Ma2 Answer Sheet

	Roshan Sundar, Ayush Viswanathan, Jackson Bitterolf,		
Your Name:	Nolan Hays	Your login:	
Your Section:	LC - 01	Your Team number:	04

Task 2: Assigning Vectors & Performing Operations

Part A: Complete the table below.

Mathematical Operation	MATLAB Answer/Response	Explanation of the Result
		Matlab adds each individual
Arowvector + Arowvector	0 2 4 6	component of Arowvector and
		Arowvector together.
		Matlab adds each individual
Arowvector + Browvector	4 3 2 1	component of Arowvector and
		Browvector together.
		Matlab adds each individual
Arowvector + Ascalar	3 4 5 6	component of Arowvector with
		Ascalar.
		Matlab subtracts each individual
Arowvector - Arowvector	0 0 0 0	component of Arowvector and
		Arowvector together.
	Matrix dimensions must	Arowvector is of length 4 while
Arowvector - Crowvector	agree.	Crowvector is length 3.
	Matrix dimensions must	Matlab adds each individual
Acolvector + Bcolvector	agree.	component of Acolvector and
	agicc.	Bcolvector together.
	-4 -3 -2 -1	Matlab iterates over Arowvector
	-3 -2 -1 0	and adds Bcolvector, turning the
Arowvector + Bcolvector	-2 -1 0 1	results into a column vector and
	-1 0 1 2	concatenating it with the
		previous column vectors.

Part B: Complete the table below.

Mathematical Operation	MATLAB Answer/Response	Explanation of the Operation
		Matlab is trying to perform a
		matrix calculation as opposed to
Arowvector * Browvector	Error using *.	an element calculation.
		Arowvector and Browvector do
		not have the correct dimensions.
		Matlab multiplies each individual
Arowvector .* Browvector	0 2 0 -6	component of Arowvector and
		Browvector together.
		Matlab multiplies each individual
Arowvector * Ascalar	0 3 6 9	component of Arowvector with
		Ascalar.
		Matlab multiplies each individual
Arowvector .* Ascalar	0 3 6 9	component of Arowvector with
		Ascalar.
		Matlab divides each individual
Arowvector ./ Browvector	0 0.5000 Inf -1.5000	component of Arowvector and
		Browvector together.
	Error using A	The matrices should be square
Arowvector ^ Ascalar	Error using ^	or the power should be a scalar.
		Matlab takes each individual
Arowvector .^ Ascalar	0 1 8 27	component of Arowvector to the
		power of Ascalar.

Task 3: Compare Scalars & Vectors using Relational Operators

Step 2.

MATLAB	Explanation of the Operation
Answer/Response	

a.	11 11	Compares each corresponding element in both arrays. Returns 1 if the element in that position in Aarray is greater than or equal to the element in Barray
b	01 11	First, matrix A and B are multiplied. A logical matrix is then returned where every element that is not 1 in the product matrix returns true(1) and every value that is 1 returns false(0)
c.	1 0 0 1	Returns a 2x2 logical matrix where for each element, 1 if the corresponding value of Aarray - the value at Answer_b is greater than the value at Barray and less than or equal to the logical matrix produced by Answer_b < 1 multiplied by 3.
d	Matrix dimensions must agree.	Matrix Carray is a 3x2 and matrix Barray is a 2x2, so logical operators will not work without error.
e.	1 0 0 1 0 0	Adds Cvector to a new third row of matrix Barray making Barray a 3x2. Then, the new 3x2 matrix is compared to Carray. If the corresponding elements are equal a 1 is assigned for that element of the logical matrix, and if they are not equal a 0 is assigned

Step 3.

<u> Su</u>	p 3.	
	MATLAB	Explanation of the Operation
	Answer/Response	
a.	2 2	Takes the value of any(Aarray) and any(Barray) which is both 1 1 because no vector in the matrices is all nonzero numbers and adds them for a sum of 2 2
b	1 0	The all function takes each vertical vector (column) in a matrix and returns a 1 for that column if all values are nonzero numbers. Therefore, all(Aarray) is equal to 1 1 and all(Barray) is equal to 1 0. Then, the two logical matrices are multiplied. ???? why no error 1x2 * 1x2
c.	0 1	First a 3x2 logical matrix is created by Carray > 1 then each column is analyzed to see if it has all nonzero numbers. If it does then that value in the logical array is 1, if it has any zeros the corresponding value in the logical array will be 0.
d	1	
e.	1 64 4096	
f.	1 3	The find function returns the indices of any nonzero value. The logical matrix that results from any(Darray==1) is 1 0 1. Therefore, find(any(Darray==1)) returns 1 3 because the first and third values of any(Darray==1) are non zero