Calculus – Lecture Notes

${\bf Amedeo~Zucchetti}$

May 1, 2016

Based on the course of Prof. Michael Bronstein at USI

Contents

1	Sets, groups and fields	2
2	Spaces	5
3	Sequences	6
4	Series	9
5	Functions and continuity	12
6	Limits of functions	13
7	Power series	17

1 Sets, groups and fields

Definition Natural numbers \mathbb{N}

- (i) $1 \in \mathbb{N}$
- (ii) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N} \ (n+1 \text{ is the successor of } n)$
- (iii) $\nexists n \in \mathbb{N} : n+1=1$ (no number is predecessor of 1)
- (iv) $m, n \in \mathbb{N}$ and $m+1=n+1 \Rightarrow m=n$
- (v) $A \subseteq \mathbb{N}, n \in A \text{ and } n+1 \in A \Rightarrow A = \mathbb{N}$

Definition Group

A set X and an operation \circ form a group (X, \circ) if the following rules are satisfied for all $a, b, c \in X$:

- (i) Closure: $a \circ b \in X$
- (ii) Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- (iii) Identity: $\exists ! 0 \in X : a \circ 0 = 0 \circ a = a$
- (iv) Inverse: $\exists ! (-a) \in X : a \circ (-a) = (-a) \circ a = 0$

The group (X, \circ) is abellian if the following rule is satisfied too:

(v) Commutativity: $a \circ b = b \circ a$

Example

- (1) (\mathbb{Z}_2, \oplus) is an abellian group (where $\mathbb{Z}_2 = \{0, 1\}$ and \oplus is exclusive or):
 - (i) Closure: $0 \oplus 0 = 0, 0 \oplus 1 = 1, 1 \oplus 0 = 1, 1 \oplus 1 = 0$
 - (ii) Associativity: we have two elements, so we don't need to prove it
 - (iii) Identity: $0 \Rightarrow 0 \oplus 0 = 0$, $1 \oplus 0 = 1$, $0 \oplus 1 = 1$
 - (iv) Inverse: $(-1) = 1, (-0) = 0 \Rightarrow 1 \oplus 1 = 0, 0 \oplus 0 = 0$
 - (v) Commutativity: $1 \oplus 0 = 1 = 0 \oplus 1$
- (2) $(\mathbb{N}, +)$ is not a group, since it doesn't have the identity element.

Definition Field

Given a set X, then $(X, +, \cdot)$ is a field if it satisfies the following properties for all $a, b, c \in X$:

- (i) $a+b \in X$ $a \cdot b \in X$
- (ii) (a+b)+c=a+(b+c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

- (iii) $\exists !0 \in X : a + 0 = 0 + a = a$ $\exists !1 \in X : a \cdot 1 = 1 \cdot a = a$
- (iv) $\exists ! (-a) \in X : a + (-a) = (-a) + a = 0$ $\forall a \neq 0, \exists ! a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1$
- (v) a+b=b+a $a \cdot b = b \cdot a$
- (vi) $a \cdot (b+c) = a \cdot b + a \cdot c$

Example Application of field axioms

- (1) If $a \cdot b = 0 \Rightarrow$ either a or b are equal to 0. We suppose $b \neq 0$: $0 = 0 \cdot b^{-1} = (a \cdot b) \cdot b^{-1} = a \cdot (b \cdot b^{-1}) = a \cdot 1 = a \Rightarrow a = 0$ (the same can be done supposing $a \neq 0$)
- (2) $a \cdot 0 = 0$: $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \Rightarrow$ we subtract from both sides $(-a \cdot 0)$: $a \cdot 0 + (-a \cdot 0) = a \cdot 0 + a \cdot 0 + (-a \cdot 0) \iff 0 = a \cdot 0$

 $\textbf{Definition} \quad \mathbb{Q} = \{ \tfrac{p}{q} : p,q \in \mathbb{Z}, q \neq 0 \}$

Remark $(\mathbb{Q}, +, \cdot)$ is a field.

Definition Ordered field

Let \leq be an order relation. Then the field $(X, +, \cdot, \leq)$ is an ordered field if the following properties are satisfied for $a, b, c \in X$:

- (i) Either $a \leq b$ or $b \leq a$
- (ii) If $a \leq b$ and $b \leq a$, then a = b
- (iii) If $a \leq b$ and $b \leq c$, then $a \leq c$
- (iv) If $a \le b$, then $a + c \le b + c$
- (v) If $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$

Example Application of the order axioms

Let's take
$$(\mathbb{Q}, +, \cdot, \leq)$$
, $a, b \in \mathbb{Q}$. We want to show that if $a \leq b$, then $(-b) \leq (-a)$: $a \leq b \iff a + ((-a) + (-b)) \leq b + ((-a) + (-b)) \iff (a + (-a)) + (-b) \leq (-a) + (b + (-b)) \iff (-b) + 0 \leq (-a) + 0 \iff (-b) \leq (-a)$

Definition A set A is countably infinite if it exists a function $f: A \to \mathbb{N}$ bijective.

Remark Let A, B sets:

- If $|A| = |B| \iff$ exists a bijection between A and B
- If $|A| \leq |B| \iff$ exists an injection from A to B
- If $|A| < |B| \iff$ exists an injection, but not a bijection

Proposition \mathbb{Z} is countably infinite

Proposition \mathbb{Q} is countably infinite

Proposition \mathbb{R} is not countable

Proposition $|\mathbb{R}| = |\mathbb{R}^2|$

Definition Power set

Let A be a set. The power set of A is $2^A = \{A' : A' \subseteq A\}$, the set containing all subsets of A. $|2^A| = 2^{|A|}$

Proposition $|2^{\mathbb{N}}| = |\mathbb{R}|$

Proposition $\sqrt{2} \notin \mathbb{Q}$

Definition Bounds

Let A, X be sets, such that $A \subseteq X$, and $x \in X$, then:

- x is upper bound of A if $a \leq x$, for all $a \in A$
- x is lower bound of A if $x \leq a$, for all $a \in A$

Definition Supremum and infimum

Let A be a set:

- \bullet The supremum is the smallest upper bound of A
- The infimum is the greatest lower bound of A

Definition Maximum and minimum

Let A be a set:

- The maximum is the biggest element of A (if $\sup(A) \in A$, then $\max(A) = \sup(A)$)
- The minimum is the smallest element of A (if $\inf(A) \in A$, then $\min(A) = \inf(A)$)

2 SPACES CALCULUS

2 Spaces

Definition Topology

Let X be a set. Then $\tau \subseteq 2^X$ is a topology if:

- (i) $X \in \tau$
- (ii) $\emptyset \in \tau$
- (iii) $A_{\alpha} \in \tau$, then $\bigcup_{\alpha} A_{\alpha} \in \tau$ (the union of any element of τ is also contained in τ)
- (iv) $A_i \in \tau$, then $\bigcap_{i=1}^n A_i \in \tau$ (any finite intersection of elements of τ is also contained in τ)

Example Let $X = \{1, 2, 3, 4\}$

- (1) $\tau = \{\emptyset, X\}$ is topology: $\emptyset \cup X = X \in \tau$ $\emptyset \cap X = \emptyset \in \tau$
- (2) $\tau = \{\emptyset, \{2\}, \{2,3\}, X\}$ is topology: The cases with \emptyset and X are trivial $\{2\} \cup \{2,3\} = \{2,3\} \in \tau$ $\{2\} \cap \{2,3\} = \{2\} \in \tau$
- (3) $A = \{\emptyset, \{2\}, \{3\}, X\}$ is not a topology: $\{2\} \cup \{3\} = \{2, 3\} \notin A$

Definition Topological space

Let X be a set, τ a topology, then (X, τ) is a topological space.

Definition Neighborhood in a topological space (X, τ)

A set N is a neighborhood of $x \in X$ if there exists a set $U \in \tau$ such that $x \in U$ and $U \subseteq N$.

Definition Metric

Let X be a set, $x, y, z \in X$. The function $d: X \times X \to \mathbb{R}$ is a metric if:

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \iff x = y$
- (iii) $d(x,z) \le d(x,y) + d(x,z)$

- (1) d(x,y) = |x-y|
- (2) $d(x,y) = ||x-y||_2 = \left(\sum_{i=1}^n (x_i y_i)^2\right)^{\frac{1}{2}}$

3 SEQUENCES CALCULUS

Definition Metric space

Let X be a set, d be a metric, then (X, d) is a metric space.

Definition Ball in a metric space (X, d)

 $B_r(x) = \{y \in X : d(x,y) < r\}$ is a ball of center x and radius r. $B_r(x)$ is subset of X.

Definition Open set in a topological space (X, τ)

A set U is open in (X, τ) if $U \in \tau$.

Definition Open set in a metric space (X, d)

A set U is open in (X, d) if for all $x \in U$ exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$.

Definition $C \subseteq X$ is closed if $X \setminus C$ is open. A set is closed if its complement is open.

Proposition Let S = (X, x) be a space (x a metric or a topology), then:

- (i) X is open in S
- (ii) \emptyset is open in S
- (iii) For all A_{α} open in S, then $\bigcup_{\alpha} A_{\alpha}$ is open in S (any union of any open set is also open)
- (iv) For all A_i open in S, then $\bigcap_{i=1}^n A_i$ is open in S (any finite intersection of any open set is also open)

3 Sequences

Definition Sequence

A sequence (x_n) is a function $x: \mathbb{N} \to X$, where $x(n) = x_n$.

The elements of a sequence can be listed in an ordered set with repetition: $(x_n) = (x_1, x_2, x_3, x_4, \ldots)$

Example

- $a_n = n \Rightarrow (a_n) = (1, 2, 3, 4, 5, \ldots)$
- $b_n = \frac{1}{n} \Rightarrow (b_n) = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$
- $c_n = (-1)^n \Rightarrow (c_n) = (1, -1, 1, -1, \ldots)$

Definition Cauchy sequence

A sequence (x_n) is a Cauchy sequence if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$. That is, starting from an index N_{ε} all values x_n are contained in an interval $[x_{N_{\varepsilon}} - \varepsilon, x_{N_{\varepsilon}} + \varepsilon]$.

3 SEQUENCES CALCULUS

Example $x_n = \frac{1}{n}$ in (\mathbb{R}, d) , where d(x, y) = |x - y|. We have to find, for each ε , an N that satisfies the definition of Cauchy sequence.

Let's take $N \leq n \leq m$. Thanks to the triangle inequality, we can first find that:

$$d(x_n, x_m) = |x_n - x_m| \le |x_n| + |-x_m| = |x_n| + |x_m| = \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| = \frac{1}{n} + \frac{1}{m}$$

Since $N \leq n \leq m$, then we have $\frac{1}{m} \leq \frac{1}{n} \leq \frac{1}{N}$:

$$\frac{1}{n} + \frac{1}{m} \le \frac{1}{N} + \frac{1}{N} = \frac{2}{N}$$

Now, in order to satisfy the definition we must have $\frac{2}{N} \leq \varepsilon$, thus $\frac{2}{\varepsilon} \leq N$. This means, starting from $N = \frac{2}{\varepsilon}$ all $d(x_n, x_m)$ wil be smaller than ε . In fact, if we take the previous inequality:

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{2}{N} = \frac{2}{\frac{2}{\varepsilon}} = \varepsilon$$

Note that it is not important if $d(x,y) < \varepsilon$ or $d(x,y) \le \varepsilon$.

Definition Convergence in a metric space (X, d)

A sequence (x_n) converges to a limit x if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x) < \varepsilon$, for all $n \geq N_{\varepsilon}$.

Example $x_n = \frac{1}{n}$ in \mathbb{R} converges to 0. We take $N \leq n$ and $N = \frac{1}{\varepsilon}$:

$$|x_n - 0| = |x_n| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N} = \frac{1}{\frac{1}{n}} = \varepsilon$$

Definition Convergence in a topological space (X, τ)

A sequence (x_n) converges to a limit x if for all $U \in \tau$ such that $x \in U$, it exists N_U such that $x_n \in U$, for all $n \geq N_U$.

That is, x is a limit of a sequence, if all sets of τ that contain x also contain the tail of the sequence.

Example Let's take $X = \{a, b, c\}, (x_n) = (a, b) \text{ and } \tau = \{\emptyset, \{a\}, X\}.$

- a is not a limit of (x_n) , in fact $\{a\}$ contains a, but doesn't contain the tail of (x_n)
- b and c are limits of (x_n) , in fact $b \in X$ and $c \in X$, and X contains (x_n) (and its tail too)

Proposition $x_n \to x$ in $(X,d) \iff$ for all $U \subseteq X$ open exists N_U such that $x_n \in U$, for all $n \ge N_U$.

Theorem If a sequence converges to a limit in a metric space, then the limit is unique.

Remark This isn't true in a topological space. In a topological space, a sequence can converge to multiple limits.

Proposition $x_n \to x$ in (X, d) metric space, then for all $y \in X$, $d(x_n, y) \to d(x, y)$.

B SEQUENCES CALCULUS

Proposition Properties of real sequences

For all $(x_n), (y_n)$ such that $x_n \to x, y_n \to y$, we have the following properties:

(i)
$$\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} x_n + \beta \lim_{n \to \infty} y_n$$

(ii)
$$\lim_{n \to \infty} x_n x_y = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$$

(iii)
$$\lim_{n \to \infty} \frac{x_n}{x_y} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

Example

(1) Knowing that $\frac{1}{n} \to 0$, show that $\frac{1}{n^2} \to 0$.

$$\lim_{n \to \infty} \frac{1}{n^2} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} = 0 \cdot 0 = 0$$

(2) Find the limit of the sequence $\frac{2n^2-3n+2}{n^2+n-1}$.

$$\lim_{n \to \infty} \frac{2n^2 - 3n + 2}{n^2 + n - 1} = \frac{\lim(2n^2 - 3n + 2)}{\lim(n^2 + n - 1)} = \frac{\lim 2 - \lim \frac{3}{n} + \lim \frac{2}{n^2}}{\lim 1 + \lim \frac{1}{n} - \lim \frac{1}{n^2}} = \frac{2 - 0 + 0}{1 + 0 - 0} = 2$$

Definition A sequence (x_n) is bounded if exists c such that $|s_n| \leq c$.

Example

- $a_n = \frac{1}{n}$ is bounded. We can take c = 1, $\left| \frac{1}{n} \right| = \frac{1}{n} \le 1$, being $a_1 = 1$ the $\sup(a_n)$.
- $b_n = (-1)^n$ is bounded. In fact, the values of the sequence are always 1 and -1. If we take c = 1, then $|b_n| = 1 \le 1$.
- $x_n = n$ is not bounded, we can prove it by contradiction. We suppose it exists a c such that $|x_n| \le c$. If we take $x_{c+1} = c+1$, we have $c+1 \le c \iff 0 \le 1$ contradiction. This means x_n is not bounded.

Theorem Convergent real sequences are bounded (not the opposite).

Definition Monotonic sequences

- (x_n) is monotonic increasing if $x_n \leq x_{n+1}$ for all n
- (x_n) is monotonic decreasing if $x_{n+1} \leq x_n$ for all n

- $a_n = \frac{1}{n}$ is monotonic decreasing. In fact, $\frac{1}{n+1} \leq \frac{1}{n}$, then $a_{n+1} \leq a_n$.
- $b_n = n$ is monotonic increasing. In fact, $b_n = n$ and $b_{n+1} = n+1$. Since $n \le n+1$, then $b_n \le b_{n+1}$.
- $c_n = (-1)^n$ is not monotonic. We can take n = 1, then $a_1 \le a_2 \nleq a_3$.

4 SERIES CALCULUS

Theorem If a sequence monotonic and bounded \Rightarrow convergent

Definition Limit superior and inferior of (x_n)

- $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\}$
- $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf\{x_k : k \ge n\}$

Definition Subsequence

 $(x_{n_k}) \subseteq (x_n)$ is a subsequence of (x_n) . Only some terms of a sequence are part of a subsequence.

Example $x_n = (-1)^n \cdot n$. We take k = 2n, then the subsequence $(x_{n_k}) = (x_{2n})$ of (x_n) takes all the even indexes n of (x_n) :

$$(x_n) = (-1, 2, -3, 4, -5, 6, \dots)$$

 $(x_2n) = (2, 4, 6, \dots)$

Theorem If $x_n \to x \Rightarrow x_{n_k} \to x$. If a sequence converges, all subsequences converge to the same limit.

Definition x_n is a dominant term if $x_m < x_n$ for all n < m.

Theorem Every sequence has a monotonic subsequence.

Theorem Bolzano-Weierstrass

Every bounded sequence has a convergent subsequence.

Definition $X \subseteq \mathbb{R}^n$ is compact \iff X is closed and bounded (this is not true for \mathbb{R}^{∞}).

4 Series

Definition Series

 (x_n) sequence. $s_n = \sum_{k=1}^n x_k$ is a series (also known as the partial sum). A series is the summation of the terms of a sequence.

Definition Convergence of series

$$s_n = \sum_{k=1}^n x_k$$
 a series. $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{k=1}^n x_k = \sum_{k=1}^\infty x_k$.

4 SERIES CALCULUS

Example

• Harmonic:
$$\sum_{k=1}^{\infty} \frac{1}{n} = +\infty$$

• Geometric:
$$\sum_{k=1}^{\infty} a^n = \begin{cases} \infty & |a| \ge 1\\ \frac{1}{1-a} & |a| < 1 \end{cases}$$

• Exponential:
$$\sum_{k=1}^{\infty} \frac{1}{n!} = e$$

• Leibniz:
$$\sum_{k=1}^{\infty} \frac{(-1)^n}{2n-1} = \frac{\pi}{4}$$

Definition Absolute convergence of a series $s_n = \sum_{k=1}^n x_k$

$$s_n$$
 converges absolutely if $\sum_{k=1}^{\infty} |x_k| < \infty$.

Proposition Absolute convergence \Rightarrow convergence. If $\sum_{k=1}^{\infty} |x_k| < \infty$, then $\sum_{k=1}^{\infty} x_k < \infty$.

Definition Cauchy criterion for series

 $s_n = \sum_{k=1}^n x_k$, and $\sum_{k=1}^\infty x_k < \infty$ is a Cauchy series if for all $\varepsilon > 0$ it exists N such that:

$$\forall N \le m \le n \Rightarrow |s_n - s_m| = \left| \sum_{k=1}^n x_k - \sum_{k=1}^m x_k \right| = \left| \sum_{k=m}^n x_k \right| < \varepsilon$$

Proposition Comparison test, for x_n, y_n sequences and $x_n \ge 0$

(i) If
$$\sum_{k=1}^{\infty} x_k < \infty$$
 and $|y_n| \le x_n \Rightarrow \sum_{k=1}^{\infty} y_k < \infty$

(ii) If
$$\sum_{k=1}^{\infty} x_k = +\infty$$
 and $x_n \le y_n \Rightarrow \sum_{k=1}^{\infty} y_k = +\infty$

Example $\sum_{k=1}^{\infty} \frac{1}{n^2 + 1} \Rightarrow \sum_{k=1}^{\infty} \frac{1}{n^2 + 1} < \sum_{k=1}^{\infty} \frac{1}{n^2} < \infty, \text{ the series converges.}$

4 SERIES CALCULUS

Proposition Ratio test, for x_n sequence, $x_n \neq 0$ and $s_n = \sum_{k=1}^n x_k$ series:

- (i) s_n converges absolutely if $\limsup_{n\to\infty} \left|\frac{x_{n+1}}{x_n}\right| < 1$
- (ii) s_n diverges if $\liminf_{n\to\infty} \left|\frac{x_{n+1}}{x_n}\right| > 1$

Example

•
$$\sum_{k=1}^{\infty} \left(-\frac{1}{3}\right)^n$$
:

$$\left| \frac{\left(-\frac{1}{3}\right)^{n+1}}{\left(-\frac{1}{2}\right)^n} \right| = \left| -\frac{1}{3} \right| = \frac{1}{3} \Rightarrow \limsup_{n \to \infty} \frac{1}{3} = \frac{1}{3} < 1 \Rightarrow \text{ converges absolutely}$$

$$\bullet \sum_{k=1}^{\infty} \frac{n}{n^2 + 3}$$

- Ratio test:

$$\limsup_{n \to \infty} \left| \frac{n+1}{(n+1)^2 + 3} \frac{n^2 + 3}{n} \right| = \limsup_{n \to \infty} \frac{n+1}{(n+1)^2 + 3} \frac{n^2 + 3}{n} = 1, \text{ no information}$$

- Comparison test:

$$\frac{n}{n^2+3n^2} \leq \frac{n}{n^2+3} \Rightarrow \frac{n}{n^2+3n^2} = \frac{n}{4n^2} = \frac{1}{4}\frac{n}{n^2} \Rightarrow \sum_{k=1}^{\infty} \frac{1}{4}\frac{n}{n^2} \Rightarrow +\infty = \frac{1}{4}\sum_{k=1}^{\infty} \frac{n}{n^2} \leq \sum_{k=1}^{\infty} \frac{n}{n^2+3} = \frac{n}{n^2+3n^2} = \frac{1}{4}\frac{n}{n^2} \Rightarrow \frac{1}{4}\frac{n}{n^2} \Rightarrow +\infty = \frac{1}{4}\frac{n}{n^2} = \frac{1}{4}\frac{n}{n^2} = = \frac{1$$

The series diverges. Sometimes one test can give more information than others.

Proposition Root test, Let $s_n = \sum_{k=1}^n x_k$ a series, $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$:

- (i) s_n converges absolutely if $\alpha < 1$
- (ii) s_n diverges if $\alpha > 1$

•
$$\sum_{k=1}^{\infty} \left(-\frac{1}{3}\right)^n \Rightarrow \limsup_{n\to\infty} \sqrt[n]{-\frac{1}{3}^n} = \limsup_{n\to\infty} \frac{1}{3} = \frac{1}{3} < 1$$
, the series converges absolutely

$$\bullet \sum_{k=1}^{\infty} 2^{(-1)^n - n} \Rightarrow \sqrt[n]{2^{(-1)^n - n}} = \begin{cases} 2^{\frac{1}{n} - 1} & \text{if } n \text{ even} \\ 2^{-\frac{1}{n} - 1} & \text{if } n \text{ odd} \end{cases} \Rightarrow \lim_{n \to \infty} 2^{\frac{1}{n} - 1} = \lim_{n \to \infty} 2^{-\frac{1}{n} - 1} = \frac{1}{2} < 1, \text{ the series onverges.}$$

5 Functions and continuity

Definition Given a function $f: X \to Y$, the image of f is defined as: $Im_f(X) = \{f(x) : x \in X\}$. It contains all the images of all elements of X.

Definition Given a function $f: X \to Y$, the preimage of f is defined as: $PreIm_f(Y) = \{x : f(x) \in Y\}$. It contains all the elements of X that have an image in Y.

Definition Continuity of $f:(X,d_x)\to (Y,d_y)$ (in a metric space) f is continuous at $x\in X$ if:

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : \forall x' \in X, d_x(x, x') < \delta_{\varepsilon} \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Example Let's take
$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x^2 \sin \frac{1}{x} & \text{otherwise} \end{cases}$$

We want to prove that f is continuous in 0. Let $\varepsilon > 0$, then $|f(x) - f(0)| = |f(x) - 0| = |f(x)| \le x^2$. If we take $\delta = \sqrt{\varepsilon}$, then:

$$|x-0| < \delta \Rightarrow x^2 < \delta \Rightarrow |f(x)-f(0)| \le x^2 < \delta^2 = \varepsilon \Rightarrow f$$
 is continuous in 0

Remark Continuity can also be defined as follows:

$$\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 : Im_f(B_{\delta_{\varepsilon}}^{d_x}(x)) \subseteq B_{\varepsilon}^{d_y}(f(x))$$

This means that the image of each ball around each x is contained in another ball around f(x).

Definition Continuity of $f:(X,\tau_x)\to (Y,\tau_y)$ (in a topological space) f is continuous at $x\in X$ if for all $U\in \tau_y$ such that $f(x)\in U$, then $PreIm_f(U)\in \tau_x$.

Example Let's take (M, τ_m) , (N, τ_n) , $M = N = \{1, 2\}$, $\tau_m = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, $\tau_m = \{\emptyset, \{1, 2\}\}$.

- Let $f:(M,\tau_m)\to (N,\tau_n)$, such that f(1)=2 and f(2)=1: $PreIm_f(\emptyset)=\emptyset\in\tau_m, PreIm_f(\{1,2\})=\{1,2\}\in\tau_m\Rightarrow f \text{ is continuous in all } x\in M$
- Let $g:(N,\tau_n)\to (M,\tau_m)$, such that f(1)=2 and f(2)=1: $PreIm_a(\{1\})=\{2\}\notin \tau_n\Rightarrow g \text{ is not continuous}$

Proposition Continuous functions map open sets into open sets. If $f:(X,d_x)\to (Y,d_y)$ continuous, then $PreIm_f(A)$ is open, for all $A\subseteq Y$ open.

Theorem Continuous functions map limits to limits:

$$f$$
 continuous, $x_n \to x \iff f(x_n) \to f(x)$

Example Let's take $f(x) = 2x^2 + 1$ and $\lim_{n \to \infty} x_n = x$. Then:

$$\lim_{n \to \infty} 2x_n^2 + 1 = 2\left(\lim_{n \to \infty} x_n\right)^2 + 1 = 2x^2 + 1$$

This means that for $x_n \to x$, then $f(x_n) \to f(x)$. Therefore, f is continuous.

Proposition $f,g:\mathbb{R}\to\mathbb{R}$ continuous at $x\Rightarrow f+g, \ f\cdot g$ and $\frac{f}{g}$ (for $g(x)\neq 0$) are continuous at x.

Proposition f continuous at x and g continuous at $f(x) \Rightarrow g \circ f = g(f(x))$ is continuous at x.

Definition $f:(X,d) \to (X,d)$ is a contraction \iff it exists $0 \le c < 1$ such that $d(f(x),f(y)) \le cd(x,y)$, for all $x,y \in X$.

Theorem Banach fixed point

Let's take (X, d) complete (Cauchy \iff convergence) and $f: (X, d) \to (X, d)$ a contraction, then:

- (i) $\exists ! x^* \in X : f(x^*) = x^*$
- (ii) $x_0 \in X$, $x_{n+1} = f(x_n) \Rightarrow x_n \to x^*$

6 Limits of functions

Definition f converges to c at $x_0 \iff$ for all (x_n) such that $x_n \to x_0$ we have $f(x_n) \to c$. We write $\lim_{x \to x_0} f(x) = c$.

- f converges from above if, for all (x_n) , then $x_0 < x_n$. We write $\lim_{x \to x_0^+} f(x) = c$.
- f converges from below if, for all (x_n) , then $x_n < x_0$. We write $\lim_{x \to x_0^-} f(x) = c$.

Example

- Let $f(x) = \frac{1}{x} \Rightarrow \lim_{x \to 0^+} \frac{1}{x} = +\infty, \lim_{x \to 0^-} \frac{1}{x} = -\infty$
- Let $f(x) = floor(x) \Rightarrow \lim_{x \to 1^+} floor(x) = 1$, $\lim_{x \to 1^-} floor(x) = 0$, but $\lim_{x \to \frac{1}{2}^+} floor(x) = \frac{1}{2} = \lim_{x \to \frac{1}{2}^-} floor(x)$

Definition $f: \mathbb{R} \to \mathbb{R}$ is bounded on $X \subseteq \mathbb{R}$ if $Im(X) = \{f(x) : x \in X\}$ is bounded. That is, it exists c such that $|f(x)| \le c$ for all $x \in X$.

Example $f: \mathbb{R} \to [-1, 1], f(x) = \sin(x)$ is bounded on \mathbb{R} , since $|\sin(x)| \le 1$ for all $x \in \mathbb{R}$.

Theorem Extreme value

If $f:[a,b]\to\mathbb{R}$ is continuous, then:

- (i) f is bounded on [a, b]
- (ii) f has a maximum and a minimum on [a, b] $\exists x_{minimizer}, x_{maximizer} \in [a, b] : f(x_{mininizer}) \leq f(x) \leq f(x_{maximizer}), \forall x \in [a, b]$

Remark This isn't true if the interval is open:

- $f: \mathbb{R} \to \mathbb{R}(0,1), f(x) = \frac{1}{x}$ is unbounded, since f(x) goes to infinity for x small
- $f: (-1,1) \to$, $f(x) = x^2$, doesn't have a max, since $\sup\{Im((-1,1))\} = 1$ is f(1) or f(-1), but 1 and $-1 \notin (-1,1)$

Theorem Intermediate value (IVT)

f continuous on [a, b], $f(a) < c < f(b) \Rightarrow \exists x \in [a, b] : f(x) = c$.

Definition A Darboux function is a function that satisfies the intermediate value property.

Proposition Continuous implies Darboux, but not the opposite.

Example $f(x) = \begin{cases} \sin(\frac{1}{x}) & x > 0 \\ 0 & x = 0 \end{cases}$ is a Darboux function, but it is not continuous.

Proposition Continuous functions map intervals to intervals.

Definition Connectedness

Let (X,τ) a topological space, the $A\subseteq X$ is disconnected if the two equivalent definitions hold:

- There exist $U, V \in \tau$ such that:
 - $-(A\cap U)\cap (A\cap V)=\emptyset$, and
 - $-(A \cap U) \cup (A \cap V) = A$, and
 - $-A \cap U \neq \emptyset \neq A \cap V$
- There exist $U, V \subseteq A$ such that:
 - $-A = U \cup V$, and
 - $-\overline{U} \cap V = \emptyset = U \cap \overline{V}$! NOT SURE!

A set is connected if it is not disconnected.

Proposition Continuous functions preserve connectedness.

 $f:(X,\tau_x)\to (Y,\tau_y),\ A\subseteq X$ connected in (X,τ_x) , then $Im(A)\subseteq Y$ is connected in (Y,τ_y) .

Definition Uniform continuity

 $f:(X,d_x)\to (Y,d_y)$ is uniformly continuous on X if:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x, x' \in X : d_x(x, x') < \delta \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Example $f(x) = \frac{1}{x^2}$ in $[a, +\infty)$, a > 1. To show that f is uniformly continuous, we have to show that for all $\varepsilon > 0$ exists $\delta_{\varepsilon} > 0$ such that for all x, y such that $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. Let $\varepsilon > 0$ and $f(x) - f(y) = \frac{1}{x^2} - \frac{1}{y^2} = \frac{(x+y)(x-y)}{x^2y^2}$. Then, since $a \le x, y \ \forall x, y$:

$$\frac{(x+y)}{x^2y^2} = \frac{x}{x^2y^2} + \frac{y}{x^2y^2} \le \frac{2}{a^3}$$

We chose $\delta = \frac{\varepsilon a^3}{2}$, then:

$$\forall x,y \geq a: |x-y| < \delta \Rightarrow |f(x)-f(y)| = |x-y| \left| \frac{x+y}{x^2y^2} \right| < \delta \frac{2}{a^3} = \frac{\varepsilon a^3}{2} \frac{2}{a^3} = \varepsilon a^3$$

This mean f is uniformly continuous.

Remark Uniform continuity is different from normal continuity. In normal continuity the δ depends on both ε and x, while in uniform continuity δ depends solely on ε . In fact, f is "normally" continuous on $x_0 \in X$ if:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon, x_0} > 0 : \forall x \in X : d_x(x_0, x) < \delta \Rightarrow d_y(f(x_0), f(x)) < \varepsilon$$

Theorem f continuous on A, closed and bounded $\Rightarrow f$ is uniformly continuous on A.

Theorem f uniformly continuous on S, $(s_n) \subseteq S$ is Cauchy sequence $\Rightarrow f(s_n)$ is Cauchy sequence.

Example $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0,1). In fact, $s_n = \frac{1}{n}$ is Cauchy, but $f(s_n) = n^2$ is not Cauchy.

Definition Sequence of functions

 $(f_n) \subseteq \{f: S \to \mathbb{R}\}$ is a sequence of functions. A sequence of function can converge to a function: $f_n \to f$.

Example $f_n(x) = \frac{x}{n} \to f(x) = 0$

Definition f_n converges pointwise to $f \iff \lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in S$.

$$\forall \varepsilon > 0, x \in S \exists N_{\varepsilon} : |f_n(x) - f(x)| < \varepsilon$$

Example $f_n(x) = x^n, x \in [0,1] \Rightarrow f(x) = \begin{cases} 1 & x = 1 \\ 0 & x \neq 1 \end{cases}$. f_n is continuous and f is discontinuous.

Definition $d_{\infty}(f_n, f) = \sup\{|f_n(x) - f(x)| < \varepsilon\}$

Definition f_n converges uniformly to f if exists N_{ε} such that $d_{\infty}(f_n, f) < \varepsilon$ for all $n \geq N_{\varepsilon}$.

Example Let $f_n(x) = (1 - |x|)^n$, $x \in (-1,1)$. Then f converges pointwise (but not uniformly) to $f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$. In fact:

• Pointwise convergence

For x = 0, $f_n(x) = (1 - 0)^n = 1$, then $\lim_{n \to \infty} f_n = \lim_{n \to \infty} 1 = 1$. For $x \neq 0$, |x| < 1. This means 1 - |x| < 1, then $\lim_{n \to \infty} (1 - |x|)^n = 0$.

• Uniform convergence

We assume $f_n \xrightarrow{unif.} f$ and we take $\varepsilon = \frac{1}{2}$. Then it exists N such that $|f_n(x) - f(x)| < \frac{1}{2}$ for all $x \in (-1,1)$.

Let's take $x = 1 - 2^{-\frac{1}{n}}$, then $1 - x = 2^{-\frac{1}{n}}$. Thus $(1 - x)^n = (2^{-\frac{1}{n}})^n = \frac{1}{2} \not< \frac{1}{2} = \varepsilon$. Contradiction, f doesn't converge uniformly to f.

Theorem Uniform limit of a continuous function is continuous $f_n(x)$ continuous and $f_n(x) \xrightarrow{unif.} f(x) \Rightarrow f(x)$ is continuous.

Example

• Let $f_n \xrightarrow{unif.} f$ and $g_n \xrightarrow{unif.} g$ on $S \subseteq \mathbb{R}$. Then $f_n + g_n \xrightarrow{unif.} f + g$. In fact:

$$\exists N_f : \forall x \in S |f_n(x) - f(x)| < \frac{\varepsilon}{2} \forall n > N_f$$

$$\exists N_g : \forall x \in S |g_n(x) - g(x)| < \frac{\varepsilon}{2} \forall n > N_g$$

We take $N = \max\{N_f, N_q\}$. Then:

$$|f_n(x) - f(x) + g_n(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall n \ge N$$

This means $f_n + g_n \xrightarrow{unif.} f + g$.

- Let $f_n \xrightarrow{unif.} f$ and $g_n \xrightarrow{unif.} g$ on $S \subseteq \mathbb{R}$. Then $f_n g_n$ doesn't converge uniformly to fg. In fact, let $h_n(x) = \frac{x}{n}$. By contradiction we can prove h_n doesn't converge uniformly to h. Now, if we take $f_n(x) = \frac{1}{n}$ and $g_n(x) = x$ (uniformly convergent), then $f(x)g(x) = \frac{x}{n} = h(x)$ not uniformly convergent. We found a counter example.
- Let $f_n(x)$ continuous on [a,b], $f_n(x) \xrightarrow{unif.} f(x)$, $(x_n) \subseteq [a,b]$ and $x_n \to x$. Then, $f_n(x_n) \to f(x)$. To prove it we have to show that exists N such that for all $n \ge N$, then $|f_n(x_n) f(x)| < \varepsilon$.
 - 1. $f_n \xrightarrow{unif.} f$, this means it exists N_1 such that $|f_n(y) f(y)| < \frac{\varepsilon}{2}$, for all $n \ge N_1$ and $y \in [a, b]$. In particular, $|f_n(x_n) f(x_n)| < \frac{\varepsilon}{2}$.
 - 2. Since $f_n(x)$ continuous and $f_n(x) \xrightarrow{unif.} f(x)$, then f(x) is continuous. Then $f(x_n) \to f(x)$, this means it exists N_2 such that for all $n \ge N_2$, then $|f(x_n) f(x)| < \frac{\varepsilon}{2}$.

7 POWER SERIES CALCULUS

3. We chose $N = \max\{N_1.N_2\}$. Then:

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall n \ge N$$

We can conclude that $f_n(x_n) \to f(x)$.

7 Power series

Definition Power series

Let $(a_n)_{n\geq 0}\subseteq \mathbb{R}$ a sequence. Then $\sum_{n=0}^{\infty}a_nx^n$ is a power series. We have three cases:

- The series converges for all $x \in \mathbb{R}$.
- The series converges for x = 0 only.
- The series converges for some bounded interval.

Theorem Let $\beta = \limsup \sqrt[n]{|a_n|}$ and $R = \frac{1}{\beta}$ $(R = \infty \text{ if } \beta = 0, R = 0 \text{ if } \beta = \infty)$. Then $\sum_{n=0}^{\infty} a_n x^n$:

- Converges for |x| < R.
- Diverges for |x| > R.

The same can be done with $\beta = \limsup \left| \frac{a_n}{a_{n+1}} \right|$.

- Let $a_n = 1$. We have the power series $\sum_{n=0}^{\infty} x^n$ and $\beta = \limsup \sqrt[n]{1} = 1$, then R = 1. This means the series converges for $x \in (-1,1)$ and diverges for x such that |x| > 1. Moreover, it diverges for x = 1, since $\sum_{n=0}^{\infty} 1 = +\infty$, and it is not defined for x = -1.
- Let $\sum_{n=0}^{\infty} \frac{1}{n} x^n$ a power series. Then $\limsup \left| \frac{a_n}{a_{n+1}} \right| = \limsup \left| \frac{n}{n+1} \right| = 1$, then R = 1. For x = 1 we have the harmonic series $\sum_{n=0}^{\infty} \frac{1}{n}$ wich diverges, for x = -1 we have $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} < \infty$. We can conclude that the power series converges for $x \in [-1, 1)$.