(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 27. Mai 2004 (27.05.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/044452 A2

(51) Internationale Patentklassifikation7:

(72) Erfinder; und

(21) Internationales Aktenzeichen:

PCT/AT2003/000340

F16F 15/26

(22) Internationales Anmeldedatum:

12. November 2003 (12.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

GM 764/2002

12. November 2002 (12.11.2002) AT

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MAGNA STEYR POWERTRAIN AG & CO KG [AT/AT]; Industriestrasse 35, A-8502 Lannach (AT).

(75) Erfinder/Anmelder (nur für US): FRIEDRICH, Christian [AT/AT]; Grillparzerstrasse 43, A-8010 Graz (AT).

(74) Anwalt: KOVAC, Werner; Magna Steyr Fahrzeugtechnik AG & CO KG, Patentabteilung VI, Liebenauer Hauptstrasse 317, A-8041 Graz (AT).

(81) Bestimmungsstaaten (national): CA, JP, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

[Fortsetzung auf der nächsten Seite]

(54) Title: BALANCE SHAFT FOR A RECIPROCATING PISTON ENGINE

(54) Bezeichnung: AUSGLEICHSWELLE FÜR HUBKOLBENMASCHINEN

comprises a fixed connection (15) to the balance shaft (11) in the peripheral direction, the elastic part (31) being adjacent to the balance weight (22)

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Bei einer Ausgleichswelle für Hubkolbenmaschinen mit mindestens einem Ausgleichsgewicht soll eine wirksame Geräuschreduktion erzielt werden. Dazu ist das Ausgleichsgewicht (22) drehelastisch mit der Ausgleichswelle (21) verbunden. Dem dient ein elastisches Element, vorzugsweise eines (25) aus Kunststoff von in Umfangsrichtung abgestufter Elastizität, wobei der harte Mittelteil (26) eine in Umfangsrichtung feste Verbindung (15) mit der Ausgleichswelle (11) aufweist und der weiche Teil (31) am Ausgleichsgewicht (22) anliegt.

5

10

AUSGLEICHSWELLE FÜR HUBKOLBENMASCHINEN

15

Die Erfindung betrifft eine Ausgleichswelle für Hubkolbenmaschinen mit 20 mindestens einem Ausgleichsgewicht mit exzentrischem Schwerpunkt. Bei modernen Verbrennungskraftmaschinen werden zur Verminderung von Schwingungen und Laufgeräuschen Ausgleichswellen verwendet. Deren Wirkung und Erfolg ist aber nur dann zufriedenstellend, wenn die Ausgleichswelleneinheit selbst auch ruhig und schwingungsfrei läuft.

25

Schwingungen der Ausgleichswelleneinheit können angeregt werden durch die bewegten Massen des Motors und durch dessen Drehungleichförmigkeit. Letztere sind wegen der Spiele in deren Antrieb und dem kleinen über diesen übertragenen Drehmoment eine besonders schwer be-

30 herrschbare Geräuschquelle, ausserdem wird durch die Drehungleichförmigkeit auf die Zähne eine grosse Belastung mit wechselndem Vorzeichen ausgeübt. Eine Minimierung der Zahnspiele ist wegen der auftretenden Temperaturdifferenzen problematisch und verteuert die Fertigung ausserordentlich.

5 Es ist bekannt, das Antriebszahnrad auf der Kurbelwelle des Motors mit einer elastischen Verbindung zwischen Zahnkranz und Radkörper zu versehen, etwa aus der US 3,667,317, doch lässt diese Entkoppelung von der Erregung durch die Kurbelwelle den Massen der ganzen Ausgleichswelleneinheit die Freiheit zu schwingen.

2

10

Es ist daher Aufgabe der Erfindung, bei geringsten Herstellungskosten (einfache Montage inbegriffen) eine wirksame Geräuschreduktion einer Ausgleichswelleneinheit zu erzielen. Erfindungsgemäß wird das dadurch erreicht, dass das Ausgleichsgewicht drehelastisch mit der Ausgleichs15 welle verbunden ist. So sind nur mehr die Ausgleichsmassen selbst frei zu schwingen, dadurch Verringerung der Zahneintrittsstöße an den Antriebszahnrädern und ruhigerer Lauf.

Die drehelastische Verbindung kann auf verschiedene Weise hergestellt 20 werden. Im einfachsten Fall ist zwischen dem Ausgleichsgewicht und der Ausgleichswelle eine elastische Büchse vorgesehen. Die Elastizität der Büchse ist vorwiegend in Schubrichtung erwünscht, weniger in Druckrichtung. So ist die Aufgabe mit sehr einfachen Mitteln, und ohne den Zusammenbau der Ausgleichswelleneinheit zu erschweren, gelöst.

25

In einer bevorzugten Ausführungsform der Ausgleichswelleneinheit umgibt das Ausgleichsgewicht die Ausgleichswelle mit ihren Randzonen (wie in der WO 01/29447 A1 beschrieben) und ist in Längsrichtung dazwischen ein Fenster gebildet, in dem ein elastisches Element vorgesehen ist, das sich in Umfangsrichtung auf der Ausgleichswelle abstützt. So ist die Verbindung in Umfangsrichtung weich und in radialer Richtung hart, was wegen der Unwucht erwünscht ist. Ausserdem lässt das Fenster nebst den sonstigen Vorteilen genug Raum für eine Feder-Dämpfereinheit, oder

5 für ein elastisches Element aus Kunststoff. Letzteres macht es möglich, ein Ausgleichsgewicht mit geschlosser zylindrischer Kontur auszuführen, was dessen Plantschverluste minimiert.

In einer besonders guten Weiterbildung besteht das elastische Element aus 10 einem Kunststoff von in Umfangsrichtung abgestufter Elastizität, wobei der harte Mittelteil eine in Umfangsrichtung feste Verbindung mit der Ausgleichswelle aufweist. Damit wird zunächst eine progressive Federkennung erreicht, was zum einen freies Ausschwingen erlaubt, zum anderen aber doch den Ausschlag begrenzt.

15

In einer vorteilhaften Ausführungsform ist der Kunststoffteil durch Spritzen hergestellt, wobei die Verbindung mit der Ausgleichswelle aus einer in eine Querbohrung der Welle ragenden mitgespritzten Wurzel besteht. Das ermöglicht einfache Herstellung und schnelle Montage des Kunststoffteiles im Ausgleichsgewicht. Dazu kann die Wurzel eine metallische Verstärkung enthalten.

Im Folgenden wird die Erfindung anhand von Abbildungen beschrieben und erläutert. Es stellen dar:

- Fig. 1: eine erste Ausführungsform in axonometrischer Ansicht,
 - Fig. 2: eine zweite Ausführungsform in axonometrischer Ansicht,
 - Fig. 3: eine dritte Ausführungsform in axonometrischer Ansicht,
 - Fig. 4: einen Schnitt nach AA in Fig. 3.
- 30 In **Fig. 1** ist eine Welle mit 1 und ein Ausgleichsgewicht mit 2 bezeichnet. Beide gemeinsam bilden eine Ausgleichswelle, welche auch mehr als ein Ausgleichsgewicht 2 haben kann. Das Ausgleichsgewicht 2 ist hier von der aus der WO 01/29447 bekannten Bauart mit zwei Randzonen 3, die

4

5 die Welle 1 hosenträgerartig umgeben und einer exzentrischen Unwuchtmasse 4. So entsteht auf der der Unwuchtmasse 4 abgewandten Seite der Welle 1 ein Fenster 6. Das Ausgleichsgewicht könnte aber auch von beliebiger anderer Form sein, etwa ein geschlossener exzentrischer Körper. Wesentlich ist, dass das Ausgleichsgewicht 2 unter Zwischenschaltung 10 einer elastischen Buchse 5 auf der Welle 1 befestigt ist. Die elastische Buchse 5 hat hier die Form eines Zylindermantels, der in dem Fenster 6 ausgeschnitten ist. Sie besteht aus einem vor allem in Umfangsrichtung elastischen Material, vorzugsweise einem gummiartigen Kunststoff. Die Verbindung zwischen der elastischen Buchse 5 und den an ihr anliegenden

15 Flächenteilen von Welle 1 und Ausgleichsgewicht 2 kann in der üblichen Weise durch kleben oder vulkanisieren erfolgen.

In Fig. 2 sind analoge Teile mit einem um zehn erhöhten Bezugszeichen versehen. Das Ausgleichsgewicht 12 mit seinen Randzonen 13 und seiner 20 exzentrischen Unwuchtmasse 14 hat hier wieder ein Fenster 16, das von den Innenflächen der Randzonen 13 und den Begrenzungsflächen der exzentrischen Unwuchtmasse 14 gebildet ist. In diesem Fenster erkennt man einen passfederförmigen Anschlag 15, der Teil der Welle 11 oder fest mit ihr verbunden ist. Zwischen diesem und der Begrenzungsfläche 17 ist eine 25 nur schematisch dargestellte Feder-Dämpfer-Einheit 18 angeordnet, welche der Relativdrehung zwischen dem Ausgleichsgewicht 12 und der Welle 11 in einer Richtung entgegenwirkt, eine weitere solche Feder-Dämpfer-Einheit, die in der anderen Drehrichtung wirkt, ist auch vorhanden, aber nicht sichtbar.

30

In Fig. 3 und Fig. 4, die Bezugszeichen sind um zwanzig erhöht, ist das in Fig. 2 mit 16 bezeichnete Fenster mit einem elastischen Element 25 ausgefüllt. Dieses ist aus einem leichten Stoff, vorzugsweise einem Kunststoff

5

5 und besteht aus einem sich über die ganze achsiale Länge des Ausgleichsgewichtes 22 erstreckenden harten Teil 26 und beiderseits davon weichen

sein. Zur Befestigung des elastischen Elementes 25 auf der Welle 21 hat

Teilen 31. Harte und weiche Teile können gemeinsam einstückig gespritzt

diese eine abgestufte Querbohrung 30. Der harte Mittelteil 26 des elasti-

10 schen Elementes 25 hat eine radial einwärts ragende Wurzel 27, die in einer hakenförmigen Erweiterung 28 endet. Diese Wurzel 27 wird beim Zusammenbau der Ausgleichswelle in die Querbohrung 30 eingeführt, bis ihr Haken in der Erweiterung der Querbohrung einschnappt und sodann mittels einer metallischen Verstärkung 29 fixiert. Der weiche Teil 31 des

15 elastischen Elementes 25 kann mit der Begrenzungsfläche 32 der Unwuchtmasse verbunden sein. Das elastische Element 25 füllt das Fenster ganz aus, sodass das Ausgleichsgewicht eine zylindrische Außenkontur hat. Der beidseitige Richtungspfeil 33 in Fig. 4 zeigt noch an, dass der exzentrische Unwuchtteil 24 mit den Randzonen 23 sich aus der bezeich-

20 neten Stellung bezüglich der Welle 1 in beiden Richtungen verdrehen kann.

Der dämpfende elastische Teil, egal ob eine Federdämpfereinheit 18 oder ein elastisches Element 25, ist so aufgebaut, dass er ein Verdrehen der Un25 wuchtmasse um bis zu zehn Winkelgrade in beiden Richtungen gegenüber seiner gezeichneten Position zulässt. Ist dieser Maximalausschlag erreicht, so tritt bei dem elastischen Element 25 der harte Teil 26 in Wirkung und verhindert eine weitere Verdrehung. Derartig starke Verdrehungen finden aber nur während abrupter Drehzahländerungen statt, wogegen die sehr 30 schnellen kleinen Drehzahländerungen durch die Drehungleichförmigkeit des Motors vollkommen aufgefangen werden, das Ausgleichsgewicht dreht sich mit ganz konstanter Drehzahl.

6

5 Bemerkenswert ist, dass auch eine Verdrehung des Ausgleichsgewichtes um den vollen Ausschlag von zehn Winkelgraden nur eine kurzzeitige Reduktion der Ausgleichswirkung um nicht mehr als 1½ % bedeutet.

Insgesamt können dank der erfindungsgemäßen Anordnung die Toleran10 zen sowohl der Verzahnung der Antriebszahnräder als auch anderer Teile vergrößert werden und ist die Belastung der die Ausgleichswelle antreibenden Zahn- oder Kettenräder wesentlich reduziert. Trotzdem wird eine merkliche Erhöhung der Laufruhe erreicht.

5

10

Ansprüche

- Ausgleichswelle für Hubkolbenmaschinen mit mindestens einem
 Ausgleichsgewicht mit exzentrischem Schwerpunkt, dadurch gekennzeichnet, dass das Ausgleichsgewicht (2; 12; 22) drehelastisch mit der Ausgleichswelle (1; 11; 21) verbunden ist.
- Ausgleichswelle nach Anspruch 1, dadurch gekennzeichnet, dass
 zwischen dem Ausgleichsgewicht (2; 12; 22) und der Ausgleichswelle (1; 11; 21) eine elastische Büchse (5) vorgesehen ist.
- Ausgleichswelle nach Anspruch 1, dadurch gekennzeichnet, dass das Ausgleichsgewicht (2; 12; 22) die Ausgleichswelle (1; 11; 21) mit ih ren Randzonen (3; 13; 23) umgibt und in Längsrichtung dazwischen ein Fenster (6; 16) gebildet ist, in dem ein elastisches Element (18; 25) vorgesehen ist, das sich in Umfangsrichtung auf der Ausgleichswelle (11; 21) abstützt.
- 4. Ausgleichswelle nach Anspruch 3, dadurch gekennzeichnet, dass das elastische Element eine Feder-Dämpfereinheit (18) ist.
 - 5. Ausgleichswelle nach Anspruch 3, dadurch gekennzeichnet, dass das elastische Element (25) aus Kunststoff besteht.

6. Ausgleichswelle nach Anspruch 5, dadurch **gekennzeichnet**, dass das elastische Element (25) aus Kunststoff von in Umfangsrichtung abgestufter Elastizität besteht, wobei der harte Mittelteil (26) eine in Umfangsrichtung feste Verbindung (15) mit der Ausgleichswelle (11) aufweist und 10 der weiche Teil (31) am Ausgleichsgewicht (22) anliegt.

8

- 7. Ausgleichswelle nach Anspruch 6, dadurch gekennzeichnet, dass der Kunststoffteil durch Spritzen hergestellt ist, wobei die Verbindung mit der Ausgleichswelle (21) aus einer in eine Querbohrung (30) der Welle 15 (21) ragenden mitgespritzten Wurzel (27) besteht.
 - 8. Ausgleichswelle nach Anspruch 7, dadurch **gekennzeichnet**, dass die Wurzel (27) eine metallische Verstärkung (29) enthält.

Fig. 3

