Wavelets, Sparsity and their Applications

Pier Luigi Dragotti

Communications and Signal Processing Group Imperial College London

Session Five: Multiresolution Analysis and Splines

Multi-Resolution Analysis

Definition By a multi-resolution analysis we mean a sequence of embedded closed subspaces

$$...V_2 \subset V_1 \subset V_0 \subset V_{-1}...$$

such that

- 1. Upward Completeness: $\lim_{m\to -\infty}V_m=\bar{\bigcup}_{m\in\mathbb{Z}}V_m=L_2(\mathbb{R}).$
- 2. Downward Completeness: $\lim_{m\to\infty} V_m = \bigcap_{m\in\mathbb{Z}} V_m = \{0\}$.
- 3. Scale Invariance: $f(t) \in V_m \leftrightarrow f(2^m t) \in V_0$.
- 4. Shift Invariance: $f(t) \in V_0 \to f(t-n) \in V_0$ for all $n \in \mathbb{Z}$.
- 5. Existence of a Basis. There exists $\varphi(t) \in V_0$, such that $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis for V_0 .

Consequences of the Multi-Resolution Analysis

First notice that:¹

$$\langle \varphi(t-n), \varphi(t-m) \rangle = \delta_{m,n} \iff \sum_{k=-\infty}^{\infty} |\hat{\varphi}(\omega + 2k\pi)|^2 = 1.$$

Since V_1 is included in V_0 , if $\varphi(t/2)$ belongs to V_1 , it belongs to V_0 as well. Thus:

$$\varphi(x/2) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(x-n)$$

or

$$\varphi(t) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(2t-n).$$

This is the two-scale relation.

¹see Appendix

$$\begin{split} & \int_{\mathbb{R}^{2}} \{t\} = \overline{f_{2}} \sum_{n=0}^{\infty} g_{n}[n] f(\nu t - n) \\ & \| FT \quad \text{Consequences of the Multi-Resolution Analysis} \\ & \widehat{f}(\omega) = \left[\overline{f_{2}} \sum_{n=0}^{\infty} g_{n}[n] \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & \sum_{n=0}^{\infty} g_{n}[n] \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & \text{By fighting the Fourier transform of both sides of the two-scale relation, we obtain} \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} f(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} \int_{-\infty}^{\infty} g_{n}(zt - n) e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}{2} \sum_{n=0}^{\infty} g_{n}[n] e^{-j\omega t} dz \\ & = \frac{1}$$

Consequences of the Multi-Resolution Analysis

Theorem 1. Let $\{V_n\}$, $n \in \mathbb{Z}$ be a multiresolution analysis with the scaling function $\varphi(t)$. There exists an orthonormal basis for $L_2(\mathbb{R})$:

$$\psi_{m,n}(t) = 2^{-m/2} \psi(2^{-m}t - n) \quad m, n \in \mathbb{Z}$$

and

$$\psi(t) = \sum_{n = -\infty}^{\infty} (-1)^n g_0[1 - n] \varphi(2t - n)$$

such that $\{\psi_{m,n}\}$, $n \in \mathbb{Z}$ is an orthonormal basis for W_m , where W_m is the orthogonal complement of V_m in V_{m-1} .

Central to multiresolution analysis is the design of a proper scaling function. It is possible to show that $\varphi(t)$ is an admissible scaling function of $L_2(\mathbb{R})$ if and only if it satisfies the three following conditions:

1. Riesz basis criterion: There exists two constants A>0 and $B<+\infty$ such that

$$A \le \sum_{k \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi k)|^2 \le B \tag{1}$$

2. Two scale relation

$$\varphi(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} g_0[k] \varphi(2t - k) \tag{2}$$

3. Partition of unity

$$\sum_{k \in \mathbb{Z}} \varphi(t - k) = 1. \tag{3}$$

A remarkable example of scaling functions is given by the family of B-splines. A B-spline $\beta_N(t)$ of order N is obtained from the (N+1)-fold convolution of the box function $\beta_0(t)$ or

$$\beta_N(t) = \underbrace{\beta_0(t) * \beta_0(t) ... * \beta_0(t)}_{N+1 \text{ times}} \quad \text{with } \hat{\beta}_0(\omega) = \frac{1 - e^{-j\omega}}{j\omega}$$

where $\hat{\beta}(\omega)$ is the Fourier transform of $\beta(t)$.

Theorem 2. Given two valid biorthogonal scaling functions $\varphi(t)$ and $\tilde{\varphi}(t)$ satisfying the following two scale relations

$$\varphi(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} g_0[k] \varphi(2t - k)$$

$$\tilde{\varphi}(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_0[k] \tilde{\varphi}(2t - k).$$

There exist two biorthogonal wavelets ψ and $\tilde{\psi}$ such that

$$\psi(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} (-1)^{k-1} h_0[1-k] \varphi(2t-k)$$

$$\tilde{\psi}(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} (-1)^{k-1} g_0 [1-k] \tilde{\varphi}(2t-k)$$

Example

Assume that $\varphi(t)$ is a linear spline. The two scale equation is satisfied when $G_0(z)=(\frac{1}{2}z^{-1}+1+\frac{1}{2}z)/\sqrt{2}$.

The biorthogonality relation says that

$$\langle \tilde{\varphi}(t), \varphi(t-n) \rangle = \delta_n.$$

Since both $\varphi(t)$ and $\tilde{\varphi}(t)$ satisfy a two scale relation, it follows that

$$\langle \tilde{\varphi}(t), \varphi(t-n) \rangle = \langle h_0[k], g_0[k-2n] \rangle = \delta_n.$$

The above relation is equivalent to the condition P(z) + P(-z) = 2 with $P(z) = H_0(z^{-1})G_0(z)$. Here $G_0(z)$ is known and has two zeros at $\omega = \pi$, the shortest $H_0(z)$ with the same number of zeros at π is then

$$H_0(z) = \frac{\sqrt{2}}{8}(1+z)(1+z^{-1})(-z+4-z^{-1}) = \frac{\sqrt{2}}{8}(z^{-1}+2+z)(-z+4-z^{-1}).$$

Given $H_0(z)$ the construction of the wavelet $\psi(t)$ is then straightforward. The scaling function $\varphi(t)$ and wavelet $\psi(t)$ for this example are shown below.

$$A[n] = \langle f(t), f(t-n) \rangle = \int_{-\infty}^{\infty} f(t) f(t-t) dt$$

$$A(t) = \langle f(t), f(t-t) \rangle = \int_{-\infty}^{\infty} f(t) f(t-t) dt$$

$$Appendix$$

$$A(w) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f^{*}(t) f(t-t) dt e^{\int_{-\infty}^{\infty} f(t) dt} dt$$

$$\begin{aligned} \text{Claim}_{i=t}^{\underbrace{\mathsf{Xzt-i}}} & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f^*(t) \, e^{-j\omega t} \, dt \, f(x) \, e^{j\omega t} \, dx = \left[\int_{-\infty}^{\infty} f(t) \, e^{j\omega t} \, dt \right]^* \left[\int_{-\infty}^{\infty} f(x) \, e^{j\omega t} \, dx \right] \\ & \langle \varphi(t-n), \varphi(t-m) \rangle = \delta_{m,n} \iff \sum_{k=-\infty}^{\infty} \left| \hat{\varphi}(\omega + 2k\pi) \right|^2 = 1. \\ & k=-\infty = \left| f(-\omega) \cdot f(-\omega) \right|^2 \end{aligned}$$

Proof:

Define $p(\tau) = \langle \varphi(t), \varphi(t-\tau) \rangle$. Then $\langle \varphi(t), \varphi(t-m) \rangle$ is obtained by sampling $p(\tau)$ with sampling period T=1. The Fourier transform of $p(\tau)$ is given by: α and β (w) β

$$\int_{-\infty}^{\infty} p(\tau) e^{-j\omega\tau} d\tau = \int_{-\infty}^{\infty} \langle \varphi(t), \varphi(t-\tau) \rangle e^{-j\omega\tau} d\tau = |\hat{\varphi}(\omega)|^2.$$

Applying the rule that sampling in time corresponds to replica in frequency leads to the desired equality.