РАЗЛИЧНЫЕ АКСИОМАТИЗАЦИИ МАТРОИДОВ

Теорема 1 (Аксиомы независимости). 1) Пусть M(E) — (конечный) матроид и Ind — семейство его независимых множеств. Тогда

- (I.1) $\emptyset \in \text{Ind}$; для любого X условие $X \subseteq I \in \text{Ind}$ влечет условие $X \in \text{Ind}$;
- (I.2) для любых $I, J \in \text{Ind}$ если |I| < |J|, то существует $p \in J \setminus I$, такой что $I \cup p \in \text{Ind}$;
- (I.2') для любого $A \subseteq E$ максимальные независимые подмножества из A равномощны.
- 2) Обратно, пусть семейство \mathcal{J} подмножеств конечного непустого множества E удовлетворяет условиям (I.1), (I.2) или, что эквивалентно, условиям (I.1), (I.2'), где \mathcal{J} играет роль Ind. Тогда \mathcal{J} совпадает с семейством независимых множеств однозначно определенного матроида на E.

Доказательство. 1) Свойство (I.1) было уже отмечено в лемме 1 из предыдущего раздела, а свойство (I.2') — в лемме 2. Применив (I.2') к $I \cup J$, где $I, J \in Ind$ и |I| < |J|, получим (I.2).

2) Обратно, пусть \mathcal{J} удовлетворяет условию (I.1), где вместо Ind фигурирует \mathcal{J} . Легко видеть, что (I.2) эквивалентно (I.2'). Поэтому будем считать, что выполняются все три свойства (I.1), (I.2) и (I.2').

Определим оператор замыкания $A \to \langle A \rangle$ ($A \subseteq E$), полагая для $p \in E$: $p \in \langle A \rangle \Leftrightarrow p \in A$ или существует $I \subseteq A$ такое, что $I \in \mathcal{J}$ и $I \cup p \notin \mathcal{J}$ и т.д..

Теорема 2 (Аксиомы баз).

- 1) Пусть M(E) конечный матроид и Bs семейство его баз. Тогда (B.1) Bs $\neq \emptyset$; если $B_1, B_2 \in Bs$ и $B_1 \neq B_2$, то B_1 и B_2 несравнимы относительно \subseteq ; (B.2) если $B_1, B_2 \in Bs$, то для любого $b_1 \in B_1$ существует $b_2 \in B_2$ такой, что $(B_1 \setminus b_1) \cup b_2 \in Bs$.
- 2) Обратно, пусть семейство \mathcal{B} подмножеств конечного непустого множества E удовлетворяет условиям (В.1) и (В.2), где \mathcal{B} играет роль Вs. Тогда \mathcal{B} является семейством баз однозначно определенного матроида на E.

(В.2) – это аксиома Штейница о замене для баз.

Доказательство. 1) Свойство (В.1) очевидно, а свойство (В.2) вытекает из (I.2) и условия равномощности баз.

2) Обратно, пусть семейство \mathcal{B} удовлетворяет аксиомам (B.1) и (B.2), где вместо Вѕ фигурирует \mathcal{B} .

Покажем сначала, что все В-множества равномощны.

Пусть $B_1, B_2 \in \mathcal{B}, |B_1| = t$ и

$$B_1 = \{b_1, b_2, \ldots, b_t\}.$$

По аксиоме (B.2) существует $c_1 \in B_2$ такой, что

$$\{c_1, b_2, \ldots, b_t\} \in \mathscr{B}.$$

Здесь $c_1 \notin \{b_2, \ldots, b_t\}$ в силу условия (В.1). Аналогично, существует $c_2 \in B_2$ такой, что $\{c_1, c_2, b_3, \ldots, b_t\} \in \mathscr{B}$

и $c_2 \notin \{c_1, b_3, \ldots, b_t\}$. Продолжая этот процесс, получим

$$\{c_1, c_2, \ldots, c_t\} \in \mathscr{B}$$

для некоторых попарно различных элементов $c_1, c_2, \ldots, c_t \in B_2$. В силу аксиомы (В.1) получаем

$$\{c_1, c_2, \ldots, c_t\} = B_2,$$

T. e. $|B_2| = t = |B_1|$.

Подмножество A из E назовём \mathcal{B} -независимым, если оно содержится в некотором \mathcal{B} -множестве.

Ясно, что В-множества — это максимальные В-независимые множества.

Обозначим через \mathcal{J} совокупность всех \mathcal{B} -независимых множеств.

Заметим, что семейство Я удовлетворяет аксиоме независимости (І.1).

Для завершения доказательства теоремы достаточно проверить, что семейство \mathcal{J} удовлетворяет аксиоме (I.2) и воспользоваться теоремой 1.

Проверка того, что семейство Я удовлетворяет аксиоме (І.2).

Пусть $I, J \in \mathcal{J}$ и |I| < |J|. Зафиксируем \mathcal{B} -множество B_2 , содержащее J.

Среди \mathscr{B} -множеств, содержащих I, выберем такое \mathscr{B} -множество B_1 , для которого пересечение $B_1 \cap B_2$ содержит наибольшее возможное число элементов.

Покажем, что $B_1 \setminus I \subseteq B_2$.

Действительно, если существует $b_1 \in B_1 \setminus I$ такой, что $b_1 \notin B_2$, то по аксиоме (В.2) существует $b_2 \in B_2$, для которого

$$B = (B_1 \setminus b_1) \cup b_2 \in \mathscr{B}$$

и $b_1 \neq b_2$, так как $b_1 \notin B_2$, а $b_2 \in B_2$. Тогда $|B \cap B_2| > |B_1 \cap B_2|$, что невозможно, поскольку $I \subseteq B$.

Таким образом, $B_1 \setminus I$, $J \subseteq B_2$, причем $|B_1 \setminus I| + |J| = |B_1| - |I| + |J| > |B_1| = |B_2|$. Следовательно, существует $p \in (B_1 \setminus I) \cap J$. Так как $I \cup p \subseteq B_1$ и $p \in J \setminus I$, элемент p является искомым и **теорема доказана**.

Примеры. 1) Пусть $E = \{v_1, \dots, v_m\}$ — некоторое множество векторов векторного пространства V над телом F.

Рассмотрим множество всех максимальных линейно независимых подмножеств из E.

Оно удовлетворяет аксиомам баз (B.1) и (B.2), т.е. мы имеем матроид на E с таким семейством баз.

Этот матроид называют *векторным матроидом* над телом F.

2) Пусть G — произвольный ненулевой (n, m)-граф.

Построим *матроид циклов* графа G, который будем обозначать через M(G).

В качестве основного множества E возьмем EG, а в качестве баз этого матроида — остовы (точнее, каждая база — это множество всех ребер некоторого остова).

Аксиома (B.1) очевидна, а аксиома (B.2) выполняется в силу леммы 4 из раздела, посвященного остовам.

Ясно, что в этом матроиде независимыми множествами будут ациклические множества ребер, а циклами — обычные циклы графа.

3) Пусть M(E) — произвольный матроид на конечном множестве E.

Возьмем $A \subseteq E$. В качестве системы независимых множеств на A рассмотрим независимые множества исходного матроида, содержащиеся в A.

Ясно, что на A мы получили матроид, который обозначают через M(A) и называют *подматроидом* исходного матроида.

4) Пусть M(E) — произвольный матроид на конечном множестве $E = \{e_1, \dots, e_m\}$. Каждый элемент $e_i \in E$ заменим на некоторое множество E_i . Пусть

$$E' = E_1 \cup E_2 \cup ... \cup E_m$$

 E_{i} — это семейство «близнецов» для элемента e_{i} . Построим семейство баз на E'. Берём базу B в M(E), в базу B'из E' собираем по одному элементу $e_{i}' \in E_{i}$

для каждого е_і ∈ В. Совокупность новых баз удовлетворяет (В.1) и (В.2). Каждая база В′ состоит из набора двойников по одному для каждого элемента соответствующей базы В.

Полученный матроид M(E') называется *раздуванием матроида* M(E). Независимые множества в M(E') устроены аналогично базам в M(E').

5) Пусть V — векторное пространство над телом F.

Возьмем некоторую систему векторов v_1, \ldots, v_m из V (возможно с повторениями векторов).

Построим матроид M, отвечающий этой системе векторов.

Матроид M будет иметь m элементов. Для простоты мы можем считать, что элементами матроида M являются элементы v_1, \ldots, v_m , т. е. все они различны как элементы матроида M (берем вектор вместе с его номером), но некоторые из них могут совпадать как элементы векторного пространства V.

В качестве баз возьмем все максимальные линейно независимые подсистемы из v_1, \ldots, v_m .

Мы получили матроид M, который, очевидно, является раздуванием некоторого векторного матроида над телом F.

В дальнейшем раздувание векторного матроида над телом F также будем называть векторным матроидом над телом F.

6) Пусть

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2m} \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nm} \end{bmatrix}$$

— некоторая матрица над телом F.

Строки матрицы A являются элементами пространства векторов-строк длины m над F. Поэтому матрице A отвечает векторный матроид над телом F, состоящий из n элементов — строк матрицы A.

Этот матроид называют матроидом строк матрицы А.

Отметим, что здесь строки с разными номерами являются разными элементами матроида, хотя некоторые из них могут совпадать как элементы пространства векторовстрок длины m над F.

Аналогично определяется матроид столбцов матрицы А.

Теорема 3 (Ранговые аксиомы). 1) Пусть M(E) — конечный матроид и r — его ранговая функция из $\mathcal{P}(E)$ в $\mathbb{N} \cup \{0\}$. Тогда для любых $A, B \subseteq E$ выполняется $(r.1) \ 0 \leqslant r(A) \leqslant |A|$;

- $(r.2) A \subseteq B \rightarrow r(A) \leqslant r(B);$
- $(r.3) r(A \cap B) + r(A \cup B) \le r(A) + r(B).$
- 2) Обратно, пусть некоторая функция τ из $\mathcal{P}(E)$ в $\mathbb{N} \cup \{0\}$, где E конечное непустое множество, удовлетворяет условиям (r.1), (r.2) и (r.3). Тогда она является ранговой функцией однозначно определенного матроида на E.

Доказательство. 1) Свойства (r.1) и (r.2) очевидны. Докажем (r.3). Ясно, что $A \cap B \subseteq \langle A \rangle \cap \langle B \rangle$ и $A \cup B \subseteq \langle A \rangle \vee \langle B \rangle$.

Используя неравенство полумодулярности, которое выполняется в решетке листов, получаем

$$r(A \cap B) + r(A \cup B) \leqslant r(\langle A \rangle \cap \langle B \rangle) + r(\langle A \rangle \vee \langle B \rangle) \leqslant r(\langle A \rangle) + r(\langle B \rangle) = r(A) + r(B).$$

2) Обратно, пусть некоторая функция τ из $\mathcal{P}(E)$ в $\mathbb{N} \cup \{0\}$, где E — конечное непустое множество, удовлетворяет условиям (r.1), (r.2) и (r.3).

Подмножество $I \subseteq E$ назовем τ -независимым, если выполняется $\tau(I) = |I|$. Обозначим через $\mathcal J$ множество всех τ -независимых подмножеств из E.

Семейство Я удовлетворяет аксиомам независимости (І.1) и (І.2') и т.д.

Теорема 4 (Аксиомы циклов). 1) Пусть M(E) — конечный матроид и Ccl — семейство его циклов. Тогда

- (C.1) Ø ∉ Ccl; если C_1 , C_2 ∈ Ccl и $C_1 \neq C_2$, то C_1 и C_2 несравнимы относительно ⊆.
- (C.2) если C_1 , $C_2 \in Ccl$, $C_1 \neq C_2$ и $p \in C_1 \cap C_2$, то существует $C \in Ccl$ такой, что $C \subseteq (C_1 \cup C_2) \setminus p$.
- 2) Обратно, пусть семейство \mathcal{C} подмножеств конечного непустого множества \mathcal{E} удовлетворяет условиям (C.1) и (C.2), где вместо Ccl фигурирует \mathcal{C} . Тогда семейство \mathcal{C} совпадает с семейством циклов однозначно определенного матроида на \mathcal{E} .

Доказательство. 1) Свойство (С.1) очевидно вытекает из определения цикла. Для доказательства (С.2) достаточно проверить, что множество $D = (C_1 \cup C_2) \setminus p$ зависимо (тогда оно содержит минимальное зависимое множество — цикл). Так как $D \subseteq C_1 \cup C_2$, мы получаем

$$r(D) \leqslant r(C_1 \cup C_2) \leqslant r(C_1) + r(C_2) - r(C_1 \cap C_2) = |C_1| - 1 + |C_2| - 1 - |C_1 \cap C_2| = |C_1 \cup C_2| - 2 < |C_1 \cup C_2| - 1 = |D|,$$

- т. е. *D* зависимое множество.
- 2) Обратно, пусть семейство C удовлетворяет условию теоремы. Множество $I \subseteq E$ назовем C-независимым, если оно не содержит ни одного из множеств $C \in C$. Семейство \mathcal{J} всех C-независимых множеств удовлетворяет аксиомам (I.1) и (I.2) и т.д.

Следствие 1. Пусть I — произвольное независимое множество матроида M(E) и $p \in E \setminus I$. Тогда $I \cup p$ содержит не более одного цикла.

Доказательство. Пусть в $I \cup p$ содержится два различных цикла C_1 и C_2 . Очевидно, $p \in C_1 \cap C_2$ в силу независимости множества I. Тогда по аксиоме (C.2) существует цикл C такой, что

$$C\subseteq (C_1\cup C_2)\setminus p\subseteq I,$$

что невозможно.

Следствие 2. Для любой базы *B* матроида M(E) и любого $p \in E \setminus B$ множество $B \cup p$ содержит точно один цикл и этот цикл проходит через p.