Claims

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended) A method according to claim 1 10 wherein said substrate other polyester based fabric (B) is selected from the group consisting of non-woven fabric, knitted fabric and lining fabric.
- 5. (Currently Amended) A method according to claim $\frac{10}{10}$ wherein said film (C) of a hot melt adhesive on basis of copolyetherester has a melting point of at least 150° C.
- 6. (Currently Original) A method according to claim 4 10 wherein said hot melt adhesive (D) on basis of copolyester is applied using a method selected from the group consisting of paste dot coating, powder dot coating and scatter coating.
- 7. (Withdrawn) A fabric comprising at least one substrate and laminate in form of a film on basis of copolyetherester which is waterproof and permeable to water vapour in combination with at least one film of a hot-melt adhesive on basis of hydrophilic copolyetherester, said substrate and laminante being adhered using a hot-melt adhesive.
- 8. (Withdrawn) A fabric according to claim 7 which conforms to the bluesign ® standard.
- 9. (Withdrawn) A fabric according to claim 7 wherein said waterproof and water vapour permeable layers is a copolyetherester comprising multiple recurring long-chain and short-chain units linked head to tail, said long chain units corresponding to formula (I).

and said short claim units correspond to formula (II)

wherein

G represents a bivalent residue derived by removal of terminal hydroxyl groups, from at least one long-chain glycol having an average molecular weight of 600 to 6000 and an atomic ratio of carbon to oxygen between 2.0 and 4.3, wherein at least 20 wt.-% of said long-chain glycol have an atomic ratio of carbon to oxygen between 2.0 and 2.4 and are 15 to 50 wt.-% of said copolyetherester,

R represents a bivalent residue derived by removal of carboxyl groups from at least one dicarboxylic acid of a molecular weight of less than 300, and

D represents a bivalent residue derived by removal of hydroxyl groups from at least one diol of a molecular weight of less than 250, wherein at least 80 mol-% of used dicarboxylic acid consist of terephthalic acid or ester-forming equivalents thereof and at least 80 mol-% of said diol have said small molecular weight consisting of 1,4-butanediol or ester-forming equivalents therefore, the sum of mole percents of said dicarboxylic acid which does not represent terephthalic acid or ester-forming equivalents thereof and of said diol having a small molecular weight which does not represent 1,4-butanediol or ester-forming equivalents thereof being not more than 20 % and wherein said short-chain units of ester can be 40 to 80 wt.-% of said copolyetherester.

10. (New) A method for the production of a wash-resistant bond between a film (A) which is waterproof and water vapour permeable and comprises multiple recurring long-chain and short-chain units linked head to tail, said long chain units corresponding to formula (I).

and said short claim units correspond to formula (II)

wherein

G represents a bivalent residue derived by removal of terminal hydroxyl groups from at least one long-chain glycol having an average molecular weight of 600 to 6000 and an atomic ratio of carbon to oxygen between 2.0 and 4.3, wherein at least 20 wt.-% of said long-chain glycol have an atomic ratio of carbon to oxygen between 2.0 and 2.4 and are 15 to 50 wt.-% of said copolyetherester,

R represents a bivalent residue derived by removal of carboxyl groups from at least one dicarboxylic acid of a molecular weight of less than 300, and

D represents a bivalent residue derived by removal of hydroxyl groups from at least one diol of a molecular weight of less than 250, wherein at least 80 mol-% of used dicarboxylic acid consist of terephthalic acid or ester-forming equivalents thereof and at least 80 mol-% of said diol have said small molecular weight consisting of 1,4-butanediol or ester-forming equivalents therefore, the sum of mole percents of said dicarboxylic acid which does not represent terephthalic acid or ester-forming equivalents thereof and of said diol having a small molecular weight which does not represent 1,4-butanediol or ester-forming equivalents thereof being not more than 20 % and wherein said short-chain units of ester can be 40 to 80 wt.-% of said copolyetherester, and at least one other polyester based fabric (B) wherein said film (A) is manufactured with at least one film (C) of a hot-melt adhesive consisting essentially of an hydrophilic copolyetherester formed form terephthalic acid and a

combination of diols selected from the group consisting of butanediol, 5 to 40 mol % diethylene

glycol, 0 to 20 mol % triethylene glycol., 2 to 10 mol % polyethylene glycol based upon the amount of 100 mol-% of total diols before being bonded to said other polyester based fabric (B) by means of a hot-melt adhesive (D) which is a copolyester.