Logical and Theoretical Foundation of CS C A U

Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

(1.5P)

Technische Fakultät

Example solution for Series #9

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer		0 Points
a) The Pumping Lemma can be used for proving the regularity of a language.	\bigcirc true	\bigotimes false
b) The Myhill-Nerode is relation is an equivalence relation.	⊗ true) false
c) There exists a regular set A such that Σ^*/\equiv_A is infinite.	\bigcirc true	\bigotimes false
d) 2DFAs are more powerful than DFAs.	\bigcirc true	\bigotimes false
e) Context-free grammars are grammars.	\bigotimes true) false
f) In a grammar the alphabet and the set of variables have to be disjoint.	\bigotimes true) false
g) While using the Pumping Lemma to prove the unregularity of a language, $\it p$ can be chosen as it suits best.	○ true	⊗ false
h) Grammars have a final state.	\bigcirc true	\bigotimes false
i) Balanced words can be produced by a context-free grammar.	⊗ true) false
j) The in production rules is an abbreviation for multiple rules.	\bigotimes true) false
Exercise 2 Give the following definitions and notations:	1	2 Points
a) Pumping Lemma. b) Myhill-Nerode-Relation. c) Grammar. d) $L(G)$ for a grammar G . e) Reflexive-transitive closure of a relation R .		(4.5P) (2P) (3P) (1P) (1.5P)
Solution: a) $L \subseteq \Sigma^*$ regular set \Rightarrow $\exists p \in \mathbb{N}$ $\forall w \in L^{\geq p}$ $\exists x, y, z \in \Sigma^*$: a) $w = xyz$ b) $ y \geq 1$ c) $ xy \leq p$ d) $\forall i \in \mathbb{N}_0 : xy^iz \in L$ b) $A \subseteq \Sigma^*$ regular, $A = (Q, \Sigma, \delta, q_0, F)$ with $L(A) = A$: $\equiv_{\mathcal{A}}$ Myhill-Nerode-Relation iff		(0.5P) (0.5P) (0.5+0.5P) (0.5P) (0.5P) (0.5P) (0.5P) (0.5P)
$\forall x, y \in \Sigma^* : x \equiv_{\mathcal{A}} y : \Leftrightarrow \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$		

Return till: January 6th, 2019, 12:00 pm Winter Semester 2019/20

Logical and Theoretical Foundation of CS

c)	$G = (V, \Sigma, S, P)$ grammar iff		
·	• <i>V</i> finite set of variables		(0.5F
	• Σ alphabet with $V \cap \Sigma = \emptyset$		(0.5+0.5F
	• $S \in V$ start symbol		(0.5F
	• $P \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma \cup \{\varepsilon\})^*$ product	ion rules	(16
d)	$L(G) = \{ w \in \Sigma^* \mid S \vdash^* w \}$		(1F
e)	$R^* = \{(x, y) x = y \lor (x, y) \in R^+ \}$		(1F
	with $R^+ = \{(x,y) \exists n \ge 0 \exists z_1, \dots, z_n : (x,z_1), \}$	$(z_1, z_2), \dots, (z_{n-1}, z_n), (z_n, y) \in R$	(1.5F
Exercis	e 3	<u>:</u>	24 Points
a) I	Prove that the language of all palindromes $L=$	$\{w \in \Sigma^* w = w^R\}$ over Σ is not regular.	(11.5
b) I	rove that the Myhill-Nerode relation is right-c	ongruent.	(3.5F
c) I	Prove that $\{w \in \{\mathtt{a},\mathtt{b}\}^* w _{\mathtt{a}} = w _{\mathtt{b}}\}$ is not regu	lar.	(2.5F
d) I	Prove that $\{w \in \{a,b\}^* w[2] = a\}$ is regular by	the Theorem of Myhill-Nerode.	(5F
e) (Construct a grammar for the language of all	palindromes over Σ . (You don't have to	prove the
C	orrectness.)		(1.5F
Solutio	n:		
	Prove by Pumping-Lemma.		
	Suppose: L is regular.		(0.5F
	Then there exists $p > 0$		(0.5F
	such that for all $w \in L^{\geq p}$		(0.5F
	there exists $x, y, z \in \Sigma^*$		(0.5F
	with		
	(1) w = xyz		(0.5F
	(2) $ y > 0$		(0.5F
	$(3) xy \le p$		(0.5F
	$(4) \ \forall i \in \mathbb{N}_0: xy^iz \in L$		(0.5F
	Let $p \in \mathbb{N}$.		(0.5F
	Set $w = a^p b^p a^p$.		(0.5
	Then $ w = 3p > p$ and $w^R = (\mathbf{a}^p \mathbf{b}^p \mathbf{a}^p)^R = \mathbf{a}^p \mathbf{b}^p \mathbf{a}^p$ and thus $w \in L$		(0.5F (0.5F
	Choose $x, y, z \in \Sigma^*$ with (1)-(4).	•	(0.5F
	By (3) we know that there exists $k_1, k_2, k_3 \in \mathbb{N}_0$	with $x = \mathbf{a}^{k_1} y = \mathbf{a}^{k_2}$, $z = \mathbf{a}^{k_3} \mathbf{b}^p \mathbf{a}^p$, and $k_1 + k_2 = \mathbf{a}^{k_3} \mathbf{b}^p \mathbf{a}^p$	•
	p.		(0.5+0.5+0.5+0.5F
	By (2) we have $k_2 > 0$.		(0.5F
	This implies $k_1 + k_3 < p$.		(0.5F
	Hence we get		
	$xy^0z=\mathtt{a}^{k_1}\mathtt{a}^k$	3 b p a $^p=$ a $^{k_1+k_3}$ b p a $^p.$	
	But $(xy^0z)^R = a^p b^p a^{k_1+k_3} \neq xy^0z$.		(0.5F (0.5F
	Thus we have a contradiction to (4).		(0.5F
	This implies that L is not regular.		(0.5F
b)	Let be $x, y \in \Sigma^*$ and $a \in \Sigma$ with $x \equiv_{\mathcal{A}} y$.		(0.5F
- /	Choose $q \in Q$ with $q = \hat{\delta}(q_0, x)$.		(0.5F
	By $x \equiv_{\mathcal{A}} y$ we have $q = \hat{\delta}(q_0, y)$.		(0.5
	Since A is a DFA, $\delta(q, \mathbf{a})$ is unique		(0.5F
	and we get $\hat{\delta}(q_0, r_0) =$	$\hat{\delta}(q,\mathtt{a})=\hat{\delta}(q_0,y\mathtt{a}).$	
	$\sigma(q_0, xa) =$	$\sim (41, \sim) - \sim (40, 9 \sim).$	
	This is agriculant to	П	(16
	This is equivalent to $xa \equiv_{\mathcal{A}} ya$.		(0.5F

Winter Semester 2019/20 Example solution for Series #9

Logical and Theoretical Foundation of CS

c)	Consider the words \mathbf{a}^k for $k \in \mathbb{N}_0$.	(0.5P)
	For different k_1, k_2 , [a ^{k_1}] and [a ^{k_2}] are different classes since either appending b ^{k_1} or b ^{k_2} en	nds in the
	language.	(0.5P)
	Since there exists infinitely many k ,	(0.5P)
	we have infinitely many classes,	(0.5P)
	and the language is not regular. \Box	(0.5P)
d)	Consider $u, w \in \{a, b\}^*$ with $u[2] = a$ and $w[2] = b$.	(0.5+0.5P)
	Each $v \in \{a, b\}$ with $v[2] = a$ is in $[u]$	(0.5P)
	since appending $z \in \Sigma^*$ to u and v resp. does not change the second letter	(0.5P)
	and thus $vz, uz \in L$.	(0.5P)
	Each $v \in \{a, b\}$ with $v[2] = b$ is in $[w]$	(0.5P)
	since appending $z \in \Sigma^*$ to u and v resp. does not change the second letter	(0.5P)
	and thus $vz, wz \notin L$.	(0.5P)
	Consequently $ \Sigma^*/\equiv_L =2$	(0.5P)
	and L is regular.	(0.5P)
e)	$S o xSx \varepsilon$ for all $x \in \Sigma$.	(1.5P)

Winter Semester 2019/20 Example solution for Series #9