Multi-Scale Context Aggregation by Dilated Convolutions

论文信息

发表时间: 23 Nov 2015

论文地址: Arxiv Link

创新点

空洞卷积一个很大的优点就是:在指数增长感受野大小的同时还不损失分辨率。因此本文基于空洞卷积,提出了适用于稠密预测(dense prediction)的空洞卷积模块(dilated convolution module),可以系统性地整合上下文信息(context information)同时不损失分辨率。

思想

传统的图像分类网络通常通过连续的pooling或其他的下采样层来整合多尺度的上下文信息,这种方式会损失分辨率。而对于稠密预测任务而言,不仅需要多尺度的上下文信息,同时还要求输出具有足够大的分辨率。

为了解决这个问题,过去的论文的做法是:

- 1. 使用通过反卷积来恢复分辨率,同时通过下采样方法来扩大感受野(感受野越大,所具有的上下文信息越丰富)。对于这种方法,作者提出一个疑问:是否真的需要下采样层?
- 2. 提供图像的多个重新放缩版本(multiple rescaled verions of the image)作为网络的输入。对于这种方法, 作者同样提出一个疑问:对多个重新放缩的图像进行分开分析是否必要?

基于这些疑问,在这篇文章,作者提出了一种新的卷积网络模块,它能够整合多尺度的上下文信息,同时不丧失分辨率,也不需要分析重新放缩的图像。这种模块是为稠密预测专门设计的,没有pooling或其他下采样。它是基于空洞卷积设计的,空洞卷积最大的优点就是可以指数级地扩大感受野,同时还不损失分辨率。

基本概念

空洞卷积

本文中最核心的概念就是空洞卷积。不过空洞卷积的概念并不是由本文提出的,它最早出现在小波分解算法当中, 将空洞卷积应用在卷积网络架构本文也不是最早的。空洞卷积的最大特点就是能够增大感受野,同时还不损失分辨 率。

下面看空洞卷积到底是什么。首先看我们都很熟悉的卷积操作,如下动图。

这个卷积操作对原图做了填充(padding=1),卷积核大小为3x3,卷积的步长为2。

下面看空洞卷积:

受野。

这个空洞卷积操作的卷积核大小为3x3,空洞率(dilation rate)=2,卷积的步长为1。我们可以看到,标准的卷积操作中,卷积核的元素之间都是相邻的,但是在空洞卷积中,卷积核的元素是间隔的,间隔的大小取决于空洞率。那为什么空洞卷积能够扩大感受野并且保持分辨率呢?且看下面的这张图。图中红点表示卷积核。蓝色区域表示感

- 1. 对于a这个feature map而言,它是由卷积核卷积a之前的feature map得来的,这个卷积核大小为3x3,换句话说,卷积核覆盖了卷积之前的feature map区域大小为3x3,因此感受野大小是3x3。
- 2. 对于b这个feature map而言,b是由a通过空洞卷积而来的,卷积核大小为5x5,因此卷积核覆盖的a区域大小为5x5,但是这个时候感受野大小并不是5x5,因为a中的元素的感受野就已经为3x3了,因此在这个5x5区域要往外多加(3-1)/2=1个像素,如b中红框所示。
- 3. 同理,对于c而言,卷积核覆盖的b区域大小为9x9,但是由于b中的元素的感受野大小为7x7,如c中红框所示,因此,在这个9x9的区域大小之外还要扩张出(9-1)/2=4个像素。

上下文模块 (context module)

本文设计了一种基础的上下文模块(basic context module),有7层,每一层都采用具有不同空洞率的3x3空洞卷积,每层的卷积之后跟上relu激活函数。基础的上下文模块根据卷积的通道不同又分为两种形式:basic和large,看下面的表格:

Layer	1	2	3	4	5	6	7	8				
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1				
Dilation	1	1	2	4	8	16	1	1				
Truncation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No				
Receptive field	3×3	5×5	9×9	17×17	33×33	65×65	67×67	67×67				
Output channels												
Basic	C	C	C	C	C	C	C	C				
Large	2C	2C	4C	8C	16C	32C	32C	C				

网络架构

本文设置了两种网络架构,一种是前端网络,另外一种是前端 + 上下文模块网络(如下图)。可见,后者包括了前者。

前端 (front-end)

上图中fc-final之前的部分称为前端,之后的部分是上下文模块。前端用到的是VGG-16网络,不过将最后两个poooling层移除了,并且随后的卷积层被空洞卷积代替。pool3和pool4之间的空洞卷积的空洞率为2,在pool4之后的空洞卷积的空洞率为4。实际上,只需要前端而不需要前端之后的部分就能够进行稠密预测。下面是前端在VOC-2012数据集与FCN-8s,DeepLab,DeepLab-Msc方法的对比,从下面的表格中可以看出前端网络的效果都比其他几个方法都好。作者认为效果这么好,主要是归因于去除了那些对于分类网络来说是有效设计,但对密集预测算作残留成分(vestigial components)的部分。

	aero	bike	bird		bottle								_	-		plant	sheep	sofa	train	tv	mean IoU
FCN-8s	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
DeepLab	72	31	71.2	53.7	60.5	77	71.9	73.1	25.2	62.6	49.1	68.7	63.3	73.9	73.6	50.8	72.3	42.1	67.9	52.6	62.1
DeepLab-Msc	74.9	34.1	72.6	52.9	61.0	77.9	73.0	73.7	26.4	62.2	49.3	68.4	64.1	74.0	75.0	51.7	72.7	42.5	67.2	55.7	62.9
Our front end	82.2	37.4	72.7	57.1	62.7	82.8	77.8	78.9	28	70	51.6	73.1	72.8	81.5	79.1	56.6	77.1	49.9	75.3	60.9	67.6

预测效果的可视化:

前端模块+上下文模块

除了前端网络,本文还提出前端网络+上下文模块的架构,也就是网络结构图中的所有部分。由于上下文模块整合了各种不同空洞率的空洞卷积层,因此可以整合各个尺度的上下文信息,预测效果因此得到提升。作者又将前端网络+上下文模块又分为好几种架构,分别为:

- 1. Front end+ Basic context module
- 2. Front end+ large context module
- 3. Front end+ CRF
- 4. Front end+ Basic context module+CRF
- 5. Front end+ large context module+CRF
- 6. Front end+ CRF-RNN
- 7. Front end+ Basic context module+CRF-RNN
- 8. Front end+ large context module+CRF-RNN

CRF和CRF-RNN在本文中并没有详细介绍。只是说用上了它们,效果会更好。各种网络架构在VOC2012上的测试结果如下表格:

	aero	bike	bird	boat	bottle	snq	car	cat	chair	cow	table	gop	horse	mbike	person	plant	sheep	sofa	train	tv	mean IoU
Front end	86.3	38.2	76.8	66.8	63.2	87.3	78.7	82	33.7	76.7	53.5	73.7	76	76.6	83	51.9	77.8	44	79.9	66.3	69.8
Front + Basic	86.4	37.6	78.5	66.3	64.1	89.9	79.9	84.9	36.1	79.4	55.8	77.6	81.6	79	83.1	51.2	81.3	43.7	82.3	65.7	71.3
Front + Large	87.3	39.2	80.3	65.6	66.4	90.2	82.6	85.8	34.8	81.9	51.7	79	84.1	80.9	83.2	51.2	83.2	44.7	83.4	65.6	72.1
Front end + CRF	89.2	38.8	80	69.8	63.2	88.8	80	85.2	33.8	80.6	55.5	77.1	80.8	77.3	84.3	53.1	80.4	45	80.7	67.9	71.6
Front + Basic + CRF	89.1	38.7	81.4	67.4	65	91	81	86.7	37.5	81	57	79.6	83.6	79.9	84.6	52.7	83.3	44.3	82.6	67.2	72.7
Front + Large + CRF	89.6	39.9	82.7	66.7	67.5	91.1	83.3	87.4	36	83.3	52.5	80.7	85.7	81.8	84.4	52.6	84.4	45.3	83.7	66.7	73.3
Front end + RNN	88.8	38.1	80.8	69.1	65.6	89.9	79.6	85.7	36.3	83.6	57.3	77.9	83.2	77	84.6	54.7	82.1	46.9	80.9	66.7	72.5
Front + Basic + RNN																				66.2	
Front + Large + RNN	89.3	39.2	83.6	67.2	69	92.1	83.1	88	38.4	84.8	55.3	81.2	86.7	81.3	84.3	53.6	84.4	45.8	83.8	67	73.9

另外需要特别注意的是,作者说实验表明,Front end和context module是不能end-to-end训练的,这样训练效果并没有比单单的Front end网络有提升。作者是这样训练的,将Front end训练好了之后,将其输出的feature map 喂给context module进行训练。

注意点

本文中网络的预测输出是原图大小的1/8,并不是和原图的大小一样。因此需要把网络的预测输出进行插值扩大到和原图的大小一致。据说,这是深度学习图像分割中比较常见的做法。