Algorytmika, seria zadań domowych nr 4, czerwiec 2024

Zadanie 1. Przypomnijmy, że dla zbioru zmiennych boolowskich V, literał to wyrażenie postaci x lub $\neg x$ dla zmiennej $x \in V$, klauzula to alternatywa pewnej liczby literałów, a formuła w postaci CNF to koniunkcja pewnej liczby klauzul. Dla zbioru $X \subseteq V$ i wartościowania $\alpha: X \to \{0,1\}$, mówimy, że (i) wartościowanie α spełnia literał x, jeśli $x \in X$ i $\alpha(x) = 1$; (ii) wartościowanie α spełnia klauzulę, jeśli spełnia co najmniej jeden literał x tej klauzuli; oraz (iv) wartościowanie α spełnia formułę w postaci CNF, jeśli spełnia wszystkie klauzule w formule.

 $Grafem\ incydencji$ formuły ϕ w postaci CNF nazywamy graf dwudzielny, którego zbiorem wierzchołków jest suma rozłączna zbioru zmiennych i zbioru klauzul ϕ , a krawędzie łączą klauzulę z wszystkimi występującymi w niej zmiennymi.

Niech ϕ będzie formułą w postaci CNF, $X \subseteq V$, a $\alpha: X \to \{0,1\}$ będzie wartościowaniem. Formuła $\phi[\alpha]$ powstaje z ϕ poprzez wpierw usunięcie wszystkich klauzul spełnionych przez α , a następnie usunięcie z pozostałych klauzul wszystkich literałów zawierających zmienne ze zbioru X.

Dla formuły ϕ w postaci CNF, zbiór $X\subseteq V$ jest zbiorem rozwiązującym jeśli dla każdego $\alpha:X\to\{0,1\}$, każda klauzula formuły $\phi[\alpha]$ ma co najwyżej dwa literały. Rozważamy następujący problem: mając daną formułę ϕ w postaci CNF oraz liczbę naturalną k, pytamy, czy ϕ ma zbiór rozwiązujący rozmiaru co najwyżej k.

- 1. (5 pkt) Pokaż algorytm parametryzowany o złożoności $3^k \cdot |\phi|^{O(1)}$ dla tego problemu.
- 2. (5 pkt) Pokaż algorytm parametryzowany o złożoności $2^{10 \cdot t} \cdot |\phi|^{O(1)}$ dla tego problemu w wariancie, gdzie na wejściu dana jest jeszcze dekompozycja drzewowa grafu incydencji ϕ o szerokości t.

Uwaga: W tym podpunkcie, w przypadku użycia programowania dynamicznego, jako rozwiązanie wystarczy sam opis komórek, które algorytm wypełnia; można pominąć szczegóły obliczania wartości tych komórek.

Zadanie 2. Dany jest alfabet Σ , liczby naturalne k, r, m, oraz dwa multizbiory (tj. z możliwymi powtórzeniami) $A, B \subseteq \Sigma^m$. Pytamy, czy istnieje zbiór $A' \subseteq A$ rozmiaru co najwyżej r taki, że¹

$$\sum_{b \in B} \min_{a \in A'} \operatorname{dist}_{\operatorname{Hamming}}(a, b) \le k.$$

Opracuj algorytm parametryzowany dla tego problemu, przy parametryzacji przez k. Liczba punktów za rozwiązanie będzie zależeć od złożoności czasowej opracowanego algorytmu, przy czym algorytm o złożoności $2^{O(k\log k)}(|\Sigma|+|A|+|B|+m)^{O(1)}$ otrzyma maksymalną liczbę punktów.

¹Przypomnijmy, że odległość Hamminga dwóch słów $a,b \in \Sigma^m$ to liczba pozycji, na których się różnią, tj.

Zasady

- 1. W zadaniu 1 można otrzymać częściowe punkty za algorytm parametryzowany o gorszej zależności czasowej od parametru (k w pierwszym podpunkcie i t w drugim podpunkcie).
- 2. Za każde zadanie można otrzymać maksymalnie 10pkt, czyli łącznie 20pkt za tę serię. Łącznie, w ciągu semestru, będzie do zdobycia 80pkt z prac domowych.
- 3. Można powoływać się tylko na fakty udowodnione na ćwiczeniach i wykładzie (ewentualnie także z MD, ASD).
- 4. Prace powinny być samodzielne. Poszukiwanie rozwiązań w internecie, publikowanie zadania na serwisach typu stackexchange jest zabronione. Po pierwsze jest nie w porządku, a po drugie psuje zabawę. Nieprzestrzeganie tej zasady będzie skutkowało niezaliczeniem przedmiotu.
- Rozwiązanie wgrać do poniedziałku 17.06.2024, godz. 20.00 na kurs Algorytmika w moodle. Polecamy spisywanie rozwiązań w LaTeXu, ale skany rozwiązań spisanych ręcznie też są akceptowane.