Interacção Humana com o Computador

Aula II

Departamento de Informática UBI 2018/2019

João Cordeiro jpaulo@di.ubi.pt

Figure 1.1: The nature of Human-Computer Interaction. Adapted from Figure 1 of the ACM SIGCHI Curricula for Human-Computer Interaction [Hewett et al., 2002]

Cognitive Psychology

Perceptive System

Motor System

The human user

Information Processing Unit (IPU)

Cognitive System

Morgan & Newell 1983

The human user

Information Processing Unit (IPU)

Cognitive Psychology

Create for human usage

- Aware of capacities and limitations
- What is easy and difficult?
- What is pleasant?
- Main user Modus Operandi.

Morgan & Newell 1983

Cognitive Psychology

Human = IPU

- Information input/output
 - visual, hearing, haptic, movement
- Information stored in memory
 - sensorial, short and long term
- Information processed and applied
 - reasoning, problem solving, skills, error
- The emotional dimension
- The uniqueness of each person

The Human

Cognitive Psychology

Humano = IPU

"We do not see what we see but what we are"

"Não vemos o que vemos, vemos o que somos"

Fernando Pessoa

Input: through the senses

Vision

Involves two steps:

- Physical reception of a Stimulus
- Interpretation and Processing

Figure 1.1 The human eye

Eye - The Reception of a Stimulus

- Light received and transformed into electrical signals.
- Light emitted and reflected by objects
- The retina focus images upside down
- The retina contains two kind of photoreceptors:
 - Rods (bastonetes) luminosity sensitivity
 - Cones chromatic vision
- The Ganglion cells detects patterns (X in foeva) and movement (Y peripheral).

Eye - The Reception of a Stimulus

Rods (Bastonetes) ~ 120 millions

- In the retina extremities
- Peripheral vision

Cones ∼ 6 millions

- There are three kind
- Concentrated in the foeva"

Ganglions

- X-cells ~> Patterns
- Y-cells ~> Movement

Vision and Signal Processing

Signal Interpretation

- Size
- Depth
- Brightness
- Color

Signal Interpretation

- Size
- Depth
- Brightness
- Color

Signal Interpretation

- Size
- Depth
- Brightness
- Color

Signal Interpretation

- Size
- Depth
- Brightness
- Color

Signal Interpretation

- Size
- Depth
- Brightness
- Color

Signal Interpretation

How do we perceive what we see?

- Size
- Depth
- Brightness
- Color

A projection oh the 4D cube

Signal Interpretation

How do we perceive what we see?

- Size
- Depth
- Brightness
- Color

A projection oh the 4D cube

Signal Interpretation

Correct assessment requires observer's world knowledge.

Size

- Measuring the visual angle: degrees, minutes, and arc seconds:
 - Same size objects at different distances have different visual angles;
 - Different size objects, positioned at the right different distances will have the same visual angle, in the eye of the observer.

Signal Interpretation

Size ~ Visual Angle ~ Distance

Signal Interpretation

Visual Acuity

 The ability of a person to perceive the thinest details

Example:

- perceive lines with 0.5 arc seconds in width
- perceive line spaced 30 arc seconds

Chromatic vision

- The three components:
 - Hue the spectral wavelength (average person: I50)
 - Intensity the color brightness
 - Saturation the amount of whiteness in the color
- Perceive approximately 7 million colors
- Green ~ maximal acuity.
- Blue ~ minimal acuity (3% to 4% blue cones).
- 8% men and 1% women have some kind of color perception deficiency — colorblind
 - Green <> Red ?

Brightness

- Measures the light intensity
- Related with luminance, measured through a photometer
- Contrast: the ratio between two brightness levels
- The pupil compensates for brightness variation
- Visual acuity increases with luminance

Color Hue

Hues can refer to the set of "pure" colors within a color space.

Color Intensity

Color Saturation

Chromatic vision

- The three components:
 - **Hue** the spectral wavelength (average person: I50)
 - Intensity the color brightness
 - Saturation the amount of whiteness in the color
- Perceive approximately 7 million colors
- Green ~ maximal acuity.
- Blue ~ minimal acuity (3% to 4% blue cones).
- 8% men and 1% women have some kind of color perception deficiency colorblind
 - Green <> Red?

The Human — Vision/Colorblindness

Visual Processing

- Action of the brain on the significance of the visual signal input
- What we see is an interpretation guided by our expectations
 - Example: the notion of constant size
- Our brain can infer complete images when there are "holes"
- So, maybe ... your mind can be deceived!

Optical Illusions

The law of size preservation

The Ponzo illusion

The Muller Lyer illusion

Optical Illusions

The law of size preservation

The Ponzo illusion

The Muller Lyer illusion

Optical Illusions

Confusions of 3D in 2D!

Optical Illusions

Confusions of 3D in 2D!

Optical Illusions

Diluted Parallelism

Optical Illusions

Relativity

Optical Illusions

Relativity

The power of a context

What do we see here?

The power of a context

And now?

Graphic Design

 We tend to increase horizontal lines and shorten the vertical ones

 The perceived "optical center" is position slightly above the true center

Optical Illusions

Filling the gap — a human perspective

Optical Illusions

Filling the gap — a human perspective

Optical Illusions

Filling the gap — a human perspective

Optical Illusions

Filling the gap — a human perspective

Optical Illusions

A relative true

Optical Illusions

Gray hues

Strange colors

Optical Illusions

A cultural perspective

Optical Illusions

Read the following:

The quick brown fox jumps over the the lazy dog

Is it correct?

Text Reading

- Human eye makes rapid movements (**saccades**) and pauses (**fixations**) 94% time breaks
- Information is collected during the "fixations" and there are 3 to 5 per line of text
- There are also *regressions* in the eye movement
 - Complex text => more regressions
- Reading speed in adults: 250 words / minute.
- Reading from a computer is slower than from a book
- Dark letters on light background is easier to read more luminance => greater acuity
- Font sizes: 9 = 12 if proportional spacing on lines

Saccades and Fixations

DANS, KÖN OCH JAGPROJEKT

På jakt efter ungdomars kroppsspråk och den "synkretiska dansen", en sammansmältning av olika kulturers dans har jag i mitt fältarbete under hösten rört mig på olika arenor inom skolans värld. Nordiska, afrikanska, syd- och östeuropeiska ungdomar gör sina röster hörda genom sång) musik skrik skratt och gestaltar känslor och uttryck med hjälp av kroppsspråk och dans.

eye-gaze

Den individuella estetiken framträder i synboliska tecken som forstärker ungdomar också den egna stilen i kroppsrörelserna spela identitetsprövningen. Uppehållsrummet funger där ungdomarna spelar upp sina performancelik

Saccades and Fixations

False dynamics

Saccades and Fixations

False dynamics

Saccades and Fixations

False dynamics

Text Reading

How do humans really read?

- Chinese ideogramas
- There are about 42 000
- Only 3000 most used

Text Reading

3M D14 D3 V3R40, 3574V4 N4 PR414, 0853RV4ND0 DU45 CR14NC45 8R1NC4ND0 N4 4R314. 3L45 7R484LH4V4M MU170 C0N57RU1ND0 UM C4573L0 D3 4R314, C0M 70RR35, P4554R3L45 3 P4554G3NS 1N73RN45. QU4ND0 3575V4M QU453 4C484ND0, V310 UM4 0ND4 3 D357RU1U 7UD0, R3DU21ND0 0 C4573L0 4 UM M0N73 D3 4R314 3 35PUM4.

4CH31 QU3, D3P015 D3 74N70 35F0RC0 3 CU1D4D0, 45 CR14NC45 C41R14M N0 CH0R0, CORR3R4M P3L4 PR414, FUG1ND0 D4 4GU4, R1ND0 D3 M405 D4D45 3 C0M3C4R4M 4 C0N57RU1R 0U7R0 C4573L0. C0MPR33ND1 QU3 H4V14 4PR3ND1D0 UM4 GR4ND3 L1C40; G4574M05 MU170 73MP0 D4 N0554 V1D4 C0N57RU1ND0 4LGUM4 C0154 3 M415 C3D0 0U M415 74RD3, UM4 0ND4 P0D3R4 V1R 3 D357RU1R 7UD0 0 QU3 L3V4M05 74N70 73MP0 P4R4 C0N57RU1R. M45 QU4ND0 1550 4C0N73C3R 50M3N73 4QU3L3 QU3 73M 45 M405 D3 4LGU3M P4R4 53GUR4R, 53R4 C4P42 D3 50RR1R! S0 0 QU3 P3RM4N3C3 3 4 4M124D3, 0 4M0R 3 C4R1NH0.

0 R3570 3 F3170 D3 4R314

Human Hearing

Usually considered as secondary, but ...

There is much more information entering than the one we naively consider

The pinna acts as a funnel that channels the sound into the ear

We were able to estimate distances, due to delays in reception between the two ears

 Provides rich environment information: distances, directions, etc.

Physical Apparatus

- outer ear protects inner and amplifies sound
- middle ear transmits sound waves as vibrations to inner ear
- inner ear chemical transmitters are released and cause impulses in auditory nerve

Sound

- pitchfrequency (Hz)
- -loudness amplitude (dB)
- timbretype or quality

The waves are all travelling at about the same speed, so this is the number of each wave that will reach the ear in a hundredth of a second.

Short wavelength means lots of waves; high frequency, high sound

Long wavelength means fewer waves;

low frequency, low sound

Processing Sound

- Human hearing range between 20Hz and 15kHz
 - Dogs can hear ultrasounds
 - Elephants communicate through infra-sounds
- At low frequencies, we can detect differences of 1.5 Hz
- At higher frequencies, we lose sensitivity
- The hearing range varies with age
- The brain efficiently filter sounds e.g. "the cocktail party"
- There are also auditory illusions as well

There are also auditory illusions

Main page Contents

Featured content

Current events

Random article

Donate to Wikipedia

Interaction

Help

About Wikipedia

Community portal

Recent changes

Contact page

- Toolbox
- Print/export
- Languages

. .

Deutsch

Français

한국어

Polski

Suomi

中文

Ædit links

Article Talk Read Edit sour

Auditory illusion

From Wikipedia, the free encyclopedia

An **auditory illusion** is an illusion of hearing, the aural equivalent of an optical illusion: the listener hears either sounds which are not present in the stimulus, or "impossible" sounds.^[1] In short, auditory illusions highlight areas where the human ear and brain, as organic, makeshift tools, differ from perfect audio receptors (for better or for worse).

Examples of auditory illusions:

- hearing a missing fundamental frequency, given other parts of the harmonic series
- Various psychoacoustic tricks of lossy audio compression
- Binaural beats
- · Deutsch's scale illusion
- Glissando illusion
- Illusory continuity of tones
- McGurk effect
- Octave illusion/Deutsch's High-Low Illusion
- the Shepard-Risset tone or scale, and the Deutsch tritone paradox
- the constant spectrum melody
- File:Risset accelerando beat1 MCLD.ogg: Forever accelerating beat.

See also [edit source]

- Musical acoustics
- Psychoacoustics
- Jean-Claude Risset
- Auditory system
- Barber pole auditory illusions compared to visual illusions
- Doppler effect not an illusion, but real physical phenomenon
- Holophonics

The Human - Touch

Touch

Also known as "haptic perception"

- Normally used as an unconscious feedback
 - The keypresses, when we write.
 - Sensing the mouse location (kinaesthetic)
 - Vibration in electronic equipment

The Human - Touch

Touch

- Stimuli through skin receptors:
 - Mecano-receptors (pressure)
 - Termo receptors (heat)
 - Nocio-receptores (pain or intense pressure)
- Heterogeneous sensitivity:
 - The sensitivity of the fingertip is about 10 times the sensitivity of the forearm

Movement

- The movement is composed of two essential characteristics:
 - Speed
 - Precision
- Speed (reaction time) depends on two things (e.g. accident):
 - Processing Time
 - Movement Time

- Time taken to respond to stimulus:
 reaction time + movement time
- The reaction time dependent on stimulus type:

```
    Visual ~ 200 ms
    Auditory ~ 150 ms
    Pain ~ 700 ms
```

- Movement time dependent on age, fitness, etc
- Increasing reaction time decreases accuracy in the unskilled operator but not in the skilled operator.

Fit's Law (1954)

Describes the time taken to hit a screen target:

```
Mt = a + b log<sub>2</sub>(D/S + 1)
```

<u>where</u>: **a** and **b** are empirically determined constants,

Mt is the movement time

D is the distance to target,

S is the size of the target

→ Rule: targets as large as possible and distances as small as possible

Some Rules

 The reaction time increases with aging but can be improved through training.

Audio: 150 ms

Visual: 200 ms

- Low reaction time leads to low accuracy
- Hands do not have the movement exclusivity

The Hick's law (1952)

Models the time required to select one option among several possibilities:

```
T = b \log_2(n + 1)
```

where:

n is the number of possibilities,

T is thetime taken to choose an option,

b is an empirical constant

→ Rule: always present the adequate number of choices