### SPORTS PREDICTION (FIFA 19):

#### TEAM:

```
ABISHEK ROY BJ
                 CB.EN.U4CSE20003
 ADITYA KRISHNA V CB.EN.U4CSE20004
 RAM GOPAL V
                 CB.EN.U4CSE20053
 SAI KRISHNAN R
                 CB.EN.U4CSE20056
 SHRI PRANAV S
                CB.EN.U4CSE20061
import numpy as np
import pandas as pd
import warnings
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('fivethirtyeight')
from sklearn import metrics
def Test(y test,predictions,dframe):
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, predictions))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, predictions))
   print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, predictic
    print('R Square Error:', metrics.r2_score(y_test, predictions))
   graph = dframe.head(10)
    graph.plot(kind='bar')
   plt.title('Actual VS Prediction')
   plt.ylabel('Opening Value')
   fig = plt.figure()
   plt.plot(dframe.index,dframe["Actual"],color="red",label="Actual")
   plt.plot(dframe.index,dframe["Predicted"] ,color="blue", label="Predicted")
   plt.xlabel("Actual, Predicted")
   plt.ylabel("X")
   plt.legend()
    plt.title("Actual VS Prediction")
   plt.show()
data = pd.read_csv('/content/sample_data/data.csv')
print(data.shape)
```

(18207, 89)

data.head()

| U | nnamed:<br>0 | ID     | Name                 | Age | Photo                                          | Nationali <sup>†</sup> |
|---|--------------|--------|----------------------|-----|------------------------------------------------|------------------------|
|   | 0            | 158023 | L. Messi             | 31  | https://cdn.sofifa.org/players/4/19/158023.png | Argentir               |
|   | 1            | 20801  | Cristiano<br>Ronaldo | 33  | https://cdn.sofifa.org/players/4/19/20801.png  | Portug                 |
|   | 2            | 190871 | Neymar<br>Jr         | 26  | https://cdn.sofifa.org/players/4/19/190871.png | Bra                    |
|   | 3            | 193080 | De Gea               | 27  | https://cdn.sofifa.org/players/4/19/193080.png | Spa                    |
|   | 4            | 192985 | K. De<br>Bruyne      | 27  | https://cdn.sofifa.org/players/4/19/192985.png | Belgiu                 |

5 rows × 89 columns



```
def country(x):
    return data[data['Nationality'] == x][['Name','Overall','Potential','Position']]
country('India')
```

|       | Name            | Overall | Potential | Position |
|-------|-----------------|---------|-----------|----------|
| 8605  | S. Chhetri      | 67      | 67        | LS       |
| 10011 | S. Jhingan      | 65      | 71        | RCB      |
| 12598 | J. Lalpekhlua   | 63      | 64        | RS       |
| 12811 | G. Singh Sandhu | 63      | 68        | GK       |
| 13508 | A. Edathodika   | 62      | 62        | LCB      |
| 14054 | P. Halder       | 61      | 67        | RCM      |
| 14199 | P. Kotal        | 61      | 66        | RB       |
| 14218 | L. Ralte        | 61      | 62        | LW       |
| 14705 | N. Das          | 60      | 65        | LB       |
| 14786 | U. Singh        | 60      | 67        | RM       |
| 14915 | H. Narzary      | 60      | 66        | LM       |
| 15356 | R. Singh        | 59      | 59        | ST       |
| 15643 | S. Singh        | 59      | 65        | СВ       |
| 15652 | A. Thapa        | 59      | 71        | LCM      |
| 15855 | M. Rafique      | 58      | 61        | CM       |
| 15864 | A. Singh        | 58      | 62        | GK       |

def club(x):

club('Real Madrid')

data.describe()

|                                          | Name               | Jersey<br>Number | Position | Overall | Nationality | Age | Wage   | Value  | • |
|------------------------------------------|--------------------|------------------|----------|---------|-------------|-----|--------|--------|---|
| 6                                        | L. Modrić          | 10.0             | RCM      | 91      | Croatia     | 32  | €420K  | €67M   |   |
| 8                                        | Sergio<br>Ramos    | 15.0             | RCB      | 91      | Spain       | 32  | €380K  | €51M   |   |
| 11                                       | T. Kroos           | 8.0              | LCM      | 90      | Germany     | 28  | €355K  | €76.5M |   |
| 19                                       | T. Courtois        | 1.0              | GK       | 89      | Belgium     | 26  | €240K  | €53.5M |   |
| 27                                       | Casemiro           | 14.0             | CDM      | 88      | Brazil      | 26  | €285K  | €59.5M |   |
| 30                                       | Isco               | 22.0             | LW       | 88      | Spain       | 26  | €315K  | €73.5M |   |
| 35                                       | Marcelo            | 12.0             | LB       | 88      | Brazil      | 30  | €285K  | €43M   |   |
| 36                                       | G. Bale            | 11.0             | ST       | 88      | Wales       | 28  | €355K  | €60M   |   |
| 46                                       | K. Navas           | 1.0              | GK       | 87      | Costa Rica  | 31  | €195K  | €30.5M |   |
| 62                                       | R. Varane          | 4.0              | RCB      | 86      | France      | 25  | €210K  | €50M   |   |
| 79                                       | Marco<br>Asensio   | 10.0             | RW       | 85      | Spain       | 22  | €215K  | €54M   |   |
| 105                                      | K. Benzema         | 9.0              | ST       | 85      | France      | 30  | €240K  | €37M   |   |
| 123                                      | Carvajal           | 2.0              | RB       | 84      | Spain       | 26  | €185K  | €31.5M |   |
| 172                                      | Lucas<br>Vázquez   | 17.0             | RW       | 83      | Spain       | 27  | €205K  | €27M   |   |
| 188                                      | Nacho<br>Fernández | 12.0             | СВ       | 83      | Spain       | 28  | €180K  | €24.5M |   |
| 328                                      | Dani<br>Ceballos   | 21.0             | LCM      | 81      | Spain       | 21  | €120K  | €25M   |   |
| 417                                      | Odriozola          | 19.0             | RB       | 80      | Spain       | 22  | €115K  | €18.5M |   |
| <pre>x = club('Re<br/>x.shape #Rx0</pre> |                    |                  |          |         |             |     |        |        |   |
| (33, 9)                                  | )                  |                  |          |         |             |     |        |        |   |
| 227                                      | 121 0 11           | 40.0             | 01/      | 70      | •           | 04  | C40EI/ | C7 514 |   |

https://colab.research.google.com/drive/10azt9m4VvuTaAlm4VH68Y5OqB4Z9ZE2T#scrollTo=bK49wUxugstU&printMode=true

C

|       | Unnamed: 0   | ID            | Age          | 0verall      | Potential    | Spe      |
|-------|--------------|---------------|--------------|--------------|--------------|----------|
| count | 18207.000000 | 18207.000000  | 18207.000000 | 18207.000000 | 18207.000000 | 18207.00 |
| mean  | 9103.000000  | 214298.338606 | 25.122206    | 66.238699    | 71.307299    | 1597.80  |
| std   | 5256.052511  | 29965.244204  | 4.669943     | 6.908930     | 6.136496     | 272.58   |
| min   | 0.000000     | 16.000000     | 16.000000    | 46.000000    | 48.000000    | 731.00   |

# checking if the data contains any NULL value

```
data.isnull().sum()
```

| Unnamed: 0         | 0    |
|--------------------|------|
| ID                 | 0    |
| Name               | 0    |
| Age                | 0    |
| Photo              | 0    |
|                    |      |
| GKHandling         | 48   |
| GKKicking          | 48   |
| GKPositioning      | 48   |
| GKReflexes         | 48   |
| Release Clause     | 1564 |
| Length: 89, dtype: | int6 |
|                    |      |

## ▼ Data Cleaning

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset

```
missing_values={}
for i,col in enumerate(data.columns):
    nb_missing=data[col].isnull().sum()
    if nb_missing >0:
        missing_values[i]=[col,nb_missing]

f, ax = plt.subplots(figsize=(6, 15))
data_missing=pd.DataFrame.from_dict(missing_values,orient='index',columns=['Feature','Misssns.barplot(data=data_missing,x='Missing values',y='Feature',color='b')
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fcf0abaa610>



# filling the missing value for the continous variables for proper data visualization

```
data['ShortPassing'].fillna(data['ShortPassing'].mean(), inplace = True)
data['Volleys'].fillna(data['Volleys'].mean(), inplace = True)
data['Dribbling'].fillna(data['Dribbling'].mean(), inplace = True)
data['Curve'].fillna(data['Curve'].mean(), inplace = True)
data['FKAccuracy'].fillna(data['FKAccuracy'], inplace = True)
data['LongPassing'].fillna(data['LongPassing'].mean(), inplace = True)
data['BallControl'].fillna(data['BallControl'].mean(), inplace = True)
data['HeadingAccuracy'].fillna(data['HeadingAccuracy'].mean(), inplace = True)
data['Finishing'].fillna(data['Finishing'].mean(), inplace = True)
data['Weight'].fillna('2001bs', inplace = True)
data['Contract Valid Until'].fillna(2019, inplace = True)
```

```
data['Height'].fillna("5'11", inplace = True)
data['Loaned From'].fillna('None', inplace = True)
data['Joined'].fillna('Jul 1, 2018', inplace = True)
data['Jersey Number'].fillna(8, inplace = True)
data['Body Type'].fillna('Normal', inplace = True)
data['Position'].fillna('ST', inplace = True)
data['Club'].fillna('No Club', inplace = True)
data['Work Rate'].fillna('Medium/ Medium', inplace = True)
data['Skill Moves'].fillna(data['Skill Moves'].median(), inplace = True)
data['Weak Foot'].fillna(3, inplace = True)
data['Preferred Foot'].fillna('Right', inplace = True)
data['International Reputation'].fillna(1, inplace = True)
data['Wage'].fillna('€200K', inplace = True)
```

data.fillna(0, inplace = True)

exploratory data analysis

data.describe()

|       | Unnamed: 0   | ID            | Age          | Overall      | Potential    | Spe      |
|-------|--------------|---------------|--------------|--------------|--------------|----------|
| count | 18207.000000 | 18207.000000  | 18207.000000 | 18207.000000 | 18207.000000 | 18207.00 |
| mean  | 9103.000000  | 214298.338606 | 25.122206    | 66.238699    | 71.307299    | 1597.80  |
| std   | 5256.052511  | 29965.244204  | 4.669943     | 6.908930     | 6.136496     | 272.58   |
| min   | 0.000000     | 16.000000     | 16.000000    | 46.000000    | 48.000000    | 731.00   |
| 25%   | 4551.500000  | 200315.500000 | 21.000000    | 62.000000    | 67.000000    | 1457.00  |
| 50%   | 9103.000000  | 221759.000000 | 25.000000    | 66.000000    | 71.000000    | 1635.00  |
| 75%   | 13654.500000 | 236529.500000 | 28.000000    | 71.000000    | 75.000000    | 1787.00  |
| max   | 18206.000000 | 246620.000000 | 45.000000    | 94.000000    | 95.000000    | 2346.00  |

8 rows × 44 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18207 entries, 0 to 18206
Data columns (total 89 columns):

| # | Column      | Non-Null Count | Dtype  |
|---|-------------|----------------|--------|
|   |             |                |        |
| 0 | Unnamed: 0  | 18207 non-null | int64  |
| 1 | ID          | 18207 non-null | int64  |
| 2 | Name        | 18207 non-null | object |
| 3 | Age         | 18207 non-null | int64  |
| 4 | Photo       | 18207 non-null | object |
| 5 | Nationality | 18207 non-null | object |

```
18207 non-null object
         Flag
     7
         Overall
                                   18207 non-null int64
     8
         Potential
                                   18207 non-null int64
     9
         Club
                                  18207 non-null object
     10 Club Logo
                                  18207 non-null object
     11 Value
                                   18207 non-null object
     12 Wage
                                  18207 non-null object
     13
         Special
                                  18207 non-null int64
     14 Preferred Foot
                                   18207 non-null object
     15
         International Reputation 18207 non-null float64
                                  18207 non-null float64
     16 Weak Foot
     17 Skill Moves
                                   18207 non-null float64
     18 Work Rate
                                  18207 non-null object
     19
         Body Type
                                  18207 non-null object
     20 Real Face
                                  18207 non-null object
      21 Position
                                  18207 non-null object
     22 Jersey Number
                                 18207 non-null float64
     23 Joined
                                  18207 non-null object
      24 Loaned From
                                  18207 non-null object
     25 Contract Valid Until
                                  18207 non-null object
     26 Height
                                  18207 non-null object
     27 Weight
                                   18207 non-null object
     28 LS
                                   18207 non-null object
     29 ST
                                   18207 non-null object
      30 RS
                                   18207 non-null object
     31 LW
                                   18207 non-null object
     32 LF
                                   18207 non-null object
     33 CF
                                   18207 non-null object
      34 RF
                                   18207 non-null object
     35 RW
                                   18207 non-null object
      36
         LAM
                                   18207 non-null object
         CAM
     37
                                   18207 non-null object
     38
         RAM
                                   18207 non-null object
     39
                                   18207 non-null object
         LM
     40 LCM
                                   18207 non-null object
     41 CM
                                   18207 non-null object
     42 RCM
                                   18207 non-null object
     43
         RM
                                   18207 non-null object
     44 LWB
                                   18207 non-null object
     45
         LDM
                                   18207 non-null object
     46 CDM
                                   18207 non-null object
     47
         RDM
                                   18207 non-null object
     48 RWB
                                   18207 non-null object
     49
         LB
                                   18207 non-null object
     50 LCB
                                   18207 non-null
                                                  object
     51
         CB
                                   18207 non-null
                                                  object
     52 RCB
                                   18207 non-null
                                                  object
data.duplicated().sum()
    0
```

```
print(len(data['Age'].unique()))
print(len(data['Name'].unique()))
print(len(data['Nationality'].unique()))
```

12/11/22, 4:04 PM

17194 164

data.corr()

|                             | Unnamed:  | ID        | Age       | 0verall   | Potential | Special   | Inte<br>R |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Unnamed: 0                  | 1.000000  | 0.415757  | -0.454846 | -0.972791 | -0.633395 | -0.596508 |           |
| ID                          | 0.415757  | 1.000000  | -0.739208 | -0.417025 | 0.047074  | -0.231352 |           |
| Age                         | -0.454846 | -0.739208 | 1.000000  | 0.452350  | -0.253312 | 0.236695  |           |
| Overall                     | -0.972791 | -0.417025 | 0.452350  | 1.000000  | 0.660939  | 0.606960  |           |
| Potential                   | -0.633395 | 0.047074  | -0.253312 | 0.660939  | 1.000000  | 0.383727  |           |
| Special                     | -0.596508 | -0.231352 | 0.236695  | 0.606960  | 0.383727  | 1.000000  |           |
| International<br>Reputation | -0.413535 | -0.355900 | 0.253457  | 0.499654  | 0.372887  | 0.292186  |           |
| Weak Foot                   | -0.203689 | -0.075642 | 0.059790  | 0.211779  | 0.161922  | 0.341720  |           |
| Skill Moves                 | -0.416201 | -0.057126 | 0.027641  | 0.414906  | 0.354516  | 0.763113  |           |
| Jersey Number               | 0.211294  | 0.181202  | -0.240711 | -0.216928 | -0.008466 | -0.133015 |           |
| Crossing                    | -0.389740 | -0.131834 | 0.130391  | 0.394776  | 0.245911  | 0.866151  |           |
| Finishing                   | -0.325260 | -0.082223 | 0.068578  | 0.332349  | 0.242952  | 0.724021  |           |
| HeadingAccuracy             | -0.337486 | -0.106685 | 0.147009  | 0.340606  | 0.200655  | 0.644223  |           |
| ShortPassing                | -0.492088 | -0.136114 | 0.132737  | 0.502300  | 0.368578  | 0.906451  |           |
| Volleys                     | -0.383968 | -0.159721 | 0.142304  | 0.391143  | 0.254484  | 0.773737  |           |
| Dribbling                   | -0.363805 | -0.030303 | 0.010154  | 0.372241  | 0.314497  | 0.874006  |           |

plt.figure(figsize=(20,20))
sns.heatmap(data.corr())





### ▼ Data Visualization

```
d1 =data.head(500)
sns.lineplot(x='Overall', y='Club',data=d1)
plt.show()
```



```
# comparison of preferred foot over the different players
warnings.filterwarnings('ignore')
plt.rcParams['figure.figsize'] = (10, 5)
sns.countplot(data['Preferred Foot'], palette = 'pink')
plt.title('Most Preferred Foot of the Players', fontsize = 20)
plt.show()
```



# plotting a pie chart to represent share of international repuatation

```
labels = ['1', '2', '3', '4', '5']
sizes = data['International Reputation'].value_counts()
colors = plt.cm.copper(np.linspace(0, 1, 5))
explode = [0.1, 0.1, 0.2, 0.5, 0.9]

plt.rcParams['figure.figsize'] = (9, 9)
plt.pie(sizes, labels = labels, colors = colors, explode = explode, shadow = True)
plt.title('International Repuatation for the Football Players', fontsize = 20)
plt.legend()
plt.show()
```



# plotting a pie chart to represent the share of week foot players

```
labels = ['5', '4', '3', '2', '1']
size = data['Weak Foot'].value_counts()
colors = plt.cm.Wistia(np.linspace(0, 1, 5))
explode = [0, 0, 0, 0, 0.1]

plt.pie(size, labels = labels, colors = colors, explode = explode, shadow = True, startang
plt.title('Distribution of Weak Foot among Players', fontsize = 25)
plt.legend()
plt.show()
```



```
# different positions acquired by the players
import warnings
warnings.filterwarnings('ignore')
```

```
plt.figure(figsize = (18, 8))
plt.style.use('fivethirtyeight')
ax = sns.countplot('Position', data = data, palette = 'bone')
ax.set_xlabel(xlabel = 'Different Positions in Football', fontsize = 16)
ax.set_ylabel(ylabel = 'Count of Players', fontsize = 16)
ax.set_title(label = 'Comparison of Positions and Players', fontsize = 20)
plt.show()
```

```
1200 Comparison of Positions and Players

1000 800
```

# defining a function for cleaning the Weight data def extract\_value\_from(value): out = value.replace('lbs', '') return float(out) # applying the function to weight column #data['value'] = data['value'].apply(lambda x: extract\_value\_from(x)) data['Weight'] = data['Weight'].apply(lambda x : extract\_value\_from(x)) data['Weight'].head() 0 159.0 1 183.0 2 150.0 3 168.0 4 154.0 Name: Weight, dtype: float64 # defining a function for cleaning the wage column def extract\_value\_from(Value): out = Value.replace('€', '') if 'M' in out: out = float(out.replace('M', ''))\*1000000 elif 'K' in Value: out = float(out.replace('K', ''))\*1000 return float(out) # applying the function to the wage column data['Value'] = data['Value'].apply(lambda x: extract\_value\_from(x)) data['Wage'] = data['Wage'].apply(lambda x: extract value from(x)) data['Wage'].head() 0 565000.0 1 405000.0 2 290000.0 3 260000.0 355000.0 Name: Wage, dtype: float64 # Comparing the players' Wages

import warnings

```
warnings.filterwarnings('ignore')
```

```
plt.rcParams['figure.figsize'] = (15, 5)
sns.distplot(data['Wage'], color = 'blue')
plt.xlabel('Wage Range for Players', fontsize = 16)
plt.ylabel('Count of the Players', fontsize = 16)
plt.title('Distribution of Wages of Players', fontsize = 20)
plt.xticks(rotation = 90)
plt.show()
```



```
plt.figure(figsize = (10, 8))
ax = sns.countplot(x = 'Skill Moves', data = data, palette = 'pastel')
ax.set_title(label = 'Count of players on Basis of their skill moves', fontsize = 20)
ax.set_xlabel(xlabel = 'Number of Skill Moves', fontsize = 16)
ax.set_ylabel(ylabel = 'Count', fontsize = 16)
plt.show()
```



```
plt.figure(figsize = (13, 8))
ax = sns.countplot(x = 'Height', data = data, palette = 'dark')
ax.set_title(label = 'Count of players on Basis of Height', fontsize = 20)
ax.set_xlabel(xlabel = 'Height in Foot per inch', fontsize = 16)
ax.set_ylabel(ylabel = 'Count', fontsize = 16)
plt.show()
```



```
plt.figure(figsize = (20, 5))
sns.distplot(data['Weight'], color = 'pink')
plt.title('Different Weights of the Players Participating in FIFA 2019', fontsize = 20)
plt.xlabel('Heights associated with the players', fontsize = 16)
plt.ylabel('count of Players', fontsize = 16)
plt.show()
```



```
plt.figure(figsize = (15, 7))
sns.countplot(x = 'Work Rate', data = data, palette = 'hls')
plt.title('Different work rates of the Players Participating in the FIFA 2019', fontsize = plt.xlabel('Work rates associated with the players', fontsize = 16)
plt.ylabel('count of Players', fontsize = 16)
plt.show()
```



```
x = data.Special
plt.figure(figsize = (12, 8))
plt.style.use('tableau-colorblind10')

ax = sns.distplot(x, bins = 58, kde = False, color = 'm')
ax.set_xlabel(xlabel = 'Special score range', fontsize = 16)
ax.set_ylabel(ylabel = 'Count of the Players',fontsize = 16)
ax.set_title(label = 'Histogram for the Speciality Scores of the Players', fontsize = 20)
plt.show()
```



# To show Different potential scores of the players participating in the FIFA 2019

x = data.Potential

```
plt.figure(figsize=(12,8))
plt.style.use('seaborn-paper')

ax = sns.distplot(x, bins = 58, kde = False, color = 'y')
ax.set_xlabel(xlabel = "Player\'s Potential Scores", fontsize = 16)
ax.set_ylabel(ylabel = 'Number of players', fontsize = 16)
ax.set_title(label = 'Histogram of players Potential Scores', fontsize = 20)
plt.show()
```



```
# To show Different overall scores of the players participating in the FIFA 2019
sns.set(style = "dark", palette = "deep", color_codes = True)
x = data.Overall
plt.figure(figsize = (12,8))
plt.style.use('ggplot')

ax = sns.distplot(x, bins = 52, kde = False, color = 'r')
ax.set_xlabel(xlabel = "Player\'s Scores", fontsize = 16)
ax.set_ylabel(ylabel = 'Number of players', fontsize = 16)
ax.set_title(label = 'Histogram of players Overall Scores', fontsize = 20)
plt.show()
```



### # To show Different nations participating in the FIFA 2019

```
plt.style.use('dark_background')
data['Nationality'].value_counts().head(80).plot.bar(color = 'orange', figsize = (20, 7))
plt.title('Different Nations Participating in FIFA 2019', fontsize = 30, fontweight = 20)
plt.xlabel('Name of The Country')
plt.ylabel('count')
plt.show()
```



# To visualize age of players

```
sns.set(style = "dark", palette = "colorblind", color_codes = True)
x = data.Age
plt.figure(figsize = (15,8))
ax = sns.distplot(x, bins = 58, kde = False, color = 'g')
ax.set_xlabel(xlabel = "Player\'s age", fontsize = 16)
ax.set_ylabel(ylabel = 'Number of players', fontsize = 16)
ax.set_title(label = 'Histogram of players age', fontsize = 20)
plt.show()
```



```
plt.rcParams['figure.figsize'] = (20, 7)
plt.style.use('seaborn-dark-palette')
```

sns.boxenplot(data['Overall'], data['Age'], hue = data['Preferred Foot'], palette = 'Greys
plt.title('Comparison of Overall Scores and age wrt Preferred foot', fontsize = 20)
plt.show()



Best Players per each position with their age, club, and nationality based on their Overall Scores

[ ] Ļ1 cell hidden

Best Players from each positions with their age, nationality, club based on their Potential Scores

[ ] L, 1 cell hidden

Countries with Most Players

[ ] L, 8 cells hidden

▶ 15 youngest Players from the FIFA 2019

[ ] L, 1 cell hidden

15 Eldest Players from FIFA 2019 [ ] L, 2 cells hidden Defining the features of players [ ] L 2 cells hidden Top 10 left footed footballers [ ] L, 1 cell hidden Top 10 Right footed footballers [ ] L, 2 cells hidden Clubs with highest number of different countries [ ] L, 1 cell hidden Clubs with lowest number of different countries [ ] L, 1 cell hidden Lets Create a Function to check the Player's Details def playerdata(x): return data.loc[x,:]

```
x = playerdata(0) #lionel messi, id = 0.
pd.set_option('display.max_rows', 200)
x = pd.DataFrame(x)
print(x)
     Unnamed: 0
     ID
                                                                          158023
     Name
                                                                       L. Messi
     Age
                                https://cdn.sofifa.org/players/4/19/158023.png
     Photo
     Nationality
                                                                      Argentina
                                           https://cdn.sofifa.org/flags/52.png
     Flag
     Overall
     Potential
                                                                             94
     Club
                                                                   FC Barcelona
```

| 4 PM                     | sports_prediction.ipynb - Colaboratory                  |
|--------------------------|---------------------------------------------------------|
| Club Logo                | <pre>https://cdn.sofifa.org/teams/2/light/241.png</pre> |
| Value                    | 110500000.0                                             |
| Wage                     | 565000.0                                                |
| Special                  | 2202                                                    |
| Preferred Foot           | Left                                                    |
| International Reputation | 5                                                       |
| Weak Foot                | 4                                                       |
| Skill Moves              | 4                                                       |
| Work Rate                | Medium/ Medium                                          |
| Body Type                | Messi                                                   |
| Real Face                | Yes                                                     |
| Position                 | RF                                                      |
| Jersey Number            | 10.0                                                    |
| Joined                   | Jul 1, 2004                                             |
| Loaned From              | NaN                                                     |
| Contract Valid Until     | 2021                                                    |
| Height                   | 5'7                                                     |
| Weight                   | 159.0                                                   |
| LS                       | 88+2                                                    |
| ST                       | 88+2                                                    |
| RS                       | 88+2                                                    |
| LW<br>LF                 | 92+2                                                    |
| CF                       | 93+2<br>93+2                                            |
| RF                       | 93+2                                                    |
| RW                       | 92+2                                                    |
| LAM                      | 93+2                                                    |
| CAM                      | 93+2                                                    |
| RAM                      | 93+2                                                    |
| LM                       | 91+2                                                    |
| LCM                      | 84+2                                                    |
| CM                       | 84+2                                                    |
| RCM                      | 84+2                                                    |
| RM                       | 91+2                                                    |
| LWB                      | 64+2                                                    |
| LDM                      | 61+2                                                    |
| CDM                      | 61+2                                                    |
| RDM                      | 61+2                                                    |
| RWB                      | 64+2                                                    |
| LB                       | 59+2                                                    |
| LCB                      | 47+2                                                    |
| СВ                       | 47+2                                                    |
| RCB                      | 47+2                                                    |
| RB                       | 59+2                                                    |
| Crossing                 | 84                                                      |
| Finishing                | 95                                                      |

# Correlation heatmap

[ ] L, 1 cell hidden

## ▼ Modelling

data = pd.read\_csv('/content/sample\_data/data.csv')

```
team = data.groupby('Club',as_index=False)['Overall','Potential','Crossing','Finishing','F
team.sort_values(by='Club', ascending=True, inplace=True)
team1 = team.sort_values(by='Club', ascending=False, inplace=False)
import numpy as np
col = [0]*100
ov1 = team['Overall'].head(100).values
ov2 = team1['Overall'].head(100).values
ovt1 = team['Overall'].values
ovt2 = team1['Overall'].values
col1 = [0]*100
for i in range(100):
   col1[i]=ovt1[i]-ovt2[i]
Y_{train1} = col1
for i in range(100):
    if ov1[i]>ov2[i]:
        col[i]=1
   else:
        col[i]=0
temp = pd.DataFrame({'Overall1': ov1, 'Overall2': ov2,'WinLoss': col}, columns=['Overall1'
X_train = temp[['Overall2','Overall1']].values
Y_train = temp['WinLoss']
print(X_train.shape)
print(Y_train[1])
     (100, 2)
Logistic Regression
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax.axis([np.min(X_train[:,0])-1., np.max(X_train[:,0])+1., np.min(X_train[:,1])-1., np.max
ax.set_xlabel('2nd half teams')
ax.set_ylabel('1st half teams')
pos = np.where(Y train.loc[:,0] == 1)[0] #storing in array if it satisfies Y train[:,0] ==
neg = np.where(Y_train.loc[:,0] == 0)[0] #storing in array if it satisfies y_train[:,0] ==
ax.plot(X_train[pos,0], X_train[pos,1], marker='.', color='#0F00FF', markersize=10, linest
ax.plot(X_train[neg,0], X_train[neg,1], marker='.', color='#FF00AE', markersize=10, linest
```

Y\_train=Y\_train[1]
ax.legend()

```
IndexingError
                                                Traceback (most recent call last)
     cinvthon-innut-60-22990d043800> in <module>
from sklearn.linear model import LogisticRegression
model = LogisticRegression(penalty='none', max_iter=500, solver='lbfgs')
model.fit(X_train, Y_train.values.flatten())
Y_pred = model.predict_proba(X_train)
print("Y_pred:",Y_pred)
      [ טעט+9טטטטטטט. ד טטט+9טטטטטטט 1. טטטטטטטטטט
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [1.00000000e+000 2.68958626e-047]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [9.99999942e-001 5.78720270e-008]
      [0.00000000e+000 1.0000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [0.00000000e+000 1.00000000e+000]
      [1.00000000e+000 0.00000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
      [0.00000000e+000 1.0000000e+000]
```

```
[1.00000000e+000 0.00000000e+000]
     [0.00000000e+000 1.0000000e+000]
     [0.00000000e+000 1.0000000e+000]
     [0.00000000e+000 1.0000000e+000]
     [1.00000000e+000 0.00000000e+000]
     [0.00000000e+000 1.0000000e+000]
     [1.00000000e+000 0.00000000e+000]
     [0.00000000e+000 1.0000000e+000]]
Y_pred_label = model.predict(X_train)
print("predicted label",Y_pred_label)
    predicted label [1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1
     1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='none', max_iter=500, solver='lbfgs')
model.fit(X_train, Y_train.values.flatten())
Y_pred = model.predict_proba(X_train)
print("Y pred:",Y pred)
from sklearn.metrics import log_loss
log_loss(Y_train, Y_pred)
    8.369562477367947e-10
from sklearn.metrics import accuracy score
accuracy_score(Y_train, Y_pred_label)
    1.0
team = data.groupby('Club',as_index=False)['Overall'].mean()
team
#label encoding
from sklearn import preprocessing
label encoder = preprocessing.LabelEncoder()
team['Club']= label encoder.fit transform(team['Club'])
team
```

|     | Club | 0verall   | 1 |
|-----|------|-----------|---|
| 0   | 0    | 65.586207 |   |
| 1   | 1    | 65.750000 |   |
| 2   | 2    | 63.384615 |   |
| 3   | 3    | 70.785714 |   |
| 4   | 4    | 65.615385 |   |
|     |      |           |   |
| 646 | 646  | 60.760000 |   |
| 647 | 647  | 66.900000 |   |
| 648 | 648  | 60.481481 |   |
| 649 | 649  | 63.545455 |   |
|     |      |           |   |

from sklearn.model\_selection import train\_test\_split

```
X_train, X_test, y_train, y_test = train_test_split(team, team.0verall, test_size=0.2)
y_train
```

```
475
      69.766667
460
      65.285714
      68.777778
213
264
      70.733333
625
      61.769231
232
      76.678571
440
      65.423077
327
      60.866667
424
      62.428571
527
      72.296296
```

Name: Overall, Length: 520, dtype: float64

```
lab = preprocessing.LabelEncoder()
y_transformed = lab.fit_transform(y_train)

lab = preprocessing.LabelEncoder()
y_transformed_test = lab.fit_transform(y_test)
```

### Logistic reg

team['Club']

```
0 0
1 1
2 2
3 3
4 4
```

```
646
    646
     647
           647
     648
           648
    649
           649
    650
           650
    Name: Club, Length: 651, dtype: int64
model = LogisticRegression(solver='liblinear', random_state=0)
model.fit(X train,y transformed)
     LogisticRegression(random_state=0, solver='liblinear')
model.predict(X_test)
     array([ 88, 145,
                      88, 88, 314, 145, 88, 88, 179, 314, 221, 314, 145,
                     88, 145, 314, 314, 88, 179, 145, 314, 314,
           145, 88,
                88, 179, 145, 109, 145, 314, 145, 88, 88, 88,
                                                                  88,
           314, 314, 88, 145,
                                88, 88, 88, 88,
                                                   88, 145, 314,
                                                                  88,
                                         88, 88, 145, 145, 314, 145, 145,
           145, 314,
                     88, 139, 179,
                                    88,
           314, 314, 109, 179, 88, 88, 314, 88, 88, 314, 179, 314, 145,
            88, 314, 88, 88, 225, 314, 145, 109, 314, 88, 88, 109,
           109, 145, 314, 314, 145,
                                     7, 145, 145, 314, 314,
                                                            88, 109,
            88, 88, 314, 88, 88, 88, 109, 145, 314, 109, 145, 314, 145,
           145,
                 88, 314, 314, 314, 88, 314, 109, 88, 314, 314,
                                                                 88.
```

## KNN

88])

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=7)
knn.fit(X_train, y_transformed)
# Predict on dataset which model has not seen before
print(knn.predict(X_test))
     [ 19 206 66 83
                      88 191 104 205 169 218 139 202
                                                      52 112
                                                              43 88 112 202
      278 101 165 56
                       8 24 46 211 172 317 149 122
                                                      16
                                                          52
                                                              77 142
                                                                     48
                                                                           6
      66 15 234 125
                      77 137 142 202 163 92 173 259 212
                                                          61
                                                              21
                                                                  76 186 135
      58 139 190 19 83 196
                              64
                                  52 222 145 251 236 304
                                                          80
                                                              20
                                                                  22
                                                                      74 135
      419 38 84
                 33 254 271
                              57
                                  24 256
                                          46 139 134
                                                          26 279
                                                                  15
                                                      74
                                                                      15
                                                                          26
          51 142 17 16 145
                              34 60 145 117
                                              61 135
                                                      26
                                                          30 104
                                                                  12
                                                                      24 241
                              11 132 251
      43 113
               7 112 202 16
                                         52 110
                                                 24
                                                      59
                                                          59
                                                             22
                                                                  31
                                                                      26
      211 195 47 57 206]
print(knn.score(X test, y transformed test))
     0.007633587786259542
```

## Decision Tree

!pip install scikit-plot

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/</a>
Requirement already satisfied: scikit-plot in /usr/local/lib/python3.8/dist-packages
Requirement already satisfied: matplotlib>=1.4.0 in /usr/local/lib/python3.8/dist-package
Requirement already satisfied: joblib>=0.10 in /usr/local/lib/python3.8/dist-package
Requirement already satisfied: scikit-learn>=0.18 in /usr/local/lib/python3.8/dist-packages
Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.8/dist-packages
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/loca
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.8/dist-package
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (f
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages (f
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages (f
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages
```

```
from sklearn.tree import DecisionTreeRegressor
reg = DecisionTreeRegressor(random_state=42)
reg.fit(X_train, y_transformed)
y_pred=reg.predict(np.array(X_test))
df_preds2 = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
Test(y_pred,y_test,df_preds)
```

Mean Absolute Error: 178.86424171546898 Mean Squared Error: 48115.24064604512 Root Mean Squared Error: 219.35186492493088

R Square Error: -1.477743149072865



from sklearn import tree

clf = tree.DecisionTreeClassifier(random\_state=42,max\_depth=5)

clf = clf.fit(X\_train, y\_transformed)

tree.plot\_tree(clf)

```
0.998\nsamples = 520\nvalue = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1\n1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1 \setminus n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n2, 1, 1
1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1\n1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 2\n1, 1, 1,
2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \lambda 1, \lamb
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2\n1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1\n2, 1,
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1 \cdot 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1 \cdot 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n1, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]'),
 Text(0.21428571428571427, 0.75, 'X[1] <= 64.171 \setminus gini = 0.993 \setminus
186\nvalue = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1 \setminus n2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1 \setminus n1, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2\n1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 2, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n2, 1, 1, 1, 1, 2, 2, 1, 2,
1, 1, 1, 1, 1\n1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 2\n1, 1, 1, 2, 2, 0, 0, 0, 0,
0, 0, 0, 0, 0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 Text(0.17857142857142858, 0.583333333333334, 'X[1] <= 64.129 \ngini =
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n^1, 2, 1, 1
2, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n^2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n^1, 2, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \setminus n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1 \setminus n1, 1, 1,
```

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.07142857142857142, 0.25, 'X[1] <= 63.146 \setminus gini = 0.992 \setminus
1, 1, 1, 1, 1\n2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1 \setminus n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1 \setminus n1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 2\n1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n2, 1, 1, 1, 1, 2, 2, 1, 2,
1, 1, 1, 1, 1\n1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.03571428571428571, 0.083333333333333333, 'gini = 0.991\nsamples = 147\nvalue
1\n2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,
2\n1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1\n1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.10714285714, 0.08333333333333333, 'gini = 0.914\nsamples = 16\nvalue
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1\n1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

```
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.21428571428571427, 0.25, 'X[1] <= 63.683\ngini = 0.909\nsamples = 19\nvalue
0 \setminus 0, 0, 0, 0, 2, 3, 1, 1, 1, 1, 2, 2, 1, 2 \setminus 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.25, 0.08333333333333333, 'gini = 0.898\nsamples = 14\nvalue = [0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 1, 1, 1, 1, 2, 2, 1, 2\n1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0]'),
+/0 24420574420574427
```

```
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.25, 0.583333333333334, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.6160714285714286, 0.75, 'X[1] \leftarrow 66.017 = 0.996 = 334 value
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2\n1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1\n2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2,
1\n2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1\n1, 1\n1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]'),
Text(0.4642857142857143, 0.583333333333334, 'X[1] <= 65.983 \setminus gini =
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
```

```
1, 1, 1, 1, 1, 1, 1, 1, 1, 2 \cdot 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1 \cdot 1, 1 \cdot 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 2, 1, 2, 1\n2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.42857142857142855, 0.416666666666667, 'X[1] <= 65.58 \setminus gini =
0.985 \setminus 1.00 = 88 \setminus 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2 \cdot n1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1 \cdot n2, 1, 1, 1,
1, 1, 1, 2, 1, 1, 2, 1, 2, 1 \setminus n^2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \setminus n^0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.35714285714285715, 0.25, 'X[1] <= 65.276\ngini = 0.981\nsamples = 70\nvalue
0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
2\n1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1\n2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.32142857142857145, 0.08333333333333333, 'gini = 0.976\nsamples = 47\nvalue
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1\n1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1\n1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
```

```
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.39285714285, 0.0833333333333333, 'gini = 0.926\nsamples = 23\nvalue
0 \setminus n0, 0, 0, 0, 0, 0, 3, 1, 3, 1, 1, 1, 1 \setminus n2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.5, 0.25, X[1] \le 65.604 = 0.92 = 18 = 18 = [0, 0, 0, 0, 0]
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.4642857142857143, 0.08333333333333333, 'gini = 0.0 \nsamples = 2 \nvalue =
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
```

```
0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2,
0 \setminus n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
```

## - SVM

```
import numpy as np
from sklearn.svm import SVR
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
rng = np.random.RandomState(42)
y = np.array(y_train)
X = np.array(X_train)
regr = make_pipeline(StandardScaler(), SVR(C=1.0, epsilon=0.2))
regr.fit(X, y)
y_pred=regr.predict(np.array(X_test))
df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
Test(y_pred,y_test,df_preds)
```

Mean Absolute Error: 0.22086554342995765 Mean Squared Error: 0.30856980536598366 Root Mean Squared Error: 0.5554905988097222

R Square Error: 0.984507854631017

