

VII Semester B.E. (E&E) Engg. Degree Examination, Jan./Feb. 2014 (2K6 Scheme)

EE-704: DIGITAL SIGNAL PROCESSING

Time: 3 Hours	Max. Marks: 100
Instruction: Answer any five full questions.	
1. a) Compute the DFT of the sequence $x(n) = \{1, 2, 3, 4\}$.	6
b) State and prove the following properties of DFTi) Circular time shiftii) Circular frequency shift.	8
c) Compute circular convolution of the sequences $x_1(n) = \{1, 2, 0 \ x_2(n) = \{2, 2, 1, 1\}$. Use circular arrays.	, 1} and 6
a) Explain the following : i) in place computations ii) bit reverse order	6
b) Derive the DIT-FFT algorithm for $N=8$. Draw the resulting signa	l flow graph. 8
c) Explain chirp-z transform algorithm.	6
3. a) Realize the following system function in parallel form	8
$H(z) = \frac{1 - \frac{2}{3}z^{-1}}{1 - \frac{7}{8}z^{-1} + \frac{3}{32}z^{-2}} \cdot \frac{1 + \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}}{1 - z^{-1} + \frac{1}{2}z^{-2}}.$	
b) The difference equation of a system is $y(n) - 0.75y(n - 1) - 0.10$	125y (n – 2) =

- b) The difference equation of a system is y(n) 0.75y(n 1) 0.125y(n 2) = 6x(n) + 7x(n 1) + x(n 2) obtain cascade realization.
- c) An FIR system has a system function $H(z) = 1 + \frac{3}{4}z^{-1} + \frac{17}{8}z^{-2} + \frac{3}{4}z^{-3} + z^{-4}$.

 Obtain the cascade form and direct form of realization.
- 4. a) Draw the frequency (amplitude) 2 characteristic of butterworth filter and derive expressions for the order 'N' and cut off frequency $\Omega_{\rm c}$.
 - b) Given that $\left|H_{\alpha}(J\Omega)\right|^2=\frac{1}{1+64~\Omega^6}$ determine the analog filter system function $H_a(s)$.

10

10

5. a) Obtain the system function of digital filter by approximation of derivatives,

given the system function of the analog' filter
$$H_a(s) = \frac{1}{(s+0.1)^2 + 9}$$
.

- b) If $H_a(s) = \frac{1}{(s+1)(s+2)}$ find H(z) by impulse invariance method.
- c) Design a digital law pass filter using Chebyshev filter design procedure that meets the following specifications.

Pass band magnitude characteristic that is constant to within 1dB for frequencies below $\omega = 0.2\,\pi$ and stopband attenuation of at least 15 dB for frequencies between $\omega = 0.3\,\pi$ and π . Use bilinear transformation.

- 6. a) Derive Bilinear transformation. Explain its properties.
 - b) Design the first order low pass butterworth filter that has 3 dB cut of frequency at $\omega_c = 0.2\,\pi$. Use Bilinear transformation.
- 7. a) Compute the impulse response of a linear phase FIR filter using Kaiser window for the following specifications.

 $K_s = 40$ dB, $\delta_s = 0.01$ dB, frequency mid = $1000\,\pi$ rad/s cutoff frequency = $2400\,\pi$ rad/s and sampling frequency = $10\,\text{KHz}$.

- b) Using rectangular window technique, design a low pass filter with passband gain of unity cutt off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. The length of impulse response should be 7.
- 8. a) Determine the impulse response h(n) of a filter having desired frequency

response
$$H_d(e^{j\omega}) = \begin{cases} e^{-j}(N-1)\omega/2 & 0 \leq \left|\omega\right| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \leq \left|\omega\right| \leq \pi \end{cases}$$
 $N = 7$. Use frequency sampling approach.

b) Give the blockdiagram of TMS 320 DSP processor and explain its working. 10