Tomasz Beneś

Sprawozdanie – Lista 4

Zadanie 1.

Implementacja wykorzystuje fakt, że w kolejnych iteracjach obliczania ilorazów różnicowych wykorzystujemy (lub musimy pamiętać jako wynik) tylko N wartości z macierzy N × N. Obrazuje to poniższy rysunek (przekreślone zostały niepotrzebne już liczby):

1 4 2 3 3 2	1 4 -1 2 3 -1 3 2 -1
4 1	4 1
1 4 -1 0 2 3 -1 0	14-100 2 3-10
3 2 1	3 2 1
4 1	4 1

W związku z tym, zadanie można wykonać wykorzystując jedną tablicę N – elementową.

Rozwiązanie w pseudokodzie:

```
// dane: f[N], x[N]
for i from 2 to N
for j from N downto i
f[j] = (f[j]-f[j-1]) / (x[j]-x[j+1-i])
```

Zadanie 2.

Implementacja korzysta z algorytmu Hornera w postaci:

```
\begin{split} & w_n(x) = f[x_0,\,x_1,\,\ldots,\,x_n] \\ & w_k(x) = f[x_0,\,x_1,\,\ldots,\,x_k] + (x-x_k)w_{k+1} \\ & N_n(x) = w_0(x). \end{split} \qquad 0 \leq k < n
```

Rozwiązanie w pseudokodzie:

```
// dane: x[N] węzły, fx[N] ilorazy, t
nt = fx[N]
for k from N-1 downto 1 // 1 to ostatni indeks czyli wo
nt = fx[k] + (t - x[k])·nt
```

Mamy jedna petle o N-1 krokach, dostep do x[i] i fx[i] jest stały, więc złożoność to O(N).

Zadanie 3.

Spostrzeżenie: w_n w uogólnionym algorytmie Hornera jest równe a_n . Mając a_n , możemy, bazując na wartościach pośrednich tworzonych przez algorytm Hornera, odzyskiwać kolejne a_{n-1} , bo nie zmieniają one wyższych a_n .

Pseudokod:

Uruchamiamy algorytm Hornera, zapamiętując w macierzy pośrednie wartości.

```
poly[1,1] = 1
for i in 1:n-1
  poly[i+1, 1] = 1
  poly[i+1, 2:i+1] = poly[i, 2:i+1] - x[i] * poly[i, 1:i]
end
```

Później wykorzystujemy je, by odtwarzać kolejne współczynniki.

```
for i in n:-1:1
    a[i] = fx[i]
    for j in 1:n-i
        a[i] = a[i] + fx[i+j] * poly[i+j, j+1]
    end
end
```

Pierwsza część algorytmu wykonuje się w czasie O(n²), druga również, co w sumie daje żądany czas.

Zadanie 4.

Funkcja wykorzystuje pakiet Plots do rysowania wykresów. Kolejne kroki:

- 1. Wydzielenie n równoodległych węzłów wykorzystując wzór z zadania
- 2. Wywołanie ilorazyRoznicowe
- 3. Dla (2n)² równoodległych punktów w przedziale:
 - 1. Obliczenie explicite wartości funkcji
 - 2. Obliczenie wartości interpolowanej wywołaniem warNewton
- 4. Narysowanie obu krzywych

Zadanie 5.

a) e^{x} , [0,1]

n = 5

- Zwiększanie stopnia wielomianu nie poprawia jakości interpolacji
- Stopień równy 5 wystarcza do interpolacji funkcji e^x na przedziale [0.0, 1.0].

b) $x^2 \sin x, [-1,1]$

n = 5

- Zwiększenie stopnia wielomianu poprawiło jakość interpolacji.
- Wielomian 10-ego stopnia wystarczył do interpolacji na przedziale [-1, 1].

Zadanie 6.

W celu lepszego zobrazowania funkcji dla n = 10, wartości zostały ograniczone do [-3; 3].

a) |x|,[-1,1]

n = 5

- Wyższe stopnie wielomianu powodują utratę jakości interpolacji przy skrajach przedziału.
- Ostrza w rodzaju tego przy 0 są bardzo trudne do osiągnięcia przez wielomiany interpolacyjne, szczególnie, jeżeli nie znajduje się na nich węzeł zjawisko typowe dla funkcji niegładkich.

b)
$$\frac{1}{1+x^2}$$
, [-5,5]

n = 5

n = 10

n = 15

- Po pierwszym zwiększeniu ilości węzłów jakość interpolacji uległa polepszeniu. Widać to w szczególności w okolicach 0.
- Po kolejnym zwiększeniu stopnia wielomianu interpolacja pogorszyła się przy skrajach przedziału.
- Obserwujemy efekt Runge'go, ponieważ funkcja rysujNnfx wykorzystuje węzły równoodległe. Zjawiska można uniknąć, stosując inny rozkład węzłów, np. normalny.