Vázané a globální extrémy

1. Definice Budte $f : \mathbf{R}^n \to \mathbf{R}$, m < n, $g_1, \dots, g_m : \mathbf{R}^n \to \mathbf{R}$ funkce. Položme $V = \{x \in \mathbf{R}^n; g_1(x) = 0 \land \dots \land g_m(x) = 0\}$.

Řekneme, že f má v bodě $a \in Df \cap V$ vázané lokální maximum podmínkou $a \in V$, když $\exists K(a, \delta)$ tak, že $\forall x \in K(a, \delta) \cap Df \cap V$ platí $f(x) \leq f(a)$.

Řekneme, že f má v bodě $a \in Df \cap V$ vázané lokální minimum podmínkou $a \in V$, když $\exists K(a, \delta)$ tak, že $\forall x \in K(a, \delta) \cap Df \cap V$ platí $f(a) \leq f(x)$.

Vázaná lokální minima a maxima funkce f se nazývají vázané lokální extrémy.

- **2. Poznámka** Podmínka $a \in V$ se nazývá vazba a rovnice $g_1(x) = 0, \dots, g_m(x) = 0$ se nazývají vazebné rovnice nebo též **vazebné podmínky**.
- **3. Poznámka** Buď m=1. V některých případech lze z rovnice $g(x_1,\ldots,x_n)=0$ jednoznačně určit některé x_i . Například $x_i=\overline{g}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$. Pak za x_i dosadíme do $f(x_1,\ldots,x_n)$ výraz \overline{g} a dostáváme funkci $F(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$, která má pouze n-1 proměnných. Úloha o nalezení vázaných extrémů funkce f s vazbou V je tím převedena na ekvivalentní úlohu o nalezení lokálních extrémů funkce F. V případech, kdy nelze výše uvedeného postupu použít, vede v řadě případů k řešení tzv. **metoda Lagrangeových multiplikátorů** (viz následující Věta 4).
- **4. Věta** (Lagrange) Buďte $f: \mathbf{R}^n \to \mathbf{R}, g_1, \dots, g_m: \mathbf{R}^n \to \mathbf{R}, m < n$ funkce spojitě diferencovatelné na otevřené množině Ω obsahující V a nechť $\forall x \in \Omega$ platí, že hodnost matice $\left[\frac{\partial g_i}{\partial x_j}(x)\right]_{i,j}$ je rovna m. Buď $L: \mathbf{R}^n \to \mathbf{R}$ funkce definovaná vztahem

$$L(x_1, \dots, x_n) = f(x_1, \dots, x_n) + \lambda_1 g_1(x_1, \dots, x_n) + \dots + \lambda_m g_m(x_1, \dots, x_n).$$
 (1)

Funkce L se nazývá Lagrangeova funkce a konstanty $\lambda_1, \ldots, \lambda_m \in R$ se nazývají Lagrangeovy multiplikátory. Nechť systém m+n rovnic o m+n neznámých

$$L'_{x_1} = 0,$$

 \vdots
 $L'_{x_n} = 0,$
 $g_1 = 0,$
 \vdots
 $g_m = 0$ (2)

má řešení $[a_1, \ldots, a_n, \lambda_1^0, \ldots, \lambda_m^0]$.

Má-li L v bodě $a=[a_1,\ldots,a_n]$ pro $\lambda_1^0,\ldots,\lambda_m^0$ lokální extrém, pak f má v a vázaný lokální extrém téhož typu s vazbou $a\in V$.

Nemá-li L lokální extrém, neplyne odtud, že f nemá vázaný lokální extrém.

5. Poznámka

- 1. Výraz $\left[\frac{\partial g_i}{\partial x_j}(x)\right]_{i,j}$ označuje matici o m řádcích a n sloupcích.
- 2. Podmínka, že hodnost matice $\left[\frac{\partial g_i}{\partial x_j}(x)\right]_{i,j}$ je rovna m znamená, že žádná z rovnic $g_i(x)=0$ není zbytečná.

Vyšetřete vázané extrémy f(x,y) = 6 - 4x - 3y s vazbou $x^2 + y^2 = 1$.

Z vazby nelze vyjádřit jednoznačně žádnou proměnnou. Sestavíme tedy Lagrangeovu Řešení funkci

$$L(x,y) = 6 - 4x - 3y + \lambda(x^2 + y^2 - 1).$$

Spočteme parciální derivace, položíme je rovny nule a přidáme vazebnou rovnici:

$$L'_{x} = -4 + 2\lambda x = 0,$$

$$L'_{y} = -3 + 2\lambda y = 0,$$

$$x^{2} + y^{2} - 1 = 0.$$

Získali jsme tak soustavu tří rovnic o třech neznámých x, y, λ . Tuto soustavu musíme nyní vyřešit. Z první rovnice plyne $x=\frac{2}{\lambda}$ a ze druhé $y=\frac{3}{2\lambda}$. Dosazením za x a y do rovnice vazby dostáváme

$$\left(\frac{2}{\lambda}\right)^2 + \left(\frac{3}{2\lambda}\right)^2 = 1.$$

Odtud po krátké úpravě plyne $\lambda^2=\frac{25}{4}$ a tedy $\lambda=\pm\frac{5}{2}$. Pro $\lambda=\frac{5}{2}$ dostáváme $x=\frac{4}{5},y=\frac{3}{5}$. Získali jsme stacionární bod Lagrangeovy funkce $a_1=[\frac{4}{5},\frac{3}{5}]$. Podobně pro $\lambda=-\frac{5}{2}$ dostáváme $x=-\frac{4}{5},y=-\frac{3}{5}$. Nalezli jsme druhý stacionární bod $a_2=[-\frac{4}{5},-\frac{3}{5}]$. Nyní vyšetříme nalezené stacionární body pomocí druhé derivace Lagrangeovy funkce. Určíme druhé

parciální derivace a sestavíme matice $L'', L''(a_1), L''(a_2)$. Platí

$$L'' = \begin{pmatrix} 2\lambda & 0 \\ 0 & 2\lambda \end{pmatrix}, \qquad L''(a_1) = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \qquad L''(a_2) = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}.$$

Nyní můžeme použít Sylvestrovo kritérium.

Pro a_1 platí $D_1(a_1) = 5$, $D_2(a_1) = 25$. Odtud plyne, že L má v bodě $a_1 = \left[\frac{4}{5}, \frac{3}{5}\right]$ pro $\lambda = \frac{5}{2}$ lokální minimum a podle Věty 4 má f ve stejném bodě vázané lokální minimum vzhledem k dané vazbě.

Analogicky pro a_2 platí $D_1(a_2) = -5$, $D_2(a_2) = 25$. Odtud plyne, že L má v bodě $a_2 = \left[-\frac{4}{5}, -\frac{3}{5}\right]$ pro $\lambda = -\frac{5}{2}$ lokální maximum a f má v bodě a_2 vázané lokální maximum. Tím je úloha vyřešena.

Pokusme se ještě vysvětlit **geometrický význam** celé úlohy.

Grafem funkce f(x,y)=6-4x-3y je rovina v obecné poloze. Vazebná rovnice $x^2+y^2=1$ je rovnice kružnice ležící v rovině xy. Hledáme tedy extrémy na křivce, která vznikne průnikem válcové plochy určené touto kružnicí s danou rovinou. Průnikovou křivkou je elipsa. Situace je znázorněna na následujícím Obrázku 1. Poznamenejme jen, že na obrázku je zobrazena jen část elipsy a pouze vázané lokální minimum. Polohu vázaného lokálního maxima si jistě pozorný čtenář dokáže sám představit, když si dopočítá z-ovou souřadnici bodu a_2 .)

Obrázek 1: Vázané extrémy funkce f(x,y)=6-4x-3ys podmínkou $x^2+y^2=1$

7. Příklad Vyšetřete vázané extrémy $f(x,y) = x^2 - y^2$ s vazbou 2x - y + 1 = 0.

Řešení Lagrangeova funkce je tvaru

$$L(x,y) = x^{2} - y^{2} + \lambda(2x - y + 1).$$

Spočteme parciální derivace, položíme je rovny nule a přidáme vazebnou rovnici

$$L'_x = 2x + 2\lambda = 0,$$

 $L'_y = -2y - \lambda = 0,$
 $2x - y + 1 = 0.$

Získali jsme soustavu tří rovnic o třech neznámých x, y, λ . Z první rovnice plyne $\lambda = -x$ a ze druhé $\lambda = -2y$. Odtud dostáváme x = 2y.

Dosazením do vazby a krátkým výpočtem zjistíme, že existuje jediný stacionární bod $a = \left[-\frac{2}{3}, -\frac{1}{3}\right]$ pro $\lambda = \frac{2}{3}$.

Nyní vyšetříme stacionární bod pomocí druhé derivace Lagrangeovy funkce. Spočteme druhé parciální derivace a sestavíme matice L'', L''(a). Platí

$$L'' = L''(a) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

Protože $D_1(a)=2>0$ a $D_2(a)=-4<0$ nemá Lagrangeova funkce L podle Sylvestrova kritéria lokální extrém.

Pozor! Odtud ale neplyne, že f nemá vázaný extrém s danou vazbou. Ukážeme nyní, že f vázaný extrém má. Budeme postupovat tak, že úlohu o vázaném extrému převedeme na ekvivalentní úlohu nalezení lokálního extrému funkce jedné proměnné.

Z vazby vyjádříme y. Platí y = 2x + 1. Dosadíme do zadané funkce. Dostaneme

$$F(x) = f(x, 2x + 1) = x^{2} - (2x + 1)^{2}.$$

Odtud F'(x) = -6x - 4. Nalezneme stacionární bod $x_0 = -\frac{2}{3}$. Protože platí F''(x) = -6 < 0 je v bodě $x_0 = -\frac{2}{3}$ lokální maximum funkce F(x). Tedy funkce f(x,y) má v bodě $\left[-\frac{2}{3}, -\frac{1}{3}\right]$ vázané lokální maximum

8. Definice Bud $f: \mathbf{R}^n \to \mathbf{R}, \Omega \subseteq Df, a \in \Omega$.

Řekneme, že f má v a globální maximum na Ω , když $\forall x \in \Omega$ platí $f(x) \leq f(a)$. Klademe max $f(\Omega) = f(a)$.

Řekneme, že f má v a globální minimum na Ω , když $\forall x \in \Omega$ platí $f(a) \leq f(x)$. Klademe $\min f(\Omega) = f(a)$.

Hodnoty $\max f(\Omega)$ a min $f(\Omega)$ se nazývají globální maximum a globální minimum funkce f na množině Ω . Místo globální též říkáme **absolutní**.

- 9. Věta (Weierstrasse) Buď $\emptyset \neq \Omega \subseteq \mathbf{R}^n$ ohraničená, uzavřená množina a $f: \mathbf{R}^n \to \mathbf{R}$ spojitá funkce na $\Omega \subseteq Df$. Platí následující tvrzení:
 - 1. f je ohraničená na Ω .
 - 2. Existují $a, b \in \Omega$ tak, že $\forall x \in \Omega : f(a) \leq f(x) \leq f(b)$, tzn. existuje min $f(\Omega) = f(a)$ a max $f(\Omega) = f(b)$.
 - 3. Nechť min $f(\Omega)$ nastane v bodě $a \in \Omega$. Pak f má v a lokální minimum, nebo $a \in h(\Omega)$. Analogicky nechť max $f(\Omega)$ nastane v bodě $a \in \Omega$. Pak f má v a lokální maximum, nebo $a \in h(\Omega)$.

10. Poznámka

1. Není-li Ω uzavřená, nebo ohraničená, pak min $f(\Omega)$ a max $f(\Omega)$ nemusí existovat.

- 2. Pokud min $f(\Omega)$, max $f(\Omega)$ existují, jsou určena jednoznačně. Funkce však může nabývat těchto hodnot obecně ve více bodech.
- 3. Hranici množiny Ω lze často popsat pomocí rovnic. Vyšetřování hranice tedy vede k vázaným extrémům.

Weierstrassova věta poskytuje návod pro nalezení $\min f(\Omega)$ a $\max f(\Omega)$. Jak postupovat popíšeme v následujícím algoritmu.

11. Poznámka Algoritmus pro nalezení globálních extrémů.

- 1. Nalezneme lokální extrémy funkce f a z nich vybereme ty, které leží v Ω . Nechť \mathbf{A} označuje množinu funkčních hodnot v nalezených bodech lokálních extrémů.
- 2. Nalezneme vázané extrémy funkce f s vazbou $V=h(\Omega)$. Nechť ${\bf B}$ označuje množinu funkčních hodnot v nalezených bodech vázaných extrémů a v bodech, které jsou průniky různých vazeb.
- 3. Nechť $M = \mathbf{A} \cup \mathbf{B}$. Pak globální maximum $\max f(\Omega) = \max M$ a globální minimum $\min f(\Omega) = \min M$.
- **12. Příklad** Určete globální extrémy funkce $f(x,y) = (x-1)^2 + (y-\frac{1}{2})^2$ na obdélníku Ω , který je určen body A = [0,0], B = [2,0], C = [2,1], D = [0,1].

Řešení

- 1. Nalezneme lokální extrémy funkce f. Spočteme parciální derivace $f'_x = 2x 2$ a $f_y = 2y 1$ a nalezneme stacionární bod $s = [1, \frac{1}{2}]$. Matice druhé derivace je rovna $f'' = f''(s) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Hlavní minory této matice jsou kladné a proto v bodě s nastává lokální minimum funkce f. Platí f(s) = 0. Tedy $\mathbf{A} = \{0\}$.
- 2. Hranice množiny Ω je tvořena čtyřmi úsečkami. Vyšetření hranice $h(\Omega)$ se tedy rozpadá na vyřešení čtyř úloh na vázané extrémy s funkcí f a vazbami $V_1: y=0, V_2: x=2, V_3: y=1$ a $V_4: x=0$. Pozor! Při této formulaci je zapotřebí zvlášť vyšetřit body A, B, C, D, které jsou průniky různých vazeb. Úlohy f, V_i , kde i=1,2,3,4 převedeme na ekvivalentní úlohy nalezení lokálních extrémů funkcí F_i , kde $F_1(x)=f(x,0)=(x-1)^2+\frac{1}{4}, F_2(y)=f(2,y)=\left(y-\frac{1}{2}\right)^2+1, F_3(x)=f(x,1)=(x-1)^2+\frac{1}{4}, F_4(y)=f(0,y)=\left(y-\frac{1}{2}\right)^2+1.$

Snadno se zjistí, že úloha f, V_1 má vázané minimum v bodě a = [1, 0];

 f, V_2 má vázané minimum v $b = \left[2, \frac{1}{2}\right];$

 f, V_3 má vázané minimum v c = [1, 1] a f, V_4 má vázané minimum v $d = [0, \frac{1}{2}]$.

3. Spočteme funkční hodnoty v nalezených bodech. Platí $f(a) = f(c) = \frac{1}{4}$, f(b) = f(d) = 1 a $f(A) = f(B) = f(C) = f(D) = \frac{5}{4}$. Odtud $\mathbf{B} = \left\{\frac{1}{4}, 1, \frac{5}{4}\right\}$. $M = \left\{0, \frac{1}{4}, 1, \frac{5}{4}\right\}$. Odtud $\max f(\Omega) = \max M = \frac{5}{4}$ a nastává v bodech A, B, C, D. Dále $\min f(\Omega) = \min M = 0$ a nastává v bodě s.