

Our country, our future 525/1

S6 CHEMISTRY

Exam 9

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709.

Answer all question in part I and six questions in part II
All questions are to be answered in the spaces provided
Periodic table, with relative atomic masses, is supplied at the end of the paper.
Simple calculator may be used

For Examiners use only

					,													
1	2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (Answer all questions)

For consultations call: +256 776 802709

1. Complete the following equation of radioactive decay

- (a) $^{233}_{91}Pa \longrightarrow -\beta + \dots \longrightarrow ^{4}_{2}He + \dots$ (2marks)
- (b) $\frac{223}{88}Ra \longrightarrow \dots + \frac{219}{86}Rn \longrightarrow \dots + \frac{215}{84}Po$ (2marks)
- (c) $\frac{207}{81}Ti \longrightarrow \dots + \frac{207}{82}Pb$ (1 mark)
- 2. Draw the shapes and name the structure of each of the following species (2marks each)

	Species	Snape	name of the snape
i.	H_2O		
ii.	CO_2		
iii.	$\mathrm{H}_{3}\mathrm{O}^{+}$		
	e an equation for dissolution would be neutral, ba		wing salt in water. State whether the resulting
(a)	chromium (III) chlori	de	(2marks)
•••••			
(b)	Magnesium chloride		(1mark)
(c)	ammonium methanoa	ite	(2marks)
4. (a) C	Complete the following e	quations	
			(1mark)
ii. ($C_6H_5COOH + CH_3OH$	<u>H'</u>	(1½ mark)

iii.
$$nCH_2 = CH - C = CH_2$$
 (1 mark Cl

More exams? browse: digitaltears.co.ug

1\	$(CH_3)_3C-Br + OH^-(aq) \longrightarrow \dots$	(1mark)
(b) State the name of the mechanism of the reaction in (a)(iv)	(2marks)
5.	20.0cm³ of 0.02M sodium hydroxide was added to 30 cm³ of 0.025M sulphuric aca. Molar concentration of the hydrogen ions in the initial sulphuric acid	id. Calculate (1 ½ mark)
•••	b. Concentration of hydrogen ions in the resultant solution	(3marks)
		(1mark)
		nark)
	b) State the possible oxidation number of aluminium (1/2	mark)
	c) Write an ionic equation for the reaction between aluminium and sodium hydroxic	

4		
••••		
7.	Name one regent that can be used to distinguish between each of the following and state what would be observed in each case if the reagents reacted with the	
) C ₆ H ₅ COCH ₂ CH ₃ and C ₆ H ₅ COCH ₃ Reagent	(3marks)
 Ob	eservations	
• • • •		
• • •		
•••		
• • • •		
(b)	CH ₂ CH ₂ CH ₂ OH and (CH ₃) ₃ COH	(3marks)
Re	agent	
• • •		
• • •		
Ob	oservations	
• • •		
Ω	The convention of a cell is given below	•••••
0.	Pt/Fe ²⁺ (aq), Fe ³⁺ (aq) $\ \text{MnO}_4^-(\text{aq}) \text{ Mn}^{2+}(\text{aq}), \text{ H}^+(\text{aq})/\text{Pt}.$	
	(a) Write equation for the half cell reaction at	
	(i) anode	(1marks)
	(ii) cathode	(1marks)

(b) Write the overall equation for the cell reaction More exams? browse: digitaltears.co.ug

(1½ marks)

(c) The electrode potential of system $Fe^{3+}(aq)/Fe^{2+}(aq)$ and $.MnO_4^-(aq)$	Mn^{2+} (aq) are +0.76 and
1.51 volts respectively. Deduce whether the reaction in (b) is feasible	or not and give a reaction for
your answer.	(1mark)
9. Write an	
(i) equation for the reaction between hydrogen and nitrogen.	(1 marks)
(ii) expression for equilibrium constant (Kp) of the reaction in (a)(i) above	
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure	for the system at equilibrium
	for the system at equilibrium
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we	for the system at equilibrium
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we respectively.	for the system at equilibrium are 2 and 6 atmospheres
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we respectively.	for the system at equilibrium are 2 and 6 atmospheres
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we respectively. (i) Determine the partial pressure of ammonia in equilibrium mixture	for the system at equilibrium ere 2 and 6 atmospheres (1mark)
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we respectively.	for the system at equilibrium are 2 and 6 atmospheres
(b) When hydrogen was reacted with nitrogen at 895K, the total pressure was 30 atmospheres, and the partial pressure of nitrogen and hydrogen we respectively. (i) Determine the partial pressure of ammonia in equilibrium mixture	for the system at equilibrium ere 2 and 6 atmospheres (1mark)

SECTION B

Answer six questions from this section

10. (a) State the oxidation state of chromium in

(i) Potassium chromate More exams? browse: digitaltears.co.ug

Mechanism

More exams? browse: digitaltears.co.ug

Mechanism

12 Explain the following:

(a) Aqueous solutions of chromium (II) and chromium (III) are colored while that o					
is not	(3marks)				
(b) Manganese, iron, cobalt and nickel form ions in the +2 oxidation states. State wh					
size from manganese to nickel.	(2 marks)				

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(c) The oxy-acids, HClO₂ and HClO₄ have the following respective structures.

Explain why HClO₄ is stronger acid than HClO₂

(Assume that oxygen is more electronegative than chlorine	(2 marks)

(d) Iron III sulphate solution changes litmus paper red (2 marks)

13 (a) State Kohlrausch's law of independent Conductivity of ions	(1 mark)

.....

(b) Some ionic conductivity at infinite dilution at 250C are shown below

Ion	Ionic conductivity (Ω^{-1} cm ²)
OH-	198.6
Cl ⁻	76.4
$\mathrm{NH_4}^+$	73.6
Na^+	50.1

9				
Calculate the molar con	nductivity o	of ammonium hydroxid	de at infinite dilution	(2marks)
	• • • • • • • • • • • • •			
	ionic condu	activities at infinite dil	ution of some ions are shown	in the table
below:		T . 1. /	T 1 1 1 1 10 10 10 1	2
Ion Li+		Ionic radius/nm	Ionic conductivity/ Ω^{-1} cm	1-
Na+		0.060 0.095	38.7 50.1	
K+		0.033	73.5	
		01100	1,70.0	
Explain the values in the	ne table			(3 marks)
• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •
***************************************	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
(d) The diagram below	shows cur	ves a and b obtained w	hen aqueous sodium hydroxid	de was gradually
			ric and ethanoic acid separate	
		1		
		0		
	Molor			
	conductivity			
		6		
		i×		
		Yolume of sodium h	nydroxide	
Evolain the character	0.00	3000		
Explain the shape of th	e curves			

(i) ¹	curve a	(1½ marks)
		For consultations call: +256 776 802709

More exams? browse: digitaltears.co.ug

(ii)	Curve b	(1½ marks)							
•••••		•••••							
14. C	Compound Y, C ₃ H ₆ O reacts with 2, 4-dinitrophenylhydrazine to give a yellow solid.								
	Write the structural formulae and IUPAC names of all isomers of Y.	(2 marks)							
(a)	write the structural formulae and for AC hames of an isomers of 1.	(2 marks)							
• • • • • •		• • • • • • • • • • • • • • • • • • • •							
• • • • • •									
(b) W	When Y is heated with Fehling's solution, a red precipitate is formed, Identify Y	(1 mark)							
	(c) Write a mechanism for the reaction that would take place between Y and hydroxylamine, NH ₂ OH.								
(0) 11	The a meenanism for the reaction that would take place between T and hydroxyram								
		(3 marks)							
• • • • • •									
(4) W	Vrite equations to show how Y can be converted to an alkene	(3marks)							
	•	,							
• • • • • •		• • • • • • • • • • • • • • • • • • • •							
• • • • • •		• • • • • • • • • • • • • • • • • • • •							
		• • • • • • • • • • • • • • • • • • • •							
15. (a	a) An aqueous solution containing 7.2g of a non-cyclic substance Q in 250g of water	freezes at							
-0.74	4°C; the freezing point constant, K, for water is 1.86mol ⁻¹ kg ⁻¹ .	(3marks)							
•••••									
• • • • • •		•••••							

Page 10

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

hydroxide at 25°C

(3marks)

Fig.

(i) the axes (ii) the phases present (iii) the critical temperature													(2	imarks)			
(iv)																	
(b) I	Define	e the t	erm														
(i	i) Crit	tical p	oint													(1	½ marks)
••••	• • • • • •	•••••		•••••		• • • • • •				• • • • • •		• • • • • •	• • • • • •		•••••		••••••
(ii) triple point											1/2 mark)						
(c) Explain what would happen when the substance at point X changes to point B (2marks)																	
` /	•									1		U	1			`	,
• • • • •		•••••	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •		• • • • • •	• • • • • •	• • • • • •	•••••	• • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • •		•••••	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •	• • • • • •		• • • • • •	• • • • • •	• • • • • •	•••••	• • • • • •	• • • • • • • • • • • • • • • • • • • •
Peri	odic]	Γahle															
1	2											3	4	5	6	7	8
1.0		l.												_		1.0	4.0
H 1																H	He
6.9	9.0]										10.8	12.0	14.0	16.0	19.0	20.2
Li	Be											В	С	N	0	F	Ne
3	4											5	6	7	8	9	10
23.0 Na	24.3 Mg											27.0 Al	28.1 Si	31.0 P	32.1 S	35.4 Cl	40.0 Ar
11	12											13	14	15	16	17	18
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.7	69.7	72.6	74.9	79.0	79.9	83.8
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
85.5	87.6	88.9	91.2	92.9	95.9	98.9	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133 Cs	137 Ba	139 La	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	207 Ti	207 Pb	209 Bi	209 Po	210 At	222 Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227															_
Fr 87	Ra 88	Ac 89															
<u> </u>			139	140	141	144	147	150	152	157	159	162	165	167	169	173	175
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			57 227	58 232	59 231	60 238	61 237	62 244	63 243	64 247	65 247	66 251	67 254	68 257	69 256	70 254	71 260
			AC	Th	Pa	U U	Np	Pu	Am	Cm	Bk	Cf	Es Es	Fm	Md	No	Lw
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

End