

The R Language Basics

Understand how R stores and works with data; R packages

Arthur Petrosian

arthur.petrosian@aua.edu

Spring 2017

Robjects

name of new object

foo <- 42

assignment operator, "gets"

foo <- 42

information to store in the object

When you create an R object, you'll see it appear in your workspace pane

Common R workflow

Save output of one function as an R object to use in a second function.

```
foo <- round(3.1415) + 1
foo
# 4

factorial(foo)
# 24</pre>
```

Object names

Object names cannot begin with numbers. Wise to avoid names already in use.

a 1trial \$
b \$
F00 rean \$
my_var 2nd !bad

Capitalization matters

R will treat each of these as a different object

a

b

sum

A

В

SUM

rm

You can remove an object with rm

```
foo
# 4

rm(foo)
foo
# Error: object 'foo' not found
```

pi

This can be useful if you overwrite an object that comes with R

```
# 3.141593
pi <- 1
pi
# 1
rm(pi)
pi
# 3.141593
```

Data structures

Warm up

Look at the R object WorldPhones (by typing its name in the console).

What is inside of WorldPhones?

WorldPhones

	N. Amer	Europe	Asia	S. Amer	Oceania	Africa	Mid. Amer
1951	45939	21574	2876	1815	1646	89	555
1956	60423	29990	4708	2568	2366	1411	733
1957	64721	32510	5230	2695	2526	1546	773
1958	68484	35218	6662	2845	2691	1663	836
1959	71799	37598	6856	3000	2868	1769	911
1960	76036	40341	8220	3145	3054	1905	1008
1961	79831	43173	9053	3338	3224	2005	1076

You can save more than a single number in an object by creating a *vector*, *matrix*, or *array*.

vectors

Combine multiple elements into a one dimensional array.

Create with the c function.

```
vec <- c(1, 2, 3, 10, 100)
vec
# 1 2 3 10 100</pre>
```

vectors

multiple elements stored in a one dimensional array.

Create with the c function.

```
vec <- c(1, 2, 3, 10, 100)
vec
# 1 2 3 10 100</pre>
```

matrices

multiple elements stored in a two dimensional array.

Create with the matrix function.

matrices

Combine multiple elements into a two dimensional array.

Create with the matrix function.

```
mat <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
mat

# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6</pre>
```

vector of elements to go in the matrix

```
matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6
```

number of rows for matrix

```
matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6
```

```
matrix(c(1, 2, 3, 4, 5, 6), nrow = 3)
# [,1] [,2]
# [1,] 1 4
# [2,] 2 5
# [3,] 3 6
```

Math: element-wise

```
vec + 4
# 5 6 7 14 104
vec * 4
# 4 8 12 40 400
vec * vec
# 1 4 9 100 10000
```

vec		vec			
1	*	1	_	1	
2	*	2	_	4	
3	*	3	_	9	
10	*	10	_	100	
100	*	100	=	1000	0

Matrix multiplication

```
# [1,] 10114
vec %o% vec # outer
# [, 1] [, 2] [, 3] [, 4] [, 5]
     1 2 3 10
# [1,]
                        100
# [2,] 2 4
                6 20
                        200
# [3,] 3 6
                    30
                        300
# [4, ]
      10
          20
              30
                  100
                       1000
# [5,]
      100
          200
              300 1000 10000
```

vec %*% vec # inner

[, 1]

```
mat
# [, 1] [, 2] [, 3]
# [1,] 1 3 5
# [2,] 2 4 6
t (mat)
# [, 1] [, 2]
# [1,] 1 2
# [2,] 3 4
# [3,] 5 6
```

arrays

Combine multiple elements into an array that has three or more dimensions.

Create with the array function.

array(c(1, 2, 3, 4, 5, 6), dim = c(2, 2, 3))

arrays

Combine multiple elements into an array that has three or more dimensions.

Create with the array function.

Datatypes

Warm up

:::	Α	В	С	D	::
1	date	president	democrat	unemploy	
2	Mar 31, 1968	Lyndon Johnson	TRUE	2709	
3	Apr 30, 1968	Lyndon Johnson	TRUE	2740	
4	May 31, 1968	Lyndon Johnson	TRUE	2938	
5	Jun 30, 1968	Lyndon Johnson	TRUE	2883	
6	Jul 31, 1968	Lyndon Johnson	TRUE	2768	
7	Aug 31, 1968	Lyndon Johnson	TRUE	2686	
8	Sep 30, 1968	Lyndon Johnson	TRUE	2689	
9	Oct 31, 1968	Lyndon Johnson	TRUE	2715 2685 2718 2692 2712 2758 2713 2816 2868 2'	
10	Nov 30, 1968	Lyndon Johnson	TRUE	2685	
11	Dec 31, 1968	Lyndon Johnson	TRUE	2718	
12	Jan 31, 1969	Richard Nixon	FALSE	2692	
13	Feb 28, 1969	Richard Nixon	FALSE	2712	
14	Mar 31, 1969	Richard Nixon	FALSE	2758	
15	Apr 30, 1969	Richard Nixon	FALSE	2713	
16	May 31, 1969	Richard Nixon	FALSE	2816	
17	Jun 30, 1969	Richard Nixon	FALSE	2862	
18	Jul 31, 1969	Richard Nixon	FALSE	2	
19	Aug 31, 1969	Richard Nixon	FALSE		X
20	Sep 30, 1969	Richard Nixon	FALSE	110	O'
21	Oct 31, 1969	Richard Nixon	FALSE		•
22	Nov 30, 1969	Richard Nixon	FALSE		

data types

Like Excel, Numbers, etc., R can recognize different types of data.

We'll look at four basic types:

- numbers
- character strings (text)
- logical
- factor

numeric

Any number, no quotes.

Appropriate for math.

```
1 + 1
3000000
class(0.00001)
# "numeric"
```

character

Any symbols surrounded by quotes.

Appropriate for words, variable names, messages, any text.

```
"hello"
class("hello")
# "character"
```

```
"hello" + "world"

# Error

nchar("hello")

# 5

paste("hello", "world")

# "hello world"
```

Warm up

Which of these are numbers? What are the others? How can you tell?

1 "1" "one"

logical

TRUE or FALSE

R's form of binary data. Useful for logical tests.

```
3 < 4
# TRUE

class(TRUE)
# "logical"

class(T)
# "logical"</pre>
```

factor

R's form of categorical data. Saved as an integer with a set of labels (e.g. levels).

```
fac <- factor(c("a", "b", "c"))
fac
# a b c
# Levels: a b c

class(fac)
# factor</pre>
```

$$x < -c(1, 2, 3)$$

What is the difference between these?

Type	Examples				
numeric	0, 1, -2, 3.1415, 0.0005				
character	"gender", "date", "31"				
logical	TRUE, FALSE				
factor	accb Levels: abc				

Aside: dates and times

Surprisingly difficult for computers!

We won't cover, but I recommend the following resources

http://www.r-statistics.com/2012/03/do-more-with-dates-and-times-in-r-with-lubridate-1-1-0/

http://www.jstatsoft.org/v40/i03/

Your turn

Make a vector that contains the number 1, the letter R, and the logical TRUE.

What class of data is the vector?

```
vec <- c(1, "R", TRUE)
class(vec)
# "character"

vec
# "1" "R" "TRUE"

# What is R doing?</pre>
```

Vector

Vector

2	3

numeric

character

Vector TRUE TRUE TRUE

logical

Vector

1	"R"	TRUE

?

character

coercion

coercion


```
c (5, "two") character
```



```
c (5, "two") character
```



```
c (5, "two") character
```

manual coercion

function	coerces data to
as.numeric	numeric
as.character	character
as.logical	logical
as.factor	factor

as.numeric("1")

as.character(TRUE)

Matrix

1	"R"	TRUE
2	"S"	FALSE
3	"T"	TRUE

Matrix

"1"	"R"	"TRUE"
"2"	"S"	"FALSE"
"3"	"T"	"TRUE"

character

Matrix

What if you want different data types in the same object?

lists and data frames

lists and data frames generalize vectors and matrices to allow multiple types of data

lists

A list is a one dimensional group of R objects.

Create lists with list

```
1st <- list(1, "R", TRUE)
class(lst)
# "list"</pre>
```

Vector "1" "R" "TRUE" character

List			
LIST			

character

List

character

List

numeric

character

List "R"

numeric

character

List "R"

numeric character

character

List "R" TRUE

numeric character

character

The elements of a list can be anything. Even vectors or other lists.

data frame

A data frame is a two dimensional group of R objects.

Each column in a data frame can be a different type

```
df <- data.frame(c(1, 2, 3),
  c("R", "S", "T"), c(TRUE, FALSE, TRUE))
class(df)
# "data.frame"</pre>
```


character

data frame

character

data frame

numeric

character

data frame

numeric

character

numeric character

character

numeric character

character

names

You can name the elements of a vector, list, or data frame when you create them.

```
nvec    c (one = 1, two = 2, three = 3)
<-
nvec    two three
# one
# 1 2 3</pre>
```

```
nlst \langle -1 \text{ist} (\text{one} = 1, \text{two} = 2, \text{many} = c(3, 4, 5))
```

```
nlst
# $one
# [1] 1
#
# $two
# [1] 2
#
# $many
# [1] 3 4 5
```

```
ndf \leftarrow data.frame(numbers = c(1, 2, 3),
letters = c("R", "S", "T"),
logic = c(TRUE, FALSE, TRUE))
```

You can also see and set the names with names

```
names (ndf)
# [1] "numbers" "letters" "logic"
names (nvec)
# [1] "one" "two" "three"
names (nvec) <- c ("uno", "dos", "tres")
nvec
# uno dos tres
# 1 2 3
```

single type

multiple types

Vector

List

Matrix

Data frame

Array

helper functions for data structures

	create	change to	check	get names	get dimensions
vector	c, vector	as. vector	is. vector	names	length
matrix	matrix	as.matrix	is.matrix	rownames, colnames	dim, nrow, ncol
array	array	as. array	is. array	dimnames	dim
list	list	as. list	is. list	names	length
data frame	data.frame	as.data.frame	is.data.frame	names	dim, nrow, ncol

R Packages

R Packages

A collection of code and functions written for the R language.

Usually focuses on a specific task or problem.

Most of the useful R applications appear in packages.

Start RStudio

Install your package with

install.packages("ggplot2")

Load your package with library (ggplot2)

qplot(1:10, 1:10)

Error: could not find function "qplot"

library (ggplot2)

qplot(1:10, 1:10)

You cannot use a function in a package until you load the package

Package summary

- 1. Download the package with
 - install.packages("name")
 - You only have to do this once
 - You should be connected to the internet
- 2. Load the package with
 - library ("name")
 - You have to do this each time you start an R session.

in are over the property of th

Your Turn

We're going to use the ggplot2, maps, RColorBrewer, and scales packages.

Load them with

```
library("ggplot2")
library("maps")
library("RColorBrewer")
```

Note: If you have not yet installed them, you'll need to run install. packages (c ("ggplot2", "maps", "RColorBrewer")) first.