CS245 Tutorial

Oct. 26, 2015

1. Give a natural deduction proof of:

$$\forall x \cdot ((P(x) \vee S(x)) \to (R(x) \wedge Q(x))), \ \neg (\forall x \cdot R(x) \wedge Q(x)) \ \vdash \ \exists x \cdot \neg P(x)$$

Strategy: Proof by contradiction. From assuming $\neg \exists x \cdot \neg P(x)$, we can prove $\forall x \cdot P(x)$. Then, by working with a fresh variable, we can use premise 1 to conclude $\forall x \cdot R(x) \land Q(x)$, which will be a contradiction with premise 2.

1.	$\forall x \cdot (P(x) \vee S(x)) \to (R(x) \wedge Q(x))$	premise
2.	$\neg \forall x \cdot (R(x) \land Q(x))$	premise
3.	$\neg \exists x \cdot \neg P(x)$	assumption
4.	u fresh	
5.	$\neg P(u)$	assumption
6.	$ \ \ \exists x \cdot \neg P(x) $	∃i: 5
7.		¬e: 3, 6
8.	$\neg \neg P(u)$	¬i: 5–7
9.	P(u)	¬е: 8
10.	$\forall x \cdot P(x)$	∀i: 4–9
11.	v fresh	
12.	P(v)	∀e: 10
13.	$P(v) \vee S(v)$	Vi: 12
14.	$(P(v) \vee S(v)) \to (R(v) \wedge Q(v))$	∀e: 1
15.	$R(v) \wedge Q(v)$	→e: 13, 14
16.	$\forall x \cdot (R(x) \land Q(x))$	∀i: 11–15
17.	\perp	¬e: 2, 16
18.	$\neg\neg\exists x\cdot\neg P(x)$	¬i: 3–17
19.	$\exists x \cdot \neg P(x)$	¬е: 18

2. Show that

$$\forall x \cdot ((P(x) \vee S(x)) \to (R(x) \wedge Q(x))), \ \neg (\forall x \cdot (R(x) \wedge Q(x))) \not\models \neg \exists x \cdot \neg P(x)$$

Strategy: We know this is true because we proved $\exists x \cdot \neg P(x)$ in the previous question. But let us give a counter-example, an interpretation that satisfies each of,

$$\forall x \cdot ((P(x) \vee S(x)) \rightarrow (R(x) \wedge Q(x))), \ \neg(\forall x \cdot (R(x) \wedge Q(x)))$$

but does not satisfy,

$$\neg \exists x \cdot \neg P(x)$$

Consider the interpretation \mathcal{M} :

- domain: Let the domain be {a, b}.
- predicates: Let the predicate symbols P, Q, R, and S all be the relation $\{a\}$.

We can verify that $\neg \exists x \cdot \neg P(x)$ is false in this interpretation (i.e., $\forall x \cdot P(x)$ is false). We can verify that $\forall x \cdot ((P(x) \vee S(x)) \rightarrow (R(x) \wedge Q(x)))$ is true in this interpretation and that $\neg (\forall x \cdot (R(x) \wedge Q(x)))$ is true in this interpretation.

$$\forall x \cdot ((P(x) \vee S(x)) \rightarrow R(x)), \ \exists y \cdot \neg (P(y) \wedge \neg S(y)), \ \neg (\forall z \cdot (Q(z) \vee \neg S(z))) \ \vdash \ \exists x \cdot R(x)$$

Strategy: To get R(x) for a fresh variable, we'll need to use premise 1 and modus ponens, so we need to show $\exists x \cdot P(x) \lor S(x)$. Premise 3 is helpful because we know using quantifier equivalences that $\neg(\forall z \cdot Q(z) \lor \neg S(z))$ is logically equivalent to $\exists z \cdot \neg Q(z) \land S(z)$. If we get S(z) for an unknown variable, we can get $\exists x \cdot P(x) \lor S(x)$. So we start by proving $\exists x \cdot S(x)$. Notice that premise 2 is not useful.

1.	$\forall x \cdot ((P(x) \vee S(x)) \to R(x))$	premise
2.	$\exists y \cdot \neg (P(y) \land \neg S(y))$	premise
3.	$\neg(\forall z \cdot (Q(z) \vee \neg S(z)))$	premise
4.	$\neg(\exists x \cdot S(x))$	assumption
5.	u fresh	
6.	S(u)	assumption
7.	$ \ \ \ \exists x \cdot S(x)$	∃i: 6
8.		¬e: 4, 7
9.	$\neg S(u)$	¬i: 6–8
10.	$Q(u) \vee \neg S(u)$	Vi: 9
11.	$\forall z \cdot (Q(z) \vee \neg S(z))$	∀i: 5–10
12.	上	¬e: 3, 11
13.	$\neg\neg\exists x\cdot S(x)$	¬i: 4–12
14.	$\exists x \cdot S(x)$	¬e: 13
15.	v fresh, S(v)	assumption
16.	$P(v) \vee S(v)$	Vi: 15
17.	$(P(v) \vee S(v)) \to R(v)$	∀e: 1
18.	R(v)	→e: 16, 17
19.	$\exists x \cdot R(x)$	∃i: 18
20.	$\exists x \cdot R(x)$	∃e: 14, 15–19

$$\forall x \cdot ((P(x) \vee R(x)) \to \neg Q(x)), \ \exists x \cdot \neg (\neg P(x) \wedge \neg R(x)) \quad \vdash \quad \exists x \cdot \neg Q(x)$$

1.	$\forall x \cdot (P(x) \vee R(x)) \to \neg Q(x)$	premise
2.	$\exists x \cdot \neg (\neg P(x) \land \neg R(x))$	premise
3.	$u \text{ fresh}, \neg(\neg P(u) \land \neg R(u))$	assumption
4.	$\neg (P(u) \vee R(u))$	assumption
5.	P(u)	assumption
6.	$P(u) \vee R(u)$	Vi: 5
7.		¬e: 4, 6
8.	$\neg P(u)$	¬i: 5−7
9.	R(u)	assumption
10.	$P(u) \vee R(u)$	∨i: 9
11.	L	¬e: 4, 10
12.	$ \neg R(u)$	¬i: 9−11
13.	$\neg P(u) \land \neg R(u)$	∧i: 8, 12
14.	Т	¬e: 3, 13
15.	$\neg\neg(P(u)\vee R(u))$	¬i: 4−14
16.	$P(u) \vee R(u)$	¬e: 15
17.	$(P(u) \vee R(u)) \to \neg Q(u)$	∀e: 1
18.	$\neg Q(u)$	→e: 16, 17
19.	$\exists x \cdot \neg Q(x)$	∃i: 18
20.	$\exists x \cdot \neg Q(x)$	∃e: 3–19

5. Show that

$$\forall x \cdot ((P(x) \vee R(x)) \to \neg Q(x)), \ \exists x \cdot \neg (\neg P(x) \wedge \neg R(x)) \ \models \ \exists x \cdot \neg Q(x)$$

Use semantic arguments (about possible interpretations/models).

Strategy: Suppose, by way of contradiction, that there is some interpretation such that $\exists x \cdot \neg Q(x)$ is false in the interpretation but the premises are all true in the interpretation. This means, of course, that $\neg \exists x \cdot \neg Q(x)$ is true in the interpretation; i.e., $\forall x \cdot Q(x)$ is true. Consider the premise $\forall x \cdot ((P(x) \lor R(x)) \to \neg Q(x))$. Since $\forall x \cdot \neg Q(x)$ is false, it must be the case that $\forall x \cdot (P(x) \lor R(x))$ is false (otherwise the premise would not be true). But this contradicts the premise, $\exists x \cdot \neg (\neg P(x) \land \neg R(x))$; i.e., $\exists x \cdot (P(x) \lor R(x))$. Hence, such an interpretation cannot exist.

$$\neg(\exists y \cdot \forall x \cdot (P(x) \vee Q(y))) \vdash \forall y \cdot \neg Q(y)$$

1.	$\neg(\exists y \cdot \forall x \cdot (P(x) \vee Q(y)))$	premise
2.	u fresh	
3.	Q(u)	assumption
4.	v fresh	
5.	$P(v) \vee Q(u)$	Vi: 3
6.	$\forall x \cdot (P(x) \vee Q(u))$	∀i: 4–5
7.	$\exists y \cdot \forall x \cdot (P(x) \vee Q(y))$	∃i: 6
8.		¬e: 1, 7
9.	$\neg Q(u)$	¬i: 3−8
10.	$\forall y \cdot \neg Q(y)$	∀i: 2–9

$$\forall x \cdot \forall y \cdot ((P(x) \land Q(y)) \rightarrow (x = y)),$$

$$\exists x \cdot (P(x) \land R(x)),$$

$$\exists x \cdot (Q(x) \land S(x))$$

$$\vdash \exists x \cdot (R(x) \land S(x))$$

1.	$\forall x \cdot \forall y \cdot ((P(x) \land Q(y)) \to (x = y))$	premise
2.	$\exists x \cdot (P(x) \land R(x))$	premise
3.	$\exists x \cdot (Q(x) \land S(x))$	premise
4.	$u \text{ fresh}, P(u) \wedge R(u)$	assumption
5.	$v \text{ fresh}, \ Q(v) \wedge S(v)$	assumption
6.	$ \forall y \cdot ((P(u) \land Q(y)) \to (u = y)) $	∀e: 1
7.	$P(u) \land Q(v) \to (u=v)$	∀e: 6
8.	P(u)	∧e: 4
9.	Q(v)	∧e: 5
10.	$P(u) \wedge Q(v)$	∧i: 8, 9
11.	u = v	→e: 7, 10
12.	R(u)	∧e: 4
13.	S(v)	∧e: 5
14.	S(u)	=e: 11, 13
15.	$R(u) \wedge S(u)$	∧i: 12, 14
16.	$\exists x \cdot (R(x) \land S(x))$	∃i: 15
17.	$\exists x \cdot (R(x) \land S(x))$	∃e: 3, 5–16
18.	$\exists x \cdot (R(x) \land S(x))$	∃e: 2, 4–17