Lista 8 - Parte 2

Victor Sena Molero - 8941317

11 de maio de 2016

1 Exercícios

Ex 27. Seja $I_1, I_2, ..., I_n$ intervalos fechados na reta real. Seja G o grafo simples com vértices $v_1, v_2, ..., v_n$ tal que para todo i, j,

 v_i é adjacente a v_j se e só se $I_i \cap I_j \neq \emptyset$

Mostre que $\chi(G) = \omega(G)$. (Lembramos que uma clique é um subgrafo completo, e $\omega(G)$ denota a cardinalidade de uma clique máxima em G).

Prova. Seja G o grafo dos intervalos I_1, I_2, \ldots, I_n . Queremos provar que $\chi(G) = \omega(G)$. Seja x um vértice qualquer do grafo, definimos I_x como o intervalo associado a este vértice, α_x como o extremo inferior do intervalo e β_x como o extremo superior do intervalo.

Primeiro vamos provar $\chi(G) \ge \omega(G)$. Suponha, por absurdo que $\chi(G) < \omega(G)$.

Temos então uma coloração C em G onde $|C| < \omega(G)$, seja H um clique máximo do grafo, sabemos que $|H| = \omega(G)$ e que H está propriamente colorido em C, portanto, encontramos uma coloração em H com menos do que |H| cores, logo, colorimos um grafo completo com menos cores do que a sua cardinalidade, um absurdo. Portanto, $\chi(G) \ge \omega(G)$.

Agora vamos provar que $\chi(G) \leq \omega(G)$. Vamos fazer indução em n.

Se $n=1,\,\omega(G)=1$ e é possível colorir o grafo com uma cor.

Se n > 1, suponha que a hipótese vale para todo $1 \le k < n$. Seja u um vértice de G tal que β_u é mínimo. Escolhemos o grafo G' = G - u, é certo que $\omega(G') \le \omega(G)$, portanto, por hipótese de indução, G' é colorível com $\omega(G)$ cores.

Vamos provar que $|Adj(u)| < \omega(G)$. Sejam v e w dois vértices adjacentes a u, sabemos que $\beta_v \geq \beta_u$ e $\beta_w \geq \beta_u$, porém, v e u devem ter um ponto em comum, logo, $\alpha_v \leq \beta_u$ e, analogamente, $\alpha_w \leq \beta_u$. Com isso, sabemos que β_u é um ponto em comum aos três vértices, portanto v é adjacente a w. Assim, qualquer par de vértices adjacentes a u é adjacente entre si, portanto, u + Adj(u) forma um clique no grafo G. Assim, temos que $|Adj(u)| < \omega(G)$.

Assim, usarmos a coloração já obtida pela indução em G', podemos adicionar o vértice u com a garantia de que há uma cor disponível para ele, já que ele tem menos do que $\omega(G)$ vizinhos e existem $\omega(G)$ cores disponíveis.

Está provado, então, que é possível colorir G com $\omega(G)$ cores, logo, $\chi(G) \leq \omega(G)$. Porém, já provamos que $\chi(G) \geq \omega(G)$, logo, $\chi(G) = \omega(G)$.