An Intro to Bayesian Inference

Ludwig Winkler

Machine Learning Group TU Berlin

March 30, 2020

Outline

Bayesian Machine Learning

Sampling MCMC Stochastic Gradient MCMC Hamiltonian Monte Carlo

Variational Inference

Bayesian Deep Learning

Why Bayesian Machine Learning?

Bayesian ML generalizes Deterministic ML

Why Bayesian Machine Learning?

Bayesian ML generalizes Deterministic ML

- Gaussian Process
- Bayesian Neural Networks
- Variational AutoEncoder

- > Kernel Ridge Regression
- > Neural Networks
- > AutoEncoder

Why Bayesian Machine Learning?

Bayesian ML generalizes Deterministic ML

Gaussian Process
 Kernel Ridge Regression

Bayesian Neural Networks
 Neural Networks

Variational AutoEncoder
 AutoEncoder

Bayesian ML offers

- Uncertainty estimates
- More robustness for little data
- Comprehensive mathematical framework

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Motivation

Kinda ok ...

Motivation

Kinda ok ...

... more interesting

Gaussian Process

Some data ...

Gaussian Process

Some data ...

... and even less data

Linear Regression

$$y = w * x + b$$

Bayesian Linear Regression

$$y = W * x + B$$

Bayesian Linear Regression

$$y = W * x + B$$

Bayesian Linear Regression

$$y = W * x + B$$

 \circ Two random variables A and B with different realizations

9 / 34

- \circ Two random variables A and B with different realizations
- $\, \bullet \,$ Joint probability p(A,B) encodes probability of two specific realizations happening together

$$p(A,B) = p(B,A)$$

9 / 34

Ludwig Winkler Bayesian

- ullet Two random variables A and B with different realizations
- o Joint probability p(A,B) encodes probability of two specific realizations happening together

$$p(A,B) = p(B,A)$$

Joint probability contains no information on sequential order

$$p(A|B)p(B) = p(B|A)p(A)$$

Ludwig Winkler

9 / 34

- Two random variables A and B with different realizations
- o Joint probability p(A,B) encodes probability of two specific realizations happening together

$$p(A,B) = p(B,A)$$

Joint probability contains no information on sequential order

$$p(A|B)p(B) = p(B|A)p(A)$$

... and we arrive at Bayes' Theorem

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Ludwig Winkler Bayesian Inference March 30, 2020 9 / 34

$$\underbrace{p(A|B)}_{\text{Posterior}} = \underbrace{\frac{p(B|A)}{p(A)}\underbrace{p(A)}_{\text{Evidence}}}_{\text{Evidence}}$$

$$\underbrace{p(A|B)}_{\text{Posterior}} = \underbrace{\frac{p(B|A)}{p(A)}\underbrace{p(A)}_{\text{Evidence}}}^{\text{Prior}}$$

An example ...

$$\underbrace{p(A|B)}_{\text{Posterior}} = \underbrace{\frac{p(B|A)}{p(A)}\underbrace{p(A)}_{\text{Evidence}}}^{\text{Likelihood Prior}} \underbrace{p(B)}_{\text{Evidence}}$$

An example ...

$$p(\ \bullet\ |\ \clubsuit\) = \overbrace{\frac{p(\ \clubsuit\ ,\ \bullet\)}{p(\clubsuit)}}^{\text{Joint Prob}}$$

Bayesian Machine Learning

 $oldsymbol{\circ}$ Relationship between model parameter heta and data ${\mathcal D}$ of interest

$$\underbrace{p(\theta|\mathcal{D})}_{\text{Posterior}} = \underbrace{\frac{\text{Likelihood Prior}}{p(\mathcal{D}|\theta)}\underbrace{p(\theta)}_{\text{Evidence}}}_{\text{Evidence}}$$

Bayesian Machine Learning

 $ilde{f p}$ Relationship between model parameter heta and data ${\cal D}$ of interest

$$\underbrace{p(\theta|\mathcal{D})}_{\text{Posterior}} = \underbrace{\frac{p(\mathcal{D}|\theta)}{p(\theta)}\underbrace{p(\theta)}_{\text{Evidence}}^{\text{Prior}}}_{\text{Evidence}}$$

Likelihood encodes structure of machine learning model

$$p(\mathcal{D}|\theta) = p(y|x,\theta)$$

Bayesian Machine Learning

ullet Relationship between model parameter heta and data ${\mathcal D}$ of interest

$$\underbrace{p(\theta|\mathcal{D})}_{\text{Posterior}} = \underbrace{\frac{p(\mathcal{D}|\theta)}{p(\theta)}\underbrace{p(\theta)}_{\text{Evidence}}^{\text{Prior}}}_{\text{Evidence}}$$

Likelihood encodes structure of machine learning model

$$p(\mathcal{D}|\theta) = p(y|x,\theta)$$

Posterior used for probabilistic prediction

$$p(y^*|x^*) = \int p(y^*|x^*, \theta) p(\theta|\mathcal{D}) d\theta$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

11 / 34

Sampling

• Evidence $p(\mathcal{D})$ usually intractable

$$p(\theta|\mathcal{D}) = \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\theta) p(\theta)$$
$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) d\theta$$

12 / 34

Sampling

Evidence $p(\mathcal{D})$ usually intractable

$$p(\theta|\mathcal{D}) = \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\theta) p(\theta)$$
$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) d\theta$$

Sampling leads to asymptotically correct posterior distribution

$$\overbrace{p(\theta|\mathcal{D})}^{\text{Posterior}} \propto \overbrace{p(\mathcal{D}|\theta)}^{\text{Likelihood Prior}} \overbrace{p(\theta)}^{\text{Prior}}$$

Sampling

Evidence $p(\mathcal{D})$ usually intractable

$$p(\theta|\mathcal{D}) = \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\theta) p(\theta)$$
$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) d\theta$$

Sampling leads to asymptotically correct posterior distribution

$$\overbrace{p(\theta|\mathcal{D})}^{\text{Posterior}} \propto \overbrace{p(\mathcal{D}|\theta)}^{\text{Likelihood Prior}} \overbrace{p(\theta)}^{\text{Prior}}$$

- How to sample from these possibly extremely complex distributions?
- Naive sampling is feasible but not very smart

Manhattan Project physicists come to the rescue

14 / 34

- Manhattan Project physicists come to the rescue
- Metroplis-Hastings Algorithm to create sampling chain

- Manhattan Project physicists come to the rescue
- Metroplis-Hastings Algorithm to create sampling chain
 - 1. Sample proposal ("Monte Carlo") around current state ("Markov")

- Manhattan Project physicists come to the rescue
- Metroplis-Hastings Algorithm to create sampling chain
 - 1. Sample proposal ("Monte Carlo") around current state ("Markov")
 - 2. Accept proposal with higher value with proportional probability

14 / 34

- Manhattan Project physicists come to the rescue
- Metroplis-Hastings Algorithm to create sampling chain
 - 1. Sample proposal ("Monte Carlo") around current state ("Markov")
 - 2. Accept proposal with higher value with proportional probability
 - 3. Move to proposal if accepted ("Chain")

- Manhattan Project physicists come to the rescue
- Metroplis-Hastings Algorithm to create sampling chain
 - 1. Sample proposal ("Monte Carlo") around current state ("Markov")
 - 2. Accept proposal with higher value with proportional probability
 - 3. Move to proposal if accepted ("Chain")
- Convergence to stationary distribution through detailed balance

Metropolis-Hastings Algorithm

Stochastic Gradient MCMC - Preliminaries

 $\circ \, \log$ as monotonic function offers numerically advantages

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) \ p(\theta)$$

$$\downarrow \downarrow$$

$$\log p(\theta|\mathcal{D}) \propto \log p(\mathcal{D}|\theta) + \log p(\theta)$$

Ludwig Winkler

Stochastic Gradient MCMC - Preliminaries

 $\circ \, \log$ as monotonic function offers numerically advantages

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) \ p(\theta)$$

$$\downarrow \downarrow$$

$$\log p(\theta|\mathcal{D}) \propto \log p(\mathcal{D}|\theta) + \log p(\theta)$$

• Persistent gradient with $-\log p(x)$

Ludwig Winkler Bayesian Inference March 30, 2020 16 / 34

Stochastic Gradient MCMC - Preliminaries

log as monotonic function offers numerically advantages

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) \ p(\theta)$$

$$\downarrow \downarrow$$

$$\log p(\theta|\mathcal{D}) \propto \log p(\mathcal{D}|\theta) + \log p(\theta)$$

• Persistent gradient with $-\log p(x)$

16 / 34

Ludwig Winkler

Stochastic Gradient MCMC

Exploit knowledge of probabilistic loss surface during sampling

Stochastic Gradient MCMC

Exploit knowledge of probabilistic loss surface during sampling

$$\Delta \theta_t = \frac{\epsilon_t}{2} \left(\underbrace{\nabla_{\theta} \log p(\mathcal{D}|\theta_t) + \nabla_{\theta} \log p(\theta_t)}_{\text{drift}} \right) + \underbrace{\mathcal{N}(0, \epsilon_t)}_{\text{diffusion}}$$

Connection to Stochastic Differential Equation (SDE)

$$dX_t = \underbrace{\mu(X_t, t)}_{\text{drift}} dt + \underbrace{\sigma(X_t, t)}_{\text{diffusion}} dB_t$$

Ludwig Winkler

Stochastic Gradient MCMC

Ludwig Winkler Bayesian Inference March 30, 2020 19 / 34

Simulates physically correct particle trajectory on probability surface

20 / 34

- Simulates physically correct particle trajectory on probability surface
- o Constant energy $\mathcal{H}(\theta,\dot{\theta})$ shifted between potential and kinetic energy

- Simulates physically correct particle trajectory on probability surface
- o Constant energy $\mathcal{H}(\theta,\dot{\theta})$ shifted between potential and kinetic energy
- Sampling of kinetic energy for each trajectory

. . .

20 / 34

- Simulates physically correct particle trajectory on probability surface
- o Constant energy $\mathcal{H}(\theta,\dot{\theta})$ shifted between potential and kinetic energy
- Sampling of kinetic energy for each trajectory

. . .

Math is kinda intricate ...

- Simulates physically correct particle trajectory on probability surface
- o Constant energy $\mathcal{H}(heta,\dot{ heta})$ shifted between potential and kinetic energy
- Sampling of kinetic energy for each trajectory

```
. . .
```

Math is kinda intricate ...

...so let's look at pictures

Find some parametric approximation to true posterior

$$q_{\psi}(\theta) \approx p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

22 / 34

Find some parametric approximation to true posterior

$$q_{\psi}(\theta) \approx p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

Ludwig Winkler

ullet Try to optimize parameters ψ by minimize loss ${\cal L}$

$$\min_{\psi} \quad \mathcal{L}(q_{\psi}(\theta), p(\theta|\mathcal{D}))$$

ullet Try to optimize parameters ψ by minimize loss ${\cal L}$

$$\min_{\psi} \quad \mathcal{L}(q_{\psi}(\theta), p(\theta|\mathcal{D}))$$

Information-theoretic measure of probability distributions

$$\begin{aligned} & \min_{\psi} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ &= \min_{\psi} \quad \mathbb{E}_{q_{\psi}(\theta)}\left[\log\frac{q_{\psi}(\theta)}{p(\theta|\mathcal{D})}\right] \end{aligned}$$

$$\min_{\psi} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right]$$

$$\begin{split} \min_{\psi} \quad & \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ &= & \mathbb{KL}\left[q_{\psi}(\theta)||p(\mathcal{D}|\theta)p(\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \end{split}$$

$$\begin{aligned} & \min_{\psi} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ & = \mathbb{KL}\left[q_{\psi}(\theta)||p(\mathcal{D}|\theta)p(\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log \frac{q_{\psi}(\theta)}{p(\mathcal{D}|\theta)p(\theta)}\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \end{aligned}$$

$$\begin{split} & \underset{\psi}{\min} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ & = \mathbb{KL}\left[q_{\psi}(\theta)||p(\mathcal{D}|\theta)p(\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log \frac{q_{\psi}(\theta)}{p(\mathcal{D}|\theta)p(\theta)}\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log \frac{q_{\psi}(\theta)}{p(\theta)}\right] - \mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \end{split}$$

$$\begin{split} & \underset{\psi}{\min} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ & = \mathbb{KL}\left[q_{\psi}(\theta)||p(\mathcal{D}|\theta)p(\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log\frac{q_{\psi}(\theta)}{p(\mathcal{D}|\theta)p(\theta)}\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log\frac{q_{\psi}(\theta)}{p(\theta)}\right] - \mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \underbrace{-\mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right]}_{\text{model likelihood}} + \underbrace{\mathbb{KL}[q_{\psi}(\theta)||p(\theta)]}_{\text{regularization}} + \underbrace{\mathbb{E}_{q}\left[\log p(\mathcal{D})\right]}_{\text{evidence}} \end{split}$$

$$\begin{split} & \underset{\psi}{\min} \quad \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ & = \mathbb{KL}\left[q_{\psi}(\theta)||p(\mathcal{D}|\theta)p(\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log\frac{q_{\psi}(\theta)}{p(\mathcal{D}|\theta)p(\theta)}\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \mathbb{E}_{q}\left[\log\frac{q_{\psi}(\theta)}{p(\theta)}\right] - \mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right] + \mathbb{E}_{q}\left[\log p(\mathcal{D})\right] \\ & = \underbrace{-\mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right]}_{\text{model likelihood}} + \underbrace{\mathbb{KL}\left[q_{\psi}(\theta)||p(\theta)\right]}_{\text{regularization}} + \underbrace{\mathbb{E}_{q}\left[\log p(\mathcal{D})\right]}_{\text{evidence}} \\ \nabla_{\psi}\mathcal{L} = -\nabla_{\psi}\mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right] + \nabla_{\psi}\mathbb{KL}\left[q_{\psi}(\theta)||p(\theta)\right] \end{split}$$

$$\min_{\psi} \ \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right]$$

$$\begin{aligned} & \min_{\psi} & \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta|\mathcal{D})\right] \\ & \leq & -\mathbb{E}_{q}\left[\log p(\mathcal{D}|\theta)\right] + \mathbb{KL}\left[q_{\psi}(\theta)||p(\theta)\right] \end{aligned}$$

$$\min_{\psi} \mathbb{KL} [q_{\psi}(\theta)||p(\theta|\mathcal{D})]$$

$$\leq -\mathbb{E}_{q} [\log p(\mathcal{D}|\theta)] + \mathbb{KL} [q_{\psi}(\theta)||p(\theta)]$$

$$= -\sum_{n=0}^{N} \mathbb{E}_{q} [\log p(y_{n}|x_{n},\theta)] + \mathbb{KL} [q_{\psi}(\theta)||p(\theta)]$$

$$\min_{\psi} \mathbb{KL} [q_{\psi}(\theta)||p(\theta|\mathcal{D})]$$

$$\leq -\mathbb{E}_{q} [\log p(\mathcal{D}|\theta)] + \mathbb{KL} [q_{\psi}(\theta)||p(\theta)]$$

$$= -\sum_{n=0}^{N} \mathbb{E}_{q} [\log p(y_{n}|x_{n},\theta)] + \mathbb{KL} [q_{\psi}(\theta)||p(\theta)]$$

$$= \sum_{n=0}^{N} \left[-\mathbb{E}_{q} [\log p(y_{n}|x_{n},\theta)] + \frac{1}{N} \mathbb{KL} [q_{\psi}(\theta)||p(\theta)] \right]$$

Automatic regularization trade-off thanks to Bayesian methodology

$$\begin{aligned} & \min_{\psi} & \mathbb{KL} \left[q_{\psi}(\theta) || p(\theta | \mathcal{D}) \right] \\ & \leq & - \mathbb{E}_{q} \left[\log p(\mathcal{D} | \theta) \right] + \mathbb{KL} [q_{\psi}(\theta) || p(\theta) \right] \\ & = & - \sum_{n=0}^{N} \mathbb{E}_{q} \left[\log p(y_{n} | x_{n}, \theta) \right] + \mathbb{KL} [q_{\psi}(\theta) || p(\theta) \right] \\ & = & \sum_{n=0}^{N} \left[- \mathbb{E}_{q} \left[\log p(y_{n} | x_{n}, \theta) \right] + \frac{1}{N} \mathbb{KL} [q_{\psi}(\theta) || p(\theta) \right] \right] \end{aligned}$$

The more data ... the less regularization

- VI assumes parametric distribution e.g. Normal, Gamma, Beta ...
- \circ Reformulate $q_{\psi}(\theta)$ as neural network with noise as input

- VI assumes parametric distribution e.g. Normal, Gamma, Beta ...
- \circ Reformulate $q_{\psi}(heta)$ as neural network with noise as input

- VI assumes parametric distribution e.g. Normal, Gamma, Beta ...
- \circ Reformulate $q_{\psi}(heta)$ as neural network with noise as input

- Yields flexible, implicit distribution
- o Comptetitive with HMC, but as fast as VI

o "Big Data" necessitates VI

- "Big Data" necessitates VI
- Bayesian Compression by variance analysis
- o 98% compression with 1% accuracy loss

- "Big Data" necessitates VI
- Bayesian Compression by variance analysis
- 98% compression with 1% accuracy loss
- Sophisticated Variational Inference: KFAC, VOGN

- "Big Data" necessitates VI
- Bayesian Compression by variance analysis
- 98% compression with 1% accuracy loss
- Sophisticated Variational Inference: KFAC, VOGN
- All the functionality of deep neural networks
- All the advantages of Bayesian Machine Learning
 - ... but BNN's are their own talk

Sources

- Hastings: Monte Carlo Sampling Methods Using Markov Chains and Their Applications
- Welling: Bayesian Learning via Stochastic Gradient Langevin Dynamics
- Neal : MCMC Using Hamiltonian Dynamics
- Jordan & Wainright: Graphical models, exponential families, and variational inference
- Yin & Zhou: Semi-Implicit Variational Inference
- Osawa: Practical Deep Learning with Bayesian Principles
- Khan: Bayesian Inference through Weight Perturbation

Normalizing Flows

Ludwig Winkler

Change of Variable

- Instead of learning distribution, can we transform one?
- Assume some bijective transformation $y = f(x) \Leftrightarrow x = f^{-1}(y)$

$$p(y)dy = p(x)dx$$

$$p(y) = p(x) \left| \frac{dx}{dy} \right|$$

$$p(y) = p(x) \left| \frac{df^{-1}(y)}{dy} \right|$$

• Under bijective, continuously differentiable $f(\cdot)$

$$p(y) = p(x) \left| \frac{df(y)}{dy} \right|^{-1}$$

Normalizing Flow

$$p(y) = p(x) \left| \frac{df(y)}{dy} \right|^{-1}$$

- ullet Modern machine learning: make $f(\cdot)$ a neural network
- Transform $f: X \to Y$ with corresponding adjustement of p(y)
- Fokker-Planck SDE without diffusion function
- More practicable application in reversible ResNets

Differential Equations in a Nutshell

Relates one or more functions to their derivatives

Simplest case and notation

$$dy = f(y, t)dt$$

