Problem Set 4, Tips

Vikram Damani Analysis I

October 13, 2024

Aufgabe 1. Berechnen Sie $f': \mathcal{D}(f) \to \mathbb{R}$ für

Tipps & Tricks zu 1. Allgemeine Rechenregeln für Ableitungen:

• Linearität:

$$(f+g)'(x) = f'(x) + g'(x)$$
 (1)

$$(c \cdot f)'(x) = c \cdot f'(x), \quad \forall c \in \mathbb{R}$$
 (2)

• Produktregel:

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x) \tag{3}$$

• Kettenregel:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x) \tag{4}$$

• Quotientenregel:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{g^2(x)} \tag{5}$$

Aufgabe 2. Ableitungen gerader/ungerader Funktionen

Tipps & Tricks zu 2. Die Definitionen genügen um diese Aufgabe zu lösen.

Definition [Gerade Funktion]. Eine Funktion heisst gerade, falls f(x) = f(-x).

Definition [Ungerade Funktion]. Eine Funktion heisst ungerade, falls -f(x) = f(-x).

Aufgabe 3. Es sei $P_0 = (x_0, y_0)$ ein von Ursprung verschiedener, aber sonst beliebiger Punkt der Parabel $y = x^2$ und t_0 sei die zugehörige Tangente.

(a) Man finde den Punkt P_1 auf der Parabel, dessen zugehörige Tangente t_1 senkrecht zu t_0 verläuft und bestimme den Schnittpunkt S von t_0 und t_1 in Abhängigheit von x_0 .

(b) Man finde den Punkt P_1 auf der Parabel, dessen zugehörige Tangente t_1 senkrecht zu t_0 verläuft und bestimme den Schnittpunkt S von t_0 und t_1 in Abhängigheit von x_0 .

Tipps & Tricks zu 3. Eine Tangente t(x) an der Funktion f(x) ist wie folgt definiert:

Definition [Tangente t(x)]. Eine Tangnte t(x) an f(x) an der Stelle x_0 ist ene Gerade die den Graphen $\Gamma(f)$ mit Steigung $f'(x_0)$ an der Stelle x_0 berührt.

$$t: x \longmapsto y - f(x_0) = f'(x_0)(x - x_0), \quad x \in \mathcal{D}(f)$$

wobei $y - f(x_0)$ eine Verschiebung in y-Richtung und $x - x_0$ eine Verschiebung in x-Richtung ist.

Definition [Senkrechte Geraden]. Zwei Geraden t_0 und t_1 sind senkrecht zueinander, falls ihre Steigungen m_0 und m_1 folgende Bedingung erfüllen:

$$m_0 \cdot m_1 = -1 \iff f'(x_0) \cdot f'(x_1) = -1 \iff f'(x_0) = -\frac{1}{f'(x_1)}$$

Der Schnittpunkt S zweier Geraden t_0 und t_1 ist gegeben durch die Lösung des Gleichungssystems:

$$t_0(x) = t_1(x)$$
 $\iff f(x_0) + f'(x_0)(x - x_0) = f(x_1) + f'(x_1)(x - x_1)$