MVP de Monitoramento e Predição de Eventos Meteorológicos com ESP32 + Machine Learning

Grupo 46 - FIAP

Thiago Scutari - RM562831 | thiago.scutari@outlook.com

Henrique Ribeiro Siqueira - RM565044 | henrique.ribeiro1201@gmail.com

Mariana Cavalcante Oliveira - RM561678 | mari.kvalcant@gmail.com

Github: https://github.com/ThiagoScutari/global solution 1.git

Video: https://youtu.be/IV0VRtBctgo

1. Introdução

Este projeto propõe o desenvolvimento de um sistema inteligente para monitoramento e predição de eventos climáticos extremos, como queimadas, geadas e tempestades. Utilizando sensores simulados e técnicas de aprendizado de máquina, o sistema permite prever fenômenos com base em dados ambientais, contribuindo para ações preventivas e de mitigação.

A solução se baseia em um sensor DHT22 acoplado a um microcontrolador ESP32, ambos simulados por meio da plataforma Wokwi. Os dados são processados em tempo real e analisados por um modelo de Machine Learning previamente treinado em Python, possibilitando a classificação automática dos eventos meteorológicos.

2. Desenvolvimento

2.1 Arquitetura Geral

A arquitetura do sistema integra os seguintes componentes principais:

- Coleta de dados: via sensor DHT22 simulado no ESP32;
- Transmissão: utilizando protocolo RFC2217, que permite a leitura remota da porta serial;
- Processamento: scripts em Python realizam a predição com base nos dados coletados;
- Visualização: gráficos em Matplotlib.

Fluxo de dados: ESP32 (DHT22) → RFC2217 → Python (preditivo) → CSV → Dashboard

2.2 Justificativas Técnicas

- O uso da plataforma Wokwi permite testes em ambiente 100% simulado, ideal para protótipos educacionais.
- O protocolo RFC2217 viabiliza a comunicação serial remota, simulando um cenário real de IoT.
- A escolha do algoritmo Random Forest justifica-se por sua robustez na classificação com dados tabulares.
- O Scikit-Learn proporciona fácil treinamento e exportação de modelos com joblib.

2.3 Implementação

a) Firmware ESP32 (main.ino)

O código simula a coleta de dados ambientais com envio via serial:

Serial.print(id);

Serial.print(",");

Serial.print(temp);

Serial.print(",");

Serial.println(umid);

b) Treinamento do Modelo (treinar_modelo.py)

- Geração de dados sintéticos balanceados;
- Treinamento com validação cruzada;
- Salvamento em modelo_evento.pkl.

c) Predição em Tempo Real (prever_evento_metereologico.py)

- Leitura contínua da porta serial;
- Classificação instantânea e gravação em CSV;
- Confiabilidade exibida a cada predição.

d) Dashboard Terminal (dashboard_terminal.py)

- Gráficos temporal e de barras;
- Interface simplificada com Matplotlib.

3. Resultados Esperados

- Classificação precisa de eventos meteorológicos com base em temperatura e umidade;
- Atualização em tempo real dos dados sensoriais;
- Visualização gráfica clara das condições ambientais;
- Portabilidade e escalabilidade da solução para sensores reais em campo.

A lógica da classificação segue as seguintes regras:

Evento	Temperatura (°C)	Umidade (%)
Geada	< 4	> 70
Queimada	> 33	< 40
Tempestade	25 - 32	> 80
Normal	outros casos	