Lambda Calculus

Maria João Frade

HASLab - INESC TEC Departamento de Informática, Universidade do Minho

2021/2022

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 1 / 38

Lambda calculus

- O λ -calculus puro lida apenas com variáveis, definição de funções, e aplicação de funções.
- Se acrescentarmos outros tipos de dados e operações (tal com inteiros e adição) temos um λ -calculus aplicado.
- No λ -calculus puro não há distinção de tipos. Todas as expressões pertencem a um único universo.
- Do ponto de vista computacional o λ -calculus puro é mais simples de descrever, mas do ponto de vista matemático e lógico é o contrário:
 - \triangleright o λ -calculus tipificado pode ser entendido em termos das funções matemáticas usuais.
 - enquanto o puro levanta problemas em termos fundacionais.

Lambda calculus

- Formalismo introduzido na década de 1930 por Alonzo Church como uma maneira de formalizar o conceito de computabilidade efectiva.
- \bullet O λ -calculus forneceu uma base teórica sólida para as linguagens de programação funcionais.
- O λ -calculus é a menor linguagem de programação que existe.
 - \triangleright O λ -calculus é universal no sentido de que qualquer função computável pode ser expressa e avaliada usando esse formalismo. É, portanto, equivalente às máquinas de Turing.
 - ightharpoonup No entanto, o λ -calculus enfatiza o uso de regras de transformação e não se importa com a máquina real que as implementa.

Maria João Frade (HASLab. DI-UM)

Lambda Calculus

SLP 2021/22 2 / 38

Sintaxe

Termos

- Assume-se um conjunto enumerável de variáveis: x, y, z, \dots
- As expressões (ou termos) do lambda calculus puro têm a seguinte sintaxe abstracta

$$e ::= x \mid \lambda x. \, e \mid e_1 \, e_2$$

denominadas variáveis, abstrações e aplicações, respectivamente.

Uma expressão pode estar entre parêntesis mas, para os evitar, segue-se a seguinte convenção:

- a aplicação é associativa à esquerda:
- ullet o âmbito da abstração λ estende-se para a direita o mais possível.
- $\bullet \ a \ b \ c \ d$ em vez de $((a \ b) \ c) \ d$
- $\lambda x. \lambda b. f x (\lambda z. bz)$ em vez de $\lambda x. (\lambda b. ((f x) (\lambda z. bz)))$
- $(\lambda y. \lambda x. x (y a) y) (\lambda z. f z)$ em vez de $(\lambda y. (\lambda x. (x (y a)) y)) (\lambda z. f z)$

Maria João Frade (HASLab, DI-UM)

Variáveis livres e ligadas

 $\mathsf{FV}(e)$ denota o conjunto das *variáveis livres* de uma expressão e

$$\begin{array}{rcl} \mathsf{FV}(x) & = & \{x\} \\ \mathsf{FV}(\lambda x.\, a) & = & \mathsf{FV}(a) \backslash \{x\} \\ \mathsf{FV}(a\, b) & = & \mathsf{FV}(a) \cup \mathsf{FV}(b) \end{array}$$

 $\mathsf{BV}(e)$ denota o conjunto das *variáveis ligadas* de uma expressão e

$$\begin{array}{rcl} \mathsf{BV}(x) & = & \{\} \\ \mathsf{BV}(\lambda x.\,a) & = & \mathsf{BV}(a) \cup \{x\} \\ \mathsf{BV}(a\,b) & = & \mathsf{BV}(a) \cup \mathsf{BV}(b) \end{array}$$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 5 / 38

Semântica

- O significado das expressões é dado operacionalmente através de uma regra de redução de capta o efeito de aplicar uma função ao seu argumento.
- ullet Essa redução tem o nome de redução eta

$$(\lambda x. a) b \rightarrow a[b/x]$$

onde a[b/x] representa o termo obtido por subtituição das ocorrências livres de x em a por b.

- A substituição é uma operação "melindrosa".
 - Qual o efeito da substituição $(\lambda z. zx)[z/x]$?
 - ▶ Uma abordagem "naive" conduz ao problema de captura de variáveis!

Variáveis livres e ligadas

- Uma variável x diz-se *livre* em e se $x \in FV(e)$.
- Uma variável x diz-se *ligada* em e se $x \in BV(e)$.
- Uma expressão sem variáveis livres diz-se fechada (ou combinador).

Uma variável pode ser simultaneamente livre e ligada numa dada expressão. Por exemplo,

- \bullet $(xy) \lambda z. \lambda x. xz$
- $\lambda x. x (\lambda y. ya) x y$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 6 / 38

Substituição (abordagem de Church)

Para evitar o problema de captura de variáveis livres, a definição original de Church para a substituição foi a seguinte:

$$\begin{split} x[a/x] &= a \\ y[a/x] &= y \\ (\lambda x. \, b)[a/x] &= (\lambda x. \, b) \\ (\lambda y. \, b)[a/x] &= (\lambda y. \, b[a/x]) \\ (\lambda y. \, b)[a/x] &= (\lambda z. \, (b[z/y])[a/x]) \end{split} \quad \text{se } x \not\in \mathsf{FV}(b) \text{ ou } y \not\in \mathsf{FV}(a) \\ \text{sendo } z \text{ uma variável fresca} \\ (e_1 \, e_2)[a/x] &= (e_1[a/x]) \, (e_2[a/x]) \end{split}$$

Conversão α

• Como sabemos, o nome das variáveis ligadas não é importante. Por exemplo.

$$\sum_{x=1}^{20} x$$
 e $\sum_{y=1}^{20} y$

descrevem o mesmo somatório.

ullet Church introduziu na apresentação original do λ -calculus uma noção de conversão α que traduz esta ideia.

α -conversão

$$\lambda x. e = \lambda y. e[y/x]$$
 , se $y \notin FV(e)$

Esta conversão induz uma relação de equivalência nos termos.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 9 / 38

Lambda Calculus

Substituição

Assumindo a convenção das variáveis a definição de substituição fica simplificada:

Substituição

$$x[a/x] = a$$

 $y[a/x] = y$ se $x \neq y$
 $(\lambda y. b)[a/x] = (\lambda y. b[a/x])$
 $(e_1 e_2)[a/x] = (e_1[a/x])(e_2[a/x])$

Lema da substituição

Sejam x e y variáveis distintas e $x \notin FV(e)$, então

$$(a[b/x])[e/y] = (a[e/y])[(b[e/y])/x]$$

Prova: Por indução na estrutura de a.

Maria João Frade (HASLab, DI-UM)

Convenção das variáveis

Para simplificar o tratamento formal do λ -calculus é usual trabalhar-se ao nível da classes de equivalência geradas pela α -conversão.

- ullet Considera-se um λ -termo como um representante da sua classe de α -equivalência.
- Interpretamos e[a/x] como uma operação na classe de equivalência, usando o representante que for conveniente de acordo com a seguinte convenção:

Convenção das variáveis

Todas as variáveis ligadas são escolhidas de forma a serem diferentes das variáveis livres.

Maria João Frade (HASLab, DI-UM)

SLP 2021/22 10 / 38

β -redução

• A redução β indica o efeito de aplicar uma função a um argumento.

β -redução

A β -redução, \rightarrow_{β} , é definida como o fecho compatível da regra

$$(\lambda x. a) b \rightarrow_{\beta} a[b/x]$$

- \rightarrow_{β}^* é fecho reflexivo e transitivo de \rightarrow_{β} .
- $=_{\beta}$ é fecho reflexivo, simétrico e transitivo de \rightarrow_{β} .
- um termo $(\lambda x. a) b$ chama-se β -redex e a a[b/x] o seu contractum

Uma expressão que não contém nenhum β -redex diz-se uma *forma normal*.

• Por fecho compatível entende-se que

handout

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 13 / 38

Confluência

Teorema (Church-Rosser)

Para qualquer expressão e, se $e \to_{\beta}^* e_1$ e $e \to_{\beta}^* e_2$, então existe uma expressão e' tal que $e_1 \to_{\beta}^* e'$ e $e_2 \to_{\beta}^* e'$.

Unicidade das normas normais.

A forma normal de uma expressão, se existir, é única.

β -redexes

Uma expressão pode ter mais do que um β -redex. Por exemplo:

$$\frac{(\lambda x. f(fx))((\lambda y. yz)(\lambda x. x))}{\beta}$$

$$\frac{(\lambda x. f(fx))((\lambda y. yz)(\lambda x. x))}{\beta}$$

$$f(f((\lambda y. yz)(\lambda x. x)))$$

Exercício

Apresente as possíveis sequências de redução dos termos

- \bullet $(\lambda x. (\lambda y. yx)z)(zw)$
- $(\lambda u. \lambda v. v)((\lambda x. x x)(\lambda x. x x))$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 13 / 38

Normalização

No que se refere à normalização, existem expressões e para as quais

• todas as sequências de redução com origem em e terminam

$$(\lambda x. f(fx))((\lambda x. x)z)$$

ullet nenhuma das sequências de redução com origem em e termina

$$(\lambda x. f(x x))(\lambda x. f(x x))$$

ullet apenas algumas das sequências de redução com origem em eterminam

$$(\lambda u. \lambda v. v)((\lambda x. x x)(\lambda x. x x))$$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

Estratégias de redução

A normalização (se possível) de um termo e a quantidade de esforço necessária para isso, pode depender da estratégia redução usada.

Chamamos estratégia de redução ao critério que é seguido para escolher o próximo β -redex a ser reduzido.

- "Full beta-reduction": qualquer β -redex pode ser seleccionado.
- "Normal-order reduction": o β -redex seleccionado é o mais à esquerda e mais externo.
- "Applicative-order reduction": o β -redex seleccionado é o mais à esquerda e mais interno.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 16 / 38

"Applicative-order reduction": *leftmost innermost* redex

Na ordem aplicativa de redução escolhe-se sempre o redex mais à esquerda mais interno.

Exemplo de redução seguindo a ordem aplicativa

$$(\lambda x.\,x\,\underline{((\lambda y.\,y)\,x)})\,((\lambda a.\,a)\,(\lambda b.\,b))$$

$$\rightarrow_{\beta} (\lambda x. x x) ((\lambda a. a) (\lambda b. b))$$

$$\rightarrow_{\beta} \quad \underline{(\lambda x. \, x \, x) \, (\overline{\lambda b. \, b})}$$

$$\rightarrow_{\beta} \overline{(\lambda b. b) (\lambda b. b)}$$

$$\rightarrow_{\beta} (\lambda b. b)$$

"Normal-order reduction": *leftmost outermost* redex

Na ordem normal de redução escolhe-se sempre o redex mais à esquerda mais externo.

Exemplo de redução seguindo a ordem normal

$$\begin{array}{l} \frac{\left(\lambda x.\,x\left(\left(\lambda y.\,y\right)\,x\right)\right)\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)}{\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)\left(\left(\lambda y.\,y\right)\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)\right)}{\left(\lambda b.\,b\right)\left(\left(\lambda y.\,y\right)\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)\right)} \\ \rightarrow_{\beta} \quad \frac{\left(\lambda b.\,b\right)\left(\left(\lambda y.\,y\right)\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)\right)}{\left(\lambda y.\,y\right)\left(\left(\lambda a.\,a\right)\left(\lambda b.\,b\right)\right)} \end{array}$$

 \rightarrow_{β} $(\lambda a. a) (\lambda b. b)$

 \rightarrow_{β} $(\lambda b, b)$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 17 / 38

Normalização

Exercício

Considere os termos

$$I = (\lambda x. x)$$

$$K = (\lambda x. \lambda y. x)$$

$$S = (\lambda x. \lambda y. \lambda z. x z (y z))$$

$$\Omega = ((\lambda x. x x)(\lambda x. x x))$$

Construa sequências de redução para as expressões abaixo, seguindo as diferentes estratégias de redução apresentadas.

- \bullet SKK
- \bullet $KS\Omega$
- $I(I(\lambda z. Iz))$

Normalização

Uma expressão e diz-se fortemente normalizável se todas as sequências de redução com origem em e terminam; diz-se (fracamente) normalizável se existir alguma sequência de redução com origem em e que termina; e diz-se não normalizável se nenhuma sequência de redução com origem em e termina.

Será que existe alguma estratégia de redução que nos leve sempre a alcançar a forma normal de uma expressão, caso ela exista?

Sim. a "normal-order reduction"!

Teorema da standardização

Se existir alguma sequência de redução começada numa expressão e que termine, então sequência começada em e que segue a ordem normal de redução termina.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 20 / 38

Formas canónicas

No λ -calculus puro uma forma canónica é uma abstração $\lambda x.e.$

Usaremos a letra v como meta-variável para representar uma forma canónica (ou valor).

Apresente a sequência de redução que segue a ordem normal de redução para o termo

$$(\lambda x. x (\lambda y. x y y) x)(\lambda z. \lambda w. z)$$

Repare que a forma normal é atinguida ao fim de 5 passos de redução, mas a primeira forma canónica é atinguida ao fim de 3 passos.

Formas canónicas

O processo de avaliação das linguagens de programação funcionais (LPFs) está intimamente ligado ao processo de redução de uma expressão à sua forma normal. Contudo, é um processo menos geral:

- Nas LPFs apenas se avaliam expressões fechadas (uma vez que um programa com variáveis livres não é bem formado).
- Em vez de reduzir uma expressão à sua forma normal, o processo de avaliação das LPFs termina assim que se obtém uma forma canónica.
 - ▶ A noção de forma canónica pode variar conforme a LPF em causa, mas inclui sempre as abstrações (que são as únicas formas canónicas do λ -calculus puro).

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 21 / 38

Formas canónicas

Ordem normal de avaliação

Dada uma expressão fechada e, diz-se que e avalia para v, e escrevemos $e \Rightarrow v$, quando v é a primeira forma canónica da seguência de redução começada em e que segue a ordem normal de redução.

Se tal forma canónica v não existir, dizemos que e diverge, e denotamos isso por $e\uparrow$.

Maria João Frade (HASLab, DI-UM) Lambda Calculus SLP 2021/22 Maria João Frade (HASLab, DI-UM)

Lambda Calculus

Ordem normal de avaliação

Para uma expressão fechada e existem 3 possibilidades:

• A sequência da ordem normal de redução de e termina numa forma normal. Portanto, a sequência de redução contém pelo menos uma forma canónica. Ex:

$$(\lambda x. \lambda y. x y)(\lambda x. x)$$

ullet A seguência da ordem normal de redução de e não termina, mas contém uma forma canónica. Ex:

$$(\lambda x. \lambda y. x x)(\lambda x. x x)$$

• A sequência da ordem normal de redução de e não termina e não contém uma forma canónica. Ex:

$$(\lambda x. x x)(\lambda x. x x)$$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 24 / 38

Semântica "call-by-name"

Big-step semantics

(CBN1_{bs})
$$\lambda x. e \Rightarrow \lambda x. e$$

(CBN2_{bs})
$$\frac{e_1 \Rightarrow \lambda x. e \quad e[e_2/x] \Rightarrow v}{e_1 e_2 \Rightarrow v}$$

- Na prática, a avaliação "call-by-name" proíbe reduções dentro de abstrações, e aplica as funções logo que possível (i.e., sem avaliar previamente o seu argumento).
- Variantes da avaliação "call-by-name" são usadas em linguagens de programação conhecidas, como por exemplo Haskell. O Haskell usa uma versão optimizada desta estratégia, chamada "call-by-need", onde várias ocorrências do mesmo argumento são avaliadas apenas uma única vez (através de uma gestão de termos partilhados).

Semântica "call-by-name"

- A terminologia usual usada nas LPFs para a ordem normal de avaliação é "call-by-name evaluation" ou "lazy evaluation".
- O processo de avaliação pode ser descrito operacionalmente no estilo "small-step" ou "big-step".

Small-step semantics

(CBN1_{ss})
$$(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]$$

(CBN2_{ss})
$$\frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2}$$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 25 / 38

Semântica "call-by-value"

- Uma outra estratégia de avaliação muito usada nas LPFs consiste em efectivar a aplicação de uma função ao seu argumento apenas quando o argumento já foi reduzido a um valor (i.e, à sua forma canónica).
- Esta estratégia denomina-se de "eager evaluation" ou "call-by-value" evaluation" (terminologia mais usual nas LPFs)
- O processo de avaliação pode ser descrito operacionalmente no estilo "small-step" ou "big-step".

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

Semântica "call-by-value"

Small-step semantics

(CBV1_{ss})
$$(\lambda x. e) v \rightarrow e[v/x]$$

(CBV2_{ss})
$$\frac{e_1 \to e'_1}{e_1 e_2 \to e'_1 e_2}$$

(CBV3_{ss})
$$\frac{e \to e'}{v \, e \to v \, e'}$$

• Como podemos ver, dada uma aplicação $e_1 e_2$, primeiro avalia-se e_1 até obter um valor, depois avalia-se e_2 até obter um valor, e só no fim efectivamos a aplicação da função.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 28 / 38

"Strictness"

- Uma função diz-se estrita se diverge sempre que é aplicada a um argumento que diverge.
- A avaliação "call-by-value" é uma estratégia estrita, no sentido em que os argumentos das funções são sempre avaliados, independentemente de virem a ser ou não usados no corpo da função.
- Estratégias não estritas (ou preguiçosas), como é o caso do "call-by-name" e do "call-by-need", avaliam apenas os argumentos que são efectivamente usados pela função.

Exercício

Apresente a sequência de reduções correspondente à avaliação "call-by-name" e "call-by-value" para as seguintes expressões

- \bullet $(\lambda x. x) ((\lambda y. y)(\lambda z. z))$
- \bullet $(\lambda x.\lambda y.y)((\lambda x.xx)(\lambda x.xx))$

Maria João Frade (HASLab, DI-UM)

Semântica "call-by-value"

• Para apresentar a "eager evaluation" como uma semântica big-step, precisamos de introduzir a seguinte relação

Dado um termo fechado e, denotamos por $e \Rightarrow_E v$ o facto de existir uma sequência de redução de e para v, onde cada passo corresponde a uma redução do β_E -redex mais à esquerda que não é um subtermo de uma forma canónica.

Um β_E -redex é um β -redex $(\lambda x. a) z$ onde z é um valor ou uma variável.

Big-step semantics

(CBV_{bs})
$$\lambda x. e \Rightarrow_E \lambda x. e$$

$$e_1 \Rightarrow_E \lambda x. e \qquad e_2 \Rightarrow_E v \qquad e[v/x] \Rightarrow_E v'$$
(CBV_{bs}) $e_1 e_2 \Rightarrow_E v'$

Maria João Frade (HASLab, DI-UM) Lambda Calculus

SLP 2021/22 29 / 38

Programação directa em λ -calculus

- Apesar da sua definição sucinta, o λ -calculus é muito poderoso.
- Podemos programar directamente em λ -calculus puro desde que a "execução" do programa seja entendida como a redução à forma normal, seguindo a ordem normal de redução.
- A apresentação do λ -calculus puro como uma linguagem de programação serve aqui apenas para ilustrar o seu poder.
- A ideia é codificar os boolenos, números naturais e outros tipos primitivos, com formas normais fechadas apropriadas (funções que imitam o comportamento desses tipos de dados).

Programação directa em λ -calculus

Booleanos

TRUE
$$\equiv \lambda x. \lambda y. x$$
 FALSE $\equiv \lambda x. \lambda y. y$

Com esta codificação, uma expressão condicional "if b then e_1 else e_2 " pode ser simplesmente escrita como $b e_1 e_2$, dado que

TRUE
$$e_1 e_2 \rightarrow_{\beta}^* e_1$$
 FALSE $e_1 e_2 \rightarrow_{\beta}^* e_2$

Uma possível definição de operadores

$$\begin{array}{ll} \mathsf{NOT} \; \equiv \; \lambda b. \, \lambda x. \, \lambda y. \, b \, y \, x \\ \mathsf{AND} \; \equiv \; \lambda b. \, \lambda c. \, \lambda x. \, \lambda y. \, b \, (c \, x \, y) \, y \end{array}$$

Exercício

Mostre que

- NOTTRUE \rightarrow_{β}^* FALSE e NOTFALSE \rightarrow_{β}^* TRUE
- AND FALSE TRUE \rightarrow_{β}^* FALSE, etc.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 32 / 38

Programação directa em λ -calculus

Numerais de Church

$$\overline{0} \equiv \lambda f. \lambda x. x
\overline{1} \equiv \lambda f. \lambda x. f x
\overline{2} \equiv \lambda f. \lambda x. f (f x)$$

Exemplos de uma função e de um predicado

$$\begin{array}{ll} \mathsf{SUCC} & \equiv \ \lambda n. \ \lambda f. \ \lambda x. \ f \ (n \ f \ x) \\ \mathsf{ISZERO} & \equiv \ \lambda n. \ \lambda x. \ \lambda y. \ n \ (\lambda z. \ y) \ x \end{array}$$

Exercício

Mostre que

- SUCC $\overline{n} \to_{\beta}^* \overline{n+1}$
- ISZERO $\overline{0} \to_{\beta}^* \mathsf{TRUE}$ e ISZERO $\overline{n+1} \to_{\beta}^* \mathsf{FALSE}$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22

Programação directa em λ -calculus

Exercício

Definições alternativas para NOT e AND poderão ser:

NOT
$$\equiv \lambda b. b \text{ FALSE TRUE}$$

AND $\equiv \lambda b_1. \lambda b_2. b_1 b_2 \text{ FALSE}$

- Mostre que estes operadores têm o comportamento adequado.
- Proponha uma definição adequada para o operador OR.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 33 / 38

Programação directa em λ -calculus

Uma codificação da adição e da multiplicação de númerais de Church

ADD
$$\equiv \lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$$

MULT $\equiv \lambda m. \lambda n. \lambda f. m (n f)$

Exercício

Mostre que

- ADD $\overline{2}\,\overline{3} \rightarrow_{\beta}^{*} \overline{5}$
- MULT $\overline{2}\,\overline{3} \rightarrow_{\beta}^* \overline{6}$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

Programação directa em λ -calculus

Recursão e combinadores de ponto fixo

- A definição de funções recursivas pode ser feita com o auxílio de um combinador de ponto fixo.
- ullet O combinador Y é um dos mais simples e foi descoberto por Haskell Curry.

$$Y \equiv \lambda f. (\lambda x. f(x x))(\lambda x. f(x x))$$

ullet A ideia é que YG é ponto fixo da funcional G. Logo,

$$G(YG) = YG$$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22 36 / 38

Programação directa em λ -calculus

- Para além de não ser prático programar em λ -calculus puro, as codificações de dados podem revelar propriedades que não são desejadas do ponto de vista das entidades que queremos representar. Por exemplo:
 - $\overline{0} = FALSE$
 - Uma codifcação alternativa da função sucessor

$$\mathsf{SUCC'} \equiv \lambda n. \, \lambda f. \, \lambda x. \, n \, f \, (f \, x)$$

tem um comportamento diferente de SUCC quando aplicada a expressões que não representam números naturais.

• Estes problemas podem ser evitados programando num λ -calculus tipificado.

Maria João Frade (HASLab, DI-UM)

Lambda Calculus

SLP 2021/22

Programação directa em λ -calculus

Vejemos o exemplo da função factorial

FACT
$$n = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{FACT}(n-1)$$

Abusando da notação podemos escrever

$$\mathsf{FACT} = \lambda n.\,\mathsf{if}\ n = 0\,\mathsf{then}\ 1\,\mathsf{else}\ n \times \mathsf{FACT}(n-1)$$

$$\mathsf{G} \ = \ \lambda f. \, \lambda n. \, \mathsf{if} \ n = 0 \, \mathsf{then} \, \, 1 \, \mathsf{else} \, \, n \times (f(n-1))$$

$$FACT \equiv YG$$

Com base nas definições apresentadas mostre que

FACT
$$=_{\beta} \lambda n$$
 if $n=0$ then 1 else $n \times \mathsf{FACT}(n-1)$

Maria João Frade (HASLab, DI-UM)

Lambda Calculus