Department of Physics, Shiv Nadar Institution of Eminence

Spring 2025 PHY102: Introduction to Physics-II

Tutorial – 12

- 1. If \vec{B} is uniform show that $\vec{A} = -\frac{1}{2}(\vec{r} \times \vec{B})$, where \vec{r} is the position vector of the point in question. Show that $\vec{\nabla} \cdot \vec{A} = 0$ and $\vec{\nabla} \times \vec{A} = \vec{B}$.
- 2. A thin disk of radius a carrying uniform surface charge density σ is rotating with constant angular velocity ω about its axis (z-axis). Suppose there is a uniform magnetic field $\vec{B} = B\hat{\jmath}$. Show that the torque acting on the disk is of magnitude $\frac{1}{4}\pi\sigma\omega Ba^4$.
- 3. An infinitely long circular cylinder carries a uniform magnetization \mathbf{M} parallel to its axis. Find the magnetic field (due to \mathbf{M}) inside and outside the cylinder.

- 4. A square loop (side a) is mounted on a vertical shaft and rotated at angular velocity ω (see figure below). A uniform magnetic field B points to the right. Find the $\mathcal{E}(t)$ for this alternating current generator.
- 5. A metal bar of mass m slides frictionless on two parallel conducting rails a distance *l* apart. A resistor R connected across the rails and a uniform magnetic field B, pointing into the page, fills the entire region.
- (a) If the bar moves to the right a speed *v*, what is the current in the resistor? In what direction does it flow?
- (b) What is the magnetic force on the bar? In what direction?
- (c) If the bar starts out with a speed v_0 at time t = 0, and is the left to slide, what is its speed at a time later time t?
- (d) The initial kinetic energy of the bar was $\frac{1}{2} m v_0^2$. Check the energy delivered to the resistor is exactly $\frac{1}{2} m v_0^2$.