Тренировочная работа №2 по ИНФОРМАТИКЕ 11 класс

19 декабря 2023 года Вариант ИН2310201

Выполнена: ФИО	класс	
----------------	-------	--

Инструкция по выполнению работы

Тренировочная работа по информатике состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение тренировочной работы по информатике отводится 3 часа 55 минут (235 минут).

Тренировочная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения испытания в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всей работы текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении выполнения тренировочной работы доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) *тождество* обозначается \equiv (например, $A \equiv B$); выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащие переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и $(\neg A) \lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor (C \land D).

Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.

4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле — как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога АБ длиннее дороги ЖИ. Определите длину дороги ВД.

	П1	П2	П3	П4	П5	П6	П7	П8
П1			8	11		20		
П2			19	28			29	15
П3	8	19		12				9
П4	11	28	12			26		
П5						18	16	14
П6	20			26	18		32	
П7		29			16	32		17
П8		15	9		14		17	

U	твет:										

2 Логическая функция F задаётся выражением:

$$((x \to y) \land (z \equiv \neg w)) \to (u \equiv (x \lor z))$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	???	F
0		0	0	0	0
0			0	0	0
	0	0	0		0
	0			0	0

Определите, какому столбцу таблицы истинности соответствует каждая из переменных u, w, x, y, z.

В ответе напишите буквы u, w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности.

Переменная 1	Переменная 2	Функция
???	???	$oldsymbol{F}$
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе нужно написать: yx.

Ответ:	
OIBCI.	•

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблии.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите магазин, продавший за месяц наибольшее количество лапши гречневой. В ответе запишите ID магазина – так, как он указан в базе.

Ответ:	 	 	

4 По каналу связи передаются сообщения, содержащие только буквы, входящие в слово ИНФОРМАТИКА. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано: никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Ф – 010, Р – 011, М – 101, Т – 1101, К – 111.

Какое **наименьшее** число двоичных знаков может содержать код слова ИНФОРМАТИКА?

Ответ:	
--------	--

- **5** Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. В конец двоичной записи добавляется двоичный код остатка от деления числа N на 4.
 - 3. Результатом работы алгоритма становится десятичная запись полученного числа R.

Пример 1. Дано число N = 13. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $13_{10} = 1101_2$.
- 2. Остаток от деления 13 на 4 равен 1, добавляем к двоичной записи цифру 1, получаем $11011_2 = 27_{10}$.
- 3. Результат работы алгоритма R = 27.

Пример 2. Дано число N = 14. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $14_{10} = 1110_2$.
- 2. Остаток от деления 14 на 4 равен 2, добавляем к двоичной записи цифры $10 (10_2 = 2_{10})$, получаем $111010_2 = 58_{10}$.
- 3. Результат работы алгоритма R = 58.

Назовем доступными числа, которые могут получиться в результате работы этого алгоритма. Например, числа 27 и 58 – доступные.

Какое наибольшее количество доступных чисел может быть на отрезке, содержащем 49 натуральных чисел?

Ответ:			

Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять две команды: Вперёд n (n — число) и Направо m (m — число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения.

В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).

Запись **Повтори** k [Команда1 Команда2 ... КомандаS] означает, что заданная последовательность из S команд повторится k раз.

Черепаха выполнила следующую программу:

Повтори 4 [Вперёд 14 Направо 90] Повтори 5 [Вперёд 5 Направо 45]

Определите, сколько различных точек с целочисленными координатами будет находиться на линиях, полученных при выполнении данной программы.

	Ответ:
7	Камера наблюдения каждые n секунд (n — целое число) делает фотографию с разрешением 1024×768 пикселей и палитрой 4096 цветов. Фотографии передаются по каналу с пропускной способностью 200 Кбайт/сек, при этом используются методы сжатия, позволяющие уменьшить размер изображения в среднем на 20 %. Определите минимально возможное значение n , при котором возможна передача в режиме реального времени.
	Ответ:
8	Сколько существует 11-значных девятеричных чисел, в записи которых не встречается цифра 0, любые две соседние цифры имеют разную чётность, и никакая цифра не повторяется больше 4 раз?
	Ответ: .

9 Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

- в строке есть повторяющиеся числа;
- максимальное число в строке не повторяется;
- сумма всех повторяющихся чисел в строке больше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число – количество строк, удовлетворяющих заданным условиям.

Ответ:	
Olbel.	•

Задание выполняется с использованием прилагаемых файлов.

Повесть братьев Стругацких «Понедельник начинается в субботу» состоит из трёх историй. Определите, сколько раз во второй истории, включая заголовки, эпиграфы и сноски, встречаются слова из трёх букв, включая трёхбуквенные сокращения и аббревиатуры. В этом задании части слова, разделённые дефисом, рассматриваются как отдельные слова. Например, слово «кто-то» учитывается как два отдельных слова: трёхбуквенное и двухбуквенное.

Ответ:	 				

В информационной системе хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность блоков. Для каждого блока указываются его код и тип. Код блока состоит из 15 символов, каждый из которых может быть заглавной латинской буквой или цифрой. Каждый символ кода кодируется минимально возможным количеством битов. Тип блока — это целое число от 1 до 2000, которое кодируется минимально возможным количеством битов. Блок в целом кодируется минимально возможным целым количеством байтов.

Для хранения информации о каждом объекте выделяется одинаковое для всех объектов минимальное количество байтов, достаточное для описания 40 блоков.

Определите объём памяти (в Кбайт), необходимый для хранения информации о 32768 объектах. В ответе запишите число – количество Кбайт.

Ответ:	
OIBCI.	

12

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (*v*).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для редактора:

НАЧАЛО

ПОКА НЕ нашлось (00) заменить (01, 220) заменить (02, 1013) заменить (03, 120) КОНЕЦ ПОКА

КОНЕЦ

Известно, что в исходной строке A было ровно два нуля — на первом и на последнем месте, а после выполнения данной программы получилась строка B, содержащая 13 единиц и 18 двоек.

Какое наибольшее количество цифр могло быть в строке А?

Ответ:	
OIBCI.	

13	В терминологии сетей ТСР/ІР маской сети называется двоичное число,
	определяющее, какая часть ІР-адреса узла сети относится к адресу сети,
	а какая – к адресу самого узла в этой сети. При этом в маске сначала
	(в старших разрядах) стоят единицы, а затем с некоторого места – нули.
	Адрес сети получается в результате применения поразрядной конъюнкции
	к заданному IP-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Узлы с IP-адресами 120.91.176.213 и 120.91.174.205 находятся в разных сетях. Укажите наименьшее возможное значение третьего слева байта маски этой сети. Ответ запишите в виде десятичного числа.

14	В числе $57x692y19_{40}$ x и y обозначают некоторые цифры из алфавита
	системы счисления с основанием 40. Определите такие значения x и y , при
	которых приведённое число кратно 39, а число yx_{40} является полным
	квадратом. В ответе запишите значение числа yx_{40} в десятичной системе
	счисления.

Ответ:		
OIDCI.		

Обозначим через m&n поразрядную конъюнкцию неотрицательных целых чисел m и n. Hanpumep, $14\&5 = 1110_2\&0101_2 = 0100_2 = 4$. Для какого наименьшего неотрицательного целого числа A формула

$$((x\&57 > 0) \lor (x\&99 > 0)) \rightarrow (x\&A > 0)$$

тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?

Ответ:			

Обозначим через a%b остаток от деления натурального числа a на натуральное число b, а через a//b — целую часть от деления a на b.

Функция F(n), где n — неотрицательное целое число, задана следующими соотношениями:

$$F(n) = 0$$
, если $n = 0$;

$$F(n) = F(n/10) + n\%10$$
, если $n > 0$ и n чётно;

F(n) = F(n/10), если *n* нечётно.

Определите количество таких целых k, что $10^9 \le k \le 2 \cdot 10^9$ и F(k) = 0.

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - хотя бы два числа в тройке пятизначные;
 - ровно одно число в тройке делится на 3;
 - сумма элементов тройки больше максимального элемента последовательности, запись которого заканчивается на 123. (Гарантируется, что в последовательности есть хотя бы один элемент, запись которого заканчивается на 123.)

В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.

Ответ:		
--------	--	--

18

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:		
--------	--	--

- Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. В игре разрешено делать следующие ходы:
 - добавить в кучу один камень;

Ответ:

- если количество камней в куче чётно, добавить половину имеющегося количества;
- если количество камней в куче кратно трём, добавить треть имеющегося количества;
- если количество камней в куче не кратно ни двум, ни трём, удвоить кучу.

Например, если в куче 5 камней, то за один ход можно получить 6 или 10 камней, а если в куче 6 камней, то за один ход можно получить 7, или 8, или 9 камней.

Игра завершается, когда количество камней в куче достигает 96. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 96 или больше камней.

В начале игры в куче было S камней, $1 \le S \le 95$.

Укажите **минимальное** значение S, при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим первым ходом.

20	Для игры, описанной в задании 19, найдите два наибольших значения <i>S</i> , при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите найденные значения в порядке возрастания.
	Ответ:
21	Для игры, описанной в задании 19, найдите наибольшее значение <i>S</i> , при котором у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволила бы ему гарантированно выиграть первым ходом.
	Ответ:

22	В компьютерной системе необходимо выполнить некоторое количество
<u>_</u>	вычислительных процессов, которые могут выполняться параллельно или
	последовательно. Для запуска некоторых процессов необходимы данные,
	которые получаются как результаты выполнения одного или двух других
	процессов – поставщиков данных. Если зависимый процесс получает данные
	от одного или нескольких других процессов (поставщиков данных), то
	выполнение зависимого процесса не может начаться раньше завершения всех
	процессов-поставщиков. Количество одновременно выполняемых процессов
	может быть любым. Длительность процесса не зависит от других
	параллельно выполняемых процессов.
	В таблице представлены идентификатор (ID) каждого процесса, его

В таблице представлены идентификатор (ID) каждого процесса, его длительность, для зависимых процессов – ID поставщиков данных. Для независимых процессов в качестве ID поставщиков данных указан 0.

Определите максимальную длительность отрезка времени (в мс), в течение которого возможно одновременное выполнение четырёх процессов, при условии, что в эту четвёрку не входит процесс с ID = 2.

Ответ:	
OIBCI.	•

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами:

- А. Вычесть 1
- В. Умножить на 2
- С. Умножить на 3

Программа для исполнителя — это последовательность команд. *Например*, программа **BAC** при исходном числе 2 последовательно получит числа 4, 3, 9. Сколько существует программ, которые преобразуют исходное число 3 в число 20 и при этом не содержат двух команд **A** подряд?

Ответ:		
OIBCI.		•

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл содержит только заглавные буквы латинского алфавита
<u>'</u>	(ABCZ). Определите максимальное количество идущих подряд символов, среди которых каждая из букв А и В встречается не более двух раз.
	Ответ:

пустую) последовательность цифр.

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие 10^{10} , которые соответствуют маске 1*4302?1 и при этом без остатка делятся на 3147.

В ответе запишите все найденные числа в порядке возрастания.

Ответ:	
	•••

Задание выполняется с использованием прилагаемых файлов.

В отделении банка работают два окна для обслуживания клиентов. Некоторые услуги могут быть оказаны только при обращении в определённое окно, некоторые – при обращении в любое окно. Клиент входит в отделение и встаёт в очередь к тому окну, которое оказывает необходимую ему услугу. Если услуга может быть оказана в любом окне, клиент выбирает то, в очереди к которому в данный момент меньше людей. Если очереди в оба окна одинаковые, клиент выбирает окно с меньшим номером. При этом если в очереди к выбранному окну уже стоит 12 или более человек (включая человека, которого обслуживают в данный момент), пришедший клиент сразу уходит.

Если момент завершения обслуживания одного или нескольких клиентов совпадает с моментом прихода нового клиента, то можно считать, что новый клиент пришёл после того, как обслуживание ранее пришедшего клиента завершилось и очередь сократилась.

Входные данные

26

Первая строка входного файла содержит целое число N ($N \le 1000$) — общее количество клиентов, пришедших в отделение за один рабочий день. Каждая из следующих N строк описывает одного клиента и содержит 3 целых числа: время прихода клиента в отделение (количество минут с начала рабочего дня), время, необходимое для обслуживания данного клиента, и номер окна, в которое ему необходимо обратиться (0 означает, что клиент может обратиться в любое окно). Гарантируется, что никакие два клиента не приходят одновременно.

Определите, сколько клиентов будет обслужено в течение дня в окне номер 1 и сколько клиентов покинет отделение из-за слишком больших очередей. В ответе запишите два целых числа: сначала количество клиентов, обслуженных в окне номер 1, затем количество необслуженных клиентов.

Задание выполняется с использованием прилагаемых файлов.

Дана последовательность целых чисел. Расстояние между элементами последовательности — это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними равно 1, если два элемента стоят через один — расстояние равно 2 и т. д. Необходимо выбрать из последовательности три числа так, чтобы расстояние между какими-то двумя из них было равно 3K, а сумма всех трёх чисел была максимально возможной.

Запишите в ответе найденную сумму.

Входные данные

Первая строка входного файла содержит целое число K — параметр для определения расстояния, вторая строка содержит число N — общее количество чисел в наборе (1 < 3K < N). Каждая из следующих N строк содержит одно число, не превышающее по модулю 10^7 .

Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала требуемую сумму для файла A, затем – для файла B.

Ответ:	
--------	--

Тренировочная работа №2 по ИНФОРМАТИКЕ 11 класс

19 декабря 2023 года Вариант ИН2310202

Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

Тренировочная работа по информатике состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение тренировочной работы по информатике отводится 3 часа 55 минут (235 минут).

Тренировочная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения испытания в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всей работы текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении выполнения тренировочной работы доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В заданиях используются следующие соглашения.

- 1. Обозначения для логических связок (операций):
- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \mid B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) *тождество* обозначается \equiv (например, $A \equiv B$); выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащие переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и $(\neg A) \lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor (C \land D).
- Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизъюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.
- 4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога БИ длиннее дороги АЖ. Определите длину дороги ГЕ.

1

	П1	П2	П3	П4	П5	П6	П7	П8
П1			22	36	19			35
П2						24	18	25
П3	22			23	12		17	
П4	36		23			29	27	
П5	19		12					23
П6		24		29			26	28
П7		18	17	27		26		
П8	35	25			23	28		

O	твет:										•

2 Логическая функция F задаётся выражением:

$$((z \to w) \land (y \equiv \neg x)) \to (u \equiv (y \lor z))$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	???	$\boldsymbol{\mathit{F}}$
0		0	0	0	0
0			0	0	0
	0	0	0		0
0	0				0

Определите, какому столбцу таблицы истинности соответствует каждая из переменных u, w, x, y, z.

В ответе напишите буквы u, w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности.

Переменная 1	Переменная 2	Функция			
???	???	$oldsymbol{F}$			
0	1	0			

Тогда первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе нужно написать: yx.

Ответ:	
OIDCI.	•

3 В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите магазин, продавший за месяц наибольшее количество чая зелёного. В ответе запишите ID магазина – так, как он указан в базе.

·

Ответ:

	Ответ:
4	По каналу связи передаются сообщения, содержащие только буквы, входящие в слово ИСПОЛНИТЕЛЬ. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано: никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: С – 0000, П – 0001, Н – 010, Т – 0110, Ь – 10. Какое наименьшее число двоичных знаков может содержать код слова ИСПОЛНИТЕЛЬ?

- 5 Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом.
 - 1. Строится двоичная запись числа N.
 - 2. В конец двоичной записи добавляется двоичный код остатка от деления числа N на 4.
 - 3. Результатом работы алгоритма становится десятичная запись полученного числа R.

Пример 1. Дано число N = 13. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $13_{10} = 1101_2$.
- 2. Остаток от деления 13 на 4 равен 1, добавляем к двоичной записи цифру 1, получаем $11011_2 = 27_{10}$.
- 3. Результат работы алгоритма R = 27.

Пример 2. Дано число N = 14. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $14_{10} = 1110_2$.
- 2. Остаток от деления 14 на 4 равен 2, добавляем к двоичной записи цифры $10 (10_2 = 2_{10})$, получаем $111010_2 = 58_{10}$.
- 3. Результат работы алгоритма R = 58.

Назовем доступными числа, которые могут получиться в результате работы этого алгоритма. Например, числа 27 и 58 – доступные.

Какое наибольшее количество доступных чисел может быть на отрезке, содержащем 65 натуральных чисел?

Исполнитель Черепаха передвигается по плоскости и оставляет след в виде линии. Черепаха может выполнять две команды: Вперёд n (n – число) и Направо m (m – число). По команде Вперёд n Черепаха перемещается вперёд на n единиц. По команде Направо m Черепаха поворачивается на месте на m градусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения.

В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).

Запись **Повтори** k [Команда1 Команда2 ... КомандаS] означает, что заданная последовательность из S команд повторится k раз.

Черепаха выполнила следующую программу:

Повтори 4 [Вперёд 12 Направо 90] Повтори 5 [Вперёд 4 Направо 45]

OTRET:

Определите, сколько различных точек с целочисленными координатами будет находиться на линиях, полученных при выполнении данной программы.

7	Камера наблюдения каждые n секунд (n — целое число) делает фотографию с разрешением 1200×800 пикселей и палитрой 65536 цветов. Фотографии передаются по каналу с пропускной способностью 300 Кбайт/сек, при этом используются методы сжатия, позволяющие уменьшить размер изображения в среднем на 40 %. Определите минимально возможное значение n , при котором возможна передача в режиме реального времени.
	Ответ:
8	Сколько существует 9-значных девятеричных чисел, в записи которых не встречается цифра 0, любые две соседние цифры имеют разную чётность, и никакая цифра не повторяется больше 3 раз?
	Ответ:

9	Откройте файл элект	ронной таблицы,	содержащей в	в каждой	строке	шесть
	натуральных чисел.					

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

- в строке есть повторяющиеся числа;
- максимальное число в строке не повторяется;
- сумма всех повторяющихся чисел в строке меньше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число – количество строк, удовлетворяющих заданным условиям.

Ответ:	
OTBET.	•

Задание выполняется с использованием прилагаемых файлов.

10	Повесть братьев Стругацких «Понедельник начинается в субботу» состоит из
	трёх историй. Определите, сколько раз во второй истории, включая
	заголовки, эпиграфы и сноски, встречаются слова из четырёх букв, включая
	четырёхбуквенные сокращения и аббревиатуры. В этом задании части слова,
	разделённые дефисом, рассматриваются как отдельные слова. Например,
	слово «кто-то» учитывается как два отдельных слова: трёхбуквенное
	и двухбуквенное.

В информационной системе хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность блоков. Для каждого блока указываются его код и тип. Код блока состоит из 13 символов, каждый из которых может быть заглавной латинской буквой или цифрой. Каждый символ кода кодируется минимально возможным количеством битов. Тип блока — это целое число от 1 до 1000, которое кодируется минимально возможным количеством битов. Блок в целом кодируется минимально возможным целым количеством байтов.

Для хранения информации о каждом объекте выделяется одинаковое для всех объектов минимальное количество байтов, достаточное для описания 70 блоков.

Определите объём памяти (в Кбайт), необходимый для хранения информации о 16384 объектах. В ответе запишите число – количество Кбайт.

Ответ:					

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах *v* и *w* обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (у).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для редактора:

НАЧАЛО

ПОКА НЕ **нашлось** (00) **заменить** (01, 220)

заменить (02, 1013)

заменить (03, 120)

КОНЕЦ ПОКА

КОНЕЦ

Известно, что в исходной строке A было ровно два нуля — на первом и на последнем месте, а после выполнения данной программы получилась строка B, содержащая 13 единиц и 18 двоек.

Какое наименьшее количество цифр могло быть в строке А?

В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Узлы с IP-адресами 120.91.85.213 и 120.91.89.205 находятся в разных сетях. Укажите наименьшее возможное значение третьего слева байта маски этой сети. Ответ запишите в виде десятичного числа.

\sim		
Ответ:		
· / I RE I		
OIDCI.		

14	В числе $58x723y49_{39}$ x и y обозначают некоторые цифры из алфавита системы счисления с основанием 39. Определите такие значения x и y , при которых приведённое число кратно 38, а число yx_{39} является полным квадратом. В ответе запишите значение числа yx_{39} в десятичной системе счисления.
	Ответ:
15	Обозначим через $m\&n$ поразрядную конъюнкцию неотрицательных целых чисел m и n . $Hanpumep$, $14\&5=1110_2\&0101_2=0100_2=4$. Для какого наименьшего неотрицательного целого числа A формула
	$((x\&45 > 0) \lor (x\&89 > 0)) \rightarrow (x\&A > 0)$
	тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?
	Ответ:
16	Обозначим через $a\%b$ остаток от деления натурального числа a на натуральное число b , а через $a//b$ — целую часть от деления a на b . Функция $F(n)$, где n — неотрицательное целое число, задана следующими соотношениями: $F(n) = 0, \text{ если } n = 0;$ $F(n) = F(n//10) + n\%10, \text{ если } n > 0 \text{ и } n \text{ чётно};$ $F(n) = F(n//10), \text{ если } n \text{ нечётно}.$
	Определите количество таких целых k , что $10^9 \le k \le 2 \cdot 10^9$ и $F(k) = 2$.
	Ответ:

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - ровно два числа в тройке пятизначные;
 - хотя бы одно число в тройке делится на 5;
 - сумма элементов тройки больше максимального элемента последовательности, запись которого заканчивается на 321. (Гарантируется, что в последовательности есть хотя бы один элемент, запись которого заканчивается на 321.)

В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.

Ответ:		

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом нижнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число –1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа. За один ход робот может переместиться на одну клетку вправо или на одну клетку вверх. Клетка, из которой робот не может сделать допустимого хода (справа и сверху находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток. В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

\circ	
()TReT	
Olbel.	

- Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. В игре разрешено делать следующие ходы:
 - добавить в кучу один камень;

 O_{TReT}

- если количество камней в куче чётно, добавить половину имеющегося количества;
- если количество камней в куче кратно трём, добавить треть имеющегося количества;
- если количество камней в куче не кратно ни двум, ни трём, удвоить кучу.

Например, если в куче 5 камней, то за один ход можно получить 6 или 10 камней, а если в куче 6 камней, то за один ход можно получить 7, или 8, или 9 камней.

Игра завершается, когда количество камней в куче достигает 132. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 132 или больше камней.

В начале игры в куче было S камней, $1 \le S \le 131$.

Укажите **минимальное** значение S, при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим первым ходом.

	<u> </u>
20	Для игры, описанной в задании 19, найдите два наибольших значения <i>S</i> , при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите найденные значения в порядке возрастания.
	Ответ:
21	Для игры, описанной в задании 19, найдите наибольшее значение <i>S</i> , при котором у Вани есть стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволила бы ему гарантированно выиграть первым ходом.
	Ответ:

2	В компьютерной системе необходимо выполнить некоторое количество
	вычислительных процессов, которые могут выполняться параллельно или
	последовательно. Для запуска некоторых процессов необходимы данные,
	которые получаются как результаты выполнения одного или двух других
	процессов – поставщиков данных. Если зависимый процесс получает данные
	от одного или нескольких других процессов (поставщиков данных), то
	выполнение зависимого процесса не может начаться раньше завершения всех
	процессов-поставщиков. Количество одновременно выполняемых процессов
	может быть любым. Длительность процесса не зависит от других
	параллельно выполняемых процессов.

В таблице представлены идентификатор (ID) каждого процесса, его длительность, для зависимых процессов – ID поставщиков данных. Для независимых процессов в качестве ID поставщиков данных указан 0.

Определите максимальную длительность отрезка времени (в мс), в течение которого возможно одновременное выполнение четырёх процессов, при условии, что в эту четвёрку не входит процесс с ID = 8.

Ответ:	
OIBCI.	•

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами:

- А. Вычесть 1
- В. Умножить на 2
- С. Умножить на 3

Программа для исполнителя — это последовательность команд. *Например*, программа **BAC** при исходном числе 2 последовательно получит числа 4, 3, 9. Сколько существует программ, которые преобразуют исходное число 3 в число 15 и при этом не содержат двух команд **A** подряд?

Ответ:			

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл содержит только заглавные буквы латинского алфавита
	(ABCZ). Определите максимальное количество идущих подряд символов,
	среди которых каждая из букв С и D встречается не более двух раз.

Ответ:		
OIDCI.		

25

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие 10^{10} , которые соответствуют маске 1*4239?7 и при этом без остатка делятся на 3147.

В ответе запишите все найденные числа в порядке возрастания.

Ответ:	
	•••

Задание выполняется с использованием прилагаемых файлов.

26

В отделении банка работают два окна для обслуживания клиентов. Некоторые услуги могут быть оказаны только при обращении в определённое окно, некоторые – при обращении в любое окно. Клиент входит в отделение и встаёт в очередь к тому окну, которое оказывает необходимую ему услугу. Если услуга может быть оказана в любом окне, клиент выбирает то, в очереди к которому в данный момент меньше людей. Если очереди в оба окна одинаковые, клиент выбирает окно с меньшим номером. При этом если в очереди к выбранному окну уже стоит 14 или более человек (включая человека, которого обслуживают в данный момент), пришедший клиент сразу уходит.

Если момент завершения обслуживания одного или нескольких клиентов совпадает с моментом прихода нового клиента, то можно считать, что новый клиент пришёл после того, как обслуживание ранее пришедшего клиента завершилось и очередь сократилась.

Входные данные

Первая строка входного файла содержит целое число N ($N \le 1000$) — общее количество клиентов, пришедших в отделение за один рабочий день. Каждая из следующих N строк описывает одного клиента и содержит 3 целых числа: время прихода клиента в отделение (количество минут с начала рабочего дня), время, необходимое для обслуживания данного клиента, и номер окна, в которое ему необходимо обратиться (0 означает, что клиент может обратиться в любое окно). Гарантируется, что никакие два клиента не приходят одновременно.

информатика. 11 класс. Вариант ин2310202				
Определите, сколько клиентов будет обслужено в течение дня в окне номер 2 и сколько клиентов покинет отделение из-за слишком больших очередей.				
В ответе запишите два целых числа: сначала количество клиентов,				
обслуженных в окне номер 2, затем количество необслуженных клиентов.				
Ответ:				
Задание выполняется с использованием прилагаемых файлов.				
Дана последовательность целых чисел. Расстояние между элементами				
последовательности – это разность их порядковых номеров. Например, если				
два элемента стоят в последовательности рядом, то расстояние между ними				
равно 1, если два элемента стоят через один – расстояние равно 2 и т. д.				
Необходимо выбрать из последовательности три числа так, чтобы расстояние				
между какими-то двумя из них было равно $2K$, а сумма всех трёх чисел была				
максимально возможной.				
Запишите в ответе найденную сумму.				
Входные данные				
DAUGINGIC OMITTOIC				

Первая строка входного файла содержит целое число K – параметр для определения расстояния, вторая строка содержит число N – общее количество чисел в наборе (1 < 2K < N). Каждая из следующих N строк содержит одно число, не превышающее по модулю 10^7 .

Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала требуемую сумму для файла А, затем – для файла В.

Ответ:		
--------	--	--