Лабораторна робота №5 Грищенко Юрій, ІПС-32

1. Зібрати і налагодити однорозрядний комбінаційний суматор і напівсуматор на елементах І-НІ.

Однорозрядним суматором називають перемикальну схему, що за розрядним значенням x_i і y_i доданків і за значенням переносу z_i з молодшого розряду формує значення розрядної суми s_i і перенос у старший розряд p_i . Робота такого суматора може бути описана в табл. 1.25 (при k = 2).

Таблица 1.25

x _i	yį	zį	s.	p _i				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	- 1	0	ì				
1	0	0	1	0				
1	0	ļ	0	ŀ				
1	Í	0	0	1				
1	1	1	` 1	1				

Мінімальні диз'юнктивні нормальні форми (МДНФ) функцій s_i і p_i мають вигляд

$$s_i = x_i \overline{y}_i \overline{z}_i \vee \overline{x}_i y_i \overline{z}_i \vee \overline{x}_i \overline{y}_i z_i \vee x_i y_i z_i$$

$$p_i = x_i y_i \bigvee x_i z_i \bigvee y_i z_i,$$

Отримуємо нормальні форми І-НІ/І-НІ:

- Складність у числі логічних елементів М=12
- Складність по Квайну К=6*2 + 5*3 + 1*4 = 31
- Час затримки Т=3*20 мс = 60 мс

Haniвсуматором називають комбінаційну схему, що реалізує функції q_i суми по mod k і переносу c_i при додаванні двох змінних, тобто (k = 2).

Xi	\mathbf{y}_{i}	\mathbf{q}_{i}	Ci
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$c_i = x_i y_i = \overline{x_i y_i}$$

$$q_i = \overline{x_i} y_i \lor x_i \overline{y_i} = \overline{\overline{x_i} y_i \lor x_i \overline{y_i}} = \overline{\overline{x_i} y_i \land \overline{x_i \overline{y_i}}}$$

- Складність у числі логічних елементів М=7
- Складність по Квайну K=7*2 = 14
- Час затримки Т=3*20 мс = 60 мс

Завдання 2. Зібрати і налагодити заданий варіант двоїчно-десяткового суматора

Варіант 4: ДДК 4, 4, 2, 1

	p _{i+3} '	S _{i+3} ,	S _{i+2} ,	S _{i+1} '	S _i '	p_{i+3}	S _{i+3}	S _{i+2}	S _{i+1}	Si	S _{i+3} ",	S _{i+2} ",	S _{i+1} ",	S _i "
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1	0	0	0	0
2	0	0	0	1	0	0	0	0	1	0	0	0	0	0
3	0	0	0	1	1	0	0	0	1	1	0	0	0	0
4	0	0	1	0	0	0	0	1	0	0	0	0	0	0
5	0	0	1	0	1	0	0	1	0	1	0	0	0	0
6	0	0	1	1	0	0	0	1	1	0	0	0	0	0
7	0	0	1	1	1	0	0	1	1	1	0	0	0	0
8	0	1	0	0	0	0	1	1	0	0	0	1	0	0
9	0	1	0	0	1	0	1	1	0	1	0	1	0	0
10	0	1	0	1	0	1	0	0	0	0	0	1	1	0
11	0	1	0	1	1	1	0	0	0	1	0	1	1	0
12	0	1	1	0	0	1	0	0	1	0	0	1	1	0
13	0	1	1	0	1	1	0	0	1	1	0	1	1	0
14	0	1	1	1	0	1	0	1	0	0	0	1	1	0
15	0	1	1	1	1	1	0	1	0	1	0	1	1	0
16	1	0	0	0	0	1	0	1	1	0	0	1	1	0
17	1	0	0	0	1	1	0	1	1	1	0	1	1	0
18	1	0	0	1	0	1	1	1	0	0	1	0	1	0
19	1	0	0	1	1	1	1	1	0	1	1	0	1	0

$$\begin{split} s_{i+3}{''} &= p_{i+3}{'}s_{i+1}{'} \\ s_{i+2}{''} &= s_{i+3}{'} \lor p_{i+3}{'}s_{i+1}{'} \\ s_{i+1}{''} &= p_{i+3}{'} \lor s_{i+3}{'}s_{i+2}{'} \lor s_{i+3}{'}s_{i+1}{'} \end{split}$$

 $s_{i+3}{''}=p_{i+3}{'}s_{i+1}{'}$ $s_{i+2}{''}=s_{i+3}{'}\vee p_{i+3}{'}s_{i+1}{'}$ $s_{i+1}{''}=p_{i+3}{'}\vee s_{i+3}{'}s_{i+2}{'}\vee s_{i+3}{'}s_{i+1}{'}$ Оскільки $s_{i}{''}=0$, молодший розряд не корегуємо, а вже 4 старших розряди сумуємо з 3 старшими розрядами корекції.

