(Determinisztikus) Turing-gépek

- A Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $-q_0, q_i, q_n \in Q, q_0$ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma.$
 - $-\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ az átmenet függvény.
- A Turing-gép működésének fázisait a gép konfigurációival írjuk le. A Turing-gép konfigurációja egy uqv szó, ahol $q \in Q$ és $u, v \in \Gamma^*, v \neq \varepsilon$.

A konfiguráció a gép azon állapotát tükrözi amikor a szalag tartalma uv (uv előtt és után a szalagon már csak \sqcup van), a gép a q állapotban van, és a gép író-olvasó feje a v szó első betűjén áll.

- A gép **kezdőkonfigurációja** egy olyan q_0u szó, ahol u csak Σ -beli betűket tartalmaz.
- Egy Turing-gép konfiguráció
átmenetét az alábbiak szerint definiáljuk. Legyen uqav egy konfiguráció, a
hol $a \in \Gamma, \ u, v \in \Gamma^*$.
 - Ha $\delta(q,a)=(r,b,R)$, akkor $uqav\vdash ubrv'$, ahol v'=v, ha $v\neq \varepsilon$, különben $v'=\sqcup$,
 - ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$,
 - ha $\delta(q,a)=(r,b,L)$, akkor $uqav\vdash u'rcbv$, ahol $c\in\Gamma$ és u'c=u, ha $u\neq\varepsilon$, különben u'=u és $c=\sqcup$.
- Azt mondjuk, hogy M véges sok lépésben eljut a C konfigurációból a C' konfigurációba (jele $C \vdash^* C'$), ha van olyan $n \ge 1$ és C_1, \ldots, C_n konfigurációsorozat, hogy $C_1 = C, C_n = C'$ és minden $1 \le i < n$ -re, $C_i \vdash C_{i+1}$.
- Ha $q \in \{q_i, q_n\}$, akkor azt mondjuk, hogy az uqv konfiguráció egy **megállási konfiguráció**. $q = q_i$ esetében **elfogadó**, míg $q = q_n$ esetében **elutasító konfigurációról** beszélünk.
- Az M által **felismert nyelv** (amit L(M)-mel jelölünk) azoknak az $u \in \Sigma^*$ szavaknak a halmaza, melyekre igaz, hogy $q_0u \vdash^* xq_iy$ valamely $x, y \in \Gamma^*, y \neq \varepsilon$ szavakra.
- Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely M

Turing-gépre. Továbbá, egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M

Turing-gép, mely minden bemeneten megállási konfigurációba jut és felismeri az L-et. A Turing-felismerhető nyelveket szokás **rekurzívan felsorolhatónak**, az eldönthető nyelveket pedig **rekurzívnak** is nevezni. A rekurzívan felsorolható nyelvek osztályát RE -vel, a rekurzív nyelvek osztályát pedig R-rel jelöljük.

- Tekintsünk egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing-gépet és annak egy $u \in \Sigma^*$ bemenő szavát. Azt mondjuk, hogy M futási ideje (időigénye) az u szón n $(n \geq 0)$, ha M a q_0u kezdőkonfigurációból n lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u-n végtelen.
- Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M időigénye f(n) (vagy, hogy M egy f(n) időkorlátos gép), ha minden $u \in \Sigma^*$ input szóra, M időigénye az u szón legfeljebb f(|u|).
- A k-szalagos Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $-\ q_0,q_i,q_n\in Q,\ q_0$ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - $-\Sigma$ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$,
 - $-\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ az átmenet függvény.
- A k szalagos Turing-gép **konfigurációja** egy \vdots q \vdots szó, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$. Az u_k v_k u szóhoz tartozó **kezdőkonfiguráció:** $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u$, és $v_i = \sqcup$ $(2 \le i \le k)$. Időigény: mint az egyszalagosnál (konfigurációátmenetek száma alapján).
- Szófüggvényt kiszámító Turing-gép:

Az M (determinisztikus) Turing-gép kiszámítja az $f: \Sigma^* \to \Gamma^*$ szófüggvényt, ha M minden $u \in \Sigma^*$ -ra olyan vqw megállási konfigurációba jut $(q \in \{q_i, q_n\})$, ahol vw = f(u) (szóeleji és szóvégi \sqcup -ektől eltekintve). Időigény: mint fent (konfigurációátmenetek száma alapján).