Statistical Machine Translation LING-462/COSC-482 Week 7: Neural Networks

Achim Ruopp achim.ruopp@Georgetown.edu

Agenda

- Language in ten minutes: Yushi Zhao
- Neural Networks
- Break -
- Neural Networks: Computation Graphs
- Deep Learning Frameworks
 - Tensorflow Playground
 - Keras

NEURAL NETWORKS

Weighted Model

- Described standard model consists of three sub-models
 - phrase translation model $\phi(\bar{f}|\bar{e})$
 - reordering model d
 - language model $p_{LM}(e)$

$$e_{\mathsf{best}} = \mathsf{argmax}_e \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) \ d(start_i - end_{i-1} - 1) \ \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_i | e_1 ... e_{i-1})$$

- Some sub-models may be more important than others
- Add weights λ_{ϕ} , λ_{d} , λ_{LM}

$$e_{\mathsf{best}} = \mathsf{argmax}_e \prod_{i=1}^{I} \phi(\bar{f}_i | \bar{e}_i)^{\lambda_\phi} \ d(start_i - end_{i-1} - 1)^{\lambda_d} \ \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_i | e_1 ... e_{i-1})^{\lambda_{LM}}$$

Log-Linear Model

• Such a weighted model is a log-linear model:

$$p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x)$$

- Our feature functions
 - number of feature function n=3
 - random variable x = (e, f, start, end)
 - feature function $h_1 = \log \phi$
 - feature function $h_2 = \log d$
 - feature function $h_3 = \log p_{LM}$

Weighted Model as Log-Linear Model

$$p(e, a|f) = \exp(\lambda_{\phi} \sum_{i=1}^{I} \log \phi(\bar{f}_i|\bar{e}_i) + \lambda_d \sum_{i=1}^{I} \log d(a_i - b_{i-1} - 1) + \lambda_{LM} \sum_{i=1}^{|\mathbf{e}|} \log p_{LM}(e_i|e_1...e_{i-1}))$$

Linear Models

• We used before weighted linear combination of feature values h_j and weights λ_j

$$score(\lambda, \mathbf{d}_i) = \sum_j \lambda_j \ h_j(\mathbf{d}_i)$$

• Such models can be illustrated as a "network"

Limits of Linearity

• We can give each feature a weight

- But not more complex value relationships, e.g,
 - any value in the range [0;5] is equally good
 - values over 8 are bad
 - higher than 10 is not worse

XOR

• Linear models cannot model XOR

Multiple Layers

• Add an intermediate ("hidden") layer of processing (each arrow is a weight)

• Have we gained anything so far?

Non-Linearity

• Instead of computing a linear combination

$$score(\lambda, \mathbf{d}_i) = \sum_{j} \lambda_j \ h_j(\mathbf{d}_i)$$

• Add a non-linear function

$$score(\lambda, \mathbf{d}_i) = f(\sum_j \lambda_j h_j(\mathbf{d}_i))$$

Popular choices

tanh(x) sigmoid(x) =
$$\frac{1}{1+e^{-x}}$$
 relu(x) = max(0,x)

(sigmoid is also called the "logistic function")

Deep Learning

• More layers = deep learning

What Depths Holds

- Each layer is a processing step
- Having multiple processing steps allows complex functions
- Metaphor: NN and computing circuits
 - computer = sequence of Boolean gates
 - neural computer = sequence of layers
- Deep neural networks can implement complex functions e.g., sorting on input values

example

Simple Neural Network

• One innovation: bias units (no inputs, always value 1)

Sample Input

- Try out two input values
- Hidden unit computation

$$sigmoid(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = sigmoid(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90$$

$$sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = sigmoid(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

Computed Hidden

- Try out two input values
- Hidden unit computation

$$sigmoid(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = sigmoid(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90$$

$$sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = sigmoid(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

Compute Output

• Output unit computation

sigmoid(
$$.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0$$
) = sigmoid(1.17) = $\frac{1}{1 + e^{-1.17}} = 0.76$

Computed Output

• Output unit computation

sigmoid(
$$.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0$$
) = sigmoid(1.17) = $\frac{1}{1 + e^{-1.17}} = 0.76$

Output for all Binary Inputs

Input x_0	Input x_1	Hidden h_0	Hidden h_1	Output y_0
0	0	0.12	0.02	$0.18 \rightarrow 0$
0	1	0.88	0.27	0.74 ightarrow 1
1	0	0.73	0.12	0.74 o 1
1	1	0.99	0.73	$0.33 \rightarrow 0$

- Network implements XOR
 - hidden node h_0 is OR
 - hidden node h_1 is AND
 - final layer operation is $h_0 -h_1$
- Power of deep neural networks: chaining of processing steps just as: more Boolean circuits → more complex computations possible

why "neural" networks?

Neuron in the Brain

• The human brain is made up of about 100 billion neurons

• Neurons receive electric signals at the dendrites and send them to the axon

Neural Communication

• The axon of the neuron is connected to the dendrites of many other neurons

The Brain vs. Artificial Neural Networks

Similarities

- Neurons, connections between neurons
- Learning = change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
 - computation within neuron vastly simplified
 - discrete time steps
 - typically some form of supervised learning with massive number of stimuli

back-propagation training

Error

- Computed output: y = .76
- Correct output: t = 1.0
- \Rightarrow How do we adjust the weights?

Key Concepts

Gradient descent

- error is a function of the weights
- we want to reduce the error
- gradient descent: move towards the error minimum
- compute gradient \rightarrow get direction to the error minimum
- adjust weights towards direction of lower error

Back-propagation

- first adjust last set of weights
- propagate error back to each previous layer
- adjust their weights

Gradient Descent

Gradient Descent

Derivative of Sigmoid

• Sigmoid

$$\operatorname{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

• Reminder: quotient rule

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

Derivative

$$\frac{d \operatorname{sigmoid}(x)}{dx} = \frac{d}{dx} \frac{1}{1 + e^{-x}}$$

$$= \frac{0 \times (1 - e^{-x}) - (-e^{-x})}{(1 + e^{-x})^2}$$

$$= \frac{1}{1 + e^{-x}} \left(\frac{e^{-x}}{1 + e^{-x}}\right)$$

$$= \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}}\right)$$

$$= \operatorname{sigmoid}(x)(1 - \operatorname{sigmoid}(x))$$

Final Layer Update

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

Final Layer Update (1)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

• Error *E* is defined with respect to *y*

$$\frac{dE}{dy} = \frac{d}{dy} \frac{1}{2} (t - y)^2 = -(t - y)$$

Final Layer Update (2)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

y with respect to x is sigmoid(s)

$$\frac{dy}{ds} = \frac{d \text{ sigmoid}(s)}{ds} = \text{sigmoid}(s)(1 - \text{sigmoid}(s)) = y(1 - y)$$

Final Layer Update (3)

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

• x is weighted linear combination of hidden node values h_k

$$\frac{ds}{dw_k} = \frac{d}{dw_k} \sum_k w_k h_k = h_k$$

Putting it All Together

• Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy} \frac{dy}{ds} \frac{ds}{dw_k}$$
$$= -(t - y) \quad y(1 - y) \quad h_k$$

- error
- derivative of sigmoid: y'
- ullet Weight adjustment will be scaled by a fixed learning rate μ

$$\Delta w_k = \mu \ (t - y) \ y' \ h_k$$

Multiple Output Nodes

- Our example only had one output node
- Typically neural networks have multiple output nodes
- Error is computed over all *j* output nodes

$$E = \sum_{j} \frac{1}{2} (t_j - y_j)^2$$

ullet Weights $k \to j$ are adjusted according to the node they point to

$$\Delta w_{j \leftarrow k} = \mu(t_j - y_j) \ y_j' \ h_k$$

Hidden Layer Update

- In a hidden layer, we do not have a target output value
- But we can compute how much each node contributed to downstream error
- Definition of error term of each node

$$\delta_j = (t_j - y_j) \ y_j'$$

• Back-propagate the error term (why this way? there is math to back it up...)

$$\delta_i = \left(\sum_j w_{j \leftarrow i} \delta_j\right) y_i'$$

• Universal update formula

$$\Delta w_{j \leftarrow k} = \mu \ \delta_j \ h_k$$

Our Example

- Computed output: y = .76
- Correct output: t = 1.0
- Final layer weight updates (learning rate $\mu = 10$)

$$-\delta_{G} = (t-y) y' = (1-.76) 0.181 = .0434$$

$$-\Delta w_{\rm GD} = \mu \ \delta_{\rm G} \ h_{\rm D} = 10 \times .0434 \times .90 = .391$$

$$-\Delta w_{\rm GE} = \mu \ \delta_{\rm G} \ h_{\rm E} = 10 \times .0434 \times .17 = .074$$

$$-\Delta w_{\rm GF} = \mu \, \delta_{\rm G} \, h_{\rm F} = 10 \times .0434 \times 1 = .434$$

Our Example

- Computed output: y = .76
- Correct output: t = 1.0
- Final layer weight updates (learning rate $\mu = 10$)
 - $-\delta_{G} = (t-y) y' = (1-.76) 0.181 = .0434$
 - $-\Delta w_{\rm GD} = \mu \ \delta_{\rm G} \ h_{\rm D} = 10 \times .0434 \times .90 = .391$
 - $-\Delta w_{\rm GE} = \mu \ \delta_{\rm G} \ h_{\rm E} = 10 \times .0434 \times .17 = .074$
 - $-\Delta w_{\rm GF} = \mu \ \delta_{\rm G} \ h_{\rm F} = 10 \times .0434 \times 1 = .434$

Hidden Layer Updates

Hidden node D

$$- \delta_{D} = \left(\sum_{j} w_{j \leftarrow i} \delta_{j} \right) y_{D}' = w_{GD} \delta_{G} y_{D}' = 4.5 \times .0434 \times .0898 = .0175$$

$$-\Delta w_{\rm DA} = \mu \ \delta_{\rm D} \ h_{\rm A} = 10 \times .0175 \times 1.0 = .175$$

$$-\Delta w_{\rm DB} = \mu \ \delta_{\rm D} \ h_{\rm B} = 10 \times .0175 \times 0.0 = 0$$

$$-\Delta w_{\rm DC} = \mu \ \delta_{\rm D} \ h_{\rm C} = 10 \times .0175 \times 1 = .175$$

• Hidden node **E**

$$- \delta_{\mathsf{E}} = \left(\sum_{j} w_{j \leftarrow i} \delta_{j} \right) y_{\mathsf{E}}' = w_{\mathsf{GE}} \ \delta_{\mathsf{G}} \ y_{\mathsf{E}}' = -5.2 \times .0434 \times 0.2055 = -.0464$$

$$-\Delta w_{\rm EA} = \mu \ \delta_{\rm E} \ h_{\rm A} = 10 \times -.0464 \times 1.0 = -.464$$

- etc.

some additional aspects

Initialization of Weights

- Weights are initialized randomly e.g., uniformly from interval [-0.01, 0.01]
- Glorot and Bengio (2010) suggest
 - for shallow neural networks

$$\big[-\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}}\big]$$

n is the size of the previous layer

for deep neural networks

$$\left[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}\right]$$

 n_j is the size of the previous layer, n_j size of next layer

Neural Networks for Classification

- Predict class: one output node per class
- Training data output: "One-hot vector", e.g., $\vec{y} = (0, 0, 1)^T$
- Prediction
 - predicted class is output node y_i with highest value
 - obtain posterior probability distribution by soft-max

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

Problems with Gradient Descent Training

Problems with Gradient Descent Training

Problems with Gradient Descent Training

Speedup: Momentum Term

- Updates may move a weight slowly in one direction
- To speed this up, we can keep a memory of prior updates

$$\Delta w_{j\leftarrow k}(n-1)$$

• ... and add these to any new updates (with decay factor ρ)

$$\Delta w_{j\leftarrow k}(n) = \mu \,\,\delta_j \,\, h_k + \rho \Delta w_{j\leftarrow k}(n-1)$$

Adagrad

- Typically reduce the learning rate μ over time
 - at the beginning, things have to change a lot
 - later, just fine-tuning
- Adapting learning rate per parameter
- Adagrad update based on error E with respect to the weight w at time $t = g_t = \frac{dE}{dw}$

$$\Delta w_t = \frac{\mu}{\sqrt{\sum_{\tau=1}^t g_\tau^2}} g_t$$

Dropout

- A general problem of machine learning: overfitting to training data (very good on train, bad on unseen test)
- Solution: **regularization**, e.g., keeping weights from having extreme values
- Dropout: randomly remove some hidden units during training
 - mask: set of hidden units dropped
 - randomly generate, say, 10–20 masks
 - alternate between the masks during training
- Why does that work?
 - \rightarrow bagging, ensemble, ...

Mini Batches

- Each training example yields a set of weight updates Δw_i .
- Batch up several training examples
 - sum up their updates
 - apply sum to model
- Mostly done or speed reasons

computational aspects

Vector and Matrix Multiplications

- Forward computation: $\vec{s} = W\vec{h}$
- Activation function: $\vec{y} = \text{sigmoid}(\vec{h})$
- Error term: $\vec{\delta} = (\vec{t} \vec{y})$ sigmoid' (\vec{s})
- Propagation of error term: $\vec{\delta}_i = W \vec{\delta}_{i+1} \cdot \text{sigmoid'}(\vec{s})$
- Weight updates: $\Delta W = \mu \vec{\delta} \vec{h}^T$

GPU

- Neural network layers may have, say, 200 nodes
- Computations such as $W\vec{h}$ require $200 \times 200 = 40,000$ multiplications
- Graphics Processing Units (GPU) are designed for such computations
 - image rendering requires such vector and matrix operations
 - massively mulit-core but lean processing units
 - example: NVIDIA Tesla K20c GPU provides 2496 thread processors
- Extensions to C to support programming of GPUs, such as CUDA

NEURAL NETWORKS: COMPUTATIONAL GRAPHS

Neural Network Cartoon

• A common way to illustrate a neural network

Neural Network Math

• Hidden layer

$$h = \operatorname{sigmoid}(W_1 x + b_1)$$

• Final layer

$$y = \operatorname{sigmoid}(W_2h + b_2)$$

Computation Graph

Simple Neural Network

Computation Graph

Error Function

• For training, we need a measure how well we do

- ⇒ Cost functionalso known as objective function, loss, gain, cost, ...
 - For instance L2 norm

$$error = \frac{1}{2}(t - y)^2$$

Gradient Descent

• We view the error as a function of the trainable parameters

 $error(\lambda)$

Gradient Descent

• We view the error as a function of the trainable parameters

$$error(\lambda)$$

• We want to optimize $error(\lambda)$ by moving it towards its optimum

Why not just set it to its optimum?

Gradient Descent

• We view the error as a function of the trainable parameters

$$error(\lambda)$$

• We want to optimize $error(\lambda)$ by moving it towards its optimum

- Why not just set it to its optimum?
 - we are updating based on one training example, do not want to overfit to it
 - we are also changing all the other parameters, the curve will look different

Calculus Refresher: Chain Rule

- Formula for computing derivative of composition of two or more functions
 - **–** functions *f* and *g*
 - composition $f \cdot g$ maps x to f(g(x))
- Chain rule

$$(f \circ g)' = (f' \circ g) \cdot g'$$

or

$$F'(x) = f'(g(x))g'(x)$$

• Leibniz's notation

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

if
$$z = f(y)$$
 and $y = g(x)$, then

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = f'(y)g'(x) = f'(g(x))g'(x)$$

Final Layer Update

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} =$$

Final Layer Update

- Linear combination of weights $s = \sum_k w_k h_k$
- Activation function y = sigmoid(s)
- Error (L2 norm) $E = \frac{1}{2}(t-y)^2$
- Derivative of error with regard to one weight w_k

$$\frac{dE}{dw_k} = \frac{dE}{dy}\frac{dy}{ds}\frac{ds}{dw_k}$$

Error Computation in Computation Graph

Error Propagation in Computation Graph

• Compute derivative at node A: $\frac{dE}{dA} = \frac{dE}{dB} \frac{dB}{dA}$

Error Propagation in Computation Graph

- Compute derivative at node A: $\frac{dE}{dA} = \frac{dE}{dB} \frac{dB}{dA}$
- Assume that we already computed $\frac{dE}{dB}$ (backward pass through graph)
- So now we only have to get the formula for $\frac{dB}{dA}$

Error Propagation in Computation Graph

- Compute derivative at node A: $\frac{dE}{dA} = \frac{dE}{dB} \frac{dB}{dA}$
- Assume that we already computed $\frac{dE}{dB}$ (backward pass through graph)
- So now we only have to get the formula for $\frac{dB}{dA}$
- For instance *B* is a square node
 - forward computation: $B = A^2$
 - backward computation: $\frac{dB}{dA} = \frac{dA^2}{dA} = 2A$

Deep Learning Demo: Tensorflow Playground

http://playground.tensorflow.org

Deep Learning Framework: Keras

- High-level framework with Theano, Tensorflow and CNTK backends
- Provides many best practices defaults
- Terse declaration of static network
- Best integrated with Tensorflow

Keras: XOR example

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sqd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print(model.predict(x, verbose=1))
```

Keras: XOR example Imports

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sgd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print(model.predict(x, verbose=1))
```

Keras: XOR example Data Definition

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sgd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print(model.predict(x, verbose=1))
```

Keras: XOR example Network Definition

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sgd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print(model.predict(x, verbose=1))
```

Keras: XOR example Network Training

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sgd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print(model.predict(x, verbose=1))
```

Keras: XOR example Inference

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0], [1], [1], [0]])
model = Sequential()
model.add(Dense(2, input dim=2, activation='sigmoid'))
model.add(Dense(1, activation='sigmoid'))
sqd=SGD(lr=0.3)
model.compile(loss='binary crossentropy',optimizer=sgd)
model.fit(x,y,epochs=1000,batch size=1,verbose=2)
print (model.predict(x, verbose=1))
```

example: dynet

Dynet

- Our example: static computation graph, fixed set of data
- But: language requires different computation data for different data items (sentences have different length)
- ⇒ Dynamically create a computation graph for each data item

Example: Dynet

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cg()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Model Parameters

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cg()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Model holds the values for the weight matrices and weight vectors

Training Setup

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cg()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Defines the model update function (could be also Adagrad, Adam, ...)

Setting up Computation Graph

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cq()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Create a new computation graph. Inform it about parameters.

Operations

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cg()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Builds the computation graph by defining operations.

Training Loop

```
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
trainer = dy.SimpleSGDTrainer(model)
for epoch in range(num_epochs):
    for in_words, out_label in training_data:
        dy.renew_cg()
        W = dy.parameter(W_p)
        b = dy.parameter(b_p)
        score_sym = dy.softmax(
              W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
        loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
        loss_sym.forward()
        loss_sym.backward()
        trainer.update()
```

Process training data. Computations are done in forward and backward.