Interpretable Machine Learning

Inherently Interpretable Models - Motivation

Learning goals

- Why should we use interpretable models?
- Advantages and disadvantages of interpretable models

Interpretable Machine Learning Inherently Interpretable Models Motivation

Learning goals

- Why should we use interpretable models?
- Advantages and disadvantages of interpretable models

MOTIVATION

- Achieving interpretability by using interpretable models is the most straightforward approach
- Classes of models deemed interpretable:
 - (Generalized) linear models (LM, GLM)
 - Generalized additive models (GAM)
 - Decision trees
 - Rule-based learning
 - Model-based / component-wise boosting
 - interpretation
- Often there is a trade-off between interpretability and model performance

MOTIVATION

- Achieving interpretability by using interpretable models is the most straightforward approach
- Classes of models deemed interpretable:
 - (Generalized) linear models (LM, GLM)
 - Generalized additive models (GAM)
 - Decision trees
 - Rule-based learning
 - Model-based / component-wise boosting
- Often there is a trade-off between interpretability and model performance

Temperature in °C

→ LM provides straightforward

interpretation

Performance

ADVANTAGES

 Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary → Eliminates an extra source of estimation error

ADVANTAGES

 Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary → Eliminates an extra source of estimation error

 $x_2 < 0.2$ $x_2 \ge 0.2$

Interpretable Machine Learning - 2/5 - 2/5

ADVANTAGES

- Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary → Eliminates an extra source of estimation error
- They often have few hyperparameters and are structurally simple (e.g., linear, additive, sparse, monotonic)
 - \rightarrow Easy to train, fast to tune, and straightforward to explain $x_2 < 0.2$ $x_2 \ge 0.2$

ADVANTAGES

- Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary
- → Eliminates an extra source of estimation error
- They often have few hyperparameters and are structurally simple (e.g., linear, additive, sparse, monotonic) → Easy to train, fast to tune, straightforward to explain

Interpretable Machine Learning - 2/5 - 2/5

ADVANTAGES

- Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary
 Eliminates an extra source of estimation error
- They often have few hyperparameters and are structurally simple (e.g., linear, additive, sparse, monotonic)
 → Easy to train, fast to tune, and straightforward to explain x₂ < 0.2 x₂ ≥ 0.2
- Many people are familiar with simple interpretable models
 → Increases trust, facilitates communication of results

 $x_1 < 0.3 \quad x_1 \ge 0.3$

ADVANTAGES

- Interpretable models are transparent by design, making many model-agnostic explanation methods unnecessary
- → Eliminates an extra source of estimation error
- They often have few hyperparameters and are structurally simple (e.g., linear, additive, sparse, monotonic)
- → Easy to train, fast to tune, straightforward to explain
 Many people are familiar with simple interpretable models
- → Increases trust, facilitates communication of results

Interpretable Machine Learning - 2/5 © -2/5

Often require assumptions about data / model structure
 If assumptions are wrong, models may perform bad

DISADVANTAGES & LIMITATIONS

◆ Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad

- Often require assumptions about data / model structure → If assumptions are wrong, models may perform bad
- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth

DISADVANTAGES & LIMITATIONS

• Often require assumptions about data / model structure → If assumptions are wrong, models may perform bad

- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth

Interpretable Machine Learning - 3/5 - 3/5

Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad

- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth
- Often do not automatically model complex relationships due to limited flexibility e.g., high-order main or interaction effects need to be specified manually in an LM

DISADVANTAGES & LIMITATIONS

- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth
- Often do not automatically model complex relationships due to limited flexibility
- e.g., high-order main or interaction effects need to be specified manually in an LM

Interpretable Machine Learning - 3/5

Often require assumptions about data / model structure
 → If assumptions are wrong, models may perform bad

- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth
- Often do not automatically model complex relationships due to limited flexibility e.g., high-order main or interaction effects need to be specified manually in an LM

DISADVANTAGES & LIMITATIONS

- Interpretable models may also be hard to interpret, e.g.:
 - LM with lots of features and interactions
 - Decision trees with huge tree depth
- Often do not automatically model complex relationships due to limited flexibility
 - e.g., high-order main or interaction effects need to be specified manually in an LM

Interpretable Machine Learning - 3/5 © -3/5

FURTHER COMMENTS

- Some researchers advocate for inherently interpretable models instead of explaining black boxes after training
 - Built-in interpretation ⇒ fewer risks from misleading post-hoc explanations
 - Good performance possible with effort on preprocessing / feat. engineering
 - But interpretability depends on meaning of created features
 - → E.g., PCA keeps models linear, but yields hard-to-interpret components

FURTHER COMMENTS

- Some researchers advocate for inherently interpretable models instead of explaining black boxes after training
 - Built-in interpretation
 - → fewer risks from misleading post-hoc explanations
 - Good performance possible with effort on preprocessing and/or feature engineering
 - But interpretability depends on meaning of created features
 E.g., PCA keeps models linear, but yields hard-to-interpret components

Interpretable Machine Learning – 4/5 © -4/5

FURTHER COMMENTS

- Some researchers advocate for inherently interpretable models instead of explaining black boxes after training
 - Built-in interpretation ⇒ fewer risks from misleading post-hoc explanations
 - Good performance possible with effort on preprocessing / feat. engineering
 - But interpretability depends on meaning of created features
 - → E.g., PCA keeps models linear, but yields hard-to-interpret components
- Limitation: Less suited for complex data where end-to-end learning is crucial
 - Applies to image, text, or sensor data where features must be learned
 - Manual extraction of interpretable features is difficult
 - ⇒ Information loss and lower performance

FURTHER COMMENTS

- Some researchers advocate for inherently interpretable models instead of explaining black boxes after training
 - Built-in interpretation
 - → fewer risks from misleading post-hoc explanations
 - Good performance possible with effort on preprocessing and/or feature engineering
 - But interpretability depends on meaning of created features
 E.g., PCA keeps models linear, but yields hard-to-interpret components
- Limitation: Less suited for complex data complex data requiring end-to-end learning
 - Applies to image, text, or sensor data where features must be learned from raw input
 - Manual extraction of interpretable features is difficult
 - ⇒ Information loss and lower performance

Interpretable Machine Learning - 4/5

RECOMMENDATION

- Begin with the simplest model appropriate for the task
- Increase complexity only if necessary to meet performance requirements

 → Typically reduces interpretability and requires model-agnostic explanations
- Choose the simplest model with sufficient accuracy → Occam's razor

Bike Data, 4-fold CV

Model	RMSE	R^2
LM	800.15	0.83
Tree	981.83	0.74
Random Forest	653.25	0.88
Boosting (tuned)	638.42	0.89

RECOMMENDATION

- Begin with the simplest model appropriate for the task
 - Increase complexity only if necessary to meet performance requirements
 Typically reduces interpretability and requires model-agnostic explanations
 - Choose the simplest model with sufficient accuracy → Occam's razor

Bike Data, 4-fold CV

Model	RMSE	R^2
LM	800.15	0.83
Tree	981.83	0.74
Random Forest	653.25	0.88
Boosting (tuned)	638.42	0.89

Interpretable Machine Learning - 5/5 © -5/5

Interpretable Machine Learning

Linear Regression Model

Learning goals

- LM basics and assumptions
- Interpretation of main effects in LM
- What are significant features?

Interpretable Machine Learning Linear Regression Model

Learning goals

- LM basics and assumptions
- Interpretation of main effects in LM
- What are significant features?

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual
- θ_j : weight of input feature x_j (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual
- θ_j : weight of input feature x_j (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Interpretable Machine Learning - 1/4 © -1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_\rho x_\rho + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

• Linear relationship between features and target

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

• Linear relationship between features and target

Interpretable Machine Learning - 1/4 - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\mathsf{T}} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

 $\leadsto \epsilon \sim N(0, \sigma^2) \implies (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$

→ if violated, inference-based metrics (e.g., p-values) are invalid

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

→ if violated, inference-based metrics (e.g., p-values) are invalid

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
 - → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- \bullet ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

➤ Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)
 - $\leadsto \epsilon \sim N(0, \sigma^2) \implies (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$
- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions • "Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$ightharpoonup \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ

Interpretable Machine Learning - 1 / 4 - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

► Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y x are **normally** distributed with **constant variance** (homoscedastic)
 - $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

LINEAR REGRESSION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions Faraway, Ch. 7" 2002

- Linear relationship between features and target
- \bullet and $y | \mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

Interpretable Machine Learning - 1 / 4 - 1/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_i = 0$

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_j = 0$

Interpretable Machine Learning - 2/4 © -2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_j = 0$

• Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)

• Left out cat. is reference (\(\hat{=}\) dummy encoding)

 \sim Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)

Binary x_j: Weight θ_j is active or not (multiplication with 1 or 0)
 → reference category x_i = 0

- Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
- Left out cat. is reference ($\hat{=}$ dummy encoding)
- \sim Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.

Interpretable Machine Learning - 2/4 © -2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- Categorical feature x_i with L categories:
 - Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
 - Left out cat. is reference (\hat{=} dummy encoding)
- \rightsquigarrow Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.
- Intercept θ_0 : Expected outcome if all feature values are set to 0

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_i = 0$
- Categorical feature x_i with L categories:
- Create L-1 one-hot-encoded features $x_{i,1}, \ldots, x_{i,L-1}$ (each having its own weight)
- Left out cat. is reference (\triangleq dummy encoding)
- \rightarrow Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.
- Intercept θ_0 : Expected outcome if all feature values are set to 0

Interpretable Machine Learning - 2/4 © - 2/4

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\mathsf{T}} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) = \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{\mathcal{SE}(\hat{ heta}_j)}
ight|$$

High t-values ⇒ important (significant) feat.

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left| rac{\hat{ heta}_j}{ extsf{SE}(\hat{ heta}_j)}
ight|$$

• High *t*-values \Rightarrow important (significant) feat.

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_i) = \text{reliability of estimate})$

$$|\hat{\hat{ heta}_j}| = \left| \frac{\hat{ heta}_j}{ extstyle SE(\hat{ heta}_j)}
ight|$$

days_since_201

- High t-values \Rightarrow important (significant) feat.
- **p-value**: probability of obtaining a more extreme test statistic assuming H_0 is correct (here: $\theta_j = 0$, i.e., feat. j not significant) \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

LINEAR REGRESSION - INTERPRETATION

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{ extsf{SE}(\hat{ heta}_j)}
ight|$$

- High t-values ⇒ important (significant) feat.
- **p-value**: probability of obtaining a more extreme test statistic assuming H_0 is correct (here: $\theta_j = 0$, i.e., feat. j not significant) \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

Interpretable Machine Learning - 3/4 © - 3/4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretable Machine Learning - 4/4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

• Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days since 2011	4.9	0.2	26.9	0.00

Interpretation:

• Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

Interpretable Machine Learning - 4 / 4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

9.3 220 2.0 129		0.00
2.0 129		
	.0 6.7	0.00
10 170		0.00
1.6 170	.2 0.2	0.81
0.1 116	.6 3.3	0.00
0.5 7	.3 16.5	0.00
1.1 2	.6 -12.1	0.00
^ ~	.1 -8.0	0.00
6.9 7.		0.00
		4.9 0.2 26.9

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categ.: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.

Interpretable Machine Learning - 4/4 © -4/4

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Numerical: Rentals increase by $\hat{\theta}_4 = 120.5$ if temp increases by 1 °C, c.p.

EXAMPLE: LIN. REGRESSION - MAIN EFFECTS

Bike data: predict no. of rented bikes using 4 numeric, 1 cat. feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days since 2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categ.: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Numerical: Rentals increase by $\hat{\theta}_4 = 120.5$ if temp increases by 1 °C, c.p.

Interpretable Machine Learning - 4/4 © -4/4

Interpretable Machine Learning

Extensions of Linear Regression Models

Learning goals

- Inclusion of high-order and interaction effects
- Regularization via LASSO

Interpretable Machine Learning Extensions of Linear Regression Models

Learning goals

- Inclusion of high-order and interaction effects
- Regularization via LASSO

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_\rho x_\rho + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights \rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$
- interaction effects as the product of multiple feat. \rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

,	,	
Bil	ke Data	
Method	R^2	adj. R ²
Simple LM	0.85	0.84
High-order	0.87	0.87
Interaction	0.06	U 03

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

• high-order effects which have their own weights \rightarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$

 \rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

 high-order effects which have their own weights 	Bike Data		
9	Method	R^2	adj. R ²
\rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$	Simple LM	0.85	0.84
	High-order	0.87	0.87
• interaction effects as the product of multiple feat.	Interaction	0.96	0.93
a control of the cont			

Interpretable Machine Learning - 1/5 - 1/5

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights \rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$
- interaction effects as the product of multiple feat. \sim e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

Bil	ke Data	
Method	R^2	adj. <i>R</i> ²
Simple LM	0.85	0.84
High-order	0.87	0.87
Interaction	0.96	0.93

Implications of including high-order and interaction effects:

- Both make the model more flexible but also less interpretable → More weights to interpret
- Both need to be specified manually (inconvenient and sometimes infeasible) Other ML models often learn them automatically
- Marginal effect of a feature cannot be interpreted by single weights anymore \rightarrow Feature x_i occurs multiple times (with different weights) in equation

INTERACTION AND HIGH-ORDER EFFECTS

LM Equation:
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

high-order effects which have their own weights

s .	Bik	e Data		
	Method	R^2	adj. R ²	
	Simple LM	0.85	0.84	
	High-order	0.87	0.87	
at.	Interaction	0.96	0.93	

	Method	11	auj. 11
\rightsquigarrow e.g., quadratic effect: $\theta_{x_i^2} \cdot x_i^2$	Simple LM	0.85	0.84
	High-order	0.87	0.87
 interaction effects as the product of multiple feat. 	Interaction	0.96	0.93
\rightsquigarrow e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$			

Implications of including high-order and interaction effects:

- Both make the model more flexible but also less interpretable → More weights to interpret
- Both need to be specified manually (inconvenient, sometimes infeasible) Other ML models often learn them automatically
- Marginal effect of a feat. cannot be interpreted by single weights anymore \rightarrow Feature x_i occurs multiple times (with different weights) in equation

Interpretable Machine Learning - 1/5 - 1/5

Example: Interaction between temp and season will affect marginal effect of temp

		Weights
	(Intercept)	3453.9
	seasonSPRING	1317.0
R	seasonSUMMER	4894.1
G ER	seasonFALL	-114.2
LIX	temp	160.5
	hum	-37.6
	windspeed	-61.9
	days_since_2011	4.9
	seasonSPRING:temp	-50.7
	seasonSUMMER:temp	-222.0
	seasonFALL:temp	27.2

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretable Machine Learning - 2/5 © -2/5

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

• increase by 160.5 in WINTER (reference)

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 $^{\circ}$ C, bike rentals

• increase by 160.5 in WINTER (reference)

Interpretable Machine Learning - 2/5 © - 2/5

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 $^{\circ}$ C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

Interpretable Machine Learning - 2/5 © -2/5

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}$ C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

Interpretable Machine Learning - 2/5

EXAMPLE: INTERACTION EFFECT

Example: Interaction between temp and season will affect marginal effect of temp

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

EXAMPLE: INTERACTION EFFECT

Ex.: Interaction between temp and season will affect marginal effect of temp

	_
	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 $^{\circ}\text{C},$ bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

Interpretable Machine Learning - 2/5 © - 2/5

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp

temp depends on two weights:

	Weights
(Intercept)	3094.1
seasonSPRING	619.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

EXAMPLE: QUADRATIC EFFECT

Ex.: Adding quadratic effect for temp

Interpretation: Not linear anymore!

• temp depends on two weights:

 $280.2 \cdot x_{temp} - 5.6 \cdot x_{temp}^2$

Seasonorning	019.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

Interpretation: Not linear anymore!

•	remb gebengs	on two weigh
	$280.2 \cdot x_{temp}$ —	$5.6 \cdot x_{temp}^2$

Interpretable Machine Learning - 3/5

- 3/5

EXAMPLE: QUADRATIC EFFECT

Example: Adding quadratic effect for temp (left) and interaction with season (right)

seasonFALL:temp2

Interpretation: Not linear anymore!

• temp depends on multiple weights due to season:

$$\rightarrow$$
 WINTER: 39.1 · x_{temp} + 8.6 · x_{temp}^2

$$\sim$$
 SPRING: (39.1+407.4) $\cdot x_{temp} + (8.6-18.7) \cdot x_{temp}^2$

$$\rightarrow$$
 SUMMER: (39.1+801.1) · x_{temp} + (8.6−27.2) · x_{temp}^2

$$\sim$$
 SUMPLER. (39.1+001.1) · X_{temp} + (6.6-27.2) · X_{tem}
 \sim FALL: (39.1+217.4) · X_{temp} + (8.6-11.3) · X_{temp}^2

EXAMPLE: QUADRATIC EFFECT

Ex.: Adding quadratic effect for temp (left) and interaction with season (right)

		weignis
	(Intercept)	3802.1
	seasonSPRING	-1345.1
Season	seasonSUMMER	-6006.3
- WINTER	seasonFALL	-681.4
SPRINGSUMMER	hum	-38.9
- FALL	windspeed	-64.1
	days_since_2011	4.8
	temp	39.1
	temp ²	8.6
	seasonSPRING:temp	407.4
	seasonSPRING:temp ²	-18.7
_	seasonSUMMER:temp	801.1
son:	OLDANGED 1 2	07.0

seasonFALL:temp

seasonFALL:temp2

217.4

Interpretation: Not linear anymore!

• temp depends on multiple weights due to season:

 $(39.1+217.4) \cdot x_{temp} + (8.6-11.3) \cdot x_{temp}^2$

Interpretable Machine Learning - 3/5

REGULARIZATION VIA LASSO Tibshirani (1996)

- LASSO adds an L_1 -norm penalization term $(\lambda ||\theta||_1)$ to least squares optimization problem
- Shrinks some feature weights to zero (feature selection)
- Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mathbf{x}^{(i)^{\top}} \theta)^{2}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1}\right)$$

REGULARIZATION VIA LASSO TIBSHIRANI

- LASSO adds an L_1 -norm penalization term $(\lambda ||\theta||_1)$ to least squares optimization problem
- → Shrinks some feature weights to zero (feature selection)
- → Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \xi^{\top} \theta)^{2}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1} \right)$$

Interpretable Machine Learning - 4/5

REGULARIZATION VIA LASSO > Tibshirani (1996)

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season
- λ is chosen \rightsquigarrow 6 selected features (\neq 0)
- LASSO shrinks weights of single categories separately (due to dummy encoding) → No feature selection of whole categorical
 - features (only w.r.t. category levels)
- → Solution: group LASSO → Yuan and Lin (2006)

	Weights
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

REGULARIZATION VIA LASSO TIBSHIRANI

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season
- λ is chosen \rightsquigarrow 6 selected features (\neq 0)
- LASSO shrinks weights of single categories separately (due to dummy encoding)
- → No feature selection of whole categorical features (only w.r.t. category levels)
- → Solution: group LASSO → Yuan and Lin 2006

	Weights
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

Interpretable Machine Learning - 5/5 - 5/5

Interpretable Machine Learning

Generalized Linear Models

Learning goals

- Definition of GLMs
- Logistic regression as example
- Interpretation in logistic regression

Interpretable Machine Learning Generalized Linear Models (GLMs)

Learning goals

- Definition of GLMs
- Logistic regression as example
- Interpretation in logistic regression

GENERALIZED LINEAR MODEL (GLM) Nelder and Wedderburn 1972

Problem: Target variable given feat. not always normally dist. → LM not suitable

• Target is binary (e.g., disease classification)

→ Bernoulli / Binomial distribution

 Target is count variable (e.g., number of sold products) → Poisson distribution

 Time until an event occurs (e.g., time until death) → Gamma distribution

GLM → NELDER_WEDDERBURN

Problem: Target variable given feat not always normally distributed

• Target is binary (e.g., disease classif.) → Bernoulli / Binomial distribution

- Target is count variable (e.g., number of sold products)
- → Poisson distribution Time until an event occurs
- (e.g., time until death) → Gamma distribution

Interpretable Machine Learning - 1/5 - 1/5

GENERALIZED LINEAR MODEL (GLM) Nelder and Wedderburn 1972

Problem: Target variable given feat. not always normally dist. → LM not suitable

- Target is binary (e.g., disease classification)
 - → Bernoulli / Binomial distribution
- Target is count variable (e.g., number of sold products) → Poisson distribution
- Time until an event occurs (e.g., time until death) → Gamma distribution

Solution: GLMs - extend LMs by allowing other distributions from exponential family

$$g(\mathbb{E}(y \mid \mathbf{x})) = \mathbf{x}^{\top} \boldsymbol{\theta} \iff \mathbb{E}(y \mid \mathbf{x}) = g^{-1}(\mathbf{x}^{\top} \boldsymbol{\theta})$$

- Link function q links linear predictor $\mathbf{x}^{\top} \theta$ to expectation of distribution of $\mathbf{y} \mid \mathbf{x}$ \rightarrow LM is special case: Gaussian distribution for $y \mid \mathbf{x}$ with g as identity function
- Link function g and distribution need to be specified
- High-order and interaction effects can be manually added as in LMs
- Note: Interpretation of weights depend on link function and distribution

GLM • NELDER_WEDDERBURN

Problem: Target variable given feat not always normally distributed

- Target is binary (e.g., disease classif.) → Bernoulli / Binomial distribution
- Target is count variable (e.g., number of sold products)
- Time until an event occurs (e.g., time until death) → Gamma distribution

→ Poisson distribution

Solution: GLMs - extend LMs by allowing other distrib.-s from exp. family

$$g(\mathbb{E}(y \mid \mathbf{x})) = \mathbf{x}^{\top} \boldsymbol{\theta} \iff \mathbb{E}(y \mid \mathbf{x}) = g^{-1}(\mathbf{x}^{\top} \boldsymbol{\theta})$$

- Link function q links linear predictor $\mathbf{x}^{\top} \boldsymbol{\theta}$ to expectation of distrib. of $\mathbf{y} \mid \mathbf{x}$ \rightsquigarrow LM is special case: Gaussian distrib. for $y \mid \mathbf{x}$ with g as identity func.
- Link function g and distribution need to be specified
- High-order and interaction effects can be manually added as in LMs
- Note: Interpretation of weights depend on link function and distribution

Interpretable Machine Learning - 1/5 - 1/5

GLM - LOGISTIC REGRESSION

• Logistic regression $\hat{=}$ GLM with Bernoulli distribution and logit link function:

$$g(x) = \log\left(\frac{x}{1-x}\right) \Rightarrow g^{-1}(x) = \frac{1}{1+\exp(-x)}$$

Models probabilities for binary classification by

$$\pi(\mathbf{x}) = \mathbb{E}(y \mid \mathbf{x}) = P(y = 1) = g^{-1}(\mathbf{x}^{\top}\boldsymbol{\theta}) = \frac{1}{1 + \exp(-\mathbf{x}^{\top}\boldsymbol{\theta})}$$

GLM - LOGISTIC REGRESSION

$$g(x) = \log\left(\frac{x}{1-x}\right) \Rightarrow g^{-1}(x) = \frac{1}{1+\exp(-x)}$$

Models probabilities for binary classification by

$$\pi(\mathbf{x}) = \mathbb{E}(y \mid \mathbf{x}) = P(y = 1) = g^{-1}(\mathbf{x}^{\top}\theta) = \frac{1}{1 + \exp(-\mathbf{x}^{\top}\theta)}$$

Interpretable Machine Learning - 2/5 © -2/5

GLM - LOGISTIC REGRESSION

- Typically, we set the threshold to 0.5 to predict classes, e.g.,
 - Class 1 if $\pi(\mathbf{x}) > 0.5$
 - Class 0 if $\pi(\mathbf{x}) \leq 0.5$

GLM - LOGISTIC REGRESSION

- Typically, we set the threshold to 0.5 to predict classes, e.g.,
 - Class 1 if $\pi(\mathbf{x}) > 0.5$
 - Class 0 if $\pi(\mathbf{x}) \leq 0.5$

GLM - LOGISTIC REGRESSION - INTERPRETATION

- Recall: Odds is ratio of two probabilities, odds ratio compares ratio of two odds
- Weights θ_j are interpreted linear as in LM (but w.r.t. log-odds) \leadsto difficult to comprehend

Interpretation:

Changing x_i by one unit, changes log-odds of class 1 compared to class 0 by θ_i

 $log-odds = \log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right) = \log\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p$

GLM - LOG. REGRESSION - INTERPRETATION

- Recall: Odds is ratio of two probabilities, odds ratio is ratio of two odds
- Weights θ_j are interpreted linear as in LM (but w.r.t. log-odds) \leadsto difficult to comprehend

$$log-odds = log\left(\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}\right) = log\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p$$

Interpretation: Changing x_j by one unit, changes log-odds of class 1 compared to class 0 by θ_i

Interpretable Machine Learning - 4/5 © -4/5

GLM - LOGISTIC REGRESSION - INTERPRETATION

- Recall: Odds is ratio of two probabilities, odds ratio compares ratio of two odds
- Weights θ_j are interpreted linear as in LM (but w.r.t. log-odds) \rightsquigarrow difficult to comprehend

Interpretation:

Changing x_i by one unit, changes log-odds of class 1 compared to class 0 by θ_i

 $log\text{-odds} = \log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right) = \log\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p$

- Odds for class 1 vs. class 0: $odds = \frac{\pi(\mathbf{x})}{1 \pi(\mathbf{x})} = \exp(\theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p)$
- Instead of interpreting changes w.r.t. log-odds, odds ratio is more common

$$=\frac{odds_{x_j+1}}{odds}=\frac{\exp(\theta_0+\theta_1x_1+\ldots+\theta_j(x_j+1)+\ldots+\theta_px_p)}{\exp(\theta_0+\theta_1x_1+\ldots+\theta_ix_j+\ldots+\theta_px_p)}=\exp(\theta_j)$$

Interpretation: Changing x_j by one unit, changes the **odds ratio** for class 1 (compared to class 0) by the **factor** $\exp(\theta_i)$

GLM - LOG. REGRESSION - INTERPRETATION

- Recall: Odds is ratio of two probabilities, odds ratio is ratio of two odds
- Weights θ_j are interpreted linear as in LM (but w.r.t. log-odds) \rightsquigarrow difficult to comprehend

$$ightharpoonup ext{difficult}$$
 to comprehend
$$log\text{-}odds = \log\left(\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}\right) = \log\left(\frac{P(y=1)}{P(y=0)}\right) = \theta_0 + \theta_1 x_1 + \ldots + \theta_p x_p$$

Interpretation: Changing x_i by one unit, changes log-odds of class 1 compared to class 0 by θ_i

- Odds for cls 1 vs. cls 0: $odds = \frac{\pi(\mathbf{x})}{1 \pi(\mathbf{x})} = \exp(\theta_0 + \theta_1 x_1 + \ldots + \theta_\rho x_\rho)$
- Instead of interpreting changes w.r.t. log-odds, it is more common to use odds ratio

$$=\frac{odds_{x_j+1}}{odds}=\frac{\exp(\theta_0+\theta_1x_1+\ldots+\theta_j(x_j+1)+\ldots+\theta_px_p)}{\exp(\theta_0+\theta_1x_1+\ldots+\theta_jx_j+\ldots+\theta_px_p)}=\exp(\theta_j)$$

Interpretation: Changing x_j by one unit, changes the **odds ratio** for class 1 (compared to class 0) by the **factor** $\exp(\theta_i)$

Interpretable Machine Learning - 4/5

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
 - Class 1: "high number of bike rentals" > 70% quantile (i.e., cnt > 5531)
 - Class 0: "low to medium number of bike rentals" (i.e., cnt ≤ 5531)
- Fit a logistic regression model (GLM with Bernoulli distribution and logit link)

	Weights	SE	p-value
(Intercept)	-8.52	1.21	0.00
seasonSPRING	1.74	0.60	0.00
seasonSUMMER	-0.86	0.77	0.26
seasonFALL	-0.64	0.55	0.25
temp	0.29	0.04	0.00
hum	-0.06	0.01	0.00
windspeed	-0.09	0.03	0.00
days_since_2011	0.02	0.00	0.00

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
 - Class 1: "high number of rentals" > 70% quantile (i.e., cnt > 5531)
 - ullet Class 0: "low to medium number of rentals" (i.e., cnt \leq 5531)
 - Fit a logistic regression model (GLM with Bernoulli distri. and logit link)

	Weights	SE	p-value
(Intercept)	-8.52	1.21	0.00
seasonSPRING	1.74	0.60	0.00
seasonSUMMER	-0.86	0.77	0.26
seasonFALL	-0.64	0.55	0.25
temp	0.29	0.04	0.00
hum	-0.06	0.01	0.00
windspeed	-0.09	0.03	0.00
days_since_2011	0.02	0.00	0.00

Interpretable Machine Learning - 5/5 © 5/5

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
 - Class 1: "high number of bike rentals" > 70% quantile (i.e., cnt > 5531)
 - Class 0: "low to medium number of bike rentals" (i.e., cnt < 5531)
- Fit a logistic regression model (GLM with Bernoulli distribution and logit link)

	Weights	SE	p-value
(Intercept)	-8.52	1.21	0.00
seasonSPRING	1.74	0.60	0.00
seasonSUMMER	-0.86	0.77	0.26
seasonFALL	-0.64	0.55	0.25
temp	0.29	0.04	0.00
hum	-0.06	0.01	0.00
windspeed	-0.09	0.03	0.00
days_since_2011	0.02	0.00	0.00

Interpretation

• If temp increases by $1^{\circ}C$, odds ratio for class 1 increases by factor $\exp(0.29) = 1.34$ compared to class 0, c.p. ($\hat{=}$ "high number of bike rentals" now 1.34 times more likely)

GLM - LOGISTIC REGRESSION - EXAMPLE

- Create a binary target variable for bike rental data:
 - Class 1: "high number of rentals" > 70% quantile (i.e., cnt > 5531)
 - Class 0: "low to medium number of rentals" (i.e., $cnt \le 5531$)
- Fit a logistic regression model (GLM with Bernoulli distri. and logit link)

	Weights	SE	p-value
(Intercept)	-8.52	1.21	0.00
seasonSPRING	1.74	0.60	0.00
seasonSUMMER	-0.86	0.77	0.26
seasonFALL	-0.64	0.55	0.25
temp	0.29	0.04	0.00
hum	-0.06	0.01	0.00
windspeed	-0.09	0.03	0.00
days_since_2011	0.02	0.00	0.00

Interpretation

If temp increases by 1° C, odds ratio for class 1 increases by factor exp(0.29) = 1.34 compared to class 0, c.p. (ê "high number of bike rentals" now 1.34 times more likely)

Interpretable Machine Learning - 5/5

Interpretable Machine Learning

Rule-based Models

Interpretable Machine Learning Rule-based Models

DECISION TREES • Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

DECISION TREES • BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

DECISION TREES > Breiman et al. (1984)

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feature spaces & missing values

DECISION TREES • BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feat, spaces & missing values

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- **Feature importance** (quantifies how often and how usefully x_i is used):
 - For each split on feature x_i , record the decrease in the split criterion
 - Aggregate this over the tree: sum or average over all splits involving x_i
 - Split criterion: variance (regression), Gini index / entropy (classification)

- Each ΔVar is assigned to the splitting feature
- Feature importance = sum of all ΔVar for that feature:

 x_i : 0.18

$$x_k$$
: 0.07 + 0.10 = 0.17

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- **Feature importance** (quantifies how often and how usefully x_i is used):
- English and the second of the
 - For each split on feature x_j , record the decrease in the split criterion
 - ullet Aggregate this over the tree: sum or avg. over all splits involving x_j
 - Split criterion: variance (regression), Gini index / entropy (classif.)

- Each ΔVar is assigned to the splitting feature
- Feature importance = sum of all ΔVar for that feat.:

x_i: 0.18

$$x_k$$
: 0.07 + 0.10 = 0.17

Interpretable Machine Learning - 2/6 © -2/6

DECISION TREES - EXAMPLE

- Fit decision tree with tree depth of 3 on bike data
- E.g., mean prediction for the first 105 days since 2011 is 1798
 → Applies to =15% of the data (leftmost branch)
- days_since_2011: highest feature importance (explains most of variance)

			100%	
		yes days_si	ince_2011 < 435- <i>no</i>	
eature	Importance	3414 60%	6107 40%	
lays_since_2011	79.53	days_since_2011 < 106	temp <	12—
emp ium	17.55 2.92	3934 45%	4408	6634 31%
		temp < 14	days_since_2011 >= 721	hum >= 83
		(1798) (3246) (4450)	(1698) (4860)	(4291) (675

19%

1%

2%

15%

DECISION TREES - EXAMPLE

- Fit decision tree with tree depth of 3 on bike data
- E.g., mean prediction for the first 105 days since 2011 is 1798
 → Applies to =15% of the data (leftmost branch)
- days_since_2011: highest feat. importance (explains most of variance)

Feature	Importance
days_since_2011	79.53
temp	17.55
hum	2 92

Interpretable Machine Learning - 3 / 6

► Hothorn et al. (2006) ► Zeileis et al. (2008) ► Strobl et al. (2007)

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- ② Splits on any improvement, regardless of significance → prone to overfitting

UNBIASED RECURSIVE PARTITIONING

► Hothorn 2006 ► Zeileis 2008 ► Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Interpretable Machine Learning - 4/6

- 4/6

► Hothorn et al. (2006) ► Zeileis et al. (2008) ► Strobl et al. (2007)

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- 4 Hypothesis test as stopping criteria

UNBIASED RECURSIVE PARTITIONING

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

Interpretable Machine Learning - 4/6 - 4/6

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- ② Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- 2 Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200) with $Y \sim N(0, 1)$ and 3 features of different cardinality independent from *Y* (repeat 500 times):

- $X_1 \sim Binom(n, \frac{1}{2})$
- $X_2 \sim M(n, (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$
- $X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$

Which feature is selected in the first split?

UNBIASED RECURSIVE PARTITIONING

▶ Hothorn 2006
▶ Zeileis 2008
▶ Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- A Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200), $Y \sim N(0, 1)$ and 3 features of different cardinality indep. from *Y* (repeat 500 times):

•
$$X_2 \sim M(n, (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}))$$

•
$$X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$$

Interpretable Machine Learning - 4/6 - 4/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

UNBIASED RECURSIVE PARTITIONING

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Interpretable Machine Learning - 5 / 6

- 5/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

UNBIASED RECURSIVE PARTITIONING

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

Interpretable Machine Learning - 5/6

Differences to CART:

- Two-step approach (1. find most significant split feature, 2. find best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leave nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train error (MSE): 758.844.0 (ctree)

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train MSE: 758.844 (ctree) 742,244 (mob)

Interpretable Machine Learning - 5/6 - 5/6

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

ELSE

OTHER RULE-BASED MODELS

IF $x_1 < 2.3 \text{ AND } x_4 = \text{`A''}$

ELSE IF $x_2 > 5.0$

ELSE

THEN y = 1

THEN y = 2

y = 3

Decision Rules → Holte 1993

- Flat list of simple "if then" statements → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

RuleFit Friedman & Popescu 2008

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L₁-regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_i \gamma_i x_i$
- Regularization retains only a few rules ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

IF $x_1 < 2.3$ AND $x_4 =$ "A" THEN y = 1

THEN y = 2

y = 3

ELSE IF $x_2 > 5.0$

ELSE

OTHER RULE-BASED MODELS

Decision Rules → Holte 1993

• Flat list of simple "if – then" statements → very intuitive and easy-to-interpret

Mainly devised for classification

(support for regression is limited)

Numeric features are typically discretised

IF
$$x_1 \le 2.3$$
 AND $x_4 =$ "A" THEN $y = 1$
ELSE IF $x_2 > 5.0$ THEN $y = 2$
ELSE $y = 3$

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L₁-regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_j \gamma_j x_j$
- Regularization retains only a few rules ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

Interpretable Machine Learning - 6 / 6 - 6/6