MAT2040 Linear Algebra

Final Exam SSE, CUHK(SZ)

17 May 2022

Seat No.:	Student ID:

- The exam contains 14 questions.
- Answer all the question in the Answer Sheet. Extra pages can be added subject to request.
- Unless otherwise specified, be sure to give **full explanations** for your answers. The solution only is not supposed to be a complete answer.

This page has no questions, but a table of notations.

Table of Notations	
\mathbb{R}	set of real numbers
	Without otherwise specified, all matrices have entries from $\mathbb R$
\mathbb{R}^n	set of all (column) vectors of n entries from \mathbb{R}
	n-dimensional Euclidean vector spaces
$\mathbb{R}^{m \times n}$	the set of all matrices with entries from $\mathbb R$ and with size $m \times n$
$0, 1, \dots$	scalar values
0	zero vector in \mathbb{R}^n , where n is implied in the context
O	the all zero matrix of a proper size
I, I_n	the $n \times n$ identity matrix
A^{T}	transpose of matrix A
$\det(A)$, $\det A$	determinant of matrix A
$\operatorname{Col}(A)$	column space of matrix A
Null(A)	null space of matrix A
$\mathbf{x} \perp \mathbf{y}$	vectors \mathbf{x} and \mathbf{y} are orthogonal
$\langle \mathbf{x}, \mathbf{y} \rangle$	the inner product (scalar product) of vectors \mathbf{x} and \mathbf{y}
$\ \mathbf{x}\ $	the norm of vector \mathbf{x}
$\operatorname{Span}(\mathcal{A})$	linear span of the set of vectors \mathcal{A}
$\operatorname{rank}(A)$	rank of a matrix A
$\dim(\mathcal{V})$	dimension of a vector space \mathcal{V}
V^{\perp}	the orthogonal complement of subspace V .
$[\mathbf{x}]_{\mathcal{B}}$	the coordinate vector of \mathbf{x} with respect to the basis \mathcal{B}
P_n	the set of polynomials of degree less than n

True or false. Give your answers without explanation.

- (a) (1 point) Determine whether the following are linear transformations from \mathbb{R}^3 into \mathbb{R}^2 :
 - 1. $L((x_1, x_2, x_3)^T) = (x_2, x_3)^T$
 - 2. $L((x_1, x_2, x_3)^T) = (0, 0)^T$
- (b) (1 point) Determine whether the following are linear transformations from \mathbb{R}^2 into \mathbb{R}^3 :
 - 3. $L((x_1, x_2)^T) = (x_1, x_2, 1)^T$
 - 4. $L((x_1, x_2)^T) = (x_1, x_2, x_1 + 2x_2)^T$
- (c) (1 point) Determine whether the following are linear transformations from $\mathbb{R}^{n\times n}$ to $\mathbb{R}^{n\times n}$:
 - 5. L(A) = 2A + I
 - 6. $L(A) = A^{T}$
- (d) (1 point) Determine whether the following are linear transformations from P_2 to P_3 , where $P_n = \{a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_0\}$ is the set of polynomials of degree less than n:
 - 7. L(p(x)) = xp(x)
 - 8. $L(p(x)) = x^2 + p(x)$
- (e) (2 points) Let A be an $m \times n$ matrix with rank r. Judge the following statements:
 - 9. $A^{T}A$ has exactly r positive eigenvalues.
 - 10. $A^{T}A$ may NOT be diagonalized by an orthogonal matrix.
- (f) (2 points) For integers r and n such that 0 < r < n, let $\mathbf{v}_1, \dots \mathbf{v}_r$ be an orthonormal basis of a subspace \mathcal{V} of \mathbb{R}^n . Let $V = [\mathbf{v}_1, \dots, \mathbf{v}_r]$. Judge the following statements:
 - 11. $VV^T = I_n$.
 - 12. For any vector $\mathbf{a} \in \mathcal{V}$, $\mathbf{a} = VV^{\mathrm{T}}\mathbf{a}$.
- (g) (2 points) Determine whether the following statements are equivalent to an $n \times n$ symmetric matrix A being positive definite.
 - 13. A has a positive determinant.
 - 14. A can be factored into a product $B^{T}B$ for certain matrix B.
- (h) (2 points) Determine whether the following statements are true or false in general:
 - 15. If U, V and W are subspaces of \mathbb{R}^3 and also $U \perp V$ and $V \perp W$, then $U \perp W$.
 - 16. It is possible to find a nonzero vector \mathbf{y} in the column space of A such that $A^{\mathrm{T}}\mathbf{y} = \mathbf{0}$.

$$\mathbf{x} = 2\mathbf{u}_1 + \mathbf{u}_2 + 3\mathbf{u}_3$$

and

$$\mathbf{y} = \mathbf{u}_1 + 5\mathbf{u}_3.$$

Determine the following values:

- (a) (2 points) The inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ of \mathbf{x} and \mathbf{y} .
- (b) (2 points) $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$
- (c) (2 points) The angle between **x** and **y**. (You may write your answer in arccos form.)

The linear transformation $L: P_3 \to P_2$ is defined by

$$L(p(x)) = p'(x) + p(0),$$

where p'(x) refers to the derivative $\frac{dp(x)}{dx}$.

- (a) (4 points) Find the matrix representation of L with respect to the basis $\{x^2, x, 1\}$ of P_3 and the basis $\{2, 1 - x\}$ of P_2 .
- (b) (2 points) Find the coordinates of $L(x^2 + 2x 3)$ with respect to the basis $\{2, 1 x\}$.

Decide the optimal linear model y = ax + b in terms of the least squares metric for the data points

on the xy-plane.

(a) (5 points) Find the eigenvalues and the corresponding eigenspaces for the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & -1 & 1 \end{bmatrix}.$$

(b) (2 points) Determine whether the above matrix is diagonalizable.

 $\mathbf{x}_2 = [0, -1, 1]^{\mathrm{T}}$ are two solutions of $A\mathbf{x} = \mathbf{0}$.

- (a) (5 points) Find the eigenvalues and the corresponding eigenvectors of A.
- (b) (5 points) Find an orthogonal matrix Q and a diagonal matrix Λ such that $Q^{T}AQ = \Lambda$.

 S^{\perp} .

Let
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 12 \\ 6 \\ 18 \end{pmatrix}$.

- (a) (3 points) Use the Gram-Schmidt process to find an orthonormal basis for the column space of
- (b) (3 points) Factor A into a product QR (i.e., A = QR), where Q consists of an orthonormal set of column vectors and R is upper triangular.
- (c) (3 points) Solve the least square problem $A\mathbf{x} = \mathbf{b}$.

- - (a) (3 points) What is the rank of A? Explain.
 - (b) (3 points) Is 0 an eigenvalue of A? Explain.
 - (c) (3 points) Use the definition of eigenvalue and eigenvector to find a nonzero eigenvalue of A, and a corresponding eigenvector.

$$|\operatorname{rank}(A) - \operatorname{rank}(B)| < \operatorname{rank}(A + B) < \operatorname{rank}(A) + \operatorname{rank}(B).$$

- - (a) (3 points) Show that A is invertible
 - (b) (4 points) Find all possible eigenvalues of A.
- - (a) (3 points) Compute the determinants of the following two matrices. Simplify your answer in factorization form, e.g., $x_1x_2 x_1x_3$ should be factorized into $x_1(x_2 x_3)$.

$$V_2 = \begin{bmatrix} 1 & 1 \\ x_1 & x_2 \end{bmatrix}, \quad V_3 = \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{bmatrix}.$$

(b) (5 points) Derive a formula of the determinant of a general $n \times n$ matrix V_n , and justify your answer:

$$V_n = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}.$$

(Hint: mathematical induction, elementary row operations and cofactor expansion.)