

Constant-time Gauss' algorithm?

Finite field world

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

A:

GAUSS' **A**LGORITHM

- 1. Take random $\zeta \in \mathbb{F}_{q'}$ compute $t = \text{Order}(\zeta)$
- 2. If t = q 1, **stop**,
- 3. **else** take random $\beta \in \mathbb{F}_q^*$ and compute $s = \text{Order}(\beta)$
 - a. if s = q 1, **stop**
 - b. **else** find coprime $d \mid t$ and $e \mid s$ with $d \cdot e = \text{lcm}(t, s)$
 - c. set $\zeta \leftarrow \zeta^{t/d} \cdot \beta^{s/e}$ and $t \leftarrow d \cdot e$ and **repeat** from 2.

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^* in constant-time

Curve world

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P

Take P and Q,

Compute their torsion.

If P not full torsion,
 take right multiple Q set $P \leftarrow P + Q$ to fill
 missing torsion in P repeat until full torsion

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P in constant-time

