R Notes for Multivariate Analysis

Yongfu, Liao 2018-04-04

Contents

A	About	5
1	Multivariate Normal Distribution & Covariance Matrix	7
	1.1 Bivariate Normal Contour Map	7
	1.2 Multivariate Normal Functions	9
2	Principle Component Analysis	11
	2.1 Conversion Between Correlation & Covaraince Matrices	11

4 CONTENTS

About

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.

The $\bf bookdown$ package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.name/tinytex/.

6 CONTENTS

Chapter 1

Multivariate Normal Distribution & Covariance Matrix

1.1 Bivariate Normal Contour Map

1.1.1 ellipse function

```
ellipse(x, scale, centre, level, npoints = 1000)
```

- x: a single number, correlation of the two variables.
- scale: vector, standard deviation of the two variables.
- centre: vector, center of the ellipse, i.e. the mean vector of the bivariate normal distribution.
- level: a single number, the contour probability.
- npoints: number of points used to draw the contour.

ellipse returns a matrix with dimension (npoints × 2), which can be used to plot contour.

1.1.2 Data Generation

The for loop below is used to generate a data frame with 3 columns (variables): - Column 1: First variable of bivariate normal function (x_1) - Column 2: Second variable of bivariate normal function (x_2) - Column 3: The contour that $x_1 \& x_2$ on the same row belongs to.

```
library(ellipse)
```

```
All_contours <- c(NA, NA, NA)
    ## Set empty start for appending ##
for (i in 1:5) {
    level <- 0.1*i
        ## Set Contour prob., prob. of obs within contour ##
    ell_data <-ellipse(-0.8, c(sqrt(2), 1), centre = c(1, 3), level = level, npoints = 800+(i-1)^3)
        ## npoints: bigger contours with more points ##
    class <- rep(paste(level*100, "% Contour", sep=""), nrow(ell_data))</pre>
        ## Assign contour class ##
    ell_data <- as.data.frame(ell_data)</pre>
        ## Change to data.frame BEFORE cbind, ##
        ## or coersion happens ##
    ell_data <- cbind(ell_data, class)</pre>
    All_contours <- rbind(All_contours, ell_data)
}
All_contours <- All_contours[-1,]
    ## Remove the empty start ##
```

1.1.3 Plotting

Contour Plot

1.2 Multivariate Normal Functions

1.2.1 Generate density f(x)

[1] 1.562995e-05

- \mathbf{x} : Vector \mathbf{x} in $\mathbf{f}(\mathbf{x})$, all variables of the multivariate normal distribution.
- mean: Mean vector(center of ellipse) of the multivariate normal distribution.
- sigma: Covariance matrix of the multivariate normal distribution.

dmvnorm returns f(x), the range of the multivariate normal function. For example, dmvnorm(x = c(2, 5), mean = mu, sigma = Sigma) returns the value $f(x_1 = 2, x_2 = 5)$ of the multivariate normal distribution specified by mean vector, mu, and covariance matrix, Sigma.

1.2.1.1 Example: Densities of a Contour

```
data <- All_contours %>%
    filter(class == "50% Contour")

dmvnorm(x = data[1, 1:2], mean = mu, sigma = Sigma)[[1]]

[1] 0.09378295
```

```
dmvnorm(x = data[4, 1:2], mean = mu, sigma = Sigma)[[1]]
```

[1] 0.09378295

The retured values are the same (very close), since they are on the same contour. See the section above for more details.

1.2.2 Covariance Matrix

Generater covariance and correlation Matricies:

Chapter 2

Principle Component Analysis

2.1 Conversion Between Correlation & Covaraince Matrices

$$\mathbf{R} = diag(\mathbf{S})^{\frac{-1}{2}} \ \mathbf{S} \ diag(\mathbf{S})^{\frac{-1}{2}}$$