Lycée Buffon DS 3
MPSI Année 2020-2021

Devoir du 07/11/2020

Exercice 1 : On considère A, B et C trois points distincts du cercle trigonométrique C dont on notera a, b et c les affixes respectives.

- 1. Prouver que : $M(z) \in (AB) \iff (\bar{a} \bar{b}) z + (b a)\bar{z} + a\bar{b} b\bar{a} = 0$.
- 2. Exprimer \bar{a} en fonction de a. En déduire que : $M(z) \in (AB) \Longleftrightarrow z + ab\bar{z} = a + b$.
- 3. Soit D un point de C distinct de C. Prouver que les droites (AB) et (CD) sont orthogonales si, et seulement si, ab + cd = 0.
- 4. On note \mathcal{H}_C la hauteur du triangle ABC issue de C. On note D(d) le point d'intersection de \mathcal{H}_C et \mathcal{C} distinct de C. Exprimer d en fonction de a, b et c.
- 5. En déduire que : $M(z) \in \mathcal{H}_C \iff z ab\bar{z} = c ab/c$.
- 6. En déduire que les hauteurs du triangles ABC sont concourantes et déterminer l'affixe de l'orthocentre H du triangle ABC en fonction de a, b et c.

Exercice 2 : Soient E un ensemble et A une partie de E. On note A^+ l'ensemble $\{X \in \mathcal{P}(E), \ A \subset X\}$, c'est-à-dire l'ensemble des parties de E qui contiennent A. On considère l'application : $\Phi : \begin{cases} \mathcal{P}(E) \to \mathcal{P}(A) \times A^+ \\ X \mapsto (X \cap A, X \cup A) \end{cases}$

Exercice 3 : On considère la fonction

$$f: x \mapsto \arctan\left(\frac{x}{x+1}\right) - \arctan\left(\frac{x-1}{x}\right) - \arctan\left(\frac{1}{2x^2}\right).$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Étudier la dérivabilité de f et simplifier l'expression de sa dérivée.

Prouver que Φ est bijective, et expliciter son application réciproque Φ^{-1} .

- 3. Déterminer les limites de f en $-\infty$, 0^- , 0^+ et $+\infty$ puis tracer le graphe de f.
- 4. Simplifier, pour $N \in \mathbb{N}^*$, $S_N = \sum_{n=1}^N \arctan\left(\frac{1}{2n^2}\right)$ et en déduire $\lim_{N \to +\infty} S_N$.

Exercice 4: On considère la fonction $f: x \mapsto \arctan\left(\frac{\sqrt{1-x^2}}{x}\right)$

- 1. Déterminer l'ensemble de définition noté \mathcal{D}_f de la fonction f.
- 2. Quelle propriété possède le graphe Γ_f de f?
- 3. Étudier la dérivabilité de f et déterminer sa dérivée aux points de dérivation.
- 4. En déduire l'expression de f à l'aide d'une fonction usuelle f_0 .
- 5. Tracer le graphe de f_0 et celui de f.
- 6. Soit $\theta \in]0, \pi/2[\cup]\pi/2, \pi[$. Simplifier $f(\cos \theta)$ et retrouver le lien entre f et f_0 .

Exercice 5 : Soit \mathcal{R} une partie de $\mathbb{R} \times \mathbb{R}$. On dit que \mathcal{R} est rectangulaire si :

$$\forall (x, y, x', y') \in \mathbb{R}^4, \quad [(x, y) \in \mathcal{R} \text{ et } (x', y') \in \mathcal{R}] \Longrightarrow [(x, y') \in \mathcal{R} \text{ et } (x', y) \in \mathcal{R}].$$

- 1. Prouver que \mathcal{R} est un ensemble rectangulaire si, et seulement s'il existe deux parties de \mathbb{R} , \mathcal{A} et \mathcal{B} , telles que $\mathcal{R} = \mathcal{A} \times \mathcal{B}$.
- 2. Soit $\mathcal{R} = \mathcal{A} \times \mathcal{B}$ un ensemble rectangulaire non vide. On définit sur \mathcal{R} la relation \sim par :

$$\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \ (x,y) \sim (x',y') \iff x = x' \text{ ou } y = y'.$$

Prouver que la relation \sim est une relation d'équivalence si, et seulement si, \mathcal{A} ou \mathcal{B} est de cardinal égal à 1.

3. Soit $\mathcal{R} = \mathcal{A} \times \mathcal{B}$ un ensemble rectangulaire non vide. On définit sur \mathcal{R} la relation \leq par :

$$\forall (x,y) \in \mathcal{R}, \ \forall (x',y') \in \mathcal{R}, \quad (x,y) \lesssim (x',y') \iff x \leqslant x' \text{ et } y \leqslant y'.$$

Montrer que la relation ≤ est une relation d'ordre. Déterminer une condition nécessaire et suffisante pour qu'il s'agisse d'une relation d'ordre totale.

Exercice 6 : Soient E, F deux ensembles, $f: E \to F$ une application et A une partie de E telle que la restriction de f à A, $f_{|A}: A \to F$, $x \mapsto f(x)$ soit injective. On dit que A est maximale s'il n'existe pas de partie B de E contenant strictement A telle que la restriction de f à B soit injective.

Prouver que A est maximale si, et seulement si, f(A) = f(E).