整合至自偏壓收發機模組的半透明天線

組長: 黃旭邦 107360709

組員:李俊毅 107360707

游鎮遠 107360734

李彥霖 107360741

目錄

- 。研究動機
- 。專題目標
- 。研究方法
- 。研究進度
- 未來規劃
- 組員分工與貢獻度
- 。參考資料

研究動機

。有鑑於近幾年來綠能產業及無線通訊產業蓬勃發展,舉凡像是國家政策補助的太陽能相關產業,目標在 2025 年達到再生能源發電達 20GW,以及隨著IOT物聯網發展而需求逐漸增加的網通相關產業等因素,本專題決定以此為研究方向。

研究動機

- 本專題希望製作出一種可透光且擁有透光率的半透明天線,以此取代原先藍牙模組之天線,將其整合在太陽能供電模組之上,在不影響太陽能板運作的同時,也能提供自身傳輸訊息所需的電力供應。
- 如此整合之後,可以縮小整體供電模組與藍牙模組的總體積,並且不需要額外供電,就能置於戶外場所長時間傳輸訊息,預期未來還能接上感測器等模組,以便長期觀測數據。

專題目標

本專題期望最終能完成可使太陽光順利穿透的天線,且穩定利用太陽能板達到對藍牙模組自供電的效果,除了整體收發裝置體積減小,也可長期置於戶外環境,再另外接上感測器後,即可持續對外傳輸資訊。

研究方法

- 本次專題之半透明天線是基於奈米噴印技術所印製而成,經由本組與指導教授討論後決定採用奈米銀印製於透明基板之上, 先以HFSS模擬,修改傳統Monopole之外型,在其奈米銀部 分刻上網狀空隙,除保留天線基本功能外,同時使太陽光能穿 透天線與透明基板,讓太陽能板能順利充電。
- 。在傳輸及功能方面,本組決定使用Arduino作為開發平台,以太陽板加上穩壓模組推動藍牙模組傳輸數值,並使用可變電阻調整參數,模擬為真實感測數值輸出,再透過手機app作為接收端進行測試。

研究進度

天線

。目前已將傳統Monopole天線更改為具有網狀空隙的版本,並使用HFSS跑模擬圖,設定參數如下頁。

· 基板: 0.3mm 透明基板

• 導體材質: 奈米銀墨水

Driven Solution Setup				×		
General Options Advanced Hy	brid Expression Cac	he Derivatives	Defaults			
Setup Name Setup1						
Adaptive Solutions	ed Solve Port	s Only				
Solution Frequency: © Single C Multi-Frequencies C Broadband						
Frequency	2.4	GHz	•			
Maximum Number of Passes	15					
	0.001					
C Use Matrix Convergence	Set Magnitude	and Phase				
2						
	Use Default:	5				
		LIDC	JA1-:- O:	-1		
		HPC an	d Analysis Options	_		
			確定	取消		

weep r	Name:	Sweep				▼ Enabled
weep T	Гуре:	Discrete	X	•		
Freque		eps [201 poin				
	Dist inear Step	tribution	Start 1GHz	End 3GHz	Step size	0.01GHz
	Add	d Above	Add Below	Delete S	Selection	Preview
-3D Fie			Add Below	Delete S	Selection	Preview
	elds Save	Options -		Delete S		Preview
▼ Sa	elds Save	Options s s (All Frequ	encies)	Delete S		
▼ Sa	elds Save	Options -	encies)	Delete 9		

Pass Number	Solved Elements	Max Mag. Delta S
1	5256	N/A
2	6667	1.4559
3	8465	0.79629
4	10773	0.33325
5	13300	0.1052
6	16523	0.07226
7	21112	0.026127
8	26846	0.033976
9	34346	0.017489
10	42978	0.014724
11	51957	0.017536
12	65589	0.01502
13	79359	0.01039
14	97841	0.014141
15	125431	0.0094634

3D Polar Plot (Gain)

無網格:

無網格:

硬體

- Arduino uno
- HC-05 藍芽模組
- 。可變電阻
- 。LiPo Rider 太陽能穩壓
- 6000mAh 鋰電池
- 1W 80mm x 100mm 太陽能板

未來規劃

組員的分工與貢獻百分比

資料彙整、會議安排、團隊精神支柱 黃旭邦 107360709 (組長) 焊接硬體、繪製天線、製作期末報告 李俊毅 107360707 繪製天線、模擬天線、硬體接線、 游鎮遠 107360734 編寫Arduino程式、製作期末報告 李彥霖 繪製天線、模擬天線、製作期末報告 107360741

參考資料

https://hivenson.blogspot.com/2013/05/arduino-flash_26.html https://single9.net/2015/03/mbed-experiment-bluetooth-hc-05/ https://lass.hackpad.tw/ep/pad/static/gUdmMEJFPIt