Notes

isakhammer

2020

Contents

1	Exercise Week 35	2
	1.1 B 3.6	2
	1.1.1 Answer a	2
	1.1.2 Answer a	$\frac{1}{2}$
	1.2 X1	2
	1.2.1 Answer	2
2	Exercise Week 36	2
	2.1 B 3.7	2
	2.2 B 4.1	3
	2.3 B 4.5	3
	2.4 X2	3
3	Exercise Week 37	4
	3.1 B 4.2	4
	3.2 B 4.4	4
	3.3 X3	4
	3.4 X4	4
4	Exercise Week 38	5
	4.1 B 4.7	5
	4.2 B 4.9	5
	4.3 X5	5
	4.0 A9	J
5	Exercise Week 39	6
	5.1 B 6.1	6
	5.2 6.3	6
	5.3 6.4	6
6	Prewritten Exercises	7
7	References	7

1 Exercise Week 35

1.1 B 3.6

Hva skjer når $a \to 0$

Burger equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0. ag{1}$$

(a) Use the method of characteristics as described in Sect 3.4 to find a formula for the solution u(t, x) given the inital condition

$$u(0,x) = \begin{cases} 0, & x \le 0\\ \frac{x}{a}, & 0 < x < a\\ 1, & x \ge a \end{cases}$$

(b) Suppose that a > b and

$$u(0,x) = \begin{cases} a, & x \le 0, \\ a(1-x) + bx, & 0 < x < 1, \\ b, & x \ge 1 \end{cases}$$

Show that all of th characteristics originating from $x_0 \in [0, 1]$ meet at the same point.

1.1.1 Answer a

1.1.2 Answer b

1.2 X1

Gitt en PDE med initaldata

$$u_t + u^2 u_x = 0$$
, $u(0, x) = \frac{1}{1 + x^2}$

Hva er største verdi at T slik at problemet har en klassisk løsning for $x \in \mathbb{R}$ og $t \in [0,T)$

1.2.1 Answer

2 Exercise Week 36

2.1 B 3.7

(you may need to assume that $u \in C^2$). Additionally, note that $w = u_x$ satisfies Burgers' equation!

- 2.2 B 4.1
- 2.3 B 4.5
- 2.4 X2

 ${\it L} \emptyset {\it s}$ initial problemet

$$uu_x + y^2 u_y = yu, \quad u(x,1) = x$$

Hva er det største området i planet som tillater en klassisk løsning?

- 3 Exercise Week 37
- 3.1 B 4.2
- 3.2 B 4.4
- 3.3 X3

Benytt løsningen til B 4.1 til å vise at den homogene bølgeligningen på et område gitt ved $a_0 < x + ct < a_1, b_0 < x - ct < b_1$ har generell løsning $u(t, x) = f_1(x - ct) 0 f_2(x + ct)$ for funksjoner f_1 of f_2 . Hvordan kan du utvide resultatet til $x \in \mathbb{R}, t > 0$?

3.4 X4

En alternativ utledning av D'Alemberts løsning: Fyll ut de manglende detaljene nedenfor.

Start med ligningen $u_{tt} - c^2 u_{xx} = 0$. Anta at u er en løsning, of definer de to funksjonene $u_t \pm c u_x$. Disse oppfyller enkle transportligninger, så ver av dem er en bølge med hastight $\pm x$. Med andre ord finned funksjoner w_{\pm} slik at

$$u_t - cu_x = -2cw'_+(x - ct)$$
, (høyrebølge)
 $u_t + cu_x = 2cw'_-(x + ct)$, venstrebølge

(Faktorene $\pm 2c$ of derivasjonen på høyre side er ikke vesentlige; de er bare for å forenkle regningen videre.) Adder de to ligningene og integrer mhp t, of subtraher dom of integrer mhp. x. Du trenger to integrasjonskosntanter, $C_1(x)$, $C_2(t)$. Konkluder at de integrasjonskonstantene må være like, og derfor en virkelig konstant C. Konkludr at

$$u(t,x) = w_{+}(x-ct) + w_{-}(x+ct) + C$$

(Men vi kan like godt inkorporere C i en av de to funksjonene w_{\pm} .)

Til slutt, sett inn i initaldataene

$$u(0,x) = q(x), \quad u_t(0,x) = h(x)$$

og utled D'Alemberts løsning.

4 Exercise Week 38

- 4.1 B 4.7
- 4.2 B 4.9
- 4.3 X5

Bjelkeligningen har formen $u_{tt} + u_{xxxx} = f(t,x)$. FInn en tilhørende energitetthet og fliks, og bruk disse til å vise entydighet av øsninger for et inital-og randverdiproblem på intervallet (0,1). Det er en del av oppgaven å finne egnede initalverdier of randbetingelser som sikrer entydighet.

- 5 Exercise Week 39
- 5.1 B 6.1
- 5.2 6.3
- 5.3 6.4

- 6 Prewritten Exercises
- 7 References