IFCE - Campus Maracanaú Lógica para Computação

Ciência da Computação Prof. Thiago Alves

2^a Lista de Exercícios

Aluno(a):	Matrícula:	

- 1. Considere as premissas abaixo:
 - (a) "Guga é determinado."
 - (b) "Guga é inteligente."
 - (c) "Se Guga é determinado e atleta, ele não é um perdedor."
 - (d) "Guga é atleta se é amante do tênis."
 - (e) "Guga é amante do tênis se é inteligente."

Usando Dedução Natural, mostre que podemos concluir que "Guga não é um perdedor".

- 2. Usando Dedução Natural, resolva cada item a seguir
 - (a) $p \to (q \lor r), q \to s, r \to s \vdash p \to s$.
 - (b) $\neg p \lor \neg q \vdash \neg (p \land q)$.
 - (c) $\neg p, p \lor q \vdash q$.
 - (d) $p \vee q, \neg q \vee r \vdash p \vee r$.
 - (e) $p \to (q \lor r), \neg q, \neg r \vdash \neg p$.
 - (f) $\neg p \land \neg q \vdash \neg (p \lor q)$.
 - (g) $(t \to s) \land \neg (t \to s) \vdash r \to q$.
 - (h) $p \wedge q \vdash \neg(\neg p \vee \neg q)$.
- 3. Dado as premissas a seguir:
 - (a) "Se os investimentos na cidade não são constantes, os gastos da prefeitura aumentam ou o desemprego não cresce."
 - (b) "Se os gastos da prefeitura não aumentam, os impostos municipais são reduzidos."
 - (c) "Se os impostos municipais são reduzidos e os investimentos na cidade são constantes, o desemprego não cresce."

Mostre que podemos concluir que "Se o desemprego aumenta, os gastos da prefeitura aumentam" usando Dedução Natural.

- 4. Mostre que $\neg p \rightarrow (p \rightarrow (p \rightarrow q))$ é um teorema.
- 5. Mostre que $\neg(r \land s) \rightarrow ((r \land s) \rightarrow ((r \land s) \rightarrow (t \rightarrow u)))$ é um teorema.
- 6. Seja Γ um conjunto de fórmulas e φ , ψ e γ fórmulas da lógica proposicional. Prove ou mostre um contra-exemplo para a afirmação: se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \gamma)$ então $\Gamma \vdash \varphi \rightarrow \gamma$.
- 7. Vamos introduzir um novo conectivo binário \leftrightarrow em que $\phi \leftrightarrow \psi$ pode ser abreviado como $(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$. Construa regras de introdução e eliminação para \leftrightarrow e mostre que elas podem ser derivadas das outras regras.

8. Você acha dois baús em uma caverna e sabe que em cada baú há um tesouro ou uma armadilha mas não ambos. No baú A tem escrito: "Pelo menos um dos dois baús contém um tesouro". No báu B está escrito: "O baú A tem uma armadilha". Além disso, você sabe que ou ambas as frases são verdadeiras ou ambas são falsas. Mostre que é possível conluir que "O baú A tem uma armadilha e o baú B tem um tesouro".