2011 年全国统一高考化学试卷(全国卷I)

一、选择题

1.	等浓度	度的下列稀溶液:	①乙酸、	②苯酚、	③碳酸、	④乙醇,	它们的 pH 由小到大排列正确的是
	()					

- A. (4)(2)(3)(1) B. (3)(1)(2)(4)
- C. (1)(2)(3)(4)
- D. (1)(3)(2)(4)

- 2. 下列叙述错误的是()
 - A. 用金属钠可区分乙醇和乙醚
 - B. 用高锰酸钾酸性溶液可区分己烷和 3□己烯
 - C. 用水可区分苯和溴苯
 - D. 用新制的银氨溶液可区分甲酸甲酯和乙醛
- 3. 在容积可变的密闭容器中, $2 \text{mol } N_2$ 和 $8 \text{mol } H_2$ 在一定条件下发生反应,达到平衡时, H_2 的转 化率为 25%,则平衡时的氮气的体积分数接近于()
 - A. 5%
- B. 10%
- C. 15%
- D. 20%
- 4. 室温时,将浓度和体积分别为 c_1 、 V_1 的 NaOH 溶液和 c_2 、 V_2 的 CH₃COOH 溶液相混合,下列 关于该混合溶液的叙述错误的是()
 - A. 若 PH>7 时,则一定是 $c_1V_1=c_2V_2$
 - B. 在任何情况下都是 c (Na⁺) +c (H⁺) =c (CH₃COO□) +c (OH□)
 - C. 当 pH=7 时,若 $V_1=V_2$,则一定是 $c_2>c_1$
 - D. 若 $V_1=V_2$ 、 $c_1=c_2$,则 c(CH_3COO^{\square})+c(CH_3COOH)=c(Na^+)
- 5. 用石墨做电极电解 CuSO4 溶液. 通电一段时间后, 欲使用电解液恢复到起始状态, 应向溶液 中加入适量的()
 - A. CuSO₄
- B. H_2O
- C. CuO
- D. CuSO₄•5H₂O
- 6. 将足量 CO₂ 通入下列各溶液中,所含离子还能大量共存的是()
 - A. K^+ , $SiO_3^{2\square}$, Cl^\square , NO_3^\square B. H^+ , NH_4^+ , Al^{3+} , $SO_4^{2\square}$
 - C. Na $^+$, S^{2 \square}, OH $^\square$, SO₄^{2 \square}
- D. Na $^+$ 、C₆H₅O $^{\square}$ 、CH₃COO $^{\square}$ 、HCO₃ $^{\square}$
- 7. N_A 为阿伏伽德罗常数,下列叙述错误的是()
 - A. 18gH₂O 中含的质子数为 10N_A
 - B. 12g 金刚石含有的共价键数为 4NA

- C. 46g NO₂和 N₂O₄混合气体中含有原子总数为 3N_A
- D. 1 mol Na 与足量 O₂ 反应, 生成 Na₂O 和 Na₂O₂ 的混合物, 钠失去 N_A 个电子
- 8. 某含铬($Cr_2O_7^2$)废水用硫酸亚铁铵[$FeSO_4$ (NH_4) $_2SO_4$ •6 H_2O]处理,反应后铁元素和铬元 素完全转化为沉淀. 该沉淀经干燥后得到 n mol $FeO ext{-} Fe_y Cr_x O_3$. 不考虑处理过程中的实际损 耗,下列叙述错误的是()
 - A. 消耗硫酸亚铁的物质的量为 $n(2\square x)$ mol
 - B. 处理废水中的 $Cr_2O_7^{2\square}$ 的物质的量为 $\frac{nx}{2}$ mol
 - C. 反应中发生转移的电子数为 3nxmol
 - D. 在FeO•Fe_vCr_xO₃中, 3x=y

二、解答题(共4小题,满分60分)

- 9. (15分)如图中,A、B、C、D、E是单质,G、H、I、F是B、C、D、E分别和A形成的二 元化合物.已知:①反应 $C+G^{\frac{5}{2}}B+H$ 能放出大量的热,该反应曾应用于铁轨的焊接;②I 是 一种常见的温室气体,它和E可以发生反应: 2E+I点燃2F+D,F中的E元素的质量分数为 60%. 回答问题:
- (1) ①中反应的化学方程式为 ;
- (2) 化合物I的电子式为_____, 它的空间构型是 ;
- (3) 1.6g G 溶于盐酸,得到的溶液与铜粉完全反应,计算至少所需铜粉的质量(写出离子方程 式和计算过程);
- (4) C与过量 NaOH 溶液反应的离子方程式为 ,反应后溶液与过量化合物I反应的离子方 程式为____;
- (5) E在I中燃烧观察到的现象是

- 10. (15 分)反应 aA(g)+bB(g) $\frac{\text{催化剂}}{\text{cC}}$ cC(g)($\triangle H$ <0)在等容条件下进行. 改变其他反应条件,在I、II、III阶段体系中各物质浓度随时间变化的曲线如图 1 所示: 回答问题:
- (1) 反应的化学方程式中, a: b: c 为____;
- (2) A 的平均反应速率 $V_{II}(A)$ 、 $V_{III}(A)$ 、 $V_{III}(A)$ 从大到小排列次序为______;
- (3) B 的平衡转化率 α_I (B) 、 α_{II} (B) 中最小的是_____, 其值是_____;
- (4) 由第一次平衡到第二次平衡,平衡移动的方向是____, 采取的措施是____;
- (5) 比较第II阶段反应温度(T_2)和第III阶段反应温度(T_3)的高低: T_2 _____ T_3 (填">""<""="),判断的理由是 ;
- (6) 达到第三次平衡后,将容器的体积扩大一倍,假定 10min 后达到新的平衡,请在下图 2 中用曲线表示第 IV 阶段体系中各物质的浓度随时间变化的趋势如图 2 (曲线上必须标出 A、B、C).

- 11. (15分)请回答下列实验中抽取气体的有关问题.
- (1) 如图 1 是用 KMnO₄ 与浓盐酸反应制取适量氯气的简易装置.
- 装置 B、C、D 的作用分别是: B_____; C____; D_____;

- (2) 在实验室欲制取适量 NO 气体.
- ①如图 2 中最适合完成该实验的简易装置是 (填序号);
- ②根据所选的装置完成下表(不需要的可不填):

	应加入的物质	所起的作用
А		
В		
С		
D		

③简单描述应观察到的实验现象 .

12. (15分)金刚烷是一种重要的化工原料,工业上可通过图1途径制备,请回答下列问题:

氧化可以得到对苯二甲酸[提示:苯环上的烷基(□CH3,□CH2R,□CHR2)或烯基侧链经高

锰酸钾酸性溶液氧化得羧基],写出 A 所有可能的结构简式(不考虑立体异构): _____.