A Baseline Method for Search-Based Software Engineering

GREGORY GAY
UNIVERSITY OF MINNESOTA
GREG@GREGGAY.COM

Search-Based Software Engineering

- Many issues of the software engineering field remain unresolved.
 - Scope (i.e. entire Java language, etc) makes many questions unanswerable.
- SBSE reformulates SE problems as search problems. [Harman '01]
- Great for problems with no *single* solution, instead a bunch of *good* ones.
- Great for finding an ideal balance of competing factors.

We Need a Baseline

- Many common, almost ubiquitous techniques, with thousands of different implementations and tweaks.
- Things like Random Search often used as a "sanity check," but...
 - o Straw man − "In any problem worthy of study, the chosen technique should be able to convincingly outperform random search." [Harman '10]
- We need a standard baseline technique with a single implementation, simple concept.
- Gives a common method of comparison, a "quality bar," lets us live up to the PROMISE mantra.
 - o "Repeatable, improvable, maybe even refutable research"

What Makes a Baseline

- Holte's 1R algorithm had factors that made it a good baseline for classification research: [Holte '93]
 - Simplicity: 1R is easy to understand, and easy to implement.
 - **Competitive Results:** It produces results within 5% of the C4.5.
 - **Stable Results:** Produced consistent outcomes for each trial on the same data set.
 - Fast Runtimes: 1R is faster than many competing techniques.
- A baseline must meet all four of these factors.
- Not a straw man, but a bar to beat.
- The KEYS2 algorithm meets all of these.

Theory of KEYS

- Theory: A minority of variables control the majority of the search space. [Menzies '07]
- If so, then a search that (a) finds those keys and (b) explores their ranges will rapidly plateau to stable, optimal solutions.
- This is not new: narrows, master-variables, back doors, and feature subset selection all work on the same theory.
 - o [Amarel '86, Crawford '94, Kohavi '97, Menzies '03, Williams '03]
- Everyone reports them, but few exploit them!

KEYS2 Algorithm [Jalali '08, Gay '10]

- Two components: greedy search and a Bayesian ranking method (BORE = "Best or Rest").
- Each round, a greedy search:
 - o Generate 100 potential solutions.
 - o Score them.
 - Sort top 10% of scores into "Best" grouping, bottom 90% into "Rest."
 - o Rank individual variable/value pairings using BORE.
 - An increasing number of top ranking pairs are fixed for all subsequent rounds. (1 in Round 1, 2 in Round 2, etc.)
- Stop when every variable has a value, return final fitness score.

BORE Ranking Heuristic

- We don't have to actually search for the keys, just keep frequency counts for "best" and "rest" scores.
- BORE [Clark '05] based on Bayes' theorem. Use those frequency counts to calculate:

$$P(best|E) = \frac{like(best|E)}{like(best|E) + like(rest|E)}$$

• To avoid low-frequency evidence, add support term:

$$P(best|E) * support(best|E) = \frac{like(best|E)^2}{like(best|E) + like(rest|E)}$$

Simulated Annealing

- Classic, yet common, approach. [Kirkpatrick '83]
- Choose a random starting position.
- Look at a "neighboring" configuration.
 - o If it is better, go to it.
 - If not, move based on guidance from probability function (biased by the current temperature).
- Over time, temperature lowers. Wild jumps stabilize to small wiggles.

Genetic Algorithms

- Influenced by Darwin's Theory of Evolution.
 - o [Barricelli '54, Holland '75]
- Take a population, mutate over many generations.
- Evaluate each member of the population.
- Combine "best" solutions using mutation and crossover to get the new population (also carry over a few unchanged and generate a few random ones).
- Stop after X rounds, or once a fitness threshold has been met.

Case Study: Consider a requirements model...

- O Used at NASA JPL by Martin Feather's "Team X" [Cornford '01, Feather '02, Feather '08, Jalali '08]
- Five models available in PROMISE repository.
- Early-lifecycle requirements model that contains:
 - Various goals of a project.
 - Methods for reaching those goals.
 - Risks that prevent those goals.
 - Mitigations that remove risks.
 - (but carry costs)
 - o Directed mappings.

A solution: balance between cost and attainment.

Using DDP

- Input = Set of enabled mitigations.
- Output = Two values: (Cost, Attainment)
- Those values are normalized and combined into a single score [Jalali '08]:

$$score = \sqrt{\overline{cost}^2 + (\overline{attainment} - 1)^2}$$

DDP Optimization as a SBSE Problem

- Four factors must be met: [Harman '01, Harman '04]
 - 1. A large search space.
 - o 2. Low computational complexity.
 - o 3. Approximate continuity (in the score space).
 - 4. No known optimal solutions.

DDP Problem fits all:

- o 1. Some models have up to $(2^{99} = 6.33*10^{29})$ possible settings.
- o 2. Calculating the score is fast, algorithms run in O(N²) [Gay '10]
- o 3. Discrete variables, but continuous score space.
- 4. Solutions depend on project settings, optimal not known.

Experiments

- Four requirements of a baseline:
 - o Simple concept, competitive results, low variance, very fast.
- Can't experimentally "prove" that KEYS is simple
- Can qualitatively prove that KEYS2 fits the other three baseline criteria.

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	?	?	?

Experiment 1: Result Quality

- Using 3 real-world models (2, 4, and 5 from PROMISE repository).
 - o Models discussed in [Feather '02, Jalali '08, Menzies '03]
- Run each algorithm 1000 times per model.
 - o Removed outlier problems by generating a lot of data points.
 - Still a small enough number to collect results in a short time span.
- Graph cost and attainment values.
 - Values towards bottom-right better.

- Simulated Annealing sometimes obtains high-quality results.
 - Too much variance, more often gives *bad* results.
- KEYS2 and the GA always obtain high quality results.
 - Slightly less variance on the GA, but very similar results.

Algorithm	Wins	Losses	Ties	Wins- Losses
Simulated Annealing	4	8	0	-4
Genetic Algorithm	7	5	0	2
KEYS2	7	5	0	2

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	Yes	?	?

Experiment 2: Stability

- Take the raw results from Experiment 1 for model 5
 - o (Model 5 is the most complex model)
- Measure the spread of final cost and attainment values for each algorithm.
- This gives an idea of the level of variance in the final results.

Cost Quartiles - Model 5

		quartiles						
		min		$_{ m med}$		max		
		0	25%	50%	75%	100%		
•	SA	163000	239025	248525	709025	107900		

GA 162369 205525 215197 227525 312052 KEYS2 154025 198025 211525 224525 305525

Attainment Quartiles – Model 5

quartiles

	min		med		max
	0	25%	50%	75%	100%
SA			207.4		
$\mathbf{G}\mathbf{A}$	226.4	239.5	241.3	242.4	249.9
KEYS2	227.3	236.2	237.9	239.4	252.0

- Similar results to Experiment 1
 - Simulated Annealing returns seemingly random results, way too much variance.
 - o GA and KEYs2 very similar, very stable
 - (GA has a slightly smaller spread of 22000 to 26500 for cost and 2.9 to 3.2 on attainment).

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	Yes	Yes	?

- KEYS2 also offers guarantee of internal stability.
 - It generates a population of 100 potential solutions each round
 - Thus, we can measure the variance at each decision point in its execution

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	Yes	Yes	?

Experiment 3: Runtimes

- For each model:
- Run each algorithm 100 times.
- Record runtime using Unix "time" command.
- Divide runtime/100 to get average.

	Model 2 (31 mitigations)		Model 5 (99 mitigations)
Simulated Annealing	0.410	0.944	0.641
Genetic Algorithm	0.010	0.046	0.100
KEYS2	0.004	0.014	0.027

Runtimes In Seconds

- Simulated Annealing is slow, has trouble on more complex models.
- Genetic Algorithm is fast, but...
- KEYS2 is an order of magnitude faster.
- KEYS2 fast enough that it can be used without adding to overall experiment time.

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	Yes	Yes	Yes

Conclusions

Algorithm	Simple	Competitive	Low Variance	Fast
KEYS2	Yes	Yes	Yes	Yes

- A baseline method is necessary to improve the quality and reliability of SBSE research.
 - But not just any will do...
- KEYS2 is one candidate baseline.
- KEYS2 has been experimentally shown to be:
 - Competitive with common SBSE algorithms.
 - Fast enough to not eat into precious experimentation time.
 - Stable enough to deliver trustworthy results.

Is KEYS2 the right choice?

What about random search?

- Random search is popular, but...
 - × Straw man [Harman '10]
 - ➤ Results rarely competitive...
 - ▼ Unless it is allowed to run for a long time. [Ciupa '09]
 - x Random = Too much variance

• Can KEYS2 apply to all problems?

- o Probably not, but...
- In active use or planning to use in requirements optimization, defect detection, effort prediction, variable ordering for Bayesian Nets, monitoring of critical systems, and more.

The Discussion

- A single baseline for everything is unlikely.
 - But the field would benefit from a small set of agreed-upon baselines.
- Baselines provide benefits:
 - Common starting point
 - Unambiguous goal to beat
 - Easier to replicate, improve, or comment on other researcher's work.
- KEYS2 is a candidate baseline for a number of SBSE problems, but the important thing is that we think about baselines.

References

• [Harman '01] M. Harman and B.F. Jones. Search-based software engineering. Journal of Information and Software Technology, 43:833–839, December 2001.

Slide 3:

o [Harman '10] M. Harman and P. McMinn. A theoretical and empirical study of search-based testing: Local, global, and hybrid search. IEEE Trans. Softw. Eng., 36(2):226–247, 2010.

• Slide 4:

[Holte '93] R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63, 1993.

Slide 5:

- o [Amarel '86] S. Amarel. Program synthesis as a theory formation task: Problem representations and solution methods. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach: Volume II, pages 499–569. Kaufmann, Los Altos, CA, 1986.
- o [Crawford '94] J.Crawford and A.Baker. Experimental results on the application of satisfiability algorithms to scheduling problems. In AAAI '94, 1994.
- o [Kohavi '97] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelli- gence, 97(1-2):273–324, 1997.
- o [Menzies '03] T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In M. Madravio, editor, Soft Computing in Software Engineering. Springer-Verlag, 2003.
- o [Menzies '07] T. Menzies, D. Owen, and K. Richardson. The Strangest Thing About Software. Computer 40, 1 (Jan. 2007), 54-60.
- o [Williams '03] R.Williams, C.P.Gomes, and B.Selman. Backdoors to typical case complexity. In Proceedings of IJCAI 2003, 2003.

Slide 6:

- o [Gay '10] Gay, Gregory and Menzies, Tim and Jalali, Omid and Mundy, Gregory and Gilkerson, Beau and Feather, Martin and Kiper, James. Finding robust solutions in requirements models. Automated Software Engineering, 17(1): 87-116, 2010.
- o [Jalali '08] Tim Menzies, Omid Jalali, and Martin Feather. Optimizing requirements decisions with keys. In Proceedings PROMISE '08 (ICSE), 2008.

• Slide 7:

o [Clark '05] R. Clark. Faster treatment learning, Computer Science, Portland State University. Master's thesis, 2005.

References (2)

• [Kirkpatrick '83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

• Slide 9:

- o [Barricelli '54] N. Aall Barricelli. Esempi numerici di processi di evoluzione. Mehodos, pages 45–68, 1954.
- o [Holland '75] J. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI, USA, 1975.

• Slide 10:

- o [Cornford '01] S.L. Cornford, M.S. Feather, and K.A. Hicks. DDP a tool for life-cycle risk management. In IEEE Aerospace Conference, Big Sky, Montana, pages 441–451, March 2001.
- [Feather '02] M.S. Feather and T. Menzies. Converging on the optimal attainment of requirements. In IEEE Joint Conference On Requirements Engineering ICRE'02 and RE'02, 9-13th September, University of Essen, Germany, 2002.
- o [Feather '08] M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies. Application of a broad-spectrum quantitative requirements model to early-lifecycle decision making. IEEE Software, 2008.

Slide 12:

• [Harman '04] Mark Harman and John Clark. Metrics are fitness functions too. In 10th International Software Metrics Symposium (METRICS 2004), 2004), pages = 58–69, location = Chicago, IL, USA, publisher = IEEE Computer Society Press, address = Los Alamitos, CA, USA.

Slide 27:

o [Ciupa '09] Ciupa I., A. Pretschner, M. Oriol, A. Leitner, and B. Meyer. On the number and nature of faults found by random testing. Software Testing, Verification and Reliability, 2009.

Questions?

- Want to contact me later?
 - o Email: greg@greggay.com
 - o Facebook: http://facebook.com/greg.gay
 - o Twitter: http://twitter.com/Greg4cr
- More of my research: http://www.greggay.com