Summary of key points (so far)

1) General supervised learning:

$$\hat{y} = f(\hat{x}) \approx y \dots$$

√ Z(y, ĝ)

2) Success depends on:

quantity & quality of data & features

CV to time hyperparameters (11D)

by test set to further probe generalizability.

4) Leverage your domain knowledge:

better teatures, more robust data, défine success

What about nonlinear classification?

For binary classification, y is no longer continuous, but binomial:

Which split is better?

Determine splits by maximizing information gain (IG)

minimizing weighted impurity, I

$$T(n) = -\sum_{i=0}^{\infty} \rho(i|n) \ln \rho(i|n)$$

$$Concede n = 0 (40, 40)$$

$$T_0 = -\left[\left(\frac{1}{2} \ln \frac{1}{2}\right) + \left(\frac{1}{2} \ln \frac{1}{2}\right)\right]$$

$$= 0.69 \sum_{BB} \frac{1}{2} = x \ln x + (1-x) \ln(1-x)$$

Determine splits by maximizing information gain (IG)

minimizing weighted impurity, I

A
$$(40, 40)$$
 $(40, 40)$ $(30, 10)$ $(10, 30)$ $(20, 40)$ $(20, 0)$ $(20, 0)$ $(30, 10)$ $(40, 40)$ $(20, 40)$

$$TG = 0.69 - \frac{1}{2}0.56 - \frac{1}{2}0.56 = 0.13$$

B)
$$I_{L} = -\left[\frac{1}{3}\ln\frac{1}{3} + \frac{2}{3}\ln\frac{2}{3}\right] = 0.64$$

$$T_{R} = 0$$

$$T_{G} = 0.69 \left(\frac{3}{4}0.64\right) - \frac{1}{4}0 = 0.21$$

Classifying crystal structures

Classifying crystal structures

Finding simple models w/ supervised ML

y – target property (observable)

y – data you find or generate

Finding simple models w/ supervised ML

y – target property (observable)

X – feature space (representation)

y – data you find or generate

X – stuff you hope relates to **y**

Finding simple models w/ supervised ML

y – target property (observable)

X – feature space (representation)

f(X) – model (descriptor)

 $\hat{\mathbf{y}}$ – prediction (model output)

y – data you find or generate

X – stuff you hope relates to **y**

f – the learned mapping of X to y

Goldschmidt's tolerance factor for perovskite stability

For 576 experimentally characterized ABX_3 compounds

New tolerance factor!

For 576 experimentally characterized ABX_3 compounds

Decision trees w/ Goldschmidt's t

Decision trees w/ τ

$$\left[\tau = \frac{r_X}{r_B} - n_A \left(n_A - \frac{r_A/r_B}{\ln r_A/r_B}\right)\right]$$

