Reti di calcolatori e internet

Alessandro Ferro

Introduzione

Questi appunti, presi dal libro "Reti di Calcolatori e Internet - un approccio Top Down" (Kurose, Ross, 7th edition) sono parziali in quanto una parte sono presi a penna. La numerazione dei capitoli, sezioni e paragrafi segue quella del libro.

Capitolo 1

Reti di calcolatori e Internet

[Le sezioni 1.1 e 1.2 sono scritte a penna sul quaderno]

1.3 Il nucleo della rete

1.3.2 Commutazione di circuito

Per spostare i dati in una rete esistono due approcci: commutazione di pacchetto e commutazione di circuito.

Nelle reti a commutazione di circuito, le risorse necessarie sono allocate per l'intera durata della comunicazione tra i sistemi periferici. Nelle reti a commutazione di pacchetto, invece, tali risorse non sono riservate e sono allocate in funzione della necessità della rete.

Le reti telefoniche sono esempi di rete a commutazione di circuito in quanto il canale resta aperto anche in assenza di comunicazione.

Quando la rete stabilisce un circuito, viene riservata anche una certa larghezza di banda, pertanto, il mittente può trasferire i dai a una velocità costante garantita.

D'inverso, quando un host invia un pacchetto a un altro host su una rete a commutazione di pacchetto, esso viene immesso nella rete senza che vengano ad esso riservate risorse.

Multiplexing nelle reti a commutazione di circuito

In una rete a commutazione di circuito può essere implementato il multiplexing, ovvero l'utilizzo dello stesso mezzo trasmissivo da più utenti.

Il multiplexing viene implementato tramite:

- Suddivisione di frequenza: lo spettro di frequenza di un collegamento viene suddiviso tra le connessioni stabilite. Ciò, ad esempio, è il caso di walkie-talkie che comunicano su un circuito a una frequenza diversa da altri walkie-talkie che comunicano sullo stesso circuito.
- Suddivisione di tempo: quando la rete stabilisce una connessione a commutazione di circuito, assegna degli slot temporali per ogni sessione.

Confronto tra commutazione di pacchetto e commutazione di circuito

I denigratori della commutazione di pacchetto sostengono che quest'ultimo mal si adatti alle applicazioni in tempo reale a causa dei suoi ritardi variabili e non deterministici. I suoi sostenitori, invece, affermano che la commutazione di pacchetto non soltanto offra una migliore condivisione della larghezza di banda, ma è anche più semplice, efficiente ed economica.

La commutazione di pacchetto risulta essere più efficiente perché la commutazione di circuito prealloca l'uso del collegamento trasmissivo indipendentemente dalla richiesta necessaria, con collegamenti garantiti ma potenzialmente non necessari. D'altro canto la commutazione di pacchetto alloca le risorse su richiesta.

1.3.3 Una rete di reti

Gli ISP si distinguono per la copertura geografica: gli ISP di accesso, che forniscono Internet direttamente all'utente finale, sono connessi agli ISP regionali che a loro volta sono connessi agli ISP di primo livello (cosiddetti ISP globali). Tale configurazione permette a tutti i nodi della rete di essere in comunicazione.

Per ridurre i costi una coppia di ISP vicini e di pari livello gerarchico può fare uso di peering, cioè connettere direttamente le loro reti in modo tale che il traffico passi direttamente tra di loro anziché passare per un intermediario.

1.4 Ritardi, perdite e throughput nelle reti a commutazione di pacchetto

Idealmente, vorremmo che i servizi Internet siano in grado di spostare dati tra due sistemi periferici istantaneamente e senza nessuna perdita dati. Ciò, ovviamente, non è fattibile nella realtà: il throughput è necessariamente limitato, ci possono essere ritardi e si potrebbero perdere pacchetti.

1.4.1 Panoramica del ritardo nelle reti a commutazione di pacchetto

Un pacchetto parte da un host, passa una serie di router e conclude il viaggio in un altro host. In ciascun nodo lungo il percorso (inclusi sorgente e destinazione) il pacchetto subisce vari tipi di ritardo. I principali ritardi sono dovuti al ritardo di elaborazione, ritardo di accodamento, ritardo di trasmissione e ritardo di propagazione che complessivamente formano il ritardo totale di nodo.

La figura 1.16 mostra un ottimo schema che riassume i tipi di ritardo.

Ritardo di elaborazione

Il tempo richiesto per esaminare l'intestazione del pacchetto e per determinare dove dirigerlo, nonché il tempo richiesto per controllare eventuali errori al suo interno fa parte del ritardo di elaborazione.

Ritardo di accodamento

Una volta in coda, il pacchetto subisce un ritardo di accodamento mentre attende la trasmissione sul collegamento. Ne abbiamo già parlato in 1.3.1 "ritardi di accodamento e perdita di pacchetti"

Ritardo di trasmissione

Sia L la lunghezza del pacchetto in bit e R la velocità di trasmissione in bps dal router A al router B, il ritardo di trasmissione è $\frac{L}{R}$ secondi e risulta essere il tempo richiesto per trasmettere tutti i bit del pacchetto sul collegamento.

Ritardo di propagazione

Una volta immesso sul collegamento, il pacchetto deve propagarsi fino al successivo nodo della rete. Questo tempo si chiama ritardo di propagazione. Il ritardo di propagazione è dato da d/v dove d è la distanza tra i due router e v è la velocità di propagazione nel collegamento (in m/s). Questo ritardo è puramente fisico: indica quanto tempo impiega un singolo bit a "viaggiare" dal mittente al destinatario una volta che è stato trasmesso. Questo ritardo solitamente è trascurabile.

Confronto tra ritardi di trasmissione e di propagazione

Il ritardo di trasmissione è la quantità di tempo impiegata dal router per trasmettere in uscita il pacchetto ed è funzione della lunghezza del pacchetto e della velocità di trasmissione sul collegamento, ma non ha niente a che fare con la distanza tra i due router. Come detto poc'anzi, è il tempo richiesto per trasmettere tutti i bit del pacchetto sul collegamento.

Il ritardo di propagazione, invece, è il tempo richiesto per la propagazione di un solo bit da un router a quello successivo ed è funzione della distanza tra i due router e della velocità di propagazione nel mezzo trasmissivo ma non ha niente a che fare con la dimensione del pacchetto o la velocità di trasmissione.

Nota come velocità di trasmissione \neq velocità di propagazione.

	Nome (simbolo)	Significato	Unità tipica
1	Velocità di propagazione (v)	Velocità con cui un segnale elettrico/ottico si propaga fisi-	metri/secondo (m/s)
		camente lungo il mezzo (rame, fibra, aria, ecc.).	
2	Velocità di trasmissione (o data rate) (R)	Velocità con cui i bit vengono trasmessi sul collegamento,	bit/secondo (bps)
		cioè quanti bit al secondo vengono "iniettati" nel canale.	

Table 1.1: Confronto tra velocità di propagazione e velocità di trasmissione.

Formula

Siano d_{elab} , d_{acc} , d_{tra} , d_{prop} , i ritardi, rispettivamente di elaborazione, accodamento, trasmissione e propagazione. Allora, il ritardo totale di un nodo è dato da:

$$d_{elab} + d_{acc} + d_{tra} + d_{prop}$$

1.4.2 Ritardo di accodamento e perdita di pacchetti

A differenza degli altri tre ritardi, quello di accodamento può variare da pacchetto a pacchetto. Ciò vuol dire che mentre elaborazione, trasmissione e propagazione sono costanti per ogni pacchetto che viaggia su quella specifica tratta, il ritardo di accodamento è variabile. Per tale motivo, nel caratterizzare il ritardo di accodamento si fa uso di misure statistiche quali il ritardo di accodamento medio e la sua varianza.

Denotiamo con a la velocità di arrivo di pacchetti nella coda espressa in pacchetti al secondo, R la velocità di trasmissione alla quale i bit vengono trasmessi in uscita alla coda espressa in bit al secondo e supponiamo che tutti i pacchetti abbiano dimensione L bit. Pertanto arrivano al nodo La bit/s.

Con La/R si denota l'intensità di traffico e il risultato è un numero adimensionale (es. $\frac{500bps}{250bps} = 2$)

• (1) Se La/R > 1 vuol dire che stanno entrando più pacchetti di quanti il nodo può trasferirne in uscita e la coda cresce verso ∞ bit.

Questo perché $\frac{La}{R} > 1$ implica che La > R

• (2) Se $La/R \leq 1$ succede quanto segue: Innanzitutto nota che se ogni pacchetto ha dimensione L vuol dire che il nodo impiega $\frac{L}{R}$ secondi per smaltirlo. Ora ipotizziamo che N pacchetti giungano simultaneamente ogni $N(\frac{L}{R})$ secondi. Se ogni pacchetto viene smaltito ogni $\frac{L}{R}$ secondi, in $N(\frac{L}{R})$ secondi ne vengono smaltiti esattamente N.

In questo caso il primo pacchetto inizia a uscire dalla coda immediatamente, il secondo pacchetto deve aspettare L/R secondi prima che il suo primo bit esca dalla coda, il terzo deve aspettare $2*\frac{L}{R}$, il quarto deve aspettare $3*\frac{L}{R}$ secondi e così via. Più in generale, il pacchetto N° deve aspettare $(N-1)*\frac{L}{R}$.

Per rendere più chiaro il concetto facciamo un esempio. Si supponga che arrivino 10 pacchetti all'istante 0 ognuno grande 50bit con una velocità di trasmissione R pari a 1000bit/s. Il primo pacchetto inizia a uscire dalla coda subito, ma il primo bit del secondo pacchetto deve aspettare $\frac{L}{R} = \frac{50}{1000} = 0.05s$ prima che l'intero pacchetto precedente sia completamente uscito. Il decimo pacchetto deve aspettare (9) * 0.05 = 0.45s e, nel momento in cui il suo trasferimento sul collegamento sarà terminato, a tempo 0.5, ne subentrano altri 10, di cui il primo non deve aspettare nulla prima che inizia a essere trasferito.

Ciò dimostra che la condizione $La/R \le 1$, non garantisce assenza di attese.

Perdita di pacchetti

La quantità di pacchetti perduti aumenta in proporzione all'intensità di traffico in quanto la coda potrebbe non essere abbastanza capiente per soddisfare la richiesta. Pertanto, le prestazioni di un nodo sono misurate non solo in termini di ritardo ma anche dalla probabilità di perdita di pacchetti.

1.4.3 Ritardo end to end

Nella sottosezione 1.3.1 (paragrafo "trasmissione store e forward") abbiamo detto che, supponendo di avere N-1 nodi tra sorgente e destinazione (e quindi N collegamenti) il ritardo end-to-end è

$$d_{e2e} = N(d_{trasmissione}) = N(\frac{L}{R})$$

ma prendevamo in considerazione solo il ritardo di trasmissione. La formula generale è

$$d_{e2e} = N(d_{elab} + d_{accodamento} + d_{trasmissione} + d_{prop})$$

Traceroute

Traceroute è un programma eseguibile su qualsiasi host di Internet. Quando l'utente specifica il nome di un host di destinazione, il programma invia pacchetti speciali verso di essa, che, durante il loro percorso, passano attraverso una serie di router. Quando uno di questi router riceve questo pacchetto speciale, invia un messaggio che torna alla destinazione che contiene il nome e l'indirizzo del router.

Il funzionamento è il seguente: Supponiamo di avere N-1 router dalla sorgente alla destinazione. La sorgente invia N pacchetti ognuno dei quali contiene l'indirizzo della destinazione. Quando l' n-esimo router riceve il pacchetto marcato come n, anziché indirizzarlo verso la destinazione risponde al mittente come poc'anzi descritto. L'N-esimo pacchetto, che raggiunge la destinazione, invita anche quest'ultima a rispondere.

In questo modo l'origine può ricostruire il percorso intrapreso dai pacchetti ed è inoltre in grado di determinare i ritardi per ogni nodo.

Sistemi periferici, applicazioni e altri ritardi

Oltre ai ritardi descritti nelle sezioni precedenti, si potrebbero manifestare ulteriori ritardi nei sistemi periferici. A titolo esemplificativo, un sistema periferico può volontariamente ritardare la sua trasmissione in quanto condivide il mezzo trasmissivo con altri sistemi periferici.

Un altro esempio è nel VoIP: In VoIP il mittente deve prima di tutto riempire il pacchetto con conversazione digitalizzata prima di inviarlo su Internet. Questo tempo per riempire un pacchetto è detto ritardo di pacchettizzazione.

1.4.4 Throughput nelle reti di calcolatori

Un'altra misura critica delle prestazioni in una rete di calcolatori è il throughput end-to-end.

Consideriamo un trasferimento di file da A a B. Il throughput istantaneo in ogni istante di tempo è la velocità di bit/s alla quale B sta ricevendo il file. È misurato in B e non in A in quanto è l'unico modo per individuare la velocità effettiva di trasferimento dopo tutti i ritardi e colli di bottiglia che intercorrono nel percorso.

Se il file consiste di F bit e il trasferimento richiede T secondi affinché la destinazione riceva tutti i bit, allora il throughput medio è F/T bit/s.

Supponiamo che A e B si stiano trasferendo un file e che tra di loro ci sia un router C. Supponiamo R_1 essere il throughput da A a C e R_2 il throughput da C a B. Se $R_1 \leq R_2$ allora la velocità di collegamento da A a B (throughput end to end) è R_1 ma se $R_1 > R_2$ la velocità di collegamento è R_2 in quanto il router fa da collo di bottiglia. Quindi il throughput end to end è $MIN(R_1, R_2)$ o più in generale $MIN(R_1, ..., R_{n+1})$ se ci sono n router.

1.5 Livelli dei protocolli e loro modelli di servizio

1.5.1 Architettura a livelli

Un'architettura a livelli consente di discutere e analizzare una parte specifica e ben definita di un sistema complesso. Ciò permette di introdurre un ulteriore vantaggio: la modularità, che rende molto più facile cambiare l'implementazione di un servizio fornito da un determinato livello. Fino a quando il livello fornisce lo stesso servizio allo strato superiore e utilizza gli stessi servizi dello strato inferiore, la parte rimanente del sistema (ovvero gli altri livelli) rimane invariata al variare dell'implementazione del livello.

Stratificazione dei protocolli

I protocolli, nonché l'hardware e il software che li implementano, sono organizzati in livelli. Ciascun protocollo appartiene a uno dei livelli. Ogni livello fornisce il suo servizio (1) effettuando determinate azioni all'interno del livello stesso e (2) utilizzando i servizi del livello immediatamente inferiore (se c'è).

Un livello può essere implementato via hardware, software o con una combinazione di essi.

L'insieme dei protocolli di tutti i livelli viene chiamato pila di protocolli. Internet è formato da una pila a 5 livelli. Questi livelli sono: fisico, collegamento, rete, trasporto e applicazione. In ambito accademico si studia anche la pila a 7 livelli denominata ISO/OSI.

Un protocollo, per sua natura, serve per scambiare messaggi. Pertanto, un protocollo "vive" su più sistemi di rete.

Degli svantaggi dell'architettura a strati sono la possibilità che un livello duplichi le funzionalità di un livello inferiore e che un livello possa prelevare informazioni da altri livelli bypassandone i servizi esposti. Ciò viola lo scopo della separazione tra livelli.

Livello di applicazione

Il livello di applicazione è la sede dei protocolli usati dalle applicazioni di rete. Alcuni dei protocolli a questo livello sono HTTP, SMTP e FTP. I pacchetti di informazione del livello di rete vengono denominati messaggi.

Livello di trasporto

Il livello di trasporto trasferisce i messaggi del livello di applicazione. Vi sono due protocolli di trasporto: TCP e UDP.

- TCP: fornisce alle applicazioni un servizio orientato alla connessione (cioè l'utente deve stabilire una connessione, usarla e quindi rilasciarla), garantisce la consegna dei messaggi di applicazione e il loro ordine. Gestisce il controllo di flusso (ovvero la corrispondenza tra le velocità del mittente e destinatario) e ha inoltre un controllo di congestione della rete.
- UDP: questo protocollo è molto semplice. Non è orientato alla connessione e non garantisce affidabilità, controllo di flusso e controllo della congestione.

I pacchetti a livello di trasporto sono denominati segmenti.

Livello di rete

Il livello di rete si occupa di trasferire i pacchetti a livello di rete, detti datagrammi, da un host a un altro.

Il livello di trasporto passa al livello di rete il proprio segmento e un indirizzo di destinazione.

Il livello di rete comprende il protocollo IP.

Livello di collegamento

Per trasferire un pacchetto da un nodo a quello successivo sul percorso, il livello di rete si affida ai servizi del livello di collegamento. Esempi di protocolli a livello di collegamento includono Ethernet e WiFi.

Un datagramma potrebbe essere gestito da differenti protocolli a livello di collegamento lungo le diverse tratte che costituiscono il suo percorso.

Chiameremo frame i pacchetti a livello di collegamento.

Livello fisico

Mentre il compito del livello di collegamento è spostare frame tra nodi adiacenti, il ruolo del livello fisico è spostare i singoli bit. I protocolli di questo livello dipendono dall'effettivo mezzo trasmissivo.

1.5.2 Incapsulamento

Dalla sorgente, i dati scendono lungo la pila dei protocolli e vi risalgono nella destinazione. Nei commutatori, i dati scendono e salgono fino a un determinato livello: per i commutatori a livello di collegamento fino al livello 2, per i router fino al livello 3. Gli host implementano tutti e cinque i livelli.

In altre parole, presso un host mittente, un messaggio a livello di applicazione viene passato al livello di trasporto. Questo livello prende il messaggio e gli concatena informazioni aggiuntive (le informazioni di intestazioni) che verranno utilizzate dal protocollo di trasporto nell'host ricevente. Messaggio livello applicazione + intestazioni del protocollo di trasporto costituiscono il segmento.

Il protocollo di trasporto passa il segmento al livello di rete, il quale gli concatena le proprie intestazioni, formando il datagramma e così via scendendo nella pila.

Quindi a ciascun livello il pacchetto ha due tipi di campi: quello di intestazione e quello di payload (il carico utile). Il payload è tipicamente un pacchetto proveniente dal livello superiore.

Capitolo 2

Livello di applicazione

Le applicazioni sono la ragion d'essere delle reti di calcolatori. Senza di esse predisporre una rete sarebbe inutile.

2.1 Principi delle applicazioni di rete

I programmi che fanno uso del livello Applicazione sono eseguiti sui sistemi periferici che comunicano tra loro via rete. Esempi di programmi sono i browser e i web server. I programmatori delle applicazioni a livello di rete non hanno bisogno di scrivere software che viene eseguito sui commutatori

2.1.1 Architettura delle applicazioni di rete

Per lo sviluppatore di applicazioni l'architettura di rete è fissa e fornisce alle applicazioni uno specifico insieme di servizi. Il compito dello sviluppatore è progettare l'applicazione. Egli deve scegliere tra utilizzare l'architettura client-server o P2P (peer-to-peer).

Nell'architettura client-server vi è un host sempre attivo, chiamato server, che risponde alle richieste di servizi da altri host, detti client. I client non si connettono direttamente fra loro.

In un'architettura P2P si sfrutta invece la comunicazione diretta di host, chiamati peer, che a differenza di un server centralizzato possono (e spesso lo sono) collegati in maniera intermittente. I peer non appartengono a un fornitore di servizi ma appartengono agli utenti. Uno dei punti di forza dell'architettura P2P è la sua intrinseca scalabilità e sono anche economicamente convenienti perché non richiedono server prestanti nè una banda elevata.

Alcune applicazioni presentano un'architettura ibrida, combinando sia elementi P2P che client-server.

2.1.2 Processi comunicanti

I processi su due sistemi terminali comunicano scambiandosi messaggi attraverso la rete. Il processo mittente crea e invia messaggi sulla rete e il processo destinatario li riceve e, quando previsto, invia messaggi di risposta.

Processi client e server

Per ciascuna coppia di processi comunicanti ne etichettiamo uno come client e l'altro come server. In alcune applicazioni un processo può essere sia client che server (come ad esempio in un programma P2P). Nonostante ciò possiamo comunque etichettarli basandoci sul contesto di una specifica sessione.

Un processo che richiede il servizio o le informazioni è indicato come client mentre quello che eroga il servizio o procura le informazioni è detto server.

L'interfaccia tra il processo e la rete

Ogni messaggio inviato da un processo a un altro remoto deve passare attraverso la rete sottostante. Il processo presuppone l'esistenza di un'infrastruttura esterna che trasporterà il messaggio attraverso la rete.

Un processo invia messaggi nella rete e riceve messaggi dalla rete attraverso un'interfaccia software detta socket. Una socket è l'interfaccia tra il livello di applicazione e quello di trasporto all'interno di un host. Viene chiamata anche API tra l'applicazione e la rete.

Il progettista di un'applicazione può (1) scegliere il protocollo di trasporto e (2) talvolta determinare alcuni parametri a livello di trasporto.

Indirizzamento

I processi riceventi devono poter avere un indirizzo per ricevere i messaggi inviati da un processo in esecuzione su un altro host. Per identificare un processo ricevente è necessario specificare due informazioni:

- (1) l'indirizzo dell'host e (2) un identificatore del processo ricevente sull'host di destinazione. Il punto
- (2) serve perché su un host potrebbero esserci più processi in esecuzione simultaneamente.

In Internet gli host vengono identificati attraverso un indirizzo IP, composto da 32 bit, che per il momento, possiamo pensare che identificano univocamente un host. Il processo mittente deve anche identificare il processo destinatario, più specificatamente, la socket che deve ricevere il dato. Un numero di porta di destinazione assolve questo compito. Alle applicazioni più note sono stati assegnati numeri di porta specifici.

2.1.3 Servizi di trasporto disponibili per le applicazioni