Linguagens Formais e Autômatos Lista de Exercícios 2

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Exercício 1.

Projete NFAs que reconheçam as seguintes linguagens sobre o alfabeto {0,1}:

- a. O conjunto de todas as cadeias que terminam com 00
- b. O conjunto de todas as cadeias com três 0s consecutivos (não necessariamente no final)
- c. { w | w é composto de zero ou mais 0s seguidos de zero ou mais 1s } (obs: 0*1*)
- d. Cadeias que começam com 1 e terminam com 1
- e. A linguagem L = Ø
- f. A linguagem L = { ε }

Exercício 2.

Dados os NFAs a seguir, todos sobre o alfabeto $\{0,1\}$:

- a. Desenhe o diagrama de estados correspondente
- b. Mostre, passo a passo, as configurações instantâneas para as cadeias abaixo de cada autômato. Utilize a notação de conjuntos.
- c. Quais dessas cadeias fazem parte da linguagem do autômato e quais não fazem?
- d. Descreva informalmente a linguagem do autômato

M1:

	ε	0	1	
→ q1	Ø	{q2}	Ø	
q2	Ø	Ø	{q3}	
q3	Ø	{ q 3 }	{q3,q4}	
q4	Ø	{q5}	Ø	
* q5	Ø	Ø	Ø	

Cadeias para testar: ϵ , 010, 0110, 01010, 001

M2:

	ε	0	1
→ q1	{q2}	{q1}	{q1}
q2	{q3}	{q2}	{q2}
* q3	Ø	{q3}	{q3}

M3:

	ε	0	1
→ q1	Ø	Ø	{q2,q4}
q2	Ø	{q3}	Ø
* q3	{q1}	Ø	Ø
q4	Ø	Ø	{a3}

Cadeias para testar: ϵ , 11, 10, 1011, 1111, 1101, 0101

Exercício 3.

Converta os seguintes NFAs em DFAs equivalentes (calcule o ECLOSE de cada estado antes, como passo inicial auxiliar)

Obs: mostre o resultado em forma de diagrama de estados renomeados para A,B,C,

M1:

M2:

	ε	a	b	С
→ p	Ø	{q,r}	{q}	{r}
q	Ø	{s}	Ø	{s}
* r	{p,q}	Ø	{s}	{s}
* s	{q}	{r}	Ø	Ø

(obs: Os próximos exercícios envolvem implementação. Na prova não será cobrada implementação completa, mas o aluno precisará demonstrar conhecimento sobre detalhes de como implementar um autômato)

Exercício 4.

Implemente, na linguagem de sua preferência, um simulador de autômatos finitos determinísticos, que aceita qualquer autômato como entrada, e minimiza o autômato antes de sua execução.

Exercício 5.

Implemente, na linguagem de sua preferência, um simulador de autômatos finitos não determinísticos, que aceita qualquer autômato como entrada, transforma-o em um autômato determinístico, e minimiza o autômato antes de sua execução.

Exercício 6.

Implemente, na linguagem de sua preferência, um simulador de autômatos finitos não determinísticos com transições vazias, que aceita qualquer autômato como entrada, transforma-o em um autômato determinístico, e minimiza o autômato antes de sua execução.