

Motion Control SW

- C1100 Servo Controller Series
- C1200 Servo Controller Series
- E1200 Servo Controller Series
- E1400 Servo Controller Series

Motion Control SW

User Manual

The information in this documentation reflects the stage of development at the time of press and is therefore without obligation. NTI AG reserves itself the right to make changes at any time and without notice to reflect further technical advance or product

improvement.

Document Version 6.4 / Whp, dc, November 2015

TABLE OF CONTENT

1	SY	STEM OVERVIEW	10
	1.1	References	10
	1.2	DEFINITIONS, ITEMS, SHORTCUTS	
	1.3	Data types	10
2	MC	OTION CONTROL INTERFACES	11
3	ST	ATE MACHINE	12
	3.1	STATE 0: NOT READY TO SWITCH ON	
	3.2	STATE 1: SWITCH ON DISABLED	14
	3.3	STATE 2: READY TO SWITCH ON	14
	3.4	STATE 3: SETUP ERROR STATE	14
	3.5	STATE 4: ERROR STATE	14
	3.6	STATE 5: HW TEST	14
	3.7	STATE 6: READY TO OPERATE	14
	3.8	STATE 8: OPERATION ENABLED	15
	3.9	STATE 9: HOMING	15
	3.10	STATE 10: CLEARANCE CHECK	15
	3.11	STATE 11: GOING TO INITIAL POSITION	15
	3.12	STATE 12: ABORTING	16
	3.13	STATE 13: Freezing	16
	3.14	STATE 14: ERROR BEHAVIOUR QUICK STOP	16
	3.15	STATE 15: GOING TO POSITION	16
	3.16	State 16: Jogging +	16
	3.17	State 17: Jogging -	16
	3.18	State 18: Linearizing	16
	3.19	STATE 19: PHASE SEARCHING	16
	3.20	STATE 20: SPECIAL MODE	16
	3.21	BUILDING THE CONTROL WORD	17
	3.22	CONTROL WORD	18
	3.23	STATUS WORD	19
	3.24	WARN WORD	20
4	MC	OTION COMMAND INTERFACE	21
	4.1	MOTION COMMAND INTERFACE	21
	4.1.		
	4.2	OVERVIEW MOTION COMMANDS	
	4.3	DETAILED MOTION COMMAND DESCRIPTION	29
	4.3.	1 No Operation (000xh)	29
	4.3.	2 Write Interface Control Word (001xh)	29
	4.3.	3 Write Live Parameter (002xh)	29
	4.3.	4 Write X4 Intf Outputs with Mask (003xh)	29
	4.3.	'	
	4.3.	'	
	4.3.	8 ()	
	4.3.	8 Reset (00Fxh)	30
	4.3.		
	4.3.	.10 VAI Increment Dem Pos (011xh)	31

4033	77177	~ -			
4.3.11	VAI Increment Target Pos (012xh)				
4.3.12	VAI Go To Pos From Act Pos And Act Vel (013xh)				
4.3.13	VAI Go To Pos From Act Pos Starting With Dem $Vel = 0$ (014xh)				
4.3.14	VAI Increment Act Pos (015xh)				
4.3.15	VAI Increment Act Pos Starting With Dem Vel = 0 (016xh)				
4.3.16	VAI Stop (017xh)				
4.3.17	VAI Go To Pos After Actual Command (018xh)				
4.3.18	VAI Go To Analog Pos (019xh)				
4.3.19	VAI Go To Pos On Rising Trigger Event (01Axh)				
4.3.20	VAI Increment Target Pos On Rising Trigger Event (01Bxh)	. 33			
4.3.21	VAI Go To Pos On Falling Trigger Event (01Cxh)				
4.3.22	VAI Increment Target Pos On Falling Trigger Event (01Dxh)	. 34			
4.3.23	VAI Change Motion Parameters On Positive Position Transition (01Exh)	. 34			
4.3.24	VAI Change Motion Parameters On Negative Position Transition (01Fxh)	. 34			
4.3.25	Predef VAI Go To Pos (020xh)	. 35			
4.3.26	Predef VAI Increment Dem Pos (021xh)	. 35			
4.3.27	Predef VAI Increment Target Pos (022xh)	. 35			
4.3.28	Predef VAI Go To Pos From Act Pos and Act Vel (023xh)	. 35			
4.3.29	Predef VAI Go To Pos From Act Pos Starting With Dem Vel = 0 (024xh)				
4.3.30	Predef VAI Stop (027xh)				
4.3.31	Predef VAI Go To Pos After Actual Command (028xh)	. 36			
4.3.32	Predef VAI Go To Pos On Rising Trigger Event (02Axh)				
4.3.33	Predef VAI Increment Target Pos On Rising Trigger Event (02Bxh)				
4.3.34	Predef VAI Go To Pos On Falling Trigger Event (02Cxh)				
4.3.35	Predef VAI Go To Pos On Falling Trigger Event (02Dxh)				
4.3.36	Predef VAI Infinite Motion Positive Direction (02Exh)				
4.3.37	Predef VAI Infinite Motion Negative Direction (02Fxh)				
4.3.38	P Stream With Slave Generated Time Stamp (030xh)				
4.3.39	PV Stream With Slave Generated Time Stamp (031xh)				
4.3.40	P Stream With Slave Generated Time Stamp (031xh) P Stream With Slave Generated Time Stamp and Configured Period Time				
(032xh)	37				
4.3.41	PV Stream With Slave Generated Time Stamp Stamp and Configured Period	d			
	(3xh)				
4.3.42	PVA Stream With Slave Generated Time Stamp (034xh)				
4.3.43	PVA Stream With Slave Generated Time Stamp (054xh)				
(035xh)	38	C			
(033xh) 4.3.44	Stop Streaming (03Fxh)	30			
4.3.45	Time Curve With Default Parameters (040xh)				
4.3.46	Time Curve With Default Parameters (040xh)				
4.3.47					
4.3.48	Time Curve To Pos With Adjustable Time (043xh)				
4.3.49	Time Curve With Adjustable Offset, Time Scale & Amplitude Scale (044xh)				
4.3.50	Time Curve With Adjustable Offset, Time & Amplitude Scale (045xh)	. 40			
4.3.51	Time Curve With Adjustable Offset, Time & Amplitude Scale On Rising	40			
0.0	Event (046xh)	. 40			
4.3.52	Time Curve With Adjustable Offset, Time & Amplitude Scale On Falling	40			
~ ~	Event (047xh)				
4.3.53	Time Curve To Pos With Default Speed On Rising Trigger Event (04Axh)				
4.3.54	Time Curve To Pos With Default Speed On Falling Trigger Event (04Cxh)				
4.3.55	Time Curve To Pos With Adjustable Time On Rising Trigger Event (04Exh)	. 41			

4.3.56	Time Curve To Pos With Adjustable Time On Falling Trigger Event (04Fxh)	41
4.3.57	Modify Curve Start Address in RAM (050xh)	42
4.3.58	Modify Curve Info Block 16 Bit Value in RAM (051xh)	42
4.3.59	Modify Curve Info Block 32 Bit Value in RAM (052xh)	42
4.3.60	Modify Curve Data Block 32 Bit Value in RAM (054xh)	43
4.3.61	Modify Curve Data Block 64 Bit Value in RAM (055xh)	
4.3.62	Modify Curve Data Block 96 Bit Value in RAM (056xh)	
4.3.63	Setup Encoder Cam On Rising Trigger Event With Delay Counts (069xh)	
4.3.64	Setup Encoder Cam On Rising Trigger Event With Delay Counts, Target Pos	
and Leng	gth (06Axh)	
4.3.65	Setup Encoder Cam On Falling Trigger Event With Delay Counts (06Bxh)	45
4.3.66	Setup Encoder Cam On Falling Trigger Event With Delay Counts, Target Po	
	eth (06Cxh)	
4.3.67	Setup Encoder Cam On Rising Trigger Event With Delay Counts, Amplitude	
	d Length (06Dxh)	
4.3.68	Setup Encoder Cam On Falling Trigger Event With Delay Counts, Amplitud	
	d Length (06Exh)	
4.3.69	Start VAI Encoder Position Indexing (070xh)	
4.3.70	Start Predef VAI Encoder Position Indexing (071xh)	
4.3.71	Stop Position Indexing and VAI Go To Pos (07Exh)	
4.3.72	Stop Position Indexing and VAI Go To Pos (07Fxh)	
4.3.73	VAI 16 Bit Go To Pos (090xh)	
4.3.74	VAI 16 Bit Go 16 1 68 (090M)	
4.3.75	VAI 16 Bit Increment Target Pos (092xh)	
4.3.76	VAI 16 Bit Go To Pos From Act Pos And Act Vel (093xh)	
4.3.77	VAI 16 Bit Go To Pos From Act Pos Starting With Dem $Vel = 0$ (094xh)	
4.3.78	VAI 16 Bit Go 16 1 65 1 70m Act 1 65 Starting with Dem Vet = 0 (094xh) VAI 16 Bit Increment Act Pos (095xh)	
4.3.79	VAI 16 Bit Increment Act Pos Starting With Dem Vel = 0 (096xh)	
4.3.79	VAI 16 Bit Increment Act 1 68 Starting with Dem Vet = 0 (090xh)	
4.3.81	VAI 16 Bit Go To Pos After Actual Command (098xh)	
4.3.82	VAI 16 Bit Go To Pos After Actual Communa (098xn) VAI 16 Bit Go To Pos On Rising Trigger Event (09Axh)	
4.3.83		
	VAI 16 Bit Increment Target Pos On Rising Trigger Event (09Bxh)	
4.3.84	VAI 16 Bit Go To Pos On Falling Trigger Event (09Cxh)	
4.3.85	VAI 16 Bit Increment Target Pos On Falling Trigger Event (09Dxh)	30
4.3.86	VAI 16 Bit Change Motion Parameters On Positive Position Transition	
(09Exh)	50	
4.3.87	VAI 16 Bit Change Motion Parameters On Negative Position Transition	
(09Fxh)	50 B. J. G. M. J. G. W. D. (04.0.1)	50
4.3.88	Predef VAI 16 Bit Go To Pos (0A0xh)	
4.3.89	Predef VAI 16 Bit Increment Dem Pos (0A1xh)	
4.3.90	Predef VAI 16 Bit Increment Target Pos (0A2xh)	
4.3.91	Predef VAI 16 Bit Go To Pos From Act Pos And Act Vel (0A3xh)	51
4.3.92	Predef VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel = 0	
(0A4xh)	51	
4.3.93	Predef VAI 16 Bit Stop (0A7xh)	
4.3.94	Predef VAI 16 Bit Go To Pos After Actual Command (0A8xh)	
4.3.95	Predef VAI 16 Bit Go To Pos On Rising Trigger Event (0AAxh)	
4.3.96	Predef VAI 16 Bit Increment Target Pos On Rising Trigger Event (0ABxh)	
4.3.97	Predef VAI 16 Bit Go To Pos On Falling Trigger Event (0ACxh)	
4.3.98	Predef VAI 16 Bit Increment Target Pos On Falling Trigger Event (0ADxh).	52

4.3.99	VAI Predef Acc Go To Pos (0B0xh)	. 52
4.3.100	VAI Predef Acc Increment Dem Pos (0B1xh)	
4.3.101	VAI Predef Acc Increment Target Pos (0B2xh)	
4.3.102	VAI Predef Acc Go To Pos From Act Pos And Act Vel (0B3xh)	
4.3.103	VAI Predef Acc Go To Pos From Act Pos Starting With Dem $Vel = 0$ (0B4x)	
	53	
4.3.104	VAI Predef Acc Go To Pos After Actual Command (0B8xh)	. 53
4.3.105	VAI Predef Acc Go To Pos On Rising Trigger Event (0BAxh)	
4.3.106	VAI Predef Acc Increment Target Pos On Rising Trigger Event (0BBxh)	
4.3.107	VAI Predef Acc Go To Pos On Falling Trigger Event (0BCxh)	
4.3.108	VAI Predef Acc Increment Target Pos On Falling Trigger Event (0BDxh)	
4.3.109	VAI Dec=Acc Go To Pos (0C0xh)	
4.3.110	VAI Dec=Acc Increment Dem Pos (0C1xh)	
4.3.111	VAI Dec=Acc Increment Target Pos (0C2xh)	
4.3.112	VAI Dec=Acc Go To Pos From Act Pos And Act Vel (0C3xh)	
4.3.113	VAI Dec=Acc Go To Pos From Act Pos Starting With Dem Vel = 0 (0C4xh)	
4.3.114	VAI Dec=Acc Go To Pos With Max Curr (0C5xh)	
4.3.115	VAI Dec=Acc Go To Pos From Act Pos And Vel With Max Curr (0C6xh)	
4.3.116	VAI Dec=Acc Go To Pos From Act Pos And Vel = 0 With Max Curr (0C7xh	
	56	
4.3.117	VAI Dec=Acc Go To Pos After Actual Command (0C8xh)	. 56
4.3.118	VAI Dec=Acc Go To Pos On Rising Trigger Event (0CAxh)	
4.3.119	VAI Dec=Acc Increment Target Pos On Rising Trigger Event (0CBxh)	
4.3.120	VAI Dec=Acc Go To Pos On Falling Trigger Event (0CCxh)	
4.3.121	VAI Dec=Acc Increment Target Pos On Falling Trigger Event (0CDxh)	
4.3.122	VAI Increment Captured Pos (0D0xh)	
4.3.123	VAI 16 Bit Dec=Acc Go To Pos (0D1xh)	. 58
4.3.124	VAI Go To Cmd Tab Var1 Pos (0D4xh)	
4.3.125	VAI Go To Cmd Tab Var2 Pos (0D5xh)	. 58
4.3.126	VAI Go To Cmd Tab Varl Pos From Act Pos And Act Vel (0D6xh)	. 58
4.3.127	VAI Go To Cmd Tab Var2 Pos From Act Pos And Act Vel (0D7xh)	. 59
4.3.128	VAI Stop at Angle(0D8xh)	. 59
4.3.129	VAI Start Trig Rise Config VAI Command (0DExh)	. 59
4.3.130	VAI Start Trig Rise Config VAI Command (0DFxh)	. 59
4.3.131	Sin VA Go To Pos (0E0xh)	
4.3.132	Sin VA Increment Demand Pos (0E1xh)	. 60
4.3.133	Sin VA Go To Pos From Actual Pos (0E4xh)	. 60
4.3.134	Sin VA Increment Actual Pos (0E6xh)	
4.3.135	Sin VA Go To Pos After Actual Command (0E8xh)	
4.3.136	Sin VA Go To Analog Pos (0E9xh)	. 61
4.3.137	Sin VA Go To Pos On Rising Trigger Event (0EAxh)	
4.3.138	Sin VA Increment Demand Pos On Rising Trigger Event (0EBxh)	. 62
4.3.139	Sin VA Go To Pos On Falling Trigger Event (0ECxh)	. 62
4.3.140	Sin VA Increment Demand Pos On Falling Trigger Event (0EDxh)	
4.3.141	Bestehorn VAJ Go To Pos (0F0xh)	
4.3.142	Bestehorn VAJ Increment Demand Pos (0F1xh)	
4.3.143	Bestehorn VAJ Go To Pos From Actual Pos (0F4xh)	
4.3.144	Bestehorn VAJ Increment Actual Pos (0F6xh)	
4.3.145	Bestehorn VAJ Go To Pos After Actual Command (0F8xh)	
4.3.146	Bestehorn VAJ Go To Analog Pos (0F9xh)	. 64

4.3.14/	Bestehorn VAJ Go To Pos On Rising Trigger Event (UFAxh)	
4.3.148	Bestehorn VAJ Increment Demand Pos On Rising Trigger Event (0FBxh)	. 65
4.3.149	Bestehorn VAJ Go To Pos On Falling Trigger Event (0FCxh)	
4.3.150	Bestehorn VAJ Increment Demand Pos On Falling Trigger Event (0FDxh).	. 66
4.3.151	Encoder Cam Enable (100xh)	. 66
4.3.152	Encoder Cam Disable (101xh)	. 66
4.3.153	Encoder Cam Go To Sync Pos (102xh)	. 66
4.3.154	Encoder Cam Set Value (104xh)	. 66
4.3.155	Encoder Cam y Define Curve With Default Parameters (1y0xh)	. 67
4.3.156	Encoder Cam y Define Curve From Act Pos (1y1xh)	. 67
4.3.157	Encoder Cam y Define Curve To Pos (1y2xh)	. 67
4.3.158	Encoder Cam y Define Curve From Pos To Pos In Counts (1y3xh)	. 67
4.3.159	Encoder Cam y Define Curve To Pos In Counts (1y4xh)	. 67
4.3.160	Encoder Cam y Define Curve With Amplitude Scale In Counts (1y5xh)	. 68
4.3.161	Encoder Cam y Enable (1y6xh)	. 68
4.3.162	Encoder Cam y Disable (1y7xh)	. 68
4.3.163	Encoder Cam y Change Amplitude Scale and Length (1y8xh)	. 68
4.3.164	Start Command Table Command (200xh)	. 68
4.3.165	Start Command Table Command On Rising Trigger Event (201xh)	. 69
4.3.166	Start Command Table Command On Falling Trigger Event (202xh)	
4.3.167	Modify Command Table 16 bit Parameter in RAM (208xh)	
4.3.168	Modify Command Table 32 bit Parameter in RAM (209xh)	
4.3.169	Wait Time (210xh)	
4.3.170	Wait Until Motion Finished (211xh)	
4.3.171	Wait Until In Target Position (212xh)	
4.3.172	Wait Until Rising Trigger Event (213xh)	
4.3.173	Wait Until Falling Trigger Event (214xh)	
4.3.174	Wait Until Demand Position Greater Than (220xh)	
4.3.175	Wait Until Demand Position Less Than (221xh)	
4.3.176	Wait Until Actual Position Greater Than (222xh)	
4.3.177	Wait Until Actual Position Less Than (223xh)	
4.3.178	Wait Until Difference Position Greater Than (224xh)	
4.3.179	Wait Until Difference Position Less Than (225xh)	. 71
4.3.180	Wait Until Difference Position Unsigned Greater Than (226xh)	
4.3.181	Wait Until Difference Position Unsigned Less Than (227xh)	. 71
4.3.182	Wait Until Demand Velocity Greater Than (228xh)	. 71
4.3.183	Wait Until Demand Velocity Less Than (229xh)	. 72
4.3.184	Wait Until Actual Velocity Greater Than (22Axh)	
4.3.185	Wait Until Actual Velocity Less Than (22Bxh)	
4.3.186	Wait Until Current Greater Than (22Exh)	
4.3.187	Wait Until Current Less Than (22Fxh)	
4.3.188	Set Cmd Table Var 1 To (240xh)	. 72
4.3.189	Add To Cmd Table Var 1 (241xh)	
4.3.190	Set Cmd Table Var 2 To (242xh)	
4.3.191	Add To Cmd Table Var 2 (243xh)	
4.3.192	Write Cmd Table Var 1 To UPID RAM value (248xh)	
4.3.193	Write Cmd Table Var 2 To UPID RAM value (249xh)	
4.3.194	Write UPID RAM Value To Cmd Table Var 1 (24Cxh)	
4.3.195	Write UPID RAM Value To Cmd Table Var 2 (24Dxh)	
4.3.196	IF Cmd Table Var 1 Less Than (250xh)	

4.3.197	IF Cmd Table Var 1 Greater Than (251xh)	74
4.3.198	IF Cmd Table Var 1 Less Than (252xh)	74
4.3.199	IF Cmd Table Var 1 Greater Than (253xh)	74
4.3.200	IF Demand Position Less Than (258xh)	74
4.3.201	IF Demand Position Greater Than (259xh)	74
4.3.202	IF Actual Position Less Than (25Axh)	
4.3.203	IF Actual Position Greater Than (25Bxh)	
4.3.204	IF Difference Position Less Than (25Cxh)	
4.3.205	IF Difference Position Greater Than (25Dxh)	
4.3.206	IF Current Less Than (25Exh)	
4.3.207	IF Current Greater Than (25Fxh)	
4.3.208	IF Analog Val On X4.4 Less Than (260xh)	
4.3.209	IF Masked X4 Input Value Equal Than (262xh)	
4.3.210	IF Masked X6 Input Value Equal Than (263xh)	
4.3.211	IF Masked Status Word Equal Than (264xh)	
4.3.212	IF Masked Warn Word Equal Than (265xh)	
4.3.213	IF CAM Counts Less Than (266xh)	
4.3.214	Encoder Winding Stop Adaptation Of Left/Right Position and Disturbance	
(304xh)	77	
4.3.215	Encoder Winding Restart Adaptation Of Left/Right Position and Disturban	ce
(305xh)	77	
4.3.216	Encoder Curve Winding Start With Default Parameters (310xh)	77
4.3.217	Encoder Curve Winding Start With Default Parameters At Revolutions (31	
	77	
4.3.218	VAI Go To Pos With Higher Force Ctrl Limit (380xh)	77
4.3.219	VAI Go To Pos From Act Pos And Reset Force Control (381xh)	
4.3.220	Force Ctrl Change Target Force (382xh)	
4.3.221	VAI Go To Pos With Higher Force Ctrl Limit and Target Force (383xh)	
4.3.222	VAI Go To Pos With Lower Force Ctrl Limit (384xh)	
4.3.223	VAI Go To Pos With Lower Force Ctrl Limit and Target Force (385xh)	
4.3.224	VAI Go To Pos From Act Pos And Reset Force Control Set I (386xh)	
4.3.225	VAI Increment Act Pos And Reset Force Control Set I (387xh)	
4.3.226	Current Command Mode (390xh)	
4.3.227	Change to Position Controlled Mode (39Fxh)	
4.3.228	VAJI Go To Pos (3A0xh)	
4.3.229	VAJI Increment Dem Pos (3A1xh)	
4.3.230	VAJI Increment Target Pos (3A2xh)	
4.3.231	VAJI Go To Pos From Act Pos Starting With Dem Vel = 0 and Dem Acc =	
(3A4xh)	81	Ü
4.3.232	VAJI Increment Act Pos Starting With Dem Vel = 0 and Dem Acc = 0 (3A6)	(xh)
1.0.202	82	,,,,,
4.3.233	VAJI Go To Pos On Rising Trigger Event (3AAxh)	. 82
4.3.234	VAJI Increment Target Pos On Rising Trigger Event (3ABxh)	
4.3.235	VAJI Go To Pos On Falling Trigger Event (3ACxh)	
4.3.236	VAJI Increment Target Pos On Falling Trigger Event (3ADxh)	
4.3.237	Predef VAJI Go To Pos (3B0xh)	
4.3.238	Predef VAJI Increment Dem Pos (3B1xh)	
4.3.239	Predef VAJI Increment Target Pos (3B2xh)	
4.3.240	Predef VAJI Go To Pos From Act Pos Starting With Dem Vel = 0 and Dem	
	(3B4xh)	
$\Delta = 0$	1 V 2 17V1V / 1111111111111111111111111111111	UT

4.3.241 Predef VAJI Go To Pos On Rising Trigger Event (3BAxh)	85
4.3.242 Predef VAJI Increment Target Pos On Rising Trigger Event (3BBxh)	85
4.3.243 Predef VAJI Go To Pos On Falling Trigger Event (3BCxh)	
4.3.244 Predef VAJI Increment Target Pos On Falling Trigger Event (3BDxh)	85
SET-POINT GENERATION	87
5.1 VA-INTERPOLATOR	87
•	
.	
5.2.1 Input Variables	
5.2.2 Output Variables	
5.3 SINE VA MOTION	91
5.3.1 Input Variables	91
5.3.2 Output Variables	91
5.4 Bestehorn VAJ Motion	
5.4.1 Input Variables	
•	
5.6.2 Repeated Cam Motions with the Modulo CamMode	95
COMMAND TABLE	96
CONTROLLER CONFIGURATION	97
7.1 Power Bridge	97
7.2 X4 I/O Definitions	97
7.2.1 X4.3 Brake	97
7.2.2 X4.6 Trigger	99
7.2.3 X4.8 and X4.9 Limit Switches	101
7.2.4 X4.10 and X4.11 PTC 1 and PTC 2	
7.2.5 X4.12 SVE (Safety Voltage Enable)	102
1 0	
8.1 GENERIC MOTOR TEMPERATURE CALCULATED	108
STATE MACHINE SETUP	109
ERROR CODE LIST	110
CONTACT ADDRESSES	115
	4.3.243 Predef VAJI Go To Pos On Falling Trigger Event (3BCxh) 4.3.244 Predef VAJI Increment Target Pos On Falling Trigger Event (3BDxh) SET-POINT GENERATION 5.1 VA-INTERPOLATOR. 5.1.1 Input Variables 5.1.2 Output Variables 5.2.2 VAJ-INTERPOLATOR. 5.2.1 Input Variables 5.3.2 Output Variables 5.3.3 SINE VA MOTION 5.3.1 Input Variables 5.3.2 Output Variables 5.4.2 Output Variables 5.4.3 Output Variables 5.4.1 Input Variables 5.4.2 Output Variables 5.4.2 Output Variables 5.5 P(V)-STREAM 6.6 CAM MOTIONS 5.6.1 Triggered Cam Motions with the Modulo CamMode COMMAND TABLE CONTROLLER CONFIGURATION 1.1 POWER BRIDGE 2.2 X4/O DEFINITIONS 7.2.1 X4/3 Brake 7.2.2 X4/6 Trigger 7.2.3 X4/8 and X4/9 Limit Switches 7.2.4 X4/10 and X4/11 PTC 1 and PTC 2 7.2.5 X4/12 SVE (Safety Voltage Enable) 3 MASTER ENCODER 4 MONITORING 7.4.1 Logic Supply Voltage 7.4.2 Motor Supply Voltage 7.4.3 Regeneration Resistor 7.4.4 Temperature Monitoring 9 POSCTRI-STRUCTURE MOTOR CONFIGURATION 6.1 GENERIC MOTOR TEMPERATURE CALCULATED STATE MACHINE SETUP ERROR CODE LIST

1 System Overview

This user Manual describes the Motion Control SW functionality of the LinMot servo controllers.

1.1 References

Ref	Title	Source
1	Installation_Guide_C1100.pdf	www.linmot.com
1	Installation_Guide_C1250.pdf	www.linmot.com
1	Installation_Guide_E1200.pdf	www.linmot.com
2	Installation_Guide_E1400.pdf	www.linmot.com
3	Usermanual_LinMot-Talk.pdf	www.linmot.com

The documentation is distributed with the LinMot-Talk configuration software or can be downloaded from the Internet from the download section of our homepage.

1.2 Definitions, Items, Shortcuts

Shortcut	Meaning				
LM	LinMot linear motor				
OS	Operating system (Software)				
MC (SW)	Motion Control (Software)				
Intf	Interface (Software)				
Appl	Application (Software)				
VAI	VA-Interpolator (Max velocity limited acceleration position interpolator)				
Pos	Position				
Vel	Velocity				
Acc	Acceleration				
Dec	Deceleration				
UPID	Unique Parameter ID (16 bit)				

1.3 Data types

Туре	Range/Format	Num of bytes			
Bool	Boolean, False/True	1/8			
Byte	0255	1			
Char	ASCII	1			
String	Array of char last char = 00h	Χ			
SInt16	-32'76832'767	2			
UInt16	065'535	2			
SInt32	-2'147'483'6482'147'483'647	4			
UInt32	04'294'967'295	4			
Float		4			

2 Motion Control Interfaces

For controlling the behavior of the motion control SW, two different Interfaces are available. For controlling the main state machine, a bit coded **control word** can be used. For controlling the motion functionality a memory mapped **motion command interface** can be used. These two instances are mapped via an interface SW to an upper control system (PLC, IPC, PC, ..). The interfacing is done with digital I/Os or a serial link like Profibus DP, CAN bus (CANopen), RS485, RS422 or RS232 (LinRS protocol). Ethernet (POWERLINK, EtherCAT, Ethernet/IP).

With LinMot-Talk the control over the control word can be taken bit by bit, for testing and debugging. Unused control word bits can be forced by parameter value.

Also the control of the motion command interpreter can be switched to the control panel of the LinMot-Talk software for testing.

All this can be done while the system is running, so be careful using this features on a running machine!

3 State Machine

The main behavior of the axles is controlled with the control word, it is shown in the following state diagram.

The state machine can be followed in the PLCs with fieldbus using the the StateVar. This response word can be configured for any supported fieldbus.

	State Var														
	Main State						Sub State								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The State Var is divided into two sections: the Main State section (high byte) contains directly the number of the state machine, the content of the Sub State (low byte) is state depending.

State Var						
Main State	Sub State					
00: Not Ready To Switch On	0					
01: Switch On Disabled	0					
02: Ready To Switch On	0					
03: Setup Error	Error Code which will be logged					
04: Error	Logged Error Code					
05: HW Tests	0 (Not yet defined)					
06: Ready To Operate	0 (Not yet defined)					
07: -						
08: Operation Enabled	Bits 03: Motion Command Count					
	Bit 4: Event Handler Active					
	Bit 5: Motion Active					
	Bit 6: In Target Position					
	Bit 7: Homed					
09: Homing	0Fh: Homing Finished					
10: Clearance Check	0Fh: Clearance Check Finished					
11: Going To Initial Position	0Fh: Going To Initial Position Finished					
12: Aborting	Not yet defined					
13: Freezing	Not yet defined					
14: Quick Stop (Error Behaviour)	Not yet defined					
15: Going To Position	0Fh: Going To Position Finished					
16: Jogging +	01h: Moving positive					
	0Fh: Jogging +Finished					
17: Jogging -	01h: Moving negative					
	0Fh: Jogging -Finished					
18: Linearizing	Not yet defined					
19: Phase Search	Not yet defined					
20: Special Mode	Not yet defined					

3.1 State 0: Not Ready To Switch On

In this state the release of control word bit 0 *switch on* is awaited. As soon as this bit is cleared a change to state 1 is performed. This behavior avoids self starting if all necessary bits for a start are set correctly in the control word.

3.2 State 1: Switch On Disabled

The state machine rests in this state as long as the bits 1 or 2 of the control word are cleared.

3.3 State 2: Ready To Switch On

The state machine rests in this state as long as the bit 0 is cleared.

3.4 State 3: Setup Error State

The state machine rests in this state as long the bits 0 is cleared.

3.5 State 4: Error State

The error state can be acknowledged with a rising edge of the control word bit 7 'Error Acknowledge'. If the error is fatal, bit 12 'Fatal Error' in the status word is set, no error acknowledgment is possible.

In the case of a fatal error, the error has to be checked, and the problem has to be solved before a reset or power cycle is done for resetting the error.

3.6 State 5: HW Test

The HW Test state is an intermediate state before turning on the power stage of the servo controller. If everything seems to be ok the servo changes to state 6 without any user action. The test takes about 300ms.

3.7 State 6: Ready to Operate

In this state the motor is either position controlled or with demand current = 0 and under voltage, but no motion commands are accepted. The mode is configurable with UPID 6300h.

Sending motion commands in this state will generate the error 'Motion command sent in wrong state' and a state change to the error state will be performed.

Clearing the control word bit 3 'Enable Operation' in state 8 or higher will stop immediately the set point generation and a state transition to 6 is performed. Clearing the bit while a motion is in execution a following error might be generated.

3.8 State 8: Operation Enabled

This is the state of the normal operation in which the motion commands are executed. It is strongly recommended to use the State Var for the motion command synchronization with any fieldbus system.

In the high byte stands the number of the main state = 8. In the low byte stands in the lowest 4 bits the actual interpreted 'Motion Command Count', bit 4 indicates if the event handler is active, in bit 5 stands the status word bit 'Motion Active', in bit 6 the status word bit 'In Target Position' and in bit 7 the status word bit 'Homed'. Because the 'Motion Command Count' echo and this status word bits are located in the same byte no data consistency problem is possible with any fieldbus.

A new motion command can be setup when the Motion Command Count has changed to the last sent **and** the 'Motion Active' bit is 0 or the 'In Target Position' bit is 1 if an exact positioning is required.

3.9 State 9: Homing

The homing state is used to define the position of the system according a mechanical reference, a home switch or an index.

For LinMot motors the slider home position at this home position is taken to compensate edge effects.

In the home sequence a position check of two positions and the motion to an initial position can be added.

Hint: If a mechanical stop homing mode is chosen, the initial position should be a little apart from this mechanical stop to avoid overheating of the motor.

3.10 State 10: Clearance Check

Setting the Clearance Check bit in the Control Word, two positions are moved to, to check if the whole motion range is free. Normally this action is added to the homing sequence to ensure that the homing was done correctly.

3.11 State 11: Going To Initial Position

Setting the Go To Initial Position bit in the control word, the servo moves to the initial position, normally used to move away from the mechanical stop after homing, to protect the

motor from overheating at the mechanical stop. After an error it is also recommended to move to a defined position again.

3.12 State 12: Aborting

Clearing the /Abort bit in the control word initiates a quick stop. After the motion has stopped the servo rests position controlled. Setting the bit again the servo controller rests in position until a new motion command is executed.

3.13 State 13: Freezing

Clearing the /Freeze bit in the control word initiates a quick stop. After the motion is stopped the servo rests position controlled. Setting the bit again the servo controller will finish the frozen motion (e.g. if it was a VAI command). Curve motion can be frozen but not restarted by releasing this bit, setting the bit again the motor moves at the target position of the last VAI command, if never used a VAI command it will go to the initial position.

3.14 State 14: Error Behaviour Quick Stop

Most of the errors, which can occur during an active motion, cause a quick stop behavior to stop the motion. After the quick stop is finished the motor is no longer position controlled.

3.15 State 15: Going To Position

Setting the Go To Position bit in the control word, the servo moves to the defined position, recommendable for example, after an error, to move to a defined position again.

3.16 State 16: Jogging +

Setting the Jog Move + bit in the control word, the servo moves either a defined position increment or to the maximal position with a limited speed. Releasing the bit will stop the motion.

3.17State 17: Jogging -

Setting the Jog Move - bit in the control word, the servo moves either a defined position decrement or to the minimal position with a limited speed. Releasing the bit will stop the motion

3.18 State 18: Linearizing

The linearizing state is used to correct position feedback parameters, to improve the linearity of the position feedback.

3.19 State 19: Phase Searching

The phase search is only defined for three phase EC motors with hall switches and ABZ-sensors to find the commutation offset for to the sensor. It cannot be guaranteed that this feature will work for all kinds of EC motors. The found offset can be found in the variable section Calculated Commutation Offset (UPID: 1C1Bh), and has to be set manually to the parameter Phase Angle (UPID 11F2h).

3.20 State 20: Special Mode

The Special Mode is available only on the B1100 servo controllers. In this state the current command mode over the analog input is available. For using this mode see the [4].

3.21 Building the Control Word

The Control Word can be accessed bit by bit from different sources with different priorities. The highest priorities have the bits that are forced by parameters. The second highest priority has the control panel of the LinMot-Talk software, if logged in with the SW. The next lower priorities have the bits that are defined on the X4 IOs as control word input bits. The lowest priority have bits which are set over the interface (normally a serial fieldbus connection), so in the Ctrl Word Interface Copy mask all bits can be selected, without causing any problems, but bits which should not be accessed through the interface can be masked out.

3.22 Control Word

With the Control Word (16Bit) the main state machine of the servo controller can be

accessed. Following table shows the meaning of each bit:

Site Val Meaning Remark O OFF1 A-Stop, -> Current = 0, power switches disabled OFF2 Power switch on disabled to ready to switch on OFF2 Power switches disabled without microcontroller action OFF3 Quick Stop -> Current = 0 -> H-Bridges disabled without microcontroller action OFF3 Quick Stop -> Current = 0 -> H-Bridges disabled Operation Operation Operation Operation Operation Operation disabled Position controller active Motion Commands disabled Operation enable Position controller active Motion Commands disabled Operation enable Position controller active Motion Commands enabled Operation enable Operation command is cleared. Operation	·	table s	shows the meaning of e	ach dil.
O Switch On Switch On	Bit			
Switch On 1 ON State change from switch on disabled to ready to switch on 1 OPF2 Power switches disabled without microcontroller action 2 OPF3 Quick Stop 1 Operation 3 OPF3 Quick Stop OPF3 Gisabled 1 Operation 3 OPF3 OPF3 OPF3 OPF3 OPF5 OPF5 OPF5 OPF5 OPF5 OPF5 OPF5 OPF5	Name	Val		Remark
1	_	0	OFF1	
Teady to switch on Power switches disabled without microcontroller action	- CWILOTT CIT	1	ON	
1		'	011	
Voltage Enable microcontroller action 2 /Quick Stop 0 OFF3 Quick Stop -> Current = 0 -> H-Bridges disabled 1 Operation 1 Operation Position controller active Motion Commands disabled 1 Departion enable Position controller active Motion Commands enabled 4 Abort Quick Stop position control rests active, motion command is cleared. 5 Abort Quick Stop position control rests active, motion command is cleared. 6 Freeze Preeze motion Quick Stop position control rests active, Target position not cleared, curves motions are aborted 7 Position Rising edge will reactivate motion command 6 Or Position Go to fixed parameterized Position. Wait for release of signal. 7 Position Fror Acknowledge Rising edge of signal acknowledges error 8 O Stop Move + Jog Move + Jog Move + 9 O Jog Move - Jog Move - Jog Move - 10 Stop Homing Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 Clearance Check Clearance Check Movements 13 Or Initial Position Reserved Reserved 15 O Stop Phase Search	1	0	OFF2	
1	•	"	0112	
2	Voltage Eriable	1	Operation	This controller dollers
Aguick Stop	2			Ouick Stop -> Current = 0 -> H-Bridges
Bnable Operation Enable Operation Toperation enable Toperation Toperation				
Enable Operation 1 Operation enable Position controller active Motion Commands enabled A Doperation enable Position controller active Motion Commands enabled A Doperation Quick Stop position control rests active, motion command is cleared. Doperation Command is cleared. Coperation Quick Stop position control rests active, Target position not cleared, curves motions are aborted Doperation Rising edge will reactivate motion command Coperation Go to fixed parameterized Position. Wait for release of signal. For Position Intervention Go to fixed parameterized Position. Wait for release of signal acknowledges error Error Acknowledge Intervention Go to fixed parameterized Position. Wait for release of signal acknowledges error Error Acknowledge Rising edge of signal acknowledges error Jog Move + Intervention Go Special Move + Jog Move + Intervention Go Special Mode Special Mode Intervention Go Special Mode Intervention Go Stop Homing At startup bit 11 Status word is cleared, until procedure is finished. Clearance Check Intervention Go To Initial Position Rising edge will start go to initial position Coperation Control Commands and Eventual Position Reserved Enable Clearance Check Movements Reserved Stop Phase Search				
4 Abort Quick Stop position control rests active, motion command is cleared. 1 Operation 5 OFreeze Motion Quick Stop position control rests active, motion command is cleared. 6 OFREEZE MOTION Rising edge will reactivate motion command 6 OFREEZE MOTION Rising edge will reactivate motion command 6 OFREEZE MOTION GO to fixed parameterized Position. Wait for release of signal. 7 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 8 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 8 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 9 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 1 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 9 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 1 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 9 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 11 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 12 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 13 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 14 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 15 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 16 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 17 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 18 OFRET ACKNOWLEGGE RISING Edge of signal acknowledges error 10 OFRET ACKNOWLEGGE RISING Edge o		0	Operation disabled	
/Abort		1	Operation enable	
1 Operation 5 /Freeze		0	Abort	
Freeze motion Quick Stop position control rests active, Target position not cleared, curves motions are aborted 1	Aboit	1	Operation	motion command is cleared.
/Freeze Target position not cleared, curves motions are aborted 1 Operation Rising edge will reactivate motion command 6	5		•	Quick Stap position control rosts active
are aborted 1 Operation Rising edge will reactivate motion command 6 O O O O O O O O O O O O O O O O O O	_	0	Freeze modon	
1 Operation Rising edge will reactivate motion command 6 O Go To Position 1 Go To Position Go to fixed parameterized Position. Wait for release of signal. 7 O Error Acknowledge 1 Error Acknowledge Rising edge of signal acknowledges error 8 O Jog Move + 9 O Jog Move - 1 Special Mode Special Mode 1 Special Mode Special Mode 11 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 O Stop Clearance Check Clearance Check Enable Clearance Check Movements 13 O Go To Initial Position 14 Go To initial Position Rising edge will start go to initial position 14 Reserved 15 O Stop Phase Search	/F16626			
Go To Position 1 Go To Position Go to fixed parameterized Position. Wait for release of signal. 7 Error Acknowledge 1 Error Acknowledge Rising edge of signal acknowledges error 8 Jog Move + 9 Jog Move - 1 Special Mode 1 Special Mode 1 Special Mode 1 Special Mode 1 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 Clearance Check 1 Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 Go To Initial Position 1 Go To initial Position 14 Reserved 1 Reserved 1 Reserved 1 Reserved		1	Operation	
Go To Position 1 Go To Position Go to fixed parameterized Position. Wait for release of signal. 7 0	6	+	Operation	Trising edge will reactivate motion command
release of signal. 7 Error Acknowledge 1 Error Acknowledge Rising edge of signal acknowledges error 8 Jog Move + 1 Jog Move + 9 Jog Move - 1 Jog Move - 1 Jog Move - 1 Special Mode 1 Homing 1 Homing 2 At startup bit 11 Status word is cleared, until procedure is finished. 12 Clearance Check Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 Go To Initial Position 1 Go To initial Position Reserved 1 Reserved 1 Reserved 1 Reserved 1 Reserved	_		Co To Docition	Co to fixed parameterized Desition Weit for
Tror Acknowledge I Error Acknowledge Rising edge of signal acknowledges error Jog Move + Jog Move + Jog Move - Jog Move - Special Mode Special	OO TO T OSITION	'	GO TO POSITION	
Error Acknowledge 1 Error Acknowledge Rising edge of signal acknowledges error 8	7	1		release of signal.
8 Jog Move + 1 Jog Move + 9 Jog Move - 1 Jog Move - 10 Special Mode 1 Special Mode Special Mode 11 O Stop Homing Home 1 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 Go To Initial Position 1 Go To initial Position Rising edge will start go to initial position 14 Reserved 1 Reserved 15 Reserved 10 Stop Phase Search	' ⁼ '		Error Aaknowladge	Diging edge of signal coknowledges error
Jog Move +1Jog Move +90Jog Move -100Jog Move -10 Special Mode1 Special ModeSpecial Mode11 Home0 Stop HomingAt startup bit 11 Status word is cleared, until procedure is finished.12 O Stop Clearance Check1 Clearance CheckEnable Clearance Check Movements13 Go To Initial Position1 Go To initial PositionRising edge will start go to initial position14 Reserved1 Reserved150 Stop Phase Search	· ·		Endi Acknowledge	Rising edge of signal acknowledges entor
9 Jog Move - 10 Special Mode 1 Special Mode Special Mode 11 Home 1 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 O Stop Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 Go To Initial Position 1 Go To initial Position Reserved 1 Reserved 1 Reserved 1 Reserved	•			La a Maria
Jog Move - 1 Jog Move - 10 Special Mode Special Mode Special Mode 1 Special Mode Special Mode 11 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 O Stop Clearance Check Clearance Check I Clearance Check Enable Clearance Check Movements 13 O Stop Initial Position Rising edge will start go to initial position 14 Reserved 1 Reserved 1 Reserved 15 Stop Phase Search				Jog Move +
Special Mode 1 Homing At startup bit 11 Status word is cleared, until procedure is finished. 1 Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 1 Go To Initial Position 1 Go To initial Position Reserved 1 Reserved 1 Special Mode Startup bit 11 Status word is cleared, until procedure is finished. Special Mode Special Mode In Special Mode Special Mode Startup bit 11 Status word is cleared, until procedure is finished. Special Mode In Special Mode Special Mode In Special Mode Special Mode In Special	_			L. M.
Special Mode1Special ModeSpecial Mode110Stop HomingHome1HomingAt startup bit 11 Status word is cleared, until procedure is finished.120Stop Clearance CheckClearance Check1Clearance CheckEnable Clearance Check Movements130Stop To Initial PositionRising edge will start go to initial position140Reserved150Stop Phase Search				Jog Iviove -
11	_		O ' al Mar !	O
Home 1 Homing At startup bit 11 Status word is cleared, until procedure is finished. 12 0 Stop Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 0 Go To Initial Position 1 Go To initial Position Reserved 1 Reserved 1 Reserved 1 Stop Phase Search	-	-	· ·	Special Mode
procedure is finished. 12			·	
12 0 Stop Clearance Check Clearance Check 1 Clearance Check Enable Clearance Check Movements 13 0	Home	1	Homing	
13 0 Go To Initial Position 1 Go To initial Position Rising edge will start go to initial position 14 0 Reserved 1 Reserved 15 O Stop Phase Search	12	0	Stop Clearance Check	
Go To Initial Position 1 Go To initial Position Rising edge will start go to initial position 14 0 Reserved 1 Reserved 15 O Stop Phase Search	Clearance Check	1	Clearance Check	Enable Clearance Check Movements
14 0 Reserved 1 Reserved 15 0 Stop Phase Search	13	0		
Reserved 1 Reserved 15 O Stop Phase Search	Go To Initial Position	1	Go To initial Position	Rising edge will start go to initial position
Reserved 1 Reserved 15 0 Stop Phase Search	14	0		
15 0 Stop Phase Search	Reserved			Reserved
Phase Search 1 Phase Search Enable Phase Search Movements	15	0	Stop Phase Search	
	Phase Search	1	Phase Search	Enable Phase Search Movements

3.23 Status Word

Following table shows the meaning of the single bits:-

Bit	, tile i	neaning of the single bits). ¬
Name	Val	Meaning	Remark
0	0	5	State Nr < 8
Operation Enabled	1	Operation Enabled	State Nr 8 or higher (copied to Controller EN LED)
1	0	Switch On Disabled	Control Word Bit 0
Switch On Active	1	Switch On Enabled	
2	0	Operation Disabled	Control Word Bit 3
Enable Operation	1	Operation	
3	0	No Error	
Error	1	Error	Acknowledge with Control word Bit 7 (Reset Error)
4	0	Power Bridge Off	Control Word Bit 1
Voltage Enable	1	Operation	
5	0	Active	Control Word Bit 2
/Quick Stop	1	Operation	
6	0	Not Locked	
Switch On Locked	1	Switch On Locked	Release with 0 of Control word bit 0 (Switch On)
7	0	Warning not active	No bit is set in the Warn Word
Warning	1	Warning active	One or more bits in the Warn Word are set
8	0	Event Handler Inactive	Event Handler cleared or disabled
Event Handler Active	1	Event Handler Active	Event Handler setup
9	0	Normal Operation	
Special Motion Active	1	Special Command runs	Special motion commands (Homing,) runs
10	0	Not In Pos	Motion active or actual position out of window
In Target Position	1	In Pos	Actual position after motion in window
11	0	Motor not homed	Incremental sensor not homed (referenced)
Homed	1	Motor homed	Position sensor system valid
12	0		
Fatal Error	1	Fatal Error	A fatal error can not be acknowledged!
13	0	No Motion	Setpoint generation inactive
Motion Active	1	Motion active	Setpoint generation (VAI, curve) active
14	0	Not In Range 1	Defined UPID is not in Range 1
Range Indicator 1	1	In Range1	Defined UPID is in Range 1
15	0	Not In Range 2	Defined UPID is not in Range 2
Range Indicator 2	1	In Range2	Defined UPID is in Range 2

3.24 Warn Word

Following table shows the meaning of the single bits of the Warn Word:

Bit Name	Val	Meaning
0	0	Normal Operation
Motor Hot Sensor	1	Motor Temperature Sensor On
1	0	Normal Operation
Motor Short Time Overload I^2t	1	Calculated Motor Temperature Reached Warn Limit
2	0	Normal Operation
Motor Supply Voltage Low	1	Motor Supply Voltage Reached Low Warn Limit
3	0	Normal Operation
Motor Supply Voltage High	1	Motor Supply Voltage Reached High Warn Limit
4	0	Normal Operation
Position Lag Always	1	Position Error during Moving Reached Warn Limit
5	0	
Reserved	1	
6	0	Normal Operation
Controller Hot	1	Temperature on Servo Controller High
7	0	Normal Operation
Motor Not Homed	1	Warning Motor Not Homed Yet
8	0	Normal Operation
PTC Sensor 1 Hot	1	PTC Temperature Sensor 1 On
9	0	Normal Operation
Reserved PTC 2	1	PTC Temperature Sensor 2 On
10	0	Normal Operation
RR Hot Calculated	1	Regenerative Resistor Temperature Hot Calculated
11	0	
Reserved	1	
12	0	
Reserved	1	
13	0	
Reserved	1	
14	0	Normal Operation
Interface Warn Flag	1	Warn Flag Of Interface SW layer
15	0	Normal Operation
Application Warn Flag	1	Warn Flag Of Application SW layer

Normally the warn word bits are used to react in conditions before the controller goes into the error state. E.g. a typical reaction on the warning '*Motor Temperature Sensor*' would be a stop of the machine, before the controller goes into the error state and the motor goes out of control to avoid crashes.

4 Motion Command Interface

4.1 Motion Command Interface

The motion command interface consists of one word that contains the command ID, and up to 16 command parameter words. Example: 'VA-Interpolator 16 bit Go To Absolute Position'

Word	Description	Example of command
1.	Command Header with ID	Go To Absolute Position Immediate
2.	Command Parameter	Position
3.	Command Parameter	Maximal Speed
4.	3. Command Parameter	Acceleration
5.	4. Command Parameter	Deceleration
616.	515. Command Parameter	Not used

4.1.1 Command Header

Mast	Master ID									Sub ID				Command Count			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		

The header of the Motion command is split into three parts:

- Master ID
- Sub ID
- Command Count

4.1.1.1 Master ID

The master ID specifies the command group.

4.1.1.2 Sub ID

The sub ID is used to identify different commands from the same command group.

4.1.1.3 Command Count

A new command will only be executed, if the value of the command count has changed. In the easiest way bit 0 can be toggled.

4.2 Overview Motion Commands

Mastan	Cul				Е	Description
Master	Sub	C	C			Description
ID	ID		1	1	1	
		1	2	2	4	
		0	0	0	0	
00h	0h	0 X	0 X	X	0 X	No Operation
UUII	1h	X	X	<u>^</u>	X	Write Interface Control Word
		Χ				
	2h		X	X		Write Live Parameter
	3h	X	X	X	X	
	5h	X	X	X	X	Select Position Controller Set
	8h	X	X	X	X	
	9h	X	X	X	X	
	Fh	Х	X	Χ	Χ	
01h	0h	Χ	Χ	Χ		VAI Go To Pos
	1h	Χ	Χ	Χ		VAI Increment Dem Pos
	2h	Χ	Χ	Χ		VAI Increment Target Pos
	3h	Χ	Χ		Χ	
	4h	Χ	Χ	Χ		VAI Go To Pos From Act Pos Starting With Dem Vel = 0
	5h	Χ	Χ	Χ	Χ	VAI Increment Act Pos
	6h	Χ	Χ	Χ	Χ	VAI Increment Act Pos Starting with Dem Vel = 0
	7h	Х	Χ	Χ	Χ	VAI Stop
	8h	Х	Χ	Χ	Χ	VAI Go To Pos After Actual Command
	9h	Χ	Χ	Χ	Χ	VAI Go To Analog Pos
	Ah	Χ	Χ	Χ	Χ	VAI Go To Pos On Rising Trigger Event
	Bh	Χ	Χ	Χ	Χ	VAI Increment Target Pos On Rising Trigger Event
	Ch	Χ	Χ	Χ	Χ	VAI Go To Pos On Falling Trigger Event
	Dh	Χ	Χ	Χ	Χ	VAI Increment Target Pos On Falling Trigger Event
	Eh	Χ	Χ	Χ	Χ	
	Fh	Χ	Χ	Χ	Χ	VAI Change Motion Parameters On Negative Position Transition
02h	0h	Χ	Χ	Χ	Χ	Predef VAI Go To Pos
	1h	Χ	Χ	Χ	Χ	Predef VAI Increment Dem Pos
	2h	Χ	Χ	Χ	Χ	Predef VAI Increment Target Pos
	3h	Χ	Χ	Χ	Χ	Predef VAI Go To Pos From Act Pos And Act Vel
	4h		Χ			Predef VAI Go To Pos From Act Pos Starting With Dem Vel = 0
	7h	Χ	Χ	Χ	Χ	Predef VAI Stop With Quick Stop Deceleration
	8h	Χ	Χ	Χ	Χ	Predef VAI Go To Pos After Actual Command
	Ah	X	X	X	X	Predef VAI Go To Pos On Rising Trigger Event
	Bh	X	X	X	X	Predef VAI Increment Target Pos On Rising Trigger Event
	Ch	X	X	X	X	Predef VAI Go To Pos On Falling Trigger Event
	Dh	X	X	X	X	Predef VAI Increment Target Pos On Falling Trigger Event
	Eh	X	X	X	X	Predef VAI Infinite Motion Positive Direction
	Fh	X	X	X	X	Predef VAI Infinite Motion Negative Direction
	1 11	Λ.	/\	\wedge	/\	1 Todor V/1 IIIIIIIII Wollott Wogalive Direction

Master	Sub	С	С	Е	Е	Description
ID	ID	1	1	1	1	Description
וט	יוו	1	2	2	4	
		0	0	0	0	
		0	0	0	0	
03h	0h	X	X	X	X	P Stream With Slave Generated Time Stamp
0011	1h	X	X	X	X	PV Stream With Slave Generated Time Stamp
	2h	X	X	X	X	P Stream With Slave Generated Time Stamp and Configured
	211	^	^	^	^	Period Time
	3h	Χ	Χ	Χ	Χ	PV Stream With Slave Generated Time Stamp and Configured Period Time
	4h	Χ	Χ	Χ	Χ	PVA Stream With Slave Generated Time Stamp
	5h	Χ	Χ	Χ	Χ	PV Stream With Slave Generated Time Stamp and Configured
						Period Time
	Fh	Χ	Χ	Χ	Χ	Stop Streaming
04h	0h	Χ	Χ	Χ	Χ	Time Curve With Default Parameters
	1h	Χ	Χ	Χ	Χ	Time Curve With Default Parameters From Act Pos
	2h	Χ	Χ	Χ	Χ	Time Curve To Pos With Default Speed
	3h	Χ	Χ	Χ	Χ	Time Curve To Pos With Adjustable Time
	4h	Χ	Χ	Χ	Χ	Time Curve With Adjustable Offset, Time Scale & Amplitude Scale
	5h	Χ	Χ	Χ	Χ	Time Curve With Adjustable Offset, Time & Amplitude Scale
	6h	Χ	Χ	Χ	Χ	Time Curve With Adjustable Offset, Time & Amplitude Scale On
						Rising Trigger Event
	7h	X	Χ	Χ	X	Time Curve With Adjustable Offset, Time & Amplitude Scale On
					` , ,	Falling Trigger Event
	Ah	Х	Х	X	Χ	Time Curve To Pos With Default Speed On Rising Trigger Event
	Ch	Χ	Χ	Х	Χ	Time Curve To Pos With Default Speed On Falling Trigger Event
	Eh	Χ	Χ	Χ	Χ	Time Curve To Pos With Adjustable Time On Rising Trigger Event
	Fh	Χ	Χ	X	Χ	Time Curve To Pos With Adjustable Time On Falling Trigger Event
05h	0h			Χ	X	Modify Curve Start Address in RAM
	1h			X	X	Modify Curve Info Block 16 Bit Value in RAM
	2h			Х	X	Modify Curve Info block 32 Bit Value in RAM
	4h			X	Χ	Modify Curve Data Block 32 Bit in RAM
	5h			Χ	Χ	,
	6h			Χ	Χ	•
06h	4h			Χ	Χ	Setup Encoder CAM from Actual Counts With Delay Counts
	9h			Χ	Χ	1 00
	Ah			Χ	Χ	Setup Encoder CANM On Rise Trigger Event With Delay Counts,
						Target Pos and Length
	Bh			Х		Setup Encoder CAM On Fall Trigger Event With Delay Counts
	Ch			Χ	X	Setup Encoder CAM On Fall Trigger Event With Delay Counts,
	Dh			Χ	X	Target Pos and Length Setup Encoder CAM On Rise Trigger Event With Delay Counts
	ווט			^	^	Amplitude scale and length
	Eh			Х	Χ	Setup Encoder CAM On Fall Trigger Event With Delay Counts
				^	^	Amplitude scale and length
07h	0h	Χ	Χ	Χ	Χ	Start VAI Encoder Position Indexing
0.11	1h	X	X	X	X	Start Predef VAI Encoder Position Indexing
	2h	/\	/\	X	X	Start Encoder Position Indexing with VA-Filters
	Eh	Χ	Χ	X	X	Stop Position Indexing And VAI Go To Pos
	Fh	X	X	<u>^</u>	X	Stop Position Indexing And VAI Go To Pos Stop Position Indexing And Predefined VAI Go To Pos
	ГП	^	^	^	^	Stop Fusition indexing And Frederined VALGO TO POS

Master	Sub	С	С	F	F	Description
ID	ID	1	1	1	1	
		1	2	2	4	
		0	0	0	0	
		0	0	0	0	
09h	0h	Χ	Χ	Χ	Χ	VAI 16 Bit Go To Pos
	1h	Χ	Χ	Χ	Χ	VAI 16 Bit Increment Dem Pos
	2h	Χ	Χ	Χ	Χ	VAI 16 Bit Increment Target Pos
	3h	Χ	Χ	Χ	Χ	VAI 16 Bit Go To Pos From Act Pos And Act Vel
	4h	Χ	Χ	Χ	Χ	VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel = 0
	5h	Χ	Χ	Χ	Χ	VAI 16Bit Increment Act Pos
	6h	Χ	Χ	Χ	Χ	VAI Increment Act Pos Starting with Dem Vel = 0
	7h	Χ	Χ	Χ	Χ	VAI 16 Bit Stop
	8h	Х	Χ		Χ	VAI 16 Bit Go To Pos After Actual Command
	Ah	Χ	Χ		Χ	VAI 16 Bit Go To Pos On Rising Trigger Event
	Bh	Χ	Χ	Χ	Χ	VAI 16 Bit Increment Target Pos On Rising Trigger Event
	Ch	Χ	Χ		Χ	VAI 16 Bit Go To Pos On Falling Trigger Event
	Dh	Χ	Χ		Χ	VAI 16 Bit Increment Target Pos On Falling Trigger Event
	Eh	Χ	Χ	Χ	Χ	VAI 16 Bit Change Motion Parameters On Positive Position
						Transition
	Fh	Χ	Χ	Χ	Χ	5
						Transition
0Ah	0h	Χ	Χ	Χ	Χ	
	1h	Χ	Χ		Χ	
	2h	Χ	Χ			Predef VAI 16 Bit Increment Target Pos
	3h	Χ	Χ	Χ	Χ	
	4h	Х	Χ	Х	Χ	Predef VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel
						= 0
	7h	X	Χ	X	Х	Predef VAI 16 Bit Stop With Quick Stop Deceleration
	8h	X	X		X	
	Ah	Х	Χ	Х		Predef VAI 16 Bit Go To Pos On Rising Trigger Event
	Bh	X	X	X	X	
	Ch	Х	Χ	X		Predef VAI 16 Bit Go To Pos On Falling Trigger Event
	Dh	Χ	Χ			Predef VAI 16 Bit Increment Target Pos On Falling Trigger Event
0Bh	0h			X	X	VAI Predef Acc Go To Pos
	1h			X	X	
	2h			X	X	<u> </u>
	3h			X	X	
	4h			Χ	Χ	VAI Predef Acc Go To Pos From Act Pos Starting With Dem Vel = 0
	8h			Х	Х	VAI Predef Acc Go To Pos After Actual Command
	Ah			X	X	
	Bh			X	X	
	Ch			X	X	
	Dh			X	X	
	ווט			^	^	VALL TOUGH ACCHIOLEMENT LARGET FOS ON FAIIING THIS EVENT

Master	Sub	С	С	E	E	Description
ID	ID	1	1	1	1	
		1	2	2	4	
		0	0	0	0	
0.01		0	0	0	0	V415 4 0 T 5
0Ch	0h	X	X	X		VAI Dec=Acc Go To Pos
	1h	Х	Χ	Х	Х	VAI Dec=Acc Increment Dem Pos
	2h	Х	Χ	Х	Х	
	3h	Х	Χ	Χ	Х	
	4h	Х	Χ	Х		VAI Dec=Acc Go To Pos From Act Pos Starting With Dem Vel = 0
	5h	Х	Χ	Х		VAI Dec=Acc Go To Pos With Max Curr
	6h	Х	Χ	Х	Х	VAI Dec=Acc Go To Pos From Act Pos And Act Vel With Max Curr
	7h	Χ	Χ	Х	Х	
						Max Curr
	8h	X	Χ	Х		VAI Dec=Acc Go To Pos After Actual Command
	Ah	Х	Χ	Χ		VAI Dec=Acc Go To Pos On Rising Trigger Event
	Bh	Х	Χ	Х	Х	
	Ch	Χ	Χ	Χ	Χ	0 00
	Dh	Χ	Χ	Χ	Χ	
	Eh	Χ	Χ	Χ	Χ	
	Fh	Χ	Χ	Χ		VAI Dec=Acc Infinite Motion Negative Direction
0Dh	0h	Χ	Χ	Χ		VAI Go Relative To Captured Pos
	1h	Χ	Χ	Χ	Χ	
	4h	Χ	Χ	Χ	Χ	
	5h	Χ	Χ		Χ	
	6h	Χ	Χ	Χ	Χ	
	7h	Χ	Χ	Χ	Χ	
	8h		Χ	Χ	Χ	
	Eh	Χ	Χ	Χ	Χ	
	Fh	Χ	Χ	Χ		VAI Start Trig Rise Config VAI Command
0Eh	0h	Χ	Χ	Χ	Χ	
	1h	Χ	Χ			Sin VA Increment Demand Pos
	4h	Χ	Χ			
	6h	Χ	Χ			Sin VA Increment Actual Pos
	8h		Χ	Χ	Χ	Sin VA Go To Pos After Actual Command
	9h		Χ	Χ	Χ	
	Ah	Χ	Χ	Χ	Χ	Sin VA Go To Pos On Rising Trigger Event
	Bh	Χ	Χ	Χ	Χ	Sin VA Increment Demand Pos On Rising Trigger Event
	Ch	Χ	Χ	Χ	Χ	Sin VA Go To Pos On Falling Trigger Event
	Dh	Χ	Χ	Χ	Χ	Sin VA Increment Demand Pos On Falling Trigger Event
0Fh	0h	Χ	Χ	Χ	Χ	Bestehorn VAJ Go To Pos
	1h	Χ	Χ	Χ	Χ	Bestehorn VAJ Increment Demand Pos
	2h	Χ				Bestehorn VAJ 16 Bit Go To Pos
	4h	Χ	Χ	Χ	Χ	Bestehorn VAJ Go To Pos From Actual Pos
	6h	Χ	Χ	Χ	Χ	Bestehorn VAJ Increment Actual Pos
	8h			Χ	Χ	Bestehorn VAJ Go To Pos After Actual Command
	9h	Χ	Χ	Χ	Х	Bestehorn VAJ Go To Analog Pos
	Ah	Χ	Χ	Χ	Χ	Bestehorn VAJ Go To Pos On Rising Trigger Event
	Bh	Χ	Χ	Χ	Χ	Bestehorn VAJ Increment Demand Pos On Rising Trigger Event
	Ch	Χ	Χ	Χ	Χ	Bestehorn VAJ Go To Pos On Falling Trigger Event
	Dh	Χ	Χ	Χ	Χ	Bestehorn VAJ Increment Demand Pos On Falling Trigger Event

Master	Sub	С	С	Е	Е	Description
ID	ID	1	1	1	1	Description
	10	1	2	2	4	
		0	0	0	0	
		0	0	0	0	
10h	0h			Х	Χ	Encoder CAM Enable
	1h			Χ	Χ	Encoder CAM Disable
	2h			Χ	Х	Encoder CAM Go To Sync Pos
	4h			Χ	Х	Encoder CAM Set Value
11h	0h			Χ	Χ	Encoder CAM 1 Define Curve With Default Parameters
	1h			Χ	Х	Encoder CAM 1 Define Curve From Act Pos
	2h			Χ	Х	Encoder CAM 1 Define Curve To Pos
	3h			Χ	Χ	Encoder CAM 1 Define Curve From Pos To Pos In Counts
	4h			Χ	Χ	Encoder CAM 1 Define Curve To Pos In Counts
	5h			Χ	Χ	Encoder CAM 1 Define Curve with Amplitude Scale In Counts
	6h			Χ		Encoder CAM 1 Enable
	7h			Χ	Х	Encoder CAM 1 Disable
	8h			Χ	Χ	
12h	0h			Χ	Χ	Encoder CAM 2 Define Curve With Default Parameters
	1h			Χ	Χ	Encoder CAM 2 Define Curve From Act Pos
	2h			Χ	Χ	
	3h			Χ	Χ	Encoder CAM 2 Define Curve From Pos To Pos In Counts
	4h			Χ	Χ	Encoder CAM 2 Define Curve To Pos In Counts
	5h			X		Encoder CAM 2 Define Curve with Amplitude Scale In Counts
	6h				Χ	Encoder CAM 2 Enable
	7h			Χ	Χ	
	8h			Χ	Χ	U
20h	0h	Χ	Χ	X	Χ	Start Command Table Command
	1h	Χ	Х	Х	Х	Start Command Table Command On Rising Trigger Event
	2h	Χ	Χ	Χ	Χ	Start Command Table Command On Falling Trigger Event
	8h			Χ	Χ	Modify Command Table 16 bit Parameter in RAM
	9h			Χ	Χ	Modify Command Table 32 bit Parameter in RAM
21h	0h	X	Χ	X	Χ	Wait Time
	1h		Χ	Χ	Χ	Wait Until Motion Finished
	2h	Χ	Χ	X	Χ	
	3h	Χ	Χ	Χ	Χ	Wait Until Rising Trigger Edge
	4h	Χ	Χ	Χ	Х	Wait Until Falling Trigger Edge
	8h	Χ	Χ	Χ	Χ	Wait Time Defined With Cmd Table Var 1
	9h	Х	Χ	Χ	Χ	Wait Time Defined With Cmd Table Var 2

Master	Sub	С	C	F	F	Description
ID	ID	1	1	1	1	
		1	2	2	4	
		0	0	0	0	
		0	0	0	0	
22h	0h	Χ	Χ	Χ	Χ	Wait Until Demand Position Greater Than
	1h	Х	Χ	Χ	Χ	Wait Until Demand Position Less Than
	2h	Χ	Χ	Χ	Χ	Wait Until Actual Position Greater Than
	3h	Χ	Χ	Χ	Χ	Wait Until Actual Position Less Than
	4h	Χ	Χ	Χ	Χ	Wait Until Difference Position Greater Than
	5h	Χ	Χ	Χ	Χ	Wait Until Difference Position Less Than
	6h	Χ	Χ	Χ	Χ	Wait Until Difference Position Unsigned Greater Than
	7h	Χ	Χ		Χ	Wait Until Difference Position Unsigned Less Than
	8h	Χ	Χ	Χ	Χ	•
	9h	Χ	Χ	Χ	Χ	
	Ah	Χ	Χ	Χ	Χ	
	Bh	Χ	Χ	Χ	Χ	
	Eh	Χ	Χ		Χ	
	Fh	Χ	Χ	Х		Wait Until Current Less Than
24h	0h	Χ	Χ			Set Cmd Table Var 1 To
	1h	Χ	Χ	Χ	Χ	
	2h	Χ	Χ		Χ	
	3h	Χ	Χ		Χ	Add To Cmd Table Var 2
	8h	Χ	Χ	Χ	Χ	
	9h	Χ	Χ	Χ	Χ	
	Ch	Χ	Χ	Χ	Χ	Write UPID RAM value To Cmd Table Var 1
	Dh	Χ	Χ		Χ	
	Eh	Χ	Χ		Χ	
25h	0h	Χ	Χ	Χ		IF Cmd Table Var 1 Less Than
	1h	Χ	Χ			IF Cmd Table Var 1 Greater Than
	2h	Χ	Χ		Χ	
	3h	Χ	Χ			IF Cmd Table Var 2 Greater Than
	6h	Χ	Χ			IF Cmd Table Var 1 Less Than UPID Value
	7h		Χ	Χ		IF Cmd Table Var 2 Less Than UPID Value
	8h	Χ	Χ	Χ		
	9h	Χ	Χ	Χ		
	Ah	X	X	Х		
	Bh	X	X	X	X	
	Ch	Х	Х	Х	Х	
	Dh	Х	Х	Х	Х	
	Eh	Х	Χ	Х	Х	IF Current Less Than
	Fh	Х	Х	X	Х	IF Current Greater Than
26h	0h	X	X	X	X	IF Analog Val On X4.4 Less Than
	2h	Х	Χ	Х	Х	IF Masked X4 Input Value Equal Than
	3h			Х	Х	
	4h	Х	Х	Х	Х	IF Masked Status Word Equal Than
	5h	Χ	Χ	Х	Х	IF Masked Warn Word Equal Than
	6h			Χ	Χ	IF CAM Counts Less Than

Master	Sub	С	С	F	F	Description
ID	ID	1	1	1	1	
		1	2	2	4	
		0	0	0	0	
		0	0	0	0	
30h	0h			Χ	Χ	Encoder Winging Start With Default Parameters
	1h			Χ	Х	Encoder Winding Start With Default Parameters At Revolutions
	4h			Х	Χ	Encoder Winding Stop Adaptation Of Left/Right Position and Disturbance
	5h			Х	Х	
						Disturbance
31h	0h			Χ	Χ	
	1h			Х	Х	Encoder Curve Winding Start With Default Parameters At Revolutions
38h	0h	F	F	F	F	VAI Go To Pos With Force Ctrl Limit
	1h	F	F	F	F	VAI Go To Pos From Act Pos And Reset Force Control
	2h	F	F	F	F	Force Ctrl Change Target Force
	3h	F	F	F	F	VAI Go To Pos With Force Ctrl Limit and Target Force
	4h	F	F	F	F	VAI Go To Pos With Lower Force Ctrl Limit
	5h	F	F	F	F	VAI Go To Pos With Lower Force Ctrl Limit and Target Force
	6h	F	F	F	F	VAI Go To Pos From Act Pos And Reset Force Control Set I
	7h		F	F	F	VAI Increment Act Pos And Reset Force Control Set I
39h	0h		Χ	Χ	Χ	
	Fh		Χ	Χ	Χ	Change to Position Controlled mode
3Ah	0h		Χ		Χ	VAJI Go To Pos
	1h		Χ		Χ	VAJI Increment Dem Pos
	2h		Χ		Х	VAJI Increment Target Pos
	4h		Χ		Χ	VAJI Go To Pos From Act Pos Starting With Dem Vel = 0 and
						Dem Acc = 0
	6h		Χ		Χ	VAJI Increment Act Pos Starting with Dem Vel = 0 and Dem Acc = 0
	Ah		Χ		Υ	VAJI Go To Pos On Rising Trigger Event
	Bh		X			VAJI Increment Target Pos On Rising Trigger Event
	Ch		X		X	VAJI Go To Pos On Falling Trigger Event
	Dh		X			VAJI Increment Target Pos On Falling Trigger Event
3Bh	0h		X		X	Predef VAJI Go To Pos
ODII	1h		X		X	
	2h		X		X	
	4h		X		Х	Predef VAJI Go To Pos From Act Pos Starting With Dem Vel = 0
	-111		^			and Dem Acc = 0
	Ah		Χ		Χ	Predef VAJI Go To Pos On Rising Trigger Event
	Bh		Χ		Χ	
	Ch		Χ		Χ	
	Dh		Χ		Χ	
F. only v	th		\overline{C}		11/	

F: only with Force Control Key

4.3 Detailed Motion Command Description

4.3.1 No Operation (000xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	No Operation (000xh)	UInt16	-

This command does nothing. It can be sent in any operational state.

4.3.2 Write Interface Control Word (001xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	001xh: Write Interface Control Word	UInt16	-
1. Par	2	Interface Control Word	UInt16	-

This command allows writing the control word through the motion command interface. The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer other ways to access the control word directly. Mostly a direct access is more comfortable than the way over the motion command interface.

4.3.3 Write Live Parameter (002xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	002xh: Write Live Parameter	UInt16	-
1. Par	2	UPID (Unique Parameter ID)	UInt16	-
2. Par	4	Parameter Value, the Unit depends on Parameter	Div	Div

This command allows writing any live parameter's ram value through the motion command interface. The parameter has to be specified by its UPID (Unique Parameter ID). In order to keep the interface as simple as possible any parameter can be accessed as 32bit integer value. The controller's operating system will filter out the relevant number of bits for parameters with smaller data size (e.g. only the lowest bit is considered for Boolean parameters).

The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer other ways to read and write parameter values directly. Mostly a direct access is more comfortable than the way over the motion command interface.

4.3.4 Write X4 Intf Outputs with Mask (003xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	003xh: Write X4 Intf Outputs with Mask	UInt16	-
1. Par	2	Bit Mask; Bit 0 = X4.3 Bit 1 = X4.4	UInt16	-
2. Par	4	Bit Value; Bit 0 = X4.3, Bit 1 X4.4	UInt16	-

This command allows writing the configured X4 interface outputs with a write mask through the motion command interface. To write an output, the corresponding bit in the mask must be set. Bit 0 is mapped to output X4.3, bit 1 to output X4.4 etc.

4.3.5 Select Position Controller Set (005xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	005xh: Select Position Controller Set	UInt16	-
1. Par	2	Controller Set Selection (0 = Set A, 1 = Set B)	UInt16	-

This command selects the active position controller set (A/B) UPID 0x1393. For set A the ID is 0 and for Set B the ID auf 1.

4.3.6 Clear Event Evaluation (008xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	008xh: Clear Event Evaluation	UInt16	-

This command resets the event handler. The event handler becomes active, if a motion command has been sent, that does not immediately start, but waits with its execution until other conditions are fulfilled (e.g. command 'VAI Go To Pos On Rising Trigger Event'). The bit 8 of the status word shows, if the event handler is active.

Once the event handler becomes active, it remains active, until it is deactivated with this clear command. As long the event handler is active, the command to be executed on the event situation will be restarted each time the event condition is fulfilled.

4.3.7 Master Homing (009xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	009xh: Master Homing	UInt16	-
1. Par	2	Home Position	SInt32	0.1 um

This command can be used, if the master system knows the home position without going to the home state in the state machine. The passed value of the home position is stored in the RAM value of the parameter Home Position (UPID 13C7h), then the corresponding value of the parameter Slider Home Position (UPID 13CAh) is calculated and stored in the RAM value. Then a homing at actual position is done without going into the homing state.

4.3.8 Reset (00Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	00Fxh: Reset	UInt16	-

This command resets the all firmware instances of the controller. Use this command with count = 0, otherwise the controller reboots cyclic!

4.3.9 VAI Go To Pos (010xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	010xh: VAI Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	Ulnt32	1E-5 m/s ²

4.3.10 VAI Increment Dem Pos (011xh)

Name	Byte Offset	Description	Type	Unit
Header	0	011xh:VAI Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command sets a new target position and defines the maximal velocity, acceleration and deceleration for going there. The new target position value will be determined by the firmware. It is calculated by adding the position increment argument to the demand position value. The demand position is the actual position setpoint on which the motor is controlled. The demand position value moves towards the target position value while a motion command is in execution.

4.3.11 VAI Increment Target Pos (012xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	012xh: VAI Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command sets a new target position and defines the maximal velocity, acceleration and deceleration for going there. The new target position value will be determined by the firmware. It is calculated by adding the position increment argument to the (former) target position. The target position is the motion's end position and doesn't change during the execution of a motion command.

4.3.12 VAI Go To Pos From Act Pos And Act Vel (013xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	013xh: VAI Go To Pos From Act Pos And Act Vel	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command starts the new VAI setpoint generation from the actual position and actual velocity. Can be used after a press command.

4.3.13 VAI Go To Pos From Act Pos Starting With Dem Vel = 0 (014xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	014xh: VAI Go To Pos From Act Pos Starting With	UInt16	-
		Dem Vel =0		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command starts the new VAI setpoint generation from the actual position and the start velocity is forced to zero. Can be used after a press command.

4.3.14 VAI Increment Act Pos (015xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	015xh: VAI Increment Act Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command sets a new target position and defines the maximal velocity, acceleration and deceleration for going there. The new target position value will be determined by the firmware. It is calculated by adding the position increment argument to the actual position. The actual position is the effective motor position. This command can be used to perform a retraction move after a press command. If the position increment argument is zero, this command defines the actual motor position as new setpoint.

4.3.15 VAI Increment Act Pos Starting With Dem Vel = 0 (016xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	016xh: VAI Increment Act Pos Starting With Dem Vel = 0	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command starts the new VAI setpoint generation from the actual position and the start velocity is forced to zero. This command defines the maximal velocity, acceleration and deceleration for going to the target position. The new target position value will be determined by the firmware. It is calculated by adding the position increment argument to the actual position. The actual position is the effective motor position. This command can be used to perform a retraction move after a press command. If the position increment argument is zero, then this command defines the actual motor position as new setpoint.

4.3.16 VAI Stop (017xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	017xh: VAI Stop	UInt16	-
1. Par	2	Deceleration	UInt32	1E-5 m/s ²

4.3.17 VAI Go To Pos After Actual Command (018xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	018xh: VAI Go To Pos After Actual Command	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.18 VAI Go To Analog Pos (019xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	019xh: VAI Go To Analog Pos	UInt16	-
1. Par	2	Maximal Velocity	Ulnt32	1E-6 m/s
2. Par	6	Acceleration	Ulnt32	1E-5 m/s ²
3. Par	10	Deceleration	UInt32	1E-5 m/s ²

4.3.19 VAI Go To Pos On Rising Trigger Event (01Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Axh: VAI Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

4.3.20 VAI Increment Target Pos On Rising Trigger Event (01Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Bxh: VAI Increment Target Pos On Rising Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

4.3.21 VAI Go To Pos On Falling Trigger Event (01Cxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Cxh: VAI Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

4.3.22 VAI Increment Target Pos On Falling Trigger Event (01Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Dxh: VAI Increment Target Pos On Falling Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

4.3.23 VAI Change Motion Parameters On Positive Position Transition (01Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Exh: VAI Change Motion Parameters On Positive Position Transition	UInt16	-
1. Par	2	Transition Event Position	SInt32	0.1 um
2. Par	6	Max Velocity After Event	UInt32	1E-6 m/s
3. Par	10	Acceleration After Event	UInt32	1E-5 m/s ²
4. Par	14	Deceleration After Event	UInt32	1E-5 m/s ²

This motion command moves an event change position, an event maximal speed, an event acceleration and an event deceleration to the event instance, and starts the event evaluation. As soon as the demand position crosses the event change position in the positive direction the VAI is changed with event values, the target position rests unchanged.

4.3.24 VAI Change Motion Parameters On Negative Position Transition (01Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	01Fxh: VAI Change Motion Parameters On Negative Position Transition	UInt16	-
1. Par	2	Transition Event Position	SInt32	0.1 um
2. Par	6	Max Velocity After Event	UInt32	1E-6 m/s
3. Par	10	Acceleration After Event	UInt32	1E-5 m/s ²
4. Par	14	Deceleration After Event	UInt32	1E-5 m/s ²

This motion command moves an event change position, an event maximal speed, an event acceleration and an event deceleration to the event instance, and starts the event evaluation. As soon as the demand position crosses the event change position in the negative direction the VAI is changed with event values, the target position rests unchanged.

4.3.25 Predef VAI Go To Pos (020xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	020xh: Predef VAI Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

4.3.26 Predef VAI Increment Dem Pos (021xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	021xh: Predef VAI Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

4.3.27 Predef VAI Increment Target Pos (022xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	022xh: Predef VAI Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

4.3.28 Predef VAI Go To Pos From Act Pos and Act Vel (023xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	023xh: Predef VAI Go To Pos From Act Pos And Act Vel	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command starts the new VAI setpoint generation from the actual position, can be used after a press command.

4.3.29 Predef VAI Go To Pos From Act Pos Starting With Dem Vel = 0 (024xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	024xh: Predef VAI Go To Pos From Act Pos With Dem Vel = 0	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command starts the new VAI-Setpoint generation from the actual position and the start velocity is forced to zero can be used after a press command.

4.3.30 **Predef VAI Stop (027xh)**

Offset	Description							.) 0	Unit
0			VAI	Stop	With	Quick	Stop	UInt16	-
0	set	017xh:		017xh: Predef VAI	017xh: Predef VAI Stop	017xh: Predef VAI Stop With	017xh: Predef VAI Stop With Quick	017xh: Predef VAI Stop With Quick Stop	017xh: Predef VAI Stop With Quick Stop UInt16

4.3.31 Predef VAI Go To Pos After Actual Command (028xh)

Name	Byte Offset	Descrip	tion							Туре	Unit
Header	0	028xh: Comma	Predef nd	VAI	Go	То	Pos	After	Actual	UInt16	-
1. Par	2	Target F	Position							SInt32	0.1 um

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.32 Predef VAI Go To Pos On Rising Trigger Event (02Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Axh: Predef VAI Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

4.3.33 Predef VAI Increment Target Pos On Rising Trigger Event (02Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Bxh: Predef VAI Increment Target Pos On Rising	UInt16	-
		Trigger Event		
1. Par	2	Position Increment	SInt32	0.1 um

4.3.34 Predef VAI Go To Pos On Falling Trigger Event (02Cxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Cxh: Predef VAI Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

4.3.35 Predef VAI Go To Pos On Falling Trigger Event (02Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Cxh: Predef VAI Go To Pos On Falling Trigger Event	UInt16	1
1. Par	2	Target Position	SInt32	0.1 um

4.3.36 Predef VAI Infinite Motion Positive Direction (02Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Exh: Predef VAI Infinite Motion Positive Direction	UInt16	•

4.3.37 Predef VAI Infinite Motion Negative Direction (02Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	02Fxh: Predef VAI Infinite Motion Negative Direction	UInt16	-

4.3.38 P Stream With Slave Generated Time Stamp (030xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	030xh: P Stream With Slave Generated Time Stamp	UInt16	-
1. Par	2	Position	SInt32	0.1 um

Position streaming mode: The time stamp is generated by the interface (receive time stamp of T0), the streaming period has to be in the time range 2..5ms. For good results the streaming period has to be as constant as possible.

4.3.39 PV Stream With Slave Generated Time Stamp (031xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	031xh: PV Stream With Slave Generated Time Stamp	UInt16	-
1. Par	2	Position	SInt32	0.1 um
2. Par	6	Velocity	SInt32	1 um/s

Position and velocity streaming mode: Preferred streaming mode. The time stamp is generated by the interface (receive time stamp of T0), the streaming period has to be in the time range 2..5ms. Less sensitive to deviations of the streaming period.

4.3.40 P Stream With Slave Generated Time Stamp and Configured Period Time (032xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	032xh: P Stream With Slave Generated Time Stamp and Configured Period Time	UInt16	1
1. Par	2	Position	SInt32	0.1 um

Position streaming mode: The time stamp is generated by the interface (receive time stamp of T0), the streaming period has to be in the time range 2..5ms. For good results the streaming period has to be as constant as possible. For the derivation of the velocity and the acceleration the configured streaming period time 14E6h is taken to minimize communication time jittering.

4.3.41 PV Stream With Slave Generated Time Stamp Stamp and Configured Period Time (033xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	033xh: PV Stream With Slave Generated Time	UInt16	-
		Stamp Stamp and Configured Period Time		
1. Par	2	Position	SInt32	0.1 um
2. Par	6	Velocity	SInt32	1 um/s

This command can be used for cyclic streaming of position and velocity setpoints. This is possible if master provides NC functionality. The commands have to be sent strictly cyclic in order to prevent buffer underflow/buffer overflow errors. The period length must be in the time range of 0.4ms .. 10ms. The setpoint time stamp is generated by the slave's interface when the command is received (receive time stamp). The first two streaming commands are used to determine the nominal period length. The setpoints are Than delayed 1.5 times the

period length. Between the setpoints, the slave performs a fine interpolation. Since acceleration setpoint derivation is less sensitive to bus jitters, it is recommended to use this command (PV streaming) instead of the simple P streaming command whenever possible. For the derivation of the velocity and the acceleration the configured streaming period time 14E6h is taken to minimize communication time jittering.

4.3.42 PVA Stream With Slave Generated Time Stamp (034xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	034xh: PVA Stream With Slave Generated Time Stamp	UInt16	-
1. Par	2	Position	SInt32	0.1 um
2. Par	6	Velocity	SInt32	1 um/s
3. Par	10	Acceleration	SInt32	1E-5m/s ²

This command can be used for cyclic position, velocity and acceleration setpoint streaming. This is possible if master provides NC functionality. The commands have to be sent strictly cyclic in order to prevent buffer underflow/buffer overflow errors. The period length should be in the time range of 0.4ms .. 10ms. The setpoint time stamp is generated by the slave's interface when the command is received (receive time stamp). The first two streaming commands are used to determine the nominal period length. The setpoints are Than delayed 1.5 times the period length. Between the setpoints, the slave performs a fine interpolation. For good results the streaming period has to be as constant as possible.

4.3.43 PVA Stream With Slave Generated Time Stamp and Configured Period Time (035xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	035xh: PVA Stream With Slave Generated Time Stamp and Configured Period Time	UInt16	-
1. Par	2	Position	SInt32	0.1 um
2. Par	6	Velocity	SInt32	1 um/s
3. Par	10	Acceleration	SInt32	1E-5m/s ²

This command can be used for cyclic streaming of position, velocity and acceleration setpoints. This is possible if master provides NC functionality. The commands have to be sent strictly cyclic in order to prevent buffer underflow/buffer overflow errors. The period length must be in the time range of 0.4ms .. 10ms. The setpoint time stamp is generated by the slave's interface when the command is received (receive time stamp). The first two streaming commands are used to determine the nominal period length. The setpoints are Than delayed 1.5 times the period length. Between the setpoints, the slave performs a fine interpolation. Since acceleration setpoint derivation is less sensitive to bus jitters, it is recommended to use this command (PVA streaming) instead of the simple P streaming command whenever possible. For the derivation of the velocity and the acceleration the configured streaming period time 14E6h is taken to minimize communication time jittering.

4.3.44 Stop Streaming (03Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	03Fxh: Stop Streaming	UInt16	-

This command is used to leave the streaming mode.

4.3.45 Time Curve With Default Parameters (040xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	040xh: Time Curve With Default Parameters	UInt16	-
1. Par	2	Curve ID	UInt16	1100

4.3.46 Time Curve With Default Parameters From Act Pos (041xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	41xh: Time Curve With Default Parameters From Act Pos	UInt16	-
1. Par	2	Curve ID	UInt16	1100

This command sets the curve offset to the actual position set point then starts the specified time curve with the default parameters (curve time scaling and curve amplitude scaling).

4.3.47 Time Curve To Pos With Default Speed (042xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	042xh: Time Curve To Pos With Default Speed	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Target Position	SInt32	0.1 um

This command sets the curve offset to the actual demand position and scales the curve the way that the target position is reached at the end (the scaling range is -2000%..2000%, if this range is exceeded an error will be generated) then starts the specified time curve with the default curve speed parameter.

4.3.48 Time Curve To Pos With Adjustable Time (043xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	043xh: Time Curve To Pos With Adjustable Time	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Target Position	SInt32	0.1 um
3. Par	8	Curve Time	SInt32	10us

This command sets the curve offset to the demand position and scales the curve the way that the target position is reached at the end (the scaling range is -2000%..2000%, if this range is exceeded an error will be generated). The curve time is taken from the motion command.

4.3.49 Time Curve With Adjustable Offset, Time Scale & Amplitude Scale (044xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	044xh: Time Curve With Adjustable Offset, Time Scale & Amplitude Scale	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Offset	SInt32	0.1 um
3. Par	8	Time Scale [0200%]	UInt16	0.01%
4. Par	10	Amplitude Scale [-2000%2000%]	SInt16	0.1%

With this command all the curve parameters are defined.

4.3.50 Time Curve With Adjustable Offset, Time & Amplitude Scale (045xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	045xh: Time Curve With Adjustable Offset, Time & Amplitude Scale	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Offset	SInt32	0.1 um
3. Par	8	Curve Time	SInt32	10us
4. Par	12	Amplitude Scale [-2000%2000%]	SInt16	0.1%

With this command all the curve parameters are defined, unlike command 44xh this command defines the absolute curve time.

4.3.51 Time Curve With Adjustable Offset, Time & Amplitude Scale On Rising Trigger Event (046xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	046xh: Time Curve With Adjustable Offset, Time & Amplitude Scale On Rise Trigger Event	UInt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Curve Offset	SInt32	0.1 um
3. Par	8	Curve Time	SInt32	10us
4. Par	12	Amplitude Scale [-2000%2000%]	SInt16	0.1%

On a rising trigger event start command 045xh.

4.3.52 Time Curve With Adjustable Offset, Time & Amplitude Scale On Falling Trigger Event (047xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	047xh: Time Curve With Adjustable Offset, Time & Amplitude Scale On Falling Trigger Event	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Offset	SInt32	0.1 um
3. Par	8	Curve Time	SInt32	10us
4. Par	12	Amplitude Scale [-2000%2000%]	SInt16	0.1%

On a falling trigger event start command 045xh.

4.3.53 Time Curve To Pos With Default Speed On Rising Trigger Event (04Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	04Axh: Time Curve To Pos With Default Speed On Rising Trigger Event	UInt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Target Position	SInt32	0.1 um

On a rising trigger event start command 042xh.

4.3.54 Time Curve To Pos With Default Speed On Falling Trigger Event (04Cxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	04Cxh: Time Curve To Pos With Default Speed On	UInt16	-
		Falling Trigger Event		
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Target Position	SInt32	0.1 um

On a falling trigger event start command 042xh.

4.3.55 Time Curve To Pos With Adjustable Time On Rising Trigger Event (04Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	04Exh: Time Curve Go To Absolute Position With Adjustable Time On Rising Trigger Event	UInt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Target Position	SInt32	0.1 um
3 Par	8	Curve Time	SInt32	10us

On a rising trigger event start command 043xh.

4.3.56 Time Curve To Pos With Adjustable Time On Falling Trigger Event (04Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	04Fxh: Time Curve To Pos With Adjustable Time On Falling Trigger Event	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Target Position	SInt32	0.1 um
3 Par	8	Curve Time	SInt32	10us

On a falling trigger event start command 043xh.

4.3.57 Modify Curve Start Address in RAM (050xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	050xh: Modify Curve Start Address in RAM	Ulnt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Curve Start Address Offset	Uint16	-

This command allows locating the curve start address (points to the start of the curve info header). A value of 0FFFh means no curve has been defined, can be used to clear a curve. When using this command the whole memory management of the curve data has to be done by the superior system! A curve can only be defined with a valid start address. If a start address is defined, the curve (curve info header and curve data points) has to be completely defined, otherwise this will lead to an unpredictable behavior!

4.3.58 Modify Curve Info Block 16 Bit Value in RAM (051xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	051xh: Modify Curve Info Block 16 Bit Value in RAM	UInt16	
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Offset in Byte	Uint16	0
3. Par	6	Value	Sint16	-

This command allows to modify a 16 bit value (or half of a 32 bit value) in RAM within the curve info block of an existing curve profile with the given ID. The offset argument defines on which position within the curve info block the modification takes place (byte offset). In order to modify for instance the value of x-Length you first have to set the low word of the new curve length with Offset 32 and then the high word with offset 34.

The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer a safer way to download and modify curve profiles (Curve Service). Writing with wrong offsets, may overwrite and destroy data of other curves and may lead to unpredictable behavior!

4.3.59 Modify Curve Info Block 32 Bit Value in RAM (052xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	052xh: Modify Curve Info Block 32 Bit Value in RAM	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Offset in Byte	Uint16	0
3. Par	6	Value	Sint32	-

This command allows to modify a 32 bit value in RAM within the curve data block of an already existing curve profile with the given ID. The offset argument defines on which position within the curve data block the modification takes place (byte offset). In order to modify for instance the first position setpoint value (SInt32) you have to set the new position with offset 0. The second setpoint has offset 4, and so on.

The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer a safer way to download and modify curve profiles (Curve Service). Writing with wrong offsets, may overwrite and destroy data of other curves and may lead to unpredictable behavior!

4.3.60 Modify Curve Data Block 32 Bit Value in RAM (054xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	054xh: Modify Curve Data Block 32 Bit Value in RAM	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Offset in Byte	Uint16	0
3. Par	6	Curve point value	Sint32	-

This command allows to modify in RAM a 32 bit value within the Curve Data Block of a curve with existing curve start address and curve info header block with the given ID. The offset argument defines on which position within the curve data block the modification takes place (byte offset). In order to modify for instance the first position setpoint value (SInt32) you have to set the new position with offset 0. The second setpoint has offset 4, and so on. The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer a safer way to download and modify curve profiles (Curve Service). Writing with wrong offsets, may overwrite and destroy data of other curves and may lead to unpredictable behavior!

4.3.61 Modify Curve Data Block 64 Bit Value in RAM (055xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	055xh: Modify Curve Data Block 64 Bit Value in RAM	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Offset in Byte	Uint16	0
3. Par	6	Curve point value	Sint32	-
4. Par	10	Curve point value	Sint32	-

This command allows to modify in RAM two 32 bit value within the curve data block of a curve with existing curve start address and curve info header block with the given ID. The offset argument defines on which position within the curve data block the modification takes place (byte offset). In order to modify for instance the first position setpoint value (SInt32) you have to set the new position with offset 0. The second setpoint has offset 4, and so on. The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer a safer way to download and modify curve profiles (Curve Service). Writing with wrong offsets, may overwrite and destroy data of other curves and may lead to unpredictable behavior!

4.3.62 Modify Curve Data Block 96 Bit Value in RAM (056xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	056xh: Modify Curve Data Block 96 Bit Value in RAM	Uint16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Offset in Byte	Uint16	0
3. Par	6	Curve point value	Sint32	-
4. Par	10	Curve point value	Sint32	-
4. Par	14	Curve point value	Sint32	-

This command allows to modify in RAM three 32 bit value within the curve data block of a curve with existing curve start address and curve info header block with the given ID. The offset argument defines on which position within the curve data block the modification takes place (byte offset). In order to modify for instance the first position setpoint value (SInt32) you have to set the new position with offset 0. The second setpoint has offset 4, and so on. The fieldbus interfaces (CANOpen, DeviceNet, Profibus, LinRS, POWERLINK, EtherCAT) offer a safer way to download and modify curve profiles (Curve Service). Writing with wrong offsets, may overwrite and destroy data of other curves and may lead to unpredictable behavior!

4.3.63 Setup Encoder Cam On Rising Trigger Event With Delay Counts (069xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	069xh: Setup Encoder Cam On Rising Trigger	UInt16	-
		Event With Delay Counts		
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Delay Count	UInt32	1 Incr

Setup in the event handler to start a cam curve on the rising trigger event with the specified curve ID and the specified delay counts. The specified curve ID is written to the RAM value of UPID 154Ah, and the specified cam start delay is written to the RAM value of UPID 154Ch. Use the infinite cam Length (UPID1527h) for triggered cam motions.

4.3.64 Setup Encoder Cam On Rising Trigger Event With Delay Counts, Target Pos and Length (06Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	06Axh: Setup Encoder Cam On Rise Trigger Event With Delay Counts, Target Pos and Length	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Delay Count	SInt32	1 Incr
3. Par	8	Target Position	SInt32	0.1 um
4. Par	12	Curve length	SInt32	1 Incr

Setup in the event handler to start a cam curve on the rising trigger event with the specified curve ID and the specified delay counts to specified target position in specified counts. The specified curve ID is written to the RAM value of UPID 154Ah, and the specified cam start delay is written to the RAM value of UPID 154Ch. Use the infinite cam length (UPID1527h) for triggered cam motions.

4.3.65 Setup Encoder Cam On Falling Trigger Event With Delay Counts (06Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	06Bxh: Setup Encoder Cam On Falling Trigger Event With Delay Counts	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Delay Count	Ulnt32	1 Incr

Setup in the event handler to start a cam curve on the falling trigger event with the specified curve ID and the specified delay counts. The specified curve ID is written to the RAM value of UPID 154Bh, and the specified cam start delay is written to the RAM value of UPID 154Dh. Use the infinite cam length (UPID1527h) for triggered cam motions.

4.3.66 Setup Encoder Cam On Falling Trigger Event With Delay Counts, Target Pos and Length (06Cxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	06Cxh: Setup Encoder Cam On Falling Trigger Event With Delay Counts, Target Pos and Length	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Delay Count	SInt32	1 Incr
3. Par	8	Target Position	SInt32	0.1 um
4. Par	12	Curve length	SInt32	1 Incr

Setup in the event handler to start a cam curve on the falling trigger event with the specified curve ID and the specified delay counts to specified target position in specified counts. The specified curve ID is written to the RAM value of UPID 154Bh, and the specified cam start delay is written to the RAM value of UPID 154Dh. Use the infinite cam length (UPID1527h) for triggered cam motions.

4.3.67 Setup Encoder Cam On Rising Trigger Event With Delay Counts, Amplitude scale and Length (06Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	06Dxh: Setup Encoder Cam On Rise Trigger Event With Delay Counts, Amplitude scale and Length	UInt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Curve Start Delay Count	SInt32	1 Incr
3. Par	8	Amplitude Scale	Sint16	0.1 %
4. Par	10	Curve length in Counts	SInt32	1 Incr

Setup in the event handler to start a cam curve on the rising trigger event with the specified curve ID and the specified delay counts to specified target position in specified counts. The specified curve ID is written to the RAM value of UPID 154Ah, and the specified cam start delay is written to the RAM value of UPID 154Ch. Use the infinite cam length (UPID1527h) for triggered cam motions.

4.3.68 Setup Encoder Cam On Falling Trigger Event With Delay Counts, Amplitude scale and Length (06Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	06Exh: Setup Encoder Cam On Fall Trigger Event With Delay Counts, Amplitude scale and Length	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Delay Count	SInt32	1 Incr
3. Par	8	Amplitude Scale	Sint16	0.1 %
4. Par	10	Curve length in Counts	SInt32	1 Incr

Setup in the event handler to start a cam curve on the rising trigger event with the specified curve ID and the specified delay counts to specified target position in specified counts. The specified curve ID is written to the RAM value of UPID 154Ah, and the specified cam start delay is written to the RAM value of UPID 154Ch. Use the infinite cam length (UPID1527h) for triggered cam motions.

4.3.69 Start VAI Encoder Position Indexing (070xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	070xh: Start VAI Encoder Position Indexing	UInt16	ı
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

Changes to the VAI encoder position indexing mode, the actual encoder count is to the target position. To stop the indexing mode use one of the commands (008xh), (07Exh) or (07Fxh).

4.3.70 Start Predef VAI Encoder Position Indexing (071xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	071xh: Start Predef VAI Encoder Position Indexing	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

Changes to the VAI encoder position indexing mode, the actual encoder count is to the target position. The VAI parameters maximal velocity, acceleration and deceleration are ones taken at calling time from the predefined VAI parameter set (UPIDs: 14BEh, 14BF and 14C0h). To stop the indexing mode use one of the commands (008xh), (07Exh) or (07Fxh).

4.3.71 Stop Position Indexing and VAI Go To Pos (07Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	07Exh: Stop Position Indexing And VAI Go To Pos	UInt16	1
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	Ulnt32	1E-5 m/s ²

This command stops the position indexing mode and moves to the defined target position with a VAI command.

4.3.72 Stop Position Indexing and VAI Go To Pos (07Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	07Vxh: Stop Position Indexing And VAI Go To Pos	Ulnt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command clears the position indexing mode and moves to the defined target position with a Predefined VAI command.

4.3.73 VAI 16 Bit Go To Pos (090xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	090xh: VAI 16 Bit Go To Pos	UInt16	-
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

This command is similar to the 010xh command, but the parameters are only 16 bit and scaled. The scaling is according to the parameter settings under \Motion Control SW\ Motion Interface\ 16 Bit Interface Scaling\.

4.3.74 VAI 16 Bit Increment Dem Pos (091xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	091xh: VAI 16 Bit Go To Relative Position	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.75 VAI 16 Bit Increment Target Pos (092xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	092xh: VAI 16 Bit Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.76 VAI 16 Bit Go To Pos From Act Pos And Act Vel (093xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	093xh: VAI 16 Bit Go To Pos From Act Pos And Act	UInt16	-
		Vel	01.110	
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

This command starts the new VAI setpoint generation from the actual position, can be used after a press command.

4.3.77 VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel = 0 (094xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	094xh: VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel = 0	UInt16	-
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

This command starts a the new VAI-Setpoint generation from the actual position and the start velocity is forced to zero. Can be used after a press command.

4.3.78 VAI 16 Bit Increment Act Pos (095xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	095xh: VAI 16 Bit Increment Act Pos	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.79 VAI 16 Bit Increment Act Pos Starting With Dem Vel = 0 (096xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	096xh: VAI 16 Bit Increment Act Pos	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.80 VAI 16 Bit Stop (097xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	097xh: VAI 16 Bit Stop	UInt16	-
1. Par	2	Deceleration	UInt16	Scaled

4.3.81 VAI 16 Bit Go To Pos After Actual Command (098xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	098xh: VAI 16 Bit Go To Pos After Actual	UInt16	-
		Command		
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.82 VAI 16 Bit Go To Pos On Rising Trigger Event (09Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	9Axh: VAI 16 Bit Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.83 VAI 16 Bit Increment Target Pos On Rising Trigger Event (09Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	9Bxh: VAI 16 Bit Increment Target Pos On Rising Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.84 VAI 16 Bit Go To Pos On Falling Trigger Event (09Cxh)

			-	-
Name	Byte Offset	Description	Туре	Unit
Header	0	09Cxh: VAI 16 Bit Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.85 VAI 16 Bit Increment Target Pos On Falling Trigger Event (09Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	09Dxh: VAI 16 Bit Increment Target Pos On Falling	UInt16	-
		Trigger Event		
1. Par	2	Position Increment	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration	UInt16	Scaled
4. Par	8	Deceleration	UInt16	Scaled

4.3.86 VAI 16 Bit Change Motion Parameters On Positive Position Transition (09Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	09Exh: VAI 16 Bit Change Motion Parameters On Positive Position Transition	UInt16	-
1. Par	2	Transition Event Position	SInt16	Scaled
2. Par	4	Max Velocity After Event	UInt16	Scaled
3. Par	6	Acceleration After Event	UInt16	Scaled
4. Par	8	Deceleration After Event	UInt16	Scaled

As soon as the demand position crosses the event change position in positive direction the parameters for velocity, acceleration and deceleration will be changed to the values defined in the command.

4.3.87 VAI 16 Bit Change Motion Parameters On Negative Position Transition (09Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	09Exh: VAI Change Motion Parameters on Negative Position Transition	UInt16	-
1. Par	2	Transition Event Position	SInt16	Scaled
2. Par	4	Max Velocity After Event	UInt16	Scaled
3. Par	6	Acceleration After Event	UInt16	Scaled
4. Par	8	Deceleration After Event	UInt16	Scaled

As soon as the demand position crosses the event change position in negative direction the parameters for velocity, acceleration and deceleration will be changed to the values defined in the command.

4.3.88 Predef VAI 16 Bit Go To Pos (0A0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A0xh: Predef VAI 16 Bit Go To Pos	UInt16	-
1. Par	2	Target Position	SInt16	Scaled

4.3.89 Predef VAI 16 Bit Increment Dem Pos (0A1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A1xh: Predef VAI 16 Bit Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled

4.3.90 Predef VAI 16 Bit Increment Target Pos (0A2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A2xh: Predef VAI 16 Bit Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt16	Scaled

4.3.91 Predef VAI 16 Bit Go To Pos From Act Pos And Act Vel (0A3xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A3xh: VAI 16 Bit Go To Pos From Act Pos And Act Vel	UInt16	-
1. Par	2	Target Position	SInt16	Scaled

This command starts a new VAI setpoint generation from the actual position, can be used after a press command.

4.3.92 Predef VAI 16 Bit Go To Pos From Act Pos Starting With Dem Vel = 0 (0A4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A4xh: Predef VAI 16 Bit Go To Pos From Act Pos	UInt16	-
		Starting With Dem Vel = 0		
1. Par	2	Target Position	SInt16	Scaled

This command starts a new VAI setpoint generation from the actual position and the start velocity is forced to zero. Can be used after a press command.

4.3.93 **Predef VAI 16 Bit Stop (0A7xh)**

Name	Byte Offset	Descript	Description						Туре	Unit
Header	0	0A7xh: Decelera		VAI	Stop	With	Quick	Stop	UInt16	-

4.3.94 Predef VAI 16 Bit Go To Pos After Actual Command (0A8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0A8xh: Predef VAI 16 Bit Go To Pos After Actual Command	UInt16	-
1. Par	2	Target Position	SInt16	Scaled

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.95 Predef VAI 16 Bit Go To Pos On Rising Trigger Event (0AAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0AAxh: Predef VAI 16 Bit Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt16	Scaled

4.3.96 Predef VAI 16 Bit Increment Target Pos On Rising Trigger Event (0ABxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0ABxh: Predef VAI 16 Bit Increment Target Pos On	UInt16	-
		Rising Trigger Event		
1. Par	2	Position Increment	SInt16	Scaled

4.3.97 Predef VAI 16 Bit Go To Pos On Falling Trigger Event (0ACxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0ACxh: VAI 16 Bit Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

4.3.98 Predef VAI 16 Bit Increment Target Pos On Falling Trigger Event (0ADxh)

Name	Byte	Description	Туре	Unit
	Offset			
Header	0	0ADxh: Predef VAI 16 Bit Increment Target Pos	UInt16	-
		On Falling Trigger Event		
1. Par	2	Target Position	SInt16	Scaled

4.3.99 VAI Predef Acc Go To Pos (0B0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B0xh: VAI Predef Acc Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.100 VAI Predef Acc Increment Dem Pos (0B1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B1xh:VAI Predef Acc Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.101 VAI Predef Acc Increment Target Pos (0B2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B2xh: VAI Predef Acc Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.102 VAI Predef Acc Go To Pos From Act Pos And Act Vel (0B3xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B3xh: VAI Predef Acc Go To Pos From Act Pos	UInt16	-
		And Act Vel		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

This command starts a new VAI setpoint generation from the actual position and with actual velocity. Can be used after a press command.

4.3.103 VAI Predef Acc Go To Pos From Act Pos Starting With Dem Vel = 0 (0B4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B4xh: VAI Predef Acc Go To Pos From Act Pos Starting With Dem Vel =0	UInt16	-
4.5		· ·	01 (00	0.4
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

This command starts a new VAI setpoint generation from the actual position and the start velocity is forced to zero. Can be used after a press command.

4.3.104 VAI Predef Acc Go To Pos After Actual Command (0B8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0B8xh: VAI Predef Acc Go To Pos After Actual	UInt16	-
		Command		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.105 VAI Predef Acc Go To Pos On Rising Trigger Event (0BAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	OBAxh: VAI Predef Acc Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.106 VAI Predef Acc Increment Target Pos On Rising Trigger Event (0BBxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0BBxh: VAI Predef Acc Increment Target Pos On	UInt16	-
		Rising Trigger Event		
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.107 VAI Predef Acc Go To Pos On Falling Trigger Event (0BCxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0BCxh: VAI Predef Acc Go To Pos On Falling	UInt16	-
		Trigger Event		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.108 VAI Predef Acc Increment Target Pos On Falling Trigger Event (0BDxh)

Name	Byte	Description	Туре	Unit
	Offset			
Header	0	0BDxh: VAI Predef Acc Increment Target Pos On	UInt16	-
		Falling Trigger Event		
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s

4.3.109 VAI Dec=Acc Go To Pos (0C0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C0xh: VAI Dec=Acc Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.110 VAI Dec=Acc Increment Dem Pos (0C1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C1xh:VAI Dec=Acc Increment Dem Pos	UInt16	ı
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.111 VAI Dec=Acc Increment Target Pos (0C2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C2xh: VAI Dec=Acc Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.112 VAI Dec=Acc Go To Pos From Act Pos And Act Vel (0C3xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C3xh: VAI Dec=Acc Go To Pos From Act Pos And Act Vel	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

This command starts a new VAI setpoint generation from the actual position and actual velocity. Can be used after a press command.

4.3.113 VAI Dec=Acc Go To Pos From Act Pos Starting With Dem Vel = 0 (0C4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	OC4xh: VAI Dec=Acc Go To Pos From Act Pos	UInt16	-
		Starting With Dem Vel =0		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

This command starts a new VAI setpoint generation from the actual position and the start velocity is forced to zero. Can be used after a press command.

4.3.114 VAI Dec=Acc Go To Pos With Max Curr (0C5xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C5xh: VAI Dec=Acc Go To Pos With Max Curr	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Demand Curr Limit	Uint16	1mA

This command can be used as press command with limited current (force). This command sets the maximal current of the actual position controller set (UPID 13A6h or 13Bah) to the value defined with the 4th parameter. To reset the current to the normal value, use the command 0C6xh or 0C7xh.

VAI Dec=Acc Go To Pos From Act Pos And Vel With Max Curr 4.3.115 (0C6xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C6xh: VAI Dec=Acc Go To Pos From Act Pos And	UInt16	-
		Vel With Max Curr		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Demand Curr Limit	Uint16	1mA

This command can be used after the command 0C5xh to set the current to the normal value. At the beginning of the motion the position controller integrator is cleared. This command sets the maximal current of the actual position controller set (UPID 13A6h or 13BAh) to the value defined with the 4th parameter.

VAI Dec=Acc Go To Pos From Act Pos And Vel = 0 With Max 4.3.116 Curr (0C7xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C7xh: VAI Dec=Acc Go To Pos From Act Pos And Vel = 0 With Max Curr	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Demand Curr Limit	Uint16	1mA

This command can be used after the command 0C5xh to set the current to the normal value. At the beginning of the motion the position controller integrator is cleared. This command sets the maximal current of the actual position controller set (UPID 13A6h or 13BAh) to the value defined with the 4th parameter.

4.3.117 VAI Dec=Acc Go To Pos After Actual Command (0C8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0C8xh: VAI Dec=Acc Go To Pos After Actual Command	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

This command waits until the actual motion setpoint generation has finished, then starts the new defined VAI motion.

4.3.118 VAI Dec=Acc Go To Pos On Rising Trigger Event (0CAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0CAxh: VAI Dec=Acc Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.119 VAI Dec=Acc Increment Target Pos On Rising Trigger Event (0CBxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0CBxh: VAI Dec=Acc Increment Target Pos On Rising Trigger Event	UInt16	
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.120 VAI Dec=Acc Go To Pos On Falling Trigger Event (0CCxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0CCxh: VAI Dec=Acc Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.121 VAI Dec=Acc Increment Target Pos On Falling Trigger Event (0CDxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0CDxh: VAI Dec=Acc Increment Target Pos On Falling Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration = Deceleration	UInt32	1E-5 m/s ²

4.3.122 VAI Increment Captured Pos (0D0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D0xh: VAI Increment Captured Pos	UInt16	-
1. Par	2	Captured Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

Go to the target position (Captured Pos + Captured Increment Position).

4.3.123 VAI 16 Bit Dec=Acc Go To Pos (0D1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D1xh: VAI 16 Bit Dec=Acc Go To Pos	UInt16	-
1. Par	2	Target Position	SInt16	Scaled
2. Par	4	Maximal Velocity	UInt16	Scaled
3. Par	6	Acceleration / Deceleration	UInt16	Scaled

This command sets a new Target Position and defines the maximal velocity, acceleration and deceleration for going there. The Target Position is calculated by adding the Position Increment argument and the value of the capture variable <UPID>\$1E62. The command execution starts immediately when the command has been sent. The setpoints (Demand Position, Demand Velocity and Demand Acceleration) are calculated by the internal Velocity Acceleration Interpolator (VAI). This command initializes the VAI with the current Demand Position and Demand Velocity value. Therefore it is possible to start a new command, while execution of a former command is not fully completed.

4.3.124 VAI Go To Cmd Tab Var1 Pos (0D4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D4xh: VAI Go To Cmd Tab Var1 Pos	UInt16	-
1. Par	2	Maximal Velocity	UInt32	1E-6 m/s
2. Par	6	Acceleration	UInt32	1E-5 m/s ²
3. Par	10	Deceleration	UInt32	1E-5 m/s ²

Go to the target position defined with the command table variable 1 (UPID 1E72h).

4.3.125 VAI Go To Cmd Tab Var2 Pos (0D5xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D5xh: VAI Go To Cmd Tab Var2 Pos	UInt16	-
1. Par	2	Maximal Velocity	Ulnt32	1E-6 m/s
2. Par	6	Acceleration	Ulnt32	1E-5 m/s ²
3. Par	10	Deceleration	Ulnt32	1E-5 m/s ²

Go to the target position defined with the command table variable 2 (UPID 1E73h).

4.3.126 VAI Go To Cmd Tab Var1 Pos From Act Pos And Act Vel (0D6xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D6xh: VAI Go To Cmd Tab Var1 Pos From Act Pos And Act Vel	UInt16	-
1. Par	2	Maximal Velocity	Ulnt32	1E-6 m/s
2. Par	6	Acceleration	Ulnt32	1E-5 m/s ²
3. Par	10	Deceleration	Ulnt32	1E-5 m/s ²

Go to the target position defined with the command table variable 1 (UPID 1E72h) starting from actual position and with actual velocity.

4.3.127 VAI Go To Cmd Tab Var2 Pos From Act Pos And Act Vel (0D7xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D7xh: VAI Go To Cmd Tab Var2 Pos From Act	UInt16	-
		Pos And Act Vel		
1. Par	2	Maximal Velocity	UInt32	1E-6 m/s
2. Par	6	Acceleration	UInt32	1E-5 m/s ²
3. Par	10	Deceleration	Ulnt32	1E-5 m/s ²

Go to the target position defined with the command table Variable 2 (UPID 1E73h) starting from actual position and with actual velocity.

4.3.128 VAI Stop at Angle(0D8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0D8xh: VAI Stop at Angle	UInt16	-
1. Par	2	Angle	UInt16	360°/2^16
2. Par	4	Deceleration	UInt32	1E-5 m/s ²

This command can be used to stop the motor at a specified angle with the specified deceleration (deceleration to velocity zero). This command could only be used on ABZ sensor feedback on X13 and if 360° (one revolution) is a power of 2 number.

4.3.129 VAI Start Trig Rise Config VAI Command (0DExh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0DExh: VAI Start Trig Rise Config VAI Command	Ulnt16	-

This command starts the VAI motion command, defined with the parameters in Trig Rise Config of the Triggered VA-Interpolator Run Mode settings.

4.3.130 VAI Start Trig Rise Config VAI Command (0DFxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0DFxh: VAI Start Trig Fall Config VAI Command	UInt16	-

This command starts the VAI motion command, defined with the parameters in Trig Fall Config of the Triggered VA-Interpolator Run Mode settings.

4.3.131 Sin VA Go To Pos (0E0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0E0xh: Sin VA Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal acceleration and maximal velocity.

4.3.132 Sin VA Increment Demand Pos (0E1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0E1xh: Sin VA Increment Demand Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal accelearation and maximal velocity. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Demand Position value (relative move). The command execution starts immediately when the command has been sent.

4.3.133 Sin VA Go To Pos From Actual Pos (0E4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0E4xh: Sin VA Go To Pos From Actual Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal accelearation and maximal velocity. The command execution starts immediately when the command has been sent. This command should be used if the Actual Position does not match with the current Demand Position value, but it can be assumed that the motor stands still (Actual Velocity assumed to be zero, e.g. because the motor stands on a hard stop). This can happen after a Press command, where the actual motor position is defined through external conditions and the motor can not and had not to follow the demand position. By starting this command, the former accepted difference between Actual Position and Demand Position can be eliminated.

4.3.134 Sin VA Increment Actual Pos (0E6xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0E6xh: Sin VA Increment Actual Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal acceleration and maximal velocity. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Actual Position value (relative move). The command execution starts immediately when the command has been sent.

4.3.135 Sin VA Go To Pos After Actual Command (0E8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0E8xh: Sin VA Go To Pos After Actual Command	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal acceleration and maximal velocity. The command execution is delayed until the former command has been completed. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAI motion command as soon as bit 13 of the Status Word (Motion Active) is 0. After the event, the Event Handler deactivates itself.

4.3.136 Sin VA Go To Analog Pos (0E9xh)

Name	Byte Offset	Description	Type	Unit
Header	0	0E9xh: Sin VA Go To Analog Pos	UInt16	-
1. Par	2	Maximal Velocity	Ulnt32	1E-6 m/s
2. Par	6	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

Half period sine motion profile, regarding the limitations of maximal acceleration and maximal velocity. This command sets a new Target Position Calculated from the analog input on X4.4 or X20.

4.3.137 Sin VA Go To Pos On Rising Trigger Event (0EAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0EAxh: Sin VA Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

This command defines a new Cos motion command (see description of command 'Sin VA Go To Pos (0E0xh)'). The command will be started on each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Sin VA motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'. The trigger input must be configured with parameter <UPID>\$1039.

4.3.138 Sin VA Increment Demand Pos On Rising Trigger Event (0EBxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0EBxh: Sin VA Increment Demand Pos On Rising Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

This command defines a new Sin VA motion command (relative move, see description of command 'Sin VA Increment Demand Pos (0E1xh)'). The command will be started on each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Sin VA motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'. The trigger input must be configured with parameter <UPID>\$1039.

4.3.139 Sin VA Go To Pos On Falling Trigger Event (0ECxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0ECxh: Sin VA Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²

This command defines a new Sin VA motion command (see description of command 'Sin VA Go To Pos (0E0xh)'). The command will be started on each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Sin VA motion on the falling trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'. The trigger input must be configured with parameter <UPID>\$1039.

4.3.140 Sin VA Increment Demand Pos On Falling Trigger Event (0EDxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0EDxh: Sin VA Increment Demand Pos On Falling Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²

This command defines a new Sin VA motion command (relative move, see description of command 'Sin VA Increment Demand Pos (0E1xh)'). The command will be started on each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Sin VA motion on the falling trigger

event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'. The trigger input must be configured with parameter <UPID>\$1039.

4.3.141 Bestehorn VAJ Go To Pos (0F0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0F0xh: Bestehorn VAJ Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed.

4.3.142 Bestehorn VAJ Increment Demand Pos (0F1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0F1xh: Bestehorn VAJ Increment Demand Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Demand Position value (relative move). The command execution starts immediately when the command has been sent.

4.3.143 Bestehorn VAJ Go To Pos From Actual Pos (0F4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0F4xh: Bestehorn VAJ Go To Pos From Actual Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	Ulnt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed. The command execution starts immediately when the command has been sent. This command should be used if the Actual Position does not match with the current Demand Position value, but it can be assumed that the motor stands still (Actual Velocity assumed to be zero, e.g. because the motor stands on a hard stop). This can happen after a Press command, where the actual motor position is defined through external conditions and the motor cannot and had not to follow the demand position. By starting this command, the former accepted difference between Actual Position and Demand Position can be eliminated.

4.3.144 Bestehorn VAJ Increment Actual Pos (0F6xh)

Name	Byte	Description	Туре	Unit
	Offset			
Header	0	0F6xh: Bestehorn VAJ Increment Actual Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Actual Position value (relative move). The command execution starts immediately when the command has been sent.

4.3.145 Bestehorn VAJ Go To Pos After Actual Command (0F8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0F8xh: Bestehorn VAJ Go To Pos After Actual	UInt16	-
		Command		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed. The command execution is delayed until the former command has been completed. The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAI motion command as soon as bit 13 of the Status Word (Motion Active) is 0. After the event, the Event Handler deactivates itself.

4.3.146 Bestehorn VAJ Go To Analog Pos (0F9xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0F9xh: Bestehorn VAJ Increment Actual Pos	UInt16	-
1. Par	2	Maximal Velocity	Ulnt32	1E-6 m/s
2. Par	6	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²
3. Par	10	Maximal Jerk	Ulnt32	1E-4 m/s ³

Bestehorn Motion Profile, regarding the limitations maximal jerk, acceleration and maximal speed. This command sets a new Target Position Calculated from the analog input on X4.4 or X20.

4.3.147 Bestehorn VAJ Go To Pos On Rising Trigger Event (0FAxh)

Name	Byte Offset	Description	Type	Unit
Header	0	0FAxh: Bestehorn VAJ Go To Pos On Rising	UInt16	-
		Trigger Event		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

This command defines a new Bestehorn motion command (see description of command Bestehorn VAJ Go To Pos (0F0xh)'). The command will be started on each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Bestehorn motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.148 Bestehorn VAJ Increment Demand Pos On Rising Trigger Event (0FBxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0FBxh: Bestehorn VAJ Increment Demand Pos On	UInt16	-
		Rising Trigger Event		
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

This command defines a new Bestehorn motion command (relative move, see description of command Bestehorn VAJ Increment Demand Pos (0F1xh)'). The command will be started on each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Bestehorn motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.149 Bestehorn VAJ Go To Pos On Falling Trigger Event (0FCxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0FCxh: Bestehorn VAJ Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

This command defines a new Bestehorn motion command (see description of command Bestehorn VAJ Go To Pos (0F0xh)'). The command will be started on each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Bestehorn motion on the falling trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.150 Bestehorn VAJ Increment Demand Pos On Falling Trigger Event (0FDxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	0FDxh: Bestehorn VAJ Increment Demand Pos On Falling Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration/Deceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Maximal Jerk	UInt32	1E-4 m/s ³

This command defines a new Bestehorn motion command (relative move, see description of command Bestehorn VAJ Increment Demand Pos (0F1xh)'). The command will be started on each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new Bestehorn motion on the falling trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.151 Encoder Cam Enable (100xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	100xh: Encoder CAM Enable	UInt16	-

4.3.152 Encoder Cam Disable (101xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	101xh: Encoder CAM Disable	UInt16	-

4.3.153 Encoder Cam Go To Sync Pos (102xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	102xh: Encoder CAM Go To Sync Pos	UInt16	-

4.3.154 Encoder Cam Set Value (104xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	104xh: Encoder CAM Set Value	UInt16	-
1. Par	2	Counter Value	SInt32	1 Incr.

4.3.155 Encoder Cam y Define Curve With Default Parameters (1y0xh)

At the moment two cams can be defined. In the following y=1 stands for cam 1 and y=2 stands for cam 2.

Name	Byte Offset	Description	Туре	Unit
Header	0	1y0xh: Encoder Cam y Define Curve With Default	UInt16	-
		Parameters (y=12)		
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Count	SInt32	1 Incr.

4.3.156 Encoder Cam y Define Curve From Act Pos (1y1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y1xh: Encoder Cam y Define Curve From Act Pos (y=12)	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Count	SInt32	1 Incr.

If the encoder value is in the range of cam y, the motor has to be at the start position of the cam y during the command setup, to set the position start point of cam y correctly.

4.3.157 Encoder Cam y Define Curve To Pos (1y2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y2xh: Encoder Cam y Define Curve To Pos (y=12)	UInt16	-
1. Par	2	Curve ID	Ulnt16	1100
2. Par	4	Curve Start Count	SInt32	1 Incr
3. Par	8	Target Position	SInt32	0.1 um

If the encoder value is in the range of cam y, the motor has to be at the start position of the cam y during command setup, to set the position start point correctly of cam y.

4.3.158 Encoder Cam y Define Curve From Pos To Pos In Counts (1y3xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y3xh: Encoder Cam y Define Curve To Pos (y=12)	UInt16	-
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Count	SInt32	1 Incr
3. Par	8	Start Position	SInt32	0.1 um
4. Par	12	Target Position	SInt32	0.1 um
5. Par	16	CAM Length In Counts	SInt32	1 Incr

4.3.159 Encoder Cam y Define Curve To Pos In Counts (1y4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y4xh: Encoder Cam y Define Curve To Pos (y=12)	UInt16	-

1. Par	2	Curve ID	UInt16	1100
2. Par	4	Curve Start Count	SInt32	1 Incr
3. Par	8	Target Position	SInt32	0.1 um
4. Par	12	CAM Length In Counts	SInt32	1 Incr

If the encoder value is in the range of cam y, the motor has to be at the start position of the cam y during command setup, to set the position start point correctly of cam y.

4.3.160 Encoder Cam y Define Curve With Amplitude Scale In Counts (1y5xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y5xh: Encoder CAM y Define Curve To Pos (y=12)	Uint16	-
1. Par	2	Curve ID	Uint16	1100
2. Par	4	Curve Start Count	Sint32	1 Incr
3. Par	8	Amplitude Scale	Sint16	0.1%
4. Par	10	CAM Length In Counts	Sint32	1 Incr.

The values for the amplitude scale and cam length are updated immediately, for this reason this command should only used outside the cam y (old and new) definition. For changing the amplitude scale and/or length during cam y is active, use the command 1y8xh instead.

4.3.161 Encoder Cam y Enable (1y6xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y6xh Encoder Cam y Enable; (y=12)	Uint16	-

4.3.162 Encoder Cam y Disable (1y7xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y7xh Encoder Cam y Disable; (y=12)	Uint16	-

4.3.163 Encoder Cam y Change Amplitude Scale and Length (1y8xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	1y8xh: Encoder Cam y Define Curve To Pos	Uint16	-
		(y=12)		
1. Par	2	Amplitude Scale	Sint16	0.1%
2. Par	4	CAM Length In Counts	Sint32	1 Incr.

The new values for the amplitude scale and cam length are updated at next cam y start event.

4.3.164 Start Command Table Command (200xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	200xh: Start Command Table Command	UInt16	-
1. Par	2	Command Table ID	UInt16	1255

4.3.165 Start Command Table Command On Rising Trigger Event (201xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	201xh: Start Command Table Command On Rising	UInt16	-
		Trigger Event		
1. Par	2	Command Table ID	UInt16	1255

4.3.166 Start Command Table Command On Falling Trigger Event (202xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	202xh: Start Command Table Command On Falling Trigger Event	UInt16	-
1. Par	2	Command Table ID	UInt16	1255

4.3.167 Modify Command Table 16 bit Parameter in RAM (208xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	208xh: Modify Command Table 16 bit Parameter in RAM	UInt16	-
1. Par	2	Command Table ID	UInt16	1255
2. Par	4	Parameter Offset	Uint16	03Eh
3. Par	6	Parameter Value	Sint16	-

This command modifies a single 16 bit parameter of the specified command table entry with the specified offset to specified value. Within the command table entry the link ID has offset = 2 the motion command header has offset = 4 and the first motion command parameter has offset = 6.

4.3.168 Modify Command Table 32 bit Parameter in RAM (209xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	209xh: Modify Command Table 32 bit Parameter in RAM	UInt16	-
1. Par	2	Command Table ID	UInt16	1255
2. Par	4	Parameter Offset	Uint16	03Eh
3. Par	6	Parameter Value	Sint32	1

This command modifies a single 32 bit parameter of the specified command table entry with the specified offset to specified value. Within the command table entry the link ID has offset = 2 the motion command header has offset = 4 and the first motion command parameter has offset = 6.

4.3.169 Wait Time (210xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	210xh: Wait Time	UInt16	-
1. Par	2	Time	UInt32	100us

Can be used in a linked command table sequence.

4.3.170 Wait Until Motion Finished (211xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	211xh: Wait Until Motion Finished	UInt16	-

Can be used in a linked command table sequence.

4.3.171 Wait Until In Target Position (212xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	212xh: Wait Until Motion Finished	Ulnt16	-

Can be used in a linked command table sequence.

4.3.172 Wait Until Rising Trigger Event (213xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	213xh: Wait Until Rising Trigger	UInt16	-

Can be used in a linked command table sequence.

4.3.173 Wait Until Falling Trigger Event (214xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	214xh: Wait Until Falling Trigger	UInt16	-

Can be used in a linked command table sequence.

4.3.174 Wait Until Demand Position Greater Than (220xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	220xh: Wait Until Demand Position Greater Than	UInt16	-
1. Par	2	Dem Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.175 Wait Until Demand Position Less Than (221xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	221xh: Wait Until Demand Position Less Than	UInt16	-
1. Par	2	Dem Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.176 Wait Until Actual Position Greater Than (222xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	222xh: Wait Until Actual Position Greater Than	UInt16	-
1. Par	2	Act Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.177 Wait Until Actual Position Less Than (223xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	223xh: Wait Until Actual Position Less Than	UInt16	-
1. Par	2	Act Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.178 Wait Until Difference Position Greater Than (224xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	224xh: Wait Until Difference Position Greater Than	UInt16	-
1. Par	2	Diff Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.179 Wait Until Difference Position Less Than (225xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	225xh: Wait Until Difference Position Less Than	UInt16	-
1. Par	2	Diff Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.180 Wait Until Difference Position Unsigned Greater Than (226xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	226xh: Wait Until Difference Position Unsigned Greater Than	UInt16	-
1. Par	2	Diff Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.181 Wait Until Difference Position Unsigned Less Than (227xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	227xh: Wait Until Difference Position Unsigned	UInt16	-
		Less Than		
1. Par	2	Diff Pos Trig Level	SInt32	0.1 um

Can be used in a linked command table sequence.

4.3.182 Wait Until Demand Velocity Greater Than (228xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	228xh: Wait Until Demand Velocity Greater Than	UInt16	-
1. Par	2	Dem Vel Trig Level	SInt32	1E-6 m/s

Can be used in a linked command table sequence.

4.3.183 Wait Until Demand Velocity Less Than (229xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	229xh: Wait Until Demand Velocity Less Than	UInt16	-
1. Par	2	Dem Vel Trig Level	SInt32	1E-6 m/s

Can be used in a linked command table sequence.

4.3.184 Wait Until Actual Velocity Greater Than (22Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	22Axh: Wait Until Actual Velocity Greater Than	UInt16	-
1. Par	2	Act Vel Trig Level	SInt32	1E-6 m/s

Can be used in linked command table sequence.

4.3.185 Wait Until Actual Velocity Less Than (22Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	22Bxh: Wait Until Actual Velocity Less Than	UInt16	-
1. Par	2	Act Vel Trig Level	SInt32	1E-6 m/s

Can be used in a linked command table sequence.

4.3.186 Wait Until Current Greater Than (22Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	22Exh: Wait Until Current Greater Than	UInt16	-
1. Par	2	Dem Curr Vel Trig Level	Sint16	1mA

Can be used in linked command table sequence.

4.3.187 Wait Until Current Less Than (22Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	22Fxh: Wait Until Current Less Than	UInt16	-
1. Par	2	Dem Curr Trig Level	Sint16	1mA

Can be used in a linked command table sequence.

4.3.188 Set Cmd Table Var 1 To (240xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	240xh: Set Cmd Table Var 1 To	UInt16	-
1. Par	2	Set value	Sint32	-

4.3.189 Add To Cmd Table Var 1 (241xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	241xh: Add To Cmd Table Var 1	UInt16	-
1. Par	2	Add value	Sint32	-

4.3.190 Set Cmd Table Var 2 To (242xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	242xh: Set Cmd Table Var 2 To	UInt16	-
1. Par	2	Set value	Sint32	-

4.3.191 Add To Cmd Table Var 2 (243xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	243xh: Add To Cmd Table Var 2	UInt16	-
1. Par	2	Add value	Sint32	-

4.3.192 Write Cmd Table Var 1 To UPID RAM value (248xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	248xh: Write Cmd Table Var 1 To UPID RAM value	UInt16	-
1. Par	2	UPID (Unique Parameter ID)	UInt16	-

4.3.193 Write Cmd Table Var 2 To UPID RAM value (249xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	249xh: Write Cmd Table Var 2 To UPID RAM value	UInt16	-
1. Par	2	UPID (Unique Parameter ID)	UInt16	-

4.3.194 Write UPID RAM Value To Cmd Table Var 1 (24Cxh)

		•	•	
Name	Byte Offset	Description	Туре	Unit
Header	0	24Cxh: Write UPID RAM value To Cmd Table Var 1	UInt16	-
1. Par	2	UPID (Unique Parameter ID)	UInt16	-

4.3.195 Write UPID RAM Value To Cmd Table Var 2 (24Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	24Dxh: Write UPID RAM value To Cmd Table Var 2	UInt16	-
1. Par	2	UPID (Unique Parameter ID)	UInt16	-

4.3.196 IF Cmd Table Var 1 Less Than (250xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	250xh: IF Cmd Table Var 1 Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255

3. Par 8 Command Table ID IF FALSE	Uint16	1255	
------------------------------------	--------	------	--

4.3.197 IF Cmd Table Var 1 Greater Than (251xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	251xh: IF Cmd Table Var 1 Greater Than	UInt16	-
1. Par	2	Condition Value	Sint32	_
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.198 IF Cmd Table Var 1 Less Than (252xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	252xh: IF Cmd Table Var 1 Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

IF Cmd Table Var 1 Greater Than (253xh) 4.3.199

Name	Byte Offset	Description	Туре	Unit
Header	0	253xh: IF Cmd Table Var 1 Greater Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

IF Demand Position Less Than (258xh) 4.3.200

Name	Byte Offset	Description	Туре	Unit
Header	0	258xh: IF Demand Position Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

IF Demand Position Greater Than (259xh) 4.3.201

Name	Byte Offset	Description	Туре	Unit
Header	0	259xh: IF Demand Position Greater Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.202 IF Actual Position Less Than (25Axh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Axh: IF Actual Position Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.203 IF Actual Position Greater Than (25Bxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Bxh: IF Actual Position Greater Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.204 IF Difference Position Less Than (25Cxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Cxh: IF Difference Position Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.205 IF Difference Position Greater Than (25Dxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Dxh: IF Difference Position Greater Than	Ulnt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.206 IF Current Less Than (25Exh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Cxh: IF Current Less Than	UInt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.207 IF Current Greater Than (25Fxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	25Fxh: IF Current Greater Than	Ulnt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.208 IF Analog Val On X4.4 Less Than (260xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	260xh: IF Analog Val On X4.4 Less Than	Ulnt16	-
1. Par	2	Condition Value	Sint32	-
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.209 IF Masked X4 Input Value Equal Than (262xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	262xh: IF Masked X4 Input Value Equal Than	UInt16	-
1. Par	2	X4 Bit Mask	Uint16	
2. Par	4	Condition Value	Uint16	-
3. Par	6	Command Table ID IF TRUE	Uint16	1255
4. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.210 IF Masked X6 Input Value Equal Than (263xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	263xh: IF Masked X6 Input Value Equal Than	UInt16	-
1. Par	2	X6 Bit Mask	Uint16	
2. Par	4	Condition Value	Uint16	-
3. Par	6	Command Table ID IF TRUE	Uint16	1255
4. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.211 IF Masked Status Word Equal Than (264xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	264xh IF Masked Status Word Equal Than	UInt16	-
1. Par	2	Status Word Bit Mask	Uint16	
2. Par	4	Condition Value	Uint16	-
3. Par	6	Command Table ID IF TRUE	Uint16	1255
4. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.212 IF Masked Warn Word Equal Than (265xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	265xh IF Masked Warn Word Equal Than	UInt16	-
1. Par	2	Warn Word Bit Mask	Uint16	
2. Par	4	Condition Value	Uint16	-
3. Par	6	Command Table ID IF TRUE	Uint16	1255
4. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.213 IF CAM Counts Less Than (266xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	256xh: IF CAM Counts Less Than	Ulnt16	-
1. Par	2	Condition Value	Sint32	Counts
2. Par	6	Command Table ID IF TRUE	Uint16	1255
3. Par	8	Command Table ID IF FALSE	Uint16	1255

4.3.214 Encoder Winding Stop Adaptation Of Left/Right Position and Disturbance (304xh)

Name	Byte Offset	Descript	tion					Туре	Unit
Header	0	304xh:	Encoder	Winding	Stop	Adaptation	Of	UInt16	-
		Left/Rig	ht Position	And Distu	rbance) .			

4.3.215 Encoder Winding Restart Adaptation Of Left/Right Position and Disturbance (305xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	305xh: Encoder Winding Restart Adaptation Of Left/Right Position And Disturbance	UInt16	-

4.3.216 Encoder Curve Winding Start With Default Parameters (310xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	310xh: Encoder Curve Winding Start With Default Parameters	UInt16	-
1. Par	2	Curve ID	UInt16	1100

4.3.217 Encoder Curve Winding Start With Default Parameters At Revolutions (311xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	311xh: Encoder Curve Winding Start With Default	UInt16	-
		Parameters At Revolutions		
1. Par	2	Curve ID	UInt16	1100
2. Par	4	Revolution Counts To Start	SInt32	1 Rev

4.3.218 VAI Go To Pos With Higher Force Ctrl Limit (380xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	380xh: VAI Go To Pos With Higher Force Ctrl Limit	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Force Limit	Sint16	0.1 N

Moves to the defined target position, if the measured force reaches the higher defined value the controller switches to the force control mode with target force = force limit.

To change back to position control mode use motion command VAI Go To Pos From Act Pos And Reset Force Control (381xh).

4.3.219 VAI Go To Pos From Act Pos And Reset Force Control (381xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	381xh: VAI Go To Pos From Act Pos And Reset	UInt16	-
		Force Control		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

Reinstalls the position control mode and moves to the defined target position.

4.3.220 Force Ctrl Change Target Force (382xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	382xh: Force Ctrl Change Target Force	UInt16	-
1. Par	2	Target Force	Sint16	0.1 N

This command can be used to change the target force during the force control mode.

4.3.221 VAI Go To Pos With Higher Force Ctrl Limit and Target Force (383xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	383xh: VAI Go To Pos With Higher Force Ctrl Limit and Target Force	UInt16	-
1. Par	2	Target Position	Sint32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Force Limit	Sint16	0.1 N
5. Par	16	Target Force	Sint16	0.1 N

Moves to the defined target position, if the measured force reaches the higher force limit the controller switches to the force control mode with target force = target force.

To change back to position control mode use motion command VAI Go To Pos From Act Pos And Reset Force Control (381xh).

4.3.222 VAI Go To Pos With Lower Force Ctrl Limit (384xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	384xh: VAI Go To Pos With Lower Force Ctrl Limit	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Force Limit	Sint16	0.1 N

Moves to the defined target position, if the measured force reaches the lower defined value the controller switches to the force control mode with target force = force limit.

To change back to position control mode use motion command VAI Go To Pos From Act Pos And Reset Force Control (381xh).

4.3.223 VAI Go To Pos With Lower Force Ctrl Limit and Target Force (385xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	385xh: VAI Go To Pos With Lower Force Ctrl Limit and Target Force	UInt16	-
1. Par	2	Target Position	Sint32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Force Limit	Sint16	0.1 N
5. Par	16	Target Force	Sint16	0.1 N

Moves to the defined target position, if the measured force reaches the lower force limit the controller switches to the force control mode with target force = target force.

To change back to position control mode use motion command VAI Go To Pos From Act Pos And Reset Force Control (381xh).

4.3.224 VAI Go To Pos From Act Pos And Reset Force Control Set I (386xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	381xh: VAI Go To Pos From Act Pos And Reset Force Control	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Deceleration	Ulnt32	1E-5 m/s ²

Reinstalls the position control mode and moves to the defined target position. The I part of the position controller is set to the last force control current.

4.3.225 VAI Increment Act Pos And Reset Force Control Set I (387xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	381xh: VAI Go To Pos From Act Pos And Reset Force Control	UInt16	-
1. Par	2	Target Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Deceleration	UInt32	1E-5 m/s ²

Reinstalls the position control mode and moves to the incremented target position. The I part of the position controller is set to the last force control current.

4.3.226 **Current Command Mode (390xh)**

Name	Byte Offset	Description	Туре	Unit
Header	0	390xh: Current Command Mode	UInt16	-
1. Par	2	Demand Current	Sint32	0.001 A

Change in Current Command mode if not yet and set demand current.

4.3.227 Change to Position Controlled Mode (39Fxh)

Name	Byte Offset	Description	Type	Unit
Header	0	39Fxh: Change to Position Controlled Mode	UInt16	

Go back to position controlled mode.

4.3.228 VAJI Go To Pos (3A0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3A0xh: VAJI Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command sets a new Target Position and defines the maximal velocity, maximal acceleration, maximal deceleration, and jerk for the movement. The command execution starts one cycle after the command has been sent. The setpoints (Demand Position, Demand Velocity, Demand Acceleration, and Demand Jerk) are calculated by the internal Velocity Acceleration Jerk Interpolator (VAJI). This command initializes the VAJI with the current Demand Position, Demand Velocity, and Demand Acceleration value. Therefore it is possible to start a new command while a former command is still being executed.

4.3.229 **VAJI Increment Dem Pos (3A1xh)**

Name	Byte Offset	Description	Туре	Unit
Header	0	3A1xh:VAJI Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	Ulnt32	1E-6 m/s
3. Par	10	Maximal Acceleration	Ulnt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	Ulnt32	1E-4 m/s ³

This command sets a new Target Position and defines the maximal velocity, maximal acceleration, maximal deceleration, and jerk for the movement. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Demand Position value (relative move). The command execution starts one cycle after the command has been sent. The setpoints (Demand Position, Demand Velocity, Demand Acceleration, and Demand Jerk) are calculated by the internal Velocity Acceleration Jerk Interpolator (VAJI). This command initializes the VAJI with the current Demand Position, Demand Velocity, and Demand Acceleration value. Therefore it is possible to start a new command while the execution of a former command is still being executed.

4.3.230 VAJI Increment Target Pos (3A2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3A2xh: VAJI Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command sets a new Target Position and defines the maximal velocity, maximal acceleration, maximal deceleration, and jerk for going there. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the current VAJI Target Position value (relative move). The command execution starts one cycle after the command has been sent. The setpoints (Demand Position, Demand Velocity, Demand Acceleration, and Demand Jerk) are calculated by the internal Velocity Acceleration Jerk Interpolator (VAJI). This command initializes the VAJI with the current Demand Position, Demand Velocity, and Demand Acceleration value. Therefore it is possible to start a new command while the execution of a former command is still being executed.

This command should be used only after the execution of other VAI/VAJI commands (not directly after time curves, encoder curves, streaming commands, etc.). Otherwise the VAJI Target Position value is not correctly initialized, which may lead to unpredictable behavior.

4.3.231 VAJI Go To Pos From Act Pos Starting With Dem Vel = 0 and Dem Acc = 0 (3A4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3A4xh: VAJI Go To Pos From Act Pos Starting With	UInt16	-
		Dem Vel =0 and Dem Acc = 0		
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	Ulnt32	1E-4 m/s ³

This command sets a new Target Position and defines the maximal velocity, maximal acceleration, maximal deceleration, and jerk for going there. The command execution starts one cycle after the command has been sent. The setpoints (Demand Position, Demand Velocity, Demand Acceleration, and Demand Jerk) are calculated by the internal Velocity Acceleration Jerk Interpolator (VAJI). This command initializes the VAJI with the Actual Position (Demand Position = Actual Position) and sets the Demand Velocity and Demand Acceleration values to zero.

This command should be used if the Actual Position does not match with the current Demand Position value, but it can be assumed that the motor stands still (Actual Velocity and Actual Acceleration assumed to be zero, e.g. because the motor stands on a hard stop). This can happen after a Press command, where the actual motor position is defined through external conditions and the motor could not and had not to follow the demand position. By starting this command, the former accepted difference between Actual Position and Demand Position can be eliminated.

4.3.232 VAJI Increment Act Pos Starting With Dem Vel = 0 and Dem Acc = 0 (3A6xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3A6xh: VAI Increment Act Pos Starting With Dem Vel = 0 and Dem Acc = 0	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command sets a new Target Position and defines the maximal velocity, maximal acceleration, maximal deceleration, and jerk for the movement. The new Target Position value will be determined by the firmware. It is calculated by adding the Position Increment argument to the Actual Position value (relative move). The command execution starts one cycle after the command has been sent. The setpoints (Demand Position, Demand Velocity, Demand Acceleration, and Demand Jerk) are calculated by the internal Velocity Acceleration Jerk Interpolator (VAJI). This command initializes the VAJI with the Actual Position (Demand Position = Actual Position) and sets the Demand Velocity and Demand Acceleration values to zero.

This command should be used if the Actual Position does not match with the current Demand Position value, but it can be assumed that the motor stands still (Actual Velocity and Actual Acceleration assumed to be zero, e.g. because the motor stands on a hard stop). This can happen after a Press command, where the actual motor position is defined through external conditions and the motor could not and had not to follow the demand position. By starting this command, the former accepted difference between Actual Position and Demand Position can be eliminated. With this command a retraction move for a certain distance (command argument Position Increment) can be performed. If the Position Increment value is zero, this command can be used to reset the Target Position (and the Demand Position) value exactly to the Actual Position.

4.3.233 VAJI Go To Pos On Rising Trigger Event (3AAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3AAxh: VAJI Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command defines a new VAJI motion command (see description of command 'VAJI Go To Pos (3A10xh)'). The command will be started one cycle after each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAJI motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.234 VAJI Increment Target Pos On Rising Trigger Event (3ABxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3ABxh: VAJI Increment Target Pos On Rising Trigger Event	UInt16	1
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command defines a new VAJI motion command (relative move, see description of command 'VAJI Increment Target Pos (3A2xh)'). The command will be started one cycle after each rising edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAJI motion on the rising trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.235 VAJI Go To Pos On Falling Trigger Event (3ACxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3ACxh: VAJI Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command defines a new VAJI motion command (see description of command 'VAJI Go To Pos (3A0xh)'). The command will be started one cycle after each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAJI motion on the falling trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.236 VAJI Increment Target Pos On Falling Trigger Event (3ADxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3ADxh: VAJI Increment Target Pos On Falling Trigger Event	UInt16	ı
1. Par	2	Position Increment	SInt32	0.1 um
2. Par	6	Maximal Velocity	UInt32	1E-6 m/s
3. Par	10	Maximal Acceleration	UInt32	1E-5 m/s ²
4. Par	14	Maximal Deceleration	UInt32	1E-5 m/s ²
5. Par	18	Jerk	UInt32	1E-4 m/s ³

This command defines a new VAJI motion command (relative move, see description of command 'VAJI Increment Target Pos (3A2xh)'). The command will be started one cycle

after each falling edge on the Trigger signal. This command is used to synchronize the execution of the motion command to a hardware signal.

The command activates the Event Handler (see Status Word bit 8). The Event Handler starts the new VAJI motion on the falling trigger event. The Event Handler can be deactivated by using the command 'Clear Event Evaluation (008xh)'.

The trigger input must be configured with parameter <UPID>\$1039.

4.3.237 Predef VAJI Go To Pos (3B0xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3B0xh: Predef VAJI Go To Pos	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command works like the command 'VAJI Go To Pos (3A0xh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14C0, and <UPID>\$14C1.

4.3.238 Predef VAJI Increment Dem Pos (3B1xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3B1xh: Predef VAJI Increment Dem Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

This command works like the command 'VAJI Increment Dem Pos (3A1xh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C0, and <UPID>\$14C1.

4.3.239 Predef VAJI Increment Target Pos (3B2xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3B2xh: Predef VAJI Increment Target Pos	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

This command works like the command 'VAJI Increment Target Pos (3A2xh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C0, and <UPID>\$14C1.

4.3.240 Predef VAJI Go To Pos From Act Pos Starting With Dem Vel = 0 and Dem Acc = 0 (3B4xh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3B4xh: Predef VAJI Go To Pos From Act Pos With Dem Vel = 0 and Dem Acc = 0	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command works like the command 'VAJI Go To Pos From Act Pos Starting with Dem Vel = 0 and Dem Acc = 0 (3A4xh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here,

but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C0, and <UPID>\$14C1.

4.3.241 Predef VAJI Go To Pos On Rising Trigger Event (3BAxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3BAxh: Predef VAJI Go To Pos On Rising Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command works like the command 'VAJI Go To Pos On Rising Trigger Event (3AAxh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14CO, and <UPID>\$14CO.

4.3.242 Predef VAJI Increment Target Pos On Rising Trigger Event (3BBxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3BBxh: Predef VAJI Increment Target Pos On Rising Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

This command works like the command 'VAJI Increment Target Pos On Rising Trigger Event (3ABxh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C1.

4.3.243 Predef VAJI Go To Pos On Falling Trigger Event (3BCxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3BCxh: Predef VAJI Go To Pos On Falling Trigger Event	UInt16	-
1. Par	2	Target Position	SInt32	0.1 um

This command works like the command 'VAJI Go To Pos On Falling Trigger Event (3ACxh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C0, and <UPID>\$14C1.

4.3.244 Predef VAJI Increment Target Pos On Falling Trigger Event (3BDxh)

Name	Byte Offset	Description	Туре	Unit
Header	0	3BDxh: Predef VAJI Increment Target Pos On Falling Trigger Event	UInt16	-
1. Par	2	Position Increment	SInt32	0.1 um

This command works like the command 'VAJI Increment Target Pos On Falling Trigger Event (3ADxh)'. The VAJI parameters (Maximal Velocity, Maximal Acceleration, Maximal

Deceleration, and Jerk) are not given as command arguments here, but are predefined through parameters <UPID>\$14BE, <UPID>\$14BF, <UPID>\$14C0, and <UPID>\$14C1.

5 Set-point Generation

5.1 VA-Interpolator

The VA-Interpolator generates a position curve from one position to another due to the parameter values of acceleration, deceleration, and maximal speed. A new target position can be set even if the old target position was not reached.

5.1.1 Input Variables

Name	Туре	Valid range	Unit
Target Position	SInt32	0h 7FFF'FFFFh	0.1um
Maximal Speed	UInt32	0h 7FFF'FFFFh	1E-6m/s
Acceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²
Deceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²

5.1.2 Output Variables

Name	Type	Valid range	Unit
Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Velocity	SInt32	-8000'0000h 7FFF'FFFh	1E-6m/s
Acceleration	SInt32	-8000'0000h 7FFF'FFFh	1E-5m/s ²

5.2 VAJ-Interpolator

The VAJ-Interpolator generates a position curve from one position to another due to the parameter values of jerk, maximal acceleration, maximal deceleration, and maximal speed. A new target position can be set even if the old target position was not reached.

5.2.1 Input Variables

Name	Туре	Valid range	Unit
Target Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Maximal Speed	UInt32	0h 7FFF'FFFFh	1E-6m/s
Maximal Acceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²
Maximal Deceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²
Jerk	UInt32	0h 7FFF'FFFFh	1E-4m/s ³

5.2.2 Output Variables

Name	Туре	Valid range	Unit
Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Velocity	SInt32	-8000'0000h 7FFF'FFFh	1E-6m/s
Acceleration	SInt32	-8000'0000h 7FFF'FFFh	1E-5m/s ²
Jerk	SInt32	-8000'0000h 7FFF'FFFh	1E-4m/s ³

5.3 Sine VA Motion

The Sine generates a position curve from one position to another due to the parameter values of target position, maximal speed and acceleration. A new target position can only be started when the previous motion was finished.

5.3.1 Input Variables

Name	Type	Valid range	Unit
Target Position	SInt32	0h 7FFF'FFFFh	0.1um
Maximal Speed	UInt32	0h 7FFF'FFFFh	1E-6m/s
Maximal Acceleration/Deceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²

5.3.2 Output Variables

_			
Name	Туре	Valid range	Unit
Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Velocity	SInt32	-8000'0000h 7FFF'FFFh	1E-6m/s
Acceleration	SInt32	-8000'0000h 7FFF'FFFFh	1E-5m/s ²

5.4 Bestehorn VAJ Motion

The Besthorn generates a position curve from one position to another due to the parameter values of target position, maximal speed acceleration and jerk. A new target position can only be started when the previous motion was finished.

5.4.1 Input Variables

Name	Туре	Valid range	Unit
Target Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Maximal Speed	UInt32	0h 7FFF'FFFFh	1E-6m/s
Maximal Acceleration/Deceleration	UInt32	0h 7FFF'FFFFh	1E-5m/s ²
Maximal Jerk	UInt32	0h 7FFF'FFFFh	1E-4m/s ³

5.4.2 Output Variables

Name	Type	Valid range	Unit
Position	SInt32	-8000'0000h 7FFF'FFFh	0.1um
Velocity	SInt32	-8000'0000h 7FFF'FFFh	1E-6m/s
Acceleration	SInt32	-8000'0000h 7FFF'FFFh	1E-5m/s ²

5.5 P(V)-Stream

For masters with NC (Numerical Control) capabilities, the software supports cyclic streaming modes of the position and velocity, or position only. The streaming has to be strictly cyclic in the period range 2ms to 5ms. This feature is supported with all fieldbus variants like Profibus DP, CAN Open¹, POWERLINK, EtherCAT,

Different modes are supported:

In the first mode (Motion command: 030xh) the master only streams the position.

In the second mode (Motion command: 031xh) the master streams position and velocity, whenever possible use the PV-streaming mode, because the acceleration derivation is less sensitive to bus jitters than in the position only streaming mode.

The third mode (Motion command: 032xh) is like the first mode, but for the derivation of the velocity and the acceleration a configured period time (UPID 14E6h) is taken, instead of the slave receive time stamp. This minimizes the bad influence of the transmission jitter.

The position setpoint generation in these modes is delayed 1.5 times the streaming cycle time, e.g. with 2ms streaming period time the delay is 3ms.

-

¹ P(V)-Streaming with CANOpen is only possible with transmission type 1 (synchronous transmission)

5.6 Cam Motions

NOTE: Cam motions are not available in the B1100 servo controllers.

For high speed synchronization different modes of cam motions are supported. The motions are defined with cam curves, which can be defined with the curve tool of the LinMot-Talk software.

5.6.1 Triggered Cam Motions

For triggered cam motions setup the master encoder and then set cam mode (UPID1527h) to infinite length. Then use the motion commands 069xh or 06Bxh to setup the cam curves which should be started at the trigger event, or use the triggered cam curve run mode.

5.6.2 Repeated Cam Motions with the Modulo CamMode

For repeated cam motions setup the master encoder and then set cam mode (UPID1527h) to modulo cam length. The cam length can be defined independently from the master encoder length! So with a 8000 counts ABZ master encoder also 16'000 counts or 4'000 counts cam length is possible.

With the following sequence a startup or resynchronization to a standing master encoder is possible:

- Move to start position of cam 1 motion e.g. VAI GoTo Pos (010xh)
- Define cam 1 motion e.g. Encoder CAM 1 Define Curve To Pos (112xh)
- Move to start position of cam 2 motion e.g. VAI GoTo Pos (010xh)
- Define cam 2 motion e.g. Encoder CAM 2 Define Curve To Pos (112xh)
- Go to synchronized cam position with (102xh)
- After synchronized cam position is reached enable cam motion with (100xh)
- Start turning the encoder

With the following sequence a (re)synchronization to a moving master encoder is possible:

- Disable cam start enable (UPID 1528h) and wait until cam enabled vanishes, or clear also cam enabled (1BA9h)
- Move to start position of cam 1 motion e.g. VAI GoTo Pos (010xh)
- Define cam 1 motion e.g. Encoder CAM 1 Define Curve To Pos (112xh)
- Define cam 2 motion e.g. Encoder CAM 2 Define Curve To Pos (112xh)
- After the synchronized cam position is reached, enable the cam motion with (100xh)
- Enable cam start enable (UPID 1528h)

6 Command Table

NOTE: The command table in the B1100 servo controllers is limited to 31 entries, and is flash only, for this reason it is not possible to write or modify the table over a serial interface! The command table functionality can be used for programming sequences directly in the controller. The following examples illustrate the possibilities of the command table. The shown command table can be loaded from the defaults 'CT Example.lmc'.

The first sequence ID1, ID2 and ID3 shows a simple sequence GoTo 50mm wait until motion is completed and then go back to 0mm.

The second sequence ID5..12 repeats 5 times the Sequence GoTo 50mm GoTo 0mm

- 1. ID 5: Set Command Table To Var 1= 0
- 2. ID 6: GoTo 50mm
- 3. ID 7: Wait Until In Target Position
- 4. ID 8: GoTo 0mm
- 5. ID 9: Wait until Motion Done
- 6. ID 10: Increment Command Table Var 1
- 7. ID 11: If Command Table To Var 1< 5 Then GoTo ID 6 Else GoTo ID 12
- 8. ID 12: No Operation End of Sequence

The third sequence ID14..23 changes the maximal current of the position controller set A (UPID 13A6), goes to 50mm wait until motion completed, tests if part is present (Act Pos < 48), goes back to 0mm, sets Normal Force (Current) and sets CT Var 1 = 0 if part was present else set CT Var1 = 1.

7 Controller Configuration

The parameter configuration is normally done with LinMot-Talk software [3]. The UPIDs, over which the parameter can be accessed, are the same for E1100, E1200 and E1400 controllers, but are different for the B1100 controllers. In this documentation the E1100/E1200/E1400 UPIDs are used. If a UPID for a B1100 servo controller is needed, a conversion list can be generated with the LinMot-Talk software.

7.1 Power Bridge

The E1100/B1100 servo controllers are divided into three different power classes. The normal controllers have a maximal current of 8A, the high current (name extension HC) variant has a maximal current of 15A and the extreme current (name extension XC) has a maximal current of 25A. The E1200 series is only available as ultra current controllers (name extension UC), with a current maximum of 32A.

7.2 X4 I/O Definitions

The functionality of most IOs can be programmed as a control word input bit or status word output bit, or they can be used as interface IO and read out or written over a serial bus interface. Apart from this general functionality a few IOs have a special functionality.

Descriptor	General Purpose IO	Special Functions
X4.3	Yes	Brake (Output)
X4.4	Yes	Analog In
X4.5	Yes	Capture Input
X4.6	Yes	Trigger (Input)
X4.7	Yes	Home Switch (Input)
X4.8	Yes	Limit IN (Input)
X4.9	Yes	Limit OUT (Input) / 24V Step (Input)
X4.10	Yes	PTC 1 (Input) / 24V Direction (Input)
X4.11	Yes	PTC 2 (Input)
X4.12	No	SVE Safety Voltage Enable (Input)

7.2.1 X4.3 Brake

The output X4.3 can drive up to 1A, so it can be used to control directly a valve of a pneumatic brake module. For this reason this output can be configured as brake output. The cases in which the brake has to be applied or released are configured over the brake mode parameters. The brake output is controlled from the state machine.

Parameter Name	UPID	Description
Status Word:	1717h	The brake is released (X4.3 = 24V), when bit 0 of the status
Operation		word (Operation Enabled) is set. Otherwise the brake is
Enabled		applied.
Ctrl Word: /Abort	1718h	The brake is applied $(X4.3 = 0V)$ when entering the Aborting
		State (12) and released (X4.3 = 24V) when going to
		Operation Enabled State (8) again.
Quick Stop	1716h	Special brake behavior with Quick Stop (Brake Mode Status
·		Word: Operation Enabled has also to be set)

The following figure shows the behavior when only the brake mode "Status Word: Operation Enabled" is selected. If only this switch (with UPID 1717h) is activated, no apply or release delay time is regarded.

7.2.1.1 X4.3 Brake Operation / Abort Behavior

When set the brake mode to "Ctrl Word: /Abort", the brake is applied in state Aborting (12) and the maximal current of the motor is set to 0A. If using this behavior, ensure that the maximal current (UPID 13A6h and 13BAh) is not set over a serial bus during the state Aborting (12)!

Parameter Name	UPID	Description
Apply Delay	171Bh	Delay time after brake output goes to 0V until the maximal
Time		current of the motor is set to 0A (UPID 13A6h and 13BAh).
Release Delay	171Ch	Delay time of the Status Word bit: Operation Enabled after
Time		the motion has stopped.

7.2.1.2 X4.3 Brake Operation Quick Stop Behavior

If also the Quick Stop brake behavior is selected the brake is applied (X4.3 = 0V) as soon as the motion has stopped, then the reset of the Operation Enabled bit is delayed by the apply delay time, which then also powers off the motor.

Paramete	r Name	UPID	Description
Apply	Delay	171Bh	Delay time of the Status Word bit: Operation Enabled after
Time			the motion has stopped.

7.2.2 X4.6 Trigger

For the trigger input, which is evaluated in the motion control task, different evaluation modes are supported.

Parameter Name	UPID	Description
Trigger Modes	170Ch	Trigger mode selection:
		0: None
		1: Direct
		2: Inhibited
		3: Delayed
		4: Inhibited & Delayed

7.2.2.1 Direct Trigger Mode

In the Direct Trigger Mode copies the trigger input directly copied to the trigger output, which is used by the MC-SW. No parameter configuration is needed for this mode.

7.2.2.2 Inhibited Trigger Mode

The Inhibit Trigger Mode can be used to debounce a jittering trigger input without delay. This method doesn't increase the noise immunity!

Parameter Name	UPID	Description
Rise Inhibit Time	170Dh	Inhibit time after rising edge of trigger in signal (t _{ir})
Fall Inhibit Time	170Eh	Inhibit time after falling edge of trigger in signal (t _{if})

7.2.2.3 Delayed Trigger Mode

The Delayed Trigger Mode can be used to delay an action following the rising or falling trigger event.

Parameter Name	UPID	Description
Rise Delay Time	170Fh	Trigger Out delay time after rising edge of Trigger In signal
·		(t_{dr})
Fall Delay Time	1710h	Trigger Out delay time after falling edge of Trigger In signal
-		(t_{df})

7.2.2.4 Inhibited & Delayed Trigger Mode

The Inhibited & Delayed Trigger Mode first debounces the trigger input signal with the inhibit time. The inhibited trigger signal is then delayed with the rise/fall delay time and then copied to the trigger out signal.

Parameter Name	UPID	Description
Rise Inhibit Time	170Dh	Inhibit time after rising edge of Trigger In signal (t _{ir})
Fall Inhibit Time	170Eh	Inhibit time after falling edge of Trigger In signal (t _{if})
Rise Delay Time	170Fh	Trigger Out Delay time after rising edge of Trigger In signal
		(t_{dr})
Fall Delay Time	1710h	Trigger Out Delay time after falling edge of Trigger In signal
		(t_{df})

7.2.3 X4.8 and X4.9 Limit Switches

If on IO pin X4.8 and/or on X4.9 a limit switch is defined, the error behavior in case of an active limit switch can be configured. The error is only generated on a powered motor which is homed, so it is possible to exit the error state with a new homing request. For that reason also the homed bit in the status word is cleared if moving into a limit switch.

Parameter Name	UPID	Description
Error Behavior	121Bh	Error behavior of the configured limit switches:
		0: No Error (maybe only used for homing)
		1: Power Off
		2: Quick Stop

7.2.4 X4.10 and X4.11 PTC 1 and PTC 2

On IO pins X4.10 and X4.11 PTC sensors can be connected to supervise an over temperature of a motor and/or the transformer supply. The other side of the PTC has to be connected to 24V. If the resistance is below 2kOhm the input is high. If it rises above 15kOhm the output is regarded as low. Typically, the transition low to high is between 5kOhm and 7kOhm. If the input rises, the corresponding bit in the warn word will be set after the PTC Warn Time. After the PTC error time the corresponding error is set. The error only can be acknowledged if the corresponding PTC warn bit has vanished.

7.2.5 X4.12 SVE (Safety Voltage Enable)

X4.12 is a special input (input only). If it goes low for more than 0.5ms the PWM generation of the power stage is disabled by hardware. Additionally, this bit is mapped directly to the Control Word bit 1. To disable this feature, the input must be wired to 24V logic supply.

7.3 Master Encoder

The master encoder can be used for applications where high-speed synchronization is needed, such as winding application, indexing positioning mode, etc.

The parameter Encoder Source defines whether the master encoder is connected to the X10 (RJ45) or the X12 (DSUB 9) connector. X10 is looped through to the master encoder connector X11 (RJ45). This simplifies the loop through cabling of the encoder signals.

Parameter Name	UPID	Description
Encoder Source	172Ah	Defines the source of the Master Encoder:
		0: None
		1: Encoder Input X10
		2: Ext Sensor Input X12

The encoder type parameter defines the signal type of the master encoder. At any rate the signals have to be differential RS422. When using a SD(Z) master encoder, the step signal has to be connected to A, /A, Dir signal to B, /B and the Zero to Z, /Z.

Parameter Name	UPID	Description
Encoder Type	128Eh	Defines the Master Encoder Type:
		O: None
		• 1: ABZ
		• 2: AB
		4: Step Dir (SD)
		5: Step Dir Zero (SDZ)

The decoding parameter defines how many edges of the signals are evaluated. For AB(Z) encoder types 1x, 2x, 4x decoding is valid; for SD(Z) encoder types only 1x and 2x decoding is valid. If 4x decoding is selected a 2x decoding is forced without error generation.

Parameter Name	UPID	Description
Decoding	128Fh	Defines the Master Encoder decoding:
		• 0: 1x
		• 1: 2x
		• 2: 4x

With the direction parameter the count direction of the encoder evaluation can be defined.

Parameter Name	UPID	Description
Direction	1290h	Defines the Master Encoder direction:
		0: Positive
		1: Negative

The Counts/Revolution parameter defines the number of counts per revolution for ABZ or SDZ master encoders.

Parameter Name	UPID	Description
Counts/	1291h	Only used for ABZ or SDZ encoders, to define the counts
Revolution		per revolution.

The Speed Filter Time parameter defines the time over which the master encoder speed is calculated. Bigger values generate a smother master encoder speed but generate a bigger delay time of the speed, which may be a problem if the master encoder speed varies quickly.

Parameter Name	UPID	Description
Speed Filter Time	1293h	Time over which the Master Encoder speed is generated.

7.4 Monitoring

All servo controller series support enhanced monitoring features of the supply voltages and the board temperatures.

7.4.1 Logic Supply Voltage

The logic supply voltage must be in the range from 20V to 28V when using the default parameter settings. If the supply voltage goes out of this range, an error will be generated. If the supply voltage goes below approx. 18V the servo controller shuts down.

Parameter Name	UPID	Description
Logic Supply	100Eh	If the logic supply voltage sinks below this limit the error 01h
Voltage Too Low		will be generated.

Parameter Name	UPID	Description
Logic Supply	1010h	If the logic supply voltage rises above this limit the error 02h
Voltage Too High		will be generated.

7.4.2 Motor Supply Voltage

The motor supply voltage can be monitored with different warn and error levels.

Paramet	er Name	UPID	Description
Motor	Supply	1018h	If the motor supply voltage sinks below this limit the warn bit
Voltage I	Low		Motor Supply Voltage Low (bit 2) is set.
Motor	Supply	1019h	If the logic supply voltage rises above this limit the warn bit
Voltage I	High		Motor Supply Voltage High (bit 3) is set.

Parameter Name	UPID	Description
Motor Supply	101Ah	If the logic supply voltage sinks below this limit the error 03h
Voltage Too Low		will be generated.
Motor Supply	101Bh	If the logic supply voltage rises above this limit the error 04h
Voltage Too High		will be generated.

7.4.2.1 Phase Switch On Test

The parameters in the Phase Switch On Test section are used in the HW Tests State (State 5) before enabling the power stage. If the motor power supply is on and there is no ground path in the motor (inclusive cabling) the phase voltage is approx. 6.5V when in power off state. When moving the motor the induced voltage may lead to HW test error.

Paramet	er Name	UPID	Description
Phase	Voltage	102Ch	If one of the phase voltages is below this limit before
Low Level			powering up an error will be generated.
Phase	Voltage	102Dh	If one of the phase voltages is above this limit before
High Level			powering up an error will be generated.

As a next motor cabling test step, one single end of a phase is set to half of the motor supply voltage. At this time, the current into the servo controller has to be below the Phase Test Max Incurrent value. An error will be generated otherwise.

Parameter Name	UPID	Description
Phase Test Max	102Eh	If the current rises above this limit if one edge of a phase is
Incurrent		set to a voltage en error will be generated.

7.4.3 Regeneration Resistor

The regeneration resister terminals on X1 can be used for energy dissipation, when the motor is decelerating.

Parameter Name	UPID	Description
Enable	101Dh	The regeneration resistor output can be activated with this parameter: • 0: Disable • 1: Enable

In the configuration section the switch on and off voltage levels for the regeneration resistor can be defined. The turn on voltage has to be at minimum 0.5V higher than the turn off voltage. Ensure that the idle motor supply voltage is lower than the turn off voltage!

Parameter Name	UPID	Description
Turn On Voltage	101Eh	If the Motor Supply Voltage rises above this limit the low
		side switch of the regeneration output is activated.
Turn Off Voltage	101Fh	If the Motor Supply Voltage sinks below this limit the low
		side switch of the regeneration output is turned off.

With the RR Temp Calculated section, the temperature model of the regeneration resistor is parameterized. This is used for avoiding damages to the regeneration resistor if the energy dissipation rises over the resistor's capabilities.

Parameter Name	UPID	Description
RR Resistance	1022h	Resistance value of the regeneration resistor. This value is used for calculating how much heat energy is generated in the resistor at the current DC link voltage.
Warning Temp	1024h	If Calc Temp RR Winding (UPID1C0Dh) of the calculated temperature model rises above this value, bit 10 of the Warn Word is set.
Error Temp	1025h	If Calc Temp RR Winding (UPID1C0Dh) of the calculated temperature model rises above this value, the controller goes to error state with the error 15h.

In the Temp Model Parameters section the regeneration resistor's temperature model is defined.

Parameter Name	UPID	Description
C Resistor	1026h	Heat capacity of the resistor winding itself.
R Winding Housing	1027h	Thermal resistance value between resistor winding and its housing.
C Housing	1028h	Heat capacity of the resistor housing.
R Housing	1029h	Thermal resistance value between resistor housing and
Environment		environment.
Environment	102Ah	Environmental temperature of the regeneration resistor.
Temperature		

The figure below shows the implemented temperature model for the regeneration resistor.

7.4.4 Temperature Monitoring

The E1100 servo controller hardware contains eight absolute temperature sensors for thermal protection. On the B1100 controller is one sensor placed.

Parameter Name	UPID	Description
Temp Sens Warn Level	1040h	If the maximal board temperature rises above this level, a warning is generated (bit 6 in Warn Word is set).
Temp Sens Error	1041h	If the maximal board temperature rises above this level, the
Level		error is generated (error codes 10h17h).

The table below shows the mapped variables of the temperature monitoring.

Variable Name	UPID	Description
Power Bridge	1BC6h	Temperature of power driver Phase 1+ (E1100 only)
Temp Ph1+		
Power Bridge	1BC7h	Temperature of power driver Phase 1- (E1100 only)
Temp Ph1-		
Power Bridge	1BC8h	Temperature of power driver Phase 2+ (E1100 only)
Temp Ph2+		
Power Bridge	1BC9h	Temperature of power driver Phase 2- (E1100 only)
Temp Ph2-		
Power Bridge	1BC9h	Temperature of power driver Phase 2+ (E1100 only)
Temp Ph2+		
Power Bridge	1BCAh	Temperature of power drivers DC link voltage
Temp DCLV+		
Temp RR Driver	1BCBh	Temperature of Regeneration Resistor low side driver
Connector Temp	1BCCh	Temperature of motor connector X3
Х3		

Temp Core	1BCDh	Temperature near microcontroller core (E1100 only)
Max Controller	1BCEh	Maximal temperature of above variables
Temp		

7.5 PosCtrlStructure

8 Motor Configuration

The motor usually is set up with the motor wizard, which sets all needed parameters. Therefore a detailed description of the parameters will follow in the future.

8.1 Generic Motor Temperature Calculated

For third parties motors a generic calculated motor temperature model is used to adapt the winding resistance and to detect excess temperature.

C Winding:

R Winding-Housing:

C Housing:

Housing-Mounting:

UPID 1210h

UPID 1211h

UPID 1212h

UPID 1213h

UPID 1213h

UPID 1214h

The sum of all R defines the static power losses (consider also T_W and T_E). With the capacitance the thermal time constant can be influenced. The bigger the thermal capacitance the slower the temperature will rise.

9 State Machine Setup

In the state machine setup sections the parameters to influence the behavior of the single states can be defined.

10 Error Code List

Code	Description	Actions to take
0000h	No Error	No error is pending.
0001h	Err: X4 Logic Supply Too Low	The logic supply voltage has been too low. The minimal logic supply voltage level is defined through parameter 100Eh. Recommended actions: check your 24V logic power supply.
0002h	Err: X4 Logic Supply Too High	The logic supply voltage has been too high. The maximal logic supply voltage level is defined through parameter 1010h. Recommended actions: check your 24V logic power supply.
0003h	Err: X1 Pwr Voltage Too Low	The motor power supply voltage has been too low. The minimal motor supply voltage level is defined through parameter 101Ah. Recommended actions: check your motor power supply, check the wiring, check the sizing of the power supply, add a capacitor too enforce your DC link.
0004h	Err: X1 Pwr Voltage Too High	The motor power supply voltage has been too high. The maximal motor supply voltage level is defined through parameter 101Bh. Back EMF effects may boost the DC link voltage. Recommended actions: check your motor power supply, check the wiring, check the sizing of the power supply, use a regeneration resistor for power dissipation, add a capacitor too enforce your DC link.
0005h	Err: X1 RR Not Connected	A regeneration resistor is configured (see parameter 101Dh) but not connected. Recommended actions: connect the regeneration resistor to X1.
0006h	Err: PTC 1 Sensor Too Hot	The PTC 1 sensor on X4.10 is hot or not connected. Recommended actions: check the temperature, check the wiring
0007h	Err: Min Pos Undershot	The motor position has been below the minimal position (see parameter 146Eh). Recommended actions: check the configuration, check the PLC program
0008h	Err: Max Pos Overshot	The motor position has been above the maximal position (see parameter 146Fh). Recommended actions: check the configuration, check the PLC program
0009h	Err: Ext-Int Sensor Diff Err	The position difference between sensor feedback on X3 and sensor feedback on X12 has been too big. Recommended actions: check sensor wiring, check sensor configuration (count direction, etc.), check parameter 1266h
000Ah	Fatal Err: X12 Signals Missing	The external sensor is not connected to X12 or the wiring is not ok. Recommended actions: check the wiring

000Bh	Err: Pos Lag Always Too Big	The motor was not able to follow the demand position. The maximal allowed position difference is defined through parameter 1473h.
		Recommended actions: check the motor load, check
		the motor stroke range for possible collisions, check the
		position controller setup, check the setpoint generation
		(unreachable speed/acceleration values?), check the
		motor sizing.
	Err:	The motor was not able to reach the target position or
	Pos Lag Standing Too Big	was not able to stay at the target position. The maximal
	(Not on B1100)	allowed position difference is defined through parameter 1475h.
		Recommended actions: check the motor load, check
		the motor stroke range for possible collisions, check the
		position controller setup, check the motor sizing
	Fatal Err:	Over current on X1 detected.
	X1 Pwr Over Current	Recommended actions: check motor wiring, check
		motor configuration, for P01-48 type motors: set
		parameter 11F4h to value 0001h
	Err:	Controller board defective.
	Supply Dig Out Missing	Recommended actions: contact support for repair
	Err:	The PTC 2 sensor on X4.11 is hot or not connected.
	PTC 2 Sensor Too Hot	Recommended actions: check the temperature, check
00401	_	the wiring
0010h	Err:	Servo controller power bridge phase 1+ too hot.
00441	Controller Ph1+ Too Hot	Recommended actions: check motor wiring
0011h	Err: Controller Ph1- Too Hot	Servo controller power bridge phase 1- too hot.
0012h	Err:	Recommended actions: check motor wiring
001211	Controller Ph2+ Too Hot	Servo controller power bridge phase 2+ too hot. Recommended actions: check motor wiring
0013h	Err:	Servo controller power bridge phase 2- too hot.
001311	Controller Ph2- Too Hot	Recommended actions: check motor wiring
0014h	Err:	DC link temp sensor has detected over temperature.
001711	Controller Pwr Too Hot	Recommended actions: check wiring
0015h	Err:	Regeneration resistor switch hot:
33.011	Controller RR Hot Calc	Recommended actions: check RR configuration (Turn
		On level, Resistance, etc.), check RR sizing
0016h	Err:	Temp sensor on X3 has detected over temperature.
	Controller X3 Too Hot	Recommended actions: check motor wiring
0017h	Err:	Temp sensor on controller's PCB board reports core
	Controller Core Too Hot	being hot.
0018h	Err:	Servo controller power bridge phase 1+ may be
	Power Bridge Ph1+	defective.
	Defective	Recommended actions: contact support
0019h	Err:	Servo controller power bridge phase 1- may be
	Power Bridge Ph1- Defective	
		Recommended actions: contact support
001Ah	Err:	Servo controller power bridge phase 2+ may be
	Power Bridge Ph2+	defective.
	Defective	Recommended actions: contact support

001Bh	Err:	Servo controller power bridge phase 2- may be
	Power Bridge Ph2- Defective	defective.
		Recommended actions: contact support
001Ch	Err:	Supply fuse for digital outputs on X6 blown.
	Supply DigOut X6 Fuse	Recommended actions: check X6 wiring, contact
	Blown	support for repair
001Dh	Err:	Supply X3.3 5V fuse blown. Motor or and/or wiring
	Supply X3.3 5V Fuse Blown	defective.
		Recommended actions: contact support for controller
		repair, check motor and wiring, replace motor and motor
		cables
001Eh		Supply X3.8 analog ground fuse blown.
	Supply X3.8 AGND Fuse	Recommended actions: contact support for controller
	Blown	repair, check motor and wiring, replace motor and motor
		cables
0020h	Err:	Temp sensor reports hot motor.
	Motor Hot Sensor	Recommended actions: wait until motor has cooled
		down (until corresponding warning disappears, check
		load, check the motor configuration, check the setpoint
		generation (unreachable speed/acceleration values?),
		check the motor sizing
0021h	Fatal Err:	Motor hall signals not connected to X3 or motor
	X3 Hall Sig Missing	defective:
		Recommended actions: Power down the controller and
		all power supplies, then reconnect motor, check motor
00001	e e	and wiring, check parameter 1221h.
0022h	Fatal Err:	Motor hall sensors cannot see magnetic field of the
	Motor Slider Missing	slider. The motor position was outside the allowed
		range defined through the motors ZP and Max Stroke data (see data sheet).
		Recommended actions: check stroke range, check
		slider orientation.
0023h	Err:	Short time motor overload detected.
002011	Motor Short Time Overload	Recommended actions: check if motor is blocked,
	livetor Grieft Fillio Gverieda	check motor sizing
0024h	Err:	Regeneration resistor hot calculated.
302	RR Hot Calculated	Recommended actions: check RR configuration (Turn
		On level, Resistance, etc.), check RR sizing
0025h	Err:	Sensor Alarm On X12 Occurred.
	Sensor Alarm	Recommended actions: Check sensor mounting, band
		contamination or motion speed
0028h	Err:	Short circuit between phase 1+ and ground detected.
	Ph1+ Short Circuit To GND	Recommended actions: check motor wiring, check
		motor
0029h	Err:	Short circuit between phase 1- and ground detected.
	Ph1- Short Circuit To GND	Recommended actions: check motor wiring, check
		motor
002Ah	Err:	Short circuit between phase 2+ and ground detected.
	Ph2+ Short Circuit To GND	Recommended actions: check motor wiring, check
		motor

00001	F	Chart sire with atween phase Chart array and data at all
002Bh	Err: Ph2- Short Circuit To GND	Short circuit between phase 2- and ground detected. Recommended actions: check motor wiring, check motor
002Ch	Err: Ph1 Short Circuit To Ph2	Short circuit between motor phase 1 and phase 2 detected. Recommended actions: check motor wiring, check motor
0030h	Err: Ph1+ Wired To Ph2+	Motor phase 1+ has contact to phase 2+. Recommended actions: check motor wiring, check motor
0031h	Err: Ph1+ Wired To Ph2-	Motor phase 1+ has contact to phase 2 Recommended actions: check motor wiring, check motor
0032h	Err: Ph1+ Not Wired To Ph1-	Motor phase 1+ has no connection to phase 1 Recommended actions: check motor wiring, check motor
0033h	Err: Ph2+ Wired To Ph1+	Motor phase 2+ has contact to phase 1+. Recommended actions: check motor wiring, check motor
0034h	Err: Ph2+ Wired To Ph1-	Motor phase 2+ has contact to phase 1 Recommended actions: check motor wiring, check motor
0035h	Err: Ph2+ Not Wired To Ph2-	Motor phase 2+ has no connection to phase 2 Recommended actions: check motor wiring, check motor
0036h	Err: Ph1 Short Circuit To Ph2+	Short circuit between motor phase 1 and phase 2+ detected. Recommended actions: check motor wiring, check motor
0037h	Err: Ph1 Short Circuit To Ph2-	Short circuit between motor phase 1 and phase 2-detected. Recommended actions: check motor wiring, check motor
0038h	Err: Ph2 Short Circuit To Ph1+	Short circuit between motor phase 2 and phase 1+ detected. Recommended actions: check motor wiring, check motor
0039h	Err: Ph2 Short Circuit To Ph1-	Short circuit between motor phase 2 and phase 1-detected. Recommended actions: check motor wiring, check motor
003Ah	Err: Phase U Broken	Motor phase U broken. Recommended actions: check motor wiring, check motor
003Bh	Err: Phase V Broken	Motor phase V broken. Recommended actions: check motor wiring, check motor
003Ch	Err: Phase W Broken	Motor phase W broken. Recommended actions: check motor wiring, check motor

0040h	Err:	X4.3 brake driver reports error.
	X4.3 Brake Driver Error	Recommended actions: check for short circuit on X4.3
0041h	Err:	X4.3X4.11 output driver reports error.
	Dig Out X4.4X4.11 Status	Recommended actions: check for short circuit on
		outputs X4.4X4.11 or output configurations.
0042h	Err:	X6 output driver reports error.
	Dig Out X6 Status	Recommended actions: check for short circuit on
		outputs X6.
0044h	Err:	Ground fuse for digital outputs on X4 blown.
	X4 Dig Out GND Fuse Blown	Recommended actions: check X4 wiring, contact
		support for repair
0045h	Fatal Err:	Motor communication lost.
	Motor Comm Lost	Recommended actions: Power down and check motor
		wiring and motor, replace cable and/or motor.
0046h	Err:	PTC 1 on X4.10 broken or not connected.
	PTC 1 Broken	Recommended actions: Power down and check PTC 1
		wiring and resistance.
0047h	Err:	PTC 1 on X4.10 short to 24V.
00 17 11	PTC 1 Short To 24V	Recommended actions: Power down and check PTC 1
	. 10 1 611611 10 211	wiring and resistance.
0050h	Setup Err:	Setup error, hardware is not supported by the software.
000011	HW Not Supported	Recommended actions: download correct firmware,
	1100 Not Supported	contact support
0051h	Setup Err:	Software key and access code for special functionality
003111	SW Key Missing	is missing.
	OW Ney Missing	Recommended actions: Order the SW key with your
		support together with the serial number of your HW.
0058h	Runtime Err:	Runtime error, MC SW was not able to change
003011	ROM write error	parameter value in ROM.
	NOW WINE CITO	Recommended actions: verify PLC is not configuring
		during this action, contact support
0060h	Cfg Err:	Configuration error: regeneration resistor turn on/off
000011	RR Voltage Set Too Low	voltage parameter value is too low.
	Titt voltage det 100 Edw	Recommended actions: check parameters 101Eh and
		101Fh
0061h	Cfg Err:	Configuration error: regeneration resistor turn on/off
000111	RR Hysteresis < 0.5V	voltage parameter values too close to each other.
	100 Trysteresis < 0.57	Recommended actions: check parameters 101Eh and
		101Fh
0062h	Cfg Err:	Configuration error. Software tried to start a curve that
000211	Curve Not Defined	is not defined yet. Action to take: define the curve using
	Odive Not Benned	the curves service, check if curves were downloaded to
		controller, check the curve IDs, check the configuration,
		check the PLC program
0063h	Cfg Err:	Configuration error: Invalid max current setting in control
000311	•	parameters.
		Recommended actions: check parameters 13A6h and
00645	Cfa Err (Estal):	13BAh, check PLC program Configuration error: No mater has been configured yet
0064h		Configuration error: No motor has been configured yet. Recommended actions: use the motor wizard to
00054		configure the motor
0065h	Cfg Err (Fatal):	Configuration error: Digital input X4.6 is configured for

	No Trigger Mode Defined	trigger input function, but the trigger mode is not defined yet.
		Recommended actions: configure parameter 170Ch
0067h	Cfg Err (Fatal):	Configuration error: The configured motor type does not
	Wrong Stator Type	match with the connected motor.
		Recommended actions: configure correct motor type by
		using the motor wizard, connect an appropriate motor
	Cfg Err (Fatal): No Motor Communication	Configuration error: The controller was not able to
		establish the communication to the microcontroller on
		the motor. Older P01 motors don't support motor
0068h		communication.
		Recommended actions: check motor wiring, check
		motor, check the motor configuration, disable
		communication by using parameter 11FBh if you have an old P01 motor.
		Configuration error: A wrong slider has been configured
	Cfg Err:	or slider home position has an invalid value.
0069h	Wrong Slider	Recommended actions: reconfigure the motor by using
	Trong Gildon	the motor wizard
		User error: The PLC program tried to start an action that
	User Err:	requires the motor to be already homed, but the motor
0080h	Lin: Not Homed	was not homed.
	Lin. Not Homed	Recommended actions: check the PLC program, do a
		homing of the motor first
	User Err: Unknown Motion Cmd	User error: The PLC program sent an unknown motion
0081h		command ID. Recommended actions: check PLC program, check
		firmware version
	User Err: PVT Buffer Overflow	User error: The PLC program has sent the stream
		position commands too fast, the buffer had an overflow.
0082h		Streaming has to be strictly cyclic!
		Recommended actions: check PLC program, check the
		fieldbus by using bus monitor tools
		User error: The PLC program has sent the stream
00001	User Err:	position commands too slowly, the buffer had an
0083h	PVT Buffer Underflow	underflow. Streaming has to be strictly cyclic!
		Recommended actions: check PLC program, check the fieldbus by using bus monitor tools
		User error: The PLC program has begun to send PVT
	User Err: PVT Master Too Fast	streaming command. The commands were too close to
00041		each other. The servo controller expects new streaming
0084h		commands every 2ms to 5ms.
		Recommended actions: check PLC program, check the
		fieldbus by using bus monitor tools
0085h	User Err: PVT Master Too Slow	User error: The PLC program has begun to send PVT
		streaming command. The cycle time between the
		streaming commands has been too long. The servo
		controller expects new streaming commands every 2ms
		to 5ms. Recommended actions: check PLC program, check the
		fieldbus by using bus monitor tools
		included by doing but intention tools

HIHAAA	User Err: Motion Cmd In Wrong St	User error: The PLC program has sent a motion command while the controller was not in an appropriate operational state. Most of the motion commands are accepted only in operational state 8 (Operation Enabled). Recommended actions: check the PLC program
0087h	User Err: Limit Switch In High	User error: The motor moved into the Limit Switch In while it was still in the stroke range. Recommended actions: check the PLC program or check homing
0088h	User Err: Limit Switch Out High	User error: The motor moved into the Limit Switch Out while it was still in the stroke range. Recommended actions: check the PLC program or check homing
0089h	User Err: Curve Amp Scale Error	User error: The automatic calculated amplitude scale is out of range -2000percent to 2000percent. Recommended actions: check the PLC program or use other curve
008Ah	User Err: Cmd Tab Entry Not Def	Called command Table entry is not defined. Recommended actions: check the PLC program or define Command Table Entry.

11 Contact Addresses

SWITZERLAND NTI AG

Haerdlistr. 15

CH-8957 Spreitenbach

Sales and Administration: +41-(0)56-419 91 91

office@linmot.com

Tech. Support: +41-(0)56-544 71 00

support@linmot.com

Tech. Support (Skype): skype:support.linmot

Fax: +41-(0)56-419 91 92

Web: http://www.linmot.com/

USA LinMot, Inc.

204 E Morrissey Dr. Elkhorn, WI 53121

Sales and Administration: 877-546-3270

262-743-2555

Tech. Support: 877-804-0718

262-743-1284

Fax: 800-463-8708

262-723-6688

E-Mail: <u>us-sales@linmot.com</u>

Web: http://www.linmot-usa.com/

Please visit http://www.linmot.com/ to find the distribution near you.

Smart solutions are...

