

STIC Search Report Biotech-Chem Library

STIC Database Tracking Number: 219218

TO: Ben Sackey

Location: rem/5B31/5C18

Art Unit: 1624

Thursday, March 29, 2007

Case Serial Number: 10/717846

From: Les Henderson

Location: Biotech-Chem Library

REM-1B61

Phone: (571)272-2538

leslie.henderson@uspto.gov

Search Notes

Results can also be viewed via SCORE or eDAN.

http://es/ScoreAccessWeb/

To access your search results for SN 10/717846 via eDAN.

In eDAN:

Enter Application number

Click on Supplemental Content Tab ->

Sequence results are under the **Search Results** (click on version listed)

All other results are under Other Content (click on version listed)

STIC SEARCH RESULTS FEEDBACK FORM

Biotech-Chem Library

Questions about the scope or the results of the search? Contact the searcher or contact:

Mary Hale, Information Branch Supervisor 571-272-2507 Remsen 1 A51

Voluntary Results I cedback. Offi
> I am an examiner in Workgroup: Example: 1610
> Relevant prior art found , search results used as follows:
☐ 102 rejection
☐ 103 rejection
☐ Cited as being of interest.
☐. Helped examiner better understand the invention.
Helped examiner better understand the state of the art in their technology.
Types of relevant prior art found:
☐ Foreign Patent(s)
☐ Non-Patent Literature (journal articles, conference proceedings, new product announcements etc.)
> Relevant prior art not found:
Results verified the lack of relevant prior art (helped determine patentability).
Results were not useful in determining patentability or understanding the invention.
Comments:

Drop off or send completed forms to STIC/Biotech-Chem Library Remson Bldg

3-1316

ACCESS DB # 2/92/8
PLEASE PRINT CLEARLY

Scientific and Technical Information Center

SEARCH REQUEST FORM

	Requester's Full Name: BEN SACKET Examiner #: 13489 Date: 3/23/07 Art Unit: 1624 Phone Number: 2-0704 Serial Number: 10/7/7, 846 Location (Bldg/Room#): 1568 5183 i(Mailbox #): 566 Results Format Preferred (circle): PAPER DISK ***********************************
	To ensure an efficient and quality search, please attach a copy of the cover sheet, claims, and abstract or fill out the following:
	Title of Invention: Catalyst for the many factore & acrylonifile Inventors (please provide full names): Christos Papari 205
	Earliest Priority Date: 12/02/02
	Search Topic: Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known.
	For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.
	catalyst composition comprising a complex of catalytic xides comprising patassion, cesium, curium, chromium,
~-l	about, nided, iron, ors and lative ratios of these alements are represented by famile
1	la Ko Csc Ced Cre Cox Nig Xn 72; Big Moiz Ox
	vein A is Rb, Na, Li, Tl or mixtures thereof: and
	nethod of preparing acrylomitile using the Said
<u>_</u> &	talyst camposition.

10/717,846

The claimed invention is:

1. A catalyst composition comprising a complex of catalytic oxides comprising potassium, cesium, cerium, chromium, cobalt, nickel, iron, bismuth, and molybdenum, wherein the relative ratios of these elements are represented by the following general formula

Aa Kb Csc Ced Cre Cof Nig Xh Fei Bij Mo12 Ox

wherein

5

10

15

20

30

A is Rb, Na, Li, Tl, or mixtures thereof,

X is P, Sb, Te, B, Ge, W, Ca, Mg, a rare earth element, or

mixtures thereof,

a is about 0 to about 1,

b is about 0.01 to about 1,

c is about 0.01 to about 1.

d is about 0.01 to about 3,

e is about 0.01 to about 2,

f is about 0.01 to about 10,

g is about 0.1 to about 10,

h is about 0 to about 4,

i is about 0.1 to about 4,

j is about 0.05 to about 4,

x is a number determined by the valence requirements of the other elements present,

and wherein the catalyst is substantially free of manganese and zinc.

- 2. The catalyst composition of claim 1, wherein the catalyst comprises phosphorus.
- 3. The catalyst composition of claim 1, wherein the catalyst comprises 25 magnesium.
 - 4. The catalyst composition of claim 1, wherein the catalyst is substantially free of magnesium.
 - 5. The catalyst composition of claim 1, wherein the catalyst comprises rubidium.
 - 6. The catalyst composition of claim 1, wherein the catalyst comprises lithium.
 - 7. The catalyst composition of claim 1, wherein f + g is about 4 to about 10.
 - 8. The catalyst composition of claim 1, wherein the catalyst composition comprises a support selected from the group consisting of silica, alumina, zirconium, titania, or mixtures thereof.

- 9. The catalyst composition of claim 8, wherein the support comprises between 30 and 70 weight percent of the catalyst.
- 10. The catalyst composition of claim 1, wherein the catalyst composition comprises silica having an average colloidal particle size in between about 8 nm and about 100 nm.
- 11. A catalyst composition comprising a complex of catalytic oxides comprising potassium, cesium, cerium, chromium, cobalt, nickel, iron, bismuth, and molybdenum, wherein the relative ratios of these elements are represented by the following general formula

Aa Lia Kb Csc Ced Cre Cof Nig Xh Fei Bij Mo12 Ox

10 wherein A is Rb, Na, Tl, or mixtures thereof,

X is P, Sb, Te, B, Ge, W, Ca, Mg, a rare earth element, or
mixtures thereof,
a is about 0 to about 1,

a' is about 0.01 to about 1, b is about 0.01 to about 1,

5

15

20

25

30

c is about 0.01 to about 1,

d is about 0.01 to about 3,

e is about 0.01 to about 2, f is about 0.01 to about 10,

•

g is about 0.1 to about 10,

h is about 0 to about 4,

i is about 0.1 to about 4,

j is about 0.05 to about 4,

x is a number determined by the valence requirements of the other elements present,

and wherein the catalyst is substantially free of manganese and zinc.

- 12. The catalyst composition of claim 11, wherein f + g is about 4 to about 10.
- 13. A process for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof, respectively, by reacting in the vapor phase at an elevated temperature and pressure said olefin with a molecular oxygen containing gas and ammonia in the presence of a catalyst comprising a complex of catalytic oxides comprising potassium, cesium, cerium, chromium,

cobalt, nickel, iron, bismuth, molybdenum, wherein the relative ratios of these elements are represented by the following general formula

Aa Kb Csc Ced Cre Cof Nig Xh Fei Bij Mo12 Ox

wherein

5 .

10

A is Rb, Na, Li, Tl, or mixtures thereof,

X is P, Sb, Te, B, Ge, W, Ca, Mg, a rare earth element, or mixtures thereof,

a is about 0 to about 1,

b is about 0.01 to about 1,

c is about 0.01 to about 1,

d is about 0.01 to about 3,

e is about 0.01 to about 2,

f is about 0.01 to about 10,

g is about 0.1 to about 10,

h is about 0 to about 4,

i is about 0.1 to about 4,

j is about 0.05 to about 4,

x is a number determined by the valence requirements of the other elements present,

and wherein the catalyst is substantially free of manganese and zinc.

20

15

- 14. The process of claim 13, wherein the catalyst comprises phosphorus.
- 15. The process of claim 13, wherein the catalyst comprises magnesium.
- 16. The process of claim 13, wherein the catalyst comprises rubidium.
- 17. The process of claim 13, wherein the catalyst comprises lithium.
- 18. The catalyst composition of claim 13, wherein f + g is about 4 to about 10.

25

- 19. The process of claim 13, wherein the catalyst composition comprises a support selected from the group consisting of silica, alumina, zirconium, titania, or mixtures thereof.
- 20. The process of claim 19, wherein the support comprises between 30 and 70 weight percent of the catalyst.
- 21. The process of claim 13, wherein the catalyst composition comprises silica
 having an average colloidal particle size in between about 8 nm and about 100 nm.

INVENTOR SEARCH

```
=> d his 160
```

```
(FILE 'HCAPLUS' ENTERED AT 11:58:44 ON 28 MAR 2007)
L60
             24 S L59 AND L50
=> d que 160
L10
                QUE ABB=ON PLU=ON JEVNE S?/AU
                QUE ABB=ON PLU=ON SEELY M?/AU
L11
                QUE ABB=ON PLU=ON "STANDARD OIL CO?"/PA, CS, SO, CO
L12
L13
                QUE ABB=ON PLU=ON "INNOVENE USA?"/PA, CS, SO, CO
                QUE ABB=ON PLU=ON PAPARIZOS C?/AU
L14
                QUE ABB=ON PLU=ON (L10 OR L11) OR L14
L16
             45 SEA FILE=HCAPLUS ABB=ON PLU=ON L16 AND ((L12 OR
L22
                L13))
L23
         635119 SEA FILE=HCAPLUS ABB=ON PLU=ON CATALYSTS+PFT,OLD,NT/C
L24
             35 SEA FILE=HCAPLUS ABB=ON PLU=ON L22 AND L23
L26
              1 SEA FILE=REGISTRY ABB=ON PLU=ON 107-13-1/RN
L27
          98560 SEA FILE=HCAPLUS ABB=ON PLU=ON L26 OR ACRYLONITRILE
                OR ACRYLON
L28
             14 SEA FILE=HCAPLUS ABB=ON PLU=ON L24 AND L27
L46
          29606 SEA FILE=HCAPLUS ABB=ON PLU=ON ACRYLONITRILE+PFT,OLD,
                NT/CT
L50
                QUE ABB=ON PLU=ON PY<2003 OR PRY<2003 OR AY<2003 OR
                MY<2003 OR REVIEW/DT
L58
             23 SEA FILE=HCAPLUS ABB=ON PLU=ON L16 AND L23 AND L46
L59
             24 SEA FILE=HCAPLUS ABB=ON
                                         PLU=ON L28 OR L58
             24 SEA FILE=HCAPLUS ABB=ON PLU=ON L59 AND L50
L60
=> d his 162
     (FILE 'RAPRA, WPIX' ENTERED AT 12:00:11 ON 28 MAR 2007)
L62
             27 S L61 AND L50
=> d que 162
                QUE ABB=ON PLU=ON JEVNE S?/AU
L10
L11
                QUE ABB=ON PLU=ON SEELY M?/AU
L14
                QUE ABB=ON PLU=ON PAPARIZOS C?/AU
L15
                QUE ABB=ON PLU=ON L10 AND L11 AND L14
                QUE ABB=ON PLU=ON (L10 OR L11) OR L14
QUE ABB=ON PLU=ON PY<2003 OR PRY<2003 OR AY<2003 OR
L16
L50 ·
               MY<2003 OR REVIEW/DT
L52
             2 SEA L15
            72 SEA L16
L54
L55
            63 SEA L54 AND (CAT OR CATAL?)
            28 SEA L55 AND (?NITRIL? OR ACRYLON?)
1.57
L61
            28 SEA L57 OR L52
L62
            27 SEA L61 AND L50
=> dup rem 160 162
FILE 'HCAPLUS' ENTERED AT 12:40:15 ON 28 MAR 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)
FILE 'WPIX' ENTERED AT 12:40:15 ON 28 MAR 2007
COPYRIGHT (C) 2007 THE THOMSON CORPORATION
PROCESSING COMPLETED FOR L60
PROCESSING COMPLETED FOR L62
             32 DUP REM L60 L62 (19 DUPLICATES REMOVED)
               ANSWERS '1-24' FROM FILE HCAPLUS
                ANSWERS '25-32' FROM FILE WPIX
```

=> d 168 1-32 ibib ab

L68 ANSWER 1 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 1

DOCUMENT NUMBER:

ACCESSION NUMBER: 2004:473398 HCAPLUS Full-text 141:24128

TITLE:

Ammoxidation catalysts for the manufacture of

acrylonitrile from propylene

INVENTOR(S):

Paparizos, Christos; Jevne, Stephen C.; Seely, Michael J.

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 7 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE -
US 2004110978	A1	20040610	US 2003-717846	2003 1119
CA 2507182	A1	20040617	< CA 2003-2507182	2003
WO 2004050240	A1	20040617	< WO 2003-US36937	2003
				1119
CA, CH, CN, ES, FI, GB, KE, KG, KP,	CO, CR GD, GE KR, KZ MW, MX	, CU, CZ, , GH, GM, , LC, LK, , MZ, NI,	SA, BB, BG, BR, BW, BY DE, DK, DM, DZ, EC, EE HR, HU, ID, IL, IN, IS LR, LS, LT, LU, LV, MA NO, NZ, OM, PG, PH, PL SL, SY, TJ, TM, TN, TR	, EG, , JP, , MD, , PT,
AM, AZ, BY, CZ, DE, DK,	KE, LS KG, KZ EE, ES SE, SI	, MW, MZ, , MD, RU, , FI, FR, , SK, TR,	SD, SL, SZ, TZ, UG, ZM TJ, TM, AT, BE, BG, CH GB, GR, HU, IE, IT, LU BF, BJ, CF, CG, CI, CM	, CY, , MC,
			AU 2003-295643	
			<	2003 1119
EP 1567263	A1	20050831	EP 2003-786844	
			<	2003 1119
			GB, GR, IT, LI, LU, NL RO, MK, CY, AL, TR, BG	
BR 2003016852	A	20051018	BR 2003-16852	2003 1119
			<	1119
CN 1720099	A	20060111	CN 2003-80104882	2003 1119
JP 2006507936	Т	20060309	< JP 2004-557222	
	_			2003

						1119
				<		
IN 2005MN00669	Α	20050930	IN	2005-MN669		
						2005
•						0624
				<		
PRIORITY APPLN. INFO.:			US	2002-430162P	P	
				•		2002
				•		1202
				<		
			US	2003-717846	Α	
					•	2003
						1119
			WO	2003-US36937	W	
						2003
						1119

AB A catalyst comprising a complex of catalytic oxides comprising potassium, cesium, cerium, chromium, cobalt, nickel, iron, bismuth, molybdenum, wherein the relative ratios of these elements is AaKbCscCedCreCofNigXhFeiBijMo12Ox (A = Rb, Na, Li, Tl; X = P, Sb, Te, B, Ge, W, Ca, Mg, a rare earth element;, a = 0-1; b = 0.01-1; c = 0.01-1; d = 0.0= 0.01-3; e = 0.01-2; f = 0.01-10; q = 0.1-10; h = 0-4; i = 0.1-4; j = 0.05-4; x = 0.05-4; x = 0.05-4; y = 0number determined by the valence requirements of the other elements present) which is substantially free of manganese and zinc, is used for the conversion of propylene into acrylonitrile.

L68 ANSWER 2 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 2

ACCESSION NUMBER:

2004:451677 HCAPLUS Full-text

DOCUMENT NUMBER:

141:7648

TITLE:

Ammoxidation catalyst for acrylonitrile

manufacture

INVENTOR(S):

Paparizos, Christos; Jevne, Stephen C.; Seely, Michael J.

PATENT ASSIGNEE(S):

The Standard Oil Company, USA U.S. Pat. Appl. Publ., 9 pp.

SOURCE: CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT NO.					KIND DATE			APPLICATION NO.						DA	TE	
us	US 2004106817				20040603			ì	US 2	003-	7171	30			03	
US	7071	140	< B2 20060704									11	18			
CA	2507	181			A1		2004	0617	ı	CA 2	003-	2507	181			03 19
WO	WO 2004050238					A1 20040617				•	 003-	US36	940		20	03
								•		<					11	19
	W:	CA, ES, KE, MG, RO, TZ,	CH, FI, KG, MK, RU, UA,	CN, GB, KP, MN, SC, UG,	AM, CO, GD, KR, MW, SD, UZ, KE,	CR, GE, KZ, MX, SE, VC,	CU, GH, LC, MZ, SG, VN,	CZ, GM, LK, NI, SK, YU,	DE, HR, LR, NO, SL, ZA,	DK, HU, LS, NZ, SY, ZM,	DM, ID, LT, OM, TJ, ZW	DZ, IL, LU, PG, TM,	EC, IN, LV, PH, TN,	EE, IS, MA, PL, TR,	EG, JP, MD, PT, TT,	
	LZ AA :	DW,	GП,	GIT,	rc,	LO,	TATAA *	114,	υv,	υL,	04,	14,	UG,	4111	444	

```
AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY,
             CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC,
             NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA,
             GN, GQ, GW, ML, MR, NE, SN, TD, TG
     AU 2003291572
                                 20040623
                                              AU 2003-291572
                           A1
                                                                      2003
                                                                      1119
                                                  <--
     BR 2003016851
                                 20051018
                                              BR 2003-16851
                                                                       2003
                                                                       1119
     EP 1590083
                           A1
                                 20051102
                                              EP 2003-768979
                                                                       2003
                                                                      1119
                                                 <--
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE,
             MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ,
             EE, HU, SK
     CN 1723083
                                              CN 2003-80104883
                                 20060118
                                                                       2003
                                                                       1119
                                                 <--
     JP 2006507937
                           т
                                 20060309
                                              JP 2004-557223
                                                                       2003
                                                                      1119
                                                 <--
                                 20050930
                                              IN 2005-MN672
     IN 2005MN00672
                           Α
                                                                      2005
                                                                      0627
                                                 <--
PRIORITY APPLN. INFO.:
                                              US 2002-430163P
                                                                      2002
                                                                      1202
                                                 <--
                                              US 2003-717130
                                                                      2003
                                                                      1118
                                              WO 2003-US36940
                                                                      2003
                                                                      1119
```

AB The present invention relates to a catalyst comprising a complex of catalytic oxides comprising rubidium, cerium, chromium, iron, bismuth, molybdenum, and ≥1 of nickel or nickel and cobalt, optionally magnesium, and optionally one of phosphorus, antimony, tellurium, sodium, lithium, potassium, cesium, thallium, boron, germanium, tungsten calcium, wherein the relative ratios of these elements are represented by $\label{eq:RbaCebCrcMgdAeFefBigYhMol2Ox, wherein A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \geq 1 of A = Ni or the combination of Ni and Co; Y = \leftarrow 1 of Ni and Co; Y = \left$ P, Sb, Te, Li, Na, K, Cs, Tl, B, Ge, W, Ca, Zn, a rare earth element, or mixts. thereof; a = 0.01-1; b = 0.01-3; c = 0.01-2; d = 0-7; e = 0.01-10; f = 0.01-4; g = 0.01-10.05-4; h = 0-3; x = a number determined by the valence requirements of the other elements present, wherein b + c \geq g and wherein the catalyst is substantially free of manganese, a noble metal and vanadium. The catalyst is useful in processes for the ammoxidn. of an olefin selected from the group consisting of propylene, isobutylene or mixts. thereof, to acrylonitrile, methacrylonitrile and mixts. thereof, resp. Thus, ferric nitrate nonahydrate 69.752, nickel nitrate hexahydrate 139.458, magnesium nitrate hexahydrate 49.186, bismuth nitrate pentahydrate 20.937, rubidium nitrate 2.122, and 50% cesium hexanitrate diammonium 94.654 g were melted at 70° , ammonium heptamolybdate 203.219, chromium trioxide 0.959, and 28.75% silica sol 871.08 g were mixed and combined with the metal nitrate melt, dried, denitrified at 290° for 3 h and 425° for 3 h, and calcined at 570° for 3 h to give a catalyst, propylene and the resulting catalyst were fed into a reactor (propylene/catalyst = 0.06/h) and reacted at 430° to give acrylonitrile, showing conversion 80.0% and selectivity to acrylonitrile 81.0.

REFERENCE COUNT:

THERE ARE 35 CITED REFERENCES AVAILABLE

35

FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 3 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 3

ACCESSION NUMBER:

2003:931316 HCAPLUS Full-text

DOCUMENT NUMBER:

139:396288

TITLE:

Ammoxidation of carboxylic acids into a

mixture of saturated and unsaturated nitriles

INVENTOR(S):

Godbole, Sanjay P.; Paparizos,

Christos; Seely, Michael J.

PATENT ASSIGNEE(S):

The Standard Oil Company, USA

SOURCE:

PCT Int. Appl., 15 pp.

DOCUMENT TYPE:

CODEN: PIXXD2 Patent

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 1

	PATENT NO.					KIND DATE			i	APPI	ICAT	ION :	NO.			DATE	
		2003		83		A1		2003	1127	1	WO 2	003-	US15	983			
																	2003 0516
		₩:	CH, GB, KP, MN, SD,	CN, GD, KR, MW,	CO, GE, KZ, MX, SG,	CR, GH, LC, MZ,	CU, GM, LK, NI, SL,	AU, CZ, HR, LR, NO, TJ,	DE, HU, LS, NZ,	DK, ID, LT, OM,	BB, DM, IL, LU, PH,	DZ, IN, LV, PL,	EC, IS, MA, PT,	EE, JP, MD, RO,	ES, KE, MG, RU,	FI KG MK SC	, , ,
		RW:	GH, AZ, DE, PT,	GM, BY, DK, RO,	KE, KG, EE, SE,	LS, KZ, ES, SI,	MW, MD, FI, SK,	MZ, RU, FR, TR,	TJ, GB, BF,	TM, GR, BJ,	AT, HU,	BE, IE,	BG, IT,	CH,	CY, MC,	CZ NL	,
	US	2003			,			2003			US 2	003-	4385	86			2003
		6000	240			20		2226	0100		<						0515
		6982 2003		20		B2 A1		2006			AU 2	:003-	2336	20			2003 0516
	EP	1503	982			A1		2005	0209	1	EP 2		7290	57			2003 0516
•		R:	MC,		IE,			ES, LV,			GR,						
	BR	2003				A		2005	0301	1	BR 2	:003-	9879				2003 0516
	JР	2005	5261	35		T		2005	0902	,		: :004-	5053	16			2003 0516
	CN	1701	060			A		2005	1123	4		: :003-	8111	50			2003 0516
PRIO	RIT	Y APP	LN.	INFO	.:					1		: :002-	3810	66P		P	2002

0516

WO 2003-US15983

<--

2003 0516

DATE

AB A process for increasing the yield of acetonitrile produced during the manufacture of acrylonitrile, comprises introducing a hydrocarbon selected from propylene and propane, a carboxylic acid, ammonia, and an O2-containing gas into a reaction zone containing an ammoxidn. catalyst (e.g., BiFeMoOx), reacting the hydrocarbon, carboxylic acid, ammonia and oxygen over said catalyst at an elevated temperature to produce acrylonitrile, hydrogen cyanide and acetonitrile, and recovering the acrylonitrile, hydrogen cyanide and acetonitrile from the reactor.

REFERENCE COUNT:

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

APPLICATION NO.

L68 ANSWER 4 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 4

ACCESSION NUMBER:

2002:142588 HCAPLUS Full-text

DOCUMENT NUMBER:

136:184267

8

TITLE:

Improved catalysts for the manufacture of

acrylonitrile

INVENTOR(S):

Paparizos, Christos; Seely,

Michael J.; Friedrich, Maria Strada;

Suresh, Dev D.

PATENT ASSIGNEE(S):

The Standard Oil Company, USA

SOURCE:

PCT Int. Appl., 11 pp.

DATE

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

KIND

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

WO	2002	- 0139	63		A2		2002	0221	1	WO 2	2001-	US12	4253			001 302
										<	(,	J U Z
WO	2002	0139	63		A3		2002	0502								
	W: RW:	CH, GB, KP, MN, SK, GH, CH,	CN, GD, KR, MW, SL, GM, CY,	CO, GE, KZ, MX, TJ, KE, DE,	CR, GH, LC, MZ, TM, LS, DK,	CU, GM, LK, NO, TR, MW, ES,	CZ, HR, LR, NZ, TT, MZ, FI,	DE, HU, LS, PL, TZ, SD, FR,	DK, ID, LT, PT, UA, SL, GB,	DM, IL, LU, RO, UG, SZ, GR,	BG, DZ, IN, LV, RU, UZ, TZ, IE,	EC, IS, MA, SD, VN, UG, IT,	EE, JP, MD, SE, YU, ZW, LU,	ES, KE, MG, SG, ZA, AT, MC,	FI, KG, MK, SI, ZW BE, NL,	
		•		•	BF, TD,	•	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	
US	6458	•		•			2002	1001	. 1	us 2	-000	6413	80			
										<	(000 317
CA	2417	987			A1		2002	0221		CA 2	2001-	2417	987			
											(- -					001 302
AU	2001	7813	6		А		2002	0225	;		2001-	7813	6			
			-								· · · · ·	. 010				001 302
EP	1309	402			A2		2003	0514	1		2001-	9561	0.3			
		-							•							001 302

	MC,	PT,	ΙE,	SI,	LT,	LV,	FI,	RO,	MK	, CY	, AI	, T		NL,	SE	,
2001	01333	LO		Α		20030	0624	В	R :	2001-	-133	310				2001
																0802
										<						
2004	5057	66		Т		2004	0226	J	P :	2002	-519	9095				0001
																2001 0802
										<						0002
2266	784			C2		2005	1227	R	U :	2003	-107	7043				
																2001 0802
										<						0002
2002	19839	98		A1		2002	1226	U	S	2002	-213	3755				
																2002 0806
										<						0806
6965	046			В2		2005	1115									
1075	25			Α		2003	1231	В	G :	2003	-107	7525				0000
																2003 0205
										<						0200
2003	0010	06		Α		2004	0213	2.	A	2003	-100)6				
																2003 0205
										<- -						0203
Y APP	LN.	INFO	. :					U	S	2000	-641	1380		2	-	
																2000
										<						0817
								W			-US2	2425	3	Ţ	v.	
																2001
										<						0802
	2001 2004 2266 2002 6965 1075	MC, 200101333 200450576 2266784 200219833 6965046 107525 200300106	MC, PT, 2001013310 2004505766 2266784 2002198398 6965046 107525 2003001006	MC, PT, IE, 2001013310 2004505766 2266784 2002198398 6965046 107525	MC, PT, IE, SI, 2001013310 A 2004505766 T 2266784 C2 2002198398 A1 6965046 B2 107525 A 2003001006 A	MC, PT, IE, SI, LT, 2001013310 A 2004505766 T 2266784 C2 2002198398 A1 6965046 B2 107525 A 2003001006 A	MC, PT, IE, SI, LT, LV, 2001013310 A 20036 2004505766 T 20046 2266784 C2 20053 2002198398 A1 20023 6965046 B2 2005 107525 A 20033 2003001006 A 20046	MC, PT, IE, SI, LT, LV, FI, 2001013310 A 20030624 2004505766 T 20040226 2266784 C2 20051227 2002198398 A1 20021226 6965046 B2 20051115 107525 A 20031231 2003001006 A 20040213	MC, PT, IE, SI, LT, LV, FI, RO, 2001013310 A 20030624 B 2004505766 T 20040226 J 2266784 C2 20051227 R 2002198398 A1 20021226 U 6965046 B2 20051115 A 20031231 B 2003001006 A 20040213 Z	MC, PT, IE, SI, LT, LV, FI, RO, MK 2001013310 A 20030624 BR 2004505766 T 20040226 JP 2266784 C2 20051227 RU 2002198398 A1 20021226 US 6965046 B2 20051115 A 20031231 BG 2003001006 A 20040213 ZA Y APPLN. INFO.: US	MC, PT, IE, SI, LT, LV, FI, RO, MK, CY 2001013310 A 20030624 BR 2001 2004505766 T 20040226 JP 2002 2266784 C2 20051227 RU 2003 2002198398 A1 20021226 US 2002 6965046 B2 20051115 A 20031231 BG 2003 2003001006 A 20040213 ZA 2003 Y APPLN. INFO.: US 2000	MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AI 2001013310 A 20030624 BR 2001-133 < 2004505766 T 20040226 JP 2002-513 2266784 C2 20051227 RU 2003-107 2002198398 A1 20021226 US 2002-213 6965046 B2 20051115 A 20031231 BG 2003-107 2003001006 A 20040213 ZA 2003-106 Y APPLN. INFO.: US 2000-643	MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, T 2001013310 A 20030624 BR 2001-13310 < 2004505766 T 20040226 JP 2002-519095 < 2002198398 A1 20021226 US 2002-213755 < 6965046 B2 20051115 A 20031231 BG 2003-107525 2003001006 A 20040213 ZA 2003-1006 Y APPLN. INFO.: US 2000-641380 < WO 2001-US2425	MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR 2001013310 A 20030624 BR 2001-13310	MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR 2001013310 A 20030624 BR 2001-13310 < 2004505766 T 20040226 JP 2002-519095 2266784 C2 20051227 RU 2003-107043 2002198398 A1 20021226 US 2002-213755 6965046 B2 20051115 A 20031231 BG 2003-107525 2003001006 A 20040213 ZA 2003-1006 Y APPLN. INFO.: US 2000-641380 A C WO 2001-US24253 W	2001013310 A 20030624 BR 2001-13310 2004505766 T 20040226 JP 2002-519095 2266784 C2 20051227 RU 2003-107043 2002198398 A1 20021226 US 2002-213755 6965046 B2 20051115 A 20031231 BG 2003-107525 2003001006 A 20040213 ZA 2003-1006 Y APPLN. INFO.: US 2000-641380 A C WO 2001-US24253 W

AB A catalyst composition comprising a complex of catalytic oxides of iron, bismuth, molybdenum, cobalt, cerium, antimony, at least one of nickel or magnesium, and at least one of lithium, sodium, potassium, rubidium, or thallium, and characterized by the following empirical formula: AaBbCcFedBieCofCegSbhMomOx wherein A is least one of Cr, P, Sn, Te, B, Ge, Zn, In, Mn, Ca, W, or mixts. thereof, B is ≥1 of Li, Na, K, Rb, Cs, Tl, or mixts. thereof, C is least one of Ni, Mg or mixts. thereof, a = 0-4.0, b = 0.01-1.5, c = 1.0-10.0, d = 0.1-5.0, e = 0.1-2.0, f = 0.1-10.0, g = 0.1-2.0, h = 0.1-2.0, m = 0.1-2.0= 12.0-18.0, and x = a number determined by the valence requirements of the other elements present. The catalyst is useful in processes for the ammoxidn. of an olefin selected from the group consisting of propylene, isobutylene or mixts. thereof, to acrylonitrile, methacrylonitrile and mixts. thereof, resp. Thus, 196.49 g ammonium heptamolybdate in 400 mL water, 625 g silica sol (40% SiO2), and a 50% solution of Sb203 5.96, Fe(NO3)3-9H2O 66.12, N1(NO3)2-6H2O 71.39, Co(NO3)2-6H2O 83.36, Mg(NO3)2-6H2O 41.96, Bi(NO3)3-5H2O 19.85, KNO3 1.66, and Ce(NH4)2(NO3)6-6H2O 89.73 q were blended to give 479 g catalyst and heated at 290° for 3 h, at 425° for 3 h , and at 600° for 3 h to give a finished catalyst K0.2Ni3.0Mg2.0Fe2.0Bi0.5Co3.5Ce1.0Sb0.5Mo13.6Ox having conversion of propylene to all products 98.0% and conversion propylene to acrylonitrile 79.8%.

```
L68 ANSWER 5 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 5

ACCESSION NUMBER: 2001:195219 HCAPLUS Full-text

DOCUMENT NUMBER: 134:223141

TITLE: Ammoxidation process for increasing the yield of hydrogen cyanide and acetonitrile produced during the manufacture of acrylonitrile

INVENTOR(S): Godbole, Sanjay P.; Seely, Michael J.; Suresh, Dev D.

PATENT ASSIGNEE(S): The Standard Oil Company, USA
```

SOURCE: U.S., 5 pp., Cont.-in-part of U.S. Ser. No. 208,053, abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6204407	В1	20010320	US 2000-517404	2000
			<	0302
TW 565547	В	20031211	TW 2001-90106356	2001 0319
			<	0015
PRIORITY APPLN. INFO.:			US 1998-208053 B2	1998 . 1209
			<	1209
			US 2000-517404 A	2000 0302
			<	

AB A process for increasing the yield of one or both co-products HCN and MeCN produced during the manufacture of acrylonitrile comprises introducing a hydrocarbon selected from propylene and propane, a mixture comprising one or more alcs. selected from crude methanol, crude ethanol or crude propanol, ammonia and air into a reaction zone containing an ammoxidn. catalyst, reacting the hydrocarbon, alc., ammonia and oxygen over said catalyst at an elevated temperature to produce acrylonitrile, hydrogen cyanide and acetonitrile, and recovering the acrylonitrile, hydrogen cyanide and acetonitrile from the reactor.

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 6 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 6

ACCESSION NUMBER:

1999:147352 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER:

130:184450

TITLE:

Regeneration of used molybdenum-based

catalysts by addition of ammonium dimolybdate

INVENTOR(S):

Suresh, Dev Dhanaraj; Paparizos,

Christos; Seely, Michael J.;

Drenski, Tama Lee; Friedrich, Maria Strada

PATENT ASSIGNEE(S):

The Standard Oil Company, USA

SOURCE:

U.S., 3 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5877108	A	19990302	US 1997-988589	1997 1205
ZA 9810494	А ·	19990524	< ZA 1998-10494	1998 1117
EP 922492	A1	19990616	< EP 1998-309585	1998 1124

	_	

	R:		-	-			•		GB, G	R,	IT,	LI,	LU,	NL,	SE,
		MC,	PT,	ΙE,	SI,	LT,	LV,	FI,	RO						
MX	9810	186			Α		20000	0131	MX	19	998-3	1018	6		
															1998
															1203
										<-					
CN	1226	461			Α		19990	0825	CN	19	998-	1263	63		
				•											1998
															1204
															1204
DD.	0005	c c o			70		2000	0/11	חמ .	-		5660			
BR	9805	UOO			A		20000	J4 L L	BR	Τ;	990-	2000		•	1000
				•											1998
															1204
										-					
JP :	1123	5526			Α		19990	0831	JP	19	998-	3474	64		
															1998
															1207
										<-					
TW ·	4124	46			В		2000	1121	TW	19	998-	8712	0171		
															1999
															0113
										<-					
PRIORITY	ΔΡΟΙ	r.n	TNFO						110		997-	9885	89		Ą
INTONITI	WE E.	DIA .	THEO	• •					0.5		J J 1 = .	,,,,,	0)	•	1997
										_					1205
										<-					

A process for regenerating molybdenum-containing ammoxidn, catalyst includes replacing AB the molybdenum loss from the catalyst during the ammoxidn. reaction wherein ammonium dimolybdenum is utilized as the source for replacement of the molybdenum loss from the original catalyst.

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 7 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 7

ACCESSION NUMBER:

1998:774201 HCAPLUS Full-text

DOCUMENT NUMBER:

130:25443

TITLE:

Catalyst for the manufacture of acrylonitrile

and hydrogen cyanide

INVENTOR(S):

Suresh, Dev Dhanaraj; Paparizos,

Christos; Seely, Michael J.;

PATENT ASSIGNEE(S):

Friedrich, Maria Strada; Drenski, Tama Lee

SOURCE:

The Standard Oil Company, USA

U.S., 4 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5840648	A	19981124	US 1997-923878	1997 0902
ZA 9807256	А	19990215	< ZA 1998-7256	1998 0813
EP 900592	A1	19990310	< EP 1998-306542	1998 0817
			<	

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE,

r:	MC P 1321188				LT, LV, 2003			מי	2003-75784		
101	1321100			ΑI	2003	0023	Ľ	S E	2003-73704		1998
									<		0817
	R: DE R 9806573		GB,		NL 2000	0500	_	מפ	1998-6573		
D.	X 900037.	,		А	2000	0009	1.	ΣIC	1990-0373		1998
					ř				<	•	0828
R	115333			В1	2000	0128	F		1998-1345		
											1998 0831
									<		0031
Cì	1223903	3		A	1999	0728	C	CN	1998-117923		1998
											0901
Cì	N 1131725	5		В	2003:	1224			< ·		
	2217232			C2				RU	1998-117081		
	•										1998 0901
-					0005		_		<		
В	G 64461			ВІ	20050	13,31	E	3G	1998-102741		1998
									<		0901
JI	P 1116971	.5		А	1999	0629	J	JΡ	1998-248798		
											1998 0902
									<		0902
TV	√ 470666			В	20020	0101	T	'W	1998-87114484		1998
											1110
T	1 2005DE0	10922		Α	2006:	1201	7	N	< 2005-DE922		
11	· 2003DB0	00322		Α	2000.	1201	1	LIN	2005 DE922		2005
									<		0412
PRIORIT	TY APPLN.	INFO	.:				U	JS	1997-923878	Α	
			•								1997 0902
							_		<	- -	
							E	ΣP	1998-306542	A3	1998
											0817
AB T	he title	catal	Lvst	comp	osition	comp	rise	s	< a complex of ca	talvt	ic oxi

AB The title catalyst composition comprises a complex of catalytic oxides of iron, bismuth, molybdenum and calcium and characterized by the formula: AaBbCcDdFeeBifMO12Ox where A=one or more of Li, Na, K, Rb and Cs or mixts. thereof B=one or more of Mg, Mn, Ni, Co, Ag, Pb, Re, Cd and Zn or mixts. thereof C=one or more of Ce, Cr, Al, Sb, P, Ge, La, Sn, V and W or mixts. thereof D=one or more of Ca, Sr, Ba or mixts. thereof and a=0.01 to 1.0; b and e=1.0-10; c, d, and f=0.1 to 5.0 and x is a number determined by the valence requirements of the other elements present.

REFERENCE COUNT:

THERE ARE 67 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 8 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 8

ACCESSION NUMBER:

1998:668001 HCAPLUS Full-text

DOCUMENT NUMBER:

129:302946

TITLE:

Method of improving the attrition resistance of vanadium/antimony oxide based catalyst

INVENTOR(S):

Seely, Michael J.; Friedrich, Maria Strada; Suresh, Dev Dhanaraj; Kocjancic, Frank

John

67

PATENT ASSIGNEE(S):

The Standard Oil Co., USA

U.S., 4 pp., Cont.-in-part of U.S. Ser. No. SOURCE:

574,055, abandoned.

CODEN: USXXAM

DOCUMENT TYPE: LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	ENT NO.	KIND	DATE	APPLICATION NO.	DATE
US	5821192	A	19981013	US 1996-717074	1996 0923
, DD TOD TEN	ADDIN THEO.			< US 1996-574055 B2	,
PRIORITY	APPLN. INFO.:			US 1990-374U33 B2	1996 1218
				/	

A process for preparing a catalyst VaSbbMcOx, wherein M = Sn, Ti, Li, Na, K, Mo, W, Fe, AR Cr, Co, Cu, Ga, Nb, Ta, Te, Bi, or mixts. thereof, a = 0.1-5, preferably 0.1-3, most preferably 0.1-2, b = 0.1-5, preferably 0.1-3, most preferably 0.1-2, c = 0.0-5, preferably >0 to 5, most preferably 0.01-3, and x is a number sufficient to satisfy the valency requirements of the elements, comprises forming an aqueous slurry comprising \boldsymbol{V} and Sb, adding a peptizing agent (NH3, amines, etc.) free of any Li compds. capable of providing hydroxide ions to the slurry and spray drying the slurry to form an attrition resistant catalyst. Thus, a V1Sb1.5Sn0.205.15 catalyst was prepared and used in ammoxidn. reaction for manufacture of acrylonitrile.

REFERENCE COUNT:

THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 9 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 9

ACCESSION NUMBER:

1998:427812 HCAPLUS Full-text

DOCUMENT NUMBER:

129:109400

1

TITLE:

Ammoxidation catalysts containing germanium to

produce high yields of acrylonitrile

INVENTOR(S):

Drenski, Tama Lee; Friedrich, Maria Strada;

Paparizos, Christos; Seely, Michael J.; Suresh, Dev Dhanaraj

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 4 pp., Cont.-in-part of U.S. Ser. No.

461,996, abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	PATENT NO.		DATE	APPLICATION NO.	DATE
	/				
US 5770757		Α	19980623	US 1996-646742	
					1996
				<	0503
PRIORITY APPLN.	INFO.:		•	US 1995-461996	B2
				•	1995
					0605

The catalyst has the atomic ratios set forth in the empirical formula: AB AaBbCcGedBieMo12Ox (A = ≥2 of alkali metals, In, Tl; B = Mg, Mn, Ni, Co, Ca, Fe, Ce, Sm, Cr, Sb, W, preferably B equals the combination of Fe and ≥1 element selected from the group consisting of Ni and Co and ≥1 element selected from the group consisting of Mg, Mn, Ca, Ce, Sn, Cr, Sb, and W; C = Pb, Eu, B, Sn, Te, Cu; a = 0.05-5.0; b = 5-12; c = 0-5.0; d = 0.1-2.0; e = 0.1-2.0; x = the number of oxygen atoms required to satisfy

the valency requirements of the other elements; b > a + c). Thus, ammoxidn. of propylene using a silica-supported catalyst containing

Cs0.1K0.1Ni6.2Mq2.5Fe2Bi0.5Ce0.5Mo13.6Ge0.5Ox gave 84.4% acrylonitrile.

REFERENCE COUNT:

12 THERE ARE 12 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L68 ANSWER 10 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 10

ACCESSION NUMBER:

1997:752727 HCAPLUS Full-text

DOCUMENT NUMBER:

128:24259

TITLE:

Ammoxidation catalysts containing germanium to

produce high yields of acrylonitrile

INVENTOR(S):

Drenski, Tama Lee; Friedrich, Maria Strada;

Paparizos, Christos; Seely,

Michael J.; Suresh, Dev Dhanaraj

PATENT ASSIGNEE(S):

Standard Oil Co:, USA

SOURCE:

U.S., 4 pp., Cont.-in-part of U.S. Ser. No.

432,329.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				· -
US 5688739	Α	19971118	US 1996-642707	
				1996
				0503
			<	
PRIORITY APPLN. INFO.:			·US 1995-432329	A2
				1995
				0501

AB The catalyst has the atomic ratios set forth in the empirical formula AaBbCcGedBieMol2Ox, where A = ≥2 alkali metals, In, and Tl; B = the combination of Fe plus Ni and/or Co plus ≥1 element of Mg, Mn, etc.,; C = ≥1 Pb, Eu, B, Sn, Te, and Cu; a = 0.05-5.0; b = 5-12; c = 0-5.0; d = 0.1-2.0; e = 0.1-2.0; x = number of O atoms; and b > a + c. A catalyst Ge0.5Li0.5Cs0.1K0.1Ni6.2Mg2.5Fe2Bi0.75Ce0.5Mol3.6Ox was prepared and used for ammoxidn. of propylene to give 82.5% acrylonitrile.

L68 ANSWER 11 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 11

ACCESSION NUMBER:

1994:167283 HCAPLUS Full-text

DOCUMENT NUMBER:

120:167283

TITLE: INVENTOR(S):

Catalysts for ammoxidation of olefins Suresh, Dev D.; Seely, Michael J.;

Friedrich, Maria S.; Paparizos,

Christos

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 11 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5258543	Α.	19931102	US 1992-904611	1992 0626
JP 07082228	Α	19950328	< JP 1993-216786	0626

				<		
US 5093299	Α	19920303	US	1990-462202		
						1990
						0109
				<		
ES 2057448	Т3	19941016	ES	1990-313574		
						1990
						1213
				<		
IN 179782	A1	19971206	IN	1990-DE1260		
						1990
						1214
				<		
BR 9006650	A	19911001	DD.	1990-6650		
BR 9000030	n	19911001	DK	1990-0030		1990
						1228
				,		1226
DO 100511		10050220	20	<		
RO 109511	B1	19950330	RO	1991-146695		
						1991
·						0107
				<		
CN 1053197	Α	19910724	CN	1991-100078		
						1991
						0108
				<		
CN 1026758	В	19941130				
RU 2038146	C1	19950627	RU	1991-4894302		
						1991
						0108
				<		
JP 07047271	Α	19950221	JP	1991-1034		
				,		1991
						0109
				<		
JP 3337696	B2	20021021				
KR 184871	B1	19990415	KR	1991-182		
						1991
						0109
				<		0103
US 5175334	Α	19921229	IIS	1991-806959		
05 01/0004		17721227	0.5	1331 000333		1991
						1212
				<		1212
DDTODIMY ADDING THE			710	1990-462202	7.0	
PRIORITY APPLN. INFO.:			US	1330-402202	A2	1000
						1990
				,		0109
				<		

The title compds. are prepared by ammoxidn. of C3H6 or isobutylene with O-containing gas and NH3 at 260-600° using metal oxide catalysts AaKbCscMgdNieFefBigMO12Ox (A = Co, Mn, Cr, P, Sb, Te, Na, Ce, W; a = 0-5; b = 0-0.4; c = 0-0.4; b + c = 0.1-0.4; d, e, f, g = 0.2-10; x is determined by valency requirement). Thus, ammoxidn. of C3H6 (in 1.8:2.2:3.6:2.4:6 mol ratio of C3H6-NH3-O-N2-H2O mixture) in a fixed bed reactor containing Cs0.05K0.06Ni5.5Mg2.5Fe2.0Bi1.0P0.1Mo12.0Ox on SiO2 catalyst at 430° and 6.0 s residence time gave 78.5% acrylonitrile (I) with C3H6 conversion 99.0% and I selectivity 79.3%.

```
L68 ANSWER 13 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 13 ACCESSION NUMBER: 1993:411574 HCAPLUS Full-text
```

DOCUMENT NUMBER: 119:11574

TITLE:

Manufacture of hydrogen cyanide by catalytic

ammoxidation of crude acetonitrile

INVENTOR(S): Suresh, Dev D.; Cesa, Mark C.; Yang, Tai C.;

Grasselli, Robert K.; Bruce, Mark R.; Seely, Michael J.; Friedrich, Maria

S.; Dubbert, Robert A. Standard Oil Co. USA

PATENT ASSIGNEE(S): Standard Oil Co., USA

SOURCE:

U.S., 7 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
us 5204079	А	19930420	US 1991-656543	1991 0215
PRIORITY APPLN. INFO.:			.< US 1991-656543	1991 0215
			<	

HCN is prepared from HCN-containing CH3CN(1) by contacting the crude CH3CN with an AΒ ammoxidn. catalyst at elevated temperature in the presence of an O-containing gas and NH3. Preferably, the process is performed in the absence of C3H6.

L68 ANSWER 14 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 14

ACCESSION NUMBER:

1992:579231 HCAPLUS Full-text

DOCUMENT NUMBER:

117:179231

TITLE:

Catalyst for propylene ammoxidation to

acrylonitrile

INVENTOR(S):

Paparizos, Christos; Shaw, Wilfrid

G.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 5 pp.

DOCUMENT TYPE:

CODEN: USXXAM

Patent English

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5134105	A	19920728	US 1990-495875	
				1990
			·	0319
US 5235088	Α.	19930810	US 1992-881581	
00 3233000		19930010	00 1332 001001	1992
				0512
			<	
RO 111162	В1	19960730	RO 1992-775	1992
				0609
			<	0003
EP 573713	A1	19931215	EP 1992-305436	
				1992
			<	0612
EP 573713	B1 ·	19970102	\	
R: AT, DE, ES,				
CN 1080284	Α	19940105	CN 1992-105674	
				1992
			<	0619
CN 1034863	В	19970514	\	
BR 9202497	A	19940118	BR 1992-2497	
				1992
				0707

			<	
CN 1141216	Α	19970129	CN 1996-101529	
				1996
				0115
			<	
CN 1071593	В	20010926		
PRIORITY APPLN. INFO.:	_		US 1990-495875	A3
				1990
				0309
				0303

AB Olefins, such as propylene and isobutylene, are converted to the corresponding unsatd. nitriles, acrylonitrile, and methacrylonitrile, resp., by reacting a mixture of the olefin, NH3 and mol. O-containing gas in the presence of a catalyst containing the oxides of Mo, Bi, Fe, Co, Ni, and Cr and either P or Sb or mixts. thereof, and an alkali metal or mixture thereof, and optionally 1 element selected from the group of an alkaline earth metal, a rare earth metal, Nb, Tl, As, Mg, Zn, Cd, V, B, Ca, Sn, Ge, Mn, W, Te, or mixts. thereof.

L68 ANSWER 15 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 15

ACCESSION NUMBER:

1991:608830 HCAPLUS Full-text

DOCUMENT NUMBER:

115:208830

TITLE:

Process for the manufacture of

acrylonitrile and methacrylonitrile

INVENTOR(S):

Friedrich, Maria S.; Seely, Michael J.

; Suresh, Dev D.

PATENT ASSIGNEE(S):

Standard Oil Co., USA Eur. Pat. Appl., 10 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2

PAT	ENT NO.	-	KIND	DATE	APP	LICATION NO.	DATE
EP	437056		A2 ·	19910717	EP	1990-313574	1990 1213
						<	1213
EΡ	437056 437056 437056		B1	19910918 19940810 19980415	•		
	R: AT,						
US	5093299			19920303		1990-462202	1990 0109
FC	2057448		т3	19941016			
	2037440		13	19941010			1990 1213
TNI	179782		7.1	10071206		<	
IN	1/9/82		A1	19971206		1990-DE1260	1990 1214
						<	
BR	9006650		. A	19911001	BR	1990-6650	1990 1228
RO	109511		В1	19950330		< · 1991-146695	1991
						,	0107
						<	0107
CN	1053197		Α	19910724	CN	1991-100078	
							1991

					0108
			<		
CN 1026758	В	19941130			
RU 2038146	C1	19950627	RU 1991-4894302		
RO 2038140	CI	19930027	RO 1991-4094502		1 0 0 1
					1991
					0108
			<		
JP 07047271	Α	19950221	JP 1991-1034		
					1991
					0109
		•	<		0103
TD 0007606	50	00001001	(
JP 3337696	B2	20021021			
KR 184871	B1	19990415	KR 1991-182		
					1991
					0109
			<		
US 5175334	Α	19921229	US 1991-806959		
00 01/0004	71	13321223	00 1991 000909		1991
•					
		•			1212
			<		
PRIORITY APPLN. INFO.:			US 1990-462202	Α	
					1990
					0109
			<		0100
			\		

AB (Meth)acrylonitrile is prepared by ammoxidn. of C3H6 or isobutylene with O-containing gas and NH3 at 260-600° using oxide catalysts AaKbCscMgdNieFefBigMO12Ox (A = Co,Mn,Cr,P,Sb,Te,Na,Ce, and/or W; a = 0-5; b = 0-0.4; c = 0-0.4; b+c = 0.1-0.4; d,e,f = 0.2-10; x is based on valency requirements). Thus, ammoxidn. of C3H6 (in 1.8:2.2:36:2.4:6 C3H6-NH3-O-N2-H2O mixture) in a fixed bed reactor containing K0.04Cs0.03Ni3Mg2Fe1.8Mn0.45Bi0.45Cr0.45Mo12Ox on SiO2 catalyst at 430° and 6.0 s residence time gave C3H6 conversion 100% and acrylonitrile selectivity 78.6%.

L68 ANSWER 16 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 16

ACCESSION NUMBER:

1991:229592 HCAPLUS Full-text

DOCUMENT NUMBER:

114:229592

TITLE:

Process and catalysts for ammoxidation of

paraffins in monomeric unsaturated nitrile .

manufacture

INVENTOR(S):

Seely, Michael J.; Friedrich, Maria

S.; Suresh, Dev D.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 5 pp.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4978764	A	19901218	US 1989-411989	
				1989 0925
			<	
EP 420455	A2	19910403	EP 1990-310039	
				1990
				0913
			<	
EP 420455	A 3	19911023		
EP 420455	B1 .	19950322		
R: DE, IT, NL	•			
JP 03157356	Α	19910705	JP 1990-254001	
				1990
				0921

<--

					1993
					0901
				<	
JP 2845728	В2	19990113			
ZA 9306480	A	19940325	7. D	1993-6480	
2A 9300400	А	17740323	27	1999 0400	1993
					0902
				<	
RU 2105757	C1	19980227	RU	1993-50369	
					1993
					0902
				<	
RO 111163	В1	19960730	RO	1993-1191	
					1993
					0903
				<	0,000
OV. 1100001	7	10050015	0)1	-	
CN 1100091	A	19950315	CN	1993-116832	1000
					1993
					0906
,				<	
CN 1036581	В	19971203			
BR 9303736	A	19950502	BR	1993-3736	
					1993
					0908
				<	
KR 138499	В1	19980501	KD	1993-18122	
RR 136499	DI	19900001	M	1995-10122	1993
					0909
				<	
PRIORITY APPLN. INFO.:			US	1992-904611	
					1992
					0626
				<	

The title catalysts showing improved activity and selectivity have the empirical formula VSbaMmNnOx (a = 0.5-2; M = ≥1 of Sn, Ti, Fe, Ga; m = 0.05-3; N = ≥1 of W, Bi, MO, Li, etc.; n = 0.05-0.5) and are prepared by contacting in an aqueous solution a V compound and an Sb compound while the V compound is in solution Stirring 11.42 g V2O5, 450 mL H2O, and 50 g 30% H2O2 for 15 min, heating 21.85 g Sb2O3 with the mixture, digesting for 3 h, adding 4.99 g fumed TiO2, 33.33 g 30% SiO2 sol, and a proper amount of CrO3, grinding and calcining gave a catalyst with empirical formula VSb1.2Cr0.2Ti0.5Ox. A feed containing 1.8/2.2/3.6/2.4/6 mol ratio C3H6/NH3/O/N/H2O was contacted with the catalyst at 460° for 0.17 s giving 67.8 mol% acrylonitrile at 96.8% C3H6 conversion and 70.1% selectivity.

L68 ANSWER 12 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 12

ACCESSION NUMBER:

1994:55269 HCAPLUS Full-text

DOCUMENT NUMBER:

120:55269

TITLE:

Catalysts for the manufacture of

INVENTOR(S):

acrylonitrile and methacrylonitrile Suresh, Dev D.; Friedrich, Maria S.;

Seely, Michael J.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 5 pp. Cont.-in-part of U.S. 5,093,299.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:
FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5212137	Α	19930518	US 1991-736864	1991 0729

19990331 JP 2877477 B2

KR 156578 В1 19981201 KR 1990-15133

1990

0924

PRIORITY APPLN. INFO.:

US 1989-411989

1989 0925

<--

<--

 $\alpha, \beta\text{-Unsatd.}$ mononitriles are prepared by catalytic ammoxidn. of C3-5 paraffins with a AB catalyst composition containing 10-90% diluent/support, and 10-90% metal oxides having the formula AaDdBicFefMo120x (A = Li, Na, K, Rb, Cs, Tl, B, W, Sn, La; D = Cr, Sb, Pb, P, Cu, Ni, Co, Mn, Mg; a = 0-10; c = 0.1-10; d = 0-10; f = 0.2-10). Thus, a 5:1:2:1C3H8-NH3-O-H2O mixture was heated with a catalyst composition containing 33% Al2O3 and 67% Cs0.05K0.1Ni2.5Co4.5Fe2MnBiCr0.5Mol3.2Ox at 470° for 1.1 s to give acrylonitrile in 58.3% selectivity with 10% C3H8 conversion.

L68 ANSWER 17 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 17

ACCESSION NUMBER:

1990:36713 HCAPLUS Full-text

DOCUMENT NUMBER:

112:36713

TITLE:

Ammoxidation catalyst performance improvement

via separate boron addition and process for nitrile manufacture from olefins

INVENTOR(S):

Suresh, Dev D.; Seely, Michael J.;

Brazdil, James F.; Grasselli, Robert K.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 5 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4855275	A	19890808	US 1988-157428	
				1988
				0218
			<	
PRIORITY APPLN. INFO.:			US 1988-157428	
				1988
				0219

AB Ammoxidn. catalysts which are contacted with a heat-decomposable B compound (so as to deposit B on the surface of the catalyst) have increased catalyst activity and nitrile selectivity. Thus, a molybdate-based ammoxidn. catalyst was heated with 2% MoO3 and 1% H3BO3, then contacted at 445° with a feed containing propylene (I), O, N, NH3, and H2O, producing acrylonitrile in 82.0% yield and 85.1% selectivity with 96.4% I conversion, vs, 79.0, 79.4, and 99.6, resp., for an untreated control catalyst.

L68 ANSWER 18 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 18

ACCESSION NUMBER:

1987:428927 HCAPLUS Full-text

DOCUMENT NUMBER:

TITLE:

Method of preparation of highly active-phase

(amm)oxidation catalysts with improved performance and attrition resistance

INVENTOR(S):

Suresh, Dev D.; Zagata, Robert J.; Friedrich,

Maria S.; Seely, Michael J.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

U.S., 5 pp.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 4 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4659689	A	19870421	US 1986-836269	1986
US 5059621	A	19911022	. < US 1989-430286	0305 1989
US 5288744	A	19940222	< US 1992-900479	1102
PRIORITY APPLN. INFO.:			< LU 1984-85544	1992 0618
PRIORITI APPLIN. INFO.:			CO 1904-03344	1984 0919
			US 1985-777728	B2 1985 0919
			< US 1986-836269	A3 1986 0313
			< US 1986-839269	A3 1986
			< US 1988-172494	0313 A3
			<	1988 0324
			US 1989-430286	A3 1989 1102
			< US 1991-696708	A3 1991 0507

AB A process for the preparation of a Bi molybdate-based catalyst (e.g., 80% K0.1Ni2.5Co4.5Fe2CrBiW0.5Mo12Ox-20% SiO2), useful for ammoxidn. of propylene and butylene, comprises (1) adding a dried mixture of metal salts of the active phase of the catalyst to an aqueous sol containing a support material for the active phase; (2) adding an acid to this slurry; (3) heating the slurry to dryness; and (4) calcining the dried precursor to form the catalyst.

<--

```
L68 ANSWER 19 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 19
```

ACCESSION NUMBER:

1982:581770 HCAPLUS Full-text

DOCUMENT NUMBER:

97:181770

TITLE:

Increasing the activity of a catalytic

material

INVENTOR(S):

Grasselli, Robert; Seely, Michael J.

; Suresh, Dev; Bigler, Leroy K.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

Ger. (East), 33 pp. CODEN: GEXXA8

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DD 153761	A5	19820203	DD 1980-224816	1980 1029
PRIORITY APPLN. INFO.:			< US 1979-88889 A	1023
				1979 1029
			<	
			US 1979-90826 A	
				1979
			<	1030

AB The activity of complex oxide catalysts was improved by heating them, first in a nonoxidizing gas, then in an oxidizing gas. Thus 50% KO.1CsO.05Ni2.5Fe2Bi1Mn1CrO.5Mo13.2O2-50% SiO2 were heated overnight in an oven at 120° , then heated in air 3 h at 290° and 3 h at 425° to give a catalyst for preparation of acrylonitrile by reaction of propylene with NH3.

L68 ANSWER 20 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2002:695936 HCAPLUS Full-text

DOCUMENT NUMBER:

137:218729

TITLE:

Ammoxidation of a mixture of alcohols into a mixture of nitriles to acetonitrile and

hydrogen cyanide during the manufacture of

acrylonitrile

INVENTOR(S):

Godbole, Sanjay P.; Seely, Michael J.

; Suresh, Dev D.

PATENT ASSIGNEE(S):

The Standard Oil Company, USA

PCT Int. Appl., 14 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

SOURCE:

English

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND DAT	TE APPLICATION NO.	DATE
WO 2002070465	A1 200	020912 WO 2001-US6881	2001 0305
CH, CN, GD, GE, KR, KZ, MW, MX, SL, TJ, RW: GH, GM, CH, CY, PT, SE, NE, SN,	CO, CR, CU, CZ GH, GM, HR, HU LC, LK, LR, LS MZ, NO, NZ, PL TM, TR, TT, TZ KE, LS, MW, MZ DE, DK, ES, FI TR, BF, BJ, CF TD, TG	J, AZ, BA, BB, BG, BR, BY, BZ, CZ, DE, DK, DM, DZ, EE, ES, FI, CZ, DE, DK, DM, DZ, EE, ES, FI, CZ, ID, IL, IN, IS, JP, KE, KG, FZ, LT, LU, LV, MA, MD, MG, MK, MZ, PT, RO, RU, SD, SE, SG, SI, SZ, UA, UG, UZ, VN, YU, ZA, ZW, Z, SD, SL, SZ, TZ, UG, ZW, AT, FZ, FR, GB, GR, IE, IT, LU, MC, MZ, CG, CI, CM, GA, GN, GW, ML, MZ, CG, CI, CM, CA, CM, CM, CM, CM, CM, CM, CM, CM, CM, CM	GB, KP, MN, SK, BE, NL, MR,
MC, PT,	IE, SI, LT, LV	< S, FR, GB, GR, IT, LI, LU, NL, S J, FI, RO, MK, CY, AL, TR D40427 BR 2001-16920	0305 SE, 2001 0305

CN 1492853 A 20040428 CN 2001-822988	
	2001
·	0305
<	
JP 2004525913 T 20040826 JP 2002-569786	
	2001
	0305
<	
RU 2264385 C2 20051120 RU 2003-127737	
30 200000	2001
	0305
< 	
PRIORITY APPLN. INFO.: WO 2001-US6881 W	
INTONITI MILIAN. INTON	2001
	0305
<	5505

AB A process for increasing the yield of one or both co-products HCN and acetonitrile produced during the manufacture of acrylonitrile comprises introducing a hydrocarbon selected from propylene and propane, a mixture comprising one or more alcs. selected from crude methanol, crude ethanol, or crude propanol, ammonia and air into a reaction zone containing an ammoxidn. catalyst, reacting the hydrocarbon, alc., ammonia and oxygen over the catalyst at an elevated temperature to produce acrylonitrile, hydrogen cyanide and acetonitrile, and recovering the acrylonitrile, hydrogen cyanide, and acetonitrile from the reactor.

REFERENCE COUNT:

3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L68 ANSWER 21 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1997:591039 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER:

127:176195

TITLE:

Ammoxidation method and catalysts for production of unsaturated nitriles from

alkenes

INVENTOR(S):

Paparizos, Christos; Uajlfrid, Garsajd Sho; Shaw, Wilfrid G.

PATENT ASSIGNEE(S): SOURCE:

Dze Standart Ojl Kompani, USA Russ. From: Izobreteniya 1997, (11), 149.

CODEN: RUXXE7

DOCUMENT TYPE:

Patent

LANGUAGE:

Russian

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 RU 2077528	C1	19970420	RU 1992-5052029	1992 0622
PRIORITY APPLN. INFO.:			< SU 1992-5052029 A	1992 0622

AB Title only translated.

L68 ANSWER 22 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:769767 HCAPLUS Full-text

DOCUMENT NUMBER:

123:173479

TITLE:

Catalysts for gas-phase ammoxidation of

olefins

INVENTOR(S):

Friedrich, Maria S.; Seeley, Michael J.;

Paparizos, Christos; Suresh, Dev D.

PATENT ASSIGNEE(S):

Standard Oil Co., USA

SOURCE:

Eur. Pat. Appl., 17 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	AP	PLICATION NO.	DATE
EP 641771	A1	19950308	ΕP	1993-307073	
					1993
				<	0908
EP 641771 ·	D1	10001202		\	
R: AT, DE, ES,					
AT 174024	•	, NL 19981215	א תי	1003_307073	
A1 1/4024	1	19901213	AI	1993-307073	1993
					0908
				<	0,000
ES 2125954	Т3	19990316	ES	1993-307073	
					1993
					0908
·		•		<	
PRIORITY APPLN. INFO.:			ΕP	1993-307073 A	
					1993
					0908
				<	

AB Ammoxidn. of C3-5 mono-olefins to α , β -mono-unsatd. acyclic nitriles and HCN includes introducing such mono-olefins, mol. oxygen and ammonia into a reaction zone into vapor phase contact with a solid ammoxidn. catalyst, wherein the mol ratio of introduced mol. oxygen and ammonia to the introduced mono-olefin is at least 1.5 and 1.0, resp.; wherein the catalyst contains the elements and proportions indicated by the empirical formula V1SbaMmNnOx where a = 0.5-2; M = \geq 1 Sn, Ti, Fe, and Ga; m = 0.05-3; N = \geq 1 W, Bi, Mo, Li, Mg, P, Zn, Mn, Te, Ge, Nb, Zr, Cr, Al, Cu, Ce, B; n = 0.0-0.5; and wherein the preparation of the catalyst includes contacting in an aqueous dispersion a vanadium compound and an antimony compound while the vanadium is in solution

L68 ANSWER 23 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:748604 HCAPLUS Full-text

DOCUMENT NUMBER:

123:113054

TITLE:

A process for reduction of wastes during

manufacture of acrylonitrile

INVENTOR(S):

Bigler, Kenneth L.; Bott, Paul E.; Friedrich, Maria S.; Keckler, Kenneth P.; Kocjancic, Frank J.; Miko, Steve J.; Reiling, Vincent G.;

Rowe, Steven J.; Seely, Michael J.;

et al.

PATENT ASSIGNEE(S):

SOURCE:

Standard oil Co., USA Eur. Pat. Appl., 10 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 638546	A1	19950215	EP 1994-300858	1994 0204
			<	

В1 EP 638546 19981118

R: DE, ES, GB, IT, NL

US 5457223	Α	19951010	US	1993-104752		
				,		1993
						0811
				<		
PRIORITY APPLN. INFO.:			US	1993-104752	Α	
						1993
	•					0811
				<		
			US	1992-959237	A2	
						1992
						1009
•				/		

For substantial reduction or complete elimination of (NH4)2SO4 generated during AB acrylonitrile production by direct ammoxidn. of propylene/propane with NH3 and an Ocontaining gas (e.g., air) over a fluidized-bed catalyst, MeOH is fed to the reactor in the upper portion at a location where it reacts with a portion if not all of the excess NH3 without affecting the acrylonitrile yield. Preferably, MeOH is introduced into the reactor at below its coking temperature When an O-lean fluidized-bed catalyst is used, an addnl. O-containing gas is introduced into the reaction at a distance 8-14 in. from the MeOH feed location.

L68 ANSWER 24 OF 32 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1994:458200 HCAPLUS Full-text

DOCUMENT NUMBER:

121:58200

TITLE:

Ammoxidation of olefins

Standard Oil Co., USA

INVENTOR(S):

Paparizos, Christos; Shaw, Wilfrid

Garside

PATENT ASSIGNEE(S):

Eur. Pat. Appl., 10 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

	PA:	TENT NO.	KIND .	DATE	API	PLICATION NO.		DATE
	EP	573713	A1	19931215	EP	1992-305436		1992
						<	•	0612
	EP	· ·		19970102				
	US	R: AT, DE, ES, 5134105			US	1990-495875		1990
								0319
•	ΑТ	147070	Т	19970115	AT	< 1992-305436		
								1992 0612
		0005406	m o	10070016	n.c	1000 205426		
	ES	2095406	Т3	19970216	ES	1992-305436		1992 0612
						<		,
PRIO:	RIT	Y APPLN. INFO.:			US	1990-495875		1990
						<		0319
		•			EP	1992-305436	A	
								1992 0612
						<		

Olefins such as propylene and isobutylene are converted to the corresponding unsatd. AB nitriles, acrylonitrile, and methacrylonitrile, resp., by reacting a mixture of the

olefin, ammonia, and mol. oxygen-containing gas in the presence of a catalyst containing the oxides of molybdenum, bismuth, iron, cobalt, nickel, and chromium, and either phosphorus or antimony or mixts. thereof, and an alkali metal or mixture thereof, and optionally one element selected from the group of an alkaline earth metal, a rare earth metal, niobium, thallium, arsenic, magnesium, zinc, cadmium, vanadium, boron, calcium, tin, germanium, manganese, tungsten, tellurium, or mixts. thereof.

L68 ANSWER 25 OF 32 WPIX COPYRIGHT 2007

THE THOMSON CORP on STN

DOC. NO. CPI:

ACCESSION NUMBER: 2002-705617 [76] WPIX C2002-200136 [76]

TITLE:

Preparation of supported catalyst for catalytic vapor phase ammoxidation of propylene or isobutylene to form (meth) acrylonitrile comprises forming and mixing catalyst precursor with aqueous sol, drying obtained slurry, and calcining

DERWENT CLASS:

A41; E16; J04

INVENTOR:

FRIEDRICH M S; SEELY M J; SURESH D D

PATENT ASSIGNEE:

(STAH-C) STANDARD OIL CO OHIO

COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO KIND DATE WEEK LA PG MAIN IPC ______ US 6451730 B1 20020917 (200276) * EN 6[0]

<--

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE US 6451730 B1 US 1997-883716

19970627

PRIORITY APPLN. INFO: US 1997-883716 19970627

US 6451730 B1 UPAB: 20050527

NOVELTY - A supported catalyst is prepared by mixing a vanadium compound, at least a portion of an antimony compound, and at least a portion of a support material to form a slurry, heating the slurry, and calcining to form a catalyst precursor; mixing the catalyst precursor with an aqueous sol to form a second slurry; drying the second slurry; and calcining the dried mixture at least 150 degrees C.

DETAILED DESCRIPTION - Preparation of a supported catalyst comprising the elements and proportions indicated by the empirical formula, V1SbaMbOx, involves mixing the vanadium compound, at least a portion of the antimony (Sb) compound, and at least a portion of the M compound and an aqueous sol containing a portion of the support material to form an aqueous slurry, heating the slurry to remove the water, and calcining at at least 150 degrees C to form a catalyst precursor; mixing the catalyst precursor with an aqueous sol containing the remaining portion of the support for the catalyst and any remaining portion of the Sb compound and M compound to form a second slurry; drying the second slurry to remove the water to form a dry mixture; and calcining the dried mixture at at least 150 degrees C to form the finished catalyst.

USE - Used for the preparation of a supported catalyst which is useful in catalytic vapor phase ammoxidation of propylene, propane, or isobutylene to produce (meth) acrylonitrile.

ADVANTAGE - The catalyst prepared by the inventive process exhibits outstanding characteristics as propylene ammoxidation catalysts with acrylonitrile, yielding similar to those obtained with present day commercial antimonate catalysts. It has potential as high throughput catalysts which give low levels of waste organics during use. The process allows for easier preparation of the catalyst, and increases the hardness of the catalyst, resulting in additional or improved attrition resistance when used in the fluid bed reactor.

L68 ANSWER 26 OF 32 WPIX COPYRIGHT 2007 ACCESSION NUMBER: 2001-158999 [16] WPIX THE THOMSON CORP on STN

	10/717846					
DOC. NO. CPI: TITLE: . DERWENT CLASS:	and hydr	a mixture of ketones to hydrogen cyanide which ed yields of these co-products				
INVENTOR:	SEEL	Y M; SEE	LY M J; S	URES	EELEY M J; H D; PURUSHOTT	
PATENT ASSIGNEE	(MOB	I-C) MOB	IL OIL CO	RP;	(SEEL-I) S	VENE USA LLC; EELY M J; E-I) SURESH D
COUNTRY COUNT:	91					
PATENT INFO ABB	R.:					
PATENT NO	KIND	DATE	WEEK .	LA	PG	MAIN IPC
WO 200007 <	3261 A1 2	0001207	(200116) *	EN		
AU 200005	1359 A 2	0001218	(200118)	EN	<	
US 200200	04027 A1 2	0020110	(200208)	EN	<	
BR 200001	0997 A 2	0020219	(200222)	PT	<	
EP 118126		0020227	(200222)	EN	<	
<					<	
KR 200200 <	3572 A 2	0020112	(200247)	ко	<	
US 641348 <	5 B2 2	0020702	(200248)	EN		
CN 135158	6 A 2	0020529	(200258)	ZH	<	•
JP 200350			(200314)			
	9165 A 2 98586 A1 2			EN EN	54	
US 666702			(200370)	EN		
EP 152085			(200523)	EN		
EP 118126	2 A 2 8 B1 2	0051012	(200568)	EN		
EP 118126	8 B8 2	0051214	(200602)	EN		
DE 600231	34 E 2 34 T2 2	0060223	(200617)	DE		
DE 600231	34 T2 2	0060413	(200626)	DE		
	1 T3 2			ES		
CN 124372	6 C 2 B1 2	0060301	(200660)	ZH		
CN 126734	7 , C 2	20060929	(200703)	RO ZH		
APPLICATION DET	AILS:					
PATENT NO KIND					ICATION	DATE
WO 200007 200	3261 A1 00516		,	WO 2	000-US1337	4
US 200200 199	04027 A1 90527				.999-320937	
US 641348 199	5 B2 90527			US 1	.999-320937	
US 200301	98586 A1 Co	ont of		US 1	.999-320937	

	19990527			•
US	19990327 6667020 B2 Cont of 19990527	τ	US	1999-320937
EΡ	1520852 A2 Div Ex	1	EP	2000-935980
AU	19990527 2000051359 A	2	ΑU	2000-51359
BR	20000516 2000010997 A	I	BR	2000-10997
CN	20000516 1351586 A		CN	2000-807997
CN	20000516 1629072 A Div Ex	C	CN	2000-807997
CN	20000516 1243726 C		CN	2000-807997
DE	20000516 60023134 E	I	DE	2000-623134
DE	20000516 60023134 T2	I	DE	2000-623134
EΡ	20000516 1181268 A1	, 1	EΡ	2000-935980
ΕP	20000516 1181268 B1	I	EP	2000-935980
EP			EΡ	2000-935980
DE	20000516 60023134 E	I	EΡ	2000-935980
DE	20000516 60023134 T2	I	EΡ	2000-935980
ES	20000516 2249271 T3	I	ΕP	2000-935980
JP	20000516 2003500468 W		JP	2000-621328
BR	20000516 2000010997 A	٧	ώO	2000-US13374
ΕP	20000516 1181268 A1	V	OW	2000-US13374
JP	20000516 2003500468 W	V	MO	2000-US13374
EP	20000516 1181268 B1	V	OW	2000-US13374
EP	20000516 1181268 B8	V	WO.	2000-US13374
DE	20000516 60023134 E	V	οw	2000-US13374
DE	20000516 60023134 T2	V	ΝO	2000-US13374
RO	20000516 120909 B1	v	OW	2000-US13374
RO	20000516 120909 B1	I	RO	2001-1268
ZA	20000516 2001009165 A	2	ZA	2001-9165
KR	20011106 2002003572 A	F	KR	2001-715230
US	20011127 20030198586 A1	τ	JS	2001-16703
US	20011210 6667020 B2 20011210	τ	JS	2001-16703
EΡ	1520852 A2 19990527	F	EΡ	2004-78068
CN	19990527 1629072 A 20000516	C	CN	2004-10095706
EР	1181268 B1 Related	to F	ąp	2004-78068 20041109
	1181268 B8 Related			2004-78068 20041109
	1267347 C			2004-10095706
	20000516			. 40 40

FILING DETAILS:

PATENT NO	KIND		PATENT NO
EP 1520852	A2	Div ex	EP 1181268 A
DE 60023134	E	Based on	EP 1181268 A
DE 60023134	Т2	Based on	EP 1181268 A
ES 2249271	Т3	Based on	EP 1181268 A
EP 1181268	B1	Related to	EP 1520852 A
EP 1181268	B8	Related to	EP 1520852 A
US 20030198586	A1	Cont of	US 6413485 B
US 6667020	B2	Cont of	US 6413485 B
AU 2000051359	Α	Based on	WO 2000073261 A
BR 2000010997	Α	Based on	WO 2000073261 A
EP 1181268	A1	Based on ·	WO 2000073261 A
JP 2003500468	W	Based on	WO 2000073261 A
EP 1181268	B1	Based on	WO 2000073261 A
EP 1181268	в8	Based on	WO 2000073261 A
DE 60023134	E	Based on	WO 2000073261 A
DE 60023134	Т2	Based on	WO 2000073261 A
RO 120909	B1	Based on	WO 2000073261 A

PRIORITY APPLN. INFO: US 1999-320937 19990527 US 2001-16703 20011210

AB WO 2000073261 A1 UPAB: 20060202

NOVELTY - Process for increasing the yield of co-product HCN and acetonitrile produced during the manufacture of acrylonitrile comprises introducing a hydrocarbon selected from propylene or propane, a crude ketone, ammonia and air into a reaction zone containing an ammoxidation catalyst, then reacting these over the catalyst at an elevated temperature to produce acrylonitrile, hydrogen cyanide and acetonitrile, and recovering the acrylonitrile, hydrogen cyanide and acetonitrile from the reactor.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also provided for:

- (a) another process for increasing the yield of co-product HCN and acetonitrile, which is as above except that a mixture of at least two ketone is used;
- (b) process for the ammoxidation of a mixture of 1-4 C ketones to produce a HCN and acetonitrile, as above; and
 - (c) ammoxidation of a crude ketone to produce HCN and acetonitrile.
- USE A process for increasing the yield of HCN and ${\it acetonitrile}$ during the manufacture of ${\it acrylonitrile}$ is provided.

ADVANTAGE - The process saves on the raw material costs and achieves the same or better conversion and selectivity to the desired co-products.

L68 ANSWER 27 OF 32 WPIX COPYRIGHT 2007 THE THOMSON CORP on STN

ACCESSION NUMBER: CROSS REFERENCE: 1995-052425 [07] WPIX

CROSS REFERENCE DOC. NO. CPI:

1994-064818

TITLE:

C1995-024023 [07]

Acrylonitrile mfr. with reduced ammonia breakthrough - by ammoxidation of propane or

propylene@ in fluidised catalyst bed

and introducing an oxygenate to react with

unreacted ammonia.

DERWENT CLASS:

A41; E16

INVENTOR:

BIGLER K L; BOTT P E; FRIEDRICH M S; KECKLER K P; KOCJANCIC F J; MIKO S J; REILING V G; REILLING V

G; ROWE S J; SEELY M J; SHAW W G; SHUKI A R; SOCKELL E J; SURESH D D; TROTT L R

PATENT ASSIGNEE:

(STAH-C) STANDARD OIL CO OHIO

COUNTRY COUNT:

r: 1

PATENT INFO ABBR .:

PATENT		DITTU	WEEK	LA	~ 0	MAIN	
ZA 9401		9941130 (23[0]		

<--

	620546	- 1	10050015	(100511)		<
EP	638546	A1	19950215	(199511)	EN	
JP	07053494	A	19950228	(199517)	JA	8[0]
BR	9400642	A	19950328	(199519)	PT	<
US	5457223	Α	19951010	(199546)	EN	< 7[0]
CN	1107464	Α	19950830	(199732)	ZH	<
MX	184642	В	19970509	(199823)	ES	<
RO	113343	В1	19980630	(199845)	RO	<
ĒΡ	638546	В1	19981118	(199850)	EN	<
DE	69414660 <	E	19981224	(199906)	DE	<
ES	2125401	т3	19990301	(199916)	ES	<
RU	2124476	C1	19990110	(200019)	RU	<
KR	297039	В	20011122	(200243)#	ко	<
KR	308435	В	20011130	(200246)	ко	<
TW	496857	A	20020801	(200330)	ZH	<
TW	< 555737 ·	A	20031001	(200423)	ZH	
CN	1037767	С	19980318	(200455)	ZH	<

APPLICATION DETAILS:

PATENT NO KIND	APPLICATION DATE
ZA 9401200 A 19940222	ZA 1994-1200
US 5457223 A CIP of 19921009	US 1992-959237
US 5457223 A	US 1993-104752
KR 297039 B 19931122	KR 1993-24913
DE 69414660 E 19940204	DE 1994-69414660
EP 638546 A1 19940204	EP 1994-300858
EP 638546 B1 19940204	EP 1994-300858
DE 69414660 E 19940204	EP 1994-300858

ES	2125401 T3	EP 1994-300858
	19940204	
RU	2124476 C1	RU 1994-3820
	19940209	
KR	308435 B	KR 1994-2840
	19940217	
CN	1107464 A	CN 1994-101370
	19940221	•
CN	1037767 C	CN 1994-101370
	19940221	
JP	07053494 A	JP 1994-21714
	19940221	
MX	184642 B	MX 1994-1300
	19940221	
RO	113343 B1	RO 1994-257 19940221
BR	9400642 A	BR 1994-642 19940222
TW	496857 A	TW 1994-102250
	19940315	
TW	555737 A	TW 2002-113379
	19940315	•

FILING DETAILS:

PATENT NO	KIND	PATENT NO
DE 69414660 E	Based on	EP 638546 A
ES 2125401 T3	Based on	EP 638546 A
KR 308435 B	Previous Publ	KR 95005804 A
KR 297039 B	Previous Publ	KR 95014062 A
US 5457223 A	CIP of	US 5288473 A

PRIORITY APPLN. INFO: ZA 1994-1200 19940222 US 1993-104752 19930811 KR 1993-24913 19931122

ZA 9401200 A UPAB: 20050702 AB

> A process for mfr. of acrylonitrile with reduced breakthrough of ammonia into the reactor effluent comprises introducing a reaction mixture of propane or propylene, ammonia and an oxygen-containing gas into the lower portion of a fluid bed reactor containing a fluid bed ammoxidation catalyst to react to form an acrylonitrilecontaining prod. stream, and introducing in an upward direction at least one oxygenate (I) capable of reacting with ammonia into the upper portion of the fluid bed reactor at a point where the (I) does not substantially affect the reaction of the hydrocarbon, ammonia and O2-containing gas to form acrylonitrile but reacts with at least part of the unreacted ammonia present in the reactor.

ADVANTAGE - Input of (I) gives a substantial reduction in the amount of ammonia present in the reactor effluent.

L68 ANSWER 28 OF 32 WPIX COPYRIGHT 2007 THE THOMSON CORP on STN 1994-064818 [08] WPIX ACCESSION NUMBER: CROSS REFERENCE: 1995-052425 DOC. NO. CPI: C1994-029035 [08] TITLE: Elimination of ammonia break-through in acrylonitrile production - comprises introducing methanol into the fluid bed reactor at a specific location and direction A41; E16; E35 DERWENT CLASS: INVENTOR: BIGLER K L; BIGLER L K; BOTT E P; BOTT P E; FRIEDRICH M S; FRIEDRICH S M; KECKLER K P; KECKLER P K; KOCJANCIC J F; KOJANCIC F J; MIKO J S; MIKO S J; REILING G V; REILING V G; SEELY J M;

SEELY M J; SHAW G W; SHAW W G; SHUKI A R;

SHUKI R A; SOCKELL E J; SOCKELL J E; SURESH D D;

TROTT L R; TROTT R L

(STAH-C) STANDARD OIL CO OHIO PATENT ASSIGNEE:

COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO	KIND DATE	WEEK	LA PG	MAIN IPC
US 5288473 <	A 19940222	(199408)*	•	
JP 07126237 <	A 19950516	(199528)#		
BR 9304451 <	A 19950627	(199534)#		
CN 1102641	A 19950517	(199726)#	< ZH	•
RO 113342	B1 19980630	(199845)#	< RO	
CN 1039007	C 19980708	(200457)#	< ZH	

APPLICATION DETAILS:

PATENT NO KIND	APPLICATION DATE
US 5288473 A 19921009	US 1992-959237
RO 113342 B1 19931026	RO 1993-1442
BR 9304451 A	BR 1993-4451
19931101 JP 07126237 A	JP 1993-276646
19931105 CN 1102641 A	CN 1993-112678
19931108 CN 1039007 C	CN 1993-112678
19931108	

PRIORITY APPLN. INFO: US 1992-959237 19921009

RO 1993-1442 19931026 BR 1993-4451 19931101 JP 1993-276646 19931105 CN 1993-112678 19931108

AB US 5288473 A UPAB: 20050507

Process comprises (a) introducing into the lower portion of a fluid bed reactor a hydrocarbon selected from propylene and propane, ammonia and oxygen-containing gas to react in the presence of a fluid bed catalyst to produce acrylonitrile, (b) introducing an oxygenate comprising methanol at a temperature below its coking temperature into the upper portion of the fluid bed reactor at a point where the methanol does not affect the reaction of the hydrocarbon, ammonia and oxygen-containing gas and reacts with all the unreacted ammonia present in the reactor to eliminate the presence of any free ammonia in the reactor effluent exiting the reactor, (c) passing the reactor effluent containing acrylonitrile into a quench column to cool the reactor effluent with water in the absence of sulphuric acid to remove unwanted impurities, and (d) recovering acrylonitrile from the quench column.

USE/ADVANTAGE - The method is used to eliminate unreacted ammonia and reduce the amount of ammonium sulphate produced in the mfr. of acrylonitrile. The process is simple and economical.

L68 ANSWER 29 OF 32 WPIX COPYRIGHT 2007 THE THOMSON CORP on STN ACCESSION NUMBER: 1993-264708 [33] WPIX

CROSS REFERENCE: 1992-276576

DOC. NO. CPI:

TITLE:

C1993-118073 [33]
Acrylonitrile and/or

methacrylonitrile production - by olefin

ammoxidation using oxide catalyst

containing molybdenum, bismuth, iron, cobalt, nickel,

chromium, phosphorus, antimony and alkali metal

DERWENT CLASS:

A41: E16

INVENTOR:

PAPARIZOS C; SHAW W G

PATENT ASSIGNEE:

(STAH-C) STANDARD OIL CO OHIO

COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO KIND DATE WEEK LA PG MAIN IPC

US 5235088 A 19930810 (199333) * EN 6[0]

<---

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE

US 5235088 A Div Ex

US 1990-495875

19900319

US 5235088 A US 1992-881581

19920512

FILING DETAILS:

PATENT NO KIND PATENT NO

______ US 5235088 A Div ex US 5134105 A

PRIORITY APPLN. INFO: US 1992-881581 19920512 US 1990-495875 19900319

US 5235088 A UPAB: 20050701 AB

> Conversion of propylene and/or isobutylene to acrylontrile and/or methacrylontrile respectively is effected by vapour-phase reaction with O2-containing gas and NH3 at 300-600 deg. C in the presence of an oxide catalyst of formula (I):

MoaBibFecCodNieCrfXgYiZjOk (I)

X = a mixture of P and Sb; Y = alkali metal(s); Z = alkali metal, rare earth metal, Nb, Tl, As, Zn, Cd, V, B, Sn, Ge, Mn, W and/or Te; a = 12-14; b = 1-5; c = 0.5-5; d and e = 0.1-6; f and g = 0.1-4; i = 0.1-2; j = 0-3; and k = a number determined by the valance requirements of the other elements. Pref. catalyst has g = 0.75-3 and is supported on SiO2, giving a composite containing 10-70 (especially 40-60) weight% support.

ADVANTAGE - The catalysts are inexpensive, have high activity, giving at lest 80% yields at temps. slightly lower than normal, and have good stability. Low air:olefin ratios and high space velocities may be used. NH3 utilisation is efficient.

L68 ANSWER 30 OF 32 WPIX COPYRIGHT 2007

THE THOMSON CORP on STN

DOC. NO. CPI:

ACCESSION NUMBER: 1993-066451 [08] WPIX C1993-029658 [21]

TITLE:

Catalyst for production of

phthalonitrile(s) from xylene with

oxygen@ and ammonia - formed by calcining iron-antimony oxide cpd and combining with

vanadium and bismuth, for improved prod. per pass

conversion and greater prod. selectivity

DERWENT CLASS:

A41; E14; F01; J04

INVENTOR:

PAPARIZOS C; SHAW W G (STAH-C) STANDARD OIL CO OHIO

PATENT ASSIGNEE: COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO KIND DATE WEEK LA PG MAIN IPC ______

US 5183793 A 19930202 (199308)* EN 4[0]

<--

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE

US 5183793 A US 1991-789836

19911113

PRIORITY APPLN. INFO: US 1991-789836 19911113
AB US 5183793 A UPAB: 20060503

A catalyst suitable for ammoxidation has the formula V1BiaSbbFecXdYcZfOg, where X is Mo, Cu, W, Nb, Te, P, Sn, Ge or As, Y is Co, Ni, Ce, La, Mn or Cr, Z is an alkali or alkaline earth metal, B or Tl and a= 0.1-10, b= 0.01-20, c=0.01-5, d=0-5, e=0-3, f=0-1 and g is determined by valence requirements. The catalyst is formed by calcining a preformed Fe-Sb oxide compsn. and combining it with V, Bi and other opt. metal cpds.

USE/ADVANTAGE - The catalyst is used in the formation of phthalonitriles (pref. isophthalonitrile) from the reaction of xylenes (pref. m-xylene) with O2 and NH3 at elevated temps. Phthalonitriles are useful starting materials for the production of polymers for e.g. synthetic fibres, agricultural chemicals and pharmaceuticals. The catalyst results in an improved prod. per pass conversion and increased prod. selectivit

L68 ANSWER 31 OF 32 WPIX COPYRIGHT 2007 THE THOMSON CORP on STN

ACCESSION NUMBER:

1981-58674D [32] WPIX

TITLE:

Metal complex catalysts e.g. of nickel

or zinc - useful for contact decomposition of

hydroperoxide(s)

DERWENT CLASS:

A41; E14

INVENTOR:

DOLHYJ S R; PAPARIZOS C; VELENYI L J

PATENT ASSIGNEE:

(STAH-C) STANDARD OIL CO OHIO

COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO KIND DATE WEEK LA PG MAIN IPC

US 4279829 A 19810721 (198132) * EN 6

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE

US 4279829 A US 1978-973070

19781226

US 4279829 A US 1979-90161

19791031

AB US 4279829 A UPAB: 20050419

Catalysts are claimed with the formula (I) in which M is a positively charged metal or metal cpd.; Z is S,O,P,S-P or S-S; L is C, P or N; A is one or more of H, 1-30C alkoxy, N-R2 in which R is H, 1-30C alkyl and phenyl or phenyl substd. with one or more 1-20C alkyl and 1-20C alkoxy; and 1-30C hydrocarbon gps. or 1-30C hydrocarbon gps. substd. with one or more substituents chosen from halogen, 1-12C hydroxy gps., 1-12C acid gps., 1-12C aldehyde gps., 1-12C ketone gps. and 1-10C nitrile cpds.; and n is 1 or 2 and b is 1, 2 or 3. with the proviso that when Z is S or O, A is one or more of halogen. H, NH2 and 1-30C hydrocarbon gp. or 1-30C hydrocarbon gps. substd. with one or more halogen, 1-12C hydroxy gps., 1-12C acid gps., 1-12C aldehyde gps., 1-12C ketone gps., and 1-10C nitrile gps.

M is pref. a gp. IIB, IB or VIII transition metal, especially Zn or Ni; Z is S, O or P; and A is phenyl, phenyl substd. with one or more 1-8C alkyl, a 1-30C alkoxy, an amino gp. or an amino gp. substd. by one or more 1-4C alkyl gps.

The catalysts are especially useful for contact decomposition of hydroperoxides as described in parent specification US4262153 (32533 D/18), e.g. in the production of phenol by decomposition of cumene hydroperoxide and cyclohexylbenzene hydroperoxide.

L68 ANSWER 32 OF 32 WPIX COPYRIGHT 2007

THE THOMSON CORP on STN

ACCESSION NUMBER:

1981-32533D [18] WPIX

TITLE:

Decomposition of hydro:peroxide(s) - by contacting with metal complex catalyst

DERWENT CLASS:

A41; E14

INVENTOR:

DOLHYJ S R; PAPARIZOS C; VELENYI L

PATENT ASSIGNEE:

(STAH-C) STANDARD OIL CO OHIO

COUNTRY COUNT:

PATENT INFO ABBR.:

PATENT NO	KIN	D DATE	WEEK	LA	PG	MAIN IPC
US 4262153 <	A	19810414	(198118) *	EN		
CA 1141770	Α	19830222	(198312)#	EN	<	

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
US 4262153 A		US 1978-973070	
19781226 US 4262153 A		US 1979-90161	
19791031 CA 1141770 A		CA 1980-366808	

AB US 4262153 A UPAB: 20050419

19801215

Hydroperoxide is decomposed by contact with a catalyst of formula (I) where M is a positively charged metal or its cpd.; Z is S, O, P, S-P or S-S; L is C, P or N, A is H, halogen, 1-30C alkoxy, NR2 in which R is H, 1-30C alkyl or 4-8 membered aryl opt. substd. by 1-20C alkyl or alkoxy, or up to 30C hydrocarbon gp. opt. substd. by halogen, 1-12C hydroxy, acid, aldehyde or ketone containing gp. or 1-10C nitrile containing gp.; n is 1 or 2; and 1-3; provided that when Z is S or O, then A is H, halogen, NH2 or opt. substd. hydrocarbon gp.

Phenol can be produced with high yields and selectivities by decomposing cumene or cyclohexyl-benzene hydroperoxide using the catalyst. Alcohol, ketone and aldehydes prods. can be used as monomers, solvents and intermediates.

TEXT SEARCH

=> d his 140

· (FILE 'REGISTRY' ENTERED AT 10:48:03 ON 28 MAR 2007) L40 12 S L32 OR L37-L39

=> d que 140

L32 12 SEA FILE=REGISTRY ABB=ON PLU=ON (K(L)CS(L)CE(L)CR(L)C O(L)NI(L)FE(L)BI(L)MO(L)O)/ELS L37 6 SEA FILE=REGISTRY ABB=ON PLU=ON (RB OR NA OR LI OR TL)/ELS AND L32

11 SEA FILE=REGISTRY ABB=ON PLU=ON (P OR SB OR TE OR B L38 OR GE OR W OR CA OR MG OR LNTH/PG OR ACTN/PG)/ELS AND

L32

L39 5 SEA FILE=REGISTRY ABB=ON PLU=ON L38 AND L37

L40 12 SEA FILE=REGISTRY ABB=ON PLU=ON L32 OR (L37 OR L38

OR L39)

=> d his 163

(FILE 'RAPRA, WPIX' ENTERED AT 12:00:11 ON 28 MAR 2007) SAV L62 SAC846IN/A

FILE 'STNGUIDE' ENTERED AT 12:02:26 ON 28 MAR 2007

FILE 'HCAPLUS' ENTERED AT 12:30:53 ON 28 MAR 2007

FILE 'REGISTRY' ENTERED AT 12:32:12 ON 28 MAR 2007

L63 9 S L44 OR L45

=> d que 163

12 SEA FILE=REGISTRY ABB=ON PLU=ON (K(L)CS(L)CE(L)CR(L)C O(L)NI(L)FE(L)BI(L)MO(L)O)/ELS L44 7 SEA FILE=REGISTRY ABB=ON PLU=ON L32 AND P/ELS L45 3 SEA FILE=REGISTRY ABB=ON PLU=ON L32 AND MG/ELS 9 SEA FILE=REGISTRY ABB=ON PLU=ON L44 OR L45 L63

=> d his 167

(FILE 'HCAPLUS' ENTERED AT 12:32:24 ON 28 MAR 2007) 7 S L66 AND L50 L67 => d que 167 L23 635119 SEA FILE=HCAPLUS ABB=ON PLU=ON CATALYSTS+PFT,OLD,NT/C L32 12 SEA FILE=REGISTRY ABB=ON PLU=ON (K(L)CS(L)CE(L)CR(L)C O(L)NI(L)FE(L)BI(L)MO(L)O)/ELS L37 6 SEA FILE=REGISTRY ABB=ON PLU=ON (RB OR NA OR LI OR TL)/ELS AND L32 11 SEA FILE=REGISTRY ABB=ON PLU=ON (P OR SB OR TE OR B L38 OR GE OR W OR CA OR MG OR LNTH/PG OR ACTN/PG)/ELS AND L32 L39 5 SEA FILE=REGISTRY ABB=ON PLU=ON L38 AND L37 L40 12 SEA FILE=REGISTRY ABB=ON PLU=ON L32 OR (L37 OR L38 OR L39) L41 10 SEA FILE=HCAPLUS ABB=ON PLU=ON L40 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L40/CAT L42 L44 7 SEA FILE=REGISTRY ABB=ON PLU=ON L32 AND P/ELS 3 SEA FILE=REGISTRY ABB=ON PLU=ON L32 AND MG/ELS L45 29606 SEA FILE=HCAPLUS ABB=ON PLU=ON ACRYLONITRILE+PFT, OLD, L46 NT/CT 5762 SEA FILE=HCAPLUS ABB=ON PLU=ON L46 AND L23 L47 6 SEA FILE=HCAPLUS ABB=ON PLU=ON L41 AND L47 L48 L49 10 SEA FILE=HCAPLUS ABB=ON PLU=ON L48 OR L42 QUE ABB=ON PLU=ON PY<2003 OR PRY<2003 OR AY<2003 OR L50 . MY<2003 OR REVIEW/DT 9 SEA FILE=REGISTRY ABB=ON PLU=ON L44 OR L45 L63 L64 7 SEA FILE=HCAPLUS ABB=ON PLU=ON L63/CAT 10 SEA FILE=HCAPLUS ABB=ON PLU=ON L64 OR L49 L66

=> d 167 1-7 ibib ed abs hitstr hitind

L67 ANSWER 1 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2003:305713 HCAPLUS Full-text

DOCUMENT NUMBER:

138:327217

TITLE:
INVENTOR(S):

Production method of ammoxidation catalyst Miyaki, Kenichi; Yanagida, Motoo; Mori, Kunio

PATENT ASSIGNEE(S):

Daiya Nitrics K. K., Japan . Jpn. Kokai Tokkyo Koho, 11 pp.

7 SEA FILE=HCAPLUS ABB=ON PLU=ON L66 AND L50

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

L67 '

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND	DATE .	APPLICATION NO.	DATE
A	20030422	JP 2001-314054	2001 1011
A 1	20030424	< WO 2002-JP9832	2002 0925
	A	A 20030422	A 20030422 JP 2001-314054

W: CN, KR, RO, US

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR

EP 1452231 A1 20040901 EP 2002-779893

2002 0925

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY, TR, BG, CZ, EE, SK 20050119 CN 2002-819966 CN 1568223 Α 2002 0925 <--20041209 US 2004248734 A1 US 2004-490219 2004 0401 PRIORITY APPLN. INFO.: JP 2001-314054 2001 1011 <--WO 2002-JP9832 2002 0925

<--

Entered STN: 22 Apr 2003 ED

AB The invention refers to a production method for an ammoxidn. catalyst, suitable for producing acrylonitrile from propylene. The catalyst comprises (1) Mo, (2) Bi, and (3) at least one element selected from Ni, Co, Zn, Mg, Mn or Cu and (4) at least one element selected from La, Ce, Pr or Nd, and during the manufacture of the catalyst the raw materials for the 4th component is added to a solution containing raw materials for the first three components.

512173-57-8 IT

RL: CAT (Catalyst use); DEV (Device component use); USES

(production method of ammoxidn. catalyst)

RN 512173-57-8 HCAPLUS

Bismuth cerium cesium chromium cobalt iron magnesium molybdenum nickel potassium samarium silicon tellurium oxide (9CI) (CA INDEX

Component		Ratio	. Component Registry Number
	=+===	========	====+==================================
0		X	17778-80-2
Te		x	13494-80-9
Bi	1	Х	7440-69-9
Co	1	х	7440-48-4
Cr	1	х	7440-47-3
Cs	1	х	7440-46-2
Ce	- 1	х	7440-45-1
Si	1	х	7440-21-3
Sm	1	х	7440-19-9
K	- 1	х	7440-09-7
Ni	1	x	7440-02-0
Mo	1	x	7439-98-7
Mg		x	7439-95-4
Fe	1	x	7439-89-6

IT 107-13-1P, Acrylonitrile, preparation

> RL: SPN (Synthetic preparation); PREP (Preparation) (production method of ammoxidn. catalyst)

RN107-13-1 HCAPLUS

CN 2-Propenenitrile (CA INDEX NAME)

 $H_2C \longrightarrow CH \longrightarrow C \longrightarrow N$

```
TC:
     ICM B01J027-192
     ICS B01J023-88; B01J027-057; B01J037-04; B01J037-08; C07B061-00;
          C07C253-26; C07C255-08
CC
     67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction
     Mechanisms)
     Section cross-reference(s): 21, 35
IT
     Ammoxidation catalysts
        (production method of ammoxidn. catalyst)
     512173-53-4
                 512173-54-5 512173-55-6
                                               512173-56-7
     512173-57-8
                  512173-58-9
                                512173-59-0
                                              512173-60-3
                 512173-62-5
     512173-61-4
     RL: CAT (Catalyst use); DEV (Device component use); USES
     (Uses)
        (production method of ammoxidn. catalyst)
IΤ
     107-13-1P, Acrylonitrile, preparation
     RL: SPN (Synthetic preparation); PREP (Preparation)
        (production method of ammoxidn. catalyst)
L67 ANSWER 2 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER:
                        2002:610508 HCAPLUS Full-text
DOCUMENT NUMBER:
                         137:155271
TITLE:
                         Fluidized bed catalyst for ammoxidation of
                         propylene into acrylonitrile
INVENTOR(S):
                         Xie, Guohuang; Chen, Xin; Wu, Lianghua
PATENT ASSIGNEE(S):
                         China Petrochemical Group Corp., Peop. Rep.
SOURCE:
                         Faming Zhuanli Shenqing Gongkai Shuomingshu, 8
                         CODEN: CNXXEV
DOCUMENT TYPE:
                         Patent
LANGUAGE:
                         Chinese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
     PATENT NO.
                         KIND
                                DATE
                                            APPLICATION NO.
                                                                   DATE
                        ----
                                _____
   - CN 1310046
                        A
                                20010829
                                            CN 2000-111715
                                                                   2000
                                                                   0224
                                            CN 2000-111715
PRIORITY APPLN. INFO .:
                                                                    2000
                                                                   0224
                                               <--
ED
     Entered STN: 16 Aug 2002
     The catalyst comprises a silica support and a mixed oxide AaBbCcGedMneWfFegBihMoiOx,
     where A = Li, Na, K, Rb and Cs; B = Co, Ni, Cr, Ca, Mg, La, Ce and V; C = B, P and As;
     a = 0.01-1.5, b = 0.1-12, c = 0.1-0.6, d = 0.01-2.0, e = 0.01-2.5, f = 0.05-1.5, g = 0.05-1.5
     0.1-4, h = 0.2-2.5, i = 12-14.5, and x = number that balances the valency. The use of
     the catalyst can enhance the conversion of propylene and acrylonitrile yield.
     K0.1Cs0.07P0.02Ni5.6Cr0.35Ce0. 35Mg1.2Ge0.05Mn0.2W0.15Fe2.0Bi0.75Mo13.00x was prepared
     and used for ammoxidn. of propylene into acrylonitrile with yield 80.3%.
     107-13-1P, Acrylonitrile, preparation 446036-48-2P
IT
     446036-50-6P
     RL: IMF (Industrial manufacture); PREP (Preparation)
        (fluidized bed catalyst for ammoxidn. of propylene into
        acrylonitrile)
     107-13-1 HCAPLUS
RN
CN
     2-Propenenitrile (CA INDEX NAME)
```

H2C ___ CH_C_N

RN 446036-48-2 HCAPLUS

CN Bismuth cerium cesium chromium cobalt germanium iron magnesium manganese molybdenum nickel potassium tungsten oxide phosphate (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
=========	:=+===================================	
0	l x	17778-80-2
O4P	x	14265-44-2
Bi	x	7440-69-9
Ge	l x	7440-56-4
Co	l x	7440-48-4
Cr	l x	1 7440-47-3
Cs	x	7440-46-2
Ce	l x	1 7440-45-1
W	x	7440-33-7
K	l x	7440-09-7
Ni	l x	7440-02-0
Mo	l x	7439-98-7
Mn	l x	1 7439-96-5
Mg	l x	7439-95-4
Fe	l x	1 7439-89-6

RN 446036-50-6 HCAPLUS

CN Bismuth cerium cesium chromium cobalt germanium iron magnesium manganese molybdenum nickel potassium rubidium tungsten oxide (9CI) (CA INDEX NAME)

Component	1	Ratio	Component Registry Number
*=========	==+===		
0	ı	X	17778-80-2
Bi		x	7440-69-9
Ge		x	7440-56-4
Co	1	x	7440-48-4
Cr	1	x	1 7440-47-3
Cs	1	x	7440-46-2
Ce	1	x	7440-45-1
W	1	x	1 7440-33-7
Rb	1	x	7440-17-7
K	1	x	1 7440-09-7
Ni .	1	x	7440-02-0
Mo	1	x	7439-98-7
Mn	1	x	7439-96-5
Mg	1	x	7439-95-4
Fe	1	x	7439-89-6

```
IC ICM B01J027-192
```

ICS B01J023-84; B01J023-835; C07C255-08

CC 35-2 (Chemistry of Synthetic High Polymers)

IT Ammoxidation catalysts

(mixed oxide; fluidized bed catalyst for ammoxidn. of propylene into acrylonitrile)

IT 107-13-1P, Acrylonitrile, preparation 446036-44-8P
 446036-45-9P 446036-46-0P 446036-47-1P 446036-48-2P
 446036-49-3P 446036-50-6P

RL: IMF (Industrial manufacture); PREP (Preparation) (fluidized bed catalyst for ammoxidn. of propylene into acrylonitrile)

L67 ANSWER 3 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2002:246980 HCAPLUS Full-text DOCUMENT NUMBER: 136:265297

DOCUMENT NUMBER: TITLE:

Manufacture of hydrogen cyanide by

ammoxidation with fluidized-bed catalysts

INVENTOR(S):
PATENT ASSIGNEE(S):

Miyaki, Kenichi; Mori, Kunio Mitsubishi Rayon Co., Ltd., Japan

SOURCE:

LANGUAGE:

Jpn. Kokai Tokkyó Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 2002097017	A	20020402	JP 2000-286452	2000 0921
JP 3872269 PRIORITY APPLN. INFO.:	В2	20070124	< JP 2000-286452	
		•		2000 0921

<---

ED Entered STN: 02 Apr 2002

AB HCN is manufactured by ammoxidn. of MeOH with fluidized-bed catalysts having compns.: MolOBiaFebSbcNidCreFfGgMlhKkM2mXxYyOi(SiO2)j (F = Y, La, Ce, Pr, Nd, Sm, Al, and/or Ga; G = Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, and/or Cd; M1 = Ti, Zr, V, Nb, Ta, W, Ge, Sn, and/or Pb; M2 = Ru, Rh, Pd, Re, Os, Ir, Pt, and/or Ag; X = P, B, and/or Te; Y = Li, Na, Rb, Cs, and/or Tl; a = 0.2-1.5, b = 0.7-15, c = 0-20, d = 3-8, e = 0.1-2.5, f = 0.1-1.5, g = 0-5, h = 0-3, k = 0.05-1.5, m = 0-1, x = 0-3, y = 0-1, i = atomic ratio of O, j = 20-200; 20/p = 0.8-1; p = sum of (valence) + (atomic ratio) of Bi, Fe, Ni, Cr, K, F, G, and Y). Preferably, Mo compds. are added during the reaction. The catalysts have stable structures and give HCN in high yields.

IT 405233-88-7P

RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)

(catalyst component; manufacture of HCN by ammoxidn. of MeOH with fluidized-bed catalysts)

RN 405233-88-7 HCAPLUS

CN Antimony bismuth cerium cesium chromium cobalt iron molybdenum nickel phosphorus potassium ruthenium oxide (9CI) (CA INDEX NAME)

Component	1	Ratio	Component Registry Number
	=+==	************	+======================================
0	- 1	x	17778-80-2
P	- 1	x	7723-14-0
Bi	1	x	7440-69-9
Co	1	x	7440-48-4
Cr	1	x	7440-47-3
Cs	1	x	7440-46-2
Ce	1	x	7440-45-1
Sb	1	x	7440-36-0
Ru		x	7440-18-8
K	1	x	7440-09-7
Ni	1	x	7440-02-0
Mo	1	x	7439-98-7
Fe .		x	7439-89-6

IC ICM C01C003-02

ICS C01C003-02; B01J023-88; B01J027-057; B01J027-192

CC 49-2 (Industrial Inorganic Chemicals)
Section cross-reference(s): 67

1T 156260-89-8P, Bismuth cerium chromium cobalt iron molybdenum
 nickel phosphorus potassium oxide 405220-76-0P 405220-77-1P
 405220-78-2P 405220-79-3P 405233-78-5P 405233-79-6P
 405233-86-5P 405233-87-6P 405233-88-7P

RL: CAT (Catalyst use); IMF (Industrial manufacture);

PREP (Preparation); USES (Uses)

(catalyst component; manufacture of HCN by ammoxidn. of MeOH with fluidized-bed catalysts)

L67 ANSWER 4 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:244582 HCAPLUS Full-text

DOCUMENT NUMBER:

136:265296

TITLE:

Manufacture of hydrogen cyanide by

ammoxidation with fluidized-bed catalysts

INVENTOR(S):

Miyaki, Kenichi; Mori, Kunio Mitsubishi Rayon Co., Ltd., Japan

PATENT ASSIGNEE(S):

Jpn. Kokai Tokkyo Koho, 8 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 2002097016	А	20020402	JP 2000-286450	2000
JP 3872268 PRIORITY APPLN. INFO.:	В2	20070124	< JP 2000-286450	0921
			<	2000 0921

ED Entered STN: 02 Apr 2002

HCN is manufactured by ammoxidn. of MeOH with fluidized-bed catalysts having the AB compns.: FeaSbbMocBidKeFfGgMhQqRrTtOx(SiO2)y (F = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Ag, Zn, and/or Cd; G = Cr, Al, Ga, and/or In; M = Y, La, Ce, Pr, Nd, and/or Sm; Q = Ti, Zr, V, Nb, Ta, W, Ge, Sn, and/or Pb; R = Li, Na, Rb, Cs, and/or Tl; T = B, P, and/or Te; when a = 10, then b = 5-60, c = 5-50, d = 0.15-5, e = 0.1-5, f = 2-35, g = 0.05-10, h = 0.15-100.05-10, h/c >0.02, q = 0-10, r = 0-5, t = 0-5, x = atomic ratio of 0, and y = 20-500; containing Fe antimonate as a crystal phase). Preferably, Mo compds. are added during the reaction. The catalysts have stable structures and give HCN in high yields.

IT 405233-94-5P

RL: CAT (Catalyst use); IMF (Industrial manufacture);

PREP (Preparation); USES (Uses)

(catalyst component; manufacture of HCN by ammoxidn. of MeOH with fluidized-bed catalysts)

RN405233-94-5 HCAPLUS

Antimony bismuth cerium cesium chromium cobalt iron molybdenum nickel phosphorus potassium oxide (9CI) (CA INDEX NAME)

Component		Ratio	Component Registry Number
	+=-		17770
0	ı	x	17778-80-2
P	- 1	x	7723-14-0
Bi	1	x	7440-69-9
Co	-	x	7440-48-4
Cr ·	-	x	7440-47-3
Cs	- 1	x	7440-46-2
Ce	-	x	7440-45-1
Sb	-	x	7440-36-0
K	ı	x	7440-09-7
Ni	-	x	7440-02-0
Mo	1	x	7439-98-7
Fe	1	×	7439-89-6

ICM C01C003-02

ICS C01C003-02; B01J023-88; B01J027-057; B01J027-192

49-2 (Industrial Inorganic Chemicals)

Section cross-reference(s): 67 15600-71-2P, Iron antimonate (FeSbO4) 405233-71-8P TΤ 405233-72-9P 405233-73-0P 405233-74-1P 405233-75-2P 405233-76-3P 405233-77-4P 405233-78-5P 405233-79-6P 405233-94-5P RL: CAT (Catalyst use); IMF (Industrial manufacture);

PREP (Preparation); USES (Uses)

(catalyst component; manufacture of HCN by ammoxidn. of MeOH with fluidized-bed catalysts)

L67 ANSWER 5 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:244581 HCAPLUS Full-text

DOCUMENT NUMBER:

136:265295

TITLE:

Manufacture of hydrogen cyanide by

ammoxidation with fluidized-bed catalysts

INVENTOR(S): PATENT ASSIGNEE(S): Miyaki, Kenichi; Mori, Kunio Mitsubishi Rayon Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002097015	Α	20020402	JP 2000-286453	2000 0921
JP 3872270 PRIORITY APPLN. INFO.:	B2	20070124	< JP 2000-286453	2000

F.D Entered STN: 02 Apr 2002

HCN is manufactured by ammoxidn. of MeOH with fluidized-bed catalysts having compns.: AB (FeSba)bMol0BicFedKkMlmM2nGgQqRrTtOx(SiO2)y [(FeSba) indicates Sb and Fe forming Fe antimonate; M1 = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn, and/or Cd; M2 = Cr, Y, La, Ce, Pr, Nd, Sm, Al, Ga, and/or In; G = Ru, Rh, Pd, Re, Os, Ir, Pt, and/or Ag; Q = Ti, Zr, V, Nb, Ta, W, Ge, Sn, Pb, and/or Sb; R = B, P, and/or Te; T = Li, Na, Rb, Cs, and/or Tl; a = 0.8-2, b = 0.5-20, c = 0.1-2, d = 0.3-3, k = 0.05-2, m = 3-8, n = 0.1-3, g = 0-0.5, q = 0.8-2= 0-3, r = 0-3, t = 0-1, x = atomic ratio of 0, <math>y = 20-200; 20/p = 0.8-1; p = sum of(valence) + (atomic ratio) of Bi, Fe, K, M, N, and T]. Preferably, Mo compds. are added during the reaction. The catalysts have stable structures and give HCN in high yields.

<--

ΙT 405220-82-8P

RL: CAT (Catalyst use); IMF (Industrial manufacture);

PREP (Preparation); USES (Uses)

(catalyst component; manufacture of HCN by ammoxidn. of MeOH with fluidized-bed catalysts)

RN 405220-82-8 HCAPLUS

CN Bismuth cerium cesium chromium cobalt iron molybdenum nickel phosphorus potassium ruthenium oxide (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
	+===============	•
0) x	17778-80-2
P	l x	7723-14-0
Bi	x	7440-69-9
Co	x	7440-48-4
Cr	x .	1 7440-47-3
Cs	x	7440-46-2
Ce	x	7440-45-1
Ru	x	7440-18-8

```
7440-09-7
K
             -1
                      х
                                         7440-02-0
Ni
             -1
                      x
                                 ı
                                         7439-98-7
Мо
             1
                      х
                                 1
                                         7439-89-6
Fe
    ICM C01C003-02
    ICS C01C003-02; B01J023-88; B01J027-057; B01J027-199; C01B033-20;
         B01J008-24
CC 49-2 (Industrial Inorganic Chemicals)
    Section cross-reference(s): 67
IT 15600-71-2P, Iron antimonate (FeSbO4) 156260-89-8P, Bismuth
    cerium chromium cobalt iron molybdenum nickel phosphorus potassium
    oxide 405220-76-0P 405220-77-1P 405220-78-2P 405220-79-3P
    405220-80-6P 405220-81-7P 405220-82-8P 405220-83-9P
    405220-84-0P
    RL: CAT (Catalyst use); IMF (Industrial manufacture);
    PREP (Preparation); USES (Uses)
       (catalyst component; manufacture of HCN by ammoxidn. of MeOH with
       fluidized-bed catalysts)
L67 ANSWER 6 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN
ACCESSION NUMBER: 2001:288839 HCAPLUS Full-text
                       134:311535
DOCUMENT NUMBER:
TITLE:
                       Catalysts for ammoxidation of propylene for
                       preparation of acrylonitrile with high yield
                       Mori, Kunio; Sasaki, Yutaka; Miyaki, Kenichi;
INVENTOR(S):
                       Watanabe, Hirokazu
PATENT ASSIGNEE(S):
                       Mitsubishi Rayon Co., Ltd., Japan; Dia-Nitrix
                       Co., Ltd.
                       Jpn. Kokai Tokkyo Koho, 8 pp.
SOURCE:
                       CODEN: JKXXAF
DOCUMENT TYPE:
                    · Patent
LANGUAGE:
                       Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
    PATENT NO. KIND DATE APPLICATION NO.
                                                               DATE
                                         _____
    JP 2001114740 A 20010424 JP 1999-295914
                                                               1999
                                                               1018
                                            <--
    JP 3819192 B2
WO 2001028986 A1
                              20060906
                              20010426 WO 2000-JP7194
                                                               2000
                                                               1017
                                            <--
        W: CN, KR, RO, US
        RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
           MC, NL, PT, SE
    EP 1223164
                       A1
                              20020717 EP 2000-966538
                                                               2000
                                                               1017
                                            <--
                       B1 20060913
    EP 1223164
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE,
           MC, PT, IE, FI, RO, CY
    RO 121265
                       B1 20070228 RO 2002-471
                                                               2000
                                                               1017
    US 6653496
                      B1
                              20031125
                                       US 2002-110061
                                                               2002
                                                               0408
```

<--

JP 1999-295914 A

1999 1018 <--WO 2000-JP7194 W 2000 1017

ED Entered STN: 24 Apr 2001

AB The ammoxidn. uses a fluidized bed catalyst comprising Mo, Bi, Fe, K, M components (e.g., Mg, Ca, Ba, etc.), N components (e.g., Cr, Y, Ce, etc.), and silica as essential components at a specific Mo ratio and containing Fe antimonate being present as a crystalline phase. The catalysts are stable for a long period of time.

<--

IT 107-13-1P, Acrylonitrile, preparation

RL: IMF (Industrial manufacture); PREP (Preparation) (ammoxidn. catalysts for propylene for preparation of acrylonitrile with high yield)

RN 107-13-1 HCAPLUS

CN 2-Propenenitrile (CA INDEX NAME)

H2C___CH_C_N

IT 335233-39-1

RL: CAT (Catalyst use); USES (Uses)

(silica-supported catalysts; ammoxidn. catalysts for propylene for preparation of acrylonitrile with high yield)

RN 335233-39-1 HCAPLUS

CN Antimony bismuth cerium cesium chromium cobalt iron molybdenum nickel potassium ruthenium oxide phosphate (Sb1.7Bi0.5Ce0.5Cs0.05Cr2Co1.5Fe2.5Mo10Ni4K0.2Ru0.05O47.47(PO4)0.3) (9CI) (CA INDEX NAME)

Component	 	Ratio	Component Registry Number
	==+==		
0		47.47	17778-80-2
04P	1	0.3	14265-44-2
Bi	1	0.5	7440-69-9
Co	1	1.5	7440-48-4
Cr `	- 1	2	7440-47-3
Cs	- 1	0.05	7440-46-2
Ce	1	0.5	7440-45-1
Sb	j	1.7	7440-36-0
Ru	1	0.05	7440-18-8
K	- 1	0.2	7440-09-7
Ni	1	4	7440-02-0
Мо	1 .	10	7439-98-7
Fe ·	1	2.5	7439-89-6

IC ICM C07C253-26

ICS B01J023-88; B01J023-89; B01J027-057; B01J027-199; C07C255-08;

CC 35-2 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 67

IT Ammoxidation

Ammoxidation catalysts

(ammoxidn. catalysts for propylene for preparation of acrylonitrile with high yield)

IT 107-13-1P, Acrylonitrile, preparation

RL: IMF (Industrial manufacture); PREP (Preparation)

(ammoxidn. catalysts for propylene for preparation of acrylonitrile with high yield)

IT 335233-33-5 335233-34-6 335233-35-7 335233-36-8

335233-38-0 **335233-39-1** 335233-40-4 335233-37-9

335233-42-6

RL: CAT (Catalyst use); USES (Uses)

(silica-supported catalysts; ammoxidn. catalysts for propylene for preparation of acrylonitrile with high yield)

L67 ANSWER 7 OF 7 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1998:394383 HCAPLUS Full-text

DOCUMENT NUMBER:

129:68144

TITLE:

Catalysts for ammoxidation of propylene to

acrylonitrile

INVENTOR(S):

Chen, Shin; Wu, Lianfa

PATENT ASSIGNEE(S):

Chinese Petrochemical Industries Co., Ltd.,

Peop. Rep. China; Chinese Petrochemical

Industries, Shanghai Petrochemical Laboratory

APPLICATION NO.

DATE

SOURCE:

Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DATE

DOCUMENT TYPE:

Patent

KIND

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

JP	10156185	Α	19980616	JP	1997-212289	
	,					1997
						0806
					<	
	3896194	B2	20070322			
CN	1172691	Α	19980211	CN	1996-116453	1000
						1996 0806
					<	0000
CN	1060410	В	20010110		•	
CN	1172689	A	19980211	CN	1996-116454	
						1996
						0806
					<	
	1059607	В	20001220	~ 11	1006 116455	
CN	1172690	Α	19980211	CN	1996-116455	1996
						0806
					<	0000
CN	1059608	В	20001220		•	
US	5834394	A	19981110	US	1997-904914	
						1997
						0801
DD T	ADDIN THE			C 11	<	
PRIORITI	APPLN. INFO.:			CN	1996-116453 A	1996
						0806
					<	0000
				CN	1996-116454 A	
						1996
						0806
					<	
				CN	1996-116455 A	1006
						1996 0806
					<	0000
EĎ Ent	ered STN: 27 Jun	1998			-	

Entered STN: 27 Jun 1998 ΕĎ

AB Title catalysts for fluidized-bed reaction comprise (A) AaBbCcDdNae FefBigMohOx (A = K, Rb, Cs, Tl, or their mixture; B = Mn, Mg, Sr, Ca, Ba, rare earth metals except Pr and Nd, or their mixture; C = P, As, B, Sb, Cr, W, V, or their mixture; D = Ni and/or Co, optionally Li, Pr and/or Nd, except simple combination of Co and Ni; a = 0.001-2.0, b = 0.001-2.00-4.5, c = 0.01-8.0, d = 0.01-22.0, e = 0.01-0.7, f = 0.01-8.0, g = 0.01-6.0, h = 8-16,

x = number of oxygen to satisfy valence of other elements) and (B) SiO2 as a support. Thus, a mixture of 20% KNO3 9.0, 20% RbNO3 17.0, 20% CsNO3 7.0, and 20% NaNO3 18.5 g was treated with 1250 g of ammonia-stabilized SiO2 sol, 4.2 g 85% H3PO4, a mixture of 19.7 g ammonium tungstate in 100 mL 5% NH4OH and 374.7 g ammonium molybdate in 300 mL H2O, and a mixture of Bi(NO3)3 78.1, Mn(NO3)2 51.9, Fe(NO3)3 149.3, Co(NO3)2 63.9, Ni(NO3)2 215.0, Cr(NO3)3 4.4, and Pr(NO3)3 23.9 g in 70 mL H2O. The obtained paste mixture was spray-dried and baked at 670° for 1 h to give a catalyst comprising Mo14.5WO.5Bi1.1Fe2.5Co1.5Ni5.0Mn1.0Cr0.3PO.25NaO.3KO.1RbO.1CsO.05P r1.0 + 50% SiO2. A 1/1.2/9.8 mol mixture of propylene/NH3/air was passed through a fluidized-bed reactor which contained the catalyst at 435° and 0.08 MPa with WWH 0.045, resulting in propylene conversion 98.5%, acrylonitrile selectivity 83.7%, and once-through acrylonitrile yield 82.4%.

IT 208931-76-4P

CN

RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)

(catalysts for ammoxidn. of propylene to acrylonitrile)

RN 208931-76-4 HCAPLUS

Bismuth cerium cesium chromium cobalt iron lithium manganese molybdenum nickel potassium rubidium sodium tungsten oxide (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
	=+============	====+==================================
0	x	17778-80-2
Bi	l x	1 7440-69-9
Co	x	7440-48-4
Cr	x	7440-47-3
Cs	x	7440-46-2
Ce	x	7440-45-1
W	x	7440-33-7
Na	x	7440-23-5
Rb	x	7440-17-7
K) x	7440-09-7
Ni	x	7440-02-0
· Mo	x	7439-98-7
Mn	x	7439-96-5
Li	×	7439-93-2
Fe	l x	7439-89-6

IT 107-13-1P, Acrylonitrile, preparation
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (catalysts for ammoxidn. of propylene to acrylonitrile)
RN 107-13-1 HCAPLUS

CN 2-Propenenitrile (CA INDEX NAME)

 $H_2C = CH = C = N$

ICM B01J027-192

IC

```
ICS B01J023-88; C07C253-26; C07C255-08; C07B061-00
CC
     35-2 (Chemistry of Synthetic High Polymers)
     Section cross-reference(s): 67
IT
     Ammoxidation catalysts
        (catalysts for ammoxidn. of propylene to acrylonitrile)
                    208931-67-3P
                                   208931-68-4P
                                                  208931-69-5P
     208931-66-2P
                                                   208931-73-1P
     208931-70-8P
                    208931-71-9P
                                   208931-72-0P
     208931-74-2P
                    208931-75-3P 208931-76-4P
                                                208931-77-5P
                    208931-79-7P
                                                  208931-81-1P
     208931-78-6P
                                   208931-80-0P
                    208931-83-3P
     208931-82-2P
     RL: CAT (Catalyst use); IMF (Industrial manufacture);
     PREP (Preparation); USES (Uses)
        (catalysts for ammoxidn. of propylene to acrylonitrile)
```

SEARCH HISTORY

```
=> d his nofile
```

```
(FILE 'HOME' ENTERED AT 10:09:20 ON 28 MAR 2007)
```

FILE 'HCAPLUS' ENTERED AT 10:09:26 ON 28 MAR 2007

E US20040110978/PN

L1 1 SEA ABB=ON PLU=ON US20040110978/PN D ALL

SEL RN

```
FILE 'REGISTRY' ENTERED AT 10:11:22 ON 28 MAR 2007

12 30 SEA ABB=ON PLU=ON (107-13-1/BI OR 115-07-1/BI OR 1314-23-4/BI OR 1344-28-1/BI OR 13463-67-7/BI OR 13494-80-9/BI OR 7439-89-6/BI OR 7439-93-2/BI OR 7439-95-4/BI OR 7439-98-7/BI OR 7440-02-0/BI OR 7440-09-7/BI OR 7440-17-7/BI OR 7440-23-5/BI OR 7440-28-0/BI OR 7440-33-7/BI OR 7440-36-0/BI OR 7440-42-8/BI OR 7440-45-1/BI OR 7440-46-2/BI OR 7440-47-3/BI OR 7440-48-4/BI OR 7440-56-4/BI OR 7440-66-6/BI OR 7440-69-9/BI OR 7440-70-2/BI OR 7631-86-9/BI OR 7664-41-7/BI OR 7723-14-0/BI OR 7782-44-7/BI)

D SCAN
```

FILE 'HCAPLUS' ENTERED AT 10:13:23 ON 28 MAR 2007

E US2004-717846/APPS E US2002-717846/APPS

E US2003-717846/APPS

L3 1 SEA ABB=ON PLU=ON US2003-717846/APPS D ALL

L4 1 SEA ABB=ON PLU=ON L1 AND L3 DEL SELECT

SEL AU

L5 66 SEA ABB=ON PLU=ON ("JEVNE, STEPHEN C."/AU OR
"PAPARIZOS, CHRISTOS"/AU OR "SEELY, MICHAEL J."/AU)

L6 59 SEA ABB=ON PLU=ON L5 AND CATAL?

E AÇRYLONITRILE/CT

L7 1183 SEA ABB=ON PLU=ON "ACRYLONITRILE POLYMERS (INCLUDING COPOLYMERS)"/CT

L8 0 SEA ABB=ON PLU=ON L6 AND L7

L9 0 SEA ABB=ON PLU=ON L5 AND L7

FILE 'STNGUIDE' ENTERED AT 10:18:31 ON 28 MAR 2007

FILE 'ZCAPLUS' ENTERED AT 10:19:18 ON 28 MAR 2007

E JEVNE S/AU

L10 QUE ABB=ON PLU=ON JEVNE S?/AU

E SEELY M/AU

L11 QUE ABB=ON PLU=ON SEELY M?/AU

E STANDARD OIL/CO

L12 QUE ABB=ON PLU=ON "STANDARD OIL CO?"/PA, CS, SO, CO

E INNOVENE/CO

E INNOVENE USA/CO

L13 QUE ABB=ON PLU=ON "INNOVENE USA?"/PA,CS,SO,CO

FILE 'HCAPLUS' ENTERED AT 10:24:36 ON 28 MAR 2007

FILE 'ZCAPLUS' ENTERED AT 10:25:40 ON 28 MAR 2007

D QUE L5

E PAPARIZOS C/AU

L14 QUE ABB=ON PLU=ON PAPARIZOS C?/AU
L15 QUE ABB=ON PLU=ON L10 AND L11 AND L14
L16 QUE ABB=ON PLU=ON (L10 OR L11) OR L14

```
L17
                QUE ABB=ON
                            PLU=ON L16 AND ((L12 OR L13))
L18
                OUE ABB=ON
                            PLU=ON
                                    (L12.OR L13)
     FILE 'HCAPLUS' ENTERED AT 10:28:42 ON 28 MAR 2007
L19
              2 SEA ABB=ON PLU=ON L10 AND L11 AND L14
                D SCAN
                DEL SEL
                SEL RN
     FILE 'REGISTRY' ENTERED AT 10:30:23 ON 28 MAR 2007
L20
             49 SEA ABB=ON PLU=ON (107-13-1/BI OR 115-07-1/BI OR
                7631-86-9/BI OR 10026-22-9/BI OR 10035-06-0/BI OR
                12027-67-7/BI OR 12028-48-7/BI OR 13126-12-0/BI OR
                1314-23-4/BI OR 1333-82-0/BI OR 1344-28-1/BI OR
                13446-18-9/BI OR 13463-67-7/BI OR 13478-00-7/BI OR
                13494-80-9/BI OR 16774-21-3/BI OR 697309-79-8/BI OR
                697309-81-2/BI OR 697309-83-4/BI OR 697309-85-6/BI OR
                697309-87-8/BI OR 697309-89-0/BI OR 7439-89-6/BI OR
                7439-93-2/BI OR 7439-95-4/BI OR 7439-98-7/BI OR
                7440-02-0/BI OR 7440-09-7/BI OR 7440-17-7/BI OR
                7440-23-5/BI OR 7440-28-0/BI OR 7440-33-7/BI OR
                7440-36-0/BI OR 7440-42-8/BI OR 7440-45-1/BI OR
                7440-46-2/BI OR 7440-47-3/BI OR 7440-48-4/BI OR
                7440-56-4/BI OR 7440-66-6/BI OR 7440-69-9/BI OR
                7440-70-2/BI OR 7631-99-4/BI OR 7664-38-2/BI OR
                7664-41-7/BI OR 7723-14-0/BI OR 7782-44-7/BI OR
                7782-61-8/BI OR 7790-69-4/BI)
L21
             49 SEA ABB=ON PLU=ON L2 OR L20
                D SCAN
     FILE 'HCAPLUS' ENTERED AT 10:31:26 ON 28 MAR 2007
T.22
             45 SEA ABB=ON PLU=ON L16 AND ((L12 OR L13))
                E CATALYSTS/CT
                E E3+ALL
L23
         635119 SEA ABB=ON PLU=ON
                                    CATALYSTS+PFT, OLD, NT/CT
L24
             35 SEA ABB=ON
                           PLU=ON
                                    L22 AND L23
                D SCAN L19
L25
              O SEA ABB=ON PLU=ON L24 AND L7
     FILE 'REGISTRY' ENTERED AT 10:34:59 ON 28 MAR 2007
L26
              1 SEA ABB=ON PLU=ON 107-13-1/RN
                E ACRYLONITRILE/PCT
                E ACRYL/PCT
                E AC/PCT
                D SCAN L26
                D L26 PCT
                D CN
     FILE 'HCAPLUS' ENTERED AT 10:37:26 ON 28 MAR 2007
L27
          98560 SEA ABB=ON PLU=ON L26 OR ACRYLONITRILE OR ACRYLON
             14 SEA ABB=ON PLU=ON L24 AND L27
L28
                D SCAN
                DEL SEL
                SEL RN
     FILE 'REGISTRY' ENTERED AT 10:45:18 ON 28 MAR 2007
L29
            147 SEA ABB=ON PLU=ON (107-13-1/BI OR 115-07-1/BI OR
                115-11-7/BI OR 126-98-7/BI OR 7664-41-7/BI OR 7789-18-6
                /BI OR 10035-06-0/BI OR 10377-66-9/BI OR 11118-57-3/BI
                OR 1333-82-0/BI OR 13478-00-7/BI OR 13494-80-9/BI OR
                7439-95-4/BI OR 7439-96-5/BI OR 7440-03-1/BI OR
                7440-31-5/BI OR 7440-33-7/BI OR 7440-42-8/BI OR
                7440-45-1/BI OR 7440-56-4/BI OR 7440-62-2/BI OR
                7757-79-1/BI OR 10026-22-9/BI OR 11098-99-0/BI OR
                11099-02-8/BI OR 11104-61-3/BI OR 12027-67-7/BI OR
                12054-85-2/BI OR 12136-45-7/BI OR 1303-86-2/BI OR
```

13446-18-9/BI OR 199326-42-6/BI OR 199326-43-7/BI OR

```
199326-45-9/BI OR 199326-46-0/BI OR 20281-00-9/BI OR
                56780-28-0/BI OR 74-98-6/BI OR 7429-90-5/BI OR
                7439-89-6/BI OR 7439-98-7/BI OR 7440-28-0/BI OR
                7440-32-6/BI OR 7440-36-0/BI OR 7440-38-2/BI OR
                7440-43-9/BI OR 7440-47-3/BI OR 7440-50-8/BI OR
                7440-66-6/BI OR 7440-67-7/BI OR 7440-69-9/BI OR
                7440-70-2/BI OR 7664-38-2/BI OR 7723-14-0/BI OR
                7782-61-8/BI OR 10043-35-3/BI OR 10141-05-6/BI OR
                10361-44-1/BI OR 10377-60-3/BI OR 10421-48-4/BI OR
                107-02-8/BI OR 11099-11-9/BI OR 11104-44-2/BI OR
                11129-60-5/BI OR 12028-48-7/BI OR 12627-00-8/BI OR
                12651-21-7/BI OR 12737-86-9/BI OR 12777-38-7/BI OR
                1305-78-8/BI OR 1306-19-0/BI OR 1307-96-6/BI OR
                1309-37-1/BI OR 1309-48-4/BI OR 1309-64-4/BI OR
                1310-53-8/BI OR 1313-13-9/BI OR 1313-27-5/BI OR
                1313-99-1/BI OR 13138-45-9/BI OR 1314-13-2/BI OR
                1314-23-4/BI OR 1314-56-3/BI OR 1314-60-9/BI OR
                1327-33-9/BI OR 1332-29-2/BI OR 1344-28-1/BI OR
                152325-79-6/BI OR 152325-80-9/BI OR 152325-81-0/BI OR
                152325-82-1/BI OR 152325-83-2/BI OR 155948-76-8/BI OR
                155948-78-0/BI OR 156260-89-8/BI OR 156260-90-1/BI OR
                167258-26-6/BI OR 167258-29-9/BI OR 167258-30-2/BI OR
                167258-31-3/BI OR 167258-32-4/BI OR 167258-33-5/BI OR
                167258-34-6/BI OR 167258-35-7/BI OR 199326-44
L30
            160 SEA ABB=ON PLU=ON L21 OR L29
     FILE 'HCAPLUS' ENTERED AT 10:47:17 ON 28 MAR 2007
                SAV L28 SAC846HCPIN/A
     FILE 'REGISTRY' ENTERED AT 10:48:03 ON 28 MAR 2007
              O SEA ABB=ON PLU=ON (K(L)CS(L)CE(L)CR(L)CO(L)NI(L)FE(L)
L31
                BI(L)MO(L)O)/ELS(L)10/ELC.SUB
L32
             12 SEA ABB=ON. PLU=ON (K(L)CS(L)CE(L)CR(L)CO(L)NI(L)FE(L)
                BI(L)MO(L)O)/ELS
                D SCAN
              O SEA ABB=ON PLU=ON L32 AND L30
L33
             31 SEA ABB=ON PLU=ON L30 AND MO
L34
                D SCAN
             38 SEA ABB=ON PLU=ON L30 AND TIS/CI
L35
                D SCAN
                E A/CI
L36
              O SEA ABB=ON PLU=ON L30 AND AYS/CI
              6 SEA ABB=ON PLU=ON (RB OR NA OR LI OR TL)/ELS AND L32
L37
                D SCAN
             11 SEA ABB=ON PLU=ON (P OR SB OR TE OR B OR GE OR W OR
L38
                CA OR MG OR LNTH/PG OR ACTN/PG)/ELS AND L32
                D SCAN
              5 SEA ABB=ON PLU=ON L38 AND L37
L39
L40
             12 SEA ABB=ON PLU=ON L32 OR (L37 OR L38 OR L39)
     FILE 'HCAPLUS' ENTERED AT 11:09:50 ON 28 MAR 2007
             10 SEA ABB=ON PLU=ON L40
L41
              9 SEA ABB=ON
                           PLU=ON L40/CAT
L42
                D SCAN
L43
              O SEA ABB=ON PLU=ON L42 AND L16
     FILE 'HCAPLUS' ENTERED AT 11:12:27 ON 28 MAR 2007
     FILE 'REGISTRY' ENTERED AT 11:14:04 ON 28 MAR 2007
                D SCAN L2
L44
              7 SEA ABB=ON PLU=ON L32 AND P/ELS
                D SCAN
                D OUE
L45
              3 SEA ABB=ON PLU=ON L32 AND MG/ELS
                D SCAN
```

D SCAN L32

	FILE	'HCAPLUS' ENTERED AT 11:31:28 ON 28 MAR 2007 D QUE L7
L46 L47 L48		29606 SEA ABB=ON PLU=ON ACRYLONITRILE+PFT,OLD,NT/CT 5762 SEA ABB=ON PLU=ON L46 AND L23 6 SEA ABB=ON PLU=ON L41 AND L47 D SCAN
L49		10 SEA ABB=ON PLU=ON L48 OR L42 D SCAN D 1-10 AU
L50	FILE	'STNGUIDE' ENTERED AT 11:41:49 ON 28 MAR 2007 QUE ABB=ON PLU=ON PY<2003 OR PRY<2003 OR AY<2003 OR MY<2003 OR REVIEW/DT
L51	FILE	'HCAPLUS' ENTERED AT 11:43:48 ON 28 MAR 2007 7 SEA ABB=ON PLU=ON L49 AND L50 SAV L28 SAC846HCP/A
	FILE	'REGISTRY' ENTERED AT 11:44:52 ON 28 MAR 2007 SAV L40 SAC846REG/A
	FILE	'HCAPLUS' ENTERED AT 11:45:40 ON 28 MAR 2007
L52	FILE	'RAPRA, WPIX' ENTERED AT 11:46:58 ON 28 MAR 2007 2 SEA ABB=ON PLU=ON L15 D 1-2 TI
L53		O SEA ABB=ON PLU=ON L17
L54 L55		72 SEA ABB=ON PLU=ON L16 63 SEA ABB=ON PLU=ON L54 AND (CAT OR CATAL?)
L56		1 SEA ABB=ON PLU=ON L55 AND POLYMER?
		D TI D SCAN
L57		28 SEA ABB=ON PLU=ON L55 AND (?NITRIL? OR ACRYLON?) D 1-28 KWIC
	FILE	'STNGUIDE' ENTERED AT 11:51:28 ON 28 MAR 2007
	FILE	'WPIX' ENTERED AT 11:53:17 ON 28 MAR 2007 D L57 1 ALL D QUE L28
L58		'HCAPLUS' ENTERED AT 11:56:38 ON 28 MAR 2007 23 SEA ABB=ON PLU=ON L16 AND L23 AND L46 D SCAN
	FILE	'STNGUIDE' ENTERED AT 11:57:11 ON 28 MAR 2007
	FILE	'HCAPLUS' ENTERED AT 11:58:44 ON 28 MAR 2007
L59 L60		24 SEA ABB=ON PLU=ON L28 OR L58 24 SEA ABB=ON PLU=ON L59 AND L50
		SAV L60 SAC846HCPIN/A
	FILE	'RAPRA, WPIX' ENTERED AT 12:00:11 ON 28 MAR 2007 D QUE L57
L61		28 SEA ABB=ON PLU=ON L57 OR L52
L62		27 SEA ABB=ON PLU=ON L61 AND L50 SAV L62 SAC846IN/A
	FILE	'STNGUIDE' ENTERED AT 12:02:26 ON 28 MAR 2007 D QUE L51
	FILE	'HCAPLUS' ENTERED AT 12:30:53 ON 28 MAR 2007
L63	FILE	'REGISTRY' ENTERED AT 12:32:12 ON 28 MAR 2007 9 SEA ABB=ON PLU=ON L44 OR L45

```
FILE 'HCAPLUS' ENTERED AT 12:32:24 ON 28 MAR 2007
             7 SEA ABB=ON PLU=ON L63/CAT
L64
             7 SEA ABB=ON PLU=ON L64 AND L49
L65
             10 SEA ABB=ON PLU=ON L64 OR L49
L66
                D QUE
                D QUE L49
L67
              7 SEA ABB=ON PLU=ON L66 AND L50
                SAV L67 SAC846HCP/A
     FILE 'STNGUIDE' ENTERED AT 12:35:14 ON 28 MAR 2007
                D QUE L60
                D QUE L62
                D QUE L60
                D QUE L40
                D QUE L60
                D QUE L62
     FILE 'HCAPLUS, WPIX' ENTERED AT 12:40:15 ON 28 MAR 2007
L68.
             32 DUP REM L60 L62 (19 DUPLICATES REMOVED)
                    ANSWERS '1-24' FROM FILE HCAPLUS
                    ANSWERS '25-32' FROM FILE WPIX
                D L68 1-32 IBIB AB
                D QUE L40
                D QUE L63
                D QUE L67
               D L67 1-7 IBIB ED ABS HITSTR HITIND
```