growth functions

how to find a good algorithm?

- 1. Precisely define the input
- 2. Precisely define the output
- 3. Choose a suitable data structure to store the input and intermediate data
- 4. Start with a brute-force (but correct) algorithm that obtains the output from the input in not-so-efficient way
- 5. Analyze the time and space complexity of the algorithm, also analyze the **time-space tradeoff** and identify which of the resources (time or space) is more valuable to you
- 6. Try to update the not-so-efficient algorithm either by adopting a suitable data structure (in step 3) and/or by using a suitable **algorithm design** pattern (in step 4)
- 7. Repeat step 3, 4, and 5 until you are satisfied with the efficiency of the algorithm

asymptotic behavior

- Generally, T(n) and S(n) are monotonic, non-decreasing functions
- We are interested in the behavior of T(n) (or S(n)) for large input sizes, i.e., n → ∞
- Focus on what's important, by ignoring lower-order terms and constants in the growth function
- Different notions of analyzing the asymptotic behavior:

O-notation

- $O(g(n)) = \{ f(n): \text{ there exist positive constants c and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- g(n) is an <u>asymptotic upper bound</u> for f(n)

Two examples:

- 1. $T(n) = (3/2)n^2 + (5/2)n 3$ It grows similarly to n^2 : $O(n^2)$
- 2. Show that for a > 0 and b > 0, any linear function an+b = $O(n^2)$ $0 \le f(n) \le cg(n) => 0 \le an+b \le cn^2 => 0/n^2 \le an/n^2+b/n^2 \le cn^2/n^2 => 0 \le a/n + b/n^2 \le c => \{ 0 \le a + b \le c, \text{ for } n_0=1 \text{ and } c=a+b \}$

Ω-notation

- $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants c and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$
- g(n) is an <u>asymptotic **lower** bound</u> for f(n)

Example:

Show that $2n^2 + n$ is in $\Omega(n^2)$ (find c and n_0 that satisfy the definition) $0 \le cg(n) \le f(n) => 0 \le cn^2 \le 2n^2 + n => 0/n^2 \le cn^2/n^2 \le 2n^2/n^2 + n/n^2 => 0 \le c \le 2 + 1/n => 0 \le c \le 2$ (1) $0 \le c \le 2 + 1/n_0 => -2 \le c-2 \le 1/n_0$ (2) $(1)^{n}(2) => \{c = 2 \text{ and } n_0 = 1\}$

Θ-notation

- $\Theta(g(n)) = \{ f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
- g(n) is an <u>asymptotic tight bound</u> for f(n)

Example:

Consider
$$f(n) = an^2 + bn + c$$
. For $a > 0$, show that $f(n) = \Theta(n^2)$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) => c_1 n^2 \le an^2 + bn + c \le c_2 n^2 => c_1 n^2/n^2 \le an^2/n^2 + bn/n^2 + c/n^2 \le c_2 n^2/n^2 => c_1 \le a + b/n + c/n^2 \le c_2$ Remember asymptotic behavior: as $n \to \infty => b/n \to 0$ and $c/n^2 \to 0$ $-a + b/n + c/n^2$ is max for $n = n_0 = 1$ $-c_1 \le a + b/n + c/n^2 => c_1 = a$ and $a + b/n + c/n^2 \le c_2 => c_2 = a + b + c$

o- and ω-notation

• $o(g(n)) = \{ f(n): for all c > 0 \text{ there exists a constant } n_0 > 0 \text{ such that}$ $0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$

• $\omega(g(n)) = \{ f(n): \text{ for all } c > 0 \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$

summary

- $o(g(n)) = \{f(n) | \forall c > 0, \exists n_0 > 0 \text{ such that } 0 \le f(n) < cg(n), \forall n > n_0 \}$
- Alternative definition: $o(g(n)) = \{f(n): \lim_{n \to \infty} \frac{f(n)}{g(n)}\} = 0$, i.e., f(n) becomes insignificant with respect to g(n) for large n
- $\omega(g(n) = \{f(n) | \forall c > 0, \exists n_0 > 0, such \ that \ 0 \le cg(n) < f(n), \forall n > n_0 \}$
- Alternative definition: $o(g(n)) = \{f(n): \lim_{n\to\infty} \frac{f(n)}{g(n)}\} = \infty$, i.e., g(n) becomes insignificant with respect to f(n) for large n

a schema to remember

$$lim_{n\to\infty} f(n)/g(n)$$

$$= 0 \qquad = c > 0 \qquad = \infty$$

$$f(n) = O(g(n)) \qquad f(n) = O(g(n)) \qquad f(n) = \Omega(g(n))$$

$$f(n) = o(g(n)) \qquad f(n) = O(g(n)) \qquad f(n) = \omega(g(n))$$

$$f(n) = \Omega(g(n))$$

notations in equations

• $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$

It is $2n^2 + 3n + 1 = 2n^2 + f(n)$, for some function f(n) in the family of $\Theta(n)$

• $2n^2 + \Theta(n) = \Theta(n^2)$

It is $2n^2 + f(n) = g(n)$ for some function f(n) in the family of $\Theta(n)$ and some function g(n) in the family of $\Theta(n^2)$

properties

$$\begin{split} &\lim_{n\to\infty}\,f(n)/g(n)\\ &=\mathbf{0} &=\mathbf{c}>\mathbf{0} &=\mathbf{\infty}\\ &f(n)=O(g(n)) &f(n)=\Theta(g(n)) &f(n)=\Omega(g(n))\\ &f(n)=o(g(n)) &f(n)=O(g(n)) &f(n)=\omega(g(n))\\ &f(n)=\Omega(g(n)) & f(n)=\omega(g(n)) &f(n)=\omega(g(n)) &f(n$$

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$.
Same for O, Ω, o , and ω .

Reflexivity:

$$f(n) = \Theta(f(n)).$$

Same for O and Ω .

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

- f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)).
- f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.

transitivity same for o and ω

```
\lim_{n\to\infty} f(n)/g(n)
= 0 = c > 0 = \infty
```

 $f(n) = \Theta(g(n))$

f(n) = O(g(n))

 $f(n) = \Omega(g(n))$

f(n) = o(g(n))

 $f(n) = \Omega(g(n))$

 $f(n) = \omega(g(n))$

• $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$

$$\lim_{n\to\infty} f(n)/g(n) = c_1 > 0$$

$$\lim_{n\to\infty} g(n)/h(n) = c_2 > 0$$

$$\lim_{n\to\infty} g(n)/h(n) = c_3 > 0$$

$$\lim_{n\to\infty} [f(n)/g(n)] [g(n)/h(n)] = c_1c_2 > 0 => \lim_{n\to\infty} f(n)/h(n) = c > 0 => f(n) = \Theta(h(n))$$

• f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

$$\lim_{n\to\infty} f(n)/g(n) = c_1 > 0 \text{ or } =0$$

 $\lim_{n\to\infty} g(n)/h(n) = c_2 > 0 \text{ or } =0$

$$\lim_{n\to\infty} [f(n)/g(n)] [g(n)/h(n)] = c_1c_2 > 0 \text{ or } =0 => \lim_{n\to\infty} f(n)/h(n) = c > 0 \text{ or } 0 => 0$$

f(n) = O(h(n))

• $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$

$$\lim_{n\to\infty} f(n)/g(n) = c_1 > 0 \text{ or } =\infty$$

$$\lim_{n\to\infty} g(n)/h(n) = c_2 > 0 \text{ or } =\infty$$

$$\lim_{n\to\infty} [f(n)/g(n)] [g(n)/h(n)] = c_1c_2 > 0 \text{ or } \infty => \lim_{n\to\infty} f(n)/h(n) = c > 0 \text{ or } \infty => f(n) = \Omega(h(n))$$

reflexivity same for O and Ω

•
$$f(n) = \Theta(f(n))$$

$$\lim_{n\to\infty} f(n)/f(n) = c > 0$$
$$\lim_{n\to\infty} f(n)/f(n) = c = 1 > 0$$

symmetry for ⊕ only

• $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$

$$\lim_{n\to\infty} f(n)/g(n) = c_1 > 0$$

 $\lim_{n\to\infty} g(n)/f(n) = c_2 > 0$
 $\lim_{n\to\infty} [f(n)/g(n)] [g(n)/f(n)] = c_1c_2 = 1 > 0$

transpose symmetry

• f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

$$\lim_{n\to\infty} f(n)/g(n) = c > 0 \text{ or } =0 => \lim_{n\to\infty} g(n)/f(n) = 1/c_1 > 0 \text{ or } =\infty => g(n) = \Omega(f(n))$$

• f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$

$$\lim_{n\to\infty} f(n)/g(n) = 0 \Rightarrow \lim_{n\to\infty} g(n)/f(n) = \infty \Rightarrow g(n) = \omega(f(n))$$

$$\begin{aligned} &\lim_{n\to\infty} f(n)/g(n) \\ &= \mathbf{0} &= \mathbf{c} > \mathbf{0} &= \infty \end{aligned}$$

$$f(n) = O(g(n)) \qquad f(n) = O(g(n)) \qquad f(n) = \Omega(g(n)) \\ f(n) = o(g(n)) \qquad f(n) = O(g(n)) \qquad f(n) = \omega(g(n)) \\ f(n) = \Omega(g(n)) \qquad & f(n) = \omega(g(n)) \end{aligned}$$

Let f(n) and g(n) be asymptotically nonnegative functions.

Prove that max(f(n), g(n)) = $\Theta(f(n) + g(n)$)

Let f(n) and g(n) be asymptotically nonnegative functions. Prove that max(f(n), g(n)) = $\Theta(f(n) + g(n))$

Define
$$h(n) = \begin{cases} f(n), & \text{if } f(n) \ge g(n) \\ g(n), & \text{if } f(n) < g(n) \end{cases}$$

f(n) and g(n) are asymptotically nonnegative =>

there exists n_0 such that $f(n) \ge 0$ and $g(n) \ge 0$ for all $n \ge n_0 =>$

for all
$$n \ge n_0$$
, $f(n) + g(n) \ge 0$

$$f(n) + g(n) \ge h(n) \ge 0$$

For a particular n h(n) is either f(n) or g(n)

For any particular n, h(n) is the larger of f(n) and g(n) =>

for all $n \ge n_0$ it is $0 \le f(n) \le h(n)$ and $0 \le g(n) \le h(n) =>$

for all $n \ge n_0$ it is $0 \le f(n) + g(n) \le 2h(n) => 0 \le (f(n) + g(n))/2 \le h(n)$

That is: for all $n \ge n_0$ it is

 $0 \le (f(n) + g(n))/2 \le h(n) \le f(n) + g(n)$, and in the definition it is $c_1=1/2$ and $c_2=1$

Show that for any real constants a and b, with b > 0, $(n+a)^b = \Theta(n^b)$

We want to find constants c_1 , c_2 and $n_0 > 0$, such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$, for all $n \ge n_0$.

$$n + a \le n + |a| \le 2n$$
, for $|a| \le n$
 $n + a \ge n - |a| \ge n/2$, for $|a| \le n/2$

When $n \ge 2|a|$:

$$0 \le n/2 \le n + a \le 2n =>_{b>0} 0 \le (n/2)^b \le (n + a)^b \le (2n)^b =>$$

 $0 \le (1/2)^b n^b \le (n + a)^b \le 2^b n^b => c_1 = (1/2)^b, c_2 = 2^b, and n_0 = 2|a|$

Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

To show $2^{n+1} = O(2^n)$ we must find constants c and $n_0 > 0$ such that $0 \le 2^{n+1} \le c2^n$ for all $n \ge n_0$ we satisfy the definition for c=2 and $n_0=1$

Similarly for the second case:

$$0 \le 2^{2n} \le c2^n$$
 for all $n \ge n_0$

$$2^{2n} = 2^n 2^n \le c 2^n => 2^n \le c$$

There is no constant greater than all 2^n and so $2^{2n} = O(2^n)$ does not hold

more examples

• Prove that 2n² in O(n³)

Assume $f(n) = 2n^2$ and $g(n) = n^3$ We need to find c and $n_0 > 0$ that satisfy the definition:

 $0 \le f(n) \le cg(n) => 0 \le 2n^2 \le cn^3 =>_{(n\ge 1)} 0 \le 2 \le cn => 2 \le cn => satisfied for e.g., c=1 and <math>n_0=2$

• Prove that n² in O(n²)

Assume $f(n) = n^2$ and $g(n) = n^2$

We need to find c and $n_0 > 0$ that satisfy the definition:

 $0 \le f(n) \le cg(n) => 0 \le n^2 \le cn^2 =>_{(n\ge 1)} 0 \le 1 \le c => 1 \le c => satisfied for e.g., c=1$ and $n_0\ge 1$

Prove that 1000n²+1000n in O(n²)

Assume $f(n) = 1000n^2 + 1000n$ and $g(n) = n^2$ We need to find c and $n_0 > 0$ that satisfy the definition: $0 \le f(n) \le cg(n) => 0 \le 1000n^2 + 1000n \le cn^2 =>_{(n\ge 1)} 1000 + 1000/n \le c$ As $n \to \infty$, $1000 + 1000/n \to 1000$ (and the max value is at n=1) For $n_0 = 1000$ and c = 1001, the definition holds

• Prove that $5n^2$ in $\Omega(n)$

Assume $f(n) = 5n^2$ and g(n) = nWe need to find c and $n_0 > 0$ that satisfy the definition: $0 \le cg(n) \le f(n) => 0 \le cn \le 5n^2 =>_{(n\ge 1)} c \le 5n$ It is satisfied for c=5 and $n_0=1$

• Prove that $(1/2)n^2 - (1/2)n = \Theta(n^2)$

Assume $f(n)=(1/2)n^2-(1/2)n$ and $g(n)=n^2$ We need to find c_1 , c_2 and $n_0>0$ that satisfy the definition: $c_1g(n)\leq f(n)\leq c_2g(n)=>c_1n^2\leq (1/2)n^2-(1/2)n\leq c_2n^2=>_{(n\geq 1)}c_1\leq 1/2-1/(2n)\leq c_2$ $1/2-1/(2n)\leq c_2$ satisfied for $c_2=1/2$ $c_1\leq 1/2-1/(2n)$, and (so far) $c_1>0$, $n\geq 1$ For $n_0=1$ it becomes $c_1\leq 0$: not what we want The condition is satisfied for $n_0=2$ and $c_1=1/4$

Prove that n² NOT in o(n²)

Assume $f(n) = n^2$ and $g(n) = n^2$ For <u>any</u> c > 0 we need to show that $f(n) < cg(n) => n^2 < cn^2 => {}_{(n \ge 1)} 1 < c => not for any c$

Prove that 5n² in ω(n)

Assume $f(n) = 5n^2$ and g(n) = nFor <u>any</u> c > 0 we need to show that $cg(n) < f(n) => cn < 5n^2 => {n \ge 1} c \le 5n$ which is satisfied for any c > 0 Why? For any c > 0 we choose, we can choose an n_0 that satisfies $c \le 5n$ for $n \ge n_0$

Prove that 5n+10 NOT in ω(n)

Assume f(n) = 5n+10 and g(n) = nFor <u>any</u> c > 0 we need to show that $cg(n) < f(n) => cn < 5n+10 => (c-5)n \le 10 => n \le 10/(c-5)$ n must be a positive integer => the condition does not hold in general