A

Introduction to Telescopes

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

Working of Telescopes

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

Terrestrial vs Astronomical Telescopes

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Limitations of Refracting Telescopes

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

Reflecting Telescopes & Examples

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- What is a Telescope ?
- A device designed to magnify distant objects.
- Widely used in astronomy to study celestial objects and in terrestrial observations.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- What Does a Telescope Do?
- Magnifies distant objects, making them appear closer and clearer.
- Used in astronomy to observe celestial objects and in terrestrial applications like wildlife spotting.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

Introduction to Telescopes

Hubble Ultra Deep Field:

One of the Hubble Telescope's most iconic images, capturing about 10,000 galaxies up to 10 billion light-years away. Released in 2014, this improved composite reveals the universe's origins using advanced imaging technology.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

Introduction to Telescopes

Parts of Telescope

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

Introduction to Telescopes

Parts of Telescope

- 1. Objective Lens/Mirror:
- Collects light and forms a real image.
- Larger aperture improves light-gathering ability.
- 2. Eyepiece Lens:
- Magnifies the image created by the objective lens.
- Provides the final magnified view for observation.

- What is a telescope?
- Purpose and basic components.
- Example of how telescopes magnify distant objects.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example
 calculation for
 magnifying power.

Working of Telescopes

Objective Lens/Mirror

- Captures light from a distant object.
- Forms a real, inverted image inside the telescope tube.
- Larger aperture allows gathering more light, making distant objects brighter.

> Eyepiece Lens

- Magnifies the real image formed by the objective lens.
- Allows the observer to see a clearer, magnified view.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example
 calculation for
 magnifying power.

- Magnifying Power & Example Calculation
- The ratio of the angular size of the image to the angular size of the object.
- Formula: $m = \frac{fo}{fe}$
- where fo is the focal length of the objective and fe is the focal length of the eyepiece.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

Working of Telescopes

Q) A telescope has an objective focal length of 100 cm and an eyepiece focal length of 1 cm. What is its magnifying power?

Using the formula:

$$m = \frac{fo}{fe}$$

$$m$$
= $\frac{100}{1}$

Answer: The telescope magnifies the object 100 times.

- How the objective and eyepiece function.
- Magnifying power and its formula.
- Example calculation for magnifying power.

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Terrestrial vs Astronomical Telescopes

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Terrestrial vs Astronomical Telescopes

- Terrestrial Telescopes
- Purpose:
- Used for viewing objects on Earth.
- Ideal for terrestrial observations like landscapes or ships at sea.

***** Key Feature:

Inverting Lenses:

Additional lenses correct the image orientation, making the final image erect.

Applications:

Navigation, surveillance, and nature observation.

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Terrestrial vs Astronomical Telescopes

> Terrestrial Telescopes

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Terrestrial vs Astronomical Telescopes

- Astronomical Telescopes
- Purpose:
- Designed for observing celestial objects like stars, planets and galaxies..
- ***** Key Feature:
- Light-Gathering Power:

 Larger objective lenses or mirrors collect more light, allowing observation of faint objects.
- * Resolution:
- High resolving power distinguishes objects that appear very close together, revealing details in space.

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

Terrestrial vs Astronomical Telescopes

> Astronomical Telescopes

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

<u>Terrestrial vs Astronomical Telescopes</u>

Feature	Terrestrial Telescopes	Astronomical Telescopes
Objective Size	Smaller objectives suitable for Earth-based viewing.	Larger objectives to gather more light for faint celestial objects.
Image Orientation	Produces erect images using additional lenses or prisms.	Produces inverted images; orientation doesn't matter for astronomy.
Primary Use	Observing landscapes, wildlife, and other Earthbased objects.	Observing distant stars, galaxies, and other celestial phenomena.
Light-Gathering Ability	Focused on providing a wide field of view for closer objects.	Maximizes light collection to observe faint and distant objects.
Special Features	Includes features for natural orientation and ease of terrestrial use.	Optimized for high resolution and light capture, often digitally corrected.

- TerrestrialTelescopes
- Astronomical Telescopes
- Light-Gathering & Resolving Power

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

<u>Limitations of Refracting Telescopes</u>

Heavy and Expensive Lenses

Manufacturing and Cost:

Large refracting telescopes require high-quality, expensive lenses. The larger the lens, the higher the cost and difficulty in manufacturing.

Weight Issues:

Larger lenses are heavier and require stronger support structures, increasing cost and complexity.

Structural Challenges:

The precise mounting of large lenses adds engineering challenges, raising the overall telescope cost.

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

<u>Limitations of Refracting Telescopes</u>

- Chromatic Aberration
- Color Distortion:
 - Chromatic aberration causes light of different wavelengths to focus at different points, resulting in blurry images with color fringes, especially on bright objects.
- Impact on Image Quality:

It reduces clarity, making fine details difficult to discern, particularly with stars and planets.

Solution in Refracting Telescopes:

Special coatings or compound lenses help reduce chromatic aberration but cannot completely eliminate it.

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

<u>Limitations of Refracting Telescopes</u>

Chromatic Aberration

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

<u>Limitations of Refracting Telescopes</u>

- Mechanical Challenges
- Structural Support for Heavy Lenses:

Large refracting telescopes need strong support to prevent lens flexing, which distorts the image.

Deformation and Flexing:

The lens can bend under its weight, causing alignment issues.

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

<u>Limitations of Refracting Telescopes</u>

- Mechanical Challenges
- Solution in Engineering Challenges:

A precise mounting system is needed to keep the lens stable, adding complexity and cost.

Transition to Reflecting Telescopes:

A precise mounting system is needed to keep the lens stable, adding complexity and cost.

- Issues with Large Lenses
- ChromaticAberration
- Switch to Reflecting Telescopes

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

- Why Reflecting Telescopes?
- Introduction:

Reflecting telescopes use mirrors instead of lenses to gather ar focus light.

- **Advantages Over Refracting Telescopes:**
- No Chromatic Aberration: Mirrors reflect all wavelengths equally.
- Larger Size Possible: Mirrors are lighter and easier to support than large lenses.
- Lower Cost: Easier to manufacture large mirrors compared to large lenses.
- Durability: Mirrors don't bend under their own weight like lenses.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

- How Reflecting Telescopes Work
- Key Components:

Primary Mirror: Large, concave mirror that gathers and focuses light.

Secondary Mirror: Smaller mirror redirects light to the eyepiece or detector.

Light Path:

- Light enters the telescope and strikes the primary mirror.
- The mirror focuses light onto the secondary mirror.
- The secondary mirror directs the light to the eyepiece or camera for observation.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

- > How Reflecting Telescopes Work
- Advantages of Mirrors:

Reflect light without distortion.

Easy to shape and polish for precision.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

- Cassegrain Telescope
- How It Works:
- A type of reflecting telescope.
- Uses a parabolic primary mirror and a hyperbolic secondary mirror.
- Light is reflected back through a hole in the primary mirror to the eyepiece.

- ***** Benefits of Cassegrain Design:
- Compact Size: Long focal length in a shorter tube.
- Ideal for both astronomical and terrestrial use.
- Popular in amateur and professional astronomy.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

Cassegrain Telescope

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

- Cassegrain Telescope
- How It Works:
- A type of reflecting telescope.
- Uses a parabolic primary mirror and a hyperbolic secondary mirror.
- Light is reflected back through a hole in the primary mirror to the eyepiece.

- ***** Benefits of Cassegrain Design:
- Compact Size: Long focal length in a shorter tube.
- Ideal for both astronomical and terrestrial use.
- Popular in amateur and professional astronomy.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Reflecting Telescopes & Examples

Notable Reflecting Telescopes

Vainu Bappu Observatory (Kavalur, India):

- Houses a 2.3-meter reflecting telescope.
- Used for studying stars, galaxies, and comets.

Keck Observatory (Hawaii, USA):

- Features twin 10-meter reflecting telescopes.
- Among the largest optical telescopes in the world.

- Why Reflecting Telescopes?
- CassegrainTelescope
- NotableTelescopes

Thank You

Hubble Space Telescope Over the Earth

- •A device designed to magnify distant objects.
- •Widely used in **astronomy** to study celestial objects and in **terrestrial** observations.