IN THE CLAIMS:

1

1	1. (Currently Amended) A method for a storage operating system implemented in a
2	storage system to concurrently perform readahead operations for a plurality of different
3	read streams established in one or more files, directories, vdisks or luns stored in the
4	storage system, the method comprising:
5	allocating at least one readset data structure ("readset") for each of the one or
6	more files, directories, vdisks or luns in which the plurality of different read streams is
7	established, wherein the number of readsets allocated for each file, directory, vdisk or lun
8	depends on the size of that file, directory, vdisk or lun;
9	receiving a client read request at the storage system, the client read request
10	indicating client-requested data for the storage operating system to retrieve from a file,
11	directory, vdisk or lun stored in the storage system;
12	determining whether the received client read request matches any of a the
13	plurality of readset data structures ("readsets") allocated for the file, directory, vdisk or
14	lun containing the client-requested data; and
15	performing readahead operations in accordance with a set of readahead metadata
16	stored in an associated readset that is determined to match the received client read
17	request, wherein the readahead metadata describes the associated readset.
,	
1	2. (Currently Amended) The method of claim 1, further comprising:
2	allocating at least one readset for each of the one or more files, directories, vdisks
3	or luns in which the plurality of different read streams is established;
4	generating a separate set of readahead metadata for each of the plurality of
5	different read streams; and
6	storing each generated set of readahead metadata in a different readset allocated
7	for the file, directory, vdisk or lun in which the read stream associated with the generated
8	set of readahead metadata is established.

3. (Original) The method of claim 1, further comprising:

- 2 initializing each allocated readset to store a predetermined set of values.
- 1 4. (Cancelled)

1

- 1 | 5. (Currently Amended) The method of claim-4_2, wherein the number of readsets
- 2 allocated for a file, directory, vdisk or lun is dynamically increased as the size of that file,
- 3 directory, vdisk or lun is increased.
- 1 6. (Original) The method of claim 1, wherein a first readset is determined to match the
- 2 received client read request if the first readset stores a set of readahead metadata
- 3 associated with a read stream that is extended by the client-requested data.
- 1 7. (Original) The method of claim 1, wherein a second readset is determined to match
- 2 the received client read request when the client-requested data is located within a
- 3 predetermined fuzzy range associated with the second readset.
- 1 8. (Original) The method of claim 7, wherein the fuzzy range is derived based on a
- 2 multiple of a number of client-requested data blocks specified in the received client read
- 3 request.
- 1 9. (Original) The method of claim 7, wherein the fuzzy range extends in both a forward
- 2 direction and a backward direction in relation to a last data block retrieved in a read
- 3 stream associated with the second readset.
- 1 10. (Original) The method of claim 1, wherein a third readset is determined to
- 2 match the received client read request if the third readset is determined to be unused.
- 1 11. (Original) The method of claim 10, wherein the third readset is determined to be
- 2 unused when a level value stored in the third readset equals a special indicator value.

1	12. (Original) The method of claim 1, wherein readahead operations are not performed in
2	the storage operating system determines that the file, directory, vdisk or lun containing
3	the client-requested data is accessed using a random access style.
1	13. (Original) The method of claim 12, wherein a DAFS cache hint included in
2	the received client read request indicates that the file, directory, vdisk or lun containing
3	the client-requested data is accessed using a random access style.
1	14. (Original) The method of claim 1, wherein readahead operations are not
2	performed unless:
3	(i) a readset is determined to match the received client read request; and
4	(ii) the matching readset stores a set of readahead metadata associated
5	with a read stream that is extended by the client-requested data past a
6	predetermined data block or memory address.
1	15. (Original) The method of claim 1, further comprising:
2	if the received client read request does not match any of the readsets allocated for
3	the file, directory, vdisk or lun containing the client-requested data, then performing the
4	steps:
5	identifying the received client read request as being the first read
6	request in a new read stream;
7	generating a set of readahead metadata associated with the new
8	read stream;
9	selecting for reuse one of the readsets allocated for the file,
10	directory, vdisk or lun containing the client-requested data; and
11	storing the generated set of readahead metadata associated with the
12	new read stream in the readset selected for reuse.
1	16. (Original) The method of claim 15, wherein the readset selected for reuse stores a
2	level value that is less than or equal to level values stored in each of the other readsets
3	associated with the file, directory, vdisk or lun containing the client-requested data.

1 17. (Original) The method of claim 1, wherein the client read request received at the 2 storage system is a file-based client read request. 1 18. (Original) The method of claim 1, wherein the client read request received at 2 the storage system is a block-based client read request. 19-28 (Cancelled) 1 1 29. (Currently Amended) A storage system that employs a storage operating system to 2 concurrently perform readahead operations for a plurality of different read streams 3 established in one or more files, directories, vdisks or luns stored in the storage system, 4 the method storage system comprising: 5 means for allocating at least one readset data structure ("readset") for each of the 6 one or more files, directories, vdisks or luns in which the plurality of different read 7 streams is established, wherein the number of readsets allocated for each file, directory, 8 vdisk or lun depends on the size of that file, directory, vdisk or lun; 9 means for receiving a client read request at the storage system, the client read request indicating client-requested data for the storage operating system to retrieve from a 10 11 file, directory, vdisk or lun stored in the storage system; 12 means for determining whether the received client read request matches any of a 13 the plurality of readset data structures ("readsets") allocated for the file, directory, vdisk 14 or lun containing the client-requested data; and 15 means for performing readahead operations in accordance with a set of readahead 16 metadata stored in an associated readset that is determined to match the received client 17 read request, wherein the readahead metadata describes the associated readset. 1 30. (Currently Amended) A computer-readable media comprising instructions for 2 execution in a processor for the practice of a method for a storage operating system 3 implemented in a storage system to concurrently perform readahead operations for a

plurality of different read streams established in one or more files, directories, vdisks or

luns stored in the storage system, the method comprising:

4

5

6	allocating at least one readset data structure ("readset") for each of the one or
7	more files, directories, vdisks or luns in which the plurality of different read streams is
8	established, wherein the number of readsets allocated for each file, directory, vdisk or lun
9	depends on the size of that file, directory, vdisk or lun;
10	receiving a client read request at the storage system, the client read request
11	indicating client-requested data for the storage operating system to retrieve from a file,
12	directory, vdisk or lun stored in the storage system;
13	determining whether the received client read request matches any of a-the
14	plurality of readset data structures ("readsets") allocated for the file, directory, vdisk or
15	lun containing the client-requested data; and
16	performing readahead operations in accordance with a set of readahead metadata
17	stored in an associated readset that is determined to match the received client read
18	request, wherein the readahead metadata describes the associated readset.

1 Please add new claims 31 et al.

1 2

1	31. (New) A method for a storage operating system implemented in a storage system to
2	concurrently perform readahead operations for a plurality of different read streams
3	established in one or more files stored in the storage system, comprising:
4	allocating at least one read ser data structure ("readset") for each of the one or
5	more files, directories, vdisks or luns in which the plurality of different read streams is
6	established wherein the number of readsets allocated for each file depends on the size of
7	that file;
8	generating a separate set of readahead metadata for each of the plurality of
9	different read streams; and
10	storing each generated set of readahead metadata in a different readset allocated
11	for the file in which the read stream associated with the generated set of readahead
12	metadata is established;
13	receiving a client read request at the storage system, the client read request
14	indicating client-requested data for the storage operating system to retrieve from a file,
15	stored in the storage system;
16	determining whether the received client read request matches any of a plurality of
17	readsets allocated for the file containing the client-requested data; and
18	performing readahead operations in accordance with a set of readahead metadata
19	stored in a readset that is determined to match the received client read request.
1	22 (Navy) The mathod of claims 21, who wain the file is broad towns describing either a file
1	32. (New) The method of claim 31, wherein the file is broad term describing either a file,
2	directory, vdisk or lun.
1	33. (New) The method of claim 31, further comprising:
2	initializing each allocated readset to store a predetermined set of values.

34. (New) The method of claim 31, wherein the number of readsets allocated for a file is

dynamically increased as the size of that file is increased.

- 1 35. (New) The method of claim 31, wherein a first readset is determined to match the
- 2 received client read request if the first readset stores a set of readahead metadata
- 3 associated with a read stream that is extended by the client-requested data.
- 1 36. (New) The method of claim 31, wherein a second readset is determined to match the
- 2 received client read request when the client-requested data is located within a
- 3 predetermined fuzzy range associated with the second readset.
- 1 37. (New) The method of claim 36, wherein the fuzzy range is derived based on a
- 2 multiple of a number of client-requested data blocks specified in the received client read
- 3 request.
- 1 38. (New) The method of claim 36, wherein the fuzzy range extends in both a forward
- 2 direction and a backward direction in relation to a last data block retrieved in a read
- 3 stream associated with the second readset.
- 1 39. (New) The method of claim 31, wherein a third readset is determined to match the
- 2 received client read request if the third readset is determined to be unused.
- 1 40. (New) The method of claim 39, wherein the third readset is determined to be unused
- when a level value stored in the third readset equals a special indicator value.
- 1 41. (New) The method of claim 31, wherein readahead operations are not performed if
- 2 the storage operating system determines that the file, directory, vdisk or lun containing
- 3 the client-requested data is accessed using a random access style.
- 1 42. (New) The method of claim 41, wherein a DAFS cache hint included in the received
- 2 client read request indicates that the file, directory, vdisk or lun containing the client-
- 3 requested data is accessed using a random access style.

1	43. (New) The method of claim 31, wherein readahead operations are not performed
2	unless:
3	(i) a readset is determined to match the received client read request; and
4	(ii) the matching readset stores a set of readahead metadata associated
5	with a read stream that is extended by the client-requested data past a
6	predetermined data block or memory address.
1	44. (New) The method of claim 31, further comprising:
2	if the received client read request does not match any of the readsets allocated for
3	the file, directory, vdisk or lun containing the client-requested data, then performing the
4	steps:
5	identifying the received client read request as being the first read
6	request in a new read stream;
7	generating a set of readahead metadata associated with the new
8	read stream;
9	selecting for reuse one of the readsets allocated for the file,
10	directory, vdisk or lun containing the client-requested data; and
11	storing the generated set of readahead metadata associated with the
12	new read stream in the readset selected for reuse.
1	45. (New) The method of claim 44, wherein the readset selected for reuse stores a level
2	value that is less than or equal to level values stored in each of the other readsets
3	associated with the file, directory, vdisk or lun containing the client-requested data.
1	46. (New) The method of claim 31, wherein the client read request received at the storage
2	system is a file-based client read request.
1	47. (New) The method of claim 31, wherein the client read request received at the storage
2	system is a block-based client read request.