# Department of Information Systems and Technologies 2025-2026 Fall Semester

### **CTIS259 Database Management Systems and Applications**

## Lab Guide 04

Instructor: Nimet Ceren SERİM Week: 4

**Assistant**: Engin Zafer KIRAÇBEDEL, Hatice Zehra YILMAZ

Date: 06-07.10.2025

**Aim of this lab session: 1.** Single Row functions

ORACLE Server Configurations: IP Address: 139.179.33.231

Port number: 1522

SID: orclctis

## **PLEASE USE ORAxx accounts**

## Using Single-Row Functions to Customize Output

# Single-Row Functions



### **Character Functions**



Case-Conversion Functions

These functions convert the case for character strings:

| Function              | Result     |
|-----------------------|------------|
| LOWER( SQL Course )   | sql course |
| UPPER( SQL Course )   | SQL COURSE |
| INITCAP( SQL Course ) | Sql Course |

**Using Case-Conversion Functions** 

Display the employee number, name, and department number for employee Higgins:

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';

O rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

@ EMPLOYEE_ID @ LAST_NAME @ DEPARTMENT_ID
1 205 Higgins 110
```

## Character-Manipulation Functions

# These functions manipulate character strings:

| Function                            | Result         |
|-------------------------------------|----------------|
| CONCAT('Hello', 'World')            | HelloWorld     |
| SUBSTR('HelloWorld ,1,5)            | Hello          |
| LENGTH('HelloWorld')                | 10             |
| <pre>INSTR('HelloWorld', 'W')</pre> | 6              |
| LPAD(salary, 10, *)                 | ****24000      |
| RPAD(salary, 10, '*')               | 24000****      |
| REPLACE ('JACK and JUE', 'J', 'BL') | BLACK and BLUE |
| TRIM('H' FROM 'HelloWorld')         | elloWorld      |

# Using the Character-Manipulation Functions



**Numeric Functions** 

- ROUND: Rounds value to a specified decimal
- TRUNC: Truncates value to a specified decimal
- MOD: Returns remainder of division

| Function          | Result |
|-------------------|--------|
| ROUND(45.926, 2)  | 45.93  |
| TRUNC (45.926, 2) | 45.92  |
| MOD(1600, 300)    | 100    |

### Using the **ROUND** Function



DUAL is a public table that you can use to view results from functions and calculations.

## Using the TRUNC Function



Using the MOD Function

For all employees with the job title of Sales Representative, calculate the remainder of the salary after it is divided by 5,000.



## Working with Dates

- The Oracle Database stores dates in an internal numeric format: century, year, month, day, hours, minutes, and seconds.
- The default date display format is DD-MON-RR.
  - Enables you to store 21st-century dates in the 20th century by specifying only the last two digits of the year
  - Enables you to store 20th-century dates in the 21st century in the same way



### **RR** Date Format

| Current Year | Specified Date | RR Format | YY Format |
|--------------|----------------|-----------|-----------|
| 1995         | 27-OCT-95      | 1995      | 1995      |
| 1995         | 27-OCT-17      | 2017      | 1917      |
| 2001         | 27-OCT-17      | 2017      | 2017      |
| 2001         | 27-OCT-95      | 1995      | 2095      |

|                                        | If the specified two-digit year is: |                                                         |                                                                |
|----------------------------------------|-------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
|                                        |                                     | 0–49                                                    | 50–99                                                          |
| If two digits of the current year are: | 0-49                                | The return date is in the current century               | The return date is in<br>the century before the<br>current one |
|                                        | 50-99                               | The return date is in the century after the current one | The return date is in the current century                      |

### Using the **SYSDATE** Function

#### SYSDATE is a function that returns:

- Date
- Time



SYSDATE
1 10-JUN-09

### Arithmetic with Dates

- Add to or subtract a number from a date for a resultant date value.
- Subtract two dates to find the number of days between those dates.
- Add hours to a date by dividing the number of hours by 24.

# Using Arithmetic Operators with Dates

|       | <del></del> | (SYSDATE-hire_date)/7 AS WEEKS |
|-------|-------------|--------------------------------|
|       | employees   |                                |
| WHERE | department_ | _id = 90;                      |

| [2  | LAST_NAME | 9                                         |
|-----|-----------|-------------------------------------------|
| 1 K | King      | 1147.102432208994708994708994708994708995 |
| 2 K | Kochhar   | 1028.959575066137566137566137566137566138 |
| 3 0 | De Haan   | 856.102432208994708994708994708994708995  |

# **Date-Manipulation Functions**

| Function       | Result                             |
|----------------|------------------------------------|
| MONTHS_BETWEEN | Number of months between two dates |
| ADD_MONTHS     | Add calendar months to date        |
| NEXT_DAY       | Next day of the date specified     |
| LAST_DAY       | Last day of the month              |
| ROUND          | Round date                         |
| TRUNC          | Truncate date                      |

# **Using Date Functions**

| Function                                 | Result      |
|------------------------------------------|-------------|
| MONTHS_BETWEEN ('01-SEP-95','11-JAN-94') | 19.6774194  |
| ADD_MONTHS ('31-JAN-96',1)               | '29-FEB-96' |
| NEXT_DAY ('01-SEP-95','FRIDAY')          | '08-SEP-95' |
| LAST_DAY ('01-FEB-95')                   | '28-FEB-95' |

# Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03':

| Function                  | Result    |
|---------------------------|-----------|
| ROUND (SYSDATE, 'MONTH')  | 01-AUG-03 |
| ROUND (SYSDATE , 'YEAR')  | 01-JAN-04 |
| TRUNC (SYSDATE , 'MONTH') | 01-JUL-03 |
| TRUNC (SYSDATE , 'YEAR')  | 01-JAN-03 |

## **Conversion Functions**



Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the following:

| From             | То     |
|------------------|--------|
| VARCHAR2 or CHAR | NUMBER |
| VARCHAR2 or CHAR | DATE   |

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically convert the following:

| From   | То               |
|--------|------------------|
| NUMBER | VARCHAR2 or CHAR |
| DATE   | VARCHAR2 or CHAR |

# **Explicit Data Type Conversion**



Using the TO CHAR Function with Dates

TO\_CHAR(date, 'format\_model')

### The format model:

- Must be enclosed with single quotation marks
- Is case-sensitive
- Can include any valid date format element
- Has an fm element to remove padded blanks or suppress leading zeros
- Is separated from the date value by a comma

# Elements of the Date Format Model

| Element | Result                                           |
|---------|--------------------------------------------------|
| YYYY    | Full year in numbers                             |
| YEAR    | Year spelled out (in English)                    |
| MM      | Two-digit value for the month                    |
| MONTH   | Full name of the month                           |
| MON     | Three-letter abbreviation of the month           |
| DY      | Three-letter abbreviation of the day of the week |
| DAY     | Full name of the day of the week                 |
| DD      | Numeric day of the month                         |

#### Elements of the Date Format Model

Time elements format the time portion of the date:

```
HH24:MI:SS AM 15:45:32 PM
```

 Add character strings by enclosing them with double quotation marks:

```
DD "of" MONTH 12 of OCTOBER
```

Number suffixes spell out numbers:

```
ddspth fourteenth
```

Using the TO CHAR Function with Dates



Using the TO CHAR Function with Numbers

```
TO_CHAR(number, 'format_model')
```

These are some of the format elements that you can use with the TO\_CHAR function to display a number value as a character:

| Element | Result                                  |
|---------|-----------------------------------------|
| 9       | Represents a number                     |
| 0       | Forces a zero to be displayed           |
| \$      | Places a floating dollar sign           |
| L       | Uses the floating local currency symbol |
|         | Prints a decimal point                  |
| '       | Prints a comma as a thousands indicator |

# Using the TO CHAR Function with Numbers

```
SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';
```

```
$ SALARY
1 $6,000.00
```

## Using the TO NUMBER and TO DATE Functions

 Convert a character string to a number format using the TO NUMBER function:

```
TO_NUMBER(char[, 'format_model'])
```

Convert a character string to a date format using the TO\_DATE function:

```
TO_DATE(char[, 'format_model'])
```

 These functions have an fx modifier. This modifier specifies the exact match for the character argument and date format model of a TO\_DATE function.

# Using the **TO\_CHAR** and **TO\_DATE** Function with the **RR** Date Format

To find employees hired before 1990, use the RR date format, which produces the same results whether the command is run in 1999 or now:

```
SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');</pre>
```



# **Nesting Functions**

- Single-row functions can be nested to any level.
- Nested functions are evaluated from the deepest level to the least deep level.



# Nesting Functions: Example 1

```
SELECT last name,
    UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))
FROM employees
WHERE department_id = 60;
```

|   | LAST_NAME | UPPER(CONCAT(SUBSTR(LAST_NAME,1,8),'_US')) |
|---|-----------|--------------------------------------------|
| 1 | Hunold    | HUNOLD_US                                  |
| 2 | Ernst     | ERNST_US                                   |
| 3 | Lorentz   | LORENTZ_US                                 |

# Nesting Functions: Example 2

```
SELECT TO_CHAR(ROUND((salary/7), 2),'99G999D99',

'NLS_NUMERIC_CHARACTERS = '',.'' ')

"Formatted Salary"

FROM employees;
```

|   | Formatted Salary |
|---|------------------|
| 1 | 628,57           |
| 2 | 1.857,14         |
| 3 | 857,14           |
| 4 | 1.714,29         |
| 5 | 1.185,71         |
| 6 | 3.428,57         |

. . .