Arman Jabbari | Sue Kim | Dana Lansigan Stella Park | Rebekah Tang

PREDICTING THE

TREATMENT COMPLETION

FOR PSYCHOLOGICAL DISORDERS

GOAL: TOWARDS SUCCESSFUL TREATMENT COMPLETION

- Meta-analysis of 186 studies by Idaho University reports the average treatment-refusal rate of 8.2% and average premature termination rate 21.9%.
- Treatment completion not only contributes to patient's recovery but also prevents the development of new mental illness.
- Given this significance, it is important and necessary to understand determinants of completion.
- This project takes patient data and makes predictions that can help identify the factors that significantly affect the likelihood of treatment completion.

APPROACH

- Using data from the National Comorbidity Survey
 Replication (NCS-R), create a neural network to predict
 treatment completion for people with depression.
- Train network on NCS-R participants' sex, age,
 socioeconomic status, demographics, medication,
 treatment type, and symptoms.

PREPROCESSING

- Used data of respondents who were diagnosed with a major depressive disorder and underwent treatment.
- Handled missing data with various methods depending on each variable's statistical characteristics.
- After preprocessing, data size was 294.
- Balanced dataset by duplicating data with "no" responses.

FINAL STATE

Achieved test accuracy of 88.09% and the F1 score of 86.48%.

ARCHITECTURE

ARCHITECTURE

- Number of variables: 93
- Number of hidden layers: 3
 - Layer 1: 1000 nodes, activation: Relu
 - Layer 2: 500 nodes, activation: Relu
 - Layer 3: 200 nodes, activation: Relu
- Dropout rate: 90%
- Batch size: 40
- Number of epochs: 400

USER INTERFACE: WEBSITE

- Currently, we use a Jupyter notebook to take in the patient data, and output likelihood of treatment completion.
- We intend to develop a website that improves accessibility and user-friendliness.

LEARNING PATH: STARTING POINT

- Initially wanted to create a classifier that could diagnose and differentiate between psychological mood disorders.
- After consulting with professors Aaron Fisher and Sheri Johnson from the psychology department, we decided to predict treatment completion instead.
- The psychology community has been moving towards solving the problem of treatment completion as opposed to disorder diagnosis.
- There has been some controversy for whether classifying and differentiating so many mood disorders is meaningful or productive.

LEARNING PATH: DATA COLLECTION

- Considered two datasets recommended by professors: NCS-R and STEP-BD (Systematic Treatment Enhancement Program for Bipolar Disorder, deals with which treatments are best to treat depression, mania, and bipolar disorder) datasets.
- We learned that is was very difficult to obtain psychological datasets—we were unable to obtain the STEP-BD dataset.
- Even though we were able to obtain the NCS-R data, which was
 overwhelmingly large, there was a lot of missing data, especially for
 sensitive topics—why our final dataset was the size of 294.
- Thousands of variables—needed to use both domain knowledge and statistical significance to narrow down to just over 93 features
 Good practical experience on how to deal with messy data.

LEARNING PATH: MODEL FINDING

- Attempted K-Nearest Neighbors, Random Forest, xgboost, neural networks, using cross-validation, feature selection by significance, hyperparameter tuning.
- The final model was a three-layer, dense neural network made with Keras, which had the best accuracy rates and F1 score.

