Fighting Health-Related Misinformation in Social Media With Large Language Models

By

Moisés Robles Pagán

A thesis submitted in partial fulfillment of the requirements for the degree of

 $\begin{array}{c} \text{MASTER OF SCIENCE} \\ \text{in} \\ \text{COMPUTER ENGINEERING} \end{array}$

UNIVERSITY OF PUERTO RICO MAYAGÜEZ CAMPUS 2024

Approved by:	
M ID I/ M // DID	
Manuel Rodríguez Martínez, Ph.D. President, Graduate Committee	Date
Emmanuel Arzuaga, Ph.D. Member, Graduate Committee	Date
Domingo Rodríguez Rodríguez, Ph.D. Member, Graduate Committee	Date
FirstName I. LastName, Ph.D. Representative of Graduate Studies	Date
José Cedeño Maldonado, Ph.D. Department Chairperson	Date

ABSTRACT

Hi! We encourage you to visit https://libguides.uprm.edu/writingclinics and check out the **Abstracts Clinic.** Keep in mind that depending on your discipline, abstracts should be a **single paragraph**, containing no more than **150 words** for theses or **350 words** for dissertations. It should concisely but clearly summarize your thesis document. The **IMRaD format** is recommended for writing abstracts: Introduction (1-3 sentences long, present tense), Methodology (1-3 sentences long, past tense), Results (1-3 sentences long, past tense), and Discussion (1-2 sentences long, present tense). Remember that the number of sentences and verb tense are only guidelines!

RESUMEN

El Resumen debe ser una traduccion del Abstract. No deben diferir en contenido.

Copyright © $\label{eq:copyright} \mbox{Moisés Robles Pagán}$ 2024

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem.

Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat.

Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

ACKNOWLEDGMENTS

I want to thank the GRIC personnel! :D

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Contents

	List	of Figures	X
	List	of Tables	xi
	List	of Acronyms	xiv
	List	of Appendices	xiv
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Objectives	3
	1.3	Contributions	3
	1.4	Outline	4
2	${ m Lit}\epsilon$	erature Review	6
	2.1	Introduction	6
	2.2	Large Language Models (LLM)	6
		2.2.1 Classification tasks	10
	2.3	Vector Databases	12
	2.4	Misinformation in Social Media	14
	2.5	Twitter Health Surveillance (THS)	16
3	Cita	ations, Images, and Equations	19
	3.1	How to incorporate citations in your document	19
		3.1.1 Citation Styles	19

	3.2	Using	Images	20
		3.2.1	Adding Subfigures	20
4	Syst	tem Aı	chitecture	22
	4.1	System	o Overview	22
	4.2	Fine-t	uning	22
		4.2.1	Health-Related Classification	23
		4.2.2	Misinformation Classification	23
	4.3	Paper	ETL Pipeline	24
	4.4	Misinf	ormation Rebuttal Pipeline	25
	4.5	Hardw	are and Software	27
5	Per	forman	ce Evaluation	2 9
	5.1	Hardw	are	29
	5.2	Softwa	re	29
6	Met	hodolo	m pgy	31
	6.1	Section	1	31
		6.1.1	Subsection	31
			6.1.1.1 Subsubsection	31
		6.1.2	Subsection	32
7	Res	ults .		33
	7.1	Section	1	33
		7.1.1	Subsection	33
			7.1.1.1 Subsubsection	33
		7.1.2	Subsection	34
			7.1.2.1 Subsubsection	34

	7.2	Section	1	 	 	 •	 	•	 •		•	•	•	•	•	•	34
		7.2.1	Subsection	 	 	 	 	•		•	•		•	•			35
8	Con	clusio	ıs	 	 	 	 										36
	8.1	Section	1	 	 	 	 										36
		8.1.1	Subsection	 	 	 	 										36
		8.1.2	Subsection	 	 	 	 	•		•			•				37
R	eferei	nces															42

List of Figures

2.1	The Transformer Architecture	7
2.2	LLM Architecture and Comparison	8
2.3	Zero-shot example of GPT-3	11
2.4	Vector Space Representation	13
2.5	THS Architecture	17
2.6	ChatGPT Classification Example – Health Related	18
3.1	GRIC logo!!	20
3.2	Put your caption here	20
3.3	Put your caption here	21
4.1	Medical Data Extraction Pipeline	24
4 2	Misinformation Rebuttal LLM System Architecture	27

List of Tables

List of Abbreviation

AI Artificial Intelligence

API Application Program Interface

CLM Causal Language Modeling

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DBMS Database Management System

GPU Graphic Processing Unit

HF Hugging Face

JSON JavaScript Object Notation

LLM Large Language Model

LoRA Low-Rank Adaptation

LSTM Long Short-Term Memory

MLM Mask Language Modeling

NIH National Institutes of Health

NLP Natural Language Processing

PEFT Parameter Efficient Fine-Tuning

PMC PubMed Central

RNN Recurrent Neural Network

SQL Structured Query Language

THS Twitter Health Surveillance

UPRM University of Puerto Rico Mayagüez

List of Appendices

Appendix A: MATLAB Code	43
Appendix B: Data	45
Appendix C: More Data	46
Appendix D: More Data	46

Chapter 1

Introduction

1.1 Motivation

Nowadays, technology has advanced to the point that anyone can find any information in just a few seconds. Social media has been an essential element in the search for information. The issue with this is that anyone can find, search, share, and even write anything, accurate or not. However, this dilemma has caused problems in this modern era. If anyone can share anything, how can you be sure what is true? Users are susceptible to disinformation or misinformation. In this context, misinformation refers to messages with false information dispersed because the author misunderstood facts. In contrast, disinformation refers to messages with false information that are intentionally dispersed by the author of the message with the intent of forming opinions based on false data. In either case, false information spreads to readers as facts. Most social media platforms recommend readers read from experts or official news outlets, but with an overwhelming amount of data, it is complicated to keep up with everything.

Currently, social media such as X (formerly known as Twitter) have "Community Notes" which clarify tweets that are misleading or disinforming. However, this system

depends totally on human interaction and is a slow and intricate process. On most occasions, when a "Community Note" is added to a tweet, the disinformation has already been spread. The issue of detecting and preventing the spread of misinformation has not been an easy task, especially in the health field. Another important factor mentioned in [REFERENCE] is that health-related misinformation is more engaging if they are textual compared to pictorial.

In recent times, it has been challenging for health officials to achieve the prevention of endemic or pandemics. Most of the time, these officials tend to make educational campaigns for the population. However, social media misinformation can reduce the effectiveness of these campaigns. In addition, this is harder to counteract because these can spread for longer times and reach different users [REFERENCE]. Some problems these experts have faced in the past years were misinformation about vaccines, users invalidating safe measurements, and other issues.

Is not easy to find training data about this topic because of the informality in social media, slang terms, or special characters. However, we use the data from the THS project from the University of Puerto Rico Mayagüez Campus (UPRM) as our primary source for the health classification dataset. On the other hand, the misinformation dataset contains social media posts, articles, websites, and others. For this classification process, we use Large Language Models (LLM). An LLM is a computational model with high capability in the Natural Language Processing (NLP) field, thanks to its ability to make statistical relationships with texts. These models have made breakthroughs in how computers interpret the human language. Thus, we can train them to classify and make inferences from a text.

For this project, we investigate and implement Large Language Models to: 1) detect if a text is health-related, 2) if it is related, then determine if it contains misinformation, and 3) rebut texts that are misinformation using research papers gathered from official health sources as context. With the use of a vector database, we retrieve chunks of the research papers that are related to the classified text. Finally, the system cites the papers it used for the rebuttal process to ensure that the users receive a result as accurately as possible.

1.2 Objectives

The objectives of this project are as follows:

- Identify and extract information from official health sources: This data will be stored in a vector database that the model will use as context to rebut the misinformation. The model will cite official health sources related to the tweets to sustain their classification.
- Identify and finetune a Large Language Model: Select an appropriate base Large Language Model architecture that will:
 - 1. Detect if a text is health related.
 - 2. Determine if a text is misinformation.
 - 3. Use official health sources texts to combat the texts classified as misinformation and cite from the gather data.
- Compare with the previous version of THS: To measure the effectiveness of the classification with the LLM, we are going to compare it with the previous THS results and validate the advantages of a Large Language Model on solving Natural Language Processing problems.

1.3 Contributions

- Finetune Large Language Models for health classification on social media: Large Language Models are being used for different fields nowadays. However, these do not focus on health misinformation on social medias. We present Large Language Models as a solution to classify and rebut health misinformation texts on social medias, and use research papers extracted from PubMed as context for the LLM.
- Pending Contribution Title: We used 12,441 texts for the health-related classification labeled as related, unrelated, or ambiguous. For the misinformation-classification we had 8,772 texts labeled as misinformation or not misinformation. For the model rebuttal, we extracted 56,365 papers from PubMed.
- Present a novel solution to misinformation rebuttal: For misinformation rebuttal is necessary to have an understanding of what needs to be fact checked. Also, it is important to have the necessary context to make the correction. We extracted research papers that were added into a vector database. The database helped find similar chunks of texts to use as context for the misinformation rebuttal.

1.4 Outline

This paper has the following organization. Chapter 2 contains the literature review on Transformers, Large Language Models, the different use cases of these models for classification, misinformation on social media, and the THS project. Additionally, we describe the importance of disinformation on social medias. For Chapter 3, we can observe the problem description and methodology. Later, on Chapter 4, we have the experiment, and the projects pipeline for the training and classification. Chapter 5 presents our results based on accuracy and performance. In Chapter 6, related works

are presented, with our conclusion and suggestions or future work.

Chapter 2

Literature Review

2.1 Introduction

There has been many advancement....

2.2 Large Language Models (LLM)

Natural language processing (NLP) has always been an intricate field because of the complexity of how humans communicate. The meaning of a message can vary because of homonyms, tone, context, and other factors that affect the message delivered; these are some challenges computers face when trying to replicate or learn text communication and expressions. However, this changed with the introduction of Large Language Models (LLM) [1]. These models are trained with large amounts of data to replicate human-like patterns or generate text based on statistical relationships between words, and all was made possible because of transformers [2]. Previous NLP techniques such as Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) could understand a sentence context in the short term. However, these struggle when trying to understand longer texts. In contrast, transformers architecture, seen in Figure 2.1, differs from

others because it uses self-attention.

Figure 2.1: The Transformer Architecture

This self-attention finds dependencies between all words in a text, short and longterm. The process of this starts by turning words into tokens. A token can be a word, subword, individual letter, or a sequence of words mapped to an embedding. The embedding is the vector representation of a token in high-dimension space; its size depends on how much information it stores about the token. Now, self-attention finds relationships between all tokens and gives them an attention score, measuring the relevance of a token to others. Transformers uses the scores to generate a final representation of each token. This process depends on how the models make a token. The tokenization strategy is determined by the preprocessing stage, and influenced by the embedding and model architecture. The embedding impacts the strategy because of its dimensionality, the amount of information encoded, and the model's sequence length limitations. In Figure 2.1, we can see an encoder and a decoder in the transformers architecture. Based on that, there are different LLM architectures: decoder-only, encoder-only, and encoder-decoder. Each one has advantages for specific tasks and limitations for others.

Figure 2.2: LLM Architecture and Comparison

Decoder-only models: Decoder-only models predict the next word based on the previous context, thus being unidirectional models. The model achieves this by taking a text or prompt as input and returning a first word. For each subsequent word, the model uses the previously generated text as input to predict the next word, continuing until it produces a coherent output. In Figure 2.2, the model predicts the last word based the previous context. Because of their ability to predict sequences of texts, they are frequently employed in tasks like summarization and

text generation. Models that perform those task are also called causal language modeling (CLM), because they predict new tokens not found in the input. Compared to the other architectures, these models are massive in size. Because of their sizes, these are not very practical or cost-effective for daily usage. These are the most commonly known models, such as GPT-3 [3], Mistral [4], and LLaMa [5].

Encoder-only models: This type of model predicts by masking specific words in a sentence. Said masking helps them understand the meaning or relation of the masked word based on context. They are bi-directional, which means they take the context before and after the masking to evaluate the word. The example in Figure 2.2 shows a sentence with a word mask and being inputted to the encoder LLM; the model predicts the missing word by using the surrounding text. That is why they tend to perform well at classification and sentiment analysis but are not optimal for text generation. Said model are called masked language models (MLM). In contrast to other architectures, these models are relatively small. Some examples of encoder-only LLM are BERT [6] and RoBERTa [7].

Encoder-Decoder models: These models combines masking and text generation. The way the work is by masking sequence of texts and using the context around it to make a prediction. As seen in Figure 2.2, they can mask more than one word from the original inputted text. Because the model generates sequences of texts, it is commonly used for translation and question and answer. It is know that translating from one language to another is not possible using a word by word translation; one must understand the entire sequence to not loss context. To have an optimal model, both encoder and decoder must be trained for the task one wishes to achieve. Depending on the task, it can be harder to train compared to the other types of architectures. Bart [8] and T5 [9] are example of

2.2.1 Classification tasks

Large Language Models use different learning methods to train. Such methods include zero-shot, one-shot, and few-shot learning. As the name implies, zero-shot learning is training a model without previous knowledge of the data; it is learning from scratch. One-shot learning is a method that receives one example as input and tries to generalize from that example. The final method uses multiple examples to find a pattern between them.

In Figure 2.3, we can see an example of zero-shot learning. This LLM has no previous knowledge of the task that it must perform. Nonetheless, the model used, GPT-3, has the advantage that it can follow instructions when redacted clearly. Here, we tell the model that it must act as a medical expert and identify if a message is health-related and why it is classified that way. Also, the result must follow a specific format. This process of instructions is called prompt engineering. Prompting does not retrain or adjust the model parameters. Thus, it does not always have optimal results.

Moreover, LLMs that completed training with no additional modifications are known as based models. The response from this model will most likely make no sense with the premises it receives. This happens because the model is trained on excessive texts to find patterns between them, but this pattern might not be on par with the input. For the model to return a coherent response, it must go through a finetuning process. Finetuning consists of making a model perform specific tasks, such as chatting, summarization, chatbots, and others. To finetune a model, it must undergo another training process, but now the training data relates to the tasks it will perform.

The authors in [10] trained a based LLM model to understand images and give a text description or a combination of text and image. The training process for the model used

```
In [4]: prompt = f"""

You are a medical expert and trying to identify if this message is health related. You will use the following format:

Id: (number)

Text: (write the message)

Classification: (Related, Not Related, or Ambigous)

Reasoning: (Why you classified it that way)

Message: '''Got the flu :| tired face :| '''

"""

response = get_completion(prompt)

print(response)

Id: 001

Text: Got the flu :| tired face :| Classification: Related

Reasoning: The message mentions having the flu, which is a health-related issue. Additionally, feeling tired can be a symptom of the flu.
```

Figure 2.3: Zero-shot example of GPT-3

images and captions of those images as their data and the zero-shot learning strategy. Their resulting model was used as a chatbot that identifies images, answers questions, or gives visual examples about them. Another experiment was [11], where the authors trained a model to identify sentiments on financial market decisions. In this case, they used prompting, also called in-context learning, for the model to answer the sentiment of the texts. In-context learning does not require to update any parameter of the original model. Their model resulted in a 70% accuracy on sentiment prediction, failing mostly on neutral posts. A possible problem with the neutral post is that prompting does not train the model to perform a specific tasks. That experiment showed the problems that users face when they use social media to make decisions. They clarified the importance of not taking the model for granted and how social media can cause a user to make a poor decision.

An issue with LLM is that they answer based on statistical relationships between words, and occasionally, their output could make no sense. Sometimes, they can generate a result that is not factual or valid this phenomenon is called AI hallucinations. These models train to find patterns between tokens. Without the proper context, they cannot differentiate between fact and fallacy. This context needs to be related or similar to the input that the model receives. However, finding the necessary information is not optimal if done manually. That begs the question, how much data would be needed to achieve a coherent answer, and how can this be done effectively?

2.3 Vector Databases

AI hallucinations occur when models generate outputs that seem plausible but lack factual accuracy. We can minimize the hallucinations by providing context relating to the text inputted. A solution to this is finding data from officials or experts on the topic associated with the text. However, with much research available, we need to narrow the search. In addition, the context quality is essential for the model to make any inference. The search process for this consumes time and is not always optimal.

Nonetheless, if we have an immense amount of data from different sources, we can benefit by using a vector database. In contrast to other databases, they store data in a vector representation. These databases can come in different forms, like Chroma [12], a native vector database. Also, some relational databases have extensions that allow them to make vector similarity searches, like Postgres with psvector [13]. They can turn images, videos, documents, and others into numerical embedding. These embeddings are numerical vectors capturing semantic meaning [14]. They are practical because the system stores the data provided as vectors in a high-dimensional space, where semantically similar data are positioned close in said space. We can see a text example of the vector space in 2.4. If we search for "Flu" it could return "Sick" or "Covid" with a higher probability than "Car" or "Truck". As we can see, querying this database will

return a result close to the input.

Figure 2.4: Vector Space Representation

Although these systems help find similar text, there are a few limitations. One such problem is the vector size, which can impact the accuracy and resource usage [15]. If the vector size is relatively big, the system will have a higher accuracy but will require more storage and resources to process. Also, this affects when searching large datasets, which incurs a resource-intensive search.

For the data insertion process, we need to find optimal strategies for our data. If we focus on a text dataset, the best practice is to split the document into chunks. This splitting process must be optimal for the task we want to achieve. If we split it into small chunks, it will have a more precise answer, but we dilute the meaning of the text. On the other hand, larger chunks can have more context but less relevance. After selecting the appropriate size, these chunks must be turned into a vector, usually done with an LLM. Finally, these vectors and their chunks are stored in the system.

To search the system, we send a query to the LLM that converts it into a vector. Then, the vector is used in the database to make a similarity search. The system will return chunks that can function as context for an LLM to analyze. In this context, an LLM can use the retrieved chunks to generate a fact-based answer from outside their initial training. Therefore, it can help reduce the dependency on a professional in the field to answer questions about a complex topic. Nevertheless, expert validation will always be necessary in sensitive or specialized subjects. Additionally, this can help determine texts that are not factual, incorrect, or misleading.

2.4 Misinformation in Social Media

There are many sources in the world to find information about any topic. Nonetheless, many people use social media as their primary source [16] and occasionally take this information as truth without validation [17]. On occasion, these can be fake, misleading, or wrong. When this happens unintentionally or by lack of understanding of the topic, it is called misinformation. On the other hand, when it is intentional to provide wrong information, this is known as disinformation. For simplification, both terms will be used interchangeably, as they have a similar impact on the user and give information that is not accurate.

Misinformation has been dangerous during critical events like natural disasters or health crises. For instance, during the COVID-19 pandemic, false claims appeared saying that the vaccine had microchips or that it was intended for population control [18], which led to high health risks or even deaths [19] because they refused to get vaccinated out of fear. A problem with disinformation is that the audience does not always detect it. When misinformation spreads and is not clarified early on, it can be confused as fact. Misinformation can affect all demographics, but older audiences and people with less education are more likely to share and believe fake or misleading news [20].

There have been various research studies on reducing the propagation of misinformation. Misinformation was modeled as a game-theoretic problem in [21], where some players spread fake news, and others tried to stop it. They created an agent at the network level to combat misinformation in a simulation. However, they could not conclude the efficiency of their model due to the lack of discernible patterns in the simulation. On the other hand, the authors in [22] used LSTM and BERT to classify misinformation from the different news sources. They proved that BERT outperformed LSTM, achieving an accuracy of 64.88% against 60.59%. These results are significant in detecting misinformation; still, they are not optimal for situations that can directly impact someone's life. For example, the system has over a third chance of incorrectly classifying news, and this could be dangerous if the topic is a natural disaster or health risk. We need to ensure that AI models classify this type of news with a very high accuracy rate.

Another approach to detecting fake information was on [23], where they detected fake LinkedIn profiles. On this occasion, the dataset used for training included real and AI-generated profiles. They tested multiple LLMs like BERT and RoBERTa, but BERT resulted in the highest accuracy of 95.67%. These investigations prove the efficiency of Large Language Models for Natural Language Processing in the misinformation field. Regardless, none of these studies addresses health-related misinformation on social media.

When combatting misinformation, the difficulty arises when determining what is spreading and how experts can correct it. To determine if a text is spreading lies, one must understand or find credible sources, such as peer-reviewed studies or expert opinions, to verify the truth. Some disinformation can be easier to identify like hoaxes, but other things, such as conspiracy theories, require more resources to debunk. When the topic of the text becomes complex or not identifiable, some credible sources help with the rebuttal. These tasks are time-consuming and require an expert in the field for accuracy. In addition, the explanation must be expressed so that any audience can understand it. These are a few reasons that health-related misinformation is hard to combat. It requires professionals in the field to be fast at identifying misinformation and concise when correcting them.

With the advancement in Artificial Intelligence, LLM can combat misinformation by classifying it and rebutting it by generating text based on peer-reviewed research.

2.5 Twitter Health Surveillance (THS)

The THS system classified tweets related to health issues [24]. The experiment utilized LSTM and GRU to classify tweets as being medical related, medical unrelated, or ambiguous. THS data extraction pipeline can be found on Figure 2.5. First they extracted data from the Twitter API and sent that data to an Apache Kafka queue. Then, a consumer sent it to Apache Spark to process the data and store it in a Hive warehouse. Later, a preprocessing phase for each tweet occurred, which removed hashtags, mentions, emojis, and web links. The agent trained with the resulting plain text. This version used recurrent neural network (RNN) because of its advantages with sequential data. They tested various combination architectures, but the one with the highest result was an LSTM layer, with no attention, and a GRU layer; it had an F1 score of 86%, a recall of 89%, and a precision of 83%.

Later the project was updated to find similarities between tweets [25]. This new

Figure 2.5: THS Architecture

version tested convolutional neural networks (CNN) and recurrent neural networks to classify how closely related are two different tweets. They used a ranking method that gave a higher score if two randomly selected tweets were similar. The agent received an input of triplets where the first element was compared against the other two elements. The system trained on two data types: raw tweets and cleaned tweets. This latter had stop-words removed and a lemmatization process. Cleaned tweets proved a higher accuracy in the recurrent neural network for regular LSTM and bidirectional networks; in contrast, the raw tweet had a better result in CNN validation. All three models had similar results; the highest validation accuracy was the regular LSTM with 90%, followed by the other two with 87%. Nonetheless, the training time for the CNN was the fastest, with regular LSTM in second place and the slowest being the bidirectional LSTM network.

However, both of these experiments removed special characters or elements from the original text. By then, tweets had a limitation of characters, making each one of the crucial the context. Removing special characters, could remove information that the author of the text intended. We can have the example in Figure 2.6, where a based **ld:** 5

Sentence: As the use of Wolbachia infected mosquitos is approved to combat Zika in the USA how will production demands be met? https://t.co/XrbcstLMcv A nice mention for @michiganstateu in there too! #spartanswill #zika

Related: Yes

Reason: This sentence is related to a health issue. It discusses the use of Wolbachia infected mosquitos to combat Zika, which is a health concern. The mention of production demands being met suggests that this is a topic related to public health efforts and strategies. The mention of @michiganstateu and the hashtags #spartanswill and #zika further indicate the relevance to health issues.

Figure 2.6: ChatGPT Classification Example – Health Related

model GPT classified a text. The model uses the hashtag and mention as context to determine if the text is health related or not. This is a good presumption, but these platforms' users could use hashtags or mentions that are not relevant to the text.

Chapter 3

Citations, Images, and Equations

You can visit the Overleaf Documentation library at: https://www.overleaf.com/learn or the official LaTeX wiki at: https://en.wikibooks.org/wiki/LaTeX for in-depth guides to the LaTeX typesetting system.

3.1 How to incorporate citations in your document

Make sure you have your references file in .bib format. You can export it from Mendeley and copy/paste them into the **referencias bib** file. Using the **citecommand**, start writing your source identifier and Overleaf will automatically show you the available references. A sample citation [26]. If you want to cite two references [27, 28] or [27],[28]. Citing a range of references [27–29].

3.1.1 Citation Styles

There are several bibliography styles to choose from: abbrv, acm, alpha, apalike, ieeetr, plain, siam, unsrt. The default is ieeetr. Remember to change the option in the document preamble in tesis.tex

3.2 Using Images

This is an example of a figure, as shown in Figure 3.1. Your images must be uploaded to the **images** folder. Accepted file formats are **pdf**, **png**, **jpg**, **and eps**. Use the following options for the location of the image on the page: [htbp] that refer to here, top, bottom, or special page. Pay attention to the image width. If the image is wider than the margins, LATEX will produce an warning or error.

Figure 3.1: GRIC logo!!

3.2.1 Adding Subfigures

If you need to place two subfigures in your figure, follow the example below:

(a) Put your sub-caption here

(b) Put your sub-caption here

Figure 3.2: Put your caption here

d

If you need to place four subfigures in your figure, follow the example below, but LATEX is very particular with widths, so you have to play around with the numbers. It might

give you overflow warnings. These won't stop your document from compiling. It is easier to build the four images as a single one before uploading it to Overleaf.

(a) Put your sub-caption here

(b) Put your sub-caption here

(c) Put your sub-caption here

(d) Put your sub-caption here

Figure 3.3: Put your caption here

Chapter 4

System Architecture

4.1 System Overview

4.2 Fine-tuning

The Large Language Models (LLM) used for this paper are pre-trained, meaning that the model learned how words relate to each other, the model is trained to understand a language. This process is computationally expensive and requires a large amount of data. Instead of creating a model from scratch, we can teach an existing model to learn a new task such as text classification, translation, generation, or other. This is called fine-tuning, and in this case, it was used to teach the model to classify two types of texts: health-related and misinformation-related.

The health-related dataset comprises over 12,441 tweets extracted from the previous THS project. Said dataset was classified into three categories: related, unrelated, and ambiguous tweets. A second dataset, with 8,762 texts, was created with data from different sources such as news, social media, and blogs classified as misinformation and

non-misinformation [Insert References].

The models used for the classification process were Bert, T5, and LLaMa-2.

4.2.1 Health-Related Classification

4.2.2 Misinformation Classification

- 2. Misinformation classification
- LR, Batch size, seed, and epochs are static.
- Each model was fine-tune twice.
- 1. Sequence classification: 1, 2, or 3; 1 or 2.
- 2. Classification with text generation: Related, Unrelated, or Ambiguous; Misinformation or Not Misinformation.
 - Weighted average added for the sequence classification.

4.3 Paper ETL Pipeline

Figure 4.1: Medical Data Extraction Pipeline

For our models to be able to rebut the misinformation, it needs to use credible sources. We identified PubMed [REFERENCES] to extract the papers and stored them in a vector database. To extract these papers, we used the BioC API [30] that contains the PubMed papers. However, the API needs the research papers' identifiers, called PubMed Central (PMC) identifieer. To get these identifiers a scraper was designed to extract the PubMed Central (PMC) identifier. The pipeline in The pipeline in Figure

4.1 goes as follows:

- 1. Extract papers identifier: We selected 14 different keywords for the papers that would be extracted. For each keyword, we retrieved 5,000 PMC identifiers and stored them in CSV files. The identifier were extracted by a scraper that got the PMC identifier from PubMed website.
- 2. Paper requests: After retrieving the identifier, the system made requests to the API and the results were saved locally in JSON format. Each JSON was preprocessed to only contain text, tables and figures were removed.
- 3. Vectorizing data: Each research paper's contexts was broken into chunks, vectorized by an LLM, and stored it in a Chroma **REFERENCES** database. Each chunk was given a unique identifier to be paired with the original text.
- 4. Storing metadata: With all papers vectorized, the paper's metadata and the chunk's unique identifiers were stored in a Postgres database. Duplicate records and researches that had their reference missing were removed, to prevent inconsistency and ensure that our classifier cites the correct sources. Our relational database Table diagram can be found on ADD TABLE DIAGRAM REFERENCE

4.4 Misinformation Rebuttal Pipeline

The pipeline shown in Figure 4.2 goes as follows:

1. Health-related classification: Verifies if the inputted text is health-related. The possible options are related, unrelated, or ambiguous.

- 2. Misinformation classification: If the text was classified as health-related, we then checks if the text contains misinformation. If any misinformation is detected, we need to find official health data to rebut said misinformation.
- 3. Context finder: A query is created for a vector database based on the original text. This query is sent to a vectorized database, Chroma, and will return chunks that are related to the query.
- 4. Medical information database: This is a database that contains medical metadata from official sources. Using the chunk IDs we will retrieve the original papers' references.
- 5. Organize and rebut: The result from the medical database is now processed and used to make a rebuttal for the misinformation in the text. Then, we query the relational database to extract the references of the papers used for the previous part. The output includes the original text, the health and misinformation classifications, the correction of the misinformation, and the citation of the sources used.

Figure 4.2: Misinformation Rebuttal LLM System Architecture

4.5 Hardware and Software

- V100 machines: 32Gb VRAM, and 80-ish RAM

Cuda 11.7

- Python 3.9.19
- Pytorch 2.0.1
- Transformers 4.34.0

Performance Evaluation

5.1 Hardware

- V100 machines: 32Gb VRAM, and 80-ish RAM

Cuda 11.7

- Python 3.9.19
- Pytorch 2.0.1
- Transformers 4.34.0

5.2 Software

Various softwares were used for this research, these are:

- Python
- Hugging Face
- BioC

- Torch
- CUDA
- Transformers

Methodology

6.1 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

6.1.1 Subsection

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

6.1.1.1 Subsubsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie

ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

6.1.2 Subsection

Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Results

7.1 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

7.1.1 Subsection

Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

7.1.1.1 Subsubsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie

ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

7.1.2 Subsection

Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

7.1.2.1 Subsubsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

7.2 Section

Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem.

7.2.1 Subsection

Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla.

Conclusions

8.1 Section

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

8.1.1 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

8.1.2 Subsection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.

Bibliography

- H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, "A comprehensive overview of large language models," 2024.
- [2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," 2023.
- [3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, "Language models are few-shot learners," CoRR, vol. abs/2005.14165, 2020.
- [4] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, "Mistral 7b," 2023.
- [5] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,

- A. Joulin, E. Grave, and G. Lample, "Llama: Open and efficient foundation language models," 2023.
- [6] J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: pre-training of deep bidirectional transformers for language understanding," CoRR, vol. abs/1810.04805, 2018.
- [7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, "Roberta: A robustly optimized bert pretraining approach," 2019.
- [8] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, "Bart: Denoising sequence-tosequence pre-training for natural language generation, translation, and comprehension," 2019.
- [9] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, "Scaling instruction-finetuned language models," 2022.
- [10] J. Y. Koh, R. Salakhutdinov, and D. Fried, "Grounding language models to images for multimodal inputs and outputs," 2023.
- [11] X. Deng, V. Bashlovkina, F. Han, S. Baumgartner, and M. Bendersky, "Llms to the moon? reddit market sentiment analysis with large language models," pp. 1014–1019, 04 2023.

- [12] Chroma, "The ai-native open-source embedding database," 2022. accessed: 04.27.2024.
- [13] pgvector, "pgvector: Open-source vector similarity search for postgres," 2024. accessed: 10.1.2024.
- [14] P. N. Singh, S. Talasila, and S. V. Banakar, "Analyzing embedding models for embedding vectors in vector databases," in 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG), pp. 1–7, 2023.
- [15] Y. Han, C. Liu, and P. Wang, "A comprehensive survey on vector database: Storage and retrieval technique, challenge," 2023.
- [16] F. Shen, Introduction: Social Media as a News Source, pp. 1–2. 10 2021.
- [17] Z. Epstein, N. Sirlin, A. Arechar, G. Pennycook, and D. Rand, "The social media context interferes with truth discernment," Science Advances, vol. 9, no. 9, p. eabo6169, 2023.
- [18] M. S. Islam, A.-H. Kamal, A. Kabir, D. Southern, S. Khan, S. Hasan, T. Sarkar, S. Sharmin, S. Das, T. Roy, M. G. D. Harun, A. Chughtai, N. Homaira, and H. Seale, "Covid-19 vaccine rumors and conspiracy theories: The need for cognitive inoculation against misinformation to improve vaccine adherence," 05 2021.
- [19] S. T and S. Mathew, "The disaster of misinformation: a review of research in social media," *International Journal of Data Science and Analytics*, vol. 13, pp. 1–15, 05 2022.

- [20] S. Benaissa Pedriza, "Disinformation perception by digital and social audiences: Threat awareness, decision-making and trust in media organizations," *Encyclopedia*, vol. 3, no. 4, pp. 1387–1400, 2023.
- [21] T. Yilmaz and Ö. Ulusoy, "Misinformation propagation in online social networks: Game theoretic and reinforcement learning approaches," *IEEE Transactions on Computational Social Systems*, vol. 10, no. 6, pp. 3321–3332, 2023.
- [22] A. Harbola, M. Manchanda, and D. Negi, "Misinformation classification using 1stm and bert model," in 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), pp. 1073–1077, 2023.
- [23] N. Ayoobi, S. Shahriar, and A. Mukherjee, "The looming threat of fake and llm-generated linkedin profiles: Challenges and opportunities for detection and prevention," in *Proceedings of the 34th ACM Conference* on Hypertext and Social Media, HT '23, ACM, Sept. 2023.
- [24] C. C. Garzón-Alfonso and M. Rodríguez-Martínez, "Twitter health surveillance (ths) system," in 2018 IEEE International Conference on Big Data (Big Data), pp. 1647–1654, 2018.
- [25] D. Villanueva-Vega and M. Rodriguez-Martinez, "Finding similar tweets in health related topics," in 2021 IEEE International Conference on Digital Health (ICDH), pp. 184–190, 2021.
- [26] P. A. M. Dirac, The Principles of Quantum Mechanics. International series of monographs on physics, Clarendon Press, 1981.

- [27] A. Einstein, "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]," Annalen der Physik, vol. 322, no. 10, pp. 891–921, 1905.
- [28] D. E. Knuth, Fundamental Algorithms, ch. 1.2. Addison-Wesley, 1973.
- [29] A. López and K. Soderstrom, "Insolation in Puerto Rico," Journal of Solar Energy Engineering, 1983.
- [30] D. C. Comeau, C.-H. Wei, R. Islamaj Doğan, and Z. Lu, "PMC text mining subset in BioC: about three million full-text articles and growing," *Bioinformatics*, vol. 35, pp. 3533–3535, 01 2019.

Appendix A: MATLAB Code

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac,

nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Appendix B: Data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

Appendix C: More Data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

Appendix D: More Data

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.