Aufgabe 1

[60 Punkte (15×2)]

Siehe die Fragensammlung

Aufgabe 2 [8+7=15 Punkte]

Betracten Sie eine Kugel mit Radius R, deren Mittelpunkt im Ursprung des Koordinatensystems liegt. Die Kugeloberfläche trägt die Flächenladungsdichte $\rho_F(\theta,\phi) = \rho_0 \cos \theta$. Im Innenraum $(|\vec{x}| < R)$ und im Außenraum $(|\vec{x}| > R)$ der Kugel befindet sich Vakuum.

- a) Bestimmen Sie eine geignete Näherung für das Potential $\Phi(\vec{x})$ in $|\vec{x}|\gg R$ und daraus das \vec{E} -Feld
- b) Bestimmen Sie eine geignete Näherung für das Potential $\Phi(\vec{x})$ in der Nähe des Ursprungs $|\vec{x}| \ll R$ und daraus das \vec{E} -Feld

Es sollen jeweils nur die führenden, d.h. die ersten nicht verschwindenden Terme der entsprechenden Entwicklung berechnet werden.

Aufgabe 3 [3+8+4=15 Punkte]

Betrachten Sie eine zeitlich veränderliche Stromdichte $J(\vec{x},t)$, deren räumliche Ausdehnung so klein ist, dass Sie in komplexer Schreibweise durch $\vec{J}(\vec{x},t) = J_0 e^{-i\omega t} \delta(\vec{x}) \vec{e}_z$ approximiert werden kann. (J_0 und ω konstant). Die Quelle befindet sich im Vakuum.

a) Zeigen Sei ausgehend von einem geeigneten integralausdruck, dass das zugehörige Vektropotential durch

$$\vec{A}(\vec{x},t) = J_0 e^{-i\omega t} \frac{\mu_0}{4\pi} \frac{e^{-ikr}}{r} \vec{e}_z$$

mit $r = |\vec{x}|$ gegeben ist.

- b) Berechnen Sie mit dem Ergebnis aus a) das \vec{B} -Feld und daraus da \vec{E} -Feld.
- c) Hier sollen nur noch die Teile der in b) berechneten Felder betrachtet werden, die nicht stärker als 1/r abfallen, d.h. man betrachtet eine Näherung für die Felder weit weg von der Quelle. Berechnen Sie damit den zeitlich gemittelten Poyntingvektor und die zeitlich gemittelte Leistung $\frac{dP}{d\theta}$, die unter dem Winkel θ zur z-Achse abgestrahlt wird.