ANÀLISI MATEMÀTICA (AMA)

UT6 - Problemes proposats: SÈRIES DE POTÈNCIES

- 1. Analitza la convergència i troba la suma (on siguen convergents) de les sèries de potències:
 - a) $\sum_{n=1}^{\infty} \frac{x^n}{3^{n+1}}$
 - b) $\sum_{n=1}^{\infty} \frac{x^{3n+2}}{2^n}$
 - c) $\sum_{n=1}^{\infty} (-1)^n x^{2n}$
- 2. Deriva i integra les sèries de potències:
 - a) $\sum_{n=1}^{\infty} \frac{x^n}{3^{n+1}}$
 - b) $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Ara calcula també f'(x), explícitament, així com $\int_0^1 f$.
- 3. A partir de la igualtat, vàlida per a $x \in]-1,1[: \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ troba expressions explícites per a:
 - a) $\sum_{n=1}^{\infty} (-1)^n nx^n$
 - b) $\sum_{n=1}^{\infty} n^2 x^n$
 - c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$
- 4. Considera la sèrie de potències $f(x) = \sum_{n \geq 1} \frac{x^n}{n2^n}$
 - a) Troba la sèrie de potències que correspon a f'(x) i suma-la on siga convergent
 - b) Integrant la derivada, troba f(x) explícitament.
- 5. Considera la sèrie $f(x) = \sum_{n>0} (n+1)x^n$
 - a) Integra, en primer lloc, terme a terme. Deriva després i troba f(x) explícitament
 - b) Dedueix el valor de la suma de les sèries: $\sum_{n\geq 1} \frac{n+1}{3^n}$ i $\sum_{n\geq 0} \frac{(-1)^n(n+1)}{3^n}$
- 6. Tenint en compte que $\sum_{n\geq 0} x^n = \frac{1}{1-x}$, per a $x\in]-1,1[$:
 - a) Integra terme a terme i troba una sèrie de potències per a $\log(1-x)$
 - b) Considera $x=-\frac{1}{2}$ i troba una sèrie numèrica de suma $\log\left(\frac{3}{2}\right)$.
 - c) Acota l'error comés en aproximar aquest valor mitjançant la suma dels sis primers termes de tal sèrie.

7. Tenint en compte que $e^x = \sum_{n \geq 0} \frac{x^n}{n!} \ (x \in \mathbb{R})$:

a) Analitza la convergència i troba la suma (on siga convergent) de la sèrie de potències $\sum_{n=1}^{\infty} \frac{x^n}{(n+3)!}$

b) Considera la sèrie de potències $f(x) = \sum_{n \geq 0} \frac{n+1}{n!} x^n$, troba f(x) explícitament.

c) Deriva la sèrie de potències $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ i calcula f'(x) explícitament

8. Escriu els desenvolupaments en sèrie de potències de les funcions:

a)
$$f(x) = \frac{d}{dx} (\sin(x) - x)$$

b)
$$g(x) = \frac{1-x}{1+x}$$
.

y dedueix el valor de $g^{(15)}(0)$.

9. a) Troba el coeficient de x^{10} en la sèrie de McLaurin de $\sin(x)$.

b) Si
$$h(x)=x^6e^{x+1}$$
 i $p(x)=\frac{x}{1+x^2}$, troba els valors de $h^{(10)}(0)$ i de $p^{(12)}(0)$.

ANÀLISI MATEMÀTICA (AMA)

UT6 - Exercicis addicionals: SÈRIES DE POTÈNCIES

- 1. Considera la sèrie de potències $f(x) = \sum\limits_{n \geq 1} (-1)^n \frac{(x+1)^n}{n5^n}$
 - a) A partir de la sèrie numèrica (alternada) f(0) troba el valor de n necessari per tal d'aproximar, amb tres decimals exactes, la suma de la sèrie mitjançant la suma parcial s_n . Calcula l'aproximació en qüestió.
 - b) Desenvolupa en sèrie de potèncias f'(x). Observa que eixa sèrie és geomètrica i suma-la on siga convergent. Integra l'expressió obtinguda per a trobar f(x), afegint una constant C d'integració. Troba la constant a partir del resultat conegut: $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} = \log(2)$
 - c) A la vista de b), quina és la suma exacta de la sèrie que defineix f(0)? S'obté en a) la precisió esperada?
- 2. Fes ús de la sèrie de potències que correspon a la funció $\arctan(x)$ per tal d'aproximar dues xifres decimals exactes del número π . Quin és el valor de $\arctan(1)$?
- 3. Desenvolupa en sèrie de potències $f(x) = \frac{x+1}{x^2-4x+3}$, prèvia descomposició en fraccions simples. On convergirà la sèrie?
- 4. Troba sèries de potències per a les funcions $\cosh(x)$ y $\sinh(x)$ y amb elles comprova que

$$\cosh(x)' = \sinh(x)$$
 , $\sinh'(x) = \cosh(x)$.

- *5. Integrant dues vegades $f(x) = \sum_{n\geq 0} \frac{(n+1)(n+2)}{n!} x^n$, troba explicitament f(x) i, com aplicació, calcula $\sum_{n\geq 0} \frac{(n+1)(n+2)}{n!}$.
- 6. Tenint en compte que $e^x = \sum_{n \geq 0} \frac{x^n}{n!}$, calcula en forma explícita $f(x) = \sum_{n \geq 2} \frac{3n^2 1}{(n+1)!} x^n$ descomposant el numerador en la forma a + b(n+1) + cn(n+1).
- 7. Fent ús de la sèrie de potències per a cos(x) trobada en classe, aproxima cos(0.05) amb set decimals exactes, almenys. Hauràs de tenir en compte la cota d'error que te proporciona el criteri de Leibniz per a sèries alternades. Verifica, amb DERIVE o mitjançant calculadora, que el resultat trobat és correcte.
- 8. A partir de la sèrie de potències trobada en classe per a l'exponencial e^x i substituïnt x per $-x^2$, troba el desenvolupament en sèrie de e^{-x^2} . Integra entre 0 i 1 i aplica la cota d'error de Leibniz per a sèries alternades per tal d'aproximar $\int_0^1 e^{-x^2} dx$ amb dos decimals exactes, almenys. Comprova el resultat calculant la integral amb DERIVE en mode aproximat.
- 9. Escriu el desenvolupament en sèrie de potències de la funció $f(x) = \frac{d}{dx} \left(\cos(x^2) \right)$
- *10. Determina el coeficient de x^6 en la sèrie de McLaurin de $f(x)=\frac{\sin^3(x)}{x}$.
- 11. Resol l'equació diferencial y'=3y amb valor inicial y(0)=2, suposant que $y=\sum_{n\geq 0}a_nx^n$.