| Instituto Tec                                    | enológico de Costa Rica           |                   |    |
|--------------------------------------------------|-----------------------------------|-------------------|----|
| Escuela de In                                    | ngeniería Electrónica             |                   |    |
| EL-2207 Elei                                     | mentos Activos                    | Total de Puntos:  | 40 |
| Profesores: Dr. Ing. Juan José Montero Rodríguez |                                   |                   |    |
|                                                  | Dr. Ing. Alfonso Chacón Rodríguez | Puntos obtenidos: |    |
|                                                  | M.Sc. Ing. Aníbal Ruiz Barquero   | Porcentaje:       |    |
|                                                  | Ing. Edgar Solera Bolaños         | Nota:             |    |
| II Semestre 2019                                 |                                   | Nota.             |    |
| Tercer Exa                                       | men Parcial                       |                   |    |
| 21 de novie                                      | embre de 2019                     |                   |    |
| Nombre:                                          |                                   | Carné:            |    |

#### **Instrucciones Generales:**

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **totalmente apagado** durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.

Firma: \_\_\_\_

- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 2.5 horas, a partir de su hora de inicio.

| Problema 1 | de 10 |  |  |
|------------|-------|--|--|

| Problema 1 | de 10 |
|------------|-------|
| Problema 2 | de 10 |
| Problema 3 | de 10 |
| Problema 4 | de 10 |

# **Problemas**

### Problema 1 Polarización

10 Pts

Para el circuito que se muestra en la figura 1.1, encuentre la relación de tamaño  $(W/L)_1$  para que la corriente de drenador por  $M_1$   $(I_{D1})$  sea igual a un  $I_1$  determinado (la solución debe expresarse en literales). Suponga que  $\lambda=0$  para  $M_1$ , y que  $V_{TH}=0.4$ V.



Figura 1.1: Solución de problema 1

## Problema 2 Pequeña señal

10 Pts

El circuito mostrado en la Figura 2 se utiliza como amplificador de pequeña señal. Para la solución de este problema considere  $\lambda \neq 0, \, \gamma = 0.$ 



Figura 2.1: Circuito para el problema 2.

2.1. Dibuje el circuito equivalente de pequeña señal.

4 Pts

2.2. Obtenga una expresión algebraica para la ganancia de tensión  $A_v$ .

3 Pts

2.3. Si se conoce que  $g_{m1} = g_{m2}$ , encuentre el valor numérico de  $A_v$ . Para este punto puede suponer que  $r_o >> 1/g_m$  y que  $R_L$  es muy alta en comparación con  $1/g_m$ .

Considere el circuito mostrado en la figura 3.1. Es conocido que dicho circuito funciona como circuito digital inversor.



Figura 3.1: Circuito para el problema 3.

#### Considerando que:

• Las características del transistor N son:

$$C_{OX_1} = C'_{OX_1}WL = 4.8 \ fF$$
  $R_{N_1} = R'_{N_1}\frac{L}{W} = 12 \ k\Omega\frac{L}{W}$ 

- 3.1. Complete correctamente la expresión: "El transistor MOSFET de canal \_\_\_\_\_ es más eficiente transfiriendo un 1 lógico, mientras que el transistor de canal \_\_\_\_\_ es mas eficiente transfiriendo un 0 lógico". 

  1 Pt
- 3.2. Complete correctamente la expresión: "La resistencia de un MOSFET de canal \_\_\_\_\_ es tres veces más pequeña que la de un MOSFET de canal \_\_\_\_\_". 1 Pt
- 3.3. Dibuje el circuito equivalente del inversor de la figura 3.1, considerando el modelo digital del transistor MOSFET.
- 3.4. Determine los tiempos de retraso de propagación en la salida del inversor  $t_{PLH}$  y  $t_{PHL}$  Considerando un  $C_{OX_1}=C_{OX_2},\ W_1=3\mu m$  y  $L_1=2\mu m$ .
- 3.5. Dibuje el gráfico Tensión vs Tiempo, donde superponga las señales de entrada  $(V_{IN})$  y salida  $(V_{OUT})$  por al menos 5 ns. Considere un cambio en la entrada de 0V a VDD en t=1 ns. Dicha entrada perdura en el valor de VDD durante un lapso de 0.5 ns. Señale correctamente los tiempos  $t_{PLH}$  y  $t_{PHL}$  en la gráfica resultante. Rotule de forma adecuada tanto las señales, como los ejes.
- 3.6. Suponga que se conecta un condensador de carga y se triplica el  $W_2$ . Determine los tiempos de retraso de propagación en la salida del inversor  $t_{PLH}$  y  $t_{PHL}$ . Considerando que ahora  $C_{OX_2} = C_{OX_1} * 3 = 14.4 fF$ ,  $W_2 = 3 * W_1 = 9 \mu m$  y  $L_1 = 2 \mu m$  y una capacitancia de carga  $C_L = 100 fF$  (Extra).

10 Pts

Usando el circuito mostrado en la figura 4.1, rellene la tabla 4.1 con los valores esperados para Y.



Figura 4.1: Solución de problema 4

Tabla 4.1: Tabla de Verdad de la compuerta

| Α | В | С | D | Y |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 |   |
| 0 | 0 | 0 | 1 |   |
| 0 | 0 | 1 | 0 |   |
| 0 | 0 | 1 | 1 |   |
| 0 | 1 | 0 | 0 |   |
| 0 | 1 | 0 | 1 |   |
| 0 | 1 | 1 | 0 |   |
| 0 | 1 | 1 | 1 |   |
| 1 | 0 | 0 | 0 |   |
| 1 | 0 | 0 | 1 |   |
| 1 | 0 | 1 | 0 |   |
| 1 | 0 | 1 | 1 |   |
| 1 | 1 | 0 | 0 |   |
| 1 | 1 | 0 | 1 |   |
| 1 | 1 | 1 | 0 |   |
| 1 | 1 | 1 | 1 |   |