MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics Winter 2022

29 Heaps Continued and Sorting

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

April 4, 2022

Admin

- I will publish the Assignment 3 after this lecture.
 - It is related to extending the ADT of Binary Search Tree with extra functions
 - I will provide a base code that you can extend it
 - I will provide a detailed video that describes the code
 - Ask questions in the QA channel
 - If your question is related to the base code, make sure that you have watched the video
- The marking of Assignment 2 is almost done. I will release the grades soon.
- Besides tomorrow's tutorial on program correctness, I will make a lecture note for the previous lecture. I hope both the lecture notes and the tutorial content clarify the concepts.

Review

- Priority Queue
 - Data structure for storing a collection of prioritized elements
 - Priority is defined based on keys
 - Supporting arbitrary element insertion
 - Supporting removal of elements in order of priority
 - Sorting based on Priority Queue:
 - keys stored in a Sequence S
 - create a Priority Queue PQ
 - While the S is not empty
 - get a key from sequence and insert it into the PQ
 - While PQ is not empty
 - remove the min of PQ
 - insert it back to S

Sequence-based Priority Queue (Review)

 Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take O(n)
 time since we have to traverse
 the entire sequence to find the
 smallest key

Implementation with a sorted list

- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take *O*(1)
 time, since the smallest key is at the beginning

Priority Queue Sorting (Review)

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time

```
Algorithm PQ-Sort(S, C)
```

Input sequence *S*, comparator *C* for the elements of *S*

Output sequence S sorted in increasing order according to C

 $P \leftarrow$ priority queue with comparator C

```
while \neg S.empty ()
e \leftarrow S.front(); S.eraseFront()
P.insert (e, \emptyset)
```

while $\neg P.empty()$

 $e \leftarrow P.removeMin()$

S.insertBack(e)

Review

Method	PQ Unsorted List	PQ Sorted List	Неар
insert	O(1)	O(n)	O(logn)
removeMin	O(n)	O(1)	O(logn)

- Can we do better?
 - We can definitely get the better of both the worlds using the heap data structure.

Heaps (Review)

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every internal node v other than the root, key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be the height of the heap
 - o for i = 0, ..., h 1, there are 2^i nodes of depth i
 - o at depth h 1, the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost node of maximum depth

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores
 the heap-order property by
 swapping k along an upward
 path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height
 O(log n), upheap runs in
 O(log n) time

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Upheap terminates when key
 k reaches a leaf or a node
 whose children have keys
 greater than or equal to k
- Since a heap has height
 O(log n), downheap runs in
 O(log n) time

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Priority Queue Sorting (Recall again!)

- We can use a priority queue to sort a set of comparable elements
 - Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n²) time
 - Sorted sequence gives insertion-sort: O(n²) time

```
Algorithm PQ-Sort(S, C)
    Input sequence S, comparator C for
    the elements of S
    Output sequence S sorted in
    increasing order according to C
    P \leftarrow priority queue with comparator C
    while \neg S.empty ()
        e \leftarrow S.front(); S.eraseFront()
        P.insert (e, \emptyset)
    while \neg P.empty()
        e \leftarrow P.removeMin()
```

S.insertBack(e)

Sorting using a PQ mimics two Sorting Algorithms

- Selection sort algorithm sorts an array by repeatedly finding the minimum element from unsorted part and putting it at the beginning.
- Selection sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence.
- Runs in O(n²) time.

		List L	Priority Queue P
Input		(7,4,8,2,5,3,9)	()
Phase 1	(a)	(4,8,2,5,3,9)	(7)
	(b)	(8,2,5,3,9)	(7,4)
	÷	:	:
	(g)	()	(7,4,8,2,5,3,9)
Phase 2	(a)	(2)	(7,4,8,5,3,9)
	(b)	(2,3)	(7,4,8,5,9)
	(c)	(2,3,4)	(7,8,5,9)
	(d)	(2,3,4,5)	(7, 8, 9)
	(e)	(2,3,4,5,7)	(8,9)
	(f)	(2,3,4,5,7,8)	(9)
	(g)	(2,3,4,5,7,8,9)	()

Sorting using a PQ mimics two Sorting Algorithms

- Insertion sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence.
- Runs in O(n²) time.

		List L	Priority Queue P
Input		(7,4,8,2,5,3,9)	()
Phase 1	(a)	(4,8,2,5,3,9)	(7)
	(b)	(8,2,5,3,9)	(4,7)
	(c)	(2,5,3,9)	(4,7,8)
	(d)	(5,3,9)	(2,4,7,8)
	(e)	(3,9)	(2,4,5,7,8)
	(f)	(9)	(2,3,4,5,7,8)
	(g)	()	(2,3,4,5,7,8,9)
Phase 2	(a)	(2)	(3,4,5,7,8,9)
	(b)	(2,3)	(4,5,7,8,9)
	÷	:	:
	(g)	(2,3,4,5,7,8,9)	()

Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, empty, and
 min take time *O*(1) time

- Using a heap-based priority
 queue, we can sort a sequence
 of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection sort.

Heap: Array-based representation

- We can represent a heap with n keys by means of a vector of length n + 1
- For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank n
- Yields in-place heap-sort

Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases
- In phase *i*, pairs of heaps with 2ⁱ-1 keys are merged into heaps with 2ⁱ⁺¹-1 keys
 - we construct (n+1)/2 elementary heaps storing one entry each.
 - we form (n + 1)/4 heaps, each storing three entries, by joining pairs of elementary heaps and adding a new entry.

0 ...

Questions?

Please evaluate this course! Thank you

