A research team took a random sample of 5 observations from a normally distributed random variable Y and observed that $\bar{y}_5 = 32.8$ and $s_Y^2 = 54.1$, where \bar{y}_5 was the average of the five observations sampled from Y and s_Y^2 was the unbiased estimate of var(Y). A second research team took a random sample of 4 observations from a normally distributed random variable X and observed that $\bar{x}_4 = 57.6$ and $s_X^2 = 649.2$, where \bar{x}_4 was the average of the four observations sampled from X and s_X^2 was the unbiased estimate of var(X). Find the 95% confidence interval

USE F4,3 =
$$\frac{S_{1}^{2}}{S_{2}^{2}}/\sigma_{3}^{2} = \frac{S_{2}^{2}}{S_{2}^{2}}/\sigma_{3}^{2}$$

FROM F TABLE

PR { F4,3 \leq 15.1 \cappa = 0.975}

PR { F3,4 \leq 9.98 \cappa = 0.975}

PR { S_{2}^{2}}/\sigma_{3}^{2} \leq 9.98 \cappa = 0.975

INVERT EACH SIDE OF INEQUALITY

PR { $\frac{S_{2}^{2}}{S_{2}^{2}}/\sigma_{3}^{2} > \frac{1}{9.98} = 0.975$

PR { $\frac{S_{2}^{2}}{S_{2}^{2}}/\sigma_{3}^{2} > \frac{1}{9.98} = 0.975$

 F_{α}

TABLE 8 Percentage points of the *F* distribution (df₂ between 1 and 6)

df ₂	α	$\mathbf{df_1}$									
		1	2	3	4	5	6	7	8	9	10
1	.25	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32
	.10	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86	60.19
	.05	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
	.025	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6
	.01	4052.2	4999.5	5403.3	5624.6	5763.7	5859.0	5928.4	5981.0	6022.5	6055.8
2	.25	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38
	.10	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39
	.05	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
	.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40
	.01	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
	.005	198.5	199.0	199.2	199.2	199.3	199.3	199.4	199.4	199.4	199.4
	.001	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4
3	.25	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44
	.10	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23
	.05	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
	.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42
	.01	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
	.005	55.55	49.80	47.47	46.19	45.39	44.84	44.43	44.13	43.88	43.69
	.001	167.0	148.5	141.1	137.1	134.6	132.8	131.6	130.6	129.9	129.2
4	.25	1.81	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08
	.10	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92
	.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
	.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84
	.01	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
	.005	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14	20.97
	.001	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.47	48.05
5	.25	1.69	1.85	1.88	1.89	1.89	1.89	1.89	1.89	1.89	1.89
	.10	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30
	.05	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
	.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62
	.01	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
	.005	22.78	18.31	16.53	15.56	14.94	14.51	14.20	13.96	13.77	13.62
	.001	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	27.24	26.92
6	.25	1.62	1.76	1.78	1.79	1.79	1.78	1.78	1.78	1.77	1.77
	.10	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94
	.05	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
	.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46
	.01	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
	.005	18.63	14.54	12.92	12.03	11.46	11.07	10.79	10.57	10.39	10.25
	.001	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69	18.41

Source: Computed by M. Longnecker using the R function $qf(1-\alpha,df_1,df_2).$

Additional values can be obtained using the same R function.

Prof 498 < 52/53 < 15.13 = 0.95 HENCE MULTEPLY EACH PART BY SE/57:

Prof 9.78 53 4 53 4 15.1 54 }=0.95

DATA FROM PROBLEM 5= 649.2 = 12.0 53 = 54.1 HENCE LEPT ENDPOENT IS 498 (12.0)

RIGHT ENDPOINT IS 15.1 (12.0) THE 95% CI FOR 52/54 IS

1.20 TO 181.2

TEST Ho: (52/52)=1, vs H: 52 =1.

AT & = .05.

I IS NOT IN 95% CI (JUST BARBLY)

REJECT HO AT 0 = .05.