Academia Sabatina de Jóvenes Talento

Polinomios Clase #10

Encuentro: 10

Curso: Polinomios

Nivel: 5

Semestre: I

Fecha: 27 de mayo de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Principio de Inducción Matemática

El Principio de Inducción Matemática es una poderosa y elegante herramienta para probar dependencias en enteros. En esta décima clase veremos la definición y analogías de este principio, así como ejemplos y problemas.

1. Desarrollo

La Inducción Matemática es una técnica utilizada para probar declaraciones o proposiciones. La idea es similar a la de hacer caer varias piezas de dominó. Si cada pieza está lo suficientemente cerca de la anterior y hacemos caer la primera, entonces todas las piezas eventualmente van a caer. Cuando queremos probar una proposición sobre números naturales, la idea es la misma. En la Figura 1 podemos ver una representación gráfica de esta analogía.

Figura 1: Fichas de dominó cayendo.

Teorema 1.1 (Principio de Inducción Matemática). Para algún entero fijo j y para cada entero $n \ge j$, sea S(n) una declaración que involucre a n. Si

- S(j) es cierto, y
- para cada entero $k \ge j$, $S(k) \to S(k+1)$,

 $^{^1\}mathrm{Tambi\'{e}n}$ podemos decir Proposición o Afirmación

entonces para todo $n \geq j$, la declaración S(n) es cierta.

Una manera de estructurar la solución de un problema que resolvemos por inducción matemática es la siguiente.

1. Base de inducción (o caso base)

Probar que S(1) es cierta (generalmente j será 1).

2. Hipótesis de inducción

Suponer que para un entero fijo $k \ge 1$, la declaración S(k) es cierta.

3. Paso de inducción

Probar que como S(k) es cierta, entonces S(k+1) también será cierta.

Ejemplo 1. Sea m entero positivo, probar que para $m \geq 3$, se cumple

$$m^m > 2m!$$
.

Solución. Tomemos por S(m) la afirmación $m^m > 2m!$.

Base de inducción

Tomando m = 3, vemos que $3^3 > 2 \cdot 3!$, por lo tanto S(3) es cierta.

Hipótesis de inducción

Supongamos que S(k) es cierta para algún entero fijo $k \geq 3$.

Paso de inducción

Probaremos, entonces que si S(k) es cierta, S(k+1) también será cierta. Esto es

$$(k+1)^{k+1} > 2(k+1)!$$

Notemos que

$$(k+1)^k \cdot (k+1)^1 > 2(k+1) \cdot k!$$

 $(k+1)^k > 2k!$

Ahora bien, es claro que k+1 > k, por lo tanto $(k+1)^k > k^k$. Así por la hipótesis de inducción tendremos lo siguiente.

$$(k+1)^k > k^k > 2k!$$

П

Es decir, S(m) es cierta para toda $m \geq 3$. Luego, la prueba está hecha.

Teorema 1.2 (Binomio de Newton). Para $a \ y \ b$ números reales y n un número entero, se cumplirá que

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{i}a^{n-i}b^i + \dots + \binom{n}{n}b^n.$$

Podemos utilizar la notación de sumatoria y quedaría como:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i.$$

Demostración. La demostración la haremos por inducción sobre n.

Si
$$n = 0$$
, entonces $(a + b)^0 = 1$ y $\binom{0}{0}a^0b^0 = 1$.

Supongamos que para un entero fijo $k \geq 0$ la declaración es cierta, es decir

$$(a+b)^k = \sum_{i=0}^k \binom{k}{i} a^{k-i} b^i$$

es válida, entonces

$$(a+b)^{k+1} = (a+b)(a+b)^k = (a+b)\sum_{i=0}^k \binom{k}{i}a^{k-i}b^i$$

$$= (a+b)\sum_{i=0}^k \binom{k}{i}a^{k-i}b^i$$

$$= a\sum_{i=0}^k \binom{k}{i}a^{k-i}b^i + b\sum_{i=0}^k \binom{k}{i}a^{k-i}b^i$$

$$= a\left[\binom{k}{0}a^k + \sum_{i=1}^k \binom{k}{i}a^{k-i}b^i\right] + b\left[\sum_{i=0}^{k-1} \binom{k}{i}a^{k-i}b^i + \binom{k}{k}b^k\right]$$

$$= \binom{k}{0}a^{k+1} + \sum_{i=1}^k \binom{k}{i}a^{k+1-i}b^i + \sum_{i=0}^{k-1} \binom{k}{i}a^{k-i}b^{i+1} + \binom{k}{k}b^{k+1}$$

$$= \binom{k}{0}a^{k+1} + \sum_{i=1}^k \binom{k}{i}a^{k+1-i}b^i + \sum_{i=1}^k \binom{k}{i-1}a^{k+1-i}b^i + \binom{k}{k}b^{k+1}$$

$$= \binom{k+1}{0}a^{k+1} + \sum_{i=1}^k \binom{k}{i} + \binom{k}{i-1}a^{k+1-i}b^i + \binom{k+1}{k+1}b^{k+1}$$

$$= \binom{k+1}{0}a^{k+1} + \sum_{i=1}^k \binom{k+1}{i}a^{k+1-i}b^i + \binom{k+1}{k+1}b^{k+1}$$

$$= \sum_{i=0}^{k+1} \binom{k+1}{i}a^{k+1-i}b^i$$

1.1. Agregados culturales y preguntas

a. **Otra analogía.** Considera una pila de sobres, tan alta como querás. Supongamos que cada sobre tiene el mismo mensaje en su interior "Abre el siguiente sobre de la pila, y

sigue las instrucciones escrito en él". Si alguien abre el primero (el de arriba), lee el mensaje y sigue las instrucciones, entonces la persona se ve obligada a abrir el segundo sobre. Y si la persona decide seguir cada instrucción, entonces esta persona abrirá todos los sobres de la pila. Es decir, esto es el principio de Inducción Matemática aplicado a una pila de sobres.

b. La **Inducción fuerte** es una variante de la Inducción Matemática "normal". Esta surge cuando para probar S(k+1) es necesario considerar más de una declaración previa como cierta $S(i), S(i+1), \cdots, S(k)$. Muchas veces no hace falta usar todas las declaraciones anteriores, pero sí al menos un par de ellas (dependerá del problema).

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

Problema 2.1. Probar que $\forall n \in \mathbb{Z}^+$, se cumple que $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Problema 2.2. Probar que $\forall n \in \mathbb{Z}^+$, $4007^n - 1$ es divisible por 2003.

Problema 2.3. Probar que $\forall n \in \mathbb{Z}^+$, el número $A_n = 3^n - 2n^2 - 1$ es múltiplo de 8. Además que si $3 \nmid n$, entonces A_n es múltiplo de 24.

Problema 2.4. Sea $\{a_n\}$ una secuencia tal que $a_1 = 5$, $a_2 = 13$ y $a_{n+2} = 5a_{n+1} - 6a_n$, $\forall n \in \mathbb{N}$. Probar que $a_n = 2^n + 3^n$, $\forall n \in \mathbb{N}$.

Problema 2.5. Sea $q \in \mathbb{R}$, con $q \neq 1$ y $n \in \mathbb{Z}^{\geq 0}$. Probar que

$$(1+q)(1+q^2)(1+q^4)\cdots(1+q^{2^n})=\frac{1-q^{2^{n+1}}}{1-q}.$$

Problema 2.6. Demostrar que $\forall a, b \in \mathbb{R}^+$ y $n \in \mathbb{N}$ se cumple que $2^{n-1}(a^n + b^n) \ge (a+b)^n$.

Problema 2.7. Probar $\forall n \in \mathbb{N}$, que se cumple $F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$. (F_n es la sucesión de Fibonacci.)

Problema 2.8. Probar $\forall n \in \mathbb{N}^{\geq 2}$, que se cumple $F_{2n} = F_{n+1}^2 - F_{n-1}^2$.

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

Problema 3.1. Probar que $\forall n, r \in \mathbb{Z}^+$, con $r \neq 1$ se cumple lo siguiente

$$1 + r + r^2 + r^3 + \dots + r^{n-1} + r^n = \frac{r^{n+1} - 1}{r - 1}.$$

Problema 3.2. Probar para todo $n \ge 2$ natural se cumple

$$\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{9}\right)\cdots\left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}.$$

Problema 3.3. Demostrar $\forall n \in \mathbb{N}$, que

$$9 \mid 2^{2n} + 15n - 1$$
$$8 \mid 3^{2n+2} + 8n - 9$$

4. Extra

Problema 4.1. Probar que $\forall n, r \in \mathbb{Z}^+$, con $r \neq 1$ se cumple lo siguiente

$$r + 2r^2 + 3r^3 + \dots + (n-1)r^{n-1} + nr^n = \frac{r - (n+1)r^{n+1} + nr^{n+2}}{(r-1)^2}.$$

Referencias

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[Gun10] David Gunderson. Handbook of Mathematical Induction. Theory and Applications. CRS Press, 2010.

[LTD22] Ricardo Largaespada, Kenny Tinoco, and José Duarte. Ecuaciones Diofánticas. Clase 7. Método de Inducción Matemática. *Academia Sabatina de Jóvenes Talento*, Octubre 2022.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com