Reverse Engineering of Gate Level Netlists

For, CS5234: Advanced Parallel Computation

By, Sonal Pinto

Problem Statement

Given a gate-level netlist, sequential or combinational, with unknown gates, and an incomplete simulation trace, identify the mystery gates that satisfy the simulation.

Motivation

2-input Mystery Gate

Motivation

2-input Mystery Gate

For, N mystery Gates, the search space is: 6^N

8 mystery gates → 1.68 million possible solutions that need to be verified

Motivation

2-input Mystery Gate

Brute Force - not scalable!

Goal: Develop and implement a practical parallelizable algorithm

Output

Introduce Stuck-at Faults at the mystery gate, and propagate them, by stepping into the simulation.

Reduce suspect_list for mystery gate based on valid circuit operation

Similar to filling up the Truth Table for that gate.

Input at the mGate:

Valid mGate ouput:

Reduced suspect_list,

and nand or nor xor xnor

Input at the mGate: 10

Valid mGate ouput:

Reduced suspect_list,

and nand or nor xor xnor

Final suspect_list,

Solution: mGate = OR

Step through the full simulation trace

Algorithm

For, N mystery gates, the local search space is, 2^N 8 mGates \rightarrow local search size: 256

Consider a sim trace of length, K Then, the Global search space is, 2^{NK}

= state explosion!

Algorithm

For, N mystery gates, the local search space is, 2^N 8 mGates \rightarrow local search size: 256

Consider a sim trace of length, K Then, the Global search space is, 2^{NK} =

= state explosion!

Fucntional SATisfiability

Say, we have 3 mGates.

→ Local Search : $2^3 = 8$

Good Step

- Valid circuit output
- Non-empty suspect_list per mGate

Bad Step

- Invalid circuit output
- Failed to converge, i.e, at least one mGate has an empty suspect_list

Proceed with local Search

Implies that any further search has to have mGate = suspect

Unit Clause

suspect

Dynamically shrinking local search, $2^{N'}$, N' = non - unit clause mGates

Parallelization

Shared Memory: OpenMP

#pragma omp task

Exploratory Decomposition

- Recursive call
- Non-deterministic work size
- On-the fly generation of work

Parallelization

Dynamic Programming

- Each level of search is a single Step i.e one input vector
- Sim Object, cloned at every node and passed to the next function call (task)
- Each node (task):

No barriers/taskwait No roll-backs No critical sections*

Performance

Constraints:

- Test circuits from ISCAS-89 benchmark
- Random simulation, K = 128
- Random obfuscation of gates of type, ≥2-input
- Machine: rlogin.cs.vt.edu

Goal: Maximal SAT (all possible solutions), timeout: 10 minutes

mgs_sat: Mystery Gate Solver, with Functional SAT

If, K=128, then for 8 mGates, the global search space for mgs_sat is 2^{1024} , which can under-approximated to 10^{300}

Performance: Load Balancing

Circuit = c432 (204 gates) N = 8

Total Work: 619032

Performance: Time

N=8 in c432

Algorithm	Approx. Time
mgs_bf	1 hour
mgs_sat	1 minute
mgs_psat_32	3 seconds

Performance: Speedup/Efficiency

Performance: Scaling

Curve Fitting to find W vs N Least error for the polynomial of degree 26,

W $\approx 1.9e-17 (N^{26}) + 1.18e-15 (N^{25})$ $-7e-14 (N^{24}) + 1.2e-12 (N^{23})$ $-8.72e-12 (N^{22}) + 2.32e-11 (N^{21})$

Performance: Scaling

Isospeed Scalability

For an increasing workload, the average execution time should remain constant, by increasing the number of processing elements

Timeout: T = 10 minutes

Performance Scaling: Isospeed

maximixe(N), for given p, within time T

р	N
1	9
4	11
8	11
16	11
32	12
64	12
128	12
256	12

minimize(p), for given N, within time T

N	Р
1	1
2 3 4 5 6	1
3	1
4	1
5	1
6	1
7	2
8	2
9	2
10	2
11	4
12	32
13	>256

Not Scalable!

Conclusion

mgs_sat: parallel implementation – not scalable, but is a good starting point for future work.

Exploratory decomposition + Dynamic Programming = good template for parallelization

The algorithm can possibly be improved with optimal input simulation (mystery gate input coverage), dominant path simulation, translation to Boolean SAT, etc

