Homework #5 MATH270

Luke Tollefson

Wednesday, February 27th

1. The theorem is correct and properly proved directly. Here is an alternate proof.

Theorem 1. For any sets A, B, and C, if $A \setminus B \subseteq C$ and $A \not\subseteq C$ then $A \cap B \neq \emptyset$.

Proof. Consider the contrapositive if $A \cap B = \emptyset$ then $A \setminus B \not\subseteq C$ or $A \subseteq C$. The consequence states $A \not\subseteq C$ or $A \subseteq C$, which is always true. Hence, the implication is true.

2. If $A_x = [-x, x]$, what is $\bigcap_{x \in \mathbb{R}^+} A_x$ and $\bigcup_{x \in \mathbb{R}^+} A_x$?

$$\bigcap_{x \in \mathbb{R}^+} A_x = \{0\}$$

Proof. If $y \in \bigcap_{x \in \mathbb{R}^+} A_x$, then $y \in A_x$ for all $x \in \mathbb{R}^+$. Considering the interval $A_x = [-x, x]$, if we have some number $\epsilon \in \mathbb{R}^+$, we can always choose a smaller number $\frac{\epsilon}{2} \in \mathbb{R}^+$. Therefore, the only number to be in all intervals [-x, x] is 0. And so $y \in \{0\}$, thus $\bigcap_{x \in \mathbb{R}^+} A_x \subseteq \{0\}$.

Now let $y \in \{0\}$. For each $x \in \mathbb{R}^+$, we may write $-x \le y \le x$. And so $y \in A_x$ for all $x \in \mathbb{R}^+$. This shows $y \in \bigcap_{x \in \mathbb{R}^+} A_x$, hence $\{0\} \subseteq \bigcap_{x \in \mathbb{R}^+} A_x$.

Combining the two implications yields the equality, $\bigcap_{x \in \mathbb{R}^+} A_x = \{0\}.$

$$\bigcup_{x \in \mathbb{R}^+} A_x = (-\infty, \infty)$$

Proof. If $y \in \bigcup_{x \in \mathbb{R}^+} A_x$, then $y \in [-x, x]$ for some $x \in \mathbb{R}^+$. Since x can be arbitrarily large, $y \in (-\infty, \infty)$, therefore $\bigcup_{x \in \mathbb{R}^+} A_x \subseteq (-\infty, \infty)$.

Now if $y \in (-\infty, \infty)$, then for some $x \in \mathbb{R}^+$ we may have $y \in [-x, x]$. So $y \in A_x$, hence $(-\infty, \infty) \subseteq \bigcup_{x \in \mathbb{R}^+} A_x$.

These two arguments combined to form the equality $\bigcup_{x \in \mathbb{R}^+} A_x = (-\infty, \infty)$.

3. Prove the following set inclusion

$$\bigcup_{b\in\mathbb{R}^+} \{(x,y)\in\mathbb{R}^2 : x+y=b\} \subseteq \bigcap_{s\in\mathbb{R}^-} \{(x,y)\in\mathbb{R}^2 : x+y>s\}.$$

Proof. Let $z \in \bigcup_{b \in \mathbb{R}^+} \{(x,y) \in \mathbb{R}^2 : x+y=b\}$, then $z \in \{(x,y) \in \mathbb{R}^2 : x+y=b\}$ for some $b \in \mathbb{R}^+$. Now for all $s \in \mathbb{R}^-$ we have $z \in \{(x,y) \in \mathbb{R}^2 : x+y=b>s\}$, or $z \in \{(x,y) \in \mathbb{R}^2 : x+y>s\}$ and the theorem is complete.

- 4. (a) False, let $A = \emptyset$, $\{\emptyset\} \not\subseteq \emptyset$
 - (b) True, \emptyset is a subset of any set. However, \emptyset is never equal to $\mathcal{P}(A)$ because $\mathcal{P}(A)$ is a set that always contains at least one element (the element being \emptyset).
 - (c) False, $\{\emptyset\} \in \mathcal{P}(A)$, but $\{\emptyset\} \not\subseteq \{x, y\}$.
 - (d) False, $\mathcal{P}(\{\{x,y\}\}) = \{\emptyset, \{\{x,y\}\}\}\$
 - (e) False, let $A = \emptyset$, $\mathcal{P}(\emptyset) = {\emptyset}, {\emptyset} \notin {\emptyset}$
- 5. Show that

$$\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B),\tag{1}$$

but

$$\mathscr{P}(A) \cup \mathscr{P}(B) \neq \mathscr{P}(A \cup B). \tag{2}$$

Proof. Let $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$. Assume that $x \in \mathcal{P}(A)$, then $x \subseteq A$. It follows that $x \subseteq A \cup B$, hence $x \in \mathcal{P}(A \cup B)$. Similarly, assume $x \in \mathcal{P}(B)$, then $x \subseteq B$. Now $x \subseteq A \cup B$, therefore $x \in \mathcal{P}(A \cup B)$. This proves (1).

Now we can show (2) by counter example. If $A = \{1\}$ and $B = \{2\}$, then $\mathscr{P}(A) \cup \mathscr{P}(B) = \{\emptyset, \{1\}, \{2\}\} \text{ and } \mathscr{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$ This shows the two sets are not equivalent.

6. Let $\{A_{\alpha} : \alpha \in I\}$ be a nonempty indexed collection of sets. Prove that

$$\mathscr{P}\left(\bigcap_{\alpha\in I}A_{\alpha}\right)=\bigcap_{\alpha\in I}\mathscr{P}(A_{\alpha})$$

Proof. Let $x \in \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$, then $x \subseteq \bigcap_{\alpha \in I} A_{\alpha}$. Let $z \in x$, then $z \in \bigcap_{\alpha \in I} A_{\alpha}$. By definition, $z \in A_{\alpha}$ for all $\alpha \in I$. Since $z \in x$ implied $z \in A_{\alpha}$, then $x \subseteq A_{\alpha}$. Therefore, $x \in \mathcal{P}(A_{\alpha})$ for all $\alpha \in I$. Hence $x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$.

Now let $x \in \bigcap_{\alpha \in I} \mathcal{P}(A_{\alpha})$. Therefore, $x \in \mathcal{P}(A_{\alpha})$ for all $\alpha \in I$. Now, by definition, $x \subseteq A_{\alpha}$. If we let $z \in x$, then $z \in A_{\alpha}$, and therefore $z \in \bigcap_{\alpha \in I} A_{\alpha}$. Since $z \in x$ implied $z \in \bigcap_{\alpha \in I} A_{\alpha}$, then $x \subseteq \bigcap_{\alpha \in I} A_{\alpha}$. It follows $x \in \mathcal{P}(\bigcap_{\alpha \in I} A_{\alpha})$.

Since containment was proved in both directions, the two sets are equivalent.