QUANTUM COMPUTATION AND QUANTUM INFORMATION: THE QUANTUM FOURIER TRANSFORM

1

We consider the linear map in \mathbb{C}^N which acts on the computational basis as

$$|j\rangle\mapsto \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{\frac{2i\pi jk}{N}}\,|k\rangle$$

Let A be the matrix of the transformation in the computational basis.

$$\forall (k,l) \in [0, N-1]^2, \quad a_{kl} = \frac{1}{\sqrt{N}} e^{\frac{2i\pi kl}{N}}$$

The adjoint matrix A^{\dagger} is then

$$\forall (k,l) \in [0, N-1]^2, \quad b_{kl} = a_{lk}^*$$

$$= \frac{1}{\sqrt{N}} e^{-\frac{2i\pi kl}{N}}$$

We compute the coefficient k, l of the product AA^{\dagger} :

$$\begin{split} \forall (k,l) \in [\![0,N-1]\!]^2, \quad c_{kl} &= \sum_{j=0}^{N-1} a_{kj} b_{jl} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} e^{\frac{2i\pi j}{N}(k-l)} \\ &= \frac{1}{N} \sum_{j=0}^{N-1} (e^{\frac{2i\pi}{N}(k-l)})^j \\ &= \begin{cases} \frac{1}{N} \frac{1 - (e^{\frac{2i\pi}{N}(k-l)})^N}{1 - e^{\frac{2i\pi}{N}(k-l)}} = 0 & \text{if } e^{\frac{2i\pi}{N}(k-l)} \neq 1, \\ 1 & \text{if } e^{\frac{2i\pi}{N}(k-l)} = 1. \end{cases} \\ &= \begin{cases} 0 & \text{if } k \neq l, \\ 1 & \text{if } k = l. \end{cases} \\ &= \delta_{kl} \end{split}$$

which shows that $AA^{\dagger} = A^{\dagger}A = I$ i.e. A is unitary.

2

Here the dimension of the state space is $N=2^n$. The Fourier transform of the n qubit state $|00...0\rangle$ is

$$A|0\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} |k\rangle$$

we can write k in binary $k_{n-1} \dots k_1 k_0$

$$A|0\rangle = \frac{1}{2^{n/2}} \sum_{k_0, k_1, \dots, k_{n-1} = 0}^{1} |k_{n-1} \dots k_1 k_0\rangle$$

or in product representation,

$$= \frac{1}{2^{n/2}} \underbrace{(|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \dots (|0\rangle + |1\rangle)}_{\substack{n \text{ qubits}}}$$

Let $N=2^n$ and $Y=(y_k)_{k\in \llbracket 0,N-1\rrbracket}$ be the classical fourier transform of $X=(x_k)_{k\in \llbracket 0,N-1\rrbracket}$.

$$\forall k \in [0, N-1], \quad y_k = \sum_{j=0}^{N-1} e^{\frac{2i\pi kj}{2^n}} x_j$$

The factor $\frac{1}{\sqrt{N}}$ is omitted for clarity. We can write j in binary $j_{n-1} \dots j_1 j_0$

$$y_{k} = \sum_{j_{0}, j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-1}j_{n-1} + \dots + 2j_{1} + j_{0})}{2^{n}}} x_{j}$$

$$= \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-1}j_{n-1} + \dots + 2j_{1})}{2^{n}}} x_{j_{n-1} \dots j_{1}0} + \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-1}j_{n-1} + \dots + 2j_{1} + 1)}{2^{n}}} x_{j_{n-1} \dots j_{1}1}$$

$$= \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-1}j_{n-1} + \dots + 2j_{1})}{2^{n}}} x_{j_{n-1} \dots j_{1}0} + e^{\frac{2i\pi k}{2^{n}}} \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-1}j_{n-1} + \dots + 2j_{1})}{2^{n}}} x_{j_{n-1} \dots j_{1}1}$$

$$= \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-2}j_{n-1} + \dots + j_{1})}{2^{n-1}}} x_{j_{n-1} \dots j_{1}0} + e^{\frac{2i\pi k}{2^{n}}} \sum_{j_{1}, \dots, j_{n-1} = 0}^{1} e^{\frac{2i\pi k(2^{n-2}j_{n-1} + \dots + j_{1})}{2^{n-1}}} x_{j_{n-1} \dots j_{1}1}$$

We see the first sum is the k^{th} coefficient of the FT of the sequence $(x_{2k})_{k \in [0,N/2-1]}$ and the second is the k^{th} coefficient of the FT of $(x_{2k+1})_{k \in [0,N/2-1]}$. This shows that to compute FT of sequence of length N, we have to compute 2 FT of sequence of length $\frac{N}{2}$ and do 2N complex additions/multiplications. The complexity of the operation T(N) follows the recurrence:

$$T(N) = 2T(\frac{N}{2}) + 2N$$

We can use the Master theorem ¹:

Theorem. Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the non negative integers by the recurrence

$$T(n) = aT(\frac{n}{h}) + f(n)$$

where we interpret $\frac{n}{h}$ to mean either $\lfloor \frac{n}{h} \rfloor$ or $\lceil \frac{n}{h} \rceil$. Then T(n) has the following asymptotic bounds:

- (1) If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (2) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- (3) If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \leqslant cf(n)$ for some constant c < 1 and n sufficiently large, then $T(n) = \Theta(f(n))$.

Here we are in the second case of the theorem, so $T(N) = \Theta(N \log(N)) = \Theta(n2^n)$.

5

The inverse Fourier Transform

$$|j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-\frac{2i\pi jk}{N}} |k\rangle$$

is the adjoint of the Fourier Transform. The quantum circuit of figure 1 is obtained from the FT's circuit, replacing each R_k gate by its adjoint

$$R_k^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-\frac{2i\pi}{2^k}} \end{bmatrix}$$

¹Thomas H. Cormen and Charles E. Leiserson: Introduction to algorithms, MIT Press (2009)

FIGURE 1. Quantum circuit for IFT.

FIGURE 2. Sequence of controlled U.

7

In figure 2, the t qubits of the first register are prepared with $|j\rangle = |j_{t-1}\dots j_1 j_0\rangle$, the second register is prepared with some state $|u\rangle$. After the first controlled-U operation, the state is $|j\rangle |U^{j_02^0}u\rangle$. After the second controlled-U, the state is $|j\rangle |U^{j_12^1}U^{j_02^0}u\rangle = |j\rangle |U^{j_02^0+j_12^1}u\rangle$ and so on. The final state is $|j\rangle |U^{j_02^0+j_12^1+\dots+j_{t-1}2^{t-1}}u\rangle = |j\rangle |U^ju\rangle$.

8

By linearity, the phase estimation algorithm takes input $|0\rangle |\Sigma_{u \in A} c_u |u\rangle$, where A is some orthonormal basis of eigenstates of U, to output $\sum_{u \in A} c_u |\widetilde{\varphi_u}\rangle |u\rangle$, where $\widetilde{\varphi_u}$ is an estimation of the phase of the eigenvalue associated with eigenstate u. If we fix $u_0 \in A$ beforehand, the probability to measure $\widetilde{\varphi_{u_0}}$ when measuring the first register in the computational basis is

$$\begin{split} (\sum_{u \in A} c_u^* \left\langle \widetilde{\varphi_u} \middle| \left\langle u \middle| \right) P_{\widetilde{\varphi_{u_0}}} \otimes I(\sum_{u \in A} c_u \left| \widetilde{\varphi_u} \right\rangle \middle| u \right\rangle) &= (\sum_{u \in A} c_u^* \left\langle \widetilde{\varphi_u} \middle| \left\langle u \middle| \right) (\sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}}}} c_u \left| \widetilde{\varphi_u} \right\rangle \middle| u \right\rangle) \\ &= (\sum_{u \in A} c_u^* \left\langle \widetilde{\varphi_u} \middle| \left\langle u \middle| \right) (\sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}}}} c_u \left| \widetilde{\varphi_{u_0}} \right\rangle \middle| u \right\rangle) \\ &= \sum_{\substack{v \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \\ \widetilde{\varphi_{u}} = \widetilde{\varphi_{u_0}}}} c_u^* c_u \left\langle \widetilde{\varphi_v} \middle| \widetilde{\varphi_u} \right\rangle \left\langle v \middle| u \right\rangle \\ &= \sum_{\substack{u \in A \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}} \\ \widetilde{\varphi_u} = \widetilde{\varphi_{u_0}}}} |c_u|^2 \\ &\geqslant |c_{u_0}|^2 \end{split}$$

FIGURE 3. Phase estimation circuit with t = 1.

I is the identity operator of whatever state space U operates on, while $P_{\widetilde{\varphi_{u_0}}}$ is the orthonormal projector onto the space generated by the vector $|\widetilde{\varphi_{u_0}}\rangle$ of the computational basis. Besides, following the analysis of the book, $\widetilde{\varphi_{u_0}}$ is an approximation to φ_{u_0} to an accuracy 2^{-n} with probability at least $1 - \epsilon$ if we make use of $t = n + \lceil \log(2 + \frac{1}{2\epsilon}) \rceil$ bits in the first register. We conclude we get the desired approximation of φ_{u_0} at the end of the phase estimation algorithm with probability at least $|c_{u_0}|^2(1 - \epsilon)$.

9

U being unitary with eigenvalues -1 and +1, the state space is the direct sum of the two orthogonal eigenspaces $E_{-1} \oplus E_1$. Thus we can uniquely decompose any $|\psi\rangle = |\psi_{-1}\rangle + |\psi_{+1}\rangle$, with $|\psi_{-1}\rangle \in E_{-1}$ ans $|\psi_{+1}\rangle \in E_{+1}$. Then $-1 = e^{i\pi} = e^{2i\pi 0.1}$ and $1 = e^0 = e^{2i\pi 0.0}$ shows that is sufficient to make use of t = 1 wire in the first register in the phase estimation procedure to read directly the phase of any eigenvector. If we use $|0\rangle |\psi\rangle$ as input in the circuit of figure 3, the output before the final measurement will be $|0\rangle |\psi_{+1}\rangle + |1\rangle |\psi_{-1}\rangle$. When we measure the first register, we obtain 0 with probability

$$(\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) P_0 \otimes I(|0\rangle | \psi_{+1}\rangle + |1\rangle | \psi_{-1}\rangle) = (\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) (|0\rangle | \psi_{+1}\rangle)$$

$$= \langle 0 | 0 \rangle \langle \psi_{+1} | \psi_{+1}\rangle$$

$$= \langle \psi_{+1} | \psi_{+1}\rangle$$

or 1 with probability

$$(\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) P_1 \otimes I(|0\rangle | \psi_{+1} \rangle + |1\rangle | \psi_{-1} \rangle) = (\langle 0 | \langle \psi_{+1} | + \langle 1 | \langle \psi_{-1} |) (|1\rangle | \psi_{-1} \rangle)$$

$$= \langle 1 | 1 \rangle \langle \psi_{-1} | \psi_{-1} \rangle$$

$$= \langle \psi_{-1} | \psi_{-1} \rangle$$

The state will collapse respectively into $\frac{1}{\sqrt{\langle \psi_{+1}|\psi_{+1}\rangle}} |0\rangle |\psi_{+1}\rangle$ or $\frac{1}{\sqrt{\langle \psi_{-1}|\psi_{-1}\rangle}} |1\rangle |\psi_{-1}\rangle$. Thus if we read 0 in the first register, that means that we have an eigenvector associated to eigenvalue +1 in the second register, and if we read 1 in the first register, that means that we have an eigenvector associated to eigenvalue -1 in the second register.

Once we have noticed that the FT in dimension $N = 2^1$ is just the Hadamard operator, we conclude the phase estimation circuit in this particular case is the just the same as the circuit of exercice 4.34.

10

$$x^{2} = 25 = 4$$
 $x^{3} = 20 = -1$
 $x^{4} = 4^{2} = 16$
 $x^{5} = 16 \times 5 = 80$
 $= 17$
 $x^{6} = (-1)^{2} = 1$

11

Theorem (Euler). For $N \in \mathbb{N}^*$, let

$$\varphi(N) = \#\{m \in [1, N], m \land N = 1\}$$

We have

$$\forall x \in \mathbb{N}^*, \quad x \land N = 1 \Rightarrow x^{\varphi(N)} = 1 \mod N$$

Then by definition of the order $r, r \leq \varphi(N) \leq N$.

12

Since $x \wedge N = 1$, from Bezout's Theorem $\exists (u,v) \in \mathbb{Z}^2$ such that ux + vN = 1 that is $\exists u$ such that ux = 1 mod N which shows that x has a multiplicative inverse $x^{-1} = u$ in the ring $(\frac{\mathbb{Z}}{N\mathbb{Z}}, +, \times)$. We define the linear map U' on $(\mathbb{C}^2)^{\otimes L} \cong \mathbb{C}^{2^L}$ that acts on the computational basis as

$$\forall y \in \{0,1\}^L, \quad U' \left| y \right\rangle = \begin{cases} |x^{-1}y \mod N\rangle & \text{if } y < N, \\ y & \text{if } y \in [\![N,2^L-1]\!]. \end{cases}$$

We have

$$\forall y_{1}, y_{2} \in \{0, 1\}^{L}, \quad \langle y_{1} | U(y_{2}) \rangle = 1 \Leftrightarrow y_{1} = y_{2} \in [\![N, 2^{L} - 1]\!] \text{ or } (y_{1}, y_{2} < N \text{ and } xy_{2} = y_{1} \mod N)$$

$$\Leftrightarrow y_{1} = y_{2} \in [\![N, 2^{L} - 1]\!] \text{ or } (y_{1}, y_{2} < N \text{ and } \exists k \in \mathbb{Z}, xy_{2} = y_{1} + kN)$$

$$\Leftrightarrow y_{1} = y_{2} \in [\![N, 2^{L} - 1]\!] \text{ or } (y_{1}, y_{2} < N \text{ and } \exists k \in \mathbb{Z}, y_{2} = x^{-1}y_{1} + x^{-1}kN)$$

$$\Leftrightarrow y_{1} = y_{2} \in [\![N, 2^{L} - 1]\!] \text{ or } (y_{1}, y_{2} < N \text{ and } \exists k' \in \mathbb{Z}, y_{2} = x^{-1}y_{1} + k'N)$$

$$\Leftrightarrow y_{1} = y_{2} \in [\![N, 2^{L} - 1]\!] \text{ or } (y_{1}, y_{2} < N \text{ and } x^{-1}y_{1} = y_{2} \mod N)$$

$$\Leftrightarrow \langle U'(y_{1}) | y_{2} \rangle = 1$$

so, since $\langle U'(y_1)|y_2\rangle$, $\langle y_1|U(y_2)\rangle \in \{0,1\}$,

$$\forall y_1, y_2 \in \{0, 1\}^L, \quad \langle y_1 | U(y_2) \rangle = \langle U'(y_1) | y_2 \rangle$$

This shows that $U' = U^{\dagger}$, since it is obvious that U is invertible and $U^{\dagger} = U^{-1}$, we have shown that U is unitary.