system_ps_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2024/11/25

INFORMATION

Brief

System wrapper for ps.

License MIT

Copyright 2024 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_ps_wrapper

```
module system_ps_wrapper (
    input
    tck,
    input
    tms,
    input
    tdi,
    output
    tdo,
```

12:0] DDR_addr,	output [
2:0] DDR_ba, output DDR_cas_n,	
0:0] DDR_ck_n,	output [
0:0]	output [
DDR_ck_p, 0:0]	output [
DDR_cke,	output [
DDR_cs_n,	output [
1:0] DDR_dm,	inout [
15:0] DDR_dq,	inout [
1:0] DDR_dqs_n,	
1:0] DDR_dqs_p,	inout [
0:0] DDR_odt,	output [
output DDR_ras_n,	
<pre>output DDR_we_n,</pre>	input [
2:0] IRQ, output	
MDIO_mdc, inout	
MDIO_mdio_io, input MII_col,	
<pre>input MII_crs, output</pre>	
MII_rst_n, input	
MII_rx_clk, input MII_rx_dv,	
<pre>input MII_rx_er,</pre>	input [
3:0] MII_rxd,	Tiput
<pre>input MII_tx_clk, output</pre>	
MII_tx_en,	output [
3:0]	

```
MII_txd,
                                                                   output [
31:0]
M_AXÏ_araddr,
                                                                  output [
2:0]
M_AXI_arprot,
input
M_AXI_arready,
output
M_AXI_arvalid,
                                                                   output [
31:0]
M_AXI_awaddr,
                                                                  output [
2:0]
M_AXI_awprot,
input
M_AXI_awready,
output
M_AXI_awvalid,
output
M_AXI_bready,
                                                                    input [
1:0]
M_AXI_bresp,
input
M_AXI_bvalid,
                                                                     input [
31:0]
M_AXI_rdata,
output
M_AXI_rready,
                                                                    input [
1:0]
M_AXI_rresp,
input
M_AXI_rvalid,
                                                                   output [
31:0]
M_AXI_wdata,
input
M_AXI_wready,
                                                                  output [
3:0]
M_AXI_wstrb,
output
M_AXI_wvalid,
inout
QSPI_0_io0_io,
inout
QSPI_0_io1_io,
inout
QSPI_0_io2_io,
inout
QSPI_0_io3_io,
                                                                   inout [
0:0]
QSPI_0_ss_io,
input
UART_rxd,
output
UART_txd,
                                                                     input [
31:0]
gpio_io_i,
```

```
output [
31:0]
gpio_io_o,
                                                                     output [
31:0]
gpio_io_t,
output
s_axi_clk,
input
spi_io0_i,
output
spi_io0_o,
output
spi_io0_t,
input
spi_io1_i,
output
spi_io1_o,
output
spi_io1_t,
input
spi_sck_i,
output
spi_sck_o,
output
spi_sck_t,
                                                                     input [
0:0]
spi_ss_i,
                                                                    output [
0:0]
spi_ss_o,
output
spi_ss_t,
input
sys_clk,
input
sys_rstn,
output
vga_hsync,
output
vga_vsync,
                                                                    output [
5:0]
vga_r,
                                                                    output [
5:0]
vga_g,
                                                                    output [
5:0]
vga_b,
output
sd_resetn,
input
sd_cd,
output
sd_sck,
inout
sd_cmd,
                                                                     inout [
3:0]
sd_dat
```

System wrapper for ps.

Ports

JTAG tck ifdef _JTAG_IO input tms JTAG input tdi JTAG input JTAG tdo output DDR_addr DDR interface endif output[12: 0] DDR ba DDR interface output[2: 0] DDR_cas_n DDR interface output DDR_ck_n DDR interface output[0: 0] DDR_ck_p DDR interface output[0: 0] DDR_cke DDR interface output[0: 0] DDR cs n DDR interface output[0: 0] DDR interface DDR_dm output[1: 0] DDR_dq DDR interface inout[15: 0] DDR_dqs_n DDR interface inout[1: 0] DDR_dqs_p DDR interface inout[1: 0] DDR_odt DDR interface output[0: 0] DDR_ras_n DDR interface output DDR interface DDR_we_n output **External Interrupts** IRQ input[2: 0] MDIO_mdc Ethernet Interface MII MDIO mdio io Ethernet Interface MII Ethernet Interface MII MII_col input Ethernet Interface MII MII_crs input MII_rst_n Ethernet Interface MII output

Ethernet Interface MII

MII_rx_clk

input	

MII_rx_dv input	Ethernet Interface MII
MII_rx_er	Ethernet Interface MII
MII_rxd input[3: 0]	Ethernet Interface MII
MII_tx_clk	Ethernet Interface MII
MII_tx_en	Ethernet Interface MII
MII_txd output[3: 0]	Ethernet Interface MII
M_AXI_araddr	External AXI Lite Master Interface
M_AXI_arprot	External AXI Lite Master Interface
M_AXI_arready	External AXI Lite Master Interface
M_AXI_arvalid	External AXI Lite Master Interface
M_AXI_awaddr	External AXI Lite Master Interface
M_AXI_awprot	External AXI Lite Master Interface
M_AXI_awready	External AXI Lite Master Interface
M_AXI_awvalid	External AXI Lite Master Interface
M_AXI_bready	External AXI Lite Master Interface
M_AXI_bresp input[1: 0]	External AXI Lite Master Interface
M_AXI_bvalid	External AXI Lite Master Interface
M_AXI_rdata input[31: 0]	External AXI Lite Master Interface
M_AXI_rready	External AXI Lite Master Interface
M_AXI_rresp input[1: 0]	External AXI Lite Master Interface
M_AXI_rvalid	External AXI Lite Master Interface
M_AXI_wdata output[31: 0]	External AXI Lite Master Interface
M_AXI_wready input	External AXI Lite Master Interface
M_AXI_wstrb output[3: 0]	External AXI Lite Master Interface
M_AXI_wvalid	External AXI Lite Master Interface

QSPI_0_io0_io	Quad SPI
QSPI_0_io1_io	Quad SPI
QSPI_0_io2_io	Quad SPI
QSPI_0_io3_io	Quad SPI
QSPI_0_ss_io inout[0: 0]	Quad SPI
UART_rxd input	UART RX
UART_txd output	UART TX
gpio_io_i input[31: 0]	GPIO input
gpio_io_o output[31: 8]	GPIO output
gpio_io_t output[31: 8]	GPIO tristate select
s_axi_clk output	AXI Clock
spi_io0_i	SPI IO
spi_io0_o	SPI IO
spi_io0_t	SPI IO
spi_io1_i	SPI IO
spi_io1_o	SPI IO
spi_io1_t	SPI IO
spi_sck_i	SPI IO
spi_sck_o	SPI IO
spi_sck_t	SPI IO
spi_ss_i input[0: 0]	SPI IO
spi_ss_o output[0: 0]	SPI IO
spi_ss_t output	SPI IO
sys_clk input	SYSTEM clock for pll
	CVCTEM

sys_rstn SYSTEM reset input

vga_hsync output	VGA
vga_vsync output	VGA
vga_r output[5: 0]	VGA
vga_g output[5: 0]	VGA
vga_b output[5: 0]	VGA
sd_resetn	sd card
sd_cd input	sd card
sd_sck output	sd card
sd_cmd inout	sd card
sd_dat inout[3: 0]	sd card

INSTANTIANTED MODULES

MDIO_mdio_iobuf

TRISTATE IO

QSPI_0_io0_iobuf

TRISTATE IO

QSPI_0_io1_iobuf

TRISTATE IO

QSPI_0_io2_iobuf

TRISTATE IO

QSPI_0_io3_iobuf

TRISTATE IO

QSPI_0_ss_iobuf_0

inst_axi_ddr_ctrl

```
axi_ddr_ctrl inst_axi_ddr_ctrl (
aresetn(ddr_rstgen_peripheral_aresetn),
ddr2_addr(DDR_addr),
ddr2_ba(DDR_ba),
ddr2_cas_n(DDR_cas_n),
ddr2_ck_n(DDR_ck_n),
ddr2_ck_p(DDR_ck_p),
ddr2_cke(DDR_cke),
ddr2_cs_n(DDR_cs_n),
ddr2_dm(DDR_dm),
ddr2_dq(DDR_dq[15:0]),
ddr2_dqs_n(DDR_dqs_n[1:0]),
ddr2_dqs_p(DDR_dqs_p[1:0]),
ddr2_odt(DDR_odt),
ddr2_ras_n(DDR_ras_n),
ddr2_we_n(DDR_we_n),
mmcm_locked(axi_ddr_ctrl_mmcm_locked),
s_axi_araddr(m_axi_ddr_ARADDR & 32'h0FFFFFFF),
s_axi_arburst(m_axi_ddr_ARBURST),
s\_axi\_arcache(m\_axi\_ddr\_ARCACHE),\\
s_axi_arid(m_axi_ddr_ARID),
s_axi_arlen(m_axi_ddr_ARLEN),
s_axi_arlock(m_axi_ddr_ARLOCK),
s_axi_arprot(m_axi_ddr_ARPROT),
s_axi_arqos(m_axi_ddr_ARQOS),
s_axi_arready(m_axi_ddr_ARREADY),
s_axi_arsize(m_axi_ddr_ARSIZE),
s_axi_arvalid(m_axi_ddr_ARVALID),
s_axi_awaddr(m_axi_ddr_AWADDR & 32'h0FFFFFFF),
s_axi_awburst(m_axi_ddr_AWBURST),
```

```
s_axi_awcache(m_axi_ddr_AWCACHE),
s_axi_awid(m_axi_ddr_AWID),
s_axi_awlen(m_axi_ddr_AWLEN),
s_axi_awlock(m_axi_ddr_AWLOCK),
s_axi_awprot(m_axi_ddr_AWPROT),
s_axi_awqos(m_axi_ddr_AWQOS),
s_axi_awready(m_axi_ddr_AWREADY),
s\_axi\_awsize(m\_axi\_ddr\_AWSIZE),
s_axi_awvalid(m_axi_ddr_AWVALID),
s_axi_bid(m_axi_ddr_BID),
s_axi_bready(m_axi_ddr_BREADY),
s_axi_bvalid(m_axi_ddr_BVALID),
s_axi_bresp(m_axi_ddr_BRESP),
s_axi_rdata(m_axi_ddr_RDATA),
s_axi_rid(m_axi_ddr_RID),
s_axi_rlast(m_axi_ddr_RLAST),
s_axi_rready(m_axi_ddr_RREADY),
s_axi_rvalid(m_axi_ddr_RVALID),
s_axi_rresp(m_axi_ddr_RRESP),
s_axi_wdata(m_axi_ddr_WDATA),
s_axi_wlast(m_axi_ddr_WLAST),
s_axi_wready(m_axi_ddr_WREADY),
s_axi_wstrb(m_axi_ddr_WSTRB),
s_axi_wvalid(m_axi_ddr_WVALID),
sys_clk_i(ddr_clk),
sys_rst(sys_rstn),
ui_clk(axi_ddr_ctrl_ui_clk),
ui_clk_sync_rst(axi_ddr_ctrl_ui_clk_sync_rst)
```

AXI DDR Controller

inst_axi_ethernet

```
axi_ethernet inst_axi_ethernet (
```

```
ip2intc_irpt(axi_ethernet_irq),
phy_col(MII_col),
phy_crs(MII_crs),
phy_dv(MII_rx_dv),
phy_mdc(MDIO_mdc),
phy_mdio_i(MDIO_mdio_i),
phy_mdio_o(MDIO_mdio_o),
phy_mdio_t(MDIO_mdio_t),
phy_rst_n(MII_rst_n),
phy_rx_clk(MII_rx_clk),
phy_rx_data(MII_rxd),
phy_rx_er(MII_rx_er),
phy_tx_clk(MII_tx_clk),
phy_tx_data(MII_txd),
phy_tx_en(MII_tx_en),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_eth_ARADDR[12:0]),
s_axi_aresetn(sys_rstgen_peripheral_aresetn),
s_axi_arready(m_axi_eth_ARREADY),
s_axi_arvalid(m_axi_eth_ARVALID),
s_axi_awaddr(m_axi_eth_AWADDR[12:0]),
s_axi_awready(m_axi_eth_AWREADY),
s_axi_awvalid(m_axi_eth_AWVALID),
s_axi_bready(m_axi_eth_BREADY),
s_axi_bresp(m_axi_eth_BRESP),
s_axi_bvalid(m_axi_eth_BVALID),
s_axi_rdata(m_axi_eth_RDATA),
s_axi_rready(m_axi_eth_RREADY),
s_axi_rresp(m_axi_eth_RRESP),
s\_axi\_rvalid(m\_axi\_eth\_RVALID),
s_axi_wdata(m_axi_eth_WDATA),
s_axi_wready(m_axi_eth_WREADY),
s_axi_wstrb(m_axi_eth_WSTRB),
```

```
s_axi_wvalid(m_axi_eth_WVALID)
)
```

AXI Ethernet MAC

inst_axi_gpio32

```
axi_gpio32 inst_axi_gpio32 (
gpio_io_i(gpio_io_i),
gpio_io_o(gpio_io_o),
gpio_io_t(gpio_io_t),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_gpio_ARADDR[8:0]),
s_axi_aresetn(sys_rstgen_peripheral_aresetn),
s_axi_arready(m_axi_gpio_ARREADY),
s\_axi\_arvalid(m\_axi\_gpio\_ARVALID),\\
s_axi_awaddr(m_axi_gpio_AWADDR[8:0]),
s_axi_awready(m_axi_gpio_AWREADY),
s_axi_awvalid(m_axi_gpio_AWVALID),
s_axi_bready(m_axi_gpio_BREADY),
s_axi_bresp(m_axi_gpio_BRESP),
s\_axi\_bvalid(m\_axi\_gpio\_BVALID),
s_axi_rdata(m_axi_gpio_RDATA),
s_axi_rready(m_axi_gpio_RREADY),
s_axi_rresp(m_axi_gpio_RRESP),
s_axi_rvalid(m_axi_gpio_RVALID),
s_axi_wdata(m_axi_gpio_WDATA),
s_axi_wready(m_axi_gpio_WREADY),
s_axi_wstrb(m_axi_gpio_WSTRB),
s_axi_wvalid(m_axi_gpio_WVALID)
```

AXI GPIO

inst_axi_spix4

```
axi_spix4 inst_axi_spix4 (
```

```
ext_spi_clk(axi_cpu_clk),
io0_i(QSPI_0_io0_i),
io0_o(QSPI_0_io0_o),
io0_t(QSPI_0_io0_t),
io1_i(QSPI_0_io1_i),
io1_o(QSPI_0_io1_o),
io1_t(QSPI_0_io1_t),
io2_i(QSPI_0_io2_i),
io2_o(QSPI_0_io2_o),
io2_t(QSPI_0_io2_t),
io3_i(QSPI_0_io3_i),
io3_o(QSPI_0_io3_o),
io3_t(QSPI_0_io3_t),
ip2intc_irpt(axi_quad_spi_irq),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_qspi_ARADDR[6:0]),
s_axi_aresetn(sys_rstgen_interconnect_aresetn),
s_axi_arready(m_axi_qspi_ARREADY),
s_axi_arvalid(m_axi_qspi_ARVALID),
s_axi_awaddr(m_axi_qspi_AWADDR[6:0]),
s_axi_awready(m_axi_qspi_AWREADY),
s_axi_awvalid(m_axi_qspi_AWVALID),
s_axi_bready(m_axi_qspi_BREADY),
s_axi_bresp(m_axi_qspi_BRESP),
s_axi_bvalid(m_axi_qspi_BVALID),
s_axi_rdata(m_axi_qspi_RDATA),
s_axi_rready(m_axi_qspi_RREADY),
s_axi_rresp(m_axi_qspi_RRESP),
s_axi_rvalid(m_axi_qspi_RVALID),
s_axi_wdata(m_axi_qspi_WDATA),
s_axi_wready(m_axi_qspi_WREADY),
s_axi_wstrb(m_axi_qspi_WSTRB),
s_axi_wvalid(m_axi_qspi_WVALID),
```

AXI Quad SPI

inst_axi_spix1

```
axi_spix1 inst_axi_spix1 (
ext_spi_clk(axi_cpu_clk),
io0_i(spi_io0_i),
io0_o(spi_io0_o),
io0_t(spi_io0_t),
io1_i(spi_io1_i),
io1_o(spi_io1_o),
io1_t(spi_io1_t),
ip2intc_irpt(axi_spi_irq),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_spi_ARADDR[6:0]),
s\_axi\_aresetn(sys\_rstgen\_peripheral\_aresetn),
s_axi_arready(m_axi_spi_ARREADY),
s_axi_arvalid(m_axi_spi_ARVALID),
s\_axi\_awaddr(m\_axi\_spi\_AWADDR[6:0]),
s_axi_awready(m_axi_spi_AWREADY),
s_axi_awvalid(m_axi_spi_AWVALID),
s_axi_bready(m_axi_spi_BREADY),
s_axi_bresp(m_axi_spi_BRESP),
s_axi_bvalid(m_axi_spi_BVALID),
s_axi_rdata(m_axi_spi_RDATA),
s_axi_rready(m_axi_spi_RREADY),
s_axi_rresp(m_axi_spi_RRESP),
s_axi_rvalid(m_axi_spi_RVALID),
s_axi_wdata(m_axi_spi_WDATA),
s_axi_wready(m_axi_spi_WREADY),
```

```
s_axi_wstrb(m_axi_spi_WSTRB),
s_axi_wvalid(m_axi_spi_wvALID),
sck_i(spi_sck_i),
sck_o(spi_sck_o),
sck_t(spi_sck_t),
ss_i(spi_ss_i),
ss_o(spi_ss_o),
ss_t(spi_ss_t)
)
```

AXI Standard SPI

inst_axi_uart

```
axi_uart inst_axi_uart (
interrupt(axi_uartlite_irq),
rx(UART_rxd),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_uart_ARADDR[3:0]),
s_axi_aresetn(sys_rstgen_peripheral_aresetn),
s_axi_arready(m_axi_uart_ARREADY),
s_axi_arvalid(m_axi_uart_ARVALID),
s_axi_awaddr(m_axi_uart_AWADDR[3:0]),
s_axi_awready(m_axi_uart_AWREADY),
s_axi_awvalid(m_axi_uart_AWVALID),
s_axi_bready(m_axi_uart_BREADY),
s_axi_bresp(m_axi_uart_BRESP),
s\_axi\_bvalid(m\_axi\_uart\_BVALID),
s_axi_rdata(m_axi_uart_RDATA),
s_axi_rready(m_axi_uart_RREADY),
s_axi_rresp(m_axi_uart_RRESP),
s_axi_rvalid(m_axi_uart_RVALID),
s_axi_wdata(m_axi_uart_WDATA),
s_axi_wready(m_axi_uart_WREADY),
s_axi_wstrb(m_axi_uart_WSTRB),
```

AXI UART LITE

inst_axi_double_timer

```
axi_double_timer inst_axi_double_timer (
capturetrig0(1'b0),
capturetrig1(1'b0),
generateout0(),
generateout1(),
pwm0(pwm0),
interrupt(axi_timer_irq),
freeze(1'b0),
s_axi_aclk(axi_cpu_clk),
s_axi_araddr(m_axi_timer_ARADDR[4:0]),
s\_axi\_aresetn(sys\_rstgen\_peripheral\_aresetn),
s_axi_arready(m_axi_timer_ARREADY),
s_axi_arvalid(m_axi_timer_ARVALID),
s_axi_awaddr(m_axi_timer_AWADDR[4:0]),
s_axi_awready(m_axi_timer_AWREADY),
s\_axi\_awvalid(m\_axi\_timer\_AWVALID),\\
s_axi_bready(m_axi_timer_BREADY),
s_axi_bresp(m_axi_timer_BRESP),
s_axi_bvalid(m_axi_timer_BVALID),
s_axi_rdata(m_axi_timer_RDATA),
s_axi_rready(m_axi_timer_RREADY),
s_axi_rresp(m_axi_timer_RRESP),
s_axi_rvalid(m_axi_timer_RVALID),
s_axi_wdata(m_axi_timer_WDATA),
s_axi_wready(m_axi_timer_WREADY),
s_axi_wstrb(m_axi_timer_WSTRB),
s_axi_wvalid(m_axi_timer_WVALID)
```

inst_axi_tft_vga

```
axi_tft_vga inst_axi_tft_vga (
s_axi_aclk(axi_cpu_clk),
s_axi_aresetn(sys_rstgen_peripheral_aresetn),
m_axi_aclk(axi_ddr_ctrl_ui_clk),
{\tt m\_axi\_aresetn(ddr\_rstgen\_peripheral\_aresetn),}
md_error(),
ip2intc_irpt(axi_tft_irq),
m_axi_arready(s_axi_dma_vga_arready),
m_axi_arvalid(s_axi_dma_vga_arvalid),
m_axi_araddr(s_axi_dma_vga_araddr),
m_axi_arlen(s_axi_dma_vga_arlen),
m_axi_arsize(s_axi_dma_vga_arsize),
m_axi_arburst(s_axi_dma_vga_arburst),
m_axi_arprot(s_axi_dma_vga_arprot),
m_axi_arcache(s_axi_dma_vga_arcache),
m_axi_rready(s_axi_dma_vga_rready),
m_axi_rvalid(s_axi_dma_vga_rvalid),
m_axi_rdata(s_axi_dma_vga_rdata),
m_axi_rresp(s_axi_dma_vga_rresp),
m_axi_rlast(s_axi_dma_vga_rlast),
m_axi_awready(s_axi_dma_vga_awready),
m_axi_awvalid(s_axi_dma_vga_awvalid),
m_axi_awaddr(s_axi_dma_vga_awaddr),
m_axi_awlen(s_axi_dma_vga_awlen),
m_axi_awsize(s_axi_dma_vga_awsize),
m_axi_awburst(s_axi_dma_vga_awburst),
m_axi_awprot(s_axi_dma_vga_awprot),
m_axi_awcache(s_axi_dma_vga_awcache),
m_axi_wready(s_axi_dma_vga_wready),
m_axi_wvalid(s_axi_dma_vga_wvalid),
```

```
m_axi_wdata(s_axi_dma_vga_wdata),
m_axi_wstrb(s_axi_dma_vga_wstrb),
m_axi_wlast(s_axi_dma_vga_wlast),
m_axi_bready(s_axi_dma_vga_bready),
m_axi_bvalid(s_axi_dma_vga_bvalid),
m_axi_bresp(s_axi_dma_vga_bresp),
s_axi_awaddr(m_axi_vga_AWADDR),
s_axi_awvalid(m_axi_vga_AWVALID),
s_axi_awready(m_axi_vga_AWREADY),
s_axi_wdata(m_axi_vga_WDATA),
s_axi_wstrb(m_axi_vga_WSTRB),
s_axi_wvalid(m_axi_vga_WVALID),
s_axi_wready(m_axi_vga_WREADY),
s_axi_bresp(m_axi_vga_BRESP),
s_axi_bvalid(m_axi_vga_BVALID),
s_axi_bready(m_axi_vga_BREADY),
s_axi_araddr(m_axi_vga_ARADDR),
s_axi_arvalid(m_axi_vga_ARVALID),
s_axi_arready(m_axi_vga_ARREADY),
s_axi_rdata(m_axi_vga_RDATA),
s_axi_rresp(m_axi_vga_RRESP),
s_axi_rvalid(m_axi_vga_RVALID),
s_axi_rready(m_axi_vga_RREADY),
sys_tft_clk(tft_clk),
tft_hsync(vga_hsync),
tft_vsync(vga_vsync),
tft_de(),
tft_dps(),
tft_vga_clk(),
tft_vga_r(vga_r),
tft_vga_g(vga_g),
tft_vga_b(vga_b)
```

inst_sdio_top

```
sdio_top #(
ADDRESS_WIDTH(32),
OPT_DMA(1),
AXI_IW(4)
) inst_sdio_top ( .i_clk(axi_cpu_clk), .i_reset(sys_rstgen_peripheral_reset)
```

AXI SD CARD Module (CRAP TO BE REMOVED AND CHANGED)

inst_clk_wiz_1

```
clk_wiz_1 inst_clk_wiz_1 (
    clk_in1(sys_clk),
    clk_out1(axi_cpu_clk),
    clk_out2(ddr_clk),
    clk_out3(tft_clk)
)
```

Generate system clocks

inst_ddr_rstgen

```
ddr_rstgen inst_ddr_rstgen (
    aux_reset_in(axi_ddr_ctrl_ui_clk_sync_rst),
    dcm_locked(axi_ddr_ctrl_mmcm_locked),
    ext_reset_in(sys_rstn & s_axi_dma_axixclk_aresetn),
    mb_debug_sys_rst(debug_rst),
    peripheral_reset(ddr_rstgen_peripheral_reset),
    peripheral_aresetn(ddr_rstgen_peripheral_aresetn),
    slowest_sync_clk(axi_ddr_ctrl_ui_clk)
)
```

Generate DDR Reset

inst axixclk

```
axixclk #(
...
```

```
C_S_AXI_ID_WIDTH(4),

C_S_AXI_DATA_WIDTH(32),

C_S_AXI_ADDR_WIDTH(32),

XCLOCK_FFS(2),

LGFIFO(5)
) inst_axixclk ( .S_AXI_ACLK(axi_cpu_clk), .S_AXI_ARESETN(sys_rstgen_periphe
```

AXI Cross clock for DMA to DDR Memory

inst_axilite_perf_xbar

```
axilxbar #(

C_AXI_DATA_WIDTH(32),

C_AXI_ADDR_WIDTH(32),

NM(1),

NS(7),

SLAVE_ADDR({{32'h44A70000}, {32'h44A60000}, {32'h44A50000}, {32'h44A40000}, {32'h44
```

AXI Lite Crossbar for slow speed devices .. sdio, tft vga, double timer, ethernet, spi, qspi, uart, gpio

inst_axi_mem_xbar

AXI Crossbar .. IBUS/DBUS @ 0x90000000 plus 2 dma cores. single Large RAM slave, 0xC0000000 is 1 GB mask (0x40000000 twos compliment).

inst_veronica

```
Veronica inst_veronica (
io_aclk(axi_cpu_clk),
io_arst(sys_rstgen_peripheral_reset),
io_debug_rst(debug_rst),
io_ddr_clk(axi_ddr_ctrl_ui_clk),
io_ddr_rst(ddr_rstgen_peripheral_reset),
io_irq({{128-9{1'b0}}}, spio_irq, axi_timer_irq, axi_tft_irq, axi_quad_spi_
_JTAG_IO
io_jtag_tms(tms),
io_jtag_tdi(tdi),
io_jtag_tdo(tdo),
io_jtag_tck(tck),
endif
m_axi_acc_araddr(M_AXI_araddr),
m_axi_acc_arprot(M_AXI_arprot),
m_axi_acc_arready(M_AXI_arready),
m_axi_acc_arvalid(M_AXI_arvalid),
m_axi_acc_awaddr(M_AXI_awaddr),
m_axi_acc_awprot(M_AXI_awprot),
m_axi_acc_awready(M_AXI_awready),
m_axi_acc_awvalid(M_AXI_awvalid),
m_axi_acc_bready(M_AXI_bready),
m_axi_acc_bresp(M_AXI_bresp),
m_axi_acc_bvalid(M_AXI_bvalid),
m_axi_acc_rdata(M_AXI_rdata),
m_axi_acc_rready(M_AXI_rready),
m_axi_acc_rresp(M_AXI_rresp),
m_axi_acc_rvalid(M_AXI_rvalid),
m_axi_acc_wdata(M_AXI_wdata),
m_axi_acc_wready(M_AXI_wready),
m_axi_acc_wstrb(M_AXI_wstrb),
m_axi_acc_wvalid(M_AXI_wvalid),
m_axi_perf_araddr(s_axi_perf_ARADDR),
```

```
m_axi_perf_arready(s_axi_perf_ARREADY),
m_axi_perf_arvalid(s_axi_perf_ARVALID),
m_axi_perf_arprot(s_axi_perf_ARPROT),
m_axi_perf_awaddr(s_axi_perf_AWADDR),
m_axi_perf_awprot(s_axi_perf_AWPROT),
m_axi_perf_awready(s_axi_perf_AWREADY),
m_axi_perf_awvalid(s_axi_perf_AWVALID),
m_axi_perf_bready(s_axi_perf_BREADY),
m_axi_perf_bresp(s_axi_perf_BRESP),
m_axi_perf_bvalid(s_axi_perf_BVALID),
m_axi_perf_rdata(s_axi_perf_RDATA),
m_axi_perf_rready(s_axi_perf_RREADY),
m_axi_perf_rresp(s_axi_perf_RRESP),
m_axi_perf_rvalid(s_axi_perf_RVALID),
m_axi_perf_wdata(s_axi_perf_WDATA),
m_axi_perf_wready(s_axi_perf_WREADY),
m_axi_perf_wstrb(s_axi_perf_WSTRB),
m_axi_perf_wvalid(s_axi_perf_WVALID),
m_axi_mbus_araddr(s_axi_mbus_ARADDR),
m_axi_mbus_arburst(s_axi_mbus_ARBURST),
m_axi_mbus_arcache(s_axi_mbus_ARCACHE),
m_axi_mbus_arid(s_axi_mbus_ARID),
m_axi_mbus_arlen(s_axi_mbus_ARLEN),
m_axi_mbus_arprot(s_axi_mbus_ARPROT),
m_axi_mbus_arready(s_axi_mbus_ARREADY),
m_axi_mbus_arsize(s_axi_mbus_ARSIZE),
m_axi_mbus_arvalid(s_axi_mbus_ARVALID),
m_axi_mbus_awaddr(s_axi_mbus_AWADDR),
m_axi_mbus_awburst(s_axi_mbus_AWBURST),
m_axi_mbus_awcache(s_axi_mbus_AWCACHE),
m_axi_mbus_awid(s_axi_mbus_AWID),
m_axi_mbus_awlen(s_axi_mbus_AWLEN),
m_axi_mbus_awprot(s_axi_mbus_AWPROT),
```

```
m_axi_mbus_awready(s_axi_mbus_AWREADY),
m_axi_mbus_awsize(s_axi_mbus_AWSIZE),
m_axi_mbus_awvalid(s_axi_mbus_AWVALID),
m_axi_mbus_bid(s_axi_mbus_BID),
m_axi_mbus_bready(s_axi_mbus_BREADY),
{\tt m\_axi\_mbus\_bvalid(s\_axi\_mbus\_BVALID),}
m_axi_mbus_rdata(s_axi_mbus_RDATA),
m_axi_mbus_rid(s_axi_mbus_RID),
m_axi_mbus_rlast(s_axi_mbus_RLAST),
m_axi_mbus_rready(s_axi_mbus_RREADY),
m_axi_mbus_rvalid(s_axi_mbus_RVALID),
{\tt m\_axi\_mbus\_wdata(s\_axi\_mbus\_WDATA),}
m_axi_mbus_wlast(s_axi_mbus_WLAST),
m_axi_mbus_wready(s_axi_mbus_WREADY),
m_axi_mbus_wstrb(s_axi_mbus_WSTRB),
m_axi_mbus_wvalid(s_axi_mbus_WVALID),
m_axi_mbus_arqos(s_axi_mbus_ARQOS),
m_axi_mbus_arlock(s_axi_mbus_ARLOCK),
{\tt m\_axi\_mbus\_awqos(s\_axi\_mbus\_AWQOS),}
m_axi_mbus_awlock(s_axi_mbus_AWLOCK),
m_axi_mbus_rresp(s_axi_mbus_RRESP),
m_axi_mbus_bresp(s_axi_mbus_BRESP)
```

Veronica AXI Vexriscv CPU

inst_sys_rstgen

```
sys_rstgen inst_sys_rstgen (
    aux_reset_in(axi_ddr_ctrl_ui_clk_sync_rst),
    dcm_locked(axi_ddr_ctrl_mmcm_locked),
    ext_reset_in(sys_rstn),
    interconnect_aresetn(sys_rstgen_interconnect_aresetn),
    mb_debug_sys_rst(debug_rst),
    peripheral_reset(sys_rstgen_peripheral_reset),
    .
```

Generate general system resets