** Linear Regrossion

*** Model training

** Predicted

Jata

** Adad

Jata

$$\gamma = mx + C$$

$$\gamma = ho(x)$$

$$\int_{A_{G}(x)} = O_{O} + O_{I} \times_{I}$$

$$ho(x) = O_0 + O_1 x_1 + O_2 x_2 + O_3 x_3 -$$

Cost function

$$J = \gamma = h_o(x)$$

$$J(O_0,O_1) = \int_{M}^{M} \frac{\int_{i=1}^{M} (ho(x)-y)^2}{\int_{i=1}^{M} (ho(x)-y)^2}$$

This is cost function to min. error by changing value of O_0 , O_1

Repeat converion Theren

$$O_j = O_j - \alpha \frac{d}{d\theta_i} \left[J(\theta_i) \right]$$

$$\mathcal{O}_6 = \mathcal{O}_0 - \propto \frac{1}{m} \sum_{i=1}^{m} \left(h_0(xi) - y^i \right)$$

$$\text{MSE} = \sum_{j=1}^{n} \frac{(y-y)^2}{y}$$

2 RMSE

RMSE =
$$\frac{1}{n} \left[\frac{n}{2} \left(\sqrt{-\hat{y}} \right)^{e} \right]$$

3 MAE = $\frac{1}{n} \frac{1}{1=1} \frac{1}{1-1}$

A Accuracy Matrix

0 R2

$$R^2 = \frac{1 - RSS}{TSS}$$

RSS = coeff. of determination RSS = sum of square of residual

RSS = Distance b/ω y and \dot{y} TSS = Distance b/ω y and \dot{y}

$$RSS = \sum (\gamma - \hat{\gamma})^{2}$$

$$TSS = \sum (\gamma - \hat{\gamma})^{2}$$

$$TSS = Avg distane$$

(2) Adj.
$$R^2 = 1 - (1 - R^2)(N - 1)$$

Adj. $R^2 = 1 - (1 - R^2)(N - 1)$

N = no. of datapoint in our
delaset

P = no. of independ variable

(7, Le X3 ----)

To find multi co-linearity VIF (variance inflation Factors) $VIF = \frac{1}{1-R^2}$ VIF = start 1 and it has no limit IF I or less shan 5 so no. multicolinearity It > 5 80 these will be co-linearity blw Inde. Feature.