Algorithm performance

Faster sorting

By the end of this video you will be able to...

- Describe the merge sort algorithm
- Explain the use of recursion in merge sort
- Use asymptotic analysis to compare merge sort with selection sort and with insertion sort

If list has one element, return.

Divide list in half

Sort first half
Sort second half

If list has one element, return.

Divide list in half

Sort first half
Sort second half

HOW?

If list has one element, return.

Divide list in half

Sort first half
Sort second half

HOW? Recursion!!!

If list has one element, return

Divide list in half

Sort first half
Sort second half

5	3	2	4	1

If list has one element, return

Divide list in half

Sort first half
Sort second half

 5
 3
 2
 4
 1

 5
 3
 2
 4
 1

If list has one element, return

Divide list in half

Sort first halfSort second half

If list has one element, return

If list has one element, return

Divide list in half

Sort first half
Sort second half

If list has one element, return

If list has one element, return

Divide list in half

Sort first half
Sort second half

If list has one element, return

Divide list in half

Sort first half

Sort second half

Merge sorted lists

5 3 2 4 1

5 3 2 4 1

1 4

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists

5 3 2 4 1

5 3 2 4 1

4 1

1 4

If list has one element, return

Divide list in half **Sort** first half **Sort** second half Merge sorted lists

Performance?

If list has one element, return

Divide list in half

Sort first half
Sort second half

Performance?

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists (

O(n) work to merge all the lists on one level

Performance?

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists

Each time we divide, we call MergeSort on two (smaller) lists

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists

Performance?

Keep dividing by two until lists have size 1

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists

Performance?

Keep dividing by two until lists have size 1

 $log_2(n)$

Performance?

If list has one element, return

Divide list in half

Sort first half
Sort second half

Merge sorted lists

O(n log n)