Two and a Half Peaks

The Phenomenology of Yoctosecond Pulses from a Quark-Gluon Plasma

Peter Somkuti

somkuti@hep.itp.tuwien.ac.at

Institute for Theoretical Physics Vienna University of Technology

December 6th, 2011

[Ipp et al., 2009]

Outline

- The anisotropic quark-gluon plasma (QGP)
- Photon production rate in the QGP
- Bjorken picture and anisotropy model
- Time dependent photon signals and double pulses!

Our whole universe was in a hot, dense state ..

The anisotropic quark-gluon plasma QCD phase diagram, [Hands, 2001]

Ring of fire

The QGP in a heavy-ion collision

Along the beam axis

The QGP in a heavy-ion collision

Hot stuff

The QGP in a heavy-ion collision

Anisotropy buildup

Central rapidity region, [Bjorken, 1983]

Squeeze my lemon

Modified distribution function, [Romatschke & Strickland, 2003]

We repeat

- QCD predicts deconfined phase at asymptotically high energies
- quark-gluon plasma is (probably) created in heavy-ion collisions
- the QGP expands primarily in the longitudinal direction
- \blacksquare momentum-space anisotropy (ξ) due to expansion

Why photons?

- QGP undergoes time evolution until freezeout ◆
- Hadrons can teach us about the freezeout surface
- Photons are produced throughout the entire collision!
- QGP lifetime: $\approx 13 \, \text{fm}/c \, \text{or} \approx 40 \cdot 10^{-24} \, \text{s} = 40 \, \text{ys!}$

Processes contributing to photon production at leading order in $lpha_s$

Hard scattering contributions + soft parts

The setup

 θ_p : Photon emission angle (detector position)

[Schenke & Strickland, 2007]

Strong angle dependence!

[Schenke & Strickland, 2007]

Strong energy dependence!

Bjorken picture for the QGP

Assumption: QGP is rapidity invariant

I see a red part and I want it painted blue

Doppler shift! Rapidity invariance implemented as $\beta=z/t$

Time evolution of anisotropy parameter ξ

Transition parameter γ , [Martinez & Strickland, 2008]

Evolution of the photon rate at $\theta_p=0$

(without plasma cooling)

We repeat again

- Photon rate depends on anisotropy (ξ) , energy (E) and angle (θ_p)
- QGP is rapidity invariant: hyperbolas in Minkowski diagram
- Time evolution of anisotropy \rightarrow time evolution of photon rate!

Returning to the Minkowski diagram..

Space-like curve: photons produced will reach detector at same time $t_d!$

Photon rate at $\theta_p=\pi/2$

Photon pulses at $\theta_p = \frac{\pi}{2}$

for different impact parameters $b, E=2 \, \mathrm{GeV}$

A tale of two pulses

Photon rate at $\theta_p=\pi/4$ and $au_{\mathrm{iso}}=2~\mathrm{fm}/c$

Photon pulse at $\theta_p = \frac{\pi}{8}$ $b = 10 \, \mathrm{fm}$, $E = 3 \, \mathrm{GeV}$, $\tau_{\mathrm{iso}} = 2 \, \mathrm{fm}/c$

Photon pulses at different emission angles

 $b=10~{\rm fm},~E=2~{\rm GeV},~ au_{\rm iso}=2~{\rm fm}/c.$ Ordinates are differently scaled!

Hanbury Brown - Twiss correlations

Hanbury Brown - Twiss correlations

Collinear configuration: $\mathbf{k}_1 \parallel \mathbf{k}_2$.

