Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий			
институт			
Программная инженерия			
кафедра			

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №1

Конечные автоматы

тема

Преподаватель			А. С. Кузнецов
		подпись, дата	инициалы, фамилия
Студент КИ23-16/16	032318988		Александров Е.А.
	номер зачетной книжки	подпись, дата	инициалы, фамилия

1.1 Цель

Реализация и исследование детерминированных и недетерминированных конечных автоматов.

1.2 Задачи

- 1. Ознакомиться со сведениями по теории конечных автоматов (см. лекционный материал ДКА и НКА);
- 2. Получить у преподавателя собственный вариант задания, в котором должны быть указаны цепочки или наборы цепочек символов для распознавания ДКА и НКА;
- 3. Используя изученные механизмы, разработать в системе JFLAP согласно постановке задачи детерминированный конечный автомат, а также произвести программную реализацию на языке программирования Java (по согласованию с преподавателем Python, Си, С++). В случае невозможности создания ДКА, это должно доказываться формально. В обязательно наличие сущностей коде программы процедур, относящихся к табличному представлению автомата. Использование функций обработки строковых данных запрещено. Результат работы, выдаваемый программой на экран, внешне должен быть схож, а фактически эквивалентен результату, выдаваемому JFLAP на тех же тестовых цепочках;
- 4. Используя изученные механизмы, разработать **JFLAP** В системе недетерминированный конечный автомат, a также произвести программную реализацию на языке программирования Java (по преподавателем Python, Си, С++). согласованию невозможности создания НКА, это должно доказываться формально. В процедур, обязательно наличие сущностей коде программы И относящихся к табличному представлению автомата. Использование функций обработки строковых данных запрещено. Результат работы, выдаваемый программой на экран, внешне должен быть схож, а

фактически эквивалентен результату, выдаваемому JFLAP на тех же тестовых цепочках;

5. Написать отчет и представить его к защите вместе с JFF-файлами и исходным кодом программ. Защита может проводиться в аудитории и дистанционно.

1.3 Задание

Необходимо построить ДКА и НКА в системе JFLAP и произвести программную реализацию. В коде программы обязательно наличие сущностей и процедур, относящихся к табличному представлению автомата. Использование функций обработки строковых данных запрещено. Результат работы, выдаваемый программой на экран, внешне должен быть схож, а фактически эквивалентен результату, выдаваемому JFLAP на тех же тестовых цепочках. В каждом варианте задания в части а) задается цепочка или набор цепочек для распознавания ДКА. В части б) задается цепочка или набор цепочек для распознавания НКА.

1.4 Вариант

Мною был получен вариант работы №1:

- а) Построить ДКА, допускающий в алфавите {a, b} все строки с количеством символов a, не превышающем 3.
- б) Построить НКА, допускающий цепочки в алфавите $Z = \{1, 2, 3\}$, у которых последний символ цепочки уже появлялся в ней раньше, например w = 12321.

2 Ход работы

2.1 Задание А

Построенный граф переходов в JFLAP для ДКА показан на рисунке 1.

Рисунок $1 - \Gamma$ раф переходов для ДКА

Пошаговое выполнение ДКА для цепочки «baaa» представлено на рисунках со 2 по 5.

Рисунок 2 — Пошаговое выполнение ДКА для цепочки «baaa», часть 1

Рисунок 3 - Пошаговое выполнение ДКА для цепочки «baaa», часть 2

Рисунок 4 - Пошаговое выполнение ДКА для цепочки «baaa», часть 3

Рисунок 5 - Пошаговое выполнение ДКА для цепочки «baaa», часть 4

Пошаговое выполнение ДКА для цепочки «аааа» представлено на рисунках с 6 по 9.

Рисунок 6 - Пошаговое выполнение ДКА для цепочки «аааа», часть 1

Рисунок 7 - Пошаговое выполнение ДКА для цепочки «аааа», часть 2

Рисунок 8 - Пошаговое выполнение ДКА для цепочки «аааа», часть 3

Рисунок 9 - Пошаговое выполнение ДКА для цепочки «аааа», часть 4

2.2 Задание Б

Построенный граф переходов в JFLAP для НКА показан на рисунке 10.

Рисунок 10 - Граф переходов для НКА

Пошаговое выполнение НКА для цепочки «11» представлено на рисунках с 11 по 13.

Рисунок 11 - Пошаговое выполнение НКА для цепочки «11», часть 1

Рисунок 12 - Пошаговое выполнение НКА для цепочки «11», часть 2

Рисунок 13 - Пошаговое выполнение НКА для цепочки «11», часть 3

Пошаговое выполнение НКА для цепочки «112» представлено на рисунках с 14 по 18.

Рисунок 14 – Пошаговое выполнение НКА для цепочки «112», часть 1

Рисунок 15 – Пошаговое выполнение НКА для цепочки «112», часть 2

Рисунок 16 – Пошаговое выполнение НКА для цепочки «112», часть 3

Рисунок 17 – Пошаговое выполнение НКА для цепочки «112», часть 4

Рисунок 18 – Пошаговое выполнение НКА для цепочки «112», часть 5

3 Заключение

По результатам работы был изучен теоретический материал по теме «Конечные автоматы». Все поставленные цели и задачи были выполнены.