Sistemas Informáticos

UT2_1 – Sistemas operativos

César Fernández Zapico

cesarfz@educastur.org

Índice de contenido

- Sistemas operativos:
 - 1. Concepto de sistema operativo
 - 2. Componentes principales de un sistema operativo
 - 3. Tipos y evolución de los sistemas operativos
 - 4. Funciones del sistema operativo
 - 5. Gestores de arranque

Debate

¿Qué es un sistema operativo?

1. Concepto de sistema operativo

• Un sistema operativo es como...

Cerebro o Director de orquesta Da ordenes al HW

Coordina todas las operaciones pedidas optimizando resultados

Dependiente o Intermediario Recibe peticiones del usuario (final o programa) y las gestiona

1. Concepto de sistema operativo

Definiciones...

"Un sistema operativo es un programa cuyo objetivo es simplificar el manejo y la utilización de la computadora, haciéndolo seguro y eficiente" Jesús Carretero

El sistema operativo es como el director. El **responsable de coordinar todos los componentes individuales del computador**, de forma que operan juntos siguiendo un solo plan. El sistema operativo asigna recursos del computador a los diversos programas, sincroniza sus actividades y proporciona los mecanismos adecuados para que los programas se ejecuten en perfecta armonía. *Gary Nutt*

Un sistema operativo es un programa que controla la ejecución de los programas de aplicación y que actúa como interfaz entre las aplicaciones del usuario y el hardware de un computador. Puede considerarse que un sistema operativo tiene 3 objetivos: Comodidad, eficiencia y capacidad de evolución. William Stallings.

1. Concepto de sistema operativo

- Un sistema operativo es un conjunto de programas de control cuya tarea principal es administrar los recursos del sistema.
- También debe servir de interfaz entre el usuario y la máquina, teniendo dos objetivos fundamentales:
 - Seguridad. El sistema operativo debe actuar contra cualquier manipulación extraña, ya sea accidental o premeditada.
 - Abstracción. Se trata de ocultar lo más posible los detalles de bajo nivel.

2. Componentes principales de un SO

Componentes de un sistema operativo

2. Componentes principales de un SO

- El núcleo
- La API del núcleo
- El sistema de archivos
- El intérprete de comandos (Shell)

2.1. EL núcleo

- El núcleo o kernel es el componente del sistema operativo que sirve de interfaz entre el software y el hardware.
- Puede definirse como un programa que controla:
 - Los accesos al procesador y a la memoria.
 - Es responsable de los drivers más importantes.
 - Puede acceder directamente al hardware.

2.2. La API del núcleo

- La API (Application Programming Interface) o Interfaz de programación de aplicaciones es el conjunto de servicios que ofrece un sistema a las aplicaciones usuarias del mismo.
- Las aplicaciones invocan estos servicios a través de llamadas a procedimientos, y la llamada a uno de estos procedimientos recibe el nombre de llamada al sistema.

2.3. El sistema de archivos

- El sistema de archivos es el software que provee las funciones para operar con archivos y directorios almacenados en disco, proporcionando mecanismos de protección y seguridad.
- Es un componente del sistema operativo cuyas principales funciones son:
 - La asignación de espacio a los archivos.
 - La administración del espacio libre.
 - El acceso a los datos guardados
 - Sistemas de archivos web de Xataka

2.4. El intérprete de comandos (Shell)

 El intérprete de comandos (Shell) es el programa que se encarga de leer las órdenes interactivas que el usuario escribe en la terminal y lo convierte en instrucciones para el sistema operativo.

3. Tipos de sistemas operativos

- Según su funcionalidad:
 - Monousuario / Multiusuario
 - Monoprogramación o monotarea / Multiprogramación o multitarea
 - De tiempo real
 - Interactivos
 - Por lotes (batch)
 - De propósito general
 - De propósito específico
 - Para móviles (Android, iOS, Ubuntu Touch, etc.)

3. Tipos de sistemas operativos

- Según su estructura:
 - Sistemas operativos monolíticos
 - Funcionalidad en un único programa
 - Difícil modificación
 - Sistemas operativos estructurados
 - Por capas
 - Micronúcleos (Cliente/servidor)
 - Sistemas operativos Híbridos
 - Modular
 - Micronúcleo no puro
 - Sistemas operativos distribuidos
 - **Middleware** (Software para que varias aplicaciones se comuniquen entre sí)

Sistemas Informáticos-1ºDAW César F. Zapico

Época	Características del Sistema Operativo	HW/ SO/lenguajes
Años 40	Inexistente. Procesamiento en serie	Válvulas
Prehistoria		Arq. Von Neumann
		EDVAC
		ENIAC (1943)
		Ensamblador
Años 50	Carga y ejecución de programas	Transistores
1ª Generación	Procesamiento de trabajos por lotes (Batch)	
	Rutinas de E/S (manejadores de dispositivos)	IBSYS (IBM)
	Recuperación de errores	FMS (IBM)
	Lenguaje de control	
		FORTRAN, COBOL

COLOSUS fue usada por Alan Turing para descifrar mensajes de los alemanes en la Segunda Guerra Mundial

ENIAC fue desarrollada por el departamento de balística de los EEUU

ENIAC (Electronic Numerical Integrator And Computer)

Época	Características del Sistema Operativo	HW/ SO/lenguajes
Años 60 2ª Generación	Incrementar rendimiento: • Multiprogramación	Circuitos integrados
	Multiusuario interactivo: Tiempo compartido	OS/360(IBM 360) MULTICS – UNIX
	Tiempo RealMultiprocesadorGrandes y costosos	BASIC, ALGOL
	Complejo lenguaje de control	

Época	Características del Sistema Operativo	HW/SO/lenguajes
Años 70	SO de propósito general	Apple II
	Difusión de multiusuario y tiempo compartido	Intel 8008
	<u>Unix</u>	
	•Laboratorios Bell ATT	UNIX (Bell 1976)
	•Ken Thompson, Dennis Ritchie	
	•Implementación en Lenguaje C (Dennis	
	Ritchie) (1973)	
	•Difusión a lab. y universidades (cod. Fuente)	
	•Distintas distribuciones:	
	 Aparición de BSD (Uni. Berkeley) 	
	 Aparición de System V (Lab Bell) 	
	•Otros fabricantes (Sun, HP, IBM)	

Época	Características del Sistema Operativo	HW/SO/lenguajes
Años 80	Simplificación de los SO. Importancia usuario	UNIX
	Gestión de redes Sistemas operativos de red	MS-DOS
	Interfaces gráficas	Windows
	Diseño interno Orientado a Objetos	Willdows
	Diferentes SO para diferentes procesadores de ordenadores personales	Mc OS, OS/2
	Sistemas Operativos Distribuidos	

Época	Características del Sistema Operativo	SO ejemplo
Años 90	Sistemas Operativos Libres	Linux
	Sistemas Operativos de tiempo real Arquitectura cliente/servidor	Windows XP, NT
	Estandarización de Interfaces Seguridad	POSIX

Época	Características del Sistema Operativo	SO ejemplo
Presente y	Sistemas operativos empotrados: móviles,	Android, IOS
futuro	PDAs (casi obsoletas), tabletas	
	Computación distribuida	Linux (RedHat)
	Tolerancia de fallos	Windows 8, 10, 11
	Desarrollo de nuevas interfaces	WIIIuows 6, 10, 11
	Personalización y usabilidad	
	Diseños Orientados a Objetos	
	Arquitectura cliente servidor distribuida	
	Incorporación de múltiples utilidades de	
	seguridad y acceso remoto	
	Mejora notable de la seguridad	

4. Funciones del sistema operativo

- Funciones principales del sistema operativo:
 - Gestión de procesos
 - Gestión de memoria
 - Gestión de dispositivos de E/S
 - Gestión del sistema de ficheros

4.1. Gestión de procesos (UT2_2)

- Un proceso es un programa en ejecución, es decir, debe entenderse como una entidad dinámica.
- Tareas para la gestión de procesos:
 - Sincronización y comunicación entre procesos
 - Planificación de procesos

 Algoritmos

4.2. Gestión de memoria (UT2_3)

- Para ejecutar un proceso es necesario asignarle memoria y cargarlo en ella, liberándola cuando finaliza su ejecución.
- Gestión de memoria Transparente al usuario:
 - Registro de la memoria libre.
 - Control sobre el intercambio de información entre la memoria y el disco.

4.3. Gestión de dispositivos de E/S

- Técnicas para la gestión de E/S:
 - Spooling
 - Multiprogramación
 - Convertir recursos exclusivos en compartidos
 - Buffering
 - Buffers de E/S → Espacios de memoria principal que se reservan para el almacenamiento intermedio de datos
 - Caching
 - Utilizar memoria caché
 - Bit de caching

4.4. Gestión de archivos y dispositivos

- Gestión de directorios y archivos
 - Directorios → Ruta absoluta y relativa
 - Archivos
 Organización lógica y física
 - a) Organización lógica de los archivos
 - Organización secuencial
 - Organización directa
 - Organización secuencial indexada
 - Organización secuencial encadenada
 - Organización secuencial indexo-encadenada

4.4. Gestión de archivos y dispositivos

- Gestión de directorios y archivos
 - b) Organización física de los archivos

 Sistemas de archivos
 - Windows: FAT FAT32 NTFS exFAT
 - <u>Linux</u>: ext2 ext3 ext4 swap F2FS ReiserFS
 - MacOS: HFS HFS+ APFS

4.4. Gestión de archivos y dispositivos

- Gestión de dispositivos
 - Técnicas para la gestión de E/S
 - Spooling
 - Buffering
 - Caching
 - Técnicas para la gestión de discos duros HDD
 - Reducción del movimiento del brazo del disco
 - Almacenamiento en sectores vecinos
 - Planificación del movimiento de las cabezas lectoescritoras

5. Gestores de arranque

- El gestor de arranque (Bootloader) es un pequeño programa que se ejecuta una vez completado el inicio normal de la BIOS y que permite seleccionar el sistema operativo en caso de disponer de arranque múltiple.
- Los bootloaders sirven como intermediarios entre el hardware y el sistema operativo.

5. Gestores de arranque

- Gestores de arranque populares:
 - NTLDR (NT Loader) → Windows XP Windows Server 2003
 - Bootmgr → Windows Vista Windows 7 Windows Server 2008
 - **Lilo** (Linux Loader) → Gestor de arranque de Linux
 - Grub (Grand Unified Bootloader)

Gestores de arranque (Bootloaders)