Оглавление

Лекция 2: Базис векторого пространства

18.09.2023

Пусть у - Это конечно мерно пространство

Определение 1. Набор $v_1, v_2, ..., v_n$ называется порождающим для V, если $\forall w \in V \exists \alpha_1, ..., \alpha_n : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Замечание. Если к порождающему набору прибавить вектор, то он останется порождающим. Если убрать векторы из непорождающего набора векторы, то набор останется непорождающим.

Определение 2. $v_1, v_2, ..., v_n$ называется базисом V, если этот набор ЛНЗ и порождающий.

Теорема 1 (О базисе). Следующие определения базиса равносильны:

- 1. ЛНЗ и порождающий набор
- 2. Минимальный порождающий набор (минимальный по включениям)
- 3. Максимальный ЛНЗ набор (максимальный по включениям)
- 4. Порождающий набор $\forall w \in V \exists ! \alpha_1,...,\alpha_2 : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Доказательство. Цепочка доказательств:

 $1 \to 2$. Дан $v_1,...,v_n$ – ЛНЗ и порождающий набор. Доказать, что он минимальный порождающий.

Допустим, что v_i выкинули, оставшийся набор остался порождающим $\Rightarrow v_i$ – ЛК остальных \Rightarrow ЛЗ.

 $2 \to 4$. Дан $v_1,...,v_n$ – минимальный порождающий набор. Доказать $v_1,...,v_n$ – порождающий с единственностью коэффициентов.

Допустим противное: $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \beta_1 v_1 + ... + \beta_n v_n$

$$\alpha_i \neq \beta_i$$

$$(\alpha_i - \beta_i)v_i = (\beta_1 - \alpha_1)v_1 + \dots \text{ (без } i\text{-oro)} + (\beta_n - \alpha_n)v_n$$

$$v_i = \frac{\beta_1 - \alpha_1}{\alpha_i - \beta_i} + \dots \text{ (без } i\text{-oro)} + \frac{\beta_n - \alpha_n}{\alpha_i - \beta_i}$$

 v_i – выкинем. В любой ЛК с v_i заменим v_i на выражение выше \Rightarrow набор порождающий. Значит без единственности коэффициентов получаем противоречие с дано

 $4 \to 3$. Дан $v_1,...,v_n$ — порождающий набор с единственностью коэффициентов. Доказать: $v_1,...,v_n$ — максимальный ЛНЗ (ЛНЗ уже доказана)

Допустим противное: $v_1, v_2, ..., v_n; u - ЛНЗ$ набор

$$u = \alpha_1 v_1 + ... + \alpha_n v_n(\alpha_1, ... \alpha_n \exists !) \Rightarrow v_1, ..., v_n, u - J \exists !$$

 $3 \to 1$. Дан $v_1,...,v_n$ – максимальный ЛНЗ. Доказать $v_1,...,v_n$ – ЛНЗ и порождающий набор.

$$\forall w \in V \qquad \qquad v_1, v_2, ..., v_n, w - J \text{З} \text{ набор} \\ \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n + \beta w = 0 \\ \text{Если } \beta = 0 \Rightarrow \qquad \alpha_1 v_1 + ... + \alpha_n v_n = 0 \\ \text{ не все коэффициенты } = 0 (\alpha_i \neq 0) \\ \Rightarrow v_1, ..., v_n - J \text{З} \\ \beta \neq 0 \Rightarrow \qquad w = -\frac{\alpha_1}{\beta} v_1 - \frac{\alpha_2}{\beta} v_2 - ... - \frac{\alpha_n}{\beta} v_n$$

Замечание. (Следствия) Любую конечную порождающую систему можно сузить до базиса.

Если есть конечный порождающий набор, то любую ЛНЗ систему можно расширить до базиса.

Определение 3. Размерность пространства равна количеству элементов в базисе. (пока нет доказательств корректности)

Лемма 1. Система линейных уравнений: $(a_{ij} \in \mathbb{R}; x_i \in \mathbb{R}; 0 \in \mathbb{R})$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Оглавление

Имеет ненулевые решения, если n > k.

Доказательство. Индукция по k. База k = 1:

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
 Пусть $a_{11}\neq 0\Rightarrow x_1=-\frac{a_{12}}{a_{11}}x_2-\frac{a_{13}}{a_{11}}x_3-\ldots-\frac{a_{1n}}{a_{11}}x_n$ $\forall x_2,\ldots,x_n:x_1$ выражается через них
$$a_{11}=0\Rightarrow x_1=1;x_2=x_3=\ldots=x_n=0$$

Переход

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$$

 $\exists i: a_{1i} \neq 0$, иначе выкинем предыдущее уравнение

$$x_i = -\frac{a_{11}}{a_{1i}}x_1 - \dots$$
 (без *i*-ого) $- -\frac{a_{1n}}{a_{1i}}x_n$

Подставим выраженное x_i во все остальные уравнения. Уравнений на 1 меньше, переменных на 1 меньше.

Теорема 2. Если $v_1,...,v_k$ и $w_1,...,w_n$ базисы $\in V$, то k=n.

Доказательство. $v_1,...,v_n$ – порождающая система.

$$w_1 = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \dots + a_{k1}v_k$$

$$w_2 = a_{12}v_1 + a_{22}v_2 + a_{32}v_3 + \dots + a_{k2}v_k$$

...

$$w_n = a_{1n}v_1 + a_{2n}v_2 + a_{3n}v_3 + \dots + a_{kn}v_k$$

$$x_1 w_1 + x_2 w_2 + \dots + x_n w_n = 0, x_i \in \mathbb{R}$$
 (1)

т.к. $w_1, ..., w_n - ЛНЗ \Rightarrow все x_i = 0$

$$x_1(a_{11}v_1 + a_{21}v_2 + \dots + a_{k1}v_k) + x_2(a_{12}v_1 + a_{22}v_2 + \dots + a_{k2}v_k)$$

$$+ \dots + x_n(a_{1n}v_1 + a_{2n}v_2 + \dots + a_{kn}v_k) = 0$$

$$v_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) + v_2(a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n)$$

$$+ \dots + v_k(a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n) = 0$$

 $v_1, v_2, ..., v_k$ – ЛНЗ \Rightarrow все коэффициенты равны 0.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Если $n>k\Rightarrow \exists$ ненулевые решения \Rightarrow противоречие с (1) и ЛНЗ $w_i\Rightarrow n\leq k$. Аналогично $k\leq n\Rightarrow n=k$.