Module-5: Linear Algebra

Elementary transformation of a matrix:

- 1. The interchange of any two rows (columns)
- 2. The multiplication of any row (column) by a non-zero number.
- 3. The addition of a constant multiple of the elements of any row (column) to the corresponding elements of any other row (column)

Two matrices A and B are said to be **equivalent** if one can be obtained from the other by a sequence of Elementary transformation. Equivalent matrices are denoted by $A \sim B$.

A matrix is obtained from the unit matrix by any one of the elementary transformations is called **Elementary matrix**.

Rank: A matrix is said to be of rank r, if it has at least one nonzero minor of order r and every minor of order higher then r vanishes. Rank of A is denoted by $\rho(A)$.

Note: 1. If a matrix has nonzero minor of order r, then its rank is $\geq r$.

- 2. If all the minors of order r + 1 are zero, then its rank is $\leq r$.
- 3. Elementary transformations do not change the rank of a matrix.

Echelon Form: A rectangular matrix is in echelon form if,

- 1. All nonzero rows are above any zero rows.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero.

Row reduced Echelon Form: An echelon form is said to be row reduced if, the leading entry in each nonzero row is 1 and each leading 1 is the only nonzero entry in its column.

If a matrix A is equivalent to an echelon matrix E, then $\rho(A) = \text{Number of nonzero rows in } E$.

Examples: a) Find the rank of the following matrix.

1.
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

$$2. \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix} \xrightarrow{R_4 = R_4 - (R_1 + R_2 + R_3)} \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{R_2 = -(2R_2 - R_1)}{R_3 = 2R_3 - 3R_1} \rightarrow \begin{bmatrix} 2 & 3 & -1 & -1 \\ 0 & 5 & 3 & 7 \\ 0 & -7 & 9 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_3 = 5R_3 + 7R_2} \begin{bmatrix} 2 & 3 & -1 & -1 \\ 0 & 5 & 3 & 7 \\ 0 & 0 & 66 & 44 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly reduced matrix is in echelon form with 3 nonzero rows. $\therefore \rho(A) = 3$.

2022

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

4.
$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_4} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix}$$

$$R_2 = R_2 - R_1$$

$$R_3 = -\frac{1}{2}(R_3 - 3R_1) \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & -1 \end{bmatrix} \xrightarrow{R_4 = R_4 + R_2} \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly reduced matrix is in echelon form with 2 nonzero rows. $\therefore \rho(A) = 2$.

Consistency of Homogeneous linear equations, AX = 0:

X = 0 is the trivial solution. Thus the homogeneous system is always consistent.

Note: 1. If $\rho(A)$ = number of unknowns, then the system has only trivial solution.

2. If $\rho(A)$ < number of unknowns, then the system has an infinite number of solutions.

Consistency of non-homogeneous linear equations, AX = B:

1. If $\rho(A) = \rho(A|B) =$ number of unknowns, then the system has unique solution.

2. If $\rho(A) = \rho(A|B)$ < number of unknowns, then the system has an infinite number of solutions.

3. If $(A) \neq \rho(A|B)$, then system has no solution.

Examples:

1. Test for consistency and solve the system x + 4 + 3z = 0, x - y + z = 0, 2x - y + 3z = 0.

Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 4 & 3 & 0 \\ 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 0 \end{bmatrix}$$

$$\frac{R_2 = -(R_2 - R_1)}{R_3 = -(R_3 - 2R_1)} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 0 \\ 0 & 5 & 2 & 0 \\ 0 & 9 & 3 & 0 \end{bmatrix}$$

Clearly $\rho(A) = \rho(A|B) = 3$ = number of unknowns, the system has unique solution that is trivial. x = y = z = 0.

2. For what values of λ and μ do the system of equations: x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.

Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 1 & 2 & 3 & | & 10 \\ 1 & 2 & \lambda & | & \mu \end{bmatrix}$$

$$\frac{R_2 = R_2 - R_1}{R_3 = R_3 - R_1} \qquad \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & 1 & \lambda - 1 & | & \mu - 6 \end{bmatrix}$$

$$\frac{R_3 = R_3 - R_2}{R_3 - R_2} \qquad \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & 0 & \lambda - 3 & | & \mu - 10 \end{bmatrix}$$

(i) If $(A) \neq \rho(A|B)$, then the system has no solution.

If
$$\lambda - 3 = 0$$
 and $\mu - 10 \neq 0$ then $\rho(A) = 2 \neq \rho(A|B) = 3$.

Therefore, if $\lambda = 3$ and $\mu \neq 10$ then the system has no solution.

(ii) If $\rho(A) = \rho(A|B) =$ number of unknowns, then the system has unique solution.

If
$$\lambda - 3 \neq 0$$
 and for any value of μ , $\rho(A) = \rho(A|B) = 3$ = number of unknowns.

Hence for $\lambda \neq 3$, the system has unique solution.

(iii) If $\rho(A) = \rho(A|B)$ < number of unknowns, then the system has an infinite number of solutions.

If
$$\lambda - 3 = 0$$
 and $\mu - 10 = 0$ then $\rho(A) = 2 = \rho(A|B) < 3$.

Therefore if $\lambda = 3$ and $\mu = 10$ then the system has an infinite number of solutions.

3. Show that if $\lambda \neq -5$, the system 3x - y + 4z = 3, x + 2y - 3z = -2, $6x + 5y + \lambda z = -3$ have a unique solution. Find the solution if $\lambda = -5$.

Solution: Augmented matrix [A|B] is

$$\begin{bmatrix} 1 & 2 & -3 & | & -2 \\ 3 & -1 & 4 & | & 3 \\ 6 & 5 & \lambda & | & -3 \end{bmatrix}$$

$$R_2 = R_2 - 3R_4$$

Clearly if $\lambda + 5 \neq 0$, $\rho(A) = \rho(A|B) = 3 =$ number of unknowns.

Therefore if $\lambda \neq -5$ then the system has unique solution.

if $\lambda = -5$ then $\rho(A) = 2 = \rho(A|B) < 3$, the system has an infinite number of solutions.

$$x + 2y - 3z = -2$$
 and $-7y + 13z = 9 \implies y = \frac{13z - 9}{7}$, $x = -2 - 2\left(\frac{13z - 9}{7}\right) + 3z = \frac{4 - 5z}{7}$

Therefore solutions are $\begin{pmatrix} \frac{4-5z}{7} \\ \frac{13z-9}{7} \\ z \end{pmatrix}$ for any value of z.

Exercise:

- 1. Test for consistency and solve the system x + y + z = 3, 2x y + 3z = 10, 4x + y + 5z = 16.
- 2. For what values of λ and μ do the system of equations: 2x + 3y + 5z = 9, 7x + 3y 2z = 8, $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions.
- 3. Test for consistency of the system x + y + z = 3, 2x + y + 3z = 5, x + 2y = 3.

Solution of linear simultaneous equations:

1. Gauss elimination method:

Consider the equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$ Reduce augmented matrix into an upper triangular matrix as below

$$\begin{bmatrix}
a_1 & b_1 & c_1 & d_1 \\
a_2 & b_2 & c_2 & d_2 \\
a_3 & b_3 & c_3 & d_3
\end{bmatrix}$$

$$R_2 = a_1 R_2 - a_2 R_1$$

$$R_3 = a_1 R_3 - a_3 R_1$$

$$\begin{bmatrix}
a_1 & b_1 & c_1 & d_1 \\
0 & b'_2 & c'_2 & d'_2 \\
0 & b'_3 & c'_3 & d'_3
\end{bmatrix}$$

Then
$$z = \frac{dv_3}{cv_3}$$
, $y = \frac{dv_2 - zcv_2}{bv_2}$, $x = \frac{d_1 - yb_1 - zc_1}{a_1}$.

Example:

1. Solve by Gauss elimination method, 2x - 3y + z = -1, x + 4y + 5z = 25, 3x - 4y + z = 2.

Solution: Augmented matrix is

$$\begin{bmatrix} 2 & -3 & 1 & -1 \\ 1 & 4 & 5 & 25 \\ 3 & -4 & 1 & 2 \end{bmatrix}$$

$$z = -\frac{26}{20} = -1.3$$
, $y = \frac{51 - 9 \times (-1.3)}{11} = 5.7$ and $z = \frac{-1 + 3 \times 5.7 + 1.3}{2} = 8.7$

2. Solve by Gauss elimination method, 2x + 3y + z = -1, x - y + z = 6, 3x + 2y - z = -4.

Solution: Augmented matrix is

$$\begin{bmatrix} 1 & -1 & 1 & | & 6 \\ 2 & 3 & 1 & | & -1 \\ 3 & 2 & -1 & | & -4 \end{bmatrix}$$

$$3z = -9$$
, $5y - z = -13$, $x - y + z = 6 \implies z = 3$, $y = -2$, and $z = 1$.

2. Gauss Jordan method:

Reduce augmented matrix into a diagonal matrix as below

$$\begin{bmatrix}
a_1 & b_1 & c_1 & d_1 \\
a_2 & b_2 & c_2 & d_2 \\
a_3 & b_3 & c_3 & d_3
\end{bmatrix}$$

$$\frac{R_2 = a_1 R_2 - a_2 R_1}{R_3 = a_1 R_3 - a_3 R_1} \qquad
\begin{bmatrix}
a_1 & b_1 & c_1 & d_1 \\
0 & b'_2 & c'_2 & d'_2 \\
0 & b' & c'_2 & d'
\end{bmatrix}$$

$$R_{1} = c''_{3}R_{1} - c'_{1}R_{3}$$

$$R_{2} = c''_{3}R_{2} - c'_{2}R_{3}$$

$$\begin{bmatrix} a''_{1} & 0 & 0 & d''_{1} \\ 0 & b''_{2} & 0 & d''_{2} \\ 0 & 0 & c''_{3} & d''_{3} \end{bmatrix}$$

Then
$$x = \frac{dv_1}{av_1}$$
, $y = \frac{dv_2}{bv_2}$ and $z = \frac{dv_3}{cv_3}$

Examples:

1. Solve by Gauss Jordan method, 2x - y + 3z = 1, -3x + 4y - 5z = 0, x + 3y - 6z = 0. Solution: Augmented matrix is

$$\begin{bmatrix} 2 & -1 & 3 & | & 1 \\ -3 & 4 & -5 & | & 0 \\ 1 & 3 & -6 & | & 0 \end{bmatrix}$$

$$R_{2} = 2R_{2} + 3R_{1}$$

$$R_{3} = 2R_{3} - R_{1}$$

$$\begin{bmatrix} 2 & -1 & 3 & | & 1 \\ 0 & 5 & -1 & | & 3 \\ 0 & 7 & -15 & | & -1 \end{bmatrix}$$

$$\frac{R_{1} = 5R_{1} + R_{2}}{R_{3} = 5R_{3} - 7R_{2}}$$

$$\begin{bmatrix} 10 & 0 & 14 & | & 8 \\ 0 & 5 & -1 & | & 3 \\ 0 & 0 & -68 & | & -26 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 0 & 7 & | & 4 \\ 0 & 5 & -1 & | & 3 \\ 0 & 0 & 34 & | & 13 \end{bmatrix}$$

$$R_{1} = 34R_{1} - 7R_{3}$$

$$R_{2} = 34R_{2} + R_{3}$$

$$\begin{bmatrix} 170 & 0 & 0 & | & 45 \\ 0 & 170 & 0 & | & 45 \\ 0 & 0 & 34 & | & 13 \end{bmatrix}$$

$$= \frac{45}{115} = \frac{9}{115} = \frac{23}{115} = \frac{23}$$

 $\therefore x = \frac{45}{170} = \frac{9}{34} = 0.2647$, $y = \frac{115}{170} = \frac{23}{34} = 0.6765$ and $z = \frac{13}{34} = 0.3824$.

2. Solve by Gauss Jordan method, 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16. Solution: Augmented matrix is

$$\begin{bmatrix} 2 & 1 & 1 & 10 \\ 3 & 2 & 3 & 18 \\ 1 & 4 & 9 & 16 \end{bmatrix}$$

$$R_{2} = 2R_{2} - 3R_{1}$$

$$R_{3} = 2R_{3} - R_{1}$$

$$\begin{bmatrix} 2 & 1 & 1 & 10 \\ 0 & 1 & 3 & 6 \\ 0 & 7 & 17 & 22 \end{bmatrix}$$

$$\frac{R_{1} = \frac{1}{2}(R_{1} - R_{2})}{R_{3} = -\frac{1}{4}(R_{3} - 7R_{2})} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

$$R_{1} = R_{1} + R_{3}$$

$$R_{2} = R_{2} - 3R_{3}$$

$$R_{3} = -\frac{1}{4}(R_{3} - 7R_{2})$$

$$\begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

 $\therefore x = 7$. v = -9 and z =

Exercise:

1. Applying Gauss Jordan method solve,

i)
$$2x + 3y - z = 5$$
, $4x + 4y - 3z = 3$, $2x - 3y + 2z = 2$.

ii)
$$x + y + z = 6$$
, $x - 2y + 3z = 8$, $2x + y - z = 3$.

- 2. Applying Gauss elimination method solve the above system of equations.
- **3. Gauss-Seidel iteration method**: Consider the equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$, If a_1 , b_2 , c_3 are numerically large as compared to other coefficients in their respective equations. Then iterative formula for x, y and z are given by

$$x_{n+1} = \frac{1}{a_1} (d_1 - c_1 z_n - b_1 y_n),$$
 $y_{n+1} = \frac{1}{b_2} (d_2 - a_2 x_{n+1} - c_2 z_n)$ and $z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1})$

2022

Start with initial approximations $x_0 = 0$, $y_0 = 0$, $z_0 = 0$ for x, y, z respectively.

Note: Gauss-Seidel method converges if in each equation, the absolute value of the largest coefficient is Greater than the sum of the absolute values of the remaining coefficients.

Example:

1. Solve 54x + y + z = 110, 2x + 15y + 6z = 72, -x + 6y + 21z = 85 by Gauss-Seidel iteration method.

by Gauss Belder Relation method.				
$x_{n+1} = \frac{1}{54} (110 - z_n - y_n)$	$y_{n+1} = \frac{1}{15}(72 - 2x_{n+1} - 6z_n)$	$z_{n+1} = \frac{1}{21}(85 - 6y_{n+1} + x_{n+1})$		
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 0$		
$x_1 = \frac{1}{54} (110 - z_0 - y_0)$	$y_1 = \frac{1}{15}(72 - 2x_1 - 6z_0)$	$z_1 = \frac{1}{21}(85 - 6y_1 + x_1)$		
= 2.037	= 4.528	= 2.851		
$x_2 = \frac{1}{54}(110 - z_1 - y_1)$	$y_2 = \frac{1}{15}(72 - 2x_2 - 6z_1)$	$z_2 = \frac{1}{21}(85 - 6y_2 + x_2)$		
= 1.900	= 3.406	= 3.165		
$x_3 = \frac{1}{54}(110 - z_2 - y_2)$	$y_3 = \frac{1}{15}(72 - 2x_3 - 6z_2)$	$z_3 = \frac{1}{21}(85 - 6y_3 + x_3)$		
=1.915	=3.279	=3.202		
$x_4 = \frac{1}{54}(110 - z_3 - y_3)$	$y_4 = \frac{1}{15}(72 - 2x_4 - 6z_3)$	$z_4 = \frac{1}{21}(85 - 6y_4 + x_4)$		
=1.917	=3.264	=3.206		
$x_5 = \frac{1}{54}(110 - z_4 - y_4)$	$y_5 = \frac{1}{15}(72 - 2x_5 - 6z_4)$	$z_5 = \frac{1}{21}(85 - 6y_5 + x_5)$		
=1.917	=3.262	=3.207		

x = 1.917, y = 3.262 and z = 3.207.

2. Use Gauss-Seidel method to solve 20x+y-2z=17, 3x+20y-z=18, 2x-3y+20z=25. Carry out 2 iterations with $x_0=0$, $y_0=0$, $z_0=0$.

$x_{n+1} = \frac{1}{20} (17 + 2z_n - y_n)$	$y_{n+1} = \frac{1}{20} (18 - 3x_{n+1} + z_n)$	$z_{n+1} = \frac{1}{20}(25 + 3y_{n+1} - 2x_{n+1})$
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 0$
$x_1 = \frac{1}{20} (17 + 2z_0 - y_0)$ = 0.85	$y_1 = \frac{1}{20}(18 - 3x_1 + z_0)$ = 0.7725	$z_1 = \frac{1}{20}(25 + 3y_1 - 2x_1)$ = 1.2809
$x_2 = \frac{1}{20} (17 + 2z_1 - y_1)$ = 0.9395	$y_2 = \frac{1}{20}(18 - 3x_2 + z_1)$ = 0.8231	$z_2 = \frac{1}{20}(25 + 3y_2 - 2x_2)$ = 1.2795

x = 0.9395, y = 0.8231 and z = 1.2795.

Exercise:

Solve by Gauss-Seidel method.

1. 2x + y + 6z = 9, 8x + 3y + 2z = 13, x + 5y + z = 7.

2. 83x + 11y - 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71.

Characteristic equation: $|A - \lambda I| = 0$ is the characteristic equation of the square matrix A. Roots are called **Characteristic roots** or **Eigen values** or **latent roots** of A.

Any vector X satisfying $[A - \lambda I]X = 0$ is called **Eigen vector** corresponding to the Eigen value.

If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then Characteristic equation is $\lambda^2 - (a+d)\lambda + (ad-cb) = 0$.

 $\sum D = 8 + 7 + 3 = 18.$ $\sum M \ D = 5 + 20 + 20 = 45$

if
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
, then Characteristic equation is
$$\lambda^3 - (a_1 + b_2 + c_3)\lambda^2 + (sum\ of\ the\ minors\ of\ a_1, b_2 \& c_3)\lambda - |A| = 0.$$

Properties of Eigen values:

- 1) The sum of the Eigen values of a matrix is the sum of the principal diagonal elements.
- 2) The product of the Eigen values of a matrix is equal to its determinant.
- 3) If λ is the Eigen value of A, then $1/\lambda$ is Eigen value of A^{-1} .
- 4) If λ is the Eigen value of an orthogonal matrix, then $1/\lambda$ is also its Eigen value.
- 5) If λ is the Eigen value of A, then λ^n is the Eigen value of A^n . But Eigen vectors are same.

Examples:

1) Find the Eigen values and Eigen vectors of the following matrices.

i) Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

$$\sum D = 1 + 5 + 1 = 7.$$

$$\sum M D = 4 - 8 + 4 = 0$$

$$\begin{vmatrix} 1 - \lambda & 1 & 3 \\ 1 & 5 - \lambda & 1 \\ 3 & 1 & 1 - \lambda \end{vmatrix} = 0$$

$$|A| = -36$$

$$\Rightarrow \lambda^{3} - (7)\lambda^{2} + (0)\lambda - (-36) = 0$$

\Rightarrow \lambda^{3} - 7\lambda^{2} + 0\lambda + 36 = 0.

Roots are
$$-2$$
, 3, 6
 $\lambda_1 = -2$
 $3x + y + 3z = 0$
 $x + 7y + z = 0$
 $\Rightarrow 20y = 0$, and $z = -x$
 $\therefore X_1 = [1, 0, -1]'$
 $\lambda_2 = 3$
 $-2x + y + 3z = 0$
 $x + 2y + z = 0$
 $\Rightarrow y = -z$
 $X_2 = [1, -1, 1]'$
 $\lambda_3 = 6$
 $-5x + y + 3z = 0$
 $x - y + z = 0$

Eigen values are -2, 3 and 6, the corresponding Eigen vectors are $\begin{bmatrix} 1, & 0, & -1 \end{bmatrix}'$, $\begin{bmatrix} 1, & -1, & 1 \end{bmatrix}'$ and $\begin{bmatrix} 1, & 2, & 1 \end{bmatrix}'$ respectively.

ii) Let
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 8-\lambda & -6 & 2\\ -6 & 7-\lambda & -4\\ 2 & -4 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^{3} - (18)\lambda^{2} + (45)\lambda - (0) = 0$$

\Rightarrow \lambda^{3} - 18\lambda^{2} + 45\lambda + 0 = 0

Roots are 0, 3, 15

$$\lambda_{1} = 0 8x - 6y + 2z = 0$$

$$\lambda_{2} = 3 5x - 6y + 2z = 0$$

$$\delta_{3} = 15 -7x - 6y + 2z = 0$$

$$\begin{array}{lll} -6x + 7y - 4z = 0 & -6x + 4y - 4z = 0 & -6x - 8y - 4z = 0 \\ \Rightarrow 10x - 5y = 0 \,, & \Rightarrow 4x - 8y = 0 & \Rightarrow -20x - 20y = 0 \\ \Rightarrow y = 2x & \Rightarrow x = 2y & \Rightarrow y = -x \\ \therefore X_1 = \begin{bmatrix} 1, & 2, & 2 \end{bmatrix}' & X_2 = \begin{bmatrix} 2, & 1, & -2 \end{bmatrix}' & X_3 = \begin{bmatrix} 1, & -1, & \frac{1}{2} \end{bmatrix}' \end{array}$$

$$-6x + 4y - 4z = 0$$

$$\Rightarrow 4x - 8y = 0$$

$$\Rightarrow x = 2y$$

$$X_2 = [2, 1, -2]'$$

$$\Rightarrow -20x - 20y = 0$$

$$\Rightarrow y = -x$$

$$X_3 = \begin{bmatrix} 1, & -1, & \frac{1}{2} \end{bmatrix}'$$

 $\sum D = 6 + 3 + 3 = 12.$ $\sum M \ D = 8 + 14 + 14 = 36$ |A| = 32

Eigen values are 0, 3 and 15, the corresponding Eigen vectors are [1, 2, 2]', [2, 1, -2]' and [2, -2, 1]' respectively.

iii) Let
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 6-\lambda & -2 & 2\\ -2 & 3-\lambda & -1\\ 2 & -1 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^3 - (12)\lambda^2 + (36)\lambda - (32) = 0$$

\Rightarrow \lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0

Roots are 2, 2, 8

(The sum of the Eigen values of a matrix is the sum of the principal diagonal elements.

Eigen values are 2, 2 and 8, the corresponding Eigen vectors are [1, 0 -2]', [1, 2, 0]' and [2 -1 1]' respectively.

Exercise:

1. Find the Eigen values and Eigen vectors of the following matrices.

i)
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
 ii) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ iii) $\begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

Determination of largest Eigen value by Rayleigh's power method:

Let A be the given square matrix and a column vector X_0 be the initial Eigen vector. Evaluate $AX_0 = \lambda_1 X_1$ where λ_1 is the first approximation of the Eigen value and X_1 is the corresponding Eigen vector.

 $AX_1 = \lambda_2 X_2$. Where λ_2 is the 2^{nd} approximation of the Eigen value and X_2 is the corresponding Eigen vector. $AX_2 = \lambda_3 X_3$. Where λ_3 is the 3^{rd} approximation of the Eigen value and X_3 is the corresponding Eigen vector. Repeat this process till $X_n - X_{n-1}$ becomes negligible.

Example: 1. Find the largest Eigen value and corresponding Eigen vector of the matrix by power method.

2022

$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad \text{taking initial eigen vector } X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Solution:

$$AX_{0} = \begin{bmatrix} 1\\1\\0 \end{bmatrix} = 1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \lambda_{1}X_{1}, \qquad AX_{1} = \begin{bmatrix} 7\\3\\0 \end{bmatrix} = 7 \begin{bmatrix} 1\\0.43\\0 \end{bmatrix} = \lambda_{2}X_{2},$$

$$AX_{2} = \begin{bmatrix} 3.57\\1.86\\0 \end{bmatrix} = 3.57 \begin{bmatrix} 1\\0.52\\0 \end{bmatrix} = \lambda_{3}X_{3}, \qquad AX_{3} = \begin{bmatrix} 4.12\\2.04\\0 \end{bmatrix} = 4.12 \begin{bmatrix} 1\\0.5\\0 \end{bmatrix} = \lambda_{4}X_{4},$$

$$AX_{4} = \begin{bmatrix} 4\\2\\0 \end{bmatrix} = 4 \begin{bmatrix} 1\\0.5\\0 \end{bmatrix} = \lambda_{5}X_{5}.$$

Since X_4 and X_5 are same, the largest Eigen value is 4 and the corresponding Eigen vector is [1, 0.5, 0]'

2. Find the largest Eigen value and corresponding Eigen vector of the matrix by power method.

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 taking initial Eigen vector $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Carry out 4 iterations.

Solution:

$$AX_{0} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0.5 \end{bmatrix} = \lambda_{1}X_{1}, \qquad AX_{1} = \begin{bmatrix} 2.5 \\ 0 \\ 2 \end{bmatrix} = 2.5 \begin{bmatrix} 1 \\ 0 \\ 0.8 \end{bmatrix} = \lambda_{2}X_{2},$$

$$AX_{2} = \begin{bmatrix} 2.8 \\ 0 \\ 2.6 \end{bmatrix} = 2.8 \begin{bmatrix} 1 \\ 0 \\ 0.93 \end{bmatrix} = \lambda_{3}X_{3}, \qquad AX_{3} = \begin{bmatrix} 2.93 \\ 0 \\ 2.86 \end{bmatrix} = 2.93 \begin{bmatrix} 1 \\ 0 \\ 0.98 \end{bmatrix} = \lambda_{4}X_{4}.$$

The largest Eigen value is 2.93 and the corresponding Eigen vector is [1, 0, 0.98]'.

Exercise:

Find the largest Eigen value and corresponding Eigen vector of the following matrix by power method.

1.
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
, $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. 2. $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$, $X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 3. $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$, $X_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

4.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, X_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Self-Study: Gauss-Jacobi's iteration method:

Consider the equations $a_1x + b_1y + c_1z = d_1$; $a_2x + b_2y + c_2z = d_2$; $a_3x + b_3y + c_3z = d_3$,

If a_1 , b_2 , c_3 are numerically large as compared to other coefficients in their respective equations.

Then iterative formula for x, y and z are given by

$$x = \frac{1}{a_1}(d_1 - b_1y - c_1z)$$
, $y = \frac{1}{b_2}(d_2 - a_2x - c_2x)$ and $z = \frac{1}{c_3}(d_3 - a_3x - b_3y)\cdots\cdots(1)$

If not given assume that initial value of $(x, y, z) \equiv (0, 0, 0)$. Substitute these values in (1) and find

$$x_1 = \frac{1}{a_1}(d_1)$$
, $y_1 = \frac{1}{b_2}(d_2)$ and $z_1 = \frac{1}{c_3}(d_3)$

Then find, $x_2 = \frac{1}{a_1}(d_1 - b_1y_1 - c_1z_1)$, $y_2 = \frac{1}{b_2}(d_2 - a_2x_1 - c_2z_1)$ and $z_2 = \frac{1}{c_3}(d_3 - a_3x_1 - b_3y_1)$

Continuing like this using

$$x_{n+1} = \frac{1}{a_1}(d_1 - b_1y_n - c_1z_n), \quad y_{n+1} = \frac{1}{b_2}(d_2 - a_2x_n - c_2z_n) \text{ and } z_{n+1} = \frac{1}{c_3}(d_3 - a_3x_n - b_3y_n)$$

until two set of values coincides.

Example:

1. Solve 54x + y + z = 110, 2x + 15y + 6z = 72, -x + 6y + 21z = 85 by **Gauss-Jacobi's** iteration method by taking initial values $(x, y, z) \equiv (2, 3, 4)$

by Gauss-Jacobi's iteration method by taking initial values $(x, y, z) = (z, 3, 4)$.				
$x_{n+1} = \frac{1}{54} (110 - z_n - y_n)$	$y_{n+1} = \frac{1}{15}(72 - 2x_n - 6z_n)$	$z_{n+1} = \frac{1}{21}(85 - 6y_n + x_n)$		
Let $x_0 = 2$	$y_0 = 3$	$z_0 = 4$		
$x_1 = \frac{1}{54} (110 - z_0 - y_0)$	$y_1 = \frac{1}{15}(72 - 2x_0 - 6z_0)$	$z_1 = \frac{1}{21}(85 - 6y_0 + x_0)$		
= 1.907	= 2.933	= 3.286		
$x_2 = \frac{1}{54}(110 - z_1 - y_1)$	$y_2 = \frac{1}{15}(72 - 2x_1 - 6z_1)$	$z_2 = \frac{1}{21}(85 - 6y_1 + x_1)$		
= 1.922	= 3.231	= 3.300		
$x_3 = \frac{1}{54}(110 - z_2 - y_2)$	$y_3 = \frac{1}{15}(72 - 2x_2 - 6z_2)$	$z_3 = \frac{1}{21}(85 - 6y_2 + x_2)$		
=1.916	=3.224	=3.216		
$x_4 = \frac{1}{54}(110 - z_3 - y_3)$	$y_4 = \frac{1}{15}(72 - 2x_3 - 6z_3)$	$z_4 = \frac{1}{21}(85 - 6y_3 + x_3)$		
=1.918	=3.258	=3.218		
$x_5 = \frac{1}{54}(110 - z_4 - y_4)$	$y_5 = \frac{1}{15}(72 - 2x_4 - 6z_4)$	$z_5 = \frac{1}{21}(85 - 6y_4 + x_4)$		
=1.917	=3.257	=3.208		
$x_6 = \frac{1}{54}(110 - z_5 - y_5)$	$y_6 = \frac{1}{15}(72 - 2x_5 - 6z_5)$	$z_6 = \frac{1}{21}(85 - 6y_5 + x_5)$		
=1.917	=3.261	=3.208		

- x = 1.917, y = 3.261 and z = 3.208.
- 2. Use Gauss-Seidel method to solve 20x+y-2z=17, 3x+20y-z=18, 2x-3y+20z=25. with $x_0=0,\ y_0=0,\ z_0=1$.

$x_{n+1} = \frac{1}{20} (17 + 2z_n - y_n)$	$y_{n+1} = \frac{1}{20}(18 - 3x_n + z_n)$	$z_{n+1} = \frac{1}{20}(25 + 3y_n - 2x_{n+1})$
Let $x_0 = 0$	$y_0 = 0$	$z_0 = 1$
$x_1 = \frac{1}{20}(17 + 2z_0 - y_0)$ = 0.95	$y_1 = \frac{1}{20}(18 - 3x_0 + z_0)$ = 0.95	$z_1 = \frac{1}{20}(25 + 3y_0 - 2x_0)$ = 1.25
$x_2 = \frac{1}{20}(17 + 2z_1 - y_1)$ = 0.928	$y_2 = \frac{1}{20}(18 - 3x_1 + z_1)$ = 0.820	$z_2 = \frac{1}{20}(25 + 3y_1 - 2x_1)$ = 1.298
$x_3 = \frac{1}{20}(17 + 2z_2 - y_2)$ = 0.939	$y_3 = \frac{1}{20}(18 - 3x_2 + z_2)$ = 0.826	$z_3 = \frac{1}{20}(25 + 3y_2 - 2x_2)$ = 1.28
$x_4 = \frac{1}{20}(17 + 2z_3 - y_3)$ = 0.937	$y_4 = \frac{1}{20}(18 - 3x_3 + z_3)$ = 0.823	$z_4 = \frac{1}{20}(25 + 3y_3 - 2x_3)$ = 1.28

$$x = 0.937$$
, $y = 0.823$ and $z = 1.28$.

Cayley-Hamilton theorem: Every square matrix satisfies its characteristic equation.

Example: 1. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$, by Cayley-Hamilton theorem.

Sol: Characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 3-\lambda & 1\\ 2 & 4-\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 - 7\lambda + 10 = 0.$$

By Cayley-Hamilton theorem $A^2 - 7A + 10I = 0$

$$\implies 10A^{-1} = 7I - A$$

$$\therefore A^{-1} = \frac{1}{10} \left\{ \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \right\} = \frac{1}{10} \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}.$$