Note of numerical optimaization

PB19000252 王梓睿 2022 年 9 月 4 日

1 introduction

- 1、连续优化问题通常比离散优化问题容易,因为连续性带来在特定点 附近,限制条件不会变化太大。
- 2、有时候约束优化问题可以表示成无约束优化问题,方法是将约束添加到目标函数的惩罚项当中,从而阻止违反约束。
 - 3、凸优化的局部最优解就是全局最优解。

证明. 设 x 为局部最优解(最小值), $y\neq x$ 为全局最优解,连接 y 与 x,路 径与 x 的任一邻域有交,从而由凸函数性质,与 x 的局部最优性矛盾. \square

本书大部分情况下我们只关心局部最优。

- 4、随机最优化解出的是模型的期望表现。
- 5、凸优化的定义:
- ①是约束优化问题的一个特例;
- ①目标函数为凸函数;
- ②约束等式中右侧函数为线性函数;
- ③约束不等式中右侧函数为凹函数;

2 无约束最优化

2.1 关于解

- 1、孤立局部最小值一定严格局部最小,反之则不一定。
- 2、Taylor 公式(利用两种余项),由此可以推导几个结论。
- ①f 在局部最小值点 x^* 邻域内连续可微,则 $\nabla f(x^*) = 0$;
- ②f 在局部最小值点 \mathbf{x}^* 邻域内,二阶导存在连续,则 $\nabla f(x^*) = 0$ 且 $\nabla^2 f(x^*)$ 半正定;
- ③(充分性)在某点 \mathbf{x}^* 邻域内二阶导存在连续,且 $\mathbf{f}(\mathbf{x}^*)=0, \nabla^2 f(x^*)$ 正定,那么 \mathbf{x}^* 为 f 的局部最小值点;
- 3、凸函数的局部最优值为全局最优值。若还可微,则任意稳定点都是 全局最优值。

2.2 算法综述

- 1、线性探测法的最速下降方向是 $-\nabla f_k$,但收敛速度过慢。容易证明在与 $-\nabla f_k$ 夹角小于 $\pi/2$ 的方向上目标函数总会递减,称这些方向为下降方向。
- 2、牛顿方向为 $-(\nabla^2 f_k)^{-1}\nabla f_k$ 适用于 f_k 的 Hessian 矩阵正定,且函数越光滑误差越小。它收敛速度较快,但 Hessian 矩阵计算量较大。
- 3、准牛顿方法用近似的 B_k 矩阵代替 Hessian,给出 $-(B_k)^{-1}f_k$ 并在 迭代中更新 B_k ,从而减小计算量。
- 4、非线性共轭方法,采用公式 $p_k = -\nabla f_k + \beta_k p_{k-1}$,保留了最速下降 法的计算简便性的同时提高了其收敛速度。
- 5、缩放,可以通过对角缩放等方式将变量大小拉到同一数量级。牛顿 法能够比最速下降法更好地处理 poorly scaled 问题。

3 线性探测法

线性探测法先计算行进方向 p_k ,再计算步长 α_k ,迭代公式为 $x_{k+1}=x_k+\alpha_k p_k$ 。行进方向的选取通常要求 f_k 递降,一般令 $p_k=-(B_k)^{-1}\nabla f_k$,如果 B_k 正定,由 Taylor 公式,一次项可化为 $-\nabla f_k^T B_k^{-1}\nabla f_k < 0$,这样 f_k 能够递降。

3.1 步长

给定初值 x_k 和方向 p_k ,我们记 $f_k(x_k + \alpha_k p_k)$ 为单变量函数 $\phi(\alpha_k)$,想让其尽可能的小。我们引入概念"充分递降"。

3.1.1 Wolfe 条件

- 1、Armijo 条件: $f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$ 。它保证了迭代过程至少线性收敛。
- 2、曲率条件: $\nabla f(x_k + \alpha_k p_k)^T p_k \geq c_2 \nabla f_k^T p_k$ 。 事实上就是 $\phi'(\alpha_k) \geq c_2 \phi'(0)$,来保证下降的梯度在某一区间内。
- $3, 0 < c_1 < c_2 < 1$ 时,以上两式合称 Wolfe 条件。若 2 式改写为 $|LHS| \le |RHS|$,则称为强 Wolfe 条件(进一步缩小了梯度的可能区间)。引理:任一连续可微有下界的函数,一定有满足(强)Wolfe 条件的区间。

3.1.2 其它

- 1、Goldenstein 条件: $f(x_k) + (1-c_1)\alpha_k \nabla f_k^T p_k \le f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k$ 。
- 2、回溯线性搜索: 仅用 Armijo 条件进行判断,但每次不满足都执行 $\alpha = \rho \alpha$, ρ 为收缩因子。 ρ 可以在迭代过程中发生变化。

3.2 收敛性

考虑 θ_k 为方向 p_k 与最速下降方向 $-\nabla f_k$ 的夹角。

1、Zoutendijk 条件:对满足一系列条件的f成立

$$\sum_{0}^{\infty} \cos^2 \theta_k ||\nabla f_k||^2 < \infty$$

Theorem 3.2.

Consider any iteration of the form (3.1), where p_k is a descent direction and α_k satisfies the Wolfe conditions (3.6). Suppose that f is bounded below in \mathbb{R}^n and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\mathcal{L} \stackrel{\text{def}}{=} \{x : f(x) \leq f(x_0)\}$, where x_0 is the starting point of the iteration. Assume also that the gradient ∇f is Lipschitz continuous on \mathcal{N} , that is, there exists a constant L > 0 such that

$$\|\nabla f(x) - \nabla f(\tilde{x})\| \le L\|x - \tilde{x}\|, \quad \text{for all } x, \ \tilde{x} \in \mathcal{N}. \tag{3.13}$$

Then

$$\sum_{k>0} \cos^2 \theta_k \|\nabla f_k\|^2 < \infty. \tag{3.14}$$

- 2、如果上述级数收敛,说明 $\cos^2 \theta_k ||\nabla f_k||^2 \to 0$ 。当 θ_k 有界地远离 90 度时,即存在 $\delta, \cos \theta_k >= \delta > 0$,那么有 $||\nabla f_k \to 0$,我们称为全局收敛。
- 3、类牛顿方法中,如果矩阵 B_k 的条件数 $||B_k||||B_k^{-1}|| \le M$,M 为一个常数,则可以证明全局收敛性。

3.3 收敛率

- 1、我们可以定义 Q 范数,并证明 $f(x) = \frac{1}{2}x^TQx b^Tx$ 时,有 $\frac{1}{2}||x x^*||_Q^2 = f(x) f(x^*)$ 。
 - 2、thm3.3,可以证明对严格凸的二次函数 f,有

$$||x_{k+1} - x^*||_Q^2 \le (\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1})^2 ||x_k - x^*||_Q^2.$$

其中 $0 < \lambda_1 \le \cdots \le \lambda_n$ 为 Q 的特征值。这意味着 f_k 至少以线性收敛到 f^* 。

3、thm3.5,如果 f 二次可微,Hessian 在解 x^* 附近李普希兹连续,那 么 x

- (i) 若起始点 x_0 离 x^* 足够近,那么迭代序列收敛到 x^* 。
- $(ii)x_k$ 有二阶收敛速度, $||\nabla f_k||$ 二阶收敛到 0.

4、thm3.6,此定理说明了在 p_k 满足一个极限式的时候,k 较大时可直接将 α_k 取 1,且此时 x_k 超线性收敛到 x^* 。thm3.7 说明了 α_k 恒取为 1 的情况下,3.6 的条件是充要的。而准牛顿方法满足这一条件,因此能够超线性收敛。

3.4 Hessian 修正

我们希望能够找到方阵 E_k ,使得 $B_k = \nabla^2 f(x_k)$ 正定。要求这一修改尽量小,以保留 Hessian 矩阵的更多信息。1、可以考虑 $\nabla^2 f_k + \tau I$,并在迭代中不断增加 τ_k 的值。但是这样每次更新 τ 后都要重新对矩阵进行分解,计算量太大。

- 2、Cholesky 分解,可以在算法中引入两个新的变量列,从而边分解边进行矩阵修改。(注意并不是先分解为 L^TDL 再修改 D,因为首先我们无法保证分解的存在性,其次修改后的结果不稳定)
- 3、更稳定的方法是进行对称不定分解 $A = L^T B L$,其中 A 须为对称矩阵,B 为准对角阵,对角块大小为 1 或 2. 这一分解必定存在。

3.5 步长选择算法

3.5.1 插值算法

- 1、从 $\phi(0)$, $\phi'(0)$, 及初始步长 α_0 构造出 α_1 ,随后构造出三次插值函数,利用 $\phi(0)$, $\phi'(0)$, α_{k-1} , α_k 来计算 α_{k+1} 。这一方法并没有计算在诸 α_i 处的导数值。
- 2、如果导数值比较好算,我们可以用 $\phi(\alpha_{i-1}), \phi(\alpha_i), \phi'(\alpha_{i-1}), \phi'(\alpha_i)$ 来 对 α_{i+1} 作三次插值。

3.5.2 Wolfe 条件下的线性搜索算法

先利用两个不等式确定一个目标值存在的区间,再调用 Zoom 函数不断缩小区间的范围,以得到满足 Wolfe 条件的值。