Part II — Logic and Set Theory

Based on lectures by Dr Zsak and notes by thirdsgames.co.uk Lent 2023

Contents

1	Propositional logic		
	1.1	Languages	2
	1.2	Semantic implication	3
	1.3	Syntactic implication	5
	1.4	Deduction theorem	7
	1.5	Soundness	8
	1.6	Adequacy	8
	1.7	Completeness	0
2	Wel	Orderings 1	2
	2.1	Definition	2
	2.2	Initial segments	4
	2.3		5
	2.4	Constructing larger well-orderings	6
	2.5		7
	2.6	Some ordinals	8
	2.7	Uncountable ordinals	9
	2.8	Successors and limits	0
	2.9	Ordinal arithmetic	0

§1 Propositional logic

We build a language consisting of statements/propositions;

We will assign truth values to statements;

We build a deduction system so that we can prove statements that are true (and only those). These are also features of more complicated languages.

§1.1 Languages

Let P be a set of **primitive propositions**. Unless otherwise stated, we let $P = \{p_1, p_2, \dots\}$ (i.e. countable). The **language** L = L(P) is a set of **propositions** (or **compound propositions**) and is defined inductively by

- 1. if $p \in P$, then $p \in L$;
- 2. $\bot \in L$, where the symbol \bot is read 'false'/ 'bottom';
- 3. if $p, q \in L$, then $(p \Rightarrow q) \in L$.

Example 1.1

```
((p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow p_3)) \in L. \ (p_4 \Rightarrow \bot) \in L.
If p \in L then ((p \Rightarrow \bot) \Rightarrow \bot) \in L.
```

Remark 1. Note that the phrase 'L is defined inductively' means more precisely the following. Let $L_1 = P \cup \{\bot\}$, and define $L_{n+1} = L_n \cup \{(p \Rightarrow q) \mid p, q \in L_n\}$. We set $L = \bigcup_{n=1}^{\infty} L_n$.

Note that the elements of L are just finite strings of symbols from the alphabet $P \cup \{(,),\Rightarrow,\perp\}$. Brackets are only given for clarity; we omit those that are unnecessary, and may use other types of brackets such as square brackets.

We can prove that L is the smallest (w.r.t. inclusion) subset of the set Σ of all finite strings in $P \cup \{(,),\Rightarrow,\bot\}$ s.t. the properties of a language hold.

```
Note that L \subseteq \Sigma. E.g. \Rightarrow p_1p_3 (\in \Sigma \setminus L.
```

Note that the introduction rules for the language are injective and have disjoint ranges, so there is exactly one way in which any element of the language can be constructed using rules (i) to (iii).

Every $p \in L$ is uniquely determined by the properties of a language above, i.e. either $p \in P$ or $p = \bot$ or \exists unique $q, r \in L$ s.t. $p = (q \Rightarrow r)$.

We can now introduce the abbreviations \neg, \land, \lor, \top , which are not, and, or and true/top respectively, defined by

Notation.

$$\neg p = (p \Rightarrow \bot); \quad p \lor q = \neg p \Rightarrow q; \quad p \land q = \neg (p \Rightarrow \neg q), \top = (\bot \Rightarrow \bot)$$

§1.2 Semantic implication

Definition 1.1 (Valuation)

A **valuation** is a function $v: L \to \{0, 1\}$ s.t.

- 1. $v(\bot) = 0$;
- 2. If $p, q \in L$ then $v(p \Rightarrow q) = \begin{cases} 0 & v(p) = 1 \text{ and } v(q) = 0 \\ 1 & \text{else} \end{cases}$

Example 1.2

If $v(p_1) = 1$, $v(p_2) = 0$. Then

$$v\left(\underbrace{(\bot \Rightarrow p_1)}_{1} \Rightarrow \underbrace{(p_1 \Rightarrow p_2)}_{0}\right) = 0$$

Remark 2. On $\{0,1\}$, we can define the constant $\bot=0$ and the operation \Rightarrow in the obvious way. Then, a valuation is precisely a mapping $L \to \{0,1\}$ preserving all structure, so it can be considered a homomorphism.

Proposition 1.1

Let $v, v' \colon L \to \{0, 1\}$ be valuations that agree on the primitives p_i . Then v = v'. Further, any function $w \colon P \to \{0, 1\}$ extends to a valuation $v \colon L \to \{0, 1\}$ s.t. $v \mid_{P} = w$.

Remark 3. This is analogous to the definition of a linear map by its action on the basis vectors.

Proof. Clearly, v, v' agree on L_1 as $v(\bot) = v'(\bot) = 0$, the set of elements of the language of length 1. If v, v' agree at $p, q \in L_n$, then they agree at $p \Rightarrow q$. So by induction, v, v' agree on L_{n+1} for all n, and hence on L.

Let v(p) = w(p) for all $p \in P$, and $v(\bot) = 0$ to obtain v on the set L_1 . Assuming v is defined on $p, q \in L_n$ we can define it at $p \Rightarrow q$ in the obvious way. This defines v on L_{n+1} , hence v is defined on $\cup L_n = L$. By construction, v is a valuation on L and $v \mid_{P} = w$.

Example 1.3

Let v be the valuation with $v(p_1) = v(p_3) = 1$, and $v(p_n) = 0$ for all $n \neq 1, 3$. Then, $v((p_1 \Rightarrow p_3) \Rightarrow p_2) = 0$.

Definition 1.2 (Tautology)

A **tautology** is $t \in L$ s.t. $v(t) = 1 \forall$ valuations v. We write $\models t$.

Example 1.4

 $p \Rightarrow (q \Rightarrow p)$ (a true statement is implied by any true statement).

Since the right-hand column is always 1, $\models p \Rightarrow (q \Rightarrow p)$.

Example 1.5 (Law of Excluded Middle)

 $\neg \neg p \Rightarrow p$, which expands to $((p \Rightarrow \bot) \Rightarrow \bot) \Rightarrow p$.

$$\begin{array}{cccc} v(p) & v(\neg p) & v(\neg \neg p) & v(\neg \neg p \Rightarrow p) \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{array}$$

Hence $\models \neg \neg p \Rightarrow p$.

Example 1.6

 $\neg p \lor p$, which expands to $((p \Rightarrow \bot) \lor p)$.

$$\begin{array}{ccc} v(p) & v(\neg p) & v(\neg p \lor p) \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$$

Hence $\models \neg p \lor p$.

Example 1.7

 $(p\Rightarrow (q\Rightarrow r))\Rightarrow ((p\Rightarrow q)\Rightarrow (p\Rightarrow r))$. Suppose this is not a tautology. Then we have a valuation v s.t. $v(p\Rightarrow (q\Rightarrow r))=1$ and $v((p\Rightarrow q)\Rightarrow (p\Rightarrow r))=0$. Hence, $v(p\Rightarrow q)=1, v(p\Rightarrow r)=0$, so v(p)=1, v(r)=0, giving v(q)=1, but then $v(p\Rightarrow (q\Rightarrow r))=0$ contradicting the assumption.

Definition 1.3 (Semantic Implication)

Let $S \subseteq L$ and $t \in L$. We say S entails or semantically implies t, written $S \models t$, if for every valuation v on L, $v(s) = 1 \ \forall \ s \in S \Rightarrow v(t) = 1$.

Example 1.8

 ${p, p \Rightarrow q} \models q.$

Example 1.9

Let $S=\{p\Rightarrow q, q\Rightarrow r\}$, and let $t=p\Rightarrow r$. Suppose $S\not\models t$, so there is a valuation v s.t. $v(p\Rightarrow q)=1, v(q\Rightarrow r)=1, v(p\Rightarrow r)=0$. Then v(p)=1, v(r)=0, so v(q)=1 and v(q)=0.

Definition 1.4 (Model)

Given $t \in L$, say a valuation v is a model for t (or t is true in v) if v(t) = 1.

Definition 1.5 (Model)

We say that v is a model of S in L if v(s) = 1 for all $s \in S$.

Thus, $S \models t$ is the statement that every model of S is also a model of t/t is true in every model of S.

Remark 4. The notation $\models t$ is equivalent to $\varnothing \models t$.

§1.3 Syntactic implication

For a notion of proof, we require a system of axioms and deduction rules. As axioms, we take (for any $p, q, r \in L$),

1.
$$p \Rightarrow (q \Rightarrow p)$$
;

- 2. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r));$
- 3. $((p \Rightarrow \bot) \Rightarrow \bot) \Rightarrow p$.

Remark 5. Sometimes, these three axioms are considered axiom schemes, since they are really a different axiom for each $p, q, r \in L$.

These are all tautologies.

For deduction rules, we will have only the rule **modus ponens** (MP), that from p and $p \Rightarrow q$ one can deduce q.

Definition 1.6 (Proof)

Let $S \subseteq L$, $t \in L$. A **proof of** t **from** S is a finite sequence t_1, \ldots, t_n of propositions in L s.t. $t_n = t$ and every t_i is either

- 1. an axiom;
- 2. an element of S (t_i is a premise or hypothesis); or
- 3. follows by MP, where $t_j = p$ and $t_k = p \Rightarrow q$ where j, k < i.

We say that S is the set of **premises** or **hypotheses**, and t is the **conclusion**.

We say S **proves** or **syntactically implies** t, written $S \vdash t$, if there exists a proof of t from S.

Example 1.10

We will show $\{p \Rightarrow q, q \Rightarrow r\} \vdash (p \Rightarrow r)$.

- 1. $q \Rightarrow r$ (hypothesis)
- 2. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ (axiom 1)
- 3. $p \Rightarrow (q \Rightarrow r)$ (modus ponens on lines 1, 2)
- 4. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ (axiom 2)
- 5. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ (modus ponens on lines 3, 4)
- 6. $p \Rightarrow q$ (hypothesis)
- 7. $p \Rightarrow r \pmod{\text{ponens on lines 5, 6}}$

Definition 1.7 (Theorem)

If $\varnothing \vdash t$, we say t is a **theorem**, written $\vdash t$.

Example 1.11

```
\vdash (p \Rightarrow p).
```

- 1. $(p \Rightarrow ((p \Rightarrow p) \Rightarrow p)) \Rightarrow ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$ (axiom 2)
- 2. $p \Rightarrow ((p \Rightarrow p) \Rightarrow p)$ (axiom 1)
- 3. $(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)$ (modus ponens on lines 1, 2)
- 4. $p \Rightarrow (p \Rightarrow p)$ (axiom 1)
- 5. $p \Rightarrow p$ (modus ponens on lines 3, 4)

§1.4 Deduction theorem

Theorem 1.1 (Deduction Theorem)

Let $S \subseteq L$, and $p, q \in L$. Then $S \vdash (p \Rightarrow q)$ iff $S \cup \{p\} \vdash q$.

Remark 6. This show ' \Rightarrow ' really does behave like implication in formal proofs.

Proof. (\Rightarrow): Given a proof of $p \Rightarrow q$ from S, add the line p to the hypothesis and deduce q from modus ponens, to obtain a proof of q from $S \cup \{p\}$.

(\Leftarrow): Suppose we have a proof of q from $S \cup \{p\}$. Let t_1, \ldots, t_n be the lines of the proof. We will prove that $S \vdash (p \Rightarrow t_i)$ for all i by induction.

- If t_i is an axiom, we write t_i (axiom); $t_i \Rightarrow (p \Rightarrow t_i)$ (axiom 1); $p \Rightarrow t_i$ (modus ponens).
- If $t_i \in S$, we write t_i (hypothesis); $t_i \Rightarrow (p \Rightarrow t_i)$ (axiom 1); $p \Rightarrow t_i$ (modus ponens).
- If $t_i = p$, we write the proof of $\vdash p \Rightarrow p$ given above.
- Suppose t_i is obtained by modus ponens from t_j and $t_k = t_j \Rightarrow t_i$ where j, k < i. We may assume by induction that $S \vdash p \Rightarrow t_j$ and $S \vdash p \Rightarrow (t_j \Rightarrow t_i)$. We write
 - 1. $(p \Rightarrow (t_i \Rightarrow t_i)) \Rightarrow ((p \Rightarrow t_i) \Rightarrow (p \Rightarrow t_i))$ (axiom 2)
 - 2. $(p \Rightarrow t_i) \Rightarrow (p \Rightarrow t_i)$ (modus ponens)
 - 3. $p \Rightarrow t_i \text{ (modus ponens)}$

giving $S \vdash p \Rightarrow t_i$.

Example 1.12

Consider $\{p \Rightarrow q, q \Rightarrow r\} \vdash p \Rightarrow r$. By the Deduction Theorem, it suffices to prove $\{p \Rightarrow q, q \Rightarrow r, p\} \vdash r$, which is obtained easily from modus ponens.

§1.5 Soundness

We aim to show $S \models t$ iff $S \vdash t$. The direction $S \vdash t$ implies $S \models t$ is called **soundness**, which is a way of verifying that our axioms and deduction rule make sense. The direction $S \models t$ implies $S \vdash t$ is called **adequacy**, which states that our axioms are powerful enough to deduce everything that is (semantically) true.

Proposition 1.2 (Soundness Theorem)

Let $S \subseteq L$ and $t \in L$. Then $S \vdash t$ implies $S \models t$.

Proof. We have a proof t_1, \ldots, t_n of t from S. We aim to show that any model of S is also a model of t, so if v is a valuation that maps every element of S to 1, then v(t) = 1.

We show this by induction on the length of the proof. v(p) = 1 for each axiom p (as axioms are tautologies) and for each $p \in S$. Further, $v(t_i) = 1$, $v(t_i \Rightarrow t_j) = 1$, then $v(t_i) = 1$. Therefore, $v(t_i) = 1$ for all i.

§1.6 Adequacy

Consider the case of adequacy where $t=\bot$. If our axioms are adequate, $S\models\bot$ implies $S\vdash\bot$. We say S is **consistent** if $S\not\vdash\bot$ and **inconsistent** if $S\vdash\bot$. Therefore, in an adequate system, if S has no models then S is inconsistent; equivalently, if S is consistent then it has a model.

In fact, the statement that consistent axiom sets have a model implies adequacy in general. Indeed, if $S \models t$, then $S \cup \{\neg t\}$ has no models, and so it is inconsistent by assumption. Then $S \cup \{\neg t\} \vdash \bot$, so $S \vdash \neg t \Rightarrow \bot$ by the deduction theorem, giving $S \vdash t$ by axiom 3.

We aim to construct a model of S given that S is consistent. Intuitively, we want to write

$$v(t) = \begin{cases} 1 & t \in S \\ 0 & t \notin S \end{cases}$$

but this does not work on the set $S = \{p_1, p_1 \Rightarrow p_2\}$ as it would evaluate p_2 to false.

We say a set $S \subseteq L$ is **deductively closed** if $p \in S$ whenever $S \vdash p$. Any set S has a **deductive closure**, which is the (deductively closed) set of statements $\{t \in L \mid S \vdash t\}$ that S proves. If S is consistent, then the deductive closure is also consistent. Computing the deductive closure before the valuation solves the problem for $S = \{p_1, p_1 \Rightarrow p_2\}$. However, if a primitive proposition p is not in S, but $\neg p$ is also not in S, this technique still does not work, as it would assign false to both p and $\neg p$.

Theorem 1.2 (Model Existence Lemma)

Every consistent set $S \subseteq L$ has a model.

Remark 7. We use the fact that P is a countable set in order to show that L is countable. The result does in fact hold if P is uncountable, but requires Zorn's Lemma and will be proved in Chapter 3. Some sources call this theorem the 'completeness theorem'.

Proof. First, we claim that for any consistent $S \subseteq L$ and proposition $p \in L$, either $S \cup \{p\}$ is consistent or $S \cup \{\neg p\}$ is consistent. If this were not the case, then $S \cup \{p\} \vdash \bot$, and also $S \cup \{\neg p\} \vdash \bot$. By the deduction theorem, $S \vdash p \Rightarrow \bot$ and $S \vdash (\neg p) \Rightarrow \bot$. But then $S \vdash \neg p$ and $S \vdash \neg \neg p$, so $S \vdash \bot$ contradicting consistency of S.

Now, L is a countable set as each L_n is countable, so we can enumerate L as t_1, t_2, \ldots . Let $S_0 = S$, and define $S_1 = S_0 \cup \{t_1\}$ or $S_1 = S_0 \cup \{\neg t_1\}$, chosen s.t. S_1 is consistent. Continuing inductively, define $\overline{S} = \bigcup_i S_i$.

Then, $\forall t \in L$, either $t \in \overline{S}$ or $\neg t \in \overline{S}$.

Note that \overline{S} is consistent since proofs are finite; indeed, if $\overline{S} \vdash \bot$, then this proof uses hypotheses only in S_n for some n, but then $S_n \vdash \bot$ contradicting consistency of S_n .

Note also that \overline{S} is deductively closed, so if $\overline{S} \vdash p$, we must have $p \in \overline{S}$; otherwise, $\neg p \in \overline{S}$ so $\overline{S} \vdash \neg p$, giving $\overline{S} \vdash \bot$ by MP, contradicting consistency of \overline{S} .

Now, define the function

$$v(t) = \begin{cases} 1 & t \in \overline{S} \\ 0 & t \notin \overline{S} \end{cases}$$

We show that v is a valuation, then the proof is complete as v(s)=1 for all $s\in S$. Since \overline{S} is consistent, $\bot\not\in\overline{S}$, so $v(\bot)=0$.

Suppose v(p)=1, v(q)=0. Then $p\in \overline{S}$ and $q\notin \overline{S}$, and we want to show $(p\Rightarrow q)\notin \overline{S}$. If this were not the case, we would have $(p\Rightarrow q)\in \overline{S}$ and $p\in \overline{S}$, so $q\in \overline{S}$ as \overline{S} is deductively closed.

Now suppose v(q) = 1, so $q \in \overline{S}$, and we need to show $(p \Rightarrow q) \in \overline{S}$. Then $\overline{S} \vdash q$, and by axiom $1, \overline{S} \vdash q \Rightarrow (p \Rightarrow q)$. Therefore, as \overline{S} is deductively closed, $(p \Rightarrow q) \in \overline{S}$.

Finally, suppose v(p)=0, so $p\notin \overline{S}$, and we want to show $(p\Rightarrow q)\in \overline{S}$. We know that $\neg p\in \overline{S}$, so it suffices to show that $(p\Rightarrow \bot)\vdash (p\Rightarrow q)$. By the deduction theorem, this is equivalent to proving $\{p,p\Rightarrow \bot\}\vdash q$, or equivalently, $\bot\vdash q$. But by axiom 1, $\bot\Rightarrow (\neg q\Rightarrow \bot)$ where $(\neg q\Rightarrow \bot)=\neg \neg q$, so the proof is complete by axiom 3.

Corollary 1.1 (Adequacy)

Let $S \subseteq L$ and let $t \in L$, s.t. $S \models t$. Then $S \vdash t$.

Proof. $S \cup \{\neg t\} \models \bot$, so Model Existence Lemma, $S \cup \{\neg t\} \vdash \bot$. Then by Deduction Theorem $S \vdash \neg \neg t$. $\neg \neg t \Rightarrow t$ by Axiom 3 and so by MP $S \vdash t$.

§1.7 Completeness

Theorem 1.3 (Completeness Theorem for Propositional Logic)

Let $S \subseteq L$ and $t \in L$. Then $S \models t$ iff $S \vdash t$.

Proof. Follows from soundness and adequacy.

Theorem 1.4 (Compactness Theorem)

Let $S \subseteq L$ and $t \in L$ with $S \models t$. Then there exists a finite subset $S' \subseteq S$ s.t. $S' \models t$.

Proof. Trivial after applying the completeness theorem, since proofs depend on only finitely many hypotheses in S.

Corollary 1.2 (Compactness Theorem, Equivalent Form)

Let $S \subseteq L$. Then if every finite subset $S' \subseteq S$ has a model, then S has a model.

Proof. Let $t = \bot$ in the compactness theorem. Then, if $S \models \bot$, some finite $S' \subseteq S$ has $S' \models \bot$. But this is not true by assumption, so there is a model for S.

Remark 8. This corollary is equivalent to the more general compactness theorem, since the assertion that $S \models t$ is equivalent to the statement that $S \cup \{\neg t\}$ has no model, and $S' \models t$ is equivalent to the statement that $S' \cup \{\neg t\}$ has no model.

Note. The use of the word compactness is more than a fanciful analogy. See Sheet 1.

Theorem 1.5 (Decidability Theorem)

Let $S \subseteq L$, S finite and $t \in L$. Then, there is an algorithm to decide (in finite time) if $S \vdash t$.

Proof. Trivial after replacing \vdash with \models , and checking all valuations by drawing the relevant truth tables. \Box

§2 Well Orderings

§2.1 Definition

Definition 2.1

A **total order** or **linear order** is a pair (X, <) where X is a set, and < is a relation on X such that

- (irreflexivity) for all $x \in X$, $x \nleq x$;
- (transitivity) for all $x, y, z \in X$, x < y and y < z implies x < z;
- (trichotomy) for all $x, y \in X$, either x < y, y < x, or x = y.

We use the obvious notation x > y to denote y < x. In terms of the \leq relation, we can equivalently write the axioms of a total order as

- (reflexivity) for all $x \in X$, $x \le x$;
- (transitivity) for all $x, y, z \in X$, $x \le y$ and $y \le z$ implies $x \le z$;
- (antisymmetry) for all $x, y \in X$, if $x \le y$ and $y \le x$ then x = y.
- (trichotomy, or totality) for all $x, y \in X$, either $x \le y$ or $y \le x$.

Example 2.1 1. (\mathbb{N}, \leq) is a total order.

- 2. (\mathbb{Q}, \leq) is a total order.
- 3. (\mathbb{R}, \leq) is a total order.
- 4. $(\mathbb{N}^+,|)$ is not a total order, where | is the divides relation, since 2 and 3 are not related.
- 5. $(\mathcal{P}(S), \subseteq)$ is not a total order if |S| > 1, since it fails trichotomy.

Definition 2.2

A total order (X, <) is a **well-ordering** if every nonempty subset $S \subseteq X$ has a least element.

$$\forall S \subseteq X, S \neq \emptyset \Rightarrow \exists x \in S, \forall y \in S, x \leq y$$

Example 2.2 1. $(\mathbb{N}, <)$ is a well-ordering.

2. $(\mathbb{Z}, <)$ is not a well-ordering, since \mathbb{Z} has no least element.

- 3. $(\mathbb{Q}, <)$ is not a well-ordering.
- 4. $(\mathbb{R}, <)$ is not a well-ordering.
- 5. $[0,1] \subset \mathbb{R}$ with the usual order is not a well-ordering, since (0,1] has no least element.
- 6. $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\} \subset \mathbb{R}$ with the usual order is a well-ordering.
- 7. $\left\{\frac{1}{2},\frac{2}{3},\frac{3}{4},\dots\right\}\cup\{1\}$ with the usual order is also a well-ordering.
- 8. $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\} \cup \{2\}$ with the usual order is another example.
- 9. $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\} \cup \left\{1 + \frac{1}{2}, 1 + \frac{2}{3}, 1 + \frac{3}{4}, \dots\right\}$ is another example.

Remark 9. Let (X,<) be a total order. (X,<) is a well-ordering if and only if there is no infinite decreasing sequence $x_1>x_2>\dots$. Indeed, if (X,<) is a well-ordering, then the set $\{x_1,x_2,\dots\}$ has no minimal element, contradicting the assumption. Conversely, if $S\subseteq X$ has no minimal element, then we can construct an infinite decreasing sequence by arbitrarily choosing points $x_1>x_2>\dots$ in S, which exists as S has no minimal element.

Definition 2.3

Total orders X, Y are **isomorphic** if there is a bijection f between X and Y that preserves <: x < y if and only if f(x) < f(y).

Examples (i) and (vi) are isomorphic, and (vii) and (viii) are isomorphic. Examples (i) and (vii) are not isomorphic, since example (vii) has a greatest element and (i) does not.

Proposition 2.1 (proof by induction)

Let *X* be a well-ordered set, and let $S \subseteq X$ such that

$$\forall x \in S, (\forall y < x, y \in S) \Rightarrow x \in S$$

Then S = X.

Remark 10. Equivalently, if p(x) is a property such that if p(y) is true for all y < x then p(x), then p(x) holds for all x.

Proof. Suppose $S \neq X$. Then $X \setminus S$ is nonempty, and therefore has a least element x. But all elements y < x lie in S, and so by the property of S, we must have $x \in S$, contradicting the assumption. \Box

Proposition 2.2

Let X, Y be isomorphic well-orderings. Then there is exactly one isomorphism between X and Y.

Note that this does not hold for general total orderings, such as \mathbb{Q} to itself or [0,1] to itself.

Proof. Let $f,g\colon X\to Y$ be isomorphisms. We show that f(x)=g(x) for all x by induction on x. Suppose f(y)=g(y) for all y< x. We must have that f(x)=a, where a is the least element of $Y\setminus\{f(y)\mid y< x\}$. Indeed, if not, we have f(x')=a for some x'>x by bijectivity, contradicting the order-preserving property. Note that the set $Y\setminus\{f(x)\mid y< x\}$ is nonempty as it contains f(x). So f(x)=a=g(x), as required.

§2.2 Initial segments

Definition 2.4

A subset I of a totally ordered set X is an **initial segment** if $x \in I$ implies $y \in I$ for all y < x.

Example 2.3

In any total ordering X and element $x \in X$, the set $\{y \mid y < x\}$ is an initial segment. Not every initial segment is of this form, for instance $\{x \mid x \leq 3\}$ in \mathbb{R} , or $\{x \mid x > 0, x^2 < 2\}$ in \mathbb{Q} .

In a well-ordering, every proper initial segment $I \neq X$ is of this form. Indeed, $I = \{y \mid y < x\}$ where x is the least element of $X \setminus I$: $y \in I$ implies y < x, otherwise y = x or x < y, giving the contradiction $x \in I$; and conversely, y < x implies $y \in I$, otherwise y is a sm aller element of $X \setminus I$.

Theorem 2.1 (definition by recursion)

Let X be a well-ordering and Y be any set. Let $G\colon \mathcal{P}(X\times Y)\to Y$ be a rule that assigns a point in Y given a definition of the function 'so far', represented as a set of ordered pairs. Then there exists a function $f\colon X\to Y$ such that $f(x)=G\Big(f|_{I_x}\Big)$, and such a function is unique.

Remark 11. In defining f(x), we may use the value of f(y) for all y < x.

Proof. We say that h is an **attempt** to mean that $h\colon I\to Y$ where I is some initial segment of X, and for all $x\in I$ we have that $h(x)=G\Big(h|_{I_x}\Big)$. Note that if h,h' are attempts both defined at x, then h(x)=h'(x) by induction on x.

Also, for all x, there exists an attempt defined at x, by induction on x. Indeed, by induction we can assume there exists an attempt h_y defined at y for all y < x, and then we can define h to be the union of the h_y . This is an attempt with domain I_x , so the attempt $h' = h \cup \{(x, G(h))\}$ is an attempt defined at x. Therefore, there is an attempt defined at each x, so we can define the function $f \colon X \to Y$ by setting f(x) to be the value of h(x) where h is some attempt defined at x.

For uniqueness, we apply induction on x. If f, f' agree below x, then they must agree at x since $f(x) = G\Big(f|_{I_x}\Big) = G\Big(f'|_{I_x}\Big) = f'(x)$.

Proposition 2.3 (subset collapse)

Any subset Y of a well-ordering X is isomorphic to a unique initial segment of X.

This is not true for general total orderings, such as $\{1,2,3\} \subset \mathbb{Z}$, or \mathbb{Q} in \mathbb{R} .

Proof. If f is some such isomorphism, we must have that f(x) is the least element of X not of the form f(y) for y < x. We define f in this way by recursion, and this is an isomorphism as required. Note that this is always well-defined as $f(y) \le y$, so there is always some element of X (namely, x) not of the form f(y) for y < x. Uniqueness follows by induction.

Remark 12. *X* itself cannot be isomorphic to a proper initial segment by uniqueness as it is isomorphic to itself.

§2.3 Relating well-orderings

Definition 2.5

For well-orderings X, Y, we will write $X \leq Y$ if X is isomorphic to an initial segment of Y.

 $X \leq Y$ if and only if X is isomorphic to some subset of Y.

Example 2.4 $\mathbb{N} \leq \left\{\frac{1}{2}, \frac{2}{3}, \dots\right\}$.

Proposition 2.4

Let X, Y be well-orderings. Then either $X \leq Y$ or $Y \leq X$.

Proof. By recursion we define the function $f\colon X\to Y$ by letting f(x) be the least element of Y not of the form f(y) for all y< x. If a least element of this form always exists, this is a well-defined isomorphism from X to an initial segment of Y as required. Suppose that $Y\setminus\{f(y)\mid y< x\}$ is empty, so $\{f(y)\mid y< x\}=Y$. Then Y is isomorphic to $I_x\subseteq X$, so $Y\le X$.

Proposition 2.5

Let X, Y be well-orderings, and suppose $X \leq Y$ and $Y \leq X$. Then X is isomorphic to Y.

Proof. Let $f: X \to Y$ and $g: Y \to X$ be isomorphisms to initial segments. Then $g \circ f$ is an isomorphism from X to some initial segment of X, as an initial segment of an initial segment is an initial segment. So by uniqueness, $g \circ f$ is the identity map on X. Similarly, $f \circ g$ is the identity on Y, so f and g are inverses. \square

§2.4 Constructing larger well-orderings

Definition 2.6

For well-orderings X, Y, we write X < Y if $X \le Y$ and X is not isomorphic to Y.

Equivalently, X < Y if X is isomorphic to a proper initial segment of Y.

Let X be a well-ordering, and let $x \notin X$. Construct the well-ordering on $X \cup \{x\}$ by setting y < x for all $y \in X$. This well-ordering is strictly greater than X, since X is isomorphic to a proper initial segment. This is called the successor of X, written X^+ .

For well-orderings $(X, <_X), (Y, <_Y)$, we say that $(Y, <_Y)$ extends $(X, <_X)$ if $X \subseteq Y$, $<_Y|_X = <_X$, and X is an initial segment of Y. We say that well-orderings X_i for $i \in I$ are **nested** if for all $i, j \in I$, either X_i extends X_j or X_j extends X_i .

Proposition 2.6

Let X_i for $i \in I$ be a nested set of well-orderings. Then, there exists a well-ordering X such that $X_i \leq X$ for all $i \in I$.

Proof. Let $X = \bigcup_{i \in I} X_i$ with ordering $<_X = \bigcup_{i \in I} <_i$. Then, as the X_i are nested, each X_i is an initial segment of X. We show that this is a well-ordering. Let $S \subseteq X$

be a nonempty set. Then $S \cap X_i \neq \emptyset$ for some $i \in I$. Let x be the least element of $S \cap X_i$. Thus, x is the least element of S, as X_i is an initial segment of S.

Remark 13. The proposition holds without the nestedness assumption.

§2.5 Ordinals

Definition 2.7

An **ordinal** is a well-ordered set, where we regard two ordinals as equal if they are isomorphic.

Remark 14. We cannot construct ordinals as equivalence classes of well-orderings, due to Russell's paradox. Later, we will see a different construction that deals with this problem.

Definition 2.8

Let *X* be a well-ordering corresponding to an ordinal α . Then, we say that *X* has **order type** α .

The order type of the unique well-ordering on a collection of $k \in \mathbb{N}$ points is named k. The order type of $(\mathbb{N}, <)$ is named ω .

Example 2.5

In the reals, the set $\{-2, 3, -\pi, 5\}$ has order type 4. The set $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$ has order type ω .

We will write $\alpha \leq \beta$ if $X \leq Y$ where X has order type α and Y has order type β . This does not depend on the choice of representative X or Y. We define $\alpha < \beta$ and α^+ in a similar way. Note that $\alpha \leq \beta, \beta \leq \alpha$ implies $\alpha = \beta$. Therefore, ordinals are totally ordered.

Proposition 2.7

Let α be an ordinal. Then the set of ordinals less than α form a well-ordered set of order type α .

Proof. Let X be a well-ordering with order type α . Then, the well-orderings less than X are precisely the proper initial segments of X, up to isomorphism. The initial segments of X are precisely the sets $I_x = \{y \in X \mid y < x\}$ for $x \in X$. But these are order isomorphic to X itself by mapping $I_x \mapsto x$.

We define $I_{\alpha} = \{\beta < \alpha\}$, which is a well-ordered set of order type α . This is often a convenient representative to choose for an ordinal.

Proposition 2.8

Every nonempty set S of ordinals has a least element.

Proof. Let $\alpha \in S$. Suppose α is not the least element of S. Then $S \cap I_{\alpha}$ is nonempty. But I_{α} is well-ordered, so $S \cap I_{\alpha}$ has a minimal element as required.

Theorem 2.2 (Burali-Forti paradox)

The ordinals do not form a set.

Proof. Suppose X is the set of all ordinals. Then X is a well-ordered set, so it has an order type α . Then X is isomorphic to I_{α} , which is a proper initial segment of X.

Remark 15. Given a set $S = \{\alpha_i : i \in I\}$ of ordinals, there exists an upper bound α for S, so $\alpha_i \leq \alpha$ for all $i \in I$, by considering the nested family of well-orderings I_{α_i} . Hence, by the previous proposition, there exists a least upper bound, as I_{α} is a set. We write $\alpha = \sup S$.

Example 2.6

 $\sup \{2, 4, 6, \dots\} = \omega.$

Remark 16. If we represent ordinals by sets of smaller ordinals, $\sup S = \bigcup_{\alpha \in S} \alpha$.

§2.6 Some ordinals

$$0, 1, 2, 3, \ldots, \omega$$

Write $\alpha + 1$ for the successor α^+ of α .

$$\omega + 1, \omega + 2, \omega + 3, \dots, \omega + \omega = \omega \cdot 2$$

where $\omega + \omega = \omega \cdot 2$ is defined by $\sup \{\omega, \omega + 1, \omega + 2, \dots\}$.

$$\omega \cdot 2 + 1, \omega \cdot 2 + 2, \dots, \omega \cdot 3, \omega \cdot 4, \omega \cdot 5, \dots, \omega \cdot \omega = \omega^2$$

where we define $\omega \cdot \omega = \sup \{\omega \cdot 2, \omega \cdot 3, \dots \}$.

$$\omega^2 + 1, \omega^2 + 2, \dots, \omega^2 + \omega, \dots, \omega^2 + \omega \cdot 2, \dots, \omega^2 + \omega^2 = \omega^2 \cdot 2$$

Continue in the same way.

$$\omega^2 \cdot 3, \omega^2 \cdot 4, \dots, \omega^3$$
 where $\omega^3 = \sup \left\{ \omega^2 \cdot 2, \omega^2 \cdot 3, \dots \right\}$.
$$\omega^3 + \omega^2 \cdot 7 + \omega \cdot 4 + 13, \dots, \omega^4, \omega^5, \dots, \omega^\omega$$
 where $\omega^\omega = \sup \left\{ \omega, \omega^2, \omega^3, \dots \right\}$.
$$\omega^\omega \cdot 2, \omega^\omega \cdot 3, \dots, \omega^\omega \cdot \omega = \omega^{\omega + 1}$$

$$\omega^{\omega + 2}, \dots, \omega^{\omega \cdot 2}, \omega^{\omega \cdot 3}, \dots, \omega^{\omega^2}, \dots, \omega^{\omega^3}, \dots, \omega^{\omega^\omega}, \dots, \omega^{\omega^\omega}, \dots, \omega^{\omega^\omega} = \varepsilon_0$$
 where $\varepsilon_0 = \sup \left\{ \omega, \omega^\omega, \omega^\omega, \dots \right\}$.
$$\varepsilon_0 + 1, \varepsilon_0 + \omega, \varepsilon_0 + \varepsilon_0 = \varepsilon_0 \cdot 2, \dots, \varepsilon_0^2, \varepsilon_0^3, \dots, \varepsilon_0^{\varepsilon_0}$$
 where $\varepsilon_0^{\varepsilon_0} = \sup \left\{ \varepsilon_0^\omega, \varepsilon_0^{\omega^\omega}, \dots \right\}$.

 $\varepsilon_0^{\varepsilon_0^0} =$

All of these ordinals are countable, as each operation only takes a countable union of countable sets.

§2.7 Uncountable ordinals

Theorem 2.3

There exists an uncountable ordinal.

Remark 17. The reals cannot be explicitly well-ordered.

Proof. Let $A \subseteq \mathcal{P}(\omega \times \omega)$ be the set of well-orderings of subsets of \mathbb{N} . Let B be the set of order types of A. Then B is the set of all countable ordinals. Let $\omega_1 = \sup B$. ω_1 is uncountable, and in particular, the least uncountable ordinal. Indeed, if it were countable, it would be the greatest element of B, but $\omega_1 + 1$ would also lie in B. \square

Remark 18. Without introducing *A*, it would be difficult to show that *B* was in fact a set.

Remark 19. Another ending to the proof above is as follows. *B* cannot be the set of all ordinals, since the ordinals do not form a set by the Burali-Forti paradox, so there exists an uncountable ordinal. In particular, there exists a least uncountable ordinal.

The ordinal ω_1 has a number of remarkable properties.

- 1. ω_1 is uncountable, but $\{\beta \mid \beta < \alpha\}$ is countable for all $\alpha < \omega_1$.
- 2. There exists no sequence $\alpha_1, \alpha_2, \ldots$ in I_{ω_1} with supremum ω_1 , as it is bounded by $\sup \{\alpha_1, \alpha_2, \ldots\}$, which is a countable ordinal.

Theorem 2.4 (Hartogs' lemma)

For every set X, there exists an ordinal γ that does not inject into X.

Proof. Use the argument above from the existence of an uncountable ordinal.

We write $\gamma(X)$ for the least ordinal that does not inject into X. For example $\gamma(\omega) = \omega_1$.

§2.8 Successors and limits

Definition 2.9

We say that an ordinal α is a **successor** if there exists β such that $\alpha = \beta^+$. Otherwise, α is a **limit**.

Equivalently, an ordinal is a successor if and only if it has a greatest element. An ordinal α is a limit if and only if it has no greatest element, or equivalently, for all $\beta < \alpha$, there exists $\gamma < \alpha$ with $\gamma > \beta$, giving $\alpha = \sup \{\beta \mid \beta < \alpha\}$.

Example 2.7

5 is a successor. $\omega + 2 = (\omega^+)^+$ is a successor. ω is a limit as it has no greatest element. 0 is a limit.

§2.9 Ordinal arithmetic

Let α, β be ordinals. We define $\alpha + \beta$ by induction on β , by

- $\alpha + 0 = \alpha$;
- $\alpha + \beta^+ = (\alpha + \beta)^+$;
- $\alpha + \lambda = \sup \{\alpha + \gamma \mid \gamma < \lambda \}$ for a nonzero limit ordinal.

Example 2.8

$$\omega + 1 = \omega + 0^+ = (\omega + 0)^+ = \omega^+$$
. $\omega + 2 = \omega + 1^+ = (\omega + 1)^+ = (\omega^+)^+$. $1 + \omega = \sup\{1 + \gamma \mid \gamma < \omega\} = \omega$. Therefore, addition is noncommutative.

Remark 20. As the ordinals do not form a set, we must technically define addition $\alpha + \gamma$ by induction on the set $\{\gamma \mid \gamma \leq \beta\}$. The choice of β does not change the definition of $\alpha + \gamma$ as defined for $\gamma \leq \beta$.

Proposition 2.9

Ordinal addition is associative.

Proof. Let α, β, γ be ordinals. We use induction on γ . Suppose $\alpha + (\beta + \delta) = (\alpha + \beta) + \delta$ for all $\delta < \gamma$.

First, suppose $\gamma = 0$. $\alpha + (\beta + 0) = \alpha + \beta = (\alpha + \beta) = 0$, as required. Now consider γ^+ .

$$\alpha + (\beta + \gamma^{+}) = \alpha + (\beta + \gamma)^{+} = (\alpha + (\beta + \gamma))^{+} = ((\alpha + \beta) + \gamma)^{+} = (\alpha + \beta) + \gamma^{+}$$

Finally, consider λ a nonzero limit.

$$(\alpha + \beta) + \lambda = \sup \{(\alpha + \beta) + \gamma \mid \gamma < \lambda\} = \sup \{\alpha + (\beta + \gamma) \mid \gamma < \lambda\}$$

We claim that $\beta + \lambda$ is a limit. Indeed, $\beta + \lambda = \sup \{\beta + \gamma \mid \gamma < \lambda\}$, but for every $\gamma < \lambda$ there exists $\gamma' < \lambda$ with $\gamma < \gamma'$ as λ is a limit, so $\beta + \gamma < \beta + \gamma'$. Thus, there is no greatest element in the set $\{\beta + \gamma \mid \gamma < \lambda\}$, so $\beta + \lambda$ is a limit.

Now, $\alpha + (\beta + \lambda) = \sup \{\alpha + \delta \mid \delta < \beta + \lambda\}$. So it suffices to show that

$$\sup \{\alpha + (\beta + \gamma) \mid \gamma < \lambda\} = \sup \{\alpha + \delta \mid \delta < \beta + \lambda\}$$

Certainly

$$\{\alpha + (\beta + \gamma) \mid \gamma < \lambda\} \subseteq \{\alpha + \delta \mid \delta < \beta + \lambda\}$$

as $\gamma < \lambda$ implies $\beta + \gamma < \beta + \lambda$. Further, for any $\delta < \beta + \lambda$, $\delta \leq \beta + \gamma$ for some $\gamma < \lambda$ by definition of $\beta + \lambda$. Therefore, $\alpha + \delta \leq \alpha + (\beta + \gamma)$, so each element of $\{\alpha + \delta \mid \delta < \beta + \lambda\}$ is at most some element of $\{\alpha + (\beta + \gamma) \mid \gamma < \lambda\}$. So the two suprema agree.

Remark 21. We used the facts

- 1. $\beta \le \gamma \Rightarrow \alpha + \beta \le \alpha + \gamma$, which is trivial by induction on γ ;
- 2. $\beta < \gamma \Rightarrow \alpha + \beta < \alpha + \gamma$, as $\beta^+ \le \gamma$ so $\alpha + \beta^+ \le \alpha + \gamma$ by (i).

However, 1 < 2 but $1 + \omega \not< 2 + \omega$.

The above is the **inductive** definition of addition; there is also a **synthetic** definition of addition. We can define $\alpha + \beta$ to be the order type of $\alpha \sqcup \beta$, where every element of α is taken to be less than every element of β .

For instance, $\omega + 1$ is the order type of ω with a point afterwards, and $1 + \omega$ is the order type of a point followed by ω , which is clearly isomorphic to ω . Associativity is clear, as $(\alpha + \beta) + \gamma$ and $\alpha + (\beta + \gamma)$ are the order type of $\alpha \sqcup \beta \sqcup \gamma$.

Proposition 2.10

The inductive and synthetic definitions of addition coincide.

Proof. We write +' for synthetic addition, and aim to show $\alpha + \beta = \alpha +' \beta$. We perform induction on β .

For $\beta = 0$, $\alpha + 0 = \alpha$ and $\alpha + 0 = \alpha$. For successors, $\alpha + \beta^+ = (\alpha + \beta)^+ = (\alpha + \beta)^+$, which is the order type of $\alpha \sqcup \beta \sqcup \{\star\}$, which is equal to $\alpha + \beta^+$.

Let λ be a nonzero limit. We have $\alpha + \lambda = \sup \{\alpha + \gamma \mid \gamma < \lambda\}$. But $\alpha + \gamma = \alpha + \gamma$ for $\gamma < \lambda$, so $\alpha + \lambda = \sup \{\alpha + \gamma \mid \gamma < \lambda\}$. As the set $\{\alpha + \gamma \mid \gamma < \lambda\}$ is nested, it is equal to its union, which is $\alpha + \lambda$.

Synthetic definitions can be easier to work with if such definitions exist. However, there are many definitions that can only easily be represented inductively, and not synthetically.

We define multiplication inductively by

- $\alpha 0 = 0$;
- $\alpha \beta^+ = \alpha \beta + \alpha$;
- $\alpha \lambda = \sup \{ \alpha \gamma \mid \gamma < \lambda \}$ for λ a nonzero limit.

Example 2.9

 $\omega 2 = \omega 1 + \omega = \omega 0 + \omega + \omega = \omega + \omega$. Similarly, $\omega 3 = \omega + \omega + \omega$. $\omega \omega = \sup\{0, \omega 1, \omega 2, \dots\} = \{0, \omega, \omega + \omega, \dots\}$. Note that $2\omega = \sup\{0, 2, 4, \dots\} = \omega$. Multiplication is noncommutative. One can show in a similar way that multiplication is associative.

We can produce a synthetic definition of multiplication, which can be shown to coincide with the inductive definition. We define $\alpha\beta$ to be the order type of the Cartesian product $\alpha \times \beta$ where we say $(\gamma, \delta) < (\gamma', \delta')$ if $\delta < \delta'$ or $\delta = \delta'$ and $\gamma < \gamma'$. For instance, $\omega 2$ is the order type of two infinite sequences, and 2ω is the order type of a sequence of pairs.

Similar definitions can be created for exponentiation, towers, and so on. For instance, α^{β} can be defined by

- $\alpha^0 = 1$:
- $\alpha^{(\beta^+)} = \alpha^{\beta} \alpha$:
- $\alpha^{\lambda} = \sup \{ \alpha^{\gamma} \mid \gamma < \lambda \}$ for λ a nonzero limit.

For example, $\omega^2 = \omega^1 \omega = \omega^0 \omega \omega = \omega \omega$. Further, $2^\omega = \sup \{2^0, 2^1, \dots\} = \omega$, which is countable.