Projet Logiciel Scientifique

B. DI PIERRO

2020-2021

Ce projet est divisé en 2 parties : une partie en C++ et une en python. Les deux parties doivent être rendues à l'issue de ce projet sur la plateforme moodle prévue à cet effet.

Préambule

On se propose dans ce projet d'étudier le comportement d'une variable aléatoire suivant une loi de probabilité bien précise.

Soient abcd vos 4 derniers numéros étudiant (par exemple, si votre numéro étudiant est 1317118 : $a=7,\ b=1,\ c=1,\ d=8$. (Si l'une des valeur est 0, elle sera alors remplacée par 10). On considère alors, pour une variable aléatoire x entière $\in [-10, 10]$, la loi de probabilité suivante :

$$P(x) = \alpha \left(e^{-\frac{(x-a)^2}{b^2}} + e^{-\frac{(x-c)^2}{d^2}} \right)$$
 (1)

1 Travail a effectuer

1.1 Partie C++

La loi de probabilité précédente n'est pas normée. On va donc chercher à calculer la valeur de α permettant cette normallisation. Pour cela, écrivez un programme en C++ contenant :

• une fonction "loi_proba" qui pour une valeur de x passée en argument, retourne la valeur de P(x) (equation 1) pour $\alpha = 1$.

 \bullet une fonction "calcul_alpha" (typée void), qui calculera la valeur de α tel que :

$$\sum_{x=-10}^{x=10} P(x) = 1 \tag{2}$$

en se servant habilement de la fonction écrite à la question précédente. La valeur de α sera retournée au travers d'un pointeur.

• une fonction "main" qui appelera la fonction "loi_proba" et affichera la valeur de α calculée.

1.2 Partie Python

On souhaite maintenant étudier le comportement de cette loi de probabilité. Écreivez un programme python qui aura les fonctions suivantes :

- une fonction "loi_proba" qui retournera la loi de proba de l'équation 1 avec la valeur de α calculée dans la partie C++. (Remarque : si vous n'avez pas réussi à calculer la valeur de α ou si le résultat vous semble faux, vous utiliserez alors $\alpha = sum(f)$, avec f la loi de proba pour $\alpha = 1$). Cette fonction prendra en argument un tableau numpy x et retournera un tableau numpy dont chaque case vaut $P(x_i)$ pour le i^{eme} élément.
- une fonction qui déterminera, à partir de cette loi, l'évènement le moins probable ainsi que le plus probable.
- Une fonction qui calculera l'histogramme d'une nombre fixés de tir. La fonction prendra en argument le nombre de tir N à effectuer. Elle calculera alors un ensemble de tir aléatoire selon :

$$tir = np.random.choice(x, N, p = p)$$
 (3)

où $p = P(x_i)$ est un tableau contenant valeur de la loi de probabilité pour chaque évènement possible :

$$-10 < x < 10$$

. La fonction retournera alors un tableau contenant l'histogramme des tirs réalisés, c'est à dire un tableau dont chaque case i contient le nombre de fois qu'un élément x_i a été tiré.