4-bit CLA Adder VLSI Course Project

1st Vignesh Vembar ECE, IIIT Hyderabad 2023102019 vigneshvembar.m@students.iiit.ac.in

Abstract—This document is a report on the Design and C. Full Circuit Simulation of a 4-bit Carry Look Ahead Adder.

I. INTRODUCTION

IV. NGSPICE SIMULATION

The Carry Look Ahead Adder is a digital circuit that is used to add two 4 bit binary numbers. It is faster than the Ripple Carry Adder as it generates the carry signals for all the bits at the same time.

A. Inverter

II. PROPOSED DESIGN

A. CLA Adder

B. D Flip Flop

III. VERILOG SIMULATION

A. CLA Adder

Fig. 1: GTKWave Plot of CLA Adder Verilog Simulation

B. D Flip Flop

Fig. 2: GTKWave Plot of D Flip Flop Verilog Simulation

Fig. 3: NGSPICE Plot of Inverter

Fig. 4: NGSPICE Plot of NAND Gates

C. NOR Gate

Fig. 5: NGSPICE Plot of NOR Gates

Fig. 6: NGSPICE Plot of CMOS XOR Gate

1) CMOS Implementation:

Fig. 7: NGSPICE Plot of CPTL XOR Gate

2) Complimentary Pass Transistor Implementation:

E. Propagate/Generate Generator

tran1: 2023102019 v(a2)+28 v(a3)+30 v(a0)+24 v(b2)+20 v(a1)+26 v(b3)+22 v(b0)+16 v(b1)+18 v(p2)+12 v(p0)+8 v(p3)+14 v(p1)+10 v(g2)+4 v(g3)+6 30.0 25.0 10.0 -5.0 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

Fig. 8: NGSPICE Plot of CMOS Propagate/Generate Generator

1) CMOS Implementation:

-5.0

tran1: 2023102019 v(a2)+28 v(a3)+30 v(a0)+24 v(a1)+26 v(b2)+20 v(b0)+16 v(b3)+22 v(b1)+18 v(p3)+14 v(p2)+1 v(p0)+8 v(g2)+4 v(p1)+10 v(g3)+6 v(q1)+2 15.0 որուրսել բանական իրորդեր բապանա 10.0 5.0 0.0

Fig. 9: NGSPICE Plot of CPTL Propagate/Generate Generator

2) Complimentary Pass Transistor Implementation:

F. Carry Look Ahead Generator

Fig. 10: NGSPICE Plot of CMOS Carry Look Ahead Generator

G. Sum Generator

Fig. 11: NGSPICE Plot of CMOS Sum Generator

1) CMOS Implementation:

Fig. 12: NGSPICE Plot of CPTL Sum Generator

Fig. 14: NGSPICE Plot of Optimized D Flip Flop

2) Complimentary Pass Transistor Implementation:

2) Optimized Implementation:

H. D Flop Flop

I. Full Circuit

Fig. 13: NGSPICE Plot of CMOS D Flip FLop

Fig. 15: NGSPICE Plot of CMOS Circuit

1) CMOS Implementation:

1) CMOS Implementation:

Fig. 16: NGSPICE Plot of Optimized Circuit

2) Optimized Implementation:

V. MAGIC LAYOUT

A. Inverter

Fig. 17: MAGIC Layout of CMOS Inverter

B. NAND Gate

Fig. 18: MAGIC Layout of NAND Gates

C. NOR Gate

Fig. 19: MAGIC Layout of NOR Gates

- D. XOR Gate
- E. Propagate/Generate Generator
- F. Carry Look Ahead Generator
- G. Sum Generator
- H. D Flop Flop
- I. Full Circuit

VI. POST LAYOUT SIMULATION

- A. Inverter
- B. NAND Gate
- C. NOR Gate
- D. XOR Gate
- E. Propagate/Generate Generator
- F. Carry Look Ahead Generator
- G. Sum Generator
- H. D Flop Flop
- I. Full Circuit

VII. FPGA SIMULATION
ACKNOWLEDGMENT
REFERENCES