EXERCISE SHEET 3

RUNLIN ZHANG

截止日期:最迟在5.20提交作业。

评分标准:取 sup-norm ——只要做对一小道题,就能得到满分。当然,你也可以尝试说明题目出错了。

提示: 你可以自由使用序号靠前习题的结果来解答序号靠后的习题。

如对习题 (陈述,定义等)有任何的疑问,请联系我。

CONTENTS

1.	Mixing and equidistribution	1
2.	Non-commensurable lattices in $SL_2(\mathbb{R})$, II	2
3.	Totally geodesic hyperbolic planes in H3, II	3
4.	Mixing fails for non-semisimple groups	3
5.	Another example of Mautner phenomenon	4
6.	Lattices and closedness of orbits	5

1. MIXING AND EQUIDISTRIBUTION

- $G = \operatorname{SL}_2(\mathbb{R}), U = \left\{ \mathbf{u}_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R} \right\}, A = \left\{ \mathbf{a}_t = \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}, t \in \mathbb{R} \right\};$
- $V = \left\{ \mathbf{v}_r = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, r \in \mathbb{R} \right\};$
- Γ is a lattice in G, let $X := G/\Gamma$ and \widehat{m}_X be the unique G-invariant probability measure on X;
- Fix a right invariant Riemannian metric on G. Use this metric to induce a distance function $d(\cdot,\cdot)$ on G, let $d_X([g_1]_{\Gamma},[g_2]_{\Gamma}) := \inf_{\gamma_1,\gamma_2\in\Gamma} d(g_1\gamma_1,g_2\gamma_2);$
- for every δ , $s_0 > 0$, let

$$Box(\delta, s_0) := (-\delta, \delta) \times (-\delta, \delta) \times (0, s_0);$$

- let Leb $_{\delta,s_0}$ be the restriction of standard Lebesgue measure restricted to Box(δ,s_0);
- by abuse of notation we also denote by Leb_{δ,s_0} for its push-forward under the map $(r, t, s) \mapsto \mathbf{v}_r \cdot \mathbf{a}_t \cdot \mathbf{u}_s$;
- for $x \in X$, let Obt_x denote the map $G \to X$ defined by $g \mapsto g.x$.

Exercise 1.1. Fix $x \in X$, δ , $s_0 > 0$. Show that there exists a non-negative function $f \in L^{\infty}(X, \mathbf{m}_X)$ such that $(\mathrm{Obt}_x)_* \mathrm{Leb}_{\delta, s_0} = f \cdot \widehat{\mathbf{m}}_X$.

Date: 2022.05.

Exercise 1.2. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $s_0 > 0$, t > 0, $(r, u, s) \in \text{Box}(\delta, s_0)$ and $x \in X$ we have

$$d_X(\mathbf{a}_t \cdot (\mathbf{v}_r \mathbf{a}_u) \cdot \mathbf{u}_s.x, \mathbf{a}_t \mathbf{u}_s.x) < \varepsilon.$$

Recall that mixing implies that for $\phi, \psi \in L^2(X, \widehat{m}_X)$,

$$\lim_{t\to\pm\infty}\int\phi(\mathbf{a}_t.x)\psi(x)\widehat{\mathbf{m}}_X(x)=\int\phi(x)\widehat{\mathbf{m}}_X(x)\cdot\int\psi(x)\widehat{\mathbf{m}}_X(x).$$

Exercise 1.3. For every $s_0 > 0$, $x_0 \in X$ and $f \in C_c(X)$, we have

$$\lim_{t\to+\infty}\frac{1}{s_0}\int_0^{s_0}f(\mathbf{a}_t\mathbf{u}_s.x_0)\,\mathrm{d}s=\int f(x)\widehat{\mathbf{m}}_X(x).$$

Exercise 1.4. Show that if $(U.x_n)$ is a sequence of compact U-orbits of periods $S_n \to +\infty$, then for every compactly supported continuous function f,

$$\lim_{n\to+\infty}\frac{1}{S_n}\int_0^{S_n}f(\mathbf{u}_s.x_n)\,\mathrm{d}s=\int f(x)\widehat{\mathbf{m}}_X(x).$$

Exercise 1.5. Show that the above convergence (in Exer.1.3) is "uniform" in the following sense. For every $f \in C_c(X)$, ε , $s_0 > 0$ and $x_0 \in X$, there exists $\delta > 0$ such that for every $y \in X$ with $d_X(x_0, y) < \delta$, we have for all t > 0,

$$\left| \frac{1}{s_0} \int_0^{s_0} f(\mathbf{a}_t \mathbf{u}_s. x_0) \, \mathrm{d}s - \frac{1}{s_0} \int_0^{s_0} f(\mathbf{a}_t \mathbf{u}_s. y) \, \mathrm{d}s \right| < \varepsilon.$$

Exercise 1.6. Use the above exercise to give another proof of the equidistribution of horocycle flows. Show that if $U.x_0$ is not compact in X, then for every $f \in C_c(X)$,

$$\lim_{S \to +\infty} \frac{1}{S} \int_0^S f(\mathbf{u}_s \cdot x_0) \, d\mathbf{s} = \int f(x) \widehat{\mathbf{m}}_X(x).$$

2. Non-commensurable lattices in $SL_2(\mathbb{R})$, II

This is a continuation of Exercise 2.1–2.6 from Exercise Sheet 2. Notations are inherited and here are a few more:

- Let $X := G/\Gamma$ and \widehat{m}_X the unique G-invariant probability measure on X;
- Let Ω be a nonempty open bounded subset of UV^+ (or UV^-);
- Let $\widetilde{\mu}_0$ be the restriction of the Haar measure on UV to Ω . Fix $x_0 \in X$, let μ_0 be the push-forward of $\widetilde{\mu}_0$ under the map $g \mapsto g.x_0$. By multiplying by a scalar, we normalize μ_0 to be a probability measure $\widehat{\mu}_0$.

Exercise 2.1. *Show that* \widehat{m}_X *is* A*-mixing.*

Exercise 2.2. Using mixing to show that $\lim_{t\to+\infty} (\mathbf{a}_t)_* \widehat{\mu}_0 = \widehat{\mathbf{m}}_X$.

Exercise 2.3. Let Y_0 be as in Exer 2.3 from Exer. Sheet 2. Show that $Y_0 = X$.

Thus we have shown that H-orbits on *X* are either closed or dense.

Now let Γ_1 , Γ_2 be two discrete subgroups in $SL_2(\mathbb{R})$ (later we will assume them to be cocompact).

Exercise 2.4. The following two are equivalent

- 1. $\Gamma_1 \cdot \Gamma_2$ is closed in $SL_2(\mathbb{R})$;
- 2. $H \cdot (\Gamma_1 \times \Gamma_2)$ is closed in G.

Exercise 2.5. The following two are equivalent

1. $\Gamma_1 \cdot \Gamma_2$ is dense in $SL_2(\mathbb{R})$;

2. $H \cdot (\Gamma_1 \times \Gamma_2)$ is dense in G.

From now on we assume Γ_1 , Γ_2 are both cocompact in $SL_2(\mathbb{R})$.

Exercise 2.6. The following two are equivalent

- 1. $\Gamma_1 \cdot \Gamma_2$ is closed in $SL_2(\mathbb{R})$;
- 2. Γ_1 is commensurable with Γ_2 (namely, $\Gamma_1 \cap \Gamma_2$ is of finite-index in both Γ_1 and Γ_2).

[It seems unclear to me how to prove this only assuming Γ_i 's are lattices. There is an approach using random walk by Eskin–Margulis.]

Exercise 2.7. The followings are equivalent

- 1. Γ_1 is commensurable with Γ_2 ;
- 2. $\Gamma_1 \cdot [id]_{\Gamma_2}$ is a finite subset of $SL_2(\mathbb{R})/\Gamma_2$;
- 3. $\Gamma_1 \cdot \Gamma_2$ is not dense in $SL_2(\mathbb{R})$.
 - 3. TOTALLY GEODESIC HYPERBOLIC PLANES IN H3, II

Notations and assumptions are inherited from Sec.3 from Exercise Sheet 2.

Exercise 3.1. Show that H-orbits on G/Γ are either closed or dense.

4. MIXING FAILS FOR NON-SEMISIMPLE GROUPS

Notations

- $\bullet \ \ B = A \cdot U \text{ where } A := \left\{ \mathbf{a}_t = \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{-t} \end{array} \right], \ t \in \mathbb{R} \right\} \text{ and } U = \left\{ \mathbf{u}_s = \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array} \right], \ s \in \mathbb{R} \right\};$
- \mathcal{H} is a separable Hilbert space and $\Phi: B \to \mathcal{U}(\mathcal{H})$ is a unitary representation of B.

Exercise 4.1. Show that if \mathcal{H} has no non-zero $\Phi(U)$ -fixed vector ("U-ergodic"), then for every $\phi, \psi \in \mathcal{H}$ and $t_n \to +\infty$, $\lim_n \langle \Phi(\mathbf{a}_{t_n}).\phi, \psi \rangle = 0$ (" A^+ -mixing").

Exercise 4.2. Same notations and assumptions as in last exercise. Show that for every $\phi, \psi \in \mathcal{H}$ and $t'_n \to -\infty$, $\lim_n \langle \Phi(\mathbf{a}_{t'_n}).\phi, \psi \rangle = 0$ ("A⁻-mixing").

Below is an example showing that "U-mixing" may not be true under the hypothesis made in last two exercises.

Let $\mathcal{H}_0 := L^2(\mathbb{R}_{>0}, \text{Leb})$. Define, for $t, s \in \mathbb{R}$ and $\phi \in \mathcal{H}_0$,

$$(\mathbf{a}_t.\phi)(x) := e^t \phi(e^{2t}x), \quad (\mathbf{u}_s.\phi)(x) := e^{2\pi i sx} \cdot \phi(x).$$

Exercise 4.3. Show that the above defined action of A and U extends to a group homomorphism $\Phi_0: B \to \text{Hom}(\mathcal{H}_0, \mathcal{H}_0)$.

Here $\text{Hom}(\mathcal{H}_0, \mathcal{H}_0)$ stands for linear maps from \mathcal{H}_0 to \mathcal{H}_0 .

Exercise 4.4. Show that image of Φ_0 consists of unitary operators.

Exercise 4.5. Show that Φ_0 defines a unitary representation of B (namely, one should check continuity w.r.t. strong operator topology).

Exercise 4.6. Show directly that Φ_0 is A-mixing. Namely, for a divergent sequence $(a_n) \subset A$ and $\phi, \psi \in \mathcal{H}_0$, $\lim_n \langle \Phi_0(a_n).\phi, \psi \rangle = 0$.

Exercise 4.7. Show that there is no non-zero $\Phi_0(U)$ -fixed vector. Yet Φ_0 is not U-mixing.

5. Another example of Mautner Phenomenon

Notations

•
$$N := \left\{ \begin{bmatrix} 1 & s & r \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix} \middle| s, t, r \in \mathbb{R} \right\}, Z := \left\{ \mathbf{z}_r := \begin{bmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \middle| r \in \mathbb{R} \right\};$$
• $W := \left\{ \mathbf{w}_t := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix} \middle| t \in \mathbb{R} \right\}, U := \left\{ \mathbf{u}_s := \begin{bmatrix} 1 & s & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \middle| s \in \mathbb{R} \right\};$

• \mathcal{H} is a separable Hilbert space and $\Phi: N \to \mathcal{U}(\mathcal{H})$ is a unitary representation of N.

Exercise 5.1. *Verify the following*

$$\mathbf{w}_t \mathbf{u}_s \mathbf{w}_{-t} = \mathbf{u}_s \mathbf{z}_{-st}, \ \forall s, t \in \mathbb{R}.$$

Exercise 5.2. Show that $a \Phi(W)$ -fixed vector is $\Phi(Z)$ -fixed.

[Since $W \cdot Z$ is a normal subgroup of N with quotient group \mathbb{R} , there exists a unitary representation (Φ, \mathcal{H}) of N and $v \in \mathcal{H}$ such that its stabilizer in N is exactly $W \cdot Z$.] Now let Γ be a lattice in N.

Exercise 5.3. Show that Γ is not commutative, and hence, not virtually commutative (namely, every finite-index subgroup of Γ is not commutative).

Exercise 5.4. *Show that* $\Gamma \cap Z$ *is a lattice in* Z.

Let $p: N \to N/Z$ (Z is normal in N) be the natural quotient map.

Exercise 5.5. *Show that* $p(\Gamma)$ *is a lattice of* N/Z.

Let $\widehat{\mathfrak{m}}_X$ be the N-invariant probability measure on N/Γ and let $\widehat{\mathfrak{m}}_{\overline{X}}$ be the N/Z-invariant probability measure on $(N/Z)/p(\Gamma)$.

Exercise 5.6. Show that $\widehat{\mathbf{m}}_X$ is W-ergodic iff $\widehat{\mathbf{m}}_{\overline{X}}$ is W-ergodic.

Exercise 5.7. Fix Γ , show that there exists some one-parameter unipotent subgroup $\{\mathbf{v}_s\}$ of N that acts ergodically on $\widehat{\mathbf{m}}_X$.

One more example.

$$\operatorname{Let} G := \left\{ \left[\begin{array}{ccc} a & b & x \\ c & d & y \\ 0 & 0 & 1 \end{array} \right] \middle| \left[\begin{array}{ccc} a & b \\ c & d \end{array} \right] \in \operatorname{SL}_{2}(\mathbb{R}), \ x, y \in \mathbb{R} \right\}.$$

$$\Gamma := \left\{ \left[\begin{array}{ccc} a & b & x \\ c & d & y \\ 0 & 0 & 1 \end{array} \right] \middle| \left[\begin{array}{ccc} a & b \\ c & d \end{array} \right] \in \operatorname{SL}_{2}(\mathbb{Z}), \ x, y \in \mathbb{Z} \right\}.$$

Exercise 5.8. Use mixing and non-divergence of unipotent flow to show that $SL_2(\mathbb{Z})$ is a lattice in $SL_2(\mathbb{R})$.

Exercise 5.9. *Show that* Γ *is a lattice in* G.

Let $\widehat{\mathbf{m}}_{G/\Gamma}$ be the unique *G*-invariant probability measure on G/Γ .

Exercise 5.10. *Show that* $\widehat{\mathbf{m}}_{G/\Gamma}$ *is* $\mathrm{SL}_2(\mathbb{R})$ *-ergodic.*

Here we embed $SL_2(\mathbb{R})$ in the left upper corner of G. By what has been proved in the class, this implies that $\widehat{m}_{G/\Gamma}$ is $SL_2(\mathbb{R})$ -mixing.

5

6. LATTICES AND CLOSEDNESS OF ORBITS

- *G* is a connected Lie group and Γ is a discrete subgroup of *G*;
- $H \le G$ is a closed subgroup.

Exercise 6.1. Assume $H \cap \Gamma$ is a lattice in H. Show that for a divergent sequence (x_n) in $H/H \cap \Gamma$, InjRad $(x_n) \to 0$.

Exercise 6.2. Assume Γ satisfies the conclusion of the last exercise. Show that $H\Gamma/\Gamma$ is closed in G/Γ .

•
$$U = \left\{ \mathbf{u}_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R} \right\}, \Gamma \text{ is a discrete subgroup of } \mathrm{SL}_2(\mathbb{R}).$$

Exercise 6.3. Assume $U \cap \Gamma$ is cocompact in U, by duality we know that $\Gamma U/U$ is closed in $\operatorname{SL}_2(\mathbb{R})/U$. The latter is homeomorphic to $\mathbb{R}^2 - (0,0)$ under $g \mapsto g.e_1$. Thus $\Gamma.e_1$ is closed in $\mathbb{R}^2 - (0,0)$. Show that, in fact, $\Gamma.e_1$ is closed in \mathbb{R}^2 .

Exercise 6.4. Show that the conclusion might fail if we replace " $U \cap \Gamma$ is cocompact in U" by " $U\Gamma$ is closed in $SL_2(\mathbb{R})$ ".

Exercise 6.5. Show that
$$B = A \cdot U$$
 with $A := \left\{ \mathbf{a}_t = \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}, t \in \mathbb{R} \right\}$ has no lattice.