1 Relacije

1.1 Osnovni pojmovi

Pojam relacije je jedan od najvažnijih matematičkih pojmova. Primjeri iz života pokazuju da je često potrebno između dvaju skupova uspostaviti nekakav odnos. Pogledajmo jedan primjer.

Neka je $A = \{a, b, c, d\}$ društvo od četiri osobe, a $B = \{e, f, g\}$ neko drugo društvo od tri osobe. Između ta dva društva možemo uspostaviti odnos "poznavanja". Pretpostavimo da osoba a poznaje osobe e i g, osoba b poznaje osobu f, osoba c poznaje osobe e, f i g, a osoba d ne poznaje nikoga od njih. Na ovaj je način putem "poznavanja" definiran odnos između skupova A i B. Prirodno je promatrati Kartezijev umnožak $A \times B$ jer se u njemu javljaju sve mogućnosti poznavanja.

$$A \times B = \{(a, e), (a, f), (a, g), (b, e), (b, f), (b, g), (c, e), (c, f), (c, g), (d, e), (d, f), (d, g)\}.$$

No, odredimo li da su u parovima samo osobe koje se "poznaju", dobivamo skup $R = \left\{ \left(a,e\right), \left(a,g\right), \left(b,f\right), \left(c,e\right), \left(c,f\right), \left(c,g\right) \right\} \subseteq A \times B$,

što ukazuje na potrebu proučavanja proizvoljnih podskupova od $A \times B$.

Definicija 1. Neka su A i B skupovi.

Svaki podskup $R \subseteq A \times B$ zove se (binarna) relacija. Skup A označavamo s $D_1(R)$, a skup B s $D_2(R)$.

Za element $a \in A$ kažemo da je u relaciji R s elementom $b \in B$ ako je $(a,b) \in R$. Domena relacije R je skup

$$D(R) = \{a \in A : (\exists b \in B) (a, b) \in R\},\$$

a slika relacije R skup $K(R) = \{b \in B : (\exists a \in A) (a, b) \in R\}$.

Činjenicu da je $(a,b) \in R$ često pišemo u obliku aRb i kažemo da je a u relaciji R s b. Ako je $A \neq B$ kažemo da je $R \subseteq A \times B$ heterogena relacija.

Ako je A=B kažemo da je $R\subseteq A\times A$ homogena relacija na skupu A.

Posebno izdvajamo homogenu relaciju I_A (ili u oznaci Δ_A) na skupu A definiranu s $I_A = \{(a, a) : a \in A\}$, koju zovemo **dijagonala** ili **identična relacija** na skupu A.

Definiciju relacije može proširiti na podskupove Kartezijeva produkta $A_1 \times ... \times A_n$, $n \in \mathbb{N}$, i tada govorimo o *n***-arnim relacijama**. Nama će ipak biti najvažnije binarne relacije.

Uvedimo sada još nekoliko pojmova vezanih uz relacije.

Definicija 2. Neka je $R \subseteq A \times B$ neprazna relacija. **Suprotna (inverzna) relacija** relaciji R je relacija $R^{-1} \subseteq B \times A$ definirana s

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

Definicija 3. Neka je $R\subseteq A\times B$. Komplement relacije R je relacija $R^c\subseteq A\times B$ definirana s

$$R^{c} = \{(a, b) \in A \times B : (a, b) \notin R\}.$$

Definicija 4. Neka su A,B,C neprazni skupovi, te $R\subseteq A\times B$ i $S\subseteq B\times C$. Kompozicija relacija R i S je relacija $S\circ R\subseteq A\times C$ definirana s

$$S \circ R = \{(a,c) \in A \times C : (\exists b \in B) ((a,b) \in R \land (b,c) \in S)\}.$$

Primjer 1. Neka je $A = \{1, 2, 3\}$, $B = \{a, b\}$ i $C = \{x, y\}$. Definirajmo relacije $R \subseteq A \times B$ i $S \subseteq B \times C$ s

$$R = \{(1, a), (2, b), (3, a), (3, b)\}, S = \{(a, y), (b, x)\}.$$

Odredimo $R^{-1}, S^c, S \circ R$.

$$R^{-1} = \{(a,1), (b,2), (a,3), (b,3)\},\$$

$$S^{c} = \{(a,x), (b,y)\},\$$

$$S \circ R = \{(1,y), (2,x), (3,x), (3,y)\}.$$

Primjer 2. Neka je $A = \{1, 2, 3\}$. Definirajmo homogene relacije R i S na skupu A sa

$$R = \{(1,1), (2,2), (3,1), (3,2)\}, S = \{(1,2), (2,3)\}.$$

Vrijedi

$$S \circ R = \{(1,2), (2,3), (3,2), (3,3)\},\$$

 $R \circ S = \{(1,2), (2,1), (2,2)\},\$

pa je očito da kompozicija relacija općenito nije komutativna.

No, vrijedi sljedeće.

Teorem 1. Neka su A,B,C,D neprazni skupovi, te $R\subseteq A\times B$, $S\subseteq B\times C$ i $Z\subseteq C\times D$. Tada vrijedi

$$Z \circ (S \circ R) = (Z \circ S) \circ R.$$

Dakle, kompozicija relacija je asocijativna. Stoga za homogenu relaciju R na skupu A ima smisla definirati potencije relacije R:

$$R^0 = I_A, R^1 = R, R^2 = R \circ R, \dots, R^{n+1} = R^n \circ R.$$

Propozicija 1. Neka je $R \subseteq A \times B$. *Tada je* $R \circ I_A = R$, $I_B \circ R = R$.

Napomena 1. Ako je $R \subseteq A \times A$, onda je

$$R \circ I_A = I_A \circ R = R$$

i I_A je jedina relacija na A s tim svojstvom.

Lema 1 Neka su A i B neprazni skupovi, te $R, S \subseteq A \times B$. Vrijedi:

1.
$$R \subseteq S \Rightarrow R^{-1} \subseteq S^{-1}$$
,

2.
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$
,

3.
$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$
,

4.
$$(R^{-1})^{-1} = R$$
.

Definicija 5. Neka je $R \subseteq A \times A$ homogena relacija na skupu A. Relacija R je

- a) refleksivna ako $(\forall x \in A)(x, x) \in R$,
- b) irefleksivna ako $(\forall x \in A)(x, x) \notin R$,
- c) simetrična ako $(\forall x \in A) (\forall y \in A) ((x,y) \in R \Rightarrow (y,x) \in R)$,
- d) antisimetrična ako $(\forall x \in A) (\forall y \in A) ((x, y) \in R \land (y, x) \in R \Rightarrow x = y)$,
- e) tranzitivna ako $(\forall x \in A) (\forall y \in A) (\forall z \in A) ((x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R)$.

Ova svojstva homogenih relacija se skupovno mogu opisati na sljedeći način.

Lema 2 Neka je R homogena relacija na skupu A. Vrijedi:

- 1. R je refleksivna ako i samo ako je $I_A \subseteq R$;
- **2.** R je irefleksivna ako i samo ako je $R \cap I_A = \emptyset$;
- **3.** R je simetrična ako i samo ako je $R \subseteq R^{-1}$;
- **4.** R je antisimetrična ako i samo ako je $R \cap R^{-1} \subseteq I_A$;
- 5. R je tranzitivna ako i samo ako je $R \circ R \subseteq R$.

Dakle, refleksivna relacija sadrži dijagonalu I_A , irefleksivna je ne siječe, a simetrična relacija je simetrična s obzirom na I_A .

Napomena 2. Uočimo da iz $R \subseteq R^{-1}$ slijedi $R^{-1} \subseteq (R^{-1})^{-1} = R$ (Lema 1), pa iz te dvije inkluzije zaključujemo da je $R = R^{-1}$. Dakle, relacija R je simetrična ako i samo ako je $R = R^{-1}$.

1.2 Relacije ekvivalencije

Definicija 6. Homogenu binarnu relaciju koja je refleksivna, simetrična i tranzitivna nazivamo **relacijom ekvivalencije**.

Relaciju ekvivalencije često označavamo simbolima \sim ili \cong .

Ako je $x \sim y$, onda kažemo da je x ekvivalentan s y.

Npr. relacija "biti jednak" je relacija ekvivalencije ($x \sim y \Leftrightarrow x = y$).

Neka je $A \neq \emptyset$ neki skup i \sim relacija ekvivalencije na A. Svakom elementu $a \in A$ pridružimo skup

$$[a] = \{x \in A : x \sim a\} \subseteq A$$

svih elemenata iz A koji su u relaciji \sim s a, tj. koji su s njim ekvivalentni. Skup [a] nazivamo **klasom ekvivalencije** određenom elementom a, a element a **reprezentantom** te klase.

Budući da za svaki $a \in A$ vrijedi da je $a \sim a$, to je $a \in [a] \neq \emptyset$, pa je svaka klasa neprazan skup.

Pogledajmo još neka važna svojstva klasa ekvivalencije.

Teorem 2. Neka je $A \neq \emptyset$ proizvoljan skup, \sim relacija ekvivalencije na A, te $x,y \in A.$

- **1.** Ako $x \nsim y$, onda je $[x] \cap [y] = \emptyset$;
- **2.** Ako je $x \sim y$, onda je [x] = [y].

Dakle, za proizvoljne $x,y\in A$ vrijedi $[x]\cap [y]=\emptyset$ ili [x]=[y], pa $(\forall x\in A)\,(\exists!\,[a]\subseteq A)\,x\in [a]$.

Stavimo li sve te različite klase u jedan skup, dobit ćemo skup čiji su elementi neprazni, po parovima disjunktni, a čija je unija jednaka čitavom skupu A, tj. dobit ćemo jednu particiju skupa A.

Tu particiju nazivamo **kvocijentnim skupom** skupa A po relaciji \sim i označavamo $A \mid_{\sim} = \{[a] : a \in A\}$.

Dakle, vrijedi sljedeće.

Teorem 3. Svaka relacija ekvivalencije na skupu A definira jednu particiju skupa A. U svakom pojedinom elementu particije nalaze se oni i samo oni elementi skupa A koji su međusobno ekvivalentni.

Zanimljivo je da vrijedi i obrat- sljedeći teorem pokazuje da i svaka particija skupa A definira jednu relaciju ekvivalencije na skupu A.

Teorem 4. Neka je F jedna particija skupa A. Tada je relacija $R_{\mathcal{F}} \subseteq A \times A$ definirana s

$$(x,y) \in R_{\mathcal{F}} \Leftrightarrow (\exists S \in \mathcal{F}) (x \in S \land y \in S)$$

relacija ekvivalencije na A.

Primjer 3. Neka je P skup svih pravaca neke ravnine. Na skupu P definiramo relaciju \parallel ("biti paralelan"). To je relacija ekvivalencije na skupu P, a klase te ekvivalencije nazivamo **smjerovima u ravnini**.

Je li relacija \perp ("biti okomit") relacija ekvivalencije na \mathcal{P} ?

Primjer 4. Neka je T skup svih trokuta u nekoj ravnini. Relacije "biti sličan", "biti suk-ladan" i "imati istu površinu" su relacije ekvivalencije na T.

Primjer 5. Neka je E^3 prostor točaka. **Orijentirana dužina** u E^3 je svaki uređeni par točaka $(A,B)\in E^3\times E^3$. Oznaka za orijentiranu dužinu je $(A,B)=\overrightarrow{AB}$. Označimo s $\mathcal O$ skup svih orijentiranih dužina u E^3 , tj.

$$\mathcal{O} = \left\{ \overrightarrow{AB} : A, B \in E^3 \right\} = E^3 \times E^3.$$

Na skupu \mathcal{O} definiramo relaciju \equiv ("biti ekvivalentan") na sljedeći način: orijentirana dužina \overrightarrow{AB} je ekvivalentna orijentiranoj dužini \overrightarrow{CD} , pišemo $\overrightarrow{AB} \equiv \overrightarrow{CD}$, ako i samo ako dužine \overrightarrow{AD} i \overrightarrow{BC} imaju zajedničko polovište. Relacija \equiv je relacija ekvivalencije na \mathcal{O} . Kvocijentni skup $\mathcal{O} \mid \equiv$ označavamo s V^3 , a njegove elemente (klase ekvivalencije) nazivamo **vektorima**.

1.3 Relacije uređaja

Još jedan važan tip binarne homogene relacije je relacija uređaja.

Definicija 7. Homogenu binarnu relaciju koja je refleksivna, antisimetrična i tranzitivna nazivamo relacijom djelomičnog (parcijalnog) uređaja.

Definicija 8. Uređeni par (A, ρ) , gdje je A skup, a ρ relacija djelomičnog uređaja na skupu A zove se **djelomično** (parcijalno) uređen skup.

Primjer 6. Definirajmo relaciju ho na skupu $\mathbb N$ s

$$(x,y) \in \rho \Leftrightarrow x \text{ dijeli } y.$$

Ova relacija je refleksivna, antisimetrična i tranzitivna, pa je (\mathbb{N}, ρ) djelomično uređen skup. No, nisu svi elementi od \mathbb{N} "usporedivi". Npr. $(2,5) \notin \rho$ i također $(5,2) \notin \rho$.

To nas motivira za sljedeću definiciju.

Definicija 9. Neka je ρ relacija djelomičnog uređaja na skupu A. Kažemo da je ρ relacija linearnog (totalnog) uređaja na A ako vrijedi

$$(\forall x \in A) (\forall y \in A) ((x, y) \in \rho \lor (y, x) \in \rho).$$

Uređeni par (A, ρ) tad nazivamo linearno (totalno) uređenim skupom ili jednostavno uređenim skupom.

Poznati primjer uređenog skupa je (\mathbb{R}, \leq) , dok je $(\mathcal{P}(S), \subseteq)$, za $S \neq \emptyset$, primjer skupa koji je djelomično uređen ali ne i uređen. Relaciju \subseteq nazivamo *relacijom sadržavanja*.

Za relaciju djelomičnog uređaja ćemo nadalje koristiti oznaku <u>≺</u> .

Definicija 10. Neka je (A, \preceq) djelomično uređen skup, te $X \subseteq A$.

Kažemo da je $m \in X$ najmanji element u skupu X ako vrijedi

$$(\forall x \in X) \, m \preceq x.$$

Kažemo da je $m \in X$ minimalni element u skupu X ako vrijedi

$$(\forall x \in X) (x \leq m \Rightarrow x = m)$$
.

Kažemo da je $n \in X$ najveći element u skupu X ako vrijedi

$$(\forall x \in X) x \leq n.$$

Kažemo da je $n \in X$ maksimalni element u skupu X ako vrijedi

$$(\forall x \in X) (n \leq x \Rightarrow x = n).$$

Očigledno je najmanji element ujedno i minimalan, a najveći element ujedno i maksimalan. No, obrat ne mora vrijediti. Također, djelomično uređen skup može imati više minimalnih i maksimalnih elemenata, a ne mora imati ni najveći ni najmanji element.

Primjer 7. Neka je $A = \{a, b, c, d, e, f\}$ i relacija \leq na skupu A dana s

$$\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, c), (c, b), (c, d), (a, b), (a, d), (e, f)\}.$$

Elementi a i e su minimalni, a elementi b,d i f su maksimalni po \leq . No, po relaciji \leq a nema ni najmanjeg ni najvećeg elementa.

Primjer 8. Neka je $A = \{a, b, c, d, e\}$, te neka je relacija \leq na skupu A dana kao

$$\leq = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, b), (c, d), (a, b), (a, d), (b, e), (d, e), (a, e), (c, e)\}.$$

Element a je minimalan i najmanji, a element e maksimalan i najveći po \leq .

Definicija 11. Neka je (A, \preceq) djelomično uređen skup, te $X \subseteq A$. Element d skupa A je **donja međa** skupa X u A ako je za svaki $x \in X$ ispunjeno $d \preceq x$. Najveća donja međa, ako postoji, zove se **infimum** skupa X i označava $\inf X$.

Definicija 12. Element g skupa A je **gornja međa** skupa X u A ako je za svaki $x \in X$ ispunjeno $x \leq g$. Najmanja gornja međa, ako postoji, zove se **supremum** skupa X i **označava** $\sup X$.

Npr., u uređaju (\mathbb{N}, \leq) je $\inf \mathbb{N} = 1$, a $\sup \mathbb{N}$ ne postoji. U djelomičnom uređaju $(\mathcal{P}(S), \subseteq)$ je $\inf P(S) = \emptyset$, a $\sup P(S) = S$.

Podsjetimo se da smo kod uspoređivanja brojeva često koristili relaciju < . Općenito su takve relacije definirane na sljedeći način.

Definicija 13. Homogenu binarnu relaciju koja je irefleksivna i tranzitivna nazivamo relacijom strogog djelomičnog (parcijalnog) uređaja.

Definicija 14. Neka je \prec relacija strogog djelomičnog uređaja na skupu A. Ako vrijedi

$$(\forall x \in A) (\forall y \in A) [x \neq y \Rightarrow ((x, y) \in \rho \lor (y, x) \in \rho)]$$

onda kažemo da je \prec relacija strogog uređaja na skupu A. Uređeni par (A, \prec) u tom slučaju nazivamo **strogo uređenim skupom**.

1.4 Funkcije

Sada ćemo navesti neka svojstva koja mogu imati heterogene relacije (naravno, onda i homogene kao njihov posebni slučaj).

Definicija 15. Neka su A i B skupovi, te $R \subseteq A \times B$. Kažemo da je relacija R

a) injektivna ako vrijedi

$$(\forall x \in A) (\forall x' \in A) (\forall y \in B) ((x, y) \in R \land (x', y) \in R \Rightarrow x = x');$$

b) funkcionalna ako vrijedi

$$(\forall x \in A) (\forall y \in B) (\forall y' \in B) ((x, y) \in R \land (x, y') \in R \Rightarrow y = y');$$

- c) surjektivna ako vrijedi $(\forall y \in B) (\exists x \in A) (x, y) \in R$;
- d) totalna ako vrijedi $(\forall x \in A) (\exists y \in B) (x, y) \in R$.

Lema 3 Neka su A i B skupovi, te $R \subseteq A \times B$. Vrijedi:

- **1.** R je injektivna ako i samo ako je $R^{-1} \circ R \subseteq I_A$;
- **2.** R je funkcionalna ako i samo ako je $R \circ R^{-1} \subseteq I_B$;
- 3. R je surjektivna ako i samo ako je $I_B \subseteq R \circ R^{-1}$;
- 4. R je totalna ako i samo ako je $I_A \subseteq R^{-1} \circ R$.

Funkcionalne relacije nazivamo **parcijalnim funkcijama**, a totalne funkcionalne relacije **funkcijama**. Dakle, relacija $R \subseteq A \times B$ je funkcija ako i samo ako vrijedi

$$(\forall x \in A) (\exists ! y \in B) (x, y) \in R.$$

Propozicija 2. Neka je \sim relacija ekvivalencije na skupu A. Relacija $\tau \subseteq A \times \left(A \mid_{\sim}\right)$ definirana s $(a,[x]) \in \tau \Leftrightarrow a \in [x]$ je funkcionalna, totalna i surjektivna, tj τ je surjektivna funkcija.

Funkcija τ zove se **projekcija** skupa A na kvocijentni skup $A \mid_{\sim}$.

Često se funkcija definira kao uređena trojka (A,B,f), gdje su A i B neprazni skupovi, a f pravilo pridruživanja po kojemu se svakom elementu skupa A pridružuje jedan i samo jedan element skupa B. Mi nećemo koristiti takvu definiciju da bismo izbjegli pojam "pravilo pridruživanja" koji nije intuitivno jasan.

No koristit ćemo uobičajene oznake: za funkciju f umjesto $f \subseteq A \times B$ pisat ćemo $f:A \to B$, a umjesto $(x,y) \in f$ pisat ćemo y=f(x).

Element x nazivamo argumentom (neovisnom varijablom), a element y slikom ili vrijednošću funkcije (ovisnom varijablom).

Podsjetimo se:

Suprotna (inverzna) relacija relaciji $R \subseteq A \times B$ je relacija

$$R^{-1} = \{(b, a) : (a, b) \in R\} \subseteq B \times A,$$

a slika relacije R je skup

$$K(R) = \{b \in B : (\exists a \in A) (a, b) \in R\}.$$

No, za funkcije uvodimo neke posebne oznake i pojmovi.

Definicija 16. Neka je $f:A\to B$ funkcija i $C\subseteq A,\,D\subseteq B$.

a) **Slika** podskupa C u odnosu na funkciju f je skup

$$f(C) = \{f(x) : x \in C\} \subseteq B,$$

b) **Praslika** podskupa D u odnosu na funkciju f je skup

$$f^{-1}(D) = \{x \in A : f(x) \in D\} \subseteq A.$$

Očito je

$$f(A) \subseteq B, \quad f^{-1}(B) = A,$$

 $f(\emptyset) = \emptyset, \quad f^{-1}(\emptyset) = \emptyset.$

Napomenimo da kada se radi o jednočlanim podskupovima ne pišemo vitičaste zagrade, već jednostavno stavljamo

$$f^{-1}(y) = \{x \in A : f(x) = y\}.$$

Primjer 9. Neka je funkcija $f : \mathbb{R} \to \mathbb{R}$ definirana formulom f(x) = 7. Odredite $K(f), f([1,2]), f^{-1}(\mathbb{R}), f^{-1}(7), f^{-1}([1,4]), f^{-1}([3,8]), f^{-1}(\{6,7\})$.

Primjer 10. Neka je funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana s $f(x) = x^2$. Odredite $K(f), f([1,2]), f^{-1}(\mathbb{R}), f^{-1}([0,\infty)), f^{-1}(4), f^{-1}([2,4]), f^{-1}(-1)$.

Propozicija 3. Neka je $f: A \rightarrow B$ dana funkcija, te $X, Y \subseteq A$. Vrijedi:

- **1.** $f(X \cup Y) = f(X) \cup f(Y)$,
- **2.** $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

Obratna inkluzija ne vrijedi, tj. $f(X) \cap f(Y) \nsubseteq f(X \cap Y)$. Naime, za $A = \{a,b\}$, $a \neq b$, $B = \{b\}$, $f: A \to B$ definiranom s f(a) = f(b) = b i $X = \{a\}$ i $Y = \{b\}$, vrijedi $X \cap Y = \emptyset$, pa je $f(X \cap Y) = \emptyset$. No s druge strane je $f(X) = f(Y) = \{b\}$, pa je $f(X) \cap f(Y) = \{b\} \neq \emptyset$. Dakle, $f(X) \cap f(Y) \nsubseteq f(X \cap Y)$.

Propozicija 4. Neka je $f: A \rightarrow B$ dana funkcija, te $X, Y \subseteq B$. Vrijedi:

1.
$$f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$$
,

2.
$$f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$$
,

3.
$$f^{-1}(X \setminus Y) = f^{-1}(X) \setminus f^{-1}(Y)$$
.

Krene li se od definicije funkcije kao uređene trojke, graf funkcije $f:A\to B$ se definira kao skup

$$\Gamma_f = \{(x, f(x)) : x \in A\} \subseteq A \times B.$$

No, u okviru naše definicije funkcije kao posebne relacije, graf funkcije f i sama funkcija f se poklapaju, i kao što bilo koju relaciju možemo prikazati grafički, tako to možemo napraviti i kada je riječ o funkciji.

Primjer 11. Nacrtajte funkcije $f, g : \mathbb{R} \to \mathbb{R}$, gdje je f(x) = 2x, $g(x) = x^2$.

Definicija 17. Neka su A,B,C proizvoljni skupovi takvi da je $C\subseteq A$. Kažemo da je funkcija $g:C\to B$ restrikcija ili ograničenje funkcije $f:A\to B$ (odnosno da je funkcija f ekstenzija ili proširenje funkcije g) ako je $g\subset f$. Pišemo $g=f\mid_C$.

Napomena 3. Može se pokazati da je $g \subset f$ ako i samo ako je $D(g) \subset D(f)$ i $(\forall x \in D(g))$ g(x) = f(x).

Primjer 12. Neka je funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana izrazom $f(x) = \sqrt{x^2}$ za sve $x \in \mathbb{R}$, te neka je funkcija $g: \mathbb{R}_0^+ \to \mathbb{R}$ definirana izrazom g(x) = x za sve $x \in \mathbb{R}_0^+$. Tada je $g = f|_{\mathbb{R}_0^+}$.

Uočimo da je restrikcija neke funkcije na zadani skup jedinstveno određena, dok to nije slučaj kada je riječ o proširenju. Pogledajmo jedan primjer.

Primjer 13. Neka je funkcija $f:[0,1] \to \mathbb{R}$ definirana izrazom

$$f(x) = \sqrt{1 - x^2}$$
, za sve $x \in [0, 1]$,

te neka je funkcija $g:[-1,1] \to \mathbb{R}$ definirana izrazom

$$g(x) = \begin{cases} x+1, & x \in [-1,0) \\ \sqrt{1-x^2}, & x \in [0,1]. \end{cases}$$

Tada je $f = g \mid_{[0,1]}$.

No funkcija $h:[-1,1] \to \mathbb{R}$ definirana izrazom

$$h(x) = g(x) = \begin{cases} 1, & x \in [-1, 0) \\ \sqrt{1 - x^2}, & x \in [0, 1] \end{cases}$$

za sve $x \in [-1,1]$ je također proširenje funkcije f, tj. $f=h\mid_{[0,1]}$.

Već smo pokazali da je kompozicija relacija asocijativna. Sada ćemo dokazati da je kompozicija dviju funkcija funkcija.

Teorem 5. Neka su dane funkcije $f:A\to B$ i $g:B\to C$. Tada je i $g\circ f$ funkcija, te $g\circ f:A\to C$.

Napomena 4. Posljedica prethodnog teorema jest da je

$$(g \circ f)(x) = g(f(x)), \text{ za sve } x \in D(f).$$

Među funkcijama važnu ulogu igraju one koje su injektivne i surjektivne. Podsjetimo se da je funkcija $f:A\to B$ injektivna ako vrijedi

$$(\forall x \in A) (\forall x' \in A) (\forall y \in B) (f(x) = y \land f(x') = y \Rightarrow x = x'),$$

te da je surjektivna ako vrijedi

$$(\forall y \in B) (\exists x \in A) f(x) = y.$$

Mogli bismo to izreći i ovako: Funkcija $f:A\to B$ je injektivna ako vrijedi

$$(\forall y \in K(f)) (\exists x \in A) f^{-1}(y) = \{x\},\$$

a surjektivna ako vrijedi K(f) = B.

Primjer 14. Funkcija $f: \mathbb{R} \to \mathbb{R}_0^+$ definirana izrazom f(x) = |x| za sve $x \in \mathbb{R}$ je surjektivna, ali nije injektivna (npr. f(-1) = f(1)).

Funkcija $g: \mathbb{R} \to \mathbb{R}$ definirana izrazom g(x) = 2x + 2 za sve $x \in \mathbb{R}$ je injektivna i surjektivna.

Definicija 18. Funkcija je bijekcija ako je injekcija i surjekcija.

Posebno, homogenu bijekciju $f:A\to A$ nazivamo **permutacijom** skupa A.

Primjer 15. Funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana izrazom $f(x) = x^3$ za sve $x \in \mathbb{R}$ je bijekcija. Funkcija $g: [0,1] \to [0,1]$ definirana izrazom $g(x) = \sqrt{1-x^2}$ za sve $x \in \mathbb{R}$ je također bijekcija.

Napomena 5. Posebno važna bijekcija je **identiteta** na skupu A, tj. funkcija $i_A : A \to A$ definirana s $i_A(x) = x$ za svaki $x \in A$. Pokazali smo da je za svaku funkciju $f : A \to B$ ispunjeno

$$f \circ id_A = id_B \circ f = f.$$

Teorem 6. Neka je $f: A \rightarrow B$ bijekcija. Vrijedi

$$f^{-1} \circ f = i_A, \quad f \circ f^{-1} = i_B ,$$

 $i \ f^{-1}$ je jedina funkcija s ovim svojstvima.

Napomena 6. Posljedica prethodnog teorema jest da je

$$(f^{-1} \circ f)(x) = x, \ (f \circ f^{-1})(y) = y, \ \text{ za sve } x \in D(f), \ y \in K(f).$$

Korolar 1 Neka je $f:A \rightarrow B$ bijekcija. Vrijedi

$$(f^{-1})^{-1} = f.$$