

BİÇİMSEL DİLLER VE OTOMATA TEORİSİ

Biçimsel Diller ve Otomata Teorisi 5. Hafta

DR. ÖĞR. ÜYESİ. HÜSEYİN VURAL

Ders İzlencesi

NFA-DFA

DFA Tanımı

• $M = (Q, \Sigma, \delta, q_0, F)$

- 1.) Q, sonlu durumlar kümesidir. Otomatın bulunabileceği durumları gösterir.
- 2.) Σ, alfabeyi gösterir.
- 3.) $\delta: Q \times \Sigma \to Q$. $\delta(delta)$ geçiş fonksiyonudur
- 4.) q₀ başlangıç durumunu gösterir
- 5.) F, kabul durumlarının kümesini gösterir.

NFA Tanımı

• $M = (Q, \Sigma, \delta, q_0, F)$

- 1.) Q, sonlu durumlar kümesidir. Otomatın bulunabileceği durumları gösterir.
- 2.) Σ, alfabeyi gösterir.
- 3.) $\delta: Q \times \Sigma_{\epsilon} \rightarrow P(Q)$. $\delta(delta)$ geçiş fonksiyonudur
- 4.) q₀ başlangıç durumunu gösterir
- 5.) F, kabul durumlarının kümesini gösterir.

- N1 = (Q, Σ , δ , q_0 , F)
 - Q = $\{q_1, q_2, q_3, q_4\}$
 - $\Sigma = \{0,1\}$
 - q_1 = başlangıç durumu
 - $F = \{ q_4 \}$

- δ : geçiş fonksiyonu'nun
- tablo ile gösterimi

	0	1	ε
q_1	ql	q1,q2	Ø
q_2	q3	Ø	q3
q_3	Ø	q4	Ø
Q_4	q4	q4	Ø

NFA-DFA

 DFA ve NFA'ın amacı dilleri tanımlayabilen otomatların oluşturulmasıdır.

• Bu amaca yönelik geliştirilmiş matematiksel modellerdir.

 Eğer iki otomat aynı dili tanımlayabiliyorsa o zaman bu 2 otomat birbirinin eşleniğidir.

NFA-DFA

 NFA her ne kadar DFA'ya göre modellenmesi daha basit olsa da NFA'ın tanımladığı her dili DFA'da tanımlamak mümkündür.

• Bu nedenle her NFA'ın bir eşlenik DFA'sı vardır.

• Eğer bir dil her hangi bir NFA tarafından tanımlanabiliyorsa o zaman bu dil için **düzenli dil** denilmektedir.

NFA-DFA Örneği

- Aşağıdaki NFA'yı DFA'ya çevirelim
- $\begin{array}{c}
 \bullet \{1\} \xrightarrow{a} \{1,2\} \\
 \bullet \{1\} \xrightarrow{b} \{2\}
 \end{array}$
- $\{2\} \xrightarrow{\alpha} \emptyset$
- $\{2\} \xrightarrow{b} \{1\}$
- $\{1,2\} \xrightarrow{\alpha} \{1,2\}$
- $\{1,2\} \xrightarrow{b} \{1,2\}$

Kabul durumu: {1}

- Kabul durumu: {1}
- $\{1\} \xrightarrow{\alpha} \{1,2\}$

- Kabul durumu: {1}
- $\{1\} \xrightarrow{\alpha} \{1,2\}$
- $\{1\}$ \xrightarrow{b} $\{2\}$

- Kabul durumu: {1}
- $\{1\} \xrightarrow{a} \{1,2\}$
- $\{1\}$ \xrightarrow{b} $\{2\}$
- $\{2\} \xrightarrow{a} \emptyset$

- Kabul durumu: {1}
- $\{1\} \xrightarrow{\alpha} \{1,2\}$
- $\{1\}$ \xrightarrow{b} $\{2\}$
- $\{2\} \xrightarrow{\alpha} \emptyset$
- $\{2\} \xrightarrow{b} \{1\}$

- Kabul durumu: {1}
- $\{1\} \xrightarrow{\alpha} \{1,2\}$

$$\{1,2\} \xrightarrow{\alpha} \{1,2\}$$

•
$$\{1\}$$
 \xrightarrow{b} $\{2\}$

•
$$\{2\} \xrightarrow{\alpha} \emptyset$$

•
$$\{2\} \xrightarrow{b} \{1\}$$

- Kabul durumu: {1}
- $\{1\} \xrightarrow{\alpha} \{1,2\}$

•
$$\{1\}$$
 \xrightarrow{b} $\{2\}$

•
$$\{2\} \xrightarrow{\alpha} \emptyset$$

•
$$\{2\} \xrightarrow{b} \{1\}$$

$$\{1,2\}$$
 \bigcirc $\{1,2\}$

$$\{1,2\} \xrightarrow{b} \{1,2\}$$

Aşağıdaki NFA'yı DFA'ya çevirelim

- Durum kümesi: {1,2,3}
- Alfabe: 0,1
- Geçiş fonksiyonu: δ
- Başlangıç durumu: 1
- Kabul durumu: 1

Aşağıdaki NFA'yı DFA'ya çevirelim

- NFA'da ki 3 durum için DFA'da en fazla 2ⁿ durum olabilir.
- DFA durumlarının kümesi: {Ø}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}

- Kabul durumu: {1,3}
- $\{1,3\}$ \longrightarrow $\{1,3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ $\xrightarrow{\Box}$ $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$

- Kabul durumu: {1,3}

- $\{1,3\}$ $\xrightarrow{\Box}$ $\{1,3\}$ $\{1,3\}$ $\xrightarrow{\Box}$ $\{2\}$ $\{2\}$ $\xrightarrow{\Box}$ $\{2,3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ $\xrightarrow{\Box}$ $\{1,3\}$ $\{1,3\}$ $\xrightarrow{\Box}$ $\{2\}$
- $\begin{array}{ccc}
 \bullet & \{2\} & \xrightarrow{\Box} & \{2,3\} \\
 \bullet & \{2\} & \xrightarrow{b} & \{3\}
 \end{array}$

- Kabul durumu: {1,3}
- $\{1,3\}$ $\xrightarrow{\Box}$ $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$
- $\bullet \quad \{2\} \quad \xrightarrow{\mathsf{Q}} \quad \{2,3\}$
- $\{2\}$ \longrightarrow $\{3\}$
- $\{2,3\} \xrightarrow{\square} \{1,2,3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ \xrightarrow{a} $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$
- $\bullet \quad \{2\} \quad \xrightarrow{\mathsf{Q}} \quad \{2,3\}$
- $\{2\}$ $\xrightarrow{b} \{3\}$
- $\{2,3\}$ \xrightarrow{a} $\{1,2,3\}$ $\{2,3\}$ \xrightarrow{b} $\{3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ \xrightarrow{a} $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$
- $\{2\}$ $\xrightarrow{\mathsf{C}}$ $\{2,3\}$
- $\{2\}$ $\xrightarrow{b} \{3\}$
- $\{2,3\}$ $\xrightarrow{\Box}$ $\{1,2,3\}$ $\{2,3\}$ $\xrightarrow{\Box}$ $\{3\}$
- $\{3\}$ $\xrightarrow{\alpha} \{1,3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ \xrightarrow{a} $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$
- {2} $\xrightarrow{\alpha}$ {2,3}
- $\{2\}$ $\xrightarrow{b} \{3\}$
- $\{2,3\}$ $\xrightarrow{\Box}$ $\{1,2,3\}$ $\{2,3\}$ $\xrightarrow{\Box}$ $\{3\}$
- $\begin{array}{ccc}
 \bullet & \{3\} & \xrightarrow{\Box} & \{1,3\} \\
 \bullet & \{3\} & \xrightarrow{b} & \emptyset
 \end{array}$

• Kabul durumu: {1,3}

•
$$\{1,3\}$$
 \xrightarrow{a} $\{1,3\}$
• $\{1,3\}$ \xrightarrow{b} $\{2\}$

•
$$\{1,3\} \xrightarrow{\mathsf{D}} \{2\}$$

• {2}
$$\xrightarrow{\alpha}$$
 {2,3}

•
$$\{2\}$$
 $\xrightarrow{b} \{3\}$

•
$$\{2,3\}$$
 $\xrightarrow{\Box}$ $\{1,2,3\}$
• $\{2,3\}$ $\xrightarrow{\Box}$ $\{3\}$

•
$$\{2,3\} \longrightarrow \{3\}$$

•
$$\{3\}$$
 $\stackrel{\square}{\longrightarrow} \{1,3\}$

•
$$\{3\}$$
 \xrightarrow{b} \emptyset

•
$$\{1,2,3\}$$
 \longrightarrow $\{1,2,3\}$

• Kabul durumu: {1,3}

•
$$\{1,3\}$$
 $\xrightarrow{\square}$ $\{1,3\}$
• $\{1,3\}$ $\xrightarrow{\square}$ $\{2\}$

•
$$\{1,3\} \xrightarrow{\mathsf{D}} \{2\}$$

• {2}
$$\xrightarrow{Q}$$
 {2,3}

•
$$\{2\}$$
 $\xrightarrow{b} \{3\}$

•
$$\{2,3\}$$
 \xrightarrow{a} $\{1,2,3\}$
• $\{2,3\}$ \xrightarrow{b} $\{3\}$

•
$$\{3\}$$
 \longrightarrow $\{1,3\}$

•
$$\{3\}$$
 \xrightarrow{b} \emptyset

•
$$\{1,2,3\}$$
 \xrightarrow{a} $\{1,2,3\}$
• $\{1,2,3\}$ \xrightarrow{b} $\{2,3\}$

•
$$\{1,2,3\}$$
 \longrightarrow $\{2,3\}$

- Kabul durumu: {1,3}
- $\{1,3\}$ $\xrightarrow{\Box}$ $\{1,3\}$ $\{1,3\}$ \xrightarrow{b} $\{2\}$
- $\{2\}$ $\xrightarrow{\square}$ $\{2,3\}$
- $\{2\}$ \xrightarrow{b} $\{3\}$
- $\{2,3\}$ $\xrightarrow{\Box}$ $\{1,2,3\}$ $\{2,3\}$ $\xrightarrow{\Box}$ $\{3\}$
- $\{3\}$ \longrightarrow $\{1,3\}$
- $\{3\}$ \xrightarrow{b} \emptyset
- $\{1,2,3\}$ $\xrightarrow{\text{C}}$ $\{1,2,3\}$ $\{1,2,3\}$ $\xrightarrow{\text{b}}$ $\{2,3\}$

Aşağıdaki NFA'yı DFA'ya çevirelim

•
$$\{1,2\} \xrightarrow{\alpha} \{1,2,3\}$$

•
$$\{1,2\} \xrightarrow{b} \emptyset$$

•
$$\{1,2,3\}$$
 $\stackrel{\text{a}}{\longrightarrow} \{1,2,3\}$

•
$$\{1,2,3\} \xrightarrow{b} \{2,3\}$$

•
$$\{2,3\}$$
 $\stackrel{\circ}{\longrightarrow}$ $\{1,2\}$

•
$$\{2,3\}$$
 \xrightarrow{b} $\{2,3\}$

Aşağıdaki M1 DFA örneği için geçiş tablosunu oluşturun.

Geçiş tablosu

	а	b
q1	q2	q1
q2	q3	q3
q3	q2	q1

Aşağıdaki M2 DFA örneği için geçiş tablosunu oluşturun.

Geçiş tablosu

	a	b
q1	q1	q2
q2	q3	q4
q3	q2	q1
q4	q3	q4

• M DFA'sının tanımı şu şekildedir. $M = (Q, \Sigma, \delta, q_0, F)$

- 1.) Q: {q₁, q₂, q₃, q₄, q₅}
- 2.) $\Sigma : \{ \cup, d \}$
- 3.) δ(delta) geçiş fonksiyonu
- 4.) q₀ başlangıç durumu: q₃
- 5.) *F*, kabul durumu: {q₃}

• 3. Madde'de ki geçiş tablosu aşağıda verilen M otomatının diyagramını çiziniz.

• 3.) δ(delta) aecis fonksivonu

	U	d
ql	q1	q2
q2	ql	q3
q3	q2	q4
q4	q3	q 5
q 5	q4	q 5

M Otomati

 Alfabesinde {a,b} karakterlerini bulunduran ve ab substringini içermeyen DFA otomatının diyagramını çiziniz. Durum sayısını, başlangıç ve kabul durum veya durumlarını kendiniz belirleyeceksiniz.

• ab substringini içeren DFA otomatı

• ab substringini içermeyen DFA otomatı

DERS SONU

Non-Deterministic Finite Automata

Dr. Öğr. Üyesi Hüseyin VURAL