Лемма 5.8. Если $f \in L_p(G)$, то $||f_{\varepsilon}|| \le ||f||$.

Доказательство. Положим $q = \left(1 - \frac{1}{p}\right)^{-1}$. Можем записать

$$||f_{\varepsilon}||^{p} = \int_{G} |f_{\varepsilon}(x)|^{p} dx = \int_{G} \left| \int_{\mathbb{R}^{n}} f(y) \cdot \omega_{\varepsilon}(x - y) dy \right|^{p} dx \le$$

$$\leq \int_{G} \left(\int_{\mathbb{R}^{n}} |f(y)| \cdot \omega_{\varepsilon}(x - y) dy \right)^{p} dx =$$

$$= \int_{G} \left(\int_{\mathbb{R}^{n}} |f(y)| \cdot (\omega_{\varepsilon}(x - y))^{\frac{1}{p}} \cdot (\omega_{\varepsilon}(x - y))^{\frac{1}{q}} dy \right)^{p} dx$$

По неравенству Гёльдера последний интеграл не превосходит ≤

$$\int_{G} \left(\left(\int_{\mathbb{R}^{n}} |f(y)|^{p} \cdot (\omega_{\varepsilon}(x-y))^{\left(\frac{1}{p}\right) \cdot p} dy \right)^{\frac{1}{p}} \cdot \left(\int_{\mathbb{R}^{n}} (\omega_{\varepsilon}(x-y))^{\left(\frac{1}{q}\right) \cdot q} dy \right)^{\frac{1}{q}} \right)^{p} dx. \quad (*)$$

Так как интеграл от шапочки ω_{ε} по \mathbb{R}^n равен 1, то (*)

$$= \int_G \int_{\mathbb{R}^n} |f(y)|^p \cdot \omega_{\varepsilon}(x - y) dy dx \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)|^p \cdot \omega_{\varepsilon}(x - y) dy dx =$$

$$= \int_{\mathbb{R}^n} |f(y)|^p \cdot \int_{\mathbb{R}^n} \omega_{\varepsilon}(x - y) dx dy = \int_G |f(y)|^p dy = ||f||^p.$$

Определение 5.9. Множество всех основных функций, удовлетворяющих определению 5.1 (то есть бесконечно дифференцируемых и финитных), обозначим D(G).

Ниже будем обозначать норму функции f из пространства $C(\bar{G})$ через $\|f\|_C$, а норму функции f из пространства $L_p(G)$ — через $\|f\|_L$.

Теорема 5.10 (Об аппроксимации основными функциями)

Пусть область G ограничена в \mathbb{R}^n и содержит носитель измеримой функции f. Тогда 1) если $f \in \mathcal{C}(\bar{G})$, то $\|f - f_{\varepsilon}\|_{\mathcal{C}} \xrightarrow[\varepsilon \to 0]{} 0$;

2) если
$$f \in L_p(G)$$
, то $||f - f_{\varepsilon}||_L \xrightarrow{\varepsilon \to 0} 0$.

Доказательство. 1)
$$||f - f_{\varepsilon}||_{C} = \max_{x \in \bar{G}} |f(x) - f_{\varepsilon}(x)|$$
. Ho $|f(x) - f_{\varepsilon}(x)| =$

$$= \left| f(x) \cdot \int_{\mathbb{R}^n} \omega_{\varepsilon}(x - y) dy - \int_{\mathbb{R}^n} f(y) \cdot \omega_{\varepsilon}(x - y) dy \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x) - f(y)| \cdot \omega_{\varepsilon}(x - y) dy =$$

$$=\int_{\bar{U}_{\varepsilon}(x)}|f(x)-f(y)|\cdot\omega_{\varepsilon}(x-y)dy\leq \max_{|y-x|\leq \varepsilon}|f(x)-f(y)|\cdot\int_{\bar{U}_{\varepsilon}(x)}\omega_{\varepsilon}(x-y)dy=\\ =\max_{|y-x|\leq \varepsilon}|f(x)-f(y)|.\ \text{ Поэтому } \|f-f_{\varepsilon}\|_{\mathcal{C}}\leq \max_{x\in \bar{G},|x-y|\leq \varepsilon}|f(x)-f(y)|\xrightarrow[\varepsilon\to 0]{}0.$$

2) Здесь воспользуемся известным фактом, что произвольную функцию $f \in L_p(G)$ можно с любой точностью ε приблизить непрерывной функцией.

Выберем
$$g \in \mathcal{C}(\bar{G})$$
 так, чтобы $\|g - f\|_L < \varepsilon$. Тогда $\|f - f_\varepsilon\|_L \le$ $\le \|f_\varepsilon - g_\varepsilon\|_L + \|g_\varepsilon - g\|_L + \|g - f\|_L < \|f_\varepsilon - g_\varepsilon\|_L + \|g_\varepsilon - g\|_L + \varepsilon$. Так как $g_\varepsilon - f_\varepsilon = (g - f)_\varepsilon$, то по лемме 5.8 $\|g_\varepsilon - f_\varepsilon\|_L =$ $= \|(g - f)_\varepsilon\|_L \le \|g - f\|_L < \varepsilon$. Наконец,

$$\begin{split} \|g_{\varepsilon}-g\|_L^p &= \int_G |g_{\varepsilon}(x)-g(x)|^p dx \leq \max_{x \in \bar{G}} |g_{\varepsilon}(x)-g(x)|^p \cdot \mu(G) = \mu(G) \cdot \\ (\|g_{\varepsilon}-g\|_C)^p \xrightarrow[\varepsilon \to 0]{} 0 \quad \text{в силу п. 1)}. \end{split}$$

Доказанную теорему можно переформулировать следующим образом. Следствие **5.11.** 1) Множество D(G) всюду плотно в $L_p(G)$.

2) $D(G) \cap C(\bar{G})$ всюду плотно в $C(\bar{G})$.

Выше множество основных функций D(G) рассматривалось как подпространство других (нормированных) пространств. Однако в этом множестве существует своё понятие сходящейся последовательности.

Определение 5.12. Последовательность $(\varphi_n)_{n\in\mathbb{N}}\subset D(G)$ назовём cxodsицейся κ $\varphi\in D(G)$, и напишем $\varphi_n\xrightarrow{D(G),\ n\to\infty} \varphi$, если:

- 1) Существует компакт K, такой, что $\operatorname{supp} \varphi_n \subset K \subset G$ при $\operatorname{всеx} n \in \mathbb{N}$.
- 2) Для любого мультииндекса а имеет место равномерная сходимость

$$\varphi_n^{(\alpha)} \xrightarrow{K, n \to \infty} \varphi^{(\alpha)}.$$

Сейчас мы заведём ещё одно (более широкое) множество основных функций, ослабив в определении 5.1 условие финитности до условия быстрого убывания функций.

Определение 5.13. Будем говорить, что функция $\varphi: \mathbb{R}^n \to \mathbb{R}$ – *основная* $ustarrow S(\mathbb{R}^n)$, если она бесконечно дифференцируема и для любого многочлена P(x), любого мультииндекса α , любого $\varepsilon > 0$, найдётся A > 0 такое, что $|P(x) \cdot \varphi^{(\alpha)}(x)| < \varepsilon$ при |x| > A. Другими словами, $P(x) \cdot \varphi^{(\alpha)}(x)$ равномерно сходится к 0 при $|x| \to \infty$ (быстрое убывание).

Множество $S(\mathbb{R}^n)$ называется множеством быстро убывающих функций.

Предложение 5.14. $D(G) \subset S(\mathbb{R}^n)$.

Утверждение очевидно.

Предложение 5.15. Множества D(G) и $S(\mathbb{R}^n)$ являются векторными пространствами.

Доказательство. (Упражнение)

Определение 5.16. Последовательность $(\varphi_k)_{k \in \mathbb{N}} \subset S(\mathbb{R}^n)$ назовём сходящейся к $\varphi \in S(\mathbb{R}^n)$, и напишем $\varphi_k \xrightarrow{S, k \to \infty} \varphi$, если для любых мультииндексов α , β выполняется $x^\beta \varphi_k^{(\alpha)} \rightrightarrows x^\beta \varphi^{(\alpha)}$ на \mathbb{R}^n .

Теорема 5.17. Тождественный оператор $I(\varphi) = \varphi$ из пространства $D(\mathbb{R}^n)$ в пространство $S(\mathbb{R}^n)$ является линейным и непрерывным.

Доказательство. Линейность очевидна. Покажем непрерывность. Пусть $\varphi_m \xrightarrow{D(\mathbb{R}^n), \ m \to \infty} 0$. Тогда на некотором компакте K, содержащем все носители $\sup \varphi_m$ имеет место равномерная сходимость $\varphi_m^{(\alpha)} \xrightarrow{K, \ m \to \infty} 0$ для любого α . Поэтому, для любого β имеем равномерную сходимость

$$\left|x^{\beta}\varphi_{m}^{(\alpha)}(x)\right| \leq \max\{\left|x^{\beta}\right| : x \in K\} \cdot \left|\varphi_{m}^{(\alpha)}(x)\right| \xrightarrow{K, m \to \infty} 0.$$
 To есть, $I(\varphi_{m}) = \varphi_{m} \xrightarrow{S} 0.$

Теорема 5.18. Для любого $\varphi \in S(\mathbb{R}^n)$ существует последовательность $(\varphi_m)_{m\in\mathbb{N}} \subset D(\mathbb{R}^n)$ такая, что $\varphi_m \xrightarrow{S} \varphi$.

Доказательство. Пусть $\varphi \in S(\mathbb{R}^n)$. Выберем $(\eta_1^m)_{m \in \mathbb{N}} \subset D(\mathbb{R}^n)$, где η_1^m – «шляпа» для шара $U_m(0)$. Положим $\varphi_m(x) = \varphi(x) \cdot \eta_1^m(x)$. Тогда

$$\sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} (\varphi - \varphi_{m})^{(\alpha)}(x) \right| = \sup_{|x| > m} \left| x^{\beta} \right| \left| (\varphi(x)(1 - \eta_{1}^{m}(x))^{(\alpha)}) \right| \leq$$

$$\leq \sum_{|\gamma|, |\delta| < |\alpha|} \sup_{|x| > m} \left| x^{\beta} \right| \left| \varphi^{(\gamma)}(x) \cdot (1 - \eta_{1}^{m}(x))^{(\delta)} \right| \leq$$

$$\leq \sum_{|\gamma|, |\delta| < |\alpha|} C(\delta) \cdot \sup_{|x| > m} \left| x^{\beta} \right| \left| \varphi^{(\gamma)}(x) \right| \tag{*}$$

На последнем шаге использована оценка на производную «шляпы» из теоремы 5.5 (напомним, что у нас $\varepsilon=1$). Далее, так как для каждого γ производная $\varphi^{(\gamma)}$ — основная функция из $S(\mathbb{R}^n)$, то при любом $\beta \sup_{|x|>m} \left|x^\beta\right| \left|\varphi^{(\gamma)}(x)\right| \stackrel{m\to\infty}{\longrightarrow} 0$.

Следовательно, и вся сумма (*) стремится к 0.

Таким образом, $\varphi_m \xrightarrow{S} \varphi$.