

2016—2017 学年第一学期 考试统一用答题册

题号	1	- 3 - (%)	Ξ.	四	五	六	七	总分
成绩								
阅卷人	17.4	4) 10 to 5 to 5	不产生					

考试课程_		复变函数与积分变换 B				
班	级_	学号	I was in the			
姓	名_	成 绩				
任课教师_		上午()下午()			

2016年12月30日

(试题共4页)

_	、选择题(每)	题3分,	共27分	,
	0.11 3	a -1 M		

(A) -1

(B) 0

(C) 1

2. 函数 $x^3 + 3xy^2 - 3x + i(y^3 + 3x^2y - 3y)$ 在复平面内 ()

(A) 处处解析

(B) 处处可导

(C) 在坐标轴上可导

(D) 在坐标轴上解析

3. 满足不等式 $z\overline{z} + 2iz - 2i\overline{z} < 0$ 的所有点 z 构成的集合是 (

(A) 有界单连通区域

(B) 有界多连通区域

(C) 无界单连通区域

(D) 无界多连通区域

4. 设曲线 C 为右半正向单位圆周,则 $\int_{-z}^{1} dz = ($

 $(A) -\pi i \qquad (B) 0$

(C) 2πi

(D) ni

5. 设C 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 正向,则积分 $\int_C [\frac{1}{z-1} + \frac{1}{(z-1)^2}] dz = ($

(A) $2\pi i$ (B) $4\pi i$ (C) 9

(D) $-2\pi i$

6. 函数 $\frac{1}{z^2}$ 在 z=1 处的泰勒展开式为()

(A)
$$-\sum_{n=1}^{\infty} n(z-1)^{n-1}$$
 ($|z-1| < 1$) (B) $\sum_{n=1}^{\infty} n(z-1)^{n-1}$ ($|z-1| < 1$)

(B)
$$\sum_{n=1}^{\infty} n(z-1)^{n-1} \quad (|z-1| < 1)$$

(C)
$$-\sum_{n=1}^{\infty} (-1)^n n(z-1)^{n-1} \quad (|z-1| < 1)$$

(C)
$$-\sum_{n=1}^{\infty} (-1)^n n(z-1)^{n-1} \quad (|z-1| < 1)$$
 (D) $\sum_{n=1}^{\infty} (-1)^{n-1} n(z-1)^{n-1} \quad (|z-1| < 1)$

7. 下列级数中,发散的级数是(

(A) $\sum_{n=0}^{\infty} \left(\frac{1+2i}{1-i} \right)^n$

 $(B) \sum_{n=1}^{\infty} \frac{1}{n^2 3^n}$

(C) $\sum_{i=1}^{\infty} \frac{i^n}{n}$

(D) $\sum_{n=0}^{\infty} \frac{1}{(2+3i)^n}$

8. z=0 是函数 $\frac{\sin z}{z}$ 的(

(A) 可去奇点

(B) 一级极点

(C) 二级极点

(D) 本性奇点

9. 设 $f(t) = \cos 3t$, 则 tf(t) 的傅立叶变换为 (

(A)
$$i\pi[\dot{\delta}'(\omega+3)+\delta'(\omega-3)]$$
 (B) $i\pi[\delta'(\omega+3)-\delta'(\omega-3)]$

(B)
$$i\pi[\delta'(\omega+3)-\delta'(\omega-3)]$$

(C)
$$\pi[\delta'(\omega-3)+\delta'(\omega+3)]$$
 (D) $\pi[\delta'(\omega+3)-\delta'(\omega-3)]$

(D)
$$\pi[\delta'(\omega+3)-\delta'(\omega-3)]$$

二、填空题(每题3分,共27分)

1. 对于映射
$$\omega=z+rac{1}{z}$$
,圆周 $|z|=2$ 的像曲线为______(写出方程).

2. 设函数 $f(z) = \cos(2z) + i \sin z$ 在 z = 1 处的导数______

7. 函数 $\sin \frac{1}{z-2}$ 在 z=2 处的留数为______.

9. 函数 $F(\omega) = e^{2i\omega}$ 的傅立叶逆变换为_____

三、(12 分) 计算积分 $\int \frac{\cos z}{z(4-z)^2} dz$, 其中 c 为不经过 0,4 的简单闭曲线.

五、(10 分) 求函数
$$f(t) = \begin{cases} -e^{-\beta t}, t < 0 \\ 0, t \ge 0 \end{cases}$$
 ($\beta < 0$) 的傅立叶变换和傅立叶积分, 并计算
$$\int_0^\infty \frac{\beta \cos \omega t + \omega \sin \omega t}{\beta^2 + \omega^2} d\omega.$$

六、(10 分) 利用 Laplace 变换求微分方程 $y''' + 3y'' + 3y' + y = 6e^{-t}$

满足初始条件
$$y(0) = y'(0) = y''(0) = 0$$
 的解.

七、(6分)设f(z)在 $|z| \le r$ 内解析且 $|f(z)| \le M$,证明: $|f^{(n)}(z)| \le \frac{n!M}{(r-|z|)^n}$ (|z| < r)