

Deep Learning

Anomalies in Streaming Data

U Kang Seoul National University

In This Lecture

- Streaming (or time-series) data
- Anomaly detection
- Recurrent neural networks
- Stacked LSTM structure

Outline

- **→** □ Problem Definition
 - ☐ Requirements
 - ☐ Preprocessing Codes
 - ☐ Answers

Dataset (1)

- Numenta Anomaly Benchmark (NAB)
 - Benchmark for anomaly detection in streaming
 - Composed of over 50 time-series data files
 - Data are timestamped and single-valued metrics
- We use one of the included datasets:
 - □ The ambient temperature in an office setting

Dataset (2)

U Kang

5

Problem Definition

- To find anomalies in time-series data
- What are anomalies?
 - Data points that follow abnormal patterns
- Unsupervised problem
 - No explicit labels (or answers)

How to Solve

- Train a model for time-series prediction
- Predict the values (via regression)
- Compute the prediction errors for all points
- Pick k points with the largest differences

- We classify these points as anomalies!
 - Because they are unpredictable from the model

Selection of an Algorithm

- We have a time-series dataset
- RNN (recurrent neural network) will be good
- Especially, we use the LSTM structure

Outline

- Problem Definition
- **→ □** Requirements
 - ☐ Preprocessing Codes
 - ☐ Answers

U Kang g

Feature Engineering

- The dataset is single-valued
 - Contains (time, value) for each timestamp
- We need more features for high performance
- Create at least 4 features
 - For instance, HOUR of each timestamp

Feature Distribution

- The features need to have similar distributions
- Thus, standardize them by
 - Setting the mean to 0
 - Scaling to unit variance
- It is helpful for most ML algorithms

Unrolling Data

- LSTM takes a times-series of arbitrary length
- But, too long sequences are not very helpful
- We limit the number of LSTM cells to 50
 - □ That is, we use 50 historical values for prediction

Model Structure (1)

Implement a stacked LSTM with 2 layers

Model Structure (2)

- Set output dimensions of the LSTM as
 - 50 in the first layer
 - 100 in the second layer
- Add dropout after each layer
- Add a dense layer to produce the prediction
- Use the MSE loss with Adam optimizer

Outline

- Problem Definition
- Requirements
- **→** □ Preprocessing Codes
 - ☐ Answers

Importing Packages

Import necessary packages:

```
import numpy as np
import pandas as pd
import tensorflow as tf

from sklearn import preprocessing
from matplotlib import pyplot as plt
```


Reading the Dataset (1)

Read the dataset using pandas:

```
df = pd.read_csv('data/ambient_temperature_system_failure.csv')
df.head()
```

	timestamp	value
0	2013-07-04 00:00:00	69.880835
1	2013-07-04 01:00:00	71.220227
2	2013-07-04 02:00:00	70.877805
3	2013-07-04 03:00:00	68.959400
4	2013-07-04 04:00:00	69.283551

Reading the Dataset (2)

Modify the dataset and plot the values:

```
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['value'] = (df['value'] - 32) * 5 / 9
df.plot(x='timestamp', y='value')
```

- Change the type of timestamp column (line 1)
- Change Fahrenheit to Celcius (line 2)
- Plot the figure (line 3)

Dataset (2)

Creating Features

Create four additional features:

- hours: the hour of each timestamp
- daylight: whether it is daytime or not
- dayofweek: day of the week
- weekday: whether it is a weekday or not

Standardizing the Features

Standardize the added features:

data_n is a DataFrame with 5 features

Unrolling the Features

We unroll the features with length 50:

```
#unroll: create sequence of 50 previous data points for each data points
def unroll(data,length=50):
    result = []
    for i in range(len(data) - length + 1):
        result.append(data[i : i + length])
    return np.asarray(result)

X = data_n[:-1].values
X = unroll(X, length = 50)
print(f"X shape: {X.shape}")

X shape: (7217, 50, 5)
```


Creating Labels

We create labels that we want to predict:

```
y = data_n[1:][0].values
y = y[-X.shape[0]:]
print(f"Y shape: {y.shape}")
Y shape: (7217,)
```

Note that x and y have the same length

Dividing Instances (1)

Create training and test sets:

```
test_size = 1000

X_train = X[:-test_size]
X_test = X[-test_size:]

y_train = y[:-test_size]
y_test = y[-test_size:]
```


Dividing Instances (2)

Check their shapes:

Note that they are already unrolled

Helpful Modules

You may need these modules:

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dropout
from tensorflow.keras.callbacks import EarlyStopping
```


Outline

- Problem Definition
- Requirements
- Preprocessing Codes
- → □ Answers

Define the model

- Define the model with helpful modules
 - They have different numbers of units
 - We apply dropout for each layer

```
def create_lstm(pkeep):
    # Build the mode!
    model = Sequential()

model.add(LSTM(50, return_sequences = True))
model.add(Dropout(1-pkeep))

model.add(LSTM(100))
model.add(Dropout(1-pkeep))

model.add(Dense(units=1))

return model
```


Set Hyperparameters

Set parameters for learning:

```
pkeep = 0.8
batch_size = 512
epochs = 10
```

- Create the model with `create_lstm()`
- Define cost and optimizer variables
 - loss function: mean squared error
 - optimizer : Adam

```
model = create_lstm(pkeep)
model.compile(loss = 'mse', optimizer = 'adam')
```


Train the Model

- Learn the model's parameters
- Early stopping
 - Use 10% of train data set as validation data

Test Differences

Compute the differences for the test instances:

```
preds = model.predict(X_test)
diffs = list(abs(y_test - preds.flatten()))
```

■ Here a difference is a simple |x - x'| form

True Data vs. Predictions (1)

Plot the true data and predictions:

```
fig, axs = plt.subplots()
axs.plot(preds, color='red', label='prediction')
axs.plot(y_test, color='blue', label='y_test')
plt.legend(loc='upper left')
plt.show()
```


True Data vs. Predictions (2)

Finding Anomalies

- Set the number of outliers to 10
- Find 10 points with maximum differences:

```
n_outliers = 10
argsorted = np.array(diffs).argsort()
anomalies = argsorted[-n_outliers:][::-1]
```


Plotting the Anomalies (1)

Plot the anomalies in the previous figure:

Plotting the Anomalies (2)

What You Need to Know

- Streaming (or time-series) data
- Anomaly detection
- Recurrent neural networks
- Stacked LSTM structure

Questions?