Data Mining

Clustering Analysis

Outline

- What is clustering analysis?
- Types of data in clustering analysis
- A categorization of major clustering methods
 - Partitioning methods
 - Hierarchical methods
 - Model-based clustering methods
- Outlier analysis
- Summary

What Is Clustering Analysis?

- Clustering: a collection of data objects.
 - Similar to one another within the same cluster.
 - Dissimilar to the objects in other clusters.
- Clustering analysis.
 - Grouping a set of data objects into clusters, such that objects within each cluster are similar to each other, objects in different clusters are dissimilar to each other.
- Clustering is unsupervised classification:
 - Objects are not labeled with predefined classes.
 - Different from supervised classification where each training data is labeled with class information

An Example

Problems With Clustering

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- And in most cases, looks are not deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.

Example: Curse of Dimensionality

- Assume random points within a bounding box,
 e.g., values between 0 and 1 in each dimension.
- In 2 dimensions: a variety of distances between 0 and 1.41.
- In 10,000 dimensions, the difference in any one dimension is distributed as a triangle.

 Actual distance between two random points is the sqrt of the sum of squares of essentially the same set of differences.

General Applications

- Typical applications.
 - As a stand-alone tool to get insight into data distribution.
 - As a preprocessing step for other algorithms.
- (Spatial) data analysis
- Image processing
- Economic science (especially market research)
- WWW
 - Automatic document categorization
 - Web usage mining: cluster web log data to discover groups of similar access patterns
- Business : customer groups
- Biology: animal and plant taxonomy, Categorize genes by functionality

High-Dimension Application: SkyCat

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands).
- Problem: cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Sky Survey is a newer, better version.

Clustering CD's (Collaborative Filtering)

- Intuitively: music divides into categories, and customers prefer a few categories.
 - But what are categories really?
- Represent a CD by the customers who bought it.
- Similar CD's have similar sets of customers, and vice-versa.

The Space of CD's

- Think of a space with one dimension for each customer.
 - Values in a dimension may be 0 or 1 only.
- A CD's point in this space is $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the ith customer bought the CD.
 - Compare with boolean matrix: rows = customers;cols. = CD's.
- For Amazon, the dimension count is tens of millions.

Clustering Documents

- Represent a document by a vector $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the ith word (in some order) appears in the document.
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words.
- Documents with similar sets of words may be about the same topic.

Example: DNA Sequences

- Objects are sequences of {C,A,T,G}.
- Distance between sequences is edit distance, the minimum number of inserts and deletes needed to turn one into the other.

What Is Good Clustering?

- A good clustering method will produce high quality clusters with.
 - High <u>intra-class</u> similarity.
 - Low <u>inter-class</u> similarity.
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its clustering approach used.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Interpretability and usability

Data Structures

Data matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & & \\ d(3,1) & d(3,2) & 0 & & & \\ \vdots & \vdots & \vdots & & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Measure the Quality of Clustering

- Dissimilarity/similarity metric: dissimilarity is expressed in terms
 of a distance function, which is typically metric: d(i, j).
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal variables, and temporal data.
- Weights should be associated with different variables based on applications and data semantics.
- There is a separate "quality" function that measures the "goodness" of a cluster.

Type of Data in Clustering Analysis

- Interval-scaled variables
- Binary variables
- Nominal, and ordinal variables
- Variables of mixed types
- Text
- Temporal

Major Clustering Approaches

- Partitioning algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen' 67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw' 87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Objective: to form a set of clusters that are as compact and separated as possible
- Distance Measure: Euclidean distance between data object and cluster center
- Clustering criterion function:

mean squared error (MSE)

$$MSE = \sum_{i=1}^{k} \sum_{p \subseteq C_i} |x - m_i|^2$$

x: a data object C_i: cluster i m_i: center of cluster i

k: number of clusters

The K-Means Clustering Method

- **Approach**: Given *k*, the *k*-means algorithm is implemented as the following:
 - arbitrarily choose K objects as the initial cluster centers.
 - Repeat:
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - stop when no more new assignment, or when clustering criterion function (mean squared error) converges.

K Means Example (*K*=2)

K-Means

Practice Question

Apply K-means clustering algorithm to partition the following data with 9 data objects:

Comments on the *K-Means* Method

Strength

- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Sensitive to initial seed selection
- Unable to handle noisy data and outliers

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang' 98)
 - Replacing means of clusters with <u>modes</u>
 - Using a <u>frequency</u>-based method to update modes of clusters
 - Using new dissimilarity measures to deal with categorical objects
 - A mixture of categorical and numerical data: k-prototype method

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the nonmedoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling

K-Medoids

- Arbitrarily choose K objects as the initial medoids;
- Repeat:
 - Assign each remaining object to the cluster with the nearest medoids;
 - Randomly select a nonmedoid object O_{random};
 - Compute the total cost, S, of swapping O_j with O_{random};
 - If S<0, then swap O_j with O_{random} to form the new set of k medoids;
- Until no change

k-Medoids

Four Cases – Case A

Replace oj with or

$$p \in o_i$$
; $i \neq j$;

p still closest to oi

no change

$$C_{p,j,r} = 0$$

Four Cases – Case B

Replace oj with or

$$p \in o_j$$

p closest to or

Reassign p to O_r

$$C_{p,j,r} = d(p - o_r) - d(p - o_j)$$

Four Cases — Case C

Replace o_j with o_r $p \in o_j$

p is now closer to o_i $i \neq j$

Reassign p to Oi

$$C_{p,j,r} = d(p - o_i) - d(p - o_j)$$

Four Cases – Case D

Replace oj with or

$$p \in o_i$$
; $i \neq j$;

p closest to or

Reassign p to O_r

$$C_{p,j,r} = d(p - o_r) - d(p - o_i)$$

Practice Question

Apply PAM on the following data, K=2

	Gender	Age	Time	Fever	Cough
Obj1	F	2	2	Υ	N
Obj2	M	2	0.5	N	N
Obj3	F	15	3	Υ	Υ
Obj4	F	18	0.5	Υ	N
Obj5	M	58	4	N	Υ
Obj6	F	44	14	N	Υ

Assuming O_1 and O_5 are the medoids of the 2 clusters initially, after objects are distributed to the two clusters, and we randomly selected O_2 to replace O_1 as the new medoid, should this replacement be carried out?

Practice Question

Assuming O_1 and O_5 are the medoids of the 2 clusters initially, after objects are distributed to the two clusters, and we randomly selected O_2 to replace O_1 as the new medoid, should this replacement be carried out?

The distance(dissimilarity) between pairwise objects

	O ₁	O ₂	O ₃	O ₄	O ₅	O ₆
O ₁						
O_2	0.94					
O ₃	0.36	0.91				
O_4	0.19	0.75	0.39			
O ₅	1.15	1.38	0.99	1.3		
O_6	1.38	2.16	1.22	1.5	1.2	

Practice Question (2)

Assuming the distance(dissimilarity) between pairwise objects is as the following:

	O ₁	O ₂	O ₃	O ₄	O ₅	O ₆
O_1						
O_2	0.94					
O ₃	0.36	0.91				
O_4	0.19	0.75	0.39			
O ₅	1.15	1.38	0.99	1.3		
O_6	1.38	2.16	1.22	1.5	1.2	

Assuming O_1 and O_3 are the medoids of the 2 clusters initially, after objects are distributed to the two clusters, and we randomly selected O_2 to replace O_3 as the new medoid for cluster 2, whats the total cost for this replacement? should this replacement be carried out?

PAM Complexity Analysis

- Total k*(n-k) pairs of (O_i, O_h), k is the number of clusters
- For each pair of (O_i, O_h):
 - compute Tc_{ih} require the examination of (n-k) nonselected objects.
- Total complexity:

$$O(k^*(n-k)^2)$$

Compare K-means and PAM

- K-means is computationally more efficient
- K-means only handles numeric data
- PAM can handle different types of data
- PAM is better in terms of handling outliers in data

The CLARA algorithm

- Objective: to improve the computational efficiency of PAM, through sampling
- Basic idea:
 - draw a sample (size=40+2k) from the original data set, apply PAM on the sample, and finds the medoids of the sample.
 - Repeat the process a fixed number of times and return the medoids that generate the lowest average dissimilarity from the data objects
- Complexity: $O(k^*(40+k)^2 + k^*(n-k))$

The CLARA Algorithm

for i=1 to 5, repeat the following steps:

- Draw a sample of 40+2k objects randomly from the entire data set, and call algorithm PAM to find the k medoids of the sample
- For each object O_j in the entire data set, determine which of the k medoids is the most similar to O_j .
- Calculate the average dissimilarity of the clustering obtained in the previous step. If this value is < current minimum, set current minimum to this value, and retain the current set of k medoids
- Return to step 1 to start the next iteration

CLARANS ("Randomized" CLARA)

- CLARANS (A Clustering Algorithm based on Randomized Search)
- CLARANS draws sample of *neighbors* dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, *CLARANS* starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both PAM and CLARA

The CLARANS Algorithm

```
1. Input numlocal and maxneighbor
  i=1, mincost=FLT_MAX, bestnode=NULL
2. current = an arbitrary k modiods
3. j=1
4. Pick random neighbor S of current, compute the cost difference between S and current
5. If S has lower cost, set current = S, goto 3
  else
    j=j+1;
     if (j <=maxneighbor) goto 4
     else
         if (cost(current) < mincost)</pre>
           mincost = cost(current)
           bestnode = current
6. i = i + 1;
7. If (i \le numlocal)
     goto step 2
  else
    output bestnode and halt
```

The CLARANS Algorithm

Outer loop:

- i → iterate for numlocal times
 find the local maximum point and update "mincost" and "bestnode"
 inner loop:
 - j → iterate for maxneighbor times finding the best local maximum k medoids