

Prof. Dr. Sebastian Wild

Outline

6 Advanced Parameterized Ideas

- 6.1 Linear Programs A Mighty Blackbox Tool
- 6.2 Linear Programs Reformulation Tricks
- 6.3 Linear Programs The Simplex Algorithm
- 6.4 Integer Linear Programs
- 6.5 LP-Based Kernelization
- 6.6 Lower Bounds by ETH

6.1 Linear Programs – A Mighty Blackbox Tool

Linear Programs

- ► *Linear programs* (*LPs*) are a class of optimization problems of **continuous** (numerical) variables
- ► can be exactly solved in worst case polytime (LinearProgramming ∈ P)
 - ▶ interior-point methods, Ellipsoid method
- routinely solved in practice to optimality with millions of variables and constraints
 - ► Simplex algorithm, interior-point methods
 - many existing solvers, commercial and open source (e.g., HiGHS)

Hessy James's Apple Farm

- ► Hessy tries to maximize the profit of his apple farm
 - He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - ► He has an orchard of 5 000 m²
 - each tree needs 4 m² of orchard space
 - each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - ► Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year
- → How many trees of each variety should Hessy plant?
 - ▶ What will constrain us most? Space? Fertilizer? Harvest hours?
 - What profit can Hessy expect?

Formal Linear Program for Hessy James's Apple Farm

- ► Classic application of linear programming in *operations research* (OR)
- ► We formally write LPs as follows:

► Terminology:

- \triangleright s and k are the two *variables* of the problem; these are always real numbers.
- ▶ A vector $(s, k) \in \mathbb{R}^2$ is a *feasible solution* for the LP if it satisfied all constraints.
- ► The largest value of the objective function (over all feasible solutions) is the (optimal) value z*of the LP
- ▶ A feasible solution $(s^*, k^*) \in \mathbb{R}^2$ with optimal objective value z^* is called an *optimal solution*

2D LPs - Graphical Solution

LPs with **two** variables can be solved graphically

- → Hessy should plant
- ► 100 Sossenheimer Roter trees and __hmm...
- ► 533+¹/₃ Korbacher Edelrenette trees
- ► Harvest **and** fertilizer *tight*
- orchard space isn't
- → know what to change

LPs - The General Case

► General LP:

min
$$c_1x_1 + \cdots + c_nx_n$$

s. t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$)
 $x_j \ge 0$ (for $j = 1, \dots, r$)
 $x_j \le 0$ (for $j = r + 1, \dots, n$)
jective function "don't care" (just to make it explicit)

- arbitrary linear objective function
- ▶ arbitrary **linear** constraints, of type "=", "≤" or "≥"
- variables with non-negativity constraint and unconstrained variables
- ► In general, an LP can
 - (a) have a finite optimal objective value
 - (b) be *infeasible* (contradictory constraints / empty feasibility region), or
 - (c) be *unbounded* (allow arbitrarily small objective values " $-\infty$ ")
- → in polytime, can detect which case applies and compute optimal solution in case (a)

Classic Modeling Example – Max Flow

- ▶ The maximum-s-t-flow problem in a graph G = (V, E) can be reduced to an LP (Flow)
 - ▶ variable f_e for each edge $e \in E$
 - ightharpoonup maximize flow value F = flow out of s
 - ightharpoonup constraint for edge capacity C(e) at each edge
 - ightharpoonup constraint for flow conservation at each vertex v (except s and t)

$$\begin{array}{lll} \max & F \\ \text{s. t.} & F & = & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} \\ & & f_{vw} & \leq & C(vw) & (\text{for } vw \in E) \\ & & \sum_{w \in V} f_{wv} & = & \sum_{w \in V} f_{vw} & (\text{for } v \in V \setminus \{s,t\}) \\ & & f_{e} & \geq & 0 & (\text{for } e \in E) \end{array} \tag{Flow}$$

6.2 Linear Programs – Reformulation Tricks

How to solve an LP?

- Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - in practice: call good solver!
- ▶ But as with any good tool, it helps to gave an idea of **how** it works to effectively use it
- → We will briefly visit the conceptual ideas of the simplex algorithm

Recall: General Form of LPs

► General LP:

min
$$c_1x_1 + \dots + c_nx_n$$

s. t. $a_{i,1}x_1 + \dots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \le b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$)
 $x_j \ge 0$ (for $j = 1, \dots, r$)
 $x_j \le 0$ (for $j = r + 1, \dots, n$)

- ▶ linear objective function and constraints ("=", "≤", or "≥")
- variables with non-negativity constraint and unconstrained variables

▶ Conventions:

- \triangleright *n* variables (always called x_i)
- \blacktriangleright m constraints (coefficients always called $a_{i,j}$, right-hand sides b_i)
- ▶ minimize objective (" \underline{c} ost"), coefficients c_j ; objective value $z = c_1x_1 + \cdots + c_nx_n$

Enter Linear Algebra

- ▶ Spelling out all those linear combinations is cumbersome
- Concise notation via matrix and vector products

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for i = 1, ..., p) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i \quad (\text{for } i = p+1, \ldots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i \text{ (for } i = q + 1, \dots, m)$ $x_i \geq 0 \quad (\text{for } j = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } j = r + 1 \dots, n)$

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 cost coefficients $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \longrightarrow objective: min $c^T \cdot x$ dot product / scalar product

"="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow \quad A^{(=)} \cdot x = b^{(=)}$$

$$\bullet \text{ similarly for "\leq" and "\geq" constraints:} \qquad A^{(\leq)} x \stackrel{\leq}{\leq} b^{(\leq)} \quad \text{and} \quad A^{(\geq)} x \geq b^{(\geq)}$$

- \rightarrow a single constraint i can be written as $A_{i,\bullet} x = b_i$ (generally write $A_{i,\bullet}$ for the *i*th row of A and $A_{\bullet,i}$ for the *j*th column)

Reformulations

Tricks of the Trade for working with LPs:

- ightharpoonup min suffices: $\max c^T x = -\min(-c)^T x$
- \bullet "\geq"-constraints: $A_{i,\bullet}x \geq b_i \iff (-A)_{i,\bullet}x \leq -b_i$
- ▶ slack variables: $A_{i,\bullet} x \leq b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \geq 0$

(x_{s_i} is a new additional variable)

- ▶ nonnegative: variable $x_i \le 0 \iff x_i = x_{i,+} x_{i,-}$ and $x_{i,+}, x_{i,-} \ge 0$ $(x_{i,+} \text{ and } x_{i,-} \text{ are new additional variables})$
- → To solve LPs, can assume one of the following **normal forms**

$$\begin{bmatrix} \min & c^T x \\ \text{s.t.} & Ax \le b \\ & x \ge 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{bmatrix} \quad \text{with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \text{ and } c \in \mathbb{R}^n \end{bmatrix}$$

$$min cT x$$
s. t. $Ax = b$

$$x \ge 0$$

6.3 Linear Programs – The Simplex Algorithm

Simplex – Geometric Intuition

```
\min c^{T}x
s. t. Ax \le b
x \ge 0
+ nondegeneracy
```

- constraint $A_{i,\bullet}x \le b_i$ defines a *hyperplane*
- \rightarrow halfspace $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet}x \le b_i\}$
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightarrow Optimal point x^* must lie on boundary!

(assuming finite optimal objective value z^*)

assuming nondegeneracy

intersection of n halfspaces H_i is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])
 - → Simplex algorithm:

Move to better neighbor until optimal.

▶ x_I and $x_{I'}$ neighbors if $|I \cap I'| = n - 1$


```
procedure simplexIteration(H = \{H_1, \dots, H_m\}):

if \bigcap H = \emptyset return INFEASIBLE

x := \text{any feasible vertex}

while x is not locally optimal // c "against wall"

// \text{pivot towards better objective function}

if \forall feasible neighbor vertex x' : c^T x' > c^T x

return UNBOUNDED

else

x := \text{some feasible lower neighbor of } x

return x
```

Simplex - Linear Algebra Realization

$$min cT x$$
s. t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)
- every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \dots, A_{\bullet, j_m}\}$

► Notation:

- $ightharpoonup x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{J}} = (x_{\bar{J}_1}, \dots, x_{\bar{J}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{J}_1, \dots, \bar{J}_{n-m}\}$
- $ightharpoonup c_{\bar{I}}$ and $c_{\bar{I}}$ defined similarly
- \longrightarrow We have $Ax = b \iff A_J x_J + A_{\bar{J}} x_{\bar{J}} = b \iff \begin{bmatrix} x_J = A_J^{-1} b A_J^{-1} A_{\bar{J}} x_{\bar{J}} \end{bmatrix}$ x_J is uniquely determined by choosing $x_{\bar{J}}$
- ▶ *basic solution* setting $x_{\bar{J}} = 0$ gives $x_{\bar{J}} = A_{\bar{J}}^{-1}b$ \rightsquigarrow correspond to *vertices* from before
 - ▶ may or may not be a *feasible basic solution*: $x_1 \ge 0$?
- → given *J*, can easily compute basic solution and check feasibility

Simplex – Local Optimality Test

▶ basic solution: $x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$

 $\min c^{T} x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightsquigarrow can only increase $x_{\bar{j}_k}$ by small $\delta > 0$

► rewrite cost:
$$c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$$

$$= c_J (A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}) + c_{\bar{J}}^T x_{\bar{J}}$$

$$= c_J A_J^{-1} b + (c_{\bar{J}} - c_J A_J^{-1} A_{\bar{J}} x_{\bar{J}})^T x_{\bar{J}}$$

$$\tilde{c}_{\bar{z}}$$

Convex function over a convex domain \rightsquigarrow local opt \Longrightarrow global opt

- \leadsto **No** (local) improvement possible \iff $\tilde{c}_{\bar{j}} \geq 0 \iff$ current basic solution **optimal**
- ▶ Otherwise: Bring $\bar{\jmath}_k$ with $\tilde{c}_{\bar{\jmath}_k} < 0$ into basis
 - ▶ This means we increase $x_{\bar{l}k}$ as much as possible until some $x_{\bar{l}k}$ becomes 0

Summary LP Algorithms

► Simplex Algorithm

deasy to implement

usually fast in practice (in most open source solvers)

worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

Alternative methods

- ellipsoid method (separation-oracle based)
- ▶ interior-point methods (numeric algorithms)

worst case polytime

interior-point method fastest in practice

more complicated, harder to implement well

6.4 Integer Linear Programs

When LPs Are Too Smooth

- Many natural optimization problems have linear objective and constraints
 - ► Example: **The Knapsack Problem**

- ▶ via LP solvers, we obtain exact worst-case polytime algorithms
- ► Hold on; where's the catch?

 These problems are NP-hard; so there must be something wrong?

Integer Linear Programs

6.5 LP-Based Kernelization

Vertex Cover as (Integer) Linear Program

Consider optimization version of VertexCover:

Given: Graph G = (V, E)

Goal: Vertex cover of *G* with minimal cardinality.

→ equivalent to the following linear program

$$\min \sum_{v \in V} x_v$$
s. t. $x_u + x_v \ge 1$ for all $\{u, v\} \in E$

$$x_v \in \{0, 1\}$$
 for all $v \in V$

Consider *relaxation* to $x_v \in \mathbb{R}$, $x_v \ge 0$.

→ LP that can by solved in polytime.

For an *optimal* solution \vec{x} of the *relaxation*, we define

$$I_0 = \{v \in V : x_v < \frac{1}{2}\}$$

$$V_0 = \{v \in V : x_v = \frac{1}{2}\}$$

$$C_0 = \{v \in V : x_v > \frac{1}{2}\}$$

Kernel for VC

Theorem 6.1 (Kernel for Vertex Cover)

Let (G = (V, E), k) an instance of *p*-Vertex-Cover.

- **1.** There exists a minimal vertex cover *S* with $C_0 \subseteq S$ and $S \cap I_0 = \emptyset$.
- **2.** V_0 implies a problem kernel $(G[V_0], k |C_0|)$ with $|V_0| \le 2k$.

Here $G[V_0]$ is the induced subgraph of V_0 in G.

6.6 Lower Bounds by ETH

The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)

The *Exponential-Time Hypothesis* (*ETH*) asserts that there is a constant $\varepsilon > 0$ so that every algorithm for p-3SAT requires $\Omega(2^{\varepsilon k})$ time, where k is the number of variables.

Alternative formulations:

- ▶ There is a $\delta > 0$ so that every 3-SAT algorithm needs $\Omega((1 + \delta)^k)$ time.
- ▶ There is no $2^{o(k)}$ -time algorithm for 3-SAT.
- ▶ There is no subexponential-time algorithm for 3-SAT.

Idea: Show that solving X in time f(k,n) implies a $O(2^{\varepsilon k}n^c)$ algorithm for 3SAT *for all* $\varepsilon > 0$. \leadsto unless ETH fails, no such f(k,n)-time algorithm for X exists.

Problem: Need a reduction that preserves parameter k.

Recap: Reduction from 3SAT to Vertex Cover

Sparsification Lemma

Lemma 6.3 (Sparsification Lemma)

For all $\varepsilon > 0$, there is a constant K so that we can compute for every formula φ in 3-CNF with n clauses over k variables an equivalent formula $\bigvee_{i=1}^t \psi_i$ where each ψ_i is in 3-CNF and over the same k variables and has $\leq K \cdot k$ clauses. Moreover, $t \leq 2^{\varepsilon k}$ and the computation takes $O(2^{\varepsilon k} n^c)$ time.

Rough Idea:

Iteratively remove *sunflowers* by retaining only the *heart* or only the *petals*.

Lower Bounds

Theorem 6.4 (Lower Bound by Size)

Unless ETH fails, there is a constant c > 0 so that every algorithm for p-3SAT needs time $\Omega(2^{c(n+k)})$ where n is the number of clauses and k is the number of variables.

22

Lower Bounds [2]

Theorem 6.5 (No Subexponential Algorithm Vertex Cover)

Unless ETH fails, there is a constant c > 0 so that every algorithm for p-Vertex-Cover needs time $\Omega(2^{ck})$.

Lower Bounds [3]

Theorem 6.6 (Lower Bound Closest String)

Unless ETH fails, there is a constant c>0 so that every algorithm for p-Closest-String needs time $\Omega(2^{c(k \operatorname{ld} k)}) = \Omega(k^{ck})$.