Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

PCB - Definición

- Es el sustrato sobre el que se montarán e interconectarán componentes electrónicos de distintos tamaño y forma.
- Cuando se trata de más de dos capas se denominarán stack.
- Conocer el proceso de fabricación permite determinar puntos que podrían generar conflictos.

Tipos de PCB

- Simple Faz
- Doble Faz
 - Eliseo Brunelli
 - Cacho Sanchez
 - Citem Ruben Esteban
- Flexible

- Multicapa
 - 4 capas (Mayer BsAs)
 - 4 Capas (Eleprint BsAs)
 - 8 Capas (Microensamble)
 - 36 Capas (RayPCB China)

Representan el 10% del costo final de nuestro producto
Con lo cual un mal diseño echa a perder el 90% restante

PCB - FR2

- Está compuesto básicamente de papel impregnado con resina fenólica retardante de llama. (FR Flame Retardant).
- Si bien no existen reglas específicas, este material se utiliza generalmente en productos de producción masiva dado que presenta una buena relación entre sus propiedades físico/eléctricas y su precio.
- A la hora de ser elegido como el material base para un producto, es importante tener en cuenta su grado de absorción de humedad, resistencia de aislación y constante dieléctrica.

PCB - FR4

- El material FR4 está formado por varias hojas de Prepeg, el cual a su vez está constituido por capas tejidas de fibra de vidrio impregnadas con resina epoxi.
- ▶ El material de espesor standard (1,6mm) consta de 8 capas de Prepeg y una de cobre de 35 micrones (1onza/pie cuadrado).
- Las capas de Prepeg y el laminado de cobre se prensan bajo presión y temperatura controladas para conformar el material final que se utilizará en los procesos de fabricación.

PCB - Espesor del Cobre

Se determina en Onzas el espesor de cobre

PCB - Material Base FR2

PROPERTY	TEST METHODS IEC-249.1	TEST CONDITIONING	UNIT	REQUIRED VALUE	STANDARD VALUE
Surface resistance	2.2	C-96/40/90	MOhm	MINIMUM 1000	60000
Volume resistivity	2.3	C-96/40/90	MOhm x m	MINIMUM 500	4000
Dissipation factor	2.7	C-96/40/90	***	MAX 0.07	0.04
Dielectric constant	2.7	C-96/40/90	***	MAX 5.5	4.6
Bow	3.1	A	mm	d MAX 38	3
Twist	3.3	A	mm	d MAX 20	4
Peel strength	3.6.2	260°C/10s	N/mm	MIN 1.0	1.71
Blistering (Solder Float)	3.7.2	260°C	Sec.	MIN 10	35
Dimensional stability	3.11	E-0.5/150	mm/m	2.0	0.6
Flexural strength	4.1	A	N/cm²	MINIMUM 10000	12500
Flammability UL-94 (Vertical Burning Test)	4.3.4	A E-24/125	***	FV 0 or FV 1 VO	FV 0 94 VO
Water absorption	.4.4	E-24/50 + D-24/23	mg	MAX 60	35
Punching processability (Suitable Temperature)	* MTL-0043		°C	200	40
Comparative tracking index	IEC-112	***	V	***	250
Shear strength	DIN 7735	***	N/mm²		64
Approvals: Underwriters Laboratories I	nc. File nr. E 90646				
Note: Test panel thickness is 1,6 mm/1	oz sinale side				

^{*} MTL - 0043 : internal test method based on DIN rules

Designation of Conditioning:

Number code:

1st number: Duration of conditioning in hours 2nd number: Conditioning temperature in centigrade 3rd number: Relative humidity A: As received

C: Humidity conditioning

D: Immersion conditioning in distilled water

E: Temperature conditioning

PCB - Material Base FR4

		TEST METHODS MIL-S 13949	TEST CONDITIONING	UNIT	REQUIRED VALUE	STANDARD VALUE
Bow		3.7.2.1	A	%	MAXIMUM 1.5	0.40
Twist		3.7.2.1.	A	%	MAXIMUM 1.5	0.50
Peel strength after solder float	0.5 oz 1 oz 2 oz	3.7.4	288°C/10s	lb/in	>=6 >=8 >=11	8 10 11
Peel strength after elevated temperature	0.5 oz 1 oz 2 oz	3.7.4	E-2/125	lb/in	> = 4 > = 5 > = 6	5.5 7 6
Peel strength after exposure to plating solutions	0.5 oz 1 oz 2 oz	3.7.4	1.	lb/in	>= 4.5 >= 7 >= 9	8 10 11
Surface resistivity		3.7.5	C-96/35/90	MOhm	MINIMUM 10 E4	10 E7
Volume resistivity	11-1-3	3.7.5	C-96/35/90	MOhm x cm	MINIMUM 10 E6	10 E8
Water absorption		3.7.7	E-01/105 + D-24/23	96	MAX 0.35	0.15
Dielectric Breakdown paralle lamination (step by step)	Ito	3.7.8	D-48/50 + D-0.5/23	KV	>= 40	> 45
Dissipation factor		3.7.10	D-24/23		MAX 0.035	0.02
Dielectric constant		3.7.10	D-24/23		MAX 5.4	4.5
Flexural strength		3.7.12	A	lb/in²	MINIMUM 50000	60000
Arc Resistance		3.7.13	D-48/50 + D-0.5/23	sec	>= 60	80
Flammability UL-94 (Vertical Burning Test)		3.7.14	E-24/125	***	VO	94 VO
Approvals: Underwriters Labo Defense Logistics	oratories Inc. Fil Agency (MIL-S	e nr. E 90646 13949)		- E Vida	1950. 3	

PCB - Proceso de Fabricación

- Fabricación de 6 Capas FR4
 - Inicia el proceso con las capas Internas 3 y 4

Se aplica film fotosensible

Se aplica foto exposición

Se realiza el revelado del film

Se ataca el cobre. Luego se retira el film fotosensible

Test AOI. (Test Óptico Automático)

Stack UP - Capas 2 y 5

Taladrado y Preparación de holes

Foto exposición. Metalizado. AOI

Stack UP Capas 1 y 6

 Metalizado. Serigrafía Componentes. Test Eléctrico

- Para Realizar Test Eléctrico
 - Requiere que la placa cuente con los FIDUCIALES.
 - 3 o 4 puntos.
- Si están incluidos se puede obtener un test eléctrico sin costo.
- Aceptados en la norma IPC2221
- Ubicación en Lado Bottom
 - Esquina Inferior Izquierda

Test Eléctrico

Tips - Mounting Hole

- Para poder sujetar un PCB al gabinete se emplean tornillos.
- Una forma correcta seria utilizando un PAD y al metalizar el agujero tendremos una superficie con mayor resistencia mecánica.
 - Se pueden utilizar vías sobre la corona del pad.

Tips – Tipos de Vías

- En la imagen se detallan los tipos de vías
 - A Thru-Hole Vía pasante
 - B Blind Vía Vía ciega.
 - Inicia en Capa Externa y termina en una Interna
 - C Buried Vía Vía Enterrada
 - Inicia y termina en capas internas

Vías pasante - versus Microvia

Se presenta el circuito equivalente de ambas opciones

Ancho de Pista Recomendado

Ver normativa IPC-2221

Espesor Cobre	Corriente [A]	Ancho de Pista mm x A
1 OZ 35um	0 A - 3 A	0,5mm
	3 A - 5 A	0,7 mm
	>5 A	1 mm

Corriente [A]	Ancho de Pista mm
1 A	0,5mm
2 A	1,0 mm
3 A	2,1 mm
4 A	2,8 mm
5 A	3,5 mm
6 A	6mm

- Recordar que las dimensiones de los componentes vienen en pulgadas
 - 100 mils → 100 milésimas de pulgada → 0,1 pulgadas
 - 0,1 pulgadas → 2.54mm
- Verificar el snap grid antes de comenzar.
 - Grilla de dimensión fija donde encajan los componentes.
 - Recomendado 25 mills.
 - Permite pasar por el medio de dos pads
 - Usar valores múltiplos de 100, 50, 25, 20, 10, 5

- Si requiere una grilla mas pequeña.
 - Usar dicha grilla y volver a la anterior.
- Siempre se presenta la capa Top cuando se diseña un PCB.
- El espesor de las pistas debe ser el mayor posible.
 - Se deben conocer las limitaciones del fabricante.
 - Recordar las recomendaciones de la IPC 2221.

Tips Generales – PADS

- La dimensión de los pads
 - Depende del componente
 - Diámetro del Pad 1,8 veces mas grande que el diámetro de la perforación.
 - 0,5mm más grande.
 - VALOR importante con las VIAS
 - Permite la alineación Top-Bottom
 - Componentes varios → 60mil de diámetro
 - DIL → Forma ovalada → alto 60mil y 90/100 mil largo
 - PIN 1 debe ser distinto → Rectangular
 - Pads octogonales → Raro Uso.
 - Componentes SMD → Generalmente Ovaladas con el PIN1 Rectangular
 - Las pistas deben terminar en el centro de los PADS.

Tips Generales – VIAS

- Vías de Conexión
 - Permiten unir capas del PCB.
 - Se deben considerar las dimensiones mínimas de fabricación.
 - No se deben mezclar PADS con VIAS.

Tips Generales - Polígonos

Polígonos

- Elementos que permiten rellenar con cobre un área determinada.
- Se utilizan para colocar planos de tierra.
- Se colocan al final del diseño
- Pueden ser sólidos o tipo grilla

Plano tipo malla No recomendado

Cleareance

- Es la distancia que se debe dejar entre pads, pistas, polígonos.
- Verificar las capacidades del fabricante T
 de PCB.
- Un valor típico 15 mil.
- Para 220V debe haber una separación mínima de 315 mil entre pistas.
- Depende de la ubicación de las pistas, internas o externas.
- Depende de la altura con respecto al nivel del mar.

- Distribución de Componentes
 - Agrupar en bloques funcionales
 - Rutear las PISTAS criticas primero
 - Se pueden rutear los bloques en forma separada
 - · Realizar la interconexión de bloques.
 - Ejecutar el Design Rule Check
 - Es critico hacer este procedimiento
 - Efectuar la revisión del PCB por otra persona.

- Pasos de Diseño
 - Colocar todos los componentes antes de iniciar el ruteo para verificar que entran en la placa final.
 - Distribuya los componentes en bloques de operación.
 - Separar los bloques en analógicos y digitales, de potencia o señal
 - No se mezclan!!!
 - Colocar CI en la misma dirección
 - Capacitores polarizados en la misma posición
 - Conectores al borde de la placa

- Reglas Básicas de Ruteo
 - Tratar de tener pistas cortas.
 - Usar ángulos de 45 para las pistas.
 - Las pistas deben terminar en el centro del PAD.
 - El software puede interpretar que falta conexión eléctrica.
 - Pasar una pista entre dos pads debe ser algo muy NECESARIO.
 - Si necesita unir capas con pistas de alta corriente se deben emplear varias vías.
 - No dejar zonas de cobre sin conexión (dead copper)

- Tratar de tener pistas cortas.
- Si se usa doble faz sin agujero metalizado
 - Se pueden usar las pines para interconectar ambos lados.
 - No colocar vías debajo de los componentes.

An example of GOOD power routing (Left) and BAD power routing (Right)

An example of GOOD routing (Left) and BAD routing (Right)

- Verificaciones Adicionales
 - En uniones en T tratar de agregar conexión a 45°.
 - Verifique que la placa tiene orificios de montaje.
 - · Ver la distancia a cualquier componente.
- Controlar los diámetros de perforación.
 - Tratar de que sean todos iguales. Ajustar footprints
 - Menor número de dimensiones distintas producción mas rápida.
 - Chequear footprint con dimensiones reales de los componentes.
- Chequear la dimensión de la corona.
 - Mayor tamaño -> Mejor resistencia mecánica del pad.

- Dimensiones de componentes
 - Verifique aquellos que posean partes metálicas.
- Si se usan puentes, estandarizar el tamaño.
- Verificar las cotas máximas de corte.
- Conocer dimensión para panelizado.
 - Para ahorrar costos.
- Use pads de tipo teardrops
 - Aumenta la rigidez mecánica.

- Cuando se trata de PCB de una sola capa.
 - Indicar correctamente dicho punto al fabricante.
 - Poner un TEXTO que este en el lado bottom.
 - Chequear la correcta ubicación de los IC.

- Se recomienda SIEMPRE trabajar en base a un *Esquemático* para realizar el ruteo.
 - Correr REGLAS de Diseño → DRC
 - Sirven para detectar
 - Pistas cortadas.
 - Pistas en cortocircuito.
 - Componentes duplicados.

- Verificar la necesidad de PADS conectados directamente a planos metálicos.
 - Al soldar se pierde calor

Utilizar Termals Pads

• Al soldar se pierde calor. Precalentar la placa.

Tips Generales - Ubicación de VIAS

- NO colocar vías dentro o pegadas a un PAD
 - Según al norma IPC-7351

Tips Generales - Ubicación de VIAS

Alternativa Correcta

Silkscreen

- Serigrafía de componentes.
- Verificar que no queden partes de la capa sobre algún pads que requiera soldadura.
- Tratar de que queden todos los rótulos de componentes en la misma dirección.

Solder Mask

- Cubre toda la placa y deja expuestos los pads.
- La distancia entre pads y mascara se llama Solder Expansion.
- Pueden ser por Serigrafía o mediante impresión laser.
- Se puede poner sobre vias.

KeepOut

- Permite definir áreas en donde no se permiten ruteo.
- Permite definir el borde de la placa.

Alineación

 Se debe conocer el error que puede cometer el fabricante al alinear capas de la placa.

Netlist

 Archivo que incluye el listado de conexiones, componentes, designadores.

Rats Nets

- Son líneas que muestran las conexiones entre componentes.
- Al finalizar el ruteo no debiera existir ninguna línea de éstas.

Diseño Multicapa

- Puede aumentar la densidad de componentes.
- Es más costoso.
- Una capa será GROUND.
- Otra capa será POWER.
 - Capas internas. GROUND cerca de TOP.

Plano de Masa

- Usar el mayor plano de masa posible sin interrupciones.
- Usar la capa mas cercana a TOP en diseños multicapa.
- Tratar de implementar una topología estrella en los caminos de masa.

Capacitores de Desacople

- Utilizar en TODOS los circuitos lo mas cerca posibles de ellos.
 - Valor típico 100nF

Panelizado

- Para soldadura automatizada es mejor disponer de placas de mayor tamaño.
- Se colocan múltiples diseño dentro del panel.
- Las placas vienen pre cortadas.

Tips Generales – Soldadura

- Distribución de Componentes
 - Una correcta distribución permitiría disminuir los tiempos en el montaje de componentes automatizados.
 - Unificar valores de componentes.
- Dimensionado de Stencil
 - En el proceso automatizado la adición de estaño en pasta requiere un stencil con las dimensiones adecuadas para evitar el derrame de soldadura.

- Verificar Pin-Out de componentes
- Los componentes deben tener un único designador.
- Correcta asignación de footprints.
- Desacople en todos los pines de alimentación.
- Verificar que todos los CI estén conectados a algún tipo de alimentación.
- Verificar que todos los CI tengan conexión a GND.

- Las masas analógicas y digitales deben estar conectadas en un solo punto.
- Estudiar las corrientes máximas de las pistas.
- Constatar si los conectores son Macho o Hembra.
 - Error común DB9
- Verificar conexiones de cristales a los CI.
 - Pistas muy cortas.
- Ancho de pista NO menor a 8mil.
- Separación de pistas NO menor a 8 mil.

- Tamaños de vías y holes acorde a las capacidades del fabricante.
 - Recomendado 30mil y 15 mil.
- Dimensión de vías para alimentación
 - Tamaño recomendado 50mil y 28mil.
- Vías separadas de los pads.
- Cleareance entre planos y pistas
 - Recomendado 20mil.
- Pistas entrantes a los pads de menor tamaño.

- Verificar distribución de componentes por bloques.
- Verificar que los componentes no se pisen.
- Usar topología estrella en la alimentación.
- Verificar que los retornos de masa converjan en un punto.
- Verificar que la placa entre en el gabinete elegido.
 - Usar software CAD como apoyo.