Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grigorieff $\begin{array}{c} {\rm WS}~04/05 \\ {\rm 21.~Februar}~2005 \end{array}$

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:		• • • • • •		
MatrNr.:	Studi	engang	;:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt	mit No	tizen s	sind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	eben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ve Rechenaufwand mit den Kenntnissen wenn nichts anderes gesagt ist, immer	aus dei	Vorles	sung lö	sbar se	ein. Ge	
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				′	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Es sei f die 2π -periodische Funktion $f(t) = |\sin t|$, $t \in \mathbb{R}$. Berechnen Sie die reellen Fourierkoeffizienten a_0, a_1, b_1, b_2 und b_7 von f.

2. Aufgabe 6 Punkte

Parametrisieren Sie die (Voll-)Kugel mit Radius 2 und Mittelpunkt $(1,1,2)^{T}$.

3. Aufgabe 8 Punkte

Beantworten Sie die folgenden Fragen auf einem anderen Blatt (d.h. nicht auf dem Aufgabenblatt). Geben sie **ohne** Begründung an, welche der folgenden Aussagen wahr oder falsch ist. Für jede richtige Antwort gibt es zwei Punkte, für jede falsche Antwort werden zwei Punkte abgezogen (die minimal erreichbare Punktzahl ist Null).

- 1) Die Funktion $f: \mathbb{R}^3 \setminus \{(0,0,0)^{\mathrm{T}}\} \to \mathbb{R}$, $f(x,y,z)=r^{-2}$, $r:=\sqrt{x^2+y^2+z^2}$, löst $\Delta f=0$.
- 2) Es sei $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein stetig differenzierbares Vektorfeld mit div $\vec{v} = 0$. Dann besitzt \vec{v} ein Vektorpotential.
- 3) Es seien $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein stetig differenzierbares Vektorfeld und K die Oberfläche einer Kugel. Ferner gelte $\int \int_K \vec{v} \cdot d\vec{O} = 0$. Dann ist div $\vec{v} = 0$.
- 4) Es sei $f: \mathbb{R}^3 \to \mathbb{R}$ zweimal stetig partiell differenzierbar. Dann gilt rot gradf = 0.

4. Aufgabe 8 Punkte

Bestimmen Sie das Kurvenintegral des Vektorfeldes $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z \sin xy + xyz \cos xy \\ x^2z \cos xy \\ x \sin xy \end{pmatrix},$$

über die Kurve $\vec{x}:[0,2\pi]\to\mathbb{R}^3,\,\vec{x}(t)=(\cos t,\sin t,0)^{\mathrm{T}}.$

5. Aufgabe 10 Punkte

Es sei f diejenige Funktion, die einem Punkt der Ellipse $\{(x,y)^T \in \mathbb{R}^2 | x^2 + xy + y^2 = 5\}$ seinen Abstand zum Nullpunkt zuordnet. Hat f auf der Ellipse ein Maximum bzw. ein Minimum? Welche Gleichungen muß ein Punkt, in dem f ein Maximum bzw. Minimum annimmt, notwendigerweise erfüllen?