Modelos lineales

Armando Ocampo

Librerias de trabajo

Antes de comenzar a trabajar, te recomiendo abrir las siguientes librerias. Si no cuentas con alguna de ellas es posible instalarla mediante la función *install.packages()*

```
library(readr)
library(dplyr)
library(corrplot)
library(ggplot2)
library(scales)
library(ggpubr)
library(broom)
```

Asimismo, se agregan dos conjuntos de datos. Los cuales debes descargar y guardar en la carpeta clean_data.

Modelos lineales

Para este apartado utilizaremos el conjunto de datos de vacunación obtenido del portal **Our World in Data**, el cual se conforma por información de 171 países, agregando las variables esperanza de vida, producto interno bruto per capita y porcentaje de vacunación de 13 inmunizaciones. Este dataset tiene actualización al 31 de diciembre de 2019. El formato es un archivo de valores separados por coma (comma separate values, csv). Antes de comenzar, lo llamaremos a nuestro ambiente de trabajo.

```
vacunas_df <- read_csv('../data/dataset_vacunas.csv')</pre>
```

Para facilitar el uso de las variables del conjunto de datos utilizaremos la función attach() de la paquetería base. Esta permite que cada variable del dataset se vuelva un vector independiente, sin saturar la memoria del ambiente.

```
attach(vacunas_df)
```

Los modelos lineales describen la relación de la variable respuesta (dependiente) y la(s) variable(s) explicativa(s) (independiente). Esta relación puede ser positiva, negativa o estar ausente. En R, este tipo de modelos se realiza mediante la función lm() de la paquetería stats. Los argumentos que se colocan son los siguientes. $formula = y_x$, describe la relación de la variable "y" con la variable "x" <math>(yx), este elemento indica, en medida que x explica y). El siguiente argumento, data = detalla el conjunto de datos a utilizar. En el siguiente ejemplo se creará un modelo lineal que exlique la relación de la esperanza de vida con el producto interno bruto en el conjunto de datos de vacunas.

```
gdp_vs_life <- lm(formula=Life_expectancy~GDP, data = vacunas_df)</pre>
```

Para extraer la información del modelo se utilizan las funciones print(), summary() y tidy().

```
summary(gdp_vs_life)
```

```
##
## Call:
## lm(formula = Life_expectancy ~ GDP, data = vacunas_df)
```

```
##
## Residuals:
##
       Min
                1Q
                    Median
                                30
                                       Max
  -15.901
           -3.883
                     1.317
                             4.144
                                      8.623
##
##
##
  Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 6.756e+01 5.798e-01
##
                                     116.53
                                               <2e-16 ***
##
  GDP
               2.485e-04 1.962e-05
                                       12.66
                                               <2e-16 ***
##
## Signif. codes:
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 5.386 on 169 degrees of freedom
## Multiple R-squared: 0.4869, Adjusted R-squared: 0.4839
## F-statistic: 160.4 on 1 and 169 DF, p-value: < 2.2e-16
confint(gdp_vs_life)
##
                      2.5 %
                                  97.5 %
## (Intercept) 6.641799e+01 6.870703e+01
               2.097573e-04 2.872285e-04
tidy(gdp_vs_life)
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic
                                                  p.value
##
     <chr>>
                     <dbl>
                                <dbl>
                                          <dbl>
                                                    <dbl>
## 1 (Intercept) 67.6
                           0.580
                                          117.
                                                2.30e-163
## 2 GDP
                  0.000248 0.0000196
                                           12.7 2.83e- 26
```

Además de los estadísticos de confianza, estas funciones generan los coeficientes que permiten generar la función que explica el modelo. Proporcionando la intercepción con el eje de las "y", y la relación de entre variables.

De esta manera obtenemos la siguiente fórmula y = (0.000248)x + 67.6. Posteriormente, podemos graficar el modelo. Para esto generaremos un gráfico de dispersión en la paquetería ggplot2, agregando la función $geom_smooth(method = 'glm')$, este argumento crea un modelo lineal generalizado.

```
ggplot(vacunas_df, aes(x = GDP, y = Life_expectancy)) +
  geom_point()+
  geom_smooth(method = 'glm')+
  xlab('Producto Interno Bruto')+
  ylab('Esperanza de vida')+
  theme_bw()
```


Para una mejor visualización se cambiará el color y tamaño de los puntos. Así como el color de la línea del modelo.

```
ggplot(vacunas_df, aes(x = GDP, y = Life_expectancy)) +
  geom_point(size = 7, color = 'dodgerblue', alpha = 0.7)+
  geom_smooth(method = 'glm', color = 'azure4')+
  xlab('Producto Interno Bruto')+
  ylab('Esperanza de vida')+
  theme_bw()
```


Uno de los puntos a resaltar es que la mayoría de los datos del producto interno bruto se encuentran desplazados a la izquierda. Para una mejor visualización se graficará la distribución de los datos.

```
ggplot(vacunas_df, aes(GDP)) +
  geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Al observar la distribución se confirma el sesgo que presentan los datos. Cuando esto ocurre es válido realizar una transformación de los datos. Para esto se utiliza la transformación logarítmica o cuadrática. En este caso se realizará una transformación logarítmica de los datos.

```
ggplot(vacunas_df, aes(log(GDP)))+
  geom_histogram()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Los datos no siguen una distribución simétrica. No obstante, se ha reducido el sesgo de distribución. A continuación, se repetirá el modelo lineal, no obstante, los datos de PIB presentarán una transformación logarítmica.

```
gdp_vs_life_log <- lm(formula = Life_expectancy~log(GDP), data = vacunas_df)</pre>
```

De la misma forma, se extraerán los estadísticos e información del modelo. Donde la nueva función se explica de la siguiente manera y = (5.24)x + 23.6

```
summary(gdp_vs_life_log)
```

```
##
## Call:
  lm(formula = Life_expectancy ~ log(GDP), data = vacunas_df)
##
##
  Residuals:
##
        Min
                                             Max
                  1Q
                       Median
                                     3Q
##
  -15.2579 -2.0333
                       0.7346
                                 3.0888
                                         19.6932
##
  Coefficients:
##
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                23.5638
                            2.6597
                                       8.86 1.08e-15 ***
                 5.2378
                            0.2812
                                      18.63 < 2e-16 ***
## log(GDP)
##
                   0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
## Signif. codes:
##
## Residual standard error: 4.303 on 169 degrees of freedom
## Multiple R-squared: 0.6725, Adjusted R-squared: 0.6706
```

```
## F-statistic:
                  347 on 1 and 169 DF, p-value: < 2.2e-16
confint(gdp_vs_life_log)
##
                   2.5 %
                            97.5 %
## (Intercept) 18.313344 28.814272
## log(GDP)
                4.682732 5.792827
tidy(gdp_vs_life_log)
## # A tibble: 2 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>
                              <dbl>
                                         <dbl>
                                                  <dbl>
                    <dbl>
## 1 (Intercept)
                    23.6
                              2.66
                                         8.86 1.08e-15
## 2 log(GDP)
                     5.24
                              0.281
                                         18.6 8.08e-43
```

En este punto, graficaremos el nuevo modelo.

```
ggplot(vacunas_df, aes(x = log(GDP), y = Life_expectancy)) +
  geom_point(size = 7, color = 'dodgerblue', alpha = 0.7)+
  geom_smooth(method = 'glm', color = 'azure4')+
  xlab('Producto Interno Bruto')+
  ylab('Esperanza de vida')+
  theme_bw()
```


Al observar el gráfico se detalla que los datos ya no se encuentran agrupados en un solo sitio. Por último compararemos ambos modelos.

```
tidy(gdp_vs_life)
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic
##
     <chr>>
                      <dbl>
                                dbl>
                                           <dbl>
                                                     <dbl>
## 1 (Intercept) 67.6
                            0.580
                                           117. 2.30e-163
## 2 GDP
                  0.000248 0.0000196
                                            12.7 2.83e- 26
tidy(gdp_vs_life_log)
## # A tibble: 2 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>>
                    <dbl>
                               <dbl>
                                          <dbl>
                                                   <dbl>
## 1 (Intercept)
                    23.6
                               2.66
                                          8.86 1.08e-15
## 2 log(GDP)
                      5.24
                               0.281
                                         18.6 8.08e-43
```

El modelo con transformación logarítmica explica de manera más clara la relación entre las variables.

Regresión múltiple

En ocasiones dos o más variables explican el efecto presente sobre la variable respuesta. Cada efecto es independiente y puede ser positivo o negativo. Para realizar un regresión múltiple en R se utiliza la función lm(). Sin embargo, se concatenan las variables explicativas mediante el signo + en el argumento de formula. En el siguiente ejemplo, se muestra la relación de la esperanza de vida con las variables PIB, porcentaje de vacunación para las inmunizaciones BCG y poliomielitis.

La extracción de los coeficientes y estadísticos se realiza de la misma manera que en el modelo lineal simple. summary(life_vs_bcg_gdp_pol)

```
##
## Call:
## lm(formula = Life_expectancy ~ GDP + BCG + Pol3, data = vacunas_df)
##
## Residuals:
##
       Min
                       Median
                                    3Q
                                            Max
                  1Q
                       0.7161
  -14.2765 -3.0328
                                2.9667
                                       10.6545
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.0696635 2.7701208 17.714 < 2e-16 ***
## GDP
                0.0001540 0.0000212
                                       7.263 1.37e-11 ***
## BCG
               -0.0404308
                          0.0108487
                                      -3.727 0.000265 ***
                0.2629111 0.0322866
                                       8.143 8.54e-14 ***
## Pol3
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.533 on 167 degrees of freedom
## Multiple R-squared: 0.6408, Adjusted R-squared: 0.6344
## F-statistic: 99.31 on 3 and 167 DF, p-value: < 2.2e-16
confint(life_vs_bcg_gdp_pol)
```

2.5 % 97.5 %

##

```
## (Intercept) 43.6006943794 54.5386325495
## GDP
                0.0001121284 0.0001958369
## BCG
               -0.0618490677 -0.0190124989
## Pol3
                0.1991685300 0.3266536244
tidy(life_vs_bcg_gdp_pol)
## # A tibble: 4 x 5
##
     term
                  estimate std.error statistic p.value
##
                               <dbl>
     <chr>>
                     <dbl>
                                          <dbl>
                                                   <dbl>
                                          17.7 3.43e-40
## 1 (Intercept) 49.1
                           2.77
## 2 GDP
                  0.000154 0.0000212
                                           7.26 1.37e-11
## 3 BCG
                 -0.0404
                           0.0108
                                          -3.73 2.65e- 4
## 4 Pol3
                  0.263
                           0.0323
                                           8.14 8.54e-14
```

De esta manera, es posible conocer una relación de un conjunto de variables explicativas con la variables respuesta.

Nota: al igual que en el modelo lineal simple, se recomienda conocer la distribución de los datos previo a la aplicación de cualquier transformación o desarrollo de modelos

Cuando se desea comparar una variable con el resto, existe un atajo para no concatenar todas las variables dentro del argumento fórmula. En este punto se describe lo siguiente: $formula = y \sim$. De esta manera, se indica que se comparará la variable "y" con el resto de las variables en el dataset. En el siguiente ejemplo, se comparará la esperanza de vida con el resto de las variables, eliminando el código y nombre de cada región.

Extracción de información del modelo.

```
summary(modelo_multivariable)
```

```
##
## Call:
## lm(formula = Life_expectancy ~ ., data = data_vacunas_2)
##
## Residuals:
##
       Min
                                    3Q
                  10
                       Median
                                            Max
                       0.4144
  -14.5791 -2.1237
                                2.2626
                                         9.8391
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.370e+01 2.829e+00 18.985 < 2e-16 ***
## GDP
                1.261e-04
                          1.836e-05
                                      6.869 1.40e-10 ***
## BCG
               -3.622e-02
                          9.386e-03
                                      -3.859 0.000165 ***
## HepB3
               -4.843e-03
                          1.900e-02
                                     -0.255 0.799102
## Hib3
                           2.313e-02
               -1.427e-02
                                      -0.617 0.538229
## IPV1
                2.303e-01
                          5.179e-02
                                       4.447 1.63e-05 ***
## MCV1
                4.744e-02 4.954e-02
                                       0.958 0.339693
## PCV3
               -6.007e-03 9.220e-03 -0.651 0.515683
## Pol3
                6.602e-02 1.169e-01
                                       0.565 0.573058
## RCV1
               5.363e-02 1.446e-02
                                       3.708 0.000288 ***
               -2.643e-02 8.274e-03 -3.194 0.001692 **
## RotaC
## YFV
               -2.206e-02 1.180e-02 -1.869 0.063439 .
```

```
## DTP3
              -1.400e-01 1.213e-01 -1.154 0.250251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.797 on 158 degrees of freedom
## Multiple R-squared: 0.7616, Adjusted R-squared: 0.7435
## F-statistic: 42.06 on 12 and 158 DF, p-value: < 2.2e-16
confint(modelo multivariable)
                      2.5 %
                                  97.5 %
## (Intercept) 4.811700e+01 59.291335559
## GDP
               8.986814e-05 0.000162400
## BCG
              -5.475840e-02 -0.017683811
              -4.235973e-02 0.032674549
## HepB3
## Hib3
              -5.995438e-02 0.031418011
## IPV1
              1.280374e-01 0.332630375
## MCV1
              -5.040191e-02 0.145285238
## PCV3
              -2.421724e-02 0.012203834
## Pol3
              -1.648782e-01 0.296917754
## RCV1
               2.506426e-02 0.082187520
## RotaC
              -4.277031e-02 -0.010087245
## YFV
              -4.536046e-02 0.001248865
## DTP3
              -3.796813e-01 0.099633601
tidy(modelo_multivariable)
```

```
## # A tibble: 13 x 5
##
     term
                  estimate std.error statistic p.value
##
                               <dbl>
      <chr>
                     <dbl>
                                        <dbl>
                                                 <dbl>
## 1 (Intercept) 53.7
                           2.83
                                       19.0
                                              1.30e-42
## 2 GDP
                  0.000126 0.0000184
                                        6.87 1.40e-10
## 3 BCG
                 -0.0362
                           0.00939
                                       -3.86 1.65e- 4
## 4 HepB3
                 -0.00484 0.0190
                                       -0.255 7.99e- 1
## 5 Hib3
                 -0.0143
                           0.0231
                                       -0.617 5.38e- 1
## 6 IPV1
                 0.230
                           0.0518
                                        4.45 1.63e- 5
## 7 MCV1
                  0.0474
                           0.0495
                                        0.958 3.40e- 1
                                       -0.651 5.16e- 1
## 8 PCV3
                 -0.00601 0.00922
## 9 Pol3
                 0.0660
                                        0.565 5.73e- 1
                          0.117
                                        3.71 2.88e- 4
## 10 RCV1
                 0.0536
                          0.0145
## 11 RotaC
                 -0.0264
                          0.00827
                                       -3.19 1.69e- 3
## 12 YFV
                 -0.0221
                         0.0118
                                       -1.87 6.34e- 2
## 13 DTP3
                 -0.140
                           0.121
                                       -1.15 2.50e- 1
```

Correlación

```
correlaciones <- cor(data_vacunas_2)
corrplot(correlaciones, method = 'circle', tl.col = 'black')</pre>
```


Kendall

```
correlaciones_kendall <- cor(data_vacunas_2, method = 'kendall')
corrplot(correlaciones_kendall, method = 'circle', tl.col = 'black')</pre>
```


Spearman

```
correlaciones_spearman <- cor(data_vacunas_2, method = 'spearman')
corrplot(correlaciones_spearman, method = 'circle', tl.col = 'black')</pre>
```


Regresión logisitica

```
cancer_df <- readRDS('../data/cancer_data.RDS')
summary(cancer_df)</pre>
```

```
##
                    number_of_sexual_partners
                                                smokes_years
         age
##
    Min.
          :13.00
                    Min.
                            : 1.000
                                                Min. : 0.000
    1st Qu.:21.00
                    1st Qu.: 2.000
##
                                                1st Qu.: 0.000
    Median :26.00
                    Median : 2.000
                                                Median : 0.000
##
           :27.28
                    Mean
                            : 2.521
                                                       : 1.228
##
    Mean
                                                Mean
                    3rd Qu.: 3.000
                                                3rd Qu.: 0.000
##
    3rd Qu.:33.00
                                                       :37.000
##
    Max.
           :84.00
                    Max.
                            :28.000
                                                Max.
##
    hormonal_anticonceptives stds_hepatitis_b
                                                  stds_condylomatosis
           :0.0000
    Min.
                                     :0.000000
##
                              Min.
                                                  Min.
                                                         :0.00000
##
    1st Qu.:0.0000
                              1st Qu.:0.000000
                                                  1st Qu.:0.00000
    Median :1.0000
##
                              Median :0.000000
                                                  Median :0.00000
##
           :0.6421
                                     :0.001393
                                                         :0.05571
    Mean
                              Mean
                                                  Mean
##
    3rd Qu.:1.0000
                              3rd Qu.:0.000000
                                                  3rd Qu.:0.00000
                                     :1.000000
                                                         :1.00000
##
    Max.
           :1.0000
                              Max.
                                                  Max.
##
        dx_hpv
                       stds_genital_herpes stds_syphilis
                                                                  stds_hiv
##
    Min.
           :0.00000
                      Min.
                              :0.000000
                                           Min.
                                                   :0.00000
                                                              Min.
                                                                      :0.0000
##
    1st Qu.:0.00000
                       1st Qu.:0.000000
                                            1st Qu.:0.00000
                                                              1st Qu.:0.0000
##
    Median :0.00000
                      Median :0.000000
                                           Median :0.00000
                                                              Median :0.0000
    Mean
           :0.02228
                      Mean
                            :0.001393
                                           Mean
                                                   :0.02089
                                                              Mean
                                                                      :0.0195
    3rd Qu.:0.00000
                       3rd Qu.:0.000000
                                           3rd Qu.:0.00000
                                                              3rd Qu.:0.0000
##
```

```
## Max.
          :1.00000
                    Max. :1.000000
                                      Max.
                                              :1.00000 Max. :1.0000
## stds_mulluscum
                         dx_cin
                                         dx_cancer
## Min.
         :0.000000 Min. :0.00000 Min.
                                              :0.00000
## 1st Qu.:0.000000
                    1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.000000 Median :0.00000 Median :0.00000
## Mean
         :0.001393 Mean :0.01114 Mean
                                              :0.02368
## 3rd Qu.:0.000000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max.
          :1.000000 Max.
                            :1.00000 Max.
                                              :1.00000
attach(cancer df)
cancer_model <- glm(dx_cancer~stds_condylomatosis, data = cancer_df,</pre>
   family = 'binomial')
Extracción de coeficientes
print(cancer_model)
## Call: glm(formula = dx_cancer ~ stds_condylomatosis, family = "binomial",
##
      data = cancer_df)
##
## Coefficients:
##
          (Intercept) stds_condylomatosis
##
               -3.661
                                  -14.906
## Degrees of Freedom: 717 Total (i.e. Null); 716 Residual
## Null Deviance:
                       160.9
## Residual Deviance: 158.9
                              AIC: 162.9
summary(cancer model)
##
## Call:
## glm(formula = dx_cancer ~ stds_condylomatosis, family = "binomial",
##
      data = cancer_df)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                 3Q
                                         Max
## -0.2254 -0.2254 -0.2254
                                      2.7151
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
                       -3.6605
                                   0.2456 -14.902
## (Intercept)
                                                    <2e-16 ***
## stds condylomatosis -14.9055 1031.3197 -0.014
                                                     0.988
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 160.86 on 717 degrees of freedom
## Residual deviance: 158.89 on 716 degrees of freedom
## AIC: 162.89
##
## Number of Fisher Scoring iterations: 17
```

```
tidy(cancer_model)
## # A tibble: 2 x 5
##
                         estimate std.error statistic p.value
   term
##
     <chr>
                            dbl>
                                      <dbl>
                                                <dbl>
                                                         dbl>
## 1 (Intercept)
                            -3.66
                                      0.246 -14.9
                                                      3.18e-50
## 2 stds_condylomatosis
                          -14.9
                                 1031.
                                              -0.0145 9.88e- 1
cancer_model_2variables <- glm(dx_cancer~stds_hepatitis_b+dx_hpv,</pre>
                               data = cancer_df, family = 'binomial')
Extracción de coeficientes
print(cancer_model_2variables)
##
## Call: glm(formula = dx_cancer ~ stds_hepatitis_b + dx_hpv, family = "binomial",
##
      data = cancer_df)
##
## Coefficients:
        (Intercept) stds_hepatitis_b
                                                 dx hpv
             -5.857
                              -10.710
##
                                                  8.565
## Degrees of Freedom: 717 Total (i.e. Null); 715 Residual
## Null Deviance:
                       160.9
## Residual Deviance: 34.91
                                AIC: 40.91
summary(cancer_model_2variables)
##
## Call:
## glm(formula = dx_cancer ~ stds_hepatitis_b + dx_hpv, family = "binomial",
##
       data = cancer_df)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                   3Q
                                           Max
## -2.3548 -0.0756 -0.0756 -0.0756
##
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
##
                                  0.7081 -8.271 < 2e-16 ***
## (Intercept)
                      -5.8565
## stds_hepatitis_b -10.7096 2399.5448 -0.004
                                                    0.996
## dx hpv
                      8.5646
                                  1.2522 6.839 7.95e-12 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 160.865 on 717 degrees of freedom
## Residual deviance: 34.913 on 715 degrees of freedom
## AIC: 40.913
## Number of Fisher Scoring iterations: 15
tidy(cancer_model_2variables)
```

A tibble: 3 x 5

```
estimate std.error statistic p.value
##
     term
##
     <chr>>
                                   <dbl>
                         <dbl>
                                             <dbl>
                                                      <dbl>
                         -5.86
                                   0.708 -8.27
## 1 (Intercept)
                                                   1.33e-16
## 2 stds_hepatitis_b -10.7
                                2400.
                                          -0.00446 9.96e- 1
## 3 dx_hpv
                          8.56
                                   1.25
                                           6.84
                                                   7.95e-12
cancer df binomial <- cancer df %>%
  select(-age, -number_of_sexual_partners, -smokes_years)
cancer_multiva <- glm(dx_cancer~., data = cancer_df_binomial,</pre>
                      family = 'binomial')
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
Extracción de coeficientes
print(cancer_multiva)
## Call: glm(formula = dx_cancer ~ ., family = "binomial", data = cancer_df_binomial)
##
## Coefficients:
##
                (Intercept) hormonal_anticonceptives
                                                                stds_hepatitis_b
##
                    -5.2853
                                              -0.8544
                                                                         -0.7982
##
                                                             stds_genital_herpes
        stds_condylomatosis
                                               dx_hpv
##
                   -14.6633
                                               8.6873
                                                                        -14.4263
##
              stds_syphilis
                                             stds_hiv
                                                                  stds_mulluscum
##
                   -14.6283
                                             -14.4826
                                                                        -15.2807
##
                     dx_cin
##
                   -14.5577
##
## Degrees of Freedom: 717 Total (i.e. Null); 708 Residual
## Null Deviance:
                        160.9
## Residual Deviance: 34.02
                                AIC: 54.02
summary(cancer_multiva)
##
## Call:
## glm(formula = dx_cancer ~ ., family = "binomial", data = cancer_df_binomial)
##
## Deviance Residuals:
                1Q
                      Median
                                   ЗQ
                                           Max
## -2.2904 -0.1005 -0.0656 -0.0656
                                        3.5048
##
## Coefficients:
##
                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                               -5.2853
                                           0.9056 -5.836 5.34e-09 ***
## hormonal_anticonceptives
                               -0.8544
                                           1.2931 -0.661
                                                              0.509
## stds_hepatitis_b
                               -0.7982 18316.1324
                                                   0.000
                                                              1.000
## stds_condylomatosis
                              -14.6633 2727.7193 -0.005
                                                              0.996
## dx hpv
                                8.6873
                                           1.3723
                                                   6.330 2.44e-10 ***
                              -14.4263 17730.3699 -0.001
## stds_genital_herpes
                                                              0.999
## stds_syphilis
                              -14.6283 4413.7156 -0.003
                                                              0.997
## stds hiv
                              -14.4826 4595.0722 -0.003
                                                              0.997
## stds_mulluscum
                              -15.2807 17730.3699 -0.001
                                                              0.999
## dx_cin
                              -14.5577 6079.3657 -0.002
                                                              0.998
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 160.865 on 717 degrees of freedom
##
## Residual deviance: 34.024 on 708 degrees of freedom
## AIC: 54.024
##
## Number of Fisher Scoring iterations: 19
tidy(cancer_multiva)
## # A tibble: 10 x 5
##
      term
                               estimate std.error statistic p.value
##
      <chr>
                                           <dbl>
                                                      <dbl>
                                                               <dbl>
                                 <dbl>
## 1 (Intercept)
                                -5.29
                                           0.906 - 5.84
                                                            5.34e-9
## 2 hormonal_anticonceptives -0.854
                                           1.29 -0.661
                                                            5.09e- 1
## 3 stds_hepatitis_b
                                -0.798 18316.
                                                 -0.0000436 1.00e+ 0
                                        2728.
## 4 stds_condylomatosis
                               -14.7
                                                 -0.00538
                                                            9.96e- 1
## 5 dx_hpv
                                 8.69
                                           1.37 6.33
                                                            2.44e-10
                                                 -0.000814 9.99e- 1
## 6 stds_genital_herpes
                               -14.4
                                       17730.
## 7 stds_syphilis
                               -14.6
                                        4414.
                                                 -0.00331
                                                            9.97e- 1
## 8 stds_hiv
                               -14.5
                                        4595.
                                                 -0.00315
                                                            9.97e- 1
## 9 stds_mulluscum
                               -15.3
                                      17730.
                                                 -0.000862 9.99e- 1
                                                 -0.00239
                                                            9.98e- 1
## 10 dx_cin
                               -14.6
                                       6079.
Predicción con modelos
Recordando modelo
gdp_vs_life <- lm(Life_expectancy~GDP, data = vacunas_df)</pre>
Creando función
funcion_esperanza <- function(x){</pre>
 gdp = 0.000248
  intercept = 67.6
 resultado = intercept + gdp*x
 return(resultado)
}
funcion_esperanza(12531)
## [1] 70.70769
Usando predict()
nueva_esperanza <- data.frame(esperanza = c(12531))</pre>
head(predict(gdp_vs_life, nueva_esperanza, type = 'response'),1)
## Warning: 'newdata' had 1 row but variables found have 171 rows
##
## 70.67657
```

Utilizando más variables

```
nueva_esperanza_2 <- data.frame(esperanza = c(12531, 11787, 7159))
head(predict(gdp_vs_life, nueva_esperanza_2, type = 'response'),3)
## Warning: 'newdata' had 3 rows but variables found have 171 rows
## 1 2 3
## 70.67657 70.49162 69.34161</pre>
```