Computação Visual Ciência da Computação

Prof. André Kishimoto 2024

Referências

Este material foi baseado e adaptado a partir das seguintes referências:

■ Computação Gráfica: teoria e prática vol. 2

AZEVEDO, E.; CONCI, A.; LETA, F. Alta Books, 2022.

■ Processamento digital de imagens, 3ª ed.

GONZALES, R. C.; WOODS, R. C. Pearson Prentice Hall, 2010.

Fundamentos da Imagem Digital (slides de aula)

CRUNIVEL, L., 2012.

Fundamentos

- As transformações de intensidade e filtragem espacial são realizadas no domínio espacial (próprio plano da imagem).
- Os métodos de processamento de imagens no domínio espacial realizam a manipulação direta de pixels em uma imagem digital.

Fundamentos

- Transformações de intensidade: operam individualmente nos pixels de uma imagem (manipulação de contraste, limiarização de imagens, etc.).
 - Processamento ponto a ponto (pixel por pixel).
- Filtragem espacial: operam na vizinhança de cada pixel de uma imagem (realce de imagens, detecção de bordas, etc.).
 - Processamento por vizinhança.

Fundamentos

■ Processos no domínio espacial podem ser expressos pela equação:

$$g(x,y) = T[f(x,y)]$$

Sendo:

- f(x, y): a imagem de entrada.
- g(x, y): a imagem de saída (entrada processada).
- T: um operador em f definido em uma vizinhança do ponto (x, y).

Figura 3.1 Uma vizinhança 3×3 ao redor de um ponto (x, y) em uma imagem no domínio espacial. A vizinhança é movida pixel a pixel na imagem para gerar uma imagem de saída.

- A menor vizinhança é formada por uma máscara (filtro) de 1x1.
- Neste caso, a equação do domínio espacial se torna uma função de transformação de intensidade:

$$s = T(r)$$

Sendo:

- s: intensidade de g em qualquer ponto (x, y).
- r: intensidade de f em qualquer ponto (x, y).

Figura 3.2 Funções de transformação de intensidade. (a) Função de alargamento de contraste. (b) Função de limitarização.

Contraste: Diferença entre os níveis superior e inferior de intensidade presentes em uma imagem. **Limiarização** (*thresholding*): binarização de uma imagem.

As funções de transformação de intensidade são classificadas em três tipos básicos:

- Transformações lineares: transformações de negativo e de identidade.
- Transformações logarítmicas: transformações de log e log inverso.
- **Transformações de potência (gama):** transformações da *n*-ésima potência e *n*-ésima raiz.

Figura 3.3 Algumas funções básicas de transformação de intensidade. Todas as curvas foram ajustadas para o intervalo mostrado.

Transformação de Intensidade (Linear)

Identidade de imagem

■ As intensidades de saída são idênticas às intensidades de entrada.

Negativos de imagem

■ O negativo de uma imagem é obtido pela expressão:

$$s = L - 1 - r$$

- Reverte os níveis de intensidade de uma imagem (negativo fotográfico).
- Realça detalhes brancos ou cinza incorporados a regiões escuras de uma imagem, especialmente quando as áreas escuras são dominantes em termos de tamanho.

Figura 3.4 (a) Mamografia digital original. (b) Negativo da imagem obtido utilizando a função de transformação da Equação 3.2-1. (Cortesia da G.E. Medical Systems.)

■ As transformações logarítmicas são representadas pela equação:

$$s = c \log(1+r)$$

Sendo:

- *s* é a intensidade do pixel de saída após a transformação.
- r é a intensidade do pixel de entrada original.
- *c* é uma constante.
 - Fator de escala que controla a amplitude da transformação.

- Expande as baixas intensidades de uma imagem.
 - Regiões de baixo contraste são ampliadas.
 - Realça detalhes em baixo contraste (torna detalhes nessas regiões mais visíveis).
- Comprime as altas intensidades de uma imagem.
 - Regiões de alto contraste são comprimidas.
 - Evita a saturação de regiões de intensidades muito altas, mantendo os detalhes visíveis.

- Exemplo de aplicação: Espectro de Fourier (domínio da frequência)
 - É comum encontrarmos valores variando de 0 a 10⁶ ou mais.
 - Essa ampla variedade de valores de intensidade podem não ser exibidas corretamente em tela; perde-se detalhes de intensidade.
 - Ajuste linear para um sistema de 8 bits: pixels mais claros dominam a exibição em detrimento dos valores mais baixos do espectro.
 - O ideal é ajustar o espectro com a transformação logarítmica.

Figura 3.5 (a) Espectro de Fourier. (b) Resultado da aplicação da transformação logarítmica da Equação 3.2-2 com c = 1.

Transformação de Intensidade (Potência)

As transformações de potência (gama) são representadas pela equação:

$$s = cr^{\gamma}$$

Sendo:

- s é a intensidade do pixel de saída após a transformação.
- r é a intensidade do pixel de entrada original.
- *c* é uma constante.
 - Fator de escala que controla a amplitude da transformação.
- γ é uma constante.
 - Parâmetro de potência que determina a forma da curva de transformação.

Transformação de Intensidade (Potência)

- Curvas de transformação de potência com valores $\gamma < 1$ (fracionários):
 - Mapeiam uma faixa estrita de valores escuros de entradas em uma faixa mais ampla de valores de saída.
 - Realçam detalhes em regiões de baixa intensidade (aumentam o contraste em regiões escuras da imagem).
- Curvas de transformação de potência com valores $\gamma > 1$:
 - Tem um efeito exatamente oposto ao descrito acima.

Figura 3.6 Plotagens da equação $s = cr^{\gamma}$ para vários valores de γ (c = 1 em todos os casos). Todas as curvas foram ajustadas para se adequar à faixa mostrada.

Transformação de Intensidade (Potência)

- Vários dispositivos usados na captura e exibição de imagens funcionam de acordo com a lei de potência.
- Para **ajustar imperfeições** na exibição de uma imagem digital, aplica-se a **correção gama** (com expoentes entre 1.8 a 2.5).
- Esse tipo de correção é usada para exibir uma imagem digital na tela com exatidão.

Figura 3.7 (a) Imagem com variação gradativa de intensidade (gradiente). (b) Imagem vista em um monitor simulado com gama igual a 2,5. (c) Imagem com correção gama. (d) Imagem corrigida vista no mesmo monitor. Compare (d) e (a).

Transformação de Intensidade (Potência)

Os próximos dois slides ilustram exemplos do uso das transformações de potência:

- Clareamento das intensidades mais escuras de uma imagem digital de entrada (expansão dos níveis de intensidade).
- Escurecimento das intensidades mais claras de uma imagem digital de entrada (compressão dos níveis de intensidade).

Maior realce de contraste e detalhes discerníveis com $\gamma = 0.4$.

Figura 3.8 (a) Imagem de ressonância magnética (MRI) de uma coluna vertebral humana fraturada. (b) a (d) Resultados da aplicação da transformação na Equação 3.2-3 com c=1 e $\gamma=0.6$, 0,4 e 0,3, respectivamente. (Imagem original: cortesia do Dr. David R. Pickens, Departamento de Radiologia e Ciências Radiológicas, Centro Médico da Universidade de Vanderbilt.)

Figura 3.9 (a) Imagem aérea. (b) a (d) Resultados da aplicação da transformação na Equação 3.2-3 com c = 1 e γ = 3,0, 4,0 e 5,0, respectivamente. (Imagem original: cortesia da Nasa.)

Transformações lineares definidas por partes

- Abordagem complementar aos métodos anteriores.
- Vantagem: uso de funções arbitrariamente complexas.
- Desvantagem: requer um número maior de dados de entrada por parte do usuário.

Transformações lineares definidas por partes Alargamento de contraste

- Imagens de baixo contraste podem ser resultantes de uma imagem com iluminação ruim.
 - Ou faixa dinâmica insuficiente no sensor de imagem ou até mesmo configuração errada da abertura da lente no momento da captura da imagem.
- O alargamento de contraste expande a faixa de níveis de intensidade de uma imagem de modo a incluir todo o intervalo de intensidade do meio de gravação ou do dispositivo de exibição.

Figura 3.10 Alargamento de contraste. (a) Forma da função de transformação. (b) Uma imagem de baixo contraste. (c) Resultado do alargamento de contraste. (d) Resultado da limiarização. (Imagem original: cortesia do Dr. Roger Heady, Faculdade de Pesquisas em Ciências Biológicas, Universidade Nacional Australiana, Camberra, Austrália.)

Transformações lineares definidas por partes Fatiamento de níveis de intensidade

- Tipo de fatiamento usado para enfatizar um determinado intervalo de intensidades na imagem.
- Usada em aplicações que incluem realce de características como:
 - Massas de água em imagens de satélite.
 - Realce de falhas em raio X.
 - Realce de regiões de interesse em imagens médicas.

Figura 3.11 (a) Essa transformação enfatiza a faixa de intensidades [A, B] e reduz todas as outras intensidades a um nível mais baixo. (b) Essa transformação enfatiza a faixa [A, B] e preserva todos os outros níveis de intensidade.

Figura 3.12 (a) Angiograma da aorta. (b) Resultado da utilização da transformação de fatiamento do tipo ilustrado na Figura 3.11(a) com a faixa de intensidades de interesse selecionada no extremo superior da escala de cinza. (c) Resultado da utilização da transformação na Figura 3.11(b) com a área selecionada ajustada para o preto, de forma que os níveis de cinza na área dos vasos sanguíneos e rins foram preservados. (Imagem original: cortesia do Dr. Thomas R. Gest, Faculdade de Medicina da Universidade de Michigan.)

Figura 3.12 (a) Angiograma da aorta. (b) Resultado da de intensidades de interesse selecionada no extremo s com a área selecionada ajustada para o preto, de forma original: cortesia do Dr. Thomas R. Gest, Faculdade de I

Imagem binária, enfatizando os principais vasos sanguíneos (...), útil para estudar a forma do fluxo da substância de contraste (para detectar, por exemplo, pontos de obstrução).

Valores reais de intensidade da região de interesse (...), útil quando o interesse é medir o fluxo real da substância de contraste em função do tempo em uma série de imagens.

m a faixa ra 3.11(b) (Imagem

Transformações lineares definidas por partes Fatiamento por planos de bits

- As intensidades dos pixels são formadas por bits.
- Ao invés de enfatizar faixas de intensidade, é possível enfatizar a contribuição feita à aparência final da imagem por bits específicos.
- Uma imagem de 8 bits (256 tons de cinza) é composta por oito planos de 1 bit, sendo:
 - Plano 1: contém os bits menos significativos.
 - Plano 8: contém os bits mais significativos.
 - Exemplo: tom de cinza 194 = 1 1 0 0 0 0 1 0

Figura 3.13 Representação em planos de bits de uma imagem de 8 bits.

Figura 3.14 (a) Uma imagem em escala de cinza de 8 bits com dimensões 500 × 1.192 pixels. (b) a (i) Planos de bits 1 a 8, com o plano de bits 1 correspondendo ao bit menos significativo. Cada plano de bits é uma imagem binária.

Fatiamento por planos de bits

- Pode ser usado para compressão de imagens.
 - Imagem é reconstruída usando alguns planos de bits.
 - Reconstrução = pixels do *n*-ésimo plano * 2ⁿ⁻¹ (conversão do *n*-ésimo bit em um decimal) e soma dos planos usados para obter a imagem em escala de cinza.
 - Figura 3.15(a): plano de bits 8 * 128 + plano de bits 7 * 64.

Figura 3.15 Imagens reconstruídas utilizando (a) planos de bits 8 e 7; (b) planos de bits 8, 7 e 6; e (c) planos de bits 8, 7, 6 e 5. Compare (c) com a Figura 3.14(a).

Processamento de Histograma

Processamento de Histograma

- O histograma de uma imagem digital é uma função discreta que representa cada valor de intensidade e o número de pixels da imagem com essa intensidade.
 - Distribuição de intensidades em uma imagem.
- A manipulação de histogramas é usada para:
 - Realçar imagens digitais.
 - Fornecer estatísticas úteis da imagem digital.
 - Dar suporte aos processos de compressão e segmentação.

Processamento de Histograma

■ O intervalo dos níveis de intensidade de cinza é representado por:

$$[\mathbf{0}, L-\mathbf{1}]$$

■ E a função discreta do histograma por:

$$h(r_k) = n_k$$

Sendo:

- r_k : k-ésimo valor de intensidade
- $lacksquare n_k$: número de pixels da imagem com intensidade r_k .

Normalização do Histograma

- Costuma-se normalizar um histograma dividindo cada um dos componentes de intensidade (r_k) pelo número total de pixels de imagem ($M \times N$).
- Um histograma normalizado é dado por:

$$p(r_k) = \frac{n_k}{M \times N}$$

- O $p(r_k)$ é uma estimativa de probabilidade de ocorrência do nível de intensidade r_k em uma imagem.
- A soma de todos os componentes de um histograma normalizado é igual a 1.

Processamento de Histograma

- Ao analisar um histograma, é possível visualizar quatro características básicas em relação à intensidade de uma imagem digital:
 - Características de uma imagem escura.
 - Características de uma imagem clara.
 - Características de uma imagem de baixo contraste.
 - Características de uma imagem de alto contraste.

Eixo horizontal

Intensidade r_k no intervalo [0, L-1].

Eixo vertical

Quantidade de pixels com intensidade r_k na imagem:

$$m{h}(m{r_k}) = m{n_k}$$
 (não-normalizado)
ou $m{p}(m{r_k}) = rac{n_k}{M imes N}$ (normalizado)

Figura 3.16 Quatro tipos básicos de imagem: escura, clara, baixo contraste, alto contraste e seus histogramas correspondentes.

Fonte: Processamento digital de imagens, 3^a ed. (GONZALES, R. C.; WOODS, R. C., 2010)

- O objetivo do processo de equalização de um histograma é redistribuir os níveis de cinza com uma função de distribuição acumulada (CDF).
 - Produzir uma imagem de saída que tenha um histograma uniforme.
- ullet A CDF é calculada a partir da distribuição de probabilidades $p(r_k)$ da imagem de entrada.

192 128 64 (3) (2) 64 (2) 64 128 192 255

Figura 3.21 Funções de transformação para a equalização de histograma. As transformações de (1) a (4) foram obtidas a partir dos histogramas das imagens (de cima para baixo) na coluna esquerda da Figura 3.20 utilizando a Equação 3.3-8.

Figura 3.20 Coluna da esquerda: imagens da Figura 3.16. Coluna central: imagens que correspondem aos histogramas equalizados. Coluna da direita: histogramas das imagens da coluna central.

Fonte: Processamento digital de imagens, 3^a ed. (GONZALES, R. C.; WOODS, R. C., 2010)

• A **probabilidade de ocorrência** do nível de intensidade r_k em uma imagem digital é:

$$p_r(r_k) = \frac{n_k}{M \times N}$$
 $k = 0, 1, 2, 3, ..., L - 1$

Sendo:

- *M* × *N*: número total de pixels da imagem de entrada.
- n_k : número de pixels com intensidade r_k .
- L: número de níveis de intensidade possíveis na imagem de entrada.

 A forma discreta da equalização de histograma de uma imagem digital é:

$$S_k = T(r_k) = (L-1) * \sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{M \times N} * \sum_{j=0}^k n_j$$

• A transformação $T(r_k)$ nessa equação é chamada de **equalização** de histograma ou linearização de histograma.

Exemplo: Uma imagem hipotética de 3 bits (L=8) de dimensão 64x64 pixels ($M\times N=4096$), com distribuição de intensidade mostrada na tabela a seguir (níveis de intensidade são números inteiros no intervalo [0, L-1]=[0,7]). Tabela 3.1 Distribuição de intensidades e valores de histograma para uma imagem digital de 3 bits, 64 × 64 pixels.

r_{k}	n_{k}	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0,19
<i>r</i> ₁ = 1	1.023	0,25
$r_2 = 2$	850	0,21
$r_3 = 3$	656	0,16
$r_4 = 4$	329	0,08
$r_{5} = 5$	245	0,06
$r_6 = 6$	122	0,03
$r_7 = 7$	81	0,02

Fonte: **Processamento digital de imagens, 3ª ed.** (GONZALES, R. C.; WOODS, R. C., 2010)

O histograma da imagem hipotética é esboçado na figura abaixo.

Figura 3.19 Ilustração da equalização de histograma de uma imagem de 3 bits (8 níveis de intensidade). (a) Histograma original. (b) Função de transformação. (c) Histograma equalizado.

Fonte: Processamento digital de imagens, 3^a ed. (GONZALES, R. C.; WOODS, R. C., 2010)

Os valores da função de transformação de equalização de histograma são obtidos usando a equação:

$$S_k = T(r_k) = (L-1) * \sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{M \times N} * \sum_{j=0}^k n_j$$

$$S_0 = T(r_0) = 7 * \sum_{j=0}^{0} p_r(r_j) = 7 * p_r(r_0) = 7 * 0,19 = 1,33$$

$$S_1 = T(r_1) = 7 * \sum_{j=0}^{1} p_r(r_j) = 7 * p_r(r_0) + 7 * p_r(r_1) = 1,33 + 1,75 = 3,08$$

$$S_2 = 4,55$$
; $S_3 = 5,67$; $S_4 = 6,23$; $S_5 = 6,65$; $S_6 = 6,86$; $S_7 = 7,00$

Tabela 1. Distribuição de intensidades e valores de histograma para uma imagem digital de 3 bits e 64x64 pixels

r_k	n_k	$p_r(r_k)=n_k/MN$	$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) = rac{(L-1)}{M N} \sum_{j=0}^k n_j$	s_k Arredondado
$r_0 = 0$	790	0,19	1,33	1
$r_1=1$	1.023	0,25	3,08	3
$r_2=2$	850	0,21	4,55	5
$r_3=3$	656	0,16	5,67	6
$r_4=4$	329	0,08	6,23	6
$r_5=5$	245	0,06	6,65	7
$r_6=6$	122	0,03	6,86	7
$r_7=7$	81	0,02	7,00	7

Fonte: Adaptação de Gonzalez e Woods[1]

Fonte: https://pt.wikipedia.org/wiki/Equaliza%C3%A7%C3%A3o_de_histograma

CC BY-SA 4.0 DEED

Atribuição-Compartilhalgual 4.0 Internacional

Canonical URL: https://creativecommons.org/licenses/by-sa/4.0/

See the legal code

Você tem o direito de:

Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.

Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.

O licenciante não pode revogar estes direitos desde que você respeite os termos da licença.

De acordo com os termos seguintes:

- Atribuição Você deve dar o <u>crédito apropriado</u>, prover um link para a licença e <u>indicar se mudanças foram feitas</u>. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- Compartilhalgual Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.

Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.

Attribution-ShareAlike 4.0 International

Canonical URL: https://creativecommons.org/licenses/by-sa/4.0/

See the legal code

You are free to:

Share — copy and redistribute the material in any medium or format for any purpose, even commercially.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

- Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or <u>technological</u> measures that legally restrict others from doing anything the license permits.

Notices: