Definicja 1. Jeżeli f - klasy L^1 na \mathbb{R} i g - klasy L^1 na \mathbb{R} , to wielkość

$$h(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt = \int_{-\infty}^{+\infty} g(t)f(x-t)dt$$

nazywamy splotem (konwolucją) funkcji f i g i oznaczamy

$$h(x) \stackrel{ozn}{=} (f \star g)(x).$$

bonus:

$$||f_1 \star f_2||_{L^1(\mathbb{R})} \le ||f_1||_{L^1(\mathbb{R})} \cdot ||f_2||_{L^1(\mathbb{R})}.$$

Przykład 1.

$$f(x) = \sin(x)$$
$$g(x) = e^x.$$

$$(f \star g)(x) = \int_{-\infty}^{+\infty} \sin(t)e^{x-t}dt.$$

Uwaga: h(x) też jest klasy L_1 na \mathbb{R} , bo

 $Dow \acute{o}d.$

$$\int_{-\infty}^{+\infty} |h(x)| dx = \int_{-\infty}^{+\infty} \left| \int_{-\infty}^{+\infty} dt f(t) g(x-t) dt \right| \le$$

$$\le \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} |f(t)| |g(x-t)| dt =$$

$$= \int_{-\infty}^{\infty} |g(x-t)| dx \int_{-\infty}^{\infty} |f(x-t)| dt.$$

Przykład 2. (np. rozkład ładunku elektrycznego)

$$f(\overline{x}) = \rho(\overline{x})$$

$$g(\overline{x}) = \frac{1}{\|\overline{x}\|}.$$

$$(f \star g)(\overline{x}) = \int d^3 \overline{x}' \frac{\rho(x')}{\|x - x'\|}.$$

Przykład 3. (związek z Rezolwentą z drugiego semestru)

$$x(t) = \int R(t-s)b(s)ds.$$

Stwierdzenie 1.

$$\mathcal{F}(f \star g)(x) = (\mathcal{F}f)(x)(\mathcal{F}g)(x).$$

Dowód.

$$h(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt.$$

$$\hat{h}(x) = \int_{-\infty}^{\infty} h(k)e^{-2\pi ikx}dk =$$

$$= \int_{-\infty}^{\infty} dke^{-2\pi ikx} \int_{-\infty}^{\infty} dt f(t)g(k-t) =$$

$$= \int_{-\infty}^{\infty} dt f(t) \int_{-\infty}^{\infty} dkg(k-t)e^{-2\pi ikx}.$$

$$\begin{split} k-t &= s \\ dk &= ds \\ k &= s+t \\ &\implies \int\limits_{-\infty}^{\infty} dt f(t) \int\limits_{-\infty}^{\infty} ds g(s) e^{-2\pi i x (s+t)} = \\ &= \int\limits_{-\infty}^{\infty} dt f(t) e^{-2\pi i x t} \int\limits_{-\infty}^{\infty} ds g(s) e^{-2\pi i x s} = \\ &= \hat{f}(x) \hat{g}(x). \end{split}$$

Uwaga: analogicznie,

$$\mathcal{F}^{-1}\left(f\star g\right)\left(x\right) = \left(\mathcal{F}^{-1}f\right)\left(x\right)\left(\mathcal{F}^{-1}g\right)\left(x\right).$$

 $\textbf{Pytanie 1.} \ \textit{Kiedy możemy wejść z granicą pod całkę?}$

4

Twierdzenie 1. Niech

1.
$$A, B \subset \mathbb{R}$$

2.
$$f: A \times B \to \mathbb{R}$$

3.
$$x \in A, y \in B, f(x,y) \in \mathbb{R}$$
.

 $Je\dot{z}eli$

$$\forall \lim_{y \in B} \lim_{x \to x_0} f(x, y) = f(x_0, y)$$

oraz istnieje $g: B \to \mathbb{R}, g$ - całkowalna na B oraz

$$\forall \underset{x \in A}{\forall} \forall |f(x,y)| < |g(y)|,$$

to

$$\lim_{x \to x_0} \int\limits_R f(x, y) dy = \int\limits_R f(x_0, y) dy.$$

|g(y)| nazywamy **majorantą**, a ten warunek zbieżnością **zmajoryzowa-**nq.

Dowód. brak:(

Przykład 4. Niech

1.
$$B =]0, \infty[$$

2.
$$f(x,y) = xe^{-xy}$$

$$\int_{0}^{\infty} dy x e^{-xy} = x \cdot \frac{-1}{x} e^{-xy} \Big|_{0}^{\infty} = -e^{-xy} \Big|_{0}^{\infty} = 0 - (-1) = 1.$$

$$\lim_{x \to 0} \int_{0}^{\infty} x e^{-xy} dy = \lim_{x \to 0} 1 = 1.$$

$$\int_{0}^{\infty} \lim_{x \to 0} x e^{-xy} dy = \int_{0}^{\infty} 0 dy = 0.$$

5

 $Czy \ f(x,y) \ jest \ majoryzowalna?$

$$\forall_{x \in A} \quad \forall_{y \in B} |f(x,y)| < |g(y)|.$$

$$h(x) = xe^{-xy}h'(x) = e^{-xy} + x(-ye^{-xy}).$$

 $e^{-xy}(1-xy)\ ma\ robi\ h'(x)=0,\ gdy\ xy=1\ \Longrightarrow\ x=\tfrac{1}{y}.$

$$h\left(\frac{1}{y}\right) = \frac{1}{y}e^{-\frac{1}{y}y} = \frac{1}{y}e^{-1}.$$

Czy istnieje g - całkowalna na $]0,\infty[$, taka, że

$$\left|\frac{1}{ey}\right| < |g(y)|?$$

Odpowiedź: nie.

Równanie przewodnictwa

Szukamy funkcji $U(x,y): \mathbb{R} \times [0,\infty[\to \mathbb{R}, \text{ takiej, że}]$

1.
$$\frac{\partial U}{\partial t} = a^2 \frac{\partial^2 U}{\partial x^2}$$
, dla $t > 0$

2.
$$U(x,0) = f(x)$$

3.
$$f(x): \mathbb{R} \to \mathbb{R}$$
.

Załóżmy, że istnieją funkcje $\tilde{U}(\omega,t)$ i $\tilde{f}(\omega)$ takie, że

•
$$U(x,t) = \int_{-\infty}^{\infty} \tilde{U}(\omega,t)e^{-2\pi i\omega x}d\omega$$

•
$$f(x) = \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-2\pi i \omega x}$$
, czyli $f(x) = \mathcal{F}\left(\tilde{f}\right)(x)$.

Podstawiamy

$$\frac{\partial U}{\partial t} = \int_{-\infty}^{\infty} d\omega \frac{\partial \tilde{U}}{\partial t} e^{-2\pi i \omega x},$$

$$\frac{\partial^2 U}{\partial x^2} = \int_{-\infty}^{\infty} d\omega \left(-2\pi i\omega\right)^2 \tilde{U}(\omega, t) e^{-2\pi i\omega x}$$

do naszego równania przewodnictwa i mamy

$$\bigvee_{x \in]-\infty, +\infty[} \int_{-\infty}^{\infty} d\omega e^{-2\pi i ax} \left(\frac{\partial \tilde{U}}{\partial t} - a^2 \left(-2\pi i \omega \right)^2 \tilde{U}(\omega, t) \right) = 0.$$

To oznacza, że skoro rozwiązanie ma być dla całej szyny, to wyrażenie podcałkowe ma być równe 0. Czyli

$$\frac{\partial \tilde{U}}{\partial t} = -(2\pi i a \omega)^2 \tilde{U}(\omega, t) \implies \tilde{U}(\omega, t) = C(\omega) e^{-(2\pi a \omega)^2 t}.$$

Równanie jest rozwiązane, ale trzeba dopracować szczegóły. Znajdźmy $C(\omega)$

$$\tilde{U}(\omega,0) = C(\omega)$$

$$\tilde{U}(x,0) = \int_{-\infty}^{\infty} d\omega \tilde{U}(\omega,0) e^{-2\pi i \omega x} = \int_{-\infty}^{\infty} d\omega C(\omega) e^{-2\pi i x}.$$

Z drugiej strony, $\tilde{U}(x,0)=f(x)=\int\limits_{-\infty}^{\infty}\tilde{f}(\omega)e^{-2\pi i\omega x}d\omega$. Stąd $C(\omega)=\tilde{f}(\omega)$.

Ostatecznie

$$\tilde{U}(\omega, t) = \tilde{f}(\omega)e^{-(2\pi a)^2\omega^2 t}$$

Nasze U(x,t) jest transformatą Fouriera tego napisu względem zmiennej ω (nie czasu!).

$$U(x,t) = \mathcal{F}\left(\tilde{U}(\omega,t)\right).$$

Wiemy, że

$$\tilde{f} = \mathcal{F}^{-1}(f).$$

Niech

$$\tilde{g}(\omega, t) = e^{-(2\pi a)^2 \cdot t \cdot \omega^2}.$$

Znajdźmy funkcję g taką, że

$$\tilde{g} = \mathcal{F}^{-1}(g).$$

Chcemy wyznaczyć U(x,t) bez konieczności liczenia \tilde{f} i \tilde{g} , czyli w języku f i g. Policzmy najpierw g.

$$g = \mathcal{F}(\tilde{g}).$$

My już kiedyś policzyliśmy

$$\int_{-\infty}^{\infty} e^{ixt}e^{-at^2}dt = \sqrt{\frac{\pi}{a}}e^{-\frac{x^2}{4a}}, \quad a > 0$$
 (\Delta)

Czyli

$$g = \int_{-\infty}^{\infty} d\omega e^{-(2\pi a)^2 t\omega^2} e^{-2\pi i\omega x}.$$

Przekładamy tę całkę (Δ) na nasze literki

$$(\Delta) = \int\limits_{-\infty}^{\infty} d\omega e^{i \spadesuit \omega} e^{- \clubsuit \omega^2} = \sqrt{\frac{\pi}{\clubsuit}} e^{-\frac{(\spadesuit)^2}{4 \clubsuit}} \quad \clubsuit > 0.$$

Czyli mamy g

$$g = \sqrt{\frac{\pi}{(2\pi a)^2 \cdot t}} e^{\frac{-(-2\pi x)^2}{4(2\pi a)^2 t}}.$$

Wiemy, że

- $\tilde{f} = \mathcal{F}^{-1}(f)$
- $\bullet \ \tilde{g} = \mathcal{F}^{-1}(g)$
- $U(x,t) = \mathcal{F}(\tilde{f} \cdot \tilde{g}).$

Jeżeli α, β - funkcje klasy L_1 , to

$$\mathcal{F}^{-1}(\alpha \star \beta) = \mathcal{F}^{-1}(\alpha)\mathcal{F}^{-1}(\beta).$$

Teraz obustronnie fourierujemy

$$\mathcal{F}\left(\mathcal{F}^{-1}(\alpha\star\beta)\right)=\mathcal{F}\left(\mathcal{F}^{-1}(\alpha)\cdot\mathcal{F}^{-1}(\beta)\right).$$

Czyli

$$\alpha \star \beta = \mathcal{F} \left(\mathcal{F}^{-1}(\alpha) \cdot \mathcal{F}^{-1}(\beta) \right).$$

Jeżeli

$$\bullet \ \mathcal{F}^{-1}(\alpha) = \tilde{f}$$

•
$$\alpha = \mathcal{F}(\tilde{f}) = f$$

•
$$\mathcal{F}^{-1}(\beta) = \tilde{g}$$

•
$$\beta = \mathcal{F}(\tilde{g}) = g$$
,

to

$$U(x,t) = \mathcal{F}(\tilde{f} \cdot \tilde{g}) = f \star g =$$

$$= \int_{-\infty}^{\infty} f(s)g(x-s)ds.$$

$$U(x,t) = \sqrt{\frac{\pi}{(2\pi a)^2 t}} \int_{-\infty}^{\infty} ds f(s) \cdot e^{-\frac{(2\pi)^2 \cdot (x-s)^2}{(2\pi)^2 \cdot 4a^2 t}} = \frac{1}{4\pi a^2 t} \int_{-\infty}^{\infty} ds f(s) e^{-\frac{(x-s)^2}{4a^2 t}}.$$