

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA E ESTATÍSTICA

Alunos

Gleyce Alves Pereira da Silva Ivanildo Batista da Silva Júnior Jaine de Moura Carvalho Taciana Araújo da Silva

Professor

Dr. Lucian Bogdan Bejan

Resolução da primeira lista de Estatística Aplicada

Sumário

1	Que	stão 1																													1
	1.1	Resolu	ıção da questão	1																											2
		1.1.1	letra a)																												2
		1.1.2	letra b)																												2
		1.1.3	letra c)																												2
		1.1.4	letra d)																												3
		1.1.5	letra e)																												4
		1.1.6	letra f)																												4
		1.1.7	letra g)																												5
2	One	stão 2																													6
_	2.1																														6
	2.1	2.1.1	letra a)																												6
		2.1.1	letra b)																												ϵ
		2.1.2	icua b)		•	•	•	•	•	•		•	•	•	• •	•	•	•	•	•	•	•	•	•	•		•	•	•	•	(
3	Que	stão 3																													7
	3.1	Resolu	ıção da questão	3																											8
		3.1.1	letra a)																												8
		3.1.2	letra b)																												8
		3.1.3	letra c)																												9
		3.1.4	letra d)																												10
4	One	stão 4																													11
•	4.1																														12
		4.1.1	letra a)																												12
		4.1.2	letra b)																												13
		4.1.3	letra c)																												13
		4.1.4	letra d)																												13
		4.1.5	letra e)																												14
		4.1.6	letra f)																												14
		4.1.0	icuai)	• •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
5	Que	stão 5																													15
	5.1		ição da questão																												15
		5.1.1	letra a)																												15
		5.1.2	letra b)																												16
		5.1.3	letra c)																												16
		5.1.4	letra d)						•							•															16
6	One	stão 6																													18
J	6.1																														18
	0.1	6.1.1	letra a)																												18
		6.1.2	letra b)																												18
_				. •	-		•	•	-	-	•	•	•	- '	•	•	-	- '	. •	٠	- •	•	•	,	-	•	•	•	-	-	
7	()ue	stão 7			_																			_	_			_	_	_	19

	7.1	Resolução da questão 7
		7.1.1 letra a)
		7.1.2 letra b)
		7.1.3 letra c)
8	Que	estão 8
	8.1	Resolução da questão 8
9	Que	estão 9
	9.1	Resolução da questão 9
10	Que	estão 10
	10.1	Resolução da questão 10
		10.1.1 letra a)
		10.1.2 letra b)
		10.1.3 letra c)
		10.1.4 letra d)
		10.1.5 letra e)

(Cap. 2: ex. 9) A MB Indústria e Comércio, desejando melhorar o nível de seus funcionários em cargos de chefia, montou um curso experimental e indicou 25 funcionários para a primeira turma. Os dados referentes à seção a que pertencem, notas e graus obtidos no curso estão na tabela a seguir. Como havia dúvidas quanto à adoção de um único critério de avaliação, cada instrutor adotou seu próprio sistema de aferição. Usando dados daquela tabela, responda às questões:

- a) Após observar atentamente cada variável, e com o intuito de resumi-las, como você identificaria (qualitativa ordinal ou nominal e quantitativa discreta ou contínua) cada uma das 9 variáveis listadas?
- b) Compare e indique as diferenças existentes entre as distribuições das variáveis Direito, Política e Estatística.
- c) Construa o histograma para as notas da variável Redação.
- d) Construa a distribuição de freqüências da variável Metodologia e faça um gráfico para indicar essa distribuição.
- e) Sorteado ao acaso um dos 25 funcionários, qual a probabilidade de que ele tenha obtido grau A em Metodologia?
- f) Se, em vez de um, sorteássemos dois, a probabilidade de que ambos tivessem tido A em Metodologia é maior ou menor do que a resposta dada em (e)?
- g) Como é o aproveitamento dos funcionários na disciplina Estatística, segundo a seção a que eles pertencem?

Func.	Seção (*)	Administr.	Direito	Redação	Estatíst.	Inglês	Metodologia	Política	Economic
1	Р	8,0	9,0	8,6	9,0	В	Α	9,0	8,5
2	P	8,0	9,0	7,0	9,0	В	C	6,5	80
2	P	8,0	9,0	8,0	8,0	D	В	9,0	8,5
4	P	6,0	9,0	8,6	8,0	D	C B C	6,0	8,5
5	P	8,0	9,0	8,0	9,0	Α		6,5	9,0
6	P	8,0	9,0	8,5	10,0	В	AACC	6,5	9,5
7	P	8,0	9,0	8,2	8,0	D	C	9,0	7,0
8	T	10,0	9,0	7,5	8,0	В	C	6,0	8,5
9	T	8,0	9,0	9,4	9,0	В	B	10,0	8,0
10	T	10,0	9,0	7,9	8,0	В	C	9,0	7,5
11	T	8,0	9,0	8,6	10,0	C	В	10,0	8,5
12	T	8,0	9,0	8,3	7,0	D	B B C B B A C C C	6,5	8,0
13	T	6,0	9,0	7,0	7,0	В	C	6,0	8,5
14	T	10,0	9,0	8,6	9,0	Α	В	10,0	7,5
15	V	8,0	9,0	8,6	9,0	C	В	10,0	7,0
16	V	8,0	9,0	9,5	7,0	A	Α	9,0	7,5
17	V	8,0	9,0	6,3	8,0	D	C	10,0	7,5
18	V	6,0	9,0	7,6	9,0	C	C	6,0	8,5
19	V	6,0	9,0	6,8	4,0	D	C	6,0	9,5
20	V	6,0	9,0	7,5	7,0	C	B B	6,0	8,5
21	V	8,0	9,0	7,7	7,0	D	В	6,5	8,0
22	V	6,0	9,0	8,7	8,0	C	A C	6,0	9,0
23	V	8,0	9,0	7,3	10,0	C	C	9,0	7,0
24	V	8,0	9,0	8,5	9,0	Α	Α	6,5	9,0
25	V	8,0	9,0	7,0	9,0	В	Α	9,0	8,5

(*) (P = departamento pessoal, T = seção técnica e V = seção de vendas)

1.1 Resolução da questão 1

Questão resolvida em Python.

1.1.1 letra a)

- Variáveis qualitativas ordinais: Inglês e Metodologia;
- Variável qualitativa nominal: Seção;
- Variáveis quantitativas contínuas: Administração, Direito, Redação, Estatística, Política e Economia.

1.1.2 letra b)

```
fig,ax = plt.subplots(1,3, figsize=(20,5))
sns.histplot(x='Estatist.', data=df5, ax=ax[0])
sns.histplot(x='Direito', data=df5, ax=ax[1])
sns.histplot(x='Politica', data=df5, ax=ax[2]);
```

Nos histogramas gerados, respectivamente, de Estatística, Direito e Política, vemos que para a matéria de Estatística as notas estão mais concentradas entre em valores altos (entre 8 e 10), Direito não há variação na nota; e em Política, as notas estão mais distribuídas em notas medianas e notas altas.

1.1.3 letra c)

```
plt.figure(figsize=(20,5))
sns.histplot(x='Redação', data=df5)
plt.xlabel('Redação', size=15)
plt.ylabel('')
plt.title('Histograma das notas de Redação',size=15);
```

continuação letra c): histograma da nota de redação.

1.1.4 letra d)

```
[42] #tabela de frequência
    freq = pd.DataFrame(df5['Metodologia'].value_counts(sort=False))
    #frequência acumulada
    freq['Met_acumulada'] = freq['Metodologia'].cumsum()
    #frequência relativa
    freq['Met_relativa'] = freq['Metodologia']/freq['Metodologia'].sum()
    #frequência relativa acumulada
    freq['Met_rel_acumulada'] = freq['Met_relativa'].cumsum()
    freq
```

Tabela de frequência gerado:

	Metodologia	Met_acumulada	Met_relativa	Met_rel_acumulada
A	7	7	0.28	0.28
С	10	17	0.40	0.68
В	8	25	0.32	1.00

```
plt.figure(figsize=(20,5))
sns.countplot(x='Metodologia', data=df5)
plt.xlabel('Metodologia', size=15)
plt.ylabel("");
```

Gráfico da distribuição:

1.1.5 letra e)

Calculando a probabilidade de que um dos 25 funcinários tenha obtido grau A em Metodologia é dado por $\frac{7}{25} = 0.28$, que calculei abaixo, em *Python*.

```
[48] print('A probabilidade de um dos 25 funcinários tenha obtido grau A em Metodologia é ', freq.T['A'][0]/freq.T['B'][1])

A probabilidade de um dos 25 funcinários tenha obtido grau A em Metodologia é 0.28
```

1.1.6 letra f)

Essa resposta depende se o sorteio é com ou sem reposição. Vamos calcular as duas formas: **com reposição**: Vamos sortear o funcionário e em seguido recolocá-lo novamente entre os funcionários para realizar um novo sorteio. Então na primeira eu terei $\frac{7}{25}$ e na segunda $\frac{7}{25}$, logo a probabilidade será $\frac{7}{25} * \frac{7}{25}$.

```
[50] print('A probabilidade de dois dos 25 funcinários tenha obtido grau A em Metodologia é ', round((freq.T['A'][0]/freq.T['B'][1])*(freq.T['A'][0]/freq.T['B'][1]),4))

A probabilidade de dois dos 25 funcinários tenha obtido grau A em Metodologia é 0.0784
```

sem reposição: Vamos sortear o funcionário, mas ele não será recolocado novamente entre os funcionários para realizar o novo sorteio. Então na primeira eu terei $\frac{7}{25}$ e na segunda $\frac{6}{24}$, logo a probabilidade será $\frac{7}{25} * \frac{6}{24}$. Continuação letra f)

A probabilidade de dois dos 25 funcinários tenha obtido grau A em Metodologia é 0.07

1.1.7 letra g)

```
fig,ax = plt.subplots(1,3, figsize=(20,5))
ax[0].title.set_text('Histograma Estatísticas da Seção Pessoal')
ax[1].title.set_text('Histograma Estatísticas da Seção Técnica')
ax[2].title.set_text('Histograma Estatísticas da Seção Vendas')
sns.histplot(df5[df5['Seção (*)']=='P']['Estatíst.'], ax=ax[0], color='red')
sns.histplot(df5[df5['Seção (*)']=='T']['Estatíst.'], ax=ax[1])
sns.histplot(df5[df5['Seção (*)']=='V']['Estatíst.'], ax=ax[2], color='green');
```

Conforme gráficos gerados abaixo, vê-se que a seção de **Pessoal** possui um desempenho melhor em comparação as demais seções. A notas dessa seção estão mais concentradas em valores acima de 8, diferentes das outras seções.

(Cap. 2: ex. 11) Dispomos de uma relação de 200 aluguéis de imóveis urbanos e uma relação de 100 aluguéis rurais.

- a) Construa os histogramas das duas distribuições.
- b) Com base nos histogramas, discuta e compare as duas distribuições.

Classes de aluguéis (codificados)	Zona urbana	Zona rural
2⊢ 3	10	30
3 ⊢ 5	40	50
5 ← 7	80	15
7 10	50	5
10 ← 15	20	0
Total	200	100

2.1 Resolução da questão 2

Questão resolvida em Python.

2.1.1 letra a)

2.1.2 letra b)

Pelos histogramas vemos que os valores de aluguéis em zonas urbanas são maiores que os aluguéis de zonas rurais. O número de aluguéis na classe 5 - 7 é bem maior em zonas urbanas do que nas rurais.

Um artigo retirado da revista Technometrics (Vol. 19, 1977, p. 425) apresenta os seguintes dados sobre a taxa de octanagem de várias misturas de gasolina:

88,5	87,7	83,4	86,7	87,5	91,5	88,6	100,3	96,5	93,3	94,7
91,1	91,0	94,2	87,8	89,9	88,3	87,6	84,3	86,7	84,3	86,7
88,2	90,8	88,3	98,8	94,2	92,7	93,2	91,0	90,1	93,4	88,5
90,1	89,2	88,3	85,3	87,9	88,6	90,9	89,0	96,1	93,3	91,8
92,3	90,4	90,1	93,0	88,7	89,9	89,8	89,6	87,4	88,4	88,9
91,2	89,3	94,4	92,7	91,8	91,6	90,4	91,1	92,6	89,8	90,6
91,1	90,4	89,3	89,7	90,3	91,6	90,5	93,7	92,7	92,2	92,2
91,2	91,0	92,2	90,0	90,7						

- a) Construa o diagrama de folhas-e-ramos para esses dados
- b) Construa a distribuição de frequência e o histograma. Use 8 intervalos de classe.
- c) Construa a distribuição de frequência e o histograma, agora com 16 intervalos de classe.
- d) Compare a forma dos dois histogramas em b e c. Ambos os histogramas mostram informações similares?

3.1 Resolução da questão 3

Questão resolvida no Excel.

3.1.1 letra a)

Diagrama de Ramos-e-folha gerado em *Excel*:

```
83 0,4
   0,3 0,3
85
   0,3
86
   0,7 0,7 0,7
    0,4 0,5 0,6 0,7 0,8 0,9
   0,2 0,3 0,3 0,3 0,4 0,5 0,5 0,6 0,6 0,7 0,9
    0 0,2 0,3 0,3 0,6 0,7 0,8 0,8 0,9 0,9
    0 0,1 0,1 0,1 0,3 0,4 0,4 0,4 0,5 0,6 0,7 0,8 0,9
            0 0,1 0,1 0,1 0,2 0,2 0,5 0,6 0,6 0,8 0,8
91
    0,2 0,2 0,2 0,3 0,6 0,7 0,7 0,7
    0 0,2 0,3 0,3 0,4 0,7
   0,2 0,2 0,4 0,7
94
95
   0,1 0,5
96
97
98 0,8
99
100 0,3
```

3.1.2 letra b)

Tabela de frequência da variável Octanagem com 8 classes (feito em Excel):

83,4 + 85,7 85,7 + 88 88 + 90,3 90,3 + 92,6 92,6 + 94,9 94,9 + 97,2 97,2 + 99,5 99,5 + 101,8	Frequência Relativa
83,4 ⊦ 85,7	4
85,7 ⊦ 88	9
88 ⊦ 90,3	25
90,3 ⊦ 92,6	26
92,6 ⊦ 94,9	14
94,9 ⊦ 97,2	2
97,2 ⊦ 99,5	1
99,5 ⊦ 101,8	1
Total	82

Histograma da variável Octanagem com 8 classes (feito em Excel):

3.1.3 letra c)

Tabela de frequência da variável Octanagem com 16 classes (feito em *Excel*):

Intervalo de taxa	Frequência Relativa
83,4 ⊦ 84,29	1
84,29 ⊦ 85,18	2
85,18 ⊦ 86,07	1
86,07 ⊦ 86,96	3
86,96 ⊦ 87,85	5
87,85 ⊦ 88,74	11
88,74 ⊦ 89,63	6
89,63 ⊦ 90,52	14
90,52 ⊦ 91,41	12
91,41 + 92,3	9
92,3 + 93,19	5
93,19 + 94,08	5
94,08 ⊦ 94,97	4
95,86 ⊦ 96,75	2
98,53 ⊦ 99,42	1
99,42 ⊦ 100,31	1
Total	82

Histograma da variável Octanagem com 8 classes (feito em Excel):

Histograma da variável Taxa de octanagem

3.1.4 letra d)

Quando construído o histograma com 8 classes, observamos uma maior concentração de dados centralizados e quando analisamos o histograma com 16 classes, nota-se que com o aumento do número de classes temos um histograma mais irregular.

O seguinte conjunto de dados representa as "vidas" de 40 baterias de carro da mesma marca e mesmas características com aproximação até décimos do ano. As baterias tinham garantia para 3 anos.

2,2	4,1	3,5	4,5	3,2	3,7	3,0	2,6	3,4	1,6	3,1
3,3	3,8	3,1	4,7	3,7	2,5	4,3	3,4	3,6	2,9	3,3
3,9	3,1	3,3	3,1	3,7	4,4	3,2	4,1	1,9	3,4	4,7
3,8	3,2	2,6	3,9	3,0	4,2	3,5				

- (a) Construa a distribuição de frequência e o histograma;
- (b) Faça o gráfico da distribuição de frequências relativas acumuladas.
- (c) Calcule a média aritmética dos dados originais;
- (d) Usando a distribuição de frequência conforme obtido em a calcule a média novamente. Para tal, considere os pontos médios de cada classe (média entre os dois limites de cada classe) para serem os valores da variável no cálculo da média.
- (e) Obtenha a variância para os dados originais conforme feito para a média em c.
- (f) Obtenha a variância a partir da distribuição de frequência conforme feito para a média no item d.

Obs.: use 7 intervalos de classe; a amplitude da classe igual a 0,5; o início do intervalo mais baixo em 1,5.

4.1 Resolução da questão 4

Questão resolvida em R.

4.1.1 letra a)

```
d \leftarrow fdt(x, start = 1.5, end = 5, h = 0.5)
print(d ,format = TRUE, col = 1:4 , pattern = "%.2f")
   Class limits f
                      rf rf(%)
    [1.50, 2.00)
                 2 0.05
                           5.0
    [2.00, 2.50)
                  1 0.03
                           2.5
    [2.50, 3.00)
                  4 0.10
                          10.0
    [3.00, 3.50) 15 0.38
    [3.50, 4.00) 10 0.25
    [4.00, 4.50)
                  5 0.12
                          12.5
    [4.50, 5.00)
                 3 0.07
                           7.5
```

#plotando o histograma
plot(d)

4.1.2 letra b)

4.1.3 letra c)

Média dos dados originais.

4.1.4 letra d)

Média da distribuição de frequência.

4.1.5 letra e)

Variância das dados originais.

4.1.6 letra f)

Variância da distribuição de frequência.

A média de aprovação na disciplina de Estatística é 6 ou mais. Durante um período letivo foram realizadas quatro provas, sendo que a primeira prova teve peso dois, a segunda e a terceira o dobro do peso da primeira e a última igual ao peso da primeira. Os resultados, incluindo os de uma prova de substituição optativa, foram os seguintes:

Estudantes	1 a	2a	3a	4a	Optativa
1	2,5	4,5	5,0	6,0	7,0
2	2,0	8,5	7,0	3,0	5,0
3	8,5	10,0	9,0	8,5	nc
4	3,5	5,5	8,5	7,5	6,5
5	3,0	5,0	6,0	4,5	5,0
6	6,0	3,0	4,0	5,0	2,0
7	8,0	1,5	2,0	9,0	5,0
8	1,5	2,0	1,0	2,5	nc
9	7,5	8,0	8,5	10,0	nc
10	5,5	4,5	5,0	4,5	2,5

Sabendo-se que a nota da prova optativa substitui a menor nota das provas precedentes, determine:

- a) Média de cada estudante;
- b) Para cada prova: média, moda, mediana, variância, desvio-padrão, erro-padrão da média e CV;
- c) Para o período: média, variância, desvio-padrão, erro-padrão da média, CV;
- d) O box-plot para cada prova e comente as diferenças ou as semelhanças.

5.1 Resolução da questão 5

Questão resolvida em Python e Excel.

5.1.1 letra a)

Estudante	1	2	3	4	5	6	7	8	9	10
Média	5.33	6.50	9.17	7.00	5.25	3.83	5.17	1.67	8.42	4.50

5.1.2 letra b)

	1°	2°	3°	4°
Média	6.05	5.50	5.60	5.85
Moda	5.00	2; 4.5; 5	5; 8.5	2.5
Mediana	6.25	5.00	5.5	5.5
Variância	4.02	6.94	7.54	7.78
Desvio-padrão	2.01	2.64	2.75	2.79
Erro padrão da média	0.63	0.83	0.87	0.88
CV(%)	33.16%	47.91%	49.05%	47.68%

5.1.3 letra c)

Para o período:

Média (\overline{X})	5.6833
Variância (S^2)	6.2098
Desvio padrão (s)	2.4919
Erro padrão da média $s(\overline{X})$	0.2275
CV (%)	43.85%

5.1.4 letra d)

```
data=dados.Primeira, dados.Segunda, dados.Terceira, dados.Quarta
fig=plt.figure(figsize=(9,6))
ax=fig.add_subplot(111)
plt.boxplot(data)
ax.set_xticklabels(['1°','2°', '3°', '4°'])
plt.show()
```


Gráficos boxplot (diagrama de caixa) demonstram a concentração da distribuição dos dados observados. O conjunto de dados utilizados são as 4 maiores notas de cada um dos 10 estudantes (a prova optativa, caso seja realizada, substituirá a menor nota de uma das 4 primeiras provas). A linha laranja denota a mediana, já a linha vertical denota os valores mínimo e máximo da nossa amostra (valor máximo e mínimo não significa, necessariamente, que seja o maior e menor valor da sua amostra, apenas os valores dentro de um intervalo de confiança). Observando os gráficos plotados vemos que a 1° prova possui o valor mínimo muito próximo do 1° quartil e possui um outlier (o aluno 8 não realizou a prova optativa e tirou nota 1,5 na 1° prova). A 2° e 4° prova possuem valor máximo parecidos, e a 3° prova possui o menor valor mínimo.

(Cap. 3: ex. 23) Estamos interessados em estudar a idade dos 12.325 funcionários da Cia. Distribuidora de Leite Teco, e isso será feito por meio de uma amostra. Para determinar que tamanho deverá ter essa amostra, foi colhida uma amostra-piloto. As idades observadas foram: 42, 35, 27, 21, 55, 18, 27, 30, 21, 24.

- (a) Determine as medidas descritivas dos dados que você conhece.
- (b) Qual dessas medidas você acredita que será a mais importante para julgar o tamanho final da amostra? Por quê?

6.1 Resolução da questão 6

Questão resolvida em Python.

6.1.1 letra a)

Script e resultados gerados em Python:

```
print('Medidas descritivas obtidas na amostra-piloto')
print(''*254)
print('Média :',df4['dados'].mean())
print('Mediana :',df4['dados'].median())
print('Moda :',df4['dados'].mode()[0])
print('Variância :',round(df4['dados'].var(),3))
print('Desvio padrão :',round(df4['dados'].std(),3))

Medidas descritivas obtidas na amostra-piloto

Média : 30.0
Mediana : 27.0
Moda : 21
Variância : 128.222
Desvio padrão : 11.324
```

6.1.2 letra b)

Das medidas acima, a mais importante para a determinação do tamanho da amostra final é a variância, pois fornece informação a respeito da variabilidade da variável Idade.

(Cap. 3: ex. 28) A idade média dos candidatos a um determinado curso de aperfeiçoamento sempre foi baixa, da ordem de 22 anos. Como esse curso foi planejado para atender a todas as idades, decidiu-se fazer uma campanha de divulgação. Para se verificar se a campanha foi ou não eficiente, fez-se um levantamento da idade dos candidatos à última promoção, e os resultados estão na tabela a seguir.

Idade	Freqüência	Porcentagem
18 - 20	18	36
20 - 22	12	24
221-26	10	20
26 1 30	8	16
30 1 36	2	4
Total	50	100

- (a) Baseando-se nesses resultados, você diria que a campanha produziu algum efeito (isto é, aumentou a idade média)?
- (b) Um outro pesquisador decidiu usar a seguinte regra: se a diferença $\overline{x}-22$ fosse maior que o valor $2dp(X)/\sqrt{n}$, então a campanha teria surtido efeito. Qual a conclusão dele, baseada nos dados?
- (c) Faça o histograma da distribuição.

7.1 Resolução da questão 7

Questão resolvida em Python

7.1.1 letra a)

Com base nos cálculos realizados abaixo, vê-se que a diferença da média antes e após a campanha é muito pequena, podendo-se concluir que a campanham não surtiu efeito.

Diferença entre a média após campanha e média anterior 0.48

7.1.2 letra b)

Calculando o desvio padrão em Python:

```
dp = ((df7['Freq']*((df7['Média']-media)**2)).sum()/50)**0.5
dp
3.8274795884498194
```

Comparando o resultado da diferença da média com o resultado de $\frac{2dp(X)}{\sqrt{n}}$

```
if (media-22) > 2*dp/np.sqrt(50):
   print('A campanha surtiu efeito')
else:
   print('A campanha não surtiu efeito')

A campanha não surtiu efeito
```

Conforme imagem acima a campanha não surtiu efeito.

7.1.3 letra c)

(Cap. 3: ex. 29) Para se estudar o desempenho de duas corretoras de ações, selecionou-se de cada uma delas amostras aleatórias das ações negociadas. Para cada ação selecionada, computou-se a porcentagem de lucro apresentada durante um período fixado de tempo. Os dados estão a seguir.

Co	Corretora A		
45	60	54	
62	55	70	
38	48	64	
55	56	55	
54	59	48	
65	55	60	

Corretora B		
57	55	58
50	52	59
59	55	56
61	52	53
57	57	50
55	58	54
59	51	56

Que tipo de informação revelam esses dados? (**Sugestão: use a análise proposta nas Seções 3.3 e 3.4.**)

8.1 Resolução da questão 8

Resumo de cinco número de cada uma dos dados de corretoras:

```
print('O resumo de cinco números dos dados da corretora A')
print("'*254)
print('Minimo :', df9.min()[0])
print('Quantil 0.25 :',df9[0].quantile(0.25))
print('Quantil 0.5 (Mediana) :',df9[0].quantile(0.5))
print('Quantil 0.75 :',df9[0].quantile(0.75))
print('Máximo :', df9.max()[0])
print(""*254)
print('O resumo de cinco números dos dados da corretora B')
print("1*254)
print('Minimo :', df10.min()[0])
print('Quantil 0.25 :', df10[0].quantile(0.25))
print('Quantil 0.5 (Mediana) :',df10[0].quantile(0.5))
print('Quantil 0.75 :',df10[0].quantile(0.75))
print('Máximo :', df10.max()[0])
O resumo de cinco números dos dados da corretora A
Mínimo : 38.0
Quantil 0.25 : 54.0
Quantil 0.5 (Mediana) : 55.0
Quantil 0.75 : 60.0
Máximo : 70.0
O resumo de cinco números dos dados da corretora B
Mínimo : 50
Quantil 0.25 : 53.0
Quantil 0.5 (Mediana) : 56.0
Quantil 0.75 : 58.0
Máximo : 61
```

Boxplots dos dados de cada corretora:

```
fig, ax = plt.subplots(1,2, figsize=(15,5))
ax[0].title.set_text('Boxplot Corretora A')
ax[1].title.set_text('Boxplot Corretora B')
sns.boxplot(x=0, data = df9, ax=ax[0])
sns.boxplot(x=0, data = df10, ax=ax[1]);
```


As medidas e a figura acima indicam que, a despeito do fato de o máximo lucro observado ser proveniente da corretora A, é a corretora B que apresenta menor variabilidade nos lucros proporcionados. As medianas das duas empresas estão bastante próximas. Estes elementos permitem acreditar que é mais vantajoso ter o dinheiro investido pela corretora B.

(Cap. 3: ex. 32) Para decidir se o desempenho das duas corretoras do exercício 29 são semelhantes ou não, adotou-se o seguinte teste: sejam

$$t = \frac{\bar{x}_A - \bar{x}_B}{S_*^2 \sqrt{1/n_A + 1/n_B}}, S_*^2 = \frac{(n_A - 1) \operatorname{var}(X/A) + (n_B - 1) \operatorname{var}(X/B)}{n_A + n_B - 2}.$$

Caso |t| < 2, os desempenhos são semelhantes, caso contrário, são diferentes. Qual seria a sua conclusão? Aqui, n_A é o número de ações selecionadas da corretora A e nomenclatura análoga para n_B .

9.1 Resolução da questão 9

Script Python para resolução da questão:

Calculando S^2_*

```
[101] S = ((len(df9)-1)*df9.var() + (len(df10)-1)*(df10.var()))/(len(df10) + len(df9) - 2)
S[0]
32.50686400686401
```

Calculando t.

```
[106] t = (df9.mean() - df10.mean())/(S[0]*(np.sqrt(1/len(df9) + 1/len(df10))))
t[0]
```

0.028123521553959883

Conforme enunciado: "Caso |t|< 2, os desempenhos são semelhantes, caso contrário, são diferentes"

```
[112] if abs(t[0]) < 2:
    print('Os desempenhos das corretoras são semelhantes')
    else:
    print('Os desempenhos das corretoras não são semelhantes')</pre>
```

Os desempenhos das corretoras são semelhantes

(Cap. 3: ex. 38) No Problema 9, do Capítulo 2, temos os resultados de 25 funcionários em vários exames a que se submeteram. Sabe-se agora que os critérios adotados em cada exame não são comparáveis, por isso decidiu-se usar o desempenho relativo em cada exame. Essa medida será obtida do seguinte modo:

- (I) Para cada exame serão calculados a média -x e o desvio padrão dp(X).
- (II) A nota X de cada aluno será padronizada do seguinte modo:

$$Z = \frac{X - \overline{x}}{dp(X)}$$

- (a) Interprete o significado de Z.
- (b) Calcule as notas padronizadas dos funcionários para o exame de Estatística.
- (c) Com os resultados obtidos em (b), calcule \overline{z} e dp(Z).
- (d) Se alguma das notas padronizadas estiver acima de 2dp(Z) ou abaixo de -2dp(Z), esse funcionário deve ser considerado um caso atípico. Existe algum nessa situação?
- (e) O funcionário 1 obteve 9,0 em Direito, em Estatística e em Política. Em que disciplina o seu desempenho relativo foi melhor?

10.1 Resolução da questão 10

10.1.1 letra a)

Esse valor Z é a nota padronizada, onde o valor 0 indica que o indivíduo em questão obteve a nota média. A nota Z também fornece idéia sobre o desempenho de cada elemento com relação a todo o grupo.

10.1.2 letra b)

Padronizando as notas:

```
df5['Estat_z'] = (df5['Estatíst.']-df5['Estatíst.'].mean())/df5['Estatíst.'].std()
df5['Direito_z'] = (df5['Direito']-df5['Direito'].mean())/df5['Direito'].std()
df5['Redação_z'] = (df5['Redação']-df5['Redação'].mean())/df5['Redação'].std()
df5['Política_z'] = (df5['Política']-df5['Política'].mean())/df5['Política'].std()
```

Notas de Estatística padronizadas:

```
df5['Estat_z']
    0.584615
     0.584615
    -0.184615
    -0.184615
     0.584615
     1.353846
    -0.184615
    -0.184615
     0.584615
9
    -0.184615
10
    1.353846
11
    -0.953846
12
    -0.953846
13
     0.584615
    0.584615
15
    -0.953846
16 -0.184615
17
     0.584615
    -3.261538
18
    -0.953846
19
20 -0.953846
    -0.184615
22 1.353846
     0.584615
23
     0.584615
```

10.1.3 letra c)

Como as notas foram padronizadas pela subtração da média e divisão pelo desvio-padrão, tem-se (Problema 21) que \overline{z} = 0 e dp(Z) = 1.

10.1.4 letra d)

O valor do desvio padrão é igual a 1, assim 2dp(Z) = 2 e -2dp(Z) = -2. Para que que uma observação seja considerada atípica, ela deve estar fora desse intervalo e nesse caso a observação de valor Z = -3,26; portanto, é uma observação atípica ou um *outlier*.

10.1.5 letra e)

Para avaliar o seu desempenho relativo, é necessário comparar as notas padronizadas nas três disciplinas:

- 1) Em Direito, todos obtiveram 9.0, logo a média padronizada tem valor 0.
- 2) Em Política, a média das notas foi 7.76 e o desvio padrão, 1,67. Com isso, a nota padronizada do funcionário 1 é 0,74.
- 3) Em Estatística a média antes foi 8.24 e desvio padrão 1.3, mas agora com a padronização a nota do funcionário 1 foi de 0.58.

Com isso, concluimos, que seu desempenho relativo foi melhor em Política.

```
print('Médias e desvio padrão antes da padronização')
print("*508)
print('DIREITO -','Média :',df5['Direito'].mean(),'|','desvio padrão :',
      df5['Direito'].std())
print('ESTATÍSTICA -','Média :',df5['Estatíst.'].mean(),'|','desvio padrão :',
      round(df5['Estatist.'].std(),2))
print('POLÍTICA -','Média :',df5['Política'].mean(),'|','desvio padrão :',
      round(df5['Política'].std(),2))
print(''*508)
print('Notas do funcionário 1 depois da padronização')
print(''*508)
print('DIREITO -','Nota :',df5['Direito_z'][0],'|','desvio padrão :',
      df5['Direito_z'].std())
print('ESTATÍSTICA -','Nota :',df5['Estat_z'][0],'|','desvio padrão :',
      round(df5['Estat_z'].std(),2))
print('POLÍTICA -','Nota :',df5['Política_z'][0],'|','desvio padrão :',
      round(df5['Política_z'].std(),2))
Médias e desvio padrão antes da padronização
DIREITO - Média : 9.0 | desvio padrão : 0.0
ESTATÍSTICA - Média : 8.24 | desvio padrão : 1.3
POLÍTICA - Média : 7.76 | desvio padrão : 1.67
Notas do funcionário 1 depois da padronização
DIREITO - Nota : nan | desvio padrão : nan
ESTATÍSTICA - Nota : 0.5846153846153845 | desvio padrão : 1.0
POLÍTICA - Nota : 0.7418148644845932 | desvio padrão : 1.0
```