MUSTERERKENNUNG

Vorlesung im Sommersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 6. März 2017

Aufgabe Vektorquantisierung Mischungsidentifikation GMM-Klassifikatoren

Aufgabenstellung

Teil X

Mischungsidentifikation

Unüberwachtes Lernen

Aufgabe

Aufgabe

Vektorquantisierung

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

GMM-Klassifikatoren

Unüberwachtes Lernen

Wozu Lernen aus Mustern ohne Klassenetikettierung?

Klassifikatoren mit preiswerter Lernstichprobe

Unetikettierte Lerndaten sind in den meisten Fällen zu einem Bruchteil der Kosten akquirierbar.

Klassen mit multimodalen Musterverteilungen

Die Lerndaten sind nach Musterklassen etikettiert, aber nicht nach den modusbildenden Faktoren innerhalb dieser Klassen.

Automatisches Gruppieren von Datenobjekten

Bildung von Clustern (Ballungsgebieten) einander ähnlicher Merkmalvektoren im **Datamining**.

Blockweise Quantisierung von Abtastwerten

Effektivere Datenkompression mittels Kodierung von Datenvektoren durch (den Index ihres) **Zellenprototypen**.

GMM-Klassifikatoren

Aufgabe

Vektorquantisierung

Unüberwachtes Lernen von Zellenprototypen des ${
m I\!R}^D$

Charakteristische Prototypenvektoren $\{z_1, \ldots, z_K\}$ mit

$$\varepsilon(x) \stackrel{\text{def}}{=} \min_{\kappa} \|x - z_{\kappa}\|^2 \longrightarrow \text{kleine Verzerrung}$$

Vektorquantisierung

Aufgabe

Mischungsidentifikation

Unüberwachtes Lernen von Mischverteilungsdichtekomponenten

Mischungsidentifikation

Modelliere die Daten ω mit einer Mischverteilungsdichte

$$\mathrm{P}(\pmb{x}) \; = \; \sum_{\kappa=1}^K c_\kappa \cdot f(\pmb{x}|\pmb{ heta}_\kappa) \; , \qquad \sum_\kappa c_\kappa = 1$$

Unscharfe Klassenbildung

Clustering, Häufungsanalyse

Mischungsidentifikation

Unüberwachtes Lernen von Gruppenzugehörigkeiten

GMM-Klassifikatoren

Trennscharfe Zerlegung in kompakte Teilmengen

$$\omega = \omega_1 \uplus \omega_2 \uplus \ldots \uplus \omega_K$$

Extensionale Klassenbildung

Vektorquantisierung

Aufgabe Vektorquantisierung Mischungsidentifikation GMM-Klassifikatoren SOFM

Vektorquantisierung

Vektorquantisierung

Vektorquantisierung

Uniforme Quantisierung der Ebene

Nicht-uniforme Quantisierung

Definition

Ist $\mathcal{Z} = \{z_1, \dots, z_K\}$ eine Menge von **Prototypenvektoren** des \mathbb{R}^D , so heißt die Abbildung

$$q: \left\{ egin{array}{lll} \mathbb{R}^D &
ightarrow & \mathcal{Z} \ oldsymbol{x} &
ightarrow & q(oldsymbol{x}) \end{array}
ight.$$

Vektorguantisierer über \mathbb{R}^D mit dem Codebuch \mathcal{Z} .

Bemerkung

Ein Vektorquantisierer mit Codebuchgröße K codiert D-dimensionale Vektoren mit $\lceil \log_2 K \rceil$ bit/Vektor.

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Verzerrung eines Quantisierers

Definition

Es sei $\mathbb X$ eine multivariate Zufallsvariable über $\mathbb R^D$ und $d:\mathbb R^D imes\mathbb R^D o\mathbb R$ ein Unähnlichkeitsmaß. Dann heißt

$$\varepsilon_{\mathbb{X}}(\mathcal{Z},q) = \mathcal{E}[d(\mathbb{X},q(\mathbb{X}))] = \sum_{\kappa=1}^{K} \int_{\Omega_{\kappa}(q)} d(x,z_{\kappa}) \cdot f_{\mathbb{X}}(x) dx$$

die erwartete Verzerrung (oder Quantisierungsfehler) des Vektorquantisierers (\mathcal{Z},q) .

Für eine Stichprobe $\omega \subseteq \mathbb{R}^D$ heißt

$$\varepsilon_{\omega}(\mathcal{Z},q) = \sum_{\kappa=1}^{K} \sum_{x|q(x)=z_{\kappa}} d(x,z_{\kappa})$$

die **empirische Verzerrung** von (\mathcal{Z}, q) bezüglich ω .

Ein Vektorquantisierer mit minimaler Verzerrung heißt **optimal** bezüglich $f_{\mathbb{X}}(\cdot)$ bzw. ω .

Vektorquantisierung

Lemma

Der Vektorquantisierer q mit dem Codebuch $\{z_1, \ldots, z_K\}$ definiert eine disjunkte Zerlegung des Raumes \mathbb{R}^D in **Quantisiererzellen**

$$oldsymbol{\Omega}_{\kappa}(q) \ \stackrel{ ext{def}}{=} \ \{ oldsymbol{x} \mid q(oldsymbol{x}) = oldsymbol{z}_{\kappa} \} \ .$$

Bemerkung

Insbesondere wird der **Lerndatensatz** $\omega \subseteq \mathbb{R}^D$ in disjunkte **Gruppen** $\omega_1(q), \omega_2(q), \ldots, \omega_K(q)$ von Datenobjekten zerlegt.

Zwei notwendige Bedingungen

... aber keine geschlossene Lösung für den optimalen Quantisierer (q^*, \mathcal{Z}^*)

verursacht der Minimum-Abstand-Quantisierer die geringste Verzerrung.

Bei gegebener Zellenbildung verursachen die Zentroide als Prototypen die geringste Verzerrung.

Bei gegebenem Codebuch \mathcal{Z}

Satz

Ein optimaler Vektorquantisierer wählt stets den nächstliegenden Prototypen aus:

$$q(\mathbf{x}) = \underset{\mathbf{z}_{\lambda} \in \mathcal{Z}}{\operatorname{argmin}} d(\mathbf{x}, \mathbf{z}_{\lambda})$$

Darüberhinaus ist jeder Prototypvektor \mathbf{z}_{κ} ein **Zentroid** seiner Zelle:

$$\mathbf{z}_{\kappa} = \underset{\mathbf{z}}{\operatorname{argmin}} \sum_{\mathbf{x} \in \omega_{\kappa}(q)} d(\mathbf{z}, \mathbf{x})$$

Zentroid, Medoid & Mittelwert

Definition

Sei Ω eine Menge mit Unähnlichkeitsmaß $d:\Omega \times \Omega \to {\rm I\!R}$ und $\omega \subset \Omega$ eine (endliche) Teilmenge. Dann heißt

$$\mu^{\mathsf{cnt}}(\omega) = \underset{\mathbf{x} \in \Omega}{\mathsf{argmin}} \sum_{\mathbf{z} \in \omega} d(\mathbf{x}, \mathbf{z})$$

Zentroid der Menge ω und es heißt

$$\mu^{\mathsf{med}}(\omega) = \underset{\mathbf{x} \in \omega}{\mathsf{argmin}} \sum_{\mathbf{z} \in \omega} d(\mathbf{x}, \mathbf{z})$$

Medoid der Menge ω .

Bemerkungen

- 1. Das Medoid von ω ist mit Aufwand $O(|\omega|^2)$ zu berechnen.
- 2. In $\Omega={\rm I\!R}$ mit Betragsmetrik gilt Medoid gleich Median.
- 3. In $\Omega = \mathbb{R}^D$ mit $d(x,y) = \|x y\|_S^2$ gilt Zentroid gleich Mittelwert.

Aufgabe

Vektorquantisierung

 ${\bf Mischung sidentifikation}$

GMM-Klassifikatoren

SOFN

£

K-means Algorithmus

Iterativer Abstieg mit instantaner Auffrischung des Codebuchs

- INITIALISIERUNG Wähle zufällige Startprototypen $\{z_1, \dots, z_K\}$ aus und setze $t \leftarrow 1$.
- 2 KLASSIFIKATION Wähle $\mathbf{y} = \mathbf{x}_{t \text{mod } T}$ und bestimme die Gewinnerzelle:

$$\kappa = \underset{\lambda}{\operatorname{argmin}} \| \boldsymbol{y} - \boldsymbol{z}_{\lambda} \|$$

3 REPRÄSENTATION Frische nun den κ -ten Zellenprototypen auf:

$$\mathbf{z}_{\kappa} \leftarrow \alpha_t \cdot \mathbf{y} + (1 - \alpha_t) \cdot \mathbf{z}_{\kappa}$$

4 TERMINIERUNG Wenn $\varepsilon(\cdot) \leq \theta$ dann ENDE; sonst $t \leftarrow t+1$ und \leadsto 2.

Lloyd-Algorithmus

Iterativer Abstieg mit stapelweiser Auffrischung des Codebuchs

- INITIALISIERUNG Wähle eine zufällige Startpartition $\omega_1 \uplus \omega_2 \uplus \ldots \uplus \omega_K = \omega$ aus.
- 2 REPRÄSENTATION
 Berechne alle neuen Prototypen:

$$oldsymbol{z}_{\kappa} \; = \; \mu^{\mathsf{cnt}}(\omega_{\kappa}) \; = \; rac{1}{|\omega_{\kappa}|} \cdot \sum_{oldsymbol{x} \in \omega_{\kappa}} oldsymbol{x}$$

3 KLASSIFIKATION Berechne alle neuen Gruppen:

$$\omega_{\kappa} \; = \; \left\{ oldsymbol{x}_t \in \omega \mid \mathop{\mathsf{argmin}}_{\lambda} \|oldsymbol{x}_t - oldsymbol{z}_{\lambda}\| = \kappa
ight\}$$

4 TERMINIERUNG Wenn $ε_ω(Z, q) ≤ θ$ dann ENDE; sonst → 2.

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

SOFM

Qualität des berechneten Codebuchs

Startkonfiguration

- Die Lloyd-Iteration kann mit initialen Prototypen **oder** mit initialen Zellen gestartet werden.
- Initiale Prototypen werden zufällig aus ω gezogen. $\mathbf{z}_{\kappa} \in \omega$ Initiale Zellen werden musterweise ausgewürfelt. $\kappa_t \in \{1..K\}$ Die Codebuchgröße K ist vorzugeben!
- Das Ergebniscodebuch hängt systematisch von der Wahl der Startparameter ab.

Konvergenzverhalten

- Instantan aufgefrischte Codebücher konvergieren schneller als stapelweise aufgefrischte Codebücher.
- Instantanes Lernen provoziert oft Parameteroszillation.
- Instantane Iteration bedient sich als Abbruchkriterium einer näherungsweisen Codebuchverzerrung.
- Im Iterationsverlauf kommt es u.U. zu irreversiblen Zellentleerungen.

LBG-Rekursion

Linde, Buzo, Grav (1980) — Teile-und-Herrsche-Verfahren

Codebuchgröße

 $K=2^B$, $B\in\mathbb{N}$ Zellen

Rechenaufwand O(2TI)2-means

O(2TI) $O(B \cdot 2TI)$

Ebene b

 2^B -LBG b

TERMINIERUNG

Falls B = 0 liefere $\mu^{cnt}(\omega)$ zurück.

- REDUKTION I Berechne Codebuch $\{z_1, z_2\}$ zu ω mittels 2-means oder 2-Lloyd.
- REDUKTION II Gruppiere ω in $\omega_1 \uplus \omega_2$
- REKURSION Rufe LBG($\omega_1, B-1$) und LBG($\omega_2, B-1$)
- REKOMBINATION Vereinige beide Codebücher.

LBG-Iteration

Schrittweise Verfeinerung des Codebuchs

Codebuchgröße

 $K=2^B$, $B\in\mathbb{N}$ Zellen

Rechenaufwand

O(2TI)2-means $O(2^bTI^*)$ Ebene b $O(2^B \cdot TI^*)$ 2^B -LBG b INITIALISIERUNG Setze b = 0.

- REPRODUKTION Berechne die 2^b Codebücher $\{z_1^{\lambda}, z_2^{\lambda}\}$ zu ω zu den Zellen ω_{λ} (2-Lloyd).
- REKOMBINATION Vereinige alle Codebücher zu \mathcal{Z} ; setze $b\leftarrow b+1$.
- VERZERRUNGSABBAU Iteriere Codebuch \mathcal{Z} via 2^b -Lloyd.
- 5 ZELLENBILDUNG Gruppiere ω nach Codebuch \mathcal{Z} .
- TERMINIERUNG Falls b = B, dann ENDE; sonst \rightsquigarrow 2.

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Mischungsidentifikation

Mischverteilungsdichten

Beispiel

K = 4 MV-Komponenten

D = 2 Merkmale Normalverteilungsannahme

 $f(\mathbf{x}|\boldsymbol{\theta}_{\kappa}) = \mathcal{N}(\mathbf{x} \mid \mu_{\kappa}, \boldsymbol{S}_{\kappa})$

für alle $\kappa \in \{\clubsuit, \spadesuit, \diamondsuit, \heartsuit\}$

Definition

Eine (multivariate) Zufallsvariable X mit der Dichte

$$f_{\mathbb{X}}({m{x}}) \; = \; \sum_{\kappa=1}^K \pi_\kappa \cdot f({m{x}}|{m{ heta}}_\kappa) \; , \qquad \sum_\kappa \pi_\kappa = 1$$

heißt mischverteilt mit der Ordnung K, den Mischungskoeffizienten $[\pi_{\kappa}]$ und **Mischungskomponenten** aus der parametrischen Verteilungsfamilie $f(\cdot|\cdot)$.

Mischverteilungsdichten

Identifizierbarkeit — der Schluß von der Summe auf die Summanden

Satz (Yakowitz, 1970^[?])

Gemischte Normalverteilungen sind identifizierbar, d.h., die Parameterwerte π_{κ} , θ_{κ} sind eindeutig bestimmbar, sofern der exakte Funktionsverlauf von $f_{\mathbb{X}}(\mathbf{x})$ bekannt ist.

Bemerkungen

- 1. Beweisidee: Die Familie der NV-Dichten bildet eine Orthogonalbasis.
- 2. Der Funktionsverlauf von $f_{\mathbb{X}}(\cdot)$ ist selbstverständlich **nicht** bekannt.
- 3. Alle elliptisch-symmetrischen Dichten $f(x) = C \cdot \varphi(||x \mu||_s)$ lassen sich durch Richtermixturen approximieren.[?]

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Entscheidungsüberwachtes Lernen

$$\boldsymbol{\theta}^{(0)} \rightsquigarrow [\omega_{\kappa}^{(1)}] \rightsquigarrow \boldsymbol{\theta}^{(1)} \rightsquigarrow [\omega_{\kappa}^{(2)}] \rightsquigarrow \boldsymbol{\theta}^{(2)} \rightsquigarrow \ldots \rightsquigarrow \boldsymbol{\theta}^{(\nu)} \rightsquigarrow \ldots$$

INITIALISIERUNG

Wähle Ordnung $K \in \mathbb{N}$, setze $\nu = 1$ und wähle Startparameter

$$\theta_{\kappa}^{(0)}$$
 , $\kappa = 1, \ldots, K$

NEUKLASSIFIKATION

Klassifiziere auf Grundlage der aktuellen Verteilungsparameter

$$\delta^{(\nu)}(\mathbf{x}) = \underset{\lambda}{\operatorname{argmax}} P(\Omega_{\lambda} \mid \mathbf{x}, \mathbf{\pi}^{(\nu-1)}, \boldsymbol{\theta}^{(\nu-1)})$$

$$\omega_{\kappa}^{(\nu)} = \left\{ \mathbf{x} \in \omega \mid \delta^{(\nu)}(\mathbf{x}) = \kappa \right\}$$

NEUSCHÄTZUNG

Bestimme ML-Schätzwerte auf Grundlage der aktuellen Gruppierung

$$\pi_{\kappa}^{(\nu)} = |\omega_{\kappa}^{(\nu)}| / |\omega|$$
 $\theta_{\kappa}^{(\nu)} = \operatorname{argmax} \ell_{\theta}(\omega_{\kappa}^{(\nu)})$

TERMINIERUNG Abbruch — oder $\nu \leftarrow \nu + 1$ und weiter bei \rightsquigarrow 2

Empirische Mischverteilungsidentifikation

Unetikettierte Lerndaten $\{x_1, \dots, x_T\}$ statt Dichtefunktionsverlauf $f_{\mathbb{X}}(\cdot)$

Maximum-Likelihood-Zielfunktion mischverteilter Daten

$$\ell_{\boldsymbol{\pi}, \boldsymbol{\theta}}(\omega) = \log \prod_{\boldsymbol{x} \in \omega} P(\boldsymbol{x} \mid \boldsymbol{\pi}, \boldsymbol{\theta}) = \sum_{\boldsymbol{x} \in \omega} \log \left(\sum_{\kappa} \pi_{\kappa} \cdot f(\boldsymbol{x} | \boldsymbol{\theta}_{\kappa}) \right)$$

Nullsetzen der partiellen Ableitungen:

$$\hat{\pi}_{\kappa} = \frac{1}{|\omega|} \cdot \sum_{\mathbf{x} \in \omega} P(\Omega_{\kappa} \mid \mathbf{x}, \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\theta}}) \cdot 1$$

$$\hat{\boldsymbol{\mu}}_{\kappa} = \frac{1}{\hat{\pi}_{\kappa} \cdot |\omega|} \cdot \sum_{\mathbf{x} \in \omega} P(\Omega_{\kappa} \mid \mathbf{x}, \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\theta}}) \cdot \mathbf{x}$$

$$\hat{\boldsymbol{S}}_{\kappa} = \frac{1}{\hat{\pi}_{\kappa} \cdot |\omega|} \cdot \sum_{\mathbf{x} \in \omega} P(\Omega_{\kappa} \mid \mathbf{x}, \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\theta}}) \cdot (\mathbf{x} - \hat{\boldsymbol{\mu}}_{\kappa}) (\mathbf{x} - \hat{\boldsymbol{\mu}}_{\kappa})^{\top}$$

$$\mathsf{System} \left\{ \begin{matrix} \mathsf{gekoppelter} \\ \mathsf{transzendenter} \end{matrix} \right\} \; \mathsf{Bestimmungsgleichungen} \quad \Longrightarrow \; \text{,,Huhn-Ei-Problem''}$$

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Entscheidungsüberwachtes Lernen

Unüberwachtes Lernen 🗢 Überwachtes Lernen & Iteration

Lemma (EM*-Algorithmus)

Der entscheidungsüberwachte Lernalgorithmus bewirkt in jedem Iterationsschritt eine monotone Verbesserung der **überwachten** Likelihoodfunktion

$$\ell_{\boldsymbol{\pi},\boldsymbol{\theta}}^*(\omega) = \sum_{\boldsymbol{x} \in \omega_{\kappa}} \max_{\kappa=1..K} \log \left(\pi_{\kappa} \cdot f(\boldsymbol{x}|\boldsymbol{\theta}_{\kappa}) \right) .$$

Bemerkungen

- 1. EM* findet i.a. nur ein lokales Optimum.
- 2. EM* konvergiert ohne Oszillationen (s.o.) in $\ell_{\pi}^* \theta(\omega)$
- 3. Wichtiger Spezialfall: $f(\cdot|\theta) = \mathcal{N}(\cdot \mid \mu, S)$
- 4. Gaußsche Mischungsidentifikation \(\hat{\pm}\) 'ill-posed problem'

$$\omega_1 = \{\mathbf{x}^*\} \quad \leadsto \quad \hat{\mu}_1 = \mathbf{x}^*, \hat{\mathbf{S}}_1 = \mathbf{0} \quad \leadsto \quad f(\mathbf{x}^*|\hat{\boldsymbol{\theta}}_1) = \infty \quad \leadsto \quad \text{"Gotcha!"}$$

ABHILFE: keine Varianzen (VQ) · fixierte/verklebte Varianzen · Regularisierung (MAP) · **EM-Prinzip**

Identifikation nach dem EM-Prinzip

Unabhängiges, identisches & zweistufiges Auswürfeln

$$P(\omega) = \prod_{t=1}^{T} f_{\mathbb{X}}(\mathbf{x}_{t}) = \prod_{t=1}^{T} \sum_{\kappa=1}^{K} \pi_{\kappa} \cdot f(\mathbf{x}_{t} | \boldsymbol{\theta}_{\kappa})$$

• Beobachtbarer Anteil der Daten ('observable')

$$\boldsymbol{X} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \dots, \boldsymbol{x}_T)^{\top} \in \mathbb{R}^{T \times D}$$

Verborgener Anteil der Daten ('latent')

$$\boldsymbol{\kappa} = (\kappa_1, \kappa_2, \kappa_3, \dots, \kappa_T)^{\top} \in \{1, \dots, K\}^{T}$$

Maximum-Likelihood-Schätzung

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \operatorname{P}(\boldsymbol{X}|\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\kappa_1=1}^K \sum_{\kappa_2=1}^K \sum_{\kappa_3=1}^K \cdots \sum_{\kappa_T=1}^K \operatorname{P}(\kappa, \boldsymbol{X} \mid \boldsymbol{\theta})$$

Beweis.

Wir haben zu zeigen, daß im Schritt #3 des Algorithmus die Kullback-Leibler-Statistik maximiert wird.

$$\begin{aligned} & \mathrm{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}') & = & \mathcal{E}[\log \mathrm{P}([\mathbf{x}_{\boldsymbol{n}}, \kappa_{\boldsymbol{n}}] \mid \boldsymbol{\theta}') \mid [\mathbf{x}_{\boldsymbol{n}}], \boldsymbol{\theta}] \\ & = & \sum_{\kappa_{\boldsymbol{1}}=1}^{K} \dots \sum_{\kappa_{\boldsymbol{N}}=1}^{K} \left(\mathrm{P}([\kappa_{\boldsymbol{n}}] \mid [\mathbf{x}_{\boldsymbol{n}}], \boldsymbol{\theta}) \cdot \log \mathrm{P}([\mathbf{x}_{\boldsymbol{n}}, \kappa_{\boldsymbol{n}}] \mid \boldsymbol{\theta}') \right) \\ & = & \sum_{\kappa_{\boldsymbol{1}}=1}^{K} \dots \sum_{\kappa_{\boldsymbol{N}}=1}^{K} \left\{ \prod_{\boldsymbol{n}=1}^{N} \mathrm{P}(\kappa_{\boldsymbol{n}} \mid \mathbf{x}_{\boldsymbol{n}}, \boldsymbol{\theta}) \cdot \sum_{\boldsymbol{n}=1}^{N} \log \left(\pi'_{\kappa_{\boldsymbol{n}}} \cdot \mathrm{P}(\mathbf{x}_{\boldsymbol{n}} \mid \boldsymbol{\theta}'_{\kappa_{\boldsymbol{n}}}) \right) \right\} \\ & = & \sum_{\kappa=1}^{K} \sum_{\boldsymbol{n}=1}^{N} \mathrm{P}(\kappa \mid \mathbf{x}_{\boldsymbol{n}}, \boldsymbol{\theta}) \cdot \left(\log \pi'_{\kappa} + \log \mathrm{P}(\mathbf{x}_{\boldsymbol{n}} \mid \boldsymbol{\theta}'_{\kappa}) \right) \\ & = & \sum_{\kappa=1}^{K} \sum_{\boldsymbol{n}=1}^{N} \left(\sum_{\boldsymbol{n}=1}^{K} \gamma_{\boldsymbol{n}\kappa} \cdot \mathrm{P}(\mathbf{x}_{\boldsymbol{n}} \mid \boldsymbol{\theta}_{\kappa}) \right) \\ & = & \sum_{\kappa=1}^{K} \sum_{\boldsymbol{n}=1}^{N} \left(\sum_{\boldsymbol{n}=1}^{N} \gamma_{\boldsymbol{n}\kappa} \right) \log \pi'_{\kappa} + \sum_{\kappa=1}^{K} \left(\sum_{\boldsymbol{n}=1}^{N} \gamma_{\boldsymbol{n}\kappa} \cdot \log \mathcal{N}(\mathbf{x}_{\boldsymbol{n}} \mid \boldsymbol{\mu}'_{\kappa}, \boldsymbol{S}'_{\kappa}) \right) \end{aligned}$$

Die letzte Zeile zerfällt in eine Optimierungsgleichung für die Mischungsgewichte π'_1,\ldots,π'_K und in je eine Optimierungsgleichung für die Parameter μ'_{κ} , S'_{κ} der κ -ten Normalverteilungsdichte.

Die Schätzung verläuft praktisch wie im Abschnitt über den NVK beschrieben, nur daß dort die a posteriori Wahrscheinlichkeiten $\gamma_{n\kappa}$ — dafür, daß der Stichprobenvektor x_n zu Ω_{κ} gehört — "harte" Zuordnungen trafen, d.h. es galt $\gamma_{m{n}\kappa} \in \{0,1\}.$

EM-Algorithmus

Identifikation gaußscher Mischungsverteilungen

INITIALISIERUNG Wähle zufällige Startparameter

$$(\pi_{\kappa}, \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa})$$
, $\kappa \in \{1, \ldots, K\}$

A POSTERIORI ERWARTUNGSWERTE Berechne für alle $\kappa = 1, \dots, K$ und $t = 1, \dots, T$ die Werte

$$\gamma_{\kappa,t} \propto \pi_{\kappa} \cdot \mathcal{N}(\mathbf{x}_t \mid \boldsymbol{\mu}_{\kappa}, \boldsymbol{S}_{\kappa}) \;, \qquad \sum_{\lambda=1}^{K} \gamma_{\lambda,t} = 1$$

MAXIMIERUNG DER PARAMETER

$$\pi_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t}}{\sum_{\lambda} \sum_{t} \gamma_{\lambda,t}}, \quad \boldsymbol{\mu}_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t} \boldsymbol{x}_{t}}{\sum_{t} \gamma_{\kappa,t}}, \quad \boldsymbol{S}_{\kappa} \leftarrow \frac{\sum_{t} \gamma_{\kappa,t} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}}{\sum_{t} \gamma_{\kappa,t}} - \boldsymbol{\mu}_{\kappa} \boldsymbol{\mu}_{\kappa}^{\top}$$

TERMINIERUNG Wenn $\ell(...)$ stagniert dann ENDE, sonst \rightsquigarrow 2.

Aufgabe Vektorquantisierung Mischungsidentifikation

GMM-Klassifikatoren

Konvergenzeigenschaften

EM-Identifikation gaußscher Mischungsverteilungen

Ungelöste Probleme

Unbeschränkte Zielgröße Startwertabhängigkeit Unproduktive Parameterzyklen pathologische Lösungen lokale Optima Kraterphänomen

Gelöste Probleme

Rangdefizite Verfälschte Zielgröße jedes x_t aktualisiert jedes θ_{λ} $\ell(\boldsymbol{\theta}) \to \mathsf{max}$

Hintergrundkomponente

Mitführen einer Rückweisungskomponente Ω_0 zur Ausreißerbehandlung:

$$f_0(\cdot) \ = \ \mathcal{N}(\cdot \mid oldsymbol{\mu}(\omega), oldsymbol{S}_0) \qquad \mathsf{mit} \quad oldsymbol{S}_0 = \left\{ egin{array}{l} oldsymbol{S}(\omega) \ C \cdot oldsymbol{\mathcal{E}} \end{array}
ight.$$

Beispiel

Clustering einer 4-Mischung isotrop-sphärischer Datenpunkte

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Aufgabe

Mischungsidentifikation

GMM-Klassifikatoren

GMK — Gaußscher Mischverteilungsklassifikator

Je ein Verteilungsdichten-Pool der Ordnung M pro Klasse

$$P(\boldsymbol{x}|\Omega_{\kappa}) = \sum_{m=1}^{M} \pi_{\kappa m} \cdot \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_{\kappa m}, \boldsymbol{S}_{\kappa m})$$

Klassen MV-Komponenten Dichteparameter Dichtekoeffizienten

K $K \cdot M$ $O(K \cdot M \cdot D^2)$ $O(K \cdot M)$

Klassenweise unabhängiges Parameterschätzverfahren

Identifiziere für alle $\kappa = 1..K$ die M-Mischung von ω_{κ} :

$$\omega_{\kappa}$$
 $\stackrel{\mathsf{EM}}{\longleftarrow}$ $\{(\pi_{\kappa m}, \boldsymbol{\mu}_{\kappa m}, \boldsymbol{S}_{\kappa m}) \mid m = 1, \dots, M\}$

GMM-Klassifikatoren

Vektorquantisierung

GKK — Gaußkernklassifikator

Ein gemeinsamer Verteilungsdichten-Pool der Ordnung M für alle Klassen

$$P(\boldsymbol{x}|\Omega_{\kappa}) = \sum_{m=1}^{M} \pi_{\kappa m} \cdot \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_{m}, \boldsymbol{S}_{m})$$

Klassen MV-Komponenten Dichteparameter Dichtekoeffizienten

 $O(M \cdot D^2)$ $O(K \cdot M)$

Einstufiges integriertes Parameterschätzverfahren

Betrachte den dreistufigen Datenerzeugungsprozeß

$$\{p_{\kappa}\} \rightsquigarrow \mathbb{K} \rightarrow \{\pi_{\kappa m}\} \rightsquigarrow \mathbb{M} \rightarrow \{\mu_{m}, \mathbf{S}_{m}\} \rightsquigarrow \mathbb{X} = (\mathbb{X}_{1}, \dots, \mathbb{X}_{D})^{\top}$$

und wende das EM-Prinzip darauf an.

Gaußkernklassifikator

Zweistufige Parameterschätzung

$$\ell(\omega) = \log \prod_{\kappa=1}^{K} \prod_{\mathbf{x} \in \omega_{\kappa}} P(\mathbf{x} | \Omega_{\kappa}) = \sum_{\kappa=1}^{K} \underbrace{\sum_{\mathbf{x} \in \omega_{\kappa}} \log \sum_{m=1}^{M} \pi_{\kappa m} \cdot \underbrace{\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{m}, \boldsymbol{S}_{m})}_{\gamma_{m}(\mathbf{x})}}_{\ell_{\kappa}(\omega_{\kappa})}$$

SCHÄTZUNG DES GLOBALEN DICHTE-POOLS Berechne das "Codebuch" mittels EM-Algorithmus:

$$\{(\boldsymbol{\mu}_m, \boldsymbol{S}_m) \mid m = 1, \ldots, M\}$$

SCHÄTZUNG DER MISCHUNGSKOEFFIZIENTEN Klassenweise wird ein EM-Algorithmus mit fixierten Poolparametern durchgeführt:

$$\pi'_{\kappa m} = \frac{1}{|\omega_{\kappa}|} \sum_{\mathbf{x} \in \omega_{\kappa}} \xi_{\kappa m}(\mathbf{x}) \quad \text{mit} \quad \xi_{\kappa m}(\mathbf{x}) \stackrel{\text{def}}{=} \mathrm{P}(\Omega^{m} | \mathbf{x}) = \frac{\pi_{\kappa m} \gamma_{m}(\mathbf{x})}{\sum_{m} \pi_{\kappa m} \gamma_{m}(\mathbf{x})}$$

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

SOFM

Kohonens Mermalkarten

SOFM — 'self-organizing feature map'[?]

Definition

Ein Feld von L Knoten heißt **Selbstorganisierende Karte**, falls jeder Knoten ℓ durch einen **Referenzvektor** $\mathbf{w}_{\ell} \in \mathbb{R}^{D}$ sowie durch einen **Ortsvektor** $o_{\ell} \in \mathbb{R}^{M}$ repräsentiert wird und die Ortsvektoren eine regelmäßige Punktmenge im \mathbb{R}^M bilden.

Selbstorganisierende Karten

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Kompetitives Lernen

Nachbarschaft in $\mathbb{R}^D \Leftrightarrow \mathsf{Nachbarschaft}$ in \mathbb{R}^M

Neuronale Aktivität ('winner-takes-all')

$$u_0(\mathbf{x}) = \min_{\ell=1..L} u_\ell(\mathbf{x})$$
 und für alle ℓ : $u_\ell(\mathbf{x}) = \|\mathbf{w}_\ell - \mathbf{x}\|^2$

Lernen mit Nebenziel

Minimiere die Verzerrung $\sum_{m{x} \in \omega} u_0(m{x})$ unter Wahrung kleinstmöglicher Distanzabweichungen

$$\Delta_{k,\ell} = \|\boldsymbol{w}_k - \boldsymbol{w}_\ell\|^2 - \|\boldsymbol{o}_k - \boldsymbol{o}_\ell\|^2, \quad k,\ell \in \{1,\ldots,L\}$$

zwischen Merkmal- und Ortsraum.

Gradientenabstiegsverfahren

- INITIALISIERUNG Wähle zufällige Punkte $y_1, \ldots, y_t \in \mathbb{R}^N$ aus.
- 2 ITERATIONSSCHRITT $(\forall t = 1, ..., T)$ Berechne den Gewinnerknoten ℓ mit

$$\ell = \underset{1 \le k \le L}{\operatorname{argmin}} \| \boldsymbol{w}_k - \boldsymbol{x}_t \|^2$$

und aktualisiere alle (?) Prototypen:

$$\mathbf{w}_k \leftarrow \mathbf{w}_k + r_{k\ell} \cdot (\mathbf{x}_t - \mathbf{w}_k)$$

ABBRUCHKRITERIUM Wiederhole Schritt 2 oder → ENDE.

Blasenfunktion

$$r_{ij} \ = \ \left\{ egin{array}{ll} \eta & \quad \left\| oldsymbol{o_i} - oldsymbol{o_j}
ight\| <
ho \ & ext{sonst} \end{array}
ight.$$

 ρ Blasenradius, η

Gaußglocke

$$r_{ij} = \eta \cdot \exp\left(-\frac{\left\|o_i - o_j\right\|^2}{2\sigma^2}\right)$$

 σ^2 Abklingrate, η Lernrate

Mathematische Hilfsmittel

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Entropie, Kreuzentropie und Divergenz^[?]

Stetige Formulierung — für Verteilungsdichtefunktionen

Definition

Es seien $f,g:\Omega\to {\rm I\!R}$ zwei Verteilungsdichtefunktionen desselben Ereignishorizonts. Wir bezeichnen

$$\mathcal{H}(f) \stackrel{\mathsf{def}}{=} - \int f(\mathbf{x}) \cdot \log f(\mathbf{x}) \, d\mathbf{x}$$

als (differentielle) **Entropie** von f,

$$\mathcal{H}(f,g) \stackrel{\mathsf{def}}{=} - \int f(\mathbf{x}) \cdot \log g(\mathbf{x}) \, d\mathbf{x}$$

als (differentielle) Kreuzentropie zwischen f und g und

$$\mathcal{D}(f||g) \stackrel{\mathsf{def}}{=} \mathcal{H}(f,g) - \mathcal{H}(f,f) = \int f(\mathbf{x}) \cdot \log \frac{f(\mathbf{x})}{g(\mathbf{x})} d\mathbf{x}$$

als Kullback-Leibler-Divergenz von f zu g.

Aufgabe

Jensen-Ungleichung

Lemma

- 1. Für alle f, g gilt $\mathcal{H}(f) = \mathcal{H}(f, f) \leq \mathcal{H}(f, g)$.
- 2. Für die Kullback-Leibler-Divergenz gilt stets $\mathcal{D}(f||g) > 0$.
- 3. Der Fall $\mathcal{D}(f||g) = 0$ tritt nur für $f \equiv g$ ein.
- 4. Die Werte $\mathcal{H}(f,g)$ und $\mathcal{D}(f||g)$ lassen sich als Erwartungwerte bzgl. $f = f_{\mathbb{X}}$ deuten.

Beweis.

Verwende die Konkavität ($\log z \le z - 1$) des Logarithmus, die für alle $z \ne 1$ strikt ist.

$$\mathcal{H}(f,f) - \mathcal{H}(f,g) = \int f(x) \cdot \log \frac{g(x)}{f(x)} dx$$

$$\leq \int f(x) \cdot \left(\frac{g(x)}{f(x)} - 1\right) dx$$

$$= \int g(x) dx - \int f(x) dx = 1 - 1 = 0$$

Kullback-Leibler-Statistik

W'keitsmodell für Datensätze mit beobachtbaren und verborgenen Variablen

Definition

Es seien \mathbb{X} , \mathbb{U} zwei (Vektoren von) Zufallsvariablen mit der gemeinsamen parametrischen Verteilungsdichte $P(x, u \mid \theta)$ und der Randverteilungsdichte

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \int P(\boldsymbol{x}, \boldsymbol{u} | \boldsymbol{\theta}) d\boldsymbol{u}.$$

Für zwei Parameterfelder θ , θ' heißt der bedingte Erwartungswert

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}') = \mathcal{E}[\log P(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{\theta}') \mid \boldsymbol{x}, \boldsymbol{\theta}] = \int P(\boldsymbol{u} \mid \boldsymbol{x}, \boldsymbol{\theta}) \cdot \log P(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{\theta}') d\boldsymbol{u}$$

die Kullback-Leibler-Statistik von θ und θ' .

Beweis.

Wir drücken die ML-Zielfunktion mit Hilfe bedingter Divergenz und bedingter Kreuzentropie aus:

$$\ell(\theta') = \log P(\mathbf{x}|\theta')$$

$$= \log P(\mathbf{x}|\theta') \cdot \int P(\mathbf{u} \mid \mathbf{x}, \theta) d\mathbf{u}$$

$$= \int P(\mathbf{u} \mid \mathbf{x}, \theta) \cdot \log P(\mathbf{x}|\theta') d\mathbf{u}$$

$$= \mathcal{E}[\log P(\mathbf{x}|\theta') \mid \mathbf{x}, \theta]$$

$$= \mathcal{E}[\log \frac{P(\mathbf{x}, \mathbf{u} \mid \theta')}{P(\mathbf{u} \mid \mathbf{x}, \theta')} \mid \mathbf{x}, \theta]$$

$$= \underbrace{\mathcal{E}[\log P(\mathbf{x}, \mathbf{u} \mid \theta') \mid \mathbf{x}, \theta]}_{Q(\theta, \theta')} + \underbrace{\mathcal{E}[-\log P(\mathbf{u} \mid \mathbf{x}, \theta') \mid \mathbf{x}, \theta]}_{\mathcal{H}(\theta, \theta')}$$

Unter der Voraussetzung $Q(\theta, \theta') > Q(\theta, \theta)$ des Satzes gilt nun aug Grund der Jensen-Ungleichung für Kreuzentropien die Behauptung, denn:

$$\ell(\theta') = Q(\theta, \theta') + \mathcal{H}(\theta, \theta')$$

$$\geq Q(\theta, \theta) + \mathcal{H}(\theta, \theta) = \ell(\theta)$$

EM — Expectation-Maximization-Prinzip

Satz (Dempster, Laird, Rubin 1977^[?])

Für die Maximum-Likelihood-Zielfunktion

$$\ell(\boldsymbol{\theta}) = \log P(\boldsymbol{x}|\boldsymbol{\theta}) = \log \int P(\boldsymbol{x}, \boldsymbol{u} \mid \boldsymbol{\theta}) d\boldsymbol{u}$$

der Randverteilungsdichte von (X, U) gilt die Aussage:

$$Q(\theta, \theta') \ge Q(\theta, \theta) \quad \Longrightarrow \quad \ell(\theta') \ge \ell(\theta)$$

Insbesondere gilt die Gleichheit der ML-Zielgrößen genau im Fall der Gleichheit der KI-Statistiken.

Bemerkung

Das EM-Prinzip liefert ein hinreichendes Kriterium, um gegenüber θ überlegene Modellparameter θ' aufzufinden: insbesondere werden wir "glücklich" mit:

$$oldsymbol{ heta}^* = rgmax \, \mathrm{Q}(oldsymbol{ heta}, oldsymbol{ heta}')$$

Aufgabe Vektorquantisierung Mischungsidentifikation

GMM-Klassifikatoren

Generischer EM-Algorithmus

Konvergiert gegen ein lokales Optimum im Parameterraum

- INITIALISIERUNG Setze $\nu = 1$ und wähle Startparameter $\theta^{(0)}$.
- A POSTERIORI ERWARTUNGSWERTE Eine Formel in den Unbekannten des Feldes θ

analytisch oder simuliert

$$Q(\boldsymbol{\theta}^{(\nu-1)}, \boldsymbol{\theta})$$

MAXIMIERUNG DER PARAMETER Ableiten, Nullsetzen, Auflösen ...

analytisch oder iteriert

$$oldsymbol{ heta}^{(
u)} = \operatorname*{argmax}_{oldsymbol{ heta}} \mathrm{Q}(oldsymbol{ heta}^{(
u-1)}, oldsymbol{ heta})$$

TERMINIERUNG Abbruch — oder $\nu \leftarrow \nu + 1$ und weiter bei \rightsquigarrow 2. Aufgabe Vektorquantisierung

GMM-Klassifikatoren

Mischungsidentifikation

Teleskopsummation

Umformung der Kullback-Leibler-Statistik zu einer gewichteten ML-Zielgröße

Lerndatensatz (T Muster)

Beobachtbare Objekteigenschaften Verborgene Objekteigenschaften

$$\mathbf{x} = (x_1, \dots, x_T)$$

 $\mathbf{u} = (u_1, \dots, u_T)$

Vereinfachte Form der der KL-Statistik

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}') = \dots = \sum_{t=1}^{T} \sum_{u} \log P(x_t, u \mid \boldsymbol{\theta}') \cdot \underbrace{P(u \mid x_t, \boldsymbol{\theta})}_{\gamma_t(u)}$$

Bemerkungen

- 1. $\gamma_t(u)$ ist die a posteriori Verteilung der latenten Mustereigenschaft \mathbb{U} .
- 2. $Q(\theta, \theta')$ sieht bis auf die Gewichte wie eine gewöhnliche ML-Zielgröße aus.
- 3. M-Schritt: Schätzformeln sind gewichtete arithmetische Mittelwerte!

Aufgabe

Vektorquantisierung

Mischungsidentifikation

GMM-Klassifikatoren

Zusammenfassung (10)

- 1. Unüberwachtes Lernen dient der Modellierung multimodaler Verteilungsdichten oder der Einsparung etikettierten Datenmaterials.
- 2. Der verzerrungsminimale Vektorquantisierer besitzt ein Codebuch, dessen Prototypen die Zellenzentroide sind; die Quantisierung gehorcht der Minimum-Abstand-Regel (Voronoipartition).
- 3. Der Codebuchentwurf erfolgt iterativ mit dem Lloyd- bzw. dem K-means-Austauschalgorithmus; die Zellenzahl K und eine **Anfrangspartition** sind vorzugeben.
- 4. Die Fälle $K \gg 2$ werden aus **Effizienz** und **Robustheitsgründen** durch den hierarchischen Linde-Buzo-Gray-Topdown-Algorithmus gelöst.
- 5. Die Identifikation der Komponenten einer **Mischverteilung** ist (in der Theorie) eindeutig lösbar, wenn die Dichtefamilie eine Orthogonalbasis des Funktionenraums bildet.
- 6. In praxi werden Mischverteilungen durch eine Inkarnation des **Expectation-Maximization**-Algorithmus identifiziert, einem Iterationsverfahren mit garantiertem Aufwuchs der Likelihood-Zielgröße.
- 7. Die entscheidungsüberwachte Variante, der EM*-Algorihmus, ist weniger robust gegenüber pathologischen Bestlösungen.

Beweis.

 $Q(\boldsymbol{\theta}, \boldsymbol{\theta}')$

$$= \sum_{u} P(u \mid x, \theta) \cdot \log P(x, u \mid \theta')$$

$$= \sum_{u_{1}} \dots \sum_{u_{T}} \left\{ \prod_{s=1}^{T} P(u_{s} \mid x_{s}, \theta) \right\} \cdot \sum_{t=1}^{T} \log P(x_{t}, u_{t} \mid \theta')$$

$$= \sum_{t=1}^{T} \sum_{u_{1}} \dots \sum_{u_{T}} \left\{ \prod_{s=1}^{T} P(u_{s} \mid x_{s}, \theta) \right\} \cdot \log P(x_{t}, u_{t} \mid \theta')$$

$$= \sum_{t=1}^{T} \sum_{u_{t}} \log P(x_{t}, u_{t} \mid \theta') \cdot \sum_{u_{1}} \dots \sum_{u_{t-1}} \sum_{u_{t+1}} \dots \sum_{u_{T}} \left\{ \prod_{s=1}^{T} P(u_{s} \mid x_{s}, \theta) \right\}$$

$$= \sum_{t=1}^{T} \sum_{u_{t}} \log P(x_{t}, u_{t} \mid \theta') \cdot P(u_{t} \mid x_{t}, \theta) \cdot \sum_{u_{1}} \dots \sum_{u_{t-1}} \sum_{u_{t+1}} \dots \sum_{u_{T}} \prod_{s \neq t} P(u_{s} \mid x_{s}, \theta)$$

$$= \sum_{t=1}^{T} \sum_{u_{t}} \log P(x_{t}, u \mid \theta') \cdot P(u \mid x_{t}, \theta)$$

$$= \sum_{t=1}^{T} \sum_{u_{t}} \log P(x_{t}, u \mid \theta') \cdot P(u \mid x_{t}, \theta)$$