

Module 03 – Spark SQL – Transformations

Table of Contents

Don't forget to start WebEx recording Do Spark Jeopardy review

Go to: community.cloud.databricks.com and Logon
In Left-pane, Click on 'Clusters' or 'Compute' and Terminate old Cluster
Then click 'Create Cluster' button to create New one

Session 1-2

Mod 00 – Intro and Setup

Mod 01 – Spark Architecture

Mod 02 – SparkSQL (Read/Write DataFrames/Tables)

Mod 03 - SparkSQL (Transform) Hack 00 (Date) / Hack 01 (Air)

Session 3-4

Mod 04 – Complex Data Types

Hackathon 02 (Fly)

Mod 05 – JSON (Optional)

Mod 06 - Streaming

Hackathon 03 (Stream)

Mod 07 – Architecture-Spark UI

Session 5-7

Mod 08 – Catalog-Catalyst-Tungsten

Mod 09 – Adaptive Query Execution

Mod 10 – Performance Tuning

Hackathon 04 (Air)

Mod 11 – Machine Learning

Final Exam

Before we Begin: Open Notebook Mod-03a

Module 03 – Spark SQL

After completing this module, you'll be able to work with Spark SQL including:

Transformations 01 Notebook

- Columns and Expressions
- Operators and Methods
- Transformations and Actions

Transformation 02

- Lab 01: Dates and Timestamps
- Lab 02: Aggregations
- Lab 03: Widgets
- Non-Aggregate functions
- Other built-in functions
- Lab 04: User Defined Functions

Spark SQL – Columns and Expressions

Columns

- Column is an object we will be transforming in a DataFrame/Table using an expression
- In a DataFrame, you refer to a Column using various syntax including

```
df["columnName"]

df.columnName

col("columnName")

col("columnName.field")
```

You can manufacture new values from Column values via Operators/Methods

```
col("x") * col("b")
col("x").asc()
col("x").cast("float") * 100
```

Column Operators and Methods

Operator/Method	Description
&,	Boolean AND, OR in Python
*, + , <, >=	Math and comparison operators
==, !=	Equality and inequality tests in Python
alias, as	Gives the column an alias, as only in Scala
cast, astype	Casts the column to different data type, astype only in Python
isNull, isNotNull, isNan	Is null, is not null, is NaN (Not A Number)
isin	Boolean evaluated to true if value contained by values of the arguments
asc, desc	Returns a sort expression based on ascending/descending order of the column

DataFrame Operations

DataFrames support two types of Operations:

- 1
- Actions, which computes a result based on an DataFrame
 - Actions return a result either to the <u>console</u> or a <u>written file</u>
 - For example, in earlier labs, we used the display() function which is an Action to display the result set to the console
- 2 Transformations, which create a new DataFrame from an existing DataFrame
 - For example, isin is a Transformation that passes each column value through a Boolean evaluation. If true, column values are returned
 - All Transformations in Spark are lazy, in that they do not compute their results right away. Instead, they just remember the Transformations applied to some base dataset (e.g. a file). The Transformations are only computed when an Action requires a result to be returned to the Driver program

DataFrame Transformations

Transformation	Description				
select	Returns a new DataFrame by computing given expression				
selectExpr	Variant of select() that accepts SQL expression and returns new DataFrame				
drop	Returns a new DataFrame with a column dropped				
withColumnRenamed	Returns a new DataFrame with a column renamed				
withColumn	Returns a new DataFrame by adding a column or replacing the existing column that has the same name				
filter, where	Filters rows using the given condition				
sort, orderBy	Returns a new DataFrame sorted by the given expressions				
dropDuplicates, distinct	Returns a new DataFrame with duplicate rows removed				
limit	Returns a new DataFrame by taking the first n rows				
groupBy	Groups DataFrame using specified columns, so we can run aggregation on them				

DataFrame Actions

Operator/Method	Description				
display	Displays the DataFrame in tabular form via http format				
show	Displays the top n rows of DataFrame in a tabular form				
count	Returns the number of rows in the DataFrame				
describe, summary	Computes basic statistics for numeric and string columns				
first, head	Returns the first row				
collect	Returns an array that contains all rows in this DataFrame				
take	Returns an array of the first n rows in the DataFrame				

Actions start the Execution of a Job

Spark SQL – Date and Timestamps (Start of Transformations 02)

What is Unix Time?

- Unix time is a system for describing a point in time. It is the number of microseconds that have elapsed since the Unix epoch, excluding leap seconds. The Unix epoch is 00:00:00 UTC on 1 January 1970
- There are several ways to convert Unix time to Spark Timestamp format

https://www.unixtimestamp.com/

Built-in functions

df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['col1'])
display(df.select(to_date(df.col1).alias('dt')))

dt
1 1997-02-28

Function	Description
date_format	Converte a date/timestamp/string to a value of string in the format specified by the date format given by the second argument.
add_months	Returns the date that is numMonths after startDate
to_date	Converts Column into pyspark.sql.types.DateType via optionally specified format
dayofweek	Extracts the day of the month as an integer from a given date/timestamp/string
date_add	Returns the date that is N days after start
from_unixtime	Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing timestamp of that moment in current system time zone in given format
year month minute second	Extracts the time frame as an integer from a given date/timestamp/string.
unix_timestamp	Converts time string with given pattern to Unix timestamp (in seconds)

Date/Time Patterns

Symbol	Meaning	Presentation	Examples		
G	era	text	AD; Anno Domini		
У	year	year	2020; 20		
D	day-of-year	number(3)	189		
M/L	month-of-year	month	7; 07; Jul; July		LECT date_format(current_date, "MMM") CurrentMonth
d	day-of-month	number(3)	28		
Q/q	quarter-of-year	number/text	3; 03; Q3; 3rd quarter	(1) 5	park Jobs
E	day-of-week	text	Tue; Tuesday	1	CurrentMonth Oct
F	week-of-month	number(1)	3		
а	am-pm-of-day	am-pm	PM		
h	clock-hour-of-am-pm (1-12)	number(2)	12		

Spark SQL – Aggregations and Joins

Aggregate functions

Function	Description
agg	Compute aggregates by specifying a series of aggregate columns
avg	Compute the average value for each numeric columns for each group
count	Count the number of rows for each group
max	Compute the max value for each numeric columns for each group
mean	Compute the average value for each numeric columns for each group
min	Compute the min value for each numeric column for each group
pivot	Pivots a column of the current DataFrame and performs the specified aggregation
sum	Compute the sum for each numeric columns for each group

'groupBy' and 'count'

Query: Count how many rows per Dept where Dept > 400. Sort in Descending order by Dept

groupBy() with agg()

Query: For each 'Dept', do multiple aggregate.

Want Count # of row per 'Dept', Max 'salary' per 'Dept'

```
empDF.select("emp", "l_name", "dept", "salary").show()
```

```
#// DataFrame query
empDF.select("dept", "salary").groupBy("dept").agg({"*": "count", "salary": "max"}).show()

#// SQL equivalent
spark.sql("select dept, count(*) as ct_dept, max(salary) as max_sal
from emp_tbl group by dept").show()
```

emp l_name dept salary
1018 Ratzlaff 501 54000.0
1016 Rogers 302 56500.0
1014 Crane 402 24500.0
1004 Johnson 401 36300.0
1002 Brown 401 43100.0
1021 Morrissey 201 38750.0
1019 Kubic 301 57700.0
1017 Runyon 501 66000.0
1015 Wilson 501 53625.0
801 Trainer 100 100000.0
1003 Trader 401 37850.0
1022 Machado 401 32300.0
1001 Hoover 401 25525.0
1020 Charles 403 39500.0
1012 Hopkins 403 37900.0
1010 Rogers 401 46000.0
1008 Kanieski 301 29250.0
1006 Stein 301 29450.0
1025 Short 201 34700.0
1023 Rabbit 501 26500.0
++

dept count((dept) ma	x(salary)
++	+	+
100	1	100000.0
301	3	57700.0
501	4	66000.0
302	1	56500.0
401	7	46000.0
201	2	38750.0
402	2	52500.0
403	6	49700.0
++		+

Join functions

Function	Description
join	Joins with another <u>DataFrame</u> . Supports INNER, LEFT OUTER, RIGHT OUTER, LEFTSEMI, LEFTANTI CROSS

empDF

deptDF

display(empDF.join(deptDF,empDF.emp_dept_id == deptDF.dept_id, "inner"))

emp_id 🔺	name 📤	mgr 📤	year_joined 📤	emp_dept_id	gender 📤	salary 📤	dept_name 🔺	dept_id 🔺
1	Smith	-1	2018	10	M	3000	Finance	10
3	\/\/illiame	1	2010	10	М	1000	Finance	10

Inner join() using DataFrames

```
empDF.join(deptDF, "dept").limit(3).show()
  empDF.join(deptDF, "dept").select("last_name", "dept", "dept_name").limit(4).show()
▶ (2) Spark Jobs
                   Join column
dept| emp| mgr| job|last_name|first_name|
                                                hire
                                                            birth| salary|
                                                                                   dept_name
                                                                                                budget| mgr
501|1018|1017|512101| Ratzlaff| Larry|1978-07-15|1954-05-31|54000.00| marketing sales|308000.00|1017|
302 | 1016 | 801 | 321100 |
                                    Nora|1978-03-01|1959-09-04|56500.00|product planning|226000.00|1016|
                         Rogers
402 | 1014 | 1011 | 422101 | Crane |
                                    Robert | 1978-01-15 | 1960-07-04 | 24500.00 | software support | 308000.00 | 1011 |
last name|dept| dept name
 Ratzlaff | 501 | marketing sales |
   Rogers | 302 | product planning |
   Crane | 402 | software support |
  Johnson | 401 | customer support |
```

Left join() using DataFrames

```
# Lab 12b: Change dept 100 to 999 for next Lab (Left JOIN,)
# Dept 999 exists in empDF2, but not deptDF now
from pyspark.sql.functions import when

empDF2 = empDF.withColumn("dept", when(empDF["dept"] == 100, 999).otherwise(empDF["dept"]))
empDF3 = empDF2.distinct().orderBy(["dept"], ascending=False)
```

```
# Lab 12c: Left-outer Join
empDF3.join(deptDF, "dept", "left_outer").orderBy(["dept"], ascending=False).show()

# Lab 12d: Join on 2 columns:
empDF3.join(feptDF, (empDF2.dept == deptDF.dept) & (empDF2.mgr == deptDF.mgr)).limit(3).show()
```

```
job|last_name|first_name|
                                                      hire
                                                                  birth
                                                                            salarvi
                                                                                            dept name
                                                                                                           budget| mgr
999 | 801 | 301 | 111100 |
                          Trainerl
                                          I.B. | 1973-03-01 | 1945-08-11 | 100000.00 |
501 1017 801 511100
                           Runyon
                                         Irene | 1978-05-01 | 1951-11-10 | 66000.00 | marketing sales | 308000.00 | 1017
501 | 101 | 1017 | 512101 |
                           Wilson
                                        Edward | 1978-03-01 | 1957-03-04 | 53625.00 | marketing sales | 308000.00 | 1017 |
501 | 1/23 | 1017 | 512101 |
                                         Peter | 1979-03-01 | 1962-10-29 | 26500.00 | marketing sales | 308000.00 | 1017 |
                           Rabbitl
```


Spark SQL – Miscellaneous Functions (No labs on these)

Non-Aggregate Built-in functions

Function	Description				
col	Returns a Column based on the given column name				
lit	Creates a Column of literal value				
IsNull isNotNull	Return true if the column is null Returns true if column is Not Null				
concat	Concatenates multiple input columns together into a single column				
rand	Generate a random column with independent and identically distributed (i.i.d.) samples uniformly distributed in [0.0, 1.0)				

from pyspark.sql.functions import *
df = spark.createDataFrame(\(\(\) [123], \), ([666], \), ([456], \), ([789], \)], ['id'])
display(df.select('id').orderBy(rand()))

<u> 1st</u>
id
▶ [123]
▶ [789]
▶ [456]
▶ [666]

<u> 2nd</u>						
id						
▶ [789]						
▶ [123]						
▶ [456]						
▶ [666]						

JIU									
ic	id								
Þ	[666]								
Þ	[456]								
Þ	[123]								
Þ	[789]								

String Built-in functions

Function	Description
translate	Translate any character in the src by a character in replaceString
regexp_replace	Replace all substrings of the specified string value that match regexp with rep
regexp_extract	Extract specific group matched by Java regex, from specified string column
Itrim	Removes the leading space characters from the specified string column
lower	Converts a string column to lowercase
split	Splits str around matches of the given pattern

Na Built-in functions

Function	Description
na.drop	Returns a new DataFrame omitting rows with any, all, or a specified number of null values, considering an optional subset of columns
na.fill (value)	Replace NULL values with the specified value for an optional subset of columns
replace (str, search [,replace])	Returns a new DataFrame replacing a value with another value, considering an optional subset of columns (Replaces all occurrences of 'search' with 'replace'

Spark SQL – Widgets

Widgets: Parameterize your Notebook

There are 4 types of Widgets

• text: Input a value in a text box

dropdown: Select a value from a list of provided values

combobox: Combination of text and dropdown. Select a value

from a provided list or input one in the text box.

multiselect: Select one or more values from a list of provided values

Widgets: Parameterize your Notebook


```
dbutils.widgets.text("Text", "Hello World!")
dbutils.widgets.dropdown("Dropdown", "1", [str(x) for x in range(1,10)])
dbutils.widgets.combobox("Combobox", "A", ["A", "B", "C"])
dbutils.widgets.multiselect("Multiselect", "Yes", ["Yes", "No", "Maybe"])
```

Widgets: Parameterize your Notebook

3	SELECT * FROM emp_tbl											
4	<pre>WHERE last_name = getArgument("last_name")</pre>											
•	▶ (1) Spark Jobs											
		emp		mgr		dept		job	_	last_name	\triangle	first_name
	1	1002		1003		401		413201	7	Brown		Alan

last_name
Johnson

Spark SQL – User Defined Functions (UDFs)

UDF Performance compared to built-in Functions

- The Spark DataFrame functions are natively a JVM structure and standard access methods are implemented by simple calls to Java API. UDF from the other hand are implemented in Python and require moving data back and forth
- In other words, Spark SQL functions operate directly on JVM and typically are well
 integrated with both Catalyst and Tungsten. It means these can be optimized in the
 execution plan and most of the time can benefit from Whole Stage Code Gen and
 other Tungsten optimizations. Moreover, these can operate on data in its "native"
 representation
- In order of Preference when Performance is important:
 - 1. Higher-Order functions
 - 2. Pandas UDFs
 - 3. Python UDFs

Туре	Time(s)
Python UDF	43.0632779598
Python Vectorized UDF	13.9144539833
Scala UDF	0.257154205

Using Scala UDFs in PySpark. TL;DR | by WB Advanced Analytics | wbaa | Medium

UDFs for DataFrames and Tables

- UDF are when you wish to write custom Functions
- UDFs are a 'black box' in the sense that the Catalyst optimizer cannot tune the query. Hence, performance goes down when compared to using a 'built-in' function
- There are Performance differences between Scala and Python UDFs
 - Python incurs additional cost of Python interpreter
- UDF's are Serialized and sent to the Executors for processing

```
This registers the UDF on the Executors

%python

# Our input/output is a string
@udf("string")
def decoratorUDF(email: str) -> str:
return email[0]
```

Python UDFs incur more cost compared to Scala UDFs

https://medium.com/quantumblack/spark-udf-deep-insights-in-performance-f0a95a4d8c62

UDFs for DataFrames and Tables (Scala)

Python UDF (slow)

- Serialize/Deserialize data with Pickle
- Fetch data block, but invoke UDF row by row
- Pandas UDF (faster)

```
import pyarrow as pa
import pandas as pd
```

- Data transfer without the cost of Serialization using Arrow
- Fetch data block and invoke UDF block by block

Arrow format is an in-memory data format that was specifically designed to exchange the data between different systems efficiently

https://databricks.com/blog/2020/05/20/new-pandas-udfs-and-python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html

UDFs with/without Apache Arrow on Pandas

Apache Arrow is in-memory columnar format used in Spark to efficiently transfer data between JVM and Python. Beneficial to Python users that work with Pandas/NumPy data

UDFs vs Panda UDFs

Command took 3.45 seconds

Command took 1.88 seconds

UDFs for DataFrames and Tables (Scala)

You can create your own User Defined Functions (UDF). You must:

- 1. Install correct UDF library for language you are working
- Create named UDF for either DataFrames or Tables as needed

Creating UDFs for DataFrames

```
from pyspark.sql.functions import pandas_udf, PandasUDFType

@pandas_udf('long', PandasUDFType.SCALAR)

def pandas_plus_one(v):
    # `v` is a pandas Series
    return v + 1 # outputs a pandas Series

# Output prior to UDF
spark.range(10).show()

Output using the UDF to increment all values by 1
spark.range(10).select(pandas_plus_one("id")).show()
```

```
id
                                                                     |pandas_plus_one(id)
 0
                                                                                          2
                                                                                          3
 3
                                                                                          5
 5
                                                                                          6
 6
                                                                                          7
 7
                                                                                          8
 8
                                                                                          9
 9
                                                                                        10
```

Creating UDFs for Table

Note you create the UDF in Python, which is then used in SQL API

```
1 %py
2
3 # Lab 21b: Create UDF to square all values
4 def squared(s):
5    return s * s
6    spark.udf.register("squaredWithPython", squared)
7
8 # Below creates TempView with values 0 - 19
9    spark.range(1, 10).createOrReplaceTempView("test")
```

```
1 %sql
  -- Lab 21c: Querying SQL Table using UDF
5 SELECT id, squaredWithPython(id) as id_squared FROM test;
▶ (3) Spark Jobs
                ▲ id_squared ▲
      id
  1
                    1
  2
                    4
  3
                    9
  4
                    16
                    25
  5
  6
                    36
                    49
```

In Review: Spark SQL

After completing this module, you'll be able to work with Spark SQL including:

Transformations 01 Notebook

- Columns and Expressions
- Operators and Methods
- Transformations and Actions

Transformation 02

- Lab 01: Dates and Timestamps
- Lab 02: Aggregations
- Lab 03: Widgets
- Non-Aggregate functions
- Other built-in functions
- Lab 04: User Defined Functions