

Regression (회귀)

Prof. Hyerim Bae

Department of Industrial Engineering, Pusan National University ${\bf hrbae@pusan.ac.kr}$

우리 아들의 키가 얼마나 클까?

By Francis Galton

- By Orley Ashenfelter
- 품질 = 12.145
 - + 0.00117 * 겨울 강우량
 - + 0.06140 * 생장기 평균 기온
 - 0.00386 * 추수기 강우량

Contents

산업현장에서 수집된 데이터를 분석하는데 필요한 기초 소양을 강의합니다.

01

Linear Regression

02

Logistic Regression

Regression

변수의 개념

- 변수의 사전적 정의
 - 각 측정 단위에 대해서 측정하려고 하는 특성
- 질적 변수(Qualitative variable)
 - 변수의 값이 특정 카테고리를 포함하는 변수
 - 예) 사람의 성별, 자동차의 제조사 등
- 양적 변수(Quantitative variable)
 - 변수의 값을 연속형 수치로 표현가능한 변수
 - 예) 사람의 몸무게, 자동차의 가격 등

파라미터의 개념

- 파라미터의 사전적 정의
 - 수학적: 함수의 값을 결정짓는 변수
 - 통계적: 분포의 속성을 결정짓는 변수(모 평균, 모 분산 등)

용어정리, 변수 개념, 파라미터 개념

항목	설명
독립변수	다른 변수에게 영향을 주는 변수(x)
종속변수	다른 변수에게 영향을 받는 변수(y)
회귀계수	절편과 기울기를 의미함 eta_0 (절편)+ $eta_1(x_1$ 의 계수)
회귀방정식	회귀 계수를 이용하여 생성된 방정식
회귀 선	독립변수와 종속변수에 대한 분포를 나타내는 직선중 가장 적합한 직선
적합된 값	독립 변수에 대한 예측된 y값
잔차(Residuals)	예측값과 실제값의 차이
잔차 제곱 합	잔차의 제곱 합

변수 정규화 및 표준화

- 정규화란?
 - 데이터프레임 변수간의 크기가 심하게 차이나는 경우 문제 발생
 - 변수간의 크기를 동등한 정도로 맞추는 과정
- 최소 최대 정규화(Min-max normalization)

$$X' = \frac{X - MIN}{MAX - MIN}$$

• 표준 정규분포 데이터 표준화(Z score normalization)

$$X' = \frac{X - 평균}{표준편차}$$

설명 모델(Explanatory model) vs. 예측 모델(Predictive model)

• 목표

- Good EM: 모델이 데이터를 잘 적합시키는 모델
- Good PM: 새로운 사례를 정확하게 예측하는 모델

• 데이터 셋

- EM: 전체 데이터셋
 - 모집단에서 가정된 관계에 대한 정보가 최대한 반영된 최적의 적합 모델을 추정하기 위해 전체 데이터 세트를 사용
- PM: 학습용 및 검증용 데이터셋
 - 데이터는 일반적인 학습 세트와 검증 세트로 나뉘어지며, 학습 세트는 모델을 추정하는데 사용되며, 검증 세트는 새로운 데이터에 대한 모델의 성능을 평가하는데 사용

성능 평가 기준

- EM: 데이터가 모델에 얼마나 잘 적합하는가?
- PM: 모델이 얼마나 새로운 사례를 잘 예측하는가?

예측 모델링

- 목표: 입력 변수는 있지만, 실제 값은 존재하지 않는 다른 데이터에서 출력값을 예 측하기 위함
 - 즉, 새로운 사례에 대한 출력값을 알아내기 위함(DM)
- ✓ 전형적인 데이터 마이닝의 맥락 중 하나
- ✓ 모델 목표: 예측 정확도 최적화
- ✓ 학습용 데이터로 모델 학습
- ✓ 검증용 데이터로 성능 검증
- ✓ 예측에 활용되는 변수가 미치는 영향을 설명하는 것이 주 목적은 아니지만, 중요한 문제

학습데이터 및 검증데이터 개념 및 분할 방식

- 학습 데이터
 - 모델이 학습하는데 사용할 데이터
- 검증 데이터
 - 학습한 데이터의 성능을 검증하기위한 데이터
- 보편적인 학습데이터 및 검증데이터 분할: 학습 데이터 70%, 검증 데이터 30%
 - 분석가가 상황에 맞게 임의로 분할

회귀 방정식 및 기본 가정

- Regression
 - Simple vs. Multiple
 - Linear vs. Non-linear
- 선형 회귀 모델(LRM, Linear Regression Model)

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

- 아래 4가지 조건을 만족한다면?
 - 추정한 계수들의 기댓값이 모수와 동일하며(Unbiased), 최소의 오차를 가짐
 - 1. 정규성: 잔차(ε)의 분포가 정규 분포를 따름
 - 2. 선형성: 입력 변수와 출력 변수는 선형 관계를 가짐
 - 3. 독립성: 입력 변수들은 독립적임
 - 4. 등분산성: 잔차(ε)의 분산의 분포가 입력 변수에 상관없이 같음

회귀 계수 추정 방법

• Y_i 와 $E(Y_i)$ 의 차이를 최소화하여 계수 추정

• 최소 제곱법을 활용한 추정

$$\hat{\beta}_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \widehat{\beta_1}\bar{x}$$

예제: Toyota Corolla의 가격

- 목표: 데이터를 기반으로 중고 Toyota Corollas의 가격 예측
- 데이터: 1442개 Toyota Corollas의 종속 변수 및 독립변수

Price	Age	KI	М	Fuel_Type	HP	Metallic	Automatic	сс	Doors	Quarterly_Tax	Weight
13500		23	46986	Diesel	9	0 1	0	2000	3	210	1165
13750		23	72937	Diesel	9	0 1	0	2000	3	210	1165
13950		24	41711	Diesel	9	0 1	0	2000	3	210	1165
14950		26	48000	Diesel	9	0 0	0	2000	3	210	1165
13750		30	38500	Diesel	9	0 0	0	2000	3	210	1170
12950		32	61000	Diesel	9	0 0	0	2000	3	210	1170
16900		27	94612	Diesel	9	0 1	0	2000	3	210	1245
18600		30	75889	Diesel	9	0 1	0	2000	3	210	1245
21500		27	19700	Petrol	19	2 0	0	1800	3	100	1185
12950		23	71138	Diesel	6	9 0	0	1900	3	185	1105
20950		25	31461	Petrol	19	2 0	0	1800	3	100	1185

Price in Euros
Age in months as of 8/04
KM (kilometers)
Fuel Type (diesel, petrol, CNG)
HP (horsepower)
Metallic color (1=yes, 0=no)
Automatic transmission (1=yes, 0=no)
CC (cylinder volume)

Doors
Quarterly_Tax (road tax)
Weight (in kg)

학습된 회귀 모델

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
сс	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

Hypthesis

 $H_0: \beta_1 = \beta_{1,0}$

 $H_1: \qquad \beta_1 \neq \beta_{1,0}$

Interval of H0's acceptance

$$-t_{lpha/2,n-2} < T_0 < t_{lpha/2,n-2}$$

Test Statistic

$$T_0=rac{\hat{eta}_1-eta_{1,0}}{se(\hat{eta}_1)}$$

$$se(\hat{eta}_1) = \sqrt{\frac{\displaystyle\sum_{i=1}^n e_i^2}{\displaystyle\sum_{n=2}^n (x_i - ar{x})^2}}$$

$$pvalue = 2 \times (1 - P(T \le t_0))$$

$$\begin{aligned} Y_i - \overline{Y} &= \left(\hat{Y}_i - \overline{Y}\right) + \left(Y_i - \hat{Y}_i\right) \\ &= \left(\hat{Y}_i - \overline{Y}\right) + e_i \end{aligned}$$

예측 값

Training Data scoring - Summary Report

5	Total sum of squared errors	RMS Error	Average Error	
	1514553377	1325.527246	-0.000426154	

Validation Data scoring - Summary Report

Predicted

15885.80362

15873.97887

15601.22471

15476.63164

Total sum of squared errors	RMS Frror	Average Erro
1021587500	1334.079894	116.3728779

16950

16250

15750

15950

1064.196384

376.0211263

148.7752903

473.3683568

Actual Value Residual Value -2113.869439 15863.86944 13750 13950 16285.93045 -2335.930454 회귀 계수로 계산된 예측 값 16900 16222.95248 677.047525 18600 2421.227789 16178.77221 20950 19276.03039 1673.969611 19263.30349 19600 336.6965066 18630.46904 21500 2869.530964 22500 18312.04498 4187.955022 19126.94064 22000 2873.059357 141.2217206 16808.77828 16950

잔차: 실제 값과 예측 값의 차이

15544.83584 15562.25552 15222.12869 17782.33234 15562.2555172 1527.871313 19000 1217.667664

잔차의 분포

대칭 형태의 분포 일부 이상치 존재

잔차 분석

입력 변수의 수를 줄여야 하는 이유

- 많은 입력 변수를 가진다면?
 - 1. 예측 변수 전부를 수집하는 것이 불가능하거나, 비용이 많이 듬
 - 2. 적은 수의 예측 변수로 더 정확한 예측을 할 수 있음
 - 3. 예측 변수가 많을수록 결측치 존재의 위험성이 높아짐
 - 4. 다중 공선성이 발생하여, 회귀 계수의 추정치가 불안해질 수 있음
 - 5. 종속변수와 상관없는 예측변수 사용 시, 예측의 분산이 증가할 수 있음
 - 6. 종속변수와 상관관계가 있는 예측 변수를 누락시킬 시, 예측 오차 혹은 편향도가 증가할 수 있음

참고) 다중공선성

두 개 이상의 예측 변수가 종속 변수에 동일한 선형 관계를 공유하는 것

완전 탐색(Exhaustive Search)

- R²: 모델이 설명할 수 있는 변동성의 비율
 - 평가된 예측 변수들의 모든 부분집합 (single, pairs, triplets, etc.)
 - 계산 집약적임
 - Adjusted R^2 를 통해 독립변수가 많아지는 경우에 대한 문제 해결

$$R_{adj}^{2} = 1 - \frac{n-1}{n-p-1} (1-R^{2})$$

입력 변수의 수에 대한 패널티

입력변수의 수만 증가시켜도 발생하는 R^2 의 인위적인 증가를 배제

입력 변수 선택 방법

- 목표: 충분히 좋은 성능을 보이는 가장 간단한 모델을 찾는 것
 - 모델이 더 강건해짐
 - 예측 정확도가 더 높아짐
- 완전 탐색(Exhaustive Search)
- 부분 탐색 알고리즘
 - 전진 선택법(Forward Selection)
 - 후진 제거법(Backward Elimination)
 - 단계 선택법(Stepwise Selection)

		2	ગ	4	อ	O	- 1	0
	Constant	Age_08_04	*	*	*	*	*	*
	Constant	Age_08_04	Weight	*	*	*	*	*
	Constant	Age_08_04	KM	Weight	*	*	*	*
	Constant	Age_08_04	KM	iel_Type_Petrol	Weight	*	*	*
	Constant	Age_08_04	KM	el_Type_Petrol	Quarterly_Tax	Weight	*	*
١E	Constant	Age_08_04	KM	el_Type_Petrol	HP	Quarterly_Tax	Weight	*
Analytics (Constant	Ane 08 04	KM	el Type Petrol	HP	Automatic	Quarterly Tax	Weight

모델(예측 변수 6개)

The Regression Model

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3874.492188	1415.003052	0.00640071	97276411904
Age_08_04	-123.4366303	3.33806777	0	8033339392
KM	-0.01749926	0.00173714	0	251574528
Fuel_Type_Petrol	2409.154297	319.5795288	0	5049567
HP	19.70204735	4.22180223	0.00000394	291336576
Q uarterly_Tax	16.88731384	2.08484554	0	192390864
Weight	15.91809368	1.26474357	0	281026176

Training Data scoring - Summary Report

Model Fit -

Total sum of squared errors	RMS Error	Average Error
1516825972	1326.521353	-0.000143957

Validation Data scoring - Summary Report

Predictive performance (compare to 12-predictor model!) →

Total sum of s quared errors	RMS Error	Average Error
1021510219	1334.029433	118.4483556

정리

- 선형 회귀 모델은 설명 뿐 아니라, 예측까지 할 수 있는 유명한 도구임
- 좋은 예측 모델은 높은 정확도를 가짐
- 예측 모델은 학습용 데이터 세트를 사용하여 구성되며, 별도의 검증 데이터 세트에서 평가됨
- 예측 정확성과 강건함을 위해서는 불필요한 입력 변수를 제거하는 것이 중요함
- 변수 선택 방법(전진 선택법, 후진 제거법, 단계 선택법): 좋은 후보 모델을 찾는데 도움이 됨.
 - 이러한 작업을 실행한 후, 평가해야 함