UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2022/1 Prova da área I

1-2	3	4	Total

Nome:	Cartão:	
1101110.	_ Car tao.	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas (dissertativas)

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z)e
 g=g(x,y,z)são funções escalares;

 $\vec{F} = \vec{F}(x,y,z)$ e $\vec{G} = \vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$ \vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \\ - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right) $
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração

Curvatura, torçao e aceleraçao:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$			
Vetor binormal	$\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}'''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au \vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

$$\vec{r}(t) = t^2 \vec{i} + \cos(t^2) \vec{j} - \sin(t^2) \vec{k}, \quad t \ge 0,$$

está correto: (A) tangente unitário T(t) =:

()
$$\frac{2t\vec{i} - \operatorname{sen}(t^2)\vec{j} - \operatorname{cos}(t^2)\vec{k}}{\sqrt{1 + 4t^2}}$$

$$()\frac{\vec{i}-\sin(t^2)\vec{j}-\cos(t^2)\vec{k}}{\sqrt{2}}$$

()
$$\frac{\vec{i} + \sin(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{2}}$$

$$(\)\ \frac{2t\vec{i} + \text{sen}(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{1 + 4t^2}}$$

- () Nenhuma das anteriore
- (C) vetor normal unitário $\vec{N}(t) =$:

$$()\frac{\vec{i}+\mathrm{sen}(t^2)\vec{j}-\mathrm{cos}(t^2)\vec{k}}{\sqrt{2}}$$

- () $\operatorname{sen}(t^2)\vec{i} \cos(t^2)\vec{k}$
- () $-\cos(t^2)\vec{j} + \sin(t^2)\vec{k}$

$$()\frac{\vec{i}-\cos(t^2)\vec{j}+\sin(t^2)\vec{k}}{\sqrt{2}}$$

- (E) curvatura em $t = \sqrt{\pi}$:
 - () $\kappa(\sqrt{\pi}) = \frac{1}{\sqrt{2}}$
 - () $\kappa(\sqrt{\pi}) = \sqrt{2}$
- () $\kappa(\sqrt{\pi}) = 2\sqrt{2}$
- () $\kappa(\sqrt{\pi}) = 2$
- () Nenhuma das anteriores
- (G) aceleração tangencial em $t = \sqrt{\pi}$:
 - () $2\sqrt{2}$
 - () 0
 - () $\sqrt{\pi}$
 - $(\)\ \frac{2}{\sqrt{\pi}}$
 - () Nenhuma das anteriores

- $\begin{array}{l} \text{(B) aceleração } \vec{a}(t) = \frac{d^2\vec{r}}{dt^2} =: \\ \text{() } 2\vec{i} (2 \operatorname{sen}(t^2) + 4t^2 \cos(t^2)) \vec{j} + (4t^2 \operatorname{sen}(t^2) 2 \cos(t^2)) \vec{k} \\ \text{() } 2\vec{i} (2 \operatorname{sen}(t^2) + 2t \cos(t^2)) \vec{j} + (2t \operatorname{sen}(t^2) 2 \cos(t^2)) \vec{k} \\ \text{() } 2\vec{i} 2t \cos(t^2) \vec{j} + 2t \operatorname{sen}(t^2) \vec{k} \\ \text{() } 2\vec{i} + (4t^2 \operatorname{sen}(t^2) 2 \cos(t^2)) \vec{j} (4t^2 \cos(t^2) + 2 \operatorname{sen}(t^2)) \vec{k} \\ \text{() } Nenhuma das anteriores } \end{array}$
- (D) vetor binormal $\vec{B}(t) =$

()
$$\frac{t\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{1+t^2}}$$

$$() \frac{\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{2}}$$

$$() \frac{t\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{1 + t^2}}$$

$$() \frac{\vec{i} + \cos(t^2)\vec{j} + \sin(t^2)\vec{k}}{\sqrt{2}}$$

$$() \frac{-\vec{i} - \sin(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{2}}$$

$$() \frac{-t\vec{i} - \sin(t^2)\vec{j} - \cos(t^2)\vec{k}}{\sqrt{1 + t^2}}$$

$$(\)\ \frac{-t\vec{i}-\sin(t^2)\vec{j}-\cos(t^2)\vec{k}}{\sqrt{1+t^2}}$$

- (F) torção em $t = \sqrt{\pi}$:
- (F) torçao em $\iota \mathbf{v}$ () $\tau(\sqrt{\pi}) = 2$ () $\tau(\sqrt{\pi}) = \frac{1}{2}$ () $\tau(\sqrt{\pi}) = \frac{1}{\sqrt{2}}$ () $\tau(\sqrt{\pi}) = \sqrt{2}$ () Nenhuma das anteriores
- (H) aceleração normal em $t = \sqrt{\pi}$:
- Questão 2 (1.0 ponto cada item) Considerando a superfície parametrizada (guarda-chuva de Whitney)

$$\vec{r} = uv\vec{i} + u\vec{j} + v^2\vec{k}$$

no ponto em que $u=8,\,v=2,$ é correto:

(A) vetor normal unitário \vec{N} :

- $() \frac{\vec{i}+2\vec{j}-2\vec{k}}{3}$
- $() \quad \frac{\vec{i} + 2\vec{j} + 2\vec{k}}{3}$
- () Nenhuma das anteriores

- (B) equação cartesiana do plano tangente
 - b) equação cartesiana do plano tangente $(\) \ (x-16) + 2(y-8) 2(z-4) = 0$ $(\) \ (x-16) \frac{y-8}{2} \frac{z-4}{2} = 0$ $(\) \ 16(x-1) + 8(y+2) + 4(z+2) = 0$ $(\) \ (x-16) 2(y-8) + 2(z-4) = 0$ $(\) \ \text{Nenhuma das anteriores}$

- Questão 3. Considere o campo vetorial dado por $\vec{F} = (2x+z)\vec{i} + 2y\vec{j} + x\vec{k}$ e a curva C dada por $\vec{r} = \cos(\pi t)\vec{i} + \sin(\pi t)\vec{j} + \pi t\vec{k}$, 0 < t < 1.
- Item a) (1.0pt) Determine se \vec{F} é um campo conservativo indicando, se existir, o respectivo potencial g(x, y, z) (nulo na origem).
 - Item b) (1.0pt) Calcule $\int_C \vec{F} \cdot d\vec{r}$.

 \bullet Questão 4. Seja o campo vetorial $\vec{F}(x,y,z)=xy^2\vec{i}+yz^2\vec{j}+zx^2\vec{k}.$ Seja Sa superfície (figura ao lado) parametrizada por

$$\vec{r}(t) = r\cos(\theta)\vec{i} + r\sin(\theta)\vec{j} + r\vec{k}, \quad 0 \le r \le 2; 0 \le \theta \le 2\pi$$

e seja o disco $D=\{(x,y,2): x^2+y^2\leq 2^2\}$, orientado no sentido z positivo (como superfície). Observe que a união de S com D limita um sólido (volume) que denotaremos por G.

- Item a) (1.0pt) Calcule $\iint_D \vec{F} \cdot \vec{n} dS$. Se for usar (ρ, θ) na integração, observe que nesse disco D temos $dS = dA = \rho d\rho d\theta$.
- Item b) (1.0pt) Calcule $\iint_S \vec{F} \cdot \vec{n} dS$ depois de aplicar o Teorema do Divergente no volume G.

Bom Trabalho.