1. Wykresy dwuwymiarowe.

Wykresy są wyświetlane w osobnych oknach graficznych. Funkcje graficzne wyświetlają wyniki swych działań w aktywnym (ostatnio otwartym lub używanym) oknie, a jeśli żadne okno nie było otwarte, to automatycznie tworzą nowe. Podczas tworzenia wykresów dwuwymiarowych mogą wystąpić przykładowe etapy opisane w tabeli nr 13.

Tabela 13. Przykładowe etapy tworzenia wykresu dwuwymiarowego

Etap	Przykład	Objaśnienie przykładu
Przygotowanie danych	<pre>x = 0:360; y1 = sin(x*pi/180); y2 = cos(x*pi/180); y3 = sin(x*pi/180) + cos(x*pi/180);</pre>	Ciąg wartości dla osi x. 3 wektory z danymi dla osi y.
Otwarcie lub wybranie okna graficznego	figure(1) subplot(2, 2, 1)	Okno graficzne nr 1 podzielone na 2 wiersze, 2 kolumny i wybrana część nr 1.
Wywołanie funkcji realizującej wykres	h = plot(x, y1, x, y2, x, y3);	Wyświetli 3 wykresy liniowe i przypisze identyfikator h.
Określenie parametrów linii wykresu i znaczników punktów	<pre>set(h, 'LineWidth', 2, {'LineStyle'}, {'-'; ''; ':'}) set(h, {'Color'}, {'r'; 'g'; 'b'})</pre>	Grubość linii = 2, linie ciągła, przerywana i kropkowana, kolory czerwony, zielony i niebieski.
Określenie parametrów osi i pokazanie siatki	axis([0 360 -1.6 1.6]) grid on	Zdefiniowane osie współrzędnych, włączona siatka.
Zdefiniowanie tekstów opisów wykresu, osi i legendy	<pre>xlabel('Stopnie'); ylabel('Wartość funkcji') legend(h, 'sin(x)', 'cos(x)', 'sin(x)+cos(x)') title('Funkcje trygonometryczne') [y, ix] = min(y3); text(x(ix), y, 'Minimum \rightarrow', 'HorizontalAlignment', 'right')</pre>	Opisy osi x i y , teksty legendy, tytuł wykresu, dodatkowy tekst ze strzałką wyrównany w prawo.
Wydrukowanie lub eksport wykresu do pliku	print -dwinc -r200 wykres1	Wysyła do pliku wykres1 kolorowy (-dwinc) obraz o roz- dzielczości 200 dpi (-r200).

<u>Ćwiczenie 1.</u>

♦ Napisz skrypt, którego treścią będzie kod przykładu zamieszczonego w tabeli nr 13. Wskaż polecenia odpowiedzialne za poszczególne elementy wykresu.

W tabeli 14 zamieszczono popularne polecenia, często używane podczas tworzenia wykresów dwuwymiarowych.

Tabela 14. Przykładowe etapy tworzenia wykresu

Polecenie lub funkcja	Opis
nr = figure	Otwiera nowe okno graficzne o numerze nr . Instrukcja może być pominięta, jeśli wystarcza nam tylko jedno okno graficzne.
figure(nr)	Jeśli istnieje okno o numerze nr , to zostaje uaktywnione. Jeśli nie ma okna, zostanie utworzone i nadany mu zostanie numer nr .
plot(x, y)	Dla danych wektorów x, y rysuje wykres liniowy.
ploty(y)	Wykres liniowy wartości y a na osi x są ich numery.
plot(x1, y1, x2, y2,)	Umożliwia rysowanie kilku wykresów w jednym oknie.
plot(x1, y1, s1, x2, y2, s2,)	Umożliwia rysowanie kilku wykresów przy czym s1, s2 to opisane dalej łańcuchy znaków określające typ linii, kolor linii oraz rodzaj znacznika punktów.

bar(x, y, s)	Wykres słupkowy y(x) , s to stosunek szerokości słupka do odstępu między słupkami.
bar(y)	Wykres słupkowy wartości Y, a na osi X są ich numery.
loglog()	Wykres ze skalą logarytmiczną obu osi.
hist()	Histogram.
rose()	Histogram kołowy.
polar()	Wykres kołowy.
stairs()	Wykres schodkowy.
semilogx()	Wykres ze skalą logarytmiczną osi x.
semilogy()	Wykres ze skalą logarytmiczną osi y.
grid on	Włącza siatkę wykresu.
hold on	Dodaje nowy wykres do już istniejącego.
title('Tytuł wykresu')	Definiuje tytuł wykresu.
title('Tytuł', 'FontSize', 10)	Wprowadzenie tytułu wykresu czcionką o wielkości 10 pkt.
<pre>xlabel('Opis x'); ylabel('Opis y')</pre>	Definiują opisy osi x i y .
clf	Czyści zawartość okna graficznego
close	Zamyka aktywne okno graficzne
close all	Zamyka wszystkie okna graficzne

<u>Ćwiczenie 2.</u>

♦ Narysuj wykres liniowy.

```
x = 0:0.2:2*pi;
plot(x, sin(x));
grid on
title('Przykład wykresu');
xlabel('x');
ylabel('sin(x)');
```

Wciśnięcie przycisku ze strzałką, znajdującego się na pasku narzędziowym w oknie **Figure 1**, umożliwia edycję wykresu. Pojedyncze kliknięcie zaznacza dany element wykresu i pozwala zmienić jego położenie (tytuł, opisy osi) i rozmiar (okno wykresu). Podwójne kliknięcie umożliwia zmianę tytułu wykresu i opisów osi.

◆ Zmień opisy osi na: Argument funkcji sinus i Wartość funkcji sinus, a tytuł wykresu na Sinusoida.

Ćwiczenie 3.

♦ Narysuj wykres słupkowy.

```
x = 0:0.2:2*pi;
bar(x, sin(x));
grid on
```

♦ Zmień stosunek szerokości słupka do odstępu między słupkami na 0,1.

Dla wykresów liniowych tworzonych za pomocą funkcji **plot()** istnieje możliwość definiowania takich parametrów, jak **rodzaj linii**, **kolor linii** oraz **znaczniki punktów**. Możliwości w tym zakresie przedstawione są w tabeli 15.

Tabela 15. Definiowanie parametrów wykresu liniowego

Znak	Rodzaj linii
1-1	Ciągła
''	Przerywana
''	Kreska-kropka
	Kropki
Znak	Kolor linii
'y'	yellow (żółty)
'm'	magenta (karmazynowy)
'c'	cyan (turkusowy)
'r'	red (czerwony)
'g'	green (zielony)
'b'	blue (niebieski)
'w'	white (biały)
'k'	black (czarny)
Znak	Znacznik punktu
Znak	Znacznik punktu +
'+'	
1+1	+
'+'	+
1+1	+ * kropka
'+' '*' 'o' 'x'	+ * kropka o
'+' '*' 'o' 'x' 's'	+ * kropka o X
'+' '*' 'o' 'x' 's' 'd' 'v'	+ * kropka o x kwadrat
'+' '*' 'o' 'x' 's' 'd' 'v'	+ * kropka o x kwadrat romb
'+' '*' 'o' 'x' 's' 'd' 'v'	+ * kropka o x kwadrat romb gwiazdka pięcioramienna
'+' '*' 'o' 'x' 's' 'd' 'v' '^'	+ * kropka o X kwadrat romb gwiazdka pięcioramienna gwiazdka sześcioramienna
'+' '*' 'o' 'x' 's' 'd' 'v'	+ kropka o x kwadrat romb gwiazdka pięcioramienna gwiazdka sześcioramienna trójkąt z wierzchołkiem w dół

2. Wykresy trójwymiarowe.

Rysowanie wykresów trójwymiarowych w najprostszym przypadku przebiega dwuetapowo:

- przygotowanie siatki par współrzędnych (x, y) dla funkcji z = f(x, y) przy pomocy funkcji meshgrid();
- użycie jednej z wielu funkcji dla wykresów trójwymiarowych.

Funkcji **meshgrid()** podajemy jako argumenty wektory wartości **x** oraz **y**, a w wyniku uzyskujemy dwie macierze zawierające łącznie wszystkie pary współrzędnych, dla których mają być wyznaczane wartości funkcji zmiennych **x**, **y**.

Na przykład:

```
>> [x y] = meshgrid(0:0.1:0.3, 1:3)
```

```
x =
          0.1000
                    0.2000
                               0.3000
     0
          0.1000
                     0.2000
                               0.3000
                    0.2000
          0.1000
                               0.3000
     0
y =
     1
           1
                 1
                        1
     2
           2
                 2
                        2
           3
                  3
     3
```

Tak więc funkcja wyliczana będzie dla (0, 1); (0.1, 1); (0.2, 1), ... i tak dalej.

<u>Ćwiczenie 4.</u>

• Sprawdź działanie funkcji służących do wizualizacji linii i powierzchni trójwymiarowych.

```
>> [x, y] = meshgrid(-3*pi:0.5:3*pi, -3*pi:0.5:3*pi); % Siatka punktów (x, y)
>> z = 600 - x .* y + 50 * sin(x) + 50 * sin(y); % Definiujemy funkcję z(x, y)
>> subplot(2, 2, 1); mesh(x, y, z); % Wykres siatkowy
>> subplot(2, 2, 2); surf(x, y, z); % Wykres powierzchniowy
>> subplot(2, 2, 3); contourf(x, y, z); % wykres warstwicowy
>> subplot(2, 2, 4); meshc(x, y, z); % Wykres siatkowy z warstwicami
```

Przy sporządzaniu wykresów trójwymiarowych mogą wystąpić etapy i funkcje przedstawione w tabeli nr 16

Tabela 16. Przykładowe etapy tworzenia wykresu trójwymiarowego

Étap	Przykład
Przygotowanie danych	Z = peaks(20);
Otwarcie lub wybranie okna graficznego i ewentualnie pozycji w tym oknie	<pre>figure(1) subplot(2, 2, 1)</pre>
Wywołanie funkcji wykresu	h = surf(Z)
Wybranie palety (mapy) kolorów i sposobu cieniowania	<pre>colormap hot shading interp set(h, 'EdgeColor', 'k')</pre>
Zdefiniowanie źródła światła	<pre>light('Position', [-2, 2, 20]) lighting phong material([0.4, 0.6, 0.5, 30]) set(h, 'FaceColor', [0.7 0.7 0], 'BackFaceLighting', 'lit')</pre>
Ustalenie punktu widzenia	<pre>view([30, 25]) set(gca, 'CameraViewAngleMode', 'Manual')</pre>
Określenie parametrów osi	<pre>axis([5 15 5 15 -8 8]) set(gca, 'PlotBoxAspectRatio', [2.5 2.5 1])</pre>
Zdefiniowanie tekstów opisów wykresu, osi i legendy	<pre>xlabel('X Axis') ylabel('Y Axis') zlabel('Function Value') title('Peaks')</pre>

Wydrukowanie lub eksport wykresu do pliku	<pre>set(gcf, 'PaperPositionMode', 'auto') print -dps2</pre>
--	--

<u>Ćwiczenie 5.</u>

 Wprowadzaj w oknie poleceń kolejno poszczególne instrukcje zamieszczone w tabeli nr 16 i obserwuj zmiany zachodzące w oknie wykresu.

3. Zadania.

Zadanie 1.

Napisz skrypt, którego wynikiem będzie wygenerowanie na jednym rysunku dwóch wykresów funkcji $y_1 = \sin(t)$ i $y_2 = 2\cos(3t+1)$ w przedziale t = -pi : 0.01 : pi. Każdy przebieg powinien być wykreślony innym kolorem linii, osie powinny posiadać opisy, a na odpowiednio wyskalowanym rysunku powinna znajdować się legenda.

Zadanie 2.

Napisz skrypt, który wykreśli funkcję $y(t) = e^{-2t} \sin 3t$ dla **t** zmieniającego się od **0** do **4** sekund co **0,01** sekundy. Wykres powinien mieć wygląd zbliżony do przedstawionego na poniższym rysunku.

Zadanie 3.

Napisz skrypt, który wykreśli funkcję $y(t) = e^{-0.5t} \sin \omega t$ dla t zmieniającego się od 0 do 10 sekund co 0,01 sekundy. Zastosuj 3 wartości ω = 1, 3, 10 rad/s. Wykres powinien mieć wygląd zbliżony do przedstawionego na poniższym rysunku.

