Cálculo Proposicional

O Cálculo Proposicional (CP – também conhecido como Lógica Proposicional) é um dos mais simples formalismos lógicos existentes. Este cálculo lida apenas com enunciados declarativos, chamados de *proposições*. As sentenças exclamativas, imperativas e interrogativas são, pois, excluídas.

Proposição

É uma sentença que pode ser avaliada em FALSO ou VERDADEIRO. É uma frase declarativa (com sujeito e predicado) que representa uma idéia completa. Proposições são representadas por letras maiúsculas: A, B, ...

Exemplos de proposições atômicas (átomos):

Napoleão morreu.

A Lua é o satélite natural da Terra.

Dez é menor do que sete.

3 + 4 = 7

O Japão fica na África.

Não são proposições:

Onde você está? \rightarrow Sentença interrogativa Não vá embora. \rightarrow Sentença imperativa Que lindo! \rightarrow Sentença exclamativa \rightarrow Não possui predicado foi à praia \rightarrow Não possui sujeito

Valor-verdade ou valor lógico:

VERDADEIRO (V) ou FALSO (F).

Princípios Fundamentais da Lógica

- **Princípio de identidade** enunciados do princípio de identidade:
 - I- Uma coisa é o que é.
 - II- O que é, é; o que não é, não é.
 - III- A é A ("A" designando qualquer objeto do pensamento).
 - IV- Em termos de proposições: uma proposição é equivalente a si mesma.
- Princípio da Não-Contradição: Uma proposição não pode ser simultaneamente verdadeira e falsa.
- Princípio do Terceiro Excluído: Toda proposição ou é verdadeira ou é falsa, nunca ocorrendo um terceiro caso.

Proposições Compostas

É possível construir proposições compostas através do uso de conectivos, usados para construir proposições a partir de outras.

Os conectivos são:

precedência

	<u>C</u>	onectivos (o	peradores lógicos):	
Nome:	Símbolo:	Utilização:	Leitura:	Variações:
negação	~	~A	"não A"	A', ¬ A
conjunção	۸	A∧B	"A e B"	&, &&
disjunção	v	A∨B	"A ou B"	If
implicação	→	$A \rightarrow B$	"A implica B" ("se A então B; "B é consequência de A")	ם
bicondicional	\leftrightarrow	A↔B	A se e somente se B	

Os primeiros elementos da tabela possuem maior precedência que os últimos. O conectivo ¬ é o que possui a maior precedência, isto é, deve ser avaliado primeiro que os outros.

Exemplos:

1) Napoleão não morreu.

Considerando que a proposição **A** é: "Napoleão morreu.", a frase acima é representada por **¬ A** (Não é verdade que Napoleão morreu).

2) Dois é primo e três é par.

Considerando as proposições:

B: Dois é primo.

C: Três é par.

A frase é representada por: (B Λ C)

- 3) A resposta é dois ou três.
 - **D** : A resposta é dois.

E: A resposta é três.

Fórmula: (D v E)

(Observe que neste caso, uma parte da proposição E está implícita na frase.)

- 4) Se a chuva continuar, o rio vai transbordar.
 - F: A chuva continua.
 - G: O rio vai transbordar.

Fórmula: (**F** → **G**) (A palavra "então" está implícita)

- 5) Os abacates estão maduros se e somente se estão escuros.
 - H: Os abacates estão maduros.

I : Os abacates estão escuros.

Fórmula: (H ↔ I) (Uma parte da proposição I está oculta na frase.)

Variáveis proposicionais:

Podem assumir como valor qualquer proposição e portanto não possuem valor-verdade definido. São representadas por letras minúsculas: **p**, **q**, ...

Fórmulas proposicionais:

São representadas por letras maiúsculas de caligrafia: A , B , C , ...

- 1) Qualquer variável proposicional é uma fórmula proposicional
- 2) Se $A \in B$ são fórmulas proposicionais, então: $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ e $(A \leftrightarrow B)$ também são.
- 3) Nada mais é uma fórmula proposicional.
- ***Este é um exemplo de definição indutiva.***

Ex. Fórmulas proposicionais bem-formadas - fbf (ou wff - well-formed formula):

$$\begin{array}{ll} P & \neg (p \land q) \\ q & (\neg (p \land q) \rightarrow p) \\ (p \land q) & ((p \land q) \rightarrow (\neg (q \lor r))) \\ (\neg \neg p \lor q) & \end{array}$$

Exercícios

- 1. Identifique quais das frases abaixo são proposições:
 - a) Dez é um número primo.
 - b) Como vai você?
 - c) O número 16 é um quadrado perfeito.
 - d) Existem formas de vida em outros planetas do universo.
 - e) 2312 > (45 * 13) + 7
- 2. Identifique quais das expressões abaixo são fórmulas lógicas:
 - a) (p \(q \(p \))
 - b) $(p \land (q \neg p))$
 - c) (v p v q)
 - d) $(\neg (\neg p \rightarrow \neg (q \lor r)) \land \neg q)$
- 4. Sejam as proposições:
 - A: Pedro saiu.
 - B: Maria está aqui.

Forme sentenças na linguagem natural que correspondam às fórmulas:

- a) ¬A
- b) ¬B
- c) A A B
- d) AvB
- e) ¬A v B
- f) $\neg (A \land B)$
- g) ¬A Λ ¬B
- h) ¬A v ¬B
- i) $A \rightarrow B$
- i) $\neg B \rightarrow \neg A$
- k) $(A \wedge B) \rightarrow \neg A$
- I) $(A \rightarrow B) \land (B \rightarrow A)$
- m) $\neg A \leftrightarrow B$
- 5. Represente as frases abaixo através de fórmulas lógicas:
 - a) Se a demanda permaneceu constante e os preços subiram, então a oferta diminuiu.
 - b) Nós ganharemos a eleição somente se João for eleito o líder do partido.
 - c) Se João não for o líder do partido, então Manoel ou Joaquim deixarão o posto e perderemos a eleição.
 - d) Se x é um número racional e y é inteiro, então z não é real.
 - e) O assassino já deixou o país ou alguém o está escondendo.
 - f) Se o assassino não deixou o país, então alguém o está escondendo.
 - g) A soma de dois números é par se e somente se ambos forem pares ou ambos forem ímpares.
 - h) Se y é inteiro então z não é real, desde que x seja um número racional.
- 6. No exercício anterior, existem frases com o mesmo significado?

Tabela-Verdade de Fórmulas Bem-Formadas

Sintaxe de uma fbf: maneira que a fórmula é construída com os conectivos **e**, **não**, **ou**, ... Semântica de uma fbf: significado da fórmula; é o valor verdade a ela associado.

Para analisar o valor-verdade de uma fórmula proposicional em função dos valores das variáveis proposicionais, utiliza-se a tabela-verdade.

Existe uma tabela para cada conectivo:

р	~ p
٧	F
F	V
1	V

р	q	p∧q
V	V	V
٧	F	F
F	V	F
F	F	F

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V
F	F	V

р	q	p↔q
V	V	V
V	F	F
F	V	F
F	F	V

Exemplos:

Neste fim-de-semana, vou estudar Lógica <u>e</u> Cálculo. Neste fim-de-semana, vou estudar Lógica <u>ou</u> Cálculo.

<u>Se</u> chover, <u>então</u> vou estudar Lógica. Vou estudar Lógica <u>somente se</u> chover.

O objetivo é analisar o **valor-verdade** de uma fórmula para cada combinação possível de valores-verdade das variáveis que a compõem. Assim, é necessária uma linha para cada combinação de valores-verdade, e o total de linhas da tabela será $\mathbf{2}^{\mathbf{n}}$, onde \mathbf{n} é o número de variáveis diferentes que aparecem na fórmula.

Uma forma segura de não esquecer nenhuma combinação possível é começar, na primeira variável, colocando ${\bf V}$ na primeira metade das linhas, e ${\bf F}$ na segunda metade. Para a segunda variável, deve-se começar com a metade de valores ${\bf V}$ utilizados na primeira, e assim por diante.

Exemplos:

$$(p \rightarrow (q \vee r))$$

р	q	г	(qvr)	$(p \rightarrow (q \lor r))$
٧	V	٧	٧	V
٧	٧	F	٧	V
٧	F	٧	٧	V
V	F	F	F	F
F	٧	V	٧	V
F	٧	F	٧	V
F	F	٧	٧	V
F	F	F	F	V

Observe que a tabela nos mostra que só há um caso em que a fórmula (p → (q ∨ r)) é falsa: quando a variável p é verdadeira e as variáveis q e r são falsas.

Outra forma de representar esta mesma tabela é:

(p	\rightarrow	(q	V	r))
٧	V	V	٧	٧
٧	V	V	V	F
٧	V	F	٧	V
٧	F	F	F	F
F	V	V	V	٧
F	V	V	V	F
F	V	F	V	V
F	V	F	F	F

Nesta representação, o resultado de cada operação é escrito abaixo do próprio operador. Assim, o resultado de (q ∨ r) está abaixo do operador ∨, e o resultado da fórmula inteira está abaixo do operador principal, que é →. Em qualquer fórmula, denomina-se operador principal aquele que deve ser o último a ser resolvido, e o resultado da análise da fórmula sempre estará abaixo dele. Por isso, deve ser marcado de algum modo. Aqui, utilizamos o símbolo ↓.

Outro exemplo:

$$\sim (p \leftrightarrow (\sim q \land \sim p))$$

~	(p	\leftrightarrow	(~	q	Λ	~	p))
٧	٧	F	F	٧	F	F	V
٧	٧	F	V	F	F	F	V
F	F	V	F	V	F	٧	F
V	F	F	V	F	V	V	F

Observe que se deve deixar uma coluna separada para a negação. E também que quando se trata da mesma variável (no caso p), deve-se repetir a coluna dos valores-verdade. Nesta fórmula, o conectivo principal é a negação, na primeira coluna.

				$\downarrow \downarrow$			
	(p	>	q)	\rightarrow	(p	٨	q)
1 ^a	V	V	V	V	V	٧	V
2 ^a 3 ^a	V	٧	F	F	V	F	F
3 ^a	F	٧	V	F	F	F	٧
4 ^a	F	F	F	V	F	F	F

Validade e Inconsistência

O valor-verdade (ou simplesmente *valor*) de uma fórmula diz respeito a uma interpretação particular. Assim, é possível encontrar as seguintes situações:

1. Se uma fórmula **A** tem o valor VERDADEIRO numa certa interpretação I, diz-se que "**A** é verdadeira na interpretação I".

No exemplo anterior, a fórmula (p \vee q) \rightarrow (p \wedge q) é VERDADEIRA nas interpretações 1 e 4.

2. Se uma fórmula **A** é VERDADEIRA segundo alguma interpretação, diz-se que **A** é **satisfatível** (ou **consistente**).

A fórmula $(p \lor q) \to (p \land q)$ é **consistente** ou **satisfatível**.

3. Uma fórmula **A** é **válida** quando for VERDADEIRA em todas as suas interpretações. São chamadas de **TAUTOLOGIA**.

Exemplos:

b)
$$(p \rightarrow (q \vee p))$$

V	V	F	V		
F	٧	V	F		
-	↓				
(p	\rightarrow	(~	q	V	p))
V	V	F	V	V	V
٧	V	V	F	V	V
F	V	F	V	F	F
F	٧	V	F	V	F

p)

Observe que na coluna do conectivo principal (∨ para a primeira fórmula e → para a segunda) todas as linhas possuem o valor-verdade V. Isto significa que estas fórmulas nunca serão falsas. Isto pode ser compreendido quando se substitui as variáveis por uma proposição qualquer. A primeira fórmula é um ∨ de uma proposição com sua negação. É como: "Ou isto ocorre ou não ocorre." Esta frase sempre será verdadeira.

- 4. Se uma fórmula **A** tem o valor FALSO numa certa interpretação I, diz-se que "**A** é falsa na interpretação I".
- Se uma fórmula A é FALSA segundo alguma interpretação, diz-se que A é inválida.
 No exemplo anterior, a fórmula (p ∨ q) → (p ∧ q) é FALSA nas interpretações 2 e 3.

6. Uma fórmula **A** é **insatisfatível** (ou **inconsistente**) quando for FALSA em todas as suas interpretações. São chamadas de **CONSTRADIÇÕES**.

Exemplos:

- a) (p ∧ ¬p)
- b) \neg (p \rightarrow (\neg q v p))

110

5 8	· ·	0.00				
(p	^	2	P)			
٧	F	F	V			
F	F	٧	F			
₩	10 70	X 997	- 55			
~	(p	\rightarrow	(~	q	V	p))
F	V	V	F	V	V	V
F	٧	V	V	F	V	V
F	F	V	F	٧	F	F
F	F	V	V	F	V	F

Observe que na coluna do conectivo principal (para a primeira fórmula e ~ para a segunda) todas as linhas possuem o valor-verdade F. Isto significa que estas fórmulas sempre serão falsas. Um exemplo de proposição deste tipo é: "Três é ímpar e três não é ímpar." Esta frase sempre será falsa. Observe a segunda fórmula: a negação de uma tautologia é sempre uma contradição, e vice-versa.

7. Uma fórmula que não é TAUTOLOGIA nem CONTRADIÇÃO é denominada fórmula CONTINGENTE ou CONTINGÊNCIA.

Exemplos:

- a) p∧q
- b) $p \vee q$
- c) $p \rightarrow q$

As seguintes observações podem então ser constatadas:

- Uma fórmula é inconsistente se, e somente se, sua negação for válida.
- Uma fórmula é inválida se, e somente se, existe pelo menos uma interpretação na qual ela é FALSA.
- Uma fórmula é consistente se, e somente se, existe pelo menos uma interpretação na qual ela é VERDADEIRA.
- Se uma fórmula é válida então ela é consistente, mas não vice-versa.
- Se uma fórmula é **inconsistente**, então ela é **inválida**, mas ao vice-versa.

Pode ser facilmente verificado através do uso de tabelas-verdade que:

- a) (p ∧ ¬ p) é inconsistente (contradição), portanto inválida (pelo menos uma interpretação F);
- b) (p ∨ ¬ p) é válida (tautologia), portanto consistente (pelo menos uma interpretação V);
- c) $(p \rightarrow \neg p)$ é inválida, ainda que consistente.

Consequência Lógica (ou Implicação Lógica)

Diz-se que uma fórmula A implica logicamente B (ou B é implicada logicamente por A, ou ainda que B é consequência lógica de A), se e somente se a fórmula $(A \rightarrow B)$ é uma TAUTOLOGIA.

Se **A implica logicamente B** (ou **B é consequência lógica de A**), isso significa que sempre que **A** for VERDADE, **B** também será VERDADE.

Exemplo:

$$(p \wedge q) e (p \vee q).$$

((p	Λ	q)	\rightarrow	(p	V	q))
٧	٧	V	V	٧	٧	V
V	F	F	V	V	٧	F
F	F	V	V	F	٧	V
F	F	F	V	F	F	F

Logo: $(p \land q) \models (p \lor q)$.

Equivalência Lógica

Diz-se que duas fórmulas \mathbf{A} e \mathbf{B} são logicamente equivalentes ($\mathbf{A} \equiv \mathbf{B}$) se e somente se a fórmula ($\mathbf{A} \leftrightarrow \mathbf{B}$) é uma tautologia.

Exemplo:

$$(p \rightarrow q) e (\neg p \lor q).$$

			U.				
((p	\rightarrow	q)	\leftrightarrow	(~	р	V	q))
٧	٧	٧	V	F	V	٧	V
٧	F	F	V	F	٧	F	F
F	V	٧	V	V	F	V	V
F	٧	F	V	V	F	٧	F

Logo: $(p \rightarrow q) \equiv (\neg p \lor q)$.

Formas Normais

Algumas vezes, pode-se desejar expressar diversas fórmulas em um mesmo formato – um formato único, padronizado. Para isso, existem diversos procedimentos. Um deles consiste em encontrar o equivalente da fórmula na **Forma Normal Disjuntiva** ou na **Forma Normal Conjuntiva**.

Forma Normal Disjuntiva (FND):

- 1. Contém, no máximo, os conectivos \neg , \land e \lor .
- 2. Não contém negação sobre ∧ nem sobre ∨.
- 3. Não contém ∧ sobre ∨ .

Exemplos:

```
¬р
(p \lor q)
(p \lor q) \lor r
(p \land q) \lor r
(p \land q) \lor (p \land r)
Não estão na FND:
(p \rightarrow q)
                           (não é FND, pois contém \rightarrow )
\neg (p \lor q)
                           (não é FND, pois contém ¬ sobre ∨ )
r \vee \neg (p \wedge q)
                           (não é FND, pois contém ¬ sobre ∧ )
(p \lor q) \land r
                           (não é FND, pois contém ∧ sobre ∨ )
(p \lor q) \land (p \lor r)
                           (não é FND, pois contém ∧ sobre ∨ )
```

Para encontrar a fórmula FND equivalente a uma fórmula dada, partimos de sua tabelaverdade.

Seja, por exemplo, a tabela-verdade a seguir, da qual não se conhece a fórmula. O objetivo é encontrar uma fórmula FND que possua na coluna do resultado os valores abaixo.

р	q	r	Resultado
			desejado
٧	٧	٧	V
٧	٧	F	F
٧	F	٧	F
٧	F	F	F
F	٧	٧	F
F	٧	F	V
F	F	V	F
F	F	F	V

Para encontrar a FND, parte-se das linhas em que o valor do resultado é V (verdadeiro). Para esta fórmula, são as linhas 1, 6 e 8. Para cada uma destas linhas será necessário escrever uma componente FND, encontrada com base nos valores das variáveis (p, q e r).

Na primeira linha, os valores são: p = V, q = V e r = V. Assim, a componente FND fica simplesmente ($p \land q \land r$).

Já na linha 6, os valores são: p = F, q = V e r = F. Para esta linha, a componente FND será ($\neg p \land q \land \neg r$). Observa-se que quando o valor da variável aparece falso em determinada linha, esta aparecerá negada na componente FND.

Para a linha 8, então, que possui todos os valores falsos, a componente FND = $(\neg p \land \neg q \land \neg r)$

р	q	r	Resultado desejado	Componente FND
V	٧	٧	V	(p ∧ q ∧ r)
V	٧	F	F	
V	F	>	F	
V	F	F	F	
F	٧	>	F	
F	٧	F	V	(¬p ∧ q ∧ ¬r)
F	F	٧	F	
F	F	F	V	(¬p ∧ ¬q ∧ ¬r)

Componente FND: é uma conjunção de literais, ou apenas um único literal.

Não é necessário adotar nenhum procedimento com as outras linhas, as de resultado falso. A fórmula FND resultante será: $(p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$. Esta fórmula, se resolvida, apresentará os valores da tabela na coluna do resultado.

Forma Normal Conjuntiva (FNC):

- 1. Contém, no máximo, os conectivos \neg , \land e \lor .
- 2. Não contém negação sobre ∧ nem sobre ∨.
- 3. Não contém v sobre A.

Exemplos:

```
p \neg p (p \lor q) (p \lor q) \lor r (p \land q) \land r (p \lor q) \land r (p \lor q) \land (p \lor r) Não estão na FNC:
```

```
\begin{array}{lll} (p \leftrightarrow q) & (\text{n\~ao\'e FNC, pois cont\'em} \leftrightarrow) \\ \neg \ (p \lor q) & (\text{n\~ao\'e FNC, pois cont\'em} \neg \text{ sobre } \lor) \\ r \lor \neg (p \land q) & (\text{n\~ao\'e FNC, pois cont\'em} \neg \text{ sobre } \land) \\ (p \land q) \lor r & (\text{n\~ao\'e FNC, pois cont\'em} \lor \text{ sobre } \land) \\ (p \land q) \lor (p \land r) & (\text{n\~ao\'e FNC, pois cont\'em} \lor \text{ sobre } \land) \\ \end{array}
```

Para encontrar a fórmula FNC equivalente a uma fórmula dada, o procedimento é semelhante ao da FND. Também partimos de sua tabela-verdade.

Para a tabela-verdade a seguir, da qual não se conhece a fórmula, agora as linhas selecionadas são as de resultado falso (F). Elas é que terão uma componente FNC.

р	q	r	Resultado desejado
			accejaac
V	V	V	V
V	٧	F	F
V	F	٧	V
V	F	F	V
F	>	>	V
F	٧	F	F
F	F	>	F
F	F	F	V

Para encontrar a FNC, parte-se das linhas em que o valor do resultado é F (falso). Para esta fórmula, são as linhas 2, 6 e 7. Para cada uma destas linhas será necessário escrever uma componente FNC, encontrada com base nos valores das variáveis (p, q e r).

Na linha 2, os valores são: p = V, q = V e r = F. Agora, o procedimento é o contrário do anterior: as variáveis com valor V é que ficam negadas na componente FNC. Assim, a componente FNC será: $(\neg p \lor \neg q \lor r)$. Observe também que agora utiliza-se o conectivo \lor entre as variáveis.

Já na linha 6, os valores são: p = F, q = V e r = F. Para esta linha, a componente FNC será $(p \lor \neg q \lor r)$.

Para a linha 7, então, que possui p e q falsos, a componente FNC = (p v q v ¬r)

р	q	R	Resultado	Componente
			desejado	FNC
V	>	>	V	
٧	>	F	F	$(\neg p \lor \neg q \lor r)$
V	F	٧	V	
V	F	F	V	
F	٧	٧	V	
F	٧	F	F	(p ∨ ¬q ∨ r)
F	F	٧	F	(p ∨ q ∨ ¬r)
F	F	F	V	

Componente FNC: é uma disjução de literais, ou apenas um único literal.

A fórmula FNC resultante será: $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor \neg r)$. Esta fórmula, se resolvida, apresentará os valores da tabela na coluna do resultado.

As fórmulas FNC e FND podem ser maiores ou menores, dependendo da quantidade de valores verdadeiros (FND) e falsos (FNC) na coluna do resultado.

Também é possível calcular as fórmulas FND e FNC para uma dada fórmula qualquer, bastando para isso construir sua tabela-verdade e seguir o procedimento aqui descrito.