

Herramientas Computacionales - Tarea 7 2016-II

Los archivo del código fuente debe subirse a Sicua plus en un único archivo .zip con el nombre del estudiante en el formato NombreApellido_hw7.zip antes que termine la clase.

El objetivo de este ejercicio es utilizar arreglos de numpy y las funciones imshow e imread de matplotlib para analizar una imagen. Debe ser realizado en un notebook de Ipython. Las librerías pueden ser importadas con el comando %pylab inline.

1. (1 point) Importar y mostrar la imagen

Descargue la imagen del siguiente enlace: https://www.tutorialspoint.com/dip/images/einstein.jpg.

Luego importe la imagen en el notebook, muéstrela en escala de grises incluyendo la convención de colores (colorbar) e imprima sus dimensiones. Note que además del largo y ancho de la imagen, hay una dimensión adicional de 3 que corresponde a los valores RGB (Red Green Blue) de cada uno de los pixeles.

2. (1.5 points) Recortar las dimensiones de la imagen

Modifique la imagen de tal forma que las dimensiones sólamente sean el largo y el ancho de la imagen, es decir, que la nueva imagen sea una matriz donde cada elemento es un número y no una lista de 3 elementos como en el caso anterior.

Imprima las dimensiones de la nueva imagen y muéstrela en escala de grises incluyendo la colorbar. Se debería ver igual que en el punto anterior.

3. (1 point) Reflejar la imagen

Muestre la imagen reflejada tanto vertical como horizontalmente, las funciones fliplr y flipud de numpy le pueden ser útiles, consulte su documentación en internet. Se deben ver de la siguiente manera:

4. (1.5 points) Invertir la imagen

Note que cada elemento (pixel) de la imagen modificada es un valor entre 0 y 255. Donde 0 es negro y 255 es blanco. Para invertir la imagen, los pixeles más oscuros deben convertirse en los más claros y viceversa.

Muestre la imagen invertida incluyendo la colorbar. Debe verse de la siguiente manera:

