THÉORIES DES LANGAGES

Mr,HEMIOUD hemourad@yahoo,fr Université de Jijel Département d'informatique

Langages hors-contexte (algébriques) et Automates à pile

Certains langages ne peuvent pas être décrits par une grammaire régulière, et ne peuvent donc pas être reconnus par un automate fini (par exemple le langage $\{a^nb^n / n > 0\}$).

On étudie dans ce chapitre une classe de langages plus générale que celle des langages réguliers : la classe des *langages hors-contexte*, décrits par des grammaires hors-contexte et reconnus par des *automates à pile*.

Grammaire hors-contexte:

G = (T, N, S, R) est une grammaire hors-contexte si toutes les règles de R sont de la forme $A \rightarrow w$ avec $A \in N$ et $w \in (N \cup T)^*$.

• Langage hors-contexte : On appelle langage hors-contexte un langage généré par une grammaire hors contexte.

LES AUTOMATES A PILES

LES AUTOMATES À ÉTATS FINI

- Un automate est une machine abstraite qui permet de lire un mot et de répondre à la question : "un mot w appartient-il à un langage L?" par oui ou non.
- Un automate est composé de :

Limite des automates finis

• Certains langages ne peuvent pas être reconnus par les automates finis (ne peuvent être générés par une grammaire régulière)

Exemple: $L = \{a^nb^n \mid n \ge 0\}$

- Il faut $m\acute{e}moriser$ le nombre de a que l'on a lu pour vérifier que le mot possède autant de b.
- Pour mémoriser un nombre potentiellement infini de
 a, il faut un ensemble *infini* d'états!

AUTOMATES À PILE

Principe: Les AuP fonctionnent sur le même principe que les AEF: depuis un état p, ils consomment un caractère du mot et effectue la transition correspondante qui les amène dans un nouvel état q

À la différence des AEF, à chaque transition ils mettent à jour une pile et peuvent ainsi enregistre des informations utiles pour la reconnaissance.

AUTOMATES À PILE

À la différence des AEF, à chaque transition ils mettent à jour une pile et peuvent ainsi enregistre des informations utiles pour la reconnaissance

Généralités

- Forme simple de *mémoire* : une **pile**.
 - Mode de stockage Last In First Out.
 - on accède à la pile **uniquement** par son sommet
- Deux *opérations* possibles :
 - empiler : ajouter un élément au sommet.
 - **dépiler** : enlever l'élément se trouvant au sommet.
- La pile permet de stocker de l'information sans forcément multiplier le nombre d'états.

Configurations

Configuration initiale

- L'unité de contrôle est dans un état initial
- La tète est au **début** de la bande
- La mémoire contient un élément initial. (la pile est vide)

Configuration d'acceptation

- L'unité de contrôle est dans un **état** d'acceptation
- La tète de lecture est à la fin de la bande
- La mémoire se trouve dans un état d'acceptation (la pile est vide)

Un automate à pile non-déterministe (APN) est un septuple (Q,A,P,δ,q_0,Z,Q_F) avec :

- Q: ensemble fini d'états
- A : alphabet fini des symboles d'entrée
- P: alphabet fini des symboles de pile (a priori P∩A=Ø)
- q_0 : état initial
- $\mathbf{Z} \in \mathbf{P}$: symbole initial de pile
- $\mathbf{Q}_{\mathbf{F}} \subseteq \mathbf{Q}$: ensemble des états terminaux
- 6 est l'ensemble des règles de transition

- une règle $\delta(p, \alpha, \alpha) = (q, \beta)$ de transition considère :
 - l'état courant **p** de l'automate
 - le caractère lu a sur le ruban (ou peut-être pas : ϵ)
 - le symbole α de **sommet** de pile (ou peut-être pas : Z)
- o une règle indique:
 - le prochain état q de l'automate
 - la suite de symboles β à **empiler** à la place du **sommet** de pile

Configurations et mouvement

- Configuration : $(q, w, \alpha) \in Q \times A^* \times P^*$ où :
 - q représente l'état courant de l'unité de contrôle
 - w est la partie du mot à reconnaitre non encore lue. Le premier symbole de w (le plus à gauche) est celui qui se trouve sous la tète de lecture. Si w = ε alors tout le mot a été lu.
 - α représente le contenu de la pile. Le symbole le plus à gauche est le sommet de la pile. Si $\alpha = \mathbf{Z}$ alors la pile est vide.

• Configuration **initiale** : (q_0, w, Z) où w est le mot à reconnaitre

• Configuration d'acceptation : (q, ϵ, Z) avec $q \in Q_F$

• Mouvement :

- $(p, aw, B) \vdash (q, w, AB)$ (si $\delta(p, a, B) = (q, AB)$)
- $(p, \boldsymbol{a}w, AB) \vdash (q, w, B)$ (si $\delta(p, a, A) = (q, \varepsilon)$)
- $(p, aw, A) \vdash (q, w, A)$ (si $\delta(p, a, B) = (q, A)$)

- Représentation graphique Exemple 1
- o Soit l'automate à pile suivant qui reconnaît le langage $\{a^{n}b^{n} / n \geq 0\}$

• Représentation graphique Exemple 1

• Soit l'automate à pile suivant qui reconnaît le langage $\{a^nb^n \mid n \ge 0\}$

- Exemple 2
- Soit l'automate à pile suivant qui reconnaît le langage $\{w \in \{a, b\}^* \mid w \text{ est un } palindrome\}$

Simplification des grammaires hors-contextes

Simplification des grammaires hors-contextes

1. Les grammaires propres

Une grammaire hors-contexte (V, N, S, R) est dite **propre** si elle vérifie :

- $\forall A \rightarrow u \in R : u \neq \varepsilon \text{ ou } A = S ;$
- $\forall A \rightarrow u \in R : S \text{ ne figure pas dans } u ;$
- $\forall A \rightarrow u \in R : u \notin N$;
- Tous les non terminaux sont *utiles*, c'est-à-dire qu'ils vérifient :
 - \forall A ∈ N : A est <u>atteignable</u> depuis S : \exists α, β ∈ (N + V)* : S→*αA β ;
 - \bullet ∀A ∈ N: A est productif : \exists w ∈ V*: A→* w.
- Il est toujours possible de trouver une grammaire propre pour toute grammaire hors contexte. En effet, 20 on procède comme suit :

- 1. Rajouter une nouvelle règle $S' \rightarrow S$ tel que S' est le nouvel axiome ;
- 2. Éliminer les règles $A \rightarrow \epsilon$:
 - Calculer l'ensemble $E = \{A \in N \cup \{S'\} \mid A \rightarrow^* \epsilon \}$;
 - Pour tout $A \in E$, pour toute règle $B \to \alpha A\beta$ de R
 - Rajouter la règle $B \rightarrow \alpha \beta$
 - Enlever les règles $A \rightarrow \epsilon$;
- 3. Eliminer les règles $A \rightarrow^* B$, on applique la procédure suivante sur R privée de $S' \rightarrow \epsilon$:
 - Calculer toutes les paires (A, B) tel que $A \rightarrow * B$
 - Pour chaque paire (A, B) trouvée
 - o Pour chaque règle B → $u_1 | ... | u_n$ rajouter la règle A → $u_1 | ... | u_n$
 - Enlever toutes les règles $A \rightarrow B$
- 4. Supprimer tous les non-terminaux non-productifs
- 5. Supprimer tous les non-terminaux non-atteignables