AIM:- Data Loading, Data preprocessing, Data exploration, and Data preparation.

1. Data Loading:

• Load a dataset (Iris dataset: https://www.kaggle.com/datasets/uciml/iris) into your preferred ML environment (Python).

```
import pandas as pd
df = pd.read_csv("D:\\5th Sem\\LAB\\ML\\Iris.csv")
```

• Display the first few rows of the dataset to inspect its structure and content.

print("First 5 rows of the Iris dataset:-\n", df.head())

Output:-

F	First 5 rows of the Iris dataset:-							
	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species		
0	1	5.1	3.5	1.4	0.2	Iris-setosa		
1	. 2	4.9	3.0	1.4	0.2	Iris-setosa		
2	3	4.7	3.2	1.3	0.2	Iris-setosa		
3	4	4.6	3.1	1.5	0.2	Iris-setosa		
4	5	5.0	3.6	1.4	0.2	Iris-setosa		

• Check the dimensions of the dataset (number of rows and columns).

print("Dimension of the dataset: ", df.shape)

Output:-

```
Dimension of the dataset: (150, 6)
```

• Identify the data types of each column (numeric, categorical, text, etc.).

print("Data types of each column:\n", df.dtypes)

```
Data types of each column:

Id int64

SepalLengthCm float64

SepalWidthCm float64

PetalLengthCm float64

PetalWidthCm float64

Species object

dtype: object
```

2. Data Exploration:

• Calculate basic summary statistics for the numeric columns (mean, median, min, max, standard deviation).

```
import matplotlib.pyplot as plt
import seaborn as sns
from DataLoading import df
numeric_columns = ['SepalLengthCm', 'SepalWidthCm',
'PetalLengthCm', 'PetalWidthCm']
print("Basic Statistics for the numeric columns:-\n",
df[numeric_columns].describe())
```

Output:-

	_			
Basic	Statistics for t	he numeric col	umns:-	
	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

• Visualize the distribution of numeric features using histograms or box plots.

```
# Creating histograms for numeric features

df[numeric_columns].hist(edgecolor='black', alpha=0.7)

plt.suptitle("Distribution Of Numeric Features", fontsize=16)

plt.tight_layout()

plt.show()
```

Output:-

Distribution Of Numeric Features

 # Creating box plots for numeric features sns.boxplot(data=df[numeric_columns]) plt.title("Box Plot Of Numeric Features") plt.show()

Output:-

• Explore the frequency distribution of categorical features using bar plots.

sns.countplot(data=df, x='Species')
plt.show()

3. Data Preprocessing:

• Handle missing values: Identify and handle any missing values in the dataset (e.g., imputation, removal).

```
from DataLoading import df
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Display the number of missing values in each column
missingValues = df.isnull().sum()
print("Missing values per column:-")
print(missingValues)
```

Output:-

```
Missing values per column:-

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64
```

• Display the number of missing values after imputation.

```
# Fill the missing values with the mean of each column except column4

df_imputed = df.fillna(df.drop('Species', axis=1).mean())

missingValues_after_imputation = df_imputed.isnull().sum()

print("Missing Values after imputation:-")

print(missingValues_after_imputation)
```

Output:-

```
Missing Values after imputation:-

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64
```

• Encode categorical variables: Convert categorical variables into numerical form (e.g., one-hot encoding, label encoding).

```
# Categorical Column
categorical column = 'Species'
# One-Hot Encoding (Creating Dummy Variables)
data encoded onehot = pd.get dummies(df,
columns=[categorical column], prefix=[categorical column])
# Display the first few rows of the encoded data
print("One-Hot Encoded Data:")
print(data encoded onehot.head())
# Label Encoding
data encoded label = df.copy()
label encoder = LabelEncoder()
data encoded label[categorical column] =
label_encoder.fit_transform(data_encoded_label[categorical_column)
# Displays the first few rows of the encoded data
print("\nLabel Encoded Data:")
print(data encoded label.head())
# Reverse Label Encoding(for demonstration purposes)
reverse encoded labels =
label_encoder.inverse_transform(data_encoded_label[categorical_col
umn])
data encoded label[categorical column] = reverse encoded labels
# Display the first few rows of the data with reversed level encoding
print("\nData with Reversed Label Encoding:")
print(data encoded label.head())
```

One-Hot Encoded Data:						
	Ιd	SepalLengthCm	Species_	Iris-versicolor	Species_Iris	-virginica
Θ	1	5.1		False		False
1	2	4.9		False		False
2	3	4.7		False		False
3	4	4.6		False		False
4	5	5.0		False		False
[5	row	s x 8 columns]				
La	bel	Encoded Data:				
	Ιd	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Θ
1	2	4.9	3.0	1.4	0.2	Θ
2	3	4.7	3.2	1.3	0.2	Θ
3	4	4.6	3.1	1.5	0.2	Θ
4	5	5.0	3.6	1.4	0.2	Θ

Dá	Data with Reversed Label Encoding:						
	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
Θ	1	5.1	3.5	1.4	0.2	Iris-setosa	
1	2	4.9	3.0	1.4	0.2	Iris-setosa	
2	3	4.7	3.2	1.3	0.2	Iris-setosa	
3	4	4.6	3.1	1.5	0.2	Iris-setosa	
4	5	5.0	3.6	1.4	0.2	Iris-setosa	

• Feature scaling: Normalize or standardize numeric features to bring them to a similar scale.

```
numeric_columns = ['SepalLengthCm', 'SepalWidthCm',
'PetalLengthCm', 'PetalWidthCm']
# Standardization
scaler_standard = StandardScaler()
data standardized =
pd.DataFrame(scaler_standard.fit_transform(df[numeric_columns]),
columns=numeric columns)
# Display the first few rows of standardized data
print("Standardized Data:")
print(data_standardized.head())
# Normalization(MinMax Scaling)
scaler minmax = MinMaxScaler()
data normalized =
pd.DataFrame(scaler_minmax.fit_transform(df[numeric_columns]),
columns=numeric columns)
# Display the first few rows of normalized data
print("\nNormalized Data:")
print(data normalized.head())
```

St	Standardized Data:						
	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm			
Θ	-0.900681	1.032057	-1.341272	-1.312977			
1	-1.143017	-0.124958	-1.341272	-1.312977			
2	-1.385353	0.337848	-1.398138	-1.312977			
3	-1.506521	0.106445	-1.284407	-1.312977			
4	-1.021849	1.263460	-1.341272	-1.312977			
No	Normalized Data:						
	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm			
Θ	0.222222	0.625000	0.067797	0.041667			
1	0.166667	0.416667	0.067797	0.041667			
2	0.111111	0.500000	0.050847	0.041667			
3	0.083333	0.458333	0.084746	0.041667			
4	0.194444	0.666667	0.067797	0.041667			
Pr	ocess finished	with exit code	Θ				

4. Data Preparation for ML:

• Split the dataset into training and testing sets (e.g., 80% for training, 20% for testing).

```
from DataLoading import df
from sklearn.model_selection import train_test_split
# Features and target variable
X = df.drop(columns=['Species']) # Features
Y = df['Species'] # Target Variable
# Split the dataset into training and testing sets(80% training, 20% testing)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=42)
# Display the shape of the training and testing sets
print("Shape of X_train:", X_train.shape)
print("Shape of Y_test:", X_test.shape)
print("Shape of Y_train:", Y_train.shape)
print("Shape of Y_test:", Y_test.shape)
```

Output:-

```
Shape of X_train: (120, 5)
Shape of X_test: (30, 5)
Shape of Y_train: (120,)
Shape of Y_test: (30,)
```

• Ensure the data is in the appropriate format for the ML algorithms (e.g., arrays, matrices).

```
# Convert the data to arrays or matrices

X_train_array = X_train.values

X_test_array = X_test.values

Y_train_array = Y_train.values

Y_test_array = Y_test.values

# Display the type and shape of the array

print("Type of X_train_array:", type(X_train_array))

print("Shape of Y_train_array:", X_train_array.))

print("Type of Y_train_array:", type(Y_train_array))

print("Shape of Y_train_array:", X_train_array.shape)
```

Output:-

```
Type of X_train_array: <class 'numpy.ndarray'>
Shape of X_train_array: (120, 5)
Type of Y_train_array: <class 'numpy.ndarray'>
Shape of Y_train_array: (120, 5)
```

Submitted By,

Name- Shankar Singh Mahanty Regd. No.- 2101020758 Roll No.- CSE21238 Group- 3 Sem- 5th Branch- CSE