PSALTer results panel $\iiint \int (\frac{1}{6} \left(-4 t_{.3} \mathcal{A}^{\alpha_{i}}_{\phantom{\alpha_{i}}} \mathcal{A}^{\theta_{i}}_{\phantom{\beta_{i}}} + 6 \mathcal{A}^{\alpha \beta \chi} \right. \sigma_{\alpha \beta \chi} \\ + 6 \mathcal{A}^{\alpha \beta}_{\phantom{\alpha_{i}}} \tau (\Delta + \mathcal{K})_{\alpha \beta} \\ + 8 t_{.3} \mathcal{A}^{\theta_{i}}_{\phantom{\alpha_{i}}} \partial_{i} \mathcal{A}^{\alpha_{i}}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{i} \mathcal{A}^{\theta_{i}}_{\phantom{\beta_{i}}} \partial^{i} \mathcal{A}^{\alpha \beta}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{i} \mathcal{A}^{\theta_{i}}_{\phantom{\beta_{i}}} \partial^{i} \mathcal{A}^{\alpha \beta}_{\phantom{\alpha_{i}}} - 8 t_{.3} \mathcal{A}^{\theta_{i}}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} + 4 t_{.3} \partial_{i} f^{\theta}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} + 4 t_{.3} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} + 4 t_{.3} \partial_{i} f^{\alpha}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} + 4 t_{.3} \partial_{i} f^{\alpha}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} + 4 t_{.3} \partial_{i} f^{\alpha}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}^{\beta_{i}}_{\phantom{\beta_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} - 3 r_{.3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial^{i} f^{\alpha}_{\phantom{\alpha_{i}}} \partial^{i} f^$ $4r_{.2}\partial_{\beta}\mathcal{A}_{,\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} - 24r_{.3}\partial_{\beta}\mathcal{A}_{,\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} - 2r_{.2}\partial_{,}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} + 2r_{.2}\partial_{\theta}\mathcal{A}_{\alpha\beta\prime}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} - 4r_{.2}\partial_{\theta}\mathcal{A}_{\alpha\prime\beta}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} + 6r_{.5}\partial_{,}\mathcal{A}_{\theta\kappa\kappa\alpha\phantom{\alpha\beta$ $6r_{5}\partial_{\theta}\mathcal{A}_{,\kappa}^{\kappa}\partial^{\theta}\mathcal{R}_{\alpha}^{\alpha} + 4t_{2}\mathcal{A}_{,\theta\alpha}\partial^{\theta}f^{\alpha} + 2t_{2}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\alpha}f_{,\theta}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\beta}f_{\alpha}\partial^{\theta}f^{\alpha} + t_{2}\partial_{\theta}f_{\alpha}\partial^{\theta}f^{\alpha} - t_{2}\partial_{\theta}f^{\alpha}\partial^{\theta}f^{\alpha} - t_{2}\partial_{$ $2t. \mathcal{A}_{\alpha_{l}\theta_{l}}(\mathcal{A}^{\alpha_{l}\theta_{l}}+2\partial^{\theta}f^{\alpha_{l}}) - 6r. \partial_{\alpha}\mathcal{A}^{\alpha_{l}\theta_{l}}\partial_{\kappa}\mathcal{A}^{\kappa}_{l\theta_{l}\theta_{l}}+12r. \partial^{\theta}\mathcal{A}^{\alpha_{l}}\partial_{\kappa}\mathcal{A}^{\kappa}_{l\theta_{l}\theta_{l}}+6r. \partial_{\alpha}\mathcal{A}^{\alpha_{l}\theta_{l}}\partial_{\kappa}\mathcal{A}^{\kappa}_{\theta_{l}\theta_{l}}-12r. \partial^{\theta}\mathcal{A}^{\alpha_{l}}\partial_{\kappa}\mathcal{A}^{\kappa}_{\theta_{l}\theta_{l}}))[t, x, y, z] dz dy dx dt$ **Wave operator**

t_{3} -i $\sqrt{2} kt_{3}$ 0

	J	3													
^{0,+} <i>f</i> †	$i\sqrt{2} kt$.	$2k^{2}t$.	0	0											
0.+ f [⊥] †	0	0	0	0											
⁰ -̂ A [∥] †	0	0	0	$k^2 r_{.} + t_{.}$	${}^{1^+}_{\cdot}\mathcal{F}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}\!\!/^{\!\bot}{}_{\alpha\beta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{\alpha}$	$^{1}\mathcal{A}_{lpha}^{}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\scriptscriptstyle \perp}$				
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 (2r. + r.) +$	$-\frac{2t}{3}$ $\frac{\sqrt{2}t}{3}$	$\frac{1}{3} i \sqrt{2} kt.$	0	0	0	0				
				$^{1^{+}}\mathcal{H}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	$\frac{\sqrt{2}\ t_{\cdot}}{3}$	$\frac{t}{2}$	$\frac{ikt.}{2}$	0	0	0	0				
				$\overset{1^+}{\cdot}f^{\parallel} \stackrel{\alpha\beta}{\dagger}$	$-\frac{1}{3}i\sqrt{2}kt$	$\frac{1}{2} \frac{1}{3} ikt.$	~	0	0	0	0				
				$^{1}\mathcal{H}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_{.3}}{2} + r_{.3}\right) + \frac{2t_{.3}}{3}$	$-\frac{\sqrt{2}\ t_{3}}{3}$	0	$-\frac{2}{3}ikt$.				
				$\frac{1}{2}\mathcal{H}^{\perp} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2}\ t.}{3}$	$\frac{t}{3}$ 3	0	$\frac{1}{3}i\sqrt{2}kt.$				
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0				
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{2ikt.}{3}$	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2k^2t}{3}$	$^{2^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$-\frac{3k^2r}{2}$	0	0	
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0	
Saturated propagator															
	0+ "	0+ "	0+	0- "											

 $0^{+} \tau^{\parallel} \uparrow \left| \frac{i \sqrt{2} k}{(1 + 2k^{2})^{2} t_{3}} \frac{2k^{2}}{(1 + 2k^{2})^{2} t_{3}} \right| 0 \qquad 0$

0. ⁺ τ [⊥] †	0	0	0	0							
⁰⁻ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$\overset{1,^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	$1^+_\cdot \tau^{\parallel}{}_{\alpha\beta}$	$^{1}\sigma^{\parallel}_{\alpha}$	$\overset{1}{\cdot}\sigma^{{}^{\perp}}{}_{\alpha}$	$1^{-} \tau^{\parallel}_{\alpha}$	1- _{τ'α}
				$^{1^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2 (2r.+r.)}_{3}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r.+r.)\atop 3}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r.+r.)\atop 3}$	0	0	0	0
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle \perp} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_1+r_2)\atop 3}$	$\frac{3k^2(2r.+r.)+2t.}{(k+k^3)^2(2r.+r.)t.}$	$\frac{i(3k^2(2r.+r.)+2t.)}{k(1+k^2)^2(2r.+r.)t.}$	0	0	0	0
				1^+ τ^{\parallel} $\dagger^{\alpha\beta}$	i √2	$-\frac{i\left(3k^{2}\left(2r.+r.\right)+2t.\right)}{k\left(1+k^{2}\right)^{2}\left(2r.+r.\right)t.}_{3}^{2}$	$3k^{2}(2r_{1}+r_{1})+2t_{2}$	0	0	0	0
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2}{k^2 (r.+2r.)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r.+2r.)\atop 3}$	0	$\frac{4i}{k(1+2k^2)(r.+2r.)\atop 3}$
				$\frac{1}{2}\sigma^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_1+2r_2)}$	$\frac{3k^2(r_1+2r_1)+4t_1}{(k+2k^3)^2(r_1+2r_1)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r.+2r.)+4t.)}{k(1+2k^2)^2(r.+2r.)t.}$
				$1^{-}\tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0
				$\frac{1}{2}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r.+2r.)}$	$-\frac{i\sqrt{2}(3k^2(r.+2r.)+4t.)}{k(1+2k^2)^2(r.+2r.)t3}$	0	$\frac{6 k^2 (r.+2r.)+8t.}{(1+2 k^2)^2 (r.+2r.)t.}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$
											2^+ τ^{\parallel} † $^{\alpha\beta}$
											2^{-} $\alpha \parallel + \alpha \beta \chi$

Spin-parity form	Cova

Source constraints

Spin-parity form	Covariant form	Multiplicities
0. ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$-2 \bar{i} k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{1}{2 i k \frac{1}{2} \sigma^{\perp}^{\alpha} + \frac{1}{2} \tau^{\perp}^{\alpha} == 0}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1}{2} \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i} k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$2 \sigma^{\parallel \alpha \beta \chi} == 0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} +$	5
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = =$	
	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \beta}_{\delta}$	
$2^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}$	

21

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{t}{r} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

Pole residue: $\left| -\frac{14}{r_3} + \frac{57}{2r_3 + r_5} - \frac{216}{r_3 + 2r_5} > 0 \right|$

Polarisations:	2
Unitarity (conditions

 $r_{2} < 0 \&\& t_{2} > 0 \&\& ((r_{3} < 0 \&\& (r_{5} < -\frac{r_{3}}{2} || r_{5} > -2 r_{3})) || (r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{2}))$