Midterm 1. PLS120 Fall 2018. VERSION A. Name: Student ID: ALL QUESTIONS HAVE THE SAME VALUE. USE THE BACK OF THIS SHEET TO REPORT YOUR CALCULATIONS. NO OTHER SHEETS WILL BE ALLOWED. 1. What distribution can be used to represent the number of seeds that germinate out of 10 planted if the probability of germination is constant and seeds are independent? A Binomial B. Poisson C. Normal D. Chi-square Constant P Independent Hinds Binomial Binomial	factory. What is the probability that an inspector allows the truck into the factory after inspecting 20 tomatoes? A. 0.95 B. 0.82 C. 0.50 D. 0.20 P(allow) = P(no infected tomato found) = 0.99 ²⁰ = 0.82 6. The range of a sample is a measure of: A. independence C. skewness A. o.95 B. 0.82 C. 0.50 D. 0.20 A. o.
2. You want to determine the probability of observing 17 bikers pass by you during your lunch hour break at the park, knowing that on average, 20 bikers pass by during this time. What would be the appropriate probability function to determine this? A. Binomia B. Poisson C. Normal D. Chi-square independent breats Over time of Space Poisson 3. Which characteristic is always true for a Normal distribution? A. the curve is asymmetric around the mean B. describes data that only contain positive values C. the mean is 0 and the standard deviation is 1 D. 95% of the area is within +/- 1.96 SD from the mean	 7. PEARS. Pears from a population have mean mass = 200 g and standard deviation = 20 g. If pears with mass < 190 g are rejected, what proportion of the population is rejected? A. 0.05 B. 0.975 C. 0.18 D. 0.3085? H = 200 S = 20 P(74 190) = P(Z < 190 - 200) = P(Z < -0.5) - 0.3085 8. In the same population of PEARS, what would be the lowest mass per pear acceptable if you want to reject the lowest 10% of the population? A. 210 B. 195 C. 185 D. 174 P(Y < ?) = 0.10 = P(Z < ? - 200)
4. An Austrian monk, who was investigating the inheritance of pod color and plant height in peas, got the following offspring from a self-pollinated pea plant (N = 1000) Which of the following statements is true? Plant Height\ Pod color Green (G) Yellow (Y) Tall (T) 5625 1875 Dwarf (D) 1875 625 A. P(G) = P(Y); height and pod color are independent BP(G) = P(T); height and pod color are independent C. P(G) = P(Y); height and pod color NOT independent	25 Zo.10
D. $P(G) = P(T)$; height and pod color NOT independent	A. 0.99 B. 0.975 C.0.95 D. 0.925

 $P(G) = \frac{5625 + 1875}{10,000} = P(T)$ $P(G \cap T) = P(G) \times P(T)$ 5. A truck has a large load of tomatoes in which 1% of the tomatoes are infected with a fungus not to be allowed into the

	-1.64 1.96
11. A sample of farms is randomly selected, and the investigator records the number crops grown in each farm. What type of random variable is the information being collected? A. Continuous B. Categorical C. Discrete D. Ratio Courtable, natural numbers, no values between land 2 or 1 4 1 1. 12. When we cannot reject a null hypothesis, we accept it as true. A. True B. False No, because it is not always nearingful that we ould not reject that we first did not the first	 18. The 95% confidence interval for a mean is (10, 22). Can you conclude that the mean is different from 21 with alpha = 0.05? A. Yes B. No B. No CT CONTOINS Ho CT CONTOINS According to your professor, what is the most important equation in PLS120 or closest to it? A. (Y-μ)/r B. n!/[(n-r)! r!] C. σ̄ȳ = σ̄y/√r D. 1-β CONTOINS According to your professor, what is the most important equation in PLS120 or closest to it? A. (Y-μ)/r B. n!/[(n-r)! r!] C. σ̄ȳ = σ̄y/√r CONTOINS According to your professor, what is the most important equation in PLS120 or closest to it? A. (Y-μ)/r B. n!/[(n-r)! r!] C. σ̄ȳ = σ̄y/√r CONTOINS According to your professor, what is the most important equation in PLS120 or closest to it? A. (Y-μ)/r B. n!/[(n-r)! r!] C. σ̄ȳ = σ̄y/√r CONTOINS According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor, what is the most important equation in PLS120 or closest to it? According to your professor your professor your professor your professor your professor your professor your profess
13. What measure of central tendency is best used when dealing	20. You estimate a 95% CI for the mean of a population of known variance (sigma $^2 = 100$). First you obtained a sample of size 4
with extreme data values? A. Mean B. Median C. Mode D. Moment	but the CI was too wide, so you added 96 observations. By
14. In a 2-tailed test of hypothesis for equality of means the	what factor did you shrink the width of your confidence interval?
calculated t is 3.5 and the critical t is 2.1. Do you reject Ho? A. Yes B. No	C1 = 7 ± tort x SE . width = 2 tort · St
1	SE, = 5/19) SEI _ 100 = 10 = 5
tcale > teritical	5/- 5/- 5
=> Reject Ho	SEZ = 5/100) SEZ = 14 2
15. The mean number of weak points that break under tension in wire is 2 per 10 km. What is the probability that there are NO breaks when 5 km of wire are put under tension? A. 0.61 B. 0.37 C. 0.5 D. 0.05 Poisson (0) = e	21. Select the correct completion for the statement: Relative to the full line graph, the Normal with a dotted line A. has a larger mean. B. has a smaller mean. C. has more degrees of freedom. Dhas more variance. E. has less variance. Normal doles not have df. Both modes are equal if Normal 22. A sample from a normal population with variance 4 has values 1, 2, 2, 3. Make an approximate 95% CI for the mean of the population. A. 0 to 4 B. 1 to 2 C. 0.05 to 1.95 D2 to 6 E4 to 4 T = 2 6 4 7 = 4/4 =
17. What is the probability of getting first a head and then tail in two coin tosses? Think! A. 0.75 B. 0.5 C.0.25 D. 0.125	$Z = 1.96$ $CT = 2 \pm 1.96 \times 1 \approx 94$
$P(HT) = 0.5 \times 0.5 = 0.25$	