Tactic and (co)algebraic reasoning

Rodrigo Raya

École Polytechnique Fédéral de Lausanne

January 9, 2020

Overview

Tactical reasoning

(Co)algebraic reasoning

3 Conclusion and references

Goal

- How can I design new proof methods?
- What are some fancier proof methods?

Tactical reasoning

(Co)algebraic reasoning

Conclusion and references

Why tactics

- Widely adopted theorem proving methodology.
- Introduced by Milner in the Edinburgh LCF proof assistant.
- Isabelle provides them using three abstraction layers: Isabelle/ML, Isabelle/Isar and Eisbach.
- Here: Isabelle/ML. See report for technicalities.

Tactical theorem proving vs Isabelle/Isar

Demo I

- Hales.thy: associativity lemma, local_setups, concrete_assoc.
- Goal is to prove:

$$(p_1 \oplus_i p_2) \oplus_j p_3 = p_1 \oplus_k (p_2 \oplus_l p_3)$$

where $i, j, k, l \in \{0, 1\}$ and \oplus_0, \oplus_1 are well-defined operations on elliptic curves points.

- Good example for the section on structured proofs in the Isabelle Cookbook.
- A challenging part (requires debugging): deduce what the rewrite tactic does internally.

Demo II

- Experiment3.thy: rewrite sine expressions whose arguments contain sums of multiples of π .
- Define SIN_SIMPROC_ATOM $x n = x + of_int n * pi$.
- Write a conversion sin_atom_conv rewriting of_int n * pi to SIN_SIMPROC_ATOM 0 n and everything else to SIN_SIMPROC_ATOM x 0.
- Write a conversion that descends through +, applies sin_atom_conv to every atom, and then applies some kind of combination rule like:
 - SIN_SIMPROC_ATOM $\times 1$ n1 + SIN_SIMPROC_ATOM $\times 2$ n2 = SIN_SIMPROC_ATOM ($\times 1$ + $\times 2$) (n1 + n2).
- In the end, I have rewritten the original term to the form sin (SIN_SIMPROC_ATOM x n), and then I apply some suitable rule to that.

Tactical reasoning

(Co)algebraic reasoning

Conclusion and references

Some categorical notions

Let $F: Set \rightarrow Set$ be a functor.

- An *F*-algebra is a set *A* with a structure mapping $\alpha : F(A) \rightarrow A$.
- f is an F-homomorphism between (A, α) and (B, β) if this diagram commutes:

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta}$$

$$A \xrightarrow{f} B$$

- Set^F is the category formed with F-algebras and F-homomorphisms.
- A **subalgebra** of A = (A, s) is $S \subseteq A$ with $\beta_S : F(S) \to S$ where the inclusion $i : S \to A$ is a F-homomorphism.
- An initial F-algebra is an initial object in Set^F. It is unique up to isomorphism. The structure mapping is an isomorphism (Lambeck).

• A relation $R \subseteq S \times T$ is an F-congruence if there exists an F-algebra structure (R, γ) such that the projections π_i are F-homomorphisms:

$$F(S) \stackrel{F(\pi_1)}{\longleftarrow} F(R) \xrightarrow{F(\pi_2)} F(T)$$

$$\downarrow^{\alpha} \qquad \downarrow^{\gamma} \qquad \downarrow^{\beta}$$

$$S \stackrel{\pi_1}{\longleftarrow} R \xrightarrow{\pi_2} T$$

- By reversing arrows: *F*-coalgebra, coalgebra homomorphism, category *Set_F*, terminal *F*-coalgebra, *F*-bisimulation.
- Diagonal of a set: $\Delta(A) = \{(a, a) | a \in A\}$
- $\bullet \ \, \textbf{Induction} \hbox{: congruences on initial algebras contain } \Delta.$
- Coinduction: bisimulations on final coalgebras contain Δ .
- Mathematical induction, streams (co)induction and least (greatest) fixed points characterizations are easy to derive.

Functional programming and (co)algebras

To stress the capabilities of this model, note:

Concept	Category theory	Functional programming
Datatype	Initial algebra	datatype $T = c_1 \text{ of } A_1 \times T^{n_1}$
		:
		$ =c_k \text{ of } A_k \times T^{n_k}$
Iteration	$1 + \mathbb{N} \xrightarrow{F(f)} 1 + X$	$f(0) = \alpha(*)$
iteration	$[zero, succ]$ $\downarrow \alpha$ $\mathbb{N} \xrightarrow{\exists 1f} X$	$f(x+1) = \alpha(f(x))$
ъ.	$1 + \mathbb{N} \xrightarrow{F\langle h, id \rangle} 1 + B \times \mathbb{N}$	$h(0) = g_1(*)$
Recursion	$ \begin{array}{c} [zero, succ] \downarrow & \downarrow g \\ \mathbb{N} \xrightarrow{\exists !h} & B \end{array} $	$h(\operatorname{succ}(n)) = g_2(h(n), n)$
Case analysis	1+N	$h(0)=g_1(*)$
Case allalysis	$\begin{bmatrix} zero, succ) & g \\ \mathbb{N} & & B \end{bmatrix}$	$h(succ(n)) = g_2(n)$

Existence of initial algebras

Theorem:

Let $\mathcal C$ be a category with initial object 0 and colimits for any ω -chain. If $F:\mathcal C\to\mathcal C$ preserves the colimit of the initial ω -chain, then the initial F-algebra is $\mu(F)=\operatorname{colim}_{n<\omega}F^n0$.

Corollary:

Any polynomial functor on Set admits an initial algebra.

In Isabelle:

- Arbitrary limits require reasoning about infinite type families, which goes beyond HOL capabilities.
- This does not include functors of interest: finite powerset ('a fset), countable powerset ('a cset), finite multisets ('a multiset) or discrete probability distributions ('a pmf).
 Example: datatype 'a tree = Node 'a ('a tree fset)
- There exist results for bounded endofunctors. Both approaches are related by transfinite induction.

Isabelle approach

- ullet HOL as a category: universe of types U as objects + functions between types as morphisms.
- A functor is a type constructor $(\alpha_1, \dots, \alpha_n)F$ together with a mapping:

$$\mathsf{Fmap}: \overline{\alpha} \to \overline{\beta} \to \overline{\alpha} F \to \overline{\beta} F$$

such that Fmap $\mathrm{id}=\mathrm{id}$ and $\mathrm{Fmap}(\overline{g}\circ\overline{f})=\mathrm{Fmap}\,\overline{g}\circ\mathrm{Fmap}\,\overline{f}.$

- An n-ary bounded natural functor is a tuple (F, Fmap, Fset, Fbd) where:
 - F is an n-ary type constructor.
 - Fmap : $\overline{\alpha} \to \overline{\beta} \to \overline{\alpha}F \to \overline{\beta}F$
 - $\forall i \in \{1, ..., n\}$. Fset_i: $\overline{\alpha}F \rightarrow \alpha_i$ set
 - Fbd is an infinite cardinal number.

satisfying the following:

- (F,Fmap) is a binary functor.
- (F,Fmap) preserves weak pullbacks.
- The following cardinal bound conditions hold: $\forall x : \overline{\alpha}F, i \in 1, ..., n. | \text{Fset}_i x | < \text{Fbd}$

- $\forall a \in \mathsf{Fset}_i \ x, i \in \{1, \dots, n\}. f_i \ a = g_i \ a \implies \mathsf{Fmap} \, \overline{f} \ x = \mathsf{Fmap} \, \overline{g} \ x$
- Fset_i: $\overline{\alpha}F \to \alpha_i$ set is a natural transformation from: $((\alpha_1, \ldots, \alpha_{i-1}, ..., \alpha_{i+1}, \ldots, \alpha_n)F$, Fmap) to (set, image).

Shape and content intuition

- The definition of natural transformation for the inclusion mapping f = i gives Fmap i = i.
- So inclusion lifts to the inclusion.
- If (A, t) is a F-subalgebra of (B, s), then the inclusion $i : A \to B$ is an F-algebra homomorphism and Fmap i = i.
- So the subalgebra equation simplifies to $s \circ i = i \circ t$ which implies that $t = s|_{F(A)}$.
- Thus, for a BNF, a subalgebra can be given by a subset together with a particular restriction of the structure mapping.

Constructing the initial algebra: minimal algebra

• Let A = (A, s) be an F-algebra. Set $M_s = \bigcap_{B,(B,s|_B) \text{ is a subalgebra of } (A,s)} B$ then:

$$\mathcal{M}(\mathcal{A}) = \left(\left. \mathsf{M}_{\mathsf{s}}, \mathsf{s} \right|_{\mathit{M}_{\mathsf{s}}} \right)$$

is the F-subalgebra generated by \emptyset .

- ullet We call it the minimal algebra generated by ${\cal A}.$
- $\mathcal{M}(\mathcal{A})$ is said to be the subalgebra generated by \emptyset in the sense that it is the intersection of all subalgebras containing \emptyset .

Constructing the initial algebra: minimal algebra lemma

Lemma:

There exists at most one morphism from $\mathcal{M}(\mathcal{A})$ to any other F-algebra (Y,t).

Proof:

Since, if f, g are two such morphisms, we can show that:

$$B = \mathcal{M}(\mathcal{A}) \cap \{x \in \mathcal{A}.f(x) = g(x)\}\$$

is a F-subalgebra of $\mathcal{A}=(A,s)$. Indeed, by our remarks, it suffices to note that $M_s\cap\{x\in\mathcal{A}.f(x)_=g(x)\}\subseteq M_s$ and consider the structure map $s|_B$. This leads to a subalgebra of $\mathcal{M}(\mathcal{A})$ which can be naturally seen as a subalgebra of \mathcal{A} . By definition of $\mathcal{M}(\mathcal{A})$, $M_s\subseteq B$ and thus $\forall x\in M_s.f(x)=g(x)$. Thus, f=g.

Construction of the initial algebra: naive approach

- ① Set $\mathcal{R} = \prod \{ \mathcal{A}.\mathcal{A} \text{ is an algebra} \}.$
- ② Given an algebra \mathcal{A} , note h the projection morphism from \mathcal{R} to \mathcal{A} .
- **3** Then $h|_{\mathcal{M}(\mathcal{R})}$ is the unique morphism between $\mathcal{M}(\mathcal{R})$ and \mathcal{A} .
- Since the construction does not depend on the chosen algebra \mathcal{A} , $\mathcal{M}(\mathcal{R})$ is the desired initial algebra.

Problems in HOL:

- One cannot quantify over infinite type collections.
- The product of the carrier sets of all algebras, fails itself to be a set.

Construction of the initial algebra: for a fixed algebra

- Given an F-algebra $\mathcal A$ we know that there exists at most one morphism $\mathcal M(\mathcal A) \to \mathcal A$. But from the shape and content intuition, for bounded natural functors, the inclusion is one such morphism. So there is exactly one morphism $g:\mathcal M(\mathcal A) \to \mathcal A$.
- Goal: give a set of algebras \mathcal{R} such that from \mathcal{R} there is a unique morphism to any $\mathcal{M}(\mathcal{A})$.
- Strategy: find a sufficiently large type T_0 such that its cardinality is an upperbound for any A.

Construction of the initial algebra: for an arbitrary algebra

$$|A| \le_o (r ::' b \operatorname{set}) \implies \exists f \ B ::' b \operatorname{set.bij_betw} f \ B \ A \ (ex_bij_betw)$$

If we can bound the cardinality of a set by some ordinal then the set has a bijective representation on the carrier of the wellorder inducing the ordinal.

For any algebra \mathcal{A} , with M the carrier of $\mathcal{M}(\mathcal{A})$, $|M| \leq_o 2 \wedge_c k$.

The package witnesses a type T_0 with this cardinality and sets:

$$\mathcal{R} = \prod \{ \mathcal{A}.\mathcal{A} = (\mathcal{A},s) \text{ is an algebra with structure map } s: T_0F o T_0 \}$$

By means of ex_bij_betw , the minimal algebras $\mathcal{M}(\mathcal{A})$ have isomorphic representants on a component of \mathcal{R} . Thus, the corresponding projection from the product to $\mathcal{M}(\mathcal{A})$ restricted to $\mathcal{M}(\mathcal{R})$ is the unique morphism f between the two.

Then, $f \circ g : \mathcal{M}(\mathcal{R}) \to \mathcal{A}$ is a suitable morphism. One shows it is the unique morphism between the two with a similar argument as the previous lemma.

Tactical reasoning

(Co)algebraic reasoning

Conclusion and references

Conclusion

- We have explored the Isabelle/ML: including tactics, parsing of specifications, new proof commands and definitional packages.
- We have seen a practical use of category theory in a real-world tool formalizing (co)datatypes as bounded natural functors.
- Next natural step: explore the logic foundations of several proof assistants.

References I

- Michael Barr and Charles Wells. Category theory for computing science. Vol. 49. Prentice Hall New York, 1990.
- Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. "Cardinals in Isabelle/HOL". In: *International Conference on Interactive Theorem Proving*. Springer. 2014, pp. 111–127.
- Klaus Denecke and Shelly L Wismath. *Universal algebra and coalgebra*. World Scientific, 2009.
- Herman Geuvers and Erik Poll. "Iteration and primitive recursion in categorical terms". In: (2007).
- Bart Jacobs. "Introduction to coalgebra". In: *Towards mathematics of states and observations* (2005).
- Jan Rutten. "The Method of Coalgebra: exercises in coinduction". In: (2019).

References II

Markus M Wenzel. "Isabelle/Isar—a versatile environment for human-readable formal proof documents". PhD thesis. Technische Universität München, 2002.