Discussion 7

Jiyeon Song

University of Connecticut jiyeon.song@uconn.edu

March 6, 2020

Properties of Point Estimators and Methods of Estimation

Properties

- 1. Unbiasedness MSE, Relative Efficiency
- 2. Consistency
- 3. Sufficiency

Methods

- 1. Methods of Moment (Mom) Estimator
- 2. Maximum Likelihood (ML) Estimator
- 3. MVUE: Rao-Blackwell Thm

Relative efficiency

▶ **Def.** Given two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ of a parameter θ , with variances $\mathbb{V}(\hat{\theta}_1)$ and $\mathbb{V}(\hat{\theta}_2)$, respectively, then the *efficiency* of $\hat{\theta}_1$ relative to $\hat{\theta}_2$, denoted $\mathrm{eff}(\hat{\theta}_1,\hat{\theta}_2)$, is defined to be the ratio

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\mathbb{V}(\hat{\theta}_2)}{\mathbb{V}(\hat{\theta}_1)}.$$

- $lacksquare \operatorname{eff}(\hat{ heta}_1,\hat{ heta}_2) > 1 \Rightarrow \mathbb{V}(\hat{ heta}_2) > \mathbb{V}(\hat{ heta}_1) \Rightarrow \hat{ heta}_1 \text{ is better!}$
- $\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) < 1 \Rightarrow \mathbb{V}(\hat{\theta}_2) < \mathbb{V}(\hat{\theta}_1) \Rightarrow \hat{\theta}_2$ is better!
- $\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = 1 \Rightarrow \mathbb{V}(\hat{\theta}_1) = \mathbb{V}(\hat{\theta}_2) \Rightarrow$ no preference between the two estimator.

Consistency

- ► Large Sample Inference
- $ightharpoonup \hat{\theta}_n$ converges to θ ($\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta$) if, for any positive number ε ,

$$\lim_{n\to\infty} \mathbb{P}(|\hat{\theta}_n - \theta| \le \varepsilon) = 1,$$

or equivalently,

$$\lim_{n\to\infty}\mathbb{P}(|\hat{\theta}_n-\theta|>\varepsilon)=0.$$

▶ It means the probability of the event

$$\{|\hat{\theta}_n - \theta| \ge \varepsilon\} = \{ \hat{\theta}_n \text{ stays away from } \theta \}$$

gets small as n gets large.

Theorems

- 1. The Weak Law of Large Numbers (WLLN): Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then, $\bar{X} \xrightarrow{P} \mu$
- 2. An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty}\mathbb{V}(\hat{\theta}_n)=0.$$

- 3. Suppose $X_n \xrightarrow{P} x$ and $Y_n \xrightarrow{P} y$. Then,
 - a. $X_n \pm Y_n \xrightarrow{P} x \pm y$
 - b. $X_n Y_n \stackrel{P}{\longrightarrow} xy$
 - c. $X_n/Y_n \xrightarrow{P} x/y$, provided that $y \neq 0$.
 - d. If $g(\cdot)$ is a real-valued function, then $g(X_n) \stackrel{P}{\longrightarrow} g(x)$.

Sufficiency

- ▶ A statistic $U = U(X_1, X_2, ..., X_n)$ is a sufficient statistic for a parameter θ if it contains all of the information about θ that is available in the sample.
- **Def.** The statistic U is said to be *sufficient* for θ if

$$f_{\mathbf{X}|U}(\mathbf{x}|u) = \frac{f(x_1, x_2, \dots, x_n, U; \theta)}{f(u; \theta)}$$

is free of θ .

Factorization Thm The statistic U is said to be *sufficient* for θ if and only if

$$L(x_1,x_2,\ldots,x_n|\theta)=g(u;\theta)\times h(x_1,x_2,\ldots,x_n),$$

where $g(u, \theta)$ is a function only of u and θ and $h(x_1, x_2, \dots, x_n)$ is free of θ .

Example

Let $X_1, X_2, ..., X_n$ denote a random sample from a uniform distribution on the interval $(0, \theta)$. Consider two unbiased estimators for θ :

$$\hat{\theta}_1 = 2\bar{X}$$
 and $\hat{\theta}_2 = \left(\frac{n+1}{n}\right) X_{(n)}$.

 $\hat{\theta}_1$ and $\hat{\theta}_2$ are consistent estimators?

Practice

Let X_1, X_2, \ldots, X_n be i.i.d. $\mathcal{N}(\mu, \sigma^2)$. Prove that

- 1. \bar{X} is a consistent estimator for μ .
- 2. X_1 is not a consistent estimator for μ .
- 3. S_n^2 is a consistent estimator for σ^2 .
- 4. $(X_2-X_1)^2/2$ is an unbiased estimator, but not a consistent estimator for σ^2