SC223 - Linear Algebra

Aditya Tatu

Lecture 19

September 15, 2023

Generating New subspaces from Old

- ullet Let U, W be subspaces of V.
- $U \cap W$ is a subspace of V
- **Definition:** (Sum of subspaces): Let U_1, \ldots, U_n be subspaces of V. The **sum of subspaces** U_1, \ldots, U_n is defined as:

$$U_1 + \ldots + U_n =: \{u_1 + u_2 + \ldots + u_n \mid u_i \in U_i, i = 1, \ldots, n\}$$

• **Proposition 7:** The sum of subspaces U_1, \ldots, U_n of V is a subspace.

ullet If $v=u_1+\ldots+u_n,u_i\in U_i,i=1,\ldots n$, we say that (u_1,\ldots,u_n) is a decomposition of v.

$$V = |R'|$$
 $V = \{(x,y,0) \mid \forall x,y \in |R|\}.$ $W = \{(p,y,y) \mid \forall y \in |R|\}.$

1. $V=R^3$, $U_1 = \{rx,y,o\} \mid x,y \in R^3$, $U_1+W_1=R^3$, $W_1 = \{(0,y,y) \mid y \in R^3\}$.

2. $V \in \mathbb{R}^3$, $U_2 = \frac{1}{2}(x,y,o) | x,y \in \mathbb{R}^3 = U_1$ $W_2 = \frac{1}{2}(0,y,z) | y,z \in \mathbb{R}^3$.

 $U_2 + W_2 = IR^3$ (x, y, 3) = (x, y, 0) + (0, 0, 8) = (x, 0, 0) + (0, y, 3)

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces U_1, \ldots, U_n , $W = U_1 + \ldots + U_n$ is said to be a **Direct Sum** if $\forall w \in W$, w is **uniquely** expressed as a sum of elements $w_i \in U_i$, $i = 1, \ldots, n$.

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces U_1, \ldots, U_n , $W = U_1 + \ldots + U_n$ is said to be a **Direct Sum** if $\forall w \in W$, w is **uniquely** expressed as a sum of elements $w_i \in U_i, i = 1, \ldots, n$.
- Direct sum notation: $W = U_1 \oplus U_2 \oplus \ldots \oplus U_n$.

Proposition 8: Let U_1, \ldots, U_n be subspaces of V. Then $V = U_1 \oplus \ldots \oplus U_n$ if and only if: (1) $V = U_1 + \ldots + U_n$, and (2) The only decomposition of $\theta \in V$ is (θ, \ldots, θ) .

$$\Rightarrow v$$

$$\Leftrightarrow f(1) l(2) \text{ ave free} \Rightarrow V = \bigoplus Vi$$

$$let weW be such that
$$w = U_1 + U_2 + \cdots + U_n, \quad u \in Ui$$

$$= U_1 + U_2 + \cdots + U_n, \quad V_i \in Ui$$

$$+ U_1 + U_2 + \cdots + U_n, \quad V_i \in Ui$$

$$+ U_1 + U_2 + \cdots + U_n$$

$$(U_1 - U_1) + (U_2 + U_2) + \cdots + (U_n - U_n) = 0$$

$$\in U_1 \quad \in U_2 \quad \cdots \in U_n$$$$

• **Proposition 9:** Let V be a VS with subspaces U_1, U_2 . Then $V = U_1 \oplus U_2$ iff $V = U_1 + U_2$ and $U_1 \cap U_2 = \{\theta\}$.

$$\Rightarrow$$

Let
$$\theta = \theta + \theta$$
, $\Theta \in \mathcal{U}_1$, $\Theta \in \mathcal{U}_2$
= $\psi + \omega$, $\psi \in \mathcal{U}_1$, $\omega \in \mathcal{U}_2$.

• Let V be a VS, and $U = \{v_1, \dots, v_n\}$.

- Let V be a VS, and $U = \{v_1, \dots, v_n\}$.
- ullet **Definition:** (Span of a set) We define the **Span of** U as

$$span(U) := \{a_1v_1 + \ldots + a_nv_n \mid \forall a_1, \ldots, a_n \in \mathbb{F}\},$$

- Let V be a VS, and $U = \{v_1, \ldots, v_n\}$.
- ullet **Definition:** (Span of a set) We define the **Span of** U as

$$span(U) := \{a_1v_1 + \ldots + a_nv_n \mid \forall a_1, \ldots, a_n \in \mathbb{F}\},$$

• If
$$|U| = \infty$$
?

- Let V be a VS, and $U = \{v_1, \ldots, v_n\}$.
- ullet **Definition:** (Span of a set) We define the **Span of** U as

$$span(U) := \{a_1v_1 + \ldots + a_nv_n \mid \forall a_1, \ldots, a_n \in \mathbb{F}\},$$

- If $|U| = \infty$?
- Is span(U) a subspace of V?

- Let V be a VS, and $U = \{v_1, \ldots, v_n\}$.
- ullet **Definition:** (Span of a set) We define the **Span of** U as

$$span(U) := \{a_1v_1 + \ldots + a_nv_n \mid \forall a_1, \ldots, a_n \in \mathbb{F}\},$$

- If $|U| = \infty$?
- Is span(U) a subspace of V?
- **Proposition 10:** Let $U \subseteq V$. Then span(U) is a subspace of V.

ullet Let V be a VS, and let $W\subset V$. If span(W)=V, we say that W is a spanning set of V, or W spans V.

- ullet Let V be a VS, and let $W\subset V$. If span(W)=V, we say that W is a spanning set of V, or W spans V.
- ullet We say that a vector space V is **finite dimensional** if there exists a finite spanning set. Acronym for finite dimensional vector space: FDVS.

- ullet Let V be a VS, and let $W\subset V$. If span(W)=V, we say that W is a spanning set of V, or W spans V.
- ullet We say that a vector space V is **finite dimensional** if there exists a finite spanning set. Acronym for finite dimensional vector space: FDVS.
- **Linearly independent set**: Let V be a vector space and let $W = \{v_1, \dots, v_n\} \subset V$. We say that the set W is a set of linear independent vectors, if

$$a_1v_1 + \ldots + a_nv_n = \theta \Rightarrow a_i = 0, i = 1, \ldots, n$$

- ullet Let V be a VS, and let $W\subset V$. If span(W)=V, we say that W is a spanning set of V, or W spans V.
- ullet We say that a vector space V is **finite dimensional** if there exists a finite spanning set. Acronym for finite dimensional vector space: FDVS.
- **Linearly independent set**: Let V be a vector space and let $W = \{v_1, \ldots, v_n\} \subset V$. We say that the set W is a set of linear independent vectors, if

$$a_1v_1 + \ldots + a_nv_n = \theta \Rightarrow a_i = 0, i = 1, \ldots, n$$

• What if $|W| = \infty$.