PC5215, Numerical Recipes with Applications, Lab 3 (due Thursday, 26 Oct 2017)

1. The honeycomb lattice due to graphene by now is very famous. In this lab, we simulate an Ising model on a finite piece of a honeycomb lattice using Monte Carlo method. At each site, there is a spin $\sigma=\pm 1$ connected to three nearest neighbors. We assume that the energy contribution from a single neighbor is given by $-J\sigma_i\sigma_j$ for the nearest neighbor site i and j. The total energy E is the sum over the neighbors. We choose the spin coupling constant J=1 (also $k_B=1$). Write a program to implement the single-spin-flip Metropolis algorithm for the Ising model on honeycomb lattice. Compute the specific heat c (heat capacity per site) according to the formula

$$c = \frac{1}{k_B T^2 N} \left(\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right),$$

where $k_{\rm B}$ is the Boltzmann constant, T is temperature, N is the total number of spins. Present a plot of c vs dimensionless temperature $k_{\rm B}T/J$ for several system sizes (say about 100 to 1000 spins). Locate the critical temperature $T_{\rm c}$ approximately by the specific heat data, and compare with the known result (exact result of $T_{\rm c}$ does exist for this model).