MAT1375, Classwork11, Fall2025

Ch10. Rational Functions II

6. The order of growth for functions: **Power functions**.

$$x^{p}, p > 0$$

For each x > 1, we have

7. The definition of a **Horizontal Asymptote**:

The line y = b is a horizontal asymptote the graph of a function fif f(x) approaches **b** as **x** increases or decreases without bound. o

8. What is the difference of Vertical Asymptote and Horizontal Asymptote?

Vertical asymptote occurs at x=c when x>c, $f(x)>\infty$ or $f(x)>-\infty$ and vertical asymptote is the like x=c. On the other hand, horizontal asymptote occurs at $x>\infty$ and fax) approaches to a number c, and horizontal asymptote is the line x=c. How to locate Horizontal Asymptotes: Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function given by

$$f(x) = \frac{p_n x^n + p_{n-1} x^{n-1} + \dots + p_1 x + p_0}{q_m x^m + q_{m-1} x^{m-1} + \dots + q_1 x + q_0}, p_n \neq 0, q_m \neq 0.$$

where the degree of the numerator is \underline{n} and the degree of the denominator is \underline{m} .

- (1) If n > m, the graph of f has $\cap \cap$ horizontal asymptote.
- (2) If n = m, the line $y = \frac{r_n}{r_m}$ (which is the ration of two <u>leading</u> <u>coefficients</u>) is the horizontal asymptote of the graph of f.
- (3) If n < m, the X axis = 0 (which is X axis = 0) is the horizontal asymptote of the graph of f.

Ch11. More on Rational Functions

1. The graph of $f(x) = \frac{p(x)}{g(x)}$ is displayed below, where $\deg(p(x)) = 1$ and $\deg(g(x)) = 3$.

For 2. And 3., let $f(x) = \frac{p(x)}{g(x)}$ be a rational function and $\deg(p(x)) > \deg(g(x))$.

2. Rational Function and Long Division:

If p(x) divided by g(x) can be represented with a quotient q(x) and a remainder r(x) where deg(r(x)) = deg(g(x)), one can rewrite f(x) as

$$f(x) = \frac{p(x)}{g(x)} = \underline{\qquad} + \frac{r(x)}{g(x)}$$

3. Asymptotic Behavior with Slant Asymptote:

Since $deg(r(x)) \le deg(g(x))$, for large |x| (which is $x \to \pm$ _____), we have

$$\frac{r(x)}{g(x)}$$
 approaches _____ so that $f(x)$ _____ $q(x)$.

If q(x) is a <u>linear</u> function (which is a polynomial of degree _____), then q is called the _____ asymptote of f.

4. Find the **slant asymptote** of the rational function $f(x) = \frac{2x^3 - 13x^2 + 35x - 26}{x^2 - 4x + 6}$.