La Régression Linéaire Pénalisée (en Grande Dimension)

Cours#2 - M2 MIAGE Unité "Données Massives"

Clément Lejeune

Institut de Recherche en Informatique de Toulouse, Université Toulouse III Paul Sabatier

8 Décembre 2021

Avantages de la LR

• La prédiction du modèle est facile à expliquer (linéaire),

Avantages de la LR

- La prédiction du modèle est facile à expliquer (linéaire),
- en basse dimension, l'apprentissage des paramètres est rapide.

Avantages de la LR

- La prédiction du modèle est facile à expliquer (linéaire),
- en basse dimension, l'apprentissage des paramètres est rapide.

Inconvénients

• En grande dimension, la prédiction devient incertaine,

Avantages de la LR

- La prédiction du modèle est facile à expliquer (linéaire),
- en basse dimension, l'apprentissage des paramètres est rapide.

Inconvénients

- En grande dimension, la prédiction devient incertaine,
- les variables non-explicatives sont considérées au même titre que les "bonnes" variables explicatives,

Avantages de la LR

- La prédiction du modèle est facile à expliquer (linéaire),
- en basse dimension, l'apprentissage des paramètres est rapide.

Inconvénients

- En grande dimension, la prédiction devient incertaine,
- les variables non-explicatives sont considérées au même titre que les "bonnes" variables explicatives,
- la présence de corrélation entre certaines variables explicatives diminuent le pouvoir prédictif du modèle (*c-à-d* l'erreur de généralisation).

Sommaire

- 1 La malédiction / le fléau de la dimension
 - Rappel et conséquences des hypothèses la LR classique

- 2 Comment remédier au fléau de la dimension ?
 - La régularisation ridge du risque empirique
 - Introduction d'une contrainte dans l'apprentissage
 - Apprentissage des paramètres régularisés

On parle de malédiction de la dimension quand le nombre de variables explicatives d devient très "grand" devant le nombre d'observations n c-à-d d >> n. Pourquoi ?

- Plus il y a de paramètres à apprendre, plus les \hat{y}_i deviennent incertaines (grande variance), hors-scope,
- Plus il y a de paramètres à apprendre, plus l'apprentissage peut être long,
- Le minimiseur ŵ :

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2n} \sum_{i=1}^{n} \underbrace{(y_i - \langle \mathbf{w}, x_i \rangle)^2}_{\ell(y_i, h(x_i))} \tag{1}$$

n'est pas unique.

Rappel et conséquences des hypothèses la LR classique

Pourquoi $\hat{\mathbf{w}}$ n'est pas unique quand d > n? Au cours précédent, on a appris $\hat{\mathbf{w}}$ en résolvant (selon \mathbf{x}) sous l'hypothèse n > d:

$$abla g = \left(\frac{\partial g}{\partial w_1}, \dots, \frac{\partial g}{\partial w_d} \right)^{\top} = \frac{1}{n} X^{\top} (X \mathbf{w} - \mathbf{y}) = \mathbf{0}$$
 que l'on réécrit:

$$X^{\top}X$$
 $\mathbf{w} = X^{\top}\mathbf{y}$

Le w vérifiant cette équation est:

$$\widehat{\mathbf{w}} = \mathbf{G}^{-1} \mathbf{X}^{\top} \mathbf{y}$$

 G^{-1} existe si G est inversible (c-à-d G^{-1} est l'unique matrice telle que $G^{-1}G = GG^{-1} = I$).

Inversibilité d'une matrice

Les conditions suivantes sont équivalentes sur une matrice carrée $A \in \mathbb{R}^{k \times k}$:

• A est inversible si ses k colonnes sont linéairement indépendantes,

Inversibilité d'une matrice

Les conditions suivantes sont équivalentes sur une matrice carrée $A \in \mathbb{R}^{k \times k}$:

- A est inversible si ses k colonnes sont linéairement indépendantes,
- Le rang de A (nombre de colonnes et lignes linéairement indépendantes) vaut k,

Inversibilité d'une matrice

Les conditions suivantes sont équivalentes sur une matrice carrée $A \in \mathbb{R}^{k \times k}$:

- A est inversible si ses k colonnes sont linéairement indépendantes,
- Le rang de A (nombre de colonnes et lignes linéairement indépendantes) vaut k,
- Le déterminant de A est non-nul.

On a les propriétés suivantes sur le rang d'une matrice arbitraire $B \in \mathbb{R}^{k \times q}$ (non carrée):

- $rang(B) \leq \min(k, q)$
- $rang(B) = rang(B^{\top})$
- $rang(AB) \leq min(rang(A), rang(B))$

Donc dans notre cas, puisque n < d, on a:

$$rang(X^{\top}X) = rang(G) \leqslant \min((d, n), (n, d)) = n < d$$

Conclusion: $G \in \mathbb{R}^{d \times d}$ est au plus de rang n, donc pas de rang d, et ainsi **n'est pas inversible**: dans ce cas G^{-1} n'existe pas !

Conséquences du fléau de la dimension pour une RL

En grande dimension, n < d (plus de variables que d'observations):

• L'apprentissage des paramètres $\mathbf{w} = (w_1, \dots, w_d)$ d'un modèle linéaire ne se résout pas analytiquement avec la formule $\widehat{\mathbf{w}} = (X^\top X)^{-1} X^\top \mathbf{y}$,

Donc dans notre cas, puisque n < d, on a:

$$rang(X^{\top}X) = rang(G) \leqslant \min((d, n), (n, d)) = n < d$$

Conclusion: $G \in \mathbb{R}^{d \times d}$ est au plus de rang n, donc pas de rang d, et ainsi **n'est pas inversible**: dans ce cas G^{-1} n'existe pas !

Conséquences du fléau de la dimension pour une RL

En grande dimension, n < d (plus de variables que d'observations):

- L'apprentissage des paramètres $\mathbf{w} = (w_1, \dots, w_d)$ d'un modèle linéaire ne se résout pas analytiquement avec la formule $\widehat{\mathbf{w}} = (X^\top X)^{-1} X^\top \mathbf{y}$,
- le problème de minimisation défini au cours#1: $g(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \underbrace{\left(y_i \left\langle \mathbf{w}, x_i \right\rangle\right)^2}_{\ell(y_i, h(x_i))} \text{ n'admet pas de solution unique } g$

n'est plus strictement convexe.

"faible" inversibilité en basse dimension

La non-inversibilité de $G = X^{T}X$ peut aussi avoir lieu en basse dimension, n > d. En effet, dans le cas où les colonnes de X (variables prédictives) sont linéairement corrélées, G devient "faiblement inversible" car son déterminant tend vers 0.

On peut envisager plusieurs stratégies en grande dimension, n < d:

 Une première est de diminuer le nombre de variables prédictives "à la main": regarder si certaine(s) variable(s) ont une influence négligeable (voire nulle) sur la prédiction puis les enlever des données => long, incertain et fastidieux,

On peut envisager plusieurs stratégies en grande dimension, n < d:

- Une première est de diminuer le nombre de variables prédictives "à la main": regarder si certaine(s) variable(s) ont une influence négligeable (voire nulle) sur la prédiction puis les enlever des données => long, incertain et fastidieux,
- une seconde: appliquer une procédure itérative (descente de gradient) à la fonction objective $g(\mathbf{w}) => \log$, ne résout que le problème de non-inversibilité, (le minimiseur trouvé n'est pas unique),

On peut envisager plusieurs stratégies en grande dimension, n < d:

- Une première est de diminuer le nombre de variables prédictives "à la main": regarder si certaine(s) variable(s) ont une influence négligeable (voire nulle) sur la prédiction puis les enlever des données => long, incertain et fastidieux,
- une seconde: appliquer une procédure itérative (descente de gradient) à la fonction objective $g(\mathbf{w}) => \log$, ne résout que le problème de non-inversibilité, (le minimiseur trouvé n'est pas unique),
- une troisième: modifier le risque empirique $\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,h(x_i))$ de manière à diminuer l'effet de l'*ensemble* variables sur la prédiction.

On va s'intéresser à la troisième stratégie et voir qu'elle peut adresser toutes les limitations de l'apprentissage "classique" de la RL (appelée régression linéaire par *moindres carrés ordinaires*.

La régularisation ridge du risque empirique

Tout le problème de la grande dimension réside dans la non-inversibilité de $G = X^T X$ (et encore pire si les prédicteurs sont corrélés). Idéalement, ce qu'on aimerait, c'est:

apprendre les paramètres de façon analytique (comme avec la RL ordinaire)

La régularisation ridge du risque empirique

Tout le problème de la grande dimension réside dans la non-inversibilité de $G = X^{T}X$ (et encore pire si les prédicteurs sont corrélés). Idéalement, ce qu'on aimerait, c'est:

- apprendre les paramètres de façon analytique (comme avec la RL ordinaire)
- atténuer la corrélation des prédicteurs (qui peut aussi avoir lieu en basse dimension, cf. TP),

La régularisation ridge du risque empirique

Tout le problème de la grande dimension réside dans la non-inversibilité de $G = X^T X$ (et encore pire si les prédicteurs sont corrélés). Idéalement, ce qu'on aimerait, c'est:

- apprendre les paramètres de façon analytique (comme avec la RL ordinaire)
- atténuer la corrélation des prédicteurs (qui peut aussi avoir lieu en basse dimension, cf. TP),
- intégrer une contrainte de "sélection de variables" de façon à choisir les variables explicatives directement pendant l'apprentissage.

Sélection de variables ? 🤔

Ne pas sélectionner la variable X_j revient à avoir le poids appris $\hat{w}_j = 0$: $\hat{y}_i = \hat{w}_1 x_{i1} + \dots + \underbrace{0}_{} \times x_{ij} + \dots + \hat{w}_d x_{id}$

On va voir que la troisième stratégie résout tous nos problèmes (quasi). Cette (famille de) stratégie s'appelle la *régularisation*, qui eu lieu de minimiser le risque empirique classique:

$$g(\mathbf{w} = (w_1, \dots, w_d)) = \frac{1}{2n} \sum_{i}^{n} (y_i - \sum_{j=1}^{d} w_j x_{ij})^2$$

On va voir que la troisième stratégie résout tous nos problèmes (quasi). Cette (famille de) stratégie s'appelle la *régularisation*, qui eu lieu de minimiser le risque empirique classique:

$$g(\mathbf{w} = (w_1, \dots, w_d)) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} w_j x_{ij})^2$$

vise à minimiser le risque empirique régularisé:

$$g_{\lambda}(\mathbf{w} = (w_1, \dots, w_d)) = \underbrace{\frac{1}{2n} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} w_j x_{ij})^2}_{\text{risque empirique}} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{d} w_j^2}_{\text{régularisation } ridge}$$

où $\lambda > 0$. Ce problème est un type de régression pénalisée et la régularisation est appelée *ridge* Hastie, Tibshirani, and Friedman 2009; James et al. 2013 ou bien de Tikhonov Boyd and Vandenberghe 2004; Hoerl and Kennard 1970.

Introduction d'une contrainte dans l'apprentissageEffet de la pénalité/régularisation ridge

Pourquoi ce terme supplémentaire est une bonne nouvelle ? Problème sous forme vectorielle :

$$\text{minimize } \mathbf{g}_{\lambda}(\mathbf{w}) = \frac{1}{2n}\|\mathbf{y} - X\mathbf{w}\|_2^2 + \frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

où $\|\mathbf{u}\|_2 = \sqrt{\sum_{j=1}^d u_j^2}$ dénote la norme Euclidienne. Puis en concaténant \mathbf{y} avec $\mathbf{0}$, et X avec $\sqrt{\lambda}I$, g_{λ} devient:

$$g_{\lambda}(\mathbf{w}) = \frac{1}{2n} \| \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} X \\ \sqrt{\lambda}I \end{pmatrix} \mathbf{w} \|_{2}^{2}$$

où $I = \text{est la matrice identité de } \mathbb{R}^{d \times d}$.

Par cette réécriture, g_{λ} est exactement de même forme qu'avec les moindres carrés ordinaires. Il suffit de poser:

$$\tilde{\mathbf{y}} = \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix}; \tilde{X}_{\lambda} = \begin{pmatrix} X \\ \sqrt{\lambda}I \end{pmatrix}$$

et donc:

$$g_{\lambda}(\mathbf{w}) = \frac{1}{2n} \| \underbrace{\tilde{\mathbf{y}}}_{cible} - \underbrace{\tilde{X}_{\lambda}}_{prdicteurs} \mathbf{w} \|_{2}^{2}$$

Par cette réécriture, g_{λ} est exactement de même forme qu'avec les moindres carrés ordinaires. Il suffit de poser:

$$\tilde{\mathbf{y}} = \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix}; \tilde{X}_{\lambda} = \begin{pmatrix} X \\ \sqrt{\lambda} I \end{pmatrix}$$

et donc:

$$g_{\lambda}(\mathbf{w}) = \frac{1}{2n} \| \underbrace{\tilde{\mathbf{y}}}_{cible} - \underbrace{\tilde{X}_{\lambda}}_{prdicteurs} \mathbf{w} \|_{2}^{2}$$

Qu'est-ce qui a changé entre $g(\mathbf{w})$ et $g_{\lambda}(\mathbf{w})$? Le rang de \tilde{X}_{λ} n'est plus le même que celui de X: on a ajouté des lignes linéairement indépendantes à X pour obtenir \tilde{X}_{λ} ! On a donc:

$$rang(\tilde{X}_{\lambda}^{\top}\tilde{X}_{\lambda}) = rang(\tilde{G}_{\lambda}) \leqslant \min((d, n+d), (n+d, d)) = d$$

 $\tilde{G}_{\lambda} \in \mathbb{R}^{d \times d}$ est au plus de rang d > n. Or $\tilde{G}_{\lambda} = X^{\top}X + \lambda I$ est inversible (matrice semi-définie-positive + matrice définie-positive). Conclusion: \tilde{G}_{λ} est inversible donc de rang d.

 $\tilde{G}_{\lambda} \in \mathbb{R}^{d \times d}$ est au plus de rang d > n. Or $\tilde{G}_{\lambda} = X^{\top}X + \lambda I$ est inversible (matrice semi-définie-positive + matrice définie-positive). Conclusion: \tilde{G}_{λ} est inversible donc de rang d.

Cette propriété nous permet d'avoir les mêmes conditions qu'avec la RL ordinaire (stricte convexité, quadratique, différentiable). Pour calculer le minimiseur de g_{λ} , on procède de donc la même façon:

ullet calcul du gradient: $abla g_{\lambda} = \frac{1}{n} \tilde{X}_{\lambda}^{\top} (\tilde{X}_{\lambda} \mathbf{w} - \tilde{\mathbf{y}})$,

 $\tilde{G}_{\lambda} \in \mathbb{R}^{d \times d}$ est au plus de rang d > n. Or $\tilde{G}_{\lambda} = X^{\top}X + \lambda I$ est inversible (matrice semi-définie-positive + matrice définie-positive). Conclusion: \tilde{G}_{λ} est inversible donc de rang d.

Cette propriété nous permet d'avoir les mêmes conditions qu'avec la RL ordinaire (stricte convexité, quadratique, différentiable). Pour calculer le minimiseur de g_{λ} , on procède de donc la même façon:

- calcul du gradient: $\nabla g_{\lambda} = \frac{1}{n} \tilde{X}_{\lambda}^{\top} (\tilde{X}_{\lambda} \mathbf{w} \tilde{\mathbf{y}}),$
- ullet trouver le $\hat{f w}_{\it ridge}$ tel que $abla g_{\lambda} = {f 0}$.

 $\tilde{G}_{\lambda} \in \mathbb{R}^{d \times d}$ est au plus de rang d > n. Or $\tilde{G}_{\lambda} = X^{\top}X + \lambda I$ est inversible (matrice semi-définie-positive + matrice définie-positive). Conclusion: \tilde{G}_{λ} est inversible donc de rang d.

Cette propriété nous permet d'avoir les mêmes conditions qu'avec la RL ordinaire (stricte convexité, quadratique, différentiable). Pour calculer le minimiseur de g_{λ} , on procède de donc la même façon:

- calcul du gradient: $\nabla g_{\lambda} = \frac{1}{n} \tilde{X}_{\lambda}^{\top} (\tilde{X}_{\lambda} \mathbf{w} \tilde{\mathbf{y}})$,
- trouver le $\hat{\mathbf{w}}_{ridge}$ tel que $\nabla g_{\lambda} = \mathbf{0}$.

$$\nabla g_{\lambda} = \mathbf{0} \iff \frac{1}{n} \tilde{X}_{\lambda}^{\top} (\tilde{X}_{\lambda} \mathbf{w} - \tilde{\mathbf{y}}) = \mathbf{0} \iff \tilde{X}_{\lambda}^{\top} \tilde{X}_{\lambda} \mathbf{w} - \tilde{X}_{\lambda}^{\top} \tilde{\mathbf{y}} = \mathbf{0}$$

Or
$$\tilde{X}_{\lambda}^{\top} \tilde{X}_{\lambda} = X^{\top} X + \lambda I$$
 (inversible) et $\tilde{X}_{\lambda}^{\top} \tilde{\mathbf{y}} = X^{\top} \mathbf{y}$

Solution ridge

Pour $\lambda > 0$, $X \in \mathbb{R}^{n \times d}$ telle que $rang(X^{\top}X) \leq n < d$, les paramètres de la régression linéaire ridge se calculent selon:

$$\hat{\mathbf{w}}_{ridge} = (X^{\top}X + \lambda I)^{-1}X^{\top}\mathbf{y}.$$

Solution ridge

Pour $\lambda > 0$, $X \in \mathbb{R}^{n \times d}$ telle que $rang(X^{\top}X) \leq n < d$, les paramètres de la régression linéaire ridge se calculent selon:

$$\hat{\mathbf{w}}_{ridge} = (X^{\top}X + \lambda I)^{-1}X^{\top}\mathbf{y}.$$

=> Application en TP!

Références I

- [1] Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. 2009. DOI: 10.1007/978-0-387-84858-7. URL: https://link.springer.com/content/pdf/10.1007%2F978-0-387-84858-7.pdf%OAhttp://link.springer.com/10.1007/978-0-387-84858-7.
- [3] Arthur E Hoerl and Robert W Kennard. "Ridge regression: Biased estimation for nonorthogonal problems". In: *Technometrics* 12.1 (1970), pp. 55–67.

Références II

[4] Gareth James et al. An Introduction to Statistical Leaning with Applications in R. 2013, p. 441. ISBN: 9781461471370. URL:

http://www-

bcf.usc.edu/\$\sim\$gareth/ISL/ISLRFirstPrinting.pdf.