EN3150 Assignment 01

Learning from data and related challenges and linear models for regression

B.Sc. Engineering, Semester 05

M. T. U. Sampath K. Perera
Department of Electronic & Telecommunication Engineering
University of Moratuwa

August 4, 2025

1 Linear regression impact on outliers

1. You are given set of data points related to independent variable (x) and dependent variable (y) in Table 1.

Table 1: Data set.

Table I. Data set.				
i	x_i	y_i		
1	0	20.26		
2	1	5.61		
3	2	3.14		
4	3	-30.00		
5	4	-40.00		
6	5	-8.13		
7	6	-11.73		
8	7	-16.08		
9	8	-19.95		
10	9	-24.03		

- 2. Use all data given in Table 1 to find a linear regression model. Plot x, y as a scatter plot and plot your linear regression model in the same scatter plot. [10 marks]
- 3. You are given two linear models as follows.

• Model 1: y = -4x + 12

• Model 2: y = -3.55x + 3.91

Here, model 2 is your linear regression model which is learned in task 2. A robust estimator is introduced to reduce the impact of the outliers. The robust estimator finds model parameters which minimize the following loss function

$$L(\theta, \beta) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{(y_i - \hat{y}_i)^2}{(y_i - \hat{y}_i)^2 + \beta^2} \right). \tag{1}$$

Here, θ represents model parameters, β is a hyper parameter and number of data samples N=10, respectively. Note the y_i and \hat{y}_i are true and predicted i-th data sample, respectively.

- 4. For the given two models in task 3, calculate the loss function $L(\theta, \beta)$ values for all data samples using eq. (1) for $\beta = 1$, $\beta = 10^{-6}$ and $\beta = 10^{3}$ (you may use a computer program to calculate this). [20 marks]
- 5. What is the suitable β value to mitigate the impact of the outliers. Justify your answer. [40 marks]
- 6. Utilizing this robust estimator with selected β value, determine the most suitable model from the models specified in task 3 for the provided dataset. Justify your selection. [30 marks]
- 7. How does this robust estimator reduce the impact of the outliers? [20 marks]
- 8. Identify another loss function that can be used for this robust estimator. [10 marks]

2 Loss Function

Suppose you have two applications namely Application 1 and 2.

- **Application 1:** The dependent variable is continuous.
- **Application 2:** The dependent variable is discrete and binary (only takes values 0 or 1 i.e., $y \in \{0, 1\}$).

You plan to train:

- A **Linear Regression** model for Application 1.
- A **Logistic Regression** model for Application 2.

Two common loss functions are:

• Mean Squared Error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Binary Cross Entropy (BCE):

$$\text{BCE} = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

1. Fill the following table and plot the both loss functions.

[10 marks]

Table 2: MSE	and BCE loss va	llues for different	predictions when $y = 1$.

True $y = 1$	Prediction \hat{y}	MSE	BCE
1	0.005		
1	0.01		
1	0.05		
1	0.1		
1	0.2		
1	0.3		
1	0.4		
1	0.5		
1	0.6		
1	0.7		
1	0.8		
1	0.9		
1	1.0		

2. Which loss function (MSE or BCE) would you select for each of the applications (Application 1 and 2)? Justify your answer. [30 marks]

3 Data pre-processing

1. Generate feature values of two features using the code given in listing 1. Considering scaling methods of (a) standard scaling, (b) min-max scaling, and (c) max-abs scaling. Select one scaling method for feature 1 and 2, ensuring that the chosen method preserves the structure/properties of the features. Justify your answer. [30 marks]

```
return signal
signal_length = 100  # Total length of the signal
num_nonzero = 10  # Number of non-zero elements in the
   signal
your_index_no= # Enter your index no without english letters
   and without leading zeros
sparse_signal = generate_signal(signal_length, num_nonzero)
sparse\_signal[10] = (your\_index\_no \% 10)*2 + 10
    your_index_no % 10 == 0:
sparse_signal[10] = np.random.randn(1) + 30
sparse_signal=sparse_signal/5
epsilon = np.random.normal(0, 15, signal_length )
#epsilon=epsilon[:, np.newaxis]
plt.figure(figsize=(15,10))
plt.subplot(2, 1, 1)
plt.xlim(0, signal_length)
plt.title("Feature 1", fontsize=18)
plt.xticks(fontsize=18) # Adjust x-axis tick label font size
plt.yticks(fontsize=18)
plt.stem(sparse_signal)
plt.subplot(2, 1, 2)
plt.xlim(0, signal_length)
plt.title("Feature 2", fontsize=18)
plt.stem(epsilon)
plt.xticks(fontsize=18) # Adjust x-axis tick label font size
plt.yticks(fontsize=18)
plt.show()
```

Listing 1: Feature data generation.

4 Additional Resources

- 1. Scikit-learn preprocessing data
- 2. Introduction to sparsity in signal processing
- 3. sklearn linear regression

5 Submission

Upload a report as a pdf file named as "your_indexno_EN3150_A01.pdf". Include
the index number and the name within the report as well. Please include all your
answers in the report.

- Pay careful attention to formatting such as font size, spacing, and margins.
- Include a title page with necessary information (e.g., title, author, date, index no).
- Use consistent and professional formatting throughout the document.
- Plagiarism will be checked and in cases of plagiarism, an extra penalty of 50% will be applied. In case of copying from each other, both parties involved will receive a grade of zero for the assignment. Academic integrity is of utmost importance, and any form of plagiarism¹ or cheating will not be tolerated.
- An extra penalty of 15% is applied for late submission.

¹https://en.wikipedia.org/wiki/Plagiarism