CMSC 510 Regularization Methods for Machine Learning

Course Summary

- Modern view of machine learning:
 - objective function
 - model with parameters
 - structure of the model will constrain the space of possible predictors
 - optimizer that find parameters that minimize the objective function
 - Typically, some variant of gradient descent
- Often, models have statistical interpretation
 - E.g. maximal likelihood estimation

- Objective functions:
 - Mean squared error
 - Logistic loss / cross-entropy loss
 - Hinge loss (SVM loss)
- Models:
 - Linear
 - Kernel machines
 - linear in high-dimensional "feature space", but non-linear in input space
 - Neural networks
 - nonlinear thanks to an activation function like ReLU

- Regularization:
 - Improving ability of models to generalize
 - So that they work better on previously unseen data (aka "test data")
- Two main approaches in classical machine learning:
 - Reducing the complexity of the model
 - Adding more data / information during training

Regularization:

- Reducing complexity of the model:
 - Occam's razor: "Simpler solutions are more likely to be correct than complex ones."
 - by preferring simpler models e.g. through complexity penalty,
 - L2 / L1 regularization
 - by enforcing simplicity through eliminating some of the freedom in choosing model parameters

Regularization:

- Adding more data / information during training
 - semi-supervised learning (use unlabeled examples and graph of their similarities)
 - graph / group submodular penalties
 (add knowledge about relationships among features)

- Regularization in deep models:
 - We need new techniques beyond what works for "classical" models
 - pre-training
 - weights sharing
 - normalization layers
 - We need better understanding how can networks with so many parameters learn at all
 - Instead of just memorizing training data

Belkin et al. 2019. Reconciling modern machine-learning practice and the classical bias-variance trade-off