Note of STAT 671

Statistical Learning I

Octorber 16 2019

Contents

Two	Definitions of RKHS (why equvalent)	1
	Definition 1:	1
	Definition 2:	2
	$Definition 1 \implies Definition 2 \dots \dots \dots \dots \dots \dots \dots \dots$	2
	$Definition 2 \implies Definition 1 \dots \dots \dots \dots \dots \dots \dots \dots$	2
Exar	mples	2
	Example 0: $\mathcal{X} \in \mathbb{R}^d$, $k(x,y) = x^T y$	2
	Example 1: $\mathcal{X} = \{x_1,x_n\}, \ldots$	2
	Example 2: $\mathcal{X} \in \mathbb{R}^n$, $k(x,y) = (x^T y)^2$	3

Two Definitions of RKHS (why equvalent)

 $X \neq \phi$, \mathcal{H} : Hilbert Space of function $\mathcal{X} \mapsto \mathbb{R}$

Example:
$$\mathcal{X} = \{x_1, ... x_n\}; \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \subset \{\text{vector of } \mathbb{R}^n\}$$

Definition 1:

 $\mathcal H$ is a RKHS when there is a function $\mathcal X \times \mathcal X \mapsto \mathbb R$, $K(\cdot, \cdot)$ such that

- A: $t \mapsto k(t, x) \in \mathcal{H}$ for each x
- B: $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ for each $f \in \mathcal{H}$, $x \in \mathcal{X}$
 - Reproducing Property

Definition 2:

 ${\cal H}$ is a RKHS when the evaluation functions

$$F_x: \mathcal{H} \mapsto \mathbb{R}$$
 $f \mapsto f(x)$ are continuous.

Definition 1 \Longrightarrow Definition 2

 F_x is continuous. if

$$||f - g||_{\mathcal{H}} < \delta \pmod{\text{might depend on } x}$$

 $\implies |f(x) - g(x)| < \varepsilon$

 F_x is *C-Lipschitz* continuous when

$$|f(x) - g(x)| \le c||f - g||_{\mathcal{H}}, \quad c > 0, \quad \text{for any } f, g \in \mathcal{H}$$

C-Lipschitz \Longrightarrow continuity.

$$|f(x) - g(x)| = |(f - g)(x)| = |\langle f - g, k(\cdot, x) \rangle_{\mathcal{H}}| \le ||f - g||_{\mathcal{H}} \underbrace{\langle k(\cdot, x), k(\cdot, x) \rangle^{\frac{1}{2}}}_{k^{\frac{1}{2}}(x, x)}$$

Definition 2 \implies Definition 1

Riesz Representation Theorem: In any Hilber Space of function $\mathcal{X} \mapsto \mathbb{R}$ for which F_x is continuous for each $x \in \mathcal{X}$, then there is an unique element of \mathcal{H} , notated g_x , for which $f(x) = \langle f, g_x \rangle_{\mathcal{H}}$ for each $f \in \mathcal{H}$, $g_x(\cdot) = k(\cdot, x)$.

Examples

Example 0: $\mathcal{X} \in \mathbb{R}^d$, $k(x,y) = x^T y$

Example 1: $X = \{x_1, ... x_n\}$,

notate k ; $[k]_{ij} = k(x_i, x_j)$. k is symmetric and positive semi-definite.

Assume that *k* is positive definite,

$$f: \mathcal{X} \mapsto \mathbb{R}, \quad \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \subset \mathbb{R}^n$$

$$k(\cdot,x_i) = \begin{bmatrix} k_{1i} \\ \vdots \\ k_{ni} \end{bmatrix} = k_i; \quad k = (k_1,..k_n)$$

$$\mathcal{H} = \{\alpha_1 k_1 + \dots + \alpha_n k_n; \ \alpha_1, \dots, \alpha_n \in \mathbb{R}\}$$

= Span $\{k_1, ...k_n\} = \mathbb{R}^n$ is a vector space.

$$\langle f, g \rangle_{\mathcal{H}} = f^{T}k^{-1}g$$

$$\langle f, k(\cdot, x_{i}) \rangle = \langle f, ke_{i} \rangle, \quad e_{i} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow i$$

$$= f^{T}\underbrace{k^{-1}k}_{I}e_{i}$$

$$= f^{T}e_{i}$$

$$= [f(x_{1}) \dots f(x_{n})] \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow i$$

$$= f(x_{i})$$

Example 2: $\mathcal{X} \in \mathbb{R}^n$, $k(x,y) = (x^T y)^2$

$$\mathcal{H} = \{ f : f(x) = x^T S_x; S_{(n,n)} \text{ is a symmetric Matrix} \}$$

verify this is a Hilbert Space.

$$\langle f_{S_1}, f_{S_2} \rangle_{\mathcal{H}} = \langle S_1, S_2 \rangle_{\mathcal{F}} = \sum_{i,j=1}^n [S_1]_{ij} [S_2]_{ij}$$
$$\langle f_{S_1}, k(\cdot, x_i) \rangle = f_{S_1}(x) \quad \text{check it}$$
$$k(y, x) = (y^T x)(y^T x) = y^T \cdot \underbrace{xx^T}_{\substack{(n,n) \text{symmetric}}} \cdot y$$