Bios 661: 1-5; Bios 673: 2-6.

- 1. C&B 7.9
- 2. C&B 7.12
- 3. C&B 7.19
- 4. [master exam 2010] Let X_1, \ldots, X_n be a random sample from a Poisson distribution with mean $\mu \in \{1, 2\}$. Note that the parameter space contains only two points; it is not the usual parameter space for the Poisson.
 - (a) Let $W = \sum_{i=1}^{n} X_i$ and $V = (1+3n)W W^2 2n^2$. Find $E(V|\mu=1)$ and $E(V|\mu=2)$.
 - (b) Find a minimal sufficient statistic. Is it complete? Hint: Part (a).
 - (c) Derive the maximum likelihood estimator (MLE) of μ . Is it unique?
 - (d) For n=3, compute the exact numerical values of the mean and variance of the MLE $\hat{\mu}$ when $\mu=1$ and $\mu=2$.
- 5. Let X_1, \ldots, X_n be iid random variables from the $N(\theta, \theta)$ distribution, $\theta > 0$.
 - (a) Find the Cramér-Rao Lower Bound (CRLB) for any unbiased estimator of θ .
 - (b) Find an explicit expression for MLE $\hat{\theta}$. In this case, it is not easy to verify the $\hat{\theta}$ that solves the first derivative of the log-likelihood function is indeed the maximizer. You may skip the verification.
 - (c) One can estimate θ using $\bar{X} = \sum_{i=1}^n X_i/n$ and $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$. Derive $\text{Var}(\bar{X})$ and $\text{Var}(S^2)$. Is one uniformly better than the other?
 - (d) Let $T(X) = n^{-1} \sum_{i=1}^{n} X_i^2$. Find $\tau(\theta)$, for which T(X) is an unbiased estimator.
 - (e) Does T(X) have the smallest variance among unbiased estimators of $\tau(\theta)$?
- 6. Let X_1, X_2, \ldots, X_n be a random sample of size n from a $N(0, \sigma^2)$.
 - (a) Develop an explicit expression for an unbiased estimator $\hat{\theta}$ of the unknown parameter $\theta = \sigma^r$, where r is some known positive integer.
 - (b) Derive an explicit expression for the CRLB for the variance of any unbiased estimator of the parameter θ .
 - (c) Find a particular value of r for which the variance of $\hat{\theta}$ actually achieve the CRLB.

7. [Bios 673/740 in class, C&B 7.37] Let X_1, \ldots, X_{n+1} be iid Bernoulli(p), and define the function h(p) by

$$h(p) = P\left(\sum_{i=1}^{n} X_i > X_{n+1}|p\right),\,$$

which is the probability that the first n observations exceed the (n+1)st.

(a) Show that

$$T(X_1, \dots, X_{n+1}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > X_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

is an unbiased estimator of h(p).

(b) Find the best unbiased estimator of h(p).