SUMS OF SQUARES OF ANALYTIC FUNCTION GERMS

José F. Fernando

Main results

I. The Pythagoras number of an analytic surface germ is finite.

Bounds = f(multiplicities,codimension)

II. List of all surface germs in \mathbb{R}^3 such that psd = sos.

All of them have Pythagoras number 2.

PRELIMINARIES

1. General setting for the real spectrum

•
$$\mathcal{P}(A) = \left\{ \begin{array}{l} \text{psd's} \\ \text{on } A \end{array} \right\} = \left\{ f \in A : \ f(\alpha) \ge 0 \ \forall \alpha \in \text{Spec}_r(A) \right\}$$

•
$$\Sigma(A) = \left\{ \begin{array}{l} \text{sums of} \\ \text{squares} \\ \text{on } A \end{array} \right\}; \qquad \Sigma_q(A) = \left\{ \begin{array}{l} \text{sums of } q \\ \text{squares} \\ \text{on } A \end{array} \right\}$$

• Pythagoras number: $p(A) = \inf\{q \in \mathbb{N} : \Sigma(A) = \Sigma_q(A)\}$

Qualitative problem: Is $\mathcal{P}(A) = \Sigma(A)$?

Quantitative problem: To estimate p(A).

Consecuencia: If $p(A) \le p < +\infty$ then

Qualitative problem:

Determine if the equations
$$f = Y_1^2 + \dots + Y_p^2 \quad \text{for } f \text{ psd}$$

have always a solution.

- 2. A LITTLE BIT OF HISTORY.
- Origin: 17th Hilbert's Problem for $\mathbb{R}(x_1,\ldots,x_n)$, [E.Ar,27]
- Generalization

Geometric formulation for functions in real varieties
$$\left\{\begin{array}{l} \text{Abstract formulation} \\ \text{for the real spectrum} \end{array}\right\}$$

• Relevant results

Treducible algebraic sets
$$\begin{cases} \mathcal{P} \left(\begin{array}{c} \text{rational func.} \\ \text{real irred. var} \end{array} \right) = \mathcal{E} \left(\begin{array}{c} \text{rational func.} \\ \text{real irred. var} \end{array} \right) \quad [\text{E.Ar,27}] \end{cases}$$

$$\begin{cases} \text{dim} + 2 \leq p \left(\begin{array}{c} \text{rational func.} \\ \text{real variety} \\ \text{dim} \geq 2 \end{array} \right) \leq 2^{\text{dim}} \quad [\text{CaElPf,71}] \end{cases}$$

$$\begin{cases} p \left(\begin{array}{c} \text{polynomial func.} \\ \text{real irred. curve} \end{array} \right) < +\infty, \quad p[\mathbb{R}] = 2 \quad [\text{ChDLR,80}] \end{cases}$$

$$p \left(\begin{array}{c} \text{polynomial func.} \\ \text{real irred. surf.} \end{array} \right) \stackrel{?}{=} +\infty, \quad p[\mathbb{R}^2] = +\infty \quad [\text{ChDLR,80}]$$

$$p \left(\begin{array}{c} \text{polynomial func.} \\ \text{real variety} \\ \text{dim} \geq 3 \end{array} \right) = +\infty \quad [\text{ChDLR,80}]$$

Irreducible

$$p\left(\begin{array}{c} \text{polynomial func.} \\ \text{real irred. surf.} \end{array}\right) \stackrel{?}{=} +\infty, \ p[\mathbb{R}^2] = +\infty \text{ [ChDLR,80]}$$

$$p\left(\begin{array}{c}\text{polynomial func.}\\\text{real variety}\\\dim\geq3\end{array}\right) = +\infty \quad \text{[ChDLR,80]}$$

Connected Nash Properties
$$\begin{cases} \mathcal{P} \left(\begin{array}{c} \text{rational Nash} \\ \text{functions} \end{array} \right) = \mathcal{\Sigma} \left(\begin{array}{c} \text{rational Nash} \\ \text{functions} \end{array} \right) \\ p \left(\begin{array}{c} \text{rational Nash} \\ \text{functions} \end{array} \right) \leq 2^{\text{dim}} \quad [\text{BCR,87}] \end{cases}$$

$$\mathcal{P} \left(\begin{array}{c} \text{mer. func.} \\ \text{compact var.} \end{array} \right) = \mathcal{E} \left(\begin{array}{c} \text{mer. func.} \\ \text{compact var.} \end{array} \right) \left[\text{Jw,Rz,85} \right]$$

$$\mathcal{P} \left(\begin{array}{c} \text{analytic func} \\ \text{smooth compact} \\ \text{curve} \end{array} \right) = 2 \quad [\text{Jw,82}]$$

$$\mathcal{P} \left(\begin{array}{c} \text{analytic func.} \\ \text{non-compact} \\ \text{smooth curve} \end{array} \right) = 1 \quad [\text{Jw,82}]$$

$$\mathcal{P} \left(\begin{array}{c} \text{analytic func.} \\ \text{smooth compact} \\ \text{surface} \end{array} \right) = 3 \quad [\text{BKS,81}]$$

$$\mathcal{P} \left(\begin{array}{c} \text{analytic func.} \\ \text{non-compact} \\ \text{smooth surface} \end{array} \right) = 2 \quad [\text{BKS,81}]$$

$$p\left(\begin{array}{c}\text{analytic func.}\\\text{non-compact}\\\text{smooth curve}\end{array}\right) = 1 \quad [\text{Jw,82}]$$

$$p\left(\begin{array}{c}\text{analytic func}\\\text{smooth compact}\\\text{surface}\end{array}\right) = 3 \quad [\text{BKS,81}]$$

$$p\left(\begin{array}{c}\text{analytic func.}\\\text{non-compact}\\\text{smooth surface}\right) = 2 \quad [BKS,81]$$

3. Analytic germs

Notations

- Analytic ring: $A = \mathbb{R}\{x\}/I, x = (x_1, \dots, x_n)$
- Zero germ: $X = \mathcal{Z}(I) \subset \mathbb{R}^n$
- $\mathcal{J}(X) = \frac{\text{real-radical}}{\text{of } I} = ideal \text{ of } X = \frac{\text{ideal of zero}}{\text{germs of } X}$ [Ri,76]
- $\mathcal{O}(X) = \mathbb{R}\{x\}/\mathcal{J}(X) = \frac{\text{real-reduction}}{\text{of } A} = \frac{\text{ring of analytic}}{\text{germs of } X}$
- $\mathcal{M}(X) = \frac{\text{total ring of}}{\text{fractions of } \mathcal{O}(X)} = \frac{\text{ring of meromorphic}}{\text{germs of } X}$
- $\mathcal{P}(X) = \left\{ \begin{array}{l} \text{psd's} \\ \text{on } X \end{array} \right\} = \mathcal{P}(\mathcal{O}(X)) \quad \begin{array}{l} [\text{Ri,76}] \\ [\text{Rz,83}] \end{array}$
- $\Sigma(X) = \Sigma(\mathcal{O}(X)); \qquad \Sigma_q(X) = \Sigma_q(\mathcal{O}(X))$
- $p[X] = p(\mathcal{O}(X));$ $p(X) = p(\mathcal{M}(X))$

Some results:

$$\begin{cases} \mathcal{P} \left(\begin{array}{c} \text{meromorphic} \\ \text{func. germs} \end{array} \right) = \mathcal{E} \left(\begin{array}{c} \text{meromorphic} \\ \text{func. germs} \end{array} \right) & [\text{Ri,76}] \\ \text{func. germs} \end{cases}$$
 Meromorphic germs
$$\begin{cases} p(X) = 1 & \text{if } d = 1 \\ p(X) \leq p(\mathbb{R}^d) \cdot m \leq \begin{cases} 2m & \text{if } d = 2 \quad [\text{BoRi,75}] \\ 8m & \text{if } d = 3 \quad [\text{Jw,92}] \\ ? & \text{if } d \geq 4 \end{cases}$$

$$\mathcal{P}(X) = \Sigma(X) \iff \left\{ \begin{array}{l} X = \text{union of} \\ \text{indep. lines} \end{array} \right\} \quad \begin{array}{l} [\text{Or,88}] \\ [\text{Sch,01}] \end{array}$$

$$\mathbf{dim} \geq 3\mathbf{:}$$

Cualitative problem for analytic rings

 $\begin{cases}
A \text{ regular local ring} \Rightarrow \mathcal{P}(A) \neq \Sigma(A) \text{ [Sch,99]} \\
X \text{ analytic germ, dim } X \geq 4 \Rightarrow \mathcal{P}(X) \neq \Sigma(X) \text{ [Rz,99]} \\
Conjecture: } A = \mathbb{R}\{x\}/I \text{ analytic ring, dim } \mathcal{Z}(I) \geq 3 \\
\Rightarrow \mathcal{P}(A) \neq \Sigma(A)
\end{cases}$

 $p[X] \leq \text{mult}(X)$ if X is irreducible [Qz,01]

 $\dim \geq 3$:

 $\begin{cases}
A \text{ regular local ring} \Rightarrow p(A) = +\infty \text{ [ChDLR,80]} \\
X \text{ analytic germ, dim } X \geq 4 \Rightarrow p[X] = +\infty \text{ [Rz,83]} \\
Conjecture: } A = \mathbb{R}\{x\}/I \text{ analytic ring, dim } \mathcal{Z}(I) \geq 3 \\
\Rightarrow p(A) = +\infty
\end{cases}$

Cuantitative problem for analytic rings

I. MAIN RESULTS ON PYTHAGORAS NUMBER

• Strong Question de [ChDLR,80] for modules over $R = \mathbb{R}(\{x\})[y]$, $\mathbb{R}\{x\}[y]$ y $\mathbb{R}\{x,y\}$:

Let A be a ring which is a finite generated R-module, say by m generators. Then $p(A) \leq p(R)m$.

- $A = \mathbb{R}\{x_1, \dots, x_n\}/I$, $\dim(A) = 2 \Rightarrow p(A) < +\infty$
- Let $X \subset \mathbb{R}^n$ be an analytic surface germ. Then

$$E\left[\log_2\left(\omega(I(X))+1\right)\right] \leq p[X] \leq 2\operatorname{mult}_{\mathsf{T}}(X)^{\operatorname{codim}(X)}$$

Moreover, $p[X] \ge 2$.

II. MAIN RESULTS ON SUMS OF TWO SQUARES

• The singular surface germs $X \subset \mathbb{R}^3$ such that $\mathcal{P}(X) = \Sigma(X)$ are exactly the following:

$$\begin{cases} z^2 - x^3 - y^5 = 0 & (Brieskorn's singularity, [Rz,99]) \\ z^2 - x^3 - xy^3 = 0, & z^2 - x^3 - y^4 = 0 \end{cases}$$

$$\begin{cases} z^2 - x^2 = 0 & (Two transversal planes, [Rz,99]) \\ z^2 - x^2 - y^2 = 0, & z^2 - x^2 - y^k = 0, \ k \ge 3 \end{cases}$$

$$\begin{cases} z^2 - x^2y = 0 & (Whitney's umbrella, [Rz,99]) \\ z^2 - x^2y + y^3 = 0, & z^2 - x^2y - (-1)^k y^k = 0, \ k \ge 4 \end{cases}$$

- Furthermore, in **all** these cases p[X] = p(X) = 2.
- Existence of **other** surface germs in embedding dimension > 3 with $\mathcal{P} = \Sigma_2$.

I. PYTHAGORAS NUMBER

1. Sums of two squares in two variables

Purpose: To show that every positive semidefinite element (=psd) of $\mathbb{R}\{x\}[y]$ can be written as a sum of two squares of elements of $\mathbb{R}\{x\}[y]$.

Notations: Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , and

- $\Omega_{\mathbb{K}}$ =the ring of analytic Puiseux series over \mathbb{K}
- $\Phi_{\mathbb{K}} = qf(\Omega_{\mathbb{K}})$
- $\bullet \ \mathbb{K}(\{x\}) = qf(\mathbb{K}\{x\})$

Orderings of the field $\mathbb{R}(\{x\})$. They are exactly the following ones with real closure $\Phi_{\mathbb{R}}$:

• $(\mathbb{R}(\{x\}), <)$ ordering such that x is positive $f = a_r x^r + a_{r+1} x^{r+1} + \dots > 0 \iff a_r > 0$

$$f/g > 0 \iff fg > 0.$$

• $(\mathbb{R}(\{x\}), \prec)$ ordering such that x is negative

$$f = a_r x^r + a_{r+1} x^{r+1} + \dots > 0 \iff (-1)^r a_r > 0$$
$$f/g > 0 \iff fg > 0.$$

Characterization of the psd's on $\mathbb{R}(\{x\})[y]$:

Let $f \in \mathbb{R}(\{x\})[y], f \neq 0$. The following statements are equivalent:

- a) f is psd on the ring $\mathbb{R}(\{x\})[y]$.
- $\{x\}[y].$ $\frac{|x|}{-arepsilon|}$ $\frac{|x|}{|x|}$
- b) f is psd on the field $qf(\mathbb{R}\{x\}[y])$.
- c) There exist $r \in \mathbb{N}$, $\varepsilon > 0$ such that $x^{2r} f \in \mathbb{R}\{x\}[y]$ is defined and is ≥ 0 on the vertical band $(-\varepsilon, \varepsilon) \times \mathbb{R}$.
- d) For each $\xi \in \Phi_{\mathbb{R}}$ the series $f(x,\xi)$, $f(-x,\xi)$ are psd on $\Phi_{\mathbb{R}}$.

Result:

$$\mathcal{P}(\mathbb{R}\{x\}[y]) = \Sigma_2(\mathbb{R}\{x\}[y])$$

Sketch of proof. Let $f \in \mathcal{P}(\mathbb{R}\{x\}[y])$

- Check that $\operatorname{grad}_y(f) = n$ is odd and that the leading coefficient a_n is an square.
- Factorize f/a_n in irreducible factors in $\mathbb{R}(\{x\})[y]$.
- Check that the factors of odd multiplicity are reducible in $\mathbb{C}(\{x\})[y]$ and therefore sum of **two** squares.
- Deduce that f is sum of **two** squares in $\mathbb{R}\{x\}[y]$.

2. Diagonalization in two variables

Purposes: To show that:

The positive semidefinite quadratic forms over $\mathbb{R}(\{x\})[y]$ are diagonalizable over $\mathbb{C}(\{x\})[y]$.

Consequence: A ring A which is a module with m generators over $R = \mathbb{R}(\{x\})[y], \mathbb{R}\{x\}[y]$ or $\mathbb{R}\{x,y\}$ satisfies $p(A) \leq p(R)m = 2m$

Essential Hint: Ideas of Djoković used to prove that:

The positive semidefinite quadratic forms over $\mathbb{R}[x]$ are diagonalizable over $\mathbb{C}[x]$.

Notations:

- $a = \langle a_1, \ldots, a_n \rangle$ is the matrix with main diagonal a_1, \ldots, a_n .
- Given $a = (a_{ij})_{1 \le i,j \le n}$ with coefficients in $\mathbb{C}(\{x\})[y]$, its conjugated transposed is:

$$a^* = \overline{a^t} = (\overline{a_{ji}})_{1 \le i, j \le n}$$

Main tool: Diagonalization in PID's:

Let R be a principal ideal domain and $a \in \mathfrak{M}_n(R)$ a matrix of rank r. Then, there exist two invertible matrices u, v and another diagonal one

$$e = \langle e_1, \dots, e_r, 0, \dots, 0 \rangle,$$

such that $e_1|e_2|\dots|e_r$ and a=uev; moreover, the ideals

$$(e_1), (e_2), \ldots, (e_r)$$

are unique, and the elements e_1, e_2, \ldots, e_r of the main diagonal of e are called invariant factors of a. The diagonal matrix $e = \langle e_1, \ldots, e_r, 0, \ldots, 0 \rangle$ is a matrix of invariant factors of a.

Definition: Let $a \in \mathfrak{M}_n(\mathbb{K}(\{x\})[y])$, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} such that $a = a^*$:

- $\bullet \Rightarrow z^*az \in \mathbb{R}(\{x\})[y] \ \forall z \in \mathbb{K}(\{x\})^n$
- Then, $a \ge 0 \iff z^*az$ es psd en $\mathbb{R}(\{x\})[y] \ \forall z \in \mathbb{K}(\{x\})^n$.

Diagonalization: Given $a \in \mathfrak{M}_n(\mathbb{C}(\{x\})[y])$ such that $a \geq 0$, there exist $b \in \mathfrak{M}_n(\mathbb{C}(\{x\})[y])$ such that $a = b^*b$.

Sketch of proof. Several reduction steps:

- (a) We can suppose $a \ge 0$ and of maximum rank.
- (b) We can suppose $a \ge 0$ is invertible.
- (c) We can suppose $a \in \mathfrak{M}_n(\mathbb{R}(\{x\}))$, $a \geq 0$ and diagonal.
- (d) In the hypotheses of (c) there exist $g \in \mathfrak{M}_n(\mathbb{R}(\{x\}))$ diagonal such that $a = gg = g^*g$.

Main result:

Let L_1, \ldots, L_r linear forms in n variables over $R = \mathbb{R}(\{x\})[y]$, $\mathbb{R}\{x\}[y]$ ó $\mathbb{R}\{x,y\}$, and $\varphi = L_1^2 + L_2^2 + \cdots + L_r^2$. There exist linear forms Q_1, Q_2, \ldots, Q_{2n} over R such that

$$\varphi = Q_1^2 + Q_2^2 + \dots + Q_{2n}^2.$$

Sketch of proof.

- (a) $R = \mathbb{R}(\{x\})[y]$. Let $a \in \mathfrak{M}_n(\mathbb{R}(\{x\})[y])$ be the matrix associated to φ which is ≥ 0 :
 - There exists $b \in \mathfrak{M}_n(\mathbb{C}(\{x\})[y])$ such that $a = b^*b$.
 - $b = b_1 + ib_2$ with $b_1, b_2 \in \mathfrak{M}_n(\mathbb{R}(\{x\})[y])$ and then $a = (b_1^t ib_2^t)(b_1 + ib_2) = b_1^t b_1 + b_2^t b_2 + i(b_1^t b_2 b_2^t b_1)$

and thus:

$$a = b_1^t b_1 + b_2^t b_2 b_1^t b_2 = b_2^t b_1$$

Therefore

$$\varphi = Q_1^2 + Q_2^2 + \ldots + Q_{2n}^2.$$

- (b) $R = \mathbb{R}\{x\}[y]$. Proceed as above and check that the denominator is a unit of $\mathbb{R}\{x\}$.
- (c) $R = \mathbb{R}\{x, y\}$. Take suitable jets and use M. Artin's Ap-proximation Theorem.

3. Multiplicities

Purpose: Recall the general properties of the *multiplicity* of a local ring, and deduce a particular description for analytic rings.

(3.1) Multiplicity of a local ring. Let A be a local ring with residue field κ and maximal ideal \mathfrak{m} and M a module f.g. over A. The characteristic function of M is

$$L_M: k \mapsto \dim_{\kappa}(M/\mathfrak{m}^k M).$$

There exists $Q_M \in \mathbb{Q}[T]$ such that

$$L_M(k) = Q_M(k)$$
 for $k >> 0$

 $Q_M = characteristic \ polynomial \ of \ M$:

- $\operatorname{grad}(Q_M) = d = \dim_A(M) = \operatorname{Krull's dimension of } A/(\operatorname{ann} M).$
- Leading coefficient = $\mathfrak{e}(M)$.
- Multiplicity of M:

$$\operatorname{mult}(M) = d! \ \mathfrak{e}(M) \ge 1$$

(3.2) Total multiplicity. Suppose M = A/I where I is a radical ideal of height r:

$$I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_s \cap \mathfrak{p}_{s+1} \cap \ldots \cap \mathfrak{p}_l$$

 $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ associated prime ideals of height r,

 $\mathfrak{p}_{s+1},\ldots,\mathfrak{p}_l$ associated prime ideals of height > r.

We have:

$$\operatorname{mult}(M) = \sum_{i=1}^{s} \operatorname{mult}(A/\mathfrak{p}_i)$$

Consequence: The usual notion of *multiplicity* forgets the associated prime ideals which do not have minimal height, and thus, we must consider the *total multiplicity*:

$$\operatorname{mult}_{\mathbf{T}}(M) = \sum_{i=1}^{l} \operatorname{mult}(A/\mathfrak{p}_i)$$

(3.3) Multiplicity for analytic rings. Let \mathfrak{p} be a prime ideal of \mathcal{O}_n of height r = n - d. After a suitable linear change:

$$\operatorname{mult}(\mathcal{O}_n/\mathfrak{p}) = [qf(\mathcal{O}_n/\mathfrak{p}): qf(\mathcal{O}_d)]$$

4. Bounds

Results:

1. Lower bound: Let $X \subset \mathbb{R}^n$ be an analytic germ, $n \geq 3$. Then

$$p[X] \ge E\left[\log_2\left(\omega(I(X)) + 1\right)\right]$$

Sketch of proof. Proceed by way of contradiction using homogeneous polynomials of $\mathbb{R}[x,y,z]$ of degree $q=2^p-2$ which are sum of squares of polynomials, but not less than p [ChDLR,80].

2. Upper bound: Let $X \subset \mathbb{R}^n$ be a surface germ. Then

$$p[X] \le 2 \operatorname{mult}_{\mathbf{T}}(X)^{\operatorname{codim}(X)}$$

Sketch of proof. It suffices to bound γ_X = minimal number of generators of $\mathcal{O}(X)$ as $\mathbb{R}\{x,y\}$ -module, using

$$\gamma_X \le \operatorname{mult}_{\mathbf{T}}(X)^{\operatorname{codim}(X)}$$

and the results of section I.2.

5. Examples

Purpose: To show that there is not an upper bound of the Pythagoras number of a surface germ depending only on the multiplicity. Therefore **the total multiplicity is necessary**.

Result: For each $q \in \mathbb{N}$ there exist a analytic surface germ $X \subset \mathbb{R}^3$ of multiplicity 1 and Pythagoras number $\geq q$.

Sketch of proof. Two steps:

(a) There exist a curve germ $Y \subset \mathbb{R}^3$ such that $p[Y] \geq q$.

irreducible

$$\forall k \geq 1 \; \exists \; Y_k \qquad \text{curve} \qquad : \omega(\mathcal{J}(Y_k)) > k. \; \text{Take, for instance,}$$
 germ

$$Y_k: (t^a, t^b, t^c), a = p \text{ prime} \ge k^2 + 2, \ b = p(p-1) + k, \ c = p^2 + 1$$

(b) Let $X = Y \cup \{z = 0\}$, which a is an analytic germ of dimension 2 and satisfies

$$\operatorname{mult}(X) = \operatorname{mult}(\{z = 0\}) = 1,$$

$$\operatorname{mult}_{\mathbf{T}}(X) = \operatorname{mult}(Y) + 1,$$

$$p[X] \ge p[Y] \ge q \text{ (since } \mathcal{O}(Y) \text{ is a quotient of } \mathcal{O}(X)).$$

II. SUMS OF TWO SQUARES

STRATEGY

Generation of the list.

Two steps:

• If $X \subset \mathbb{R}^n$ is an analytic singular germ such that $\mathcal{P}(X) = \Sigma(X)$, then

$$\omega(\mathcal{J}(X)) = 2$$

• If $X \subset \mathbb{R}^3$ has dim X = 2, $\mathcal{P}(X) = \Sigma(X)$ and $\omega(\mathcal{J}(X)) = 2$, then X is one of the germs of the list [Rz,99].

General method to attack $\mathcal{P} = \Sigma_2$.

- 1. **Polynomial reduction:** Consider S_X the algebraic surface associated to X, and prove that the set of positive definite polynomials in S_X , considered as germs, is dense in the set of psd function germs on X.
 - 2. **Blowing-up**: using a suitable blowing-up, we obtain a biregular equivalence between a dense open set of S_X and a dense open set of the plane or of Brieskorn's singularity.

- 3. Solution for the polynomial case: using the previous biregular equivalence, the fact that the plane and Brieskorn's singularity have the property $\mathcal{P} = \Sigma_2$ and certain standard equations of sum of squares, we show that every positive definite polynomial over S_X is a sum of two squares of analytic function germs on X.
- 4. **Solution of the general case:** we extend the previous property for polynomials to analytic function germs by means of M. Artin's Approximation Theorem .

For the two planes an Whitney's umbrella the new proof is a kind of *limit argument* using the corresponding result for its deformations.

1. The cone

Result: If $X: z^2 = x^2 + y^2$ is the cone singularity, then any non negative function germ on X can be written as a sum of two squares of analytic function germs.

Sketch of proof. Several steps:

(a) If $f, g \in \mathbb{R}[x, y]$ and f + zg (cannonical expression of an element of $\mathcal{O}(X)$) is psd on $X \Rightarrow$ there exists $m \geq 0$, such that $z^m(f+zg)$ is a sum of two squares in $\mathcal{O}(X)$.

Consider the blowing-up

$$C: u^{2} + v^{2} = 1$$

$$\varphi$$

$$(u, v, t)$$

$$\frac{\varphi}{\left(\frac{x}{z}, \frac{y}{z}, z\right)}$$

$$X: x^{2} + y^{2} = z^{2}$$

$$(ut, vt, t)$$

$$\psi$$

$$(x, y, z)$$

The used argument is a kind of parametrized revission of the classical proof of Polya of the fact that every psd polynomial on the circumference is a sum of two squares of polynomials.

- (b) Get rid of the denominator z^m .
- (c) Check that the set of psd polynomials on X is dense in $\mathcal{P}(X)$, using for that Newton-Puiseux's algorithm.
- (d) Apply M. Artin's Approximation Theorem to solve the analytic case.

2. Polynomial reduction

Notations: Let $X \subset \mathbb{R}^3$ be an analytic surface germ at the origin with equation $z^2 = F(x, y), F \in \mathbb{R}[x, y]$

 $S_X = \{(x, y, z) \in \mathbb{R}^3 | z^2 - F(x, y) = 0\}$ is the algebraic surface associated to X (it satisfies $(S_X)_0 = X$),

$$\mathcal{P}(S_X) = \{\text{polynomials } P(x, y) + zQ(x, y) \ge 0 \text{ in } S_X\}.$$

Reducción polinomial: Let $X \subset \mathbb{R}^3$ be an analytic germ of equation $z^2 - F(x, y) = 0$, $F \in \mathbb{R}[x, y]$, F(0, 0) = 0. If $k \ge 1$

$$\mathcal{P}(S_X) \subset \Sigma_k(X) \Rightarrow \mathcal{P}(X) = \Sigma_k(X)$$

Sketch of proof. Several steps:

(a) Weak polynomial density: If $Z \subset \mathbb{R}^2$ is a closed semianalytic set germ and $f \in \mathcal{O}(Z)$ id positive defined or pd on Z (that is, $f|_{Z\setminus\{0\}} > 0$), there exist $r \in \mathbb{N}$ such that if $g \equiv f \mod(x,y)^r \Rightarrow g$ is pd in Z.

(b) Study of $\mathcal{O}(X)$:

$$\mathcal{O}(X) = \{f(x,y) + zg(x,y): f,g \in \mathbb{R}\{x,y\}\}\$$

$$\mathcal{P}(X) = \{ f + zg : f \in \mathcal{P}(F \ge 0), f^2 - Fg^2 \in \mathcal{P}(\mathbb{R}^2) \}.$$

(c) Strong polynomial density: If $\varphi = f + zg \in \mathcal{P}(X)$ then for each $m \geq 1$ there exist a polynomial

$$h_m = P(x, y) + zQ(x, y) \in \mathcal{P}(S_X)$$

such that $\omega(\varphi - h_m) \ge m$ (using (a), (b)).

(d) Use the hypothese, the step (c) and apply M. Artin's Approximation Theorem to solve the equations

$$\varphi = f + zg = X_1^2 + \dots + X_k^2 + (z^2 - F)Y$$

en $\mathbb{R}\{x,y,z\}$.

Example of application of our method

Let us see that $\mathcal{P}(X:z^2-x^3-xy^3=0)=\Sigma_2(X)$.

1. **Polynomial reduction:** it suffices to prove that

$$\mathcal{P}(S_X) \subset \Sigma_2(X)$$
.

2. Blowing-up:

$$(x,y,z) = \left(x, \frac{u}{x}, \frac{v}{x}\right) \longrightarrow (x, xy, xz) = (x, u, v)$$

3. Solution of the polynomial case: If $P + zQ \in \mathcal{P}(S_X)$ using the previous transform and the fact that

$$\mathcal{P}((E_8)_o) = \Sigma_2((E_8)_o)$$

it can be shown that $r \ge 0$, $\alpha' s$, $\beta' s$, $q_0 \in \mathbb{R}\{x, y\}$ such that $x^{2r}(P + zQ) = (\alpha_0 + z\alpha_1)^2 + (\beta_0 + z\beta_1)^2 - (z^2 - x^3 - xy^3)q_0$.

To end up we get rid of x^{2r} . Comparing coefficient with respect to z we obtain

(0)
$$x^{2r}P = \alpha_0^2 + \beta_0^2 + q_0(x^3 + xy^3) = \alpha_0^2 + \beta_0^2 + q_0x(x^2 + y^3)$$

(1)
$$x^{2r}Q = 2(\alpha_0\alpha_1 + \beta_0\beta_1)$$

(2)
$$q_0 = \alpha_1^2 + \beta_1^2$$

Now:

$$(0) \Rightarrow x|\alpha_0^2 + \beta_0^2 \Rightarrow x|\alpha_0, \beta_0 \Rightarrow x|q_0.$$

$$(2) \Rightarrow x|\alpha_1^2 + \beta_1^2 \Rightarrow x|\alpha_1, \beta_1 \Rightarrow x^2|q_0.$$

This proves

$$x^{2(r-1)}(P+zQ) = (\alpha_0' + z\alpha_1')^2 + (\beta_0' + z\beta_1')^2 - (z^2 - x^3 - xy^3)q_0'.$$

Applying this process r-1 times more, we deduce

$$(P+zQ) = (a_0 + za_1)^2 + (b_0 + zb_1)^2 - (z^2 - x^3 - xy^3)h_0.$$

Blowing-up

Change of coordinates

Blowing-up

 $Y_k: y^{2l} = uv$

Blowing-up

 \mathbb{R}^2

Change of coordinates

 $X_k : z^2 = x^2 + y^{2l}$

Blowing-up

Change of coordinates

Solved by *limit argument*

LIMIT ARGUMENT

For the two transversal planes $\mathcal{P}(X:z^2-x^2=0)=\Sigma_2(X)$ we proceed as follows:

Let $f + zg \in \mathcal{P}(z^2 - x^2 = 0)$. There exists $m_0 \geq 1$ such that $\forall m \geq m_0$ there exists $r \geq 2m$ such that the function germ $f + (x^2 + y^2)^m + zg \in \mathcal{O}(X_{2r})$ is pd in $X_{2r} : z^2 - x^2 - y^{2r} = 0$.

It is satisfied that

$$f + (x^2 + y^2)^m + zg = \alpha^2 + \beta^2 - (z^2 - x^2 - y^{2r})h$$

and then

$$f + zg \equiv \alpha^2 + \beta^2 - (z^2 - x^2)h \mod (x, y)^{2m}$$

By M. Artin's Approximation Theorem

$$f + zg = a^2 + b^2 - (z^2 - x^2)q.$$

5. Whitney's umbrella and its deformations

 $2^{\underline{nd}}$ Blowing-up

 $1^{\underline{st}}$ Blowing-up

Change of coordinates

 $Y_k : z^2 = x^2 y + y^{2k}$

 $X_k : w^2 = z^2 y - y^{2k+1}$

Blowing-up

 $X: z^2 = x^2 y$

Solved by *limit argument*

6. Germs in higher codimension

Purpose: To prove that $\forall n \in \mathbb{N}$ there exist a surface germ with emb dim = n + 1 such that $\mathcal{P} = \Sigma_2$.

Germs and associated surfaces: Veronese's real cones

Germs:
$$X_n = (S_n)_o \subset \mathbb{R}_o^{n+1}$$
,

$$S_n: F_{ij} = x_i x_j - x_{i-1} x_{j+1}, \quad 1 \le i \le j \le n-1$$

Associated algebraic surfaces: $S_{X_n} = S_n$.

Parametrization of the complexification of S_n :

$$\gamma(z, w) = (z^n, z^{n-1}w, \dots, zw^{n-1}, w^n)$$

Parametrizations of S_n :

 \bullet *n* par:

$$\gamma^+ = \gamma_{|\mathbb{R}^2}$$
 parametrizes $S_n \cap \{x_0 \ge 0\}$,
 $\gamma^- = -\gamma_{|\mathbb{R}^2}$ parametrizes $S_n \cap \{x_0 \le 0\}$.

• n impar:

$$\gamma^+ = \gamma_{|\mathbb{R}^2}$$
 parametrizes S_n ,
 $\gamma^- = -\gamma_{|\mathbb{R}^2}$ parametrizes S_n .

Result: $\mathcal{P}(X_n) = \Sigma_2(X_n)$

a) Polynomial reduction: It is enough to prove:

$$\mathcal{P}(S_n) \subset \Sigma_2(X_n)$$
.

b) Blowing-up:

$$\phi_n : \mathbb{R}^2 \setminus \{x_0 = 0\} \to S_n \setminus \{x_0 = 0\}$$

$$(x_0, x_1) \mapsto \left(x_0, x_1, \frac{x_1^2}{x_0}, \dots, \frac{x_1^k}{x_0^{k-1}}, \dots, \frac{x_1^n}{x_0^{n-1}}\right).$$

c) Solution of the polynomial case: If $f \in \mathcal{P}(S_n)$, using the previous transform, check that

$$x_0^{2r} f \equiv (a^2 + b^2) \mod I(X_n)$$

Using the parametrization γ^+ verify that we can divide by x_0^{2r} .