Examen A:

I. Cierto o Falso: (20pts)
1. La configuración electrónica nos describe la ubicación de los electrones alrededor del núcleo de un átomo.
2. La configuración electrónica no indica en que niveles y subniveles de energía se encuentran los electrones de un elemento.
3. El químico que creó la configuración electrónica se llama Gerald Moeller.
4. El químico que creó la configuración electrónica era de Rusia.
5. Gracias al diagrama de Moeller se puede crear fácilmente y de manera organizada la configuración electrónica.
6. El diagrama de Bohr explica que los electrones giran alrededor del núcleo del átomo en orbitales que solo pueden ocupar ciertos niveles de energía.
7. En el diagrama de Bohr, cada círculo representa una capa.
8. El diagrama de Bohr es el modelo clásico de un átomo.
9. El diagrama de Moeller también se conoce como regla de los verticales
10. Para realizar correctamente la configuración electrónica, el diagrama de Moeller se debe leer en forma diagonal.
II. Realiza el diagrama de Moeller: (10pts)

III. Realiza la configuración electrónica y el diagrama de Bohr de los siguientes elementos: (70pts)

2. As
$$(33) =$$

5.
$$Sr(38) =$$

6.
$$Ag(47) =$$

I. Llena los blancos: (10pts) ___ es el empuje o la fuerza que aplicas a algo durante un tiempo determinado, y esto hace que el objeto cambie su velocidad. 2. El impulso angular de un objeto es igual al cambio en su momento angular es conocido como: El ______ es la cantidad de movimiento que tiene algo-El producto entre el momento de inercia de un objeto que rota su velocidad angular es conocido como: Un impulso que actúa sobre un objeto es igual al momento final del objeto menos su momento inicial es conocido como: Utilizando la fórmula de momento angular resuelve los siguientes ejercicios: I. Un hombre sentado en una silla giratoria tiene un momento de inercia de 6 kg·m² y comienza a girar a 2 rad/s. ¿Cuál es su momento angular? Una moneda tiene un momento de inercia de 0.002 kg·m² y gira a 15 rad/s. ¿Cuál es su momento angular? Las aspas de un ventilador tienen un momento de inercia de 1.5 kg·m² y giran a 10 rad/s. ¿Cuál es su momento angular? Un niño en un juego de feria tiene un momento de inercia de 15 kg·m² y gira a 3 rad/s. ¿Cuál es su momento angular?

III.	Utilizando el teorema del impulso y momento resuelve los siguientes ejercicios:
1.	Un tren de 5,000kg frena a 25m/s a 5m/s en 10 segundos. ¿Cuál fue la fuerza aplicada por los frenos?
2.	Un niño de 50kg patina sobre hielo y es empujado, aumentando su velocidad de 2 m/s a 6m/s en 3 segundos. ¿Cuál fue la fuerza neta aplicada sobre él?
3.	Un astronauta en el espacio empuja una herramienta de 5kg, haciéndola moverse de 0m/s a 2m/s en 0.8 segundos. ¿Qué fuerza aplicó sobre la herramienta?
4.	Un coche de 1,000 kg choca con una barrera de seguridad, pasando de 30m/s a 0m/s en 0.5 segundos. ¿Cuál fue la fuerza experimentada por el coche?
IV.	Utilizando la fórmula de impulso resuelve los siguientes ejercicios: (15pts)
1.	1. Un boxeador lanza un golpe aplicando una fuerza de 120N sobre el guante del rival durante 0.05 segundos. ¿Cuál es el impulso transferido?
2.	Un jugador de tenis golpea la pelota con una raqueta aplicando 60N de fuerza durante 0.1 segundos. ¿Cuál es el impulso generado?
3.	Un golfista golpea la bola con un palo aplicando 150N de fuerza durante 0.02segundos. ¿Cuál es el impulso recibido por la bola?

V.	Utilizando el teorema del impulso y momento angular resuelve los siguientes ejercicios:
1.	Un trompo giratorio con un momento de inercia de 3 kg·m² está girando a 6 rad/s. Alguien le da un impulso aplicando un torque de 5 N·m durante 3 segundos. ¿Cuál será su momento angular final?
2.	Una rueda de camión en un taller mecánico con un momento de inercia de 9 kg·m² gira inicialmente a 4 rad/s. Se le aplica un torque de 11 N·m durante 6 segundos. ¿Cuál será su momento angular final?
3.	Un dado con un momento de inercia de 1.1 kg·m² gira inicialmente a 3 rad/s. Se le aplica un torque de 2 N·m durante 4 segundos. ¿Cuál será su momento angular final?
4.	Un trompo de juguete con un momento de inercia de 1.5 kg·m² está girando a 5 rad/s. Alguien le da un impulso aplicando un torque de 4 N·m durante 2 segundos. ¿Cuál será su momento angular final?
VI.	Utilizando la fórmula de momento resuelve los siguientes ejercicios: (15pts)
1.	Un avión de 5000 kg vuela a 250 m/s. ¿Cuál es su momento lineal?
2.	Un balón de fútbol de 0.45kg se mueve a 15m/s. ¿Cuál es su momento lineal?
3.	Un ciclista y su bicicleta tienen una masa total de 80kg y viajan a 15m/s. ¿Cuál es su momento lineal?

Examen	B:
--------	----

1. Realiza el diagrama de Moeller (10pts)

II. Cierto o Falso (20pts)

1. La configuración electrónica nos describe la ubicación de los electrones alrededor del núcleo de un átomo.
2. La configuración electrónica no indica en que niveles y subniveles de energía se encuentran los electrones de un elemento.
3. El químico que creó la configuración electrónica se llama Gerald Moeller.
4. El químico que creó la configuración electrónica era de Rusia.
5. Gracias al diagrama de Moeller se puede crear fácilmente y de manera organizada la configuración electrónica.
6. El diagrama de Bohr explica que los electrones giran alrededor del núcleo del átomo en orbitales que solo pueden ocupar ciertos niveles de energía.
7. En el diagrama de Bohr, cada círculo representa una capa.
8. El diagrama de Bohr es el modelo clásico de un átomo.
9. El diagrama de Moeller también se conoce como regla de los verticales
10. Para realizar correctamente la configuración electrónica, el diagrama de Moeller se debe leer en forma diagonal.

III. Realiza la configuración electrónica y el diagrama de Bohr de los siguientes elementos: (70pts)

8. F(9) = _____

9. Br (35) = _____

10. Na (11) =

11. Ti (22) =

12. Zr (40) =

13. V(23) = ____

14. O(8) =