Assignment 17, Authomata Theory

Oleg Sivokon

<2016-01-23 Sat>

Contents

1	Pro	blems	2
	1.1	Problem 1	2
		1.1.1 Answer 2	2
	1.2	Problem 2	3
		1.2.1 Answer 2	3

1 Problems

1.1 Problem 1

Prove that language $L = \{a^i b^{i+j} c^j \mid 1 \le i \le j\}$ is not context-free.

1.1.1 Answer 2

Suppose, for contradiction, L is context-free, then, according to pumping lemma, the following applies:

- 1. p is the "pumping length".
- 2. For every word $z \in L$, z = uvwxy, s.t.
- $3. |vwx| \leq p.$
- 4. $|vx| \ge 1$.
- 5. $uv^nwx^ny \in L$.

Consider p = i, then there are five distinct ways to decompose w into uvwxy. Of them three will decompose in a way such that both v and x are the same symbol, i.e. both v and x are either a, b or c.

It is easy to see none of the above can be pumped: if $v = a^r$ and $x = a^s$ then by pumping a, eventually there will be more as in z than cs, which contradicts $i \leq j$. Similarly, if we pump bs, eventually there will be more bs than as and cs together. Similarly for cs.

Another two possible decompositions are:

1. $v = a^r$ and $x = b^s$. However, again, if we pump as, i.e. $r \neq 0$, then eventually there will be more as than cs. And similarly for bs. When we pump as and bs together, eventually there will be more as than cs, again, contradicting $i \leq j$.

2. Thus the only case worth considering is where $v=b^r$ and $x=c^s$. Consider the word $z=a^pb^{2p}c^p\in L$ with this decomposition. If either r=0 or s=0, we proceed as above, however, if $r=s\neq 0$, then it must be the case that for all words $z'=a^pb^{p+p-r+r*i}c^{p-r+r*i},\ z'\in L$. but it is not the case for i=0. Since $|a^p|>|c^{p-r}|$ contrary to the required $i\leq j$.

These are all the possible decompositions of z, since neither can be pumped, it must be the case that L is not context-free.

1.2 Problem 2

Prove that context-free languages are not closed under max operation.

1.2.1 Answer 2

Recall the definition of max:

$$max(L) = \{ u \in L \mid \forall v \in \Sigma^* : uv \in L \implies v = \epsilon \}.$$

Let's take $L = \{a^n b^m c^k \mid n \le k \lor m \le k\}$. L is context-free, since we can give a grammar L(G) = L as follows:

$$\begin{split} S \rightarrow X \mid Y \\ X \rightarrow aXC \mid C \\ C \rightarrow bCc \mid Cc \mid bBCc \mid c \\ B \rightarrow bB \mid b \\ Y \rightarrow AZ \\ A \rightarrow aA \mid \epsilon \\ Z \rightarrow bZc \mid Q \\ Q \rightarrow cQ \mid c \; . \end{split}$$

However, the $\max(L) = \{a^n b^n c^n\}$, which is known to be non-context-free.