Finite Approximation of AR1©

Dean Corbae

November, 2020

Finite Approximation of AR1©

Dean Corbae

November, 2020

Continuous AR1

ullet Suppose y_t follows an autoregressive AR1 process

$$y_t = \mu(1 - \rho) + \rho y_{t-1} + \varepsilon_t$$

where ε_t is distributed $N(0, \sigma_{\varepsilon}^2)$.

- The unconditional mean of y_t is μ and the unconditional variance is $\sigma_y^2 = \frac{\sigma_\varepsilon^2}{1-\rho^2}$, both of which we can get from the data by running the AR1 regression.
- We can also always work with the standard normal through by appropriate normalization $x=(y-\mu)/\sigma_y$.
- Since we want to keep our model state space small due to the curse of dimensionality, here is a cookbook method to turn the continuous AR1 state variable y_t into a discrete Markov process z_t .

Finite Markov Approximation

- The approximation we will use is based on Adda and Cooper (2003, p.56) who consider equal areas rather than Tauchen (1986) who considers equal interval lengths based on σ_y^2 . Tauchen
- We will use the following cookbook recipe to approximate y_t into finite state markov process z^i, π_{ij} :
 - Find interval endpoints (denoted y^i , i = 1, ..., N + 1)
 - Find conditional means of each interval (denoted $z^i, i=1,...,N$)
 - ullet Find transition probabilities (denoted π_{ij})

Adda Cooper Cookbook

- 1. Discretize y_t into N intervals.
 - Denote the limits of each of the N intervals of y_t as $y^1, y^2, ..., y^N, y^{N+1}$ where $y^1 = -\infty$ and $y^{N+1} = \infty$.
 - The intervals are constructed so that y_t has an equal probability $\frac{1}{N}$ of falling into them.
 - Given the normality assumption, the cutoff points are:

$$F\left(\frac{y^{i+1}-\mu}{\sigma_y}\right) - F\left(\frac{y^i-\mu}{\sigma_y}\right) = \frac{1}{N}, i = 1, ..., N$$
 (1)

where F is the cum. distn. of the normal density using the normalization $\left(\frac{y-\mu}{\sigma_z^2}\right)$ to turn $N(\mu,\sigma_y^2)$ into N(0,1).

• Working recursively from $F\left(\frac{y^2-\mu}{\sigma_y}\right)=\frac{1}{N}$ since $F\left(\frac{-\infty}{\sigma_y}\right)=0$ for i=1, we have for i=2,...,N

$$y^{i} = \sigma_{y} F^{-1} \left(\frac{i-1}{N} \right) + \mu \tag{2}$$

• All we need to calculate $\{y^i\}$ is (μ, σ_y) from our initial regression, the normal distribution F, and our choice of N.

Adda Cooper Cookbook - cont.

- 2. Compute the conditional means of y_t within each interval z_i , i=1,...,N. These are the support of the finite state Markov process.
 - That is, $z_i = E\left[y_t|y_t \in [y^i,y^{i+1}]\right]$

$$= \left[\frac{1}{\sqrt{2\pi\sigma_y^2}} \int_{y^i}^{y^{i+1}} y e^{-(y-\mu)^2/(2\sigma_y^2)} \, dy \right] / \frac{1}{N}$$

• Use the change of variable $x=\frac{y-\mu}{\sigma_y}\longrightarrow y=\sigma_y x+\mu$ and $dy=\sigma_y dx$. Then we can rewrite z_i using (1) as

$$z_i = N\sigma_y \left[f\left(\frac{y^i - \mu}{\sigma_y}\right) - f\left(\frac{y^{i+1} - \mu}{\sigma_y}\right) \right] + \mu.$$

where f is the normal density function.

• All we need to calculate $\{z_i\}$ is (μ, σ_y) from our initial regression, the normal distribution F, our choice of N, and a matlab function that numerically integrates functions.

Adda Cooper Cookbook - cont.

3. Compute the transition probabilities between any of these intervals $\pi_{i,i} = \Pr(y_t \in [y^j, y^{j+1}] | y_{t-1} \in [y^i, y^{i+1}])$

$$= \frac{\Pr(y_t \in [y^j, y^{j+1}], y_{t-1} \in [y^i, y^{i+1}])}{\Pr(y_{t-1} \in [y^i, y^{i+1}])}$$

After some manipulation, we have (see p.58 of A-C):

$$\pi_{j,i} = \frac{N}{\sqrt{2\pi\sigma_y^2}} \left[\int_{y^i}^{y^{i+1}} e^{-(y_{t-1}-\mu)^2/(2\sigma_y^2)} \left[\begin{array}{c} F\left(\frac{y^{j+1}-\mu(1-\rho)-\rho y_{t-1}}{\sigma_\varepsilon}\right) \\ -F\left(\frac{y^j-\mu(1-\rho)-\rho y_{t-1}}{\sigma_\varepsilon}\right) \end{array} \right] dy_{t-1} \right].$$

• All we need to calculate $\{\pi_{j,i}\}$ is (μ,σ_y) from our initial regression, the normal distribution F, our choice of N, and a matlab function that numerically integrates functions.

Tauchen Method

The equally spaced intervals in Tauchen are constructed as follows:

- let $z^1 < z^2 < \ldots < z^N$ denote the discrete values that $y_t = \rho y_{t-1} + \varepsilon_t$ can take on where $\varepsilon_t \sim N(0, \sigma_\varepsilon^2)$.
- Let z^N be a multiple m of the unconditional standard deviation $\sigma_y = \sqrt{\sigma_\varepsilon^2/(1-\rho^2)}$. Then let $z^1 = -z^N$ and let the remaining be equispaced over the interval $[z^1, z^N]$.
- The transition probabilities π_{jk} (from,to) in Tauchen are given as follows: Let $w=z^k-z^{k-1}$. For each j, if k is between 2 and N-1, set

$$\pi_{jk} = \Pr[z^k - w/2 \le \rho z^j + \varepsilon_t \le z^k + w/2]$$

$$= F\left(\frac{z^k + w/2 - \rho z^j}{\sigma_{\varepsilon}}\right) - F\left(\frac{z^k - w/2 - \rho z^j}{\sigma_{\varepsilon}}\right).$$

The code for this is https://quanteconpy.readthedocs.io/en/latest/modules/quantecon/markov/approximation.html