

Suponga un sistema que utiliza paginación a dos niveles. Las **direcciones** son de **16 bits** con la siguiente estructura: **3 bits en la tabla de páginas de primer** nivel, **3 bits en la tabla de páginas de segundo** nivel y **10 bits para el desplazamiento**). El espacio de direccionamiento virtual de un proceso tiene la estructura del dibujo, en la cual se especifican las direcciones virtuales de comienzo y final de cada área válida. Represente gráficamente las tablas de páginas y sus contenidos, suponiendo que cada entrada de la tabla de páginas ocupa: 2 bytes para la dirección base de marco y 1 byte para la codificación del resto de información (V/P, Mod., Prot.); y que todas las páginas están cargadas en memoria principal consecutivamente a partir del marco 10 de RAM. La memoria principal tiene un tamaño de 64KB. Dado este mapa de memoria traduce las siguientes direcciones virtuales: 7428, 19425.

Lo primero que haremos es averiguar cuanto ocupa cada página, dado que conocemos que se usan 10bits para el desplazmiento dentro de cada página sabemos que tienen un tamaño de 2^10=1KB

Tam_pag = 1024B = 1KB

7EXT
2999
3000
12000
DATA

20000
23000
mapped file

62100
65535
STACK

Igual con el tamaño de cada tabla de páginas, como ambas se direccionan con 3 bits, tendrán $2^3 = 8$ entradas. Cada entrada será del tamaño de una pagina. Y quedarían tal que así:

I= indice; *n=num marco/tabla; p = bit presencia

^{*} si es la tabla de primer nivel será el num de la tabla de segundo nivel. Si es la de segundo nivel, será el num de marco en MP

Tam_pag = 1024B = 1KB Tam_tabla_1^{er} = 8 Tam_tabla_2^{do} = 8

Ahora calculamos cuanto ocupa cada sección del programa.

TEXT: 2999-0 = 2999; ocupa 2999B y cada página puede albergar 1024B, por tanto text, ocupará 2999/1024 = 3 páginas.*

DATA: 12000-3000 = 9000; 9000/1024 = 9 páginas.

mapped file: 23000-20000 = 3000; 3000/1024 = 3 páginas.

STACK: 65535-62100 = 3435; 3435/1024 = 4 páginas.

0 TEXT 2999 3000 DATA 12000 20000l mapped file 23000 62100 STACK 65535

También sabemos la dirección de comienzo de cada sección.

TEXT: 0

DATA: 3000

mapped file: 20000

STACK: 62100

^{*} es 3 porque se aproxima la unidad por exceso

Para saber donde va cada cosa...

Bueno pues para saber donde va cada cacho de trozo de programa basicamente hay que:

- 1) Saber donde empieza el cacho; ej 3000. Una vez sepas donde comienza tienes que dividir la dir comienzo entre el tam tabla 2^{er} nivel * tam pag = C + R.
- 2) DIR_COMIENSO / (tam_tabla_2er nivel * tam_pag) = C + (R).
- 3) Esto es asi porque cada entrada de la tabla de primer apunta a una tabla de 2do nivel que almacena x paginas, por eso x*tam_pag es el tamaño maximo que puede asignarse a una entrada de primer nivel.
- 4) El Cociente(**C**) es el indice de la tabla de primer nivel donde ha caido. Ahora dividimos el resto(**R**) entre tam_pag, la parte entera del resultado será el indice de la tabla de 2do nivel donde empieza a asignarse nuestro cacho.
- 5) Ahora desde esa pagina usamos tantas páginas como ocupe nuestra mi**da cacho de trozo de programa.
- 6) Si por casualidad esa pagina ya está usada, pues la siguiente, y si también está usada, pues la siguiente y si.....blablablablabla.
 - Vamos a hacer un ejemplo a ver si lo has pillao

Tam pag = 1024B = 1KB $Tam_tabla_1^{er} = 8$ $Tam_tabla_2^{do} = 8$

TAM TEXT: 3 páginas **DATA**: 9 páginas

mapped file: 3 páginas

STACK: 4 páginas

DIR COMINEZO

TEXT: 0 **DATA**: 3000

mapped file: 20000 **STACK**: 62100

Tabla

2do nivel

Ya lo sé, este ejemplo es una pu** mi**da

Tabla 1er nivel

0	1	1	
1			
2			
3			
4			
5			
6			
7			

Hemos empezado en el numero de marco 10, porque

lo decía el

enunciado.

Para TEXT

0 / 8*1024 = 0 + (0) (ostia si?)

0/1024 = 0 (xd)

- ¿Cuanto ocupa?
- 3
- Pués pillas 3
- ok

Tam_pag = 1024B = 1KB Tam_tabla_1^{er} = 8 Tam_tabla_2^{do} = 8 TAM
TEXT: 3 páginas
DATA: 9 páginas

mapped file: 3 páginas STACK: 4 páginas DIR_COMINEZO

TEXT: 0 **DATA**: 3000

mapped file: 20000 **STACK**: 62100

Tabla 1er nivel

0	1	1	
1	2	1	
2			
3			
4			
5			
6			
7			

/	0	10	1	rx-
	1	11	1	rx-
	2	12	1	rx-
	3	13	1	r-w
	4	14	1	r-w
	5	15	1	r-w
	6	16	1	r-w
	7	17	1	r-w

0	18	1	r-w
1	19	1	r-w
2	20	1	r-w
3	21	1	r-w
4	0	0	
5	0	0	
6	0	0	
7	0	0	

Para DATA

3000 / 8*1024 = 0 + (3000)

3000 / 1024 = 2

- ¿Cuanto ocupa?
- 9
- Pués pillas 9
- ok

- oye, pero esque la dos de segundo nivel está usadapor text
- Pues la siguiente!
- ok

Osea que desde la 2 de segundo palante es data, vaya

28

STACK

Así se vería en RAM...

Ahora traducir...

Pues pa' traducir, (casi)lo mismo, miras en que pagina cae tu dirección y el marco de ram que tenga asignado será su marco en MP.

Tonses con una vez que tengas tu marco de ram, como sabes cuanto ocupa cada marco(tam_pag) puedes calcular la dir_física de ese marco.

Después le sumas el offset y a correr.

- -Oue es el offset.
- Ahora lo vemos.
- ok.

Dir_lógica: 7428

7428 / (8*1024) = 0 + 7428

7428 / 1024 = 7 + (Resto) // este es el offset!

El offset es 260 = 7428 % 1024, osea el resto

 $i_1er = 0$

i 2do = 7

Offset = 260

Esto nos da el marco 17(mirar img) Entonces la dir_física es:

tam_marco * num_marco + offset

Osea, 1024*17 + 260 = 17668

La dirección física es 17668.

Bueno y con la otra dirección que te dice le enunciado, haces lo mismo. Cosas a tener en cuenta:

- Si en la tabla de páginas no esta cargada la página a la que hace referencia la dirección lógica, pues no se puede traducir, punto.
- Y nada más solo era eso xd.

