From the corollary we learned from the course, if we pick uniformly at random a point from the unit ball, the probability that its coordinate x_1 satisfies $|x_1| > \frac{c}{\sqrt{d-1}}$ is less than $\frac{2}{c}e^{-\frac{c^2}{2}}$. If we want to prove the probability that such a point will be at a distance at most $\frac{1}{d}$ from the surface of such a ball is larger than $1 - \frac{1}{e}$, which means $|x_1| < \frac{1}{d}$ is less than $1 - \frac{1}{e}$, we can simply replace $\frac{c}{\sqrt{d-1}}$ with $\frac{1}{d}$ and prove $\frac{c}{c}e^{-\frac{c^2}{2}}$ is less or equal than $1 - \frac{1}{e}$. let

$$\frac{c}{\sqrt{d-1}} = \frac{1}{d},$$

We get $c=\frac{(d-1)^{\frac{3}{2}}}{d}$, which is approximately bigger than 31. Then we want to prove

$$1 - \frac{1}{e} \ge \frac{2}{c} e^{-\frac{c^2}{2}}$$

Which is $e-1 \geq \frac{2}{c}e^{1-\frac{c^2}{2}}$. Because c>31, $0<\frac{2}{c}<1$, and $0< e^{1-\frac{c^2}{2}}<1$. Thus $0<\frac{2}{c}e^{1-\frac{c^2}{2}}<1$. Therefore, we get

$$e-1 > 1 > \frac{2}{c}e^{1-\frac{c^2}{2}}$$
.

Thus, $P\left(|x_1| < \frac{1}{d}\right) < 1 - \frac{1}{e}$