Introducción Estado del arte Solucion Conclusiones Tests y resultados References Siglas

Reverse Proxy con capacidades de Firewall de aplicación web y aceleración TLS

Alumno: Pedro Pozuelo Rodríguez Directora: Ana del Valle Corrales Paredes

> Universidad Europea Proyecto de Fin de Grado

9 de julio de 2019

Agenda

- Introducción:
 - Aplicaciones web y la seguridad.
 - Qué es un Web Application Firewall (WAF).
 - Comunicaciones cifradas. Transport Layer Security (TLS).
- Situación actual. Estado del arte:
 - Soluciones WAF privativas.
 - Soluciones WAF de software libre.
 - Uso de HTTP / HTTPS.
- Solución.
 - Objetivo.
 - Diseño.
 - Arquitectura.
- Conclusiones.
- Test y resultados.

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Estándares y protocolos
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Uso de HTTP v HTTPS
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- Conclusiones
- Tests y resultado:

Siglas

Aplicaciones web y la seguridad

Premisa

La seguridad 100 % no existe.

Las aplicaciones web están siendo atacadas continuamente.

Figura: Ataques en capa de aplicación (fuente Arbor [1])

Conclusión

Se debe realizar un esfuerzo continuo para mejor la seguridad de las plataformas web.

Vulnerabilidades en plataformas web

Existen múltiples vulnerabilidades en las plataformas web (referencia *Open Web Application Security Project*, OWASP [2]).

Figura: Tipo de Vulnerabilidades por Impacto [3]

Histórico del riesgo

Muchas de estas vulnerabilidades están presentes en el Top 10 de vulnerabilidades OWASP desde 2007 y existen controles que permiten mitigar el riesgo.

Vulnerabilidades recientes en canales cifrados

Otro componente en el que se han descubierto múltiples vulnerabilidades críticas son los canales SSL/TLS.

Vulnerabilidad	Componente afectado
POODLE	SSL ver. 3.0
BEAST	TLS ver. 1.0
CRIME	TLS compression
BREACH	HTTP compression
Heartbleed	OpenSSL ver. 1.0.1

Conclusión

La solución, en la mayoría de de los casos, consiste en desactivar las versiones o el componente afectados y el riesgo de afectar la funcionalidad de la plataforma es bajo (dependiendo del entorno).

Soluciones. I

Como respuesta a éstas y otras vulnerabilidades existen múltiples soluciones:

- Desarrollo de código seguro: metodologías de desarrollo seguro de aplicaciones, herramientas de análisis de código. Retos:
 - Costes en tiempo y recursos
 - Conocimiento y herramientas.
 - Nuevas vulnerabilidades no están consideradas.
- Aplicar un ciclo de vida de aplicaciones: Aplicar actualizaciones y configuración segura de aplicaciones. Retos:
 - El objetivo es que la aplicación dé servicio. Los demás aspectos son secundarios.

Soluciones, II

- Una actualización puede afectar al entorno.
- chmod 777 o iptables -A INPUT -j ACCEPT funcionan.
- Herramientas de protección perimetral de red: Firewall de red, Sistema de Prevención de Intrusos.
 Reto:
 - Desconoce la lógica de aplicación. Lógica limitada a las capas
 3 y 4 de red o firmas (cadenas de texto).
 - Mínima visibilidad con el tráfico cifrado.
- Herramientas de protección perimetral de aplicación. Reto: Elevado coste o complejo de mantener.

Estándares y protocolos

Existen múltiples iniciativas cuyo objetivo es mejorar la seguridad de las aplicaciones web:

- Metodología del Ciclo de Vida de Desarrollo de Software (SDLC del inglés).
- Estándares como el Payment Card Industry Data Security Standard (PCI DSS [4]).
- TLS versión 1.3.
- HTTP/2.
- TLS Server Name Indication (SNI [5]).
- Security Headers.

Uso e implementación

Estas Herramientas están disponibles y ofrecen mecanismos válidos para mejorar la seguridad de las plataformas web pero su implementación puede ser compleja o tener un elevado coste.

Uso e implementación

Las alternativas implican un coste elevado, implementar soluciones complejas o aceptar el riesgo de seguridad. Y el resultado es el siguiente:

Figura: Tráfico HTTP versus HTTPS [6]

Figura: Máxima versión SSL/TLS soportada [6]

Uso e implementación

Se ha elegido la versión SSL/TLS como ejemplo de un vector de ataque conocido popularmente cuya mitigación es sencilla.

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Estándares y protocolos
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Uso de HTTP v HTTPS
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- 4 Conclusiones
- Tests y resultado:

Siglas

Introducción
Estado del arte
Solucion
Conclusiones
Tests y resultados
References

Soluciones WAF privativas Soluciones WAF de software libre Uso de HTTP y HTTPS

Soluciones WAF privativas

Soluciones WAF privativas Soluciones WAF de software libre Uso de HTTP y HTTPS

Soluciones WAF de software libre

Soluciones WAF privativas Soluciones WAF de software libre Uso de HTTP y HTTPS

Uso de HTTP y HTTPS

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Estándares y protocolos
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Uso de HTTP v HTTPS
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- 4 Conclusiones
- Tests y resultado

Siglas

Objetivo

Diseño

Componentes

Objetivo Diseño Arquitectura

Arquitectura

Introducción Estado del arte Solucion Conclusiones Tests y resultados References Siglas

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Estándares y protocolos
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Uso de HTTP v HTTPS
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- 4 Conclusiones
- Tests y resultados

Siglas

Introducción
Estado del arte
Solucion
Conclusiones
Tests y resultados
References

Conclusiones

Introducción Estado del arte Solucion Conclusiones Tests y resultados References Siglas

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Estándares y protocolos
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Uso de HTTP v HTTPS
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- 4 Conclusiones
- Tests y resultados

Siglas

Introducción
Estado del arte
Solucion
Conclusiones
Tests y resultados
References

Tests y resultados

Introducción
Estado del arte
Solucion
Conclusiones
Tests y resultados
References

Ruegos y preguntas

¿Preguntas?

Referencias I

- Dr. Gulshan Kumar Ahuja. «Denial of service attacks an updated perspective». En: Systems Science and Control Engineering 4 (ene. de 2016), págs. 285-294. DOI: 10.1080/21642583.2016.1241193.
- Open Web Application Security Project. *OWASP Top 10*. URL: https://www.owasp.org/images/5/5e/OWASP-Top-10-2017-es.pdf.
- Vicente Aguilera Díaz. Controles técnicos de seguridad para la protección de aplicaciones web
 - . URL: http://www.vicenteaguileradiaz.com/pdf/SIC94_Seguridad_Aplicaciones_OWASP.pdf.

Referencias II

TLS compatibility with PCI DSS (Payment Card Industry Data Security Standard)

. URL: https://blog.wao.io/tls-compatibility-with-pci-dss/.

Wikipedia. Server Name Indication

. URL: https:

//es.wikipedia.org/wiki/Server_Name_Indication.

Hashed Out Blog. Nearly 21 % of the world's top 100,000 websites still aren't using HTTPS

. URL: https://www.thesslstore.com/blog/nearly-21-of-the-worlds-top-100000-websites-still-arent-using-https/.

Referencias III

Wikipedia. Systems Development Life Cycle

. URL: https://es.wikipedia.org/wiki/Systems_ Development_Life_Cycle.

Introducción Estado del arte Solucion Conclusiones Tests y resultados References Siglas

Glosario I

OWASP Open Web Application Security Project. 5, 25

SDLC Systems Development Life Cycle[7, Wikipedia]. 9

