A SECTION AS			
LUCKER			

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE/ISE) Mid Semester Examinations - II, October 2016

15CS302/19IS302 - DIGITAL SYSTEMS DESIGN

on: 1 Hour

Mark Marks; 20

Note: Answer any	Porch Sal	the mountains to	mm nach l	Init.
evone: Autower arry	P. Otte: IUI	i question i	TURES WHILES N	P7774-

	Unit - I	Marks	BTL*	
1)	Explain in detail, the design of positive edge triggered RS flip flop along with its timing diagram	06	L*4	
b)	Synthesize an SR flip flop using D flip flop	04	1.5	
2)	Cotain characteristic equation, finite state machine and excitation table for the following flip flop: i. RS flip flop ii. D flip flop			
	A. JK flip flop	06	L4	
0)	With circuit diagram and truth table, explain the working of JK master slave flip flop	04	L2	
	Unit – II			
a) b)	Explain in detail working of senal-in serial-out shift register. Design and explain sequence generator and sequence detector circuit using shift	05	L2	
	register	05	L4	
a) 5)	List and explain different types of shift register along with block diagram. Along with state table, explain the design of switch tail counter.	06 04	L1 L2	
_				

Bloom's Taxonomy, L* Level

A SHOW A TO	
USN	
ARTON DE	

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester B.E. (CSE) (Credit System) Degree Examinations November - December 2019

18CS302 - DIGITAL SYSTEM DESIGN

ation: 3 Hours

ote. Answer Five full questions choosing Two full questions from Unit - I and Unit - II each and One full question from Unit - III. Unit-1

a)	Define Unit-1	-	-	-		
b)	Define gate? Show universality of NAND and NOR gate.	Marks	BT.	CO.	PO*	
	adder circuit separately	6	L-1	2	1	
0	Illustrate different models for writing Verilog modules. Give an example for each.	6	L3	2	1,2	
a)	Solve the expression F(A,B,C,D)=∑m(0,1,2,5,6,7,9,10,11,14)using Quine Mcklusky method to derive prime implicants and essential	8	Lt	2	1,2	
b)	Distinguish between Positive Logic and Negative Logic. Show that a positive AND gate is equivalent to negative OR gate.	10	L3	1	1	
c)	Apply the Karnaugh map technique to simplify the function for the	5	L2	2	1	
12411	$F(W,X,Y,Z) = \sum m (0,1,2,4,5,12,14) + dc(8,10)$	5	L2	2	1.2	
a)	Solve the expression F(A,B,C,D)=∑m(7,9,12,13,14,15)+d(4,11) using Quine Mcklusky method to derive prime implicants and essential prime implicants.			-	1,6	
b)	Apply the Karnaugh map technique to simplify the function in POS	10	L3	1	1	
c)	F(A,B,C,D)= πM (0,1,4,5,8,9,11)+d(2,10) Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC	5	L3	1	1,2	
	THE TABLE ABLE ABLACEBC	5	L3	4	4	
a)	Show the behavioral model in Verilog for 4:1 multiplexer.		77.0	- 125.0	,	
b)	Why Multiplexer can be called as Universal Logic Circuit? Explain nibble multiplexer with neat diagram.	5	L1	3	3	
c)	Design and explain the role of X-OR gate in i. Parity checker and generator circuit ii. Adder/Subtractor circuit.	5	L2	3	2	
100		10	L2	3	1	
a) b)	Construct 4:1 multiplexer using 2:1 multiplexer Implement the following for Full Adder	5	L3	3	2	
- TA	I ruth table and circuit diagram using NAND HDL code	27.	3500	3	2	
C)	Develop 4:1 multiplexer using the function $F(A,B,C)=\sum m(0,1,2,7)$	10	L3	3	1,2	
a)	What is Decoder? Develop a Full subtractor circuit using 3 to 8 Decoder circuit and multi-input OR gate	5	L3	2	1	
b)	EXPlain in detail 1-bit magnitude comments	6	L3	4	2	
c)	What do you mean by ripple adder? With the help of fast adder circuit measure the expression for 4 bit carry?	4	L2	4	536	
	The Carry?	10	4	3	2	

a)	15CS302/15IS302 SEE - November - December 2016 Analyze edge triggered JK flip flop. Explain its operations with respect to logic		
b)	diagram, logic symbol, truth table and timing diagram. Derive characteristic equation, state transition diagram, Excitation table of SR and T flip flop.	В	L4
c)	Design a sequence detector using Moore model that receives Binary data stream at its input X, & signals when a combination '011' arrives at the input by making output Y high.	6	L4
П		6	L4
a) b)	Design 4-bit serial input serial output shift register using D flip-flop. Draw the waveforms to shift the number 0100 into this shift register. Assume that it has 4 bit number QRST=1010 stored in it. List the sequence of events occurred. Sip-flop. Design a modulo-4 irregular counter with following count sequence using D	6	L6
C)	Explain in detail applications of shift register.	8	L4
a) b)	Design a 4-BIT switched tail counter with D tile to	6	L2
c)	Design a self correcting modulo-6 counter using JK flip flop in which all the unused states leads to state CBA=000. Design the circuit diagram for the With a neat block diagram explain parallel in parallel out register.	6	L2
4	parallel out register.	8	L4
G 6	What is principle of working of counter method ADC2	6	L2

		 _	_	_
USN				
	_			_

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester B.E. (CSE/ISE) (Credit System) Degree Examinations November - December 2016

15CS302/15IS302 - DIGITAL SYSTEMS DESIGN Max. Marks: 100

	Gro	n 3 Hours	ix, Marks.	100	
	300	Note: Answer Five full questions choosing One full question from each U	nit.		
		Unit - I	Marks	BT	
	a) b)	What is meant by don't care condition on Karnaugh Map? How can using don't care aid circuit simplification? Get the minimized sum of product expression for $f(a,b,c,d) = \sum m(1,4,8,9,13,14,15) + d(2,3,11,12)$ Use boolean algebra to simplify the following expressions.	8	r.	5
		I. ABC+ABC'+AB'C+A'BC II. A(A'+C)(A'B+C)(A'BC+C') Design the circuit for the simplified expressions.	6	ŧ.	6
	c)	Design the circuit for the expression y=AB+CD and implement the verilog HDL code for the same including test bench (Use any type of Verilog modeling Techniques).	6	1	.5
	a)	What are universal gates? Realize the following function using universal gates only. F = ((A+B)*C)* D	6	1	4
	b)	Simplify the following expression using Quine Mc Clusky Method. F = \(\Sigma_m (1 2 8 9 12 13 14 15) \)	8		L6
1	0)	Design the circuit for minimized expression using NAND gates only. Minimize the following function using K-map method and express it in SOP form. Also realize logic circuits using NAND gates only.			
		$f(a,b,c,d) = \sum m(7,9,10,11,12,13,14,15)$	6		L5
		Unit – II			
100	a)	What is decoder? Design a circuit that realizes following three functions using a decoder and OR gates: F1=∑m(1,4,6)			
		F2=A'BC+A	4	3	L4
1		F3=A'B'+AC Design half adder using only NAND gates.		2	L6
	0)	Implement u=ad+bc'+bd using			
-	1	1. 8:1 Mux	1:	2	L4
	1)	Design full adder using PROM. Explain in detail how does PROM differs from PAL?	n	6	L6
b)	State and explain the applications of EXOR gate.		5	L2
C)	Implement 1 hit comparator using a 2.4 decoder.		7	L6
d)	Write Verilog HDL code for 2:1 multiplexer using condition statement.		2	L1
		Unit – III			
3)	What is switch contact bounce? Explain in detail how SR latch is used eliminate Switch Contact Bounce. Also show the waveforms of switch bounce.	to ce		
		and debounce		6	L4
00/0		Design NOR gate latch and NAND gate latch. Also explain its truth table. Implement SR flip flop using D flip flop. Write the Verilog HDL code for D f	lip	6	L6
		flop.		8	L4

	16CS302 SEE - November - December 2017		
a)	What is Multiplexer? Realize a 4:1 multiplexer using NATAD gates only	07	L3
	briefly explain its working.	07	L4
b)	Implement full subtractor using demultiplexer. Implement following Boolean function decoder.		
	$F_{\tau}(a,b,c) = \sum m(0,1,3,5)$	06	L4
	$F_2(a,b,c) = \sum m(3,5,7)$		
	Dates and give the	.00	44
a)	estavent averaggione and toth table	07	L4
ы	What is magnitude comparator? Design two bit magnitude comparator using	00	12
O)		100000	L2 L3
c)	Write a note on Parity Generator and Checkers.	07	LO
	Unit – III	00	12
2)	Give state transition diagram of SR, D, JK and T Flip - Flop.	08	L2
0.00	With a neat logic and timing diagram, explain the working of a 4 - bit SISO	00	L3
-,	register	6.5	L2
c)	Differentiate synchronous and asynchronous counters.	04	La
1	- the most 5 up counter using IK Flip-Flop	10	L6
a) b)	With a neat block diagram, explain Mealy and Moore model.	10	L2
	c) a) b) c) a) b) c) a)	 a) What is Multiplexer? Realize a 4:1 multiplexer using NAND gates only and briefly explain its working. b) Implement full subtractor using demultiplexer. Implement following Boolean function decoder. F₁(a,b,c) = ∑m(0,1,3,5) F₂(a,b,c) = ∑m(3,5,7) a) Realize full adder using minimum number of NAND gates and give the relevant expressions and truth table. b) What is magnitude comparator? Design two bit magnitude comparator using basic gates. c) Write a note on Parity Generator and Checkers. a) Give state transition diagram of SR, D, JK and T Flip – Flop. b) With a neat logic and timing diagram, explain the working of a 4 – bit SISO register. c) Differentiate synchronous and asynchronous counters. 	a) What is Multiplexer? Realize a 4:1 multiplexer using NAND gates only and briefly explain its working. b) Implement full subtractor using demultiplexer. c) Implement following Boolean function decoder. F₁(a,b,c) = ∑m(0,1,3,5) F₂(a,b,c) = ∑m(3,5,7) a) Realize full adder using minimum number of NAND gates and give the relevant expressions and truth table. b) What is magnitude comparator? Design two bit magnitude comparator using basic gates. c) Write a note on Parity Generator and Checkers. Unit − III a) Give state transition diagram of SR, D, JK and T Flip − Flop. b) With a neat logic and timing diagram, explain the working of a 4 − bit SISO register. c) Differentiate synchronous and asynchronous counters. 108 08 08 09 09 09 09 09 09 09

3T* Bloom's Taxonomy, L* Level

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belegavi)

III Sem B.E. (CSE) Mid Semester Examinations - II.October 2019

18CS302 - DIGITAL SYSTEMS DESIGN Duration: 1 Hour

Max, Marks 25

Note: Answer	any	One	full	question	from	each	Unit.
--------------	-----	-----	------	----------	------	------	-------

		, and question from each Ur	717.			
10	1. a	Show the realization of given functions $f1(a,b,c) = \sum m(1.4.6.7)$ and $f2(a,b,c) = \sum m(2,3.5)$ using $3-to-8$ line decades	Marks	BT*	CO-	PO
	ь	and even parity generated of X-OR gate in 8 bit Parity checker	2	Les	3	1,12
	C	Explain the design and working of common anode type seven segment decoder driver in detail.	4	L2	3	1,12
2	-	AND THE RESIDENCE OF THE PARTY	4	12	3	1,12
~		Obtain two bit comparator equations by using the logic of one bit comparator truth table. Also design the circuit for one bit comparator.	2	L3	3	1,12
	c)	Construct a digital circuit for 2 bit fast adder showing the	4	L2	3	1,12
		logic.	4	L3	3	1,12
3,	a)	Unit – II Explain the Construction and working of Negative edge Triggered RS Flip flop in detail.				
	b)	Explain the construction and working of 4 bit serial adder and subtractor circuit. With an example, show the addition and	4	L2	4	1,12
	c)	subtraction performed by the same	4	1.2	4	1,12
	4/	Compare and contrast Combinational circuit and Sequential circuit	2	1.5	4	1,12
4.	b)	List out various representations of SR and JK flip-flop. With the help of timing diagram explain JK Master-Slave flip-flop	4	L1 L2		1,12
	C)	Perform the following in 2's complement arithmetic operation. i. Add +25 and +75		(Page 6		1914
		ii. Subtract +25 from +75	2	LZ	4	1,12

3T* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

			_	
A APPLAY		_		
USN		_		
			100	

(An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE) Mid Semester Examinations - I, September 2019

18CS302 - DIGITAL SYSTEMS DESIGN

Duration: 1 Hour

Max. Marks: 20

Note: Answer any One full question from each Unit.

		Unit -1	Marks	BT*	CO.	PO*
1.	a)	Define positive and negative logic. Prove that a positive NOR is	3	1.11	1	1
	16.60	equal to negative NAND.	2	L2	1	- 1
	b)	Outline the Verilog code for the design of half adder.				
	c)	Apply Karnaugh Map technique to solve the given expression $F(A,B,C,D) = \sum m(0,1,3,4,5,9,11,13,15)$.	3	L3	2	1
	d)	Illustrate the realization of the given expression using NAND	2	12	1	4
		gates only $Y = \overline{AB} + CD$.		LE	- 10	- 1
2.	a) b)	What are universal gates? Prove the universality of NAND gate. Show the realization of the following expression using only NOR	3	L1	1	1
		gates $Y = (a+c).(\overline{b}+\overline{d}).(\overline{a}+\overline{b}+\overline{c})$	2	L2	1	1
	c)	Apply Karnaugh Map technique to simplify the given expression $F(A,B,C,D) = \sum m(7,9,11,12,13,14) + d(3,5,6,15)$ to get the final expression in Product of Sum method.	3	L3	2	1
	d)	Outline the Verilog code for the given expression Y=(A+B).(C+D)	2	1 12	1	1
		Unit – II				
3.	a)	Apply the QM method to simplify the given expression $F(A,B,C,D)=\sum m(0,2,3,4,8,10,12,13,14)$ to derive prime implicants		7 L	3 1	2 1
	b)	and essential prime implicants. Show the implementation of the given function $f(a,b,c,d)$ = $\sum m(0,1,5,6,7,9,10,15)$ using 4 to 1 Mux with a & b as control				
		inputs.		3 L	2	2 1
4.	a)	Apply the QM method to simplify the given expression $F(A,B,C,D)=\sum m(2,3,10,11,12,13,14,15)+d(0,1)$ to derive prime	1			
		levelleante and essential prime implicants.		8 1	.3	2 1
	b)	and the state of R to 1 milliplexel in uctor.		2 1	2	2 1

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

USN		-		
CHOIN.		_		
	_	_		

(An Autonomous Institution affiliated to VTU, Belagavi)

111 Sem B.E. (CSE) Mid Semester Examinations - I, September 2016

15CS302 - DIGITAL SYSTEM DESIGN

8	ox 1 Hour	Max. Mark	5:20	
	Note: Answer any One full question from each Unit.			
-	Unit - I By applying Quine Mc Clusky method find the Prime implicants for the given	Marks	BT*	
1	expressions $f(a,b,c,d)=\sum m(0,2,3,5,8,10,11)$ Prove the following	6	F.3	
	L DeMorgan's 1st law L Universality of Nand gate	4	L4	
	Compute the following Boolean Expression using K- Map. f(a,b,c,d)=\(\sum \mathbb{m}(0,2,5,7,8,10,13,15) + \mathbb{d}(1,4,11,14) \) Construct verilog code and logic circuit for the expression	6	L5	
-	y=(A+B). (C+D)	4	L6	
	Unit – II			
3	Construct 8:1 multiplexer using following expression f(a,b,c,d)=Σm(0,2,5,7,8,10,13,15)	6	L6	
b	Design Half Adder circuit using NAND gates only.	4	L6	
3	Implement the following function using 3 to 8 line decoder	4	L6	
	f1(A,B,C)=Σm(0,4,6,7) f2(A,B,C)=Σm(1,4,5) Explain 4:1 multiplexer with Block diagram, truth table and circuit diagram.	6		
. 8	com's Taxonomy, L* Level			

	17CS302 SEE - November - December 2018				
	Unit – III		12		2
a)	Develop and explain serial- in- parallel- out shift register.	- 9	La	0	
b)	How Shift registers can be used in the construction of Sequence detector and Serial adder.	10	L3	5	1
c)	Explain the working of a RS flip-flop with the help of Timing diagram.	5	L2	5	1
a)	Compare Moore and Mealy model.	5	L2	5	1
b)	Construct mod-6 up counter by state synthesis process.	8	L3	5	1
c)	With the help of timing diagram explain Ripple Counter.	7	L3	5	2

Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester B.E. (CSE) (Credit System) Degree Examinations November - December 2018

17CS302 - DIGITAL BYSTEMS DESIGN

retion: 3 Hours

Max. Marks: 100

tote. Answer Five full questions choosing Two full questions from Unit – I and Unit – II each and One full question from Unit – III.

	The best of the second					
a	Unit - I How can you prove that a NOR gate is an universal gate.	Marks	BT.	CO.	PO*	
15	Explain positive and negative logic in detail.	5	L-1	- 3	- 3	
10	The state of the s	4	12	1	1	
	incider circuit apparately.	6	L3	2	1	
15	TOTAL TO BE LEED OF THE PROPERTY OF THE PROPER		100	-		
	NAND gates only	5	13	2	+	
a	Find out the simplified expression for the function $F(A,B,C,D) = \sum_{i=1}^{n} f(A,B,C_i) = \sum_{i=1}^{n} f(A,B_i) =$		-	-		
	(3.4.5.7.9.13.14.15) using karnaugh map technique.	5	Et	1	1	
D)	Solve the expression $F(A,B,C,D) = \Sigma m (1.3,8.7.9.10.12.13.14.15)$		73			
	uning Quine Mcklusky method to derive prime implicants and					
	essential prime implicants.	10	L3	1	*	
40)	Explain the structure of verilog program in detail.	5	L2	2	1	
a)	Outline the circuit for the expression Y#AB+C' using only NOR					
	gates	5	12	2	1	
D)	211 (0.16.0.10.10.10.10.10.10.10.10.10.10.10.10.1			- 100		
	using Quine Mcklusky method to derive prime implicants and					
in	essential prime implicants.	10	L3	1	- 5	
(0)	How can you prove that a bubbled AND gate is equivalent to a NOR gate.	100	Haratt	20	24	
	Section 1	5	L1	1	1	
126	Unit – II					
a)		1.00				
bi	magnitude comparator circuit having X and Y as inputs. Outline the truth table of half adder and full adder. Find the	4	1.1	3	-1	
63)	simplified expressions for the outputs of a full adder. Prepare the					
	NAND-only circuit for half adder.	10	12	- 4	- 4	
(0)		10	1.6	.9	- 3.	
24	method.					
	1) +83 and +16 2)-43 and -78	6	L3	4	1 (4)	
a)	Show the implementation of 4.1 mux in Verilog using data flow					
41/	modeling technique.	6	L1	-		
b)	Build a digital circuit that performs both addition and subtraction on	0	1.1	3	2	
79	4-bit binary data. Briefly interpret it's working Identify its					
	drawbacks.	8	L3	4	2	
c)	List the building blocks of arithmetic circuits. Build and describe a					
	circuit that generates the 1's complement of a 4-bit binary sequence					
	using XOR gates	6	L1	4	2	
a)	Explain the logic circuit for 2-bit fast adder generating the equations					
-19	for sum and carry.	10	L2	4	1 14	
b)	Define an encoder with its block diagram. What is the drawback of	. 10	1.6	-	N C	
100	a normal encoder? Design a truth table to overcome the same	10	L1	3	. 1	
	The same of the sa	10				

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester B.E. (CSE) (Credit System) Degree Examinations November - December 2017

16CS302 - DIGITAL SYSTEMS DESIGN

ation: 3 Hours Max, Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit-I, Unit - II and One full question from Unit -III.

	Halt 1		-
(a)	Unit – I What are universal gates? Realize $((A+B).C)$ using only NAND gates.	Marks	BT*
b)	same using (i) only NAND gates (ii) using only NOR gates	05	L*2
	$F(A, B, C, D) = \sum m(0,1,2,4,5,12,14) + dc(8,10)$	08	L5
0)	Find the prime implicants and essential prime implicants for the following Boolean expression using Quine-McClusky method.	00	-
	$F(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + \sum d(4, 8, 11)$	07	L5
a)	expressed as: $Y = ABC + ABC + ABC$ also simplify the expression using		200
b)	The state of the s	06 04	L4 L2
0)	A digital system is to be designed in which the months of the year is given as input in four bit form. The month January is represented as "0000", February as "0001" and so on. The output of the system should be "1" corresponding to the input of the month containing 31days or otherwise it is "0". Consider the excess numbers in the input beyond "1011" as don't care conditions. For this system of four variables (A, B, C, D), find the following: i) Give the truth table and simplify by using K-Map ii) Boolean expression in SOP and POS form iii) Implement the simplifies equation using NAND-NAND gates and NOR-NOR gates	40	
		10	L6
a) b)		08	L4
	$F(A, B, C, D) = \sum m(1,3,6,7,9,1012,13,14,15)$		
	Write the gate diagram for the simplified equation using NAND-NAND gates.	12	1.5
	Secretary days	12	L5
a)	Implement the Boolean function expressed by SOP		
aj	Implement the Boolean function expressed by SOP: $F(A, B, C, D) = \sum m(1,2,5,6,9,12)$ using 8-to-1 MUX.		
b)	Implement a full adder using a 3-to-8 decoder.	05	L5
c)	Design and explain 7 – segments decoder	05 06	L4 L3
d)	Show the 8-bit addition of these decimal numbers in 2's complement representation	-	1000
	(i) +28, -15 (ii) +45, +56	04	L4

				-	
USN	March Street		_		 -
OBIN			_	_	 _
		_			

(An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE) Mid Semester Examinations - II, October 2018

17CS302- DIGITAL SYSTEMS DESIGN

ation: 1 Hour Max. Marks: 20

Note: Answer any One full question from each Unit.

	Unit - I	Marks	BT*	CO*	PO*
a)	Explain the construction and working of 8 bit parity checker in		10/22/	-	
b)	Show the realization of given functions (1/2 h a) = \$\frac{\pi}{2} = (4.4.2.7)	4	L*2	3	1
1000	Show the realization of given functions $f1(a,b,c) = \sum m(1,4,6,7)$ and $f2(a,b,c) = \sum m(2,3,5)$ using $3-to-8$ line decoder	2	L1	3	1
c)	Illustrate the design of 1 bit magnitude comparator. Show how can you derive the Boolean expressions for 3 bit magnitude				
	comparator using 1 bit comparator logic	4	L3	3	1
a)	Explain the design and working of common anode type seven				
	segment decoder driver in detail	3	L2	3	1
b)	Illustrate the design and working of Decimal to BCD encoder	3	L3	3	1
c)	Demonstrate the construction and working of 8 bit even parity				
	generator	4	L2	3	1
	Unit - II				
a)	Solve the following using 2's complement arithmetic system: i. Add +125 and -68				
	ii. Add +37 and -115				
	iii. Subtract -27 from +68	3	L3	4	2
b)	Construct a digital circuit for 2 bit fast adder showing the required				
	logic.	4	L3	4	1
c)	Explain the Construction and working of RS Flip flop in detail.	3	L2	4	1
a)	Build and explain 4 bit adder subtractor circuit that can perform				
-,	both addition and subtraction. Also perform the arithmetic				
	following operations using its logic:				
	i. Add +3 and +2			17.	
	ii. Subtract +2 from +3	4	L1	4	2
b)	Explain the construction and working of gated D flip flop	3	L2 L3	4	1
C)	Develop a Verilog code for the design of 3 to 8 line decoder	3	Lo	- 1	- 2

1* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

VIII I	-	7	-	-	-	-	1
110114							

1.2

£3

1.4

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE) Mid Semester Examinations - I, September 2017

16CS302 - DIGITAL SYSTEMS DESIGN

Duration: 1 Hour Max. Marks: 20 Note: Answer any One full question from each Unit. Unit -1 Marka BT a) Write the dual of an expression F(A,B,C)=AB+B.C+C.A. Prove that the expression is also self-dual 1.72 b) Realize the expression Y=a'b + ac using only NOR gates L3 c) Solve the following: i. Simplify the given expression $f(a, b, c, d) = \sum m(0.2, 5, 7, 8, 10, 13, 15) +$ d(1,4,11,14) using Kamaugh map ii. Express the expression f(a, b, c, d)=mM(4,7,11,12) in Product Of Burn form L3 d) Write the Verilog code to design the following circuit Lt 2 1.3 a) Realize the expression Y=(a+c)(b'+d')(a'+b'+c') using only NAND gates b) Write a Verilog code to design a circuit that consist of a two input AND gate 1.1 Solve the expression f(a, b, c, d) = rrM(0,1,4,5,8,9,11) + d(2,10) using Kamaugh 3 1.3 map to get the final expression in Product Of Sum form. d) Solve the following: Given a function f(a, b, c)=mM(0,3,5). Write its Sum Of Product Equation

Unit-II

Prove that (A+B)' = A'.B'

3. a) Simplify the given expression F(A,B,C,D)*∑m(0,1,2,3,10,11,12,13,14,15) using QM method to derive the prime implicants and essential prime implicants
 b) Solve the following

 i. Implement f(a,b,c)=∑m(0,4,5,6) using 8-to-1 Multiplexer
 ii. implement f(a,b,c)=∑m(0,1,2,7) using 4-to-1 Multiplexer. Consider A & B as control inputs and C as data input

- a) Simplify f(a,b,c,d)=∑m(7,9,12,13,14,15) + d(4,11) using QM method to derive prime implicants and essential prime implicants
 - b) Solve the following:

 Give the truth table and logical expression of 4-to-1 Multiplexer
 Realize Y=A'B+B'C'+ABC using an 8-to-1 Multiplexer

BT* Bloom's Taxonomy, L* Level

ii.

THE SHARE OF	pro-tagonomia		
USN			_

(An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE) Mid Semester Examinations - I, September 2018

17CS302 - DIGITAL SYSTEM DESIGN

Juration: 1 Hour Note: Answer any One full question from each Unit.

Max. Marks: 20

			description each	Unit			
	1.	a) b)	Show that a NAND gate is equivalent to bubbled or gate Apply the realization using only NAND gates to realize the expression a'b + ab'	Marks 2	BT*	CO*	PO* 1,12
		c)	Simplify f(ABCD) = TM(0 122 17)	2	L3	1	1,12
		d)	technique to get the expression in SOP and POS form. Design a Verilog code to implement half adder circuit	4 2	L3 L2	1	1,12
1000	2.	a)	Solve the following functions using karnaugh map technique: 1. $f(A,B,C,D) = \sum m(3,4,5,6,7,9,13,14,15)$			(5)	1.14
		b)	2. $f(A,B,C,D) = \sum m(7) + d(10, 11, 12, 13, 15)$ Apply the realization using only NOR gates to realize the expression Y= ((A+B)C)*D	4	L3	1	1,12
	13	c)	Define a positive and negative logic. Show that a positive AND is equal to negative OR	3	L3	2	1,12
	-	d)	Build the expression in SOP for $f(a,b,c)=\pi M(0,3,5)$	2	L1 L3	2 2	1,12
3	100		Unit – II Simplify $F(A,B,C,D) = \sum m(2,3,10,11,12,13,14,15) + d(0,1)$ using QM method to derive the prime implicants and essential prime implicants.				
	b)	Design function f(A.B.C)=∑m(1.4.5.7) using 4-to-1 Multiplexes	5	L3	1.	1,12
	C)	Consider A & B as control inputs and C as data input Illustrate the three modeling techniques used in verilog	3 2	L6 L2	2	1,12
4.	a) ;	Explain the design of 8-to-1 multiplexer in detail Simplify $F(a,b,c,d) = \sum m(0,1,2,5,10,11,14,15)$ using QM method	3	L2	2	1,12
	c)		show how 4 to 1 multiplexer can be obtained from 2-to-1 multiplexer	5	L3	1	1,12
				2	LI	2	1 12

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

	_	 -	V-1	
USN				
45,657.4				

(An Autonomous Institution affiliated to VTU, Belagavi)

III Sem B.E. (CSE) Mid Semester Examinations - II, October 2017

16CS302 - DIGITAL SYSTEMS DESIGN

uration: 1 Hour

Max. Marks: 20

LΑ

1.5

		Note: Answer any One full question from each Unit.		
1:	a)	Unit - I How do you differentiate a demultiplexer from a decoder? Realize the	Marks	BT*
l.	aj	following Boolean expression using 3-to-8 decoder and multi-input OR gates. $F1(A,B,C)=\sum m(1,2,3,5); F2(A,B,C)=\sum m(1,7); F3(A,B,C)=\sum m(0,5,6,7)$	2	1.1
	b)	Demonstrate the construction and working of 8 bit parity checker circuit in detail with an example.	3	1.2
	c)	What is a magnitude comparator? Explain the design of 1 bit magnitude comparator in detail.	8	1,2
2	a) b)	Explain the design of common cathode type decoder in detail. Illustrate the working of odd parity generator circuit with an example. Construct and explain decimal-to-BCD encoder circuit.	4 3 3	L2 L3
		Unit – II		
l.	a)	Solve the following binary arithmetic operations using 2's complement system i. add +43 and -19 ii. Subtract +25 from +77	4	1.3
	b)	Explain the working of positive edge triggered D flip flop in detail along with	4	L5
	c)	the timing diagram. Explain the construction of a 4 bit controlled inverter along with an example.	5	1.3

a) Explain the design of a 8 bit adder/subtractor. Analyze the total delay occurred for performing the 8 bit addition/subtraction. Perform the following operation using the concept of 8 bit adder/subtractor circuit

I. Add +33 and +51

ii. Subtract +31 from +61

b) With the help of truth table and timing diagram, explain the working of positive

edge triggered RS flipflop.

* Bloom's Taxonomy, L* Level

		18CS302	SEE - November - December 2019 nit - III				
	a)		steristic equations of SR, D, JK and	10	10		1927
	b)	Develop and explain serial- in-	parallel- out shift register.	10	1.2	5	2
	c)	Explain the working of a RS diagram.	flip-flop with the help of Timing	5	L2	5	1
	a)	Construct mod-6 up counter by	state synthesis process.	8	L3	5	1
b	b)	Develop and Explain switch tail	Counter with timing diagram.	6	L2	5	2
	c)		diagram explain Ripple Counter.	6	L3	5	2

^{*} Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome
