A Framework for Collaborative Decision Support Modeling using OGC Specifications

Raj Singh
MIT Dept. of Urban Studies & Planning
rajsingh@mit.edu

Introduction

- Land management combines public discourse and expert analysis
- There is little connection between the two
- The result is decisions made by negotiation OR analysis--no give and take between the two

Decision Making in City Planning

- Decisions affect people's daily lives
- Decisions are always contentious
- Supporting dialog between experts and lay people is critical

Related Efforts

- Collaborative Decision Support
 - provides real time feedback
 - mostly weighting and rating
 - the model is local, small data requirements
- Large-scale modeling
 - e.g. UrbanSim, CUF, transportation models
 - too computationally or data intensive to bring to a meeting
 - important decisions buried in code

Planning Modeling Language: Goals

- Define a universal encoding for the modeling process
- Create a graphical environment for viewing and editing the model
- Specify a framework for collaboration
- Allow one model to be the input to another.

Planning Modeling Language: System Requirements

- Network-centric
- Portable
- Robust feature set
 - spatial operations
 - raster operations
 - table joins
 - aggregation, reclassification
- Fine-grained security
- Chainability

Test Case: Wetlands protection

- Task
 - Define a policy to exclude development around sensitive wetlands
- Points of possible contention
 - what types of wetlands are particularly sensitive?
 - what types of land uses have the greatest impact?
 - what is the impact on growth and revenue?

Wetlands protection model

- Gather data
 - land cover: roads, wetlands, zoning, agriculture
 - land use: traffic, building permits, TRI
- Construct a hypothesis
 - compare types of wetlands and their proximity to types of land uses

Wetlands data access

```
<pml:DataSource typeName="myFedNWI">
  <pml:DataBinding>
       <pml:port>http://a.b.com/wfs</pml:port>
       <pml:version>1.0.0</pml:version>
  </pml:DataBinding>
       <wfs:GetFeature>
           <wfs:Query typeName="FedNWI">
               <ogc:PropertyName>id</ogc:PropertyName>
               <ogc:PropertyName>nwiCode</ogc:PropertyName>
               <ogc:PropertyName>geom/ogc:PropertyName>
           </wsf::Query>
       </wfs:GetFeature>
</pml:DataSource>
```

Wetlands data processing

Reclassification and aggregation

id	nwiCode	geom
1	PL2	x
2	LL1	Х
3	LL2	Х
4	AR1	Х
5	LL1	Х

nwiCode	sensitivityCode
PL1	1
PL2	1
LL1	2
LL2	2
AR1	3
AR2	3

id	sensitivityCode	geom
1	1	Х
2	2	х
3	2	Х
4	3	Х
5	2	x

PML for wetlands data processing

PML for wetlands data processing

Traffic impact

PML for roads buffer

Traffic impact

Deficiencies so far

- raster operations
 - moving window algorithms
- relates/joins
- fine-grained permissions
 - on attributes
 - on operations
- output as input

Findings

- Not sure if this is an interface or an encoding
- We're getting *close* to a language for decision support, but there's still a good bit of work to do
- Tools for building on OGC specs are limited and immature

More Information

http://web.mit.edu/rajsingh/www/

Unused Slides

Planning Modeling Language: Tools

- Java Topology Suite for spatial operations
- OGC Filter specification for query/filter language
- Under consideration
 - GeoTools2 for map display, filter handling
 - PostGIS for data storage
 - JGraph for modeling GUI

Types of data objects

- general case: a URI that returns data
- a WFS request (which can contain a filter)
- the result of an operation on data objects
 - buffer, union, intersect
 - table join
- a non-spatial table
- and more...