

CS590/CPE590

Graph Algorithms | DFS Kazi Lutful Kabir

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
- There are two standard graph traversal techniques:
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Depth-First Search

- Depth-first search is another strategy for exploring a graph
 - Explore "deeper" in the graph whenever possible
 - Edges are explored out of the most recently discovered vertex *v* that still has unexplored edges
 - When all of *v*'s edges have been explored, backtrack to the vertex from which *v* was discovered

- Vertices initially colored white
- □ Then colored grey when discovered
- □ Then black when finished

Depth-First Search: The Code

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color == WHITE

7 DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
   time = time + 1
 2 \quad u.d = time
 3 \quad u.color = GRAY
 4 for each v \in G.Adj[u]
        if v.color == WHITE
             \nu.\pi = u
             DFS-VISIT(G, \nu)
 8 u.color = BLACK
 9 time = time + 1
10 u.f = time
```


Depth-First Search Analysis

- This running time argument is an example of informal analysis
 - Consider the exploration of edge to the edge:
 - Each loop in DFS_Visit can be attributed to an edge in the graph
 - Runs once/edge if directed graph, twice if undirected
 - Thus, loop will run in $\theta(E)$ time, algorithm $\theta(V + E)$

- •DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - -- Can tree edges form cycles? Why or why not?

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Encounter a grey vertex (grey to grey)

Tree edges Back edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Not a tree edge, though
 - From grey node to black node

Tree edges Back edges Forward edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Cross edge: between a tree or subtrees
 - From a grey node to a black node

Tree edges Back edges Forward edges Cross edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Cross edge: between a tree or subtrees
- Note: tree and back edges are very important
 - -- some algorithms use forward and cross edges

• In a DFS of an undirected graph *G*, every edge is either a tree edge or a back edge.

Proof: Theorem 22.10

 A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof: Theorem 22.11

DFS can be utilized to find cycles

Properties of DFS: Parenthesis Structure

- The discovery and finishing times of vertices have parenthesis structure.
- In any DFS of a graph *G*, for any two vertices *u* and *v*, one of the following three conditions holds: [Theorem 22.7]
 - The intervals [d(u), f(u)] and [d(v), f(v)] are entirely disjoint, and neither u nor v is a descendent of the other in the DFS forest,
 - The interval [d(u), f(u)] is contained entirely within the interval [d(v), f(v)], and u is a descendent of v in a DFS tree, or
 - The interval [d(v), f(v)] is contained entirely within the interval [d(u), f(u)], and v is a descendent of u in a DFS tree.

Properties of DFS: Parenthesis Structure

Directed Acyclic Graphs

• A *directed acyclic graph* or *DAG* is a directed graph with no directed cycles

Topological Sort

- A topological sort of a DAG is
 - A linear ordering of all vertices of the graph G such that vertex u comes before vertex v if (u, v) is an edge in G.
- DAG indicates precedence among events:
 - Events are graph vertices, edge from *u* to *v* means event *u* has precedence over event *v*
- Real-world example:
 - Getting dressed
 - Course registration
 - Tasks for eating meal

Precedence Example

- Tasks that have to be done to eat breakfast:
 - get glass, pour juice, get bowl, pour cereal, pour milk, get spoon, eat.
- Certain events must happen in a certain order (ex: get bowl before pouring milk)
- For other events, it doesn't matter (ex: get bowl and get spoon)

Precedence Example

Order: glass, juice, bowl, cereal, milk, spoon, eat.

More Example ...

- How many valid topological sort orderings can you find for the vertices in the graph below?
 - [A, B, C, D, E, F]
 - [A, B, C, D, F, E]
 - [A, B, D, C, E, F]
 - [A, B, D, C, F, E]
 - [B, A, C, D, E, F]
 - [B, A, C, D, F, E]
 - [B, A, D, C, E, F]
 - [B, A, D, C, F, E]
 - [B, C, A, D, E, F]
 - [B, C, A, D, F, E]
 - -

Another Example: Course Registration

Another Example: Course Registration

Why Acyclic?

- Why must directed graph be acyclic for the topological sort problem?
- Otherwise, no way to order events linearly without violating a precedence constraint.

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 **return** the linked list of vertices
 - Time Complexity: $\theta(V + E)$

THANK YOU

Stevens Institute of Technology