Worksheet 2

November 14, 2017

1. Among the following vector fields, one has constant upwards pointing curl. Which one?

2. One of the vector fields below has always negative divergence. Which one?

3. A fence lies over the curve $y = x^2$ for $x \in [1,3]$ and under the graph of the function f(x,y) = x, where x, y are in meters. Find the area of the fence, including units.

Parametrize curre:

$$c(f) = (xcf), ycf) = (t, t^{2}), t \in [1,3]$$

$$Area = \int_{c}^{3} f(x,y) ds = \int_{1}^{3} t \int_{1+(2t)^{2}} dt$$

$$= \int_{1}^{3} t \int_{1+4t^{2}} dt = \int_{1+4t^{2}}^{3} dt = \int_{1+3}^{3} dt$$

$$= \frac{1}{12} \left((37)^{\frac{3}{2}} - 5^{\frac{7}{2}} \right) M^{2}$$

5. You are given the vector field

$$\vec{F}(x,y,z) = \langle 2xy + 2e^z, x^2, 2xe^z \rangle,$$

defined on \mathbb{R}^3 . Show that it is conservative and find a potential function for it.

defined on
$$\mathbb{R}^{3}$$
. Show that it is conservative and find a potential function for it.

Find $\operatorname{curl} \overrightarrow{F}$:

 $\operatorname{curl} \overrightarrow{F} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ 2xy+2e^{z} & x^{2} & 2xe^{z} \end{vmatrix} = \langle 0, 2e^{z} - 2e^{z}, 2x-2x \rangle$
 $= 0, \text{ and its defined}$

on all of \mathbb{R}^{3} , so conservative

Write
$$\vec{F} = \langle P, Q, P \rangle = \nabla f = \langle \partial_x f, \partial_y f, \partial_z f \rangle$$
.
Then $\partial_x f = P = 2 \times y + 2e^2 = 0$
 $\Rightarrow f(x, y, z) = x^2y + 2xe^2 + cp(y, z)$

nem
$$\partial y f = Q = x^2 \Rightarrow x^2 + \partial_y \varphi = x^2 \Rightarrow \varphi(y,z) = \psi(z)$$
 which means that $f(x,y,z) = x^2y + 2xe^z + \psi(z)$

Then
$$\partial_z f = 2xe^z \Rightarrow 2xe^z + \partial_z \psi = 2xe^z \Rightarrow \psi = c$$

Thus a potential function for \overrightarrow{F} is

hus a potential function for
$$f$$
 is
$$f(x,y,z) = x^2y + 2xe^z + C$$

6. An object moves along the boundary of the set

$$D = \{(x,y) : x^2 + y^2 \ge 1, |y| \le \sqrt{3}x, x \le 3\}$$

in counterclockwise direction. Find the work produced by the force field

$$\vec{F}(x,y) = \langle 3, \ln(x^2 + y^2) \rangle$$

during the movement of the object.

6.
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$
 $\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f$

$$= \frac{1}{2} \frac{\partial^2 f}{\partial x} = \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 x}{\partial x} \int_{\partial x}^2 \frac{\partial x}{\partial x} dx + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \int_{\partial x}^2 \frac{\partial x}{\partial x} dx + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x} \right)^2 + \frac{\partial^2 f}{\partial x} \left(\frac{\partial x}{\partial x}$$

Ada	1 (2	(3)	te	fin d	0x f	+ 27
							J,