Jonathan G. V. Ström^a, Shuai Xie^a, Eric M. Suuberg^a

^aBrown University, School of Engineering, Providence, RI, USA

4 Abstract

Abstract here

- 5 Keywords: Vapor intrusion, Temporal variability, Sorption, Attenuation
- 6 factor

7 1. Introduction

Many vapor intrusion (VI) contaminants has the capacity to sorb onto soil and various common indoor materials, but the role and more importantly - the consequences of these sorption processes in VI are poorly understood. The migration of contaminant vapors from its source into the affected building and potential indoor sources are usually the prime concern in VI investigations. Rarely is the sorbed contaminant vapors in the soil or indoor considered in an investigation, but these may potentially act as a capacitor, storing and releasing contaminant vapors in response to a change in contaminant concentration. Consequently, contaminant vapors may be much more persistent at a site that has undergone remediation, potentially reducing the effectiveness of mitigation systems, or impeding site investigations.

Measuring contaminant sorption onto materials or soils is not a regular part of VI investigations and thus very little is known of the potential impact of this. In this paper we will therefore begin to explore this topic through a combined effort of gathering experimental sorption data and incorporating it into three-dimensional finite element models of VI scenarios. These type of models have been used extensively before and are useful to illuminate some of these issues. The potential impact of sorption may perhaps be most significant in the application of the controlled pressure method and various mitigation schemes.

The controlled pressure method (CPM) is the sequential forced overand depressurization of a building which in theory max- and minimizes the contaminant entry to the building. Helping the investigator to ascertain the worst-case VI scenario and help identify potential indoor contaminant sources. However, if the building has a large capacity to sorb contaminant vapors onto various materials, these may be ad-/absorbed and desorbed in response to the changing condition, potentially preventing coresponding changes in indoor air contaminant concentrations. The same is true for various mitigation schemes, while they may successfully prevent contaminant vapors from entering the house, these may still be released from the interior over an unknown period of time.

$_{39}$ 2. Methods

$\sim~2.1.~Experimental~Setup$

The TCE dynamic sorption process of different building materials were 41 determined by use of a method schematically shown in Figure 1. This method involved a selected material contained in an adsorption column through which TCE-containing gas was passed, and subsequent thermal desorption and measurement of the total amount of adsorption. During the adsorption part of the process, stainless steel tubes were packed with building materials held in place by glass wool. The amount of building material normally held in the tube was around 1 g. It was determined that neither the glass wool nor the stainless steel tube would retain significant amounts of TCE. The samplecontaining tubes were first exposed desired low concentrations of TCE in nitrogen, which were then allowed to interact with the flow for varying periods of time. The typical flow rate of the nitrogen was 60 ml/min and the concentrations of TCE was around 1.1 ppbv. All of these adsorption experiments were conducted at room temperature. After a given time of exposure to the TCE-containing flow, that flow was stopped, and the sample tube was attached to a sorbent tube placed downstream of the sample tube. The sample tube was arranged such that the direction of the nitrogen flow in the subsequent desorption process was opposite that of the TCE-containing nitrogen flow during the adsorption process. During the thermal desorption step, the sample containing tube was covered by a heating mantle which permitted its heating at 100 °C. This allowed fully desorbing the TCE which had been held on the sample into a pure nitrogen flow, which carried it to the room temperature downstream sorbent tube, where it was again fully adsorbed. These tubes fully capture all of the TCE desorbed, from the sam-

Figure 1: Schematic of experimental setup.

ples, and the amount of TCE was analyzed by Gas Chromatography (GC) with an Electron Capture Detector (ECD).

2.2. Numerical Model

77

81

82

83

84

To investigate the role of sorption in VI, we consider a simple VI scenario. Here we consider a house with a 10 by 10 m footprint, with the foundation bottom located 1 m below ground surface (bgs). The sole contaminant source is an uniformly TCE contaminated groundwater located 4 bgs, and the soil surrounding the house is assumed to homogenous and of a singular type. All contaminant vapors are assumed to enter the house through breaches in the foundation, modeled as a 1 cm wide crack that runs along the perimeter of the house. Finally we assume that sorption processes can occur both in the soil matrix and in the indoor environment (on various indoor materials).

Modeling this scenario requires us to simulate a couple of physics, many of which depend and interact with each other. The governing equations and the physics they govern are:

- 1. van Genuchten retention model soil moisture.
- 2. Darcy's Law air flow in the porous media.
- 3. Transport equation contaminant transport in porous media.
- 4. Continuously stirred tank reactor (CSTR) contaminant concentration in the indoor environment.

These physics are implemented in COMSOL Multiphysics, a commercial finite-element method package, which is used to solve our model. It is impor-

Figure 2: The vapor intrusion model

tant to note that the indoor environment is implicitly modeled, but instead only given by the CSTR equation; the soil domain is explicitly modeled.

2.2.1. Vadose Zone Moisture Content

90

105

Since the contaminant transport occurs through three-phased the vadose zone, it is important that we correctly account for soil moisture content and its effect on advective and diffusive transport. In this modeled scenario, we assume that the soil moisture is at steady-state and does not change, and thus the soil moisture content is given by the retention model developed by van Genuchten.

The van Genuchten retention model gives the soil water saturation as a function of elevation above groundwater. In turn this gives the water and gas filled porosities, and the relative permeability of the soil matrix.

$$Se = \begin{cases} \frac{1}{(1+\alpha z^n)^m} & z < 0\\ 1 & z \ge 0 \end{cases}$$
 (1)

$$\theta_w = \begin{cases} \theta_r + \operatorname{Se}(\theta_s - \theta_r) & z < 0\\ \theta_s & z \ge 0 \end{cases}$$
 (2)

$$\theta_w = \begin{cases} \theta_r + \operatorname{Se}(\theta_s - \theta_r) & z < 0\\ \theta_s & z \ge 0 \end{cases}$$

$$k_r = \begin{cases} \operatorname{Se}^l \left[1 - \left(1 - \operatorname{Se}^{\frac{1}{m}} \right) \right]^2 & z < 0\\ 0 & z \ge 0 \end{cases}$$

$$(2)$$

Se is the saturation, and ranges from 0 to 1, which represent completely unto fully saturated; z is the elevation above the groundwater in meters; θ_r , θ_s , θ_w , and θ_g are the residual moisture content, saturated porosity (or just porosity), and water and air filled porosities respectively. All units are in volume of phase divided by the volume of soil; k_r is the relative permeability of water, which modifies the saturated permeability. This too ranges from 0 to 1, indicating completely im- and permeable respectively. $1-k_r$ gives the 102 relative permeability of air. 103

2.2.2. Gas Flow In The Vadose Zone

The gas flow in the vadose zone is governed by a modified version of Darcy's Law. Originally, Darcy's Law was developed to describe flow in saturated porous media, but since we're interested in flow in unsaturated

media, modification is necessary. An effective permeability that depends on the relative permeability from van Genuchten is introduced to allow for correct flow profiles in unsaturated porous media.

The vapor flow governing equation is given by

111

124

$$\frac{\partial}{\partial t}(\rho\theta_s) + \nabla \cdot \rho \left(-\frac{(1-k_r)\kappa}{\mu} \nabla p \right) = 0 \tag{4}$$

Here ρ is the fluid density; ∇ is the del operator; κ is the saturated permeability; μ is the fluid viscosity; and p is the fluid pressure. We assume that the contaminant vapors are so dilute that the gas flow properties can be taken to be those of air, and specifically at 20 °C and all the transport properties may be found in Table 1.

Boundary Conditions. To solve (4) we assign the atmosphere boundary (see Figure 2) to be at reference pressure and act as a gauge, i.e. zero pressure. The foundation crack boundary is assigned the indoor-outdoor pressure difference value. Remaining boundaries are no-flow boundary conditions.

Atmosphere
$$p = 0(Pa)$$
 (5)

Foundation crack
$$p = p_{in/out}(Pa)$$
 (6)

All other
$$-\vec{n} \cdot \rho_{\text{air}} \vec{u} = 0 \tag{7}$$

Here \vec{n} and \vec{u} are the boundary normal and gas velocity vectors.

Initial Conditions. For steady-state problems, the initial conditions don't matter, but is simply zero for the entire domain. When solving transient, the initial conditions are given by the steady-state solution.

2.2.3. Mass Transport In The Vadose Zone Boundary Conditions.

2.2.4. Indoor Environment

The indoor air space is modeled as a continuously stirred tank reactor (CSTR) given by (8). Contaminants are assumed to only enter through the foundation crack, represented by $n_{\rm entry}$, which is calculated by integrating the contaminant flux over the foundation crack boundary. The product of air exchange rate, which govern how many house volumes are exchanged with the outside per time unit, and indoor air contaminant concentration gives the

Table 1: Transport properties and model parameters

contaminant exit rate. The sorption of contaminant is given by the sorption reaction term in (10) and the sorbed contaminant concentration is given by (9).

$$V_{\text{bldg}} \frac{\partial c_{\text{in}}}{\partial t} = n_{\text{entry}} - A_e c_{\text{in}} V_{\text{bldg}} + r_{\text{sorb}} V_{\text{mat}}$$
 (8)

$$V_{\text{mat}} \frac{\partial c_{\text{sorb}}}{\partial t} = -r_{\text{sorb}} V_{\text{mat}} \tag{9}$$

$$r_{\rm sorb} = k_1 c_{\rm sorb} - k_2 c_{\rm in} \tag{10}$$

Here V_{bldg} and V_{mat} are the indoor control volume and volume of indoor material in m³; c_{in} and c_{sorb} are the indoor and sorbed (onto the indoor material) contaminant concentrations in mol/m³; n_{entry} is the contaminant entry rate in mol/s; r_{sorb} sorption rate in mol/(m³ · s); k_1 and k_2 are desorption and sorption reaction constants in 1/s.

Fitting Kinetic Parameters. To calculate the indoor sorption rate we need k_1 and k_2 . These values are found by solving (10) numerically and then finding the best k_1 and k_2 by fitting them to the experimental data via least square. We use Runge-Kutta method of order 5(4) as the numerical solve, which is implemented together with the least square method in the SciPy python package[?].

4 3. Results & Discussion

4. Conclusions

146 Acknowledgements

This project was supported by grant ES-201502 from the Strategic Environmental Research and Development Program and Environmental Security Technology Certification Program (SERDP-ESTCP).

Declaration of interest: none

References

147

149

150