Problem sheet 2

Simon Van den Eynde Petar Hlad Colic

November 26, 2016

1 Matousek

1.1 2

1.2 3

$$X^* = \{ y \in \mathbb{R}^d : \langle x, y \rangle \le 1, \forall x \in X \}$$
$$X^{**} = \{ y \in \mathbb{R}^d : \langle x, y \rangle \le 1, \forall x \in X^* \}$$

Now because $\forall x \in X, \forall y \in X^* : \langle x, y \rangle \leq 1 \implies x \in X^{**}$. Also clearly $0 \in X^{**}$. Since X^{**} closed and convex we find $conv(X \cup 0) \subset X^{**}$.

The separation theorem says that for a closed set X: $conv(X) = \bigcap (all \ closed \ halfspaces \ that \ contain \ X)$