- **6.** Yes; Abelian; identity is -2; a^{-1} is -a-4.
- **8.** Yes; Abelian; identity is 0; a^{-1} is $-\frac{a}{a+1}$.

12.

乘法表:

证明要点:

- 1) 如上表所示, $\forall f_a, f_b, f_c \in G, (f_a \circ f_b) \circ f_c = f_a \circ (f_b \circ f_c)$
- 2) $e = f_1$
- 3) 如上表所示, $\forall f_i \in G$,有且仅有一个 f_i^{-1} ,使得 $f_i \circ f_i^{-1} = e$.

18.

$$\forall a \in G, a^2 = e, :: a * a^{-1} = e, :: a = a^{-1}$$

 $\therefore \forall a, b \in G, a * b = a^{-1} * b^{-1} = (b * a)^{-1} = b * a$
 $\therefore G$ is Abelian.

19.
$$\circ$$
 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8
 f_1 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8
 f_2 f_2 f_3 f_4 f_1 f_8 f_7 f_5 f_6
 f_3 f_3 f_4 f_1 f_2 f_6 f_5 f_8 f_7
 f_4 f_4 f_1 f_2 f_3 f_7 f_8 f_6 f_5
 f_5 f_5 f_7 f_6 f_8 f_1 f_3 f_2 f_4
 f_6 f_6 f_8 f_5 f_7 f_3 f_1 f_4 f_2
 f_7 f_7 f_6 f_8 f_5 f_7 f_6 f_2 f_4 f_2 f_1 f_3
 f_8 f_8 f_5 f_7 f_6 f_2 f_4 f_3 f_1

21. Consider the sequence e, a, a^2, a^3, \ldots Since G is finite, not all terms of this sequence can be distinct; that is, for some $i \leq j$, $a^i = a^j$. Then $(a^{-1})^i a^i = (a^{-1})^i a^j$ and $e = a^{j-i}$. Note that $j - i \geq 0$.

24.

- (1) $e^2 = e$, 所以G的单位元 $e \in H$;
- (2) 如果 $a,b \in H$, $(ab)^2 = abab = aabb = ee = e \Rightarrow ab \in H$;
- (3) 如果 $a \in H$, 那么 $a^2 = e = a * a^{-1} \Rightarrow a^{-1} = a : a^{-1} \in H$;
- $(1),(2),(3) \Rightarrow H 是 G$ 的一个子群。

26.

- (1) G的单位元e, ea = ae, $\therefore e \in H_a$;
- (2) 如果 $x, y \in H$,那么 xa = ax,ya = ay,因此 (xy)a = x(ya) = x(ay) = (xa)y = a(xy) $\Rightarrow xy \in H_a$;
- (3) 如果 $x \in H_a$, x 在 G 中的逆元 x^{-1} , 满足 $x^{-1}a = x^{-1}(ax)$ $\bar{x}^1 = \bar{x}^1(x)$ $\bar{x}^2 = a\bar{x}$ $\therefore x^{-1} \in H_a$;
- $(1),(2),(3) \Rightarrow H_a \in G$ 的一个子群。

28.

- (a) 1) H 和 K 是 G 的子群 $: e \in H, e \in K \Rightarrow e \in H \cap K$
 - 2) $\exists a,b \in H \cap K$, $\exists a,b \in H$, $\exists a,b \in K \Rightarrow ab \in H$, $\exists a,b \in K \Rightarrow ab \in H \cap K$
 - 3) 若 $a \in H \cap K$,则 $a \in H$, $a \in K \Rightarrow a^{-1} \in H$, $a^{-1} \in K \Rightarrow a^{-1} \in H \cap K$ 1),2),3) $\Rightarrow H \cap K \in G$ 的一个子群。
- (b) 若 $a \in H$, $a \notin K$ 且 $b \notin H$, $b \in K$,则 $a,b \in H \cup K$,但 $ab \notin H \cup K$, $\therefore H \cup K$ 不一定是G的一个子群。
- **29.** $\{f_1\}$, $\{f_1, f_2, f_3, f_4\}$, $\{f_1, f_3, f_5, f_6\}$, $\{f_1, f_3, f_7, f_8\}$, $\{f_1, f_5\}$, $\{f_1, f_6\}$, $\{f_1, f_3\}$, $\{f_1, f_7\}$, $\{f_1, f_8\}$.

30.

G是一个阿贝尔群∴ $\forall a,b \in G, a*b=b*a$

$$f(ab) = (ab)^{n} = (ab)(ab)(ab)^{n-2} = a(ab)b(ab)^{n-2} = a^{2}b^{2}(ab)^{n-2}$$
$$= a^{2}(b^{2}a)b(ab)^{n-3} = a^{2}(ab^{2})b(ab)^{n-3} = a^{3}b^{3}(ab)^{n-3}$$
$$= \cdots = a^{n}b^{n} = f(a)f(b)$$

:.函数 $f:G \to G$ 是一个同态。

31.
$$|xy| = |x| \cdot |y|$$
. Thus $f(xy) = f(x)f(y)$.

32.

$$\forall a,b \in G, f(a*b) = e = e*e = f(a)*f(b)$$

∴函数 $f:G \rightarrow G$ 是一个同态。

33. Suppose $f: G \to G$ defined by $f(a) = a^2$ is a homomorphism. Then f(ab) = f(a) f(b) or $(ab)^2 = a^2 b^2$. Hence $a^{-1}(abab)b^{-1} = a^{-1}(a^2b^2)b^{-1}$ and ba = ab. Suppose G is Abelian. By Exercise 37, f(ab) = f(a) f(b).

34.

充分性:

设*G*是阿贝尔群, $\forall a,b \in G, a*b=b*a$ $f(ab)=(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}=f(a)f(b)$ 再证单射与满射(略) $\Rightarrow f:G \to G$ 是一个同态必要性:

设 $f: G \to G$ 是一个同态, $\forall a,b \in G, f(ab) = (ab)^{-1} = b^{-1}a^{-1} = f(a)f(b) = a^{-1}b^{-1}$ 即, $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} \Rightarrow ab = (a^{-1}b^{-1})^{-1} = ba$ $\Rightarrow G$ 是阿贝尔群

35. Let $x, y \in G$. $f_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = f_a(x)f_a(y)$. f_a is a homomorphism. Suppose $x \in G$. Then $f_a(a^{-1}xa) = aa^{-1}xaa^{-1} = x$ so f_a is onto. Suppose $f_a(x) = f_a(y)$, then $axa^{-1} = aya^{-1}$. Now $a^{-1}(axa^{-1})a = a^{-1}(aya^{-1})a$ and x = y. Thus f_a is one to one and an isomorphism.

36.

设 f:G->Z₆, f(a^x)=x 若 f(a^j)=f(aⁱ),则[i]=[j], 所以 aⁱ=a^j, 是单射 对任意 $[i] \in Z_6$,总有 $f(a^i)=i$ $f(a^j)*f(a^i)=[i]+[j]=[(i+j) mod 6]$ $f(a^i *a^j)=[(i+j) mod 6]= f(a^j)*f(a^i)$ 所以 G, Z_6 是同构

37. (Outline) Basis step: n = 1 P(1): $(ab)^1 = a^1b^1$ is true. Induction step: LHS of P(k + 1): $(ab)^{k+1} = (ab)^k ab = a^k b^k ab = a^k ab^k b = a^{k+1}b^{k+1}$ RHS of P(k + 1).

38.

对任意 a, b 属于 G, ax=b, ya=b 都有唯一解, b 只在第 a 行出现一次, 且只在第 a 列出现一次。故每个元素在每行每列恰好出现一次。

39. One table is

* has no identity element.

9.5

1.		$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{2})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{2})$
	$(\overline{0},\overline{0})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{2})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{2})$
		$(\overline{0},\overline{1})$					
		$(\overline{0},\overline{2})$					
	$(\overline{1},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{2})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{2})$
	$(\overline{1},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{2})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{2})$	$(\overline{0},\overline{0})$
	$(\overline{1},\overline{2})$	$(\overline{1},\overline{2})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{2})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$

2. 设 $a_1, a_2 \in G$, $b_1, b_2 \in G'$, 因为 G, G' 是阿贝尔群,所以 $a_1*a_2 = a_2*a_1$, $b_1*b_2 = b_2*b_1$,

$$(a_1, b_1) *(a_2, b_2) = (a_{1*}a_2, b_{1*}b_2)$$

 $(a_2,b_2)*(a_1,b_1)=(a_{2*}a_1,b_{2*}b_1)=(a_{1*}a_2,b_{1*}b_2)=(a_1,b_1)*(a_2,b_2)$ 所以 G*G'是一个阿贝尔群。

3. Define $f: G_1 \to G_2$ by $f((g_1, g_2)) = (g_2, g_1)$. By Exercise 4, Section 9.3, f is an isomorphism.

6.

对任意 $(a,b) \in Z*Z$, $a+b \in Z$, 故 f 处处有定义 f((a,b)*(a',b'))=f(a+a',b+b')=a+b+a'+b' f(a,b)*f(a',b')=a+b+a'+b' 故 f((a,b),(a',b'))=f(a,b)+f(a',b') 所以 $Z*Z \rightarrow Z$ 是一个同态 12.

(a) G 的单位元为 1 且 1 ∈ H 任取 a, b ∈ H, ab=±1, ab ∈ H 1⁻¹=1, (-1)⁻¹=-1, 故 H 是 G 的子群 (b)

对 G 中各个元素 1H=H, -1H=H, $iH=\{i,-i\}\neq H$, $-iH=\{i,-i\}\neq H$ 故左陪集为 H 18.

若 a∈H,则 aH=H f₁ H=f₂ H=f₃ H= g₁ H=g₂ H=g₃ H 故所有左陪集为 H 22.

充分性:

对任意 a∈G, a⁻¹Na=N,则 a(a⁻¹Na)=aN, Na=aN, 所以 N 是正规子群必要性:

若 N 是正规子群,对任意 $a \in G$,有 Na=aN, a^{-1} Na= a^{-1} aN=N,所以 N 是 G 的一个正规子群,当且仅当对所有 $a \in G$, a^{-1} Na=N 26.

先证 H 是一个子群,对 G 中单位元 e,对所有 $a \in G$, ea = ae,故 $e \in H$ 任取 $x, y \in H$,对所有 $a \in G$,有 xa = ax,ya = ay,则 axy = xay = xya,故 $xy \in H$ 任取 $x \in H$,对所有 $a \in G$,有 xa = ax, $x^{-1}a = x^{-1}axx^{-1} = x^{-1}xax^{-1} = ax^{-1}$,故 $x^{-1} \in H$ 所以 H 是一个子群

对任意 $m \in G$, 有对任意 $x \in H$, 有 mx = xm, 则 mH = Hm, 故 $H \neq G$ 的一个正规子

27. Suppose $f_a(h_1) = f_a(h_2)$. Then $ah_1 = ah_2$ and $a^{-1}(ah_1) = a^{-1}(ah_2)$. Hence $h_1 = h_2$ and f_a is one to one. Let $x \in aH$. Then x = ah, $h \in H$ and $f_a(h) = x$. Thus f_a is onto and since it is everywhere defined as well, f_a is a one-to-one correspondence between H and aH. Hence |H| = |aH|.

28.

由 9.4 28, 知 $H \cap K$ 是 G 的子群,因为 H, K 是 G 的子群,对任意 $h \in H$, 任意 $a \in G$,有 ah=ha,同理有任意 k 属于 K, ak=ka. 对任意 $m \in H \cap K$,任意 $a \in G$ 都有 am=ma 所以 $H \cap K$ 是 G 的正规子群

29. Suppose f(aH) = f(bH). Then $Ha^{-1} = Hb^{-1}$ and $a^{-1} = hb^{-1}$, $h \in H$. Hence $a = bh^{-1} \in bH$ so $aH \subseteq bH$. Similarly, $bH \subseteq aH$ so aH = bH. This means f is one to one. If Hc is a right coset of H, then $f(c^{-1}H) = Hc$ so f is also onto.

30.

设 G_2 的单位元是 e_2 , $ker(f)=((g_1,e_2)|g_1\in G_1)$

31. Consider $f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(a^{-1})f(b)f(b^{-1}) = f(a)(f(a))^{-1}f(b)(f(b))^{-1}$ (by Theorem 5, Section 9.4) = ee = e. Hence $\{aba^{-1}b^{-1} \mid a, b \text{ in } G_1\} \subseteq \ker(f)$.

32.

设任意 a, b∈G, 因为 G 是阿贝尔群, 所以 a*b=b*a, [a]*[b]=[a*b]=[b*a]=[b]*[a] 所以 G/N 是一个阿贝尔群 **33.** Let $a \notin H$. The left cosets of H are H and aH. The right cosets are H and Ha. $H \cap aH = H \cap Ha = \{\}$ and $H \cup aH = H \cup Ha$. Thus aH = Ha. Since $a \in H \Rightarrow aH = H$, we have $xH = Hx \ \forall x \in G$. H is a normal subgroup of G.

34

由于 H,N 是 G 的子群,容易得出,H \cap N 是 H 的一个子群。 由于 N 是 G 的一个正规子群,则有 a \in G 使得 aN={an|n \in N},Na={na|n 属于 N},有 aN = Na,

因为 H 是 G 的子群,对于 a \in H,也有 aN = Na,由于 H \cap N \in N, 于是对于 a \in H,有 aM = Ma aM={am|m \in H \cap N},Ma={ma|m 属于 H \cap N}

Suppose $f: G \to G'$ is one to one. Let $x \in \ker(f)$. Then f(x) = e' = f(e). Thus x = e and $\ker(f) = \{e\}$. Conversely, suppose $\ker(f) = \{e\}$. If $f(g_1) = f(g_2)$, then $f(g_1g_2^{-1}) = f(g_1)f(g_2^{-1}) = f(g_1)(f(g_2))^{-1} = f(g_1)(f(g_1))^{-1} = e$. Hence $g_1g_2^{-1} \in \ker(f)$. Thus $g_1g_2^{-1} = e$ and $g_1 = g_2$. Hence f is one to one.

37

Since H is a subgroup of G, the identity element e belongs to H. For any $g \in G$, $g = g * e \in gH$, so every element of G belongs to some left coset of H. If aH and bH are distinct left cosets of H, this means that $aH \cap bH = \{\}$. Hence the set of distinct left cosets of H forms a partition of G.

9.6

This is a ring from Exercise 1. An example of zero divisors are the matrices

$$\begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$
 and $\begin{bmatrix} -2 & -2 \\ 1 & 1 \end{bmatrix}$.

8 Z10 中有一对零因子 2 和 5

26

一个环 R,如果 R 中存在元素 a,b 使得 a!=0,b!=0 且 a*b=0,则 R 有零因子证明一个域不能有任何零因子假设一个域 R 中存在一对零因子 a,b(a!=0,b!=0),则 a*b=0 根据域的性质有(a+c)*b = (a*b)+(c*b) = c*b 由于群的右消去性质,则有 a+c

根据域的性质有(a+c)*b = (a*b)+(c*b) = c*b,由于群的右消去性质,则有 a+c = c,则 a=0,与假设矛盾。

所以一个域不存在任何零因子

27

The set of units must contain all nonzero elements of R.

28

若 n 不是一个素数,则除了它本身和 1 之外,至少还存在一个元素 p(1 使得 <math>GCD(p, n) = p! = 1,则 p 不存在乘法逆元, 所以如果 n 不是一个素数,则 Zn 不是一个域。

29

The statement \mathbb{Z}_n is a field implies n is prime is proven in Exercise 28. The converse is shown by using Theorem 4(a), Section 1.4. Any $a \in \mathbb{Z}_n$ is relatively prime to n so we have 1 = sa + tn for some integers s, t and \overline{s} is the multiplicative inverse of a.