Prova 2 - Topologia Geral

Entregar dia 28 de junho de 2024

- Podem conversar entre si, mas a escrita é estritamente individual. A ideia é que aproveitem a prova para aprender.
- 1. (2 pontos) **Definição:** Um espaço topológico X é chamado de **paracompacto** se para todo cobertura aberta de X ela admitir um refinamento localmente finito que cobre X.

Vou repetir a definição acima com um pouco mais de notação matemática para termos certeza que a definição está bem entendida. Diremos que o espaço topológico X é paracompacto se dada uma cobertura $\bigcup_i A_i$ por abertos, então existe uma família \mathcal{B} tal que $B \in \mathcal{B}$ é um aberto, B é subconjunto de algum elemento de $\{A_i\}$ e tal que

$$X \subset \bigcup_j B_j,$$

e mais (agora a parte de ser localmente finita) dado $x \in X$ existe uma vizinhança U de x que intersecta uma quantidade finita de elementos de \mathcal{B} .

Mostre que a a reta real com a topologia usual é paracompacta.

- 2. (4 pontos)
 - (a) Defina homotopia entre dois laços.
 - (b) Se α e β são dois laços em X e $f: X \to Y$ é um homeomorfismo, então mostre que as curvas $f \circ \alpha$ e $f \circ \beta$ são dois laços homotópicos.
 - (c) Mostre que o grupo fundamental da esfera de dimensão maior ou igual a dois é trivial.
- 3. (4 ponto) **Definição:** Sejam X um espaço topológico, Y um conjunto e $q: X \to Y$ uma função sobrejetora. A **topologia quociente** é a maior topologia em Y que torna contínua a função q. Dizemos que $q: X \to Y$ é uma **aplicação quociente** se X é espaço topológico e Y é espaço topológico com a topologia quociente induzida por q, neste caso também dizemos que Y é um **espaço quociente** de X.
 - (a) Mostre que a topologia quociente é dada por

$${C \subset Y|q^{-1}(C) \in \mathcal{T}_X}.$$

- (b) Sejam X e Y espaços topológicos e $f: X \to Y$ aplicação sobrejetiva e contínua. Mostre que se f é aberta (i.e. leva aberto em aberto) então a topologia de Y coincide com a topologia quociente.
- (c) Considere a relação de equivalência em \mathbb{R} dada por: $x \sim y$ se, e somente se, $x-y \in \mathbb{Z}$ e considere $\pi : \mathbb{R} \to \mathbb{R}/\sim$. Mostre que \mathbb{R}/\sim com a topologia quociente é homeomorfo ao círculo geométrico S^1 .
- (d) Mostre que o mapa π do item anterior é um mapa de recobrimento (como definimos na aula de grupo fundamental e espaço de recobrimento).