COMP9444 Neural Networks and Deep Learning 2c. PyTorch

Typical Structure of a PyTorch Progam

```
# create neural network
net = MyNetwork().to(device) # CPU or GPU
# prepare to load the training and test data
train_loader = torch.utils.data.DataLoader(...)
test loader = torch.utils.data.DataLoader(...)
# choose between SGD, Adam or other optimizer
optimizer = torch.optim.SGD(net.parameters,...)
for epoch in range(1, epochs): # training loop
   train(args, net, device, train_loader, optimizer)
   # periodically evaluate network on test data
   if epoch % 10 == 0:
       test( args, net, device, test_loader)
```

Defining a Network Structure

```
class MyNetwork(torch.nn.Module):
    def __init__(self):
        super(MyNetwork, self).__init__()
        # define structure of the network here
    def forward(self, input):
        # apply network and return output
```

Defining a Custom Model

```
This module computes a function of the form (x, y) \mapsto Ax \log(y) + By^2
import torch.nn as nn
class MyModel(nn.Module):
  def __init__(self):
     super(MyModel, self).__init__()
     self.A = nn.Parameter(torch.randn((1),requires_grad=True))
     self.B = nn.Parameter(torch.randn((1),requires_grad=True))
  def forward(self, input):
     output = self.A * input[:,0] * torch.log(input[:,1]) \
            + self.B * input[:,1] * input[:,1]
     return output
```

Building a Net from Individual Components

```
class MyModel(torch.nn.Module):
    def init (self):
        super(MyModel, self).__init__()
        self.in_to_hid = torch.nn.Linear(2,2)
        self.hid_to_out = torch.nn.Linear(2,1)
    def forward(self, input):
        hid_sum = self.in_to_hid(input)
        hidden = torch.tanh(hid sum)
        out_sum = self.hid_to_out(hidden)
        output = torch.sigmoid(out_sum)
        return output
```

Defining a Sequential Network

```
class MyModel(torch.nn.Module):
    def __init__(self, num_input, num_hid, num_out):
        super(MyModel, self).__init__()
        self.main = nn.Sequential(
            nn.Linear(num_input, num_hid),
            nn.Tanh(),
            nn.Linear(num_hid, num_out),
            nn.Sigmoid()
    def forward(self, input):
        output = self.main(input)
        return output
```

Sequential Components

Network layers:

- nn.Linear()
- nn.Conv2d() (Week 4)

Intermediate Operators:

- nn.Dropout()
- nn.BatchNorm() (Week 4)

Activation Functions:

- nn.Sigmoid()
- nn.Tanh()
- nn.ReLU() (Week 3)

Declaring Data Explicitly

```
import torch.utils.data

# input and target values for the XOR task
input = torch.Tensor([[0,0],[0,1],[1,0],[1,1]])
target = torch.Tensor([[0],[1],[1],[0]])

xdata = torch.utils.data.TensorDataset(input,target)
train_loader = torch.utils.data.DataLoader(xdata,batch_size=4)
```

Loading Data from a .csv File

```
import pandas as pd

df = pd.read_csv("sonar.all-data.csv")

df = df.replace('R',0)

df = df.replace('M',1)

data = torch.tensor(df.values,dtype=torch.float32)

num_input = data.shape[1] - 1

input = data[:,0:num_input]

target = data[:,num_input:num_input+1]

dataset = torch.utils.data.TensorDataset(input,target)
```

Custom Datasets

```
from data import ImageFolder
    # load images from a specified directory
    dataset = ImageFolder(folder, transform)

import torchvision.datasets as dsets
    # download popular image datasets remotely
    mnistset = dsets.MNIST(...)
    cifarset = dsets.CIFAR10(...)
    celebset = dsets.CelebA(...)
```

Choosing an Optimizer

Training

```
def train(args, net, device, train_loader, optimizer):
   for batch_idx, (data,target) in enumerate(train_loader):
      optimizer.zero_grad()  # zero the gradients
      output = net(data)  # apply network
      loss = ...  # compute loss function
      loss.backward()  # compute gradients
      optimizer.step()  # update weights
```

Loss Functions

```
loss = torch.sum((output-target)*(output-target))
loss = F.nll_loss(output, target)  # (Week 3)
loss = F.binary_cross_entropy(output, target) # (Week 3)
loss = F.softmax(output, dim=1) # (Week 3)
loss = F.log_softmax(output, dim=1) # (Week 3)
```

Testing

```
def test(args, net, device, test_loader):
    with torch.no_grad(): # suppress updating of gradients
        net.eval() # toggle batch norm, dropout
        for data, target in test_loader:
            output = model(data)
            test_loss = ...
            print(test_loss)
        net.train() # toggle batch norm, dropout back again
```

Computational Graphs

PyTorch automatically builds a computational graph, enabling it to backpropagate derivatives.

Every parameter includes .data and .grad components, for example:

A.data

A.grad

optimizer.zero_grad() sets all .grad components to zero.

loss.backward() updates the .grad component of all Parameters by backpropagating gradients through the computational graph.

optimizer.step() updates the .data components.

Controlling the Computational Graph

If we need to stop the gradients from being backpropagated through a certain variable (or expression) A, we can exclude it from the computational graph by using:

A.detach()

By default, loss.backward() discards the computational graph after computing the gradients.

If needed, we can force it to keep the computational graph by calling it this way:

loss.backward(retain_graph=True)