

SEQUENCE LISTING

<110> Walke, D. Wade
Maricar, Miranda
Yu, Xuanchuan (Sean)
Friddle, Carl Johan

<120> Novel Human Kinase and Polynucleotides
Encoding the Same

<130> LEX-0273-USA

<150> US 60/251,941
<151> 2000-12-07

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1275
<212> DNA
<213> Homo sapiens

<400> 1
atgagcgtgg gctgcccaga gcctgagccg ccccgtcccc tgacctgctg tgggcgggg 60
actgcccctgc ggcctgggtgc cggtgtgcc cttctactg aagacatgca ggcctgact 120
ctccgcacac tggccgcag cgacgtcacc aagcactacg aactagtccg ggagctggc 180
aaaggcacct atggaaaggt tgacctgggt gtctacaagg gcacaggcac aaaaatggca 240
ctgaagtttgc tgaacaagag caaaaccaag ctgaagaact tcctacggga ggtgagcatc 300
accaacagcc tctcctccag ccccttcata atcaaggctt ttgacgtggt ctttgagaca 360
gaggactgct acgtcttgc ccaggagtagc gcacctgctg gggacctgtt tgacatcatc 420
cctcccccagg tggggctccc tgaggacacg gtgaagcgct gtgtgcagca gctggcctg 480
gcgcgtggact tcatgcacgg gccgcagctg gtgcaccgcg acatcaagcc cgagaacgtg 540
ctgctgttcg accgcgagtg cgcgcgtta aagctggccg acttcggcat gacgcgccgc 600
gtgggctgcc ggcgtcaagcg cgtgagcggc accatccctt acacggcgc tgaggtgtgc 660
caggcgggccc ggcgcacgg gctggcggtg gacacggcg tggacgtgtg ggcctcggc 720
gtgctcatct tctgcgtgtc caccggcaac ttcccgtggg aggccggcgtc gggccggc 780
gccttcttcg aggagttcgt gcgcgtggcag cggggccgc tgccggggct gccttcgcag 840
tggcgccgc tCACCGAGCC CGCGCTGCAC atgttccagc gcttactggc cctggagccc 900
gagcgcgcgc gcccagccaa ggaggtgttc cgcttcctca agcacgagct cacgtccgag 960
ctgcgcgcgc gcccctcgca cccgcgcgc aagccccccg gggaccgcgc gcccggc 1020
ggggccactgc gcctcgaggc gcctggccg ctcaagcgga cgggtgtgac cgagagcggc 1080
agcggctccc gggccggc cccgcgcgtc gggtcgggtc ctttgcggcgt gcccgtggc 1140
gtgccagtgc ccgtggcggt gcctgtgccc gagccggcc tagctccccca gggggcccc 1200
ggccggaccg acggccgcgc ggacaagagc aaaggcagg tggtgctggc cacggccatc 1260
gagatctgcg tctga 1275

<210> 2
<211> 424
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Val Gly Cys Pro Glu Pro Glu Pro Pro Arg Ser Leu Thr Cys

1	5	10	15
Cys	Gly	Pro	Gly
Gly	Thr	Ala	Pro
Pro	Gly	Pro	Gly
Gly	Thr	Ala	Pro
Thr	Gly	Pro	Gly
Pro	Gly	Ala	Gly
Gly	Val	Pro	Leu
Val	Leu	Leu	Leu
20	25	30	
Thr	Glu	Asp	Met
Gln	Ala	Leu	Thr
Leu	Arg	Thr	Leu
Ala	Ala	Ser	Asp
35	40	45	
Val	Thr	Lys	His
Tyr	Glu	Leu	Val
Leu	Arg	Glu	Leu
Gly	Lys	Gly	Thr
Tyr	55	60	
Gly	Lys	Val	Asp
Leu	Val	Val	Tyr
Tyr	Lys	Gly	Thr
Gly	70	75	80
Leu	Lys	Phe	Val
Asn	Lys	Ser	Lys
Lys	Thr	Lys	Leu
Asn	Phe	Lys	Arg
85	90	95	
Glu	Val	Ser	Ile
Thr	Asn	Ser	Leu
Ser	Ser	Ser	Pro
Ser	Phe	Ile	Ile
100	105	110	
Val	Phe	Asp	Val
Val	Phe	Glu	Thr
Glu	Asp	Cys	Tyr
Tyr	Val	Phe	Ala
115	120	125	
Glu	Tyr	Ala	Pro
Ala	Gly	Asp	Leu
Phe	Asp	Ile	Ile
Asp	Ile	Pro	Pro
130	135	140	
Gly	Leu	Pro	Glu
Glu	Asp	Thr	Val
Val	Lys	Arg	Cys
Cys	Val	Gln	Gln
Gly	Leu	Gly	Leu
145	150	155	160
Ala	Leu	Asp	Phe
Met	His	Gly	Arg
Gly	Gln	Leu	Val
Leu	Val	His	Arg
Asp	Asp	Asp	Ile
165	170	175	
Pro	Glu	Asn	Val
Leu	Leu	Phe	Asp
Asp	Arg	Glu	Cys
Arg	Cys	Arg	Arg
180	185	190	
Ala	Asp	Phe	Gly
Met	Thr	Arg	Arg
Gly	Val	Gly	Cys
Cys	Arg	Val	Arg
Val	195	200	205
Ser	Gly	Thr	Ile
Ile	Pro	Tyr	Thr
Ala	Pro	Glu	Val
Pro	Cys	Gln	Ala
Gly	Arg	Gly	
210	215	220	
Ala	Asp	Gly	Leu
Leu	Ala	Val	Asp
Asp	Thr	Gly	Val
Val	Asp	Asp	Trp
Trp	Ala	Phe	Gly
225	230	235	240
Val	Leu	Ile	Phe
Cys	Val	Leu	Thr
Gly	Asn	Phe	Pro
Pro	Trp	Glu	Ala
Ala	Ala	Ala	
245	250	255	
Ser	Gly	Ala	Asp
Asp	Ala	Phe	Phe
Phe	Glu	Glu	Phe
Glu	Val	Arg	Trp
Arg	260	265	270
Arg	Leu	Pro	Gly
Gly	Leu	Pro	Ser
Ser	Gln	Gly	Gly
Gly	275	280	285
Leu	Arg	Met	Phe
Gln	Arg	Leu	Leu
Arg	Leu	Ala	Leu
Leu	Glu	Pro	Glu
Glu	290	295	300
Pro	Ala	Lys	Glu
Glu	Val	Phe	Arg
Phe	Leu	Lys	His
Leu	Lys	Glu	Leu
Thr	305	310	315
Leu	Arg	Arg	Arg
Arg	Pro	Ser	His
Ser	325	330	335
Pro	Pro	Ala	Ala
Ala	Gly	Pro	Leu
Gly	Leu	Arg	Gly
Leu	Glu	Ala	Pro
Pro	340	345	350
Arg	Thr	Val	Leu
Leu	Thr	Glu	Ser
Ser	Gly	Gly	Ser
Gly	355	360	365
Ala	Val	Gly	Ser
Ser	Val	Pro	Leu
Val	Pro	Val	Pro
Pro	370	375	380
Val	Pro	Val	Pro
Val	Pro	Glu	Pro
Glu	385	390	395
Gly	Arg	Thr	Asp
Arg	Gly	Asp	Ala
Gly	405	410	415
Ala	Thr	Ala	Ile
Ile	Glu	Ile	Cys
Cys	Val		
	420		

<210> 3

<211> 1473

<212> DNA

<213> Homo sapiens

<400> 3

ttgcaccccg	gtccatggtc	gtggcgccct	gagcccccg	ggccgggcag	acgaagaccg	60
cgacggcgcc	caggccccct	gccgcggggt	ccccgcggcc	ccagcccagg	gagaagatga	120
gcgtgggtc	cccaagacct	gagccgcccc	gtccctgac	ctgctgtggg	ccggggactg	180
ccccctggcc	tggtgcggt	gtgccccttc	tcactgaaga	catgcaggcc	ctgactctcc	240
gcacactggc	cgccagcgac	gtcaccaagc	actacaact	agtccggag	ctggcaaaag	300
gcacctatgg	gaaggtgac	ctgggtgtct	acaagggcac	aggcacaaaa	atggcactga	360
agtttgtgaa	caagagaaa	accaagctga	agaacttcct	acgggagggt	agcatcacca	420
acagcctctc	ctccagcccc	ttcatcatca	aggtcttga	cgtggcttt	gagacagagg	480
actgctacgt	ctttggccag	gagtaacgac	ctgctgggga	cctgtttgac	atcatccctc	540
cccagggtggg	gctccctgag	gacacgggtga	agcgctgtgt	gcagcagctg	ggcctggcgc	600
tggacttcat	gcacggcg	cagctggtgc	accgcacat	caagcccag	aacgtgctgc	660
tgttcgaccg	cgagtgcgc	cgctaaagc	tggccactt	cggcacatgac	cgccgcgtgg	720
gctgcccgt	caagcgcgt	agcggcacca	tccctacac	ggcgcctgag	gtgtgcagg	780
cgggccgcgc	cgacgggctg	gcccgtggaca	cgggcgtgg	cgtgtggg	ttcggcgtgc	840
tcatcttctg	ctgtctacc	gcacacttcc	cgtggaggc	ggcgtcgggc	gccgacgcct	900
tcttcgagga	gttcgtgc	tggcagcg	gcccgtgc	ggggctgcct	tccgactggc	960
gccgcttac	cgagccgc	ctgcgcatgt	tccagcg	actggccctg	gagcccagc	1020
gccgcggccc	agccaaggag	gtgttccgt	tcccaagca	cgagctc	tccgagctgc	1080
gccgcggcc	ctcgaccgc	gcgcgcaagc	ccccggg	ccgcggccc	gccgcgggc	1140
cactgegcct	cgaggcgc	ggccgcgtca	agcggacgg	gtcgaccgag	agcggcagcg	1200
gctcccgccc	cgccgcgc	gcccgtgggt	cggtgc	gcccgtgc	gtgcgggtgc	1260
cagtgcgcgt	gcccgtgc	gtgcccggagc	ccggcctagc	tcccccagg	ccccccggcc	1320
ggaccgacgg	ccgcgcggac	aagagcaaag	ggcagggtgg	gtcgccac	gccatcgaga	1380
tctgcgtctg	agtgcgc	tcc	gcccggag	cagccgggc	ccgcggcgag	1440
ccggtgcccg	gtcggcggt	agggaatgg	gcc			1473