Teoria de Sistemas Lineares

José C. M. Bermudez

Departamento de Engenharia Elétrica Universidade Federal de Santa Catarina

June 16, 2013

Sinais e Sistemas Discretos

Exemplo

$$y(n) = 0.5 x(n) - 0.8 y(n-1),$$
 $y(-1) = 0$

Sinais e Sistemas Discretos

Exemplo

$$y(n) = 0.5 x(n) - 0.8 y(n-1),$$
 $y(-1) = 0$

n	x(n)	y(n)
0	0.5000	1.0000
1.0000	0.5000	1.3000
2.0000	0.5000	1.5400
3.0000	0.5000	1.7320
4.0000	0.5000	1.8856
5.0000	0.5000	2.0085
6.0000	0.5000	2.1068
7.0000	0.5000	2.1854
8.0000	0.5000	2.2483

Sinais Básicos

1) Impulso unitário

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Sinais Básicos

1) Impulso unitário

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

2) Degrau unitário

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Representação de Sinais como Soma de Impulsos

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

Resposta de um sistema LIT

$$\begin{array}{lll} \delta(n) \to h(n) & \leftarrow \text{Resposta ao impulso} \\ \alpha \, \delta(n-k) \to \alpha \, h(n-k) & \leftarrow \text{linearidade e invariância no tempo} \end{array}$$

$$\Rightarrow \boxed{y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)} \qquad \begin{array}{c} \leftarrow \text{Soma de convolução} \\ y(n) = x(n)*h(n) \end{array}$$

Obs: Fazendo uma simples troca de variável, mostra-se que

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) \rightarrow y(n) = h(n) * x(n)$$

Sinal Exponencial: Auto-função de Sistema LIT Discreto

É mais conveniente usar a forma polar: $z=r\,e^{j\theta}$

Sinal Exponencial: Auto-função de Sistema LIT Discreto

É mais conveniente usar a forma polar: $z=r\,e^{j\theta}$ Pela soma de convolução

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(k)z^{n-k} = z^n \underbrace{\left[\sum_{k=-\infty}^{\infty} h(k)z^{-k}\right]}_{H(z)}$$

Sinal Exponencial: Auto-função de Sistema LIT Discreto

$$x(n) = z^n$$

$$z = \sigma + j\omega \in \mathbb{C}$$

$$y(n)$$

$$b(n)$$

É mais conveniente usar a forma polar: $z=r\,e^{j\theta}$ Pela soma de convolução

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(k)z^{n-k} = z^n \underbrace{\left[\sum_{k=-\infty}^{\infty} h(k)z^{-k}\right]}_{H(z)}$$

Portanto

$$x(n) = z^n \xrightarrow{h(n)} y(n) = H(z)z^n \quad \text{com} \quad H(z) = \sum_{k=-\infty}^{\infty} h(k)z^{-k}$$

 z^n é auto função de qualquer sistema discreto LIT $_{\it distance}$

A Transformada Z

Definição

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

Obs: Quando queremos explicitar que x(n)=x(nT) é o valor numérico de x(t) para t=nT , a expressão de X(z) fica

$$X(z) = \sum_{n=-\infty}^{\infty} x(nT)z^{-n} \leftarrow \text{o expoente não muda para } nT$$

Pela definição, vemos que

$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$$

É a transformada z da resposta ao impulso do sistema LIT , z

Exemplo: $x(n) = \delta(n)$

$$X(z) = \sum_{n=0}^{\infty} \delta(n) z^{-n} = 1$$

Exemplo: $x(n) = \delta(n)$

$$X(z) = \sum_{n = -\infty}^{\infty} \delta(n) z^{-n} = 1$$

Exemplo: x(n) = u(n)

$$X(z) = \sum_{n = -\infty}^{\infty} u(n)z^{-n} = \sum_{n = 0}^{\infty} z^{-n} = \sum_{n = 0}^{\infty} (z^{-1})^n$$

Este somatório corresponde à soma dos termos de uma progressão geométrica (PG) de razão $z^{-1}\,$

OBS: Soma de N termos de uma PG de razão q:

$$S_N = a_1 + a_2 + \ldots + a_N, \qquad a_k = q \, a_{k-1}$$

$$S_N = \frac{a_1 \left(1 - q^N \right)}{1 - q}$$

OBS: Soma de N termos de uma PG de razão q:

$$S_N = a_1 + a_2 + \ldots + a_N, \qquad a_k = q \, a_{k-1}$$

$$S_N = \frac{a_1 \left(1 - q^N\right)}{1 - q}$$

Logo, como
$$X(z)=\sum_{n=0}^\infty (z^{-1})^n$$
 \Leftrightarrow $a_1=1,\ q=z^{-1}$ e
$$X(z)=\lim_{N\to\infty}\frac{1-z^{-N}}{1-z^{-1}}$$

O limite só existe se

$$\lim_{N\to\infty}(z^{-1})^N<\infty$$

⇒ Devemos ter

$$|z^{-1}| < 1$$
 ou $|z| > 1$

Escrevendo z na forma polar

$$z = r e^{j\theta}$$
 \Rightarrow $|z| > 1 \Rightarrow r > 1$ (for ado círculo de raio unitário)

E a transformada z de x(n) = u(n) é

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \quad |z| > 1$$

Escrevendo z na forma polar

$$z = r e^{j\theta}$$
 \Rightarrow $|z| > 1 \Rightarrow r > 1$ (for ado círculo de raio unitário)

E a transformada z de x(n) = u(n) é

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \quad |z| > 1$$

Escrevendo z na forma polar

$$|z| = r e^{j\theta}$$
 \Rightarrow $|z| > 1 \Rightarrow r > 1$ (for ado círculo de raio unitário)

E a transformada z de x(n) = u(n) é

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \quad |z| > 1$$

As R.C. de transformadas z polinomiais são determinadas por circunferências no plano z. RC's são internas ou externas a essas circunferências

Regime Permanente Senoidal

Sinais contínuos

$$x(t) = e^{st} \Big|_{s=j\omega} = e^{j\omega t}$$

Regime Permanente Senoidal

Sinais contínuos

$$x(t) = e^{st} \Big|_{s=j\omega} = e^{j\omega t}$$

Sinais discretos

$$x(n) = z^n, \qquad z = r e^{j\omega}$$

$$\Rightarrow x(n) = r^n e^{j\omega n}$$

para
$$|z| = r = 1$$

$$x(n) = e^{j\omega n} = \cos(\omega n) + j \operatorname{sen}(\omega n) \leftarrow \operatorname{Sinal senoidal}$$

Regime Permanente Senoidal

Sinais contínuos

$$x(t) = e^{st} \Big|_{s=j\omega} = e^{j\omega t}$$

Sinais discretos

$$x(n) = z^n, \qquad z = r e^{j\omega}$$

$$\Rightarrow x(n) = r^n e^{j\omega n}$$

para
$$|z| = r = 1$$

$$x(n) = e^{j\omega n} = \cos(\omega n) + j \operatorname{sen}(\omega n) \leftarrow \operatorname{Sinal senoidal}$$

OBS:

- $ightharpoonup \omega n$ tem unidade de radianos porque n é adimensional
- Logo, ω tem unidade de rad
 ⇒ Frequência discreta é, de fato, um ângulo!
- ullet $x(n)=e^{j\omega n}$ é periódica em ω (período 2π)

E quanto à periodicidade em "n"?

Considere $\omega = \omega_0$ fixa

Para x(n) periódica com período N_0 , devemos ter

$$x(n+N_0)=x(n), \qquad \forall n$$

Assim, devemos ter

$$x(n+N_0) = e^{j\omega_0(n+N_0)} = e^{j\omega_0n} e^{j\omega_0N_0} = e^{j\omega_0n}$$

E quanto à periodicidade em "n"?

Considere $\omega = \omega_0$ fixa

Para x(n) periódica com período N_0 , devemos ter

$$x(n+N_0) = x(n), \quad \forall n$$

Assim, devemos ter

$$x(n+N_0) = e^{j\omega_0(n+N_0)} = e^{j\omega_0n} e^{j\omega_0N_0} = e^{j\omega_0n}$$

 \Rightarrow Condição para periodicidade: $e^{j\omega_0N_0}=1$ ou $\omega_0\,N_0=2\,k\,\pi$

$$\Rightarrow \quad \left| \frac{\omega_0}{2\pi} = \frac{k}{N_0} \right|$$

Como N_0 e $k \in \mathbb{Z}$, $\Leftrightarrow \frac{\omega_0}{2\pi}$ deve ser racional

 \Rightarrow Nem sempre $\cos(\omega_0 n)$ é periódico em n!!!

A Transformada de Fourier para Sinais Discretos

Caso contínuo: $x(t) \to X(s)$, $s \in R.C.$

Transf. de Fourier: $X(j\omega)=X(s)|_{s=j\omega}$, $\operatorname{Re}\{s\}=0\in\operatorname{R.C.}$

Regime permanente senoidal

A Transformada de Fourier para Sinais Discretos

Caso contínuo: $x(t) \to X(s)$, $s \in R.C.$

Transf. de Fourier: $X(j\omega)=X(s)|_{s=j\omega}$, $\operatorname{Re}\{s\}=0\in\operatorname{R.C.}$

Regime permanente senoidal

Caso discreto: $x(n) \to X(z)$, $z \in R.C.$

Reg. Perm. Senoidal: $z=e^{j\omega}$

 \Rightarrow Transf. de Fourier: $X(e^{j\omega})=X(z)|_{z=e^{j\omega}}$, $|z|=1\in {\rm R.C.}$

A Transformada de Fourier para Sinais Discretos

Caso contínuo: $x(t) \to X(s)$, $s \in R.C.$

Transf. de Fourier: $X(j\omega)=X(s)|_{s=j\omega}$, $\operatorname{Re}\{s\}=0\in\operatorname{R.C.}$

Regime permanente senoidal

Caso discreto: $x(n) \to X(z)$, $z \in R.C.$

Reg. Perm. Senoidal: $z=e^{j\omega}$

 \Rightarrow Transf. de Fourier: $X(e^{j\omega})=X(z)|_{z=e^{j\omega}}$, $|z|=1\in {\rm R.C.}$

$$\Rightarrow \boxed{X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)\,e^{-j\omega n}} \leftarrow \text{Transf. de Fourier de } x(n)$$

- $X(e^{j\omega})=$ transformada z calculada no "círculo unitário"
- lacktriangle $X(e^{j\omega})$ é função de $e^{j\omega}$ \Rightarrow Periódica com período 2π em ω

Exemplo: $x(n) = a^n u(n), \quad a \in \mathbb{R}$

$$X(z) = \sum_{n = -\infty}^{\infty} a^n u(n) z^{-n} = \sum_{n = 0}^{\infty} a^n z^{-n} = \sum_{n = 0}^{\infty} (a z^{-1})^n$$

 \Rightarrow Soma dos termos de uma PG de razão az^{-1}

$$X(z) = \lim_{N \to \infty} \frac{1 - (az^{-1})^N}{1 - az^{-1}}$$

$$\mathsf{R.C.} \Rightarrow |az^{-1}| = \frac{|a|}{|z|} < 1 \Rightarrow \boxed{|z| > |a|}$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

▶ Para $a = a_1$, tal que $|a_1| < 1$,

$$\Rightarrow |z| = 1 \in R.C. \Rightarrow X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

$$\Rightarrow X(e^{j\omega}) = \frac{1}{1 - a_1 e^{-j\omega}}$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

▶ Para $a = a_1$, tal que $|a_1| < 1$,

$$\Rightarrow |z| = 1 \in R.C. \Rightarrow X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

$$\Rightarrow X(e^{j\omega}) = \frac{1}{1 - a_1 e^{-j\omega}}$$

▶ Para $a = a_2$, tal que $|a_2| > 1$,

$$\Rightarrow |z| = 1 \notin R.C. \Rightarrow X(e^{j\omega}) \neq X(z)|_{z=e^{j\omega}}$$

$$x(n) = \left(\frac{1}{2}\right)^n u(n) \quad \Rightarrow \quad X(e^{j\omega}) = \frac{1}{1 - 0.5 e^{-j\omega}}$$

Em
$$\omega = 0$$
 a magnitude vale $1/(1 - a_1) = 2$.

 ω (rad)

Magnitude

0.6 0.4

 -2π

- $ightharpoonup a_1 > 0$: mais energia em baixas frequências
- lacktriangledown $a_1 < 0$: mais energia em altas frequências

 ω (rad)

A Transformada z Inversa

A expressão da Transformada z inversa corresponde a uma integral em um contorno fechado no plano complexo z

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

- Esta integral pode ser calculada usando o teorema dos resíduos (Cauchy)
 - $x(n) = \sum$ resíduos de $X(z)z^{n-1}$ nos polos finitos dentro de C OBS:
 - a) O contorno C deve estar na R.C. da transformada
 - b) C deve ser percorrido no sentido anti-horário para $n \geq 0$
 - c) C deve ser percorrido no sentido horário para n < 0

Para X(z) racional em z, a transformada inversa pode ser determinada usando expansão em frações parciais e uma tabela de transformadas z

$$X(z) = \sum_{k=1}^N \frac{\rho_k}{1 - \lambda_k z^{-1}}, \qquad \begin{cases} \lambda_k : & \text{polos de } X(z) \\ \rho_k : & \text{resíduos de } \lambda_k \end{cases}$$

Para sinais causais e polos simples

$$x(n) = \sum_{k=1}^{N} \rho_k \, \lambda_k^n \, u(n)$$

Exemplo: Seja x(n) causal com

$$X(z) = \frac{z(z+2)}{(z-0.2)(z+0.6)} = \frac{1+2z^{-1}}{(1-0.2z^{-1})(1+0.6z^{-1})} = \frac{N(z^{-1})}{D(z^{-1})}$$

Obs: Para expandirmos em frações parciais: ${}^{\circ}D(z^{-1}) > {}^{\circ}N(z^{-1})$

$$X(z) = \frac{A}{1 - 0.2z^{-1}} + \frac{B}{1 + 0.6z^{-1}}$$

$$A = X(z)(1 - 0.2z^{-1}) \bigg|_{z^{-1} = 5} = \frac{1 + 2z^{-1}}{1 + 0.6z^{-1}} \bigg|_{z^{-1} = 5} = 2.75$$

$$B = X(z)(1 + 0.6z^{-1}) \bigg|_{z^{-1} = -\frac{1}{0.6}} = \frac{1 + 2z^{-1}}{1 - 0.2z^{-1}} \bigg|_{z^{-1} = -\frac{5}{3}} = -1.75$$

$$X(z) = \frac{2.75}{1 - 0.2z^{-1}} - \frac{1.75}{1 + 0.6z^{-1}}$$

como
$$a^n u(n) \longleftrightarrow \frac{1}{1 - az^{-1}} \quad |z| > |a|$$

$$x(n) = 2.75 (0.2)^n u(n) - 1.75 (-0.6)^n u(n)$$
$$= \left[2.75 (0.2)^n - 1.75 (-0.6)^n \right] u(n)$$

Usando o teorema dos resíduos

$$X(z)z^{n-1} = \frac{z^n(z+2)}{(z-0.2)(z+0.6)} \qquad \leftarrow \text{função de } n$$

- ▶ Polos finitos de $X(z)z^{n-1}: z_1 = 0.2$ e $z_2 = -0.6$
- ▶ Como x(n) é causal (= 0 para n < 0), a R.C. é |z| > 0.6
- \Rightarrow Para $n \ge 0$, C deve envolver os 2 polos finitos z_1 e z_2

Usando o teorema dos resíduos

$$X(z)z^{n-1} = \frac{z^n(z+2)}{(z-0.2)(z+0.6)} \qquad \leftarrow \text{função de } n$$

- ▶ Polos finitos de $X(z)z^{n-1}$: $z_1 = 0.2$ e $z_2 = -0.6$
- ▶ Como x(n) é causal (= 0 para n < 0), a R.C. é |z| > 0.6

 \Rightarrow Para $n \ge 0$, C deve envolver os 2 polos finitos z_1 e z_2

Resíduo de $z_1 \rightarrow K_1$

$$K_1 = X(z)z^{n-1}(z - 0.2)\Big|_{z=0.2} = \frac{z^n(z+2)}{z+0.6}\Big|_{z=0.2}$$

$$K_1 = \frac{(0.2)^n (2.2)}{0.8} = 2.75 (0.2)^n , n \ge 0$$

Resíduo de $z_2 \to K_2$

$$K_2 = X(z)z^{n-1}(z+0.6) \bigg|_{z=-0.6} = \frac{z^n(z+2)}{z-0.2} \bigg|_{z=-0.6}$$

$$K_2 = \frac{(-0.6)^n(1.4)}{-0.8} = -1.75(-0.6)^n , \quad n \ge 0$$

Para n < 0 o contorno ${\cal C}$ não conterá qualquer polo

$$\Rightarrow x(n) = 0 \text{ para } n < 0$$

Somando os resíduos

$$x(n) = \left[2.75 (0.2)^n - 1.75 (-0.6)^n\right] u(n)$$

Exemplo:
$$x(n)$$
 causal e $X(z) = \frac{2z(18z - 5)}{12z^2 - 7z + 1}$

Localização dos pólos:
$$p_1=rac{1}{3}$$
 $p_2=rac{1}{4}$

Localização dos zeros:
$$z_1=0$$
 $z_2=\frac{5}{18}$

Re-escrevendo X(z)

$$X(z) = \frac{2 \times 18}{12} \frac{z(z - \frac{5}{18})}{z^2 - \frac{7}{12}z + \frac{1}{12}} = 3 \frac{z(z - \frac{5}{18})}{(z - \frac{1}{3})(z - \frac{1}{4})}$$

Expandindo $\frac{X(z)}{z}$ (para X(z) expresso em potências positivas de z)

$$\frac{X(z)}{z} = \frac{3(z - \frac{5}{18})}{(z - \frac{1}{3})(z - \frac{1}{4})} = \frac{2}{z - \frac{1}{3}} + \frac{1}{z - \frac{1}{4}}$$

$$\Rightarrow X(z) = \frac{2z}{z - \frac{1}{3}} + \frac{z}{z - \frac{1}{4}} = \frac{2}{1 - \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{4}z^{-1}}$$

$$\Rightarrow x(z) = \left[2\left(\frac{1}{3}\right)^n + \left(\frac{1}{4}\right)^n\right]u(z)$$

Tarefa:

Resolva o mesmo problema expressando X(z) como função de z^{-1}

Transformada de Fourier Inversa

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \tag{A}$$

- $lackbox X(e^{j\omega})$ é uma função contínua em ω
- $lacktriangledown X(e^{j\omega})$ é uma função periódica em ω com período 2π
- \Rightarrow Freq. fundamental $\omega_0=2\pi/2\pi=1$

Transformada de Fourier Inversa

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$
 (A)

- $ightharpoonup X(e^{j\omega})$ é uma função contínua em ω
- $lacktriangledown X(e^{j\omega})$ é uma função periódica em ω com período 2π
- \Rightarrow Freq. fundamental $\omega_0 = 2\pi/2\pi = 1$
- $\Rightarrow X(e^{j\omega})$ pode ser representada por série de Fourier "em ω "

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega}$$
 (B)

$$a_k = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{-jk\omega} d\omega$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} x(n)e^{-j\omega n}$$
 (A)

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega}$$
 (B)

▶ Por simetria $(-\infty < k < \infty)$, podemos escrever (B) como

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} a_{-k} e^{-jk\omega}$$
 (C)

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} x(n)e^{-j\omega n}$$
 (A)

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega}$$
 (B)

▶ Por simetria $(-\infty < k < \infty)$, podemos escrever (B) como

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} a_{-k} e^{-jk\omega}$$
 (C)

Comparando (A) e (C) vemos que

$$x(n) = a_{-k}\big|_{k=n}$$

$$\Rightarrow \left| x(n) = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) \, e^{j\omega n} \, d\omega \right|$$

Propriedades da Transformada z

Linearidade

$$x_1(n) \quad \leftrightarrow \quad X_1(z)$$

$$x_2(n) \quad \leftrightarrow \quad X_2(z)$$

$$\alpha x_1(n) + \beta x_2(n) \quad \leftrightarrow \quad \alpha X_1(z) + \beta X_2(z)$$

Propriedades da Transformada z

Linearidade

$$x_1(n) \quad \leftrightarrow \quad X_1(z)$$

$$x_2(n) \quad \leftrightarrow \quad X_2(z)$$

$$\alpha x_1(n) + \beta x_2(n) \quad \leftrightarrow \quad \alpha X_1(z) + \beta X_2(z)$$

Deslocamento no tempo

$$x(n) \leftrightarrow X(z)$$

 $x(n-n_0) \leftrightarrow z^{-n_0}X(z)$

Convolução

$$\begin{array}{ccc} x_1(n) & \leftrightarrow & X_1(z) \\ & & \\ x_2(n) & \leftrightarrow & X_2(z) \\ & & \\ x_1(n) * x_2(n) & \leftrightarrow & X_1(z) X_2(z) \end{array}$$

Convolução

$$\begin{array}{ccc} x_1(n) & \leftrightarrow & X_1(z) \\ & x_2(n) & \leftrightarrow & X_2(z) \\ & x_1(n) * x_2(n) & \leftrightarrow & X_1(z) X_2(z) \end{array}$$

Teorema do valor inicial

Se
$$x(n)=0$$
 para $n<0,$
$$x(0)=\lim_{z\to\infty}X(z)$$

Convolução

$$\begin{array}{ccc} x_1(n) & \leftrightarrow & X_1(z) \\ \\ x_2(n) & \leftrightarrow & X_2(z) \\ \\ x_1(n) * x_2(n) & \leftrightarrow & X_1(z)X_2(z) \end{array}$$

Teorema do valor inicial

Se
$$x(n)=0$$
 para $n<0,$
$$x(0)=\lim_{z\to\infty}X(z)$$

Teorema do valor final

Se (z-1)X(z) é analítica fora do círculo de raio unitário,

$$\lim_{n \to \infty} x(n) = \lim_{z \to 1} (z - 1)X(z)$$

Transformada z Unilateral

Definição:

$$X_u(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

Propriedade do deslocamento no tempo

$$x(n) \leftrightarrow X_u(z)$$

$$x(n-1) \leftrightarrow z^{-1}X_u(z) + x(-1)$$

$$x(n-2) \leftrightarrow z^{-2}X_u(z) + z^{-1}x(-1) + x(-2)$$

$$\vdots$$

$$x(n-n_0) \leftrightarrow z^{-n_0}X_u(z) + z^{-n_0+1}x(-1) + \dots + x(-n_0)$$

Demonstração:

$$\begin{aligned} &\operatorname{Definindo} \quad y(n) = x(n-1) \\ &Y_u(z) = \sum_{n=0}^\infty y(n)z^{-n} = \sum_{n=0}^\infty x(n-1)z^{-n} \\ &Y_u(z) = x(-1) + \sum_{n=1}^\infty x(n-1)z^{-n} \\ &= x(-1) + \sum_{n=0}^\infty x(n)z^{-(n+1)} \qquad \text{(troca de variável)} \\ &= x(-1) + z^{-1} \sum_{n=0}^\infty x(n)z^{-n} \\ &= x(-1) + z^{-1} X_u(z) \end{aligned}$$

Exemplo: Sistema causal - entrada x(n) e saída y(n)

Determine y(n) sabendo que

$$y(n) - \frac{1}{3}y(n-1) = x(n)$$

com

$$y(-1) = 1$$
 e $x(n) = \left(\frac{1}{2}\right)^n u(n)$

Aplicando a transformada z unilateral à equação

$$Y_u(z) - \frac{1}{3} \left[z^{-1} Y_u(z) + y(-1) \right] = X_u(z)$$

$$Y_u(z) \left(1 - \frac{1}{3} z^{-1} \right) = X_u(z) + \frac{1}{3} y(-1)$$

$$Y_u(z) = \frac{1}{1 - \frac{1}{3} z^{-1}} X_u(z) + \frac{\frac{1}{3} y(-1)}{1 - \frac{1}{3} z^{-1}}$$

Resp. ao estado zero Resposta à entrada zero

Observações

1)
$$H(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$$
 $\Rightarrow \begin{cases} \operatorname{Função} \operatorname{de transferência} \\ \operatorname{Transformada} z \operatorname{de} h(n) \end{cases}$

z)
$$z=rac{1}{3}$$
 $\Rightarrow egin{cases} ext{Polo da função de transferência} \ ext{Frequência natural do sistema} \end{cases}$

3)
$$\mathcal{Z}^{-1}\left\{\frac{1}{1-\frac{1}{3}z^{-1}}\right\} = \left(\frac{1}{3}\right)^n u(n) \Rightarrow \begin{cases} \text{Modo natural do sistema} \end{cases}$$

4)
$$H(e^{j\omega})=rac{1}{1-rac{1}{3}e^{-j\omega}} \Rightarrow egin{cases} ext{Resposta em frequência} \ ext{do sistema} \end{cases}$$

Continuando o exemplo ...

$$Y_u(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}X_u(z) + \frac{\frac{1}{3}y(-1)}{1 - \frac{1}{3}z^{-1}}$$

$$\begin{cases} x(n) = \left(\frac{1}{2}\right)^n u(n) \to X_u(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| > \frac{1}{2} \\ y(-1) = 1 \end{cases}$$

$$Y_u(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{2}z^{-1})} + \frac{\frac{1}{3}}{1 - \frac{1}{3}z^{-1}}$$

$$Y_u(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{2}z^{-1})} + \frac{\frac{1}{3}}{1 - \frac{1}{3}z^{-1}}$$

Expandindo em frações parciais

$$\frac{1}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{2}z^{-1})} = \frac{-2}{1 - \frac{1}{3}z^{-1}} + \frac{3}{1 - \frac{1}{2}z^{-1}}$$

Assim.

$$y(n) = \underbrace{-2\left(\frac{1}{3}\right)^n u(n) + 3\left(\frac{1}{2}\right)^n u(n)}_{\text{Resp. ao estado zero}} + \underbrace{\frac{1}{3}\left(\frac{1}{3}\right)^n u(n)}_{\text{Resposta à entrada zero}}$$

$$y(n) = -\frac{5}{3} \left(\frac{1}{3}\right)^n u(n) + 3 \left(\frac{1}{2}\right)^n u(n)$$

Resposta natural

(apenas modos do sistema) (apenas modos de excitação)

$$3\left(\frac{1}{2}\right)^n u(n)$$

Resposta forçada

Relação Entre a Transformada z e a Transformada de Laplace

Relação entre:

- ► Transformada de Laplace de um sinal amostrado
- ► Transformada z do sinal discreto correspondente

Transformada de Laplace do sinal amostrado por impulsos

$$x^*(t) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

$$X^*(s) = \sum_{n=-\infty}^{\infty} x(nT)e^{-sTn}$$

Relação Entre a Transformada z e a Transformada de Laplace

Relação entre:

- ► Transformada de Laplace de um sinal amostrado
- ► Transformada z do sinal discreto correspondente

Transformada de Laplace do sinal amostrado por impulsos

$$x^*(t) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$
$$X^*(s) = \sum_{n = -\infty}^{\infty} x(nT)e^{-sT}$$

Transformada z da sequência x(n) = x(nT)

$$X(z) = \sum_{n = -\infty}^{\infty} x(nT)z^{-n}$$

$$X^*(s) = \sum_{n = -\infty}^{\infty} x(nT)e^{-sT n}$$

$$X(z) = \sum_{n = -\infty}^{\infty} x(nT)z^{-n}$$

Comparando as duas expressões

$$X^*(s) = X(z)\big|_{z=e^{sT}}$$

$$\left| X(z) = X^*(s) \right|_{s = \frac{1}{T} \ln z}$$

Relação Entre Espectros de Frequência (Transformadas de Fourier)

Sinal contínuo amostrado por impulsos

$$X^*(j\omega) = \sum_{n=-\infty}^{\infty} x(nT)e^{-j\omega_c nT}$$
 ω_c : freq. caso contínuo

Sinal discreto x(n) obtido de x(nT)

$$X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(nT)e^{-j\omega_d n}$$
 ω_d : freq. caso discreto

$$X^*(j\omega) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega_c nT} \qquad X(e^{j\omega}) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega_d n}$$

Comparando as expressões

O espectro da sequência discreta é o mesmo do sinal amostrado por impulsos, a menos de uma normalização no eixo das frequências:

$$\omega_d = \omega_c T$$

$$X^*(j\omega) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega_c nT} \qquad X(e^{j\omega}) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega_d n}$$

Comparando as expressões

O espectro da sequência discreta é o mesmo do sinal amostrado por impulsos, a menos de uma normalização no eixo das frequências:

$$\omega_d = \omega_c T$$

Efeito da normalização

$$\omega_c = 0 \to \omega_d = 0$$

$$\omega_c = \frac{2\pi}{T} \to \omega_d = 2\pi$$

$$f_c = \frac{1}{T} \to f_d = 1$$

A freq. de amostragem em rad/s é sempre mapeada em $\omega_d=2\pi$ rad

A freq. de amostragem em H_z é sempre mapeada em $f_d=1$ ciclo

Determinação da Transf. z a Partir da Transf. de Laplace

Objetivo:

Determinar $X_d(z)$ a partir de $X_c(s)$ quando $x_d(n) = x_c(nT)$

Procedimento conceitual

- 1) Dado $X_c(s)$ podemos obter $x_c(t)$ pela transformada inversa de Laplace
- 2) Dado $x_c(t)$ amostramos o sinal para t = nT
- 3) Dado $x_c(nT) = x_d(n)$, calculamos a sua transformada z

Procedimento prático - $X_c(s)$ função racional em s

1) Expandimos $X_c(s)$ em frações parciais

$$X_c(s) = \sum_{k=1}^N rac{A_k}{s-p_k}$$
 N : Números de polos p_k : Polos $k=1,\ldots,N$ A_k : Resíduos $k=1,\ldots,N$

N: Números de polos

$$\Rightarrow \left| x_c(t) = \sum_{k=-1}^{N} A_k e^{p_k t} u(t) \right|$$

2) Amostramos $x_c(t)$ em t = nT e fazemos

$$x_d(n) = x_c(nT)$$

$$x_c(nT) = \sum_{k=1}^{N} A_k e^{p_k nT} u(nT)$$

$$x_d(n) = \sum_{k=1}^N A_k e^{p_k T n} u(nT)$$
 Obs: $u(nT) = u(n) \quad \forall T > 0$

Obs:
$$u(nT) = u(n) \quad \forall T > 0$$

3) Determinamos $X_d(z)$ Escrevendo

$$e^{p_k T n} u(n) = a_k^n u(n)$$
 com $a_k = e^{p_k T}$

Temos

$$\mathcal{Z}\left\{e^{p_kTn}u(n)\right\} = \frac{1}{1 - a_kz^{-1}} = \frac{1}{1 - e^{p_kT}z^{-1}}, \quad |z| > |e^{p_kT}|$$

Obs: Note que cada polo p_k de $X_c(s)$ é mapeado em um polo e^{p_kT} de $X_d(z)$, de acordo com o mapeamento $z=e^{sT}$

Exemplo

$$X_c(s) = \frac{1}{(s+1)(s+2)}, \quad \text{Re}\{s\} > -1$$

Expandindo em frações parciais

$$\begin{split} X_c(s) &= \frac{1}{s+1} - \frac{1}{s+2} \quad \text{polos} \begin{cases} p_1 = -1 \\ p_2 = -2 \end{cases} \\ X_d(z) &= \frac{1}{1-e^{-T}z^{-1}} - \frac{1}{1-e^{-2T}z^{-1}}, \quad |z| > e^{-T} \\ &= \frac{z}{z-e^{-T}} - \frac{z}{z-e^{-2T}}, \quad |z| > e^{-T} \end{split}$$

Exemplo

$$X_c(s) = \frac{1}{(s+1)^2(s+2)}, \quad \text{Re}\{s\} > -1$$

Expandindo em frações parciais

$$X_c(s) = \frac{1}{(s+1)^2} - \frac{1}{s+1} + \frac{1}{s+2}$$

Como transformar $\frac{1}{(s+1)^2}$ para o domínio z ?

$$X_{c_1}(s) = \frac{1}{(s+1)^2} \xrightarrow{\mathcal{L}^{-1}} t e^{-t} u(t) = x_{c_1}(t)$$

Fazendo t = nT (amostragem)

$$x_{d_1}(n) = nT e^{-nT} u(nT) = T [na^n u(n)], \text{ com } a = e^{-T}$$

$$x_{d_1}(n) = T [na^n u(n)], \text{ com } a = e^{-T}$$

Como

$$na^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{az^{-1}}{(1 - az^{-1})^2}, \quad |z| > |a|$$

$$X_{d_1}(z) = \frac{T e^{-T} z^{-1}}{(1 - e^{-T} z^{-1})^2} = \frac{T e^{-T} z}{(z - e^{-T})^2}, \quad |z| > e^{-T}$$

Assim,

$$X_d(z) = \frac{T e^{-T} z^{-1}}{(1 - e^{-T} z^{-1})^2} - \frac{1}{1 - e^{-T} z^{-1}} + \frac{1}{1 - e^{-2T} z^{-1}}, \quad |z| > e^{-T}$$

Exemplo: Polos complexo-conjugados

$$X_{c}(s) = \frac{N(s)}{(s-p)(s-p^{*})} \begin{cases} p = \alpha + j\beta \\ p^{*} = \alpha - j\beta \end{cases}$$

$$X_{c}(s) = \frac{K_{1}}{s-p} + \frac{K_{1}^{*}}{s-p^{*}}, \qquad K_{1} = Ae^{j\theta}$$

$$X_{d}(z) = \frac{K_{1}}{1 - e^{pT}z^{-1}} + \frac{K_{1}^{*}}{1 - e^{p^{*}T}z^{-1}}$$

$$= \frac{K_{1}(1 - e^{p^{*}T}z^{-1}) + K_{1}^{*}(1 - e^{pT}z^{-1})}{(1 - e^{p^{*}T}z^{-1})(1 - e^{p^{*}T}z^{-1})}$$

Substituindo as expressões de p e K_1 , e simplificando

$$X_d(z) = \frac{2A \left[\cos \theta - e^{\alpha T} \cos(\beta T - \theta) z^{-1} \right]}{1 - 2 e^{\alpha T} \cos(\beta T) z^{-1} + e^{2\alpha T} z^{-2}}$$

Sistemas Amostrados

- Vários sistemas práticos envolvem sinais e subsistemas contínuos no tempo e utilizam técnicas de processamento por sistemas discretos
- ► Em um mesmo sistema podem haver subsistemas contínuos e discretos, assim como sinais contínuos, amostrados e discretos
- Problema: como unificar o tratamento matemático no estudo destes sistemas híbridos?
- Como sinais discretos não são sequer definidos entre os instantes de amostragem, um tratamento unificado permitirá apenas o estudo nos instantes de amostragem
- Podemos determinar as propriedades de um sistema discreto equivalente, cujo comportamento corresponderá ao do sistema original nos instantes de amostragem
- Este sistema equivalente poderá ser estudado usando a transformada z

Sistema amostrado básico

Amostrador ideal por impulsos

Objetivo: Determinar a saída y(t) nos instantes de amostragem t=nT , $n\in\mathbb{Z}$

$$x^*(t) = \sum_{k=-\infty}^{\infty} x(kT) \, \delta(t - kT)$$
$$y(t) = q(t) * x^*(t)$$

$$x^*(t) = \sum_{k=-\infty}^{\infty} x(kT) \, \delta(t - kT)$$
$$y(t) = g(t) * x^*(t)$$

$$y(t) = \int_{-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x(kT) \, \delta\left(\tau - kT\right) \right] g(t-\tau) \, d\tau$$
$$= \sum_{k=-\infty}^{\infty} x(kT) \int_{-\infty}^{\infty} \delta(\tau - kT) \, g(t-\tau) \, d\tau$$
$$= \sum_{k=-\infty}^{\infty} x(kT) \, g(t-kT)$$

$$y(t) = \sum_{k=-\infty}^{\infty} x(kT) g(t - kT)$$

Amostrando y(t) em t = nT

$$y(nT) = \sum_{k=-\infty}^{\infty} x(kT) g(nT - kT)$$

$$x(nT) * g(nT) com$$

$$g(nT) = g(t)|_{t=nT}$$

Convolução discreta

Conclusão:

▶ No domínio da transformada z

$$x(nT) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

$$g(nT) \stackrel{\mathcal{Z}}{\longleftrightarrow} G(z)$$

Conclusão:

▶ No domínio da transformada z

$$x(nT) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

$$g(nT) \stackrel{\mathcal{Z}}{\longleftrightarrow} G(z)$$

$$\Rightarrow \quad y(nT) \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z) = X(z) G(z)$$

▶ No domínio da transformada de Laplace

$$x^{*}(t) \xleftarrow{\mathcal{L}} X^{*}(s)$$

$$g(t) \xleftarrow{\mathcal{L}} G(s)$$

$$\Rightarrow y(t) \xleftarrow{\mathcal{Z}} Y(s) = X^{*}(s) G(s)$$

► Dizemos então que

$$Y(z) = X(z) G(z)$$

É a representação equivalente, no domínio z, de

$$Y(s) = X^*(s) G(s)$$

Notação:

$$Y(z) = \mathcal{Z}\Big\{X^*(s)\,G(s)\Big\} = X(z)\,G(z)$$

▶ Como G(z) é a transformada z de $g(t)|_{t=nT}$ podemos determinar G(z) a partir de G(s) usando o procedimento usado anteriormente

Exemplo: Dado que $x(t)=2\,e^{-4t}\,u(t)$ e $G(s)=\frac{1}{(s+1)(s+2)}$, determine a expressão das amostras y(nT) do sinal de saída do sistema abaixo

Exemplo: Dado que $x(t)=2\,e^{-4t}\,u(t)$ e $G(s)=\frac{1}{(s+1)(s+2)}$, determine a expressão das amostras y(nT) do sinal de saída do sistema abaixo

Determinação de X(z):

$$\begin{split} x(nT) &= 2 \, e^{-4nT} u(nT) \\ &= 2 (e^{-4T})^n \, u(nT) \\ &= 2 a^n \, u(nT), \qquad \mathbf{a} = e^{-4T} \end{split}$$

Calculando a transformada z de $x(n) = 2 a^n u(n)$,

$$X(z) = \frac{2}{1 - e^{-4T} z^{-1}}$$
 $|z| > e^{-4T}$

Determinação de G(z):

Expandindo G(s) em frações parciais,

$$G(s) = \frac{1}{s+1} - \frac{1}{s+2} \qquad \begin{cases} \mathsf{Polo} \ \mathsf{em} \ s = -1 \ \mathsf{: res\'iduo} = 1 \\ \mathsf{Polo} \ \mathsf{em} \ s = -2 \ \mathsf{: res\'iduo} = -1 \end{cases}$$

Aplicando o procedimento de obtenção de G(z) a partir de G(s),

$$G(z) = \frac{1}{1 - e^{-T} z^{-1}} - \frac{1}{1 - e^{-2T} z^{-1}} = \frac{(e^{-T} - e^{-2T}) z^{-1}}{(1 - e^{-T} z^{-1})(1 - e^{-2T} z^{-1})}$$

Logo

$$\begin{split} Y(z) &= X(z)G(z) \\ &= \frac{2(e^{-T} - e^{-2T})\,z^{-1}}{(1 - e^{-T}\,z^{-1})(1 - e^{-2T}\,z^{-1})(1 - e^{-4T}\,z^{-1})} \end{split}$$

Expandindo Y(z) em frações parciais

$$Y(z) = \frac{A}{1 - e^{-T} z^{-1}} + \frac{B}{1 - e^{-2T} z^{-1}} + \frac{C}{1 - e^{-4T} z^{-1}}$$

com

$$A = \frac{2}{1 - e^{-3T}} \quad B = \frac{-2}{1 - e^{-2T}} \quad C = \frac{2(e^{3T} - e^{2T})}{(1 - e^{3T})(1 - e^{2T})}$$

$$Y(z) = \frac{A}{1 - e^{-T} \, z^{-1}} + \frac{B}{1 - e^{-2T} \, z^{-1}} + \frac{C}{1 - e^{-4T} \, z^{-1}}$$

Determinando a transformada inversa

$$y(nT) = \left[A(e^{-T})^n + B(e^{-2T})^n + C(e^{-4T})^n \right] u(nT)$$
$$= \left[A(e^{-1})^{nT} + B(e^{-2})^{nT} + C(e^{-4})^{nT} \right] u(nT)$$

Obs: sequência discreta y(n)

$$y(n) = [A(e^{-T})^n + B(e^{-2T})^n + C(e^{-4T})^n] u(n)$$

Subsistemas Básicos

$$x(t) \xrightarrow{T} G(s)$$

$$x(nT)$$

$$y(t)$$

$$\begin{cases} Y(z) = \mathcal{Z}\{y(nT)\} \\ Y(s) = X^*(s) G(s) \\ Y(z) = \mathcal{Z}\{X^*(s)G(s)\} = X(z)G(z) \end{cases}$$

$$x_1(t)$$

$$y(t)$$

$$x_2(t)$$

$$y(t) \qquad \begin{cases} Y(s) = X(s) G(s) \\ Y(z) = \mathcal{Z} \{ X(s) G(s) \} \\ \neq X(z) G(z) \end{cases}$$

$$\begin{cases} Y(s) = X_1(s) + X_2(s) \\ g^*(t) = x_1^*(t) + x_2^*(t) \\ y(nT) = x_1(nT) + x_2(nT) \\ Y(z) = X_1(z) + X_2(z) \end{cases}$$

Exemplo: Sistema amostrado realimentado

Objetivo: Determinar a função transferência Y(z)/X(z) do sistema discreto equivalente

$$\begin{cases} Y(s) = E^*(s) G(s) \\ E(s) = X(s) - H(s) Y(s) \end{cases}$$

Equações básicas do sistema

$$\begin{cases} Y(s) = E^*(s) \, G(s) \\ E(s) = X(s) - H(s) \, Y(s) \end{cases}$$
 a)
$$Y(z) = \mathcal{Z}\{Y(s)\} = \mathcal{Z}\{E^*(s) \, G(s)\} = E(z) \, G(z)$$
 b)
$$E(z) = \mathcal{Z}\{X(s) - H(s) \, Y(s)\} = \mathcal{Z}\{X(s) - E^*(s) \, G(s) \, H(s)\}$$

$$\Rightarrow E(z) = X(z) - \mathcal{Z}\{E^*(s) \, G(s) \, H(s)\}$$

$$= X(z) - E(z) \mathcal{Z}\{G(s) \, H(s)\}$$

Resolvendo para E(z),

$$E(z) = \frac{1}{1 + \mathcal{Z}\{G(s)H(s)\}}X(z)$$

Substituindo na expressão de Y(z)

$$Y(z) = \underbrace{\frac{G(z)}{1 + \mathcal{Z}\{G(s)\,H(s)\}}}_{\text{Função de transferência}} X(z)$$

Sistemas usando S/H

- Sistemas reais empregam amostradores/seguradores ao invés de amostradores por impulso
- No estudo desses sistemas devemos incluir a função de transferência do segurador quando a saída do amostrador é usada como entrada de um sistema contínuo
- Quando a saída do amostrador é aplicada à entrada de um sistema discreto, podemos modelar o amostrador como ideal (por impulsos), assumindo o projeto correto da conversão contínuo/discreto

De volta ao sistema básico

Função de transferência $H_{ au}(s)G(s)$

$$H_{\tau}(s) = \frac{1 - e^{-s\tau}}{s}$$

Determinação do sistema discreto equivalente

No caso em questão, devemos determinar

$$\mathcal{Z}\left\{H_{\tau}(s) G(s)\right\} = \mathcal{Z}\left\{\left(1 - e^{-s\tau}\right) \frac{G(s)}{s}\right\}$$

Porque

$$Y(z) = X(z) \mathcal{Z}\{H_{\tau}(s) G(s)\}\$$

$$\mathcal{Z}\left\{H_{\tau}(s) G(s)\right\} = \mathcal{Z}\left\{\left(1 - e^{-s\tau}\right) \frac{G(s)}{s}\right\}$$

► Sejam
$$F(s) = \frac{G(s)}{s}$$
 e $H(s) = (1 - e^{-s\tau}) F(s)$

$$\mathcal{Z}\left\{H_{\tau}(s) G(s)\right\} = \mathcal{Z}\left\{\left(1 - e^{-s\tau}\right) \frac{G(s)}{s}\right\}$$

Sejam
$$F(s) = \frac{G(s)}{s}$$
 e $H(s) = (1 - e^{-s\tau}) F(s)$

Considerando sinais e sistemas causais podemos escrever

$$F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f_1(t) u(t)$$

$$e^{-s\tau} F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f_1(t-\tau) u(t-\tau)$$

$$\mathcal{Z}\left\{H_{\tau}(s) G(s)\right\} = \mathcal{Z}\left\{\left(1 - e^{-s\tau}\right) \frac{G(s)}{s}\right\}$$

► Sejam
$$F(s) = \frac{G(s)}{s}$$
 e $H(s) = (1 - e^{-s\tau}) F(s)$

Considerando sinais e sistemas causais podemos escrever

$$F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f_1(t) u(t)$$

$$e^{-s\tau} F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f_1(t-\tau) u(t-\tau)$$

Vamos estudar separadamente dois casos:

a)
$$\tau = T$$

b)
$$0 < \tau < T$$

Neste caso, o atraso introduzido pelo segurador é exatamente um período de amostragem. Assim,

$$H(s) = (1 - e^{-sT}) F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f(t) - f(t - T) = h(t)$$

Neste caso, o atraso introduzido pelo segurador é exatamente um período de amostragem. Assim,

$$H(s) = (1 - e^{-sT}) F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f(t) - f(t - T) = h(t)$$

Amostrando h(t) em t = nT

$$h(nT) = f(nT) - f(nT - T)$$

Neste caso, o atraso introduzido pelo segurador é exatamente um período de amostragem. Assim,

$$H(s) = (1 - e^{-sT}) F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f(t) - f(t - T) = h(t)$$

Amostrando h(t) em t = nT

$$h(nT) = f(nT) - f(nT - T)$$

Usando a propriedade do deslocamento da transformada z

$$H(z) = (1 - z^{-1}) F(z) = (1 - z^{-1}) \mathcal{Z} \{ F(s) \}$$

Neste caso, o atraso introduzido pelo segurador é exatamente um período de amostragem. Assim,

$$H(s) = (1 - e^{-sT}) F(s) \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} f(t) - f(t - T) = h(t)$$

Amostrando h(t) em t = nT

$$h(nT) = f(nT) - f(nT - T)$$

Usando a propriedade do deslocamento da transformada z

$$H(z) = (1 - z^{-1}) F(z) = (1 - z^{-1}) \mathcal{Z} \{ F(s) \}$$

$$H(z) = (1 - z^{-1}) \mathcal{Z} \left\{ \frac{G(s)}{s} \right\}$$

Caso b: $\tau < T$

Neste caso o atraso introduzido pelo segurador é uma fração do período de amostragem. Assim,

$$h(t) = f(t) - f(t - \tau)$$

$$\Rightarrow h(t) = f_1(t) u(t) - f_1(t - \tau) u(t - \tau)$$

O valor de h(t) nos instantes de amostragem t=nT será

$$h(nT) = f_1(nT) u(nT) - f_1(nT - \tau) u(nT - \tau)$$

$$h(nT) = f_1(nT) u(nT) - f_1(nT - \tau) u(nT - \tau)$$

Como $\tau < T$ precisamos considerar com cuidado o comportamento de $u(nT-\tau)$

$$u(nT-\tau) = \begin{cases} 1, & nT-\tau > 0 \quad \text{ou} \quad n > \tau/T \\ 0, & nT-\tau < 0 \quad \text{ou} \quad n < \tau/T \end{cases}$$

$$h(nT) = f_1(nT) u(nT) - f_1(nT - \tau) u(nT - \tau)$$

Como $\tau < T$ precisamos considerar com cuidado o comportamento de $u(nT-\tau)$

$$u(nT-\tau) = \begin{cases} 1, & nT-\tau > 0 \quad \text{ou} \quad n > \tau/T \\ 0, & nT-\tau < 0 \quad \text{ou} \quad n < \tau/T \end{cases}$$

Como $n\in\mathbb{Z}$, $0<\tau< T$ e $\tau/T<1$, $u(nT)-\tau$ corresponderá à sequência discreta $\hat{u}(n)$ tal que

$$\hat{u}(n) = \begin{cases} 1, & n \ge 1 \\ 0, & n < 1 \end{cases} \Rightarrow \boxed{\hat{u}(n) = u(n-1)}$$

$$h(nT) = f_1(nT) u(nT) - f_1(nT - \tau) u(nT - \tau)$$

Como $\tau < T$ precisamos considerar com cuidado o comportamento de $u(nT-\tau)$

$$u(nT-\tau) = \begin{cases} 1, & nT-\tau > 0 \quad \text{ou} \quad n > \tau/T \\ 0, & nT-\tau < 0 \quad \text{ou} \quad n < \tau/T \end{cases}$$

Como $n\in\mathbb{Z}$, $0<\tau< T$ e $\tau/T<1$, $u(nT)-\tau$ corresponderá à sequência discreta $\hat{u}(n)$ tal que

$$\hat{u}(n) = \begin{cases} 1, & n \ge 1 \\ 0, & n < 1 \end{cases} \Rightarrow \boxed{\hat{u}(n) = u(n-1)}$$

Assim, a sequência discreta h(nT) será

$$h(n) = f_1(nT) u(n) - f_1(nT - \tau) u(n - 1)$$

Com esta expressão podemos determinar H(z) aplicando a transformada z a h(n)

Exemplo: No sistema abaixo, determine a função de transferência Y(z)/X(z) equivalente no domínio z

Aplicando o modelo matemático do S/H

$$F(s) = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$
$$\Rightarrow f(t) = u(t) - e^{-t} u(t)$$

$$\Rightarrow h(t) = (1 - e^{-t}) u(t) - [1 - e^{-(t-\tau)}] u(t - \tau)$$

$$F(s) = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$
$$\Rightarrow f(t) = u(t) - e^{-t} u(t)$$

$$\Rightarrow h(t) = (1 - e^{-t}) u(t) - |1 - e^{-(t-\tau)}| u(t-\tau)$$

Fazendo t = nT

$$h(nT) = (1 - e^{-nT}) u(nT) - \left[1 - e^{-(nT - \tau)}\right] u(nT - \tau)$$

$$F(s) = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$
$$\Rightarrow f(t) = u(t) - e^{-t} u(t)$$

$$\Rightarrow h(t) = (1 - e^{-t}) u(t) - \left[1 - e^{-(t-\tau)}\right] u(t-\tau)$$

Fazendo t = nT

$$h(nT) = (1 - e^{-nT}) u(nT) - \left[1 - e^{-(nT - \tau)}\right] u(nT - \tau)$$

A sequência discreta equivalente será então

$$h(n) = [1 - (e^{-T})^n] u(n) - [1 - e^{\tau}(e^{-T})^n] u(n-1)$$

$$h(n) = \left[1 - (e^{-T})^n\right] u(n) - \left[1 - e^{\tau} (e^{-T})^n\right] u(n-1)$$

Calculando a transformada z

$$\begin{split} \left[1 - (e^{-T})^n\right] u(n) &\xrightarrow{\mathcal{Z}} \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-T} z^{-1}} \\ \left[1 - e^{\tau} (e^{-T})^{n+1}\right] u(n) &\xrightarrow{\mathcal{Z}} \frac{1}{1 - z^{-1}} - \frac{e^{(\tau - T)}}{1 - e^{-T} z^{-1}} \\ \Rightarrow \left[1 - e^{\tau} (e^{-T})^n\right] u(n - 1) &\xrightarrow{\mathcal{Z}} \frac{z^{-1}}{1 - z^{-1}} - \frac{e^{(\tau - T) z^{-1}}}{1 - e^{-T} z^{-1}} \end{split}$$

Finalmente,

$$H(z) = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-T}z^{-1}} - \frac{z^{-1}}{1 - z^{-1}} + \frac{e^{(\tau - T)}z^{-1}}{1 - e^{-T}z^{-1}}$$

$$H(z) = 1 - \frac{1 - e^{(\tau - T)} z^{-1}}{1 - e^{-T} z^{-1}} = \frac{\left[e^{(\tau - T)} - e^{-T}\right] z^{-1}}{1 - e^{-T} z^{-1}}$$

Observações:

No caso de $\tau = T$ teríamos

$$F(s) = \frac{G(s)}{s} = \frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1}$$
$$F(z) = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-T}z^{-1}}$$

$$H(z) = (1 - z^{-1}) F(z) = 1 - \frac{1 - z^{-1}}{1 - e^{-T} z^{-1}} = \frac{(1 - e^{-T}) z^{-1}}{1 - e^{-T} z^{-1}}$$

Note que

$$\lim_{\tau \to T} H(z) \Big|_{\tau < T} = H(z) \Big|_{\tau = T}$$

Exemplo: Determine y(nT) com T=1s no sistema abaixo para x(nT)=u(nT) e $G(s)=\frac{1}{s(s+1)}$

Sistema Equivalente

$$\begin{cases} Y(s) = E^*(s) H_T(s) G(s) \\ E(s) = E(s) = X(s) - Y(s) \end{cases}$$

Equações básicas do sistema

$$\begin{cases} Y(s) = E^*(s) H_T(s) G(s) \\ E(s) = E(s) = X(s) - Y(s) \end{cases}$$

$$Y(z) = \mathcal{Z}\{E^*(s) H_T(s) G(s)\} = E(z) \mathcal{Z}\{H_T(s) G(s)\}$$

$$E(z) = X(z) - Y(z)$$

$$= X(z) - E(z) \mathcal{Z}\{H_T(s) G(s)\}$$

$$\Rightarrow E(z) = \frac{1}{1 + \mathcal{Z}\{H_T(s) G(s)\}} X(z)$$

Substituindo E(z) na Expressão de Y(z)

$$Y(z) = \frac{\mathcal{Z}\{H_T(s) G(s)\}}{1 + \mathcal{Z}\{H_T(s) G(s)\}} X(z)$$

Precisamos então determinar

$$\mathcal{Z}{H_T(s) G(s)} = \mathcal{Z}\left\{ (1 - e^{sT}) \frac{G(s)}{s} \right\}$$
$$= (1 - z^{-1}) \mathcal{Z}\left\{ \frac{G(s)}{s} \right\}$$

com

$$G(s) = \frac{1}{s(s+1)}$$

$$F(s) = \frac{G(s)}{s} = \frac{1}{s^2(s+1)} = \frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1}$$

Aplicando a transformada inversa

$$f(t) = tu(t) - u(t) + e^{-t} u(t)$$

Para t = nT

$$f(nT) = nT u(nT) - u(nT) + e^{-nT} u(nT) = (nT - 1 + e^{-nT})u(nT)$$

A sequência discreta será

$$f(n) = (nT - 1 + e^{-nT})u(n) = T[nu(n)] - u(n) + (e^{-T})^n u(n)$$

Aplicando a transformada z

$$F(z) = \mathcal{Z}\left\{\frac{G(s)}{s}\right\} = \frac{Tz^{-1}}{(1-z^{-1})^2} - \frac{1}{1-z^{-1}} + \frac{1}{1-e^{-T}z^{-1}}$$

Simplificando

$$F(z) = \frac{[(T-1) + e^{-T}]z^{-1} + [1 - (T+1)e^{-T}]z^{-2}}{(1 - z^{-1})^2(1 - e^{-T}z^{-1})}$$

Assim

$$\mathcal{Z}\{H_T(s)\,G(s)\}=(1-z^{-1})F(z)$$
 e fazendo $T=1s$

$$\mathcal{Z}\{H_T(s)\,G(s)\} = \frac{e^{-1}\,z^{-1} + (1-2e^{-1})z^{-2}}{(1-z^{-1})(1-e^{-1}\,z^{-1})}$$

Finalmente

$$\boxed{\frac{Y(z)}{X(z)} = \frac{e^{-1}z^{-1} + (1 - 2e^{-1})z^{-2}}{1 - z^{-1} + (1 - e^{-1})z^{-1}}}$$

Função de transferência do sistema discreto equivalente

$$\mathsf{Como}\ x(nT) = u(nT)\ \to\ X(z) = \frac{1}{1-z^{-1}}\ \mathsf{e}$$

$$Y(z) = \frac{e^{-1}z^{-1} + (1 - 2e^{-1})z^{-2}}{(1 - z^{-1})[1 - z^{-1} + (1 - e^{-1})z^{-1}]}$$

A expressão de y(nT) é a transformada inversa de Y(z)