Domain Adaptation in Semantic Segmentation

李鑫

2021.05.12

1

Outline

- Introduction
- Adversarial training based methods
- Self-training based methods
- Multi-source methods

Outline

- Introduction
- Adversarial training based methods
- Self-training based methods
- Multi-source methods

Image Segmentation

4

Semantic Segmentation

Base Framework

Semantic Segmentation

Prediction

Input Semantic Labels

Metrics for Segmentation Models

Intersection over Union (IoU):

$$\mathrm{IoU} = J(A,B) = \frac{|A \cap B|}{|A \cup B|} \qquad \qquad \mathrm{IOU} = \frac{\text{Area of overlap}}{\text{Area of union}}$$

- Also called Jaccard Index
- > The most commonly used metrics in semantic segmentation. (mean-IoU/mIoU)
- A denotes the ground truth and B denotes the predicted segmentation maps.

7

Cross-Domain Prediction

. The distribution of test data is different that of training data

Style, layout, shape, context, illumination, etc.

Training data Test data

Domain adaptation (DA)

Leveraging labeled source domain, to learn a model for the target domain.

9

Domain adaptation (DA)

The setting of domain adaptation

- Target distribution is different from the source one
- Same task (shared label sets)
- Large amounts of labeled source data and unlabeled target data

Why do we need domain adaptation?

- Costly to label large amounts of in-domain data
- Unrealistic to collect and annotate a dataset covering all the domain variations
- The knowledge of the task can be potentially reuse/shared across domains

Example scenarios

Recognition

Detection

Segmentation

Re-identification

Control

Fully Convolutional Networks (FCN)

- Fully Convolutional
- Deconvolution
- Skip connections

Combine coarse, high-level information and fine, low-level information

Limitations:

- Not fast enough for real-time inference.
- Does not take into account the global context information efficiently.
- Not easily transferable to 3D images.

Encoder-Decoder-Based Models

SegNet

Encoder: 13 convolutional layers (VGG16) + 3 fully convolutional layers. **Eliminates the need for learning to up-sample.**

Dilated Convolutional Models and DeepLab Family

- Also called "Atrous Convolution".
- > Enlarging the receptive field with no increase in computational cost.
- The DeepLab family, densely connected Atrous Spatial Pyramid Pooling (ASPP), DeepLabv3+: high mIoU of 89.0% on PASCAL VOC 2012.

Dilated Convolutional Models and DeepLab Family

ASPP (Atrous Spatial Pyramid Pooling)

Adversarial learning

Principles of GAN

Domain adversarial training

Domain Adaptive Semantic Segmentation

From Synthetic to real data

- ► Easy to obtain pixel level annotation
- ► Poor labeling due to domain shift

Datasets

GTA5

GTA5 contains 24,966 training images with the resolution of 1914x1052 and we use its 19 categories shared with Cityscapes.

Synthetic

SYNTHIA

SYNTHIA dataset contains 9,400 1280x760 images and we use its 16 common categories with Cityscapes.

Real

Cityscape

Cityscapes dataset contains 2,975 training images and 500 images for validation with the resolution of 2048x1024.

Outline

- Introduction
- Adversarial training based methods
- Self-training based methods
- Multi-source methods

Source Domain

Large gap in appearance

Target Domain

$$\mathcal{L}_d(P) = -\sum_{h,w} (1-z) \log(\mathbf{D}(P)^{(h,w,0)})$$
$$+z \log(\mathbf{D}(P)^{(h,w,1)}),$$
$$\mathcal{L}_{seg}(I_s) = -\sum_{h,w} \sum_{c \in C} Y_s^{(h,w,c)} \log(P_s^{(h,w,c)})$$

- image-level GAN loss (green)
- ➤ feature level GAN loss (orange)
- source and target semantic consistency losses(black)
- source cycle loss (red)
- source task loss (purple)

(b)	S	YN'	ΓΗΙΑ	\rightarrow	City	/sca	pes

Models	Appr.	road	sidewalk	building	wall	fence	pole	light	sign	veg	sky	person	rider	car	pms	mbike	bike	mIoU	mIoU*
FCNs in the Wild [15]	Adv	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6	20.2	22.1
Adapt-SegMap [41]	Adv	78.9	29.2	75.5	-	-	-	0.1	4.8	72.6	76.7	43.4	8.8	71.1	16.0	3.6	8.4	-	37.6
Self-Training [51]	ST	0.2	14.5	53.8	1.6	0.0	18.9	0.9	7.8	72.2	80.3	48.1	6.3	67.7	4.7	0.2	4.5	23.9	27.8
Self-Training + CB [51]	ST	69.6	28.7	69.5	12.1	0.1	25.4	11.9	13.6	82.0	81.9	49.1	14.5	66.0	6.6	3.7	32.4	35.4	36.1
Ours (MinEnt)	Ent	37.8	18.2	65.8	2.0	0.0	15.5	0.0	0.0	76	73.9	45.7	11.3	66.6	13.3	1.5	13.1	27.5	32.5
Ours (MinEnt + CP)	Ent	45.9	19.6	65.8	5.3	0.2	20.7	2.1	8.2	74.4	76.7	47.5	12.2	71.1	22.8	4.5	9.2	30.4	35.4
Ours (AdvEnt + CP)	Adv	67.9	29.4	71.9	6.3	0.3	19.9	0.6	2.6	74.9	74.9	35.4	9.6	67.8	21.4	4.1	15.5	31.4	36.6
Adapt-SegMap [41]	Adv	84.3	42.7	77.5	-	-	-	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7
Adapt-SegMap* [41]	Adv	81.7	39.1	78.4	11.1	0.3	25.8	6.8	9.0	79.1	80.8	54.8	21.0	66.8	34.7	13.8	29.9	39.6	45.8
Ours (MinEnt)	Ent	73.5	29.2	77.1	7.7	0.2	27.0	7.1	11.4	76.7	82.1	57.2	21.3	69.4	29.2	12.9	27.9	38.1	44.2
Ours (AdvEnt)	Adv	87.0	44.1	79.7	9.6	0.6	24.3	4.8	7.2	80.1	83.6	56.4	23.7	72.7	32.6	12.8	33.7	40.8	47.6
Ours (AdvEnt+MinEnt)	A+E	85.6	42.2	79.7	8.7	0.4	25.9	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	41.2	48.0

Outline

- Introduction
- Adversarial training based methods
- Self-training based methods
- Multi-source methods

Self-training learning

CBST: class-balanced self-training

Self-training learning based methods

Strategy1: self-paced self training learning easy-to-hard

$$\begin{aligned} \min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{ST}(\mathbf{w}, \hat{\mathbf{y}}) &= -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) \\ &- \sum_{t=1}^{T} \sum_{n=1}^{N} \left[\hat{\mathbf{y}}_{t,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{t})) + \frac{k|\hat{\mathbf{y}}_{t,n}|_{1}}{k} \right] \\ s.t. \ \hat{\mathbf{y}}_{t,n} &\in \{\{\mathbf{e}^{(i)} | \mathbf{e}^{(i)} \in \mathbb{R}^{C}\} \cup \mathbf{0}\}, \forall t, n \\ k &> 0 \end{aligned}$$

Algorithm 1: Determination of k in ST

Input : Neural network $P(\mathbf{w})$, all target images \mathbf{I}_t , portion p of selected pseudo-labels

```
 \begin{aligned} & \textbf{Output: k} \\ \textbf{1 for } t=1 \ to \ T \ \textbf{do} \\ \textbf{2} & | P_{t_t} = P(\textbf{w}, \textbf{I}_t) \\ \textbf{3} & | MP_{I_t} = \max(P_{I_t}, \text{axjs}{=}0) \\ \textbf{4} & | M = [\textbf{M}, \text{matrix.to.vector}(\textbf{MP}_{\textbf{I}_t})] \end{aligned}
```

- 6 M = sort(M,order=descending)
- $7 \operatorname{len}_{th} = \operatorname{length}(M) \times p$
- $8 k = -\log(M[len_{th}])$
- 9 return k

5 end

Self-training learning based methods

Strategy2: Class-Balanced Self-Training

$$\begin{aligned} \min_{\mathbf{w},\hat{\mathbf{y}}} \mathcal{L}_{CB}(\mathbf{w}, \hat{\mathbf{y}}) &= -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) \\ &- \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \left[\hat{y}_{t,n}^{(c)} \log(p_{n}(c|\mathbf{w}, \mathbf{I}_{t})) + k_{c} \hat{y}_{t,n}^{(c)} \right] \\ s.t. \ \hat{\mathbf{y}}_{t,n} &= \left[\hat{y}_{t,n}^{(1)}, ..., \hat{y}_{t,n}^{(C)} \right] \in \left\{ \left\{ \mathbf{e}^{(i)} \middle| \mathbf{e}^{(i)} \in \mathbb{R}^{C} \right\} \cup \mathbf{0} \right\}, \forall t, n \\ k_{c} &> 0, \forall c \end{aligned}$$

```
Algorithm 2: Determination of k_c in CBST
   Input: Neural network f(\mathbf{w}), all target images I<sub>t</sub>, portion p of selected
               pseudo-labels
   Output: k.
 1 for t=1 to T do
       P_{\mathbf{I}_t} = P(\mathbf{w}, \mathbf{I}_t)
      LP_{I_{\bullet}} = argmax(P.axis=0)
     MP_{I_r} = max(P_raxis=0)
     for c=1 to C do
         | MP_{c,I_r} = MP_{I_r}(LP_{I_r} == c)
        M_c = [M_c, matrix\_to\_vector(MP_{c,L_c})]
       end
 9 end
10 for c=1 to C do
       M_c = sort(M_c, order = descending)
       len_{c,th} = length(M_c) \times p
    k_c = -log(M_c[len_{c,th}])
14 end
15 return k
```

Self-training learning based methods

Spatial Priors

$$\begin{aligned} \min_{\mathbf{w}, \hat{\mathbf{y}}} \mathcal{L}_{SP}(\mathbf{w}, \hat{\mathbf{y}}) &= -\sum_{s=1}^{S} \sum_{n=1}^{N} \mathbf{y}_{s,n}^{\top} \log(\mathbf{p}_{n}(\mathbf{w}, \mathbf{I}_{s})) \\ &- \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{c=1}^{C} \left[\hat{y}_{t,n}^{(c)} \log(\overline{\mathbf{q}_{n}(\mathbf{c})} p_{n}(c|\mathbf{w}, \mathbf{I}_{t})) + k_{c} \hat{y}_{t,n}^{(c)} \right] \\ &s.t. \ \hat{\mathbf{y}}_{t,n} \in \{ \{ \mathbf{e} | \mathbf{e} \in \mathbb{R}^{C} \} \cup \mathbf{0} \}, \forall t, n \\ &k_{c} > 0, \forall c \end{aligned}$$

Table 2: The ablation study on hyperparameter λ for separating the target domain into the easy and the hard split.

		GTA5 -	→ Citys	scapes		
$\overline{\lambda}$	0.0	0.5	0.6	0.67	0.7	1.0
mIoU	43.8	45.2	46.0	46.3	45.6	45.5

(a) GTA5	→ Cityscapes

Method	road	sidewalk	building	wall	fence	pole	light	sign	veg	terrain	sky	person	rider	car	truck	snq	train	mbike	bike	mIoU
Without adaptation [26]	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
ROAD [5]	76.3	36.1	69.6	28.6	22.4	28.6	29.3	14.8	82.3	35.3	72.9	54.4	17.8	78.9	27.7	30.3	4.0	24.9	12.6	39.4
AdaptSegNet [26]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
MinEnt [29]	84.2	25.2	77.0	17.0	23.3	24.2	33.3	26.4	80.7	32.1	78.7	57.5	30.0	77.0	37.9	44.3	1.8	31.4	36.9	43.1
AdvEnt [29]	89.9	36.5	81.6	29.2	25.2	28.5	32.3	22.4	83.9	34.0	77.1	57.4	27.9	83.7	29.4	39.1	1.5	28.4	23.3	43.8
Ours	90.6	37.1	82.6	30.1	19.1	29.5	32.4	20.6	85.7	40.5	79.7	58.7	31.1	86.3	31.5	48.3	0.0	30.2	35.8	46.3

(b) SYNTHIA → Cityscapes

Method	road	sidewalk	building	wall*	fence*	pole*	light	sign	veg	sky	person	rider	car	snq	mbike	bike	mIoU	mIoU*
Without adaptation [26]	55.6	23.8	74.6	9.2	0.2	24.4	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	33.5	38.6
AdaptSegNet [26]	81.7	39.1	78.4	11.1	0.3	25.8	6.8	9.0	79.1	80.8	54.8	21.0	66.8	34.7	13.8	29.9	39.6	45.8
MinEnt [29]	73.5	29.2	77.1	7.7	0.2	27.0	7.1	11.4	76.7	82.1	57.2	21.3	69.4	29.2	12.9	27.9	38.1	44.2
AdvEnt [29]	87.0	44.1	79.7	9.6	0.6	24.3	4.8	7.2	80.1	83.6	56.4	23.7	72.7	32.6	12.8	33.7	40.8	47.6
Ours	84.3	37.7	79.5	5.3	0.4	24.9	9.2	8.4	80.0	84.1	57.2	23.0	78.0	38.1	20.3	36.5	41.7	48.9

However, since only the confident predictions are taken as pseudo labels, existing self-training approaches inevitably produce sparse pseudo labels in practice.

$$conf_{t} = \frac{1}{K'} \sum_{k=1}^{K'} \frac{N_{t}^{k*}}{N_{t}^{k}} \cdot \frac{1}{\lambda_{k}}$$

class-wise thresholding value

Picking up the top q portion as easy samples and consider the rest as hard samples for the training. We initially set q to 30% and add 5% in each round.

						SYN	ГНІА	→ Ci	tysca	pes										
Method	Seg Model	Road	sw	Build	Wall*	Fence	Pole*	TL	TS	Veg.	Sky	PR	Rider	Car	Bus	Motor	Bike	mIoU	mIoU*	R-mIoU
Source		41.5	16.6	38.3	0.2	0.0	22.6	0.1	4.9	66.5	64.7	44.9	1.7	60.7	3.3	0.0	0.6	22.9	26.4	4.3
CBST [39]	Deeplaby2-V	75.7	32.3	70.2	3.5	0.0	28.6	1.4	9.0	79.8	65.6	52.9	13.7	65.8	9.1	1.5	36.4	34.1	39.5	11.5
CRST(MRKLD) [40]	1	75.1	33.5	70.8	5.6	0.0	28.7	2.0	9.7	78.9	72.5	51.7	11.6	63.4	7.3	1.4	38.6	34.4	39.7	11.7
CRST(MRKLD) + TPLD	1	81.3	34.5	73.3	11.9	0.0	26.9	0.2	6.3	79.9	71.2	55.1	14.2	73.6	5.7	0.5	41.7	36.0	41.3	11.9
Adapt-SegMap [36]		84.3	42.7	77.5	-	-	-	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	-	46.7	-
ADVENT [37]	Deeplabv2-R	87.0	44.1	79.7	9.6	0.6	24.3	4.8	7.2	80.1	83.6	56.4	23.7	72.7	32.6	12.8	33.7	40.8	47.6	16.6
CLAN [25]	Deeplas 12 10	81.3	37.3	80.1	-	-	-	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	-	47.8	-
Source		45.9	21.4	63.0	7.3	0.0	33.6	4.5	14.4	81.6	79.7	55.3	16.7	67.5	21.3	7.5	19.0	33.7	38.3	13.8
CBST [39]	Deeplabv2-R	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9	23.2
CRST(MRKLD) [40]	Deeplabv2-K	67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1	24.7
CRST(MRKLD) + TPLD	1	80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5	27.4
Source		45.5	19.0	71.3	6.2	0.0	27.4	11.3	15.3	79.4	79.4	58.3	9.2	79.7	33.0	6.0	8.8	34.4	39.7	13.0
CBST [39]	Deeplabv3-R	45.2	19.4	81.8	15.7	0.2	33.3	20.8	24.9	85.0	82.2	64.6	26.7	84.8	48.8	22.9	43.9	43.8	50.1	26.4
CRST(MRKLD) [40]	Deeрiabv3-R	52.3	21.9	80.0	17.2	0.8	32.4	17.9	31.1	84.8	83.5	63.7	28.5	83.1	37.2	19.1	52.5	44.1	50.4	26.3
CRST(MRKLD) + TPLD	1	70.9	29.5	80.6	18.4	0.4	26.6	19.9	30.9	85.5	86.3	66.0	32.9	84.4	51.1	29.3	56.2	48.1	55.7	29.5

Outline

- Introduction
- Adversarial training based methods
- Self-training based methods
- Multi-source methods

Table 1: Comparison of the proposed MADAN model with several state-of-the-art domain adaptation methods. The full names of each property from the second to the last columns are pixel-level alignment, feature-level alignment, semantic consistency, cycle consistency, multiple sources, domain aggregation, one task network, and fine-grained prediction, respectively.

	pixel	feat	sem	cycle	multi	aggr	one	fine
ADDA [25]	X	✓	_	-	X	_	✓	✓
CycleGAN [39]	✓	X	X	✓	X	_	✓	X
PiexlDA [37]	✓	X	X	X	X	_	✓	✓
SBADA [41]	✓	X	✓	✓	X	_	✓	X
GTA-GAN [42]	✓	✓	X	X	X	_	✓	X
DupGAN [43]	✓	✓	✓	X	X	_	✓	X
CyCADA [32]	✓	✓	✓	✓	×	_	✓	✓
DCTN [68]	Х	√	_	-	√	X	X	X
MDAN [69]	X	✓	_	_	✓	X	✓	X
MMN [70]	X	✓	_	_	✓	X	X	X
MADAN (ours)	✓	✓	✓	✓	✓	✓	✓	✓

47