

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0624 Laboratorio de Microcontroladores

EIE

Escuela de Ingeniería Eléctrica

Introducción a lot con MCU

MSc. Marco Villalta Fallas - marco.villalta@ucr.ac.cr

Il Ciclo 2022

Conceptos

Antescedentes

- Acceso a Internet es más accesible
- IPv6
- Soporte de conectividad Wifi/Ethernet en dispositivos
- Dispositivos móviles y aplicaciones

Que es lot?

Descripción general

 Sistema de dispositivos informáticos interrelacionados, máquinas mecánicas y digitales provistas de identificadores únicos (UID) y la capacidad de transferir datos a través de una red sin requerir interacción de persona a persona o de persona a computadora

Internet of Things (IoT)

Que es lot?

Dispositivos

- Millones de objetos que pueden sensar, controlar, comunicar y compartir información
- Utilizan datos para realizar acciones
- Definición informal: Cualquier cosa que se puede encender/apagar y tiene acceso a la red

Impacto en la vida

- En el trabajo
- En el hogar
- En la industria

Que compone lot?

Arquitectura

- Infraestructura global
- Mezcla de tecnologías de hardware y software

Que compone lot?

- Integrada por objetos con sensores
- Interconectan mundo fisico con el digital
- Sensan temperatura, velocidad, humedad, presion, flujo, movimiento, electricidad, etc
- Se conectan a un sensor gateway con LAN(Ethernet, Wifi) y PAN (Zigbee, Bluetooth, UWB)
- Si sensor no ocupa conectividad a sensor gateway se conectan a servidores/aplicacionse con WAN (GSM,GPRS,LTE)

Que compone lot?

Otras capas

- Gateways y redes (Machine to machine)
- Capa administrativa de servicios (Se encarga de procesar la información: analisis, control de flujos, administración de dispositivos)
- Capa de aplicación (Ambientes inteligentes: Edificios, ciudades, industrias, agricultura, salud, energia, medio ambiente, turismo,etc.)

lot y MCU

Perspectiva general

lot y MCU

Algunos protocolos de datos

- MQTT (Message Queuing Telemetry Transport): Modelo publicador/suscriptor de mensajes extremadamente liviano. Útil para conexiones en ubicaciones remotas donde es necesario usar poca memoria y/o ancho de banda es importante.
- AMQP (Advanced Message Queuing Protocol): Protocolo de capa de aplicación estándar abierto para middleware orientado a mensajes.
- CoAP (Constrained Application Protocol): Protocolo de capa de aplicación destinado a su uso en dispositivos de Internet con recursos limitados, como los nodos WSN.
- Websocket: Especificación (parte de HTML5) que define una conexión de socket único dúplex completo a través de la cual se pueden enviar mensajes entre el cliente y el servidor.

Iot y MCU

- Para hacer uso de protocolos de datos con Arduino es necesario un shield o una SBC (Raspberry Pl)
- Incluir bibliotecas de shield y protocolo de datos
 - Ethernet.h
 - PubSubClient.h
- En ambiente simulado Python realizará un puente de comunicaciones sustituyendo el shield de Wifi/Ethernet y funciones de bibliotecas de protocolo de datos
- MQTT broker: Servidor que puede ënviarÿ recibir mensajes a clientes, no estan diseñados para guardar datos

Python: MQTT

Cliente

Se utiliza la clase cliente de *paho.matt*. Flujo típico incluye:

- Crear instancia de cliente
- Conectar a un broker con alguna función connect*()
- Llamar a un de las funciones loop*() para mantener el flujo de tráfico con el broker
- Utilizar subscribe() para susbcribirse a un tema y recibir mensajes
- Utilizar publish() para publicar mensajes a un broker/servidor desde un cliente.
- Utilizar disconnect() para desconectarse del broker
- Utilizar on_message() para publicar mensajes que pueden ser leidos por un cliente.

Plataformas lot

- Una plataforma lot es un servicio integrado de tecnologías que ofrece lo necesario para poner en linea objetos físicos
- Proporcionan la infraestructura que utiliza para crear las características específicas de una solución.
- Objetivo: Proporcionar toda la funcionalidad genérica para una aplicación
- Funciones que debería realizar:
 - Adquiera datos a través de sensores
 - Analizar datos localmente
 - Conectar a la nube para transmitir datos y recibir comandos
 - Almacenar datos en la nube
 - Analice datos en la nube para crear ideas
 - Dirige las cosas para realizar tareas específicas
 - Presentar información a los usuarios
- Plataformas comerciales: AWS, Azure, Google, Arduino, Samsung, IBM, Bosch, Cisco, Intel, etc

Thingsboard I

Descripción

- Open source lot Platform para recolecar, procesar y visualizar datos. También administracion de dispositivos.
- Provee monitoreo y control utilizando API de servidor. Se puede definir relaciones entre dispositivos, activos, clientes y otros dispositivos
- Define cadenas de reglas para el procesamiento de datos.
- Habilita alarmas por eventos de telemetría, actualizaciones de atributos y acciones de usuarios.
- Acceso en iot.eie.ucr.ac.cr o localmente si se instala, mejor usar Chrome
- Si utiliza MQTT mensajes se publican en v1/devices/me/telemetry
- Informacion debe empaquetarse como JSON.

Thingsboard II

Comunicacion servidor a MCU

- Con MQTT mensajes que envia el MCU a Thingsboard se publican en el tema v1/devices/me/telemetry
- Para enviar mensajes del servidor al MCU se utilizan llamadas RPC en el tema v1/devices/me/rpc/request/
- Para diferenciar los dispositivos de control se utilizan los nombres de los metodos (p.e. getValue, setValue).
- Revisar ejemplos en https://github.com/thingsboard/thingsboard/tree/master/tools/src/main/python y https://shiyaztech.wordpress.com/2018/08/25/remote-procedure-calls-rpc-on-thingsboard-iot-platform

Aplicación

Hola MQTT

main

```
import paho.matt.client as matt #Importar biblioteca MQTT
import time
broker="iot.eie.ucr.ac.cr"
client = matt. Client("python1 id")#create new instance
client.on connect=on connect #bind connect call back function
client.on disconnect=on disconnect #bind disconnect call back function
#client.on log=on log #bind logging call back function
client on message=on message #bind message call back function
print("Connecting to broker ".broker)
client.connect(broker)
                        #connect to broker
client.loop start() #Start loop
client.subscribe("house/sensor1")
client publish ("house/sensor1" . "my first message")
time.sleep(4)
client.loop_stop() #Stop loop
client disconnect() # disconnect
```

Hola MQTT

callbacks

Thingsboard

Creación de un Dashboard

- Crear un device
- Mapear un device a un widget
- Asignar un widget a un dashboard
- Agregar el widget

Otras Referencias

- https://pypi.org/project/paho-mqtt/
- https://thingsboard.io/docs/samples/arduino/temperature/
- https://thingsboard.io/docs/samples/esp8266/gpio/ Instalación thingsboard:
- https:
 //thingsboard.io/docs/user-guide/install/docker-windows/
- https://thingsboard.io/docs/user-guide/install/docker/