Технологии Java XML Path Language 1.0 (XPath 1.0)

http://kgeorgiy.info/courses/java-advanced/

Содержание

- 1. Введение
- **2**. Пути
- 3. Выражения
- 4. Функции
- 5. Заключение

Часть 1

Введение

XPath

- Язык выбора узлов XML-документов
- XPath рассматривает XML-документ в виде дерева
- Встраиваемый язык
 - XSLT
 - XPointer

Контекст

- Предоставляется внешними средствами
 - Текущий узел (current node)
 - Набор переменных (variable bindings)
 - Библиотека функций (function library)
 - Набор префиксов пространств имен (set of namespace declarations)

Типы данных

- node-set набор узлов
- boolean логический
- number число с плавающей точкой
- string строка (unicode)

Основные конструкции

- Location path пути
 - Выбор набора узлов
- Expressions выражения
 - Вычисления над наборами узлов
- Functions функции
 - Произвольные функции

Часть 2

Location paths

Location Path

- Путь состоит из последовательности шагов
- Типы путей
 - Абсолютный
 - Относительный
- Абсолютный вычисляется относительно корня документа
 - ('/' | '//') step (('/' | '//') step)* | '/'
- Относительный вычисляется относительно текущего узла
 - step (('/' | '//') step)*

Правила работы

- 1. Проинициализировать множество текущих узлов (МТУ) текущим узлом (для относительного пути) либо корнем (для абсолютного пути)
- 2. Для каждого узла из МТУ отложить один шаг и положить результат в множество следующих узлов (МСУ)
- **3**. МТУ := МСУ
- 4. Если путь не кончился, перейти к шагу 2
- Выдать МТУ в качестве результата

Location step

- Основные части
 - Axis (ось) определяет какие узлы будут рассматриваться с точки зрения текущего узла
 - Node test (проверка узла) типы или имена узлов
 - Predicates (предикаты) условия на узлы (не обязательно)
- Синтаксис
 - axis '::' node-test ('[' predicate ']')*
- Пример
 - child::p[position() = 1]

Типы осей (1)

Типы осей (2)

- attribute ось атрибутов
- namespace ось префиксов (не используется)

Node tests

- Каждая ось имеет основной тип узла
 - attribute атрибут
 - namespace пространство имен
 - Остальные элемент
- Синтаксис
 - node-name
 - *
 - ('text()' | 'node()' | 'processing-instruction()' | 'comment()')
 - 'processing-instruction('имя ')'

Примеры

- child::p дети, имеющие имя p
- ancestors::* все предки
- attribute::href атрибут href
- attribute::* все атрибуты
- descendants::text() все текстовые узлы

Сокращенный синтаксис

- Ось по умолчанию children
- @ префикс атрибута
- [n] предикат, выбирающий n-й элемент
- . текущий узел
- .. родитель
- //step потомки узла
- Пример .//p/@warning сокращение для
 - self::node()/descendant-orself::node()/child::p/attribute::warning

Predicates

- Предикат произвольное условие на текущий узел
 - Узел берется, если предикат выполняется
- Может быть несколько предикатов
- Примеры
 - a[@href = "help.html"]
 - a[@href = "help.html"][5]
 - a[5][@href = "help.html"]
 - a[img[@alt]]
 - a[@href and @title]

Часть 3

Выражения

Основные выражения

- \$var ссылка на переменную
- (expr) выражение в скобках
- "literal" строка
- -10 число
- id(arg1, arg2, ...) вызов функции

Выбор узлов

- объединение путей
 - a | img
- /, // конструирование путей
 - a//img
- Фильтры
 - Основное выражение
 - Фильтр + предикаты

Логические выражения

- Операции
 - or логическое или
 - and логическое и
 - =, != сравнение на равенство (неравенство)
 - <, >, <=, >= сравнения
- Наборы узлов
 - Пустой false
 - Не пустой true

Сравнения

- При сравнении учитывается тип значений
 - Строки лексикографически
 - Числа по величине
- При сравнении двух наборов узлов выражение истинно, если найдется по элементу в первом множестве и втором множестве, связанные отношением
- Значение считается набором узлов из одного узла

Численные выражения

Операции

- +, — сложение и вычитание
- *, div, mod умножение, деление, взятие остатка
- – унарный минус
- Основные выражения

Часть 4

Стандартные функции

Над множествами узлов (1)

- Местоположение
 - position() номер текущего узла в наборе
 - last() номер последнего узла в наборе
 - count(node-set) количество узлов

Над множествами узлов (2)

• Имена

- name(node-set?) имя текущего / первого в наборе узла
- local-name(node-set?) локальное имя узла
- namespace-uri(node-set?) имя пространства имен

Выбор

 node-set id(object) – выбор элементов по идентификатору

Функции над строками (1)

- string(object) приведение к строке
- concat(str1, str2, ...) конкатенация строк
- starts-with(s1, s2) s1 начинается с s2
- contains(s1, s2) s1 содержит s2
- string-length(string?) длина строки
- normalize-space(string?) нормализация пробелов в строке

Функции над строками (2)

- Подстроки
 - substring-before(s1, s2) часть s1 до первого вхождения s2
 - substring-after(s1, s2) часть s1 после первого вхождения s2
 - substring(s, off, len?) подстрока s, начиная с off, длиной len символов
- translate(s, from, to) для каждого символа из s: если он содержится во from, то заменить его на соответствующий символ из to

Логические функции

- boolean(object) преобразование к логическому типу
- not(boolean) логическое отрицание
- true() истина
- false() ложь
- lang(name) проверка языка узла (атрибут xml:lang)

Числовые функции

- number(object?) преобразование к числу
- sum(node-set) сумма наборов узлов
- round(number) округление к ближайшему
- floor(number) округление вниз
- ceiling(number) округление вверх

Часть 5

Заключение

Ссылки

- XML Path Language (XPath) version 1.0 // http://www.w3.org/TR/1999/REC-xpath-19991116
- Перевод спецификации на русский // http://www.rol.ru/news/it/helpdesk/xpath01.htm
- Валиков А. Технология XSLT

Вопросы