TOSHIBA 2SC1923

TOSHIBA TRANSISTOR SILICON NPN EPITAXIAL PLANAR TYPE (PCT PROCESS)

2 S C 1 9 2 3

HIGH FREOUENCY AMPLIFIER APPLICATIONS

FM, RF, MIX, IF AMPLIFIER APPLICATIONS

Small Reverse Transfer Capacitance

 $: C_{re} = 0.7 pF (Typ.)$

Low Noise Figure

: NF = 2.5dB (Typ.) (f = 100 MHz)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	v_{CBO}	40	V
Collector-Emitter Voltage	v_{CEO}	30	V
Emitter-Base Voltage	$V_{ m EBO}$	4	V
Collector Current	$I_{\mathbf{C}}$	20	mA
Base Current	IB	4	mA
Collector Power Dissipation	$P_{\mathbf{C}}$	100	mW
Junction Temperature	T_{j}	125	°C
Storage Temperature Range	$\mathrm{T_{stg}}$	-55~125	°C

5.1 MAX 1.7 MAX 0.45 12.7 MIN. 2 1. EMITTER **COLLECTOR** 2. BASE **JEDEC** TO-92 **EIAJ** SC-43 TOSHIBA 2-5F1B

Unit in mm

Weight: 0.21 g

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Collector Cut-off Current	ICBO	$V_{CB} = 18 V, I_{E} = 0$	_	_	0.5	μ A
Emitter Cut-off Current	$I_{ m EBO}$	$V_{EB} = 4 V, I_C = 0$	_	_	0.5	μ A
DC Current Gain	h _{FE} (Note)	$ m V_{CE}=6V,I_{C}=1mA$	40	_	200	_
Reverse Transfer Capacitance	$\mathrm{C_{re}}$	$V_{CE} = 6 V, f = 1 MHz$	_	0.70	_	pF
Transition Frequency	$\mathbf{f_T}$	$V_{CE} = 6 \text{ V}, I_{C} = 1 \text{ mA}$	_	550	_	MHz
Collector-Base Time Constant	C _c .r _{bb} ,	$V_{ m CE} = 6 m V, I_{ m E} = -1 mA, \ f = 30 m MHz$	_	_	30	ps
Noise Figure	NF	$V_{CE} = 6 \text{ V}, I_{E} = -1 \text{ mA},$	_	2.5	4.0*	dB
Power Gain	$G_{ m pe}$	f = 100 MHz, Fig.	15	18	_	иБ

R: $40 \sim 80$, O: $70 \sim 140$, Y: $100 \sim 200$ (* NF = 5.0dB Max.) (Note): hff Classification

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

 ${
m L}_1: 0.8\,{
m mm}\,\phi$ SILVER PLATED COPPER WIRE, 4T, 10ID, 8 LENGTH Fig.1 NF, Gpe TEST CIRCUIT

y PARAMETER (Typ.)

(1) COMMON EMITTER ($V_{CE} = 6 \text{ V}, I_{E} = -1 \text{ mA}, f = 100 \text{ MHz}$)

(1) THE THE TENT OF THE TENT O	<u>- · · · · · · · · · · · · · · · · · · ·</u>		,	
CHARACTERISTIC	SYMBOL	TYP.	UNIT	
Input Conductance	gie	2.9	mS	
Input Capacitance	Cie	10.2	pF	
Reverse Transfer Admittance	y _{re}	0.33	μ S	
Phase Angle of Reverse Transfer	$\theta_{\mathbf{re}}$	-90	0	
Admittance	o're	-90		
Forward Transfer Admittance	y _{fe}	40	mS	
Phase Angle of Forward Transfer	$\theta_{\mathbf{fe}}$	-20	٥	
Admittance	o te	_20		
Output Conductance	goe	45	μ S	
Output Capacitance	C_{oe}	1.1	pF	

(2) COMMON BASE ($V_{CE} = 6 \text{ V}, I_{E} = -1 \text{ mA}, f = 100 \text{ MHz}$)

	•		
CHARACTERISTIC	SYMBOL	TYP.	UNIT
Input Conductance	gib	34	mS
Input Capacitance	$\mathrm{c_{ib}}$	-10	pF
Reverse Transfer Admittance	y _{rb}	0.27	μS
Phase Angle of Reverse Transfer Admittance	$ heta_{\mathbf{rb}}$	-105	٥
Forward Transfer Admittance	у _{fb}	34	mS
Phase Angle of Forward Transfer Admittance	$ heta_{\mathbf{fb}}$	165	0
Output Conductance	gob	45	μ S
Output Capacitance	C_{ob}	1.1	pF

