PLC-k programozása - alapok

Programozható irányítóberendezések és szenzorrendszerek

> KOVÁCS Gábor gkovacs@iit.bme.hu

A fejlesztői környezet feladatai

- PLC konfiguráció
- Alkalmazásfejlesztés
- Kapcsolat a PLC-vel
- Alkalmazás és adatok átvitele
- PLC monitorozása
- Szimuláció
- Dokumentáció támogatása

PLC konfiguráció

- Az alkalmazás lehetőségei függnek
 - A PLC típusától
 - Rendelkezésre álló IOk száma és típusától
 - Kommunikációs lehetőségektől
 - PLC firmware/OS típusától
- A fejlesztői környezet lehetővé teszi
 - A PLC konfiguráció megadását (modulok száma és típusa)
 - Firmware/OS frissítését

Alkalmazásfejlesztés

- Az irányítási feladatot megvalósító alkalmazás fejlesztésének támogatása
- Több programozási nyelv támogatása
- Felhasználói program fordítása (compile)
- Felhasználóbarát megoldások
 - Könnyen használható felület
 - Autocomplete

Kommunikációs kapcsolat a PLC-vel

- Nem szabványos kommunikációs interfész
- RS232/RS485 alapú megoldások
- USB
- Ethernet

Alkalmazás- és adatátvitel

- Download letöltés
 - $-PC \rightarrow PLC$
 - Alkalmazás és adatok
- Upload feltöltés
 - PLC \rightarrow PC
 - Alkalmazás és adatok
- Le- és feltöltés akár futás közben is!

PLC monitorozás

- Memória online monitorozása
 - Rendszermemória
 - Bemeneti kép
 - Kimeneti kép
 - Felhasználói memória
- Programfutás monitorozása
- Kimenetek állítása (force)

Szimuláció

- A PLC kód PC-s környezetű emulátoron fut
- Virtuális kimenetek megfigyelhetők, bemenetek állíthatók
- A fizikai ki- és bemenetek nem változnak
- Biztonságos módszer az alkalmazás tesztelésére

Dokumentáció

- Ipari környezetben különösen fontos
- A PLC-k gyakran a kommenteket is tárolják a forráskód mellett
- Támogatás: modulok az automatikus dokumentációkészítéshez
- A dokumentáció részei
 - Konfigurációs beállítások
 - Memóriakonfiguráció (változók azonosítója, típusa, címe)
 - Programkód
 - Kommunikációs beállítások

Fejlesztői környezetek

- Siemens: TIA portal (Step 7)
- Rockwell (Allen-Bradley): RSLogix, Studio 5000
- Schneider: Unity, TwidoSuite
- Mitsubishi: iQ Works

- CoDeSys
 - Gyártófüggetlen fejlesztői környezet
 - Több kisebb gyártó támogatja: Moeller, Beckhoff stb.

A huzalozott logikától a PLC-kódig

Szerszámgép: 380V AC

Logika: 24V DC

A szerszámgépet a két nyomógomb bármelyike működtetheti (VAGY)

Biztonsági kapcsoló (ÉS)

Vészleállító gomb (NAND)

PLC IO-k bekötése

Létradiagram Föld sín Pozitív sín (neutral rail) (positive rail) Bemeneti bit Kimeneti bit (input bit) (output bit) %Q0.0 %10.0 %10.3 %10.2 %10.1 Létrasor (rung) %Q0.0 %M1 Memóriabit %M2 (memory bit) %10.2 %Q0.2

Kontaktusok és tekercsek

Szimbólum	Megnevezés	Működés	Analógia
x	Alaphelyzetben nyitott kontaktus [kontaktus] (NO contact, contact)	"vezet" ha X=1	Alaphelyzetben nyitott nyomógomb
X /	Alaphelyzetben zárt kontaktus [negált kontaktus] (NC contact)	"vezet" ha X=0	Alaphelyzetben zárt nyomógomb
()	Alaphelyzetben nyitott tekercs [tekercs] (NO coil, coil)	Y-t 1-be állítja ha "táplált"	Alaphelyzetben nyitott relé
—(/)—	Alaphelyzetben zárt tekercs [negált tekercs] (NC coil)	Y-t 0-ba állítja ha "táplált"	Alaphelyzetben zárt relé

Logikai műveletek

Művelet	Szimbólum	Algebrai jelölés	Létradiagramos megvalósítás
Negálás	—	$Y = \overline{A}$	A
ÉS		$Y = A \cdot B$ $Y = A \& B$	A B Y
VAGY	⇒	Y = A + B	$\begin{array}{ c c } & & & & & & & & & & & & & & & & & & &$

Logikai műveletek

Művelet	Szimbólum	Algebrai jelölés	Létradiagramos implementációs
Antivalencia (XOR)	⇒	$Y = A \oplus B$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ekvivalencia (NXOR, EOR)		$Y = \overline{A \oplus B}$ $Y = A \odot B$	$\begin{array}{ c c c c c } \hline A & B & Y \\ \hline A & B \\ \hline \end{array}$

Logikai műveletek

Művelet	Szimbólum	Algebrai jelölés	Létradiagramos megvalósítás
NOR		$Y = \overline{A + B}$ $Y = \overline{A} \cdot \overline{B}$	A
NAND	□ ~	$Y = \overline{A \cdot B}$ $Y = \overline{A} + \overline{B}$	A B Y /

Létrasor = Logikai függvény

ELSE Y=0

Hogyan egyszerűsítsünk?

$$Y = \overline{(A \cdot B)} + \overline{(C \cdot D)}$$

$$Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

A létradiagram kiértékelése

- A PLC ciklikus működésű
- A programvégrehajtás fázisában a teljes kód feldolgozásra kerül
- Minden egyes
 ciklusban a teljes
 létradiagram
 kiértékelésre kerül

A létradiagram kiértékelése

- Néhány nanoPLC-típus: létrasosorok párhuzamos kiértékelése (ritka)
- Általános: soros végrehajtás
 - Soronként
 - Oszloponként (nagyon ritka)

A létradiagram kiértékelése

A kiértékelési sorrend hatása

A kiértékelési sorrend hatása

%Q0.1:=%I0.1+%M1

Fizikai kimenetre

Fizikai kimenetre

Reteszelt tekercsek

 Hogyan oldjuk meg, hogy a nyomógombunk reteszelje a kimenetet?

Reteszelt tekercsek

- Megoldottuk, hogy a nyomógombunk reteszelje a kimenetet
- Hogyan oldjuk a reteszelést?

Reteszelés

$$\%Q0.0 = \overline{\%I0.1} \cdot (\%I0.0 + \%Q0.0)$$

Reteszelés

Szabványos jelölés

Symbol	Name
—(s)—	Set tekercs
—(R)—	Reset tekercs

RSLogix jelölés

Symbol	Name
—(L)—	Output Latch (OTL)
—(u)—	Output Unlatch (OTU)

Reteszelési műveletek

A reteszelés értelmezése

Alternatív megoldás

Alternatív megoldás

$$\%Q0 = \overline{\%I0.1} \cdot \%Q0.0 + \%I0.0$$

Set / Reset prioritás

Reset prioritás

Set prioritás

Vigyázat! Az időben később végzett művelet írhatja felül a korábbi eredményét!

Éldetektálás

 Hogyan érzékelhetjük egy bemenet fel- vagy lefutó élét?

```
IF (%I0.0=1) AND (%M0=0) THEN %Q0.0:=1 %M0:=%I0.0
```

Élérzékeny kontaktusok

Szimbólum	Megnevezés
P	Felfutó él érzékeny kontaktus (rising edge contact, one shot rising)
— n —	Lefutó él érzékeny kontaktus (falling edge contact, One Shot Falling)

Megjegyzés: egyes fejlesztőkörnyezetekben az éldekektálás létradiagramban csak funkcióblokkok (ld. később) használatával oldható meg.

Élérzékeny kontaktusok

Példa

Megoldás

Példa – egy jobb megoldás

Hiszterézis szabályozás

Példa – egy jobb megoldás

