

Rob J Hyndman

Functional time series

with applications in demography

6. Coherent functional forecasting

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- **3** Coherent cohort life expectancy forecasts
- 4 Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- 6 References

Let $s_{t,j}(x)$ be the smoothed mortality rate for age x in group j in year t.

- Groups may be males and females
- Groups may be states within a country.
- Expected that groups will behave similarly.

 - Existing functional models do not impose
 - coherence.

Functional time series with applications in demography

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- Coherent forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

- Groups may be males and females.
- Groups may be states within a country.
- Expected that groups will behave similarly.
- **Coherent** forecasts do not diverge over time.
- Existing functional models do not impose coherence.

Forecasting the coefficients

$$y_{t,x} = s_t(x) + \sigma_t(x)\varepsilon_{t,x},$$

$$s_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + r_t(x)$$

- We use ARIMA or ETS models for each coefficient $\{\beta_{1,i,k}, \ldots, \beta_{n,i,k}\}$.
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2). All ETS models are non-stationary.
- Non-stationary forecasts will diverge. Hence the mortality forecasts are not coherent.

Forecasting the coefficients

$$y_{t,x} = s_t(x) + \sigma_t(x)\varepsilon_{t,x},$$

$$s_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + r_t(x)$$

- We use ARIMA or ETS models for each coefficient $\{\beta_{1,j,k}, \ldots, \beta_{n,j,k}\}$.
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2). All ETS models are non-stationary.
- Non-stationary forecasts will diverge. Hence the mortality forecasts are not coherent.

Forecasting the coefficients

$$y_{t,x} = s_t(x) + \sigma_t(x)\varepsilon_{t,x},$$

$$s_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + r_t(x)$$

- We use ARIMA or ETS models for each coefficient $\{\beta_{1,j,k}, \ldots, \beta_{n,j,k}\}$.
- The ARIMA models are non-stationary for the first few coefficients (k = 1, 2). All ETS models are non-stationary.
- Non-stationary forecasts will diverge. Hence the mortality forecasts are not coherent.

Male fts model

Female fts model

Australian mortality forecasts

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{s_{t,M}(x)s_{t,F}(x)}$$
 and $r_t(x) = \sqrt{s_{t,M}(x)/s_{t,F}(x)}$.

Product and ratio are approximately independent

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{s_{t,M}(x)s_{t,F}(x)}$$
 and $r_t(x) = \sqrt{s_{t,M}(x)/s_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$p_t(x) = \sqrt{s_{t,M}(x)s_{t,F}(x)}$$
 and $r_t(x) = \sqrt{s_{t,M}(x)/s_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Key idea

Model the geometric mean and the mortality ratio instead of the individual rates for each sex separately.

$$\rho_t(x) = \sqrt{s_{t,M}(x)s_{t,F}(x)}$$
 and $r_t(x) = \sqrt{s_{t,M}(x)/s_{t,F}(x)}$.

- Product and ratio are approximately independent
- Ratio should be stationary (for coherence) but product can be non-stationary.

Product data

Ratio data

$$ho_t(x) = \sqrt{s_{t,\mathsf{M}}(x)s_{t,\mathsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t,\mathsf{M}}(x)/s_{t,\mathsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

 $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p, a) or ARFIMA(p, d, a).

■ No restrictions for $\beta_{t,1}$, .

$$ho_t(x) = \sqrt{s_{t, extsf{M}}(x)s_{t, extsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t, extsf{M}}(x)/s_{t, extsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $s_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $s_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$

$$ho_t(x) = \sqrt{s_{t, extsf{M}}(x)s_{t, extsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t, extsf{M}}(x)/s_{t, extsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $s_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $s_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x).$

$$ho_t(x) = \sqrt{s_{t, extsf{M}}(x)s_{t, extsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t, extsf{M}}(x)/s_{t, extsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.
- Forecasts: $s_{n+h|n,M}(x) = p_{n+h|n}(x)r_{n+h|n}(x)$ $s_{n+h|n,F}(x) = p_{n+h|n}(x)/r_{n+h|n}(x)$.

Product model

Ratio model

Product forecasts

Ratio forecasts

Coherent forecasts

Ratio forecasts

Life expectancy forecasts

Life expectancy forecasts

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$s_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,j}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The γ_{tj} coefficients will be highly correlated with each other, and so independent models are not appropriate

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$s_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,i}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$s_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,j}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- \blacksquare AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$s_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,j}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Li-Lee method

Li & Lee (*Demography*, 2005) method is a special case of our approach.

$$s_{t,j}(x) = \mu_j(x) + \beta_t \phi(x) + \gamma_{t,j} \psi_j(x) + e_{t,j}(x)$$

where f is unsmoothed log mortality rate, β_t is a random walk with drift and $\gamma_{t,j}$ is AR(1) process.

- No smoothing.
- Only one basis function for each part,
- Random walk with drift very limiting.
- AR(1) very limiting.
- The $\gamma_{t,j}$ coefficients will be highly correlated with each other, and so independent models are not appropriate.

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- **3** Coherent cohort life expectancy forecasts
- **4** Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- 6 References

ARFIMA model

Non-seasonal ARIMA model

$$\phi_p(B)(1-B)^d y_t = c + \theta_q(B)\varepsilon_t$$

p, d and q are integer.

- An ARFIMA model is identical except that $d > -\frac{1}{2}$ can be non-integer.
- $lacksquare (1-B)^d$ is given by the binomial expansion ($|d|<rac{1}{2}$)

$$(1-B)^d = 1 + \sum_{j=1}^{\infty} \frac{\pi_j}{j!} B^j$$
 $\pi_j = \prod_{k=1}^{j} (k-1-d)$

ARFIMA model

Non-seasonal ARIMA model

$$\phi_p(B)(1-B)^d y_t = c + \theta_q(B)\varepsilon_t$$

p, d and q are integer.

- An ARFIMA model is identical except that $d > -\frac{1}{2}$ can be non-integer.
- \blacksquare $(1-B)^d$ is given by the binomial expansion $(|d|<\frac{1}{2})$

$$(1-B)^d = 1 + \sum_{j=1}^{\infty} \frac{\pi_j}{j!} B^j$$
 $\pi_j = \prod_{k=1}^{j} (k-1-d)$

$$-rac{1}{2} < d < 0$$
 y_t is stationary with "anti-persistence" $0 < d < rac{1}{2}$ y_t is stationary with "long memory" $d \geq rac{1}{2}$ y_t is non-stationary

ARFIMA model

Non-seasonal ARIMA model

$$\phi_{\mathcal{P}}(\mathcal{B})(1-\mathcal{B})^{d}\mathbf{y}_{t} = \mathcal{C} + \theta_{q}(\mathcal{B})\varepsilon_{t}$$

p, d and q are integer.

- An ARFIMA model is identical except that $d > -\frac{1}{2}$ can be non-integer.
- \blacksquare $(1-B)^d$ is given by the binomial expansion $(|d|<\frac{1}{2})$

$$(1-B)^d = 1 + \sum_{j=1}^{\infty} \frac{\pi_j}{j!} B^j$$
 $\pi_j = \prod_{k=1}^{j} (k-1-d)$

$$-rac{1}{2} < d < 0$$
 y_t is stationary with "anti-persistence" $0 < d < rac{1}{2}$ y_t is stationary with "long memory" $d \geq rac{1}{2}$ y_t is non-stationary

$$\phi_p(B)(1-B)^d y_t = c + \theta_q(B) \varepsilon_t$$
 p and q are integer, $0 < d < \frac{1}{2}$.

- d can be estimated by MLE if p and q are known (Haslett & Raftery, 1989).
- So we set p = 2 and q = 0, and estimate d constrained to (0, 0.5).
- Then fix d, and select p and q using auto.arima().
- Automated in arfima().

$$\phi_p(B)(1-B)^d y_t = c + \theta_q(B) \varepsilon_t$$
 p and q are integer, $0 < d < \frac{1}{2}$.

- d can be estimated by MLE if p and q are known (Haslett & Raftery, 1989).
- So we set p = 2 and q = 0, and estimate d constrained to (0, 0.5).
- Then fix d, and select p and q using auto.arima().
- Automated in arfima().

$$\phi_p(B)(1-B)^dy_t = c + \theta_q(B)\varepsilon_t$$
 p and q are integer, $0 < d < \frac{1}{2}$.

- d can be estimated by MLE if p and q are known (Haslett & Raftery, 1989).
- So we set p = 2 and q = 0, and estimate d constrained to (0, 0.5).
- Then fix d, and select p and q using auto.arima().
- Automated in arfima().

$$\phi_p(B)(1-B)^dy_t = c + \theta_q(B)\varepsilon_t$$
 p and q are integer, $0 < d < \frac{1}{2}$.

- d can be estimated by MLE if p and q are known (Haslett & Raftery, 1989).
- So we set p = 2 and q = 0, and estimate d constrained to (0, 0.5).
- Then fix d, and select p and q using auto.arima().
- Automated in arfima().

Ratio model

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- 3 Coherent cohort life expectancy forecasts
- 4 Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- 6 References

Life expectancy (recap)

m(x) = mortality rate at age x.

Life expectancy at birth

$$e_0 = \int_0^\infty \exp\left[\int_0^x m(u)du\right] dx$$

- Approximated using life table methods.
- Iterate for x = 0, 1, ...,, starting with $\ell_0 = 1$:

Variations for x = 0 and upper age group.

 $q_x = m_x/(1+0.5m_x)$ Prob of death at age x $d_x = \ell_x q_x$ Propn deaths at age x $\ell_{x+1} = \ell_x - d_x$ Propn survive to age x $\ell_x = \ell_x - 0.5d_x$ Propn survive to age x + 0.5

$L_x = \ell_x - 0.5 d_x$ Propr Approximate life expectancy at birth

$$e_0 = \sum_{x=0}^{\infty} L_x$$

Life expectancy (recap)

m(x) = mortality rate at age x.

Life expectancy at birth

$$e_0 = \int_0^\infty \exp\left[\int_0^x m(u)du\right] dx$$

- Approximated using life table methods.
- Iterate for x = 0, 1, ...,, starting with $\ell_0 = 1$:

Variations for x = 0 and upper age group.

$$q_x = m_x/(1+0.5m_x)$$
 Prob of death at age x
 $d_x = \ell_x q_x$ Propn deaths at age x
 $\ell_{x+1} = \ell_x - d_x$ Propn survive to age x
 $\ell_x = \ell_x - 0.5d_x$ Propn survive to age $x + 0.5$

Approximate remaining life expectancy at age \boldsymbol{u}

$$e_u = \sum_{x=u}^{\infty} L_x$$

Life expectancy (recap)

$$\log[m_t(x_i)] = s_t(x_i) + \sigma_t(x_i)\varepsilon_{t,i},$$

$$s_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \,\phi_k(x) + r_t(x)$$

Non-coherent cohort life expectancy

- Computed from $m_{s+x}(x)$ for a given s.
- Combine observed $m_{s+x}(x)$ where $s+x \le T$ with forecast $m_{s+x}(x)$ for s+x > T.
- Compute $e_{0,s}^*$.
- Prediction intervals by simulation
 - $r_t(x)$ resampled
 - $\varepsilon_{t,i} \sim N(0,1)$
 - $\beta_{t,k}$ simulated from ARIMA model

Cohort life expectancy

Cohort life expectancy

$$ho_t(x) = \sqrt{s_{t,\mathsf{M}}(x)s_{t,\mathsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t,\mathsf{M}}(x)/s_{t,\mathsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{k=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

 \blacksquare { $\gamma_{t,\ell}$ } and { $\beta_{t,k}$ } simulated.

 $\blacksquare \{e_t(x)\}$ and $\{w_t(x)\}$ bootstrapped

$$ho_t(x) = \sqrt{s_{t, extsf{M}}(x)s_{t, extsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t, extsf{M}}(x)/s_{t, extsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{k=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- \blacksquare $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- \blacksquare { $e_t(x)$ } and { $w_t(x)$ } bootstrapped.
- Generate many future sample paths for $s_{t,M}(x)$ and $s_{t,F}(x)$ to estimate uncertainty in e_u .

$$ho_t(x) = \sqrt{s_{t, extsf{M}}(x)s_{t, extsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t, extsf{M}}(x)/s_{t, extsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{\ell=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- \blacksquare $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- $\{e_t(x)\}$ and $\{w_t(x)\}$ bootstrapped.
- Generate many future sample paths for $s_{t,M}(x)$ and $s_{t,F}(x)$ to estimate uncertainty in e_u .

$$ho_t(x) = \sqrt{s_{t,\mathsf{M}}(x)s_{t,\mathsf{F}}(x)}$$
 and $r_t(x) = \sqrt{s_{t,\mathsf{M}}(x)/s_{t,\mathsf{F}}(x)}.$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_t(x)] = \mu_r(x) + \sum_{k=1}^L \gamma_{t,\ell} \psi_\ell(x) + w_t(x).$$

- \blacksquare $\{\gamma_{t,\ell}\}$ and $\{\beta_{t,k}\}$ simulated.
- \blacksquare $\{e_t(x)\}$ and $\{w_t(x)\}$ bootstrapped.
- Generate many future sample paths for $s_{t,M}(x)$ and $s_{t,F}(x)$ to estimate uncertainty in e_u .

Cohort life expectancy

Complete code

```
library(demography)
# Read data
aus <- hmd.mx("AUS","username","password","Australia")</pre>
# Smooth data
aus.sm <- smooth.demogdata(aus)</pre>
#Fit model
aus.pr <- coherentfdm(aus.sm)</pre>
# Forecast
aus.pr.fc <- forecast(aus.pr, h=100)</pre>
# Compute life expectancies
e50.m.aus.fc <- flife.expectancy(aus.pr.fc, series="male",
  age=50, PI=TRUE, nsim=1000, type="cohort")
e50.f.aus.fc <- flife.expectancy(aus.pr.fc, series="female",
  age=50. PI=TRUE. nsim=1000. type="cohort")
```


- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

- Compute age 50 remaining cohort life expectancy with a rolling forecast origin beginning in 1921.
- Compare against actual cohort life expectancy where available.
- Compute 80% prediction interval actual coverage.

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- 3 Coherent cohort life expectancy forecasts
- **4** Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- 6 References

$$p_t(x) = \left[s_{t,1}(x) s_{t,2}(x) \cdots s_{t,j}(x)
ight]^{1/j}$$
 and $r_{t,j}(x) = s_{t,j}(x) / p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,l} \psi_{l,l}(x) + w_{t,l}(x).$$

 $p_t(x)$ and all $r_{tj}(x)$ = Ratios satisfy constraint are approximately $r_{tj}(x)r_{tj}(x)r_{tj}(x) = 1$. independent.

$$p_t(x) = \left[s_{t,1}(x) s_{t,2}(x) \cdots s_{t,j}(x)
ight]^{1/j}$$
 and $r_{t,j}(x) = s_{t,j}(x) ig/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,j} \psi_{l,j}(x) + w_{t,j}(x).$$

 $p_t(x)$ and all $r_{t,j}(x)$ Ratios satisfy constraint are approximately $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,j}(x)=1$.

$$p_t(x) = \left[s_{t,1}(x) s_{t,2}(x) \cdots s_{t,j}(x)
ight]^{1/J}$$
 and $r_{t,j}(x) = s_{t,j}(x) / p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,l} \psi_{l,l}(x) + w_{t,l}(x).$$

■ $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x)=1.$

$$ho_t(x) = \left[s_{t,1}(x) s_{t,2}(x) \cdots s_{t,j}(x)
ight]^{1/j}$$
 and $r_{t,j}(x) = s_{t,j}(x)/
ho_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,l} \psi_{l,l}(x) + w_{t,l}(x).$$

■ $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,l}(x)=1.$

$$p_t(x) = \left[s_{t,1}(x) s_{t,2}(x) \cdots s_{t,j}(x)
ight]^{1/j}$$
 and $r_{t,j}(x) = s_{t,j}(x) ig/ p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{L} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{l=1}^{L} \gamma_{t,l,l} \psi_{l,l}(x) + w_{t,l}(x).$$

■ $p_t(x)$ and all $r_{t,j}(x)$ are approximately independent.

- Ratios satisfy constraint $r_{t,1}(x)r_{t,2}(x)\cdots r_{t,J}(x)=1$.

$$\log[s_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(\mathbf{x}) = \mu_p(\mathbf{x}) + \mu_{r,j}(\mathbf{x})$ is group mean
- $\mathbf{z}_{t,j}(\mathbf{x}) = e_t(\mathbf{x}) + w_{t,j}(\mathbf{x})$ is error term.
- $* \{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).

Functional time series with applications in demography

Coherent forecasts for J groups

$$\log[s_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

Coherent forecasts for / groups

$$\log[s_{t,j}(x)] = \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}]$$

$$= \mu_j(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^{L} \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x)$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$

Coherent forecasts for J groups

$$\begin{aligned} \log[s_{t,j}(x)] &= \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}] \\ &= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j} \psi_{\ell,j}(x) + z_{t,j}(x) \end{aligned}$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

Coherent forecasts for / groups

$$\begin{aligned} \log[s_{t,j}(x)] &= \log[p_t(x)r_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}] \\ &= \mu_j(x) + \sum_{k=1}^K \beta_{t,k}\phi_k(x) + \sum_{\ell=1}^L \gamma_{t,\ell,j}\psi_{\ell,j}(x) + z_{t,j}(x) \end{aligned}$$

- $\mu_j(x) = \mu_p(x) + \mu_{r,j}(x)$ is group mean
- $z_{t,j}(x) = e_t(x) + w_{t,j}(x)$ is error term.
- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- No restrictions for $\beta_{t,1}, \ldots, \beta_{t,K}$.

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- 3 Coherent cohort life expectancy forecasts
- 4 Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- 6 References

Outline

- 1 Forecasting groups
- 2 Automatic ARFIMA forecasting
- 3 Coherent cohort life expectancy forecasts
- **4** Coherent forecasts for J > 2 groups
- **5** Forecasting state mortality
- **6** References

Selected references

Hyndman, Booth, Yasmeen (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models".

Demography **50**(1), 261–283.

Hyndman (2014). demography: Forecasting mortality, fertility, migration and population data.

cran.r-project.org/package=demography