4. Propositional Logic

Language & Logic

Dave Parker

University of Birmingham 2017/18

Assignments

- Continuous assessment (20% of module)
 - 3 assignments in weeks 3, 6 and 10
 - worth 6%, %6 and 8%, respectively
- Assignment 1 out now, due Fri 13 Oct (5pm)
 - topic: grammars and truth tables
 - submission via Canvas
 - handwritten and scanned (via phone, tablet, scanner, etc.)
 or typeset (e.g. with Word, LibreOffice, Latex), PDF preferred
 - any problems please ask
 - see solutions for Exercise Sheet 1 and practice quizzes

Overview

- Last lecture: a first formal look at logic
 - atomic propositions and connectives
 - constructing truth tables, for...
 - 1. semantics of connectives and propositions
 - 2. checking validity of arguments

Today

- propositional logic as a formal language
- semantics of propositions and arguments
- proof: introduction to natural deduction

Propositional logic

- Logical connectives:
 - negation: ¬ (not)
 - conjunction: ∧ (and)
 - disjunction: ∨ (or)
 - implication: → (if then / implies)

Alternative notation (e.g., Tomassi book)

- negation: ~ф
- conjunction: φ & ψ
- disjunction: φ ν ψ

- Formulas (or "sentences") in propositional logic
 - if P is an atomic proposition, then P is a formula
 - if ψ and ψ are formula, then these are all formulas:

```
\neg \Phi, \Phi \wedge \Psi, \Phi \vee \Psi and \Phi \rightarrow \Psi
```

- these are atomic and compound formulas, respectively
- To be more precise, these are well-formed formulas

Propositional logic - syntax

The syntax of propositional logic is specified by the grammar

$$- F \rightarrow Ap \mid [\neg] F \mid F [\land] F \mid F [\lor] F \mid F [\rightarrow] F$$

$$-Ap \rightarrow [P] \mid [Q] \mid [R] \mid ...$$

Question

- $P \wedge Q \vee R$
- is this a well-formed formula? what does it mean?

Question

- how do we write this in propositional logic?
- If arachnids have eight legs then crabs spin webs and scorpions live underwater

Avoiding ambiguity

- Use parentheses to avoid ambiguity
 - $(P \land Q) \lor R \ vs. P \land (Q \lor R)$
 - $-A \rightarrow (C \land S) \text{ vs. } (A \rightarrow C) \land S$
- General rule:
 - enclose all compound sub-formulas in parentheses
- Precedence
 - negation applies to the smallest formula following
 - e.g. $\neg P \lor Q$ means $(\neg P) \lor Q$
 - but: we won't make assumptions about precedence of ∧ and ∨

Some terminology

- The scope of a connective
 - the connective itself, plus what it connects
- The main connective of a formula
 - the connective whose scope is the whole formula
- Example

$$- (\neg (P \land Q)) \rightarrow (\neg P \lor \neg Q)$$

- In terms of parse trees
 - scope = sub-tree
 - main connective = root node

Semantics of propositions

- We have used truth tables to illustrate the semantics (meaning) of propositions
 - i.e., the truth value (true or false)
 of the proposition for each possible
 truth assignment (to atomic propositions)

Р	Q	$P \rightarrow Q$
Т	Τ	Т
Т	F	F
F	Т	Т
F	F	Т

Properties of propositions

- valid: true for every possible truth assignment
- satisfiable: true for some possible truth assignment
- unsatisfiable: false for every possible truth assignment
- contingent: true for some assignment and false for another

Note

don't confuse validity of propositions and arguments

Relationships between propositions

Logical equivalence

$$- \varphi \equiv \psi$$

- φ and ψ have the same truth value for every possible truth assignment
- e.g. $\neg(P \land Q) \equiv \neg P \lor \neg Q$

Р	Q	$\neg (P \land Q)$	$\neg P \lor \neg Q$
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

Logical entailment

$$- \varphi \models \psi$$

- for every truth assignment where ϕ is true, ψ is also true

$$-$$
 e.g. $P \wedge Q \models P$

Р	Q	$P \wedge Q$	Р
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

Extends to arguments...

Arguments in propositional logic

- Example
 - Premise 1: H → O
 - Premise 2: ¬○
 - Conclusion: ¬H
- Notation: written as a sequent
 - $H \rightarrow O, \neg O : \neg H$
 - i.e., comma-separated list of premises, colon, conclusion
 - (where premises/conclusion are formulas in propositional logic)
- If the argument is valid (and been proven to be), we write:
 - H \rightarrow O, \neg O $\vdash \neg$ H
 - i.e., the : is replaced by the turnstile symbol ⊢ ("entails")

Proofs in propositional logic

• For formal proofs, we need two things:

1. A formal language

- for representing propositions, arguments
- for now, we are using propositional logic

2. A proof theory

- to prove ("infer", "deduce") whether an argument is valid
- first option (last week): truth tables
- another option (next few weeks): natural deduction

Why natural deduction?

- scales better when there are many atomic propositions
- can also be adapted to predicate logic

Natural deduction

Natural deduction

- "natural" style of constructing a proof (like a human would)
- syntactic (rather than semantic) proof method
- proofs are constructed by applying inference rules
- showing that the conclusion can be inferred from the premises

Some example inference rules (written as sequents):

- Modus ponens: $P \rightarrow Q$, P ⊢ Q
- Modus tollens: $P \rightarrow Q$, $\neg Q \vdash \neg P$
- ∧-Introduction: P, Q \vdash P ∧ Q
- ∧-Elimination: $P \land Q \vdash P$

Note:

the set of inference rules available for use may vary

Inference rules

- Inference rules need to be truth preserving
 - as shown before, we can check this with a truth table
- E.g. for modus tollens:

$$-P \rightarrow Q, \neg Q \vdash \neg P$$

P1 P2 C

Р	Q	$P \rightarrow Q$	$\neg Q$	$\neg P$
Т	Τ	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

Writing proofs

- A proof comprises a number of lines, each of which has
 - line number (consecutive)
 - formula (in propositional logic, for now)
 - rule annotation (which inference rule used?)
 - dependency numbers (depends on which other lines?)
- Basic idea
 - work from the premises towards the conclusion
- Example
 - proof for P, $\neg Q \vdash P \land \neg Q$

1.	Р	Premise	{1}
2.	¬Q	Premise	{2}
3.	$P \wedge \neg Q$	\land -Introduction _{1,2}	{1,2

14

{1,2}

Summary

Propositional logic

- atomic propositions, combined with logical connectives
- formal language for expressing propositions
- ambiguity, precedence, scope, main connective
- semantics, equivalence, entailment

Arguments

- written as sequents
- can be proved using natural deduction
- sequence of inference rule applications
- Exercise class: Tue 11am or Thur 10am
 - topic: natural deduction