VL-16: NP-vollständige Zahlprobleme

(Berechenbarkeit und Komplexität, WS 2018)

Gerhard Woeginger

WS 2018, RWTH

Organisatorisches

- Nächste Vorlesung:
 Donnerstag, Januar 17, 12:30–14:00 Uhr, Aula
- Webseite:

```
http://algo.rwth-aachen.de/Lehre/WS1819/BuK.php
```

- (Arbeitsheft zur Berechenbarkeit)
- (Arbeitsheft zur NP-Vollständigkeit)

Wdh.: NP-schwer & NP-Vollständig

Definition

- Ein Problem L heisst NP-schwer, falls $\forall L' \in NP : L' \leq_p L$
- Ein Problem L heisst NP-vollständig, falls $L \in NP$ und L NP-schwer.

Satz

Wenn L NP-vollständig ist, dann gilt: $L \in P \Rightarrow P = NP$

Unter der Annahme $P \neq NP$ (Standardannahme) besitzt also kein NP-vollständiges Problem einen polynomiellen Algorithmus.

Wdh.: Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept:

- **1.** Man zeige $L \in NP$.
- **2.** Man wähle eine NP-vollständige Sprache L^* .
- **3.** (Reduktionsabbildung): Man konstruiere eine Funktion f, die Instanzen von L^* auf Instanzen von L abbildet.
- **4.** (Polynomielle Zeit): Man zeige, dass *f* in polynomieller Zeit berechnet werden kann.
- **5.** (Korrektheit): Man beweise, dass f tatsächlich eine Reduktion ist. Für $x \in \{0, 1\}^*$ gilt $x \in L^*$ genau dann, wenn $f(x) \in L$.

Wdh.: Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Wdh.: Landkarte mit Karp's 20 Reduktionen

Vorlesung VL-16 Einige NP-vollständige Zahlprobleme

- NP-Vollständigkeit von SUBSET-SUM
- NP-Vollständigkeit von PARTITION
- NP-Vollständigkeit von Bin Packing und Rucksack
- Pseudo-polynomielle Zeit
- Starke NP-Schwere
- Das THREE-PARTITION Problem

NP-Vollständigkeit von SUBSET-SUM

SUBSET-SUM: Definition

Problem: SUBSET-SUM

Eingabe: Positive ganze Zahlen a_1, \ldots, a_n ; eine ganze Zahl b

Frage: Existiert eine Indexmenge $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = b$?

Beispiel: Eingabe für SUBSET-SUM

Zahlen 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 und b = 999

Satz

SUBSET-SUM ist NP-vollständig.

SUBSET-SUM: Reduktion

Satz

SUBSET-SUM ist NP-vollständig.

Beweis:

- SUBSET-SUM liegt in NP
- Wir zeigen 3-SAT \leq_p SUBSET-SUM
- Die Boole'sche Formel φ in 3-CNF sei eine Instanz von 3-SAT
- Die Formel hat Klauseln c_1, \ldots, c_m mit den Variablen x_1, \ldots, x_n

In der Reduktion arbeiten wir mit Dezimalzahlen mit jeweils n+m Ziffern. Die k-te Ziffer einer Zahl z bezeichnen wir dabei mit z(k).

Reduktion (1a): Var-Zahlen / Definition

Wir definieren:

$$S^+(i) = \{j \in \{1, ..., m\} \mid \text{Klausel } c_j \text{ enthält Literal } x_i\}$$

 $S^-(i) = \{j \in \{1, ..., m\} \mid \text{Klausel } c_j \text{ enthält Literal } \bar{x}_i\}$

Für jede Boolesche Variable x_i mit $1 \le i \le n$ erzeugen wir zwei entsprechende Var-Zahlen a_i^+ und a_i^- mit den folgenden Ziffern:

$$a_i^+(i) = 1$$
 und für alle $j \in S^+(i)$: $a_i^+(n+j) = 1$
 $a_i^-(i) = 1$ und für alle $j \in S^-(i)$: $a_i^-(n+j) = 1$

Alle anderen Ziffern in diesen Dezimaldarstellungen sind 0.

Reduktion (1b): Var-Zahlen / Beispiel

Als Beispiel betrachten wir die Formel

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$$

Die folgenden Var-Zahlen werden erzeugt:

```
a_1^+ = 100010
a_1^- = 100000
a_2^+ = 010011
a_2^- = 010000
a_3^+ = 001010
a_3^- = 001001
a_4^+ = 000100
a_4^- = 000101
```

Reduktion (2): Dummy-Zahlen

- Wir definieren für jede Klausel c_j zwei entsprechende Dummy-Zahlen d_j und d'_i .
- Dummy-Zahlen haben nur an der Ziffernposition n + j eine Ziffer 1; alle anderen Ziffern sind 0.

Fortsetzung des Beispiels

Wir betrachten wieder die Formel

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$$

Die Dummy-Zahlen für die beiden Klauseln lauten dann:

```
d_1 = 000010
```

$$d_1' = 000010$$

$$d_2 = 000001$$

$$d_2' = 000001$$

Reduktion (3): Zielsumme

Die Zielsumme b definieren wir folgendermassen:

- b(k) = 1 für $1 \le k \le n$,
- b(k) = 3 für $n + 1 \le k \le n + m$.

Abschluss des Beispiels

Wir betrachten wieder die Formel

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$$

Die Zielsumme lautet dann:

$$b = 111133$$

Reduktion (4): Illustration

Mögliche Zahlwerte für eine Formel mit n Variablen und m Klauseln:

	1	2	3	• • •	n	n+1	n+2	• • •	n+m
a_1^+	1	0	0		0	1	0		• • •
a_1^-	1	0	0	• • •	0	0	0	• • •	
$\begin{vmatrix} a_2^+ \end{vmatrix}$	0	1	0		0	0	1		
a_2^-	0	1	0	• • •	0	1	0	• • •	
a_{2}^{-} a_{3}^{+}	0	0	1	• • •	0	1	1	• • •	
:	:	:	:	•	:	:	:	:	:
a_n^+	0	0	0		1	0	0		
a_n^-	0	0	0		1	0	1		
d_1	0	0	0	• • •	0	1	0		0
d_1'	0	0	0	• • •	0	1	0	• • •	0
:	:	÷	:	-	:	:	:	÷	÷
d_m	0	0	0		0	0	0		1
d'_m	0	0	0	• • •	0	0	0	• • •	1
b	1	1	1		1	3	3		3

Beweis (1): Keine Carry-Overs

- Für jede Dezimalstelle $i \in \{1, ..., n\}$ gilt: Nur zwei der Var-Zahlen und Dummy-Zahlen haben an dieser Stelle die Ziffer 1; alle anderen Zahlen haben an dieser Stelle die Ziffer 0.
- Für jede Dezimalstelle $i \in \{n+1, \ldots, n+m\}$ gilt: Nur fünf der Var-Zahlen und Dummy-Zahlen haben an dieser Stelle die Ziffer 1; alle anderen Zahlen haben an dieser Stelle die Ziffer 0.

Beobachtung: Keine Carry-Overs

Wird eine beliebige Menge von Var-Zahlen und Dummy-Zahlen addiert, so tritt von keiner Dezimalstelle zur nächsten ein Additionsübertrag auf.

Beweis (2): Laufzeit der Reduktion

- Die SAT Instanz φ besteht aus n Variablen und m Klauseln. Die Eingabelänge ist $\geq m+n$.
- Die konstruierte SUBSET-SUM Instanz besteht aus 2n + 2m + 1Dezimalzahlen mit je m + n Dezimalstellen.
- Die Reduktion wird in polynomieller Zeit $O((m+n)^2)$ durchgeführt.

Beweis (3a): Korrektheit

Lemma A: Formel φ erfüllbar \Rightarrow SUBSET-SUM Instanz ist lösbar

Es gibt eine erfüllende Belegung x^* für die Formel φ .

- Falls $x_i^* = 1$, so wählen wir a_i^+ aus; andernfalls wählen wir a_i^-
- Die Summe der ausgewählten Var-Zahlen bezeichnen wir mit A
- Da für jedes $i \in \{1, ..., n\}$ entweder a_i^+ oder a_i^- ausgewählt wurde, gilt A(i) = 1
- Ausserdem gilt $A(n+j) \in \{1, 2, 3\}$ für $1 \le j \le m$, weil in jeder Klausel ein oder zwei oder drei Literale erfüllt sind.
- Falls $A(n+j) \in \{1,2\}$, so wählen wir zusätzlich d_j und/oder d'_j aus, um die Ziffer 3 an Ziffernposition n+j der Summe zu erhalten.

Also gibt es eine Teilmenge mit der gewünschten Zielsumme b.

Beweis (3b): Korrektheit

Lemma B: SUBSET-SUM Instanz ist lösbar \Rightarrow Formel φ erfüllbar

Es gibt eine Teilmenge K_A der Var-Zahlen (mit Summe A) und eine Teilmenge K_D der Dummy-Zahlen (mit Summe H), die sich zur Zielsumme b aufaddieren; also: A + H = b.

- Die Menge K_A enthält für jedes $i \in \{1, ..., n\}$ genau eine der beiden Var-Zahlen a_i^+ und a_i^- ; andernfalls wäre $A(i) \neq 1$.
- Wir setzen $x_i = 1$ falls $a_i^+ \in K_A$, und andernfalls $x_i = 0$.
- Es gilt $A(n+j) \ge 1$ für $1 \le j \le m$. Ansonsten wäre $A(n+j) + H(n+j) \le A(n+j) + 2 < 3$.
- Dadurch ist sichergestellt, dass in jeder Klausel mindestens eines der Literale den Wert 1 hat.

Die Formel φ ist also erfüllbar.

NP-Vollständigkeit von PARTITION

PARTITION: Definition

Problem: PARTITION

Eingabe: Positive ganze Zahlen a'_1, \ldots, a'_n ; mit $\sum_{i=1}^n a'_i = 2A'$

Frage: Existiert eine Indexmenge $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a'_i = A'$?

PARTITION ist der Spezialfall von SUBSET-SUM mit $b := (\sum a_i)/2$

Satz

PARTITION ist NP-vollständig.

Beweis:

- PARTITION liegt in NP
- Wir zeigen SUBSET-SUM \leq_p PARTITION

PARTITION: Reduktion

- Es sei $a_1,\ldots,a_n\in\mathbb{N}$ und $b\in\mathbb{N}$ eine beliebige Instanz von SUBSET-SUM
- Es sei $S := \sum_{i=1}^{n} a_i$, und o.B.d.A. gilt $S \ge b$

Wir bilden diese SUBSET-SUM Instanz auf eine PARTITION Instanz ab, die aus den folgenden n + 2 Zahlen a'_1, \ldots, a'_{n+2} besteht:

- $a'_i = a_i$ für $1 \le i \le n$
- $a'_{n+1} = 2S b$ und $a'_{n+2} = S + b$

Die Summe dieser n+2 Zahlen beträgt $\sum_{i=1}^{n+2} a_i' = 4S$. Daher gilt A' := 2S für die PARTITION Instanz.

Die Reduktion wird in polynomieller Zeit durchgeführt.

Beweis (1): Korrektheit

Lemma A: SUBSET-SUM Instanz lösbar ⇒ PARTITION Instanz lösbar

- Wenn es in der SUBSET-SUM Instanz eine Teilmenge der Zahlen a_1, \ldots, a_n mit der Summe b gibt, so haben die enstprechenden Zahlen a'_1, \ldots, a'_n in der PARTITION Instanz ebenfalls die Summe b.
- Wir fügen die Zahl $a'_{n+1} = 2S b$ zu dieser Teilmenge dazu und erhalten eine Teilmenge mit der gewünschten Zielsumme A' = 2S.

Beweis (2): Korrektheit

Lemma B: PARTITION Instanz lösbar ⇒ SUBSET-SUM Instanz lösbar

- In der Lösung der PARTITION Instanz sind die beiden Zahlen $a'_{n+1}=2S-b$ und $a'_{n+2}=S+b$ nicht in derselben Teilmenge, da $a'_{n+1}+a'_{n+2}=3S>2S=A'$ gilt.
- Eine der Teilmengen besteht aus $a'_{n+1} = 2S b$ und einer Teilmenge der Zahlen a'_1, \ldots, a'_n mit Gesamtsumme A' = 2S.
- Die entsprechenden Zahlen in der SUBSET-SUM Instanz haben dann die Summe b.

NP-Vollständigkeit von Bin Packing und Rucksack

Bin Packing

Beim Bin Packing sollen n Objekte mit Gewichten w_1, \ldots, w_n auf eine möglichst kleine Anzahl von Kisten mit Gewichtslimit B verteilt werden.

Problem: Bin Packing (BPP)

Eingabe: Zahlen B und $w_1, \ldots, w_n \in \{1, \ldots, B\}$; eine Schranke γ

Frage: Können Objekte mit den gegebenen Grössen w_1, \ldots, w_n

in γ Kisten der Grösse B gepackt werden?

Satz

Bin Packing ist NP-vollständig.

Beweis:

- Wir zeigen PARTITION \leq_{p} Bin Packing
- Wir setzen $\gamma = 2$, und $w_i = a_i'$ für $1 \le i \le n$, und B = A'

Rucksack

Beim Rucksack Problem sollen Objekte ausgewählt werden, die in einen Rucksack mit Gewichtsschranke *B* passen und den Gesamtprofit maximieren.

Problem: Rucksack / Knapsack (KP)

Eingabe: Natürliche Zahlen $w_1, \ldots, w_n, p_1, \ldots, p_n, B, \gamma$

Frage: Existiert eine Teilmenge der Objekte mit

Gesamtgewicht höchstens B und Gesamtprofit mindestens γ ?

Satz

Rucksack ist NP-vollständig.

Beweis:

- Wir zeigen SUBSET-SUM ≤_p Rucksack
- Wir setzen $w_i = a_i$ und $p_i = a_i$ für $1 \le i \le n$, und $B = \gamma = b$

Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Pseudo-polynomielle Zeit und Starke NP-Schwere

Kodierungslänge (1)

- Es sei X ein algorithmisches Problem
- Die Laufzeit eines Algorithmus A für Problem X messen wir in der Kodierungslänge der Instanzen / von X
- Die Kodierungslänge |/| ist die Anzahl der Symbole in einer "vernünftigen" Beschreibung der Instanz /
- Kleine (polynomiell grosse) Änderungen in derartigen Beschreibungen sind für unsere Definitionen / Sätze / Beweise / Resultate irrelevant

Kodierungslänge (2)

Beispiel: Ungerichtete Graphen

Vernünftige Beschreibungen von ungerichteten Graphen G = (V, E) sind

- Adjazenzlisten mit Länge $\ell_1(G) = O(|E| \log |V|)$
- Adjazenzmatrizen mit Länge $\ell_2(G) = O(|V|^2)$

Es gilt:

- $\ell_1(G)$ ist polynomiell beschränkt in $\ell_2(G)$
- $\ell_2(G)$ ist polynomiell beschränkt in $\ell_1(G)$

Kodierungslänge (3)

Beispiel: Natürliche Zahlen

Vernünftige Beschreibungen von natürlichen Zahlen n sind

- Dezimaldarstellung mit Länge $\approx \log_{10} n$
- Binärdarstellung mit Länge $\approx \log_2 n$
- Oktaldarstellung mit Länge $\approx \log_8 n$
- Hexadezimaldarstellung mit Länge $\approx \log_{16} n$

Für alle reellen Zahlen a,b>1 gilt: $\log_a n = \log_a b \cdot \log_b n$ Die verschiedenen Kodierungslängen unterscheiden sich daher nur um einen konstanten Faktor.

Anmerkung

Die Zahl n stellt den Wert n mit Kodierungslänge $O(\log n)$ dar. Der Wert hängt also exponentiell von der Kodierungslänge ab.

Zahlenwert versus Kodierungslänge

Definition: Number

Für eine Instanz / eines Entscheidungsproblems bezeichnen wir mit Number(I) den Wert der grössten in I vorkommenden Zahl.

Beispiel

- Für eine TSP Instanz I ist Number(I) der Wert der grössten Städtedistanz $max_{i,j}d(i,j)$ oder der Wert γ .
- Für eine SUBSET-SUM Instanz *I* ist *Number(I)* das Maximum der Zahlen a_1, \ldots, a_n und *b*.
- Für eine SAT Instanz l ist Number(l) das Maximum der Zahlen n und m. (Ergo: $Number(l) \le |l|$.)

Der Parameter *Number(I)* ist nur für Probleme relevant, in denen Distanzen, Kosten, Gewichte, Längen, Profite, Zeitintervalle, Abstände, etc eine Rolle spielen.

Pseudo-polynomielle Zeit (1): Definition

Definition: Pseudo-polynomielle Zeit

Ein Algorithmus A löst ein Problem X in pseudo-polynomieller Zeit, falls die Laufzeit von A auf Instanzen I von X polynomiell in |I| und Number(I) beschränkt ist.

Satz

Die Probleme SUBSET-SUM, PARTITION und Rucksack sind pseudo-polynomiell lösbar.

Pseudo-polynomielle Zeit (2): Dynamisches Programm

Problem: SUBSET-SUM

Eingabe: Positive ganze Zahlen a_1, \ldots, a_n ; eine ganze Zahl b

Frage: Existiert eine Indexmenge $I \subseteq \{1, ..., n\}$ mit $\sum_{i \in I} a_i = b$?

Satz

SUBSET-SUM ist in pseudo-polynomieller Zeit $O(n \cdot b)$ lösbar.

Beweis:

- Dynamische Programmierung: Für k = 0, ..., n und c = 0, ..., b setzen wir F[k, c] = TRUE genau dann, wenn es eine Indexmenge $I \subseteq \{1, ..., k\}$ mit $\sum_{i \in I} a_i = c$ gibt.
- F[0, c] = (c == 0) für c = 0, ..., b $F[k, c] = F[k - 1, c - a_k] \vee F[k - 1, c]$
- Schlussendlich findet man die Antwort in F[n, b]

Starke NP-Schwere (1): Definition

Definition: Stark NP-schwer (engl.: NP-hard in the strong sense)

Ein Entscheidungsproblem X ist stark NP-schwer, wenn es ein Polynom $q: \mathbb{N} \to \mathbb{N}$ gibt, sodass die Restriktion X_q von X auf Instanzen I mit $Number(I) \leq q(|I|)$ NP-schwer ist.

Also: Das Problem X ist sogar dann NP-schwer, wenn alle Zahlenwerte in der Instanz I nur polynomiell gross (gemessen in |I|) sind.

Übung (unter der Annahme P≠NP)

Welche der folgenden Probleme sind stark NP-schwer?

- SAT und 3-SAT
- CLIQUE, INDEP-SET, Vertex Cover
- Ham-Cycle und TSP
- SUBSET-SUM und PARTITION
- Bin Packing

Starke NP-Schwere (2)

Satz

Es sei X ein stark NP-schweres Entscheidungsproblem. Falls X pseudo-polynomiell lösbar ist, so gilt P=NP.

Also: Pseudo-polynomiell und stark NP-schwer schliessen einander aus (unter unserer Standardannahme $P \neq NP$)

Beweis:

- X ist stark NP-schwer
- Ergo gibt es ein Polynom $q: \mathbb{N} \to \mathbb{N}$, für das die Restriktion X_q von X auf Instanzen I mit $Number(I) \leq q(|I|)$ NP-schwer ist.
- Ein pseudo-polynomieller Algorithmus A für X hat Laufzeit polynomiell beschränkt in |I| und Number(I)
- Wendet man Algorithmus A auf X_q an, so ist die Laufzeit polynomiell beschränkt in |I| und q(|I|), und daher polynomiell beschränkt in |I|
- $(X_q \text{ NP-schwer}) \text{ und } (X_q \text{ polynomiell lösbar}) \Rightarrow \text{P=NP}$

Starke NP-Schwere (3)

Problem: THREE-PARTITION

Eingabe: Positive ganze Zahlen $a_1, \ldots, a_n, b_1, \ldots, b_n$, und c_1, \ldots, c_n mit $\sum_{i=1}^n (a_i + b_i + c_i) = nS$

Frage: Gibt es zwei Permutationen α, β von $1, \ldots, n$, sodass $a_{\alpha(i)} + b_{\beta(i)} + c_i = S$ für $1 \le i \le n$ gilt?

Satz (ohne Beweis)

THREE-PARTITION ist stark NP-schwer.

Übung

Zeigen Sie: Bin Packing ist stark NP-schwer.