EE2000 Logic Circuit Design

Mid-Term Test 1 Solution

Question 1 (a)

```
f(a,b,c) = \{(b'+c')'(c+bc')(ab'c'+b'+c') + [(a+c')(b+c)]'\}'
f(a,b,c) = \{(b'+c')'(c+b)(b'+c') + [(a+c')(b+c)]'\}'
f(a,b,c) = \{[(a+c')(b+c)]'\}'
f(a,b,c) = (a+c')(b+c)
f(a,b,c) = ab + ac + bc'
f(a,b,c) = ac + bc'
```

$$f(a,b,c,d) = \{ [(a+b')'+c](c'd')'\}' + [b'(c'd')']'$$

$$f(a,b,c,d) = [(a+b')'+c]' + c'd' + b + c'd'$$

$$f(a, b, c, d) = (a + b')c' + b + c'd'$$

$$f(a,b,c,d) = ac' + b'c' + b + c'd' = ac' + c' + b + c'd'$$

$$f(a,b,c,d) = c' + b$$

Question 1 (c)

$$f(a,b,c,d) = c' + b$$

Question 2 (a)

```
f(a,b,c,d) = \Sigma m(4,5,9,11,12,13) + \Sigma d(1,3,10,14)
```

а	b	С	d	f
0	0	0	0	0
0	0	0	1	X
0	0	1	0	0
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	Χ
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	0

$$f(a,b,c,d) = \Sigma m(4,5,9,11,12,13) + \Sigma d(1,3,10,14)$$

Note: you do not need to draw several K-maps to show PIs and EPIs unless for your own reference.

Or use ink for K-map and pencil for grouping.

$$f(a,b,c,d) = bc' + b'd$$

Question 2 (c)

$$f(a,b,c,d) = \Pi M(0,2,6,7,8,15)\Pi d(1,3,10,14)$$

^{*}A common mistake: No '+' sign for Canonical Product.

Question 2 (d)

$$f(a,b,c,d)$$

= $(b'+c')(b+d)$

$$(21\% - 19.5\%) \times \frac{3}{9} + 19.5\%$$

= 20%

Minterms	abcd
m0	0000√
m1	0001√
m 5	0101√
m6	0110√
m12	1100√
m7	0111√
m13	1101√
m14	1110√
m15	1111√

Minterms	a b c d
m0 m1	000- PI4
m1 m5	0-01 PI5
m5 m7	01-1√
m5 m13	-101√
m6 m7	011-√
m6 m14	-110√
m12 m13	110-√
m12 m14	11-0√
m7 m15	-111√
m13 m15	11-1√
m14 m15	111-√

Minterms	abcd
m5 m7 m13 m15	- 1 – <u>1 PI</u> 1
m6 m7 m14 m15	-11- PI2
m12 m13 m14 m15	11 PI3

PI	Minterms	abcd	0	1	5	12	13	14	15
PI1	m5 m7 m13 m15	-1-1			x		х		х
PI2	m6 m7 m14 m15	-11-						х	х
PI3	m12 m13 m14 m15	11				х	х	х	х
PI4	m0 m1	000-	х	х					
PI5	m1 m5	0 - 0 1		x	x				

$$LED7 = PI3 + PI4 + PI1 = a'b'c' + ab + bd$$

^{*}A common mistake: PI3 + PI4 + PI5 is not a solution as it has an additional literal.

=
$$\Sigma m(0, 1, 2, 5)$$

+ $\Sigma d(6, 7)$

$$LED8 = a'c'd + a'b'd'$$

LED9

$$= \Sigma m(1, 3, 4, 5, 6, 7, 8, 12, 14) + \Sigma d(13, 15)$$

$$LED9 = b + ac'd' + a'd$$

LED8

Include another product term a'b'c'

Question 4 (a)

Consider odd parity, if a Hamming code of 1100011 is received, determine whether single error bit is present, work out the correct Hamming code and the original data code.

$$c_1 = (H_7 \oplus H_5 \oplus H_3 \oplus H_1)' = (1 \oplus 0 \oplus 0 \oplus 1)' = 1$$

$$c_2 = (H_7 \oplus H_6 \oplus H_3 \oplus H_2)' = (1 \oplus 1 \oplus 0 \oplus 1)' = 0$$

$$c_3 = (H_7 \oplus H_6 \oplus H_5 \oplus H_4)' = (1 \oplus 1 \oplus 0 \oplus 0)' = 1$$

$$c_3 c_2 c_1 = (101)_2 = 5$$

Decimal Numbers	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Correct Code: 1110011

Data Code: 1110

This table is given. You can easily work out which bits are required. Don't just memorize formulae.

Understand what should be done.

c1: bit with LSB = '1' (7, 5, 3, 1)

For odd parity, if total number of '1' is even c1 = 1; elseif odd c1 = 0.

Consider even parity, if a Hamming code of 1100100 is received, determine whether single error bit is present, work out the correct Hamming code and the original data code.

$$c_{1} = H_{7} \oplus H_{5} \oplus H_{3} \oplus H_{1} = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$c_{2} = H_{7} \oplus H_{6} \oplus H_{3} \oplus H_{2} = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$c_{3} = H_{7} \oplus H_{6} \oplus H_{5} \oplus H_{4} = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$c_{3}c_{2}c_{1} = (010)_{2} = 2$$

Decimal Numbers	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Correct Code: 1100110

Data Code: 1101

This table is given. You can easily work out which bits are required.

c1: bit with LSB = '1' (7, 5, 3, 1)

For even parity, if total number of '1' is even c1 = 0; elseif odd c1 = 1.