北京大学数学学院期中试题

2017-2018 学年第二学期

考试科	目	高等代数 II	考试时	间	2018年	5	月	18	日
姓	名		学	号					

(15分)设 A 是线性空间 V 上的线性变换,且 A 在 V 的基 α₁,…,α_n下的矩阵为 A. 若基 α₁,…,α_n 到基 β₁,…,β_n的过渡矩阵为 U. 求 A 在基 β₁,…,β_n下 的矩阵 (要求推导过程,每一步注明理由).

二. (20分)

- 1) 已知多项式 $h_1(x), h_2(x), h_3(x) \in Q[x]$ 两两互素,证明:存在 $u_i(x) \in Q[x], i=1,2,3$,使得 $u_1(x)h_2(x)h_3(x)+u_2(x)h_3(x)h_1(x) + u_3(x)h_1(x)h_2(x)=1.$
- 2) 求一个 3 次的多项式 $f(x) \in \mathbb{R}[x]$, 使得 $f(1) = 6, \quad f'(1) = 8 \text{ 且 } x^2 + 1 \mid (f(x) 2x).$
- 三. (15 分) 已知 θ_1 , θ_2 , θ_3 是 $x^3 + ax + b$ 的三个复根. 求 $(\theta_1\theta_2 + \theta_3)(\theta_1\theta_3 + \theta_2)(\theta_2\theta_3 + \theta_1)$ 的值.

四. (30分)设 A 是线性空间 V 上的线性变换, 且 A 在基

$$\alpha_1, \cdots, \alpha_4$$
下的矩阵为 $A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{bmatrix}$.

- 1) 求A的特征多项式与特征子空间;
- 2) 将 V 分解为根子空间 W_1 与 W_2 的直和, 求 W_i (i = 1, 2) 的基并写出限制变换 $A \mid W_i$ 在此基下的矩阵;
- 3) 求 A 的最小多项式;
- 4) 求次数 ≤ 2 的多项式 h_i(x), i = 1, 2, 使得 h_i(A)是沿
 W_{3-i} 向 W_i 所作的投影变换;
- 5) 若 V 上的线性变换 B 与 A 可交换 ,以上 W₁, W₂ 是否 一定也是 B 的不变子空间?请说明理由.
- 五. (10分) 若 a_0 , a_1 , $a_2 \in \mathbb{Q}$ 满足条件

$$\begin{vmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 + a_1 & a_1 + a_2 \\ a_1 & a_2 & a_0 + a_1 \end{vmatrix} = 0.$$

证明: $a_0 = a_1 = a_2 = 0$.

六. (10 分) 设 V 是 F-线性空间, S_1 , S_2 , S_3 是 V 的子集, $W_i = \text{span}(S_i) \ (i=1,2,3). \quad \text{假设 } S_1 \cup S_2 \cup S_3 \text{线性无关.}$ 证明:

$$W_1 \cap (W_2 + W_3) = (W_1 \cap W_2) + (W_1 \cap W_3).$$