Nome:	Número:	

LEIC/LERC-2008/09

Primeiro Exame de Sistemas Operativos

20 de Janeiro de 2009

Duração: 2h30m

Identifique o cabeçalho de todas as folhas da prova.

O exame é resolvido no espaço dedicado ao efeito após cada pergunta.

O número de linhas reservado para o efeito não pode ser excedido, havendo lugar a uma penalização para quem responder num número de linhas superior.

Em caso de engano, poderá usar em alternativa o espaço da última página para responder à questão, devendo indicá-lo claramente, e respeitar o limite de linhas da questão.

Nas perguntas de escolha múltipla, cada resposta errada desconta ¼ da cotação.

Grupo I [3 valores]

```
int contador = 1;

fx () {
    monitor_enter();
    contador = contador --;
    while (contador < 0) monitor_wait();
    monitor_exit ();
    }

fy ()) {
    monitor_enter();
    contador = contador ++;
    if (contador <= 0) monitor_signal();
    monitor_exit ();
    }
}</pre>
```

- 1. Considere que as funções monitor_enter, monitor_exit, monitor_signal e monitor_wait têm o mesmo significado que as funções definidas no enunciado do trabalho e são semanticamente semelhantes às existentes no CLI da Microsoft.
 - 1.1.[0,7 val.] Explique o funcionamento da função fx tendo particular atenção à sincronização.

1.2. [0,7 val.] Explique o funcionamento da função fy tendo particular atenção à sincronização.

2.	[0,8 val.] A variável contador é partilhada e como tal tem de ser modificada dentro de uma secção crítica. Explique porquê. Dê um exemplo com base neste programa onde a não existência de uma secção crítica poderia originar um erro.					
3.	[0,8 val.] Quando a tarefa é desbloqueada, está outra tarefa a executar o monitor. Como é resolvida a exclusão mútua nessa situação?					
	Grupo II [4 valores]					
	. [0,7 val.] A inibição das interrupções é uma forma de implementar uma secção crítica.					
1.	[0,7 val.] A inibição das interrupções é uma forma de implementar uma secção crítica. Esta solução funciona num multi-processador? Justifique a resposta.					
1.						
1.						
1.						
1.						
	Esta solução funciona num multi-processador? Justifique a resposta. [0,6 val.] Qual das seguintes afirmações é verdadeira em relação à utilização de					
	Esta solução funciona num multi-processador? Justifique a resposta. [0,6 val.] Qual das seguintes afirmações é verdadeira em relação à utilização de interrupções de software para implementar as chamadas sistema. □ As interrupções de <i>software</i> tem um vector que permite agulhar para funções do núcleo mas obrigam a outra instrução para mudar o modo de protecção do					
	Esta solução funciona num multi-processador? Justifique a resposta. [0,6 val.] Qual das seguintes afirmações é verdadeira em relação à utilização de interrupções de software para implementar as chamadas sistema. □ As interrupções de <i>software</i> tem um vector que permite agulhar para funções do núcleo mas obrigam a outra instrução para mudar o modo de protecção do processador. □ As interrupções de <i>software</i> mudam automaticamente o modo de protecção mas não conseguem indicar qual a função sistema a executar o que obriga a utilizar					

3. Suponha que num sistema operativo estão a correr 3 processos. O **processo P1** é CPU-intensivo (não executa operações de E/S).

O processo P2 executa o seguinte código:

E o **processo P3** o seguinte código:

Os processos têm as seguintes características:

Processo	Prioridade Base	Instante do início da execução	Tempo total de CPU que o processo irá consumir na sua execução							
P1	10	0	6							
P2	11	3	4							
Р3	9	4	4							

3.1. [2 val.] Suponha que o algoritmo de escalonamento utilizado é **preemptivo**, **com prioridades dinâmicas** (em que um valor numérico de prioridade mais elevado corresponde a um processo mais prioritário). A prioridade de um processo começa por ser a sua prioridade base, e periodicamente ao fim de 4 *quantums* (nos *quantum* 4, 8, 12, etc.), o escalonador calcula a prioridade dos processos através da seguinte fórmula:

prioridade = prioridade - (int) (Número de time slices usados no intervalo/2 + 0,5)

Se vários processos tiverem igual prioridade, o escalonador escolhe o que não é executado há mais tempo ou o que ainda não se executou.

Preencha a seguinte tabela, indicando, para cada instante de tempo, qual o estado de cada processo do sistema, e a respectiva prioridade no início do quantum. (considere que o escalonador se executa no final do quantum 3 e antes do quantum 4)

Use a seguinte notação: Letra \mathbf{E} – Em execução. Letra \mathbf{B} – Bloqueado. Letra \mathbf{V} – Executável. Entrada em branco – processo não está activo no sistema (não iniciou ou já terminou).

Note que, na solução correcta, não é necessário utilizar mais espaço do que o fornecido.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P 1	E / 10														
P2 P3															
3															
	Co: e q	semell ntudo jue va	ha-se o no U ntage	ao ut nix a ns vê	ilizad formu do po	o por ıla nã onto d	vário o é ex	os sis actam a do e	temas iente (oper esta. I	ativos ndiqu	s, em le qua	parti is são	cular as di	o Uni erença stranc
						Gru	po II	I [4 v	alore	es]					
	Consid	ere u	m sist	ema c	om u	m end	lereça	mente	o virtu	ıal de	31 bit	s e pá	ginas	de 4k	bytes
	1.2. [0, dir	5 val nensã	① Adı ío máz	mita o	que ca	ada e	U [ntrada e págir	a na t	tabela	de p		s ocu	pa 64	bits.	Qual
	□ 512	Kbyt	es.												
	□ 4 M	Ibytes	S.												
	□ 32 1	Mbyte	es.												
	□ 128	Mbyt	es.												
	12 [0	5 val.	l Indi	ane o	cálcu	lo efe	ctuado).							
	1.5.10.														
	1.3. [0,	0 1111													
	1.3. [0,		,												
	1.3. [0,														

Número:	

2. Considere o mesmo sistema com um endereçamento virtual de 31 bits e páginas de 4k bytes e a seguinte tabela de páginas em que Idade tem o significado habitual de tempo desde o último acesso e Carregada indica o tempo de permanência em memória.

Página	Presente	Protecção	Idade	Carregada	Base
0	0	RW	0		0x00001
1	1	R	2	100	0x00001
2	0	R	0		0x00001
3	1	RW	1	200	0x00002
4	1	RW	0		0x00000
5	0	E	0	50	0x00000

Considere os seguintes acessos à memória tendo como base esta tabela de páginas. Indique qual o resultado do endereçamento, especificando:

- o endereço real, em caso de sucesso;
- se ocorreu violação da protecção;
- se ocorreu falta de página.
- 2.1. [0,2 val.] Qual é o resultado do endereçamento? Acesso em leitura a 0x0001124
- 2.2. [0,2 val.] Qual é o resultado do endereçamento? Acesso em escrita a 0x0001124
- 2.3. [0,2 val.] Qual é o resultado do endereçamento? Acesso para leitura da instrução a 0x00005421
- 2.4. [0,2 val.] Qual é o resultado do endereçamento? Acesso em escrita a 0x00005124
- 2.5. [0,2 val.] Qual é o resultado do endereçamento? Acesso em escrita a 0x00004421

J	Recentemente) no qual as páginas são organizadas em 4 grupos, consoante os bits R (página referenciada) e M (página modificada).
	3.1. [0,5 val.] Na escolha das páginas a seleccionar, a algoritmo NRU dá prioridade a páginas com o bit M=0. Explique porquê essa é uma boa opção.
	3.2. [0,5 val.] Explique em que circunstâncias é que uma página pode estar no estado R=0, M=1 (Não referenciada, modificada).

3. Considere o algoritmo de substituição de páginas denominado NRU (Não Usada

Grupo IV [4 valores]

1. Considere uma partição organizada da seguinte forma, montada na raiz ("/") do sistema de ficheiros de uma máquina.

Super Bloco	Mapa de Blocos	Mapa de Inodes Livres	Tabela de Inodes	Blocos de Dados
	Livres			

Assuma que **não há qualquer mecanismo de caching activo** e que o **conteúdo do directório** "/" **ocupa menos que a dimensão de um bloco**.

Um processo chamou a função sistema abre ("/so.txt", READ_ONLY), que retornou com sucesso. Desde o início da execução da chamada a abre até ser finalmente obtido o inode do ficheiro "/so.txt", ocorrem uma ou mais leituras às componentes "Tabela de Inodes" e "Blocos de Dados" da partição.

1.1. [1,5 val.] Enumere a história dessas leituras (no máximo de 5), indicando para cada uma: (1) a componente acedida (tab. de inodes ou blocos de dados) e (2) como se determinou a posição (número de inode ou número de bloco) a ler dessa componente.

Número:	

A primeira leitura é dada como exemplo.

	Componente acedida (Tab. Inodes ou Blocos de Dados)	Inode/Bloco lido	Como se determinou número de inode/número de bloco a ler
1.	Tabela de inodes	Inode do directório "/"	Número de inode de "/" é uma constante pré-conhecida
2.			
3.			
4.			
5.			

1.2. [1 val.] Cada leitura do exercício anterior é feita directamente sobre a partição em disco. Se se usassem *caches*, algumas das leituras descritas anteriormente poderiam ser imediatamente servidas a partir da memória primária (em caso de *hit*).

Para cada *cache* apresentada a seguir, indique quais as leituras a partir da partição que indicou na alínea anterior (escolhidas de entre 1 e 5) que essa *cache* poderia evitar (em caso de *hit*).

Considere cada *cache* separadamente. Isto é, se duas *caches* puderem evitar a mesma leitura, indique essa leitura na resposta de ambas.

Cache de blocos

Cache de i-nodes

2. [1,5 val.] Considere a seguinte sequência de acontecimentos, em que 2 processos P1 e P2 acedem aos ficheiros indicados na ordem indicada:

```
P1: f = open ("/users/cnr/dir/f1"); read (f, buf, 50);
P2: g = open ("/users/cnr/dir/f1"); read (g, buf, 100);
P2: h = open ("/tmp/tempfile");
P1: p = fork(); /* cria um processo filho P3 */
P1: read (f, buf, 150);
P2: read (f, buf, 200);
```

Represente graficamente as tabelas de <i>file descriptors</i> por processo, a tabela de ficheiros abertos global do sistema e a tabela de descritores de ficheiros (<i>inodes</i>) após a sequência de acontecimentos anterior.
Inclua o valor dos índices que indicam a posição (i.e. os cursores).

Número:	

Grupo V [4 valores]

1. Escreva em pseudo-código as partes que faltam de um programa servidor que receba pedidos por *sockets stream* e responda a esses pedidos. Cada pedido consiste numa *string* (e.g. "terceira", max 256 caracteres) e a resposta é a concatenação da *string* enviada no pedido com todas as *strings* enviadas anteriormente (e.g. "primeirasegundaterceira") até um máximo de 10000 caracteres. Seja o mais preciso possível nas chamadas sistema.

Início do programa

```
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>

#define SERV_ADDR "/tmp/server.socket"
#define MAX_TEXT 10000
#define MAX_MSG 256

main() {
   struct sockaddr_un addr;
   int sock, clisock, addr_size, readbytes, cur = 0;
   char text[MAX_TEXT];
   char buf[MAX_MSG+1];
   text[0] = '\0';
   memset(text, 0, MAX_TEXT);
   sock = socket(AF_UNIX, SOCK_STREAM, 0);
```

1.1.[0,5 val.] O *socket* anteriormente criado não tem nome global, escreva em pseudo-código a atribuição de um nome ao *socket*.

1.2. [0,5 val.] Para que o *socket* aceite ligações, o que é necessário? Escreva em pseudocódigo.

1.3. [2 val.] Programe o ciclo principal do servidor.	
Considere dois processos numa máquina Linux que cooperam modific concorrentemente uma matriz de 1000x1000 inteiros. Cada actualização dos valor matriz é calculada com base em valores pré-existentes na matriz. 2.1. [0,5 val.] Qual o mecanismo de comunicação entre processos que dever	es da á ser
utilizado para que ambos os processos tenham acesso à versão actualizad matriz? Justifique a sua escolha.	da da
•	

	2.2.[0,5 val.] Descreva sucintamente como se processa a comunicação entre os dois
	processos. Caso tenha recorrido a outros mecanismos do sistema operativo, refira- os.
	05.
	Grupo VI [1,5 valores]
1.	[0,5 val.] Quais são as vantagens da utilização de IORB no modelo de Entradas/Saídas?
2.	[0,5 val.] Descreva sucintamente os passos que um utilizador deve efectuar para inserir dinamicamente um periférico do tipo carácter num sistema Linux.

Número: