Automaten und Berechenbarkeit Klausur WS22/23

23.02.2023

- Zeit: 120 Minuten
- Blätter selber mitbringen
- 70 Punkte

Aufgabe 1 (6P.)

Wir betrachten die Sprache $A = \{\omega | \omega \in \{a, b\}^*, \omega \text{ enthält das Teilwort } aaa \Leftrightarrow |\omega| \equiv_2 0\}$ Geben Sie einen DFA an, der A akzeptiert.

Aufgabe 2 (8P.)

- a) Untersuchen Sie, ob $B_1 = \{\omega | \omega \in \{a, b\}^*, |\omega| \text{ ist eine Primzahl kleiner als 10} \}$ eine reguläre Sprache ist.
- b) Es sei $B_2 = \{u\$v|u, v \in \{a,b\}^*, |u| = 2|v|\}$. Zeigen Sie unter Anwendung des Satzes von Myhill-Nerode, dass B_2 nicht regulär ist.

Aufgabe 3 (14P.)

Es sei $C_1 = \{a^i b^j \$ b^k a^l | i, j, k, l \in \mathbb{N} \text{ und } i+j=k+l\}$. Geben Sie eine kontextfreie Grammatik an, die C_1 erzeugt.

- b) Formulieren Sie das Pumping-Lemma für kontextfreie Sprachen.
- c) Zeigen Sie, dass $C_2 = \{a^n \$ b^{n^2} | n \in \mathbb{N}\}$ keine kontextfreie Sprache ist.

Aufgabe 4 (4P.)

- a) Geben Sie eine Funktion an, die nicht Turing-berechenbar sit.
- b) Geben Sie eine Sprache an, die nicht durch eine Grammatik erzeugbar ist.

Aufgabe 5 (16P.)

Es sei $D = \{\langle M \rangle | \text{M}$ ist eine TM und M akzeptiert ein Palindrom der Länge $3\}$

- a) Definieren Sie die Begriffe Entscheidbarkeit und rekursive Aufzählbarkeit.
- **b)** Untersuchen Sie, ob *D* entscheidbar ist.
- c) Zeigen Sie $D \in RE$.
- d) Welche Aussage können Sie über \bar{D} bezüglich Entscheidbarkeit und Semi-Entscheidbarkeit machen?

Aufgabe 6 (14P.)

Entscheiden Sie, ob folgende Aussagen war sind. Eine kurze Begründung genügt jeweils.

- a) Jede endliche Sprache ist entscheidbar.
- b) Es gibt eine Sprache, die von einem NFA akzeptiert werden kann, aber nicht von einem deterministischen Kellerautomaten.
- c) Die semi-charakteristische Funktion jeder entscheidbaren Menge ist berechenbar.
- f) Das Komplement jeder rekursiv aufzählbaren Menge ist durch eine Grammatik erzeugbar.
- e) Der Durchschnitt einer kontextfreien und einer regulären Sprache ist kontextfrei.
- f) Falls $A \leq_p B$ gilt und A NP-Vollständig ist, so ist B NP-Schwer.
- g) Falls $A \leq B$ ist und $B \notin REC$ gilt, so ist auch $A \notin REC$

Aufgabe 7 (8P.)

- a) Definieren Sie die Reduzierbarkeit $(A \leq B)$ einer Sprache $A \subseteq \Sigma^*$ auf eine Sprache $B \subseteq \Sigma^*$.
- b) Es seien CUOUF I/C IV

```
CLIQUE = \{ \langle G = (V, E), k \rangle \, | \text{G besitzt eine Clique der Größe k } \} und
```

 $INDEPENDENTSET=\{\langle G=(V,E),l\rangle\,|{\rm G}$ besitzt eine unabhängige Menge der Größe k} (wie in der Vorlesung definiert).

Zeigen Sie: $CLIQUE \leq_p INDEPENDENTSET$.