

Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Learning

Shikun Li^{1,2} Xiaobo Xia³ Hansong Zhang^{1,2} Yibing Zhan⁴ Shiming Ge^{1,2} Tongliang Liu³

¹Institute of Information Engineering, Chinese Academy of Sciences

²School of Cyber Security, University of Chinese Academy of Sciences

 3 Trustworthy Machine Learning Lab, The University of Sydney 4 JD Explore Academy

NeurIPS 2022

Outline

1 Introduction

2 Our Method

3 Experiments

Introduction

Figure: Example of image with noisy multi-labels. (C. O. Pene et al.)

Clean Data
$$(\boldsymbol{X}, \boldsymbol{Y})$$
, where $\boldsymbol{Y} = \left\{Y^1, Y^2, \dots, Y^q\right\} \in \{0, 1\}^q$

Noisy Data
$$(m{X},m{ar{Y}})$$
, where $m{ar{Y}}=\left\{ar{Y}^1,ar{Y}^2,\ldots,ar{Y}^q
ight\}\in\{0,1\}^q$

Transition Matrix
$$T_{ik}^{j}(\mathbf{x}) = P(\bar{Y}^{j} = k \mid Y^{j} = i, \mathbf{X} = \mathbf{x}), j = 1, 2, ..., q$$

Shikun Li, Xiaobo Xia, Hansong Zhang et al. Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Lea

Introduction

The transition matrix bridges the class posterior probabilities for noisy and clean data, i.e. $P(\bar{Y} = k \mid \boldsymbol{X} = \boldsymbol{x}) = \sum_{i=0}^{1} T_{ik} P(Y = i \mid \boldsymbol{X} = \boldsymbol{x})$. Thus, it has been exploited to achieve many **statistically consistent algorithms** in noisy multi-class learning, which also can be applied in noisy multi-label learning. As the effectiveness of these algorithms heavily relies on estimating the transition matrix, a series of methods have been proposed to achieve estimation.

Problem:

- Most of estimation methods assume the existence of anchor points (T. Liu et al.), while the assumption is strong and hard to check.
- The methods need to accurately fit the noisy class posterior of anchor points, which is rather difficult in multi-label cases, due to the severe positive-negative imbalance.

Introduction

Intuitive Solution:

To address the problems, we consider utilizing **label correlations among noisy multiple labels**. At a high level, we can utilize the **mismatch of label correlations** to identify the transition matrix without neither anchor points nor accurate fitting of noisy class posterior.

Figure: The mismatch of label correlations.

Our Method

As the instance-dependent transition matrix is non-identifiable without any additional assumption (X. Xia et al.), we assume that the transition matrix is class-dependent and instance-independent, i.e. $P\left(\bar{Y}^j=k\mid Y^j=i, \boldsymbol{X}=\boldsymbol{x}\right)=P\left(\bar{Y}^j=k\mid Y^j=i\right)=T^j_{ik}$.

Theorem

If $P(\bar{Y}^i \mid Y^j)$ is known, two noisy labels $\{\bar{Y}^j, \bar{Y}^i\}$ are sufficient to identify T^j .

This theorem theoretically guarantees that the identifiability of the class-dependent transition matrix can be achieved by utilizing the occurrence probabilities $P(\bar{Y}^i, \bar{Y}^j)$ and $P(\bar{Y}^i \mid Y^j)$. Note that $P(\bar{Y}^i, \bar{Y}^j)$ can represent **noisy label correlations**, and $P(\bar{Y}^i \mid Y^j) = \sum_{Y^i} P(\bar{Y}^i \mid Y^i) P(Y^i \mid Y^j)$, which can imply **clean label correlations**.

At a high level, **the mismatch of label correlations** implied in these occurrence probabilities can achieve the identifiability.

Our Method

Based on the above discussions, we propose to estimate transition matrices $\{T^j\}_{j=1}^q$ by following two stages.

First Stage: We utilize **sample selection** to obtain the extra information that implies clean label correlations, which can be used to estimate $\hat{P}(\bar{Y}^i \mid Y^j)$.

Second Stage: We perform **co-occurrence estimation** $(\hat{P}(\bar{Y}^i, \bar{Y}^j))$ and $\hat{P}(\bar{Y}^i \mid Y^j))$ by frequency counting, and then estimate the transition matrix T^j by **solving the following probability equation**.

$$\hat{P}\left(\bar{Y}^{j}, \bar{Y}^{i}\right) = \sum_{Y^{j}} \hat{P}\left(Y^{j}\right) \hat{P}\left(\bar{Y}^{j} \mid Y^{j}\right) \hat{P}\left(\bar{Y}^{i} \mid Y^{j}\right),$$

where $\hat{P}\left(ar{Y}^{j}\mid Y^{j}\right)$ represents the transition matrix $m{\hat{T}}^{j}$.

Experiments

Multi-label classification datasets:

- VOC2007 (20 classes)
- VOC2012 (20 classes)
- MS-COCO (80 classes)

Generate label noise:

$$m{\mathcal{T}}^j = m{\mathcal{T}} = egin{pmatrix} 1-
ho_- &
ho_- \
ho_+ & 1-
ho_+ \end{pmatrix}$$

where j = 1, 2, ..., q.

Metric for estimating transition matrices:

$$lacksquare$$
 Estimation Error $=\sum_{j=1}^q \| m{\mathcal{T}}^j - \hat{m{\mathcal{T}}}^j \|_1 / \| m{\mathcal{T}}^j \|_1$

Metric for classification performance:

- mean Average Precision (mAP)
- Overall F1-measure (OF1)
- per-Class F1-measure (CF1)

Experiments

Table: Comparison for estimating transition matrices on Pascal-VOC2007 dataset. The best results are in **bold**.

Noise rates (ρ, ρ_+)	(0,0.2)	(0,0.6)	(0.2,0)	(0.6,0)	(0.1,0.1)	(0.2,0.2)	(0.017, 0.2)	(0.034,0.4)
T-estimator max	3.89 ± 0.0	$10.52 {\pm} 0.5$	3.01 ± 0.1	4.47±0.2	3.18 ± 0.2	5.28 ± 0.2	3.99 ± 0.1	6.28 ± 0.4
T-estimator 97%	4.95±0.1	4.42 ± 0.1	1.77 ± 0.0	$2.13{\pm}0.1$	6.99 ± 0.1	6.94 ± 0.1	5.38 ± 0.1	5.17 ± 0.0
DualT-estimator max	1.94 ± 0.1	7.29 ± 0.1	1.03 ± 0.0	$2.68{\pm}0.1$	$2.13{\pm}0.2$	4.02 ± 0.1	1.71 ± 0.0	2.67 ± 0.2
DualT-estimator 97%	12.59±0.1	$7.43 {\pm} 0.1$	1.09 ± 0.0	$2.41{\pm}0.3$	14.39 ± 0.1	$11.78 {\pm} 0.1$	13.71 ± 0.2	$11.15 {\pm} 0.1$
Our estimator	$1.51 {\pm} 0.1$	$2.30 {\pm} 0.1$	$0.37{\pm}0.1$	1.34 ± 0.3	3.06 ± 0.4	3.21 ± 0.3	2.03±0.2	$1.84{\pm}0.3$

Table: Summary of the Wilcoxon signed-ranks test for **Reweight-Ours** against other baselines at 0.1 significance level.

Reweight-Ours	Standard	GCE	CDR	AGCN	CSRA	Reweight-	Reweight-	Reweight-	Reweight-
against	Standard	GCL	CDR	AGCN	CSKA	T max	T 97%	DualT max	DualT 97%
mAP	tie[0.29]	tie[0.26]	tie[0.32]	tie[0.18]	tie[0.45]	tie[0.32]	tie[0.23]	tie[0.35]	win[0.02]
OF1	win[0.00]	win[0.05]	win[0.04]	win[0.02]	win[0.05]	win[0.01]	win[0.08]	win[0.09]	win[0.00]
CF1	win[0.02]	win [0.01]	win[0.01]	win[0.01]	win[0.02]	win [0.03]	win[0.02]	win [0.09]	win [0.00]

Thank you for your hearing!

Code: https://github.com/ShikunLi/Estimating_T_For_Noisy_Mutli-Labels