SMAI-S25-L10: Principal Component Analysis (PCA)

C. V. Jawahar

IIIT Hyderabad

February 7, 2025

Recap:

- Problems of interest:
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - (a) Classification (b) Regression
 - Learn Feature Transformations $\mathbf{x}' = \mathbf{W}\mathbf{x}$ or $\mathbf{x}' = f(\mathbf{W}, \mathbf{x})$
 - (a) Feature Normalization (b) PCA (today)
- Algorithms/Approaches:
 - Nearest Neighbour Algorithm
 - Linear Classification: $sign(\mathbf{w}^T\mathbf{x})$
 - Decide as ω_1 if $P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$ else ω_2 .
 - Linear Regression: (a) closed form and (b) GD
- Supervised Learning:
 - Notion of Training, Validation and Testing
 - Performance Metrics
 - Notion of Loss Function, (eg. MSE), Regularization.
 - Role of Optimization, Convex and non-Convex optimization
 - Closed form solution, Gradient Descent, Eigen vector solns.

PCA: Principal component Analysis

A classical, popular dimensionality reduction technique.

- Unsupervised
- Linear
- PCA: Dimensions that preserve maximum variance
 - $\mathbf{v}' = \mathbf{W}\mathbf{x}'$
 - Problem: How to find W?
- PCA as Compression
 - Dimensionality reduction that allow minimal loss in the data.
- Eigen Faces
 - A powerful application of PCA
 - Face representation and compression.

Recap: Optimization problems with EVec as Solutions

Problem: Maximize $\mathbf{w}^T \mathbf{A} \mathbf{w}$ such that $\mathbf{w}^T \mathbf{w} = 1$ (or $||\mathbf{w}|| = 1$)

We form an objective with the help of a lagrangian (λ) as

$$J(\mathbf{w}, \lambda) = \mathbf{w}^T \mathbf{A} \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1)$$

Differentiating wrt **w** and equating to zero leads to:

$$\mathbf{A}\mathbf{w} = \lambda \mathbf{w}$$

Soln: w is the eigen vector corresponding to the largest eigen value.

Discussions

- If we are given N points $\{x_1, x_2, \dots x_N\}$ in d dimension (say d = 2), what will be a good representing point p? (hint: optimize the sum of square distance to all the points!)
- If we are given N points {x₁, x₂,...x_N} in d dimension (say d=1), what will be a good representing line (in 2D) (or hyper place in general) p? (hint: optimize the sum of square distance to all the points!)
- **3** What happens when we approximate a point by projecting to a line? What is the approximation error? (If we approximate a d-dimensional data in d' dimension, (where d' < d) what is the error of approximation or dimensionality reduction?

Fitting a line that minimize Orthogonal Distances¹

We want to find \mathbf{w} that define the line and norm 1.0. Let us consider that all samples are mean subtracted.

$$\min \sum_{i=1}^{N} (\mathbf{x}_i^T \mathbf{x}_i - (\mathbf{w}^T \mathbf{x}_i)^2)$$

Alternatively,

$$\max \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x_i})^2 \text{ subject to: } \mathbf{w}^T \mathbf{w} = 1$$

$$\max \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$$
 subject to: $\mathbf{w}^T \mathbf{w} = 1$

Solution to this is the eigen vector corresponding to the largest eigen value of $\mathbf{X}^T\mathbf{X}$ or $\mathbf{\Sigma}$

¹https://www.youtube.com/watch?v=likh0NUdvnc

Appreciating PCA

Maximum Variance Direction: 1st PC a vector v such that projection on to this vector capture maximum variance in the data (out of all possible one dimensional projections)

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^{T} \mathbf{x}_{i})^{2} = \mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}$$

Minimum Reconstruction Error: 1st PC a vector v such that projection on to this vector yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

black² is fixed (it's just the data)

So, maximizing blue² is equivalent to minimizing green²

Slide from Nina Balcan

Reconstruction: Numerical Example

- $u_1 = [1,1]$ and $u_2 = [-1,1]$ are the new basis vectors
- Let us convert them to unit vectors $u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \& u_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

- Consider the point x = [3.3, 3] in the original data
- $\begin{array}{ll} \bullet \ \alpha_1 = x^T u_1 = 6.3/\sqrt{2} \\ \alpha_2 = x^T u_2 = -0.3/\sqrt{2} \end{array}$
- the perfect reconstruction of x is given by (using n = 2 dimensions)

$$x = \alpha_1 u_1 + \alpha_2 u_2 = \begin{bmatrix} 3.3 & 3 \end{bmatrix}$$

• But we are going to reconstruct it using fewer (only k = 1 < n dimensions, ignoring the low variance u_2 dimension)

$$\hat{x} = \alpha_1 u_1 = \begin{bmatrix} 3.15 & 3.15 \end{bmatrix}$$

(reconstruction with minimum error)

Example

Worked Out Example - I

Note: Eigen vectors are not normalized for simplicity

Eigen values: $\lambda_1=22$ and $\lambda_2=2$

Example

Worked Out Example - II

Note: Eigen vectors are not normalized for simplicity

Eigen values: $\lambda_1=120$ and $\lambda_2=0$

Algorithm

PCA: Algorithm

1. Input: N samples of D dimension

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} [x_i - \mu] [x_i - \mu]^T$$

- 2. Compute Covariance Matrix
- 3. Compute Eigen Values and Eigen Vectors of Covariance Matrix
- 4. Select 'd' eigen vectors corresponding to 'd' largest eigen values
- 5. Arrange them as rows of 'A' (a 'd' X 'D' matrix)
- 6. Find lower dimensional representations as: x' = Ax

How much to Reduce?

How many Eigen Values?

How many eigen values are required so that "most" of the information in the covariance/data is preserved? Consider the popular eigen expansion:

$$\Sigma = \sum_{i=1}^{D} \lambda_i v_i v_i^T$$

$$= \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T + \dots + \lambda_{N-1} v_{N-1} v_{N-1}^T + \lambda_N v_N v_N^T$$

Eigen values (Lambda) are in decreasing order. Even if we discard the small eigen values, most information is preserved.

Typical Eigen Value Spectrum

$$d = \min_{p} \frac{\sum_{i=1}^{p} \lambda_i}{\sum_{i=1}^{D} \lambda_i} \ge 0.95$$

8

Eigen Faces

- All our faces look very different. But are they so different? Consider all our frontal faces are of size 100×100 or of size 10^4 .
 - What will be the mean face?
 - ullet What about eigen values, rank of Σ
 - What about eigen vectors?
- Is it possible to develop a representation for human faces? (for solving tasks like face recognition)
 - That is compact (much smaller than 10⁴)
 - Different for different faces.
 - How to formulate it as $\mathbf{x}' = \mathbf{W}\mathbf{x}$

Faces and Eigen Vectors

Representation and Reconstruction of Face from 16 EVs

Example

Eigen Faces

62 X 47 Image D = 2914; N = 1348 Vectors displayed as 2D Image

Covariance Matrix is 2914 X 2914

First 16 Eigen Vectors out of 2914

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

How many coeff. are required to represent a block?

144 to 60, 16, 6, 3

Figure: Original, Blocks of size 12 X 12 in 60, 16, 6 and 3

Problem 1

Consider images of size 100×100 and we have 200 such images. Assume means are subtracted.

- What is the size of the covariance matrix?
- What is the rank of the covariance matrix? (guess!)
- **3** What is the size of XX^T and X^TX and what are their ranks?
- How are the Eigen values of X^TX and XX^T related?
- **1** How are the Eigen vectors of X^TX and XX^T related?

Problem 2

Consider images of size 100×100 ($O(10^4)$) and we have 200 ($O(10^2)$) such images. We know that computing eigen vectors is a costly operation. How do we compute \mathbf{W} ?

Problem 3

In the context of regression (assume $\mathbf{x} \in R^1$ i.e., only one feature):

- We know how to fit a line, even if it is not passing through origin, with a model $y = \mathbf{w}^T \mathbf{x}'$. where \mathbf{x}' is defined as $\begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$
- What is x? Is there a closed form expression?

Problem - 4

Matrix Completion Problem: Can we guess/compute/complete the missing elements of the matrix:

if we know that this is a rank-1 matrix (or every row is a multiple of each other) 2

Consider the following problem: Expalin the notations and what we try to find. (Q: What is this summation over? What is the min over?)

$$\min \sum_{i} \sum_{i} (A_{ij} - B_{ij})^2 \ s.t \ rank(B) = 1$$

²Read later: https://web.stanford.edu/class/cs168/I/I9.pdf

Problem - 5

Continuing the numerical example we saw in the class with eigen values and eigen vectors. Consider three points $\mathbf{x}_1 = [5.0, 5.0]^T$, $\mathbf{x}_2 = [3.0, 3.3]^T$, $\mathbf{x}_3 = [-3.0, 0.0]^T$

- Find the <u>low</u> dimensional (d = 1) representations $\mathbf{x}' = \mathbf{W}\mathbf{x}$ What is \mathbf{W} ?
- Find the reconstructed point and show the "error" magnitude in this new representation