Midterm Formula Sheet - MENG3520

Trigonometric Identities:

$$e^{\pm jx} = \cos x \pm j \sin x \qquad \cos x = \frac{1}{2} [e^{jx} + e^{-jx}] \qquad \sin x = \frac{1}{2j} [e^{jx} - e^{-jx}]$$

$$\sin^2 x + \cos^2 x = 1 \qquad \cos^2 x - \sin^2 x = \cos 2x \qquad 2 \sin x \cos x = \sin 2x$$

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x) \qquad \sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\cos \left(x \pm \frac{\pi}{2}\right) = \mp \sin x \qquad \sin \left(x \pm \frac{\pi}{2}\right) = \pm \cos x$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \qquad \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

Complex Numbers:

$$e^{\pm j\pi/2} = \pm j \qquad e^{\pm (2k+1)j\pi} = -1, k \text{ integer} \qquad e^{\pm 2kj\pi} = 1, k \text{ integer}$$

$$e^{\pm j\theta} = \cos\theta \pm j \sin\theta \qquad a + jb = re^{j\theta}, \text{ where } r = \sqrt{a^2 + b^2}, \theta = \tan^{-1}\left(\frac{b}{a}\right)$$

$$\left(re^{j\theta}\right)^k = r^k e^{jk\theta} \qquad \left(r_1 e^{j\theta_1}\right) \left(r_2 e^{j\theta_2}\right) = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

Common Derivative Formulas and Indefinite Integrals:

$$\int udv = uv - \int vdu$$

$$\int f(x)\dot{g}(x) dx = f(x)g(x) - \int \dot{f}(x)g(x) dx$$

$$\int \sin ax dx = -\frac{1}{a}\cos ax \qquad \int \cos ax dx = \frac{1}{a}\sin ax$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a} \qquad \int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a}$$

$$\int \sin^2 ax dx = \frac{1}{a^2}(\sin ax - ax\cos ax)$$

$$\int x \sin ax dx = \frac{1}{a^2}(\cos ax + ax\sin ax)$$

$$\int x^2 \sin ax dx = \frac{1}{a^3}(2ax\sin ax + 2\cos ax - a^2x^2\cos ax)$$

$$\int dx^3 = nx^{n-1} \qquad \int x^2 \cos ax dx = \frac{1}{a^3}(2ax\cos ax - 2\sin ax + a^2x^2\sin ax)$$

$$\int dx^3 \cos ax dx = \frac{1}{a^3}(2ax\cos ax - 2\sin ax + a^2x^2\sin ax)$$

$$\int \sin ax \sin bx dx = \frac{\sin(a - b)x}{2(a - b)} - \frac{\sin(a + b)x}{2(a + b)} \quad a^2 \neq b^2$$

$$\int \sin ax \cos bx dx = -\left[\frac{\cos(a - b)x}{2(a - b)} + \frac{\cos(a + b)x}{2(a + b)}\right] \quad a^2 \neq b^2$$

$$\int \cos ax \cos bx dx = \frac{\sin(a - b)x}{2(a - b)} + \frac{\sin(a + b)x}{2(a + b)} \quad a^2 \neq b^2$$

$$\int \cos ax \cos bx dx = \frac{\sin(a - b)x}{2(a - b)} + \frac{\sin(a + b)x}{2(a + b)} \quad a^2 \neq b^2$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 1)$$

$$\int x^2 \cos ax dx = \frac{a}{a^2}(ax - 1)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 1)$$

$$\int x^2 \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx dx = \frac{a}{a^2}(ax - 2ax + 2)$$

$$\int \cos ax \cos bx d$$

Basic Signals:

$$\begin{split} \delta(t) &= \frac{du(t)}{dt} \iff u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau & \int_{-\infty}^{\infty} x(t) \delta(t-t0) dt = x(t0) \\ Even\{x(t)\} &= \frac{1}{2} \left(x(t) + x(-t) \right) & Odd\{x(t)\} &= \frac{1}{2} \left(x(t) - x(-t) \right) \\ Even\{x[n]\} &= \frac{1}{2} (x[n] + x[-n]) & Odd\{x[n]\} &= \frac{1}{2} (x[n] - x[-n]) \\ E_{\infty} &\triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt & P_{\infty} \triangleq \lim_{T \to \infty} \frac{1}{2T} E_{\infty} \\ E_{\infty} &\triangleq \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 & P_{\infty} \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2 \end{split}$$

First derivative of a CT signal	First difference of a DT signal
$\frac{d}{dt}g(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t}$ $\frac{d}{dt}g(t) = \lim_{\Delta t \to 0} \frac{g(t) - g(t\Delta t)}{\Delta t}$ $\frac{d}{dt}g(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t\Delta t)}{2\Delta t}$	Forward difference: $diff(g[n]) = g[n+1] - g[n]$ Backward difference: $diff(g[n]) = g[n] - g[n-1]$ Central difference: $diff(g[n]) = \frac{1}{2}\{g[n+1] - g[n-1]\}$

$$\sum_{k=-\infty}^{+\infty} x[k]h[n-k] \triangleq x[n]*h[n]$$

$$\int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \triangleq x(t)*h(t)$$

$$sinc(x) \triangleq \frac{\sin(\pi x)}{\pi x}$$

$$rect\left(\frac{t}{\tau}\right) = \begin{cases} 1, when -\frac{\tau}{2} < t < \frac{\tau}{2} \\ 0, otherwise \end{cases}$$

Properties of Convolution:

$$x * h = h * x$$
 $x * (h_1 * h_2) = (x * h_1) * h_2$ $x * (h_1 + h_2) = (x * h_1) + (x * h_2)$

CT Transfer Function:

$$Y(s) = X(s)H(s) H(s) = \frac{Y(s)}{X(s)} = |H(s)|e^{j\phi}, s = \sigma + j\omega$$

Laplace Transform and Inverse Laplace transform:

$$X(s) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-st}dt \qquad x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

Laplace Transform Pairs:

Time domain signal	S-domain transform	ROC
$\delta(t)$	1	All s
u(t)	1/ <i>s</i>	$Re\{s\} > 0$
-u(-t)	1/s	$Re\{s\} < 0$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$	$Re\{s\} > \lambda$
$-e^{\lambda t}u(-t)$	$\frac{1}{s-\lambda}$	$Re\{s\} < \lambda$
$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$	$Re\{s\} > \lambda$
$[\cos bt]u(t)$	$\frac{s}{s^2 + b^2}$	$Re\{s\} > 0$
$[\sin bt]u(t)$	$\frac{b}{s^2 + b^2}$	$Re\{s\} > 0$
$e^{-at}[\cos bt]u(t)$	$\frac{s-a}{(s-a)^2+b^2}$	$Re\{s\} > a$

$(s-a)^2 + h^2$	$e^{-at}[\sin bt]u(t)$	$\frac{b}{(s-a)^2+b^2}$	$Re\{s\} > a$
-----------------	------------------------	-------------------------	---------------

Properties of Laplace Transform:

Property	Signal	Laplace transform	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$.
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s-domain	$e^{s_0t}x(t)$	$X(s-s_0)$	s is in ROC if $s - s_0$ is in R .
Time scaling	x(at), a > 0	$\left \frac{1}{a}\right X\left(\frac{s}{a}\right)$	s is in ROC if s/a is in R .
Conjugation	$x^*(t)$	$X^*(s)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$.
Differentiation in the time domain	$\frac{d}{dt}x(t)$	sX(s)	At least R.
Differentiation in the s-domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in the time domain	$\int_{-\infty}^{\tau} x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{Re\{s\} > 0\}$.

DT Transfer Function:

$$Y(z) = X(z)H(z) H(z) = \frac{Y(z)}{X(z)} = |H(z)|e^{j\phi}$$

Z Transform and Inverse Z Transform:

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]z^{-k}, \qquad x[n] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2\pi i} \oint_{\Gamma} X(z)z^{n-1}dz$$

Z Transform Pairs:

Time domain signal	Z-domain transform	ROC
x[n]	X(z)	NOC .
$\delta[n]$	1	All z
$\delta[n-k]$	Z^{-k}	All z , except for 0 , if $k > 0$, or ∞ , if $k < 0$.
u[n]	$\frac{z}{z-1}$	z > 1
-u[-n-1]	$\frac{z}{z-1}$	z < 1
$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$	$ z > \gamma $
$\gamma^n u[n]$	$\frac{z}{z-\gamma}$	$ z > \gamma $
$n\gamma^nu[n]$	$\frac{\gamma z}{(z-\gamma)^2}$	$ z > \gamma $
$ \gamma ^n\cos(\beta n)u[n]$	$\frac{z(z- \gamma \cos\beta)}{z^2-(2 \gamma \cos\beta)z+ \gamma ^2}$	$ z > \gamma $
$ \gamma ^n \sin(\beta n) u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$	$ z > \gamma $

$\cos(\beta n) u[n]$	$\frac{z(z-\cos\beta)}{z^2-2(\cos\beta)z+1}$	z > 1
$\sin(\beta n) u[n]$	$\frac{z\sin\beta}{z^2 - 2(\cos\beta)z + 1}$	z > 1

Z Transform Properties:

Property	Signal	Z transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	$R_1 \cap R_2$
Time shifting	$x[n-n_0]u[n-n_0]$	$z^{-n_0}X(z)$	R except $z = 0$ or $ z = \infty$ in some cases.
Time shifting	$x[n-n_0]u[n]$	$z^{-n_0}X(z) + z^{-n_0} \sum_{k=0}^{n_0-1} x[-k]z^k$	R except $z=0$ or $ z =\infty$ in some cases.
Time reversal	x[-n]	$X(z^{-1})$	z is in ROC if z^{-1} is in R
Time expansion	$x_k[n] = \begin{cases} x \left[\frac{n}{k} \right], \frac{n}{k} \text{ is an integer} \\ 0, \text{ otherwise} \end{cases}$	$X(z^k)$	z is in ROC if z^k is in R .
z-domain scaling	$a^n x[n] u[n]$	$X\left(\frac{z}{a}\right)$	z is in ROC if z/a is in R.
Conjugation	<i>x</i> *[<i>n</i>]	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$.
First backward difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least $R \cap \{ z > 0\}$.
Differentiation in the z- domain	-nx[n]	$\frac{d}{dz}X(z)$	R
Accumulation in the time domain	$\sum_{k=-\infty}^{n} x[k]$	$\frac{z}{z-1}X(z)$	At least $R \cap \{ z > 1\}$.

CTFS and Inverse CTFS:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \qquad c_k = \frac{1}{T} \int_{T}^{\square} x(t) e^{-jk\omega_0 t} dt, \quad here \ T = \frac{1}{2\pi\omega_0}$$

$$x(t) = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\omega_0 t + b_k \sin k\omega_0 t), \qquad a_0 = \frac{1}{T} \int_{T}^{\square} x(t) dt, \\ a_k = \frac{2}{T} \int_{T}^{\square} x(t) \cos(k\omega_0 t) dt, \\ b_k = \frac{2}{T} \int_{T}^{\square} x(t) \sin(k\omega_0 t) dt$$

$$x(t) = a_0 + \sum_{k=1}^{\infty} (a_k \cos k\omega_0 t + b_k \sin k\omega_0 t) = c_0 + \sum_{k=1}^{\infty} d_k (\cos (k\omega_0 t + \theta_k)), \\ c_0 = a_0 = \frac{1}{T} \int_{T}^{\square} x(t) dt, \\ d_k = \sqrt{a_k^2 + b_k^2}, \\ \theta_k = \tan^{-1} \left(-\frac{b_n}{a_n} \right)$$

CTFT and Inverse CTFT:

$$X(\omega) \triangleq \mathcal{F}(x(t)) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt, \qquad x(t) \triangleq \mathcal{F}^{-1}(X(\omega)) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega)e^{j\omega t}d\omega$$

Fourier Transform Properties:

<u> </u>		
	CTFT	CTFT
	$\chi(t) \longleftrightarrow \chi(\omega)$	$v(t) \longleftrightarrow Y(\omega)$
	$\mathcal{L}(\mathcal{U})$ $\mathcal{L}(\mathcal{U})$	$y(t) \cdot f(\omega)$

Property	Time Domain	Fourier Domain
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\omega) + \beta Y(\omega)$
Translation / time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(\omega-\omega_0)$
Conjugation	$x^{*}\left(t ight)$	$X^{*}\left(\omega ight)$
Time reversal	x(-t)	$X(-\omega)$
Time and frequency scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Differentiation in time	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
Integration	$\int_{-\infty}^t x(t)dt$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Differentiation in frequency	tx(t)	$j\frac{d}{d\omega}X(\omega)$
Time reversal	x(-t)	$X(-\omega)$
Even Symmetry	x(t) real and even	$X(\omega)$ even and real
Conjugate symmetry	x(t) real	$X(\omega) = X^*(-\omega)$

Discrete Fourier Transform

$$x[n] = \sum_{k = \langle N \rangle} X_k e^{jk\frac{2\pi}{N}n} = \sum_{k = \langle N \rangle} |X_k| e^{j(k\frac{2\pi}{N}n + \phi k)} \qquad \qquad X[k] = X_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\frac{2\pi}{N}n}$$