A Course in Model Theory

Katin Tent & Martin Ziegler

November 4, 2020

Contents

1	The Basics		1
	1.1	Structures	1
	1.2	Language	3
	1.3	Theories	5
2	Elementary Extensions and Compactness		
	2.1	Elementary substructures	6
	2.2	The Compactness Theorem	7
3	Quantifier Elimination		9
	3.1	Preservation theorems	9
	3.2	Quantifier elimination	13
	3.3	Examples	19
4	Countable Models		21
	4.1	The omitting types theorem	21
	4.2	The space of types	22
5	TΩ	DO Don't understand	22

1 The Basics

1.1 Structures

Definition 1.1. Let $\mathfrak{A},\mathfrak{B}$ be L-structures. A map $h:A\to B$ is called a **homomorphism** if for all $a_1,\dots,a_n\in A$

$$\begin{array}{rcl} h(c^{\mathfrak{A}}) & = & c^{\mathfrak{B}} \\ h(f^{\mathfrak{A}}(a_1, \ldots, a_n)) & = & f^{\mathfrak{B}}(h(a_1), \ldots, h(a_n)) \\ R^{\mathfrak{A}}(a_1, \ldots, a_n) & \Rightarrow & R^{\mathfrak{B}}(h(a_1), \ldots, h(a_n)) \end{array}$$

We denote this by

$$h:\mathfrak{A}\to\mathfrak{B}$$

If in addition h is injective and

$$R^{\mathfrak{A}}(a_1,\dots,a_n) \Leftrightarrow R^{\mathfrak{B}}(h(a_1),\dots,h(a_n))$$

for all $a_1, \dots, a_n \in A$, then h is called an (isomorphic) **embedding**. An **isomorphism** is a surjective embedding

Lemma 1.2. Let $h: \mathfrak{A} \xrightarrow{\sim} \mathfrak{A}'$ be an isomorphism and \mathfrak{B} an extension of \mathfrak{A} . Then there exists an extension \mathfrak{B}' of \mathfrak{A}' and an isomorphism $g: \mathfrak{B} \xrightarrow{\sim} \mathfrak{B}'$ extending h

For any family \mathfrak{A}_i of substructures of \mathfrak{B} , the intersection of the A_i is either empty or a substructure of \mathfrak{B} . Therefore if S is any non-empty subset of \mathfrak{B} , then there exists a smallest substructure $\mathfrak{A} = \langle S \rangle^{\mathfrak{B}}$ which contains S. We call the \mathfrak{A} the substructure **generated** by S

Lemma 1.3. *If* $\mathfrak{a} = \langle S \rangle$, then every homomorphism $h : \mathfrak{A} \to \mathfrak{B}$ is determined by its values on S

Definition 1.4. Let (I, \leq) be a **directed partial order**. This means that for all $i, j \in I$ there exists a $k \in I$ s.t. $i \leq k$ and $j \leq k$. A family $(\mathfrak{A}_i)_{i \in I}$ of L-structures is called **directed** if

$$i \leq j \Rightarrow \mathfrak{A}_i \subseteq \mathfrak{A}_j$$

If I is linearly ordered, we call $(\mathfrak{A}_i)_{i\in I}$ a **chain**

If a structure \mathfrak{A}_1 is isomorphic to a substructure \mathfrak{A}_0 of itself,

$$h_0:\mathfrak{A}_0\stackrel{\sim}{\longrightarrow}\mathfrak{A}_1$$

then Lemma 1.2 gives an extension

$$h_1:\mathfrak{A}_1\stackrel{\sim}{\longrightarrow}\mathfrak{A}_2$$

Continuing in this way we obtain a chain $\mathfrak{A}_0\subseteq\mathfrak{A}_1\subseteq\mathfrak{A}_2\subseteq...$ and an increasing sequence $h_i:\mathfrak{A}_i\stackrel{\sim}{\longrightarrow}\mathfrak{A}_{i+1}$ of isomorphism

Lemma 1.5. Let $(\mathfrak{A}_i)_{i\in I}$ be a directed family of L-structures. Then $A=\bigcup_{i\in I}A_i$ is the universe of a (uniquely determined) L-structure

$$\mathfrak{A}=\bigcup_{i\in I}\mathfrak{A}_i$$

which is an extension of all \mathfrak{A}_i

A subset K of L is called a **sublanguage**. An L-structure becomes a K-structure, the **reduct**.

$$\mathfrak{A} \upharpoonright K = (A, (Z^{\mathfrak{A}})_{Z \in K})$$

Conversely we call $\mathfrak A$ an **expansion** of $\mathfrak A \upharpoonright K$.

1. Let $B \subseteq A$, we obtain a new language

$$L(B) = L \cup B$$

and the L(B)-structure

$$\mathfrak{A}_B = (\mathfrak{A}, b)_{b \in B}$$

Note that $\mathbf{Aut}(\mathfrak{A}_B)$ is the group of automorphisms of $\mathfrak A$ fixing B elementwise. We denote this group by $\mathbf{Aut}(\mathfrak A/B)$

Let S be a set, which we call the set of sorts. An S-sorted language L is given by a set of constants for each sort in S, and typed function and relations. For any tuple (s_1,\ldots,s_n) and (s_1,\ldots,s_n,t) there is a set of relation symbols and function symbols respectively. An S-sorted structure is a pair $\mathfrak{A}=(A,(Z^{\mathfrak{A}})_{Z\in L})$, where

$$\begin{array}{ll} A & \text{if a family } (A_s)_{s \in S} \text{ of non-empty sets} \\ Z^{\mathfrak{A}} \in A_s & \text{if } Z \text{ is a constant of sort } s \in S \\ Z^{\mathfrak{A}} : A_{s_1} \times \dots \times A_{s_n} \to A_t \text{if } Z \text{ is a function symbol of type } (s_1, \dots, s_n, t) \\ Z^{\mathfrak{A}} \subseteq A_{s_1} \times \dots \times A_{s_n} & \text{if } Z \text{ is a relation symbol of type } (s_1, \dots, s_n) \end{array}$$

Example 1.1. Consider the two-sorted language L_{Perm} for permutation groups with a sort x for the set and a sort g for the group. The constants and function symbols for L_{Perm} are those of L_{Group} restricted to the sort g and an additional function symbol φ of type (x,g,x). Thus an L_{Perm} -structure (X,G) is given by a set X and an L_{Group} -structure G together with a function $X \times G \to X$

1.2 Language

Lemma 1.6. Suppose \overrightarrow{b} and \overrightarrow{c} agree on all variables which are free in φ . Then

$$\mathfrak{A}\models\varphi[\overrightarrow{b}]\Leftrightarrow\mathfrak{A}\models\varphi[\overrightarrow{c}]$$

We define

$$\mathfrak{A} \models \varphi[a_1, \dots, a_n]$$

by $\mathfrak{A} \models \varphi[\overrightarrow{b}]$, where \overrightarrow{b} is an assignment satisfying $\overrightarrow{b}(x_i) = a_i$. Because of Lemma 1.6 this is well defined.

Thus $\varphi(x_1,\ldots,x_n)$ defines an n-ary relation

$$\varphi(\mathfrak{A}) = \{ \bar{a} \mid \mathfrak{A} \models \varphi[\bar{a}] \}$$

on A, the **realisation set** of φ . Such realisation sets are called **0-definable subsets** of A^n , or 0-definable relations

Let B be a subset of A. A B-definable subset of $\mathfrak A$ is a set of the form $\varphi(\mathfrak A)$ for an L(B)-formula $\varphi(x)$. We also say that φ are defined over B and that the set $\varphi(\mathfrak A)$ is defined by φ . We call two formulas **equivalent** if in every structure they define the same set.

Atomic formulas and their negations are called **basic**. Formulas without quantifiers are Boolean combinations of basic formulas. It is convenient to allow the empty conjunction and the empty disjunction. For that we introduce two new formulas: the formula \top , which is always true, and the formula \bot , which is always false. We define

$$\bigwedge_{i<0}\pi_i=\top$$

$$\bigvee_{i<0}\pi_i=\bot$$

A formula is in **negation normal form** if it is built from basic formulas using $\land, \lor, exists, \forall$

Definition 1.7. A formula in negation normal form which does not contain any existential quantifier is called **universal**. Formulas in negation normal form without universal quantifiers are called **existential**

Let $\mathfrak A$ be an L-structure. The **atomic diagram** of $\mathfrak A$ is

$$Diag(\mathfrak{A}) = \{ \varphi \text{ basic } L(A) \text{-sentence } | \mathfrak{A}_A \models \varphi \}$$

Lemma 1.8. The models of Diag(\mathfrak{a}) are precisely those structures $(\mathfrak{B}, h(a))_{a \in A}$ for embeddings $h : \mathfrak{A} \to \mathfrak{B}$

Exercise 1.2.1. Every formula is equivalent to a formula in prenex normal form:

$$Q_1 x_1 \dots Q_n x_n \varphi$$

The Q_i are quantifiers and φ is quantifier-free

Proof.

$$(\forall x)\phi \wedge \psi \models \exists \ \forall x(\phi \wedge \psi) \text{ if } \exists x \top (\text{at least one individual exists})$$

$$(\forall x\phi) \vee \psi \models \exists \ \forall x(\phi \vee \psi)$$

$$(\exists x\phi) \wedge \psi \models \exists \ \exists x(\phi \wedge \psi)$$

$$(\exists x\phi) \vee \psi \models \exists \ \exists x(\phi \vee \psi) \text{ if } \exists x \top$$

$$\neg \exists x\phi \models \exists \ \forall x\neg \phi$$

$$\neg \forall x\phi \models \exists \ \exists x\neg \phi$$

$$(\forall x\phi) \rightarrow \psi \models \exists \ \exists x(\phi \rightarrow \psi) \text{ if } \exists x \top$$

$$(\exists x\phi) \rightarrow \psi \models \exists \ \forall x(\phi \rightarrow \psi)$$

$$\phi \rightarrow (\exists x\psi) \models \exists \ \exists x(\phi \rightarrow \psi) \text{ if } \exists x \top$$

$$\phi \rightarrow (\forall x\psi) \models \exists \ \forall x(\phi \rightarrow \psi)$$

1.3 Theories

Definition 1.9. An *L***-theory** *T* is a set of *L*-sentences

A theory which has a model is a **consistent** theory. We call a set Σ of L-formulas **consistent** if there is an L-structure and **an assignment** \overrightarrow{b} **s.t.** $\mathfrak{A} \models [\overrightarrow{b}]$ for all $\varphi \in \Sigma$

Lemma 1.10. Let T be an L-theory and L' be an extension of L. Then T is consistent as an L-theory iff T is consistent as a L'-theory

Lemma 1.11. 1. If
$$T \models \varphi$$
 and $T \models (\varphi \rightarrow \psi)$, then $T \models \psi$

2. If $T \models \varphi(c_1,\ldots,c_n)$ and the constants c_1,\ldots,c_n occur neither in T nor in $\varphi(x_1,\ldots,x_n)$, then $T \models \forall x_1\ldots x_n \varphi(x_1,\ldots,x_n)$

Proof. 2. Let $L'=L\setminus\{c_1,\dots,c_n\}$. If the L'-structure is a model of T and a_1,\dots,a_n are arbitrary elements, then $(\mathfrak{A},a_1,\dots,a_n)\models \varphi(c_1,\dots,c_n)$. This means $\mathfrak{A}\models \forall x_1\dots x_n\varphi(x_1,\dots,x_n)$.

S and T are called **equivalent**, $S\equiv T$, if S and T have the same models **Definition 1.12.** A consistent L-theory T is called **complete** if for all L-sentences φ

$$T \models \varphi$$
 or $T \models \neg \varphi$

Definition 1.13. For a complete theory T we define

$$|T| = \max(|L|, \aleph_0)$$

The typical example of a complete theory is the theory of a structure $\mathfrak A$

$$\mathsf{Th}(\mathfrak{A}) = \{ \varphi \mid \mathfrak{A} \models \varphi \}$$

Lemma 1.14. A consistent theory is complete iff it is maximal consistent, i.e., if it is equivalent to every consistent extension

Definition 1.15. Two L-structures $\mathfrak A$ and $\mathfrak B$ are called **elementary equivalent**

$$\mathfrak{A} \equiv \mathfrak{B}$$

if they have the same theory

Lemma 1.16. Let T be a consistent theory. Then the following are equivalent

- 1. *T* is complete
- 2. All models of T are elemantarily equivalent
- 3. There exists a structure \mathfrak{A} with $T \equiv \text{Th}(\mathfrak{A})$

Proof.
$$1 \rightarrow 3 \rightarrow 2 \rightarrow 1$$

2 Elementary Extensions and Compactness

2.1 Elementary substructures

Let $\mathfrak{A},\mathfrak{B}$ be two L-structures. A map $h:A\to B$ is called **elementary** if for all $a_1,\dots,a_n\in A$ we have

$$\mathfrak{A}\models\varphi[a_1,\ldots,a_n]\Leftrightarrow\mathfrak{B}\models\varphi[h(a_1),\ldots,h(a_n)]$$

We write

$$h:\mathfrak{A}\stackrel{\prec}{\longrightarrow}\mathfrak{B}$$

Lemma 2.1. The models of $\operatorname{Th}(\mathfrak{A}_A)$ are exactly the structures of the form $(\mathfrak{B}, h(a))_{a \in A}$ for elementary embeddings $h : \mathfrak{A} \stackrel{\smile}{\longrightarrow} \mathfrak{B}$

We call $Th(\mathfrak{A}_A)$ the **elemantary diagram** of \mathfrak{A}

A substructure $\mathfrak A$ of $\mathfrak B$ is called **elementary** if the inclusion map is elementary. In this case we write

$$\mathfrak{A}\prec\mathfrak{B}$$

Theorem 2.2 (Tarski's Test). Let $\mathfrak B$ be an L-structure and A a subset of B. Then A is the universe of an elementary substructure iff every L(A)-formula $\varphi(x)$ which is satisfiable in $\mathfrak B$ can be satisfied by an element of A

We use Tarski's Test to construct small elementary substructures

Corollary 2.3. Suppose S is a subset of the L-structure \mathfrak{B} . Then \mathfrak{B} has a elementary substructure \mathfrak{A} containing S and of cardinality at most

$$\max(|S|, |L|, \aleph_0)$$

Proof. We construct A as the union of an ascending sequence $S_0 \subseteq S_1 \subseteq \ldots$ of subsets of B. We start with $S_0 = S$. If S_i is already defined, we choose an element $a_{\varphi} \in B$ for every $L(S_i)$ -formula $\varphi(x)$ which is satisfiable in $\mathfrak B$ and define S_{i+1} to be S_i together with these a_{φ} .

An L-formula is a finite sequence of symbols from L, auxiliary symbols and logical symbols. These are $|L|+\aleph_0=\max(|L|,\aleph_0)$ many symbols and there are exactlymax($|L|,\aleph_0$) many L-formulas

Let $\kappa = \max(|S|, |L|, \aleph_0)$. There are κ many L(S)-formulas: therefore $|S_1| \leq \kappa$. Inductively it follows for every i that $|S_i| \leq \kappa$. Finally we have $|A| \leq \kappa \cdot \aleph_0 = \kappa$

A directed family $(\mathfrak{A}_i)_{i\in I}$ of structures is **elementary** if $\mathfrak{A}_i\prec\mathfrak{A}_j$ for all $i\leq j$

Theorem 2.4 (Tarski's Chain Lemma). *The union of an elementary directed family is an elementary extension of all its members*

Proof. Let $\mathfrak{A}=\bigcup_{i\in I}(\mathfrak{A}_i)_{i\in I}$. We prove by induction on $\varphi(\bar{x})$ that for all i and $\bar{a}\in\mathfrak{A}_i$

$$\mathfrak{A}_i \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{A} \models \varphi(\bar{a})$$

2.2 The Compactness Theorem

Theorem 2.5 (Compactness Theorem). *Finitely satisfiable theories are consistent*

Let L be a language and C a set of new constants. An L(C)-theory T' is called a **Henkin theory** if for every L(C)-formula $\varphi(x)$ there is a constant $c \in C$ s.t.

$$\exists x \varphi(x) \to \varphi(c) \in T'$$

Lemma 2.6. Every finitely satisfiable L-theory T can be extended to a finitely complete Henkin Theory T^*

Lemma 2.7. Every finitely satisfiable L-theory T can be extended to a finitely complete Henkin theory T^*

Lemma 2.8. Every finitely complete Henkin theory T^* has a model $\mathfrak A$ (unique up to isomorphism) consisting of constants; i.e.,

$$(\mathfrak{A}, a_c)_{c \in C} \models T^*$$

 $\textit{with } A = \{a_c \mid c \in C\}$

Corollary 2.9. A set of formulas $\Sigma(x_1,\ldots,x_n)$ is consistent with T if and only if every finite subset of Σ is consistent with T

Proof. Introduce new constants c_1,\ldots,c_n . Then Σ is consistent with T is and only if $T\cup\Sigma(c_1,\ldots,c_n)$ is consistent. Now apply the Compactness Theorem

Definition 2.10. Let $\mathfrak A$ be an L-structure and $B\subseteq A$. Then $a\in A$ realises a set of L(B)-formulas $\Sigma(x)$ if a satisfied all formulas from Σ . We write

$$\mathfrak{A} \models \Sigma(a)$$

We call $\Sigma(x)$ finitely satisfiable in $\mathfrak A$ if every finite subset of Σ is realised in $\mathfrak A$

Lemma 2.11. The set $\Sigma(x)$ is finitely satisfiable in $\mathfrak A$ iff there is an elementary extension of $\mathfrak A$ in which $\Sigma(x)$ is realised

Proof. By Lemma 2.1 Σ is realised in an elementary extension of $\mathfrak A$ iff Σ is consistent with $\operatorname{Th}(\mathfrak A_A)$. So the lemma follows from the observation that a finite set of L(A)-formulas is consistent with $\operatorname{Th}(\mathfrak A_A)$ iff it is realised in

Definition 2.12. Let $\mathfrak A$ be an L-structure and B a subset of A. A set p(x) of L(B)-formulas is a **type** over B if p(x) is maximal finitely satisfiable in $\mathfrak A$. We call B the **domain** of p. Let

$$S(B) = S^{\mathfrak{A}}(B)$$

denote the set of types over B.

Every element a of \mathfrak{A} determines a type

$$\mathsf{tp}(a/B) = tp^{\mathfrak{A}}(a/B) = \{ \varphi(x) \mid \mathfrak{A} \models \varphi(a), \varphi \text{ an } L(B) \text{-formula} \}$$

So an element a realises the type $p \in S(B)$ exactly if $p = \operatorname{tp}(a/B)$. If \mathfrak{A}' is an elementary extension of \mathfrak{A} , then

$$S^{\mathfrak{A}}(B) = S^{\mathfrak{A}'}(B)$$
 and $\operatorname{tp}^{\mathfrak{A}'}(a/B) = \operatorname{tp}^{\mathfrak{A}}(a/B)$

If $\mathfrak{A}' \models p(x)$ then $\mathfrak{A}' \models \exists x p(x)$, so $\mathfrak{A} \models \exists x p(x)$.

We use the notation tp(a) for $tp(a/\emptyset)$

Maximal finitely satisfiable sets of formulas in x_1, \dots, x_n are called n-types and

$$S_n(B) = S_N^{\mathfrak{A}}(B)$$

denotes the set of n-types over B.

$$\operatorname{tp}(C/B) = \{\varphi(x_{c_1}, \dots, x_{c_n}) \mid \mathfrak{A} \models \varphi(c_1, \dots, c_n), \varphi \text{ an } L(B) \text{-formula}\}$$

Corollary 2.13. Every structure \mathfrak{A} has an elementary extension \mathfrak{B} in which all types over A are realised

Proof. We choose for every $p \in S(A)$ a new constant $c_p.$ We have to find a model of

$$\operatorname{Th}(\mathfrak{A}_A) \cup \bigcup_{p \in S(A)} p(c_p)$$

This theory is finitely satisfiable since every p is finitely satisfiable in \mathfrak{A} .

Or use Lemma 2.11. Let $(p_{\alpha})_{\alpha<\lambda}$ be an enumeration of S(A). Construct an elementary chain

$$\mathfrak{A} = \mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots \prec \mathfrak{A}_\beta \prec \ldots (\beta \leq \lambda)$$

s.t. each p_{α} is realised in $\mathfrak{A}_{\alpha+1}$ (by recursion theorem on ordinal numbers)

Suppose that the elementary chain $(\mathfrak{A}_{\alpha'})_{\alpha'<\beta}$ is already constructed. If β is a limit ordinal, we let $\mathfrak{A}_{\beta} = \bigcup_{\alpha<\beta} \mathfrak{A}_{\alpha}$, which is elementary by Lemma 2.4. If $\beta = \alpha + 1$ we first note that p_{α} is also finitely satisfiable in \mathfrak{A}_{α} , therefore we can realise p_{α} in a suitable elementary extension $\mathfrak{A}_{\beta} \succ \mathfrak{A}_{\alpha}$ by Lemma 2.11. Then $\mathfrak{B} = \mathfrak{A}_{\lambda}$ is the model we were looking for

3 Quantifier Elimination

3.1 Preservation theorems

Lemma 3.1 (Separation Lemma). Let T_1, T_2 be two theories. Assume \mathcal{H} is a set of sentences which is closed under \land, \lor and contains \bot and \top . Then the following are equivalent

1. There is a sentence $\varphi \in \mathcal{H}$ which separates T_1 from T_2 . This means

$$T_1 \models \varphi$$
 and $T_2 \models \neg \varphi$

2. All models \mathfrak{A}_1 of T_1 can be separated from all models \mathfrak{A}_2 of T_2 by a sentence $\varphi \in \mathcal{H}$. This means

$$\mathfrak{A}_1 \models \varphi$$
 and $\mathfrak{A}_2 \models \neg \varphi$

Proof. $2 \to 1$. For any model \mathfrak{A}_1 of T_1 let $\mathcal{H}_{\mathfrak{A}_1}$ be the set of all sentences from \mathcal{H} which are true in \mathfrak{A}_1 . (2) implies that $\mathcal{H}_{\mathfrak{A}_1}$ and T_2 cannot have a common model. By the Compactness Theorem there is a finite conjunction $\varphi_{\mathfrak{A}_1}$ of sentences from $\mathcal{H}_{\mathfrak{A}_1}$ inconsistent with T_2 . Clearly

$$T_1 \cup \{ \neg \varphi_{\mathfrak{A}_1} \mid \mathfrak{A}_1 \models T_1 \}$$

is inconsistent. Again by compactness T_1 implies a disjunction φ of finitely many of the $\varphi_{\mathfrak{A}_1}$

For structures $\mathfrak{A},\mathfrak{B}$ and a map $f:A\to B$ preserving all formulas from a set of formulas Δ , we use the notation

$$f:\mathfrak{A}\to_{\Delta}\mathfrak{B}$$

We also write

$$\mathfrak{A}\Rightarrow_{\Delta}\mathfrak{B}$$

to express that all sentences from Δ true in $\mathfrak A$ are also true in $\mathfrak B$

Lemma 3.2. Let T be a theory, $\mathfrak A$ a structure and Δ a set of formulas, closed under existential quantification, conjunction and substitution of variables. Then the following are equivalent

1. All sentences $\varphi \in \Delta$ which are true in $\mathfrak A$ are consistent with T (There is a model $\mathfrak B \models \operatorname{Th}_{\Delta}(\mathfrak A_A) \cup T$ and $\mathfrak A \Rightarrow_{\Delta} \mathfrak B$)

2. There is a model $\mathfrak{B} \models T$ and a map $f : \mathfrak{A} \to_{\wedge} \mathfrak{B}$

Proof. $1 \to 2$. Consider $\operatorname{Th}_{\Delta}(\mathfrak{A}_A)$, the set of all sentences $\delta(\bar{a})$ ($\delta(\bar{x}) \in \Delta$), which are true in \mathfrak{A}_A . The models $(\mathfrak{B}, f(a)_{a \in A})$ of this theory correspond to maps $f: \mathfrak{A} \to_{\Delta} \mathfrak{B}$. This means that we have to find a model of $T \cup \operatorname{Th}_{\Delta}(\mathfrak{A}_A)$. To show finite satisfiability it is enough to show that $T \cup D$ is consistent for every finite subset D of $\operatorname{Th}_{\Delta}(\mathfrak{A}_A)$. Let $\delta(\bar{a})$ be the conjunction of the elements of D. Then T has a model \mathfrak{B} which is also a model of $\varphi = \exists \bar{x} \delta(\bar{x})$

Lemma 3.2 applied to $T=\operatorname{Th}(\mathfrak{B})$ shows that $\mathfrak{A}\Rightarrow_{\Delta}\mathfrak{B}$ iff there exists a map f and a structure $\mathfrak{B}'\equiv\mathfrak{B}$ s.t. $f:\mathfrak{A}\to_{\Delta}\mathfrak{B}'$

Theorem 3.3. Let T_1 and T_2 be two theories. Then the following are equivalent

- 1. There is a universal sentence which separates T_1 from T_2
- 2. No model of T_2 is a substructure of a model of T_1

Proof. $2 \to 1$. If T_1 and T_2 cannot be separated by a universal sentence, then they have models \mathfrak{A}_1 and \mathfrak{A}_2 which cannot be separated by a universal sentence. This can be denoted by

$$\mathfrak{A}_2 \Rightarrow_{\exists} \mathfrak{A}_1$$

Now Lemma 3.2 implies that \mathfrak{A}_2 there is a map $\mathfrak{A}_2 \to_\exists \mathfrak{A}_1'$ where $\mathfrak{A}_1' \models T_1$. Hence \mathfrak{A}_2 has an extension \mathfrak{A}_2' s.t. $\mathfrak{A}_2' \equiv \mathfrak{A}_1'$. Then \mathfrak{A}' is gain a model of T_1 contradicting (2)

Definition 3.4. For any L-theory T, the formulas $\varphi(\bar{x}), \psi(\bar{x})$ are said to be **equivalent** modulo T (or relative to T) if $T \models \forall \bar{x} (\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))$

Corollary 3.5. *Let T be a theory*

- 1. Consider a formula $\varphi(x_1,\ldots,x_n)$. The following are equivalent
 - (a) $\varphi(x_1,\ldots,x_n)$ is, modulo T, equivalent to a universal formula
 - (b) If $\mathfrak{A}\subseteq\mathfrak{B}$ are models of T and $a_1,\ldots,a_n\in A$, then $\mathfrak{B}\models\varphi(a_1,\ldots,a_n)$ implies $\mathfrak{A}\models\varphi(a_1,\ldots,a_n)$
- 2. We say that a theory which consists of universal sentences is universal. Then T is equivalent to a universal theory iff all substructures of models of T are again models of T

Proof. 1. Assume (2). We extend L by an n-tuple \bar{c} of new constants c_1,\dots,c_n and consider theory

$$T_1 = T \cup \{\varphi(\bar{c})\} \quad \text{ and } \quad T_2 = T \cup \{\neg\varphi(\bar{c})\}$$

Then (2) says the substructures of models of T_1 cannot be models of T_2 . By Theorem 3.3 T_1 and T_2 can be separated by a universal $L(\bar{c})$ -sentence $\psi(\bar{c})$. By Lemma 1.11, $T_1 \models \psi(\bar{c})$ implies

$$T \models \forall \bar{x}(\varphi(\bar{x}) \to \psi(\bar{x}))$$

and from $T_2 \models \neg \psi(\bar{c})$ we see

$$T \models \forall \bar{x} (\neg \varphi(\bar{x}) \rightarrow \neg \psi(\bar{x}))$$

2. Suppose a theory T has this property. Let φ be an axiom of T. If $\mathfrak A$ is a substructure of $\mathfrak B$, it is not possible for $\mathfrak B$ to be a model of T and for $\mathfrak A$ to be a model of $\neg \psi$ at the same time. By Theorem 3.3 there is a universal sentence ψ with $T \models \psi$ and $\neg \varphi \models \neg \psi$. Hence all axioms of T follow from

$$T_{\forall} = \{ \psi \mid T \models \psi, \psi \text{ universal} \}$$

An $\forall \exists$ -formula is of the form

$$\forall x_1 \dots x_n \psi$$

where ψ is existential

Lemma 3.6. Suppose φ is an $\forall \exists$ -sentence, $(\mathfrak{A}_i)_{i \in I}$ is a directed family of models of φ and \mathfrak{B} the union of the \mathfrak{A}_i . Then \mathfrak{B} is also a model of φ .

Proof. Write

$$\varphi = \forall \bar{x} \psi(\bar{x})$$

where ψ is existential. For any $\bar{a} \in B$ there is an A_i containing \bar{a} , clearly $\psi(\bar{a})$ holds in \mathfrak{A}_i . As $\psi(\bar{a})$ is existential it must also hold in \mathfrak{B}

Definition 3.7. We call a theory T **inductive** if the union of any directed family of models of T is again a model

Theorem 3.8. Let T_1 and T_2 be two theories. Then the following are equivalent

1. there is an $\forall \exists$ -sentence which separates T_1 and T_2

2. No model of T_2 is the union of a chain (or of a directed family) of models of T_1

Proof. $2 \to 1$. If (1) is not true, T_1, T_2 have models which cannot be separated by an $\forall \exists$ -sentence. Since $\exists \forall$ -formulas are equivalent to negated $\forall \exists$ -formulas (since \forall is too strong), we have

$$\mathfrak{B}^0 \Rightarrow_{\exists \forall} \mathfrak{A}$$

By Lemma 3.2 there is a map

$$f:\mathfrak{B}^0\to_{\forall}\mathfrak{A}^0$$

with $\mathfrak{A}^0 \equiv \mathfrak{A}$ (since $\mathfrak{B}^0 \to_{\exists \forall} \mathfrak{A}^0$). We can assume that $\mathfrak{B}^0 \subseteq \mathfrak{A}^0$ and f is the inclusion map. Then

$$\mathfrak{A}_{B}^{0} \Rightarrow_{\exists} \mathfrak{B}_{B}^{0}$$

Applying Lemma 3.2 again, we obtain an extension \mathfrak{B}^1_B of \mathfrak{A}^0_B with $\mathfrak{B}^1_B \equiv \mathfrak{B}^0_B$, i.e. $\mathfrak{B}^0 \prec \mathfrak{B}^1$. Hence we have an infinite chain

$$\mathfrak{B}^0 \subseteq \mathfrak{A}^0 \subseteq^1 \mathfrak{B}^1 \subseteq \mathfrak{A}^1 \subseteq \mathfrak{B}^2 \subseteq \cdots$$

$$\mathfrak{B}^0 \prec \mathfrak{B}^1 \prec \mathfrak{B}^2 \prec \cdots$$

$$\mathfrak{A}^i \equiv \mathfrak{A}$$

Let \mathfrak{B} be the union of the \mathfrak{A}^i . Since \mathfrak{B} is also the union of the elementary chain of the \mathfrak{B}^i , it is an elementary extension of \mathfrak{B}^0 and hence a model of T_2 . But the \mathfrak{A}^i are models of T_1 , so (2) does not hold

Corollary 3.9. *Let T be a theory*

- 1. For each sentence φ the following are equivalent
 - (a) φ is, modulo T, equivalent to an $\forall \exists$ -sentence
 - (b) If

$$\mathfrak{A}^0\subset\mathfrak{A}^1\subset\cdots$$

and their union $\mathfrak B$ are models of T, then φ holds in $\mathfrak B$ if it is true in all the $\mathfrak N^i$

2. T is inductive iff it can be axiomatised by $\forall \exists$ -sentences

Proof. 1. Theorem 3.8 shows that $\forall \exists$ -formulas are preserved by unions of chains. Hence (a)⇒(b). For the converse consider the theories

$$T_1 = T \cup \{\varphi\} \quad \text{ and } \quad T_2 = T \cup \{\neg \varphi\}$$

Part (b) says that the union of a chain of models of T_1 cannot be a model of T_2 . By Theorem 3.8 we can separate T_1 and T_2 by an $\forall \exists$ -sentence ψ . Hence $T \cup \{\varphi\} \models \psi$ and $T \cup \{\neg \varphi\} \models \neg \psi$

2. Clearly $\forall \exists$ -axiomatised theories are inductive. For the converse assume that T is inductive and φ is an axiom of T. If $\mathfrak B$ is a union of models of T, it cannot be a model of $\neg \varphi$. By Theorem 3.8 there is an $\forall \exists$ -sentence ψ with $T \models \psi$ and $\neg \varphi \models \neg \psi$. Hence all axioms of T follows from

$$T_{\forall \exists} = \{\psi \mid T \models \psi, \psi \; \forall \exists \text{-formula}\}$$

3.2 Quantifier elimination

Definition 3.10. A theory T has **quantifier elimination** if every L-formula $\varphi(x_1,\ldots,x_n)$ in the theory is equivalent modulo T to some quantifier-free formula $\rho(x_1,\ldots,x_n)$

It's easy to transform any theory T into a theory with quantifier elimination if one is willing to expand the language: just enlarge L by adding an n-place relation symbol R_{φ} for every L-formula $\varphi(x_1,\ldots,x_n)$ and T by adding all axioms

$$\forall x_1,\dots,x_n(R_{\varphi}(x_1,\dots,x_n)\leftrightarrow \varphi(x_1,\dots,x_n))$$

The resulting theory, the **Morleyisation** T^m of T, has quantifier elimination A **prime structure** of T is a structure which embeds into all models of T

Lemma 3.11. A consistent theory T with quantifier elimination which posseses a prime structure is complete

Proof. If $\mathfrak{M},\mathfrak{N}\models T$ and $\mathfrak{M}\models \varphi$ and $\mathfrak{N}\models \neg \varphi$. The prime structure is \mathfrak{H} . Then we have $h_1:\mathfrak{H}\to\mathfrak{M}$ and $h_2:\mathfrak{H}\to\mathfrak{M}$. If φ doesn't contain existential quantification, then there is a contradiction.

Definition 3.12. A simple existential formula has the form

$$\varphi = \exists y \rho$$

for a quantifier-free formula ρ . If ρ is a conjunction of basic formulas, φ is called **primitive existential**

Lemma 3.13. The theory T has quantifier elimination iff every primitive existential formula is, modulo T, equivalent to a quantifier-free formula

Proof. We can write every simple existential formula in the form $\exists y \bigvee_{i < n} \rho_i$ for ρ_i which are conjunctions of basic formulas. This shows that every simple existential formula is equivalent to a disjunction of primitive existential formulas, namely to $\bigvee_{i < n} (\exists y \rho_i)$. We can therefore assume that every simple existential formula is, modulo T, equivalent to a quantifier-free formula

We are now able to eliminate the quantifiers in arbitrary formulas in prenex normal form (Exercise 1.2.1)

$$Q_1 x_1 \dots Q_n x_n \rho$$

if $Q_n=\exists$, we choose a quantifier-free formula ρ_0 which, modulo T, is equivalent to $\exists x_n \rho$ and proceed with the formula $Q_1 x_1 \dots Q_{n-1} x_{n-1} \rho_0$. If $Q_n=\forall$, we find a quantifier-free ρ_1 which is, modulo T, equivalent to $\exists x_n \neg \rho$ and proceed with $Q_1 x_1 \dots Q_{n-1} x_{n-1} \neg \rho_1$

Theorem 3.14. For a theory T the following are equivalent

- 1. T has quantifier elimination
- 2. For all models \mathfrak{M}^1 and \mathfrak{M}^2 of T with a common substructure \mathfrak{A} we have

$$\mathfrak{M}_A^1 \equiv \mathfrak{M}_A^2$$

3. For all models \mathfrak{M}^1 and \mathfrak{M}^2 of T with a common substructure \mathfrak{A} and for all primitive existential formulas $\varphi(x_1,\ldots,x_n)$ and parameter a_1,\ldots,a_n from A we have

$$\mathfrak{M}^1 \models \varphi(a_1, \dots, a_n) \Rightarrow \mathfrak{M}^2 \models \varphi(a_1, \dots, a_n)$$

(this is exactly the equivalence relation)

If L has no constants, $\mathfrak A$ is allowed to be the empty "structure"

Proof. $3 \to 1$. Let $\varphi(\bar{x})$ be a primitive existential formula. In order to show that $\varphi(\bar{x})$ is equivalent, modulo T, to a quantifier-free formula $\rho(\bar{x})$ we extend L by an n-tuple \bar{c} of new constants c_1, \ldots, c_n . We have to show that we can separate $T \cup \{\varphi(\bar{c})\}$ and $T \cup \{\neg \varphi(\bar{c})\}$ by a quantifier free sentence $\rho(\bar{c})$. We apply the Separation Lemma (\mathcal{H} hear is the set of quantifier-free sentence). Let \mathfrak{M}^1 and \mathfrak{M}^2 be two models of T with two distinguished n-tuples \bar{a}^1 and \bar{a}^2 . Suppose that $(\mathfrak{M}^1, \bar{a}^1)$ and $(\mathfrak{M}^2, \bar{a}^2)$ satisfy the same quantifier-free $L(\bar{c})$ -sentences. We have to show that

$$\mathfrak{M}^1 \models \varphi(\bar{a}^1) \Rightarrow \mathfrak{M}^2 \models \varphi(\bar{a}^2)$$

then there is no $L(\bar{c})$ -sentence that can separate the models of $T \cup \{\varphi(\bar{c})\}$ and the models of $T \cup \{\neg \varphi(\bar{c})\}$ Consider the substructure $\mathfrak{A}^i = \langle \bar{a}^i \rangle^{\mathfrak{M}^i}$, generated by \bar{a}^i . If we can show that there is an isomorphism

$$f:\mathfrak{A}^1\to\mathfrak{A}^2$$

taking \bar{a} to \bar{a} , we may assume that $\mathfrak{A}^1 = \mathfrak{A}^2 = \mathfrak{A}$ and $\bar{a}^1 = \bar{a}^2 = \bar{a}$.

Every element of \mathfrak{A}^1 has the form $t^{\mathfrak{M}^1}[\bar{a}^1]$ for an L-term $t(\bar{x})$. The isomorphism f to be constructed must satisfy

$$f(t^{\mathfrak{M}^1}[\bar{a}^1]) = t^{\mathfrak{M}^2}[\bar{a}^2]$$

We define f by this equation and have to check that f is well defined and injective. Assume

$$s^{\mathfrak{M}^1}[\bar{a}^1] = t^{\mathfrak{M}^1}[\overline{af^1}]$$

Then $\mathfrak{M}^1, \bar{a}^1 \models s(\bar{c}) \doteq t(\bar{c})$, and by out assumption it also holds in $(\mathfrak{M}^2, \bar{a}^2)$, which means

$$s^{\mathfrak{M}^2}[\bar{a}^2] = t^{\mathfrak{M}^2}[\bar{a}^2]$$

Swapping the two sides yields injectivity.

Surjectivity is clear. It remains to show that f commutes with the interpretation of the relation symbols. Now

$$\mathfrak{M}^1 \models R\left[t_1^{\mathfrak{M}^1}[\bar{a}^1], \dots, t_m^{\mathfrak{M}^1}[\bar{a}^1]\right]$$

is equivalent to $(\mathfrak{M}^1, \bar{a}^1) \models R(t_1(\bar{c}), \dots, t_m(\bar{c}))$, which is equivalent to $(\mathfrak{M}^2, \bar{a}^2) \models R(t_1(\bar{c}), \dots, t_m(\bar{c}))$, which in turn is equivalent to

$$\mathfrak{M}^2 \models R\left[t_1^{\mathfrak{M}^2}[\bar{a}^2], \dots, t_m^{\mathfrak{M}^2}[\bar{a}^2]\right]$$

Note that (2) of Theorem 3.14 is saying that T is **substructure complete**; i.e., for any model $\mathfrak{M} \models T$ and substructure $\mathfrak{A} \subseteq \mathfrak{M}$ the theory $T \cup \mathrm{Diag}(\mathfrak{A})$ is complete

Definition 3.15. We call T model complete if for all models \mathfrak{M}^1 and \mathfrak{M}^2 of T

$$\mathfrak{M}^1\subseteq\mathfrak{M}^2\Rightarrow\mathfrak{M}^1\prec\mathfrak{M}^2$$

T is model complete iff for any $\mathfrak{M} \models T$ the theory $T \cup \mathsf{Diag}(\mathfrak{M})$ is complete

Lemma 3.16 (Robinson's Test). *Let T be a theory. Then the following are equivalent*

- 1. T is model complete
- 2. For all models $\mathfrak{M}^1 \subseteq \mathfrak{M}^2$ of T and all existential sentences φ from $L(M^1)$

$$\mathfrak{M}^2 \models \varphi \Rightarrow \mathfrak{M}^1 \models \varphi$$

3. Each formula is, modulo T, equivalent to a universal formula

Proof. $1 \leftrightarrow 3$. Corollary 3.5

(2) implies that every existential formula is, modulo T, equivalent to a universal formula $\hfill\Box$

If $\mathfrak{M}^1\subseteq \mathfrak{M}^2$ satisfies (2), we call \mathfrak{M}^1 existentially closed in \mathfrak{M}^2 . We denote this by

$$\mathfrak{M}^1 \prec_1 \mathfrak{M}^2$$

Definition 3.17. Let T be a theory. A theory T^* is a **model companion** of T if the following three conditions are satisfied

- 1. Each model of T can be extended to a model of T^*
- 2. Each model of T^* can be extended to a model of T
- 3. T^* is model complete

Theorem 3.18. A theory T has, up to equivalence, at most one model companion T^*

Proof. If T^+ is another model companion of T, every model of T^+ is contained in a model of T^* and conversely. Let $\mathfrak{A}^0 \models T^+$. Then \mathfrak{A}_0 can be embedded in a model \mathfrak{B}_0 of T^* . In turn \mathfrak{B}_0 is contained in a model \mathfrak{A}^1 of T^+ . In this way we find two elementary chains (\mathfrak{A}_i) and (\mathfrak{B}_i) , which have a common union \mathfrak{C} . Then $\mathfrak{A}_0 \prec \mathfrak{C}$ and $\mathfrak{B}_0 \prec \mathfrak{C}$ implies $\mathfrak{A}_0 \equiv \mathfrak{B}_0$ since T are all sentences. Thus \mathfrak{A}_0 is a model of T^*

Existentially closed structures and the Kaiser hull

Let T be an L-theory. It follows from 3.2 that the models of T_{\forall} are the substructures of models of T. The conditions (1) and (2) in the definition of "model companion" can therefore be expressed as

$$T_{\forall} = T_{\forall}^*$$

Hence the model companion of a theory T depends only on T_{\forall} . (Note that T_{\forall} is model complete)

Definition 3.19. An L-structure $\mathfrak A$ is called T-existentiallay closed (or T-ec) if

- 1. \mathfrak{A} can be embedded in a model of T
- 2. $\mathfrak A$ is existentially closed in every extension which is a model of T

A structure $\mathfrak A$ is T-ec exactly if it is T_\forall -ec. Since every model of $\mathfrak B$ of T_\forall can be embedded in a model $\mathfrak M$ of T and $\mathfrak A\subseteq \mathfrak B\subseteq \mathfrak M$ and $\mathfrak A\prec_1 \mathfrak M$ implies $\mathfrak A\prec_1 \mathfrak B$

Lemma 3.20. Every model of a theory T can be embedded in a T-ec structure

Proof. Let $\mathfrak A$ be a model of T_\forall . We choose an enumeration $(\varphi_\alpha)_{\alpha<\kappa}$ of all existential L(A)-sentences and construct an ascending chain $(\mathfrak A_\alpha)_{\alpha\leq\kappa}$ of models of T_\forall . We begin with $\mathfrak A_0=\mathfrak A$. Let $\mathfrak A_\alpha$ be constructed. If φ_α holds in an extension of $\mathfrak A_\alpha$ which is a model of T we let $\mathfrak A_{\alpha+1}$ be such a model. Otherwise we set $\mathfrak A_{\alpha+1}=\mathfrak A_\alpha$. For limit ordinals λ we define $\mathfrak A_\lambda$ to be the union of all $\mathfrak A_\alpha$. $\mathfrak A_\lambda$ is again a model of T_\forall

Every elementary substructure $\mathfrak N$ of a T-ec structure $\mathfrak M$ is again T-ec. Let $\mathfrak N\subseteq \mathfrak A$ be a model of T. Since $\mathfrak M_N\Rightarrow_\exists \mathfrak A_N$, there is an embedding of $\mathfrak M$ in an elementary extension $\mathfrak B$ of $\mathfrak A$ which is the identity on N. Since $\mathfrak M$ is existentially closed in $\mathfrak B$, it follows that $\mathfrak N$ is existentially closed in $\mathfrak B$ and therefore also in $\mathfrak A$

Lemma 3.21. Let T be a theory. Then there is a biggest inductive theory $T^{\rm KH}$ with $T_\forall = T^{\rm KH}_\forall$. We call $T^{\rm KH}$ the **Kaiser hull** of T

Proof. Let T^1 and T^2 be two inductive theories with $T^1_\forall = T^2_\forall = T_\forall$. We have to show that $(T^1 \cup T^2)_\forall = T_\forall$. Let $\mathfrak M$ be a model of T, as in the proof of 3.18 we extend $\mathfrak M$ by a chain $\mathfrak A_0 \subseteq \mathfrak B_0 \subseteq \mathfrak A_1 \subseteq \mathfrak B_1 \subseteq \cdots$ of models of T^1 and T^2 . The union of this chain is a model of $T^1 \cup T^2$

(Both of T^1_\forall and T^2_\forall and model companion and hence equivalent) \Box

Lemma 3.22. The Kaiser hull T^{KH} is the $\forall \exists$ -part of the theory of all T-ec structures

Proof. Let T^* be the $\forall \exists$ -part of the theory of all T-ec structures. Since T-ec structures are models of T_{\forall} , we have $T_{\forall} \subseteq T_{\forall}^*$. It follows from 3.20 that $T_{\forall}^* \subseteq T_{\forall}$. Hence T^* is contained in the Kaiser Hull.

This implies that T-ec strctures are models of $T_{\forall \exists}$

Theorem 3.23. For any theory T the following are equivalent

- 1. T has a model companion T^*
- 2. All models of K^{KH} are T-ec
- 3. The T-ec structures form an elementary class.

If T^* exists, we have

$$T^* = T^{KH} = theory of all T-ec structures$$

Exercise 3.2.1. Let L be the language containing a unary function f and a binary relation symbol R and consider the L-theory $T = \{ \forall x \forall y (R(x,y) \rightarrow (R(x,f(y)))) \}$. Showing the follow

- 1. For any T-structure $\mathfrak M$ and $a,b\in M$ with $b\notin \{a,f^{\mathfrak M}(a),(f^{\mathfrak M})^2(a),\dots\}$ we have $\mathfrak M\models\exists z(R(z,a)\wedge\neg R(z,b))$
- 2. Let $\mathfrak M$ be a model of T and a an element of M s.t. $\{a,f^{\mathfrak M}(a),(f^{\mathfrak M})^2(a),\dots\}$ is infinite. Then in an elementary extension $\mathfrak M'$ there is an element b with $\mathfrak M' \models \forall z(R(z,a) \to R(z,b))$
- 3. The class of T-ec structures is not elementary, so T does not have a model companion

Exercise 3.2.2. A theory T with quantifier elimination is axiomatisable by sentences of the form

$$\forall x_1 \dots x_n \psi$$

where ψ is primitive existential formula

3.3 Examples

Infinite sets. The models of the theory Infset of **infinite sets** are all infinite sets without additional structure. The language L_{\emptyset} is empty, the axioms are (for n = 1, 2, ...)

•
$$\exists x_0 \dots x_{n-1} \bigwedge_{i < j < n} \neg x_i \doteq x_j$$

Theorem 3.24. *The theory Infset of infinite sets has quantifier elimination and is complete*

Proof. Since the language is empty, the only basic formula is $x_i=x_j$ and $\neg(x_i=x_j)$. By Lemma ?? we only need to consider primitive existential formulas.

Dense linear orderings.

$$\forall a, b (a \le b \land b \le a \to a = b)$$

$$\forall a, b, c (a \le b \land b \le c \to a \le c)$$

$$\forall a, b (a \le b \lor b \le a)$$

$$\forall a, b \exists c (a < b \to a < c < b)$$

Theorem 3.25. *DLO has quantifier elimination*

Proof. Let A be a finite common substructure of the two models O_1 and O_2 . We choose an ascending enumeration $A=\{a_1,\ldots,a_n\}$. Let $\exists y\rho(y)$ be a simple existential L(A)-sentence, which is true in O_1 and assume $O_1 \models \rho(b_1)$. We want to extend the order preserving map $a_i \mapsto a_i$ to an order preserving map $A \cup \{b_1\} \to O_2$. For this we have an image b_2 of b_1 . There are four cases

- 1. $b_1 \in A$, we set $b_2 = b_1$
- 2. $b_1 \in (a_i, a_{i+1})$. We choose b_2 in O_2 with the same property
- 3. b_1 is smaller than all elements of A. We choose a $b_2 \in O_2$ of the same kind
- 4. b_1 is bigger than all a_i . Choose b_2 in the same manner

This defines an isomorphism $A \cup \{b_1\} \to A \cup \{b_2\}$, which show that $O_2 \models \rho(b_2)$

Modules. Let R be a (possibly non-commutative) ring with 1. An R-module

$$\mathfrak{M} = (,0,+,-,r)_{r \in R}$$

is an abelian group (M,0,+,-) together with operations $r:M\to M$ for every ring element $r\in R$. We formulate the axioms in the language $L_{Mod}(R)=L_{AbG}\cup\{r\mid r\in R\}$. The theory $\mathrm{Mod}(R)$ of R-modules consists of

AbG
$$\forall x, y \ r(x+y) \dot{=} rx + ry$$

$$\forall x \ (r+s)x \dot{=} rx + sx$$

$$\forall x \ (rs)x \dot{=} r(sx)$$

$$\forall x \ 1x \dot{=} x$$

for all $r, s \in R$. Then $\mathsf{Infset} \cup \mathsf{Mod}(R)$ is the theory of all infinite R-modules A module over fields is a vector space

Theorem 3.26. Let K be a field. Then the theory of all infinite K-vector spaces has quantifier elimination and is complete

Proof. Let A be a common finitely generated substructure (i.e., a subspace) of the two infinite K-vector spaces V_1 and V_2 . Let $\exists y \rho(y)$ be a simple existential L(A)-sentence which holds in V_1 . Choose a b_1 from V_1 which satisfies $\rho(y)$. If b_1 belongs to A, we finished. If not, we choose a $b_2 \in V_2 \setminus A$. Possibly we have to replace V_2 by an elementary extension. The vector spaces $A + Kb_1$ and $A + Kb_2$ are isomorphic by an isomophism which maps b_1 to b_2 and fixes A elementwise. Hence $V_2 \models \rho(b_2)$

The theory is complete since a quantifier-free sentence is true in a vector space iff it is true in the zero-vector space. \Box

Definition 3.27. An **equation** is an $L_{Mod}(R)$ -formula $\gamma(\bar{x})$ of the form

$$r_1 x_1 + \dots + r_m x_m = 0$$

A **positive primitive** formula (**pp**-formula) is of the form

$$\exists \bar{y}(\gamma_1 \wedge \cdots \wedge \gamma_n)$$

where the $\gamma_i(\overline{xy})$ are equations

Theorem 3.28. For every ring R and any R-module M, every $L_{Mod}(R)$ -formula is equivalent (modulo the theory of M) to a Boolean combination of positive primitive formulas

Algebraically closed fields.

Theorem 3.29 (Tarski). *The theory ACF of algebraically closed fields has quantifier elimination*

Proof. Let K_1 and K_2 be two algebraically closed fields and R a common subring. Let $\exists y \rho(y)$ be a simple existential sentence with parameters in R which hold in K_1 . We have to show that $\exists y \rho(y)$ is also true in K_2 .

Let F_1 and F_2 be the quotient fields of R in K_1 and K_2 , and let $f:F_1\to F_2$ be an isomorphism which is the identity on R. Then f extends to an isomorphism $g:G_1\to G_2$ between the relative algebraic closures G_i of F_i in K_i .

4 Countable Models

4.1 The omitting types theorem

Definition 4.1. Let T be an L-theory and $\Sigma(x)$ a set of L-formulas. A model $\mathfrak A$ of T not realizing $\Sigma(x)$ is said to **omit** $\Sigma(x)$. A formula $\varphi(x)$ **isolates** $\Sigma(x)$ if

- 1. $\varphi(x)$ is consistent with T
- 2. $T \models \forall x (\varphi(x) \rightarrow \sigma(x))$ for all $\sigma(x) \in \Sigma(x)$

A set of formulas is often called a **partial type**.

Theorem 4.2 (Omitting Types). *If* T *is countable and consistent and if* $\Sigma(x)$ *is not isolated in* T *, then* T *has a model which omits* $\Sigma(x)$

If $\Sigma(x)$ is isolated by $\varphi(x)$ and $\mathfrak A$ is a model of T, then $\Sigma(x)$ is realised in $\mathfrak A$ by all realisations $\varphi(x)$. Therefore the converse of the theorem is true for **complete** theories T: if $\Sigma(x)$ is isolated in T, then it is realised in every model of T

Proof. We choose a countable set C of new constants and extend T to a theory T^* with the following properties

- 1. T^* is a Henkin theory: for all L(C)-formulas $\psi(x)$ there exists a constant $c \in C$ with $\exists x \psi(x) \to \psi(c) \in T^*$
- 2. for all $c \in C$ there is a $\sigma(x) \in \Sigma(x)$ with $\neg \sigma(c) \in T^*$

We construct T^* inductively as the union of an ascending chain

$$T = T_0 \subseteq T_1 \subseteq T_1 \subseteq \dots$$

of consistent extensions of T by finitely many axioms from L(C), in each step making an instance of (1) or (2) true.

Enumerate $C=\{c_i\mid i<\omega\}$ and let $\{\psi_i(x)\mid i<\omega\}$ be an enumeration of the L(C)-formulas

Assume that T_{2i} is the already constructed. Choose some $c \in C$ which doesn't occur in $T_{2i} \cup \{\psi_i(x)\}$ and set $T_{2i+1} = T_{2i} \cup \{\exists x \psi_i(x) \to \psi_i(c)\}$.

Up to equivalence T_{2i+1} has the form $T \cup \{\delta(c_i,\bar{c})\}$ for an L-formula $\delta(x,\bar{y})$ and a tuple $\bar{c} \in C$ which doesn't contain c_i . Since $\exists \bar{y} \delta(x,\bar{y})$ doesn't isolate $\Sigma(x)$, for some $\sigma \in \Sigma$ the formula $\exists \bar{y} \delta(x,\bar{y}) \land \neg \sigma(x)$ is consistent with T. Thus $T_{2i+2} = T_{2i+1} \cup \{\neg \sigma(c_i)\}$ is consistent

Take a model $(\mathfrak{A}',a_c)_{c\in C}$ of T^* . Since T^* is a Henkin theory, Tarski's Test 2.2 shows that $A=\{a_c\mid c\in C\}$ is the universe of an elementary substructure \mathfrak{A} (Lemma 2.7). By property (2), $\Sigma(x)$ is omitted in \mathfrak{A}

Corollary 4.3. *Let T be countable and consistent and let*

$$\Sigma_0(x_0,\dots,x_{n_0}),\Sigma_1(x_1,\dots,x_{n_1}),\dots$$

be a sequence of partial types. If all Σ_i are not isolated, then T has a model which omits all Σ_i

$$\begin{array}{l} \textit{Proof.} \ \ \text{If} \ \Sigma_0(x), \Sigma_1(x), \ \ \text{Then} \ T_{2i+2} = T_{2i+1} \cup \{\neg \sigma_m(c_{mn})\} \\ \ \ \text{If} \ \Sigma(x_1, \dots, x_n), \ \text{then} \ T_{2i+1} = T_{2i} \cup \{\exists \bar{x} \psi_i(\bar{x}) \rightarrow \psi_i(\bar{c})\}. \\ \ \ \text{Combine the two case} \end{array} \ \square$$

4.2 The space of types

Fix a theory T. An n-type is a maximal set of formulas $p(x_1, \dots, x_n)$ consistent with T. We denote by $S_n(T)$ the set of all n-types of T. We also write S(T) for $S_1(T)$. $S_0(T)$ is all complete extensions of T

If B is a subset of an L-structure \mathfrak{A} , we recover $S_n^{\mathfrak{A}}(B)$ as $S_n(\operatorname{Th}(\mathfrak{A}_B))$. In particular, if T is complete and \mathfrak{A} is any model of T, we have $S^{\mathfrak{A}}(\emptyset) = S(T)$

For any L-formula $\varphi(x_1,\ldots,x_n)$, let $[\varphi]$ denote the set of all types containing φ .

5 TODO Don't understand

Lemma 3.22 Exercise 3.2.2