1. Establish the following inequality by using the **Triangle Inequality**. $||a| - |b|| \le |a - b|$ (hint: add 0)

Proof. By Triangle Inequality,

$$|a| = |a - b + b| < |a - b| + |b|$$
 and $|b| = |b - a + a| < |b - a| + |a|$

Then adding the inequalities above implies

$$|a| - |b| \le |a - b|$$
 and $-|a - b| \le |a| - |b|$

Combining those, we get

$$-|a-b| \le |a| - |b| \le |a-b|$$

Thus, by definition of absolute value function, $||a| - |b|| \le |a - b|$.

- 2. Fill in the blanks.
 - (a) Let A be a nonempty set. A real number a is the **infimum** of A, written a = inf(A) if and only if:

a is a lower bound of A. If b is any lower bound of B, then $b \leq a$.

(b) Let A be a nonempty set. A real number a is the **sumpremum** of A, written x = sup(A) if and only if:

x is a upper bound of A. If b is any upper bound of A, then $x \leq b$.

(c) State the Archimedian Property: If x is a real number, then either x is an integer or there exists an integer n such that

$$n - 1 \le x < n$$

3. Let A = (1,3). State the supremum of A and prove it.

Proof.
$$sup(A) = 3$$
.

By definition of open interval, $A = \{x \in \mathbb{R} : 1 < x < 3\}$. Then 3 is the upper bound of A. Suppose a is any upper bound of A and a < 3. By axiom 1, since $a, 3 \in \mathbb{R}$ and a < 8, then there is a number b between them such that a < b < 3 contradicting that a is any upper bound. Thus, by contradiction, if a is any upper bound of A, then $3 \le A$. Therefore, by definition of supremum, sup(A) = 3.

4. Let M be a set and suppose that x is a lower bound for M. Prove that $x = \inf(M)$ if and only if for every $\epsilon > 0$, there exists $y \in M$ such that $y < x + \epsilon$.

Proof. \Rightarrow Suppose x = inf(M) and $\epsilon > 0$. Then $x + \epsilon > x$. Thus, $x + \epsilon$ is not a lower bound for M and by definition of lower bound, there exists $y \in M$ such that $y < x + \epsilon$. \Leftarrow Suppose x is a lower bound for M and for every $\epsilon > 0$ there exists $y \in M$ such that $y < x + \epsilon$. Suppose b is a lower bound and x < b. Then equivalently y < b. This contradicts the assumption that b is a lower bound. Thus, x = inf(M).

5. Let A be bounded below, $B = \{b \in \mathbb{R} : b \text{ is a lower bound of A } \}$. Show that sup(B) = inf(A).

Proof. By definition of B, for any $b \in B$, b is a lower bound of A. By definition of infimum, $inf(A) \in B$ and $b \le inf(A)$. Then inf(A) is an upper bound of B. Let $c \in \mathbb{R}$ be any upper bound of B such that c < inf(A). Since $inf(A) \in B$ contradicting that c is an upper bound. Thus, $c \ge inf(A)$ and by definition of supremum, sup(B) = inf(A).

- 6. Fill in the blanks.
 - (a) Set $A \subset \mathbb{R}$ is **bounded** if and only if there exists a number C such that $|a| \leq C$ for all $a \in A$.
 - (b) A sequence (a_n) is **increasing** if and only if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
 - (c) A sequence (a_n) is **monotone** if it is either increasing or decreasing.

7. Prove that if a sequence is monotone and bounded, then it converges.

hint1: considering two cases, increasing and decreasing.

hint2: how to use question 3's result?

Proof. Suppose a sequence $A = \{a_n | n \in \mathbb{N}\}$ that is monotone and bounded. Since A has an upper-bound, by axiom of completeness, there exists $s = \sup(A)$. By Ex13, for some $N \in \mathbb{N}$,

$$a_N > s - \epsilon$$

Assuming that (a_n) is increasing, for all $n \ge N$,

$$a_n \geqslant a_N$$

for all $a_n \in A$, since s is an upperbound of a_n ,

$$s \geqslant a_n \text{ implies } s + \epsilon > s \geqslant a_n \geqslant a_N > s - \epsilon$$

Thus, $|a_n - s| < \epsilon$ for all $n \le N$, by def of convergence, $A = \{a_n | n \in \mathbb{N}\}$ converges when A is increasing. Similarly, when A is decreasing, consider i = inf(A), by property of infimum, definition of decreasing, and question 4, for all $n \ge N$,

$$i - \epsilon < s \leqslant a_n \leqslant a_N < i + \epsilon$$

Thus, $|a_n - i| < \epsilon$ for all $n \le N$, by def of convergence, $A = \{a_n | n \in \mathbb{N}\}$ converges when A is decreasing. Therefore, combining both cases, $A = \{a_n | n \in \mathbb{N}\}$ converges. \square

8. Prove that Cauchy sequences are bounded.

Proof. Let (a_n) be a cauchy sequence. Let $\epsilon = 1$, by definition of cauchy, there exists N such that for every m, n > N, $|a_n - a_m| < \epsilon = 1$. Let m be some Mth term in the sequence. Then by triangle inequality,

$$|a_n| = |a_n - a_m + a_m| \le |a_n - a_m| + |a_m| < 1 + |a_M|$$

Then, $|a_n| \leq max\{|a_1|, |a_2|,, |a_{M-1}|, 1+|a_M|\}$ for all n. Thus, we can find a constant c in $max\{|a_1|, |a_2|,, |a_{M-1}|, 1+|a_M|\}$ such that $|a_n| \leq c$, and therefore, the cauchy sequences are bounded.

9. State the definition of **continuity** and **uniform continuity**. Briefly explain what is the difference between the definitions and proofs.

A function f is continuous at the point x = c if for every sequence $(a_n)_{n=1}^{\infty}$ that converges to c, the sequence $(f(a_n))_{n=1}^{\infty}$ converges to f(c). If a function is continuous at every point of some set S, we say f is continuous on S.

A function f is continuous at a point x if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(y) - f(x)| < \epsilon$ for all y such that $|x - y| < \delta$.

A function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on a set A if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|x-y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Continuity of a function on an interval refers to that it is continuous at each point of the interval. However, uniform continuity refers a global property of a function.

When proving, for continuous at a point, we will first choose a point c, an $\epsilon > 0$, and let $\delta = \delta(\epsilon, c)$ so that we assume for any x, $|x-c| < \delta$. But for uniform continuity, we choose $\epsilon > 0$ and $\delta = \delta(\epsilon)$. Then suppose that for any $x, x_0, |x - x_0| < \delta$.

- 10. Determine the following statement is true or false and give a brief explanation on your choices.
 - (a) If a function is continuous on [a, b], then it is differentiable on [a, b]. False. Consider the function f = |x| at x = 0.
 - (b) If a function is differentiable on [a,b], then it must be continuous on [a,b]. True. $\lim_{x\to c} f(x) f(c) = \lim_{x\to c} \frac{f(x) f(c)}{x-c}(x-c) \to f'(c) * 0 = 0$.

True.
$$\lim_{x \to c} f(x) - f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} (x - c) \to f'(c) * 0 = 0.$$

(c) If a function f is differentiable on [a, b], then f'(x) must be continuous. False. Consider the categories of C^0 functions to C^{∞} functions.

11. prove that $\lim_{x \to 1} x + 2 = 3$.

Proof. Let $\epsilon > 0$. $(a_n) \to 1$ and $(a_n) \neq 1$. By definition of convergence, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - 1| < \epsilon$, Then

$$|a_n + 2 - 3| = |a_n - 1| < \epsilon$$

Thus, f(x) converges to 3 and $\lim_{x\to 1} x + 2 = 3$.

12. Let $f(x) = x^2 + 2$. Use the definition to prove that f'(-3) = -6.

Proof. Let $(a_n) \in D$ be a sequence and $-3 \in D$ such that $(a_n)_{n=1}^{\infty} \to -3$ and $(a_n)_{n=1}^{\infty} \neq -3$. Then,

$$f'(c) = \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 + 2) - (3^2 + 2)}{a_n + 3}\right)_{n=1}^{\infty} = \left(\frac{((a_n)^2 - 9)}{a_n + 3}\right)_{n=1}^{\infty} = (a_n - 3)_{n=1}^{\infty}$$

Since
$$(a_n)_{n=1}^{\infty} \to -3$$
, $(a_n)_{n=1}^{\infty} - 3 \to -3 - 3 = -6$. Thus, $f'(c) \to -6$.

13. State any one of the **derivative rules** and prove it. (Possible choices: Product Rule, Quotient Rule, Chain Rule, etc).

Proof. Want to Prove: Let α be a constant, and let $f:[a,b] \to \mathbb{R}$ be a differentiable function on the set (a,b). Define $h(x) = \alpha f(x)$ for all $x \in [a,b]$. Then h(x) is differentiable on (a,b) and that $h'(x) = \alpha f'(x)$ for all $x \in (a,b)$.

Since f is differentiable on (a, b), let (a_n) be a sequence in [a, b] such that $(a_n) \to c$ with $a_n \neq c$ for all $n \in \mathbb{N}$, then,

$$\alpha f'(x) = \alpha \left(\frac{f(a_n) - f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{\alpha f(a_n) - \alpha f(c)}{a_n - c}\right)_{n=1}^{\infty} = \left(\frac{h(a_n) - h(c)}{a_n - c}\right)_{n=1}^{\infty} = h'(x)$$

Since f is differentiable over (a, b), $\alpha f(x)$ is differentiable over (a, b). Since, $\alpha f'(x) = h'(x)$, h is differentiable over (a, b).

- 14. State what the following theorems mean.
 - (a) Intermediate Value Theorem: If f is a continuous function on [a, b], let s be a number with f(a) < s < f(b). Then, there exists some x between a and b such that f(x) = s.
 - (b) Extreme Value Theorem: If f is continuous on [a, b], then there exist numbers c and d in [a, b] such that for any $x \in [a, b]$ $f(c) \leq f(x) \leq f(d)$
 - (c) Mean Value Theorem: If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then there exists a point $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}.$
- 15. Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a)=f(b), prove there exists a point $c\in(a,b)$ such that f'(c)=0.

Proof. By extreme value theorem, since f is continuous, f has both max and min on [a,b]. If either max or min is at a or b, then since f(a)=f(b), the function is a constant function with f'(c)=0 for any $c\in(a,b)$. Else, if max and min are not at a or b, by Ex65, the derivative at the max or min is 0. Thus, there exists $c\in(a,b)$ which is max or min such that f'(c)=0.

- 16. State the definitions.
 - (a) We say that a number s is a Riemann sum for a bounded function f on [a,b] over the partition $P=t_0,t_1,...,t_n$ of [a,b] if there exists a finite sequence of numbers $x_1,x_2,...,x_n$ such that $x_i \in [t_{t-1},t_i]$ for i=1,2,...,n and $s=\sum_{i=1}^n f(x_i)(t_i-t_{i1})$
 - (b) We say that $U_P f$ is an upper Riemann sum for a bounded function f on [a, b] over the partition $P = t_0, t_1, ..., t_n$ of [a, b] if there is a finite sequence of numbers $y_1, y_2, ..., y_n$ such that for each positive integer i: $U_P f = \sum_{i=1}^n \sup\{f(x) : x \in [t_{i1}, t_i]\}(t_i t_{i-1})$
 - (c) The upper Riemann integral of a bounded function f on the interval [a,b] is defined to be $U\int_a^b f = \inf\{U_P f: P \text{ is a partition of } [a,b]\}$

17. Assume that P and Q are partitions of the interval [a,b] and that f is a bounded function on [a,b]. Further assume that Q is a refinement of P. Determine whether $L_Q f \leq L_P f$, or $L_Q f \geq L_P f$. Then prove your assertion.

 $L_Q f \geq L_P f$. Let P be a partition of [a, b] such that $P = \{p_1, p_2, ..., p_n\}$ for i = 1, 2, 3, ..., n, and f be a bounded function on [a, b]. Let Q be a partition of [a, b] such that $Q = P \cap [p_{i-1}, p_i] = q_0 = p_{i-1}, q_1, q_2, ..., q_{m-1}, q_m = p_i$ for j = 1, 2, 3, ..., m. Then, by infinmum properties, $\inf\{f(x) : x \in [q_{j-1}, q_j]\} \geq \inf\{f(x) : x \in [p_{i-1}, p_i]\}$. Also, since $\sum_{q=1}^n (q_i - q_{i-1}) = |a - b| = \sum_{p=1}^n (p_i - p_{i-1})$,

$$L_Q f = \sum_{j=1}^m \inf\{f(x) : x \in [q_{j-1}, q_j]\}(q_j - q_{j-1}) \ge \sum_{q=1}^m \inf\{f(x) : x \in [p_{i-1}, p_i]\}(q_j - q_{j-1})$$

$$= \inf\{f(x) : x \in [p_{i-1}, p_i]\} \sum_{j=1}^{m} (q_j - q_{j-1}) = \inf\{f(x) : x \in [p_{i-1}, p_i]\} (p_i - p_{i-1})$$

$$\geq \sum_{i=1}^{n} \inf\{f(x) : x \in [p_{i-1}, p_i]\}(p_i - p_{i-1}) = L_P f$$

Thus, $L_Q f \geq L_P f$ if Q is a refinement of P.

18. Prove the following statement: If f is Riemann integrable on [a, b] then for every $\epsilon > 0$ there exists a partition P such that $U_P f - L_P f < \epsilon$

Proof. Let $\epsilon > 0$. For some partition R, Q on [a, b], by Question 4's result and other properties related to question 4's result

$$U\int_{a}^{b} f + \frac{\epsilon}{2} > U_{R}f$$

$$L\int_{a}^{b} f - \frac{\epsilon}{2} < L_{Q}f \text{ implies } -L\int_{a}^{b} f + \frac{\epsilon}{2} > L_{R}f$$

Since f is Riemann integrable, $U \int_a^b f = L \int_a^b f$. Adding together, we get

$$U\int_{a}^{b}f+\frac{\epsilon}{2}-L\int_{a}^{b}f+\frac{\epsilon}{2}>U_{R}f-L_{Q}f$$
 implies $U_{R}f-L_{Q}f<\epsilon$

Let P be a partition such that $P = R \cup Q$, then, P is a refinement of R and Q. Thus, by question 17 and other properties related to question 17,

$$U_P f - L_P f \le U_R f - L_Q f < \epsilon$$

Thus, such partition exists.

19. Prove that a constant function f(x) = 1 on [0,1] is Riemann integrable such that $\int_0^1 1 dx = 1$.

Proof. Let P be a partition of [a,b] such that $P = \{0 = p_1, p_2, ..., p_n = 1\}$ for i = 1, 2, 3, ..., n and $\sum_{p=1}^{n} (p_i - p_{i-1}) = (b - a) = 1$. Since f is constant, $\sup\{f(x) : x \in [p_{i-1}, p_i]\} = \inf\{f(x) : x \in [p_{i-1}, p_i]\} = 1$, then

$$U_P f = L_P f = 1 * \sum_{i=1}^{n} (p_i - p_{i-1}) = 1 - 0 = 1$$

Thus, by definition, f is Riemann integrable such that $\int_0^1 1 dx = 1$.