Bangzhu Zhu

In [101]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

(a)

In [3]:

```
df.totalprice[(df.totalprice>400000)&(df.garage==1)].count()
```

Out[3]:

6

there are 6 one-garage apartments have a totalprice greater than 400,000 euros

(b)

In [23]:

```
import matplotlib.pyplot as plt
import seaborn as sns
fig = plt.figure(figsize=(6, 3))
sns.distplot(df.totalprice[1:],bins=50)
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a238f6240>

In [31]:

```
from scipy.stats import norm
mean = np.mean(df.totalprice)
sv = np.std(df.totalprice,ddof=1)
b = norm.cdf(300000,loc=mean,scale=sv)
a = 1-b
a
```

Out[31]:

0.39054215697577643

probability that totalprice exceeds 300000 is 0.391

In [32]:

```
df1=df._get_numeric_data()
df1.cov()
```

Out[32]:

	totalprice	area	age	floor	rooms	toile
totalprice	4.802276e+09	1.162639e+06	-275569.809042	4306.929479	23103.901095	23829.32973
area	1.162639e+06	4.298508e+02	-15.815009	3.600908	8.392216	6.48493
age	-2.755698e+05	-1.581501e+01	213.031243	-2.522175	-0.766034	-2.04933
floor	4.306929e+03	3.600908e+00	-2.522175	4.524077	0.175538	0.11098
rooms	2.310390e+04	8.392216e+00	-0.766034	0.175538	0.402317	0.13351
toilets	2.382933e+04	6.484930e+00	-2.049338	0.110980	0.133514	0.25011
garage	1.636451e+04	3.286218e+00	-1.408532	-0.029214	0.058893	0.10231
elevator	1.424412e+04	3.291590e+00	-2.402951	0.172240	0.090052	0.09026
storage	7.536747e+03	1.274237e+00	-1.581744	-0.103708	0.008456	0.04447

In [33]:

```
df1.corr()
```

Out[33]:

	totalprice	area	age	floor	rooms	toilets	garage	elevator
totalprice	1.000000	0.809213	-0.272450	0.029220	0.525627	0.687571	0.523742	0.510939
area	0.809213	1.000000	-0.052262	0.081656	0.638166	0.625425	0.351541	0.394643
age	-0.272450	-0.052262	1.000000	-0.081243	-0.082745	-0.280751	-0.214034	-0.409242
floor	0.029220	0.081656	-0.081243	1.000000	0.130113	0.104329	-0.030462	0.201292
rooms	0.525627	0.638166	-0.082745	0.130113	1.000000	0.420892	0.205930	0.352912
toilets	0.687571	0.625425	-0.280751	0.104329	0.420892	1.000000	0.453729	0.448640
garage	0.523742	0.351541	-0.214034	-0.030462	0.205930	0.453729	1.000000	0.271774
elevator	0.510939	0.394643	-0.409242	0.201292	0.352912	0.448640	0.271774	1.000000
storage	0.267358	0.151086	-0.266408	-0.119861	0.032771	0.218621	0.156053	0.211845

(d)

In [36]:

```
plt.scatter(df['area'], df['totalprice'],s=3)
plt.ylabel('totalprice')
plt.xlabel('area')
plt.grid()
```



```
In [63]:
```

```
from sklearn import linear model
reg = linear_model.LinearRegression()
y = df['totalprice']
x = pd.DataFrame(df['area'])
reg.fit(x,y)
y_pred=reg.predict(x)
n=df.shape
outlier = 0
row = 0
for i in range(0,n[0]):
               a=abs(y_pred[i]-y[i])
               if a>outlier:
                outlier=a
                row=i+1
row
Out[63]:
44
In [65]:
outlier
Out[65]:
156125.62381751765
In [100]:
df.totalprice[44-1]
Out[100]:
178000.0
In [99]:
df.area[44-1]
```

```
Out[99]:
```

108.4400024

row number, area and totalprice is 44, 108.44, 178000

(e)

In [91]:

```
df['category'].loc[df['category'] == '2A'] = 2
df['category'].loc[df['category'] == '2B'] = 2
df['category'].loc[df['category'] == '3A'] = 3
df['category'].loc[df['category'] == '4A'] = 4
df['category'].loc[df['category'] == '4B'] = 4
df['category'].loc[df['category'] == '5A'] = 5
df['category'].loc[df['category'] == '5B'] = 5
```

In [93]:

```
df.pivot_table('totalprice',index='category',aggfunc=np.median)
```

Out[93]:

totalprice

category

- 2 345500.0
- 3 279000.0
- 4 224000.0
- **5** 183000.0