Lab 10: SPI (Serial Peripheral Interface)

Instructor: Sung-Yeul Park

TA: S M Rakiul Islam

ECE 3411

Department of Electrical and Computer Engineering University of Connecticut

February 19th, 2018

SPI: Serial Peripheral Interface

The SPI bus specifies four logic signals:

- SCLK: Serial Clock (output from master).
- MOSI: Master Output, Slave Input (output from master).
- MISO: Master Input, Slave Output (output from slave).
- SS: Slave Select (active low, output from master).

DAC: Digital to Analog Converter

We use an external DAC for this lab: MCP4921

- 12 bit resolution.
- SPI interface.

1	V _{DD}	Positive Power Supply Input (2.7V to 5.5V)					
2	CS	Chip Select Input. (SPI Slave Select)					
3	SCK	SPI Serial Clock Input					
4	SDI	SPI Serial Data Input (MOSI)					
5	LDAC	Synchronization input used to transfer DAC settings from serial latches to the output latches.					
6	V _{REFA}	DAC _A Voltage Input (AV _{SS} to V _{DD})					
7	AV _{SS}	Analog ground					
8	V _{OUTA}	DAC _A Output					

DAC SPI Interface

MCP4921 acts as SPI Slave and only receives data \rightarrow MISO is not connected.

- Connect the ATmega328P with MCP4921 as shown in the figure below.
- Notice that LDAC pin also needs to be connected to a GPIO pin on ATmega328P.

DAC SPI Frame Format

- MCP4921 receives a 16-bit word from the MCU in two 8-bit SPI transactions.
- The format of the 16-bit frame containing 4 command and 12 data bits is shown below.

REGISTER 5-1: WRITE COMMAND REGISTER

Upper Half:										
W-x	W-x	W-x	W-0	W-x	W-x	W-x	W-x			
Ā/B	BUF	GA	SHDN	D11	D10	D9	D8			
bit 15							bit 8			

Lower Half:										
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x			
D7	D6	D5	D4	D3	D2	D1	D0			
bit 7	•	•					bit 0			

DAC Command Bits

- The upper 4 bits of the 16 bit word are DAC command bits.
- The description of the 16 bit frame bits is as follows:

```
A/B: DAC<sub>A</sub> or DAC<sub>B</sub> Select bit
bit 15
          1 = Write to DAC_{R}
          o = Write to DAC_A
bit 14 BUF: V<sub>RFF</sub> Input Buffer Control bit
          1 = Buffered
          o = Unbuffered
bit 13 GA: Output Gain Select bit
          1 = 1x (V_{OUT} = V_{REF} * D/4096)
          0 = 2x (V_{OUT} = 2 * V_{RFF} * D/4096)
bit 12
          SHDN: Output Power Down Control bit
          1 = Output Power Down Control bit
               Output buffer disabled, Output is high impedance
bit 11-0
          D11:D0: DAC Data bits
          12 bit number "D" which sets the output value. Contains a value between 0 and 4095.
```

DAC SPI Interface Timing

- The figure below shows the timing of one SPI transaction (command + data) between the MCU and DAC.
- You need to implement the same timing through SPI interface on ATmega328P.

Connections

- Connect the board as in Fig.1.
- You need to connect 12 bit DAC (MCP4921) as SPI device
- You could use 2 potentionmeter
 - 1 for ADC
 - 1 for contrast control
- For pi clarification use datasheet of SPI and Atmega328P

Fig1. Connections for SPI

Pins

8-Pin PDIP, SOIC, MSOP

SPI Master & Slaves: for further learning

- The SPI bus can operate with a single Master device and with one or more Slave devices.
- In case of multiple slaves, the master selects the slave device with a logic 0 on the select (SS) line.
- During each SPI clock cycle, the master sends a bit on the MOSI line and the slave reads it, while the slave sends a bit on the MISO line and the master reads it.
- This sequence is maintained even when only one-directional data transfer is intended.

