Modular arithmatic

A%B = remainder when A is divided by B.

- 1. $A = q1.C + r1 \dots B = q2.C + r2.$
- 2. (a*b)modC= (q1.C+r1)(q2.C+r2)modC=(r1*r2)mod C = ((a mod C)* (b mod C))%C.
- 3. (a-b) mod C = (a%C b%C)% mod C.
- 4. $(a+b) \mod C = (a\%C + b\%C)\% \mod C$.
- 5. (a^b)mod C = (a mod C)^b mod C. (using binomial theorem).
- 6. If we have to calculate modulo of a negative number we have to first add it with the no given for modulo no of times so that the no becomes positive and then take modulo.
- 7. $(a/b)\%C = (a*b^-1)modC$
- 8. ax congurent 1modC (x is modulo inverse). (3 $^-1$ mod 5 => 3x=1 mod 5=>x= (3 $^-1$ mod5))
- 9. Format's little theorem (a^-1 mod P) (P is Prime), then P devides (a^p-a) X= a^(P-2) mod P.
 - $p/(a^p-a)$
 - $p/(a^{(p-1)-1})a \rightarrow p/(a^{(p-1)-1})$
 - a^(p-1)-1 congurent 0 mod P
 - a^(p-1) congurent 1 mod P (adding 1 both side)
 - $a*a^(p-2)$ congurent to 1 mod P (ax congurent to 1 mod P) So, $X=a^(P-2)$ mod P.
- 10. So $(a/b) \mod P = (a*(b^{(P-2)} \mod P)) \mod P$.