Université de M'sila

Faculté : MI

Département : Informatique

Examen (S1) **Structure Machine 1**

Date: 11/01/2023 **Durée:** 01^h:30

(B) ممنوع استخدام الآلة الحاسبة والهاتف النقال

Nom et Prénom : **Groupe:**

Exercice 1: $(7.5 \text{ Pts} = 4.5 (3 (0.75 \times 4) + 0.75 + 0.75) + 2 (1+1) + 1)$

1) Faire les conversions suivantes :

10	2	8	16
39,875			
$16^2 + 2^5 + 2^3 + 16^{-1}$			
		65,7	
			3D,4

- 2) Effectuer en BCD puis en Excédant-3 l'opération suivante : 126₍₈₎ + 31₍₁₆₎
- 3) Trouver la représentation hexadécimale en ASCII du : machine1

Rappel : le code du caractère $\mathbf{0}$ est $(48)_{10}$, le code du caractère \mathbf{A} est $(65)_{10}$, le code du caractère \mathbf{a} est $(97)_{10}$

Exercice 2: $(4.5 \text{ Pts} = 2.25 (0.75 \times 3) + 2.25 (1.5 + 0.75))$

1) Trouver les valeurs Décimales, SVA, CR (Cà1) et CV (Cà2) pour les cas suivants (sur 9 bits) :

Décimal	SVA	CR (C1)	CV (C2)
+25			
		111010111	
			111100110

2) Effectuer sur 7 bits en C2 les opérations suivantes puis donner les résultats en décimal :

-2D
$$_{(16)}$$
 + 23 $_{(8)}$ /// +45 $_{(8)}$ + 2E $_{(16)}$

Exercice 3: (4 pts = 2 (1+1) + 2 (1+1))

Prenant la notation de la virgule flottante simple précision (32 bits) du standard ANSI / IEEE 754

1) Donner la représentation en ANSI / IEEE 754 (S.P) des nombres suivants :

$$-39.875 \times 2^{-107}$$
₍₁₀₎ /// $+53.25 \times 2^{-133}$ ₍₁₀₎

2) Donner sous la forme $\pm M \times 2^{Er}$ les valeurs de X et de Y qui correspondant aux représentations hexadécimales suivantes : $X = 93E00000_{(16)}$, $Y = 80400000_{(16)}$ (M et 2^{Er} sont **décimaux**)

Exercice 4: (4 pts = 1+1+1+1)

$$F(X,Y,Z) = XZ + X(\overline{Z}Y + Z\overline{Y})$$

- 1. Dresser la table de vérité de F
- 2. Trouver les deux formes canoniques de F
- 3. Simplifier F algébriquement
- 4. Tracer le logigramme de F (simplifiée) à l'aide des portes NANDs

Corrigé type d'Examen Structure Machine 1 (2022/2023) (B)

Exercice 1:
$$(7.5 \text{ Pts} = 4.5 (3 (0.75 \times 4) + 0.75 + 0.75) + 2 (1+1) + 1)$$

1) Faire les conversions suivantes :

10	2	8	16
39,875	100111.111	47.7	27.E
$16^2 + 2^5 + 2^3 + 16^{-1}$	100101000.0001	450.04	128.1
53.875	110101.111	65,7	35.E
61.25	00111101.0100	75.2	3D,4

$$E6A_{(16)} = 111001101010_{(2)} = 1001010111111_{(Gray)}$$

 $1100011_{(Gray)} = 1000010_{(2)} = 66_{(10)}$

2) Effectuer en BCD puis en Excédant-3 l'opération suivante : 126₍₈₎ + 31₍₁₆₎

$$126_{(8)} = 86_{(10)} = 1000\ 0110_{(BCD)} = 1011\ 1001_{(EX3)}$$

$$31_{(16)} = 49_{(10)} = 0100\ 1001_{(BCD)} = 0111\ 1100_{(EX3)}$$

BCD
 EX3

 86

$$1000\ 0110$$
 $86\ 0^10^11^11\ 1^11^01^11^1$
 1001
 $+49\ 00110111$
 $+49\ 00110111$
 $+49\ 0011011$
 $+49\ 0011101$
 $+0110\ 0110$
 $+0110\ 0111$
 $-00\ 11+0\ 0111+0011$
 $+0001\ 0011\ 0101$
 $-000\ 0110\ 0110$
 $-000\ 0110\ 0110$
 $+0100\ 0011\ 0101$
 $-000\ 0110\ 0110$
 $-000\ 0110\ 0110$

3) La représentation hexadécimale en ASCII du : machine1 6D 61 63 68 69 6E 65 31

Exercice 2: $(4.5 \text{ Pts} = 2.25 (0.75 \times 3) + 2.25 (1.5 + 0.75))$

1) Trouver les valeurs Décimales, SVA, CR (Cà1) et CV (Cà2) pour les cas suivants (sur 9 bits) :

Décimal	SVA	CR (C1)	CV (C2)
+25	000011001	000011001	000011001
-40	100101000	111010111	111011000
-26	100011010	111100101	111100110

2) Effectuer sur 7 bits en C2 les opérations suivantes puis donner les résultats en décimal :

$$-2D_{(16)} + 23_{(8)}$$
 /// $+45_{(8)} + 2E_{(16)}$

$$\begin{array}{lll} \textbf{-2D}_{(16)} = \textbf{-0010} \ 1101_{(2)} = 1010011_{(C2)} & (sur \ 7 \ bits) & +45_{(8)} = 0100101_{(C2)} \\ \textbf{+23}_{(8)} = \textbf{+010} \ 011_{(2)} = \ 0010011_{(C2)} & +2E_{(16)} = 0101110_{(C2)} \\ \end{array}$$

```
Exercice 3: (4 \text{ pts} = 2 (1+1) + 2 (1+1))
```

Prenant la notation de la virgule flottante simple précision (32 bits) du standard ANSI / IEEE 754

1) Donner la représentation en ANSI / IEEE 754 (S.P) des nombres suivants :

$$-39.875\times2^{-107}{}_{(10)}~///~+53.25\times2^{-133}{}_{(10)}\\ -39.875\times2^{-107}{}_{(10)}=-100111.111{}_{(2)}\times2^{-107}=-1.00111111{}_{(2)}\times2^{5}\times2^{-107}=-1.~00111111{}_{(2)}\times2^{-102}\\ Le~nombre~Normalisé$$

S = 1

f = 00111111

$$Er = -102 = > Eb = Er + 127 = -102 + 127 = 25_{(10)} = 11001_{(2)}$$

$$+53.25 \times 2^{-133}_{(10)} = +110101.01_{(2)} \times 2^{-133} = +1.1010101_{(2)} \times 2^{5} \times 2^{-133} = +1.1010101_{(2)} \times 2^{-128}$$

Le nombre Dénormalisé $= +0.011010101 \times 2^{-126}$

S = 0

f = 011010101

 $\mathbf{E}\mathbf{b} = \mathbf{0}$

0 0000000 01101010100000000000000

0<Eb<255 => Le nombre X est Normalisé

S = 1 => X < 0

 $Eb = 00100111_{(2)} = 39_{(10)} = Er = Eb - 127 = 39-127 = -88_{(10)}$

 $M = 1.f = 1.11_{(2)} = 1.75_{(10)}$

Donc: $X = -1.11_{(2)} \times 2^{-88} = -1.75_{(10)} \times 2^{-88}$

 $Y = 80400000_{(16)} = 10000000010000000000000000000000_{(2)}$

Eb = 0 et f \neq 0 => Le nombre Y est Dénormalisé

S = 1 => Y < 0

 $\mathbf{E}\mathbf{b} = \mathbf{0}$

 $M = 0.f = 0.1_{(2)} = 0.5_{(10)}$

Donc: $Y = -0.1_{(2)} \times 2^{-126} = -0.5_{(10)} \times 2^{-126}$

Exercice 4: (4 pts = 1+1+1+1)

$$F(X,Y,Z) = XZ + X(\overline{Z}Y + Z\overline{Y})$$

1. La table de vérité de F

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Les deux formes canoniques de F

1ère forme : la forme **Disjonctive** (F.D)

$$F(X,Y,Z) = X\overline{Y}Z + XY\overline{Z} + XYZ = \sum (5, 6, 7)$$

2ème forme : la forme **Conjonctive** (F.C)

$$F(X,Y,Z) = (X+Y+Z)(X+Y+\overline{Z})(X+\overline{Y}+Z)(X+\overline{Y}+\overline{Z})(\overline{X}+Y+Z) = \prod (0,1,2,3,4)$$

3. Simplification de F algébriquement :

$$F(X,Y,Z) = XZ + X (\overline{Z}Y + Z\overline{Y})$$

$$= XY + XY\overline{Z} + X\overline{Y}Z$$

$$= XY (1 + \overline{Z}) + X\overline{Y}Z$$

$$= XY + X\overline{Y}Z$$

$$= X(Y + \overline{Y}Z)$$

$$= X(Y + Z)$$

$$= XY + XZ$$

4. Le logigramme de F (simplifiée) à l'aide des portes NANDs

