jee-main-maths-06-04-2023-shift-2

EE24BTECH11047 - Niketh Prakash Achanta

16) The sum of all values of α , for which the points whose position vectors are $\hat{i} - 2\hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{j} + 4\hat{k}$, $(\alpha + 1)\hat{i} + 2\hat{k}$ and $9\hat{i} + (\alpha - 8)\hat{j} + 6\hat{k}$ are coplanar, is equal to

c) 6

d) 4

b) 2

a) -2

17) Let the line L pass through the point $(0, 1, 2)$, intersect the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and be parallel to the plane $2x + y - 3z = 4$. Then the distance of P (1, -9, 2) from the line L is										
a) 9	b) $\sqrt{54}$	c) $\sqrt{69}$	d) $\sqrt{74}$							
	18) All the letters of the word PUBLIC are written in all possible orders and these words are written as in a dictionary with serial numbers. Then the serial number of the word PUBLIC is:									
a) 580	b) 578	c) 576	d) 582							
19) Let the vectors a , b , c represent three coterminous edges of a parallelepiped of volume V. Then the volume of the parallelepiped, whose coterminous edges are represented by a , b + c and a + 2 b + 3 c is equal to:										
a) 2V	b) 6V	c) 3V	d) V							
	tatements: $^{122} - 1999^{2022}$ is divisi $^{10} - 11n - 13$ is divisi		ely many $n \in \mathbf{N}$							
a) only (S2)b) only (S1)			c) both (S1) and (S2) are incorrect d) both (S1) and (S2) are correct							
22) If $(20)^{19} + 2(20)^{19} + 2(20)^{19}$ 23) Let the eccer $2x^2 - 2y^2 = 2$ length of the	ntricity of an ellipse $\frac{\lambda}{2}$. If the ellipse intersection of the ellipse and $\lambda > 1$, if $\sqrt{\lambda - 1}$.	$0)^{17} + \dots + 20(21)^{19} = \frac{x^2}{x^2} + \frac{y^2}{b^2} = 1$ is recipro ects the hyperbola at llipse is:	= $k (20)^{19}$, then k is equal to exact to that of the hyperbola right angles, then square of circle $ z - \alpha ^2 + z - \beta ^2 = 2\lambda$,							

- 25) Let a curve y = f(x), $x \in (0, \infty)$ pass through the points $\mathbf{P}\left(1, \frac{3}{2}\right)$ and $\mathbf{Q}\left(a, \frac{1}{2}\right)$. If the tangent at any point $\mathbf{R}\left(b, f(b)\right)$ to the given curve cuts the y-axis at the points $\mathbf{S}\left(0, c\right)$ such that bc = 3, then $(PQ)^2$ is equal to
- **S** (0,c) such that bc=3, then $(PQ)^2$ is equal to 26) If the lines $\frac{x-1}{2} = \frac{2-y}{-3} = \frac{z-3}{\alpha}$ and $\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{\beta}$ intersect, then the magnitude of the minimum value of $8\alpha\beta$ is:
- 27) Let $f(x) = \frac{x'}{(1+x^n)^{1/n}}, x \in \mathbb{R} \{-1\}, n \in \mathbb{N}, n > 2$. If $f^n(x) = n(fofof \cdots upto n times)(x)$, then $\lim_{n \to \infty} \int_0^1 x^{n-2} (f^n(x)) dx$ is equal to
- 28) If the mean and variance of the frequency distribution.

x_i	2	4	6	8	10	12	14	16
f_i	4	4	α	15	8	β	4	5

are 9 and 15.08 respectively, then the value of $\alpha^2 + \beta^2 - \alpha\beta$ is

- 29) The number of points, where the curve $y = x^5 20x^3 + 50x + 2$ crosses the x-axis is:
- 30) The number of 4-letter words, with or without meaning, each consisting of 2 vowels and 2 consonants, which can be formed from the letters of the word UNIVERSE without repetition is: