

Deep Metric Learning: A Frontal Report

Hongwei Fan

Lab of Pattern Recognition and Intelligent Systems, BUPT

About Me

- Hongwei Fan(范弘炜)
- Educational Background
 - 2015.9~2019.6: Bachelor degree of the School of Information and Communication Engineering, BUPT.
 - 2019.9~: Master candidate of the Lab of Pattern Recognition and Intelligent Systems, BUPT. (Under the instruction of Prof. Weihong Deng)
- Research Interests
 - Metric Learning(Face Recognition/Person Re-identification)
 - Transfer Learning(Unsupervised Domain Adaptation)

Metric Learning

 Metric: In mathematics, a metric or distance function is a function that defines a distance between each pair of elements of a set.

Why Metric Learning

• Fine-grained Recognition: Need for space between classes

Different classes with high distance

Different classes with low distance

Example: Object Classification vs. Face Recognition

Frontal of Metric Learning

- Supervised Metric Learning
 - Euclidean: Triplet Loss³/Center Loss⁴
 - Cosine: SphereFace⁵/CosFace⁶/ArcFace
 - ArcFace¹: Additive Angular Margin Loss for Deep Face Recognition
- Unsupervised Metric Learning
 - Data Adaptation: PTGAN⁷/StarGAN⁸/Camstyle⁹
 - Pseudo-Label: MAR¹⁰/IMAN¹¹/ECN
 - (ECN) Invariance Matters²: Exemplar Memory for Domain Adaptive Person Re-identification

Frontal of Metric Learning

- Supervised Metric Learning
 - Euclidean: Triplet Loss³/Center Loss⁴
 - Cosine: SphereFace⁵/CosFace⁶/ArcFace
 - ArcFace¹: Additive Angular Margin Loss for Deep Face Recognition
- Unsupervised Metric Learning
 - Data Adaptation: PTGAN⁷/StarGAN⁸/Camstyle⁹
 - Pseudo-Label: MAR¹⁰/IMAN¹¹/ECN
 - (ECN) Invariance Matters²: Exemplar Memory for Domain Adaptive Person Re-identification

ArcFace: Motivation

Linear Discriminant Analysis

ArcFace: Motivation

Euclidean Method

Constrastive Loss: $y_i d_i^2 + (1 - y_i) \max(margin - d_i, 0)^2$

Positive Pairs Negative Pairs Triplet Loss: $max(d(a_i, p_i) - d(a_i, n_i) + margin, 0)$

Euclidean Cosine Method

Softmax Interface

ArcFace: Methodology

Advanced Cosine Classification Interface

$$p_{i}(x) = \frac{e^{\cos \theta_{i}}}{\sum_{i} e^{\cos \theta_{i}}} \longrightarrow p_{i}(x) = \frac{e^{\varphi(\theta_{i})}}{e^{\varphi(\theta_{i})} + \sum_{j \neq i} e^{\cos \theta_{j}}}$$

Loss Function	$oldsymbol{arphi}(heta)$	Binary Classification Interface
Softmax	$\cos \theta$	$\theta_1 - \theta_2 = 0$
Sphereface	$\cos(m\theta)$	$\cos(m\theta_1) - \cos\theta_2 = 0$
Cosface	$\cos \theta - m$	$\cos\theta_1 - m - \cos\theta_2 = 0$
Arcface	$\cos(\theta + m)$	$\cos(\theta_1 + m) - \cos\theta_2 = 0$

Method	#Image	LFW	YTF
DeepID [32]	0.2M	99.47	93.20
Deep Face [33]	4.4M	97.35	91.4
VGG Face [24]	2.6M	98.95	97.30
FaceNet [29]	200M	99.63	95.10
Baidu [16]	1.3M	99.13	-
Center Loss [38]	0.7M	99.28	94.9
Range Loss [46]	5M	99.52	93.70
Marginal Loss [9]	3.8M	99.48	95.98
SphereFace [18]	0.5M	99.42	95.0
SphereFace+ [17]	0.5M	99.47	-
CosFace [37]	5M	99.73	97.6
MS1MV2, R100, ArcFace	5.8M	99.83	98.02

	NS	ArcFace	IntraL	InterL	TripletL
W-EC	44.26	14.29	8.83	46.85	-
W-Inter	69.66	71.61	31.34	75.66	-
Intra1	50.50	38.45	17.50	52.74	41.19
Inter1	59.23	65.83	24.07	62.40	50.23
Intra2	33.97	28.05	12.94	35.38	27.42
Inter2	65.60	66.55	26.28	67.90	55.94

Table 3. The angle statistics under different losses ([CASIA, ResNet50, loss*]). Each column denotes one particular loss. "W-EC" refers to the mean of angles between W_j and the corresponding embedding feature centre. "W-Inter" refers to the mean of minimum angles between W_j 's. "Intra1" and "Intra2" refer to the mean of angles between x_i and the embedding feature centre on CASIA and LFW, respectively. "Inter1" and "Inter2" refer to the mean of minimum angles between embedding feature centres on CASIA and LFW, respectively.

Table 4. Verification performance (%) of different methods on LFW and YTF.

Method	LFW	CALFW	CPLFW
HUMAN-Individual	97.27	82.32	81.21
HUMAN-Fusion	99.85	86.50	85.24
Center Loss [38]	98.75	85.48	77.48
SphereFace [18]	99.27	90.30	81.40
VGGFace2 [6]	99.43	90.57	84.00
MS1MV2, R100, ArcFace	99.82	95.45	92.08

Table 5. Verification performance (%) of open-sourced face recognition models on LFW, CALFW and CPLFW.

(b) CFP-FP (98.37%)

(c) AgeDB (98.15%)

(d) YTF (98.02%)

(e) CPLFW (92.08%) (f) CALFW (95.45%)

Methods	Id (%)	Ver (%)
Softmax [18]	54.85	65.92
Contrastive Loss[18, 32]	65.21	78.86
Triplet [18, 29]	64.79	78.32
Center Loss[38]	65.49	80.14
SphereFace [18]	72.729	85.561
CosFace [37]	77.11	89.88
AM-Softmax [35]	72.47	84.44
SphereFace+ [17]	73.03	-
CASIA, R50, ArcFace	77.50	92.34
CASIA, R50, ArcFace, R	91.75	93.69
FaceNet [29]	70.49	86.47
CosFace [37]	82.72	96.65
MS1MV2, R100, ArcFace	81.03	96.98
MS1MV2, R100, CosFace	80.56	96.56
MS1MV2, R100, ArcFace, R	98.35	98.48
MS1MV2, R100, CosFace, R	97.91	97.91
1 6 1 11 46 4 1 16		

Table 6. Face identification and verification evaluation of different methods on MegaFace Challenge1 using FaceScrub as the probe set. "Id" refers to the rank-1 face identification accuracy with 1M distractors, and "Ver" refers to the face verification TAR at 10^{-6} FAR. "R" refers to data refinement on both probe set and 1M distractors. ArcFace obtains state-of-the-art performance under both small and large protocols.

ArcFace: Discussion

Settings of parameters: manually to automatically?

• Bingyu Liu, Weihong Deng, et al. Fair Loss: Margin-aware Reinforcement Learning for Deep Face Recognition. ICCV 2019.

Noisy dataset: a more robust loss function is needed

 Yaoyao Zhong, Weihong Deng, et al. Unequal-training for deep face recognition with long-tailed noisy data. CVPR 2019.

Universal margin-based metric learning?

• Xing Fan, Wei Jiang, Hao Luo, et al. SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identification. Journal of Visual Communication and Image Representation (2019).

Frontal of Metric Learning

AI ML Club

- Supervised Metric Learning
 - Euclidean: Triplet Loss³/Center Loss⁴
 - Cosine: SphereFace⁵/CosFace⁶/ArcFace
 - ArcFace¹: Additive Angular Margin Loss for Deep Face Recognition
- Unsupervised Metric Learning
 - Data Adaptation: PTGAN⁷/StarGAN⁸/Camstyle⁹
 - Pseudo-Label: MAR¹⁰/IMAN¹¹/ECN
 - (ECN) Invariance Matters²: Exemplar Memory for Domain Adaptive Person Re-identification

Transfer/Adaptation Still naïve! Table 1: Comparison between MSMT17 and other person ReID datasets. **Big Data** Small(naïve) Dataset MSMT17 Duke [41, 27] Market [39] CUHK03 [2 CUHK01 [19] VIPeR [8] **PRID** [10] CAVIAR [3] 126,441 1,264 1,134 610 **BBoxes** 36,411 32,668 28,192 3,884 Data 4,101 1,812 1,501 971 632 934 72 Identities 1,467 15 10 8 6 Cameras Faster RCNN Detector DPM DPM, hand hand hand hand hand hand Scene outdoor, indoor outdoor outdoor indoor indoor outdoor outdoor indoor

Figure 3: Statistics of MSMT17.

Longhui Wei, Shiliang Zhang, et. al., Person Transfer GAN to Bridge Domain Gap for Person Reldentification. CVPR 2018.

Overall Structure

Unsupervised Learning

Zhirong Wu, Yuanjun Xiong, et. al., Unsupervised Feature Learning via Non-Parametric Instance Discrimination. CVPR 2018.

Linear Discriminant Analysis

Unsupervised Learning

Fig. 1. Examples of three underlying properties of invariance. Colors indicate identities. (a) Exemplar-invariance: an input exemplar (denoted by \star) is enforced to be away from others. (b) Camera-invariance: an input exemplar (denoted by \star) and its CamStyle transferred images (with dashed outline) are encouraged to be close to each other. (c) Neighborhood-invariance: an input exemplar (denoted by \star) and its reliable neighbors (highlighted in dashed circle) are forced to be close to each other. Best viewed in color.

Individual exemplars

(a) Exemplar-invariance Inter-class Discrepancy

Neighbors of the first exemplar

(c) Neighborhood-invariance Intra-class Discrepancy

Camera Factor: CamStyle(StarGAN)

Camera Style Adaptation for Person Re-identification. Zhun Zhong, Liang Zheng, et. al., Camera Style Adaptation for Person Re-identification. CVPR 2018.

Camera Factor: CamStyle(StarGAN)

CamStyle images of the third exemplar

(b) Camera-invariance

Inter-Camera Discrepancy

Methods			Marke	et-1501				I	DukeMT	MC-reII)	
iviculous	Src.	R-1	R-5	R-10	R-20	mAP	Src.	R-1	R-5	R-10	R-20	mAP
Supervised Learning	N/A	87.6	95.5	97.2	98.3	69.4	N/A	75.6	87.3	90.6	92.9	57.8
Source Only	2	43.1	58.8	67.3	74.3	17.7	501	28.9	44.0	50.9	57.5	14.8
Ours w/ E	\geq	48.7	67.4	74.0	80.2	21.0	15(34.2	51.3	58	64.2	18.7
Ours w/ E+C	Σ	63.1	79.1	84.6	89.1	28.4	et-	53.9	70.8	76.1	80.7	29.7
Ours w/ E+N	ukeN	58.0	69.9	75.6	80.4	27.7	Market	39.7	53.0	58.1	62.9	23.6
Ours w/ E+C+N	Ā	75.1	87.6	91.6	94.5	43.0	Σ	63.3	75.8	80.4	84.2	40.4

Table 2. Methods comparison when tested on Market-1501 and DukeMTMC-reID. **Supervised Learning**: Baseline model trained with labeled target data. **Source Only**: Baseline model trained with only labeled source data. **E**: Exemplar-invariance. **C**: Camera-invariance. **N**: Neighborhood-invariance. **Src.**: Source domain.

Methods		Marke	et-1501			DukeMT	MC-reID	
Wiethous	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP
LOMO [15]	27.2	41.6	49.1	8.0	12.3	21.3	26.6	4.8
Bow [37]	35.8	52.4	60.3	14.8	17.1	28.8	34.9	8.3
UMDL [20]	34.5	52.6	59.6	12.4	18.5	31.4	37.6	7.3
PTGAN [30]	38.6	-	66.1	-	27.4	-	50.7	-
PUL [9]	45.5	60.7	66.7	20.5	30.0	43.4	48.5	16.4
SPGAN [7]	51.5	70.1	76.8	22.8	41.1	56.6	63.0	22.3
CAMEL [36]	54.5	-	-	26.3	-	-	-	-
MMFA [16]	56.7	75.0	81.8	27.4	45.3	59.8	66.3	24.7
SPGAN+LMP [7]	57.7	75.8	82.4	26.7	46.4	62.3	68.0	26.2
TJ-AIDL [29]	58.2	74.8	81.1	26.5	44.3	59.6	65.0	23.0
CamStyle [45]	58.8	78.2	84.3	27.4	48.4	62.5	68.9	25.1
HHL [43]	62.2	78.8	84.0	31.4	46.9	61.0	66.7	27.2
Ours (ECN)	75.1	87.6	91.6	43.0	63.3	75.8	80.4	40.4

Table 4. Unsupervised person re-ID performance comparison with state-of-the-art methods on Market-1501 and DukeMTMC-reID.

ECN: Experiments

β	$Duke \to M$	arket-1501	Market-1501 \rightarrow Duke		
	Rank-1	mAP	Rank-1	mAP	
0.01	47.3	20.0	29.1	13.2	
0.03	72.3	40.3	59.7	35.7	
0.05	75.1	43.0	63.3	40.4	
0.1	71.4	36.8	59.3	35.8	
0.5	52.3	23.1	45.4	24.2	
1.0	47.8	20.8	40.2	19.3	

Table 1. Evaluation with different values of β in Eq. 3.

Methods	Src.	MSMT17					
Wictious	Sic.	R-1	R-5	R-10	mAP		
PTGAN [30]	Market	10.2	-	24.4	2.9		
Ours (ECN)	Market	25.3	36.3	42.1	8.5		
PTGAN [30]	Duke	11.8	-	27.4	3.3		
Ours (ECN)	Duke	30.2	41.5	46.8	10.2		

Table 5. Performance evaluation when tested on MSMT17.

Figure 3. Evaluation with different values of λ in Eq. 9.

Figure 4. Evaluation with different number of candidate positive samples in neighborhood-invariance learning.

ECN: Discussion

Better Clustering Method: Graph Network?

• Zhun Zhong, Liang Zheng, et. al. Learning to Adapt Invariance in Memory for Person Re-identification. arXiv:1908.00485, 2019.

Memory Bank: What if big data?

 Xiaohang Zhan, Ziwei Liu, et. al. Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition. ECCV 2018.

Association with classical domain adaptation method?

- Mei Wang, Weihong Deng, et. al. Racial Faces in-the-Wild: Reducing Racial Bias by Information Maximization Adaptation Network. ICCV 2019.
- Kihyuk Sohn, Wenling Shang, et. al. Unsupervised Domain Adaptation for Distance Metric Learning. ICLR 2019.

References

- [1] Jiankang Deng, Jia Guo, et. al. ArcFace: Additive Angular Margin Loss for Deep Face Recognition, CVPR 2019.
- [2] Zhun Zhong, Liang Zheng, et. al. Invariance Matters: Exemplar Memory for Domain Adaptive Person Reidentification, CVPR 2019.
- [3] Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. CVPR 2015.
- [4] Yandong Wen, Kaipeng Zhang, et. al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
- [5] Weiyang Liu, Yandong Wen, et. al. Large-margin softmax loss for convolutional neural networks. ICML 2016.
- [6] Hao Wang, Yitong Wang, et. al. Cosface: Large margin cosine loss for deep face recognition. CVPR 2018.
- [7] Longhui Wei, Shiliang Zhang, et. al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.
- [8] Yunjey Choi, Minje Choi, et. al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. CVPR 2018.
- [9] Zhun Zhong, Liang Zheng, et. al. Camera Style Adaptation for Person Re-identification. CVPR 2018.
- [10] Hong-Xing Yu, Wei-Shi Zheng, et. al. Unsupervised Person Re-identification by Soft Multilabel Learning. CVPR 2019.
- [11] Mei Wang, Weihong Deng, et. al. Racial Faces in-the-Wild: Reducing Racial Bias by Information Maximization Adaptation Network. ICCV 2019.

Thank you for listening

Hongwei Fan

Lab of Pattern Recognition and Intelligent Systems, BUPT