

Arquitecturas para tratar grandes volúmenes de información

Procesamiento de Datos a Gran Escala

Arquitecturas para tratar grandes volúmenes de información

Temal Arquitecturas de referencia para Big Data

- Necesidades de los entornos de procesamiento para Big Data.
- Infraestructura: servidores físicos (On Premise) versus virtual (Cloud)
- Elementos básicos: CPUs, almacenamiento, interconexión, GPUs, coprocesadores.
- Optimización para sistemas que tratan grandes volúmenes de información.
- Nuevas tendencias de computación.
- Casos de estudios: optimizando el rendimiento.

Necesidades de los sistemas para Big Data

Infraestructura que procesen:

- Gran volumen de información.
- Con variedad de datos.
- Velocidad de llegada.

Gestionando toda la vida del dato desde su captura/preparación/enriquecimiento hasta su análisis/modelización/mantenimiento.

Necesidades para Big Data: Números de crecimiento

Volumen

La tasa de crecimiento anual prevista es del 41%

Necesidades para BigData: Retos

Almacenar, procesar de forma efectiva gran cantidad y variedad de datos controlando el coste y de manera escalable para alcanzar conocimiento.

Arquitectura de los sistemas para BigData

Línea temporal de las tecnologías para Big data

Sistema robusto tolerante a fallos, que sea linealmente escalable y que permita realizar escrituras y lecturas con baja latencia =>Arquitectura lambda

Necesidades actuales de computación

- Ámbito de aplicabilidad de los sistemas más exigente:
 - Big Data and High Performance Analytics
 - Data-centric Computing
- □ ¿ Son necesarias nuevas arquitecturas?
 - Realizar la computación mas cerca de los datos.

Tendencias en computación de altas prestaciones

- Evolución de los procesadores para la era Exascale
 - Evitar dependencia de factores tecnológicos
 - Arquitecturas caracterizadas por llevar la computación mas cerca de los datos
 - Nuevas tecnologías de memoria y empaquetamiento.

- Nodos con arquitectura heterogénea interconectados con redes.
- Explotar el paralelismo: ILP, TLP, Paralelismo de datos, Cluster, Grid Computing, Cloud Computing
- Eficiencia en coste y consumo de potencia.

Entornos (Frameworks) para procesamiento de grandes volúmenes de información

- Frameworks para Big Data: Hadoop MapReduce y Spark son actualmente los entornos de ejecución más populares
- Hadoop Distributed File System (HDFS) es el sistema de ficheros que está por debajo de Hadoop, Spark, y la base de datos Hbase (Hadoop database)
- Hoy en día, se utilizan a nivel de explotación en organizaciones como: Facebook, Yahoo!,...

Sistemas para BigData, HPC y Deep Leaning

Influencias entre High Performance Computing(HPC), Big Data, y Deep Learning (DL)

Deep Learning (DL) es un subconjunto de Machine Learning (ML), que está revolucionando los entornos de Big Data

Infraestructura de los sistemas para BigData:

Sistemas para BigData: Flexibilidad de la infraestructura

Sistemas para BigData: Flexibilidad de la infraestructura

Virtualización de plataformas

Performance Comparison of Hardware Virtualization Platforms. Daniel Schlosser et. al. 2011

Sistemas para BigData: Físico vs Virtual

Servidores Físicos

Servidores Virtuales

- Servidor físico dedicado (Intel x86) para un cliente, que no es accedido ni compartido por otros.
- Se puede usar con un hipervisor, un sistema operativo, un appliance virtual, o con una imagen cualquiera subida por el consumidor.
- Discos internos de diferentes tipos, y diferentes RAID.
- Desplegado entre 30 minutos y 4 horas.

- Pueden ser en entorno compartido o dedicado, según si comparten recursos con servidores de otros cliente.
- Desplegado en segundos.
- Responsabilidad sobre el Sistema Operativo.
- Facilidad de gestión.

Ventajas de los contenedores:

- Mayor rapidez de despliegue, arrangue y escalado
- Menor consumo de recursos
- Máxima portabilidad entre entornos y sistemas

Máquinas virtuales

Contenedores Docker

Sistemas para BigData: On Premise vs Cloud

Sistemas para BigData: Servidores en "Bare Metal" o Virtuales

Multicomputador: Arquitectura de referencia

- Multicomputador = Nodos + Red de Interconexión.
 - Nodo = procesador(es) + memoria local
 - El acceso a memoria local es rápido, porque no involucra conexión de red (acceso a memoria convencional en sistema uniprocesador)
 - > El acceso a memoria remota es lento, involucra conexión de red, con mecanismos de I/O y comunicación (send/receive)

Arquitectura de un cluster para HPC (High Performance Cluster)

Muchos nodos de computación conectados con red de alto rendimiento

Sistema para Bigdata: Arquitectura de referencia

Carácterísticas del sistema

- Cluster con topología híbrida de una arquitectura tipo Beowulf con nodos adicionales para I/O.
- Nodos de computo con SO versión ligera; memoria ampliada y almacenamiento local pequeño.
- Sub-cluster de nodos dedicados para I/O con un sistema de ficheros paralelo, (en la figura Lustre)
- HDFS en almacenamiento heterogéneo: RAMDisk, SSD, HDD estructurados en RAID, JBOD,...

Cluster Hadoop

- Cluster creado con commodity Hardware;
 - Nodos inicalmente eran PCs
 - > 30-40 nodos/rack
 - Red a1 gigabit/s en rack

HDFS: Hadoop Distributed File System

- Sistema de Ficheros distribuido muy grande
 - 10K nodos, 100 millones de ficheros 10PB
- Realizado con "Commodity Hardware"
 - Ficheros replicados para tolerancia a fallos
 - Detecta fallos y recupera los datos.
- Optimizado para proceso por lotes ("Batch Processing").
 - Expone la localización de los datos y así permite que la computación se pueda llevar cerca de los datos.
 - El ancho de banda agregado es muy alto.

Infraestructura: Características de los componentes base

- Sistema multiprocesador/multicore con memoria compartida NUMA.
- Componentes de un cluster:
 - Procesador: Multi-core/many-core con Hyperthreading.
 - Almacenamiento:
 - Memoria (DDR4, Flash, 3D Xpoint)
 - HDDs, Solid State Disks (SSDs),
 - Non-Volatile Random-Access Memory(NVRAM), y NVMe SSD.
 - Red de Interconexión con RDMA (Remote DirectMemoryAccess) networking
 - InfiniBand y RoICE (RDMA over Converged Enhanced Ethernet)
 - Aceleradores
 - NVIDIA GPGPU,
 - IntelXeon Phi,
 - FPGA

Multi-core Processors

High Performance Interconnects -InfiniBand :1usec latency, 100Gbps Bandwidth

SSD, NVMe-SSD, NVRAM

Arquitecturas para BigData: El procesador

Paralelismo en la ejecución de instrucciones:

- Procesador con tecnología Multicore/many-core con tres niveles de paralelismo:
 - Nodo/core
 - Muti-Thread (SMT, HT)
 - Instrucciones SIMD

Arquitecturas para BigData: procesador con hyperthreading

Cada procesador maneja dos threads

- Cuando el que está ejecución se bloquea, entra el otro
- Estructura HW para hacer un cambio de contexto del procesador (registros, ...)

Número de procesadores x 2

- iNo es real!
- Útil en sistemas de sobremesa
 - Muchos bloqueos
- No siempre útil en alto rendimiento
 - N° bloqueos mínimo

Procesador: Hyperthreading (HT) o Multi-Thread simultaneo (SMT)

Procesador superescalar con tecnología Multi-Thread simultaneo (SMT)

Arquitecturas para BigData: Optimizando el procesador

Accelerating Apache Spark machine learning with Clear Linux* OS ...

https://01.org/blogs/2018/apache-spark-clear-linux

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Intel® Memory Protection Extensions (Intel® MPX) Intel® Ultra Path Interconnect (Intel® UPI)

Math LIB:

Intel MKL 2018.3.222 vs F2JBLAS

Hyper-Threading (HT) technology was disabled to achieve better performance i!

Arquitecturas para BigData: El procesador optimizado

[1] Architectural Impact on Performance of In-memory Data Analytics: Apache Spark Case Study TABLE III: Machine Details.

TABLE VII: Machine and Spark Configurations to evaluate Hyper Threading

		ST:2x1	SMT:2x2	ST:4x1
Hardware	No of sockets	1	1	1
	No of memory nodes	1	1	1
	No. of cores	2	2	4
	No. of threads	1	2	1
Spark	spark.driver.cores	2	4	4
	spark.default.parallelism	2	4	4
	spark.driver.memory (GB)	24	24	24

Component	Details		
Processor	Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture		
	Cores	12 @ 2.7GHz (Turbo up 3.5GHz)	
	Threads	2 per Core (when Hyper-Threading is enabled)	
	Sockets	2	
	L1 Cache	32 KB for Instruction and 32 KB for Data per Core	
	L2 Cache	256 KB per core	
	L3 Cache (LLC)	30MB per Socket	
Memory	2 x 32GB, 4 DDR3 channels, Max BW 60GB/s per Socket		
os	Linux Kernel Version 2.6.32		
JVM	Oracle Hotspot JDK 7u71		
Spark	Version 1.5.0		

Arquitecturas para BigData: El procesador optimizado

(a) Multi-core vs Hyper-Threading

- Word Count (Wc): counts the number of occurrence of each word in a text file
- Grep (Gp): searches for the keyword The in a text file and filters out the lines with matching strings to the output file
- K-Means (Km): uses K-Means clustering algorithm from Spark Mllib. The benchmark is run for 4 iterations with 8 desired clusters
- NaiveBayes (Nb): runs sentiment classification
- Sort (So): ranks records by their key

Arquitecturas para BigData: Sistema de memoria

- Sistema de Jerarquía de Memoria de un Nodo:
 - Registro interno del procesador
 - Cache multinivel L1,L2 y L3
 - DRAM
 - Almacenamiento externo
- Sistema Multiprocesador con acceso a memoria compartida NO UNIFORME (NUMA)

Arquitecturas para BigData: Memoria

Memoria: DDR(RAM) a 3D Xpoint (no volátil)

Convergencia de memoria y almacenamiento

Tamaños y latencias en memoria/almacenamiento

3D XPOINT™ MEMORY MEDIA

Breaks the memory/storage barrier

Almacenamiento NVM Express (NVMe SSD)

NVMe es la especificación de la interfaz del dispositivo a nivél lógico (logical device interface) para acceder a medios de almacenamiento no volatiles (non-volatil storage media) conectados al bus PCI Express (PCIe) o por conexión M.2.

NVMe está optimizado para las operaciones de unidades de almacenamiento con latencias muy bajas y que son comúnmente ofrecidos por SSD con memoria no volátil.

Infraestructura BigData: Posibilidades de almacenamiento

Infraestructura para BigData: Requisitos del sistema

Infraestructura para BigData: Almacenamiento en RAID

JBOD: Just a Bunch of Disks (un puñado de discos), este tipo de RAID configura los discos para que cada uno funcione de manera independiente como si se trataran de discos duros conectados de manera individual al ordenador.

RAID:(Redundant array of independent disks) sistema de almacenamiento de datos que utiliza múltiples unidades de disco (HDD/SSD) entre las cuales se distribuyen o replican los datos.

RAID 0. Todos los discos duros funcionan como un único volumen, y su espacio total es la suma del espacio de todos los discos duros. Mayor (x N) velocidad de lectura y escritura. No hay paridad de datos ni volumen de respaldo.

RAID 1 Los datos se duplican en los discos duros como si fuese un espejo. Velocidad de lectura x2. Sin mejora en la velocidad de escritura. Si falla un disco se puede reemplazar sin perder datos. Perdemos el 50% del espacio total de los discos.

Infraestructura para BigData: Almacenamiento en RAID

RAID 5, los datos se distribuyen a lo largo de todos los discos duros. En una de las unidades se guarda la paridad. La paridad se reparte entre todos los discos duros.

- El espacio total de los discos es N-1, igual que la mejora de la velocidad de lectura.
- No hay mejora en velocidad de escritura.

RAID 30/50/100

- Si falla uno de los discos duros, cualquiera de ellos, se puede reemplazar y recuperar todos los datos.
- Si fallan 2 no.

Infraestructura para BigData: Configuración de nodos

Nodo Maestro

Component	Master node configuration	
System	System x3550 M5	
Processor	2 x Intel Xeon processor E5-2650 v4 2.2 GHz 12-core	
Memory - base	128 GB - 8 x 16 GB 2133 MHz RDIMM (minimum)	
Disk (OS / local storage)	OS: 2x 2.5" HDD or SSD	
	Data: 8 x 2TB 2.5" HDD	
HDD controller	ServeRAID M5210 SAS/SATA Controller	
Hardware management network adapter	Integrated 1GBaseT IMM Interface	
Data network adapter	Broadcom NetXtreme Dual Port 10GbE SFP+ Adapter	

Infraestructura para BigData: Configuración de nodos

Component	Data node configuration		
System	System x3650 M5		
Processor	2 x intel Xeon processor E5-2580 v4 2.4GHz 14-core		
Memory - base	256GB: 8x 32GB 2400MHz RDIMM		
Disk (OS)	2x 2.5" HDD or SSD		
Disk (data)	4 TB drives: 14x 4TB NL SATA 3.5 inch (56 TB Total) 6TB drives: 14x 6TB NL SATA 3.5 inch (84 TB total) 8 TB drives: 12x 8TB NL SATA 3.5 inch (96 TB Total)		
HDD controller	OS: ServeRAID M1215 SAS/SATA Controller HDFS: N2215 SAS/SATA HBA		
Hardware storage protection	ostorage protection OS: RAID1 HDFS:None (JBOD). By default, Hortonworks maintains a total three copies of data stored within the cluster. The copies are distributed across data servers and racks for fault recovery.		

Infraestructura para BigData: Red de comunicación

Figure 7. Lenovo RackSwitch G8272

The enterprise-level Lenovo RackSwitch G8272 has the following characteristics:

- 48 x SFP+ 10GbE ports plus 6 x QSFP+ 40GbE ports
- Support up to 72 x 10Gb connections using break-out cables
- 1.44 Tops non-blocking throughput with low latency (~ 600 ns)
- Up to 72 1Gb/10Gb SFP+ ports
- OpenFlow enabled allows for easily created user-controlled virtual networks.

Figure 6. Lenovo RackSwitch G8052

Lenovo RackSwitch G8052 has the following characteristics:

- A total of 48 1 GbE RJ45 ports
- Four standard 10 GbE SFP+ ports
- Low 130W power rating and variable speed fans to reduce power consumption

Infraestructura para BigData: Cluster

Sistemas para BigData: Disk-based vs in-memory based.

Ref: Running Apache Spark on a High-Pertormance Cluster Using RDMA and NVMe Flash por Patrick Stuedi, IBM Research

Infraestructura para BigData: Repaso de conceptos

Debe entender y ser capaz de responder :

- ¿Qué es?
- ¿Qué se mejora?
- ¿Cuándo tiene sentido usarlo y que implica?

Para los siguientes conceptos:

- ✓ Servidor Físico, Virtual, Contenedor
- √ Hyperthreading (HT), SMT
- ✓ Cache, Memoria principal, NUMA
- ✓ SSD, HDD, NVMe SSD
- ✓ RAID, JBOD

Tipos de Red de Interconexión

Muchas posibilidades:

ATM, Myrinet, Gigabit Ethernet, Fast Ethernet, Infiniband

- Fast Ethernet (para gestion)
 - La red barata más rápida disponible
 - Ofrece un ancho de banda suficiente para la mayoría de situaciones.
 - Hasta 100-1000 Mbps
- **Gigabit Ethernet:**
 - Muy rápida (10, 40 y 100 Gbps)
 - Coste decreciendo rápidamente.

Infiniband:

- Muy rápida
- baja LATENCIA
- coste mas alto

	SDR	DDR	QDR
1X	2,5 / 2 Gbps	5/4 Gbps	10 / 8 Gbps
4X	10 / 8 Glbps	20 / 16 Gbps	40 / 32 Gbps
12X	30 / 24 Gbps	60 / 48 Gbps	120 / 96 Gbps

Inteconexión: Redes de baja latencia (Low Latency Interconnects)

 Obtetivo: Disminuir la latencia para un paquete reduciendo el número de copias por paquete.

Infraestructura para BigData: Convergencia con Infiniband

- Slower I/O
- Different service needs different fabrics
- No flexibility

- High bandwidth pipe for capacity provisioning
- Dedicated I/O channels enable convergence
 - For Networking, Storage, Management
 - Application compatibility
 - QoS differentiates different traffic types
 - Partitions logical fabrics, isolation

Arquitecturas para BigData: RDMA

Remote Direct Memory Access

- **❖**Remote
 - –data transfers between nodes in a network
- **❖ D**irect
 - –no Operating System Kernel involvement in transfers
 - everything about a transfer offloaded onto Interface Card
- **❖**Memory
 - -transfers between user space application virtual memory
 - no extra copying or buffering
- Access
 - -send, receive, read, write, atomic operations

Arquitecturas para BigData: RDMA

Similitudes y diferencias entre TCP y RDMA

- ❖Ambas utilizan el modelo cliente-servidor
- ❖Ambas requieren de una conexión para transporte fiable
- Ambas proporcionan un modo de transporte fiable
 - TCP garantiza secuencias en orden de bytes
 - RDMA garantiza secuencias en orden de mensajes

RDMA aporta:

- "zero copy" datos transferidos directamente de memoria virtual de un nodo a memoria virtual de otro nodo
- ❖ "kernel bypass" no involucra al sistema operativo en las transferencias de datos
- ❖Operación asíncrona Los threads no se bloquean durante la transferencia de I/O

Arquitecturas para BigData: RDMA

Diferencias entre RDMA y TCP/IP

Arquitecturas para BigData: Liberar la CPU

Ref: Running Apache Spark on a High-Performance Cluster Using RDMA and NVMe Flash por Patrick Stuedi, IBM Research

Mejoras: Red con RDMA y Almacenamiento con NVMe

Ref: Running Apache Spark on a High-Performance Cluster Using RDMA and NVMe Flash por Patrick Stuedi, IBM Research

Redes en Sistemas Cloud

Infraestructura para BigData: Repaso de conceptos

Debe entender y ser capaz de responder :

- ¿Qué es?
- ¿Qué se mejora?
- ¿Cuándo tiene sentido usarlo y que implica?

Para los siguientes conceptos:

- ✓ Transferencias RDMA
- ✓ RDMA vs trasferencia TCP/IP
- ✓ Zero copy
- ✓ Latencia Infiniband/Omnipath
- √ Redes en sistemas Cloud

Evolución de las Tecnologías para BigData

- Tecnologías actuales de computación para BigData
 - Sistemas Multicore
 - Coprocesadores: GPUs, FPGA
- Tecnologías disruptivas:
 - Neurocomputación
 - Computación Cuántica

Futuro de los procesadores

Procesadores: Evolución del rendimiento

El rendimiento de los procesadores de propósito general se
 está estancando:
 40 years of Processor Performance

Se necesita nuevas tendencias para dar soluciones:

- Aceleradores con arquitecturas específicas para cada dominio.
- Tecnologías más disruptivas: procesadores cuánticos, neurocomputación.
- Computación aproximada.

Necesidades de computación

CPU FPGA GPU Adaptable Hardware Scalar Processing Vector Processing (e.g., GPU, DSP) Processing of Complex Algorithms Domain-specific Irregular Data Structures and Decision Making Parallelism Genomic Sequencing Latency Signal Processing Critical Workloads Complex Math, Convolutions Real-Time Control Sensor Fusion Video and Image Processing Pre-processing, Programmable I/O

CPU vs GPUs

Performance Trends

CPU vs GPUs

- The GPU is specialized for compute-intensive, highly data parallel computation (what graphics rendering is about)
- So, more transistors can be devoted to data processing rather than data caching and flow control

Different design philosophies

CPU: A few out-of-order cores vs GPU: Many in-order cores

CPU: Latency Oriented Design

CPUs for sequential parts where latency matters CPUs can be 10X+ faster than GPUs for sequential code

GPUs: Throughput Oriented Design

GPUs for parallel parts where throughput wins GPUs can be 10X+ faster than CPUs for parallel code

Infraestructura BigData: Aceleradores/Coprocesadores GPU

CPU

VS

GPU

Optimized for low latency

- Large main memory
- Fast clock rate
- Large caches
- Branch prediction
- Powerful ALU
- Relatively low memory bandwidth
- Cache misses costly
- Low performance per watt

Optimized for high throughput

- High bandwidth main memory
- + Latency tolerant (parallelism)
- More compute resources
- + High performance per watt
- Limited memory capacity
- Low per-thread performance
- Extension card

Review of GPU Architecture

Streaming Multiprocessors (SM)

Compute Units (CU)

Streaming Processors (SP) or CUDA cores

Vector lanes

Number of SMs x SPs

- □ Tesla (2007): 30 x 8
- Fermi (2010): 16 x 32
- Kepler (2012): 15 x 192
- Maxwell (2014): 24 x 128
- Pascal (2016): 56 x 64
- Volta (2018): 80 x 64

GPU: Improving Features

HBM High Bandwidth Memory

Item	DDR3 (x8)	GDORS (x32)	4-Hi HBM (x1024)
I/O	8	32	1024
Prefetch (Per IO)	. 8		7
Access Granularity (-3/0 x firefest)	88yte	128yte	256Byte
Max. Bandwidth	2GB/s	28GB/s	128-256G8/s

Full GPUDirect

CPU AMD: Adaptar el procesador a la computación

AMD Exascale Heterogeneous Processor: CPU, GPU y memoria HBM2 en una CPU

Caso de integración: Deep Learning usando GPUS con TensorFlow y Spark

Deep learning uses general learning algorithms

- The algorithms need to build the layers of an artificial neural network
 - Training data
- Processing this training data requires lots of computation
 - Convolutional NN -> Matrix multiplications

BIG DATA & DEEP LEARNING

Source: https://towardsdatascience.com/7-practical-deep-learning-tips-97a9f514100e

Deep Learning usando GPUs con TensorFlow y Spark

Se crea una red neuronal Convolucional

Operación basica:

$$\begin{array}{ccc}
\downarrow & \downarrow \\
\downarrow &$$

Source: https://medium.com/@phidaouss/convolutional-neural-networks-cnn-or-convnets-d7c688b0a207

Integración: Deep Learning usando GPUs con TensorFlow y Spark

Arquitectura de TensorFlow

Source: www.tensorflow.org/extend/architecture

Deep Learning with TensorFlow and Spark

Deep Learning: GPU and FPGA

Los aceleradores actuales y los que se van utilizar a medio plaza para deep Learning están basados en tecnología CMOS

- Evolución de GPUs.
- Nuevas posibilidades con FPGAs
- Diseño de ASICs específicos.

Arquitecturas para BigData: Coprocesadores FPGA

Hardware Reconfigurable Capaz de integrar todas las necesidades de computación:

Adaptive
Compute
Acceleration
Platform (ACAP)

FPGA Xilinx versal: Processing System

- Dual-core ARM A72 with 2x single-threaded performance of previous generation A53's
- Dual-core ARM R5 for real-time and deterministic processing
- Adaptable resources (FPGA)
- Al Engine

Coprocesadores FPGA

InAccel Coral:

- Program against your FPGAs like it's a single pool of accelerators
- "automated deployment, scaling, and management of FPGAs"
- > Up to 15x speedup for LR ML (7.5x overall)
- Up to 14x speedup for Kmeans ML (6.2x overall)
- » Spark- GPU* (3.8x 5.7x)

- 16 cores + 2 FPGAs (InAccel)
- > R5d.4x
 - >> 16 cores

*[Spark-GPU: An Accelerated In-Memory Data Propiosing Engine on

Coprocesadores FPGA

The main differentiating factor is that **can be reconfigured** as opposed to the other chips:

- It allows for specifying hardware description language (HDL) that can be in turn configured in a way that matches the requirements of specific tasks or applications.
- It is known to consume less power and offer better performance.
- It can also offer a cost-effective option for prototype. It is much more flexible and is, therefore, a good choice for applications that involve customer-centric applications

Advantages

- It is highly flexible and is suited for rapidly growing and changing AI applications. For instance, with neural networks improving, it provides an architecture to undergo changes
- It shows better performance and consumption ratio
- Offers high accuracy
- FPGA shows efficiency in parallel processing. Overall it has significantly higher computer capability
- FPGAs offer lower latency than GPUs

Disadvantages

- Difficult to program and Development time is more
- Performance may not be up to the mark sometimes
- Not good for floating-point operation.

Infraestructura para BigData: Repaso de conceptos

Debe entender y ser capaz de responder :

- ¿Qué es?
- ¿Qué se mejora?
- ¿Cuándo tiene sentido usarlo y que implica?

Para los siguientes conceptos:

- ✓ GPUs vs CPU
- ✓ Modelo de programación GPU
- ✓ FPGA
- √ Casos de optimización con GPU (TensorFlow)

Computador cuántico de IBM

Join the IBM Q Experience Community https://quantumexperience.ng.bluemix.net

IBM's 5-Qubit Processor

Referencias

1. ACCELERATING APACHE SPARK MACHINE LEARNING WITH CLEAR LINUX* OS FOR INTEL ARCHITECTURE® AND INTEL SOFTWARE OPTIMIZATIONS.https://01.org/blogs/2018/apache-spark-clear-linux/

2.- Architectural Impact on Performance of In-memory Data Analytics: Apache Spark Case Study

3.- Ref: Running Apache Spark on a High-Performance Cluster Using RDMA and NVMe Flash por Patrick Stuedi, IBM Research

