Optimal allocation of bacterial resources in a bioreactor

Introduction to optimal control problems

by Lélio Astruc & Nathan Edery (MAM4) on December 20, 2023

- * Introduction to the problem
- * Definition of the model
- * Understanding optimal control theory
- * The biomass maximisation case
- * Calculation of Lie brackets
- * Conclusion

- * Introduction to the problem
- * Definition of the model
- Understanding optimal control theory
- The biomass maximisation case
- Calculation of Lie brackets
- st Conclusion

- Bacteria's resource management and compound production in batch bioprocessing are explored using mathematical models, revealing insights at the biology-engineering crossroads.
- * How can one know how to maximise the needs of a bacteria for its optimal development?

- Introduction to the problem
- * Definition of the model
- Understanding optimal control theory
- The biomass maximisation case
- Calculation of Lie brackets
- st Conclusion

» Definition of the model

The self-replicator model

» Definition of the model

- * Initial mass of substrate S
- * Transformed into precursors metabolites P
- *P produces M, Q and R which catalyze other productions
- * Creation of *X*, **metabolites of interest**

» Definition of the model

$$\begin{cases} \dot{S} = -V_{M} \\ \dot{P} = V_{M} - V_{X} - V_{R} \\ \dot{R} = r_{max} \mathbf{u} V_{r} \\ \dot{M} = r_{max} (\mathbf{1} - \mathbf{u}) V_{R} \\ \dot{Q} = (1 - r_{max}) V_{R} \\ \dot{X} = V_{X} \end{cases}$$
 (SRM-D)

- Introduction to the problem
- * Definition of the mode
- * Understanding optimal control theory
- * The biomass maximisation case
- st Calculation of Lie brackets
- st Conclusion

- Optimal control theory deals with objects that are to be controlled meaning that they depend on external factors.
- Example for a plant growth :
 - * Temperature
 - * Lightning
 - * Water
 - * and much more ...
- These are some of the many "controls" that one can try to adjust to maximise the plant growth.

» Understanding optimal control theory

- * Let's say we want to maximise a plant's height. This can be modelled as follows: Let $u \in \mathbb{R}$, $x \in \mathbb{R}^2$, $t \in [t_0, t_f]$, $x(t_0) = [h_0, s_0]$, h_0 being the height of the plant at time = 0 and s_0 the thickness of the stem at time = 0.
- An example of the control u could be for example the light intensity variation over time, or the variation of temperature over time.

$$egin{cases} \dot{\mathbf{x}}(t) = \mathbf{F}_0(\mathbf{x}(t)) + \mathbf{u}(t) \cdot \mathbf{F}_1(\mathbf{x}(t)) \ h(t_f) \longrightarrow \mathbf{max} \end{cases}$$

- Introduction to the problem
- * Definition of the mode
- Understanding optimal control theory
- * The biomass maximisation case
- Calculation of Lie brackets
- st Conclusion

» The biomass maximisation case

$$\begin{cases} \dot{s} = -w_{M}(s)(1-r)\mathcal{V} \\ \dot{p} = w_{M}(s)(1-r) - w_{R}(p)(1+p)r \\ \dot{r} = (u-r)w_{R}(p)r \\ \dot{\mathcal{V}} = w_{R}(p)r\mathcal{V} \end{cases} \tag{WTB-M}$$

The numerical simulations of (WTB-M) were already done for an infinite-time problem. As a result, we solved the OCP problem for a finite-time horizon.

The problem in a finite-time case is modelled as follows

$$\begin{cases} \mathcal{V}(t_{f}) \longrightarrow \textit{max} \\ \text{using the dynamics of (WTB-M)} \\ \text{using initial conditions (IC)} \\ u \in \mathcal{U} \end{cases} \tag{BM-OCP)}$$

With (IC) being

$$m{s}(0) = m{s}_0 > 0, m{p}(0) = m{p}_0 > 0, m{x}(0) = 0, m{r}(0) = m{r}_0 \in (0,1), \ \mathcal{V}(0) = \mathcal{V}_0 > 0$$
 (IC)

What we mathematically expressed in the previous slide is defined in a dozen of lines using the control-toolbox package

```
@def ocp begin # definition of the optimal control problem
    t \in [t0, tf], time
    x ∈ R<sup>4</sup>. state
    u ∈ R, control
    S = X_1
    V = x_4
    x(t0) == [ s0, p0, r0, V0 ]
    s(t) \ge 0
    p(t) \ge 0
    0 \le r(t) \le 1
    V(t) \ge 0
    0 \le u(t) \le 1
    \dot{x}(t) == F0(x(t)) + u(t) * F1(x(t))
    V(tf) → max
```


DOCUMENTATION

ct control-toolbox

The control-toolbox ecosystem gathers Julia packages for mathematical control and applications. It is an outcome of a research initiative supported by the Centre Inria of Université Côte d'Azur and a sequel to previous developments, notably Bocop and Hampath. See also: ct gallery. The root package is OptimalControl.jl which aims to provide tools to solve optimal control problems by direct and indirect methods.

Installation

See the installation page.

Getting started

To solve your first optimal control problem using <code>OptimalControl.jl</code> package, please visit our basic example tutorial or just copy-paste the following piece of code!

The control-toolbox project

» The biomass maximisation case

Results of the numerical simulations

Numerical simulations of (BM-OCP)

Numerical simulations of (BM-OCP)

- Introduction to the problem
- * Definition of the mode
- Understanding optimal control theory
- The biomass maximisation case
- * Calculation of Lie brackets
- st Conclusion

Proposition 4.4

If the *Lie* bracket F_{101} belongs to the span of F_1 and F_{01} , then singular extremals must be of (local) order at least two.

Lie brackets applied to our case

Since our problem is modelled as follows

$$\varphi(\mathbf{x}) = \mathbf{F}_0(\mathbf{x}) + \mathbf{u} \cdot \mathbf{F}_1(\mathbf{x})$$

with $\mathbf{x} = (s\ p\ r\ \mathcal{V})^t$ with respect to (WTB-M) our goal was to compute the *Lie* brackets $F_{01} = [F_0, F_1]$ and $F_{101} = [F_1, F_{01}]$ and to make sure that

$$\mathit{rank}(\mathit{F}_{1}(\varphi),\mathit{F}_{01}(\varphi)) = 2 = \mathit{rank}(\mathit{F}_{1}(\varphi),\mathit{F}_{01}(\varphi),\mathit{F}_{101}(\varphi))$$

A *Lie* bracket is defined for vector fields as [X, Y] = Y'X - X'Y *e.g.* in a linear case :

$$X(x) = A \cdot x, \ Y(x) = B \cdot x$$

 $[X, Y](x) = (BA - AB)(x)$

- st The calculation of *Lie* brackets are involving determinants of 4×4 matrices which can be quite tricky to do by hand.
- Hence, we decided to use symbolic calculation with Julia

Using Symbolics in Julia, we found that $rank(F_1, F_{01}) = 2$, since we obtain at least one non-null minor.

$$-rac{-k_rprrac{p^2k_r^2rv}{(K_r+p)^2}}{K_r+p}$$

An example of 2 minors

Lie brackets using Symbolics

And also that $rank(F_1, F_{01}, F_{101}) = 2$ because all the minors are null this time.

$$\frac{p^{2}k_{r}^{2}k_{m}rsv\frac{-k_{r}pr\frac{k_{r}pr\left(\frac{-k_{r}p\left(1+p\right)}{K_{r}+p}+\frac{-k_{m}s}{K_{m}+s}\right)}{K_{r}+p}}{(K_{r}+p)^{2}\left(K_{m}+s\right)}+\frac{-k_{r}k_{m}prsv\frac{-r^{2}p^{3}k_{r}^{3}\left(\frac{-k_{r}pr\left(1+p\right)}{K_{r}+p}+\frac{-k_{m}s}{K_{m}+s}\right)}{(K_{r}+p)\left(K_{m}+s\right)}}{0}\\ \\ \frac{-v^{2}r^{3}p^{5}k_{r}^{5}k_{m}s}{(K_{r}+p)^{5}\left(K_{m}+s\right)}+\frac{r^{2}p^{3}k_{r}^{3}k_{m}sv\frac{p^{2}k_{r}^{2}rv}{(K_{r}+p)^{2}}}{(K_{r}+p)^{3}\left(K_{m}+s\right)}\\ \\ \frac{-r^{3}p^{5}k_{r}^{5}v\left(\frac{-k_{r}p\left(1+p\right)}{K_{r}+p}+\frac{-k_{m}s}{K_{m}+s}\right)}{(K_{r}+p)^{5}}+\frac{r^{2}p^{3}k_{r}^{3}k_{r}^{2}k_{r}^{2}rv}{(K_{r}+p)^{2}\left(\frac{-k_{r}p\left(1+p\right)}{K_{r}+p}+\frac{-k_{m}s}{K_{m}+s}\right)}{(K_{r}+p)^{3}}$$

The four minors for $(F_1 F_{01} F_{10})$

- Introduction to the problem
- * Definition of the mode
- st Understanding optimal control theory
- The biomass maximisation case
- Calculation of Lie brackets
- * Conclusion

» Conclusion

This project was for us a glance at what research really is:

- * hand-calculations are not always possible
- * Julia is great for mathematicians
- * we liked working in english as it helped us getting better