EXPross Mail: EL711263015US Datcof Deposit: 02/02/01

STING Docket No.: C1037/7013

(HCL/MAT)

SEQUENCE LISTING

<110> Bratzler, Robert L. Petersen, Deanna M. Fouron, Yves

<120> Immunostimulatory Nucleic Acids for the Treatment of Asthma and Allergy

<130> C1037/7013 (HCL/MAT)

<150> US 60/179,991

<151> 2000-02-03

<160> 1093

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 1

tctcccagcg tgcgccat

18

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 2

ataatccagc ttgaaccaag

20

<210> 3

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 3

ataatcgacg ttcaagcaag

20

<210> 4

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 4 taccgcgtgc gaccctct	18
<210> 5 <211> 9 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 5 ggggagggt	9
<210> 6 <211> 9 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 6 ggggagggg	9
<210> 7 <211> 9 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 7 ggtgaggtg	9
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (8)(8) <223> m5c	
<223> Synthetic Sequence	
<400> 8 tccatgtngt tcctgatgct	20
<210> 9 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (11)(11) <223> m5c	

114.

<22	23> Synthetic Sequence	
<4! gctacctta	00> 9 ag ngtga	15
<2 <2	10> 10 11> 20 12> DNA 13> Artificial Sequence	
<2 <2	220> 221> modified_base 222> (8)(8) 223> m5c	
<2	223> Synthetic Sequence	
	400> 10 ngt teetgatget	20
<2 <2	210> 11 211> 20 212> DNA 213> Artificial Sequence	
<2 <2	220> 221> modified_base 222> (13)(13) 223> m5c	
<2	223> Synthetic Sequence	
	400> 11 cgt tcntgatgct	20
<2 <2	210> 12 211> 15 212> DNA 213> Artificial Sequence	
<: <:	220> 221> modified_base 222> (7)(7) 223> m5c	
<	223> Synthetic Sequence	
	4400> 12 agtt agtgt	15
<	3210> 13 3211> 19 3212> DNA 3213> Artificial Sequence	
	<pre><220> <223> Synthetic Sequence</pre>	
	<400> 13 atgg tgctcactg	19

11 911

Z211	> 14	
	> 20	
	> DNA	
<213	> Artificial Sequence	
<220		
	> Synthetic Sequence	
\220	> bynonoolo ooquo	
<400	> 14	0.0
ccacgtcgac	cctcaggcga	20
.010	. 15	
	> 15	
	> 20 > DNA	
	> Artificial Sequence	
\Z13	> Wiffilerar pedagues	
<220	>	
<223	> Synthetic Sequence	
)> 15	20
gcacatcgto	c ccgcagccga	20
√91 C)> 16	
	> 19	
	<pre>2> DNA</pre>	
	3> Artificial Sequence	
	•	
<220		
<223	3> Synthetic Sequence	
< 4.00		
< 4111		
)> 16	19
	g gtacctcga	19
gtcactcgt		19
gtcactcgtg	g gtacctcga	19
gtcactcgts <210 <211 <212	g gtacctcga D> 17 1> 25 2> DNA	19
gtcactcgts <210 <211 <212	g gtacctcga D> 17 1> 25	19
<pre>gtcactcgtg <210 <211 <211 <211</pre>	g gtacctcga D> 17 1> 25 2> DNA 3> Artificial Sequence	19
<pre>gtcactcgtg <210 <211 <211 <221</pre>	g gtacctcga D> 17 L> 25 DNA S> Artificial Sequence	19
<pre>gtcactcgtg <210 <211 <211 <221</pre>	g gtacctcga D> 17 1> 25 2> DNA 3> Artificial Sequence	19
<pre>gtcactcgtg <210 <211 <211 <221 <222 <222 <222 <223 <224 <224 <225</pre>	g gtacctcga D> 17 L> 25 DNA S> Artificial Sequence	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17	19 25
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence	
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> NA 3> Synthetic Sequence 0> 18	25
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence	
<pre></pre>	g gtacctoga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 18 3> Synthetic Sequence 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 18 t gcgctcatct taggc	25
<pre></pre>	g gtacctcga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 18 1> 10	25
<pre>gtcactcgtg</pre>	g gtacctoga 0> 17 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 17 a ggccagactt tgttg 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 18 3> Synthetic Sequence 0> 18 1> 25 2> DNA 3> Artificial Sequence 0> 3> Synthetic Sequence 0> 18 t gcgctcatct taggc	25

191 (88)

<220> <223> Synthetic Sequence	
<400> 19 accatggacg aactgtttcc cctc	24
<210> 20	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 20 accatggacg agetgtttee eete	24
<210> 21	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 21 accatggacg acctgtttcc cctc	24
<210> 22	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 22	24
accatggacg tactgtttcc cctc	∠ ч
<210> 23	
<211> 24	
<212> DNA <213> Artificial Sequence	
(000)	
<220> <223> Synthetic Sequence	
<400> 23	
accatggacg gtctgtttcc cctc	24
<210> 24	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 24 accatggacg ttctgtttcc cctc	24
accatggacy tidegtited cotc	

11.00

<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400>	· 25	25
ccactcacat	ctgctgctcc acaag	23
<210> <211>		
<212>	> DNA	
<213>	> Artificial Sequence	
<220	> > Synthetic Sequence	
<4002 acttctcata	> 26 gtccctttgg tccag	25
<210	> 27	
<211		
	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
	> 27 teetgagtet	20
<210	> 28	
	> 20	
	<pre>PNA Princial Sequence</pre>	
<220 <223)> 3> Synthetic Sequence	
	> modified_base	
	2> (9)(9)	
<223	3> I	
	1> modified_base	
	2> (11)(11) 3> I	
	1> modified_base 2> (15)(15)	
	3> I	
	0> 28	20
gaggaaggn	g nggangacgt	20
	0> 29	
	1> 20	
	2> DNA 3> Artificial Sequence	
~ ~ 	O:	

181 881 0 11 1

```
<220>
      <223> Synthetic Sequence
     <221> modified base
      <222> (7)...(7)
      <223> I
      <221> modified_base
      <222> (13)...(13)
      <223> I
      <221> modified base
      <222> (18)...(18)
      <223> I
      <400> 29
                                                                         20
gtgaatncgt tcncgggnct
      <210> 30
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 30
                                                                          6
aaaaaa
      <210> 31
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 31
                                                                          6
ccccc
      <210> 32
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 32
                                                                           6
ctgtca
      <210> 33
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 33
                                                                           6
tcgtag
```

	<210> 34	
	<211> 6	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 34	
+ 00+		6
tcgt	99	
	<210> 35	
	<211> 6	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 35	6
cgtc	gt	
	<210> 36	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	(210) 111 011 = 0 - 1	
	<220>	
	<223> Synthetic Sequence	
	<400> 36	20
tcca	atgtogg tootgagtot	20
	<210> 37	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><220> <223> Synthetic Sequence</pre>	
	(223) Synchold to que	
	<400> 37	
tcc	atgccgg tcctgagtct	20
	<210> 38	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220>	
	<223> Synthetic Sequence	
	<400> 38	
+ ~ ~	eatgacgg teetgagtet	20
000	acyacyy coocyayers	
	<210> 39	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	

<220> <223> Synt	hetic Sequence	
<400> 39 tccatgacgg tcctg	gagtet	20
<210> 40 <211> 20 <212> DNA <213> Arti	ificial Sequence	
<220> <223> Synt	thetic Sequence	
<400> 40 tccatgtcga tcctq	gagtct	20
<210> 41 <211> 20 <212> DNA <213> Art:	ificial Sequence	
<223> Syn	thetic Sequence	
<400> 41 tccatgtcgc tcct	gagtct	20
<210> 42 <211> 20 <212> DNA <213> Art	ificial Sequence	
<220> <223> Syn	thetic Sequence	
<400> 42 tccatgtcgt tcct	gagtct	20
<210> 43 <211> 20 <212> DNA <213> Art	rificial Sequence	
<220> <223> Syn	nthetic Sequence	
<400> 43 tccatgacgt tcct	gagtet	20
<210> 44 <211> 20 <212> DNF <213> Art	A cificial Sequence	
<220> <223> Syr	nthetic Sequence	
<400> 44 tccataacgt tcct	tgagtct	20

<	<210> 45 <211> 20 <212> DNA	
<	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 45 acgt ccctgagtct	20
	<210> 46	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
•	<223> Synthetic Sequence	
	<400> 46	20
tccatc	acgt gcctgagtct	_ 0
	<210> 47	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 47	20
tccatg	rctgg tcctgagtct	20
	<210> 48	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<221> modified_base <222> (8)(8)	
	<223> m5c	
	<223> Synthetic Sequence	
	<400> 48	
tccato	gtngg tcctgagtct	20
	<210> 49	
	<211> 39	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 49	_
ccgctt	teete cagatgaget catgggttte tecaceaag	39
	<210> 50	
	<211> 39	

	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
cttgg	<400> 50 tggag aaacccatga gctcatctgg aggaagcgg	39
	<210> 51	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 51	20
cccca	laaggg atgagaagtt	20
	<210> 52	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 52	0.0
agata	agcaaa teggetgaeg	20
	<210> 53	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 53	20
ggtt	cacgtg ctcatggctg	20
	<210> 54	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 54	18
tctc	ccageg tgegeeat	1.0
	<210> 55	
	<211> 18	
	<212> DNA <213> Artificial Sequence	
	(213) Withingt pedagage	
	<220>	
	<223> Synthetic Sequence	

<400> 55	18
tctcccagcg tgcgccat	10
<210> 56	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
(225) bynonocia so james	
<400> 56	
taccgcgtgc gaccctct	18
<210> 57	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
(220° 0 ₁	
<400> 57	0.0
ataatccagc ttgaaccaag	20
<210> 58	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 58	20
ataatcgacg ttcaagcaag	20
<210> 59	
<211> 20 <212> DNA	
<212> DNA <213> Artificial Sequence	
ZISV ALCITICIAL bodacinos	
<220>	
<223> Synthetic Sequence	
<400> 59	20
tccatgattt tcctgatttt	20
(010) (0	
<210> 60	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
(249) (110) = 110; 110; 110; 110; 110; 110; 110; 11	
<220>	
<223> Synthetic Sequence	
<400> 60	24
ttgttttttt gttttttgt tttt	2
<210> 61	
<210> 61 <211> 22	
<211> 22 <212> DNA	

AND MANUEL 2017

<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 61	22
ttttttttgt ttttttgttt tt	
<210> 62	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
72257 by Mane of the 1974	
<400> 62	24
tgctgctttt gtgcttttgt gctt	
<210> 63	
<211> 22	
<212> DNA <213> Artificial Sequence	
(213) Interiroral poducing	
<220>	
<223> Synthetic Sequence	
<400> 63	22
tgctgcttgt gcttttgtgc tt	2.2
<210> 64	
<211> 23	
<212> DNA <213> Artificial Sequence	
(ZIS) Altificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 64	23
gcattcatca ggcgggcaag aat	23
<210> 65	
<211> 23	
<212> DNA <213> Artificial Sequence	
<213> Arcificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 65	0.5
taccgagett egacgagatt tea	23
<210> 66	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 66	

gcatgacgtt gagct	15
<210> 67 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 67 cacgttgagg ggcat	15
<210> 68 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 68 ctgctgagac tggag	15
<210> 69 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 69 tccatgacgt tcctgacgtt	20
<210> 70 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 70 gcatgagctt gagctga	17
<210> 71 <211> 12 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 71 tcagcgtgcg cc	12
<210> 72 <211> 17 <212> DNA <213> Artificial Sequence	

HELFHIJD TO

<220> <223> Synthetic Sequence	
<400> 72 atgacgttcc tgacgtt	17
<210> 73 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 73 ttttggggtt ttggggtttt	20
<210> 74 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 74 tctaggcttt ttaggcttcc	20
<210> 75 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 75 tgcatttttt aggccaccat	20
<210> 76 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 76 tctcccagcg tgcgtgcgcc at	22
<210> 77 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 77 teteccageg ggegeat	17

	<210> 78	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220> <223> Synthetic Sequence	
	<2552 PAucueric pedacues	
	<400> 78	
tctcc	cageg agegecat	18
	<210> 79	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 79	18
tctcc	ccageg egegeeat	10
	<210> 80	
	<211> 19 <212> DNA	
	<213> Artificial Sequence	
	(213) 111 0111 0111	
	<220>	
	<223> Synthetic Sequence	
	<400> 80	19
gaga.	tgacgt tcagggggg	
	<210> 81	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 81	
aaaa	rtccagc gtgcgccatg gggg	24
5555		
	<210> 82	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	-	
	<400> 82	19
gggg	gtgtcgt tcagggggg	1)
	<210> 83	
	<210 / 63 <211 > 20	
	<212> DNA	
	<213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 83 tccatgtcgt tcctgtcgtt	20
<210> 84 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 84 tccatagcgt tcctagcgtt	20
<210> 85 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 85 tcgtcgctgt ctccgcttct t	21
<210> 86 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 86 gcatgacgtt gagct	15
<210> 87 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 87 teteccageg tgegecatat	20
<210> 88 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (8)(8) <223> m5c	
<221> modified_base	

```
<222> (17)...(17)
      <223> m5c
      <223> Synthetic Sequence
      <400> 88
                                                                         20
tccatgangt tcctgangtt
      <210> 89
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (7)...(7)
      <223> m5c
      <223> Synthetic Sequence
      <400> 89
                                                                          15
gcatgangtt gagct
      <210> 90
      <211> 16
       <212> DNA
      <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 90
                                                                          16
 tccagcgtgc gccata
       <210> 91
       <211> 18
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 91
                                                                          18
 tctcccagcg tgcgccat
       <210> 92
       <211> 20
       <212> DNA
       <213> Artificial Sequence
        <223> Synthetic Sequence
        <400> 92
                                                                           20
 tccatgagct tcctgagtct
        <210> 93
        <211> 15
        <212> DNA
        <213> Artificial Sequence
```

<220> <223> Synthetic Sequence	
<400> 93 gcatgtcgtt gagct	15
<210> 94 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 94 tcctgacgtt cctgacgtt	19
<210> 95 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 95 gcatgatgtt gagct	15
<210> 96 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 96 gcatttcgag gagct	15
<210> 97 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 97 gcatgtagct gagct	15
<210> 98 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 98 tccaggacgt tcctagttct	20

111

<210> 99 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 99 tccaggagct tcctagttct	20
<210> 100 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 100 tccaggatgt tcctagttct	20
<210> 101 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 101 tccagtctag gcctagttct	20
<210> 102 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 102 tccagttcga gcctagttct	20
<210> 103 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 103 gcatggcgtt gagct	15
<210> 104 <211> 15 <212> DNA <213> Artificial Sequence	
<220>	

1.881

<223> Synthetic Sequence	
<400> 104 gcatagcgtt gagct	15
<210> 105 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 105 gcattgcgtt gagct	15
<210> 106 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 106 gcttgcgttg cgttt	15
<210> 107 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 107 tctcccagcg ttgcgccata t	21
<210> 108 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 108 tctcccagcg tgcgttatat	20
<210> 109 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 109 tetecetgeg tgegecatat	20

<210> 110

```
<211> 20
     <212> DNA
     <213> Artificial Sequence
     <220>
      <223> Synthetic Sequence
      <400> 110
                                                                         20
tctgcgtgcg tgcgccatat
      <210> 111
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 111
                                                                         20
tctcctagcg tgcgccatat
      <210> 112
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 112
                                                                          20
 tctcccagcg tgcgcctttt
       <210> 113
       <211> 13
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
        <221> misc_difference
        <222> (5)...(5)
        <223> n is a or g or c or t/u
        <221> misc_difference
        <222> (6)...(6)
        <223> d is a or g or t/u; not c
        <221> misc_difference
        <222> (9)...(10)
        <223> h is a or c or t/u; not g
        <400> 113
                                                                           13
  gctandcghh agc
         <210> 114
         <211> 13
         <212> DNA
         <213> Artificial Sequence
         <220>
```

paragraph 9.5

	<223> Synthetic Sequence	
	<400> 114	
tcctga	acgtt ccc	13
	<210> 115	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 115	13
ggaaga	acgtt aga	
	<210> 116	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 116	1.0
tcctg	acgtt aga	13
	<210> 117	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 117	
tcaga	ccage tggtegggtg tteetga	27
	<210> 118	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 118	
tcago	gaacac ccgaccaget ggtetga	27
	<210> 119	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 119	
gcta	gtcgat agc	13
	<210> 120	

DECEMBER 1

<211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 120 gctagtcgct agc	13
<210> 121 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 121 gcttgacgtc tagc	14
<210> 122 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 122 gcttgacgtt tagc	14
<210> 123 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 123 gcttgacgtc aagc	14
<210> 124 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 124 gctagacgtt tagc	14
<210> 125 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	

<400> 125 tccatgacat tcctgatgct	20
<210> 126 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 126 gctagacgtc tagc	14
<210> 127 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 127 ggctatgtcg ttcctagcc	19
<210> 128 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 128 ggctatgtcg atcctagcc	19
<210> 129 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 129 ctcatgggtt tctccaccaa g	21
<210> 130 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 130 cttggtggag aaacccatga g	21
<210> 131 <211> 20	

	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccat	<400> 131 gacgt toctagttot	20
	<210> 132	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 132	
ccgct	ttooto cagatgaget catg	24
	<210> 133	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
catg	<400> 133 agctca tctggaggaa gcgg	24
	<210> 134	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 134	24
ccag	gatgage teatgggttt etee	
	<210> 135	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 135	24
gga	gaaaccc atgagctcat ctgg	
	<210> 136	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

<400> 136	20
agcatcagga acgacatgga	
<210> 137	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 137	20
tccatgacgt tcctgacgtt	20
<210> 138	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 138	
dedededede dedededed	19
<210> 139	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 139	
ceggeeggee ggeeggeegg	20
<210> 140	
<211> 43	
<212> DNA <213> Artificial Sequence	
(213) Attiticial boquenes	
<220>	
<223> Synthetic Sequence	
<400> 140	
ttocaatoag coccaecege tetggeeeea eeeteaeeet eea	43
<210> 141	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
2000	
<220> <223> Synthetic Sequence	
(225) Synthesize Soquenes	
<400> 141	43
tggagggtga gggtggggcc agagcgggtg gggctgattg gaa	40
<210> 142	
<211> 27	
<212> DNA	

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 142 tcaaatgtgg gattttccca tgagtct	27
<210> 143 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 143 agactcatgg gaaaatccca catttga	27
<210> 144 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 144 tgccaagtgc tgagtcacta ataaaga	27
<210> 145 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 145 tctttattag tgactcagca cttggca	27
<210> 146 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 146 tgcaggaagt ccgggttttc cccaaccccc c	33
<210> 147 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 147	

- 29 -	
ggggggttgg ggaaaacccg gacttcctgc a 31	
<210> 148 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 148 ggggaettte egetggggae tttecagggg gaetttee	38
<210> 149 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 149 tccatgacgt tcctccat gacgttcctc tccatgacgt tcctc	45
<210> 150 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 150 gaggaacgtc atggagagga acgtcatgga gaggaacgtc atgga	45
<210> 151 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 151 ataatagagc ttcaagcaag	20
<210> 152 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 152 tccatgacgt tcctgacgtt	20
<210> 153 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 153 tecatgaegt teetgaegtt	20
<210> 154 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 154 tccaggactt tcctcaggtt	20
<210> 155 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 155 tcttgcgatg ctaaaggacg tcacattgca caatcttaat aaggt	45
<210> 156 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 156 accttattaa gattgtgcaa tgtgacgtcc tttagcatcg caaga	45
<210> 157 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 157 tcctgacgtt cctggcggtc ctgtcgct	28
<210> 158 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 158 tectgteget cetgteget	19

DESTRUCTION OF STATE

<210> 159	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
000	
<220> <223> Synthetic Sequence	
<5552 SAUGUETTO podromon	
<400> 159	15
tcctgacgtt gaagt	13
<210> 160	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Synthetic Sequence	
<222> Synthetic podagnos	
<400> 160	15
tcctgtcgtt gaagt	15
<210> 161	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
000	
<220> <223> Synthetic Sequence	
SSSS SAutherre pedagges	
<400> 161	15
tcctggcgtt gaagt	15
<210> 162	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
200:	
<220> <223> Synthetic Sequence	
<2223 Synthetic bequence	
<400> 162	15
tcctgccgtt gaagt	15
<210> 163	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Synthetic Sequence	
<400> 163	15
tccttacgtt gaagt	15
<210> 164	
<211> 15	
<212> DNA <213> Artificial Sequence	

1111

<220> <223> Synthetic Sequence	
<400> 164	15
tcctaacgtt gaagt	13
<210> 165	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 165	15
tecteaegtt gaagt	13
<210> 166	
<211> 15	
<212> DNA .	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 166	15
tcctgacgat gaagt	10
<210> 167	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 167	15
teetgaeget gaagt	10
<210> 168	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 168	15
teetgaeggt gaagt	10
<210> 169	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 169	15
tcctgacgta gaagt	10

<210> 170 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 170 teetgaegte gaagt	15
<210> 171 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 171 tcctgacgtg gaagt	15
<210> 172 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 172 tcctgagctt gaagt	15
<210> 173 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 173 gggggacgtt ggggg	15
<210> 174 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 174 teetgaegtt cette	15
<210> 175 <211> 22 <212> DNA <213> Artificial Sequence	
<220>	

min -

<223> Synthetic Sequence	
<400> 175 teteccageg agegagegee at	22
<210> 176 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 176 tcctgacgtt cccctggcgg tcccctgtcg ct	32
<210> 177 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 177 teetgteget eetgteget	28
<210> 178 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 178 tcctggcggg gaagt	15
<210> 179 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (7)(7) <223> m5c	
<223> Synthetic Sequence	
<400> 179 tcctgangtt gaagt	15
<210> 180 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (3)(3)	

<223> m5c	
<223> Synthetic Sequence	
<400> 180 tcntgacgtt gaagt	15
<210> 181 <211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 181	15
tectagegtt gaagt	
<210> 182	
<211> 15	
<212> DNA <213> Artificial Sequence	
ZZIS/ Altilitian bodasii	
<220>	
<223> Synthetic Sequence	
<400> 182	15
tccagacgtt gaagt	
<210> 183	
<211> 15	
<212> DNA <213> Artificial Sequence	
(213) Hittitorar solution	
<220> <223> Synthetic Sequence	
<zz3> Synthetic Bedgenos</zz3>	
<400> 183	15
tcctgacggg gaagt	
<210> 184	
<211> 15	
<212> DNA <213> Artificial Sequence	
(213) Michigan de fin	
<220> <223> Synthetic Sequence	
<223> Synthetic Boddenes	
<400> 184	15
tcctggcggt gaagt	
<210> 185	
<211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<555 SAucueric podagues	
<400> 185	27
ggctccgggg agggaatttt tgtctat	

<210> 186	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
ZZZZZ Bynchoczo o 4.	
<400> 186	27
atagacaaaa attccctccc cggagcc	21
<210> 187	
<211> 21	
<212> DNA <213> Artificial Sequence	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 187	21
tccatgagct tccttgagtc t	
2010× 100	
<210> 188 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
·	
<220>	
<223> Synthetic Sequence	
100. 100	
<400> 188 tegtegetgt eteegettet t	21
tegregerge ereegereer e	
<210> 189	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 189	0.1
tcgtcgctgt ctccgcttct t	21
<210> 190	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 190	23
tcgagacatt gcacaatcat ctg	20
210 101	
<210> 191 <211> 20	
N/11/ 6U	
<212> DNA	

HRA HAH 1

	- ·	-
<220>		
<223>	Synthetic Sequence	
	2,	
<400>	101	
cagattgtgc a	aatgtotoga	20
<210>	192	
<211>	20	
<212>		
\213/	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	192	
tccatgtcgt t		00
coodegeoge (coegaegeg	20
2010s	100	
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Complete in Co.	
<223>	Synthetic Sequence	
<400>		
gcgatgtcgt t	cctgatgct	20
		~ 0
<210>	194	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
	2 1	
<400>	194	
gcgatgtcgt t	rectgatgeg	20
<210>		
<211>	20	
<212>	DNA	
	Artificial Sequence	
-2.07		
<220>		
<223>	Synthetic Sequence	
<400>	195	
tccatgtcgt t	ccacacaca	20
, ,		20
<210>	196	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	106	
tccatgtcgt t	celgeeget	20

```
<210> 197
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 197
tccatgtcgt tcctgtagct
                                                                          20
      <210> 198
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 198
gcggcgggcg gcgcgcgccc
                                                                          20
      <210> 199
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 199
atcaggaacg tcatgggaag c
                                                                         21
      <210> 200
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 200
tccatgagct tcctgagtct
                                                                         20
      <210> 201
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 201
tcaacgtt
                                                                          8
      <210> 202
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
```

```
<223> Synthetic Sequence
      <400> 202
tcaagctt
                                                                           8
      <210> 203
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 203
tcctgtcgtt cctgtcgtt
                                                                          19
      <210> 204
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 204
tccatgtcgt ttttgtcgtt
                                                                         20
      <210> 205
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 205
tcctgtcgtt ccttgtcgtt
                                                                         20
      <210> 206
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 206
tccttgtcgt tcctgtcgtt
                                                                         20
      <210> 207
      <211> 29
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
```

<400> 207 tccattccat gacgttcctg atgettcca	29
<210> 208 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 208 tcctgtcgtt ttttgtcgtt	20
<210> 209	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 209 tegtegetgt etcegettet t	21
<210> 210	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 210 tcgtcgctgt ctgcccttct t	21
<210> 211 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 211 tegtegetgt tgtegtttet t	21
<210> 212	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 212 tcctgtcgtt cctgtcgttg gaacgacagg	30
<210> 213	
<210> 213 <211> 40	
<212> DNA	

11

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 213 tcctgtcgtt cctgtcgttt caacgtcagg aacgacagga	40
<210> 214 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 214 ggggtctgtc gttttggggg g	21
<210> 215	
<211> 21	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 215	
ggggtctgtg cttttggggg g	21
<210> 216	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 216	
tccggccgtt gaagt	15
<210> 217	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 217	
tccggacggt gaagt	15
<210> 218	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 218	

tcccgccgtt gaa	gt	15	
<210> 21 <211> 15 <212> DN <213> Ar			
<220> <223> Sy	nthetic Sequence		
<400> 21 tccagacggt gaa			15
<210> 22 <211> 15 <212> DN <213> Ar			
<220> <223> Sy	nthetic Sequence		
<400> 22 tcccgacggt gaa			15
<210> 22 <211> 15 <212> DN <213> Ar			
<220> <223> Sy	nthetic Sequence		
<400> 22 tccagagctt gaa			15
<210> 22 <211> 20 <212> DN <213> Ar			
<220> <221> mo <222> (8 <223> m5			
	<pre>dified_base 7)(17) c</pre>		
<223> Sy	nthetic Sequence		
<400> 22 tccatgtngt tcc			20
<210> 22 <211> 20 <212> DN <213> Ar			
<220>	nthetic Sequence		

1 117

<400> 223	0.0
tocatgacgt tootgacgtt	20
<210> 224	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Synthetic Sequence	
1220 Synthocio Boquonoc	
<400> 224	
ggggttgacg ttttgggggg	20
<210> 225	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Synthetic Sequence	
<223> Synthetic Sequence	
<400> 225	
tccaggactt ctctcaggtt	20
(010) 000	
<210> 226 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 226	
ttttttttt tttttttt	20
<210> 227	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 227	
tccatgccgt tcctgccgtt	20
<210> 228	
<211> 20	
<212> DNA <213> Artificial Sequence	
1210/ Mittigat poducine	
<220>	
<223> Synthetic Sequence	
Z400\ 220	
<400> 228 tccatggcgg gcctggcggg	20
cocacygogy gootgycygy	۷.
<210> 229	
<211 \ 20	

	212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 229 cgt tcctgccgtt	20
<	210> 230	
	2211> 20	
	2212> DNA 2213> Artificial Sequence	
	220>	
<	223> Synthetic Sequence	
	×400> 230	0.0
tccatga	acgt teetggeggg	20
	210> 231	
	<pre><211> 20 <212> DNA</pre>	
	2212> DNA 2213> Artificial Sequence	
	<220>	
	<pre><220> <223> Synthetic Sequence</pre>	
<	<400> 231	
tccatga	acgt tootgogttt	20
	<210> 232	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
<	<223> Synthetic Sequence	
	<400> 232	20
tccatga	acgg tcctgacggt	20
	<210> 233	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 233 cgtg cgtgcgtttt	20
_		
	<210> 234 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

resum mer

<400> tccatgcgtt g		20
<210>	235	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
	$(1)\dots(3)$	
<223>	Conjugated to biotin moiety.	
<223>	Synthetic Sequence	
<400>	235	
	tctaggcctg agtcttccat	30
<210>	236	
<211>		
<212>	- DNA	
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	236	
tccatagcgt	tcctagcgtt	20
<210>	237	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	,	
<223>	Synthetic Sequence	
<400>	> 237	
tccatgtcgt	tcctgtcgtt	20
<210>	> 238	
<211>		
<212>		
	> Artificial Sequence	
2220		
<220> <223>	> Synthetic Sequence	
<400>	- 220	
<400> tccatagcga		20
tecatagega	teetagegat	20
<210>		
<211>		
<212>		
<213>	> Artificial Sequence	
<220>	>	
<223>	> Synthetic Sequence	
<400>	> 239	
tccattgcgt	tccttgcgtt	20

<211>	240	
<212>		
	Artificial Sequence	
\213>	Vifilioiai podaemos	
<220>		
	Synthetic Sequence	
<400>	240	
tccatagcgg t	tectageggt	20
<210>	241	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		29
tccatgattt t	teetgeagtt eetgatttt	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<2237	Synthetic Sequence	
<100>	242	
<400>		29
	242 teetgeagtt eetgaegtt	29
tecatgaegt '	tcctgcagtt cctgacgtt	29
tccatgacgt <210>	teetgeagtt eetgaegtt 243	29
<pre>tccatgacgt</pre>	teetgeagtt eetgaegtt 243 20	29
<pre>tccatgacgt</pre>	tcctgcagtt cctgacgtt 243 20 DNA	29
<pre>tccatgacgt</pre>	teetgeagtt eetgaegtt 243 20	29
<pre>tccatgacgt</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence	29
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence	29
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence	29
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence	
<pre>tccatgacgt</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	29
<pre></pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	
<pre></pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	
<pre></pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg	
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence	
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence	
<pre>tccatgacgt '</pre>	tcctgcagtt cctgacgtt 243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence	
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence Synthetic Sequence Synthetic Sequence Synthetic Sequence Synthetic Sequence	
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 > 20 > DNA > Artificial Sequence > Synthetic Sequence	20
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 > 20 > DNA > Artificial Sequence > Synthetic Sequence	
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence Synthetic Sequence 244 24 20 DNA Artificial Sequence Synthetic Sequence	20
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 20 20 20 20 20 20 20 20 20 20 20 20 20	20
<pre>tccatgacgt '</pre>	243 20 DNA Artificial Sequence Synthetic Sequence 243 gcggcggcgg 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 20 DNA Artificial Sequence > Synthetic Sequence > 244 20 20 20 20 20 20 20 20 20 20 20 20 20	20

ų a

<220> <223> Synthetic Sequence	
<400> 245	
tcgtcgttgt cgttgtcgtt	20
<210> 246	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 246	
togtogtttt gtogttttgt ogtt	24
<210> 247	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 247	
tegtegttgt egttttgteg tt	22
<210> 248 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
×220\	
<220> <223> Synthetic Sequence	
<400> 248	21
gcgtgcgttg tcgttgtcgt t	21
<210> 249	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<221> modified base	
$\langle 222 \rangle (2) \dots (2)$	
<223> m5c	
<221> modified base	
<222> (6)(6)	
<223> m5c	
<221> modified base	
<222> (10)(10)	
<223> m5c	
<221> modified base	
<222> (15)(15)	

. . . .

<	<223> m5c	
<	<400> 249	
	ggen gggeneegg	19
<	<210> 250	
	<211> 20	
	<212> DNA	
<	<213> Artificial Sequence	
<	<220>	
<	<223> Synthetic Sequence	
<	<400> 250	
gcggcg	ggeg gegegeeee	20
<	<210> 251	
<	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<221> modified base	
	<222> (3)(3)	
	<223> I	
	<221> modified_base	
	<222> (8)(8)	
	<223> I	
	<221> modified base	
	$\langle 222 \rangle \ (14) \dots (\overline{14})$	
	<223> I	
	<400> 251	
agnccc	gnga acgnattcac	20
	<210> 252	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 252	
tgtcgt	ettgt egtttgtegt t	21
	<210> 253	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 253	6.5
tatcat	ttgtc gttgtcgttg tcgtt	25

	<210> 254 <211> 25 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 254 tgtc gttgtcgttg tcgtt	25
	<210> 255 <211> 14 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 255 tegt egtt	14
	<210> 256 <211> 13 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tgtcgt	<400> 256 tgtc gtt	13
	<210> 257 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ccccc	<400> 257 cada accadada	20
	<210> 258 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tctag	<400> 258 cgttt ttagcgttcc	20
	<210> 259 <211> 20 <212> DNA <213> Artificial Sequence	
	<220>	

rigit to

<223> Synthetic Sequence	
<400> 259	20
tgcatcccc aggccaccat	20
<210> 260 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 260 tegtegtegt egtegtegte gtt	23
<210> 261 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 261 tcgtcgttgt cgttgtcgtt	20
<210> 262 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 262 tcgtcgtttt gtcgttttgt cgtt	24
<210> 263 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 263 tegtegttgt egttttgteg tt	22
<210> 264 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 264 ggggagggag gaacttetta aaatteeece agaatgttt	39
<210> 265	

1811 818 117

<211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 265 aaacattctg ggggaatttt aagaagttcc teeeteece	39
<210> 266 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 266 atgtttactt cttaaaattc ccccagaatg ttt	33
<210> 267 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 267 aaacattctg ggggaatttt aagaagtaaa cat	33
<210> 268 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 268 atgtttacta gacaaaattc ccccagaatg ttt	33
<210> 269 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 269 aaacattctg ggggaatttt gtctagtaaa cat	33
<210> 270 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	

<400> 270 aaaattgacg ttttaaaaaa	20
<pre><210> 271 <211> 20 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Synthetic Sequence	
<400> 271 ccccttgacg ttttcccccc	20
<210> 272 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 272 ttttcgttgt ttttgtcgtt	20
<210> 273 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 273 togtogtttt gtogttttgt ogtt	24
<210> 274 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 274 ctgcagcctg ggac	1.4
<210> 275 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 275 acccgtcgta attatagtaa aaccc	25
<210> 276 <211> 21	

BID?

<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 276 ggtacctgtg gggacattgt g	21
<210> 277 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 277 agcaccgaac gtgagagg	18
<210> 278 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 278 tccatgccgt tcctgccgtt	20
<210> 279 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 279 tccatgacgg tcctgacggt	20
<210> 280 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 280 tccatgccgg tcctgccggt	20
<210> 281 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	

B1B2

<400> 281	20
tccatgcgcg tcctgcgcgt	
<210> 282	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 282	24
ctggtctttc tggttttttt ctgg	
<210> 283	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 283	20
tcaggggtgg ggggaacctt	
<210> 284 <211> 20	
<212> DNA	
<213> Artificial Sequence	
(220)	
<220>	
<221> modified_base	
<222> (8)(8)	
<223> m5c	
<223> Synthetic Sequence	
<400> 284	20
tccatgangt tcctagttct	
<210> 285	
<211> 20	
<212> DNA <213> Artificial Sequence	
<2137 ALCILIOTAL I	
<220>	
<223> Synthetic Sequence	
<400> 285	20
tccatgatgt tcctagttct	
<210> 286	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
	26
<400> 286	20
cccgaagtca tttcctctta acctgg	

```
<210> 287
     <211> 26
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 287
                                                                         26
ccaggttaag aggaaatgac ttcggg
      <210> 288
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (7)...(7)
      <223> m5c
      <223> Synthetic Sequence
      <400> 288
                                                                         15
tcctggnggg gaagt
      <210> 289
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (2)...(2)
      <223> m5c
      <221> modified base
      <222> (5)...(5)
      <223> m5c
      <221> modified base
      <222> (9)...(9)
      <223> m5c
      <221> modified base
      <222> (12)...(12)
      <223> m5c
      <221> modified_base
      <222> (14)...(14)
      <223> m5c
      <221> modified_base
      <222> (16)...(16)
      <223> m5c
      <223> Synthetic Sequence
      <400> 289
                                                                          20
gnggngggng gngngngccc
```

<210> 290 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 290 tccatgtgct tcctgatgct	20
<210> 291 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 291 tccatgtcct tcctgatgct	20
<210> 292 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 292 tccatgtcgt tcctagttct	20
<210> 293 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 293 tccaagtagt tcctagttct	20
<210> 294 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 294 tccatgtagt tcctagttct	20
<210> 295 <211> 20 <212> DNA <213> Artificial Sequence	

ppropping 110

<220> <223> Synthetic Sequence	
<400> 295 tecegegegt teegegegtt	20
<210> 296 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 296 tcctggcggt cctggcggtt	20
<210> 297 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 297 tcctggaggg gaagt	15
<210> 298 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 298 teetgggggg gaagt	15
<210> 299 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 299 tcctggtggg gaagt	15
<210> 300 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 300 tcatcattt atcatttat catt	24

```
<210> 301
     <211> 24
     <212> DNA
     <213> Artificial Sequence
     <220>
      <223> Synthetic Sequence
      <400> 301
                                                                         24
ctggtctttc tggttttttt ctgg
      <210> 302
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 302
                                                                          20
tccatgacgt tcctgacgtt
      <210> 303
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 303
                                                                          20
 tccaggactt ctctcaggtt
       <210> 304
       <211> 24
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <221> modified_base
        <222> (2)...(2)
        <223> m5c
        <221> modified base
        <222> (5)...(5)
        <223> m5c
        <221> modified base
        <222> (13)...(13)
        <223> m5c
        <221> modified base
        <222> (21) ... (21)
        <223> m5c
        <400> 304
                                                                            24
   tngtngtttt gtngttttgt ngtt
         <210> 305
```

IN PROPERTY.

<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	misc_feature	
	(1)(3)	
	Conjugated to biotin moiety.	
<223>	Synthetic Sequence	
<400>	205	
	gtcgttttgt cgttttttt	29
cogcogcocc	gregitatige egetitation	2.5
<210>	306	
<211>	18	
<212>		
<213>	Artificial Sequence	
40.00×		
<220>		
<223 <i>2</i>	Synthetic Sequence	
<400>	· 306	
gctatgacgt		18
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
	<u>.</u>	
<400>	· 307	
tcaacgtt		8
<010>	200	
<210> <211>		
<212>		
	Artificial Sequence	
	*	
<220>	•	
<223>	Synthetic Sequence	
<400>	200	
<400> tccaggactt		20
cccaggaccc	ceecagger	20
<210>	309	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
2000 :		
<220>	Synthetic Sequence	
<2233	> plumente pedmeuce	
<400>	309	
ctctctgtag		20
<210>		
<211>	> 20 > DNA	
< / 1 / 3	P DIVA	

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 310 ctttccgttg gacccctggg	20
<210> 311 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 311 gtccgggcca ggccaaagtc	20
<210> 312 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 312 gtgcgcgcga gcccgaaatc	20
<210> 313 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (8)(8) <223> I	
<221> modified_base <222> (17)(17) <223> I	
<223> Synthetic Sequence	
<400> 313 tccatgangt tcctgangtt	20
<210> 314 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 314 aatagtcgcc ataacaaaac	20
<210> 315	

```
<211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 315
                                                                        20
aatagtcgcc atggcggggc
      <210> 316
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_difference
      <222> (1)...(3)
      <223> Biotin moiety attached at 5' end of sequence.
      <223> Synthetic Sequence
      <400> 316
                                                                        28
tttttccatg tcgttcctga tgcttttt
      <210> 317
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 317
tcctgtcgtt gaagtttttt
                                                                         20
      <210> 318
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 318
                                                                         24
gctagcttta gagctttaga gctt
      <210> 319
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 319
tgctgcttcc cccccccc
                                                                         20
      <210> 320
      <211> 20
      <212> DNA
```

	~	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcgac	<400> 320 egttee cececece	20
	<210> 321	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 321	20
tcgto	egttee ecceeecce	
	<210> 322	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 322	20
tcgt	cgttcc cccccccc	
	<210> 323	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 323	20
tcgc	ecgttcc cccccccc	20
	<210> 324	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 324	20
tcg	togatoc coccoccoc	20
	<210> 325	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 325	

MARKET 112

- 03 -
tcctgacgtt gaagt 15
<210> 326 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Sequence
<400> 326 tectgeegtt gaagt
<210> 327 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Sequence
<400> 327 tcctgacggt gaagt
<210> 328 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Sequence
<400> 328 tcctgagctt gaagt
<210> 329 <211> 15 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Sequence
<400> 329 tcctggcggg gaagt
<210> 330 <211> 21 <212> DNA <213> Artificial Sequence
<220> <223> Synthetic Sequence
<400> 330 aaaatctgtg cttttaaaaa a
<210> 331 <211> 33 <212> DNA <213> Artificial Sequence

раздани че

<220> <223> Synthetic Sequence	
<400> 331 gatccagtca cagtgacctg gcagaatctg gat	33
<210> 332 <211> 33	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 332 gatocagatt ctgccaggtc actgtgactg gat	33
<210> 333	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 333 gatccagtca cagtgactca gcagaatctg gat	33
gatteagtea tagtgattea gougaatoty gat	
<210> 334 <211> 33	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 334	2.2
gatccagatt ctgctgagtc actgtgactg gat	33
<210> 335	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> modified_base <222> (16)(16)	
<223> m5c	
<223> Synthetic Sequence	
•	
<400> 335 tegtegttee eeceenceee	20
<210> 336 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	

```
<221> modified base
      <222> (2)...(2)
      <223> m5c
      <221> modified base
      <222> (5)...(5)
      <223> m5c
      <223> Synthetic Sequence
      <400> 336
tngtngttcc cccccccc
                                                                        20
      <210> 337
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (2)...(2)
      <223> m5c
      <223> Synthetic Sequence
      <400> 337
tngtcgttcc cccccccc
                                                                        20
      <210> 338
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (5)...(5)
      <223> m5c
      <223> Synthetic Sequence
      <400> 338
tcgtngttcc cccccccc
                                                                        20
      <210> 339
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 339
                                                                        20
tegtegetee ceeecece
      <210> 340
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
```

tagta	<400> 340 ggtcc cccccccc	20
	<210> 341	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 341	
tcggc	gttec ceeecece	20
	<210> 342	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 342	0.0
ggcct	tttcc cccccccc	20
	<210> 343	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 343	
tcgtc	gtttt gacgttttgt cgtt	24
	<210> 344	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 344	
tcgtc	egtttt gaegttttga egtt	24
	<210> 345	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 345	
ccgt	egttee eececece	20
	<210> 346	
	<211> 20	

... ...

```
<212> DNA
       <213> Artificial Sequence
       <223> Synthetic Sequence
       <400> 346
 gcgtcgttcc ccccccccc
                                                                         20
       <210> 347
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 347
tcgtcattcc cccccccc
                                                                         20
      <210> 348
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 348
acgtcgttcc ccccccccc
                                                                         20
      <210> 349
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 349
ctgtcgttcc ccccccccc
                                                                         20
      <210> 350
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1) ... (3)
      <223> Biotin moiety attached at 5' end of sequence.
      <223> Synthetic Sequence
      <400> 350
tttttcgtcg ttccccccc cccc
                                                                        24
      <210> 351
      <211> 20
      <212> DNA
      <213> Artificial Sequence
```

A community of the

	<220> <221> misc_feature <222> (18)(20) <223> Biotin moiety attached at 3' end of sequence.	
	<223> Synthetic Sequence	
tcgtcg	<400> 351 gttcc cccccccc	20
	<210> 352 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221> misc_feature <222> (22)(24) <223> Biotin moiety attached at 3' end of sequence.	
	<223> Synthetic Sequence	
tcgtc	<400> 352 gtttt gtcgttttgt cgtt	24
	<210> 353 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccag	<400> 353 ttcct tcctcagtct	20
	<210> 354 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221> modified_base <222> (2)(2) <223> m5c	
	<223> Synthetic Sequence	
tngto	<400> 354 egtttt gtegttttgt egtt	24
	<210> 355 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 355	

Dir dalamı

tcctggaggg gaagt	15			
<210> 356				
<211> 15				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Synthetic Sequence				
(100) 256				
<400> 356 tcctgaaaag gaagt	15			
coorganaay gaage	13			
<210> 357				
<211> 17				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Synthetic Sequence				
<400> 357				
tegtegttee eccece	17			
<i>J</i>				
<210> 358				
<211> 24				
<212> DNA <213> Artificial Sequence				
(213) Artificial Sequence				
<220>				
<223> Synthetic Sequence				
2015 modified hors				
<221> modified_base <222> (2)(2)				
<223> m5c				
<221> modified base				
<222> (5)(5)				
<223> m5c				
<221> modified base				
$\langle 222 \rangle$ (13)($\overline{1}$ 3)				
<223> m5c				
<221> modified base				
<221> modified_base <222> (21)(21)				
<223> m5c				
<400> 358	2.4			
tngtngtttt gtngttttgt ngtt	24			
<210> 359				
<211> 20				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Synthetic Sequence				
<400× 250				
<400> 359 ggggtcaagc ttgaggggg	20			
ggggccaage ctgaggggg				

.

<210> 360 <211> 20			
<212> DNA			
<213> Artifi	cial Sequence		
<220>			
	tic Sequence		
4400> 260			
<400> 360 tgctgcttcc cccccc	1000	20)
egotgottoo coccoo			
<210> 361			
<211> 14 <212> DNA			
	cial Sequence		
	7		
<220>			
<223> Synthe	etic Sequence		
<400> 361			
tcgtcgtcgt cgtt		14	Ī
<210> 362			
<211> 14			
<212> DNA			
<213> Artifi	lcial Sequence		
<220>			
	etic Sequence		
	-		
<400> 362		1.	1
tegtegtegt egtt		1	1
<210> 363			
<211> 14			
<212> DNA	inini Commono		
<213> Art111	icial Sequence		
<220>			
<223> Synthe	etic Sequence		
<400> 363			
tcgtcgtcgt cgtt		1	4
<210> 364			
<211> 10			
<212> DNA	icial Sequence		
\Z10> 111 CIII	retur bequeite		
<220>			
<223> Synthe	etic Sequence		
<400> 364			
tcaacgttga		1	0
4010: 2CE			
<210> 365 <211> 8			
<211> 8 <212> DNA			
<212> DNA <213> Artif	1 1 2 2		

. . .

<220> <223> Synthetic Sequence	
<400> 365	0
tcaacgtt	8
<210> 366 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 366 atagttttcc attttttac	20
<210> 367 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 367 aatagtegee ategegegae	20
<210> 368 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 368 aatagtcgcc atcccgggac	20
<210> 369 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 369 aatagtcgcc atccccccc	20
<210> 370 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 370 tgctgctttt gtgcttttgt gctt	24

инскији чт

<210> 371	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<223> Synthetic Sequence	
<400> 371	24
ctgtgctttc tgtgtttttc tgtg	24
<210> 372	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
.220.	
<400> 372	24
ctaatctttc taattttttt ctaa	
040. 372	
<210> 373	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
•	
<400> 373	26
tcgtcgttgg tgtcgttggt gtcgtt	
.010> 274	
<210> 374	
<211> 24	
<212> DNA <213> Artificial Sequence	
(ZIJ) MICILIOIAI DOQUINI	
<220>	
<223> Synthetic Sequence	
<400> 374	24
tcgtcgttgg ttgtcgtttt ggtt	
<210> 375	
<211> 24	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 375	
accatggacg agctgtttcc cctc	2
accaeggaeg ag5	
<210> 376	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
(000)	
<220>	

<223> Synthetic Sequence <400> 376 20 tcgtcgtttt gcgtgcgttt <210> 377 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 377 20 ctgtaagtga gcttggagag <210> 378 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 378 18 gagaacgctg gaccttcc <210> 379 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 379 20 cgggcgactc agtctatcgg <210> 380 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 380 37 gttctcagat aaagcggaac cagcaacaga cacagaa <210> 381 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 381 37 ttctgtgtct gttgctggtt ccgctttatc tgagaac

<210> 382

	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
2222	<400> 382 cacaga agcccgatag acg	23
Cayac	acaga agooogasag arg	
	<210> 383	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 383	20
agac	agacac gaaacgaccg	
	<210> 384	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 384	20
gtct	gtccca tgatctcgaa	20
	2010× 305	
	<210> 385 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 385	20
gct	ggccagc ttacctcccg	
	<210> 386	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 386	21
ggg	gcctcta tacaacctgg g	21
	<210> 387	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Synthetic Sequence</pre>	

<400> 387 ggggtccctg agactgcc	18
<210> 388 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 388 gagaacgctg gaccttccat	20
<210> 389 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 389 tccatgtcgg tcctgatgct	20
<210> 390 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 390 ctcttgcgac ctggaaggta	20
<210> 391 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 391 aggtacagcc aggactacga	20
<210> 392 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 392 accatggacg acctgtttcc cctc	24
<210> 393 <211> 24	

<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 393 accatggatt acctttttcc cctt	24
<210> 394	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 394	
atggaaggtc cagcgttctc	20
<210> 395	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(000)	
<220> <223> Synthetic Sequence	
<400> 395	20
agcatcagga ccgacatgga	
<210> 396	
<211> 20	
<212> DNA <213> Artificial Sequence	
<213> Artificial bequence	
<220>	
<223> Synthetic Sequence	
<400> 396	20
ctctccaagc tcacttacag	20
(010) 207	
<210> 397 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 397	21
tocotgagao tgooccacot t	
<210> 398	
<211> 20	
<212> DNA <213> Artificial Sequence	
V210/ 11202110200 20400000	
<220>	
<223> Synthetic Sequence	

<400> 398 gccaccaaaa cttgtccatg	20
<210> 399 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 399 gtccatggcg tgcgggatga	20
<210> 400 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 400 cctctataca acctgggac	19
<210> 401 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 401 cgggcgactc agtctatcgg	20
<210> 402 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 402 gcgctaccgg tagcctgagt	20
<210> 403 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 403 cgactgccga acaggatatc ggtgatcagc actgg	35
<210> 404 <211> 35	

_

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 404 ccagtgctga tcaccgatat cctgttcggc agtcg	35
<210> 405 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 405 ccaggttgta tagaggc	17
<210> 406 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 406 tctcccagcg tacgccat	18
<210> 407 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 407 teteccageg tgegtttt	18
<210> 408 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 408 totocogacg tgcgccat	18
<210> 409 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 409	

IN CONTROL T

- 79 -	
tetecegteg tgegecat 18	
<210> 410 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 410 ataatcgtcg ttcaagcaag	20
<210> 411 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 411 tcgtcgtttt gtcgttttgt cgt	23
<210> 412 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 412 togtogtttt gtogttttgt ogtt	24
<210> 413 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 413 tagtagtttt gtagttttgt agtt	24
<210> 414 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <221> misc_difference <222> (3)(3) <223> n is a or c or g or t/u	
<221> misc_difference <222> (8)(8) <223> n is a or c or g or t/u	
<221> misc_difference	

```
<222> (11) ... (11)
    <223> n is a or c or g or t/u
    <221> misc_difference
     <222> (16) ... (16)
     <223> n is a or c or g or t/u
     <221> misc_difference
     <222> (19)...(19)
     <223> n is a or c or g or t/u
     <221> misc_difference
     <222> (24)...(24)
     <223> n is a or c or g or t/u
      <223> Synthetic Sequence
                                                                         24
      <400> 414
tentegtntt ntegtnttnt egtn
      <210> 415
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
                                                                          17
      <400> 415
tctcccagcg tcgccat
       <210> 416
       <211> 17
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
                                                                          17
       <400> 416
 tctcccatcg tcgccat
       <210> 417
        <211> 21
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Synthetic Sequence
                                                                           21
        <400> 417
  ataatcgtgc gttcaagaaa g
        <210> 418
         <211> 20
         <212> DNA
         <213> Artificial Sequence
         <223> Synthetic Sequence
```

population 9

<400> 418 ataatcgacg ttccccccc	20
<210> 419	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 419	20
tctatcgacg ttcaagcaag	
<210> 420	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 420	14
tcctgacggg gagt	Tđ
<210> 421	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 421	10
tccatgacgt tcctgatcc	19
<210> 422	
<211> 19	
<212> DNA <213> Artificial Sequence	
(Z13) Altificial beganne	
<220>	
<223> Synthetic Sequence	
<400> 422	19
tccatgacgt tcctgatcc	10
<210> 423	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 423	4 /
tocatgacgt tootgatoo	19
<210> 424	
<210 424 <211> 15	
<211> 13 <212> DNA	

HER RESERVE

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 424 tcctggcgtg gaagt	15
<210> 425 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 425 tccatgacgt tcctgatcc	19
<210> 426 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 426 togtogotgt tgtogtttet t	21
<210> 427 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 427 agcagcttta gagctttaga gctt	24
<210> 428 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 428 cccccccc cccc ccc	24
<210> 429 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 429	

HAN ALPHANIA 121

	- 83 -
togtogtttt gtogttttgt ogttttgtog	tt
32	
<210> 430	
<211> 28	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 430	28
tcgtcgtttt ttgtcgtttt ttgtcgtt	
<210> 431	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<223> Synthetic Bedgenee	
<400> 431	20
togtogtttt ttttttttt	
<210> 432	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 432 ttttcaacg ttgattttt	20
tttttcadcy tryattice	
<210> 433	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 433	24
ttttttttt ttttttttt tttt	
<210> 434	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 434	20
ggggtcgtcg ttttgggggg	
<210> 435	
<211> 24 <212> DNA	
ZZIZZ DIMA	

HELFER NIC

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 435 tcgtcgtttt gtcgttttgg gggg	24
<210> 436 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 436 tegtegetgt eteegettet tettgee	27
<210> 437 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 437 togtogotgt ctccg	15
<210> 438 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 438 ctgtaagtga gcttggagag	20
<210> 439 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 439 gagaacgctg gaccttccat	20
<210> 440 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 440	

ų r

ccaggttgta ta	agaggc	17	
<210> 4	1 4 7		
<211> 1	17		
<212> [
	Artificial Sequence		
<220>			
<223> \$	Synthetic Sequence		
<400> 4			
gctagacgtt ag	gcgtga]	17
<210> 4	142		
<211> 2			
<212> [
	Artificial Sequence		
\Z13/ F	Artificial Bequence		
<220>			
. <223> \$	Synthetic Sequence		
	<u>.</u>		
<400> 4	142		
ggagetette ga	aacgccata		20
<210> 4			
<211> 2			
<212> [
<213> P	Artificial Sequence		
<220>			
	Synthetic Sequence		
\223/ 1	Synthetic Sequence		
<400> 4	443		
tctccatgat go	gttttatcg	2	20
<210> 4			
<211> 2	21		
<212> I	ANC		
<213> 7	Artificial Sequence		
1000			
<220>			
<223> 3	Synthetic Sequence		
<400>	4.4.4		
aaggtggggc ag			21
aaggeggge a	geoceaggg a	•	
<210>	445		
<211> 2	20		
<212> [
<213> A	Artificial Sequence		
<220>			
<223> \$	Synthetic Sequence		
.400:	4.45		
<400>		,	20
atcggaggac to	ggegegeeg	•	<u>د</u> ر
<210>	446		
<211>			
<212> 1			
	Artificial Sequence		

<220> <223> Synth	hetic Sequence	
<400> 446 ttaggacaag gtctag	qqatq	20
<210> 447 <211> 20		
<212> DNA		
<213> Artif	ficial Sequence	
<220>		
<223> Synth	hetic Sequence	
<400> 447		
accacaacga gaggaa	acgca	20
<210> 448		
<211> 20 <212> DNA		
	ficial Sequence	
<220>		
	hetic Sequence	
<400> 448		
ggcagtgcag gctcac	ccggg	20
<210> 449		
<211> 17		
<212> DNA <213> Artif	ficial Sequence	
	1	
<220> <223> Synth	hetic Sequence	
<400> 449		
gaaccttcca tgctgt	tt	13
<210> 450		
<211> 17		
<212> DNA		
<213> Artii	ficial Sequence	
<220>		
<223> Syntr	hetic Sequence	
<400> 450	3	1.5
gctagacgtt agcgto	ya	17
<210> 451		
<211> 20 <212> DNA		
	ficial Sequence	
<220>		
<223> Synth	hetic Sequence	
<400> 451		
gcttggaggg cctgta	aagtg	20

	210> 452	
<	211> 12	
	212> DNA	
	213> Artificial Sequence	
	-	
<	220>	
	223> Synthetic Sequence	
•		
<	400> 452	
gtagcct		12
grageer		
_	2210> 453	
	2210 433	
	2212> DNA	
<	2213> Artificial Sequence	
	4000	
	(220>	
<	(223> Synthetic Sequence	
	<400> 453	- 4
cggtagc	cctt ccta	14
<	<210> 454	
<	<211> 16	
<	<212> DNA	
<	<pre><213> Artificial Sequence</pre>	
<	<220>	
<	<pre><223> Synthetic Sequence</pre>	
<	<400> 454	
	<400> 454	16
	<400> 454 agcc ttccta	16
cacggta	agec tteeta	16
cacggta <	agec tteeta <210> 455	16
cacggta < <	<pre><210> 455 <211> 18</pre>	16
cacggta < < <	<pre>210> 455 <211> 18 <212> DNA</pre>	16
cacggta < < <	<pre><210> 455 <211> 18</pre>	16
cacggta < < <	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence	16
cacggta	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220>	16
cacggta	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence	16
cacggta	<pre>220> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence</pre>	16
cacggta	<pre>220> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455</pre>	
cacggta	<pre>220> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence</pre>	16
cacggta < < <	<pre>agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta</pre>	
cacggta < < <	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456	
cacggta < <	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18	
cacggta	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18 <212> DNA	
cacggta	agcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18	
cacggta	<pre>2210> 455 <2211> 18 <212> DNA <213> Artificial Sequence <220> <2223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence</pre>	
cacggta	agec ttecta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <4400> 455 gtag cettecta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220>	
cacggta	<pre>2210> 455 <2211> 18 <212> DNA <213> Artificial Sequence <220> <2223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence</pre>	
cacggta	Aggcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <238 Synthetic Sequence	
cacggta	Aggec ttecta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag cettecta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <400 456 <211> 18 <212> DNA <213> Artificial Sequence <400> 456	18
cacggta	Aggcc ttccta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag ccttccta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <238 Synthetic Sequence	
cacggta < < < agcacgg < agcacgg < agcacgg < agcacgg < agacgct < gaacgct	Aggec ttecta (210> 455 (211> 18 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (400> 455 gtag cettecta (210> 456 (211> 18 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> ONA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> (223> Synthetic Sequence (2400> 456 tgga cettecat	18
cacggta < < < agcacgg agcacgg agcacgg	agec ttecta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag cettecta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <2213> Artificial Sequence <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 456 tgga cettecat <410> 456 tgga cettecat <4210> 456	18
cacggta < < < agcacgg agcacgg agcacgg	Aggec ttecta (210> 455 (211> 18 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (400> 455 gtag cettecta (210> 456 (211> 18 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> ONA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> (223> Synthetic Sequence (2400> 456 tgga cettecat	18
cacggta < < < agcacgg agcacgg agcacgg agcacgct	agec ttecta <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 gtag cettecta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <2213> Artificial Sequence <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 456 tgga cettecat <410> 456 tgga cettecat <4210> 456	18

71.7

<220> <223>	Synthetic Sequence	
<400>	457	10
<210> <211> <212>	12	
<220> <223>	Synthetic Sequence	
<400> tggaccttcc		12
<210> <211> <212> <213>	14	
<220> <223>	Synthetic Sequence	
<400> gctggacctt		14
<210> <211> <212> <213>	16	
<220> <223>	Synthetic Sequence	
<400> acgctggacc		16
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> taagctctgt		20
<210> <211> <212> <213>	22	
<220> <223>	Synthetic Sequence	
<400> gagaacgctg	462 gaccttccat gt	22

11.

	<210> 463	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	1210) Indiana Dodao	
	<220>	
	<223> Synthetic Sequence	
	\ZZ3> Synchetic Sequence	
	<400> 463	
+ ~ ~ ~ +		20
Locali	gtcgg teetgatget	20
	<210> 464	
	<211> 21 <211> 21	
	<211> 21 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	×400> 464	
	<400> 464	^1
ttcat	gcctt gcaaaatggc g	21
	.010. 465	
	<210> 465	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 465	
tgcta	gctgt gcctgtacct	20
tgcta	gctgt gcctgtacct	20
tgcta	getgt geetgtaeet <210> 466	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20</qctgt></pre>	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA</qctgt></pre>	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20</qctgt></pre>	20
tgcta	<pre><210> 466 <211> 20 <212> DNA <213> Artificial Sequence</pre>	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220></qctgt></pre>	20
tgcta	<pre><210> 466 <211> 20 <212> DNA <213> Artificial Sequence</pre>	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220></qctgt></pre>	20
tgcta	<pre><qctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220></qctgt></pre>	
	<pre> <qctqt <210="" gcctqtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence </qctqt></pre>	20
	<pre> <gctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466</gctgt></pre>	
	<pre> <gctgt <210="" gcctgtacct=""> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466</gctgt></pre>	
	<pre> <quad <quad="" square="" td="" ="" <=""><td></td></quad></pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga cegacatgga <210> 467</pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22</pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22 <212> DNA</pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22 <212> DNA</pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence</pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220></pre>	
	<pre>cagetgt geetgtacet <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 cagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220></pre>	
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <400> 467</pre>	
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220> <220> Synthetic Sequence</pre>	20
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <400> 467</pre>	20
agcat	<pre>cgctgt gectgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220> <220> Compared to the sequence <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220> <220> Compared to the sequence <220> <220> Compared to the sequence <400> 467 ctccat gtcggtcctg at <210> 468</pre>	20
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <200> ccags Synthetic Sequence <220> <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <400> 467 ctccat gtcggtcctg at <210> 468 <211> 20</pre>	20
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <220> <223> Synthetic Sequence <210> 467 ctccat gtcggtcctg at <210> 468 <211> 20 <212> DNA</pre>	20
agcat	<pre>cgctgt gcctgtacct <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 466 ccagga ccgacatgga <210> 467 <211> 22 <212> DNA <213> Artificial Sequence <200> ccags Synthetic Sequence <220> <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <220> ccass Synthetic Sequence <400> 467 ctccat gtcggtcctg at <210> 468 <211> 20</pre>	20

<223> S	ynthetic Sequence	
<400> 4	60	
acaaccacga ga		20
acaaccacga ga		
<210> 4	69	
<211> 2		
<212> D		
<213> A	artificial Sequence	
<220>		
	Synthetic Sequence	
<400> 4		
gaaccttcca tg	getgtteeg	20
<210> 4	170	
<211> 2		
<212> D	ANG	
<213> A	Artificial Sequence	
4000		
<220>	Synthetic Sequence	
\ZZJ/ J	ynthetic bequence	
<400> 4	170	
caatcaatct ga	aggagaccc	20
2010× 1	171	
<210> 4 <211> 2		
<212> D		
	Artificial Sequence	
<220>	Down that is Common as	
<2232 8	Synthetic Sequence	
<400> 4	471	
tcagctctgg ta	acttttca	20
<210> 4		
<211> 2 <212> D		
	Artificial Sequence	
	•	
<220>		
<223> S	Synthetic Sequence	
<400> 4	472	
tggttacggt ct		20
<210> 4		
<211> 2		
<212> [<213> 7	DNA Artificial Sequence	
\213/ F	mediation of women	
<220>		
<223> \$	Synthetic Sequence	
~400°	472	
<400> 4 gtctatcgga gg		20
geolatogya ge	gaccggcgc	20
<210> 4	474	

<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
\220>	bynchedic boquones	
<400>	474	
cattttacgg	gcgggcgggc	20
<210>		
<211> <212>		
	> Artificial Sequence	
(210)	Altificial boddonos	
<220>	•	
	Synthetic Sequence	
<400>		20
gaggggacca	ttttacgggc	20
<210>	. 476	
<210		
	> DNA	
	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 476	20
tgtccagccg	aggggaccat	20
<210	> 477	
<211		
	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
<100	> 477	
	gcggatgctg	20
cgggcccacg	9099409009	
<210	> 478	
<211	> 20	
<212	> DNA	
	> Artificial Sequence	
2		
<220		
<223	> Synthetic Sequence	
<400	> 478	
	atgtcggtcc	20
55		
	> 479	
	> 20	
	> DNA	
<213	> Artificial Sequence	
<220		
	> Synthetic Sequence	
`~~	· · · · · · · · · · · · · · · · · · ·	

<400> 479 tgtcccatgt ttttagaagc	20
<210> 480 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 480 gtggttacgg tcgtgcccat	20
<210> 481 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 481 cctccaaatg aaagaccccc	20
<210> 482 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 482 ttgtactctc catgatggtt	20
<210> 483 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 483 ttccatgctg ttccggctgg	20
<210> 484 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 484 gaccttctat gtcggtcctg	20
<210> 485 <211> 20	

artiri.

<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 485 gagaccgctc gaccttcgat	20
<210> 486 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 486	20
ttgccccata ttttagaaac	
<210> 487	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 487	18
ttgaaactga ggtgggac	10
<210> 488	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 488	21
ctatcggagg actggcgcgc c	
<210> 489	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 489	20
cttggagggc ctcccggcgg	
<210> 490	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	

о**ло**ць 1) 7

<400> 490 gctgaacctt ccatgctgtt	20
<210> 491 <211> 32	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 491	
tagaaacagc attcttcttt tagggcagca ca	32
<210> 492	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 492	
agatggttct cagataaagc ggaa	24
<210> 493	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 493	
ttccgcttta tctgagaacc atct	24
<210> 494	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 494	
gtcccaggtt gtatagaggc tgc	23
<210> 495	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 495	
gcgccagtcc tccgatagac	20
2010 400	
<210> 496	
<211> 20 <212> DNA	
\4.14/ DNM	

. . .

- 95 -	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 496 atcggaggac tggcgccg	20
<210> 497 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 497 ggtctgtccc atatttttag	20
<210> 498 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	20
<400> 498 ttttcaacg ttgaggggg	20
<210> 499 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 499 tttttcaagc gttgattttt t	21
<210> 500 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 500 ggggtcaacg ttgattttt	20
<210> 501 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 501	

III. III. 11

- 96 -	
ggggttttca acgttttgag ggggg 25	
<pre><210> 502 <211> 20 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Synthetic Sequence	0.0
<400> 502 ggttacggtc tgtcccatat	20
<210> 503 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 503 ctgtcccata tttttagaca	20
<210> 504 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	20
<400> 504 accatcctga ggccattcgg	20
<210> 505 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	0.2
<400> 505 cgtctatcgg gcttctgtgt ctg	23
<210> 506 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	0.1
<400> 506 ggccatccca cattgaaagt t	21
<210> 507 <211> 22 <212> DNA <213> Artificial Sequence	

	<220> <223> Synthetic Sequence	
ccaaat	<400> 507 tatcg gtggtcaagc ac	22
	<210> 508 <211> 22 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gtgct	<400> 508 tgacc accgatattt gg	22
	<210> 509	
	<211> 26 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gtgct	<400> 509 gatca ccgatatect gttegg	26
	<210> 510	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
ggcca	<400> 510 acttt caatgtggga tggcctc	27
	<210> 511 <211> 27	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 511	
ttccc	geegaa tggeeteagg atggtae	27
	<210> 512 <211> 36	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
+ > + > 6	<400> 512	36

	210> 513	
	211> 27	
	212> DNA 213> Artificial Sequence	
\2	132 Artificial Sequence	
<2	220>	
<2	223> Synthetic Sequence	
	100> 513	27
geageere	cta tacaacctgg gacggga	2 1
<2	210> 514	
<2	211> 22	
<2	212> DNA	
<2	213> Artificial Sequence	
	220>	
	220> 223> Synthetic Sequence	
~2	220 Bynthodio bequence	
< 4	400> 514	
ctatcgga	agg actggcgcgc cg	22
	210. 515	
	210> 515 211> 21	
	212> DNA	
	213> Artificial Sequence	
	-	
_	220>	
<2	223> Synthetic Sequence	
< 4	400 515	
	4002 515	
	400> 515 gga ctggcgcgcc g	21
		21
tatcggag	gga ctggcgcgcc g 210> 516	21
tatoggaq <2 <2	gga ctggcgcgcc g 210> 516 211> 21	21
tatcggaq <2 <2 <2	gga ctggcgcgcc g 210> 516 211> 21 212> DNA	21
tatcggaq <2 <2 <2	gga ctggcgcgcc g 210> 516 211> 21	21
tatcggaq <2 <2 <2 <2	gga ctggcgcgcc g 210> 516 211> 21 212> DNA	21
tatcggaq <2 <2 <2 <2 <2	gga ctggcgcgcc g 210> 516 211> 21 212> DNA 213> Artificial Sequence	21
tatoggaq <2 <2 <2 <2 <2 <2 <2	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	21
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pr< td=""><td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence</td><td></td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <p< td=""><td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence</td><td>21</td></p<></pre></pre></pre></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	21
tatcggag	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g	
tatoggas	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	
tatoggas	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26</td><td></td></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre< td=""><td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence</td><td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence</td><td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence</td><td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgccc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgccc g 210> 517 211> 26 212> DNA 213> Artificial Sequence	
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 220> Synthetic Sequence</td><td>21</td></pre></pre></pre></pre></pre></pre></pre></pre>	210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 220> Synthetic Sequence	21
<pre>tatcggag </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <td>gga ctggcgcgc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 220> 223> Synthetic Sequence</td><td></td></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgcgc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 220> 223> Synthetic Sequence	
tatcggag	gga ctggcgcgcc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 221> DNA 213> Artificial Sequence 220> 220> 221> The sequence 220> 221> The sequence 220> 220> 221> Synthetic Sequence 220> 221> The sequence 220> 221> The sequence 220> 221> The sequence 220> 220> The sequence 220> 220> The sequence 220> The sequence 220> The sequence 220> The sequence 220> The sequence Sequence 220> The sequence Sequence 220> The sequence Sequence Sequence Sequence 220> The sequence Sequ	21
tatcggag	gga ctggcgcc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 2210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 2210> DNA 213> Artificial Sequence 220> 221> 517 gga tatcggtgat cagcac	21
tatcggag <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>gga ctggcgcgcc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 221> DNA 213> Artificial Sequence 220> 220> 221> The sequence 220> 221> The sequence 220> 220> 221> Synthetic Sequence 220> 221> The sequence 220> 221> The sequence 220> 221> The sequence 220> 220> The sequence 220> 220> The sequence 220> The sequence 220> The sequence 220> The sequence 220> The sequence Sequence 220> The sequence Sequence 220> The sequence Sequence Sequence Sequence 220> The sequence Sequ</td><td>21</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	gga ctggcgcgcc g 210> 516 211> 21 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 516 gga ctggcgcgcc g 210> 517 211> 26 212> DNA 213> Artificial Sequence 220> 221> DNA 213> Artificial Sequence 220> 220> 221> The sequence 220> 221> The sequence 220> 220> 221> Synthetic Sequence 220> 221> The sequence 220> 221> The sequence 220> 221> The sequence 220> 220> The sequence 220> 220> The sequence 220> The sequence 220> The sequence 220> The sequence 220> The sequence Sequence 220> The sequence Sequence 220> The sequence Sequence Sequence Sequence 220> The sequence Sequ	21

1910/8811

<220>	
<223> Synthetic Sequence	
<400> 518	
ttttggggtc aacgttgagg gggg	24
<210> 519	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 519	
ggggtcaacg ttgagggggg	20
<210> 520	
<211> 20	
<212> DNA <213> Artificial Sequence	
12132 Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 520	_
cgcgcgcgcg cgcgcgcg	20
<210> 521	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 521	
ggggcatgac gttcgggggg	20
<210> 522	
<211> 20 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 522 ggggcatgac gttcaaaaaa	20
	21
<210> 523 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 523	
ggggcatgag cttcgggggg	20

1744 881

	100	
<210	> 524	
<211	> 20	
	> DNA	
\210	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
<400	> 524	
	gttcggggg	~ ~
ggggcatgat	gtteggggg	20
	> 525	
<211	> 20	
<212	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
< 400	> 525	
aaaacatgac	gttcaaaaaa	20
3		20
<21 C	> 526	
	> 20	
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
-220	o judicate bequence	
<400	> 526	
aaaacatgac	gttcgggggg	20
<210	> 527	
<211	> 20	
	> DNA	
	> Artificial Sequence	
\210	> Withingt peddelice	
.000		
<220		
<223	> Synthetic Sequence	
< 400	> 527	
ggggcatgac	gttcaaaaaa	20
2223		2.0
<21∩	> 528	
<211		
	> DNA	
<213	> Artificial Sequence	
<220		
	>	
<223		
<223	> > Synthetic Sequence	
	> Synthetic Sequence	
<400	> Synthetic Sequence > 528	
<400	> Synthetic Sequence	24
<400 accatggacg	> Synthetic Sequence > 528 atctgtttcc cctc	24
<400 accatggacg	> Synthetic Sequence > 528 atctgtttcc cctc > 529	24
<400 accatggacg	> Synthetic Sequence > 528 atctgtttcc cctc > 529	24
<400 accatggacg <210 <211	> Synthetic Sequence > 528 atctgtttcc cctc > 529	24
<400 accatggacg <210 <211 <212	<pre>> Synthetic Sequence > 528 atctgtttcc cctc > 529 > 24 > DNA</pre>	24
<400 accatggacg <210 <211 <212	> Synthetic Sequence > 528 atctgtttcc cctc > 529 > 24	24
<400 accatggacg <210 <211 <212	> Synthetic Sequence > 528 atctgtttcc cctc > 529 > 24 > DNA > Artificial Sequence	24

11 9 11 1

	* V *	
	<223> Synthetic Sequence	
	<400× F20	
	<400> 529	
gecate	ggacg aactgtteee eete	24
	(010) 520	
	<210> 530	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	.400. 500	
	<400> 530	
ccccc	cacc acaecace	20
	(010) 501	
	<210> 531	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1220 Dynamorio boduonee	
	<400> 531	
	1888 8888888888888888888888888888888888	20
22222		20
	<210> 532	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Synthetic Sequence	
	<400> 532	
gctgta	aaat gaateggeeg	20
	<210> 533	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220×	
	<220>	
	<223> Synthetic Sequence	
	<400> 533	
	regga etectecatt	~ ~
cccggg	ogga ococcoace	20
	<210> 534	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<u>4</u>	
	<220>	
	<223> Synthetic Sequence	
	- *	
	<400> 534	
tatgcc	gcgc ccggacttat	20
		-
	<210> 535	

<212	2> 20 2> DNA 3> Artificial Sequence	
<220 <223)> 3> Synthetic Sequence	
<400	> 535	
ggggtaatc	g atcagggggg	20
)> 536 L> 20	
	2> DNA	
<213	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
	D> 536 g ctggaccttc	20
	D> 537	
	1> 20 2> DNA	
	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
	0> 537	20
gatcgctga	t ctaatgeteg	20
	0> 538	
	1> 20 2> DNA	
	3> Artificial Sequence	
<22	0>	
<22	3> Synthetic Sequence	
	0> 538	0.0
gtcggtcct	g atgetgttee	20
	0> 539	
	1> 20 2> DNA	
	3> Artificial Sequence	
<22	0>	
<22	3> Synthetic Sequence	
	0> 539	
tcgtcgtca	g ttegetgteg	20
	0> 540	
	1> 18 2> DNA	
	3> Artificial Sequence	
<22		
<22	3> Synthetic Sequence	

	00> 540 tc catgtcgg	18
<21 <21	10> 541 11> 17 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 541 ag cgcgtct	17
<21 <21	10> 542 11> 16 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 542 tc catgtc	16
<21 <21	10> 543 11> 16 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 543 tt cgtcga	16
<2: <2:	10> 544 11> 20 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 544 ct tccatgtcgg	20
<2: <2:	10> 545 11> 20 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 545 ca tgccgtctgc	20
	10> 546 11> 20	

• 11

	<212> DNA	
	<213> Artificial Sequence	
	-	
	<220>	
	<223> Synthetic Sequence	
	12237 Synchotte Sequence	
	<400> 546	
		20
aacget	ggac cttccatgtc	20
	4010. 547	
	<210> 547	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 547	
tacato	geegt acacagetet	20
-95	,,	
	<210> 548	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 548	
ccttcc	catgt cggtcctgat	20
	<210> 549	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	VZZ37 Synthetic Sequence	
	(400) 540	
	<400> 549	20
tactct	ttcgg atcccttgcg	20
	<210> 550	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	-	
	<400> 550	
ttcca:	tgtcg gtcctgat	18
ccca		
	<210> 551	
	<210> 331 <211> 18	
	\$ (1) (10	
	<212> DNA	
	<212> DNA <213> Artificial Sequence	
	<212> DNA	

<400> 551 ctgattgctc tctcgtga	18
<210> 552	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 552	
ggcgttattc ctgactcgcc	20
<210> 553	
<211> 22	
<212> DNA <213> Artificial Sequence	
\ZI3> Altilicial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 553	
cctacgttgt atgcgcccag ct	22
<210> 554	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 554	
ggggtaatcg atgaggggg	20
ggggcaaceg aegaggggg	20
<210> 555	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 555	
ttcgggcgga ctcctccatt	20
	20
<210> 556	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400	
<400> 556 ttttttttt tttttttt	20
	20
<210> 557	
<211> 20 <212> DNA	
NATON DIVA	

			100	
<213>	Artificial	Sequence		
<220>				
	Synthetic	Sequence		
<400>				20
gggggttttt	ttttggggg			20
<210>	558			
<211>	20			
<212>				
<213>	Artificial	L Sequence		
<220>				
<223>	Synthetic	Sequence		
<400>	550			
tttttggggg				20
0000099999	99999			
<210>				
<211> <212>				
	Artificial	1 Sequence		
(210)	111 0111010.	r boquomos		
<220>				
<223>	Synthetic	Sequence		
<400>	559			
aaaaaaaaaa	ggggggggt			19
.010.	5.60			
<210> <211>				
<212>				
	Artificia	l Sequence		
0.00				
<220>	· Synthetic	Seguence		
\2237	Dynenecie	bequence		
<400>	· 560			
aaaaaaaaa	aaaaaaaaa			20
<210>	· 561			
<211>				
<212>				
<213>	· Artificia	1 Sequence		
<220>	>			
	Synthetic	Sequence		
	- 61			
<400>				20
CCCCCaaaaa	aaaaaccccc			20
<210				
<2112				
	> DNA > Artificia	l Sequence		
/213/	ALCILICIA	ir pedaence		
<220				
<223	> Synthetic	: Sequence		
<400	> 562			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				

- 107 -			
aaaaaccccc ccccaaaaa 20			
<210> 563 <211> 27 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 563 tttgaattca ggactggtga ggttgag	27		
<210> 564 <211> 27 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 564 tttgaatcct cagcggtctc cagtggc	27		
<210> 565 <211> 45 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 565 aattototat oggggottot gtgtotgttg otggttoogo tttat	45		
<210> 566 <211> 45 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 566 ctagataaag cggaaccagc aacagacaca gaagccccga tagag	45		
<210> 567 <211> 28 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 567 ttttctagag aggtgcacaa tgctctgg	28		
<210> 568 <211> 29 <212> DNA <213> Artificial Sequence			

<220> <223> Synthetic Sequence	
<400> 568	29
tttgaattcc gtgtacagaa gcgagaagc	
<210> 569 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 569 tttgcggccg ctagacttaa cctgagagat a	31
<210> 570 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 570 tttgggccca cgagagacag agacacttc	29
<210> 571 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 571 tttgggcccg cttctcgctt ctgtacacg	29
<210> 572 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 572 gagaacgctg gaccttccat	20
<210> 573 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 573 tccatgtcgg tcctgatgct	20

.. HATTAN'S

```
<210> 574
     <211> 6
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic Sequence
                                                                          6
      <400> 574
ctgtcg
      <210> 575
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
                                                                           6
       <400> 575
tcgtga
       <210> 576
       <211> 6
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
                                                                            6
       <400> 576
 cgtcga
        <210> 577
        <211> 6
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Synthetic Sequence
                                                                            6
        <400> 577
  agtgct
         <210> 578
         <211> 6
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> Synthetic Sequence
                                                                             6
         <400> 578
   ctgtcg
         <210> 579
         <211> 6
         <212> DNA
         <213> Artificial Sequence
```

INTERPT

<220> <223>	Synthetic Sequence	
<400>	579	
agtgct		6
<210> <211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	580	
cgtcga		6
<210>	581	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	581	
tcgtga		6
<210>		
<211>		
<212>	Artificial Sequence	
(210)	Michigan poducine	
<220>		
<223>	Synthetic Sequence	
<400>	582	
gagaacgctc d	cagcttcgat	20
Z010×	E02	
<210> <211>		
<212>		
	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	E02	
gctagacgta a		17
		т/
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	584	
gagaacgctc o	gaccttccat	20

```
<210> 585
       <211> 21
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 585
 gagaacgctg gacctatcca t
                                                                          21
       <210> 586
       <211> 17
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 586
gctagaggtt agcgtga
                                                                          17
       <210> 587
       <211> 19
       <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 587
gagaacgctg gacttccat
                                                                         19
      <210> 588
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 588
tcacgctaac gtctagc
                                                                         17
      <210> 589
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 589
gctagacgtt agcgtga
                                                                         17
      <210> 590
      <211> 20
```

	3212> DNA 3213> Artificial Sequence	
	:220>	
<	(223> Synthetic Sequence	
	400> 590	
arggaag	gtc gagegttete	20
	2210> 591	
	2211> 20 2212> DNA	
	2213> Artificial Sequence	
<	220>	
	223> Synthetic Sequence	
<	400> 591	
gagaacg	ctg gaccttcgat	20
	210> 592	
	211> 20	
	212> DNA 213> Artificial Sequence	
	220>	
	223> Synthetic Sequence	
	400> 592	
	atg gaccttccat	20
	210> 593	
	211> 17 212> DNA	
	213> Artificial Sequence	
<2	220>	
<2	223> Synthetic Sequence	
< 4	400> 593	
gagaacgo	ctg gatccat	17
	210> 594	
	211> 20 212> DNA	
	212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	100> 594	
	ctc cagcactgat	20
	210> 595	20
	211> 20	
<2	212> DNA	
<2	213> Artificial Sequence	
	220>	
<2	23> Synthetic Sequence	

<400> 595 tccatgtcgg tcctgctgat	
	20
<210> 596	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 596	
atgtcctcgg tcctgatgct	20
<210> 597	20
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 597	
gagaacgctc caccttccat	20
<210> 598	20
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 598	
gagaacgctg gaccttcgta	
	20
<210> 599	
<211> 20	
<212> DNA <213> Artificial Sequence	
(210) Altificial Sequence	
<220>	
<221> misc_feature	
<222> (1) (3)	
<223> Conjugated to biotin moiety.	
<223> Synthetic Sequence	
<400> 599	
atggaaggtc cagcgttctc	20
<210> 600	20
<211> 6	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 600 tcctga	
	6

```
<210> 601
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 601
tcaacgtt
                                                                          8
      <210> 602
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 602
aacgtt
                                                                          6
      <210> 603
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 603
aacgttga
                                                                          8
      <210> 604
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 604
tcacgctaac ctctagc
                                                                         17
      <210> 605
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 605
gagaacgctg gaccttgcat
                                                                         20
      <210> 606
      <211> 14
      <212> DNA
      <213> Artificial Sequence
```

THE STATE OF THE S

	113	
<220:	>	
<223	> Synthetic Sequence	
\225.	> Dynchette Sequence	
<400	> 606	
gctggacctt		
geeggaeeee	ccac	14
<210	> 607	
<211		
	> DNA	
<213	> Artificial Sequence	
4000		
<220>		
<223>	> Synthetic Sequence	
	2 2	
< 4.0.0>	COR	
<400>		
gagaacgctg	gacctcatcc at	00
_		22
Z010s	600	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>	,	
\2232	Synthetic Sequence	
<400>	- 608	
gagaacgetg	gacgctcatc cat	23
<210>	. 609	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
-2107	in cirrorat peddeuce	
<220>		
<223>	Synthetic Sequence	
- 1 0 0		
<400>		
aacgttgagg	ggcat	
2 3 33		15
1010.		
<210>		
<211>	15	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	610	
atgcccctca a	acgtt	15
		10
<210>	611	
<211>		
<212>	DNA	
<212>		
<212>	DNA Artificial Sequence	
<212> <213>		
<212>		
<212> <213> <220>	Artificial Sequence	
<212> <213> <220>		
<212> <213> <220> <223>	Artificial Sequence Synthetic Sequence	
<212> <213> <220>	Artificial Sequence Synthetic Sequence	
<212> <213> <220> <223>	Artificial Sequence Synthetic Sequence 611	10

1 11 10 11 11 11 11

```
<210> 612
       <211> 14
       <212> DNA
       <213> Artificial Sequence
       <220>
      <223> Synthetic Sequence
      <400> 612
gctggacctt ccat
                                                                          14
      <210> 613
      <211> 7
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 613
caacgtt
                                                                          7
      <210> 614
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 614
acaacgttga
                                                                         10
      <210> 615
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 615
tcacgt
                                                                          6
      <210> 616
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 616
tcaagctt
                                                                          8
      <210> 617
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
```

```
<223> Synthetic Sequence
       <400> 617
tcgtca
                                                                           6
      <210> 618
       <211> 8
       <212> DNA
       <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 618
aggatatc
                                                                           8
      <210> 619
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 619
tagacgtc
                                                                          8
      <210> 620
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 620
gacgtcat
                                                                          8
      <210> 621
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 621
ccatcgat
                                                                          8
      <210> 622
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 622
atcgatgt
                                                                          8
      <210> 623
```

0.00

```
<211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 623
atgcatgt
      <210> 624
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 624
ccatgcat
                                                                          8
      <210> 625
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 625
agcgctga
                                                                          8
      <210> 626
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 626
tcagcgct
                                                                          8
      <210> 627
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 627
ccttcgat
                                                                          8
      <210> 628
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
```

The property of the second

```
<400> 628
 gtgccggggt ctccgggc
                                                                           18
       <210> 629
       <211> 18
       <212> DNA
       <213> Artificial Sequence
       <223> Synthetic Sequence
       <400> 629
 gctgtggggc ggctcctg
                                                                          18
       <210> 630
       <211> 8
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_feature
       <222> (1)...(3)
       <223> Conjugated to biotin moiety.
       <223> Synthetic Sequence
      <400> 630
tcaacgtt
                                                                           8
      <210> 631
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to FITC moiety.
      <223> Synthetic Sequence
      <400> 631
tcaacgtt
                                                                          8
      <210> 632
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to FITC moiety.
      <223> Synthetic Sequence
      <400> 632
aacgttga
                                                                          8
      <210> 633
```

 $(0,1) = \{j \in \{1,\dots,n\}, \dots, j \in \{1,\dots,n\}\}$

```
<211> 7
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 633
tcaacgt
                                                                          7
      <210> 634
      <211> 7
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 634
aacgttg
                                                                          7
      <210> 635
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 635
cgacga
                                                                          6
      <210> 636
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 636
tcaacgtt
      <210> 637
      <211> 5
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 637
tcgga
                                                                          5
      <210> 638
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
```

```
<400> 638
                                                                          8
agaacgtt
      <210> 639
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 639
                                                                          8
tcatcgat
      <210> 640
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 640
                                                                          8
taaacgtt
      <210> 641
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 641
                                                                           8
ccaacgtt
      <210> 642
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 642
                                                                           6
gctcga
      <210> 643
      <211> 6
       <212> DNA
      <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 643
                                                                           6
 cgacgt
       <210> 644
       <211> 6
```

```
<212> DNA
     <213> Artificial Sequence
      <220>
     <223> Synthetic Sequence
                                                                          6
      <400> 644
cgtcgt
      <210> 645
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 645
                                                                          6
acgtgt
       <210> 646
       <211> 6
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
                                                                           6
       <400> 646
 cgttcg
       <210> 647
        <211> 20
        <212> DNA
       <213> Artificial Sequence
        <220>
        <223> Synthetic Sequence
                                                                           20
        <400> 647
  gagcaagctg gaccttccat
        <210> 648
        <211> 6
        <212> DNA
        <213> Artificial Sequence
        <220>
         <223> Synthetic Sequence
                                                                             6
         <400> 648
   cgcgta
         <210> 649
         <211> 6
         <212> DNA
         <213> Artificial Sequence
         <223> Synthetic Sequence
```

DESTRUCTION 417

```
<400> 649
cgtacg
                                                                          6
      <210> 650
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 650
tcaccggt
                                                                          8
      <210> 651
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 651
caagagatgc taacaatgca
                                                                         20
      <210> 652
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 652
acccatcaat agctctgtgc
                                                                         20
      <210> 653
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 653
ccatcgat
                                                                          8
      <210> 654
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 654
tcgacgtc
                                                                          8
      <210> 655
      <211> 8
      <212> DNA
```

```
<213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 655
                                                                          8
ctagcgct
      <210> 656
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 656
                                                                          8
taagcgct
      <210> 657
      <211> 13
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 657
                                                                         13
tcgcgaattc gcg
      <210> 658
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 658
                                                                         19
atggaaggtc cagcgttct
      <210> 659
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 659
                                                                         17
actggacgtt agcgtga
      <210> 660
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 660
```

cgcctggggc tggtctgg		18	
<210> 661 <211> 18 <212> DNA			
<213> Artifici <220>	al Sequence		
<223> Syntheti	c Sequence		
<400> 661 gtgtcggggt ctccgggc			18
<210> 662 <211> 18			
<212> DNA <213> Artifici	al Sequence		
<220> <223> Syntheti	c Sequence		
<400> 662 gtgccggggt ctccgggc			18
<210> 663			10
<211> 18			
<212> DNA			
<213> Artifici	al Sequence		
<220>			
<223> Syntheti	c Sequence		
<400> 663			
cgccgtcgcg gcggttgg			18
<210> 664			
<211> 21			
<212> DNA			
<213> Artifici	al Sequence		
<220> <223> Syntheti	c Sequence		
<400> 664			
gaagttcacg ttgaggggc	a t		21
<210> 665			
<211> 21			
<212> DNA	1 0		
<213> Artificia	aı Sequence		
<220>			
<223> Synthetic	c Sequence		
<400> 665			
atctggtgag ggcaagcta	t g		21
<210> 666			
<211> 21			
<212> DNA			
<213> Artificia	al Seguence		

<220> <223> Synthetic Sequence	
<400> 666 gttgaaaccc gagaacatca t	21
<210> 667 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 667 gcaacgtt	8
<210> 668 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 668 gtaacgtt	8
<210> 669 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 669 cgaacgtt	8
<210> 670 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 670 gaaacgtt	8
<210> 671 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 671 caaacgtt	8

11.8881 MI

```
<210> 672
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 672
                                                                          8
ctaacgtt
      <210> 673
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 673
                                                                          8
ggaacgtt
      <210> 674
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 674
                                                                          8
tgaacgtt
      <210> 675
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 675
                                                                          8
acaacgtt
      <210> 676
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 676
                                                                          8
ttaacgtt
      <210> 677
      <211> 8
      <212> DNA
      <213> Artificial Sequence
```

<220> <223> Synthetic Sequence	
<400> 677	8
aaaacgtt	0
<210> 678 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 678 ataacgtt	8
<210> 679 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 679 aacgttct	8
<210> 680 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 680 tccgatcg	8
<210> 681 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 681 tccgtacg	8
<210> 682 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 682 gctagacgct agcgtga	17

	1-2	
<210> 683		
<211> 25		
<211> 20		
<213> Artificial Sec	mience	
(ZIJ) ALCIIICIGI DCC	1401100	
<220>		
	iongo	
<223> Synthetic Sequ	delice	
100 000		
<400> 683		25
gagaacgctg gacctcatca tcc	at .	20
<210> 684		
<211> 20		
<212> DNA		
<213> Artificial Se	quence	
<220>		
<223> Synthetic Seq	uence	
<400> 684		
gagaacgcta gaccttctat		20
<210> 685		
<211> 17		
<212> DNA		
<213> Artificial Se	guence	
1210. 11111	•	
<220>		
<223> Synthetic Sec	ruence	
(223) Symonosia (223)		
<400> 685		
actagacgtt agtgtga		17
actagacytt agtgega		
<210> 686		
<211> 22		
<211> 22 <212> DNA		
<212> BNA <213> Artificial Se	aguence	
(213) Altitudat 50	,queriee	
<220>		
<223> Synthetic Sec	mionde	
<223> Synthetic Sec	Adelice	
<400> 686		
		22
cacaccttgg tcaatgtcac gt		
2010× 207		
<210> 687		
<211> 22		
<212> DNA		
<213> Artificial S	equence	
.000		
<220>		
<223> Synthetic Se	quence	
.400		
<400> 687		22
tctccatcct atggttttat cg		22
<210> 688		
<211> 15		
<212> DNA		
<213> Artificial S	equence	
<220>		

	<223> Synthetic Sequence	
cgctg	<400> 688 gacct tccat	15
	<210> 689 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
cacca	<400> 689 ccttg gtcaatgtca cgt	23
	<210> 690 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gctag	<400> 690 yacgtt agctgga	17
	<210> 691 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
agtgo	<400> 691 cgattg cagatcg	17
	<210> 692 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ttttc	<400> 692 egtttt gtggttttgt ggtt	24
	<210> 693 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tttt	<400> 693 cgtttg tcgttttgtc gtt	23
	<210> 694	

<211> 2	4	
<212> D		
<213> A	rtificial Sequence	
4000>		
<220>	ynthetic Sequence	
<2237 3	Autherne pedagues	
<400> 6	594	
	ggttttgt ggtt	24
cecegeeee ge		
<210> 6	595	
<211> 2	20	
<212> I	ANG	
<213> P	Artificial Sequence	
<220>		
<223> \$	Synthetic Sequence	
<400>		20
accgcatgga t	tctaggcca	
<210>	606	
<211>		
<212>		
	Artificial Sequence	
(213)		
<220>		
<223>	Synthetic Sequence	
<400>	696	15
gctagacgtt a	gcgt	12
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
4000		
<220>	Synthetic Sequence	
<223>	Syllenecie pedgenec	
<400>	697	
aacgctggac c		17
aacgeeggae		
<210>	698	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	modified_base	
<222>	$(5)\ldots(5)$	
<223>	m5c	
10005	Gunthatia Compando	
<223>	Synthetic Sequence	
<400>	698	
tcaangtt		8
country		
<210>	699	
<211>		
<212>		

tern fill

	192	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	4400 600	
ccttcg	<400> 699 at	8
	<210> 700	
	<211> 17	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
20120	<400> 700 acgtt agtgtga	17
actaga	acgut aguguga	
	<210> 701	
	<211> 17 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 701	17
gctaga	aggtt agcgtga	17
	<210> 702	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 702	20
atgga	ctctc cagcgttctc	20
	<210> 703	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	Z13/ Altificial bequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 703	
atcga	ctctc gagcgttctc	20
	<210> 704	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 704	

gctagacgtt ag	gc gc	13	
<210> 1 <211> 1 <212> 1 <213> 2	9		
<220> <223>	Synthetic Sequence		
<400> gctagacgt	705	9	,
<210> <211> <212> <213>	17		
<220> <223>	Synthetic Sequence		
<400> agtgcgattc g		17	7
<210> <211> <212> <213>	8		
	<pre>modified_base (5)(5) m5c</pre>		
<223>	Synthetic Sequence		
<400> tcagngct	707		8
<210> <211> <212> <213>	18		
<220> <223>	Synthetic Sequence		
<400> ctgattgctc		1	. 8
<210> <211> <212> <213>	8		
	<pre>modified_base (2)(2)</pre>		
<223>	> Synthetic Sequence		

14 QABAN - 100

<400> tnaacgtt	709	8
<210> <211> <212> <213>	20	
	modified_base (6)(6)	
<223>	Synthetic Sequence	
<400> gagaangctg		20
<210> <211> <212> <213>	· 17	
<220> <223>	> Synthetic Sequence	
<400> gctagacgtt		17
<2203 <2233	> > Synthetic Sequence	
<4003 gctacttagc	> 712 gtga	14
<211 <212	> 713 > 15 > DNA > Artificial Sequence	
<220 <223	> > Synthetic Sequence	
<400 gctaccttag	> 713 cgtga	15
<211 <212	> 714 > 19 > DNA > Artificial Sequence	
<220 <223	> > Synthetic Sequence	
< 400	> 714	

	133	
atcgact	ttcg agcgttctc 19	
<	<210> 715	
<	<211> 20	
	<212> DNA	
<	<213> Artificial Sequence	
	<220>	
<	<223> Synthetic Sequence	
	<400> 715	20
atgcact	tctg cagcgttctc	20
	<210> 716	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) Altilicial bequence	
	<220>	
<	<223> Synthetic Sequence	
	<400> 716	20
agtgact	etcte cagegttete	20
<	<210> 717	
	<211> 17	
	<212> DNA	
<	<213> Artificial Sequence	
•	<220>	
•	<223> Synthetic Sequence	
	<400> 717	15
gccaga ⁻	atgtt agctgga	17
	<210> 718	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 718	18
atcgac	ctcga gcgttctc	10
	<210> 719	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 719	17
atcgat	atcgag cgttctc	17
	<210> 720	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	

DE DEBUT

<220>		
<221>	misc_feature	
<222>	(1) (3)	
<223>	Conjugated to biotin moiety.	
<223>	Synthetic Sequence	
<400>	720	
gagaacgctc		20
gagaacgeee	guoceegue	
<210>	721	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
400	504	
<400>		1 7
gctagacgtt	agctgga	17
<210>	. 722	
<211>		
<212>		
	· Artificial Sequence	
\213/	Altificial Sequence	
<220>	•	
— · · -	Synthetic Sequence	
	-1	
<400>	· 722	
atcgactctc	gagcgttctc	20
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
40005		
<220>		
<2237	Synthetic Sequence	
<400>	> 723	
tagacgttag		15
cagacgccag	- Cg c g a	
<210>	> 724	
<211>		
	> DNA	
<213>	> Artificial Sequence	
<220>		
<223>	> Synthetic Sequence	
.400	. 704	
<400>		18
cgactctcga	gegeeee	Τζ
<210>	> 725	
<211		
	> DNA	
	> Artificial Sequence	
1210/		
<220	>	

```
<223> Synthetic Sequence
      <400> 725
                                                                          21
ggggtcgacc ttggaggggg g
      <210> 726
      <211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 726
                                                                           16
gctaacgtta gcgtga
      <210> 727
      <211> 9
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 727
                                                                            9
cgtcgtcgt
       <210> 728
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified_base
       \langle 222 \rangle (14)...(14)
       <223> m5c
       <223> Synthetic Sequence
       <400> 728
                                                                           20
 gagaacgctg gacnttccat
       <210> 729
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified base
       <222> (18)...(18)
        <223> m5c
        <223> Synthetic Sequence
        <400> 729
                                                                            20
 atcgacctac gtgcgttntc
        <210> 730
        <211> 20
        <212> DNA
        <213> Artificial Sequence
```

<220>		
<221> modi	fied_base	
<222> (3).	(3)	
<223> m5c		
<0.03> Crm+	hetic Sequence	
<223> Synt	Hette Bequence	
<400> 730		20
atngacctac gtgcg	ttctc	20
<210> 731		
<211> 15		
<212> DNA	St. 1. 3. Gamuanga	
<213> Arti	ficial Sequence	
<220>		
<221> mod:	fied base	
<222> (7)		
<223> m5c		
<223> Syn	thetic Sequence	
<400> 731		1.5
gctagangtt agcg	τ	15
gocagange		
<210> 732		
<211> 20		
<212> DNA		
<213> Art	ificial Sequence	
<220>	1.51 1.1	
<221> mod	ified_base	
<222> (14		
<223> m50		
<223> Syr	thetic Sequence	
<400> 732		
atcgactctc gagi		20
arcyactere gagi	192000	
<210> 73	3	
<211> 20		
<212> DN	J	
<213> Ar	tificial Sequence	
.000		
<220>	nthetic Sequence	
<223> Sy	Timetic Sequence	
<400> 73	3	20
ggggtaatgc atc		21
999904409-		
<210> 73		
<211> 20		
<212> DN	A	
<213> Ar	tificial Sequence	
<220>	Li chi - Comicaco	
<223> S ₃	nthetic Sequence	
<400> 73	34	

HENDEN 1

ggctgtattc ctgactgccc	20
<210> 735 <211> 17 <212> DNA	·
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 735 ccatgctaac ctctagc	17
<210> 736 <211> 17	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 736	17
gctagatgtt agcgtga	
<210> 737 <211> 15	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 737	15
cgtaccttac ggtga	
<210> 738	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 738	20
tecatgetgg teetgatget	
<210> 739	
<211> 22	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 739 atcgactctc tcgagcgttc tc	22
<210> 740 <211> 17	
<212> DNA	
<213> Artificial Sequence	

DECEMBE 1

<220> <223> Synthetic Sequence	
<400> 740 gctagagctt agcgtga	17
<210> 741 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 741 atcgactete gagtgttete	20
<210> 742 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 742 aacgctcgac cttcgat	17
<210> 743 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 743 ctcaacgetg gacettecat	20
<210> 744 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 744 atcgacctac gtgcgttctc	20
<210> 745 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 745 qaqaatgctg gaccttccat	20

```
<210> 746
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 746
                                                                         17
tcacgctaac ctctgac
      <210> 747
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 747
                                                                         20
gagaacgctc cagcactgat
      <210> 748
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Biotin moiety attached at 5' end of sequence.
      <223> Synthetic Sequence
      <400> 748
gagcaagctg gaccttccat
                                                                         20
      <210> 749
      <211> 18
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 749
                                                                         18
cgctagaggt tagcgtga
      <210> 750
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
```

	<400> 750	15
actaga	atgtt aacgt	10
55	-	
	<210> 751	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 751	19
atada	aggtc cacgttctc	19
acgga	49900 11 3	
	<210> 752	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	-	
	<400> 752	
aat oo	gatgtt agcgt	15
gctag	galyte agege	
	<210> 753	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 753	
~~+~	gacgtt agtgt	15
geta	gacytt agtgt	
	(010) 754	
	<210> 754	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 754	
+~~~	tgacgg tcctgatgct	20
LCCa	rgaegg reergaegee	
	2010\ 7EE	
	<210> 755	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 755	
+ ~ ~ ~	atggcgg tcctgatgct	20
LCCa	1099099 1000940900	
	4010× 756	
	<210> 756	
	<211> 15	
	<212> DNA	

B () ()

```
<213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 756
                                                                         15
qctagacgat agcgt
      <210> 757
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 757
                                                                         15
gctagtcgat agcgt
      <210> 758
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 758
                                                                         20
tccatgacgt tcctgatgct
      <210> 759
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
       <223> Synthetic Sequence
       <400> 759
                                                                          20
tccatgtcgt tcctgatgct
       <210> 760
       <211> 15
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified_base
       <222> (13)...(13)
       <223> m5c
       <223> Synthetic Sequence
       <400> 760
                                                                          15
 gctagacgtt agngt
       <210> 761
       <211> 15
       <212> DNA
       <213> Artificial Sequence
```

```
<220>
      <223> Synthetic Sequence
      <400> 761
                                                                         15
gctaggcgtt agcgt
      <210> 762
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (8)...(8)
      <223> m5c
      <223> Synthetic Sequence
      <400> 762
                                                                         20
tccatgtngg tcctgatgct
      <210> 763
      <211> 20
      <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified base
       <222> (12)...(12)
       <223> m5c
       <223> Synthetic Sequence
       <400> 763
                                                                          20
 tccatgtcgg tnctgatgct
       <210> 764
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <221> modified_base
       <222> (3)...(3)
       <223> m5c
       <221> modified_base
       <222> (10)...(10)
        <223> m5c
        <221> modified_base
        <222> (14)...(14)
        <223> m5c
        <400> 764
                                                                           20
  atngactctn gagngttctc
        <210> 765
        <211> 20
```

	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
atgga	<400> 765 aggtc cagtgttctc	20
	<210> 766	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 766	15
gcato	gacgtt gagct	10
9		
	<210> 767	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 767	20
gggg	tcaacg ttgagggggg	20
	<210> 768	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	4400 760	
aaac	<400> 768 gtcaagt ctgaggggg	20
9995		
	<210> 769	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 769	0.0
cgc	gegegeg egegegegeg	20
	2010× 770	
	<210> 770 <211> 28	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	(552) Shirtieric pedagies	

<400> 770 cacacacaca cacacaca	28
<210> 771 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 771 ccccccccc ccccccccc cccccccc	35
<210> 772 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 772 tccatgtcgc tcctgatcct	20
<210> 773 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 773 gctaaacgtt agcgt	15
<210> 774 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 774 tecatgtega teetgatget	20
<210> 775 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 775 tccatgccgg tcctgatgct	20
<210> 776 <211> 20 <212> DNA	

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 776 aaaatcaacg ttgaaaaaaa	20
<210> 777 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 777 tccataacgt tcctgatgct	20
<210> 778	
<211> 23	
<212> DNA <213> Artificial Sequence	
<213> Artificial Bequence	
<220>	
<223> Synthetic Sequence	
<400> 778	
tggaggtccc accgagatcg gag	23
<210> 779	
<211> 21	
<212> DNA <213> Artificial Sequence	
(Z13) Altilitial beganne	
<220>	
<223> Synthetic Sequence	
<400> 779	
cgtcgtcgtc gtcgtcgtcg t	21
<210> 780	
<211> 21	
<212> DNA <213> Artificial Sequence	
(Z13) Altilitial boddonos	
<220>	
<223> Synthetic Sequence	
<400> 780	
ctgctgctgc tgctgctgct g	2:
Graciac raceacas a	
<210> 781	
<211> 21	
<212> DNA <213> Artificial Sequence	
<si3> Wiffilerar pedaeuce</si3>	
<220>	
<223> Synthetic Sequence	
<400> 781	

gagaacgete egacettega t 21	
<210> 782 <211> 15 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 782 gctagatgtt agcgt	15
<210> 783 <211> 15 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 783	15
gcatgacgtt gagct	
<210> 784 <211> 10	
<212> DNA	,
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (8)(10) <223> Conjugated to FITC moiety.	
<223> Synthetic Sequence	
<400> 784	10
tcaatgctga	
<210> 785	
<211> 10 <212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (8)(10) <223> Conjugated to FITC moiety.	
<223> Synthetic Sequence	
<400> 785	10
tcaacgttga	
<210> 786	
<211> 10 <212> DNA	
<213> Artificial Sequence	
<220> <221> misc_feature	

```
<222> (8)...(10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 786
                                                                         10
tcaacgttga
      <210> 787
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (8) ... (10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 787
                                                                          10
gcaatattgc
      <210> 788
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (8) ... (10)
      <223> Conjugated to FITC moiety.
      <223> Synthetic Sequence
      <400> 788
                                                                          10
gcaatattgc
      <210> 789
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 789
                                                                          10
agttgcaact
      <210> 790
      <211> 8
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 790
                                                                           8
tcttcgaa
       <210> 791
```

	<211> 8	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
+ 02 2 0	<400> 791	8
tcaac		
	<210> 792	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 792	19
ccatg	toggt ootgatgot	
	<210> 793	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 793	18
gtttt	tatat aatttggg	10
	<210> 794	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 794	0.0
ttttt	gtttg tcgttttgtc gtt	23
	<210> 795	
	<211> 12	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 795	
ttgg	gggggg tt	12
	<210> 796	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	> / /) / DVIII I I DEGILERIOS	

```
<400> 796
                                                                         13
ggggttgggg gtt
      <210> 797
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 797
                                                                         17
ggtggtgtag gttttgg
      <210> 798
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <221> modified base
      <222> (6)...(6)
      <223> m5c
      <223> Synthetic Sequence
      <400> 798
                                                                          20
gagaangctc gaccttcgat
      <210> 799
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 799
                                                                          20
tcaacgttaa cgttaacgtt
       <210> 800
       <211> 20
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc feature
       <222> (1)...(3)
       <223> Conjugated to biotin moiety.
       <221> modified base
       <222> (8)...(8)
       <223> m5c
       <223> Synthetic Sequence
```

11.111

```
<400> 800
gagcaagntg gaccttccat
                                                                           20
      <210> 801
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1) ... (3)
      <223> Conjugated to biotin moiety.
      <221> modified base
      <222> (6)...(6)
      <223> m5c
      <223> Synthetic Sequence
      <400> 801
gagaangctc cagcactgat
                                                                           20
      <210> 802
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      \langle 222 \rangle (5) \dots (5)
      <223> m5c
      <221> misc_feature
      <222> (8)...(10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 802
tcaangttga
                                                                           10
      <210> 803
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (2)...(2)
      <223> m5c
      <221> misc_feature
      <222> (8)...(10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 803
gnaatattgc
                                                                           10
      <210> 804
```

the state of a

	> DNA	
<213	> Artificial Sequence	
<2203 <2233	> > Synthetic Sequence	
	> 804	
tgctgctttt	gtcgttttgt gctt	24
	> 805	
<2 1 12	> 22 > DNA	
	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 805 aatttaactg tg	22
	> 806	
<211:	> 20 > DNA	
	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 806	20
tecatgacgt	tootgatgot	20
	> 807	
<211 <212	> Z8 > DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 807	0.0
tgcatgccgt	gcatccgtac acagctct	28
	> 808	
<211 <212	> 20 > DNA	
	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 808	0.0
	acacagetet	20
	> 809 > 12	
	> 1Z > DNA	
	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	

<400> tgcatcagct		12
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> tgcgctct	810	8
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400>		20
<210> <211> <212> <213>	12	
<220> <223>	Synthetic Sequence	
<400> cccccccc		12
<210> <211> <212> <213>	8 DNA Artificial Sequence	
<223>	Synthetic Sequence	
<400> ccccccc	813	8
<210> <211> <212> <213>	12	
<220> <223>	Synthetic Sequence	
<400> tgcatcagct		12
<210> <211>		

1.1 11 1 1 1 1

	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1223 Synthetic bequence	
	<400> 815	
tgca	atgccgt acacagctct	20
	4010) 016	
	<210> 816	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 816	
gage	caagetg gacetteeat	20
	<210> 817	
	<211> 32	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 817	
tcaa	acgttaa cgttaacgtt aacgttaacg tt	32
		-
	<210> 818	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 818	
gaga	aacgctc gaccttcgat	20
	<210> 819	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 819	
gtco	cccattt cccagaggag gaaat	25
J		20
	<210> 820	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

11

<400> 820	
tageggetg aegteateaa getag	25
<210> 821	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 821	
tagettgat gaegteagee getag	25
- service garages garag	23
<210> 822	
<211> 16 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 822	
ggctgacgt catcaa	16
4010) 000	
<210> 823 <211> 8	
<212> DNA	
<213> Artificial Sequence	
<2200	
<220> <223> Synthetic Sequence	
1220 Dynemocio boquonee	
<400> 823	
tgacgtg	8
<210> 824	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400, 004	
<400> 824 tgacgtcat	1.0
	10
<210> 825	
<211> 21	
<212> DNA <213> Artificial Sequence	
(213) Attiticial bequence	
<220>	
<223> Synthetic Sequence	
<400> 825	
ttcgatcgg ggcggggcga g	21
<210> 826 <211> 21	
<211> 21 <212> DNA	

	15,	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ctcgc	<400> 826 cccgc cccgatcgaa t	21
	<210> 827 <211> 15 <212> DNA	
	<213> Artificial Sequence <220> <223> Synthetic Sequence	
gactg	<400> 827 acgtc agcgt	15
	<210> 828 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ctage	<400> 828 ggctg acgtcataaa gctagc	26
	<210> 829 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ctagc	<400> 829 tttat gacgtcagcc gctagc	26
	<210> 830 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ctagc	<400> 830 ggctg agctcataaa gctagc	26
	<210> 831 <211> 25 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 831	

II.

ctagtggctg acgtcatcaa	. gctag	25	
<210> 832			
<211> 20			
<212> DNA			
<213> Artificia	l Seguence		
<220>			
<223> Synthetic	Sequence		
4400> 000			
<400> 832 tccaccacgt ggtctatgct			
eccaccacge ggeeratgee			20
<210> 833			
<211> 24			
<212> DNA			
<213> Artificia	l Sequence		
1000			
<220>			
<223> Synthetic	Sequence		
<400> 833			
gggaatgaaa gattttatta	taaq		24
	-		2.
<210> 834			
<211> 26			
<212> DNA	1 0		
<213> Artificia	1 Sequence		
<220>			
<223> Synthetic	Sequence		
<400> 834			
tctaaaaacc atctattctt	aaccct		26
Z010\ 025			
<210> 835 <211> 15			
<211> 13 <212> DNA			
<213> Artificia	1 Sequence		
<220>			
<223> Synthetic	Sequence		
<400> 835			
agctcaacgt catgc			1.5
ageceaaege caege			15
<210> 836			
<211> 24			
<212> DNA			
<213> Artificia	l Sequence		
<220>			
<223> Synthetic	Seguence		
12207 Dynamacia	bequerice		
<400> 836			
ttaacggtgg tagcggtatt	ggtc		24
.010			
<210> 837			
<211> 24 <212> DNA			
<212> DNA <213> Artificial	1 Seguence		

	20> 23> Synthetic Sequence	
< 4	00> 837	
ttaagacc	aa taccgctacc accg	24
	10> 838	
	11> 25 12> DNA	
	13> Artificial Sequence	
	20>	
<2	23> Synthetic Sequence	
	00> 838	٥.
gatetagt	ga tgagtcagcc ggatc	25
	10> 839	
	11> 25 12> DNA	
	13> Artificial Sequence	
<2	20>	
<2	23> Synthetic Sequence	
	00> 839	
gatccggc	tg actcatcact agatc	25
	10> 840	
	11> 20	
	12> DNA 13> Artificial Sequence	
<2	20>	
<2	23> Synthetic Sequence	
	00> 840	
tccaagac	gt teetgatget	20
	10> 841	
	11> 20	
	12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 841 egt ccctgatgct	20
_		
	10> 842 11> 20	
	11> 20 12> DNA	
	13> Artificial Sequence	
<2	20>	
<2	23> Synthetic Sequence	
	00> 842	
tccaccac	gt ggctgatgct	20

11

	<210> 843	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 843	
	ggac ctctagc	3 -
ccacge	ague eccage	17
	<210> 844	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 844	
tcagac	cacg tggtcgggtg ttcctga	27
	<210> 845	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 845	
tcagga	acac cegaceaegt ggtetga	27
	<210> 846	
	<211> 18	
	<211> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 846	
catttc	cacg atttccca	18
	<010× 047	
	<210> 847 <211> 19	
	<211> 19 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 847	
ttcctc	tctg caagagact	19
	<210 040	
	<210> 848 <211> 19	
	<211> 19 <212> DNA	
	<213> Artificial Sequence	

<220>	
<223> Synthetic Sequence	
<400> 848	
tgtatctctc tgaaggact	19
<210> 849 <211> 25	
<212> DNA	
<213> Artificial Sequence	
4220	
<220> <223> Synthetic Sequence	
<400> 849	
ataaagcgaa actagcagca gtttc	25
<210> 850	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 850	
gaaactgctg ctagtttcgc tttat	25
<210> 851	
<210> 851 <211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400, 051	
<400> 851 tgcccaaaga ggaaaatttg tttcatacag	30
egocodadya gyaddaceeg eeecacacag	50
<210> 852	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 852	
ctgtatgaaa caaattttcc tctttgggca	30
<210> 853	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 853	
ttagggttag ggttagggtt	20

- 11

	210> 854 211> 20	
	211> 20 212> DNA	
	213> Artificial Sequence	
	2137 Michigan Boquemoo	
<	220>	
<	223> Synthetic Sequence	
	400, 054	
	400> 854	20
tecatya	gct tcctgatgct	20
<	210> 855	
<	211> 20	
	212> DNA	
<.	213> Artificial Sequence	
_	220>	
	223> Synthetic Sequence	
`	223 Synchotic boquence	
<	400> 855	
aaaacat	gac gttcaaaaaa	20
	210> 856	
	211> 20 212> DNA	
	213> Artificial Sequence	
	210. 111 0111 01401100	
<.	220>	
<	223> Synthetic Sequence	
	400> 050	
	400> 856 gac gttcgggggg	20
aaaacac	gac gcccgggggg	20
<	210> 857	
<	211> 20	
	212> DNA	
<	213> Artificial Sequence	
_	220>	
	223> Synthetic Sequence	
	400> 857	
ggggcat	gag cttcgggggg	20
,	210. 050	
	2210> 858 2211> 24	
	2112 24 212> DNA	
	2213> Artificial Sequence	
	-	
	220>	
<	223> Synthetic Sequence	
_	400> 858	
	gac gtcatcaagc tagt	24
	-وو و ر	
	210> 859	
	2211> 30	
	2212> DNA	
<	2213> Artificial Sequence	
<	220>	

11

,,

105	
<223> Synthetic Sequence	
<400> 859	
tetgacgtca tetgacgttg getgacgtet	30
<210> 860 <211> 25	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 860	
ggaattagta atagatatag aagtt	25
<210> 861	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 861	30
tttacctttt ataaacataa ctaaaacaaa	50
<210> 862	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 862	
gcgtttttt ttgcg	15
<210> 863 <211> 24	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
72237 Synthetic Bequence	
<400> 863	0.4
atatctaatc aaaacattaa caaa	24
<210> 864	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400 064	
<400> 864 totatoccag gtggttoctg ttag	24
<210> 865	

....

```
<211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 865
tccatgacgt tcctgatgct
                                                                         20
      <210> 866
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 866
tccatgagct tcctgatgct
                                                                         20
      <210> 867
      <211> 13
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (11)...(13)
      <223> Conjugated to FITC moiety.
      <221> misc_feature
      <222> (0)...(0)
      <223> Has phosphodiester backbone.
      <223> Synthetic Sequence
      <400> 867
ttttttttt ttt
                                                                         13
      <210> 868
      <211> 13
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (11)...(13)
      <223> Conjugated to biotin moiety.
      <221> misc_feature
      <222> (0)...(0)
      <223> Has phosphorothioate and phosphodiester chimeric
```

u

	backbone with	phosphodiester o	on 3' er	nd.
<223>	Synthetic Sequence			
<400> ttttttttt				13
<210> <211> <212> <213>	25			
<220> <223>	Synthetic Sequence			
<400> ctagcttgat	869 gagctcagcc gctag			25
<210> <211> <212> <213>	25			
<220> <223>	Synthetic Sequence			
<400> ttcagttgtc	· 870 ttgctgctta gctaa			25
<210> <211> <212> <213>	∙ 20			
<220> <223>	Synthetic Sequence			
<400> tccatgagct				20
<220> <223>	> > Synthetic Sequence			
<400> ctagcggctg	> 872 acgtcatcaa tctag			25
<2112 <2122	> 873 > 20 > DNA > Artificial Sequence			
<220 <223	> > Synthetic Sequence			
	> 873 gcctgtacct			20

<210> 874	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
1220, 11202220202 004,000	
<220>	
<223> Synthetic Sequence	
<400> 874	
atgctaaagg acgtcacatt gca	23
<210> 875	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Synthetic Sequence	
(223) Byncheere bequence	
<400> 875	
	23
tgcaatgtga cgtcctttag cat	25
4010) 076	
<210> 876	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 876	
gtaggggact ttccgagctc gagatcctat g	31
<210> 877	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
\213> Arctrictar bequence	
1000	
<220>	
<223> Synthetic Sequence	
<400> 877	
cataggatet egagetegga aagteeeeta e	31
<210> 878	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Synthetic Sequence	
. 2	
<400> 878	
ctgtcaggaa ctgcaggtaa gg	22
ocycoaggaa ocycaggaaa gg	سه سه
<210> 879	
<211> 27	
<212> DNA	

	220>	
<	223> Synthetic Sequence	
<	400> 879	
cataaca	tag gaatatttac teetege	2
<.	210> 880	
	211> 21	
	212> DNA	
<.	213> Artificial Sequence	
	220>	
<.	223> Synthetic Sequence	
	400> 880	
ctccagc	tcc aagaaaggac g	2
	210> 881	
	211> 21	
	212> DNA	
<.	213> Artificial Sequence	
	220>	
<:	223> Synthetic Sequence	
<	400> 881	
gaagttt	ctg gtaagtcttc g	2
<:	210> 882	
	211> 24	
	212> DNA	
<.	213> Artificial Sequence	
	220>	
<:	223> Synthetic Sequence	
	400> 882	
tgctgct	ttt gtgcttttgt gctt	24
<:	210> 883	
	211> 24	
	212> DNA	
<:	213> Artificial Sequence	
	220>	
<:	223> Synthetic Sequence	
	400> 883	
tcgtcgt	ttt gtggttttgt ggtt	2
	210> 884	
	211> 23	
	212> DNA	
<:	213> Artificial Sequence	
	220>	
<:	223> Synthetic Sequence	
	400> 884	
tcgtcgt	ttg tcgttttgtc gtt	2

	<210> 885 <211> 22	
	<211> 22 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctg	<400> 885 racgtt eggegege ee	22
	<210> 886	
	<211> 24	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tgctg	<400> 886 getttt gtgettttgt gett	24
	<210> 887	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 887	
tccat	tgaget teetgagett	20
	<210> 888	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 888	0.4
tegte	egttte gtegttttga egtt	24
	<210> 889	
	<211> 26	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 889	
tcgt	cgtttg cgtgcgtttc gtcgtt	26
	<210> 890	
	<211> 27	
	<212> DNA <213> Artificial Sequence	
	<220>	

B 1 1 1

<223> Synthetic Sequence	
<400> 890	
tcgcgtgcgt tttgtcgttt tgacgtt	27
<210> 891	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 891	
ttcgtcgttt tgtcgttttg tcgtt	25
<210> 892 <211> 15	
<211> 13 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400 000	
<400> 892 tcctgacggg gaagt	15
<210> 893 <211> 15	
<211> 13 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400× 000	
<400> 893 tcctggcgtg gaagt	15
<210> 894	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
(223) Synthetic bequence	
<400> 894	15
tcctggcggt gaagt	10
<210> 895	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 895	
tcctggcgtt gaagt	15
<210> 896	

	<211><212><213>		
	<220>	•	
		Synthetic Sequence	
tcctga	<400> cgtg (15
	<210>	8 9 7	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220> <223>	Synthetic Sequence	
	<400> ttcg (897 gegegegee	20
	<210>	898	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>		20
gegacg	iggeg i	gegegegeee	20
	<210>		
	<211>		
	<212><213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>		20
gcggcg	gtgcg	gegegegeee	20
	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
	<2132	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>		
geggeg	ggtcg	gegegegeee	20
	<210>	901	
	<211>		
	<212>	DNA Artificial Sequence	
	\L13>	vicitional peducuce	
	<220>	Synthetic Sequence	
	~ ∠∠ <i></i> ∠∠/	plusies pedaeuse	

HE CARRO

<400> 901 gcgacggtcg gcgcgccc	20
<210> 902 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 902 geggegtteg gegegegee	20
<210> 903 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 903 gegaegtgeg gegegegeee	20
<210> 904 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 904 tegtegetgt eteeg	15
<210> 905 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 905 tgtgggggtt ttggttttgg	20
<210> 906 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 906 aggggaggg aggggaggg	20
<210> 907 <211> 21	

п

		172	
	<212> DNA <213> Artificial Sequence		
	<220> <223> Synthetic Sequence		
tgtgt	<400> 907 gtgtg tgtgtgtgtg t		21
	<210> 908		
	<211> 22		
	<212> DNA <213> Artificial Sequence		
	<pre></pre>		
	<220>		
	<223> Synthetic Sequence		
	<400> 908		
ctctc	tetet etetetetet et		22
	<210> 909		
	<211> 20		
	<212> DNA <213> Artificial Sequence		
	(213) Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 909		
ggggt	cgacg tcgaggggg		20
	<210> 910		
	<211> 22		
	<212> DNA <213> Artificial Sequence		
	version and sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 910		
atata	tatat atatatata at		22
	<210> 911		
	<211> 27		
	<212> DNA <213> Artificial Sequence		
	<220> <223> Synthetic Sequence		
++++	<400> 911		27
LLLTT			27
	<210> 912		
	<211> 21 <212> DNA		
	<213> Artificial Sequence		
	<220>		
	<220> <223> Synthetic Sequence		

<400> 912 tttttttttt ttttttt t	21
<210> 913	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 913	
ttttttttt tttttt	18
<210> 914	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 914	
gctagagggg agggt	15
<210> 915	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 915	
gctagatgtt agggg	15
<210> 916	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 916	
gcatgagggg gagct	15
<210> 917	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 917	
atggaaggtc cagggggctc	20
<210> 918	
<211> 20	
<212> DNA	

	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
atgga	<400> 918 ctctg gagggggctc	20
	<210> 919 <211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
atgga	<400> 919 aggtc caaggggctc	20
	<210> 920	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 920	
gagaa	ggggg gaccttggat	20
	<210> 921	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gagaa	<400> 921 ggggg gaccttccat	20
gagaa		20
	<210> 922	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 922	
gagaa	ggggc cagcactgat	20
	<210> 923	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 923	

tccatgtggg gcctgatgct	20
(210) 024	
<210> 924 <211> 20	
<212> DNA	
<213> Artificial Sequence	
(213) Altifoldi bequeile	
<220>	
<223> Synthetic Sequence	
<400> 924	20
tccatgaggg gcctgatgct	20
<210> 925	
<211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
_	
<220>	
<223> Synthetic Sequence	
<400> 925	20
tccatgtggg gcctgctgat	20
(010) 006	
<210> 926	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(210) /1101110141 004401100	
<220>	
<223> Synthetic Sequence	
<400> 926	20
atggactete eggggttete	20
<210> 927	
<211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
1	
<220>	
<223> Synthetic Sequence	
<400> 927	20
atggaaggtc cggggttctc	20
<210> 928	
<210> 920	
<211> 20 <212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Synthetic Sequence	
4400> 000	
<400> 928	20
atggactctg gaggggtctc	20
<210> 929	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 929	20
atggaggete catggggete	20
<210> 930 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 930 atggactetg gggggttete	20
<210> 931 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 931 tccatgtggg tggggatgct	20
<210> 932 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 932	
tccatgcggg tggggatgct	20
<210> 933 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 933 tccatggggg tcctgatgct	20
<210> 934 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 934 tccatggggt ccctgatgct	20

	<210> 935	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	12237 Bynthette Bequence	
	<400> 935	
	gggt gcctgatgct	20
	<210> 936	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 936	20
tccatg	gggt teetgatget	20
	<010	
	<210> 937 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	\Zib> Altificial bequence	
	<220>	
	<223> Synthetic Sequence	
	±	
	<400> 937	
	<400> 937 ggggg gcctgatgct	20
		20
	egggg geetgatget <210> 938	20
	<pre>egggg gcctgatgct <210> 938 <211> 14</pre>	20
	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA</pre>	20
	<pre>egggg gcctgatgct <210> 938 <211> 14</pre>	20
	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence</pre>	20
	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220></pre>	20
	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence</pre>	20
	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence</pre>	20
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938</pre>	
tocato	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence</pre>	20
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt</pre>	
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938</pre>	
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939</pre>	
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18</pre>	
tocato	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA</pre>	
tocato	<pre>egggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220></pre>	
tocato	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence</pre>	
tocato	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <221> Synthetic Sequence</pre>	
gctaga	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <220> Synthetic Sequence <2400> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939</pre>	14
gctaga	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <221> Synthetic Sequence</pre>	
gctaga	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939 <211 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939 tttt tttttttt</pre>	14
gctaga	<pre>cgggg gcctgatgct </pre> <pre> <210> 938 </pre> <pre> <211> 14 </pre> <pre> <212> DNA </pre> <pre> <220> <223> Synthetic Sequence </pre> <pre> <400> 938 aggga gtgt </pre> <pre> <210> 939 <211> 18 <212> DNA <213> Artificial Sequence </pre> <pre> <220> <223> Synthetic Sequence </pre> <pre> <210> 939 <titt <="" pre="" tttttttt=""> <pre> <220> <223> Synthetic Sequence </pre> <pre> <200> <223> Synthetic Sequence </pre> <pre> <400> 939 ttttt ttttttt </pre></titt></pre>	14
gctaga	<pre>cgggg gcctgatgct <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 aggga gtgt <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939 <211 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939 tttt tttttttt</pre>	14

Directions of the

	<220>	
	<pre><221> misc_difference <222> (2)(2)</pre>	
	<223> m is a or c	
	<221> misc_difference	
	<222> (18)(18) <223> m is a or c	
	\223\in \text{ if \text{ is a \text{ of \text{ c}}}	
	<223> Synthetic Sequence	
	<400> 940	
amaat	caacg ttgagggmgg g	21
3 33		
	<210> 941	
	<211> 21 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	(223) Synthetic Sequence	
	<400> 941	
gggga	gttcg ttgagggggg g	21
	<210> 942	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	4400 040	
tcato	<400> 942 egttte ecceccece	20
20900		
	<210> 943	
	<211> 25 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 943	
ttggg	ggggtt ttttttttt ttttt	25
	<210> 944	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 044	
tttaa	<400> 944 aatttt aaaatttaaa ata	23
22240		
	<210> 945	
	<211> 24 <212> DNA	

индрами ч

<	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 945 tttt tggttttttt ttgg	24
<	<210> 946 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 946 tttt ccccttttcc cctc	24
•	<210> 947 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <221> misc_difference <222> (21)(21) <223> s is g or c	
	<223> Synthetic Sequence	
	<400> 947 atcg atgagggggg s	21
	<210> 948 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccato	<400> 948 gacgt tcctgacgtt	20
	<210> 949 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccato	<400> 949 gacgt tcctgacgtt	20
	<210> 950 <211> 20 <212> DNA <213> Artificial Sequence	

rin tilmatik

<220> <223> Synthetic Sequence	
<400> 950 tccatgacgt tcctgacgtt	20
<210> 951 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 951 tccatgacgt tcctgacgtt	20
<210> 952 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 952 tccatgacgt tcctgacgtt	20
<210> 953 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 953 tccatgacgt tcctgacgtt	20
<210> 954 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 954 tccatgacgt tcctgacgtt	20
<210> 955 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 955 tccatgacgt tcctgacgtt	20

пилияни эт

	<210> 956	
<	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
•	<223> Synthetic Sequence	
	<400> 956	
	acgt tcctgacgtt	20
tocaty.	acge teetgacget	
	<210> 957	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	400. 057	
	<400> 957	20
tccatg	acgt tcctgacgtt	20
	<210> 958	
	<211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	VELOV THE CITIONS OF PROPERTY	
	<220>	
	<223> Synthetic Sequence	
	-	
	<400> 958	
tccatg	gacgt teetgaegtt	20
	<210> 959	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	(223) bynonot20 boquent	
	<400> 959	
ggggga	acgat cgtcggggg	19
	<210> 960	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<000	
	<220>	
	<223> Synthetic Sequence	
	<400> 960	
aaaaa.	tcgta cgacgggggg	20
לפפפפ		
	<210> 961	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	

чендени ч ч

<	223> Synthetic Sequence	
<	400> 961	
tttttt	ttt ttttttttt tttt	24
<	210> 962	
<	211> 24	
<	212> DNA	
<	213> Artificial Sequence	
<	220>	
<	223> Synthetic Sequence	
<	:400> 962	
aaaaaaa	aaaa aaaaaaaaa aaaa	24
<	2210> 963	
<	2211> 24	
	C212> DNA	
<	<pre><213> Artificial Sequence</pre>	
	<220>	
<	<pre><223> Synthetic Sequence</pre>	
<	<400> 963	
cccccc	cece ececeacee ecec	24
<	<210> 964	
<	<211> 24	
<	<212> DNA	
<	<213> Artificial Sequence	
•	<220>	
•	<223> Synthetic Sequence	
	<400> 964	
	tttt gtcgttttgt cgtt	24
	<210> 965	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 965	
tcgtcg	tttt gtcgttttgt cgtt	24
	<210> 966	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 966	
	<400> 966 tttt gtcgttttgt cgtt	24
	<210> 967	

. .

	1> 24	
	2> DNA 3> Artificial Sequence	
<21	3> Artificial Sequence	
<22	0>	
<22	3> Synthetic Sequence	
<10	0> 967	
	t gtcgttttgt cgtt	24
	0> 968	
	1> 20 2> DNA	
	.3> Artificial Sequence	
	•	
<22		
<22	23> Synthetic Sequence	
<40	00> 968	
ggggtcaac	eg ttgagggggg	20
-01	10> 000	
	LO> 969 L1> 20	
	L2> DNA	
<21	13> Artificial Sequence	
-0.0		
<22	20> 23> Synthetic Sequence	
\22	25 Bynchecto bedaenee	
<40	00> 969	
ggggtcaad	eg ttgagggggg	20
<2	10> 970	
	11> 20	
	12> DNA	
<21	13> Artificial Sequence	
/21	20>	
	23> Synthetic Sequence	
	-	
	00> 970	20
ggggtcaa	gc ttgaggggg	20
<2	10> 971	
<2	11> 20	
	12> DNA	
<2	13> Artificial Sequence	
<2.	20>	
	23> Synthetic Sequence	
	0.0	
	00> 971	20
tyctyctt	cc cccccccc	_ 0
	10> 972	
	11> 20	
	12> DNA 13> Artificial Sequence	
<2	12\ VICITICIAT Pedaeuce	
	20>	
<2	23> Synthetic Sequence	

<400> 972 ggggacgtcg acgtggggg	20
<210> 973 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 973 ggggtcgtcg acgaggggg	20
<210> 974 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 974 ggggtcgacg tacgtcgagg gggg	24
<210> 975 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 975 ggggaccggt accggtgggg gg	22
<210> 976 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 976 gggtcgacgt cgaggggg	19
<210> 977 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 977 ggggtcgacg tcgagggg	19
<210> 978 <211> 22	

<pre><212> NNA</pre>			105	
<pre></pre>	<212	> DNA		
<pre> <220> <223> Synthetic Sequence 4400> 978 ggggaacgtt acgttgggg gg</pre>				
<pre></pre>	1210	, interpretar pedagues		
<pre></pre>				
<pre></pre>				
Seggaacgtt aacgttgggg gg	<223	> Synthetic Sequence		
Seggaacgtt aacgttgggg gg				
Seggaacgtt aacgttgggg gg	<400	> 978		
<pre></pre>			2	2
<pre></pre>	ggggaacgtt	aacgiigggg gg	2	_
<pre></pre>				
<pre></pre>	<210	> 979		
<pre><213> Artificial Sequence</pre>	<211	> 20		
<pre><213> Artificial Sequence</pre>	<212	> DNA		
<pre></pre>				
<pre><223> Synthetic Sequence <400> 979 ggggtcaccg gtgagggggg <210> 980 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 980 ggggtcgttc gaacgagggg gg <210> 981 <211> 22 <212> DNA <213> Artificial Sequence <400> 980 ggggtcgttc gaacgagggg gg <210> 981 <211> 22 <212> DNA <213> Artificial Sequence <220> <220> <223> Synthetic Sequence <220> <221> DNA <211> Artificial Sequence <220> <221> DNA <213> Artificial Sequence <220> <221> DNA <211> DNA <211> DNA <212> DNA <213> Artificial Sequence <220> <221> Equipment Sequence <210> 982 <211</pre>	\213	> Artificial bequence		
<pre><223> Synthetic Sequence <400> 979 ggggtcaccg gtgagggggg <210> 980 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 980 ggggtcgttc gaacgagggg gg <210> 981 <211> 22 <212> DNA <213> Artificial Sequence <400> 980 ggggtcgttc gaacgagggg gg <210> 981 <211> 22 <212> DNA <213> Artificial Sequence <220> <220> <223> Synthetic Sequence <220> <221> DNA <211> Artificial Sequence <220> <221> DNA <213> Artificial Sequence <220> <221> DNA <211> DNA <211> DNA <212> DNA <213> Artificial Sequence <220> <221> Equipment Sequence <210> 982 <211</pre>				
<pre><400> 979 ggggtcaccg gtgaggggg</pre>				
210 980	<223	> Synthetic Sequence		
210 980				
210 980	<400	> 979		
<pre></pre>			2	, O
<pre></pre>	ggggtcaccg	gcgaggggg	2	, 0
<pre></pre>				
<pre> <212> DNA</pre>	<210	> 980		
<pre></pre>	<211	> 22		
<pre></pre>	<212	> DNA		
<pre></pre>				
<pre></pre>	\Z13	> Artificial Sequence		
<pre></pre>				
<pre></pre>	<220	>		
<pre></pre>	<223	> Synthetic Sequence		
Seggetegttc gaacgaggg gg				
Seggetegttc gaacgaggg gg	<100	> 980		
<pre></pre>				20
<pre></pre>	ggggtegtte	gaacgaggg gg	2	. ∠
<pre></pre>				
<pre> <212> DNA</pre>	<210	> 981		
<pre> <212> DNA</pre>	<211	> 22		
<pre> <213> Artificial Sequence <220></pre>				
<pre></pre>				
<pre><223> Synthetic Sequence <400> 981 ggggacgttc gaacgtgggg gg <210> 982</pre>	<213	> Altilicial Sequence		
<pre><223> Synthetic Sequence <400> 981 ggggacgttc gaacgtgggg gg <210> 982</pre>				
<pre><400> 981 ggggacgttc gaacgtgggg gg</pre>	<220	>		
<pre><400> 981 ggggacgttc gaacgtgggg gg</pre>	<223	> Synthetic Sequence		
<pre>ggggacgttc gaacgtgggg gg</pre>		1		
<pre>ggggacgttc gaacgtgggg gg</pre>	<10C	N 001		
<pre></pre>				2.0
<pre> <211> 10</pre>	ggggacgttc	gaacgtgggg gg		<u>.</u> ∠
<pre> <211> 10</pre>				
<pre> <211> 10</pre>	<210	> 982		
<pre> <212> DNA</pre>				
<pre><213> Artificial Sequence <220></pre>				
<pre><220> <223> Synthetic Sequence <400> 982 tcaactttga <210> 983 <211> 10 <212> DNA <213> Artificial Sequence <220></pre>				
<pre><223> Synthetic Sequence <400> 982 tcaactttga <210> 983</pre>	<213	> Artificial Sequence		
<pre><223> Synthetic Sequence <400> 982 tcaactttga <210> 983</pre>				
<pre><400> 982 tcaactttga <210> 983</pre>				
<pre><400> 982 tcaactttga <210> 983</pre>	<223	> Synthetic Sequence		
<pre>tcaactttga <210> 983 <211> 10 <212> DNA <213> Artificial Sequence <220></pre>				
<pre>tcaactttga <210> 983 <211> 10 <212> DNA <213> Artificial Sequence <220></pre>	~10C	15 982		
<210> 983 <211> 10 <212> DNA <213> Artificial Sequence <220>			1	10
<211> 10 <212> DNA <213> Artificial Sequence <220>	tcaactttga	l		Lυ
<211> 10 <212> DNA <213> Artificial Sequence <220>				
<212> DNA <213> Artificial Sequence <220>	<210)> 983		
<212> DNA <213> Artificial Sequence <220>	<211	.> 10		
<pre><213> Artificial Sequence <220></pre>				
<220>				
	<213	>> WIGHTECTAL Seductice		
	<220)>		
<223> Synthetic Sequence	<223	3> Synthetic Sequence		

η.

<400> 983 tcaagcttga	10
<210> 984 <211> 12 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 984 tcacgatcgt ga	12
<210> 985 <211> 12 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 985 tcagcatgct ga	12
<210> 986 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 986 gggggagcat gctgggggg	20
<210> 987 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 987 ggggggggg ggggggggg	20
<210> 988 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 988 gggggacgat atcgtcgggg gg	22
<210> 989 <211> 22 <212> DNA	

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 989 gggggacgac gtcgtcgggg gg	22
<210> 990 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 990 gggggacgag ctcgtcgggg gg	22
<210> 991 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 991 gggggacgta cgtcgggggg	20
<210> 992 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 992 tcaacgtt	8
<210> 993 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 993 tccataccgg tcctgatgct	20
<210> 994 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 994	

11.7

tccataccgg tcctaccggt	20
<210> 995	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
(222)	
<220> <223> Synthetic Sequence	
(223) Bynchetic Bequence	
<400> 995	
gggggacgat cgttgggggg	20
<210> 996	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
4220	
<220>	
<223> Synthetic Sequence	
<400> 996	
ggggaacgat cgtcgggggg	20
<210> 997	
<211> 21 <212> DNA	
<213> Artificial Sequence	
vzioz mitiriotar bequence	
<220>	
<223> Synthetic Sequence	
<400> 997	
ggggggacga tcgtcggggg g	21
55555555-5555555	
<210> 998	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 998	0.1
gggggacgat cgtcgggggg g	21
<210> 999	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Synthetic Sequence	
Saus Dynamotic Doquemee	
<400> 999	
aaagacgtta aa	12
<210> 1000	
<211> 12	
<211> 12 <212> DNA	
<213> Artificial Sequence	

<220> <223>	Synthetic Sequence	
	1000	
aaagagctta		12
<211> <212>	DNA	
<213>	Artificial Sequence	
	modified_base (6)(6)	
<223>	Synthetic Sequence	
<400> aaagangtta	· 1001 aa	12
<211> <212>		
<220> <223>	Synthetic Sequence	
<400> aaattcggaa	> 1002 aa	12
<211> <212>		
<220> <223>	> Synthetic Sequence	
	> 1003 gatgaggggg g	21
<211> <212>	> 1004 > 21 > DNA > Artificial Sequence	
<2203 <2233	> > Synthetic Sequence	
	> 1004 gttgaggggg g	21
<2113 <2123	> 1005 > 20 > DNA > Artificial Sequence	
<220		

F880 314

170	
<223> Synthetic Sequence	
<400> 1005	
atgtagetta ataacaaage	20
<210> 1006	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1006	
ggatccettg agttacttct	20
<210> 1007	
<211> 20	
<212> DNA <213> Artificial Sequence	
12137 Artificial Bequence	
<220>	
<223> Synthetic Sequence	
<400> 1007	
ccattccact tctgattacc	20
<210> 1008	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1008	
tatgtattat catgtagata	20
<210> 1009 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1009	
agectacgta ttcaccctcc	20
2210× 1010	
<210> 1010 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<2205	
<220> <223> Synthetic Sequence	
-220 Synchooto bequence	
<400> 1010	
ttcctgcaac tactattgta	20
<210> 1011	

			- 171 -	
	<211> <212> <213>			
	<220> <223>	Synthetic Sequence		
	<400> ggcc c	1011 ctacaccagt		20
•	<210><211><211><212><213>	20		
	<220> <223>	Synthetic Sequence		
	<400> cggt c	1012 ctatggaggt		20
•	<210><211><211><212><213>	20		
	<220> <223>	Synthetic Sequence		
	<400> agat c	1013 caagtctagg		20
•	<210><211><211><212><213>	20		
	<220> <223>	Synthetic Sequence		
	<400> cttg a	1014 atctggttag		20
	<210><211><211><212><213>	20		
	<220> <223>	Synthetic Sequence		
	<400> cctc ç	1015 gtccgacatg		20
	<210><211><211><212><213>	20		
	<220>	Synthetic Sequence		

catg	<400> 1016 tcggac gaggcttata	20
	<210> 1017 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tggt	<400> 1017 ggtggg gagtaagctc	20
	<210> 1018 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gagc	<400> 1018 tactcc cccaccacca	20
	<210> 1019 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gcct	<400> 1019 tegate ttegttggga	20
	<210> 1020 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tgga	<400> 1020 cttctc tttgccgtct	20
	<210> 1021 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
atgc	<400> 1021 tgtagc ccagcgataa	20
	<210> 1022 <211> 20	

U U

	<pre><212> DNA <213> Artificial Sequence</pre>	
	<pre><220> <223> Synthetic Sequence</pre>	
	<pre><400> 1022 ccag cggaaagtga 2</pre>	20
	<210> 1023	
	(211) 20	
	212> DNA	
<	(213> Artificial Sequence	
<	<220>	
	<pre>\$223> Synthetic Sequence</pre>	
<	<400> 1023	
tccatga	acgt teetgaegtt	20
_	<210> 1024	
	\$210 1024 \$211> 24	
	<pre>2212> DNA</pre>	
<	(213> Artificial Sequence	
<	<220>	
	223> Synthetic Sequence	
	<400> 1024	
		24
<	<210> 1025	
	<211> 20	
	(212> DNA	
_	<pre><213> Artificial Sequence</pre>	
	<220>	
<	<pre><223> Synthetic Sequence</pre>	
<	<400> 1025	
accacag	gacc agcaggcaga 2	20
-	<210> 1026	
	(211> 20	
	C212> DNA	
<	2213> Artificial Sequence	
<	<220>	
	<pre>5223> Synthetic Sequence</pre>	
,	/400\ 100C	
	<pre><400> 1026 gaac tgcgcgaaga</pre>	20
gagagag	, and tyty tyte	<u>.</u> U
	<210> 1027	
	(211> 20	
	C212> DNA	
<	<pre><213> Artificial Sequence</pre>	
	<220>	
<	<pre><223> Synthetic Sequence</pre>	

<400> 1027 teggtaceet tgeageggtt	20
<210> 1028 <211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1028	
ctggagccct agccaaggat	20
<210> 1029	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1029 gcgactccat caccagcgat	20
<210> 1030 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1030	0.1
cctgaagtaa gaaccagatg t	21
<210> 1031 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1031 ctgtgttatc tgacatacac c	21
<210> 1032	
<210 1032 <211 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1032	0.1
aattagcctt aggtgattgg g	21
<210> 1033	
<211> 21 <212> DNA	
the state of the s	

	- 195 -	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 1033 ggtt cttacttcag g	21
	<210> 1034 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ataagt	<400> 1034 ccata ttttgggaac tac	23
	<210> 1035 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
cccaat	<400> 1035 tcacc taaggctaat t	21
	<210> 1036 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ggggt	<400> 1036 cgtcg acgaggggg	20
	<210> 1037 <211> 22 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ggggt	<400> 1037 cgttc gaacgagggg gg	22
	<210> 1038 <211> 22 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 1038	

ggggacgttc gaacgtgggg gg	22
<210> 1039 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (9)(9) <223> n is 5-methylcytosine.	
<223> Synthetic Sequence	
<400> 1039 tcctggcgng gaagt	15
<210> 1040 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1040 ggggaacgac gtcgttgggg gg	22
<210> 1041 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1041 ggggaacgta cgtcgggggg	20
<210> 1042 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1042 ggggaacgta cgtacgttgg gggg	24
<210> 1043 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1043 ggggtcaccg gtgaggggg	20

<21 <21	10> 1044 11> 24 12> DNA 13> Artificial Sequence	
<22	20> 23> Synthetic Sequence	
<4	00> 1044	24
ggggtega	cy tacytogagy gggg	
<2 <2	10> 1045 11> 22 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
	00> 1045 gt accggtgggg gg	22
<2 <2	210> 1046 211> 19 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	100> 1046 cgt cgaggggg	19
<2 <2	210> 1047 211> 18 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	100> 1047 acg tcgagggg	18
<2 <2	210> 1048 211> 22 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 1048 gtt aacgttgggg gg	22
<2 <2	210> 1049 211> 19 212> DNA 213> Artificial Sequence	
	220>	

<223> Synthetic Sequence	
<400> 1049	
ggggacgtcg acgtggggg	19
<210> 1050 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1050 gcactetteg aagetacage eggeageete tgat	34
<210> 1051 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1051 cggctcttcc atgaggtctt tgctaatctt gg	32
<210> 1052 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1052	
cggctcttcc atgaaagtct ttggacgatg tgagc	35
<210> 1053 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1053 tcctgcaggt taagt	15
<210> 1054 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1054 gggggtcgtt cgttgggggg	20
<210> 1055	

<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		20
gggggatgat	tgttgggggg	20
<210>	1056	
<211>		
<212>		
	Artificial Sequence	
<220>		
	modified_base	
	(7)(7)	
<223>	m5c	
∠22 1 ∖	modified base	
<223>	(11)(11)	
<223>	moc	
<223>	Synthetic Sequence	
	1056	
gggggangat	ngttgggggg	20
<210>	1057	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<100>	. 1057	
gggggagcta		20
ggggageca	2000999999	20
<210>	→ 1058	
<211>	→ 20	
<212>	DNA	
<213>	Artificial Sequence	
1000		
<220>		
<2232	Synthetic Sequence	
<400>	→ 1058	
ggttcttttg	gtccttgtct	20
	1050	
	> 1059	
<211>		
<212>		
<213>	> Artificial Sequence	
<220>	•	
	> Synthetic Sequence	
	> 1059	~ ~
ggttcttttg	gtcctcgtct	20

*1.551

	<210> 1060	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1060	
ggttc	ttttg gtccttatct	20
	<210> 1061	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1061	
gatto	ettggt ttccttgtct	20
J J		
	<210> 1062	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1062	
tggto	ettttg gtocttgtot	20
	<210> 1063	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1063	0.0
ggtt	caaatg gtccttgtct	20
	<210> 1064	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1064	20
gggt	cttttg ggccttgtct	20
	040. 4065	
	<210> 1065	
	<211> 24	
	<212> DNA <213> Artificial Sequence	

<22 <22	0> 3> Synthetic Sequence	
	0> 1065	
	t ctctcaggtt tttt	24
	0> 1066	
	1> 20 2> DNA	
	3> Artificial Sequence	
<22		
<22	3> Synthetic Sequence	
	0> 1066 t ctctcaaatt	20
	.0> 1067	
	1> 24	
	2> DNA	
<21	3> Artificial Sequence	
<22	20>	
	3> Synthetic Sequence	
< 40	00> 1067	
tactacttt	t atacttttat actt	24
	10> 1068	
	11> 24	
	12> DNA	
<21	13> Artificial Sequence	
<22	20>	
<22	23> Synthetic Sequence	
<40	00> 1068	
tgtgtgtgt	tg tgtgtgtgtg tgtg	24
<23	10> 1069	
<23	11> 25	
	12> DNA	
<21	13> Artificial Sequence	
	20>	
<22	23> Synthetic Sequence	
	00> 1069	0.5
ttgttgtt	gt tgtttgttgt tgttg	25
	10> 1070	
	11> 27 12> DNA	
	12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
<2.	20/ Bynchette bedrence	
	00> 1070	2
ggctccgg	gg agggaatttt tgtctat	2

min qr

<211 <212	D> 1071 l> 19 2> DNA	
<213	3> Artificial Sequence	
<220 <223	0> 3> Synthetic Sequence	
	0> 1071 g teggggggg	19
<211 <212	0> 1072 1> 20 2> DNA 3> Artificial Sequence	
<220 <223	D> 3> Synthetic Sequence	
	0> 1072 a cgagggggg	20
<211 <212	0> 1073 1> 19 2> DNA 3> Artificial Sequence	
<220 <223	0> 3> Synthetic Sequence	
	0> 1073 c gagggggg	19
<211 <212	0> 1074 1> 20 2> DNA 3> Artificial Sequence	
<220 <223	0> 3> Synthetic Sequence	
, , ,	0> 1074 t cgtgggggg	20
<212 <212	0> 1075 1> 20 2> DNA 3> Artificial Sequence	
<220 <220	0> 3> Synthetic Sequence	
	0> 1075 c gtcgggggg	20
<213 <213	0> 1076 1> 20 2> DNA 3> Artificial Sequence	
<22	0>	

<223> Synthetic Sequence	
<400> 1076	20
ggggacgtcg tcgtgggggg	20
<210> 1077 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1077 ggggtcgacg tcgacgtcga ggggggg	27
<210> 1078	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1078 ggggaaccgc ggttgggggg g	21
<210> 1079	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1079	
ggggacgacg tcgtgggggg g	21
<210> 1080	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1080 tegtegtegt egtegtggg ggg	23
<210> 1081	
<211> 15	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1081 tcctgccggg gaagt	15
<210> 1082	

(मृक्त रामान्य)। १

	201	
	<211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tactgo	<400> 1082 caggg gaagt	15
	<210> 1083 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctga	<400> 1083 aaggg gaagt	15
	<210> 1084 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctg	<400> 1084 gcggg caagt	15
	<210> 1085 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctg	<400> 1085 gcggg taagt	15
	<210> 1086 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctg	<400> 1086 geeggg aaagt	15
	<210> 1087 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	

DE COMPANIA OF THE PROPERTY OF

<400> 1087 tccgggcggg gaagt	15
<210> 1088 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1088 tcggggcggg gaagt	15
<210> 1089 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1089 tcccggcggg gaagt	15
<210> 1090 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1090 gggggacgtt ggggg	15
<210> 1091 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1091 ggggttttt ttttgggggg	20
<210> 1092 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1092 ggggccccc ccccgggggg	20
<210> 1093 <211> 21	

<212> DNA

<213> Artificial Sequence

<220>

1. ...

<223> Synthetic Sequence

<400> 1093 ggggttgttg ttgttggggg g