Neoway:有方

N720V5 Linux 集成 用户手册

版本 1.0

日期 2018-07-05

有方技术资料

版权声明

版权所有 © 深圳市有方科技股份有限公司 2018。深圳市有方科技股份有限公司保留所有权利。

未经深圳市有方科技股份有限公司书面同意,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

NCOWO) 有方是深圳市有方科技股份有限公司所有商标。

本文档中出现的其他商标, 由商标所有者所有。

说明

本文档对应产品为 N720V5 模块。

本文档的使用对象为系统工程师, 开发工程师及测试工程师。

本设计指南为客户产品设计提供支持,客户须按照本文中的规范和参数进行产品设计和调试。如因客户操作不当造成的人身伤害和财产损失,有方概不承担责任。

由于产品版本升级或其它原因,本文档内容会在不预先通知的情况下进行必要的更新。

除非另有约定,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市有方科技股份有限公司为客户提供全方位的技术支持,任何垂询请直接联系您的客户经理或发送邮件 至以下邮箱:

> Sales@neoway.com Support@neoway.com

公司网址: http://www.neoway.com

目 录

1 端口映射关系	1
2 USB 串口驱动	2
2.1 识别 USB 设备	
2.2 添加 VID 和 PID	
2.3 添加 USB 转串口驱动	3
2.4 验证 USB 串口驱动是否添加成功	
2.4.1 查看 ttyACM 设备	4
3 AT 指令调试	5
3.1 串口工具 minicom	5
3.2 命令 echo 测试 AT 指令	7
4 PPP 拨号流程	10
4.1 添加 VID 和 PID	10
4.2 内核添加 PPP 支持	10
4.3 pppd 拨号脚本	11
4.3.1 pppd 脚本简介	11
4.3.2 pppd 配置文件	12
4.4 pppd 拨号	14
4.5 查看 IP 地址与网络测试	15
4.5.1 查看 IP 地址	15
4.5.2 网络测试	15
4.5.3 断开 PPP 拨号连接	16
4.6 断网重连	17
4.7 拨不上号处理	
5 FAQ	18
A 附录	19
A.1 模块初始化	19
A.2 外部协议栈流程	
A 3 常用接入占(APN)	21

关于本文档

范围

本文档对应产品为 **N720V5** 模块,用于指导用户如何在 Linux 系统中集成 **N720V5** 模块,如何在 Linux 系统中使用 **N720V5** 模块进行拨号上网。

读者对象

本文档的使用对象为系统工程师,开发工程师及测试工程师。

修订记录

版本	日期	变更	作者
1.0	2018-07	初始版本	Luo

符号约定

符号	含义
Warning	危险或警告,用户必须遵从的规则,否则会造成模块或客户设备不可逆的故障损坏, 甚至可能造成人员身体伤害。
Caution	注意,警示用户使用模块时应该特别注意的地方,如不遵从,模块或客户设备可能出现故障。
Note	说明或提示,提供模块使用的意见或建议。

1端口映射关系

N720V5 模块支持 2 种拨号方式, PPP 拨号、RNDIS 拨号, N720V5 模块端口映射对应关系如表 1-1。

表 1-1 N720V5 模块端口映射对应关系表

产品型号	VID	PID	支持拨号方式	端口映射对应	端口功能说明
N720V5 0x2949				RNDIS (00)	RNDIS 网卡端口
	0x8700 PPP	PPP/RNDIS	Diag (02)	诊断口	
		PPP/RNDIS	TTY (04 AT)	AT 指令端口	
				MODEM (06)	专用数据业务端口

2 USB 串口驱动

主设备与模块通过 USB 端口交互,如 AT 指令交互会需要使用 AT 指令端口,PPP 拨号使用 MODEM 端口,调试使用 Diag 端口,具体的模块端口信息请查看表 1-1 的说明。

为了使主设备能识别到 N720V5 模块并枚举出相关 USB 端口,需添加 USB 串口驱动。在成功添加模块 VID、PID 信息后,插上模块,会在/dev/目录下枚举出 ttyACM 设备,如下图。

```
support@neoway:/dev$ ls ttyACM*
ttyACM0 ttyACM1 ttyACM2 ttyACM3
support@neoway:/dev$
```

2.1 识别 USB 设备

使用 Isusb 命令查看 usb 设备信息,确认主设备已经识别到模块。如下图,已识别到 N720V5 模块, VID 为 0x2949, PID 为 0x8700。

```
Support@neoway:~$ lsusb

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 006 Device 002: ID 046d:c05a Logitech, Inc. M90/M100 Optical Mouse
Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 007: ID 2949:8700
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
```


若主设备没有识别 N720V5 模块,则需要排查硬件电路,确认 N720V5 模块是否已经连接到主设备,N720V5 模块是否已经上电开机,N720V5 USB 连接是否正确,USB 线是否损坏等问题。

2.2 添加 VID 和 PID

能识别到模块后,还需要添加 USB 串口驱动,才能枚举出 ttyACM 设备。本节将介绍如何通过在 cdc-acm.c 源代码文件中添加 VID、PID 来添加 USB 串口驱动。

打开内核源码文件 cdc-acm.c(路径一般为 drivers/usb/class/cdc-acm.c),找到数组 acm_ids[],根据表 1-1 添加 N720V5 模块 VID、PID 信息。

File: [KERNEL] /drivers/usb/class/cdc-acm.c

2.3 添加 USB 转串口驱动

在 Linux 系统中通常需要使用 USB 转串口的驱动。在 Linux 内核配置中请确保已添加驱动,操作步骤如下:

步骤 1: 进入 Linux 内核目录。

步骤 2: 执行 make menuconfig, 弹出内核配置图形界面。

步骤 3: 配置内核,参考路径如下,勾选对应配置项。

步骤 4: 选择"Save",保存配置,然后选择"Exit",退出。

步骤 5: 重新编译内核,重启。

```
Device Drivers --->
[*] USB support --->

*** USB Device Class drivers *** --->

<M> USB Modem (CDC ACM) support (CONFIG_USB_ACM=y)
```

```
config - Linux/x86 4.1.38 Kernel Configuration
 Device Drivers USB support
                           USB support
   Arrow keys navigate the menu. <Enter> selects submenus --->
   (or empty submenus ----). Highlighted letters are hotkeys.
   Pressing <Y> includes, <N> excludes, <M> modularizes
   features. Press <Esc> to exit, <?> for Help, </> for
       <M>
               SSB usb host driver
               HCD test mode support
       [ ]
               *** USB Device Class drivers ***
               USB Modem (CDC ACM) support
       <M>
       <M>
               USB Printer support
       {M}
               USB Wireless Device Management support
               USB Test and Measurement Class support
       <M>
               *** NOTE: USB STORAGE depends on SCSI but BLK DE
               *** also be needed; see USB STORAGE Help for mor
       \perp(+)
     <Select>
                 < Exit >
                             < Help >
                                         < Save >
                                                      < Load >
```

2.4 验证 USB 串口驱动是否添加成功

2.4.1 查看 ttyACM 设备

主设备重新上电开机,通过查询命令 Is /dev/ttyACM*,如果在/dev 目录下能正确的枚举出 ttyACM 设备,则表明添加串口驱动成功。

```
support@neoway:/dev$ ls ttyACM*
ttyACM0 ttyACM1 ttyACM2 ttyACM3
support@neoway:/dev$
```

```
support@neoway:/dev$ lsusb -t
    Bus 08.Port 1: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M
   Bus 07.Port 1: Dev 1, Class=root_hub, Driver=uhci_hcd/2p, 12M
Bus 06.Port 1: Dev 1, Class=root_hub, Driver=uhci_hcd/2p, 12M
        Port 2: Dev 2, If 0, Class=Human Interface Device, Driver=usbhi
  1.5M
    Bus 05.Port 1: Dev 1, Class=root_hub, Driver=uhci_hcd/2p, 12M
    Bus 04.Port 1: Dev 1, Class=root_hub, Driver=uhci_hcd/2p, 12M
    Bus 03.Port 1: Dev 1, Class=root hub, Driver=uhci hcd/2p, 12M
    Bus 02.Port 1: Dev 1, Class=root_hub, Driver=ehci-pci/6p, 480M
    Bus 01.Port 1: Dev 1, Class=root_hub, Driver=ehci-pci/6p, 480M
|__ Port 5: Dev 6, If 0, Class=Wireless, Driver=cdc_acm, 480M
        Port 5: Dev 6, If 1, Class=CDC Data, Driver=cdc acm, 480M
        Port 5: Dev 6, If 2, Class=Communications, Driver=cdc_acm,
        Port 5: Dev 6, If 3, Class=CDC Data, Driver=cdc acm, 480M
        Port 5: Dev 6, If 4, Class=Communications, Driver=cdc acm, 480M
        Port 5: Dev 6, If 5, Class=CDC Data, Driver=cdc acm, 480M
        Port 5: Dev 6, If 6, Class=Communications, Driver=cdc_acm,
        Port 5: Dev 6, If 7, Class=CDC Data, Driver=cdc acm, 480M
support@neoway:/dev$
support@neoway:/dev$
```

3 AT 指令调试

Linux 环境下进行 AT 指令调试时,通常使用串口调试工具来进行 AT 指令调试。下文介绍两种常用的调试方法。

3.1 串口工具 minicom

minicom 是 Linux 环境下最常用的串口调试工具之一,这里介绍如何通过 minicom 来和 N720V5 模块进行 AT 指令交互。

打开 minicom,配置串口参数。

运行命令 "minicom -s"会在终端出现图形配置界面,选择"Serial port setup"。

```
+----[configuration]----+
| Filenames and paths
| File transfer protocols
| Serial port setup
| Modem and dialing
| Screen and keyboard
| Save setup as dfl
| Save setup as...
| Exit
| Exit from Minicom
```

选择并回车,会弹出一个配置界面;键入字母 A~G 进行对应参数配置,一般只需指定 Serial Device 即可,其他保持默认。键入字母 A,修改为/dev/ttyACM3,回车。

配置 ttyACM3 为波特率 115200,8 位数据,无奇偶校验,1 位停止位,无硬件流控制,无软件流控制。

```
| A - Serial Device : /dev/ttyACM3
| B - Lockfile Location : /var/lock
| C - Callin Program :
| D - Callout Program :
| E - Bps/Par/Bits : 115200 8N1
| F - Hardware Flow Control : No
| G - Software Flow Control : No
| Change which setting?
| Screen and keyboard |
| Save setup as dfl |
| Save setup as . . |
| Exit |
| Exit from Minicom |
```

选择 Save setup as dfl,将当前配置选择为默认配置,下次就可以直接运行命令 minicom,不用再进行参数配置。

minicom 的使用及退出。

最后选择 Exit 退出配置界面,然后就进入 minicom 主界面,此时输入 AT 指令即可进行 AT 指令交互。

```
Welcome to minicom 2.7

OPTIONS: I18n
Compiled on Jan 1 2014, 17:13:19.
Port /dev/ttyACM3, 19:46:08

Press CTRL-A Z for help on special keys

ATE1
OK
AT+GMR
+GMR: N720V5_BZ_CM570_V001
OK
AT+CSQ
+CSQ: 31,99
OK
```

键入 Ctrl+A,然后键入 Q,即可退出 minicom。

3.2 命令 echo 测试 AT 指令

echo 命令可用于在终端打印字符串,可以通过重定向实现发送 AT 指令到 ttyACM 设备;为了方便

调试,打开两个终端,一个用于写 AT 指令,一个用于读 AT 响应。

- modem 或 AT 端口都能通 AT 指令,建议使用 AT 端口,占用 modem 端口后 PPP 拨号无法使用;
- 若提示权限不够,则需要 root 权限;

```
support@neoway:/dev$ echo -e "AT+GMR\r\n" > ttyACM3 ; cat ttyACM3
-bash: ttyACM3: Permission denied
cat: ttyACM3: Permission denied
support@neoway:/dev$ [
```


若 AT 指令中带有特殊字符 (比如\$符号),则需要在特殊字符前加上"\"符号进行转义;


```
+
1 新建会话 (3)
support@neoway:/dev$ cat ttyACM3
0K
● <u>1</u>新建会话(3) × +
support@neoway:/dev$ echo -e "AT$MYGMR\r\n" > ttyACM3
support@neoway:/dev$
1 新建会话 (3)
support@neoway:/dev$ cat ttyACM3
AΤ
0K
AT$MYGMR
NE06
N720V5
V001
140618
V1.0
211217
0K
● 1新建会话(3) ×
support@neoway:/dev$ echo -e "AT$MYGMR\r\n" > ttyACM3
```

 $support@neoway:/dev$ echo -e "AT\$MYGMR\r\n" > ttyACM3$

support@neoway:/dev\$

4 PPP 拨号流程

N720V5 支持 pppd 拨号上网,以下将介绍如何在 Linux 系统下通过 pppd 脚本来拨号上网。

4.1 添加 VID 和 PID

在 kernel/drivers/usb/class/cdc-acm.c 文件中,acm_ids[]数组里面,添加 N720V5 的 VID 和 PID。

File: [KERNEL]/drivers/usb/class/cdc-acm.c

4.2 内核添加 PPP 支持

步骤 1: 通常 Linux 内核默认已把 PPP 编进内核中,请确保你使用的内核已配置 PPP;配置参考路径如下:

```
Device Drivers --->
[*] Network device support (NETDEVICES [=y]) --->
{*} PPP (point-to-point protocol) support
```

步骤 2: 选择"Save",保存设置,然后选择"Exit",退出;

步骤 3: 重新编译内核, 然后烧录文件到机器;

步骤 4: 重启机器。

4.3 pppd 拨号脚本

Linux 下使用 pppd 工具进行 ppp 拨号,拨号前请确保已有 pppd 和 chat 两个可执行程序,如果系统没有 pppd,请先安装 kppp,里面带有 pppd 应用程序(推荐使用 pppd 2.4.5、pppd 2.4.7);

4.3.1 pppd 脚本简介

pppd 所有脚本及配置文件存放在目录/etc/ppp/下。

```
root@neoway-wl:~# tree -L 3 /etc/ppp/
 etc/ppp/
    chap-secrets
    ip-down
    ip-down.d
        0000usepeerdns
        000resolvconf
        Odns-down
    ip-up.d
       - 0000usepeerdns
        000resolvconf
        Odns-up
    ipv6-down
    ipv6-down.d
    ipv6-up
    ipv6-up.d
    options
    options.pptp
    pap-secrets
        gprs-chat
        gprs-dial
        provider
    pppoe_on_boot
    resolv
    resolv.conf
6 directories, 19 files
```

ip-up 和 ip-down 分别在拨号和断开拨号时调用;

peers/目录下存放的是自定义配置文件,gprs-dial 和 gprs-chat 都是接下来需要自己添加的;gprs-dial 主要是一些配置信息;

gprs-chat 里是 chat 与模块之间交互所需的 AT 命令及应答。

4.3.2 pppd 配置文件

下面给出 gprs-dial 和 gprs-chat 两个脚本的范例。

需要注意的是,ttyACM 设备要根据实际情况填写,本例中,modem 端口对应的是 ttyACM3。

File: /etc/ppp/peers/gprs-dial

```
#modify the following parameters according to your actual situation,
#ttyACMX mapping modem interface; The China Telecom 2G/3G needs to
#set the username and password to be "ctnet@mycdma.cn" and "vnet.mobi",
#others, use the default parameters "card" and "card"for username and password.
/dev/ttyACM3
user "card"
password "card"
#The following parameters are recommended to keep the default settings,
```



```
#and you can also modify according to your own conditions.

115200
hide-password
noauth
debug
noipdefault
local
lock
dump
defaultroute
nodetach
remotename cmnet
ipparam cmnet
usepeerdns
connect '/usr/sbin/chat -s -v -f /etc/ppp/peers/gprs-chat'
```

File: /etc/ppp/peers/gprs-chat

```
TIMEOUT 5

ABORT "BUSY"

ABORT "DELAYED"

ABORT "REROR"

ABORT "NODIALTONE"

ABORT "NOCARRIER"

TIMEOUT 5

''AT

OK AT+CSQ
OK AT+CGDCONT=1, "IP", "ctnet"
OK ATD*99#
CONNECT ''
```

各大运营商 APN 信息如表 4-1。

表 4-1 各大运营商 APN 设置

运营商	网络制式	APN	拨号号码
中国移动	2G/3G/4G	CMNET	*99#
中国移动 2G 物联网卡	2G	СММТМ	*99#
中国移动 4G 物联网卡	4G	СМІОТ	*99#
中国联通	2G/3G/4G	3GNET	*99#
中国电信	2G/3G	CTNET	*99#
	4G	CTLTE	0011

- 若使用专网卡,则需要运营商提供专网 APN 接入点, user 和 password
- 中国电信 2G/3G 拨号还需要在 PPPD 的拨号脚本设置拨号参数 user 和 password, 国内公网可以设置为 user: card , password: card 或者 user: ctwap@mycdma.cn , password: vnet.mobi;
- 申国电信 2G/3G 也可以用#777 进行拨号;
- 若使用其他 SIM 卡拨号上网, 需要设置 user 和 password, 则需要运营商提供 user 和 password;

4.4 pppd 拨号

1. 拨号前请查询以下 AT 命令,确认 N720V5 模块已成功注册到网络,可参考附录的模块初始化流程, 具体返回值参考有方 AT 指令手册。

 AT+CPIN?
 //查询 SIM 是否识别

 AT+CSQ
 //查询当前信号强度

 AT+CGATT?
 //查询数据业务附着状态

 AT\$MYSYSINFO
 //查询当前注册的网络制式

2. 拨号前请确保 APN、用户名、密码、鉴权方式等设置已正确配置。

可通过 AT 指令 AT+CGDCONT 和 AT+XGAUTH 来设置 APN、用户名和密码、鉴权方式等参数,详细使用方法请参考 AT 指令手册。APN、用户名和密码、鉴权方式等参数需要根据不同的运营商来进行设置。

下面给出常用的基本设置举例。

例如设置 PDP 格式, PDP 类型为 IP, APN 名称为"CMNET":

```
AT+CGDCONT=1,"IP","CMNET" //使用中国移动卡OK
```

例如查询当前 PDP 格式:

```
AT+CGDCONT?
+CGDCONT:
1,"IP","CMNET","0.0.0.0",0,0,0,0
```

例如设置鉴权方式为 PAP、用户名"gsm"及密码"1234":

```
AT+XGAUTH=1,1,"gsm","1234" //使用中国移动卡
OK
```

3. 拨号脚本中 APN、用户名、密码等设置已正确配置。

```
nodetach
user "gsm"
password "1234"
remotename cmnet
```

4. 执行拨号

执行命令 "pppd call gprs-dial", 拨号上网。

4.5 查看 IP 地址与网络测试

4.5.1 查看 IP 地址

输入"ifconfig -a"查看 PPP 拨号获得的 IP 地址,如下图:

```
ppp0 Link encap:Point-to-Point Protocol
inet addr:10.2.97.27 P-t-P:10.64.64.64 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:5 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:3
RX bytes:62 (62.0 B) TX bytes:101 (101.0 B)
support@neoway:~$
```

4.5.2 网络测试

通过命令 ping 测试是否连接 Internet。

ping 115.239.210.27

测试是否能 ping 通 baidu 的 IP 地址。

ping www.baidu.com

测试是否 ping 通 baidu 的域名。

```
ppp0 Link encap:Point-to-Point Protocol
inet addr:10.2.97.27 P-t-P:10.64.64.64 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:5 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:3
RX bytes:62 (62.0 B) TX bytes:101 (101.0 B)

support@neoway:~$ ping www.baidu.com
PING www.a.shifen.com (14.215.177.38) 56(84) bytes of data.
64 bytes from 14.215.177.38: icmp_seq=1 ttl=54 time=7.66 ms
64 bytes from 14.215.177.38: icmp_seq=2 ttl=54 time=6.83 ms
64 bytes from 14.215.177.38: icmp_seq=3 ttl=54 time=13.6 ms
```


如果 IP 地址能 ping 通, 而域名 ping 不通, 则需要添加 DNS(114.114.114.114)到/etc/resolv.conf。

4.5.3 断开 PPP 拨号连接

1. 调用结束脚本 ppp-off。

2. 使用指令: # killall pppd

```
root@neoway:/home/support/ppp# killall pppd
Terminating on signal 15
Connect time 31.7 minutes.
Sent 0 bytes, received 0 bytes.
Script /etc/ppp/ip-down started (pid 3504)
sent [LCP TermReq id=0x2 "User request"]
root@neoway:/home/support/ppp# rcvd [LCP TermAck id=0x2]
Connection terminated.
Waiting for 1 child processes...
script /etc/ppp/ip-down, pid 3504
Script /etc/ppp/ip-down finished (pid 3504), status = 0x0
```

4.6 断网重连

如果出现不能联网的现象,或者网络断开的现象,则需要先断开 ppp 拨号,然后重新进行拨号联网。

4.7 拨不上号处理

- 1. 如果拨不上号,则需要排查模块初始化,是否成功注册到网络上;
- 2. 需要排查 SIM 卡是否欠费了等 SIM 卡异常问题;
- 3. 需要确认使用的 SIM 卡, APN、用户名和密码、鉴权方式等是否设置正确了,需要注意区分 APN、用户名和密码中的大小写;
- 4. 需要确认在拨号脚本中,APN、用户名和密码、鉴权方式等是否设置正确了,需要注意区分 APN、用户名和密码中的大小写:

5 FAQ

问:内核里添加了模块 VID PID,为何 Is /dev/ttyACM*仍查看不到端口?

答:首先,要确认已给模块上电,且 USB 已成功接入。可通过 Isusb 或 dmesg 查看接入的 USB 设备信息,确认模块已接入到系统,否则要先确认硬件连接是否正确。通过 Isusb 或 dmesg 查看到 模块信息后,再确认添加的 VID 、PID 是否正确。核对无误后,最终确认修改的信息是否被系统编译到。以上信息都确认无误,就能通过 Is /dev/ttyACM*查看到端口了。

A 附录

A.1 模块初始化

在建立拨号连接时,需确保模块初始化完成,满足基础通信条件。

```
ΑT
OK
AT+GMR
+GMR: N720V5_BZ_CM570_V001
AT+CCID
+CCID: 898600030450A3163280
OK
AT+CPIN?
+CPIN: READY
OK
AT+CSQ
+CSQ: 25,99
OK
AT+CREG? // 查询网络注册
+CREG: 0,1
AT+CGATT? // 查询数据业务附着状态
+CGATT: 1
AT$MYSYSINFO // 查询当前网络制式状态
$MYSYSINFO: 4,01
```

图 A-1 模块上电初始化流程图

A.2 外部协议栈流程

AT+CGDCONT=1, "IP", "CMNET"

OK

// 如果需要进行身份认证,则需要增加下面这条指令;如果不需要,则不需要这条指令;

// 中国移动卡默认的用户名和密码是 GSM 和 1234,中国电信卡和中国联通卡默认的是 CARD 和 CARD,

// 如果有指定的,则需要设置成客户提供的用户名和密码;

AT+XGAUTH=1,1,"GSM","1234"

OF

ATD*99#

CONNECT

图 A-2 N720V5 模块外部协议栈流程图

- 如果是专网卡,并且需要进行身份认证,则需要接着设置下面这条指令
- AT+XGAUTH=1,1,"GSM","1234"
- 不同专网卡的用户名和密码不同,要根据客户提供的设置;
- 正常情况下,设置后就可收到"OK"回码;
- 拨号后等待模块返回执行结果,超时时间10秒钟:
- 若返回"CONNECT",则模块进入外部协议栈模式;
- 若返回 "NO CARRIER",则循环拨号5次,5-10s/次;
- 若拨号5次后仍未成功,则重新执行初始化流程:
 - A、UIM卡是否掉卡;
 - B、网络注册情况等;

A.3 常用接入点(APN)

运营商	网络制式	APN
中国移动	2G/3G/4G	CMNET
中国移动 2G 物联网卡	2G	СММТМ
中国移动 4G 物联网卡	4G	СМІОТ
中国联通	2G/3G/4G	3GNET
中国电信	2G/3G	CTNET
	4G	CTLTE