

BOOLEAN ALGEBRA

LOGIC MINIMIZATION

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Laws of Boolean Algebra

Rules of Boolean Algebra

DeMorgan's Theorem

LAWS OF BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

Boolean algebra is the mathematics of digital logic. It was formulated in 1874 by George Boole.

George Boole

COMMUTATIVE LAWS

Commutative law of addition

$$A + B = B + A$$

$$A \stackrel{\frown}{=} A + B$$

$$B \stackrel{\frown}{\longrightarrow} A \stackrel{\frown}{\longrightarrow} B + A$$

Commutative law of multiplication

$$AB = BA$$

$$A \hookrightarrow B \hookrightarrow AB$$

$$B \hookrightarrow BA$$

ASSOCIATIVE LAWS

Associative law of addition

$$A + (B + C) = (A + B) + C$$

Associative law of multiplication

$$A(BC) = (AB)C$$

DISTRIBUTIVE LAW

Distributive law

$$A(B+C)=AB+AC$$

RULES OF BOOLEAN ALGEBRA

BASIC RULES OF BOOLEAN ALGEBRA

<u>Basic rules of Boolean</u> algebra are useful in manipulating and simplifying Boolean expressions.

Basic rules of Boolean algebra

$$1. A + 0 = A$$

$$7. A \cdot A = A$$

$$2. A + 1 = 1$$

$$8. A \cdot \bar{A} = 0$$

$$3. A \cdot 0 = 0$$

9.
$$\bar{\bar{A}} = A$$

$$4. A \cdot 1 = A$$

$$10. A + AB = A$$

$$5. A + A = A$$

$$11. A + \bar{A}B = A + B$$

$$6. A + \bar{A} = 1$$

12.
$$(A + B)(A + C) = A + BC$$

RULE 1 AND 2

Rule 1: A + 0 = A

A variable Ored with 0 is always equal to the variable.

$$A \stackrel{\frown}{\circ} \longrightarrow A$$

Rule 2: A + 1 = 1

A variable Ored with 1 is always equal to 1.

$$A \stackrel{\frown}{\longrightarrow} 1$$

RULE 3 AND 4

Rule 3: $\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$

A variable ANDed with 0 is always equal to 0

Rule 4: $\mathbf{A} \cdot \mathbf{1} = \mathbf{A}$

A variable ANDed with 1 is always equal to the variable.

$$A \hookrightarrow A$$
 $1 \hookrightarrow A$

RULE 5 AND 6

Rule 5: $\mathbf{A} + \mathbf{A} = \mathbf{A}$

A variable ORed with itself is always equal to the variable.

$$A \longrightarrow A$$

Rule 6: $\underline{\mathbf{A} + \overline{\mathbf{A}} = \mathbf{1}}$

A variable ORed with its complement is always equal to 1.

$$A \longrightarrow 1$$

RULE 7 AND 8

Rule 7: $\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$

A variable ANDed with itself is always equal to the variable.

Rule 8: $\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$

A variable ANDed with its complement is always equal to 0.

RULE 9 AND 10

Rule 9: $\overline{\overline{\mathbf{A}}} = \mathbf{A}$

A double complement of a variable is always equal to the variable.

$$A \longrightarrow A$$

Rule 10:
$$\mathbf{A} + \mathbf{AB} = \mathbf{A}$$

$$A + AB = A \cdot 1 + AB$$
$$= A(1 + B)$$
$$= A(1)$$
$$= A$$

RULE 11

Rule 11:
$$\underline{A} + \overline{A}B = A + B$$

 $A + \overline{A}B = (A + AB) + \overline{A}B$
 $= (AA + AB) + \overline{A}B$
 $= AA + AB + A\overline{A} + \overline{A}B$
 $= (A + \overline{A})(A + B)$
 $= 1 \cdot (A + B)$
 $= A + B$

RULE 12

Rule 12:
$$(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) = \mathbf{A} + \mathbf{BC}$$

 $(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) = \mathbf{AA} + \mathbf{AC} + \mathbf{AB} + \mathbf{BC}$
 $= \mathbf{A} + \mathbf{AC} + \mathbf{AB} + \mathbf{BC}$
 $= \mathbf{A} + \mathbf{AB} + \mathbf{BC}$
 $= \mathbf{A} + \mathbf{BC}$

DEMORGANIS THEOREMS

FIRST THEOREM

DeMorgan's first theorem states that the complement of a product of variables is equal to the sum of the complements of the variables.

Logic Expression

$$\overline{XY} = \overline{X} + \overline{Y}$$

Truth Table

X	Y	\overline{XY}	$\bar{X} + \bar{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

<u>NAND</u>

Logic Circuits 1

Negative-OR

$$X \longrightarrow \overline{X} + \overline{Y}$$

SECOND THEOREM

DeMorgan's second theorem states that the complement of a sum of variables is equal to the product of the complements of the variables.

<u>Logic expression</u>

$$\overline{X+Y}=\overline{X}\cdot\overline{Y}$$

Truth Table

X	Y	$\overline{X+Y}$	$ar{X}\cdotar{Y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

NOR

 $\underline{Negative\text{-}AND}$

Apply DeMorgan's theorems to the expression:

$$f = \overline{(A+B)C}$$

Simplify the Boolean expression:

$$f = AB + A(B+C) + B(B+C)$$

Simplify the Boolean expression:

$$f = [A\bar{B}(C + BD) + \bar{A}\bar{B}]C$$

Apply DeMorgan's theorems to the expression:

$$f = \overline{(\bar{A} + B) + CD}$$

Simplify the Boolean expression:

$$f = A\overline{B} + A(\overline{B+C}) + B(\overline{B+C})$$

LABORATORY

