■ Assignment1_README.md

ParallelComputing

Assignment 1

- The main script is run.py and run.sh will run all the nessesary scripts | cmd: ./run.sh
- · All ploting functions are written into another script plot.py,
- Might need to recompile the src.c with make command if errors come,
- · Output of the program is stored in data.txt,
- data.txt holds the time(sec) taken by each configration for each iterative runs of the program.
- plot16.png, plot32.png, plot49.png and plot64.png is resultant box plot graph generated by plot.py.
- Box plot is plotted in log scale | log(sec),
- checkhosts.sh script checks the available hosts in the cluster for running the program.

Observation

- Mostly run time is increasing with the size of data we are sending,
- Run time for single send is greater than Packed and Vector,
- After N(data point) = 256 we can see significant time difference between Single send and Packed, Vector send,
- Run time for Packed and Vector is approximately same.

Code Explaination

- Store the boundary data of array in 4 arrays up, down, left and right for communication,
- MPI_PACK
 - o send up, down, left and right to parallel processes
 - o store in up/down/left/right array via MPI PACK,
 - send data by MPI Isend,
 - recieve data in via MPI_Recv and store in recv_up,recv_down,recv_left and recv_right,
 - o complete computation using these value,
 - o update the value of main array and again repeat untill 50<num_steps>.
- MPI_Vector
 - o For Vector create a new vector of array lenth,
 - o data store in vector and then send to parallel processes,
 - o rest same as above.
- · For Single send,
 - use a for loop for sending data multiple times,
 - o rest is same as above.

Box Plots

localhost:6419

