WE CLAIM:

1. A method for forming a MOS transistor gate dielectric layer comprising:

5

providing a semiconductor substrate;

forming an oxide layer on the semiconductor substrate;

10

exposing the oxide layer to a high-density nitrogen plasma to incorporate nitrogen into the oxide layer thereby converting the oxide layer to an oxynitride layer; and

15

annealing said oxynitride layer in $N_2\text{O}$ to form an oxynitride layer with a uniform nitrogen concentration profile.

- 2. The method of claim 1 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 3. The method of claim 1 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of $800^{\circ}C$ $1100^{\circ}C$ for 10-60 seconds.

15

20

25

30

4.	Α	method	of	forming	а	MOS	transistor	comprising:

providing a semiconductor substrate; 5

> forming a gate dielectric layer on the semiconductor substrate wherein the gate dielectric layer has a uniform nitrogen concentration;

10

forming a conductive layer on said gate dielectric layer,

forming sidewall structures adjacent to said conductive layer; and

forming source and drain regions in the semiconductor substrate adjacent to said sidewall structures.

5. The method of claim 4 wherein said forming a gate dielectric layer with a uniform nitrogen concentration comprises:

> forming an oxide layer on the semiconductor substrate;

exposing the oxide layer to a high-density nitrogen plasma to incorporate nitrogen into the oxide layer thereby converting the oxide layer to an oxynitride layer; and

annealing said oxynitride layer in $N_2\text{O}$ to form an oxynitride layer with a uniform nitrogen concentration profile.

5

- 6. The method of claim 5 wherein the exposing the oxide layer to a high-density nitrogen plasma comprises a plasma power level of 700 900 watts.
- 7. The method of claim 5 wherein annealing the oxynitride layer in N_2O comprises rapid thermal annealing at a temperature of $800^{\circ}C$ $1100^{\circ}C$ for 10-60 seconds.
 - 8. The method of claim 4 wherein said uniform nitrogen concentration is greater than 6 atomic percent.
 - 9. The method of claim 4 wherein gate dielectric layer is less than 40 angstroms thick.

10. The method of claim 4 wherein said uniform nitrogen concentration describes a nitrogen concentration with less than 10% variation across the gate dielectric layer.

TO SECTION
4 7 mg
12 m
Enter .
कर्तुनाव सम्बद्
40.5400 30.001
联.
Nati
ũ

10

15

11. A MOS transistor, comprising:

providing a silicon substrate;

a gate dielectric layer on the silicon substrate wherein the gate dielectric layer is less than 40 angstroms thick and wherein the gate dielectric layer has a uniform nitrogen concentration;

a conductive layer on the gate dielectric layer;

sidewall structures adjacent to said conductive layer; and

source and drain regions in the silicon substrate adjacent to the sidewall structures.

- 12. The MOS transistor of claim 10 wherein the uniform nitrogen concentration is greater than 6 atomic percent.
- 13. The MOS transistor of claim 12 wherein the uniform nitrogen concentration has a variation of less than 10% across the gate dielectric layer.

17

25

20

30