

Institut Supérieur des Etudes Technologiques de Bizerte Génie Electrique **Département GE (A.U: 2022- 2023)**

MASTER PROFESSIONNEL RAIA

TRAVAUX PRATIQUES

Atelier Systèmes robotiques articulés

TPN°2 Conception et simulation d'un robot par le logiciel Matlab

Date:		Classe:			Durée : 3h	
	N 0 D	AR/PR	Mot/Part	TP Nº	Total	

	Nom & Prénom :	AB/PR	Mot/Part	TPN°	Total
1			/10	/10	/20
2			/10	/10	/20
3			/10	/10	/20

Objectifs a	du TP :			
√			 	
√			 	
√			 	
	s de réalisation et mo	•		

Objectifs:

- Maitriser les outils de base pour la conception d'un robot en utilisant : Robotics System Toolbox et SimScape Toolbox de MATLAB.
- Concevoir et piloter un robot via Matlab.

I- Introduction:

Simscape [1] est une extension de Matlab/Simulink (Simulink est un environnement graphique pour simuler et modéliser des systèmes dynamiques. Il est intégré à Matlab, permettant ainsi un accès instantané à une variété d'outils pour le développement d'algorithmes, la visualisation, et données analytiques) pour la modélisation de systèmes électroniques, mécaniques, hydrauliques et thermiques.

Les blocs de la bibliothèque Simscape représentent des composants tels que des résistances, des transistors, des moteurs, des pompes, des ressorts, etc. Simscape comprend plusieurs bibliothèques, telles que celles liées à l'électricité, la thermique, la mécanique ou l'hydraulique.

Simscape un langage multi-domaine, permet la création de composants personnalisés selon les besoins de l'utilisateur dans son propre domaine physique. Le langage est basé sur la programmation textuelle orientée objet de Matlab. Ces composants peuvent être créés à partir de programmes de composants déjà présents dans la Foundation Library.

Robotics System ToolboxTM [2] fournit des outils et des algorithmes pour concevoir, simuler, tester et déployer des applications robotiques mobiles et manipulateurs. Pour les robots manipulateurs, Toolbox fournit des algorithmes pour la détection des collisions, la planification et la génération de trajectoires, la cinématique directe et inverse et la dynamique. Pour les robots mobiles, il fournit des algorithmes de cartographie, de localisation, de planification et de suivi de trajectoires et de contrôle de mouvement.

Robotics System ToolboxTM comprend également une bibliothèque de modèles de robots industriels disponibles dans le commerce que peut être importée, visualisée, simulée et utilisée avec les applications de référence.

La toolbox permet le développement d'un prototype de robot fonctionnel en combinant les modèles cinématiques et dynamiques fournis. Elle permet aussi de cosimuler des applications de robotique en connectant directement au simulateur Gazebo. Pour vérifier les designs sur un hardware, on peut se connecter à des plateformes de robotique comme Kinova Gen3 ou aux robots de la série UR d'Universal Robots, puis générer et déployer du code (avec MATLAB CoderTM ou Simulink CoderTM). [2]

II- Conception d'un robot planaire à 2DDL :

Pour concevoir le modèle d'un robot planaire à 2DDL figure N°1 et figure N°2, on utilise SimScape toolbox figure N°3 avec l'outil Multibody qui permet de générer des systèmes robotisés ou des systèmes mécaniques.

Figure 1 : Robot planaire à 2DDL

Figure 2: Espace de travail du robot planaire 2DDL

Figure 3 : Synoptique de conception d'un robot à 2DDl

Lancer le logiciel Matlab puis cliquer sur Simulink. La page de démarrage de Simulink s'ouvre. Chercher SimScape Toolbox et cliquer sur Generic Simscape

Avant de créer un projet, pour n'importe quel modèle, dans Multibody system il y a trois blocs essentiels à mettre dans la zone de travail de simulink qui sont Solver configuration, World Frame et mecanism configuration.

Cliquer sur Multibody, la fenêtre suivante s'affiche :

Cliquer sur Frames and Transforms:

Glisser puis déposer World Frames dans la fenêtre de Simulink :

World Frame est un repère de référence qui permet de définir les cordonnés des tous les mécanismes qui seront construit.

Cliquer sur Multibody puis Utilities. Sélectionner Mechanism Configuration ensuite glisser et déposer Mechanism Configuration dans la fenêtre de Simulink. Mechanism Configuration permet de définir les gravitées et les forces appliquées à chaque éléments du modèle.

Cliquer sur Multibody puis Body Element. Sélectionner Solid ensuite glisser et déposer le block Solid dans la fenêtre de Simulink.

Cliquer une seul fois sur le block Solid puis sélectionner le texte *solid* et le renommer par *Base*.

Pour créer la base du robot planaire cliquer une deux fois sur le block Solid puis configurer les paramètres (forme, couleur, longueur, diamètre) selon les figures ci-dessous

Cliquer sur Multibody puis Frames and Transforms. Sélectionner le block Rigid Transform ensuite glisser et déposer le block dans la fenêtre de Simulink.

Cliquer une seul fois sur le block Rigid Transform puis renommer le texte par World to Base.

Cliquer une deux fois sur le block Rigid Transform puis configurer les paramètres selon la figure ci-dessous.

Connecter les différents blocks comme l'indique la figure ci-dessous.

Cliquer sur Multibody puis Frames and Transforms. Sélectionner le block Rigid Transform ensuite glisser et déposer un deuxième block dans la fenêtre de Simulink. Renommer le block par *Base to J1*.

Pour positionner l'articulation sur la base du robot, cliquer sur Multibody puis Joints. Sélectionner le block Revolute Joint ensuite glisser et déposer le block dans la fenêtre de Simulink. Renommer le block par J1.

Pour joindre l'articulation J1 au segment (Link) du robot ajouter un block Rigid Transform et changer son nom à J1-to Link1 (le repère sera au milieu du Link1 :Offset [0.1 0 0] m)

Cliquer sur Multibody puis solid. Sélectionner le block solid ensuite glisser et déposer le block dans la fenêtre de Simulink. Renommer le block par *Link1*.

Cliquer une deux fois sur le block *Link1* puis configurer les paramètres (forme, couleur, longueur, etc...) selon la figure ci-dessous.

Pour visualiser l'état d'avancement de conception du robot, cliquer sur **Run** dans la fenêtre de simulink

La fenêtre du l'explorateur mécanique s'affiche dans le menu principal de Matlab en montrant la conception du robot vue de face. S'il y a une erreur, on peut la corriger.

On peut visualiser le robot en 3D. En cliquant par le bouton droite de la souris, sélectionner **standart view** puis **isometric view**.

La figure suivante présente l'affichage d'une partie du robot en 3D en visualisant la *base*, l'articulation (*JI*) et le premier segment (*Link1*) du robot. On peut aussi explorer les différents éléments du robot et leur repère

Compléter la conception du deuxième segment (Link2) du robot ainsi son partie terminal qui est constituée d'effecteur

La figure de la page suivante représente la solution finale de la conception.

On peut alléger la représentation en Block et la rendre plus lisible en regroupant les block de même type.

Sélectionner les deux blocks *EE* et *Jee_to_EE*, cliquer par le bouton droit de la souris et appuyer sur « create subsystem from selection » Renommer le nouveau Block subsystem .

Par la suite regrouper les Blocks *Link2* et les Rigid Transform *J2-to-Link2*, *Link2_to_J_End_Effector*. Répéter les mêmes démarches pour les autres segments (Link). Consulter les figures de la page suivante.

