NOM:

INTERRO DE COURS – SEMAINE 5

Exercice 1 – Résoudre les (in)équations suivantes en précisant bien l'ensemble des solutions.

1.
$$x^2 - 10x + 21 = 0$$

2.
$$x^2 - 4x + 6 = 2x + 1$$

3.
$$x^2 + \frac{2}{3}x + \frac{1}{9} = 0$$

Solution:

1. Je calcule le discriminant : $\Delta = (-10)^2 - 4 \times 1 \times 21 = 100 - 84 = 16 = 4^2 > 0$. Le polynôme a donc deux racines

$$x_1 = \frac{-(-10) - \sqrt{16}}{2 \times 1} = \frac{10 - 4}{2} = 3$$
 et $x_2 = \frac{10 + 4}{2} = 7$.

Ainsi $S = \{3, 7\}.$

2. $x^2-4x+6=2x+1 \iff x^2-6x+5=0$ Je calcule le discriminant : $\Delta = (-6)^2-4\times 1\times 5=36-20=16=4^2>0$. Le polynôme a donc deux racines

$$x_1 = \frac{6-4}{2} = 1$$
 et $x_2 = \frac{6+4}{2} = 5$.

Ainsi $S = \{1, 5\}.$

3. Je calcule le discriminant : $\Delta = \left(\frac{2}{3}\right)^2 - 4 \times 1 \times \frac{1}{9} = \frac{4}{9} - \frac{4}{9} = 0$. Le polynôme a donc une racine unique

$$x_0 = -\frac{\frac{2}{3}}{2} = -\frac{2}{3} \times \frac{1}{2} = -\frac{1}{3}.$$

Ainsi
$$S = \left\{-\frac{1}{3}\right\}$$
.

4.
$$x^2 - 5x + 6 < 0$$

5.
$$x(x-2) < -1$$

6.
$$x(x-10) \ge x-10$$

Solution:

4. Je calcule le discriminant : $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1 > 0$. Le polynôme a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

J'en déduis le tableau de signe suivant :

x	$-\infty$		2		3		+∞
$x^2 - 5x + 6$		+	0	-	0	+	

Finalement S = [2,3[.

5.

$$x(x-2) < -1 \iff x^2 - 2x < -1 \iff x^2 - 2x + 1 < 0$$

Je calcule le discriminant : $\Delta = (-2)^2 - 4 \times 1 \times 1 = 4 - 4 = 0$. Le polynôme a donc une racine unique

$$x_0 = -\frac{(-2)}{2 \times 1} = 1.$$

J'en déduis le tableau de signe suivant :

x	$-\infty$		1		+∞
$x^2 - 2x + 1$		+	0	+	

Finalement $S = \emptyset$.

6.

$$x(x-10) \geqslant x-10 \quad \Longleftrightarrow \quad x^2-10x \geqslant x-10 \quad \Longleftrightarrow \quad x^2-11x+10 \geqslant 0.$$

Je calcule le discriminant : $\Delta = (-11)^2 - 4 \times 1 \times 10 = 121 - 40 = 81 = 9^2 > 0$. Le polynôme a donc deux racines

$$x_1 = \frac{11-9}{2} = 1$$
 et $x_2 = \frac{11+9}{2} = 10$.

J'en déduis le tableau de signe suivant :

x	$-\infty$		1		10		+∞
$x^2 - 11x + 10$		+	0	_	0	+	

Finalement $S =]-\infty, 1] \cup [10, +\infty[$.