Painel / Meus cursos / SC26EL / 6-Projeto de Controlador PID pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PID pelo Método do Lugar das Raízes

Iniciado em	segunda, 22 mar 2021, 07:49
Estado	Finalizada
Concluída em	quarta, 24 mar 2021, 19:24
Tempo empregado	2 dias 11 horas
Notas	5,0/5,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1** Correto

Atingiu 1,0 de 1,0

Marque a(s) alternativa(s) correta(s):

- a. O controlador PID pode ser empregado quando deseja-se melhorar a resposta transitória e zerar o erro em regime permanente para algum tipo de entrada.
- b. O controlador PID tem uso similar ao do controlador de avanço-atraso. A diferença é que o controlador de PID é capaz de zerar o erro em regime permanente para um certo tipo de entrada enquanto o controlador de avanço-atraso apenas reduz o erro.
- c. O termo derivativo associado ao controlador PID não sofre influência devido a ruídos de medida. Isso deve-se a existência do polo na origem do controlador que insere uma atenuação constante de -20 dB/dec. Com isso, o ganho em alta frequência do PID é limitado.
- d. O controlador PID pode ter diferentes formas de implementação tais como a forma padrão $C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s\right)$, a forma paralela $C(s) = K_p + \frac{K_i}{s} + K_d s$ e a forma interativa ou em série $C(s) = K_c \left(T_d s + 1\right) \left(1 + \frac{1}{T_i s}\right)$. Todas estas formas, caso tenham os ganhos ajustados corretamente, são equivalentes.

As respostas corretas são:

O controlador PID pode ser empregado quando deseja-se melhorar a resposta transitória e zerar o erro em regime permanente para algum tipo de entrada.,

O controlador PID tem uso similar ao do controlador de avanço-atraso. A diferença é que o controlador de PID é capaz de zerar o erro em regime permanente para um certo tipo de entrada enquanto o controlador de avanço-atraso apenas reduz o erro.,

Questão **2**Correto
Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{165}{(s+1)(s+2)(s+10)}$. Deseja-se projetar um controlador PID na forma $C(s)=K_p+\frac{K_i}{s}+K_ds=K(s+z_1)\frac{(s+z_2)}{s}$ para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo degrau deve ser nulo. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0,690

🗸 . A frequência natural destes polos deve ser ω_n =

2,899

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-2

✓ ±j

2,098

A contribuição angular que o termo $(s+z_1)$ do compensador deve inserir no lugar das raízes é $\phi=$

40,179

graus.

Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_1$ deve estar s=

-4,484

✓ .

O ganho do compensador vale K =

0,075

~ .

Considerando que o zero do termo $(s+z_2)$ esteja em s=-0, 1 o compensador na forma $C(s)=\frac{K(a\cdot s^2+b\cdot s+c)}{s}$ é $C(s)=\frac{K(a\cdot s^2+b\cdot s+c)}{s}$

0,075

~ (

1

 $\checkmark s^2 +$

4,584

✓ s+

0,4484

✓)/s.

Logo, os ganhos proporcional, integral e derivativo são dados por $K_p =$

0,334

 \checkmark , $K_i =$

0,034

✓ e **K**_d = 0,075

, respectivamente.

Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $\mathit{s}_{1,2} =$

<u>-1,955</u>	
✓ ±j	
2,08	
🗸 . O sobressinal teórico associado a estes polos é $\mathit{M}_p =$	
5,214	
🗸 % enquanto o tempo de acomodação teórico associado é de $t_{ m s}=$	
2,045	
✓ segundos.	
Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fechada, o sobressinal do sistema compensado é de M_p $=$	
\checkmark % enquanto o seu tempo de acomodação é de $t_s=$	
33,5	
✓ segundos.	

Questão 3

Correto

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{165}{(s+1)(s+2)(s+10)}$. Deseja-se projetar um controlador PID na forma

 $C(s) = K_p + \frac{K_i}{s} + K_d s = K \frac{(s+z)^2}{s}$ para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo degrau deve ser nulo. Dica: para o cálculo da condição de ângulo, incorpore o integrador do controlador junta à G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0,690

ullet . A frequência natural destes polos deve ser $\omega_n=$

2,898

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-2

✓ ±j

2,098

A contribuição angular que o termo $(s+z)^2$ do compensador deve inserir no lugar das raízes é $\phi=$

173,81

graus.

Para atender a contribuição angular ϕ , os zeros do compensador em s=-z devem estar s=-z

-2,113

O ganho do compensador vale K=

0,16

O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s}$ é C(s) =

0,16

~ (

 $\checkmark s^2 +$

4,226

4,465

✓)/s.

√ 5+

Logo, os ganhos proporcional, integral e derivativo são dados por $\mathcal{K}_p =$

 \checkmark , $K_i =$ 0,714

✓ e K_d =

, respectivamente.

Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $\emph{s}_{1,2} =$

-1,994	
✓ ±j	
2,094	
$ullet$. O sobressinal teórico associado a estes polos é $M_p=$	
5,004	
🗸 % enquanto o tempo de acomodação teórico associado é de $t_{ m s}=$	
2,005	
✓ segundos.	
Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fechada, o sobressinal do sistema compensado é de M_p $=$	
17	
$ullet$ % enquanto o seu tempo de acomodação é de $t_s=$	
1,86	
✓ segundos.	

Questão **4**

Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{10}{s(s+4)}$ e C(s) é um controlador PI dado por C(s) = 0, $8\frac{(s+1)}{s}$.

Este sistema tem polos dominantes de malha fechada em $s_{1,2}=-1\pm j1$, 732 que deveriam fornecer um sobressinal $M_p=16$, 3% e tempo de acomodação $t_s=4$ s que são os objetivos de resposta transitória desejados. Todavia, devido ao polo de malha fechada em $s_3=-2$ e ao zero de malha fechada em s=-1, a resposta do sistema exibe sobressinal de 43,4% e tempo de acomodação de 4.14 s.

Visando aproximar a resposta transitória dos valores desejados e mantendo o erro nulo para entrada do tipo rampa, projete um controlador PID C(s) de forma a cancelar o polo da planta G(s) em s=-4 mantendo os polos dominantes desejados em $s_{1,2}=-1\pm j1$, 732 . Isso visa reduzir a ordem do sistema compensado de forma que ele se mantenha de segunda ordem após a

introdução do controlador. Suponha que o controlador PID tenha a forma $C(s) = K_c T_d \left(s + \frac{1}{T_d}\right) \frac{\left(s + \frac{1}{T_i}\right)}{s} = K(s + z_1) \frac{(s + z_2)}{s}$.

Verifique se há melhora na resposta transitória em comparação com a compensação PI apresentada acima. Dica: para a determinação da condição de ângulo do lugar das raízes considere a porção do PID responsável pelo zero para realizar o cancelamento com o polo da planta e o integrado juntamente com G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

A contribuição angular que o termo $(s+z_2)$ do compensador deve inserir no lugar das raízes é $\phi=$

60

✓ graus.

Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_2\,$ deve estar $\,s=$

-2

✔ .

O ganho do compensador vale K =

0,2

✔ .

O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s}$ é C(s) =

0,2

~ (

✓ s²+

✓ s+

√)/s.

Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2}=$

-1

✓ ±**j**

🗸 . O sobressinal teórico associado a estes polos é $\emph{M}_p =$

16,3

 \checkmark % enquanto o tempo de acomodação teórico associado é de $t_s=$

4

segundos.

Todavia, mesmo o sistema resultante sendo de segunda ordem, devido aos efeitos do zero em malha fechada, o sobressinal do sistema compensado é de $M_p = 29.8$ • % enquanto o seu tempo de acomodação é de $t_s = 3.75$ • segundos. Mas, observa-se que os resultados obtidos com o controlador PID melhoraram • .

Questão **5**Correto
Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{10}{s(s+4)}$ e C(s) é um controlador a ser projetado.

Deseja-se sobressinal $M_p=16,3\%$, tempo de acomodação $t_s=4~s$ e erro nulo em regime permanente para entrada rampa. Para atender os requisitos de resposta transitória, os polos dominantes de malha fechada devem ser $s_{1,2}=-1\pm j1$, 732 e deve-se incluir um integrador para zerar o referido erro de interesse. Um controlador PI dado por C(s) = 0, $8\frac{(s+1)}{s}$ zera o erro e fornece os polos de malha fechada desejados. Todavia, devido ao polo de malha fechada em $s_3=-2$ e ao zero de malha fechada em s=-1, a resposta do sistema exibe sobressinal de 43,4% e tempo de acomodação de 4,14 s. Visando melhorar a resposta transitória ao mesmo tempo em que se zera o erro em regime permanente para a entrada rampa, é possível se projetar um controlador C(s) do tipo PID de forma a cancelarmos o polo da planta em s=-4. Isso faz com que o sistema compensado seja de segunda ordem e há uma melhora da resposta. Ainda assim, devido ao zero do sistema em malha fechada, devido ao controlador, obtém-se um sobressinal maior do que o desejado e o sistema tem tempo de acomodação menor do que o especificado. Para atendermos o mais próximo possível as especificações do problema, uma possível abordagem é o uso do controlador PID com o cancelamento do polo da planta em s=-4porém, devemos escolher polos dominantes de malha fechada com um coeficiente de amortecimento ζ maior para reduzirmos o sobressinal e frequência natural ω_n menor para deixarmos o sistema mais lento. Assim, escolhendo zeta = 0, 89 e $\omega_n = 1$, 3 rad/sresulta nos polos dominantes de malha fechada $s_{1,2}=-1$, 157 $\pm j0$, 593. Com base nesses novos polos de malha fechada, projete um controlador PID na forma $C(s) = K_c T_d \left(s + \frac{1}{T_d}\right) \frac{\left(s + \frac{1}{T_i}\right)}{s} = K(s + z_1) \frac{(s + z_2)}{s}$ e verifique se as especificações do problema são atendidas. Dica: para a determinação da condição de ângulo do lugar das raízes considere a porção do PID responsável pelo zero para realizar o cancelamento com o polo da planta e o integrado juntamente com G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

A contribuição angular que o termo $(s+z_2)$ do compensador deve inserir no lugar das raízes é $\phi=$

125,727

graus.

Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_2$ deve estar s=

-0,726

~

O ganho do compensador vale K =

0,231

~

O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s}$ é C(s) =

0,213

V (

 $\checkmark s^2 +$

4,726

✓ s+ 2,904

✓)/s.

 ${\sf Com\ o\ controlador\ PID\ projetado},\ {\sf o\ sistema\ em\ malha\ fechada\ tem\ polos\ dominantes\ em\ } {\it s}_{1,2} =$

-1,155

✓ ±**j**0,586

🗸 . O sobressinal teórico associado a estes polos é $\emph{M}_p =$

0,203

