	1A	2A	3A	4A	5A	6A	Оценка		1 зад.	2 зад.	Σ
ФИО											
группа							Подпись	пре	еп		

ПИСЬМЕННЫЙ ЭКЗАМЕН ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2024 г.

Вариант А

- **1А.** (1,5) Теплопроводность металлов при низких температурах подчиняется закону $\varkappa = \alpha T$, где α некоторая константа. Металлический стержень длиной L и площадью сечения S заключён в теплоизолирующую оболочку, на левом его конце поддерживается температура T_0 , а на правом $T_1 > T_0$. Найдите поток тепла Q в сторону холодного конца стержня.
- **2А.** (1,5) Молекула газа смещается за некоторое время t от своего первоначального положения на расстояние $r_1=10$ см, испытав большое число столкновений $N\gg 1$. Давление газа изотермически изменяют, и за то же время t молекула смещается на $r_2=5$ см. Определите отношение N_1/N_2 числа испытанных ей столкновений в первом и втором случаях.
- **3А.** (2) Вещество в баллоне углекислотного огнетушителя находится в критическом состоянии при температуре $T_0 = 304$ К. Пренебрегая кинетической энергией струи, оцените температуру газа T_1 в раструбе огнетушителя. Газ в баллоне считать подчиняющимся модели Ван-дер-Ваальса, а на выходе из раструба идеальным. Теплоёмкость CO_2 принять равной $C_V = \frac{7}{2}R$. Возможность фазовых переходов (образование твёрдой углекислоты) не рассматривать.
- **4А.** (2) Уравнение состояния моля некоторого вещества с постоянной теплоёмкостью $C_V = 3R$ есть $PV = R(T+\theta)$, где константа $\theta > 0$. Найдите относительное изменение давления P_2/P_1 в равновесном адиабатическом процессе, если температура выросла от $T_1 = \theta$ до $T_2 = 3\theta$.
- **5А.** (2) Электроны в полупроводниковых гетероструктурах можно рассматривать как двумерный идеальный газ. В начале координат создаётся небольшое облако электронов с максвелловским распределением по скоростям при температуре $T=10~{\rm K}$, и они разлетаются по плоскости во все стороны без взаимодействия. Найдите, как плотность потока электронов j(r) зависит от расстояния r до начала координат в момент времени t. Вычислите расстояние $r_{\rm max}$, на котором j(r) достигает максимума при t=1 нс. Масса электрона $m=9\cdot 10^{-31}~{\rm kg}$.
- **6А.** (2,5) Резиновая полоса растянута вдоль оси x до некоторой длины ℓ при температуре T. Молекулы резины моделируются как расположенные вдоль всей полосы одномерные цепочки из $N\gg 1$ звеньев длины a. Каждое звено может находиться в одном из двух состояний: ориентировано либо вдоль оси x, либо противоположно ей. x Внутренняя энергия резины от конфигурации звеньев не зависит (звенья не взаимодействуют). Найдите в этой модели силу натяжения $f(\ell,T)$ молекулы резины. Длина полосы много меньше максимальной: $\ell \ll Na$.

Указание: сначала вычислите энтропию резины.

	1Б	2Б	3Б	4Б	5Б	6Б	Оценка		1 зад.	2 зад.	Σ
ФИО											
группа							Подпись	пре	еп		

ПИСЬМЕННЫЙ ЭКЗАМЕН ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2024 г.

Вариант **Б**

- **1Б.** (1,5) Теплопроводность диэлектриков при низких температурах подчиняется закону $\varkappa = \beta T^3$, где β некоторая константа. Диэлектрический стержень длиной L и площадью сечения S заключён в теплоизолирующую оболочку. На его левом конце поддерживается температура T_0 , на правом $T_1 > T_0$. Найдите поток тепла Q в сторону холодного конца стержня.
- **2Б.** (1,5) Молекула газа смещается на некоторое расстояние r, претерпевая при этом $N\gg 1$ столкновений с другими молекулами. Давление газа изотермически понижают в 5 раз. Во сколько раз изменится число столкновений молекулы при смещении её на то же расстояние r?
- **3Б.** (2) Баллон пневматического пылеочистителя заполнен тетрафторэтаном ($C_2H_2F_4$, $\mu=102~ \Gamma/{\rm моль}$). Температура газа в баллоне $T_0=300~{\rm K}$, плотность $\rho_0=25~{\rm kr/m^3}$. Пренебрегая кинетической энергией газовой струи, оцените её температуру T_1 на выходе из узкого канала распылителя. Газ в баллоне считать подчиняющимся модели Ван-дер-Ваальса, а на выходе из канала идеальным. Известны критические параметры газа: $T_{\rm k}=374~{\rm K},~\rho_{\rm k}=50~{\rm kr/m^3}.$ Удельная теплоёмкость газа $c_P=0.82~{\rm Дж/(r\cdot K)}.$
- **4Б.** (2) Состояние некоторого слабонеидеального одноатомного газа описывается уравнением $(P+\frac{a}{v^3})v=RT$, где v молярный объём. Определите изменение температуры газа ΔT в результате неравновесного расширения моля газа в пустоту от объёма V_0 до $V_1=2V_0$ в теплоизолированном сосуде.
- **5Б.** (2) На оси длинного вакуумированного цилиндра радиусом r=1 см натянута тонкая проволока, на которой адсорбированы молекулы воды. После пропускания через проволоку короткого импульса тока эти молекулы разлетаются во все стороны без столкновений с максвелловским распределением по скоростям, соответствующим температуре $T=500~{\rm K}$. Найдите, как давление на стенку P(t) зависит от времени, и вычислите, через какое время $t_{\rm max}$ оно достигнет максимума.
- **6Б.** (2,5) Резиновая полоса растянута вдоль оси x до некоторой длины ℓ при температуре T. Молекулы резины моделируются как расположенные вдоль всей полосы одномерные цепочки из $N\gg 1$ звеньев длины a. Каждое звено может находиться в одном из двух состояний: ориентировано либо вдоль оси x, либо противоположно ей. x Внутренняя энергия резины от конфигурации звеньев не зависит (звенья не взаимодействуют). Найдите в этой модели работу, которую нужно совершить в расчёте на одну молекулу, чтобы изотермически растянуть резину вдвое. Длина полосы много меньше максимальной: $\ell \ll Na$.

Указание: сначала вычислите энтропию резины.