$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

Liste 2 - Mesures

Exercice 1. Soient (X, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ une fonction additive sur l'algèbre \mathcal{A} . Montrer que les conditions suivantes sont équivalentes :

- a) La fonction μ est σ -additive sur \mathcal{A} .
- b) Si $(B_n)_{n\in\mathbb{N}}$ est une suite croissante d'éléments de \mathcal{A} , alors

$$\mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mu(B_n).$$

c) Si $(C_n)_{n\in\mathbb{N}}$ est une suite décroissante d'éléments de \mathcal{A} , alors

$$\mu\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} \mu(C_n).$$

Donner un exemple d'un espace mesurable et d'une mesure positive $\mu: \mathcal{A} \to [0, +\infty]$ qui ne satisfait pas le point c). Quelle condition supplémentaire faut-il alors ajouter pour que a) (ou b)) implique c)?

Exercice 2. Soient X un ensemble non dénombrable et A la famille de tous les sous-ensembles A de X tels que A ou A^c soit au plus dénombrable. On définit $\mu(A) = 0$ dans le premier cas et $\mu(A) = 1$ dans le second. Montrer que A est une σ -algèbre et que μ est une mesure sur A.

Exercice 3. Soit (X, \mathcal{A}, μ) un espace de probabilité, c'est-à-dire, un espace mesurable où μ est une mesure non négative telle que $\mu(X) = 1$. Définissons $\mathcal{T} = \{A \in \mathcal{A} : \mu(A) = 0 \text{ ou } \mu(A) = 1\}$. Montrer que \mathcal{T} est une σ -algèbre sur X.

Exercice 4. Soient (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $g: X \to Y$ une application mesurable. Pour tout $B \in \mathcal{B}$, on pose

$$\nu(B) = \mu(g^{-1}(B)).$$

Montrer que ν est une mesure sur (Y, \mathcal{B}) .

Remarque : on dit que ν est la mesure image de μ par l'application g.

Exercice 5. Soient (X, \mathcal{A}) un espace mesurable et $x \in X$.

1. On pose pour tout $A \in \mathcal{A}$,

$$\delta_x(A) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A. \end{cases}$$

Montrer que δ_x est une mesure.

2. Montrer que si μ est une mesure sur (X, \mathcal{A}) telle que $\mu(A) = 0$ pour tout $A \in \mathcal{A}$ tel que $x \notin A$, alors il existe $C \in [0, \infty]$ tel que $\mu = C\delta_x$.

Remarque : on dit que δ_x est la mesure de Dirac.

Exercice 6. Soit (X, \mathcal{A}) un espace mesurable. Pour tout $A \in \mathcal{A}$ on pose

$$|A| = \begin{cases} \#A, & \text{si } A \text{ est fini} \\ +\infty, & \text{sinon.} \end{cases}$$

Montrer que $|\cdot|$ est une mesure.

Remarque : on dit que $|\cdot|$ est la mesure de comptage.

Exercice 7. Soit X un ensemble fini non-vide. Pour tout $A \subseteq X$, on pose

$$\mu(A) = \frac{\#A}{\#X}.$$

Montrer que μ est une mesure de probabilités sur $(X, \mathcal{P}(X))$.

Exercice 8. 1. Soient (X, \mathcal{A}) un espace mesurable et $(\mu_n)_{n \in \mathbb{N}}$ une suite croissante de mesures, c'est-à-dire telle que pour tout $n \in \mathbb{N}$ et tout $A \in \mathcal{A}$, $\mu_n(A) \leq \mu_{n+1}(A)$. Pour tout $A \in \mathcal{A}$, on pose

$$\mu(A) = \lim_{n \to +\infty} \mu_n(A).$$

Montrer que μ est une mesure sur (X, A).

2. Soient (X, A) un espace mesurable et $(\mu_n)_{n \in \mathbb{N}}$ une suite de mesures. Pour tout $A \in A$, on pose

$$\mu(A) = \sum_{n=1}^{\infty} \mu_n(A).$$

Est-ce que μ est une mesure sur (X, A)?

3. On considère l'espace mesurable $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, et pour tout $n \in \mathbb{N}$, on définit

$$\mu_n(A) = \#(A \cap [n, +\infty[)]$$

pour tout $A \subseteq \mathbb{N}$.

- Montrer que μ_n est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ pour tout $n \in \mathbb{N}$ et que la suite $(\mu_n)_{n \in \mathbb{N}}$ est décroissante.
- Pour tout $A \subseteq \mathbb{N}$, on pose

$$\mu(A) = \lim_{n \to +\infty} \mu_n(A).$$

Est-ce que μ est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$? Déterminer $\mu(\mathbb{N})$ et $\mu(\{k\})$ pour tout $k \in \mathbb{N}$. Caractériser entièrement μ .

Exercice 9 (*). Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n \in \mathbb{N}}$ une suite d'élements de \mathcal{A} .

1. Montrer que

$$\mu\left(\liminf_{n\to+\infty}A_n\right)\leq \liminf_{n\to+\infty}\mu(A_n).$$

2. Si il existe $n_0 \in \mathbb{N}$ tel que $\mu\left(\bigcup_{n \geq n_0} A_n\right) < +\infty$, montrer que

$$\mu\left(\limsup_{n\to+\infty}A_n\right)\geq \limsup_{n\to+\infty}\mu(A_n).$$

Exercice 10 (*). Soit (X, A) un espace mesurable. On suppose que μ et ν sont deux mesures de probabilité définies sur X telles que $\mu(A) = \nu(A)$ pour tout élément A de A tel que $\mu(A) \leq \frac{1}{2}$.

- 1. Montrer que $\mu = \nu$.
- 2. Montrer que le résultat est faux si l'on remplace la condition $\mu(A) \leq \frac{1}{2}$ par $\mu(A) < \frac{1}{2}$.

Exercice 11 (*). Soit (X, \mathcal{A}) un espace mesurable et $\mathcal{F} \subseteq \mathcal{P}(X)$ une partie stable par intersections finies telle que $\sigma(\mathcal{F}) = \mathcal{A}$. Si μ et ν sont deux mesures finies sur (X, \mathcal{A}) satisfaisant

$$\mu(X) = \nu(X)$$
 et $\mu(A) = \nu(A) \ \forall A \in \mathcal{C}$,

alors $\mu = \nu$.

Suggestion : Montrer que $\{A \in \mathcal{A} : \mu(A) = \nu(A)\}$ est une classe de Dynkin.