PyNet API Documentations

Xiao Zhang, Haoyuan Zhang November 28, 2017

1 Installation

Please go inside the PyNet folder directory and run the command in the terminal (either Windows or Linux) to compile the C code.

python setup.py build_ext - -inplace

Also, you need to install *cython* and *pickle* package in order to execute PyNet properly.

2 Layer

• class Linear (input_channel, output_channel, name=None, bias=False) Applies a linear transformation to the incoming data: $y = A \times x + b$

Parameters

- input_channel(int): number of input channel
- output_channel(int): numbers of channels produced by the linear layer
- name(string): the name of layer (default is **None**)
- bias: the label whether to introduce bias in this linear layer (default is **True**)

Shape

- Input: (N, inChannel) where N represents the batch size and inChannel is the number of input feature dimension.
- Output: (N, outChannel) where N represents the batch size and outChannel is the number of output feature dimension.

Variables

- w: the learnable weights has shape (inChannel × outChannel)
- b: the learnable bias has shape (outChannel)
- grad_w: the gradient of weight, which has shape (inChannel × outChannel)
- grad_b: the gradient with respect to bias, which has shape (outChannel)

• class Upsample(size=None, scale=None, name=None)

Upsample a given multi-channel spatial data, the algorithm is available for upsampling is nearest neighbor and bilinear for 4D input data.

Parameters

- size(tuple, optional): a tuple of ints(Height_out, Width_out) output sizes
- scale(int/tuple of python:ints, optional): the multiplier for the image height / width
- name(string): the name of the Upsample layer

Shape

- Input: (N, C, H_{in}, W_{in}) where C represents the channel number of input data
- Output: (N, C, H_{out}, W_{out})

• class Relu(name=None)

Applies the rectified unit function element-wise ReLU(x) = max(0, x).

Parameters

- name(string): the name of the Relu layer

Shape

- Input: (N, *) where * means any number of additional dimensions
- Output: (N, *) same shape as the input data

• class Sigmoid (name=None)

Applies the element-wise function element-wise f(x) = 1/(1 + exp(-x)).

Parameters

- name(string): the name of the Sigmoid layer

Shape

- Input: (N, *) where * means any number of additional dimensions
- Output: (N, *) same shape as the input data

• class Flatten(name=None)

Flattens the input data while maintaining the batch size.

Parameters

- name(string): the name of the Flatten layer

Shape

- Input: (N, C, H_{in}, W_{in})
- Output: $(N, C \times H_{in} \times W_{in})$

• class Softmax(name=None)

Applies the Softmax function to an n-dimensional input data rescaling then so that the elements of the n-dimensional output data lie in the range (0, 1) and sum to 1. The Softmax function is defined as

$$f_i(x) = exp(x_i) / \sum_j exp(x_j)$$

Parameters

- name(string): the name of the Softmax layer

Shape

- Input: (N, K) where N and K denotes the batch size and dimension of data respectively
- Output: (N, K) same shape as the input

• $class\ L2_loss(average=True, name=None)$

The criterion that measures the mean squared error between n elements in the input x and target y. The function is defined as

$$l2 \ loss(x,y) = (1/n) \times \sum_{i} |x_i - y_i|^2$$

x and y arbitrary shapes with a total of n elements each. The sum operation still operates over all elements, and divides by n.

Parameters

- average(bool, optional): by default, the losses are averaged over observations for each minibatch. However, if the average is set to False, the losses are instead summed for each minibatch.
- name(string): the name of the L2_loss layer

Shape

- Input x: (N, *) where * denotes any number of additional dimensions
- Target y: (N, *) same shape as x

• class Binary_cross_entropy_loss(average=True, name=None)

The criterion that measures the Binary Cross Entropy between the target and the prediction. The function is defined as

$$loss(p,t) = -(1/n) \times \sum_{i=1}^{N} \{t[i] \times log(p[i]) + (1 - t[i]) \times log(1 - p[i])\}$$

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target t[i] should be numbers between 0 and 1.

Parameters

- average(bool, optional): by default, the losses are averaged over observations for each minibatch. However, if the average is set to False, the losses are instead summed for each minibatch.
- name(string): the name of the Binary_cross_entropy_loss layer

Shape

- Input p: (N, *) where * denotes any number of additional dimensions
- Target t: (N, *) same shape as p
- Output: scalar

• class Cross_entropy_loss(average=True, name=None)

This criterion measures the negative log likelihood loss in one single class. It is useful when training a classification problem with C classes. The input is expected to contain scores for each class, which has to be a 2D matrix of size (batch_size, C).

This criterion expects a class index (0 to C-1) as the target for each value of a 1D matrix of size *batch_size*. The loss function is defined as

$$loss(p,t) = -(1/n) \times \sum_{i=1}^{N} \{log(p[i,t[i]])\}$$

This is used for measuring the error of reconstruction in for example an auto-encoder. Note that the target t[i] should be numbers between 0 and 1.

Parameters

- average(bool, optional): by default, the losses are averaged over observations for each minibatch. However, if the average is set to False, the losses are instead summed for each minibatch.

- name(string): the name of the Binary_cross_entropy_loss layer

Shape

- Input x: (N, *) where * denotes any number of additional dimensions
- Target y: (N, *) same shape as x
- $class\ Conv2d$ (output_channel, kernel_size, padding = 0, stride = 1, name=None, bias=True)

Applies a 2D convolution over an input feature map. This layer is doing cross-correlation instead of convolution. The equation to compute output shape should be

$$S_{out} = \frac{S_{in} - 2*padding + kernel_size}{stride} + 1$$

Where S_{out} , S_{in} represents the output size and input size respectively.

Parameters

- output_channel(int): Number of channels produced by the convolution layer.
- kernel_size (int or tuple): Size of convolution kernel
- padding (int or tuple): zero-padding added to both sides of the input
- stride (int or tuple): stride of convolution
- name (string): the name of layer
- bias (boolean): if True, adding learnable bias to the output

Shape

- Input: $(N, C_{in}, H_{in}, W_{in})$
- Output: $(N, C_{out}, H_{out}, W_{out})$

Variables

- w: the learnable weight has shape $(C_{out}, C_{int}, kernel_size_h, kernel_size_w)$
- b: the learnable bias has shape $(1, C_{out}, 1, 1)$
- grad_w: the gradient of weight, which has shape $(C_{out}, C_{int}, kernel_size_h, kernel_size_w)$
- grad_b: the gradient with respect to bias, which has shape $(1, C_{out}, 1, 1)$
- class MaxPool2d(kernel_size, padding = 0, stride = 1, name=None)

Applies a 2D Maxpooling over an input feature map. The equation to compute output shape should be

$$S_{out} = \frac{S_{in} - 2*padding + kernel_size}{stride} + 1$$

Where S_{out} , S_{in} represents the output size and input size respectively.

Parameters

- kernel_size (int or tuple): Size of convolution kernel
- padding (int or tuple): zero-padding added to both sides of the input
- stride (int or tuple): stride of convolution
- name (string): the name of layer

Shape

- Input: $(N, C_{in}, H_{in}, W_{in})$
- Output: $(N, C_{out}, H_{out}, W_{out})$

• class BatchNorm1D(momentum = 0.9, name=None)

Applies a 1D batchnormalization over input feature. The mean and standard-deviation are calculated perchannel over mini-batch. This layer perform the algorithm:

$$Y = \frac{x - mean(x)}{\sqrt{var(x) + eps}} \times gamma + beta$$

The eps is a small value added to the denominator for numerical stability, which is set $1e^{-5}$

Parameters

- momentum (float): The momentum used for running_mean and running_val

Shape

- Input: (N, C) where C represents the channel number

- Output: (N, C)

Variables

- beta: the learnable parameter has shape (C)

- gamma: the learnable parameter has shape (C)

- r_mean: the mean value used for testing, which has shape of (C)

- r_var: the variance used for testing, which has shape of (C)

- grad_beta: the gradient of beta, which has shape of (C)

- grad_gamma: the gradient of gamma, which has shape of (C)

• $class\ BatchNorm2D$ (momentum = 0.9, name=None)

Applies a 2D(spatial) batchnormalization over input feature. The mean and standard-deviation are calculated per-channel over mini-batch. This layer perform the algorithm:

$$Y = \frac{x - mean(x)}{\sqrt{var(x) + eps}} \times gamma + beta$$

The eps is a small value added to the denominator for numerical stability, which is set $1e^{-5}$

Parameters

- momentum (float): The momentum used for running_mean and running_val

Shape

- Input: (N,C,H_{in},W_{in})

- Output: (N,C,H_{out},W_{out})

Variables

- beta: the learnable parameter has shape (C)

- gamma: the learnable parameter has shape (C)

- r_mean: the mean value used for testing, which has shape of (C)

- r_var: the variance used for testing, which has shape of (C)

- grad_beta: the gradient of beta, which has shape of (C)

- grad_gamma: the gradient of gamma, which has shape of (C)

3 Model

The model to store the defined layer list and its parameter, connecting the layer and then performing forward, backward and parameter updating.

• *method* __init__(input_layers, loss_layer, optimizer = None, lr_decay=None) Input defined network layers and loss layers. Initilizing the model.

Parameters

- input_layers(list): the list of defined network structure
- loss_layers(layer): the loss layer to compute the loss
- optimizer(optimizer): the optimizer to update the parameter based on the computed gradient. You can ignore this parameter for testing for not updating parameters.
- $lr_decay(lr_decay)$: Decaying the learning rate for each step. Setting to None means the constant learning rate

Return

- None

• method set_input_channel(dim)

Set the input channel (dimension) number for the network to initize layer's weight

Parameters

 $-\dim(int)$: the dimension number of input data

Return None

\bullet class show_layer_name()

Display the layer name and network structure

Parameters

- None

Return

- None

• class forward(input, label = None)

Do forward computation and compute the loss if the label is given

Parameters

- input(numpy array): the input data
- label(numpy array): the data label. If the label is None, it will only output the prediction.

Return

- loss, prediction (if the label is provided)
- prediction (if the label is None)

• method backward(loss)

Do backward computation and compute the gradient

Parameters

- loss(float): the loss obtained through forward computation

Return

- None

• method update_param()

Updating the model parameter based on the computed gradient. To update the parameter, you need to initize the model with optimizer.

Parameters

- None

Return

- None

• $method\ get_layer_output(layer_name)$

Extract the output for specific layer.

Parameters

- layer_name(string): Denote the layer that the output will be extracted.

Return

- output(numpy array): The layer output

• *method get_layer_grad*(layer_name)

Extract the output gradient for a specific layer. You can use this function only when you use *model.backward()*The gradient is the layer output gradient, i.e. the input gradient of its previous layer

Parameters

- layer_name(string): Denote the layer that the output gradient will be extracted.

Return

- output(numpy array): The layer output gradient

• *method train*(is_train)

Changing the model mode, since the model tend to perform differently during training and testing. For example, batchnorm layer. By default the model mode is training.

Parameters

- is_train(boolean): Indicate the current model mode, True for training, False for testing.

Return

- None

\bullet method $save_model(path)$

Saved current model layer, parameter and optimizer history if the optimizer if provided.

Parameters

- path(string): The saved model path

Return

- None

• *method load_model*(path)

Restore the model from the saved model file

Parameters

- path(string): The saved model path

Return

- None

method layer_init()

Initializing the model with the provided layer. You don't need this method since it's automatically used within the method model.set_input_channel(dim)

Parameters

- None

Return

- None

4 Optimizer

The optimizer to update parameter

• class SGD_Optimizer(lr_rate, weight_decay, momentum = 0.99)

The optimizer performing Stochastic Gradient Descent algorithm to update the parameter

 $P = P - \text{lr_rate} \times (\text{grad} + P * \text{weight_decay} + \text{momentum} * \text{grad_history})$

Parameters

- lr_rate(float): The learning rate of the optimizer
- weight_decay(float): The weight_decay rate of the optimizer
- momentum(float): The momentum rate of the optimizer

5 Learning Rate Decay

Decaying the learning rate for during training for certain condition.

• class Decay_learning_rate(decay_step = 500, base = 0.96, stairecase = True) This performed exponentially learning rate decay.

$$\text{new_lr_rate} = \text{base_lr_rate} \times \left(\text{base}^{\frac{step}{\text{decay_step}}}\right)$$

Parameters

- decay_step(int): period of learning rate decay
- base(*float*): The base to do exponential learning rate decay
- staircase(boolean): Whether to employ staircase decaying strategy. If set to True, the learning rate will decay only when decay_step is reached. Otherwise, it will decay every step.

6 utils

The utils file stores two helper functions.

• method upsample2d(input, output_size)
Upsample matrix into the output size.

Parameters

- input(4D ndarray): 4D matrix with shape $(N, C_{in}, H_{in}, W_{in})$
- output_size(tuple): define the output size (H_{out} , W_{out}).

Return

- output: same data type with input but has shape (N, C_{in} , H_{out} , W_{out})
- method get_gt_map(get_label, h, w)
 Convert the ground truth label into matrix format, same dimension as training data.

Parameters

- gt_label(2D ndarray): a 2D array with shape (batch_size, 10) stores five landmarks position information for each instance. The 10 landmark coordinates should have the order (x1,x2,x3,x4,x5,y1,y2,y3,y4,y5)
- h(int): the height of image.
- w(*int*): the width of image.

Return

- label: a 4D matrix representing the converted ground truth data with shape (N, C, h, w)