Ullrich, Complex Made Simple

Danny Nygård Hansen

29th May 2023

0 • Differentiability and the Cauchy–Riemann Equations

EXERCISE 0.3

Suppose that $T: \mathbb{C} \to \mathbb{C}$ is \mathbb{R} -linear. Show that T is \mathbb{C} -linear if and only if $T(\mathbf{i}z) = \mathbf{i} Tz$ for all z.

SOLUTION. The 'if' part is obvious, so we prove the 'only if' part. If T(iz) = iTz for all z, then for $a, b \in \mathbb{R}$ we have

$$T((a+ib)z) = T(az+ibz) = aTz+iT(bz) = aTz+ibTz = (a+ib)Tz,$$

as desired.

EXERCISE 0.4

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the \mathbb{R} -linear mapping defined by the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Show that *T* is C-linear if and only if a = d and b = -c.

SOLUTION. Notice that, for $a, b, x, y \in \mathbb{R}$,

$$\begin{pmatrix} a \\ b \end{pmatrix} \cdot \mathbb{C} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax - by \\ ay + bx \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

That is, multiplication by a complex number a + ib is the same as ordinary matrix multiplication by the matrix

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
.

1. Power Series 2

Since matrix multiplication is associative, by [TODO ref] the requirement is that T commutes with the matrix representing the imaginary unit i. This means that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}$$
 should equal
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix}.$$

And this is the case if and only if a = d and b = -c as claimed.

Note: The subring of $\operatorname{Mat}_2(\mathbb{R})$ representing \mathbb{C} -linear maps is precisely the centraliser of the matrix of i.

1 • Power Series

2 • Preliminary Results on Holomorphic Functions

3 • Elementary Results on Holomorphic Functions

REMARK 3.1: Topological lemmas.

We give alternative proofs of Lemmas 3.3 and 3.4, using the covering definition of compactness.

For Lemma 3.3, let d denote the Euclidean metric on \mathbb{C} , and write d(z,A) for the distance from $z \in \mathbb{C}$ to $A \subseteq \mathbb{C}$. It is well-known that this is continuous in z for a fixed A, and that d(z,A) = 0 if and only if $z \in \overline{A}$. Since K is compact, this obtains its minimum at some $z_0 \in K$. But then we must have $d(z_0, V^c) > 0$ since V^c is closed. Then choose $\rho = d(z_0, V^c)/2$.

For Lemma 3.4 we use the Heine–Borel theorem. Since K' is obviously bounded, it suffices to show that it is closed. To this end, let $w \in \mathbb{C} \setminus K'$. The map $z \mapsto d(w,z)$ obtains its minimum d(w,K) on K at a point z_0 . Notice that $d(w,K) > \rho$, since otherwise we would have $w \in \overline{D}(z_0,\rho) \subseteq K'$. Hence $D(w,d(w,K)-\rho)$ is disjoint from K', so $\mathbb{C} \setminus K'$ is open.

REMARK 3.2: Order of zeros.

We show that the implication in Lemma 3.9 is an equivalence, i.e. that

A function $f \in H(V)$ has a zero of order N at $z \in V$ if and only if there exists a $g \in H(V)$ with $g(z) \neq 0$ such that

$$f(w) = (w - z)^N g(w)$$

for all $w \in V$.

The 'only if' direction is just Lemma 3.9, so we prove the converse. In this case, the Leibniz differentiation rule implies that

$$f^{(n)}(w) = \sum_{k=0}^{n} \binom{n}{k} g^{(n-k)}(w) \frac{d^k}{dw^k} (w - z)^N$$

for all $n \in \mathbb{N}_0$. If n < N, then the nth derivative of $(w - z)^N$ is zero at z, so $f^{(n)}(z) = 0$. But if n = N, then all terms except the term k = n vanish, so

$$f^{(N)}(w) = g(w) \frac{d^N}{dw^N} (w - z)^N = g(w)N!,$$

so $f^{(N)}(z) \neq 0$. Hence f has a zero of order N at z.

EXERCISE 3.9

Suppose that V is a connected open set, $f \in H(V)$, and f'(z) = 0 for all $z \in V$. Show that f is constant.

SOLUTION. Let $D(z_0, r) \subseteq V$. For $a, b \in D(z_0, r)$ we have

$$f(b) - f(a) = \int_{[a,b]} f'(z) dz = 0,$$

so f is constant on $D(z_0, r)$. Hence all derivatives of f vanish at z_0 , so Corollary 3.8 implies that f is constant.

EXERCISE 3.19

Suppose that $f \in H(D'(z_0, r))$. Show that f has a pole of order N at z_0 if and only if 1/f has a zero of order N at z_0 .

SOLUTION. First assume that f has a pole of order N at z_0 . Then f is on the form

$$f(z) = \sum_{n=-N}^{\infty} c_n (z - z_0)^n = (z - z_0)^{-N} \sum_{n=0}^{\infty} c_{n-N} (z - z_0)^n = (z - z_0)^{-N} h(z)$$

for $z \in D'(z_0, r)$, where $h(z) = \sum_{n=0}^{\infty} c_{n-N} (z - z_0)^n$ is holomorphic in $D(z_0, r)$ (it is holomorphic in the punctured disk, but it is a power series with a positive radius of convergence, hence is differentiable at 0). Notice that $h(z_0) = c_{-N} \neq 0$. But then

$$\frac{1}{f(z)} = (z - z_0)^N \frac{1}{h(z)}$$

in a neighbourhood of z_0 (since 1/f has a removable singularity at z_0 by Lemma 3.13). And since $h(z_0) \neq 0$, 1/h is holomorphic in a neighbourhood of z_0 . The claim now follows from Remark 3.2.

Now assume that 1/f has a zero of order N at z_0 . Then there is a $g \in H(D'(z_0,r))$ with $g(z_0) \neq 0$ such that

$$\frac{1}{f(w)} = (z - w)^N g(w),$$

by Lemma 3.9. But then

$$f(w) = (z - w)^{-N} \frac{1}{g(w)},$$

and 1/g is holomorphic near z_0 since it is nonzero there. Hence it is given by a power series, and the claim follows.

EXERCISE 3.20

Suppose we agree that a pole of order N is a zero of order -N, and that if f is holomorphic near z_0 and $f(z_0) \neq 0$ then f has a zero of order 0 at z_0 . Suppose that f and g are holomorphic in $D'(z_0, r)$ and have zeroes of order $n, m \in \mathbb{N}$ at z_0 , respectively. Show that fg has a zero of order n + m at z_0 .

SOLUTION. If $n, m \ge 0$, then the claim follows easily from Remark 3.2. By [TODO ref] Exercise 3.19 we only need to consider the case where n > 0 and $m \le 0$. We thus have

$$f(z) = (z - z_0)^n h(z)$$
 and $g(z) = \sum_{k=m}^{\infty} c_k (z - z_0)^k$,

where *h* is holomorphic near z_0 and $h(z_0) \neq 0$, and $c_m \neq 0$. But then

$$f(z)g(z) = (z-z_0)^{n+m}h(z)\sum_{k=0}^{\infty}c_{k+m}(z-z_0)^k,$$

and since $h(z) \sum_{k=0}^{\infty} c_{k+m} (z-z_0)^k$ is holomorphic and nonzero at $z=z_0$ (since $h(z_0)$ and c_m are nonzero), it follows from Remark 3.2 that fg has a zero of order n+m>0 at z_0 .

4 • Logarithms, Winding Numbers and Cauchy's Theorem

EXERCISE 4.1

Show directly from the definition that $\operatorname{Ind}(\partial D(a,r),a)=1$ for any $a\in\mathbb{C}$ and r>0.

SOLUTION. Since $\partial D(a,r)$ is smooth we have

$$\operatorname{Ind}(\partial D(a,r),a) = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{dz}{z-a} = \frac{1}{2\pi i} \int_0^1 \frac{2\pi i e^{2\pi i t}}{e^{2\pi i t}} dt = 1.$$

EXERCISE 4.2

Suppose $a \in \mathbb{C}$ and r > 0. Show that

$$\operatorname{Ind}(\partial D(a,r),z) = \begin{cases} 1, & |z-a| < r, \\ 0, & |z-a| > r. \end{cases}$$

SOLUTION. By Proposition 4.7, the index is constant on the components of $\mathbb{C} \setminus \partial D(a,r)$ and 0 on the unbounded component. The claim then follows from Exercise 4.1.

EXERCISE 4.7

- (i) Suppose that f and g are holomorphic near z_0 and f has a simple zero at z_0 . Find an expression for the residue of g/f at z_0 .
- (ii) Suppose that f has a simple pole at z_0 and g is holomorphic near z_0 . Show that

$$\operatorname{Res}(fg, z_0) = g(z_0)\operatorname{Res}(f, z_0).$$

(iii) Suppose that f is holomorphic in a neighborhood of z_0 , set $g(z) = f(z)/(z-z_0)^n$, and show that

Res
$$(g, z_0) = f^{(n-1)}(z_0)/(n-1)!$$
.

SOLUTION. (i) By [TODO ref] Exercise 3.20 g/f has a zero of order $N \ge -1$ at z_0 . If N = -1, the residue is then, by the calculations on p. 71,

$$\operatorname{Res}(g/f, z_0) = \lim_{z \to z_0} (z - z_0) \frac{g(z)}{f(z)} = \lim_{z \to z_0} g(z) \frac{z - z_0}{f(z) - f(z_0)} = \frac{g(z_0)}{f'(z_0)}.$$

If instead $N \ge 0$, then g has a zero of order at least 1 at z_0 , in which case $g(z_0)$. But in this case g/f has a removable singularity at z_0 , so its residue at z_0 is 0, so the formula also holds in this case.

(ii) Notice that 1/f has a simple zero at z_0 by Exercise 3.20, so part (i) implies that

$$Res(fg, z_0) = \frac{g(z_0)}{(1/f)'(z_0)}$$

$$= g(z_0) \frac{1}{(1/f)'(z_0)}$$

$$= g(z_0) Res(1/(1/f), z_0)$$

$$= g(z_0) Res(f, z_0).$$

(iii) This is obvious from the calculations on p. 71.

EXERCISE 4.8

Suppose that f has an isolated singularity at z_0 . Fix r > 0 and $n \in \mathbb{Z}$, and define $\gamma \colon [0, 2\pi] \to \mathbb{C}$ by

$$\gamma(t) = z_0 + r e^{i nt}.$$

Show that $\operatorname{Ind}(\gamma, z_0) = n$ and that

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \operatorname{Ind}(\gamma, z_0) \operatorname{Res}(f, z_0)$$

if r > 0 is small enough.

SOLUTION. Both sides are zero if n = 0, so we may assume that $n \neq 0$. Since γ is smooth we have

$$\operatorname{Ind}(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - a} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{\mathrm{i} \, n \, \mathrm{e}^{\mathrm{i} \, nt}}{\mathrm{e}^{\mathrm{i} \, nt}} \, \mathrm{d}t = n.$$

Assume that n > 0 and notice that γ is an n-fold sum

$$\gamma = \partial D(z_0, r) \dotplus \cdots \dotplus \partial D(z_0, r),$$

so that

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \frac{n}{2\pi i} \int_{\partial D(z_0, r)} f(z) dz$$
$$= n \operatorname{Res}(f, z_0)$$
$$= \operatorname{Ind}(\gamma, z_0) \operatorname{Res}(f, z_0),$$

where the second equality follows from Theorem 4.11 as on p. 72. Here we choose r such that r < R and f is holomorphic on $D'(z_0, R)$ for some R. Substituting -n for n changes sign on the integral on the left-hand side and on $Ind(\gamma, z_0)$, proving the claim.

8 • Conformal Mappings

EXERCISE 8.7

Suppose that $\psi \in \operatorname{Aut}(\Pi^+)$. Show that there exist $a,b,c,d \in \mathbb{R}$ with ad-bc=1, such that

$$\psi(z) = \frac{az+b}{cz+d}$$

for all $z \in \Pi^+$. Show that a, b, c, d are not unique but are almost unique.

SOLUTION. First notice that $\varphi_C^{-1} \circ \psi \circ \varphi_C \in \operatorname{Aut}(\mathbb{D})$, where $\varphi_C \colon \mathbb{D} \to \Pi^+$ is the Cayley transform. Hence this is a Möbius transformation by Theorem 8.4.3, so ψ is as well.

Since ψ is also a homeomorphism $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$, it preserves the boundary of the upper hemisphere, which is precisely the one-point compactification \mathbb{R}^* of the real line. For i=1,2,3 choose distinct $z_i \in \mathbb{R} \setminus \{d/c\}$ such that $w_i \coloneqq \psi(z_i) \in \mathbb{R}$. Then the w_i are also distinct, so Theorem 8.2.2 implies that ψ is unique among Möbius transformations with this property. Now recall that the coefficients a,b,c,d are unique up to multiplication by a nonzero scalar, so we may assume that $b \in \{0,1\}$. Given b the remaining coefficients are thus uniquely determined. We claim that they are also real.

Consider the linear system of equations

$$\begin{pmatrix} -z_1 & z_1 w_1 & w_1 \\ -z_2 & z_2 w_2 & w_2 \\ -z_3 & z_3 w_3 & w_3 \end{pmatrix} \begin{pmatrix} a \\ c \\ d \end{pmatrix} = \begin{pmatrix} b \\ b \\ b \end{pmatrix}$$

in the variables a, c, d. This has a unique solution by uniqueness of ψ , so the matrix on the left-hand side is invertible. But it has real entries, and so does the vector on the right-hand side, so a, c, d must also be real.

Next notice that if $z \in \Pi^+$ then

$$\frac{az+b}{cz+d} = \frac{ac|z|^2 + bd + adz + bc\overline{z}}{|cz+d|^2},$$

so

$$\operatorname{Im} \frac{az+b}{cz+d} = \frac{(ad-bc)\operatorname{Im} z}{|cz+d|^2},$$

and for this to lie in Π^+ we must have ad - bc > 0. Hence by dividing each coefficient by $\sqrt{ad - bc}$ we may assume that ad - bc = 1.

Furthermore, this argument shows that any Möbius transformation φ with real coefficients and determinant 1 maps Π^+ into itself. But its inverse as a map $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is also a Möbius transformation with real coefficients and determinant 1, so this is also an endomorphism on Π^+ . Hence φ is in fact an automorphism on Π^+ .

Finally, consider the (well-defined) homomorphism $SL_2(\mathbb{R}) \to Aut(\Pi^+)$ given by $A \mapsto \varphi_A$. Its kernel is the subgroup of real scalar multiples of the identity matrix I whose determinant is 1. But this is just $\{I, -I\}$, so we find that $Aut(\Pi^+) \cong SL_2(\mathbb{R})/\{I, -I\} = PSL_2(\mathbb{R})$.

9 • Normal Families and the Riemann Mapping Theorem

REMARK 9.1: Equivalent quasi-metrics.

Let (X,d) be a metric space, and let ψ be as in Lemma 9.1.2. We claim that d and $\tilde{d} := \psi \circ d$ are equivalent. It suffices to show that any d-ball centred at $x \in X$ contains a \tilde{d} -ball centred at x, and vice-versa.

Let $\varepsilon > 0$ and choose $\delta > 0$ such that $|t| < \delta$ implies $|\psi(t)| < \varepsilon$ for all $t \in [0, \infty)$. If $d(y,x) < \delta$ then $\tilde{d}(y,x) < \varepsilon$, so $B_d(x,\delta) \subseteq B_{\tilde{d}}(x,\varepsilon)$. Conversely, let $\varepsilon > 0$ and put $\delta = \psi(\varepsilon) > 0$. Then if

$$\psi(d(y,x)) = \tilde{d}(y,x) < \delta = \psi(\varepsilon),$$

then since ψ is increasing we have $d(y,x) < \varepsilon$. Hence $B_{\tilde{d}}(x,\delta) \subseteq B_d(x,\varepsilon)$. Notice that in both cases, δ only depends on ε and not on x.

We next show that Cauchy sequences with respect to d and \tilde{d} agree. If $(x_n)_{n\in\mathbb{N}}$ is a d-Cauchy sequence, then continuity of ψ at 0 implies that (x_n) is also a \tilde{d} -Cauchy sequence. Conversely, assume that (x_n) is not a d-Cauchy sequence. Then there exists an $\varepsilon > 0$ such that given any $N \in \mathbb{N}$ there are $m, n \geq N$ with $d(x_m, x_n) \geq \varepsilon$. But then $\tilde{d}(x_m, x_n) \geq \psi(\varepsilon) > 0$, so (x_n) is not a \tilde{d} -Cauchy sequence.

REMARK 9.2: Product metrics??.

Let $(d_j)_{j\in\mathbb{N}}$ be a family of quasi-metrics on X, and let $\tilde{d}_j = \psi \circ d_j$ be an equivalent metric with $\tilde{d}_j \leq 1$ for all $j \in \mathbb{N}$. The formula

$$d(x,y) = \sum_{j=1}^{\infty} 2^{-j} \tilde{d}_j(x,y)$$

then defines a quasi-metric on X as in Lemma 9.1.3. It is clear that a sequence converges with respect to d if and only if it converges with respect to each \tilde{d}_j , which by the above remark is equivalent to convergence with respect to each d_j . Furthermore, if (x_n) is d-Cauchy then it is clearly d_j -Cauchy (in particular, if each d_j is complete then d is also complete), but it is not clear that the converse holds.

Next notice that $\tilde{d}_j \le d$, so $B_d(x,r) \subseteq B_{\tilde{d}_j}(x,r)$. By the previous remark, for every $\varepsilon > 0$ there is an $r_i > 0$ such that

$$B_d(x, r_j) \subseteq B_{\tilde{d}_j}(x, r_j) \subseteq B_{d_j}(x, \varepsilon).$$

If $N \in \mathbb{N}$ and $r = \min\{r_1, \dots, r_N\}$, then $B_d(x, r) \subseteq B_{d_j}(x, \varepsilon)$. It follows that

$$B_d(x,r) \subseteq B_{d_1}(x,\varepsilon) \cap \cdots \cap B_{d_N}(x,\varepsilon) = B_N(x,\varepsilon),$$

proving Lemma 9.1.5(iii). This also implies, as in the previous remark, that $B_N(x, \varepsilon)$ is d-open, proving (i).

As far as I can tell, part (ii) does not hold for all functions ψ . But assume that $\psi(t) \le t$ for all $t \in [0, \infty)$ (notice that both $t \mapsto t \land 1$ and $t \mapsto t/(1+t)$ have this property). Then Ullrich's argument goes through as stated.