BTS - Équations différentielles - DS1 - Sujet A

Exercice 1: (3 points) -- Résolutions

Trouver les solutions générales des équations différentielles suivantes :

1.
$$5y' + 8y = -16$$

2.
$$2y' - y = 9$$

3.
$$3y' + 6y = 12$$

Exercice 2: (2 points) -- Conditions initiales

La **loi thermique de Newton** modélise la variation de la température y d'un corps, en fonction du temps t, par une équation différentielle du 1er ordre : $y'(t) + ry(t) = rT_{\rm ext}$

avec :
$$r=0,03~\mathrm{s}^{+1}$$
 et $T_{\mathrm{ext}}=20^{\circ}$ C

Donner la fonction y(t) sachant que $y(0)=90^\circ$ C

BTS - Équations différentielles - DS1 - Sujet B

Exercice 1: (3 points) -- Résolutions

Trouver les solutions générales des équations différentielles suivantes :

1.
$$2y' + 4y = -16$$

2.
$$y' - 5y = 20$$

3.
$$9y' + 6y = 18$$

Exercice 2 : (2 points) -- Conditions initiales

La **loi thermique de Newton** modélise la variation de la température y d'un corps, en fonction du temps t, par une équation différentielle du 1er ordre : $y'(t) + ry(t) = rT_{\rm ext}$

avec :
$$r=0,03~\mathrm{s}^{-1}$$
 et $T_{\mathrm{ext}}=4^{\circ}$ C

Donner la fonction y(t) sachant que $y(0)=60^{\circ}$ C

BTS - Équations différentielles - DS1 - Sujet C

Exercice 1: (3 points) -- Résolutions

Trouver les solutions générales des équations différentielles suivantes :

1.
$$2y' - 2y = -8$$

2.
$$y' + 5y = 25$$

3.
$$3y' + 6y = -18$$

Exercice 2: (2 points) -- Conditions initiales

La **loi thermique de Newton** modélise la variation de la température y d'un corps, en fonction du temps t, par une équation différentielle du 1er ordre : $y'(t)+ry(t)=rT_{\rm ext}$ avec : $r=0,03~{\rm s}^{-1}$ et $T_{\rm ext}=-4^{\circ}{\rm C}$

Donner la fonction y(t) sachant que $y(0)=23^\circ$ C

BTS - Équations différentielles - DS1 - Sujet D

Exercice 1: (3 points) -- Résolutions

Trouver les solutions générales des équations différentielles suivantes :

1.
$$y' + 4y = 12$$

2.
$$2y' - 5y = 15$$

3.
$$3y' + 6y = -12$$

Exercice 2 : (2 points) -- Conditions initiales

La **loi thermique de Newton** modélise la variation de la température y d'un corps, en

fonction du temps t, par une équation différentielle du 1er ordre :

$$y'(t) + ry(t) = rT_{
m ext}$$

avec :
$$r=0,03$$
 s $^{-1}$ et $T_{
m ext}=-20^\circ$ C

Donner la fonction y(t) sachant que $y(0)=12^\circ$ C