COMP 5711: Advanced Algorithms Fall 2020 Midterm Exam Solutions

- 1. (a) Suppose the first n_1 operations are increments, where $m = 2^{\lfloor \log n \rfloor 1} \leq n/2$, so that afterwards, A[i] = 1 if and only if $i = \lfloor \log n \rfloor 1$. The followed by n m operations are decrements, increments, decrements, increments... It can be verified that each of the followed operation has $\Omega(\log n)$ cost, so the total cost is at least $\Omega(\log n) \cdot n/2 = \Omega(n \log n)$, and the amortized cost is $\Omega(\log n)$.
 - (b) Blanks are filled as follows.

Decrement $val(A)$
1: $i \leftarrow 0$
2: while $A[i] = _{-1}$ do
$3: A[i] \leftarrow \underline{0}$
4: $i \leftarrow i+1$
5: end while
6: $A[i] \leftarrow A[i] - 1$

(c) We use accounting method to prove the amortized cost is at most 2. Let \$1 represent each unit of cost. Whenever a value changes from 0 to 1 or from 0 to -1, we will spend \$2: \$1 for the actual cost, and store another \$1 on the value as credit. When a bit is set to 0, the stored \$1 credit pays the cost. At most one value changes from 0 to 1 (changes from 0 to -1) in each Increment (Decrement) operation, so the amortized cost of \$2 is enough to cover all its changes.

Alternatively, one can also use the potential method by defining the potential as $\Phi = \sum_{i} |A[i]|$.

2. (a) It is FPT represents to k. This is because

$$mn + \text{poly}(k) \cdot (k!)^2 \cdot n \le (\text{poly}(k) \cdot (k!)^2 + 1) \cdot mn \le f(k) \cdot \text{IN}^2 = f(k) \cdot \text{poly}(\text{IN}),$$

where $f(k) = \text{poly}(k) \cdot (k!)^2 + 1$.

(b) Define $f(k) = \text{poly}(k) \cdot (k!)^2 + 1$ as before. It is easy to see that the algorithm runs in polynomial time if and only if f(k) = poly(IN). Note that f(k) > k! and $f(k) < (k!)^3$, so this is equivalently to k! = poly(IN).

Sufficiency. Assume $k = O(\log IN / \log \log IN)$. Note that

$$k \log k = O\left(\frac{\log IN}{\log \log IN}(\log \log IN - \log \log \log IN)\right) = O(\log IN),$$

so
$$k! < k^k = 2^{k \log k} = O(2^{\log IN}) = O(IN) = \text{poly}(IN).$$

Necessity. Assume $k = \omega(\log IN/\log \log IN) = \omega(1) \cdot \log IN/\log \log IN$. Then for large enough IN, $\omega(1) > 2$ and $\log \log IN > 2 \log \log \log IN$. Therefore,

$$\log \frac{k}{2} > \log \log IN - \log \log \log IN > \frac{1}{2} \log \log IN,$$

and hence

$$k! \ge \prod_{i=k/2}^k i \ge (k/2)^{k/2} = 2^{k/2 \cdot \log(k/2)} \ge 2^{k/4 \cdot \log \log IN} = IN^{\omega(1)},$$

which means k! = poly(IN) does not hold.

3. Define $k = (m+1) \ln n$. For $i = 1, 2, \dots, k$, let (w_{i1}, \dots, w_{in}) be a random permutation of $(1, 2, \dots, n)$, and $G_i = (V, E_i)$ where $E_i = \{(u, v) \in E \mid w_{iu} < w_{iv}\}$. The algorithm will return G' = (V, E'), where $E' \in \{E_1, \dots, E_k\}$ is the one with largest cardinality, i.e., $|E'| \geq E_i$ for all i.

Recall that generating a random permutation has O(n) cost. Since computing each E_i takes O(m) cost, the total running time of the algorithm is $O((m+n)\cdot(m+1)\ln n)$, which is polynomial.

Now we prove its correctness. First we prove that each G_i is acyclic. If this is not the case, then there exists a cycle, say, $\{(u_1, u_2), (u_2, u_3), \dots, (u_k, u_1)\} \subseteq E_i$. By the construction of E_i , we have $w_{iu_1} < w_{iu_2} < \dots < w_{iu_k} < w_{iu_1}$, which is a contradiction.

Define $p_i = \Pr(|E_i| \ge m/2)$. Then we show $p_i \ge 1/(m+1)$, so that the algorithm fails with probability at most $\prod_{i=1}^k (1-p_i) \le (1-1/(m+1))^k < (1/e)^{\ln n} = 1/n$, as required. First note that for each edge $(u,v) \in E$, $\Pr((u,v) \in E_i) = \Pr(w_{iu} < w_{iv}) = 1/2$. Therefore, $\mathbb{E}[|E_i|] = \sum_{(u,v) \in E} \Pr((u,v) \in E_i) = m/2$. On the other hand, since m is an integer, an integer j < m/2 implies $j \le (m-1)/2$. Therefore,

$$\frac{m}{2} = \mathbb{E}[|E_i|] = \sum_{j=1}^{m} j \cdot \Pr(|E_i| = j) = \sum_{j < m/2} j \cdot \Pr(|E_i| = j) + \sum_{j \ge m/2} j \cdot \Pr(|E_i| = j)$$

$$\leq \frac{m-1}{2} \sum_{j < m/2} \Pr(|E_i| = j) + m \sum_{j \ge m/2} \Pr(|E_i| = j) = \frac{m-1}{2} (1-p_i) + mp_i,$$

which implies $p_i \geq 1/(m+1)$.

- 4. Recall that in the random permutation problem, we are given an array A with size n, indexed by $1, 2, \dots, n$, and we want to permute the array such that each permutation appears with the same probability.
 - (a) In the *i*-th step of the for-loop, there are exactly i-1 values that have been taken from $\{1, 2, \dots, n\}$, so the success probability of each trial in line 5 to 7 is $p_i = 1 (i-1)/n$. Recall the waiting time for first success in class, the expected running time of the *i*-th step is n/(n-i+1). Therefore, by the linearity of expectation, the total expected running time is

$$O\left(\sum_{i=1}^{n} \frac{n}{n-i+1}\right) = O\left(n \cdot \sum_{i=1}^{n} \frac{1}{i}\right) = O(n \log n).$$

(b) The algorithm fails if and only if there are duplicates in n independent uniform random values, taken from a domain with n^2 values. Let E_i be the event that $W_j \neq W_i$ for all j < i. Then the success probability is

$$p(n) = \Pr(E_2) \cdot \Pr(E_3 \mid E_2) \cdot \dots \cdot \Pr(E_n \mid \bigcap_{i=2}^{n-1} E_i)$$
$$= \prod_{i=0}^{n-1} \left(1 - \frac{i}{n^2}\right) \ge \left(1 - \frac{n}{n^2}\right)^n = \left(1 - \frac{1}{n}\right)^n \ge \frac{1}{4}.$$

On the other hand, when n is even,

$$p(n) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{n^2} \right) \le \prod_{i=n/2}^{n-1} \left(1 - \frac{i}{n^2} \right) \le \left(1 - \frac{n/2}{n^2} \right)^{n/2} = \left(1 - \frac{1}{2n} \right)^{2n/4} < e^{-\frac{1}{4}}.$$

When n is odd, the proof is similar. Finally we choose $c_1 = 1/4$ and $c_2 = e^{-1/4}$ to complete the proof.

Alternative Solution. Define $X_{ij} = 1$ if $W_i = W_j$, and 0 otherwise, and let $X = \sum_{1 \le i < j \le n} X_{ij}$ be number of pairs of that have the same values. Recall the analysis of the birthday paradox in class, we have $\mathbb{E}[X] = n(n-1)/(2n^2) = (n-1)/(2n)$. Since X takes non-negative values, by Markov inequality,

$$p(n) = 1 - \Pr(X \ge 1) = 1 - \Pr(X \ge \frac{2n}{n-1} \cdot \mathbb{E}[X]) \ge 1 - \frac{n-1}{2n} > \frac{1}{2}.$$

On the other hand, since $ln(1+x) \le x$ and $n \ge 2$,

$$p(n) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{n^2} \right) = \exp\left(\sum_{i=0}^{n-1} \ln\left(1 - \frac{i}{n^2} \right) \right) \le \exp\left(-\sum_{i=0}^{n-1} \frac{i}{n^2} \right) < e^{-\frac{1}{2}} \cdot e^{\frac{1}{2n}} \le e^{-\frac{1}{4}}.$$

Finally we choose $c_1 = 1/2$ and $c_2 = e^{-1/4}$ to complete the proof.

(c) To turn it into a Las Vegas algorithm, we just repeat until success. Since the success probability $p(n) \ge 1/4$, the expected running time is $O(n \log n/p(n)) = O(n \log n)$.