IOT AND CLOUD COMPUTING LAB

IOT AND CLOUD COMPUTING LAB

IOT AND CLOUD COMPUTING LAB

Course	B.TechVI-Sem.	L	T	P	C
Course Code	22CSPC64	•	•	2	1

Course Outcomes (COs) & CO-PO Mapping (3-Strong; 2-Medium; 1-Weak Correlation)

COs	Upon completion of course the students will be able to	PO4	PO5	P09	PSO2
C01	identify various IoT devices	3	3	3	3
CO2	use IoT devices in various applications	3	3	3	3
CO3	develop automation work-flow in IoT enabled cloud environment	3	3	3	3
CO4	take part in practicing and monitoring remotely	3	3	3	3
C05	make use of various IoT protocols in cloud	3	3	3	3

List of Experiments

Week	Title/Experiment
1	Install necessary software for Arduino and Raspberry Pi.
2	Familiarization with Arduino and Raspberry Pi board.
3	Write a program to transfer sensor data to a Smartphone using Bluetooth on Arduino.
4	Write a program to implement RFID using Arduino.
5	Write a Program to monitor temperature and humidity using Arduino and Raspberry Pi.
6	Write a Program to interface IR sensorswith Arduino using IoT Cloud Application.
7	Write a Program to upload temperature and humidity data to the cloud using an Arduino or Raspberry Pi.
8	Write a program to retrieve temperature and humidity data from the cloud using Arduino and Raspberry Pi.
9	Write a program to create a TCP server on cloud using Arduino and respond with humidity data to the TCP client when requested.
10	Write a program to create a UDP server on cloud using Arduino and respond with
	humidity data to the UDP client when requested.

References

IoT and Cloud Computing Lab Manual, Department of CSE, CMRIT, Hyd.

Micro-Projects: Student should submit a report on one of the following/any other micro-project(s) approved by the lab faculty before commencement of lab internal examination.

- Air Pollution Meter.
- Smart Garbage Collector.
- Weather monitoring system.
- 4. Baggage Tracker.
- Circuit Breakage Detection.
- Anti-Theft Flooring System.
- IoT Based Smart Street Light.
- IoT based Gas Leakage Monitoring system.
- 9. IoT Based Smart Irrigation System.
- IoT Based Water Level Monitoring System.

WEEK-8

Aim: Write a program to retrieve temperature and humidity data to the cloud using Arduino or Raspberry Pi.

Hardware Requirements:

- 1. Arduino UNO board
- 2.NodeMCU ESP8266 Breakout Board
- 3.DHT-11 temperature and humidity sensor
- 4. Jumper wires
- 5.Bread board

Procedure:

- 1. Open up the Arduino IDE and head over to the library manager.
- 2. Install the DHT library (You can also install it by going to Sketch > Include Library > Manage Libraries, and search for adafruit dht library).

DHT sensor with 3 pins:

- 1. Power supply 3.5V to 5.5V.
- 2. Data, Outputs both Temperature and Humidity through serial Data.
- 3. Ground, Connected to the ground of the circuit.

Set up in source code:

- 1. Set your Wi-Fi SSID and password.
- 2. Set the API Key
- 3. Save->Compile->upload->now us can visualize our data in cloud

Connection Diagram DHT11 with NodeMCU

NodeMCU interfaced with DHT11

Asst. Prof. S.Asra CSE Department, CMRIT

OUTPUT 1:

Output Serial Monitor

```
Writing at 0x00004000... (15 %)
Writing at 0x00008000... (23 %)
Writing at 0x0000c000... (30 %)
Writing at 0x00010000... (38 %)
Writing at 0x00014000... (46 %)
Writing at 0x00018000... (53 %)
Writing at 0x0001c000... (61 %)
Writing at 0x00020000... (69 %)
Writing at 0x00024000... (76 %)
Writing at 0x00028000... (84 %)
Writing at 0x0002c000... (92 %)
Writing at 0x00030000... (100 %)
Wrote 282912 bytes (207363 compressed) at 0x000000000 in 18.5 seconds (effective 122.6 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting via RTS pin...
```


OUTPUT 2:

Channel ID: 2846212

Author: mwa0000036863193

Access: Private

Channel Stats

Created: 16 days ago Last entry: 7 minutes ago

Entries: 2

OUTPUT 3:

Output Serial Monitor ×

Message (Enter to send message to 'NodeMCU 1.0 (ESP-12E Module)' on 'COM11')

Temperature: 33

Humidity: 95

Temperature: 33

Humidity: 95

Temperature: 33

Humidity: 95

Temperature: 33

Humidity: 95

Temperature: 33

Unable to read channel / No internet connection

Temperature: 33

Humidity: 95

Temperature: 33

Humidity: 95

Temperature: 33

Humidity: 95

