Operational notes

- 2 Document updated on March 20, 2022.
- The following colors are **not** part of the final product, but serve as highlights in the edit-
- 4 ing/review process:
- text that needs attention from the Subject Matter Experts: Mirco, Anna,& Jan
- terms that have not yet been defined in the book
- text that needs advice from the communications/marketing team: Aaron & Shane
- text that needs to be completed or otherwise edited (by Sylvia)

, Todo list

10	zero-knowledge proofs
11	played with
12	finite field
13	elliptic curve
14	Update reference when content is finalized
15	methatical
16	numerical
17	a list of additional exercises
18	think about them
19	add some more informal explanation of absolute value
20	We haven't really talked about what a ring is at this point
21	What's the significance of this distinction?
22	reverse
23	Turing machine
24	polynomial time
25	sub-exponentially, with $\mathcal{O}((1+\varepsilon)^n)$ and some $\varepsilon > 0$
26	Add text
27	\mathbb{Q} of fractions
28	Division in the usual sense is not defined for integers
29	Add more explanation of how this works
30	pseudocode
31	modular arithmetics
32	actual division
33	multiplicative inverses
34	factional numbers
35	exponentiation function
36	See XXX
37	once they accept that this is a new kind of calculations, its actually not that hard 20
38	perform Euclidean division on them
39	This Sage snippet should be described in more detail
40	prime fields
41	residue class rings
42	Algorithm sometimes floated to the next page, check this for final version
43	Add a number and title to the tables
44	(-1) should be (-a)?
45	we have
46	rephrase
47	subtrahend
48	minuend

49	what does this mean?
50	Def Subgroup, Fundamental theorem of cyclic groups
51	add reference when available
52	add reference when available
53	add reference
54	check references to previous examples
55	RSA crypto system
56	size 2048-bits
57	rainder class group
58	check reference
59	add reference
60	check reference
61	polynomial time
62	exponential time
63	TODO: Fundamental theorem of finite cyclic groups
64	check reference
65	run-time complexity
66	add reference
67	S: what does "efficiently" mean here?
68	computational hardness assumptions
69	check reference
70	add reference
71	explain last sentence more
72	add reference
73	Legendre symbol
74	Euler's formular
75	These are only explained later in the text, "
76	TODO: theorem: every factor of order defines a subgroup
77	Is there a term for this property?
78	Check Sage code wrt local setup
79	add reference
80	TODO: DOUBLE CHECK THIS REASONING
81	Check Sage code wrt local setup
82	Mirco: We can do better than this
83	check reference
84	add reference
85	add reference
86	add reference
87	check reference
88	add reference
89	add more examples protocols of SNARK
90	add reference
90	gives
91 92	gives
	add reference
93 94	Abelian groups
	codomain
95	Add numbering to definitions 59

97	Check change of wording
98	add reference
99	add reference
100	Why are we repeating this example here again?
101	S: are we introducing elliptic curves in section 1 or 2? 61
102	add reference
103	write paragraph on exponentiation
104	add reference
105	To understand it
106	add reference
107	add reference
108	group pairings
109	add reference
110	add reference
111	a certain type of geometry
112	add reference
	TODO: Elliptic Curve asymmetric cryptography examples. Private key, generator,
113	public key
114	add reference
115	rephrase
116	· · · · · · · · · · · · · · · · · · ·
117	
118	
119	, J
120	
121	add reference
122	add reference
123	add reference
124	add reference
125	add reference
126	add reference
127	add reference
128	add reference
129	add reference
130	add reference
131	add reference
132	add reference
133	add reference
134	add reference
135	add reference
136	add reference
137	add reference
138	add reference
139	add reference
140	add reference
141	add reference
142	add reference
143	add reference
144	add reference

145	add reference	 	 	 	 	 	 		 	. 82
146	add reference	 	 	 	 	 	 		 	. 83
147	add reference	 	 	 	 	 	 		 	. 83
148	add reference	 	 	 	 	 	 		 	. 83
149	add reference									
150	add reference									
151	add reference									
152	add reference									
153	add reference									
154	add reference									
	add reference									
155	add reference									
156	add reference									-
157										
158	add reference									
159	add reference									
160	add reference									
161	add reference									
162	add reference									
163	add reference									
164	add reference									
165	add reference									
166	add reference	 	 	 	 	 	 		 	
167	add reference	 	 	 	 	 	 		 	
168	add reference	 	 	 	 	 	 		 	. 88
169	add reference	 	 	 	 	 	 		 	. 88
170	add reference	 	 	 	 	 	 		 	. 88
171	add reference	 	 	 	 	 	 		 	. 89
172	add reference	 	 	 	 	 	 		 	. 90
173	add reference	 	 	 	 	 	 		 	. 91
174	add reference	 	 	 	 	 	 		 	. 91
175	add reference									
176	add reference									
177	add reference									
178	add reference									
179	add reference									
180	add reference									
181	add reference									
182	add reference									
183	add reference									
	add reference									-
184	add reference									
185	add reference									-
186										
187	add reference									
188	add reference									
189	add reference									
190	add reference									
191	add reference									
192	add reference	 	 	 	 	 	 		 	. 96

193	add reference	96
194	add reference	96
195	add reference	96
196	add reference	96
197	add reference	97
198	add reference	97
199	add reference	98
	add reference	98
200	add reference	99
201	add reference	99
202		99 100
203		
204		100
205		100
206		100
207		102
208		103
209		103
210	add reference	103
211	add reference	04
212	add reference	106
213	add reference	106
214	add reference	106
215	add reference	106
216	add reference	107
217		107
218		07
219		07
220		107
221		108
222		108
223		108
		109
224		109
225		109
226		109
227		_
228		111
229		112
230		113
231		113
232		113
233		14
234		114
235		115
236		117
237	add reference	117
238	add reference	118
239	add reference	118
240	add reference	118

241	add reference	119
242	add reference	119
243	add reference	119
244	add reference	121
245	add reference	121
246	add reference	121
247	add reference	121
248	add reference	122
249	add reference	122
250	add reference	122
251	add reference	
252	add reference	
253	add reference	
254	add reference	
255	add reference	
256	add reference	124
257	Chapter 1?	
258	"rigorous"?	126
259	"proving"?	
260	Add example	
261	Add more explanation	
262	I'd delete this, too distracting	
263	binary tuples	
264	add reference	
265	add reference	
266	check reference	
267	check reference	
268	Are we using w and x interchangeably or is there a difference between them?	
269	check reference	
270	jubjub	
271	Edwards form	
272	add reference	129
273	add reference	129
274	check wording	
275		129
276	check references	
277	add reference	
278	add reference	130
279	preimage	131
280	add reference	131
281	check reference	_
282	check reference	132
283	add reference	132
284	Can we reword this? It's grammatically correct but hard to read	133
285	add reference	133
286 287		134
	Denoi/11adamara product	194

add reference check reference check reference check reference check reference check reference check reference datd reference deck reference datd reference	289	check reference	.34
check reference dad reference check reference dad reference dad reference dad reference check reference dad reference deck reference check reference deck reference deck reference dad reference	290	check reference	35
check reference check reference check reference check reference check reference check reference add reference add reference check reference check reference add reference add reference add reference check reference add reference add reference check reference add reference check reference add reference check reference add reference add reference add reference add reference add reference add reference check reference add reference add reference add reference check reference add reference add reference check reference add reference check reference check reference add refere	291	add reference	36
check reference check reference check reference dad reference add reference check reference dadd reference check reference check reference dadd reference check reference dadd reference check reference dadd reference	292	check reference	37
check reference check reference check reference add reference check reference check reference check reference check reference check reference dadd reference	293	check reference	37
check reference add reference add reference check reference add reference	294	check reference	37
add reference	295	check reference	37
add reference check reference check reference add reference add reference add reference add reference check reference add reference add reference add reference check reference add reference add reference add reference check reference add reference add reference add reference add reference add reference check reference add reference add reference check reference add reference check reference check reference add reference check reference check reference add reference	296	check reference	38
add reference check reference check reference add reference add reference add reference add reference check reference add reference add reference add reference check reference add reference add reference add reference check reference add reference add reference add reference add reference add reference check reference add reference add reference check reference add reference check reference check reference add reference check reference check reference add reference	297	add reference	38
check reference add reference add reference add reference check reference add reference check reference add reference add reference add reference check reference add reference check reference add reference check reference add reference check reference add reference add reference check reference add reference add reference add reference check reference add reference add reference add reference add reference add reference check reference check reference add reference check reference check reference add reference check reference add reference add reference add reference check reference check reference add reference add reference add reference check reference add reference check reference add refe	298	add reference	
add reference add reference add reference add reference We already said this in this chapter check reference add reference add reference check reference add reference add reference check reference add reference add reference add reference check reference add reference add reference check reference add reference check reference add reference add reference add reference check reference add reference check reference add reference check reference add reference check reference add reference	299	check reference	39
add reference add reference add reference add reference We already said this in this chapter check reference add reference add reference check reference add reference add reference check reference add reference add reference add reference check reference add reference add reference check reference add reference check reference add reference add reference add reference check reference add reference check reference add reference check reference add reference check reference add reference	300	check reference	39
add reference add reference check reference add reference add reference add reference check reference add reference check reference add reference beck reference check reference add reference add reference add reference check reference add reference add reference add reference check reference add	301	add reference	
add reference We already said this in this chapter check reference add reference add reference check reference add reference check reference add reference should we refer to R1CS satisfiability (p. 137 here? add reference add reference add reference check reference add reference check reference add reference add reference check reference check reference check reference check reference check reference add reference check reference add reference check reference check reference check reference check reference dadd reference check reference add reference add reference add reference check reference add reference	302		
check reference add reference check reference check reference dadd reference check reference show add reference check reference show add reference show add reference check reference add reference add reference add reference check reference add reference check reference	303	add reference	
check reference add reference check reference check reference dadd reference check reference show add reference check reference show add reference show add reference check reference add reference add reference add reference check reference add reference check reference	304	We already said this in this chapter	43
add reference check reference ddd reference check reference check reference ddd reference check reference ddd reference ddd reference ddd reference ddd reference check reference ddd reference check reference check reference check reference ddd reference ddd reference ddd reference check reference ddd reference			
check reference deck reference dec			
add reference check reference			
check reference Should we refer to R1CS satisfiability (p. 137 here? add reference add reference add reference add reference check reference check reference check reference add reference add reference			
Should we refer to R1CS satisfiability (p. 137 here? add reference add reference add reference add reference check reference check reference check reference dadd reference by"? add reference add reference add reference check reference add reference add reference check reference add reference add reference add reference check reference add reference			
add reference add reference add reference add reference add reference add reference check reference check reference add reference			
add reference		· · · · · · · · · · · · · · · · · · ·	
add reference			
add reference			
check reference check refe			
check reference			
check reference			
add reference 1			50
"by"?			
add reference			
Check reference Check refe			51
322 add reference 1 323 add reference 1 324 check reference 1 325 add reference 1 326 clarify language 1 327 add reference 1 328 add reference 1 329 add reference 1 330 add reference 1 331 add references to these languages? 1 332 add reference 1 333 add reference 1 334 add reference 1 335 add reference 1 336 add reference 1 337 add reference 1 338 add reference 1 339 add reference 1 331 add reference 1 332 add reference 1 333 add reference 1 334 add reference 1 335 add reference 1			51
add reference			51
check reference add reference clarify language add reference add references add reference			51
add reference			51
clarify language add reference add references add reference			51
add reference			53
328 add reference 1 329 add reference 1 330 add reference 1 331 add references 1 332 add references to these languages? 1 333 add reference 1 334 add reference 1 335 add reference 1			54
add reference			54
add reference			54
add references			54
add references to these languages?			57
333 add reference			.57
334 add reference		1	60
add reference			61
			61
	336		62

337	add reference	63
338	add reference	63
339	add reference	65
340	add reference	
341	add reference	
342	add reference	
343	add reference	
344	add reference	
345	add reference	
346	add reference	
347	add reference	
348	add reference	
349	add reference	
350	add reference	
351	add reference	
352	add reference	
352	"constraints" or "constrained"?	
353	add reference	
	"constraints" or "constrained"?	
355 356	add reference	
	"constraints" or "constrained"?	
357 358	add reference	
358	add reference	
	add reference	
360	add reference	
361	add reference	
362	add reference	
363	add reference	
364		
365	add reference	
366	shift	
367	bishift	
368		
369		78
370	something missing here?	
371		80
372		81
373		82
374		82
375		82
376		83
377		83
378		83
379		84
380		85
381		86
382		86
383		86
384	add reference	87

385	add reference	187
386	add reference	187
387	add reference	187
388	add reference	187
389	"invariable"?	187
390	add reference	188
391	add reference	188
392	add reference	188
393	add reference	189
394	add reference	189
395	add reference	
396	add reference	
397		191
398	add reference	192
399	add reference	
400	add reference	
401	add reference	
402	add reference	192
	add reference	193
403 404	add reference	-,-
	add reference	
405	add reference	
406		193
407	add reference	193
408	add reference	-,-
409	add reference	
410		
411	add reference	193
412	add reference	_
413	add reference	194
414	add reference	194
415	add reference	
416	add reference	196
417	add reference	196
418	add reference	196
419	add reference	196
420	add reference	196
421	add reference	196
422	add reference	197
423	add reference	197
424	add reference	197
425	add reference	197
426	add reference	197
427	add reference	198
428	add reference	198
429	add reference	198
430	add reference	198
431	add reference	199
422	add reference	199

433	add reference) 9
	add reference	
435	add reference)(
	add reference	
	add reference	
438	add reference)Ç

1	loor	Math	manual
I۷	\mathbf{I}	uviain	manuai

TechnoBob and the Least Scruples crew

March 20, 2022

439

440

Contents

443	1	Intro	oduction 5
444		1.1	Target audience
445		1.2	The Zoo of Zero-Knowledge Proofs
446			To Do List
447			Points to cover while writing
448	2	Preli	iminaries 9
449		2.1	Preface and Acknowledgements
450		2.2	Purpose of the book
451		2.3	How to read this book
452		2.4	Cryptological Systems
453		2.5	SNARKS
454		2.6	complexity theory
455			2.6.1 Runtime complexity
456		2.7	Software Used in This Book
457			2.7.1 Sagemath
458	3	Arit	hmetics 12
459		3.1	Introduction
460		J.1	3.1.1 Aims and target audience
461			3.1.2 The structure of this chapter
462		3.2	Integer Arithmetics
463			Euclidean Division
464			The Extended Euclidean Algorithm
465		3.3	Modular arithmetic
466			Congurency
467			Modular Arithmetics
468			The Chinese Remainder Theorem
469			Modular Inverses
470		3.4	Polynomial Arithmetics
471			Polynomial Arithmetics
472			Euklidean Division
473			Prime Factors
474			Lange interpolation
475	4	Alge	ebra 40
475	-	_	Groups
476 477		7,1	Commutative Groups
477			Finite groups

CONTENTS

479		Generators
480		The discrete Logarithm problem
481		4.1.1 Cryptographic Groups
482		The discrete logarithm assumption
483		The decisional Diffie–Hellman assumption
484		The computational Diffie–Hellman assumption
485		Cofactor Clearing
486		4.1.2 Hashing to Groups
		Hash functions
487		
488		
489		ε
490		
491		MimC Hashes
492	4.0	Pseudo Random Functions in DDH-A groups
493	4.2	Commutative Rings
494		Hashing to Commutative Rings
495	4.3	Fields
496		Prime fields
497		Square Roots
498		Exponentiation
499		Hashing into prime fields 63
500		Extension Fields
501		Hashing into extension fields
502	4.4	Projective Planes
503 5	Ellij	otic Curves 69
504	5.1	Elliptic Curve Arithmetics
505		5.1.1 Short Weierstraß Curves
506		Affine short Weierstraß form
507		Affine compressed representation
508		Affine group law
509		Scalar multiplication
510		Projective short Weierstraß form
511		Projective Group law
512		Coordinate Transformations
513		5.1.2 Montgomery Curves
514		Affine Montgomery Form
515		Affine Montgomery coordinate transformation
		Montgomery group law
516		5.1.3 Twisted Edwards Curves
517		
518		
519	<i>7</i> 0	Twisted Edwards group law
520	5.2	Elliptic Curves Pairings
521		Embedding Degrees
522		Elliptic Curves over extension fields
523		E-11 T
		Full Torsion groups
524		Torsion groups

CONTENTS

526		5.3	Hashing to	Curves
527				Try and increment hash functions
528		5.4	Construction	ng elliptic curves
529				The Trace of Frobenius
530				The j -invariant
531				The Complex Multiplication Method
532				The <i>BLS6</i> _6 pen& paper curve
533				Hashing to the pairing groups
534	6	State	ements	126
535		6.1	Formal Lan	nguages
536				Decision Functions
537				Instance and Witness
538				Modularity
539		6.2	Statement	Representations
540				nk-1 Quadratic Constraint Systems
541				R1CS representation
542				R1CS Satisfiability
543				Modularity
544			6.2.2 Als	gebraic Circuits
545			•	Algebraic circuit representation
546				Circuit Execution
547				Circuit Satisfiability
548				Associated Constraint Systems
549			6.2.3 Ou	adratic Arithmetic Programs
550			v (QAP representation
551				QAP Satisfiability
	7	Circ	uit Compile	ers 157
552	7		uit Compile	Paper Language
553		7.1		
554				e Grammar
555			7.1.2 Th	Execution Phases
556				The Setup Phase
557		7.0	C .	The Prover Phase
558		7.2		rograming concepts
559				mitive Types
560			Th	e base-field type
561				The Subtraction Constraint System
562				The Inversion Constraint System
563				The Division Constraint System
564			Th	e boolean Type
565				The boolean Constraint System
566				The AND operator constraint system
567				The OR operator constraint system
568				The NOT operator constraint system
569				Modularity
570				rays
571			Th	e Unsigned Integer Type

CONTENTS

590	9	Ever	rises aı	nd Solutions	200
588				Proof Simulation	197
587				The Verification Phase	195
586				The Proofer Phase	192
585				The Setup Phase	187
584		8.2	The "C	Groth16" Protocol	185
583		8.1	Proof S	Systems	184
582	8	Zero			184
581				Twisted Edwards curve addition	183
580				Twisted Edwards curves constraints	182
579				Twisted Edwards curves	182
578			7.2.4	Cryptographic Primitives	182
577			7.2.3	Binary Field Representations	180
576				Loops	179
575				The Conditional Assignment	177
574			7.2.2	Control Flow	177
573				The Unigned Integer Operators	176
572				The uN Constraint System	175

Chapter 1

Introduction

This is dump from other papers as inspiration for the intro:

Zero knowledge proofs are a class of cryptographic protocols in which one can prove honest computation without revealing the inputs to that computation. A simple high-level example of a zero-knowledge proof is the ability to prove one is of legal voting age without revealing the respective age. In a typical zero knowledge proof system, there are two participants: a prover and a verifier. A prover will present a mathematical proof of computation to a verifier to prove honest computation. The verifier will then confirm whether the prover has performed honest computation based on predefined methods. Zero knowledge proofs are of particular interest to public blockchain activities as the verifier can be codified in smart contracts as opposed to trusted parties or third-party intermediaries.

Zero-knowledge proofs (ZKPs) are an important privacy-enhancing tool from cryptography. Theyallow proving the veracity of a statement, related to confidential data, without revealing any in-formation beyond the validity of the statement. ZKPs were initially developed by the academiccommunity in the 1980s, and have seen tremendous improvements since then. They are now ofpractical feasibility in multiple domains of interest to the industry, and to a large community ofdevelopers and researchers. ZKPs can have a positive impact in industries, agencies, and for per-sonal use, by allowing privacy-preserving applications where designated private data can be madeuseful to third parties, despite not being disclosed to them.

ZKP systems involve at least two parties: a prover and a verifier. The goal of the prover is toconvince the verifier that a statement is true, without revealing any additional information. Forexample, suppose the prover holds a birth certificate digitally signed by an authority. In orderto access some service, the prover may have to prove being at least 18 years old, that is, thatthere exists a birth certificate, tied to the identify of the prover and digitally signed by a trusted certification authority, stating a birthdate consistent with the age claim. A ZKP allows this, without the prover having to reveal the birthdate.

1.1 Target audience

This book is accessible for both beginners and experienced developers alike. Concepts are gradually introduced in a logical and steady pace. Nonetheless, the chapters lend themselves rather well to being read in a different order. More experienced developers might get the most benefit by jumping to the chapters that interest them most. If you like to learn by example, then you should go straight to the chapter on Using Clarinet.

It is assumed that you have a basic understanding of programming and the underlying logical concepts. The first chapter covers the general syntax of Clarity but it does not delve into what

programming itself is all about. If this is what you are looking for, then you might have a more difficult time working through this book unless you have an (undiscovered) natural affinity for such topics. Do not let that dissuade you though, find an introductory programming book and press on! The straightforward design of Clarity makes it a great first language to pick up.

1.2 The Zoo of Zero-Knowledge Proofs

```
First, a list of zero-knowledge proof systems:
630
       1. Pinocchio (2013): Paper
631

    Notes: trusted setup

632
       2. BCGTV (2013): Paper
633
             - Notes: trusted setup, implementation
634
       3. BCTV (2013): Paper
635
             - Notes: trusted setup, implementation
636
       4. Groth16 (2016): Paper
637

    Notes: trusted setup

638
             - Other resources: Talk in 2019 by Georgios Konstantopoulos
639
       5. GM17 (207): Paper
640

    Notes: trusted setup

641
             - Other resources: later Simulation extractability in ROM, 2018
642
       6. Bulletproofs (2017): Paper

    Notes: no trusted setup

644
             - Other resources: Polynomial Commitment Scheme on DL, 2016 and KZG10, Poly-
645
                nomial Commitment Scheme on Pairings, 2010
646
       7. Ligero (2017): Paper
647
             - Notes: no trusted setup
648
             - Other resources:
649
       8. Hyrax (2017): Paper
650

    Notes: no trusted setup

651
             – Other resources:
652
       9. STARKs (2018): Paper
653
```

- Notes: no trusted setup

– Other resources:

654

655

10. Aurora (2018): Paper 656 Notes: transparent SNARK 657 – Other resources: 658 11. Sonic (2019): Paper 659 - Notes: SNORK - SNARK with universal and updateable trusted setup, PCS-based 660 - Other resources: Blog post by Mary Maller from 2019 and work on updateable and 661 universal setup from 2018 662 12. Libra (2019): Paper 663 Notes: trusted setup 664 - Other resources: 13. Spartan (2019): Paper 666 Notes: transparent SNARK 667 - Other resources: 668 14. PLONK (2019): Paper 669 Notes: SNORK, PCS-based 670 Other resources: Discussion on Plonk systems and Awesome Plonk list 15. Halo (2019): Paper 672 Notes: no trusted setup, PCS-based, recursive 673 – Other resources: 674 16. Marlin (2019): Paper 675 Notes: SNORK, PCS-based 676 Other resources: Rust Github 17. Fractal (2019): Paper 678 Notes: Recursive, transparent SNARK 679 – Other resources: 680 18. SuperSonic (2019): Paper 681 Notes: transparent SNARK, PCS-based 682 Other resources: Attack on DARK compiler in 2021 683 19. Redshift (2019): Paper 684 - Notes: SNORK, PCS-based 685 – Other resources: 686 Awesome ZKP list on Github, ZKP community with the

Other resources on the zoo:

reference document

687

689 To Do List

690

696

700

701

703

704

- Make table for prover time, verifier time, and proof size
- Think of categories Achieved Goals: Trusted setup or not, Post-quantum or not, ...
- Think of categories *Mathematical background*: Polynomial commitment scheme, ...
- ... while we discuss the points above, we should also discuss a common notation/language for all these things. (E.g. transparent SNARK/no trusted setup/STARK)

Points to cover while writing

- Make a historical overview over the "discovery" of the different ZKP systems
- Make reader understand what paper is build on what result etc. the tree of publications!
- Make reader understand the different terminology, e.g. SNARK/SNORK/STARK, PCS, R1CS, updateable, universal, ...
 - Make reader understand the mathematical assumptions and what this means for the zoo.
 - Where will the development/evolution go? What are bottlenecks?

702 Other topics I fell into while compiling this list

- Vector commitments: https://eprint.iacr.org/2020/527.pdf
- Snarkl: http://ace.cs.ohio.edu/~gstewart/papers/snaarkl.pdf
- Virgo?: https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F19/projects/reports/project5_report_ver2.pdf

Chapter 2

Preliminaries

2.1 Preface and Acknowledgements

This book began as a set of lecture and notes accompanying the zk-Summit 0x and 0xx It arose from the desire to collect the scattered information of snarks [] and present them to an audience that does not have a strong backgroud in cryptography []

2.2 Purpose of the book

The first version of this book is written by security auditors at Least Authority where we audited quite a few snark based systems. Its included "what we have learned" destilate of the time we spend on various audits.

We intend to let illus- trative examples drive the discussion and present the key concepts of pairing computation with as little machinery as possible. For those that are fresh to pairing-based cryptography, it is our hope that this chapter might be particularly useful as a first read and prelude to more complete or advanced expositions (e.g. the related chapters in [Gal12]).

On the other hand, we also hope our beginner-friendly intentions do not leave any sophisticated readers dissatisfied by a lack of formality or generality, so in cases where our discussion does sacrifice completeness, we will at least endeavour to point to where a more thorough exposition can be found.

One advantage of writing a survey on pairing computation in 2012 is that, after more than a decade of intense and fast-paced research by mathematicians and cryptographers around the globe, the field is now racing towards full matu- rity. Therefore, an understanding of this text will equip the reader with most of what they need to know in order to tackle any of the vast literature in this remarkable field, at least for a while yet.

Since we are aiming the discussion at active readers, we have matched every example with a corresponding snippet of (hyperlinked) Magma [BCP97] code 1, where we take inspiration from the helpful Magma pairing tutorial by Dominguez Perez et al. [DKS09].

Early in the book we will develop examples that we then later extend with most of the things we learn in each chapter. This way we incrementally build a few real world snarks but over full fledged cryptographic systems that are nevertheless simple enough to be computed by pen and paper to illustrate all steps in grwat detail.

2.3 How to read this book

738 Books and papers to read: XXXXXXXXXX

Correctly prescribing the best reading route for a beginner naturally requires individual diagnosis that depends on their prior knowledge and technical preparation.

2.4 Cryptological Systems

The science of information security is referred to as *cryptology*. In the broadest sense, it deals with encryption and decryption processes, with digital signatures, identification protocols, cryptographic hash functions, secrets sharing, electronic voting procedures and electronic money. EXPAND

2.5 **SNARKS**

2.6 complexity theory

Before we deal with the mathematics behind zero knowledge proof systems, we must first clarify what is meant by the runtime of an algorithm or the time complexity of an entire mathematical problem. This is particularly important for us when we analyze the various snark systems...

For the reader who is interested in complexity theory, we recommend, or example or , as well as the references contained therein.

2.6.1 Runtime complexity

The runtime complexity of an algorithm describes, roughly speaking, the amount of elementary computation steps that this algorithm requires in order to solve a problem, depending on the size of the input data.

Of course, the exact amount of arithmetic operations required depends on many factors such as the implementation, the operating system used, the CPU and many more. However, such accuracy is seldom required and is mostly meaningful to consider only the asymptotic computational effort.

In computer science, the runtime of an algorithm is therefore not specified in individual calculation steps, but instead looks for an upper limit which approximates the runtime as soon as the input quantity becomes very large. This can be done using the so-called *Landau notation* (also called big -\$\mathcal{O}\$-notation) A precise definition would, however, go beyond the scope of this work and we therefore refer the reader to .

For us, only a rough understanding of transit times is important in order to be able to talk about the security of crypographic systems. For example, $\mathcal{O}(n)$ means that the running time of the algorithm to be considered is linearly dependent on the size of the input set n, $\mathcal{O}(n^k)$ means that the running time is polynomial and $\mathcal{O}(2^n)$ stands for an exponential running time (chapter 2.4).

An algorithm which has a running time that is greater than a polynomial is often simply referred to as *slow*.

A generalization of the runtime complexity of an algorithm is the so-called *time complexity* of a mathematical problem, which is defined as the runtime of the fastest possible algorithm that can still solve this problem (chapter 3.1).

Since the time complexity of a mathematical problem is concerned with the runtime analysis of all possible (and thus possibly still undiscovered) algorithms, this is often a very difficult and deep-seated question .

For us, the time complexity of the so-called discrete logarithm problem will be important. This is a problem for which we only know slow algorithms on classical computers at the moment, but for which at the same time we cannot rule out that faster algorithms also exist.

STUFF ON CRYPTOGRAPHIC HASH FUNCTIOND

2.7 Software Used in This Book

2.7.1 Sagemath

It order to provide an interactive learning experience, and to allow getting hands-on with the concepts described in this book, we give examples for how to program them in the Sage programming language. Sage is a dialect of the learning-friendly programming language Python, which was extended and optimized for computing with, in and over algebraic objects. Therefore, we recommend installing Sage before diving into the following chapters.

The installation steps for various system configurations are described on the sage websit ¹. Note however that we use Sage version 9, so if you are using Linux and your package manager only contains version 8, you may need to choose a different installation path, such as using prebuilt binaries.

We recommend the interested reader, who is not familiar with sagemath to read on the many tutorial before starting this book. For example

https://doc.sagemath.org/html/en/installation/index.html

Chapter 3

Arithmetics

3.1 Introduction

801

803

804

805

806

807

808

809

810

811

812

813

814

815

817

818

819

820

821

824

825

826

827

828

3.1.1 Aims and target audience

The goal of this chapter is to enable a reader who is starting out with nothing more than basic high school algebra to be able to solve basic tasks in elliptic curve cryptography without the need of a computer.

How much mathematics do you need to understand zero-knowledge proofs? The answer, of course, depends on the level of understanding you aim for. It is possible to describe zero-knowledge proofs without using mathematics at all; however, to read a foundational paper like Groth [2016], some knowledge of mathematics is needed to be able to follow the discussion.

zeroknowledge proofs

Without a solid grounding in mathematics, someone who is interested in learning the concepts of zero-knowledge proofs, but who has never seen or played with, say, a finite field, or an elliptic curve, may quickly become overwhelmed. This is not so much due to the complexity of the mathematics needed, rather because of the vast amount of technical jargon, unknown terms, and obscure symbols that quickly makes a text unreadable, even though the concepts themselves are not actually that hard. As a result, the reader might either lose interest, or pick up some incoherent bits and pieces of knowledge that, in the worst case scenario, result in immature code.

with

played

finite field

elliptic curve

This is why we dedicated this chapter to explaining the mathematical foundations needed to understand the basic concepts underlying snark development. We encourage the reader who is not familiar with basic number theory and elliptic curves to take the time and read this and the following chapters, until they are able to solve at least a few exercises in each chapter.

If, on the other hand, you are already skilled in elliptic curve cryptography, feel free to skip this chapter and only come back to it for reference and comparison. Maybe the most interesting parts are XXX .

We start our explanations at a very basic level, and only assume pre-existing knowledge of fundamental concepts like integer arithmetics. At the same time, we'll attempt to teach you to "think mathematically", and to show you that there are numbers and methatical structures out there that appear to be very different from the things you learned about in high school, but on a deeper level, they are actually quite similar.

Update reference when content is finalized

methatica

We want to stress, however, that this introduction is informal, incomplete and optimized to enable the reader to understand zero-knowledge concepts as efficiently as possible. Our focus and design choices are to include as little theory as necessary, focusing on the wealth of numerical examples. We believe that such an informal, example-driven approach to learning

numerical

mathematics may make it easier for beginners to digest the material in the initial stages.

For instance, as a beginner, you would probably find it more beneficial to first compute a simple toy **snark** with pen and paper all the way through, before actually developing real-world production-ready systems. In addition, it's useful to have a few simple examples in your head before getting started with reading actual academic papers.

However, in order to be able to derive these toy examples, some mathematical groundwork is needed. This chapter therefore will help you focus on what is important, accompanied by exercises that you are encouraged to recompute yourself. Every section usually ends with a list of additional exercises in increasing order of difficulty, to help the reader memorize and apply the concepts.

a list of additional exercises

3.1.2 The structure of this chapter

We start with a brief recapitulation of basic integer arithmetics like long division, the greatest common divisor and Euclid's algorithm. After that, we introduce modular arithmetics as **the most important** skill to compute our pen-and-paper examples. We then introduce polynomials, compute their analogs to integer arithmetics and introduce the important concept of Lagrange interpolation.

After this practical warm up, we introduce some basic algebraic terms like groups and fields, because those terms are used very frequently in academic papers relating to zero-knowledge proofs. The beginner is advised to memorize those terms and think about them. We define these terms in the general abstract way of mathematics, hoping that the non mathematical trained reader will gradually learn to become comfortable with this style. We then give basic examples and do basic computations with these examples to get familiar with the concepts.

think about them

3.2 Integer Arithmetics

In a sense, integer arithmetics is at the heart of large parts of modern cryptography, because it provides the most basic tools for doing computations in those systems. Fortunately, most readers will probably remember integer arithmetics from school. It is, however, important that you can confidently apply those concepts to understand and execute computations in the many pen-and-paper examples that form an integral part of the MoonMath Manual. We will therefore recapitulate basic arithmetics concepts to refresh your memory and fill any knowledge gaps.

In what follows, we apply standard mathematical notations, and use the symbol \mathbb{Z} for the set of all **integers**: S: I think it'd be useful to explain the difference between := and = as well. We have a table on this in the ZKAPs whitepaper.

M:Yeah maybe we use the more suggestive leftarrows aks \leftarrow ? If a table of symbols is unavoidable then ok, I find I super ugly, though

S: The table below is similar to what we have in the ZKAPs whitepaper. I think it's easier to read than a wall of text explaining the same things. We can make it more visually different (e.g. typesetting it in "dark mode", and probably move it earlier in the chapter.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

Symbol	Meaning of Symbol	Example	Explanation
=	equals	a=r	a and r have the same value
:=	defining a variable	$\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$	\mathbb{Z} is the set of integers
\in	from the set	$a \in \mathbb{Z}$	a is an integer

Notation used in this chapter

$$\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} \tag{3.1}$$

Integers are also known as **whole numbers**, that is, numbers that can be written without fractional parts. Examples of numbers that are **not** integers are $\frac{2}{3}$, 1.2 and -1280.006.

If $a \in \mathbb{Z}$ is an integer, then |a| stands for the **absolute value** of a, that is, the non-negative value of a without regard to its sign:

$$|4| = 4 \tag{3.2}$$

$$|-4| = 4 \tag{3.3}$$

add some more informal explanation of absolute value

In addition, we use the symbol \mathbb{N} for the set of all **counting numbers** (also called natural numbers). So whenever you see the symbol \mathbb{N} , think of the set of all non negative integers including the number 0:

$$\mathbb{N} := \{0, 1, 2, 3, \dots\} \tag{3.4}$$

Any number that is smaller than 0, that is, any number that has a minus sign, is not part of \mathbb{N} ". All counting numbers are integers, but not the other way round. In other words, counting numbers are a subset of integers.

To make it easier to memorize new concepts and symbols, we might frequently link to definitions (See 3.1 for a definition of \mathbb{Z}) in the beginning, but as to many links render a text unreadable, we will assume the reader will become familiar with definitions as the text proceeds at which point we will not link them anymore.

Both sets \mathbb{N} and \mathbb{Z} have a notion of addition and multiplication defined on them. Most of us are probably able to do many integer computations in our head, but this gets more and more difficult as these increase in complexity. We will frequently invoke the SageMath system (2.7.1) for more complicated computations. One way to invoke the integer type in Sage is: We haven't really talked about what a ring is at this point

```
sage: ZZ # A sage notation for the integer type
890
   Integer Ring
891
   sage: NN # A sage notation for the counting number type
892
   Non negative integer semiring
893
   sage: ZZ(5) # Get an element from the Ring of integers
894
   5
895
   sage: ZZ(5) + ZZ(3)
896
897
   sage: ZZ(5) * NN(3)
898
899
   sage: ZZ.random_element(10**50)
900
```

add some more informal explanation of absolute value

8

We

haven't

really

talked

about

what a

ring is at

this point

```
84171518381395594090483054147323086275118949345354
                                                                          12
901
   sage: ZZ(27713).str(2) # Binary string representation
                                                                          13
902
   110110001000001
                                                                          14
903
   sage: NN(27713).str(2) # Binary string representation
                                                                          15
904
   110110001000001
                                                                          16
905
   sage: ZZ(27713).str(16) # Hexadecimal string representation
                                                                          17
906
                                                                          18
907
```

One set of numbers that is of particular interest to us is **prime numbers**, which are counting numbers $p \in \mathbb{N}$ with $p \ge 2$, which are only divisible by themself and by 1. All prime numbers apart from the number 2 are called **odd** (since even numbers greater than 2 are all divisible by 2, they are not prime numbers). We write \mathbb{P} for the set of all prime numbers and $\mathbb{P}_{\ge 3}$ for the set of all odd prime numbers. \mathbb{P} is infinite and can be ordered according to size, so that we can write them as follows:

$$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,...$$
 (3.5)

This is sequence A000040 in OEIS, the Onl-Line Encyclopedia of Integer Sequences. In particular, we can talk about small and large prime numbers.

As the **fundamental theorem of arithmetics** tells us, prime numbers are, in a certain sense, the basic building blocks from which all other natural numbers are composed. To see that, let $n \in \mathbb{N}_{\geq 2}$ be any natural number. Then there are always prime numbers $p_1, p_2, \ldots, p_k \in \mathbb{P}$, such that

What's the significance of this distinction?

$$n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \,. \tag{3.6}$$

This representation is unique for each natural number (except for the order of the factors) and is called the **prime factorization** of n.

Example 1 (Prime Factorization). To see what we mean by prime factorization of a number, let's look at the number $19214758032624000 \in \mathbb{N}$. To get its prime factors, we can successively divide it by all prime numbers in ascending order starting with 2:

We can double check our findings invoking Sage, which provides an algorithm to factor counting numbers:

```
924 sage: n = NN(19214758032624000) 19

925 sage: factor(n) 20

926 2^7 * 3^3 * 5^3 * 7 * 11 * 17^2 * 23 * 43^2 * 47 21
```

This computation reveals an important observation: Computing the factorization of an integer is computationally expensive, while the reverse, that is, computing the product of given a set of prime numbers, is fast. MIRCO: inverse process? Its not reversing something actually, but my english doesn't resolve to this level very well

everse

From this, an important question arises: How fast we can compute the prime factorization of a natural number? This is the famous **factorization problem** and, as far as we know, there is no method on a classical Turing machine that is able to compute this representation in polynomial time. The fastest algorithm known today run sub-exponentially, with $\mathcal{O}((1+\varepsilon)^n)$ and some $\varepsilon > 0$.

Turing machine

It follows that number factorization \Leftrightarrow prime number multiplication is an example of a so-called **one-way function**: Something that is easy to compute in one direction, but hard to

polynomial time

939

940

941

942

943

944

945

951

952

955

956

957

958

959

961

962

963

964

965

966

compute in the other direction. The existence of one-way functions is a basic cryptographic assumptions that the security of many crypto systems is based on.

It should be pointed out, however, hat the American mathematician Peter Williston Shor developed an algorithm in 1994 which can calculate the prime factor representation of a natural number in polynomial time on a quantum computer. The consequence of this is that crptyosystems, which are based on the time complexity of the prime factor problem, are unsafe as soon as practically usable quantum computers become available. Add text_along the lines of "this_is the best we got for now" Possibly something on when we can reasonably expect quantum computers to become accessible/usable enough

Add text

- Exercise 1. What is the absolute value of the integers -123, 27 and 0?
- Exercise 2. Compute the factorization of 6469693230 and double check your results using Sage.
- Exercise 3. Consider the following equation $4 \cdot x + 21 = 5$. Compute the set of all solutions for x under the following alternative assumptions:
 - 1. The equation is defined over the type of natural numbers.
 - 2. The equation is defined over the type of integers.
- Exercise 4. Consider the following equation $2x^3 x^2 2x = -1$. Compute the set of all solutions x under the following assumptions:
 - 1. The equation is defined over the type of natural numbers.
 - 2. The equation is defined over the type of integers.
 - 3. The equation is defined over the type Q of fractions.

Q of fractions

Euclidean Division Division in the usual sense is not defined for integers, as, for example, 7 divided by 3 will not be an integer again. However it is possible to divide any two integers with a remainder. So for example 7 divided by 3 is equal to 2 with a remainder of 1, since $7 = 2 \cdot 3 + 1$.

Division in the usual sense is not defined for integers

Doing integer division like this is probably something many of us remember from school. It is usually called **Euclidean division**, or **division with a remainder**, and it is an essential technique to understand many concepts in this book. The precise definition is as follows:

Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be two integers with $b \neq 0$. Then there is always another integer $m \in \mathbb{Z}$ and a counting number $r \in \mathbb{N}$, with $0 \le r < |b|$ such that

$$a = m \cdot b + r \tag{3.7}$$

This decomposition of a given b is called **Euclidean division**, where a is called the **dividend**, b is called the **divisor**, m is called the **quotient** and r is called the **remainder**.

Notation and Symbols 1. Suppose that the numbers a, b, m and r satisfy equation (3.7). Then we often write

$$a \operatorname{div} b := m, \quad a \operatorname{mod} b := r \tag{3.8}$$

to describe the quotient and the remainder of the Euclidean division. We also say, that an integer a is divisible by another integer b if $a \mod b = 0$ holds. In this case we also write b|a.

So, in a nutshell Euclidean division is a process of dividing one integer by another in a way that produces a quotient and a non-negative remainder, the latter of which is smaller than the absolute value of the divisor. It can be shown, that both the quotient and the remainder always exist and are unique, as long as the dividend is different from 0.

A special situation occurs whenever the remainder is zero, because in this case the dividend is divisible by the divisor. Our notation b|a reflects that.

Example 2. Applying Euclidean division and our previously defined notation 3.27 to the divisor -17 and the dividend 4, we get

```
-17 \text{ div } 4 = -5, \quad -17 \text{ mod } 4 = 3
```

because -17 = -5.4 + 3 is the Euclidean division of -17 and 4 (the remainder is, by definition, a non-negative number). In this case 4 does not divide -17, as the reminder is not zero. The truth value of the expression 4|-17 therefore is FALSE. On the other hand, the truth value of 4|12 is TRUE, since 4 divides 12, as $12 \mod 4 = 0$. We can invoke SageMath to do the computation for us. We get

```
sage: ZZ(-17) // ZZ(4) # Integer quotient
                                                                               22
984
                                                                               23
985
    sage: ZZ(-17) % ZZ(4) # remainder
                                                                               24
986
    3
                                                                               25
987
    sage: ZZ(4).divides(ZZ(-17)) # self divides other
                                                                               26
988
    False
                                                                               27
989
    sage: ZZ(4).divides(ZZ(12))
                                                                               28
990
    True
                                                                               29
991
```

Methods to compute Euclidean division for integers are called **integer division algorithms**. Probably the best known algorithm is the so-called **long division**, which most of us might have learned in school. (It should be noted, however, that there are faster methods like **Newton–Raphson division**.)

As long division is the standard method used for pen-&-paper division of multi-digit numbers expressed in decimal notation, the reader should become familiar with it as we use it throughout this book when we do simple pen-and-paper computations. However, instead of defining the algorithm formally, we rather give some examples that will hopfuelly make the process clear.

In a nutshell, the algorithm loops through the digits of the dividend from the left to right, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the remainder is the first digit of the dividend. Add more explanation of how this works

Example 3 (Integer Long Division). To give an example of integer long division algorithm, lets divide the integer a=143785 by the number b=17. Our goal is therefore to find solutions to equation 3.7, that is, we need to find the quotient $m \in \mathbb{Z}$ and the remainder $r \in \mathbb{N}$ such that $143785 = m \cdot 17 + r$. Using a notation that is mostly used in Commonwealth countries, we

Add more explanation of how this works

1009 compute as follows

$$\begin{array}{r}
 8457 \\
 \hline
 17) 143785 \\
 \underline{136} \\
 77 \\
 \underline{68} \\
 \underline{98} \\
 \underline{85} \\
 \overline{135} \\
 \underline{119} \\
 \underline{16}
\end{array}$$
(3.9)

We therefore get m = 8457 as well as r = 16 and indeed we have $143785 = 8457 \cdot 17 + 16$, which we can double check invoking Sage:

Exercise 5 (Integer Long Division). Find an $m \in \mathbb{Z}$ as well as an $r \in \mathbb{N}$ such that $a = m \cdot b + r$ holds for the following pairs (a,b) = (27,5), (a,b) = (27,-5), (a,b) = (127,0), (a,b) = (-1687,11) and . In which cases are your solutions unique?

1019
$$(a,b) = (0,7)$$

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

Exercise 6 (Long Division Algorithm). Write an algorithm in pseudocode that computes integer pseudocode long division, handling all edge cases properly.

The Extended Euclidean Algorithm One of the most critical parts in this book is modular arithmetics XXX and its application in the computations in so-called **finite fields**, as we explain in XXX. In modular arithmetics, it is sometimes possible to define actual division and multiplicative inverses of numbers, that is very different from inverses as we know them from other systems like factional numbers.

However, to actually compute those inverses, we have to get familiar with the so-called **extended Euclidean algorithm**. A few more terms are necessary to explain the concept: The **greatest common divisor** (GCD) of two nonzero integers a and b is the greatest non-zero counting number d such that d divides both a and b; that is d|a as well as d|b. We write gcd(a,b) := d for this number. In addition, two counting numbers are called **relative primes** or **coprimes**, if their greatest common divisor is 1.

The extended Euclidean algorithm is a method to calculate the greatest common divisor of two counting numbers a and $b \in \mathbb{N}$, as well as two additional integers $s, t \in \mathbb{Z}$, such that the following equation holds:

$$gcd(a,b) = s \cdot a + t \cdot b \tag{3.10}$$

The following pseudocode shows in detail how to calculate these numbers with the extended Euclidean algorithm:

The algorithm is simple enough to be done effectively in pen-&-paper examples, where it is common to write it as a table where the rows represent the while-loop and the columns represent the values of the the array r, s and t with index k. The following example provides a simple execution:

modular arithmetics

actual division

multiplicati inverses

factional numbers

Algorithm 1 Extended Euclidean Algorithm

```
Require: a, b \in \mathbb{N} with a > b
   procedure EXT-EUCLID(a,b)
         r_0 \leftarrow a
         r_1 \leftarrow b
         s_0 \leftarrow 1
         s_1 \leftarrow 0
         k \leftarrow 1
         while r_k \neq 0 do
               q_k \leftarrow r_{k-1} \text{ div } r_k
               r_{k+1} \leftarrow r_{k-1} - q_k \cdot r_k
               s_{k+1} \leftarrow s_{k-1} - q_k \cdot s_k
               k \leftarrow k+1
         end while
         return gcd(a,b) \leftarrow r_{k-1}, s \leftarrow s_{k-1} and t := (r_{k-1} - s_{k-1} \cdot a) div b
   end procedure
Ensure: gcd(a,b) = s \cdot a + t \cdot b
```

Example 4. To illustrate the algorithm, lets apply it to the numbers a=12 and b=5. Since $12,5 \in \mathbb{N}$ as well as $12 \ge 5$ all requirements are meat and we compute

From this we can see that 12 and 5 are relatively prime (coprime), since their greatest common divisor is gcd(12,5)=1 and that the equation $1=(-2)\cdot 12+5\cdot 5$ holds. We can also invoke sage to double check our findings:

Exercise 7 (Extended Euclidean Algorithm). Find integers $s, t \in \mathbb{Z}$ such that $gcd(a, b) = s \cdot a + t \cdot b$ holds for the following pairs (a, b) = (45, 10), (a, b) = (13, 11), (a, b) = (13, 12). What pairs (a, b) are coprime?

Exercise 8 (Towards Prime fields). Let $n \in \mathbb{N}$ be a counting number and p a prime number, such that n < p. What is the greatest common divisor gcd(p, n)?

Exercise 9. Find all numbers $k \in \mathbb{N}$ with $0 \le k \le 100$ such that gcd(100, k) = 5.

1056 Exercise 10. Show that gcd(n,m) = gcd(n+m,m) for all $n,m \in \mathbb{N}$.

3.3 Modular arithmetic

1044

1057

In mathematics, **modular arithmetic** is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, much like calculations on a clock wrap around whenever the value exceeds the number 12. For example, if the clock shows that it is 11 o'clock,

then 20 hours later it will be 7 o'clock, not 31 o'clock. The number 31 has no meaning on a normal clock that shows hours.

The number at which the wrap occurs is called the **modulus**. Modular arithmetics generalizes the clock example to arbitrary moduli and studies equations and phenomena that arize in this new kind of arithmetics. It is of central importance for understanding most modern crypto systems, in large parts because the exponentiation function has an inverse with respect to certain moduli that is hard to compute. In addition, we will see that it provides the foundation of what is called finite fields ().

Although modular arithmetic appears very different from ordinary integer arithmetic that we are all familiar with, we encourage the interested reader to work through the example and to discover that, once they accept that this is a new kind of calculations, its actually not that hard.

Congurency In what follows, let $n \in \mathbb{N}$ with $n \ge 2$ be a fixed counting number, that we will call the **modulus** of our modular arithmetics system. With such an n given, we can then group integers into classes, by saying that two integers are in the same class, whenever their Euclidean division 3.2 by n will give the same remainder. We then say that two numbers are **congruent** whenever they are in the same class.

Example 5. If we choose n = 12 as in our clock example, then the integers -7, 5, 17 and 29 are all congruent with respect to 12, since all of them have the remainder 5 if we perform Euclidean division on them by 12. In the picture of an analog 12-hour clock, starting at 5 o'clock, when we add 12 hours we are again at 5 o'clock, representing the number 17. On the other hand, when we subtract 12 hours, we are at 5 o'clock again, representing the number -7.

We can formalize this intuition of what congruency should be into a proper definition utilizing Euclidean division (as explained previously in 3.2): Let $a, b \in \mathbb{Z}$ be two integers and $n \in \mathbb{N}$ a natural number. Then a and b are said to be **congruent with respect to the modulus** n, if and only if the following equation holds

$$a \bmod n = b \bmod n \tag{3.11}$$

If, on the other hand, two numbers are not congruent with respect to a given modulus n, we call them **incongruent** w.r.t. n.

A **congruency** is then nothing but an equation "up to congruency", which means that the equation only needs to hold if we take the modulus on both sides. In which case we write

$$a \equiv b \pmod{n} \tag{3.12}$$

Exercise 11. Which of the following pairs of numbers are congruent with respect to the modulus 13: (5,19), (13,0), (-4,9), (0,0).

Exercise 12. Find all integers x, such that the congruency $x \equiv 4 \pmod{6}$ is satisfied.

Modular Arithmetics One particulary useful thing about congruencies is, that we can do calculations (arithmetics), much like we can with integer equations. That is, we can add or multiply numbers on both sides. The main difference is probably that the congruency $a \equiv b \pmod{n}$ is only equivalent to the congruency $k \cdot a \equiv k \cdot b \pmod{n}$ for some non zero integer $k \in \mathbb{Z}$, whenever k and the modulus n are coprime. The following list gives a set of useful rules:

Suppose that the congurencies $a_1 \equiv b_1 \pmod{n}$ as well as $a_2 \equiv b_2 \pmod{n}$ are satisfied for integers $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ and that $k \in \mathbb{Z}$ is another integer. Then:

exponentiatio function

See XXX

once they accept that this is a new kind of calculations, its actually not that hard

perform Euclidean division on them

1111

- $a_1 + k \equiv b_1 + k \pmod{n}$ (compatibility with translation)
- $k \cdot a_1 \equiv k \cdot b_1 \pmod{n}$ (compatibility with scaling)
- $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$ (compatibility with addition)
- $a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{n}$ (compatibility with multiplication)

Other rules, such as compatibility with subtraction and exponentiation, follow from the rules above. For example, compatibility with subtraction follows from compatibility with scaling by k = -1 and compatibility with addition.

Note that the previous rules are implications, not equivalences, which means that you can not necessarily reverse those rules. The following rules makes this precise:

- If $a_1 + k \equiv b_1 + k \pmod{n}$, then $a_1 \equiv b_1 \pmod{n}$
 - If $k \cdot a_1 \equiv k \cdot b_1 \pmod{n}$ and k is coprime with n, then $a_1 \equiv b_1 \pmod{n}$
- If $k \cdot a_1 \equiv k \cdot b_1 \pmod{k \cdot n}$, then $a_1 \equiv b_1 \pmod{n}$

Another property of congruencies, not known in the traditional arithmetics of integers is the Fermat's Little Theorem. In simple words, it states that, in modular arithmetics, every number raised to the power of a prime number modulus is congruent to the number itself. Or, to be more precise, if $p \in \mathbb{P}$ is a prime number and $k \in \mathbb{Z}$ is an integer, then:

$$k^p \equiv k \pmod{p} \,, \tag{3.13}$$

If k is coprime to p, then we can divide both sides of this congruency by k and rewrite the expression into the equivalent form

$$k^{p-1} \equiv 1 \pmod{p} \tag{3.14}$$

This Sage

We can use Sage to compute examples for both k being coprime and not coprime to p:

```
snippet
    sage: ZZ(137).gcd(ZZ(64))
1120
                                                                                    should be
1121
                                                                                    described
    sage: ZZ(64) ** ZZ(137) % ZZ(137) == ZZ(64) % ZZ(137)
1122
                                                                                    <sup>8</sup>n more
    True
                                                                                    detail.
1123
    sage: ZZ(64) ** ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
                                                                                   40
1124
    True
                                                                                   41
1125
    sage: ZZ(1918).gcd(ZZ(137))
                                                                                   42
1126
    137
                                                                                   43
1127
    sage: ZZ(1918) ** ZZ(137) % ZZ(137) == ZZ(1918) % ZZ(137)
                                                                                   44
1128
    True
                                                                                   45
1129
    sage: ZZ(1918) ** ZZ(137-1) % ZZ(137) == ZZ(1) % ZZ(137)
                                                                                   46
1130
    False
                                                                                   47
1131
```

Now, since for the sake of readers who have never encountered modular arithmetics before, let's compute an example that contains most of the concepts described in this section:

Example 6. Assume that we choose the modulus 6 and that our task is to solve the following congruency for $x \in \mathbb{Z}$

$$7 \cdot (2x+21) + 11 \equiv x - 102 \pmod{6}$$

1144

As many rules for congruencies are more or less same as for integers why integers? MIRCO: I think this is emergent. Congruencies work on integers, we can proceed in a similar way as we would if we had an equation to solve. Since both sides of a congruency contain ordinary integers, we can rewrite the left side as follows: $7 \cdot (2x+21) + 11 = 14x + 147 = 14x + 158$. We can therefore rewrite the congruency into the equivalent form

$$14x + 158 \equiv x - 102 \pmod{6}$$

In the next step we want to shift all instances of x to left and every other term to the right. So we apply the "compatibility with translation" rules two times. In a first step we choose k = -x and in a second step we choose k = -158. Since "compatibility with translation" transforms a congruency into an equivalent form, the solution set will not change and we get

$$14x + 158 \equiv x - 102 \pmod{6} \Leftrightarrow 14x - x + 158 - 158 \equiv x - x - 102 - 158 \pmod{6} \Leftrightarrow 13x \equiv -260 \pmod{6}$$

If our congruency would just be a normal integer equation, we would divide both sides by 13 to get x = -20 as our solution. However, in case of a congruency, we need to make sure that the modulus and the number we want to divide by are coprime first – only then will we get an equivalent expression. So we need to find the greatest common divisor gcd(13,6). Since 13 is prime and 6 is not a multiple of 13, we know that gcd(13,6) = 1, so these numbers are indeed coprime. We therefore compute

$$13x \equiv -260 \pmod{6} \Leftrightarrow x \equiv -20 \pmod{6}$$

Our task is now to find all integers x, such that x is congruent to -20 with respect to the modulus 6. So we have to find all x such

$$x \bmod 6 = -20 \bmod 6$$

Since $-4 \cdot 6 + 4 = -20$ we know $-20 \mod 6 = 4$ and hence we know that x = 4 is a solution to this congruency. However, 22 is another solution since 22 mod 6 = 4 as well, and so is -20. In fact, there are infinitely many solutions given by the set

$$\{\ldots, -8, -2, 4, 10, 16, \ldots\} = \{4 + k \cdot 6 \mid k \in \mathbb{Z}\}$$

Putting all this together, we have shown that the every x from the set $\{x=4+k\cdot 6\mid k\in\mathbb{Z}\}$ is a solution to the congruency $7\cdot (2x+21)+11\equiv x-102\pmod 6$. We double ckeck for, say, x=4 as well as $x=14+12\cdot 6=86$ using sage:

```
sage: (ZZ(7)*(ZZ(2)*ZZ(4) + ZZ(21)) + ZZ(11)) % ZZ(6) == (ZZ 48)
1137
       (4) - ZZ(102)
                         % ZZ(6)
1138
1139
    True
                                                                          49
    sage: (ZZ(7)*(ZZ(2)*ZZ(76) + ZZ(21)) + ZZ(11)) % ZZ(6) == (
                                                                          50
1140
       ZZ(76) - ZZ(102)
                            % ZZ(6)
1141
    True
                                                                          51
1142
```

Readers who had not been familiar with modular arithmetics until now and who might be discouraged by how complicated modular arithmetics seems at this point, should keep two

things in mind. First, computing congruencies in modular arithmetics is not really more complicated than computations in more familiar number systems (e.g. fractional numbers), it is just a matter of getting used to it. Second, the theory of prime fields (and more general residue class rings) takes a different view on modular arithmetics with the attempt to simplify matters. In other words, once we understand prime field arithmetics, things become conceptually cleaner and more easy to compute.

Exercise 13. Choose the modulus 13 and find all solutions $x \in \mathbb{Z}$ to the following congruency $5x + 4 \equiv 28 + 2x \pmod{13}$

Exercise 14. Choose the modulus 23 and find all solutions $x \in \mathbb{Z}$ to the following congruency 69 $x \equiv 5 \pmod{23}$

Exercise 15. Choose the modulus 23 and find all solutions $x \in \mathbb{Z}$ to the following congruency $69x \equiv 46 \pmod{23}$

The Chinese Remainder Theorem We have seen how to solve congruencies in modular arithmetic. However, one question that remains is how to solve systems of congruencies with different moduli? The answer is given by the Chinese reimainder theorem, which states that for any $k \in \mathbb{N}$ and coprime natural numbers $n_1, \ldots n_k \in \mathbb{N}$ as well as integers $a_1, \ldots a_k \in \mathbb{Z}$, the so-called **simultaneous congruency**

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\dots$$

$$x \equiv a_k \pmod{n_k}$$
(3.15)

has a solution, and all possible solutions of this congruence system are congruent modulo the product $N = n_1 \cdot ... \cdot n_k$. In fact, the following algorithm computes the solution set: Algorithm sometimes floated to the next page, check this for final version

Algorithm 2 Chinese Reminder Theorem

1164

```
 \begin{array}{l} \textbf{Require:} \ \ n_0, \dots, n_{k-1} \in \mathbb{N} \ \text{coprime} \\  \  \textbf{procedure} \ \ \text{Congruency-Systems-Solver}(k, a_{0,\dots,k-1}, n_{0,\dots,k-1}) \\  \  \  N \leftarrow n_0 \cdot \dots \cdot n_{k-1} \\  \  \  \textbf{while} \ \ j < k \ \ \textbf{do} \\  \  \  \  N_j \leftarrow N/n_j \\  \  \  \  (\_, s_j, t_j) \leftarrow EXT - EUCLID(N_j, n_j) \\  \  \  \  \textbf{end while} \\  \  \  \  x' \leftarrow \sum_{j=0}^{k-1} a_j \cdot s_j \cdot N_j \\  \  \  \  \  x \leftarrow x' \ \ \text{mod} \ N \\  \  \  \  \  \textbf{return} \ \{x+m \cdot N \mid m \in \mathbb{Z}\} \\  \  \  \  \  \textbf{end procedure} \\  \end{array}
```

Ensure: $\{x + m \cdot N \mid m \in \mathbb{Z}\}$ is the complete solution set to 3.15.

prime fields

residue class rings

Algorithm sometimes floated to the next page, check this for final version

¹This is the classical Chinese remainder theorem as it was already known in ancient China. Under certain circumstances, the theorem can be extended to non-coprime moduli n_1, \ldots, n_k but this is beyond the scope of this book. Interested readers should consult XXX add references

1172

1173

1174

1175

1176

1178

1179

1180

1181

1182

1183

Example 7. To illustrate how to solve simultaneous congruences using the Chinese remainder theorem, let's look at the following system of congruencies:

$$x \equiv 4 \pmod{7}$$

$$x \equiv 1 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 0 \pmod{11}$$

Clearly all moduli are coprime and we have $N = 7 \cdot 3 \cdot 5 \cdot 11 = 1155$, as well as $N_1 = 165$, $N_2 = 385$, $N_3 = 231$ and $N_4 = 105$. From this we calculate with the extended Euclidean algorithm

$$1 = 2 \cdot 165 + -47 \cdot 7
1 = 1 \cdot 385 + -128 \cdot 3
1 = 1 \cdot 231 + -46 \cdot 5
1 = 2 \cdot 105 + -19 \cdot 11$$

so we have $x = 4 \cdot 2 \cdot 165 + 1 \cdot 1 \cdot 385 + 3 \cdot 1 \cdot 231 + 0 \cdot 2 \cdot 105 = 2398$ as one solution. Because 2398 mod 1155 = 88 the set of all solutions is $\{\dots, -2222, -1067, 88, 1243, 2398, \dots\}$. In particular, there are infinitely many different solutions. We can invoke Sage's computation of the Chinese Remainder Theorem (CRT) to double check our findings:

As we have seen in various examples before, computing congruencies can be cumbersome and solution sets are large in general. It is therefore advantaegous to find some kind of simplification for modular arithmetic.

Fortunately, this is possible and relatively straightforward once we consider all integers that have the same remainder with respect to a given modulus n in Euclidean division to be equivalent. Then we can go a step further, and identify each set of numbers with equal remainder with that remainder and call it a **remainder class** or **residue class** in modulo n arithmetics.

It then follows from the properties of Euclidean division that there are exactly n different remainder classes for every modulus n and that integer addition and multiplication can be projected to a new kind of addition and multiplication on those classes.

Roughly speaking, the new rules for addition and multiplication are then computed by taking any element of the first equivalence class and some element of the second, then add or multiply them in the usual way and see which equivalence class the result is contained in. The following example makes this abstract description more concrete:

Example 8 (Arithmetics modulo 6). Choosing the modulus n = 6, we have six equivalence classes of integers which are congruent modulo 6 (they have the same remainder when divided by 6) and when we identify each of those remainder classes with the remainder, we get the following identification:

$$0 := \{..., -6,0,6,12,...\}$$

$$1 := \{..., -5,1,7,13,...\}$$

$$2 := \{..., -4,2,8,14,...\}$$

$$3 := \{..., -3,3,9,15,...\}$$

$$4 := \{..., -2,4,10,16,...\}$$

$$5 := \{..., -1,5,11,17,...\}$$

Now to compute the addition of those equivalence classes, say 2+5, one chooses arbitrary elements from both sets, say 14 and -1, adds those numbers in the usual way and then looks at the equivalence class of the result.

So we get 14 + (-1) = 13, and 13 is in the equivalence class (of) 1. Hence we find that 2 + 5 = 1 in modular 6 arithmetics, which is a more readable way to write the congruency $2 + 5 \equiv 1 \pmod{6}$.

Applying the same reasoning to all equivalence classes, addition and multiplication can be transferred to equivalence classes. The results for modulus 6 arithmetics are summarized in the following addition and multiplication tables:

+	0	1	2	3	4	5			0	1	2	3	4	5
0	0	1	2	3	4	5	•	0	0	0	0	0	0	0
1	1	2	3	4	5	0		1	0	1	2	3	4	5
2	2	3	4	5	0	1		2	0	2	4	0	2	4
3	3	4	5	0	1	2		3	0	3	0	3	0	3
4	4	5	0	1	2	3		4	0	4	2	0	4	2
5	5	0	1	2	3	4		5	0	5	2	3	2	1

This way, we have defined a new arithmetic system that contains just 6 numbers and comes with its own definition of addition and multiplication. It is called **modular 6 arithmetics** and written as \mathbb{Z}_6 .

To see why such an identification of a congruency class with its remainder is useful and actually simplifies congruency computations a lot, lets go back to the congruency from example 6 again:

$$7 \cdot (2x+21) + 11 \equiv x - 102 \pmod{6}$$
 (3.16)

As shown in example 6, the arithmetics of congruencies can deviate from ordinary arithmetics: For example, division needs to check whether the modulus and the dividend are coprimes, and solutions are not unique in general.

We can rewrite this congruency as an **equation** over our new arithmetic type \mathbb{Z}_6 by **projecting onto the remainder classes**. In particular, since $7 \mod 6 = 1$, $21 \mod 6 = 3$, $11 \mod 6 = 5$ and $102 \mod 6 = 0$ we have

$$7 \cdot (2x+21) + 11 \equiv x - 102 \pmod{6}$$
 over \mathbb{Z}
 $\Leftrightarrow 1 \cdot (2x+3) + 5 = x$ over \mathbb{Z}_6

We can use the multiplication and addition table above to solves the equation on the right like we would solve normal integer equations: Add a number and title to the tables

$$1 \cdot (2x+3) + 5 = x$$

$$2x+3+5 = x$$

$$2x+2 = x$$

$$2x+2+4-x = x+4-x$$

$$x = 4$$
addition-table: $2+4=0$

Add a number and title to the tables

So we see that, despite the somewhat unfamilar rules of addition and multiplication, solving congruencies this way is very similar to solving normal equations. And, indeed, the solution set is identical to the solution set of the original congruency, since 4 is identified with the set $\{4+6\cdot k\mid k\in\mathbb{Z}\}$.

We can invoke Sage to do computations in our modular 6 arithmetics type. This is particularly useful to double-check our computations:

Jargon 1 (k-bit modulus). In cryptographic papers, we can sometimes read phrases like"[...] using a 4096-bit modulus". This means that the underlying modulus n of the modular arithmetic used in the system has a binary representation with a length of 4096 bits. In contrast, the number 6 has the binary representation 110 and hence our example 8 describes a 3-bit modulus arithmetics system.

Exercise 16. Let a, b, k be integers, such that $a \equiv b \pmod{n}$ holds. Show $a^k \equiv b^k \pmod{n}$

Exercise 17. Let a, n be integers, such that a and n are not coprime. For which $b \in \mathbb{Z}$ does the congruency $a \cdot x \equiv b \pmod{n}$ have a solution x and how does the solution set look in that case?

Modular Inverses As we know, integers can be added, subtracted and multiplied so that the result is also an integer, but this is not true for the division of integers in general: for example, 3/2 is not an integer anymore. To see why this is, from a more theoretical perspective, let us consider the definition of a multiplicative inverse first. When we have a set that has some kind of multiplication defined on it and we have a distinguished element of that set, that behaves neutrally with respect to that multiplication (doesn't change anything when multiplied with any other element), then we can define **multiplicative inverses** in the following way:

Let *S* be our set that has some notion $a \cdot b$ of multiplication and a **neutral element** $1 \in S$, such that $1 \cdot a = a$ for all elements $a \in S$. Then a **multiplicative inverse** a^{-1} of an element $a \in S$ is defined as follows:

$$a \cdot a^{-1} = 1 \tag{3.17}$$

Informally speaking, the definition of a multiplicative inverse is means that it "cancels" the original element to give 1 when they are multiplied.

Numbers that have multiplicative inverses are of particular interest, because they immediately lead to the definition of division by those numbers. In fact, if a is number such that the multiplicative inverse a^{-1} exists, then we define **division** by a simply as multiplication by the inverse:

$$\frac{b}{a} := b \cdot a^{-1} \tag{3.18}$$

Example 9. Consider the set of rational numbers, also known as fractions, \mathbb{Q} . For this set, the neural element of multiplication is 1, since $1 \cdot a = a$ for all rational numbers. For example, $1 \cdot 4 = 4$, $1 \cdot \frac{1}{4} = \frac{1}{4}$, or $1 \cdot 0 = 0$ and so on.

Every rational number $a \neq 0$ has a multiplicative inverse, given by $\frac{1}{a}$. For example, the multiplicative inverse of 3 is $\frac{1}{3}$, since $3 \cdot \frac{1}{3} = 1$, the multiplicative inverse of $\frac{5}{7}$ is $\frac{7}{5}$, since $\frac{5}{7} \cdot \frac{7}{5} = 1$, and so on.

Example 10. Looking at the set \mathbb{Z} of integers, we see that with respect to multiplication the neutral element is the number 1 and we notice, that no integer $a \neq 1$ has a multiplicative inverse, since the equation $a \cdot x = 1$ has no integer solutions for $a \neq 1$.

The definition of multiplicative inverse works verabtim for addition as well. In the case of integers, the neutral element with respect to addition is 0, since a + 0 = 0 for all integers $a \in \mathbb{Z}$. The additive inverse always exist and is given by the negative number -a, since a + (-1) = 0.

(-1) should be (-a)?

Example 11. Looking at the set \mathbb{Z}_6 of residual classes modulo 6 from example 8, we can use the multiplication table to find multiplicative inverses. To do so, we look at the row of the element and then find the entry equal to 1. If such an entry exists, the element of that column is the multiplicative inverse. If, on the other hand, the row has no entry equal to 1, we know that the element has no multiplicative inverse.

For example in \mathbb{Z}_6 the multiplicative inverse of 5 is 5 itself, since $5 \cdot 5 = 1$. We can also see that 5 and 1 are the only elements that have multiplicative inverses in \mathbb{Z}_6 .

Now, since 5 has a multiplicative inverse modulo 6, it makes sense to "divide" by 5 in \mathbb{Z}_6 . For example

$$\frac{4}{5} = 4 \cdot 5^{-1} = 4 \cdot 5 = 2$$

From the last example, we can make the interesting observation that while 5 has no multiplicative inverse as an integer, it has a multiplicative inverse in modular 6 arithmetics.

The remaining question is to understand which elements have multiplicative inverses in modular arithmetics. The answer is that, in modular n arithmetics, a residue class r has a multiplicative inverse, if and only if n and r are coprime. Since ggt(n,r)=1 in that case, we know from the extended Euclidean algorithm that there are numbers s and t, such that

$$1 = s \cdot n + t \cdot r \tag{3.19}$$

If we take the modulus n on both sides, the term $s \cdot n$ vanishes, which tells us that $t \mod n$ is the multiplicative inverse of r in modular n arithmetics.

Example 12 (Multiplicative inverses in \mathbb{Z}_6). In the previous example, we looked up multiplicative inverses in \mathbb{Z}_6 from the lookup-table in Example 8. In real world examples, it is usually impossible to write down those lookup tables, as the modulus is way too large, and the sets occasionally contain more elements than there are atoms in the observable universe.

Now, trying to determine that $2 \in \mathbb{Z}_6$ has no multiplicative inverse in \mathbb{Z}_6 without using the lookup table, we immediately observe that 2 and 6 are not coprime, since their greatest common divisor is 2. It follows that equation 3.19 has no solutions s and t, which means that 2 has no multiplicative inverse in \mathbb{Z}_6 .

The same reasoning works for 3 and 4, as neither of these are coprime with 6. The case of 5 is different, since ggt(6,5) = 1. To compute the multiplicative inverse of 5, we use the extended Euclidean algorithm and compute the following:

We get s = 1 as well as t = -1 and have $1 = 1 \cdot 6 - 1 \cdot 5$. From this, it follows that $-1 \mod 6 = 5$ is the multiplicative inverse of 5 in modular 6 arithmetics. We can double check using Sage:

At this point, the attentive reader might notice that the situation where the modulus is a prime number is of particular interest, because we know from exercise XXX that in these cases all remainder classes must have modular inverses, since ggt(r,n) = 1 for prime n and r < n. In

fact, Fermat's little theorem provides a way to compute multiplicative inverses in this situation, since in case of a prime modulus p and r < p, we have

we have

$$r^p \equiv r \pmod{p} \Leftrightarrow$$

 $r^{p-1} \equiv 1 \pmod{p} \Leftrightarrow$
 $r \cdot r^{p-2} \equiv 1 \pmod{p}$

This tells us that the multiplicative inverse of a residue class r in modular p arithmetic is precisely r^{p-2} .

Example 13 (Modular 5 arithmetics). To see the unique properties of modular arithmetics whenever the modulus is a prime number, we will replicate our findings from example 8, but this time for the prime modulus 5. For n = 5 we have five equivalence classes of integers which are congruent modulo 5. We write

$$0 := \{\dots, -5, 0, 5, 10, \dots\}$$

$$1 := \{\dots, -4, 1, 6, 11, \dots\}$$

$$2 := \{\dots, -3, 2, 7, 12, \dots\}$$

$$3 := \{\dots, -2, 3, 8, 13, \dots\}$$

$$4 := \{\dots, -1, 4, 9, 14, \dots\}$$

Addition and multiplication can be transferred to the equivalence classes, in a way exactly parallel to Example 8. This results in the following addition and multiplication tables:

-	⊦	0	1	2	3	4			0	1	2	3	4
()	0	1	2	3	4	-	0	0	0	0	0	0
-	1	1	2	3	4	0		1	0	1	2	3	4
4	2	2	3	4	0	1		2	0	2	4	1	3
3	3	3	4	0	1	2		3	0	3	1	4	2
2	1	4	0	1	2	3		4	0	4	3	2	1

Calling the set of remainder classes in modular 5 arithmetics with this addition and multiplication \mathbb{F}_5 (for reasons we explain in more detail in XXX), we see some subtle but important differences to the situation in \mathbb{Z}_6 . In particular, we see that in the multiplication table, every remainder $r \neq 0$ has the entry 1 in its row and therefore has a multiplicative inverse. In addition, there are no non-zero elements such that their product is zero.

To use Fermat's little theorem in \mathbb{F}_5 for computing multiplicative inverses (instead of using the multiplication table), lets consider $3 \in \mathbb{F}_3$. We know that the multiplicative inverse is given by the remainder class that contains $3^{5-2} = 3^3 = 3 \cdot 3 \cdot 3 = 4 \cdot 3 = 2$. And indeed $3^{-1} = 2$, since $3 \cdot 2 = 1$ in \mathbb{F}_5 .

We can invoke Sage to do computations in our modular 5 arithmetics type to double-check our computations:

```
sage: Z5 = Integers(5)
                                                                                        61
1299
     sage: Z5(3) ** (5-2)
                                                                                        62
1300
                                                                                        63
1301
     sage: Z5(3) **(-1)
                                                                                        64
1302
                                                                                        65
1303
     sage: Z5(3)**(5-2) == Z5(3)**(-1)
                                                                                        66
1304
     True
                                                                                        67
1305
```

Example 14. To understand one of the principal differences between prime number modular arithmetics and non-prime number modular arithmetics, consider the linear equation $a \cdot x + b = 0$ defined over both types \mathbb{F}_5 and \mathbb{Z}_6 . Since in \mathbb{F}_5 every non zero element has a multiplicative inverse, we can always solve these types of equations in \mathbb{F}_5 , which is not true in \mathbb{Z}_6 . To see that, consider the equation 3x + 3 = 0. In \mathbb{F}_5 we have the following:

$$3x+3=0$$
 # add 2 and on both sides
 $3x+3+2=2$ # addition-table: $2+3=0$
 $3x=2$ # divide by 3
 $2\cdot(3x)=2\cdot 2$ # multiplication-table: $2+2=4$
 $x=4$

So in the case of our prime number modular arithmetics, we get the unique solution x = 4. Now consider \mathbb{Z}_6 :

$$3x + 3 = 0$$
 # add 3 and on both sides
 $3x + 3 + 3 = 3$ # addition-table: $3 + 3 = 0$
 $3x = 3$ # no multiplicative inverse of 3 exists

So, in this case, we cannot solve the equation for x by dividing by 3. And, indeed, when we look at the multiplication table of \mathbb{Z}_6 (Example 8), we find that there are three solutions $x \in \{1,3,5\}$, such that 3x + 3 = 0 holds true for all of them.

Exercise 18. Consider the modulus n = 24. Which of the integers 7, 1, 0, 805, -4255 have multiplicative inverses in modular 24 arithmetics? Compute the inverses, in case they exist.

Exercise 19. Find the set of all solutions to the congruency $17(2x+5)-4 \equiv 2x+4 \pmod{5}$.

Then project the congruency into \mathbb{F}_5 and solve the resulting equation in \mathbb{F}_5 . Compare the results.

Exercise 20. Find the set of all solutions to the congruency $17(2x+5)-4 \equiv 2x+4$ (mod

Then project the congruency into \mathbb{Z}_6 and try to solve the resulting equation in \mathbb{Z}_6 .

3.4 Polynomial Arithmetics

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

A polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and nonnegative integer exponentiation of variables. All coefficients of a polynomial must have the same type, e.g. being integers or fractions etc. To be more precise a *univariate polynomial* is an expression

$$P(x) := \sum_{j=0}^{m} a_j t^j = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0,$$
 (3.20)

where x is called the **indeterminate**, each a_j is called a **coefficient**. If R is the type of the coefficients, then the set of all **univariate polynomials with coefficients in** R is written as R[x]. We often simply use **polynomial** instead of univariate polynomial, write $P(x) \in R[x]$ for a polynomial and denote the constant term as P(0).

A polynomial is called the **zero polynomial** if all coefficients are zero and a polynomial is called the **one polynomial** if the constant term is 1 and all other coefficients are zero.

If an univariate polynomial $P(x) = \sum_{j=0}^{m} a_j x^j$ is given, that is not the zero polynomial, we call

$$deg(P) := m \tag{3.21}$$

the *degree* of P and define the degree of the zero polynomial to be $-\infty$, where $-\infty$ (negative infinity) is a symbol with the property that $-\infty + m = -\infty$ for all counting numbers $m \in \mathbb{N}$. In addition, we write

$$Lc(P) := a_m \tag{3.22}$$

and call it the **leading coefficient** of the polynomial P. We can restrict the set R[x] of **all** polynomials with coefficients in R, to the set of all such polynomials that have a degree that does not exceed a certain value. If m is the maximum degree allowed, we write $R_{\leq m}[x]$ for the set of all polynomials with a degree less than or equal to m.

Example 15 (Integer Polynomials). The coefficients of a polynomial must all have the same type. The set of polynomials with integer coefficients is written as $\mathbb{Z}[x]$. Examples of such polynomials are:

$$P_1(x) = 2x^2 - 4x + 17$$
 # with $deg(P_1) = 2$ and $Lc(P_1) = 2$
 $P_2(x) = x^{23}$ # with $deg(P_2) = 23$ and $Lc(P_2) = 1$
 $P_3(x) = x$ # with $deg(P_3) = 1$ and $Lc(P_3) = 1$
 $P_4(x) = 174$ # with $deg(P_4) = 0$ and $Lc(P_4) = 174$
 $P_5(x) = 1$ # with $deg(P_5) = 0$ and $Lc(P_5) = 1$
 $P_6(x) = 0$ # with $deg(P_5) = -\infty$ and $Lc(P_6) = 0$
 $P_7(x) = (x - 2)(x + 3)(x - 5)$

In particular, every integer can be seen as an integer polynomial of degree zero. P_7 is a polynomial, because we can expand its definition into $P_7(x) = x^3 - 4x^2 - 11x + 30$, which is polynomial of degree 3 and leading coefficient 1. The following expressions are not integer polynomial

$$Q_1(x) = 2x^2 + 4 + 3x^{-2}$$

$$Q_2(x) = 0.5x^4 - 2x$$

$$Q_3(x) = 1/x$$

We can invoke Sage to do computations with polynomials. To do so, we have to specify the symbol for the inderteminate and the type for the coefficients. Note, however, that Sage defines the degree of the zero polynomial to be -1.

```
sage: Zx = ZZ['x'] # integer polynomials with indeterminate x
                                                                              68
1339
    sage: Zt.<t> = ZZ[] # integer polynomials with indeterminate t
                                                                              69
1340
    sage: Zx
                                                                              70
1341
    Univariate Polynomial Ring in x over Integer Ring
                                                                              71
1342
                                                                              72
    Univariate Polynomial Ring in t over Integer Ring
                                                                              73
1344
    sage: p1 = Zx([17,-4,2])
                                                                              74
1345
    sage: p1
                                                                              75
1346
    2*x^2 - 4*x + 17
                                                                              76
1347
    sage: p1.degree()
                                                                              77
1348
                                                                              78
1349
    sage: p1.leading_coefficient()
                                                                              79
1350
1351
                                                                              80
    sage: p2 = Zt(t^23)
                                                                              81
1352
    sage: p2
                                                                              82
1353
```

1373

1374

1375

```
1354 t^23
1355 sage: p6 = Zx([0])
1356 sage: p6.degree()
1357 -1
86
```

Example 16 (Polynomials over \mathbb{Z}_6). Recall our definition of the residue classes \mathbb{Z}_6 and their arithmetics as defined in Example 8. The set of all polynomials with indeterminate x and coefficients in \mathbb{Z}_6 is symbolized as $\mathbb{Z}_6[x]$. Example of polynomials from \mathbb{Z}_6 are:

$$P_1(x) = 2x^2 - 4x + 5$$
 # with $deg(P_1) = 2$ and $Lc(P_1) = 2$
 $P_2(x) = x^{23}$ # with $deg(P_2) = 23$ and $Lc(P_2) = 1$
 $P_3(x) = x$ # with $deg(P_3) = 1$ and $Lc(P_3) = 1$
 $P_4(x) = 3$ # with $deg(P_4) = 0$ and $Lc(P_4) = 3$
 $P_5(x) = 1$ # with $deg(P_5) = 0$ and $Lc(P_5) = 1$
 $P_6(x) = 0$ # with $deg(P_5) = -\infty$ and $Lc(P_6) = 0$
 $P_7(x) = (x - 2)(x + 3)(x - 5)$

Just like in the previous example, P_7 is a polynomial. However, since we are working with coefficients from \mathbb{Z}_6 now the expansion of P_7 is computed differently, as we have to invoke addition and multiplication in \mathbb{Z}_6 as defined in XXX. We get:

$$(x-2)(x+3)(x-5) = (x+4)(x+3)(x+1)$$

$$= (x^2+4x+3x+3\cdot4)(x+1)$$

$$= (x^2+1x+0)(x+1)$$

$$= (x^3+x^2+x^2+x)$$
additive inverses in \mathbb{Z}_6
computation in \mathbb{Z}_6
bracket expansion
$$= (x^3+2x^2+x)$$
bracket expansion

Again, we can use Sage to do computations with polynomials that have their coefficients in \mathbb{Z}_6 . To do so, we have to specify the symbol for the inderteminate and the type for the coefficients:

```
sage: Z6 = Integers(6)
                                                                               87
1361
    sage: Z6x = Z6['x']
                                                                               88
1362
    sage: Z6x
                                                                               89
1363
    Univariate Polynomial Ring in x over Ring of integers modulo 6
                                                                               90
1364
    sage: p1 = Z6x([5,-4,2])
                                                                               91
1365
    sage: p1
                                                                               92
1366
    2*x^2 + 2*x + 5
                                                                               93
1367
    sage: p1 = Z6x([17,-4,2])
                                                                               94
    sage: p1
                                                                               95
1369
    2*x^2 + 2*x + 5
                                                                               96
1370
    sage: Z6x(x-2)*Z6x(x+3)*Z6x(x-5) == Z6x(x^3 + 2*x^2 + x)
                                                                               97
1371
    True
                                                                               98
1372
```

Given some element from the same type as the coefficients of a polynomial, the polynomial can be evaluated at that element, which means that we insert the given element for every ocurrence of the indeterminate *x* in the polynomial expression.

To be more precise, let $P \in R[x]$, with $P(x) = \sum_{j=0}^{m} a_j x^j$ be a polynomial with a coefficient 1376 of type R and let $b \in R$ be an element of that type. Then the **evaluation** of P at b is given by 1377

$$P(a) = \sum_{j=0}^{m} a_j b^j (3.23)$$

Example 17. Consider the integer polynomials from example XXX again. To evaluate them at given points, we have to insert the point for all occurences of x in the polynomial expression. Inserting arbitrary values from \mathbb{Z} , we get:

$$P_1(2) = 2 \cdot 2^2 - 4 \cdot 2 + 17 = 17$$

$$P_2(3) = 3^{23} = 94143178827$$

$$P_3(-4) = -4 = -4$$

$$P_4(15) = 174$$

$$P_5(0) = 1$$

$$P_6(1274) = 0$$

$$P_7(-6) = (-6-2)(-6+3)(-6+5) = -264$$

Note, however, that is not possible to evaluate any of those polynomial on values of different 1378 type. For example, it is strictly speaking wrongrephrase to write $P_1(0.5)$, since 0.5 is not an rephrase 1379 integer. We can verify our computations using Sage: 1380

```
sage: Zx = ZZ['x']
                                                                                    99
1381
    sage: p1 = Zx([17,-4,2])
                                                                                    100
1382
    sage: p7 = Zx(x-2)*Zx(x+3)*Zx(x-5)
                                                                                    101
1383
    sage: p1(ZZ(2))
                                                                                    102
1384
    17
                                                                                    103
1385
    sage: p7(ZZ(-6)) == ZZ(-264)
                                                                                    104
1386
                                                                                    105
1387
```

Example 18. Consider the polynomials with coefficients in \mathbb{Z}_6 from example XXX again. To evaluate them at given values from \mathbb{Z}_6 , we have to insert the point for all occurences of x in the polynomial expression. We get:

$$P_1(2) = 2 \cdot 2^2 - 4 \cdot 2 + 5 = 2 - 2 + 5 = 5$$

$$P_2(3) = 3^{23} = 3$$

$$P_3(-4) = P_3(2) = 2$$

$$P_5(0) = 1$$

$$P_6(4) = 0$$

1388

```
sage: Z6 = Integers(6)
                                                                                   106
1389
    sage: Z6x = Z6['x']
                                                                                   107
1390
    sage: p1 = Z6x([5,-4,2])
                                                                                   108
1391
    sage: p1(Z6(2)) == Z6(5)
1392
                                                                                   109
    True
                                                                                   110
1393
```

Exercise 21. Compare both expansions of P_7 from $\mathbb{Z}[x]$ and from $\mathbb{Z}_6[x]$ in example XXX and example XXX, and consider the definition of \mathbb{Z}_6 as given in example XXX. Can you see how the definition of P_7 over \mathbb{Z} projects to the definition over \mathbb{Z}_6 if you consider the residue classes of \mathbb{Z}_6 ?

Polynomial Arithmetics Polynomials behave like integers in many ways. In particular, they can be added, subtracted and multiplied. In addition, they have their own notion of Euclidean division. Informally speaking, we can add two polynomials by simply adding the coefficients of the same index, and we can multiply them by applying the distributive property, that is, by multiplying every term of the left factor with every term of the right factor and adding the results together.

To be more precise let $\sum_{n=0}^{m_1} a_n x^n$ and $\sum_{n=0}^{m_2} b_n x$ be two polynomials from R[x]. Then the **sum** and the **product** of these polynomials is defined as follows:

$$\sum_{n=0}^{m_1} a_n x^n + \sum_{n=0}^{m_2} b_n x^n = \sum_{n=0}^{\max(\{m_1, m_2\})} (a_n + b_n) x^n$$
(3.24)

$$\left(\sum_{n=0}^{m_1} a_n x^n\right) \cdot \left(\sum_{n=0}^{m_2} b_n x^n\right) = \sum_{n=0}^{m_1 + m_2} \sum_{i=0}^n a_i b_{n-i} x^n$$
(3.25)

A rule for polynomial subtraction can be deduced from these two rules by first multiplying the subtrahend with (the polynomial) -1 and then add the result to the minuend.

subtrahend

Regarding the definition of the degree of a polynomial, we see that the degree of the sum is always the maximum of the degrees of both summands, and the degree of the product is always the degree of the factors, since we defined $-\infty \cdot m = \infty$ for every integer $m \in \mathbb{Z}$. Using Sage's definition of degree, this would not hold, as the zero polynomials degree is -1 is Sage, which would violate this rule.

Example 19. To given an example of how polynomial arithmetics works, consider the following two integer polynomials $P, Q \in \mathbb{Z}[x]$ with $P(x) = 5x^2 - 4x + 2$ and $Q(x) = x^3 - 2x^2 + 5$. The sum of these two polynomials is computed by adding the coefficients of each term with equal exponent in x. This gives

$$(P+Q)(x) = (0+1)x^3 + (5-2)x^2 + (-4+0)x + (2+5)$$

= $x^3 + 3x^2 - 4x + 7$

The product of these two polynomials is computed by multiplication of each term in the first factor with each term in the second factor. We get

$$(P \cdot Q)(x) = (5x^2 - 4x + 2) \cdot (x^3 - 2x^2 + 5)$$

= $(5x^5 - 10x^4 + 25x^2) + (-4x^4 + 8x^3 - 20x) + (2x^3 - 4x^2 + 10)$
= $5x^5 - 14x^4 + 10x^3 + 21x^2 - 20x + 10$

1415 sage:
$$Zx = ZZ['x']$$
 111
1416 sage: $P = Zx([2,-4,5])$ 112
1417 sage: $Q = Zx([5,0,-2,1])$ 113
1418 sage: $P+Q == Zx(x^3 +3*x^2 -4*x +7)$ 114

1438

1439

1440

Example 20. Let us consider the polynomials of the previous example but interpreted in modular 6 arithmetics. So we consider $P, Q \in \mathbb{Z}_6[x]$ again with $P(x) = 5x^2 - 4x + 2$ and $Q(x) = x^3 - 2x^2 + 5$. This time we get

$$(P+Q)(x) = (0+1)x^3 + (5-2)x^2 + (-4+0)x + (2+5)$$

= (0+1)x³ + (5+4)x² + (2+0)x + (2+5)
= x³ + 3x² + 2x + 1

$$(P \cdot Q)(x) = (5x^2 - 4x + 2) \cdot (x^3 - 2x^2 + 5)$$

$$= (5x^2 + 2x + 2) \cdot (x^3 + 4x^2 + 5)$$

$$= (5x^5 + 2x^4 + 1x^2) + (2x^4 + 2x^3 + 4x) + (2x^3 + 2x^2 + 4)$$

$$= 5x^5 + 4x^4 + 4x^3 + 3x^2 + 4x + 4$$

sage: Z6x = Integers(6)['x']118 1423 **sage:** P = Z6x([2,-4,5])119 1424 **sage**: Q = Z6x([5,0,-2,1])120 1425 sage: $P+Q == Z6x(x^3 +3*x^2 +2*x +1)$ 121 1426 True 122 1427 sage: $P*Q == Z6x(5*x^5 + 4*x^4 + 4*x^3 + 3*x^2 + 4*x + 4)$ 123 1428 True 124 1429

Exercise 22. Compare the sum P + Q and the product $P \cdot Q$ from the previous two examples XXX and XXX and consider the definition of \mathbb{Z}_6 as given in example XXX. How can we derive the computations in $\mathbb{Z}_6[x]$ from the computations in Z[x]?

Euklidean Division The ring of polynomials shares a lot of properties with integers. In particular, the concept of Euclidean division and the algorithm of long division is also defined for polynomials. Recalling the Euclidean division of integers XXX, we know that, given two integers a and $b \neq 0$, there is always another integer a and a counting number a with a such that $a = m \cdot b + r$ holds.

We can generalize this to polynomials whenever the leading coefficient of the dividend polynomial has a notion of multiplicative inverse. In fact, given two polynomials A and $B \neq 0$ from R[x] such that $Lc(B)^{-1}$ exists in R, there exist two polynomials M (the quotient) and R (the remainder), such that

$$A = M \cdot B + R \tag{3.26}$$

and deg(R) < deg(B). Similarly to integer Euclidean division, both M and R are uniquely defined by these relations.

Notation and Symbols 2. Suppose that the polynomials A, B, M and R satisfy equation XX. Then we often write

$$A \operatorname{div} B := M, \quad A \operatorname{mod} B := R \tag{3.27}$$

1448

1449

1450

1451

1452

1454

1455

1456

1457

1459

1460

to describe the quotient and the remainder polynomials of the Euclidean division. We also say that a polynomial A is divisible by another polynomial B if $A \mod B = 0$ holds. In this case, we also write B|A and call B a factor of A.

Analogously to integers, methods to compute Euclidean division for polynomials are called **polynomial division algorithms**. Probably the best known algorithm is the so called **polynomial long division**.

Algorithm 3 Polynomial Euclidean Algorithm

```
Require: A, B \in R[x] with B \neq 0, such that Lc(B)^{-1} exists in R procedure POLY-LONG-DIVISION(A, B)

M \leftarrow 0
R \leftarrow A
d \leftarrow deg(B)
c \leftarrow Lc(B)
while deg(R) \geq d do
S := Lc(R) \cdot c^{-1} \cdot x^{deg(R) - d}
M \leftarrow M + S
R \leftarrow R - S \cdot B
end while
return (Q, R)
end procedure
Ensure: A = M \cdot B + R
```

This algorithm works only when there is a notion of division by the leading coefficient of *B*. It can be generalized, but we will only need this somewhat simpler method in what follows.

Example 21 (Polynomial Long Division). To give an example of how the previous algorithm works, let us divide the integer polynomial $A(x) = x^5 + 2x^3 - 9 \in \mathbb{Z}[x]$ by the integer polynomial $B(x) = x^2 + 4x - 1 \in \mathbb{Z}[x]$. Since B is not the zero polynomial and the leading coefficient of B is 1, which is invertible as an integer, we can apply algorithm 3. Our goal is to find solutions to equation XXX, that is, we need to find the quotient polynomial $M \in \mathbb{Z}[x]$ and the reminder polynomial $R \in \mathbb{Z}[x]$ such that $x^5 + 2x^3 - 9 = M(x) \cdot (x^2 + 4x - 1) + R$. Using a notation that is mostly used in Commonwealth countries, we compute as follows:

$$\begin{array}{r}
X^{3} - 4X^{2} + 19X - 80 \\
X^{2} + 4X - 1) \overline{) X^{5} + 2X^{3} - 9} \\
\underline{-X^{5} - 4X^{4} + X^{3}} \\
-4X^{4} + 3X^{3} \\
\underline{-4X^{4} + 16X^{3} - 4X^{2}} \\
\underline{-19X^{3} - 76X^{2} + 19X} \\
\underline{-19X^{3} - 76X^{2} + 19X} - 9 \\
\underline{-80X^{2} + 19X - 9} \\
\underline{-80X^{2} + 320X - 80} \\
339X - 89
\end{array}$$
(3.28)

We therefore get $M(x) = x^3 - 4x^2 + 19x - 80$ as well as R(x) = 339x - 89 and indeed we have $x^5 + 2x^3 - 9 = (x^3 - 4x^2 + 19x - 80) \cdot (x^2 + 4x - 1) + (339x - 89)$, which we can double check invoking Sage:

```
sage: Zx = ZZ['x']
                                                                                    125
1464
     sage: A = Zx([-9,0,0,2,0,1])
                                                                                    126
1465
     sage: B = Zx([-1,4,1])
                                                                                    127
1466
     sage: M = Zx([-80, 19, -4, 1])
                                                                                    128
1467
     sage: R = Zx([-89, 339])
                                                                                    129
1468
    sage: A == M*B + R
                                                                                    130
1469
    True
                                                                                    131
1470
```

Example 22. In the previous example, polynomial division gave a non-trivial (non-vanishing, 1471 i.e non-zero) remainder. Of special interest are divisions that don't give a remainder. Such 1472 divisors are called factors of the dividend. 1473

For example, consider the integer polynomial P_7 from example XXX again. As we have 1474 shown, it can be written both as $x^3 - 4x^2 - 11x + 30$ and as (x-2)(x+3)(x-5). From this, we can see that the polynomials $F_1(x) = (x-2)$, $F_2(x) = (x+3)$ and $F_3(x) = (x-5)$ are all factors of $x^3 - 4x^2 - 11x + 30$, since division of P_7 by any of these factors will result in a zero remainder.

Exercise 23. Consider the polynomial expressions $P(x) := -3x^4 + 4x^3 + 2x^2 + 4$ and $Q(x) = -3x^4 + 4x^3 + 2x^2 + 4$ $x^2 - 4x + 2$. Compute the Euclidean division of P by Q in the following types: 1480

1. $P,Q \in \mathbb{Z}[x]$ 1481

1475

1477

1478

1490

1492

1493

1494

1495

- 2. $P, Q \in \mathbb{Z}_6[x]$ 1482
- 3. $P, Q \in \mathbb{F}_5[x]$ 1483

Now consider the result in $\mathbb{Z}[x]$ and in $\mathbb{Z}_6[x]$. How can we compute the result in $\mathbb{Z}_6[x]$ from the 1484 result in $\mathbb{Z}[x]$? 1485

Exercise 24. Show that the polynomial $P(x) = 2x^4 - 3x + 4 \in \mathbb{F}_5[x]$ is a factor of the polynomial $Q(x) = x^7 + 4x^6 + 4x^5 + x^3 + 2x^2 + 2x + 3 \in \mathbb{F}_5[x]$, that vis show P|Q. What is Q div P? 1487

Prime Factors Recall that the fundamental theorem of arithmetics XXX tells us that every 1488 number is the product of prime numbers. Something similar holds for polynomials, too. 1489

The polynomial analog to a prime number is a so called an **irreducible polynomial**, which is defined as a polynomial that cannot be factored into the product of two non-constant polynomials using Euclidean division. Irreducible polynomials are for polynomials what prime numbers are for integer: They are the basic building blocks from which all other polynomials can be constructed. To be more precise, let $P \in R[x]$ be any polynomial. Then there are always irreducible polynomials $F_1, F_2, \dots, F_k \in R[x]$, such that

$$P = F_1 \cdot F_2 \cdot \ldots \cdot F_k \,. \tag{3.29}$$

This representation is unique, except for permutations in the factors and is called the **prime** 1496 **factorization** of *P*. 1497

Example 23. Consider the polynomial expression $P = x^2 - 3$. When we interpret P as an integer 1498 polynomial $P \in \mathbb{Z}[x]$, we find that this polynomial is irreducible, since any factorization other 1499 then $1 \cdot (x^2 - 3)$, must look like (x - a)(x + a) for some integer a, but there is no integers a with 1500 $a^2 = 3$. 1501

1502 sage:
$$Zx = ZZ['x']$$

1503 sage: $p = Zx(x^2-3)$
132

On the other hand interpreting *P* as a polynomial $P \in \mathbb{Z}_6[x]$ in modulo 6 arithmetics, we see that *P* has two factors $F_1 = (x-3)$ and $F_2 = (x+3)$, since $(x-3)(x+3) = x^2 - 3x + 3 - 3 \cdot 3 = x^2 - 3$.

Finding prime factors of a polynomial is hard. As we have seen in example XXX, points where a polynomial evaluates to zero, i.e points $x_0 \in R$ with $P(x_0) = 0$ are of special interest, since it can be shown the polynomial $F(x) = (x - x_0)$ is always a factor of P. The converse, however, is not necessarily true, because a polynomial can have irreducible prime factors.

Points where a polynomial evaluates to zero are called the **roots** of the polynomial. To be more precise, let $P \in R[x]$ be a polynomial. Then the set of all roots of P is defined as

$$R_0(P) := \{ x_0 \in R \mid P(x_0) = 0 \}$$
(3.30)

Finding the roots of a polynomial is sometimes called **solving the polynomial**. It is a hard problem and has been the subject of much research throughout history. In fact, it is well known that, for polynomials of degree 5 or higher, there is, in general, no closed expression, from which the roots can be deduced.

It can be shown that if m is the degree of a polynomial P, then P can not have more than m roots. However, in general, polynomials can have less than m roots.

Example 24. Consider our integer polynomial $P_7(x) = x^3 - 4x^2 - 11x + 30$ from example XXX again. We know that its set of roots is given by $R_0(P_7) = \{-3, 2, 5\}$.

On the other hand, we know from example XXX that the integer polynomial $x^2 - 3$ is irreducible. It follows that it has no roots, since every root defines a prime factor.

Example 25. To give another example, consider the integer polynomial $P = x^7 + 3x^6 + 3x^5 + x^4 - x^3 - 3x^2 - 3x - 1$. We can invoke Sage to compute the roots and prime factors of P:

We see that P has the root 1 and that the associated prime factor (x-1) occurs once in P and that it has the root -1, where the associated prime factor (x+1) occurs 4 times in P. This gives the prime factorization

$$P = (x-1)(x+1)^4(x^2+1)$$

Lange interpolation One particularly usefu property of polynomials is that a polynomial of degree m is completely determined on m+1 evaluation points. Seeing this from a different angle, we can (sometimes) uniquely derive a polynomial of degree m from a set

$$S = \{(x_0, y_0), (x_1, y_1), \dots, (x_m, y_m) \mid x_i \neq x_j \text{ for all indices i and j} \}$$
 (3.31)

This "few too many" property of polynomials is used in many places, like for example in erasure codes. It is also of importance in snarks and we therefore need to understand a method to actually compute a polynomial from a set of points.

what does this mean?

1542

1544

If the coefficients of the polynomial we want to find have a notion of multiplicative inverse, it is always possible to find such a polynomial. One method for this is called **Lagrange interpolation**. It works as follows: Given a set like 3.31, a polynomial P of degree m+1 with $P(x_i) = y_i$ for all pairs (x_i, y_i) from S is given by the following algorithm:

```
Algorithm 4 Lagrange Interpolation

Paguires P must have multiplicative inverse.
```

```
Require: R must have multiplicative inverses

Require: S = \{(x_0, y_0), (x_1, y_1), \dots, (x_m, y_m) \mid x_i, y_i \in R, x_i \neq x_j \text{ for all indices i and j} \}

procedure LAGRANGE-INTERPOLATION(S)

for j \in (0 \dots m) do

l_j(x) \leftarrow \prod_{i=0}^m \sum_{i\neq j} \frac{x_i - x_i}{x_j - x_i} = \frac{(x_i - x_0)}{(x_j - x_0)} \cdots \frac{(x_i - x_{j-1})}{(x_j - x_{j-1})} \frac{(x_i - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x_i - x_m)}{(x_j - x_m)}

end for
P \leftarrow \sum_{j=0}^m y_j \cdot l_j

return P

end procedure

Ensure: P \in R[x] with deg(P) = m

Ensure: P(x_j) = y_j for all pairs (x_j, y_j) \in S
```

Example 26. Let us consider the set $S = \{(0,4), (-2,1), (2,3)\}$. Our task is to compute a polynomial of degree 2 in $\mathbb{Q}[x]$ with fractional number coefficients. Since \mathbb{Q} has multiplicative inverses, we can use the Lagrange interpolation algorithm from 4, to compute the polynomial.

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = \frac{x + 2}{0 + 2} \cdot \frac{x - 2}{0 - 2} = -\frac{(x + 2)(x - 2)}{4}$$

$$= -\frac{1}{4}(x^2 - 4)$$

$$l_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = \frac{x - 0}{-2 - 0} \cdot \frac{x - 2}{-2 - 2} = \frac{x(x - 2)}{8}$$

$$= \frac{1}{8}(x^2 - 2x)$$

$$l_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = \frac{x - 0}{2 - 0} \cdot \frac{x + 2}{2 + 2} = \frac{x(x + 2)}{8}$$

$$= \frac{1}{8}(x^2 + 2x)$$

$$P(x) = 4 \cdot (-\frac{1}{4}(x^2 - 4)) + 1 \cdot \frac{1}{8}(x^2 - 2x) + 3 \cdot \frac{1}{8}(x^2 + 2x)$$

$$= -x^2 + 4 + \frac{1}{8}x^2 - \frac{1}{4}x + \frac{3}{8}x^2 + \frac{3}{4}x$$

$$= -\frac{1}{2}x^2 + \frac{1}{2}x + 4$$

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0) = 4, P(-2) = 1 and P(2) = 3.

Example 27. To give another example, more relevant to the topics of this book, let us consider the same set $S = \{(0,4), (-2,1), (2,3)\}$ as in the previous example. This time, the task is to compute a polynomial $P \in \mathbb{F}_5[x]$ from this data. Since we know that multiplicative inverses exist in \mathbb{F}_5 , algorithm XXX applies and we can compute a unique polynomial of degree 2 in $\mathbb{F}_5[x]$

from S. We can use the lookup tables XXX for computation in \mathbb{F}_5 and get the following:

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = \frac{x + 2}{0 + 2} \cdot \frac{x - 2}{0 - 2} = \frac{(x + 2)(x - 2)}{-4} = \frac{(x + 2)(x + 3)}{1}$$

$$= x^2 + 1$$

$$l_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = \frac{x - 0}{-2 - 0} \cdot \frac{x - 2}{-2 - 2} = \frac{x}{3} \cdot \frac{x + 3}{1} = 2(x^2 + 3x)$$

$$= 2x^2 + x$$

$$l_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = \frac{x - 0}{2 - 0} \cdot \frac{x + 2}{2 + 2} = \frac{x(x + 2)}{3} = 2(x^2 + 2x)$$

$$= 2x^2 + 4x$$

$$P(x) = 4 \cdot (x^2 + 1) + 1 \cdot (2x^2 + x) + 3 \cdot (2x^2 + 4x)$$

$$= 4x^2 + 4 + 2x^2 + x + x^2 + 2x$$

$$= 2x^2 + 3x + 4$$

And, indeed, evaluation of P on the x-values of S gives the correct points, since P(0)=4, P(-2)=1 and P(2)=3.

Exercise 25. Consider example XXX and example XXX again. Why is it not possible to apply algorithm XXX if we consider S as a set of integers, nor as a set in \mathbb{Z}_6 ?

Chapter 4

Algebra

In the previous chapter, we gave an introduction to the basic computational skills needed for a pen-and-paper approach to SNARKs. In this chapter, we get a bit more abstract and clarify a lot of mathematical terminology and jargon.

When you read papers about cryptography, or mathematical papers in general, you will frequently come across algebraic terms like **groups**, **fields**, **rings** and similar. To be able to follow these papers, it is necessary to get at least some understanding of such terms. In this chapter, we therefore provide a short introduction to these terms.

In a nutshell, algebraic types like groups or fields define sets that are analogous to numbers in various aspects, in the sense that you can add, subtract, multiply or divide on those sets.

We know many examples of sets that fall under those categories, such as natural numbers, integers, rational or the real numbers. In some sense, these are the most fundamental examples of such sets.

4.1 Groups

Groups are abstractions that capture the essence of mathematical phenomena, like addition and subtraction, multiplication and division, permutations, or symmetries.

To understand groups, let us think back to when we learned about addition and subtraction of integers in school (putting integer multiplication aside for the moment). We learned that we can always add two integers, and that the result is guaranteed to be an integer again. We also learned that adding zero to any integer means that "nothing happens", that it doesn't matter in which order we add a given set of integers, that operations within brackets should be computed before operations outside brackets and that, for every integer, there is always another integer such that when we add both together we get zero (the negative).

These conditions are the defining properties of a group, and mathematicians have recognized that the exact same set of rules can be found in very different mathematical structures. It therefore makes sense to give a formal definition of what a group should be, detached from any concrete example. This lets us handle entities of very different mathematical origins in a flexible way, while retaining essential structural aspects of many objects in abstract algebra and beyond.

Distilling these rules to the smallest independent list of properties and making them abstract, we arrive at the definition of a group:

A **group** (\mathbb{G},\cdot) is a set \mathbb{G} , together with a map \cdot . The map, also denoted as $\mathbb{G} \times \mathbb{G} \to \mathbb{G}$ and called the group law, combines two elements of the set \mathbb{G} into a third one such that the following properties hold:

Def Subgroup, Fundamental theorem of cyclic groups.

1590

1591

1599

1600

1601

1602

1604

1605

1606 1607

1611

1612

1613

1614

1615

1616

1617

1618

1619

1628

1629

- Existence of a neutral element: There is a $e \in \mathbb{G}$ for all $g \in \mathbb{G}$, such that $e \cdot g = g$ as well as $g \cdot e = g$.
 - Existence of an inverse: For every $g \in \mathbb{G}$ there is a $g^{-1} \in \mathbb{G}$, such that $g \cdot g^{-1} = e$ as well as $g^{-1} \cdot g = e$.
 - Associativity: For every $g_1, g_2, g_3 \in \mathbb{G}$ the equation $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$ holds.

Rephrasing the abstract definition in layman's terms, a group is something where we can do computations in a way that resembles the behaviour of the addition of integers. Specifically, this means we can combine some element with another element into a new element in a way that is reversible and where the order of combining elements doesn't matter.

Notation and Symbols 3. Let $(\mathbb{G}\cdot)$ be a finite group. If there is no risk of ambiguity, we frequently drop the symbol \cdot and simply write \mathbb{G} as a notation for the group keeping the group law implicit.

As we will see in XXX, groups are heavily used in cryptography and in SNARKs. But let us look at some more familiar examples fist:

Example 28 (Integer Addition and Subtraction). The set $(\mathbb{Z},+)$ of integers together with integer addition is the archetypical example of a group, where the group law is traditionally written as + (instead of \cdot). To compare integer addition against the abstract axioms of a group, we first see that the neutral element e is the number 0, since a+0=a for all integers $a\in\mathbb{Z}$. Furthermore, the inverse of a number is its negative counterpart, since a+(-a)=0, for all $a\in\mathbb{Z}$. In addition, we know that (a+b)+c=a+(b+c), so integers with addition are indeed a group in the abstract sense

Example 29 (The trivial group). The most basic example of a group is group with just one element $\{\bullet\}$ and the group law $\bullet \cdot \bullet = \bullet$.

Commutative Groups When we look at the general definition of a group, we see that it is somewhat different from what we know from integers. We know that the order in which we add two integers doesn't matter, as, for example, 4 + 2 is the same as 2 + 4. However we also know from example XXX that this is not always the case in groups.

To capture the special case of a group where the order in which the group law is executed doesn't matter, the concept of so-called a **commutative group** is introduced. To be more precise, a group is called commutative if $g_1 \cdot g_2 = g_2 \cdot g_1$ holds for all $g_1, g_2 \in \mathbb{G}$.

Notation and Symbols 4. In case (\mathbb{G}, \cdot) is a commutative group, we frequently use the so-called **additive notation** $(\mathbb{G}, +)$, that is, we write + instead of \cdot for the group law and $-g := g^{-1}$ for the inverse of an element $g \in \mathbb{G}$.

Example 30. Consider the group of integers with integer addition again. Since a+b=b+a for all integers, this group is the archetypical example of a commutative group. Since there are infinitely many integers, $(\mathbb{Z}, +)$ is not a finite group.

Example 31. Consider our definition of modulo 6 residue classes $(\mathbb{Z}_6,+)$ as defined in the addition table from example 8. As we can see, the residue class 0 is the neutral element in modulo 6 arithmetics, and the inverse of a residue class r is given by 6-r, since r+(6-r)=6, which is congruent to 0, since 6 mod 6=0. Moreover $(r_1+r_2)+r_3=r_1+(r_2+r_3)$ is inherited from integer arithmetic.

We therefore see that $(\mathbb{Z}_6, +)$ is a group, and, since the addition table in example 8 is symmetrical, we see $r_1 + r_2 = r_2 + r_1$ which shows that $(\mathbb{Z}_6, +)$ is commutative.

add reference when available

add reference when available

1631

1632

1633

1634

1635

1636

1638

1639

1644

1645

1646

1647

1649

1650

1654

1655

1660

1661

1662

The previous example of a commutative groups is a very important one for this book. Abstracting from this example and considering residue classes $(\mathbb{Z}_n, +)$ for arbitrary moduli n, it can be shown that $(\mathbb{Z}, +)$ is a commutative group with the neutral element 0 and the additive inverse n-r for any element $r \in \mathbb{Z}_n$. We call such a group the **remainder class group** of modulus n.

Of particular importance for pairing-based cryptography in general and SNARKs in particular are so-called **pairing maps** on commutative groups. To be more precise let \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_3 be three commutative groups. For historical reasons, we write the group law on \mathbb{G}_1 and \mathbb{G}_2 in additive notation and the group law on \mathbb{G}_3 in multiplicative notation. Then a **pairing map** is a function

$$e(\cdot,\cdot): \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$$
 (4.1)

that takes pairs (g_1,g_2) (products) of elements from \mathbb{G}_1 and \mathbb{G}_2 and maps them somehow to elements from \mathbb{G}_3 , such that the *bilinearity* property holds: For all $g_1,g_1'\in\mathbb{G}_1$ and $g_2\in\mathbb{G}_2$ we have $e(g_1+g_1',g_2)=e(g_1,g_2)\cdot e(g_1',g_2)$ and for all $g_1\in\mathbb{G}_1$ and $g_2,g_2'\in\mathbb{G}_2$ we have $e(g_1,g_2+g_2')=e(g_1,g_2)\cdot e(g_1,g_2')$.

A pairing map is called *non-degenerated*, if whenever the result of the pairing is the neutral element in \mathbb{G}_3 , one of the input values must be the neutral element of \mathbb{G}_1 or \mathbb{G}_2 . To be more precise $e(g_1,g_2)=e_{\mathbb{G}_3}$ implies $g_1=e_{\mathbb{G}_1}$ or $g_2=e_{\mathbb{G}_2}$.

So, roughly speaking, bilinearity means that it doesn't matter if we first execute the group law on any side and then apply the bilinear map, or if we first apply the bilinear map and then apply the group law. Moreover, non-degeneracy means that the result of the pairing is zero if and only if at least one of the input values is zero.

Example 32. Maybe the most basic example of a non-degenerate pairing is obtained if we take \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_3 all to be the groups of integers with addition $(\mathbb{Z},+)$. Then the following map defines a non-degenerate pairing:

$$e(\cdot,\cdot): \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} (a,b) \mapsto a \cdot b$$

Note that bilinearity follows from the distributive law of integers, since for $a,b,c\in\mathbb{Z}$, we have $e(a+b,c)=(a+b)\cdot c=a\cdot c+b\cdot c=e(a,c)+e(b,c)$ and the same reasoning is true for the second argument.

To the see that $e(\cdot, \cdot)$ is non-degenrate, assume that e(a, b) = 0. Then $a \cdot b = 0$ implies that a or b must be zero.

Exercise 26. Consider example XXX again and let \mathbb{F}_5^* be the set of all remainder classes from \mathbb{F}_5^* without the class 0. Then $\mathbb{F}_5^* = \{1, 2, 3, 4\}$. Show that (\mathbb{F}_5^*, \cdot) is a commutative group.

add reference

Exercise 27. Generalizing the previous exercise, consider general moduli n and let \mathbb{Z}_n^* be the set of all remainder classes from \mathbb{Z}_n without the class 0. Then $\mathbb{Z}_n^* = \{1, 2, \dots, n-1\}$. Give a counter example to show that (\mathbb{Z}_n^*, \cdot) is not a group in general.

Find a condition such that (\mathbb{Z}_n^*, \cdot) is a commutative group, compute the neutral element, give a closed form for the inverse of any element and proof the commutative group axioms.

Exercise 28. Consider the remainder class groups $(\mathbb{Z}_n,+)$ for some modulus n. Show that the map

$$e(\cdot,\cdot): \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \ (a,b) \mapsto a \cdot b$$

is bilinear. Why is it not a pairing in general and what condition must be imposed on n, such that the map is a pairing?

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1698

1699

1700

1701

1705

1706

Finite groups As we have seen in the previous examples, groups can either contain infinitely 1665 many elements (such as integers) or finitely many elements (as for example the remainder class 1666 groups $(\mathbb{Z}_n,+)$). To capture this distinction, a group is called a **finite group** if the underlying 1667 set of elements is finite. In that case, the number of elements of that group is called its **order**. 1668

Notation and Symbols 5. Let \mathbb{G} be a finite group. Then we frequently write $ord(\mathbb{G})$ or $|\mathbb{G}|$ for 1669 the order of \mathbb{G} . 1670

Example 33. Consider the remainder class groups $(\mathbb{Z}_6,+)$ from example 8 and $(\mathbb{F}_5,+)$ from 1671 example 13, and the group (\mathbb{F}_5^*,\cdot) from exercise 26. We can easily see that the order of $(\mathbb{Z}_6,+)$ 1672 is 6, the order of $(\mathbb{F}_5,+)$ is 5 and the order of (\mathbb{F}_5^*,\cdot) is 4. 1673

To be more general, considering arbitrary moduli n, we know from Euclidean division that the order of the remainder class group $(\mathbb{Z}_n, +)$ is n.

Exercise 29. The RSA crypto system is based on a modulus n that is typically the product of two prime numbers of size 2048-bits. What is the approximate order of the rainder class group $(\mathbb{Z}_n,+)$ in this case?

These are sets of elements that can be used to generate the entire group by ap-Generators plying the group law repeatedly to these elements or their inverses only. Generators are of particular interest when working with groups.

Of course, every group \mathbb{G} has a trivial set of generators, when we just consider every element of the group to be in the generator set. The more interesting question is to find the smallest possible set of generators for a given group. Of particular interest in this regard are groups that have a single generator, that is, there exists an element $g \in \mathbb{G}$ such that every other element from \mathbb{G} can be computed by the repeated combination of g and its inverse g^{-1} only. Groups with a single generator are called cyclic groups.

Example 34. The most basic example of a cyclic group is the group of integers $(\mathbb{Z},+)$ with 1688 integer addition. 1 is a single generator of \mathbb{Z} , since every integer can be obtained by repeatedly 1689 adding either 1 or its inverse -1 to itself. For example -4 is generated by -1, since -41690 -1+(-1)+(-1)+(-1). 1691

Example 35. Consider a modulus n and the remainder class groups $(\mathbb{Z}_n, +)$ from example 33. 1692 These groups are cyclic, with generator 1, since every other element of that group can be con-1693 structed by repeatedly adding the remainder class 1 to itself. Since \mathbb{Z}_n is also finite, we know 1694 that $(\mathbb{Z}_n, +)$ is a finite cyclic group of order n. 1695

Example 36. Let $p \in \P$ be prime number and (\mathbb{F}_p^*, \cdot) the finite group from exercise XXX. Then add refer-1696 (\mathbb{F}_p^*, \cdot) is cyclic and every element $g \in \mathbb{F}_q^*$ is a generator. 1697

The discrete Logarithm problem In cryptography in general, and in SNARK development in particular, we often do computations" in the exponent of a generator. To see what this means, observe that when \mathbb{G} is a cyclic group of order n and $g \in \mathbb{G}$ is a generator of \mathbb{G} , then there is a map, called the **exponential map** with respect to the generator g

$$g^{(\cdot)}: \mathbb{Z}_n \to \mathbb{G} \ x \mapsto g^x \tag{4.2}$$

where g^x means "multiply g x-times by itself and $g^0 = e_{\mathbb{G}}$. This map has the remarkable prop-1702 erty that it maps the additive group law of the remainder class group $(\mathbb{Z}_n,+)$ in a one-to-one 1703 correspondence to the group law of \mathbb{G} . 1704

To see this, first observe that, since $g^0 := e_{\mathbb{G}}$ by definition, the neutral element of \mathbb{Z}_n is mapped to the neutral element of \mathbb{G} and since $g^{x+y} = g^x \cdot g^y$, the map respects the group laws.

check references to previous examples

crypto system

RSA

size 2048bits

rainder class group

ence

check

reference

1708

1710

1711

1712

1714

1715

1716

1718

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

Since the exponential map respects the group law, it doesn't matter if we do our computation in \mathbb{Z}_n before we write the result into the exponent of g or afterwards. The result will be the same. This is what is usually meant by saying we do our computations "in the exponent".

Example 37. Consider the multiplicative group (\mathbb{F}_5^*,\cdot) from example 26. We know that \mathbb{F}_5^* is a cyclic group of order 4 and that every element is a generator. Choose $3 \in \mathbb{F}_5^*$, we then know that the map

check reference

$$3^{(\cdot)}: \mathbb{Z}_4 \to \mathbb{F}_5^* x \mapsto 3^x$$

respects the group law of addition in \mathbb{Z}_4 and the group law of multiplication in \mathbb{F}_5^* . And indeed doing a computation like

$$3^{2+3-2} = 3^3$$

= 2

in the exponent gives the same result as doing the same computation in $\mathbb{F}*_5$, that is

$$3^{2+3-2} = 3^2 \cdot 3^3 \cdot 3^{-2}$$

$$= 4 \cdot 2 \cdot (-3)^2$$

$$= 3 \cdot 2^2$$

$$= 3 \cdot 4$$

$$= 2$$

Since the exponential map is a one-to-one correspondence that respects the group law, it can be shown that this map has an inverse which is called the **discrete logarithm** map with respect to the base *g*:

$$log_{g}(\cdot): \mathbb{G} \to \mathbb{Z}_{n} x \mapsto log_{g}(x)$$
 (4.3)

Discrete logarithms are highly important in cryptography as there are groups such that the exponential map and its inverse, the discrete logarithm, are believed to be one-way functions, that is, while it is possible to compute the exponential map in polynomial time, computing the discrete log takes (sub)-exponential time. We have discussed this briefly following example 3.5 in the previous chapter, and will look at this and similar problems in more detail in the next section.

polynomial time

exponential time

TODO:

Funda-

mental

theorem

of finite

cyclic

groups

4.1.1 Cryptographic Groups

In this section, we will look at families of groups, which are believed to satisfy certain so-called **computational hardness assumptions**, that is, the hypothesis that a particular problem cannot be solved efficiently (where efficiently typically means "in polynomial time of a given security parameter") in the groups under consideration.

Example 38. To highlight the concept of the computational hardness assumption, consider the group of integers \mathbb{Z} from example 3.5. One of the best known and most researched examples of computational hardness is the assumption that the factorization of integers into prime numbers cannot be solved by any algorithm in polynomial time with respect to the bit-length of the integer.

check reference

To be more precise, the computational hardness assumption of integer factorization assumes that, given any integer $z \in \mathbb{Z}$ with bit-length b, there is no integer k and no algorithm with the run-time complexity of $\mathcal{O}(b^k)$ that is able to find the prime numbers $p_1, p_2, \ldots, p_j \in \mathbb{P}$, such that $z = p_1 \cdot p_2 \cdot \ldots \cdot p_j$.

run-time complexity

1734

1735

1736

1737

1738

1739

1742

1743

1744

1745

1746

1747

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

This hardness assumption was proven to be false, since Shor's algorithm shows that integer factorization is at least efficiently possible on a quantum computer, since the running time complexity of this algorithm is $\mathcal{O}(b^3)$. However, no such algorithm is known on a classical computer.

In the realm of classical computers, however, we still have to call the non-existence of such an algorithm an "assumption" because, to date, there is no proof that it is actually impossible to find one. The problem is that it is hard to reason about algorithms that we don't know.

So, despite the fact that there is currently no known algorithm that can factor integers efficiently on a classical computer, we cannot exclude that such an algorithm might exist in principle, and that someone eventually will discover it in the future.

However, what still makes the assumption plausible, despite the absence of any actual proof, is the fact that, after decades of extensive search, still no such algorithm has been found.

In what follows, we will describe a few computational hardness assumptions that arise in the context of groups in cryptography, because we will refer to them throughout the book.

The discrete logarithm assumption The so-called discrete logarithm problem is one of the most fundamental assumptions in cryptography. To define it, let \mathbb{G} be a finite cyclic group of order r and let g be a generator of \mathbb{G} . We know from 4.2 that there is a so-called exponential map $g^{(\cdot)}: \mathbb{Z}_r \to \mathbb{G}: x \mapsto g^x$, which maps the residue classes from module r arithmetic onto the group in a 1:1 correspondence. The **discrete logarithm problem** is then the task of finding inverses to this map, that is, to find a solution $x \in \mathbb{Z}_r$ to the following equation for some given $h \in \mathbb{G}$:

$$h = g^{x} \tag{4.4}$$

In other words, the **discrete logarithm assumption** (**DL-A**) is the assumption that there exists no algorithm with running time polynomial in the security parameter $log_2(r)$, that is able to compute some x if only h, g and g^x are given in \mathbb{G} . If this is the case for \mathbb{G} , we call \mathbb{G} a **DL-A group**.

Rephrasing the previous definition into simple words, DL-A groups are believed to have the property that it is infeasible to compute some number x that solves the equation $h = g^x$ for a given h and g, assuming that the size of the group r is large enough.

Example 39 (Public key cryptography). One the most basic examples of an application for DL-A groups is in public key cryptography, where some pair (\mathbb{G}, g) is publicly agreed on, such that \mathbb{G} is a finite cyclic group of sufficiently large order r, where it is believed that the discrete logarithm assumption holds, and g is a generator of \mathbb{G} .

In this setting, a secret key is nothing but some number $sk \in \mathbb{Z}_r$ and the associated public key pk is the group element $pk = g^{sk}$. Since discrete logarithms are assumed to be hard, it is infeasible for an attacker to compute the secret key from the public key, since it is believed to be hard to find solutions x to the equation

$$pk = g^x$$

As the previous example shows, identifying DL-A groups is an important practical problem. Unfortunately, it is easy to see that it does not make sense to assume the hardness of the discrete logarithm problem in all finite cyclic groups: Counterexamples are common and easy to construct.

Example 40 (Modular arithmetics for Fermat's primes). It is widely believed that the discrete logarithm problem is hard in multiplicative groups \mathbb{Z}_p^* of prime number modular arithmetics.

add reference

S: what does "efficiently" mean here?

computational hardness assumptions

check reference

1772

1773 1774

1775

1778

1779

1786

1787

1788

1789

1790

1791

1792

However, this is not true in general. To see that, consider any so-called Fermat's prime, which is a prime number $p \in \mathbb{P}$, such that $p = 2^n + 1$ for some number n.

We know from XXX that in this case $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$ is a group with respect to integer multiplication in modular p arithmetics and since $p = 2^n + 1$, the order of \mathbb{Z}_p^* is 2^n , which implies that the associated security parameter is given by $log_2(2^n) = n$.

add reference

We show that, in this case, \mathbb{Z}_p^* is not a DL-A group, by constructing an algorithm, which is able compute some $x \in \mathbb{Z}_{2^n}$ for any given generator g and arbitrary element h of \mathbb{F}_p^* , such that

$$h = g^{x}$$

holds and the runtime complexity of the constructed algorithm is $\mathcal{O}(n^2)$, which is quadratic in the security parameter $n = log_2(2^n)$.

To define such an algorithm, let us assume that the generator g is a public constant and that a group element h is given. Our task is to compute x efficiently.

The first thing to note is that, since x is a number in modular 2^n arithmetic, we can write the binary representation of x as

$$x = c_0 \cdot 2^0 + c_1 \cdot 2^1 + \dots + c_n \cdot 2^n$$

with binary coefficients $c_j \in \{0,1\}$. In particular, x is an n-bit number if interpreted as an integer.

explain last sentence more

We then use this representation to construct an algorithm that computes the bits c_j one after another, starting at c_0 . To see how this can be achieved, observe that we can determine c_0 by raising the input h to the power of 2^{n-1} in \mathbb{F}_p^* . We use the exponential laws and compute

$$h^{2^{n-1}} = (g^{x})^{2^{n-1}}$$

$$= (g^{c_0 \cdot 2^0 + c_1 \cdot 2^1 + \dots + c_n \cdot 2^n})^{2^{n-1}}$$

$$= g^{c_0 \cdot 2^{n-1}} \cdot g^{c_1 \cdot 2^1 \cdot 2^{n-1}} \cdot g^{c_2 \cdot 2^2 \cdot 2^{n-1}} \cdots g^{c_n \cdot 2^n \cdot 2^{n-1}}$$

$$= g^{c_0 \cdot 2^{n-1}} \cdot g^{c_1 \cdot 2^0 \cdot 2^n} \cdot g^{c_2 \cdot 2^1 \cdot 2^n} \cdots g^{c_n \cdot 2^{n-1} \cdot 2^n}$$

Now, since g is a generator and \mathbb{F}_p^* is cyclic of order 2^n , we know $g^{2^n} = 1$ and therefore $g^{k \cdot 2^n} = 1^k = 1$. From this, it follows that all but the first factor in the last expression are equal to 1 and we can simplify the expression into

$$h^{2^{n-1}} = g^{c_0 2^{n-1}}$$

Now, in case $c_0 = 0$, we get $h^{2^{n-1}} = g^0 = 1$ and in case $c_0 = 1$, we get $h^{2^{n-1}} = g^{2^{n-1}} \neq 1$ (To see that $g^{2^{n-1}} \neq 1$, recall that g is a generator of \mathbb{F}_p^* and hence is cyclic of order 2^n , which implies $g^y \neq 1$ for all $y < 2^n$).

So raising h to the power of 2^{n-1} determines c_0 , and we can apply the same reasoning to the coefficient c_1 by raising $h \cdot g^{-c_0 \cdot 2^0}$ to the power of 2^{n-2} . This approach can then be repeated until all the coefficients c_i of x are found.

Assuming that exponentiation in \mathbb{F}_p^* can be done in logarithmic running time complexity log(p), it follows that our algorithm has a running time complexity of $\mathcal{O}(log^2(p)) = \mathcal{O}(n^2)$, since we have to execute n exponentiations to determine the n binary coefficients of x.

From this, it follows that whenever p is a Fermat's prime, the discrete logarithm assumption does not hold in F_p^* .

1794

1796

1797

1798

1799

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1814

1815

1816

1817

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

The decisional Diffie–Hellman assumption To describe the decisional Diffie–Hellman assumption, let \mathbb{G} be a finite cyclic group of order r and let g be a generator of \mathbb{G} . The DDH assumption then assumes that there is no algorithm that has a polynomial running time complexity in the security parameter s = log(r) that is able to distiguish the so-called DDH- triple (g^a, g^b, g^{ab}) from any triple (g^a, g^b, g^c) for randomly and independently chosen parameters $a,b,c \in \mathbb{Z}_r$. If this is the case for \mathbb{G} , we call \mathbb{G} a **DDH-A group**.

It is easy to see that DDH-A is a stronger assumption than DL-A, in the sense that the discrete logarithm assumption is necessary for the decisional Diffie-Hellman assumption to hold, but not the other way around.

To see why, assume that the discrete logarithm assumption does not hold. In that case, given a generator g and a group element h, it is easy to compute some residue class $x \in \mathbb{Z}_p$ with $h = g^x$. Then the decisional Diffie-Hellman assumption cannot hold, since given some triple (g^a, g^b, z) , one could efficiently decide whether $z = g^{ab}$ by first computing the discrete logarithm b of g^b , then computing $g^{ab} = (g^a)^b$ and deciding whether or not $z = g^{ab}$.

On the other hand, the following example shows that there are groups where the discrete logarithm assumption holds but the decisional Diffie-Hellman assumption does not hold:

Example 41 (Efficiently computable pairings). Let \mathbb{G} be a finite, cyclic group of order r with generator g, such that the discrete logarithm assumtion holds and such that there is a pairing map $e(\cdot,\cdot): \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ for some target group \mathbb{G}_T that is computable in polynomial time of the parameter log(r).

In a setting like this, it is easy to show that DDH-A cannot hold, since given some triple (g^a, g^b, z) , it is possible to decide in polynomial time w.r.t log(r) whether $z = g^{ab}$ or not. To see that check

$$e(g^a, g^b) = e(g, z)$$

Since the bilinierity properties of $e(\cdot,\cdot)$ imply $e(g^a,g^b)=e(g,g)^{ab}=e(g,g^{ab})$ and $e(g,y)=e(g,g)^{ab}$ e(g, y') implies y = y' due to the non degeneral property, the equality decides $z = e^{ab}$.

It follows that DDH-A is indeed weaker than DL-A and groups with efficient pairings cannot be DDH-A groups. The following example shows another important class of groups where DDH-A does not hold: multiplicative groups of prime number residue classes.

Example 42. Let p be a prime number and $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ the multiplicative group of modular p arithmetics as in example XXX. As we have seen in XXX, this group is finite and cyclic of order p-1 and every element $g \neq 1$ is a generator.

To see that \mathbb{F}_p^* cannot be a DDH-A group, recall from XXX that the Legendre symbol $\left(\frac{x}{p}\right)$ of any $x \in \mathbb{F}_p^*$ is efficiently computable by Euler's formular. But the Legendre symbol of g^a reveals if a is even or odd. Given g^a , g^b and g^{ab} , one can thus efficiently compute and compare the least significant bit of a, b and ab, respectively, which provides a probabilistic method to distinguish g^{ab} from a random group element g^c .

The computational Diffie-Hellman assumption To describe the computational Diffie-Hellman assumption assumption, let \mathbb{G} be a finite cyclic group of order r and let g be a generator of \mathbb{G} . The computational Diffie-Hellman assumption assumes that, given randomly and independently chosen residue classes $a, b \in \mathbb{Z}_r$, it is not possible to compute g^{ab} if only g, g^a and g^b (but not a and b) are known. If this is the case for \mathbb{G} , we call \mathbb{G} a CDH-A group.

In general, it is not known if CDH-A is a stronger assumption then DL-A, or if both assumptions are equivalent. It is known that DL-A is necessary for CDH-A but the other direction is currently not well understood. In particular, there are no groups known where DL-A holds but CDH-A does not hold [Fifield, 2012].

add reference

Legendre symbol

Euler's

These explained later in the text,

To see why the discrete logarithm assumption is necessary, assume that it does not hold. So, given a generator g and a group element h, it is easy to compute some residue class $x \in \mathbb{Z}_p$ with $h = g^x$. In that case, the computational Diffie–Hellman assumption cannot hold, since, given g, g^a and g^b , one can efficiently compute b and hence is able to compute $g^{ab} = (g^a)^b$ from this data.

The computational Diffie–Hellman assumption is a weaker assumption than the decisional Diffie–Hellman assumption, which means that there are groups where CDH-A holds and DDH-A does not hold, while there cannot be groups such that DDH-A holds but CDH-A does not hold. To see that, assume that it is efficiently possible to compute g^{ab} from g, g^a and g^b . Then, given (g^a, g^b, z) it is easy to decide if $z = g^{ab}$ or not.

Several variations and special cases of the CDH-A exist. For example, the **square computational Diffie–Hellman assumption** assumes that, given g and g^x , it is computationally hard to compute g^{x^2} . The **inverse computational Diffie–Hellman assumption** assumes that, given g and g^x , it is computationally hard to compute $g^{x^{-1}}$.

Cofactor Clearing

4.1.2 Hashing to Groups

Hash functions Generally speaking, a hash function is any function that can be used to map data of arbitrary size to fixed-size values. Since binary strings of arbitrary length are a general way to represent arbitrary data, we can understand a general **hash function** as a map

$$H: \{0,1\}^* \to \{0,1\}^k$$
 (4.5)

where $\{0,1\}^*$ represents the set of all binary strings of arbitrary but finite length and $\{0,1\}^k$ represents the set of all binary strings that have a length of exactly k bits. So, in our definition, a hash function maps binary strings of arbitrary size onto binary strings of size exactly k. We call the images of H, that is, the values returned by the hash function **hash values**, **digests**, or simply **hashes**.

A hash function must be deterministic, that is, when we insert the same input x into H, the image H(x) must always be the same. In addition, a hash function should be as uniform as possible, which means that it should map input values as evenly as possible over its output range. In mathematical terms, every string of length k from $\{0,1\}^k$ should be generated with roughly the same probability.

Example 43 (k-truncation hash). One of the most basic hash functions $H_k : \{0,1\}^* \to \{0,1\}^k$ is given by simply truncating every binary string s of size s.len() > k to a string of size k and by filling any string s' of size s'.len() < 0 with zeros. To make this hash function deterministic, we define that both truncation and filling should happen"on the left".

For example if k = 3, $x_1 = (000010101110101011101010101)$ and $x_2 = 1$ then $H(x_1) = (101)$ and $H(x_2) = (001)$. It is easy to see that this hash function is deterministic and uniform.

Of particular interest are so-called **cryptographic** hash functions, which are hash functions that are also **one-way functions**, which essentially means that, given a string y from $\{0,1\}^k$ it is practically infeasible to find a string $x \in \{0,1\}^*$ such that H(x) = y holds. This property is usually called **preimage-resistance**.

In addition, it should be infeasible to find two strings $x_1, x_2 \in \{0, 1\}^*$, such that $H(x_1) = H(x_2)$, which is called **collision resistance**. It is important to note, though, that collisions always exist, since a function $H: \{0, 1\}^* \to \{0, 1\}^k$ inevitable maps infinitly many values onto

TODO: theorem: every factor of order defines a subgroup...

the same hash. In fact, for any hash function with digests of length k, finding a preimage to a given digest can always be done using a brute force search in 2^k evaluation steps. It should just be practically impossible to compute those values and statistically very unlikely to generate two of them by chance.

A third property of a cryptographic hash function is that small changes in the input string, like changing a single bit, should generate hash values that look completely different from each other.

As cryptographically secure hash functions map tiny changes in input values onto large change in the output, implementation errors that change the outcome are usually easy to spot by comparing them to expected output values. The definitions of cryptographically secure hash functions are therefore usually accompanied by some test vectors of common inputs and expected digests. Since the empty string " is the only string of length 0, a common test vector is the expected digest of the empty string.

Example 44 (k-truncation hash). Considering the k-truncation hash from example 43. Since the empty string has length 0 it follows that the digest of the empty string is string of length k that only contains 0's:

$$H_k('') = (000...000)$$

It is pretty obvious from the definition of H_k that this simple hash function is not a cryptographic hash function. In particular, every digest is its own preimage, since $H_k(y) = y$ for every string of size exactly k. Finding preimages is therefore easy.

In addition, it is easy to construct collusions as all strings of size > k that share the same k-bits"on the right" are mapped to the same hash value.

Also, this hash function is not very chaotic, as changing bits that are not part of the k rightmost bits don't change the digest at all.

Computing cryptographically secure hash functions in pen-and-paper style is possible but tedious. Fortunately, Sage can import the **PyCrypto** library, which is intended to provide a reliable and stable base for writing Python programs that require cryptographic functions. The following examples explain how to use PyCrypto in Sage.

Example 45. An example of a hash function that is generally believed to be a cryptographically secure hash function is the so-called **SHA256** hash, which in our notation is a function

$$SHA256: \{0,1\}^* \to \{0,1\}^{256}$$

that maps binary strings of arbitrary length onto binary strings of length 256. To evaluate a proper implementation of the *SHA*256 hash function, the digest of the empty string is supposed to be

SHA256('') = e3b0c44298 fc1c149a fb f4c8996 fb92427ae41e4649b934ca495991b7852b855

For better human readability, it is common practise to represent the digest of a string in a hexadecimal representation rather than in its binary form. We can use Sage to compute *SHA*256 and freely transit between binary, hexadecimal and decimal representations. To do so, we have to import PyCrypto and then load *SHA*_256:Check Sage code wrt local setup_____

```
sage: import hashlib
sage: test = 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934
ca495991b7852b855'
sage: hasher = hashlib.sha256(b'')
```

Is there a term for this property?

Check
Sage code
444
Wrt local
45
Setup

```
sage: str = hasher.hexdigest()
                                                     147
1909
   sage: type(str)
                                                     148
1910
   <class 'str'>
                                                     149
1911
   sage: d = ZZ('0x' + str) \# conversion to integer type
                                                     150
1912
   sage: d.str(16) == str
                                                     151
1913
                                                     152
1914
   sage: d.str(16) == test
                                                     153
1915
   True
                                                     154
1916
   sage: d.str(16)
                                                     155
1917
   e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8
                                                     156
1918
     55
1919
   sage: d.str(2)
                                                     157
1920
   158
1921
     1922
     1923
     1924
     01011100001010101
1925
   sage: d.str(10)
                                                     159
1926
   10298733624955409702953521232258132278979990064819803499337939
                                                     160
1927
     7001115665086549
1928
```

Hashing to cyclic groups As we have seen in the previous paragraph, general hash functions map binary strings of arbitrary length onto binary strings of length k for some parameter k. However, it is desirable in various cryptographic primitives to not simply hash to binary strings of fixed length but to hash into algebraic structures like groups, while keeping (some of) the properties like preimage resistance or collision resistance.

Hash functions like this can be defined for various algebraic structures, but, in a sense, the most fundamental ones are hash functions that map into groups, because they are usually easily extended to map into other structures like rings or fields.

To give a more precise definition, let \mathbb{G} be a group and $\{0,1\}^*$ the set of all finite, binary strings, then a **hash-to-group** function is a deterministic map

$$H: \{0,1\}^* \to \mathbb{G} \tag{4.6}$$

Common properties of hash functions, like uniformity are desireable but not always realized in actual real Common properties of hash functions, like uniformity, are desirable but not always realized in actual real world instantiations of hash-to-group functions, so we skip those requirements for now and keep the definition very general. instantiations of hash-to-group functions, so we skip those requirements for now and keep the definition very general.

As the following example shows, hashing to finite cyclic groups can be trivially achieved for the price of some undesirable properties of the hash function:

Example 46 (Naive cyclic group hash). Let \mathbb{G} be a finite cyclic group. If the task is to implement a hash-to- \mathbb{G} function, one immediate approach can be based on the observation that binary strings of size k, can be interpreted as integers $z \in \mathbb{Z}$ in the range $0 \le z < 2^k$.

To be more precise, choose an ordinary hash function $H: \{0,1\}^* \to \{0,1\}^k$ for some parameter k and a generator g of \mathbb{G} . Then the expression

$$z_{H(s)} = H(s)_0 \cdot 2^0 + H(s)_1 \cdot 2^1 + \dots + H(s)_k \cdot 2^k$$

1953

1954

1955

1956

1957

1959

1960

1961

1962

1963

1967

1968

1969

1970

1971

1972

1973

1974

1975

is a positive integer, where $H(s)_j$ means the bit at the j-th position of H(s). A hash-to-group function for the group \mathbb{G} can then be defined as a concatenation of the exponential map $g^{(\cdot)}$ of g with the interpretation of H(s) as an integer:

$$H_g: \{0,1\}^* \to \mathbb{G}: s \mapsto g^{z_{H(s)}}$$

Constructing a hash-to-group function like this is easy to implement for cyclic groups and might 1949 be good enough in certain applications. It is however, almost never adequate in cryptographic 1950 applications, as discrete log relations might be constructible between two given hash value $H_g(s)$ and $H_g(t)$. 1952

To see that, assume that \mathbb{G} is of order r and that $z_{H(s)}$ has a multiplicative inverse in modular r arithmetics. In that case, we can compute $x = z_{H(t)} \cdot z_{H(s)}^{-1}$ in \mathbb{Z}_r and have found a discrete log relation between the group hash values, that is, we have found some x with $H_g(t) = (H_g(s))^x$ since

$$H_g(t) = (H_g(s))^x \qquad \Leftrightarrow g^{z_{H(t)}} = g^{z_{H(s)} \cdot x} \qquad \Leftrightarrow g^{z_{H(t)}} = g^{z_{H(t)}}$$

Applications where discrete log relations between hash values are undesirable therefore need different approaches, and many of those approaches start with a way to hash into the sets \mathbb{Z}_r of modular r arithmetics.

Hashing to modular arithmetics One of the most widely used applications of hash-intogroup functions are hash functions that map into the set \mathbb{Z}_r of modular r arithmetics for some modulus r. Different approaches to construct such a function are known, but probably the most widely used ones are based on the insight that the images of arbitrary hash functions can be interpreted as binary representations of integers as explained in example XXX.

add reference

It follows from this interpretation that one simple method of hashing into \mathbb{Z}_r is constructed by observing that if r is a modulus with a bit-length of k = r.nbits(), then every binary string $(b_0, b_1, \dots, b_{k-2})$ of length k-1 defines an integer z in the rage $0 \le z < 2^{k-1} \le r$, by defining

$$z = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{k-2} \cdot 2^{k-2}$$
(4.7)

Now since z < r, we know that z is guranteed to be in the set $\{0, 1, \dots, r-1\}$ and hence can be 1964 interpreted as an element of \mathbb{Z}_r . From this, it follows that if $H: \{0,1\}^* \to \{0,1\}^{k-1}$ is a hash 1965 function, then a hash-to-group function can be constructed by 1966

$$H_{r.nbits()-1}: \{0,1\}^* \to \mathbb{Z}_r: s \mapsto H(s)_0 \cdot 2^0 + H(s)_1 \cdot 2^1 + \dots + H(s)_{k-2} \cdot 2^{k-2}$$
 (4.8)

where $H(s)_i$ means the j-th bit of the image binary string H(s) of the original binary hash function.

A drawback of this hash function is that the distribution of the hash values in \mathbb{Z}_r is not necessarily uniform. In fact, if $r-2^{k-1} \neq 0$, then by design $H_{r,nbits()-1}$ will never hash onto values $z \ge 2^{k-1}$. Good moduli r are therefore as close to 2^{k-1} as possible, while less good moduli are closer to 2^k . In the worst case, that is, $r = 2^k - 1$, it misses $2^{k-1} - 1$, that is almost half of all elements, from \mathbb{Z}_r .

An advantage is that properties like preimage resistance or collision resistance of the original hash function $H(\cdot)$ are preserved.

TODO: **DOUBLE CHECK THIS** REA-SONING.

Check

Example 47. To give an implementation of the $H_{r.nbits()-1}$ hash function, we use a 5-bit truncation of the SHA256 hash from example 45 and define a hash into \mathbb{Z}_{16} by

$$H_{16.nbits()-1}: \{0,1\}^* \to \mathbb{Z}_{16}: \ s \mapsto SHA256(s)_0 \cdot 2^0 + SHAH256(s)_1 \cdot 2^1 + \ldots + SHA256(s)_4 \cdot 2^4 + \ldots + SHA256(s)_5 + \ldots + SHA256(s)_$$

Since k = 16.nbits() = 5 and $16 - 2^{k-1} = 0$, this hash maps uniformly onto \mathbb{Z}_{16} . We can invoke Sage to implement it e.g. like this: Check Sage code wrt local setup

```
Sage code
    sage: import hashlib
1978
                                                                                     wrt local
            def Hash5(x):
1979
                                                                                     setup
                 hasher = hashlib.sha256(x)
1980
                 digest = hasher.hexdigest()
                                                                                    164
1981
                 d = ZZ(digest, base=16)
                                                                                    165
                 d = d.str(2)[-4:]
                                                                                    166
1983
                 return ZZ(d,base=2)
                                                                                    167
1984
    sage: Hash5(b'')
                                                                                    168
1985
                                                                                    169
1986
```

We can then use sage to apply this function to a large set of input values in order to plot a visualization of the distribution over the set $\{0, ..., 15\}$. Executing over 500 input values gives:

To get an intuition of uniformity, we can count the number of times the hash function $H_{16.nbits()-1}$ maps onto each number in the set $\{0,1,\ldots,15\}$ in a loop of 100000 hashes and compare that to the ideal uniform distribution, which would map exactly 6250 samples to each element. This gives the following result:

1989

1990

1991

1992

1993

The uniformity of the distribution problem becomes apparent if we want to construcht a similar hash function for \mathbb{Z}_r for any r in the range $17 \le r \le 31$. In this case, the definition of the hash function is exactly the same as for \mathbb{Z}_{16} and hence the images will not exceed the value 16. So, for example, in the case of hashing to \mathbb{Z}_{31} , the hash function never maps to any value larger than 16, leaving almost half of all numbers out of the image range.

The second widely used method of hashing into \mathbb{Z}_r is constructed by observing that if r is a modulus with a bit-length of $r.bits() = k_1$ and $H : \{0,1\}^* \to \{0,1\}^{k_2}$ is a hash function that produces digests of size k_2 , with $k_2 \ge k_1$, then a hash-to-group function can be constructed by interpreting the image of H as a binary representation of a integer and then taking the modulus by r to map into \mathbb{Z}_r . To be more precise

Mirco: We can do better than this

$$H'_{mod_r}: \{0,1\}^* \to \mathbb{Z}_r: s \mapsto \left(H(s)_0 \cdot 2^0 + H(s)_1 \cdot 2^1 + \dots + H(s)_{k_2} \cdot 2^{k_2}\right) \bmod n$$
 (4.9)

where $H(s)_j$ means the j'th bit of the image binary string H(s) of the original binary hash function.

A drawback of this hash function is that computing the modulus requires some computational effort. In addition, the distribution of the hash values in \mathbb{Z}_r might not be even, depending on the difference $2^{k_2+1}-r$. An advantage is that potential properties like preimage resistance or collision resistance of the original hash function $H(\cdot)$ are preserved and the distribution can be made almost uniform, with only negligible bias, depending on what modulus r and images size k_2 are chosen.

Example 48. To give an implementation of the H_{mod_r} hash function, we use k_2 -bit truncation of the SHA256 hash from example 45 and define a hash into \mathbb{Z}_{23} as follows:

$$H_{mod_{23},k_2}: \{0,1\}^* \to \mathbb{Z}_{23}:$$

$$s \mapsto \left(SHA256(s)_0 \cdot 2^0 + SHAH256(s)_1 \cdot 2^1 + \ldots + SHA256(s)_{k_2} \cdot 2^{k_2}\right) \mod 23$$

We want to use various instantiations of k_2 to visualize the impact of truncation length on the distribution of the hashes in \mathbb{Z}_{23} . We can invoke sage to implement it e.g. like this:

2027

2028

2029

2030

2031

2032

2033

2034

2035

2037

2038

2039

```
      2022
      ....:
      d = ZZ (digest, base=16)
      175

      2023
      ....:
      d = d.str(2) [-k2:]
      176

      2024
      ....:
      d = ZZ (d, base=2)
      177

      2025
      ....:
      return Z23 (d)
      178
```

We can then use Sage to apply this function to a large set of input values in order to plot visualizations of the distribution over the set $\{0, ..., 22\}$ for various values of k_2 by counting the number of times it maps onto each number in a loop of 100000 hashes. We get

A third method that can sometimes be found in implementations is the so-called "**try-and-increment**" **method**. To understand this method, we define an integer $z \in \mathbb{Z}$ from any hash value H(s) as we did in the previous methods, that is, we define $z = H(s)_0 \cdot 2^0 + H(s)_1 \cdot 2^1 + \ldots + H(s)_{k-1} \cdot 2^k$.

Hashing into \mathbb{Z}_r is then achievable by first computing z, and then trying to see if $z \in \mathbb{Z}_r$. If it is, then the hash is done; if not, the string s is modified in a deterministic way and the process is repeated until a suitable number z is found. A suitable, deterministic modification could be to concatenate the original string by some bit counter. A "try-and-increment" algorithm would then work like in algorithm 5.

check reference

```
Algorithm 5 Hash-to-\mathbb{Z}_n
```

```
Require: r \in \mathbb{Z} with r.nbits() = k and s \in \{0,1\}^*

procedure TRY-AND-INCREMENT(r,k,s)

c \leftarrow 0

repeat

s' \leftarrow s | |c\_bits()

z \leftarrow H(s')_0 \cdot 2^0 + H(s')_1 \cdot 2^1 + \ldots + H(s')_k \cdot 2^k

c \leftarrow c + 1

until z < r

return x

end procedure

Ensure: z \in \mathbb{Z}_r
```

Depending on the parameters, this method can be very efficient. In fact, if k is suficiently large and r is close to 2^{k+1} , the probability for z < r is very high and the repeat loop will almost

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2074

always be executed a single time only. A drawback is, however, that the probability of having to execute the loop multiple times is not zero.

Once some hash function into modular arithmetics is found, it can often be combined with additional techniques to hash into more general finite cyclic groups. The following paragraphs describes a few of those methods widely adopted in SNARK development.

Pedersen Hashes The so-called **Pedersen hash function** [Pedersen, 1992] provides a way to map binary inputs of fixed size k onto elements of finite cyclic groups that avoids discrete log relations between the images as they occur in the naive approach XXX. Combining it with a classical hash function provides a hash function that maps strings of arbitrary length onto group elements.

add reference

To be more precise, let j be an integer, \mathbb{G} a finite cyclic group of order r and $\{g_1, \dots, g_j\} \subset \mathbb{G}$ a uniform randomly generated set of generators of G. Then **Pedersen's hash function** is defined as

$$H_{Ped}: (\mathbb{Z}_r)^j \to \mathbb{G}: (x_1, \dots, x_j) \mapsto \prod_{i=1}^j g_i^{x_j}$$
 (4.10)

It can be shown that Pedersen's hash function is collision-resistant under the assumption that G is a DL-A group. However, it is important to note that Pedersen hashes cannot be assumed to be **pseudorandom** and should therefore not be used where a hash function serves as an approximation of a random **oracle**.

From an implementation perspective, it is important to derive the set of generators $\{g_1, \dots, g_j\}$ in such a way that they are as uniform and random as possible. In particular, any known discrete log relation between two generators, that is, any known $x \in \mathbb{Z}_r$ with $g_h = (g_i)^x$ must be avoided.

To see how Pedersen hashes can be used to define an actual hash-to-group function according to our definition, we can use any of the hash-to- \mathbb{Z}_r functions as we have derived them in XXX.

add reference

[Albrecht et al., 2016] **MimC Hashes**

Pseudo Random Functions in DDH-A groups As noted in XXX, Pederson's hash function does not have the properties a random function and should therefore not be instantiated as such. To look at a construction that serves as a random oracle function in groups where the decisional Diffie-Hellman construction is assumed to hold true, let \mathbb{G} be a DDH-A group of order r with generator g and $\{a_0, a_1, \dots, a_k\} \subset \mathbb{Z}_r^*$ a uniform randomly generated set of numbers invertible in modular r arithmetics. Then a pseudo-random function is given by

$$F_{rand}: \{0,1\}^{k+1} \to \mathbb{G}: (b_0,\dots,b_k) \mapsto g^{b_0 \cdot \prod_{i=1}^k a_i^{b_i}}$$
 (4.11)

Of course, if $H: \{0,1\}^* \to \{0,1\}^{k+1}$ is a random oracle, then the concatenation of F_{rand} and H, 2071 defines a random oracle 2072

$$H_{rand,\mathbb{G}}: \{0,1\}^* \to \mathbb{G}: s \mapsto F_{rand}(H(s))$$
 (4.12)

Commutative Rings 4.2

Thinking of back to operations on integers, we know that there are two of these: addition and multiplication. As we have seen, addition defines a group structure on the set of integers. 2075

2079

2080

2081

2082

2083

2084

2085

2086

2096

However, multiplication does not define a group structure, given that integers in general don't have multiplicative inverses.

Configurations like this constitute a so-called **commutative ring with unit**. To be more precise, a commutative ring with unit $(R, +, \cdot, 1)$ is a set R provided with two maps $+: R \cdot R \to R$ and $\cdot: R \cdot R \to R$, called **addition** and **multiplication**, such that the following conditions hold:

- (R,+) is a commutative group, where the neutral element is denoted with 0. Commutativity of multiplication: $r_1 \cdot r_2 = r_2 \cdot r_1$ for all $r_1, r_2 \in R$.
- Existence of a unit: There is an element $1 \in R$, such that $1 \cdot g$ holds for all $g \in R$,
- Associativity: For every $g_1, g_2, g_3 \in \mathbb{G}$ the equation $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$ holds.
- **Distributivity**: For all $g_1, g_2, g_3 \in R$ the distributive laws $g_1 \cdot (g_2 + g_3) = g_1 \cdot g_2 + g_1 \cdot g_3$ holds.

Example 49 (The ring of integers). The set \mathbb{Z} of integers with the usual addition and multiplication is the archetypical example of a commutative ring with unit 1.

Example 50 (Underlying commutative group of a ring). Every commutative ring with unit $(R, +, \cdot, 1)$ gives rise to a group, if we disregard multiplication.

The following example is more interesting. The motivated reader is encouraged to think through this example, not so much because we need this in what follows, but more so as it helps to detach the reader from familiar styles of computation.

Example 51. Let $S := \{ \bullet, \star, \odot, \otimes \}$ be a set that contains four elements and let addition and multiplication on S be defined as follows:

Then (S, \cup, \circ) is a ring with unit \star and zero \bullet . It therefore makes sense to ask for solutions to equations like this one: Find $x \in S$ such that

$$\otimes \circ (x \cup \odot) = \star$$

To see how such a "moonmath equation" can be solved, we have to keep in mind that rings behaves mostly like normal number when it comes to bracketing and computation rules. The only differences are the symbols and the actual way to add and multiply. With this in mind, we solve the equation for x in the "usual way":

So even though this equation looked really alien at first glance, we could solve it basically exactly the way we solve "normal" equations, like we do for fractional numbers, for example.

Note, however, that in a ring, things can be very different than most of us are used to whenever a multiplicative inverse would be needed to solve an equation in the usual way. For example the equation

$$\odot \circ x = \otimes$$

cannot be solved for x in the usual way, since there is no multiplicative inverse for \odot in our ring.

We can confirm this by looking at the multiplication table to see that no such x exits.

As another example, the equation

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

$$\odot \circ x = \odot$$

does not have a single solution but two: $x \in \{\star, \otimes\}$. Having no solution or two solutions is certainly not something to expect from types like \mathbb{Q} .

Example 52. Considering polynomials again, we note from their definition that what we have called the type R of the coefficients must in fact be a commutative ring with a unit, since we need addition, multiplication, commutativity and the existence of a unit for R[x] to have the properties we expect.

Considering R to be a ring with addition and multiplication of polynomials as defined in XXX actually makes R[x] into a commutative ring with a unit, too, where the polynomial 1 is the multiplicative unit.

add reference

Example 53. Let n be a modulus and $(\mathbb{Z}_n, +, \cdot)$ the set of all remainder classes of integers modulo n, with the projection of integer addition and multiplication as defined in XXX. It can be shown that $(\mathbb{Z}_n, +, \cdot)$ is a commutative ring with unit 1.

Considering the exponential map from page 43 again, let \mathbb{G} be a finite cyclic group of order n with generator $g \in \mathbb{G}$. Then the ring structure of $(\mathbb{Z}_n, +, \cdot)$ is mapped onto the group structure of \mathbb{G} in the following way:

check reference

$$g^{x+y} = g^x \cdot g^y$$
 for all $x, y \in \mathbb{Z}_n$
 $g^{x \cdot y} = (g^x)^y$ for all $x, y \in \mathbb{Z}_n$

This of particular interest in cryptography and SNARKs, as it allows for the evaluation of polynomials with coefficients in \mathbb{Z}_n to be evaluated "in the exponent". To be more precise, let

 $p \in \mathbb{Z}_n[x]$ be a polynomial with $p(x) = a_m \cdot x^m + a_{m-1}x^{m-1} + \ldots + a_1x + a_0$. Then the previously defined exponential laws XXX imply that

add reference

$$g^{p(x)} = g^{a_m \cdot x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}$$

= $(g^{x^m})^{a_m} \cdot (g^{x^{m-1}})^{a_{m-1}} \cdot \dots \cdot (g^x)^{a_1} \cdot g^{a_0}$

and hence to evaluate p at some point s in the exponent, we can insert s into the right hand side of the last equation and evaluate the product.

As we will see, this is a key insight to understand many SNARK protocols like e.g. Groth16 [Groth, 2016] or XXX.

Example 54. To give an example of the evaluation of a polynomial in the exponent of a finite cyclic group, consider the exponential map from example XXX:

$$3^{(\cdot)}: \mathbb{Z}_4 \to \mathbb{F}_5^* x \mapsto 3^x$$

Choosing the polynomial $p(x) = 2x^2 + 3x + 1$ from $\mathbb{Z}_4[x]$, we can evaluate the polynomial at say x = 2 in the exponent of 3 in two different ways. On the one hand, we can evaluate p at 2 and then write the result into the exponent, which gives the following:

add more examples protocols of SNARK

add reference

gives

$$3^{p(2)} = 3^{2 \cdot 2^2 + 3 \cdot 2 + 1}$$

$$= 3^{2 \cdot 0 + 2 + 1}$$

$$= 3^3$$

$$= 2$$

On the other hand, we can use the right hand side of the equation to evaluate p at 2 in the exponent of 3, which gives the following:

gives

$$3^{p(2)} = (3^{2^2})^2 \cdot (3^2)^3 \cdot 3^1$$

$$= (3^0)^2 \cdot 3^3 \cdot 3$$

$$= 1^2 \cdot 2 \cdot 3$$

$$= 2 \cdot 3$$

$$= 2$$

Hashing to Commutative Rings As we have seen in XXX, various constructions for hashing-to-groups are known and used in applications. As commutative rings are Abelian groups, when we disregard the multiplicative structure, hash-to-group constructions can be applied for hashing into commutative rings, too. This is possible in general, as the codomain of a general hash function $\{0,1\}^*$ is just the set of binary strings of arbitrary but finite length, which has no algebraic structure that the hash function must respect.

add reference

Abelian groups

codomain

4.3 Fields

2118

2119

2120

2121

2122

We started this chapter with the definition of a group (section 4.1), which we then expanded into the definition of a commutative ring with a unit (section 4.2). Such rings generalize the behaviour of integers. In this section, we will look at the special case of commutative rings, where

every element, other than the neutral element of addition, has a multiplicative inverse. Those structures behave very much like the rational numbers \mathbb{Q} , which are in a sense an extension of the ring of integers, that is, constructed by including newly defined multiplicative inverses (fractions) to the integers.

Now, considering the definition of a ring XXXAdd numbering to definitions again, we define a **field** $(\mathbb{F}, +, \cdot)$ to be a set \mathbb{F} , together with two maps $+ : \mathbb{F} \cdot \mathbb{F} \to \mathbb{F}$ and $\cdot : \mathbb{F} \cdot \mathbb{F} \to \mathbb{F}$, called *addition* and *multiplication*, such that the following conditions hold:

Add numbering to definitions

- $(\mathbb{F},+)$ is a commutative group, where the neutral element is denoted by 0.
- $(\mathbb{F}\setminus\{0\},\cdot)$ is a commutative group, where the neutral element is denoted by 1.
- (Distributivity) For all $g_1, g_2, g_3 \in \mathbb{F}$ the distributive law $g_1 \cdot (g_2 + g_3) = g_1 \cdot g_2 + g_1 \cdot g_3$ holds.

If a field is given and the definition of its addition and multiplication is not ambiguous, we will often simple write \mathbb{F} instead of $(\mathbb{F},+,\cdot)$ to denote the field. We moreover write \mathbb{F}^* to describe the multiplicative group of the field, that is, the set of elements with the multiplication as group law excluding the neutral element of addition.

The **characteristic** of a field \mathbb{F} , represented as $char(\mathbb{F})$, is the smallest natural number $n \ge 1$, for which the n-fold sum of 1 equals zero, i.e. for which $\sum_{i=1}^{n} 1 = 0$. If such a n > 0 exists, the field is also-called to have a **finite characteristic**. If, on the other hand, every finite sum of 1 is such that it is not equal to zero, then the field is defined to have characteristic 0. S: Tried to disambiguate the scope of negation between 1. "It is true of every finite sum of 1 that it is not equal to 0" and 2. "It is not true of every finite sum of 1 that it is equal to 0" From the example below, it looks like 1. is the intended meaning here, correct?

Check change of wording

Example 55 (Field of rational numbers). Probably the best known example of a field is the set of rational numbers $\mathbb Q$ together with the usual definition of addition, subtraction, multiplication and division. Since there is no counting number $n \in \mathbb N$, such that $\sum_{j=0}^n 1 = 0$ in the set of rational numbers, the characteristic $char(\mathbb Q)$ of the field $\mathbb Q$ is zero. In Sage rational numbers are called as follows:

```
sage: QQ
                                                                                   179
2154
    Rational Field
                                                                                   180
2155
    sage: QQ(1/5) # Get an element from the field of rational
                                                                                   181
2156
        numbers
2157
                                                                                   182
2158
    sage: QQ(1/5) / QQ(3) \# Division
                                                                                   183
2159
    1/15
                                                                                   184
2160
```

Example 56 (Field with two elements). It can be shown that in any field, the neutral element 0 of addition must be different from the neutral element 1 of multiplication, that is, $0 \neq 1$ always holds in a field. From this, it follows that the smallest field must contain at least two elements. As the following addition and multiplication tables show, there is indeed a field with two elements, which is usually called \mathbb{F}_2 :

Let $\mathbb{F}_2 := \{0,1\}$ be a set that contains two elements and let addition and multiplication on \mathbb{F}_2 be defined as follows:

Since 1+1=0 in the field \mathbb{F}_2 , we know that the characteristic of \mathbb{F}_2 is there, that is, we have $char(\mathbb{F}_2)=0$.

For reasons we will understand better in XXX, <u>Sage defines this field as a so-called Galois</u> field with 2 elements. You can call it in <u>Sage as follows</u>:

add reference

```
sage: F2 = GF(2)
                                                                                   185
2173
    sage: F2(1) # Get an element from GF(2)
                                                                                   186
2174
                                                                                   187
2175
    sage: F2(1) + F2(1) \# Addition
                                                                                   188
2176
                                                                                   189
2177
    sage: F2(1) / F2(1) # Division
                                                                                   190
2178
                                                                                   191
```

Example 57. Both the real numbers \mathbb{R} as well as the complex numbers \mathbb{C} are well known examples of fields.

Exercise 30. Consider our remainder class ring $(\mathbb{F}_5, +, \cdot)$ and show that it is a field. What is the characteristic of \mathbb{F}_5 ?

Prime fields As we have seen in the various examples of the previous sections, modular arithmetics behaves similarly to ordinary arithmetics of integers in many ways. This is due to the fact that remainder class sets \mathbb{Z}_n are commutative rings with units.

However, we have also seen in XXX that, whenever the modulus is a prime number, every remainder class other than the zero class has a modular multiplicative inverse. This is an important observation, since it immediately implies that in case of a prime number, the remainder class set \mathbb{Z}_n is not just a ring but actually a **field**. Moreover, since $\sum_{j=0}^{n} 1 = 0$ in \mathbb{Z}_n , we know that those fields have the finite characteristic n.

add reference

To distinguish this important case from arbitrary remainder class rings, we write $(\mathbb{F}_p, +, \cdot)$ for the field of all remainder classes for a prime number modulus $p \in \mathbb{P}$ and call it the **prime** field of characteristic p.

Prime fields are the foundation for many of the contemporary algebra-based cryptographic systems, as they have many desirable properties. One of them is that, since these sets are finite and a prime field of characteristic, p can be represented on a computer in roughly $log_2(p)$ amount of space without precision problems that are unavoidable for computer representations of infinite sets, e.g. rational numbers or integers.

Since prime fields are special cases of remainder class rings, all computations remain the same. Addition and multiplication can be computed by first doing normal integer addition and multiplication, and then taking the remainder modulus p. Subtraction and division can be computed by adding or multiplying with the additive or the multiplicative inverse, respectively. The additive inverse -x of a field element $x \in \mathbb{F}_p$ is given by p-x, and the multiplicative inverse of $x \neq 0$ is given by x^{p-2} , or can be computed using the Extended Euclidean Algorithm.

Note that these computations might not be the fastest to implement on a computer. They are, however, useful in this book, as they are easy to compute for small prime numbers.

Example 58. The smallest field is the field \mathbb{F}_2 of characteristic 2 as we have seen in example 56. It is the prime field of the prime number 2.

Example 59. To summarize the basic aspects of computation in prime fields, let us consider the prime field \mathbb{F}_5 and simplify the following expression

expression $\left(\frac{2}{3}-2\right)\cdot 2$

Why are we repeating this example here again?

A first thing to note is that since \mathbb{F}_5 is a field all rules are identical to the rules we learned in school when we where dealing with rational, real or complex numbers. This means we can use e.g. bracketing (distributivity) or addition as usual:

$$\left(\frac{2}{3}-2\right) \cdot 2 = \frac{2}{3} \cdot 2 - 2 \cdot 2$$

$$= \frac{2 \cdot 2}{3} - 2 \cdot 2$$

$$= \frac{4}{3} - 4$$

$$= 4 \cdot 2 - 4$$

$$= 4 \cdot 2 + 1$$

$$= 3 + 1$$

$$= 4$$
distributive law
$$4 \mod 5 = 4$$
additive inverse of 3 is $3^{5-2} \mod 5 = 2$
additive inverse of 4 is $5 - 4 = 1$

$$8 \mod 5 = 3$$

$$4 \mod 5 = 4$$

In this computation we computed the multiplicative inverse of 3 using the identity $x^{-1} = x^{p-2}$ in a prime field. This is impractical for large prime numbers. Recall that another way of computing the multiplicative inverse is the Extended Euclidean Algorithm (see 3.10 on page 18). To refresh our memory, the task is to compute $x^{-1} \cdot 3 + t \cdot 5 = 1$, but t is actually irrelevant. We get

So the multiplicative inverse of 3 in \mathbb{Z}_5 is 2 and indeed if compute $3 \cdot 2$ we get 1 in \mathbb{F}_5 .

Square Roots In this part, we deal with square numbers, also called **quadratic residues** and **square roots** in prime fields. This is of particular importance in our studies on elliptic curves, as only square numbers can actually be points on an elliptic curve.

To make the intuition of quadratic residues and roots precise, let $p \in \mathbb{P}$ be a prime number and \mathbb{F}_p its associated prime field. Then a number $x \in \mathbb{F}_p$ is called a **square root** of another number $y \in \mathbb{F}_p$, if x is a solution to the equation

S: are we introducing elliptic curves in section 1 or 2?

$$x^2 = y \tag{4.13}$$

In this case, y is called a **quadratic residue**. On the other hand, if y is given and the quadratic equation has no solution x, we call y a **quadratic non-residue**. For any $y \in \mathbb{F}_p$, we write

$$\sqrt{y} := \{ x \in \mathbb{F}_p \mid x^2 = y \}$$
 (4.14)

for the set of all square roots of y in the prime field \mathbb{F}_n . (If y is a quadratic non-residue, then $\sqrt{y} = \emptyset$ (an empty set), and if y = 0, then $\sqrt{y} = \{0\}$)

Informally speaking, quadratic residues are numbers such that we can take the square root of them, while quadratic non-residues are numbers that don't have square roots. The situation therefore parallels the know case of integers, where some integers like 4 or 9 have square roots and others like 2 or 3 don't (as integers).

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241 2242

2243

2245

2246

2247

2248

2249

It can be shown that in any prime field every non zero element has either no square root or two of them. We adopt the convention to call the smaller one (when interpreted as an integer) as the **positive** square root and the larger one as the **negative**. This makes sense, as the larger one can always be computed as the modulus minus the smaller one, which is the definition of the negative in prime fields.

Example 60 (Quadratic (Non)-Residues and roots in \mathbb{F}_5). Let us consider our example prime field \mathbb{F}_5 again. All square numbers can be found on the main diagonal of the multiplication table XXX. As you can see, in \mathbb{Z}_5 only the numbers 0, 1 and 4 have square roots and we get $\sqrt{0} = \{0\}$, $\sqrt{1} = \{1,4\}$, $\sqrt{2} = \emptyset$, $\sqrt{3} = \emptyset$ and $\sqrt{4} = \{2,3\}$. The numbers 0, 1 and 4 are therefore quadratic residues, while the numbers 2 and 3 are quadratic non-residues.

In order to describe whether an element of a prime field is a square number or not, the socalled Legendre Symbol can sometimes be found in the literature, why we will recapitulate it here:

Let $p \in \mathbb{P}$ be a prime number and $y \in \mathbb{F}_p$ an element from the associated prime field. Then the so-called *Legendre symbol* of y is defined as follows:

$$\left(\frac{y}{p}\right) := \begin{cases} 1 & \text{if } y \text{ has square roots} \\ -1 & \text{if } y \text{ has no square roots} \\ 0 & \text{if } y = 0 \end{cases}$$
 (4.15)

Example 61. Look at the quadratic residues and non residues in \mathbb{F}_5 from example XXX again, we can deduce the following Legendre symbols, from example XXX.

$$\left(\frac{0}{5}\right) = 0, \quad \left(\frac{1}{5}\right) = 1, \quad \left(\frac{2}{5}\right) = -1, \quad \left(\frac{3}{5}\right) = -1, \quad \left(\frac{4}{5}\right) = 1.$$

The Legendre symbol gives a criterion to decide whether or not an element from a prime field has a quadratic root or not. This, however, is not just of theoretic use, as the following so-called **Euler criterion** gives a compact way to actually compute the Legendre symbol. To see that, let $p \in \mathbb{P}_{\geq 3}$ be an odd prime number and $y \in \mathbb{F}_p$. Then the Legendre symbol can be computed as Prime number and $y \in \mathbb{F}_p$. Then the Legendre symbol can be computed as

$$\left(\frac{y}{p}\right) = y^{\frac{p-1}{2}} \,. \tag{4.16}$$

Example 62. Looking at the quadratic residues and non residues in \mathbb{F}_5 from example XXX_again, we can compute the following Legendre symbols using the Euler criterium:

add reference

$$\left(\frac{0}{5}\right) = 0^{\frac{5-1}{2}} = 0^2 = 0$$

$$\left(\frac{1}{5}\right) = 1^{\frac{5-1}{2}} = 1^2 = 1$$

$$\left(\frac{2}{5}\right) = 2^{\frac{5-1}{2}} = 2^2 = 4 = -1$$

$$\left(\frac{3}{5}\right) = 3^{\frac{5-1}{2}} = 3^2 = 4 = -1$$

$$\left(\frac{4}{5}\right) = 4^{\frac{5-1}{2}} = 4^2 = 1$$

Exercise 31. Consider the prime field \mathbb{F}_{13} . Find the set of all pairs $(x,y) \in \mathbb{F}_{13} \times \mathbb{F}_{13}$ that satisfy the equation

$$x^2 + y^2 = 1 + 7 \cdot x^2 \cdot y^2$$

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2280

2281

2282

2283

2284

2285

2286

Exponentiation TO APPEAR...

Hashing into prime fields An important problem in SNARK development is the ability to hash to (various subsets) of elliptic curves. As we will see in XXX, those curves are often defined over prime fields, and hashing to a curve then might start with hashing to the prime field. It is therefore important to understand how to hash into prime fields.

To understand it, note that in XXX we have looked at a few constructions of how to hash into the residue class rings \mathbb{Z}_n for arbitrary n > 1. As prime fields are just special instances of those rings, all hashing into \mathbb{Z}_n functions can be used for hashing into prime fields, too.

Extension Fields We defined prime fields in the previous section. They are the basic building blocks for cryptography in general and SNARKs in particular.

However, as we will see in, XX so-called **pairing based** SNARK systems are crucially dependent on group pairings XXX defined over the group of rational points of elliptic curves. For those pairings to be non-trivial, the elliptic curve must not only be defined over a prime field, but over a so-called **extension field** of a given prime field.

We therefore have to understand field extensions. To understand them, first observe that the field \mathbb{F}' is called an **extension** of a field \mathbb{F} if \mathbb{F} is a subfield of \mathbb{F}' , that is, \mathbb{F} is a subset of \mathbb{F}' and restricting the addition and multiplication laws of \mathbb{F}' to the subset \mathbb{F} recovers the appropriate laws of \mathbb{F} .

Now it can be shown that whenever $p \in \mathbb{P}$ is a prime and $m \in \mathbb{N}$ a natural number, then there is a field \mathbb{F}_{p^m} with characteristic p and p^m elements such that \mathbb{F}_{p^m} is an extension field of the prime field \mathbb{F}_p .

Similarly to the way prime fields \mathbb{F}_p are generated by starting with the ring of integers and then dividing by a prime number p and keeping the remainder, prime field extensions \mathbb{F}_{p^m} are generated by starting with the ring $\mathbb{F}_p[x]$ of polynomials and then dividing them by an irreducible polynomial of degree m and keeping the remainder.

To be more precise, let $P \in F_p[x]$ be an irreducible polynomial of degree m with coefficients from the given prime field \mathbb{F}_p . Then the underlying set \mathbb{F}_{p^m} of the extension field is given by the set of all polynomials with a degree less then m:

$$\mathbb{F}_{p^m} := \{ a_{m-1} x^{m-1} + a_{k-2} x^{k-2} + \ldots + a_1 x + a_0 \mid a_i \in \mathbb{F}_p \}$$
 (4.17)

which can be shown to be the set of all remainders when dividing any polynomial $Q \in \mathbb{F}_p[x]$ by P. So elements of the extension field are polynomials of degree less than m. This is analogous to how \mathbb{F}_p is the set of all remainders when dividing integers by p.

Addition is then inherited from $\mathbb{F}_p[x]$, which means that addition on \mathbb{F}_{p^m} is defined as normal addition of polynomials. To be more precise, we have

$$+: \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{F}_{p^m}, (\sum_{i=0}^m a_j x^j, \sum_{i=0}^m b_j x^j) \mapsto \sum_{i=0}^m (a_j + b_j) x^j$$
 (4.18)

and we can see that the neutral element is (the polynomial) 0, and that the additive inverse is given by the polynomial with all negative coefficients.

Multiplication is inherited from $\mathbb{F}_p[x]$, too, but we have to divide the result by our modulus polynomial P, whenever the degree of the resulting polynomial is equal or greater to m. To be more precise, we have

$$\cdot \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{F}_{p^m} , \left(\sum_{j=0}^m a_j x^j, \sum_{j=0}^m b_j x^j \right) \mapsto \left(\sum_{n=0}^{2m} \sum_{i=0}^n a_i b_{n-i} x^n \right) \bmod P \tag{4.19}$$

write paragraph on exponentiation

add reference

To understand

add reference

add reference

group pairings

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

and we can see that the neutral element is (the polynomial) 1. It is, however, not obvious from this definition how the multiplicative inverse looks.

We can easily see from the definition of \mathbb{F}_{p^m} that the field is of characteristic p, since the multiplicative neutral element 1 is equivalent to the multiplicative element 1 from the underlying prime field and hence $\sum_{j=0}^{p} 1 = 0$. Moreover, \mathbb{F}_{p^m} is finite and contains p^m many elements, since elements are polynomials of degree < m and every coefficient a_i can have a p number of different values. In addition, we see that the prime field \mathbb{F}_p is a subfield of \mathbb{F}_{p^m} that occurs when we restrict the elements of \mathbb{F}_p to polynomials of degree zero.

One key point is that the construction of \mathbb{F}_{p^m} depends on the choice of an irreducible polynomial, and, in fact, different choices will give different multiplication tables, since the remainders from dividing a product by P will be different.

It can, however, be shown that the fields for different choices of P are **isomorphic**, which means that there is a one-to-one correspondence between all of them, which means that, from an abstract point of view, they are the same thing. From an implementations point of view, however, some choices are preferable, because they allow for faster computations.

To summarize, we have seen that when a prime field \mathbb{F}_p is given, then any field \mathbb{F}_{p^m} constructed in the above manner is a field extension of \mathbb{F}_p . To be more general, a field $\mathbb{F}_{p^{m_2}}$ is a field extension of a field $\mathbb{F}_{p^{m_1}}$, if and only if m_1 divides m_2 . From this, we can deduce that, for any given fixed prime number, there are nested sequences of fields

$$\mathbb{F}_p \subset \mathbb{F}_{p^{m_1}} \subset \dots \subset \mathbb{F}_{p^{m_k}} \tag{4.20}$$

whenever the power m_j divides the power m_{j+1} , such that $\mathbb{F}_{p^{m_j}}$ is a subfield of $\mathbb{F}_{p^{m_{j+1}}}$.

To get a more intuitive picture of this, we construct an extension field of the prime field \mathbb{F}_3 in the following example, and we can see how \mathbb{F}_3 sits inside that extension field.

Example 63 (The Extension field \mathbb{F}_{3^2}). In (XXX) we have constructed the prime field \mathbb{F}_3 . In add referthis example, we apply the definition (XXX) of a field extension to construct \mathbb{F}_{3^2} . We start by choosing an irreducible polynomial of degree 2 with coefficients in \mathbb{F}_3 . We try $P(t) = t^2 + 1$. Maybe the fastest way to show that P is indeed irreducible is to just insert all elements from \mathbb{F}_3 to see if the result is never zero. We compute

$$P(0) = 0^{2} + 1 = 1$$

$$P(1) = 1^{2} + 1 = 2$$

$$P(2) = 2^{2} + 1 = 1 + 1 = 2$$

This implies that P is irreducible. The set \mathbb{F}_{3^2} then contains all polynomials of degrees lower than two, with coefficients in \mathbb{F}_3 , which is precisely

$$\mathbb{F}_{3^2} = \{0, 1, 2, t, t+1, t+2, 2t, 2t+1, 2t+2\}$$

So our extension field contains 9 elements as expected. Addition is defined as addition of 2310 polynomials. For example (t+2)+(2t+2)=(1+2)t+(2+2)=1. Doing this computation 2311 for all elements gives the following addition table 2312

2316

2317

2320

2324

2326

+	0	1	2	t	t+1	t+2	2t	2t+1	2t+2
0	0	1	2	t	t+1	t+2	2t	2t+1	2t+2
1	1	2	0	t+1	t+2	t	2t+1	2t+2	2t
2	2	0	1	r+2	t	t+1	2t+2	2t	2t+1
t	t	t+1	t+2	2t	2t+1	2t+2	0	1	2
t+1	t+1	t+2	t	2t+1	2t+2	2t	1	2	0
t+2	t+2	t	t+1	2t+2	2t	2t+1	2	0	1
2t	2t	2t+1	2t+2	0	1	2	t	t+1	t+2
2t+1	2t+1	2t+2	2t	1	2	0	t+1	t+2	t
2t+2	2t+2	2t	2t+1	2	0	1	t+2	t	t+1

As we can see, the group $(\mathbb{F}_3,+)$ is a subgroup of the group $(\mathbb{F}_{3^2},+)$, obtained by only considering the first three rows and columns of this table.

As it was the case in previous examples, we can use the table to deduce the negative of any element from \mathbb{F}_{3^2} . For example, in \mathbb{F}_{3^2} we have -(2t+1)=t+2, since (2t+1)+(t+2)=0

Multiplication needs a bit more computation, as we first have to multiply the polynomials, and whenever the result has a degree ≥ 2 , we have to divide it by P and keep the remainder. To see how this works, compute the product of t+2 and 2t+2 in \mathbb{F}_{3^2}

$$(t+2) \cdot (2t+2) = (2t^2 + 2t + t + 1) \mod (t^2 + 1)$$

$$= (2t^2 + 1) \mod (t^2 + 1) \qquad #2t^2 + 1 : t^2 + 1 = 2 + \frac{2}{t^2 + 1}$$

$$= 2$$

So the product of t+2 and 2t+2 in \mathbb{F}_{3^2} is 2. Doing this computation for all elements gives the following multiplication table:

•	0	1	2	t	t+1	t+2	2t	2t+1	2t+2
								0	
								2t+1	
								t+2	
t	0	t	2t	2	t+2	2t+2	1	t+1	2t+1
t+1	0	t+1	2t+2	t+2	2t	1	2t+1	2	t
t+2	0	t+2	2t+1	2t+2	1	t	t+1	2t	2
2t	0	2t	t	1	2t+1	t+1	2	2t+2	t+2
2t+1	0	2t+1	t+2	t+1	2	2t	2t+2	t	1
2t+2	0	2t+2	t+1	2t+1	t	2	t+2	1	2t

As it was the case in previous examples, we can use the table to deduce the multiplicative inverse of any non-zero element from \mathbb{F}_{3^2} . For example in \mathbb{F}_{3^2} we have $(2t+1)^{-1}=2t+2$, since $(2t+1)\cdot(2t+2)=1$.

From the multiplication table, we can also see that the only quadratic residues in \mathbb{F}_{3^2} are the set $\{0,1,2,t,2t\}$, with $\sqrt{0}=\{0\}$, $\sqrt{1}=\{1,2\}$, $\sqrt{2}=\{t,2t\}$, $\sqrt{t}=\{t+2,2t+1\}$ and $\sqrt{2t}=\{t+1,2t+2\}$.

Since \mathbb{F}_{3^2} is a field, we can solve equations as we would for other fields, like the rational numbers. To see that lets find all $x \in \mathbb{F}_{3^2}$ that solve the quadratic equation $(t+1)(x^2+(2t+2)) =$

2. So we compute:

Computations in extension fields are arguably on the edge of what can reasonably be done with pen and paper. Fortunately, Sage provides us with a simple way to do the computations.

```
sage: Z3 = GF(3) # prime field
                                                                              192
2329
    sage: Z3t.<t> = Z3[] # polynomials over Z3
                                                                              193
2330
    sage: P = Z3t(t^2+1)
                                                                              194
2331
    sage: P.is irreducible()
                                                                              195
2332
    True
                                                                              196
2333
    sage: F3_2.<t> = GF(3^2, name='t', modulus=P)
2334
                                                                              197
    sage: F3 2
                                                                              198
    Finite Field in t of size 3<sup>2</sup>
                                                                              199
2336
    sage: F3_2(t+2)*F3_2(2*t+2) == F3_2(2)
                                                                              200
2337
                                                                              201
2338
    sage: F3_2(2*t+2)^(-1) # multiplicative inverse
                                                                              202
2339
    2*t+1
                                                                              203
2340
    sage: # verify our solution to (t+1)(x^2 + (2t+2)) = 2
                                                                              204
2341
    sage: F3_2(t+1)*(F3_2(t)**2 + F3_2(2*t+2)) == F3_2(2)
                                                                              205
                                                                              206
2343
    sage: F3_2(t+1)*(F3_2(2*t)**2 + F3_2(2*t+2)) == F3_2(2)
                                                                              207
2344
    True
                                                                              208
2345
```

Exercise 32. Consider the extension field \mathbb{F}_{3^2} from the previous example and find all pairs of elements $(x,y) \in \mathbb{F}_{3^2}$, such that

$$y^2 = x^3 + 4$$

Exercise 33. Show that the polynomial $P = x^3 + x + 1$ from $\mathbb{F}_5[x]$ is irreducible. Then consider the extension field \mathbb{F}_{5^3} defined relative to P. Compute the multiplicative inverse of $(2t^2 + 4) \in \mathbb{F}_{5^3}$ using the extended Euklidean algorithm. Then find all $x \in \mathbb{F}_{5^3}$ that solve the equation

$$(2t^2+4)(x-(t^2+4t+2))=(2t+3)$$

Hashing into extension fields In XXX we have seen how to hash into prime fields. As elements of extension fields can be seen as polynomials over prime fields, hashing into extension fields is therefore possible, if every coefficient of the polynimial is hashed independently.

4.4 Projective Planes

Projective planes are a certain type of geometry defined over a given field. In a sense, projective planes extend the concept of the ordinary Euclidean plane by including "points at infinity."

a certain type of geometry

Such an inclusion of infinity points makes them particularly useful in the description of elliptic curves, as the description of such a curve in an ordinary plane needs an additional symbol "the point at infinity" to give the set of points on the curve the structure of a group. Translating the curve into projective geometry, then includes this "point at infinity" more naturally into the set of all points on a projective plane.

To understand the idea for the construction of projective planes, note that in an ordinary Euclidean plane, two lines either intersect in a single point, or are parallel. In the latter case both lines are either the same, that is, they intersect in all points, or do not intersect at all. A projective plane can then be thought of as an ordinary plane, but equipped with additional "points at infinity" such that two different lines always intersect in a single point. Parallel lines intersect "at infinity".

To be more precise, let \mathbb{F} be a field, $\mathbb{F}^3 := \mathbb{F} \times \mathbb{F} \times F$ the set of all three tuples over \mathbb{F} and $x \in \mathbb{F}^3$ with x = (X, Y, Z). Then there is exactly one *line* in \mathbb{F}^3 that intersects both (0,0,0) and x. This line is given by

$$[X : Y : Z] := \{ (k \cdot X, k \cdot Y, k \cdot Z) \mid k \in \mathbb{F} \}$$
 (4.21)

A **point** in the **projective plane** over \mathbb{F} is then defined as such a *line* and the projective plane is the set of all such points, that is

$$\mathbb{FP}^2 := \{ [X : Y : Z] \mid (X, Y, Z) \in \mathbb{F}^3 \text{ with } (X, Y, Z) \neq (0, 0, 0) \}$$
 (4.22)

It can be shown that a projective plane over a finite field \mathbb{F}_{p^m} contains $p^{2m} + p^m + 1$ many elements.

To understand why [X:Y:Z] is called a line, consider the situation where the underlying field \mathbb{F} are the real numbers \mathbb{R} . Then \mathbb{R}^3 can be seen as the three dimensional space and [X:Y:Z] is then an ordinary line in this 3-dimensional space that intersects zero and the point with coordinates X,Y and Z.

The key observation here is that points in the projective plane are lines in the 3-dimensional space \mathbb{F}^3 , also for finite fields, the terms space and line share very little visual similarity with their counterparts over the real numbers.

It follows from this that points $[X:Y:Z] \in \mathbb{FP}^2$ are not simply described by fixed coordinates (X,Y,Z), but by **sets of coordinates** rather, where two different coordinates (X_1,Y_1,Z_1) and (X_2,Y_2,Z_2) , with describe the same point, if and only if there is some field element k, such that $(X_1,Y_1,Z_1)=(k\cdot X_2,k\cdot Y_2,k\cdot Z_2)$. Point [X:Y:Z] are called **projective coordinates**.

Notation and Symbols 6 (Projective coordinates). Projective coordinates of the form [X:Y:1] are descriptions of so-called **affine points** and projective coordinates of the form [X:Y:0] are descriptions of so-called **points at infinity**. In particular the projective coordinate [1:0:0] describes the so-called **line at infinity**.

Example 64. Consider the field \mathbb{F}_3 from example XXX. As this field only contains three elements, it does not take too much effort to construct its associated projective plane $\mathbb{F}_3\mathbb{P}^2$, as we know that it only contain 13 elements.

add refer-

To find $\mathbb{F}_3\mathbb{P}^2$, we have to compute the set of all lines in $\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{F}_3$ that intersect (0,0,0).

Since those lines are parameterized by tuples (x_1, x_2, x_3) . We compute:

```
[0:0:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,0,1), (0,0,2)\}
[0:0:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,0,2), (0,0,1)\} = [0:0:1]
[0:1:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,1,0), (0,2,0)\}
[0:1:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,1,1), (0,2,2)\}
[0:1:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,1,2), (0,2,1)\}
[0:2:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,2,0), (0,1,0)\} = [0:1:0]
[0:2:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,2,1), (0,1,2)\} = [0:1:2]
[0:2:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(0,2,2), (0,1,1)\} = [0:1:1]
[1:0:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,0,0), (2,0,0)\}
[1:0:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,0,1), (2,0,2)\}
[1:0:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,0,2), (2,0,1)\}
[1:1:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,1,0), (2,2,0)\}
[1:1:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,1,1), (2,2,2)\}
[1:1:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,1,2), (2,2,1)\}
[1:2:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,2,0), (2,1,0)\}
[1:2:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,2,1), (2,1,2)\}
[1:2:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(1,2,2), (2,1,1)\}
[2:0:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,0,0), (1,0,0)\} = [1:0:0]
[2:0:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,0,1), (1,0,2)\} = [1:0:2]
[2:0:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,0,2), (1,0,1)\} = [1:0:1]
[2:1:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,1,0), (1,2,0)\} = [1:2:0]
[2:1:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,1,1), (1,2,2)\} = [1:2:2]
[2:1:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,1,2), (1,2,1)\} = [1:2:1]
[2:2:0] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,2,0), (1,1,0)\} = [1:1:0]
[2:2:1] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,2,1), (1,1,2)\} = [1:1:2]
[2:2:2] = \{(k \cdot x_1, k \cdot x_2, k \cdot x_3) \mid k \in \mathbb{F}_3\} = \{(2,2,2), (1,1,1)\} = [1:1:1]
```

Those lines define the 13 points in the projective plane $\mathbb{F}_3\mathbb{P}$ as follows

2388

2389

2390

2391

2392

2393

```
\mathbb{F}_{3}\mathbb{P} = \{[0:0:1], [0:1:0], [0:1:1], [0:1:2], [1:0:0], [1:0:1], \\ [1:0:2], [1:1:0], [1:1:1], [1:1:2], [1:2:0], [1:2:1], [1:2:2]\}
```

This projective plane contains 9 affine points, three points at infinity and one line at infinity.

To understand the ambiguity in projective coordinates a bit better, let us consider the point [1:2:2]. As this point in the projective plane is a line in \mathbb{F}_3^3 , it has the projective coordinates (1,2,2) as well as (2,1,1), since the former coordinate give the latter, when multiplied in \mathbb{F}_3 by the factor 2. In addition, note that for the same reasons the points [1:2:2] and [2:1:1] are the same, since their underlying sets are equal.

Exercise 34. Construct the so-called *Fano plane*, that is, the projective plane over the finite field \mathbb{F}_2 .

Chapter 5

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2411

2412

2413

2414

2415

2416

2420

2421

2422

2423

2425

2426

2427

2428

2429

2430

Elliptic Curves

Generally speaking, elliptic curves are "curves" defined in geometric planes like the Euclidean or the projective plane over some given field. One of the key features of elliptic curves over finite fields from the point of view of cryptography is their set of points has a group law, such that the resulting group is finite and cyclic and it is believed that the discrete logarithm problem on these groups is hard.

A special class of elliptic curves are so called **pairing friendly curve**, which have a notation of a group pairing as defined in XXX. This pairing has cryptographicall nice prperties. Those curve are useful in the development of SNAKS, since they allow to compute so called R1CS-satisfiability "in the exponent" MIRCO: (THIS HAS TO BE REWRITTEN WITH WAY MORE DETAIL)

In this chapter we introduce epileptic curves as they are used in pairing based approaches to the construction of SNARKs. The elliptic curves we consider are all defined over prime fields or prime field extensions and the reader should be familiar with the contend of the previous section on those fields.

In its most generality elliptic curves are defined as a smooth projective curve of genus 1 defined over some field \mathbb{F} with a distinguished \mathbb{F} -rational point, but this definition is not very useful for the introductory character of this book. We will therefore look at 3 more practical definitions in the following sections, by introducing Weierstraß, Montgomery and Edwards curves. All of them are useful in cryptography and necessary to understand for the continuation of the book.

5.1 Elliptic Curve Arithmetics

5.1.1 Short Weierstraß Curves

In this section we introduce the so called short Weierstraß curves, which are the most general types of curves over finite fields of characteristic greater then 3.

We start with their representation in affine space. This representation has the advantage that affine points are just pairs of numbers which is more convenient to work with for the beginner. However, it has the disadvantage that a special "point at infinity" that is not a point on the curve, is necessary to describe the group structure. We introduce the elliptic curve group law and describe elliptic curve scalar multiplication, which is nothing but an instantiation of the exponential map from general cyclic groups.

Then we look at the projective representation of short Weierstraß curves. It has the advantage that no special symbol is necessary to represent the point at infinity but comes with

TODO: Elliptic Curve asymmetric cryptography examples. Private key, generator, public key.

the drawback that projective points are classes of numbers, which might be a bit unusual for a beginner.

We finish this section with an explicit equivalence that transforms affine representations into projective once and vice versa.

Affine short Weierstraß form Probably the least abstract and most straight forward way to introduce elliptic curves for non-mathematicians and beginners is the so called affine representation of a short Weierstraß curve. To see what this is, let \mathbb{F} be a finite field of order q and $a,b \in \mathbb{F}$ two field elements such that $4a^3 + 27b^2 \mod q \neq 0$. Then a short Weierstraß elliptic **curve** $E(\mathbb{F})$ over \mathbb{F} in its affine representation is the set

$$E(\mathbb{F}) = \{(x, y) \in \mathbb{F} \times \mathbb{F} \mid y^2 = x^3 + a \cdot x + b\} \bigcup \{\mathscr{O}\}$$
 (5.1)

of all pairs of field elements $(x,y) \in \mathbb{F} \times \mathbb{F}$, that satisfy the short Weierstraß cubic equation 2440 $y^2 = x^3 + a \cdot x + b$, together with a distinguished symbol \mathcal{O} , called the **point at infinity**.

Notation and Symbols 7. In the literature, the set $E(\mathbb{F})$, which includes the sybol \mathcal{O} is often called the set of rational points of the elliptic curve, in which case the curve itself is usually written as E/\mathbb{F} . However, in what follows we will frequently identify an elliptic curve with its set of rational points and therefore use the symbol $E(\mathbb{F})$ instead. This is possible in our case, since we only really care about the group structure of the curve in consideration.

The term "curve" appears, because in the ordinary 2 dimensional plane \mathbb{R}^2 , the set of all points (x, y) that satisfy $y^2 = x^3 + a \cdot x + b$ looks like a curve. We should note however, that visualizing elliptic curves over finite fields as "curves" has its limitations and we will therefore not stress the geometric picture too much, but focus on the computational properties instead. To understand the visual difference, consider the following two elliptic curves:

2452

2431

2432

2433

2434

2435

2436

2437

2438

2441

2444

2445

2446

2447

2448

2449

2450

2451

2453

Both elliptic curves are defined by the same short Weierstraß equation $y^2 = x^3 - 2x + 1$, but the first curve is define in the real affine plane \mathbb{R}^2 , that is the pair (x,y) contains real numbers, while the second one is defined in the affine plane \mathbb{F}^2_{9973} , which means that both x and y are from the prime field \mathbb{F}_{9973} . Every blue dot represents a pair (x,y) that is solution to $y^2 = x^3 - 2x + 1$ and as we can see the second curve hardly looks like a geometric structure one would naturally call a curve. So the geometric intuitions from \mathbb{R}^2 is kind of obfuscated in curves over finite fields.

The identity $6 \cdot (4a^3 + 27b^2) \mod q \neq 0$ ensures that the curve is non-singular, which basically means that the curve has no cusps or self-intersections.

When dealing with elliptic curves, computations can quickly become cumbersome and tedious. So, on the one hand, the reader is advised to do as many computations in a pen-and-paper style as possible. This helps a lot to get a deeper understanding for the details. On the other hand side however, computations are sometimes simply too large to be done by hand and one might get lost in the details. Fortunately Sage is very helpful in dealing with elliptic curves. It is there a goal of this book to introduce the reader to the great elliptic curve capabilities of Sage.

One we to define elliptic curves and work is them goes like this:

```
rephrase
```

```
sage: F5 = GF(5) # define the base field
                                                                             209
2469
    sage: a = F5(2) # parameter a
                                                                             210
2470
    sage: b = F5(4) # parameter b
2471
                                                                             211
    sage: # check non-sigularity
                                                                             212
2472
    sage: F5(6)*(F5(4)*a^3+F5(27)*b^2) != F5(0)
                                                                             213
2473
    True
                                                                             214
2474
    sage: # short Weierstrass curve
                                                                             215
2475
    sage: E = EllipticCurve(F5, [a,b]) # y^2 == x^3 + ax +b
                                                                             216
2476
    sage: P = E(0,2) \# 2^2 == 0^3 + 2*0 + 4
                                                                             217
2477
    sage: P.xy() # affine coordinates
                                                                             218
2478
    (0, 2)
                                                                             219
2479
    sage: INF = E(0) # point at infinity
                                                                             220
2480
                  # point at infinity has no affine coordinates
    sage: try:
                                                                             221
2481
                INF.xy()
                                                                             222
2482
    ....: except ZeroDivisionError:
                                                                             223
2483
                                                                             224
2484
    sage: P = E.plot() # create a plotted version
                                                                             225
2485
```

The following three examples will give a more practical understanding of what an elliptic curve is and how we can compute them. The reader is advised to read them carefully and ideally to parallel the computation themselfs. We will repeatedly build on these example in this chapter and use the second example at various places in this book.

Example 65. To provide the reader with a small example of an elliptic curve, where all computation can e done in a pen-and-paper style, consider the prime field \mathbb{F}_5 from example (XXX). The reader who had worked through the examples and exercises in the previous section knows this prime field well.

add reference

To define an elliptic curve over \mathbb{F}_5 , we have to choose to numbers a and b from that field. Assuming we choose a=1 and b=1 then $4a^3+27b^2\equiv 1\pmod 5$ from which follows that the corresponding elliptic curve $E_1(\mathbb{F}_5)$ is given by the set of all pairs (x,y) from \mathbb{F}_5 that satisfy the equation $y^2=x^3+x+1$, together with the special symbol \mathcal{O} , which represents the "point at infinity".

To get a better understand of that curve, obersever that if we choose arbitrarily the pair (x,y)=(1,1), we see that $1^2 \neq 1^3+1+1$ and hence (1,1) is not an element of the curve

 $E_1(\mathbb{F}_5)$. On the other hand chosing for exmple (x,y)=(2,1) gives $1^2=2^3+2+1$ and hence 2501 the pair (2,1) is an element of $E_1(\mathbb{F}_5)$ (Remember that all computations are done in modulo 5 2502 arithmetics).

Now since the set $\mathbb{F}_5 \times \mathbb{F}_5$ of all pairs (x, y) from \mathbb{F}_5 contains only $5 \cdot 5 = 25$ pairs, we can compute the curve, by just inserting every possible pair (x, y) into the short Weierstraß equation $v^2 = x^3 + x + 1$. If the equation holds, the pair is a curve point, if not that means that the point is not on the curve. Combining the result of this computation with the point at infinity gives the curve as:

$$E_1(\mathbb{F}_5) = \{ \mathscr{O}, (0,1), (2,1), (3,1), (4,2), (4,3), (0,4), (2,4), (3,4) \}$$

So our elliptic curve is a set of 9 elements. 8 of which are pairs of numbers and one special 2504 symbol \mathcal{O} . Visualizing E1 gives: 2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

In the development of SNARKS it is sometimes necessary to do elliptic curve cryptography "in a circuit", which basically means that the elliptic curves needs to be implemented in a certain SNARK-friendly way. We will look at what this means in XXX. To be able to do this efficiently it is desirable to have curves with special properties. The following example is a pen-andpaper version of such a curve, that parallels the definition of a cryptographically secure curve called **Baby-jubjub**, which is extensively used in real world SNARKs. The interested reader jubjub is advised to read this example carefully as we will use it and build on it in various places throughout the book.

add reference

Example 66 (Pen-JubJub). Consider the prime field \mathbb{F}_{13} from exercise XXX. If we choose a=8and b = 8 then $4a^3 + 27b^2 \equiv 6 \pmod{13}$ and the corresponding elliptic curve is given by all pairs (x, y) from $\mathbb{F}_1 3$ such that $y^2 = x^3 + 8x + 8$ holds. We write *PJJ* 13 for this curve and call it the Pen-JubJub curve.

Now, since the set $\mathbb{F}_{13} \times \mathbb{F}_{13}$ of all pairs (x,y) from \mathbb{F}_{13} contains only $13 \cdot 13 = 169$ pairs, we can compute the curve, by just inserting every possible pair (x, y) into the short Weierstraß equation $y^2 = x^3 + 8x + 8$. We get

$$PJJ_13 = \{ \mathscr{O}, (1,2), (1,11), (4,0), (5,2), (5,11), (6,5), (6,8), (7,2), (7,11), \\ (8,5), (8,8), (9,4), (9,9), (10,3), (10,10), (11,6), (11,7), (12,5), (12,8) \}$$

As we can see the curve consist of 20 points. 19 points from the affine plane and the point at 2519 infinity. To get a visual impression of the PJJ_13 curve, we might plot all of its points (except 2520 the point at infinity) in the $\mathbb{F}_{13} \times \mathbb{F}_{13}$ affine plane. We get: 2521

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

As we will see in what follows this curve is kind of special as it is possible to represent it in two alternative forms, called the Montgomery and the twisted Edwards form (See XXX and XXX).

add reference

Now that we have seen two pen-and-paper friendly elliptic curves, let us look at a curve that is used in actual cryptography. Cryptographically secure elliptic curve are not qualitatively different from the curves we looked at so far. The only difference is that the prime number modulus of the prime field is much larger. Typical examples use prime numbers, which have binary representations in the size of more than double the size of the desired security level. So if for example a security of 128 bit is desired, a prime modules of binary size \geq 256 is chosen. The following example provides such a curve.

add refer-

ence

Example 67 (Bitcoin's Secp256k1 curve). To give an example of a real world, cryptographically secure curve, let us look at curve Secp256k1, which is famous for being used in the public key cryptography of Bitcoin. The prime field \mathbb{F}_p of Secp256k1 if defined by the prime number

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

which has a binary representation that need 256 bits. This implies that the \mathbb{F}_p approximately contains 2^{256} many elements. So the underlying field is large. To get an image of how large the base field is, consider that the number 2^{256} is approximately in the same order of magnitude as the estimated number of atoms in the observable universe.

Curve Secp256k1 is then defined by the parameters $a, b \in \mathbb{F}_p$ with a = 0 and b = 7. Since $4 \cdot 0^3 + 27 \cdot 7^2 \mod p = 1323$, those parameters indeed define an elliptic curve given by

$$Secp256k1 = \{(x,y) \in \mathbb{F}_p \times \mathbb{F}_p | y^2 = x^3 + 7 \}$$

Clearly Secp256k1 is a curve, to large to do computations by hand, since it can be shown that Secp256k1 contains

r = 115792089237316195423570985008687907852837564279074904382605163141518161494337

many elements, were r is a prime number that also has a binary representation of 256 bits. Cryptographically secure elliptic curves are therefore not useful in pen-and-paper computations. Fortunately Sage handles large curve efficiently:

```
2539     sage: p = 1157920892373161954235709850086879078532699846656405 226
2540     64039457584007908834671663
2541     sage: # Hexadecimal representation 227
2542     sage: p.str(16)
```

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

```
2543
      2f
2544
   sage: p.is_prime()
                                                                    230
2545
                                                                    231
2546
   sage: p.nbits()
                                                                    232
2547
   256
                                                                    233
2548
   sage: Fp = GF(p)
                                                                    234
2549
    sage: Secp256k1 = EllipticCurve(Fp, [0,7])
                                                                    235
2550
    sage: r = Secp256k1.order() # number of elements
                                                                    236
2551
    sage: r.str(16)
                                                                    237
    fffffffffffffffffffffffffffbaaedce6af48a03bbfd25e8cd03641
                                                                    238
2553
2554
   sage: r.is_prime()
                                                                    239
2555
   True
                                                                    240
2556
   sage: r.nbits()
                                                                    241
2557
   256
                                                                    242
2558
```

Exercise 35. Look up the definition of curve BLS12-381, implement it in Sage and compute its 2559 order. 2560

Affine compressed representation As we have seen in example XXX, cryptographically secure elliptic curves are defined over large prime fields, where elements of those fields typically need more than 255 bits storage on a computer. Since elliptic curve points consists of pairs of those field element, they need double that amount of storage.

add reference

To reduce the amount of space needed to represent a curve point note however, that up to a sign the y-coordinate of a curve point can be computed from the x-coordinate, by simply inserting x into the Weierstraß equation and then computing the roots of the result. This gives two results and it follows that we can represent a curve point in **compressed form** by simply storing the x-coordinate together with a single sign bit only, the latter of which deterministically decides which of the two roots to choose. In case that the y-coordinate is zero, both sign bit give the same result.

For example one convention could be to always choose the root closer to 0, when the sign bit is 0 and the root closer to the order of \mathbb{F} when the sign bit is 1.

Example 68 (Pen-jubjub). To understand the concept of compressed curve points a bit better consider the PJJ_13 curve from example XXX again. Since this curve is defined over the prime add referfield \mathbb{F}_{13} and numbers between 0 and 13 need approximately 4 bits to be represented, each PJJ_13 -point need 8-bits of storage in uncompressed form, while it would need only 5 bits in compressed form. To see how this works, recall that in uncompressed form we have

$$PJJ_{13} = \{ \mathscr{O}, (1,2), (1,11), (4,0), (5,2), (5,11), (6,5), (6,8), (7,2), (7,11), (8,5), (8,8), (9,4), (9,9), (10,3), (10,10), (11,6), (11,7), (12,5), (12,8) \}$$

Using the technique of point compression, we can replace the y-coordinate in each (x, y) pair by a sign bit, indicating, whether or not y is closer to 0 or to 13. So y values in the range $[0, \dots, 6]$ having sign bit 0 and y-values in the range [7, ..., 12] having sign bit 1. Applying this to the points in PJJ_13 gives the compressed representation:

$$PJJ_13 = \{ \mathscr{O}, (1,0), (1,1), (4,0), (5,0), (5,1), (6,0), (6,1), (7,0), (7,1), \\ (8,0), (8,1), (9,0), (9,1), (10,0), (10,1), (11,0), (11,1), (12,0), (12,1) \}$$

Note that the numbers $7, \ldots, 12$ are the negatives (additive inverses) of the numbers $1, \ldots, 6$ in modular 13 arithmetics and that -0 = 0. Calling the compression bit a "sign bit" therefore makes sense.

To recover the uncompressed point of say (5,1), we insert the *x*-coordinate 5 into the Weierstraß equation and get $y^2 = 5^3 + 8 \cdot 5 + 8 = 4$. As expected 4 is a quadratic residue in \mathbb{F}_{13} with roots $\sqrt{4} = \{2,11\}$. Now since the sign bit of the point is 1, we have to choose the root closer to the modulus 13 which is 11. The uncompressed point is therefore (5,11).

Looking at the previous examples, compression rate looks not very impressive. The following example therefore looks at the Secp256k1 curve to show that compression is actually useful.

Example 69. Consider the Secp256k1 curve from example XXX again. The following code involves Sage to generate a random affine curve point, we then apply our compression method

add reference

```
2585
    sage: P = Secp256k1.random_point().xy()
                                                                             243
2586
    sage: P
                                                                             244
2587
    (5732745559092928700275495328195703081931555862512446945836228
                                                                             245
2588
       5630887028852436, 24242609999426606897142811967939071817174
2589
       686615886596221090801834998454950146)
2590
    sage: # uncompressed affine point size
                                                                             246
2591
    sage: ZZ(P[0]).nbits()+ZZ(P[1]).nbits()
                                                                             247
2592
    509
                                                                             248
2593
    sage: # compute the compression
                                                                             249
2594
    sage: if P[1] > Fp(-1)/Fp(2):
                                                                             250
2595
                PARITY = 1
                                                                             251
2596
    ....: else:
                                                                             252
2597
                PARITY = 0
                                                                             253
2598
    sage: PCOMPRESSED = [P[0], PARITY]
                                                                             254
2599
    sage: PCOMPRESSED
                                                                             255
2600
    [5732745559092928700275495328195703081931555862512446945836228
                                                                             256
2601
       5630887028852436, 0]
2602
    sage: # compressed affine point size
                                                                             257
2603
    sage: ZZ(PCOMPRESSED[0]).nbits()+ZZ(PCOMPRESSED[1]).nbits()
                                                                             258
2604
    255
                                                                             259
2605
```

Affine group law One of the key properties of an elliptic curve is that it is possible to define a group law on the set of its rational points, such that the point at infinity serves as the neutral element and inverses are reflections on the *x*-axis.

The origin of this law can be understood in a geometric picture and is known as the **chord-and-tangent rule**. In the affine representation of a short Weierstraß curve, the rule can be described in the following way:

• (Point addition) Let $P,Q \in E(\mathbb{F}) \setminus \{\mathcal{O}\}$ with $P \neq Q$ be two distinct points on an elliptic curve, that are both not the point at infinity. Then the sum of P and Q is defined as follows: Consider the line l which intersects the curve in P and Q. If l intersects the elliptic curve at a third point R', define the sum $R = P \oplus Q$ of P and Q as the reflection of R' at the x-axis. If it does not intersect the curve at a third point define the sum to be the point at infinity \mathcal{O} . It can be shown, that no such chord-line will intersect the curve in more than three points, so addition is not ambiguous.

- (Point doubling) Let *P* ∈ *E*(𝔻)\{𝒪} be a point on an elliptic curve, that is not the point at infinity. Then the sum of *P* with itself (the doubling) is defined as follows: Consider the line which is tangent to the elliptic curve at *P*, if this line intersects the elliptic curve at a second point *R'*. The sum 2*P* = *P* + *P* is then the reflection of *R'* at the *x*-axis. If it does not intersect the curve at a third point define the sum to be the point at infinity 𝒪. It can be shown, It can be shown, that no such tangent-line will intersect the curve in more than two points, so addition is not ambiguous.
- (Point at infinity) We define the point at infinity \mathscr{O} as the neutral element of addition, that is we define $P + \mathscr{O} = P$ for all points $P \in E(\mathbb{F})$.

It can be shown that the points of an elliptic curve form a commutative group with respect to the tangent and chord rule, such that \mathscr{O} acts the neutral element and the inverse of any element $P \in E(\mathbb{F})$ is the reflection of P on the x-axis.

To translate the geometric description into algebraic equations, first observe that for any two given curve points $(x_1, y_1), (x_2, y_2) \in E(\mathbb{F})$, it can be shown that the identity $x_1 = x_2$ implies $y_2 = \pm y_1$, which shows that the following rules are a complete description of the affine addition law.

- (Neutral element) Point at infinity \mathcal{O} is the neutral element.
- (Additive inverse) The additive inverse of \mathscr{O} is \mathscr{O} and for any other curve point $(x,y) \in E(\mathbb{F}) \setminus \{\mathscr{O}\}$, the additive inverse is given by (x,-y).
- (Addition rule) For any two curve points $P,Q \in E(\mathbb{F})$ addition is defined by one of the following three cases:
 - 1. (Adding the neutral element) If $Q = \mathcal{O}$, then the sum is defined as $P \oplus Q = P$.
 - 2. (Adding inverse elements) If P = (x, y) and Q = (x, -y), the sum is defined as $P \oplus Q = \emptyset$.
 - 3. (Adding non self-inverse equal points) If P = (x, y) and Q = (x, y) with $y \ne 0$, the sum 2P = (x', y') is defined by

$$x' = \left(\frac{3x^2+a}{2y}\right)^2 - 2x$$
 , $y' = \left(\frac{3x^2+a}{2y}\right)^2 (x - x') - y$

4. (Adding non inverse different points) If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ such that $x_1 \neq x_2$, the sum R = P + Q with $R = (x_3, y_3)$ is defined by

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$
, $y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$

Note that short Weierstraß curve points P with P = (x, 0) are inverse to themselfs, which implies $2P = \mathcal{O}$ in this case.

Notation and Symbols 8. Let $\mathbb F$ be a field and $E(\mathbb F)$ be an elliptic curve over $\mathbb F$. We write \oplus for the group law on $E(\mathbb F)$ and $(E(\mathbb F), \oplus)$ for the group of rational points.

As we can see, it is very efficient to compute inverses on elliptic curves. However, computing the addition of elliptic curve points in the affine representation needs to consider many cases and involves extensive finite field divisions. As we will see in the next paragraph this can be simplified in projective coordinates.

To get some practical impression of how the group law on an elliptic curve is computed, let's look at some actual cases:

Example 70. Consider the elliptic curve $E_1(\mathbb{F}_5)$ from example XXX again. As we have seen, the set of rational points contains 9 elements and is given by

add reference

$$E_1(\mathbb{F}_5) = \{ \mathscr{O}, (0,1), (2,1), (3,1), (4,2), (4,3), (0,4), (2,4), (3,4) \}$$

We know that this set defines a group, so we can add any two elements from $E_1(\mathbb{F}_5)$ to get a third element.

To give an example consider the elements (0,1) and (4,2). Neither of these elements is the neutral element \mathscr{O} and since the *x*-coordinate of (0,1) is different from the *x*-coordinate of (4,2), we know that we have to use the chord rule, that is rule number 4 from XXX to compute the sum $(0,1) \oplus (4,2)$. We get

add reference

$$x_{3} = \left(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\right)^{2} - x_{1} - x_{2}$$
insert points
$$= \left(\frac{2 - 1}{4 - 0}\right)^{2} - 0 - 4$$

$$= \left(\frac{1}{4}\right)^{2} + 1 = 4^{2} + 1 = 1 + 1 = 2$$
simplify in \mathbb{F}_{5}

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$
 # insert points

$$= \left(\frac{2 - 1}{4 - 1}\right)(0 - 2) - 1$$
 # simplify in \mathbb{F}_5

$$= \left(\frac{1}{4}\right) \cdot 3 + 4 = 4 \cdot 3 + 4 = 2 + 4 = 1$$

So in our elliptic curve $E_1(\mathbb{F}_5)$ we get $(0,1) \oplus (4,2) = (2,1)$ and indeed the pair (2,1) is an element of $E_1(\mathbb{F}_5)$ as expected. On the other hand we have $(0,1) \oplus (0,4) = \mathscr{O}$, since both points have equal *x*-coordinates and inverse *y*-coordinates rendering them as inverse to each other. Adding the point (4,2) to itself, we have to use the tangent rule, that is rule 3 from XXX. We get

$$x' = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x$$

$$= \left(\frac{3 \cdot 4^2 + 1}{2 \cdot 2}\right)^2 - 2 \cdot 4$$

$$= \left(\frac{3 \cdot 1 + 1}{4}\right)^2 + 3 \cdot 4 = \left(\frac{4}{4}\right)^2 + 2 = 1 + 2 = 3$$
insert points
$$= \left(\frac{3 \cdot 1 + 1}{4}\right)^2 + 3 \cdot 4 = \left(\frac{4}{4}\right)^2 + 2 = 1 + 2 = 3$$

$$y' = \left(\frac{3x^2 + a}{2y}\right)^2 (x - x') - y$$

$$= \left(\frac{3 \cdot 4^2 + 1}{2 \cdot 2}\right)^2 (4 - 3) - 2$$

$$= 1 \cdot 1 + 3 = 4$$
insert points
$$= \left(\frac{3 \cdot 4^2 + 1}{2 \cdot 2}\right)^2 (4 - 3) - 2$$

$$= 1 \cdot 1 + 3 = 4$$

So in our elliptic curve $E_1(\mathbb{F}_5)$ we get the doubling $2 \cdot (4,2)$, that is $(4,2) \oplus (4,2) = (3,4)$ and indeed the pair (3,4) is an element of $E_1(\mathbb{F}_5)$ as expected. The group $E_1(\mathbb{F}_5)$ has no self inverse points other then the neutral element \mathcal{O} , since no point has 0 as its y-coordinate. We can invoke Sage to double check the computations.

```
sage: F5 = GF(5)
                                                                                     260
2659
     sage: E1 = EllipticCurve(F5,[1,1])
                                                                                     261
2660
    sage: INF = E1(0) # point at infinity
                                                                                     262
2661
    sage: P1 = E1(0,1)
                                                                                     263
2662
    sage: P2 = E1(4,2)
                                                                                     264
2663
     sage: P3 = E1(0,4)
                                                                                     265
2664
     sage: R1 = E1(2,1)
2665
                                                                                     266
     sage: R2 = E1(3,4)
                                                                                     267
2666
     sage: R1 == P1+P2
                                                                                     268
2667
    True
                                                                                     269
2668
    sage: INF == P1+P3
                                                                                     270
2669
    True
                                                                                     271
2670
     sage: R2 == P2+P2
                                                                                     272
2671
    True
                                                                                     273
2672
    sage: R2 == 2*P2
                                                                                     274
2673
    True
                                                                                     275
2674
    sage: P3 == P3 + INF
                                                                                     276
2675
    True
                                                                                     277
2676
```

Example 71 (Pen-jubjub). Consider the *PJJ_13*-curve from example XXX again and recall that its group of rational points is given by

add reference

```
PJJ\_13 = \{ \mathscr{O}, (1,2), (1,11), (4,0), (5,2), (5,11), (6,5), (6,8), (7,2), (7,11), (8,5), (8,8), (9,4), (9,9), (10,3), (10,10), (11,6), (11,7), (12,5), (12,8) \}
```

In contrast to the group from the previous example, this group contains a self inverse point, which is different from the neutral element, given by (4,0). To see what this means, observe that we can not add (4,0) to itself using the tangent rule 3 from XXX, as the y-coordinate is zero. Instead we have to use rule 2, since 0 = -0. We therefore get $(4,0) \oplus (4,0) = \mathcal{O}$ in PJJ_13 . The point (4,0) is therefore inverse to itself, as adding it to itself gives the neutral element.

add reference

```
sage: F13 = GF(13)
                                                                                   278
2683
    sage: MJJ = EllipticCurve(F13,[8,8])
                                                                                   279
2684
    sage: P = MJJ(4,0)
                                                                                   280
2685
           INF = MJJ(0) # Point at infinity
                                                                                   281
2686
    sage: INF == P+P
                                                                                   282
2687
                                                                                   283
    True
2688
    sage: INF == 2*P
                                                                                   284
2689
    True
                                                                                   285
2690
```

Example 72. Consider the Secp256k1 curve from example XXX_again. The following code involves Sage to generate a random affine curve point, we then apply our compression method

add reference

286

```
sage: P = Secp256k1.random_point()
```

```
sage: Q = Secp256k1.random_point()
                                                                             287
2694
    sage: INF = Secp256k1(0)
                                                                             288
2695
    sage: R1 = -P
                                                                             289
2696
    sage: R2 = P + Q
                                                                             290
2697
    sage: R3 = Secp256k1.order()*P
                                                                             291
2698
    sage: P.xy()
                                                                             292
2699
    (2437965124411773648884901383952245798298026200193112014924104
                                                                            293
2700
       5920541255603582, 38155318538062562663408568861188374070643
2701
       301057931057692802349663368915027747)
2702
    sage: Q.xy()
                                                                             294
2703
    (6273267811834346524071370277009541823203325405903695727983144
                                                                            295
2704
       7554159754801518, 81206263702504109131546480004400274036228
2705
       732572045186080577817223096074627142)
2706
    sage: (ZZ(R1[0]).str(16), ZZ(R1[1]).str(16))
                                                                             296
2707
    ('35e664c3768462813f30192e327e60c61508d279931cdbc639f3cb11c5b3
                                                                            297
2708
       157e', 'aba4dae1f8c83f0ac955259cd78622327b9f107d82937463dd8
2709
       cded0c012750c')
2710
    sage: R2.xy()
                                                                             298
2711
    (8315162076242884051827668971975027473477042355284820491860209
                                                                             299
2712
       945466147353499, 128083043736478847072934266448265932843478
2713
       45733596286872839204967881615931190)
2714
    sage: R3 == INF
                                                                             300
2715
                                                                             301
2716
    sage: P[1]+R1[1] == Fp(0) \# -(x,y) = (x,-y)
2717
                                                                             302
    True
                                                                             303
2718
   Exercise 36. Consider the PJJ_13-curve from example XXX.
                                                                              add refer-
2719
```

1. Compute the inverse of (10,10), \mathcal{O} , (4,0) and (1,2).

ence

- 2. Compute the expression 3*(1,11)-(9,9).

2720

2723

2724

2725

2726

2727

2728

- 3. Solve the equation x + 2(9,4) = (5,2) for some $x \in PJJ_13$
 - 4. Solve the equation $x \cdot (7,11) = (8,5)$ for $x \in \mathbb{Z}$

Scalar multiplication As we have seen in the previous section, elliptic curves $E(\mathbb{F})$ have the structure of a commutative group associated to them. It can moreover be shown, that this group is finite and cyclic, whenever the field is finite.

To understand the elliptic curve scalar multiplication, recall from XXX that every finite cyclic group of order q has a generator g and an associated exponential map $g^{(\cdot)}: \mathbb{Z}_q \to \mathbb{G}$, where g^n is the n-fold product of g with itself.

add refer-

Now, elliptic curve scalar multiplication is then nothing but the exponential map, written in additive notation. To be more precise let \mathbb{F} be a finite field, $E(\mathbb{F})$ an elliptic curve of order r and P a generator of $E(\mathbb{F})$. Then the **elliptic curve scalar multiplication** with base P is given by

$$[\cdot]P:\mathbb{Z}_r\to E(\mathbb{F}); m\mapsto [m]P$$

where $[0]P = \mathcal{O}$ and [m]P = P + P + ... + P is the *m*-fold sum of *P* with itself. Elliptic curve scalar multiplication is therefore nothing but an instantiation of the general exponential map,

when using additive instead of multiplicative notation. This map is a homomorph of groups, which means that $[n+m]P = [n]P \oplus [m]P$.

As with all finite, cyclic groups the inverse of the exponential map exist and is usually called the **elliptic curve discrete logarithm map**. However, elliptic curve are believed to be XXX-groups, which means that we don't know of any efficient way to actually compute this map.

add reference

Scalar multiplication and its inverse, the elliptic curve discrete logarithm, define the elliptic curve discrete logarithm **problem**, which consists of finding solutions $m \in \mathbb{Z}_r$, such that

$$P = [m]O (5.2)$$

holds. Any solution m is usually called a **discrete logarithm** relation between P and Q. If Q is a generator of the curve, then there is a discrete logarithm relation between Q and any other point, since Q generates the group by repeatedly adding Q to itself. So for generator Q and point P, we know some discrete logarithm relation exist. However, since elliptic curves are believed to be XXX-groups, finding actual relations m is computationally hard, with runtimes approximately in the size of the order of the group. In practice, we often need the assumption that a discrete logarithm relation exists, but that at the same time no-one knows this relation.

add reference

One useful property of the exponential map in regard to the examples in this book, is that it can be used to greatly simplify pen-and-paper computations. As we have seen in example XXX, computing the elliptic curve addition law takes quit a bit of effort, when done without a computer. However, when g is a generator of small pen-and-paper elliptic curve group of order r, we can use the exponential map to write the group as

add reference

$$\mathbb{G} = \{ [1]g \to [2]g \to [3]g \to \dots \to [r-1]g \to \mathcal{O} \}$$
 (5.3)

using cofactor clearing, which implies that $[r]g = \mathcal{O}$. "Logarithmic ordering" like this greatly simplifies complicated elliptic curve addition to the much simpler case of modular r addition. So in order to add two curve points P and Q, we only have to look up their discrete log relations with the generator, say P = [n]g and Q = [m]g and compute the sum as $P \oplus Q = [n+m]g$. This is, of course, only possible for small groups which we can organize as in XXX.

add reference

In the following example we will look at some implications of the fact that elliptic curves are finite cyclic groups. We will apply the fundamental theorem of finite cyclic groups and look how it reflects on the curves in consideration.

Example 73. Consider the elliptic curve group $E_1(\mathbb{F}_5)$ from example XXX. Since it is a finite cyclic group of order 9 and the prime factorization of 9 is $3 \cdot 3$, we can use the fundamental theorem of finite cyclic groups to reason about all its subgroups. In fact since the only prime factor of 9 is 3, we know that $E_1(\mathbb{F}_5)$ has the following subgroups:

add reference

add refer-

ence

- $\mathbb{G}_1 = E_1(\mathbb{F}_5)$ is a subgroup of order 9. By definition any group is a subgroup of itself.
- $\mathbb{G}_2 = \{(2,1),(2,4),\mathscr{O}\}$ is a subgroup of order 3. This is the subgroup associated to the prime factor 3.
- $\mathbb{G}_3 = \{ \mathcal{O} \}$ is a subgroup of order 1. This is the trivial subgroup.

Moreover since $E_1(\mathbb{F}_5)$ and all its subgroups are cyclic, we know from XXX, that they must have generators. For example the curve point (2,1) is a generator of the order 3-subgroup \mathbb{G}_2 , since every element of \mathbb{G}_2 can be generated, by repeatedly adding (2,1) to itself:

$$[1](2,1) = (2,1)$$
$$[2](2,1) = (2,4)$$
$$[3](2,1) = \emptyset$$

2769

2770

2771

2772

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

Since (2,1) is a generator we know from XXX, that it gives rise to an exponential map from the finite field \mathbb{F}_3 onto \mathbb{G}_2 defined by scalar multiplication

add reference

$$[\cdot](2,1): \mathbb{F}_3 \to \mathbb{G}_2: x \mapsto [x](2,1)$$

To give an example of a generator that generates the entire group $E_1(\mathbb{F}_5)$ consider the point (0,1). Applying the tangent rule repeatedly we compute with some effort:

Again, since (2,1) is a generator we know from XXX, that it gives rise to an exponential map. However, since the group order is not a prime number, the exponential maps, does not map a from any field but from the residue class ring \mathbb{Z}_9 only:

add reference

$$[\cdot](0,1): \mathbb{Z}_9 \to \mathbb{G}_1: x \mapsto [x](0,1)$$

Using the generator (0,1) and its associated exponential map, we can write $E(\mathbb{F}_1)$ i logarithmic order with respect to (0,1) as explained in XXX. We get

add reference

$$E_1(\mathbb{F}_5) = \{(0,1) \to (4,2) \to (2,1) \to (3,4) \to (3,1) \to (2,4) \to (4,3) \to (0,4) \to \mathscr{O}\}$$

indicating that the first element is a generator and the n-th element is the scalar product of n and the generator. To see how logarithmic orders like this simplify the computations in small elliptic curve groups, consider example XXX_again. In that example we use the chord and tangent rule to compute $(0,1) \oplus (4,2)$. Now in the logarithmic order of $E_1(\mathbb{F})$ we can compute that sum much easier, since we can directly see that (0,1) = [1](0,1) and (4,2) = [2](0,1). We can then deduce $(0,1) \oplus (4,2) = (2,1)$ immediately, since $[1](0,1) \oplus [2](0,1) = [3](0,1) = (2,1)$.

add reference

To give another example, we can immediately see that $(3,4) \oplus (4,3) = (4,2)$, without doing any expensive elliptic curve addition, since we know (3,4) = [4](0,1) as well as (4,3) = [7](0,1) from the logarithmic representation of $E_1(\mathbb{F}_5)$ and since 4+7=2 in \mathbb{Z}_9 , the result must be [2](0,1) = (4,2).

Finally we can use $E_1(\mathbb{F}_5)$ as an example to understand the concept of cofactor clearing from XXX. Since the order of $E_1(\mathbb{F}_5)$ is 9 we only have a single factor, which happen to be the cofactor as well. Cofactor clearing then implies that we can map any element from $E_1(\mathbb{F}_5)$ onto its prime factor group \mathbb{G}_2 by scalar multiplication with 3. For example taking the element (3,4) which is not in \mathbb{G}_2 and multiplying it with 3, we get [3](3,4)=(2,1), which is an element of \mathbb{G}_2 as expected.

add reference

In the following example we will look at the subgroups of our pen-jubjub curve, define generators and compute the logarithmic order for pen-and-paper computations. Then we have another look at the principle of cofactor clearing.

Example 74. Consider the pen-jubjub curve PJJ_13 from example XXX again. Since the order of PJJ_13 is 20 and the prime factorization of 20 is $2^2 \cdot 5$, we know that the PJJ_13 contains a "large" prime order subgroup of size 5 and a small prime oder subgroup of size 2.

add reference

To compute those groups, we can apply the technique of cofactor clearing in a try and repeat loop. We start the loop by arbitrarily choose an element $P \in PJJ_13$. Then we multiply that

2793

2808

2811

2812

element with the cofactor of the group, we want to compute. If the result is \mathcal{O} , we try a different element and repeat the process until the result is different from the point at infinity.

To compute a generator for the small prime order subgroup $(PJJ_13)_2$, first observe that the cofactor is 10, since $20 = 2 \cdot 10$. We then arbitrarily choose the curve point $(5,11) \in PJJ_13$ and compute $[10](5,11) = \mathcal{O}$. Since the result is the point at infinity, we have to try another curve point, say (9,4). We get [10](9,4) = (4,0) and we can deduce that (4,0) is a generator of $(PJJ_13)_2$. Logarithmic order of then gives

$$(PJJ_13)_2 = \{(4,0) \to \emptyset\}$$

2794 as expected, since we know from example XXX that (4,0) is self inverse, with $(4,0) \oplus (4,0) =$ add reference \mathcal{O} . Double checking the computations using Sage:

```
sage: F13 = GF(13)
                                                                                    304
2796
     sage: PJJ = EllipticCurve(F13,[8,8])
                                                                                    305
2797
     sage: P = PJJ(5,11)
                                                                                    306
2798
     sage: INF = PJJ(0)
                                                                                    307
2799
    sage: 10*P == INF
                                                                                    308
2800
    True
                                                                                    309
2801
     sage: Q = PJJ(9,4)
                                                                                    310
2802
     sage: R = PJJ(4,0)
                                                                                    311
2803
    sage: 10*0 == R
                                                                                    312
2804
    True
                                                                                    313
2805
```

We can apply the same reasoning to the "large" prime order subgroup $(PJJ_13)_5$, which contains 5 elements. To compute a generator for this group, first observe that the associated cofactor is 4, since $20 = 5 \cdot 4$. We choose the curve point $(9,4) \in PJJ_13$ again and compute [4](9,4) = (7,11) and we can deduce that (7,11) is a generator of $(PJJ_13)_5$. Using the generator (7,11), we compute the exponential map $[\cdot](7,11) : \mathbb{F}_5 \to PJJ_13$ and get

$$[0](7,11) = \emptyset$$

$$[1](7,11) = (7,11)$$

$$[2](7,11) = (8,5)$$

$$[3](7,11) = (8,8)$$

$$[4](7,11) = (7,2)$$

We can use this computation to write the large order prime group $(PJJ_13)_5$ of the pen-jubjub curve in logarithmic order, which we will use quite frequently in what follows. We get:

$$(PJJ_13)_5 = \{(7,11) \to (8,5) \to (8,8) \to (7,2) \to \emptyset\}$$

From this, we can immediately see that for example $(8,8) \oplus (7,2) = (8,5)$, since 3+4=2 in \mathbb{F}_5 .

From the previous two examples, the reader might get the impression, that elliptic curve computation can be largely replaced by modular arithmetics. This however, is not true in general, but only an arefact of small groups where it is possible to write the entire group in a logarithmic order. The following example gives some understanding, why this is not possible in cryptographically secure groups

2813 Example 75. SEKTP BICOIN. DISCRET LOG HARDNESS PROHIBITS ADDITION IN 2814 THE FIELD...

2816

2817

2818

2819

2820

2821

2822

2825

2828

2829

2830

Projective short Weierstraß form As we have seen in the previous section, describing elliptic curves as pairs of points that satisfy a certain equation is relatively straight forward. However, in order to define a group structure on the set of points, we had to add a special point at infinity to act as the neutral element.

Recalling from the definition of projective planes XXX we know, that points at infinity are handled as ordinary points in projective geometry. It make therefore sense to look at the definition of a short Weierstraß curve in projective geometry.

add refer-

To see what a short Weierstraß curve in projective coordinates is, let $\mathbb F$ be a finite field of order q and characteristic > 3, $a,b \in \mathbb F$ two field elements such that $4a^3 + 27b^2 \mod q \neq 0$ and $\mathbb FP^2$ the projective plane over $\mathbb F$. Then a **short Weierstraß elliptic curve** over $\mathbb F$ in its projective representation is the set

$$E(\mathbb{F}P^2) = \{ [X : Y : Z] \in \mathbb{F}P^2 \mid Y^2 \cdot Z = X^3 + a \cdot X \cdot Z^2 + b \cdot Z^3 \}$$
 (5.4)

of all points $[X:Y:Z] \in \mathbb{F}P^2$ from the projective plane, that satisfy the **homogenous** cubic equation $Y^2 \cdot Z = X^3 + a \cdot X \cdot Z^2 + b \cdot Z^3$.

To understand how the point at infinity is unified in this definition, recall from XXX that, in projective geometry points at infinity are given by homogeneous coordinates [X:Y:0]. Inserting representatives $(x_1,y_1,0) \in [X:Y:0]$ from those classes into the defining homogeneous cubic equations gives

add reference

$$y_1^2 \cdot 0 = x_1^3 + a \cdot x_1 \cdot 0^2 + b \cdot 0^3$$
 \Leftrightarrow $0 = x_1^3$

which shows that the only point at infinity that is also a point on a projective short Weierstraß curve is the class

$$[0,1,0] = \{(0,y,0) \mid y \in \mathbb{F}\}\$$

This point is the projective representation of \mathcal{O} . The projective representation of a short Weierstraß curve therefore has the advantage to not need a special symbol to represent the point at infinity \mathcal{O} from the affine definition.

Example 76. To get an intuition of how an elliptic curve in projective geometry looks, consider curve $E_1(\mathbb{F}_5)$ from example (XXX). We know that in its affine representation, the set of rational points is given by

add reference

$$E_1(\mathbb{F}_5) = \{ \mathscr{O}, (0,1), (2,1), (3,1), (4,2), (4,3), (0,4), (2,4), (3,4) \}$$

which is defined as the set of all pairs $(x,y) \in \mathbb{F}_5 \times \mathbb{F}_5$, such that the affine short Weierstraß equation $y^2 = x^3 + ax + b$ with a = 1 and b = 1 is satisfied.

To finde the projective representation of a short Weierstraß curve with the same parameters a = 1 and b = 1, we have to compute the set of projective points [X : Y : Z] from the projective plane $\mathbb{F}_5 P^2$, that satisfy the homogenous cubic equation

$$y_1^2 z_1 = x_1^3 + 1 \cdot x_1 z_1^2 + 1 \cdot z_1^3$$

for any representative $(x_1, y_1, z_1) \in [X : Y : Z]$. We know from XXX, that the projective plane $\mathbb{F}_5 P^2$ contains $5^2 + 5 + 1 = 31$ elements, so we can take the effort and insert all elements into equation XXX and see if both sides match.

For example, consider the projective point [0:4:1]. We know from XXX, that this point in

add reference

add reference

the projective plane represents the line

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

$$[0:4:1] = \{(0,0,0), (0,4,1), (0,3,2), (0,2,3), (0,1,4)\}$$

in the three dimensional space \mathbb{F}^3 . To check whether or not [0:4:1] satisfies XXX, we can insert any representative, that is we can insert any element from XXX. Each element satisfies the equation if and only if any other satisfies the equation. So we insert (0,4,1) and get

add reference

add reference

$$1^2 \cdot 1 = 0^3 + 1 \cdot 0 \cdot 1^2 + 1 \cdot 1^3$$

which tells us that the affine point [0:4:1] is indeed a solution. And as we can see, would just as well insert any other representative. For example inserting (0,3,2) also satisfies XXX, since

add reference

$$3^2 \cdot 2 = 0^3 + 1 \cdot 0 \cdot 2^2 + 1 \cdot 2^3$$

To find the projective representation of E_1 , we first observe that the projective line at infinity [1:0:0] is not a curve point on any projective short Weierstraß curve since it can not satisfy XXX for any parameter a and b. So we can exclude it from our consideration.

add reference

Moreover a point at infinity [X : Y : 0] can only satisfy equation XXX for any a and b, if X = 0, which implies that the only point at infinity relavant for short Weierstraß elliptic curves is [0:1:0], since [0:k:0] = [0:1:0] for all k from the finite field. So we can exclude all points at infinity except the point [0:1:0].

add reference

So all points that remain are the affine points [X:Y:1]. Inserting all of them into XXX we get the set of all projective curve points as

add reference

$$E_1(\mathbb{F}_5 \mathbf{P}^2) = \{ [0:1:0], [0:1:1], [2:1:1], [3:1:1], \\ [4:2:1], [4:3:1], [0:4:1], [2:4:1], [3:4:1] \}$$

If we compare this with the affine representation we see that there is a 1:1 correspondence between the points in the affine representation XXX and the affine points in projective geometry and that the point [0:1:0] represents the additional point \mathcal{O} in the projective representation.

add reference

Exercise 37. Compute the projective representation of the pen-jubjub curve and the logarithmic order of its large prime order subgroup with respect to the generator (7,11).

Projective Group law As we have seen in XXX, one of the key properties of an elliptic curve is that it comes with a definition of a group law on the set of its rational points, described geometrically by the chord and tangent rule. This rule was kind of intuitive, with the exception of the distinguished point at infinity, which appered whenever the chord or the tangent did not have a third intersection point with the curve.

add reference

One of the key features of projective coordinates is now, that in projective space it is guaranteed that any chord will always intersect the curve in three points and any tangent will intersect in two points including the tangent point. So the geometric picture simplifies as we don't need to consider external symbols and associated cases.

Again, it can be shown that the points of an elliptic curve in projective space form a commutative group with respect to the tangent and chord rule, such that the projective point [0:1:0] is the neutral element and the additive inverse of a point [X:Y:Z] is given by [X:-Y:Z]. The addition law is then usually described by the following algorithm, that minimizes the number of needed additions and multiplications in the base field.

Exercise 38. Compare that affine addition law for short Weierstraß curves with the projective addition rule. Which branch in the projective rule corresponds to which case in the affine law?

Algorithm 6 Projective Weierstraß Addition Law

```
Require: [X_1:Y_1:Z_1], [X_2:Y_2:Z_2] \in E(\mathbb{FP}^2)
   procedure ADD-RULE([X_1 : Y_1 : Z_1], [X_2 : Y_2 : Z_2])
         if [X_1:Y_1:Z_1] == [0:1:0] then
              [X_3:Y_3:Z_3] \leftarrow [X_2:Y_2:Z_2]
         else if [X_2:Y_2:Z_2] == [0:1:0] then
              [X_3:Y_3:Z_3] \leftarrow [X_1:Y_1:Z_1]
         else
              U_1 \leftarrow Y_2 \cdot Z_1
              U_2 \leftarrow Y_1 \cdot Z_2
              V_1 \leftarrow X_2 \cdot Z_1
              V_2 \leftarrow X_1 \cdot Z_2
              if V_1 == V_2 then
                   if U_1 \neq U_2 then [X_3 : Y_3 : Z_3] \leftarrow [0 : 1 : 0]
                         if Y_1 == 0 then [X_3 : Y_3 : Z_3] \leftarrow [0 : 1 : 0]
                         else
                              W \leftarrow a \cdot Z_1^2 + 3 \cdot X_1^2
                              S \leftarrow Y_1 \cdot Z_1
                              B \leftarrow X_1 \cdot Y_1 \cdot S
                              H \leftarrow W^2 - 8 \cdot B
                              X' \leftarrow 2 \cdot H \cdot S
                              Y' \leftarrow W \cdot (4 \cdot B - H) - 8 \cdot Y_1^2 \cdot S^2
                              Z' \leftarrow 8 \cdot S^3
                              [X_3:Y_3:Z_3] \leftarrow [X':Y':Z']
                         end if
                   end if
              else
                    U = U_1 - U_2
                    V = V_1 - V_2
                   W = Z_1 \cdot Z_2
                   A = U^{2} \cdot W - V^{3} - 2 \cdot V^{2} \cdot V_{2}
                   X' = V \cdot A
                   Y' = U \cdot (V^2 \cdot V_2 - A) - V^3 \cdot U_2
                   Z' = V^3 \cdot W
                   [X_3:Y_3:Z_3] \leftarrow [X':Y':Z']
              end if
         end if
         return [X_3 : Y_3 : Z_3]
   end procedure
Ensure: [X_3:Y_3:Z_3] == [X_1:Y_1:Z_1] \oplus [X_2:Y_2:Z_2]
```

2865

2866

2867

2868

2869

2870

2875

2876

2877

2878 2879

2880

2882

2883

2885

2887

2891

Coordinate Transformations As we have seen in example XXX, there was a close relation add referbetween the affine and the projective representation of a short Weierstraß curve. This was no accident. In fact from a mathematical point of view projective and affine short Weierstraß curves describe the same thing as there is a one-to-one correspondence (an isomorphism) between both representations for any given parameters a and b.

ence

To specify the isomorphism, let $E(\mathbb{F})$ and $E(\mathbb{F}P^2)$ be an affine and a projective short Weierstra β curve defined for the same parameters a and b. Then the map

$$\Phi: E(\mathbb{F}) \to E(\mathbb{F}P^2) : \begin{array}{ccc} (x,y) & \mapsto & [x:y:1] \\ \mathscr{O} & \mapsto & [0:1:0] \end{array}$$
 (5.5)

maps points from a the affine representation to points from the projective representation of a 2871 short Weierstraß curve, that is if the pair of points (x,y) satisfies the affine equation $y^2 = x^3 + y^2 + y^$ 2872 ax + b, then all homogeneous coordinates $(x_1, y_1, z_1) \in [x : y : 1]$ satisfy the projective equation 2873 $y_1^2 \cdot z_1 = x_1^3 + ay_1 \cdot z_1^2 + b \cdot z_1^3$. The inverse is given by the map

$$\Phi^{-1}: E(\mathbb{FP}^2) \to E(\mathbb{F}) : [X:Y:Z] \mapsto \begin{cases} (\frac{X}{Z}, \frac{Y}{Z}) & \text{if } Z \neq 0\\ \mathscr{O} & \text{if } Z = 0 \end{cases}$$
 (5.6)

Note the only projective point [X:Y:Z] with $Z \neq 0$ that satisfies XXX is given by the class [0:1:0].

add reference

One key feature of Φ and its inverse is, that it respects the group structure, which means that $\Phi((x_1,y_1) \oplus (x_2,y_2))$ is equal to $\Phi(x_1,y_1) \oplus \Phi(x_2,y_2)$. The same holds true for the inverse map

Maps with these properties are called **group isomorphisms** and from a mathematical point of view the existence of Φ implies, that both definition are equivalent and implementations can choose freely between both representations.

5.1.2 **Montgomery Curves**

History and use of them (optimized scalar multiplication) 2884

Affine Montgomery Form To see what a Montgomery curve in affine coordinates is, let \mathbb{F} be a finite field of characteristic > 2 and $A, B \in \mathbb{F}$ two field elements such that $B \neq 0$ and $A^2 \neq 4$. 2886 Then a **Montgomery elliptic curve** $M(\mathbb{F})$ over \mathbb{F} in its affine representation is the set

$$M(\mathbb{F}) = \{(x, y) \in \mathbb{F} \times \mathbb{F} \mid B \cdot y^2 = x^3 + A \cdot x^2 + x\} \bigcup \{\mathscr{O}\}$$
 (5.7)

of all pairs of field elements $(x,y) \in \mathbb{F} \times \mathbb{F}$, that satisfy the Montgomery cubic equation $B \cdot y^2 =$ $x^3 + A \cdot x^2 + x$, together with a distinguished symbol \mathcal{O} , called the **point at infinity**.

Despite the fact that Montgomery curves look different then short Weierstraß curve, they are in fact just a special way to describe certain short Weierstraß curves. In fact every curve in affine Montgomery form can be transformed into an elliptic curve in Weierstraß form. To see that assume that a curve in Montgomery form $By^2 = x^3 + Ax^2 + x$ is given. The associated Weierstraß form is then

$$y^2 = x^3 + \frac{3 - A^2}{3R^2} \cdot x + \frac{2A^3 - 9A}{27R^3}$$

On the other hand, an elliptic curve $E(\mathbb{F})$ over base field \mathbb{F} in Weierstraß form $y^2 = x^3 +$ 2890 ax + b can be converted to Montgomery form if and only if the following conditions hold:

2893

2894

2898

- The number of points on E(F) is divisible by 4
- The polynomial $z^3 + az + b \in \mathbb{F}[z]$ has at least one root $z_0 \in \mathbb{F}[z]$
- $3z_0^2 + a$ is a quadratic residue in \mathbb{F} .

When these conditions are satisfied, then for $s = (\sqrt{3z_0^2 + a})^{-1}$ the equivalent Montgomery curve is defined by the equation

$$sy^2 = x^3 + (3z_0s)x^2 + x$$

If those properties are meet it is therefore possible to transform certain Weierstraß curve into 2895 Montgomery form. In the following example we will look at our pen-jubjub curve again and 2896 show that it is actually a Montgomery curve. 2897

Example 77. Consider the prime field \mathbb{F}_{13} and the pen-jubjub curve PJJ_1 from example XXX. To see that it is a Montgomery curve, we have to check the properties from XXX: 2899

add reference

Since the order of *PJJ_13* is 20, which is divisible by 4, the first requirement is meet. Next, since a = 8 and b = 8, we have check if the polynomial $P(z) = z^3 + 8z + 8$ has a root in \mathbb{F}_{13} . We simply evaluate P at all numbers $z \in \mathbb{F}_{13}$ a find that P(4) = 0, so a root is given by $z_0 = 4$. In a last step we have to check, that $3 \cdot z_0^2 + a$ has a root in \mathbb{F}_{13} . We compute

add reference

$$3z_0^2 + a = 3 \cdot 4^2 + 8$$
$$= 3 \cdot 3 + 8$$
$$= 9 + 8$$
$$= 4$$

To see if 4 is a quadratic residue, we can use Euler's criterion XXX to compute the Legendre symbol of 4. We get:

add reference

$$\left(\frac{4}{13}\right) = 4^{\frac{13-1}{2}} = 4^6 = 1$$

so 4 indeed has a root in \mathbb{F}_{13} . In fact computing a root of 4 in \mathbb{F}_{13} is easy, since the integer root 2900 2 of 4 is also one of its roots in \mathbb{F}_{13} . The other root is given by 13-4=9. 2901

Now since all requirements are meet, we have shown that PJJ_13 is indeed a Montgomery curve and we can use XXX to compute its associated Montgomery form. We compute

add reference

$$s = \left(\sqrt{3 \cdot z_0^2 + 8}\right)^{-1}$$

$$= 2^{-1}$$

$$= 2^{13-2}$$

$$= 7$$
Fermat's little theorem
$$= 2048 \mod 13 = 7$$

The defining equation for the Montgomery form of our pen-jubjub curve is then given by the following equation

$$sy^{2} = x^{3} + (3z_{0}s)x^{2} + x$$
 \Rightarrow
 $7 \cdot y^{2} = x^{3} + (3 \cdot 4 \cdot 7)x^{2} + x$ \Leftrightarrow
 $7 \cdot y^{2} = x^{3} + 6x^{2} + x$

2911

2912

2913

2914

2915

2923

2924

So we get the defining parameters as B = 7 and A = 6 and we can write the pen-jubjub curve in its affine Montgomery representation as

$$PJJ_13 = \{(x,y) \in \mathbb{F}_{13} \times \mathbb{F}_{13} \mid 7 \cdot y^2 = x^3 + 6x^2 + x\} \bigcup \{\mathscr{O}\}$$

Now that we have the abstract definition of our pen-jubjub curve in Montgomery form, we can compute the set of points, by inserting all pairs $(x,y) \in \mathbb{F}_{13} \times \mathbb{F}_{13}$ similar to how we computed the curve points in its Weierstraß representation. We get

$$PJJ_13 = \{ \mathscr{O}, (0,0), (1,4), (1,9), (2,4), (2,9), (3,5), (3,8), (4,4), (4,9), (5,1), (5,12), (7,1), (7,12), (8,1), (8,12), (9,2), (9,11), (10,3), (10,10) \}$$

```
sage: F13 = GF(13)
                                                                                314
2903
    sage: L_MPJJ = []
                                                                                315
2904
     ....: for x in F13:
                                                                                316
2905
                for y in F13:
                                                                                317
2906
                     if F13(7)*y^2 == x^3 + F13(6)*x^2 +x:
                                                                                318
2907
                          L_MPJJ.append((x,y))
                                                                                319
2908
    sage: MPJJ = Set(L MPJJ)
                                                                                320
2909
    sage: # does not compute the point at infinity
                                                                                321
2910
```

Affine Montgomery coordinate transformation Comparing the Montgomery representation of the previous example with the Weierstraß representation of the same curve, we see that there is a 1:1 correspondence between the curve points in both examples. This is no accident. In fact if $M_{A,B}$ is a Montgomery curve and $E_{a,b}$ a Weierstraß curve with $a = \frac{3-A^2}{3B^2}$ and $b = \frac{2A^2-9A}{27B^3}$ then the function

$$\Phi: M_{A,B} \to E_{a,b} : (x,y) \mapsto \left(\frac{3x+A}{3B}, \frac{y}{B}\right)$$
 (5.8)

maps all points in Montgomery representation onto the points in Weierstraß representation. This map is a 1:1 correspondence (am isomorphism) and its inverse map is given by

$$\Phi^{-1}: E_{a,b} \to M_{A,B}: (x,y) \mapsto (s \cdot (x-z_0), s \cdot y)$$
 (5.9)

where z_0 is a root of the polynomial $z^3 + az + b \in \mathbb{F}[z]$ and $s = (\sqrt{3z_0^2 + a})^{-1}$. Using this map, it is therefore possible for implementations of Montgomery curves to freely transit between the Weierstraß and the Montgomery representation. Note however, that according to XXX not every Weierstraß curve is a Montgomery curve, as all of the properties from XXX have to be satisfied. The map Φ^{-1} therefore does not always exists.

Example 78. Consider our pen-jubjub curve again. In example XXX we derive its Weierstraß representation and in example XXX we derive its Montgomery representation.

To see how the coordinate transformation Φ works in this example, let's map points from the Montogomery representation onto points from the Weierstraß representation. Inserting for example the point (0,0) from the Montgomery representation XXX into Φ gives

add reference

add reference

add reference

add reference

$$\Phi(0,0) = \left(\frac{3 \cdot 0 + A}{3B}, \frac{0}{B}\right)$$
$$= \left(\frac{3 \cdot 0 + 6}{3 \cdot 7}, \frac{0}{7}\right)$$
$$= \left(\frac{6}{8}, 0\right)$$
$$= (4,0)$$

So the Montgomery point (0,0) maps to the self inverse point (4,0) of the Weierstraß representation. On the other hand we can use our computations of s = 7 and $z_0 = 4$ from XXX, to compute the inverse map Φ^{-1} , which maps point on the Weiertraß representation to points on the Mongomery form. Inserting for example (4,0) we get

add reference

$$\Phi^{-1}(4,0) = (s \cdot (4-z_0), s \cdot 0)$$
$$= (7 \cdot (4-4), 0)$$
$$= (0,0)$$

So as expected, the inverse maps maps the Weierstraß point back to where it came from on the Montgomery form. We can invoke Sage to proof that our computation of Φ is correct:

```
sage: # Compute PHI of Montgomery form:
                                                                               322
2927
    sage: L_PHI_MPJJ = []
                                                                               323
2928
    sage: for (x,y) in L_MPJJ: # LMJJ as defined previously
                                                                               324
2929
                v = (F13(3)*x + F13(6))/(F13(3)*F13(7))
     . . . . :
                                                                               325
2930
                w = y/F13(7)
                                                                               326
2931
                L_PHI_MPJJ.append((v,w))
                                                                               327
2932
    sage: PHI MPJJ = Set(L PHI MPJJ)
                                                                               328
2933
    sage: # Computation Weierstrass form
                                                                               329
2934
    sage: C_WPJJ = EllipticCurve(F13,[8,8])
                                                                               330
2935
    sage: L_WPJJ = [P.xy() for P in C_WPJJ.points() if P.order() >
                                                                               331
2936
         1]
2937
    sage: WPJJ = Set(L WPJJ)
                                                                               332
2938
    sage: # check PHI(Montgomery) == Weierstrass
                                                                               333
2939
    sage: WPJJ == PHI_MPJJ
                                                                               334
2940
    True
                                                                               335
2941
    sage: # check the inverse map PHI^(-1)
                                                                               336
2942
    sage: L_PHIINV_WPJJ = []
                                                                               337
2943
    sage: for (v,w) in L WPJJ:
                                                                               338
2944
                x = F13(7) * (v-F13(4))
                                                                               339
2945
                y = F13(7) *w
                                                                               340
     . . . . :
2946
                L_PHIINV_WPJJ.append((x,y))
                                                                               341
2947
    sage: PHIINV_WPJJ = Set(L_PHIINV_WPJJ)
                                                                               342
2948
    sage: MPJJ == PHIINV_WPJJ
                                                                               343
2949
    True
                                                                               344
2950
```

Montgomery group law So we see that Montgomery curves a special cases of short Weierstraß curves. As such they have a group structure defined on the set of their points, which can

2957

2958

2959

2960

2961

2962

2963

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

also be derived from a chord and tangent rule. In accordance with short Weierstraß curves, it can be shown that the identity $x_1 = x_2$ implies $y_2 = \pm y_1$, which shows that the following rules are a complete description of the affine addition law.

- (Neutral element) Point at infinity \mathcal{O} is the neutral element.
- (Additive inverse) The additive inverse of \mathscr{O} is \mathscr{O} and for any other curve point $(x,y) \in M(\mathbb{F}_q) \setminus \{\mathscr{O}\}$, the additive inverse is given by (x,-y).
- (Addition rule) For any two curve points $P,Q \in M(\mathbb{F}_q)$ addition is defined by one of the following cases:
 - 1. (Adding the neutral element) If $Q = \mathcal{O}$, then the sum is defined as P + Q = P.
 - 2. (Adding inverse elements) If P = (x, y) and Q = (x, -y), the sum is defined as $P + Q = \emptyset$.
 - 3. (Adding non self-inverse equal points) If P = (x, y) and Q = (x, y) with $y \ne 0$, the sum 2P = (x', y') is defined by

$$x' = \left(\frac{3x_1^2 + 2Ax_1 + 1}{2By_1}\right)^2 \cdot B - (x_1 + x_2) - A \quad , \quad y' = \frac{3x_1^2 + 2Ax_1 + 1}{2By_1}(x_1 - x') - y_1$$

4. (Adding non inverse differen points) If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ such that $x_1 \neq x_2$, the sum R = P + Q with $R = (x_3, y_3)$ is defined by

$$x' = (\frac{y_2 - y_1}{x_2 - x_1})^2 B - (x_1 + x_2) - A$$
, $y' = \frac{y_2 - y_1}{x_2 - x_1} (x_1 - x') - y_1$

5.1.3 Twisted Edwards Curves

As we have seen in XXX both Weierstraß and Montgomery curves have somewhat complicated addition and doubling laws as many cases have to be distinguished. Those cases translate to branches in computer programs.

add refer-

In the context of SNARK development two computational models for bounded computations, called **circuits** and **rank-1 constraint systems**, are used and program-branches are undesirably costly, when implemented in those models. It is therefore advantageous to look for curves with an addition/doubling rule, that requires no branches and as few field operations as possible.

Twisted Edwards curves are particular useful here as a subclass of these curves has a compact and easy to implement addition law that works for all point, including the point at infinity. Implementing that rule therefore needs no branching.

Twisted Edwards Form To see what an affine **twisted Edwards curve** looks like, let \mathbb{F} be a finite field of characteristic > 2 and $a, d \in \mathbb{F} \setminus \{0\}$ two non zero field elements with $a \neq d$. Then a **twisted Edwards elliptic curve** in its affine representation is the set

$$E(\mathbb{F}) = \{ (x, y) \in \mathbb{F} \times \mathbb{F} \mid a \cdot x^2 + y^2 = 1 + d \cdot x^2 y^2 \}$$
 (5.10)

of all pairs (x,y) from $\mathbb{F} \times \mathbb{F}$, that satisfy the twisted Edwards equation $a \cdot x^2 + y^2 = 1 + d \cdot x^2 y^2$.

A twisted Edwards curve is called an Edwards curve (non twisted), if the parameter a is equal to 1 and is called a **SNARK-friendly** twisted Edwards curve if the parameter a is a quadratic residue and the parameter d is a quadratic non residue.

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

As we can see from the definition, affine twisted Edwards curve look somewhat different from Weierstraß curves as their affine representation does not need a special symbol to represent the point at infinity. In fact we we will see that the pair (0,1) is always a point on any twisted Edwards curve and that it takes the role of the point at infinity.

Despite the different looks however, twisted Edwards curves are equivalent to Montgomery curves in the sense that for every twisted Edwards curve there is a Montgomery curve and a way to map the points of one curve in a 1:1 correspondence onto the other and vice versa. To see that assume that a curve in twisted Edwards form $a \cdot x^2 + y^2 = 1 + d \cdot x^2 y^2$ is given. The associated Montgomery curve is then defined by the Montgomery equation

$$\frac{4}{a-d}y^2 = x^3 + \frac{2(a+d)}{a-d} \cdot x^2 + x \tag{5.11}$$

On the other hand a Montgomery curve $By^2 = x^3 + Ax^2 + x$ with $B \neq 0$ and $A^2 \neq 4$ can gives rise to a twisted Edwards curve defined by the equation

$$\left(\frac{A+2}{B}\right)x^2 + y^2 = 1 + \left(\frac{A-2}{B}\right)x^2y^2 \tag{5.12}$$

Recalling from XXX that Montgomery curves are just a special class of Weierstraß, we now know that twisted Edwards curve are special Weierstraß curves too. So the more general way to describe elliptic curves are Weierstraß curves.

add reference

Example 79. Consider the pen jubjub curve from example XXX again. We know from XXX that it is a Montgomery curve and since Montgomery curves are equivalent to twisted Edwards curve, we want to write that curve in twisted Edwards form. We use XXX and compute the parameters a and d as

add reference

add reference

add reference

$$a = \frac{A+2}{B}$$
 # insert A=6 and B=7
= $\frac{8}{7} = 3$ # $7^{-1} = 2$

$$d = \frac{A-2}{B}$$
$$= \frac{4}{7} = 8$$

So we get the defining parameters as a=3 and d=8. Since our goal is to use this curve later on in implementations of pen-and-paper SNARKs, let's show that tiny-jubjub is moreover a **SNARK-friendly** twisted Edwards curve. To see that, we have to show that a is a quadratic residue and d is a quadratic non residue. We therefore compute the Legendre symbols of a and d using the Euler criterium. We get

$$\left(\frac{3}{13}\right) = 3^{\frac{13-1}{2}}$$
$$= 3^6 = 1$$

$$\left(\frac{8}{13}\right) = 8^{\frac{13-1}{2}}$$
$$= 8^6 = 12 = -1$$

which proofs that tiny-jubjub is SNARK-friendly. We can write the tiny-jubjub curve in its affine twisted Edwards representation as

$$TJJ_13 = \{(x,y) \in \mathbb{F}_{13} \times \mathbb{F}_{13} \mid 3 \cdot x^2 + y^2 = 1 + 8 \cdot x^2 \cdot y^2\}$$

Now that we have the abstract definition of our pen-jubjub curve in twisted Edwards form, we can compute the set of points, by inserting all pairs $(x,y) \in \mathbb{F}_{13} \times \mathbb{F}_{13}$ similar to how we computed the curve points in its Weierstraß or Edwards representation. We get

$$PJJ_{13} = \{(0,1), (0,12), (1,2), (1,11), (2,6), (2,7), (3,0), (5,5), (5,8), (6,4), (6,9), (7,4), (7,9), (8,5), (8,8), (10,0), (11,6), (11,7), (12,2), (12,11)\}$$

Twisted Edwards group law As we have seen, twisted Edwards curves are equivalent to Montgomery curves and as such also have a group law. However, in contrast to Montgomery and Weierstraß curves, the group law of SNARK-friendly twisted Edwards curves can be described by single computation, that works in all cases, no matter if we add the neutral element, inverse, or if have to double a point. To see how the group law looks like, first observe that the point (0,1) is a solution to $a \cdot x^2 + y^2 = 1 + d \cdot x^2 \cdot y^2$ for any curve. The sum of any two points $(x_1, y_1), (x_2, y_2)$ on an Edwards curve $E(\mathbb{F})$ is then given by

$$(x_1, y_1) \oplus (x_2, y_2) = \left(\frac{x_1 y_2 + y_1 x_2}{1 + dx_1 x_2 y_1 y_2}, \frac{y_1 y_2 - ax_1 x_2}{1 - dx_1 x_2 y_1 y_2}\right)$$

and it can be shown that the point (0,1) serves as the neutral element and the inverse of a point 3005 (x_1, y_1) is given by $(-x_1, y_1)$.

Example 80. Lets look at the tiny-jubjub curve in Edwards form from example XXX again. As add referwe have seen, this curve is given by

ence

$$PJJ_13 = \{(0,1), (0,12), (1,2), (1,11), (2,6), (2,7), (3,0), (5,5), (5,8), (6,4), (6,9), (7,4), (7,9), (8,5), (8,8), (10,0), (11,6), (11,7), (12,2), (12,11)\}$$

To get an understanding of the twisted Edwards addition law, let's first add the neutral element (0,1) to itself. We apply the group law XXX and get

$$(0,1) \oplus (0,1) = \left(\frac{0 \cdot 1 + 1 \cdot 0}{1 + 8 \cdot 0 \cdot 0 \cdot 1 \cdot 1}, \frac{1 \cdot 1 - 3 \cdot 0 \cdot 0}{1 - 8 \cdot 0 \cdot 0 \cdot 1 \cdot 1}\right)$$
$$= (0,1)$$

So as expected, adding the neutral element to itself gives the neutral element again. Now let's add the neutral element to some other curve point. We get

$$(0,1) \oplus (8,5) = \left(\frac{0 \cdot 5 + 1 \cdot 8}{1 + 8 \cdot 0 \cdot 8 \cdot 1 \cdot 5}, \frac{1 \cdot 5 - 3 \cdot 0 \cdot 8}{1 - 8 \cdot 0 \cdot 8 \cdot 1 \cdot 5}\right)$$
$$= (8,5)$$

Again as expected adding the neutral element to any element will give the element again. Given any curve point (x,y), we know that the inverse is given by (-x,y). To see how the addition of a point to its inverse works out we therefore compute

$$(5,5) \oplus (8,5) = \left(\frac{5 \cdot 5 + 5 \cdot 8}{1 + 8 \cdot 5 \cdot 8 \cdot 5 \cdot 5}, \frac{5 \cdot 5 - 3 \cdot 5 \cdot 8}{1 - 8 \cdot 5 \cdot 8 \cdot 5 \cdot 5}\right)$$

$$= \left(\frac{12 + 1}{1 + 5}, \frac{12 - 3}{1 - 5}\right)$$

$$= \left(\frac{0}{6}, \frac{12 + 10}{1 + 8}\right)$$

$$= \left(0, \frac{9}{9}\right)$$

$$= (0,1)$$

So adding a curve point to its inverse gives the neutral element, as expected. As we have seen from these examples the twisted Edwards addition law handles edge cases particularly nice and in a unified way.

5.2 Elliptic Curves Pairings

3010

3011

3012

3013

3014

3015

3016

3018

3019

3020

3021

3023

3024

3025

3026

3027

3028

3029

3030

As we have seen in XXX some groups comes with the notation of a so called pairing map, which is a non-degenerate bilinear map, from two groups into another group.

add reference

In this section, we discuss **pairings on elliptic curves**, which form the basis of several zk-SNARKs and other zero knowledge proof schemes. The SNARKs derived from pairings have the advantage of constant-sized proof sizes, which is crucial to blockchains.

We start out by defining elliptic curve pairings and discussing a simple application which bears some resemblance to the more advanced SNARKs. We then introduce the pairings arising from elliptic curves and describe Miller's algorithm which makes these pairings practical rather than just theoretically interesting.

Elliptic curves have a few structures, like the Weil or the Tate map, that qualifies as pairing,

Embedding Degrees As we will see in what follows, every elliptic curve gives rise to a pairing map. However, as we will see in example XXX, not every such pairing is efficiently computable. So in order to distinguish curves with efficiently computable pairings from the rest, we need to start with an introduction to the so called **embedding degree** of a curve.

add reference

To understand this term, let \mathbb{F} be a finite field, $E(\mathbb{F})$ an elliptic curve over \mathbb{F} , and n a prime number that divides the order of $E(\mathbb{F})$. The embedding degree of $E(\mathbb{F})$ with respect to n is then the smallest integer k such that n divides q^k-1 .

Fermat's little theorem XXX implies, that every curve has at least some embedding degree k, since at least k = n - 1 is always a solution to the congruency $q^k \equiv 1 \pmod{n}$ which implies that the remainder of the integer division of $q^k - 1$ by n is 0.

3038

3039

3040

3041

3042

Example 81. To get a better intuition of the embedding degree, let's consider the elliptic curve $E_1(\mathbb{F}_5)$ from example XXX. We know from XXX that the order of $E_1(\mathbb{F}_5)$ is 9 and since the 3032 only prime factor of 9 is 3, we compute the embedding degree of $E_1(\mathbb{F}_5)$ with respect to 3.

add reference

add reference

To find that embedding degree we have to find the smallest integer k, such that 3 divides $q^k - 1 = 5^k - 1$. We try and increment until we find a proper k.

$$k = 1$$
: $5^1 - 1 = 4$ not divisible by 3
 $k = 2$: $5^2 - 1 = 24$ divisible by 3

So we know that the embedding degree of $E_1(\mathbb{F}_5)$ is 2 relative to the prime factor 3. 3034

Example 82. Lets consider the tiny jubjub curve TJJ_13 from example XXX. We know from 3035 XXX that the order of TJJ_13 is 20 and that the order therefore has two prime factors. A "large" prime factor 5 and a small prime factor 2.

add reference

add reference

We start by computing the ebedding degree of TJJ_13 with respect to the large prime factor 5. To find that embedding degree we have to find the smallest integer k, such that 5 divides $q^k - 1 = 13^k - 1$. We try and increment until we find a proper k.

$$k = 1$$
: $13^{1} - 1 = 12$ not divisible by 5
 $k = 2$: $13^{2} - 1 = 168$ not divisible by 5
 $k = 3$: $13^{3} - 1 = 2196$ not divisible by 5
 $k = 4$: $13^{4} - 1 = 28560$ divisible by 5

So we know that the embedding degree of TJJ_13 is 4 relative to the prime factor 5.

In real world applications, like on pairing friendly elliptic curves as for example BLS_12-381, usually only the embedding degree of the large prime factor are relevant, which in case of out tiny-jubjub curve, is represented by 5. It should however, be noted that every prime factor of a curves order has its own notation of embedding degree despite the fact that this is mostly irrelevant in applications.

To find the embedding degree of the small prime factor 2 we have to find the smallest integer k, such that 2 divides $q^k - 1 = 13^k - 1$. We try and increment until we find a proper k.

$$k = 1: 13^1 - 1 = 12$$
 divisible by 2

So we know that the embedding degree of TJJ_13 is 1 relative to the prime factor 2. So as 3044 we have seen, different prime factors can have different embedding degrees in general. 3045

```
sage: p = 13
                                                                                     352
3046
     sage: # large prime factor
                                                                                     353
3047
    sage: n = 5
                                                                                     354
3048
    sage: for k in range(1,5): # Fermat's little theorem
                                                                                     355
3049
                 if (p^k-1) n == 0:
     . . . . :
                                                                                     356
3050
                      break
3051
     . . . . :
                                                                                     357
     sage: k
                                                                                     358
3052
                                                                                     359
3053
     sage: # small prime factor
                                                                                     360
3054
    sage: n = 2
                                                                                     361
3055
     sage: for k in range(1,2): # Fermat's little theorem
                                                                                     362
3056
                 if (p^k-1) n == 0:
     . . . . :
                                                                                     363
3057
                      break
3058
     . . . . :
                                                                                     364
```

3062

3063

3064

3065

3083

3084

3085

3086

3087

3088

3089

3059 **sage: k** 3060 **1** 366

Example 83. To give an example of a cryptographically secure real-world elliptic curve that does not have a small embedding degree let's look at curve secp256k1 again. We know from XXX that the order of this curve is a prime number, so we only have a single embedding degree.

add reference

To test potential embedding degrees k, say in the range 1...1000, we can invoke Sage and compute:

```
sage: p = 1157920892373161954235709850086879078532699846656405
                                                                             367
3066
       64039457584007908834671663
3067
    sage: n = 1157920892373161954235709850086879078528375642790749
                                                                              368
3068
       04382605163141518161494337
3069
    sage: for k in range(1,1000):
                                                                              369
3070
                if (p^k-1) n == 0:
                                                                              370
3071
                    break
                                                                              371
3072
    sage: k
                                                                              372
3073
    999
                                                                              373
3074
```

So we see that $\sec p256k1$ has at least no embedding degree k < 1000, which renders $\sec p256k1$ as a curve that has no small embedding degree. A property that is of importance later on.

Elliptic Curves over extension fields Suppose that p is a prime number and \mathbb{F}_p its associated prime field. We know from XXX, that the fields \mathbb{F}_{p^m} are extensions of \mathbb{F}_p in the sense that \mathbb{F}_p is a subfield of \mathbb{F}_{p^m} . This implies that we can extend the affine plane an elliptic curve is defined on, by changing the base field to any extension field. To be more precise let $E(\mathbb{F}) = \{(x,y) \in \mathbb{F} \times \mathbb{F} \mid y^2 = x^3 + a \cdot x + b\}$ be an affine short Weierstraß curve, with parameters a and b taken from \mathbb{F} . If \mathbb{F}' is any extension field of \mathbb{F} , then we extend the domain of the curve by defining

add refer-

$$E(\mathbb{F}') = \{ (x, y) \in \mathbb{F}' \times \mathbb{F}' \mid y^2 = x^3 + a \cdot x + b \}$$
 (5.13)

So while we did not change the defining parameters, we consider curve points from the affine plane over the extension field now. Since $\mathbb{F} \subset \mathbb{F}'$ it can be shown that the original elliptic curve $E(\mathbb{F})$ is a sub curve of the extension curve $E(\mathbb{F}')$.

Example 84. Consider the prime field \mathbb{F}_5 from example XXX and the elliptic curve $E_1(\mathbb{F}_5)$ from example XXX. Since we know from XXX that \mathbb{F}_{5^2} is an extension field of \mathbb{F}_5 , we can extend the definition of $E_1(\mathbb{F}_5)$ to define a curve over \mathbb{F}_{5^2} :

$$E_1(\mathbb{F}_{5^2}) = \{(x, y) \in \mathbb{F} \times \mathbb{F} \mid y^2 = x^3 + x + 1\}$$

Since \mathbb{F}_{5^2} contains 25 points, in order to compute the set $E_1(\mathbb{F}_{5^2})$, we have to try $25 \cdot 25 = 625^{\circ}$ pairs, which is probably a bit to much for the average motivated reader. Instead, we involve Sage to compute the curve for us. To do so choose the representation of \mathbb{F}_{5^2} from XXX. We get:

add reference

add reference

ence

add refer-

```
      3090
      sage:
      F5= GF(5)
      374

      3091
      sage:
      F5t.<t> = F5[]
      375

      3092
      sage:
      P = F5t(t^2+2)
      376

      3093
      sage:
      P.is_irreducible()
      377

      3094
      True
      378
```

3102

3104

3105

3106

3107

3108

3109

3111

3112

3113

3114

3115

3116

3119

3120

3121

3122

3123

3124

3126

3128

3129

3130

```
3095    sage: F5_2.<t> = GF(5^2, name='t', modulus=P)
3096    sage: E1F5_2 = EllipticCurve(F5_2,[1,1])
3097    sage: E1F5_2.order()
3098    27
3098    379
```

So curve $E_1(\mathbb{F}_{5^2})$ consist of 27 points, in contrast to curve $E_1(\mathbb{F}_5)$, which consists of 9 points. Printing the points gives

```
\begin{split} E_1(\mathbb{F}_{5^2}) &= \{\mathscr{O}, (0,4), (0,1), (3,4), (3,1), (4,3), (4,2), (2,4), (2,1), \\ & (4t+3,3t+4), (4t+3,2t+1), (3t+2,t), (3t+2,4t), \\ & (2t+2,t), (2t+2,4t), (2t+1,4t+4), (2t+1,t+1), \\ & (2t+3,3), (2t+3,2), (t+3,2t+4), (t+3,3t+1), \\ & (3t+1,t+4), (3t+1,4t+1), (3t+3,3), (3t+3,2), (1,4t) \} \end{split}
```

As we can see, curve $E_1(\mathbb{F}_5)$ sits inside curve $E(\mathbb{F}_{5^2})$, which is implied from \mathbb{F}_5 being a subfield of \mathbb{F}_{5^2} .

Full Torsion groups The fundamental theorem of finite cyclic groups XXX implies, that every prime factor *n* of a cyclic groups order defines a subgroup of the size of the prime factor. We called such a subgroup an *n*-torsion group. We have seen many of those subgroups in the examples XXX and XXX.

Now when we consider elliptic curve extensions as defined in XXX, we could ask, what happens to the n-torsion groups in the extension. One might intuitively think that their extension just parallels the extension of the curve. For example when $E(\mathbb{F}_p)$ is a curve over prime field \mathbb{F}_p , with some n-torsion group \mathbb{G} and when we extend the curve to $E(\mathbb{F}_{p^m})$, then there is a bigger n-torsion group, such that \mathbb{G} is a subgroup. Naively this would make sense, as $E(\mathbb{F}_p)$ is a sub-curve of $E(\mathbb{F}_{p^m})$.

However, the real situation is a bit more surprising than that. To see that, let \mathbb{F}_p be a prime field and $E(\mathbb{F}_p)$ an elliptic curve of order r, with embedding degree k and n-torsion group $E(\mathbb{F}_p)[n]$ for same prime factor n of r. Then it can be shown that the n-torsion group $E(\mathbb{F}_{p^m})[n]$ of a curve extension is equal to $E(\mathbb{F}_p)[n]$, as long as the power m is less then the embedding degree k of $E(\mathbb{F}_p)$.

However, for the prime power p^m , for any $m \ge k$, $E(\mathbb{F}_{p^m})[n]$ is strictly larger then $E(\mathbb{F}_p)[n]$ and contains $E(\mathbb{F}_p)[n]$ as a subgroup. We call the n-torsion group $E(\mathbb{F}_{p^k})[n]$ of the extension of E over \mathbb{F}_{p^k} the **full** n-torsion group of that elliptic curve. It can be shown that it contains n^2 many elements and consists of n+1 subgroups, one of which is $E(\mathbb{F}_p)[n]$.

So roughly speaking, when we consider towers of curve extensions $E(\mathbb{F}_{p^m})$, ordered by the prime power m, then the n-torsion group stays constant for every level m small then the embedding degree, while it suddenly blossoms into a larger group on level k, with n+1 subgroups and it then stays like that for any level m larger then k. In other words, once the extension field is big enough to find one more point of order n (that is not defined over the base field), then we actually find all of the points in the full torsion group.

Example 85. Consider curve $E_1(\mathbb{F}_5)$ again. We know that it contains a 3-torsion group and that the embedding degree of 3 is 2. From this we can deduce that we can find the full 3-torsion group $E_1[3]$ in the curve extension $E_1(\mathbb{F}_{5^2})$, the latter of which we computed in XXX.

Since that curve is small, in order to find the full 3-torsion, we can loop through all elements of $E_1(\mathbb{F}_{5^2})$ and check check the defining equation $[3]P = \mathcal{O}$. Invoking Sage, we compute

add reference

add reference

add reference

add reference

3139

3140

3141

3142

3143

3144

3145

```
sage: INF = E1F5_2(0) # Point at infinity
                                                                                        383
3131
     sage: L_E1_3 = []
                                                                                        384
3132
     sage: for p in E1F5_2:
                                                                                        385
3133
                  if 3*p == INF:
                                                                                        386
3134
                       L_E1_3.append(p)
                                                                                        387
     . . . . :
3135
     sage: E1_3 = Set(L_E1_3) # Full 3-torsion set
                                                                                        388
3136
    we get
    E_1[3] = \{ \mathscr{O}, (1,t), (1,4t), (2,1), (2,4), (2t+1,t+1), (2t+1,4t+4), (3t+1,t+4), (3t+1,4t+1) \}
```

Example 86. Consider the tiny jubjub curve from example XXX. we know from XXX that it add refercontains a 5-torsion group and that the embedding degree of 5 is 4. This implies that we can find the full 5-torsion group $TJJ_13[5]$ in the curve extension $TJJ_13[\mathbb{F}_{134}]$.

ence

add refer-

ence

To compute the full torsion, first observe that since \mathbb{F}_{134} contains 28561 element, computing $TJJ_13(\mathbb{F}_{134})$ means checking $28561^2 = 815730721$ elements. From each of these curve points P, we then have to check the equation $[5]P = \mathcal{O}$. Doing this for 815730721 is a bit to slow even on a computer.

Fortunately, Sage has a way to loop through points of given order efficiently. The following Sage code then gives a way to compute the full torsion group:

```
sage: # define the extension field
                                                                             389
3146
    sage: F13= GF(13) # prime field
                                                                             390
3147
    sage: F13t.<t> = F13[] # polynomials over t
                                                                             391
3148
    sage: P = F13t(t^4+2) # irreducible polynomial of degree 4
                                                                             392
3149
    sage: P.is_irreducible()
                                                                             393
3150
    True
                                                                             394
3151
    sage: F13_4.<t> = GF(13^4, name='t', modulus=P) # F_{13^4}
                                                                             395
3152
    sage: TJJF13_4 = EllipticCurve(F13_4,[8,8]) # tiny jubjub
                                                                             396
3153
       extension
3154
    sage: # compute the full 5-torsion
                                                                             397
3155
    sage: L_TJJF13_4_5 = []
                                                                             398
3156
    sage: INF = TJJF13_4(0)
                                                                             399
3157
    sage: for P in INF.division_points(5): # [5]P == INF
                                                                             400
3158
               L_TJJF13_4_5.append(P)
                                                                             401
3159
    sage: len(L_TJJF13_4_5)
                                                                             402
3160
    25
                                                                             403
3161
    sage: TJJF13_4_5 = Set(L_TJJF13_4_5)
                                                                             404
3162
```

So, as expected, we get a group that contains $5^2 = 25$ elements. As it's rather tedious to write 3163 this group down and as we don't need it in what follows, we skip writing it. To see that the 3164 embedding degree 4 is actually the smallest prime power to find the full 5-torsion group, let's compute the 5-torsion group over of the tiny-jubjub curve the extension field \mathbb{F}_{13^3} . We get 3166

```
sage: # define the extension field
                                                                           405
3167
    sage: P = F13t(t^3+2) # irreducible polynomial of degree 3
                                                                           406
3168
    sage: P.is_irreducible()
                                                                           407
3169
                                                                           408
3170
    sage: F13_3.<t> = GF(13^3, name='t', modulus=P) # F_{13^3}
                                                                           409
3171
    sage: TJJF13_3 = EllipticCurve(F13_3,[8,8]) # tiny jubjub
                                                                           410
3172
       extension
3173
```

```
sage: # compute the 5-torsion
                                                                              411
3174
    sage: L_TJJF13_3_5 = []
                                                                              412
3175
    sage: INF = TJJF13_3(0)
                                                                              413
3176
    sage: for P in INF.division_points(5): # [5]P == INF
                                                                              414
3177
                L_TJJF13_3_5.append(P)
                                                                              415
3178
    sage: len(L_TJJF13_3_5)
                                                                              416
3179
                                                                              417
3180
    sage: TJJF13_3_5 = Set(L_TJJF13_3_5) # full $5$-torsion
                                                                              418
3181
```

So as we can see the 5-torsion group of tiny-jubjub over \mathbb{F}_{13^3} is equal to the 5-torsion group of tiny-jubjub over \mathbb{F}_{13} itself.

Example 87. Let's look at curve Secp256k1. We know from XXX that the curve is of some prime order r and hence the only n-torsion group to consider is the curve itself. So the curve group is the r-torsion.

add reference

However, in order to find the full *r*-torsion of Secp256k1, we need to compute the embedding degree *k* and as we have seen in XXX it is at least not small. We know from Fermat's little theorem that a finite embedding degree must exist, though. It can be shown that it is given by

add reference

k = 192986815395526992372618308347813175472927379845817397100860523586360249056

which is a 256-bit number. So the embedding degree is huge, which implies that the fiel extension \mathbb{F}_{p^k} is huge too. To understand how big \mathbb{F}_{p^k} is, recall that an element of \mathbb{F}_{p^m} can be represented as a string $[x_0, \dots, x_m]$ of m elements, each containing a number from the prime field \mathbb{F}_p . Now in the case of Secp256k1, such a representation has k-many entries, each of 256 bits in size. So without any optimizations, representing such an element would need $k \cdot 256$ bits, which is too much to be represented in the observable universe.

Torsion-Subgroups As we have stated above, any full n-torsion group contains n+1 cyclic subgroups, two of which are of particular interest in pairing based elliptic curve cryptography. To characterize these groups we need to consider the so called **Frobenius** endomorphism

$$\pi: E(\mathbb{F}) \to E(\mathbb{F}): \begin{array}{ccc} (x,y) & \mapsto & (x^p, y^p) \\ \mathscr{O} & \mapsto & \mathscr{O} \end{array}$$
 (5.14)

of an elliptic curve $E(\mathbb{F})$ over some finite field \mathbb{F} of characteristic p. It can be shown that π maps curve points to curve points. The first thing to note is that in case that \mathbb{F} is a prime field, the Frobenius endomorphism acts trivially, since $(x^p, y^p) = (x, y)$ on prime fields, due to Fermat's little theorem XX. So the Frobenius map is more interesting over prime field extensions.

With the Frobenius map at hand, we can now characterize two important subgroups of the full n-torsion. The first subgroup is the n-torsion group that already exists in the curve over the base field. In pairing based cryptography this group is usually written as \mathbb{G}_1 , assuming that the prime factor 'n' in the definition is implicitly given. Since we know that the Frobenius map, acts trivially on curve over the prime field we can define \mathbb{G}_1 as:

$$\mathbb{G}_1[n] := \{ (x, y) \in E[n] \mid \pi(x, y) = (x, y) \}$$
(5.15)

In more mathematical terms this definition means, that \mathbb{G}_1 is the **Eigenspace** of the Frobenius map with respect to the **Eigenvalue** 1.

3208

3209

3214

3216

3217

Now it can be shown, that there is another subgroup of the full n-torsion group that can be characterized by the Frobenius map. In the context of so called type 3 pairing based cryptography this subgroup is usually called \mathbb{G}_2 and it defined as

$$\mathbb{G}_2[n] := \{ (x, y) \in E[n] \mid \pi(x, y) = [p](x, y) \}$$
 (5.16)

So in mathematical terms \mathbb{G}_2 is the **Eigenspace** of the Frobenius map with respect to the **Eigen-value** p.

Notation and Symbols 9. If the prime factor n of the curves order is clear from the context, we sometimes simply write \mathbb{G}_1 and \mathbb{G}_2 to mean $\mathbb{G}_1[n]$ and $\mathbb{G}_2[n]$, respectively.

It should be noted, however, that sometimes other definitions of \mathbb{G}_2 appear in the literature, however, in the context of pairing based cryptography, this is the most common one. It is particularly useful, as we can define hash functions that map into \mathbb{G}_2 , which is not possible for all subgroups of the full *n*-torsion.

Example 88. Consider the curve $E_1(\mathbb{F}_5)$ from example XXX again. As we have seen this curve has embedding degree k=2 and a full 3-torsion group is given by

$$E_1[3] = \{ \mathscr{O}, (2,1), (2,4), (1,t), (1,4t), (2t+1,t+1), (2t+1,4t+4), (3t+1,t+4), (3t+1,4t+1) \}$$

According to the general theory, $E_1[3]$ contains 4 subgroups and we chan characterize the subgroups \mathbb{G}_1 and \mathbb{G}_2 using the Frobenius endomorphism. Unfortunately at the time of this writing Sage did have a predefined Frobenius endomorphism for elliptic curves, so we have to use the Frobenius endomorphism of the underlying field as a temporary workaround. We compute

```
sage: L_G1 = []
                                                                                     419
3222
    sage: for P in E1_3:
                                                                                     420
3223
                 PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
                                                                                     421
3224
                 if P == PiP:
                                                                                     422
     . . . . :
3225
                      L_G1.append(P)
                                                                                     423
     . . . . :
3226
     sage: G1 = Set(L_G1)
                                                                                     424
3227
```

So as expected the group $\mathbb{G}_1 = \{ \mathscr{O}, (2,4), (2,1) \}$ is identical to the 3-torsion group of the (unextended) curve over the prime field $E_1(\mathbb{F}_5)$. We can use almost the same algorithm to compute the group \mathbb{G}_2 and get

```
sage: L_G2 = []
                                                                                     425
3231
     sage: for P in E1 3:
                                                                                     426
3232
                 PiP = E1F5_2([a.frobenius() for a in P]) # pi(P)
                                                                                     427
3233
                 pP = 5*P \# [5]P
                                                                                     428
     . . . . :
3234
                 if pP == PiP:
                                                                                     429
     . . . . :
3235
                      L_G2.append(P)
                                                                                     430
3236
     sage: G2 = Set(L_G2)
                                                                                     431
3237
```

so we compute the second subgroup of the full 3-torsion group of curve E_1 as the set $\mathbb{G}_2 = \{ \mathscr{O}, (1,t), (1,4t) \}$.

Example 89. Considering the tiny-jubjub curve TJJ_13 from example XXX. In example XXX we computed its full 5 torsion, which is a group that has 6 subgroups. We compute G1 using

3242 Sage as:

```
3243 sage: L_TJJ_G1 = []
```

add reference

add refer-432ace

3267

3268

3269

3270

3272

3273

3274

```
sage: for P in TJJF13_4_5:
                                                                                                 433
3244
                    PiP = TJJF13_4([a.frobenius() for a in P]) # pi(P)
                                                                                                 434
3245
                    if P == PiP:
                                                                                                 435
3246
                          L_TJJ_G1.append(P)
                                                                                                 436
3247
     sage: TJJ_G1 = Set(L_TJJ_G1)
                                                                                                 437
3248
    We get \mathbb{G}1 = \{ \mathcal{O}, (7,2), (8,8), (8,5), (7,11) \}
3249
     sage: L_TJJ_G1 = []
                                                                                                 438
3250
             for P in TJJF13_4_5:
     sage:
                                                                                                 439
3251
                    PiP = TJJF13 4([a.frobenius() for a in P]) # pi(P)
                                                                                                 440
3252
      . . . . :
                   pP = 13*P # [5]P
                                                                                                 441
3253
                    if pP == PiP:
                                                                                                 442
3254
      . . . . :
                         L_TJJ_G1.append(P)
3255
                                                                                                 443
     sage: TJJ G1 = Set(L TJJ G1)
                                                                                                 444
3256
    \mathbb{G}_2 = \{ \mathscr{O}, (9t^2 + 7, t^3 + 11t,), (9t^2 + 7, 12t^3 + 2t), (4t^2 + 7, 5t^3 + 10t), (4t^2 + 7, 8t^3 + 3t) \}
3257
    Example 90. Consider Bitcoin's curve Secp256k1 again. Since the group \mathbb{G}_1 is identical to the
3258
3259
```

torsion group of the unextended curve and since Secp256k1 has prime order, we know, that, in this case, \mathbb{G}_1 is identical to Secp256k1. It is however, infeasible not just to compute \mathbb{G}_2 3260 itself, but to even compute an average element of \mathbb{G}_2 as elements need too much storage to be representable in this universe. 3262

The Weil Pairing In this part we consider a pairing function defined on the subgroups $\mathbb{G}_1[r]$ and $\mathbb{G}_2[r]$ of the full r-torsion E[r] of a short Weierstraß elliptic curve. To be more precise let 3264 $E(\mathbb{F}_p)$ be an elliptic curve of embedding degree k, such that r is a prime factor of its order. Then 3265 the **Weil pairing** is a bilinear, non-degenerate map 3266

$$e(\cdot,\cdot): \mathbb{G}_1[r] \times \mathbb{G}_2[r] \to \mathbb{F}_{p^k}; (P,Q) \mapsto (-1)^r \cdot \frac{f_{r,P}(Q)}{f_{r,Q}(P)}$$
 (5.17)

where the extension field elements $f_{r,P}(Q), f_{r,Q}(P) \in \mathbb{F}_{p^k}$ are computed by Miller's algorithm: Understanding in detail how the algorithm works requires the concept of divisors, which we don't really need in this book. The interested reader might look at [REFERENCES]

In real-world application of pairing friendly elliptic curves, the embedding degree is usually a small number like 2, 4, 6 or 12 and the number r is the largest prime factor of the curves order.

Example 91. Consider curve $E_1(\mathbb{F}_5)$ from example XXX. Since the only prime factor of the groups order is 3 we can not compute the Weil pairing on this group using our definition of Miller's algorithm. In fact since \mathbb{G}_1 is of order 3, executing the if statement on line XXX will lead to a division by zero error in the computation of the slope m.

Example 92. Consider the tiny-jubjub curve $TJJ_1(\mathbb{F}_{13})$ from example XXX again. We want to instantiate the general definition of the Weil pairing for this example. To do so, recall that we have see in example XXX, its embedding degree is 4 and that we have the following type-3 pairing groups:

$$\mathbb{G}_1 = \{ \mathscr{O}, (7,2), (8,8), (8,5), (7,11) \}$$

$$\mathbb{G}_2 = \{ \mathscr{O}, (9t^2 + 7, t^3 + 11t), (9t^2 + 7, 12t^3 + 2t), (4t^2 + 7, 5t^3 + 10t), (4t^2 + 7, 8t^3 + 3t) \}$$

where \mathbb{G}_1 and \mathbb{G}_2 are subgroups of the full 5-torsion found in the curve $TJJ_1(\mathbb{F}_{134})$. The type-3 Weil pairing is a map $e(\cdot,\cdot): \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{F}_{13^4}$. From the first if-statement in Miller's

add reference

add reference

add reference

add reference

return $f_{r,P}(Q) \leftarrow \frac{f_1}{f_2}$

end procedure

```
Algorithm 7 Miller's algorithm for short Weierstraß curves y^2 = x^3 + ax + b
Require: r > 3, P \in E[r], Q \in E[r] and
   b_0, \dots, b_t \in \{0, 1\} with r = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_t \cdot 2^t and b_t = 1
   procedure MILLER'S ALGORITHM(P, Q)
          if P = \mathcal{O} or Q = \mathcal{O} or P = Q then
               return f_{r,P}(Q) \leftarrow (-1)^r
          end if
          (x_T, y_T) \leftarrow (x_P, y_P)
         f_1 \leftarrow 1
         f_2 \leftarrow 1
         for j \leftarrow t - 1, \dots, 0 do
               m \leftarrow \frac{3 \cdot x_T^2 + a}{2 \cdot y_T} 
f_1 \leftarrow f_1^2 \cdot (y_Q - y_T - m \cdot (x_Q - x_T))
               f_2 \leftarrow f_2^2 \cdot (x_Q + 2x_T - m^2)
               x_{2T} \leftarrow m^2 - 2x_T
               y_{2T} \leftarrow -y_T - m \cdot (x_{2T} - x_T)
               (x_T, y_T) \leftarrow (x_{2T}, y_{2T})
               if b_i = 1 then
                     m \leftarrow \frac{y_T - y_P}{x_T - x_P}
                     f_1 \leftarrow f_1 \cdot (y_Q - y_T - m \cdot (x_Q - x_T))
                     f_2 \leftarrow f_2 \cdot (x_Q + (x_P + x_T) - m^2)
                     x_{T+P} \leftarrow m^2 - x_T - x_P
                     y_{T+P} \leftarrow -y_T - m \cdot (x_{T+P} - x_T)
                     (x_T, y_T) \leftarrow (x_{T+P}, y_{T+P})
               end if
          end for
         f_1 \leftarrow f_1 \cdot (x_Q - x_T)
```

3279

3280

3281

3282

3284

algorithm, we can deduce that $e(\mathcal{O}, Q) = 1$ as well as $e(P, \mathcal{O}) = 1$ for all arguments $P \in \mathbb{G}_1$ and $Q \in \mathbb{G}_2$. So in order to compute a non-trivial Weil pairing we choose the arguments P = (7,2) and $Q = (9t^2 + 7, 12t^3 + 2t)$.

In order to compute the pairing $e((7,2), (9t^2+7, 12t^3+2t))$ we have to compute the extension field elements $f_{5,P}(Q)$ and $f_{5,Q}(P)$ applying Miller's algorithm. Do do so first observe that we have $5 = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2$, so we get t = 2 as well as $b_0 = 1$, $b_1 = 0$ and $b_2 = 1$. The loop therefore needs to be executed two times.

Computing $f_{5,P}(Q)$, we initiate $(x_T, y_T) = (7,2)$ as well as $f_1 = 1$ and $f_2 = 1$. Then

$$m = \frac{3 \cdot x_T^2 + a}{2 \cdot y_T}$$
$$= \frac{3 \cdot 2^2 + 1}{2 \cdot 4} = \frac{3}{3}$$
$$= 1$$

$$f_1 = f_1^2 \cdot (y_Q - y_T - m \cdot (x_Q - x_T))$$

= $1^2 \cdot (t - 4 - 1 \cdot (1 - 2)) = t - 4 + 1$
= $t + 2$

$$f_2 = f_2^2 \cdot (x_Q + 2x_T - m^2)$$

= 1² \cdot (1 + 2 \cdot 2 - 1²) = (1 + 4 - 1)
= 4

$$x_{2T} = m^2 - 2x_T$$

= 1² - 2 \cdot 2 = -3
= 2

$$y_{2T} = -y_T - m \cdot (x_{2T} - x_T)$$

= -4 - 1 \cdot (2 - 2) = -4
= 1

So we update $(x_T, y_T) = (2, 1)$ and since $b_0 = 1$ we have to execute the if statement on line XXX in the for loop. However, since we only loop a single time, we don't need to compute

add reference

 y_{T+P} , since we only need the updated x_T in the final step. We get:

$$m = \frac{y_T - y_P}{x_T - x_P}$$

$$= \frac{1 - 4}{2 - x_P}$$

$$f_1 = f_1 \cdot (y_Q - y_T - m \cdot (x_Q - x_T))$$

$$f_2 = f_2 \cdot (x_Q + (x_P + x_T) - m^2)$$

$$x_{T+P} = m^2 - x_T - x_P$$

5.3 Hashing to Curves

Elliptic curve cryptography frequently requires the ability to hash data onto elliptic curves. If the order of the curve is not a prime number hashing to prime number subgroups is also of importance. In the context of pairing friendly curves it is also sometimes necessary to hash specifically onto the group \mathbb{G}_1 or \mathbb{G}_2 .

As we have seen in XXX, many general methods are known to hash into groups in general and finite cyclic groups in particular. As elliptic groups are cyclic those method can be utilized in this case, too. However, in what follows we want to describe some methods special to elliptic curves, that are frequently used in applications.

add reference

Try and increment hash functions One of the most straight forward ways to hash a bitstring onto an elliptic curve point, in a secure way, is to use a cryptographic hash function together with one of the methods we described in XXX to hash to the modular arithmetics base field of the curve. Ideally the hash function generates an image that is at least one bit longer than the bit representation of the base field modulus.

add reference

The image in the base field can then be interpreted as the *x*-coordinate of the curve point and the two possible *y*-coordinates are then derived from the curve equation, while one of the bits that exceeded the modulus determines which of the two *y*-coordinates to choose.

Such an approach would be easy to implement and deterministic and it will conserve the cryptographic properties of the original hash function. However, not all *x*-coordinates generated in such a way, will result in quadratic residues, when inserted into the defining equation. It follows that not all field elements give rise to actual curve points. In fact on a prime field, only half of the field elements are quadratic residues and hence assuming an even distribution of the hash values in the field, this method would fail to generate a curve point in about half of the attempts.

One way to account for this problem is the so called **try and increment** method. Its basic assumption is, that hashing different values, the result will eventually lead to a valid curve point.

Therefore instead of simply hashing a string s to the field the concatenation of s with additional bytes is hashed to the field instead, that is a try and increment hash as described in XXX is used. If the first **try** of hashing to the field does not result in a valid curve point, the counter is

add reference

```
Algorithm 8 Hash-to-E(\mathbb{F}_r)
Require: r \in \mathbb{Z} with r.nbits() = k and s \in \{0,1\}^*
Require: Curve equation y^2 = x^3 + ax + b over \mathbb{F}_r
   procedure TRY-AND-INCREMENT(r, k, s)
         c \leftarrow 0
         repeat
              s' \leftarrow s || c\_bits()
              z \leftarrow H(s')_0 \cdot 20' + H(s')_1 \cdot 21' + \dots + H(s')_k \cdot 2^k
              x \leftarrow z^3 + a \cdot z + b
              c \leftarrow c + 1
        until z < r and x^{\frac{r-1}{2}} \mod r = 1
         if H(s')_{k+1} == 0 then
              y \leftarrow \sqrt{x} \# (\text{root in } \mathbb{F}_r)
         else
              y \leftarrow r - \sqrt{x} \# (\text{root in } \mathbb{F}_r)
         end if
         return (x, y)
   end procedure
Ensure: (x,y) \in E(\mathbb{F}_r)
```

incremented and the hashing is repeated again. This is done until a valid curve point is found eventually.

This method has the advantageous that is relatively easy to implement in code and that it preserves the cryptographic properties of the original hash function. However, it is not guaranteed to find a valid curve point, as there is a chance that all possible values in the chosen size of the counter will fail to generate a quadratic residue. Fortunately it is possible to make the probability for this arbitrarily small by choosing large enough counters and relying on the (approximate) uniformity of the hash-to-field function.

If the curve is not of prime order, the result will be a general curve point that might not be in the "large" prime order subgroup. A so called **cofactor clearing** step is then necessary to project the curve point onto the subgroup. This is done by scalar multiplication with the cofactor of prime order with respect to the curves order.

Example 93. Consider the tiny jubjub curve from example XXX. We want to construct a try and increment hash function, that hashes a binary string s of arbitrary length onto the large prime order subgroup of size 5.

add reference

Since the curve as well as our targeted subgroup are defined over the field \mathbb{F}_{13} and the binary representation of 13 is 13.bits()=1101, we apply SHA256 from Sage's crypto library on the concatenation s||c for some binary counter string and use the first 4 bits of the image to try to hash into \mathbb{F}_{13} . In case we are able to hash to a value z, such that $z^3+8\cdot z+8$ is a quadratic residue in \mathbb{F}_{13} , we use the 5-th bit to decide which of the two possible roots of $z^3+8\cdot z+8$ we will choose as the y-coordinate. The result is then a curve point different from the point at infinity. To project it to a point of \mathbb{G}_1 , we multiply it with the cofactor 4. If the result is still not the point at infinity, it is the result of the hash.

To make this concrete let s = '10011001111010100000111' be our binary string that we want to hash onto \mathbb{G}_1 . We use a 4-bit binary counter, starting at zero, i.e we choose c = 0000. Invoking Sage we define the try-hash function as

sage: import hashlib

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3332

3333

3334

3335

3336

3337

3339

3340

```
sage: def try_hash(s,c):
                                                                                    446
3341
                 s_1 = s+c
     . . . . :
                                                                                    447
3342
                 hasher = hashlib.sha256(s_1.encode('utf-8'))
                                                                                    448
3343
                 digest = hasher.hexdigest()
                                                                                    449
3344
                 d = Integer(digest, base=16)
                                                                                    450
     . . . . :
3345
                 sign = d.str(2)[-5:-4]
                                                                                    451
     . . . . :
3346
                 d = d.str(2)[-4:]
                                                                                    452
     . . . . :
3347
                 z = Integer(d,base=2)
                                                                                    453
     . . . . :
3348
                 return (z,sign)
                                                                                    454
3349
     sage: try_hash('10011001111010110100000111','0000')
                                                                                    455
3350
     (15, '1')
                                                                                    456
3351
```

As we can see, our first attempt to hash into \mathbb{F}_{13} was not successful as 15 is not a number in \mathbb{F}_{13} , so we increment the binary counter by 1 and try again:

And we find a hash into \mathbb{F}_{13} . However, this point is not guaranteed to define a curve point. To see that we insert z=3 into the right side of the Weierstraß equation of the tiny.jubjub curve and compute $3^3+8*3+8=7$, but 7 is not a quadratic residue in \mathbb{F}_{13} since $7^{\frac{13-1}{2}}=7^6=12=-1$. So 3 is a not a suitable point and we have to increment the counter two more times:

Since $6^3 + 8 \cdot 6 + 8 = 12$ and we have $\sqrt{12} \in \{5, 8\}$, we finally found the valid x coordinate x = 6 for the curve point hash. Now since the sign bit of this hash is 1, we choose the larger root y = 8 as the y-coordinate and get the hash

$$H('10011001111010110100000111') = (6,8)$$

which is a valid curve point point on the tiny jubjub curve. Now in order to project it onto the "large" prime order subgroup we have to do cofactor clearing, that is we have to multiply the point with the cofactor 4. We get

$$[4](6,8) = \mathcal{O}$$

so the hash value is still not right. We therefore have to increment the counter two times again, until we finally find a correct hash to \mathbb{G}_1

Since $12^3 + 8 \cdot 12 + 8 = 12$ and we have $\sqrt{12} \in \{5, 8\}$, we found another valid x coordinate x = 12 for the curve point hash. Now since the sign bit of this hash is 0, we choose the smaller root y = 5 as the y-coordinate and get the hash

$$H('10011001111010110100000111') = (12,5)$$

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

which is a valid curve point point on the tiny jubjub curve and in order to project it onto the "large" prime order subgroup we have to do cofactor clearing, that is we have to multiply the point with the cofactor 4. We get

$$[4](12,5) = (8,5)$$

So hashing the binary string '10011001111010110100000111' onto \mathbb{G}_1 gives the hash value 3370 (8,5) as a result.

5.4 Constructing elliptic curves

Cryptographically secure elliptic curves like Secp256k1 from example XXX are known for quite some time. In the latest advancements of cryptography, it is however, often necessary to design and instantiate elliptic curves from scratch, that satisfy certain very specific properties.

add reference

For example, in the context of SNARK development it was necessary to design a curve that can be efficiently implemented incide of a so called circuit, in order to enable primitives like elliptic curve signature schemes in a zero knowledge proof. Such a curve is give by the Babyjubjub curve [XXX] and we have paralleled its definition by introducing the tiny-jubjub curve from example XX. As we have seen those curves are instances of so-called twisted Edwards curves and as such have easy to implement addition laws that work without branching. However, we introduced the tiny-jubjub curve out of thin air, as we just gave the curve parameters without explaining how we came up with them.

add reference

Another requirement in the context of many so called pairing based zero knowledge proofing systems is the existing of a suitable, pairing friendly curve with a specified security level and a low embedding degree as defined in XXX. Famous examples are the BLS_12 or the NMT curves.

add reference

The major goal of this section is to explain the most important method to design elliptic curves with predefined properties from scratch, called the complex multiplication method. We will apply this method in section to synthesize a particular BLS_6 curve, the most insecure BLS 6 curve, which will serve as the main curve to build our pen-and-paper SNARKs on. As we will see, this curve has a "large" prime factor subgroup of order 13, which implies, that we can use our tiny-jubjub curve to implement certain elliptic curve cryptographic primitives in circuits over that BLS 6 curve.

Before we introduce the complex multiplication method, we have to explain a few properties of elliptic curves that are of key importance in understanding the complex multiplication method.

The Trace of Frobenius To understand the complex multiplication method of elliptic curve, we have to define the so called **trace** of an elliptic curve first.

We know from XXX that elliptic curves over finite fields are cyclic groups of finite order. An interesting question therefore is, if it is possible to estimate the number of elements that curve contains. Since an affine short Weierstraß curve consists of pairs (x, y) of elements from a finite field \mathbb{F}_q plus the point at infinity and the field \mathbb{F}_q contains q elements, the number of curve points can not be arbitrarily large, since it can contain at most $q^2 + 1$ many elements.

add reference

There is however, a more precise estimation, usually called the **Hasse bound**. To understand it, let $E(\mathbb{F}_q)$ be an affine short Weierstraß curve over a finite field \mathbb{F}_w of order q and let $|E(\mathbb{F}_q)|$ be the order of the curve. Then there is an integer $t \in \mathbb{Z}$ called the **trace of Frobenius** of the curve, such that $|t| \leq 2\sqrt{q}$ and

$$|E(\mathbb{F})| = q + 1 - t \tag{5.18}$$

True

3427

3428

3429

3430

A positive trace therefore implies, that the curve contains less points than the underlying field 3409 and a negative trace means that the curve contains more point. However, the estimation |t|3410 $2\sqrt{q}$ implies that the difference is not very large in either direction and the number of elements 3411 in an elliptic curve is always approximately in the same order of magnitude as the size of the 3412 curve's basefield. 3413

Example 94. Consider the elliptic curve $E_1(\mathbb{F}_5)$ from example XXX. We know that it contains 9 curve points. Since the order of \mathbb{F}_5 is 5 we compute the trace of $E_1(\mathbb{F})$ to be t=-3, since the Hasse bound is given by

add reference

$$9 = 5 + 1 - (-3)$$

And indeed we have $|t| \le 2\sqrt{q}$, since $\sqrt{5} > 2.23$ and $|-3| = 3 \le 4.46 = 2 \cdot 2.23 < 2 \cdot \sqrt{5}$.

Example 95. To compute the trace of the tiny-jubjub curve, oberse from example XXX, that the order of PJJ_13 is 20. Since the order of \mathbb{F}_{13} is 13, we can therefore use the Hasse bound and compute the trace as t = -6, since

oberse

add reference

$$20 = 13 + 1 - (-6)$$

Again we have $|t| \le 2\sqrt{q}$, since $\sqrt{13} > 3.60$ and $|-6| = 6 \le 7.20 = 2 \cdot 3.60 < 2 \cdot \sqrt{13}$.

Example 96. To compute the trace of Secp256k1, recall from example XXX, that this curve is defined over a prime field with p elements and that the order of that group is given by r, with

add reference

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663r = 115792089237316195423570985008687907852837564279074904382605163141518161494337

Using the Hesse bound r = p + 1 - t, we therefore compute t = p + 1 - r, which gives the trace of curve Secp256k1 as

t = 432420386565659656852420866390673177327

So as we can see Secp256k1 contains less elements than its underlying field. However, the 3416 difference is tiny, since the order of Secp256k1 is in the same order of magnitude as the order of the underlying field. Compared to p and r, t is tiny. 3418

```
sage: p = 1157920892373161954235709850086879078532699846656405
                                                                            467
3419
       64039457584007908834671663
3420
    sage: r = 1157920892373161954235709850086879078528375642790749
                                                                            468
3421
       04382605163141518161494337
3422
    sage: t = p + 1 - r
                                                                             469
3423
    sage: t.nbits()
                                                                             470
3424
    129
                                                                             471
3425
    sage: abs(RR(t)) \le 2*sqrt(RR(p))
                                                                             472
3426
```

The *j*-invariant As we have seen in XXX two elliptic curve $E_1(\mathbb{F})$ defined by $y^2 = x^3 + ax + b$ add referand $E_2(\mathbb{F})$ defined by $y^2 + a'x + b'$ are strictly isomorphic, if and only if there is a quadratic residue $d \in \mathbb{F}$, such that $a' = ad^2$ and $b' = bd^3$.

473

There is however, a more general way to classify elliptic curves over finite fields \mathbb{F}_a , based 3431 on the so called *j*-invariant of an elliptic curve: 3432

$$j(E(\mathbb{F}_q)) = (1728 \bmod q) \frac{4 \cdot a^3}{4 \cdot a^3 + (27 \bmod q) \cdot b^2}$$
 (5.19)

=2

3434

3436

3437

3438

3439

3440

3447

3450

3451

3452

3453

3454

3455

3456

with $j(E(\mathbb{F}_q)) \in \mathbb{F}_q$. We will not go into the details of the *j*-invariant, but state only, that two 3433 elliptic curves $E_1(\mathbb{F})$ and $E_2(\mathbb{F}')$ are isomorphic over the algebraic closures of \mathbb{F} and \mathbb{F}' , if and only if $\overline{\mathbb{F}} = \overline{\mathbb{F}'}$ and $j(E_1) = j(E_2)$. 3435

So the *j*-invariant is an important tool to classify elliptic curves and it is needed in the complex multiplication method to decide on an actual curve instantiation, that implements abstractly chosen properties.

Example 97. Consider the elliptic curve $E_1(\mathbb{F}_5)$ from example XXX. We compute its j-invariant

add reference

$$j(E_1(\mathbb{F}_5)) = (1728 \mod 5) \frac{4 \cdot 1^3}{4 \cdot 1^3 + (27 \mod 5) \cdot 1^2}$$
$$= 3 \cdot 4$$
$$= 3 \cdot 4$$

Example 98. Consider the elliptic curve PJJ_13 from example XXX. We compute its j-invariant as

add reference

$$j(E_1(\mathbb{F}_5)) = (1728 \mod 13) \frac{4 \cdot 8^3}{4 \cdot 8^3 + (27 \mod 13) \cdot 8^2}$$

$$= 12 \cdot \frac{4 \cdot 5}{4 \cdot 5 + 1 \cdot 12}$$

$$= 12 \cdot \frac{7}{7 + 12}$$

$$= 12 \cdot 7 \cdot 6^{-1}$$

$$= 12 \cdot 7 \cdot 11$$

$$01$$

Example 99. Consider Secp256k1 from example XXX. We compute its j-invariant using Sage:

add reference

```
sage: p = 1157920892373161954235709850086879078532699846656405
                                                                                474
3441
        64039457584007908834671663
3442
    sage: F = GF(p)
                                                                                475
3443
    sage: j = F(1728) * ((F(4) *F(0)^3) / (F(4) *F(0)^3 + F(27) *F(7)^2))
                                                                                476
3444
    sage: i == F(0)
                                                                                477
3445
    True
                                                                                478
3446
```

The Complex Multiplication Method As we have seen in the previous sections, elliptic curves have various defining properties, like their order and their prime factors, the embedding degree, or the cardinality of the base field. The so called **complex multiplication** (CM) gives a practical method for constructing elliptic curves with pre-defined restrictions on the order and the base field.

The method usually starts by choosing a base field \mathbb{F}_q of the curve $E(\mathbb{F}_q)$ we want to construct, such that $q = p^m$ for some prime number p and " $m \in \mathbb{N}$ with $m \ge 1$. We assume p > 3to simplify things in what follows.

Next the trace of Frobenius $t \in \mathbb{Z}$ of the curve is chosen, such that p and t are coprime, i.e. such that gcd(p,t) = 0 holds true. The choice of t also defines the curves order r, since

3459

3460

3461

3462

3463

3467

3469

3471

3472

3473

3474

3475

3476

3477

3478

3479

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

r = p + 1 - t by the Hasse bound XXX, so choosing t, will define the large order subgroup as well as all small cofactors. r has to be defined in such a way, that the elliptic curve meats the security requirements of the application it is designed for.

add reference

Note that the choice of p and t also determines the embedding degree k of any prime order subgroup of the curve, since k is defined as the smallest number, such that the prime order ndivides the number $q^k - 1$.

In order for the complex multiplication method to work, both q and t can not be arbitrary, but must be chosen in such a way that two additional integers $D \in \mathbb{Z}$ and $v \in \mathbb{Z}$ exist, such that D < 0 as well as $D \mod 4 = 0$ or $D \mod 4 = 1$ and the equation

$$4q = t^2 + |D|v^2 (5.20)$$

holds. If those numbers exist, we call D the CM-discriminant and we know that we can 3466 construct a curve $E(\mathbb{F}_q)$ over a finite field \mathbb{F}_q , such that the order of the curve is $|E(\mathbb{F}_q)| =$ q + 1 - t. 3468

It is the content of the complex multiplication method to actually construct such a curve, that is finding the parameters a and b from \mathbb{F}_q in the defining Weiertraß equation, such that the curve has the desired order r.

Finding solutions to equation XXX, can be achieved in different ways, which we will not look much into. In general it can be said, that there are well known constraints for elliptic curve families like the BLS (ECT) families, that provides families of solutions. In what follows we will look at one type curves the BLS-family, which gives an entire range of solutions.

add refer-

Assuming that proper parameters q, t, D and v are found, we have to compute the so called **Hilbert class polynomial** $H_D \in \mathbb{Z}[x]$ of the CM-discriminant D, which is a polynomial with integer coefficients. To do so, we first have to compute the following set:

$$\begin{split} ICG(D) &= \{ (A,B,C) \mid A,B,C \in \mathbb{Z}, D = B^2 - 4AC, gcd(A,B,C) = 1, \\ &|B| \leq A \leq \sqrt{\frac{|D|}{3}}, A \leq C, \text{ if } B < 0 \text{ then } |B| < A < C \} \end{split}$$

One way to compute this set, is to first compute the integer $A_{max} = Floor(\sqrt{\frac{|D|}{3}})$, then loop through all the integers A in the range $[0, \ldots, A_{max}]$ as well as through all the integers B in the range $[-A_{max}, \dots, A_{max}]$ and to see if there is an integer C, that satisfies $D = B^2 - 4AC$ and the rest of the requirements in XXX.

add reference

To compute the Hilbert class polynomial, the so called *j*-function (or *j*-invariant) is needed, which is a complex function defined on the upper half \mathbb{H} of the complex plane \mathbb{C} , usually written as

$$j: \mathbb{H} \to \mathbb{C}$$
 (5.21)

Roughly speaking what this means is that the *j*-functions takes complex numbers $(x+i\cdot y)$ with positive imaginary part y > 0 as inputs and returns a complex number $j(x+i\cdot y)$ as result.

For the sake of this book, it is not important to actually understand the *j*-function, and we can use Sage to compute it in a similar way as we would use Sage to computer any other well known function. It should be noted however, that the computation of the *j*-function in Sage is sometimes prone to precision errors. For example, the j-function has a root in $\frac{-1+i\sqrt{3}}{2}$, which Sage only approximates. Therefore using Sage to compute the j-function, we need to take precision loss into account and eventually round to the nearest integer.

sage: z = ComplexField(100)(0,1)

```
sage: z \# (0+1i)
                                                                             480
3492
    1.00000000000000000000000000000000*I
                                                                             481
3493
    sage: elliptic_j(z)
                                                                             482
3494
    483
3495
    sage: # j-function only defined for positive imaginary
                                                                             484
3496
       arguments
3497
    sage: z = ComplexField(100)(1,-1)
                                                                             485
3498
    sage: try:
                                                                             486
                elliptic_j(z)
                                                                             487
3500
    ....: except PariError:
                                                                             488
3501
                pass
                                                                             489
3502
    sage: \# root at (-1+i \text{ sqrt}(3))/2
                                                                             490
3503
    sage: z = ComplexField(100)(-1, sqrt(3))/2
                                                                             491
3504
    sage: elliptic j(z)
                                                                             492
3505
    -2.6445453750358706361219364880e-88
                                                                             493
3506
    sage: elliptic_j(z).imag().round()
                                                                             494
3507
                                                                             495
3508
    sage: elliptic_j(z).real().round()
                                                                             496
3509
                                                                             497
3510
```

With a way to compute the j-function and the precomputed set ICG(D) at hand, we can now compute the Hilbert class polynomial as

$$H_D(x) = \Pi_{(A,B,C) \in ICG(D)} \left(x - j \left(\frac{-B + \sqrt{D}}{2A} \right) \right)$$
 (5.22)

So what we do is we loop over all elements (A,B,C) from the set ICG(D) and compute the j-function at the point $\frac{-B+\sqrt{D}}{2A}$, where D is the CM-discriminant that we decided in a previous step. The result then defines a factor of the Hilbert class polynomial and all factors are multiplied together.

It can be shown, that the Hilbert class polynomial is an integer polynomial, but actual computations need high precision arithmetics to avoid approximation errors, that usually occur in computer approximations of the *j*-function as shown above. So in case the calculated Hilbert class polynomial does not have integer coefficients, we need to round the result to the nearest integer. Given that the precision we used was high enough, the result will be correct.

In the next step we use the Hilbert class polynomial $H_D \in \mathbb{Z}[x]$ and project it to a polynomial $H_{D,q} \in \mathbb{F}_q[x]$ with coefficients in the base field \mathbb{F}_q as chosen in the first step. We do this by simply computing the new coefficients as the old coefficients modulus p, that is if $H_D(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$ we compute the q-modulus of each coefficient $\tilde{a}_j = a_j \mod p$ which defines the **projected Hilbert class polynomial** as

$$H_{D,p}(x) = \tilde{a}_m x^m + \tilde{a}_{m-1} x^{m-1} + \ldots + \tilde{a}_1 x + \tilde{a}_0$$

We then search for roots of $H_{D,p}$, since every root j_0 of $H_{D,p}$ defines a family of elliptic curves over \mathbb{F}_q , which all have a j-invariant XXX equal to j_0 . We can pick any root and all of them will lead to proper curves eventually.

add reference

However some of the curves with the correct *j*-invariant might have an order different from the one we initially decided on. So we need a way to decide on a curve with the correct order.

To compute such a curve, we have to distinguish a few different cases, based on our choice of the root j_0 and of the CM-discriminant D. If $j_0 \neq 0$ or $j_0 \neq 1728 \mod q$ we compute

 $c_1 = \frac{j_0}{(1728 \mod q) - j_0}$ and then we chose some arbitrary quadratic non-residue $c_2 \in \mathbb{F}_q$ and some arbitrary cubic non residue $c_3 \in \mathbb{F}_q$.

The following table is guaranteed to define a curve with the correct order r = q + 1 - t, for the trace of Frobenius t we initially decided on:

• Case $j_0 \neq 0$ and $j_0 \neq 1728 \mod q$. A curve with the correct order is defined by one of the following equations

$$y^2 = x^3 + 3c_1x + 2c_1$$
 or $y^2 = x^3 + 3c_1c_2^2x + 2c_1c_2^3$ (5.23)

• Case $j_0 = 0$ and $D \neq -3$. A curve with the correct order is defined by one of the following equations

$$y^2 = x^3 + 1$$
 or $y^2 = x^3 + c_2^3$ (5.24)

• Case $j_0 = 0$ and D = -3. A curve with the correct order is defined by one of the following equations

$$y^2 = x^3 + 1$$
 or $y^2 = x^3 + c_2^3$ or $y^2 = x^3 + c_3^2$ or $y^2 = x^3 + c_3^{-2}$ or $y^2 = x^3 + c_3^{-2}$ or $y^2 = x^3 + c_3^{-2} c_2^3$

• Case $j_0 = 1728 \mod q$ and $D \neq -4$. A curve with the correct order is defined by one of the following equations

$$y^2 = x^3 + x$$
 or $y^2 = x^3 + c_2^2 x$ (5.25)

• Case $j_0 = 1728 \mod q$ and D = -4. A curve with the correct order is defined by one of the following equations

$$y^2 = x^3 + x$$
 or $y^2 = x^3 + c_2 x$ or $y^2 = x^3 + c_2^3 x$

To decide the proper defining Weierstraß equation, we therefore have to compute the order of any of the potential curves above and then choose the one that fits out initial requirements. Since it can be shown that the Hilbert class polynomials for the CM-discriminants D=-3 and D=-4 are given by $H_{-3,q}(x)=x$ and $H_{-4,q}=x-(1728 \bmod q)$ (EXERCISE) the previous cases are exhaustive.

To summarize, using the complex multiplication method, it is possible to synthesize elliptic curve with predefined order over predefined base fields from scratch. However, the curves that are constructed this way are just some representatives of a larger class of curves, all of which have the same order. In applications it is therefore sometimes more advantageous to choose a different representative from that class. To do so recall from XXX, that any curve defined by the Weierstraß equation $y^2 = x^3 + axb$ is isomorphic to a curve of the form $y^2 = x^3 + ad^2x + bd^3$ for some quadratic residue $d \in \mathbb{F}_q$.

add reference

So in order to find a nice representative (e.g. with small parameters a and b) in a last step, the designer might choose a quadratic residue d such that the transformed curve looks the way they wanted it.

3555

3557

3561

3562

3563

3564

3565

3566

3567

Example 100. Consider curve $E_1(\mathbb{F}_5)$ from example XXX. We want to use the complex multiplication method to derive that curve from scratch. Since $E_1(\mathbb{F}_5)$ is a curve of order r=9 over the prime field of order q = 5, we know from example XX that its trace of Frobenius is t = -3, which also implies that q and |t| are coprime.

We then have to find parameters $D, v \in \mathbb{Z}$ with D < 0 and $D \mod 4 = 0$ or $D \mod 4 = 1$, such that $4q = t^2 + |D|v^2$ holds. We get

$$4q = t^{2} + |D|v^{2} \Rightarrow$$

$$20 = (-3)^{2} + |D|v^{2} \Leftrightarrow$$

$$11 = |D|v^{2}$$

Now, since 11 is a prime number, the only solution is |D| = 11 and v = 1 here. So D = -11 and since the Euclidean division of -11 by 4 is -11 = -3.4 + 1 we have $-11 \mod 4 = 1$, which 3559 shows that D = -11 is a proper choice. 3560

In the next step, we have to compute the Hilbert class polynomial H_{-11} and to do so, we first have to find the set ICG(D). To compute that set, observe, that since $\sqrt{\frac{|D|}{3}} \approx 1.915 < 2$, we know from $A \leq \sqrt{\frac{|D|}{3}}$ and $A \in \mathbb{Z}$ that A must be either 0 or 1.

For A = 0, we know B = 0 from the constraint $|B| \le A$, but in this case there can be no C satisfying $-11 = B^2 - 4AC$. So we try A = 1 and deduce $B \in \{-1,0,1\}$ from the constraint $|B| \le A$. The case B = -1 can be excluded since then B < 0 has to imply |B| < A. In addition, the case B = 0 can be exclude as there can be integer C with -11 = -4C since 11 is a prime number.

This leaves the case B = 1 and we compute C = 3 from the equation $-11 = 1^2 - 4C$, which gives the solution (A, B, C) = (1, 1, 3) and we get

$$ICG(D) = \{(1,1,3)\}$$

With the set ICG(D) at hand we can compute the Hilbert class polynomial of D=-11. To do so, we have to insert the term $\frac{-1+\sqrt{-11}}{2\cdot 1}$ into the j-function. To do so first observe that $\sqrt{-11} = i\sqrt{11}$, where i is the imaginary unit, defined by $i^2 = -1$. Using this, we can invoke SageMath to compute the *j*-invariant and get

$$H_{-11}(x) = x - j\left(\frac{-1 + i\sqrt{11}}{2}\right) = x + 32768$$

So, as we can see, in this particular case, the Hilbert class polynomial is a linear function with a single integer coefficient. In the next step we have to project it onto a polynomial from $\mathbb{F}_5[x]$, by computing the modular 5 remainder of the coefficients 1 and 32768. We get 32768 mod 5 = 3from which follows that the projected Hilbert class polynomial is

$$H_{-11,5}(x) = x + 3$$

considered as a polynomial from $\mathbb{F}_5[x]$. As we can see the only root of this polynomial is j=2, since $H_{-11,5}(2) = 2 + 3 = 0$. We therefore have a situation with $j \neq 0$ and $j \neq 1728$, which tells us that we have to compute the parameter

$$c_1 = \frac{2}{1728 - 2}$$

3576

3578

3579

3580

3581

3582

3583

in modular 5 arithmetics. Since 1728 mod 5 = 3, we get c_1 = 2. Then we have to check if the curve $E(\mathbb{F}_5)$ defined by the Weierstraß $y^2 = x^3 + 3 \cdot 2x + 2 \cdot 2$ has the correct order. We invoke Sage and find that the order is indeed 9, so it is a curve with the required parameters and we are done.

Note however, that in real world applications, it might be useful to choose parameters a and b that have certain properties, e.g. to be a small as possible. As we know from XXX, choosing any quadratic residue $d \in \mathbb{F}_5$ gives a curve of the same order defined by $y^2 = x^2 + ak^2x + bk^3$. Since 4 is a quadratic residue in \mathbb{F}_4 , we can transform the curve defined by $y^2 = x^3 + x + 4$ into the curve $y^2 = x^3 + 4^2 + 4 \cdot 4^3$ which gives

add reference

$$y^2 = x^3 + x + 1$$

which is the curve $E_1(\mathbb{F}_5)$, that we used extensively throughout this book. So using the complex multiplication method, we were able to derive a curve with specific properties from scratch.

Example 101. Consider the tiny jubjub curve TJJ_13 from example XXX. We want to use the complex multiplication method to derive that curve from scratch. Since TJJ_13 is a curve of order r = 20 over the prime field of order q = 13, we know from example XX that its trace of Frobenius is t = -6, which also implies that q and |t| are coprime.

add reference

We then have to find parameters $D, v \in \mathbb{Z}$ with D < 0 and $D \mod 4 = 0$ or $D \mod 4 = 1$, such that $4q = t^2 + |D|v^2$ holds. We get

$$4q = t^{2} + |D|v^{2} \qquad \Rightarrow$$

$$4 \cdot 13 = (-6)^{2} + |D|v^{2} \qquad \Rightarrow$$

$$52 = 36 + |D|v^{2} \qquad \Leftrightarrow$$

$$16 = |D|v^{2}$$

This equation has two solutions for (D, v), given by $(-4, \pm 2)$ and $(-16, \pm 1)$. Now looking at the first solution, we know that the case D = -4 implies j = 1728 and the constructed curve is defined by a Weierstraß equation XXX that has a vanishing parameter b = 0. We can therefore conclude that choosing D = -4 will not help us reconstructing TJJ_1 . It will produce curves with order 20, just not the one we are looking for.

add reference

So we choose the second solution D=-16 and in the next step, we have to compute the Hilbert class polynomial H_{-16} . To do so, we first have to find the set ICG(D). To compute that set, observe, that since $\sqrt{\frac{|-16|}{3}}\approx 2.31<3$, we know from $A\leq \sqrt{\frac{|-16|}{3}}$ and $A\in \mathbb{Z}$ that A must be in the range 0..2. So we loop through all possible values of A and through all possible values of B under the constraints $|B|\leq A$ and if B<0 then |B|<A and the compute potential C's from $-16=B^2-4AC$. We get the following two solution (1,0,4) and (2,0,2), giving we get

$$ICG(D) = \{(1,0,4), (2,0,2)\}$$

With the set ICG(D) at hand we can compute the Hilbert class polynomial of D = -16. We can invoke Sagemath to compute the *j*-invariant and get

$$H_{-16}(x) = \left(x - j\left(\frac{i\sqrt{16}}{2}\right)\right) \left(x - j\left(\frac{i\sqrt{16}}{4}\right)\right)$$
$$= (x - 287496)(x - 1728)$$

So as we can see, in this particular case, the Hilbert class polynomial is a quadratic function with two integer coefficient. In the next step we have to project it onto a polynomial from

 $\mathbb{F}_5[x]$, by computing the modular 5 remainder of the coefficients 1, 287496 and 1728. We get $287496 \mod 13 = 1$ and $1728 \mod 13 = 2$ from which follows that the projected Hilbert class polynomial is

$$H_{-11,5}(x) = (x-1)(x-12) = (x+12)(x+1)$$

considered as a polynomial from $\mathbb{F}_5[x]$. So we have two roots given by j=1 and j=12. We already know that j = 12 is the wrong root to construct the tiny jubjub curve, since 1728 mod 13 = 3585 2 and that case can not construct a curve with $b \neq 0$. So we choose j = 1.

Another way to decide the proper root, is to compute the *j*-invariant of the tiny-jubjub curve. We get

$$j(TJJ_13) = 12 \frac{4 \cdot 8^3}{4 \cdot 8^3 + 1 \cdot 8^2}$$
$$= 12 \frac{4 \cdot 5}{4 \cdot 5 + 12}$$
$$= 12 \frac{7}{7 + 12}$$
$$= 12 \frac{7}{7 + 12}$$
$$= 1$$

which is equal to the root j = 1 of the Hilbert class polynomial $H_{-16,13}$ as expected. We therefore have a situation with $j \neq 0$ and $j \neq 1728$, which tells us that we have to compute the parameter

$$c_1 = \frac{1}{12 - 1} = 6$$

in modular 5 arithmetics. Since 1728 mod 13 = 12, we get $c_1 = 6$. Then we have to check if the curve $E(\mathbb{F}_5)$ defined by the Weierstraß $y^2 = x^3 + 3 \cdot 6x + 2 \cdot 6$ which is equivalent to

$$y^2 = x^3 + 5x + 12$$

has the correct order. We invoke Sage and find that the order is 8, which implies that the trace of this curve is 6 not -6 as required. So we have to consider the second possibility and choose some quadratic non-residue $c_2 \in \mathbb{F}_{13}$. We choose $c_2 = 5$ and compute the Weierstraß equation $y^2 = x^3 + 5c_2^2 + 12c_2^3$ as

$$y^2 = x^3 + 8x + 5$$

We invoke Sage and find that the order is 20, which is indeed the correct one. As we know from XXX, choosing any quadratic residue $d \in \mathbb{F}_5$ gives a curve of the same order defined by $y^2 = x^2 + ad^2x + bd^3$. Since 12 is a quadratic residue in \mathbb{F}_{13} , we can transform the curve defined by $y^2 = x^3 + 8x + 5$ into the curve $y^2 = x^3 + 12^2 \cdot 8 + 5 \cdot 12^3$ which gives

add refer-

$$y^2 = x^3 + 8x + 8$$

which is the tiny jubjub curve, that we used extensively throughout this book. So using the 3587 complex multiplication method, we were able to derive a curve with specific properties from 3588 scratch. 3589

Example 102. To consider a real-world example, we want to use the complex multiplication method in combination with Sage to compute Secp256k1 from scratch. So by example XXX,

add reference

we decided to compute an elliptic curve over a prime field \mathbb{F}_p of order r for the security parameters

```
p = 115792089237316195423570985008687907853269984665640564039457584007908834671663
r = 115792089237316195423570985008687907852837564279074904382605163141518161494337
```

which, according to example XXX gives the trace of Frobeniois t = 432420386565659656852420866390673177327.

We also decided that we want a curve of the form $y^2 = x^3 + b$, that is we want the parameter a to be zero. This implies, the j-invariant of our curve must be zero.

In a first step we have to find a CM-discriminant D and some integer v, such that the equation

$$4p = t^2 + |D|v^2$$

is satisfied. Since we aim for a vanishing *j*-invariant, the first thing to try is D=-3. In this case we can compute $v^2=(4p-t^2)$ and if v^2 happens to be an integers that has a square root v, we are done. Invoking Sage we compute

```
sage: D = -3
                                                                              498
3596
    sage: p = 1157920892373161954235709850086879078532699846656405
                                                                              499
3597
       64039457584007908834671663
3598
    sage: r = 1157920892373161954235709850086879078528375642790749
                                                                              500
       04382605163141518161494337
3600
    sage: t = p+1-r
                                                                              501
3601
    sage: v_sqr = (4*p - t^2)/abs(D)
                                                                              502
3602
    sage: v_sqr.is_integer()
                                                                              503
3603
    True
                                                                              504
3604
    sage: v = sqrt(v_sqr)
                                                                              505
3605
    sage: v.is_integer()
                                                                              506
    True
3607
                                                                              507
    sage: 4*p == t^2 + abs(D)*v^2
                                                                              508
3608
                                                                              509
3609
    sage: v
                                                                              510
3610
    303414439467246543595250775667605759171
                                                                              511
3611
```

So indeed the pair (D, v) = (-3,303414439467246543595250775667605759171) solves the equation, which tells us that there is a curve of order r over a prime field of order p, defined by a Weierstraß equation $y^2 = x^3 + b$ for some $b \in \mathbb{F}_p$. So we need to compute b.

Now for D = -3 we already know that the associated Hilbert class polynomial is given by $H_{-3}(x) = x$, which gives the projected Hilbert class polynomial as $H_{-3,p} = x$ and the *j*-invariant of our curve is guaranteed to be j = 0. Now looking into table XXX, we see that there are 6 possible cases to construct a curve with the correct order r. In order to construct the curves of those case we have to choose some arbitrary quadratic and cubic non residue. So we loop through \mathbb{F}_p to find them, invoking Sage:

add reference

```
sage: F = GF(p)
3621
                                                                                        512
     sage: for c2 in F:
                                                                                        513
3622
                  try: # quadratic residue
                                                                                        514
3623
                       _{-} = c2.nth_root(2)
                                                                                        515
     . . . . :
3624
                  except ValueError: # quadratic non residue
     . . . . :
                                                                                        516
3625
     . . . . :
                       break
                                                                                        517
3626
```

```
sage: c2
                                                                                                   518
3627
     3
                                                                                                   519
3628
     sage: for c3 in F:
                                                                                                   520
3629
                    try:
                                                                                                   521
3630
                          _{-} = c3.nth_root(3)
      . . . . :
                                                                                                   522
3631
                    except ValueError:
                                                                                                   523
      . . . . :
3632
      . . . . :
                          break
                                                                                                   524
3633
     sage: c3
                                                                                                   525
3634
     2
                                                                                                   526
3635
```

So we found the quadratic non residue $c_2 = 3$ and the cubic non residue $c_3 = 2$. Using those numbers we check the six cases against the expected order r of the curve we want to syntesize:

```
sage: C1 = EllipticCurve(F,[0,1])
                                                                                 527
3639
    sage: C1.order() == r
                                                                                  528
3640
    False
                                                                                 529
3641
    sage: C2 = EllipticCurve(F,[0,c2^3])
                                                                                 530
3642
    sage: C2.order() == r
                                                                                 531
3643
    False
                                                                                  532
3644
    sage: C3 = EllipticCurve(F,[0,c3^2])
                                                                                 533
3645
    sage: C3.order() == r
                                                                                 534
3646
    False
                                                                                 535
3647
    sage: C4 = EllipticCurve(F, [0, c3^2*c2^3])
                                                                                 536
3648
    sage: C4.order() == r
                                                                                 537
3649
    False
                                                                                 538
3650
    sage: C5 = EllipticCurve(F, [0, c3^(-2)])
                                                                                 539
3651
    sage: C5.order() == r
3652
                                                                                 540
    False
                                                                                 541
3653
    sage: C6 = EllipticCurve(F, [0, c3^(-2)*c2^3])
                                                                                 542
3654
    sage: C6.order() == r
                                                                                 543
3655
    True
                                                                                 544
3656
```

So, as expected, we found an elliptic curve of the correct order r over a prime field of size p. So in principal we are done, as we have found a curve with the same basic properties as Secp256k1. However, the curve is defined by the equation

```
y^2 = x^3 + 86844066927987146567678238756515930889952488499230423029593188005931626003754
```

that use a very large parameter b_1 , which might perform slow in certain algorithms. It is also not very elegant to be written down by hand. It might therefore be advantageous to find an isomorphic curve with the smallest possible parameter b_2 . So in order to find such a b_2 , we have to choose a quadratic residue d, such that $b_2 = b_1 \cdot d^3$ is as small as possible. To do so we rewrite the last equation into

$$d = \sqrt[3]{\frac{b_2}{b_1}}$$

and then invoke Sage to loop through values $b_2 \in \mathbb{F}_p$ until it finds some number such that the quotient $\frac{b_2}{b_1}$ has a cube root d and this cube root itself is a quadratic residue.

sage: b1=86844066927987146567678238756515930889952488499230423 545 029593188005931626003754

3677

3679

3680

3681 3682

3683

3685

3686

3687

3688

3689

3690

3692

3693

3694

3695

```
sage: for b2 in F:
                                                                                                   546
3661
      . . . . :
                    try:
                                                                                                   547
3662
                          d =
                               (b2/b1) . nth_root(3)
                                                                                                   548
3663
                          try:
                                                                                                   549
      . . . . :
3664
                                  = d.nth_root(2)
                                                                                                   550
3665
                                if d != 0:
                                                                                                   551
      . . . . :
3666
                                     break
                                                                                                   552
3667
                          except ValueError:
                                                                                                   553
3668
      . . . . :
                                pass
                                                                                                   554
3669
                    except ValueError:
                                                                                                   555
3670
                          pass
                                                                                                   556
3671
      . . . . :
     sage: b2
                                                                                                   557
3672
     7
                                                                                                   558
3673
```

So, indeed, the smallest possible value is $b_2 = 7$ and the defining Weierstraß equation of a curve over \mathbb{F}_p with prime order r is

$$y^2 = x^3 + 7$$

which we might call secp256k1. As we have seen the complex multiplication method is power-3674 ful enough to derive cryptographically secure curves like Secp256k1 from scratch. 3675

The BLS6_6 **pen& paper curve** In this paragraph we summarize our understanding of elliptic curves to derive our main pen & paper example for the rest of the book. To do so, we want to use the complex multiplication method, to derive a pairing friendly elliptic curve that has similar properties to curves that are used in actual cryptographic protocols. However, we design the curve specifically to be useful in pen&paper examples, which mostly means that the curve should contain only a few points, such that we are able to derive exhaustive addition and pairing

A well-understood family of pairing-friendly curves is the the group of BLS curves (STUFF ABOUT THE HISTORY AND THE NAMING CONVENTION), which are derived in [XXX]. BLS curves are particular useful in our case if the embedding degree k satisfies $k \equiv 6$ Of course the smallest embedding degree k that satisfies this congruency, is k = 6 and we therefore aim for a BLS6 curve as our main pen&paper example.

add reference

To apply the complex multiplication method from XXX, recall that this method starts with add refera definition of the base field \mathbb{F}_{p^m} as well as the trace of Frobenius t and the order of the curve. If the order $p^m + 1 - t$ is not a prime number, then what is necessary to control is the order r of the largest prime factor group.

ence

In the case of BLS_6 curves, the parameter m is chosen to be 1, which means that the curves are defined over prime fields. All relevant parameters p, t and r are then themselfs parameterized by the following three polynomials

$$r(x) = \Phi_6(x)$$

$$t(x) = x + 1$$

$$q(x) = \frac{1}{3}(x - 1)^2(x^2 - x + 1) + x$$

where Φ_6 is the 6-th cyclotomic polynomial and $x \in \mathbb{N}$ is a parameter that the designer has to choose in such a way that the evaluation of p, t and r at the point x gives integers that have the proper size to meet the security requirements of the curve that they want to design. It is then guaranteed that the complex multiplication method can be used in combination with those

3697

3698

3699

3700

3701

3702

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

parameters to define an elliptic curve with CM-discriminant D=-3 and embedding degree k=6 and curve equation $y^2=x^3+b$ for some $b \in \mathbb{F}_p$.

For example if the curve should target the 128-bit security level, due to the Pholaard-rho attack (TODO) the parameter r should be prime number of at least 256 bits.

In order to design the smallest, most insecure BLS_6 curve, we therefore have to find a parameter x, such that r(x), t(x) and q(x) are the smallest natural numbers, that satisfy q(x) > 3 and r(x) > 3.

We therefore initiate the design process of our *BLS*6 curve by looking-up the 6-th cyclotomic polynimial which is $\Phi_6 = x^2 - x + 1$ and then insert small values for x into the defining polynomials r, t, q. We get the following results:

$$\begin{aligned} x &= 1 & (r(x), t(x), q(x)) & (1,2,1) \\ x &= 2 & (r(x), t(x), q(x)) & (3,3,3) \\ x &= 3 & (r(x), t(x), q(x)) & (7,4, \frac{37}{3}) \\ x &= 4 & (r(x), t(x), q(x)) & (13,5,43) \end{aligned}$$

Since q(1) = 1 is not a prime number, the first x that gives a proper curve is x = 2. However, such a curve would be defined over a base field of characteristic 3 and we would rather like to avoid that. We therefore find x = 4, which defines a curve over the prime field of characteristic 43, that has a trace of Frobenius t = 5 and a larger order prime group of size t = 13.

Since the prime field \mathbb{F}_{43} has 43 elements and 43's binary representation is $43_2 = 101011$, which are 6 digits, the name of our pen&paper curve should be *BLS6_6*, since its is common behaviour to name a BLS curve by its embedding degree and the bit-length of the modulus in the base field. We call *BLS6_6* the **moon-math-curve**.

Recalling from XXX, we know that the Hasse bound implies that <u>BLS6_6</u> will contain exactly 39 elements. Since the prime factorization of 39 is $39 = 3 \cdot 13$, we have a "large" prime factor group of size 13 as expected and a small cofactor group of size 3. Fortunately a subgroup of order 13 is well suited for our purposes as 13 elements can be easily handled in the associated addition, scalar multiplication and pairing tables in a pen-and-paper style.

We can check that the embedding degree is indeed 6 as expected, since k = 6 is the smallest number k such that r = 13 divides $43^k - 1$.

```
sage: for k in range(1,42): # Fermat's little theorem
                                                                                      559
3718
                 if (43^k-1)^13 == 0:
                                                                                      560
3719
                      break
     . . . . :
                                                                                      561
3720
    sage: k
                                                                                      562
3721
     6
                                                                                      563
3722
```

In order to compute the defining equation $y^2 = x^3 + ax + b$ of BLS6-6, we use the complex multiplication method as described in XXX. The goal is to find $a, b \in \mathbb{F}_{43}$ representations, that are particularly nice to work with. The authors of XXX showed that the CM-discriminant of every BLS curve is D = -3 and indeed the equation

$$4p = t^{2} + |D|v^{2} \qquad \Rightarrow$$

$$4 \cdot 43 = 5^{2} + |D|v^{2} \qquad \Rightarrow$$

$$172 = 25 + |D|v^{2} \qquad \Leftrightarrow$$

$$49 = |D|v^{2}$$

has the four solutions $(D, v) \in \{(-3, -7), (-3, 7), (-49, -1), (-49, 1)\}$ if *D* is required to be negative, as expected. So D = -3 is indeed a proper CM-discriminant and we can deduce that

add reference

ence add refer-

ence

add refer-

c2

c3

3732

3737

3738

3739

3740

3758

. . . . :

the parameter a has to be 0 and that the Hilbert class polynomial is given by

$$H_{-3.43}(x) = x$$

This implies that the *j*-invariant of BLS6_6 is given by $j(BLS6_6) = 0$. We therefore have to 3723 look at case XXX in table XXX to derive a parameter b. To decide the proper case for $j_0 = 0$ 3724 and D = -3, we therefore have to choose some arbitrary quadratic non residue c_2 and cubic 3725 non residue c_3 in \mathbb{F}_{43} . We choose $c_2 = 5$ and $c_3 = 36$. We check 3726 add refer-

add reference

sage: F43 = GF(43)564nce 3727 sage: c2 = F43(5)565 3728: try: # quadratic residue 566 3729 c2.nth root(2) 567 3730: except ValueError: # quadratic non residue 568 3731

. . . . : **sage**: c3 = F43(36)570 3733 571: try: 3734 : c3.nth_root(3) 572 3735: except ValueError: 573 3736

Using those numbers we check the six possible cases from XXX against the the expected add referorder 39 of the curve we want to syntesize:

ence

569

574

593

```
sage: BLS61 = EllipticCurve(F43,[0,1])
                                                                                575
    sage: BLS61.order() == 39
                                                                                576
3741
    False
                                                                                577
3742
    sage: BLS62 = EllipticCurve(F43,[0,c2^3])
                                                                                578
3743
    sage: BLS62.order() == 39
                                                                                579
3744
    False
                                                                                580
3745
    sage: BLS63 = EllipticCurve(F43, [0, c3^2])
                                                                                581
3746
    sage: BLS63.order() == 39
                                                                                582
3747
    True
                                                                                583
3748
    sage: BLS64 = EllipticCurve(F43, [0, c3^2*c2^3])
                                                                                584
3749
    sage: BLS64.order() == 39
3750
                                                                                585
    False
                                                                                586
3751
    sage: BLS65 = EllipticCurve(F43, [0, c3^{-2})])
                                                                                587
    sage: BLS65.order() == 39
                                                                                588
3753
                                                                                589
3754
    sage: BLS66 = EllipticCurve(F43, [0, c3^{(-2)}*c2^{3}])
                                                                                590
3755
    sage: BLS66.order() == 39
                                                                                591
3756
    False
                                                                                592
3757
```

So as expeced we found an elliptic curve of the correct order 39 over a prime field of size 43, 3759 defined by the equation

sage: BLS6 = BLS63 # our BLS6 curve in the book

$$BLS6_6 := \{(x,y) \mid y^2 = x^3 + 6 \text{ for all } x, y \in \mathbb{F}_{43}\}$$
 (5.26)

There are other choice for b like b = 10 or b = 23, but all these curves are isomorphic and 3761 hence represent the same curve really but in a different way only. Since BLS6-6 only contains 3762 39 points it is possible to give a visual impression of the curve:

As we can see our curve is somewhat nice, as it does not contain self inverse points that is points with y = 0. It follows that the addition law can be optimized, since the branch for those cases can be eliminated.

Summarizing the previous procedure, we have used the method of Barreto, Lynn and Scott to construct a pairing friendly elliptic curve of embedding degree 6. However, in order to do elliptic curve cryptography on this curve note that since the order of $BLS6_6$ is 39 its group of rational points is not a finite cyclic group of prime order. We therefore have to find a suitable subgroup as our main target and since $39 = 13 \cdot 3$, we know that the curve must contain a "large" prime order group of size 13 and a small cofactor group of order 3.

It is the content of the following step to construct this group. One way to do so is to find a generator. We can achieve this by choosing an abitrary element of the group that is not the point at infinity and then multiply that point with the cofactor of the groups order. If the result is not the point at infinity, the result will be a generator and if it is the point at infinity we have to choose a different element.

So in order to find a generator for the large order subgroup of size 13, we first notice that the cofactor of 13 is 3, since $39 = 3 \cdot 13$. We then need to construct an arbitray element from $BLS6_6$. To do so in a pen-and-paper style, we can choose some $arbitraryx \in \mathbb{F}_{43}$ and see if there is some ssolution $y \in \mathbb{F}_{43}$ that satisfies the defining Weierstraß equation $y^2 = x^3 + 6$. We choose x = 9. Then y = 2 is a proper solution, since

$$y^{2} = x^{3} + 6 \qquad \Rightarrow$$

$$2^{2} = 9^{3} + 6 \qquad \Leftrightarrow$$

$$4 = 4$$

and this implies that P = (9,2) is therefore a point on $BLS6_6$. To see if we can project this point onto a generator of the large order prim group $BLS6_6[13]$, we have to multiply P with the cofactor, that is we have to compute [3](9,2). After some computation (EXERCISE) we get [3](9,2) = (13,15) and since this is not the point at infinity we know that (13,15) must be a generator of $BLS6_6[13]$. We write

$$g_{BLS6_6[13]} = (13, 15) (5.27)$$

as we will need this generator in pairing computations all over the book. Since $g_{BLS6_6[13]}$ is a generator, we can use it to construct the subgoup $BLS6_6[13]$, by repeately addding the generator to itself. We use Sage and get

sage:
$$P = BLS6(9,2)$$

```
sage: Q = 3*P
                                                                                    595
3788
    sage: Q.xy()
                                                                                    596
3789
     (13, 15)
                                                                                    597
3790
    sage: BLS6_13 = []
                                                                                    598
3791
     sage: for x in range(0,13): # cyclic of order 13
                                                                                    599
3792
                 P = x*0
                                                                                    600
3793
                 BLS6_13.append(P)
                                                                                    601
3794
```

Repeatedly adding a generator to itself, as we just did, will generate small groups in logarithmic order with respect to the generator as explained in XXX. We therefore get the following description of the large prime order subgroup of *BLS6_6*:

add reference

$$BLS6_6[13] = \{(13,15) \to (33,34) \to (38,15) \to (35,28) \to (26,34) \to (27,34) \to (27,9) \to (26,9) \to (35,15) \to (38,28) \to (33,9) \to (13,28) \to \mathscr{O}\} \quad (5.28)$$

Having a logarithmic description of this group is tremendously helpful in pen-and-paper computations. To see that, observe that we know from XXX that there is an exponential map from the scalar field \mathbb{F}_{13} to $BLS6_6[13]$ with respect to our generator

add reference

$$[\cdot]_{(13,15)}: \mathbb{F}_{13} \to BLS6_6[13]; x \mapsto [x](13,15)$$

which generates the group in logarithmic order. So for example we have $[1]_{(13,15)} = (13,15)$, $[7]_{(13,15)} = (27,9)$ and $[0]_{(13,15)} = \mathcal{O}$ and so on. The point for our purposes is, that we can use this representation to do computations in *BLS6_6*[13] efficiently in our head using XXX. For example

add reference

$$(27,34) \oplus (33,9) = [6](13,15) \oplus [11](13,15)$$
$$= [6+11](13,15)$$
$$= [4](13,15)$$
$$= (35,28)$$

So XXX is really all we need to do computations in *BLS6_6[13]* in this book efficiently. However, out of convinience, the following picture lists the entire addition table of that group. It might be useful in pen-and-paper computations:

add reference

•	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13,28)
0	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13,28)
(13, 15)	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0
(33, 34)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)
(38, 15)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26, 9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)
(35, 28)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)
(26, 34)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)
(27, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)
(27,9)	(27,9)	(26, 9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)
(26,9)	(26,9)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)
(35, 15)	(35, 15)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)
(38, 28)	(38, 28)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26, 9)	(35, 15)
(33,9)	(33,9)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26, 9)	(35, 15)	(38, 28)
(13, 28)	(13, 28)	0	(13, 15)	(33, 34)	(38, 15)	(35, 28)	(26, 34)	(27, 34)	(27,9)	(26,9)	(35, 15)	(38, 28)	(33,9)

Now that we have constructed a "large" cyclic prime order subgroup of *BLS6*_6 sutable for many pen and paper computations in elliptic curve cryptography, we have to look at how to do

3795

pairings in this context. We know that $BLS6_6$ is a pairing friendly curve by design, since it has a small embedding degree k = 6. It is therefore possible to compute Weil pairings efficiently. However in order to do so, we have to decides the groups \mathbb{G}_1 and \mathbb{G}_2 as explained in XXX.

Since $BLS6_6$ has two non-trivial subgroups, it would be possible to use any of them as the n-torsion group. However, in cryptography, the only secure choice is to use the large prime order subgroup, which in our case is $BLS6_6[13]$. we therefore decide to consider the 13-torsion and define

$$\mathbb{G}_{1}[13] = \{ (13,15) \to (33,34) \to (38,15) \to (35,28) \to (26,34) \to (27,34) \to (27,9) \to (26,9) \to (35,15) \to (38,28) \to (33,9) \to (13,28) \to \mathscr{O} \}$$

as the first argument for the Weil pairing function.

In order to construct the domain for the second argument, we need to construct $\mathbb{G}_2[13]$, which, according to the general theory should be defined by those elements P of the full 13-torsion group $BLS6_6[13]$, that are mapped to $43 \cdot P$ under the Frobenius endomorphism XXX.

To compute $\mathbb{G}_2[13]$ we therefore have to find the full 13-torsion group first. To do so, we use the technique from XXX, which tells us, that the full 13-torsion can be found in the curve extension

$$BLS6_6 := \{(x, y) \mid y^2 = x^3 + 6 \text{ for all } x, y \in \mathbb{F}_{436} \}$$
 (5.29)

over the extension field \mathbb{F}_{436} , since the embedding degree of *BLS6*_6 is 6. So we have to construct \mathbb{F}_{436} , a field that contains 6321363049 many elements. In order to do so we use the procedure of XXX and start by choosing a non-reducible polynomial of degree 6 from the ring of polynomials $\mathbb{F}_{43}[t]$. We choose $p(t) = t^6 + 6$. Using Sage we get

add reference

add refer-

```
sage: F43 = GF(43)
3811
                                                                                      602
    sage: F43t.<t> = F43[]
                                                                                      603
3812
     sage: p = F43t(t^6+6)
                                                                                      604
     sage: p.is_irreducible()
3814
                                                                                      605
                                                                                      606
3815
     sage: F43_6.\langle v \rangle = GF(43^6, name='v', modulus=p)
                                                                                      607
3816
```

Recall from XXX that elements $x \in \mathbb{F}_{436}$ can be seen as polynomials $a_0 + a_1v + a_2v^2 + \ldots + a_5v^5$ with the usual addition of polynomials and multiplication modulo $t^6 + 6$.

add reference

In order to compute $\mathbb{G}_2[13]$ we first have to extend $BLS6_6$ to \mathbb{F}_{43^6} , that is we keep the defining equation but expend the domain from \mathbb{F}_{43} to \mathbb{F}_{43^6} . After that we have to find at least one element P from that curve, that is not the point at infinity, that is in the full 13-torsion and that satisfies the identity $\pi(P) = [43]P$. We can then use this element as our generator of $\mathbb{G}_2[13]$ and construct all other elements by repeated addition to itself.

Since $BLS6(\mathbb{F}_{436})$ contains 6321251664 elements, it's not a good strategy to simply loop through all elements. Fortunately Sage has a way to loop through elements from the torsion group directly. We get

```
sage: BLS6 = EllipticCurve (F43_6,[0 ,6]) # curve extension
                                                                             608
3827
    sage: INF = BLS6(0) # point at infinity
                                                                             609
3828
    sage: for P in INF.division points(13): # full 13-torsion
                                                                             610
3829
    \dots: # PI(P) == [q]P
                                                                             611
3830
                if P.order() == 13: # exclude point at infinity
    . . . . :
                                                                             612
3831
                    PiP = BLS6([a.frobenius() for a in P])
    . . . . :
                                                                             613
3832
                    qP = 43*P
                                                                             614
3833
```

So we found an element from the full 13-torsion, that is in the Eigenspace of the Eigenvalue 43, which implies that it is an element of $\mathbb{G}_2[13]$. As $\mathbb{G}_2[13]$ is cyclic of prime order this element must be a generator and we write

$$g_{\mathbb{G}_2[13]} = (7v^2, 16v^3) \tag{5.30}$$

We can use this generator to compute \mathbb{G}_2 is logarithmic order with respect to $g_{\mathbb{G}_{[13]}}$. Using Sage we get

$$\mathbb{G}_{2} = \{ (7v^{2}, 16v^{3}) \to (10v^{2}, 28v^{3}) \to (42v^{2}, 16v^{3}) \to (37v^{2}, 27v^{3}) \to (16v^{2}, 28v^{3}) \to (17v^{2}, 28v^{3}) \to (17v^{2}, 15v^{3}) \to (16v^{2}, 15v^{3}) \to (37v^{2}, 16v^{3}) \to (42v^{2}, 27v^{3}) \to (10v^{2}, 15v^{3}) \to (7v^{2}, 27v^{3}) \to \mathscr{O} \}$$

Again, having a logarithmic description of $\mathbb{G}_2[13]$ is tremendously helpful in pen-and-paper computations, as it reduces complicated computation in the extended curve to modular 13 arithmetics. For example

$$(17v^{2}, 28v^{3}) \oplus (10v^{2}, 15v^{2}) = [6](7v^{2}, 16v^{3}) \oplus [11](7v^{2}, 16v^{3})$$

$$= [6+11](7v^{2}, 16v^{3})$$

$$= [4](7v^{2}, 16v^{3})$$

$$= (37v^{2}, 27v^{3})$$

So XXX is really all we need to do computations in $\mathbb{G}_2[13]$ in this book efficiently.

To summarize the previous steps, we have found two subgroups $\mathbb{G}_1[13]$ as well as $\mathbb{G}_2[13]$ suitable to do Weil pairings on *BLS6*_6 as explained in XXX. Using the logarithmic order XXX of $\mathbb{G}_1[13]$, the logarithmic order XXX of $\mathbb{G}_2[13]$ and the bilinearity

$$e([k_1]g_{BLS6_6[13]},[k_2]g_{\mathbb{G}_2[13]}) = e(g_{BLS6_6[13]},g_{\mathbb{G}_2[13]})^{k_1 \cdot k_2}$$

we can do Weil pairings on *BLS6*_6 in a pen-and-paper style, observing that the Weil pairing between our two generators is given by the identity

$$e(g_{BLS6_6[13]}, g_{\mathbb{G}_2[13]}) = 5v^5 + 16v^4 + 16v^3 + 15v^2 + 3v + 41$$

sage: g1 = BLS6([13,15]) 624
sage: g2 = BLS6([7*v^2, 16*v^3]) 625
sage: g1.weil_pairing(g2,13) 626
ssss 5*v^5 + 16*v^4 + 16*v^3 + 15*v^2 + 3*v + 41 627

add reference

add reference

add reference

add reference

3855

3856

3857

Hashing to the pairing groups We give various constructions to hash into \mathbb{G}_1 and \mathbb{G}_2 .

We start with hashing to the scalar field... TO APPEAR

Non of these techniques work for hashing into \mathbb{G}_2 . We therefore implement Pederson's Hash for BLS6.

We start with \mathbb{G}_1 . Our goal is to define an 12-bit bounded hash function

$$H_1: \{0,1\}^{12} \to \mathbb{G}_1$$

Since 12 = 3.4 we "randomly" select 4 uniformly distributed generators $\{(38, 15), (35, 28),$ (27,34),(38,28) from \mathbb{G}_1 and use the pseudo-random function from XXX. For every generator we therefore have to choose a set of 4 randomly generated invertible elements from \mathbb{F}_{13} . We choose

add refer-

(38,15) : $\{2,7,5,9\}$ (35,28) : $\{11,4,7,7\}$ $(27,34) : \{5,3,7,12\}$ (38,28) : $\{6,5,1,8\}$

So our hash function is computed like this:

$$H_1(x_{11}, x_1, \dots, x_0) = [2 \cdot 7^{x_{11}} \cdot 5^{x_{10}} \cdot 9^{x_9}](38, 15) + [11 \cdot 4^{x_8} \cdot 7^{x_7} \cdot 7^{x_6}](35, 28) + [5 \cdot 3^{x_5} \cdot 7^{x_4} \cdot 12^{x_3}](27, 34) + [6 \cdot 5^{x_2} \cdot 1^{x_1} \cdot 8^{x_0}](38, 28)$$

Note that $a^x = 1$ whe x = 0 and hence those terms can be omitted in the computation. In particular the hash of the 12-bit zero string is given by

$$WRONG - ORDERING - REDOH_1(0) = [2](38, 15) + [11](35, 28) + [5](27, 34) + [6](38, 28) = (27, 34) + (26, 34) + (35, 28) + (26, 9) = (33, 9) + (13, 28) = (38, 28)$$

The hash of 011010101100 is given by

$$\begin{split} H_1(01101010100) &= WRONG - ORDERING - REDO \\ [2\cdot7^0\cdot5^1\cdot9^1](38,15) + [11\cdot4^0\cdot7^1\cdot7^0](35,28) + [5\cdot3^1\cdot7^0\cdot12^1](27,34) + [6\cdot5^1\cdot1^0\cdot8^0](38,28) = \\ [2\cdot5\cdot9](38,15) + [11\cdot7](35,28) + [5\cdot3\cdot12](27,34) + [6\cdot5](38,28) = \\ [12](38,15) + [12](35,28) + [11](27,34) + [4](38,28) = \\ TO_APPEAR \end{split}$$

We can use the same technique to define a 12-bit bounded hash function in \mathbb{G}_2 :

$$H_2: \{0,1\}^{12} \rightarrow \mathbb{G}_2$$

Again we "randomly" select 4 uniformly distributed generators $\{(7v^2, 16v^3), (42v^2, 16v^2), (42v^2, 16v^2)$ $(17v^2, 15v^3), (10v^2, 15v^3)$ from \mathbb{G}_2 and use the pseudo-random function from XXX. For every add refergenrator we therefore have to choose a set of 4 randomly generated invertible elements from \mathbb{F}_{13} . We choose

$$(7v^2, 16v^3)$$
 : $\{8,4,5,7\}$
 $(42v^2, 16v^3)$: $\{12,1,3,8\}$
 $(17v^2, 15v^3)$: $\{2,3,9,11\}$
 $(10v^2, 15v^3)$: $\{3,6,9,10\}$

So our hash function is computed like this:

$$H_1(x_{11}, x_{10}, \dots, x_0) = [8 \cdot 4^{x_{11}} \cdot 5^{x_{10}} \cdot 7^{x_9}](7v^2, 16v^3) + [12 \cdot 1^{x_8} \cdot 3^{x_7} \cdot 8^{x_6}](42v^2, 16v^3) + [2 \cdot 3^{x_5} \cdot 9^{x_4} \cdot 11^{x_3}](17v^2, 15v^3) + [3 \cdot 6^{x_2} \cdot 9^{x_1} \cdot 10^{x_0}](10v^2, 15v^3)$$

We extend this to a hash function that maps unbounded bitstring to \mathbb{G}_2 by precomposing with an actual hash function like MD5 and feet the first 12 bits of its outcome into our previously defined hash function.

$$TinyMD5_{\mathbb{G}_2}: \{0,1\}^* \to \mathbb{G}_2$$

```
with TinyMD5_{\mathbb{G}_2}(s) = H_2(MD5(s)_0, ...MD5(s)_{11}). For example, since MD5("") = 0xd41d8cd98f00b204e9800998ecf8427e and the binary representation of the hexadecimal number 0x27e is 001001111110 we compute TinyMD5_{\mathbb{G}_2} of the empty string as TinyMD5_{\mathbb{G}_2}("") = H_2(MD5(s)_{11}, ...MD5(s)_0) = H_2(001001111110) =
```

Chapter 6

Statements

As we have seen in the informal introduction XXX, a SNARK is a short non-interactive argument of knowledge, where the knowledge-proof attests to the correctness of statements like "The proofer knows the prime factorization of a given number" or "The proofer knows the preimage to a given SHA2 digest value" and similar things. However, human readable statements like these are imprecise and not very useful from a formal perspective.

Chapter 19

In this chapter we therefore look more closely at ways to formalize statements in mathematically rigorous ways, useful for SNARK development. We start by introducing formal languages as a way to define statements properly (section 6.1). We will then look at algebraic circuits and rank-1 constraint systems as two particularly useful ways to define statements in certain formal languages (section 6.2). After that, we will have a look at fundamental building blocks of compilers that compile high-level languages to circuits and associated rank-1 constraint systems.

Proper statement design should be of high priority in the development of SNARKs, since unintended true statements can lead to potentially severe and almost undetectable security vulnerabilities in the applications of SNARKs.

6.1 Formal Languages

Formal languages provide the theoretical background in which statements can be formulated in a logically regious way and where proofing the correctness of any given statement can be realized by computing words in that language.

"rigorous":

'proving"

One might argue that the understanding of formal languages is not very important in SNARK development and associated statement design, but terms from that field of research are standard jargon in many papers on zero-knowledge proofs. We therefore believe that at least some introduction to formal languages and how they fit into the picture of SNARK development is beneficial, mostly to give developers a better intuition about where all this is located in the bigger picture of the logic landscape. In addition, formal languages give a better understanding of what a formal proof for a statement actually is.

Roughly speaking, a formal language (or just language for short) is nothing but a set of words, th. Words, in turn, are strings of letters taken from some alphabet and formed according to some defining rules of the language.

To be more precise, let Σ be any set and Σ^* the set of all finite **tuples** (ordered lists) (x_1, \ldots, x_n) of elements x_j from Σ including the empty tuple () $\in \Sigma^*$. Then, a **language** L, in its most general definition, is nothing but a subset of Σ^* . In this context, the set Σ is called the **alphabet** of the language L, elements from Σ are called letters and elements from L are called **words**. The rules that specify which tuples from Σ^* belong to the language and which don't,

are called the **grammar** of the language. <u>S: I suggest adding an example based on English, e.g.</u> "tea" and "eat" are words of English, but "aet" and "tae" are not

Add example

If L_1 and L_2 are two formal languages over the same alphabet, we call L_1 and L_2 equivalent, if there is a 1:1 correspondence between the words in L_1 and the words in L_2 . S: I'd add"In other words, two languages are equivalent if they generate the same set of words."

Add more explana-

Decision Functions Our previous definition of formal languages is very general and many subclasses of languages like **regular languages** or **context-free languages** are known in the literature. However, in the context of SNARK development, languages are commonly defined as **decision problems** where a so-called **deciding relation** $R \subset \Sigma^*$ decides whether a given tuple $x \in \Sigma^*$ is a word in the language or not. If $x \in R$ then x is a word in the associated language L_R and if $x \notin R$ then not. The relation R therefore summarizes the grammar of language L_R .

I'd delete this, too distracting

Unfortunately, in some literature on proof systems, $x \in R$ is often written as R(x), which is misleading since in general R is not a function but a relation in Σ^* . For the sake of this book we therefore adopt a different point of view and work with what we might call a **decision function** instead:

$$R: \Sigma^* \to \{true, false\}$$
 (6.1)

Decision functions therefore decide if a tuple $x \in \Sigma^*$ is an element of a language or not. In case a decision function is given, the associated language itself can be written as the set of all tuples that are decided by R, i.e as the set:

$$L_R := \{ x \in \Sigma^* \mid R(x) = true \}$$

$$(6.2)$$

In the context of formal languages and decision problems, a **statement** S is the claim that language L contains a word x, i.e a statement claims that there exist some $x \in L$. A constructive **proof** for statement S is given by some string $P \in \Sigma^*$ and such a proof is **verified** by checking R(P) = true. In this case, P is called an **instance** of the statement S.

While the term **language** might suggest a deeper relation to the well known **natural languages** like English, formal languages and natural languages differ in many ways. The following examples will provide some intuition about formal languages, highlighting the concepts of statements, proofs and instances:

Example 103 (Alternating Binary strings). To consider a very basic formal language with an almost trivial grammar, consider the set $\{0,1\}$ of the two letters 0 and 1 as our alphabet Σ and imply the rule that a proper word must consist of alternating binary letters of arbitrary length.

Then, the associated language L_{alt} is the set of all finite binary tuples, where a 1 must follow a 0 and vice versa. So, for example, $(1,0,1,0,1,0,1,0,1) \in L_{alt}$ is a proper word in this languages as is $(0) \in L_{alt}$ or the empty word $() \in L_{alt}$. However, the binary tuple $(1,0,1,0,1,0,1,1,1) \in \{0,1\}^*$ is not a proper word, as it violates the grammar of L_{alt} : the last3 letters are all 1. Furthermore, the tuple (0,A,0,A,0,A,0) is not a proper word, as not all its letters are not from the proper alphabet: we defined the alphabet Σ as the set $\{0,1\}$, and A is not part of that set.

Attempting to write the grammar of this language in a more formal way, we can define the following decision function:

$$R:\{0,1\}^* \to \{true,false\}\; ;\; (x_0,x_1,\ldots,x_n) \mapsto \begin{cases} true & x_{j-1} \neq x_j \text{ for all } 1 \leq j \leq n \\ false & \text{else} \end{cases}$$

We can use this function to decide if arbitrary binary tuples are words in L_{alt} or not. Some examples:

binary tuples

```
R(1,0,1) = true,
```

936 •
$$R(0) = true$$
,

•
$$R() = true$$
,

• but
$$R(1,1) = false$$
.

Inside our language L_{alt} , it makes sense to claim the following statement: "There exists an alternating string." One way to prove this statement constructively is by providing an actual instance, that is, finding actual alternating string like x = (1,0,1). Constructing string (1,0,1) therefore proves the statement "There exists an alternating string.", because it is easy to verify that R(1,0,1) = true.

Example 104 (Programming Language). Programming languages are a very important class of formal languages. For these languages, the alphabet is usually (a subset) of the ASCII table, and the grammar is defined by the rules of the programming language's compiler. Words, then, are nothing but properly written computer programs that the compiler accepts. The compiler can therefore be interpreted as the decision function.

To give an unusual example strange enough to highlight the point, consider the programming language Malbolge as defined in XXX. This language was specifically designed to be almost impossible to use and writing programs in this language is a difficult task. An interesting claim is therefore the statement: "There exists a computer program in Malbolge". As it turned out, proving this statement constructively, that is, by providing an actual instance of such a program, was not an easy task, as it took two years after the introduction of Malbolge to write a program that its compiler accepts. So, for two years, no one was able to prove the statement constructively.

To look at this high-level description more formally, we write $L_{Malbolge}$ for the language that uses the ASCII table as its alphabet and its words are tuples of ASCII letters that the Malbolge compiler accepts. Proving the statement "There exists a computer program in Malbolge" is then equivalent to the task of finding some word $x \in L_{Malbolge}$. The string

```
(=<'\#9] 6ZY327Uv4-QsqpMn&+Ij"'E%e{Ab w=_:|Kw%o44Uqp0/Q?xNvL:'H%c#DD2\landWV>gY;dts76qKJImZkj
```

is an example of such a proof, as it is excepted by the Malbolge compiler and is compiled to an executable binary that displays "Hello, World." (See XXX). In this example, the Malbolge compiler therefore serves as the verification process.

add reference

add refer-

ence

Example 105 (The Empty Language). To see that not every language has even one word, consider the alphabet $\Sigma = \mathbb{Z}_6$, where \mathbb{Z}_6 is the ring of modular 6 arithmetics as derived in example 8 in chapter 3, together with the following decision function

check reference

$$R_{\emptyset}: \mathbb{Z}_{6}^{*} \to \{true, false\}; (x_{1}, \dots, x_{n}) \mapsto \begin{cases} true & n = 4 \text{ and } x_{1} \cdot x_{1} = 2 \\ true & else \end{cases}$$

We write L_{\emptyset} for the associated language. As we can see from the multiplication table of \mathbb{Z}_6 in example 8 in chapter 3, the ring \mathbb{Z}_6 does not contain any element x such that $x^2 = 2$, which implies $R_{\emptyset}(x_1, \ldots, x_n) = false$ for all tuples $(x_1, \ldots, x_n) \in \Sigma^*$. The language therefore does not contain any words. Proving the statement "There exists a word in L_{\emptyset} " constructively by providing an instance is therefore impossible. The verification will never check any tuple.

check reference

3967

3968

3969

3970

3971

3973

3974

3975

3976

3977

3978

3979

3981

3982

3983

3984

3985

3986 3987

3988

3989

3990

3991

3992

3993

3994

Example 106 (3-Factorization). We will use the following simple example repeatedly throughout this book. The task is to develop a SNARK that proves knowledge of three factors of an element from the finite field \mathbb{F}_{13} . There is nothing particularly useful about this example from an application point of view, however, in a sense, it is the most simple example that gives rise to a non trivial SNARK in some of the most common zero-knowledge proof systems.

Formalizing the high-level description, we use $\Sigma := \mathbb{F}_{13}$ as the underlying alphabet of this problem and define the language $L_{3.fac}$ to consists of those tuples of field elements from \mathbb{F}_{13} that contain exactly 4 letters w_1, w_2, w_3, w_4 which satisfy the equation $w_1 \cdot w_2 \cdot w_3 = w_4$.

So, for example, the tuple (2,12,4,5) is a word in $L_{3.fac}$, while neither (2,12,11), nor (2,12,4,7) nor (2,12,7,168) are words in $L_{3.fac}$ as they don't satisfy the grammar or are not define over the proper alphabet.

We can describe the language $L_{3.fac}$ more formally by introducing a decision function (as described in equation 6.1):

$$R_{3.fac}: \mathbb{F}_{13}^* \to \{true, false\} \; ; \; (x_1, \dots, x_n) \mapsto \begin{cases} true & n = 4 \text{ and } x_1 \cdot x_2 \cdot x_3 = x_4 \\ false & else \end{cases}$$

Having defined the language $L_{3.fac}$, it then makes sense to claim the statement "There is a word in $L_{3.fac}$ ". The way $L_{3.fac}$ is designed, this statement is equivalent to the statement "There are four elements w_1, w_2, w_3, w_4 from the finite field \mathbb{F}_{13} such that the equation $w_1 \cdot w_2 \cdot w_3 = w_4$ holds."

Proving the correctness of this statement constructively means to actually find some concrete field elements like $x_1 = 2$, $x_2 = 12$, $x_3 = 4$ and $x_4 = 5$ that satisfy the relation $R_{3.fac}$. The tuple (2, 12, 4, 5) is therefore a constructive proof for the statement and the computation $R_{3.fac}(2, 12, 4, 5) = true$ is a verification of that proof. In contrast, the tuple (2, 12, 4, 7) is not a proof of the statement, since the check $R_{3.fac}(2, 12, 4, 7) = false$ does not verify the proof.

Example 107 (Tiny JubJub Membership). In our main example, we derive a SNARK that proves a pair (x, y) of field elements from \mathbb{F}_{13} to be a point on the tiny jubjub <u>curve</u> in its <u>Edwards form</u> XXX.

In the first step, we define a language such that points on the tiny jubjub curve are in 1:1 correspondence with words in that language.

Since the tiny jubjub curve is an elliptic curve over the field \mathbb{F}_{13} , we choose the alphabet $\Sigma = \mathbb{F}_{13}$. In this case, the set \mathbb{F}_{13}^* consists of all finite strings of field elements from \mathbb{F}_{13} . To define the grammar, recall from XXX that a point on the tiny jubjub curve is a pair (x,y) of field elements such that $3 \cdot x^2 + y^2 = 1 + 8 \cdot x^2 \cdot y^2$. We can use this equation to derive the following decision function:

$$R_{tiny.jj}: \mathbb{F}_{13}^* \to \{true, false\}; (x_1, \dots, x_n) \mapsto \begin{cases} true & n = 2 \text{ and } 3 \cdot x_1^2 + x_2^2 = 1 + 8 \cdot x_1^2 \cdot x_2^2 \\ false & else \end{cases}$$

The associated language $L_{tiny.jj}$ is then given as the set of all strings from \mathbb{F}_{13}^* that are mapped onto true by $R_{tiny.jj}$. We get

$$L_{tiny.jj} = \{(x_1, ..., x_n) \in \mathbb{F}_{13}^* \mid R_{tiny.jj}(x_1, ..., x_n) = true\}$$

We can claim the statement "There is a word in $L_{tiny.jj}$ " and because $L_{tiny.jj}$ is defined by $R_{tiny.jj}$, this statement is equivalent to the claim "The tiny jubjub curve in its Edwards form has curve a point."

A constructive proof for this statement is a pair (x,y) of field elements that satisfies the Edwards equation. Example XXX therfore implies that the tuple (11,6) is a constructive proof

Are we using w and x interchange ably or is there a difference between them?

check reference

jubjub

Edwards form

add reference

add reference

check wording

add reference

4002

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4029

and the computation $R_{tinv,ij}(11,6) = true$ is a proof verification. In contrast, the tuple (1,1) is 3995 not a proof of the statement, since the check $R_{tinv,ii}(1,1) = false$ does not verify the proof.

Exercise 39. Consider exercise XXX again. Define a decision function such that the associated 3997 language $L_{Exercise_XXX}$ consist precisely of all solutions to the equation 5x + 4 = 28 + 2x over \mathbb{F}_{13} . Provide a constructive proof for the claim: "There exist a word in $L_{Exercise_XXX}$ and verify the proof. 4000

Exercise 40. Consider the modular 6 arithmetics \mathbb{Z}_6 from example 8 in chapter 3, the alphabet $\Sigma=\mathbb{Z}_6$ and the decision function

$$R_{example_8}: \Sigma^* \to \{true, false\} \; ; \; x \mapsto \begin{cases} true & x.len() = 1 \text{ and } 3 \cdot x + 3 = 0 \\ false & else \end{cases}$$

Compute all words in the associated language $L_{example_8}$, provide a constructive proof for the statement "There exist a word in $L_{example_example_e}$ " and verify the proof.

check references

Instance and Witness As we have seen in the previous paragraph, statements provide membership claims in formal languages, and instances serve as constructive proofs for those claims. However, in the context of zero-knowledge proof systems, our naive notion of constructive proofs is refined in such a way that its possible to hide parts of the proof instance and still be able to prove the statement. In this context, it is therefore necessary to split a proof into a **public** part called the instance and a private part called a witness.

To account for this separation of a proof instance into a public and a private part, our previous definition of formal languages needs a refinement in the context of zero-knowledge proof systems. Instead of a single alphabet, the refined definition considers two alphabets Σ_I and Σ_W , and a decision function defined as follows:

$$R: \Sigma_I^* \times \Sigma_W^* \to \{true, false\} \; ; \; (i;w) \mapsto R(i;w)$$
 (6.3)

Words are therefore tuples $(i; w) \in \Sigma_I^* \times \Sigma_W^*$ with R(i; w) = true. The refined definition differentiates between public inputs $i \in \Sigma_I$ and private inputs $w \in \Sigma_W$. The public input i is called an **instance** and the private input w is called a witness of R.

If a decision function is given, the associated language is defined as the set of all tuples from the underlying alphabet that are verified by the decision function:

$$L_R := \{(i; w) \in \Sigma_I^* \times \Sigma_W^* \mid R(i; w) = true\}$$

$$(6.4)$$

In this refined context, a **statement** S is a claim that, given an instance $i \in \Sigma_I^*$, there is a witness $w \in \Sigma_W^*$ such that language L contains a word (i; w). A constructive **proof** for statement S is given by some string $P = (i; w) \in \Sigma_I^* \times \Sigma_W^*$ and a proof is **verified** by checking R(P) = true.

It is worth understanding the difference between statements as defined in XXX and the refined notion of statements from this paragraph. While statements in the sense of the previous paragraph can be seen as membership claims, statements in the refined definition can be seen as knowledge-proofs, where a prover claims knowledge of a witness for a given instance. For a more detailed discussion on this topic see [XXX sec 1.4]

add reference

Example 108 (SHA256 – Knowlege of Preimage). One of the most common examples in the context of zero-knowledge proof systems is the knowledge-of-a-preimage proof for some cryptographic hash function like SHA256, where a publicly known SHA256 digest value is given,

add reference

4031

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4047

4048

4049

4050

4051

4053

4054

4055

4056

4057

and the task is to prove knowledge of a preimage for that digest under the SHA256 function, without revealing that preimage.

preimage

To understand this problem in detail, we have to introduce a language able to describe the knowledge-of-preimage problem in such a way that the claim "Given digest i, there is a preimage w such that SHA256(w) = i" becomes a statement in that language. Since SHA256 is a function

$$SHA256: \{0,1\}^* \rightarrow \{0,1\}^{256}$$

that maps binary strings of arbitrary length onto binary strings of length 256 and we want to prove knowledge of preimages, we have to consider binary strings of size 256 as instances and binary strings of arbitrary length as witnesses.

An appropriate alphabet Σ_I for the set of all instances and an appropriate alphabet Σ_W for the set of all witnesses is therefore given by the set $\{0,1\}$ of the two binary letters and a proper decision function is given by:

$$R_{SHA256}: \{0,1\}^* \times \{0,1\}^* \rightarrow \{true, false\};$$

$$(i;w) \mapsto \begin{cases} true & i.len() = 256, \ i = SHA256(w) \\ false & else \end{cases}$$

We write L_{SHA256} for the associated language and note that it consists of words, which are tuples (i; w) such that the instance i is the SHA256 image of the witness w.

Given some instance $i \in \{0,1\}^{256}$, a statement in L_{SHA256} is the claim "Given digest i, there is a preimage w such that SHA256(w) = i", which is exactly what the knowledge-of-preimage problem is about. A constructive proof for this statement is therefore given by a preimage w to the digest i and proof verification is achieved by checking that SHA256(w) = i.

Example 109 (3-factorization). To give an intuition about the implication of refined languages, consider $L_{3.fac}$ from example 106 again. As we have seen, a constructive proof in $L_{3.fac}$ is given by 4 field elements x_1 , x_2 , x_3 and x_4 from \mathbb{F}_{13} such that the product in modular 13 arithmetics of the first three elements is equal to the 4'th element.

check reference

Splitting words from $L_{3.fac}$ into private and public parts, we can reformulate the problem and introduce different levels of privacy into the problem. For example, we could reformulate the membership statement of $L_{3.fac}$ into a statement where all factors x_1, x_2, x_3 of x_4 are private and only the product x_4 is public. A statement for this reformulation is then expressed by the claim: "Given a publicly known field element x_4 , there are three private factors of x_4 ". Assuming some instance x_4 , a constructive proof for the associated knowledge claim is then provided by any tuple (x_1, x_2, x_3) such that $x_1 \cdot x_2 \cdot x_3 = x_4$.

At this point, it is important to note that, while constructive proofs in the refinement don't look very different from constructive proofs in the original language, we will see in XXX that there are proof systems able to prove the statement (at least with high probability) without revealing anything about the factors x_1 , x_2 , or x_3 . This is why the importance of the refinement only becomes clear once more elaborate proofing methods beyond naive constructive proofs are provided.

add reference

We can formalize this new language, which we might call $L_{3.fac_zk}$, by defining the following decision function:

$$\begin{split} R_{3.fac_zk}: \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* &\rightarrow \{true, false\}; \\ &((i_1, \dots, i_n); (w_1, \dots, w_m)) \mapsto \begin{cases} true & n = 1, \ m = 3, \ i_1 = w_1 \cdot w_2 \cdot w_3 \\ false & else \end{cases} \end{split}$$

4059

4060

4061

4062

4063

4064

4065

4066

4068

4069

4070

4071

The associated language L_{3,fac_zk} is defined by all tuples from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto true under the decision function $R_{3.fac\ zk}$.

Considering the distinction we made between the instance and the witness part in $L_{3,fac\ zk}$, one might ask why we chose the factors x_1 , x_2 and x_3 to be the witness and the product x_4 to be the instance and why we didn't choose another combination? This was an arbitrary choice in the example. Every other combination of private and public factors would be equally valid. For example, it would be possible to declare all variables as private or to declare all variables as public. Actual choices are determined by the application only.

Example 110 (The Tiny JubJub Curve). Consider the language $L_{tiny.jj}$ from example 107. As check we have seen, a constructive proof in $L_{tiny,ij}$ is given by a pair (x_1,x_2) of field elements from \mathbb{F}_{13} such that the pair is a point of the tiny jubjub curve in its Edwards representation.

reference

We look at a reasonable splitting of words from $L_{tiny,ij}$ into private and public parts. The two obvious choices are to either choose both coordinates x_1 as x_2 as public inputs, or to choose both coordinates x_1 as x_2 as private inputs.

In case both coordinates are public, we define the grammar of the associated language by introducing the following decision function:

$$R_{tiny.jj.1}: \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* \to \{true, false\};$$

$$(I_1, \dots, I_n; W_1, \dots, W_m) \mapsto \begin{cases} true & n = 2, m = 0 \text{ and } 3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2 \\ false & else \end{cases}$$

The language $L_{tiny, jj, 1}$ is defined as the set of all strings from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto *true* by $R_{tiny, j, i, 1}$. 4073

In case both coordinates are private, we define the grammar of the associated refined language by introducing the following decision function:

$$R_{tiny.jj_zk} : \mathbb{F}_{13}^* \times \mathbb{F}_{13}^* \to \{true, false\} ;$$

$$(I_1, \dots, I_n; W_1, \dots, W_m) \mapsto \begin{cases} true & n = 0, m = m \text{ and } 3 \cdot W_1^2 + W_2^2 = 1 + 8 \cdot W_1^2 \cdot W_2^2 \\ false & else \end{cases}$$

The language L_{tiny,jj_zk} is defined as the set of all strings from $\mathbb{F}_{13}^* \times \mathbb{F}_{13}^*$ that are mapped onto true by $R_{tiny, jj}$ zk.

Exercise 41. Consider the modular 6 arithmetics \mathbb{Z}_6 from example 8 in chapter 3 as alphabets Σ_I and Σ_W and the following decision function

check reference

$$R_{linear}: \Sigma^* \times \Sigma^* \to \{true, false\};$$

$$(i; w) \mapsto \begin{cases} true & i.len() = 3 \text{ and } w.len() = 1 \text{ and } i_1 \cdot w_1 + i_2 = i_3 \\ false & else \end{cases}$$

Which of the following instances (i_1, i_2, i_3) has a proof of knowledge in L_{linear} ? 4076

- (3,3,0) 4077
- (2,1,0)4078
- (4,4,2)4079

Exercise 42 (Edwards Addition on Tiny JubJub). Consider the tiny-jubjub curve together with its Edwards addition law from example XXX. Define an instance alphabet Σ_I , a witness alphabet Σ_W and a decision function R_{add} with associated language L_{add} such that a string $(i; w) \in \Sigma_I^* \times \Sigma_W^*$ is a word in L_{add} if and only if i is a pair of curve points on the tiny-jubjub curve in Edwards form and w is the Edwards sum of those curve points.

add reference

Choose some instance $i \in \Sigma_I^*$, provide a constructive proof for the statement "There is a witness $w \in \Sigma_W^*$ such that (i; w) is a word in L_{add} " and verify that proof. Then find some instance $i \in \Sigma_I^*$ such that i has no knowledge proof in L_{add} .

Modularity From a developers perspective, it is often useful to construct complex statements and their representing languages from simple ones. In the context of zero-knowledge proof systems, those simple building blocks are often called **gadgets**, and gadget libraries usually contain representations of atomic types like booleans, integers, various hash functions, elliptic curve cryptography and many more. In order to synthesize statements, developers then combine predefined gadgets into complex logic. We call the ability to combine statements into more complex statements **modularity**.

To understand the concept of modularity on the level of formal languages defined by decision functions, we need to look at the **intersection** of two languages, which exists whenever both languages are defined over the same alphabet. In this case, the intersection is a language that consists of strings which are words in both languages.

To be more precise, let L_1 and L_2 be two languages defined over the same instance and witness alphabets Σ_I and Σ_W . Then the intersection $L_1 \cap L_2$ of L_1 and L_2 is defined as

$$L_1 \cap L_2 := \{ x \mid x \in L_1 \text{ and } x \in L_2 \}$$
 (6.5)

If both languages are defined by decision functions R_1 and R_2 , the following function is a decision function for the intersection language $L_1 \cap L_2$:

$$R_{L_1 \cap L_2}: \Sigma_I^* \times \Sigma_W^* \to \{true, false\}; (i, w) \mapsto R_1(i, w) \text{ and } R_2(i, w)$$
 (6.6)

The fact that the intersection of two decision function based languages is a decision function based language again is important from an implementations point of view: it allows to construct complex decision functions, their languages and associated statements from simple building blocks. Given a publicly known instance $i \in \Sigma_I^*$ a statement in an intersection language then claims knowledge of a witness that satisfies all relations simultaneously.

Can we reword this? It's grammatically correct but hard to read

6.2 Statement Representations

As we have seen in the previous section, formal languages and their definitions by decision functions are a powerful tool to describe statements in a formally rigorous manner.

However, from the perspective of existing zero-knowledge proof systems, not all ways to actually represent decision functions are equally useful. Depending on the proof system, some are more suitable than others. In this section, will describe two of the most common ways to represent decision functions and their statements.

6.2.1 Rank-1 Quadratic Constraint Systems

Although decision functions are expressible in various ways, many contemporary proofing systems require the deciding relation to be expressed in terms of a system of quadratic equations

4119

4120

4121

4122

4123

4124

4125

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

over a finite field. This is true in particular for pairing-based proofing systems like XXX, roughly because it is possible to check solutions to those equations "in the exponent" of pairing-friendly cryptographic groups.

add reference

In this section, we will therefore have a closer look at a particular type of quadratic equation called **rank-1 quadratic constraints systems**, which are a common standard in zero-knowledge proof systems. We will start with a general introduction to those systems and then look at their relation to formal languages. We will look into a common way to compute solutions to those systems, and then show how a simple compiler might derive rank-1 constraint systems from more high-level programming code.

R1CS representation To understand what **rank-1** (**quadratic**) **constraint systems** are in detail, let \mathbb{F} be a field, n, m and $k \in \mathbb{N}$ three numbers and a_j^i , b_j^i and $c_j^i \in \mathbb{F}$ constants from \mathbb{F} for every index $0 \le j \le n+m$ and $1 \le i \le k$. Then a rank-1 constraint system (R1CS) is defined as follows:

If a rank-1 constraint system is given, the parameter k is called the **number of constraints** If a tuple $(I_1, \ldots, I_n; W_1, \ldots, W_m)$ of field elements satisfies theses equations, (I_1, \ldots, I_n) is called an **instance** and (W_1, \ldots, W_m) is called an associated **witness** of the system.

Remark 1 (Matrix notation). The presentation of rank-1 constraint systems can be simplified using the notation of vectors and matrices, which abstracts over the indices. In fact if $x = (1,I,W) \in \mathbb{F}^{1+n+m}$ is a (n+m+1)-dimensional vector, A, B, C are $(n+m+1) \times k$ -dimensional matrices and \odot is the Schur/Hadamard product, then a R1CS can be written as

Schur/Hadam product

$$Ax \odot Bx = Cx$$

However, since we did not introduced matrix calculus in the book, we use XXX as the defining equation for rank-1 constraints systems. We only highlighted the matrix notation, because it is sometimes used in the literature.

add reference

Generally speaking, the idea of a rank-1 constraint system is to keep track of all the values that any variable can assume during a computation and to bind the relationships among all those variables that are implied by the computation itself. Enforcing relations between all the steps of a computer program, the execution is then constrained to be computed in exactly the expected way without any opportunity for deviations. In this sense, solutions to rank-1 constraint systems are proofs of proper program execution.

Example 111 (3-Factorization). To provide a better intuition of rank-1 constraint systems, consider the language $L_{3.fac_zk}$ from example 106 again. As we have seen, $L_{3.fac_zk}$ consists of words $(I_1; W_1, W_2, W_3)$ over the alphabet \mathbb{F}_{13} such that $I_1 = W_1 \cdot W_2 \cdot W_3$. We show how to rewrite the decision function as a rank-1 constraint system.

check reference

Since R1CS are systems of quadratic equations, expressions like $W_1 \cdot W_2 \cdot W_3$ which contain products of more than two factors (which are therefore not quadratic) have to be rewritten in a process often called **flattening**. To flatten the defining equation $I_1 = W_1 \cdot W_2 \cdot W_3$ of $L_{3.fac_zk}$ we introcuce a new variable W_4 , which captures two of the three multiplications in $W_1 \cdot W_2 \cdot W_3$. We

get the following two constraints

4143

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

$$W_1 \cdot W_2 = W_4$$
 constraint 1
 $W_4 \cdot W_3 = I_1$ constraint 2

Given some instance I_1 , any solution (W_1, W_2, W_3, W_4) to this system of equations provides a solution to the original equation $I_1 = W_1 \cdot W_2 \cdot W_3$ and vice versa. Both equations are therefore equivalent in the sense that solutions are in a 1:1 correspondence.

Looking at both equations, we see how each constraint enforces a step in the computation. In fact, the first constraint forces any computation to multiply the witness W_1 and W_2 first. Otherwise it would not be possible to compute the witness W_4 , which is needed to solve the second constraint. Witness W_4 therefore expresses the constraining of an intermediate computational state.

At this point, one might ask why equation 1 constrains the system to compute $W_1 \cdot W_2$ first, since computing $W_2 \cdot W_3$, or $W_1 \cdot W_3$ in the beginning and then multiplying with the remaining factor gives the exact same result. The reason is that the way we designed the R1CS prohibits any of these alternative computations, which shows that R1CS are in general not unique descriptions of a language: many different R1CS are able to describe the same problem.

To see that the two quadratic equations qualify as a rank-1 constraint system, choose the parameter n = 1, m = 4 and k = 2 as well as

With this choice, the rank-1 constraint system of our 3-factorization problem can be written in its most general form as follows:

Example 112 (The Tiny Jubjub curve). Consider the languages $L_{tiny,jj,1}$ from example 107, check which consist of words (I_1, I_2) over the alphabet \mathbb{F}_{13} such that $3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2$.

reference

We derive a rank-1 constraint system such that its associated language is equivalent to $L_{tinv,ii.1}$. To achieve this, we first rewrite the defining equation:

$$3 \cdot I_1^2 + I_2^2 = 1 + 8 \cdot I_1^2 \cdot I_2^2 \qquad \Leftrightarrow 0 = 1 + 8 \cdot I_1^2 \cdot I_2^2 - 3 \cdot I_1^2 - I_2^2 \qquad \Leftrightarrow 0 = 1 + 8 \cdot I_1^2 \cdot I_2^2 + 10 \cdot I_1^2 + 12 \cdot I_2^2$$

Since R1CSs are systems of quadratic equations, we have to reformulate this expression into a system of quadratic equations. To do so, we have to introduce new variables that constrain intermediate steps in the computation and we have to decide if those variables should be public or private. We decide to declare all new variables as private and get the following constraints

$$I_1 \cdot I_1 = W_1$$
 constraint 1
 $I_2 \cdot I_2 = W_2$ constraint 2
 $(8 \cdot W_1) \cdot W_2 = W_3$ constraint 3
 $(12 \cdot W_2 + W_3 + 10 \cdot W_1 + 1) \cdot 1 = 0$ constraint 4

To see that these four quadratic equations qualify as a rank-1 constraint system according to definition XXX, choose the parameter n = 2, m = 3 and k = 4 as well as

add reference

With this choice, the rank-1 constraint system of our tiny-jubjub curve point problem can be written in its most general form as follows:

$$\begin{pmatrix} a_0^1 + a_1^1 I_1 + a_2^1 I_2 + a_3^1 W_1 + a_4^1 W_2 + a_5^1 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^1 + b_1^1 I_1 + b_2^1 I_2 + b_3^1 W_1 + b_4^1 W_2 + b_5^1 W_3 \end{pmatrix} = \begin{pmatrix} c_0^1 + c_1^1 I_1 + c_2^1 I_2 + c_3^1 W_1 + c_4^1 W_2 + c_5^1 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^2 + a_1^2 I_1 + a_2^2 I_2 + a_3^2 W_1 + a_4^2 W_2 + a_5^2 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^2 + b_1^2 I_1 + b_2^2 I_2 + b_3^2 W_1 + b_4^2 W_2 + b_5^2 W_3 \end{pmatrix} = \begin{pmatrix} c_0^2 + c_1^2 I_1 + c_2^2 I_2 + c_3^2 W_1 + c_4^2 W_2 + c_5^2 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^3 + a_1^3 I_1 + a_2^3 I_2 + a_3^3 W_1 + a_4^3 W_2 + a_5^3 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^3 + b_1^3 I_1 + b_2^3 I_2 + b_3^3 W_1 + b_4^3 W_2 + b_5^3 W_3 \end{pmatrix} = \begin{pmatrix} c_0^3 + c_1^3 I_1 + c_2^3 I_2 + c_3^3 W_1 + c_4^3 W_2 + c_5^3 W_3 \end{pmatrix} \\ \begin{pmatrix} a_0^4 + a_1^4 I_1 + a_2^4 I_2 + a_3^4 W_1 + a_4^4 W_2 + a_5^4 W_3 \end{pmatrix} \cdot \begin{pmatrix} b_0^4 + b_1^4 I_1 + b_2^4 I_2 + b_3^4 W_1 + b_4^4 W_2 + b_5^4 W_3 \end{pmatrix} = \begin{pmatrix} c_0^4 + c_1^4 I_1 + c_2^4 I_2 + c_3^4 W_1 + c_4^4 W_2 + c_5^4 W_3 \end{pmatrix}$$

In what follows, we write L_{jubjub} for the associated language that consists of solutions to the R1CS.

To see that L_{jubjub} is equivalent to $L_{tiny.jj.1}$, let $(I_1,I_2;W_1,W_2,W_3)$ be a word in L_{jubjub} , then (I_1,I_2) is a word in $L_{tiny.jj.1}$, since the defining R1CS of L_{jubjub} implies that I_1 and I_2 satisfy the Edwards equation of the tiny jubjub curve. On the other hand, let (I_1,I_2) be a word in $L_{tiny.jj.1}$. Then $(I_1,I_2;I_1^2,I_2^2,8\cdot I_1^2\cdot I_2^2)$ is a word in L_{jubjub} and both maps are inverses of each other.

Exercise 43. Consider the language $L_{tiny.jj_zk}$ and define a rank-1 constraint relation with a decision function such that the associated language is equivalent to $L_{tiny.jj_zk}$.

R1CS Satisfiability To understand how rank-1 constraint systems define formal languages, observe that every R1CS over a field \mathbb{F} defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb{F} \times \mathbb{F}$ in the following way:

$$R_{R1CS}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\}; (I; W) \mapsto \begin{cases} true & (I; W) \text{ satisfies R1CS} \\ false & else \end{cases}$$
 (6.7)

Every R1CS therefore defines a formal language. The grammar of this language is encoded 4169 in the constraints, words are solutions to the equations and a **statement** is a knowledge claim 4170 "Given instance I, there is a witness W such that (I; W) is a solution to the rank-1 constraint 4171 system". A constructive proof to this claim is therefore an assignment of a field element to every 4172 witness variable, which is verified whenever the set of all instance and witness variables solves 4173 the R1CS. 4174

Remark 2 (R1CS satisfiability). It should be noted that in our definition, every R1CS defines its own language. However, in more theoretical approaches, another language usually called **R1CS** satisfiability is often considered, which is useful when it comes to more abstract problems like expressiveness or the computational complexity of the class of all R1CS. From our perspective, the R1CS satisfiability language is obtained by the union of all R1CS languages that are in our definition. To be more precise, let the alphabet $\Sigma = \mathbb{F}$ be a field. Then

$$L_{R1CS_SAT(\mathbb{F})} = \{(i; w) \in \Sigma^* \times \Sigma^* \mid \text{there is a R1CS } R \text{ such that } R(i; w) = true\}$$

Example 113 (3-Factorization). Consider the language $L_{3.fac_zk}$ from example 106 and the check R1CS defined in example ex:3-factorization-r1cs. As we have seen in ex:3-factorization-r1cs, 4176 solutions to the R1CS are in 1:1 correspondence with solutions to the decision function of 4177 $L_{3,fac\ zk}$. Both languages are therefore equivalent in the sense that there is a 1:1 correspon-4178 dence between words in both languages. 4179

To give an intuition of what constructive proofs in $L_{3.fac\ zk}$ look like, consider the instance $I_1 = 11$. To prove the statement "There exists a witness W such that $(I_1; W)$ is a word in $L_{3.fac_zk}$ " constructively, a proof has to provide assignments to all witness variables W_1 , W_2 , W_3 and W_4 . Since the alphabet is \mathbb{F}_{13} , an example assignment is given by W=(2,3,4,6) since $(I_1; W)$ satisfies the R1CS

$$W_1 \cdot W_2 = W_4$$
 # $2 \cdot 3 = 6$
 $W_4 \cdot W_3 = I_1$ # $6 \cdot 4 = 11$

A proper constructive proof is therefore given by P = (2,3,4,6). Of course, P is not the only 4180 possible proof for this statement. Since factorization is not unique in a field in general, another 4181 constructive proof is given by P' = (3, 5, 12, 2). 4182

Example 114 (The tiny jubjub curve). Consider the language L_{jubjub} from example 107 and check its associated R1CS. To see how constructive proofs in L_{jubjub} look like, consider the instance $(I_1,I_2)=(11,6)$. To prove the statement "There exists a witness W such that $(I_1,I_2;W)$ is a word in $L_{jub\,jub}$ " constructively, a proof has to provide assignments to all witness variables W_1 , W_2 and W_3 . Since the alphabet is \mathbb{F}_{13} , an example assignment is given by W=(4,10,8) since $(I_1, I_2; W)$ satisfies the R1CS

$$I_1 \cdot I_1 = W_1$$
 $11 \cdot 11 = 4$ $I_2 \cdot I_2 = W_2$ $6 \cdot 6 = 10$ $(8 \cdot W_1) \cdot W_2 = W_3$ $(8 \cdot 4) \cdot 10 = 8$ $(12 \cdot W_2 + W_3 + 10 \cdot W_1 + 1) \cdot 1 = 0$ $12 \cdot 10 + 8 + 10 \cdot 4 + 1 = 0$

A proper constructive proof is therefore given by P = (4, 10, 8), which shows that the instance 4183 (11,6) is a point on the tiny jubjub curve. 4184

reference

check reference

check reference

reference

Modularity As we discussed on page 133 XXX, it is often useful to construct complex statements and their representing languages from simple ones. Rank-1 constraint systems are particularly useful for this, as the intersection of two R1CS over the same alphabet results in a new R1CS over that same alphabet.

check reference

To be more precise, let S_1 and S_2 be two R1CS over \mathbb{F} , then a new R1CS S_3 is obtained by the intersection $S_3 = S_1 \cap S_2$ of S_1 and S_2 . In this context, intersection means that both the equations of S_1 and the equations of S_2 have to be satisfied in order to provide a solution for the system S_3 .

As a consequence, developers are able to construct complex R1CS from simple ones and this modularity provides the theoretical foundation for many R1CS compilers, as we will see in XXX.

add reference

6.2.2 Algebraic Circuits

As we have seen in the previous paragraphs, rank-1 constraint systems are quadratic equations such that solutions are knowledge proofs for the existence of words in associated languages. From the perspective of a proofer, it is therefore important to solve those equations efficiently.

However, in contrast to systems of linear equation, no general methods are known that solve systems of quadratic equations efficiently. Rank-1 constraint systems are therefore impractical from a proofers perspective and auxiliary information is needed that helps to compute solutions efficiently.

Methods which compute R1CS solutions are sometimes called **witness generator functions**. To provide a common example, we introduce another class of decision functions called **algebraic circuits**. As we will see, every algebraic circuit defines an associated R1CS and also provides an efficient way to compute solutions for that R1CS.

It can be shown that every space- and time-bounded computation is expressible as an algebraic circuit. Transforming high-level computer programs into those circuits is a process often called **flattening**.

To understand this in more detail, we will introduce our model for algebraic circuits and look at the concept of circuit execution and valid assignments. After that, we will show how to derive rank-1 constraint systems from circuits and how circuits are useful to compute solutions to their R1CS efficiently.

Algebraic circuit representation To see what algebraic circuits are, let \mathbb{F} be a field. An algebraic circuit is then a directed acyclic (multi)graph that computes a polynomial function over \mathbb{F} . Nodes with only outgoing edges (source nodes) represent the variables and constants of the function and nodes with only incoming edges (sink nodes) represent the outcome of the function. All other nodes have exactly two incoming edges and represent the defining field operations **addition** as well as **multiplication**. Graph edges represent the flow of the computation along the nodes.

To be more precise, we call a directed acyclic multi-graph $C(\mathbb{F})$ an **algebraic circuit** over \mathbb{F} in this book if the following conditions hold:

- The set of edges has a total order.
- Every source node has a label that represents either a variable or a constant from the field F.
- Every sink node has exactly one incoming edge and a label that represents either a variable or a constant from the field \mathbb{F} .

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

- Every node that is neither a source nor a sink has exactly two incoming edges and a label from the set $\{+,*\}$ that represents either addition or multiplication in \mathbb{F} .
- All outgoing edges from a node have the same label.
- Outgoing edges from a node with a label that represents a variable have a label.
- Outgoing edges from a node with a label that represents multiplication have a label, if there is at least one labeled edge in both input path.
- All incoming edges to sink nodes have a label.
- If an edge has two labels S_i and S_j it gets a new label $S_i = S_j$.
- No other edge has a label.
- Incoming edges to sink nodes that are labeled with a constant $c \in \mathbb{F}$ are labeled with the same constant. Every other edge label is taken from the set $\{W, I\}$ and indexed compatible with the order of the edge set.

It should be noted that the details in the definitions of algebraic circuits vary between different sources. We use this definition as it is conceptually straightforward and well-suited for penand-paper computations.

To get a better intuition of our definition, let $C(\mathbb{F})$ be an algebraic circuit. Source nodes are the inputs to the circuit and either represent variables or constants. In a similar way, sink nodes represent termination points of the circuit and are either output variables or constants. Constant sink nodes enforce computational outputs to take on certain values.

Nodes that are neither source nodes nor sink nodes are called **arithmetic gates**. Arithmetic gates that are decorated with the "+"-label are called addition-gates and arithmetic gates that are decorated with the "."-label are called multiplication-gates. Every arithmetic gate has exactly two inputs, represented by the two incoming edges.

Since the set of edges is ordered, we can write it as $\{E_1, E_2, \dots, E_n\}$ for some $n \in \mathbb{N}$ and we use those indices to index the edge labels, too. Edge labels are therefore either constants or symbols like I_i , W_i or S_i , where j is an index compatible with the edge order. Labels I_i represent instance variables, labels W_j witness variables. Labels on the outgoing edges of input variables constrain the associated variable to that edge. Every other edge defines a constraining equation in the associated R1CS. we will explain this in more detail in XXX.

add refer-

Notation and Symbols 10. In synthesizing algebraic circuits, assigning instance I_j or witness W_i labels to appropriate edges is often the final step. It is therefore convenient to not distinguish these two types of edges in previous steps. To account for that, we often simply write S_i for an edge label, indicating that the private/public property of the label is unspecified and it might represent an instance or a witness label.

Example 115 (Generalized factorization SNARK). To give a simple example of an algebraic 4263 circuit, consider our 3-factorization problem from example 106 again. To express the problem 4264 in the algebraic circuit model, consider the following function 4265

check reference

$$f_{3,fac}: \mathbb{F}_{13} \times \mathbb{F}_{13} \times \mathbb{F}_{13} \to \mathbb{F}_{13}; (x_1,x_2,x_3) \mapsto x_1 \cdot x_2 \cdot x_3$$

Using this function, we can describe the zero-knowledge 3-factorization problem from 106, check 4266 in the following way: Given instance $I_1 \in \mathbb{F}_{13}$, a valid witness is a preimage of $f_{3,fac}$ at reference 4267

the point I_1 , i.e., a valid witness consists of three values W_1 , W_2 and W_3 from \mathbb{F}_{13} such that $f_{3,fac}(W_1,W_2,W_3)=I_1$.

To see how this function can be transformed into an algebraic circuit over \mathbb{F}_{13} , it is a common first step to introduce brackets into the function's definition and then write the operations as binary operators, in order to highlight how exactly every field operation acts on its two inputs. Due to the associativity laws in a field, we have several choices. We choose

$$f_{3.fac}(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$$
 # bracket choice
= $(x_1 \cdot x_2) \cdot x_3$ # operator notation
= $MUL(MUL(x_1, x_2), x_3)$

Using this expression, we can write an associated algebraic circuit by first constraining the variables to edge labels $W_1 = x_1$, $W_2 = x_2$ and $W_3 = x_3$ as well as $I_1 = f_{3.fac}(x_1, x_2, x_3)$, taking the distinction between private and public inputs into account. We then rewrite the operator representation of $f_{3.fac}$ into circuit nodes and get the following:

4274

4275

4276

4277

4278

4279

4280

In this case, the directed acyclic multi-graph is a binary tree with three leaves (the source nodes) labeled by x_1 , x_2 and x_3 , one root (the single sink node) labeled by $f(x_1, x_2, x_3)$ and two internal nodes, which are labeled as multiplication gates.

The order we used to label the edges is chosen to make the edge labeling consistent with the choice of W_4 as defined in example XXX. This order can be obtained by adepth-first right-to-left-first traversal algorithm.

add reference

Example 116. To give a more realistic example of an algebraic circuit, look at the defining equation XXX of the tiny-jubjub curve again. A pair of field elements $(x,y) \in \mathbb{F}^2_{13}$ is a curve point, precisely if

add reference

$$3 \cdot x^2 + y^2 = 1 + 8 \cdot x^2 \cdot y^2$$

To understand how one might transform this identity into an algebraic circuit, we first rewrite this equation by shifting all terms to the right. We get:

$$3 \cdot x^{2} + y^{2} = 1 + 8 \cdot x^{2} \cdot y^{2} \qquad \Leftrightarrow 0 = 1 + 8 \cdot x^{2} \cdot y^{2} - 3 \cdot x^{2} - y^{2} \qquad \Leftrightarrow 0 = 1 + 8 \cdot x^{2} \cdot y^{2} + 10 \cdot x^{2} + 12 \cdot y^{2}$$

Then we use this expression to define a function such that all points of the tiny-jubjub curve are characterized as the function preimages at 0.

$$f_{tiny-ij}: \mathbb{F}_{13} \times \mathbb{F}_{13} \to \mathbb{F}_{13}; (x,y) \mapsto 1 + 8 \cdot x^2 \cdot y^2 + 10 \cdot x^2 + 12 \cdot y^2$$

Every pair of points $(x,y) \in \mathbb{F}^2_{13}$ with $f_{tiny-jj}(x,y) = 0$ is a point on the tiny-jubjub curve, and there are no other curve points. The preimage $f_{tiny-jj}^{-1}(0)$ is therefore a complete description of the tiny-jubjub curve.

We can transform this function into an algebraic circuit over \mathbb{F}_{13} . We first introduce brackets into potentially ambiguous expressions and then rewrite the function in terms of binary operators. We get

$$f_{tiny-jj}(x,y) = 1 + 8 \cdot x^{2} \cdot y^{2} + 10 \cdot x^{2} + 12y^{2} \Leftrightarrow (8 \cdot ((x \cdot x) \cdot (y \cdot y))) + (1 + 10 \cdot (x \cdot x))) + (12 \cdot (y \cdot y)) \Leftrightarrow = ADD(ADD(MUL(8,MUL(MUL(x,x),MUL(y,y))),ADD(1,MUL(10,MUL(x,x)))),MUL(12,MUL(y,y)))$$

Since we haven't decided which part of the computation should be public and which part should be private, we use the unspecified symbol S to represent edge labels. Constraining all variables to edge labels $S_1 = x$, $S_2 = y$ and $S_6 = f_{tiny-jj}$, we get the following circuit, representing the function $f_{tiny-jj}$, by inductively replacing binary operators with their associated arithmetic gates:

This circuit is not a graph, but a multigraph, since there is more than one edge between some of the nodes.

In the process of designing of circuits from functions, it should be noted that circuit representations are not unique in general. In case of the function $f_{tiny-jj}$, the circuit shape is dependent on our choice of bracketing in XXX. An alernative design i,s for example, given by the following circuit, which occurs when the bracketed expression $8 \cdot ((x \cdot x) \cdot (y \cdot y))$ is replaced by the expression $(x \cdot x) \cdot (8 \cdot (y \cdot y))$.

add reference

4297

4289

4290

4291

4292

4293

4294

4296

Of course, both circuits represent the same function, due to the associativity and commutativity laws that hold true in any field.

With a circuit that represents the function $f_{tiny-jj}$, we can now proceed to derive a circuit that constrains arbitrary pairs (x,y) of field elements to be points on the tiny-jubjub curve. To do so, we have to constrain the output to be zero, that is, we have to constrain $S_6 = 0$. To indicate this in the circuit, we replace the output variable by the constant 0 and constrain the related edge label accordingly. We get

The previous circuit enforces input values assigned to the labels S_1 and S_2 to be points on the tiny jubjub curve. However, it does not specify which labels are considered public and which are considered private. The following circuit defines the inputs to be public, while all other labels are private:

It can be shown that every space- and time-bounded computation can be transformed into an algebraic circuit. We call any process that transforms a bounded computation into a circuit **flattening**.

We already said this in this chapter

Circuit Execution Algebraic circuits are directed, acyclic multi-graphs, where nodes represent variables, constants, or addition and multiplication gates. In particular, every algebraic circuit with n input nodes decorated with variable symbols and m output nodes decorated with variables can be seen a function that transforms an input tuple (x_1, \ldots, x_n) from \mathbb{F}^n into an output tuple (f_1, \ldots, f_m) from \mathbb{F}^m . The transformation is done by sending values associated to nodes along their outgoing edges to other nodes. If those nodes are gates, then the values are transformed according to the gate label and the process is repeated along all edges until a sink node is reached. We call this computation **circuit execution**.

When executing a circuit, it is possible to not only compute the output values of the circuit but to derive field elements for all edges, and, in particular, for all edge labels in the circuit. The result is a tuple $(S_1, S_2, ..., S_n)$ of field elements associated to all labeled edges, which we call a **valid assignment** to the circuit. In contrast, any assignment $(S'_1, S'_2, ..., S'_n)$ of field elements to edge labels that can not arise from circuit execution is called an **invalid assignment**.

Valid assignments can be interpreted as **proofs for proper circuit execution** because they keep a record of the computational result as well as intermediate computational steps.

Example 117 (3-factorization). Consider the 3-factorization problem from example 106 and its representation as an algebraic circuit from XXX. We know that the set of edge labels is given by $S := \{I_1; W_1, W_2, W_3, W_4\}$.

To understand how this circuit is executed, consider the variables $x_1 = 2$, $x_2 = 3$ as well as $x_3 = 4$. Following all edges in the graph, we get the assignments $W_1 = 2$, $W_2 = 3$ and $W_3 = 4$. Then the assignments of W_1 and W_2 enter a multiplication gate and the output of the gate is $2 \cdot 3 = 6$, which we assign to W_4 , i.e. $W_4 = 6$. The values W_4 and W_3 then enter the second multiplication gate and the output of the gate is $6 \cdot 4 = 11$, which we assign to I_1 , i.e. $I_1 = 11$.

A valid assignment to the 3-factorization circuit $C_{3.fac}(\mathbb{F}_{13})$ is therefore given by the set $S_{valid} := \{11; 2, 3, 4, 6\}$. We can picture this assignment in the circuit as follows:

check reference

add reference

To see what an invalid assignment looks like, consider the assignment $S_{err} := \{8; 2, 3, 4, 7\}$. In this assignment, the input values are the same as in the previous case. The associated circuit is:

4348

4349

4350

This assignment is invalid, as the assignments of I_1 and W_4 cannot be obtained by executing the circuit.

Example 118. To compute a more realistic algebraic circuit execution, consider the defining circuit $C_{tiny-jj}(\mathbb{F}_{13})$ from example 114 again. We already know from the way this circuit is constructed that any valid assignment with $S_1 = x$, $S_2 = y$ and $S_6 = 0$ will ensure that the pair (x,y) is a point on the tiny jubjub curve XXX in its Edwards representation.

4354 4355 4356

From example 114 we know that the pair (11,6) is a proper point on the tiny-jubjub curve and we use this point as input to a circuit execution. We get:

check reference

add reference

check reference

4362

4363

4364

4365

4366

4367

4368

4369

4370

Executing the circuit, we indeed compute $S_6 = 0$ as expected, which proves that (11,6) is a point on the tiny-jubjub curve in its Edwards representation. A valid assignment of $C_{tiny-jj}(\mathbb{F}_{13})$ is therefore given by

$$S_{tiny-jj} = \{S_1, S_2, S_3, S_4, S_5, S_6\} = \{11, 6, 4, 10, 1, 0\}$$

Circuit Satisfiability To understand how algebraic circuits give rise to formal languages, observe that every algebraic circuit $C(\mathbb{F})$ over a fields \mathbb{F} defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb{F} \times \mathbb{F}$ in the following way:

$$R_{C(\mathbb{F})}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\}; (I; W) \mapsto \begin{cases} true & (I; W) \text{is valid assignment to } C(\mathbb{F}) \\ false & else \end{cases}$$
 (6.8)

Every algebraic circuit therefore defines a formal language. The grammar of this language is encoded in the shape of the circuit, words are assignments to edge labels that are derived from circuit execution, and **statements** are knowledge claims "Given instance I, there is a witness W such that (I;W) is a valid assignment to the circuit". A constructive proof to this claim is therefore an assignment of a field element to every witness variable, which is verified by executing the circuit to see if the assignment of the execution meets the assignment of the proof.

In the context of zero-knowledge proof systems, executing circuits is also often called **witness generation**, since in applications the instance part is usually public, while its the task of a proofer to compute the witness part.

Remark 3 (Circuit satisfiability). It should be noted that, in our definition, every circuit defines its own language. However, in more theoretical approaches another language usually called **circuit satisfiability** is often considered, which is useful when it comes to more abstract problems like expressiveness, or computational complexity of the class of **all** algebraic circuits over a given field. From our perspective the circuit satisfiability language is obtained by union of all circuit languages that are in our definition. To be more precise, let the alphabet $\Sigma = \mathbb{F}$ be a field. Then

Should we refer to R1CS satisfiability (p. 137 here?

 $L_{CIRCUIT\ SAT(\mathbb{F})} = \{(i; w) \in \Sigma^* \times \Sigma^* \mid \text{there is a circuit } C(\mathbb{F}) \text{ such that } (i; w) \text{ is valid assignment} \}$

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390 4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

Example 119 (3-Factorization). Consider the circuit $C_{3,fac}$ from example XXX again. We call add referthe associated language $L_{3.fac_circ}$.

ence

To understand how a constructive proof of a statement in $L_{3.fac_circ}$ looks like, consider the instance $I_1 = 11$. To provide a proof for the statement "There exist a witness W such that $(I_1; W)$ is a word in $L_{3.fac_circ}$ " a proof therefore has to consists of proper values for the variables W_1 , W_2 , W_3 and W_4 . Any proofer therefore has to find input values for W_1 , W_2 and W_3 and then execute the circuit to compute W_4 under the assumption $I_1 = 11$.

Example XXX implies that (2,3,4,6) is a proper constructive proof and in order to verify the proof a verifier needs to execute the circuit with instance $I_1 = 11$ and inputs $W_1 = 2$, $W_2 = 3$ and $W_3 = 4$ to decide whether the proof is a valid assignment or not.

add reference

Associated Constraint Systems As we have seen in XXX, rank-1 constraint systems define a way to represent statements in terms of a system of quadratic equations over finite fields, suitable for pairing-based zero-knowledge proof systems. However, those equations provide no practical way for a proofer to actually compute a solution. On the other hand, algebraic circuits can be executed in order to derive valid assignments efficiently.

add reference

In this paragraph, we show how to transform any algebraic circuit into a rank-1 constraint system such that valid circuit assignments are in 1:1 correspondence with solutions to the associated R1CS.

To see this, let $C(\mathbb{F})$ be an algebraic circuit over a finite field \mathbb{F} , with a set of edge labels $\{S_1, S_2, \dots, S_n\}$. Then one of the following steps is executed for every edge label S_i from that

• If the edge label S_i is an outgoing edge of a multiplication gate, the R1CS gets a new quadratic constraint

$$(left input) \cdot (right input) = S_i \tag{6.9}$$

where (left input) respectively (right input) is the output from the symbolic execution of the subgraph that consists of the left respectively right input edge of this gate, and all edges and nodes that have this edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

• If the edge label S_i is an outgoing edge of an addition gate, the R1CS gets a new quadratic constraint

$$(\text{left input} + \text{right input}) \cdot 1 = S_i \tag{6.10}$$

where (left input) respectively (right input) is the output from the symbolic execution of the subgraph that consists of the left respectively right input edge of this gate and all edges and nodes that have this edge in their path, starting with constant inputs or labeled outgoing edges of other nodes.

No other edge label adds a constraint to the system.

The result of this method is a rank-1 constraint system, and in this sense, every algebraic circuit $C(\mathbb{F})$ generates a R1CS R, which we call the **associated R1CS** of the circuit. It can be shown that a tuple of field elements (S_1, S_2, \dots, S_n) is a valid assignment to a circuit if and only if the same tuple is a solution to the associated R1CS. Circuit executions therefore compute solutions to rank-1 constraints systems efficiently.

To understand the contribution of algebraic gates to the number of constraints, note that by definition multiplication gates have labels on their outgoing edges if and only if there is at least one labeled edge in both input paths, or if the outgoing edge is an input to a sink node. This implies that multiplication with a constant is essentially free in the sense that it doesn't add a new constraint to the system, as long as that multiplication gate is not am input to an output node.

Moreover, addition gates have labels on their outgoing edges if and only if they are inputs to sink nodes. This implies that addition is essentially free in the sense that it doesn't add a new constraint to the system, as long as that addition gate is not an input to an output node.

Example 120 (3-factorization). Consider our 3-factorization problem from example XXX and 4419 the associated circuit $C_{3.fac}(\mathbb{F}_{13})$. Out task is to transform this circuit into an equivalent rank-1 4420 constraint system.

add refer-

4422

4413

4415

4416

4417

4418

4421

We start with an empty R1CS, and, in order to generate all constraints, we have to iterate over 4423 the set of edge labels $\{I_1; W_1, W_2, W_3, W_4\}$.

Starting with the edge label I_1 , we see that it is an outgoing edge of a multiplication gate, and, since both input edges are labeled, we have to add the following constraint to the system:

$$(\text{left input}) \cdot (\text{right input}) = I_1 \Leftrightarrow W_4 \cdot W_3 = I_1$$

Next, we consider the edge label W_1 and, since, it's not an outgoing edge of a multiplication or 4425 addition label, we don't add a constraint to the system. The same holds true for the labels W_2 4426 and W_3 . 4427

For edge label W_4 , we see that it is an outgoing edge of a multiplication gate, and, since both input edges are labeled, we have to add the following constraint to the system:

$$(\text{left input}) \cdot (\text{right input}) = W_4 \Leftrightarrow W_2 \cdot W_1 = W_4$$

Since there are no more labeled edges, all constraints are generated, and we have to combine them to get the associated R1CS of $C_{3.fac}(\mathbb{F}_{13})$:

$$W_4 \cdot W_3 = I_1$$
$$W_2 \cdot W_1 = W_4$$

This system is equivalent to the R1CS we derived in example 111. The languages $L_{3,fac,zk}$ and check 4428 $L_{3.fac\ circ}$ are therefore equivalent and both the circuit as well as the R1CS are just two different 4429 ways of expressing the same language.

reference

Example 121. To consider a more general transformation, we consider the tiny-jubjub circuit from example 114 again. A proper circuit is given by

check reference

To compute the number of constraints, observe that we have 3 multiplication gates that have labels on their outgoing edges and 1 addition gate that has a label on its outgoing edge. We therefore have to compute 4 quadratic constraints.

In order to derive the associated R1CS, we have start with an empty R1CS and then iterate over the set $\{S_1, S_2, S_3, S_4, S_5, S_6 = 0\}$ of all edge labels, in order to generate the constraints.

Considering edge label S_1 , we see that the associated edges are not outgoing edges of any algebraic gate, and we therefore have to add no new constraint to the system. The same holds true for edge label S_2 . Looking at edge label S_3 , we see that the associated edges are outgoing edges of a multiplication gate and that the associated subgraph is given by:

 Both the left and the right input to this multiplication gate are labeled by S_1 . We therefore have to add the following constraint to the system:

$$S_1 \cdot S_1 = S_3$$

Looking at edge label S_4 , we see that the associated edges are outgoing edges of a multiplication gate and that the associated subgraph is given by:

4450

4451 4452

Both the left and the right input to this multiplication gate are labeled by S_2 and we therefore have to add the following constraint to the system:

$$S_2 \cdot S_2 = S_4$$

Edge label S_5 is more interesting. To see if it implies a constraint, we have to construct the associated subgraph first, which consists of all edges and all nodes in all path starting either at a constant input or a labeled edge. We get

4456

4457

The right input to the associated multiplication gate is given by the labeled edge S_3 . However, the left input is not a labeled edge, but has a labeled edge in one of its path. This implies that we have to add a constraint to the system. To compute the left factor of that constraint, we have to compute the output of subgraph associated to the left edge, which is $8 \cdot W_2$. This gives the constraint

$$(S_4 \cdot 8) \cdot S_3 = S_5$$

The last edge label is the constant $S_6 = 0$. To see if it implies a constraint, we have to construct 4459 the associated subgraph, which consists of all edges and all nodes in all path starting either at a 4460 constant input or a labeled edge. We get

4462

4461

4463 4464

> Both the left and the right input are unlabeled, but have a labeled edges in their path. This implies that we have to add a constraint to the system. Since the gate is an addition gate, the right factor in the quadratic constraint is always 1 and the left factor is computed by symbolically executing all inputs to all gates in sub-circuit. We get

$$(12 \cdot S_4 + S_5 + 10 \cdot S_3 + 1) \cdot 1 = 0$$

Since there are no more labeled outgoing edges, we are done deriving the constraints. Combining all constraints together, we get the following R1CS:

$$S_1 \cdot S_1 = S_3$$

$$S_2 \cdot S_2 = S_4$$

$$(S_4 \cdot 8) \cdot S_3 = S_5$$

$$(12 \cdot S_4 + S_5 + 10 \cdot S_3 + 1) \cdot 1 = 0$$

which is equivalent to the R1CS we derived in example 114. The languages $L_{3,fac,zk}$ and 4465 $L_{3.fac_circ}$ are therefore equivalent and both the circuit as well as the R1CS are just two different 4466 ways to express the same language.

reference

4469

4471

4472

4473

4474

4475

4478

4479

4480

4481

4482 4483

4484

4485

4486

4489

4491

4492

4493

4494

4495

4497

4498

4499

4500

6.2.3 Quadratic Arithmetic Programs

We have introduced algebraic circuits and their associated rank-1 constraints systems as two particular models able to represent space- and time-bounded computation. Both models define formal languages, and associated membership as well as knowledge claims can be constructively proofed by executing the circuit in order to compute solutions to its associated R1CS.

One reason why those systems are useful in the context of succinct zero-knowledge proof systems is because any R1CS can be transformed into another computational model called **quadratic arithmetic programs** (QAP), which serve as the basis for some of the most efficient succinct non-interactive zero-knowledge proof generators that currently exist.

As we will see, proving statements for languages that have checking relations defined by quadratic arithmetic programs can be achieved by providing certain polynomials, and those proofs can be verified by checking a particular divisibility property.

QAP representation To understand what quadratic arithmetic programs are in detail, let \mathbb{F} be a field and R a rank-1 constraints system over \mathbb{F} such that the number of non-zero elements in \mathbb{F} is strictly larger then the number k of constraints in R. Moreover, let a_j^i , b_j^i and $c_j^i \in \mathbb{F}$ for every index $0 \le j \le n+m$ and $1 \le i \le k$, be the defining constants of the R1CS and m_1, \ldots, m_k be arbitrary, invertible and distinct elements from \mathbb{F} .

Then a **quadratic arithmetic program** [QAP] of the R1CS is the following set of polynomials over \mathbb{F}

$$QAP(R) = \left\{ T \in \mathbb{F}[x], \left\{ A_j, B_j, C_j \in \mathbb{F}[x] \right\}_{h=0}^{n+m} \right\}$$
 (6.11)

where $T(x) := \prod_{l=1}^{k} (x - m_l)$ is a polynomial of degree k, called the **target polynomial** of the QAP and A_i , B_i as well as C_i are the unique degree k-1 polynomials defined by the equations

$$A_j(m_i) = a_j^i \quad B_j(m_i) = b_j^i \quad C_j(m_i) = C_j^i \quad j = 1, \dots, n + m + 1, i = 1, \dots, k$$
 (6.12)

Given some rank-1 constraint system, an associated quadratic arithmetic program is therefore nothing but a set of polynomials, computed from the constants in the R1CS. To see that the polynomials A_j , B_j and C_j are uniquely defined by the equations in XXX, recall that a a polynomial of degree k-1 is completely determined on k evaluation points and the equation XXX precisely determines those k evaluation points.

Since we only consider polynomials over fields, Lagrange's interpolation method from 3.31 in chapter 3 can be used to derive the polynomials A_j , B_j and C_j from their defining equations XXX. A practical method to compute a QAP from a given R1CS therefore consists of two steps. If the R1CS consists of k constraints, first choose k invertible and mutually different points from the underlaying field. Every choice defines a different QAP for the same R1CS. Then use Lagrange's method and equation XXX to compute the polynomials A_j , B_j and C_j for every $1 \le j \le k$.

Example 122 (Generalized factorization SNARK). To provide a better intuition of quadratic arithmetic programs and how they are computed from their associated rank-1 constraint systems, consider the language $L_{3,fac}$ the from example 106 and its associated R1CS

$$W_1 \cdot W_2 = W_4$$
 constraint 1
 $W_4 \cdot W_3 = I_1$ constraint 2

In this example we want to transform this R1CS into an associated QAP. In a first step, we have to compute the defining constants a_i^i , b_i^i and c_i^i of the R1CS. According to XXX, we have

add reference

"by"?

add reference

check reference

add reference

add reference

check reference

add reference

Since the R1CS is defined over the field \mathbb{F}_{13} and has two constraining equations, we need to choose two arbitrary but distinct elements m_1 and m_2 from \mathbb{F}_{13} . We choose $m_1 = 5$, and $m_2 = 7$ and with this choice we get the target polynomial

$$T(x) = (x - m_1)(x - m_2)$$
 # Definition of T
 $= (x - 5)(x - 7)$ # Insert our choice
 $= (x + 8)(x + 6)$ # Negatives in \mathbb{F}_{13}
 $= x^2 + x + 9$ # expand

Then we have to compute the polynomials A_j , B_j and C_j by their defining equation from the R1CS coefficients. Since the R1CS has two constraining equations, those polynomials are of degree 1 and they are defined by their evaluation at the point $m_1 = 5$ and the point $m_2 = 7$.

At point m_1 , each polynomial A_j is defined to be a_j^1 and at point m_2 , each polynomial A_j is defined to be a_j^2 . The same holds true for the polynomials B_j as well as C_j . Writing all these equations now, we get:

$$A_0(5) = 0$$
, $A_1(5) = 0$, $A_2(5) = 1$, $A_3(5) = 0$, $A_4(5) = 0$, $A_5(5) = 0$
 $A_0(7) = 0$, $A_1(7) = 0$, $A_2(7) = 0$, $A_3(7) = 0$, $A_4(7) = 0$, $A_5(7) = 1$
 $B_0(5) = 0$, $B_1(5) = 0$, $B_2(5) = 0$, $B_3(5) = 1$, $B_4(5) = 0$, $B_5(5) = 0$
 $B_0(7) = 0$, $B_1(7) = 0$, $B_2(7) = 0$, $B_3(7) = 0$, $B_4(7) = 1$, $B_5(7) = 0$
 $C_0(5) = 0$, $C_1(5) = 0$, $C_2(5) = 0$, $C_3(5) = 0$, $C_4(5) = 0$, $C_5(5) = 1$
 $C_0(7) = 0$, $C_1(7) = 1$, $C_2(7) = 0$, $C_3(7) = 0$, $C_4(7) = 0$, $C_5(7) = 0$

Lagrange's interpolation implies that a polynomial of degree k, that is, that zero on k+1 points has to be the zero polynomial. Since our polynomials are of degree 1 and determined on 2 points, we therefore know that the only non-zero polynomials in our QAP are A_2 , A_5 , B_3 , B_4 , C_1 and C_5 , and that we can use Lagrange's interpolation to compute them.

To compute A_2 we note that the set S in our version of Lagrange's method is given by $S = \{(x_0, y_0), (x_1, y_1)\} = \{(5, 1), (7, 0)\}$. Using this set we get:

$$A_{2}(x) = y_{0} \cdot l_{0} + y_{1} \cdot l_{1}$$

$$= y_{0} \cdot \left(\frac{x - x_{1}}{x_{0} - x_{1}}\right) + y_{1} \cdot \left(\frac{x - x_{0}}{x_{1} - x_{0}}\right) = 1 \cdot \left(\frac{x - 7}{5 - 7}\right) + 0 \cdot \left(\frac{x - 5}{7 - 5}\right)$$

$$= \frac{x - 7}{-2} = \frac{x - 7}{11}$$

$$= 6(x - 7) = 6x + 10$$
11⁻¹ = 6
- 7 = 6 and 6 \cdot 6 = 10

4526

4527

4528

4529

4530

4531

4532

To compute A_5 , we note that the set S in our version of Lagrange's method is given by $S = \{(x_0, y_0), (x_1, y_1)\} = \{(5, 0), (7, 1)\}$. Using this set we get:

$$A_5(x) = y_0 \cdot l_0 + y_1 \cdot l_1$$

$$= y_0 \cdot \left(\frac{x - x_1}{x_0 - x_1}\right) + y_1 \cdot \left(\frac{x - x_0}{x_1 - x_0}\right) = 0 \cdot \left(\frac{x - 7}{5 - 7}\right) + 1 \cdot \left(\frac{x - 5}{7 - 5}\right)$$

$$= \frac{x - 5}{2}$$

$$= 7(x - 5) = 7x + 4$$
$-5 = 8$ and $7 \cdot 8 = 4$

Using Lagrange's interpolation, we can deduce that $A_2 = B_3 = C_5$ as well as $A_5 = B_4 = C_1$, since they are polynomials of degree 1 that evaluate to same values on 2 points. Using this, we get the following set of polynomials

$A_0(x) = 0$	$B_0(x) = 0$	$C_0(x) = 0$
$A_1(x) = 0$	$B_1(x) = 0$	$C_1(x) = 7x + 4$
$A_2(x) = 6x + 10$	$B_2(x)=0$	$C_2(x)=0$
$A_3(x) = 0$	$B_3(x) = 6x + 10$	$C_3(x)=0$
$A_4(x) = 0$	$B_4(x) = 7x + 4$	$C_4(x) = 0$
$A_5(x) = 7x + 4$	$B_5(x) = 0$	$C_5(x) = 6x + 10$

We can invoke Sage to verify our computation. In sage every polynomial ring has a function lagrange_polynomial that takes the defining points as inputs and the associated Lagrange polynomial as output.

```
sage: F13 = GF(13)
                                                                                628
4515
    sage: F13t.<t> = F13[]
                                                                                629
4516
    sage: T = F13t((t-5)*(t-7))
                                                                                630
4517
    sage: A2 = F13t.lagrange_polynomial([(5,1),(7,0)])
                                                                                631
    sage: A5 = F13t.lagrange_polynomial([(5,0),(7,1)])
                                                                                632
4519
    sage: T == F13t(t^2 + t + 9)
                                                                                633
4520
                                                                                634
4521
    sage: A2 == F13t(6*t + 10)
                                                                                635
4522
    True
                                                                                636
4523
    sage: A5 == F13t(7*t + 4)
                                                                                637
4524
    True
                                                                                638
4525
```

Combining this computation with the target polynomial we derived earlier, a quadratic arithmetic program associated to the rank-1 constraint system R_{3,fac_zk} is given by

$$QAP(R_{3.fac_zk}) = \{x^2 + x + 9, \\ \{0, 0, 6x + 10, 0, 0, 7x + 4\}, \{0, 0, 0, 6x + 10, 7x + 4, 0\}, \{0, 7x + 4, 0, 0, 0, 6x + 10\}\}$$

QAP Satisfiability One of the major points of quadratic arithmetic programs in proofing systems is that solutions of their associated rank-1 constraints systems are in 1:1 correspondence with certain polynomials *P* such that *P* is divisible by the target polynomial *T* of the QAP if and only if the solution id a solution. Verifying solutions to the R1CS and hence, checking proper circuit execution is then achievable by polynomial division of *P* by *T*.

clarify language

To be more specific, let R be some rank-1 constraints system with associated assignment variables $(I_1, \ldots, I_n; W_1, \ldots, W_m)$ and let QAP(R) be a quadratic arithmetic program of R. Then

4538

4540

4542

4543

4544

4545

4546

4547 4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

the tuple $(I_1, \ldots, I_n; W_1, \ldots, W_m)$ is a solution to the R1CS if and only if the following polynomial 4533 is divisible by the target polynomial T: 4534

$$P_{(I:W)} = (A_0 + \sum_{i=1}^{n} I_j \cdot A_j + \sum_{i=1}^{m} W_j \cdot A_{n+j}) \cdot (B_0 + \sum_{i=1}^{n} I_j \cdot B_j + \sum_{i=1}^{m} W_j \cdot B_{n+j}) - (C_0 + \sum_{i=1}^{n} I_j \cdot C_j + \sum_{i=1}^{m} W_j \cdot C_{n+j})$$
(6.13)

Every tuple (I; W) defines a polynomial $P_{(I:W)}$, and, since each polynomial A_i , B_i and C_i is of 4535 degree k - 1, $P_{(I:W)}$ is of degree $(k - 1) \cdot (k - 1) = k^2 - 2k + 1$. 4536

To understand how quadratic arithmetic programs define formal languages, observe that every QAP over a field \mathbb{F} defines a decision function over the alphabet $\Sigma_I \times \Sigma_W = \mathbb{F} \times \mathbb{F}$ in the following way:

$$R_{QAP}: \mathbb{F}^* \times \mathbb{F}^* \to \{true, false\}; (I; W) \mapsto \begin{cases} true & P_{(I;W)} \text{ is divisible by } T \\ false & else \end{cases}$$
 (6.14)

Every QAP therefore defines a formal language, and, if the QAP is associated to an R1CS, it can be shown that the two languages are equivalent. A **statement** is a membership claim "There is a word (I;W) in L_{OAP} ". A proof to this claim is therefore a polynomial $P_{(I;W)}$, which is verified by dividing $P_{(I:W)}$ by T.

Note the structural similarity to the definition of an R1CS in XXX and the different ways of computing proofs in both systems. For circuits and their associated rank-1 constraints systems, a constructive proof consists of a valid assignment of field elements to the edges of the circuit, or the variables in the R1CS. However, in the case of QAPs, a valid proof consists of a polynomial

add refer-

To compute a proof for a statement in L_{OAP} given some instance I, a proofer first needs to compute a constructive proof W, e.g. by executing the circuit. With (I; W) at hand, the proofer can then compute the polynomial $P_{(I;W)}$ and publish it as proof.

Verifying a constructive proof in the case of a circuit is achieved by executing the circuit, comparing the result to the given proof, and verifying the same proof in the R1CS picture means checking if the elements of the proof satisfy all equation.

In contrast, verifying a proof in the case of a QAP is done by polynomial division of the proof P by the target polynomial T of the QAP. The proof checks out if and only if P is divisible by T.

Example 123. Consider the quadratic arithmetic program $QAP(R_{3,fac\ zk})$ from example XXX and its associated R1CS from example XXX. To give an intuition of how proofs in the language $L_{QAP(R_{3.fac_zk})}$ lets consider the instance $I_1 = 11$. As we know from example XXX, $(W_1, W_2, W_3, W_5) = (2, 3, 4, 6)$ is a proper witness, since $(I_1; W_1, W_2, W_3, W_5) = (11; 2, 3, 4, 6)$ is a valid circuit assignment and hence, a solution to $R_{3,fac}$ and a constructive proof for language In order to transform this constructive proof into a membership proof in language $L_{QAP(R_{3.fac_zk})}$

add reference

add reference

add reference

a proofer has to use the elements of the constructive proof, to compute the polynomial $P_{(I:W)}$.

In the case of $(I_1; W_1, W_2, W_3, W_5) = (11; 2, 3, 4, 6)$, the associated proof is computed as fol-

lows:

$$P_{(I;W)} = (A_0 + \sum_{j=1}^{n} I_j \cdot A_j + \sum_{j=1}^{m} W_j \cdot A_{n+j}) \cdot (B_0 + \sum_{j=1}^{n} I_j \cdot B_j + \sum_{j=1}^{m} W_j \cdot B_{n+j}) - (C_0 + \sum_{j=1}^{n} I_j \cdot C_j + \sum_{j=1}^{m} W_j \cdot C_{n+j})$$

$$= (2(6x+10) + 6(7x+4)) \cdot (3(6x+10) + 4(7x+4)) - (11(7x+4) + 6(6x+10))$$

$$= ((12x+7) + (3x+11)) \cdot ((5x+4) + (2x+3)) - ((12x+5) + (10x+8))$$

$$= (2x+5) \cdot (7x+7) - (9x)$$

$$= (x^2 + 2 \cdot 7x + 5 \cdot 7x + 5 \cdot 7) - (9x)$$

$$= (x^2 + x + 9x + 9) - (9x)$$

$$= x^2 + x + 9$$

Given instance $I_1 = 11$ a proofer therefore provides the polynomial $x^2 + x + 9$ as proof. To verify this proof, any verifier can then look up the target polynomial T from the QAP and divide $P_{(I;W)}$ by T. In this particular example, $P_{(I;W)}$ is equal to the target polynomial T, and hence, it is divisible by T with P/T = 1. The verification therefore checks the proof.

To give an example of a false proof, consider the tuple $(I_1; W_1, W_2, W_3, W_4) = (11, 2, 3, 4, 8)$. Executing the circuit, we can see that this is not a valid assignment and not a solution to the R1CS, and hence, not a constructive knowledge proof in $L_{3.fac_zk}$. However, a proofer might use these values to construct a false proof $P_{(I:W)}$:

$$P'_{(I;W)} = (A_0 + \sum_{j=1}^{n} I_j \cdot A_j + \sum_{j=1}^{m} W_j \cdot A_{n+j}) \cdot (B_0 + \sum_{j=1}^{n} I_j \cdot B_j + \sum_{j=1}^{m} W_j \cdot B_{n+j}) - (C_0 + \sum_{j=1}^{n} I_j \cdot C_j + \sum_{j=1}^{m} W_j \cdot C_{n+j})$$

$$= (2(6x+10) + 8(7x+4)) \cdot (3(6x+10) + 4(7x+4)) - (8(6x+10) + 11(7x+4))$$

$$= 8x^2 + 6$$

Given instance $I_1 = 11$, a proofer therefore provides the polynomial $8x^2 + 6$ as proof. To verify this proof, any verifier can look up the target polynomial T from the QAP and divide $P_{(I;W)}$ by T. However, polynomial division has a remainder

$$(8x^2+6)/(x^2+x+9) = 8 + \frac{5x+12}{x^2+x+9}$$

This implies that $P_{(I;W)}$ is not divisible by T, and hence, the verification does not check the proof. Any verifier can therefore show that the proof is false.

```
4581 sage: F13 = GF(13) 647

4582 sage: F13t.<t> = F13[] 648

4583 sage: T = F13t(t^2 + t + 9) 649

4584 sage: P = F13t((2*(6*t+10)+8*(7*t+4))*(3*(6*t+10)+4*(7*t+4))-(650)

8*(6*t+10)+11*(7*t+4)))
```

4586	$sage: P == F13t(8*t^2 + 6)$	651
4587	True	652
4588	<pre>sage: P % T # remainder</pre>	653
4589	5*t + 12	654

590 Chapter 7

Circuit Compilers

As we have seen in the previous chapter, statements can be formalized as membership or knowledge claims in formal language, and algebraic circuits as well as rank-1 constraint systems are two practically important ways to define those languages.

However, both algebraic circuits and rank-1 constraint systems are not ideal from a developers point of view, because they deviate substantially from common programing paradigms. Writing real-world applications as circuits and the associated verification in terms of rank-1 constraint systems is as least as troublesome as writing any other low-level language like assembler code. To allow for complex statement design, it is therefore necessary to have some kind of compiler framework, capable of transforming high-level languages into arithmetic circuits and associated rank-1 constraint systems.

As we have seen in XXX as well as XXX and XXX, both arithmetic circuits and rank-1 constraint systems have a modularity property by which it is possible to synthesize complex circuits from simple ones. A basic approach taken by many circuit/R1CS compilers is therefore to provide a library of atomic and simple circuits and then define a way to combine those basic building blocks into arbitrary complex systems.

In this chapter, we provide an introduction to basic concepts of so-called **circuit compilers** and derive a toy language which we can "compile" in a pen-and-paper approach into algebraic circuits and their associated rank-1 constraint systems.

We start with a general introduction to our language, and then introduce atomic types like booleans and unsigned integers. Then we define the fundamental control flow primitives like the if-then-else conditional and the bounded loop. We will look at basic functionality primitives like elliptic curve cryptography. Primitives like these are often called **gadgets** in the literature.

7.1 A Pen-and-Paper Language

To explain basic concepts of circuit compilers and their associated high-level languages, we derive an informal toy language and associated "brain-compiler" which we name PAPER (Pen-And-Paper Execution Rules). PAPER allows programmers to define statements in Rust-like pseudo-code. The language is inspired by ZOKRATES and circom.

7.1.1 The Grammar

In PAPER, any statement is defined as an ordered list of functions, where any function has to be declared in the list before it is called in another function of that list. The last entry in a statement has to be a special function, called main. Functions take a list of typed parameters as inputs

add references

add references to these languages?

4624

4625

4626

4627

4628

4629

and compute a tuple of typed variables as output, where types are special functions that define how to transform that type into another type, ultimately transforming any type into elements of the base field where the circuit is defined over.

Any statement is parameterized over the field that the circuit will be defined on, and has additional optional parameters of unsigned type, needed to define the size of array or the counter of bounded loops. The following definition makes the grammar of a statement precise using a command line language like description:

```
statement <Name> {F:<Field> [ , <N_1: unsigned>,... ] } {
4630
      [fn <Name>([[pub]<Arg>:<Type>,...]) -> (<Type>,...) {
4631
        [let [pub] <Var>:<Type> ;... ]
4632
        [let const <Const>:<Type>=<Value> ; ... ]
4633
        Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>)) ;
4634
        return (<Var>,...);
4635
      } ; . . . ]
4636
      fn main([[pub]<Arg>:<Type>,...]) -> (<Type>,...){
4637
        [let [pub] <Var>:<Type> ;... ]
4638
        [let const <Const>:<Type>=<Value> ;... ]
4639
        Var<==(fn([<Arg>|<Const>|<Var>,...])|(<Arg>|<Const>|<Var>));
        return (<Var>,...);
4641
      } ;
4642
4643
```

Function arguments and variables are private by default, but can be declared as public by the pub specifier. Declaring arguments and variables as public always overwrites any previous or conflicting private declarations. Every argument, constant or variable has a type, and every type is defined as a function that transforms that type into another type:

```
4648 type <TYPE>( t1 : <TYPE_1>) -> TYPE_2 {
4649    let t2: TYPE_2 <== fn(TYPE_1)
4650    return t2
4651 }
```

Many real-world circuit languages are based on a similar, but of course more sophisticated approach than PAPER. The purpose of PAPER is to show basic principles of circuit compilers and their associated high-level languages.

Example 124. To get a better understanding of the grammar of PAPER, the following constitutes proper high-level code that follows the grammar of the PAPER language, assuming that all types in that code have been defined elsewhere.

```
statement MOCK_CODE \{F: F_43, N_1 = 1024, N_2 = 8\} {
4658
      fn foo(in 1 : F, pub in 2 : TYPE 2) \rightarrow F {
4659
        let const c_1 : F = 0;
4660
        let const c_2 : TYPE_2 = SOME_VALUE ;
4661
        let pub out_1 : F ;
4662
        out 1<== c 1 ;
4663
        return out_1 ;
4664
4665
4666
      fn bar(pub in_1 : F) -> F {
        let out_1 : F ;
4668
        out_1<==foo(in_1);
4669
        return out_1 ;
4670
```

```
} ;
4671
4672
      fn main(in_1 : TYPE_1) -> (F, TYPE_2) {
4673
         let const c_1 : TYPE_1
                                    = SOME_VALUE ;
4674
         let const c_2 : F = 2;
4675
         let const c 3 : TYPE 2
                                    = SOME VALUE
         let pub out_1 : F ;
4677
         let out_2 : TYPE_2 ;
4678
         c_1 <== in_1 ;
4679
         out 1 <== foo(c 2);
4680
         out 2 <== TYPE 2 ;
4681
         return (out_1,out_2) ;
4682
4683
    }
4684
```

7.1.2 The Execution Phases

In contrast to normal executable programs, programs for circuit compilers have two modes of execution. The first mode, usually called the **setup phase**, is executed in order to generate the circuit and its associated rank-1 constraint system, the latter of which is then usually used as input to some zero-knowledge proof system.

The second mode of execution is usually called the **prover phase**. In this phase, a prover usually computes a valid assignment to the circuit. Depending on the use case, this valid assignment is then either directly used as constructive proof for proper circuit execution or is transferred as input to the proof generation algorithm of some zero-knowledge proof system, where the full-sized, non hiding constructive proof is processed into a succinct proof with various levels of zero knowledge.

Modern circuit languages and their associated compilers abstract over those two phases and provide a unified **interphase** to the developer, who then writes a single program that can be used in both phases.

To give the reader a clear, conceptual distinction between the two phases, PAPER keeps them separated. Code can be "brain-compiled" during the **setup-phase** in a pen-and-paper approach into visual circuits. Once a circuit is derived, it can be executed in a **prover phase** to generate a valid assignment. The valid assignment is then interpreted as a constructive proof for a knowledge claim in the associated language.

The Setup Phase In PAPER, the task of the setup phase is to compile code in the PAPER language into a visual representation of an algebraic circuit. Deriving the circuit from the code in a pen-and-paper style is what we call **brain compiling**.

Given some statement description that adheres to the correct grammar, we start circuit development with an empty circuit, compile the main function first and then inductively compile all other functions as they are called during the process.

For every function we compile, we draw a box-node for every argument, every variable and every constant of that function. If the node represents a variable, we label it with that variable's name, and if it represents a constant, we label it with that constant's value. We group arguments into a subgraph labeled "inputs" and return values into a subgraph labeled "outputs". We then group everything into a subgraph and label that subgraph with the function's name.

After this is done, we have to do a consistency and type check for every occurrence of the

assignment operator <==. We have to ensure that the expression on the right side of the operator is well defined and that the types of both side match.

Then we compile the right side of every occurrence of the assignment operator <==. If the right side is a constant or variable defined in this function, we draw a dotted line from the box-node that represents the left side of <== to the box node that represents the right side of the same operator. If the right side represents an argument of that function we draw a line from the box-node that represents the left side of <== to the box node that represents the right side of the same operator.

If the right side of the <== operator is a function, we look into our database, find its associated circuit and draw it. If no circuit is associated to that function yet, we repeat the compilation process for that function, drawing edges from the function's argument to its input nodes and from the functions output nodes to the nodes on the right side of <==.

During that process, edge labels are drawn according to the rules from XXX. If the associated variable represents a private value, we use the W label to indicate a witness, and if it represents a public value, we use the I label to indicate an instance.

add reference

Once this is done, we compile all occurring types in a function, by compiling the function of each type. We do this inductively until we reach the type of the base field. Circuits have no notion of types, only of field elements; hence, every type needs to be compiled to the field type in a sequence of compilation steps.

The compilation stops once we have inductively replaced all functions by their circuits. The result is a circuit that contains many unnecessary box nodes. In a final optimization step, all box nodes that are directly linked to each other are collapsed into a single node, and all box nodes that represent the same constants are collapsed into a single node.

Of course, PAPER's brain-compiler is not properly defined in any formal manner. Its purpose is to highlight important steps that real-world compilers undergo in their setup phases.

Example 125 (A trivial Circuit). To give an intuition of how to write and compile circuits in the PAPER language, consider the following statement description:

```
statement trivial circuit {F:F 13} {
4743
      fn main\{F\} (in1 : F, pub in2 : F) -> (F,F)\{F\}
4744
         let const outc1 : F = 0;
4745
         let const inc1 : F = 7;
4746
         let out1 : F ;
4747
         let out2 : F ;
4748
         out1 <== inc1;
4749
         out2 <== in1;
4750
         outc1 <== in2;
4751
         return (out1, out2) ;
4752
      }
4753
    }
4754
```

To brain-compile this statement into an algebraic circuit with PAPER, we start with an empty circuit and evaluate function main, which is the only function in this statement.

We draw box-nodes for every argument, every constant and every variable of the function and label them with their names or values, respectively. Then we do a consistency and type check for every <== operator in the function. Since the circuit only wires inputs to outputs and all elements have the same type, the check is valid.

Then we evaluate the right side of the assignment operators. Since, in our case, the right side of each operator is not a function, we draw edges from the box-nodes on the right side to the associated box node on the left side. To label those edges, we use the general rules of algebraic

circuits as defined in XXX. According to those rules, every incoming edge of a sink node has a label and every outgoing edge of a source node has a label, if the node is labeled with a variable.

Since nodes that represent constants are implicitly assumed to be private, and since the public specifier determines if an edge is labeled with *W* or *I*, we get the following circuit:

add reference

The Prover Phase In PAPER, a so-called prover phase can be executed once the setup phase has generated a circuit image from its associated high-level code. This is done by executing the circuit while assigning proper values to all input nodes of the circuit. However, in contrast to most real-world compilers, PAPER does not tell the prover how to find proper input values to a given circuit. Real-world programing languages usually provide this data by computations that are done outside of the circuit.

Example 126. Consider the circuit from example XXX. Valid assignments to this circuit are constructive proofs that the pair of inputs (S_1, S_2) is a point on the tiny-jubjub curve. However, the circuit does not provide a way to actually compute proper values for S_1 and S_2 . Any real-world system therefore needs an auxiliary computation that provides those values.

add reference

7.2 Common Programing concepts

In this section, we cover concepts that appear in almost every programming language, and see how they can be implemented in circuit compilers.

7.2.1 Primitive Types

Primitive data types like booleans, (unsigned) integers, or strings are the most basic building blocks one can expect to find in every general high-level programing language. In order to write statements as computer programs that compile into circuits, it is therefore necessary to implement primitive types as constraint systems, and define their associated operations as circuits.

In this section, we look at some common ways to achieve this. After a recapitulation of the atomic type of prime field elements, we start with an implementation of the boolean type and its associated boolean algebra as circuits. After that, we define unsigned integers based on the boolean type, and leave the implementation of signed integers as an exercise to the reader.

It should be noted, however, that while primitive data types in common programing languages (like C, Go, or Rust) have a one-to-one correspondence with objects in the computer's memory, this is not the case for most languages that compile into algebraic circuits. As we will see in the following paragraphs, common primitives like booleans or unsigned integers require many constraints and memory. Primitives different from the underlying field elements can be expensive.

The base-field type

4797

4798

4800

4801

4802

4803

4804

4805

4806

4807

4808

4813

4814

4815

4816

4823

4824

4825

4826

4827

4828

Since both algebraic circuits and their associated rank-1 constraint systems are defined over a finite field, elements from that field are the atomic informational units in those models. In this sense, field elements $x \in \mathbb{F}$ are for algebraic circuits what bits are for computers.

In PAPER, we write F for this type and specify the actual field instance for every statement in curly brackets after the name of that statement. Two functions are associated to this type, which are induced by the **addition** and **multiplication** law in the field F. We write

$$MUL: F \times F \to F; (x, y) \mapsto MUL(x, y)$$
(7.1)

$$ADD: F \times F \to F; (x, y) \mapsto ADD(x, y)$$
 (7.2)

Circuit compilers have to compile these functions into algebraic gates, as explained in XXX. Every other function has to be expressed in terms of them and proper wiring.

add reference

To represent addition and multiplication in the PAPER language, we define the following two functions:

```
4809 fn MUL(x : F, y : F) \rightarrow (MUL(x,y):F) {}
4810 fn ADD(x : F, y : F) \rightarrow (ADD(x,y):F) {}
```

The compiler then compiles every occurrence of the MUL or the ADD function into the following circuits:

Example 127 (Basic gates). To give an intuition of how a real-world compiler might transform addition and multiplication in algebraic expressions into a circuit, consider the following PAPER statement:

```
4817 statement basic_ops {F:F_13} {
4818    fn main(in_1 : F, pub in_2 : F) -> (out_1:F, out_2:F) {
4819       out_1 <== MUL(in_1,in_2);
4820       out_2 <== ADD(in_1,in_2);
4821    }
4822 }</pre>
```

To compile this into an algebraic circuit, we start with an empty circuit and evaluate the function main, which is the only function in this statement.

We draw an inputs subgraph containing box-nodes for every argument of the function, and an outputs subgraph containing box-nodes for every factor in the return value. Since all of these nodes represent variables of the field type, we don't have to add any type constraints to the circuit.

We check the validity of every expression on the right side of every <== operator including a type check. In our case, every variable is of the field type and hence the types match the types of the MUL as well as the ADD function and the type of the left sides of <== operators.

We evaluate the expressions on the right side of every <== operator inductively, replacing every occurrence of a function with a subgraph that represents its associated circuit.

According to PAPER, every occurrence of the public specifier overwrites the associate private default value. Using the appropriate edge labels we get:

Any real-world compiler might process its associated high-level language in a similar way, replacing functions, or gadgets by predefined associated circuits. This process is often followed by various optimization steps that try to reduce the number of constraints as much as possible.

In PAPER, we optimize this circuit by collapsing all box nodes that are directly connected to other box nodes, adhering to the rule that a variable's public specifier overwrites any private specifier. Reindexing edge labels, we get the following circuit as our pen and pencil compiler output:

Example 128 (3-factorization). Consider our 3-factorization problem from example XXX<u>and</u> the associated circuit $C_{3.fac_zk}(\mathbb{F}_{13})$ we provided in example XXX<u>.</u> To understand the process of replacing high-level functions by their associated circuits inductively, we want define a PAPER statement that we brain-compile into an algebraic circuit equivalent to $C_{3.fac_zk}(\mathbb{F}_{13})$. We write

add reference

add reference

```
4849 statement 3_fac_zk {F:F_13} {
4850    fn main(x_1 : F, x_2 : F, x_3 : F) -> (pub 3_fac_zk : F) {
4851       f_3.fac_zk <== MUL( MUL( x_1 , x_2 ) , x_3 ) ;
4852    }
4853 }</pre>
```

Using PAPER, we start with an empty circuit and then add 3 input nodes to the input subgraph as well as 1 output node to the output subgraph. All these nodes are decorated with the associated variable names. Since all of these nodes represent variables of the field type, we don't have to add any type constraints to the circuit.

We check the validity of every expression on the right side of the single <== operator including a type check.

We evaluate the expressions on the right side of every <== operator inductively. We have two nested multiplication functions and we replace them by the associated multiplication circuits, starting with the most outer function. We get:

In a final optimization step, we collaps all box nodes directly connected to other box nodes, adhering to the rule that a variables public specifier overwrites any private specifier. Reindexing edge labels we get the following circuit:

4868

4869

4870

4871

4872

4873

4874

The Subtraction Constraint System By definition, algebraic circuits only contain addition and multiplication gates, and it follows that there is no single gate for field subtraction, despite the fact that subtraction is a native operation in every field.

High-level languages and their associated circuit compilers, therefore, need another way to deal with subtraction. To see how this can be achieved, recall that subtraction is defined by addition with the additive inverse, and that the inverse can be computed efficiently by multiplication with -1. A circuit for field subtraction is therefore given by

4875

4880

4881

4882

4887

4889

Using the general method from XXX, the circuits associated rank-1 constraint system is given by:

add reference

$$(S_1 + (-1) \cdot S_2) \cdot 1 = S_3 \tag{7.3}$$

Any valid assignment $\{S_1, S_2, S_3\}$ to this circuit therefore enforces the value S_3 to be the difference $S_1 - S_2$.

Real-world compilers usually provide a gadget or a function to abstract over this circuit such that programers can use subtraction as if it were native to circuits. In PAPER, we define the following subtraction function that compiles to the previous circuit:

```
4883 fn SUB(x : F, y : F) -> (SUB(x,y) : F) {
4884 constant c : F = -1;
4885 SUB <== ADD(x , MUL(y , c));
4886 }
```

In the setup phase of a statement, we compile every occurrence of the SUB function into an instance of its associated subtraction circuit, and edge labels are generated according to the rules from XXX.

add reference

The Inversion Constraint System By definition, algebraic circuits only contain addition and multiplication gates, and it follows that there is no single gate for field inversion, despite the fact that inversion is a native operation in every field.

If the underlying field is a prime field, one approach would be to use Fermat's little theorem XXX to compute the multiplicative inverse inside the circuit. To see how this works, let \mathbb{F}_p be the prime field. The multiplicative inverse x^{-1} of a field element $x \in \mathbb{F}$ with $x \neq 0$ is then given by $x^{-1} = x^{p-2}$, and computing x^{p-2} in the circuit therefore computes the multiplicative inverse.

add reference

Unfortunately, real-world primes p are large and computing x^{p-2} by repeated multiplication of x with itself is infeasible. A "double and multiply" approach (as described in XXX) is faster, as it computes the power in roughly $log_2(p)$ steps, but still adds a lot of constraints to the circuit.

add reference

Computing inverses in the circuit makes no use of the fact that inversion is a native operation in any field. A more constraints friendly approach is therefore to compute the multiplicative inverse outside of the circuit and then only enforce correctness of the computation in the circuit.

To understand how this can be achieved, observe that a field element $y \in \mathbb{F}$ is the multiplicative inverse of a field element $x \in \mathbb{F}$ if and only if $x \cdot y = 1$ in \mathbb{F} . We can use this, and define a circuit that has two inputs, x and y, and enforces $x \cdot y = 1$. It is then guaranteed that y is the multiplicative inverse of x. The price we pay is that we can not compute y by circuit execution, but auxiliary data is needed to tell any prover which value of y is needed for a valid circuit assignment. The following circuit defines the constraint

Using the general method from XXX, the circuit is transformed into the following rank-1 constraint system:

add reference

$$S_1 \cdot S_2 = 1 \tag{7.4}$$

Any valid assignment $\{S_1, S_2\}$ to this circuit enforces that S_2 is the multiplicative inverse of S_1 , and, since there is no field element S_2 such that $0 \cdot S_2 = 1$, it also handles the fact that the multiplicative inverse of 0 is not defined in any field.

Real-world compilers usually provide a gadget or a function to abstract over this circuit, and those functions compute the inverse x^{-1} as part of their witness generation process. Programers then don't have to care about providing the inverse as auxiliary data to the circuit. In PAPER, we define the following inversion function that compiles to the previous circuit:

```
4919 fn INV(x : F, y : F) -> (x_inv : F) {
4920    constant c : F = 1 ;
4921    c <== MUL(x, y));
4922    x_inv <== y;
```

As we see, this functions takes two inputs, the field value and its inverse. It therefore does not handle the computation of the inverse by itself. This is to keep PAPER as simple as possible.

In the setup phase, we compile every occurrence of the INV function into an instance of the inversion circuit XXX, and edge labels are generated according to the rules from XXX.

add reference

add reference

4929

4930

4931

4932

4933

4934

4935

4939

4959

4960

4961

4962

The Division Constraint System By definition, algebraic circuits only contain addition and multiplication gates, and it follows that there is no single gate for field division, despite the fact that division is a native operation in every field.

Implementing division as a circuit, we use the fact that division is multiplication with the multiplicative inverse. We therefore define division as a circuit using the inversion circuit and constraint system from the previous paragraph. Expensive inversion is computed outside of the circuit and then provided as circuit input. We get

Using the method from XXX, we transform this circuit into the following rank-1 constraint system:

$$S_2 \cdot S_3 = 1$$
$$S_1 \cdot S_3 = S_4$$

Any valid assignment $\{S_1, S_2, S_3, S_4\}$ to this circuit enforces S_4 to be the field division of S_1 by S_2 . It handles the fact that division by 0 is not defined, since there is no valid assignment in case $S_2 = 0$.

In PAPER, we define the following division function that compiles to the previous circuit:

```
4940 fn DIV(x : F, y : F, y_inv : F) -> (DIV : F) {
4941    DIV <== MUL(x, INV(y, y_inv));
4942 }
```

In the setup phase, we compile every occurrence of the binary INV operator into an instance of the inversion circuit.

Exercise 44. Let F be the field \mathbb{F}_5 of modular 5 arithmetics from example XXX. Brain compile the following PAPER statement into an algebraic circuit:

add reference

add refer-

ence

```
statement STUPID_CIRC {F: F_5} {
4947
      fn foo(in_1 : F, in_2 : F) -> (out_1 : F, out_2 : F,) {
4948
        constant c_1 : F = 3;
4949
        out_1<== ADD( MUL( c_1 , in_1 ) , in_1 ) ;
4950
        out_2<== INV( c_1 , in_2 ) ;
4951
      } ;
4952
4953
      fn main(in_1 : F, in_2 ; F) -> (out_1 : F, out_2 : TYPE_2) {
4954
        constant (c_1, c_2) : (F, F) = (3, 2);
4955
         (out_1, out_2) <== foo(in_1, in_2);
4956
      } ;
4957
    }
4958
```

Exercise 45. Consider the tiny-jubjub curve from example XXX and its associated circuit XXX. Write a statement in PAPER that brain-compiles the statement into a circuit equivalent to the one derived in XXX, assuming that curve points are instances and every other assignment is a witness.

add reference

add reference

add reference

Exercise 46. Let $F = \mathbb{F}_{13}$ be the modular 13 prime field and $x \in F$ some field element. Define a statement in PAPER such that given instance x a field element $y \in F$ is a witness for the statement if and only if y is the square root of x.

Brain compile the statement into a circuit and derive its associated rank-1 constraint system. Consider the instance x = 9 and compute a constructive proof for the statement.

The boolean Type

booleans are a classical primitive type, implemented by virtually every higher programing language. It is therefore important to implement booleans in circuits. One of the most common ways to do this is by interpreting the additive and multiplicative neutral element $\{0,1\} \subset \mathbb{F}$ as the two boolean values such that 0 represents *false* and 1 represents *true*. boolean operators like *and*, *or*, or *xor* are then expressible as algebraic computations inside \mathbb{F} .

Representing booleans this way is convenient, because the elements 0 and 1 are defined in any field. The representation is therefore independent of the actual field in consideration.

To fix boolean algebra notation, we write 0 to represent *false* and 1 to represent *true*, and we write \land to represent the boolean AND as well as \lor to represent the boolean OR operator. The boolean NOT operator is written as \neg .

The boolean Constraint System To represent booleans by the additive and multiplicative neutral elements of a field, a constraint is required to actually enforce variables of boolean type to be either 1 or 0. In fact, many of the following circuits that represent boolean functions are only correct under the assumption that their input variables are constrained to be either 0 or 1. Not constraining boolean variables is a common problem in circuit design.

In order to constrain an arbitrary field element $x \in \mathbb{F}$ to be 1 or 0, the key observation is that the equation $x \cdot (1-x) = 0$ has only two solutions 0 and 1 in any field. Implementing this equation as a circuit therefore generates the correct constraint:

Using the method from XXX, we transform this circuit into the following rank-1 constraint system:

add reference

$$S_1 \cdot (1 - S_1) = 0$$

Any valid assignment $\{S_1\}$ to this circuit enforces S_1 to be either 0 or 1.

Some real-world circuit compilers like ZOKRATES or BELLMAN are typed, while others like circom are not. However, all of them have their way of dealing with the binary constraint. In PAPER, we define the following boolean type that compiles to the previous circuit:

5001

5002

5003

5004

5005

5007

5008

5009

5010

5021

5022

5023

5024

5025

5026

5027

5028

```
type BOOL(b : BOOL) -> (x : F) {
4992
        constant c1 : F = 0;
4993
        constant c2 : F = 1 ;
4994
        constant c3 : F = -1 ;
4995
        c1 \le MUL(x, ADD(c2, MUL(x, c3)));
4996
        x \le = b;
4997
4998
```

In the setup phase of a statement, we compile every occurrence of a variable of boolean type 4999 into an instance of its associated boolean circuit.

The AND operator constraint system Given two field elements b_1 and b_2 from \mathbb{F} that are constrained to represent boolean variables, we want to find a circuit that computes the logical and operator $AND(b_1,b_2)$ as well as its associated R1CS that enforces $b_1, b_2, AND(b_1,b_2)$ to satisfy the constraint system if and only if $b_1 \wedge b_2 = AND(b_1, b_2)$ holds true.

The key insight here is that given three boolean constraint variables b_1 , b_2 and b_3 , the equation $b_1 \cdot b_2 = b_3$ is satisfied in \mathbb{F} if and only if the equation $b_1 \wedge b_2 = b_3$ is satisfied in boolean algebra. The logical operator \wedge is therefore implementable in \mathbb{F} by field multiplication of its arguments and the following circuit computes the \wedge operator in \mathbb{F} , assuming all inputs are restricted to be 0 or 1:

The associated rank-1 constraint system can be deduced from the general process XXX and 5011 consists of the following constraint 5012

 $S_1 \cdot S_2 = S_3$ (7.5)

Common circuit languages typically provide a gadget or a function to abstract over this circuit 5013 such that programers can use the \(\) operator without caring about the associated circuit. In 5014 PAPER, we define the following function that compiles to the \(\lambda\)-operator's circuit: 5015

```
fn AND(b 1 : BOOL, b 2 : BOOL) \rightarrow AND(b 1,b 2) : BOOL{
5016
      AND(b_1, b_2) \le MUL(b_1,
5017
                                        b_2) ;
5018
```

In the setup phase of a statement, we compile every occurrence of the AND function into an 5019 instance of its associated ∧-operator's circuit. 5020

The OR operator constraint system Given two field elements b_1 and b_2 from \mathbb{F} that are constrained to represent boolean variables, we want to find a circuit that computes the logical or operator $OR(b_1, b_2)$ as well as its associated R1CS that enforces $b_1, b_2, OR(b_1, b_2)$ to satisfy the constraint system if and only if $b_1 \vee b_2 = OR(b_1, b_2)$ holds true.

Assuming that three variables b_1 , b_2 and b_3 are boolean constraint, the equation $b_1 + b_2 - b_1$. $b_2 = b_3$ is satisfied in \mathbb{F} if and only if the equation $b_1 \vee b_2 = b_3$ is satisfied in boolean algebra. The logical operator \vee is therefore implementable in \mathbb{F} by the following circuit, assuming all inputs are restricted to be 0 or 1:

"constraint or "con-

add refer-

ence

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

The associated rank-1 constraint system can be deduced from the general process XXX<u>and</u> consists of the following constraints

add reference

$$S_1 \cdot S_2 = S_3$$
$$(S_1 + S_2 - S_3) \cdot 1 = S_4$$

Common circuit languages typically provide a gadget or a function to abstract over this circuit such that programers can use the \lor operator without caring about the associated circuit. In PAPER, we define the following function that compiles to the \lor -operator's circuit:

```
5033 fn OR(b_1 : BOOL, b_2 : BOOL) -> OR(b_1,b_2) : BOOL{
5034 constant c1 : F = -1 ;
5035 OR(b_1,b_2) <== ADD(ADD(b_1,b_2), MUL(c1, MUL(b_1,b_2))) ;
5036 }
```

In the setup phase of a statement, we compile every occurrence of the OR function into an instance of its associated \lor -operator's circuit.

Exercise 47. Let \mathbb{F} be a finite field and let b_1 as well as b_2 two boolean constraint variables from \mathbb{F} . Show that the equation $OR(b_1,b_2)=1-(1-b_1)\cdot(1-b_2)$ holds true.

Use this equation to derive an algebraic circuit with ingoing variables b_1 and b_2 and outgoing variable $OR(b_1,b_2)$ such that b_1 and b_2 are boolean constraint and the circuit has a valid assignment, if and only if $OR(b_1,b_2) = b_1 \vee b_2$.

Use the technique from XXX to transform this circuit into a rank-1 constraint system and find its full solution set. Define a PAPER function that brain-compiles into the circuit.

"constraints or "constrained"?

add reference

The NOT operator constraint system Given a field element b from \mathbb{F} that is constrained to represent a boolean variable, we want to find a circuit that computes the logical **NOT** operator NOT(b) as well as its associated R1CS that enforces b, NOT(b) to satisfy the constraint system if and only if $\neg b = NOT(b)$ holds true.

Assuming that two variables b_1 and b_2 are boolean constraint, the equation $(1-b_1) = b_2$ is satisfied in \mathbb{F} if and only if the equation $\neg b_1 = b_2$ is satisfied in boolean algebra. The logical operator \neg is therefore implementable in \mathbb{F} by the following circuit, assuming all inputs are restricted to be 0 or 1:

"constraints or "constrained"?

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

The associated rank-1 constraint system can be deduced from the general process XXX_and_consists of the following constraints

add reference

$$(1-S_1)\cdot 1=S_2$$

Common circuit languages typically provide a gadget or a function to abstract over this circuit such that programers can use the ¬ operator without caring about the associated circuit. In PAPER, we define the following function that compiles to the ¬-operator's circuit:

```
5058 fn NOT(b : BOOL -> NOT(b) : BOOL{
5059     constant c1 = 1 ;
5060     constant c2 = -1 ;
5061     NOT(b_1) <== ADD(c1 , MUL(c2 , b));
5062 }</pre>
```

In the setup phase of a statement, we compile every occurrence of the NOT function into an instance of its associated ¬-operator's circuit.

Exercise 48. Let \mathbb{F} be a finite field. Derive the algebraic circuit and associated rank-1 constraint system for the following operators: NOR, XOR, NAND, EQU.

Modularity As we have seen in XXX and XXX, both algebraic circuits and R1CS have a modularity property, and as we have seen in this section, all basic boolean functions are expressible in circuits. Combining those two properties, show that it is possible to express arbitrary boolean functions as algebraic circuits.

add reference

add reference

This shows that the expressiveness of algebraic circuits and therefore rank-1 constraint systems is as general as the expressiveness of boolean circuits. An important implication is that the languages $L_{R1CS-SAT}$ and $L_{Circuit-SAT}$ as defined in XXX, are as general as the famous language L_{3-SAT} , which is known to be \mathcal{N} -complete.

add reference

Example 129. To give an example of how a compiler might construct complex boolean expressions in algebraic circuits from simple ones and how we derive their associated rank-1 constraint systems, let's look at the following PAPER statement:

```
5078  statement BOOLEAN_STAT {F: F_p} {
5079    fn main(b_1:BOOL,b_2:BOOL,b_3:BOOL,b_4:BOOL) -> pub b_5:BOOL {
5080       b_5 <== AND(OR(b_1, b_2), AND(b_3, NOT(b_4)));
5081    };
5082 }</pre>
```

The code describes a circuit that takes four private inputs b_1 , b_2 , b_3 and b_4 of boolean type and computes a public output b_5 such that the following boolean expression holds true:

$$(b_1 \lor b_2) \land (b_3 \land \neg b_4) = b_5$$

During a setup-phase, a circuit compiler transforms this high-level language statement into a circuit and associated rank-1 constraint systems and hence defines a language $L_{BOOLEAN\ STAT}$.

To see how this might be achieved, we use PAPER as an example to execute the setup-phase and compile BOOLEAN_STAT into a circuit. Taking the definition of the boolean constraint XXX as well as the definitions of the appropriate boolean operators into account, we get the following circuit:

add reference

Simple optimization then collapses all box-nodes that are directly linked and all box nodes that represent the same constants. After relabeling the edges, the following circuit represents the circuit associated to the BOOLEAN STAT statement:

Given some public input I_1 from \mathbb{F}_{13} , a valid assignment to this circuit consists of private inputs W_1 , W_2 , W_3 , W_4 from \mathbb{F}_{13} such that the equation $I_1 = (W_1 \vee W_2) \wedge (W_3 \wedge \neg W_4)$ holds true. In addition, a valid assignment also has to contain private inputs W_5 , W_6 , W_7 , W_8 , W_9 and W_{10} , which can be derived from circuit execution. The inputs W_5 , ..., W_8 ensure that the first four

5099

5105

5106

5107

private inputs are either 0 or 1 but not any other field element, and the others enforce the boolean operations in the expression.

To compute the associated R1CS, we can use the general method from XXX and look at every labeled outgoing edge not coming from a source node. Declaring the edges coming from input nodes as well as the edge going to the single output node as public, and every other edge as private input. In this case we get:

add reference

$$W_5: W_1 \cdot (1 - W_1) = 0$$
 boolean constraints $W_6: W_2 \cdot (1 - W_2) = 0$ $W_7: W_3 \cdot (1 - W_3) = 0$ $W_8: W_4 \cdot (1 - w_4) = 0$ $W_9: W_1 \cdot W_2 = W_9$ first OR-operator constraint $W_{10}: W_3 \cdot (1 - W_4) = W_{10}$ AND(.,NOT(.))-operator constraints $I_1: (W_1 + W_2 - W_9) \cdot W_{10} = I_1$ AND-operator constraints

The reason why this R1CS only contains a single constraint for the multiplication gate in the OR-circuit, while the general definition XXX requires two constraints, is that the second constraint in XXX only appears because the final addition gate is connected to an output node. In this case, however, the final addition gate from the OR-circuit is enforced in the left factor of the I_1 constraint. Something similar holds true for the negation circuit.

add reference

add reference

During a prover-phase, some public instance I_5 must be given. To compute a constructive proof for the statement of the associated languages with respect to instance I_5 , a prover has to find four boolean values W_1 , W_2 , W_3 and W_4 such that

$$(W_1 \lor W_2) \land (W_3 \land \neg W_4) = I_5$$

holds true. In our case neither the circuit nor the PAPER statement specifies how to find those values, and it is a problem that any prover has to solve outside of the circuit. This might or might not be true for other problems, too. In any case, once the prover found those values, they can execute the circuit to find a valid assignment.

To give a concrete example, let $I_1 = 1$ and assume $W_1 = 1$, $W_2 = 0$, $W_3 = 1$ and $W_4 = 0$. Since $(1 \lor 0) \land (1 \land \neg 0) = 1$, those values satisfy the problem and we can use them to execute the circuit. We get

$$W_5 = W_1 \cdot (1 - W_1) = 0$$

$$W_6 = W_2 \cdot (1 - W_2) = 0$$

$$W_7 = W_3 \cdot (1 - W_3) = 0$$

$$W_8 = W_4 \cdot (1 - W_4) = 0$$

$$W_9 = W_1 \cdot W_2 = 0$$

$$W_{10} = W_3 \cdot (1 - W_4) = 1$$

$$I_1 = (W_1 + W_2 - W_9) \cdot W_{10} = 1$$

A constructive proof of knowledge of a witness, for instance, $I_1 = 1$, is therefore given by the tuple $P = (W_5, W_6, W_7, W_8, W_9, W_{10}) = (0, 0, 0, 0, 0, 1)$.

Arrays

5111

5112

5113

5114

5115

5116

5117

5118

5120

5121

5136

5137

5138

5139

5140

5141

The array type represents a fixed-size collection of elements of equal type, each selectable by one or more indices that can be computed at run time during program execution.

Arrays are a classical type, implemented by many higher programing languages that compile to circuits or rank-1 constraint systems. However, most high-level circuit languages support **static** arrays, i.e., arrays whose length is known at compile time only.

The most common way to compile arrays to circuits is to transform any array of a given type t and size N into N circuit variables of type N. Arrays are therefore **syntactic sugar**, that is, parts of the formal language that makes the code easier for humans to read, which the compiler transforms into input nodes, much like any other variable. In PAPER, we define the following array type:

```
5122 type <Name>: <Type>[N : unsigned] -> (Type,...) {
5123 return (<Name>[0],...)
5124 }
```

In the setup phase of a statement, we compile every occurrence of an array of size N that contains elements of type Type into N variables of type Type.

Example 130. To give an intuition of how a real-world compiler might transform arrays into circuit variables, consider the following PAPER statement:

```
5129  statement ARRAY_TYPE {F: F_5} {
5130     fn main(x: F[2]) -> F {
5131         let constant c: F[2] = [2,4];
5132         let out:F <== MUL(ADD(x[1],c[0]),ADD(x[0],c[1]));
5133         return out;
5134     };
5135 }</pre>
```

During a setup phase, a circuit compiler might then replace any occurrence of the array type by a tuple of variables of the underlying type, and then use those variables in the circuit synthesis process instead. To see how this can be achieved, we use PAPER as an example. Abstracting over the sub-circuit of the computation, we get the following circuit:

The Unsigned Integer Type

Unsigned integers of size N, where N is usually a power of two, represent non-negative integers in the range $0...2^N - 1$. They have a notion of addition, subtraction and multiplication, defined

5147

5148

5149

5150

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5168

5169

5170

by modular 2^N arithmetics. If some N is given, we write uN for the associated type.

The uN Constraint System Many high-level circuit languages define the the various uN types as arrays of size N, where each element is of boolean type. This is similar to their representation on common computer hardware and allows for efficient and straightforward definition of common operators, like the various shift, or logical operators.

shitt

If some unsigned integer N is known at compile time in PAPER, we define the following uN type:

```
5151 type uN -> BOOL[N] {
5152    let base2 : BOOL[N] <== BASE_2(uN) ;
5153    return base2 ;
5154 }</pre>
```

To enfore an N-tuple of field elements (b_0, \ldots, b_{N-1}) to represent an element of type uN we therefore need N boolean constraints

$$S_0 \cdot (1 - S_0) = 0$$

 $S_1 \cdot (1 - S_1) = 0$
...
 $S_{N-1} \cdot (1 - S_{N-1}) = 0$

In the setup phase of a statement, we compile every occurrence of the uN type by a size N array of boolean type. During a=the prover phase, actual elements of the uN type are first transformed into binary representation and then this binary representation is assigned to the boolean array that represents the uN type.

Remark 4. Representing the uN type as boolean arrays is conceptually clean and works over generic base fields. However, representing unsigned integers in this way requires a lot of space as every bit is represented as a field element and if the base field is large, those field elements require considerable space in hardware.

It should be noted that, in some cases, there is another, more space- and constraint-efficient approach for representing unsigned integers that can be used whenever the underlying base field is sufficiently large. To understand this, recall that addition and multiplication in a prime field \mathbb{F}_p is equal to addition and multiplication of integers, as long as the sum or the product does not exceed the modulus p. It is therefore possible to represent the uN type inside the base-field type whenever N is small enough. In this case, however, care has to be taken to never overflow the modulus. It is also important to make sure that, in the case of subtraction, the subtrahend is never larger than the minuend.

Example 131. To give an intuition of how a real-world compiler might transform unsigned integers into circuit variables, consider the following PAPER statement:

```
5173  statement RING_SHIFT{F: F_p, N=4} {
5174    fn main(x: uN) -> uN {
5175      let y:uN <== [x[1],x[2],x[3],x[0]];
5176    return y;
5177    };
5178 }</pre>
```

During the setup-phase, a circuit compiler might then replace any occurrence of the uN type by N variables of boolean type. Using the definition of booleans, each of these variables is

then transformed into the field type and a boolean constraint system. To see how this can be achieved, we use PAPER as an example and get the following circuit:

During the prover phase, the function main is called with an actual input of u4 type, say x=14. The high-level language then has to transform the decimal value 14 into its 4-bit binary representation $14_2 = (0,1,1,1)$ outside of the circuit. Then the array of field values x[4] = [0,1,1,1] is used as an input to the circuit. Since all 4 field elements are either 0 or 1, the four boolean constraints are satisfiable and the output is an array of the four field elements [1,1,1,0], which represents the u4 element 7.

The Unigned Integer Operators Since elements of uN type are represented as boolean arrays, shift operators are implemented in circuits simply by rewiring the boolean input variables to the output variables accordingly.

Logical operators, like AND, OR, or NOT are defined on the uN type by invoking the appropriate boolean operators bitwise to every bit in the boolean array that represents the uN element.

Addition and multiplication can be represented similarly to how machines represent those operations. Addition can be implemented by first defining the **full adder** circuit and then combining *N* of these circuits into a circuit that adds two elements from the uN type.

Exercise 49. Let $\mathbb{F} = \mathbb{F}_{13}$ and $\mathbb{N} = 4$ be fixed. Define circuits and associated R1CS for the left and right bishift operators x << 2 as well as x >> 2 that operate on the uN type. Execute the associated circuit for x : u4 = 11.

bishift

Exercise 50. Let $F = \mathbb{F}_{13}$ and N=2 be fixed. Define a circuit and associated R1CS for the addition operator ADD: $F \times F \to F$. Execute the associated circuit to compute ADD(2,7).

Exercise 51. Brain compile the following PAPER code into a circuit and derive the associated R1CS.

```
5207 statement MASK_MERGE {F:F_5, N=4} {
5208    fn main(pub a : uN, pub b : uN) -> F {
5209        let constant mask : uN = 10 ;
5210        let r : uN <== XOR(a,AND(XOR(a,b),mask)) ;
5211    return r ;</pre>
```

```
5212 }
5213 }
```

5222

5223

5224

5226

5230

5231

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

Let L_{mask_merge} be the language defined by the circuit. Provide a constructive knowledge proof in L_{mask_merge} for the instance $I = (I_a, I_b) = (14, 7)$.

7.2.2 Control Flow

Most programing languages of the imperative of functional style have some notion of basic control structures to direct the order in which instructions are evaluated. Contemporary circuit compilers usually provide a single thread of execution and provide basic flow constructs that implement control flow in circuits.

5221 The Conditional Assignment

Writing high-level code that compiles to circuits, it is often necessary to have a way for conditional assignment of values or computational output to variables.

One way to realize this in many programming languages is in terms of the conditional ternary assignment operator?: that branches the control flow of a program according to some condition and then assigns the output of the computed branch to some variable.

```
5227 variable = condition ? value_if_true : value_if_false
```

In this description, condition is a boolean expression and value_if_true as well as value_if_false are expressions that evaluate to the same type as variable.

In programming languages like Rust, another way to write the conditional assignment operator that is more familiar to many programmers is given by

```
5232 variable = if condition then {
5233  value_if_true
5234 } else {
5235  value_if_false
5236 }
```

In most programing languages, it is a key property of the ternary assignment operator that the expression value_if_true is only evaluated if condition evaluates to true and the expression value_if_false is only evaluated if condition evaluates to false. In fact, computer programs would turn out to be very inefficient if the ternary operator would evaluate both expressions regardless of the value of condition.

A simple way to implement conditional assignment operator as a circuit can be achieved if the requirement that only one branch of the conditional operator is executed is dropped. To see that, let b, c and d be field elements such that b is a boolean constraint. In this case, the following equation enforces a field element x to be the result of the conditional assignment operator:

$$x = b \cdot c + (1 - b) \cdot d \tag{7.6}$$

Expressing this equation in terms of the addition and multiplication operators from XXX, we can flatten it into the following algebraic circuit:

Note that, in order to compute a valid assignment to this circuit, both S_2 as well as S_4 are necessary. If the inputs to the nodes c and d are circuits themself, both circuits need valid assignments and therefore have to be executed. As a consequence, this implementation of the conditional assignment operator has to execute all branches of all circuits, which is very different from the execution of common computer programs and contributes to the increased computational effort any prover has to invest, in contrast to the execution in other programing models.

We can use the general technique from XXX to derive the associated rank-1 constraint system of the conditional assignment operator. We get

add reference

$$S_1 \cdot S_2 = S_3$$

 $(1 - S_1) \cdot S_4 = S_5$
 $(S_3 + S_5) \cdot 1 = S_6$

Example 132. To give an intuition of how a real-world circuit compiler might transform any high-level description of the conditional assignment operator into a circuit, consider the following PAPER code:

```
statement CONDITIONAL_OP {F:F_p} {
5260
       fn main(x : F, y : F, b : BOOL) \rightarrow F {
5261
          let z : F <== if b then {
5262
            ADD(x,y)
5263
          } else {
5264
            MUL(x,y)
5265
          }
5266
         return z ;
5267
       }
5268
    }
5269
```

Brain compiling this code into a circuit, we first draw box nodes for all input and output variables, and then transform the boolean type into the field type together with its associated constraint. Then we evaluate the assignments to the output variables. Since the conditional assignment operator is the top level function, we draw its circuit and then draw the circuits for both conditional expressions. We get:

5276

5277

5278

5280 5281

5282

5283

5284

5285

5286

5288

5289

5290

5291

5292

Loops

In many programming languages, various loop control structures are defined that allow developers to execute expressions with a specified number of repetitions or arguments. In particular, it is often possible to implement unbounded loops like the

```
while true do { }
```

structure, or loop structure, where the number of executions depends on execution inputs and is therefore unknown at compile time.

something

missing

here?

In contrast to this, it should be noted that algebraic circuits and rank-1 constraint systems are not general enough to express arbitrary computation, but bounded computation only. As a consequence, it is not possible to implement unbounded loops, or loops with bounds that are unknown at compile time in those models. This can be easily seen since circuits are acyclic by definition, and implementing an unbounded loop as an acyclic graph requires a circuits of unbounded size.

However, circuits are general enough to express bounded loops, where the upper bound on its execution is known at compile time. Those loop can be implemented in circuits by enrolling the loop.

5294

5295

5309

5310

5311

5312

5313

5314

5315

5317

5318

5319

5321

5322

5323

As a consequence, any programing language that compiles to algebraic circuits can only provide loop structures where the bound is a constant known at compile time. This implies that loops cannot depend on execution inputs, but on compile time parameters only.

Example 133. To give an intuition of how a real-world circuit compiler might transform any high-level description of a bounded for loop into a circuit, consider the following PAPER code:

```
statement FOR_LOOP {F:F_p, N: unsigned = 4} {
5299
      fn main(fac : F[N]) -> F
5300
         let prod[N] : F ;
         prod[0] <== fac[0] ;
5302
         for unsigned i in 1..N do [{
5303
           prod[i] <== MUL(fac[i], prod[i-1]);</pre>
5304
5305
         return prod[N] ;
5306
      }
5307
    }
5308
```

Note that, in a program like this, the loop counter i has no expression in the derived circuit. It is pure syntactic sugar, telling the compiler how to unroll the loop.

Brain compiling this code into a circuit, we first draw box nodes for all input and output variables, noting that the loop counter is not represented in the circuit. Since all variables are of field type, we don't have to compile any type constraints. Then we evaluate the assignments to the output variables by unrolling the loop into 3 individual assignment operators. We get:

7.2.3 Binary Field Representations

In applications, is often necessary to enforce a binary representation of elements from the field type. To derive an appropriate circuit over a prime field \mathbb{F}_p , let $m = |p|_2$ be the smallest number of bits necessary to represent the prime modulus p. Then a bitstring $(b_0, \ldots, b_{m-1}) \in \{0,1\}^m$ is a binary representation of a field element $x \in \mathbb{F}_p$, if and only if

$$x = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \ldots + b_m \cdot 2^{m-1}$$

In this expression, addition and exponentiation is considered to be executed in \mathbb{F}_p , which is well defined since all terms 2^j for $0 \le j < m$ are elements of \mathbb{F}_p . Note, however, that in contrast to the binary representation of unsigned integers $n \in \mathbb{N}$, this representation is not unique in general, since the modular p equivalence class might contain more than one binary representative.

Considering that the underlying prime field is fixed and the most significant bit of the prime modulus is m, the following circuit flattens equation XXX, assuming all inputs b_1, \ldots, b_m are of boolean type.

Applying the general transformation rule to compute the associated rank-1 constraint systems, we see that we actually only need a single constraint to enforce some binary representation of any field element. We get

$$(S_0 \cdot 2^0 + S_1 \cdot 2^1 + \ldots + S_{m-1} \cdot 2^{m-1} - S_m) \cdot 1 = 0$$

Given an array BOOL [N] of N boolean constraint field elements and another field element x, the circuit enforces BOOL [N] to be one of the binary representations of x. If BOOL [N] is not a binary representation of x, no valid assignment and hence no solution to the associated R1CS can exists.

Example 134. Consider the prime field \mathbb{F}_{13} . To compute binary representations of elements from that field, we start with the binary representation of the prime modulus 13, which is $|13|_2 = (1,0,1,1)$ since $13 = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3$. So m = 4 and we need up to 4 bits to represent any element $x \in \mathbb{F}_{13}$.

To see that binary representations are not unique in general, consider the element $2 \in \mathbb{F}_{13}$. It has the binary representations $|2|_2 = (0, 1, 0, 0)$ and $|2|_2 = (1, 1, 1, 1)$, since in \mathbb{F}_{13} we have

$$2 = \begin{cases} 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 \\ 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 \end{cases}$$

This is because the unsigned integers 2 and 15 are both in the modular 13 remainder class of 2 and hence are both representatives of 2 in \mathbb{F}_{13} .

To see how circuit XXX works, we want to enforce the binary representation of $7 \in \mathbb{F}_{13}$. Since m = 4 we have to enforce a 4-bit representation for 7, which is (1,1,1,0), since $7 = 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3$. A valid circuit assignment is therefore given by $(S_0, S_1, S_2, S_3, S_4) = (1,1,1,0,7)$ and, indeed, the assignment satisfies the required 5 constraints including the 4 boolean constraints for S_0, \ldots, S_3 :

$$1 \cdot (1-1) = 0 \qquad \text{// boolean constraints}$$

$$1 \cdot (1-1) = 0$$

$$1 \cdot (1-1) = 0$$

$$0 \cdot (1-0) = 0$$

$$(1+2+4+0-7) \cdot 1 = 0 \qquad \text{// binary rep. constraint}$$

7.2.4 **Cryptographic Primitives**

In applications, it is often required to do cryptography in a circuit. To do this, basic cryptographic primitives like hash functions or elliptic curve cryptography needs to be implemented as circuits. In this section, we give a few basic examples of how to implement such primitives.

Twisted Edwards curves

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

Implementing elliptic curve cryptography in circuits means to implement the field equation as well as the algebraic operations of an elliptic curve as circuits. To do this efficiently, the curve must be defined over the same base field as the field that is used in the circuit.

For efficiency reasons, it is advantageous to choose an elliptic curve such that that all required constraints and operations can be implement with as few gates as possible. Twisted Edwards curves are particularly useful for that matter, since their addition law is particularly simple and the same equation can be used for all curve points including the point at infinity. This simplifies the circuit a lot.

Twisted Edwards curves constraints As we have seen in XXX, a twisted Edwards curve over a finite field F is defined as the set of all pairs of points $(x,y) \in \mathbb{F} \times \mathbb{F}$ such that x and y satisfy the equation $a \cdot x^2 + y^2 = 1 + d \cdot x^2 y^2$. As we have seen in example XXX, we can transform this equation into the following circuit:

add reference

add reference

5353 5354

The circuit enforces the two inputs of field type to satisfy the twisted Edwards curve equation and, as we know from example XXX, the associated rank-1 constraint system is given by:

add reference

$$S_1 \cdot S_1 = S_3$$

$$S_2 \cdot S_2 = S_4$$

$$(S_4 \cdot 8) \cdot S_3 = S_5$$

$$(12 \cdot S_4 + S_5 + 10 \cdot S_3 + 1) \cdot 1 = 0$$

Exercise 52. Write the circuit and associated rank-1 constraint system for a Weierstraß curve of 5355 a given field \mathbb{F} .

Twisted Edwards curve addition As we have seen in XXX, a major advantage of twisted add refer-Edwards curves is the existence of an addition law that contains no branching and is valid for all curve points. Moreover the neutral element is not "at infinity" but the actual curve point (0,1). In fact given two points (x_1,y_1) and (x_2,y_2) on a twisted Edwards curve their sum is defined as

ence

$$(x_3, y_3) = \left(\frac{x_1 y_2 + y_1 x_2}{1 + d \cdot x_1 x_2 y_1 y_2}, \frac{y_1 y_2 - a \cdot x_1 x_2}{1 - d \cdot x_1 x_2 y_1 y_2}\right)$$

We can use the division circuit from XXX to flatten this equation into an algebraic circuit. Inputs to the circuit are then not only the two curve points (x_1, y_1) and (x_2, y_2) , but also the two denominators $denum_1 = 1 + d \cdot x_1 x_2 y_1 y_2$ as well as $denum_2 = 1 - d \cdot x_1 x_2 y_1 y_2$, which any prover needs to compute outside of the circuit. We get

add reference

5361

5357

5358

5359

Using the general technique from XXX to derive the associated rank-1 constraint system, we get the following result:

add reference

$$S_{1} \cdot S_{4} = S_{7}$$

$$S_{1} \cdot S_{2} = S_{8}$$

$$S_{2} \cdot S_{3} = S_{9}$$

$$S_{3} \cdot S_{4} = S_{10}$$

$$S_{8} \cdot S_{10} = S_{11}$$

$$S_{5} \cdot (1 + d \cdot S_{11}) = 1$$

$$S_{6} \cdot (1 - d \cdot S_{11}) = 1$$

$$S_{5} \cdot (S_{9} + S_{7}) = S_{14}$$

$$S_{6} \cdot (S_{10} - a \cdot S_{8}) = S_{15}$$

Exercise 53. Let \mathbb{F} be a field. Define a circuit that enforces field inversion for a point of a 5362 twisted Edwards curve over \mathbb{F} .

Chapter 8

Zero Knowledge Protocols

A so called **zero-knowledge protocol** is a set of mathematical rules by which one party usually called **the prover** can convince another party usually called **the verifier** that a given statement is true, while not revealing any additional information apart from the truth of the statement.

As we have seen in chapter XXX, given some language L and instance I the knowledge claim "there is a witness W such that, (I;W) is a word in L" is constructively provable by providing W to the verifier. However, the challenge for a zero-knowledge protocol is to prove knowledge of a witness without revealing any information beyond its bare existence.

add reference

In this chapter, we will look at various systems that exists to solve this task. We start with an introduction to the basic concepts and terminology in zero knowledge proofing systems and then introduce the so called Groth_16 protocol as one of the most efficient systems. We will update the book with new inventions, in future versions of this book.

8.1 Proof Systems

From an abstract point of view, a proof system is a set of rules which models the generation and exchange of messages between two parties: a prover and a verifier. Its task is to ascertain whether a given string belongs to a formal language or not.

Proof systems are often classified by certain trust assumptions and the computational capabilities of both parties. In it most general form, the prover usually possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be honest.

Proofing the membership statement for some string is then executed by the generation of certain messages that are sent between prover and verifier until the verifier is convinced that the string is an element of the language in consideration.

To be more specific, let Σ be an alphabet and L a formal language defined over Σ . Then a **proof system** for language L is a pair of probabilistic interactive algorithms (P,V), where P is called the **prover** and V is called the **verifier**.

Both algorithms are able to send messages to one another and each algorithm has its own state, some shared initial state and access to the messages. The verifier is bounded to a number of steps which is polynomial in the size of the shared initial state, after which it stops and output either accept or reject indicating that it accepts or rejects a given string to be in L. In contrast, there are bounds on the computational power of the prover.

After the execution of the verifier algorithm stops the following conditions are required to hold:

- (Completeness) If the tuple $x \in \Sigma^*$ is a word in language L and both prover and verifier follow the protocol, the verifier outputs accept.
- (Soundness) If the tuple $x \in \Sigma^*$ is not a word in language L and the verifier follows the protocol, the verifier outputs reject, except with some small probability.

In addition a proof system is called **zero knowledge**, if the verifier learns nothing about x other than $x \in L$.

The previous definition of proof systems is very general and many sub-classes of proofing systems are known in the field. The type of languages any proof system can support, crucially depends on the abilities of the verifier, for example to make random choices, or not, or on the nature and number of the messages that can be exchanged. If the system only requires to send a single message from the prover to the verifier, the proof system is called **non-interactive**, because no interaction other then sending the actual proof is required. In contrast any other proof system is called **interactive**.

A proof system is usually called **succinct**, if the size of the proof is shorter than the witness necessary to generate the proof. Moreover, a proof system is called **computationally sound**, if soundness only holds under the assumption that the computational capabilities of the prover are polynomial bound. The distinguish general proofs from computationally sound proofs, the latter are often called **arguments**. zero-knowledge, succinct, non-interactive arguments of knowledge claims are often called **zk-SNARKs**.

Example 135 (Constructive Proofs for Algebraic Circuits). To formalize our previous notion of constructive proof for algebraic circuits, let $\mathbb F$ be a finite field and $C(\mathbb F)$ an algebraic circuit over $\mathbb F$ with associated language $L_{C(\mathbb F)}$. A non-interactive proof system for $L_{C(\mathbb F)}$ is given by the following two algorithms:

Given some instance I, the prover algorithm P uses its unlimited computational power to compute a witness W such that, the pair (I;W) is a valid assignment to $C(\mathbb{F})$, whenever the circuit is satisfiable for I. The prover then sends the constructive proof (I;W) to the verifier.

On receiving a message (I;W) the verifier algorithm V assigns the constructive proof (I;W) to circuit $C(\mathbb{F})$ and decides if the assignment is valid, by executing all gates in the circuit. The runtime is polynomial in the number of gates. If the assignment is valid the verifier returns accepts, if not it returns reject.

To see that this proof system has the completeness and soundness property, let $C(\mathbb{F})$ be a circuit of the field \mathbb{F} and I an instance. The circuit may or may not have a witness W such that, (I;W) is a valid assignment to $C(\mathbb{F})$.

If no W exists, I is not part of any word in $L_{C(\mathbb{F})}$ and there is no way for P to generate a valid assignment. If follows that the verifier will not accept any claimed proof send by P, which implies that the system has **soundness**.

If on the other hand W exists and P is honest, P can use its unlimited computational power to compute W and send (I;W) to V, which V will accept in polynomial time. This implies that the system has **completeness**.

The system is non-interactive because the prover only sends a single message to the verifier, which contains the proof itself and since in this simple system the witness itself is the proof, the proof system is **not** succinct.

8.2 The "Groth16" Protocol

In chapter XXX we have introduced algebraic circuits, their associated rank-1 constraints systems and their induced quadratic arithmetic programs. These models define formal languages

and associated membership as well as knowledge claim can be constructively proofed by executing the circuit in order to compute a solution to its associated R1CS. The solution can then be transformed into a polynomial such that, the polynomial is divisible by another polynomial if and only if the solution is correct.

In [XXX] Jens Groth provides a method that can transform those proofs into zero-knowledge succinct non interactive arguments of knowledge. Assuming that pairing groups $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, b)$ are given, the arguments are of constant size and consist of 2 elements from G_1 and a single element from G_2 , regardless of the size of the witness. They are zero-knowledge in the sense, that the verifier learns nothing about the witness, besides the fact that the instance, witness pair is a proper word in the language of the problem.

add reference

Verification is non interactive and needs to compute a number of exponentiations proportional to the size of the instance, together with 3 group pairings in order to check a single equation.

The generated argument has perfect completeness, perfect zero-knowledge and soundness in the generic bilinear group model, assuming that a trusted third party exists, that executes a preprocessing phase to generate a common reference string and a simulation trapdoor. This party must be trusted to delete the simulation trapdoor, since everyone in possession of it can simulate proofs.

To be more precise let R be a rank-1 constraints system defined over some finite field \mathbb{F}_r . Then **Groth_16 parameters** for R are given by the set

$$Groth_16 - Param(R) = (r, \mathbb{G}_1, \mathbb{G}_2, e(\cdot, \cdot), g_1, g_2)$$

$$(8.1)$$

where \mathbb{G}_1 and \mathbb{G}_2 are finite cyclic groups of order r, g_1 is a generator of \mathbb{G}_1 , g_2 is a generator of \mathbb{G}_2 and $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a non-degenerate, bilinear pairing for some target group \mathbb{G}_T . In applications the parameter set is usually agreed on in advance.

Given some Groth_16 parameters a **Groth_16 protocol** is then a quadruple of probabilistic polynomial algorithms (SETUP, PROVE, VFY, SIM) such that

- (Setup-Phase): $(CRS, \tau) \leftarrow \text{Setup}(R)$: Algorithm Setup takes the R1CS R as input and computes a common reference string CRS and a simulation trapdoor τ .
- (Prover-Phase): $\pi \leftarrow Prove(R, CRS, I, W)$: Given a constructive proof (I; W) for R, algorithm Prove takes the R1CS R, the common reference string CRS and the constructive proof (I, W) as input and computes an zk-SNARK π .
- Verify: {accept,reject} $\leftarrow Vfy(R,CRS,I,\pi)$: Algorithm Vfy takes the R1CS R, the common reference string CRS, the instance I and the zk-SNARK π as input and returns reject or accept.
- $\pi \leftarrow Sim(R, \tau, CRS, I)$: Algorithm Sim takes the R1CS R, the common reference string CRS, the simulation trapdoor τ and the instance I as input and returns a zk-SNARK π .

We will explain those algorithms together with examples in detail in the appropriate paragraphs of this section.

Assuming a trusted third party for the setup, the protocol is then able to compute a zk-SNARK from a constructive proof for R, assuming that r is sufficiently large and in particular larger then the number of constraints in the associated R1CS.

Example 136 (The 3-Factorization Problem). Consider the 3-factorization problem from XXX and its associated algebraic circuit and rank-1 constraints system from XXX. In this example,

add reference

we want to agree on a parameter set $(R, r, \mathbb{G}_1, \mathbb{G}_2, e(\cdot, \cdot), g_1, g_2)$ in order to use the Groth_16 protocol for our 3-factorization problem.

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500 5501 5502

5503

5504

5505

5506

5507

5508

5509

To find proper parameters, first observe that the circuit XXX as well as its associated R1CS $R_{3.fac_zk}$ XXX and the derived QAP XXX are defined over the field \mathbb{F}_{13} . We therefore have r = 13 and need pairing groups \mathbb{G}_1 and \mathbb{G}_2 of order 13.

From XXX we know, that the moon-math curve BLS6_6 has two subgroups $\mathbb{G}_1[13]$ and $\mathbb{G}_2[13]$, that are both of order 13. The associated Weil pairing b XXX is a proper bilinear map. We therefore choose those groups and the Weil pairing together with the generators $g_1 = (13,15)$ and $g_2 = (7v^2,16v^3)$ of $\mathbb{G}_1[13]$ and $\mathbb{G}_2[13]$, as parameter

$$\texttt{Groth_16} - \texttt{Param}(R_{3.fac_zk}) = (r, \mathbb{G}_1[13], \mathbb{G}_2[13], e(\cdot, \cdot), (13, 15), (7v^2, 16v^3))$$

It should be noted that our choice is not unique. Every pair of finite cyclic groups of order 13 that has a proper bilinear pairing qualifies as a Groth_16 parameter set. The situation is similar to real world applications, where SNARKS with equivalent behavior are defined over different curves, used in different applications.

The Setup Phase To generate zk-SNARKs from constructive knowledge proofs in the Groth16 protocol, a preprocessing phase is required that has to be executed a single time for every rank-1 constraints system and any associated quadratic arithmetic program. The outcome of this phase is a common reference string, that proofer and verifier need to generate and verify the zk-SNARK. In addition a simulation trapdoor is produced that can be used to simulate proofs.

To be more precise, let L be a language defined by some rank-1 constraints system R such that, a constructive proof of knowledge for an instance (I_1, \ldots, I_n) in L consists of a witness (W_1, \ldots, W_m) . Let $QAP(R) = \left\{ T \in \mathbb{F}[x], \left\{ A_j, B_j, C_j \in \mathbb{F}[x] \right\}_{j=0}^{n+m} \right\}$ be a quadratic arithmetic program associated to R and $\{\mathbb{G}_1, \mathbb{G}_2, e(\cdot, \cdot), g_1, g_2, \mathbb{F}_r\}$ be the set of Groth_16 parameters.

The setup phase then samples 5 random, inverible elements α , β , γ , δ and s from the scalar field \mathbb{F}_r of the protocol and outputs the **simulation trapdoor**

$$\tau = (\alpha, \beta, \gamma, \delta, s) \tag{8.2}$$

In addition the setup phase uses those 5 random elements together with the two generators g_1 and g_2 and the quadratic arithmetic program, to generate a **common reference string** $CRS_{QAP} = (CRS_{\mathbb{G}_1}, CRS_{\mathbb{G}_2})$ of language L:

$$CRS_{\mathbb{G}_{1}} = \left\{ \begin{aligned} g_{1}^{\alpha}, g_{1}^{\beta}, g_{1}^{\delta}, \left(g_{1}^{s^{j}}, \ldots\right)_{j=0}^{deg(T)-1}, \left(g_{1}^{\frac{\beta \cdot A_{j}(s) + \alpha \cdot B_{j}(s) + C_{j}(s)}{\gamma}}, \ldots\right)_{j=0}^{n} \\ \left(g_{1}^{\frac{\beta \cdot A_{j+n}(s) + \alpha \cdot B_{j+n}(s) + C_{j+n}(s)}{\delta}}, \ldots\right)_{j=1}^{m}, \left(g_{1}^{\frac{s^{j} \cdot T(s)}{\delta}}, \ldots\right)_{j=0}^{deg(T)-2} \\ CRS_{\mathbb{G}_{2}} = \left\{g_{2}^{\beta}, g_{2}^{\gamma}, g_{2}^{\delta}, \left(g_{2}^{s^{j}}, \ldots\right)_{j=0}^{deg(T)-1}\right\} \end{aligned}$$

Common reference strings depend on the simulation trapdoor and are therefor not unique to the problem. Any language can have more than one common reference string. The size of a common reference string is linear in the size of the instance and the size witness.

If a simulation trapdoor $\tau = (\alpha, \beta, \gamma, \delta, s)$ is given, we call the element s a **secret evaluation point** of the protocol, because if \mathbb{F}_r is the scalar field of the finite cyclic groups \mathbb{G}_1 and \mathbb{G}_2 then

add reference

add reference

add reference

add reference

add reference

"invariable"?

a key feature of any common reference string is, that it provides data to compute the evaluation of any polynomial $P \in \mathbb{F}_r[x]$ of degree deg(P) < deg(T) at the point s in the exponent of the generator g_1 or g_2 , without knowing s.

5510

5511

5513

5514

5515

5516

5518

5519

5520

5521

5522

5523

5525

5526

5527

5528

5529

To be more precise, let s be the secret evaluation point and $P(x) = a_0 \cdot x^0 + a_1 \cdot x^1 + \dots + a_k \cdot x^k$ a polynomial of degree k < deg(T) with coefficients in \mathbb{F}_r . Then we can compute $g_1^{P(s)}$ without knowing what the actual value of s is:

$$g_1^{P(s)} = g_1^{a_0 \cdot s^0 + a_1 \cdot s^1 + \dots a_k \cdot s^k}$$

$$= g_1^{a_0 \cdot s^0} \cdot g_1 a_1 \cdot s^1 \cdot \dots \cdot g_1^{a_k \cdot s^k}$$

$$= \left(g_1^{s^0}\right)^{a_0} \cdot \left(g_1^{s^1}\right)^{a_1} \cdot \dots \cdot \left(g_1^{s^k}\right)^{a_k}$$

In this expression all the group points $g_1^{s^j}$ are part of the common reference string and hence can be used to compute the result. The same holds true for the evaluation of $g_2^{P(s)}$ since the \mathbb{G}_2 part of the common reference string contains the points $g_2^{s^j}$.

In real world applications, the simulation trapdoor is often called **toxic waste** of the setupphase, while a common reference string is also called a pair of **proofer and verifier key**.

In order to make the protocol secure the setup needs to be executed in a way such that, it is guaranteed that the simulation trapdoor is deleted. Anyone in possession of it can generate arguments without knowledge of a constructive proof. The most simple approach to achieve deletion of the toxic waste is by a so called **trusted third party**, where the trust assumption is, that that the party generates the common reference string precisely as defined and deletes the simulation backdoor afterwards.

However, as trusted third parties are not easy to find in real world application more sophisticated protocols exists that execute the setup phase as a multi party computation, where the proper execution can be publicly verified and the simulation trapdoor is deleted if at least one participants deletes their individual contribution to the randomness. Each participant only possesses a fraction of the simulation trapdoor and the toxic waste can only be recovered if all participants collude and share their fraction.

Example 137 (The 3-factorization Problem). To see how the setup phase of a Groth_16 zk-SNARK can be computed, consider the 3-factorization problem from XXX and the parameters from XXX. As we have seen in XXX an associated quadratic arithmetic program is given by

$$QAP(R_{3.fac_zk}) = \{x^2 + x + 9, \{0, 0, 6x + 10, 0, 0, 7x + 4\}, \{0, 0, 0, 6x + 10, 7x + 4, 0\}, \{0, 7x + 4, 0, 0, 0, 6x + 10\}\}$$

To transform this QAP into a common reference string, we choose the following field elements $\alpha=6,\ \beta=5,\ \gamma=4,\ \delta=3,\ s=2$ from \mathbb{F}_{13} . In real world applications it is important to sample those values randomly from the scalar fiel, but in our approach, we choose those non random values to make them more memorizable, which helps in pen and paper computations. Our simulation trapdoor is then given by

$$\tau = (6, 5, 4, 3, 2)$$

and we keep this secret in order to simulate proofs later on. We are careful though to hide τ from anyone who hasn't read this book. From those values we then instantiate the common

add reference

add reference

reference string XXX. Since our groups are subgroups of the BLS6_6 elliptic curve, we use scalar product notation instead of exponentiation.

5532

5533

add reference

To compute the \mathbb{G}_1 part of the common reference string we use the logarithmic order of the group \mathbb{G}_1 XXX and the generator $g_1 = (13, 15)$ as well as the values from the simulation backdoor. Since deg(T) = 2, we get:

add reference

$$[\alpha]g_1 = [6](13, 15) = (27, 34)$$

 $[\beta]g_1 = [5](13, 15) = (26, 34)$
 $[\delta]g_1 = [3](13, 15) = (38, 15)$

To compute the rest of the \mathbb{G}_1 part of the common reference string, we expand the indexed tuples and insert the secret random elements from the simulation backdoor. We get

$$\left([s^{j}]g_{1},\dots\right)_{j=0}^{1} = \left([2^{0}](13,15),[2^{1}](13,15)\right)$$

$$= \left((13,15),(33,34)\right)$$

$$\left([\frac{\beta A_{j}(s) + \alpha B_{j}(s) + C_{j}(s)}{\gamma}]g_{1},\dots\right)_{j=0}^{1} = \left([\frac{5A_{0}(2) + 6B_{0}(2) + C_{0}(2)}{4}](13,15), \right.$$

$$\left([\frac{5A_{1}(2) + 6B_{1}(2) + C_{1}(2)}{4}](13,15)\right)$$

$$\left([\frac{\beta A_{j+n}(s) + \alpha B_{j+n}(s) + C_{j+n}(s)}{\delta}]g_{1},\dots\right)_{j=1}^{4} = \left([\frac{5A_{2}(2) + 6B_{2}(2) + C_{2}(2)}{3}](13,15), \right.$$

$$\left[\frac{5A_{3}(2) + 6B_{3}(2) + C_{3}(2)}{3}](13,15),$$

$$\left[\frac{5A_{4}(2) + 6B_{4}(2) + C_{4}(2)}{3}](13,15),$$

$$\left[\frac{5A_{5}(2) + 6B_{5}(2) + C_{6}(2)}{3}](13,15)\right)$$

$$\left([\frac{s^{j} \cdot T(s)}{\delta})]g_{1}\right)_{j=0}^{0} = \left([\frac{2^{0} \cdot T(2)}{3}](13,15)\right)$$

To compute the curve points on the right side of these expressions we need the polynomials from the associated quadratic arithmetic program and evaluates them on the secret point s = 2.

Since
$$4^{-1} = 10$$
 and $3^{-1} = 9$ in \mathbb{F}_{13} , we get
$$[\frac{5A_0(2) + 6B_0(2) + C_0(2)}{4}] (13, 15) = [(5 \cdot 0 + 6 \cdot 0 + 0) \cdot 10] (13, 15) = [0] (13, 14)$$

$$\mathcal{O}$$

$$[\frac{5A_1(2) + 6B_1(2) + C_1(2)}{4}] (13, 15) = [(5 \cdot 0 + 6 \cdot 0 + (7 \cdot 2 + 4)) \cdot 10] (13, 15) = [11] (13, 15) = (33, 9)$$

$$[\frac{5A_2(2) + 6B_2(2) + C_2(2)}{3}] (13, 15) = [(5 \cdot (6 \cdot 2 + 10) + 6 \cdot 0 + 0) \cdot 9] (13, 15) = [2] (13, 15) = (33, 34)$$

$$[\frac{5A_3(2) + 6B_3(2) + C_3(2)}{3}] (13, 15) = [(5 \cdot 0 + 6 \cdot (6 \cdot 2 + 10) + 0) \cdot 9] (13, 15) = [5] (13, 15) = (26, 34)$$

$$[\frac{5A_4(2) + 6B_4(2) + C_4(2)}{3}] (13, 15) = [(5 \cdot 0 + 6 \cdot (7 \cdot 2 + 4) + 0) \cdot 9] (13, 15) = [10] (13, 15) = (38, 28)$$

$$[\frac{5A_5(2) + 6B_5(2) + C_5(2)}{3}] (13, 15) = [(5 \cdot (7 \cdot 2 + 4) + 6 \cdot 0 + 0) \cdot 9] (13, 15) = [4] (13, 15) = (35, 28)$$

$$[\frac{2^0 \cdot T(2)}{3}] (13, 15) = [1 \cdot (2^2 + 2 + 9) \cdot 9] (13, 15) = [5] (13, 15) = (26, 34)$$

Putting all those values together we see that the \mathbb{G}_1 part of the common reference string is given by the following set of 12 points from the BLS 6_6 13-torsion group \mathbb{G}_1 :

$$CRS_{\mathbb{G}_{1}} = \left\{ \begin{array}{c} (27,34), (26,34), (38,15), \Big((13,15), (33,34) \Big), \Big(\mathscr{O}, (33,9) \Big) \\ \Big((33,34), (26,34), (38,28), (35,28) \Big), \Big((26,34) \Big) \end{array} \right\}$$

To compute the \mathbb{G}_2 part of the common reference string we use the logarithmic order of the group \mathbb{G}_2 XXX and the generator $g_2 = (7v^2, 16v^3)$ as well as the values from the simulation add referbackdoor. Since deg(T) = 2, we get:

ence

$$[\beta]g_2 = [5](7v^2, 16v^3) = (16v^2, 28v^3)$$
$$[\gamma]g_2 = [4](7v^2, 16v^3) = (37v^2, 27v^3)$$
$$[\delta]g_2 = [3](7v^2, 16v^3) = (42v^2, 16v^3)$$

To compute the rest of the \mathbb{G}_2 part of the common reference string, we expand the indexed tuple and insert the secret random elements from the simulation backdoor. We get

$$([s^{j}]g_{2},...)_{j=0}^{1} = ([2^{0}](7v^{2}, 16v^{3}), [2^{1}](7v^{2}, 16v^{3}))$$
$$= ((7v^{2}, 16v^{3}), (10v^{2}, 28v^{3}))$$

Putting all those values together we see that the \mathbb{G}_2 part of the common reference string is given by the following set of 5 points from the BLS6_6 13-torsion group \mathbb{G}_2 :

$$CRS_{\mathbb{G}_2} = \left\{ (16v^2, 28v^3), (37v^2, 27v^3), (42v^2, 16v^3), \left(7v^2, 16v^3\right), (10v^2, 28v^3) \right) \right\}$$

Given the simlutation trapdoor τ and the quadratic arithmetic program XXX, the associated add refercommon reference string of the 3-factorization problem is given by

ence

$$CRS_{\mathbb{G}_{1}} = \left\{ \begin{array}{l} (27,34),(26,34),(38,15),\left((13,15),(33,34)\right),\left(\mathscr{O},(33,9)\right)\\ \left((33,34),(26,34),(38,28),(35,28)\right),\left((26,34)\right) \end{array} \right\}$$

$$CRS_{\mathbb{G}_{2}} = \left\{ (16v^{2},28v^{3}),(37v^{2},27v^{3}),(42v^{2},16v^{3}),\left(7v^{2},16v^{3}),(10v^{2},28v^{3})\right) \right\}$$

We then publih this data to everyone who wants to participate in the zk-SNARK generation or verification of the 3-factorization problem.

5534

5535

5536

5537

5538

5539

5540

5541

To understand how this common reference string can be used, to evaluate polynomials at the secret evaluation point in the exponent of a generator, let's assume that we have deleted the simulation trapdoor. In that case we have no way to know the secrete evaluation point anymore and hence can not evaluate polynomials at that point. However, we can evaluate polynomials of degree smaller than the degree of the target polynomial in the exponent of both generators at that point.

To see that consider for example the polynomials $A_2(x) = 6x + 10$ and $A_5(x) = 7x + 4$ from the QAP of this problem. To evaluate these polynomials in the exponent of g_1 and g_2 at the secrete point s, without knowing the value of s (which is 2), we can use the common reference string and equation XXX. Using the scalar product notation, instead of exponentiation, we get

add reference

$$[A_{2}(s)]g_{1} = [6 \cdot s^{1} + 10 \cdot s^{0}]g_{1}$$

$$= [6](33,34) + [10](13,15) \qquad \# [s^{0}]g_{1} = (13,15), [s^{1}]g_{1} = (33,34)$$

$$= [6 \cdot 2](13,15) + [10](13,15) = [9](13,15) \qquad \# \text{ logarithmic order on } \mathbb{G}_{1}$$

$$= (35,15)$$

$$[A_{5}(s)]g_{1} = [7 \cdot s^{1} + 4 \cdot s^{0}]g_{1}$$

$$= [7](33,34) + [4](13,15)$$

$$= [7 \cdot 2](13,15) + [4](13,15) = [5](13,15)$$

$$= (26,34)$$

Indeed we are able to evaluate the polynomials in the exponent at a secret evaluation point because that point is encrypted in the curve point (33,34) and is secrecy is protected by the discrete logarithm assumption. Of course in our computation we recovered the secret point s =2, but that was only possible, because we have a logarithmic ordering of the group to simplify our pen and paper computations. Such an order is infeasible to compute in cryptographically secure curves. We can do the same computation on \mathbb{G}_2 and get

$$[A_{2}(s)]g_{2} = [6 \cdot s^{1} + 10 \cdot s^{0}]g_{2}$$

$$= [6](10v^{2}, 28v^{3}) + [10](7v^{2}, 16v^{3})$$

$$= [6 \cdot 2](7v^{2}, 16v^{3}) + [10](7v^{2}, 16v^{3}) = [9](7v^{2}, 16v^{3})$$

$$= (37v^{2}, 16v^{3})$$

$$[A_{5}(s)]g_{2} = [7 \cdot s^{1} + 4 \cdot s^{0}]g_{1}$$

$$= [7](10v^{2}, 28v^{3}) + [4](7v^{2}, 16v^{3})$$

$$= [7 \cdot 2](7v^{2}, 16v^{3}) + [4](7v^{2}, 16v^{3}) = [5](7v^{2}, 16v^{3})$$

$$= (16v^{2}, 28v^{3})$$

Except for the target polynomial T all other polynomials of the quadratic arithmetic program can be evaluated in the exponent this way.

The Proofer Phase Given some rank-1 constraints system R and instance $I = (I_1, ..., I_n)$, the task of the proofer phase is to convince any verifier, that a proofer knows a witness W to instance I such that, (I; W) is a word in the language L_R of the system, without revealing anything about W.

To achieve this in the Groth_16 protocol, we assume that any proofer has access to the rank-1 constraints system of the problem in addition with some algorithm, that tells the proofer how to compute constructive proofs for the R1CS. In addition the proofer has access to a common reference string and its associated quadratic arithmetic program.

In order to generate a zk-SNARK for this instance, the proofer first computes a valid constructive proof as explained in XXX, that is the proofer generates a proper witness $W = (W_1, ..., W_m)$ such that, $(I_1, ..., I_n; W_1, ..., W_m)$ is a solution to the rank-1 constraints system R.

The proofer then uses the quadratic arithmetic program and computes the polynomial $P_{(I;W)}$ as explained in XXX. They then divide $P_{(I;W)}$ by the target polynomial T of the quadratic arithmetic. Since $P_{(I;W)}$ is constructed from a valid solution to the R1CS we know from XXX that it is divisible by T. This implies that polynomial division of P by T generates another polynomial H := P/T, with deg(H) < deg(T).

The proofer then evaluates the polynomial $(H \cdot T)\delta^{-1}$ in the exponent of the generator g_1 at the secret point s as explained in XXX. To see how this can be achieved, let

$$H(x) = H_0 \cdot x^0 + H_1 \cdot x^1 + \dots + H_k \cdot x^k$$
(8.3)

be the quotient polynomial P/T. To evaluate $H \cdot T$ at s in the exponent of g_1 , the proofer uses the common reference string and computes

$$g_1^{\frac{H(s)\cdot T(s)}{\delta}} = \left(g_1^{\frac{s^0\cdot T(s)}{\delta}}\right)^{H_0} \cdot \left(g_1^{\frac{s^1\cdot T(s)}{\delta}}\right)^{H_1} \cdots \left(g_1^{\frac{s^k\cdot T(s)}{\delta}}\right)^{H_k}$$

After this has been done, the proofer samples two random field elements $r, t \in \mathbb{F}_r$ and uses the common reference string, the instance variables I_1, \ldots, I_n and the witness variables W_1, \ldots, W_m to compute the following curve points

$$\begin{split} g_1^W &= \left(g_1^{\beta \cdot A_{1+n}(s) + \alpha \cdot B_{1+n}(s) + C_{1+n}(s)}\right)^{W_1} \cdots \left(g_1^{\beta \cdot A_{m+n}(s) + \alpha \cdot B_{m+n}(s) + C_{m+n}(s)}\right)^{W_m} \\ g_1^A &= g_1^{\alpha} \cdot g_1^{A_0(s)} \cdot \left(g_1^{A_1(s)}\right)^{I_1} \cdots \left(g_1^{A_n(s)}\right)^{I_n} \cdot \left(g_1^{A_{n+1}(s)}\right)^{W_1} \cdots \left(g_1^{A_{n+m}(s)}\right)^{W_m} \cdot \left(g_1^{\delta}\right)^{r} \\ g_1^B &= g_1^{\beta} \cdot g_1^{B_0(s)} \cdot \left(g_1^{B_1(s)}\right)^{I_1} \cdots \left(g_1^{B_n(s)}\right)^{I_n} \cdot \left(g_1^{B_{n+1}(s)}\right)^{W_1} \cdots \left(g_1^{B_{n+m}(s)}\right)^{W_m} \cdot \left(g_1^{\delta}\right)^{t} \\ g_2^B &= g_2^{\beta} \cdot g_2^{B_0(s)} \cdot \left(g_2^{B_1(s)}\right)^{I_1} \cdots \left(g_2^{B_n(s)}\right)^{I_n} \cdot \left(g_2^{B_{n+1}(s)}\right)^{W_1} \cdots \left(g_2^{B_{n+m}(s)}\right)^{W_m} \cdot \left(g_2^{\delta}\right)^{t} \\ g_1^C &= g_1^W \cdot g_1^{B_0(s)} \cdot \left(g_1^A\right)^{t} \cdot \left(g_1^A\right)^{t} \cdot \left(g_1^A\right)^{r} \cdot \left(g_1^{\delta}\right)^{-r \cdot t} \end{split}$$

In this computation, the group elements $g_1^{A_j(s)}$, $g_1^{B_j(s)}$ and $g_2^{B_j(s)}$ can be derived from the common reference string and the quadratic arithmetic program of the problem, as we have seen in XXX. In fact those points only have to be computed once and can be published and reused for multiple proof generations as they are the same for all instances and witnesses. All other group elements are part of the common reference string.

add reference

add reference

add reference

add reference

After all these computations have been done, a valid zero-knowledge succinct non-interactive argument of knowledge π in the Groth_16 protocol is given by the following three curve points

5567

5568 5569

5570

5571

5572

5573

5574

5575

5576

5577

5579

5580

5581

5582

$$\pi = (g_1^A, g_1^C, g_2^B) \tag{8.4}$$

As we can see, a Groth_16 zk-SNARK consists of 3 curve points. Two points from \mathbb{G}_1 and 1 point from \mathbb{G}_2 . The argument is specifically designed this way, because in typical applications \mathbb{G}_1 is a torsion group of an elliptic curve over some prime field, while \mathbb{G}_2 is a subgroup of a torsion group over an extension field. Elements from \mathbb{G}_1 therefore need less space to be stored and computations in \mathbb{G}_1 are typically faster then in \mathbb{G}_2 .

Since the witness is encoded in the exponent of a generator of a cryptographically secure elliptic curve, it is hidden from anyone but the proofer. Moreover, since any proof is randomized by the occurrence of the random field elements r and t, proofs are not unique for any given witness. This is an important feature, because if all proofs for the same witness would be the same, knowledge of a witness would destroy the zero knowledge property of those proofs.

Example 138 (The 3-factorization Problem). To see how a proofer might compute a zk-SNARK, consider the 3-factorization problem from XXX, our protocol parameters from XXX as well as the common reference string from XXX.

Our task is to compute a zk-SNARK for the instance $I_1 = 11$ and its constructive proof $(W_1, W_2, W_3, W_4) = (2, 3, 4, 6)$ as computed in XXX. As we know from XXX the associated polynomial $P_{(I:W)}$ of the quadratic arithmetic program from XXX is given by

$$P_{(I;W)} = x^2 + x + 9$$

and since in this example $P_{(I;W)}$ is identical to the target polynomial $T(x) = x^2 + x + 9$, we know from XXX, that the quotient polynomial H = P/T is the constant degree 0 polynomial

$$H(x) = H_0 \cdot x^0 = 1 \cdot x^0$$

We therefore use $\left[\frac{s^0 \cdot T(s)}{\delta}\right]g_1 = (26,34)$ from our common reference string XXX of the 3-factorizational reference problem and compute

$$\left[\frac{H(s) \cdot T(s)}{\delta}\right] g_1 = [H_0](26, 34) = [1](26, 34)$$
$$= (26, 34)$$

In a next step we have to compute all group elements required for a proper Groth16 zk-SNARK. We start with g_1^W . Using scalar products instead of the exponential notation and \oplus for the group law on the BLS6_6 curve, we have to compute the point

the BLS6_6 curve, we have to compute the point
$$[W]g_1 = [W_1]g_1^{\frac{\beta \cdot A_2(s) + \alpha \cdot B_2(s) + C_2(s)}{\delta}} \oplus [W_2]g_1^{\frac{\beta \cdot A_3(s) + \alpha \cdot B_3(s) + C_3(s)}{\delta}} \oplus [W_3]g_1^{\frac{\beta \cdot A_4(s) + \alpha \cdot B_4(s) + C_4(s)}{\delta}} \oplus [W_4]g_1^{\frac{\beta \cdot A_5(s) + \alpha \cdot B_5(s) + C_5(s)}{\delta}}$$

To compute this point, we have to rememer that a proofer should not be in possession of the simulation trapdoor and hence does not know what α , β , δ and s are. In order to compute this group element, the proofer therefore need the common reference string. Using the logarithmic order from XXX and the witness we get

add reference

add reference

add refer-

ence add refer-

add refer-

ence

ence

ence

add reference

add reference

ence

add refer-

$$[W]g_1 = [2](33,34) \oplus [3](26,34) \oplus [4](38,28) \oplus [6](35,28)$$

$$= [2 \cdot 2](13,15) \oplus [3 \cdot 5](13,15) \oplus [4 \cdot 10](13,15) \oplus [6 \cdot 4](13,15)$$

$$= [2 \cdot 2 + 3 \cdot 5 + 4 \cdot 10 + 6 \cdot 4](13,15) = [5](13,15)$$

$$= (26,34)$$

In a next step we compute g_1^A . We sample the random point r=11 from \mathbb{F}_{13} , use scalar products instead of the exponential notation and \oplus for the group law on the BLS 6_6 curve. We then have to compute the following expression

$$[A]g_1 = [\alpha]g_1 \oplus [A_0(s)]g_1 \oplus [I_1][A_1(s)]g_1 \oplus [W_1][A_2(s)]g_1 \oplus [W_2][A_3(s)]g_1 \oplus [W_3][A_4(s)]g_1 \oplus [W_4][A_5(s)]g_1 \oplus [r][\delta]g_1$$

Since we don't know what α , δ and s are we look up $[\alpha]g_1$ and $[\delta]g_1$ from the common reference string and recall from XXX that we can evaluate $[A_j(s)]g_1$ without knowledge of the secret evaluation point s. According to XXX we have $[A_2(s)]g_1 = (35,15)$, $[A_5(s)]g_1 = (26,34)$ and $[A_j(s)]g_1 = \mathcal{O}$ for all other indizes $0 \le j \le 5$. Since \mathcal{O} is the neutral element on \mathbb{G}_1 , we get

add reference

add reference

$$[A]g_1 = (27,34) \oplus \mathscr{O} \oplus [11]\mathscr{O} \oplus [2](35,15) \oplus [3]\mathscr{O} \oplus [4]\mathscr{O} \oplus [6](26,34) \oplus [11](38,15)$$

$$= (27,34) \oplus [2](35,15) \oplus [6](26,34) \oplus [11](38,15)$$

$$= [6](13,15) \oplus [2 \cdot 9](13,15) \oplus [6 \cdot 5](13,15) \oplus [11 \cdot 3](13,15)$$

$$= [6+2 \cdot 9+6 \cdot 5+11 \cdot 3](13,15) = [9](13,15)$$

$$= (35,15)$$

In order to compute the two curve points $[B]g_1$ and $[B]g_2$, we sample another random element t=4 from \mathbb{F}_{13} . Using the scalar product instead of the exponential notation and \oplus for the group law on the BLS 6_6 curve, we have to compute the following expressions

$$[B]g_{1} = [\beta]g_{1} \oplus [B_{0}(s)]g_{1} \oplus [I_{1}][B_{1}(s)]g_{1} \oplus [W_{1}][B_{2}(s)]g_{1} \oplus [W_{2}][B_{3}(s)]g_{1}$$

$$\oplus [W_{3}][B_{4}(s)]g_{1} \oplus [W_{4}][B_{5}(s)]g_{1} \oplus [t][\delta]g_{1}$$

$$[B]g_{2} = [\beta]g_{2} \oplus [B_{0}(s)]g_{2} \oplus [I_{1}][B_{1}(s)]g_{2} \oplus [W_{1}][B_{2}(s)]g_{2} \oplus [W_{2}][B_{3}(s)]g_{2}$$

$$\oplus [W_{3}][B_{4}(s)]g_{2} \oplus [W_{4}][B_{5}(s)]g_{2} \oplus [t][\delta]g_{2}$$

Since we don't know what β , δ and s are we look up the associated group elements from the common reference string and recall from XXX that we can evaluate $[B_j(s)]g_1$ without knowledge of the secret evaluation point s. Since $B_3 = A_2$ as well as $B_4 = A_5$, we have $[B_3(s)]g_1 = (35,15)$, $[B_4(s)]g_1 = (26,34)$ according to XXX and $[B_j(s)]g_1 = \mathcal{O}$ for all other indices $0 \le j \le 5$. Since \mathcal{O} is the neutral element on \mathbb{G}_1 , we get

add reference

$$[B]g_1 = (26,34) \oplus \mathcal{O} \oplus [11]\mathcal{O} \oplus [2]\mathcal{O} \oplus [3](35,15) \oplus [4](26,34) \oplus [6]\mathcal{O} \oplus [4](38,15)$$

$$= (26,34) \oplus [3](35,15) \oplus [4](26,34) \oplus [4](38,15)$$

$$= [5](13,15) \oplus [3 \cdot 9](13,15) \oplus [4 \cdot 5](13,15) \oplus [4 \cdot 3](13,15)$$

$$= [5+3 \cdot 9+4 \cdot 5+4 \cdot 3](13,15) = [12](13,15)$$

$$= (13,28)$$

$$[B]g_2 = (16v^2, 28v^3) \oplus \mathscr{O} \oplus [11]\mathscr{O} \oplus [2]\mathscr{O} \oplus [3](37v^2, 16v^3) \oplus [4](16v^2, 28v^3) \oplus [6]\mathscr{O} \oplus [4](42v^2, 16v^3)$$

$$= (16v^2, 28v^3) \oplus [3](37v^2, 16v^3) \oplus [4](16v^2, 28v^3) \oplus [4](42v^2, 16v^3)$$

$$= [5](7v^2, 16v^3) \oplus [3 \cdot 9](7v^2, 16v^3) \oplus [4 \cdot 5](7v^2, 16v^3) \oplus [4 \cdot 3](7v^2, 16v^3)$$

$$= [5 + 3 \cdot 9 + 4 \cdot 5 + 4 \cdot 3](7v^2, 16v^3) = [12](7v^2 + 16v^3)$$

$$= (7v^2, 27v^3)$$

In a last step we can combine the previous computations, to compute the point $[C]g_1$ in the group \mathbb{G}_1 . we get

$$[C]g_{1} = [W]g_{1} \oplus [\frac{H(s) \cdot T(s)}{\delta}]g_{1} \oplus [t][A]g_{1} \oplus [r][B]g_{1} \oplus [-r \cdot t][\delta]g_{1}$$

$$= (26,34) \oplus (26,34) \oplus [4](35,15) \oplus [11](13,28) \oplus [-11 \cdot 4](38,15)$$

$$= [5](13,15) \oplus [5](13,15) \oplus [4 \cdot 9](13,15) \oplus [11 \cdot 12](13,15) \oplus [-11 \cdot 4 \cdot 3](13,15)$$

$$= [5+5+4 \cdot 9+11 \cdot 12-11 \cdot 4 \cdot 3](13,15) = [7](13,15)$$

$$= (27,9)$$

Given instance $I_1 = 11$ we can now combine those computation and see that the following 3 curve points are a zk-SNARK for the witness $(W_1, W_2, W_3, W_4) = (2, 3, 4, 6)$:

$$\pi = ((35, 15), (27, 9), (7v^2, 27v^3))$$

We can o publish this zk-SNARK or send it to a designated verifier. Note that if we had sampled different values for r and t, we would have computed a different SNARK for the same witness. The SNARK therefore hides the witness perfectly, which means that it is impossible to reconstruct the witness from the SNARK.

5587

5588

5589

5590

5591

The Verification Phase Given some rank-1 constraints system R, instance $I = (I_1, \ldots, I_n)$ and zk-SNARK π , the task of the verifier phase is to check that π is indeed an argument for a constructive proof. Assuming that the simulation trapdoor does not exists anymore and the verification checks the proof, the verifier can be convinced, that someone knows a witness $W = (W_1, \ldots, W_m)$ such that, (I; W) is a word in the language of R.

To achieve this in the Groth16 protocol, we assume that any verifier is able to compute the pairing map $e(\cdot,\cdot)$ efficiently and has access to the common reference string used to produce the SNARK π . In order to verify the SNARK with respect to the instance (I_1,\ldots,I_n) , the verifier computes the following curve point:

$$g_1^I = \left(g_1^{\frac{\beta \cdot A_0(s) + \alpha \cdot B_0(s) + C_0(s)}{\gamma}}\right) \cdot \left(g_1^{\frac{\beta \cdot A_1(s) + \alpha \cdot B_1(s) + C_1(s)}{\gamma}}\right)^{I_1} \cdots \left(g_1^{\frac{\beta \cdot A_n(s) + \alpha \cdot B_n(s) + C_n(s)}{\gamma}}\right)^{I_n}$$

With this group element the verifier is then able to verify the SNARK $\pi = (g_1^A, g_1^C, g_2^B)$ by checking the following equation using the pairing map:

$$e(g_1^A, e_2^B) = e(g_1^\alpha, g_2^\beta) \cdot e(g_1^I, g_2^\gamma) \cdot e(g_1^C, g_2^\delta)$$
(8.5)

If the equation holds true, the SNARK is accepted and if the equation does not hold, the SNARK is rejected.

Remark 5. We know from XXX that computing pairings in cryptographically secure pairing add refergroups is computationally expensive. As we can see, in the Groth16 protocol 3 pairings are required to verify the SNARK, because the pairing $e(g_1^{\alpha}, g_2^{\beta})$ is independent of the proof and can be computed once and then stored as an amendment to the verifier key.

5596

5597

5598

5600

5601

5602

5603

5604

5605

5606

5607

5609

5610

ence

In [GROTH16] the author showed that 2 pairings is the minimal amount of pairings that any protocol with similar properties has to use. This protocol is therefore close to the theoretic minimum. In the same paper the author outlined an adaptation that only uses 2 pairings. However, that reduction comes with the price of much more overhead computation. 3 pairings is therefore a compromise that gives the overall best performance. To date the Groth16 protocol is the most efficient in its class.

Example 139 (The 3-factorization Problem). To see how a verifier might check a zk-SNARK for some given instance I, consider the 3-factorization problem from XXX, our protocol parameters from XXX, the common reference string from XXX as well as the zk-SNARK $\pi =$ $((35,15),(27,9),(7v^2,27v^3))$, which claims to be an argument of knowledge for a witness for the instance $I_1 = 11$.

add reference

add reference

In order to verify the zk-SNARK for that instance, we first compute the curve point g_1^I . Using scalar products instead of the exponential notation and ⊕ for the group law on the BLS6_6 curve, we have to compute the point

add reference

$$[I]g_1 = [\frac{\beta \cdot A_0(s) + \alpha \cdot B_0(s) + C_0(s)}{\gamma}]g_1 \oplus [I_1][\frac{\beta \cdot A_1(s) + \alpha \cdot B_1(s) + C_1(s)}{\gamma}]g_1$$

To compute this point, we have to remember that a verifier should not be in possession of the simulation trapdoor and hence does not know what α , β , γ and s are. In order to compute this group element, the verifier therefore need the common reference string. Using the logarithmic order from XXX and instance I_1 we get

add reference

$$[I]g_{1} = \left[\frac{\beta \cdot A_{0}(s) + \alpha \cdot B_{0}(s) + C_{0}(s)}{\gamma}\right]g_{1} \oplus [I_{1}]\left[\frac{\beta \cdot A_{1}(s) + \alpha \cdot B_{1}(s) + C_{1}(s)}{\gamma}\right]g_{1}$$

$$= \mathcal{O} \oplus [11](33,9)$$

$$= [11 \cdot 11](13,15) = [4](13,15)$$

$$= (35,28)$$

In a next step, we have to compute all the pairings involved in equation XXX. Using the loga-

rithmic order on \mathbb{G}_1 and \mathbb{G}_2 as well as the bilinearity property of the pairing map we get

$$\begin{split} e([A]g_1,[B]g_2) &= e((35,15),(7v^2,27v^3)) = e([9](13,15),[12](7v^2,16v^3)) \\ &= e((13,15),(7v^2,16v^3))^{9\cdot12} \\ &= e((13,15),(7v^2,16v^3))^{108} \\ e([\alpha]g_1,[\beta]g_2) &= e((27,34),(16v^2,28v^3)) = e([6](13,15),[5](7v^2,16v^3)) \\ &= e((13,15),(7v^2,16v^3))^{6\cdot5} \\ &= e((13,15),(7v^2,16v^3))^{30} \\ e([I]g_1,[\gamma]g_2) &= e((35,28),(37v^2,27v^3)) = e([4](13,15),[4](7v^2,16v^3)) \\ &= e((13,15),(7v^2,16v^3))^{4\cdot4} \\ &= e((13,15),(7v^2,16v^3))^{16} \\ e([C]g_1,[\delta]g_2) &= e((27,9),(42v^2,16v^3)) = e([7](13,15),[3](7v^2,16v^3)) \\ &= e((13,15),(7v^2,16v^3))^{7\cdot3} \\ &= e((13,15),(7v^2,16v^3))^{21} \end{split}$$

In order to check equation XXX, observe that the target group \mathbb{G}_T of the Weil pairing is a finite cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetics. Using this we evaluate the left side of equation XXX as

$$e([A]g_1, [B]g_2) = e((13, 15), (7v^2, 16v^3))^{108} = e((13, 15), (7v^2, 16v^3))^4$$

since $108 \mod 13 = 4$. Similarly, we evaluate the right side of equation XXX using modular 13 arithmetics and the exponential law $a^x \cdot a^y = a^{x+y}$. We get

$$e([\alpha]g_1, [\beta]g_2) \cdot e([I]g_1, [\gamma]g_2) \cdot e([C]g_1, [\delta]g_2) =$$

$$e((13, 15), (7v^2, 16v^3))^{30} \cdot e((13, 15), (7v^2, 16v^3))^{16} \cdot e((13, 15), (7v^2, 16v^3))^{21} =$$

$$e((13, 15), (7v^2, 16v^3))^4 \cdot e((13, 15), (7v^2, 16v^3))^3 \cdot e((13, 15), (7v^2, 16v^3))^8 =$$

$$e((13, 15), (7v^2, 16v^3))^{4+3+8} =$$

$$e((13, 15), (7v^2, 16v^3))^2$$

As we can see both the left and the right side of equation XXX are identical, which implies that add referthe verification process accepts the simulated proof.

5611

5612

5613

5614

5615

5617

5618

5619

5620

5621

5622

5623

5624

NOTE: UNFORTUNATELY NOT! :-((HENCE THERE IS AN ERROR SOMEWHERE ... NEED TO FIX IT AFTER VACATION

Proof Simulation During the execution of a setup phase, a common reference string is generated accompanied by a simulation trapdoor, the latter of which must be deleted at the end of the setup-phase. As an alternative a more complicated multi-party protocol like [XXX] can be used to split the knowledge of the simulation trapdoor among many different parties.

In this paragraph we will show, why knowledge of the simulation trapdoor is problematic and how it can be used to generate zk-SNARKs for given instances without any knowledge or the existence of associated witnesses.

To be more precise, let I be an instance for some R1CS language L_R . We call a zk-SNARK for L_R forged or simulated, if it passes any verification but its generation does not require the existence of a witness W such that, (I; W) is a word in L_R .

add reference

ence add refer-

ence

add refer-

add refer-

ence

ence

To see how simulated zk-SNARKs can be computed, assume that a forger has knowledge of proper Groth_16 parameters, a quadratic arithmetic program of the problem, a common reference string and its associated simulation trapdoor

5625

5626

5628

5629

5630

5631

5632

5633

5634

5635

5636 5637

5638

5639

5640

5641

5643

5644

5645

$$\tau = (\alpha, \beta, \gamma, \delta, s) \tag{8.6}$$

Given some instance *I* the forgers task is to generate a zk-SNARK for this instance that passes the verification process, without access to any other zk-SNARK for this instance and without knowledge of a valid witness *W*.

To achieve this in the Groth_16 protocol, the forger can use the simulation trapdoor in combination with the QAP and two arbitrary field elements A and B from the scalar field \mathbb{F}_r of the pairing groups to compute

$$g_1^C = g_1^{\frac{A \cdot B}{\delta}} \cdot g_1^{-\frac{\alpha \cdot \beta}{\delta}} \cdot g_1^{-\frac{\beta A_0(s) + \alpha B_0(s) + C_0(s)}{\delta}} \cdot \left(g_1^{-\frac{\beta A_1(s) + \alpha B_1(s) + C_1(s)}{\delta}}\right)^{I_1} \cdots \left(g_1^{-\frac{\beta A_n(s) + \alpha B_n(s) + C_n(s)}{\delta}}\right)^{I_n}$$

for the instance $(I_1, ..., I_n)$. The forger then publishes the zk-SNARK $\pi_{forged} = (g_1^A, g_1^C, g_2^B)$, which will pass the verification process and is computable without the existence of a witness $(W_1, ..., W_m)$.

To see that the simulation trapdoor is necessary and sufficient to compute the simulated proof π_{forged} , first observe that both generators g_1 and g_2 are known to the forger, as they are part of the common reference string, encoded as $g_1^{s_0}$ and $g_2^{s_0}$. The forger is therefore able to compute $g_1^{A\cdot B}$. Moreover, since the forger knows α , β , δ and s from the trapdoor, they are able to compute all factors in the computation of g_1^C .

If, on the other hand, the simulation trapdoor is unknown, it is not possible to compute g_1^C , since for example the computational Diffie-Hellman assumption makes the derivation of $g_1^{\alpha \cdot \beta}$ from g_1^{α} and g_1^{β} infeasible.

Example 140 (The 3-factorization Problem). To see how a forger might simulate a zk-SNARK for some given instance I, consider the 3-factorization problem from XXX, our protocol parameters from XXX, the common reference string from XXX and the simulation trapdoor $\tau = (6,5,4,3,2)$ of that CRS.

In order to forge a zk-SNARK for instance $I_1 = 11$ we don't need a constructive proof for the associated rank-1 constraints system, which implies that we don't have to execute the circuit $C_{3,fac}(\mathbb{F}_{13})$. Instead we have to choose 2 arbitrary elements A and B from \mathbb{F}_{13} and compute g_1^A , g_2^B and g_1^C as defined in XXX. We choose A = 9 and B = 3 and since $\delta^{-1} = 3$, we compute

add reference

add reference

add reference

add reference

$$\begin{split} [A]g_1 = & [9](13,15) = (35,15) \\ [B]g_2 = & [3](7v^2,16v^3) = (42v^2,16v^3) \\ [C]g_1 = & [\frac{A \cdot B}{\delta}]g_1 \oplus [-\frac{\alpha \cdot \beta}{\delta}]g_1 \oplus [-\frac{\beta A_0(s) + \alpha B_0(s) + C_0(s)}{\delta}]g_1 \oplus \\ & [I_1][-\frac{\beta A_1(s) + \alpha B_1(s) + C_1(s)}{\delta}]g_1 \\ = & [(9 \cdot 3) \cdot 9](13,15) \oplus [-(6 \cdot 5) \cdot 9](13,15) \oplus [0](13,15) \oplus [11][-(7 \cdot 2 + 4) \cdot 9](13,15) \\ = & [9](13,15) \oplus [3](13,15) \oplus [12](13,15) = [11](13,15) \\ = & (33,9) \end{split}$$

This is all we need to generate our forged proof for the 3-factorization problem. We publish the simulated zk-SNARK

$$\pi_{fake} = ((35, 15), (33, 9), (42v^2, 16v^3))$$

Despite the fact that this zk-SNARK was generated without knowledge of a proper witness, it 5646 is indistinguishable from a zk-SNARK that proofs knowledge of a proper witness. 5647

To see that we show that our forged SNARK passes the verification process. In order to verify π_{fake} we proceed as in XXX and compute the curve point g_1^I for the instance $I_1 = 11$. Since the instance is the same as in example XXX, we can parallel the computation from XXX and get

 $[I]g_1 = [\frac{\beta \cdot A_0(s) + \alpha \cdot B_0(s) + C_0(s)}{\gamma}]g_1 \oplus [I_1][\frac{\beta \cdot A_1(s) + \alpha \cdot B_1(s) + C_1(s)}{\gamma}]g_1$ =(35,28)

In a next step we have to compute all the pairings involved in equation XXX. Using the logarithmic order on \mathbb{G}_1 and \mathbb{G}_2 as well as the bilinearity property of the pairing map we get

$$e([A]g_1, [B]g_2) = e((35, 15), (42v^2, 16v^3)) = e([9](13, 15), [3](7v^2, 16v^3))$$

$$= e((13, 15), (7v^2, 16v^3))^{9 \cdot 3}$$

$$= e((13, 15), (7v^2, 16v^3))^{27}$$

$$e([\alpha]g_1, [\beta]g_2) = e((27, 34), (16v^2, 28v^3)) = e([6](13, 15), [5](7v^2, 16v^3))$$

$$= e((13, 15), (7v^2, 16v^3))^{6 \cdot 5}$$

$$= e((13, 15), (7v^2, 16v^3))^{30}$$

$$e([I]g_1, [\gamma]g_2) = e((35, 28), (37v^2, 27v^3)) = e([4](13, 15), [4](7v^2, 16v^3))$$

$$= e((13, 15), (7v^2, 16v^3))^{4 \cdot 4}$$

$$= e((13, 15), (7v^2, 16v^3))^{16}$$

$$e([C]g_1, [\delta]g_2) = e((33, 9), (42v^2, 16v^3)) = e([11](13, 15), [3](7v^2, 16v^3))$$

$$= e((13, 15), (7v^2, 16v^3))^{11 \cdot 3}$$

$$= e((13, 15), (7v^2, 16v^3))^{33}$$

In order to check equation XXX, observe that the target group \mathbb{G}_T of the Weil pairing is a finite cyclic group of order 13. Exponentiation is therefore done in modular 13 arithmetics. Using this we evaluate the left side of equation XXX as

$$e([A]g_1, [B]g_2) = e((13, 15), (7v^2, 16v^3))^{27} = e((13, 15), (7v^2, 16v^3))^1$$

since 27 mod 13 = 1. Similarly, we evaluate the right side of equation XXX using modular 13 arithmetics and the exponential law $a^x \cdot a^y = a^{x+y}$. We get

$$e([\alpha]g_1,[\beta]g_2) \cdot e([I]g_1,[\gamma]g_2) \cdot e([C]g_1,[\delta]g_2) =$$

$$e((13,15),(7v^2,16v^3))^{30} \cdot e((13,15),(7v^2,16v^3))^{16} \cdot e((13,15),(7v^2,16v^3))^{33} =$$

$$e((13,15),(7v^2,16v^3))^4 \cdot e((13,15),(7v^2,16v^3))^3 \cdot e((13,15),(7v^2,16v^3))^7 =$$

$$e((13,15),(7v^2,16v^3))^{4+3+7} =$$

$$e((13,15),(7v^2,16v^3))^1$$

As we can see both the left and the right side of equation XXX are identical, which implies that 5648 the verification process accepts the simulated proof. π_{fake} therefore convince the verifier that 5649 a witness to 3-factorization problem exists, However, no such witness was really necessary to 5650 generate the proof.

5651

add reference

add reference

add reference

add reference

add refer-

ence

add refer-

add refer-

add refer-

ence

ence

ence

5652 Chapter 9

Exercises and Solutions

TODO: All exercises we provided should have a solution, which we give here in all detail.

Bibliography

- Jens Groth. On the size of pairing-based non-interactive arguments. *IACR Cryptol. ePrint Arch.*, 2016:260, 2016. URL http://eprint.iacr.org/2016/260.
- P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In *Proceedings 35th Annual Symposium on Foundations of Computer Science*, pages 124–134, 1994.
 doi: 10.1109/SFCS.1994.365700.
- David Fifield. The equivalence of the computational diffie—hellman and discrete logarithm problems in certain groups, 2012. URL https://web.stanford.edu/class/cs259c/ finalpapers/dlp-cdh.pdf.
- Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan Feigenbaum, editor, *Advances in Cryptology CRYPTO '91*, pages 129–140, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46766-3. URL https://fmouhart.epheme.re/Crypto-1617/TD08.pdf.
- Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative complexity. Cryptology ePrint Archive, Report 2016/492, 2016. https://ia.cr/2016/492.