SE201.3 Systems Analysis and Design

Modeling Sequence and State transition

Chalani Oruthotaarachchi

Outline

- Sequence diagrams.
- State transition diagrams.

SEQUENCE DIAGRAM

- A *sequence diagram* Illustrates the objects that participate in a use case and the messages that pass between them over time for *one* use case.
- Generic sequence diagram vs. Instance sequence diagram

Purposes

- To capture the dynamic behavior of a system.
- To describe the message flow in the system.
- To describe the structural organization of the objects.
- To describe the interaction among objects.

Syntax

An object: Participates in a sequence by sending and/or receiving messages. Is placed across the top of the diagram.	anObject:aClass
A lifeline: Denotes the life of an object during a	1
sequence.	1
 Contains an X at the point at which the class no longer interacts. 	į
A focus of control:	
Is a long narrow rectangle placed atop a lifeline.	П
 Denotes when an object is sending or receiving messages. 	
A message:	aMassago()
 Conveys information from one object to another one. 	aMessage() →

Creating a Sequence Diagram

- Steps in creating a sequence diagram
 - 1. Identify objects.
 - 2. Add messages.
 - 3. Place lifeline and execution occurrences.

Example: withdraw cash from bank

Example: The process by which a customer creates a new offer for the Holiday Travel Vehicle system.

Exercise

- From the below use case diagram example of 'Create New Online Library Account', focus on the use case named 'Create New Library User Account' to draw your sequence diagram.
 - The librarian request the system to create a new online library account
 - The librarian then selects the library user account type
 - The librarian enters the user's details
 - The user's Credentials are checked by the system.
 - Then the new library user account creation is completed.
 - A summary of the of the new account's details are then emailed to the user.

STATE TRANSITION DIAGRAM

A behavioral state transition diagram is a dynamic model that shows the different states that a single class passes through during its life in response to events, along with its responses and actions.

Term and Definition	Symbol
 A state Is shown as a rectangle with rounded corners. Has a name that represents the state of an object. 	
 An initial state Is shown as a small filled-in circle. Represents the point at which an object begins to exist. 	
A final state Is shown as a circle surrounding a small, solid filled-in circle (bull's-eye). Represents the completion of activity.	
 An event Is a noteworthy occurrence that triggers a change in state. Can be a designated condition becoming true, the receipt of an explicit signal from one object to another, or the passage of a designated period. Is used to label a transition. 	Event name
 A transition Indicates that an object in the first state will enter the second state. Is triggered by the occurrence of the event labeling the transition. Is shown as a solid arrow from one state to another, labeled by the event name. 	

Creating a Behavioral State Machine Diagram

- Steps in creating a behavioral state machine diagram:
- 1. Identify the states.
- 2. Identify the transitions.

Example: Sales order

Example of States: The Life of an Audio Clip Order

- 1. The customer adds items into the order and order is in the shopping cart.
- 2. The customer checks out and submit payment details to the system.
- 3. The order is pending while payment is authorized.
- 4. Payment is approved and then the order is pending for final customer approval.
- 5. Customer confirms the order.
- 6. The order is released.

(cont'd)

Exercise

- Refer following room reservation scenario to create state transition diagram of the reservation.
 - Clerk opens a reservation and the room is opened for reservation. When the reservation is confirmed the reservation converts to confirmed. As per the guests' request a confirmed reservation or an open reservation can be cancelled. When the guest checks-in, the confirmed room updates as a fulfilled reservation. When the guest checks-out, the reservation will be updated as closed reservation.

Verifying Use Cases, Data Flow Diagrams, Entity Relationship Diagrams, and State Diagrams

End of the session