Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Primer Semestre de 2022

IIC 2213 - Lógica para ciencia de la Computación

Tarea 6 - Entrega Martes 28 de Junio a las 20:00 - via canvas

Recuerda que esta tarea es individual. Puedes discutir sobre la respuesta con tus compañeros (¡y eso está muy bien!), pero no puedes enviar la respuesta a nadie o utilizar la respuesta de alguien más. Con esta tarea vas a poder aprender más sobre las ventajas y desventajas de la lógica para modelar procesos computacionales.

Pregunta 1 Sean \mathfrak{A} y \mathfrak{B} estructuras sobre algún vocabulario \mathcal{L} . Decimos que \mathfrak{A} y \mathfrak{B} son lógicamente equivalentes si para toda \mathcal{L} -oración φ se tiene que $\mathfrak{A} \models \varphi$ si y solo si $\mathfrak{B} \models \varphi$.

Considera ahora el vocabulario $\mathcal{L} = \{\oplus, <, 0, 1\}$, donde 0 y 1 son constantes, \oplus es una relacion de aridad tres y < es una relación binaria, y la estructura \mathfrak{N} definida así: el dominio de \mathfrak{N} son los números naturales, el conjunto $\oplus^{\mathfrak{N}}$ contiene todos triples (a, b, c) tal que a + b = c, el conjunto $<^{\mathfrak{N}}$ contiene todos los pares (a, b) tal que a es menor que b; y $0^{\mathfrak{N}}$ es el número 0 y $1^{\mathfrak{N}}$ es el número 1.

Demuestra que existe una \mathcal{L} -estructura \mathfrak{S} que es lógicamente a \mathfrak{N} , y tal que el dominio de \mathfrak{S} contiene a los números naturales, pero que además \mathfrak{S} tiene un elemento que es mayor que cualquier número natural. Nota que \mathfrak{S} podría tener más elementos aún; tu deber no es construir \mathfrak{S} si no que demostrar que existe.

Pregunta 2 En esta pregunta usamos el vocabulario $\mathcal{L} = \{R(\cdot, \cdot)\}$ con una sola relación binaria. El álgebra de relaciones consta de una serie de primitivas para definir nuevas relaciones binarias sobre \mathcal{L} -estructuras. Específicamente, las expresiones de este álgebra se definen inductivamente como sigue:

- \blacksquare R, I y Z son expresiones de este álgebra
- Si α y β son expresiones, entonces
 - $\alpha \circ \beta$ es una expresión,
 - $\alpha \cap \beta$ es una expresión,
 - $\alpha \cup \beta$ es una expresión, y
 - $\bar{\alpha}$ v α^{-1} también son expresiones

Cada expresión genera, al ser evaluada sobre una \mathcal{L} -estructura, una nueva relación binaria. En otras palabras, dado una \mathcal{L} -estructura $\mathfrak{A} = \langle A, R^{\mathfrak{A}} \rangle$ y una expresión α , la evaluación de α sobre \mathfrak{A} , denotado como $\alpha(\mathfrak{A})$ es una relación binaria sobre A definida de la siguiente forma:

- Si $\alpha = R$ entonces $\alpha(\mathfrak{A}) = R^{\mathfrak{A}}$.
- Si $\alpha = I$ entonces $\alpha(\mathfrak{A}) = \{(a, a) \mid a \in A\}.$
- Si $\alpha = Z$ entonces $\alpha(\mathfrak{A}) = \emptyset$.

- Si $\alpha = \gamma \circ \beta$ entonces $\alpha(\mathfrak{A}) = \{(a,b) \mid \text{ existe } c \text{ tal que } (a,c) \in \gamma(\mathfrak{A}) \land (c,b) \in \beta(\mathfrak{A})\}.$
- Si $\alpha = \gamma \cap \beta$ entonces $\alpha(\mathfrak{A}) = \gamma(\mathfrak{A}) \cap \beta(\mathfrak{A})$.
- Si $\alpha = \gamma \cup \beta$ entonces $\alpha(\mathfrak{A}) = \gamma(\mathfrak{A}) \cup \beta(\mathfrak{A})$.
- Si $\alpha = \bar{\beta}$ entonces $\alpha(\mathfrak{A}) = \{(a,b) \mid (a,b) \notin \beta(\mathfrak{A})\}.$
- Si $\alpha = \beta^{-1}$ entonces $\alpha(\mathfrak{A}) = \{(a,b) \mid (b,a) \in \beta(\mathfrak{A})\}.$
- a) (3 ptos.) Muestre que toda expresión del algebra relacional es definible en lógica de primer orden. Es decir, demuestra que para cada expresion α del álgebra de relaciónes existe una fórmula en lógica de primer orden $\varphi_{\alpha}(x,y)$ con dos variables libres tal que para toda \mathcal{L} -estructura \mathfrak{A} se tiene que un par (a,b) está en $\alpha(\mathfrak{A})$ si y solo si $(\mathfrak{A}, \tau[x \leftarrow a, y \leftarrow b]) \models \varphi$.
- b) (3 ptos.) Para esta pregunta considera además el operador $\gamma|\beta$, cuya semántica es la siguiente. Si $\alpha = \gamma|\beta$ entonces $\alpha(\mathfrak{A}) = \{(a,b) \mid \text{ existen } c,d \in A, (a,c) \in \gamma(\mathfrak{A}), (d,b) \in \beta(\mathfrak{A})\}$. Sea $\varphi(x,y)$ una consulta conjuntiva sin inigualdades, y asume que todas las variables en φ que están cuantificadas con un \exists aparecen en un máximo de dos relaciones atómicas en φ^1 . Muestra como construir una expresión del álgebra de relaciones α tal que $\alpha(\mathfrak{A}) = \{(a,b) \mid \mathfrak{A} \models \varphi(a,b)\}$. Explica por qué esa construcción nunca necesita de los operadores \emptyset , $\bar{\alpha}$, ni \cup (aunque si necesita el operador |).

Formato de entrega Por canvas, cada pregunta se entrega en un buzón separado.

¹Por ejemplo, en $\exists z R(x,z) \land R(y,z)$ z está cuantificada y aparece dos veces. En cambio en $\exists z \exists w R(x,z) \land R(y,z) \land R(w,z)$ la variable z aparece tres veces.