

RTduino RT-Thread的Arduino生态兼容层

满鉴霆 (Meco)

RT-Thread社区核心开发和维护者

meco@rt-thread.org

https://github.com/mysterywolf

https://github.com/RTduino/RTduino

Arduino

- 开发于2005年
- 基于16位AVR单片机
- 让非电子专业的学生可以快速实现一些电子方面想法和设计

包括:

- 集成开发环境IDE
- 标准的硬件开发板(Arduino UNO)
- 方便快捷API和第三方库

软件生态

Arduino的硬件生态

半导体厂商与Arduino硬件生态

意法半导体

中科蓝讯

新唐科技

GD兆易创新

沁恒微电子

Arduino的软件生态

Libraries

The Arduino environment can be extended through the use of libraries, just like Libraries provide extra functionality for use in sketches, e.g. working with hard library in a sketch, select it from **Sketch > Import Library**.

A number of libraries come installed with the IDE, but you can also download instructions for details on installing libraries. There is also a tutorial on writing Guide for information on making a good Arduino-style API for your library.

- Communication (1054)
- Data Processing (271)
- Data Storage (142)
- Device Control (849)
- Display (425)
- Other (398)
- Sensors (966)
- Signal Input/Output (378)
- Timing (198)
- Uncategorized (175)

通信类: 1054个

数据处理类: 271个

数据存储类: 142个

设备控制类: 849个

显示类: 425个

其他: 398个

传感器类: 966个

信号输入输出类: 378个

时间相关: 198个

未归类: 175个

共计: 4856个

半导体厂商的评估板有一个<mark>缺口</mark>:只兼容了Arduino硬件生态,但是没有兼容软件生态。

这个缺口,可以由RT-Thread来弥补,原因:

- RT-Thread有众多的BSP
- RT-Thread有统一的设备驱动框架

无论什么型号的BSP,只要支持RT-Thread设备框架,就可以兼容Arduino生态

因此,RT-Thread的Arduino生态兼容层—RTduino应运而生

兼容Arduino的软件生态:可以在RT-Thread上直接运行Arduino的库,实现和Arduino生态的共用

https://github.com/RTduino/RTduino 欢迎Star!

1. 极大地减低了RT-Thread的入门门槛

学习方式由自下而上, 转为自上而下

MCU 寄存器

MCU HAL库

RT-Thread 内核

RT-Thread BSP驱动

RT-Thread设备框架

最终实现设计

应用简单快速实现设计

Arduino生态兼容层

RT-Thread设备框架

RT-Thread BSP驱动

RT-Thread 内核

MCU HAL库

MCU 寄存器

- 帮助用户屏蔽掉RT-Thread和MCU底层相关的内容和知识。 让用户快速地专注于上层的业务逻辑和应用,不再拘泥于底 层的驱动和操作系统的相关知识
- 借助Arduino生态中的图形化开发软件,可以以图形化编程的方式直接驱动RT-Thread的BSP

https://github.com/RTduino/RTduino

优势

2. 让RT-Thread更具平台化

RT-Thread不仅要服务于专业的嵌入式工程师,也要服务于具有第三学科专业素养的工程师和科研人员

也就是让这些工程师和科研人员以极低的时间成本和精力,快速地把嵌入式板卡和RT-Thread使用起来, 进而将精力专注于自己的领域。

操作系统诞生的目的不是为了难为人,而是简化流程,让用户专注于自己的事情,进而提高工作和生产效率。

专业性是对RT-Thread自身的考量,低门槛易学是针对用户一侧。二者没有必然联系,也并不冲突。

优势

3. 共用Arduino社区生态,极大的丰富了RT-Thread的社区生态

让RT-Thread用户直接使用Arduino的库(例如传感器驱动库、数据处理库等),通过共用、兼容Arduino的生态,极大的扩充了RT-Thread的生态

- 兼容 ~95% Arduino原生API,只有2个API不计划支持 (详见https://github.com/RTduino/RTduino/issues/2)
- 兼容所有纯软件类Arduino库(例如算法类、Json等)
- 兼容所有I2C传感器类的库
- 兼容单总线类传感器库(如DHT11等)
- 兼容Adafruit传感器框架
- 可以兼容Arduino社区优秀的项目
- 正在推进SPI设备和传感器的兼容
- 不兼容针对Arduino特定板卡(如UNO R3板)的库

https://github.com/RTduino/UltrasoundRadar

优势(专业嵌入式工程师)

- 1. 打通产品原型研发和正样研发的壁垒
 - 用Arduino开发原型是真的香! 但是把原型转成正样就要自己一点点去重新造轮子了
 - 通过RTduino软件包,就无需重新造轮子,可以直接将Arduino库部署在任何一个BSP上

优势(专业嵌入式工程师)

- 2. 借助于RT-Thread线程间通信机制,可以不拘泥于C++编程,实现C++/C混合编程
 - Arduino C++线程只负责简单的传感器数据获取,通过线程间通信将数据传到C线程当中去处理
 - 在发挥Arduino库C++面向对象编程快捷便利的同时,也不需要过多深入了解C++的编程知识
 - C和C++各发挥其所长
 - 借助于RT-Thread的多线程,不用再拘泥于Arduino的setup loop编程框架

优势(专业嵌入式工程师)

3. 支持RT-Thread Studio和Keil-MDK专业嵌入式集成开发环境

摒弃原生Arduino IDE简陋的开发环境

优势(高校教育)

打通低年级入门,高年级进阶以及毕业工作之间的隔阂。可以做到,所学即所用,产学一体化。

传统:低年级Arduino或8051教学,高年级32位MCU,工作可能还和学校所学不同。

使用RTduino后:

- 低年级借助RTduino来使用RT-Thread,了解嵌入式的基本知识;
- 高年级继续学习RT-Thread内核、设备框架以及MCU相关知识;
- 毕业工作后,会继续用到RT-Thread;
- 始终贯穿着一条主线,在不同阶段以不同的维度来学习和使用RT-Thread和MCU

正在推进RTduino与MATLAB/Simulink的联合仿真的功能

https://www.mathworks.com/hardware-support/arduino-matlab.html

Thanks! 演示环节

https://github.com/RTduino/RTduino