- 1. (5%) In what situations would use memory as a RAM disk be more useful than using it as a disk cache?
- 2. (10%) The following program segment can be used to provide mutual exclusion that satisfies the bounded-waiting requirement. Please write the missing instructions in A and B.

```
boolean waiting [n] = {FALSE};
boolean lock = FALSE;
do {
   waiting[i] = TRUE;
   key = TRUE;
   while (waiting[i] && key)
       Swap(&lock, &key);
   A;
   /* critical section */
   j = (i+1) \% n;
   while ((j!=i) \&\& !waiting[j])
      j = (j+1) \% n;
   if(j == i)
      lock = FALSE;
   else
       B;
  /* remainder section */
} while (TRUE);
Void Swap (boolean *a, boolean *b){
   boolean temp = *a;
   *a = *b;
   *b = temp;
```


- 3. (5%) Explain why fairness is an important goal in a time-sharing system?
- 4. (8%) Consider a system consisting of resources of types A and B being shared by n processes P_I , P_2 , ..., P_n . Resources can be requested and released by processes only one process at a time. A process P_i ($1 \le i \le n$) may request at most $Max_{i,A}$ and $Max_{i,B}$ instances of resources of types A and B, respectively, where $Max_{i,A}$, $Max_{i,B} \ge 1$. However, a process P_i cannot be allocated any instance of resources of type B until it has been allocated $Max_{i,A}$ instances of resources of type A. What is the minimum number of instances of resources of types A and the minimum number of instances of resources of type B to guarantee that the system is deadlock free?
- 5. (8%) Let *n* processes P_1 , P_2 , ..., P_n with the length of the CPU burst time b_1 , b_2 , ..., b_n arrive at time a_1 , a_2 , ..., a_n , respectively. Suppose that $a_i < a_{i+1} < a_i + b_i$. What is the average waiting time (over all processes) for the first-come, first-served scheduling algorithm?
- 6. (12%) Let *R* be a reference string consisting of 6 different pages.
 - (a) (2%) What is the minimum number of page faults for an optimal page-replacement strategy with 4 page frames if the length of *R* is 500?
 - (b) (2%) What is the maximum number of page faults for an optimal page-replacement strategy with 4 page frames if the length of R is 500?
 - (c) (8%) What is the maximum number of page faults (shown in a closed form) for an optimal page-replacement strategy with 4 page frames if the length of R is n?
- 7. (10%) The following questions are about computer arithmetic.
 - (a) (5%) Perform $-2_{\text{ten}} \times 3_{\text{ten}}$ (both numbers are given in decimal) by first converting the numbers to the 4-bit two's complement ones and then using Booth's algorithm to get the 8-bit product.
 - (b) (5%) Convert the IEEE 754 single precision floating-point number C0F40000, represented in hexadecimal, to its equivalent decimal number.
- 8. (6%) The following questions are about finite state machines.
 - (a) (2%) A sequential circuit is to output 1 when the amount of 1's received at the input is an even number (≥0); otherwise the output is 0. What is the minimum number of states for the circuit?
 - (b) (2%) Given a Moore machine with 3 states, how many different state assignments are there if 2 flip-flops are used to encode the states of the machine?
 - (c) (2%) Given a Mealy machine with 5 input bits, 2 flip-flops, and 8 output bits, what is the maximum number of different patterns that can be observed on the machine's outputs?

97 學年度 __資訊工程學 系 (所) ___________组碩士班入學考試

- 9. (8%) Company ABC tests a computer product by repeatedly running a program that takes 80 seconds to execute. Of this execution time, 30% is used for memory access instructions, 40% for arithmetic instructions, and 30% for other tasks. Suppose the company is going to enhance the product, and there are two possible improvements: the first one is to make arithmetic instructions run 4 times faster than before, and the second one is to make memory access instructions run 3 times faster than before.
 - (a) (4%) What will the speedup be if the improvement on memory access is made?
 - (b) (4%) What will the speedup be if both improvement techniques are used?
- 10. (10%) Consider the following MIPS instruction sequence:

lw \$2, 20(\$1) // \$2
$$\leftarrow$$
 Memory[\$1 + 20] add \$4, \$2, \$5 // \$4 \leftarrow \$2 + \$5

The input operand to add, i.e. \$2, depends on the output operand of 1w. If this instruction sequence is executed in a 5-stage pipeline as shown below, the input operand \$2 to add will not be ready from 1w. The execution will be incorrect. The design of the following circuit will *stall* the pipeline by inserting a "pipeline bubble" so that the output operand from 1w can be forwarded to add in time.

- (a) (5%) Explain how the circuit works to insert a bubble between 1w and add in the pipeline.
- (b) (5%) Suppose the circuit does not insert a bubble and let the instruction following the 1w to continue executing, even if they are dependant. Explain how the compiler can do to ensure the correctness of the execution.

科目 計算機系統 科目代碼 2002 共 4 頁第 4 頁 *請在【答案卷卡】內作答

- 11. (a) (4%) Explain what a translation-lookaside buffer (TLB) does?
 - (b) (4%) Use the diagram of problem 10 as a reference to draw another diagram to show where the TLB should appear in the pipeline.
- 12. (10%) Suppose the loop in the following program segment will be executed 3 times and exit to the label Exit. Each instruction is 32-bit long.

```
and $t1, $s3, $s3
or $t2, $t1, $s2

Loop: add $t3, $t2, $s6
sub $t0, $s2, $s6
bne $t0, $s5, Exit // go to Exit if $t0 ≠ $s5
add $s3, $s3, $s4
j Loop
```

Exit:

Suppose the above code segment is initially stored in the memory. When it is executed, the instructions are loaded into the instruction cache. The instruction cache has 4 blocks in total; each block is 32-bit long. It is organized as a 2-way set associative cache.

- (a) (6%) Trace the execution of this code segment and mark the instructions that will cause a cache miss. Note that the instructions inside the loop will be executed multiple times.
- (b) (4%) For the above misses, identify which ones are compulsory misses and which ones are conflict misses.