

Задачи разрешимости логических формул и приложения Лекция 9. Комбинирование логик

Роман Холин

Московский государственный университет

Москва, 2022

Зачему нужно комбинировать теории?

Комбинации линейной арифметики и неинтрепретируемых функций:

$$(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \ne f(x_3)$$

 Комбинации битовых векторов и неинтрепретируемых функций:

$$f(a[32], b[1]) = f(b[32], a[1]) \land a[32] = b[32]$$

③ Комбинации массивов и неинтрепретируемых функций: $x = v\{i \leftarrow e\}[j] \land y = v[j] \land x > e \land x > y$

Теория первого порядка

- Переменные
- Логические символы: $\lor, \land, \rightarrow, \lnot$, \forall, \exists
- Нелогические символы (сигнатура Σ): предикатные и функциональные символы
- Синтаксис

Знак равенства часто рассматривают как логический символ, а не как предикатный, т.к. теории без такого символа встречаются редко

Теория первого порядка

- Теория Т множество «предложений» (формулы первого порядка над сигнатурой Σ, где все переменные связаны с квантором). Эти «предложения» называют аксиомами
- Формула Т-выполнима ($T \models \phi$), если существует интерпретация, при которой она и теория T верна
- Формула Т-тавтология, если для любой интерпретации, при которой верна T, она так же верна

Комбинация теорий

Пусть T_1 , T_2 - теории над сигнатруами Σ_1 , Σ_2 соответственно. Тогда комбинацией теорий $T_1\oplus T_2$ назовём теорию над сигнатурой $\Sigma_1\cup\Sigma_2$ над множеством аксиом $T_1\cup T_2$

Выпуклые(convex) теории

 Σ теория T назовём выпуклой, если для любой Σ формулы ϕ : $(\phi \implies \bigvee_{i=1}^n (x_i = y_i))$ - T тавтология для некоторого $n > 1 \implies (\phi \implies (x_i = y_i))$ для всех $i \in \{1, \dots, n\}$

$$x \leq 3 \land x \geq 3 \implies x = 3$$

$$x \le 3 \land x \ge 3 \implies x = 3$$

$$x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \implies (x_3 = x_1 \lor x_3 = x_2)$$

Ограничения Нельсона-Оппена

- **1** $T_1, \ldots T_n$ безкванторные теории с равенством
- ② Для каждой теории есть разрешающая процедура
- Пересечение каждой пары сигнатур пустое множество
- Теории интерпретируются над бесконечным доменом

Очистка формулы(purification)

Пусть
$$\phi' := \phi$$

- f 0 Каждое "чуждое" подвыражения arphi заменим на a_{arphi}
- $oldsymbol{2}$ Добавим в формулу ограничение $a_{arphi}=arphi$

Очистка формулы(purification)

После данной процедуры мы получим множество «чистых» формул F_1, \ldots, F_n , таких, что:

- lacktriangle Каждая F_i принадлежит теории T_i и является конъюкцией T_i -литералов
- 2 Общие переменные возможны
- Исходная формула выполнима тогда и только тогда, когда выполнима $\wedge_{i=1}^n F_i$

$$\varphi := x_1 \le f(x_1)$$

Алгоритм Нельсона-Оппена для выпуклых теорий

- lacktriangle Очистить формулу ϕ и получить F_1,\ldots,F_n
- ② Если хотя бы одна из теорий невыполнима, то вернуть UNSAT
- **③** Если существуют такие i и j, что из F_i следует равенство i и j, а из F_j такого следствия нет, то добавить к F_j такое равенство и вернутся на шаг 2
- Вернуть SAT

Алгоритм Нельсона-Оппена для выпуклых теорий

Если хотя бы одна из теорий не выпуклая, то алгоритм будет ложно возвращать SAT

$$(f(x_1,0) \ge x_3) \land (f(x_2,0) \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - f(x_1,0) \ge 1),$$

$$(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land (f(f(x_1) - f(x_2)) \ne f(x_3))$$

$$(1 \le x) \land (x \le 2) \land p(x) \land \neg p(1) \land \neg p(2)$$

Алгоритм Нельсона-Оппена

- ① Очистить формулу ϕ и получить F_1, \dots, F_n
- Если хотя бы одна из теорий невыполнима, то вернуть UNSAT
- **⑤** Если существуют такие i и j, что из F_i следует равенство i и j, а из F_j такого следствия нет, то добавить к F_j такое равенство и вернутся на шаг 2
- ullet Если существует i, так что
 - $F_i \implies (x_1 = y_1 \vee \cdots \vee x_k = y_k)$
 - $\forall \in \{1,\ldots,k\}.F_i \implies x_j = y_j$

то рекурсивно применим Алгоритм Нельсона-Оппена для $\phi \wedge x_1 = y_1, \dots, \phi \wedge x_k = y_k$ Если хотя бы одино из выражений выполимо, то

возращаем SAT. Иначе UNSAT.

Вернуть SAT

$$(1 \le x) \land (x \le 2) \land p(x) \land \neg p(1) \land \neg p(2)$$

