Resumen #6 y #7.

IC-7602 - Redes

Zhong Jie Liu Guo - 2018319114

Profesor Gerardo Nereo Campos Araya

Escuela de Ingeniería en Computación - ITCR

Fecha: 8 de noviembre de 2022

En este enfoque moderno, trata de que el algoritmo de encriptación sea lo más complicado y rebuscado posible para que se necesite la clave obligatoriamente para entenderlo. Los algoritmos pueden ser implementados en el hardware.

8.2. Algoritmos de clave simétrica

- Utilizan la misma clave para encriptar y desencriptar
- Se pueden utilizar dos métodos:
 - Transposiciones: Ej: tomar 8 bits y luego colocar cada bit en posiciones distintas (una caja P).
 Sigue el principio de Kerckhoff: el atacante sabe que se está permutado, no sabe cómo lo hace.
 - Sustituciones (Caja S): Ej: un texto de 3 bits y sale un texto cifrado de 3 bits. Se tiene una primera caja que transforma los 3 bits a 8 bits. Luego, pasa por una caja P. Finalmente codifica en binario de nuevo la entrada.
 - o Cifrado de producto: secuencia en cascada de las dos anteriores.

DES (Estándar de Encriptación de Datos)

- Texto se encripta en bloques de 64 bits.
- La clave es de 56 bits y tiene 19 etapas diferentes (iteraciones).
- La primera etapa es una transposición sin tomar en cuenta la clave.
- Las 16 etapas se parametrizan con diferentes funciones de la clave.
 - o Se aplica una clave diferente en cada etapa (hace una transposición de los 56 bits).
- La penúltima etapa los 32 bits de la izquierda con los 32 bits de la derecha.
- La última etapa es la inversa de la transposición.
- Blanqueamiento: técnica para fortalecer el algoritmo.
 - Aplicar un OR exclusivo a una clave aleatoria de 64 bits con cada bloque de texto llano antes de dársela al DES
 - Después aplicar un OR exclusivo a una segunda clave de 64 bits con el texto cifrado antes de transmitirla.

Triple DES

- Se utilizan dos claves (K1, K2) y tres etapas.
 - 1. el texto se encripta por DES con la K1.

- 2. se ejecuta DES en modo desencriptación con la K2.
- 3. hace otra encriptación DES con K1.
- Encriptación: Encriptar-Desencriptar-Encriptar.
- Desencriptación: Desencriptar-Encriptar-Desencriptar.

AES (Estándar de Encriptación Avanzada)

- Algoritmo Rijndael ganó
 - o claves y tamaños de bloques de 128 a 256 bits en pasos de 32 bits.
 - o Arreglo state: donde va a estar el texto llano, se copia por columna.
 - Las claves de ronda(rk[num]) se calculan mediante una rotación repetida y aplicado OR exclusivo a varios grupos de bits de clave.
 - Ej: un arreglo que va a ser 4x4.
 - Antes de comenzar los pasos: se aplica un OR exclusivo a rk[0] dentro de state, byte por bute.
 - El ciclo ejecuta 10 iteraciones. Cada ronda tiene cuatro pasos.
 - 1. Realiza una sustitución byte por byte sobre state. Cada bute se utiliza a la vez como un índice en una caja S para reemplazar su valor por el contenido de entrada de la caja S.
 - 2. Gira a la izquierda cada una de las cuatro filas. (fila 0 gira 0 bytes, fila 1 gira 1 byte, ...).
 - 3. Mezcla cada una de las columnas utilizando multiplicación de matrices.
 - 4. Aplica OR exclusivo a la clave de esta ronda dentro del arreglo state.
 - o Desencriptación se puede lograr ejecutando el algoritmo inverso.

Modos de cifrado

- Modo de libro de código electrónico (ECB)
 - Un texto grande se divide en bloques consecutivos de n bytes (ej: 8 bytes), luego se cifra cada uno con la misma clave.
 - La última pieza se rellena a 64 bits si es necesario.
- Modo de encadenamiento de bloques de cifrado
 - A cada bloque de texto llano se le aplica un OR exclusivo con el bloque anterior de texto cifrado antes de ser encriptado.
 - Al primer bloque se le aplica un OR exclusivo con un vector de inicialización de forma aleatoria, este se transmite en texto llano con el texto cifrado.
- Modo de retroalimentación de cifrado
 - o Para la encriptación byte por byte.

• Se requiere un vector de inicialización para comenzar. Modo de retroalimenatción de cifrado(p.

Figura 8-13. Modo de retroalimentación de cifrado. (a) Encriptación. (b) Desencriptación.

Modo de cifrado de flujo

748)

- Usado cuando un error de transmisión de 1 bit arruina 64 bits de texto llano.
- Funciona encriptando un vector de inicialización y usando una clave para obtener un bloque de salida.
- El bloque se encripta usado la clave para tener un segundo bloque de salida. Y así sucesivamente.
- Llamado flujo de claves, se trata como un relleno de una vez y se aplica un OR exclusivo con el texto llano para obtener el texto cifrado.
- Nunca utilizar el mismo par (clave, IV) con un cifrado de flujo, puede dar un ataque de reutilización de flujo de claves.
- Modo de contador
 - o Cuando se desea acceder a datos encriptados de forma aleatoria.
 - Primero se encripta el vector de inicialización(IV) mas una constante, luego se le aplica un OR exclusivo con el texto llano.
 - Por cada nuevo bloque, se incrementa en 1 el IV.
 - Las claves y IVs deben ser elegidos de forma aleatoria por seguridad.

Otros cifrados

Otros algoritmos de clave simétrica (p. 751)

Cifrado	Autor	Longitud de clave	Comentarios
Blowfish	Bruce Schneier	1–448 bits	Antiguo y lento
DES	IBM	56 bits	Muy débil para utilizarlo en la actualidad
IDEA	Massey y Xuejia	128 bits	Bueno, pero patentado
RC4	Ronald Rivest	1-2048 bits	Precaución: algunas claves son débiles
RC5	Ronald Rivest	128–256 bits	Bueno, pero patentado
Rijndael	Daemen y Rijmen	128–256 bits	La mejor opción
Serpent	Anderson, Biham, Knudsen	128–256 bits	Muy robusto
Triple DES	IBM	168 bits	Segunda mejor opción
Twofish	Bruce Schneier	128–256 bits	Muy robusto; ampliamente utilizado

Figura 8-16. Algunos algoritmos criptográficos comunes de clave simétrica.

Criptoanálisis

Diferencial

- o se puede atacar cualquier cifrado en bloques.
- observar un par de bloques de texto llano que difieran en una pequeña cantidad de bits y ver lo que ocurre en cada iteración interna.

Lineal

- funciona aplicando un OR exclusivo a ciertos bits del texto llano y el texto cifrado en conjunto, luego tratar de encontrar patrones en el resultado.
- Si no hay un tipo de desviación, si se repite se va a tener la mitad de los bits en 0s y la otra en 1s.
- Análisis del consumo de energía electrica
 - En general, una computadora usa 3 voltios para representar un bit 1 y 0 voltios para un bit 0.
 - Si se cambia el reloj principal por uno lento y tener una medida de la energía gastada, se puede conocer bien lo consumido por cada instrucción de la máquina.
- Análisis de temporización
 - Los algoritmos están llenos de condiciones if para probar bits en las claves de ronda.
 - Si los *then* y *else* toman diferencias de tiempo y se toma en cuenta el tiempo que se toman en ejecutar varios pasos, se puede deducir las claves de ronda.

8.3. Algoritmos de clave pública

- Se basa en tener el algoritmo de encriptación y una clave que sea pública.
- El algoritmo de desencriptación y otra clave van a ser privadas.
- Esto requiere que cada usuario tenga dos claves: una pública para encriptar mensajes y una privada para desencriptar los mensajes.
- Deben tener estos tres requisitos:
 - 1. D(E(P)) = P: se aplica D a un mensaje cifrado E(P) va a obtener P.
 - 2. Es excesivamente difícil deducir D de E.
 - 3. E no puede descifrarse mediante un ataque de texto llano seleccionado.

RSA

- Requiere claves de al menos 1024 bits, lo hace lento.
- Basado en ciertos principios de teoría de números.
 - 1. Seleccionar dos números primos grandes, p y q (generalmente de 1024 bits).
 - 2. Calcular $n = p \times q y z = (p-1) \times (q-1)$.
 - 3. Seleccionar un número primo con respecto a z, con nombre d.
 - 4. Encontrar e tal que $e \times d = 1 \mod z$
- Se divide el texto llano en bloques de k bits.
- Para encriptar un mensaje P, calculamos $C = P^e \pmod{n}$. Se requieren e y n.
- Para desencriptar, calculamos $P = C^d \pmod{n}$. Se requieren d y n.
- La seguridad se basa en factorizar *n* que es un número grande.
- Es muy lento para encriptar grandes cantidades de datos.
- Se utiliza para distribuir claves.

Otros algoritmos de clave pública

- Mochila
 - Un dueño tiene una gran cantidad de objetos con pesos diferentes.
 - El dueño cifra el mensaje seleccionando secretamente un subgrupo de los objetos y los coloca en la mochila.

o El peso total de los objetos en la mochila se hace público y la lista de todos los posibles objetos.

- Basados en calcular logaritmos discretos.
- Basados en curvas elípticas.