Análise de Algoritmos – Tópico 4 (Exemplos Adicionais)

Prof. Dr. Juliano Henrique Foleis

Exemplos Adicionais de Análise de Trechos Iterativos

Trecho 6

1: soma = 02: $soma = soma + F_1(n)$ 3: $soma = soma + F_2(n)$

Considerando que $F_1(n)$ tem custo $\Theta(n^2)$ e $F_2(n)$ tem custo $\Theta(n \lg(n))$, qual o custo deste trecho?

Análise

As três linhas são executadas em sequência. Logo, todas contribuem para o custo total do trecho. Assim, o custo deste trecho é dado por

$$\underbrace{\Theta(1)}_{\text{linha 1}} + \underbrace{\Theta(n^2)}_{\text{linha 2}} + \underbrace{\Theta(n \lg(n))}_{\text{linha 3}} = \Theta(n^2).$$

Trecho 7

1: $\mathbf{for}\ j = 1; j \le n; j + + \mathbf{do}$ 2: $F_1(n)$ 3: $F_2(n)$ 4: $\mathbf{end}\ \mathbf{for}$

Considerando que $F_1(n)$ tem custo $\Theta(n)$ e $F_2(n)$ tem custo $\Theta(\lg(n))$, qual o custo deste trecho?

Análise

Note que ambas $F_1(n)$ e $F_2(n)$ são executadas a cada iteração. Logo, o custo do trecho das linhas 2–3 é

$$\underbrace{\Theta(n)}_{\text{linha 2}} + \underbrace{\Theta(\lg(n))}_{\text{linha 3}} = \Theta(n).$$

Como o trecho das linhas 2 e 3 é executado n vezes pelo laço FOR, o custo do trecho é

$$\underbrace{n}_{\text{FOR}} \cdot \underbrace{\Theta(n)}_{\text{linhas } 2-3} = \Theta(n^2).$$

Trecho 8

```
1: a = 0

2: \mathbf{for} \ i = 0; i < n; i + + \mathbf{do}

3: F(n)

4: \mathbf{for} \ j = 0; j < n; j + + \mathbf{do}

5: a = a + 1

6: \mathbf{end} \ \mathbf{for}

7: \mathbf{end} \ \mathbf{for}
```

Considerando que F(n) tem custo $\Theta(n^2)$, qual o custo deste trecho?

<u>Análise</u>

Por hipótese, o custo de F(n) é $\Theta(n^2)$. A variável de controle do FOR das linhas 4–6 é independente do valor atual da variável de controle do FOR das linhas 2–7. Portanto, podemos analisá-los separadamente. A linha 5 tem custo unitário $\Theta(1)$ e executa n vezes. Portanto, o custo unitário do laço interno é $\Theta(1) \cdot n = \Theta(n)$. O custo de cada iteração do laço externo (trecho das linhas 3–6) é

$$\underbrace{\Theta(n^2)}_{\text{linha 3}} + \underbrace{\Theta(n)}_{\text{linhas 4-6}} = \Theta(n^2).$$

Como o laço externo repete n vezes o trecho das linhas 3–6, o custo total do trecho é

$$\underbrace{n}_{\text{FOR Ext.}} \cdot \underbrace{\Theta(n^2)}_{\text{linhas } 3-6} = \Theta(n^3).$$

Trecho 9

```
1: a = 0

2: for i = 1; i \le n; i = i * 2 do

3: F(n)

4: for j = 0; j < i; j + + do

5: a = a + 1

6: end for

7: end for
```

Considerando que F(n) tem custo $\Theta(n)$, qual o custo deste trecho?

Análise

Os valores que a variável de controle do laço FOR das linhas 4–6 assume depende diretamente do valor atual da variável de controle do FOR das linhas 2–7. Portanto, é necessário analisá-los conjuntamente. Além disso, temos 2 linhas críticas: a linha 3, que, por hipótese, tem custo unitário $\Theta(n)$ e a linha 5, que tem custo unitário $\Theta(1)$. A Tabela 1 mostra quantas vezes a linha 5 é executada para cada valor de i.

i	Valores de j	Linha 5 executa
1	1	1 vez
2	1 2	2 vezes
4	1 4	4 vezes
8	1 8	8 vezes
	•••	
n	1 n	n vezes

Tabela 1: Interdependência entre i e j no Trecho 9

Notamos também que a variável i do laço externo assume os valores $1, 2, 4, 8, \ldots, n = 2^0, 2^1, 2^2, 2^3, \ldots, 2^k$, tal que $k \in \mathbb{Z}$. Assumindo que n é potência de $2, 2^k = n \Leftrightarrow k = \lg(n)$. Portanto, o laço externo executa $\lg(n)$ vezes. Somando todas as execuções da linha 5, temos que ela executa

$$\begin{split} \sum_{i=0}^{\lg(n)} 2^i &= 2^{\lg(n)+1} - 1 \\ &= 2 \cdot 2^{\lg(n)} - 1 \\ &= 2 \cdot n^{\lg(2)} - 1 \\ &= 2 \cdot n^1 - 1 \\ &= 2 \cdot n - 1 \\ &= \Theta(n) \text{ vezes.} \end{split}$$

Como o custo unitário da linha 5 é $\Theta(1)$ e ela executa $\Theta(n)$ vezes, seu custo total é $\Theta(n)$. Como a linha 3 executa $\lg(n)$ vezes e seu custo unitário é $\Theta(n)$, seu custo total é $\Theta(n \lg(n))$. Assim, o custo total do trecho é

$$\underbrace{\Theta(n\lg(n))}_{\text{linha }3} + \underbrace{\Theta(n)}_{\text{linhas }4-6} = \Theta(n\lg(n)).$$