- 1. (REVIEW)
 - (a) Find the most general antiderivative of $f(x) = \sqrt{2} e^x + 4\cos x$.

(b) Find
$$g(x)$$
 if $g'(x) = \sqrt{2} - e^x + 4\cos x$ and $g(\pi) = 1$.

 $g(x) = \sqrt{2} \times -e^x + 4\sin x + C$ Sin $\pi = 0$

$$= 1 = g(\pi) = \sqrt{2}\pi - e^{\pi} + 4 \sin \pi + c$$

$$C = 1 - 12\pi + e^{\pi}$$
: A

$$\frac{1}{2}$$

(c) If g'(x) represented velocity, what is g(x)? What would g(0) mean? g(2)?

Section 5.1

2. Goal of this next part is to estimate the area under the curve $y = \frac{1}{2}x^2 + 1$ and above the x-axis on

the interval [0, 2].

1 dea: area pink ≈ area green

0

$$=\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{2}\right)^{2}+1\right]+\frac{1}{2}\left(1\right)^{2}+1$$

$$= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right)^{2} + 1 + \frac{1}{2} \left(1 \right)^{2} + 1 + \frac{1}{2} \left(\frac{3}{2} \right)^{2} + 1 + \frac{1}{2} \left(\frac{2}{2} \right)^{2} + 1 \right]$$

$$= 3.875$$

1

(b) (strategy 2) left-hand endpoints, n=4 rectangles 2. **315**

Grea =
$$R_1 + R_2 + R_3 + R_4$$

= $\frac{1}{2} \left[f(0) + f(\frac{1}{2}) + f(\frac{1}{4}) + f(\frac{3}{4}) \right]$
= $\frac{1}{2} \left[\left(\frac{1}{2} o^2 + 1 \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + 1 \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + 1 \right) + \frac{1}{2} \left(\frac{3}{4} \right)^2 + 1 \right]$
= 2. 8 75

(c) (strategy 3) midpoints, n=4 rectangles 3.3125

blue =
$$R_1 + R_2 + R_3 + R_4$$

= $\frac{1}{2} \left[f(\frac{1}{4}) + f(\frac{3}{4}) + f(\frac{5}{4}) + f(\frac{7}{4}) \right]$
= $\frac{1}{2} \left[\left(\frac{1}{2} (\frac{1}{4})^2 + 1 \right) + \left(\frac{1}{2} (\frac{3}{4})^2 + 1 \right) + \left(\frac{1}{2} (\frac{5}{4})^2 + 1 \right) + \left(\frac{1}{2} (\frac{7}{4})^2 + 1 \right) \right]$
= 3.3125

(d) (strategy

(d) (strategy 3.1) midpoints, n=10 rectangles 3.33

width of rectangly
$$\frac{2}{10} = \frac{1}{5}$$

midpoints: (in green) $\frac{1}{10}$, $\frac{3}{10}$, $\frac{5}{10}$, $\frac{7}{10}$

$$= 3.33$$

3. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 1.5 hour time period. We take speedometer readings every 15 minutes and then record them in the table below. Estimate the distance traveled by the car. What method are you using?

			∸	ئے ر	ڪرر	7 ~	٦ ٢	76	C DIX 12 minus
	Time (minutes)	0	15	30	45	60	75	90	intervals -
	Velocity (mi/h)	17	21	24	29	32	31	28	(15 min = 4 hr)
		_	_			=	7		(15 Min - 4)
estimate 1	[[]]	1	27	. 2	١.	76		_ 4	125 miles

4. Oil leaked out of a tank at a rate of r(t) liters per hour. The rate decreased as time passed and values of the rate at 2 hour time intervals are shown in the table. Estimate how much oil leaked out. What method are you using? Is it an overestimate or an underestimate.

t (h) 0 2 4 6 8 10 r(t) (L/h) 8.7 7.6 6.8 6.2 5.7 5.3

(right-hand) estimate 1 =
$$2[7.6+6.8+6.2+5.7+5.3] = 63.2$$
 liters

3 Section 5-1