Лекция 13

Полиморфни алгебрични типове

Дефинициите на алгебрични типове могат да съдържат променливи на типове (типови променливи, type variables) **a**, **b** и т.н. По този начин се дефинират полиморфни типове.

Тези дефиниции изглеждат така, както беше показано в предишната лекция, като променливите на типове се включват след името на типа в лявата страна на дефиницията.

Пример data Pairs a = Pr a a

Примерни елементи на този тип:

Pr 23:: Pairs Int

Pr [] [3] :: Pairs [Int]

Pr [][] :: Pairs a

Дефиниция на функция, която проверява дали са равни двете части на дадена двойка:

equalPair :: Eq a => Pairs a -> Bool

equalPair ($Pr \times y$) = (x==y)

Списъци

Вграденият списъчен тип може да бъде дефиниран като алгебричен например по следния начин:

Тук синтаксисът [а], [] и ':' е аналогичен на List a, NilList и Cons. Така типът "списък" е добър пример за рекурсивен полиморфентип.

Двоични дървета

Дърветата, които дефинирахме на предишната лекция, бяха дървета от цели числа (дървета от тип Int). Ако искаме да дефинираме двоично дърво от произволен тип **a**, това може да стане с помощта на конструкция от вида

При това някои от вече дискутираните дефиниции на функции за работа с двоични дървета от цели числа могат да бъдат използвани и в общия случай, например:

```
depth :: Tree a -> Int
depth Nil = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)
```

Дефиниции на някои функции за работа с двоични дървета от произволен тип

Намиране на броя на върховете на двоично дърво:

Намиране на сумата от върховете на двоично дърво от цели числа:

Намиране на броя на листата на двоично дърво:

Трансформиране на двоично дърво (прилагане на дадена функция към всеки от върховете на дървото):

Намиране на върховете от k-то ниво на дадено двоично дърво:

Намиране на броя на листата от k-то ниво на дадено двоично дърво:

Трансформиране на списък в двоично дърво: