VEHICLE SEAT MOUNTING DEVICE

Publication number: JP6092278
Publication date: 1994-04-05

Inventor:

FUJIWARA HIDEKI; FUJII KANJI; KIMURA YOSHIAKI

Applicant:

MAZDA MOTOR

Classification:

- international:

B23P19/04; B23P21/00; B62D65/00; B23P19/04;

B23P21/00; B62D65/00; (IPC1-7): B62D65/00:

B23P19/04; B23P21/00

- european:

Application number: JP19920243556 19920911 Priority number(s): JP19920243556 19920911

Report a data error here

Abstract of JP6092278

PURPOSE: To hold a vehicle seat positively to mount it without dislocation by providing a pair of insert members to be inserted between a seat cushion and a seat back, and an extending means for moving the insert members laterally so as to extend lateral seat cushion side hinge members laterally. CONSTITUTION:Insert members 24, 24 are inserted between a seat back 3B and a seat cushion 3A by the operation of a cylinder means 21. After the termination of insertion, a chuck means 23 is operated to move the insert members 24, 24 laterally, and the operation of the chuck member 23 is kept in such a way as to extend hinge members 6a by the contact between the hinge members 6a and the cushion side. Lateral positioning is thus performed, and the vehicle seat holding force is secured. This holding force is adjusted by the extending force of the chuck means 23.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平6-92278

(24) (44)公告日 平成6年(1994)11月16日

(51)Int.Cl. ⁵ C 3 0 B	25/18 29/40	識別記号	•	庁内整理番号 9040-4G 8216-4G	FI	技術表示箇所
# C30B H01L	•		Z	9040-4G	•	

特顯平1-58247	(71)出願人	99999999
		株式会社ジャパンエナジー
平成1年(1989)3月9日		東京都港区虎ノ門2丁目10番1号
	(72)発明者	菅 和彦
特開平2-239188		埼玉県戸田市新曾南3丁目17番35号 日本
平成2年(1990)9月21日		鉱業株式会社電子材料 • 部品研究所内
	(72)発明者	甲斐在 敬司
		埼玉県戸田市新曾南3丁目17番35号 日本
		鉱業株式会社電子材料 • 部品研究所内
	(72)発明者	泉清一
		埼玉県戸田市新曾南3丁目17番35号 日本
•		鉱業株式会社電子材料 • 部品研究所内
	(74)代理人	弁理士 大日方 富雄 (外1名)
	審査官	中村 泰三
	平成1年(1989)3月9日 特開平2-239188	平成 1 年(1989) 3 月 9 日 特開平2-239188 平成 2 年(1990) 9 月21日 (72)発明者 (72)発明者

(54)【発明の名称】 エピタキシャル成長方法

【特許請求の範囲】

【請求項1】表面の面方位が<100>方向から角度で0.1 ~0.2 傾斜した化合物半導体単結晶ウェーハの表面 に、有機金属気相エピタキシャル法により、基板温度60 0℃~700℃の条件で化合物半導体エピタキシャル層を成 長させるようにしたことを特徴とするエピタキシャル成 長方法。

【発明の詳細な説明】

[産業上の利用分野]

本発明は、ウェーハ上へのエピタキシャル成長技術に関 10 し、特に化合物半導体単結晶ウェーハ上にMOCVD (有機 金属気相エピタキシャル成長法) によりエピタキシャル 層を形成する場合に利用して効果的な技術に関する。 [従来の技術]

従来、MOCVDやMBE(分子線エピタキシー)、クロライド

CVD、ハイドライドCVDなどの気相エピタキシャル成長法 によって化合物半導体単結晶ウェーハ上にエピタキシャ ル層を成長させた場合、グロースプラミッド (growth pyramids) やファセッテッドディフェクト (faceted d efects)と呼ばれる表面欠陥が生じるという問題があっ た。

上記問題を解決するため、例えばウェーハの成長面をく 100>方位から1~7. 傾けて気相成長を行なう方法 (以下、オフアングル法と称する) が提案されている ([Journal of Crystal Growth 88] Elsevier Sc ience Publishers B.V. (Nouth-Holland Physics Publising Division) pp53~pp66) . 面方位を1~7. 傾けるという上記オフアングル法にあ っては、主として転位の上に発達するグロースピラミッ ドをファセッテッドディフェクトと呼ばれる欠陥を、著

3

しく低減させることができる。

2/

[発明が解決しようとする課題]

ところで、従来、半導体レーザのように結晶表面にグレーディングを施さなければならないデバイスの材料には上述したようなオフアングルのウェーハを使用することはできないため、面方位が<100>ジャストと呼ばれるものが使用されていた。しかし、従来の面方位ジャスト品を用いて気相成長を行なうと、エピタキシャル成長層の表面に欠陥が現われたり現われなかったりする場合があった。

この発明は上記のような背景の下になされたもので、その目的とするところは、ウェーハ表面にMOCVDによるエピタキシャル層を形成する場合において、成長膜の表面に生じる異常成長欠陥を大幅に低減できるようなエピタキシャル成長方法を提供することにある。

[課題を解決するための手段]

本発明者らは、従来の面方位ジャスト品を用いて気相成長させたウェーハの表面に欠陥が現われたり現われなかったりする原因を究明すべく、種々の実験を繰り返した結果、従来の面方位ジャスト品と呼ばれるものの中に、オフアングルが0.5 以下のものが含まれていること、また、気相成長に伴う表面欠陥は、上記グロースビラミッドやファセッテッドディフェクトだけではなく、第2図(A)に示すような涙状の異常成長欠陥(以下、涙状欠陥と称する)があり、この涙状欠陥は0.5 以下のオフアングルウェーハ上に気相成長を行なう際に生じ、オフアングルが.0.1 以下ではそれは最大10 ~10 cm²にも達することを見出した。

なお、第2図は微分干渉顕微鏡写真であり、ことに現われている涙状欠陥は、成長層の厚さが3μmの円形また 30は楕円形の突起物である。

この発明は、上記知見に基づいて、MOCVD法によるエピタキシャル成長法用基板として、面方位を<100>方向から0.1~0.2 傾けたウェーハを用い、かつ基板温度を600℃以上700℃以下の条件でエピタキシャル成長させることを提案するものである。

「作用]

上記した手段によれば、エピタキシャル層の成長面の面方位が0.1~0.2 傾いているため結晶格子を構成する原子層の端部が表面に階段状に現われ、そこをシードとし40てエピタキシャル層が成長を開始し、基板温度を600°C以上700°C以下と高く設定しているので、表面全体に亘って均一かつ緻密にエピタキシャル層が成長し、成長に伴う欠陥が生じにくくなる。

また、従来、面方位ジャスト品と呼ばれていた製品の範囲を、オフアングル0.1 以下に限定し、それとオフアングル0.1へ0.2 のものとを区別しているため、ビタキシャル層の表面に欠陥が現われたり現われなかったりするのを防止できる。

[実施例]

エピタキシャル成長させる場合を例にとって説明する。 先ず、成長を行なうInP基板として、基板表面が面方位 <100>より0.5 以内の適当な角度に傾くように鏡面加 工したものを数10枚用意した。次に、各InP基板の面方 位を正確に測定してから、その表面にMOCVD法によりエ ピタキシャル層を3μmの厚みに成長させた。なお、こ のMOCVD法によるエピタキシャル成長ではIII族原料とし てトリメチルインジウムを用い、これを1.2×10°mol/

以下、本発明を、InP基板上へMOCVD法によりInP結晶を

10 分の流量で流すとともに、V族原料にはホスフィン(PH ₃)を用い、これを1.2×10⁻³ mol/分の流量で流し、基板 650°C、成長室内圧力76torrの条件で減圧成長を行なっ た。このとき、エピタキシャル層の成長速度は1 μm/時 間であった。

上記のようにして気相成長されたInP基板の表面を微分 干渉顕微鏡で観察して、表面欠陥(涙状欠陥)の密度を 測定した結果を第1図に示す。第1図は表面欠陥密度を 縦軸、基板表面の面方位の傾き(オフアングル)を横軸 にとって示してある。

10 第1図より、面方位のずれが0.05 以内の基板の表面に 形成されたエピタキシャル成長層の表面欠陥密度は、1. 5×10 cm 以上であるが、0.05 ~0.10 のオフアングルの基板では表面欠陥密度が1×10~1×10 cm の範囲に減少し、さらに、0.10 以上のオフアングルの基板では、3×10 cm以下に減少していることが分かる。また、第2図(A),(B)にはオフアングルが0.03 と0.2 のInP基板上に成長させたエピタキシャル層の表面の微分干渉顕微鏡写真をそれぞれ示す。

同図より、基板表面の傾きが0.03 の場合よりも0.2 の方が大幅にエピタキシャル層の表面欠陥が少ないこと が分かる。

この実施例では基板650℃でエピタキシャル成長させているが、基板温度は600~700℃の範囲とされる。600℃ 未満では表面欠陥密度を十分に低減できず、700℃を超えるとキャリア濃度が高くなるからである。

なお、上記実施例ではInPを基板上にエピタキシャル層を成長させる場合を例にとって説明したが、との発明はInP基板のみでなく、GaAs等他の化合物半導体基板に適用できる。

〔発明の効果〕

以上説明したように、との発明は、表面の面方位が<10 0>方向から角度で0.1~0.2 傾斜した化合物半導体結晶ウェーハの表面に、有機金属気相エピタキシャル法により、基板温度が600~700℃の条件でエピタキシャル層を成長させるようにしたので、エピタキシャル層の成長面の面方位が0.1~0.2 傾いているため結晶格子を構成する原子層の端部が表面に階段状に現われ、そこをシードとしてエピタキシャル層が成長を開始するようになり、また基板温度を600~700℃と高く設定しているの

50 で、表面全体が亘って均一かつ緻密にエピタキシャル層

が成長し、成長に伴う欠陥が生じにくくなる。 また、従来、面方位ジャスト品と呼ばれていた製品の範囲を、オフアングル0.1 以下に限定し、それとオフアングル0.1~0.2 のものとを区別しているため、エピタキシャル層の表面に欠陥が現われたり現われなかったりするのを防止できるという効果がある。

【図面の簡単な説明】

*第1図は本発明を適用して作成したInP基板の面方位の 傾きとエピタキシャル成長層の表面の欠陥密度との関係 を示す図、

第2図(A), (B)は基板表面の面方位の傾きが0.03 ・と0.2 の場合のエピタキシャル成長層表面の結晶の 構造を示す顕微鏡写真(倍率100倍)である。

【第1図】

(4)

特公平6-92278

【第2図】

(A)

x 100

(B)

フロントページの続き

(56)参考文献 特開 昭62-65996 (JP, A)

特開 昭60-57989 (JP, A)

特開 昭55-1137 (JP, A)