

Ultralow Offset Voltage Operational Amplifier

0P07

FEATURES

Low Vos: 75 μV Max

Low Vos Drift: 1.3 μV/°C Max

Ultrastable vs. Time: 1.5 µV/Month Max

Low Noise: 0.6 μV p-p Max Wide Input Voltage Range: ±14 V Wide Supply Voltage Range: 3 V to 18 V Fits 725,108A/308A, 741, AD510 Sockets

125°C Temperature-Tested Dice

APPLICATIONS

Wireless Base Station Control Circuits Optical Network Control Circuits Instrumentation **Sensors and Controls Thermocouples RTDs** Strain Bridges **Shunt Current Measurements Precision Filters**

GENERAL DESCRIPTION

The OP07 has very low input offset voltage (75 µV max for OP07E) that is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP07 also features low input bias current (±4 nA for the OP07E) and high open-loop gain (200 V/mV for the OP07E). The low offsets and high open-loop gain make the OP07 particularly useful for high gain instrumentation applications.

The wide input voltage range of ± 13 V minimum combined with a high CMRR of 106 dB (OP07E) and high input impedance provide high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at

PIN CONNECTIONS

8-Lead PDIP (P-Suffix) 8-Lead SOIC (S-Suffix)

high closed-loop gains. Stability of offsets and gain with time or variations in temperature is excellent. The accuracy and stability of the OP07, even at high gain, combined with the freedom from external nulling have made the OP07 an industry standard for instrumentation applications.

The OP07 is available in two standard performance grades. The OP07E is specified for operation over the 0°C to 70°C range, and the OP07C is specified over the -40°C to +85°C temperature range.

The OP07 is available in epoxy 8-lead PDIP and 8-lead SOIC. It is a direct replacement for 725, 108A, and OP05 amplifiers; 741 types may be directly replaced by removing the 741's nulling potentiometer. For improved specifications, see the OP177 or OP1177. For ceramic DIP and TO-99 packages and standard micro circuit (SMD) versions, see the OP77.

Figure 1. Simplified Schematic

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

© 2003 Analog Devices, Inc. All rights reserved.

OP07-SPECIFICATIONS

OPO7E ELECTRICAL CHARACTERISTICS ($V_s = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage ¹	Vos			30	75	μV
Long-Term V _{OS} Stability ²	V _{OS} /Time			0.3	1.5	μV/Mo
Input Offset Current	Ios			0.5	3.8	nA
Input Bias Current	I_{B}			± 1.2	± 4.0	nA
Input Noise Voltage	e _n p-p	$0.1 \text{ Hz to } 10 \text{ Hz}^3$		0.35	0.6	μV p-p
Input Noise Voltage Density	e _n	$f_O = 10 \text{ Hz}$		10.3	18.0	nV/\sqrt{Hz}
		$f_0 = 100 \text{ Hz}^3$		10.0	13.0	nV/\sqrt{Hz}
		$f_0 = 1 \text{ kHz}$		9.6	11.0	nV/\sqrt{Hz}
Input Noise Current	I _n p-p			14	30	pA p <u>-p</u>
Input Noise Current Density	I _n	$f_O = 10 \text{ Hz}$		0.32	0.80	pA/√ <u>Hz</u>
		$f_0 = 100 \text{ Hz}^3$		0.14	0.23	pA/\sqrt{Hz}
		$f_O = 1 \text{ kHz}$		0.12	0.17	pA/√ Hz
Input Resistance—Differential Mode ⁴			15	50		$M\Omega$
Input Resistance—Common-Mode	R _{INCM}			160		$G\Omega$
Input Voltage Range	IVR		±13	± 14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	106	123		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		5	20	μV/V
Large Signal Voltage Gain	A_{VO}	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	200	500		V/mV
		$R_L \ge 500 \Omega$, $V_O = \pm 0.5 V$,				
		$V_S = \pm 3 V^4$	150	400		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage Swing	V_{O}	$R_L \ge 10 \text{ k}\Omega$	±12.5	± 13.0		V
		$R_L \ge 2 \text{ k}\Omega$	±12.0	± 12.8		V
		$R_{\rm L} \ge 1 \text{ k}\Omega$	±10.5	± 12.0		V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_{\rm L} \ge 2 \text{ k}\Omega^3$	0.1	0.3		V/µs
Closed-Loop Bandwidth	BW	$A_{VOL} = 1^5$	0.4	0.6		MHz
Closed-Loop Output Resistance	R _O	$V_{O} = 0, I_{O} = 0$		60		Ω
Power Consumption	P _d	$V_S = \pm 15 \text{ V}, \text{ No Load}$		75	120	mW
<u>r</u>	u u	$V_S = \pm 3 \text{ V}$, No Load		4	6	mW
Offset Adjustment Range		$R_{\rm P} = 20 \text{ k}\Omega$		± 4		mV

NOTES

Specifications subject to change without notice.

-2- REV. C

¹Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

 $^{^2}$ Long-term input offset voltage stability refers to the averaged trend time of V_{OS} vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μ V, refer to the typical performance characteristics. Parameter is sample tested. 3 Sample tested.

⁴Guaranteed by design.

⁵Guaranteed but not tested.

OPO7C ELECTRICAL CHARACTERISTICS ($V_s = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ unless otherwise noted.}$)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage ¹	Vos			60	150	μV
Long-Term V _{OS} Stability ²	V _{OS} /Time			0.4	2.0	μV/Mo
Input Offset Current	I _{OS}			0.8	6.0	nA
Input Bias Current	I_B			± 1.8	± 7.0	nA
Input Noise Voltage	e _n p-p	$0.1 \text{ Hz to } 10 \text{ Hz}^3$		0.38	0.65	μV p-p
Input Noise Voltage Density	e _n	$f_O = 10 \text{ Hz}$		10.5	20.0	nV/\sqrt{Hz}
		$f_{\rm O} = 100 \; {\rm Hz}^3$		10.2	13.5	nV/\sqrt{Hz}
		$f_O = 1 \text{ kHz}$		9.8	11.5	nV/\sqrt{Hz}
Input Noise Current	I _n p-p			15	35	pA p <u>-p</u>
Input Noise Current Density	I_n	$f_O = 10 \text{ Hz}$		0.35	0.90	pA/\sqrt{Hz}
		$f_0 = 100 \text{ Hz}^3$		0.15	0.27	pA/√ <u>Hz</u>
		$f_O = 1 \text{ kHz}$		0.13	0.18	pA/√ Hz
Input Resistance—Differential Mode ⁴	R_{IN}		8	33		$M\Omega$
Input Resistance—Common-Mode	R _{INCM}			120		GΩ
Input Voltage Range	IVR		±13	± 14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		7	32	μV/V
Large Signal Voltage Gain	A_{VO}	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	120	400		V/mV
		$R_{\rm L} \ge 500 \ \Omega, \ V_{\rm O} = \pm 0.5 \ V,$				
		$V_S = \pm 3 V^4$	100	400		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage Swing	V_{O}	$R_{\rm L} \ge 10 \text{ k}\Omega$	±12.0	±13.0		V
3		$R_{\rm L} \ge 2 \text{ k}\Omega$	±11.5	±12.8		V
		$R_L \ge 1 \text{ k}\Omega$		± 12.0		V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L \ge 2 k\Omega^3$	0.1	0.3		V/µs
Closed-Loop Bandwidth	BW	$\begin{array}{c} A_{\text{VOL}} = 2^{5} \\ A_{\text{VOL}} = 1^{5} \end{array}$	0.4	0.6		MHz
Closed-Loop Output Resistance	R _O	$V_O = 0$, $I_O = 0$	0.1	60		Ω
Power Consumption	P _d	$V_S = \pm 15 \text{ V}, \text{ No Load}$		80	150	mW
2 on or combampaon	- a	$V_S = \pm 13 \text{ V}$, No Load		4	8	mW
Offset Adjustment Range		$R_{\rm P} = 20 \text{ k}\Omega$		± 4	3	mV

REV. C -3-

¹Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. 2 Long-term input offset voltage stability refers to the averaged trend time of V_{OS} vs. the time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5 µV, refer to the typical performance characteristics. Parameter is sample tested. ³Sample tested.

⁴Guaranteed by design.

⁵Guaranteed but not tested.

Specifications subject to change without notice.

OP07-SPECIFICATIONS

OPO7E ELECTRICAL CHARACTERISTICS ($V_s=\pm 15~V,\,0^{\circ}C \le T_A \le 70^{\circ}C,\,unless$ otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage ¹	V_{OS}			45	130	μV
Voltage Drift without External Trim ²	TCV_{OS}			0.3	1.3	μV/°C
Voltage Drift with External Trim ³	TCV_{OSN}	$R_P = 20 \text{ k}\Omega$		0.3	1.3	μV/°C
Input Offset Current	I_{OS}			0.9	5.3	nA
Input Offset Current Drift	TCI_{OS}			8	35	pA/°C
Input Bias Current	I_{B}			± 1.5	±5.5	nA
Input Bias Current Drift	TCI_B			13	35	pA/°C
Input Voltage Range	IVR		±13	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	103	123		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		7	32	μV/V
Large Signal Voltage Gain	A_{VO}	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	180	450		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage Swing	V_{O}	$R_L \ge 10 \text{ k}\Omega$	±12	± 12.6		V

NOTES

OPO7C ELECTRICAL CHARACTERISTICS ($V_s = \pm 15 \text{ V}, -40 ^{\circ}\text{C} \le T_A \le +85 ^{\circ}\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Input Offset Voltage ¹	V_{OS}			85	250	μV
Voltage Drift without External Trim ²	TCV_{OS}			0.5	1.8	μV/°C
Voltage Drift with External Trim ³	TCV_{OSN}	$R_P = 20 \text{ k}\Omega$		0.4	1.8	μV/°C
Input Offset Current	I_{OS}			1.6	8.0	nA
Input Offset Current Drift	TCI_{OS}			12	50	pA/°C
Input Bias Current	I_{B}			± 2.2	± 9.0	nA
Input Bias Current Drift	TCI_{B}			18	50	pA/°C
Input Voltage Range	IVR		±13	± 13.5		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	97	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		10	51	μV/V
Large Signal Voltage Gain	A_{VO}	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	100	400		V/mV
OUTPUT CHARACTERISTICS						
Output Voltage Swing	V_{O}	$R_L \ge 10 \text{ k}\Omega$	±11	± 12.6		V

NOTES

-4- REV. C

¹Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

²Guaranteed by design.

³Sample tested.

Specifications subject to change without notice.

¹Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

²Guaranteed by design.

³Sample tested.

Specifications subject to change without notice.

ARSOLLITE MAYIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS
Supply Voltage (V_s)
Input Voltage ² ±22 V
Differential Input Voltage±30 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range
S, P Packages
Operating Temperature Range
OP07E 0°C to 70°C
OP07C
Junction Temperature Range150°C
Lead Temperature Range (Soldering, 60 sec)300°C

NOTI	ΞS
------	----

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Type	θ_{JA}^*	$\theta_{ m JC}$	Unit
8-Lead PDIP (P)	103	43	°C/W
8-Lead SOIC (S)	158	43	°C/W

 $^{^*\}theta_{JA}$ is specified for worst-case conditions, i.e., θ_{JA} is specified for device in socket for PDIP package, and θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP07EP	0°C to 70°C	8-Lead PDIP	P-8
OP07CP	−40°C to +85°C	8-Lead PDIP	P-8
OP07CS	−40°C to +85°C	8-Lead SOIC	S-8
OP07CS-REEL	−40°C to +85°C	8-Lead SOIC	S-8
OP07CS-REEL7	−40°C to +85°C	8-Lead SOIC	S-8

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP07 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. C _5_

 $^{^2} For \ supply \ voltages \ less \ than \ \pm 22 \ V$, the absolute maximum input voltage is equal to the supply voltage.

OP07 – Typical Performance Characteristics

TPC 1. Open-Loop Gain vs. Temperature

TPC 2. Offset Voltage Change due to Thermal Shock

TPC 3. Warm-Up Drift

MATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)

MATCHED OR UNMATCHED SOURCE RESISTANCE (Ω)

TPC 5. Maximum Error vs.

Source Resistance

TPC 6. Input Bias Current vs. Differential Input Voltage

TPC 7. Input Bias Current vs. Temperature

TPC 8. Input Offset Current vs. Temperature

TPC 9. Low Frequency Noise

-6- REV. C

TPC 10. Total Input Noise Voltage vs. Frequency

TPC 11. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated)

TPC 12. CMRR vs. Frequency

TPC 13. PSRR vs. Frequency

TPC 14. Open-Loop Gain vs. Power Supply Voltage

TPC 15. Open-Loop Frequency Response

TPC 16. Closed-Loop Response for Various Gain Configurations

TPC 17. Maximum Output Swing vs. Frequency

TPC 18. Maximum Output Voltage vs. Load Resistance

REV. C -7-

TPC 19. Power Consumption vs. Power Supply

TPC 20. Output Short-Circuit Current vs. Time

TPC 21. Untrimmed Offset Voltage vs. Temperature

TPC 22. Trimmed Offset Voltage vs. Temperature

TPC 23. Offset Voltage Stability vs. Time

-8- REV. C

Figure 2. Typical Offset Voltage Test Circuit

Figure 3. Typical Low Frequency Noise Circuit

Figure 4. Optional Offset Nulling Circuit

Figure 5. Burn-In Circuit

Figure 6. High Speed, Low Vos Composite Amplifier

PINOUT SHOWN FOR P PACKAGE

Figure 7. Adjustment-Free Precision Summing Amplifier

REV. C _9_

TYPICAL APPLICATIONS

Figure 8. High Stability Thermocouple Amplifier

PINOUT SHOWN FOR P PACKAGE

Figure 9. Precision Absolute-Value Circuit

APPLICATIONS INFORMATION

The OP07 series units may be substituted directly into 725, 108A/308A, and OP05 sockets with or without removal of external compensation or nulling components. Additionally, the OP07 may be used in unnulled 741 type sockets. However, if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP07 operation. The OP07 offset voltage may be nulled to 0 through use of a potentiometer (see offset nulling circuit diagram).

PRECISION ABSOLUTE-VALUE CIRCUIT

The OP07 provides stable operation with load capacitance of up to 500 pF and ± 10 V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Therefore, best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.

-10- REV. C

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC] Narrow Body

S-Suffix (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Plastic Dual-in-Line Package [PDIP] P-Suffix

(N-8)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

REV. C –11–

Revision History

Location	Page
8/03—Data Sheet changed from REV. B to REV. C.	
Changes to OP07E ELECTRICAL SPECIFICATIONS	
Changes to OP07C ELECTRICAL SPECIFICATIONS	
Edits to ORDERING GUIDE	
Edits to Figure 6	9
Updated OUTLINE DIMENSIONS	11
3/03—Data Sheet changed from REV. A to REV. B.	
Updated Package Titles	
Updated OUTLINE DIMENSIONS	11
2/02—Data Sheet changed from REV. 0 to REV. A.	
Edits to FEATURES	
Edits to ORDERING GUIDE	
Edits to PIN CONNECTION drawings	
Edits to ABSOLUTE MAXIMUM RATINGS	
Deleted ELECTRICAL CHARACTERISTICS	
Deleted OP07D Column from ELECTRICAL CHARACTERISTICS	
Edits to TPCs	
Edits to HIGH-SPEED, LOW VOS COMPOSITE AMPLIFIER	9