Introduction to Data Science

CS 5665
Utah State University
Department of Computer Science
Instructor: Prof. Kyumin Lee

Practicum

- Nick & Amitesh: Storm Nov 10
- Karun: Tensorflow Nov 17

Project Teams

- Sahit Katragadda, Sree Vidya Susarla, Shivakesh Reddy Annepally
- Arshdeep Singh, Venkatesh Kadali, Rohit Gopalan
- · Sidhant Chatterjee, Sirisha Rani Deekonda
- · Jake Felzien, Mike Larsen, and Yancy Knight
- · Bhagyashree, Meiling, Anuj
- · Mounika, Akhil, Pravallika
- Prakhar Amlathe, Amitesh Mahajan, Vaibhav Sahu So far 20 students

HW1

- https://usu.instructure.com/courses/43141 7/assignments/2117107
- Due date: September 22

Previous Class...

Measuring Data Similarity and Dissimilarity

→ Nominal (Binary),
Ordinal and Numeric
(Quantitative)

Measuring Distance of
Numeric Data

→ Manhattan Distance
and Euclidean Distance

Measuring Data Similarity and Dissimilarity*

*(These are mainly for understanding the relationship between objects with multiple attributes)

Cosine Similarity

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- · Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping....
- Cosine measure: If $d_{\rm 1}$ and $d_{\rm 2}$ are two vectors (e.g., term-frequency vectors), then

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product, $||d||$: the length of vector d

cosine(document1,document2)

 $\cos(\vec{d}_1, \vec{d}_2) = \frac{\vec{d}_1 \cdot \vec{d}_2}{|\vec{d}_1| |\vec{d}_2|} = \frac{\sum_{i=1}^{|V|} d_{1i} d_{2i}}{\sqrt{\sum_{i=1}^{|V|} d_{1i}^2} \sqrt{\sum_{i=1}^{|V|} d_{2i}^2}}$

 $\cos(d_1, d_2)$ is the cosine similarity of d_1 and d_2 ... or, equivalently, the cosine of the angle between d_1 and d_2 .

Cosine similarity illustrated

Example: Cosine Similarity

$$\cos(\vec{d}_1, \vec{d}_2) = \frac{\vec{d}_1 \bullet \vec{d}_2}{\left|\vec{d}_1\right| \left|\vec{d}_2\right|} = \frac{\sum_{i=1}^{|V|} d_{1i} d_{2i}}{\sqrt{\sum_{i=1}^{|V|} d_{1i}^2} \sqrt{\sum_{i=1}^{|V|} d_{2i}^2}}$$

• Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{array}{ll} d_1 \bullet d_2 = 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25 \\ ||d_1|| = & (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| = & (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{0.5} = (17)^{0.5} = 4.12 \\ \cos(d_2, d_2) = 0.94 \end{array}$$

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- · Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- · Above steps are the beginning of data preprocessing
- Many methods have been developed but still an active area of research
- Read sections 1 and 2 in Data Mining Concepts and Techniques

Data Science: The Context

Data Preprocessing: Overview

Why Preprocess the Data?

- · Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable
 - Consistency: some modified but some not
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

- Data cleaning
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- · Data integration
 - Integration of multiple databases/data sources, or files
- · Data reduction
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

Data Cleaning

Forms of Data Preprocessing Data cleaning Data Integration

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - · e.g., Occupation="" (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)

Data reduction

- inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - · Was rating "1, 2, 3", now rating "A, B, C"
 - · Discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- · Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- · Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- · Missing data may need to be inferred

Noisy Data

- Noise: random error or variance in a measured variable.
- · Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - etc
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible
- · Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

- smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

- Data discrepancy detection
 - Use metadata (e.g., domain, range, dependency, distribution)
 - Check field overloading
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface

Data Integration

Data Integration

- · Data integration:
 - Combines data from multiple sources into a coherent store
- · Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill
 Clinton = William Clinton, Cust-id = Cust-#
- · Data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Correlation Analysis (Nominal Data)

X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X2 value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Expected frequency of (Ai, Bi), which can be calculated as

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{e_{ij}}$$

- · Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{A} \overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher the value, the stronger the correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

