Clase 25

IIC 1253

Prof. Pedro Bahamondes

# Outline

### Introducción

Definiciones de árbol

Elementos de un árbol

Epílogo

## ¿Por qué estudiar árboles?

- Sistemas de archivos: Carpetas y archivos jerárquicamente
- Estructuras de datos: Árboles binarios de búsqueda, tries, ...
- Abstract Syntax Trees (AST): Representación de expresiones y programas en compiladores y análisis estático.
- Árboles de decisión: Para inteligencia artificial y aprendizaje automático.
- Árboles de juego: De posibles jugadas en juegos como ajedrez o Go.
- Árboles filogenéticos: Relaciones evolutivas entre especies.
- Desglose estructurado del trabajo (WBS): Herramienta de planificación de proyectos.
- Protocolos de enrutamiento: Algunas redes usan árboles para determinar rutas óptimas.

Comprender árboles permite abordar problemas complejos con estructuras claras y eficientes

## Objetivos de la clase

- □ Conocer definiciones de árbol y demostrar que son equivalentes
- □ Conocer elementos esenciales de un árbol
- □ Demostrar propiedades que relacionan elementos de un árbol



# Outline

Introducción

Definiciones de árbol

Elementos de un árbol

Epílogo

### Definición

Un grafo T = (V, E) es un **árbol** si para cada par de vértices  $x, y \in V$  existe un único camino entre ellos.

### Definición

Un grafo T = (V, E) es un **árbol** si para cada par de vértices  $x, y \in V$  existe un único camino entre ellos.

Por lo tanto, siempre es conexo. Si relajamos esta condición:

### Definición

Un grafo T = (V, E) es un **bosque** si para cada par de vértices  $x, y \in V$ , si existe un camino entre ellos, este es único.

Un bosque se ve como un conjunto de árboles.

En general hablaremos de árboles con raíz.

- Distinguimos uno de los vértices r ∈ V, al que llamaremos la raíz del árbol.
- Los vértices de grado menor o igual a 1 se llaman hojas.
- Los dibujamos con la raíz arriba y los demás vértices hacia abajo.

Hay muchas definiciones equivalentes para los árboles:

### Definición

Un grafo T = (V, E) es un árbol si y sólo si es conexo y acíclico.

### Definición

Un grafo T = (V, E) es un **árbol** si y sólo si es conexo y todas sus aristas son de corte.

## Ejercicio

Demuestre las definiciones anteriores.

### Definición

Un grafo T = (V, E) es un árbol si y sólo si es conexo y acíclico.

### Demostración:

(⇒) Primero si T es un árbol es por definición conexo, nos falta demostrar entonces que un árbol no puede tener ciclos. Supongamos que T tuviese un ciclo, y sea C un ciclo en T que pasa por los vértices u y v. Supongamos que C parte (y termina) en u, entonces C es de la forma (u,..., v,..., u), por lo que se puede dividir en dos porciones, una para ir de u a v, digamos p₁, y otra (distinta ya que un ciclo no repite aristas) para ir de v a u, digamos p₂. Resulta entonces que p₁ y p₂ son dos caminos distintos entre u y v en T, lo que contradice el hecho de que T es un árbol. Finalmente T no puede tener ciclos.

(⇐) Como T es conexo, para cada par de vértices existe un camino que los une. Falta demostrar que ese camino es único. Supongamos entonces que T no tiene ciclos pero que sin embargo existe un par de vértices con dos caminos distintos uniéndolos en T. Sean u y v estos vértices y sean p₁ y p₂ los dos caminos distintos en T que unen a u con v. Dado que estos caminos son distintos entonces ambos tienen al menos tres vértices.

Sea x el vértice anterior al primer vértice que diferencia a  $p_1$  y  $p_2$  (note que x está en  $p_1$  y en  $p_2$ ). Sea y el vértice siguiente a x que pertenece simultáneamente a  $p_1$  y  $p_2$ . El camino entre x e y a través de  $p_1$  junto con el camino entre x e y a través de  $p_2$  forman un ciclo en T lo que contradice nuestra hipótesis de que T no tiene ciclos. Finalmente no pueden existir dos caminos distintos entre u y v, de donde concluimos que para todo par de vértices en T existe un único camino que los une y por lo tanto T es un árbol.

### Definición

Un grafo T = (V, E) es un **árbol** si y sólo si es conexo y todas sus aristas son de corte.

### Demostración:

En la sección anterior demostramos que una arista es de corte si y sólo si no pertenece a ningún ciclo en el grafo. Ahora, T es un árbol si y sólo si T es conexo y no tiene ningún ciclo, si y sólo si todas sus aristas cumplen con la propiedad de no pertenecer a un ciclo, si y sólo si, todas sus aristas son de corte.

Vimos que un grafo es bipartito si y sólo si no tiene ciclos de largo impar.

De esto se deduce inmediatamente que:

Teorema

Todo árbol es un grafo bipartito.

La siguiente propiedad nos permitirá hacer demostraciones por inducción sobre los árboles:

### Teorema

Si T es un árbol y v es una hoja de él, entonces el grafo T - v (el grafo que resulta de quitar el vértice y sus aristas incidentes) es un árbol.

### Ejercicio

Demuestre el teorema.

#### Teorema

Si T es un árbol y v es una hoja de él, entonces el grafo T - v es un árbol.

### Demostración:

Para demostrar que el grafo T-v es un árbol debemos comprobar que para cualquier par de vértices en T-v, existe un único camino que los une. Sea u y w dos vértices en T distintos de v, y sea la secuencia  $P=(u,u_1,u_2,...,u_n,w)$  el único camino en T que une a u con w. Es claro que el vértice v no aparece en v v que todos los vértices de v (excepto v v v deben tener grado al menos v que el iminamos v de v no afecta al camino entre v v v que el camino v v que el camino v v que entre v v v también existe en v v v Como la demostración la hicimos en general para un par de vértices cualquiera, en v v v también es un árbol.

Ahora podemos establecer una última definición muy simple de un árbol:

### Definición

Un grafo T = (V, E) con n vértices es un **árbol** si y sólo si es conexo y tiene exactamente n - 1 aristas.

### Ejercicio

Demuestre que la definición anterior es equivalente a las demás.

Podemos determinar si un grafo conexo es o no un árbol.

### Definición

Un grafo T = (V, E) con n vértices es un **árbol** si y sólo si es conexo y tiene exactamente n - 1 aristas.

### Demostración:

- $(\Rightarrow)$  Si T es un árbol con n vértices, entonces claramente es conexo, falta mostrar que tiene exactamente n-1 aristas, lo haremos por inducción en n.
  - BI: Si n = 1 tenemos un árbol con sólo un vértice y sin aristas, por lo que se cumple la propiedad: |E| = 0 = 1 1 = n 1.
  - HI: Supongamos que un árbol con n vértices tiene n-1 aristas.
  - TI: Sea ahora T un árbol con n+1 vértices, queremos demostrar que T tiene exactamente (n+1)-1=n aristas. Centrémonos en una hoja v cualquiera. Por el lema anterior T-v también es un árbol y tiene exactamente n vértices por lo que se aplica la HI, luego T-v tiene exactamente n-1 aristas. Dado que v es una hoja, v tiene grado v en v por lo tanto v tiene exactamente una arista más que v es una hoja, v tiene exactamente una arista más que v es una hoja que se cumple la propiedad.

14 / 26

(⇐) En la sección anterior demostramos que un grafo con n vértices y k aristas tiene al menos n − k componentes conexas. Si T es un grafo conexo con n vértices y exactamente n − 1 aristas y tomamos una arista e cualquiera de T, entonces dado que T − e tiene n − 2 aristas, por el teorema mencionado, T − e tiene al menos dos componentes conexas y por lo tanto e es una arista de corte. Dado que elegimos e como una arista cualquiera, T cumple con que todas sus aristas son de corte y por lo tanto T es un árbol.

# Outline

Introducción

Definiciones de árbol

Elementos de un árbol

Epílogo

Las siguientes definiciones se usan mucho en aplicaciones de los árboles en computación.

### Definición

Sea T = (V, E) un árbol con raíz r y x un vértice cualquiera.

- La **profundidad** de x es el largo del camino que lo une con r (r tiene profundidad 0).
- La altura o profundidad del árbol es el máximo de las profundidades de sus vértices.
- Los ancestros de x son los vértices que aparecen en el camino entre él y r. Note que x es ancestro de sí mismo.
- El padre de x es su ancestro (propio) de mayor profundidad. Diremos que x es hijo de su padre.
- Dos vértices x e y con el mismo padre son hermanos.

### Definición

Un árbol con raíz se dice **binario** si todo vértice tiene grado a lo más 3; o equivalentemente, si todo vértice tiene a lo más dos hijos.

### Podemos distinguir entre hijos izquierdos y derechos

### Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

### Ejercicio

Demuestre el teorema.

### Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

### Demostración:

Por inducción en la cantidad de vértices del árbol binario.

- BI: El caso base es un árbol compuesto por sólo un vértice, la raíz. Un árbol de estas características tiene sólo una hoja y ningún vértice con dos hijos, luego cumple la propiedad.
- HI: Supongamos que un árbol binario con n vértices tiene una hoja más que vértices con dos hijos.
- TI: Sea T un árbol binario con n+1 vértices. Sea v una hoja de T, sabemos que T-v es también un árbol binario y tiene exactamente n vértices por lo que T-v cumple con HI, o sea tiene una hoja más que vértices con dos hijos. Supongamos que T-v tiene k vértices con dos hijos entonces por HI tiene k+1 hojas. Lo que podamos decir dependerá de si v tenía o no un hermano.

- Si v tiene un hermano en T, entonces el padre deV es un vérticee con dos hijos en T. Ahora, en el árbol T-v, el vértice que era padre de v tiene sólo un hijo. Lo anterior quiere decir que T tiene exactamente un vértice más con dos hijos que T-v, o sea que T tiene exactamente k+1 vértices con dos hijos. Ahora también ocurre que T tiene exactamente una hoja más que T-v, o sea que T tiene k+2 hojas. Hemos concluido que T tiene k+2 hojas y k+1 vértices con dos hijos y por lo tanto cumple con la propiedad.
- Si v no tiene hermano, entonces el vértice padre de v en T se convierte en una hoja en el árbol T − v, lo que quiere decir que T y T − v tienen exactamente la misma cantidad de hojas, k + 1. El único vértice que ve afectado su cantidad de hijos en T − v es el padre de v, este tiene exactamente un hijo en T y 0 hijos en T − v por lo que la cantidad de vértices con dos hijos en T es también la misma que en T − v e igual a k. Hemos concluido que T tiene k + 1 hojas y k vértices con dos hijos y por lo tanto cumple con la propiedad.

### Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

## Ejercicio

La ANFP está organizando la Copa Chile 2022. Si este año participan *n* equipos, ¿cuántos partidos se jugarán?

Respuesta: n-1

Finalmente, podemos tomar una clase de árboles binarios que se usan mucho para establecer cotas para las aplicaciones de ellos.

### Definición

Un árbol binario completo es un árbol binario tal que:

- 1. Todas las hojas están a la misma profundidad.
- 2. Todos los vértices que no son hojas tienen exactamente dos hijos.

### Teorema

- 1. Un árbol binario completo de altura H tiene exactamente  $2^H$  hojas.
- 2. Un árbol binario completo de altura H tiene exactamente  $2^{H+1}-1$  vértices.
- 3. Si H es la altura de un árbol binario completo con n vértices, entonces  $H \le \log_2(n)$ .

### Ejercicio

Demuestre el teorema anterior.

### Teorema

Un árbol binario completo de altura H tiene exactamente  $2^H$  hojas.

### Demostración:

Sea T = (V, E) un árbol binario completo, demostraremos la propiedad por inducción en la altura H.

- Bl: Si H = 0 entonces T corresponde un vértice sin aristas. Luego la cantidad de hojas es igual a  $1 = 2^0 = 2^H$ .
- HI: Suponemos que todo árbol de altura H tiene  $2^H$  hojas.
- TI: Sea T un árbol de altura H+1 y raíz r. Si eliminamos r del árbol junto con sus aristas incidentes obtenemos un bosque de 2 árboles binarios completos de altura H. Luego, podemos aplicar la HI, con lo que cada árbol en T-r tiene  $2^H$  hojas. Es claro que la cantidad de hojas de T es igual a la suma de todas las hojas de los arboles inducidos al remover r. Con lo que T tendrá una cantidad de hojas igual a  $2^H + 2^H = 2 \cdot 2^H = 2^{H+1}$ .

#### Teorema

Un árbol binario completo de altura H tiene exactamente  $2^{H+1}-1$  vértices.

### Demostración:

Sea T un árbol binario completo con altura H. Por el teorema anterior T debe tener  $2^H$  hojas. Luego, por el otro teorema anterior sabemos que debe tener  $2^H-1$  vértices con exactamente 2 hijos. Dado que todo vértice en un árbol binario es hoja o tiene 2 hijos, concluimos que T debe tener  $2^H+(2^H-1)=2\cdot 2^H-1=2^{H+1}-1$  vértices.

### Teorema

Si H es la altura de un árbol binario completo con n vértices, entonces  $H \le \log_2(n)$ .

### Demostración:

Sea T un árbol binario completo con n vértices y altura H. Sabemos que la cantidad de hojas  $(2^H)$  tiene que ser menor o igual a la cantidad total de vértices (n).

$$2^H \le n \Rightarrow H \le \log_2(n)$$

# Outline

Introducción

Definiciones de árbol

Elementos de un árbol

Epílogo

## Objetivos de la clase

- □ Conocer definiciones de árbol y demostrar que son equivalentes
- □ Conocer elementos esenciales de un árbol
- □ Demostrar propiedades que relacionan elementos de un árbol