

# Chapter 7 Priority Queue

By: Dr. Aryaf A. Al-adwan
Faculty of Engineering Technology
Computer and Networks Engineering Dept.
Data Structures Course

## The ADT Priority Queue

- A *priority queue* is an ADT in which items are ordered by a priority value. The item with the *highest priority* is always the *next* to be removed from the queue. (Highest Priority In, First Out: *HPIFO*)
- Highest priority can be either the minimum or maximum value in the queue
- We will assume the highest priority is the minimum
- So our priority queue will be least first out

#### PQ Operations

- Priority Queue operations:
  - 1 **isEmpty**: return if the queue is empty or not
  - 2 **Add**: insert elements into the queue
  - 3 **PeekMin**: return the smallest element in the queue
  - 4 **RemoveMin**: remove the smallest element in the queue

#### PQ Implementations

- The problem with a priority queue is in finding efficient implementations which allows fast enqueing and dequeing.
- Representing a PQ using:
  - 1 Unsorted array
  - 2 Sorted array
  - 3 LinkedList
  - 4 Heaps

- Representing PQ using unsorted array
- Add  $\rightarrow$  8, 2, 3, 5

8

8 2

8 2 3

8 2 3 5

Insert at specified index will cost → 1

• peekMin > 8, 2, 3, 5



Search all the elements for the minimum value will cost  $\rightarrow$  n

• removeMin > 8, 2, 3, 5



Find the minimum value will cost → n

Remove minimum will cost → 1

#### Complexity Analysis

| Operation | Running time |
|-----------|--------------|
| Add       | O (1)        |
| peekMin   | O (n)        |
| removeMin | O (n)        |

Representing PQ using Sorted Array in Increasing
 Order



| 8 |  |  |
|---|--|--|
|---|--|--|

| 4 | 8 |  |  |  |
|---|---|--|--|--|
|---|---|--|--|--|

| 4 | 5 | 8 |  |  |
|---|---|---|--|--|
|---|---|---|--|--|

| 3 | 4 | 5 | 8 |  |
|---|---|---|---|--|
|   |   |   |   |  |
|   | ( | А |   |  |

Maintain order by shifting elements will cost → n



Return first value will cost → 1

• removeMin  $\rightarrow$  8, 4, 5, 3, 2



Need for shifting here

Find the minimum value will cost → 1

Remove minimum by shifting all values will cost  $\rightarrow$  n

## Complexity Analysis

| Operation | Running time |
|-----------|--------------|
| Add       | O (n)        |
| peekMin   | O (1)        |
| removeMin | O (n)        |

- Representing PQ using linked list in increasing order
- Add  $\rightarrow$  5, 3, 8, 2



- Representing PQ using linked list in increasing order
- Add  $\rightarrow$  5, 3, 8, 2



Return value at the first node will cost → 1

- Representing PQ using linked list in increasing order
- Add  $\rightarrow$  5, 3, 8, 2





Remove value at the first node will cost → 1

#### Complexity Analysis

| Operation | Running time |
|-----------|--------------|
| Add       | O (n)        |
| peekMin   | O (1)        |
| removeMin | O (1)        |

#### Representation # 4 ( Heaps)

- Using heaps
- Heap is a complete binary tree with structural property and heap property.
- Heap must have 2 properties:
  - 1 Structural property: all levels except the last are full and last level is left filled.
  - 2 Heap property: value of nodes is large than its parents (priority of nodes is less than its children)

#### heap



- 1)  $H = \lfloor \log n \rfloor = \lfloor \log 6 \rfloor = 2$
- 2) Parent (i) =  $L_{i/2}J = L_{5/2}J = 2$
- 3) Left (i) = 2i = 2\*2 = 4
- 4) Right (i) = 2i+1 = 2\*2+1 = 5
- 5) Minimum value will always be at root

### heap



- Structural preperty → valid
- Heap property → valid → this is heap

#### Priority Queue Using heaps

- Implement a PQ using heap
- Use an array starting at position 1, where each item in the array corresponds to one node in the heap.
- Depending on heap in the previous slide :



**Priority Queue** 

#### Cont.

- There are 3 operations :
  - 1) add
  - 2) peekMin
  - 3) removeMin

#### peekMin

- peekMin
- Since the minimum value will always be at the root of heap or at index 1 of the array so it will cost O (1) to return it.

• Add (12) to the heap



• Add (12) to the heap



2) Swap 12 and 19

• Add (12) to the heap



3) Swap 12 and 13



#### **Priority Queue**

| 11 | 16 | 13      | 18 | 21 | 19      | 17       | 43 | 23 | 26 | 29 | 31 |    |  |
|----|----|---------|----|----|---------|----------|----|----|----|----|----|----|--|
| 11 | 16 | 13      | 18 | 21 | 19      | 17       | 43 | 23 | 26 | 29 | 31 | 12 |  |
| 11 | 16 | 13      | 18 | 21 | 19      | 17       | 43 | 23 | 26 | 29 | 31 | 12 |  |
|    |    |         |    |    |         |          |    |    |    |    |    |    |  |
|    |    |         |    |    | t       | <b>.</b> |    |    |    |    |    |    |  |
| 11 | 16 | 13      | 18 | 21 | 12      | 17       | 43 | 23 | 26 | 29 | 31 | 19 |  |
| 11 | 16 | 13<br>1 | 18 | 21 | 12<br>J | 17       | 43 | 23 | 26 | 29 | 31 | 19 |  |

#### Running time for Add operation

- Height = log (n)
  - 1) inserting the element at the right most leaf in the tree will cost O (1)
  - 2) swapping process that maintain the heap property will cost
    - O (log n ). Because in the worst case the swapping will begin from the bottom of the tree (leaf) to the root.

#### removeMin

• Remove 11



#### removeMin



2) Put 13 at the root (minimum between 13 and 16)

#### removeMin



3) Modify place of 17

#### **Priority Queue**



|  | 13  | 16  | 17  | 18  | 21 | 19 | 43 | 23 | 26 | 29 | 31 |  |   |
|--|-----|-----|-----|-----|----|----|----|----|----|----|----|--|---|
|  | . • | . • | • • | . • |    | •  |    |    |    |    | •  |  | 1 |

#### Running time for Add operation

- Height = log (n)
  - 1) removing the minimum value at the root will cost O (1)
  - 2) modifying the position of elements to maintain the heap property will cost
  - O (log n ). Because in the worst case this process will begin from the root to the leaf.

#### Complexity Analysis

| Operation | Running time |
|-----------|--------------|
| Add       | O (log n)    |
| peekMin   | O (1)        |
| removeMin | O (log n)    |

#### APPLICATIONS OF PQ

- PQ used to manage limited resources such as bandwidth on a transmission line from a network router.
- College admissions process for students.
- PQ used in process scheduling in operating systems
- The airline company keeps a priority queue of a standby passengers waiting to get a seat.

## End

Dr. Aryaf Aladwan 35