Contrôle d'analyse I N°1

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM.	

1. Soient P(x) et Q(x) les deux trinômes, dépendant d'un paramètre réel m , définis par

$$P(x) = -mx^2 + 4x$$
 et $Q(x) = -x^2 + 2mx - 4$, $m \in \mathbb{R}$

Déterminer m tel que les deux points d'intersection, distincts, des courbes d'équation y = P(x) et y = Q(x) aient leur abscisse strictement à l'extérieur de l'intervalle défini par les deux racines de P(x).

 $4.5 \mathrm{~pts}$

2. On considère le domaine \mathcal{D} décrit cicontre. Il est formé de deux secteurs circulaires, l'un de rayon variable R et d'angle au centre $\alpha = 1/2$ (radian) et l'autre de rayon variable r ($r \leq R$) et d'angle au centre $\pi - \alpha$ (on admettra $\pi = 3$).

Le périmètre L du domaine \mathcal{D} est fixé et vaut 15 unités.

On choisit R comme variable indépendante.

- a) Déterminer le domaine de la variable R.
- b) Représenter graphiquement l'aire A du domaine \mathcal{D} en fonction de R. (Echelle horizontale: 2 carrés par unité. Echelle verticale: 2 carrés pour 5 unités.)
- c) Pour quelle valeur de R l'aire A est-elle minimale ?

 $4.5 \mathrm{~pts}$

3. Résoudre sur \mathbb{R} l'inéquation suivante en fonction du paramètre réel m:

$$\sqrt{|x^2 - 4mx|} \ge x + 2m.$$

4.5 pts

4. En utilisant la définition de la limite d'une suite, montrer que

$$\lim_{n\to\infty}\frac{\sqrt{n}+1}{\sqrt{n}}=1.$$