Linguaggi Formali e Traduttori

3.3 Eliminazione dell'ambiguità

- Sommario
- Ambiguità delle espressioni in forma infissa
- Eliminazione dell'ambiguità delle espressioni
- Esempio di derivazione (1/2)
- Esempio di derivazione (2/2)
- Un linguaggio inerentemente ambiguo
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

- Mostriamo tecniche per <u>eliminare l'ambiguità</u> da una grammatica <u>in alcuni casi</u>
- Mostriamo un esempio di linguaggio inerentemente ambiguo

Ambiguità delle espressioni in forma infissa

Precedenza degli operatori

Associatività degli operatori

Eliminazione dell'ambiguità delle espressioni

Strategia

- Si "stratificano" e "sbilanciano" le espressioni
- Espressione = somma (associativa a sinistra) di termini
- Termine = prodotto (associativo a sinistra) di fattori
- Fattore = costante o espressione tra parentesi

La grammatica delle espressioni modificata

$$({E,T,F},{0,1,...,9,+,*,(,)},P,E)$$

dove $oldsymbol{P}$ è l'insieme delle seguenti produzioni:

- $E o T \mid E + T$
- $T \rightarrow F \mid T * F$
- ullet $F
 ightarrow 0\mid 1\mid \cdots \mid 9\mid (E)$

Note

- Quella proposta è una modifica <u>ad hoc</u> per la grammatica.
- L'eliminazione dell'ambiguità (laddove possibile) va pianificata per ogni grammatica.

Esempio di derivazione (1/2)

$$E \Rightarrow E+T$$
 $\Rightarrow T+T$
 $\Rightarrow F+T$
 $\Rightarrow 1+T$
 $\Rightarrow 1+T*F$
 $\Rightarrow 1+F*F$
 $\Rightarrow 1+2*F$
 $\Rightarrow 1+2*3$

Nota

Anche nella grammatica modificata, l'espressione la cui struttura comporta il calcolo della moltiplicazione prima della somma è generabile senza l'uso di parentesi, in quanto la convenzione abituale dà precedenza alla moltiplicazione rispetto alla somma.

Esempio di derivazione (2/2)

$$egin{array}{lll} E & \Rightarrow & T & \ \Rightarrow & T*F & \ \Rightarrow & F*F & \ \Rightarrow & (E)*F & \ \Rightarrow & (E+T)*F & \ \Rightarrow & (T+T)*F & \ \Rightarrow & (F+T)*F & \ \Rightarrow & (1+F)*F & \ \Rightarrow & (1+2)*F & \ \Rightarrow & (1+2)*S & \ \end{array}$$

Nota

Nella grammatica modificata, l'espressione la cui struttura comporta il calcolo della somma prima della moltiplicazione è generabile solo con parentesi.

Un linguaggio inerentemente ambiguo

Non esiste alcuna grammatica <u>non ambigua</u> che generi il linguaggio

$$L = \{a^n b^n c^m d^m \mid n \geq 1, m \geq 1\} \cup \{a^n b^m c^m d^n \mid n \geq 1, m \geq 1\}$$

pertanto $m{L}$ si definisce inerentemente ambiguo.

Intuizione

In ogni grammatica che genera L ci sono sempre almeno due derivazioni canoniche distinte che generano una stringa della forma $a^nb^nc^nd^n$.

Esempio

•	$S o AB \mid$	$oldsymbol{C}$
•	A o aAb	ab
•	B o cBd	cd
•	C o aCd	$\mid aDd$
•	D o bDc	bc

\boldsymbol{S}	\Rightarrow_{lm}	AB	\boldsymbol{S}	\Rightarrow_{lm}	\boldsymbol{C}
	\Rightarrow_{lm}	aAbB		\Rightarrow_{lm}	aCd
	\Rightarrow_{lm}	aabbB		\Rightarrow_{lm}	aaDdd
	\Rightarrow_{lm}	aabbcBd		\Rightarrow_{lm}	aabDcdd
	\Rightarrow_{lm}	aabbccdd		\Rightarrow_{lm}	aabbccdd

Esercizi

Data la grammatica

$$B
ightarrow t \mid f \mid B \wedge B \mid B ee B \mid
eg B \mid (B)$$

delle espressioni booleane, risolvere i seguenti esercizi:

- 1. Modificare la grammatica per eliminarne l'ambiguità, dando ai connettivi la precedenza $V < \Lambda < \neg$ e l'associatività a destra per $V \in \Lambda$.
- 2. Usando la grammatica non ambigua ottenuta nell'esercizio precedente, mostrare le derivazioni a sinistra, a destra e gli alberi sintattici relativi alle espressioni $t \land f \lor t$ e $\neg t \land f$.