

---

**HYDROGEOLOGIC, WATER-QUALITY,  
STREAMFLOW, BOTTOM-SEDIMENT ANALYSES,  
AND BIOLOGICAL DATA NEAR THE WAYNE  
COUNTY LANDFILL, WAYNE COUNTY,  
TENNESSEE**

---

**Prepared by the  
U.S. GEOLOGICAL SURVEY**

**in cooperation with the  
TENNESSEE DEPARTMENT OF ENVIRONMENT  
AND CONSERVATION,  
DIVISION OF SUPERFUND**



| <b>Report Documentation Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                     | Form Approved<br>OMB No. 0704-0188       |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------------|----------------------------------|
| Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. |                                    |                                     |                                          |                                  |
| 1. REPORT DATE<br><b>1992</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. REPORT TYPE<br><b>N/A</b>       | 3. DATES COVERED<br><b>-</b>        |                                          |                                  |
| 4. TITLE AND SUBTITLE<br><b>Hydrogeologic, Water-Quality, Streamflow, Bottom-Sediment Analyses, and Biological, Data Near the Wayne County Landfill, Wayne County, Tennessee</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                     | 5a. CONTRACT NUMBER                      |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 5b. GRANT NUMBER                         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 5c. PROGRAM ELEMENT NUMBER               |                                  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                     | 5d. PROJECT NUMBER                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 5e. TASK NUMBER                          |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 5f. WORK UNIT NUMBER                     |                                  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br><b>U.S. Department of the Interior 1849 C Street, NW Washington, DC 20240</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                     | 8. PERFORMING ORGANIZATION REPORT NUMBER |                                  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                     | 10. SPONSOR/MONITOR'S ACRONYM(S)         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 11. SPONSOR/MONITOR'S REPORT NUMBER(S)   |                                  |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT<br><b>Approved for public release, distribution unlimited</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                                     |                                          |                                  |
| 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                     |                                          |                                  |
| 14. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                     |                                          |                                  |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                     |                                          |                                  |
| 16. SECURITY CLASSIFICATION OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     | 17. LIMITATION OF ABSTRACT<br><b>SAR</b> | 18. NUMBER OF PAGES<br><b>38</b> |
| a. REPORT<br><b>unclassified</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b. ABSTRACT<br><b>unclassified</b> | c. THIS PAGE<br><b>unclassified</b> |                                          |                                  |

**HYDROGEOLOGIC, WATER-QUALITY, STREAMFLOW,  
BOTTOM-SEDIMENT ANALYSES, AND BIOLOGICAL  
DATA NEAR THE WAYNE COUNTY LANDFILL,  
WAYNE COUNTY, TENNESSEE**

By Ferdinand Quiñones, A.D. Bradfield, and J.B. Wescott

---

**U.S. GEOLOGICAL SURVEY**

**Open-File Report 92-45**

**Prepared in cooperation with the  
TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION,  
DIVISION OF SUPERFUND**



**Nashville, Tennessee  
1992**

**U.S. DEPARTMENT OF THE INTERIOR  
MANUEL LUJAN, JR., Secretary**

**U.S. GEOLOGICAL SURVEY  
Dallas L. Peck, Director**

---

*For additional information  
write to:*

District Chief  
U.S. Geological Survey  
810 Broadway, Suite 500  
Nashville, Tennessee 37203

*Copies of this report can be  
purchased from:*

U.S. Geological Survey  
Books and Open-File Reports Section  
Federal Center  
Box 25425  
Denver, Colorado 80225

## CONTENTS

|                            |    |
|----------------------------|----|
| Abstract                   | 1  |
| Introduction               | 1  |
| Data-collection activities | 3  |
| Test well construction     | 3  |
| Geophysical data           | 3  |
| Water-quality data         | 10 |
| Wells and seeps            | 10 |
| Surface-water sites        | 10 |
| Streamflow                 | 10 |
| Bottom-sediment analyses   | 10 |
| Biological data            | 11 |
| Selected references        | 11 |

## ILLUSTRATIONS

Figure 1-6. Maps showing location of:

1. Wayne County landfill 2
2. Test wells near the Wayne County landfill 4
3. Test wells near the Wayne County landfill from which samples were collected 5
4. Sites from which samples were collected and continuous-record gaging station at Banjo Branch 6
5. Sites from which bottom-sediment samples were collected 7
6. Sites from which biological samples were collected 8
7. Geophysical logs showing formations encountered near the Wayne County landfill 9

## TABLES

|                                                                                                                |    |
|----------------------------------------------------------------------------------------------------------------|----|
| Table 1. Identification data for wells and surface-water sampling sites near the Wayne County landfill         | 12 |
| 2. Construction and water-level data for wells near the Wayne County landfill, September 13, 1988              | 13 |
| 3. Water-quality data for selected wells near the Wayne County landfill                                        | 14 |
| 4. Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989 | 17 |
| 5. Daily mean discharge of Banjo Branch near Waynesboro, Tennessee (03594164)                                  | 20 |
| 6. Analyses of bottom-sediment samples collected from two sites near the Wayne County landfill, July 1989      | 21 |

7. Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989      22
8. Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989      28
9. Species of fish, number of organisms, and species richness from six sites near the Wayne County landfill, July 1989      32

### **CONVERSION FACTORS, VERTICAL DATUM, AND ABBREVIATED WATER-QUALITY UNITS**

| <i>Multiply</i>                            | <i>By</i> | <i>To obtain</i>       |
|--------------------------------------------|-----------|------------------------|
| foot (ft)                                  | 0.3048    | meter                  |
| cubic foot per second (ft <sup>3</sup> /s) | 0.02832   | cubic meter per second |
| square mile (mi <sup>2</sup> )             | 2.590     | square kilometer       |
| gallon per minute<br>(gal/min)             | 0.06309   | liter per second       |

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}\text{F} = 1.8 \times ^{\circ}\text{C} + 32$$

---

*Sea level:* In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

### **ABBREVIATED WATER-QUALITY UNITS USED ON TABLES**

|       |                             |
|-------|-----------------------------|
| deg C | degrees Celsius             |
| mg/L  | milligrams per liter        |
| μg/L  | micrograms per liter        |
| μg/kg | micrograms per kilogram     |
| μS/cm | microsiemens per centimeter |

# **HYDROGEOLOGIC, WATER-QUALITY, STREAMFLOW, BOTTOM-SEDIMENT ANALYSES, AND BIOLOGICAL DATA NEAR THE WAYNE COUNTY LANDFILL, WAYNE COUNTY, TENNESSEE**

By Ferdinand Quiñones, A.D. Bradfield, and J.B. Wescott

## **ABSTRACT**

*This report summarizes the data collected as part of a hydrogeologic investigation to determine the effects of the Wayne County landfill on local water quality. The investigation was conducted from 1988 through 1989 by the U.S. Geological Survey in cooperation with the Tennessee Department of Health and Environment, Division of Superfund.*

*The landfill was closed in November 1984 after allegations that contaminants from the landfill were affecting the quality of water from domestic wells in the Banjo Branch-Hardin Hollow valley. Test well construction data; water-quality data for selected wells, seeps, and surface-water sites; streamflow data from Banjo Branch; analyses of bottom-sediment samples; and biological data for the study area are documented in this report.*

## **INTRODUCTION**

The Wayne County landfill (fig. 1) is located on a ridgeline about 6 miles southwest of the city of Waynesboro (Wayne County) in south-central Tennessee. The landfill operated from August 1976 through November 1984. It was closed by the Tennessee Department of Health and Environment (TDHE) (*Tennessee Department of Environment and Conservation as of 1991*) because of allegations that contaminants from the landfill were affecting the quality of water from domestic wells in the Banjo Branch-Hardin Hollow valley. A preliminary study conducted by TDHE in 1987 showed that barium and methyl-ethyl ketones were present in leachate discharging from the landfill (Moss, 1987). A further study conducted by Garman and Fischer (1988) showed that shallow domestic wells in the valley are hydraulically connected to the landfill. On October 19, 1988, the landfill was classified as an "inactive hazardous-substances site" by the Solid Waste Control Board of TDHE (T. Moss, oral commun., 1988).

The preliminary studies conducted in 1987 and 1988 included only surface-soil and water samples. The migration of contaminated leachate from the landfill to streams in the valley and to the shallow and deep ground-water systems in the area was not defined. Landfills and other waste sites containing toxic materials



Figure 1.--Location of the Wayne County landfill.

occur throughout Tennessee (Broshears, 1988) in areas such as Wayne County, where limestone rocks, sinkholes, and other karst features predominate. Federal, State, and local agencies were interested in further studies that could provide data essential for future regulatory activities.

The U.S. Geological Survey (USGS), as part of its water-resources investigations programs in Tennessee, conducts studies designed to define the hydrogeology of karst areas. The data from these studies can be used to better understand the processes governing surface-water and ground-water-flow systems at similar hydrologic settings in other states. Accordingly, in 1988, the USGS, in cooperation with the TDHE, Division of Superfund, initiated a comprehensive investigation of the hydrogeology near the Wayne County landfill. This report summarizes the data collected during the study.

## DATA-COLLECTION ACTIVITIES

Data-collection activities during the project included the following:

1. Drilling of 16 shallow and deep wells.
2. Geophysical testing of the boreholes.
3. Development and testing of each well for determination of specific capacity and other aquifer properties.
4. Collection and analyses of water samples from each well drilled during the project, and from streams and seeps near the landfill.
5. Collection and analyses of samples of fish, benthic macroinvertebrates, and algae from the streams receiving leachate from the landfill.
6. Measurement of continuous discharge at a site on Banjo Branch downgradient from the landfill.
7. Collection and analyses of bottom-sediment samples at two sites.

The sites at which data were collected are shown in figures 1 through 6 and described in tables 1 through 9 (in back of report).

### Test Well Construction

Sixteen test wells were drilled from March through June 1988. The wells were located on the ridge near the landfill and in Hardin Hollow (fig. 2). An air-rotary rig was used to drill a 9.25-inch-diameter borehole to within 10 feet of the target depth interval. After installation of nominal 6-inch-diameter galvanized steel casing, the annular space was cemented to land surface. The wells were completed by drilling a 5.75-inch-diameter borehole to total depth, and were left as open holes below the bottom of the casing. Well development was completed with air lifting, and water levels were measured as soon as hydraulic heads achieved equilibrium. The total depth, depth to water upon completion, the formations at which screens were installed, and other characteristics of each well are summarized in table 2.

### Geophysical Data

Geophysical logs were obtained from each well using a borehole geophysical logger. Logs were obtained to determine natural gamma, fluid resistivity, temperature, and caliper. A sample plot from one



Figure 2.--Location of test wells near the Wayne County landfill.



#### EXPLANATION

- TEST WELL AND NUMBER

Figure 3.--Location of test wells near the Wayne County landfill from which samples were collected.



#### EXPLANATION

$\triangle^{17}$  STREAM SITE AND NUMBER

$\blacktriangle^{28}$  CONTINUOUS-RECORD GAGING  
STATION AND NUMBER

Figure 4.--Location of sites from which samples were collected and continuous-record gaging station at Banjo Branch.



#### EXPLANATION

$\triangle^{18}$  STREAM SITE AND  
NUMBER

Figure 5.--Location of sites from which bottom-sediment samples were collected.



Figure 6.--Location of sites from which biological samples were collected.



Figure 7.--Geophysical logs showing formations encountered near the Wayne County landfill. (From Miller, 1974.)

of the logs is shown in figure 7. The geophysical data are not published in this report because of its volume; the data can be inspected at the USGS offices in Nashville.

### **Water-Quality Data**

Water samples were collected from selected test wells with submersible pumps and bailers according to methods described by Wershaw and others (1987). Surface-water grab samples were collected at selected sites on creeks and seeps draining the ridge according to methods described by Skougstad and others (1979). Field determinations were made of the pH, specific conductance, temperature, and alkalinity of each sample. The samples were analyzed at the USGS National Water Quality laboratory in Arvada, Colorado, using methods described by Skougstad and others (1979), and Britton and Greeson (1987). Determinations were made for principal anions and cations, nutrients, trace metals, and selected organic compounds.

### ***Wells and Seeps***

Water samples were collected from wells drilled on the ridge (wells 1-5), and selected wells in the valley downgradient from the landfill (wells 6, 7, 10, 11, 13, and 16) (fig. 3). However, because of relatively low specific-capacity values and extreme depth to water of wells on the ridge, only one casing volume was removed before the samples were collected. At least three casing volumes were removed before collection of samples from wells in the valley. The results of the chemical and physical analyses of the samples are summarized in table 3.

### ***Surface-water Sites***

Surface-water samples were collected from sites 17 through 20 and 22 through 29 (fig. 4) during June 1988 and July 1989. Samples were collected twice at most of the sites. Results of the analyses are summarized in table 4.

### **Streamflow**

Continuous-streamflow data were collected from May 1988 to December 1988, and from April 1989 to September 1989 at Banjo Branch just upstream from its confluence with Hog Creek (fig. 4). The streamflow data are summarized in table 5.

### **Bottom-Sediment Analyses**

Bottom-sediment samples were collected from a seep that forms Moser Branch (site 18, fig. 5), and from the sediment-retention pond downslope from the landfill (site 24, fig. 5). The sediment samples were analyzed for organic compounds, including chlorinated pesticides and polychlorinated biphenyls (PCB's). The results of the analyses are summarized in table 6.

## Biological Data

Benthic invertebrate samples were collected in June 1988 from eight sites and in July 1989 from six of the previous sites (fig. 6). Samples of fish and algal communities were collected in July 1989 at six of the eight sites. The benthic invertebrate samples were collected with a 210-micron mesh according to methods described by Britton and Greeson (1987). The fish samples were collected using a backpack electric fishing unit. The benthic macroinvertebrate and the algae samples were analyzed at Austin Peay State University. The fish tissue analyses were performed by the Mississippi State Chemical Laboratory. Tissue samples from whole fish were analyzed for occurrence and concentration of organochlorine pesticides and gross PCB's. Non-quantitative algal samples were collected by scrapping rocks from streambeds. All organisms were identified to species whenever possible.

The results of the benthic invertebrate analyses, including species determinations and the Shannon-Weaver diversity index (Shannon and Weaver, 1949) are summarized in table 7. The results of the analyses of the algal populations, including species and percent of relative abundance, are summarized in table 8. The results of the fish sampling and analyses are summarized in table 9.

## REFERENCES CITED

- Britton, L.J., and Greeson, P.E., eds., 1987, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, chapt. A4, p. 53-67.
- Broshears, R.E., 1988, Ground-water quality: Tennessee, *in* National Water Summary 1986: U.S. Geological Survey Water-Supply Paper 2325, p. 465-472.
- Garman, P.M., and Fischer, F.T., 1988, A landfill/ground-water contamination case study, *in* Proceedings of the Second Conference on Environmental Problems in Karst Terranes and Their Solutions: Dublin, Ohio, Association of Ground-Water Scientists and Engineers, p. 143-158.
- Miller, R.A., 1974, The geologic history of Tennessee: Tennessee Division of Geology Bulletin 74, 63 p.
- Moss, T.A., 1987, Site inspection report/hazard ranking, Wayne County landfill/Hardin Hollow, Waynesboro, Tennessee: Tennessee Department of Health and Environment, Division of Superfund.
- Shannon, C.E., and Weaver, W., 1949, The mathematical theory of communication: Urbana, Ill., University of Illinois Press, 125 p.
- Skoustad, M.W., Fishman, M.J., Friedman, L.C., Erdmann, D.E., and Duncan, S.S., eds., 1979, Methods for determination of inorganic substances in water and fluvial sediment: Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 5, chapt. A1, 626 p.
- Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., eds., 1987, Methods for the determination of organic substances in water and fluvial sediments: Techniques of Water Resources Investigations of the U.S. Geological Survey, Book 5, chapt. A3, 80 p.

**Table 1.--Identification data for wells and surface-water sampling sites near the Wayne County landfill**

| Test well number (see fig. 2) or stream name and site number (see fig. 4) | U.S. Geological Survey identification number |
|---------------------------------------------------------------------------|----------------------------------------------|
| 1                                                                         | *351408087474001                             |
| 2                                                                         | 351407087474101                              |
| 3                                                                         | 351420087474001                              |
| 4                                                                         | 351420087474101                              |
| 5                                                                         | 351420087474201                              |
| 6                                                                         | 351526087490601                              |
| 7                                                                         | 351526087490701                              |
| 8                                                                         | 351512087472701                              |
| 10                                                                        | 351525087490901                              |
| 11                                                                        | 351527087490701                              |
| 15                                                                        | 351527087482301                              |
| 9                                                                         | 351512087472701                              |
| 16                                                                        | 351310087492401                              |
| 12                                                                        | 351522087480701                              |
| 13                                                                        | 351521087480901                              |
| 14                                                                        | 351520087481101                              |
| Downing Branch, site 17                                                   | <sup>b</sup> 035941368                       |
| Moser Branch (at headwaters), site 18                                     | 035941378                                    |
| Moser Branch, site 19                                                     | 03594138                                     |
| Moser Branch, site 20                                                     | 035941386                                    |
| Hog Creek, site 22                                                        | 035941634                                    |
| Mill Branch, site 23                                                      | 035941635                                    |
| Sediment-retention pond, site 24                                          | 035941636                                    |
| Banjo Branch tributary, site 25                                           | 035941637                                    |
| Banjo Branch tributary, site 26                                           | 035941638                                    |
| Banjo Branch, site 27                                                     | 035941639                                    |
| Banjo Branch near Waynesboro, site 28                                     | 03594164                                     |
| Moser Branch (at county road bridge), site 29                             | 03594139                                     |

<sup>a</sup> Station numbers provide a unique 15-digit number for each well, based on geographic location. The first 6 digits denote degrees, minutes, and seconds of latitude; the next 7 digits denote degrees, minutes, and seconds of longitude; and the last 2 digits, assigned sequentially, identify the well within a 1-second grid.

<sup>b</sup> A "downstream order" system is used to identify surface-water stations. The complete number of each station such as 03594139..., which appears just to the left of the station name, includes the 2-digit part number "03" plus the multi-digit downstream order number "594139..." This downstream numbering system is used in most cases; however, in some cases latitude and longitude numbers are assigned to hydrologic stations and partial-record stations as a means of identification.

Table 2.--Construction and water-level data for wells near the Wayne County landfill, September 13, 1988

[-, elevation of water above land surface; gal/min/ft, gallons per minute per foot; --, no data available]

| Test well number | Depth of well, in feet below land surface | Depth of casing, in feet below land surface | Column of open hole, in feet | Depth to water, in feet below land surface | Approximate specific capacity, in gal/min/ft | Formations to which well is open (Miller, 1974)                           |
|------------------|-------------------------------------------|---------------------------------------------|------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|
| 1                | 320                                       | 230                                         | 90                           | 214.09                                     | --                                           | Decatur Limestone, Brownsport Formation, Dixson Formation, Lego Limestone |
| 2                | 195                                       | 108                                         | 87                           | 95.64                                      | 0.03                                         | Fort Payne Formation (upper and lower members)                            |
| 3                | 400                                       | 246                                         | 154                          | 202.20                                     | --                                           | Brownsport Formation to Hermitage Formation                               |
| 4                | 203                                       | 157                                         | 46                           | 96.78                                      | 0.02                                         | Fort Payne Formation (lower member only)                                  |
| 5                | 140                                       | 93                                          | 47                           | 64.26                                      | 3.0                                          | Fort Payne Formation (upper member only)                                  |
| 6                | 40                                        | 23                                          | 17                           | 3.02                                       | 0.03                                         | Laurel Limestone, Osgood Formation                                        |
| 7                | 105                                       | 71                                          | 34                           | -4.30                                      | 0.10                                         | Mannie Shale, Fernvale Limestone, Hermitage Formation                     |
| 8                | 70                                        | 45                                          | 25                           | -4.16                                      | 1.6                                          | Brassfield Limestone                                                      |
| 10               | 70                                        | 45                                          | 25                           | -2.78                                      | 36.0                                         | Brassfield Limestone                                                      |
| 11               | 70                                        | 45                                          | 25                           | 2.13                                       | --                                           | Osgood Formation, Brassfield Limestone                                    |
| 15               | 70                                        | 39                                          | 31                           | 8.07                                       | --                                           | Osgood Formation, Brassfield Limestone                                    |
| 9                | 32                                        | 24                                          | 8                            | 13.68                                      | --                                           | Laurel Limestone                                                          |
| 16               | 66                                        | 49                                          | 17                           | 14.49                                      | 0.90                                         | Laurel Limestone, Osgood Formation                                        |
| 12               | 100                                       | 70                                          | 30                           | 25.84                                      | 0.01                                         | Brassfield Limestone, Mannie Shale, Fernvale Limestone                    |
| 13               | 51                                        | 40                                          | 11                           | 12.80                                      | 0.68                                         | Laurel Limestone, Osgood Formation                                        |
| 14               | 39                                        | 19                                          | 20                           | 12.52                                      | --                                           | Laurel Limestone                                                          |

Table 3.--Water-quality data for selected wells near the Wayne County landfill

[deg C, degrees Celsius;  $\mu\text{S}/\text{cm}$ , microsiemens per centimeter; IT, incremental titration; mg/L, milligrams per liter;  $\mu\text{g}/\text{L}$ , micrograms per liter; \*, measurement affected by water of hydration from grout around casing; <, below the level of detection, if present; noncarb, noncarbonate; fld., fluid]

| Test well number | Date     | Temper- ature water (deg C)                   | Color inum- ance cobalt) (units)                              | (plat- duct- ion) ( $\mu\text{S}/\text{cm}$ ) | Specific con- duct- ance field, lab (mg/L as CaCO <sub>3</sub> ) | Alka- linity lab, IT (mg/L as CaCO <sub>3</sub> ) | Alka- linity lab, IT (mg/L as CaCO <sub>3</sub> ) | pH, pH, (stand- ard units)                 | pH, pH, (stand- ard units)                   | Solids, residue at 180 deg. C        | Solids, sum of consti- tuents, dis- solved (mg/L) |                                         |                                        |
|------------------|----------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------------|----------------------------------------|
|                  |          |                                               |                                                               |                                               |                                                                  |                                                   |                                                   |                                            |                                              | (mg/L)                               | (mg/L)                                            |                                         |                                        |
| 1                | 06-21-89 | 16.5                                          | 5                                                             | 448                                           | 123                                                              | 113                                               | 8.85                                              | 8.40                                       | 286                                          | 274                                  |                                                   |                                         |                                        |
| 2                | 06-23-89 | 15.5                                          | 5                                                             | 322                                           | 130                                                              | 124                                               | 8.44                                              | 8.70                                       | 179                                          | 187                                  |                                                   |                                         |                                        |
| 3                | 06-21-89 | 16.5                                          | 5                                                             | 683                                           | 69                                                               | 66                                                | 7.76                                              | 8.10                                       | 512                                          | 474                                  |                                                   |                                         |                                        |
| 4                | 06-23-89 | 16.0                                          | 5                                                             | 818                                           | 196*                                                             | 90                                                | 11.37*                                            | 10.80*                                     | 365                                          | 395                                  |                                                   |                                         |                                        |
| 5                | 06-22-89 | 15.5                                          | 5                                                             | 70                                            | 26                                                               | 27                                                | 6.23                                              | 6.60                                       | 28                                           | 43                                   |                                                   |                                         |                                        |
| 6                | 06-21-89 | 16.0                                          | 5                                                             | 298                                           | 116                                                              | 103                                               | 8.35                                              | 8.30                                       | 178                                          | 162                                  |                                                   |                                         |                                        |
| 7                | 06-21-89 | 16.0                                          | 15                                                            | 1,500                                         | 280                                                              | 230                                               | 8.62                                              | 8.70                                       | 929                                          | 958                                  |                                                   |                                         |                                        |
| 10               | 06-20-89 | 16.0                                          | 5                                                             | 369                                           | 112                                                              | 116                                               | 7.83                                              | 7.90                                       | 229                                          | 214                                  |                                                   |                                         |                                        |
| 11               | 06-20-89 | 15.0                                          | 5                                                             | 244                                           | 100                                                              | 100                                               | 8.04                                              | 8.10                                       | 137                                          | 138                                  |                                                   |                                         |                                        |
| 13               | 06-21-89 | 14.5                                          | 5                                                             | 501                                           | 178                                                              | 175                                               | 7.60                                              | 7.70                                       | 274                                          | 285                                  |                                                   |                                         |                                        |
| 16               | 06-22-89 | 15.0                                          | 5                                                             | 1,070                                         | 81                                                               | 83                                                | 8.11                                              | 8.00                                       | 787                                          | 735                                  |                                                   |                                         |                                        |
| Test well number |          | Hard- ness total (mg/L as CaCO <sub>3</sub> ) | Hard- ness noncarb dissolved fld. as CaCO <sub>3</sub> (mg/L) | Calcium dissolved (mg/L as Ca)                | Magnesium, dissolved (mg/L as Mg)                                | Sodium, dissolved (mg/L as Na)                    | Potas- sium, dissolved (mg/L as K)                | Chlo- ride, dissolved (mg/L as Cl)         | Sulfate dissolved (mg/L as SO <sub>4</sub> ) | Fluo- ride, dissolved (mg/L as F)    | Silica, dis- solved (mg/L as SiO <sub>2</sub> )   | Manga- nese, dis- solved (mg/L as Mn)   | Mercury total recoverable (mg/L as Hg) |
|                  |          |                                               |                                                               |                                               |                                                                  |                                                   |                                                   |                                            |                                              |                                      |                                                   |                                         |                                        |
| 1                | 150      | 26                                            | 30                                                            | 18                                            | 32                                                               | 5.9                                               | 3.9                                               | 110                                        | 0.40                                         | 6.3                                  | 5                                                 | <0.10                                   |                                        |
| 2                | 100      | 0                                             | 23                                                            | 11                                            | 28                                                               | 2.6                                               | 5.6                                               | 34                                         | .30                                          | 8.1                                  | 13                                                | <.10                                    |                                        |
| 3                | 350      | 0                                             | 120                                                           | 11                                            | 4.1                                                              | 1.1                                               | 1.7                                               | 290                                        | .10                                          | 6.3                                  | 27                                                | <.10                                    |                                        |
| 4                | 110      | 0                                             | 41                                                            | 1.7                                           | 100                                                              | 13                                                | 140                                               | 36                                         | .20                                          | 8.8                                  | <1                                                | <.10                                    |                                        |
| 5                | 30       | 4                                             | 8.1                                                           | 2.3                                           | 1.9                                                              | .10                                               | 3.8                                               | 2                                          | .10                                          | 8.4                                  | 28                                                | <.10                                    |                                        |
| 6                | 120      | 4                                             | 30                                                            | 11                                            | 10                                                               | 2                                                 | 10                                                | 31                                         | .20                                          | 6.4                                  | 25                                                | <.10                                    |                                        |
| 7                | 89       | 0                                             | 16                                                            | 12                                            | 280                                                              | 3.8                                               | 58                                                | 440                                        | 2.7                                          | 7.9                                  | 4                                                 | <.10                                    |                                        |
| 10               | 170      | 62                                            | 50                                                            | 12                                            | 4.4                                                              | 1.2                                               | 2.9                                               | 66                                         | .20                                          | 8                                    | 8                                                 | <.10                                    |                                        |
| 11               | 120      | 19                                            | 36                                                            | 7                                             | 1.7                                                              | .90                                               | 2.1                                               | 23                                         | .10                                          | 7.2                                  | 1                                                 | <.10                                    |                                        |
| 13               | 230      | 220                                           | 66                                                            | 17                                            | 10                                                               | 2                                                 | 11                                                | 66                                         | .10                                          | 7.7                                  | 15                                                | <.10                                    |                                        |
| 16               | 350      | 270                                           | 68                                                            | 44                                            | 85                                                               | 3.7                                               | 2                                                 | 450                                        | 1.1                                          | 10                                   | 13                                                | <.10                                    |                                        |
| Test well number |          | Nickel, total recoverable (mg/L as Ni)        | Silver, total recoverable (mg/L as Ag)                        | Zinc, total recoverable (mg/L as Zn)          | Anti- mony, total recoverable (mg/L as Sb)                       | Beryl- lium, total recoverable (mg/L as Be)       | Cadmium, total recoverable (mg/L as Cd)           | Chro- mium, total recoverable (mg/L as Cr) | Copper, total recoverable (mg/L as Cu)       | Iron, total recoverable (mg/L as Fe) | Lead, total recoverable (mg/L as Pb)              | Di- chloro- bromo- methane (mg/L as Se) |                                        |
|                  |          |                                               |                                                               |                                               |                                                                  |                                                   |                                                   |                                            |                                              |                                      |                                                   |                                         |                                        |
| 1                | 2        | <1                                            | 3,300                                                         | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 6                                            | 5                                    | 29                                                | <1                                      | <3                                     |
| 2                | 5        | <1                                            | 170                                                           | 1                                             | 1                                                                | <10                                               | <1                                                | <1                                         | 6                                            | 4                                    | 6                                                 | 17                                      | <3                                     |
| 3                | <1       | <1                                            | 360                                                           | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 2                                            | 110                                  | 1                                                 | <1                                      | <3                                     |
| 4                | 3        | <1                                            | 6,100                                                         | 1                                             | 1                                                                | <10                                               | <1                                                | 11                                         | 18                                           | 4                                    | 300                                               | 1                                       | <3                                     |
| 5                | 3        | <1                                            | 130                                                           | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 4                                            | 9                                    | 2                                                 | <1                                      | <3                                     |
| 6                | <1       | <1                                            | 2,400                                                         | 1                                             | 1                                                                | <10                                               | <1                                                | <1                                         | 2                                            | 7                                    | 8                                                 | <1                                      | <3                                     |
| 7                | <1       | <1                                            | 9,800                                                         | 2                                             | 2                                                                | <10                                               | <1                                                | <1                                         | 4                                            | 9                                    | 8                                                 | <1                                      | <3                                     |
| 10               | <1       | <1                                            | 90                                                            | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 2                                            | 67                                   | 2                                                 | <1                                      | <3                                     |
| 11               | 3        | <1                                            | 20                                                            | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 4                                            | 11                                   | 3                                                 | <1                                      | <3                                     |
| 13               | <1       | <1                                            | 30                                                            | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 2                                            | 280                                  | 1                                                 | <1                                      | <3                                     |
| 16               | 1        | <1                                            | 790                                                           | <1                                            | <1                                                               | <10                                               | <1                                                | <1                                         | 4                                            | 8                                    | 4                                                 | <1                                      | <3                                     |

Table 3.--Water-quality data for selected wells near the Wayne County landfill--Continued

| Test<br>well<br>number | Carbon-<br>tetra-<br>chloro-<br>ride           |             | 1,2-Di-<br>chloro-<br>ethane  |             | Bromo-<br>form                                  |             | bromo-<br>methane            |             | Chloro-<br>form                        |             | Toluene                       |             | Benzene                               | Xylene      | Chloro-<br>benzene                      | Chloro-<br>ethane   | Ethyl-<br>benzene             | Methyl-<br>bromide |                     |
|------------------------|------------------------------------------------|-------------|-------------------------------|-------------|-------------------------------------------------|-------------|------------------------------|-------------|----------------------------------------|-------------|-------------------------------|-------------|---------------------------------------|-------------|-----------------------------------------|---------------------|-------------------------------|--------------------|---------------------|
|                        | total                                          | recoverable | total                         | recoverable | total                                           | recoverable | total                        | recoverable | total                                  | recoverable | total                         | recoverable | ( $\mu\text{g/L}$ )                   | total       | recoverable                             | ( $\mu\text{g/L}$ ) | total                         | recoverable        | ( $\mu\text{g/L}$ ) |
| 1                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | 22                           | <3          | <3                                     | <3          | <3                            | <3          | 4                                     | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 2                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | 5.3         | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 3                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 4                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | 5.5                                    | <3          | 8.1                           | <3          | <3                                    | <3          | <3                                      | 3.6                 | <3                            | <3                 | <3                  |
| 5                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | 11          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 6                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 7                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 10                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 11                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 13                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 16                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| <hr/>                  |                                                |             |                               |             |                                                 |             |                              |             |                                        |             |                               |             |                                       |             |                                         |                     |                               |                    |                     |
| Test<br>well<br>number | Methyl-<br>ene<br>chloro-<br>ride              |             | Tetra-<br>chloro-<br>ethylene |             | Tri-<br>chloro-<br>methane                      |             | 1,1-Di-<br>chloro-<br>ethane |             | 1,1-Di-<br>chloro-<br>ethyl-<br>ethane |             | Tri-<br>chloro-<br>ethane     |             | 1,1,2-<br>Tetra-<br>chloro-<br>ethane |             | 1,1,2,2-<br>Tetra-<br>chloro-<br>ethane |                     | 1,2-Di-<br>chloro-<br>propane |                    |                     |
|                        | total                                          | recoverable | total                         | recoverable | total                                           | recoverable | total                        | recoverable | total                                  | recoverable | total                         | recoverable | total                                 | recoverable | total                                   | recoverable         | total                         | recoverable        | total               |
| 1                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 2                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 3                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 4                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 5                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 6                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 7                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 10                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 11                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 13                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 16                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <3                                    | <3          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| <hr/>                  |                                                |             |                               |             |                                                 |             |                              |             |                                        |             |                               |             |                                       |             |                                         |                     |                               |                    |                     |
| Test<br>well<br>number | 2-<br>Chloro-<br>1,3-Di-<br>chloro-<br>propene |             | 1,3-Di-<br>chloro-<br>benzene |             | Di-<br>chloro-<br>1,4-Di-<br>chloro-<br>benzene |             | Trans-<br>chloro-<br>benzene |             | Cis-<br>chloro-<br>benzene             |             | 1,3-Di-<br>chloro-<br>methane |             | 1,3-Di-<br>chloro-<br>propene         |             | Per-<br>thane                           | Vinyl<br>chloride   | Tri-<br>chloro-<br>ethylene   |                    |                     |
|                        | total                                          | recoverable | total                         | recoverable | total                                           | recoverable | total                        | recoverable | total                                  | recoverable | total                         | recoverable | total                                 | recoverable | total                                   | recoverable         | ( $\mu\text{g/L}$ )           | total              | recoverable         |
| 1                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <0.1                                  | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 2                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 3                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 4                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 5                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 6                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 7                      | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.5                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 10                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 11                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 13                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |
| 16                     | <3                                             | <3          | <3                            | <3          | <3                                              | <3          | <3                           | <3          | <3                                     | <3          | <3                            | <3          | <.1                                   | <1          | <3                                      | <3                  | <3                            | <3                 | <3                  |

Table 3.--Water-quality data for selected wells near the Wayne County landfill--Continued

| Test<br>well<br>number | Naph-<br>tha-<br>lenes<br>poly,<br>chlor- |                     |                     |                     |                         |                     |                     |                     |                     |                     |                     |                     | Tox-<br>aphene,<br>chlor,  |                     |                     |
|------------------------|-------------------------------------------|---------------------|---------------------|---------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|
|                        | Aldrin,                                   | Lindane             | Dane,               | DDD,                | DDE,                    | DDT,                | Di-                 | Endo-               | Endrin,             | total               | total               | total               | total                      | total               | total               |
|                        | total                                     | total               | total               | total               | total                   | total               | eldrin              | sulfan,             | total               | total               | total               | total               | total                      | total               | total               |
|                        | recoverable                               | recoverable         | recoverable         | recoverable         | recoverable             | recoverable         | recoverable         | recoverable         | recoverable         | recoverable         | recoverable         | recoverable         | recoverable                | recoverable         | recoverable         |
|                        | ( $\mu\text{g/L}$ )                       | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ )     | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ )        | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) |
| 1                      | <0.10                                     | <0.010              | <0.010              | <0.1                | <0.010                  | <0.010              | <0.010              | <0.010              | <0.010              | <0.010              | <0.010              | <1                  | <0.010                     |                     |                     |
| 2                      | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 3                      | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 4                      | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 5                      | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 6                      | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 7                      | <.50                                      | <.050               | <.050               | <.5                 | <.050                   | <.050               | <.050               | <.050               | <.050               | <.050               | <.050               | <5                  | <.050                      |                     |                     |
| 10                     | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 11                     | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 13                     | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| 16                     | <.10                                      | <.010               | <.010               | <.1                 | <.010                   | <.010               | <.010               | <.010               | <.010               | <.010               | <.010               | <1                  | <.010                      |                     |                     |
| <hr/>                  |                                           |                     |                     |                     |                         |                     |                     |                     |                     |                     |                     |                     |                            |                     |                     |
| Test<br>well<br>number | Hepta-<br>chlor-<br>epoxide               |                     |                     |                     | Meth-<br>oxy-<br>chlor, |                     |                     | PCB,                |                     | Mirex,              | Styrene             |                     | 1,2-<br>Dibromo-<br>ethane |                     |                     |
|                        | total                                     | recoverable         | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | total                   | total               | ( $\mu\text{g/L}$ ) | total               | ( $\mu\text{g/L}$ ) | total               | recoverable         | ( $\mu\text{g/L}$ ) | total                      | recoverable         | ( $\mu\text{g/L}$ ) |
| 1                      | <0.010                                    | <0.01               |                     | <0.1                | <0.01                   | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 2                      | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 3                      | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 4                      | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 5                      | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 6                      | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 7                      | <.050                                     | <.05                |                     | <.5                 | <.05                    | <.05                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 10                     | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 11                     | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 13                     | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |
| 16                     | <.010                                     | <.01                |                     | <.1                 | <.01                    | <.01                |                     | <3                  |                     | <3                  |                     |                     |                            |                     |                     |

**Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989**

[--, indicates no data; <, less than detection limit, if present;  $\mu\text{S}/\text{cm}$  microsiemens per centimeter; deg C, degrees Celsius; mg/L, milligrams per liter;  $\mu\text{g}/\text{L}$ , micrograms per liter; IT, incremental titration]

| Site number | Date     | Spe-                                                                    | Spe-                                | Hard- | Magne- | Potas- | Alka- |     |     |     |     |      |     |
|-------------|----------|-------------------------------------------------------------------------|-------------------------------------|-------|--------|--------|-------|-----|-----|-----|-----|------|-----|
|             |          | specific<br>streamflow,<br>instantan-<br>eous, in<br>feet per<br>second | specific<br>conduct-<br>ance, field |       |        |        |       |     |     |     |     |      |     |
| 17          | 07-13-89 | --                                                                      | 120                                 | 145   | 7.31   | 7.70   | 21    | 69  | 23  | 2.7 | 1.2 | 0.80 | 62  |
| 18          | 07-11-89 | --                                                                      | 380                                 | 392   | 7.27   | 7.50   | 21    | 110 | 37  | 4.7 | 25  | 9.2  | 134 |
| 19          | 06-29-88 | <0.01                                                                   | --                                  | 51    | 7.10   | 7.20   | 23.5  | 19  | 5.2 | 1.4 | 1.8 | .80  | 16  |
| 20          | 06-29-88 | .08                                                                     | --                                  | 61    | 7.60   | 7.20   | 26.0  | 26  | 7.3 | 1.8 | 1.4 | .60  | 23  |
| 22          | 06-30-88 | .52                                                                     | --                                  | 84    | 7.40   | 7.40   | 22.0  | 38  | 11  | 2.4 | 1.1 | .80  | 35  |
| 22          | 07-12-89 | --                                                                      | --                                  | 68    | 7.33   | 7.30   | 23.5  | 28  | 7.9 | 1.9 | 1.1 | 2.0  | 27  |
| 23          | 06-30-88 | .93                                                                     | --                                  | 83    | 8.10   | 7.60   | --    | 39  | 12  | 2.2 | 1.0 | .40  | 37  |
| 23          | 07-12-89 | --                                                                      | 50                                  | 51    | 7.55   | 7.40   | 22    | 21  | 6.0 | 1.4 | .90 | .50  | 19  |
| 24          | 06-30-88 | --                                                                      | --                                  | 62    | 7.40   | 6.70   | 26.5  | 23  | 6.1 | 1.9 | 1.5 | 1.8  | 19  |
| 24          | 07-13-89 | --                                                                      | 50                                  | 48    | 6.22   | 6.50   | 23    | 16  | 4.6 | 1.2 | 1.4 | 1.5  | 14  |
| 25          | 06-29-88 | .20                                                                     | --                                  | 70    | 7.90   | 7.40   | 21.5  | 30  | 8.4 | 2.2 | 1.1 | .30  | 29  |
| 26          | 06-30-88 | .24                                                                     | --                                  | 82    | 7.65   | 7.50   | 20.5  | 36  | 10  | 2.6 | 1.2 | .40  | 37  |
| 26          | 07-12-89 | --                                                                      | 50                                  | 49    | 7.34   | 7.60   | 20.5  | 21  | 6.0 | 1.5 | 1.3 | .90  | 18  |
| 27          | 06-28-88 | .27                                                                     | --                                  | 140   | 7.10   | 7.10   | 15.5  | 69  | 22  | 3.4 | 1.1 | .70  | 67  |
| 27          | 07-12-89 | --                                                                      | 121                                 | 118   | 7.56   | 7.60   | 17    | 57  | 19  | 2.2 | 1.1 | 1.0  | --  |
| 28          | 06-28-88 | .32                                                                     | --                                  | 102   | 8.05   | 7.90   | 19.5  | 65  | 21  | 3.0 | 1.3 | .60  | 66  |
| 29          | 07-13-89 | --                                                                      | 70                                  | 86    | 7.65   | 7.80   | 21    | 38  | 12  | 1.9 | 1.1 | .50  | 34  |

  

| Site number | Date     | Alka-<br>linity,<br>lab, IT<br>(mg/L<br>as<br>CaCO <sub>3</sub> ) | Sulfate,<br>dis-<br>solved<br>(mg/L<br>as SO <sub>4</sub> ) | Chlo-<br>ride,<br>dis-<br>solved<br>(mg/L<br>as Cl) | Fluo-<br>ride,<br>dis-<br>solved<br>(mg/L<br>as F) | Silica,<br>dis-<br>solved<br>(mg/L<br>as SiO <sub>2</sub> ) | Solids,<br>residue<br>at 180<br>deg. C | Solids,<br>sum of<br>consti-<br>tuents | Solids,<br>dis-<br>solved<br>(mg/L) | Color<br>(plat-<br>inum-<br>cobalt<br>units) | Nitro-<br>gen,<br>nitrite<br>plus<br>nitrate<br>ammonia<br>total<br>recov-<br>erable<br>(mg/L<br>as N) | Nitro-<br>gen,<br>nitrite<br>ammonia<br>total<br>recov-<br>erable<br>(mg/L<br>as N) | Nitro-<br>phorus,<br>ammonia,<br>ortho-<br>total<br>recov-<br>erable<br>(mg/L<br>as NH <sub>4</sub> ) | Phos-<br>phorus,<br>ortho-<br>total<br>recov-<br>erable<br>(mg/L<br>as P) |
|-------------|----------|-------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|             |          |                                                                   |                                                             |                                                     |                                                    |                                                             |                                        |                                        |                                     |                                              |                                                                                                        |                                                                                     |                                                                                                       |                                                                           |
| 17          | 07-13-89 | 63                                                                | 8.0                                                         | 1.0                                                 | 0.10                                               | 8.3                                                         | 85                                     | --                                     | 10                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    | --                                                                        |
| 18          | 07-11-89 | 128                                                               | 6.0                                                         | 32                                                  | .10                                                | 6.0                                                         | 236                                    | --                                     | 75                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    | --                                                                        |
| 19          | 06-29-88 | 16                                                                | 3.0                                                         | 3.3                                                 | < .10                                              | 8.3                                                         | 34                                     | 33                                     | < 5                                 | 0.070                                        | 0.020                                                                                                  | 0.03                                                                                | 0.020                                                                                                 |                                                                           |
| 20          | 06-29-88 | 22                                                                | 3.0                                                         | 2.6                                                 | < .10                                              | 8.3                                                         | 38                                     | 38                                     | 5                                   | .040                                         | .020                                                                                                   | .03                                                                                 | .020                                                                                                  |                                                                           |
| 22          | 06-30-88 | 32                                                                | 5.0                                                         | 2.2                                                 | < .10                                              | 7.7                                                         | 48                                     | 50                                     | 5                                   | .220                                         | .020                                                                                                   | .03                                                                                 | .030                                                                                                  |                                                                           |
| 22          | 07-12-89 | 22                                                                | 7.0                                                         | 1.3                                                 | .10                                                | 8.2                                                         | 38                                     | --                                     | 18                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |
| 23          | 06-30-88 | 35                                                                | 3.0                                                         | 1.8                                                 | < .10                                              | 8.1                                                         | 52                                     | 50                                     | 5                                   | .100                                         | .020                                                                                                   | .03                                                                                 | .100                                                                                                  |                                                                           |
| 23          | 07-12-89 | 17                                                                | 6.0                                                         | 1.0                                                 | .10                                                | 8.0                                                         | 41                                     | --                                     | 10                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |
| 24          | 06-30-88 | 17                                                                | 6.0                                                         | 2.6                                                 | < .10                                              | 1.1                                                         | 44                                     | 31                                     | 5                                   | < .020                                       | .010                                                                                                   | .01                                                                                 | .030                                                                                                  |                                                                           |
| 24          | 07-13-89 | 14                                                                | 5.0                                                         | 1.0                                                 | .10                                                | 7.1                                                         | 31                                     | --                                     | 380                                 | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |
| 25          | 06-29-88 | 28                                                                | 2.0                                                         | 2.3                                                 | < .10                                              | 7.9                                                         | 46                                     | 41                                     | 5                                   | .050                                         | .020                                                                                                   | .03                                                                                 | .030                                                                                                  |                                                                           |
| 26          | 06-30-88 | 34                                                                | 3.0                                                         | 2.2                                                 | < .10                                              | 8.1                                                         | 54                                     | 48                                     | 5                                   | .060                                         | .030                                                                                                   | .04                                                                                 | .070                                                                                                  |                                                                           |
| 26          | 07-12-89 | 13                                                                | 7.0                                                         | 1.2                                                 | .10                                                | 8.0                                                         | 35                                     | --                                     | 15                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |
| 27          | 06-28-88 | 62                                                                | 5.0                                                         | 2.2                                                 | < .10                                              | 7.7                                                         | 106                                    | 79                                     | 5                                   | < .020                                       | .030                                                                                                   | .04                                                                                 | .080                                                                                                  |                                                                           |
| 27          | 07-12-89 | 49                                                                | 9.0                                                         | 0.80                                                | .10                                                | 8.0                                                         | 79                                     | --                                     | 32                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |
| 28          | 06-28-88 | 47                                                                | 3.0                                                         | 4.0                                                 | < .10                                              | 7.5                                                         | 114                                    | 69                                     | 5                                   | < .020                                       | .010                                                                                                   | .01                                                                                 | .260                                                                                                  |                                                                           |
| 29          | 07-13-89 | 32                                                                | 8.0                                                         | 0.70                                                | < .10                                              | 8.4                                                         | 58                                     | --                                     | 20                                  | --                                           | --                                                                                                     | --                                                                                  | --                                                                                                    |                                                                           |

**Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989--Continued**

| Site number | Date     | Phos-                      | Carbon,        | Arsenic,      | Barium,      | Boron,      | Iron,        | Lead,        | Lithium,     | Manga-       | Stron-       | Beryl-       |      |    |
|-------------|----------|----------------------------|----------------|---------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|------|----|
|             |          | phate, organic             | total          | total         | total        | dis-        | dis-         | dis-         | nese,        | tium,        | Mercury,     | lum,         |      |    |
|             |          | total                      | total          | total         | solved       | solved      | solved       | solved       | solved       | solved       | solved       | total        |      |    |
|             |          | (mg/L as PO <sub>4</sub> ) | (mg/L as C)    | (μg/L as As)  | (μg/L as Ba) | (μg/L as B) | (μg/L as Fe) | (μg/L as Pb) | (μg/L as Li) | (μg/L as Mn) | (μg/L as Sr) | (μg/L as Hg) |      |    |
|             |          | recov-                     | recov-         | recov-        | recov-       | recov-      | recov-       | recov-       | recov-       | recov-       | recov-       | recov-       |      |    |
|             |          | erable                     | erable         | erable        | erable       | erable      | erable       | erable       | erable       | erable       | erable       | erable       |      |    |
| 17          | 07-13-89 | --                         | --             | <1            | --           | --          | 24           | --           | --           | 12           | --           | --           | <10  |    |
| 18          | 07-11-89 | --                         | --             | <1            | --           | --          | 50           | --           | --           | 670          | --           | --           | <10  |    |
| 19          | 06-29-88 | 0.06                       | 1.6            | --            | <100         | <20         | 30           | <5           | <10          | <10          | 10           | 0.3          | --   |    |
| 20          | 06-29-88 | .06                        | 1.9            | --            | <100         | <20         | 30           | <5           | <10          | <10          | 10           | .2           | --   |    |
| 22          | 06-30-88 | .09                        | 2.8            | --            | <100         | <20         | 30           | <5           | <10          | <10          | 130          | .3           | --   |    |
| 22          | 07-12-89 | --                         | --             | <1            | --           | --          | 32           | --           | --           | 7            | --           | --           | <10  |    |
| 23          | 06-30-88 | .31                        | 1.2            | --            | <100         | <20         | 30           | <5           | <10          | <10          | 90           | .3           | --   |    |
| 23          | 07-12-89 | --                         | --             | <1            | --           | --          | 32           | --           | --           | 4            | --           | --           | <10  |    |
| 24          | 06-30-88 | .09                        | 6.2            | --            | <100         | --          | 30           | 50           | <5           | <10          | <10          | 30           | .2   | -- |
| 24          | 07-13-89 | --                         | --             | 1             | --           | --          | 380          | --           | --           | 500          | --           | --           | <10  |    |
| 25          | 06-29-88 | .09                        | --             | --            | <100         | <20         | <10          | <5           | <10          | 10           | 50           | <.1          | --   |    |
| 26          | 06-30-88 | .21                        | 1.5            | --            | <100         | <20         | 10           | <5           | <10          | 10           | 80           | .4           | --   |    |
| 26          | 07-12-89 | --                         | --             | <1            | --           | --          | 32           | --           | --           | 16           | --           | --           | <10  |    |
| 27          | 06-28-88 | .25                        | 8.2            | --            | <100         | <20         | <10          | <5           | <10          | 30           | 140          | .4           | --   |    |
| 27          | 07-12-89 | --                         | --             | <1            | --           | --          | 33           | --           | --           | 31           | --           | --           | <10  |    |
| 28          | 06-28-88 | .80                        | --             | --            | <100         | <20         | 30           | <5           | <10          | 30           | 130          | .2           | --   |    |
| 29          | 07-13-89 | --                         | --             | <1            | --           | --          | 68           | --           | --           | 21           | --           | --           | <10  |    |
| <hr/>       |          |                            |                |               |              |             |              |              |              |              |              |              |      |    |
| Site number | Date     | Chro-                      | Cadmium, mium, | Copper, Lead, | Mercury,     | Nickel,     | Sele-        | Silver,      | Zinc,        | Anti-        | Naphtha-     |              |      |    |
|             |          | Cadmium,                   | total total    | total total   | total total  | total total | nium,        | total total  | total total  | mony,        | lene, poly-  |              |      |    |
|             |          | total                      | (μg/L as Cd)   | total         | (μg/L as Cr) | total       | total        | total        | total        | total        | chlor.       |              |      |    |
|             |          | recov-                     | recov-         | recov-        | recov-       | recov-      | recov-       | recov-       | recov-       | recov-       | total        |              |      |    |
|             |          | erable                     | erable         | erable        | erable       | erable      | erable       | erable       | erable       | erable       | total        |              |      |    |
| 17          | 07-13-89 | <1                         | <1             | 3             | <1           | <0.10       | <1           | <1           | <10          | <1           | <0.1         | <0.10        |      |    |
| 18          | 07-11-89 | <1                         | 2              | 20            | 7            | <.10        | 2            | <1           | 220          | <1           | <.1          | <.10         |      |    |
| 19          | 06-29-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 20          | 06-29-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 22          | 06-30-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 22          | 07-12-89 | 1                          | 1              | 3             | 4            | <.10        | 3            | <1           | <1           | 40           | <1           | <.1          | <.10 |    |
| 23          | 06-30-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 23          | 07-12-89 | <1                         | <1             | 2             | 1            | <.10        | 5            | <1           | <1           | <10          | <1           | <.1          | <.10 |    |
| 24          | 06-30-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 24          | 07-13-89 | <1                         | 6              | 2             | 4            | <.10        | 7            | <1           | <1           | 70           | <1           | <.1          | <.10 |    |
| 25          | 06-29-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 26          | 06-30-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 26          | 07-12-89 | <1                         | <1             | 2             | 2            | <.10        | 1            | <1           | <1           | 40           | <1           | <.1          | <.10 |    |
| 27          | 06-28-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 27          | 07-12-89 | <1                         | 30             | 3             | 1            | <.10        | 3            | <1           | <1           | <10          | <1           | <.1          | <.10 |    |
| 28          | 06-28-88 | --                         | --             | --            | --           | --          | --           | --           | --           | --           | --           | --           |      |    |
| 29          | 07-13-89 | <1                         | 1              | 2             | 1            | <.10        | 5            | <1           | <1           | <10          | <1           | <.1          | <.10 |    |

**Table 4.--Water-quality data for selected surface-water sites near the Wayne County landfill, June 1988 and July 1989--Continued**

| Site number | Date     | Aldrin, Lindane, total |        | Chlor-dane, total |        | DDD, total  |        | DDE, total  |        | DDT, total  |        | Di-eldrin, sulfan, total |        | Endo-Endrin, total |        | Tox-aphene, total |        | Hepta-chlor, total |        |
|-------------|----------|------------------------|--------|-------------------|--------|-------------|--------|-------------|--------|-------------|--------|--------------------------|--------|--------------------|--------|-------------------|--------|--------------------|--------|
|             |          | recoverable            | (µg/L) | recoverable       | (µg/L) | recoverable | (µg/L) | recoverable | (µg/L) | recoverable | (µg/L) | recoverable              | (µg/L) | recoverable        | (µg/L) | recoverable       | (µg/L) | recoverable        | (µg/L) |
| 17          | 07-13-89 | <0.010                 | <0.010 | <0.1              | <0.010 | <0.010      | <0.010 | <0.010      | <0.010 | <0.010      | <0.010 | <0.010                   | <0.010 | <0.010             | <1     | <0.010            | <0.010 |                    |        |
| 18          | 07-11-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 19          | 06-29-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 20          | 06-29-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 22          | 06-30-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 22          | 07-12-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 23          | 06-30-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 23          | 07-12-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 24          | 06-30-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 24          | 07-13-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 25          | 06-29-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 26          | 06-30-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 26          | 07-12-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 27          | 06-28-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 27          | 07-12-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |
| 28          | 06-28-88 | --                     | --     | --                | --     | --          | --     | --          | --     | --          | --     | --                       | --     | --                 | --     | --                | --     | --                 |        |
| 29          | 07-13-89 | < .010                 | < .010 | < .1              | < .010 | < .010      | < .010 | < .010      | < .010 | < .010      | < .010 | < .010                   | < .010 | < .010             | <1     | < .010            | < .010 |                    |        |

  

| Site number | Date     | Meth-oxy-chlor, total |        |             | PCB, total |             |        | Mirex, total |        |             |        |
|-------------|----------|-----------------------|--------|-------------|------------|-------------|--------|--------------|--------|-------------|--------|
|             |          | recoverable           | (µg/L) | recoverable | (µg/L)     | recoverable | (µg/L) | recoverable  | (µg/L) | recoverable | (µg/L) |
| 17          | 07-13-89 | <0.01                 | <0.1   | <0.01       | <0.01      | <0.01       | <0.01  | <0.01        | <0.01  | <0.01       | <0.01  |
| 18          | 07-11-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 19          | 06-29-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 20          | 06-29-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 22          | 06-30-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 22          | 07-12-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 23          | 06-30-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 23          | 07-12-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 24          | 06-30-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 24          | 07-13-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 25          | 06-29-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 26          | 06-30-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 26          | 07-12-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 27          | 06-28-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 27          | 07-12-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |
| 28          | 06-28-88 | --                    | --     | --          | --         | --          | --     | --           | --     | --          | --     |
| 29          | 07-13-89 | < .01                 | < .1   | < .01       | < .01      | < .01       | < .01  | < .01        | < .01  | < .01       | < .01  |

Table 5.--Daily mean discharge of Banjo Branch near Waynesboro, Tenn. (03594164)

[MAX, maximum; MIN, minimum; CFSM, cubic feet per square mile of drainage area; IN., inches; WY, water year]

| DAY                                                     | 1988               |       |      |                 |      |       |                 | 1989 |       |                         |       |       |       |       |
|---------------------------------------------------------|--------------------|-------|------|-----------------|------|-------|-----------------|------|-------|-------------------------|-------|-------|-------|-------|
|                                                         | MAY                | JUNE  | JULY | AUG             | SEPT | OCT   | NOV             | DEC  | APR   | MAY                     | JUNE  | JULY  | AUG   | SEPT  |
| 1                                                       | 0.66               | 0.50  | 0.30 | 0.24            | 0.22 | 0.56  | 0.26            | 0.51 | 1.1   | 0.84                    | 0.50  | 2.8   | 0.89  | 4.2   |
| 2                                                       | .60                | .51   | .36  | .26             | .21  | .40   | .26             | .49  | 1.0   | .67                     | .57   | 14    | .77   | 5.2   |
| 3                                                       | .57                | .49   | .33  | .33             | .23  | .28   | .23             | .48  | 2.2   | .66                     | .53   | 7.5   | .61   | 2.1   |
| 4                                                       | .65                | .46   | .29  | .23             | .29  | .25   | .81             | .46  | 44    | 1.2                     | .52   | 3.7   | .58   | 1.2   |
| 5                                                       | .59                | .47   | .26  | .22             | .24  | .23   | 1.1             | .43  | 9.7   | 2.8                     | .58   | 2.1   | .56   | .87   |
| 6                                                       | .52                | .48   | .24  | .25             | .23  | .23   | .40             | .43  | 5.4   | 1.5                     | .55   | 1.4   | .93   | .71   |
| 7                                                       | .53                | .50   | .15  | .28             | .19  | .24   | .33             | .45  | 5.8   | .96                     | .50   | 3.6   | .73   | .67   |
| 8                                                       | .52                | .40   | .17  | .26             | .17  | .23   | .34             | .44  | 4.7   | .86                     | .54   | 4.0   | .57   | .67   |
| 9                                                       | .53                | .41   | .17  | .24             | .16  | .22   | .30             | .44  | 3.4   | 1.0                     | .57   | 1.8   | .52   | .67   |
| 10                                                      | .48                | .42   | .16  | .25             | .17  | .25   | 1.1             | .41  | 2.4   | 1.0                     | .48   | 2.2   | .52   | .70   |
| 11                                                      | .47                | .39   | .21  | .26             | .25  | .27   | .46             | .41  | 1.8   | .81                     | .78   | 7.5   | .52   | .67   |
| 12                                                      | .47                | .39   | .36  | .26             | .23  | .26   | .44             | .40  | 1.5   | .73                     | .71   | 8.8   | .50   | .65   |
| 13                                                      | .42                | .37   | .72  | .29             | .22  | .28   | .59             | .42  | 1.4   | .71                     | 2.9   | 4.4   | .50   | 1.0   |
| 14                                                      | .42                | .37   | .26  | .27             | .21  | .28   | .39             | --   | 1.3   | .92                     | 4.2   | 2.2   | .51   | 1.4   |
| 15                                                      | .46                | .36   | .18  | .26             | .20  | .32   | .35             | --   | 1.3   | 1.2                     | 22    | 1.4   | .50   | .74   |
| 16                                                      | .56                | .35   | .17  | .24             | .88  | .39   | 1.0             | --   | 1.1   | .76                     | 5.6   | 1.2   | .50   | .71   |
| 17                                                      | .79                | .36   | .17  | .19             | .53  | .36   | .57             | --   | 1.1   | .69                     | 2.1   | 1.0   | 1.2   | .68   |
| 18                                                      | .49                | .33   | .17  | .14             | .26  | .46   | .41             | --   | 1.0   | .64                     | 1.2   | .83   | .71   | .67   |
| 19                                                      | .46                | .32   | .18  | .15             | .25  | .53   | .4              | --   | .98   | .65                     | 1.3   | 1.2   | .57   | .63   |
| 20                                                      | .46                | .32   | .19  | .19             | .25  | .52   | .3              | --   | .91   | .70                     | .99   | .87   | .54   | .63   |
| 21                                                      | .48                | .43   | .60  | .18             | .23  | .62   | .94             | --   | .88   | .70                     | .81   | .75   | .51   | .64   |
| 22                                                      | .90                | .45   | .26  | .17             | .22  | .59   | .50             | --   | .86   | .63                     | .69   | .68   | .52   | .89   |
| 23                                                      | 2.0                | .38   | .23  | .18             | .24  | .72   | .41             | --   | .84   | .74                     | .60   | .66   | .56   | .88   |
| 24                                                      | 3.8                | .36   | .21  | .18             | .45  | .74   | .36             | --   | .79   | .59                     | .56   | .78   | .58   | .66   |
| 25                                                      | 2.0                | .34   | .24  | .16             | .33  | .77   | .36             | --   | .77   | .57                     | .52   | .76   | .64   | 1.1   |
| 26                                                      | 1.0                | .33   | .24  | .15             | .25  | .86   | 15              | --   | .74   | .56                     | .49   | .62   | .77   | .90   |
| 27                                                      | .72                | .30   | .23  | .16             | .24  | .93   | 6.8             | --   | .73   | 1.7                     | .47   | .58   | .62   | .72   |
| 28                                                      | .67                | .30   | .21  | .46             | .24  | .3    | 2.0             | --   | .72   | .66                     | 4.4   | .58   | .54   | .89   |
| 29                                                      | .59                | .30   | .21  | .34             | .31  | .35   | .94             | --   | .68   | .58                     | 3.1   | .57   | .53   | 1.6   |
| 30                                                      | .57                | .27   | .22  | .24             | .28  | .26   | .68             | --   | .74   | .53                     | 3.1   | .55   | 3.4   | 7.9   |
| 31                                                      | .54                | ---   | .24  | .21             | ---  | .26   | --              | --   | ---   | .51                     | ---   | .62   | 2.0   | ---   |
| TOTALS                                                  | 23.92              | 11.66 | 7.93 | 7.24            | 8.18 | 13.96 | 45.03           | 5.77 | 99.84 | 27.07                   | 61.86 | 79.65 | 23.40 | 40.95 |
| MEAN                                                    | .77                | .39   | .26  | .23             | .27  | .45   | 1.50            | .44  | 3.33  | .87                     | 2.06  | 2.57  | .75   | 1.36  |
| MAX                                                     | 3.8                | .51   | .72  | .46             | .88  | 1.3   | 15              | .51  | 44    | 2.8                     | 22    | 14    | 3.4   | 7.9   |
| MIN                                                     | .42                | .27   | .15  | .14             | .16  | .22   | .23             | .40  | .68   | .51                     | .47   | .55   | .50   | .63   |
| CFSM                                                    | .36                | .18   | .12  | .11             | .13  | .21   | .70             | .21  | 1.56  | .41                     | .96   | 1.20  | .35   | .64   |
| IN.                                                     | .42                | .20   | .14  | .13             | .14  | .24   | .78             | .10  | 1.74  | .47                     | 1.08  | 1.38  | .41   | .71   |
| STATISTICS OF MONTHLY MEAN DATA WATER YEAR (WY) 1988-89 |                    |       |      |                 |      |       |                 |      |       |                         |       |       |       |       |
| MEAN                                                    | .77                | .39   | .26  | .23             | .27  | .45   | 1.50            | .44  | 3.33  | .82                     | 1.23  | 1.41  | .49   | .82   |
| MAX                                                     | .77                | .39   | .26  | .23             | .27  | .45   | 1.50            | .44  | 3.33  | .87                     | 2.06  | 2.57  | .75   | 1.36  |
| (WY)                                                    | 1988               | 1988  | 1988 | 1988            | 1988 | 1989  | 1989            | 1989 | 1989  | 1989                    | 1989  | 1989  | 1989  | 1989  |
| MIN                                                     | .77                | .39   | .26  | .23             | .27  | .45   | 1.50            | .44  | 3.33  | .77                     | .39   | .26   | .23   | .27   |
| (WY)                                                    | 1988               | 1988  | 1988 | 1988            | 1988 | 1989  | 1989            | 1989 | 1989  | 1988                    | 1988  | 1988  | 1988  | 1988  |
| SUMMARY STATISTICS                                      | 1988 CALENDAR YEAR |       |      | 1988 WATER YEAR |      |       | 1989 WATER YEAR |      |       | WATER YEARS 1988 - 1989 |       |       |       |       |
| ANNUAL TOTAL                                            | 123.69             |       |      | 58.93           |      |       | 399.23          |      |       | --                      |       |       |       |       |
| ANNUAL MEAN                                             | .54                |       |      | .39             |      |       | 1.55            |      |       | 1.11                    |       |       |       |       |
| HIGHEST ANNUAL MEAN                                     | --                 |       |      | --              |      |       | --              |      |       | 1.55                    |       |       |       |       |
| LOWEST ANNUAL MEAN                                      | --                 |       |      | --              |      |       | --              |      |       | .39                     |       |       |       |       |
| HIGHEST DAILY MEAN                                      | 15 (Nov 26)        |       |      | 3.8 (May 24)    |      |       | 44 (Apr 4)      |      |       | 44 (Apr 4) 1989         |       |       |       |       |
| LOWEST DAILY MEAN                                       | .14 (Aug 18)       |       |      | .14 (Aug 18)    |      |       | .22 (Oct 9)     |      |       | .14 (Aug 18) 1988       |       |       |       |       |
| ANNUAL 7-DAY MINIMUM                                    | .17 (Aug 21)       |       |      | .17 (Aug 21)    |      |       | .24 (Oct 4)     |      |       | .17 (Aug 21) 1988       |       |       |       |       |
| ANNUAL RUNOFF (CFSM)                                    | .25                |       |      | .18             |      |       | .72             |      |       | .52                     |       |       |       |       |
| ANNUAL RUNOFF (INCHES)                                  | 2.15               |       |      | 1.02            |      |       | 6.94            |      |       | 7.08                    |       |       |       |       |
| 10 PERCENT EXCEEDS                                      | .75                |       |      | 3.1             |      |       | 3.1             |      |       | 2.0                     |       |       |       |       |
| 50 PERCENT EXCEEDS                                      | .34                |       |      | .70             |      |       | .54             |      |       | .54                     |       |       |       |       |
| 90 PERCENT EXCEEDS                                      | .19                |       |      | .36             |      |       | .23             |      |       | .23                     |       |       |       |       |

Table 6.--Analyses of bottom-sediment samples collected from two sites near the Wayne County landfill, July 1989

[ $\mu\text{g}/\text{kg}$ , micrograms per kilograms]

| Site number | Date    | Chlor-                      |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             | Di-                         |                             |                             |                             |  |
|-------------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|
|             |         | PCN, total                  | Aldrin, total               | Lindane, total              | dane, total                 | DDD, total                  | DDE, total                  | DDT, total                  | eldrin, total               | sulfan, total               | Endrin, total               |                             |                             |                             |                             |                             |                             |  |
|             |         | recoverable                 |                             |                             |                             |                             |                             |                             |  |
|             |         | in bot-                     | tom ma-                     |  |
|             |         | tom ma-                     | terial                      | terial                      | terial                      | terial                      | terial                      | terial                      |  |
|             |         | ( $\mu\text{g}/\text{kg}$ ) |  |
| 18          | 7-11-89 | <1.0                        | <0.1                        | <0.1                        | <1.0                        | <0.1                        | <0.1                        | 0.3                         | <0.1                        | <0.1                        | <0.1                        |                             |                             |                             |                             |                             |                             |  |
| 24          | 7-13-89 | <1.0                        | <.1                         | <.1                         | <1.0                        | .1                          | .1                          | <.1                         | <.1                         | <.1                         | <.1                         |                             |                             |                             |                             |                             |                             |  |
| 24          | 7-13-89 | <1.0                        | <.1                         | <.1                         | <1.0                        | .3                          | .2                          | <.1                         | <.1                         | <.1                         | <.1                         |                             |                             |                             |                             |                             |                             |  |
| <hr/>       |         |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |  |
| Site number | Date    | Toxa-                       | Hepta-                      | Hepta-                      | Meth-                       | PCB,                        | Mirex                       | Per-                        |                             |                             |                             |                             |                             |                             |                             |                             |                             |  |
|             |         | phene,                      | heptachlor,                 | heptachlor,                 | methoxychlor,               |                             |                             |                             | total                       | recoverable                 | recoverable                 | in bot-                     |  |
|             |         | total                       | total                       | epoxide,                    | chlor,                      | total                       | total                       | thane                       |                             |                             |                             | tom ma-                     |  |
|             |         | recoverable                 | recoverable                 | recoverable                 | recoverable                 | recoverable                 | recoverable                 |                             | in bot-                     | in bot-                     | in bot-                     | terial                      | terial                      | terial                      | terial                      | terial                      | terial                      |  |
|             |         | in bot-                     | in bot-                     | in bottom                   | in bottom                   | in bottom                   | in bottom                   |                             | tom ma-                     | tom ma-                     | tom ma-                     | ( $\mu\text{g}/\text{kg}$ ) |  |
|             |         | tom ma-                     | tom ma-                     | material                    | material                    | material                    | material                    |                             | terial                      | terial                      | terial                      | ( $\mu\text{g}/\text{kg}$ ) |  |
|             |         | ( $\mu\text{g}/\text{kg}$ ) |                             |                             |                             |                             |                             |                             |  |
| 18          | 7-11-89 | <10                         | <0.1                        | <0.1                        | <0.1                        | <0.1                        | 9                           | <0.1                        | <1.00                       |                             |                             |                             |                             |                             |                             |                             |                             |  |
| 24          | 7-13-89 | <10                         | <.1                         | <.1                         | <.1                         | <.1                         | 13                          | .1                          | <1.00                       |                             |                             |                             |                             |                             |                             |                             |                             |  |
| 24          | 7-13-89 | <10                         | <.1                         | <.1                         | <.1                         | .1                          | 57                          | .1                          | <1.00                       |                             |                             |                             |                             |                             |                             |                             |                             |  |

This page was  
re-typed since it  
was not on disk.

**Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989**

[--, species not present]

| TAXA                                 | June 28, 1988        |                      | June 29, 1988        |                      | Banjo Branch tributary Site 25 |  |
|--------------------------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------|--|
|                                      | Banjo Branch Site 27 | Banjo Branch Site 28 | Moser Branch Site 19 | Moser Branch Site 20 |                                |  |
| <b>INSECTA</b>                       |                      |                      |                      |                      |                                |  |
| Ephemeroptera (mayflies)             |                      |                      |                      |                      |                                |  |
| <i>Baetis amplus</i>                 | --                   | --                   | 4                    | --                   | --                             |  |
| <i>Baetis tricaudatus</i>            | 20                   | --                   | --                   | --                   | --                             |  |
| <i>Caenis</i> species                | 16                   | 4                    | 4                    | --                   | --                             |  |
| <i>Stenonema</i> species             | --                   | 12                   | 4                    | --                   | --                             |  |
| <i>Tricorythodes</i> species         | --                   | 4                    | --                   | --                   | --                             |  |
| Plecoptera (stoneflies)              |                      |                      |                      |                      |                                |  |
| <i>Acroneuria</i> species            | 4                    | 2                    | --                   | --                   | --                             |  |
| <i>Paraleuctra</i> species           | 20                   | 20                   | 92                   | 32                   | 20                             |  |
| Trichoptera (caddisflies)            |                      |                      |                      |                      |                                |  |
| <i>Cheumatopsyche</i> species        | 56                   | 24                   | --                   | --                   | --                             |  |
| <i>Chimarra</i> species              | --                   | 8                    | --                   | --                   | --                             |  |
| <i>Hydropsyche</i> species           | --                   | 4                    | --                   | --                   | --                             |  |
| <i>Rhyacophila vagrita</i>           | --                   | 4                    | 4                    | --                   | --                             |  |
| <i>Trichoptera</i> pupae             | --                   | --                   | 4                    | --                   | --                             |  |
| Diptera (true flies)                 |                      |                      |                      |                      |                                |  |
| <i>Antocha</i> species               | --                   | 4                    | --                   | --                   | --                             |  |
| <i>Bezzia</i> species                | 4                    | --                   | --                   | --                   | --                             |  |
| <i>Chironomus</i> species            | 16                   | --                   | --                   | --                   | --                             |  |
| <i>Cryptochironomus</i> species      | 20                   | --                   | 28                   | 32                   | 20                             |  |
| <i>Eukiefferiella</i> species 1      | 12                   | --                   | 4                    | --                   | --                             |  |
| <i>Eukiefferiella</i> species 2      | 44                   | 4                    | --                   | 32                   | --                             |  |
| <i>Glyptotendipes</i> species        | 32                   | --                   | --                   | --                   | --                             |  |
| <i>Micropsectra</i> species          | 8                    | --                   | --                   | --                   | --                             |  |
| <i>Microtendipes</i> species         | 36                   | 28                   | --                   | --                   | 16                             |  |
| <i>Orthocladius</i> species          | 28                   | --                   | --                   | --                   | --                             |  |
| <i>Paralauterborniella</i> species   | --                   | --                   | 4                    | --                   | --                             |  |
| <i>Polypedilum</i> species 1         | --                   | --                   | --                   | 48                   | --                             |  |
| <i>Stictochironomus</i> species 1    | 4                    | --                   | --                   | --                   | 4                              |  |
| <i>Stictochironomus</i> species 2    | --                   | --                   | 12                   | 32                   | --                             |  |
| <i>Thienemanniella</i> species       | 68                   | --                   | --                   | --                   | --                             |  |
| <i>Thienemannimyia</i> species group | 48                   | 48                   | 48                   | 80                   | 12                             |  |
| <i>Tipula</i> species                | --                   | --                   | --                   | --                   | 4                              |  |
| <i>Tribelos</i> species              | 8                    | 12                   | 12                   | 128                  | 4                              |  |
| <i>Trissopelopia</i> species         | 16                   | 16                   | 4                    | --                   | --                             |  |
| <i>Zavrelimyia</i> species           | 88                   | --                   | 8                    | 48                   | 4                              |  |
| <i>Chironomidae</i> pupae            | 12                   | 4                    | --                   | --                   | --                             |  |
| Coleoptera (beetles)                 |                      |                      |                      |                      |                                |  |
| <i>Bidessini</i> species             | 20                   | --                   | 8                    | --                   | --                             |  |
| <i>Dubiraphia</i> species            | --                   | 4                    | --                   | --                   | --                             |  |
| <i>Optioservus</i> species           | 16                   | 120                  | --                   | --                   | --                             |  |
| <i>Psephenus herricki</i>            | --                   | 20                   | --                   | --                   | 4                              |  |
| <i>Stenelmis</i> species             | --                   | --                   | 4                    | --                   | --                             |  |

Table 7.--*Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued*

| TAXA                                            | June 28, 1988        |                      | June 29, 1988        |                      | Banjo Branch tributary Site 25 |
|-------------------------------------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------|
|                                                 | Banjo Branch Site 27 | Banjo Branch Site 28 | Moser Branch Site 19 | Moser Branch Site 20 |                                |
| <b>Hemiptera (true bugs)</b>                    |                      |                      |                      |                      |                                |
| <i>Trepobates</i> species                       | 2                    | --                   | 4                    | --                   | --                             |
| <b>Odonata (dragonflies and damselflies)</b>    |                      |                      |                      |                      |                                |
| <i>Argia</i> species                            | --                   | 1                    | --                   | --                   | --                             |
| <i>Gomphus</i> species                          | --                   | --                   | --                   | 16                   | --                             |
| <i>Ophiogomphus</i> species                     | 4                    | 12                   | --                   | --                   | --                             |
| <i>Stylogomphus</i> species                     | 8                    | --                   | 16                   | --                   | 4                              |
| <b>Megloptera (alderflies and dobson flies)</b> |                      |                      |                      |                      |                                |
| <i>Nigronia</i> species                         | 28                   | 55                   | 4                    | --                   | --                             |
| <b>HYDRACARINA (water mites)</b>                |                      |                      |                      |                      |                                |
|                                                 | --                   | 4                    | --                   | --                   | --                             |
| <b>CRUSTACEA</b>                                |                      |                      |                      |                      |                                |
| <b>Isopoda (sow bugs)</b>                       |                      |                      |                      |                      |                                |
| <i>Lirceus</i> species                          | 4                    | 20                   | --                   | --                   | 4                              |
| <b>Amphipoda (sideswimmers)</b>                 |                      |                      |                      |                      |                                |
| <i>Gammarus minus</i>                           | 132                  | 5                    | --                   | --                   | --                             |
| <b>Decapoda (crayfish)</b>                      |                      |                      |                      |                      |                                |
| <i>Orconectes compressus</i>                    | 3                    | 11                   | 9                    | 3                    | 5                              |
| <b>MOLLUSCA</b>                                 |                      |                      |                      |                      |                                |
| <b>Gastropoda (snails)</b>                      |                      |                      |                      |                      |                                |
| <i>Somatogyrus</i> species                      | 12                   | --                   | 4                    | --                   | --                             |
| <b>OLIGOCHAETA (worms)</b>                      |                      |                      |                      |                      |                                |
| <i>Tubificidae</i>                              | 36                   | 5                    | --                   | --                   | --                             |
| <b>TOTAL NUMBER OF ORGANISMS</b>                | <b>825</b>           | <b>455</b>           | <b>281</b>           | <b>451</b>           | <b>101</b>                     |
| <b>NUMBER OF TAXA</b>                           | <b>31</b>            | <b>26</b>            | <b>20</b>            | <b>10</b>            | <b>12</b>                      |
| <b>SHANNON-WEAVER DIVERSITY VALUES</b>          | <b>4.31</b>          | <b>3.80</b>          | <b>3.36</b>          | <b>2.95</b>          | <b>3.22</b>                    |

**Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued**

| TAXA                                 | June 30, 1988        |                        |                                      | July 12, 1988             |                                                       |
|--------------------------------------|----------------------|------------------------|--------------------------------------|---------------------------|-------------------------------------------------------|
|                                      | Hog Creek<br>Site 22 | Mill Branch<br>Site 23 | Banjo Branch<br>tributary<br>Site 26 | Downing Branch<br>Site 17 | Moser Branch<br>(at county<br>road bridge)<br>Site 29 |
| <b>INSECTA</b>                       |                      |                        |                                      |                           |                                                       |
| Ephemeroptera (mayflies)             |                      |                        |                                      |                           |                                                       |
| <i>Baetis amplus</i>                 | 8                    | --                     | 8                                    | --                        | 1                                                     |
| <i>Baetis pygmaeus</i>               | 64                   | --                     | --                                   | 29                        | --                                                    |
| <i>Baetis tricaudatus</i>            | --                   | --                     | --                                   | --                        | 5                                                     |
| <i>Caenis</i> species                | 32                   | --                     | --                                   | 6                         | --                                                    |
| <i>Ephemerella</i> species           | --                   | --                     | --                                   | --                        | 1                                                     |
| <i>Isonychia</i> species             | --                   | 8                      | --                                   | 3                         | 6                                                     |
| <i>Stenonema</i> species             | 8                    | 20                     | 8                                    | 24                        | 12                                                    |
| <i>Tricorythodes</i> species         | --                   | 8                      | --                                   | 4                         | --                                                    |
| Plecoptera (stoneflies)              |                      |                        |                                      |                           |                                                       |
| <i>Acroneuria</i> species            | 24                   | 24                     | 18                                   | --                        | 4                                                     |
| <i>Paraleuctra</i> species           | 288                  | 20                     | 48                                   | 28                        | 1                                                     |
| Trichoptera (caddisflies)            |                      |                        |                                      |                           |                                                       |
| <i>Cheumatopsyche</i> species        | 24                   | 32                     | 16                                   | 7                         | 4                                                     |
| <i>Chimarra</i> species              | 24                   | 12                     | --                                   | --                        | 3                                                     |
| <i>Hydropsyche frisoni</i>           | 8                    | 4                      | --                                   | --                        | --                                                    |
| <i>Hydropsyche</i> species           | --                   | --                     | --                                   | --                        | 1                                                     |
| Diptera (true flies)                 |                      |                        |                                      |                           |                                                       |
| <i>Antocha</i> species               | 8                    | 4                      | --                                   | 10                        | --                                                    |
| <i>Atherix</i> species               | 48                   | --                     | --                                   | 13                        | --                                                    |
| <i>Bezzia</i> species                | 8                    | --                     | --                                   | --                        | --                                                    |
| <i>Chironomus</i> species            | --                   | 4                      | --                                   | --                        | --                                                    |
| <i>Cricotopus</i> species            | --                   | --                     | --                                   | 3                         | 2                                                     |
| <i>Cryptochironomus</i> species      | 16                   | 4                      | --                                   | --                        | 2                                                     |
| <i>Eukiefferiella</i> species 1      | --                   | 4                      | --                                   | 4                         | 3                                                     |
| <i>Eukiefferiella</i> species 2      | 16                   | --                     | --                                   | 15                        | --                                                    |
| <i>Hemerodromia</i> species          | 40                   | --                     | --                                   | --                        | --                                                    |
| <i>Micropsectra</i> species          | --                   | --                     | --                                   | 1                         | --                                                    |
| <i>Microtendipes</i> species         | 16                   | 4                      | --                                   | --                        | --                                                    |
| <i>Orthocladius</i> species          | --                   | --                     | --                                   | 4                         | 3                                                     |
| <i>Polypedilum</i> species 1         | 24                   | 60                     | 32                                   | 9                         | 24                                                    |
| <i>Polypedilum</i> species 2         | --                   | 4                      | --                                   | --                        | --                                                    |
| <i>Prosimulium</i> species           | --                   | --                     | --                                   | 2                         | --                                                    |
| <i>Simulium</i> species              | --                   | --                     | --                                   | --                        | 2                                                     |
| <i>Stictochironomus</i> species 2    | --                   | 4                      | --                                   | --                        | --                                                    |
| <i>Thienemannimyia</i> species group | 400                  | 60                     | 64                                   | 5                         | 16                                                    |
| <i>Tipula</i> species                | 1                    | 1                      | 2                                    | 2                         | 1                                                     |
| <i>Tribelos</i> species              | 40                   | 28                     | 16                                   | 3                         | --                                                    |
| <i>Trissopelopia</i> species         | 64                   | 4                      | 32                                   | --                        | --                                                    |
| <i>Zavrelimyia</i> species           | 16                   | 12                     | 32                                   | 2                         | --                                                    |
| <i>Chironomidae</i> pupae            | 8                    | 4                      | --                                   | 3                         | --                                                    |

**Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued**

| TAXA                                             | June 30, 1988        |                        |                                      | July 12, 1988             |                                                       |
|--------------------------------------------------|----------------------|------------------------|--------------------------------------|---------------------------|-------------------------------------------------------|
|                                                  | Hog Creek<br>Site 22 | Mill Branch<br>Site 23 | Banjo Branch<br>tributary<br>Site 26 | Downing Branch<br>Site 17 | Moser Branch<br>(at county<br>road bridge)<br>Site 29 |
| <b>Coleoptera (beetles)</b>                      |                      |                        |                                      |                           |                                                       |
| <i>Hydrobiomorpha</i> species                    | --                   | --                     | --                                   | --                        | 1                                                     |
| <i>Optioservus</i> species                       | 208                  | 48                     | --                                   | 8                         | --                                                    |
| <i>Psephenus herricki</i>                        | 72                   | 44                     | 16                                   | 10                        | 3                                                     |
| <i>Stenelmis</i> species                         | 24                   | --                     | 24                                   | --                        | 11                                                    |
| <b>Odonata (dragonflies and damselflies)</b>     |                      |                        |                                      |                           |                                                       |
| <i>Argia translata</i>                           | 8                    | --                     | --                                   | --                        | 2                                                     |
| <i>Ophiogomphus</i> species                      | 8                    | 20                     | 8                                    | --                        | 2                                                     |
| <i>Stylogomphus</i> species                      | 8                    | --                     | --                                   | --                        | --                                                    |
| <b>Megaloptera (alderflies and dobson flies)</b> |                      |                        |                                      |                           |                                                       |
| <i>Corydalus cornutus</i>                        | --                   | 4                      | --                                   | 2                         | 1                                                     |
| <i>Nigronia</i> species                          | --                   | 8                      | --                                   | --                        | 6                                                     |
| <i>Sialis</i> species                            | 8                    | --                     | --                                   | --                        | --                                                    |
| <b>CRUSTACEA</b>                                 |                      |                        |                                      |                           |                                                       |
| <b>Isopoda (sow bugs)</b>                        |                      |                        |                                      |                           |                                                       |
| <i>Lirceus</i> species                           | --                   | --                     | 9                                    | 7                         | --                                                    |
| <b>Amphipoda (sideswimmers)</b>                  |                      |                        |                                      |                           |                                                       |
| <i>Gammarus minus</i>                            | --                   | --                     | --                                   | --                        | 1                                                     |
| <b>Decapoda (crayfish)</b>                       |                      |                        |                                      |                           |                                                       |
| <i>Orconectes compressus</i>                     | 9                    | 5                      | 7                                    | 5                         | 3                                                     |
| <b>MOLLUSCA</b>                                  |                      |                        |                                      |                           |                                                       |
| <b>Gastropoda (snails)</b>                       |                      |                        |                                      |                           |                                                       |
| <i>Goniobasis</i> species                        | --                   | --                     | --                                   | 5                         | --                                                    |
| <i>Somatogyrus</i> species                       | 32                   | --                     | --                                   | 2                         | --                                                    |
| <b>OLIGOCHAETA</b>                               |                      |                        |                                      |                           |                                                       |
| Tubificidae                                      | 16                   | --                     | --                                   | --                        | --                                                    |
| <b>TOTAL NUMBER OF ORGANISMS</b>                 | <b>1,578</b>         | <b>454</b>             | <b>340</b>                           | <b>216</b>                | <b>121</b>                                            |
| <b>NUMBER OF TAXA</b>                            | <b>32</b>            | <b>27</b>              | <b>16</b>                            | <b>27</b>                 | <b>27</b>                                             |
| <b>SHANNON-WEAVER DIVERSITY VALUES</b>           | <b>3.77</b>          | <b>4.08</b>            | <b>3.61</b>                          | <b>4.22</b>               | <b>4.04</b>                                           |

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

| TAXA                                 | July 12, 1989        |                        |                                      |                         |
|--------------------------------------|----------------------|------------------------|--------------------------------------|-------------------------|
|                                      | Hog Creek<br>Site 22 | Mill Branch<br>Site 23 | Banjo Branch<br>tributary<br>Site 26 | Banjo Branch<br>Site 27 |
| <b>INSECTA</b>                       |                      |                        |                                      |                         |
| Ephemeroptera (mayflies)             |                      |                        |                                      |                         |
| <i>Baetis amplus</i>                 | --                   | 160                    | --                                   | --                      |
| <i>Baetis tricaudatus</i>            | 20                   | 544                    | 4                                    | --                      |
| <i>Caenis</i> species                | --                   | 192                    | --                                   | --                      |
| <i>Ephemerella</i> species           | --                   | --                     | 16                                   | --                      |
| <i>Heptagenia</i> species            | --                   | --                     | 4                                    | --                      |
| <i>Isonychia</i> species             | 10                   | 96                     | --                                   | --                      |
| <i>Stenonema</i> species             | 50                   | 576                    | 24                                   | 4                       |
| <i>Tricorythodes</i> species         | --                   | 32                     | --                                   | --                      |
| Plecoptera (stoneflies)              |                      |                        |                                      |                         |
| <i>Acroneuria</i> species            | 20                   | 128                    | 52                                   | 16                      |
| <i>Paraleuctra</i> species           | 310                  | 416                    | 72                                   | --                      |
| Trichoptera (caddisflies)            |                      |                        |                                      |                         |
| <i>Cheumatopsyche</i> species        | --                   | --                     | 4                                    | --                      |
| <i>Chimarra</i> species              | 40                   | 32                     | --                                   | --                      |
| <i>Hydropsyche elissoma</i>          | --                   | --                     | 8                                    | --                      |
| <i>Hydropsyche frisoni</i>           | 20                   | 64                     | --                                   | --                      |
| <i>Potamyia</i> species              | --                   | 64                     | --                                   | --                      |
| Diptera (true flies)                 |                      |                        |                                      |                         |
| <i>Antocha</i> species               | 30                   | 144                    | --                                   | 2                       |
| <i>Atrichopogon</i> species          | --                   | 16                     | --                                   | 2                       |
| <i>Atherix</i> species               | 30                   | 48                     | --                                   | --                      |
| <i>Bezzia</i> species                | --                   | --                     | 4                                    | 2                       |
| <i>Cryptochironomus</i> species      | 20                   | --                     | 4                                    | --                      |
| <i>Eukiefferiella</i> species 1      | 10                   | 320                    | 16                                   | --                      |
| <i>Eukiefferiella</i> species 2      | 40                   | 32                     | 12                                   | --                      |
| <i>Hemerodromia</i> species          | 30                   | 32                     | 4                                    | --                      |
| <i>Hexatoma</i> species              | 10                   | --                     | --                                   | --                      |
| <i>Micropsectra</i> species          | --                   | 16                     | --                                   | --                      |
| <i>Microtendipes</i> species         | --                   | --                     | --                                   | 2                       |
| <i>Orthocladius</i> species          | 10                   | 112                    | 8                                    | --                      |
| <i>Polypedilum</i> species 1         | 510                  | 1,280                  | 84                                   | 4                       |
| <i>Simulium</i> species              | 40                   | 64                     | --                                   | --                      |
| <i>Stictochironomus</i> species 1    | --                   | --                     | --                                   | 2                       |
| <i>Thienemannimyia</i> species group | 140                  | 128                    | 124                                  | 16                      |
| <i>Tipula</i> species                | --                   | 16                     | 68                                   | --                      |
| <i>Tribelos</i> species              | 30                   | --                     | 16                                   | --                      |
| <i>Trissopelopia</i> species         | --                   | 16                     | 8                                    | --                      |
| <i>Chironomidae</i> pupae            | --                   | 48                     | --                                   | 4                       |
| Coleoptera (beetles)                 |                      |                        |                                      |                         |
| <i>Optioservus</i> species           | 40                   | 160                    | --                                   | 4                       |
| <i>Psephenus herricki</i>            | 10                   | 64                     | 12                                   | 14                      |
| <i>Stenelmis</i> species             | --                   | 32                     | 8                                    | --                      |

Table 7.--Species list, total number of individual organisms, number of taxa per sample, and diversity values of benthic invertebrates for samples collected from streams near the Wayne County landfill, June 28-30, 1988, and July 12, 1989--Continued

| TAXA                                             | July 12, 1989     |                     |                                |                      |
|--------------------------------------------------|-------------------|---------------------|--------------------------------|----------------------|
|                                                  | Hog Creek Site 22 | Mill Branch Site 23 | Banjo Branch tributary Site 26 | Banjo Branch Site 27 |
| <b>Odonata (dragonflies and damselflies)</b>     |                   |                     |                                |                      |
| <i>Argia</i> species                             | 10                | --                  | --                             | --                   |
| <i>Ophiogomphus</i> species                      | 10                | 64                  | --                             | 12                   |
| <b>Megaloptera (alderflies and dobson flies)</b> |                   |                     |                                |                      |
| <i>Corydalus cornutus</i>                        | 34                | 32                  | --                             | --                   |
| <i>Nigronia</i> species                          | --                | --                  | --                             | 2                    |
| <i>Sialis</i> species                            | --                | --                  | 4                              | --                   |
| <b>CRUSTACEA</b>                                 |                   |                     |                                |                      |
| <b>Isopoda (sow bugs)</b>                        |                   |                     |                                |                      |
| <i>Lirceus</i> species                           | --                | --                  | 8                              | 44                   |
| <b>Amphipoda (sideswimmers)</b>                  |                   |                     |                                |                      |
| <i>Gammarus minus</i>                            | --                | 16                  | --                             | 20                   |
| <b>Decapoda (crayfish)</b>                       |                   |                     |                                |                      |
| <i>Orconectes compressus</i>                     | 10                | 10                  | 12                             | --                   |
| <b>OLIGOCHAETA (worms)</b>                       |                   |                     |                                |                      |
| Tubificidae                                      | 20                | --                  | 24                             | 18                   |
| <b>TOTAL NUMBER OF ORGANISMS</b>                 | <b>1,504</b>      | <b>4,954</b>        | <b>600</b>                     | <b>168</b>           |
| <b>NUMBER OF TAXA</b>                            | <b>26</b>         | <b>31</b>           | <b>25</b>                      | <b>16</b>            |
| <b>SHANNON-WEAVER DIVERSITY VALUES</b>           | <b>3.41</b>       | <b>3.87</b>         | <b>3.77</b>                    | <b>3.32</b>          |

Table 8.--*Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989*

[?, species identification not definite]

| Downing Branch<br>(site 17)                      |                                   | Moser Branch (at headwaters)<br>(site 18) |                                   |
|--------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|
| Organisms                                        | Relative abundance,<br>in percent | Organisms                                 | Relative abundance,<br>in percent |
| <b>BACILLARIOPHYTA (Diatoms)</b>                 |                                   |                                           |                                   |
| Order Centrales                                  |                                   |                                           |                                   |
| <i>Melosira varians</i>                          | 0.2                               | <i>Melosira varians</i>                   | 0.8                               |
| Order Pennales                                   |                                   |                                           |                                   |
| <i>Achnanthes lanceolata</i>                     | .2                                | <i>Achnanthes linearis</i>                | 2.4                               |
| <i>Achnanthes linearis</i>                       | 7.9                               | <i>Achnanthes minutissima</i>             | 7.1                               |
| <i>Achnanthes minutissima</i>                    | 1.9                               | <i>Cymbella minuta</i>                    | 1.5                               |
| <i>Cocconeis placentula</i> var. <i>euglypta</i> | .2                                | <i>Cymbella tumida</i>                    | .3                                |
| <i>Cymbella tumida</i>                           | .2                                | <i>Cymbella turgidula</i>                 | 2.4                               |
| <i>Gomphonema parvulum</i>                       | .3                                | <i>Cymbella</i> species                   | .3                                |
| <i>Navicula arvensis</i>                         | .3                                | <i>Gomphonema parvulum</i>                | 7.1                               |
| <i>Navicula gottlandica</i>                      | .2                                | <i>Gomphonema</i> species                 | .6                                |
| <i>Navicula rhynchocephala</i>                   | .2                                | <i>Navicula rhynchocephala</i>            | .8                                |
| <i>Navicula</i> species                          | .3                                | <i>Navicula</i> species                   | .3                                |
| <i>Nitzschia dissipata</i>                       | .2                                | <i>Nitzschia palea</i>                    | .6                                |
| <i>Nitzschia frustulum</i>                       | .3                                | <i>Nitzschia</i> species                  | .3                                |
| <i>Nitzschia palea</i>                           | .4                                | <i>Reimeria sinuata</i>                   | .3                                |
| <i>Nitzschia paleacea</i>                        | .3                                | <i>Rhoicosphenia curvata</i>              | .3                                |
| <i>Reimeria sinuata</i>                          | 1.9                               | <i>Synedra</i> species                    | .3                                |
| <b>CHLOROPHYTA (Green algae)</b>                 |                                   |                                           |                                   |
| <i>Gongrosira</i> species ?                      | .2                                | <i>Chlorococcum</i> species               | 1.5                               |
| <i>Mesotaenium</i> species                       | .1                                | <i>Microspora</i> species                 | 3.2                               |
| <i>Scenedesmus dimorphus</i>                     | .9                                |                                           |                                   |
| <b>CYANOPHYTA (Blue-green algae)</b>             |                                   |                                           |                                   |
| <i>Anabaena</i> species                          | 18.3                              | <i>Chroococcus</i> species                | 3.2                               |
| <i>Lyngbya nana</i>                              | 25.4                              | <i>Lyngbya</i> species                    | 6.3                               |
| <i>Lyngbya</i> species                           | 3.4                               | <i>Oscillatoria limosa</i>                | 4                                 |
| <i>Oscillatoria angustissima</i>                 | 3                                 | <i>Oscillatoria</i> species               | 56.4                              |
| <i>Oscillatoria limosa</i>                       | 18.9                              |                                           |                                   |
| <i>Oscillatoria</i> species                      | 14.5                              |                                           |                                   |
| <i>Synechococcus lineare</i>                     | .3                                |                                           |                                   |

**Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued**

| Hog Creek<br>(site 22)               | Relative abundance,<br>in percent | Mill Branch<br>(site 23)             | Relative abundance,<br>in percent |
|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|
| <b>BACILLARIOPHYTA (Diatoms)</b>     |                                   |                                      |                                   |
| Order Pennales                       |                                   | Order Centrales                      |                                   |
| <i>Achnanthes lanceolata</i>         | 0.4                               | <i>Melosira varians</i>              | 0.2                               |
| <i>Achnanthes linearis</i>           | 3.6                               |                                      |                                   |
| <i>Achnanthes minutissima</i>        | 2.3                               | Order Pennales                       |                                   |
| <i>Cymbella minuta</i>               | .8                                | <i>Achnanthes affinis</i>            | .2                                |
| <i>Cymbella tumida</i>               | .2                                | <i>Achnanthes linearis</i> ?         | .8                                |
| <i>Cymbella turgidula</i>            | .7                                | <i>Achnanthes minutissima</i>        | 1.3                               |
| <i>Gomphonema parvulum</i>           | .2                                | <i>Cymbella minuta</i>               | 1.1                               |
| <i>Gomphonema</i> species            | .2                                | <i>Cymbella tumida</i>               | .1                                |
| <i>Navicula arvensis</i>             | .7                                | <i>Cymbella turgidula</i>            | 3.2                               |
| <i>Navicula decussis</i>             | .2                                | <i>Epithemia smithii</i> ?           | .5                                |
| <i>Navicula rhyncocephala</i>        | .4                                | <i>Epithemia</i> species             | .1                                |
| <i>Nitzschia fonticola</i>           | .2                                | <i>Eunotia</i> species               | .1                                |
| <i>Nitzschia frustulum</i>           | .2                                | <i>Gomphonema</i> species            | .1                                |
| <i>Nitzschia palea</i>               | 1.5                               | <i>Navicula arvensis</i>             | .1                                |
| <i>Nitzschia paleacea</i>            | .8                                | <i>Navicula biconica</i>             | .3                                |
| <i>Reimeria sinuata</i>              | 3.5                               | <i>Nitzschia acicularis</i>          | .1                                |
| <b>CYANOPHYTA (Blue-green algae)</b> |                                   |                                      |                                   |
| <i>Lyngbya digueti</i>               | 12.7                              | <i>Nitzschia frustulum</i>           | .3                                |
| <i>Lyngbya nana</i>                  | 33.1                              | <i>Nitzschia palea</i>               | .2                                |
| <i>Oscillatoria limosa</i>           | 13.5                              | <i>Reimeria sinuata</i>              | 1.1                               |
| <i>Oscillatoria</i> species          | 24.6                              | <i>Synedra</i> species               | .2                                |
| <i>Synechococcus</i> species         | .4                                | <b>CYANOPHYTA (Blue-green algae)</b> |                                   |
|                                      |                                   | <i>Calothrix</i> species             | 1.8                               |
|                                      |                                   | <i>Lyngbya digueti</i>               | 35.4                              |
|                                      |                                   | <i>Lyngbya nana</i>                  | 12.7                              |
|                                      |                                   | <i>Oscillatoria limosa</i>           | 17.5                              |
|                                      |                                   | <i>Oscillatoria ochracea</i> ?       | 21.3                              |
|                                      |                                   | <i>Oscillatoria</i> species          | .6                                |

Table 8.--*Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued*

| Banjo Branch tributary<br>(site 26)  |                                   | Banjo Branch<br>(site 27)                           |                                   |  |
|--------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------------|--|
| Organisms                            | Relative abundance,<br>in percent | Organisms                                           | Relative abundance,<br>in percent |  |
| <b>BACILLARIOPHYTA (Diatoms)</b>     |                                   |                                                     | <b>BACILLARIOPHYTA (Diatoms)</b>  |  |
| Order Centrales                      |                                   |                                                     | Order Centrales                   |  |
| <i>Melosira varians</i>              | 2.6                               | <i>Melosira varians</i>                             | 0.7                               |  |
| Order Pennales                       |                                   |                                                     | Order Pennales                    |  |
| <i>Achnanthes affinis</i>            | 0.5                               | <i>Achnanthes linearis</i> ?                        | .4                                |  |
| <i>Achnanthes lanceolata</i>         | 1                                 | <i>Achnanthes minutissima</i>                       | 4.5                               |  |
| <i>Achnanthes linearis</i>           | 6.2                               | <i>Cocconeis placentula</i> var. <i>euglypta</i>    | .2                                |  |
| <i>Achnanthes minutissima</i>        | 3.2                               | <i>Cymbella cymbiformis</i> var. <i>nonpunctata</i> | .2                                |  |
| <i>Epithemia</i> species             | .7                                | <i>Cymbella turgidula</i>                           | .2                                |  |
| <i>Gomphonema parvulum</i>           | .5                                | <i>Gomphonema parvulum</i>                          | 1.1                               |  |
| <i>Gomphonema</i> species            | .7                                | <i>Gomphonema</i> species                           | .2                                |  |
| <i>Navicula arvensis</i>             | .3                                | <i>Navicula arvensis</i>                            | .4                                |  |
| <i>Nitzschia acuta</i> ?             | .3                                | <i>Navicula atomus</i>                              | .9                                |  |
| <i>Nitzschia amphibia</i>            | .7                                | <i>Navicula notha</i>                               | .7                                |  |
| <i>Nitzschia frustulum</i>           | .3                                | <i>Navicula minuta</i>                              | .2                                |  |
| <i>Nitzschia palea</i>               | .7                                | <i>Nitzschia fonticola</i>                          | .9                                |  |
| <i>Nitzschia paleacea</i>            | 1                                 | <i>Nitzschia frustulum</i>                          | .4                                |  |
| <i>Rhoicosphenia curvata</i>         | .7                                | <i>Nitzschia palea</i>                              | 2.6                               |  |
| <i>Stauroneis anceps</i>             | .3                                | <i>Nitzschia paleacea</i>                           | 1.3                               |  |
| <i>Suirella angustata</i>            | .3                                |                                                     |                                   |  |
| <i>Synedra</i> species               | .3                                | <b>CHLOROPHYTA (Green algae)</b>                    |                                   |  |
| <b>CHLOROPHYTA (Green algae)</b>     |                                   |                                                     | <i>Cladophora</i> species 1       |  |
| <i>Chlorococcum</i> species          | .7                                |                                                     | .2                                |  |
| <i>Coleochaetae</i> species          | 7.3                               |                                                     |                                   |  |
| <i>Cosmarium</i> species             | .5                                | <b>CYANOPHYTA (Blue-green algae)</b>                |                                   |  |
| <i>Gongrosira</i> species ?          | 1                                 | <i>Lyngbya digueti</i>                              | 31.8                              |  |
| <b>CYANOPHYTA (Blue-green algae)</b> |                                   |                                                     | <i>Lyngbya nana</i>               |  |
| <i>Anabaena</i> species              | 20.2                              |                                                     | 3.3                               |  |
| <i>Lyngbya</i> species               | 1.7                               | <i>Oscillatoria limosa</i>                          | 49.8                              |  |
| <i>Oscillatoria angustissima</i>     | 1.5                               |                                                     |                                   |  |
| <i>Oscillatoria limosa</i>           | 17.3                              |                                                     |                                   |  |
| <i>Oscillatoria</i> species          | 21.7                              |                                                     |                                   |  |
| <i>Phormidium</i> species            | 7.8                               |                                                     |                                   |  |

**Table 8.--Species and relative abundance of periphyton collected from seven sites near the Wayne County landfill on July 12, 1989--Continued**

Moser Branch (at county road bridge)  
(site 29)

| Organisms                        | Relative abundance,<br>in percent | Organisms                     | Relative abundance,<br>in percent |
|----------------------------------|-----------------------------------|-------------------------------|-----------------------------------|
| <b>BACILLARIOPHYTA (Diatoms)</b> |                                   |                               |                                   |
| Order Centrales                  |                                   | <i>Chlorococcum</i> species 1 | .1                                |
| <i>Melosira varians</i>          | 0.1                               | <i>Cosmarium</i> species 1    | .1                                |
| <b>Order Pennales</b>            |                                   |                               |                                   |
| <i>Achnanthes linearis</i>       | .4                                | <i>Lyngbya nana</i>           | 21.7                              |
| <i>Achnanthes minutissima</i>    | 3.8                               | <i>Lyngbya ochracea</i> ?     | 6.7                               |
| <i>Cymbella minuta</i> ?         | .6                                | <i>Lyngbya</i> species        | .9                                |
| <i>Cymbella tumidula</i>         | .2                                | <i>Oscillatoria geminata</i>  | 2.1                               |
| <i>Cymbella turgidula</i>        | .9                                | <i>Oscillatoria limosa</i>    | 50.8                              |
| <i>Epithemia</i> species         | .4                                | <i>Phormidium</i> species     | 4.6                               |
| <i>Gomphonema parvulum</i>       | .7                                |                               |                                   |
| <i>Gomphonema</i> species        | .2                                |                               |                                   |
| <i>Navicula atomus</i>           | 1.5                               |                               |                                   |
| <i>Navicula gottlandica</i>      | .2                                |                               |                                   |
| <i>Navicula rhyncocephala</i>    | 1.1                               |                               |                                   |
| <i>Nitzschia frustulum</i>       | .6                                |                               |                                   |
| <i>Nitzschia palea</i>           | 1.5                               |                               |                                   |
| <i>Nitzschia</i> species         | .4                                |                               |                                   |
| <i>Reimeria sinuata</i>          | .2                                |                               |                                   |
| <i>Synedra</i> species           | .2                                |                               |                                   |

Table 9.--*Species of fish, number of organisms, and species richness from six sites near the Wayne County landfill, July 1989*

[--, species not present]

| Common name<br>and species                          | Number of organisms by site  |                         |                           |                                         |                            |                            |
|-----------------------------------------------------|------------------------------|-------------------------|---------------------------|-----------------------------------------|----------------------------|----------------------------|
|                                                     | Downing<br>Branch<br>site 17 | Hog<br>Creek<br>site 22 | Mill<br>Branch<br>site 23 | Banjo<br>Branch<br>tributary<br>site 26 | Banjo<br>Branch<br>site 27 | Moser<br>Branch<br>site 29 |
| Central stone roller<br><i>Campostoma anomalum</i>  | --                           | 18                      | 24                        | 28                                      | 17                         | 8                          |
| Rosy side dace<br><i>Clinostomus funduloides</i>    | 44                           | 7                       | 14                        | 15                                      | 26                         | 5                          |
| Rose fin shiner<br><i>Notropis ardens</i>           | --                           | --                      | --                        | --                                      | --                         | 1                          |
| Striped shiner<br><i>Notropis chryscephalus</i>     | --                           | 5                       | --                        | --                                      | --                         | 5                          |
| White tail shiner<br><i>Notropis galacturus</i>     | --                           | --                      | --                        | --                                      | --                         | 3                          |
| Red belly dace<br><i>Phoxinus erythrogaster</i>     | 16                           | --                      | --                        | 15                                      | 26                         | --                         |
| Fathead minnow<br><i>Pimephales notatus</i>         | --                           | --                      | 2                         | --                                      | --                         | 8                          |
| Black-nose dace<br><i>Rhinichthys atratulus</i>     | 24                           | --                      | --                        | 3                                       | 9                          | --                         |
| Creek chub<br><i>Semotilus atromaculatus</i>        | 26                           | 10                      | 15                        | 6                                       | 6                          | 3                          |
| Mad tom<br><i>Noturus exilis</i>                    | --                           | 1                       | 4                         | --                                      | --                         | 8                          |
| Northern hog sucker<br><i>Hypentelium nigricans</i> | --                           | 6                       | 7                         | --                                      | --                         | 2                          |
| Rock bass<br><i>Ambloplites rupestris</i>           | --                           | 10                      | 9                         | 4                                       | --                         | 4                          |
| Green sunfish<br><i>Lipomis cyanellus</i>           | --                           | --                      | --                        | --                                      | --                         | 2                          |
| Longear sunfish<br><i>Lepomis megalotis</i>         | --                           | --                      | --                        | --                                      | --                         | 4                          |
| Small mouth bass<br><i>Micropterus dolomieu</i>     | --                           | 1                       | --                        | --                                      | --                         | --                         |
| Rainbow darter<br><i>Etheostoma caeruleum</i>       | --                           | --                      | --                        | 3                                       | --                         | --                         |
| Slabrock darter<br><i>Etheostoma squamiceps</i>     | 7                            | --                      | 3                         | 2                                       | 4                          | 2                          |
| Rod nose darter<br><i>Etheostoma zonistium</i>      | --                           | 1                       | 5                         | 10                                      | 3                          | 3                          |
| Mottled sculpin<br><i>Cottus caroliniae</i>         | --                           | 3                       | 8                         | 7                                       | 2                          | --                         |
| Species richness                                    | 5                            | 10                      | 10                        | 10                                      | 8                          | 14                         |

