EM 007 287

By-Berger, Robert J.; And Others
An Introduction to Programming. Monograph Number 14.
Arizona State Univ., Tempe. Classroom Learning Lab.
Spons Agency-Office of Education (DHEW), Washington, D.C. Bureau of Research.
Bureau No-BR-5-0269
Pub Date May 68
Contract-OEC-5-15-026
Note-59p.
EDRS Price MF-\$0.50 HC-\$3.05

Descriptors-Autoinstructional Aids. Branching, Classroom Techniques, Computer Assisted Instruction, *Computer Programs, Individualized Instruction, Individualized Programs, Instructional Materials, *Instructional Programs, Instructional Technology, Linear Programing, *Programed Instruction, *Programing, *Programed Instruction, *Progra

Prompting, Sequential Programs, Teaching Techniques

An undertaking designed to teach the fundamental concepts of programing makes the learner learn frame writing by means of frames. A sliding card gradually discloses the two basic sequences which programs usually follow—the linear and the branching sequences. A branching sequence may be normal or remedial, a frame regular or mainstream. A linear sequence may have a wash ahead or a wash back. A typical program frame comprises a stimulus, a response and a feedback. Prompts or cues, which are used to stimulate a response, may be formal or thematic. A frame may be intermediate or terminal, and cues should be faded out gradually when the frames are terminal. The programer must avoid copying frames and overprompting. RULEG (rule first and example afterwards) and EGRUL (the reverse process) are two general programing strategies. A response may be overt or covert and must be related to the instructional content. A stimulus may be generalized or discriminative, and the programer must control both. He must deal, not only with response acquisition, but also with its maintenance. Chaining, which may refer forwards or backwards, is when instruction includes sequencing of several tasks. (GO)

AN INTRODUCTION TO PROGRAMMING

MONOGRAPH #14

ROBERT J. BERGER
DONALD B. SHOBERT
VERNON S. GERLACH

USOE Project 5-0269

Contract No. OE 5-15-026

May 1968

Department of Educational Psychology
Arizona State University
Tempe, Arizona

CLASSROOM LEARNING LABORATORY

experimental analyses of student behavior

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.

AN INTRODUCTION TO PROGRAMMING

Monograph #14

Robert J. Berger

Donald B. Shobert

Vernon S. Gerlach

May 1968

Arizona State University
Tempe, Arizona

Outline of Program Content

Fra	mes:	
1	~ 24	Types of Sequences
25	- 26	Selected & Constructed Responses
27	- 44	Prompting
45	- 50	Review
51	- 60	Strategies: Ruleg & Egrul
61	- 7 0	Responses
71	- 75	Transfer of Stimulus Control
76	- 88	Stimulus Generalization & Discrimination
89	 90	Copying Frames
91	- 97	Stimulus Discrimination Sequencing
98	- 119	Maintenance
120	 134	Chaining

Fundamentals of Programming

- Constructing the Program Outline -

This program is designed to teach you the fundamental concepts of frame writing. The emphasis is on the preparation of programmed instructional materials which are appropriate for programming in the motion picture medium.

Most effective programs are written for a particular audience. This program is intended for use by teachers in general, and particularly by those teachers who have previously worked through all or part of some programmed instructional material.

In order for this material to be maximally effective, it is important for you to follow a few rules. The guidelines below should be read prior to turning to the first instructional frame of the sequence.

Guidelines

1. The instructional material for this program is divided into small, numbered units called <u>frames</u>. Near the end of each frame you will be asked to answer a question either by selecting from among several choices, or by writing your own answer.

In order to use the program effectively, provide yourself with a 5 x 8 card. Slide the card down the page until you see a double row of dots, like this:

Stop when you see these dots, read the material, and answer the question. When finished, slide the card down until you see a row of asterisks:

Stop when you see the asterisks. The material just uncovered contains the answer to the previous question and tells you whether or not you were correct. You then proceed to the next frame and double row of dots.

Get your 5×8 card now and practice these procedures on the remainder of the guideline frames, i.e., 2-4.

In order to assist the learner in identifying important terms or concepts, some words or phrases will be underlined or capitalized. If a word is underlined or capitalized, it means that word is _____.

•••

2. Answer: important

3. On many occasions you will be asked to construct an answer, either in response to a direct question, or by filling in blank lines. When blank lines are given, the <u>length</u> and <u>number</u> of blanks should suggest the answer. Thus, a three-word answer is suggested by three blanks. If an answer is to be made in one word, how many blanks will there be?

a) one; b) two; c) any number.

•••

3. Answer: choice a), one

4. On other occasions you will be asked to select an answer from among those given. When several choices are given, write down the <u>letter</u> of the answer

ERIC Full Text Provided by ERIC

you chose. What should you write down when answering multiple choice questions?

a) the full answer; b) the letter of the answer you chose; c) a key word or two

4. Answer: b)

ERIC -

As you can see, the guidelines are simple and easy to follow. You are now ready to turn to the next page and begin the program.

1.	Programmed instructional materials (which we call programs) usually
	follow one of two basic sequences. One sequence is called linear, because
	every learner follows the same line or route through the program.

When every learner follows the same instructional path, the sequence is called _____.

1. Answer: linear.

2. The other basic sequence is called <u>branching</u>. Branching programs are so named because they provide places where learners can branch off into alternative paths of instruction. In branching programs it is possible for two learners to follow quite different routes through the same program.

What kind of a program allows learners to take varying instructional routes?

a) linear; b) branching

•••

2. Answer: b)

3. Branching programs provide the learner with several response alternatives from which his is to select the one he thinks is correct. In addition, depending on the learner's selection, he is directed to different frames in the program.

Linear programs could also provide several response alternatives.

Therefore, the critical difference between branching and linear programs

is that in a branching program different choices lead to places in											
the program.											
•••											
•••											
3. Answer: different, various, etc.											

In the diagram below, each numbered box represents a program frame.											
The arrows indicate the possible sequences of instruction. Does the diagram											
depict a linear or a branching sequence?											
$\underline{/1/}> \underline{/2/}> \underline{/3/}> \underline{/4/}> \underline{/5/}$											
•••											
•••											
4. Answer: linear. Each learner must go from frame 1 to 2, from 2 to											
3, etc., regardless of his responses.											

Suppose a program frame provided the following response choices:											
a) red - turn to page 24; b) blue - turn to page 21; c) green - turn to											
page 17; d) yellow - turn to page 22.											
What type of program sequence is being used?											
•••											
5. Answer: branching. One would go to different places in the pro-											
gram depending on the response selected.											

By now it should be clear that in linear programs there is but one											

sequence for all learners to follow. However, in branching programs the

5.

6.

):• ;	sequence depends upon the particular response selected by the learner, and
	varies from one learner to Another.
	a) a program with one sequence for all learners is called
	b) a program in which the sequence varies depending on the learner's response
	is called
	•••
	•••
	6. Answer: a) linear; b) branching

7.	Branching programs can be very complex and lengthy. Theoretically,
	each incorrect answer selected could lead to a different sequence, and
	errors made thereafter would lead to further sequences, etc., until the mag-
	nitude of the matter staggers one's imagination. In actual practice, how-
	ever, branching is usually limited to one of two types, normal and remedial.
	How many types of branching are typically used?
	•••
i,	•••
	7. Answer: 2

8.	In a normal branching program, the learner who selects an incorrect
	response is directed to a frame containing an additional explanation. Follow-
	ing the additional explanation, the learner is directed back to the previous
	frame and asked to select a different answer. Study the diagram below. In

reame 5, choices a, b, and c were given. Choice b was correct and directed

the learner to frame 6, the next regular frame.

ERIC

/5/	> <u>/b/</u>	>	<u>/6/</u>
/5a/	/5c/		

		_							
What	would	the	learner	find	in	frames	5a or	5c?	
	• • •					• • •			•••
	• • •					• • •			• • •
	ο Δ.				,		1 on		

Answer: additional explanation.

9. If a learner never chose an incorrect response, he would see only the regular, or mainstream frames. Each error in a normal branching program adds one additional frame to the sequence.

If a normal branching program had 50 mainstream frames, how many frames would a learner see who made 5 errors in the program?

a) 45 frames; b) 50 frames; c) 55 frames; d) 60 frames

•••

9. Answer: c) He would see the 50 mainstream frames plus 5 frames containing additional information.

read frame 5 and chose response b). After reading an additional explanation on frame 5b, he was directed back to mainstream frame 5 to try again. If, on a second try, he chooses c), where will he be directed after reading the explanation on 5c?

10. Answer: frame 5. In a normal branching program a learner who selects an incorrect answer is returned to that main-stream frame for another attempt at the correct answer.

11. The program you are now reading is a (linear/branching) program.

•••

11. Answer: linear. Each learner goes through the same sequence even though one may proceed at his own rate of speed. There is no branching.

12. What kind of sequence is depicted by each diagram below?

a)
$$\sqrt{1/} \longrightarrow \sqrt{2/} \longrightarrow \sqrt{3/} \longrightarrow \sqrt{4/}$$

12. Answer: a) linear; b) branching

13. In a normal branching sequence the learner who selects the correct response is directed to the next mainstream frame. In the diagram below, if frame 8 provided choices a, b, c, and d, which response must have been the correct one?

13. Answer: b. All other choices (a, c, and d) direct the learner to additional explanations, while b must lead to the next mainstream frame, i.e., frame 9.

14. From the preceding material you learned that in a normal branching sequence a learner never branches more than one frame away from a main-stream frame. Each branching frame leads back to a mainstream frame.

The second type of branching frequently used is called <u>remedial</u> branching because it provides a full sequence of remedial frames when errors are made.

	The	two	kinds	o£	branching	programs	frequently	used	are	:
and			•							
	• • •				• (• •		• (• •	
	• • •				•	• •		• •	• •	

14. Answer: normal and remedial (in either order).

In normal branching, each error leads to <u>one</u> additional frame from which the learner returns to the previous mainstream item. In remedial branching, an error leads to <u>two or more</u> additional frames and from there either back to the previous mainstream frame or on to the next one. Whay type of branching sequence is shown below?

15. Answer: remedial.

- 16. Which type of sequence is described by each statement below?
 - a) Each learner proceeds through the same sequence of frames.
 - b) Each incorrect response leads to one frame containing an additional explanation, and then directs the learner back to the original mainstream frame.
 - c) An incorrect response directs the:learner to two or more frames intended to remedy some deficiency of the learner.

•••

- 17. Name each type of sequence diagrammed below.

a)
$$\frac{\sqrt{1a}}{\sqrt{1b}}$$
 $\frac{\sqrt{2b}}{\sqrt{2c}}$ $\frac{\sqrt{3a}}{\sqrt{3b}}$ $\frac{\sqrt{3b}}{\sqrt{3b}}$ $\frac{\sqrt{3b}$

b)
$$\sqrt{1/}$$
 ----> $\sqrt{2/}$ ----> $\sqrt{3/}$ ---->

17. Answer: a) normal branching; b) linear; c) remedial branching

18. From the previous material you can see that the remedial branching sequence provides for instruction which more closely approximates a tutorial situation than the other sequences. This is so because with it one can tailor the instruction to the needs of learners with various degrees of proficiency or deficiency.

While the normal branching sequence can, to some extent, meet the requirements of particular learners, it must remedy any deficiency in one additional frame. Some <u>linear</u> programs also attempt to make adjustments for learners who require more practice or have already demonstrated mastery of the skill to be learned. This is done by directing the learner to either go <u>back and repeat</u> several frames, or to <u>jump ahead and skip</u> several frames.

A learner in a linear program who makes several errors may be directed to go back and _____ several frames.

•••

18. Answer: repeat

19. If a learner in a linear program is directed to go back and repeat several frames, it is called a wash back. If he is directed to move ahead and skip several frames it is called wash ahead. Which diagram below shows a wash back?

a)
$$\sqrt{1/}$$
 ----> $\sqrt{2/}$ ----> $\sqrt{5/}$

b)
$$\sqrt{1/} \longrightarrow \sqrt{2/} \longrightarrow \sqrt{3/} \longrightarrow \sqrt{4/} \longrightarrow \sqrt{5/}$$

19. Answer: a) In diagram a) one might wash back and repeat frames

2 and 3, while in diagram b) the learner might be directed
to skip frame 4, or wash ahead.

20.	The two techniques for adjusting linear programs to learners who need								
	muce practice or who have already mastered the task are called:								
	and								
	•••								
	20. Answer: wash back and wash ahead.								

21.	Complete the statements below.								
	a) Branching programs are usually either or								
	b) Linear programs may use adjustive techniques called or								
	•								
	21. Answer: a) normal or remedial (either order)								
	b) wash back or wash ahead (either order)								

22.	Suppose the answer to the preceding frame had read, "if your response								
	was incorrect, go back to frame 18 and repeat frames 18 to 21." What would								
	this technique be called?								
	•••								
	22. Answer: wash back.								

ERIC

23.	Beside	each	diagram	below	mark	the	letter	of	the	type	of	sequence:
-----	--------	------	---------	-------	------	-----	--------	----	-----	------	----	-----------

- a) linear wash back.
- b) linear wash ahead.
- c) normal branching.

ERIC Product residents (III:

d) remedial branching.

1)
$$1\overline{1}$$
 $1\overline{1}$ $1\overline{2}$ $1\overline{2}$ $1\overline{3}$ 1

23. Answer: 1) c; 2) b; 3)@; 4) a

24. Beside each diagram below, write the name of the type of sequence:

a)
$$\sqrt{1/}$$
 -----> $\sqrt{2/}$ -----> $\sqrt{4/}$

b)
$$\frac{\sqrt{1a} \rightarrow \sqrt{1b} \rightarrow \sqrt{1c}}{\sqrt{2}} \rightarrow \frac{\sqrt{2a} \rightarrow \sqrt{2b}}{\sqrt{2}}$$

c)
$$\frac{\sqrt{1a}/\sqrt{1c}/\sqrt{2b}/\sqrt{2c}/\sqrt{2c}}{\sqrt{2}/\sqrt{2c}$$

a) linear wash back

24. Answer:

25.

26.

ERIC Fourland by ERIC

b) remedial branching
c) normal branching
d) linear wash ahead.

Now that you can identify and name the type of sequence when shown a
diagram, we shall turn our attention to some of the characteristics of the
frames of a sequence.
A typical program frame consists of the following:
1) Some information and a question about it, called the stimulus.
2) An answer to be given by the learner, called the response.
3) The correct answer, called confirmation or feedback.
Another name for the learner's answer is
•••
•••
25. Answer: response.

The response is usually called for after some new material has been
presented. The response, thus, comes near the end of the frame. When a
frame asks the learner to write out an answer, the answer is called a con-
structed response. When the learner is to choose from among several alter
native answers provided, his answer is called a selected response. What
kind of response will you make to this frame?
a) constructed response
b) selected response

26. Answer: b) a selected response.

27. Throughout this program certain words have been emphasized by the use of underlining. Underlining is one technique a programmer uses to prompt the learner to make the <u>correct</u> response. For constructed responses the number and length of blanks provide prompts for the correct <u>response</u>.

Prompts are used to help the learner make the _____ response.

•••

27. Answer: correct

28. Another name for a prompt is "cur." There are many ways for a program writer to cue, or prompt, a correct response.

In Frame 26 what technique was used to cue (prompt) a selected response?

a) underlining; b) the number of blanks to be filled in.

•••

28. Answer: <u>a.</u> You should have selected <u>a,</u> underlining. The number and length of blanks to be filled in, choice <u>b,</u> is related to constructed responses, not selected responses.

29. Prompting is a helpful device when a learner is in the process of acquiring a new skill. However, if the learner is eventually to make the correct response in the absence of prompts, the program should gradually withdraw the use of prompts. The gradual withdrawal of prompts is called fading.

Where would one expect to find more frequent prompts?

	a) at the end of the program; b) at the beginning of the program
	29. Answer: b

30.	When deciding whether to use a prompt or not, one needs to be able to
	distinguish between terminal frames and intermediate frames. A terminal
	frame is one that calls for the learner to demonstrate his mastery of one of
	the program objectives. Prompts should not be used in terminal frames. An
	intermediate frame is a part of the instruction and practice and assumes tha
	the learner has not yet mestered the objective. Prompts are used, but grad-
	ually faded, during intermediate frames.
	a) Prompts should not be used in frames.
	b) Prompts should gradually be faded during frames.
	•••
	30. Answer: a) terminal
	b) intermediate

31.	In a terminal frame, would you expect to find a cue (or prompt)?
) L .	
	•••
	31. Answer: No

32.	In the terminal frames of a program the learner is expected to make the

desired response with little or no help. Therefore, a good program writer

	gradually	all prompts	•		
	•••		• • •	•••	
	•••		• • •	• • •	
	32. Answ	er: withdraws,	fades, removes,	etc.	

33.	Prompts a	re classified a	s either formal	prompts or thematic prompts.	
	A formal promp	t indicates the	form of the res	ponse, for example the number	r
	of words, the	length of words	, etc. A themat	ic prompt suggests the theme	•
	or meaning of	the response; f	or example, it m	ay draw an analogy with some	
	previously-lea	rned or -known	topic.		
	Which of	the following e	xemplifies a the	matic prompt?	
	a) The primary	colors are	,, an	d•	
	b) Just as smo	ke does from a	chimney, so hot	air also	
	•••		•••	•••	
	33. Answ	er: b. Obviou	sly this prompt,	will be effective only if the	e
		learner kn	ows that smoke <u>r</u>	ises from a chimney.	

34.	Let's try	another one.	What kind of a p	rompt is given below?	
	The names of t	he Great Lakes	are:,	,	
	, and	•			
	a) formal; b)	thematic			
	•••		•••	• • •	
	• • •		•••	• • •	
	34. Answ	er: a) formal			

ERIC AFUILTEAST Provided by ERIC

35.	In the space	s below write the names	of the two types of prompts.	ı	
	and				
	•••	• • •	• • •		
	35. Answer:	formal and thematic (:	n either order)		

36.	Phrases such	as "similar to golf,"	or "like logic statements," o	r "as	
	in literature" re	fer to meaming and are,	therefore, examples of	_ prompts	
	• • •	• • •	• • •		
	36. Answer:	thematic	•••		
	50. Answer:				

37.	Remember, re	sponses may be heavily	prompted in intermediate fram	ies ,	
	especially in the	beginning, or not prom	oted, as in terminal frames.	Is	
	the following fra	me more likely to be an	intermediate or a terminal i	rame?	
	What is/are	the primary color(s)?			
	•••	• • •	• • •		
	J7. Allswel		on provides the minimum words		
		sary to elicit the re	sponse. Fruthermore, it does	not	
		suggest whether the a	nswer is singular or plural.		

38.	Beside each	statement below write the	ne name of the type of prompt	used.	
	a) The colors of the American flag are,, &				
	b) The ty	pe of government in New	Zealand, like that of the Un	nited	
	States, is	•			
	• • •	• • •			
	• • •	• • •	• • •		

ERIC AND STREET

	38. Answer: a) formal; b) thematic

39.	Any particular frame could contain both a formal and a thematic prompt,
	for example:
	Like the American flag, the French flag is composed of three colors:,
	, and
	a) What is the thematic prompt?
	b) What is the formal prompt?
	•••
	•••
	39. Answer: a)"Like the Americar flag"
	b) The number of blanks (or spaces and commas)

40.	Responses to a given frame may also be prompted by information received
	in previous frames. But whether the prompt is in the current frame or a
	previous frame, it will still be either,, or a combination of
	the two.
	•••
	•••
	40. Answer: formal, thematic (in either order)

41.	Write a definition of a thematic prompt.
	•••
	41. Answer: Any words or cues which suggest the theme or meaning of the
	response: (Or any answer which means the same as this one)

ERIC Full Text Provided by ERIC

42.	write a definition of a formal prompts.
	•••
	42. Answer: Any information which indicates the form of the response,
	either number of words, length of words, or the like.
	(or any answer which means the same as this one)

43.	While prompting is a valuable characteristic of early instructional
	frames, there are two common mistakes which are frequently made by beginners
	One of these errors is overprompting. Overprompting occurs when the prompt
	contains so much information that the likelihood of any incorrect responses
	is completely removed.
	Here is an example of overprompting. Suppose the desired correct response i
	the word "apple," and the alternatives provided were "apple," "pear," and
	"banana."
	An has seeds.
	Correct grammar alone eliminates all choices except the correct one.
	Which form below would correct that mistake?
	a) a
	b) an
	c) a/an
	•••
	43. Answer: c)

44.	The other pitfall of the beginning frame writer is called the copying
	frame. While the copying frame can occur in many forms, it always means
	that the learner merely has to copy a key word or phrase and need not read
	the entire frame. This error is compounded when several successive frames
	all call for the same response.

Here is an example of a copying frame:						
"Roger Maris hit 61 homeruns	in one season. Who	hit 61 homeruns in one				
season?						
Now name the two common	errors of beginning	frame writers.				
a)						
ь)	_					
•••	•••	• • •				
•••	• • •	•••				
44. Answer: a) overpro	mpting; b) copying	frames.				

Now let's review some of the material you have just covered. Read the sample frame below.

A milligram is:

- a) 100 times as large as a gram. (turn to p. 27)
- b) 1/10 times as large as a gram. (turn to p. 21)
- c) 1/100 times as large as a gram. (turn to p. 28)
- d) 1/1000 times as large as a gram. (turn to p. 26)

In what type of a program would this frame be found?

• • •	• • •	• • •
• • •	• • •	• • •

45. Answer: branching. Note that each answer in a branching frame always includes directions to the learner's next frame.

46.	In branching frames the correct response should not consistently be the					
	answer associated with the highest or lowest page number. Rather, the posi-					
	tion of the correct response and page position should be scrambled. The					
	relative page position and correct response position should be varied to					
	avoid the response.					
	•••					
	•••					
	46. Answer: prompting, or overprompting. (If the correct answer is					
	always associated with the highest page number, one would					
	not need to read the frame at all.)					

47.	Suppose you had just written the response "blue" to a frame numbered					
	15. On the next frame, 16, you find the statement, "If you answered blue you					
	are correct; skip ahead to frame 21. If you made any other response, continue					
	with frame 16."					
	What type of sequencing is illustrated by this statement?					
	a) remedial branching					
	b) linear wash back					
	c) normal branching					
	d) linear wash ahead					
	•••					
	•••					
	47. Answer: d					

48.	Pretend you are working through a program in which your selected response					

	has directed you from frame 120 to 1	20a. From 120a you are directed	to 120b,			
	then to 120c, 120d and 120e. After t	working frame 120e, you are direc	ted to			
	frame 121. What type of program sequence is this?					
	•••	• • •				
	48. Answer: remedial branching					

49.	. Complete the following sentences	s:				
	a) Responses made by choosing from a	mong alternatives are called				
	responses.					
	b) Responses made by writing out oné	's own answer are called				
	responses.					
	•••	• • •				
	49. Answer: a) selected; b) c					

50.	. If all the incorrect alternative	e responses can be eliminated by	the cue,			
	the writer has made the error of	. When the learner can m	erely			
	write a key word or phrase for the a	nswer without reading the entire				
	the faulty frame is called a/an	<u></u>				
		(b)				
	• • • • • • • • • • •	• • •				
	50. Answer: a) overprompting;	b) copying frame				
	****	***				
	STOP HERE IF YOU CANNOT CONTINUE WIT	H THE PROGRAM FOR AT LEAST ANOTH	ER 20			
	MINUTES WITHOUT INTERRUPTION. If yo	u stop here, begin with frame 45	when			

you resume work. If you are continuing, proceed to frame 51.

51. Writing program frames looks like a simple task, but don't be deceived into taking it lightly. Frames are usually very short, but a long succession of short frames can become boring to a learner. Varying the length helps overcome boredom.

The content of each frame must help the learner progress toward achieving the program objectives, and should fit logically into the sequence of frames.

Frames which do not help the learner acquire the program objectives should be _____.

51. Answer: eliminated, removed, rewritten, etc.

In program writing, as in all instruction, there are a number of strategies one may employ to assist the learner in acquiring the objectives. However, in program writing the commitment to a particular strategy is more
apparent since all the instruction is in a visible format.

One general strategy is to give the learner a <u>rule</u>, a complete <u>example</u>, and then to follow this with an incomplete example which the learner is to complete. When this strategy is employed, the complete example probably serves as a thematic _____ for the correct response.

52. Answer: prompt.

This name is derived from <u>rule</u> and <u>eg</u> (example). It should be apparent that

the procedure of going from the general (rule) to the specific (example) is also associated with the concept of deductive reasoning. Which sequence below illustrates a Ruleg strategy?

- a) In 1/4, 4 is the denominator. In 2/3, 3 is the denominator. Define denominator.
- b) A denominator is the lower numeral in a fraction. In 2/5, 5 is the denominator. What is the denominator in 3/4?

•••

53. Answer: b); the rule is followed by a complete example and then an incomplete example.

In the Ruleg strategy, prompting is gradually reduced as the learner acquires greater proficiency with the task. Even though the rule might not be given more than once, it will, hopefully, still function as a prompt for the correct response.

Since Ruleg is patterned after deductive reasoning, you might well expect the opposite, Egrul, to be patterned after _____ reasoning.

•••

54. Answer: inductive

55. Egrul is another general instructional strategy. Here, one would provide a number of examples from which the learner is to induce the rule.

Usually the <u>deductive</u> strategy (Ruleg) requires less instructional time for the learner to master the objective. If time is not important, however,

inductive strategy (Egrul) may under certain conditions produce longer retention. (Actually, it is not clear whether the greater retention is due to the Egrul strategy or the increased period of instructional time.)

	Delus Strategy of the	e rucreased beriod of	Listiditional time.				
	Learner mastery	of a program object:	lve will usually take less instruc-				
	tional time if the	strategy is	employed.				
	•••	•••	, • • •				
	55. Answer: de	eductive or Ruleg					

56.	Complete the fol	llowing statements:					
	a) The Egrul system i	involves	reasoning.				
	b) The Ruleg system i	involves	reasoning.				
	•••	• • •	•••				
	56. Answer: a)	inductive. Example	es are used to induce rules.				
	b)	deductive. Rules	are given, from which examples are				
	de	educed.					

57.	Read the sample	frame below and then	n decide whether the Ruleg or Egrul	•			
	strategy was employed.						
	When multiplying any decimal number by 10, simply move the decimal point						
	in the multiplicand one place to the right.						
	If you multiply 3.71 by 10 the result would be 37.1.						
	What is 9.28 multiplied by 10?						
	The sample frame	e employed the	strategy.				
	•••	• • •	•••				
		-					

	57. Answer: A	duleg	

58.	Consider the fo	llowing sample program fi	came
	3/4 is a proper	fraction, as are 1/8; 2,	/5; 5/6; and 1/3. However,
	5/4 is not a proper	fraction, nor are these:	9/8, 6/5, 10/6, 5/3. Now
	see if you can defin	e a proper fraction.	
	Which programmi	ng strategy was employed	? a) Ruleg; b) Egrul
	• • •	• • •	• • •
	· · ·	• • • • • • • • • • • • • • • • • • •	• • •
	58. Answer: b		

59.	Now complete the	ne two statements below.	
	1) The Ruleg strates	gy is to first give the lo	earner, followed
	(b)		· :
	2) The Egrul strate	gy is to give the learner	(c) from which he is to
	induce		• •
	c • •	• • •	• • •
	59. Answer:	l) (a) the rule; (b) an e	xample (or examples)
	:	2) (c) examples; (d) the	rule

60.	Beside each in	itial statement below from	m a program frame, mark whether
	Ruleg or Egrul stra	tegy is being employed.	
	a) To squar	re a number is to multiply	y that number by itself.

b)5	squared is	s 5	•	5,	or 25.	
• • •					• • •	• • •
• • •					• • •	• • •

60. Answer: a) Ruleg; b) Egrul

Ruleg and Egrul strategies determine the manner in which the <u>instructiond</u> material is presented. Other strategies relate to the <u>type of response</u> the learner is to make in a given frame. You have already learned that responses can be either constructed or selected. Both constructed and selected responses require the learner to make or write out an answer that is visible. Visisble, or observable, responses are called <u>overt</u> responses.

If a learner writes the rule for squaring numbers, he is making a/an response.

•••

61. Answer: overt, visible, or observable. (In this case the written answer would also be a constructed response)

62. Covert responses are not visible to anyone. Examples of covert responses are listening, looking, thinking, silent reading, mentally selecting or constructing an answer, etc.

While there is no way of knowing whether someone else is making a covert response, we usually infer that one has been engaged in covert responding when he makes an overt response. We infer that learners engage in some private, mental response before making a visible overt response.

In this program, each frame has asked for a constructed or selected

	response.	Since these are	visible respon	nses, they may be called
	responses	•		
	• • •		• • •	• • •
	62.	Answer: overt		

63.	If a	driver looked at	the traffic co	onditions and thought he had better
	reduce hi	s speed, he would	be making a/an	response.
	• • •		• • •	• • •
		Answer: covert.		thinking are <u>not observable</u> responses
		mbwer. coaste.	******	chiliking are not observable responses
64.	If a	driver depressed	the brake peda	al in his car, what kind of response
	has he ma	de?		
	a) overt			
	b) covert			
	• • •		• • •	• • •
	64.	Answer: overt.	One may observ	ve the response of depressing a
		brake p		ve end response or depressing a
		Diane p	*****	
65.	Mark	overt or covert 1	heside each lea	arner response given below.
		The learner decid		_
				in the answer blank.
				was the correct answer.
	• • •		•••	• • •
	• • •		• • •	• • •

ERIC.

- 65. Answer: a) covert. Deciding is a private, mental process.
 - b) overt. Writing is an observable response.
 - c) covert. Reading is not directly observable; it is inferred from eye position and movement.

of insuring that the learner has read the frame. Suppose a frame presented some instructional material and then directed the learner to the next frame. While some learners will make the covert responses of reading and thinking about the material, others might merely read the direction to proceed to the next frame. Reading the direction is, of course, a covert response, but it is not made in relation to the important p to f the frame, the instructional content.

Proceed to frame 67.

The preceding frame illustrated a frame which did not call for an overt response. Hopefully, you read the material anyway and are able to answer the following question.

To which aspect of a frame should the question and response be directed?

- a) The strategy for presenting material.
- b) The instructional content.
- c) The directions and format of a frame.

•••

67. Answer: b. (If the response is not related to the instructional

content, it is irrelevant and merely detracts from the program)

Learning is facilitated by having the learner respond during the instructional phase. While it is not absolutely clear whether overt responses are superior to covert responses in this regard, most program writers "play it safe" by requiring overt responses. Also, overt responses help the writer to improve his program because he can examine the frequency and types of errors made by learners.

In copying frames and cases of overprompting the learner might respond courtly even though the instructional material did not elicit a/an _____ response.

• • •	• • •	• • •
•••	• • •	• • •

68. Answer: covert

- 69. Complet the statements below:
 - a) When mentally constructing or selecting an answer, one is making a/an response.
 - b) When writing out one's constructed or selected answer, one is making a/an response.

• • •	• • •	• • •
• • •	• • •	• • •

69. Answer: a) covert; b) overt

70. Every appropriate frame should elicit some type of Learner response to :
the instructional content which helps him progress toward the program objec-

tives. Regardless	of whether the response is	overt or covert it must be	
content related. Which requested response below is related to the objectives			
of this program?			
a) The total number of frames in this program is			
b) When incorrect responses lead one to a sequence of two or more additional			
frames, the sequence is called			
	• • •	• • •	
• • •	•••		
70. Answer:	b) the objectives of this	program do <u>not</u> include counting	
	frames. However, they do	include the ability to name and	
identify the "remedial branching" sequence.			

In the previous frame you were told that the instructional material			
should elicit a response which is appropriate to the objectives of the pro-			
gram. That part of the frame which elicits the response is called a stimulus			
because it stimulates, or controls, the response.			
If a driver is stopped for a red traffic light, what stimulus would			
cause him to procee	ed?		
•••	• • •	•••	
• • •	• • •	> • •	
71. Answer: a green light (or any equivalent answer).			

Suppose a driv	ver saw a pedestrian in a c	ro sswalk and stopped his car.	
a) The sight of the pedestrian was a/an			
b) Stopping the car was the			
• • •	•••	• • •	
• • •	• • •	• • •	

ERIC Full Text Provided by ERIC

71.

72.

72. Answer: a) stimulus; b) response

ERIC Full text Provided by ERIC

73.	Most learning invol	lves bringing some al	ready existing response unde	er
	the control of a new sti	imulus. For example,	most six-year old children	can
	say the word "red," and	when asked the color	of a red object will respon	nd
	"red." However, in lean	rning to read the wor	d "red" one must make the re	esponse
	to the printed stimulus	RED. Thus the exist	ing response (saying "red")	must
	also come to be control	led by a new stimulus	(a printed word). This pro	ocess
	is called transfer of st	cimulus control.		
	In the above example	le, is the child lear	ning a new response?	
	• • •	• • •	• • •	
	73. Answer: no. l	ne already could say	"rad "	
	75. Allower. Ho, i	******	red.	
74.	Verv few new respon		chool; rather, existing res	ponses
	-		uli. This process is calle	
			•	
	•••••••••••••••••••••••••••••••••••••••	# • •	• • •	
	•••	• • •	•••	
	74. Answer: trans	sfer of stimulus cont	crol.	
,		********		
75.	Unless some seriou	s disability exists,	any first grader can say th	e word
	"four." If a programme	r wishes a first grad	ler to say "four" in respons	e t o
	"2 + 2 =," he is attemp	ting to transfer	•	
	• • •	•••	•••	
	• • •	• • •	• • •	

75. Answer: stimulus control

Again, suppose a young child could answer "red" when asked the color of his toy firetruck, but was confused when asked the color of other red objects. His mother, a good instructional manager, transferred stimulus control of his response by showing him other red objects, asking him to say "red," and praising him when he did so. When the child could respond "red" to a variety of red objects which differed in shape and size, stimulus generalization had occurred.

Stimulus generalization exists when the learner can make the same response to many examples of the stimulus. In the above example, the same response, "red," was made to a variety of red stimuli.

Because you can respond "triangle" to any three-sided figure, regardless of its size or position, _____ has taken place.

•••

76. Answer: stimulus generalization

77. It should be apparent that stimulus generalization is a very important part of learning. Without it we would, for instance, have to give a different name or label to each example. The very notion of a "concept" is built around stimulus generalization. One has acquired a concept when he can give the same response to any example of that concept. Thus one has formed the concept "red" when he can correctly identify and label red objects even though they vary in shape, size, position, density, etc.

Stimulus generalization is accomplished by the process called:

77. Answer: transfer of stimulus control.

78.	Stimulus	generalization	exists when	a learner	correctly	makes	the
	(a) resp	onse to several	different _	(p)			
	• • •		• • •		• • •		
	• • •		• • •		• • •		
		_	_				

78. Answer: a) same, identical; b) stimuli, or examples

79. Stimulus generalization is only one side of the coin, however. If our young friend learning to generalize red was shown only red objects, he might well learn to say "red" when asked the color of any object, even if it were green or blue. Obviously we want him to say "red" to red objects only; that is, we want him to be able to discriminate red from other colors.

If he could pick out the <u>red</u> balloon when shown three balloons (red, green, and blue), we would say he could discriminate red. <u>Stimulus discrimination</u> exists when he only respons "red" to red objects.

Suppose the following sets of objects were to be used in teaching the concept "triangle." Which could be used to test stimulus discrimination?

a)

b)

•••

79. Answer: b)

80. In summary, stimulus generalization takes place when the learner makes

the same response to any stimulus illustrating the concept or rule. Stimulus discrimination exists when the learner restricts that response to appropriate stimulu, and/or can select the appropriate stimulus from several choices.

	Supp	ose a boy know	s that, in b	aseball, a	foul ball is a	"strike,"
and a	a bal	1 swung at and	missed is a	"strike."	This suggests	that stimulus
		_ exists.				
	• • •		• • •		• • •	
			• • •		• • •	

80. Answer: generalization

81. If a first grader has learned to respond "five" to: 5 + 0; 4 + 1; 3 + 2; 2 + 3; 1 + 4; and 0 + 5, but also responds "five" to 4 + 2 and 2 + 4, what essential part of learning is absent?

81. Answer: stimulus discrimination

82. Suppose a young child refers to all persons in a uniform as "policeman." He has learned to _____ but not to _____.

(a) (b)

•••

82. Answer: a) generalize; b) discriminate

83. Much of learning is a two-sided matter. On the one hand it involves stimulus generalization, and on the other, stimulus discrimination. Without the former we could not apply rules or have concepts. Without the latter we

would over generalize and make serious errors.

ERIC Fruit Text Provided by ERIC

	A two-year old	who calls every male "Da	ddy" is over
	• • •	• • •	• • •
	83. Answer: 8	eneralizing	

84.	Stimulus genera	lization is taught by ha	ving the learner make the same
	response to several	stimuli, all of which ar	e examples of a rule or concept
	On the other hand, s	timulus discrimination 1	earning involves making the de-
	sired response only	in the presence of a par	ticular stimulus, called the
	<u>Discriminative</u> <u>Stimu</u>	lus, or SD (pronounced "	ess dee"). For example, the S
	for the response "re	d" is any red object.	
	For the respons	e "triangle," any closed	, three-sided figure would be
	the		
	•••	• • •	• • •
	84. Answer: S	••• • (discriminative stimul	,,, ,,,
	04. titiswet. D	********	.us/
85.	Suppose a learn		entify adverbs when given a list
			not. Each adverb in the list
	_		esponse "adverb." Each non-
			onounced "ess delta"). The SA
	(distracting stimuli) should <u>not</u> elicit the	"adverb" response.
	a) If the learner re	sponds "adverb" to each	Sp in the list, he is demon-
	strating	•	
	b) If the learner do	es not respond "adverb"	to each SA in the list, he is
	demonstrating	•	
	• • •	• • •	• • •
		• • •	• • •

- 86. In the context of the above example, every adverb is a/an ____ for the response "adverb."

In the foregoing example, adjectives, nouns, verbs, and pronouns all would be considered _____'s.

86. Answer: a) SD; b) SA

87. Stimulus generalization learning requires only Sp's. Stimulus discrimination learning, however, requires the presence of both SA's and SP's.

Distractors must be present, and the learner who has learned stimulus discrimination does not make the same response to these distractors as he does to the SP's. Skill in discriminating is perfected by gradually introducing SA's which more and more closely approximate the SP. For example, in teaching stimulus discrimination of the color red, one might first use green and black as SA's, and near the end of the instruction use pink or violet as SA's, which are more similar to red than are green and black.

Which sequence of S^{Δ} 's should one use in teaching stimulus discrimination of circle?

a)

b)

ERIC C

•••

87. Answer: b) The s $^{A^{\dagger}}$ s gradually come closer to the shape of a circle, the S^{D} .

38.	You have had a pretty heavy dose of new terminology in the last lew						
	frames, so let's review a few terms here.						
	a) If one has learned to respond by using a salad fork on a variety of						
	appropriate occasions, he has learned						
	b) If he has learned not to use his salad fork on inappropriate occasions,						
	he has also learned						
	c) Each appropriate occasion for using the salad fork is a/an (abbreviate)						
	d) Each inappropriate occasion for using the salad fork is a/an						
	(abbreviate)						
	e) Finer discriminations are formed by gradually making distractors more						
	the discriminative stimulus.						
	•••						
	88. Answer: a) stimulus generalization; b) stimulus discrimination;						
	c) SD ; d) S^{Δ} ; e) like, similar to (or some equivalent						
	term)						

8 9.	Since stimulus generalization learning involves giving the same response						
	to a number of So's, program writers must be careful to avoid successive						
	frames each requiring the same response. When a series of frames elicits						
	the same response, a learner merely needs to copy his former answer on each						
	new frame This error was treated earlier and referred to as copying frames.						
	One means of avoiding copying frames is to change the required						
	of the learner on successive frames.						
	•••						
	•••						

89. Answer: response, answer.

90. Copying frames, while not as prevalent, are still possible in stimulus discrimination learning. If one were teaching stimulus discrimination of "even numbers," and always used the number 4 as the S^{D} , copying frames would result even though the distractors (S^{Δ} 's) were changed from frame to frame.

In the above example, how could the error be avoided?

•••

90. Answer: by using other even numbers as S^D's (or equivalent answer)

91. For a learner to attain stimulus discrimination, he must attend to the characteristics of SD's which make them examples. He must also learn to ignore other misleading characteristics which typify the SA's. A good programmer looks for SA's which are examples of common errors which learners make. Common errors are good distractors because they help the learner form finer discriminations.

The closer the S is to the SD, the harder it is to make the discrimination. To avoid making the task too hard, writers gradually introduce the more difficult discriminations.

An	examination	of	learner	errors	is	helpful in	finding	useful	

•••

91. Answer: distractors or SA's.

ERIC SATISALISMAN, of the CALIFFRATIVE VIL.

- 92. Normally, instruction proceeds from stimulus generalization to stimulus discrimination. Suppose one were teaching the concept of "democracy" to a class of junior high school students. The instruction might be sequenced as follows:
 - a) Define "democracy," i.e., give the rule for identifying instances of democracy. (This step would be omitted in the Egrul strategy, since students would later be asked to generate the rule themselves.)
 - b) Provide examples of democracy with the label (all 9's).
 - c) Ask students to label several examples of democracy (all 9's).
 - d) Present individual examples, some of which exemplify democracy, some of which do not. Students identify each example as \$\mathcal{P}\$ (democracy) or \$\mathcal{S}\$ (not democracy).
 - e) Present two examples simultaneously (one S^{A}), one S^{A}), and have students select the S^{A} .
 - f) Present three or more examples simultaneously (some SD's, some SA's) and have students select the SD's.
 - g) Repeat the previous step, but gradually introduce $S\Delta$'s which more closely resemble democracy, the S^p .

Which steps are related only to stimulus generalization?

•••

92. Answer: steps a,b, and c. Beginning with step d, SA's are introduced to facilitate stimulus discrimination.

The next four frames (93-96) are based on steps a) to g) of frame 92.

Ļ

93.	For which s	tep would it be most helpful	to have a list of common errors
	made by junior h	igh students in identifying	democracy?
	•••	• • •	•••
	93. Answer	: Step g, where finer discr	iminations are to be formed.

94.	Would an ex	cample of a monarchy be an SD	or an S ^Δ ?
	•••	•••	•••
	94. Answer	·••	•••
	J4. MISWEI	*****	
95.	The difficu	alty of the discrimination ta	sk was increased along two dimen-
	sions. One was	by using SA's which graduall	y came closer to examples of
	democracy. How	else was the difficulty incr	eased?
	•••	• • •	• • •
	95. Answei	: by increasing the <u>number</u>	of overnles presented at one
	73. Allower	time (any equivalent answ	
		*****	C1 /
96.	Since the i	instruction began with the de	finition or rule for identifying
		ocracy, the type of strategy	
	•••	• • •	• • •
	•••	• • •	• • •
	96. Answer	: Ruleg	
0.7	erri a u n	*****	
97.		•	tructionally sound, would seldom
			ne would introduce at least two
	related concepts	s at the deginning of the ins	tructional sequence (possibly

democracy and oligarchy, or others, in the above example). While the same order of instruction might be followed, it would take both concepts through the sequence, providing instruction on each concept at each step.

Proceed to frame 98.

Another aspect of program writing is concerned with the probability that a stimulus will continue to elicit the correct response in future situations. You may recall that very little school learning involves the acquisition of new responses. Rather, old responses are attached to new stimuli by the transfer of stimulus control. Suppose the learner makes the desired response to several Sp's (stimulus generalization) and does it in the presence of SA's (stimulus discrimination), how can we be confident that the new discriminative stimuli will continue to elicit the desired response? In other words, how can we accomplish transfer of stimulus control in such a way that the new stimulus has a high probability of continuing to elicit the response?

One of the tasks of a program writer is to make the transfer of stimulus control so complete that the new S's will to elicit the correct

control so complete that the new 9 's will _____ to elicit the correct response.

•••

98. Answer: continue

99. Another way of expressing this concept is to say a programmer must not only deal with response <u>acquisition</u>, but also with response <u>maintenance</u>.

Acquisition of stimulus generalization occurs the first time the learner makes the correct response to several S^{p1}s. Acquisition of stimulus discrimination

	occurs when the lear	mer does it in the prese	nce of Sa's as well.			
	A programmer wi	no attempts to strengthen	the association of the Sp with			
	the response, to in	sure future performance,	is concerned with response			
	• • •	• • •	• • •			
	99. Answer: 1	naintenance				

100.	Response maint	enance is accomplished by	providing the learner with man			
	opportunities for ma	aking the response to the	new stimuli. It is simply a			
	matter of giving the	e learner sufficient prac	tice. The practice should be			
	accompanied by the gradual fading (reduction) of prompts.					
	The more often the learner correctly makes the response to the new					
	stimuli, the stronger the of stimulus control.					
	• • •	• • •	• • •			
	100. Answer:	transfer	• • •			

101.	The powerof the	e SD to elicit the correc	t response is a function of the			
	number, or frequency of times, the learner correctly responds to the SD.					
	To an experienced driver, a red octagon is a Sp for a braking					
	response.					
	5 6 6	• • •	• • •			
	• • •	• • •	• • •			
	101. Answer:	strong, powerful, etc.				

102.	S " 's become st:	conger, more likely to el	icit the desired response, when			
	frequent practice is	s accompanied by the fadi	ng of			
		• • •	• • •			
	• • •	• • •	•••			

ERIC Full text Provided by ERIC

	102. Answer: Prompts.				

103.	When writing a program,	one should provide practi	ice immediately following		
	instruction. Practice should	also be provided in the	form of "review" frames		
	later in the sequence. These	practice, or review, fra	ames which appear later		
	help to insure response	,			
	• • •	• • •	•••		
	103. Answer: maintenan		•••		

104.	What is the name for a p	rogram sequence in which	each learner follows		
	the same instructional path and sees each frame?				
	a) Normal branching				
	b) Remedial branching				
	c) Linear branching				
	d) Ruleg				
	•••	•••	•••		
	104. Answer: c)	•••	•••		
	104. Allswer: C)				

105.	Frame 104 is a review fr	ame. Its purpose is to	facilitate		
	•••	•••	•••		
	105. Answer: response	maintenance			

Frame 104 contains both an SP and SA's. Therefore, it deals with main-

ERIC

106.

tenance of which type of learning?

	a) Stimulus generali	zation	
	b) Stimulus discrimi	ination	
	•••	•••	•••
	106. Answer:	b)	
		*****	•
107.	If frame 104 wa	s the <u>first</u> frame in which	ch the learner was to make the
	response "linear" to	the description given (the \$), it would not be related
	maintenance, but rat	ther response	
	•••	• • •	•••
	•••	• • •	• • •
	107. Answer:	acquisition.	

108.	Each time a lea	arner makes the correct re	esponse to an SD, the SD becomes
	•		
	• • •	• n •	•••
	108. Answer:		

109.	The stronger th	ne SP, the morei	t is that it will continue to
	elicit the desired	response.	
	•••	• • •	• • •
	•••	•••	•••
	109. Answer:	probable, likely, etc.	

110.	Study the diag	ram below.	
	<u>/1</u> /	> <u>/2/</u> > <u>/3/</u> -	> <u>/4/</u>

ERIC Full Text Provided by ERIC

	The diagram is anoth	er for the respon	se linear.			
	• • •	• • •	• • •			
		Sp (discriminative stimul	us)			

111.	Suppose frame 1	10 was followed by severa	1 frames, each of which des-			
	cribed linear progra	ms in a slightly differen	t fashion, but all elicited the			
	"linear response" wi	th no Sa's present.				
	These frames, o	ccurring at this point in	the program, would relate to			
	maintenance of	·				
	• • •	• • •	•••			
	•••	•••	• • •			
	111. Answer:	stimulus generalization ********				
112.	When two or more related concepts are defined in the first step of an					
	instructional sequence, one can be used as an SA for the other. This plan					
	makes it easier to r	each stimulus discriminat	cion.			
	In this program	, the definitions of line	ear and branching programs			
	occurred in the first two frames. Thus, for the correct response "branching",					
	a description of a l	pranching program was the	, while a description (a)			
	of a linear program	was the	(ω)			
		(6)				
	• • •	• • •	• • •			
	112. Answer:	a) S ^p ; b) 8 ^A				

113.	Discrimination	of the Ruleg strategy wor	uld be facilitated by pairing it			
	with the	 •				
	o • •	•••	• • •			
EDIC.	• • •	• • •	•••			
Full Text Provided by ERIC						

	113. Answer: Eg	rul strategy	

114.	Discrimination of	"normal branching" is enh	anced by pairing it with
	branching.		
	•••	• • •	• • •
	• • c	• • •	• • •
	114. Answer: re	medial	

115.	When teaching lin	ear wash ahead, one should	l also teach linear
	• • •	• • •	• • •
	• • •	• • •	• • •
	115. Answer: wa	sh back	

116.	Selected response	s and constructed response	es are closely related con-
	cepts and might well b	e taught together. This	is also true for the two other
	types of responses: a) observable responses, ca	alled responses and
	b) non-observable, or	mental responses, called	(a) responses.
		_	(b)
	• • •	• • •	• • •
	• • •	• • •	• • •
	116. Answer: a)	overt; b) covert	

117.	The two types of	prompts which were introdu	uced simultaneously are
	and	.•	
	• • •	• • •	• • •
	• • •	• • •	• • •
	117. Answer: fo	ormal, thematic (either or	der)

118.	The preceding review frames have, hopefully, strengthened the relation-
	ship between particular responses and certain controlling stimuli. The type
	of practice they provided, however, dealt only with the recall of termin-
	ology. Most teachers readily recognize the futility of this type of prac-
	tice.

If you had been asked to construct, in your own words, definitions for the terms, or to demonstrate stimulus discrimination with SA's that closely approximated the SD's, educators would agree that the practice had been far more valuable. This type of practice is identical, or nearly so, to a demonstration of the fact that the pupil has mastered the program objectives, for it asks him to perform the terminal behavior. Frames which ask the learner to perform the terminal behavior are called <u>criterion frames</u>.

Practice, or review frames, are more effective for response maintenance when they require the learner to perform a ______.

118. Answer: terminal behavior or program objective.

119. Criterion frames (test frames) provide checks on learner mastery for both the program writer and the student. The writer uses information from criterion frames to determine whether the program needs to be revised and improved. The student uses them to find out how well he is doing.

If a program writer wishes to use information from criterion frames for evaluating his program, the responses would have to be _____.

•••

119. Answer: overt (observable)

single stimulus and a single response, but an <u>ordered sequence</u> of tasks.

For example, assembling a radio, threading a projector, loading a camera, factoring equations, or computing square roots on a slide rule, all consist of a number of separate tasks which must be performed. Usually the sequence in which the separate tasks are performed is an essential part of the entire operation. Instruction which includes ordering (sequencing) of several tasks is called <u>chaining</u>.

Would chaining be involved in learning to make a tape recording of a speech?

120. Answer: yes; there are several responses to be made and the sequence is important.

When preparing instruction for a chaining task, the programmer first identifies each task in the chain, arranges them in the order in which they would be performed, and numbers them consecutively. Thus task "1" would be the one to be performed first, number 2 the second, etc.

Assume the diagram below represents the five tasks (links) in a 5-link chaining activity. In which order would they be performed? ____, ____,

1> 2 -	> 3> 4> 5	
• • •	• • •	• • •
• • •	• • •	

121. Answer: 1, 2, 3, 4, 5

122. The sequence of instruction, however, does not necessarily have to follow the same order. If the instruction for the diagrammed chain in frame 121 proceeded from 1 to 5, it would be called <u>forward chaining</u>. However, if instruction began with link 5 and followed a reverse order, 5 - 1, it would be called <u>backward chaining</u>.

122. Answer: 1, 2, 3, 4, 5. The order of performance is unchanged regardless of the instructional sequence.

involves 1) identifying printed musical notes, 2) placing the correct finger over the piano key represented by that note, and 3) properly striking the key.

Obviously the chain is far more complex than this, but suppose a piano teacher began the instruction by having the student play a brief melody with one hand after observing the teacher's example. Which type of instructional pattern would be illustrated?

•••

123. Answer: backward chaining

Until recently, almost all instruction in chaining tasks was by forward chaining. While the logical appeal of having instruction sequenced the same as the order of performance is strong, there may be serious drawbacks as well. Consider the case of a young person who would very much like to be

able to play the piano. His teacher devoted six months of instructional time
to the tasks of naming the notes on compositions, and finding the appropriate
key on a simulated keyboard. After six months, the learner could perform
these tasks very well, but had not yet struck a note on a piano.

In su	ich an extr	eme case the student's	is very likely to be 1	ost
or destroy	red.			
• • •		• • •	• • •	
• • •		• • •	•••	
124.	Answer:	motivation, interest, a	mbition, etc.	

Learr	ner interes	t can usually be mainta	ined or even heightened in c	hain-
ing activi	lties that	are long or complex, by	•	
• • •		• • •	• • •	

125. Answer: backward chaining

Many music teachers, and other teachers, attempt to make their instruction "the best of all possible worlds," by combining forward chaining with some terminal behavior. Our music teacher in the earlier example might have had the learner spend part of the time on tasks 1 and 2, and part of the time on actually playing simple pieces. The chaining, however, is still forward.

Lengthy forward chains, by them; elves, suffer from what kind of draw-back?

•••

126. Answer: They may destroy the learner's interest (or any equivalent statement).

* ****

125.

Given the following sequence of tasks, what number should the programmer assign to the task "setting the lens opening" if the instruction is to be by backward chaining?

"Open the back of the camera"

"Insert the film cartridge with red dot up"

"Close the camera"

"Obtain a light meter reading"

"Set the lens opening"

"Set the exposure time"

"Take the picture"

•••

127. Answer: 5. Numbers are assigned in order of performance, not instruction.

- 128. If instruction for the sequence in frame 127 were by backward chaining, the learner would first be given a loaded and "set" camera, and taught to expose the film (take a picture). The next step in the instruction would be to have him set exposure times when given a loaded camera and a light meter reading. What would be given the learner when teaching step (link) 2?
 - a) closed camera and film
 - b) camera and light meter
 - c) a film cartridge and an open camera
 - 128. Answer: c) learning to open the camera is the last instructional step.

129.	When learning	a chaining sequence (forwar	rd or backward) the learner		
	should repeat all l	learned links of the chain	each time a new link is		
	• • •	• • •	• • •		
	• • •	• • •	• • •		
	129. Answer:	added			

130.	This does not	mean that each time a lear	ner practices a new link he has		
	to perform all lear	to perform all learned links. However, on at least one occasion that new			
	link should get "ho	link should get "hooked up" to the chain by performing all learned links.			
	Suppose one is	memorizing five verses of	a poem he is to recite, and		
	begins by learning	begins by learning verse 5, then verse 4. He should now practice reciting			
	4 then 5 before learning verse 3.				
	In this example the order in which he is learning the verses is,				
	,,,				
	The order in which they will be performed is,,				
	***************************************		(b)		
	• • •	• • •	• • •		
	• • •	•••	• • o		
	130. Answer:	a) 5, 4, 3, 2, 1; b) 1,	2, 3, 4, 5		
		~** ** ***			
131.	Learning each link in a chain is subject to all the same rules and				
	guidelines as any other task.				
	If the ninth	link in a chain is to name	and identify the key of f sharp,	,	
	the instruction should still be concerned with stimulus and stimulus				
	∞ • •	• • •	• • •		
	• • •	• • •	• • •		

ERIC PROBLEM FINE

	131. Answer:	generalization, discr	cimination (either order	•)	

132.	In learning a	forward chaining seque	ence, what will the lear	ner do afte	
	mastering link 2?				
	a) learn link 3				
	b) learn link 1				
	c) practice links 1	2			
	d) practice links 2	1			
	•••	• • •	•••		
	132. Answer:	c			

133.	In a chaining	sequence the learner v	vill always practice the	links in a	
	(a) manner, while	the instruction may p	oroceed either(b)	or	
	•••	• • •	o • •		
	133. Answer:	a) forward; b) forward	d or backward (either o	order)	

134.	Response maint	enance is also very in	mportant in a chaining s	equence.	
	Not only must each separate link be maintained, but also the order of the				
	responses.				
	How would a programmer provide for maintenenace of the entire chain,				
	i.e., the performance order?				
	• • •	• • u	•••		
	• 6 •	• • •	• • •		

134. Answer: By providing opportunities for practicing the entire chain (or an equivalent answer incorporating the effects of practice) ***** Define copying frame. Answer: A copying frame is a frame where the responder need not 135. have acquired the desired behavior. He simply copies a word, phrase, or number with no internal (mediating) behavior. (Or any equivalent answer) ***** Define generalization. 136. Answer: Giving the same response to different stimuli. (Or any equivalent answer) ***** Define discrimination. 137. Answer: Discrimination is responding to a particular stimulus (9) when it is presented among other stimuli (8 's). (Or any equivalent answer) ***** Describe backward chaining.

ERIC .

135.

136.

137.

138.

138. Answer: Learning a chaining sequence by learning first the

last link of the chain when it will be performed. One
next learns the next to the last link and then the last,
etc., until finally the entire chain is learned. The
final performance is the same as those learning the chain
in a forward manner. (Or any equivalent answer)

139. Describe maintenance.

ERIC FULL DESCRIPTION OF THE PROPERTY OF THE P

139. Answer: Response maintenance is accomplished by providing the learner with many opportunities for making the response to the new stimuli. It is simply a matter of giving the learner sufficient practice. The practice should be accompanied by the gradual fading (reduction of prompts.
