A brief introduction to Support Vector Machines

McElory Hoffmann

Department of Mathematical Sciences (Applied Mathematics)
University of Stellenbosch

May 2006

Outline

Introduction

Formal Problem Description

Hyperplane Classifiers

Support Vector Machines

SVM Demo

Uses of SVM's

000000

$$Y = \mathrm{sgn}[\mathbf{w}^{\top}\mathbf{x} + b > 0] = \left\{ \begin{array}{ll} +1 & \mathbf{w}^{\top}\mathbf{x} + b > 0 \\ -1 & \mathbf{w}^{\top}\mathbf{x} + b \leq 0 \end{array} \right.$$

- Supervised Learning
 - Pattern recognition
 - Regression and time series
- Unsupervised Learning
 - **Dimensionality Reduction** (Non-linear PCA)
 - Clustering
 - Novelty detection

[Graphics taken from [Meir R., 2002]]

•00000

An introductory example

[Example taken from [Schölkopf B., 2000].]

- ▶ Empirical data $(x_1, y_1), ..., (x_m, y_m) \in \mathcal{X} \times \{\pm 1\}$ is given.
- ▶ Given some new pattern $x \in \mathcal{X}$, predict $y \in \{\pm 1\}$.
- ► Choose *y* such that (*x*, *y*) is in some sense similar to training examples.
- Similarity measure:
 - For outputs: Use loss function.
 - For inputs: kernel.

Introductory example

Introduction

0.0000

Similarity of inputs

► Symmetric function:

$$k: \mathcal{X} \times \mathcal{X} \to \Re$$

 $(x, x') \mapsto k(x, x').$

▶ Important example of k is dot product. If, $\mathcal{X} \in \mathbb{R}^N$, dot product is defined as

$$(\boldsymbol{x} \cdot \boldsymbol{x}') \triangleq \sum_{i} (\boldsymbol{x})_{i} (\boldsymbol{x}')_{i}.$$

 $(\mathbf{x})_i$ is the *i*'th entry of \mathbf{x} .

000000

Similarity of inputs (ctd)

▶ If \mathcal{X} is not dot product space, assume existence of map $\Phi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') \triangleq (\mathbf{x} \cdot \mathbf{x}') = (\Phi(x), \Phi(x')).$$

- In this case, we can deal with patterns geometrically.
- Choice of mapping Φ enable large variety of learning algorithms.

000000

Kernel algorithm

- ▶ Classify points $\mathbf{x} = \Phi(\mathbf{x})$ in feature space according to which of the two class means is closer.
- ► The means are: $c_+ = \frac{1}{m_+} \sum_{y_i = +1} x_i$ and $c_- = \frac{1}{m_-} \sum_{y_i = -1} x_i$.

Compute the sign of the dot product between

$$oldsymbol{w} riangleq oldsymbol{c}_+ - oldsymbol{c}_-$$
 and $oldsymbol{x} - oldsymbol{c}_-$

[Graphics taken from [Schölkopf, B. et al.]]

Introductory example

000000

Kernel algorithm (ctd)

We have:

$$\begin{aligned} y &= \operatorname{sgn}\left((\boldsymbol{x} - \boldsymbol{c}) \cdot \boldsymbol{w}\right) \\ &= \operatorname{sgn}\left((\boldsymbol{x} - \frac{\boldsymbol{c}_{+} + \boldsymbol{c}_{-}}{2}) \cdot (\boldsymbol{c}_{+} - \boldsymbol{c}_{-})\right) \\ &= \operatorname{sgn}\left((\boldsymbol{x} \cdot \boldsymbol{c}_{+}) - (\boldsymbol{x} \cdot \boldsymbol{c}_{-}) + b\right) \\ &= \operatorname{sgn}\left(\frac{1}{m_{+}} \sum_{y_{i} = +1} (\boldsymbol{x} \cdot \boldsymbol{x}_{i}) - \frac{1}{m_{-}} \sum_{y_{i} = -1} (\boldsymbol{x} \cdot \boldsymbol{x}_{i}) + b\right) \\ &= \operatorname{sgn}\left(\frac{1}{m_{+}} \sum_{y_{i} = +1} k(x, x_{i}) - \frac{1}{m_{-}} \sum_{y_{i} = -1} k(x, x_{i}) + b\right) \end{aligned}$$

Introductory example

00000

Kernel algorithm (ctd)

- Similarities with "more advanced algorithms":
 - Linear in feature space.
 - Example based: kernels centered on training examples.
- Differences with "more advanced algorithms":
 - Selection of the examples that the kernels are centered on.
 - Weights of the individual kernels in the decision function.

Learning from Examples

- ▶ Estimate function $f: \mathcal{X} \to \{\pm 1\}$ based on training data.
- Assume data was generated independently from unknown (but fixed) prob. dist. P(x, y).
- Empirical risk or training error given by

$$R_{emp}[f] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} |f(x_i) - y_i|.$$

Test error or risk is

$$R[f] = \int \frac{1}{2} |f(x) - y| dP(x, y).$$

- Small training error does not imply small test error!
- ▶ Objective: Find 'good' function *f* which generalise.

$$R(\alpha) \le R_{emp}(\alpha) + \phi\left(\frac{h}{m}, \frac{\log(\eta)}{m}\right)$$

holds.

Confidence term φ is defined as

$$\phi\left(\frac{h}{m}, \frac{\log(\eta)}{m}\right) = \sqrt{\frac{h(\log\frac{2m}{h}+1) - \log(\frac{\eta}{4})}{m}}.$$

- h is the VC dimension, m the number of training samples and h < m.</p>
- No dimension of data term!

SVM Demo

Vapnik-Chervonenkis (VC) theory

Introduction

000000

VC Dimension

[Graphics taken from [Schölkopf, B. et al.]]

$$(\boldsymbol{w} \cdot \boldsymbol{x}) + b = 0 \ \boldsymbol{w} \in R^N, b \in R.$$

- ► Corresponding decision functions $f(\mathbf{x}) = \operatorname{sgn}((\mathbf{w} \cdot \mathbf{x}) + b)$.
- ▶ Vapnik 95: If $||\boldsymbol{w}|| \le A$ and $\boldsymbol{x}_i \in \text{Ball of radius } L$, then $h \le \min(A^2L^2, d) + 1$.
 - Observe: If we restrict our function class, the capacity (e.g. VC dimension) is smaller.
 - Suggestion: Use hyperplane with minimal norm.

SVM Demo

Support Vector Machines

o
o
o

Construction of Optimal Hyperplane

The separable problem

Solve the optimisation problem:

minimise
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, \dots m$.

- ► Constrained optimisation problem. Is solved using Lagrange multipliers (α_i) .
- Will skip detail of optimisation theory until another time!

- By employing standard optimisation theory, we can rewrite the optimisation problem in dual space.
- ► This yields:

maximise
$$W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i \boldsymbol{x}_j^T$$

subject to $\sum_{i=1}^{m} \alpha_i y_i = 0; \alpha_i \geq 0.$

The hyperplane decision function can thus be written as

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{m} y_i \alpha_i \cdot (\mathbf{x} \cdot \mathbf{x}_i) + b\right).$$

▶ Note that we use only dot-products when working with x.

Graphic illustration of separable problem

Figure 1: A binary classification toy problem: separate balls from diamonds. The optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half-way between the two classes. The problem being separable, there exists a weight vector \mathbf{w} and a threshold b such that $y_i \cdot ((\mathbf{w} \cdot \mathbf{x}_i) + b) > 0$ $(i = 1, \dots, m)$. Rescaling \mathbf{w} and b such that the point(s) closest to the hyperplane satisfy $[(\mathbf{w} \cdot \mathbf{x}_i) + b] = 1$, we obtain a canonical form (\mathbf{w}, b) of the hyperplane, satisfying $y_i \cdot ((\mathbf{w} \cdot \mathbf{x}_i) + b) \geq 1$. Note that in this case, the margin, neasured perpendicularly to the hyperplane, equals $2/||\mathbf{w}||$. This can be seen by considering two points $\mathbf{x}_i, \mathbf{x}_2$ on opposite sides of the margin, i.e. $(\mathbf{w} \cdot \mathbf{x}_i) + b = 1$, $(\mathbf{w} \cdot \mathbf{x}_i) + b = -1$, and projecting them onto the hyperplane normal vector $\mathbf{w}/||\mathbf{w}||$

Non-separable case

- ▶ Problem: Cannot satisfy $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \ \forall i$.
- ▶ Solution: Introduce slack variables ξ_i .
- Optimisation problem is now:

minimise
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^m \xi_i^2$$
 subject to
$$y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, i = 1, \dots m$$

$$\xi_i \ge 0, i = 1, \dots, m.$$

- ► There exist bound for this problem.
- ▶ New parameter *C* is found using cross-validation.

SVM Demo

Motivation

Introduction

- Linear separability is more likely in high dimensions.
- Map input into high (possibly infinite) dimensional feature space Φ.
- Construct linear classifier in Φ.

[Graphics taken from [Schölkopf B., 2000]]

Kernel functions

▶ Using the ideas mentioned, classifier is

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{m} y_{i}\alpha_{i} \cdot (\Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}_{i})) + b\right)$$
$$= \operatorname{sgn}\left(\sum_{i=1}^{m} y_{i}\alpha_{i} \cdot k(\mathbf{x}, \mathbf{x}_{i}) + b\right).$$

The dual quadratic problem is

maximise
$$W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$

subject to $\sum_{i=1}^{m} \alpha_i y_i = 0; \alpha_i \ge 0.$

- Any algorithm that only depends on dot products can benefit from the kernel trick
- This way, we can apply linear methods to vectorial as well as non-vectorial data.
- Think of the kernel as a nonlinear similarity measure.
- Examples of kernels:
 - Polynomial: $k(x, x') = (\langle x, x' \rangle + c)^a$.
 - ▶ Sigmoid: $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta)$.
 - Gaussian: $k(x, x') = \exp(-\frac{||x x'||^2}{2r^2})$.

SHOW DEMO!

For Further Reading

Schölkopf, B. (2000).

Statistical Learning and Kernel Methods.

Microsoft Research Technical Report, MSR-TR-2000-23

Schölkopf, B., Rasmussen, C., Franz, M. (2005)
Lecture notes of Learning in Computer Vision II (2005).

Max-Planck-Institut für biologische Kybernetik,

http://www2.tuebingen.mpg.de/agbs/lcvii/
wiki/LearningInComputerVisionII

For Further Reading (ctd)

Christianini N., Shawe-Taylor, J. (2000)
An Introduction to Support Vector Machines.

Cambridge University Press, ISBN 0 521 78019 5

For Further Reading (ctd)

Kienzle, W., Bakir, G., Franz, M. Schölkopf, B. (2005) Face Detection Demo

http://www.kyb.tuebingen.mpg.de/bs/people/
kienzle/facedemo/facedemo.htm

Schölkopf, B., Smola, A. (2002)

Learning with Kernels

http://www.learning-with-kernels.org/

