딥러닝의 통계적이해

1강. 딥러닝의 개요

- 4. 인공신경망

- 1. 인공지능의 시대 5. 딥러닝 시대의 도래
- 2. 머신러닝 6. 딥러닝 발전의 배경
- 3. 신경망 7. 딥러닝 프레임워크

한국방송통신대 이긍희 교수

오늘의 학습목표

- 1. 딥러닝과 머신러닝을 비교한다.
- 2. 딥러닝의 역사와 확산배경을 이해한다.
- 3. 신경망의 구조를 이해한다.
- 4. 여러 가지 신경망을 이해한다.
- 5. 딥러닝 구현 프레임워크를 살펴본다.

인공지능

- ◆ 인공지능(Artificial Intelligence) : 인간의 지능을 컴퓨터로 구현
 - 추론·탐색, 지식의 연결, 머신러닝·딥러닝 순으로 발전

Deep Blue(1997)

출처 : getty images

IBM Watson(2011): Jeopardy!

출처: https://www.youtube.com/watch?v= P18EdAKu C1U

AlphaGo(2016)

출처: alphagomovie.com

인공지능의 이용

- ◆ 인공지능은 이미지 식별, 음성인식, 기계번역, 로봇, 자율주행차, 바둑, 게임, 창작 등에 광범위하게 활용
 - 데이터가 보다 축적되면서 데이터 기반 인공지능은 보다 확산

2. 메신러닝

머신러닝과 딥러닝

머신러닝의 정의

- ◆ 컴퓨터: 문제를 수식화·논리화 → 규칙
 - 코딩을 통해 프로세서를 제어해서 문제를 해결
 - 규칙이 많아질수록 성능이 낮아지는 경향

머신러닝의 정의

◆ 머신러닝(기계학습) : 컴퓨터가 데이터로부터 스스로 학습하여 패턴(규칙)을 찾아내어 과제를 수행

머신러닝의 구성

◆ 머신러닝: 과제, 데이터, 모형, 손실함수, 최적화 알고리즘

- 과제 : 분류와 예측으로 구분

- 데이터 : 입력 데이터와 출력 데이터(label)로 구분

- 모형 : 확률 모형과 알고리즘 모형

- 손실함수 : 머신러닝의 성과함수

머신러닝의 구성

- 최적화 알고리즘 : 최소제곱법, 최대가능도추정법, 경사하강법
 - · 학습(learning): 손실함수가 최소가 되도록, 데이터를 기반으로 한 최적화 알고리즘을 통해 머신러닝 모형을 지속적으로 수정

머신러닝의 학습방법

- ◆ 머신러닝의 대부분은 성과 높은 지도 학습, 반면에 인간 지능의 대부분은 비지도 학습'
 - 지도 학습 (supervised learning) : 예측
 - 비지도 학습(unsupervised learning) : 군집화
 - 강화 학습(reinforcement learning) : 보상액이 최대가 되도록 행동하고 시행착오를 통해 목표에 도달하는 학습

3. 신경망

3. 신경망

인간의 뇌

◆ 인간의 뇌: 1.5Kg, 860억개 뉴런, 시냅스로 연결 - 뇌는 뉴런의 연결망

출처: https://namu.wiki/w/%EB%89%B4%EB%9F%B0

3. 신경망

뉴런

- ◆ 뉴런의 구조
 - 시냅스 : 축색말단과 다른 뉴런이 접하는 부분

출처 : 위키피디아 <뉴런>

인공신경망의 구조

◆ 인공신경망: 인간의 신경망을 모방

인공신경망의 구조

◆ 신경망은 뉴런과 네트워크(network)로 구성

층(layer)

- ◆ 뉴런들이 모여서 층(layer)을 이름
 - 입력층(input layer): 정보가 입력되는층
 - 출력층(output layer): 예측하거나 분류하는 층
 - 은닉층(hidden layer): 입력층과 출력층 사이의 층
- ◆ 네트워크: 층 내의 뉴런은 서로 연결되지는 않고 아래층, 위층과 연결
- ◆ 가중치(weight): 네트워크의 연결강도

딥러닝 모형

◆ 딥러닝 모형: 은닉층의 수가 많은 신경망

출처: Szegedy et al.(2015)

신경망의 종류

◆ 네트워크 연결 구조 따른 다양한 신경망

- 퍼셉트론

- 다층 신경망(MLP)

- 합성곱 신경망(CNN) - 순환 신경망(RNN), LSTM

- 오토인코더(Autoencoder) 모형
- 생성적 적대 신경망(GAN)

신경망의 작성

◆ 신경망의 작성과정은 머신러닝 모형과 동일

머신러닝과 딥러닝

- ◆ 딥러닝 모형은 데이터의 패턴을 계층적 네트워크로 이해할 수 있도록 설계된 신경망
 - 신경망의 층이 쌓아지면서 입력 데이터 보다 추상화

딥러닝의 역사

연도	내용	인물
1943	Neural networks	Mcculloch과 Pitts
1956	Al	Dartmouth Summer Research Project
1957	Perceptron	Roseblatt과 Wightman
1960	Adaline	Widrow와 Hoff
1969	XOR problem	Minsky와 Papert
1986	backpropagation	Rumelhart, Hinton, Williams
1986	RBM	Smolensky
1986	RNN	Rumelhart
1989	CNN	LeCun 등
1997	LSTM	Hochreiter와 Schmidhuber
2006	DBN(Deep Belief Network)	Hinton 등

딥러닝의 역사

연도	내용	인물
2012	AlexNet, Dropout	Krizhevsky 등
2013	Word2vec	Tomas Mikolov 등
2014	DeepFace	Facebook
2014	GAN	Ian Goodfellow
2014	Seq2seq	Sutskever 등
2015	Attention mechanism	Bahdanau 등
2016	AlphaGo	Deepmind
2017	AlphaZero, Capsule Networks	Deepmind, Hinton 등
2017	Transformer	Vaswani 등
2018	BERT	Devlin 등

이미지 인식 경진대회

◆ 이미지넷: 2007년 Li 교수 10억장 이미지 레이블링

질의응답 딥러닝 모형

◆ 스탠퍼드 질의응답 데이터셋(SQuAD)

6. 딥러닝 발전의 배경

6. 딥러닝 발전의 미래

딥러닝 발전의 배경

- ◆ 빅데이터의 출현: 대량의 데이터의 축적과 이미지넷과 같은 데이터의 축적
- ◆ GPU, CPU, 클라우드(Cloud), 메모리의 발전은 딥러닝 확산의 계기
- ◆ 새로운 알고리즘 도입 : ReLU, 배치 정규화, 초기가중 치의 변화

7. 딥러닝 프레임워크

7. 딥러닝 프레임워크

딥러닝 프레임워크

◆ 딥러닝 프레임워크 : Tensorflow, Keras, PyTorch, Caffe, Theano, MXNET, Gluon 등

◆ GPU가 포함된 PC, 클라우드, 코랩(Colaboratory)을 이용하여 수행

학습정리

- ✓ 딥러닝은 머신러닝의 일종으로 신경망 기반 학습이다.
- ✓ 딥러닝은 빅데이터, 하드웨어 발전, 알고리즘 혁신 등으로 빠르게 발전하고 있다.
- ✓ 딥러닝은 음성인식, 이미지식별, 번역, 자율주행차 등에 광범위하게 이용되고 있다.

2강. 딥러닝과 통계학