Computer consists of a collection of objects (hardware objects or software objects) Each object has a unique name and can be accessed through a well-defined set of operations Protection problem - ensure that each object is accessed correctly and only by those that are allowed to do so

给予的权限尽量叶

Principles of Protection

- Guiding principle principle of least privilege
 - Programs, users and systems should be given just enough privileges to perform their tasks
 - Limits damage if entity has a bug, gets abused
 - Can be static (during life of system, during life of process)
 - Or dynamic (changed by process as needed)
 privilege escalation

Access Matrix

- View protection as a matrix (access matrix)
- Rows represent domains (e.g. users or processes)
- Columns represent objects
- Access (i, j) is the set of operations that a process executing in Domain; can invoke on Object;

object domain	F ₁	F ₂	F ₃	printer
D ₁	read		read	
D ₂				print
D ₃		read	execute	
D_4	read write		read write	

If a process in Domain D_i tries to do "op" on object O_{j_i} then "op" must be in the access matrix

- User who creates object can define access column for that object
- Can be expanded to dynamic protection
 - Operations to add, delete access rights
- Access matrix design separates mechanism from policy
 - Mechanism
 - Operating system provides access-matrix + rules
 - It ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced
 - Policy
 - User dictates policy
 - Who can access what object and in what mode

Domain; 中的进程对 object; 有Access (i,j) 权限

Cryptography						
■ Protect confidentiality of a message ■ An encryption algorithm must provide this essential property: Given a ciphertext c ∈ C,						
■ Encryption algorithm consists of Set K of keys ■ Set K of keys ■ Set K of keys						
Set M of Massages Thus, a computer holding k can decrypt ciphertexts						
 Set C of ciphertexts (encrypted messages) 	to the plaintexts used to produce them, but a computer not holding k cannot decrypt ciphertexts					
• A function $E: K \to (M \to C)$. That is, for each $k \in K$, E_k is a function for generating ciphertexts from messages	Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive k from the ciphertexts					
▶ Both E and E _k for any k should be efficiently	De mieaside to derive x nom the ophericals					
computable functions • A function $D: K \to (C \to M)$. That is, for each $k \in K$,						
D_{k} is a function for generating messages from ciphertexts						
→ Both <i>D</i> and <i>D</i> _k for any <i>k</i> should be efficiently						
computable functions						
Symmetric Encryption						
- smalled it saw greens						
Same key used to encrypt and decrypt						
 Therefore k must be kept secret 						
■ Block cipher (messages encrypted block-by-blo						
 DES was most commonly used symmetric block algorithm 	cryption					
Keys too short so now considered insecure						
2001 NIST adopted new block cipher - Advanced	ncryption					
Standard (AES)						
▶ Keys of 128, 192, or 256 bits, works on 128 b						
Stream cipher (message encrypted bit-by-bit or						
 RC4 is most common symmetric stream cipher, vulnerabilities 	known to have					
Asymmetric Encryption						
Dublic key enswitting based on each year beging to						
Public-key encryption based on each user having tw keys:						
 public key – published key used to encrypt data 						
 private key – key known only to individual user used to decrypt data 						
Must be an encryption scheme that can be made publication.						
without making it easy to figure out the decryption scheme						
Most common is RSA cipher						
 Efficient algorithm for testing whether or not a number is 						
primeNo efficient algorithm is know for finding the prime factor						
of a number						
A						
Authentication						
■ Protect integrity of a message ■ Algorithm components	For a message m , a computer can generate an authenticator $a \in A$ such that $V_k(m, a) = \text{true only if it possesses } k$					
• A set K of keys	■ Thus, computer holding <i>k</i> can generate authenticators on messages so that any other computer possessing <i>k</i> can verify					
A set M of messagesA set A of authenticators	them					
• A function $S: K \to (M \to A)$	Computer not holding k cannot generate authenticators on messages that can be verified using V_k					
That is, for each $k \in K$, S_k is a function for generating authenticators from messages	■ Since authenticators are generally exposed (for example,					
 Both S and S_k for any k should be efficiently computable functions 	they are sent on the network with the messages themselves), it must not be feasible to derive <i>k</i> from the authenticators					
• A function $V: K \to (M \times A \to \{\text{true, false}\})$. That is, for each $K \in V_k$ is a function for verifying authenticators on messages	Practically, if V _k (m,a) = true then we know m has not been modified and that send of message has k					
 Both V and V_k for any k should be efficiently computable functions 	If we share <i>k</i> with only one entity, know where the					
	message originated					
Mossage authorization code (MAC)						
Message-authentication code (MAC) authentication algorithm						
Based on symmetric encryption						
Both parties share secret keys						
Digital signatures authentication algorithm						
Based on asymmetric encryption						
 anyone can verify authenticity of a message using the public key 						

