

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Semantics – Models and Interpretation

Semantics in Propositional Logic

- Recall:
 - Semantics i.e. the meaning of formulas in Propositional Logic was defined by Truth Tables.
 - Atomic propositions were assigned values (TRUE or FALSE) and
 - formulas were evaluated per truth tables for operations.
- This approach will not work in Predicate Logic!
 - Why?
 - There are two issues:
 - Quantification and
 - II. Context

Semantics in Predicate Logic: Issue - Context

- Predicates and Function Terms
 - e.g. Is ∀X older(father(mother(X)), mother(father(X))) true?

What is the context?

i.e. What assumptions are we making about predicate *older* and function terms *father* and *mother*? and

What is the <u>universal set of values</u> over which X is quantified?

Semantics in Predicate Logic: Issue – Quantification

- Variables and Quantification:
 - e.g. When is $\forall X P(X)$ true?

One cannot write an <u>algorithm</u> – <u>that will</u> <u>terminate</u> – to evaluate this formula

Potentially <u>infinite</u> number of possible values for **X**

Implication

Of course, if the universal set **U** is finite, then it is possible to evaluate **P(X)** for each value **X** can take in **U**.

Semantics in Predicate Logic: Example 1

- Consider the following formulas:
 - 1. $\forall X \forall Y \neg r(Y, X)$
 - 2. $\forall X \forall Y X=Y \longrightarrow r(Y, X)$
- What is the meaning of each of the two formulas if the <u>universe</u> is, say,
 - **N**, the set of <u>natural numbers</u>?
 - the collection <u>of all sets</u>, and <u>r</u> is the membership relation.
 - a <u>finite set</u> **S**, and **r** is any binary relation? (or equivalently <u>the edge relation in a finite graph G</u>?)

Semantics in Predicate Logic: Example 2

- Consider formulas in predicate logic where
 - {a, b} is the set of constants,
 - { +, * } is the set of functions, and
 - { = } is the set of predicates.
- Now, consider a specific formula:
 - $\forall X *(X,X) = +(X,X)$
 - When is this true? When is this false?
 - For how many values of X do we have to evaluate the subformula?
 - For instance, is it sufficient to evaluate
 - *(a,a) = +(a,a) and
 - *(b,b) = +(b,b)

to conclude whether the formula is true or fase?

• Why or why not?

Semantics: Models

- Let F be a set of function symbols and P be a set of predicate symbols, each symbol with a fixed <u>arity</u>.
- A model **M** of the pair (**F**,**P**) is consists:
 - 1. A non-empty set **A**, the *universe* of concrete values
 - 2. for each nullary function **f** in **F**:
 - a concrete element f_M of A
 - 3. for each f in F of arity n>0:
 - a concrete function f_M : $A^n --> A$
 - 4. for each p in P with arity n>0:

a subset
$$p_M \subseteq A^n$$

Note:

- <u>arity</u> denotes the number of arguments of a function term or a predicate.
- <u>nullary function symbols</u> are treated as **constant** symbols.

End of Note.

- Let $F = \{ \epsilon, . \}$ and $P = \{ <= \}$
 - where ε is a constant, \cdot and \leq are binary.
- A model **M** for (*F*,*P*) is:
 - Universe:

the set of all binary strings (i.e. strings of 0s and 1s)

- Meaning of symbols in F:
 - ε denotes the empty string
 - denotes <u>concatenation of two strings</u>
- Meaning of symbols in P:
 - <= denotes the <u>prefix ordering of strings</u>
 - i.e. *s1* <= *s2 if s1 is a prefix of s2*

Semantics: Models and Interpretations – Example 1

- Given $F = \{\varepsilon, ...\}$ and $P = \{ <= \}$
- A model M for (*F,P*):
 - Universe: the set of all binary strings
 - Meaning of symbols in F:

ε is the empty string, • is concatenation of two strings

• Meaning of symbols in P:

s1 <= s2 if s1 is a prefix of s2

• Interpret the following formulas based on this model:

- 1. $\forall x (x \le x. \varepsilon) \land (x. \varepsilon \le x)$
- **2.** ∃Y ∀X Y <= X
- 3. $\forall X \exists Y Y \leq X$
- 4. $\forall x \forall y \forall z ((x \le y) \longrightarrow (x.z \le y.z))$
- 5. $\neg \forall Y \forall X ((Y \leq X) \rightarrow (X \leq Y))$

- Let $F = \{ +, zero \}$ and $P = \{ \equiv \}$
 - where **zero** is a constant, + is binary, and \equiv is binary.
- A model M for (*F,P*):
 - **Universe:** the set { 0, 1, 2, 3, 4, 5, 6 }
 - Meaning of symbols in F:
 - + denotes addition modulo 7
 - zero denotes 0
 - Meaning of symbols in P:
 - \equiv denotes the relation <u>congruent modulo 7</u>

Semantics: Models and Interpretation: Example 2

- Let *F* = { +, zero } and *P* = { ≡ }
- A model M for (*F,P*):
 - **Universe:** the set { 0, 1, 2, 3, 4, 5, 6 }
 - Meaning of symbols in F:
 - zero denotes 0
 - + denotes addition modulo 7
 - Meaning of symbols in P:
 - = denotes the relation <u>congruent modulo 7</u>
- Interpret the following formulas based on this model:
 - **1.** $\forall X \forall Y \exists Z X + Y \equiv Z$
 - 2. $\forall X \text{ zero} + X \equiv X$
 - 3. $\forall X \exists Y X + Y \equiv zero$

- Let *F* = { Φ} and *P* = { ∈, ⊆ }
- A model M for (*F,P*) :
 - Universe: the set of all finite sets
 - Meaning of symbols in F:
 - Φ denotes the empty set
 - Meaning of symbols in P:
 - ∈ denotes the membership relation
 - □ denotes the subset relation

Semantics: Models and Interpretation: Example 3

Let $\mathbf{F} = \{ \Phi \}$ and $\mathbf{P} = \{ \in, \subseteq \}$

A model M for (F,P):

Universe: the set of all finite sets

Meaning of symbols in *F*:

 Φ denotes the empty set

Meaning of symbols in P:

∈ denotes the membership relation

Interpret the following formulas based on this model:

- 1. $\forall X \Phi \subseteq X$
- 2. $\forall X \neg (X \in \Phi)$
- $3. \quad \forall X \ X \subseteq X$
- 4. $\forall X (X \subseteq \Phi) \longrightarrow (X = \Phi)$
- 5. $\forall X \ \forall Y \ (X \subseteq Y) \land (Y \subseteq X) \longrightarrow (X=Y)$
- 6. $\forall X \ \forall Y \ \forall Z \ (X \subseteq Y) \land (Y \subseteq Z) -->(X \subseteq Z)$

- Let F = { } and P = { →, ⇒ }
- A model M for (*F,P*) :
 - Universe: the vertices of a given graph G
 - Meaning of symbols in P:
 - → denotes the (undirected) edge relation on vertices
 - \Rightarrow denotes the *path* relation on vertices

Let $F = \{ \}$ and $P = \{ \rightarrow, \Rightarrow \}$ A model M for (F,P):

Universe: the vertices of a given graph **G**

Meaning of symbols in P:

- → denotes the (undirected)edge relation on vertices
- ⇒ denotes the *path* relation on vertices

Note:

"reachability" i.e. a path from vertex **u** to vertex **v** in captures the notion **v** is reachable from **u** (and vice versa in an undirected graph).

End of Note.

 \Rightarrow is

• reflexive:

i.e. an empty path makes vertex **v** reachable from itself

• symmetric:

because edges are undirected and

• transitive:

concatenating a path from u to v and a path from v to w yields a path from u to w.

Semantics: Models and Interpretation: Example 4

Let $F = \{ \}$ and $P = \{ \rightarrow, \Rightarrow \}$ A model M for (F,P):

Universe: the vertices of a given graph **G**

Meaning of symbols in P:

- denotes the (undirected) edge relation on vertices of G
- ⇒ denotes the path relation on vertices of G
- Which of the formulas 1 through 6 are true for all graphs G?
- Are there graphs for which formula
 5 is true but not formula 6?

Interpret the following formulas based on this model:

- 1. $\forall X \forall Y (X \rightarrow Y) \longrightarrow (Y \rightarrow X)$
- 2. $\forall X \forall Y (X \rightarrow Y) --> (X \Rightarrow Y)$
- 3. $\forall X (X \Rightarrow X)$
- 4. $\forall X \forall Y \forall Z (X \Rightarrow Y) \land (Y \Rightarrow Z) \longrightarrow (X \Rightarrow Z)$
- 5. $\forall X \exists Z (X \Rightarrow Z) \land (Z \Rightarrow X)$
- 6. $\forall X \exists Z \neg (X=Z) --> ((X \Rightarrow Z) \land (Z \Rightarrow X))$

Predicate Logic: Models and Interpretations

- A model in essence provides
 - a context in which the values and symbols (i.e. constants, functions, and predicates) can be assigned a meaning
 - and thereby enables us to "evaluate" a formula
- For instance,
 - the formula ∀X succ(pred(X)) = pred(succ(X))
 - can be evaluated
 - (only) if we know what **<u>pred</u>** and **<u>succ</u>** stand for
- Of course the result of the evaluation will be dependent on the model and may differ for different models (for even closely related ones!).

Predicate Logic: Models and Interpretations – Example 5

- Evaluate the formula ∀X succ(pred(X)) = pred(succ(X))
 - using the model of numbers, where:
 - succ(X) means X+1
 - pred(X) means X-1
 - Will the formula result in different valuations for
 - the set of *integers* vs. the set of *natural numbers*?

Predicate Logic: Models and Interpretations – Example 5

- Evaluate the formula ∀X succ(pred(X)) = pred(succ(X))
 - using the model of <u>linked lists</u>, where:
 - succ(X) means the node pointed to by X
 - pred(X) means the node pointing to X
 - Will the formula result in different valuations for
 - the set of nodes in a <u>linear linked list</u> vs. the set of nodes in a <u>circular linked list</u>?

