ÁLGEBRA II

Primer Cuatrimestre – 2020 Clases Prácticas

21 de Abril

Ejercicio 1. Exhibir un grupo G y $n \in \mathbb{N}$ que divida a |G| pero tal que no existan elementos de orden n en G.

Solución. Podemos tomar por ejemplo $G = G_2 \times G_2$. Este grupo tiene orden 4, pero sin embargo todos sus elementos son de orden menor o igual dos, ya que

$$(g,h)^2 = (g^2,h^2) = (1,1) = 1_G$$

para todo $(g,h) \in G$.

Proposición 1. Si $n, m \in \mathbb{N}$, entonces $n! \cdot m!$ divide a (n + m)!.

Demostración. Procedemos por pasos, haciendo las observaciones necesarias en cada uno.

(1) Si $\sigma \in S := S_n$ y $\tau \in T := S(\{n+1, \dots, n+m\})$, podemos definir una función

$$i(\sigma,\tau): \{1,\cdots,n+m\} \to \{1,\cdots,n+m\}$$
$$t \mapsto \begin{cases} \sigma(t) & \text{si } t \le n \\ \tau(t) & \text{si } t > n \end{cases}$$

Se puede verificar que esta es una biyección con inversa $i(\sigma^{-1}, \tau^{-1})$. En particular, sabemos entonces que $i(\sigma, \tau)$ es un elemento de S_{n+m} para toda $\sigma \in S$ y $\tau \in T$, así que está bien definida la aplicación $i: (\sigma, \tau) \in S \times T \mapsto i(\sigma, \tau) \in S_{n+m}$.

(2) Recordemos que si G y H son dos grupos, el conjunto $G \times H$ junto con la operación $(g,h)(g',h') = (g \cdot_G g', h \cdot_H h')$ forman un grupo que llamamos el *producto directo* de G y H. Su neutro es $1 = (1_G, 1_H)$, y $(g,h)^{-1} = (g^{-1},h^{-1})$ para cada $(g,h) \in G \times H$. Veamos que, con respecto a esta estructura de grupo en $S \times T$, la función $i: S \times T \to S_{n+m}$ es un morfismo de grupos.

Sean entonces $(\sigma, \tau), (\sigma', \tau') \in S \times T$. Para ver que $i(\sigma, \tau)i(\sigma', \tau') = i(\sigma\sigma', \tau\tau')$, podemos probar que ambas permutaciones coinciden al evaluarlas en cada $t \in \{1, ..., n+m\}$. Si $t \le n$ es¹

$$(i(\sigma,\tau)\cdot i(\sigma',\tau'))(t) = i(\sigma',\tau')(\sigma(t)) = \sigma'(\sigma(t)) = (\sigma\sigma')(t) = i(\sigma\sigma',\tau\tau')(t),$$

y si t > n entonces

$$(i(\sigma,\tau)\cdot i(\sigma',\tau'))(t) = i(\sigma',\tau')(\tau(t)) = \tau'(\tau(t)) = (\tau\tau')(t) = i(\sigma\sigma',\tau\tau')(t)$$

lo que prueba la igualdad.

¹Recordemos que adoptamos la convención de multiplicar a las permutaciones usando \circ_{op} , es decir $(\sigma\tau)(t) := \tau(\sigma(t))$.

Álgebra II Clases Prácticas

(3) Probemos ahora que i es inyectivo. Como es un morfismo, resta verificar que $\ker i = \{(1,1)\}$. Si $i(\sigma,\tau)=1$, entonces para todo $k\in\{1,\ldots,n\}$ vemos que $\sigma(k)=i(\sigma,\tau)(k)=1(k)=k$, y para todo $l\in\{n+1,\ldots,n+m\}$ es $\tau(l)=i(\sigma,\tau)(l)=l$. Esto muestra que $\sigma=1,\tau=1$ y entonces $(\sigma,\tau)=(1,1)$.

(4) Finalmente, como i es un morfismo de grupos inyectivo, es un isomorfismo con su imagen. En particular $|\inf f| = |S \times T| = |S| \cdot |T| = n! \cdot m!$. Por otro lado como im f es un subgrupo de S_{n+m} , su orden debe dividir a $|S_{n+m}| = (n+m)!$, y esto concluye la demostración.

Ejercicio 2. Probar que si G es un grupo de orden p^s con p primo y $s \ge 1$, todo subgrupo de G tiene orden p^r con $0 \le r \le s$.

Solución. Sea H un subgrupo de G. Por el teorema de Lagrange, sabemos que n:=|H| debe dividir a $p^s=|G|$, así que $n=p^r$ con $0 \le r \le s$.

Ejercicio 3. Sea G un grupo finito y $H, K \leq G$ dos subgrupos. Probar que:

- (i) Si los órdenes de H y K son coprimos, entonces $H \cap K = \{1\}$.
- (ii) Si H y K tienen orden p con p un primo, entonces H = K ó $H \cap K = \{1\}$.

Solución. Recordemos antes que nada que la intersección de dos subgrupos es un subgrupo. Ahora,

- (i) Por el teorema de Lagrange, el orden de $H \cap K$ debe dividir tanto a orden de H como al de K, así que $|H \cap K| = 1$ y entonces $H \cap K = \{1\}$.
- (ii) Sabemos una vez más que el orden $H \cap K$ debe dividir a p, y por lo tanto es 1 ó p. En el primer caso es $H \cap K = \{1\}$, y en el segundo, obtenemos que $H = H \cap K = K$ pues $H \cap K \subset H, K$ y $|H \cap K| = p = |H|, |K|$.

Ejercicio 4. Sea G un grupo finito de orden $n \cdot m$ y H un subgrupo normal de orden n. Probar que:

- (i) Para todo $g \in G$ se tiene que $g^m \in H$.
- (ii) Más aun, si m y n son coprimos entonces $H = \{g^m : g \in G\}$.

Solución. Como H es normal en G, sabemos que el cociente G/H es un grupo con la operación dada por $gH \cdot g'H := gg'H$. Notando $\lceil g \rceil := gH$, la anterior operación es $\lceil g \rceil \lceil g' \rceil := \lceil gg' \rceil$.

Podemos entonces aplicar el teorema de Lagrange a G/H, de forma todo elemento $x \in G/H$ tiene orden divisible por |G/H| = [G:H] = |G|/|H| = m. En particular es $x^m = 1$ para todo $x \in G/H$.

Fijemos ahora $g \in G$. Lo anterior nos dice que $1 = [g]^m = [g^m]$ o equivalentemente, que $g^m H = H$, así que $g^m \in H$. Esto prueba (i), que podemos escribir como la contención $\{g^m : g \in G\} \subset H$.

Para probar el ítem (ii) resta ver que $H \subset \{g^m : g \in G\}$. Supongamos que (n : m) = 1 y fijemos $h \in H$. Por la identidad de Bézout existen enteros $s, t \in \mathbb{Z}$ tales que ns+mt=1, así que $h=h^1=h^{ns+mt}=h^{ns}\cdot h^{mt}$. Como H tiene orden n sabemos que $(h^s)^n=1$, y entonces

$$h = h^{ns} \cdot h^{mt} = (h^s)^n (h^t)^m = (h^t)^m \in \{g^m : g \in G\}.$$