Computer Vision Revision

Tianxiang and Fiseha

Exam Outline

- The Final exam is 60% of your total grade
 - Q1: Feature Detection and Stitching(20%)
 - Q2: Multiple Views and Motion (20%)
 - Q3: Visual Recognition (20%)

Q1: Feature Detection and Stitching (20%)

- Common features used in CV:
 - Colour features
 - Texture features
 - Shape features
 - Edge features
- Some common feature vectors
 - Colour histograms
 - Local binary patterns
 - Histograms of Gradient Orientations (HoG)

Image Feature Descriptor

- Common features used in CV:
 - Colour features
 - Texture features
 - Shape features
 - Edge features
- Some common feature vectors
 - Colour histograms
 - Local binary patterns
 - Histograms of Gradient Orientations (HoG)

Colour Features

Colour correlates well with class identity.

Human vision works hard to preserve colour constancy: presumably because colour is useful.

- Histograms
 - Are invariant to translation and rotation.
 - Change slowly as viewing direction changes.
 - Change slowly with object size.
 - Change slowly with occlusion.
- Colour histograms summarise target objects quite well, and should match a good range of images.

Colour Histograms

- Histogram
 - X-axis: bins of intensity (colour) value intervals
 - Y-axis: number of pixels whose value falls into those bins.
- Which <u>colour space</u>? depend on colour models
 - RGB: red, green, blue channels.
 - YUV: Y (luma), U (chrominance), V (chrominance) channels.
- How many bins? 256 (0 255) or 32 (0-7, 8-15, ...)

Texture Features

- Colour is a property of a single pixel, texture features capture the frequency with which patterns of colour/grey level appear.
- E.g. Local Binary Patterns (LBP)
 - For each pixel p, create an 8-bit number $b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8$, where $b_i=0$ if neighbor i has value less than or equal to p's value and 1 otherwise.

LBP Feature Vector

- Divide the patch into cells e.g. 16 x 16 pixels per cell.
- Compute the local patch description number of each pixel.
 - As described in previous slide.
- Histogram these numbers over each cell.
 - Usually a 256-d feature vector.
- Optionally normalize each histogram (so its bins sum to 1).
- Concatenate (normalized) histograms to make the feature vector.

Shape Features

- Focus on image gradient measures:
 - The gradient of an image measures how it is changing.
 - The boundaries of objects are often associated with large gradients.
 - Distributions of gradients and gradient orientations reflect boundary shape (and internal boundaries between parts, surfaces, etc.).

Mean gradient of a large set of person images

Derivative Filters

Sobel Operators

G_{y}		
-1	-2	-1
0	0	0
1	2	1

 Applied separately and results combined to estimate overall gradient magnitude.

Derivative Filters

Oriented derivative filters only respond to edges in one direction.

 G_{y}

Histogram of Oriented Gradients (HoG)

• Basic idea:

- Local shape information often well described by the distribution of intensity gradients or edge directions
- Convert the image (width*height*channels) into a feature vector, then apply the classification algorithms
- The intent is to generalize the object in such a way that the same object (e.g., person) produces as close as possible to the same feature descriptor when viewed under different conditions

Histogram of Oriented Gradients (HoG)

- > Divide the patch into small cells.
- > Define slightly larger **blocks**, covering several cells.
- Compute gradient magnitude and orientation at each pixel.
- Compute a local weighted histogram of gradient orientations for each cell, weighting by some function of magnitude.
 Cells
- Concatenate histogram entries to form a HoG vector for each block.
- > Normalize vector values by dividing by some function of vector length.
 - For improved accuracy, the local histograms can be contrast-normalized by calculating a measure of the intensity across a larger region of the image, called a block, and then using this value to normalize all cells within the block.

Scale Invariant Feature Transform

- The method
 - Scale-space extrema detection (for scale invariance)
 - Keypoint localization (for translation invariance)
 - Orientation assignment (for rotation/orientation invariance)
 - Keypoint descriptor (for illumination invariance)

SIFT Overview

- Scale-space extrema detection
 - Search over all scales and image locations
 - Detect points that are invariant to scale and orientation
- Keypoint localization
 - A model is fit to determine the location and scale. Keypoints are selected based on measures of their stability
- Orientation assignment
 - Compute best orientation for each keypoint region
- Keypoint descriptor
 - Use local image gradients at selected scale and rotation to describe each keypoint region

SIFT: Invariance Properties

- To be robust to intensity value changes
 - Use gradient orientations
- To be scale invariant
 - Estimate the scale using scale space extrema detection
 - Calculate the gradient after Gaussian smoothing with this scale
- To be orientation invariant
 - Rotate the gradient orientations using the dominant orientation in a neighborhood
- To be Illumination invariant
 - Working in gradient space, so robust to I = I + b
 - Normalize vector to [0...1], robust to $I = \alpha I$ brightness changes
 - Clamp all vector values > 0.2 to 0.2, robust to "non-linear illumination effects"

Image Stitching

Combine two or more overlapping images to make one larger image

Image Stitching: The Idea

- 1. Take a sequence of images from the same position.
- 2. To stitch two images: compute transformation between second image and first.
- 3. Shift (warp) the second image to overlap with the first.
- 4. Blend the two together to create a mosaic.
- 5. If there are more images, repeat step 2 to 4.

Classification of 2D transformations

Finding the Transformation

- Translation = 2 degrees of freedom
- Similarity = 4 degrees of freedom
- Affine = 6 degrees of freedom
- Projective (Homography) = 8 degrees of freedom
- "Least squares" solution.

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Image Warping

- Move pixels of an image
- Given a coordinate transform x' = h(x) and a source image f(x),
- We compute a transformed image g(x') = f(h(x)).
 - Change the domain of image function

Forward Warping

• Send each pixel f(x) --the RGB value-- to its corresponding location in the dest image: x' = h(x) in g(x').

Inverse Warping

• Get each pixel g(x') --the RGB value-- from its corresponding location in the source image: $x = h^{-1}(x')$ in f(x).

Image Blending

- Feathering with ramp, alpha blending.
- Pyramid blending.
- Multiband blending.

Feathering

Alpha Blending

Encoding blend weights: $I(x,y) = (\alpha_1 R, \alpha_2 G, \alpha_3 B, \alpha)$

color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB values at each pixel.
- 2. normalize: divide each pixel's accumulated RGB by its α value.

Pyramid Blending

Create a Laplacian pyramid, blend each level.

Multiband blending

Laplacian pyramids

- Compute Laplacian pyramid of images and mask.
- 2. Create blended image at each level of pyramid.
- 3. Reconstruct complete image.

(c) Band 2 (scale σ to 2σ)

(b) Band 1 (scale 0 to σ)

28

28

(d) Band 3 (scale lower than 2σ)

Q2: Multiple Views and Motion (20%)

- Image Formation, Camera and Camera Calibration
- Stereo Vision
- Optical Flow

Image Formation, Camera and Camera Calibration

Outline

- Image Formation, Camera and Camera Calibration
- Stereo Vision

Camera Modeling: A formal construction of the pinhole camera model (perspective projection)

- Essential Components:
 - The film is commonly called the image or retinal plane:
 - The 2D plane where the projection of the 3D scene is captured, forming the image.
 - The aperture is referred to as the pinhole O or center of the camera.
 - The point through which all light rays from the 3D scene pass.
 - The focal length f.
 - The distance between the image plane and the pinhole O.
 - Camera Intrinsic
 - Parameters such as focal length, principal point (the intersection of the optical axis with the image plane), and skew (if the image axes are not perpendicular).

Camera Modeling

• Triangle P'C'O is similar to the triangle formed by P,O and (0,0,Z). Therefore, using the law of similar triangles we find that:

$$\frac{f}{z} = \frac{P'}{P}$$

$$P' = \begin{bmatrix} x' & y' \end{bmatrix}^T = \begin{bmatrix} f\frac{x}{z} & f\frac{y}{z} \end{bmatrix}^T \tag{1}$$

Geometric Camera Modeling

The Camera Matrix Model and Homogeneous Coordinates

Using homogeneous coordinates, we can formulate

$$P_{h}' = \begin{bmatrix} \alpha x + c_{x} z \\ \beta y + c_{y} z \\ z \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_{x} & 0 \\ 0 & \beta & c_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} \alpha & 0 & c_{x} & 0 \\ 0 & \beta & c_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} P_{h}$$
 (5)

Drop the h index, so any point P or P' can be assumed to be in homogeneous coordinates

$$P' = \begin{bmatrix} x' \\ y' \\ z \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} P = MP$$
 (6)

We can decompose this transformation a bit further into

$$P' = MP = \begin{bmatrix} \alpha & 0 & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I & 0 \end{bmatrix} P = K \begin{bmatrix} I & 0 \end{bmatrix} P \tag{7}$$

The matrix K is often referred to as the camera matrix.

The Camera Matrix Model and Homogeneous Coordinates

- The Complete Camera Matrix Model:
 - Most methods that we introduce in this class ignore distortion effects, therefore our class camera matrix K has 5 degrees of freedom:
 - 2 for focal length, 2 for offset, and 1 for skewness.

$$K = \begin{bmatrix} \alpha & -\alpha \cot \theta & c_x \\ 0 & \frac{\beta}{\sin \theta} & c_y \\ 0 & 0 & 1 \end{bmatrix} \tag{8}$$

These parameters are collectively known as the intrinsic parameters.

Cont. ...

- Extrinsic Parameters:
 - ullet given a point in a world reference system p_W ,

$$P = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} P_w \tag{9}$$

Substituting Eq. 9 in equation (7) and simplifying gives

These parameters R and T are known as the extrinsic parameters because they are external to and do not depend on the camera.

$$P' = MP = \begin{bmatrix} \alpha & 0 & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I & 0 \end{bmatrix} P = K \begin{bmatrix} I & 0 \end{bmatrix} P \tag{7}$$

$$P' = K \begin{bmatrix} R & T \end{bmatrix} P_w = M P_w \tag{10}$$

The Camera Matrix Model and Homogeneous Coordinates

$$P' = K \begin{bmatrix} R & T \end{bmatrix} P_w = M P_w \tag{10}$$

- This completes the mapping from a 3D point P in an arbitrary world reference system to the image plane.
- To reiterate, we see that the full projection matrix M consists of the two types of parameters introduced above:
 - Intrinsic and extrinsic parameters.
 - All parameters contained in the camera matrix K are the intrinsic parameters, which change as the type of camera changes.
 - The extrinsic parameters include the rotation and translation, which do not depend on the camera's build.
 - Overall, we find that the 3 × 4 projection matrix M has 11 degrees of freedom:
 - 5 from the intrinsic camera matrix, 3 from extrinsic rotation, and 3 from extrinsic translation.

Where does Camera Model Leads?

- It also leads into camera calibration, which is usually done in factory settings to solve for the camera parameters before performing an industrial task..]
- We need it to understand stereo.
- And 3D reconstruction.

Stereo Vision

Simple (Calibrated) Stereo vision

- The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in space.
- The images can be obtained using multiple cameras or one moving camera.
- The term binocular vision is used when two cameras are employed.

The two problems of stereo

- The correspondence problem.
 - Finding pairs of matched points such that each point in the pair is the projection of the same 3D point.
 - Triangulation depends crucially on the solution of the correspondence problem.
- The reconstruction problem.
 - Given the corresponding points, we can compute the disparity map.
 - The disparity map can be converted to a 3D map of the scene (i.e., recover the 3D structure) if the stereo geometry is known.

Triangulation using Two Cameras

$$y'_{l} = f \frac{y}{z} + C_{y}$$

Left Camera

Stereo System (Binocular Vision)

Simple Stereo: Depth and Disparity

$$(x'_l, y'_l) = \left(f\frac{x}{z} + C_x, y'_l = f\frac{y}{z} + C_y\right)$$

$$(x'_l, y'_l) = \left(f\frac{x}{z} + C_x, y'_l = f\frac{y}{z} + C_y\right) \qquad (x'_r, y'_r) = \left(f\frac{x-b}{z} + C_x, f\frac{y}{z} + C_y\right)$$

$$x = \frac{b(x'_l - C_x)}{(x'_l - x'_r)}$$

$$y = \frac{b(y' - C_y)}{(x'_l - x'_r)}$$

$$z = \frac{fb}{(x'_l - x'_r)}$$

Where $(x'_{l} - x'_{r})$ is called Disparity.

Depth z is inversely proportional to Disparity. Disparity/Parallax is proportional to Baseline.

How we drive X,Y,Z?

$$x'_{l} = f\frac{x}{z} + C_{x}$$

$$x'_{r} = f\frac{x-b}{z} + C_{x}$$

$$x = \frac{z}{f}(x'_{l} - C_{x})$$

$$x = \frac{z}{f}(x'_{r} - C_{x}) + b$$

$$z = \frac{z}{f}(x'_{r} - C_{x}) + b$$

$$z = \frac{fb}{(x'_{l} - x'_{r})}$$

Derivation of X,Y,

$$x = \frac{z}{f}(x'_r - C_x) + b$$

$$x = \frac{b(x'_l - C_x)}{(x'_l - x'_r)}$$

$$y = \frac{z}{f}(y' - C_y)$$

$$x = \frac{b(y' - C_y)}{(x'_l - x'_r)}$$

$$x = \frac{fb}{(x'_l - x'_r)}$$

$$y = \frac{fb}{(x'_l - x'_r)}$$

$$y = \frac{b(y' - C_y)}{(x'_l - x'_r)}$$

Basic Stereo Matching Algorithm/Compute depth map

- 1. Rectify the stereo images to align epipolar lines. (not required for basic stereo)
- 2. For each pixel in the left image:
 - Find the corresponding pixel in the right image along the scanline.
 - Compute disparity d = x x'.
- 3. Triangulate to compute depth $z = \frac{f.B}{d}$
- **4. Create a depth map** by storing depth values for all pixels.

Similarity Metrics for Template Matching:

- Similarity Metrics for Template Matching:
 - Find pixel $(k, l) \in L$ with Minimum Sum of Absolute Differences:

$$SAD(k,l) = \sum |E_l(i,j) - E_r(i+k,j+1)|$$

• Find pixel $(k, l) \in L$ with Minimum Sum of Squared Differences:

$$SSD(k,l) = \sum_{(i,j) \in T} |E_l(i,j) - E_r(i+k,j+1)|^2$$

• Find pixel $(k, l) \in L$ with Maximum of Normalized Cross-Correlation $\operatorname{NCC}(k, l) = \frac{\sum_{|E_l(i, j) - E_r(i + k, j + 1)|}{\sum_{(i, j) \in T} E_l(i, j)^2} \sum_{(i, j) \in T} E_r(i + k, j + 1)^2}$

Chose the image that have texture and non repetitive texture

Foreshortening effect makes matching challenging

Violations of brightness constancy (specular reflections)

- Camera calibration errors
- Poor image resolution
- Occlusions
- Large motions
- Low-contrast image regions

Optical Flow

When is Optical Flow ≠ Motion Field?

- Optical flow is equal to motion field?
- Not all the time.

Optical Flow

Motion of brightness patterns in the image

Image Sequence (2 frames)

Optical Flow

- OF algorithm, Intended to develop algorithm which
 - Take the pattern, the brightness pattern in one image.
 - Observe where the brightness pattern ends up in the second image.
 - Generate the flow shown in the image

Optical Flow

Motion of brightness patterns in the image

Image Sequence (2 frames)

Velocity of brightness pattern

- The motion of brightness patterns is the optical flow.
- Each pixel you have a vector which tells you what the optical flow at that point.
 - The length of the vector tells you:
 - how fast it's moving and
 - Its direction tells you
 - Which direction it's moving in on the image plane.
- Ideally, optical flow is equal to motion field.

Optical Flow Constraint Equation

- Estimating optical flow?
 - It turns out it's a hard problem.
 - It's an under constraint problem.
- Drive a constraint equation is known as an optical flow constraint equation,
- Then develop an algorithm for estimating the optical flow at each point that uses the derived constrain equation.

Optical Flow Constraint Equation

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t)$$

...(1) Brightens Assum.

$$I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + I_x \delta x + I_y \delta y + I_t \delta t$$
...(2) Displacement Assum.

Subtract (1) from (2):
$$I_x \delta x + I_v \delta y + I_t \delta t = 0$$

Divide by
$$\delta t$$
 and take limit as $\delta t \to 0$: $I_x \frac{\delta x}{\delta t} + I_y \frac{\delta y}{\delta t} + I_t = 0...$

- replace $\frac{\delta x}{\delta t}$ with u component and $\bullet \quad \frac{\delta y}{s_t} \text{ with } v \text{ component}$

Optical Flow Constrained Equation: $I_x u + I_v v + I_t = 0$ (u, v): Optical Flow

 (I_x, I_y, I_t) Can be easily computed from two frames taken in quick succession using finite differences.

Geometric Interpretation of OF Constraint Equation

• For any point (x, y) in the image, its optical flow (u, v) lies on the line

$$I_x u + I_v v + I_t = 0$$

- We know that u, v lies on constraint line, but we don't know where exactly it lies.
 - This is what makes the optical flow estimation problem and under constrained problem.
 - So what we can do?

Parallel Flow

• We cannot determine u_p , the optical flow component parallel to the constraint line.

 The aforementioned issue is called the aperture problem – the motion of an edge as seen through an aperture is essentially ambiguous.

Aperture problem

- We are not able to measure the actual flow.
- We can only able to determine the normal flow.

<u>Aperature problem Demo</u>
https://elvers.us/perception/aperture/

Given two consecutive frames compute the motion vector(OF) for each pixel in the image using LK method

- 1) Compute Gradients: Calculate spatial gradients I_x and I_y (x and y derivatives) and temporal gradient I_t (frame difference).
- 2) Optical Flow Equation: For each pixel, set up the equation: $I_x u + I_y v = -I_t$ where u and v are the motion vectors in the I_x and I_y directions, respectively.
- 3) Local Window System: For each pixel, gather the equations from its local window (e.g., 5×5) and form the system:

$$A\begin{bmatrix} u \\ v \end{bmatrix} = b ,$$

where A contains the spatial gradients I_x and I_y for all pixels in the window, and b contains the negative temporal gradients $-I_t$.

- 4) Solve for Motion Vectors: Use least squares to solve for u and v: $\begin{bmatrix} u \\ v \end{bmatrix} = (A^TA)^{-1}A^Tb$
- 5) Iterate: Repeat for all pixels to compute the flow vectors.

Dense and Sparse Optical Flow

- Dense optical flow
 - Compute estimate for each pixel.
 - Higher accuracy at the cost of slow/expense computation.
- Sparse optical flow
 - Compute estimate for some interesting feature points (given by corners or SIFT).
 - Much less computation cost.

Sparse Dense

63

Q3: Visual Recognition (20%)

- Bag of Visual Words
- Introduction to Deep Learning and CNNs
- CNN Architectures
- GAN

Bag of Visual Words

What is Bag of Visual Word for?

- Finding images in a database, which are similar to a given query image.
 - E.g. Google image search
- Computing image similarities
- Compact representation of images

Task Description

- Task: Find similar looking images
- Input:
 - Database of images
 - Dictionary
 - Query image(s)
- Output:
 - The N most similar database images to the query image

Large-scale image matching

 Bag-of-words models have been useful in matching an image to a large database of object instances.

How do I find this image in the database?

[Image courtesy: Fei-Fei Li]68

Large-scale image search

Build the database:

- Extract features from the database images
- Learn a vocabulary using k-means (typical k: 100,000)
- Compute weights for each word
- Create an inverted file mapping words → images

Similarity Queries

- Database stores TF-IDF weighted histograms for all database images
- Find similar images by
 - Extract features from query image
 - Assign features to visual words
 - Build TF-IDF histogram for query image
 - Return N most similar histograms from database under cosine distance

Introduction to Deep Learning and CNNs

Outline

- Convolutional Neural Networks (CNNs)
 - Activation functions
 - Fully-Connected layer to at a final stage: making a decision
 - Convolution layers
 - Pooling layers
 - Normalization

A closer look at spatial dimensions

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- **Padding**: P
- **Stride**: S

Weight matrix: C_{out} x C_{in} x K_H x K_W

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

$$H' = \frac{(H-K+2p)}{S} + 1$$

$$W' = \frac{(W - K + 2p)}{S} + 1$$

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

$$H' = \frac{(H - K)}{S} + 1$$
$$W' = \frac{(W - K)}{S} + 1$$

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

56x56x64 13x13x256 13x13x256 6x6x256 227 x 227 x 3 POOL POOL 11 x11 S=4 3x3 S=2 3x3 S=1 3x3 3x3 3x3 4096 4096 1000 5x5 3x3 S=1 S=1 S=2 S=1 S=2

AlexNet

	Input size		Layer			Output size					
Layer	С	H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	. 2	6	4 56	784	23	73
pool1	64	56		3	2	C	6	4 27	182	C	0
conv2	64	27	192	5	1	. 2	19:	2 27	547	307	224
pool2	192	27	'	3	2	C	19:	2 13	127	C	0
conv3	192	13	384	3	1	. 1	38	4 13	254	664	112
conv4	384	13	256	3	1	. 1	25	5 13	169	885	145
conv5	256	13	256	3	1	. 1	25	5 13	169	590	100
pool5	256	13		3	2	C	25	6 6	36	C	0
flatten	256	6					921	6	36	C	0
fc6	9216		4096				409	6	16	37,749	38

					_	, , , , , ,		
C	params =	C _{in} * C _c	out + Cout		FC flop	os = C _{in}	* C _{out}	
	=	9216 *	4096 + 409	6		= 923	16 * 40	96
	= ;	37,725	,832			= 37,	748,73	6

	Input size		Layer			Outp	ut size					
Layer	С	Н	/ W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	23	73
pool1		64	56		3	2	0	64	27	182	0	0
conv2		64	27	192	5	1	2	192	27	547	307	224
pool2		192	27		3	2	0	192	13	127	0	0
conv3		192	13	384	3	1	1	384	13	254	664	112
conv4		384	13	256	3	1	1	256	13	169	885	145
conv5		256	13	256	3	1	1	256	13	169	590	100
pool5		256	13		3	2	0	256	6	36	0	0
flatten		256	6					9216		36	0	0
fc6		9216		4096				4096		16	37,749	38
fc7		4096		4096				4096		16	16,777	17
fc8		4096		1000				1000		4	4,096	4

CNN Architectures

CNN Architectures Summary

- Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks work better
- GoogLeNet one of the first to focus on efficiency (aggressive stem, 1x1 bottleneck convolutions, global avg pool instead of FC layers)
- ResNet showed us how to train extremely deep networks, residual block.
- After ResNet: Efficient networks became central: how can we improve the accuracy without increasing the complexity?
- Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet, etc

Comparing Complexity

Generative Adversarial Networks

Training GANs: Two –player game

- Generator network: try to fool the discriminator by generating real-looking images
- Discriminator network: try to distinguish between real and fake images
- Train Jointly in minimax game:
 - Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real data x Discriminator output generated fake data G(z)

- Where,
 - D(x) is the discriminator's estimate of the probability that real data instance x is real.
 - Ex is the expected value over all real data instances.
 - G(z) is the generator's output when given noise z.
 - D(G(z)) is the discriminator's estimate of the probability that a fake instance is real.
 - Ez is the expected value over all random inputs to the generator (in effect, the expected value over all generated fake instances G(z)).

Good Luck!