Homework 4

Yuanyou Yao

December 9, 2019

Problem 1

```
(a) Firstly, we fit the model, and check extra - Psoion variation.
> library (MASS)
> rawdata=read.csv("Galapagos.csv",header = T)
> attach(rawdata)
> Inarea= log(Area)
> Inelev=log(Elev)
> Indistnear = log(DistNear)
> Inareanear = log(AreaNear)
> detach(rawdata)
> glm_1 = glm(Native~Inarea+Inelev+Indistnear+
    Inareanear, data = rawdata ,family= poisson("log"))
> summary(glm_1)
Call:
glm(formula = Native ~ Inarea + Inelev + Indistnear +
    Inareanear, family = poisson("log"), data = rawdata)
Deviance Residuals:
    Min
              1Q
                    Median
                                 3Q
                                          Max
-3.4515 -1.6623
                   0.2330
                             0.7056
                                       3.6582
```

Estimate Std. Error z value Pr(>|z|) (Intercept) 2.22136 0.45948 4.835 1.33e-06 *** Inarea 0.24788 0.02965 8.360 < 2e-16 ***

Inelev 0.07663 0.09321 0.822 0.41101

Indistnear -0.06046 0.02111 -2.864 0.00418 **

Inareanear -0.05163 0.01083 -4.767 1.87e-06 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 700.717 on 29 degrees of freedom

Residual deviance: 95.764 on 25 degrees of freedom

AIC: 243.05

Number of Fisher Scoring iterations: 5

- > summary(glm_2)

Call:

Deviance Residuals:

Min 1Q Median 3Q Max -3.4515 -1.6623 0.2330 0.7056 3.6582

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) 2.22136
                         0.88621
                                   2.507 0.019059 *
Inarea
             0.24788
                         0.05718
                                   4.335 0.000209 ***
Inelev
             0.07663
                         0.17979
                                   0.426 0.673576
                                  -1.485 0.150036
Indistnear
            -0.06046
                         0.04071
Inareanear -0.05163
                         0.02089 \quad -2.471 \quad 0.020623 \ *
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** quasipoisson **family** taken to be 3.720004)

Null deviance: 700.717 on 29 degrees of freedom Residual deviance: 95.764 on 25 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

The Dispersion parameter for quasipoisoon family is 3.720004. It is interpreted that the model is overdisperion.

For Poisson, the most upgrade is negative binomial.

- > summary(glm_3)

Call:

Deviance Residuals:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** Negative Binomial (7.6518) **family** taken to be 1)

Null deviance: 170.314 on 29 degrees of freedom Residual deviance: 35.361 on 25 degrees of freedom

AIC: 222.12

Number of Fisher Scoring iterations: 1

Theta: 7.65 Std. Err.: 3.37

 $2 \times log$ -likelihood: -210.116

- **(b)** Using backward elimination,the chosen variable is *Inarea* according to *AIC*
- > step(glm_3)

Start: AIC=220.12

Native ~ Inarea + Inelev + Indistnear + Inareanear

Df Deviance AIC

- Inelev 1 35.361 218.12

- Inareanear 1 36.233 218.99

- Indistnear 1 37.299 220.06

<none> 35.361 220.12

- Inarea 1 58.214 240.97

Step: AIC=218.12

Native ~ Inarea + Indistnear + Inareanear

Df Deviance AIC

- Inareanear 1 36.242 216.99

- Indistnear 1 37.315 218.06

<none> 35.369 218.12

- Inarea 1 165.205 345.95

Step: AIC=216.94

Native ~ Inarea + Indistnear

Df Deviance AIC

- Indistnear 1 35.950 216.54

<none> 34.345 216.94

Inarea1 154.747 335.34

Step: AIC=216.49

Native ~ Inarea

Df Deviance AIC

<none> 33.953 216.49

- Inarea 1 148.851 329.39

Call: glm.nb(formula = Native ~ Inarea, data = rawdata,

```
init.theta = 6.343853188, link = log)
```

(Intercept) Inarea

2.4332 0.2694

Degrees of Freedom: 29 Total (i.e. Null); 28 Residual

Null Deviance: 148.9

Residual Deviance: 33.95 AIC: 218.5

- **(c)** The remaining explanatory variable is *Inarea*, and it is positive proportional to the native species.
- > glm_4 = glm.nb(Native~Inarea, data = rawdata)
- > summary(glm_4)

Call:

glm.nb(formula = Native ~ Inarea, data = rawdata,
 init.theta = 6.343852721, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max -2.8609 -0.7346 -0.0325 0.6672 1.5328

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.43322 0.10751 22.63 <2e-16 ***

Inarea 0.26939 0.02648 10.17 <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** Negative Binomial(6.3439) **family** taken to be 1)

Null deviance: 148.851 on 29 degrees of freedom Residual deviance: 33.953 on 28 degrees of freedom

AIC: 218.49

Number of Fisher Scoring iterations: 1

Theta: 6.34

Std. Err.: 2.52

 $2 \times log-likelihood: -212.487$

- (d) We set nonnative species as the response variable. Also we check for extra-Poisson variation: Dispersion parameter for quasipoisson family taken to be 16.07358. So this model is also obviously overdispersion. Like the previous question, we use the negative binomial distribution.

Call:

Deviance Residuals:

Min 1**Q** Median 3**Q** Max -4.9427 -2.9385 -0.6448 2.1254 8.7721

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.521868 0.363671 6.934 4.08e-12 ***

```
Inarea
             0.410968
                        0.023631
                                  17.391 < 2e-16 ***
Inelev
             0.043994
                        0.073296
                                   0.600 0.548353
Indistnear
            -0.054287
                        0.014139 \quad -3.839 \quad 0.000123 \quad ***
            -0.125707
                        0.007707 - 16.310 < 2e - 16 ***
Inareanear
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2950.5 on 29
                                   degrees of freedom
Residual deviance: 328.7 on 25
                                   degrees of freedom
AIC: 474.54
Number of Fisher Scoring iterations: 5
> new_2 = glm(Total-Native~Inarea+Inelev+Indistnear+Inareanear,
     data = rawdata, family = quasipoisson)
> new 2$coefficients
(Intercept)
                             Inelev
                                     Indistnear
                 Inarea
                                                  Inareanear
 2.52186804
             0.41096837
                         0.04399438 - 0.05428670 - 0.12570695
> new_3 = glm.nb(Total-Native~Inarea+Inelev+Indistnear+Inareanear ,
     data = rawdata)
> summary(new_3)
Call:
glm.nb(formula = Total - Native ~ Inarea + Inelev + Indistnear +
    Inareanear, data = rawdata, init.theta = 1.548034338, link = log)
Deviance Residuals:
```

3**Q**

0.5433

Max

1.7164

Min

1**Q**

 $-2.3402 \quad -0.8733 \quad -0.3772$

Median

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.17068 1.69189 2.465 0.0137 *
Inarea 0.48794 0.11026 4.425 9.63e-06 ***
Inelev -0.28192 0.34314 -0.822 0.4113
Indistnear -0.12403 0.09790 -1.267 0.2052
Inareanear -0.05808 0.04917 -1.181 0.2375

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** Negative Binomial(1.548) **family** taken to be 1)

Null deviance: 112.361 on 29 degrees of freedom Residual deviance: 36.606 on 25 degrees of freedom

AIC: 265.13

Number of Fisher Scoring iterations: 1

Theta: 1.548

Std. Err.: 0.483

 $2 \times log$ -likelihood: -253.131

We then use the backward elimination to get the result:

> step(new_3)

Start: AIC=263.13

Total - Native ~ Inarea + Inelev + Indistnear + Inareanear

Df Deviance AIC

- Inelev 1 37.328 261.85

- Indistnear 1 37.924 262.45

Inareanear 1 38.084 262.61
 Inarea 1 36.606 263.13
 Inarea 1 56.894 281.42

Step: AIC=261.84

Total - Native ~ Inarea + Indistnear + Inareanear

Df Deviance AIC

- Inareanear 1 37.986 261.25

- Indistnear 1 38.438 261.71

<none> 36.576 261.84

- Inarea 1 106.019 329.29

Step: AIC=261.21

Total - Native ~ Inarea + Indistnear

Df Deviance AIC

- Indistnear 1 37.554 260.60

<none> 36.164 261.21

- Inarea 1 100.839 323.88

Step: AIC=260.56

Total - Native ~ Inarea

Df Deviance AIC

<none> 36.033 260.56

- Inarea 1 98.474 321.00

Call: glm.nb(formula = Total - Native ~ Inarea, data = rawdata,
 init.theta = 1.331670759, link = log)

Coefficients:

(Intercept) Inarea

2.6017 0.3936

Degrees of Freedom: 29 Total (i.e. Null); 28 Residual

Null Deviance: 98.47

Residual Deviance: 36.03 AIC: 262.6

> new 4 = glm.nb(Total-Native~Inarea, data = rawdata)

> summary(new 4)

Call:

glm.nb(formula = Total - Native ~ Inarea, data = rawdata,
 init.theta = 1.33167056, link = log)

Deviance Residuals:

Min 1**Q** Median 3**Q** Max -2.2308 -0.9959 -0.3464 0.5097 1.8919

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.60166 0.19221 13.536 < 2e-16 ***

Inarea 0.39362 0.05035 7.818 5.35e-15 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** Negative Binomial(1.3317) **family** taken to be 1)

Null deviance: 98.474 on 29 degrees of freedom Residual deviance: 36.033 on 28 degrees of freedom

AIC: 262.56

Number of Fisher Scoring iterations: 1

Theta: 1.332

Std. Err.: 0.396

$$2 \times log$$
-likelihood: -256.561

It is clear that we only take the variable lnarea. The effects of each remaining variable: Inarea is positive proportional to the non-native species.

Problem 2

(a) First of all, we check the mean and variance of Storms and we get:

$$Mean = 9.395833$$

$$Variance = 10.371897$$

Since the mean of variable Storms is close its variance, Poisson log-linear model makes sense. First we fit Poisson log-linear model without interaction of Temperature and WestAfrica.

Call:

Deviance Residuals:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	2.30891	0.10107	22.846	< 2e-16	***
Temperature0	-0.06399	0.11377	-0.562	0.57380	
Temperature1	-0.37645	0.12848	-2.930	0.00339	**
WestAfrica1	0.15596	0.10260	1.520	0.12849	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 50.875 on 47 degrees of freedom Residual deviance: 33.693 on 44 degrees of freedom

AIC: 235.61

Number of Fisher Scoring iterations: 4

Then fit the model with interaction terms.

Call:

glm(formula = Storms ~ Temperature * WestAfrica,
 family = poisson(link = "log"), data = mydata)

Deviance Residuals:

Min 1**Q** Median 3**Q** Max -1.67320 -0.59282 0.01746 0.39963 1.95558

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.31911	0.12804	18.113	<2e-16 ***
Temperature0	-0.04418	0.16043	-0.275	0.7830
Temperature1	-0.42972	0.16740	-2.567	0.0103 *
WestAfrica1	0.14047	0.15793	0.889	0.3737
Temperature0: WestAfrica1	-0.07360	0.23134	-0.318	0.7504
Temperature1: WestAfrica1	0.20372	0.26885	0.758	0.4486

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 50.875 on 47 degrees of freedom Residual deviance: 32.678 on 42 degrees of freedom

AIC: 238.59

Number of Fisher Scoring iterations: 4

> deviance(glm_2)-deviance(glm_1)

The deviance of model with interaction is smaller. Thus, the model with interaction is a better fit.

Then, we check extra-Poisson variation with quasi-Poisson model.

```
> glm_3 = glm(Storms~Temperature*WestAfrica, data=mydata,
    family = quasipoisson(link="log"))
```

> summary(glm_3)

Call:

Deviance Residuals:

Min	1 Q	Median	3 Q	Max
-1.67320	-0.59282	0.01746	0.39963	1.95558

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.31911	0.11365	20.405	< 2e-16 ***
Temperature0	-0.04418	0.14241	-0.310	0.75792
Temperature1	-0.42972	0.14859	-2.892	0.00604 **
WestAfrica1	0.14047	0.14018	1.002	0.32204
Temperature0: WestAfrica1	-0.07360	0.20535	-0.358	0.72182
Temperature1: WestAfrica1	0.20372	0.23865	0.854	0.39815

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** quasipoisson **family** taken to be 0.787926)

Null deviance: 50.875 on 47 degrees of freedom

Residual deviance: 32.678 on 42 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

From the above we can see that the dispersion parameter for quasipoisson family taken to be $0.787926 \le 1$. So we don't consider it as an overdispersion.

Thus, we get the best model:

$$ln(\mu_i) = 2.319 - 0.044 Temperature_{1,i} - 0.430 Temperature_{2,i} + 0.140 West Africa_i - 0.430 Temperature_{2,i} + 0.40 Temperature$$

$$0.074Temperature_{1,i}*WestAfrica_i + 0.204Temperature_{2,i}*WestAfrica_i$$

It is same to conclude that more storms tend to occur in a cold El Nino year or when west Africa is relatively dry.

(b) We check the mean and variance of the number of hurricanes.

$$Mean = 5.750000$$

$$Variance = 5.595745$$

The mean of Hurricanes is close to its variance, so we consider fitting a Poisson log-linear model again.

Fitting Poisson log-linear model with no interaction terms.

> summary(glm_4)

Call:

```
glm(formula = Hurricanes ~ Temperature + WestAfrica,
    family = poisson(link = "log"), data = mydata)
```

Deviance Residuals:

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 1.80344 0.12915 13.964 < 2e-16 *** Temperature0 -0.04463 0.14353 -0.311 0.75585 Temperature1 -0.46206 0.16741 -2.760 0.00578 ** WestAfrica1 0.21913 0.13046 1.680 0.09303 .
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 44.414 on 47 degrees of freedom Residual deviance: 27.322 on 44 degrees of freedom

AIC: 205.15

Number of Fisher Scoring iterations: 4

Then fit another Poisson regression model with interaction terms.

> summary(glm_5)

Call:

Deviance Residuals:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.763589	0.169031	10.434	<2e-16 ***
Temperature0	-0.002601	0.210229	-0.012	0.9901
Temperature1	-0.396712	0.219498	-1.807	0.0707 .
WestAfrica1	0.277632	0.203859	1.362	0.1732
Temperature0: WestAfrica1	-0.064539	0.291481	-0.221	0.8248
Temperature1: WestAfrica1	-0.178171	0.371604	-0.479	0.6316

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 44.414 on 47 degrees of freedom Residual deviance: 27.086 on 42 degrees of freedom

AIC: 208.92

Number of Fisher Scoring iterations: 4

> deviance(glm_5)-deviance(glm_4)

[1] -0.2356582

Compared with the deviance of no-interaction model, the model with interaction terms has a smaller deviance which means it is a better fit in this case. Then, we check extra-Poisson variation by quasi-Poisson regression model.

Call:

```
glm(formula = Hurricanes ~ Temperature * WestAfrica,
    family = quasipoisson(link = "log"), data = mydata)
```

Deviance Residuals:

Min 1**Q** Median 3**Q** Max -1.3030 -0.5242 -0.2092 0.4746 1.8020

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.763589	0.138883	12.698	5.69e-16 ***
Temperature0	-0.002601	0.172733	-0.015	0.9881
Temperature1	-0.396712	0.180348	-2.200	0.0334 *
WestAfrica1	0.277632	0.167499	1.658	0.1049
Temperature0: WestAfrica1	-0.064539	0.239493	-0.269	0.7889
Temperature1: WestAfrica1	-0.178171	0.305325	-0.584	0.5626

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 ". 0.1 " 1

(Dispersion parameter **for** quasipoisson **family** taken to be 0.6750954)

Null deviance: 44.414 on 47 degrees of freedom Residual deviance: 27.086 on 42 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Dispersion parameter for quasipoisson family taken to be 0.675. There is no overdispersion problem.

Therefore, we get the best model:

 $ln(\mu_i) = 1.764 - 0.003 Temperature_{1,i} - 0.397 Temperature_{2,i} + 0.278 West Africa_i - \\ 0.065 Temperature_{1,i} * West Africa_i - 0.178 Temperature_{2,i} * West Africa_i$