Quiz 1 - Probability Theory 7th February, 2025 $P(A \Downarrow B) = P(A \bowtie P(B))$ PLA) PB: PLA (EMB) Instructions Solve all questions. You are not obliged to use any of the hints. Any correct solution will be accepted. RELAX. Think. Problem 1 1. Let \mathcal{F} be a σ -algebra. If $|\mathcal{F}| < \infty$, then prove that $|\mathcal{F}| = 2^n$ for some natural number $n \geqslant 1$. (Hint: Let G be a finite group. Suppose $g^2 = 1, \forall g \in G$. Use the following fact: if prime $p|\operatorname{ord}(G)$ then $\exists x \in G$ G such that ord(x) = p.) Problem 2 $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space such that $\mathbb{P}(A) \in \{0,1\}, \forall A \in \mathcal{F}$. Let $X : \Omega \to \mathbb{R}$ be a random variable. (Note: X need not be discrete.) Prove that there exists $c \in \mathbb{R}$ such that $\mathbb{P}(X = c) = 1$. Problem 3 Let $(\Omega, \mathcal{A}, \mathbb{F})$ be a probability space. Let $\{A_n\}$ be a sequence of events in \mathcal{A} . We define: $\limsup_n A_n = \{\omega : \omega \in A_n \text{ for infinitely many } n \in \mathbb{N}\}$ $\liminf_n A_n = \{\omega: \exists m \in \mathbb{N} \text{ such that } \omega \in A_n, \forall n \geqslant m\}$ 1. (Falou's lemma) Prove that $\mathbb{P}(\liminf_{n\to\infty}A_n)\leqslant \liminf_{n\to\infty}\mathbb{P}(A_n)\leqslant \limsup_{n\to\infty}\mathbb{P}(A_n)\leqslant \mathbb{P}(\limsup_{n\to\infty}A_n)$ 12. (Borel-Cantelli lemma) Let $\{B_n : n \in \mathbb{N}\}$ be a sequence of events such that $\sum_{n \in \mathbb{N}} \mathbb{P}(B_n) < \infty$. Prove that $\mathbb{P}(\limsup_{n} B_n) = 0$. Hint: Rewrite $\limsup_n A_n$ and $\liminf_n A_n$ using intersections and unions.