```
In [83]:
```

```
import os
import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import chi2_contingency
import matplotlib as plt
import matplotlib.pyplot as plt2
import seaborn as sns
import sys
In [84]:

if not sys.warnoptions:
```

```
if not sys.warnoptions:
    import warnings
    warnings.simplefilter("ignore")
```

In [85]:

```
os.chdir("G:/Project/Bike-Sharing-Dataset")
```

In [86]:

```
bike_sharing_train = pd.read_csv("day.csv")
```

In [87]:

```
print('Shape of our dataset:')
print(bike_sharing_train.shape,'\n')
```

```
Shape of our dataset: (731, 16)
```

Exploratory Data Analysis

```
In [88]:
```

```
print('*'*25,'Exploratory Data Analysis: ','*'*25,'\n')
```

In [89]:

```
print('Column / Variable Names:')
print(bike_sharing_train.columns)

Column / Variable Names:
Index(['instant', 'dteday', 'season', 'yr', 'mnth', 'holida
```

In [90]:

```
# Showing 1st few rows of our dataset
print('Showing 1st few rows of our dataset: \n')
print(bike_sharing_train.head(5))
```

Showing 1st few rows of our dataset:

	instan	+	d±eday.	season	vn	mn+h	holiday	weekday	W
or	kingday		uceday	3Ca3011	уı	11111111	поттиау	weekuay	W
0			011-01-01	1	0	1	0	6	
0									
1		2 2	011-01-02	1	0	1	0	0	
0									
2		3 2	.011-01-03	1	0	1	0	1	
1					_		•	•	
3 1		4 2	011-01-04	1	0	1	0	2	
4		5 2	011-01-05	1	0	1	0	3	
1		<i>5</i>	.011 01 05	_	U	_	O	,	
_									
	weathe	rsit	temp	ate	emp	h	um windsp	peed ca	sua
1	regist	ered	l \						
0		2	0.344167	0.3636	525	0.8058	33 0.160	3446	33
1		654							
1		2		0.3537	739	0.6960	87 0.248	3539	13
1		670		0 100				2200	4.0
2		1		0.1894	105	0.4372	73 0.248	3309	12
0 3		1229 1		0.2121	22	0.5904	35 0.160	2206	10
8		ـ 1454		0.2121	L Z Z	0.3304	0.100	7290	10
4		1		0.2292	70	0.4369	57 0.186	5900	8
2		_ 1518		••				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	cnt								
0	985								
1	801								
2	1349								
3	1562								
4	1600								

In [91]:

```
print("Basic info about dataset:\n")
print(bike_sharing_train.info())
```

Basic info about dataset:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 731 entries, 0 to 730
Data columns (total 16 columns):
              731 non-null int64
instant
              731 non-null object
dteday
              731 non-null int64
season
              731 non-null int64
yr
              731 non-null int64
mnth
holiday
              731 non-null int64
weekday
              731 non-null int64
workingday
              731 non-null int64
weathersit
              731 non-null int64
              731 non-null float64
temp
              731 non-null float64
atemp
hum
              731 non-null float64
              731 non-null float64
windspeed
              731 non-null int64
casual
              731 non-null int64
registered
              731 non-null int64
cnt
dtypes: float64(4), int64(11), object(1)
memory usage: 91.5+ KB
```

None

In [92]:

```
print("Checking the data types of the variables:\n")
print(bike_sharing_train.dtypes,'\n')
```

Checking the data types of the variables:

instant	int64
dteday	object
season	int64
yr	int64
mnth	int64
holiday	int64
weekday	int64
workingday	int64
weathersit	int64
temp	float64
atemp	float64
hum	float64
windspeed	float64
casual	int64
registered	int64
cnt	int64

In [93]:

```
print("Converting the varibales to it's proper data type: \n\nAfter Convert
bike_sharing_train['season'] = bike_sharing_train['season'].astype('category')
bike_sharing_train['yr'] = bike_sharing_train['yr'].astype('category')
bike_sharing_train['mnth'] = bike_sharing_train['mnth'].astype('category')
bike_sharing_train['weekday'] = bike_sharing_train['weekday'].astype('category')
bike_sharing_train['workingday'] = bike_sharing_train['workingday'].astype('bike_sharing_train['weathersit'] = bike_sharing_train['weathersit'].astype('bike_sharing_train['holiday'] = bike_sharing_train['holiday'].astype('category')
bike_sharing_train['temp'] = bike_sharing_train['temp'].astype('float')
bike_sharing_train['atemp'] = bike_sharing_train['atemp'].astype('float')
bike_sharing_train['hum'] = bike_sharing_train['hum'].astype('float')
bike_sharing_train['windspeed'] = bike_sharing_train['windspeed'].astype('float')
print(bike_sharing_train['cnt'] = bike_sharing_train['cnt'].astype('float')
```

Converting the varibales to it's proper data type:

After Convertion:

instant	int64
dteday	object
season	category
yr	category
mnth	category
holiday	category
weekday	category
workingday	category
weathersit	category
temp	float64
atemp	float64
hum	float64
windspeed	float64
casual	int64
registered	int64
cnt	float64
<pre>dtype: object</pre>	

In [94]:

```
categorical = ['season','yr','mnth','holiday','weekday','workingday','weathout of each categorical variable in our data is as follows:\n')
[print(bike_sharing_train[i].value_counts(),'\n\n') for i in categorical]
```

```
Count of each categorical variable in our data is as follo
ws:
3
     188
2
     184
1
     181
4
     178
Name: season, dtype: int64
1
     366
0
     365
Name: yr, dtype: int64
12
      62
10
      62
8
      62
7
      62
5
      62
3
      62
1
      62
11
      60
9
      60
6
      60
4
      60
2
      57
Name: mnth, dtype: int64
0
     710
1
      21
Name: holiday, dtype: int64
6
     105
     105
1
     105
0
5
     104
4
     104
3
     104
2
     104
Name: weekday, dtype: int64
```

```
    500
    231
```

Name: workingday, dtype: int64

463
 247
 21

Name: weathersit, dtype: int64

Out[94]:

[None, None, None, None, None, None]

In [95]:

```
# Count of each category of a categorical variable
print("Checking count of each category of categorical variables in dataset\"
sns.set_style("whitegrid")

def check_count_of_category(categorical_var):
    ax = sns.factorplot(data=bike_sharing_train, x=categorical_var, kind='
    title = "Count of each category of "+categorical_var+" variable in 2yea
    plt2.title(title)
    plt2.show()
[check_count_of_category(i) for i in categorical]
```

Checking count of each category of categorical variables in dataset

Out[95]:

[None, None, None, None, None, None]

Univariate & Bivariate analysis

In [96]:

```
numeric = ['temp','atemp','hum','windspeed','casual','registered','cnt']
print("Descriptive statistics about the numeric columns:")
print(bike_sharing_train[numeric].describe(),'\n')
```

Descriptive statistics about the numeric columns: temp atemp hum windspeed c								
asual	\							
count 00000	731.000000	731.000000 7	31.000000	731.000000	731.0			
mean 76471	0.495385	0.474354	0.627894	0.190486	848.1			
std 22488	0.183051	0.162961	0.142429	0.077498	686.6			
min 00000	0.059130	0.079070	0.000000	0.022392	2.0			
25% 00000	0.337083	0.337842	0.520000	0.134950	315.5			
50% 00000	0.498333	0.486733	0.626667	0.180975	713.0			
75% 00000	0.655417	0.608602	0.730209	0.233214	1096.0			
max 00000	0.861667	0.840896	0.972500	0.507463	3410.0			
	registered	cnt						
count	731.000000	731.000000						
mean	3656.172367	4504.348837						
std	1560.256377	1937.211452						
min	20.000000	22.000000						
25%	2497.000000	3152.000000						
50%	3662.000000	4548.000000						
75%	4776.500000	5956.000000						
max	6946.000000	8714.000000						

In [97]:

```
print("Univariate analysis of numerical variables")
def dist_plot(i):
    sns.distplot(bike_sharing_train[i])
    title = "Distribution of "+ i + " variable"
    plt2.title(title)
    plt2.show()

num = ['temp','atemp','hum','windspeed']
[dist_plot(i) for i in num]
```

Univariate analysis of numerical variables

Out[97]:

[None, None, None]

In [98]:

```
print("Bivariate analysis of numerical variables")
sns.pairplot(bike_sharing_train[numeric])
plt2.show()
```

Bivariate analysis of numerical variables

For Month

In [99]:

```
# Month
fig, ax = plt2.subplots(nrows = 1, ncols = 1, figsize= (9,5), squeeze=False
x1 = 'mnth'
y1='cnt'
sns.barplot(x= x1, y = y1, data = bike_sharing_train, ax=ax[0][0])
title = "Demand of bikes in different months"
plt2.title(title)
plt2.show()
```


In [100]:

```
yr_0 = bike_sharing_train.loc[bike_sharing_train['yr'] == 0]
yr_1 = bike_sharing_train.loc[bike_sharing_train['yr'] == 1]
```

In [101]:

```
fig, ax = plt2.subplots(nrows = 1, ncols = 2, figsize= (12,4), squeeze=False
fig.suptitle("Demand of bikes in different months in year 2011 & 2012")
x1 = 'mnth'
y1='cnt'
sns.barplot(x= x1, y = y1, data = yr_0, ax=ax[0][0])
sns.barplot(x= x1, y = y1, data = yr_1, ax=ax[0][1])
plt2.show()
```


For Weekday

In [102]:

```
fig, ax = plt2.subplots(nrows = 1, ncols = 1, figsize= (9,4), squeeze=False
fig.suptitle("Demand of bikes in different days of a week")
x1 = 'weekday'
y1='cnt'
sns.barplot(x= x1, y = y1, data = bike_sharing_train, ax=ax[0][0])
```

Out[102]:

<matplotlib.axes._subplots.AxesSubplot at 0x209c4cc0400>

In [103]:

print("From figures we can categorize 5-10th month as one category and rest
print("Similarly,in weekday variables; workindays can be categorized as one

From figures we can categorize 5-10th month as one category and rest months as another category.

Similarly, in weekday variables; workindays can be categorized as one and weekends as another category. As in working days demand of bikes found high than weekends.

In [104]:

```
# Keep on adding the unwanted variables (that we will get by applying differ # will finally we will remove from our dataset remove = ['instant','dteday']
```

Missing Value Analysis

```
In [105]:
print('*'*25,'Missing Value Analysis: ','*'*25,'\n')
************************ Missing Value Analysis:
                                                    ******
******
In [106]:
missing val = pd.DataFrame(bike sharing train.isnull().sum())
In [107]:
print('Missing values in our dataset: \n')
print(missing val)
Missing values in our dataset:
            0
instant
            0
            0
dteday
season
            0
yr
            0
mnth
holiday
            0
weekday
workingday
            0
weathersit
temp
            0
            0
atemp
            0
hum
            0
windspeed
casual
            0
registered
            0
cnt
In [108]:
print("No missing values present in our dataset")
```

No missing values present in our dataset

Outlier Analysis

In [109]:

In [110]:

```
# Check for outliers in data using boxplot
sns.boxplot(data=bike_sharing_train[['temp','atemp','windspeed','hum']])
fig=plt2.gcf()
title = "Checking outliers in numerical variables"
plt2.title(title)
fig.set_size_inches(6,6)
```


In [111]:

```
print("Outliers found in windspeed and humidity variable")
```

Outliers found in windspeed and humidity variable

In [112]:

```
# Numeric Variables
num = ['temp','atemp','hum','windspeed']
```

In [113]:

```
# Removing the outliers
for i in num:
    q75, q25 = np.percentile(bike_sharing_train[i], [75, 25])
    iqr = q75 - q25
    minimum = q25 - (iqr*1.5)
    maximum = q75 + (iqr*1.5)

bike_sharing_train = bike_sharing_train.drop(bike_sharing_train[bike_sharing_train = bike_sharing_train.drop(bike_sharing_train[bike_sharint])
print("Outliers removed")
```

Outliers removed

Feature Engineering

In [114]:

```
bike_sharing_train.head()
```

Out[114]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weath
0	1	2011- 01-01	1	0	1	0	6	0	
1	2	2011- 01-02	1	0	1	0	0	0	
2	3	2011- 01-03	1	0	1	0	1	1	
3	4	2011- 01-04	1	0	1	0	2	1	
4	5	2011- 01-05	1	0	1	0	3	1	
4									•

In [115]:

```
categorical = ['season','yr','mnth','holiday','weekday','workingday','weath
```

In [116]:

```
# Creating new variables through binning
def binned_month(row):
    if row['mnth'] <= 4 or row['mnth'] >=11:
        return(0)
    else:
        return(1)

def binned_weekday(row):
    if row['weekday'] < 2:
        return(0)
    else:
        return(1)</pre>
```

In [117]:

```
bike_sharing_train['month_binned'] = bike_sharing_train.apply(lambda row :
bike_sharing_train = bike_sharing_train.drop(columns=['mnth'])
bike_sharing_train['weekday_binned'] = bike_sharing_train.apply(lambda row
bike_sharing_train = bike_sharing_train.drop(columns=['weekday'])
```

In [118]:

```
categorical.remove('mnth')
categorical.remove('weekday')
categorical.append('month_binned')
categorical.append('weekday_binned')
```

Feature Selection

```
In [119]:
```

```
bike_sharing_train.columns
```

```
Out[119]:
```

Correlation Analysis

In [120]:

```
df_corr = bike_sharing_train[numeric]
```

In [121]:

Out[121]:

Text(0.5, 1.0, 'Correlation analyss of numerical variables the rough heatmap')

In [122]:

```
print("From correlation analysis we found,\n 1.temp and atemp are highly
```

From correlation analysis we found,

- 1.temp and atemp are highly correlated.
- 2.registered and cnt also showing high correlation.

In [123]:

```
remove.extend(['atemp','casual','registered'])
```

Chi-square test

In [124]:

```
print("Chi-square Test\n1. Null Hypothesis: Two variables are independent\n2
print("That means p < 0.05 means two categorical variables are dependent, so
</pre>
```

Chi-square Test

- 1. Null Hypothesis: Two variables are independent
- 2. Alternate Hypothesis: Two variables are not independent
- p-value < 0.05 , can not accept null hypothesis

That means p < 0.05 means two categorical variables are dependent, so we will remove one of variable from that pair to avoid sending the same information to our model through 2 variables

In [125]:

```
# Create all combinations
factors_paired = [(i,j) for i in categorical for j in categorical]
```

In [126]:

```
# Calculating p-values for each pair
p values = []
from scipy.stats import chi2 contingency
for factor in factors paired:
    if factor[0] != factor[1]:
        chi2, p, dof, ex = chi2 contingency(pd.crosstab(bike sharing train[
                                                     bike_sharing_train[factor
        if(p<0.05):
            p values.append({factor:p.round(3)})
    else:
        p values.append('-')
[print(i,'\n') for i in p values if i != '-']
{('season', 'weathersit'): 0.013}
{('season', 'month binned'): 0.0}
{('holiday', 'workingday'): 0.0}
{('holiday', 'weekday_binned'): 0.0}
{('workingday', 'holiday'): 0.0}
{('workingday', 'weekday_binned'): 0.0}
{('weathersit', 'season'): 0.013}
{('month_binned', 'season'): 0.0}
{('weekday binned', 'holiday'): 0.0}
{('weekday_binned', 'workingday'): 0.0}
Out[126]:
[None, None, None, None, None, None, None, None, None]
In [127]:
print("Season with Weathersit-Month\nHoliday with Worikingday-Weekday\nWork
Season with Weathersit-Month
```

Holiday with Worikingday-Weekday Workingday with Weekday-Holiday

In [128]:

```
bike_sharing_train.columns
```

Out[128]:

Importance of Features

In [129]:

```
from sklearn.ensemble import RandomForestClassifier
  clf = RandomForestClassifier(random_state=0, n_jobs=-1)
X = bike_sharing_train.drop(columns=['cnt','casual','registered','instant',
y = bike_sharing_train['cnt']
model = clf.fit(X, y)
importances = model.feature_importances_
```

In [130]:

```
X.columns
```

Out[130]:

```
In [131]:
```

```
print("Checking feature importance: \n")
l = list(zip(X,importances))
l.sort(key = lambda x: x[1])
[print(i[0]," : ",i[1].round(3)) for i in 1]
Checking feature importance:
```

```
holiday: 0.008
month_binned: 0.024
weekday_binned: 0.031
workingday: 0.033
yr: 0.037
weathersit: 0.04
season: 0.045
windspeed: 0.188
hum: 0.191
atemp: 0.198
temp: 0.202
```

Out[131]:

[None, None, None,

In [132]:

```
remove.append('holiday')
```

Multi-colinearity test

In [133]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant
numeric_df = add_constant(bike_sharing_train[['temp', 'atemp', 'hum', 'wind
vif = pd.Series([vf(numeric_df.values, j) for j in range(numeric_df.shape[1
vif.round(3)
```

Out[133]:

In [134]:

After removing atemp variable, VIF:

Dummy for categorical

In [135]:

```
season_dm = pd.get_dummies(bike_sharing_train['season'], drop_first=True, p
bike_sharing_train = pd.concat([bike_sharing_train, season_dm],axis=1)
bike_sharing_train = bike_sharing_train.drop(columns = ['season'])
weather_dm = pd.get_dummies(bike_sharing_train['weathersit'], prefix= 'weat
bike_sharing_train = pd.concat([bike_sharing_train, weather_dm],axis=1)
bike_sharing_train = bike_sharing_train.drop(columns= ['weathersit'])
```

```
In [136]:
```

```
remove
Out[136]:
['instant', 'dteday', 'atemp', 'casual', 'registered', 'holid
ay']
In [137]:
# Removing unwanted variables
bike_sharing_train.drop(columns=remove, inplace=True)
```

In [138]:

```
# Reshaping
cnt = bike_sharing_train['cnt']
bike_sharing_train = bike_sharing_train.drop(columns=['cnt'])
bike_sharing_train['cnt'] = cnt
```

In [145]:

```
bike_sharing_train.shape
```

Out[145]:

(717, 13)

In [141]:

print(bike sharing train.head(5), '\n')

```
print('shape of dataset after all pre-processing\n',bike_sharing_train.shape
  yr workingday
                                  hum
                                        windspeed
                                                    month binned
                      temp
weekday_binned
                  0.344167
                             0.805833
0
                                         0.160446
                                                                0
1
1
   0
                  0.363478
                             0.696087
                                         0.248539
                                                                0
0
2
   0
                 0.196364
                            0.437273
                                         0.248309
                                                                0
0
3
                  0.200000
                            0.590435
   0
               1
                                         0.160296
                                                                0
1
4
   0
                  0.226957
                             0.436957
                                         0.186900
                                                                0
1
              season_3
                         season_4
                                   weather_2
                                               weather_3
   season_2
                                                              cnt
0
                                                            985.0
          0
                     0
                                0
                                            1
                                                        0
1
                     0
                                            1
                                                        0
                                                            801.0
          0
                                0
2
          0
                     0
                                0
                                            0
                                                        0
                                                           1349.0
3
           0
                     0
                                0
                                            0
                                                        0
                                                           1562.0
                     0
                                                           1600.0
shape of dataset after all pre-processing
 (717, 13)
```

Model Development

In [70]:

```
# Modularizing
from sklearn.model selection import cross val score
from sklearn.metrics import r2 score
def fit_N_predict(model, X_train, y_train, X_test, y_test, model_code=''):
   if(model_code == 'OLS'):
       model = model.OLS(y train, X train.astype('float')).fit()
       print(model.summary())
       y_pred = model.predict(X_test.astype('float'))
       print("\n======="")
       print('Score on testing data: ',(r2_score(y_test,y_pred)*100).round
       print("======="")
       return
   model.fit(X train, y train)
   y pred = model.predict(X test)
   print("======="")
   print("Score on training data: ",(model.score(X_train, y_train)*100.0).
   print("========"")
   print("Score on testing data: ", (model.score(X_test, y_test)*100.0).ro
   print("======="")
   if(model_code == "DT"):
       from sklearn import tree
       dotfile = open("pt.dot","w")
       df = tree.export graphviz(model, out file=dotfile, feature names =
```

In [71]:

```
from sklearn.model_selection import KFold
from sklearn.metrics import r2_score
from statistics import mean
kf = KFold(n_splits=10, shuffle=True, random_state=42)

def cross_validation(model,X,y):
    l = []
    for train_index, test_index in kf.split(X,y):
        X_train, X_test = X.iloc[train_index,], X.iloc[test_index,]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
        model.fit(X_train,y_train)
        y_pred = model.predict(X_test)
        l.append(r2_score(y_test,y_pred))
    print("Mean of 10 cross validation scores = ",(mean(l)*100).round(3))
```

In [72]:

```
# Partitioning of dataset
X = bike_sharing_train.drop(columns=['cnt'])
y = bike_sharing_train[['cnt']]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,
```

In [73]:

In [74]:

```
import statsmodels.api as sm
model = sm
fit_N_predict(model,X_train, y_train, X_test, y_test,model_code="OLS")
```

		OLS Re	egression Re	sults			
======================================							
=======================================							
Dep. Varia	ble:	cnt	R-squared	(uncente			
red):	0	.970					
Model:		0LS	Adj. R-squ	ared (un			
centered):		.970					
Method:	Le	east Squares	F-statisti	c:			
1533.							
Date:	Tue,	07 Jan 2020	Prob (F-st	atisti			
c):		0.00					
Time:		15:29:18	Log-Likeli	hood:			
-4671.9	. •		4.7.0				
No. Observa	ations:	573	AIC:				
9368.	1	F.C.1	DTC.				
Df Residua	15:	561	BIC:				
9420. Df Model:		12					
	Typo:	nonrobust					
Covariance	туре. ========						
	=========						
		std err	t	P> t			
[0.025		Jed ell	C	17 01			
yr	2132.5260	70.874	30.089	0.000			
1993.315	2271.737						
workingday	111.1339	81.672	1.361	0.174			
-49.287	271.555						
temp	4724.7662	404.637	11.677	0.000			
3929.977	5519.555						
hum	244.8524	249.110	0.983	0.326			
	734.155						
•	-778.5416	434.626	-1.791	0.074			
	75.151						
_	ed 310.6609	120.701	2.574	0.010			
73.580							
	nned 368.0815	83.653	4.400	0.000			
203.771		454 5	0.55-	0.000			
season_2	1104.2190	131.957	8.368	0.000			
	1363.410	174 054	4 207	0.000			
season_3		174.951	4.207	0.000			
392.372		114 025	12 000	0 000			
5Ea5011_4	1489.8955	114.023	13.066	0.000			

```
1265.927
         1713.864
weather 2
            -588.5358
                       91.709
                                -6.417
                                          0.000
-768.671
         -408.401
weather 3
            -2465.6840
                       245.016
                               -10.063
                                          0.000
-2946.945
         -1984.423
______
                        85.095
                               Durbin-Watson:
Omnibus:
1.812
Prob(Omnibus):
                         0.000
                               Jarque-Bera (JB):
225.228
                               Prob(JB):
Skew:
                        -0.748
1.24e-49
                               Cond. No.
Kurtosis:
                         5.683
22.5
______
==============
Warnings:
[1] Standard Errors assume that the covariance matrix of t
he errors is correctly specified.
_____
Score on testing data:
                   86.747
```

In [279]:

Score on training data: 85.281

Score on testing data: 87.095

Mean of 10 cross validation scores = 79.448

In [282]:

Score on training data: 9.268

Score on testing data: 9.741

Mean of 10 cross validation scores = 9.232

In [75]:

Score on training data: 100.0

----Score on testing data: 82.819

Mean of 10 cross validation scores = 74.95

In [141]:

In [144]:

```
# Pre-processing of data for XGBoost
bike = bike_sharing_train.copy()
yr_dm = pd.get_dummies(bike['yr'], prefix= 'yr',drop_first=True)
bike = pd.concat([bike, yr_dm],axis=1)
bike = bike.drop(columns= ['yr'])

workingday_dm = pd.get_dummies(bike['workingday'], prefix= 'workingday',drophike = pd.concat([bike, workingday_dm],axis=1)
bike = bike.drop(columns= ['workingday'])

bike['yr_1'] = bike['yr_1'].astype('int')
bike['workingday_1'] = bike['workingday_1'].astype('int')

X1 = bike.drop(columns=['cnt'])
y1 = bike['cnt']
from sklearn.model_selection import train_test_split
X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size =
```

print('###################### XGB Regressor ###################")

In [145]:

from xgboost import XGBRegressor

model = XGBRegressor(random state=1)

```
fit_N_predict(model, X_train1, y_train1, X_test1, y_test1, model_code="XGB"
cross validation(model,X1,y1)
[22:18:22] WARNING: src/objective/regression_obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
_____
Score on training data:
Score on testing data:
                      92.043
[22:18:22] WARNING: src/objective/regression_obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression_obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:18:22] WARNING: src/objective/regression_obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
Mean of 10 cross validation scores = 87.5
```

Hyper-parameter tuning for the best models

In [147]:

In [148]:

In [149]:

```
[22:40:14] WARNING: src/objective/regression_obj.cu:152: reg: linear is now deprecated in favor of reg:squarederror. Best parameters for XGBoost {'gamma': 0, 'learning_rate': 0.0 45, 'max_depth': 3, 'n_estimators': 300, 'random_state': 1, 'subsample': 0.7}
```

In [150]:

```
# Developing XGBoost model with best params
model = XGBRegressor(random_state=1, learning_rate=0.045, max_depth=3, n_es
                        gamma = 0, subsample=0.7)
fit N predict(model, X_train1, y_train1, X_test1, y_test1, model_code="XGB"
cross validation(model,X1,y1)
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
_____
Score on training data:
                        95.519
Score on testing data:
                       92.928
_____
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:54] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:55] WARNING: src/objective/regression_obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:55] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:55] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:55] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
[22:40:55] WARNING: src/objective/regression obj.cu:152: reg:
linear is now deprecated in favor of reg:squarederror.
Mean of 10 cross validation scores = 88.34
```

In [151]:

[22:40:59] WARNING: src/objective/regression_obj.cu:152: reg: linear is now deprecated in favor of reg:squarederror.

