Prova 2 Econometria I

Kevin Mattos Hugo Trigueiro 11201811029 11201810493

Universidade Federal do ABC

30 de Abril de 2021

Sumário

- Introdução
- 2 Motivação
- Análise descritiva
- Modelo teórico
- Resultados

- Introdução
- 2 Motivação
- Análise descritiva
- Modelo teórico
- 6 Resultados

Os dados

- Este trabalho utilizou o dataset "JTRAIN1" presente no livro: Introdução à Econometria. Uma Abordagem Moderna. Jeffrey M. Wooldridge
- Paper de referência Are Training Subsidies for Firms Effective? The Michigan Experience. HARRY J. HOLZER, RICHARD N. BLOCK, MARCUS CHEATHAM, and JACK H. KNOT
- Número de obervações: 471, Variáveis: 30.
- Dados em painel

- Introdução
- 2 Motivação
- Análise descritiva
- 4 Modelo teórico
- 6 Resultados

Motivação

 Busca-se estimar um modelo que capte parte dos resultados obtidos no paper citado anteriormente, usando as ferramentas aprendidas no curso de Econometria I, e entender quais são os resultados, possibilidades e limitações.

- Introdução
- 2 Motivação
- Análise descritiva
- 4 Modelo teórico
- 6 Resultados

		Firmas	Horas médias de treinamento por empregado		Número de empregados		Taxa de refugo		Média salarial		Número de vendas	
Ano	Recebeu Subsídio	Quantidade	Média	Desvio-padrão	Média	Desvio-padrão	Média	Desvio-padrão	Média	Desvio-padrão	Média	Desvio-padrão
1987	0	157	9	17	55	69	5	6	17859	6464	5341176	6662733
1988	0	121	10	18	56	63	4	7	19248	6560	5926472	6812906
1988	1	36	36	37	69	99	3	4	17244	6337	6237150	8768742
1989	0	127	12	22	62	76	3	6	19492	6980	6897510	9191096
1989	1	30	51	36	73	96	3	5	21884	6699	7250269	10850761

Descrição	Ano	Quantidade	Média	Desvio-padrão
Firmas que receberam subsídio em 1988	1987	36	7.67	19.57
	1988	36	35.98	36.96
	1989	36	10.06	19.47
Firmas que receberam subsídio em 1989	1987	30	6.12	11.31
	1988	30	9.32	17.36
	1989	30	50.65	36.22
Firmas que não receberam subsídio	1987	91	10.7	18.31
	1988	91	9.82	18.63
	1989	91	12.35	23.78

- Introdução
- 2 Motivação
- Análise descritiva
- 4 Modelo teórico
- Resultados

Modelo inicial estimado

$$log(hrsemp_i) = \hat{\beta}_0 + \hat{\beta}_1 grant_i + \hat{\beta}_2 d88 + \hat{\beta}_3 d89_i + \hat{\beta}_4 log(employ_i) +$$
$$grant_{1i} + \hat{\beta}_6 log(avgsal) + \hat{\beta}_7 log(scrap) + \hat{\beta}_8 union + \hat{\beta}_9 log(rework) + \mu_i$$

- hrsemp = horas anuais de treinamento por empregado
- \bullet d88 = Dummy se o ano é 1988
- ullet d89 = Dummy se o ano é 1989
- employ = número de empregados
- scrap = taxa de refugo

- grant = Dummy se recebeu subsídio
- grant1 = Dummy se recebeu subsídio no anterior
- avgsal = Salário médio
- union = Sindicato
- rework = Taxa de retrabalho

Justificativa

- Este modelo inicial busca captar a relação o feito receber subsídio na variação percentual da taxa de horas treinadas por trabalhador que participou do treinamento.
- Controla-se o efeito intertemporal dos anos, tamanho da firma, taxa de refugo
- Vale ressaltar a tentativa de controlar o efeito de ter recebido o subsídio no ano anterior

Dep. Variabl	Ihrsemp	ı	R-squared	0.415		
Model:	OLS		Adj. R-sq	0.316		
Method:	ast Squa	res l	F-statistic	4.185		
Date:	30 Apr 2	2021 I	Prob (F-s	0.000212		
Time:		03:00:25	. 1	Log-Likeli	-105.53	
No. Observa	70		AIČ:	233.1		
Df Residuals	59	BIC:			257.8	
Df Model:	10					
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-14.5198	6.845	-2.121	0.038	-28.216	-0.823
grant	1.5870	0.426	3.723	0.000	0.734	2.440
d88	0.1767	0.395	0.447	0.656	-0.613	0.967
d89	0.6942	0.494	1.406	0.165 -0.294		1.683
$grant_{-}1$	t_1 -0.2484		-0.440	0.662	-1.379	0.882
lemploy	-0.6272	0.429	-1.461	0.149	-1.486	0.232
Iscrap	0.1092	0.144	0.756	0.453	-0.180	0.398
lavgsal	0.5376	0.456	1.179	0.243	-0.375	1.450
Isales	0.8527	0.457	1.865	0.067	-0.062	1.768
union	-0.7518	0.422	-1.783	0.080	-1.595	0.092
Irework	-0.0689	0.152	-0.452	0.653	-0.374	0.236
Omni	2.989	Durbi	n-Watsor	ı: 1.3	16	
Prob	(Omnibus):	0.224	Jarqu	22		
Skew	:	0.479	Prob(32		
Kurto	2.712	Cond	No.	90	8.	

- Introdução
- 2 Motivação
- Análise descritiva
- 4 Modelo teórico
- Sesultados

Teste de significância individual

Teste de Hipótese:

- $H_0: \beta_k$ ou β_{k+1} ou ... ou $\beta_{k+s} = 0$
- H_1 : β_k ou β_{k+1} ou ... ou $\beta_{k+s} \neq 0$

$$\hat{\mathsf{t}}(\mathsf{H}_0) = \frac{(\hat{\beta}_{MQO_k} - \beta_k^0)}{\left[\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^N (x_{ik} - \bar{x}_k)^2 (1 - R_k^2)}}\right]} \sim t_{N-(K+1)}$$

Resultado do teste t

	coef	std err	t	P > t	Conf. Int. Low	Conf. Int. Upp.
grant	1.59	0.43	3.72	0.00	0.73	2.44
d88	0.18	0.39	0.45	0.66	-0.61	0.97
d89	0.69	0.49	1.41	0.17	-0.29	1.68
$grant_{-}1$	-0.25	0.57	-0.44	0.66	-1.38	0.88
lemploy	-0.63	0.43	-1.46	0.15	-1.49	0.23
Iscrap	0.11	0.14	0.76	0.45	-0.18	0.40
lavgsal	0.54	0.46	1.18	0.24	-0.37	1.45
Isales	0.85	0.46	1.86	0.07	-0.06	1.77
union	-0.75	0.42	-1.78	0.08	-1.60	0.09
Irework	-0.07	0.15	-0.45	0.65	-0.37	0.24

Teste Snedecor

Teste de Hipótese:

•
$$H_0$$
: β_k e β_{k+1} e ... e $\beta_{k+s} = 0$

•
$$H_1$$
: β_k ou β_{k+1} ou ... ou $\beta_{k+s} \neq 1$

•
$$\hat{\mathsf{F}} = \frac{\frac{R_{IR}^2 - R_{R}^2}{s}}{\frac{(1 - R_{IR}^2)}{(N - (K+1))}} \sim F_{s,N-(K+1)}$$

Resultado do teste F

- Escolhemos as variáveis que não tinham significância estatística no teste individual para saber se conjuntamente elas passam a ter. As quais são: grant1, Iscrap, Irework
- O resultado da estatística do teste foi: p-valor = 0.854315.
 Mostrando que conjuntamente as variáveis tampouco apresentam significância estatística

Teste de Lagrange

- Na regressão restrita utilizamos retiramos as variáveis grant1, Iscrap, Irework – objetos do teste
- Utilizamos o resíduos, vamos regredi-los em relação a todas as variáveis
- O valor da estatística teste foi $LM \rightarrow N.R_{Ru}^2 = 5.29447$
- O p-valor foi 0.62407

Abril 2021

Conclusões

- Efeito do subsídio foi estatisticamente significativo, p-valor: 0.0004.
 Porém, o efeito do subsídios no ano subesequente não apresentou significância estatística
- A variáveis de produtividade não apresentou significância estatística
- Já as variáveis que captam as características da firma tiveram significância estatística

Muito obrigado!

