算法基础第一次作业

肖桐 PB18000037

2020年10月1日

```
解 1. (a).
```

```
for(i = 1; i <= A.length; i++)</pre>
{
    if(v == A[i])
         return i;
    }
v = NIL;
return v;
```

循环不变式: 每次进入循环时, 对于 $1 \le k < i$, 有 $A[k] \ne v$.

否则若存在 k_0 , 有 $1 \le k_0 < i$ 且 $A[k_0] = v$, 则在 $i = k_0$ 时就已经 return 了, 不会再运行.

此时若 A[i] = v, 则返回 i, 否则再次进入循环.

若循环结束时 i=A.length+1, 即对所有 $1\leq k\leq A.length$, 有 $A[k]\neq v$, 即此时 v 与 A 中任何一个元素都不相 等,故此时返回 v = NIL.

(b). 记 A.length = n. 不妨设 A[i] = v 的概率为 $P_i = \frac{1}{n}$.

则平均检查的元素个数为 $\sum\limits_{k=1}^{n}kP_{k}=\frac{n(n+1)}{2n}=\frac{n+1}{2}$, 此时 $T(n)=\Theta(n)$

最差情况下为 A[n]=v 或找不到与 v 相同的元素, 此时需要检查 n 个元素, 此时也有 $T(n)=\Theta(n)$.

解 2. (a). 错误, 理由如下:

由 O 的定义, 存在正常数 c, n_0 , 当 $n > n_0$ 时, 有 $0 \le f(n) \le c(f(n))^2$.

而当 $\lim_{n\to+\infty} f(n)=0$ 时, 若有 $0\leq f(n)\leq c(f(n))^2$, 则有 $f(n)\geq\frac{1}{c}$, 其中 c 为一确定的正常数.

这与 $\lim f(n) = 0$ 矛盾, 故 $f(n) = O((f(n))^2)$ 错误.

(b). 正确, 理由如下:

由 Θ 的定义, 存在正常数 c_1, c_2, n_0 , 当 $n > n_0$ 时, 有 $0 \le c_1 \max\{f(n), g(n)\} \le f(n) + g(n) \le c_2 \max\{f(n), g(n)\}$

当
$$n>n_0$$
 时,若 $f(n)=g(n)\equiv 0$ 时结论显然成立。否则证明如下。
首先,
$$\lim_{n\to +\infty}\frac{f(n)+g(n)}{\max\{f(n),g(n)\}}=\lim_{n\to +\infty}\left(\frac{f(n)}{\max\{f(n),g(n)\}}+\frac{g(n)}{\max\{f(n),g(n)\}}\right)<+\infty.$$

这是因为 $f(n) \leq \max\{f(n), g(n)\}, \ g(n) \leq \max\{f(n), g(n)\}, \ \mathbb{M} \quad \frac{f(n)}{\max\{f(n), g(n)\}} \leq 1$ 且 $\frac{g(n)}{\max\{f(n), g(n)\}} \leq 1$. 因而能够找到一个确定的常数 $c_2 = \sup\left\{\frac{f(n) + g(n)}{\max\{f(n), g(n)\}}\right\}$,使得当 $n > n_0$ 时,有 $\frac{f(n) + g(n)}{\max\{f(n), g(n)\}} \leq c_2$,即

 $f(n) + g(n) \le c_2 \max\{f(n), g(n)\}.$

其次,
$$\lim_{n \to +\infty} \frac{f(n) + g(n)}{\max\{f(n), g(n)\}} = \lim_{n \to +\infty} \left(\frac{f(n)}{\max\{f(n), g(n)\}} + \frac{g(n)}{\max\{f(n), g(n)\}} \right) \ge 1.$$

这是因为 $\frac{f(n_1)}{\max\{f(n_1),g(n_1)\}}=1$ 与 $\frac{g(n_1)}{\max\{f(n_1),g(n_1)\}}=1$ 对于任意一个确定的 n_1 必至少有一个成立. 否则存在 n_1 使得 $\max\{f(n_1),g(n_1)\}\neq f(n_1)$ 且 $\max\{f(n_1),g(n_1)\}\neq g(n_1)$,这显然与 $\max\{f(n),g(n)\}$ 的定义相矛盾.

不妨设
$$\frac{f(n)}{\max\{f(n),g(n)\}} = 1$$
,又 $\lim_{n \to +\infty} f(n) \ge 0$, $\lim_{n \to +\infty} g(n) \ge 0$,故 $\lim_{n \to +\infty} \frac{g(n)}{\max\{f(n),g(n)\}} \ge 0$ 因此有 $\lim_{n \to +\infty} \left(\frac{f(n)}{\max\{f(n),g(n)\}} + \frac{g(n)}{\max\{f(n),g(n)\}}\right) \ge 1$.

因此有
$$\lim_{n \to +\infty} \left(\frac{f(n)}{\max\{f(n), g(n)\}} + \frac{g(n)}{\max\{f(n), g(n)\}} \right) \ge 1$$

因而能够找到一个确定的常数 $0 < c_1 < 1$, 使得当 $n > n_0$ 时, 有 $\frac{f(n) + g(n)}{\max\{f(n), g(n)\}} \ge c_1$.

 $\mathbb{P} c_1 \max\{f(n), g(n)\} \le f(n) + g(n).$

故综上有: $f(n) + g(n) = \Theta(\max\{f(n), g(n)\}).$

(c.) 由 O 定义, 存在正常数 c_0, n_0 , 当 $n > n_0$ 时, 有 $0 \le O(f(n)) \le c_0 f(n)$.

则当 $n > n_0$ 时,有 $0 \le f(n) \le f(n) + O(f(n)) \le (c_0 + 1)f(n)$.

即存在正常数 $c_1 = 1, c_2 = c_0 + 1, n_0$, 当 $n > n_0$ 时, 有 $0 \le c_1 f(n) \le f(n) + O(f(n)) \le c_2 f(n)$

 $\mathbb{P} f(n) + O(f(n)) = \Theta(f(n)).$

(d.) 错误, 理由如下:

由 Ω 的定义, 存在正常数 c_1, n_1 , 当 $n > n_1$ 时, 有 $0 \le c_1 g(n) \le f(n)$. 因此以下命题是错误的:

对于任意正常数 c_2 , 存在正常数 n_2 , 当 $n > n_2$ 时, 有 $0 \le f(n) \le c_2 g(n)$. 即 $f(n) \ne o(g(n))$.

解 3. 先证 $\lg(n!) = \Theta(n \lg n)$:

由 Stirling 公式:
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$\mathbb{M} \lg(n!) = \lg\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right) = \frac{1}{2}\lg(2\pi) + \frac{1}{2}\lg n + n\lg n - n\lg e + \lg\left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$\, \, \, \, \, \, \lim_{n \to +\infty} \left(-n \lg e + \frac{1}{2} \lg n \right) = -\infty, \, \lim_{n \to +\infty} \lg \left(1 + \Theta \left(\frac{1}{n} \right) \right) = 0.$$

因此存在正常数
$$n_0$$
, 当 $n > n_0$ 时, $\frac{1}{2} \lg(2\pi) + \frac{1}{2} \lg n - n \lg e + \lg \left(1 + \Theta\left(\frac{1}{n}\right) \right) \le 0$,

则当 $n > n_0$ 时,有 $\lg(n!) \le n \lg n$.

当
$$n > e^2$$
 时,有 $\frac{\sqrt{n}}{e} \ge 1$,则 $n(\lg \sqrt{n} - \lg e) \ge 0$,即 $\frac{1}{2}n\lg n \le n\lg n - n\lg e$.

则 $n > e^2$ 时有: $\lg(n!) \ge n \lg n - n \lg e \ge \frac{1}{2} n \lg n$.

故存在正常数 $c_1 = \frac{1}{2}, c_2 = 1, n_1 = \max\{n_0, e^2\},$ 当 $n > n_1$ 时,有 $0 \le c_1 n \lg n \le \lg(n!) \le c_2 n \lg n$.

 $\mathbb{P} \lg(n!) = \Theta(n \lg n).$

下证 $n! = \omega(2^n)$:

对于任意正常数
$$c_0$$
, 都存在正常数 n_0 , 当 $n > n_0$ 时, 有 $n \ge 2ec_1$. 则 $n > n_0$ 时, 有 $n^n \ge c_0(2e)^n$, 即 $\left(\frac{n}{e}\right)^n \ge c_0 2^n$.

故
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \ge \left(\frac{n}{e}\right)^n \ge c_0 2^n.$$

即对于任意正常数 c_0 , 存在正常数 n_0 , 当 $n > n_0$ 时, 有 $0 \le c_0 2^n \le n!$, 即 $n! = \omega(2^n)$.

下证 $n! = o(n^n)$:

因为
$$\lim_{n\to+\infty} \left(1+\Theta\left(\frac{1}{n}\right)\right)=1$$
, $\lim_{n\to+\infty} \frac{\sqrt{2\pi n}}{n}=0$, 故存在正常数 $n_1,\ n>n_1$ 时, 有 $\sqrt{2\pi n}\left(1+\Theta\left(\frac{1}{n}\right)\right)\leq 2n$

因为 $\lim_{n \to +\infty} \frac{2n}{e^n} = 0$, 故对于任意正常数 c_0 , 存在正常数 n_2 , 当 $n > n_2$ 时, 有 $\frac{2n}{e^n} \le c_0$.

故
$$n > \max\{n_1, n_2\}$$
 时有 $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \le n^n \frac{2n}{e^n} \le c_0 n^n$.

即对于任意正常数 c_0 , 存在正常数 $n_0 = \max\{n_1, n_2\}$, 使得 $n > n_0$ 时, 有 $0 \le n! \le c_0 n^n$, 即 $n! = o(n^n)$.

解 4. 假设存在正常数 c_0 , 使得对于任意 1 < k < n, 有 $T(k) \le c_0 \lg k$.

n=2 时, T(2)=T(1)+1, 为一常数时间, 则必存在一个正常数 c_1 , 使得 $T(2) \le c_2 \lg 2$.

则 $n \geq 3$ 时, $T(n) = T(\lceil n/2 \rceil) + 1 \leq c_0 \lg(\lceil n/2 \rceil) + 1 \leq c_0 \lg n$. 只要 $c_0 \lg \frac{n}{\lceil n/2 \rceil} \geq 1$ 对所有 $n \geq 3$ 成立即可.

则有:
$$c_0 \lg \frac{n}{\lceil n/2 \rceil} \ge c_0 \lg \frac{n}{n/2+1} \ge c_0 \lg \frac{1}{1/2+1/n} \ge c_0 \lg \frac{6}{5}$$
, 令 $c_0 \lg \frac{6}{5} \ge 1$ 可得: $c_0 \ge \frac{1}{\lg 6 - \lg 5}$.

即取 $c_0 \ge \frac{1}{\lg 6 - \lg 5}$ 则可保证当 $n \ge 3$ 时 $T(n) \le c_0 \lg n$.

故综上,只需取 $c_0 = \max\left\{c_1, \frac{1}{\lg 6 - \lg 5}\right\}$ 即可满足 $T(n) \leq c_0 \lg n, \ (n \geq 2)$. 即 $T(n) = O(\lg n)$.

解 5. 画出递归式 T(n) = T(n-a) + T(a) + cn 对应的递归树如下:

易知递归树一共有 $\left\lfloor \frac{n}{a} \right\rfloor$ 层, 故总复杂度为:

$$T(n) = nT(a) + \sum_{k=0}^{\lfloor n/a \rfloor} c(n - ka)$$

$$= cn(\lfloor n/a \rfloor + 1) - ca \frac{\lfloor n/a \rfloor (\lfloor n/a \rfloor + 1)}{2} + nT(a)$$
邑为 $\lfloor n/a \rfloor = \Theta(n)$, 故 $T(n) = \Theta(n^2)$

解 6. a. 本题中 a=2,b=4, 则 $\log_b a=\frac{1}{2}$, 故 $n^{\log_b a}=\sqrt{n}=f(n)$. 即 $f(n)=\Theta(\sqrt{n})$

故由主方法可得: $T(n) = \Theta(\sqrt{n} \lg n)$.

b. 本题中 a = 2, b = 4, 则 $\log_b a = \frac{1}{2}$, 故 $n^{\log_b a} = \sqrt{n}$.

故存在正常数 $\varepsilon = \frac{1}{2}$, 有 $f(n) = \Omega(n^{\log_b a + \varepsilon}) = \Omega(n)$.

且存在 $c=\frac{1}{2}<1$,使得对于所有足够大的 n 均有 $af(n/b)=\frac{n^2}{8}\leq \frac{n^2}{2}=cf(n)$. 故由主方法可知: $f(n)=\Theta(f(n))=\Theta(n^2)$

解 7. 不能使用主方法.

此时 $f(n)=n^2 \lg n, \; n^{\log_b a}=n^2$. 因为对于任何正常数 α , 有 $\lim_{n\to +\infty} \frac{\lg n}{n^\alpha}=0$,显然此时不存在正常数 ε ,使得 $f(n)=\Theta(n^{2-\varepsilon})$ 或是 $f(n)=\Theta(n^{2+\varepsilon})$. 因此无法使用主方法.

此时应使用递归树或是代入法来进行求解.

下面给出代入法证明 $T(n) = O(n^2 \lg^2 n)$.

若对于所有 2 < k < n, 有 $T(k) < k^2 \lg^2 k$, 则当 k = n 时, 有:

$$T(n) = 4T(n/2) + n^2 \lg n$$

$$\leq 4 \times \left(\left(\frac{n}{2} \right)^2 \lg^2 \frac{n}{2} \right) + n^2 \lg n$$

$$= n^2 (\lg n - 1)^2 + n^2 \lg n$$

$$= n^2 \lg^2 n + n^2 (1 - \lg n) < n^2 \lg^2 n$$

即存在正常数 c=1, 使得存在 $n_0=2$, 当 $n>n_0$ 时, 有 $0 \le T(n) \le n^2 \lg^2 n$

故 $T(n) = O(n^2 \lg^2 n)$