§1 Lecture 01-20

Textbook Correction. Zorn's Lemma. It doesn't imply "the maximal" element, but rather "a maximal" element. This translates over to its application of proving that every vector space has a basis, not "the" basis (Multiple vs. Single).

§1.1 Quotients of Vector Spaces

 $W \subset V$. W a subspace.

$$V/W = \{v + w : v \in V\}$$
$$\lambda \in F, \quad \lambda(v + W) = \lambda v + W$$

If $v_1 + W = v_2 + W$, then $\lambda v_1 + W = \lambda v_2 + W \ \forall \lambda \in F$. This implies that $(v_1 - v_2) \in W \Rightarrow \lambda(v_1 - v_2) \in W \Rightarrow_1 - \lambda v_2 \in W$.

Theorem 1.1

If V is finite dimensional and $W \subseteq V$ is a subspace, then W and V/W are both finite dimensional.

$$\dim(V) = \dim(W) + \dim(V/W)$$

This makes sense, because (V/W) reduces the dimension by W, because suddenly all elements in W are considered equal to one another. So the dimension behaves like a logarithm in a sense.

Proof: Subspace of finite dimensional vector space is finite dimensional.

Let $d = \dim(W)$. Let (v_1, \ldots, v_d) be a basis for W. Therefore (v_1, \ldots, v_d) is linearly independent in V. We can complete it to a basis for V, $(v_1, \ldots, v_d, v_{d+1} + \cdots + v_n)$. Where $n = \dim(V)$.

Basis for V/W. There are associated cosets for v_{d+1}, \ldots, v_n . It would be incorrect to say that the basis is v_{d+1}, \ldots, v_n , because these elements don't live in the quotient. Claim: The (n-d)-tuple $(v_{d+1}+W,\ldots,v_n+W)$ is a basis for V/W.

Proof of linear independence. Let $(\lambda_{d+1}, \ldots, \lambda_n) \in F^{n-d}$.

$$\lambda_{d+1}\overline{v_{d+1}} + \dots + \lambda_n\overline{v_n} = 0 \text{ in } (V/W).$$

$$\Rightarrow \lambda_{d+1}v_{d+1} + \dots + \lambda_nv_n \in W$$

Hence $\exists (\lambda_1, \dots, \lambda_d) \in F^d$ s.t. $\lambda_{d+1} v_{d+1} \dots + \lambda_n v_n = \lambda_1 v_1 + \dots + \lambda_d v_d$ This works because (v_1, \dots, v_n) span W. Because (v_1, \dots, v_n) are linearly independent $\Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$

 $\Rightarrow \lambda_{d+1} = \dots = \lambda_n = 0$

 Proof. $(d+1,\ldots,\overline{v_n})$ spans V/W.

Let $v + W \in V/W$. Because $v \in V$, $\exists (\lambda_1, \dots, \lambda_n) \in F^n$ such that $v = \lambda_1 v_1 + \dots + \lambda_d v_d + \dots + \lambda_n v_n$.

In V/W.

$$\overline{v} = \lambda_1 \overline{v_1} + \dots + \lambda_d \overline{v_d} + \dots + \lambda_n \overline{v_n}$$

$$\Rightarrow \overline{v} = \lambda_{d+1} \overline{v_{d+1}} + \dots + \lambda_n \overline{v_n}$$

because the other vectors are all in W.

Note 1.2.

$$\overline{v} = v + W$$

 $v \in V, \ \overline{v} \in V/W.$

Theorem 1.3 (Isomorphism Theorem)

If $T:V\to W$ is a linear transformation, then T induces an $\underline{\text{injective}}$ linear transformation

$$\overline{T}: V/\ker T \hookrightarrow W$$

In particular, $V/\ker(T) \simeq \operatorname{Im}(T)$.

$$\overline{T}(v + \ker(T)) = T(v)$$

 \overline{T} is injective.

$$\overline{T}(v+W) \Leftrightarrow T(v) = 0 \Leftrightarrow v \in \ker(T)$$

 $\Leftrightarrow v + \ker(T) = 0 \text{ in } V/\ker(T)$

Theorem 1.4 (Rank-nullity theorem)

Let $T: V \to W$ be a linear transofmration with $\dim(V) < \infty$. Then $\dim\ker(T) + \dim\operatorname{Im}(T) = \dim(V)$.

Proof.

$$V/\ker(T) \simeq \operatorname{Im}(T)$$
$$\dim(V/\ker(T)) = \dim\operatorname{Im}(T)$$
$$\dim(V) - \dim\ker(T) = \dim\operatorname{Im}(T)$$

Remark 1.5. If $H \subset G$ is a group, $\# G < \infty$, then #(G/H) = #G/#H

A vector space V is finite as a set $\Leftrightarrow \#F < \infty$ and $\dim_F(V) < \infty$. Let q = #F and $n = \dim_F(V)$. Then $\#V = q^n$. $\dim(V) = \log_q(\#V)$. $V \simeq F^n$.

Theorem 1.6 (Counting Principle)

If A and B are finite sets of the same cardinality, and $f:A\to B$ is an injective function, then f is surjective.