EB-Net for landmarking on pronotum images

Le Van Linh - Beurton-Aimar Marie, Zemmari Akka, Parisey Nicolas 1&S Team - Univ. Bordeaux, LaBRI, France

Context

- ▶ **Deep learning**[1]: methods to learn the representations of data.
- ► Landmarks (key points): the points on the image that are invariant when the image changes.
- Key points detection: to find the key points through images.
- Landmarks in biology: most often provided manually by biologists.

Beetle's pronotum and landmarks

- Pronotum: an external morphology part of beetle
- Eight-manual landmarks: provided by biologists and used as ground truth.

How to locate the landmarks automatically?

Dataset augmentation

The augmentation includes two procedures:

- 1. Changing the value of one color channel in the original image
- 2. Separating the channels of original image

In total: $293 \times 7 = 2051$ images

Elementary block

An elementary block (EB) is consists of:

- A Convolutional layer
- A Max-Pooling layer
- A Dropout layer

New model: EB-Net

The proposed network includes:

- Three elementary blocks
- Three fully connected layers
- A Dropout layer

Predicted landmarks on images

- Yellow points are manual landmarks
- Red points are predicted landmarks

Evaluation

On quality metrics for regression problems.

Metric ¹	<i>r</i> ²	EV	Pearson
Cintas et al.[2]	0.884	0.951	0.976
Our model	0.9952	0.9951	0.9974

On average distances between landmarks (manual & predicted)

Landmark	Distance (in pixels)	
1	4.002	
2	4.483	
3	4.296	
4	4.387	
5	4.293	
6	5.363	
7	4.636	
8	4.936	

The proportion of acceptable predicted landmarks

Conclusion

- 1. A CNN model has been proposed to predict the landmarks on pronotum images.
- 2. An original method has been applied to augment dataset.
- 3. The quality of predicted landmarks have been evaluated by average distances with an accuracy greater than 80%.
- 4. The predicted landmarks can be used to replace manual landmarks.

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.

Nature, 521(7553):436-444, 2015.

[2] Celia Cintas et al.

Automatic ear detection and feature extraction using geometric morphometrics and convolutional neural networks.

IET Biometrics, 6(3):211-223, 2016.

https://www.labri.fr/ Thursday April 4, 2019 @labriOfficial Twitter:

