Parallel Scientific Computation

Parallelization of Finite Difference Method

J.-H. Parq
IPCST
Seoul National University

FDM for Elliptic PDEs

- Stencil + linear algebra
 - Stencil: 5-point, 7-point,
 - Linear algebra: direct or iterative
 - Direct: Gaussian elimination, LU factorization,
 - Iterative: steepest descent, conjugate gradient, Newton-Krylov,
- Iterative FDM
 - Jacobi, Gauss-Seidel, SOR,

FDM for 1-D Elliptic Model

- Poisson eq. $\triangle u = f(x) \rightarrow u_{xx} = f(x)$ boundary condition: u(a) = u(b) = 0
 - A uniform grid by dividing the x-axis line

$$x_0 = a < x_1 < ... < x_{N-1} < x_N = b$$

 $x_i = x_0 + ih$ $(h = \Delta x),$ $0 \le i \le N$
 $u(x_0) = u(x_N) = 0$

– Applying the central 3-point second derivative finite difference to u_{xx} ,

$$u(x_{i-1}) - 2 u(x_i) + u(x_{i+1}) = h^2 \cdot f(x_i)$$

FDM for 1-D Elliptic Model

- Poisson eq. $\triangle u = f(x) \rightarrow u_{xx} = f(x)$
 - After applying the boundary condition, one can obtain a matrix for $u(x_1)$, $u(x_2)$, ..., $u(x_{N-1})$

$$h^{2} \triangle_{h} u = \begin{pmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{pmatrix}$$

$$\triangle u = f \rightarrow Au = f (A = \triangle_h u)$$

FDM for 1-D Elliptic Model

• Poisson eq. $\triangle u = f(x) \rightarrow u_{xx} = f(x)$

$$\triangle u = f \rightarrow Au = f (A = \triangle_h u)$$

– The same form is available for the boundary condition: $u(a) = \alpha$, $u(b) = \beta$

by
$$f_1 \rightarrow f_1 - \alpha/h^2$$
 and $f_{N-1} \rightarrow f_{N-1} - \beta/h^2$

- Truncation error at point x_i : $\tau_i \approx (1/12) h^2 u_{xxxx}$
- Matrix analysis can prove convergence with order 2.

5-point discrete Laplacian (2D)

$$\triangle u = u_{xx} + u_{yy}$$
- Let $U_{i,j} = u(x_i, y_j)$ where $x_i = ih, y_j = jh$

$$u_{xx, h} = (U_{i-1,j} - 2U_{i,j} + U_{i+1,j})/h^2$$

$$u_{yy, h} = (U_{i,j-1} - 2U_{i,j} + U_{i,j+1})/h^2$$
 $V \leftarrow P \rightarrow E$

$$\triangle_h u = u_{xx, h} + u_{yy, h}$$

$$= (U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j})/h^2$$

5-point discrete Laplacian (2D)

$$\triangle_h u = (u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j})/h^2$$

Local truncation error

$$\tau_{i,j} = (u_{xxxx} + u_{yyyy})h^2/12 + O(h^4)$$

– Convergent with order 2 for the equation $\triangle u = f(x)$

$$(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j})/h^2 = f_{i,j}$$

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f_{i,j}$$

- Applying boundary conditions
 - Dirichlet B.C.: replacement by values
 - Ex.) $u(x,0) = g(x) \rightarrow u_{i,0} = g_i$

$$\rightarrow u_{i-1,1} + u_{i+1,1} + u_{i,2} - 4u_{i,1} = h^2 f_{i,1} - g_i$$

- Neumann B.C.: replacement by equations
 - Forward FD ex.) $u_x(0,y) = g(y) \rightarrow -3u_{0,j} + 4u_{1,j} u_{2,j} = 2hg_i$
 - \rightarrow (2/3) $u_{2,j} + u_{1,j-1} + u_{1,j+1} (8/3)u_{1,j} = h^2 f_{i,j} + (2/3)hg_j$
 - Ghost boundary ex.) $u_x(0,y) = g(y) \rightarrow u_{-1,j} u_{1,j} = 2hg_j$
 - $\rightarrow 2u_{1,j} + u_{0,j+1} + u_{0,j+1} 4u_{0,j} = h^2 f_{i,j} + 2hg_i$
 - ✓ Matrix elements for $u_{0,j}$ are needed.

- Matrix representation
 - Usual ordering →
 - \mathbf{A} (= $\triangle_h u$): $m^2 \times m^2$ matrix

$\frac{1}{h^2}$	T	I	0	0
	I	T	٠.,	0
	0	٠	٠.,	I
	0	0	I	T

$$m = 6$$
 case

$$I = \left[\begin{array}{ccc} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & I & T \end{bmatrix} \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad T = \begin{bmatrix} -4 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 1 & -4 \end{bmatrix}$$

$$T = \begin{bmatrix} -7 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 1 & -4 \end{bmatrix}$$

- Ill-conditioned for iterative linear algebra methods

- Matrix representation
 - Alternative ordering →
 - \mathbf{A} (= $\triangle_h u$): $m^2 \times m^2$ matrix

$$rac{1}{h^2}egin{bmatrix} D & H \ \hline H^T & D \end{bmatrix}$$

- D = -4/
- **D,H**: $(m^2/2) \times (m^2/2)$ matrices

$$H = \begin{bmatrix} 1 & \cdot & 0 & \cdot & 1 & & 0 \\ 1 & \cdot & \cdot & & & \cdot & \cdot \\ 0 & & \cdot & \cdot & & & 1 \\ 1 & & & \cdot & \cdot & & 0 \\ & \cdot & & & & \cdot & \cdot & \\ 0 & & 1 & & 0 & & 1 & 1 \end{bmatrix}$$

Parallel Linear Algebra Methods

Parallel libraries

- OpenMP: Some BLAS or LAPACK libraries provide runtime routines or environment variables for OpenMP (ex. MKL)
- MPI: PBLAS+ScaLAPACK, PLAPACK, Elemental (C or Python. MPI-2)
- CUDA: cuBLAS, cuSPARSE, cuSolver,
- OpenCL: clBLAS, clBLAST
- MPI+GPU: LAMA (C++)
- Many-core CPU: PLASMA, MAGMA

- For the 2-D equation $\triangle u = f(x)$
 - Jacobi

$$u_{i,j}^{k+1} = (u_{i+1,j}^{k} + u_{i+1,j}^{k} + u_{i,j-1}^{k} + u_{i,j+1}^{k} - h^{2}f_{i,j}^{k})/4$$

- This can be derived from the 5-point stencil.
- Gauss-Seidel

$$u_{i,j}^{k+1} = (u_{i+1,j}^{k+1} + u_{i+1,j}^{k} + u_{i,j-1}^{k+1} + u_{i,j+1}^{k} - h^2 f_{i,j}^{k})/4$$

- Twice faster than Jacobi for serial computing
- Computational time $\sim O(m^4 \log m)$ for serial comput.
 - $\gt O(m^2)$ per each iteration $\times O(m^2 \log m)$ iterations

$$U_{i,j}^{k+1} = (U_{i-1,j}^{k} + U_{i+1,j}^{k} + U_{i,j-1}^{k} + U_{i,j+1}^{k} - h^{2}f_{i,j})/4$$

- Applying boundary conditions (in Jacobi)
 - Dirichlet B.C.: replacement by values
 - Ex.) $u(x,0) = g(x) \rightarrow u_{i,0} = g_i$

$$\rightarrow u_{i,j}^{k+1} = (u_{i+1,1}^{k} + u_{i+1,1}^{k} + u_{i,2}^{k} - h^{2}f_{i,1} + g_{i})/4$$

- Neumann B.C.: replacement by equations
 - Forward FD ex.) $u_x(0,y) = g(y) \rightarrow -3u_{0,j} + 4u_{1,j} u_{2,j} = 2hg_j$

$$\rightarrow u_{1,j}^{k+1} = (2u_{2,j}^{k} + 3u_{1,j-1}^{k} + 3u_{1,j+1}^{k} - 3h^{2}f_{i,j} - 2hg_{j})/8$$

• Ghost boundary ex.) $u_x(0, y) = g(y) \rightarrow u_{-1,j} - u_{1,j} = 2hg_j$

$$\rightarrow u_{0,j}^{k+1} = (2u_{1,j}^{k} + u_{0,j-1}^{k} + u_{0,j+1}^{k} - h^{2}f_{i,j} - 2hg_{j})/4$$

- Jacobi with MPI
 - Cartesian communicators are useful.
 - Space decomposition

- Exchange borders: sendrecv or non-blocking
- Error estimation: collective operation

- Parallelized Gauss-Seidel
 - Change the order of updates
 - Then do Jacobi

So-called 'red-black' Gauss-Seidel

Reduction should be necessary to estimate errors.

FDM for Parabolic PDE

- Method of lines
- Forward Euler

Parallelization: You can apply ways similar to those for Jacobi (space decomposition)

- Backward Euler

 Parallelization: Linear algebra or transformation to Jacobi
- Alternate Direction Implicit method
 - Parallelization: Shared-memory parallelism (OpenMP or CUDA)
- Crank-Nicolson method
 - --> Parallelization: Linear algebra or transformation to Jacobi

Crank-Nicolson method

- Based on the trapezoidal rule (implicit method)
- If a PDE has the form of

$$\partial_t u = f(u, x, y, t, \partial_x u, \partial_y u, \partial_x^2 u, \partial_y^2 u)$$

By discretization, Crank-Nicolson method gives

$$(U_i^{n+1} - U_i^n)/\delta = (F_i^n + F_i^{n+1})/2$$

```
where U_i^n = u(x_i, t_n) and F_i^n: value of f at t_n and x_i \delta = \Delta t
```

- Time: 2-point. Space: any finite difference
- Unconditional stability and 2nd order accuracy
- Used for
 - Parabolic PDEs and advection equations

Crank-Nicolson method

• Ex.) Heat equation $u_t = \triangle u$

$$\frac{u(\vec{x},t+\delta) - u(\vec{x},t)}{\delta} = \frac{\triangle_h u(\vec{x},t+\delta) + \triangle_h u(\vec{x},t)}{2}$$

For the 2-D case,

$$u_{i,j}^{n+1} = u_{i,j}^{n} + \frac{1}{2} \frac{\delta}{h^{2}} \left[\left(u_{i+1,j}^{n+1} + u_{i-1,j}^{n+1} + u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} - 4u_{i,j}^{n+1} \right) + \left(u_{i+1,j}^{n} + u_{i-1,j}^{n} + u_{i,j+1}^{n} + u_{i,j-1}^{n} - 4u_{i,j}^{n} \right) \right]$$

$$\rightarrow (1+2\mu)u_{i,j}^{n+1} - \frac{\mu}{2} \left(u_{i+1,j}^{n+1} + u_{i-1,j}^{n+1} + u_{i,j+1}^{n+1} + u_{i,j-1}^{n+1} \right)$$

$$= (1-2\mu)u_{i,j}^{n} + \frac{\mu}{2} \left(u_{i+1,j}^{n} + u_{i-1,j}^{n} + u_{i,j+1}^{n} + u_{i,j-1}^{n} \right).$$

where $\mu = \delta/h^2$

➤ matrix form: $(I + C) u^{n+1} = (I - C) u^n$

Crank-Nicolson method

- Parallelization
 - It is possible to apply Jacobi
 - Ex.) $(1+2\mu) \ u_{i,j}^{n+1}[k+1] = (1-2\mu) \ u_{i,j}^{n} + \{F^n F^{n+1}[k]\} \ \mu/2$ where $F^n = u_{i+1,j}^{n} + u_{i-1,j}^{n} + u_{i,j+1}^{n} + u_{i,j-1}^{n}$ (k: Jacobi iteration number)

• Tips for parallelization for Jacobi are applicable.

Advection equation

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \mathbf{u}) = 0$$

• For incompressible flows $(\nabla \cdot \mathbf{u} = 0)$,

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = 0.$$

The simplest 1-D case

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$

a: constant

$$\left(\frac{\partial}{\partial t} - a\frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + a\frac{\partial}{\partial x}\right) u = \left(\frac{\partial^2}{\partial t^2} - a^2\frac{\partial^2}{\partial x^2}\right) u = 0$$

FDM for advection equations

- Implicit methods
 - Backward central
 - Crank-Nicolson

Parallelization: Linear algebra or transformation to Jacobi

- Explicit methods
 - Upwind methods
 - Lax-Friedrichs
 - Leapfrog
 - Lax-Wendroff

Parallelization: You can apply ways similar to those for Jacobi (space decomposition)

Convection-diffusion equation

Also known as advection-diffusion equation

- $u_t + au_x = Du_{xx}$
 - Various methods are applicable.
 - Even forward time central space (FTCS) FDM is possible. (The same stable condition with forward Euler for diffusion equation)
 - You can also apply the method of lines.
 - Parallelization is similar to that of advection equation or diffusion equation.

FDM for wave equations

- A PDE like $\partial_t^2 u = a^2 \triangle u$ can become a system of 1st order PDEs with auxiliary variables.
 - → Apply FDM for advection equations
- System of equations

- For example,
$$q = au_x$$
, $r = au_y \& s = u_t$
 $\partial^2_t u = a^2 \triangle u \quad \Rightarrow \quad q_t = as_x$
 $r_t = as_y$
 $s_t = a(q_x + r_y)$

FDM for wave equations

- Alternative way
 - Centered second order time difference $\frac{\partial^2 u}{\partial t^2} \rightarrow \frac{u(\vec{x}, t + \delta) 2u(\vec{x}, t) + u(\vec{x}, t \delta)}{\delta^2}$

Ex.)
$$\partial^2_t u = a^2 \triangle u$$

 $\Rightarrow u(\vec{x}, t + \delta) = 2u(\vec{x}, t) - u(\vec{x}, t - \delta) + a^2 \delta^2 \triangle_h u(\vec{x}, t)$

Parallelization is similar to that of advection equation.

In CUDA

- For iterative FDM or time-dependent FDM,
 - At least 2 arrays are necessary: the current state and the next state
 - SIMT techniques: similar to those of OpenMP
 - If you have two or more GPUs,
 - Space decomposition: overlapping regions at borders → exchange data
 - Techniques similar to those of MPI

- BVP on domain → BVPs on subdomains
 - In addition to boundary conditions, we need conditions at interfaces or in overlapping regions
- Usefulness
 - 1. Efficient parallel computing
 - 2. It is often useful to use different time steps or grids on different subdomains.

- Overlap conditions
 - 1. Subdomains overlap
 - 2. Subdomains do not overlap, but they are appended with buffer regions
 - 3. Without buffer regions, subdomains intersect only along an interface

- Simple example: FDM of 1-D heat eq.
 - $\partial_t u = \partial_x^2 u$
 - u(x, 0) = f(x); u(0, t) = u(1, t) = 0
 - Let $U_i^n \equiv u(x_i, t_n)$ where $x_i = ih$, $t_n = n\delta$
 - Assume each subdomain ranges from one interface point to the next interface point. Then,
 - $U_i^n = 0$
 - $\partial_{t,\delta} U_i^n = \partial_{x,h}^2 U_i^{n-1}$
 - $\partial_{t,\delta} U_i^n = \partial_{x,h}^2 U_i^n$

at boundary points

at interface points

at interior points

Simple example: FDM of 1-D heat eq.

•
$$U_i^n = 0$$
 at boundary points
• $\partial_{t, \delta} U_i^n = \partial_{x, h}^2 U_i^{n-1}$ at interface points
• $\partial_{t, \delta} U_i^n = \partial_{x, h}^2 U_i^n$ at interior points
where $\partial_{t, \delta} U_i^n = (U_i^n - U_i^{n-1})/\delta$,
 $\partial_{x, h}^2 U_i^n = (U_{i-1}^n - 2U_i^n + U_{i+1}^n)/h^2$

- Explicit for interface and implicit for interior
 - After computing the interface values, the interior values in each subdomain are computed.

- Overlapping domain cases
 - $\Omega = \Omega_1 \cup \Omega_2$

- Original Schwarz iteration
 - PDE \rightarrow Au = b form
 - Supposing $\mathbf{A}\mathbf{u}_1^k = \mathbf{b} \otimes \mathbf{A}\mathbf{u}_2^k = \mathbf{b}$,
 - Solve $\mathbf{A}\mathbf{u}_1^{k+1} = \mathbf{b} \otimes \mathbf{A}\mathbf{u}_2^{k+1} = \mathbf{b}$ under the B. C. $\mathbf{u}_1^{k+1} = \mathbf{u}_2^k$ on $\partial\Omega_1 \cap \Omega_2$ and $\mathbf{u}_2^{k+1} = \mathbf{u}_1^{k+1}$ on $\partial\Omega_2 \cap \Omega_1$
 - Convergence depends on boundary conditions and size of the overlapping region

- Overlapping domain cases
 - $\Omega = \Omega_1 \cup \Omega_2$

- PDE \rightarrow Au = b form
- Supposing $\mathbf{A}\mathbf{u}_{i}^{k} = \mathbf{b}_{i}$
- Solve $\mathbf{A}\mathbf{u}_i^{k+1} = \mathbf{b}$ under the B. C. $\mathbf{u}_i^{k+1} = \mathbf{u}_{3-i}^k$ on $\partial \Omega_i \cap \Omega_{3-i}$
- See also additive Schwarz method

Spectral Method

- Fourier transform of spatial derivatives $FFT(\partial^n u/\partial x^n) = (ik)^n FFT(u)$
- This makes some finite difference equations easier – spectral equations
- Parallelization
 - Collective operations are sufficient for error estimation.
 - FFT can be parallelized by parallel FFT libraries or slab decomposition or domain decomposition.

- W. Gropp, E. Lusk, and A. Skjellum, "Using MPI"
- R. J. LeVeque, "Finite Difference Methods for Ordinary and Partial Differential Equations"
 - Steady-state and Time-dependent Problems
- G. Baolai, "Parallel Numerical Solution of PDEs with Message Passing"

- C. Douglas, G. Haase, & U. Langer, "A Tutorial on Elliptic PDE Solvers and their Parallelization"
- Z. Wei *et al.*, "Parallelizing Alternating Direction Implicit Solver on GPUs", Procedia Comput. Sci. 18, 389 (2013).
- J. Furumura, "Large-scale parallel simulation of seismic wave propagation and strong ground motions for the past and future earthquakes in Japan", J. Earth Simulator 3, 29 (2005).

- T. F. Chan & T. P. Mathew, "Domain decomposition algorithms", Acta Numerica 3, 61 (1994).
- A. Quarteroni & A. Valli, "Domain Decomposition Methods for Partial Differential Equations"
- B. F. Smith, "Domain decomposition methods for partial differential equations", Parallel Numerical Algorithms, pp. 225-243 (1997)

- B. F. Smith, P. E. Bjørstad, & W. D. Gropp, "Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations"
- A. Toselli & O. Widlund, "Domain Decomposition Methods: Algorithms and Theory"
- V. Dolean, P. Jolivet, F. Nataf, "An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation"

- M. Kaiho *et al.*, "Parallel overlapping scheme for viscous incompressible flows", Int. J. Numer. Methods Eng. 24, 1341 (1997).
- G. Chen et al., "Parallel Spectral Numerical Methods"
- J. Cheng, M. Grossman, and T. McKercher, "Professional CUDA C Programming"
- C. Moler, "Numerical Computing with MATLAB"