

Week 1 – The Evolution of Computing Devices

Computer Architecture and Taxonomy

Agenda

- Introductions
- Module aims & overview
 - Module organisation
 - Module content
 - Essential and recommended reading
 - Assessment
- A brief history of Computing
- Computer Architecture and Taxonomy

Module Team

Lecturers

Hamid Hakimazari (Module Leader) h.hakimazari@uel.ac.uk

Aloysius Edoh edoh@uel.ac.uk

Module Team and TAs

Solomon Adrian Alexis
A.S.Alexis@uel.ac.uk

Seyed Ali Ghorashi S.A.Ghorashi@uel.ac.uk

What is the module about?

- The module aims to provide you:
 - with a basic understanding of computer architecture and the relationship between the hardware and software components of a computer system.
 - with an understanding of the fundamentals of computer networking.

Module Organisation

- Term 2 (Weeks 1 12) from 31st January 2022
 - Lectures = 1 hour a week (Pre-recorded lecture on Moodle)
 - Q&A session = 1 hour a week Q&A online session via Teams
 - Tutorials = weekly 2 hours Face to Face classes on Campus
 - (Please check your personal Timetable for details)
 - Tutorials starts in week 1
- A schedule of topics is outlined in the module study guide
- Please check your Moodle account regularly for slide handouts, tutorial and lab exercises and more information.

Module Content

Weeks 1 - 6	Weeks 7 - 12
The Evolution of Computing Devices	Network Fundamentals
Number Systems	Network Protocols and Models
The CPU and Memory Subsystem	Network Access
Input / Output Methods	Ethernet
Peripheral Devices	IPv4 Addressing
Operating Systems	Subnetting IP Networks

Assessment

- Based upon 2 time-constrained assessments (TCAs)
 - TCA1 (weighting 50%, 90 minutes) This will be based on lecture slides, tutorials and practical exercises presented in the first six weeks of Term 2.
 - Monday 21 March 2022
 - TCA2 (weighting 50%, 90 minutes) This will be based on lecture slides, tutorials and practical exercises presented in the second six weeks of Term 2.
 - Monday 6 June 2022
- The above TCAs are equally weighted
- You must achieve an overall module mark of 40%

Reading

Essential Reading

- Englander, I. S. (2013) The Architecture of Computer Hardware, Systems Software and Networking: An Information Technology Approach. 5th edn. Oxford: Wiley-Blackwell.
- Tomsho, G. (2016) Guide to Networking Essentials. 7th edn. Boston: Course Technology, Cengage Learning.

· Highly Recommended Reading

- Stallings, W. (2015) Computer Organisation and Architecture: Designing for Performance. 10th edn. London: Pearson Education
- Tanenbaum, A. and Wetherall, D.J. (2013) Computer Networks. 5th Edition, Pearson New International Edition

Quiz Time

- Q. Why do IT professionals need an understanding of computer architecture and networking? (Choose ALL that apply.)
- A. To help them understand system capabilities and limitations.
- B. To facilitate effective communication with other IT professionals and end users.
- C. To ensure system security and maximise system availability.
- D. To install, configure, maintain and upgrade computer systems.
- E. All of the above.

The Evolution of Computing Devices

- A brief history of computer systems
 - The contribution of John Neumann to the development of modern computer systems
- The Input-Process-Output Model
- Von Neumann Architecture

Computer Architecture and Networks

What is Computer System?

A system is a collection of components linked together and organized in such a way as to be recognizable as a **single Processing unit**.

A Computer is an electrical and electronic device, that is used for computation in order to achieve goals or solve problems based on sequence of instructions (i.e., programs)

A **computer** is electrical device that can be instructed to carry out sequences of arithmetic or logical operations automatically via **computer** programming

Basic Computer System:- Input-Process-Output Model (IPO) Architecture

[1]

Early History of Types of Computer Systems

- 1642: Blaise Pascal invents a calculating machine
- 1801: Joseph Marie Jacquard invents a loom that uses punch cards
- 1800's:
 - Charles Babbage attempts to build an analytical engine (mechanical computer)
 - Augusta Ada Byron develops many of the fundamental concepts of programming
 - George Boole invents Boolean logic

Pascalina/Arithmetique

1642
White the second state of the second se

Pioneering Futures Since 1898

Types of Modern Computer Development

- 1939: Atanasoff–Berry Computer (ABC) is built
 - First fully electronic digital computer. Used vacuum tubes.
 - create electrical signals by controlling movement of electrons in low pressure space

- 1937: Mark I is built (Aiken, Harvard University, IBM).
 - First electronic computer using relays.
 - Mechanical binary switches controlled by electrical currents

1935

University of East London

Pioneering Futures Since 1898

Types of Modern Computer Development

- 1943-46: Electronic Numerical Integrator And Computer (ENIAC) (Mauchly, Eckert, University of Pennsylvania)
 - First general purpose digital computer
 - 1945: Von Neumann architecture proposed
 - Still the standard for present day computers
 - 1947: Creation of transistor
 - (Bardeen, Shockley, Brattain, Bell Labs)
 - 1951: UNIVersal Automatic Computer (UNIVAC)
 - First commercially available computer

1950

Types of Modern Computer Development - VLSIC

- 1960: Invention of the integrated circuit (IC) Very Large Scale I C
 - Led to smaller, faster, more powerful computers and compact, inexpensive RAM – From Transistors and Diode to VLSIC
 - 1972: Design of the Intel 8008 microprocessor, predecessor to the x86 CPU family Intel Processors
 - 1981: Development of the first widely accepted PC by IBM – Personal Computers
 - 2019: IBM unveils its first commercial quantum computer, the IBM Q System One **Multi-core**

Pioneering Futures Since 1898

15

CPU Performance

Year	Processor / System	MIPS and Frequency
1951	UNIVAC 1	0.002 MIPS at 2.25 MHz
1971	Intel 4004	0.092 MIPS at 0.740 MHz
1978	Intel 8086	0.330 MIPS at 5.000 MHz
1985	Intel i386DX	2.15 MIPS at 16 MHz
1996	Intel Pentium Pro	541 MIPS at 200 MHz
2008	Intel Core i7 920 (4-core)	82,300 MIPS at 2.93 GHz
2017	AMD Ryzen 7 1800X	304,510 MIPS at 3.6 GHz

(https://en.wikipedia.org/wiki/Instructions_per_second)

Quiz Time

- Q. The performance of Apple's Bionic A12 chip
- A. lags behind the performance of the best desktop CPUs.
- B. roughly matches the performance of the best desktop CPUs.
- C. exceeds the performance of the best desktop CPUs.

(Choose ONE answer.)

(https://appleinsider.com/articles/18/10/05/apples-a12-bionic-comes-close-type-ktopcpu-performance-in-betchiarks)

Architecture Components of Modern Computers

Hardware

- Processes data by executing instructions
- Provides input and output

Software

Are instructions executed by the system

Data

Are fundamental representation of facts and observations

Communications

Are sharing data and processing among different systems

Hardware Components

Central Processing Unit (CPU)

- 1. The Arithmetic/Logic Unit (ALU) where arithmetic and Boolean logical calculations are performed.
- 2. The Control Unit (CU), which controls the processing of instructions and the movement of internal CPU data from one part of the CPU to another.
- 3. The Interface Unit, which moves program instructions and data between the CPU and other hardware components.
- Input/Output devices
- Storage Devices
- Peripherals
- Memory
 - Short-term storage for CPU calculations
 - Medium-term storage for CPU and Long-term storage as Peripheral

Typical Personal Computer System

Computer System – iPhone Components

Von Neumann Computer Architecture

Basic concepts of this architecture:

- 1. **Main memory** stores programs and data (the stored program concept)
- 2. An Arithmetic and Logic Unit (ALU) operates on binary data
- 3. A Control Unit (CU) interprets the instructions from memory and executes them
- 4. Input and output devices are managed by the Control Unit

Pioneering Futures Since 1898

CPU: Central Processing Unit and Memory

- ALU: arithmetic/logic unit
 - Performs arithmetic and Boolean logical calculations etc
- CU: control unit: Controls the processing of instructions
 - Controls movement of data within the CPU
- Interface unit
 - Moves instructions and data between the CPU and other hardware components
 - Bus: bundle of wires that carry signals and power between different components

RAM (Random Access Memory)

- primary storage, is a working storage or physical memory,
- Consists of bits, each of which hold a value of either 0 or 1
- (8 bits = 1 byte smallest addressable size)
 - 8 bits hold 256 different patterns
- Holds both instructions and data of a computer program (stored program concept)

VON NEUMANN ARCHITECTURE

Main Components of von Neumann Architecture - I/O; ALU; CPU; Main Memory

There are 3 major units in a computer tied together by buses:

- 1) Memory The unit that stores and retrieves instructions and data.
- 2) Processor: The unit houses two separate components:
- The control unit: Repeats the following 3 tasks repeatedly, Fetches an instruction from memory,
 Decodes the instruction, Executes the instruction
- The arithmetic/logic unit (ALU): Performs mathematical and logical operations.
- 3) Input/Output (I/O) Units: Handles communication with the outside world.

Pioneering Futures Since 1898

23

Von Neumann Model

Pioneering Futures Since 1898

Main Components of all modern Computer Systems

- No matter how complex or simple, all computer systems are made up of the following:
 - At least one CPU
 - Memory to hold programs and data
 - I/O devices
 - Long-term storage

A Typical Modern Personal Computer

Quiz Time

- Q. The function of the Control Unit (CU) within the CPU is to
- A. perform arithmetic and Boolean logic calculations.
- B. move instructions and data between the CPU and other hardware components.
- C. carry signals and power between different computer components.
- D. control the processing of instructions and the movement of data within the CPU.

(Choose ONE answer.)

Quiz Time

- Q. Regardless of the type of work to be performed, the function of a computer system is
- A. to entertain its users.
- B. to reduce the number of employees required by companies.
- C. to transform inputs into outputs.
- D. to increase company profits.

(Choose ONE answer.)

Learning Objectives

- On completion of this topic, you will be able to:
 - Explain the overall aims of this module
 - Explain why an understanding of computer architecture and networking is important to IT professionals
 - Identify some of the most important milestones in the development of computing devices
 - Explain the basic principles of the Von Neumann architecture
 - Identify the key characteristics that all computing devices share

Reading

- Essential reading
 - Englander, Chapter 1
 - Module study guide
- Recommended reading
 - Stallings, Chapters 1 and 2

