Cone and cylinder

Q. 1	Let <i>L</i> be any line making an angle α , β , γ with x , y and z axis respectively. Then direction cosines (dc's) of <i>L</i> are				
	A)	$l = \sin \alpha, m = \sin \beta, n = \sin \gamma$	C)	$l = \sec \alpha, m = \sec \beta, n = \sec \gamma$	
	B)	$l = \tan \alpha, m = \tan \beta, n = \tan \gamma$	D)	$l = \cos \alpha, m = \cos \beta, n = \cos \gamma$	
Ans.	D				
Q. 2	Let L be any line with l, m, n are direction cosines (dc's) of L . And a, b, c are direction ratios (dr's) of L . Then l, m, n are.				
	A)	$l = -\frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n$ $= \frac{c}{\sqrt{a^2 + b^2 + c^2}}$	C)	$l = -\frac{a}{\sqrt{a^2 + b^2 + c^2}}, m$ $= -\frac{b}{\sqrt{a^2 + b^2 + c^2}}, n$ $= \frac{c}{\sqrt{a^2 + b^2 + c^2}}$	
	B)	$l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n$ $= \frac{c}{\sqrt{a^2 + b^2 + c^2}}$	D)	$l = -\frac{a}{\sqrt{a^2 + b^2 + c^2}}, m$ $= -\frac{b}{\sqrt{a^2 + b^2 + c^2}}, n$ $= -\frac{c}{\sqrt{a^2 + b^2 + c^2}}$	
Ans.	С				
Q. 3	Equation of straight line passing through $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is				
	A)	$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ $y_2 = y_2, y = y_2, y_2 = y_2$		$\frac{z_2 - z_1}{x_2 - x_1} = \frac{z_2 - z_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$	
	B)	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{y_2 - y_1}{z_2 - z_1}$	D)	$\frac{x - x_1}{x_2 - x_1} = \frac{x_2 - x_1}{y_2 - y_1} = \frac{x_2 - x_1}{z_2 - z_1}$	
Ans.	A				

Q. 4	Equation of straight line passing through $P(x_1, y_1, z_1)$ and having dcs l , m , n is				[01]
	A)	$\frac{x + x_1}{l} = \frac{y + y_1}{m} = \frac{z + z_1}{n} = r$	C)	$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} = r$	
	B)	$\frac{x-x_1}{l} = \frac{y+y_1}{m} = \frac{z-z_1}{n} = r$	D)	$\frac{x + x_1}{l} = \frac{y - y_1}{m} = \frac{z + z_1}{n} = r$	
Ans.	C				
Q. 5	Equation of straight line passing through $P(x_1, y_1, z_1)$ and having drs a , b , c is				
	A)	$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = k$	C)	$\frac{x - x_1}{a} = \frac{y + y_1}{b} = \frac{z + z_1}{c} = k$	
	B)	$\frac{x+x_1}{a} = \frac{y+y_1}{b} = \frac{z+z_1}{c} = k$	D)	$\frac{x+x_1}{a} = \frac{y-y_1}{b} = \frac{z+z_1}{c} = k$	
Ans.	A	•			
Q. 6	Perpendicular distance of a point $P(x_1, y_1, z_1)$ from a plane $ax + by + cz + d = 0$ is given by				
	A)	$\left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right $	C)	$\left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{x_1^2 + y_1^2 + z_1^2}} \right $	
	B)	$\left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2 + d^2}} \right $	D)	None of these	
Ans.	C				
Q. 7	The general equation of cone is				
	A)	$ax^{2} + by^{2} + cz^{2} - 2hxy - 2fyz - 2gzx + 2ux + 2vy + 2wz + d = 0$	(C)	$ax^{2} + by^{2} + cz^{2} + 2hxy + 2fyz$ $+ 2gzx - 2ux - 2vy$ $- 2wz - d = 0$	
	B)	$ax^{2} + by^{2} + cz^{2} + 2hxy + 2fyz + 2gzx + 2ux + 2vy + 2wz + d = 0$	D)	None of these.	
Ans.	В				
Q. 8	The equation of cone with vertex at origin is				
	A)	$ax^2 + by^2 + cz^2 + 2hxy + 2fyz + 2gzx = 0$	C)	$ax^2 + by^2 + cz^2 = 0$	
	B)	$ax^{2} + by^{2} + cz^{2} - 2hxy - 2fyz - 2gzx = 0$	D)	$ax^2 - by^2 - cz^2 + 2hxy + 2fyz + 2gzx = 0$	

Ans.	A			-		
					[01]	
Q. 9	. 9 The equation of right circular cone is					
	A)	$= \frac{l(x+\alpha) + m(y+\beta) + n(z+\gamma)}{\sqrt{l^2 + m^2 + n^2} \sqrt{(x+\alpha)^2 + (y+\beta)^2 + (z+\gamma)^2}}$	C)	$= \frac{l(x-\alpha)-m(y-\beta)-n(z-\gamma)}{\sqrt{l^2-m^2-n^2}\sqrt{(x-\alpha)^2+(y-\beta)^2+(z-\gamma)^2}}$		
	B)	$= \frac{l(x-\alpha) + m(y-\beta) + n(z-\gamma)}{\sqrt{l^2 + m^2 + n^2} \sqrt{(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2}}$	D)	$= \frac{l(x-\alpha) + m(y+\beta) + n(z-\gamma)}{\sqrt{l^2 + m^2 + n^2} \sqrt{(x-\alpha)^2 + (y+\beta)^2 + (z-\gamma)^2}}$		
Ans.	В					
Q.10	The equation of right circular cylinder whose radius is r and axis is the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$. $\frac{l,m,n}{M} = \frac{l,m,n}{M}$ Axis					
	A)	$PA^2 + PM^2 = AM^2$	C)	$PA^2 = -PM^2 - AM^2$		
	B)	$PA^2 = PM^2 - AM^2$	D)	$PA^2 = PM^2 + AM^2$		
Ans.	D					
Q.11	The equation of right circular cylinder whose radius is r and axis is the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$. Is $PA^2 = PM^2 + AM^2$, $AM = Projection of PA on axis$ is given by $\frac{P(x,y,z)}{M} = \frac{l,m,n}{Axis}$					
	A)	$\frac{l(x+\alpha) + m(y+\beta) + n(z+\gamma)}{\sqrt{l^2 + m^2 + n^2}}$	C)	$\frac{l(x-\alpha) + m(y-\beta) + n(z-\gamma)}{\sqrt{l^2 - m^2 - n^2}}$		
	B)	$\frac{l(x-\alpha)+m(y-\beta)+n(z-\gamma)}{\sqrt{l^2+m^2+n^2}}$	D)	$\frac{l(x-\alpha)-m(y-\beta)-n(z-\gamma)}{\sqrt{l^2-m^2-n^2}}$		
Ans.	В					
				1		

Q.12	The right circular cone which passes through the point $(2, -2, 1)$ with vertex at the origin and axis parallel to the line $\frac{x-2}{5} = \frac{y-1}{1} = \frac{z+2}{1}$ Then the value of semi-vertical angle θ is				[01]
	A)	$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	C)	$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$	
	B)	$-\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	D)	$\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$	
Ans.	A				
Q.13	The equation of right circular cylinder of radius 2, whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ is $PA^2 = PM^2 + AM^2$ Then $AM = Proj^n$ of PA on axis is given by				
	A)	$AM = \frac{2(x+1) + 1(y+2) + 2(z+3)}{\sqrt{2^2 + 1^2 + 2^2}}$	C)	$AM = \frac{2(x-1) + 1(y-2) + 2(z-3)}{\sqrt{2^2 + 1^2 + 2^2}}$	
	B)	$AM = \frac{2(x-1) + 1(y-2) + 2(z-3)}{\sqrt{2^2 - 1^2 - 2^2}}$	D)	$AM = \frac{2(x-1) - 1(y-2) + 2(z-3)}{\sqrt{2^2 - 1^2 + 2^2}}$	
Ans.	С				