Задачи 5 сет, 31.10.2021

В этом параграфе речь только о марковских цепях с конечным числом состояний. Подумайте, где ломается доказательство эргодической теоремы для счетных марковских цепей?

1.Определение. Мартица переходных вероятностей (МПВ) П называется *перемешивающей*, если существует такая степень $s \in \mathbb{N}$, что все элементы матрицы Π^s строго положительны.

Как обсуждалось на лекциях (где-то в районе леммы 11), элемент $p_{ij}^{(s)}$ матрицы Π^s суть вероятность перехода за s шагов из состояния i в состояние j. Это замечание дает удобный способ проверки является ли МПВ перемешивающей, не возводя матрицу s степень. Действительно, скажем, чтобы убедиться, что все элементы матрицы Π^2 положительны, достаточно посмотреть на граф марковской цепи и проверить, что из любого состояния можно перейти в любое за 2 шага. В частности, свойство матрицы быть перемешивающей не зависит от конкретных элементов матрицы, а зависит только от того, где в матрице находятся нули (и, соответственно, между какими состояниями в графе цепи нет стрелок, а между какими — есть).

2.Определение. Марковская цепь называется эргодической, если она имеет единственное стационарное состояние π и для любого начального распределения $p^{(0)}$ выполнено $p^{(n)} \to \pi$ при $n \to \infty$. Цепь называется экспоненциально эргодической, если эта сходимость экспоненциальна: существуют постоянные $C>0, \ 0<\lambda<1$, такие что для любого начального распределения $p^{(0)}$ выполнено $|\pi-p^{(n)}|_1 \le C\lambda^n$, для любого n. Здесь $|v|_1 := \sum_j |v_j|$.

На последней лекции была доказана *эродическая теорема*, в частности утверждающая, что если МЦ имеет перемешивающую МПВ, то МЦ экспоненциально эргодична. Обратное неверно! (см. задачу 5).

На самом деле, любая эргодическая МЦ с конечным множеством состояний является экспоненциально эргодической.

3. Не существует канонической терминологии. Свойство перемешивания часто называют эргодичностью и наоборот. Более того, в теории динамических систем эти слова означают несколько другие понятия, хоть и родственные. Ве careful.

Задачи.

1. Рассмотрим следующие МПВ:

a)
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, b) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.9 & 0.1 & 0 \end{pmatrix}$, c) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, d) $\begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$.

Являются ли они перемешивающими?

Указание: пожалуйста, не надо возводить матрицу в степень. Почитайте текст выше.

2. Верно ли, что всякая марковская цепь с конечным числом состояний, имеющая единственное стационарное состояние, эргодична? Если да — докажите, если нет — приведите контрпример.

- 3. Рассмотрим случайное блуждание на множестве состояний $\{1,\ldots,L\}$, заданное вероятностями перехода $p_{ii+1}=p$ и $p_{ii-1}=1-p$ для $2\leq i\leq L-1$, $p_{12}=a$, $p_{11}=1-a$ и $p_{LL-1}=b$, $p_{LL}=1-b$ для каких-нибудь 0< p<1 и $0< a,b\leq 1$, а для остальных i,j выполнено $p_{ij}=0$.
 - а) Докажите, что соответствующая матрица переходных вероятностей перемешивает тогда и только тогда, когда выполнено хотя бы одно из неравенств a<1 или b<1.
 - b) Найдите все пары $0 < a, b \le 1$, при которых случайное блуждание эргодично при произвольном 0 .
 - с) Для произвольных a,b,p удовлетворяющих $0 < a,b \le 1$ и 0 найдите стационарное состояние. ¹ Единственно ли оно? Нашлись ли такие <math>a,b,p при которых есть стационарное состояние единственно, а эргодичности нет?
- 4. Рассмотрим модель Эренфестов: берем N пронумерованных от 1 до N шаров и два ящика, часть шаров лежит в одном, а часть в другом. Наугад называем номер от 1 до N (с равными вероятностями) и перекладываем шар с этим номером из ящика, где он лежал, в другой. Нас интересует число шаров в каждом ящике. Конечно, достаточно знать число шаров в первом ящике, на это имеется N+1 возможность, от 0 до N.
 - (1) Докажите, что модель Эренфестов задает марковскую цепь с N+1 состоянием (состояние— число шаров в первом ящике). Вычислите переходные вероятности.
 - (2) Найдите стационарное состояние для модели Эренфестов. Единственно ли оно? 2
 - (3) Перемешивает ли МПВ в модели Эренфестов?
 - (4) Эргодична ли марковская цепь из модели Эренфестов?

Cледующая задача дает пример эргодической цепи, $M\Pi B$ которой не перемешивает. Возьмите L=2, нарисуйте граф цепи и запомните его как простейший пример такой ситуации.

- 5. Рассмотрим (однородную) МЦ ξ_0, ξ_1, \ldots с конечным множеством состояний $\{1, \ldots, L\}$, $L \geq 2$, такую что $p_{11} = 1$. Допустим, что для каждого состояния $2 \leq i \leq L$ существует $k_i \geq 1$, такое что $p_{i1}^{(k_i)} > 0$ вероятность перейти из состояния i в состояние 1 за k_i шагов положительна.
 - а) Покажите, что МПВ такой МЦ не может быть перемешивающей.
 - б) Докажите, что последовательность $(p_{i1}^{(m)})_{m\geq 0}$ не убывает.
 - в) Покажите, что $\mathbb{P}(\xi_{mk} \neq 1) \leq (1 \delta)^m$ для любого $m \geq 1$, где $k = \max_i k_i$, а $\delta = \min_i p_{i1}^{(k_i)} > 0$.

А теперь выводы:

¹Ответ не должен быть хорошим.

² А здесь ответ хороший, как часто бывает в задачах, приходящих из физики.

- г) Покажите, что $\mathbb{P}(\exists k \geq 0: \xi_n = 1 \, \forall n \geq k) = 1 \, (\text{т.e. c вероятностью единица мы приезжаем в состояние 1 и там живем.})$
- д) Покажите, что такая МЦ эргодична и $\pi = (1, 0, ..., 0)$ ее единственное стационарное состояние.
- 6. Необязательная задача (дополняющая предыдущую). Рассмотрим МЦ ξ_0, ξ_1, \ldots , с множеством состояний $\{1, \ldots, L\}, L \geq 2$, такую что $p_{11} = 1$ и $p_{22} = 1$. Допустим, что для каждого состояния $3 \leq i \leq L$ существует $k_i \geq 1$, такое что хотя бы одна из вероятностей $p_{i1}^{(k_i)}$ либо $p_{i2}^{(k_i)}$ положительна. Покажите, что такая МЦ не может быть эргодической. Докажите, что

$$\mathbb{P}(\exists k \ge 0 : \xi_n = 1 \,\forall n \ge k \text{ or } \xi_n = 2 \,\forall n \ge k) = 1$$

(т.е., в зависимости от точки старта, мы падаем либо на состояние 1, либо на состояние 2).

О модели Эренфестов.

Модель Эренфестов – известная ранняя стохастическая модель в статистической механике. Статистическая механика (=статистическая физика) ставит своей целью объяснить поведение макроскопических систем с точки зрения микроскопической динамики частиц. Например, динамику газа с точки зрения динамики молекул.

Статистическая механика задает, например, такие вопросы. Почему газ, изначально собранный в одной половине комнаты, распространится по всей комнате и уже никогда не вернется в ту половину, где он был изначально? Ведь согласно теореме Пуанкаре о возвращении ³ это должно произойти (но тут ответ простой: время, которое придется ждать, чтобы это произошло, больше времени существования вселенной). А вот гораздо более сложный, до сих пор открытый вопрос (грубо говоря, это называется "эргодическая гипотеза"): почему газ равномерно заполнит обе половины комнаты, и если температура газа в начальный момент времени была распределена неоднородно, то со временем она выровняется?

Модель Эренфестов – простейшая модель, чтобы изучать "равномерное заполнение газом комнаты". Кстати говоря, как наверное вы увидите из последующих задач, эта модель не очень хороша: она не обладает свойством сходимости к равновесию (эргодичности), так что "равномерного заполнения комнаты" и "выравнивания температуры" не происходит (хотя "почти" происходит). Более подробно на доступном языке о модели Эренфестов можно почитать в книге М.Кац, "Вероятность и смежные вопросы в физике". Речь о том, почему вообще вероятностные модели появляются в физике и почему они хороши. В первом приближении тут такое правило: чем больше в модели стохастики, тем проще она для строгого анализа (учи теорвер!), но тем дальше она от жизни (реальные молекулы не прыгают случайно из одной половины комнаты в другую). Однако, согласно современному пониманию статистической физики, какуюто случайность в систему все равно нужно вводить, иначе (а) не получится провести

 $^{^3{}m Cm}.$ Википедию, а лучше, к примеру, В.И. Арнольд, "Математические методы классической механики".

никакого строгого анализа (б) ее поведение далеко не всегда будет соответствовать нашим физическим ожиданиям. 4

Тем, кому интересно, очень порекомендую научно-популярную книгу Д.Рюэль, "Случайность и хаос— сравнительно коротко и классно о том же, на популярном языке, от одного из известнейших статистических физиков 20-го и 21-го веков.

 $^{^4}$ Насколько я знаю, когда делается прогноз погоды, в уравнения метеорологии добавляется случайный шум: так результат оказывается лучше.