Nome: Número: Curso

Sistemas Operativos - 1ª Frequência 2011/2012

Centro de Competências de Ciências Exactas e Engenharias Universidade da Madeira 21 de Novembro de 2011, 14 horas

Este exame é sem consulta. Acetatos, livros, computadores, calculadoras, PDA's, telemóveis e acesso à Internet não são permitidos. Apenas são necessárias esferográficas azuis e/ou pretas. A duração da frequência é de 90 minutos, para uma cotação máxima de 20 valores (que corresponde a ¼ da nota final da cadeira). Outras informações sobre a avaliação, consultar a página da cadeira. Leia as questões com atenção e responda nas folhas do enunciado. Aconselhamos muita atenção para o tempo despendido em cada uma delas. Quando terminar, entregue as suas respostas ao docente/vigilante, tendo a certeza que preencheu correctamente a sua identificação.

Boa Sorte!

[4] Escolha Múltipla

Assinale em cada uma das questões seguinte uma opção. A opção correcta é apenas uma e é aquela que responde ao pedido completamente. Cada questão correcta vale 0,5 valores cada errada desconta ¼. Se o valor final desta secção for negativo, a sua cotação passará para zero.

	mar debta becyae for hegan to, a bas to a, a fine f									
1.	Qual das seguintes opções é uma funcionalidade do despacho:									
	actualiza o program counter carregar o contexto de hardware escolhe o processo da lista de executáveis									
	guardar o contexto de hardware									
	todas as opções anteriores									
2.	Na criação de um processo filho, e relativamente ao espaço de endereçamento:									
	o processo filho obtém o seu espaço de endereçamento, com dados									
	o processo pai cede metade do seu espaço de endereçamento									
	o processo filho obtém o seu espaço de endereçamento, se necessário									
	o processo filho obtém o seu espaço de endereçamento, vazio nenhuma das anteriores									
3.	Qual elemento não pertence a uma arquitectura de um sistema operativo:									
	gestor de memória									
	sistema de ficheiros									
	gestor de periféricos gestor de serviços									
	todos os anteriores									
,	· · · · · · · · · · · · · · · · · · ·									
4.	Indique qual das seguintes opções é um ambiente de execução de Windows 2000.									
	as Dynamic Loadable Libraries (DLL) a interface Posix									
	o explorer									
	um ficheiro .exe									
	nenhuma das anteriores									
5.	A execução das intruções de um programa entre as primitivas fechar(trinco) e abrir (trinco), implica:									
	apenas um processo a executar essas instruções									
	a sua execução atomicamente									
	o processador entrar em modo kernel									
	o sistema operativo esperar									
	todas as opções anteriores									

6.	Num sistema mono-processador temos qual das seguintes situações normalmente: Multiprogramação e Paralelismo real Monoprogramação e Pseudoconcorrência Multiprogramação e Pseudoparalelismo Um processo e Pseudoconcorrência nenhuma das anteriores							
7.	A sequência de caracteres '-rw-rr' indica que um qualquer utilizador: pode ler e escrever sobre o ficheiro ler sobre o ficheiro pode ler e escrever na directoria pode aceder à directoria nenhuma das opções anteriores							
8.	Um exemplo de uma solução baseada em software para o problema da secção crítica é: Compare and Shop Test and Set o algoritmo de Banker o algoritmo de Peterson todas as anteriores							
[1,5	+1,5] Conceitos e Definições							
D	efina cada um de termos apresentado abaixo e apresente, de forma clara e concisa, as principais diferenças.							
9.								
10.	'processo' e 'tarefa'							

[1,5+1,5] Processos e tarefas

11. O que são Rotinas Assíncronas? Qual a sua importância? Indique alguns exemplos da sua utilização.

12. Indique, pelo menos, duas razões ou situações que provoquem a passagem de um processo de 'em execução' para 'executável'. Em que outros estados podem os processos ser colocados?

[1,5+2,5] Gestor de Processos

13. Indique e descreva sucintamente as três principais componentes do Gestor de Processos.

14. Suponha que num sistema operativo estão a correr 2 processos. O processo P2 é CPU-Intensivo (não executa operações de E/S) e o processo P1 executa o seguinte código:

Os processos têm as seguintes características:

-	Processo	Prioridade base	Instante do Início da Execução	Tempo Total de CPU que o Processador irá consumir na sua execução				
	P1	10	0	6				
	P2	- 11	3	3				

Suponha que o algoritmo de escalonamento utilizado é preemptivo, com prioridades dinâmicas (em que um valor numérico de prioridade mais elevado corresponde a um processo mais prioritário). A prioridade de um processo começa por ser a sua prioridade base, sofrendo um aumento de três unidades sempre que o processo sai do estado de bloqueado. Após este aumento, a prioridade do processo diminui uma unidade após cada quantum (time-slice) em que o processo tenha estado em execução, até atingir novamente a prioridade base. Se dois processos tiverem igual prioridade, o escalonador escolhe o que não é executado há mais tempo.

Preencha a seguinte tabela, indicando, para cada instante de tempo, qual o estado de cada processo do sistema, e a respectiva prioridade no início do quantum.

Use a seguinte notação: Letra E - Em execução; Letra B - Bloqueado; Letra V - Executável; Entrada em Branco - processo não está activo no sistema (não iniciou ou já terminou).

Note que na solução correcta não é necessário utilizar mais espaço do que o fornecido.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P1	E 10														
P2															

Nome: Número: Curso

[6] Sincronização

15. Considere um parque de estacionamento de uma empresa com capacidade máxima para MAX viaturas. Existem dois tipos de utilizadores deste parque: administradores e funcionários. Enquanto há lugares livres no parque, a ordem de entrada é por ordem de chegada. A partir do momento em que o parque fica cheio, a entrada de viaturas fica condicionada à saída de outras, devendo ser dada prioridade às viaturas dos administradores.

Utilizando semáforos, implemente em pseudo-código C as funções entrarParque(int tipo) e sairParque(). Caso não implemente a solução completa, identifique os aspectos não implementados.