Projet Deep Learning MAPI3 2021-2022

Abdellah ABARDAME Dani HALEGUA Luca CHAMPESTING Idyano LEROY

Soutenu le :

10 mars 2022

Introduction

Le dataset utilisé dans ce projet contient 4000 images, appartenant à 7 catégories.

Figure – Quelques exemples d'images du dataset.

CNN

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 254, 254, 16)	448
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 127, 127, 16)	0
conv2d_1 (Conv2D)	(None, 125, 125, 32)	4640
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 62, 62, 32)	0
conv2d_2 (Conv2D)	(None, 60, 60, 32)	9248
flatten (Flatten)	(None, 115200)	0
dense (Dense)	(None, 32)	3686432
dense_1 (Dense)	(None, 7)	231

Total params: 3,700,999 Trainable params: 3,700,999 Non-trainable params: 0

Figure – Courbes d'apprentissage du CNN.

Méthodes pour limiter l'over-fitting

- Data augmentation
- Batch normalisation
- Dropout layers + régularisation

Data augmentation

- Augmente la taille des données d'entraînement
- Ajoute de la variance dans le jeu d'entraînement
- Transformations qui n'affecte pas la classe de l'image

Figure – Exemple de data augmentation sur une image.

Figure – Courbes d'apprentissage du CNN avec data augmentation.

Batch normalisation

- Normalise les données à l'intérieur du réseau
- Peut améliorer les performances du modèle
- Accélère le processus d'entraînement

Layer (type)	Output Shape	Param #
conv2d_18 (Conv2D)	(None, 254, 254, 16)	448
batch_normalization_12 (Bat chNormalization)	(None, 254, 254, 16)	64
max_pooling2d_12 (MaxPooling2D)	(None, 127, 127, 16)	0
conv2d_19 (Conv2D)	(None, 125, 125, 32)	4640
batch_normalization_13 (Bat chNormalization)	(None, 125, 125, 32)	128
max_pooling2d_13 (MaxPooling2D)	(None, 62, 62, 32)	0
conv2d_20 (Conv2D)	(None, 60, 60, 32)	9248
batch_normalization_14 (Bat chNormalization)	(None, 60, 60, 32)	128
flatten_6 (Flatten)	(None, 115200)	0
dense_12 (Dense)	(None, 32)	3686432
batch_normalization_15 (Bat chNormalization)	(None, 32)	128
dense_13 (Dense)	(None, 7)	231

Total params: 3,701,447 Trainable params: 3,701,223 Non-trainable params: 224

Figure – Courbes d'apprentissage du CNN avec batch normalisation.

Dropout layers + régularisation

- Empêche le réseau d'apprendre des modèles trop spécifique
- Supprime aléatoirement une portion des entrées d'une couche
- Force le réseau à rechercher des modèles plus généraux.

Dropout layers + régularisation

Layer (type)	Output Shape	Param #
dropout_30 (Dropout)		
conv2d_40 (Conv2D)	(None, 254, 254, 16)	448
dropout_31 (Dropout)	(None, 254, 254, 16)	0
max_pooling2d_26 (MaxPoolin g2D)	(None, 127, 127, 16)	0
conv2d_41 (Conv2D)	(None, 125, 125, 16)	2320
dropout_32 (Dropout)	(None, 125, 125, 16)	0
max_pooling2d_27 (MaxPoolin g2D)	(None, 62, 62, 16)	0
conv2d_42 (Conv2D)	(None, 60, 60, 16)	2320
dropout_33 (Dropout)	(None, 60, 60, 16)	0
flatten_12 (Flatten)	(None, 57600)	0
dense_24 (Dense)	(None, 32)	1843232
dropout_34 (Dropout)	(None, 32)	0
dense_25 (Dense)	(None, 7)	231

Total params: 1,848,551 Trainable params: 1,848,551 Non-trainable params: 0

Figure – Courbes d'apprentissage du CNN avec dropout layers.

Transfert learning

- Récupération d'un modèle pré-entraîné sur une tâche similaire
- Geler les couches du modèle de base, pour pas perdre les informations obtenues
- Rajout d'un petit modèle de classification qu'on entraîne avec les poids du modèle de base

VGG16

Architecture du réseau VGG16.

Transfert learning

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 8, 8, 512)	14714688
flatten_17 (Flatten)	(None, 32768)	0
dense_39 (Dense)	(None, 256)	8388864
dense_40 (Dense)	(None, 7)	1799

Total params: 23,105,351 Trainable params: 8,390,663

Non-trainable params: 14,714,688

Figure – Courbes d'apprentissage du réseau VGG16.

Résultats

Méthode utilisée :	train loss	train accuracy	test loss	test accuracy
CNN basique	0.0348	0.9902	1.3145	0.7625
Data augmentation	0.7776	0.7285	1.0394	0.6623
Batch normalization	0.0027	1.0000	0.4704	0.8344
Dropout layers	0.2777	0.9041	1.1777	0.6411
Transfert learning avec VGG16	0.0908	0.9892	0.2155	0.9281

Figure - Résultats des différents CNN.

Évaluation du modèle

Figure – Matrice de confusion des prédictions.

Mauvaises prédictions

Mauvaises prédictions

Véritable classe: field Classe prédite: road

Véritable classe: lake Classe prédite: forest

Véritable classe: road Classe prédite: mountain

t-SNE

3 plus proches voisins

