Fizika 1i, 2018 őszi félév, 1. gyakorlat

Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok reprezentációja koordináta-rendszerekben (komponensek), műveletek reprezentációkkal; trigonometrikus függvények, azonosságok; függvény ábrázolása, transzformációja; határérték;

Jelölések

vektor (irányított szakasz): \vec{r} vektor reprezentációja (komponensek): r vektor hossza (nagysága): $|\vec{r}| = r$ irányvektor, normálvektor (ezek egységvektorok): \vec{e}, \vec{n}

Feladatok

Vektorok és vektorműveletek

- **F1.** Adjuk meg az ABC háromszög súlypontjába mutató vektort, ha a háromszög csúcsainak helyvektora rendre \vec{r}_A , \vec{r}_B és \vec{r}_C !
- **F2.** Egy egyenes karó a sík talajból merőlegesen áll ki. A karó talppontjából a legfelső pontjába mutató vektor \vec{r} . Kizárólag vektorok és vektorműveletek felhasználásával adjuk meg a karó árnyékának hosszát, ha a napsugarak az \vec{e} irányvektor irányában haladnak!
- **F3.** Az \vec{r} vektort az \vec{n} normálvektorú síkra tükrözzük. Írjuk fel az \vec{r} vektor tükörképét kizárólag vektorok és vektorműveletek felhasználásával!
- **F4.** Az \vec{r} vektort az \vec{e} irányvektor irányában kétszeresére nyújtunk. Írjuk fel a megnyúlt vektort!
- **F5.** Adjuk meg a következő görbék és felületek egyenletét kizárólag vektorok és vektorműveletek felhasználásával (komponensek használata nélkül)!
- $a) \ \vec{\boldsymbol{e}}$ irányvektorú egyenes, amely áthalad az
 $\vec{\boldsymbol{r}}_P$ helyvektorú Pponton;
- b) \vec{n} normálvektorú sík, amely áthalad az \vec{r}_P helyvektorú P ponton;
 - c) \vec{r}_C középpontú, R sugarú gömb;
- $d) \; \vec{\boldsymbol{r}}_C$ középpontú, Rsugarú kör, amely az $\vec{\boldsymbol{n}}$ normálvektorú síkban fekszik.
- **F6.** Egy háromszög A, B és C csúcsainak helyvektorai rendre \vec{r}_A , \vec{r}_B és \vec{r}_C . Írjuk fel a háromszög területét kizárólag vektorok és vektorműveletek felhasználásával!
- **F7.** Az \vec{r} vektort az \vec{e} irányvektor körül (a jobb-kézszabálynak megfelelően) 90°-kal elforgatunk. Írjuk fel az elforgatott vektort, ha
 - a) \vec{r} és \vec{e} merőlegesek egymásra;
 - b) \vec{r} és \vec{e} nem merőlegesek egymásra.

Vektorok reprezentációja

- F8. Egy kiránduló először 10 km-t tesz meg ÉK-i irányban, majd É-i irányban 5 km-t, végül 20 km-t ÉNy-i irányban. Mekkora távolságra került a kiránduló a kiindulási helyétől? Adjuk meg a teljes elmozdulás(vektor) irányát!
- **F9.** Egy derékszögű koordináta-rendszerben fekvő háromszög csúcsainak helyvektorát az $\mathbf{r}_A = (4,2)$, $\mathbf{r}_B = (12,4)$ és $\mathbf{r}_C = (5,12)$ számkettesek reprezentálják. Adjuk meg a háromszög súlypontjának koordinátáit!
- **F10.** Mekkora szöget zárnak be az ${\pmb a}=(5,4,2)$ és a ${\pmb b}=(2,6,-4)$ számhármasokkal reprezentált vektorok?
- **F11.** Adjuk meg az a = (1, 1, 4) és b = (2, 3, 1) komponensű vektorok vektoriális szorzatának reprezentációját!
- **F12.** Egy síkban vannak-e az $\boldsymbol{a}=(1,1,4), \boldsymbol{b}=(2,3,1)$ és $\boldsymbol{c}=(4,7,-5)$ számhármasokkal reprezentált vektorok?
- **F13.** Egy \vec{r} vektor komponensei a K koordinátarendszerben x és y. Adjuk meg az \vec{r} vektor x' és y' komponenseit egy olyan K' koordinátarendszerben, amely a K-hoz képest α szögben (az óramutató járásával ellenkező irányban) el van forgatva!

Trigonometria, azonosságok

F14. Az alábbi *ábrán* egy ún. Theodorus-spirál látható, amely derékszögű háromszögekből épül fel. Az első háromszög egyenlőszárú, és mindegyik háromszög átfogója egyben a következő hosszabbik befogója, míg a rövidebb befogó mindig egységnyi. Mekkora az n. háromszög legkisebb φ_n szöge?

F15. Határozzuk meg egy szabályos tetraéder két lapja által bezárt szöget!

F16. Fejezzük ki a következő függvényeket $\sin x$ szel és $\cos x$ -szel!

- a) $\sin(x/2)$,
- $b) \cos(x/2),$
- c) $\sin(3x)$,
- $d)\cos(3x);$

Függvények ábrázolása, függvénytranszformációk, határérték

F17. Ábrázoljuk közös koordináta-rendszerben a következő függvényeket:

- a) $y = \cos x$,
- b) $y = \cos 2x$,
- c) $y = \cos(2x \pi/3)$,

Megoldások

M1. Jelöljük az A csúcsból a C csúcsba mutató vektort $\vec{\boldsymbol{b}}$ -vel, az A csúcsból a B csúcsba mutató vektort pedig \vec{c} -vel (lásd az ábrát)! A vektorok különbségére vonatkozó szabály szerint ezek felírhatók

(*)
$$\vec{\boldsymbol{b}} = \vec{\boldsymbol{r}}_C - \vec{\boldsymbol{r}}_A$$
, illetve $\vec{\boldsymbol{c}} = \vec{\boldsymbol{r}}_B - \vec{\boldsymbol{r}}_A$

alakban. A C csúcsból az AB oldal felezőpontjába mutató vektor (amely egybeesik az egyik súlyvonallal) $\frac{1}{2}\vec{c} - \vec{b}$, ennek C-től távolabbi harmadolópontjában helyezkedik el az S súlypont.

Az O origóból a súlypontba mutató \vec{s} vektor tehát három vektor összegeként írható fel:

$$\vec{\boldsymbol{s}} = \vec{\boldsymbol{r}}_A + \vec{\boldsymbol{b}} + \frac{2}{3} \left(\frac{1}{2} \vec{\boldsymbol{c}} - \vec{\boldsymbol{b}} \right) = \frac{\vec{\boldsymbol{r}}_A + \vec{\boldsymbol{r}}_B + \vec{\boldsymbol{r}}_C}{3} \,,$$

ahol az utolsó lépésben felhasználtuk a (*) összefüggéseket.

M2. Válasszuk origónak a karó talppontját! A karó árnyékának P végpontját a karó legfelső pontján áthaladó \vec{e} irányvektorú egyenes talajjal való metszéspontja jelöli ki. Az origóból ezen egyenes tetszőleges (például a P) pontjába mutató vektor felírható $\vec{r} + \lambda \vec{e}$

2

d)
$$y = 3\cos(2x - \pi/3)$$
,

e)
$$y = 2 - 3\cos(2x - \pi/3)$$
;

F18. Ábrázoljuk közös koordináta-rendszerben a következő függvényeket:

- a) $y = x^2$,
- b) $y = 2x^2$,
- c) $y = 2(x+3)^2$,

d)
$$y = 2\left(\frac{x}{2} + 3\right)^2$$
;

19. Határozzuk meg a következő határértékeket:

a)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

a)
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$
,
b) $\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$;

(Használjunk addíciós tételt és alkalmazzunk közelítéseket!)

alakban, ahol $\lambda \in \mathbb{R}$ a pont helyzetét jellemző skalár mennyiség. Ezért a karó árnyékának megfelelő vektor

$$\vec{d} \equiv \overrightarrow{OP} = \vec{r} + \lambda \vec{e}$$
.

Tudjuk továbbá, hogy a karó árnyéka a talaj síkjában fekszik, amit a skaláris szorzattal

$$\vec{r}\vec{d} = |\vec{r}|^2 + \lambda \vec{r}\vec{e} = 0$$

alakban fejezhetünk ki. Ezt megoldva λ -ra, majd az eredményt a \vec{d} -t megadó összefüggésbe visszahelyettesítve kapjuk az árnyék hosszát:

$$|ec{m{d}}| = \left| ec{m{r}} - rac{|ec{m{r}}|^2}{ec{m{r}}ec{m{e}}} ec{m{e}}
ight| \, .$$

M3. A tükrözés az \vec{r} vektor tükörsíkkal párhuzamos \vec{r}_{\parallel} komponensét nem változtatja meg, míg a tükörre merőleges $ec{m{r}}_{\perp}$ komponensét ellentétesre változtatja (lásd az ábrát).

Írjuk fel tehát az \vec{r}_{\parallel} és \vec{r}_{\perp} komponenseket! Utóbbi párhuzamos a tükörsík normálvektorával, hossza pedig $\vec{r}\vec{n}$, így

$$\vec{r}_{\perp} = \vec{n}(\vec{r}\vec{n})$$
.

A tükörsíkkal párhuzamos komponens a vektorok kivonására vonatkozó szabály szerint

$$ec{m{r}}_{\parallel} = ec{m{r}} - ec{m{r}}_{\perp} = ec{m{r}} - ec{m{n}} (ec{m{r}} ec{m{n}})$$

módon számolható. Mindezek alapján tehát az eredeti vektor \vec{r}' tükörképe:

$$\vec{r}' = \vec{r}_{\parallel} - \vec{r}_{\perp} = \vec{r} - 2\vec{n}(\vec{r}\vec{n})$$
.

M4. Az előző feladathoz hasonlóan bontsuk fel az \vec{r} vektort \vec{e} -vel párhuzamos, illetve arra merőleges komponensekre!

$$ec{m{r}}_{\parallel} = ec{m{e}} (ec{m{e}} ec{m{r}}) \,, \quad ext{illetve} \quad ec{m{r}}_{\perp} = ec{m{r}} - ec{m{e}} (ec{m{e}} ec{m{r}}) \,.$$

A nyújtás során az \vec{e} -vel párhuzamos irányú komponens megkétszereződik, tehát az új, nyújtott \vec{r}' vektor a következőképp írható:

$$\vec{r}' = 2\vec{r}_{\parallel} + \vec{r}_{\perp} = \vec{r} + \vec{e}(\vec{e}\vec{r})$$
.

M5. a) Az egyenesen lévő bármely \vec{r} helyvektorú pontba eljuthatunk úgy, hogy az \vec{r}_P ponthoz hozzáadjuk az irányvektor λ -szorosát ($\lambda \in \mathbb{R}$), ahol λ a szóbanforgó pont helyzetét jellemző skalár (lásd az ábrát). Az egyenes egyenlete tehát:

$$\vec{r} = \vec{r}_P + \lambda \vec{e} .$$

b) A P pontból a sík tetszőleges másik (\vec{r} helyvektorú) pontjába húzott $\vec{r} - \vec{r}_P$ vektor benne van a síkban, azaz merőleges \vec{n} -re. Ezért

$$(\vec{r} - \vec{r}_P)\vec{n} = 0,$$

ez a sík vektoros egyenlete.

c) A gömb felszínének pontjait az jellemzi, hogy a középponttól mért távolságuk állandó, éppen a gömb R sugara:

$$|\vec{r} - \vec{r}_C| = R$$
.

d) A kör egy gömb és egy annak középpontján áthaladó sík metszeteként származtatható, ezért a körön lévő pontok helyvektorai az alábbi két egyenletet egyszerre elégítik ki:

$$|\vec{r} - \vec{r}_C| = R$$
, $(\vec{r} - \vec{r}_C)\vec{n} = 0$.

M6. A háromszög B és C csúcsából az A csúcsba mutató két vektort rendre $\vec{r}_A - \vec{r}_B$ és $\vec{r}_A - \vec{r}_C$ alakban írhatjuk fel. E két vektor vektoriális szorzatának abszolút értéke a vektorok által kifeszített paralelogramma területével egyezik meg, ami éppen kétszerese a háromszög területének, ezért a megoldás:

$$T = rac{1}{2} |(ec{oldsymbol{r}}_A - ec{oldsymbol{r}}_B) imes (ec{oldsymbol{r}}_A - ec{oldsymbol{r}}_C)| \,.$$

- **M7.** a) Ha a két vektor merőleges, akkor az elforgatott vektor egyszerűen $\vec{e} \times \vec{r}$, hiszen ennek hossza éppen $|\vec{r}|$, iránya pedig a jobbkézszabály szerinti.
- b) Általános esetben az \vec{r} vektort fel kell bontanunk az \vec{e} irányvektorral párhuzamos (\vec{r}_{\parallel}) és arra merőleges (\vec{r}_{\perp}) komponensekre, ahogy az az ábrán is látható.

Az F.4. feladatban láttuk, hogy

$$ec{m{r}}_{\parallel} = ec{m{e}} (ec{m{e}} ec{m{r}}) \quad ext{és} \quad ec{m{r}}_{\perp} = ec{m{r}} - ec{m{e}} (ec{m{e}} ec{m{r}}) \,.$$

A forgatás az $\vec{r}_{||}$ komponenst változatlanul hagyja, míg a másik komponenst az a) részhez hasonlóan számíthatjuk:

$$\vec{r}'_{\perp} = \vec{e} \times \vec{r}_{\perp} = \vec{e} \times \vec{r}$$
,

ahol felhasználtuk, hogy $\vec{e} \times \vec{e} = 0$. Végül felírhatjuk az elforgatott vektort:

$$ec{m{r}}' = ec{m{r}}_{\parallel} + ec{m{r}}'_{\perp} = ec{m{e}}(ec{m{e}}ec{m{r}}) + ec{m{e}} imes ec{m{r}} \, .$$

M8. Válasszuk a koordináta-rendszerünk x-tengelyét keleti, y-tengelyét északi irányban! Az elmozdulásvektorok összege ebben a rendszerben így írható (km-ben mérve):

$$\frac{10}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \frac{20}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -5\sqrt{2} \\ 15\sqrt{2} + 5 \end{pmatrix} \,.$$

A teljes elmozdulásvektor hossza

$$\sqrt{(-5\sqrt{2})^2 + (15\sqrt{2} + 5)^2} \approx 27.2 \text{ (km)},$$

iránya pedig északhoz képest az óramutató körüljárása szerint

$$\arctan \frac{-5\sqrt{2}}{15\sqrt{2}+5} \approx -15.1^{\circ}$$

szögben hajlik, azaz valahol É és ÉÉNy között van.

M9. Az *F1. feladat* általános eredményét kell alkalmaznunk, mely szerint a súlypontba mutató vektor reprezentációja:

$$s = \frac{r_A + r_B + r_C}{3} = \frac{1}{3} \begin{pmatrix} 21 \\ 18 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$$
.

M10. A skaláris szorzat definíciója szerint $ab = |a||b|\cos\varphi$, ahol φ a két vektor által bezárt szög. Ezért

$$\cos \varphi = \frac{ab}{|a||b|} = \frac{5 \cdot 2 + 4 \cdot 6 + 2 \cdot (-4)}{\sqrt{5^2 + 4^2 + 2^2} \sqrt{2^2 + 6^2 + (-4)^2}},$$

innen $\cos \varphi = 0.518$, azaz $\varphi = 58.8^{\circ}$.

M11. A vektoriális szorzat komponensekkel a következőképp fejthető ki:

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} = \begin{pmatrix} -11 \\ 7 \\ 1 \end{pmatrix}.$$

M12. Az \boldsymbol{a} és \boldsymbol{b} vektorok kifeszítenek egy síkot, melynek normálvektora párhuzamos az $\boldsymbol{a} \times \boldsymbol{b}$ vektoriális szorzattal. Ha a \boldsymbol{c} vektor ebben a síkban van, akkor merőlegesnek kell lennie a sík normálvektorára, és így az $\boldsymbol{a} \times \boldsymbol{b}$ vektorra is. A \boldsymbol{c} és $\boldsymbol{a} \times \boldsymbol{b}$ vektorok skaláris szorzata (ami jelen esetben a három vektor vegyes szorzata) a megadott számadatok (és az előző feladat eredménye) alapján zérusnak adódik:

$$(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = \begin{pmatrix} -11 & 7 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 7 \\ -5 \end{pmatrix} = 0,$$

azaz a három vektor egy síkban fekszik.

M13. Vezessük be a K koordináta-rendszer tengelyeinek irányába mutató \vec{i} és \vec{j} , valamint a K' koordináta-rendszer tengelyeinek irányába mutató $\vec{i'}$

és \vec{j}' egységvektorokat! Ezek egymással vett skalárszorzatai:

$$\vec{i} \cdot \vec{i}' = \cos \alpha$$
, $\vec{i} \cdot \vec{j}' = -\sin \alpha$,
 $\vec{j} \cdot \vec{j}' = \cos \alpha$, $\vec{j} \cdot \vec{i}' = \sin \alpha$,

ahol felhasználtuk, hogy $\cos(90^{\circ} \mp \alpha) = \pm \sin \alpha$. Az eredeti K rendszerben az \vec{r} vektor $x\vec{i}+y\vec{j}$ módon írható fel. A K' rendszerbeli komponenseket úgy kapjuk, hogy az \vec{r} vektort levetítjük az új tengelyekre:

$$x' = \vec{r} \cdot \vec{i}' = x \, \vec{i} \cdot \vec{i}' + y \, \vec{j} \cdot \vec{i}' = x \cos \alpha + y \sin \alpha ,$$

$$y' = \vec{r} \cdot \vec{j}' = x \, \vec{i} \cdot \vec{j}' + y \, \vec{j} \cdot \vec{j}' = -x \sin \alpha + y \cos \alpha .$$

M14. Az első (egyenlőszárú) háromszög átfogója a Pitagorasz-tétel értelmében $\sqrt{2}$ egység hosszúságú. Ez a második háromszög hosszabbik befogója, így az átfogó hossza $\sqrt{2+1}=\sqrt{3}$. A sort folytatva az n-edik háromszög átfogójára $\sqrt{n+1}$ hosszúság adódik. A φ_n hegyesszög tehát a szinusz szögfüggvényt használva kapható meg:

$$\sin \varphi_n = \frac{1}{\sqrt{n+1}}, \quad \text{azaz} \quad \arcsin \varphi_n = \frac{1}{\sqrt{n+1}}.$$

M15. 1. megoldás. A tetraédert négy egybevágó szabályos háromszög alkotja, melyek magasságát (pl. az ábrán) látható FD szakasz hosszát) jelöljük h-val! A tetraéder O középpontjának az egyik (pl. az ABC) lapra vett merőleges vetülete a háromszög S súlypontjával esik egybe.

A súlypont harmadolja az FC súlyvonalat (amely egyben az ABC háromszög magassága), ezért az FS szakasz hossza h/3. Az FSD derékszögű háromszögre felírva a koszinusz szögfüggvényt megkaphatjuk a tetraéder lapjai által bezárt φ szöget:

$$\cos\varphi = \frac{FS}{FD} = \frac{h/3}{h} \,, \quad \mathrm{igy} \quad \varphi = \arccos\frac{1}{3} = 70.5^\circ \,.$$

 $2.\ megoldás.$ A szabályos tetraéder egy kockába rajzolható az *ábrán* látható módon. Mivel a keresett szög független a tetraéder méretétől, válasszuk a kocka oldalélét 2 egységnyinek, az origót pedig helyezzük a kocka középpontjába; ekkor a tetraéder csúcsainak összes koordinátája 1 vagy -1 lesz.

A tetraéder éleinek \overrightarrow{AB} , \overrightarrow{AC} és \overrightarrow{AD} vektora a csúcsokba mutató helyvektorok különbsége:

$$\overrightarrow{AB} = (0, 2, 2), \quad \overrightarrow{AC} = (-2, 0, 2), \quad \overrightarrow{AD} = (-2, 2, 0).$$

Számítsuk ki az ABC és ABD lapok normálvektorának koordinátáit!

$$m{n}_{ABC} = rac{\overrightarrow{AC} imes \overrightarrow{AB}}{|\overrightarrow{AC} imes \overrightarrow{AB}|} = rac{1}{\sqrt{3}} (-1, 1, -1) \,,$$

$$m{n}_{ABD} = rac{\overrightarrow{AD} imes \overrightarrow{AB}}{|\overrightarrow{AD} imes \overrightarrow{AB}|} = rac{1}{\sqrt{3}} (1,1,-1) \, .$$

E két normálvektor skaláris szorzata 1/3, ami éppen egyenlő a két lap által bezárt φ szög koszinuszával:

$$\cos \varphi = \frac{1}{3}$$
, ebből $\varphi = \arccos \frac{1}{3} = 70.5^{\circ}$.

 ${f M16.}\ a)$ Alkalmazzuk a kétszeres szög koszinuszára vonatkozó összefüggést x/2 argumentumra!

$$\cos x = \cos^2(x/2) - \sin^2(x/2) = 1 - 2\sin^2(x/2).$$

Ebből kifejezhetjük $\sin(x/2)$ -t, ügyelve a négyzetgyökvonásnál mindkét gyökre:

$$\sin(x/2) = \pm \sqrt{\frac{1 - \cos x}{2}}.$$

b) Az a) esethez hasonlóan járunk el, de most $\cos(x/2)$ -re rendezünk:

$$\cos(x/2) = \pm \sqrt{\frac{1 + \cos x}{2}}.$$

c)A szögek összegére vonatkozó addíciós tételt használjuk:

$$\sin(3x) = \sin(x + 2x) = \sin x \cos(2x) + \cos x \sin(2x).$$

Felhasználva a kétszeres szögek szögfüggvényeire érvényes formulákat:

$$\sin(3x) = \sin x \cos^2 x - \sin^3 x + 2\sin x \cos^2 x,$$

végül rendezve:

$$\sin(3x) = 3\sin x \cos^2 x - \sin^3 x.$$

d) A c) esethez hasonlóan:

$$\cos(3x) = \cos(x + 2x) = \cos x \cos(2x) - \sin x \sin(2x).$$

Felhasználva a kétszeres szögek formuláit:

$$\cos(3x) = \cos^3 x - \cos x \sin^2 x - 2\sin^2 x \cos x,$$

ami a következőre egyszerűsödik:

$$\cos(3x) = \cos^3 x - 3\cos x \sin^2 x.$$

M17. A függvénytranszformációk általános szabályait kell alkalmaznunk. Tetszőleges f(x) függvény esetén $f(\lambda x)$ x tengely menti $1/\lambda$ -szoros összenyomással, $\lambda f(x)$ y tengely irányú nyújtással, f(x+a) negatív x tengely irányú eltolással, f(x) + b pedig a pozitív y tengely irányú eltolással kapható meg. Ezeket alkalmazva kaphatjuk az alábbi grafikonokat.

 $\mathbf{M18.}$ A függvénytranszformációk szabályait alkalmazva kapjuk az alábbi *ábrát*.

M19. a) A számlálóban bontsuk fel a zárójelet!

$$\lim_{\Delta x \to 0} \frac{x^2 + 2x \, \Delta x + \Delta x^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \left(2x + \Delta x \right).$$

A jobb oldalon álló első tag független Δx -től, a második pedig nullához tart, így a határérték 2x.

b) Használjuk a szinuszfüggvényre vonatkozó addíciós tételt!

$$\lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \sin \Delta x \cos x - \sin x}{\Delta x}$$

 $\Delta x \to 0$ esetén $\cos \Delta x \to 1$, valamint $\sin \Delta x/\Delta x \to 1$, így az eredmény $\cos x$.