55-200

BUNDESREPUBLIK DEUTSCHLAND

PCT/EP200 4 / 0 1 4 3 9 2

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 60 395.6

Anmeldetag:

19. Dezember 2003

Anmelder/Inhaber:

BASF Aktiengesellschaft, 67063 Ludwigshafen/DE

Bezeichnung:

Benzoylsubstituierte Phenylalanin-Amide

IPC:

C 07 C, A 01 N, A 01 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 08. Oktober 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

SOOG

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Schmidt C.

A 9161 06/00 EDV-L

Patentansprüche:

Benzoylsubstituierte Phenylalanin-Amide der Formel I

$$R^{10}$$
 R^{10}
 R^{12}
 R^{13}
 R^{13}
 R^{14}
 R^{6}
 R^{7}
 R^{7}
 R^{15}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

5

in der die Variablen die folgenden Bedeutungen haben:

R¹ Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy;

10

R², R³, R⁴ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

R⁵. R⁶ Wasserstoff, Hydroxy oder C₁-C₆-Alkoxy;

15

R⁷ C₁-C₆-Alkyl, C₁-C₄-Cyanoalkyl oder C₁-C₆-Halogenalkyl;

R⁸ OR¹⁵, SR¹⁶ oder NR¹⁷R¹⁸;

20

R⁹ Wasserstoff oder C₁-C₆-Alkyl;

R¹⁰, R¹¹ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

25

R¹², R¹³, R¹⁴ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

R¹⁵, R¹⁶, R¹⁷

Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_3 - C_6 -Halogenalkenyl, C_3 - C_6 -Halogenalkinyl, Formyl, C_1 - C_6 -Alkylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, C_2 - C_6 -Alkenylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_3 - C_6 -Alkenyloxycarbonyl, C_3 - C_6 -Alkinyloxycarbonyl, C_1 - C_6 -

5

10

15

20

12.

25

30

40

 R^{18}

35

Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)$ -amino-carbonyl, $N-(C_3-C_6-alkyl)$ Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, Di-(C₁-C₆-alkyl)-aminothiocarbonyl, C_1 - C_6 -Alkylcarbonyl- C_1 - C_6 -alkyl, C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl, N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl oder N-(Di-C₁-C₆alkylamino)-imino-C₁-C₆-alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

Phenyl, Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Phenoxycarbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl, Phenyl- C_1 - C_6 -alkylcarbonyl, Heterocyclyl, Heterocyclyl- C_1 - C_6 -alkyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl, Heterocyclylsulfonylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(heterocyclyl)-aminocarbonyl, oder Heterocyclyl- C_1 - C_6 -alkylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 17 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy; oder

SO₂R¹⁹;

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl, wobei die genannten Alkyl- und Cycloalkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl, Aminocar-

bonyl, C_1 - C_4 -Alkylaminocarbonyl, Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl oder C_1 - C_4 -Alkylcarbonyloxy; oder

5

Phenyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- und der Heterocyclyl-Rest der 4 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

10

 R^{19}

C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder Phenyl, wobei der Phenylrest partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: C₁-C₆-Alkyl, C₁-C₆-Halogen-alkyl oder C₁-C₆-Alkoxy;

15

sowie deren landwirtschaftlich brauchbaren Salze.

2. Benzoylsubstituierte Phenylalanin-Amide der Formel I gemäß Anspruch 1, wobei R¹ für Halogen oder C₁-C₆-Halogenalkyl steht.

20

 Benzoylsubstituierte Phenylalanin-Amide der Formel I gemäß Anspruch 1 oder 2, wobei R² und R³ unabhängig voneinander für Wasserstoff, Halogen oder C₁-C₀-Halogenalkyl stehen.

25

 Benzoylsubstituierte Phenylalanin-Amide der Formel I gemäß Ansprüchen 1 bis 3, wobei R⁴, R⁵, R⁶, R⁹, R¹², R¹³ und R¹⁴ für Wasserstoff stehen.

5. Benzoylsubstituierte Phenylalanin-Amide der Formel I gemäß Ansprüchen 1 bis 4, wobei R⁸ für OR¹⁵ steht.

6. Verfahren zur Herstellung von benzoylsubstituierten Phenylalanin-Amiden der Formel I gemäß Anspruch 1, dadurch gekennzeichnet dass

Phenylalanine der Formel V

$$R^{10}$$
 R^{11}
 R^{12}
 R^{13}
 R^{8}
 R^{14}
 R^{14}
 R^{15}
 R^{15}
 R^{10}
 R^{12}
 R^{13}
 R^{14}
 R^{14}
 R^{15}

5

wobei R^5 und R^8 bis R^{14} die unter Anspruch 1 genannten Bedeutungen haben und L^1 für Hydroxy oder C_1 - C_6 -Alkoxy steht,

mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV

$$R^2$$
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4

10

wobei R^1 bis R^4 die unter Anspruch 1 genannten Bedeutungen haben und L^2 für Hydroxy, Halogen oder C_1 - C_6 -Alkoxy steht,

zu entsprechenden Benzoylderivaten der Formel III

15

wobei R^1 bis R^5 und R^8 bis R^{14} die unter Anspruch 1 genannten Bedeutungen haben und L^1 für Hydroxy oder C_1 - C_6 -Alkoxy steht,

und anschließend die erhaltenen Benzoylderivaten der Formel III mit einem Amin der Formel II

HNR⁶R⁷ II,

umgesetzt werden.

5

7. Benzoylderivate der Formel III

wobei R^1 bis R^5 und R^8 bis R^{14} die unter Anspruch 1 genannten Bedeutungen haben und L^1 für Hydroxy oder C_1 - C_6 -Alkoxy steht.

10

8. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines benzoylsubstituierten Phenylalanins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von
Pflanzenschutzmitteln übliche Hilfsmittel.

15

9. Verfahren zur Herstellung von Mitteln gemäß Anspruch 8, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines benzoylsubstituierten Phenylalanins der Formel I gemäß den Ansprüchen 1 bis 5 oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.

20

10. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines benzoylsubstituierten Phenylalanins der Formel I gemäß den Ansprüchen 1 bis 5 oder eines landwirtschaftlich brauchbaren Salzes von I auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.

25

30

11. Verwendung der benzoylsubstituierten Phenylalanin-Amide der Formel I gemäß den Ansprüchen 1 bis 5 und deren landwirtschaftlich brauchbaren Salze als Herbizide.

Benzoylsubstituierte Phenylalanin-Amide

Beschreibung

5 Die vorliegende Erfindung betrifft benzoylsubstituierte Phenylalanin-Amide der Formel I

$$R^{10}$$
 R^{10}
 R^{12}
 R^{13}
 R^{13}
 R^{14}
 R^{6}
 R^{7}
 R^{15}
 R^{10}
 R^{12}
 R^{13}
 R^{14}
 R^{6}
 R^{7}

in der die Variablen die folgenden Bedeutungen haben:

R¹ Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenaikyl oder C₁-C₆Halogenalkoxy;

R², R³, R⁴ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl, C₁-C₆-Halogenalkoxy;

15 R⁵, R⁶ Wasserstoff, Hydroxy oder C₁-C₆-Alkoxy;

R⁷ C₁-C₆-Alkyl, C₁-C₄-Cyanoalkyl oder C₁-C₆-Halogenalkyl;

R⁸ OR¹⁵, SR¹⁶ oder NR¹⁷R¹⁸;

20

25

R⁹ Wasserstoff oder C₁-C₆-Alkyl;

R¹⁰, R¹¹ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

R¹², R¹³, R¹⁴ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl, C₁-C₆-Halogenalkoxy;

R¹⁵, R¹⁶, R¹⁷ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl, Formyl,

 $\begin{array}{l} C_{1}\text{-}C_{6}\text{-}Alkylcarbonyl, } C_{3}\text{-}C_{6}\text{-}Cycloalkylcarbonyl, } C_{2}\text{-}C_{6}\text{-}Alkenylcarbonyl, } C_{1}\text{-}C_{6}\text{-}Alkinylcarbonyl, } C_{1}\text{-}C_{6}\text{-}Alkoxycarbonyl, } C_{3}\text{-}C_{6}\text{-}Alkinyloxycarbonyl, } C_{1}\text{-}C_{6}\text{-}Alkylaminocarbonyl, } C_{3}\text{-}C_{6}\text{-}Alkinylaminocarbonyl, } C_{1}\text{-}C_{6}\text{-}Alkylaminocarbonyl, } C_{1}\text{-}C_{6}\text{-}Alkylsulfonylaminocarbonyl, } Di\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminocarbonyl, } N\text{-}(C_{3}\text{-}C_{6}\text{-}Alkinyl)\text{-}N\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminocarbonyl, } N\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminocarbonyl, } N\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminocarbonyl, } N\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminocarbonyl, } N\text{-}(C_{3}\text{-}C_{6}\text{-}Alkinyl)\text{-}N\text{-}(C_{1}\text{-}C_{6}\text{-}alkoxy)\text{-}aminocarbonyl, } N\text{-}(C_{3}\text{-}C_{6}\text{-}Alkinyl)\text{-}N\text{-}(C_{1}\text{-}C_{6}\text{-}alkoxy)\text{-}aminocarbonyl, } N\text{-}(C_{3}\text{-}C_{6}\text{-}Alkinyl)\text{-}N\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminothiocarbonyl, } C_{1}\text{-}C_{6}\text{-}alkylcarbonyl-}C_{1}\text{-}C_{6}\text{-}alkyl, } C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminothiocarbonyl, } N\text{-}(C_{1}\text{-}C_{6}\text{-}alkylamino)\text{-}imino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}aminothiocarbonyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}amino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}amino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}amino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}amino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl)\text{-}amino-}C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text{-}C_{6}\text{-}alkyl, } O\text{-}(C_{1}\text$

vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

Phenyl, Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Phenoxycarbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl, Phenyl- C_1 - C_6 -alkylcarbonyl, Heterocyclyl, Heterocyclyl- C_1 - C_6 -alkyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl, Heterocyclylsulfonylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(heterocyclyl)-aminocarbonyl, oder Heterocyclyl- C_1 - C_6 -alkylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 17 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy; oder

SO₂R¹⁹;

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl, wobei die genannten Alkyl- und Cycloalkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycar-

5

10

15

20

25

30

3

bonyl, C_1 - C_4 -Alkoxycarbonyl, Aminocarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl oder C_1 - C_4 -Alkylcarbonyloxy; oder

- Phenyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- und der Heterocyclyl-Rest der 4 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 10 R¹⁹ C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder Phenyl, wobei der Phenylrest partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: C₁-C₆-Alkyl, C₁-C₆-Halogen-alkyl oder C₁-C₆-Alkoxy;

sowie deren landwirtschaftlich brauchbaren Salze.

- Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung von Verbindungen der Formel I, Mittel welche diese enthalten sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Schadpflanzenbekämpfung.
- Aus der Literatur, beispielsweise aus WO 03/066576, sind herbizid wirksame Phenylalaninderivate, welche in β-Position unsubstituiert sind oder ggf. durch Halogen substituierte Alkyl-, Alkenyl- oder Alkinylreste tragen, bekannt.
- Benzoylsubstituierte Aminosäureamide mit pharmazeutischer Wirksamkeit werden u.a. in WO 97/05865, GB 2369117, JP 10/298151 und JP 03/294253 beschrieben.
 - Die herbiziden Eigenschaften der bisher bekannten Verbindungen bzw. die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen. Es lag daher dieser Erfindung die Aufgabe zugrunde, neue, insbesondere herbizid wirksame, Verbindungen mit verbesserten Eigenschaften zu finden.
 - Demgemäß wurden die benzoylsubstituierten Phenylalanin-Amide der Formel I sowie deren herbizide Wirkung gefunden.
- Ferner wurden herbizide Mittel gefunden, welche die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

Die Verbindungen der Formel I enthalten je nach Substitutionsmuster zwei oder mehr Chiralitätszentren und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

5

10

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art des Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

20

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C₁-C₄-Alkyl, $\label{eq:hydroxy-C1-C4-alkyl, C1-C4-alkyl, Phe-hydroxy-C1-C4-alkyl, Phe-hydroxy-C1-C4-Alkyl,$ nyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 2-(2-Hydroxyeth-1-oxy)eth-1-ylammonium, Di-(2-hydroxyeth-1-yl)-ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄alkyl)sulfoxonium, in Betracht.

25

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

30

35

Die für die Substituenten R¹–R¹⁹ oder als Reste an Phenyl- oder Hetrocyclylringen genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl-, Alkenyl-, Alkinyl-, Cyanoalkyl-, Halogenalkyl-, Halogenalkenyl-, Halogenalkinyl-, Alkoxy-, Halogenalkoxy-, Alkoxyalkyl-, Alkylcarbonyl-, Alkenylcarbonyl-, Alkinylcarbonyl-, Alkoxycarbonyl-, Alkenyloxycarbonyl-, Alkinyloxycarbonyl-, Alkylamino-, Alkylaminocarbonyl-, Alkenylaminocarbonyl-, Alkinylaminocarbonyl-, Alkylsulfonylaminocarbonyl, Dialkylaminocarbonyl-, N-Alkenyl-N-alkylaminocarbonyl-, N-Alkinyl-Nalkylamino-carbonyl-, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkenyl-Nalkoxyaminocarbonyl-, N-Alkinyl-N-alkoxyaminocarbonyl-, Dialkylaminothiocarbonyl, 40

Alkylcarbonylalkyl, Alkoxyiminoalkyl, N–(Alkylamino)–iminoalkyl, N–(Dialkylamino)–iminoalkyl, Phenylalkyl–, Phenylcarbonylalkyl–, N–Alkyl–N–phenylaminocarbonyl–, Phenylalkylcarbonyl, Heterocyclylalkyl–, Heterocyclylalkylcarbonylalkyl–, N–Alkyl–N–heterocyclylaminocarbonyl–, Heterocyclylalkylcarbonyl-, Alkylthio- und Alkylcarbonylo-xy-Teile können geradkettig oder verzweigt sein.

Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder lod.

10

15

20

25

30

5

Ferner bedeuten beispielsweise:

- C₁–C₄–Alkyl sowie die Alkylteile von C₁–C₄–Alkylcarbonyloxy und C₁–C₆–
 Alkyliminooxy–C₁–C₄–alkyl: z.B. Methyl, Ethyl, n-Propyl, 1–Methylethyl, n-Butyl,
 1–Methylpropyl, 2–Methylpropyl und 1,1–Dimethylethyl;
- C₁–C₆–Alkyl sowie die Alkylteile von C₁–C₆-Alkylsulfonylaminocarbonyl, N–(C₃–C₆–Alkenyl)–N–(C₁–C₆–alkyl)–aminocarbonyl, (C₃–C₆–Alkinyl)–N–(C₁–C₆–alkyl)–aminocarbonyl, C₁–C₆–alkyl)–aminocarbonyl, C₁–C₆–Alkylcarbonyl–C₁–C₆–alkyl, C₁–C₆–Alkoxyimino–C₁–C₆–alkyl, N–(C₁–C₆–alkyl, N–(C₁–C₆–alkyl, N–(C₁–C₆–alkyl, N–(C₁–C₆–alkyl, N–(C₁–C₆–alkyl)–N–phenylaminocarbonyl, Heterocyclyl–C₁–C₆–alkyl, Hetrocyclyl–carbonyl–C₁–C₆–alkyl und N–(C₁–C₆–Alkyl)–N–heterocyclylaminocarbonyl:
 - C₁–C₄–Alkyl, wie voranstehend genannt, sowie z.B. n-Pentyl, 1–Methyl-butyl, 2–Methylbutyl, 3–Methylbutyl, 2,2–Dimethylpropyl, 1–Ethylpropyl, n-Hexyl, 1,1–Dimethylpropyl, 1,2–Dimethylpropyl, 1–Methylpentyl, 2–Methylpentyl, 3–Methylpentyl, 4–Methylpentyl, 1,1–Dimethylbutyl, 1,2–Dimethylbutyl, 1,3–Dimethylbutyl, 2,2–Dimethylbutyl, 2,3–Dimethylbutyl, 3,3–Dimethylbutyl, 1–Ethylbutyl, 2–Ethylbutyl, 1,1,2–Trimethylpropyl, 1–Ethyl–1–methylpropyl und 1–Ethyl–3–methylpropyl;
- C₁-C₄-Alkylcarbonyl: z.B. Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder 1,1-Dimethylethylcarbonyl;
- C₁-C₆-Alkylcarbonyl, sowie die Alkylcarbonylreste von C₁-C₆-Alkylcarbonyl-C₁-C₆-Alkylcarbonyl, und Heterocyclyl-C₁-C₆-alkylcarbonyl: C₁-C₄-Alkylcarbonyl, wie voranstehend genannt, sowie z.B. Pentylcarbonyl, 1 Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 2,2-

15

20

25

30

35

6

Dimethylpropylcarbonyl, 1–Ethylpropylcarbonyl, Hexylcarbonyl, 1,1–Dimethylpropylcarbonyl, 1,2–Dimethylpropylcarbonyl, 1–Methylpentylcarbonyl, 2–Methylpentylcarbonyl, 3–Methylpentylcarbonyl, 4–Methylpentylcarbonyl, 1,1–Dimethylbutylcarbonyl, 1,2–Dimethylbutylcarbonyl, 1,3–Dimethylbutylcarbonyl, 2,2–Dimethylbutylcarbonyl, 3,3–Dimethylbutylcarbonyl, 1–Ethylbutylcarbonyl, 1,1,2–Trimethylpropylcarbonyl, 1,2,2–Trimethylpropylcarbonyl, 1–Ethyl–1–methylpropylcarbonyl oder 1–Ethyl–2–methyl-propylcarbonyl;

C₃-C₆-Cycloalkyl sowie die Cycloalkylteile von C₃-C₆-Cycloalkylcarbonyl: monocyclischer, gesättigter Kohlenwasserstoff mit 3 bis 6 Ringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;

C₃-C₆-Alkenyl sowie die Alkenylteile von C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkenylaminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl und N- $(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)$ aminocarbonyl: z.B. 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

 C_2 - C_6 -Alkenyl sowie die Alkenylteile von C_2 - C_6 -Alkenylcarbonyl: C_3 - C_6 -Alkenyl wie voranstehend genannt sowie Ethenyl;

10

15

25

30

7

- C₃-C₆-Alkinyl sowie die Alkinylteile von C₃-C₆-Alkinyloxycarbonyl, C₃-C₆-Alkinylaminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxyaminocarbonyl: z.B. 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;
 - C_2 - C_6 -Alkinyl sowie die Alkinylteile von C_2 - C_6 -Alkinylcarbonyl: C_3 - C_6 -Alkinyl wie voranstehend genannt sowie Ethinyl;
- C₁-C₄-Cyanoalkyl: z.B. Cyanomethyl, 1-Cyanoeth-1-yl, 2-Cyanoeth-1-yl, 1-Cyanoprop-1-yl, 2-Cyanoprop-1-yl, 3-Cyanoprop-1-yl, 1-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobut-1-yl, 2-Cyanobut-1-yl, 3-Cyanobut-1-yl, 4-Cyanobut-1-yl, 1-Cyanobut-2-yl, 2-Cyanobut-2-yl, 1-Cyanobut-3-yl, 1-Cyano-2-methyl-prop-3-yl, 2-Cyano-2-methyl-prop-3-yl, 3-Cyano-2-methyl-prop-3-yl und 2-Cyanomethyl-prop-2-yl;
 - C₁—C₄—Halogenalkyl: ein C₁—C₄—Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, Brommethyl, I-odmethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-lodethyl, 2,2-Difluorethyl, 2,2-Difluorethyl, 2,2-Difluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trichlorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl und Nonafluorbutyl;
 - C₁–C₆–Halogenalkyl: C₁–C₄–Halogenalkyl wie voranstehend genannt, sowie z.B.
 5–Fluorpentyl, 5–Chlorpentyl, 5–Brompentyl, 5–lodpentyl, Undecafluorpentyl, 6–Fluorhexyl, 6–Chlorhexyl, 6–Bromhexyl, 6–lodhexyl und Dodecafluorhexyl;

15

30

35

- C₃-C₆-Halogenalkenyl: ein C₃-C₆-Alkenylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, z.B. 2-Chlorprop-2-en-1-yl, 3-Chlorprop-2-en-1-yl, 2,3-Dichlorprop-2-en-1-yl, 3,3-Dichlorprop-2-en-1-yl, 2,3,3-Trichlor-2-en-1-yl, 2,3-Dichlorbut-2-en-1-yl, 2-Bromprop-2-en-1-yl, 3-Bromprop-2-en-1-yl, 2,3-Dibromprop-2-en-1-yl, 3,3-Dibromprop-2-en-1-yl, 2,3,3-Tribrom-2-en-1-yl oder 2,3-Dibrombut-2-en-1-yl;
- C₃-C₆-Halogenalkinyl: ein C₃-C₆-Alkinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, z.B.
 1,1-Difluor-prop-2-in-1-yl, 3-lod-prop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-lodbut-3-in-1-yl, 5-Fluorpent-3-in-1-yl, 5-lodpent-4-in-1-yl, 6-Fluorhex-4-in-1-yl oder 6-lodhex-5-in-1-yl;
 - C_1 — C_4 —Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1—Methyl-ethoxy, Butoxy, 1—Methylpropoxy, 2—Methylpropoxy und 1,1—Dimethylethoxy;
- C₁–C₆–Alkoxy sowie die Alkoxyteile von N–(C₁–C₆–Alkoxy)–N–(C₁–C₆–alkyl)– amino@arbonyl, N–(C₃–C₆–Alkenyl)–N–(C₁–C₆–alkoxy)–aminocarbonyl, N–(C₃–C₆–Alkenyl)–N–(C₁–C₆–alkoxy)–aminocarbonyl und C₁–C₆–Alkoxyimino–C₁–C₆–Alkyl: C₁–C₄–Alkoxy wie voranstehend genannt, sowie z.B. Pentoxy, 1–Methylbutoxy, 2–Methylbutoxy, 3–Methoxylbutoxy, 1,1–Dimethyl-propoxy, 1,2–Dimethyl-propoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Me-thylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Di-methylbutoxy, 1,2-Dimethyl-butoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethyl-butoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy;
 - C₁–C₄–Halogenalkoxy: ein C₁–C₄–Alkoxyrest wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2–Fluorethoxy, 2–Chlorethoxy, 2–Brommethoxy, 2–lodethoxy, 2,2–Difluorethoxy, 2,2–Trifluorethoxy, 2–Chlor–2–fluorethoxy, 2–Chlor–2,2–difluorethoxy, 2,2–Dichlor–2–fluorethoxy, 2,2,2–Trichlorethoxy, Pentafluorethoxy, 2–Fluorpropoxy, 3–Fluorpropoxy, 2–Chlorpropoxy, 3–Chlorpropoxy, 2–Brompropoxy, 3–Brompropoxy, 2,2–Difluorpropoxy, 2,3–Difluorpropoxy, 2,3–Difluorpropoxy, 2,3–Difluorpropoxy, 2,3–Difluorpropoxy, 2,2,3,3,3–Pentafluorpropoxy, Heptafluorpropoxy, 1–(Fluormethyl)–2–fluorethoxy, 1–(Chlormethyl)–2–chlorethoxy, 1–(Brommethyl)–2–bromethoxy, 4–Fluorbutoxy,

15

30

35

9

4-Chlorbutoxy, 4-Brombutoxy und Nonafluorbutoxy;

C₁–C₆–Halogenalkoxy: C₁–C₄–Halogenalkoxy wie voranstehend genannt, sowie z.B. 5–Fluorpentoxy, 5–Chlorpentoxy, 5–Brompentoxy, 5–Iodpentoxy, Undecafluorpentoxy, 6–Fluorhexoxy, 6–Chlorhexoxy, 6–Bromhexoxy, 6–Iodhexoxy und Dodecafluorhexoxy;

C₁-C₄-Alkoxycarbonyl sowie die Alkoxycarbonylteile von C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl und Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkoxycarbonyl: z.B. Metho-xycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylprop-oxycarbonyl oder 1,1-Dimethylethoxycarbonyl;

C₁-C₆-Alkoxycarbonyl: C₁-C₄-Alkoxycarbonyl, wie voranstehend genannt, sowie z.B. Pentoxycarbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methyl-butoxycarbonyl, 2,2-Dimethylpropoxycarbonyl, 1-Ethylpropoxycarbonyl, Hexoxy-carbonyl, 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl, 1-Methyl-pentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methyl-pentoxycarbonyl, 1,1-Dimethylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-

Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 3,3Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methylpropoxycarbonyl oder 1-Ethyl-2-methyl-propoxycarbonyl;

25
- C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio;

C₁-C₆-Alkylamino sowie die Alkylaminoreste von N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl: z.B. Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino, 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 3-Methyl-pentylamino, 1-Methylpentylamino, 2-Methylpentylamino, 3-Methyl-pentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutyl-amino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-

methylpropylamino;

Di-(C₁-C₄-alkyl)-amino: z.B. N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Di-(1-methylethyl)-amino, N,N-Dibutylamino, N,N-Di-(1-5 methylpropyl)amino, N,N-Di-(2-methylpropyl)-amino, N,N-Di-(1,1-dimethylethyl)amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1methylethyl)amino, N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethyl-ethyl)-N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino, N-10 Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methylpropyl)-amino, N-Ethyl-N-(1,1-dimethyl-ethyl)amino, N-(1-Methylethyl)-N-propylamino, N-Butyl-Npropylamino, N-(1-Methylpropyl)-N-propylamino, N-(2-Methylpropyl)-Npropylamino, N-(1,1-Dimethyl-ethyl)-N-propylamino, N-Butyl-N-(1-methylethyl-)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(2-15 methyl-propyl)amino, N-(1,1-Dimethyl-ethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1dimethyl-ethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino und N-(1,1-Dimethylethyl)-N-(2methylpropyl)amino; -44

20

Di-(C₁-C₆-alkyl)-amino sowie die Dialkylaminoreste von N-(Di-C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl: Di-(C₁-C₄-alkyl)-amino wie voranstehend genannt sowie: z.B. N,N-Dipentyl-amino, N,N-Dihexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino, N-Methyl-N-hexylamino und N-Ethyl-N-hexylamino;

25

(C₁—C₄—Alkylamino)carbonyl: z.B. Methylaminocarbonyl, Ethylaminocarbonyl,
 Propylaminocarbonyl, 1—Methylethylaminocarbonyl, Butylaminocarbonyl, 1—Methylpropylaminocarbonyl, 2—Methylpropylaminocarbonyl oder 1,1—Dimethylethylaminocarbonyl;

30

Di-(C₁-C₄)-alkylaminocarbonyl: z.B. N,N-Dimethylaminocarbonyl, N,N-Diethylaminocarbonyl, N,N-Di-(1-methylethyl)aminocarbonyl, N,N-Di-(1-methylpropyl)aminocarbonyl, N,N-Di-(1-methylpropyl)aminocarbonyl, N,N-Di-(2-methylpropyl)aminocarbonyl, N,N-Di-(1,1-dimethylethyl)aminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propylaminocarbonyl, N-Methyl-N-(1-methyl-ethyl)aminocarbonyl, N-Butyl-N-methylaminocarbonyl, N-Methyl-N-(1-methyl-propyl)aminocarbonyl, N-Methyl-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-N-(1-methylethyl)aminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-N-(1-methylethyl)aminocarbonyl, N-

11

Butyl-N-ethylaminocarbonyl, N-Ethyl-N-(1-methyl-propyl)aminocarbonyl, N-Ethyl-N-(2-methylpropyl)aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)aminocarbonyl, N-(1-Methylethyl)-N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl, N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methyl-propyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminocarbonyl, N-Butyl-N-(1-methylethyl)aminocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)aminocarbonyl, N-Butyl-N-(1-methylpropyl)-aminocarbonyl, N-Butyl-N-(2-methylpropyl)aminocarbonyl, N-Butyl-N-(1,1-dimethyl-ethyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)aminocarbonyl oder N-(1,1-Dimethylethyl)-N-(2-methylpropyl)aminocarbonyl;

15 - (C₁–C₆–Alkylamino)carbonyl: (C₁–C₄–Alkylamino)carbonyl, wie voranstehend genannt, sowie z.B. Pentylaminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methylbutylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl, 1-Ethylpropylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl, 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutylaminocarbonyl, 3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-

Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropylaminocarbonyl, 1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl oder 1-Ethyl-2-methylpropylaminocarbonyl;

Di-(C₁-C₆-alkyl)-aminocarbonyl: Di-(C₁-C₄-alkyl)-aminocarbonyl, wie voranstehend genannt, sowie z.B. N-Methyl-N-pentylaminocarbonyl, N-Methyl-N-(1-methylbutyl)-aminocarbonyl, N-Methyl-N-(2-methylbutyl)-aminocarbonyl, N-Methyl-N-(3-methylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminocarbonyl, N-Methyl-N-hexylaminocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-methylpentyl)-aminocarbonyl, N-Methyl-N-(1-methylpentyl)-aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)-aminocarbonyl, N

10

15

20

25

30

35

40

carbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminocarbonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Methyl-N-(1,2,2-trimethylpropyl)aminocarbonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminocarbonyl, N-Ethyl-N-pentylaminocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2-methylbutyl)aminocarbonyl, N-Ethyl-N-(3-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl, N-Ethyl-N-hexylaminocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-methylpentyl)aminocarbonyl, N-Ethyl-N-(2-methylpentyl)-aminocarbonyl, N-Ethyl-N-(3methylpentyl)-aminocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)aminocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2dimethylbutyl)-- aminocarbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-- aminocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N- (1-ethyl-1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethyl-2-% methylpropyl)-aminocarbonyl, N-Propyl-N-pentylaminocarbonyl, N-Butyl-Npentylaminocarbonyl, N,N-Dipentylaminocarbonyl, N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl, N-Pentyl-Nhexylaminocarbonyl oder N,N-Dihexylaminocarbonyl;

Di-(C₁-C₆-alkyl)—aminothiocarbonyl: z.B. N,N-Dimethylaminothiocarbonyl, N,N-Diethylaminothiocarbonyl, N,N-Di-(1-methylethyl)aminothiocarbonyl, N,N-Dipropyl-aminothiocarbonyl, N,N-Dibutylaminothiocarbonyl, N,N-Di-(1-methylpropyl)—amino-thiocarbonyl, N,N-Di-(2-methylpropyl)—aminothiocarbonyl, N,N-Di-(1,1-dimethyl-ethyl)—aminothiocarbonyl, N-Ethyl-N-methylaminothiocarbonyl, N-Methyl-N-propyl-aminothiocarbonyl, N-Methyl-N-(1-methylethyl)—aminothiocarbonyl, N-Butyl-N-methylaminothiocarbonyl, N-Methyl-N-(1-methylpropyl)—aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminothiocarbonyl, N-Ethyl-N-propylaminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)—aminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)—aminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)—aminothiocarbonyl, N-Ethyl-N-(2-methylpropyl)—

aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)—aminothiocarbonyl, N-(1-Methylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-propylaminothiocarbonyl, N-(1-Methylpropyl)-N-propylaminothiocarbonyl, N-(2-Methylpropyl)-N-propylamino-

thiocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-(1-

10

15

20

25

30

35

40

methylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)aminothiocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-(1methylpropyl)-aminothiocarbonyl, N-Butyl-N-(2-methylpropyl)aminothiocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)aminothiocarbonyl, N-Methyl-N-pentylaminothiocarbonyl, N-Methyl-N-(1methylbutyl)-aminothio-carbonyl, N-Methyl-N-(2-methylbutyl)aminothiocarbonyl, N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminothio-carbonyl, N-Methyl-N-(1-ethylpropyl)aminothiocarbonyl, N-Methyl-N-hexyl-aminothiocarbonyl, N-Methyl-N- (1,1dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)aminothiocarbonyl, N-Methyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(3-methylpentyl)aminothiocarbonyl, N-Methyl-N-(4-methylpentyl)-aminothio-carbonyl, N-Methyl-N- (1,1-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,2dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)aminothiocarbonyl, N-Methyl-N-(2,2-dimethylbutyl)- aminothiocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(3,3dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylbutyl)aminothiocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Methyl-Nethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2,2trimethylpropyl)--aminothiocarbonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)aminothiocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-pentyl-aminothiocarbonyl, N-Ethyl-N-(1-methylbutyl)aminothiocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3-methylbutyl)— aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)aminothiocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Ethyl-Nhexylaminothiocarbonyl, N-Ethyl-N-(1,1-dimethyl-propyl)-aminothiocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)- aminothiocarbonyl, N-Ethyl-N-(1-methylpentyl)aminothiocarbonyl, N-Ethyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(3-methylpentyl)--aminothiocarbonyl, N-Ethyl-N-(4-methylpentyl)aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-amino-thiocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)- aminothiocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminothio-carbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)aminothiocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2ethylbutyl)--aminothiocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,2,2-trimethylpropyl)-aminothiocarbonyl, N-

10

15

20

25

30

14

Ethyl-N-(1-ethyl-1-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Propyl-N-pentylaminothiocarbonyl, N-Butyl-N-pentylaminothiocarbonyl, N-Propyl-N-hexyl-aminothiocarbonyl, N-Butyl-N-hexylaminothiocarbonyl, N-Pentyl-N-hexyl-aminothiocarbonyl oder N,N-Dihexylaminothiocarbonyl;

Heterocyclyl, sowie die Heterocyclylteile von Heterocyclyl–C₁–C₆–alkyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl-C₁-C₆–alkyl, Heterocyclyloxycarbonyl, Heterocyclylaminocarbonyl, Heterocyclylsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(heterocyclyl)-aminocarbonyl und Heterocyclyl-C₁-C₆-alkylcarbonyl: ein gesättigter, partiell ungesättigter oder aromatischer 5– oder 6–gliedriger heterocyclischer Ring, der ein bis vier gleiche oder verschiedene Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthält, und über C oder N gebunden sein kann, z.B.

C-gebundene, 5-gliedrige, gesättigte Ringe wie
Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydropyrrol-2-yl, Tetrahydropyrrol-3-yl, Tetrahydropyrol-2-yl, Tetrahydrojyra-zol-3-yl, Tetrahydro-pyrazol-4-yl, Tetrahydroisoxazol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-4-yl, 12-0xathiolan-4-yl, 12-0x

4–yl, Tetrahydroisoxazol–5–yl, 1,2–Oxathiolan–3–yl, 1,2–Oxathiolan–4–yl, 1,2–Oxathiolan–5–yl, Tetrahydroisothiazol–3–yl, Tetrahydroisothiazol–4–yl, Tetrahydroimida-zol–2–yl, Tetrahydroimidazol–4–yl, Tetrahydroimidazol–2–yl, Tetrahydroimidazol–4–yl, Tetrahydrooxazol–2–yl, Tetrahydrooxazol–4–yl, Tetrahydrothiazol–2–yl, Tetrahydrothiazol–4–yl, Tetrahydrothiazol–4–yl, Tetrahydrothiazol–4–yl, Tetrahydrothiazol–4–yl, 1,3–Oxathiolan–2–yl, 1,3–Dioxolan–4–yl, 1,3–Oxathiolan–2–yl, 1,3–Dithiolan–4–yl, 1,3,2–Dioxathiolan–4–yl;

N-gebundene, 5-gliedrige, gesättigte Ringe wie: Tetrahydropyrrol-1-yl, Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl, Tetrahydroisothiazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydrooxazol-3-yl, Tetrahydrothiazol-3-yl;

C-gebundene, 5-gliedrige, partiell ungesättigte Ringe wie:
2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 2,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-3-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 2,5-Dihydrothien-3-yl, 2,3-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 3,4-

Dihydro-2H-pyrrol-2-yl, 3,4-Dihydro-2H-pyrrol-3-yl, 3,4-Dihydro-5H-pyrrol-2-yl, 3,4-Dihydro-5H-pyrrol-3-yl, 4,5-Dihydro-1H-pyrazol-3-yl, 4,5-Dihydro-1H-pyrazol-4-yl, 4,5-Dihydro-1H-pyrazol-5-yl, 2,5-Dihydro-1H-pyrazol-3-yl, 2,5-Dihydro-1H-pyrazol-4-yl, 2,5-Dihydro-1H-pyrazol-5-yl, 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-5 Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-4-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 4,5-Dihydroisothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol-3-yl, 2,3-Dihydroisothiazol-4-yl, 2,3-10 Dihydroisothiazol–5-yl, Δ^3 -1,2-Dithiol-3-yl, Δ^3 -1,2-Dithiol-4-yl, Δ^3 -1,2-Dithiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl, 4,5-Dihydro-1H-imidazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl, 2,5-Dihydro-1H-imidazol-2-yl, 2,5-Dihydro-1Himidazol-4-yl, 2,5-Dihydro-1H-imidazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl, 2,3-Dihydro-1H-imidazol-4-yl, 4,5-Dihydro-oxazol-2-yl, 4,5-Dihydrooxazol-4-15 yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydro-oxazol-2-yl, 2,5-Dihydrooxazol-4-yl, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydro-oxazol-2-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydro-thiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydro-thiazol-2-yl, 2,5-Diligdrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydro-thiazol-2-yl, 2,3-Dihydrothiazol-4-yl, 2,3-20 Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl, 1,3-Dioxol-4-yl, 1,3-Dithiol-2-yl, 1,3-Dithiol-4-yl, 1,3-Oxathiol-2-yl, 1,3-Oxathiol-4-yl, 1,3-Oxathiol-5-yl, 1,2,3- Δ^2 -Oxadiazolin–4–yl, 1,2,3– Δ^2 –Oxadiazolin–5–yl, 1,2,4– Δ^4 –Oxadiazolin–3–yl, 1,2,4– Δ^4 —Oxadiazolin—5—yl, 1,2,4— Δ^2 —Oxadia-zolin—3—yl, 1,2,4— Δ^2 —Oxadiazolin—5—yl, 1,2,4– Δ^3 –Oxadiazolin–3–yl, 1,2,4– Δ^3 –Oxadiazolin–5–yl, 1,3,4– Δ^2 –Oxadiazolin– 25 2–yl, 1,3,4– Δ^2 –Oxadiazolin–5–yl, 1,3,4– Δ^3 –Oxadiazolin–2–yl, 1,3,4–Oxadiazolin– 2–yl, 1,2,4– Δ^4 –Thiadiazolin–3–yl, 1,2,4– Δ^4 –Thiadiazolin–5–yl, 1,2,4– Δ^3 – Thiadiazolin–3–yl, 1,2,4– Δ^3 –Thiadiazolin–5–yl, 1,2,4– Δ^2 –Thiadiazolin–3–yl, 1,2,4 $-\Delta^2$ -Thiadiazolin–5-yl, 1,3,4 $-\Delta^2$ -Thiadiazolin–2-yl, 1,3,4 $-\Delta^2$ -Thiadiazolin– 5–yl, 1,3,4– Δ^3 –Thiadiazolin–2–yl, 1,3,4–Thiadiazolin–2–yl, 1,2,3– Δ^2 –Triazolin–4– 30 yl, 1,2,3– Δ^2 –Triazolin–5–yl, 1,2,4– Δ^2 –Triazolin–3–yl, 1,2,4– Δ^2 –Triazolin–5–yl, 1,2,4 $-\Delta^3$ -Triazolin-3-yl, 1,2,4 $-\Delta^3$ -Triazolin-5-yl, 1,2,4 $-\Delta^1$ -Triazolin-2-yl, 1,2,4-Triazolin-3-yl, 3H-1,2,4-Dithiazol-5-yl, 2H-1,3,4-Dithiazol-5-yl, 2H-1,3,4-

35

Oxathiazol-5-yl;

N-gebundene, 5-gliedrige, partiell ungesättigte Ringe wie: 2,3-Dihydro-1H-pyrrol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, 4,5-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydro-1H-pyrazol-1-yl, 2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol-2-yl, 2,3-Dihydroisoxazol-2-yl, 2,5-Dihydroisothiazol-2-yl,

25

30

35

40

2,3–Dihydroisoxazol–2–yl, 4,5–Dihydro–1H–imidazol–1–yl, 2,5–Dihydro–1H–imidazol–1–yl, 2,3–Dihydro–1H–imidazol–1–yl, 2,3–Dihydrooxazol–3–yl, 2,3–Dihydrooxazol–3–yl, 2,3–Dihydrooxazol–3–yl, 2,3–Dihydrooxazol–3–yl, 2,4–Dihydrooxazol–3–yl, 1,2,4–Dihydrooxazol–3–yl, 2,3–Dihydrooxazol–3–yl, 2,4–Δ³–Thiadiazolin–4–yl, 1,3,4–Δ²–Thiadiazolin–4–yl, 1,2,4–Δ²–Triazolin–1–yl, 1,2,4–Δ²–Triazolin–4–yl, 1,2,4–Δ²–Triazolin–4–yl, 2,4–Δ²–Triazolin–4–yl, 2,4–Δ²–Triaz

C-gebundene, 5-gliedrige, aromatische Ringe wie:

2—Furyl, 3—Furyl, 2—Thienyl, 3—Thienyl, Pyrrol—2—yl, Pyrrol—3—yl, Pyrazol—3—yl, Pyrazol—4—yl, Isoxazol—3—yl, Isoxazol—5—yl, Isothiazol—3—yl, Isothiazol—3—yl, Isothiazol—4—yl, Isothiazol—5—yl, Imidazol—4—yl, Oxazol—2—yl, Oxazol—2—yl, Thiazol—4—yl, Thiazol—5—yl, 1,2,3—Oxadiazol—5—yl, 1,2,4—Oxadiazol—3—yl, 1,2,4,—Oxadiazol—5—yl, 1,2,3—Thiadiazol—5—yl, 1,2,3—Thiadiazol—5—yl, 1,2,4—Thiadiazol—3—yl, 1,2,4—Thiadiazol—5—yl, 1,3,4—Thiadiazolyl—2—yl, 1,2,3—Triazol—4—yl, 1,2,4—Triazol—3—yl, Tetrazol—5—yl;

N-gebundene, 5-gliedrige, aromatische Ringe We:

20 Pyrrol-1-yl, Pyrazol-1-yl, Imidazol-1-yl, 1,2,3-Triazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl;

C-gebundene, 6-gliedrige, gesättigte Ringe wie:

Tetrahydropyran—2—yl, Tetrahydropyran—3—yl, Tetrahydropyran—4—yl, Piperidin—2—yl, Piperidin—3—yl, Piperidin—4—yl, Tetrahydrothiopyran—2—yl, Tetrahydrothiopyran—3—yl, Tetrahydrothiopyran—4—yl, 1,3—Dioxan—2—yl, 1,3—Dioxan—4—yl, 1,3—Dithian—5—yl, 1,4—Dioxan—2—yl, 1,3—Dithian—2—yl, 1,3—Dithian—4—yl, 1,3—Dithian—5—yl, 1,4—Dithian—2—yl, 1,3—Oxathian—2—yl, 1,3—Oxathian—5—yl, 1,3—Oxathian—6—yl, 1,4—Oxathian—2—yl, 1,4—Oxathian—3—yl, 1,2—Dithian—3—yl, 1,2—Dithian—4—yl, Hexahydropyrimidin—2—yl, Hexahydropyrimidin—4—yl, Hexahydropyrimidin—5—yl, Hexahydropyridazin—3—yl, Hexahydropyridazin—4—yl, Tetrahydro—1,3—oxazin—2—yl, Tetrahydro—1,3—oxazin—4—yl, Tetrahydro—1,3—oxazin—6—yl, Tetrahydro—1,3—thiazin—5—yl, Tetrahydro—1,3—thiazin—5—yl, Tetrahydro—1,4—thiazin—5—yl, Tetrahydro—1,4—thiazin—3—yl, Tetrahydro—1,4—oxazin—2—yl, Tetrahydro—1,4—thiazin—3—yl, Tetrahydro—1,4—oxazin—2—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—5—yl, Tetrahydro—1,2—oxazin—6—yl;

N-gebundene, 6-gliedrige, gesättigte Ringe wie:

Piperidin-1-yl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Hexahydropyridazin-1-yl, Tetrahydro-1,3-oxazin-3-yl, Tetrahydro-1,3-thiazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2yl;

5

10

C-gebundene, 6-gliedrige, partiell ungesättigte Ringe wie: 2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydropyran-5-yl, 2H-3,4-Dihydropyran-4-yl, 2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl, 2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydrothiopyran-5-yl, 2H-3,4-Dihydrothiopyran-4-yl, 2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl, 1,2,3,4-Tetrahydropyridin-6-yl, 1,2,3,4-Tetrahydropyridin-5-yl, 1,2,3,4-Tetrahydropyridin-4-yl, 1,2,3,4-Tetra-hydropyridin-3-yl, 1,2,3,4-Tetrahydropyridin-2-yl, 2H-5,6-Dihydropyran-2-yl, 2H-5,6-Dihydropyran-3-yl, 2H-5,6-Dihydropyran-4-yl, 2H-5,6-Dihydropyran-5-yl, 2H-5,6-Dihydropyran-6-yl, 2H-5,6-Dihydrothiopyran-2-yl, 2H-5,6-Dihydro-thiopyran-3-yl, 2H-5,6-Dihydrothiopyran-4-yl, 2H-5,6-15 Dihydrothiopyran-5-yl, 2H-5,6-Dihydrothiopyran-6-yl, 1,2,5,6-Tetrahydropyridin-2-yl, 1,2,5,6-Tetrahydropyridin-3-yl, 1,2,5,6-Tetrahydropyridin-4-yl, 1,2,5,6-Tetrahydro-pyridin-5-yl, 1,2,5,6-Tetrahydropyridin-6-yl, 2,3,4,5-Tetrahydropyridin-2-yl, 2,3,4,5-Tetrahydropyridin-3-yl, 2,3,4,5-Tetrahydropyridin-4-yl, 2,3,4,5-Tetrahydropyridin-5-yl, 2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-Pyran-3-yl-, 4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl, 4H-Thiopyran-4-yl, 1,4-Dihydropyridin-2-yl, 1,4-Dihydropyridin-3-yl, 1,4-

20

25

Dihydropyridin-4-yl, 2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H-Pyran-5-yl, 2H-Pyran-6-yl, 2H-Thiopyran-2-yl, 2H-Thiopyran-3-yl, 2H-Thiopyran-4-yl, 2H-Thiopyran-5-yl, 2H-Thiopyran-6-yl, 1,2-Dihydropyridin-2yl, 1,2-Dihydro-pyridin-3-yl, 1,2-Dihydropyridin-4-yl, 1,2-Dihydropyridin-5-yl, 1,2-Dihydro-pyridin-6-yl, 3,4-Dihydropyridin-2-yl, 3,4-Dihydropyridin-3-yl,

30

3,4—Dihydro-pyridin-4—yl, 3,4—Dihydropyridin-5—yl, 3,4—Dihydropyridin-6—yl, 2,5— Dihydro-pyridin-2-yl, 2,5-Dihydropyridin-3-yl, 2,5-Dihydropyridin-4-yl, 2,5-Dihydro-pyridin-5-yl, 2,5-Dihydropyridin-6-yl, 2,3-Dihydropyridin-2-yl, 2,3-

Dihydro-pyridin-3-yl, 2,3-Dihydropyridin-4-yl, 2,3-Dihydropyridin-5-yl, 2.3-Dihydro-pyridin-6-yl, 2H-5,6-Dihydro-1,2-oxazin-3-yl, 2H-5,6-Dihydro-1,2-

oxazin-4-yl, 2H-5,6-Dihydro-1,2-oxazin-5-yl, 2H-5,6-Dihydro-1,2-oxazin-6yl, 2H-5,6-Dihydro-1,2-thiazin-3-yl, 2H-5,6-Dihydro-1,2-thiazin-4-yl, 2H-5,6-Dihydro-1,2-thiazin-5-yl, 2H-5,6-Dihydro-1,2-thiazin-6-yl, 4H-5,6-Dihydro-1,2-oxazin-3-yl, 4H-5,6-Dihydro-1,2-oxazin-4-yl, 4H-5,6-Dihydro-1,2-oxazin-5-yl, 4H-5,6-Dihydro-1,2-oxazin-6-yl, 4H-5,6-Dihydro-1,2-

thiazin-3-yl, 4H-5,6-Dihydro-1,2-thiazin-4-yl, 4H-5,6-Dihydro-1,2-thiazin-5yl, 4H-5,6-Dihydro-1,2-thiazin-6-yl, 2H-3,6-Dihydro-1,2-oxazin-3-yl, 2H-

40

3,6-Dihydro-1,2-oxazin-4-yl, 2H-3,6-Dihydro-1,2-oxazin-5-yl, 2H-3,6-Dihydro-1,2-oxazin-6-yl, 2H-3,6-Dihydro-1,2-thiazin-3-yl, 2H-3,6-Dihydro-1,2-thiazin-4-yl, 2H-3,6-Di-hydro-1,2-thiazin-5-yl, 2H-3,6-Dihydro-1,2thiazin-6-yl, 2H-3,4-Dihydro-1,2-oxazin-3-yl, 2H-3,4-Dihydro-1,2-oxazin-4yl, 2H-3,4-Dihydro-1,2-oxazin-5-yl, 2H-3,4-Dihydro-1,2-oxazin-6-yl, 2H-5 3,4-Dihydro-1,2-thiazin-3-yl, 2H-3,4-Dihydro-1,2-thiazin-4-yl, 2H-3,4-Dihydro-1,2-thiazin-5-yl, 2H-3,4-Dihydro-1,2-thiazin-6-yl, 2,3,4,5-Tetrahydropyridazin-3-yl, 2,3,4,5-Tetrahydropyridazin-4-yl, 2,3,4,5-Tetrahydropyridazin-5-yl, 2,3,4,5-Tetrahydropyridazin-6-yl, 3,4,5,6-Tetrahydropyridazin-3-yl, 3,4,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-10 Tetrahydropyridazin-3-yl, 1,2,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetrahydropyridazin-5-yl, 1,2,5,6-Tetrahydropyridazin-6-yl, 1,2,3,6-Tetrahydropyridazin-3-yl, 1,2,3,6-Tetrahydropyridazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-2-yl, 4H-5,6-Dihydro-1,3-oxazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-5-yl, 4H-5,6-Dihydro-1,3-oxazin-6-yl, 4H-5,6-Dihydro-1,3-thiazin-2-yl, 4H-5,6-15 Dihydro-1,3-thiazin-4-yl, 4H-5,6-Dihydro-1,3-thiazin-5-yl, 4H-5,6-Dihydro-1.3-thiazin-6-yl, 3,4,5-6-Tetrahydropyrimidin-2-yl, 3,4,5,6-Tetrahydropyrimidin-4-yl, 3,4,5,6 Tetrahydropyrimidin-5-yl, 3,4,5,6-Tetrahydropyrimidin-6-yl, 1,2,3,4 etrahydropyrazin-2-yl, 1,2,3,4-Tetrahydropyrazin-5-yl, 1,2,3,4-Tetrahydro-pyrimidin-2-yl, 1,2,3,4-20 Tetrahydropyrimidin-4-yl, 1,2,3,4-Tetrahydropyrimidin-5-yl, 1,2,3,4-Tetrahydropyrimidin-6-yl, 2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Dihydro-1,4thiazin-3-yl, 2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Dihydro-1,4-thiazin-6-yl, 2H-1,2-Oxazin-3-yl, 2H-1,2-Oxazin-4-yl, 2H-1,2-Oxazin-5-yl, 2H-1,2-Oxazin-6-yl, 2H-1,2-Thiazin-3-yl, 2H-1,2-Thiazin-4-yl, 2H-1,2-Thiazin-5-yl, 2H-1,2-25 Thiazin-6-yl, 4H-1,2-Oxazin-3-yl, 4H-1,2-Oxazin-4-yl, 4H-1,2-Oxazin-5-yl, 4H-1,2-Oxazin-6-yl, 4H-1,2-Thiazin-3-yl, 4H-1,2-Thiazin-4-yl, 4H-1,2-Thiazin-5-yl, 4H-1,2-Thiazin-6-yl, 6H-1,2-Oxazin-3-yl, 6H-1,2-Oxazin-4-yl, 6H-1,2-Oxazin-5-yl, 6H-1,2-Oxazin-6-yl, 6H-1,2-Thiazin-3-yl, 6H-1,2-Thiazin-4-yl, 6H-1,2-Thiazin-5-yl, 6H-1,2-Thiazin-6-yl, 2H-1,3-Oxazin-2-yl, 30 2H-1,3-Oxazin-4-yl, 2H-1,3-Oxazin-5-yl, 2H-1,3-Oxazin-6-yl, 2H-1,3-Thiazin-2-yl, 2H-1,3-Thiazin-4-yl, 2H-1,3-Thiazin-5-yl, 2H-1,3-Thiazin-6-yl, 4H-1,3-Oxazin-2-yl, 4H-1,3-Oxazin-4-yl, 4H-1,3-Oxazin-5-yl, 4H-1,3-Oxazin-6-yl, 4H-1,3-Thiazin-2-yl, 4H-1,3-Thiazin-4-yl, 4H-1,3-Thiazin-5-yl, 4H-1,3-Thiazin-6-yl, 6H-1,3-Oxazin-2-yl, 6H-1,3-Oxazin-4-yl, 6H-1,3-35 Oxazin-5-yl, 6H-1,3-Oxazin-6-yl, 6H-1,3-Thiazin-2-yl, 6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-Oxazin-3-yl, 2H-1,4-Oxazin-5-yl, 2H-1,4-Oxazin-6-yl, 2H-1,4-Thiazin-2-yl, 2H-1.4-Thiazin-3-yl, 2H-1,4-Thiazin-5-yl, 2H-1,4-Thiazin-6-yl, 4H-1,4-Oxazin-2-yl, 4H-1,4-Oxazin-3-yl, 4H-1,4-Thiazin-2-yl, 4H-1,4-Thiazin-3-yl, 40

10

15

20

25

30

35

40

1,4—Dihydropyridazin—3—yl, 1,4—Dihydropyridazin—4—yl, 1,4—Dihydropyridazin—5—yl, 1,4—Dihydropyridazin—6—yl, 1,4—Dihydropyrazin—2—yl, 1,2—Dihydropyrazin—2—yl, 1,2—Dihydropyrazin—6—yl, 1,2—Dihydropyrimidin—5—yl, 1,4—Dihydropyrimidin—4—yl, 1,4—Dihydropyrimidin—5—yl, 1,4—Dihydropyrimidin—6—yl, 3,4—Dihydropyrimidin—6—yl, 3,4—Dihydropyrimidin—6—yl, 3,4—Dihydropyrimidin—6—yl;

N-gebundene, 6-gliedrige, partiell ungesättigte Ringe wie: 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydropyridin-1-yl, 1,2-Dihydropyridin-1-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-thiazin-2-yl, 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,4-Dihydro-1,2-thiazin-2-yl, 2H-3,4-Dihydro-1,2-oxazin-2-yl, 2H-3,4-Dihydro-1,2-thiazin-2-yl, 2,3,4,5-Tetrahydropyridazin-2-yl, 1,2,5,6-Tetrahydropyridazin-2-yl, 1,2,3,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrimidin-1-yl, 1,4-Dihydropyrimidin-1-yl, 1,4-Dihy

C-gebundene, 6-gliedrige, aromatische Ringe wie: Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyridazin-3-yl, Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyrazin-2-yl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl, 1,2,4,5-Tetrazin-3-yl;

wobei mit einem ankondensierten Phenylring oder mit einem C_3 – C_6 –Carboxyclus oder mit einem weiteren 5– bis 6–gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.

Alle Phenylringe bzw. Heterocyclylreste sowie alle Phenylkomponenten in Phenyl– C_1 – C_6 –alkyl, Phenylcarbonyl, Phenylcarbonyl– C_1 – C_6 –alkyl, Phenoxycarbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl, N–(C_1 – C_6 –Alkyl)–N–phenylaminocarbonyl und Phenyl- C_1 – C_6 -alkylcarbonyl, und alle Heterocyclylkomponenten in Heterocyclyl– C_1 – C_6 –alkyl, Heterocyclylcarbonyl, Heterocyclylcarbonyl– C_1 – C_6 –alkyl, Heterocyclyloxycarbonyl, Heterocyclylaminocarbonyl, Heterocyclylsulfonylaminocarbonyl, N-(C_1 – C_6 –Alkyl)–N–heterocyclylaminocarbonyl und Heterocyclyl- C_1 – C_6 -alkylcarbonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/oder eine Nitro-

gruppe, einen Cyanorest und/oder einen oder zwei Methyl-, Trifluormethyl-, Methoxy- oder Trifluormethoxysubstituenten.

- In einer besonderen Ausführungsform haben die Variablen der Verbindungen der Formel I folgende Bedeutungen, wobei diese für sich allein betrachtet als auch in Kombination miteinander besondere Ausgestaltungen der Verbindungen der Formel I darstellen:
- Bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der R¹ Halogen, C₁-C₄-Alkyl oder C₁-C₆-Halogenalkyl; besonders bevorzugt Halogen oder C₁-C₆-Halogenalkyl; insbesondere bevorzugt Halogen oder C₁-C₄-Halogenalkyl; außerordentlich bevorzugt Fluor, Chlor oder CF₃;
- 15 bedeutet.

25

bedeuten.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

20 R² und R³ unabhängig voneinander

Wasserstoff, Halogen, C_1 - C_4 -Alkyl oder C_1 - C_6 -Halogenalkyl; sehr bevorzugt Wasserstoff, Halogen oder C_1 - C_6 -Halogenalkyl; besonders bevorzugt Wasserstoff, Halogen oder C_1 - C_4 -Halogenalkyl; insbesondere bevorzugt Wasserstoff, Fluor, Chlor oder CF_3 ; außerordentlich bevorzugt Wasserstoff, Fluor oder Chlor; sehr außerordentlich bevorzugt Wasserstoff oder Fluor;

- 30 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der
 - Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl; besonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl; insbesondere bevorzugt Wasserstoff oder Halogen; außerordentlich bevorzugt Wasserstoff;
- 35 außerordentlich bevorzugt Wasserstoff bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁵ Wasserstoff; und

R⁶ Wasserstoff oder Hydroxy;

5 besonders bevorzugt Wasserstoff; bedeuten.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁷ C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl; besonders bevorzugt C₁-C₆-Alkyl; insbesondere bevorzugt C₁-C₄-Alkyl; außerordentlich bevorzugt CH₃;

15 bedeutet.

10

30

Ebenso bevorzugt and die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

20 R⁸ OR¹⁵ oder SR¹⁶;
besonders bevorzugt OR¹⁵;
bedeutet.

25 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁸ OR¹⁵ oder NR¹⁷R¹⁸; besonders bevorzugt NR¹⁷R¹⁸; bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁸ SR¹⁵ oder NR¹⁷R¹⁸;

35 besonders bevorzugt SR¹⁵; bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

 R^9 Wasserstoff oder C₁-C₄-Alkyl; bevorzugt Wasserstoff oder CH₃; insbesondere bevorzugt Wasserstoff; bedeutet.

5

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

 R^{10} Wasserstoff, Halogen, C₁-C₆-Alkyl, Hydroxy oder C₁-C₆-Alkoxy; besonders bevorzugt Wasserstoff, Halogen oder C₁-C₆-Alkyl; insbesondere bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl; außerordentlich bevorzugt Wasserstoff, Fluor oder CH3; bedeutet.

15

20

30

35

10

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

 R^{11} Wasserstoff, Halogen, C₁-C₀-Alkyl oder C₁-C₀-Halogenalkyl; besonders bevorzugt Wasserstoff, Halogen oder C₁-C₆-Alkyl; insbesonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl; außerordenrlich bevorzugt Wasserstoff oder Halogen; sehr außerordentlich bevorzugt Wasserstoff, Fluor oder Chlor;

bedeutet.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der 25 Formel I, in der

R¹², R¹³ und R¹⁴ jeweils unabhängig voneinander Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl; besonders bevorzugt Wasserstoff, Halogen oder Cyano; insbesondere bevorzugt Wasserstoff, Fluor oder Chlor; außerordentlich bevorzugt Wasserstoff;

bedeuten.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

R¹⁵. R¹⁶ und R¹⁷ jeweils unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylaminocarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-

20

25

30

40

aminocarbonyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-aminocarbonyl, Di-(C_1 - C_6 -alkyl)-aminothicarbonyl, C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl,

wobei die genannten Alkyl, Cycloalkyl– und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di-(C_1 - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, Hydroxycarbonyl, C_1 - C_4 -Alkylcarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl, oder C_1 - C_4 -Alkylcarbonyloxy;

Phenyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenyl-sulfonylaminocarbonyl oder Phenyl-C₁-C₆-alkylcarbonyl, wobei der Phenylrest der 6 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; oder

SO₂R¹⁹.

esonders bevorzugt Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl oder Di-(C₁-C₆-alkyl)-aminothiocarbonyl, wobei die genannten Alkyl- oder Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenylsulfonyl-aminocarbonyl oder Phenyl-C₁-C₆-alkylcarbonyl, wobei der Phenylring der 5 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenoxy; oder

35 SO₂R¹⁹;

insbesondere bevorzugt Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Alkyl-carbonyl, C_2 - C_6 -Alkenylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, Di-(C_1 - C_6 -alkyl)-amino-carbonyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-aminothiocarbonyl, Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylcarbonyl-

24

 C_1 - C_6 -alkyl oder Phenyl- C_1 - C_6 -alkylcarbonyl wobei der Phenylring der 4 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogen-alkoxy; oder

5

10

15

SO₂R¹⁹;

bedeuten.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

R¹⁵, R¹⁶ und R¹⁷ jeweils unabhängig voneinander

Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Alkylcarbonyl, C_2 - C_6 -Alkenylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylaminocarbonyl, Di-(C_1 - C_6 -alkyl)-aminocarbonyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-aminocarbonyl, C_1 - C_6 -Alkoxyimino-C₁- C_6 -alkyl, wobei die genannten Alkyl-, Cycloalkyl- oder Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

20

30

Cyano, Hydroxy, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di-(C_1 - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, Hydroxycarbonyl, C_1 - C_4 -Alkoxycarbonyl, Aminocarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl oder C_1 - C_4 -Alkylcarbonyloxy; oder

SO₂R¹⁹;

25 bedeuten.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der R¹⁵ und R¹⁷ jeweils unabhängig voneinander

Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylaminocarbonyl, Di- $(C_1$ - C_6 -alkyl)-aminocarbonyl, N- $(C_1$ - C_6 -Alkoxy)-N- $(C_1$ - C_6 -alkyl)-amino-carbonyl, wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylaminocarbonyl oder Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl;

35

Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Phenylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclylcarbonyl,

wobei der Phenyl- und der Heterocyclylrest der 6 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl; oder

5 SO₂R¹⁹;

10

15

20

25

30

35

40

besonders bevorzugt Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl, N- $(C_1$ - C_4 -Alkoxy)-N- $(C_1$ - C_4 -alkyl)-aminocarbonyl, wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylaminocarbonyl oder Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl;

Phenyl-C₁-C₄-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₄-alkyl, Phenylamino-carbonyl, N-(C₁-C₄-Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclylcarbonyl, wobei der Phenyl- und der Heterocyclylrest der 6 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgeden Gruppen tragen kann: Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl; oder

SO₂R¹⁹;

Insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl, wobei der genannte Alkylrest partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann:

Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino-carbonyl oder Di-(C₁-C₄-alkyl)-aminocarbonyl;

Phenyl-C₁-C₄-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₄-alkyl, Phenylaminocarbonyl, N-(C₁-C₄-Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclylcarbonyl, oder

SO₂R¹⁹;

bedeuten.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

 R^{16} Wasserstoff, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylaminocarbonyl, Di- $(C_1$ - C_6 -alkyl)-aminocarbonyl oder N- $(C_1$ - C_6 -Alkoxy)-N- $(C_1$ - C_6 -alkyl)-amino-carbonyl,

wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano oder C₁-C₄-Alkoxy;

besonders bevorzugt Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-(C₁-C₄-Alkoxy)-N-(C₁-C₄-alkyl)-aminocarbonyl, wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano oder C₁-C₄-Alkoxy;

insbesondere bevorzugt Wasserstoff, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl, N-(C_1 - C_4 -Alkoxy)-N-(C_1 - C_4 -alkyl)-aminocarbonyl,

15 bedeutet.

20

25

30

35

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

R¹⁸ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkenyl, wobei die 4 letztgenannten Reste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

Phenyl oder Phenyl- C_1 - $C_{\tilde{q}}$ -alkyl, wobei der Phenylring der 2 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

besonders bevorzugt Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl, wobei die 3 genannten Reste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di- $(C_1$ - C_4 -Alkylaminocarbonyl oder C_1 - C_4 -Alkylcarbonyloxy;

Phenyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylring der 2 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei

der folgenden Gruppen tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenaloxy;

insbesondere bevorzugt Wasserstoff oder C₁-C₆-Alkyl, wobei der Alkylrest partiell oder vollständig haolgeniert sein kann;

Phenyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylring der 2 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

bedeutet.

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

R¹⁹ C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder Phenyl, wobei der Phenylrest partiell oder teilweise halogeniert sein kann und/oder durch C₁-C₄-Alkyl substituiert sein kann; besonders bevorzugt C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl; insbesondere bevorzugt Methyl, Trifluormethyl oder Phenyl.

bedeutet.

20

30

35

5

10

15

Ebenso bevorzugt sind die benzoylcarbonyl-substituierten Phenylalanin-Amide der Formel I, in der

R⁵ und R⁶ Wasserstoff;

 R^7 C_1 - C_4 -Alkyl,

25 besonders bevorzugt CH₃;

R⁹ Wasserstoff;

R¹⁰ Wasserstoff, Halogen, Cyano oder C₁-C₄-Alkyl,

besonders bevorzugt Wasserstoff, Fluor oder CH3;

R¹¹ Wasserstoff, Halogen oder Cyano,

besonders bevorzugt Wasserstoff, Fluor oder Chlor;

R¹², R¹³ und R¹⁴ unabhängig voneinander Wasserstoff, Fluor oder Chlor, besonders bevorzugt Wasserstoff;

R¹⁵ und R¹⁷ unabhängig voneinander Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, Phenylaminocarbonyl, N-(C1-C₄-alkyl)-N-(phenyl)-aminocarbonyl, SO₂CH₃ oder SO₂(C₆H₅);

R¹⁶ Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, Phenylaminocarbonyl, N-(C₁-C₄-alkyl)-N-(phenyl)-aminocarbonyl; und

R¹⁸ Wasserstoff oder C₁-C₄-Alkyl;

40 bedeuten.

Außerordentlich bevorzugt sind die Verbindungen der Formel I.a.1 (entspricht Formel I mit R^1 = F; R^2 , R^3 , R^4 , R^5 , R^6 , R^9 , R^{13} , R^{14} = H; R^7 = CH_3), insbesondere die Verbindungen der Formel I.a.1.1 bis I.a.1.558 der Tabelle 1, wobei die Definitionen der Variablen R^1 bis R^{19} nicht nur in Kombination miteinander sondern auch jeweils für sich allein betrachtet für die erfindungsgemäßen Verbindungen eine besondere Rolle spielen.

10 Tabelle 1

Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.1	ОН	Н	Н	H
I.a.1.2	ОН	Н	Н	F
l.a.1.3	OH .	Н	F	Н
I.a.1.4	ОН	Н	F	F
I.a.1.5	ОН	Н	CI	Н
I.a.1.6	ОН	Н	Cl	F
l.a.1.7	ОН	F	Н	Н
l.a.1.8	ОН	F	Н	F
I.a.1.9	OH	F	F	Н
I.a.1.10	OH	F	F	F
I.a.1.11	ОН	F	Cl	Н
I.a.1.12	ОН	F	Cl	F
I.a.1.13	OH	CH₃	Н	Н
I.a.1.14	ОН	CH₃	Н	F
I.a.1.15	ОН	CH₃	F	Н
I.a.1.16	OH	CH₃	F	F
I.a.1.17	ОН	CH₃	Cl	Н
I.a.1.18	ОН	CH ₃	Cl	F
I.a.1.19	OC(O)CH ₃	Н	Н	Н
I.a.1.20	OC(O)CH ₃	Н	Н	F

	29			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.21	OC(O)CH₃	Н	F	Н
I.a.1.22	OC(O)CH₃	Н	F	F
I.a.1.23	OC(O)CH₃	Н	Cl	Н
I.a.1.24	OC(O)CH₃	Н	CI	F
I.a.1.25	OC(O)CH₃	F	Н	Н
I.a.1.26	OC(O)CH ₃	F	Н	F
I.a.1.27	OC(O)CH₃	F	F	Н
I.a.1.28	OC(O)CH ₃	F	F	F
I.a.1.29	OC(O)CH ₃	F	Cl	Н
I.a.1.30	OC(O)CH ₃	F	Cl	F
I.a.1.31	OC(O)CH ₃	CH ₃	Н	Н
I.a.1.32	OC(O)CH₃	CH₃	Н	F
I.a.1.33	OC(O)CH₃	CH₃	F	Н
I.a.1.34	OC(O)CH₃	CH₃	F	F
I.a.1.35	OC(O)CH ₃	CH₃	CI	Н
I.a.1.36	OC(O)CH ₃	CH ₃	Cl	F
I.a.1.37	OC(O)tertC ₄ H ₉	H	Н	Η
I.a.1.38	OC(O)tertC ₄ H ₉	H	Н	F
I.a.1.39	OC(O)tertC ₄ H ₉	Н	F	Н
I.a.1.40	OC(O)tertC ₄ H ₉	H	F	F
I.a.1.41	OC(O)tertC ₄ H ₉	Н	CI	Н
I.a.1.42	OC(O) <i>tert</i> C ₄ H ₉	Н	Cl	F
I.a.1.43	OC(O) <i>tert</i> C₄H ₉	F	Н	Н
I.a.1.44	OC(O) <i>tert</i> C₄H ₉	F	Н	F.
I.a.1.45	OC(O) <i>tert</i> C₄H ₉	F	F	Н
I.a.1.46	OC(O) <i>tert</i> C₄H ₉	F	F	F
I.a.1.47	OC(O) <i>tert</i> C₄H ₉	F	CI	Н
I.a.1.48	OC(O)tertC₄H ₉	F	Cl	F
I.a.1.49	OC(O)tertC ₄ H ₉	CH₃	Н	Н
I.a.1.50	OC(O)tertC ₄ H ₉	CH₃	H	F
I.a.1.51	OC(O)tertC₄H ₉	CH₃	F	Н
I.a.1.52	OC(O) <i>tert</i> C ₄ H ₉	CH₃	F	F
I.a.1.53	OC(O) <i>tert</i> C ₄ H ₉	CH₃	Cl	Н
I.a.1.54	OC(O)tertC ₄ H ₉	CH₃	Cl	F
l.a.1.55	OC(O)NH(CH₃)	Н	Н	Н
I.a.1.56	OC(O)NH(CH₃)	Н	Н	F
I.a.1.57	OC(O)NH(CH₃)	Н	F	Н
I.a.1.58	OC(O)NH(CH ₃)	Н	F	F

	30			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.59	OC(O)NH(CH₃)	Н	Cl	Н
I.a.1.60	OC(O)NH(CH₃)	Н	Cl	F
I.a.1.61	OC(O)NH(CH₃)	F	Н	Н
I.a.1.62	OC(O)NH(CH₃)	F	Η .	F
I.a.1.63	OC(O)NH(CH ₃)	F	F	Н
I.a.1.64	OC(O)NH(CH ₃)	F	F	F
I.a.1.65	OC(O)NH(CH₃)	F .	Cl	Н
I.a.1.66	OC(O)NH(CH ₃)	F	Cl	F
I.a.1.67	OC(O)NH(CH ₃)	CH ₃	Н	Н
I.a.1.68	OC(O)NH(CH ₃)	CH ₃	Н	F
I.a.1.69	OC(O)NH(CH ₃)	CH₃	F	Н
I.a.1.70	OC(O)NH(CH ₃)	CH ₃	F	F
· I.a.1.71	OC(O)NH(CH ₃)	CH ₃	Cl	Н
I.a.1.72	OC(O)NH(CH ₃)	CH ₃	Cl	F
I.a.1.73	OC(O)NH(C ₆ H ₅)	Н	Н	Н
I.a.1.74	OC(O)NH(C ₆ H ₅)	Н	Н	F
I.a.1.75		Н	F	Н
I.a.1.76		Н	F	F
I.a.1.77	OC(O)NH(C ₆ H ₅)	Н	Cl	Н
I.a.1.78	OC(O)NH(C ₆ H ₅)	Н	Cl	F
I.a.1.79	OC(O)NH(C ₆ H ₅)	F	Н	Н
I.a.1.80	OC(O)NH(C ₆ H ₅)	F	Н	F
I.a.1.81	OC(O)NH(C ₆ H ₅)	F	F	Н
I.a.1.82	OC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.83	OC(O)NH(C ₆ H ₅)	F	Cl	Н
I.a.1.84	OC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.85	OC(O)NH(C ₆ H ₅)	CH₃	Н	Н
I.a.1.86	OC(O)NH(C ₆ H ₅)	CH₃	Н	F
I.a.1.87	OC(O)NH(C ₆ H ₅)	CH ₃	F	Н
I.a.1.88	OC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.89	OC(O)NH(C ₆ H ₅)	CH₃	Cl	Н
I.a.1.90	OC(O)NH(C ₆ H ₅)	CH₃	Cl	F
I.a.1.91	OC(O)N(CH ₃) ₂	Н	Н	Н
I.a.1.92	OC(O)N(CH ₃) ₂	Н	Н	* F
I.a.1.93	OC(O)N(CH ₃) ₂	Н	F	H
I.a.1.94	OC(O)N(CH ₃) ₂	Н	F	F
I.a.1.95	OC(O)N(CH ₃) ₂	Н	Cl	Н
I.a.1.96	OC(O)N(CH ₃) ₂	Н	Cl	F

	31			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.97	OC(O)N(CH ₃) ₂	F	Н	Н
I.a.1.98	OC(O)N(CH ₃) ₂	F	Н	F
I.a.1.99	OC(O)N(CH ₃) ₂	F	F	Н
I.a.1.100	OC(O)N(CH ₃) ₂	F	F	F
I.a.1.101	OC(O)N(CH ₃) ₂	F	Cl	Н
I.a.1.102	OC(O)N(CH ₃) ₂	F	Cl	F
I.a.1.103	OC(O)N(CH ₃) ₂	CH ₃	Н	Н
I.a.1.104	OC(O)N(CH ₃) ₂	CH ₃	Н	F
I.a.1.105	OC(O)N(CH ₃) ₂	CH ₃	F	Н
I.a.1.106	OC(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.107	OC(O)N(CH ₃) ₂	CH₃	Cl	Н
I.a.1.108	OC(O)N(CH ₃) ₂	CH ₃	Cl	F
I.a.1.109	OC(O)N(CH ₃)(C ₆ H ₅)	Н	Н	Н
I.a.1.110	$OC(O)N(CH_3)(C_6H_5)$	Н	Н	F
I.a.1.111	$OC(O)N(CH_3)(C_6H_5)$	Н	F	Н
I.a.1.112	OC(O)N(CH ₃)(C ₆ H ₅)	Н	· F	F
I.a.1.113	$OC(O)N(CH_3)(C_6H_5)$	Н	CI	Н
I.a.1.114	OC(O)N(CH ₃)(C ₆ H ₅)	Н	Cl	F
I.a.1.115	OC(O)N(CH ₃)(C ₆ H ₅)	F	Н	Н
I.a.1.116	OC(O)N(CH ₃)(C ₆ H ₅)	F	Н	F
I.a.1.117	OC(O)N(CH ₃)(C ₆ H ₅)	F	F	Н
I.a.1.118	$OC(O)N(CH_3)(C_6H_5)$	F	F	F
I.a.1.119	$OC(O)N(CH_3)(C_6H_5)$	F	Cl	Н
I.a.1.120	$OC(O)N(CH_3)(C_6H_5)$	F	CI	F
I.a.1.121	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Н	Н
I.a.1.122	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Н	F
I.a.1.123	OC(O)N(CH ₃)(C ₆ H ₅)	CH₃	F	Н
I.a.1.124	OC(O)N(CH ₃)(C ₆ H ₅)	CH₃	F	F
I.a.1.125	OC(O)N(CH ₃)(C ₆ H ₅)	CH₃	CI	Н
I.a.1.126	OC(O)N(CH ₃)(C ₆ H ₅)	CH₃	CI	F
I.a.1.127	OSO ₂ CH ₃	Н	Н	Н
I.a.1.128	OSO₂CH₃	Н	Н	F
I.a.1.129	OSO ₂ CH ₃	Н	F	Н
I.a.1.130	OSO ₂ CH ₃	Н	F	F
I.a.1.131	OSO ₂ CH ₃	Н	CI	Н
I.a.1.132	OSO ₂ CH ₃	Н	CI	F
I.a.1.133	OSO ₂ CH ₃	F	Н	Н
I.a.1.134	OSO ₂ CH ₃	F	Н	F

Nr. R³ R¹0 R¹1 R¹2 I.a.1.135 OSO₂CH₃ F F H I.a.1.136 OSO₂CH₃ F F F I.a.1.137 OSO₂CH₃ F CI H I.a.1.138 OSO₂CH₃ F CI H I.a.1.139 OSO₂CH₃ CH₃ H H I.a.1.140 OSO₂CH₃ CH₃ H F I.a.1.141 OSO₂CH₃ CH₃ F F I.a.1.142 OSO₂CH₃ CH₃ F F I.a.1.143 OSO₂CH₃ CH₃ F F I.a.1.144 OSO₂CH₃ CH₃ CI H I.a.1.143 OSO₂CH₃ CH₃ CI H I.a.1.144 OSO₂CH₃ CH₃ CH₃ F F I.a.1.145 SH H H H H H H H H H H H I.a.1.144 SH H
I.a.1.136
I.a.1.141
I.a.1.142 OSO₂CH₃ CH₃ F F I.a.1.143 OSO₂CH₃ CH₃ CI H I.a.1.144 OSO₂CH₃ CH₃ CI F I.a.1.145 SH H H H H I.a.1.146 SH H H H F I H I H H F F I H I H F F H H F F F H I
I.a.1.143
I.a.1.144 OSO ₂ CH ₃ CH ₃ CI F I.a.1.145 SH H H H I.a.1.146 SH H F I.a.1.147 SH H F I.a.1.148 SH H F F I.a.1.149 SH H CI H I.a.1.150 SH H CI F I.a.1.151 SH F H H I.a.1.152 SH F H F I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F F F I.a.1.156 SH F CI F I.a.1.157 SH CH ₃ H H I.a.1.158 SH CH ₃ F I.a.1.160 SH CH ₃ F I.a.1.161 SH CH ₃ CI F I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H H I.a.1.165 CH ₃ CH ₃
I.a.1.145 SH H H H H H H H H H F I.a.1.146 SH H H F I.a.1.147 SH H F H H F H H I.a.1.148 SH SH H SH H H GI H I.a.1.149 SH SH SH SH SH SH I.a.1.150 SH
I.a.1.146 SH H H F I.a.1.147 SH H F H I.a.1.148 SH H F F I.a.1.149 SH H CI H I.a.1.150 SH H CI F I.a.1.151 SH F H H I.a.1.152 SH F F H H I.a.1.153 SH F F H H I.a.1.154 SH F F F H H I<
I.a.1.147 SH H F H I.a.1.148 SH H F F I.a.1.149 SH H CI H I.a.1.150 SH H CI F I.a.1.151 SH F H H H I.a.1.152 SH F H H F F H H F F H H F F H H F F F F F I
I.a.1.148 SH H F F I.a.1.149 SH H CI H I.a.1.150 SH H CI F I.a.1.151 SH F H H I.a.1.152 SH F H H I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH3 H H I.a.1.158 SH CH3 H H I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 F F I.a.1.162 SH CH3 CI H I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H H
I.a.1.149 SH H CI H I.a.1.150 SH H CI F I.a.1.151 SH F H H I.a.1.152 SH F H H I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH SH CH3 H H I.a.1.158 SH CH3 H F I.a.1.159 SH CH3 F F I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H H
I.a.1.150 SH H CI F I.a.1.151 SH F H H I.a.1.152 SH F H F I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH3 H H I.a.1.158 SH CH3 H F I.a.1.159 SH CH3 F F I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H H
I.a.1.151 SH F H H I.a.1.152 SH F H F I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH ₃ H H I.a.1.158 SH CH ₃ H F I.a.1.159 SH CH ₃ F H I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H H
I.a.1.152 SH F H F I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH3 H H I.a.1.158 SH CH3 H F I.a.1.159 SH CH3 F H I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H H
I.a.1.152 SH F H F I.a.1.153 SH F F H I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH3 H H I.a.1.158 SH CH3 F H I.a.1.159 SH CH3 F H I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H H
I.a.1.154 SH F F F I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH ₃ H H I.a.1.158 SH CH ₃ H F I.a.1.159 SH CH ₃ F H I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H H
I.a.1.155 SH F CI H I.a.1.156 SH F CI F I.a.1.157 SH CH ₃ H H I.a.1.158 SH CH ₃ H F I.a.1.159 SH CH ₃ F H I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H H
I.a.1.156 SH F CI F I.a.1.157 SH CH ₃ H H I.a.1.158 SH CH ₃ H F I.a.1.159 SH CH ₃ F H I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H F
I.a.1.150 SH CH3 H H I.a.1.157 SH CH3 H F I.a.1.158 SH CH3 H F I.a.1.159 SH CH3 F H I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H F
I.a.1.158 SH CH ₃ H F I.a.1.159 SH CH ₃ F H I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H F
I.a.1.150 SH CH3 F H I.a.1.160 SH CH3 F F I.a.1.161 SH CH3 CI H I.a.1.162 SH CH3 CI F I.a.1.163 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H F
I.a.1.160 SH CH ₃ F F I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H F
I.a.1.160 SH CH ₃ CI H I.a.1.161 SH CH ₃ CI H I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H F
I.a.1.162 SH CH ₃ CI F I.a.1.163 SC(O)CH ₃ H H H I.a.1.164 SC(O)CH ₃ H H F
I.a.1.162 SC(O)CH3 H H H I.a.1.164 SC(O)CH3 H H F
I.a.1.164 SC(O)CH ₃ H H F
1.a. 1.10-
La 1 165 SC(O)CH ₂ H F H
1.a. 1. 100
I.a.1.166 SC(O)CH₃ H F F
I.a.1.167 SC(O)CH₃ H Cl H
I.a.1.168 SC(O)CH₃ H CI F
I.a.1.169 SC(O)CH ₃ F H H
I.a.1.170 SC(O)CH ₃ F H F
I.a.1.171 SC(O)CH₃ F F H
1a 1 172 SC(O)CH ₃ F F F

	33			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.173	SC(O)CH ₃	F	CI	Н
I.a.1.174	SC(O)CH ₃	F	Cl	F
I.a.1.175	SC(O)CH ₃	CH₃	Н	Н
I.a.1.176	SC(O)CH ₃	CH ₃	Н	F
I.a.1.177	SC(O)CH ₃	CH ₃	F	Н
I.a.1.178	SC(O)CH ₃	CH ₃	F	F
I.a.1.179	SC(O)CH ₃	CH ₃	CI	Н
I.a.1.180	SC(O)CH ₃	CH ₃	CI	F
I.a.1.181	SC(O)tertC ₄ H ₉	Н	Н	Н
I.a.1.182	SC(O)tertC ₄ H ₉	Н	Н	F
I.a.1.183	SC(O)tertC ₄ H ₉	Н	F	Н
I.a.1.184	SC(O)tertC ₄ H ₉	Н	F	F
I.a.1.185	SC(O)tertC ₄ H ₉	Н	Cl	Н
I.a.1.186	SC(O)tertC ₄ H ₉	Н	CI	F
I.a.1.187	SC(O)tertC ₄ H ₉	F	Н	Н
I.a.1.188	SC(O)tertC ₄ H ₉	F	Н	F
I.a.1.189	SC(O)tertC ₄ H ₉	F	F	Н
I.a.1.190	SC(O)tertC₄H ₉	F	F	F
I.a.1.191	SC(O)tertC ₄ H ₉	F	Cl	Н
I.a.1.192	SC(O)tertC ₄ H ₉	F	Cl	F
I.a.1.193	SC(O)tertC₄H ₉	CH ₃	Н	Н
I.a.1.194	SC(O)tertC ₄ H ₉	CH ₃	Н	F
I.a.1.195	SC(O)tertC₄H ₉	CH₃	F	Н
I.a.1.196	SC(O)tertC ₄ H ₉	CH ₃	F	F
I.a.1.197	SC(O)tertC ₄ H ₉	CH₃	CI	Н
I.a.1.198	SC(O)tertC ₄ H ₉	CH₃	Cl	F
I.a.1.199	SC(O)NH(CH ₃)	Н	Н	Н
I.a.1.200	SC(O)NH(CH₃)	Н	Н	F
I.a.1.201	SC(O)NH(CH₃)	Н	F	Н
I.a.1.202	SC(O)NH(CH ₃)	Н	F	F
I.a.1.203	SC(O)NH(CH ₃)	Н	Cl	Н
I.a.1.204	SC(O)NH(CH₃)	Н	CI	F
I.a.1.205	SC(O)NH(CH ₃)	F	Н	Н
I.a.1.206	SC(O)NH(CH ₃)	F	Н	F
I.a.1.207	SC(O)NH(CH ₃)	F	F	Н
I.a.1.208	SC(O)NH(CH ₃)	F	F	F
		F	Cl	Н
I.a.1.209	SC(O)NH(CH₃)	1) Oi	F

	34			40
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.211	SC(O)NH(CH₃)	CH ₃	Н	Н
I.a.1.212	SC(O)NH(CH₃)	CH ₃	Н	F
I.a.1.213	SC(O)NH(CH ₃)	CH₃	F	H
I.a.1.214	SC(O)NH(CH ₃)	CH ₃	F	F
I.a.1.215	SC(O)NH(CH ₃)	CH₃	Cl	Н
I.a.1.216	SC(O)NH(CH ₃)	CH₃	· CI	F
I.a.1.217	SC(O)NH(C ₆ H ₅)	Н	Н	Н
I.a.1.218	SC(O)NH(C ₆ H ₅)	Н	Н	F
I.a.1.219	SC(O)NH(C ₆ H ₅)	H	F	Н
I.a.1.220	SC(O)NH(C ₆ H ₅)	Н	F	F
I.a.1.221	SC(O)NH(C ₆ H ₅)	Н	Cl	Н
I.a.1.222	SC(O)NH(C ₆ H ₅)	Н	Cl	F
I.a.1.223	SC(O)NH(C ₆ H ₅)	F	Н	Н
I.a.1.224	SC(O)NH(C ₆ H ₅)	F	Н	F
I.a.1.225	SC(O)NH(C ₆ H ₅)	F	F	H
I.a.1.226	SC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.227	$SC(O)NH(C_6H_5)$ $SC(O)NH(C_6H_5)$ $SC(O)NH(C_6H_5)$	F	Cl	Н
I.a.1.228	SC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.229	SC(O)NH(C ₆ H ₅)	CH₃	Н	Н
I.a.1.230	SC(O)NH(C ₆ H ₅)	CH ₃	Н	F
I.a.1.231	SC(O)NH(C ₆ H ₅)	CH ₃	F	Н
I.a.1.232	SC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.233	SC(O)NH(C ₆ H ₅)	CH ₃	Cl	Н
I.a.1.234	SC(O)NH(C ₆ H ₅)	CH₃	Cl	F
l.a.1.235	SC(O)N(CH ₃) ₂	Н	Н	Н
I.a.1.236	SC(O)N(CH ₃) ₂	· H	Н	F
I.a.1.237	SC(O)N(CH ₃) _{2.}	Н	F	Н
I.a.1.238	SC(O)N(CH ₃) ₂	Н	F	F
I.a.1.239	SC(O)N(CH ₃) ₂	Н	Cl	Н
I.a.1.240	SC(O)N(CH ₃) ₂	Н	Cl	F
I.a.1.241	SC(O)N(CH ₃) ₂	F	H	Н
I.a.1.242	SC(O)N(CH ₃) ₂	F	Н	F
I.a.1.243	SC(O)N(CH ₃) ₂	F	F	H
I.a.1.244	SC(O)N(CH ₃) ₂	F	F	F
I.a.1.245	SC(O)N(CH ₃) ₂	F	Cl	H
I.a.1.246	SC(O)N(CH ₃) ₂	F	Ci	F
I.a.1.247	SC(O)N(CH ₃) ₂	CH ₃	Н	Н
I.a.1.248	SC(O)N(CH ₃) ₂	CH₃	H	F

	33		<u> </u>	R ¹²
Nr.	R ⁸	R ¹⁰	R ¹¹	
l.a.1.249	SC(O)N(CH ₃) ₂	CH ₃	F	H
I.a.1.250	SC(O)N(CH ₃) ₂	CH ₃	F	F
l.a.1.251	SC(O)N(CH ₃) ₂	CH₃	Cl	Н
I.a.1.252	SC(O)N(CH ₃) ₂	CH₃	Cl	F
I.a.1.253	SC(O)N(CH ₃)(C ₆ H ₅)	Н	Н	Н
I.a.1.254	SC(O)N(CH ₃)(C ₆ H ₅)	Н	Н	F
I.a.1.255	SC(O)N(CH ₃)(C ₆ H ₅)	Н	F	Н
I.a.1.256	SC(O)N(CH ₃)(C ₆ H ₅)	Н	F	F
I.a.1.257	SC(O)N(CH ₃)(C ₆ H ₅)	Н	Cl	Н
I.a.1.258	$SC(O)N(CH_3)(C_6H_5)$	Н	Cl	F
I.a.1.259	SC(O)N(CH ₃)(C ₆ H ₅)	F	Н	Н
l.a.1.260	SC(O)N(CH ₃)(C ₆ H ₅)	F	Н	F
I.a.1.261	SC(O)N(CH ₃)(C ₆ H ₅)	F	F	Н
l.a.1.262	SC(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.263	SC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	Н
I.a.1.264	SC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	F
I.a.1.265	SC(O)N(CH ₃)(C ₆ H ₅)	CH₃	Н	Н
I.a.1.266	SC(O)N(CH ₃)(C ₆ H ₅)	CH₃	Н	F
I.a.1.267	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	Н
I.a.1.268	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	F
I.a.1.269	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	Н
I.a.1.270	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.271	NH ₂	Н	Н	Н
I.a.1.272	NH ₂	Н	Н	F
I.a.1.273	NH ₂	Н	F	Н
l.a.1.274	NH ₂	Н	F	F
I.a.1.275	NH ₂	Н	Cl	Η .
I.a.1.276	NH ₂	Н	CI	F
I.a.1.277	NH ₂	F	Н	Н
I.a.1.278	NH ₂	F	Н	F
I.a.1.279	NH ₂	F	F	Н
I.a.1.280	NH ₂	F	F	F
I.a.1.281	NH ₂	F	Cl	Н
I.a.1.282	NH ₂	F	Cl	F
I.a.1.283	NH ₂	CH ₃	Н	Н
I.a.1.284	NH ₂	CH ₃	Н	F
I.a.1.285	NH ₂	CH ₃	F	Н
I.a.1.286	NH ₂	CH ₃	F	F

	30			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.287	NH ₂	CH ₃	Cl	Н
I.a.1.288	NH ₂	CH ₃	Cl	F
I.a.1.289	NHC(O)CH₃	Н	Н	Н
I.a.1.290	NHC(O)CH ₃	Н	Н	F
I.a.1.291	NHC(O)CH ₃	Н	F	Н
I.a.1.292	NHC(O)CH₃	Н	F	F
I.a.1.293	NHC(O)CH ₃	Н	Cl	Н
I.a.1.294	NHC(O)CH₃	Н	Cl	F
I.a.1.295	NHC(O)CH ₃	F	Н	Н
I.a.1.296	NHC(O)CH ₃	F	Н	F
I.a.1.297	NHC(O)CH ₃	F	F	Н
I.a.1.298	NHC(O)CH₃	F	F	F
I.a.1.299	NHC(O)CH₃	F	Cl	Н
I.a.1.300	NHC(O)CH₃	F	Cl	F
I.a.1.301	NHC(O)CH₃	CH ₃	Н	Н
I.a.1.302	NHC(O)CH₃	CH₃	H	F.
I.a.1.303	NHC(O)CH₃	CH ₃	F	Н
I.a.1.304	NHC(O)CH₃	CH ₃	F	F
I.a.1.305	NHC(O)CH₃	CH ₃	Cl	H
I.a.1.306	NHC(O)CH₃	CH ₃	Cl	F
I.a.1.307	NHC(O)tertC ₄ H ₉	Н	Н	Н
I.a.1.308	NHC(O)tertC ₄ H ₉	Н	Н	F
I.a.1.309	NHC(O)tertC ₄ H ₉	Н	F	Н
I.a.1.310	NHC(O)tertC ₄ H ₉	Н	F	F
I.a.1.311	NHC(O)tertC ₄ H ₉	Н	Cl	Н
I.a.1.312	NHC(O)tertC ₄ H ₉	Н	CI	F
I.a.1.313	NHC(O)tertC ₄ H ₉	F	Н	Н
I.a.1.314	NHC(O)tertC ₄ H ₉	F	Н	F
I.a.1.315	NHC(O)tertC ₄ H ₉	F	F	H ·
I.a.1.316	NHC(O)tertC ₄ H ₉	F	F	F
I.a.1.317	NHC(O)tertC ₄ H ₉	F	CI	Н
I.a.1.318	NHC(O)tertC ₄ H ₉	F	CI	F
I.a.1.319	NHC(O)tertC ₄ H ₉	CH ₃	Н	Н
I.a.1.320	NHC(O)tertC ₄ H ₉	CH₃	Н	F
I.a.1.321	NHC(O)tertC ₄ H ₉	CH ₃	F	Н
I.a.1.322	NHC(O)tertC ₄ H ₉	CH₃	F	F
I.a.1.323	NHC(O)tertC ₄ H ₉	CH₃	CI	Н
[1.a. 1.323]				F

	31			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.325	NHC(O)NH(CH₃)	Н	Н	Н
I.a.1.326	NHC(O)NH(CH₃)	Н	Н	F
I.a.1.327	NHC(O)NH(CH₃)	Н	F	Н
I.a.1.328	NHC(O)NH(CH₃)	Н	F	F
I.a.1.329	NHC(O)NH(CH₃)	Н	Cl	Н
I.a.1.330	NHC(O)NH(CH ₃)	Н	Cl	F
I.a.1.331	NHC(O)NH(CH ₃)	F	Н	Н
I.a.1.332	NHC(O)NH(CH ₃)	F	Н	F
I.a.1.333	NHC(O)NH(CH ₃)	F	F	Н
I.a.1.334	NHC(O)NH(CH ₃)	F	F	F
I.a.1.335	NHC(O)NH(CH₃)	F	Cl	Н
I.a.1.336	NHC(O)NH(CH ₃)	F	Cl	F
I.a.1.337	NHC(O)NH(CH ₃)	CH₃	Н	Н
I.a.1.338	NHC(O)NH(CH₃)	· CH ₃	Н	F
I.a.1.339	NHC(O)NH(CH ₃)	CH₃	F	Н
l.a.1,340	NHC(O)NH(CH ₃)	CH ₃	F	F
I.a.1.341	NHC(O)NH(CH₃)	CH₃	CI	Н
I.a.1.342	NHC(O)NH(CH ₃)	CH₃	Cl	F
l.a.1.343	NHC(O)NH(C ₆ H ₅)	H _.	Н	Н
I.a.1.344	NHC(O)NH(C ₆ H ₅)	Н	H.	F
I.a.1.345	NHC(O)NH(C ₆ H ₅)	Н	F	Н
I.a.1.346	NHC(O)NH(C ₆ H ₅)	Н	F	F
I.a.1.347	NHC(O)NH(C ₆ H ₅)	Н	Cl	Н
I.a.1.348	NHC(O)NH(C ₆ H ₅)	Н	CI	F
I.a.1.349	NHC(O)NH(C ₆ H ₅)	F	Н	Н
I.a.1.350	NHC(O)NH(C ₆ H ₅)	F	Н	F
I.a.1.351	NHC(O)NH(C ₆ H ₅)	F	F	Н
I.a.1.352	NHC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.353`	NHC(O)NH(C ₆ H ₅)	F	Cl	Н
I.a.1.354	NHC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.355	NHC(O)NH(C ₆ H ₅)	CH₃	Н	Н
I.a.1.356	NHC(O)NH(C ₆ H ₅)	CH ₃	Н	F
I.a.1.357	NHC(O)NH(C ₆ H ₅)	CH₃	F	Н
I.a.1.358	NHC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.359	NHC(O)NH(C ₆ H ₅)	CH ₃	Cl	Н
I.a.1.360	NHC(O)NH(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.361	NHC(O)N(CH ₃) ₂	Н	Н	Н
I.a.1.362	NHC(O)N(CH ₃) ₂	Н	Н	F

Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
l.a.1.363	NHC(O)N(CH ₃) ₂	Н	F	Н
l.a.1.364	NHC(O)N(CH ₃) ₂	Н	F	F
I.a.1.365	NHC(O)N(CH ₃) ₂	Н	Cl	Н
I.a.1.366	NHC(O)N(CH ₃) ₂	Н	CI	F
I.a.1.367	NHC(O)N(CH ₃) ₂	F	Н	Н
I.a.1.368	NHC(O)N(CH ₃) ₂	F	Н	F
I.a.1.369	NHC(O)N(CH ₃) ₂	F	F	Н
I.a.1.370	NHC(O)N(CH ₃) ₂	F	F	F
I.a.1.371	NHC(O)N(CH ₃) ₂	F	Cl	Н
I.a.1.372	NHC(O)N(CH ₃) ₂	F	Cl	F
I.a.1.373	NHC(O)N(CH ₃) ₂	CH ₃	Н	Н
I.a.1.374	NHC(O)N(CH ₃) ₂	CH₃	Н	F
l.a.1.375	NHC(O)N(CH ₃) ₂	CH₃	F	Н
I.a.1.376	NHC(O)N(CH ₃) ₂	CH ₃	F	F
l.a.1.377	NHC(O)N(CH ₃) ₂	CH ₃	CI	Н
I.a.1.378	NHC(O)N(CH ₃) ₂	CH ₃	CI	F
I.a.1.379	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	Н	Н
i I.a.1.380	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	Н	F
I.a.1.381	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	F	Н
I.a.1.382	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	F	F
I.a.1.383	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	Cl	Н
I.a.1.384	NHC(O)N(CH ₃)(C ₆ H ₅)	Н	Cl	F
I.a.1.385	NHC(O)N(CH ₃)(C ₆ H ₅)	F	Н	Н
I.a.1.386	$NHC(O)N(CH_3)(C_6H_5)$	F	Н	F
I.a.1.387	NHC(O)N(CH ₃)(C ₆ H ₅)	F	F	, H
I.a.1.388	NHC(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.389	NHC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	H
I.a.1.390	NHC(O)N(CH ₃)(C ₆ H ₅)	F	CI	F
l.a.1.391	NHC(O)N(CH ₃)(C ₆ H ₅)	CH₃	Н	Н
I.a.1.392	NHC(O)N(CH ₃)(C ₆ H ₅)	CH₃	Н	F
I.a.1.393	NHC(O)N(CH ₃)(C ₆ H ₅)	CH₃	F	Н
l.a.1.394	NHC(O)N(CH ₃)(C ₆ H ₅)	CH₃	F	F
I.a.1.395	NHC(O)N(CH₃)(C ₆ H₅)	CH₃	Cl	Н
l.a.1.396	NHC(O)N(CH ₃)(C ₆ H ₅)	CH₃	Cl	F
I.a.1.397	NHSO₂CH₃	Н	Н	Н
I.a.1.398	NHSO₂CH₃	H	Н	F
I.a.1.399	NHSO₂CH₃	Н	F	Н
l.a.1.400	NHSO₂CH₃	Н	F	. F

	39			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.401	NHSO₂CH₃	Н	Cl	Н
l.a.1.402	NHSO ₂ CH ₃	Н	- Cl	F
I.a.1.403	NHSO ₂ CH ₃	F	Н	Н
I.a.1.404	NHSO ₂ CH₃	F	Н	F
I.a.1.405	NHSO₂CH₃	F	F	Н
I.a.1.406	NHSO₂CH₃	F	F	F
I.a.1.407	NHSO₂CH₃	F	Cl	Н
I.a.1.408	NHSO₂CH₃	F	Cl	F
I.a.1.409	NHSO₂CH₃	CH₃	Н	Н
I.a.1.410	NHSO₂CH₃	CH₃	Н	F
I.a.1.411	NHSO ₂ CH ₃	CH ₃	F	Н
I.a.1.412	NHSO₂CH₃	CH ₃	F	F
I.a.1.413	NHSO₂CH₃	CH₃	Cl	Н
I.a.1.414	NHSO₂CH₃	CH₃	CI	F
I.a.1.415	NH(CH₃)	Н	Н	Н
I.a.1.416	NH(CH₃)	Н	Н	F
I.a.1.417	NH(CH ₃)	Н	F	H
I.a.1.418	NH(CH₃)	Н	F	F
I.a.1.419	NH(CH₃)	Н	Cl	Н
I.a.1.420	NH(CH₃)	Н	Cl	F
I.a.1.421	NH(CH₃)	F	Н	Н
I.a.1.422	NH(CH₃)	F	Н	F
I.a.1.423	NH(CH₃)	F	F	Н
I.a.1.424	NH(CH ₃)	F	F	F
I.a.1.425	NH(CH₃)	F	CI	Н
I.a.1.426	NH(CH₃)	F	Cl	F
I.a.1.427	NH(CH₃)	CH ₃	Н	· H
I.a.1.428	NH(CH₃)	CH₃	Н	. F .
I.a.1.429	NH(CH₃)	CH₃	F	Н
I.a.1.430	NH(CH₃)	CH₃	F	F
I.a.1.431	NH(CH₃)	CH₃	Cl	Н
I.a.1.432	NH(CH₃)	CH₃	Cl	F
I.a.1.433	N(CH ₃)C(O)CH ₃	Н	Н	Н
I.a.1.434	N(CH ₃)C(O)CH ₃	Н	Н	F
I.a.1.435	N(CH ₃)C(O)CH ₃	Н	F	Н
I.a.1.436	N(CH ₃)C(O)CH ₃	Н	F	F
I.a.1.437	N(CH₃)C(O)CH₃	Н	Cl	Н
I.a.1.438	N(CH₃)C(O)CH₃	Н	Cl	F

		40 1		-12
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.439	N(CH₃)C(O)CH₃	F	Н	<u>H</u>
I.a.1.440	N(CH ₃)C(O)CH ₃	F	Н	F
I.a.1.441	N(CH₃)C(O)CH₃	F	F	Н
I.a.1.442	N(CH ₃)C(O)CH ₃	F	F	F
l.a.1.443	N(CH₃)C(O)CH₃	F	Cl	Н
I.a.1.444	N(CH ₃)C(O)CH ₃	F	Cl	F ·
I.a.1.445	N(CH ₃)C(O)CH ₃	CH₃	Н	Н
l.a.1.446	N(CH ₃)C(O)CH ₃	CH ₃	Н	F
I.a.1.447	N(CH ₃)C(O)CH ₃	CH₃	F	Н
I.a.1.448	N(CH₃)C(O)CH₃	CH ₃	F	F
I.a.1.449	N(CH ₃)C(O)CH ₃	CH₃	CI	Н
I.a.1.450	N(CH₃)C(O)CH₃	CH ₃	CI	F
I.a.1.451	N(CH ₃)C(O)tertC ₄ H ₉	Н	Н	Н
	N(CH ₃)C(O)tertC ₄ H ₉	Н	Н	F
I.a.1.453	N(CH ₃)C(O)tertC ₄ H ₉	Н	F	Н
I.a.1.454	N(CH ₃)C(O)tertC ₄ H ₉	H ·	F	F
I.a.1.455	N(CH ₃)C(O)tertC ₄ H ₉	Н	CI	Н
I.a.1.456	N(CH ₃)C(O)tertC ₄ H ₉	Н	Cl *	F
I.a.1.457	N(CH ₃)C(O)tertC ₄ H ₉	F	Н	Н
I.a.1.458	N(CH ₃)C(O)tertC ₄ H ₉	F	Н	F
I.a.1.459	N(CH ₃)C(O)tertC ₄ H ₉	F	F	Н
I.a.1.460	N(CH ₃)C(O)tertC ₄ H ₉	F	F	F
I.a.1.461	N(CH ₃)C(O)tertC ₄ H ₉	F	Cl	Н
I.a.1.462	N(CH ₃)C(O)tertC ₄ H ₉	F	Cl	F
I.a.1.463	N(CH ₃)C(O)tertC ₄ H ₉	CH₃	Н	Н
I.a.1.464	N(CH ₃)C(O)tertC ₄ H ₉	CH₃	Н	F
I.a.1.465	N(CH ₃)C(O)tertC ₄ H ₉	CH₃	F	Н
I.a.1.466	N(CH ₃)C(O)tertC ₄ H ₉	CH ₃	F	F
I.a.1.467	N(CH ₃)C(O)tertC ₄ H ₉	CH ₃	CI	Н
I.a.1.468	N(CH ₃)C(O)tertC ₄ H ₉	CH₃	Cl	F
I.a.1.469	N(CH ₃)C(O)NH(CH ₃)	Н	Н	Н
I.a.1.470	N(CH ₃)C(O)NH(CH ₃)	Н	Н	F
I.a.1.471	N(CH ₃)C(O)NH(CH ₃)	Н	F	Н
I.a.1.472	N(CH ₃)C(O)NH(CH ₃)	H	F	F
I.a.1.473	N(CH ₃)C(O)NH(CH ₃)	Н	Cl	Н
I.a.1.474	N(CH ₃)C(O)NH(CH ₃)	Н	Cl	F
I.a.1.475	N(CH ₃)C(O)NH(CH ₃)	F	Н	Н
I.a.1.476	N(CH ₃)C(O)NH(CH ₃)	F	Н	F

	41			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.477	N(CH ₃)C(O)NH(CH ₃)	F	F	Н
I.a.1.478	N(CH ₃)C(O)NH(CH ₃)	F	F	F
I.a.1.479	N(CH ₃)C(O)NH(CH ₃)	F	Cl	Н
l.a.1.480	N(CH ₃)C(O)NH(CH ₃)	F	CI	F
I.a.1.481	N(CH ₃)C(O)NH(CH ₃)	CH₃	Н	Н
I.a.1.482	N(CH ₃)C(O)NH(CH ₃)	CH₃	Н	F
I.a.1.483	N(CH ₃)C(O)NH(CH ₃)	CH₃	F	Н
I.a.1.484	N(CH ₃)C(O)NH(CH ₃)	CH₃	F	F
I.a.1.485	N(CH ₃)C(O)NH(CH ₃)	CH ₃	Cl	Н
I.a.1.486	N(CH ₃)C(O)NH(CH ₃)	CH ₃	CI	. F
I.a.1.487	$N(CH_3)C(O)NH(C_6H_5)$	Н	Н	Н
I.a.1.488	N(CH ₃)C(O)NH(C ₆ H ₅)	Н	Н	F
I.a.1.489	N(CH ₃)C(O)NH(C ₆ H ₅)	Н	F	Н
I.a.1.490	N(CH ₃)C(O)NH(C ₆ H ₅)	Н	F	F
I.a.1.491	$N(CH_3)C(O)NH(C_6H_5)$	Н	CI	Н
l.a.1.492	$N(CH_3)C(O)NH(C_6H_5)$	Н	CI	F
l.a.1.493	$N(CH_3)C(O)NH(C_6H_5)$	F	, H	Н
I.a.1.494	N(CH ₃)C(O)NH(C ₆ H ₅)	F	H	F
I.a.1.495	$N(CH_3)C(O)NH(C_6H_5)$	F	F	Н
I.a.1.496	N(CH ₃)C(O)NH(C ₆ H ₅)	F	F	F
I.a.1.497	$N(CH_3)C(O)NH(C_6H_5)$	F	Cl	Н
I.a.1.498	N(CH ₃)C(O)NH(C ₆ H ₅)	F	CI	F.
I.a.1.499	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	H	Н
l.a.1.500	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	Н	F
I.a.1.501	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	F	Н
I.a.1.502	N(CH ₃)C(O)NH(C ₆ H ₅)	CH₃	F	F
l.a.1.503	$N(CH_3)C(O)NH(C_6H_5)$	CH₃	CI	Н
l.a.1.504	$N(CH_3)C(O)NH(C_6H_5)$	CH₃	Cl	F
I.a.1.505	N(CH ₃)C(O)N(CH ₃) ₂	Н	Н	Н
I.a.1.506	N(CH ₃)C(O)N(CH ₃) ₂	Н	Н	F
I.a.1.507	N(CH ₃)C(O)N(CH ₃) ₂	Н	F	Н
I.a.1.508	N(CH ₃)C(O)N(CH ₃) ₂	Н	F	F
I.a.1.509	N(CH ₃)C(O)N(CH ₃) ₂	Н	Cl	Н
l.a.1.510	N(CH ₃)C(O)N(CH ₃) ₂	Н	Cl	F
I.a.1.511	N(CH ₃)C(O)N(CH ₃) ₂	F	Н	Н
1.a.1.512	N(CH ₃)C(O)N(CH ₃) ₂	F	Н	F
l.a.1.513	N(CH ₃)C(O)N(CH ₃) ₂	F	F	Н
I.a.1.514	N(CH ₃)C(O)N(CH ₃) ₂	F	F	F

	42			
Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹²
I.a.1.515	N(CH ₃)C(O)N(CH ₃) ₂	F	Cl	Н
I.a.1.516	N(CH ₃)C(O)N(CH ₃) ₂	F	Cl	F
I.a.1.517	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	Н	Н
I.a.1.518	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	Н	F
I.a.1.519	N(CH ₃)C(O)N(CH ₃) ₂	CH₃	F	Н
I.a.1.520	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.521	N(CH ₃)C(O)N(CH ₃) ₂	CH₃	Cl	Н
I.a.1.522	N(CH ₃)C(O)N(CH ₃) ₂	CH₃	Cl	F
I.a.1.523	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	Н	Н	Н
I.a.1.524	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	H	Н	F
I.a.1.525	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	Н	F	Н
I.a.1.526	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	Н	F	F
I.a.1.527	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	Н	Cl	Н
I.a.1.528	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	Н	CI	F
I.a.1.529	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	Н	Н
I.a.1.530	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F,	Н	F
I.a.1.531	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F. F	·F	Н
I.a.1.532	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.533	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	Cl	Н
l.a.1.534	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	F	Cl	F
I.a.1.535	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	CH ₃	Н	Н
I.a.1.536	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	CH₃	Н	F
I.a.1.537	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH₃	F	Н
I.a.1.538	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	CH₃	F	F
l.a.1.539	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH₃	Cl	Н
I.a.1.540	$N(CH_3)C(O)N(CH_3)(C_6H_5)$	CH₃	Cl	F
I.a.1.541	N(CH ₃)SO ₂ CH ₃	Н	Н	Н
I.a.1.542	N(CH ₃)SO ₂ CH ₃	Н	Н	F
I.a.1.543	N(CH ₃)SO ₂ CH ₃	Н	F	Н
I.a.1.544	N(CH ₃)SO ₂ CH ₃	H	F	F
I.a.1.545	N(CH ₃)SO ₂ CH ₃	Н	Cl	H
I.a.1.546	N(CH ₃)SO ₂ CH ₃	Н	Cl	F
I.a.1.547	N(CH ₃)SO ₂ CH ₃	F	Н	Н
I.a.1.548	N(CH₃)SO₂CH₃	F	Н	F
I.a.1.549	N(CH ₃)SO ₂ CH ₃	F	F	Н
I.a.1.550	N(CH₃)SO₂CH₃	F	F	F
I.a.1.551	N(CH₃)SO₂CH₃	F	Cl	Н
I.a.1.552	N(CH ₃)SO ₂ CH ₃	F	Cl	F
i contraction of the contraction				

10

15

43

Nr.	R ⁸	R ¹⁰	R ¹¹	R ¹² .
I.a.1.553	N(CH ₃)SO ₂ CH ₃	CH ₃	Н	Н
I.a.1.554	N(CH ₃)SO ₂ CH ₃	CH₃	Н	F
I.a.1.555	N(CH ₃)SO ₂ CH ₃	CH₃	F	Н
I.a.1.556	N(CH ₃)SO ₂ CH ₃	CH₃	F	F
I.a.1.557	N(CH ₃)SO ₂ CH ₃	CH ₃	Cl	Н
I.a.1.558	N(CH ₃)SO ₂ CH ₃	CH ₃	Cl	F

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.2, insbesondere die Verbindungen der Formel I.a.2.1 bis I.a.2.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^2 für CF_3 steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.3, insbesondere die Verbindungen der Formel I.a.3.1 bis I.a.3.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^2 für CF_3 und R^3 für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.4, insbesondere die Verbindungen der Formel I.a.4.1 bis I.a.4.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R² für CF₃ und R³ für Chlor steht.

10

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.5, insbesondere die Verbindungen der Formel I.a.5.1 bis I.a.5.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R³ für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.6, insbesondere die Verbindungen der Formel I.a.6.1 bis I.a.6.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R³ für Chlor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.7, insbesondere die Verbindungen der Formel I.a.7.1 bis I.a.7.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R² für Fluor steht.

10

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.8, insbesondere die Verbindungen der Formel I.a.8.1 bis I.a.8.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R1 für Chlor und R² sowie R³ für Fluor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.9, insbesondere die Verbindungen der Formel I.a.9.1 bis I.a.9.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 und R^3 für Chlor und R^2 für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.10, insbesondere die Verbindungen der Formel I.a.10.1 bis I.a.10.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für Chlor stehen.

10

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.11, insbesondere die Verbindungen der Formel I.a.11.1 bis I.a.11.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für Chlor und R³ für Fluor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.12, insbesondere die Verbindungen der Formel I.a.12.1 bis I.a.12.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹, R² und R³ für Chlor stehen.

$$R^{10}$$
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.13, insbesondere die Verbindungen der Formel I.a.13.1 bis I.a.13.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R² für CF₃ steht.

10

15

$$R^{10}$$
 R^{11}
 R^{12}
 R^{10}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{12}
 R^{10}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.14, insbesondere die Verbindungen der Formel I.a.14.1 bis I.a.14.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für Chlor, R^2 für CF_3 und R^3 für Fluor steht.

$$R_{3}^{10}$$
 R_{3}^{10}
 R_{4}^{10}
 R_{4}^{10}
 R_{5}^{10}
 R_{7}^{10}
 R_{10}^{10}
 R_{10}

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.15, insbesondere die Verbindungen der Formel I.a.15.1 bis I.a.15.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 und R^3 für Chlor und R^2 für CF $_3$ stehen.

$$R^{10}$$
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{14}
 R^{12}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{17}
 R^{18}
 R^{19}
 R

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.16, insbesondere die Verbindungen der Formel I.a.16.1 bis I.a.16.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.17, insbesondere die Verbindungen der Formel I.a.17.1 bis I.a.17.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^3 für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.18, insbesondere die Verbindungen der Formel I.a.18.1 bis I.a.18.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R³ für Chlor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.19, insbesondere die Verbindungen der Formel I.a.19.1 bis I.a.19.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^2 für Fluor steht.

5

10

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.20, insbesondere die Verbindungen der Formel I.a.20.1 bis I.a.20.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^2 sowie R^3 für Fluor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.21, insbesondere die Verbindungen der Formel I.a.21.1 bis I.a.21.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 , R^2 für Fluor und R^3 für Chlor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.22, insbesondere die Verbindungen der Formel I.a.22.1 bis I.a.22.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^2 für Chlor steht.

ا مارى

5

10

15

50

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.23, insbesondere die Verbindungen der Formel I.a.23.1 bis I.a.23.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃, R² für Chlor und R³ für Fluor steht.

$$R^{10}$$
 R^{11}
 R^{12}
 R^{10}
 R^{10}
 R^{12}
 R^{10}
 R

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.24, insbesondere die Verbindungen der Formel I.a.24.1 bis I.a.24.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^2 sowie R^3 für Chlor stehen.

$$R^{10}$$
 R^{11}
 R^{12}
 R^{10}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{12}
 R^{12}
 R^{10}
 R^{12}
 R

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.25, insbesondere die Verbindungen der Formel I.a.25.1 bis I.a.25.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 und R^2 für CF_3 stehen.

10

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.26, insbesondere die Verbindungen der Formel I.a.26.1 bis I.a.26.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 und R^2 für CF_3 und R^3 für Fluor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.27, insbesondere die Verbindungen der Formel I.a.27.1 bis I.a.27.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für CF₃ und R³ für Chlor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.28, insbesondere die Verbindungen der Formel I.a.28.1 bis I.a.28.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^4 für Fluor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.29, insbesondere die Verbindungen der Formel I.a.29.1 bis I.a.29.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R^1 für CF_3 und R^3 sowie R^4 für Fluor stehen.

Die benzoylsubstituierten Phenylalanin-Amide der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach folgenden Verfahren:

Verfahren A

5

15 Ein Phenylalanin der Formel V wird zunächst mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV zu dem entsprechenden Benzoylderivat der Formel III umgesetzt, welches anschließend mit einem Amin der Formel II zu dem gewünschten benzoylsubstituierten Phenylalanin-Amid der Formel I reagiert:

$$\begin{array}{c} \mathbf{53} \\ \mathbf{R}^{10} \\ \mathbf{R}^{12} \\ \mathbf{R}^{13} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{12} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{15} \\ \mathbf{R}^{10} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{15} \\ \mathbf{R}^{15} \\ \mathbf{R}^{10} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{15} \\ \mathbf{R}^{15} \\ \mathbf{R}^{15} \\ \mathbf{R}^{10} \\ \mathbf{R}^{11} \\ \mathbf{R}^{12} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{15} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{16} \\ \mathbf{R}^{13} \\ \mathbf{R}^{14} \\ \mathbf{R}^{16} \\ \mathbf{R}^{15} \\ \mathbf{R}^{15} \\ \mathbf{R}^{15} \\ \mathbf{R}^{17} \\ \mathbf{R$$

Die Umsetzung der Phenylalanine der Formel V mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV, wobei L² für Hydroxy steht, zu Benzoylderivaten der Formel III erfolgt in Gegenwart eines Aktivierungsreagenz und einer Base üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 110°C, besonders bevorzugt bei Raumtemperatur, in einem inerten organischen Lösungsmittel [vgl. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett.1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3),593-595(2002); Clark, J. E. et al., Sythesis (10),891-894 (1991)].

Geeignete Aktivierungsreagenzien sind Kondensationsmittel wie z.B. polystyrolgebundenes Dicyclohexylcarbodiimid, Diisopropylcarbodiimid, Carbonyldiimidazol, Chlorkohlensäureester wie Methylchloroformiat, Ethylchloroformiat, Isoputylchloroformiat, sec-Butylchloroformiat oder Allylchloroformiat, Pivaloylchlorid, Polyphosphorsäure, Propanphosphonsäureanhydrid, Bis(2-oxo-3-oxazolidinyl)-phosphorylchlorid (BOPCI) oder Sulfonylchloride wie Methansulfonylchlorid, Toluolsulfonylchlorid oder Benzolsulfonylchlorid.

15

5

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C_5 - C_8 -Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF und Wasser.

10

15

20

5

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natrismhydrogencarbonat, außerdem organische Basen,
z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, NMethylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin,
Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders
bevorzugt werden Natriumhydroxid, Triethylamin und Pyridin.

Die Basen werden im allgemeinen in äquimolar Mengen eingesetzt. Sie können aber auch im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, IV in einem Überschuß bezogen auf V einzusetzen.

30

35

40

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z. T. in Form zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Die Umsetzung der Phenylalanine der Formel V mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV, wobei L² für Halogen oder C₁-C₀-Alkoxy steht, zu Benzoylde-

25

30

55

rivaten der Formel III erfolgt in Gegenwart einer Base üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel [vgl. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett.1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3),593-595(2002); Clark, J. E. et al., Sythesis (10),891-894 (1991)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF und Wasser.

20 Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdal-kalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetall- carbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin und Pyridin.

Die Basen werden im allgemeinen in äquimolar Mengen eingesetzt. Sie können aber auch im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, IV in einem Überschuß bezogen auf V einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

5 Benzoylderivate der Formel III mit R⁸ = Hydroxy können auch aus entsprechenden N-Acyl-3-Keto-Phenylalanin-Ester-Derivaten der Formel VI

$$R^{10}$$

$$R^{10}$$

$$R^{13}$$

$$R^{13}$$

$$R^{13}$$

$$R^{14}$$

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

$$R^{14}$$

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{14}$$

$$R^{15}$$

$$R^{14}$$

$$R^{14}$$

$$R^{15}$$

$$R^{14}$$

$$R^{15}$$

$$R^{15}$$

$$R^{15}$$

$$R^{15}$$

$$R^{16}$$

$$R^{16}$$

$$R^{17}$$

$$R^{17}$$

$$R^{18}$$

$$R^{19}$$

$$R$$

durch Reduktion der Ketogruppe zum N-Acyl-Phenylserin-Ester-Derivat erhalten werden (Girard A, Tetrar dron Lett. 37(44),7967-7970(1996).;Nojori R., J. Am. Chem.
Soc. 111(25),9134-9135(1989).;Schmidt U., Synthesis (12),1248-1254
(1992).;Bolhofer, A.; J. Am. Chem. Soc. 75, 4469 (1953)).

Die auf diesem Weg erhaltenen Benzoylderivate der Formel III mit R⁸ = Hydroxy lassen sich anschließend nach literaturbekannten Methoden zu weiteren Benzoylderivaten der Formel III umsetzen.

- Die für die Herstellung der Benzoylderivate der Formel III benötigten Phenylalanine der Formel V mit L¹ = Hydroxy sind, auch in enantiomeren- und diastereomerenreiner Form, in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt werden:
- 25 $R^8 = OR^{15}$:
- durch Kondensation von Glycinenolat-Equivalenten mit Benzaldehyden (Hvidt, T. et al., Tetrahedron Lett. 27 (33), 3807-3810 (1986); Saeed, A. et al., Tetrahedron 48 (12), 2507-2514 (1992); Kikuchi, J. et al., Chem. Lett. (3), 553-556 (1993); Soloshonok, V. A. et al., Tetrahedron Lett. 35 (17), 2713-2716 (1994); Soloshonok, V. A.; et al..; Tetrahedron 52 (1), 245-254 (1996); Rozenberg, V. et al., Angew. Chem. 106 (1), 106-108 (1994); US 4605759; Alker, D. et

al., Tetrahedron 54 (22), 6089-6098 (1998); Shengde, W. et al., Synth. Commun. 16 (12), 1479 (1986); JP 2001046076; Herbert, R. B. et al., Can. J. Chem. 72 (1), 114-117 (1994));

- durch Spaltung von 2-N-Phtaloyl-3-Hydroxy-Phenylalaninen (Hutton, C. A., Org. Lett. 1 (2), 295-297(1999));
 - durch oxidative Aminohydroxylierung und anschließende Entschützung von Zimtsäurederivaten
- 10 (Kim, I. H. et al., Tetrahedron Lett. 42 (48), 8401-8403 (2001);
 - durch Spaltung von substituierten Oxazolidinen
 (Wu, S. D. et al., Sythetic Commun. 16 (12), 1479-1484 (1986));
- durch Spaltung von substituierten Oxazolinen (Soloshonok, V. A.; et al..; Tetrahedron 52 (1), 245-254 (1996); Lown, J. W. et al., Can. J. Chem. 51, 856 (1973));
- durch Seltung von substituierten 2-Oxazolidinonen 20 (Jung, M. E. et al., Tetrahedron Lett. 30 (48), 6637-6640 (1989));
 - durch Spaltung von substituierten 5-Oxazolidinonen
 (Blaser, D. et al., Liebigs Ann. Chem. (10), 1067-1078 (1991));
- 25 durch Hydrolyse von Phenylserin-Nitril-Derivaten (Iriuchijima, S. et al., J. Am. Chem. Soc. 96, 4280 (1974))
 - durch Spaltung von substituierten Imidazolin-4-onen (Davis, C et al., J. Chem. Soc. 3479 (1951))

 $R^8 = SR^{16}$:

30

- durch Spaltung von 2-Acylamino-3-Thioalkyl-Phenylalaninderivaten
 (Villeneuve, G. et al., J. Chem. Soc. Perkin Trans 1 (16),1897-1904(1993))
- durch Ringöffnung von Thiazolidinthionen (Cook, A. H. et al., J. Chem. Soc. 1337 (1948).)

R8=NR17R18:

durch Ringöffnung von substituierten Imidazolinonen
 (Kavrakova, I. K. et al., Org. Prep. Proced. Int. 28 (3), 333-338 (1996))

- durch Ringöffnung von substituierten Imidazolinen
 (Meyer R., Liebigs Ann. Chem., 1183 (1977); Hayashi, T. et al., Tetrahedron
 Lett. 37 (28), 4969-4972 (1996); Lin, Y. R. et al., J. Org. Chem. 62 (6),1799 1803 (1997); Zhou, X. T. et al., Tatrahedron Assym. 10 (5), 855-862 (1999))
 - durch Reduktion von 2-Azido-3-Amino-Phenylalanin-Derivaten (Moyna, G. et al., Synthetic Commun. 27 (9), 1561-1567 (1997))
- odurch Hydrierung von substituierten Imidazolidinen (Alker, D. et al., Tetrahedron Lett. 39 (5-6), 475-478 (1998))
- Die für die Herstellung der Benzoylderivate der Formel III benötigten Phenylalanine der Formel V mit $L^1 = C_1-C_6$ -Alkoxy sind, auch in enantiomeren- und diastereomerenreiner Form, in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt werden:

 $R^8 = OR^{15}$

- durch Kondensation von Glycinenolat-Equivalenten mit Aldehyden:
 Nicolaou, K. C. et al., J. Am. Chem. Soc. 124 (35), 10451-10455 (2002); Carrara, G. et al., Gazz. Chim. Ital. 82, 325 (1952); Fuganti, C. et al., J. Org. Chem. 51 (7), 1126-1128 (1986); Boger, D. L. et al., J. Org. Chem. 62 (14), 4721-4736 (1997); Honig, H. et al., Tetrahedron (46), 3841 (1990); Kanemasa, S. et al., Tetrahedron Lett. 34 (4), 677-680 (1993); US 4873359)
 - durch Spaltung von Dihydropyrazinen
 (Li, Y. Q. et al., Tetrahedron Lett. 40 (51), 9097-9100 (1999); Beulshausen, T. et al., Liebigs Ann. Chem. (11), 1207-1209 (1991))
 - durch Reduktion von N-Amino-Phenylserin-Derivaten
 (Poupardin, O. et al., Tetrahedron Lett. 42 (8), 1523-1526 (2001))
 - durch Spaltung von N-Carbamoyl-Phenylserin-Derivaten
 (Park, H. et al., J. Org. Chem. 66 (21), 7223-7226 (2001); US 6057473; Kim, I.
 H. et al., Tetrahedron Lett. 42 (48), 8401-8403 (2001); Nicolaou, K. C. et al., Angew.N Chem. Int. Edit. 37 (19), 2714-2716 (1998))
 - durch Spaltung von substituierten Oxazolidinen
 (Zhou, C. Y. et al., Sythetic Commun. 17 (11), 1377-1382 (1987))

- durch Reduktion von 2-Azido-3-Hydroxy-Phenylpropionsäure-Derivaten (Corey, E. J. et al., Tetrahedron Lett. 32 (25), 2857-2860 (1991))
- durch Ringöffnung von Aziridinen mit Sauerstoff-Nukleophilen
 (Davis, F. A. et al., J. Org. Chem. 59 (12), 3243-3245 (1994))
 - durch Spaltung von substituierten 2-Oxazolidinonen (Jung, M. E. et al., Synlett 563-564 (1995))

10

- durch Reduktion von 2-Hydroxyimino-3-Keto-Phenylpropionsäure-Derivaten
 (Inoue, H. et al., Chem. Phar. Bull. 41 (9), 1521-1523 (1993); Chang, Y.-T. et al.,
 J. Am. Chem. Soc. 75, 89 (1953); US 4810817)
- durch Hydrolyse von Phenylserin-Imino-Derivaten
 (Solladiecavallo, A. et al., Gazz. Chim. Ital. 126 (3), 173-178 (1996); Solladiecavallo, A. et al., Tetrahedron Lett. 39 (15), 2191-2194 (1998))
- durch Spaltung von N-Acyl-Phenylserin-Derivaten
 (Girard, A. et al., Tetrahedron Lett. 37 (44), 7967-7970 (1996))
 - durch Reduktion von 2-Hydroxyimino-3-Hydroxy-Phenylpropionsäure-Derivaten (Boukhris, S. et al., Tetrahedron Lett. 40 (9), 1669-1672 (1999))
- 25 durch Spaltung von N-Benzyl-Phenylserin-Derivaten (Caddick, S.; Tetrahedron, 57 (30), 6615-6626 (2001))
 - durch Reduktion von 2-Diazo-3-Keto-Phenylpropionsäure-Derivaten (Looker, et al., J. Org. Chem. 22, 1233 (1957))

30

- durch Spaltung von substituierten Imidazolidinonen (Davis, A. C.; et al., J. Chem. Soc. 3479 (1951))

 $R^8 = SR^{16}$:

- durch Ringöffnung von substituierten Thiazolidinen (Nagai, U. et al., Heterocycles 28 (2), 589-592 (1989))
 - durch Ringöffnung von substituierten Aziridinen mit Thiolen
 (Legters, J. et al., Recl. Trav. Chim. Pays-Bas 111 (1), 16-21 (1992))

 durch Reduktion von 3-Keton-Phenylalanin-Derivaten (US 4810817.)

R8=NR17R18:

10

15

20

- 5 durch Reduktion von substituierten 2-Azido-3-Amino-Phenylalaninen-Derivaten (Lee S. H., Tetrahedron 57(11),2139-2145(2001))
 - durch Ringöffnung von substituierten Imidazolinen
 (Zhou, X. T. et al., Tetrahedron Asymmetr. 10 (5), 855-862 (1999); Hayashi, T. et al., Tetrahedron Lett. 37 (28), 4969-4972 (1996))
 - Die Umsetzung der Benzoylderivate der Formel III mit L¹ = Hydroxy bzw. deren Salze mit einem Amin der Formel II zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I erfolgt in Gegenwart eines Aktivierungsreagenz und gegebenenfalls in Gegenwart einer Base üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel. [vgl. Perich, J. W., Johns, R. B., J. Org. Chem. 53 (17), 4103-4105 (1988); Somlai, C. et al., Synthesis (3), 285-287 (1992); Gupta, A. et al., J. Chem. Soc. Perkin Trans. 2, 1911 (1990); Guan et al., J. Comb. Chem. 2, 297 (2000)].
- Geeignete Aktivierungsreagenzien sind Kondensationsmittel wie z.B. polystyrolgebundenes Dicyclohexylcarbodiimid, Diisopropylcarbodiimid, Carbonyldiimidazol, Chlorkohlensäureester wie Methylchloroformiat, Ethylchloroformiat, Isoropylchloroformiat, Isobutylchloroformiat, sec-Butylchloroformiat oder Allylchloroformiat, Pivaloylchlorid, Polyphosphorsäure, Propanphosphonsäureanhydrid, Bis(2-oxo-3-oxazolidinyl)phosphorylchlorid (BOPCI) oder Sulfonylchloride wie Methansulfonylchlorid, Toluolsulfonylchlorid oder Benzolsulfonylchlorid.
 - Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C_5 - C_8 -Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid

(DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF, Methanol, Ethanol und Wasser.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

10

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdal-kalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetall- carbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin, Ethyldiisopropylamin, N-methylmorpholin und Pyridin.

15

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein II in einem Überschuß bezogen auf III einzusetzen.

25

20

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

30

35

Die Umsetzung der Benzoylderivate der Formel III mit L¹ = C₁-C₆-Alkoxy mit einem Amin der Formel II zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I erfolgt üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel gegebenenfalls in Gegenwart einer Base [vgl. Kawahata, N. H. et al., Tetrahedron Lett. 43 (40), 7221-7223 (2002); Takahashi, K. et al., J. Org. Chem. 50 (18), 3414-3415 (1985); Lee, Y. et al., J. Am. Chem. Soc. 121 (36), 8407-8408 (1999)].

20

25

30

126.

62

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C_5 - C_8 -Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-

Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF, Methanol, Ethanol und Wasser.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Die Umsetzung kann gegebenenfalls in Gegenwart einer Base erfolgen. Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetallcarbogate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin, Ethyldiisopropylamin, N-methylmorpholin und Pyridin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, II in einem Überschuß bezogen auf III einzusetzen.

35 Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

Benzoylderivate der Formel III

$$R^{10}$$
 R^{10}
 R^{12}
 R^{13}
 R^{14}
 R^{13}
 R^{14}
 R^{15}
 R^{15}

wobei R¹ bis R⁵ und R⁸ bis R¹⁴ die unter Anspruch 1 genannten Bedeutungen haben und L¹ für Hydroxy oder C₁-C₆-Alkoxy steht, sind ebenfalls ein Gegenstand der vorliegenden Erfindung.

Die besonders bevorzugten Ausführungsformen der Benzoylderivate der Formel III in Bezug auf die Variablen entsprechen denen der Reste R¹ bis R⁵ und R⁸ bis R¹⁴ der Formel I.

Besonders bevorzugt werden Benzoylderivate der Formel III, in denen

R¹ Fluor, Chlor oder CF₃,

15 R² und R³ unabhängig voneinander Wasserstoff, Fluor oder Chlor,

R⁴ und R⁵ Wasserstoff,

R⁸ OR¹⁵, SR¹⁶ oder NR¹⁷R¹⁸;

R⁹ Wasserstoff;

R¹⁰ Wasserstoff, Fluor oder CH₃;

20 R¹¹ Wasserstoff, Fluor oder Chlor;

R¹², R¹³ und R¹⁴ Wasserstoff;

R¹⁵ und R¹⁷ unabhängig voneinander Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, Phenylaminocarbonyl, N-(C1-C₄-alkyl)-N-(phenyl)-aminocarbonyl, SO₂CH₃ oder SO₂(C₆H₅);

25 R¹⁶ Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, N-(C₁-C₄-alkyl)-N-(phenyl)-aminocarbonyl;

R¹⁸ Wasserstoff oder C₁-C₄-Alkyl;

bedeuten.

20030938

Beispiel 1

(2S,3R)-Methyl-phenyl-carbaminsäure-2-(4-fluoro-2-trifluoromethylbenzoylamino)-2-methylcarbamoyl-1-o-tolyl-ethyl-ester (Tab. 3, Nr. 3.34)

5

1.1) 2-Amino-3-oxo-3-o-tolyl-propionsäureethylester-hydrochlorid

10

4.2 g (0.038 mol) Kalium-tert-butylat wurden unter Stickstoff in THF suspendiert. Es wurde auf -78° C gekühlt und 10.0 g (0.037 mol) N-(Diphenylmethylen)-glycinethylester gelöst in THF zugetropft. Nach 40 min bei -78° C wurde die Lösung in einen gekühlten Tropftrichter (-78° C) überführt und zu einer auf -78° C gekühlten Lösung von 2-Methylbenzoylchlorid in THF getropft. Nach 1 h Rühren bei -78° C lieg man die Reaktionsmischung innerhalb von 2 h auf 0°C erwärmen. Es wurde mit 10% iger salzsäure hydrolysiert und nachgerührt. Die Lösungsmittel wurden entfernt, der Rückstand in Wasser aufgenommen und mit MTBE gewaschen. Die Wasserphase wurde eingeengt, der Rückstand mit Methanol versetzt und abfiltriert. Nach Einengen des Filtrats erhielt man 6.2g der Titelverbindung als farbloses Öl. 1 H-NMR (DMSO): δ = 9.3 (br,3H, NH); 7.3-7.6 (m, 4H), 4.1 (m, 2H); 3.7 (m, 1H); 2.40

'H-NMR (DMSO): 8 (s, 3H); 0.95 (t, 3H).

1.2) 2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-oxo-3-o-tolyl-propionsäureethylester

20

15

25

6.2 g (0.024mol) 2-Amino-3-oxo-3-o-tolyl-propionsäureethylester hydrochlorid wurden in Methylenchlorid gelöst und 9.7 g (0.096 mol) Triethylamin zugegeben. Hierzu wurden bei 0°C 5.4 g (0.024 mol) 4-Fluor-2-trifluormethylbenzoylchlorid gelöst in Methylenchlorid zugetropft. Es wurde 1h bei Raumtemperatur (RT) gerührt und anschließend mit 5%iger Salzsäure versetzt. Die organische Phase wurde abgetrennt, gewaschen, getrocknet und das Lösungsmittel entfernt. Nach chromatographischer Reinigung

10

20

25

(Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 4.7g der Titelverbindung als farblose Kristalle.

¹H-NMR (DMSO): δ = 9.61 (d, 1H); 7.3-7.9 (m, 7H); 6.18 (d, 1H); 4.1-4.3 (m, 2H); 2.40 (s, 3H);1.15 (t, 3H).

1.3) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propion-säureethylester

4.7 g (0.0114 mol) 2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-oxo-3-o-tolyl-propionsäureethylester wurden in Methylenchlorid gelöst, die Lösung im Ultraschallbad entgast und 200 mg Katalysatormischung versetzt. Die Katalysatormischung wurde zuvor durch 1h erhitzen von 78 mg Dichloro(P-Cymene)ruthenium(II)-Dimer (RuCl₂Cy)und 138 mg BINAP in Methylenchlorid und Ethanol au 50°C und anschließendem Entfernen der Lösungsmittel hergestellt.

Die Lösung wurde unter 80 bar Wasserstoffdruck bei 50°C 90 h erhitzt. Nach Entfernen der Lösungsmittel und chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 3.4 g der Titelverbindung als farblose Kristalle. 1 H-NMR (DMSO): δ = 8.95 (d, 1H); 7.0-8.7 (m, 7H); 5.80 (d, 1H); 5.40 (t, 1H); 4.75 (dd, 1H); 4.10 (m, 2H); 2.30 (s, 3H); 1.20 (t, 3H).

1.4) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propionsäure-N-methylamid

3.4 g (0.0082 mol) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propion-säureethylester wurden in Ethanol gelöst. Bei Raumtemperatur leitete man Methylamin-Gas ein. Nach 1.5h wurde für 1h auf 30-35°C erwärmt. Nach Entfernen der Lösungsmittel erhielt man 3.1g der Titelverbindung als farblose Kristalle.

 1 H-NMR (DMSO): δ = 8.45 (d, 1H); 7.0-7.7 (m, 7H); 5.70 (d, 1H); 5.30 (t, 1H); 4.65 (dd, 1H); 2.65 (d, 3H); 2.40 (s, 3H); 1.10 (t, 3H).

1.5) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-(N-phenyl-N-methylaminocarbonyloxy)-3-o-tolyl-propionsäure-N-methylamid (**Tab. 3, Nr. 3.34**)

0.4 g (0.001 mol) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propion-säure-N-methylamid wurden in Methylenchlorid gelöst, 013 g (0.0013 mol) Triethylamin und eine Spatelspitze 4-Dimetylaminopyridin zugesetzt und 0.22g N-Phenyl-N-Methyl-Carbamoylchlorid in Methylenchlorid zugegropft. Die Suspension wurde 15 Stunden gerührt, mit 5% Salzsäure und NaHCO₃-Lösung extrahiert und getrocknet. Nach chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 0.28g der Titelverbindung als farbloses Öl.
15 ¹H-NMR (DMSO): δ = 8.8 (br, 1H); 7.0-7.6 (m, 12H); 5.70 (d, 1H); 5.30 (br, 1H); 4.85 (dd, 1H); 2.75 (d, 3H); 2.55 (d, 3H); 2.40 (s, 3H).

20 Beispiel 2
N-[2-(Benzyl-formyl-amino)-1-methylcarbamoyl-2-phenyl-ethyl]-4-fluoro-2trifluoromethyl-benzamid (Tab. 3, Nr. 3.43)

2.1) 1-Benzyl-5-phenyl-4,5-dihydro-1H-imidazole-4-carbonsäureethylester

10

15

20

25

67

25.7 g (0.1305 mol) Benzylidenbenzylamin wurden in Ethanol gelöst und 15.2 g (0.1305 mol) Isocyanessigsäureethylester zugetropft. Die Lösung wurde 16h unter Rückfluß erhitzt. Nach Entfernen der Lösungsmittel und Trocknen erhielt man 40.2g der Titelverbindung als farbloses Öl.

¹H-NMR (DMSO): δ = 7.1-7.4 (m, 10H); 4.6 (d, 1H); 4.5 (d, 1H); 4.3 (d, 1H); 4.1 (q, 2H); 3.8 (d, 1H); 1.1 (t, 3H).

2.2) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäure

14.8 g (0.048 mol) 1-Benzyl-5-phenyl-4,5-dihydro-1H-imidazole-4-carbonsäure-ethylester wurden in 100 ml 47%iger HBr-Lösung 3h unter Rückfluß erhitzt. Die Lösungsmittel wurden entfernt, der Rückstand mit Wasserverrührt und filtriert. Die Lösungsmittel wurden entfernt, der Rückstand in Ethanol sufgenommen und mit Diethylether verdünnt. Die entstandene Suspension wurde filtriert und die Lösungsmittel entfernt. Man erhielt 14.0g der Titelverbindung als Rohprodukt, das in der nächsten Stufe ohne Reinigung weiter eingesetzt wurde.

2.3) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäuremethylester

13.5 g (0.04 mol) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäure wurden in Methanol gelöst und 7.1g (0.06mol) Thionylchlorid und 1 Tropfen DMF zugetropft. Nach 20 Stunden wurden die Lösungsmittel entfernt, der Rückstand in Diethylether suspendiert und unter Rühren 5%-ige NaHCO₃-Lösung zugegeben. Die Etherphase wurde abgetrennt, gewaschen und getrocknet. Nach Entfernen der Lösungsmittel erhielt man 4.0g der Titelverbindung als farbloses Öl, das ohne weitere Reinigung eingesetzt wurde.

68

2.4) 3-(N-Benzyl-N-formyl-amino)-2-(4-fluoro-2-trifluoromethyl-benzoylamino)-3-phenyl-propionsäuremethylester

- 1.4 g (0.0052 mol) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäuremethylester wurden in Methylenchlorid gelöst und 1.0 g (0.0052 mol) 4-Fluor-2-trifluormethyl-benzoesäure und 1.0 g (0.010mol) Triethylamin in THF zugegeben. Bei 0-5°C wurden 1.3 g (0.0052 mol) Bis(2-oxo-3-oxazolidinyl)phosphorylchlorid zugegeben. Nach 2h bei 0°C wurde 15h bei Raumtemperatur gerührt. Die Lösungsmittel wurden entfernt, der Rückstand in Essigsäureethylester aufgenommen, gewaschen und getrocknet. Nach chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 0.65 g der Selverbindung als farbloses Öl. ¹H-NMR (DMSO): δ = 8.45 (s, 1H); 7.95 (d 1H); 7.00 7.40 (m. 13H); 5.40 5.55 (m, 2H); 4.38 (q, 2H); 3.60 (s, 3H).
 - 2.5) N-[2-(N-Benzyl-N-formyl-amino)-1-methylcarbamoyl-2-phenyl-ethyl]-4-fluoro-2-trifluoromethyl-benzamid (**Tab. 3, Nr. 3.43**)

- 20 0.65g (0.00129mol) 3-(N-Benzyl-N-formyl-amino)-2-(4-fluoro-2-trifluoromethyl-benzoylamino)-3-phenyl-propionsäuremethylester wurden in 1Methanol gelöst. Bei 0°C wurde Methylamin-Gas eingeleitet und nach 1h für 18h auf RT erwärmt. Nach Entfernen der Lösungsmittel und üblichen Reinigungsmethoden erhielt man 550 mg der Titelverbindung als farblose Kristalle.
- ¹H-NMR (DMSO): δ = 9.20 (d, 1H); 8.51 (s, 1H); 8.30 (m, 1H); 6.75-7.75 (m, 12H); 5.52 (t, 1H); 5.07 (d, 1H); 4.52 (d, 1H); 4.20 (d, 1H); 2.40 (d, 3H).

In den nachfolgenden Tabellen 2 und 3 sind neben den voranstehenden Verbindungen noch weitere Benzoylderivate der Formel III sowie benzoylsubstituierte Phenylalanin-Amide der Formel I aufgeführt, die in analoger Weise nach den voranstehend beschriebenen Verfahren hergestellt wurden oder herstellbar sind.

III mit
$$R^1 = CF_3$$
, R^2 , R^4 , $R^5 = H$, R^{12} , R^{13} , $R^{14} = H$

Tabelle 2	۵.		6	8	-44	-	Tankbro/	Konfiguration	Schmb.
Ä.	ŗ.	*	<u>.</u>	2 04	r I	- Ç-	Threo		
					=		ondhro	730	115
21	I	동	工	I	E.	ا الركا الركا	el yuno	25	
	•			-	-	70	threo	rac	105
22	I	품	I	I.	Ę	5		3	
1:1				-		700	andhro	rac	63
23	ш.		I	E.	E	00215	O mino		
				=	L	HUC	threo	2-S. 3-R	
2.4	ш	동	I.	E	L,	00215	2011		
i				-	L	7	threo	7-S 3-R	141
25	L	TO —	I	<u> </u>	L	00215	00		

mit R ¹ = CF ₃ , R ² , R ⁴ , R ⁵ , R ⁶ = H, R ⁷ = CH ₃ , R ¹² , R ¹³ , R ¹⁴ = H	-
. -	
CF ₃ O R ⁸ N CH ₃	

				Г	Ι	I		Ī	\neg				1	\neg			Т	\neg
Schmn			ΙÖ	. 154	206	209	225	155	90	06	167	62	F V .	1 4	<u></u>	155	000	901
Konfiguration	Normigar and		rac	rac	rac	rac	rac	rac		2-S, 3-R	rac	2-S. 3-R		Z-S, 3-K	2-S, 3-R	rac	25	rac
[mathro/	El yullo/	Threo	erythro	threo	threo	threo	erythro	threo	8	threo	threo	threo	;	threo	threo	threo	20	threo
4 . S. A. S.	2 7)	I	エ	Ŧ	エ	I	I	-	<u>ı</u>	I	I	=	LL.	ರ	3	=	I
01.6	<u>:</u>		T	I	T	ਝੁੰ	, =		E	工	T	H	20	ű ű	CH ₃		C	I
0	· ·		I	I	ť	T	I	: =	_	I	ť	ב	=	エ	I	-	E	エ
0	ů.		HO	E	HO HO	E E	HO		HO HO	НО	HO		LO LO	Ю	동		OCH	O-CH ₂ -C ₆ H ₅
	<u>"</u> ۲		I	= =	= =	= =	- - L	<u> </u>	<u> </u>	ш	ц	- 1	_	L	L	-	I	L
ממסווס	Ž.		7 7	- 00	2.2	0.0	t.0.	5.3	3.6	3.7	α	2.5	3.0	3.10	2 11	-	3.12	3.13

				T	1	Τ-	- _T			· —[-		_	,,,	Τ	Т		П				1	T	_	\neg	
Schmp.		137	Ö	180	196	218	210	COL	181	190	140	ō	183	. 189	Ö	120	چ	5	1/0	ō	207	200	140	2 2	5 3	5	142
Konfiguration		rac	rac	rac	TaC.	2 6	rac	2-5, 3-K	rac	rac	rac	rac	2-S, 3-R	2-S, 3-R	rac	rac	0000	Z-0, 0-7	2-S, 3-R	2-S, 3-R	rac	rac	Jaz	200	Z-3, 3-K	2-S, 3-R	rac
Erythro/	Threo	threo	threo	threo	threo.	000	threo	threo	threo	erythro	threo	threo	threo	threo	ervthro	threo	00 = 5	threo	threo	threo	threo	threo	d+	OB III II	threo	threo	threo
R11		I	I	I	= =	r	I	I		I	工	エ	I	L	I	: =	C :	工	Ц.	ō	エ	I	: =	E	I	工	I
R ¹⁰		工	I	: =	= =	T	I	CH³	エ	I	工	T	CH ₃	£) 	= =	E	£	ਮੁੰ	£5	I	I	-	I	문	cH ₃	I
3	<u> </u>	I	Į.	2 =	c :	I	エ	エ	エ	T	I	I	I	I	: 3	=	I.	I	Ŧ	I	I	: =	=	I	I	I	I
8 ₈ X		O-CH(0-CEC.H.)	O CLI (o CE C.H.)	O-CH2-(0-CF3-C61 14)	O-CH ₂ -(2,4,6-Cl ₃ -C ₆ H ₂)	OCOCH3	0C0CH ₃	0C0CH3	OCOCH(CH ₃) ₂	OCOC(CH3)3	OCOC(CH ₃) ₃	OCOC(CH ₃) ₃	OCOC(CH ₃) ₃	OCOC(CH2),	0000(013)3	OCOIN(CH3)2	OCON(CH ₃) ₂	OCON(CH ₃) ₂	OCON(CH ₃),	OCON(CH ₂) ₂	JG-CAN-CAR-)	(6: 190) IN 1000	OCONH(M-CI-C6T4)	OCONH(m-CN-C ₆ H ₄)	OCON(CH ₃)(C ₆ H ₅)	OCO-N-morpholinyl	OCOOCH ₂ CH(CH ₃) ₂
2	<u> </u>	3	= =	F	u.	Ŧ	L.	L	LL	. I	= I	: 4	. Ц	. L	L	I	ш.	ட	Ц	_	_ _	L	<u>ı</u> _	ட	LL	Ш	. =
N	<u> </u>	77	5.14	3.15	3.16	3.17	3.18	3.19	3.20	2.04	3.22	3.22	3.24	12.0	3.23	3.26	3.27	3.28	2 20	0.23	0.30	3.31	3.32	3.33	3.34	3.35	3.36

			Τ_	Т		-т		_		Т		Т		٦
Schmb.	•	136	141	+	135		6		162		ō	!	212	
Konfiguration		rac		rac	757	2	2.5 3.R	2-0, 0-2	rac		rac		rac	
Eruthro/	Threo	threo		threo	throo	20 ====================================	throo	02	4.4		4.7	-	on/thro	G yang
110	¥ .	I		エ	-	<u></u>	-	Е		C		<u>:</u>		=
1140	Y]	1	エ		I		£		<u> </u>		C	-	Е
	Ĉ.	=	<u></u>	I	:	I		工		I		I		E
	2		OCOOCH2CH(CH3)2	OSO-CH.	0002013	CSO,CH,	0002013	OSO,CH,	8: 107000	S-CH ₂ -C ₆ H ₅	0 0 7	T O'LZ	6-00	$N-(CH_2-C_6H_5)(CHO)$
	<u>ب</u>		ш_	=	 ⊑	L	L	ш	_	L		I	-	ட
	Ž.		3.37		3.38	000	3.39	07.0	3.40	211	- 4.0	2 13	3.42	3.43

Biologische Wirksamkeit

Die benzoylsubstituierten Phenylalanin-Amide der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die Verbindungen der Formel I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

10

5

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

15

20

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinergiis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

30

25

Darüber hinaus können die Verbindungen der Formel I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

35

40

Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewen-

det werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netwaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser berwet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

25

30

35

20

Als oberflächenaktive Stoffe (Adjuvantien) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

20

25

30

35

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Konzentrationen der Verbindungen der Formel I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

- 1. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
- II. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
- III. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst,
 die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfrakti-

on vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.

5

IV. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs der Formel I enthält.

10

V. 3 Gewichtsteile eines Wirkstoffs der Formel I werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs der Formel I enthält.

15

VI. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

20

VII. 1 Gewichtsteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.

25

VIII. 1 Gewichtsteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

30

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

35

30

78

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte 5 können die benzoylsubstituierten Phenylalanin-Amide der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Ben-10 zoesäure und deren Derivate, Benzothiadiazinone, 2-(Hetaroyl/Aroyl)-1,3- cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF₃-Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, 15 Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren 🚁 Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonyl-20 harnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Anwendungsbeispiele

5

10

15

20

25

30

Die herbizide Wirkung der benzoylsubstituierten Phenylalanin-Amide der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 1,0, 0,5, 0,25, 0,125 bzw. 0,0625 kg/ha a.S. (aktive Substanz).

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

20030938

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name	Englischer Name
Amaranthus retroflexus	Fuchsschwanz	pig weed
Chenopodium album	Weißer Gänsefuß	lambsquaters
Setaria viridis	Grüne Borstenhirse	green foxtail

Bei Aufwandmengen von 1.00 kg/ha zeigte die Verbindung 3.2 (Tabelle 3) im Nachauflauf eine sehr gute Wirkung gegen die unerwünschten Pflanzen Fuchsschwanz, Weißer Gänsefuß und Grüne Borstenhirse.

Weiterhin bekämpfte Verbindung 3.28 (Tabelle 3) im Nachauflauf bei Aufwandmengen von 1,00 kg/ha die Schadpflanzen Fuchsschwanz, Weißer Gänsefuß und Grüne Borstenhirse sehr gut.

Die Wirkung von Verbindung 3.11 (Tabelle 3) im Nachauflauf bei Aufwandmengen von 1,00 kg/ha auf die unerwünschten Pflanzen Fuchsschwanz, Weißer Gänsefuß und Grüne Borstenhirse ist sehr gut.

Ebenso bekämpft die Verbindung 3.10 (Tabelle 3) bei Aufwandsmengen von 1,00 kg/ha im Nachauflauf die Schadpflanzen Fuchsschwanz, Weißer Gänsefuß und Grüne Borstenhirse sehr gut.

15

10

Zusammenfassung

5

15

Die vorliegende Erfindung betrifft Benzoylsubstituierte Phenylalanin-Amide der Formel I

$$R^{10}$$
 R^{10}
 R^{12}
 R^{13}
 R^{14}
 R^{6}
 R^{7}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

in der die Variablen R¹ bis R¹⁴ die in der Beschreibung genannten Bedeutungen haben,

10 sowie deren landwirtschaftlich brauchbaren Salze,

Verfahren und Zwischenprodukte zu ihrer Herstellung, sowie die Verwendung dieser Verbindungen oder diese Verbindungen enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.