Project-4-Wrangle-OpenStreetMap-Data

Nan Li

Map Area Houston, TX, United States

- OpenStreetMap URL (http://www.openstreetmap.org/search?query=houston#map=11/29.7593/-95.3675)
- MapZen URL (https://mapzen.com/data/metro-extracts/metro/houston_texas/)

Since I'm living and studing in houston right now, I'm more interested to see what's going on here.

1. Sampling Data

Due to the size of the XML file, I sampled the data by using $map_sample.py$. In order to keep more data, set k = 10. And named sample file is $sample_houston.osm$.

2. Data Audit

Unique Tags

Use the tag_count.py file to fetch the all tag type with total number of each tag.

```
'member': 1487,
'nd': 309740,
'node': 250482,
'osm': 1,
'relation': 202,
'tag': 180462,
'way': 38132
```

Auditing the k Tags

After reading the OpenStreetMap Wiki (https://wiki.openstreetmap.org/wiki/Main_Page), I learnt that nodes, ways and relations. Because the "k" value of each tag contain different patterns, I used

auditing_k_tag_type.py including three regular expressions to check for certain patterns in the tags. Four different types of k tags as below.

- "problemchars": 0, for tags with problematic characters, and
- "lower": 86870, for tags that contain only lowercase letters and are valid,
- "lower_colon" : 89297, for otherwise valid tags with a colon in their names,
- "other": 4295, for other tags that do not fall into the other three categories.

Auditing the users

Used auditing_users.py to audit the users and the number of users. The number of different users is 1254.

3. Problems Encountered in the Map

After dealing with the sample file of houston area, I noticed three main problems with the

- Inconsistent street names("Ave", "Frwy")
- Inconsistent postal codes("TX 77086", "77024-8022")
- Many 'k' tags had only been used once and many similar tags were referenced by different names.

Inconsistent Street Names

Auditing the street name by using auditing_street_name.py, some inconsistent names are showing.

```
■ 'Ave': {'E Parkwood Ave', 'Washington Ave'}
```

- 'Blvd': {'John Freeman Blvd', 'Montrose Blvd'}
- 'Dr': {'Business Center Dr', 'Portway Dr'}

Updating Street Names

Updating the street name, I used updating_street_name.py.

```
■ ('Washington Ave', '=>', 'Washington Avenue')
```

- ('Montrose Blvd', '=>', 'Montrose Boulevard')
- ('Business Center Dr', '=>', 'Business Center Drive')

Inconsistent Postal Code

Normalized the postal code to be five degits by using update_zipcode.py.

```
■ 'TX 77086', '=>' ['77086']
```

4. Data Overview

Preparing Data for SQL

Before using SQL to process data, I convert the OSM to CSV by xml_to_csv.py. And then based on the schema from the instruction and csv_to_db.py, I create a houston.db file.

File Sizes:

■ houston.osm: 556 MB

■ sample_houston.osm: 56.4 MB

■ nodes_csv: 20.2 MB

■ nodes_tags.csv: 516 KB

■ ways_csv: 2.20 MB

■ ways_nodes.csv: 7.31 MB

■ ways_tags.csv: 5.74 MB

■ houston.db: 41.5 MB

Number of documents:

¬ sqlite> SELECT COUNT(*) FROM ways_nodes

Output:

309740

Number of nodes:

sqlite> SELECT COUNT(*) FROM nodes

Output:

№ 250482

Number of ways:

^{■ &#}x27;77077-9998', '=>', '77077'

¬ sqlite> SELECT COUNT(*) FROM ways

Output:

№ 38132

Number of unique users:

sqlite> SELECT COUNT(DISTINCT(e.uid))
FROM (SELECT uid FROM nodes UNION ALL SELECT uid FROM ways) e;

Output:

№ 1253

Number of users contributing only once:

```
sqlite> SELECT COUNT(*)
FROM(SELECT e.user, COUNT(*) as num
FROM (SELECT user FROM nodes UNION ALL SELECT user FROM ways) e
GROUP BY e.user
HAVING num=1) u;
```

Output:

245

Top 10 contributors:

sqlite> SELECT e.user, COUNT(*) as num
FROM (SELECT user FROM nodes UNION ALL SELECT user FROM ways) e
GROUP BY e.user
ORDER BY num
DESC LIMIT 10;

Output:

pafdreher 46707 woodpeck_fixbot 35168 cammace 19320 scottyc 18677 claysmalley brianboru 13835 10765 skquinn 8098 RoadGeek_MD99 7674 5599 Memoire TexasNHD 4673

Top 10 zipcode:

```
sqlite> SELECT tags.value, COUNT(*) as count
FROM (SELECT * FROM nodes_tags UNION ALL
SELECT * FROM ways_tags) tags
WHERE tags.key = 'postcode'
GROUP BY tags.value
ORDER BY count DESC LIMIT 10;
```

Output:

```
77096
             47
  77449
             27
  77401
            25
  77339
             22
  77494
            16
  77076
  77002
             11
  77586
             11
  77007
            9
             8
  77006
```

5. Additional Data Exploration

Common ammenities:

```
sqlite> SELECT value, COUNT(*) as num
FROM nodes_tags
WHERE key= 'amenity'
GROUP BY value
ORDER BY num DESC
LIMIT 10;
```

Output:

```
p_ parking
               382
  place_of_worship 223
  school 148
  fast_food
              92
  restaurant
              82
  fountain
             72
  fuel
  fire_station 30
  pharmacy
             28
  bank
              22
```

Popular cuisines:

```
sqlite> SELECT nodes_tags.value, COUNT(*) as num
FROM nodes_tags
JOIN (SELECT DISTINCT(id) FROM nodes_tags WHERE value='restaurant') i
ON nodes_tags.id=i.id
WHERE nodes_tags.key='cuisine'
GROUP BY nodes_tags.value
ORDER BY num DESC LIMIT 10;
```

Output:

```
p_ mexican
                   10
  burger
  italian
                   3
  asian
                  2
  pizza
                 2
  american
                 1
  barbeque
                1
  cajun
                 1
  chinese
   latin_american
```

From this partial result, I can guess there are more mexican who lived in houston since mexico is close to houston.

6. Conclusion

Since the size of the houston.OSM is big, I have played with sample_houston.OSM. There are some inconsistent informations in this data. Doing the normalization is a good way, but it's not the whole idea. If we can standard the input, that's a better way. From the popular cusines, we can know no enough infomation arranged into some tags. Comparing with Google Maps, the information of the dataset were very old.

Additional Suggestion and Ideas

How to control typo errors

- Making some rules to the input data which all the users can follow that. Just like when you order something on Amazon and type your address, it will give you a suggested address.
- Developping some script to clean the data in a certain time.

Benefits

- Avoiding the invalid information on the dataset and improving the fetching result speed and accurancy
- Standarding the input data as Google Maps, it's more convenient to do the cross-referencing.

Anticipated Problems

- Supposed the user still typed the information by unfollowed the suggested format is a big problem.
- For the scrip of cleaning data, it will not only modify the data, but also delete the data sometimes. How should we deal with it?
- Even if everything is setted up exactly, we will still face the wrong information problem. Like someone typed Houston Avenue as Washington Avenue.

References

https://github.com/pratyush19/Udacity-Data-Analyst-Nanodegree/tree/master/P3-OpenStreetMap-Wrangling-with-SQL (https://github.com/pratyush19/Udacity-Data-Analyst-Nanodegree/tree/master/P3-OpenStreetMap-Wrangling-with-SQL)
https://github.com/mablatnik/Wrangle-OpenStreetMap-Data/blob/master/OpenStreetMap.ipynb (https://github.com/mablatnik/Wrangle-OpenStreetMap-Data/blob/master/OpenStreetMap.ipynb)