

$$R_1 = 2 \ k\Omega \ , \ R_2 = 5 \ k\Omega$$

Rx ist so zu bestimmen, dass R_X gleich dem Gesamtwiderstand R ist.

2)
$$x_1 + x_3 = u$$

 $-3x_1 - 2x_2 - x_3 = v$ a) $\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \\ 0 \end{pmatrix}$ b) $\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \\ -5 \end{pmatrix}$

Untersuchen Sie das Gleichungssystem auf seine Lösbarkeit und geben Sie, falls vorhanden, die Lösungen an. Benutzen Sie den Gauß-Algorithmus!

 $C = \begin{bmatrix} -5 & -3 & 1 \\ 6 & 4 & -1 \end{bmatrix}$

c) Was sind unterbestimmte / überbestimmte Gleichungssysteme und wie löst man sie?

3)
$$x_1 - x_2 = -5$$

 $-x_1 + 2x_2 + x_3 = 1$

- = −5 a) Prüfen Sie mit einer Determinante die Lösbarkeit.
- $-x_1 + 2x_2 + x_3 = 1$ b) Berechnen Sie x_2 über die Cramersche Regel.
- $2x_1 + 2x_2 + 3x_3 = -3$ c) Zeigen Sie: C ist die inverse Matrix zur Koeffizientenmatrix.
 - d) Ermitteln Sie mit der inversen Matrix die Lös. d. Gleich.systems.

5)

- 4) Beschreiben Sie die skizzierte Spannung als Funktion u = u(t) (mit Einheiten).
- 5) a) Stellen Sie u(t) aus der Skizze in der Form $u = \hat{u} \sin(\omega t + \phi) dar!$
 - b) Skizzieren Sie die harmonische Schwingung $y(t) = 2 \sin(2s^{-1}t 4)$.
 - c) Wiederholen Sie die Additionstheoreme für sin und cos und deren Umformungen.
- 6) Der Scheitel einer Parabel habe die x-Koordinate 2, weitere Punkte der Parabel sind (1 | 1.5) und (4 | 6)
 - a) Geben Sie die Parabel in der Form $y = a_2x^2 + a_1x + a_0$ an!
 - b) Wie lautet die Funktionsgleichung, wenn Sie die Parabel um 3 nach rechts verschieben?
- 7) Welche Kurve wird beschrieben durch a) 2x+4y-8=0 b) $2x-y^2-4=0$ c) $2y-x^2-4=0$ d) $x^2+y^2-2y-15=0$? Geben Sie die charakteristischen Bestimmungsstücke an, für d) auch die Parameterdarstellung.
- 8) $y = \frac{1}{8}e^{2x} 2$

beschreibt einen Anstiegsvorgang. Wo schneidet die Funktion die x-Achse? Welchen Wert hat sie für x=ln3? Skizzieren Sie die Funktion!

(ohne Taschenrechner, Ergebnisse in möglichst einfacher Form).

beschreibt die Abnahme der Ladung bei der Kondensatorentladung. Skizzieren Sie q(t)! Wann ist q(t) auf 10% des Anfangswertes q₀ gesunken? (RC=0.3 ms).

10) a) Berechnen Sie die Tangente zur Spannung

$$u(t) = u_0 (1 - e^{-\frac{t}{5s}})$$
 in $t_0 = 0$.

Skizzieren Sie u(t) und Tangente!

b) In der log. Darstellung (s. Skizze) ist die Funktion y = a ebt dargestellt. Bestimmen Sie a und b aus der Zeichnung.

- 11) Differenzieren Sie: a) $y = x^3 e^{-\frac{x}{2}}$ b) $y = \frac{k}{x^2 + a^2}$ c) $y = \ln \sqrt{1 + x^2}$ d) $y = 3^x$ e) $y = \frac{x 1}{x + 1}$ f) $y = x\sqrt{1 + 2x^2}$
- 12) $i(t) = 2 \text{ mA e}^{-\frac{t}{5 \text{ ms}}}$ sei der Ladestrom eines Kondensators. Berechnen Sie daraus q(t) mit q(0)=0. Es ist $i = \frac{dq}{dt}$.
- 13) a) $\int \frac{1}{2x+3} dx$ b) $\int x^3 \sqrt{x} dx$ c) $\int \frac{1}{(x-1)^2} dx$ d) $\int_0^{\pi/8} \cos^2(2t) dt$ e) $\int \frac{x-1}{x+1} dx$ (erst Polynomdivision)
- 14) Berechnen Sie den quadratischen Mittelwert (Effektivwert) für die skizzierte Spannungen.

15)
$$\overrightarrow{F_1} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix} N \quad \overrightarrow{F_2} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} N$$

- a) Geben Sie eine Kraft an, die den Betrag 2 N und die Richtung von $\overrightarrow{F_1}$ hat.
- b) Wie lautet die senkrechte Projektion von $\vec{F_1}$ auf $\vec{F_2}$?
- 16) Vom Parallelogramm ABCD seien die Eckpunkte

$$A = (0 \mid 0 \mid 1)$$
, $B = (4 \mid 0 \mid 1)$ und $C = (\sqrt{2} \mid 1 \mid 2)$ gegeben.

- a) Berechnen Sie die Koordinaten des Punktes D.
- b) Berechnen Sie den Winkel bei A.
- c) Geben Sie einen Vektor an, der senkrecht auf der Ebene steht, in der das Parallelogramm liegt. Probe?
- d) Liegt der Punkt $E = (2 | \sqrt{2} | 1 + \sqrt{2})$ auf der Geraden durch A und C? Liegt E auf der Seite \overline{AC} ?
- 17) Bestimmen Sie für die aperiodische Schwingung y = f(t) = 5 (1-3t) e^{-2t} , $t \ge 0$, Nullstellen, f(0), Extrema und das Verhalten für $t \to \infty$. Skizzieren Sie die Funktion.
- 18) Bestimmen Sie das Taylorpolynom 3. Grades für $f(x) = \ln(1-x)$ für $x_0=0$.
- 19) Mit einer Brückenschaltung wurden die Widerstände $R_1 = (450 \pm 2) \Omega$ und $R_2 = (150 \pm 1) \Omega$ bestimmt. Geben Sie den Gesamtwiderstand R für die Parallelschaltung von R_1 und R_2 an. Bestimmen Sie den Fehler ΔR als Maximalfehler bei linearer Fehlerfortpflanzung.
- 20) Bestimmen Sie die Ausgleichsgerade / Ausgleichsparabel mit MATLAB: a) polyfit b) überbest. Gleichungssystem. Zeichnen Sie die Messpunkte mit den Ausgleichskurven.

Xi	0	1	2	3
y i	1.629	0.560	0.077	-0.342

1) 2.317 k Ω 2) a) nicht lösbar b) $\mathbf{x} = (1, -5, 0)^T + \lambda (-1, 1, 1)^T$ 3) a) ja, da det(A) $\neq 0$ b) 19 d) $\mathbf{x} = A^{-1} \cdot \mathbf{b} = (14, 19, -23)^T$ 5) a) 2V sin(π /5·s⁻¹ t+ π /5) 6) a) 1.5 x^2 -6x+6 b)1.5(x-3)²-6(x-3)+6 7) a) Gerade b) Wurzelf. c) Parabel, S=(0 | 2), a₂ =1/2 d) Kreis R=4, M=(0 | 1), x=4 cost, y=1+4 sint 8) ln 4 | -7/8 9) 0.691 ms 10) a) u₀ t/5s b) e^{-2} 11) a) 3x² $e^{-x/2}$ + x³ $e^{-x/2}$ (-1/2) b) -2kx/ (x²+a²)² c) x/ (1+x²) d) 3^x ln3 e) 2/ (x+1)² f) (1+4x²)/ $\sqrt{1+2x^2}$ 12) 10 μ As(1- $e^{-1/5ms}$) 13) a) ½ ln|2x+3| b) 2/9 x 9 / 2 c) - 1/ (x-1) d) π /16 + 1/8 e) x - 2 ln |x+1| 14) a) 0.745 $\hat{\mathbf{u}}$ b) 0.612 $\hat{\mathbf{u}}$ 15) a) 2/ $\sqrt{59}$ $\overline{F_1}$ b) 2 $\overline{F_2}$ 16) D=(4+ $\sqrt{2}$ | 1 | 2) φ = 45°, c) (0 -4 4)^T d) E liegt auf der Geraden, aber nicht auf der Seite 17) t₀ = 1/3, f(0) = 5, f' (t) = 5 e^{-2t} (-5+6t), Min (5/6 | -1.42), f(t) \rightarrow 0 für t \rightarrow ∞ (Bernoulli) 18) f₃ (x) = -[x + ½ x² + 1/3 x³] 19) | ΔR_{max} | = 0.6875 Ω , R = (112.5 \pm 0.7) Ω 20) y= -0.6396x+1.4404, y= 0.1625x²-1.1271x+1.6029