

Winning Space Race with Data Science

Imen KADRI 10/05/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

> Summary of methodologies

- Data collection:
 - from an API
 - with web scraping
- Data wrangling
- Exploratory data Analysis using SQL
- Exploratory data analysis with visualization
- Interactive data visualization:
 - with folium
 - · by building a dashboard
- Prediction using machine learning classification
- > Summary of all results
- Results of Exploratory Data Analysis
- Screenshots of the dashboard used for the interactive
- Results of thepPredictive Analytics

Introduction

> Background and context of the project

• Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch.

• Goal:

- -Determine the price of each launch
- -Determine if Space X will reuse the first stage
- -Create a machine learning model to predict if the first stage will land.

Problems to find answers

- What elements can determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What conditions ensure a successful landing program.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected from the API of SpaceX and Wikipedia website
- Perform data wrangling
 - Find some patterns in the data and determine what would be the label for training supervised models.
 - Categorical features are transformed using one-hot encoding
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - · How to build, tune, evaluate classification models

Data Collection

- Description of datasets collection:
 - Data is collected using get request to the SpaceX API.
 - Then , the response content is decoded as a Json using .json() function call and transformed to a pandas dataframe using .json_normalize().
 - Next, the data is cleaned, checked for missing values and fill in missing values if necessary.
 - In addition, web scraping from Wikipedia for Falcon 9 launch records is performed using BeautifulSoup.
 - The goal was to convert the launch records to a pandas dataframe for future analysis. After extracting him as HTML table and parsing the table

Data Collection - SpaceX API

- Use of the get request to the SpaceX API in order to collect data, clean the requested data and did some basic data wrangling and formatting.
- Github url to the notebook:

https://github.com/Imen2029/Applieddatascien ce-capstoneproject/blob/1d75f27c74dab5d73cd1d70a8eb6 b2449b822d9e/jupyter-labs-spacex-datacollection-api%20(2)%20(1).ipynb

Data Collection - Scraping

- Web scrap Falcon 9 launch records with BeautifulSoup:
 - Extract a Falcon 9 launch records
 HTML table from Wikipedia
- Parse the table and convert it into a Pandas data frame
- Github url to the notebook:

https://github.com/Imen2029/Applied-datascience-capstone-project/blob/4a8e57e9850c725c7cac38924bafd7f16aaaf3a7/jupyter-labs-webscraping%20(2).ipynb

TASK 1: Request the Falcon9 Launch Wiki page from its URL First, let's perform an HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response. # use requests.get() method with the provided static url response = requests.request(method='GET', url=static url) # assign the response to a object Create a BeautifulSoup object from the HTML response 7]: # Use BeautifulSoup() to create a BeautifulSoup object from a response text content soup = BeautifulSoup(response.text, "html.parser") #print(soup.prettify()) Print the page title to verify if the BeautifulSoup object was created properly 8]: # Use soup.title attribute anist/courtitle).

Data Wrangling

- Exploratory data analysis and determination of the training labels
- Calculation of the number of launches on each site
- Calculation of the number and occurrence of each orbit
- Calculation of the number and occurence of mission outcome per orbit type
- Creation of a landing outcome label from Outcome column
- Github url to the notebook:

EDA with Data Visualization

Graphs were for:

- -Visualize the relationship between Flight Number and Launch Site
- -Visualize the relationship between Payload and Launch Site
- -Visualize the relationship between success rate of each orbit type
- Visualize the relationship between FlightNumber and Orbit type
- Visualize the relationship between Payload and Orbit type
- -Visualize the launch success yearly trend
- Github url for this notebook:

https://github.com/lmen2029/Applied-datascience-capstone-project/blob/fda61c06b322245750132cd30cbe28613f81861f/edaviz.ipynb

EDA with SQL

- The SpaceX dataset is loaded into a SQL Lite database instead of DB2 as demanded in the original notebook
- Queries are written to find out for instance:
 - -The names of unique launch sites in the space mission.
 - -The total payload mass carried by boosters launched by NASA (CRS)
 - -The average payload mass carried by booster version F9 v1.1
 - -The total number of successful and failure mission outcomes
 - -The failed landing outcomes in drone ship, their booster version and launch site names.
- Github url to the notebook:

https://github.com/lmen2029/Applied-datascience-capstone-project/blob/21c2b14dfd73216f275cfee0ce7b6376841d2174/edasql.ipynb

Build an Interactive Map with Folium

- All launch sites are marked and map objects such as markers, circles, lines are added to mark the success or failure of launches for each site on the folium map.
- Assignment of the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Identifying which launch sites have relatively high success rate using the colorlabeled marker clusters
- The distances between a launch site to its proximities is calculated to answer:
 - Are launch sites near railways, highways and coastlines.
 - -Do launch sites keep certain distance away from cities.
- GitHub url to this notebook:

Build a Dashboard with Plotly Dash

- An interactive dashboard with Plotly dash is built
- Pie charts showing the total launches by a certain sites are plotted
- Scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version are We plotted
- Github url to the notebook:

https://github.com/Imen2029/Applied-datascience-capstone-project/blob/ddac0c2eed78aa39806c7fb987535bf15b97f3ff/spacex_dash_app.py.py

Predictive Analysis (Classification)

- The data is loaded using numpy and pandas, transformed and splitted into training and testing.
- Different machine learning models are built and different hyperparameters are tuned using GridSearchCV.
- Accuracy is used as the metric for our models
- Best performing classification model are found.
- Github url to this notebook :

https://github.com/Imen2029/Applied-datascience-capstone-project/blob/f8ffc358e92c3f1acc1f1bf3e8baa67226252cdc/Machine%20Learning%20Prediction Part 5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• At a launch site., the larger the flight amount, the greater the success rate.

Payload vs. Launch Site

 For the VAFB-SLC launchsite there are no rockets launched for heavypayload mass(greater than 10000)

Success Rate vs. Orbit Type

• ES-L1, GEO, HEO, SSO, and VLEO orbits had the most success rate.

Flight Number vs. Orbit Type

- The LEO orbit success is related to the number of flights
- There is no relationship between flight number and the GTO orbit

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However for GTO we cannot distinguish this well as both positive landing rate and negative landing(unsuccessful mission) are both there here.

Launch Success Yearly Trend

 The sucess rate since 2013 kept increasing till 2020

All Launch Site Names

• To find the names of the unique launch sites, we use the key word 'distinct'

```
[27]: #Display the names of the unique launch sites in the space mission

c.execute('''SELECT distinct(Launch_Site) FROM space3''')

c.fetchall()

[27]: [('CCAFS LC-40',), ('VAFB SLC-4E',), ('KSC LC-39A',), ('CCAFS SLC-40',)]
```

Launch Site Names Begin with 'CCA'

 Query to find 5 records where launch sites begin with `CCA` is given by this figure:

```
#Display 5 records where launch sites begin with the string 'CCA'
condi= %CCA,
q='SELECT * FROM space3 where Launch Site like ?'
c.execute(""SELECT * FROM space3 where Launch_Site LIKE "CCAFS%" Limit 5"")
output all = c.fetchall()
for row all in output all:
 print(row all)
('04-06-2010', '18:45:00', 'F9 v1.0 B0003', 'CCAFS LC-40', 'Dragon Spacecraft Qualification Unit', '0', 'LEO', 'SpaceX',
'Success', 'Failure (parachute)')
('08-12-2010', '15:43:00', 'F9 v1.0 B0004', 'CCAFS LC-40', 'Dragon demo flight C1, two CubeSats, barrel of Brouere chees
e', '0', 'LEO (ISS)', 'NASA (COTS) NRO', 'Success', 'Failure (parachute)')
('22-05-2012', '07:44:00', 'F9 v1.0 B0005', 'CCAFS LC-40', 'Dragon demo flight C2', '525', 'LEO (ISS)', 'NASA (COTS)', 'S
uccess', 'No attempt')
('08-10-2012', '00:35:00', 'F9 v1.0 B0006', 'CCAFS LC-40', 'SpaceX CRS-1', '500', 'LEO (ISS)', 'NASA (CRS)', 'Success',
'No attempt')
('01-03-2013', '15:10:00', 'F9 v1.0 B0007', 'CCAFS LC-40', 'SpaceX CRS-2', '677', 'LEO (ISS)', 'NASA (CRS)', 'Success',
'No attempt')
```

Total Payload Mass

• The total payload carried by boosters from NASA is calculated as below:

```
Display the total payload mass carried by boosters launched by NASA (CRS)

#Display the total payload mass carried by boosters taunched by NASA (CRS)

c.execute('''SELECT sum(PAYLOAD_MASS__KG_) as total_payload FROM space3 where Customer='NASA (CRS)'''')

c.fetchall()

[(45596,)]
```

Average Payload Mass by F9 v1.1

 The average payload mass carried by booster version F9 v1.1 is calculated as below:

```
Display average payload mass carried by booster version F9 v1.1

#Display average payload mass carried by booster version F9 v1.1

c.execute('''SELECT avg(PAYLOAD_MASS__KG_) as avg_payload FROM space3 where Booster_Version='F9 v1.1''')

c.fetchall()

[(2928.4,)]
```

First Successful Ground Landing Date

 The dates of the first successful landing outcome on ground pad are found as below:

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

#List the date when the first successful landing outcome in ground pad was acheived.

c.execute('''select min (Date) from space3 where [Landing _Outcome] Like 'Success %'

''')

c.fetchall()

[('01-05-2017',)]

Successful Drone Ship Landing with Payload between 4000 and 6000

• The names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000 is given as below:

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
: c.execute('''select * from space3
  where [Landing Outcome]="Success (drone ship)"
  PAYLOAD MASS KG between 4000 and 6000''')
  output all = c.fetchall()
  for row all in output all:
    print(row all)
  ('06-05-2016', '05:21:00', 'F9 FT B1022', 'CCAFS LC-40', 'JCSAT-14', '4696', 'GTO', 'SKY Perfect JSAT Group', 'Success',
  'Success (drone ship)')
  ('14-08-2016', '05:26:00', 'F9 FT B1026', 'CCAFS LC-40', 'JCSAT-16', '4600', 'GTO', 'SKY Perfect JSAT Group', 'Success',
  'Success (drone ship)')
  ('30-03-2017', '22:27:00', 'F9 FT B1021.2', 'KSC LC-39A', 'SES-10', '5300', 'GTO', 'SES', 'Success', 'Success (drone shi
  p)')
  ('24-08-2017', '18:51:00', 'F9 FT B1038.1', 'VAFB SLC-4E', 'Formosat-5', '475', 'SSO', 'NSPO', 'Success', 'Success (drone
  ship)')
  ('11-10-2017', '22:53:00', 'F9 FT B1031.2', 'KSC LC-39A', 'SES-11 / EchoStar 105', '5200', 'GTO', 'SES EchoStar', 'Succes
  s', 'Success (drone ship)')
```

Total Number of Successful and Failure Mission Outcomes

 The total number of successful and failure mission outcomes are given as below:

```
List the total number of successful and failure mission outcomes
```

```
c.execute('''select count(Mission_Outcome) as Mission_outcome_total_success from space3
where Mission_Outcome like 'Success%'
''')
output_all = c.fetchall()
for row_all in output_all:
    print(row_all)
(100,)
```

```
c.execute('''select count(Mission_Outcome) as Mission_outcome_total_failure from space3
where Mission_Outcome like 'Failure%'
''')
output_all = c.fetchall()
for row_all in output_all:
    print(row_all)
(1,)
```

Boosters Carried Maximum Payload

 The names of the booster which have carried the maximum payload mass is given as below:

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

```
c.execute('''select Booster_Version from space3
where PAYLOAD_MASS__KG_=(select max(PAYLOAD_MASS__KG_) from space3)
''')
output_all = c.fetchall()
for row_all in output_all:
    print(row_all)

('F9 FT B1029.1',)
('F9 FT B1036.1',)
('F9 B4 B1041.1',)
('F9 FT B1036.2',)
('F9 B4 B1041.2',)
('F9 B5B1048.1',)
('F9 B5 B1049.2',)
```

2015 Launch Records

- We use here between and like clauses
- The failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015 is given as below:

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

```
c.execute('''select Date, Booster_Version, Launch_Site from space3 as s
where [Landing _Outcome] LIKE 'Failure (drone ship)'
and Date between '01-01-2015' and '31-12-2015'
''')

output_all = c.fetchall()
for row_all in output_all:
    print(row_all)

('10-01-2015', 'F9 v1.1 B1012', 'CCAFS LC-40')
('14-04-2015', 'F9 v1.1 B1015', 'CCAFS LC-40')
('17-01-2016', 'F9 v1.1 B1017', 'VAFB SLC-4E')
('04-03-2016', 'F9 FT B1020', 'CCAFS LC-40')
('15-06-2016', 'F9 FT B1024', 'CCAFS LC-40')
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 The rank landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order is given as: Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
c.execute('''select * from space3
where [Landing Outcome] in ('Failure (drone ship)', 'Success (ground pad)')
and Date between '04-06-2010' and '20-03-2017'
order by Date desc
output all = c.fetchall()
for row all in output all:
 print(row_all)
('19-02-2017', '14:39:00', 'F9 FT B1031.1', 'KSC LC-39A', 'SpaceX CRS-10', '2490', 'LEO (ISS)', 'NASA (CRS)', 'Success',
"Success (ground pad)")
('18-07-2016', '04:45:00', 'F9 FT B1025.1', 'CCAFS LC-40', 'SpaceX CRS-9', '2257', 'LEO (ISS)', 'NASA (CRS)', 'Success',
'Success (ground pad)')
('17-01-2016', '18:42:00', 'F9 v1.1 B1017', 'VAFB SLC-4E', 'Jason-3', '553', 'LEO', 'NASA (LSP) NOAA CNES', 'Success', 'Fa
ilure (drone ship)')
('15-12-2017', '15:36:00', 'F9 FT B1035.2', 'CCAFS SLC-40', 'SpaceX CRS-13', '2205', 'LEO (ISS)', 'NASA (CRS)', 'Succes
s', 'Success (ground pad)')
('15-06-2016', '14:29:00', 'F9 FT B1024', 'CCAFS LC-40', 'ABS-2A Eutelsat 117 West B', '3600', 'GTO', 'ABS Eutelsat', 'Suc
cess', 'Failure (drone ship)')
('14-08-2017', '16:31:00', 'F9 B4 B1039.1', 'KSC LC-39A', 'SpaceX CRS-12', '3310', 'LEO (ISS)', 'NASA (CRS)', 'Success',
"Success (ground pad)")
('14-04-2015', '20:10:00', 'F9 v1.1 B1015', 'CCAFS LC-40', 'SpaceX CRS-6', '1898', 'LEO (ISS)', 'NASA (CRS)', 'Success',
'Failure (drone ship)')
('10-01-2015', '09:47:00', 'F9 v1.1 B1012', 'CCAFS LC-40', 'SpaceX CRS-5', '2395', 'LEO (ISS)', 'NASA (CRS)', 'Success',
'Failure (drone ship)')
('08-01-2018', '01:00:00', 'F9 B4 B1043.1', 'CCAFS SLC-40', 'Zuma', '5000', 'LEO', 'Northrop Grumman', 'Success (payload s
tatus unclear)', 'Success (ground pad)')
('07-09-2017', '14:00:00', 'F9 B4 B1040.1', 'KSC LC-39A', 'Boeing X-37B OTV-5', '4990', 'LEO', 'U.S. Air Force', 'Succes
s', 'Success (ground pad)')
```


All launch sites on a map

The Space x

 launch sites are
 located in
 USA(Florida ans California)

Markers of the success/failed launches for each site on the map

- Florida lauch site:
- Green marker=succes
- Red marker = failure

Distances between a launch site to its proximities

 Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

Explain the important elements and findings on the screenshot

Pie chart visualizing launch success counts for all sites

The KSC LC-39A site has the largest successful launches

Pie chart of the highest launch site success ratio

The KSC LC-39A site achieved 76.9% succes rate vs. 23.1% failure rate.

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

Observation:

For low weighted payloads, the success rates is higher than the heavy weigheted payloads

41

Classification Accuracy

 The tree model has the highest classification accuracy

Confusion Matrix

Conclusions

- The flight amount and the success rate at a launch site are proportional. The larger the flight amount, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 until2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- For this task ,the best machine learning algorithm is the decision tree classifier.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

