

NCAA March Madness Data Crunch Competition Report Gabelli School of Business

Jennie Le

Overview: What is March Madness?

- The NCAA Division I men's basketball tournament
- Formed by 68 Division I level college basketball team
- The competition is divided by several rounds into:
 - First Four
 - First and Second Round
 - o Sweet 16/Elite Eight
 - o Final
- The prediction is to fill out the championship bracket !!!!

Problem Statement

What are we proposed to do?

- Descriptive analytics with data visualization on data from 2002 to 2019.
- Prediction model building on data from 2002 to 2019.

Why is this important?

- A reference for folks who would like to make a bet on the game!!!
- Used by NCAA teams to make improvement for their performance.
- Used by NCAA to adjust their marketing strategies such as ticket price sales.

Methodology Diagram

Data Preprocessing

- Data Split
- · Clean Data
- Engineered New Features

Feature Selection

- Highy Correlated Variables Removal
- Random Forest Ensembled

Prediction Model Evaluation

- Log loss
- Accuracy

Visualization

Prediction Model Building

- Logistic regression
- · Random forest
- Linear discriminant analysis (LDA)
- Gradient Boosting
- Support Vector Classifier (SVC)

Visualization

Data Preprocessing

Derived Novel Features

- Difference = Team1 Feature N Team2 Feature N
- Ratio (Quotient) = Team1 Feature N / Team2 Feature N
- Teamwork Score (Ability) = $0.8 \times \text{Team arate} + 0.2 \times \text{Team Adjde}$
- Win Rate = Wins / (Wins + Losses)

Split Data (Used in prediction model building)

- Training Data: 2002 2018; Test Data: 2019
- Data needed prediction: 2020

TOP NCAA TEAM BY SEED NUMBER

The committee will create a "seed list" (i.e. rank of the teams in "true seeds" 1 through 68) which is used to assess competitive balance of the top teams across the four regions of this national championship. Additionally, the seed list reflects the sequential order with which teams will be placed in the bracket

The dashboard represents team frequency assigned for each seed from 2002 to 2019

Top 10 Team Season Win Ranking (2018)

Teams are ranked based on the number of wins per season.

The dashboard represents how each team perform from 2015 to 2018 based on their season wins. In 2018, Virginia can be considered as the strongest team.

Can teamwork impact the coach's number of wins per season?

Can a team have a **higher probability** of **winning** with effective **defense** and **offense** strategy?

Model Selection & Evaluation

Model	Accuracy Score	Log Loss
Logistic Regression	0.761194	0.563166
Gradient Boosting	0.761194	0.545979
Support Vector Classifier	0.626866	0.680563
Random Forest Classifier	0.776119	0.513814
Linear Discriminant Analysis	0.746269	0.539230

According to the confusion matrix, accurate predictions account for 75% of the outcomes.

Prediction: Team 1 Wins

The treemap represents number of **Games** and **Average Probability** for each team.

Virginia 6 games 76.31%	Kentucky 3 games 71.26% Michigan St	LSU 2 games 64.60% Michigan 2 games	Purdue 2 games 63.17%	2 games		Texas Tech 2 games 63.50%	
Duke 3 games 77.04%	3 games 78.18%	77.15% North Carolina 2 games	Virginia Tech 2 games 75.25%			Kansas 1 games 71.49%	
	Florida St 2 games 66.23%	79.32%	Arizona St 1 games	N Dakota			
Gonzaga 3 games 83.51%	Houston	Oregon 2 games	Auburn 1 games	1 games		59.65%	
	2 games 71.14%	57.14%	Belmont 1 games	Woffor 1 games			

Reference

- Adit, D. (2017, March 12). Applying Machine Learning To March Madness. Retrieved from https://adeshpande3.github.io/Applying-Machine-Learning-to-March-Madness
- Conor, D. (2018, March 15). Machine Learning Madness: Predicting Every NCAA Tournament Matchup. Retrieved from https://towardsdatascience.com/machine-learning-madness-predicting-every-ncaa-tournament-matchup-7d9ce7d5fc6d
- Kaggle. (2017, April 4). March Machine Learning Mania 2017. Retrieved from https://www.kaggle.com/c/march-machine-learning-mania-2017
- Lotan, W. (2019, April 21). How We Predicted March Madness Using Machine Learning. Retrieved from https://medium.com/@lotanweininger/march-madness-machine-learning-2dbacc948874