Online Lecture Notes

Prof. Boris Houska

March 15, 2022

1 Gram-Schmidt Algorithm

The goal of this section is to apply the Gram-Schmidt algorithm to the monomial basis functions

$$a_0(x) = 1$$
, $a_1(x) = x$, $a_2(x) = x^2$, ...

in the Hilbert space $L_2[-1,1]$. Here, $L_2[-1,1]$ denotes the set of square-integrable functions on the interval [-1,1] with respect to the scalar product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

and the corresponding norm

$$||f||_H = \sqrt{\int_{-1}^1 f(x)^2 dx}$$
.

This is in analogy to the standard scalar product and Euclidean norm in \mathbb{R}^n , but after replacing sums with integrals.

1.1 First iteration of the Gram-Schmidt Algorithm

We need to start with the vector

$$\bar{q}_0(x) = a_0(x) = 1$$
.

We can proceed with the normalization step

$$q_0(x) = \frac{\bar{q}_0(x)}{\|\bar{q}_0\|_H} = \frac{1}{\sqrt{\int_{-1}^1 1 \, \mathrm{d}x}} = \frac{1}{\sqrt{2}}.$$

Notice that this construction is such that

$$||q_0||_H=1.$$

1.2 Second iteration of the Gram-Schmidt Algorithm

We are back to the next orthogonalization step:

$$\bar{q}_1(x) = a_1(x) - \langle a_1, q_0 \rangle q_0(x) = x - \underbrace{\left[\int_{-1}^1 x \frac{1}{\sqrt{2}} dx \right]}_{-0} q_0(x) = x$$

Next, we need to do yet another normalization step,

$$q_1(x) = \frac{\bar{q}_1(x)}{\|\bar{q}_1\|_H} = \frac{x}{\sqrt{\int_{-1}^1 x^2 dx}} = \frac{x}{\sqrt{\frac{2}{3}}} = \sqrt{\frac{3}{2}}x$$

1.3 Third iteration of the Gram-Schmidt Algorithm

Ok, this is getting boring, but the third orthogonalization step is given by

$$\bar{q}_{2}(x) = a_{2}(x) - \langle a_{2}, q_{0} \rangle q_{0}(x) - \langle a_{2}, q_{1} \rangle q_{1}(x)$$

$$= x^{2} - \underbrace{\left[\int_{-1}^{1} x^{2} \frac{1}{\sqrt{2}} dx \right] \frac{1}{\sqrt{2}}}_{=\frac{1}{3}} - \underbrace{\left[\int_{-1}^{1} x^{2} \sqrt{\frac{3}{2}} x dx \right]}_{=0} \sqrt{\frac{3}{2}} x$$

$$= x^{2} - \frac{1}{3}$$
(1)

Finally, we need to do another normalization step (even more boring...)

$$q_2(x) = \frac{\bar{q}_2(x)}{\|\bar{q}_2\|_H} = \frac{x^2 - \frac{1}{3}}{\sqrt{\int_{-1}^1 \left[x^2 - \frac{1}{3}\right]^2 dx}} = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

We can keep on doing this for all monomials. The integrals get more complicated, but this is straightforward. At the end of the day, this yields a complete orthonormal basis, q_0, q_1, q_2 , and so on, which satisfies:

- 1. Orthogonality. We have $\langle q_i, q_j \rangle = 0$ if $i \neq j$.
- 2. Normality. We have $\sqrt{\langle q_i, q_i \rangle} = ||q_i||_H = 1$.
- 3. Completeness. There exists for every polynomial

$$p = \lambda_0 a_0 + \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$$

coefficients $\kappa_0, \kappa_1, \ldots, \kappa_n \in \mathbb{R}$ such that

$$p = \kappa_0 q_0 + \kappa_1 q_1 + \kappa_2 q_2 + \ldots + \kappa_n q_n$$

The functions $q_0, q_1, q_2 \dots$ are called the Legendre polynomials. They are orthonormal (see above).

1.4 Consequences of the above construction:

If $p(x) = \lambda_0 + \lambda x + \lambda_2 x^2 + \ldots + \lambda_n x^n$ is a polynomial of order n, then we have

$$\langle p, q_k \rangle = \langle \kappa_0 q_0 + \kappa_1 q_1 + \kappa_2 q_2 + \dots + \kappa_n q_n, q_k \rangle$$
 (2)

$$= \sum_{i=0}^{n} \kappa_i \langle q_i, q_k \rangle = \sum_{i=0}^{n} \kappa_i \delta_{i,k} = \begin{cases} \kappa_k & \text{if } k \leq n \\ 0 & \text{otherwise} \end{cases}, \quad (3)$$

for $k \in \mathbb{N}$, where $\delta_{i,k} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$

The above property is the basis for Gauss approximation, which we will discuss in the following lecture.

1.5 Generalizations

The above procedure can be implemented for any inner product in the function space $L_2[a, b]$. In the most general case, we could have a < b and $a \in \mathbb{R} \cup \{-\infty\}$ and $a \in \mathbb{R} \cup \{\infty\}$. For example, we could consider weighted scalar products of the form

$$\langle f, g \rangle = \int_a^b f(x)g(x)\omega(x) dx$$

with a given weighting function $\omega:[a,b]\to\mathbb{R}_{++}$. Examples for this are:

1. If we set $a=-1,\,b=1,$ and $\omega(x)=1,$ then the Gram-Schmidt algorithm returns the Legendre polynomials

$$q_0, q_1, q_2, \dots$$

(see above)

- 2. If we set $a = -\infty$, $b = \infty$, and $\omega(x) = e^{-x^2/2}$, then the Gram-Schmidt algorithm returns the Hermite polynomials. (Details will be part of our homework exercises)
- 3. If we set a=-1, b=1, and $\omega(x)=\frac{1}{\sqrt{1-x^2}}$, then the Gram-Schmidt algorithm returns the Chebyshev polynomials of the first kind. (Our TA, Xvting Gao, is an expert on that... we will have exercises on this, too)
- 4. ... So, basically, whenever we take a different weighting factor, we get a different orthogonal basis with respect to the corresponding inner product.

2 Proof of Gauss' optimality conditions

We consider the general functional minimization problem

$$\min_{p \in P_n} \|f - p\|_H^2$$

over the set of polynomials P_n of order n (or smaller). The key idea is to analyze the auxiliary function

$$F(t) = ||f - p - tq||_H^2$$

for a perturbation direction $q \in P_n$ with scalar parameter $t \in \mathbb{R}$. (This idea is borrowed from variational analysis). Here, we can work with any Hilbert space! Main observation: if p is a minimizer, then t = 0 must be a minimizer of F, which implies that

$$0 = \frac{\mathrm{d}F(0)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \|f - p - tq\|_{H}^{2} \Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \langle f - p - tq, f - p - tq \rangle \Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left[\langle f - p, f - p \rangle - 2t \langle f - p, q \rangle + t^{2} \langle q, q \rangle \right]_{t=0}$$

$$= -2 \langle f - p, q \rangle \tag{4}$$

This means that I can divide by -2 in order to get the optimality condition

$$\forall q \in P_n, \qquad \langle f - p, q \rangle = 0.$$

The other way around, we may assume that p satisfies $\langle f - p, q \rangle = 0$ for all $q \in P_n$. Then we have

$$||f - p||_{H}^{2} = \langle f - p, f - p \rangle = \langle f - p, f - q + q - p \rangle$$

$$= \langle f - p, f - q \rangle + \underbrace{\langle f - p, q - p \rangle}_{=0}$$

$$= \langle f - p, f - q \rangle. \tag{5}$$

The last step uses that p-q is orthogonal to f-p (since p-q is a polynomial of order $\leq n$). Next, we apply the Cauchy-Schwartz inequality to find

$$||f - p||_H^2 = \langle f - p, f - q \rangle \le ||f - p||_H ||f - q||_H$$
.

Now, there are two cases: Case 1: ||f-p|| = 0. In this case f = p is a polynomial and we have found the optimal solution. Case 2: we have $||f-p|| \neq 0$. In this case, we can divide by ||f-p|| > 0 such that we find

$$\forall q \in P_n, \qquad ||f - p||_H \le ||f - q||_H.$$

But this is the same as saying that p is optimal!