DHC

- 1. Assume that in a given state of a hydrogen atom an electron (charge -e mass m) is in a circular orbit about a fixed proton (charge +e) with quantized angular momentum, $L=n\hbar$ (which comes from assuming $p=h/\lambda$ and $n\lambda=2\pi r$).
 - a) Find the total energy of the orbit (kinetic plus potential) relative to that of the free stationary electron.
 - b) Derive the expression for the wavelength of light emitted when the electron makes a transition from a higher to a lower orbit, $\lambda^{-1} = R_{\infty}(m^{-2} n^{-2})$, where n and m are different integers, including getting an expression for R_{∞} .
 - c) Calculate R_{∞} in units of eV by looking up the values of the constants in the expression, and check it is equal to the Rydberg constant, 1.10×10^7 m⁻¹.
 - d) Calculate λ for the transition between the lowest energy (ground) state and the next lowest (first excited) states. This is the longest wavelength in the Lyman series in the spectrum of hydrogen.
- 2. The black-body energy/unit frequency/unit volume is $u_{\nu}(\nu, T) = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} 1}$.
 - a) Show for small enough ν that $u_{\nu} \propto \nu^2$, and write down the condition on ν for this to apply.
 - b) Find an expression for the frequency v_{max} at which u_v has its maximum, and hence explain why hotter objects looks bluer and colder objects redder. You will need to use Mathematica to solve a short dimensionless equation to get the numerical coefficient.
 - c) Derive from u_{ν} the energy/unit wavelength/unit volume, $u_{\lambda}(\lambda, T)$. (Careful!)
- 3. Consider a particle moving in one dimension with even-parity wavefunction $\psi(x,t) = Ae^{-x^2/a^2 + i\omega t}$.
 - a) Determine the normalized probability density $\rho = |\psi(x)|^2$ and the normalization constant A.
 - b) Sketch both $|\psi|$ and ρ vs x, by hand, with indications of scale.
 - c) Make the corresponding sketches for an odd-parity wavefunction $\psi_A(x,t) = Bxe^{-x^2/a^2+i\omega t}$. What do I mean by odd parity?
 - d) For ψ only, find the expectation values of the position, $\langle x \rangle$, and momentum, $\langle p \rangle = \int dx \psi^*(x,t) \hat{p} \psi(x,t)$, of the particle, where $p = -i\hbar \partial/\partial x$.
 - e) Find the uncertainty in position, Δx , such that $\Delta x^2 = \langle x^2 \rangle \langle x \rangle^2$, and in momentum, Δp .
 - f) What constraint does the uncertainly principle place on the constant α ?
- 4. Prove Ehrenfest's second theorem, $d\langle p \rangle/dt = \langle -\partial V/\partial x \rangle$, using Schroedinger's equation. Can you see why this is something like Newton's second law for a quantum particle?