Indian Institute of Science Education and Research, Kolkata Department of Mathematics and Statistics Master's Thesis BS-MS Dual Degree Program

Introduction to Complex Dynamics and the Mandelbrot Set

Aditya Dutta (18MS101)

Supervisor: Dr. Sushil Gorai Date final version: 20th Aug, 2023

Chapter 1

Introduction

1.1 Equicontinuity and Normality

1.2 Completely Invariant Components

A domain D is called:

- forward invariant under the map f if f(D) = D.
- backward invariant under the map f if $f^{-1}(D) = D$.
- completely invariant under the map f if it is both forward and backward invariant under f i.e. f(D) = D and $f^{-1}(D) = D$.

Definition 1.2.1 (Connectivity). The connectivity of a domain $D \subset \hat{\mathbb{C}}$ is defined as the number of components of ∂D .

Theorem 1.2.1. The following are equivalent for a domain $D \subset \hat{\mathbb{C}}$:

- 1. D is simply connected.
- 2. D^c is connected.
- 3. ∂D is connected or c(D) = 1.

Theorem 1.2.2. If R is a rational function, with $deg(R) \ge 2$, and F_0 is a completely invariant Fatou component of R, then:

- 1. $\partial F_0 = J$.
- 2. F_0 is simply connected or infinitely connected.
- 3. All other components of F are simply connected.

4. F_0 is simply connected \iff J is connected.

Theorem 1.2.3. $\partial R(U) \subset R(\partial U)$

Lemma 1.2.4. For a rational map R, if F_1 and F_2 are two Fatou components and R maps a point of F_1 to a point of F_2 , then $R(F_1) = F_2$.

Theorem 1.2.5. The unbounded Fatou component of a polynomial P, i.e. the Fatou component containing ∞ is a completely invariant Fatou component. It is denoted by $F_{\infty}(P)$ or simply F_{∞} when the context is clear.

Theorem 1.2.6 (Vitali's Theorem).

Lemma 1.2.7. If α is a (super)-attracting fixed point of a rational map R and F_{α} is the Fatou component containing α then $R^{\circ n}(z) \to \alpha$ locally uniformly in F_{α} .

Theorem 1.2.8 (Riemann-Hurwitz Formula). Let F_0 and F_1 be components of the Fatou set F of a rational map R and R maps F_0 into F_1 . Then, for some integer m, R is an m-fold map of F_0 onto F_1 and

$$\chi(F_0) + \delta_R(F_0) = m\chi(F_1).$$

1.3 Some properties of the Julia Sets

Let J denote the Julia set for a rational map R with $deg(R) \geq 2$. Then we have the following properties:

Theorem 1.3.1. *J* is infinite.

Theorem 1.3.2 (Minimality of J).

Theorem 1.3.3. *J* is a perfect set, and hence, uncountable.

Chapter 2

Behaviour of analytic functions near fixed points

2.1 Behaviour near parabolic fixed points

A point p is called a parabolic fixed point of f if f(p) = p and $f'(p) = e^{2\pi i t}$, where t is a rational number.

Lemma 2.1.1. Suppose f is analytic and satisfies

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{p+2})$$

in some neighbourhood N of the origin. Let $\omega_1, \ldots, \omega_p$ be the p-th roots of unity and let η_1, \ldots, η_p be the p-th roots of -1. Then for sufficiently small r_0 and θ_0 ,

1. |f(z)| < |z| on each sector

$$S_j = \{ re^{i\theta} : 0 < r < r_0, |\theta - \arg(\omega_j)| < \theta_0 \}.$$

2. |f(z)| > |z| on each sector

$$\Sigma_j = \{ re^{i\theta} : 0 < r < r_0, |\theta - \arg(\eta_j)| < \theta_0 \}.$$

Proof. We have,

$$f(z)/z = 1 - z^p + \mathcal{O}(z^{p+1}) = 1 - z^p(1 + g(z)),$$

where g is analytic in N with g(0) = 0.

Now, consider the sector,

$$S = \{ z \in \mathbb{C} : |z| < \frac{1}{2}; |\arg(z)| < \pi/4 \}.$$

For small r_0 and θ_0 , $z \in S_j \implies z^p(1+g(z)) \in S$ and $z \in \Sigma_j \implies -z^p(1+g(z)) \in S$. This is because for small enough r_0 and θ_0 , $z \mapsto z^p$ maps S_j onto the set

$$S_0 = \{ z \in \mathbb{C} : |z| < r_0^p; |\arg(z)| < p\theta_0 \} \subset S.$$

And, $|z^p - z^p(1+g(z))| = |z|^p |g(z)| \le M|z|^{p+1} = M(|z|^p)^{1+\frac{1}{p}}$. Hence, for any $w \in S_0$, the perturbation of any point is $\le M|w|^{1+1/p}$.

Before stating the *Petal Theorem*, which discusses the behaviour of analytic functions near parabolic fixed points, we first define the notions of *petals*.

Definition 2.1.1 (Petals). Let $p \in \mathbb{N}$. For each $k \in \{0, 1, ..., p-1\}$, define the sets as a function of a parameter t > 0 as follows,

$$\Pi_k(t) = \{ re^{i\theta} : r^p < t(1 + \cos(p\theta)); |\theta - 2k\pi/p| < \pi/p \}.$$

The sets $\Pi_k(t)$ are known as Petals.

We have shown a diagram of the petals $\Pi_k(t)$ in Figure 2.1 for p=6. Note that all the petals are pairwise disjoint and each petal subtends an angle of $2\pi/p$ at the origin.

Theorem 2.1.2 (The Petal Theorem). Suppose that an analytic map f has the form:

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1})$$

near the origin. Then for sufficiently small t,

- 1. f maps each $\Pi_k(t)$ into itself;
- 2. $f^{\circ n}(z) \to 0$ uniformly on each petal;
- 3. $\arg(f^{\circ n}(z)) \to 2k\pi/p$ locally uniformly on each petal;
- 4. $f: \Pi_k(t) \to \Pi_k(t)$ is conjugate to a translation.
- 5. |f(z)| < |z| on a neighbourhood of the axis of each petal;

Proof. For $0 < r_0 < 1$, define the sector S_0 ,

$$S_0 = \{ re^{i\theta} : 0 < r < r_0, |\theta| < \pi/p \}$$

and the region W,

$$W = \{re^{i\theta} : r > \frac{1}{r_0^p}, |\theta| > \pi\}.$$

Figure 2.1: Six petals at the origin for p = 6.

It is clear that the map $\sigma: z \mapsto \frac{1}{z^p}$ is a biholomorphism of S_0 onto W with $\sigma^{-1}: W \to S_0$ given by $\sigma^{-1}(w) = 1/w^{\frac{1}{p}}$. Actually, σ is a biholomorphism of each sector $S_k = \{0 < r < r_0, |\theta - 2k\pi/p| < \pi/p\}$ onto W. The branch of $\sigma^{-1}(w) = 1/w^{\frac{1}{p}}$ that we choose determines which sector the inverse map maps to.

Now, the conjugate map of f on W is given by,

$$g(w) = \sigma f \sigma^{-1}(w) = f(w^{-\frac{1}{p}})^{-p}.$$

This just replaces the action of f on S_0 by g on W, and we have the following commutative diagram:

Now, we will use the power series expansion of f near the origin to get information about g.

First let us try to get a estimate of the power series expansion of $f(z)^{-p}$. We have,

$$f(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}) = z(1 - z^p + \mathcal{O}(z^{2p})) = z(1 - z^p - a_0 z^{2p} - a_1 z^{2p+1} + \dots).$$

Figure 2.2: σ is a biholomorphism from S_0 onto W.

So,

$$\frac{1}{f(z)^p} = z^{-p} \left(\frac{1}{1-z^p - a_0 z^{2p} - a_1 z^{2p+1} + - \dots} \right)^p.$$

Now, let $\alpha(z) = z^p + a_0 z^{2p} + a_1 z^{2p+1} + \dots$, then for r_0 small enough such that $|\alpha(z)| < 1$ on $\{|z| < r_0\}$, we can write,

$$\frac{1}{1 - \alpha(z)} = 1 + \alpha(z) + \alpha(z)^2 + \dots$$

Therefore,

$$\frac{1}{f(z)^p} = z^{-p} (1 + \alpha(z) + \alpha(z)^2 + \dots)^p
= z^{-p} (1 + pz^p + Az^{2p} + A_1 z^{2p+1} + \dots)
= \frac{1}{z^p} + p + Az^p + v(z),$$

where A is some constant and v(z) is holomorphic on $\{|z| < r_0\}$, and for some small $r_0 > 0$, it satisfies $|v(z)| \le B|z|^{p+1}$, B > 0.

Now, if $w \in W$, then $\sigma^{-1}(w) \in S$. Hence, by substituting $z = \sigma^{-1}(w) = w^{-1/p}$, we have,

$$g(w) = \sigma f \sigma^{-1}(w)$$

$$= \frac{1}{f(w^{-1/p})^p}$$

$$= w + p + A/w + \theta(w),$$

where $|\theta(w)| = |v(w^{-1/p})| \le B|w^{-1/p}|^{p+1} = B/|w|^{1+\frac{1}{p}}$.

Hence, we have the following estimates for g which will be crucial in everything that will follow:

$$g(w) = w + p + A/w + \theta(w)$$
, where A is a constant and (2.1)

$$|\theta(w)| \le B/|w|^{1+\frac{1}{p}}, B > 0. \tag{2.2}$$

Choose any K satisfying

$$K > \max\{1/r_0^p, 3(|A| + B)\} > 1 \text{ (as } r_0 < 1)$$

and let,

$$\Pi = \{x + iy : y^2 > 4K(K - x)\}.$$

Clearly, Π is bounded by a parabola and $\Pi \subset W$ (See Figure 2.3).

Figure 2.3: $\Pi = \{(x, y) : y^2 > 4K(K - x)\}.$

We have chosen this subset $\Pi \subset W$ because we will show that Π is nothing but the conformal image of $\Pi_0(t)$ under σ (for a suitable t) and g satisfies all the corresponding conditions that f should satisfy on $\Pi_0(t)$ according to the theorem.

Figure 2.4: $\Pi = \{\rho e^{i\phi} : \rho > 2K - \rho\cos\phi\}.$

Claim. Π is the conformal image of $\Pi_0(t)$ under σ for a suitable t.

The easiest way to see this is using polar coordinates. We write, $z=re^{i\theta}$ for $z\in S_0$ and $w=\rho e^{i\phi}$ for $w\in W$. Then, $\rho=\frac{1}{r^p}$ and $\phi=-p\theta$.

Now, we need to express Π in polar co-ordinates. To do so, we notice that points on the parabola are given by

 ρ (distance from focus i.e. 0) = $2K - \rho \cos \phi$ (distance from directrix i.e. y = 2K).

(See Figure 2.4). Therefore, points on Π are given by

$$\rho > 2K - \rho\cos\phi.$$

Hence,

$$\Pi = \{ \rho e^{i\phi} : 2K < \rho(1 + \cos\phi) \}.$$

Now, let $\Omega = \sigma^{-1}(\Pi)$. Then, Ω is given by

$$\Omega = \{ re^{i\theta} : 2Kr^p < 1 + \cos(p\theta) \}.$$

Hence, $\Omega = \Pi_0 \left(\frac{1}{2K} \right)$.

Lemma 2.1.3. g satisfies the following properties on Π :

- 1. Π is forward invariant under g.
- 2. $g^{\circ n}(w) \to \infty$ uniformly on Π .
- 3. $\arg(g^{\circ n}(w)) \to 0$ locally uniformly on Π .
- 4. $g:\Pi\to\Pi$ is conjugate to a translation.

Proof.

1. We write,

$$w = x + iy$$
, $g(w) = X + iY$, $A/w + \theta(w) = a + ib$.

From Equation (2.1), we obtain,

$$X + iY = (x + iy) + p + (a + ib)$$

$$\implies X = x + p + a \text{ and } Y = y + b.$$

Now, if $w \in \Pi$,

$$Y^{2} - 4K(K - X) = (y + b)^{2} - 4K(K - x - p - a)$$

$$= [y^{2} - 4K(K - x)] + b^{2} + 2yb + 4K(a + p)$$

$$> 4Kp + (2yb + 4Ka).$$

Now, for $w \in \Pi$, |w| > K > 1. (It is clear for Re(w) > K. For $Re(w) \le K$, we use the polar description $\rho > 2K - \rho \cos \phi$ to get $|w| > 2K - Re(w) \ge K$). Hence we get,

$$|w||A/w + \theta(w)| \le |w|(|A|/|w| + B/|w|^{1+\frac{1}{p}}) = |A| + B/|w|^{\frac{1}{p}} < |A| + B$$
 (2.3)

(since for |w| > 1, $|w|^{\frac{1}{p}} > 1$). Therefore,

$$\begin{aligned} |2yb + 4Ka| &\leq 2|yb| + 4K|a| \\ &\leq 2|y||b| + 4K|a| \\ &\leq 2|w||a + ib| + 4|w||a + ib| \\ &= 6|w||a + ib| \\ &< 2K \leq 2Kp. \end{aligned}$$

Therefore, we see that $Y^2 - 4K(K - X) > 0$ and hence, $g(w) \in \Pi$ for $w \in \Pi$. Hence, Π is forward invariant under g.

2. Now, we will prove a stronger statement that for any t > 0 g maps $\Pi + t$ into $\Pi + t + p/2$. This is simply because, for $w \in \Pi + t$, we have, $y^2 - 4K(K + t - x) > 0$. Hence,

$$Y^{2} - 4K(K + t + p/2 - X) = [y^{2} - 4K(K + t - x)] + b^{2} + 2yb + 4K(a - p/2)$$

$$> 2Kp + (2yb + 4Ka)$$

$$> 0.$$

Therefore, if $w \in \Pi$, $g^{\circ n}(w) \in \Pi + np/2$. Hence, $|g^{\circ n}(w)| > \sqrt{n}$. This is simply because, if $x + iy \in \Pi + np/2$, we have

$$x^{2} + y^{2} - n > x^{2} + 4K(K + np/2 - x) - n = x^{2} - 4Kx + (4K^{2} + 2npK - n).$$

The discriminant of this quadratic equation in x is

$$16K^2 - 4(4K^2 + 2npK - n) = 4n(1 - 2pK) < 0$$

. Thus, $x^2+y^2-n>0$ for all $x+iy\in\Pi+np/2$. Hence, $g^{\circ n}(w)\to\infty$ uniformly on Π .

3. Firstly, we see that,

$$g^{\circ k}(w) = g(g^{\circ k}(w)) = g^{\circ k}(w) + p + A/g^{\circ k}(w) + \theta(g^{\circ k}(w)).$$

By expanding the first term again and again, we obtain,

$$g^{\circ n}(w) = w + np + \sum_{k=0}^{n-1} \left(\frac{A}{g^{\circ k}(w)} + \theta(g^{\circ k}(w)) \right). \tag{2.4}$$

Also note that form Equation (2.3), we have,

$$|A/w + \theta(w)| < (|A| + B)/K < \frac{1}{3}.$$

Let Q be a compact subset of Π . From now, we will assume that $w \in Q$ and we will use C_1, C_2, C_2, \ldots to denote positive constants which will be dependent on Q.

Hence,

$$|g(w)| = |w + p + A/w + \theta(w)| \ge ||w + p| - |A/w + \theta(w)||$$

$$= |w + p| - |A/w + \theta(w)|$$

$$\ge |w| + p - \frac{1}{3}.$$

Therefore, we obtain,

$$|g^{\circ n}(w)| \ge |w| + n(p-1/3) \ge C_1 + C_2 n.$$

(Here, $C_1 = \min\{|w| : w \in Q\} > 0$ and $C_2 = p - \frac{1}{3} > 0$.) Hence,

$$|g^{\circ n}(w)| \ge C_2 n. \tag{2.5}$$

Next, with Equation (2.2), and the above inequality, we get,

$$|\theta(g^{\circ n}(w))| \le B/|g^{\circ n}(w)|^{1+\frac{1}{p}} \le C_3/n^{1+\frac{1}{p}}.$$
 (2.6)

Finally, combining the above two inequalities and Equation (2.4), we obtain,

$$|g^{\circ n}(w) - np| \le |w| + |A/w + \theta(w)| + \frac{|A|}{C_2} \sum_{k=1}^{n-1} \frac{1}{k} + C_3 \sum_{k=1}^{n-1} \frac{1}{n^{1 + \frac{1}{p}}}$$

$$< C_4 + C_5 \sum_{k=1}^{n} \frac{1}{k}.$$

(Here, $C_4 = \max\{|w| : w \in Q\} + \frac{1}{3} + C_3 \sum_{n=1}^{\infty} 1/n^{1+\frac{1}{p}} \text{ and } C_5 = |A|/C_2.$) We can select C_6 large enough such that

$$|g^{\circ n}(w) - np| < C_6 \log n. \tag{2.7}$$

Remark. The above inequality follows from the fact that, if $H_n = \sum_{k=1}^n \frac{1}{k}$, then $H_n - \log n \to \gamma$. (γ is known as the Euler's constant). So, we have that

$$P + QH_n = P + Q(\log n + \gamma + \epsilon_n)$$
, where $\epsilon_n \to 0$
 $\leq Q \log n + (P + Q \max\{\epsilon_n\} + Q\gamma)$
 $= Q \log n + R$
 $\leq S \log n$

for S large enough.

Figure 2.5: $|\arg(g^{\circ n}(w))| \leq \sin^{-1}(\frac{C_6 \log n}{np})$.

From, $|g^{\circ n}(w) - np| < C_6 \log n$, it follows that $|\arg(g^{\circ n}(w))| < \sin^{-1}\left(\frac{C_6 \log n}{np}\right)$ for n large enough. Hence, $\arg(g^{\circ n}(w)) \to 0$ uniformly on Q, and consequently, locally uniformly on Π .

4. Define,

$$u_n(w) = g^{\circ n}(w) - np - (A/p)\log n.$$

Claim. $u_n(w)$ converges locally uniformly on Π to a holomorphic function u, that is one-to-one on Π .

$$u_{n+1}(w) - u_n(w) = [g^{\circ n+1}(w) - g^{\circ n}(w)] - p - (A/p)\log\left(\frac{n+1}{n}\right).$$

From Equation (2.2), we obtain,

$$u_{n+1}(w) - u_n(w) = [g^{\circ n}(w) + p + A/g^{\circ n}(w) + \theta(g^{\circ n}(w)) - g^{\circ n}(w)]$$
$$- p - (A/p)\log(1 + 1/n)$$
$$= A/g^{\circ n}(w) + \theta(g^{\circ n}(w)) - (A/p)\log(1 + 1/n)$$
$$= A(1/q^{\circ n}(w) - 1/np) + \theta(g^{\circ n}(w)) + (A/p)(1/n - \log(1 + 1/n)).$$

Now, let Q is a compact subset of Π and $w \in Q$. We need to prove that u_n converges uniformly in Q. From the above equation, to prove that u_n converges uniformly in Q, we need to show that each of the following series converges uniformly in Q:

$$\sum_{n} |1/g^{\circ n}(w) - 1/np|, \sum_{n} |\theta(g^{\circ n}(w)), \sum_{n} |1/n - \log(1 + 1/n)|.$$

Let us look at the first series. We have, (using Equations (2.5) and (2.7))

$$|1/g^{\circ n}(w) - 1/np| = \frac{|g^{\circ n}(w) - np|}{|g^{\circ n}(w)|np} \le \frac{C_6 \log n}{C_2 n^2 p} = C_7 \log n/n^2.$$

(Here $C_7 = C_6/(pC_2)$).

From Equation (2.6), it is clear that $\sum_{n} |\theta(g^{\circ n}(w))|$ converges.

Now,
$$0 < x - \log(1 + x) \le x^2$$
 for $x > 0$.

This is because, it is zero at x = 0 and $\frac{d}{dx}(x - \log(1+x)) = 1 - \frac{1}{1+x} > 0$ for x > 0. Also, $x^2 - x + \log(1+x)$ is zero at x = 0 and $\frac{d}{dx}(x^2 - x + \log(1+x)) = 2x - 1 + \frac{1}{1+x} > 0$ for x > 0.

Putting $x = \frac{1}{n}$, we get,

$$|1/n - \log(1 + 1/n)| < 1/n^2.$$

Therefore, u_n converges locally uniformly to some holomorphic function u on Π .

Now, from $u_n(w) = g^{\circ n}(w) - np - (A/p) \log n$, we get that,

$$(n+1)p + (A/p)\log(n+1) + u_{n+1}(w) = g^{\circ n+1}(w)$$

$$= g^{\circ n}(g(w))$$

$$= np + (A/p)\log n + u_n(g(w))$$

$$\implies p + (A/p)\log(1+1/n) + u_{n+1}(w) = u_n(g(w)).$$

Taking limit $n \to \infty$, we get,

$$p + u(w) = u(g(w)).$$

Since f is injective near the origin, g is injective on Π , (if K is chosen large enough). Therefore, $g^{\circ n}$ is injective on Π and hence, so is u_n . By Hurwitz Theorem, u is either injective or constant, but it is clearly not a constant since it satisfies the above equation.

This shows that $g:\Pi\to\Pi$ is conjugate to the map $z\mapsto z+p$ of $u(\Pi)$ into itself. \square

Coming back to our original theorem, we see that our original theorem is also proved as we had just replaced the action of f on Π_0 by the action of its conjugate g on Π and we just proved all the parts of the theorem that the conjugate of f, i.e. g must satisfy.

From, $g = \sigma f \sigma^{-1}$, we get, $g^{\circ n} = \sigma f^{\circ n} \sigma^{-1} \implies g^{\circ n} \sigma = \sigma f^{\circ n}$. Writing, $\sigma(z) = w$, we have,

$$g^{\circ n}(w) = \frac{1}{f^{\circ n}(z)^p} \implies g^{\circ n}(w)(f^{\circ n}(z))^p = 1.$$
 (2.8)

- 1. Since, g maps Π into itself, f maps Π_0 into itself.
- 2. Now, since $|g^{\circ n}(w)| > \sqrt{n}$, $|f^{\circ n}(z)| < \frac{1}{n^{1/2p}}$ from Equation (2.8). Hence, $f^{\circ n}(z) \to 0$ uniformly on Π_0 .
- 3. Also, $\arg(f^{\circ n}(z)) = \left(-\frac{1}{p}\right) \arg(g^{\circ n}(w))$ from Equation (2.8). Since, $\arg(g^{\circ n}(w)) \to 0$ locally uniformly on Π , $f^{\circ n}(z) = \left(-\frac{1}{p}\right) \arg(g^{\circ n}(w)) \to 0$ locally uniformly on Π_0 .
- 4. Since, $g:\Pi\to\Pi$ is conjugate to a translation, and g is conjugate to f, $f:\Pi_0\to\Pi_0$ is also conjugate to a translation.
- 5. It is immediate from Lemma 2.1.1 that |f(z)| < |z| on the axis of Π_0 .

Theorem 2.1.4. Suppose that f has the power series expansion near 0 as,

$$f(z) = z + az^{p+1} + \mathcal{O}(z^{p+2}).$$

Then, f is conjugate near 0 to a function

$$F(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}).$$

Proof. First, we conjugate f by the map $z \mapsto \lambda z$, where $\lambda^p = a$. Then, we get that f is conjugate to the map,

$$\tilde{f} = \lambda f(z/\lambda) = \lambda z/\lambda + \lambda a z^{p+1}/\lambda^{p+1} + \mathcal{O}(z^{p+2}) = z + z^{p+1} + \mathcal{O}(z^{p+2}).$$

We will now proceed via induction over a finite number of steps. Let,

$$f_k(z) = z + z^{p+1} + bz^{p+k+1} + \dots, b \neq 0.$$

Here $k \ge 1$. Also if $k \ge p$, our theorem is proved. Hence, we assume, $1 \le k < p$. Now, define the polynomial,

$$\sigma(z) = z + \alpha z^{k+1},$$

where $\alpha = \frac{b}{p-k}$ and let σ^{-1} be its inverse near 0 (We can do this because $\sigma'(0) = 1$).

Now, we will show that we obtain f_r (for some $r \ge k + 1$) by conjugating f_k with σ . Hence, let

$$q = \sigma f_k \sigma^{-1}$$

and we need to show that $g = f_r$ (for some $r \ge k + 1$). Since, $g'(0) = f_k'(0) = 1$, we let,

$$g(z) = z + \sum_{m=2}^{\infty} a_m z^m.$$

Now, we will use the identity, $g\sigma = \sigma f_k$.

$$\sigma f_k(z) = (z + z^{p+1} + bz^{p+k+1} + \dots) + \alpha (z + z^{p+1} + bz^{p+k+1})^{k+1}$$

$$= z + \alpha z^{k+1} + z^{p+1} + (b + \alpha (k+1))z^{p+k+1} + \mathcal{O}(z^{p+k+2})$$

$$= z + \alpha z^{k+1} + z^{p+1} + \alpha (p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}).$$

The last equality follows because,

$$\alpha(p-k) = b \implies \alpha(p+1) - \alpha(k+1) = b \implies \alpha(p+1) = b + \alpha(k+1).$$

Now,

$$g\sigma(z) = (z + \alpha z^{k+1}) + \sum_{m=2}^{\infty} a_m (z + \alpha z^{k+1})^m$$
$$= z + \alpha z^{k+1} + \sum_{m=2}^{p+k+1} a_m (z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2}).$$

Now, equating $\sigma f_k(z) = g\sigma(z)$, we get,

$$z^{p+1} + \alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}) = \sum_{m=2}^{p+k+1} a_m(z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2}).$$

Firstly, we see that on the right hand side, the coefficient of z^2 will be a_2 , the coefficient of z^3 will be some linear combination of a_2 and a_3 , the coefficient of z^4 will be some linear combination of a_2, a_3 and a_4 and so on upto the coefficient of z^p will be some linear combination of $a_2, a_3, \ldots a_p$. Since, the coefficient of z^2, \ldots, z^p is zero on the left hand side, it follows that $a_2 = a_3 = \ldots, a_p = 0$. (This argument follows assuming $p \ge 2$, but if p = 1 the coefficient of $z^p = z$ i.e. a_1 is automatically 0).

Hence, now we have,

$$z^{p+1} + \alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}) = \sum_{m=p+1}^{p+k+1} a_m (z + \alpha z^{k+1})^m + \mathcal{O}(z^{p+k+2})$$
$$= a_{p+1}z^{p+1} + \dots + a_{p+k+1}z^{p+k+1} +$$
$$a_{p+1}\alpha(p+1)z^{p+k+1} + \mathcal{O}(z^{p+k+2}).$$

Therefore, we obtain

$$a_{p+1} = 1, a_{p+2} = \ldots = a_{p+k} = 0$$
 and $a_{p+k+1} + a_{p+1}\alpha(p+1) = \alpha(p+1)$.

Hence, $a_{p+k+1} = 0$. This gives that f_k is conjugate to the map

$$g(z) = z + z^{p+1} + \mathcal{O}(z^{p+k+2}).$$

Thus, $g = f_r$ for some $r \ge k + 1$. Continuing the induction process, we get that f is conjugate near 0 to a map

$$z \mapsto z + z^{p+1} + \mathcal{O}(z^{2p+1}).$$

Now, we an again conjugate this map with the map, $z \mapsto \lambda z$, where $\lambda^p = -1$ to get that f is conjugate to a map,

$$F(z) = z - z^{p+1} + \mathcal{O}(z^{2p+1}).$$

At the end we consider the most general situation, i.e. when

$$f(z) = az + bz^{p+1} + \dots$$
, where $a \neq 1$ but $a = e^{2\pi i p/q}$.

In this case, $f^{\circ q}(z)$ is of the form,

$$f^{\circ q}(z) = z + cz^{r+1} + \dots,$$

for some $r \in \mathbb{N}$.

2.2 Behaviour near attracting fixed points

2.3 Behaviour near super-attracting fixed points

We will study the behaviour of analytic maps near super-attracting fixed points in the next chapter under Bottcher's theorem.

Chapter 3

Bottcher's Theorem and its extension

3.1 Bottcher's Coordinates

A fixed point z_0 is called a super-attracting fixed point of f if $f'(z_0) = 0$.

If z_0 is a super-attracting fixed point for f, we can conjugate the map such that z = 0 becomes our super-attracting fixed point.

Thus, our map takes the form $f(z) = a_n z^n + a_{n+1} z^{n+1} + \dots$ in a neighbourhood of 0, with $n \ge 2$ and $a_n \ne 0$, where the integer n is called the local degree.

Theorem 3.1.1 (Bottcher's Theorem). With f as above, \exists a local holomorphic change of coordinates $w = \phi(z)$, with $\phi(0) = 0$, which conjugates f to $w \mapsto w^n$ throughout some neighbourhood of θ .

Furthermore, ϕ is unique upto multiplication by an (n-1) th root of unity.

Proof. Existence. Let $c \in \mathbb{C}$ be such that $c^{n-1} = a_n$. Then, the linearly conjugate map cf(z/c) will have leading coefficient +1. Thus, without loss of generality, we will assume that our map f has the form $f(z) = z^n (1 + b_1 z + b_2 z^2 + \ldots) = z^n (1 + \eta(z))$, where $\eta(z) = (1 + b_1 z + b_2 z^2 + \ldots)$.

Choose $r \in (0, \frac{1}{2})$ such that $|\eta(z)| < \frac{1}{2} \forall z \in \mathbb{D}_r$. This can be done since $\eta(0) = 0$ and η is continuous.

On this disc, we have two properties of f:

1. f maps this disc into itself:

We have, $|f(z)|=|z^n|\,|1+\eta(z)|\leq |z|^n(1+|\eta(z)|)<\frac{3}{2}|z|^n\leq \frac{3}{2^n}|z|\leq \frac{3}{4}|z|\forall z\in\mathbb{D}_r.$ Here we are using the fact that $n\geq 2, |z|<\frac{1}{2}$ and $|\eta(z)|<\frac{1}{2}$ on $\mathbb{D}_r.$

2.
$$f(z) \neq 0 \forall z \in \mathbb{D}_r \setminus \{0\}.$$

This is simply because $|f(z)| = |z|^n |1 + \eta(z)|$ and since $|\eta(z)| < \frac{1}{2}$ on \mathbb{D}_r , we can't have $\eta(z) = -1$.

The k-th iterate of f i.e. $f^{\circ k}$ also maps the \mathbb{D}_r into itself and $f^{\circ k}(z) \neq 0$ on $\mathbb{D}_r \setminus \{0\}$. Inductively, it can be shown that it has the form $f^{\circ k}(z) = z^{n^k} \left(1 + n^{k-1}b_1z + \ldots\right)$.

The idea of the proof is to set,

$$\phi_k(z) = \left(f^{\circ k}(z)\right)^{\frac{1}{n^k}} = z\left(1 + n^{k-1}b_1z + \ldots\right)^{\frac{1}{n^k}}$$

We choose z as our branch of holomorphic n^k th root of z^{n^k} .

Now, we can choose a holomorphic branch of $\left(1+n^{k-1}b_1z+\ldots\right)^{\frac{1}{n^k}}$ on \mathbb{D}_r since \mathbb{D}_r is simply connected and $\left(1+n^{k-1}b_1z+\ldots\right)\neq 0$ on \mathbb{D}_r since $f^{\circ k}(z)\neq 0$ on $\mathbb{D}_r\setminus\{0\}$. Therefore we set,

$$\phi_k(z) = z \left(1 + n^{k-1} b_1 z + \ldots \right)^{\frac{1}{n^k}} = z \left(1 + \frac{b_1}{n} z + \ldots \right)$$

where the expression on the right provides us an explicit choice of n^k th root.

We will show that the functions ϕ_k converge uniformly to a limit function ϕ on \mathbb{D}_r . To prove the convergence, we make the substitution $z = e^u$ where u ranges over the left half plane $\mathbb{H}_r := \{u : \text{Re}(u) < \log r\}$. The exponential map maps \mathbb{H}_r onto $\mathbb{D}_r \setminus \{0\}$.

The map f from \mathbb{D}_r into itself corresponds to a map from \mathbb{H}_r into itself given by $F(u) = \log f(e^u)$. We can select a holomorphic branch of the logarithm of $f(e^u)$ because \mathbb{H}_r is simply connected and $f(e^u) \neq 0$ on \mathbb{H}_r .

Set $\eta = \eta\left(e^{u}\right) = b_{1}e^{u} + b_{2}e^{2u} + \ldots$, then since $|\eta| < \frac{1}{2}$, we see that F can be written as

$$F(u) = \log\left(e^{nu}(1+\eta)\right) = nu + \log(1+\eta) = nu + \left(\eta - \frac{\eta^2}{2} + \frac{\eta^3}{3} - + \ldots\right)$$

where the final expression provides us an explicit choice of which branch of logarithm we are using. Clearly, $F: \mathbb{H}_r \to \mathbb{H}_r$ is a well-defined holomorphic function.

Similarly, the map ϕ_k corresponds to a map, $\Phi_k(u) = \log \phi_k(e^u)$.

$$\Phi_k(u) = \log \phi_k(e^u) = \log f^{\circ k}(e^u)^{\frac{1}{n^k}} = \frac{1}{n^k} \log f^{\circ k}(e^u).$$

Since we have already fixed the branch of logarithm that we are using, we see that,

$$\log f^{\circ k}\left(e^{u}\right) = \log f\left(f^{\circ k-1}\left(e^{u}\right)\right) = \log f\left(e^{\log f^{\circ k-1}\left(e^{u}\right)}\right) = F\left(\log f^{\circ k-1}\left(e^{u}\right)\right)$$

Hence, inductively we can see that $\log f^{\circ k}(e^u) = F^{\circ k}(u)$.

Therefore, $\Phi_k(u) = F^{\circ k}(u)/n^k$. It is clear from this expression that $\Phi_k : \mathbb{H}_r \to \mathbb{H}$. Now since $|\eta| < \frac{1}{2}$, we have

$$|F(u) - nu| = |\log(1 + \eta)| < \log 2 < 1$$

Hence,

$$|\Phi_{k+1}(u) - \Phi_k(u)| = \frac{1}{n^{k+1}} \left| F^{\circ k+1}(u) - nF^{\circ k}(u) \right| < \frac{1}{n^{k+1}}$$

by the above inequality.

We have, $\phi_k(e^u) = e^{\Phi_k(u)}$. Since, the exponential map, $e^{\square} : \mathbb{H} \to \mathbb{D}$ from the left half plane to the unit disc decreases distance, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \forall z \in \mathbb{D}_r \setminus \{0\}.$$

Since $\phi_k(0) = 0$ for all k, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \forall z \in \mathbb{D}_r$$

Hence, the maps ϕ_k converge uniformly to some limit function ϕ on \mathbb{D}_r by the Cauchy criterion for uniform convergence.

Clearly, $\phi(0) = 0$ and ϕ is holomorphic on \mathbb{D}_r by Weierstrass convergence theorem.

It is clear that each $\phi_k : \mathbb{D}_r \to \mathbb{D}$. This is because $\phi_k (e^u) = e^{\Phi_k(u)}$ and $\Phi_k : \mathbb{H}_r \to \mathbb{H}$ and $e^{\square} : \mathbb{H} \to \mathbb{D} \setminus \{0\}$. Hence, $\phi : \mathbb{D}_r \to \mathbb{D}$. (Clearly $\operatorname{Im}(\phi)$ cannot contain points from $\partial \mathbb{D}$ because ϕ is holomorphic, hence it is an open map).

Now, it can be easily seen that, $\phi_k(f(z)) = \phi_{k+1}(z)^n$.

Hence, $\lim_{k\to\infty} \phi_k(f(z)) = \lim_{k\to\infty} \phi_{k+1}(z)^n \Longrightarrow \phi(f(z)) = \phi(z)^n$ by continuity of nth power map.

Also, since $\phi'_k(0) = 1 \forall k \in \mathbb{N}$ (from the power series of ϕ_k), we have $\phi'(0) = 1$. Hence, ϕ is invertible in some neighbourhood of 0.

Therefore, we have a holomorphic change of coordinates in some neighbourhood of 0 which conjugates f to the nth power map. In this neighbourhood, ϕ is one-to-one, $f(z) \neq 0$ for $z \neq 0$ (i.e. no other point maps to the super-attracting fixed point via f) and f maps this neighbourhood into itself.

Uniqueness. It suffices to study the special case $f(z) = z^n$. If we can prove that any map which conjugates $z \mapsto z^n$ to itself is just multiplication by (n-1) th root of unity, then for any general map $f(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$, if we have two maps ϕ and ψ which conjugate it to $z \mapsto z^n$, then $\phi \circ \psi^{-1}$ is a map which conjugates $z \mapsto z^n$ to itself. Hence, $\phi \circ \psi^{-1} = cz$, where $c^{n-1} = 1$. Therefore, $\phi = c\psi$, where c is a (n-1) th root of unity.

So, let $\phi(z) = c_1 z + c_k z^k + \dots, (c_1 \neq 0)$ be a map which conjugates $z \mapsto z^n$ to itself. Then, we should have $\phi(z^n) = \phi(z)^n$. Now,

$$\phi(z^n) = c_1 z^n + c_k z^{nk} + \dots$$

and

$$\phi(z)^n = c_1^n z^n + n c_1^{n-1} c_k z^{n+k-1} + \dots$$

Comparing coefficients, we get $c_1^n = c_1$ and $nc_1^{n-1}c_k = 0$ since nk > n+k-1 for $k \ge 2$. Therefore, we get $c_1^{n-1} = 1$ and $c_k = 0$. The form $\phi(z) = c_1 z + c_k z^k + \ldots$ can be modified to any $k \ge 2$ to get $c_k = 0$ by the same process.

Therefore, $\phi(z) = cz$, where c is a (n-1) th root of unity.

3.2 Extension of Bottcher's coordinates

We might hope to extend the Bottcher's coordinates to the whole of the immediate basin of attraction of the super-attracting fixed point. But this is not always possible. This is because, it requires computing expressions of the form $z \mapsto \left(\phi\left(f^{\circ k}(z)\right)^{\frac{1}{n^k}}\right)$, which is not always possible. For example, the basin may not be simply connected, or some point may map directly onto the super-attracting fixed point, in which case we can't take n^k -th roots, because $\phi\left(f^{\circ k}(z)\right)$ must be zero at those points.

Theorem 3.2.1 (Extension of $|\phi|$). If f has a super-attracting fixed point p, with immediate basin of attraction A, then the function $z \mapsto |\phi(z)|$ of the above theorem extends uniquely to a continuous map $|\phi| : A \to [0,1)$ which satisfies $|\phi|(f(z)) = |\phi|(z)^n$.

Furthermore, $|\phi|$ is real analytic except at the iterated preimages of p, where it takes the value 0.

Proof. Set $|\phi|(z) = |\phi(f^{\circ k}(z))|^{\frac{1}{n^k}}$ for large enough k for each $z \in \mathcal{A}$. ϕ is only defined in a some small neighbourhood of p. But since, $f^{\circ k} \to p$ locally uniformly in \mathcal{A} , after k many iterates for some large k, $f^{\circ k}(z)$ belongs to the domain of definition of ϕ , which we shall call \hat{U} .

It is independent of the value of k (if k is large enough). Note that, if $f^{\circ k}(z) \in \hat{U}$, then so does $f^{\circ k+1}(z)$, since f maps \hat{U} into itself.

Suppose we choose k minimal such that $f^{\circ k}(z) \in \hat{U}$. Then,

$$\mid \phi \left(f^{\circ k+1}(z) \middle|^{\frac{1}{n^k+1}} = \left| \phi \left(f \left(f^{\circ k}(z) \right) \right) \middle|^{\frac{1}{n^k+1}} = \left| \phi \left(f^{\circ k}(z) \right)^n \middle|^{\frac{1}{n^k+1}} = \left| \phi \left(f^{\circ k}(z) \right) \middle|^{\frac{1}{n^k}} = |\phi|(z).$$

In the proof of the Bottcher's theorem, we saw that $\phi(z) \in \mathbb{D} \forall z \in \hat{U}$ Hence, $|\phi|(z) = |\phi(f^{\circ k}(z))| < 1 \forall z \in \mathcal{A}$. Therefore, $|\phi|: \mathcal{A} \to [0,1)$. Also,

$$|\phi|(f(z)) = |\phi\left(f^{\circ k}(f(z))\right|^{\frac{1}{n^k}}$$

$$= |\phi\left(f\left(f^{\circ k}(z)\right)\right)|^{\frac{1}{n^k}}$$

$$= |\phi\left(f^{\circ k}(z)\right)^n|^{\frac{1}{n^k}}$$

$$= |\phi\left(f^{\circ k}(z)\right)|^{\frac{n}{n^k}}$$

$$= |\phi(z)^n.$$

It is also clear that $|\phi| = 0$ only at p and its iterated preimages.

If q is an iterated preimage of p, say $f^{\circ k}(q) = p$, then we have $|\phi|(q) = |\phi| \left(f^{\circ k}(q) \Big|^{\frac{1}{n^k}} = |\phi(p)|^{\frac{1}{n^k}} = 0 \right)$

Now, Suppose $|\phi|(z) = 0$ for some z. Then, $|\phi|(z)^{n^k} = 0 \forall k \Longrightarrow |\phi| \left(f^{\circ k}(z)\right) = 0 \forall k$. But for some large $k, f^{\circ k}(z)$ belongs to the domain of definition of ϕ . But that means, $f^{\circ k}(z) = p$, since no other point in that domain is mapped to zero by ϕ . Hence, z is an an iterated preimage of p.

Now, since $f^{\circ k} \to p$ locally uniformly in \mathcal{A} , for each $a \in \mathcal{A}$, we have a neighbourhood W_a and a constant $k \in \mathbb{N}$ such that $f^{\circ k}(z) \in \hat{U} \forall z \in W_a$.

Hence, for $z \in W_a$, we can define $|\phi|(z) = |\phi(f^{\circ k}(z))| = |g(z)|$, where $g = \phi \circ f^{\circ k}|_{W_a}$. Therefore, $|\phi|_{W_a} = |g|$, where g is some holomorphic function defined on W_a .

It is clear from this that $|\phi|$ is continuous in A.

Now, if h is any holomorphic function, then |h(z)| is real-analytic everywhere in its domain except at those z, where h(z) = 0.

Since, $|g| = |\phi|_{W_a}$ is zero only at the iterated preimages of f in W_a , $|\phi|_{W_a}$ is real analytic everywhere in W_a except at the iterated preimages of p.

Therefore, $|\phi|$ is real analytic everywhere in \mathcal{A} except at the iterated preimages of p. Let $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be a rational map with a super-attracting fixed point p. Then the associated Bottcher map ϕ carries a neighbourhood of p biholomorphically onto a neighbourhood of zero, conjugating f to the nth power map, where n is the local degree of f near p. ϕ has a local inverse ψ_{ϵ} which maps the ϵ -disc around zero to a neighbourhood of p.

Theorem 3.2.2 (Extending ψ_{ϵ}). There exists a unique open disc of maximal radius $0 < r \le 1$ such that ψ_{ϵ} extends holomorphically to a map $\psi : \mathbb{D}_r \to \mathcal{A}$, where \mathcal{A} is the immediate basin of attraction of p.

1. If r = 1, then ψ maps the open unit disc \mathbb{D} onto \mathcal{A} biholomorphically.

2. If 0 < r < 1, then ψ maps \mathbb{D}_r onto its image biholomorphically and there exists at least one other critical point in \mathcal{A} on the boundary of $\psi(\mathbb{D}_r)$.

If ψ_{ϵ} is extended biholomorphically in this way to the map ψ defined on \mathbb{D}_r , then the inverse map $\psi^{-1}:\psi(\mathbb{D}_r)\to\mathbb{D}_r$ must be the extension of ϕ from some neighbourhood of p to $\psi(\mathbb{D}_r)$ (since ψ^{-1} agrees with ϕ on some neighbourhood of p).

Proof. Let us try to extend ψ_{ϵ} along radial lines by analytic continuation. Then, we can't extend it indefinitely as it would yeild a holomorphic map ψ from the entire complex plane onto an open set $\psi(\mathbb{C}) \subset \mathcal{A} \subsetneq \mathbb{C}_{\infty}$. (\mathcal{A} cannot be the whole of \mathbb{C}_{∞} since the Julia set of f cannot be empty as $\deg(f) \geq 2$). We can conjugate f such that $\infty \notin \mathcal{A}$. Then the corresponding map ψ will map the whole of the complex plane into $\mathcal{A} \subset \mathbb{C}$. By Louiville's theorem, since the map ψ cannot be a constant, $\psi(\mathbb{C}) = \mathbb{C} = \mathcal{A}$. Therefore, $\mathbb{C}_{\infty} \setminus \mathcal{A} = \{\infty\}$. This too is not possible since the Julia set of f must be an infinite set since $\deg(f) \geq 2$.

Thus, there must be some largest radius r so that ψ_{ϵ} extends analytically throughout the open disc \mathbb{D}_r .

Also, $|\phi|(\psi(w)) = |\phi(\psi(w))| = |w|$ near 0 , hence for all $w \in \mathbb{D}_r$ by analytic continuation.???

Since, $|\phi|: \mathcal{A} \to [0,1)$, this proves that for any $w \in \mathbb{D}_r$, $|\phi|(\psi(w)) = |w| < 1$. Therefore, ψ can be defined only on \mathbb{D}_r for $r \leq 1$.

We will now show that ψ is actually one-to-one on \mathbb{D}_r . Suppose $\psi(w_1) = \psi(w_2)$. Applying $|\phi|$, we see that $|w_1| = |w_2|$. Choose such a pair such that $\psi(w_1) = \psi(w_2)$ $(w_1 \neq w_2)$ with $|w_1| = |w_2|$ minimal. A minimal pair exists because for $|w| < \epsilon, \psi = \psi_{\epsilon}$ which is one-to-one as it is invertible.

Now, ψ is an open mapping. Choose a sufficiently small neighbourhood U_{w_2} of w_2 . Then, $\psi(U_{w_2})$ is a small neighbourhood of $\psi(w_1) = \psi(w_2)$. Hence, for any w'_1 sufficiently close to $w_1, \psi(w'_1) \in \psi(U_{w_2})$. Hence, we can find w'_2 sufficiently close to w_2 such that $\psi(w'_1) = \psi(w'_2)$. Choosing $|w'_1| < |w_1|$, we get a contradiction.

Hence, ψ maps \mathbb{D}_r onto its image biholomorphically.

In case when $r = 1, U = \psi(\mathbb{D}) = \mathcal{A}$. If not then we would have some boundary point of U, say $z_0 \in \mathcal{A}$. We can approximate z_0 by points of $\psi(w_j)$, where $|w_j| \to 1$.

Now, $\lim_{j\to\infty} \psi(w_j) = z_0$. Hence,

$$\lim_{j \to \infty} \left| \phi \right| (\psi \left(w_j \right)) = \left| \phi \right| (z_0) \Longrightarrow \lim_{j \to \infty} \left| w_j \right| = \left| \phi \right| (z_0) \Longrightarrow \left| \phi \right| (z_0) = 1$$

which is impossible.

Now, let 0 < r < 1. We need to prove that ∂U , where $U = \psi(\mathbb{D}_r)$ must contain a critical point of f. Suppose, $w_0 \in \partial \mathbb{D}_r$ and let $(w_j)_{j=1}^{\infty} \subset \mathbb{D}_r$ such that $w_j \to w_0$. Let

 $\psi(w_j) \to z_0$. Then $z_0 \in \partial U$ because ψ maps \mathbb{D}_r onto U biholomorphically.

If z_0 is not a critical point of f, then f maps a neighbourhood of z_0 , say A onto a neighbourhood of $f(z_0)$, say B biholomorphically.

It should be noted that B can be chosen such that $B \subset U$. This is because $f(z_0) \in U$. We have, $\lim_{j\to\infty} \psi(w_j) = z_0 \implies \lim_{j\to\infty} f(\psi(w_j)) = f(z_0) \implies \lim_{j\to\infty} \psi(w_j^n) = f(z_0) \implies \psi(w_0^n) = f(z_0)$. Since, $|w_0| = r < 1, |w_0|^n < r^n < r$. Hence, $w_0 \in \mathbb{D}_r$. Therefore, $\psi(w_0^n) = f(z_0) \in U$

Let g be the local inverse of f near $f(z_0)$. Then, ψ can be extended throughout a neighbourhood of w_0 by

$$w \mapsto g(\psi(w^n))$$

We have, $\psi(w_0^n) = f(z_0) \Longrightarrow w_0^n = \phi(f(z_0))$. Since, $\phi(B)$ is a neighbourhood of $\phi(f(z_0))$ lying inside \mathbb{D}_r , choose a small enough neighbourhood of w_0 , say C such that $w^n \in \phi(B)$, for all $w \in C$. In this neighbourhood, C our newly defined map agrees with ψ on $C \cap \mathbb{D}_r$. This is because, for $w \in C \cap \mathbb{D}_r$, $f(\psi(w)) = \psi(w^n) \in B$. Therefore, $g(\psi(w^n))$ can be defined and $\psi(w) = g(\psi(w^n)) \in A$. Hence, our new map is an analytic continuation of ψ on the neighbourhood C.

Now, if none of the $z_0 \in \partial U$ are critical points, we can extend ψ to a neighbourhood of $w_0 \forall w_0 \in \partial \mathbb{D}_r$. Clearly, these continuations would patch together to define ψ in a strictly greater disc than \mathbb{D}_r , which is a contradiction.

Chapter 4

Introduction to the Mandelbrot Set

We consider the set of quadratic polynomials $\{f_c(z) = z^2 + c : c \in \mathbb{C}\}$. It is enough to consider this set because every quadratic polynomial is conjugate to a quadratic polynomial of the type $f_c(z)$ for some unique $c \in \mathbb{C}$.

To prove this, let $f(z) = az^2 + bz + c$, $a \neq 0$. And consider the conjugation, $\sigma(z) =$

4.1 Definition of the Mandelbrot Set

First, we define as new type of set, known as the Filled-in Julia Set for a polynomial P.

Definition 4.1.1 (Filled-in Julia Set). The Filled-in Julia Set of a polynomial P is defined as $K(P) = \hat{\mathbb{C}} \backslash F_{\infty}(P)$. It is the union of the Julia set and the bounded Fatou components. It is denoted by K(P) or simply K when the context is clear.

By Lemma 1.2.7, K can also be defined as follows:

$$K = \{z \in \mathbb{C} : P^{\circ n}(z) \text{ is bounded}\}.$$

Notation. We will use F_c , J_c and K_c for the $F_{\infty}(f_c)$, $J(f_c)$ and $K(f_c)$ respectively.

Definition 4.1.2 (Mandelbrot Set). The Mandelbrot Set is defined as

$$M = \{c \in \mathbb{C} : K_c \text{ is connected}\}.$$

Now, we have the following two theorems for polynomials:

- For polynomials, since F_{∞} is a completely invariant Fatou component (by Theorem 1.2.5), $\partial F_{\infty} = J$ (by Theorem 1.2.2).
- And, from Theorem 1.2.1, we have that F_{∞} is simply connected $\iff \hat{\mathbb{C}} \backslash F_{\infty}$ is connected $\iff \partial F_{\infty}$ is connected.

Thus, for a polynomial,

 F_{∞} is simply connected $\iff K$ is connected $\iff J$ is connected.

Hence, we have the following equivalent descriptions for the Mandelbrot Set:

$$\begin{aligned} M &= \{c \in \mathbb{C} : K_c \text{ is connected} \} \\ &= \{c \in \mathbb{C} : F_c \text{ is simply connected} \} \\ &= \{c \in \mathbb{C} : J_c \text{ is connected} \}. \end{aligned}$$

4.2 The Fundamental Dichotomy

Theorem 4.2.1. For a polynomial P, the following are equivalent:

- 1. F_{∞} is simply connected \iff J is connected \iff K is connected.
- 2. There are no finite critical points of P in F_{∞} .

Proof. First assume that F_{∞} is simply connected $\implies c(F_{\infty}) = 1$ and hence, $\chi(F_{\infty}) = 2 - c(F_{\infty}) = 1$. Now, since F_{∞} is completely invariant and P is a polynomial of degree d (say), P is a d-fold map of F_{∞} onto itself. Applying the Riemann-Hurwitz relation to the map P of F_{∞} onto itself, we obtain,

$$\chi(F_{\infty}) + \delta_{P}(F_{\infty}) = d \chi(F_{\infty})$$

$$\Longrightarrow 1 + \delta_{P}(F_{\infty}) = d$$

$$\Longrightarrow \delta_{P}(F_{\infty}) = d - 1.$$

Now, $\delta_P(\infty) = d - 1$ and therefore, P does not have any finite critical points in F_{∞} .

For the converse part, assume there are no critical points of P in F_{∞} . Then, the Bottcher's map ϕ which conjugates P to the map, $z \mapsto z^d$ can be extended to the whole of F_{∞} and $\phi: F_{\infty} \to \mathbb{D}$ is a biholomorphism. Hence, F_{∞} is simply connected.

Now, quadratic maps have only one finite critical point and f_c have the critical point at 0 for all $c \in \mathbb{C}$. Hence, by the Fundamental Dichotomy, F_c is simply connected \iff $0 \notin F_c$ or $0 \in K_c$. Using, c_n to denote $f_c^{\circ n}(0)$, we get,

$$M = \{c \in \mathbb{C} : 0 \in K_c\}$$
$$= \{c \in \mathbb{C} : (c_n) \text{ is bounded}\}.$$

Note that $c_0 = 0$ and $c_1 = f_c(0) = c$. So, (c_n) is also the forward orbit of c. Hence, in other words, the Mandelbrot Set consists of $c \in \mathbb{C}$ such that its forward orbit under the map f_c remains bounded.

4.3 The other end of the Dichotomy Theorem

By the Dichotomy Theorem, we can say that if even one finite critical point of P lies in F_{∞} , then K cannot be connected. But this theorem states that if all finite critical points of P lie in F_{∞} , then K is not only disconnected, but totally disconnected.

Definition 4.3.1 (Cantor set). A subset $X \subset \hat{\mathbb{C}}$ is called a Cantor set if it is non-empty, closed, perfect and totally disconnected.

Theorem 4.3.1. Let R be a rational map with $\deg(R) \geq 2$. Let α be a super-attracting fixed point of R. If the Fatou component of R containing α , say F_{α} , contains all the critical points of R, then J(R) is a Cantor set.

Corollary 4.3.1.1. If $c \notin M$, then J_c is a Cantor set.

Proof. Since 0 is the only critical points of f_c (apart from ∞), if it belongs to $F_c = F_{\infty}(f_c)$, i.e. if $0 \notin K_c \iff c \notin M$, then J_c is a Cantor set.

4.4 Some properties of the Mandelbrot Set

We know, $M = \{c \in \mathbb{C} : (c_n) \text{ is bounded}\}$. This description for M can be strengthened significantly by the following theorem:

Theorem 4.4.1. $M = \{c \in \mathbb{C} : |c_n| \le 2\}.$

Proof. Obviously, $\{c \in \mathbb{C} : |c_n| \leq 2\} \subseteq M$.

Now, Suppose that $c \in M$. We need to prove that $|f_c^{\circ n}(c)| = |c_n| \le 2$ for all $n \in \mathbb{N}$. Consider the set $W_c = \{z \in \mathbb{C} : |z| \ge |c|, |z| > 2\}$. For $z \in W_c$,

$$|f_c(z)| = |z^2 + c| \ge |z|^2 - |c| \ge |z|^2 - |z| \ge |z|(|z| - 1) = |z|(1 + \epsilon)$$

for some $\epsilon > 0$ (as |z| > 2). Clearly, $|f_c^{\circ n}(z)| \ge |z|(1+\epsilon)^n \implies z \notin K_c$.

This implies $|c| \leq 2$. Consequently, $|f_c^{\circ n}(c)| \leq 2$ for all $n \in \mathbb{N}$.

Hence, $M \subseteq \{c \in \mathbb{C} : |c_n| \le 2\}.$

Therefore,
$$M = \{c \in \mathbb{C} : |c_n| \leq 2\}.$$

As $c_1 = c$, we have that $|c| \le 2$ for all $c \in M$ i.e $M \subseteq \{c \in \mathbb{C} : |c| \le 2\}$. This turns out to be the strongest bound possible for |c| as $-2 \in M$. The orbit of 0 under the map $z \mapsto z^2 - 2$ is:

$$0 \mapsto -2 \mapsto 2 \mapsto 2$$

and hence is bounded.

Theorem 4.4.2. The Mandelbrot set, M is compact and $\hat{\mathbb{C}}\backslash M$ is open and connected.

Proof. Let, $c_n = f_c^{\circ n}(c) = Q_n(c)$ be a polynomial in c. Clearly, from Theorem 4.4.1

$$M = \bigcap_{n=1}^{\infty} Q_n^{-1}(\overline{\mathbb{D}_2}),$$

where $\overline{\mathbb{D}_2} = \{z \in \mathbb{C} : |z| \leq 2\}$. Thus, M is closed. It is already known that it is bounded. Hence, it is compact.

Now,

$$\hat{\mathbb{C}}\backslash M = \cup_{n=1}^{\infty} Q_n^{-1}(E)$$

where $E = \hat{\mathbb{C}} \setminus \overline{\mathbb{D}_2}$. Now, E is open and connected and since, Q_n are non-constant polynomials, $Q_n^{-1}(E)$ is open and connected for all $n \in \mathbb{N}$. Also, each one of them contains ∞ and hence, their union is also open and connected.

Therefore, $\hat{\mathbb{C}}\backslash M$ is open and connected.

4.5 Plotting the Mandelbrot Set

Theorem 4.4.1 is also used to plot the Mandelbrot Set. A simple code in python would

Chapter 5

Connectedness of the Mandelbrot Set

In the previous chapter, we proved that the Mandelbrot set is compact and $\mathbb{C}\backslash M$ is open and connected. In this chapter, we will prove that $\hat{\mathbb{C}}\backslash M$ is biholomorphic to the open unit disc, proving that it is simply connected, thus implying that M is connected by Theorem 1.2.1.

5.1 The Green's Function