L-20 (Op-Amp)

$$V_{S}^{+} \uparrow \longrightarrow V_{J}$$

$$V_{S}^{-}$$

$$V_o = A V_J = \begin{cases} V_s^+ & \text{if } V_J > 0 \\ V_s^- & \text{if } V_J < 0 \end{cases}$$

- @ AC ON/OFF
- 3 Smoke Detector

Feed Back (Closed loop config): Negative

When
$$A = \infty$$
, $V_0 = k V_i$

* In feedback circuits the output slowly stabilizes.

O Inverting Amplifier:

$$I_{1} = \frac{\forall \overline{R}^{0}}{R_{1}} = \frac{1}{K_{1}}$$

$$I_{2} = I_{1} = \frac{1}{K_{2}}$$

$$I_{2} = \frac{\partial^{-}V_{0}}{R_{2}} \Rightarrow V_{0} = -I_{2}R_{2}$$

$$\Rightarrow V_{0} = -\left(\frac{1}{K_{1}}\right)R_{2}$$

$$\Rightarrow V_{0} = \left(-\frac{R_{2}^{2}}{R_{2}}\right)V_{1}$$

$$Gain$$

Cascading Amplifier

@ Inverting Adder:

3 Differentiator:

$$V_{i}$$
 $\stackrel{C}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$ $\stackrel{V_{i}}{\longrightarrow}$

$$V_c = V_i - 0 = V_i$$
 $I_c = C_{44} = C_{44} = I_{1}$
 $I_1 = I_2 = I_c$
 $\Rightarrow I_2 = 0 - V_0 \Rightarrow V_0 = -I_2 R_0$

if
$$V_i = 10\cos(2+)$$

 $V_o = -RC \frac{44}{4}$
 $= -(2000)(\frac{300}{1000})(\frac{4}{1000}(10\cos 2+))$
 $= -6(-20\sin 2+)$
 $= 120\sin 2+$

$$*I_{D} = I_{S} exp \left(\frac{V_{0}}{V_{T}}\right)$$

6 Logarithm

Formulas:

*For
$$f = 2 x$$

 $x \to \ln x$
 $y \to \ln x$
 $y \to \ln x$

CS CamScanner

exp(Ln xy)