Lista de Exercícios: Tratabilidade

Teoria da Computação Prof^a. Jerusa Marchi

- 1. Defina Tratabilidade de acordo com a Teoria da Computação.
- 2. Ordene as funções em ordem crescente de crescimento assintótico:

$$n!, log \ n, n^{2.5}, n \ log \ n, \frac{1}{2}n, \sqrt{2n}, 100^n, n^2 \ log \ n, n + 10$$

- 3. Forneça descrições de máquinas de Turing para as seguintes linguagens e avalie a complexidade de suas codificações:
 - (a) $L=\{w\mid w\in \Sigma=\{a,b,c\}^{\star}\ {\rm e}\ w$ possui número par de b's e o número de a's +c's é ímpar $\}$
 - (b) $L = \{w \mid w \in \Sigma = \{a, b\}^* \text{ e } w = w^r\}.$
 - (c) $L = \{wcw \mid w \in \Sigma = \{a, b\}^*\}.$
- 4. Diferencie e exemplifique problemas das classes de complexidade \mathcal{P} , \mathcal{NP} , \mathcal{NP} -Completo, \mathcal{NP} -Hard, \mathcal{EXP} , co- \mathcal{NP} , \mathcal{P} Space, \mathcal{NP} Space, L, NL.
- 5. O que são problemas de decisão? Dê um exemplo de problema e a sua transformação para um problema de decisão.
- 6. Por que $\mathcal{P} = \text{co-}\mathcal{P}$? Dê um exemplo de um problema em P e seu complemento?
- 7. Por que é possível afirmar que $\mathcal{P} \subseteq \mathcal{NP}$ e que $\mathcal{NP} \subseteq \mathcal{EXP}$?
- 8. A classe \mathcal{NP} tem a propriedade de ser *verificável* em tempo polinomial. O que isso quer dizer?
- 9. Dado um grafo G = (V, E) tal que $V = \{v1, v2, v3, v4, v5, v6\}$ e $E = \{(1, 2, 7), (1, 3, 9), (1, 6, 14), (2, 3, 10), (2, 4, 15), (3, 6, 2), (3, 4, 11), (4, 5, 6), (5, 6, 9)\}$, onde (v_i, v_j, p_{ij}) representa a aresta que conecta v_i e v_j com peso p_{ij} . Pede-se:
 - (a) Defina um esquema de decoficação de G para uma Máquina de Turing, tal que w, a palavra resultante, pertença a uma linguagem polinomialmente equilibrada L se e somente se G possui um circuito hamiltoniano com custo inferior a 60.
 - (b) Descreva detalhadamente o funcionamento da Máquina de Turing M, que recebe o esquema construído acima e verifica se $w \in L_M$.
- 10. Apresente um outro exemplo de linguagem polinomialmente equilibrada.

- 11. Apresente o Teorema de Rice e busque saber mais sobre sua demonstração.
- 12. O Teorema de Savich é um dos primeiros teoremas na área de complexidade de espaço. O que ele diz?
- 13. Quais são as implicações (teóricas e práticas) da comprovação das seguintes asserções?
 - (a) $\mathcal{P} = \mathcal{N}\mathcal{P}$
 - (b) $\mathcal{NP} = \mathcal{EXP}$
 - (c) $\mathcal{NP} \neq co \mathcal{NP}$
- 14. O que é uma *redução polinomial*? Demonstre a complexidade de se obter a solução de um problema em \mathcal{P} usando uma redução polinomial para outro problema em \mathcal{P} .
- 15. Dados três problemas Π_1 , Π_2 e Π_3 . Sendo $\Pi_1 \in \mathcal{NP}$ -Completo, $\Pi_2 \in \mathit{NP}$ e $\Pi_3 \in \mathcal{P}$. Qual o significado das seguintes reduções:
 - (a) $\Pi_3 \propto \Pi_1$
 - (b) $\Pi_3 \varpropto \Pi_2$
 - (c) $\Pi_2 \varpropto \Pi_1$
 - (d) $\Pi_2 \varpropto \Pi_3$
 - (e) $\Pi_1 \varpropto \Pi_2$
 - (f) $\Pi_1 \propto \Pi_3$
- 16. Pesquise sobre "Quantum Turing Machines"e a sobre as classes de complexidade PostBQP, EQP e BQP.