frac{\partial_{\bar{z}} u}{u}$, eliminate A from (V2)

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 0$$

away from vortex positions

• (+) vortices at z_r^+ , $r = 1, ..., n_+$, (-) vortices at z_r^- , $r = 1, ..., n_-$

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 4\pi \left(\sum_r \delta(z - z_r^+) - \sum_r \delta(z - z_r^-) \right)$$

• Consider (1,1) vortex pairs

Solving the (1,1) Taubes equation (numerically)

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 4\pi \left(\delta(z - \varepsilon) - \delta(z + \varepsilon) \right)$$

• Regularize: $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$

$$\nabla^2 \hat{h} - 2 \frac{|z - \varepsilon|^2 e^{\hat{h}} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\hat{h}} + |z + \varepsilon|^2} = 0$$

• Rescale: $z =: \varepsilon w$

$$\nabla_{w}^{2} \hat{h} - 2\varepsilon^{2} \frac{|w-1|^{2} e^{\hat{h}} - |w+1|^{2}}{|w-1|^{2} e^{\hat{h}} + |w+1|^{2}} = 0$$

• Solve with b.c. $\widehat{h}(\infty) = 0$

$$\varepsilon = 2$$

$$\varepsilon = 0.5$$

$$\varepsilon = 0.3$$

$$\varepsilon = 0.15$$

$$\varepsilon = 0.06$$

$$S = rac{1}{2} \int_{\Sigma imes \mathbb{R}} \left(D_{\mu} \mathbf{n} \cdot D^{\mu} \mathbf{n}
ight) - rac{1}{2} F_{\mu
u} F^{\mu
u} - \mathbf{e} \cdot \mathbf{n}^2
ight) = \int_{\mathbb{R}} (T - E) dt$$

Restriction of kinetic energy

$$T = \frac{1}{2} \int_{\Sigma} (|\dot{\mathbf{n}}|^2 + |\dot{A}|^2)$$

to M_{n_+,n_-} equips it with a Riemannian metric g

- Low energy (anti)vortex dynamics: geodesic motion on $(M_{n_{+},n_{-}},g)$
- Expand solution h of Taubes eqn about \pm vortex position z_s :

$$\pm h = \log |z - z_s|^2 + a_s + \frac{1}{2}\bar{b}_s(z - z_s) + \frac{1}{2}b_s(\bar{z} - \bar{z}_s) + \cdots$$

• $b_r(z_1,\ldots,z_{n_++n_-})$ (unknown) complex functions

The metric on M_{n_+,n_-}

• Proposition (Romão-JMS, following Strachan-Samols):

$$g = 2\pi \left\{ \sum_{r} |dz_{r}|^{2} + \sum_{r,s} \frac{\partial b_{s}}{\partial z_{r}} dz_{r} d\bar{z}_{s} \right\}$$

Corollary: g is kähler

The metric on $M_{1,1}$

- $M_{1,1} = (\mathbb{C} \times \mathbb{C}) \backslash \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- $M_{1,1}^0 = \mathbb{C}^{\times}$

$$g^0 = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d}{d\varepsilon} (\varepsilon b(\varepsilon))\right) (d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

where
$$b(\varepsilon) = b_+(\varepsilon, -\varepsilon)$$

- $\varepsilon b(\varepsilon) = \frac{\partial \widehat{h}}{\partial w_1}\Big|_{w=1} 1$
- Can easily extract this from our numerics

The metric on $M_{1,1}(\mathbb{C})$

$$\varepsilon b(\varepsilon) = \left. \frac{\partial \widehat{h}}{\partial w_1} \right|_{w=1} - 1$$

The metric on $M_{1,1}(\mathbb{C})$

$$F(\varepsilon) = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d(\varepsilon b(\varepsilon))}{d\varepsilon}\right)$$

The metric on $M_{1,1}(\mathbb{C})$: conjectured asymptotics

- Suggests $\widehat{h}_{\varepsilon}(w) \approx \varepsilon f_*(\varepsilon w)$ for small ε , where f_* is fixed?
- Define $f_{\varepsilon}(z) := \varepsilon^{-1} \widehat{h}_{\varepsilon}(\varepsilon^{-1}z)$

$$(\nabla^2 \hat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\hat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\hat{h}(w)} + |w+1|^2}$$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

• Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source $-4\cos\theta/r$
- Unique solution (decaying at infinity)

$$f_*(re^{i\theta}) = \frac{4}{r}(1 - rK_1(r))\cos\theta$$

The metric on $M_{1,1}^0$

• Predict, for small ε ,

$$\widehat{h}(w_1+i0)\approx \varepsilon f_*(\varepsilon w_1)=\frac{4}{w_1}(1-\varepsilon w_1K_1(\varepsilon w_1))$$

whence we extract predictions for $\varepsilon b(\varepsilon)$, $F(\varepsilon)$

$$g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

- Conjecture: $F(\varepsilon) \sim -8\pi \log \varepsilon$ as $\varepsilon \to 0$
- $M_{1.1}$ is **incomplete**, with unbounded curvature

Vortices on compact Σ

- Why?
 - Thermodynamics of vortex gas: technical trick to get finite vortex density without losing BPS structure
 - Regularized Taubes equation is now an elliptic PDE on a compact domain: can do rigorous analysis
- There are extra technicalities...
- ... and an extra condition for existence of vortices

The Bradlow bound

$$\overline{\partial}_A \mathbf{n} = 0, \qquad *F_A = \mathbf{e} \cdot \mathbf{n}$$

Integrate 2nd eqn over Σ:

$$2\pi(n_{+}-n_{-})=\int_{\Sigma}\mathbf{e}\cdot\mathbf{n}\in[-Vol(\Sigma),Vol(\Sigma)]$$

• Hence, if vortex equations have a solution,

$$2\pi |n_+ - n_-| \leq Vol(\Sigma)$$
.

Upper bound on **excess** of vortices over antivortices, and vice versa.

• Theorem(Sibner,Sibner,Yang): Let $n_+ \ge n_- \ge 0$ and $2\pi(N_+ - n_-) < Vol(\Sigma)$. For each pair of disjoint effective divisors D_+ , D_- in Σ of degrees n_+ , n_- there exists a unique gauge equivalence class of solutions of (V1), (V2) with $\mathbf{n}^{-1}(\pm \mathbf{e}) = D_+$.

Vortices on S^2 : $M_{1,1}(S^2)$

- $M_{1,1} = S^2 \times S^2 \setminus \Delta = (0,1) \times SO(3) \sqcup \{1\} \times S^2$
- g is SO(3)-invariant, kähler, and invariant under $(z_+, z_-) \mapsto (z_-, z_+)$
- Every such metric takes the form

$$g = -\frac{Q'(\varepsilon)}{\varepsilon} (d\varepsilon^2 + \varepsilon^2 \sigma_3^2) + Q(\varepsilon) \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right),$$

for $Q:(0,1]\to[0,\infty)$ decreasing with Q(1)=0.

Vortices on S^2 : $M_{1,1}(S^2)$

• $Vol(M_{1,1}(S^2))$ is finite iff $Q:(0,1]\to [0,\infty)$ is bounded

$$Vol(M_{1,1}(S^2)) = \left[\lim_{\varepsilon \to 0} 2\pi Q(\varepsilon)\right]^2$$

- By means of elliptic estimates on Taubes eqn we can prove:
 - $M_{1,1}(S_R^2)$ has volume $[2\pi \times 4\pi R^2]^2$
 - The "radial" geodesic $0<\varepsilon\leq 1$ in $M_{1,1}$ has finite length, and hence
 - $M_{1,1}(S_R^2)$ is geodesically incomplete

The volume of $M_{n_+,n_-}(S^2)$

- $M_{n_+,n_-}(S^2)=\{$ disjoint pairs of n_\pm -divisors on $S^2\}=(\mathbb{P}^{n_+}\times\mathbb{P}^{n_-})\backslash\Delta$
- Consider gauged linear sigma model:
 - fibre C²
 - ullet gauge group $\widetilde{U}(1) imes U(1) : (\varphi_1, \varphi_2) \mapsto (e^{i(\widetilde{\theta} + \theta)} \varphi_1, e^{i\widetilde{\theta}} \varphi_2)$

$$E_{\widetilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\widetilde{F}|^2}{\widetilde{e}^2} + |F|^2 + |d_{\widetilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\widetilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

• For any $\tilde{e} > 0$, has compact moduli space of (n_+, n_-) -vortices

$$M_{n_+,n_-}^{lin}=\mathbb{P}^{n_+}\times\mathbb{P}^{n_-}$$

- Baptista found a formula for $[\omega_{L^2}]$ of $M_{n_+,n_-}^{lin}(\Sigma)$
- Can compute $Vol(M_{n_+,n_-}^{lin}(S^2))$ by evaluating $[\omega_{L^2}]$ on $\mathbb{P}^1 \times \{p\}, \{p\} \times \mathbb{P}^1$

The volume of $M_{n_+,n_-}(S^2)$

$$E_{\widetilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\widetilde{F}|^2}{\widetilde{e}^2} + |F|^2 + |d_{\widetilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\widetilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

- Take formal limit $\widetilde{e} \to \infty$:
 - $|\varphi_1|^2 + |\varphi_2|^2 = 4$ pointwise
 - ullet \widetilde{A} frozen out, fibre \mathbb{C}^2 collapses to $S^3/\widetilde{U}(1)=\mathbb{P}^1$
 - E-L eqn for \widetilde{A} is algebraic: eliminate \widetilde{A} from E_{∞}

$$E_{\infty} = \frac{1}{2} \int_{\Sigma} |F|^2 + 4 \frac{|\mathrm{d}u - iAu|^2}{(1 + |u|^2)^2} + \left(\frac{1 - |u|^2}{1 + |u|^2}\right)^2$$

where
$$u = \varphi_1/\varphi_2$$

• Exactly our P¹ sigma model!

The volume of $M_{n,n}(S^2)$

Leads us to conjecture that

$$\begin{aligned} & Vol(M_{n_{+},n_{-}}(S^{2})) = \lim_{\widetilde{e} \to \infty} Vol(M_{n_{+},n_{-}}^{lin}(S^{2})) \\ &= \frac{(2\pi)^{n_{+}+n_{-}}}{n_{+}! \, n_{-}!} (V - \pi(n_{+} - n_{-}))^{n_{+}} (V + \pi(n_{+} - n_{-}))^{n_{-}} \end{aligned}$$

where $V = Vol(S^2)$

- Agrees with rigorous formula for $n_+ = n_- = 1$, $S^2 = S_R^2$
- Can generalize to $genus(\Sigma) > 0$ (it's complicated), and Einstein-Hilbert action
- Thermodynamics of vortex gas mixture

Summary / What next?

- Case $\Sigma = \mathbb{C}$ is most interesting
- $M_{1,1}(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \backslash \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- Numerics: metric on SoR \mathbb{C}^{\times} , $g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$
- ullet Conjectured asymptotics in small arepsilon region

$$F(\varepsilon) \sim -8\pi \log \varepsilon$$

- Would imply $M_{1,1}(\mathbb{C})$ is incomplete with unbounded scalar curvature
- Can we prove it?
- We can shift the vacuum manifold:

$$V(\mathbf{n}) = \frac{1}{2}(\tau - \mathbf{e} \cdot \mathbf{n})^2$$

Case $0 < \tau < 1$ very sparsely explored

• Other kähler targets $(\mathbb{P}^n, \mathbb{C}^k \times \mathbb{P}^n, \ldots)$, other gauge groups, Chern-Simons term...

