Method	Required information	Assumptions/Notes	References
Incidence based	Generation interval CDF	Uses cumulative incidence directly	[1]
	Incidence reports	without estimating the initial growth rate	
		• Entire generation interval distribution is required to obtain CDF	
Delta approximation	Mean generation interval	Assumed fixed generation interval	[2, 3]
Empirical (histogram-based)	Generation interval samples	Relies on binning generation intervals	[2]
		into discrete histograms	
Empirical (sample-based)	Generation interval samples	• Requires more samples than	[4]
		the histogram-based method	
Euler-Lotka	Entire generation interval distribution	Uses moment generating function	[5]
Normal approximation	Mean/SD generation interval	Assuems normally distributed generation intervals	[2]
	, -	• Predicts decreasing r - \mathcal{R} relationship for high r	
SIR model	Mean generation interval	Assumes exponentially distributed generation interval	[6, 7, 8, 2]
		• Predicts linear relationship between r and \mathcal{R}	
SEIR (gamma)	Mean/SD latent period	Assumes gamma distributed latent and infectious periods	[9, 10, 2, 3]
	Mean/SD infectious period		
SEIR (exponential)	Mean generation interval	Assumes exponentially distributed latent and infectious periods	[11, 12, 3]
	• Ratio of the infectious period to	• Predicts quadratic relationship between r and \mathcal{R}	
	the generation interval		
Subexponential	Generation interval shape	Assumes sub-exponential growth rate	[13]
	Corresponding generation interval parameters	• Provides examples for uniform, gamma, exponential and delta	
	Sub-exponential growth paramete	distributed generation intervals	
	Disease generation		
Trapezoid approximation	Period of no infection after exposure	Assumes trapezoid shaped infection kernel	[3]
	Time until maxium infectivity		
	Duration of maximum infectivity		
	Time until recovery		

References

- [1] Nishiura H. Correcting the actual reproduction number: a simple method to estimate R0 from early epidemic growth data. International journal of environmental research and public health. 2010;7(1):291–302.
- [2] Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society of London B: Biological Sciences. 2007;274(1609):599–604.
- [3] Roberts M, Heesterbeek J. Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. Journal of mathematical biology. 2007;55(5-6):803.
- [4] Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M, Packer C, et al. Transmission dynamics and prospects for the elimination of canine rabies. PLoS biology. 2009;7(3):e1000053.
- [5] Lotka AJ. Relation Between Birth Rates and Death Rates. Science. 1907 Jul;26(653):21–22.
- [6] Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford university press; 1992.
- [7] Pybus OG, Charleston MA, Gupta S, Rambaut A, Holmes EC, Harvey PH. The epidemic behavior of the hepatitis C virus. Science. 2001;292(5525):2323–2325.
- [8] Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437(7056):209.
- [9] Anderson D, Watson R. On the spread of a disease with gamma distributed latent and infectious periods. Biometrika. 1980;67(1):191–198.
- [10] Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005;2(7):e174.
- [11] Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627):1966–1970.
- [12] Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface. 2007;4(12):155–166.
- [13] Chowell G, Viboud C, Simonsen L, Moghadas SM. Characterizing the reproduction number of epidemics with early subexponential growth dynamics. Journal of The Royal Society Interface. 2016;13(123):20160659.