Computational Intelligence

Professor: Dr. Mohammad Zare Teaching Assistant: Ali Kohan

Traditional Programs: Define algo/logic to compute output

Machine Learning: Learn model/logic from data

Biological Neural Network	Artificial Neural Network	
Soma	Neuron	
Dendrite	Input	
Axon	Output	
Synapse	Weight	

- یکی از ساده ترین مدل های شبکه عصبی بر مبنای یک واحد محاسباتی به نام پرسپترون ساخته می شود.
- یک پرسپترون، برداری از ورودی های با مقادیر حقیقی را گرفته و
 یک ترکیب خطی از این ورودی ها را محاسبه میکند.
- اگر نتیجه از یک مقدار آستانه بیشتر بود خروجی پرسپترون برابر با
 1و در غیر اینصورت معادل 0 (یا 1-) خواهد بود.

پرسپترون را می توان به صورت یک hyperplane (۱-n بعدی) در فضای n بعدی نمونه ها در نظر
 گرفت

پرسپترون برای نمونه های یک طرف صفحه مقدار 1 و برای مقادیر طرف دیگر مقدار 0 بوجود می آورد.

- یک پرسپترون ساده تنها قادر است مسائلی را یاد بگیرد که به صورت خطی جداپذیر باشند.
- اینگونه مثال ها مواردی هستند که بطور کامل توسط یکhyperplane قابل جدا سازی میباشند.

Linearly separable

Non-linearly separable

خروجی پرسپترون توسط رابطه زیر مشخص میشود:

$$O(x1,x2,...,xn) = \begin{cases} 1 & \text{if } W0 + W1.X1 + W2.X2 + ... + Wn.Xn > 0 \\ 0 & \text{otherwise} \end{cases}$$

که برای سادگی آنرا میتوان بصورت زیر نشان داد:

O(X) = sgn(WX) where

$$sgn(y) = \begin{cases} 1 & \text{if } y > 0 \\ 0 & \text{otherwise} \end{cases}$$

یادگیری پرسپترون عبارت است از:

پیدا کردن مقادیر مناسبی برای W

عرض از مبدا 🛨 Bias

versus

Regression

Classification

Example

Regression

Feature	Description
Size (sqft)	The size of the house in square feet
Bedrooms	The number of bedrooms in the house
Bathrooms	The number of bathrooms in the house
Price (USD)	The price of the house

Size (sqft)	Bedrooms	Bathrooms	Price (USD)
1500	3	2	250000
2000	4	3	350000
1200	2	1	180000
•••	•••	•••	•••

Classification

Feature	Description
Words	The words present in the email
Length	The length of the email
HasAttachment	Whether the email has an attachment or not
Label	Spam or Not Spam

Words	Length	HasAttachment	Label
"free", "money"	100	1	Spam
"hello", "friend"	50	0	Not Spam
"buy", "now"	200	1	Spam
			•••

- For simple logic gate problems, decision boundaries between classes are linear:
- Decision boundary: $x_1w_1 + x_2w_2 \theta = 0$

- For XOR, there are two obvious remedies:
 - Either change activation function so that it has more than one decision boundary
 - Use a more complex network that is able to generate more complex decision boundaries

Activation function

Name +	Plot	Function, $g(x)$ $\qquad \qquad \Rightarrow$	Derivative of g , $g'(x)$ \Rightarrow	Range +
Identity		x	1	$(-\infty,\infty)$
Binary step		$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array} ight.$	0	{0,1}
Logistic, sigmoid, or soft step		$\sigma(x) \doteq rac{1}{1+e^{-x}}$	g(x)(1-g(x))	(0, 1)
Hyperbolic tangent (tanh)		$ anh(x) \doteq rac{e^x - e^{-x}}{e^x + e^{-x}}$	$1-g(x)^2$	(-1, 1)

Multilayer Perceptron

Playground:

https://deeperplayground.org/