Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Equações de Recorrência

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- um disco maior nunca pode fica acima de um disco menor.

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo "Brama" de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo "Brama" de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

Temos de preocupar-nós?

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

- apenas um disco poderia ser movido por vez, e
- um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo "Brama" de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

Temos de preocupar-nós? Vale a pena preparar o teste?

O problema é

mover n discos de origem para destino com a ajuda de auxiliar, de modo que

auxiliar

destino

• apenas um disco poderia ser movido por vez, e

origem

• um disco maior nunca pode fica acima de um disco menor.

A lenda diz que, num templo, havia uma torre com 64 discos de ouro e mais duas estacas equilibradas sobre uma plataforma. Os monges foram ordenados pelo "Brama" de mover todos os discos de uma estaca para outra. Segundo a lenda, quando todos os discos fossem transferidos de origem para destino, o mundo desapareceria.

Temos de preocupar-nós? Vale a pena preparar o teste? (Sim!!)

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

É mais fácil pensar recursivamente:

• Se n = 1, basta mover o disco diretamente de origem para destino. Logo, $a_n = 1$.

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

É mais fácil pensar recursivamente:

• Se n > 1, então podemos

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n > 1, então podemos
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n > 1, então podemos
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - mover o último disco de origem para destino; depois

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n > 1, então podemos
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - mover o último disco de origem para destino; depois
 - ullet mover os n-1 discos de auxiliar para destino utilizando origem.

A questão

Para n discos (digamos, $n \ge 1$), denotamos por a_n o menor número de passos necessários. Então, $a_{64} = ??$

A solução

- Se n > 1, então podemos
 - mover os n-1 discos acima de origem para auxiliar utilizando destino, depois
 - mover o último disco de origem para destino; depois
 - mover os n-1 discos de auxiliar para destino utilizando origem.

Logo,
$$a_n = a_{n-1} + 1 + a_{n-1} = 2a_{n-1} + 1$$
.

Os números

Os famosos números de Fibonaccia

1, 1, 2, 3, 5, 8, 13, 21, ...

 $^{^{}a}$ Leonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

$$1, 1, 2, 3, 5, 8, 13, 21, \dots$$

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

Embora os números de Fibonacci sejam completamente determinados pelos primeiros dois termos F_0 e F_1 , não é fácil calcular, por exemplo, $F_{312493741}$ porque, pela definição, é necessário calcular primeiro $F_{312493730}$ e $F_{312493739}$, para isso precisamos de $F_{312493738}$ e $F_{312493737}$,... e assim até $F_2 = F_1 + F_0$.

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Os números

Os famosos números de Fibonaccia

são os termos da sucessão $(F_n)_{n\in\mathbb{N}}$ que começa com $F_0=1$ e $F_1=1$ e satisfaz a regra $F_{n+2}=F_{n+1}+F_n$, para todo o $n\in\mathbb{N}$.

Embora os números de Fibonacci sejam completamente determinados pelos primeiros dois termos F_0 e F_1 , não é fácil calcular, por exemplo, $F_{312493741}$ porque, pela definição, é necessário calcular primeiro $F_{312493730}$ e $F_{312493739}$, para isso precisamos de $F_{312493738}$ e $F_{312493737}$,... e assim até $F_2 = F_1 + F_0$.

Estes números aparecem em muitos contextos

^aLeonardo Fibonacci ou Leonardo de Pisa (1170 – 1250), matemático italiano.

Uma população de coelhos (ver exercício 5 da folha 6)

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que depois de *n* meses temos A_n pares de coelhos adultos e J_n pares de coelhos jovens, e que cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês. Além disso, depois de um mês, um coelho jovem passa a ser um coelho adulto. Começando com um par de coelhos jovens, qual é o número c_n de pares de coelhos no final do mês n?

Uma população de coelhos (ver exercício 5 da folha 6)

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que depois de n meses temos A_n pares de coelhos adultos e J_n pares de coelhos jovens, e que cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês. Além disso, depois de um mês, um coelho jovem passa a ser um coelho adulto. Começando com um par de coelhos jovens, qual é o número c_n de pares de coelhos no final do mês n?

Por hipotése, $A_0=0$, $J_0=1$, $A_1=1$, $J_1=0$ e, para $n\geq 1$,

$$A_n = A_{n-1} + J_{n-1}$$
 e $J_n = A_{n-1}$.

Uma população de coelhos (ver exercício 5 da folha 6)

Numa população de animais (digamos, de coelhos) há animais adultos (que podem ter descendentes) e animais jovens (que ainda não podem ter descendente). Suponhamos que depois de n meses temos A_n pares de coelhos adultos e J_n pares de coelhos jovens, e que cada par de coelhos adultos tem um par de descendentes (necessariamente jovem) no final do mês. Além disso, depois de um mês, um coelho jovem passa a ser um coelho adulto. Começando com um par de coelhos jovens, qual é o número c_n de pares de coelhos no final do mês n?

Por hipotése, $A_0 = 0$, $J_0 = 1$, $A_1 = 1$, $J_1 = 0$ e, para $n \ge 1$,

$$A_n = A_{n-1} + J_{n-1}$$
 e $J_n = A_{n-1}$.

Portanto, para $n \geq 2$, $A_n = A_{n-1} + A_{n-2}$; e $c_n = A_n + J_n$ satisfaz

$$c_0 = 1$$
, $c_1 = 1$, $c_n = c_{n-1} + c_{n-2}$ $(n \ge 2)$.

Quadrados

$$a_0 = 1,$$

 $a_1 = 1,$

$$p_1 = 1,$$

Quadrados

$$a_0 = 1,$$

 $a_1 = 1,$
 $a_2 = 2,$

2 3 1 1

$$a_0 = 1,$$

$$a_1=1,$$

$$a_2 = 2$$
,

$$a_3 = 3$$
,

Quadrados

$$a_0 = 1,$$

 $a_1 = 1,$
 $a_2 = 2,$
 $a_3 = 3,$
 $a_4 = 5,$

Quadrados

$$a_0 = 1,$$

 $a_1 = 1,$
 $a_2 = 2,$
 $a_3 = 3,$
 $a_4 = 5,$

$$a_{n+2} = a_{n+1} + a_n$$

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Exemplo

Quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

As ordens totals em $\{1, 2, \dots, n, n+1\}$ podemos obter de seguinte modo:

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

As ordens totals em $\{1,2,\ldots,n,n+1\}$ podemos obter de seguinte modo:

• ordenamos primeiro $\{1, 2, ..., n\}$, denotamos o número de maneiras por a_n ; depois

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

As ordens totals em $\{1,2,\ldots,n,n+1\}$ podemos obter de seguinte modo:

- ordenamos primeiro $\{1,2,\ldots,n\}$, denotamos o número de maneiras por a_n ; depois
- podemos inserir n+1, aqui há n+1 possibilidades.

Exemplo

Quantas ordens totais existem em $\{1, 2, ..., n\}$, para cada $n \in \mathbb{N}$?

Se n=0, então o número a_0 de ordens totais em \varnothing é $a_0=1$.

As ordens totals em $\{1,2,\ldots,n,n+1\}$ podemos obter de seguinte modo:

- ordenamos primeiro $\{1, 2, ..., n\}$, denotamos o número de maneiras por a_n ; depois
- podemos inserir n+1, aqui há n+1 possibilidades.

Pelo princípio da multiplicação, o número a_{n+1} de ordens totais em $\{1,2,\ldots,n,n+1\}$ é

$$a_{n+1}=(n+1)a_n.$$

Índice

- Noções gerais
- 2 Equações de recorrência lineares
- 3 Equações de recorrência lineares homogéneas
- 4 Equações de recorrência lineares em geral
- 5 Equações de recorrência não lineares

Definição

• Uma equação de recorrência é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \geq k$ (e $a_i \in \mathbb{R}$).

^aou relação de recorrência

Definição

• Uma equação de recorrência é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$ (e $a_i \in \mathbb{R}$).

 A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).

Definição

• Uma equação de recorrência é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$ (e $a_i \in \mathbb{R}$).

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n \geq k$.

Definição

• Uma equação de recorrência é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$ (e $a_i \in \mathbb{R}$).

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n \geq k$.

Nota

Resolver uma relação de recorrência significa determinar todas as suas soluções.

Definição

• Uma equação de recorrência é uma equação da forma

$$x_n = f(n, x_{n-1}, x_{n_2}, \dots, x_{n-k}),$$
 (*)

com $n \in \mathbb{N}$, $n \ge k$ (e $a_i \in \mathbb{R}$).

- A equação de recorrência (*) diz-se de ordem k ou que tem profundidade k (supondo que f depende da última variável).
- Uma sucessão $(a_n)_{n\in\mathbb{N}}$ diz-se solução de (*) quando os seus termos satisfazem a equação (*), para todo o $n \geq k$.

Nota

Resolver uma relação de recorrência significa determinar todas as suas soluções. Estamos particularmente interessados em descrever as soluções com *fórmulas fechadas*; ou seja, na forma

 a_n = "uma expressão que apenas envolve a variável n".

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

Será $a_n = n!$, para cada $n \in \mathbb{N}$?

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

Será $a_n=n!$, para cada $n\in\mathbb{N}$? Provamos esta conjetura por indução:

• Para n = 0: $a_0 = 1 = 1$!.

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

- Para n = 0: $a_0 = 1 = 1$!.
- Seja $n \in \mathbb{N}$ e suponhamos $a_n = n!$.

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

- Para n = 0: $a_0 = 1 = 1$!.
- ullet Seja $n\in\mathbb{N}$ e suponhamos $a_n=n!$. Então,

$$a_{n+1} = (n+1)a_n =$$

Exemplo

Voltamos à questão de "quantas ordens totais existem em $\{1,2,\ldots,n\}$, para cada $n\in\mathbb{N}$?". Já observamos que o correspondentes números a_n satisfazem

$$a_0 = 1$$
 e $a_{n+1} = (n+1)a_n$.

Então,

$$a_1 = 1$$
, $a_2 = 2 \cdot 1$, $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1 = 3!$, $a_4 = 4 \cdot a_3 = 4!$.

- Para n = 0: $a_0 = 1 = 1$!.
- Seja $n \in \mathbb{N}$ e suponhamos $a_n = n!$. Então,

$$a_{n+1} = (n+1)a_n = (n+1)n! = (n+1)!.$$

Definição

• Uma equação de recorrência linear^a é uma equação da forma

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

^ade coeficientes constantes

Definição

• Uma equação de recorrência linear é uma equação da forma

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n,$$
 (*)

- (para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.
- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}.$$

Definição

Uma equação de recorrência linear é uma equação da forma

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n,$$
 (*)

- (para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.
- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}.$$

Definição

Uma equação de recorrência linear é uma equação da forma

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n,$$
 (*)

(para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.

- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}.$$

Exemplo

• $x_n = 3x_{n-1} + 2x_{n-2} + 3n$ é uma equação de recorrência linear (não homogénea) da ordem 2.

Definição

• Uma equação de recorrência linear é uma equação da forma

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n,$$
 (*)

- (para $n \ge k$) onde c_1, c_2, \ldots, c_k ($c_k \ne 0$) são constantes e $(d_n)_{n \in \mathbb{N}}$ é uma sucessão.
- A equação (*) diz-se homogénea quando $(d_n)_{n\in\mathbb{N}}$ é a sucessão nula.
- A equação homogénea associada a (*) é a equação

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}.$$

Exemplo

- $x_n = 3x_{n-1} + 2x_{n-2} + 3n$ é uma equação de recorrência linear (não homogénea) da ordem 2.
- $x_n = 3x_{n-1} + 2x_{n-2}$ é a equação homogénea associada.

Exemplo

• A equação da recorrência $x_{n+1} = (n+1)x_n$ é linear e homogénea mas *não tem coeficientes constantes*.

Exemplo

• A equação $x_n = 2x_{n-1} - x_{n-2}$ ($n \ge 2$) é uma equação de recorrência linear homogénea (de coeficientes constantes).

Exemplo

• A equação $x_n = 2x_{n-1} - x_{n-2}$ $(n \ge 2)$ é uma equação de recorrência linear homogénea (de coeficientes constantes). Verificamos que a sucessão $(a_n)_{n \in \mathbb{N}}$ definida por

$$a_n=3n \qquad (n\in\mathbb{N})$$

é solução desta equação.

Exemplo

• A equação $x_n = 2x_{n-1} - x_{n-2}$ $(n \ge 2)$ é uma equação de recorrência linear homogénea (de coeficientes constantes). Verificamos que a sucessão $(a_n)_{n \in \mathbb{N}}$ definida por

$$a_n = 3n \qquad (n \in \mathbb{N})$$

é solução desta equação. De facto, para cada $n \geq 2$,

$$2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) = 3(2(n-1) - (n-2)) = 3n = a_n.$$

Exemplo

• A equação $x_n = 2x_{n-1} - x_{n-2}$ $(n \ge 2)$ é uma equação de recorrência linear homogénea (de coeficientes constantes). Verificamos que a sucessão $(a_n)_{n \in \mathbb{N}}$ definida por

$$a_n = 3n \qquad (n \in \mathbb{N})$$

é solução desta equação. De facto, para cada $n \geq 2$,

$$2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) = 3(2(n-1) - (n-2)) = 3n = a_n.$$

Um cálculo semelhante revela que as sucessões

$$(0)_{n\in\mathbb{N}}, \quad (n)_{n\in\mathbb{N}}, \quad (1)_{n\in\mathbb{N}}, \quad (5n+2)_{n\in\mathbb{N}}$$
são soluções da equação acima.

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*). todas as soluções da equação homogénea ass. a (*).

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*). todas as soluções da equação homogénea ass. a (*).

Um resultado deste tipo já conhecemos de

- ALGA → resolver equações lineares;
- Cálculo II → resolver equações diferenciais lineares.

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*). todas as soluções da equação homogénea ass. a (*).

Demonstração.

 Se b é uma solução de (*) e a é uma solução da equação homogénea associada, então a + b é uma solução de (*).

Teorema

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*). todas as soluções da equação homogénea ass. a (*).

Demonstração.

- Se b é uma solução de (*) e a é uma solução da equação homogénea associada, então a + b é uma solução de (*).
- Se b_1 e b_0 são soluções de (*), então $b_1 b_0$ é uma solução da equação homogénea associada, e $b_1 = b_0 + (b_1 b_0)$.

Equações de recorrência lineares homogéneas

O espaço das soluções

Considerações iniciais

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} \tag{*}$$

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea. Então:

O espaço das soluções

Considerações iniciais

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} \tag{*}$$

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea. Então:

 O conjunto das soluções de (*) é um subespaço do espaço de todas as sucessões (digamos reais ou complexos).

Considerações iniciais

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} \tag{*}$$

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea. Então:

- O conjunto das soluções de (*) é um subespaço do espaço de todas as sucessões (digamos reais ou complexos).
- Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k \longrightarrow \{$ as soluções de $(*)\}$
 $(a_0,\ldots,a_{k-1}) \longmapsto (a_0,\ldots,a_{k-1},\,c_1a_{k-1}+\cdots+c_ka_0,\ldots)$

é um isomorfismo;

Considerações iniciais

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} \tag{*}$$

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea. Então:

- O conjunto das soluções de (*) é um subespaço do espaço de todas as sucessões (digamos reais ou complexos).
- Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k \longrightarrow \{$ as soluções de $(*)\}$
 $(a_0, \dots, a_{k-1}) \longmapsto (a_0, \dots, a_{k-1}, c_1 a_{k-1} + \dots + c_k a_0, \dots)$

é um isomorfismo; logo, dim{as soluções de (*)} = k.

O espaço das soluções

Considerações iniciais

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k}$$
 (*)

 $(c_k \neq 0)$ uma equação de recorrência linear homogénea. Então:

- O conjunto das soluções de (*) é um subespaço do espaço de todas as sucessões (digamos reais ou complexos).
- Cada solução $(a_n)_{n\in\mathbb{N}}$ de (*) é completamente determinada pelos primeiros k termos. De facto

$$\mathbb{C}^k$$
 ou $\mathbb{R}^k \longrightarrow \{$ as soluções de $(*)\}$
 $(a_0,\ldots,a_{k-1}) \longmapsto (a_0,\ldots,a_{k-1},\,c_1a_{k-1}+\cdots+c_ka_0,\ldots)$

é um isomorfismo; logo, dim{as soluções de (*)} = k.

Conclusão: Para descrever todas as soluções de (*), procuramos k soluções de (*) *linearmente intendente.*

A equação caraterística

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \dots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \cdots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções?

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \cdots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0,

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \dots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0, e para $q\neq 0$ temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}),$

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \dots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0, e para $q\neq 0$ temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}).$

portanto, $(q^n)_{n\in\mathbb{N}}$ é solução de (*) se e somente se

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \cdots - c_k.$$

Uma tentativa (mais ou menos) "esperta"

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n_2} - \dots - c_k x_{n-k} \quad (k \ge 1, \ c_k \ne 0). \quad (*)$$

Para uma sucessão da forma $(q^n)_{n\in\mathbb{N}}$, para quais valores de q obtemos uma soluções? Seguramente não para q=0, e para $q\neq 0$ temos

$$0 = q^{n} - c_{1}q^{n-1} - c_{2}q^{n-2} - \dots - c_{k}q^{n-k}$$

= $q^{n-k}(q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k}).$

portanto, $(q^n)_{n\in\mathbb{N}}$ é solução de (*) se e somente se

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k.$$

A equação acima diz-se equação caraterística de (*).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 =$$

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 =$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes não são racionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes não são racionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

Nota: As raízes inteiras de um polinómio da forma

$$q^n + \cdots + c$$

dividem c (e as outras raízes não são racionais).

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0 = 2$ e $q_1 = -1$.

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0=2$ e $q_1=-1$. Verifica-se que as sucessões

$$(2^n)_{n\in\mathbb{N}}$$
 e $((-1)^n)_{n\in\mathbb{N}}$

são linearmente indendentes; portanto,

Exemplo

Procuramos todas as solução da equação de recorrência linear homogénea

$$0 = x_n - x_{n-1} - 2x_{n-2} \quad (n \ge 2). \tag{*}$$

A equação caraterística é

$$0 = q^2 - q - 2 = (q - 2)(q + 1),$$

com as soluções $q_0=2$ e $q_1=-1$. Verifica-se que as sucessões

$$(2^n)_{n\in\mathbb{N}}$$
 e $((-1)^n)_{n\in\mathbb{N}}$

são linearmente indendentes; portanto, todas as soluções (reais) da equação (*) tem a forma

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Exemplo

Solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução que satisfaz $x_0 = 5$ e $x_1 = 4$;

Exemplo

Solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução que satisfaz $x_0=5$ e $x_1=4$; ou seja, aquele com

$$\alpha + \beta = 5$$
 (caso $n = 0$) e $2\alpha - \beta = 4$ (caso $n = 1$).

Exemplo

Solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução que satisfaz $x_0 = 5$ e $x_1 = 4$; ou seja, aquele com

$$\alpha + \beta = 5$$
 (caso $n = 0$) e $2\alpha - \beta = 4$ (caso $n = 1$).

Resolvendo este sistema de duas equações lineares dá $\alpha=3$ e $\beta=2.$

Exemplo

Solução geral:

$$(\alpha 2^n + \beta (-1)^n)_{n \in \mathbb{N}}, \qquad \alpha, \beta \in \mathbb{R}.$$

Finalmente, procuramos a solução que satisfaz $x_0=5$ e $x_1=4$; ou seja, aquele com

$$\alpha + \beta = 5$$
 (caso $n = 0$) e $2\alpha - \beta = 4$ (caso $n = 1$).

Resolvendo este sistema de duas equações lineares dá $\alpha=3$ e $\beta=2$. Assim, a solução é a sucessão $(a_n)_{n\in\mathbb{N}}$ com

$$a_n = 3 \cdot 2^n + 2 \cdot (-1)^n$$
, para todo o $n \in \mathbb{N}$.

O primeiro resultado

Corolário

Consideramos a equação de recorrência linear homogénea

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} \quad (k \ge 1, c_k \ne 0).$$
 (*)

Se a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k$$

de (*) têm as k soluções (diferentes) q_1, q_2, \ldots, q_k , então as soluções de (*) são precisamente as combinações lineares das sucessões $(q_1^n)_{n\in\mathbb{N}}, \ldots, (q_k^n)_{n\in\mathbb{N}};$ ou seja, as sucessões da forma

$$(C_1q_1^n + C_2q_2^n + \cdots + C_kq_k^n)_{n \in \mathbb{N}}$$

com constantes C_1, C_2, \ldots, C_k .

^alinearmente independente

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Para resolver a equação de recorrência linear homogénea $F_n=F_{n-1}+F_{n-2}$, consideramos a equação $q^2-q-1=0$ de segundo grau que tem duas soluções:

$$q_0=rac{1-\sqrt{5}}{2}$$
 e $q_1=rac{1+\sqrt{5}}{2}.$

Exemplo

Recordamos que os números de Fibonacci $(F_n)_{n\in\mathbb{N}}$ satisfazem as equações

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Para resolver a equação de recorrência linear homogénea $F_n=F_{n-1}+F_{n-2}$, consideramos a equação $q^2-q-1=0$ de segundo grau que tem duas soluções:

$$q_0=rac{1-\sqrt{5}}{2}$$
 e $q_1=rac{1+\sqrt{5}}{2}.$

Portanto, todas as soluções da equação homogénea são combinações lineares das sucessões $(q_0^n)_{n\in\mathbb{N}}$ e $(q_1^n)_{n\in\mathbb{N}}$. Em particular,

$$(F_n)_{n\in\mathbb{N}} = \alpha(q_0^n)_{n\in\mathbb{N}} + \beta(q_1^n)_{n\in\mathbb{N}}.$$

Exemplo

Portanto, para n = 0 e n = 1 obtemos

$$1 = \alpha + \beta,$$
 $1 = \alpha \left(\frac{1 - \sqrt{5}}{2}\right) + \beta \left(\frac{1 + \sqrt{5}}{2}\right).$

Exemplo

Portanto, para n = 0 e n = 1 obtemos

$$1 = \alpha + \beta,$$
 $1 = \alpha \left(\frac{1 - \sqrt{5}}{2}\right) + \beta \left(\frac{1 + \sqrt{5}}{2}\right).$

Fazendo redução com a correspondente matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ q_0 & q_1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & q_1 - q_0 & (1 - q_0) \end{bmatrix}$$

produz
$$\beta = \frac{1-q_0}{q_1-q_0} = \frac{1-q_0}{\sqrt{5}}$$
 e $\alpha = 1-\beta = \frac{q_1-1}{q_1-q_0} = -\frac{1-q_1}{\sqrt{5}}.$

Exemplo

Portanto, para n = 0 e n = 1 obtemos

$$1 = \alpha + \beta,$$
 $1 = \alpha \left(\frac{1 - \sqrt{5}}{2}\right) + \beta \left(\frac{1 + \sqrt{5}}{2}\right).$

Fazendo redução com a correspondente matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ q_0 & q_1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & q_1 - q_0 & (1 - q_0) \end{bmatrix}$$

produz $\beta=\frac{1-q_0}{q_1-q_0}=\frac{1-q_0}{\sqrt{5}}$ e $\alpha=1-\beta=\frac{q_1-1}{q_1-q_0}=-\frac{1-q_1}{\sqrt{5}}.$ Portanto, com algum cálculo,

$$F_n = \frac{1}{\sqrt{5}}((1-q_0)q_1^n - (1-q_1)q_0^n) = \frac{1}{\sqrt{5}}(q_1^{n+1} - q_0^{n+1}).$$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

Exemplo

• Consideramos $0 = x_n + 2x_{n-1} - x_{n-2} - 2x_{n-3}$ de ordem 3.

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = a^3$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

• e obter as soluções da equação caraterística:

$$\ldots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2 = (q q)$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

• e obter as soluções da equação caraterística:

$$\ldots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2 = (q 1)(q$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

• e obter as soluções da equação caraterística:

$$\ldots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2 = (q-1)(q+1)(q$

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

• e obter as soluções da equação caraterística:

$$\ldots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2 = (q-1)(q+1)(q+2)$.

de ordem k com k raízes diferentes)

Consideramos $x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k}$.

• Obter a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{n-2} - \dots - c_k$$

• e obter as soluções da equação caraterística:

$$\ldots = (q-q_1)(q-q_2)\ldots(q-q_k).$$

• Se obtemos *k* soluções diferentes, então todas as soluções da equação de recorrência tem a forma

$$(C_1q_1^n + C_2q_2^n + \cdots + C_kq_k^n)_{n\in\mathbb{N}}$$

com constantes C_1, C_2, \ldots, C_k .

- Consideramos $0 = x_n + 2x_{n-1} x_{n-2} 2x_{n-3}$ de ordem 3.
- Eq. car.: $0 = q^3 + 2q^2 q 2 = (q-1)(q+1)(q+2)$.

Mais um ...

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

.

Mais um ...

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

A corresponde equação caraterística é

.

Mais um ...

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

A corresponde equação caraterística é

$$0 = q^3$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0=q^3-3q$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0=q^3-3q+2$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q - 1)(q$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q - 1)(q + 2)(q$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q-1)(q+2)(q-1)$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

$$0 = q^3 - 3q + 2 = (q-1)(q+2)(q-1) = (q-1)^2(q+2).$$

Exemplo

Consideramos a equação de recorrência

$$x_n = 3x_{n-2} - 2x_{n-3}$$
 $(n \ge 3)$

de ordem 3; ou seja $0 = x_n - 3x_{n-2} + 2x_{n-3}$.

A corresponde equação caraterística é

$$0 = q^3 - 3q + 2 = (q-1)(q+2)(q-1) = (q-1)^2(q+2).$$

E agora? Temos apenas as duas soluções independentes

$$(1^n)_{n\in\mathbb{N}}$$
 e $((-2)^n)_{n\in\mathbb{N}}$...

Teorema

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n-2} - \dots - c_k x_{n-k} \qquad (k \ge 1, c_k \ne 0) \ (*)$$

com a equação caraterística

$$0 = q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \dots - c_{k} = (q - q_{1})^{n_{1}} \dots (q - q_{l})^{n_{l}}$$

$$(n_{1} + \dots + n_{l} = k, n_{i} > 0).$$

Teorema

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n-2} - \dots - c_k x_{n-k} \qquad (k \ge 1, c_k \ne 0) \ (*)$$

com a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_l)^{n_l}$$

 $(n_1 + \cdots + n_l = k, n_i > 0)$. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

```
(q_1^n)_{n\in\mathbb{N}},
```

$$(q_2^n)_{n\in\mathbb{N}},$$

. .

$$(q_I^n)_{n\in\mathbb{N}},$$

Teorema

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n-2} - \dots - c_k x_{n-k} \qquad (k \ge 1, c_k \ne 0) \ (*)$$

com a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_l)^{n_l}$$

 $(n_1 + \cdots + n_l = k, n_i > 0)$. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

$$(q_1^n)_{n\in\mathbb{N}}, \quad (n\cdot q_1^n)_{n\in\mathbb{N}},$$

$$(q_2^n)_{n\in\mathbb{N}}, \quad (n\cdot q_2^n)_{n\in\mathbb{N}},$$

. . .

$$(q_l^n)_{n\in\mathbb{N}}, (n\cdot q_l^n)_{n\in\mathbb{N}},$$

Teorema

Consideramos a equação de recorrência linear homogénea

$$0 = x_n - c_1 x_{n-1} - c_2 x_{n-2} - \dots - c_k x_{n-k} \qquad (k \ge 1, c_k \ne 0) \ (*)$$

com a equação caraterística

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_l)^{n_l}$$

 $(n_1 + \cdots + n_l = k, n_i > 0)$. Então, as soluções da equação (*) são precisamente as combinações lineares das k sucessões

$$(q_1^n)_{n\in\mathbb{N}}, \quad (n\cdot q_1^n)_{n\in\mathbb{N}}, \quad (n^2\cdot q_1^n)_{n\in\mathbb{N}}, \quad \dots \quad (n^{n_1-1}\cdot q_1^n)_{n\in\mathbb{N}},$$

 $(q_2^n)_{n\in\mathbb{N}}, \quad (n\cdot q_2^n)_{n\in\mathbb{N}}, \quad (n^2\cdot q_2^n)_{n\in\mathbb{N}}, \quad \dots \quad (n^{n_2-1}\cdot q_2^n)_{n\in\mathbb{N}},$

$$(q_l^n)_{n\in\mathbb{N}}, \quad (n\cdot q_l^n)_{n\in\mathbb{N}}, \quad (n^2\cdot q_l^n)_{n\in\mathbb{N}}, \quad \dots \quad (n^{n_l-1}\cdot q_l^n)_{n\in\mathbb{N}}.$$

Um exemplo

Exemplo

Consideramos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

Um exemplo

Exemplo

Consideramos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

A equação caraterística é

$$0 = q^3 - 5q^2 + 8q - 4 = (q-1)(q-2)(q-2) = (q-1)(q-2)^2;$$

portanto, as solução da equação de recorrência são as sucessões da forma (com $\alpha,\beta,\gamma\in\mathbb{R}$)

$$(\alpha 1^n + \beta 2^n + \gamma n 2^n)_{n \in \mathbb{N}}.$$

Um exemplo

Exemplo

Consideramos a equação de recorrência linear homogénea

$$x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 $(n \ge 3)$

com os valores iniciais $x_0 = 0$, $x_1 = 4$ e $x_2 = 18$.

A equação caraterística é

$$0 = q^3 - 5q^2 + 8q - 4 = (q-1)(q-2)(q-2) = (q-1)(q-2)^2;$$

portanto, as solução da equação de recorrência são as sucessões da forma (com $\alpha,\beta,\gamma\in\mathbb{R}$)

$$(\alpha 1^n + \beta 2^n + \gamma n 2^n)_{n \in \mathbb{N}}.$$

Considerando os valores iniciais, procuramos $\alpha,\beta,\gamma\in\mathbb{R}$ tais que

$$\alpha + \beta = 0$$
, $\alpha + 2\beta + 2\gamma = 4$, $\alpha + 4\beta + 8\gamma = 18$.

Um exemplo (continuação)

Exemplo

Utilizando a primeira equação, o sistema

$$\alpha + \beta = 0,$$

$$\alpha + 2\beta + 2\gamma = 4,$$

$$\alpha + 4\beta + 8\gamma = 18$$

reduz ($\alpha = -\beta$) a

$$\beta + 2\gamma = 4,$$
 $3\beta + 8\gamma = 18;$

cuja solução é $\gamma=3$ e $\beta=-2$, logo $\alpha=2$.

Um exemplo (continuação)

Exemplo

Utilizando a primeira equação, o sistema

$$\alpha + \beta = 0,$$

$$\alpha + 2\beta + 2\gamma = 4,$$

$$\alpha + 4\beta + 8\gamma = 18$$

reduz ($\alpha = -\beta$) a

$$\beta + 2\gamma = 4,$$
$$3\beta + 8\gamma = 18;$$

cuja solução é $\gamma=3$ e $\beta=-2$, logo $\alpha=2$. Assim, a solução da equação de recorrência com os valores iniciais é a sucessão

$$(2-2\cdot 2^n+3\cdot n\cdot 2^n)_{n\in\mathbb{N}}.$$

Preparação

Consideramos a função linear S "esquecer o primeiro termo" definida por

$$S((x_n)_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.$$

Preparação

Consideramos a função linear S "esquecer o primeiro termo" definida por

$$S((x_n)_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.$$

Então, uma sucessão $a=(a_n)_{n\in\mathbb{N}}$ é solução da equação $0=x_n-c_1x_{n-1}-c_2x_{n_2}-\cdots-c_kx_{n-k}$ se e somente se

sucessão nula =
$$S^{n}(a) - c_1 S^{n-1}(a) - \dots - c_k S^{n-k}(a)$$

= $(S^{n} - c_1 S^{n-1} - \dots - c_k S^{n-k})(a)$
= $S^{n-k} \circ (S^{k} - c_1 S^{k-1} - \dots - c_k \operatorname{id})(a)$,

para cada $n \in \mathbb{N}$.

Preparação

Consideramos a função linear S "esquecer o primeiro termo" definida por

$$S((x_n)_{n\in\mathbb{N}})=(x_{n+1})_{n\in\mathbb{N}}.$$

Então, uma sucessão $a=(a_n)_{n\in\mathbb{N}}$ é solução da equação $0=x_n-c_1x_{n-1}-c_2x_{n_2}-\cdots-c_kx_{n-k}$ se e somente se

sucessão nula =
$$S^{n}(a) - c_1 S^{n-1}(a) - \dots - c_k S^{n-k}(a)$$

= $(S^{n} - c_1 S^{n-1} - \dots - c_k S^{n-k})(a)$
= $S^{n-k} \circ (S^{k} - c_1 S^{k-1} - \dots - c_k \operatorname{id})(a)$,

para cada $n \in \mathbb{N}$. Veremos agora quais sucessões a função linear

$$S^{k} - c_1 S^{k-1} - \cdots - c_k$$
 id

anula.

Decompor a função

Seja (com
$$n_1 + \cdots + n_l = k$$
, $n_i > 0$)

$$0 = q^{k} - c_{1}q^{k-1} - c_{2}q^{k-2} - \cdots - c_{k} = (q - q_{1})^{n_{1}} \cdots (q - q_{k})^{n_{k}}$$

a equação caraterística,

Decompor a função

Seja (com
$$n_1 + \cdots + n_l = k$$
, $n_i > 0$)

$$0 = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > 0$)

$$0 = q^k - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

"A chave" da prova do teorema é o seguinte lema.

Decompor a função

Seja (com $n_1 + \cdots + n_l = k$, $n_i > 0$)

$$0 = q^{k} - c_1 q^{k-1} - c_2 q^{k-2} - \dots - c_k = (q - q_1)^{n_1} \dots (q - q_k)^{n_k}$$

a equação caraterística, então

$$S^k - c_1 S^{k-1} - \cdots - c_k \operatorname{id} = (S - q_1 \operatorname{id})^{n_1} \circ \cdots \circ (S - q_k \operatorname{id})^{n_k}.$$

"A chave" da prova do teorema é o seguinte lema.

Lema

Seja $q \in \mathbb{R}$ e $m \in \mathbb{N}$, $m \geq 1$. A função linear $(S-q\operatorname{id})^m$ anula as sucessões

$$(q^n)_{n\in\mathbb{N}},\quad (n\cdot q^n)_{n\in\mathbb{N}},\quad (n^2\cdot q^n)_{n\in\mathbb{N}},\quad \dots\quad (n^{m-1}\cdot q^n)_{n\in\mathbb{N}}.$$

$$s_1=(q^n)_{n\in\mathbb{N}}, \ s_2=(n\cdot q^n)_{n\in\mathbb{N}}, \ \ldots s_m=(n^{m-1}\cdot q^n)_{n\in\mathbb{N}}$$

Demonstração.

Utilizamos indução sobre m.

$$s_1 = (q^n)_{n \in \mathbb{N}}, \ s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \dots s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}$$

Demonstração.

Utilizamos indução sobre m.

Para
$$m = 1$$
, $S((q^n)_{n \in \mathbb{N}}) = (q^{n+1})_{n \in \mathbb{N}} = q(q^n)_{n \in \mathbb{N}}$.

$$s_1 = (q^n)_{n \in \mathbb{N}}, \ s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \dots s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}$$

Demonstração.

Seja agora m > k e suponhamos que, para cada r < m, $(S - q id)^r$ anula as sucessões s_1, \ldots, s_k .

$$s_1 = (q^n)_{n \in \mathbb{N}}, \ s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \ \dots s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}$$

Demonstração.

Seja agora m > k e suponhamos que, para cada r < m, $(S - q \operatorname{id})^r$ anula as sucessões s_1, \ldots, s_k . Calculamos, para cada $n \in \mathbb{N}$, o termo n de $S(s_m) - (q \cdot s_m)$:

$$\begin{split} (n+1)^{m-1} \cdot q^{n+1} - n^{m-1}q^{n+1} \\ &= \left(\sum_{i=0}^{m-1} \binom{m-1}{i} \cdot n^i \cdot q^{n+1}\right) - n^{m-1}q^{n+1} \\ &= \underbrace{\left(\sum_{i=0}^{m-2} q \cdot \binom{m-1}{i} \cdot n^i \cdot q^n\right)}_{\text{combinação linear de } s_1, \dots, s_{m-1}}; \end{split}$$

$$s_1 = (q^n)_{n \in \mathbb{N}}, \ s_2 = (n \cdot q^n)_{n \in \mathbb{N}}, \ \dots s_m = (n^{m-1} \cdot q^n)_{n \in \mathbb{N}}$$

Demonstração.

Seja agora m>k e suponhamos que, para cada r< m, $(S-q\operatorname{id})^r$ anula as sucessões s_1,\ldots,s_k . Calculamos, para cada $n\in\mathbb{N}$, o termo n de $S(s_m)-(q\cdot s_m)$:

$$\begin{split} (n+1)^{m-1} \cdot q^{n+1} - n^{m-1}q^{n+1} \\ &= \left(\sum_{i=0}^{m-1} \binom{m-1}{i} \cdot n^i \cdot q^{n+1}\right) - n^{m-1}q^{n+1} \\ &= \underbrace{\left(\sum_{i=0}^{m-2} q \cdot \binom{m-1}{i} \cdot n^i \cdot q^n\right)}_{\text{combinação linear de } s_1, \dots, s_{m-1}}; \end{split}$$

Logo, $(S-q \operatorname{id})^{m-1}$ anula $(S-q \operatorname{id})(s_m)$.

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}}$$
$$b = (\overline{z}^n)_{n \in \mathbb{N}}$$

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}}$$
$$b = (\overline{z}^n)_{n \in \mathbb{N}}$$

•
$$z = a + ib = r(\cos \varphi + i \sec \varphi)$$

 $\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R}$ e $\tan \varphi = \frac{b}{a}$ (se $a \neq 0$).

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) + i \sin(\varphi))^n)_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) - i \sin(\varphi))^n)_{n \in \mathbb{N}}.$$

•
$$z = a + ib = r(\cos \varphi + i \sec \varphi)$$

 $\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R}$ e $\tan \varphi = \frac{b}{a}$ (se $a \neq 0$).

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) + i \sin(\varphi))^n)_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(\varphi) - i \sin(\varphi))^n)_{n \in \mathbb{N}}.$$

- $z = a + ib = r(\cos \varphi + i \sec \varphi)$ $\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R}$ e $\tan \varphi = \frac{b}{a}$ (se $a \neq 0$).
- $(\cos \varphi + i \sec \varphi)^n = \cos(n\varphi) + i \sec(n\varphi)$.

Abraham de Moivre (1667 – 1754), matemático francês.

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i \sin(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i \sin(n\varphi)))_{n \in \mathbb{N}}.$$

- $z = a + ib = r(\cos \varphi + i \sec \varphi)$ $\operatorname{com} r = \sqrt{a^2 + b^2} \in \mathbb{R}$ e $\tan \varphi = \frac{b}{a}$ (se $a \neq 0$).
- $(\cos \varphi + i \sec \varphi)^n = \cos(n\varphi) + i \sec(n\varphi)$.

Abraham de Moivre (1667 – 1754), matemático francês.

... e se as raizes são complexas?

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i \sin(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i \sin(n\varphi)))_{n \in \mathbb{N}}.$$

Assim, obtemos as soluções (independentes)

$$\frac{a+b}{2} = (r^n \cos(n\varphi))_{n \in \mathbb{N}} \quad \text{e} \quad \frac{a-b}{2i} = (r^n \sin(n\varphi))_{n \in \mathbb{N}}.$$

... e se as raizes são complexas?

Um par de raízes complexas

Suponhamos que o polinómio caraterístico de uma equação de recorrência linear homogénea tem as raízes complexas

$$z = a + ib$$
 e $\overline{z} = a - ib$.

Portanto, obtemos as duas soluções (da equação de recorrência):

$$a = (z^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) + i\sin(n\varphi)))_{n \in \mathbb{N}},$$

$$b = (\overline{z}^n)_{n \in \mathbb{N}} = (r^n(\cos(n\varphi) - i\sin(n\varphi)))_{n \in \mathbb{N}}.$$

Assim, obtemos as soluções (independentes)

$$\frac{a+b}{2} = (r^n \cos(n\varphi))_{n \in \mathbb{N}} \quad \text{e} \quad \frac{a-b}{2i} = (r^n \sin(n\varphi))_{n \in \mathbb{N}}.$$

Finalmente, se z e \overline{z} são raízes múltiplas, consideramos

$$\ldots, (r^n n^i \cos(n\varphi))_{n \in \mathbb{N}}, \ldots, (r^n n^i \sin(n\varphi))_{n \in \mathbb{N}}, \ldots$$

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é $0 = q^2 - q + 1$,

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n, \quad n \ge 0, \quad \text{com} \quad a_0 = 0, \ a_1 = 1.$$

A correspondente equação caraterística é $0=q^2-q+1$, com as soluções $z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ e $\overline{z}=\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n, \quad n \ge 0, \quad \text{com} \quad a_0 = 0, \ a_1 = 1.$$

A correspondente equação caraterística é $0=q^2-q+1$, com as soluções $z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ e $\overline{z}=\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

Portanto, r=1 e $tan(\varphi)=\sqrt{3}$, $logo \varphi=\frac{\pi}{3}$;

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é $0 = q^2 - q + 1$,

com as soluções
$$z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$$
 e $\overline{z}=\frac{1}{2}-i\frac{\sqrt{3}}{2}.$

Portanto, r=1 e tan $(\varphi)=\sqrt{3}$, logo $\varphi=\frac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right) + \beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}} \qquad (\alpha,\beta\in\mathbb{R}).$$

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é $\mathbf{0}=q^2-q+1$,

com as soluções
$$z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$$
 e $\overline{z}=\frac{1}{2}-i\frac{\sqrt{3}}{2}.$

Portanto, r=1 e tan $(\varphi)=\sqrt{3}$, logo $\varphi=\frac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\pi}{3}\right) + \beta\sin\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}} \qquad (\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $a_0=0$ obtemos $\alpha=0$,

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é $0=q^2-q+1$,

com as soluções
$$z = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 e $\overline{z} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Portanto, r=1 e tan $(\varphi)=\sqrt{3}$, logo $\varphi=\frac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\pi}{3}\right) + \beta\sin\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}} \qquad (\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $a_0=0$ obtemos $\alpha=0$, e com $a_1=1$ obtemos

$$1 = \beta \operatorname{sen}\left(\frac{\pi}{3}\right) = \beta \frac{\sqrt{3}}{2}.$$

Exemplo (Exercício 7c)

Consideramos a equação de recorrência

$$a_{n+2} = a_{n+1} - a_n$$
, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.

A correspondente equação caraterística é $0=q^2-q+1$, com as soluções $z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ e $\overline{z}=\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

Portanto, r=1 e $\tan(\varphi)=\sqrt{3}$, logo $\varphi=\frac{\pi}{3}$; e a solução geral é dada por

$$\left(\alpha\cos\left(\frac{n\,\pi}{3}\right)+\beta\sin\left(\frac{n\,\pi}{3}\right)\right)_{n\in\mathbb{N}}\qquad(\alpha,\beta\in\mathbb{R}).$$

Com a condição inicial $\emph{a}_0=0$ obtemos $\alpha=0$, e com $\emph{a}_1=1$ obtemos

$$1 = \beta \operatorname{sen}\left(\frac{\pi}{3}\right) = \beta \frac{\sqrt{3}}{2}.$$

Portanto, a solução é a sucessão $\left(\frac{2}{\sqrt{3}}\operatorname{sen}\left(\frac{n\pi}{3}\right)\right)_{n\in\mathbb{N}}$

Recordamos:

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

+

Recordamos:

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea ass. a (*).

Recordamos:

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n \tag{*}$$

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea ass. a (*).

• Já sabemos resolver a segunda questão.

Recordamos:

O conjunto de todas as soluções da equação de recorrência linear

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n$$
 (*)

obtém-se como

uma solução particular de (*).

todas as soluções da equação homogénea ass. a (*).

- Já sabemos resolver a segunda questão.
- Estudamos agora métodos para obter uma solução particular de (*).

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

• Se $d_n = c \cdot p^n$: Procuramos uma solução da forma $b_n = A \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p $n\~ao$ é solução da equação caraterística

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

• Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p $n\tilde{ao}$ é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

• Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p $n\tilde{a}o$ é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

 Se d_n = um polinómio em n de grau j: Procuramos uma solução da forma

$$b_n=A_0+A_1n+\cdots+A_jn^j$$
 $(A_i\in\mathbb{R} \text{ a determinar})$
se 1 $n ilde{ao}$ é solução da equação caraterística respetivamente

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

• Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p $n\tilde{a}o$ é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

 Se d_n = um polinómio em n de grau j: Procuramos uma solução da forma

$$b_n=A_0+A_1n+\cdots+A_jn^j$$
 $(A_i\in\mathbb{R} \text{ a determinar})$ se 1 $n\tilde{a}o$ é solução da equação caraterística respetivamente $b_n=(A_0+A_1n+\cdots+A_jn^j)\cdot n^m$ $(A_i\in\mathbb{R} \text{ a determinar})$ se 1 é solução da equação caraterística de multiplicidade m .

Obter uma solução particular

Seja
$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \cdots + c_k x_{n-k} + d_n$$
.

• Se $d_n = c \cdot p^n$: Procuramos uma solução da forma

$$b_n = A \cdot p^n$$
 resp. $b_n = A \cdot n^m \cdot p^n$

 $(A \in \mathbb{R} \text{ a determinar})$ se p $n\tilde{a}o$ é solução da equação caraterística (mais geral, se p é solução da equação caraterística de multiplicidade m).

 Se d_n = um polinómio em n de grau j: Procuramos uma solução da forma

$$b_n=A_0+A_1n+\cdots+A_jn^j$$
 $(A_i\in\mathbb{R} \text{ a determinar})$ se 1 $n ilde{a}o$ é solução da equação caraterística respetivamente $b_n=(A_0+A_1n+\cdots+A_jn^j)\cdot n^m$ $(A_i\in\mathbb{R} \text{ a determinar})$

se 1 é solução da equação caraterística de multiplicidade m.

Os valores dos parâmetros A, A_i obtém-se substituindo b_n na equação de recorrência dada.

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, ...;$$

com
$$x_0 = 0$$
 e $x_1 = -2$.

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots;$$

com $x_0 = 0$ e $x_1 = -2$.

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots;$$

com $x_0 = 0$ e $x_1 = -2$.

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 =$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots;$$

com $x_0 = 0$ e $x_1 = -2$.

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1).$$

Exemplo

Vamos determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, ...;$$

com $x_0 = 0$ e $x_1 = -2$.

Procuramos primeiro a solução geral da equação homogénea associada, cuja equação caraterística é

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1).$$

Portanto, a solução geral da equação de recorrência homogénea é a sucessão $(a_n)_{n\in\mathbb{N}}$ dada por

$$a_n = \alpha \cdot 1^n + \beta \cdot 2^n = \alpha + \beta \cdot 2^n$$
 $(n \in \mathbb{N}).$

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = A \cdot n \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$.

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = A \cdot n \cdot 2^n \qquad (n \in \mathbb{N}),$$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$. Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n}$$

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = A \cdot n \cdot 2^n \qquad (n \in \mathbb{N}),$$

tendo em conta que 2 é uma raiz simples de q^2-3q+2 . Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n},$$

o que é equivalente a

$$2 = 2An - 3A(n-1) + A(n-2) = A.$$

Exemplo

Agora procuramos uma solução de

$$x_n - 3x_{n-1} + 2x_{n-2} = 2^n$$
, $n = 2, 3, ...$

da forma

$$b_n = A \cdot n \cdot 2^n$$
 $(n \in \mathbb{N}),$

tendo em conta que 2 é uma raiz simples de $q^2 - 3q + 2$. Substituindo na equação acima, obtemos

$$An2^{n} - 3A(n-1)2^{n-1} + 2A(n-2)2^{n-2} = 2^{n}$$

o que é equivalente a

$$2 = 2An - 3A(n-1) + A(n-2) = A$$

Logo, uma solução da equação de recorrência acima é $(n2^{n+1})_{n\in\mathbb{N}}$.

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots$$

$$\acute{e}$$
 dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots$$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$.

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n$$
, $n = 2, 3, ...$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para n = 0 e n = 1 obtemos as equações

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n$$
, $n = 2, 3, ...$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele que satisfaz as condições iniciais $x_0=0$ e $x_1=-2$. Portanto, para n=0 e n=1 obtemos as equações

Subtraindo a primeira linha à segunda dá $\beta=-6$ e por isso $\alpha=6$.

Exemplo

Assim, sabemos que a solução geral da equação

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \quad n = 2, 3, \dots$$

é dada por $(\alpha + \beta 2^n + n2^{n+1})_{n \in \mathbb{N}}$.

Finalmente, procuramos aquele que satisfaz as condições iniciais $x_0=0$ e $x_1=-2$. Portanto, para n=0 e n=1 obtemos as equações

$$\begin{array}{cccc} 0 &= \alpha + \beta & & & 0 &= \alpha + \beta \\ -2 &= \alpha + 2\beta + 4 & & & -6 &= \alpha + 2\beta \end{array}.$$

Subtraindo a primeira linha à segunda dá $\beta=-6$ e por isso $\alpha=6$. Portanto, a solução é

$$(6-6\cdot 2^n+n2^{n+1})_{n\in\mathbb{N}}$$
.

Combinar soluções

Teorema

Seja

$$x_n = c_1 x_{n-1} + c_2 x_{n_2} + \dots + c_k x_{n-k} + d_n^{(1)} + \dots + d_n^{(m)}$$
 (*)

uma equação de recorrência linear e suponhamos que as sucessões $b^{(1)}$, $b^{(2)}$, ..., $b^{(m)}$ são soluções de

$$x_{n} = c_{1}x_{n-1} + c_{2}x_{n_{2}} + \dots + c_{k}x_{n-k} + d_{n}^{(1)}$$

$$x_{n} = c_{1}x_{n-1} + c_{2}x_{n_{2}} + \dots + c_{k}x_{n-k} + d_{n}^{(2)}$$

$$\vdots$$

$$x_{n} = c_{1}x_{n-1} + c_{2}x_{n_{2}} + \dots + c_{k}x_{n-k} + d_{n}^{(m)}$$

respetivamente. Então, a sucessão $b^{(1)} + \cdots + b^{(m)}$ é uma solução de (*).

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

com
$$x_0 = 0$$
 e $x_1 = -2$.

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, \dots$$

com
$$x_0 = 0$$
 e $x_1 = -2$.

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

com
$$x_0 = 0$$
 e $x_1 = -2$.

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada,

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

com
$$x_0 = 0$$
 e $x_1 = -2$.

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada, $(b_n^{(1)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n, \qquad n = 2, 3, \dots,$$

Exemplo

Vamos agora determinar a solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, ...$$

com $x_0 = 0$ e $x_1 = -2$.

A solução geral desta equação (ignorando as condições iniciais) é da forma

$$(a_n + b_n^{(1)} + b_n^{(2)})_{n \in \mathbb{N}}$$

onde $(a_n)_{n\in\mathbb{N}}$ denota a solução geral da equação homogénea associada, $(b_n^{(1)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n$$
, $n = 2, 3, ...$

e $(b_n^{(2)})_{n\in\mathbb{N}}$ é uma solução da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + (1+n), \qquad n = 2, 3, \dots$$

Exemplo

Falta determinar uma solução da equação de recorrência

$$x_n - 3x_{n-1} + 2x_{n-2} = (1+n), \quad n = 2, 3, \dots$$

Exemplo

Falta determinar uma solução da equação de recorrência

$$x_n - 3x_{n-1} + 2x_{n-2} = (1+n), \quad n = 2, 3, \dots$$

Uma vez que 1+n é um polinómio de grau 1 e 1 é raiz de multiplicidade 1 da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos
$$b_n^{(2)} = (A_0 + A_1 n)n^1 = A_0 n + A_1 n^2$$
.

Exemplo

Falta determinar uma solução da equação de recorrência

$$x_n - 3x_{n-1} + 2x_{n-2} = (1+n), \quad n = 2, 3, \dots$$

Uma vez que 1+n é um polinómio de grau 1 e 1 é raiz de multiplicidade 1 da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos $b_n^{(2)}=(A_0+A_1n)n^1=A_0n+A_1n^2$. Substituindo na equação acima, obtemos $b_n^{(2)}=-\frac{7}{2}n-\frac{1}{2}n^2$.

Exemplo

Falta determinar uma solução da equação de recorrência

$$x_n - 3x_{n-1} + 2x_{n-2} = (1+n), \quad n = 2, 3, \dots$$

Uma vez que 1+n é um polinómio de grau 1 e 1 é raiz de multiplicidade 1 da equação característica

$$0 = q^2 - 3q + 2 = (q - 2)(q - 1),$$

consideramos $b_n^{(2)}=(A_0+A_1n)n^1=A_0n+A_1n^2$. Substituindo na equação acima, obtemos $b_n^{(2)}=-\frac{7}{2}n-\frac{1}{2}n^2$.

Portanto, a solução geral da equação de recorrência

$$x_n = 3x_{n-1} - 2x_{n-2} + 2^n + (1+n), \quad n = 2, 3, \dots$$

é dada por
$$(\alpha+\beta\,2^n+n2^{n+1}-\frac{7}{2}n-\frac{1}{2}n^2)_{n\in\mathbb{N}}\;(\alpha,\beta\in\mathbb{R}).$$

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0=0$ e $x_1=-2$.

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para $x_0 = 0$ e $x_1 = -2$ em

$$(\alpha + \beta 2^n + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2)_{n \in \mathbb{N}}$$

obtemos as equações

$$\begin{array}{cccc} 0 &= \alpha + \beta & & 0 &= \alpha + \beta \\ -2 &= \alpha + 2\beta + 4 - \frac{7+1}{2} & & \sim & -2 &= \alpha + 2\beta \end{array} ;$$

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0=0$ e $x_1=-2$. Portanto, para n=0 e n=1 em

$$(\alpha + \beta 2^n + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2)_{n \in \mathbb{N}}$$

obtemos as equações

$$\begin{array}{ccc} 0 &= \alpha + \beta \\ -2 &= \alpha + 2\beta + 4 - \frac{7+1}{2} \end{array} \quad \stackrel{\bullet}{\leadsto} \quad \begin{array}{ccc} 0 &= \alpha + \beta \\ -2 &= \alpha + 2\beta \end{array} ;$$

$$\log \beta = -2 \text{ e } \alpha = 2.$$

Exemplo

Finalmente, procuramos aquele solução que satisfaz as condições iniciais $x_0 = 0$ e $x_1 = -2$. Portanto, para $x_1 = 0$ e $x_2 = 0$ e $x_3 = 0$ e $x_4 = 0$ e $x_4 = 0$ e $x_5 = 0$ e

$$(\alpha + \beta 2^n + n2^{n+1} - \frac{7}{2}n - \frac{1}{2}n^2)_{n \in \mathbb{N}}$$

obtemos as equações

$$\begin{array}{cccc} 0 &= \alpha + \beta & & 0 &= \alpha + \beta \\ -2 &= \alpha + 2\beta + 4 - \frac{7+1}{2} & & & -2 &= \alpha + 2\beta \end{array} ;$$

logo $\beta = -2$ e $\alpha = 2$.

Logo, a solução da equação de recorrência dada com as condições iniciais $x_0=0$ e $x_1=-2$ é

$$(2-2\cdot 2^n+n2^{n+1}-\frac{7}{2}n-\frac{1}{2}n^2)_{n\in\mathbb{N}}.$$

O problema

Nesta parte consideramos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} .

O problema

Nesta parte consideramos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos "linearizar" a equação utilizando um substituição adequada.

O problema

Nesta parte consideramos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos "linearizar" a equação utilizando um substituição adequada.

Exemplo (Substituição "simples")

Consideramos a equação de recorrência não linear

$$x_n^2 = 2x_{n-1}^2 + 1$$
 $(n \ge 1)$,

com a condição inicial $x_0=2$; aqui suponhamos $x_n\geq 0$, para todo o $n\in\mathbb{N}$.

.

O problema

Nesta parte consideramos equações de recorrência onde x_n não depende da forma linear dos termos x_{n-1}, \ldots, x_{n-k} . Em muitos casos podemos "linearizar" a equação utilizando um substituição adequada.

Exemplo (Substituição "simples")

Consideramos a equação de recorrência não linear

$$x_n^2 = 2x_{n-1}^2 + 1$$
 $(n \ge 1),$

com a condição inicial $x_0=2$; aqui suponhamos $x_n\geq 0$, para todo o $n\in\mathbb{N}$. Escrevendo $y_n=x_n^2$, esta equação de recorrência não linear transforma-se na equação de recorrência linear

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1),$

com a condição inicial $y_0 = x_0^2 = 4$.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1), y_0 = 4.$

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1), y_0 = 4.$

• A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1), y_0 = 4.$

- A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.
- Como o termo "não homogéneo" é o polinómio de grau zero 1, e como 1 não é raiz do polinómio caraterístico q-2, sabemos que existe uma solução particular $(b_n)_{n\in\mathbb{N}}$ onde $b_n=A$, para todo o $n\in\mathbb{N}$. Substituindo na equação produz A=2A+1, ou seja, A=-1.

Exemplo

$$y_n = 2y_{n-1} + 1$$
 $(n \ge 1), y_0 = 4.$

- A solução geral da equação homogénea associada $y_n = 2y_{n-1}$ é dada por $c \cdot (2^n)_{n \in \mathbb{N}}$, $c \in \mathbb{R}$.
- Como o termo "não homogéneo" é o polinómio de grau zero 1, e como 1 não é raiz do polinómio caraterístico q-2, sabemos que existe uma solução particular $(b_n)_{n\in\mathbb{N}}$ onde $b_n=A$, para todo o $n\in\mathbb{N}$. Substituindo na equação produz A=2A+1, ou seja, A=-1.
- Consequentemente, as soluções desta equação de recorrência são precisamente as sucessões $(c \cdot 2^n 1)_{n \in \mathbb{N}}$, com $c \in \mathbb{R}$. Tendo em conta a condição inicial $y_0 = 4$, obtemos c = 5; assim, a solução da equação $x_n^2 = 2x_{n-1}^2 + 1$ com $x_0 = 2$ é a sucessão

$$(\sqrt{5\cdot 2^n-1})_{n\in\mathbb{N}}$$
.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ \to \mathbb{R}$ satisfaz

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ \to \mathbb{R}$ satisfaz

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Portanto, em muitos exemplos podems "linearizar" passando para o logaritmo.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ \to \mathbb{R}$ satisfaz

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Portanto, em muitos exemplos podems "linearizar" passando para o logaritmo.

Exemplo

Consideramos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2} \quad (n \ge 2), \quad x_0 = x_1 = 2.$$

Logo, $x_n > 0$ para todo o $n \in \mathbb{N}$.

Recordamos que,

para cada $a \in \mathbb{R}^+$, a função $\log_a : \mathbb{R}^+ o \mathbb{R}$ satisfaz

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(1) = 0.$$

Portanto, em muitos exemplos podems "linearizar" passando para o logaritmo.

Exemplo

Consideramos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2}$$
 $(n \ge 2)$, $x_0 = x_1 = 2$.

Logo, $x_n>0$ para todo o $n\in\mathbb{N}$. Estas equações são equivalentes às equações (para $n\geq 2$)

$$\log_2(x_n) = \log_2(x_{n-1}) + \log_2(x_{n-2}), \ \log_2(x_0) = \log_2(x_1) = 1.$$

Exemplo

Consideramos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2}$$
 $(n \ge 2)$, $x_0 = x_1 = 2$.

Logo, $x_n>0$ para todo o $n\in\mathbb{N}$. Estas equações são equivalentes às equações (para $n\geq 2$)

$$\log_2(x_n) = \log_2(x_{n-1}) + \log_2(x_{n-2}), \ \log_2(x_0) = \log_2(x_1) = 1.$$

Fazendo $y_n = \log_2(x_n)$ para cada $n \in \mathbb{N}$, obtemos a equação de recorrência linear

$$y_n = y_{n-1} + y_{n-2} \quad (n \ge 2), \quad y_0 = y_1 = 1;$$

Exemplo

Consideramos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2}$$
 $(n \ge 2)$, $x_0 = x_1 = 2$.

Logo, $x_n>0$ para todo o $n\in\mathbb{N}$. Estas equações são equivalentes às equações (para $n\geq 2$)

$$\log_2(x_n) = \log_2(x_{n-1}) + \log_2(x_{n-2}), \ \log_2(x_0) = \log_2(x_1) = 1.$$

Fazendo $y_n = \log_2(x_n)$ para cada $n \in \mathbb{N}$, obtemos a equação de recorrência linear

$$y_n = y_{n-1} + y_{n-2} \quad (n \ge 2), \quad y_0 = y_1 = 1;$$

cuja solução é a sucessão $(F_n)_{n\in\mathbb{N}}$ dos números de Fibonacci.

Exemplo

Consideramos a equação de recorrência não linear

$$x_n = x_{n-1} \cdot x_{n-2}$$
 $(n \ge 2)$, $x_0 = x_1 = 2$.

Logo, $x_n>0$ para todo o $n\in\mathbb{N}$. Estas equações são equivalentes às equações (para $n\geq 2$)

$$\log_2(x_n) = \log_2(x_{n-1}) + \log_2(x_{n-2}), \ \log_2(x_0) = \log_2(x_1) = 1.$$

Fazendo $y_n = \log_2(x_n)$ para cada $n \in \mathbb{N}$, obtemos a equação de recorrência linear

$$y_n = y_{n-1} + y_{n-2}$$
 $(n \ge 2)$, $y_0 = y_1 = 1$;

cuja solução é a sucessão $(F_n)_{n\in\mathbb{N}}$ dos números de Fibonacci. Portanto, a solução da equação acima com as condições iniciais é

$$(2^{F_n})_{n\in\mathbb{N}}$$
.

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}$$

com a condição inicial $x_0 = 4$.

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}$$

com a condição inicial $x_0 = 4$. Portanto, $x_1 = \sqrt{x_0} = 2$,

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$x_n = \sqrt{x_{n-1} + x_{n-1}} > 0;$$

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$x_n = \sqrt{x_{n-1} + x_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1} \ (n \ge 2);$

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$x_n = \sqrt{x_{n-1} + x_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1} \ (n \ge 2)$; o que é equivalente a

$$2\log_2(x_n) = 1 + \log_2(x_{n-1}) \ (n \ge 2).$$

Exemplo

Consideramos agora a equação de recorrência não linear

$$x_n = \sqrt{x_{n-1} + \underbrace{\sqrt{x_{n-2} + \sqrt{x_{n-3} + \sqrt{\dots \sqrt{x_0}}}}}_{x_{n-1}}}$$

com a condição inicial $x_0=4$. Portanto, $x_1=\sqrt{x_0}=2$, e para $n\geq 2$ temos

$$x_n = \sqrt{x_{n-1} + x_{n-1}} > 0;$$

ou seja $x_n^2 = 2x_{n-1} \ (n \ge 2)$; o que é equivalente a

$$2\log_2(x_n) = 1 + \log_2(x_{n-1}) \ (n \ge 2).$$

Fazendo $y_n = \log_2(x_n)$, obtemos a equação de recorrência linear $y_n = \frac{1}{2}y_{n-1} + \frac{1}{2}$ ($n \ge 2$) com a condição inicial $y_1 = 1$.

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \ (n \ge 2), \ y_1 = 1 \ \ (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \ (n \ge 2), \ y_1 = 1 \ (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1=1$ obtemos

$$1=c(\tfrac{1}{2})+1;$$

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \ (n \ge 2), \ y_1 = 1 \ (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1=1$ obtemos

$$1=c(\tfrac{1}{2})+1;$$

logo, c = 0.

Exemplo

$$y_n = \frac{1}{2}y_{n-1} + \frac{1}{2} \ (n \ge 2), \ y_1 = 1 \ (y_n = \log_2(x_n)).$$

A solução geral da equação de recorrência (ignorando a condição inicial) é dado por

$$\left(c\left(\frac{1}{2}\right)^n+1\right)_{n\geq 1}\quad (c\in\mathbb{R}).$$

Utilizando a condição inicial $y_1=1$ obtemos

$$1 = c(\frac{1}{2}) + 1;$$

logo, c=0. Portanto, para todo o $n\geq 1$,

$$x_n=2^{y_n}=2,$$

e $x_0 = 4$.

Exemplo

Finalmente, consideramos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot 2 \cdot x_{n-1} \qquad (n \ge 1).$$

Exemplo

Finalmente, consideramos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot 2 \cdot x_{n-1} \qquad (n \ge 1).$$

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = 2 \cdot n \cdot (n-1)! \cdot y_{n-1} = 2 \cdot n! \cdot y_{n-1},$$

Exemplo

Finalmente, consideramos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot 2 \cdot x_{n-1} \qquad (n \ge 1).$$

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = 2 \cdot n \cdot (n-1)! \cdot y_{n-1} = 2 \cdot n! \cdot y_{n-1},$$

o que é equivalente a $y_n = 2 \cdot y_{n-1}$, para todo o $n \ge 1$.

Exemplo

Finalmente, consideramos a equação de recorrência (linear mas não com coeficientes constantes)

$$x_n = n \cdot 2 \cdot x_{n-1}$$
 $(n \ge 1)$.

Com $x_n = n! \cdot y_n$, a equação acima é equivalente a

$$n! \cdot y_n = 2 \cdot n \cdot (n-1)! \cdot y_{n-1} = 2 \cdot n! \cdot y_{n-1},$$

o que é equivalente a $y_n=2\cdot y_{n-1}$, para todo o $n\geq 1$. Portanto, a solução geral da equação acima é dada por

$$(n! \cdot c \cdot 2^n)_{n \in \mathbb{N}}$$
 $(c \in \mathbb{R}).$