TECHNISCHE UNIVERSITÄT DORTMUND

Anfängerpraktikum Physik Sommersemester 2014

V501/2

Elektronen im elektrischen und magnetischen Feld

22.04.2014

1. Abgabe

Johannes Schlüter Joshua Luckey johannes.schlueter@udo.edu joshua.luckey@udo.edu

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

4.1 Auswertung des Versuchs Elektronen im elektrischen Feld

Im Folgenden sind die während der Versuche aufgenommenen Daten und die aus diesen berechneten Ergebnisse tabellarisch und graphisch dargestellt. An entsprechender Stelle sind Erklärungen zu den durchgeführten Rechnungen und Ergebnissen gegeben. Die für die Fehlerrechnung verwendeten Fehlergleichungen befinden sich in Abschnitt 4.3 und sind mit römischen Ziffern nummeriert.

4.1.1 Ablenkung von Elektronen in Abhängigkeit der Spannung

Die während den fünf Messdurchgängen aufgenommenen Werte für die Ablenk- und Beschleunigungsspannung sowie die Verschiebung sind in Tabelle 1 zu finden.

Messreihe	1	2	3	4	5	Verschiebung
Nr.						D [cm]
	$-20,7 \pm 0,1$	$-33,5 \pm 0,1$	$-35,0 \pm 0,1$	-	-	0.0 ± 0.1
	-17.5 ± 0.1	-27.6 ± 0.1	$-28,2 \pm 0,1$	$-35,6 \pm 0,1$	-	0.6 ± 0.1
	$-14,1 \pm 0,1$	$-21,8 \pm 0,1$	-21.8 ± 0.1	$-29,4 \pm 0,1$	$-35,6 \pm 0,1$	$1,3 \pm 0,1$
Ablenk-	$-10,5 \pm 0,1$	$-16,6 \pm 0,1$	$-15,2 \pm 0,1$	$-21,9 \pm 0,1$	$-26,7 \pm 0,1$	$1,9 \pm 0,1$
spannung	-6.9 ± 0.1	-10.6 ± 0.1	-8.4 ± 0.1	-14.6 ± 0.1	-17.7 ± 0.1	2.5 ± 0.1
U_d [V]	-3.4 ± 0.1	-4.7 ± 0.1	-2.0 ± 0.1	-6.8 ± 0.1	-7.9 ± 0.1	$3,2 \pm 0,1$
	0.4 ± 0.1	$1,5 \pm 0,1$	$5,6 \pm 0,1$	0.8 ± 0.1	$1,4 \pm 0,1$	3.8 ± 0.1
	4.7 ± 0.1	7.6 ± 0.1	$13,2 \pm 0,1$	$8,8 \pm 0,1$	$11,1 \pm 0,1$	$4,4 \pm 0,1$
	$8,5 \pm 0,1$	$13,5 \pm 0,1$	$19,3 \pm 0,1$	$16,9 \pm 0,1$	$22,9 \pm 0,1$	$5,1 \pm 0,1$
Beschl.						
Spannung	180 ± 5	300 ± 5	350 ± 5	400 ± 5	500 ± 5	
U_b [V]						

Tabelle 1: Messdaten zur Bestimmung des Zusammenhangs zwischen U_d und D

In den folgenden Abbildungen 1 bis 5 sind die gemessenen Verschiebungen D gegen die entsprechenden Ablenkspannungen U_d aufgetragen. Die mittels lineare Ausgleichsrechnung mit dem Ansatz

$$D(U_d) = m \cdot U_d + b,\tag{1}$$

unter Verwendung der Python Bibliothek SciPy [1], berechneten Parameter m_i, b_i sind in Tabelle 2 aufgelistet.

Steigung $m [m V^{-1}]$	y-Achsenabschnitt $b \text{ [cm m]}$
0.173 ± 0.002	$3,69 \pm 0,03$
0.1082 ± 0.0008	$3,65 \pm 0,01$
0.0930 ± 0.0009	$3,29 \pm 0,02$
$0,084 \pm 0,001$	$3,72 \pm 0.02$
$0,066 \pm 0,001$	$3,67 \pm 0,02$

Tabelle 2: Fit-Parameter der Daten aus den fünf Messreihen

Abbildung 1: Grafische Darstellung der ersten Messreihe

Die Steigung dieser Graphen stellt die Empfindlichkeit $\frac{D}{U_d}$ der Apparatur dar, die in ?? gegen die reziproke Beschleunigungsspannung aus Tabelle 1 aufgetragen ist.

Die durch Regression mit dem Ansatz

$$e(U_b^{-1}) = \frac{\alpha}{U_b} + \beta, \tag{2}$$

erhält man die Parameter

$$\alpha = (30.3 \pm 0.8) \,\text{cm}$$
 (2a)

$$\beta = (0,006 \pm 0,003) \,\mathrm{cm} \,\mathrm{V}^{-1}.$$
 (2b)

Ein theoretischer Vergleichswert zu dem in Abbildung 6 dargestellten Zusammenhang

Abbildung 2: Grafische Darstellung der zweiten Messreihe

Abbildung 3: Grafische Darstellung der dritten Messreihe

Abbildung 4: Grafische Darstellung der vierten Messreihe

Abbildung 5: Grafische Darstellung der fünften Messreihe

Abbildung 6: Darstellung des Zusammenhangs von Empfindlichkeit Beschleunigungsspannung

erhält man mittels ?? und den Angaben im Bauplan [2] der Kathodenstrahlröhre zu den Maßen $L=17.5\,\mathrm{cm}$ und $p=1.9\,\mathrm{cm}$. Da der Abstand der Platten nicht auf der ganzen Länge des Kondensators gleich ist, wird für die angestellte Berechnung der Mittelwert

$$d = d_1 \cdot \frac{p_1}{p} + \left(\frac{d_1 + d_2}{2}\right) \cdot \frac{p_2}{p} = 0,508 \,\text{cm}$$
 (3)

verwendet. Die für die Berechnung verwendeten Größen sind in Abbildung 7 dargestellt. Aus den genannten Größen berechnet sich die theoretische Steigung der Geraden in Abbildung 6 zu

$$\alpha_{theo} = 32{,}71 \,\mathrm{cm}. \tag{4}$$

4.1.2 Stehende Sinuswellen am rudimentären Oszilloskop

Die zur Erzeugung eingestellten Sägezahn-Frequenzen f_{sz} sind mit den Verhältnissen n und der aus diesen berechneten Sinus-Frequenz f_{sin} in Tabelle 3 eingetragen.

Abbildung 7: Bauplan der x-Ablenkung, bearbeitet aus [2]

Sägezahn-Frequenz	Verhältnis	Sinus-Frequenz
f_{sz} [Hz]	n	f_{sin} [Hz]
$19,96 \pm 0,01$	4	$79,84 \pm 0,04$
$39,94 \pm 0,01$	2	$79,88 \pm 0,02$
$79,84 \pm 0,01$	1	$79,84 \pm 0,01$
$159,68 \pm 0,01$	0,5	$79,840 \pm 0,005$

Tabelle 3: Frequenzen f_{sz} und f_{sin} für stehende Wellen

4.2 Auswertung des Versuchs Elektronen im magnetischen Feld

4.2.1 Ablenkung von Elektronen im magnetischen Feld

Die in den vier Messreihen aufgenommenen Werte für Ablenkstrom I_d , die daraus resultierende Verschiebung D und die und die jeweilige Beschleunigungsspannung U_b befinden sich in Tabelle 4 und das von dem Strom I_d erzeugte und mit ?? berechnete Magnetfeld B_d in Tabelle 5.

Messreihe	1	2	3	4	Verschiebung
Nr.					D [cm]
	0.00 ± 0.01	0.00 ± 0.01	0.00 ± 0.01	$0,00 \pm 0,01$	0.0 ± 0.1
	0.32 ± 0.01	0.36 ± 0.01	0.38 ± 0.01	0.38 ± 0.01	0.6 ± 0.1
Ablenk-	0.68 ± 0.01	0.74 ± 0.01	0.82 ± 0.01	0.84 ± 0.01	$1,3 \pm 0,1$
strom	$1,00 \pm 0,01$	$1,10 \pm 0,01$	$1,20 \pm 0,01$	$1,15 \pm 0,01$	$1,9 \pm 0,1$
I_d [A]	$1,30 \pm 0,01$	$1,45 \pm 0,01$	$1,60 \pm 0,01$	$1,60 \pm 0,01$	2.5 ± 0.1
	$1,65 \pm 0,01$	$1,80 \pm 0,01$	$1,95 \pm 0,01$	$2,00 \pm 0,01$	$3,2 \pm 0,1$
	$2,00 \pm 0,01$	$2,20 \pm 0,01$	-	-	3.8 ± 0.1
	$2,25 \pm 0,01$	-	-	-	$4,4 \pm 0,1$
Beschl.					
Spannung	250 ± 5	300 ± 5	350 ± 5	400 ± 5	
U_b [V]					

Tabelle 4: Messdaten zur Bestimmung des Zusammenhangs zwischen I_d und D

In den Abbildungen 8 bis 11 ist der Quotient $D'=\frac{D}{D^2+L^2}$ mit der Länge der Kathodenstrahlröhre $L=17.5\,\mathrm{cm}$ und der gemessenen Verschiebung D gegen die jeweilige

Messreihe	1	2	3	4	Verschiebung
Nr.					D [cm]
	$0,0000 \pm 0,0006$	$0,0000 \pm 0,0006$	$0,0000 \pm 0,0006$	$0,0000 \pm 0,0006$	0.0 ± 0.1
	$0,0204 \pm 0,0006$	$0,0230 \pm 0,0006$	0.0242 ± 0.0006	0.0242 ± 0.0006	0.6 ± 0.1
Ablenk-	0.0434 ± 0.0006	0.0472 ± 0.0006	0.0523 ± 0.0006	$0,0536 \pm 0,0006$	$1,3 \pm 0,1$
B-Feld	$0,0638 \pm 0,0006$	$0,0701 \pm 0,0006$	$0,0765 \pm 0,0006$	0.0733 ± 0.0006	$1,9 \pm 0,1$
	0.0829 ± 0.0006	$0,0925 \pm 0,0006$	$0,1020 \pm 0,0006$	$0,1020 \pm 0,0006$	2.5 ± 0.1
$B_d [mT]$	$0,1052 \pm 0,0006$	$0,1148 \pm 0,0006$	$0,1244 \pm 0,0006$	$0,1275 \pm 0,0006$	$3,2 \pm 0,1$
	$0,1275 \pm 0,0006$	$0,1403 \pm 0,0006$	_	-	3.8 ± 0.1
	0.1435 ± 0.0006	-	-	-	$4,4 \pm 0,1$
Beschl.					
Spannung	250 ± 5	300 ± 5	350 ± 5	400 ± 5	
U_b [V]					

Tabelle 5: Messdaten zur Bestimmung des Zusammenhangs zwischen \mathcal{B}_d und \mathcal{D}

Magnetfeldstärke B_d aufgetragen. Die Regressionsparameter der linearen Regression mit dem Ansatz

$$D'(B_d) = \gamma \cdot B_d + \delta, \tag{5}$$

befinden sich in Tabelle 6.

Steigung	y-Achsenabschnitt	spezifische Ladung
$\gamma [\mathrm{m V^{-1}}]$	$\delta [\mathrm{m}^{-1}]$	$\frac{e_0}{m_e} \left[\text{C kg}^{-1} \right]$
94 ± 1	$0,010 \pm 0,009$	$(1,77 \pm 0,05) \cdot 10^{11}$
85 ± 1	0.01 ± 0.01	$(1,75 \pm 0,05) \cdot 10^{11}$
$80,0 \pm 0,8$	$0,002 \pm 0,006$	$(1,79 \pm 0.04) \cdot 10^{11}$
79 ± 2	0.01 ± 0.01	$(1.98 \pm 0.09) \cdot 10^{11}$

Tabelle 6: Fit-Parameter der Daten aus den vier Messreihen

Die ebenfalls in Tabelle 6 angegebene spezifische Ladung des Elektrons lässt sich nun unter Umformung von ?? zu

$$\frac{e_0}{m_e} = 8 \cdot \gamma^2 \cdot U_b \tag{6}$$

aus der Steigung γ der Regressionsgeraden berechnen.

4.2.2 Bestimmung der Intensität des Magnefeldes

Für den Ausgleich der von dem Erdmagnetfeld verursachten Verschiebung wurde die Stromstärke

$$I_{hor} = (0.28 \pm 0.01) \,\text{A} \tag{7}$$

an die Helmholtz-Spule angelegt. Mit ?? ergibt sich damit der Betrag des Erdmagnetfelds zu

$$B_{hor} = (0.0179 \pm 0.0006) \,\mathrm{mT}.$$
 (8)

Die totale Intensität des Erdmagnetfeldes erhält ist mit dem Inklinationswinkel $\varphi = 70^{\circ}$

Abbildung 8: Grafische Darstellung der ersten Messreihe

Abbildung 9: Grafische Darstellung der zweiten Messreihe

Abbildung 10: Grafische Darstellung der dritten Messreihe

Abbildung 11: Grafische Darstellung der vierten Messreihe

zu

$$B_{total} = \frac{B_{hor}}{\cos(\varphi)} = (52 \pm 2) \,\mu\text{T}. \tag{9}$$

bestimmbar.

4.3 Fehlerrechnung

In diesem Abschnitt sind die zur Berechnung der Fehler in Abschnitt 4 verwendeten Fehlergleichungen aufgelistet, die mittels der Gaußschen Fehlerfortpflanzung berechnet wurden.

Den Fehler der berechneten Sinusfrequenz f_{sin} erhält man vereinfacht durch:

$$\sigma_{f_{sin}} = n \cdot \sigma_{f_{sz}} \tag{I}$$

Der Fehler der magnetischen Flussdichte B_d berechnet sich durch die Gleichung:

$$\sigma_{B_d} = \frac{8}{\sqrt{125}} \frac{\mu_0 N}{R} \sigma_I \tag{II}$$

Der Fehler der spezifischen Ladung $e_{spez}=\frac{e_0}{m_e}$ ergibt sich aus:

$$\sigma_{e_{spez}} = 8\sqrt{\gamma^4 \sigma_{U_b}^2 + 4\gamma^2 U_b^2 \sigma_M^2} \tag{III}$$

Den Fehler des totalen Magnetfelds B_{total} der Erde wurde bestimmt durch:

$$\sigma_{B_{total}} = \frac{\sigma_{B_{hor}}}{\cos(\varphi)} \tag{IV}$$

5 Diskussion

Literatur

- [1] SciPy. URL: http://docs.scipy.org/doc/ (besucht am 21.04.2014).
- [2] Versuchsanleitung. V206 Wärmepumpe. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V501.pdf (besucht am 23.04.2014).