让机器学习得更快

科大讯飞 鹿晓亮

主要内容

深度学习在感知智能中获得巨大成功

面向感知及认知智能的深度学习平台

深度学习平台训练算法并行方式探讨

深度学习平台对讯飞超脑计划的支撑

计算智能 能存会算

感知智能 能听会说、能看会认

认知智能 能理解会思考

语音识别的血泪史

1920年代:RadioRex玩具狗

1950年代: Bell Lab Audry系统

6-70年代:DSP、DTW、Viterbi、HMM、DARPA

1980年代:特征提取、大规模语料、DARPA、NIST、Sphinx

1990年代:区分性训练、模型自适应、噪声鲁棒性、HTK

2000年后: 更好的区分性训练技术等

大数据及云计算应用于语音识别

2010年10月28日, "语音云"在业界率先发布,为手机、汽车、智能家电等终端提供高质量语音合成、语音搜索、语音听写等智能语音交互服务能力

深度学习和大数据的力量

未来几年将语音识别的句正确率提升到90%!

图像识别同样获得巨大成功

系统	方法	效果
DeepID3	DeepLearning	99.53%
Face++		99.50%
DeepID2+		99.47%
DeepID2		99.15%
DeepID		97.45%
DeepFace-ensemble		97.35%
FR+FCN		96.45%
GaussianFace	传统方法	98.52%
Betaface.com		98.08%
TL JointBayesian		96.33%
人眼		<mark>99.20%</mark>

主要内容

深度学习在感知智能中获得巨大成功

面向感知及认知智能的深度学习平台

深度学习平台训练算法并行方式探讨

深度学习平台对讯飞超脑计划的支撑

超算是人工智能的关键要素

- 深度学习技术的再度崛起,正在颠覆 统计模式识别、机器学习和人工智能 领域,相关专家成为"香饽饽"
- 大数据目前已经和深度学习融合,在 语音识别及图像识别等感知人工智能 方面发挥了巨大作用
- 超算平台是人工智能的基础,提供海量数据处理、存储以及高性能运算解决方案

CPU集群

- ◆组成部分
 - ◆硬件组成
 - ◆软件调度
 - ◆支持业务
- ◆业务场景
 - ◆大规模数据预处理
 - ◆进行GMM-HMM等经典模型的训练

GPU集群

- ◆组成部分
 - ◆硬件组成
 - ◆软件调度
 - ◆支持业务
- ◆业务场景
 - ◆进行Deep Learning相关模型训练,如DNN、RNN、CNN等

深度学习平台

在硬件层面,全局设计网络方案、融合文件系统;在软件层面,重新设计并揉和调度界面、使HPC&BigData开发一体化;以提升程序开发效率和流程执行效率。

主要内容

深度学习在感知智能中获得巨大成功

面向感知及认知智能的深度学习平台

深度学习平台训练算法并行方式探讨

深度学习平台对讯飞超脑计划的支撑

Acoustic model

DNN-HMM VS GMM-HMM

Computation of DNN in SR

model parameters : more than tens of millions

speech corpus: more than ten thousand of hours

Acceleration

CPU – GPU – GPUs

Fig. 2 Model parallelism

Fig. 3 Data parallelism

Tradeoff between Speed-up and Convergence

传统的异步SGD方案

Fig. 4 ASGD applied to multi-GPU in a server [4][6]

- central node, high bandwidth requirement
- conflict between model latency and efficiency

Fig. 5 Ring structure parallel strategy for multiple GPUs

- ① get mini-batch from training corpus
- 2 receive the model from the previous node, and merge the local gradient to generate a new model
- ③ send the new model to the next node and train the next mini-batch simultaneously

Fig. 6 Timing analysis of the RSPS

- asynchronous mode
- no central node, one transmission per mini-batch for each node, low bandwidth requirement
- easy to hide transmission

Fig. 6 Timing analysis of the RSPS

overlap of transmission and computation

$$T_{residual} = T_{calc} - [nT_{transmit} + (n-1)T_{merge}] \ge 0$$

$$n(T_{transmit} + T_{merge}) \le T_{calc} + T_{merge}$$

$$n \leq \frac{T_{calc} + T_{merge}}{T_{transmit} + T_{merge}}$$

$$T_{wait} = \max\{-T_{residual}, 0\} = \max\{nT_{transmit} + (n-1)T_{merge} - T_{calc}, 0\}$$

$$Speedup = \frac{T_{single}}{T_{multipe}} = \frac{n(T_{calc} + T_{merge})}{T_{calc} + T_{merge} + T_{wait}}$$

$$Speedup = \left\{ egin{array}{ll} n & if & n \leq rac{T_{calc} + T_{merge}}{T_{transmit} + T_{merge}} \ rac{T_{calc} + T_{merge}}{T_{transmit} + T_{merge}} \end{array}
ight.$$

$$Speedup_{\max} = \frac{T_{calc} + T_{merge}}{T_{transmit} + T_{merge}}$$

- T_{calc} (larger mini-batch, eg. rectified linear units)
- $T_{transmit}$ (compress transmission data, eg. quantize the gradient)
- T_{merge} (overlap merging, eg. pipelining, hierarchical merging)

实验结论

Fig. 7 Relationship between the speedup and the number of GPUs

主要内容

深度学习在感知智能中获得巨大成功

面向感知及认知智能的深度学习平台

深度学习平台训练算法并行方式探讨

深度学习平台对讯飞超脑计划的支撑

讯飞超脑计划

• 讯飞超脑的三大研究方向:

- 更加贴近人脑认知机理的人工神经网络设计,更好的支撑认知智能的实现
- 实现与人脑神经元复杂度可比的 超大人工神经网络(相当于目前 感知智能网络规模的1000倍)
- 实现基于连续语义空间分布式表示的知识推理及自学习智能引擎

讯飞超脑预期成果

实现世界上第一个中文认知智能计算引擎!

通过模拟人脑的知识表示达到联想和推理

通过自动学习获取新的知识实现不断进化

通过自然交互(语音、文字)更加拟人化

超算平台对讯飞超脑的支持

数干倍训练数据及数干倍模型参数的巨大挑战!

更大规模的超算平台集群建设 更优的深度学习并行化算法及集群调度算法 深度定制的人工神经网络专属芯片

THANK YOU!

