Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

14 de agosto de 2024

1/5

Agenda

1 Principio de Mínima Acción

Sección

Recapitulando

• Consideremos un sistema descrito por s coordenadas generalizadas $\{q_1, q_2, \ldots, q_s\}$ y sus s velocidades generalizadas $\{\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s\}$.

- Consideremos un sistema descrito por s coordenadas generalizadas $\{q_1, q_2, \ldots, q_s\}$ y sus s velocidades generalizadas $\{\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s\}$.
- Definimos una función \mathcal{L} de $\{q_j\}$, $\{\dot{q}_j\}$ y t, de la forma $\mathcal{L}(q_j,\dot{q}_j,t)\equiv T-V,\quad j=1,2,\ldots,s$, donde T y V son la energía cinética y la energía potencial del sistema, respectivamente.

- Consideremos un sistema descrito por s coordenadas generalizadas $\{q_1, q_2, \ldots, q_s\}$ y sus s velocidades generalizadas $\{\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s\}$.
- Definimos una función \mathcal{L} de $\{q_j\}$, $\{\dot{q}_j\}$ y t, de la forma $\mathcal{L}(q_j,\dot{q}_j,t)\equiv T-V,\quad j=1,2,\ldots,s$, donde T y V son la energía cinética y la energía potencial del sistema, respectivamente.
- El estado del sistema, en $t = t_1$ y $t = t_2$, está descrito por $t_1 : \{q_j(t_1)\}, \{\dot{q}_j(t_1)\}$ y $t_2 : \{q_j(t_2)\}, \{\dot{q}_j(t_2)\}$

- Consideremos un sistema descrito por s coordenadas generalizadas $\{q_1, q_2, \ldots, q_s\}$ y sus s velocidades generalizadas $\{\dot{q}_1, \dot{q}_2, \ldots, \dot{q}_s\}$.
- Definimos una función \mathcal{L} de $\{q_j\}$, $\{\dot{q}_j\}$ y t, de la forma $\mathcal{L}(q_j,\dot{q}_j,t)\equiv T-V,\quad j=1,2,\ldots,s$, donde T y V son la energía cinética y la energía potencial del sistema, respectivamente.
- El estado del sistema, en $t = t_1$ y $t = t_2$, está descrito por $t_1 : \{q_j(t_1)\}, \{\dot{q}_j(t_1)\}$ y $t_2 : \{q_j(t_2)\}, \{\dot{q}_j(t_2)\}$
- El Principio de mínima acción, implica que la evolución del sistema entre el estado en t_1 al t_2 es tal que el valor de la integral definida $S = \int_{t_1}^{t_2} \mathcal{L}\left(q_j, \dot{q}_j, t\right) \mathrm{d}t$, denominada la acción del sistema, sea mínima; es decir, $\delta S = 0$ (S es un extremo).

Título transparencia

Recapitulando

En presentación consideramos

