소프트웨어 공학 Lecture #0: 소개 ^{이수철} dakterlee@gmail.com

4

소프트웨어와 시스템 • 시스템: 필요한 기능을 실현시키기 위하여 관련 요소를 어떤 법칙에 따라 조합한 집합체 • 시스템의 성질 • _____ - 교통시스템은 신호기, 신호체계, 도로망 등 여러 요소가 있고 이들 요소들은 원활한 교통 소통 과 제어를 위해 밀접하게 연관 • 기능적 분할 - 시스템은 규모가 작은 부속 시스템들로 나눌 수 있음 • ____ - 시스템은 어떤 것이건 시스템과 주변 환경을 구분할 수 있는 경계가 있음. 이곳이 입력과 출력 이 만나는 곳 • 자동화 경계 - 시스템이 자동화된 부분과 수동 작업 부분을 나누는 경계

 \sim

단계적 개발 프로세스

- 코딩
 - 시스템 설계를 프로그래밍 언어로 변환
 - 코딩 작업 중에는 읽기 쉽고 이해하기 쉬운 프로그램이 되어야함
 - _____과 ____ 을 추구
- _____: 소프트웨어의 결함을 찾아냄
 - 소프트웨어 개발 단계에서 사용되는 중요한 품질 제어 수단
- 프로그램에 포함된 요구, 설계, 코딩 오류를 밝힘
- 단위 테스팅(unit testing) : 모듈이나 컴포넌트를 개별적으로 시험
- _____(____) : 모듈 사이의 연결을 시험
- 인수 시험(acceptance testing) : 시스템이 잘 실행되는지 고객에게 데모

^{새로 쓴} 소프트웨어 공학

37

일반적인 개발 단계

표 1.3 개발 프로세스 각 단계

단계	초점	주요작업과 기술	결과물
분석	● 시스템을 위하여 무엇을 만 들 것인가?	1. 분석 전략 수립(3장) 2. 요구 결정(3장) 3. 사용 사례 분석(4장) 4. 구조적 모델링(6장) 5. 동적 모델링(6장)	
설계	● 시스템을 어떻게 구축할 것 인가?	1. 설계 전략 수립(7장) 2. 아키텍처 설계(5장) 3. 인터페이스 설계(7장) 4. 프로그램 설계 5. 데이터베이스, 파일 설계(7장)	설계 명세서
구현	•a	1. 프로그래밍(8장) 2. 단위 테스팅(9장) 3. 시스템 안정화 및 유지보수(10장)	새 시스템, 유지보수 계획
테스팅	● 시스템이 요구에 맞게 실행 되나?	1. 통합 테스팅(9장) 2. 시스템 테스팅(9장) 3. 인수 테스팅(9장) 4. 시스템의 설치(9장) 5. 프로젝트 관리 계획	테스팅 결과 보고서

새로 쓴 소프트웨어 공학

38

New Software Engineering

품질 보증

- 품질 보증 : 개발되고 있는 소프트웨어가 _____ 와 품질 수준을 만족시킬 것이라는 것을 보장하는 작 언
- _____ (verification)
- 개발작업이 프로젝트를 위해 선택된 프로세스와 방법에 맞게 수행되었는지 체크
- 요구된 소프트웨어 결과물이 품질 수준에 맞게 생산되었는지 검사
- ____(validation) : 개발 프로세스에 의하여 생성된 결과물의 정확성을 체크
 - 정적 _____(static validation) : 소프트웨어를 실행시키지 않고 결과물의 정확성을 체크
 - 동적 _____(dynamic validation) : 소프트웨어를 실행시켜 잘 작동하는지 확인
- 테스팅
 - 동적 _____ 작업, 테스트 결과가 예상되는 결과와 일치하는지 체크

^{새로 쓴} 소프트웨어 공학

39

프로젝트 관리

- 프로세스와 관련된 이슈를 적절히 관리
 - 작업 과정에 자원을 어떤 작업에 할당할 것인지 기술
 - ______은 프로젝트의 개발 프로세스를 모니터링하고 제어하는데 사용되는 기준이 됨
- 프로세스 관리
 - 객관적인 데이터가 필요. 소프트웨어 메트릭이 사용
 - 메트릭 : 개발한 프로덕트, 소프트웨어 자체의 특성을 계량화
 - 메트릭 : 소프트웨어 개발에 사용된 프로세스의 생산성을 계량화

^{새로 쓴} 소프트웨어 공학

40

