

Extracting accurate data from research papers

Using Large Language Models (LLMs)

Our approach to data extraction

- Break up papers into sentences and classify
 - Does it contain relevant data?
- Extract the data
 - By hand
 - Automatically with LLMs
- Accurate extraction is possible:
 - ~90% precision and recall

Our approach to data extraction

- Problem: high quality data needed for building machine learning models
- Solution: extract data from research papers
 - Problems:
 - low quality of automated data extraction
 - too many papers to extract manually
 - Solution:
 - use language modelsto extract datafrom research papers

Log(number of entries)

Using (L)LMs for sentence classification

Data triplet:

Material, Value, Unit

Using (L)LMs for sentence classification

Digital Discovery

PAPER

View Article Online
View Journal | View Issue

Cite this: Digital Discovery, 2024, 3, 1221

Flexible, model-agnostic method for materials data extraction from text using general purpose language models

Maciej P. Polak, ** Shrey Modi, ** Anna Latosinska, Jinming Zhang, Ching-Wen Wang, Shaonan Wang, Ayan Deep Hazra and Dane Morgan**

manual - **very high** quality
this work - **high** quality
fully automatic - **modest** quality
preferred method

- Extremely simple
- Needs minimal resources
- Almost no coding required
- Used to develop the most complete and largest to date database of critical cooling rates of metallic glasses

Automate data structurization with LLMs

Using **GPT-4**:

- ~90% recall
- ~30% precision

Automate data structurization with LLMs

Using **GPT-4**:

- ~98% recall
- ~42% precision

Automate data structurization with LLMs

- Using **GPT-4**:
- ~88% recall
- ~91% precision

Error detection through follow-up questions:

- redundancy
- introducing doubt

ChatExtract

a workflow consisting of a series of engineered conversational prompts to a large language model (LLM), and actions based on the model's responses, with error detection.

	Precision (%)	Recall (%)
ChatExtract (GPT4)	90.8	87.7
Chain-of-thought (GPT4) (ChatExtract without error-detection)	42.7	98.9
Previous non LLMs	<50%	<50%

ChatExtract

Key concepts:

- Break up tasks into the simplest possible steps
- Strictly enforce output format
- Allow for negative answers
- When validating be redundant, introduce doubt

Benefits of our approach:

- Flexible and adaptable
- No need for deep understanding of data to be extracted

nature communications

Article

https://doi.org/10.1038/s41467-024-45914-8

Extracting accurate materials data from research papers with conversational language models and prompt engineering

Received: 27 June 2023

Maciej P. Polak ®¹ ⊠ & Dane Morgan ®¹ ⊠

Accepted: 5 February 2024

Metallic Glass Critical Cooling Rates

- Returned 684 papers, 110,126 sentences.
- ChatExtract (GPT-4) extracted 721 values.
- Standardized version had 280 values (120 unique compounds), 1.5x previous databases.

High-Entropy Alloy Yield Stress

- 4029 research papers, 840,431 sentences.
- ChatExtract extracted 8,961 values.
- Standardized version had 2416 values.
- Largest database up to date

Performance

- Precision and Recall ~90%
- ~10m human time
- ~3h compute time (ChatGPT)
- ~0-2h Standardization

