S.No.	Name of the PI	Title of the project	Funding agency	Duration
1.	Dr. Shakti Sahi	Design synthesis and evaluation of potent	Department of	2011-2014
		aminopeptidase inhibitors for malarial	Biotechnology,	
		therapy (Co-PI: Dr. Vikrant Nain)	Govt. of India,	
		Malaria remains a widespread and devastating		
		disease. About 40% of the world's		
		population live in countries where the		
		disease is endemic and more than 247		
		million people suffer from the disease every		
		year. In order to find novel and efficacious		
		lead compounds The malarial neutral		
		aminopeptidases that are involved in the		
		terminal stages of hemoglobin digestion and		
		are essential for the provision of amino acids		
		used for Plasmodium growth and		
		development within the erythrocyte have been		
		taken as the targets. The release of aminoacids		
		involves two metallo-exopeptidases: an alanyl		
		aminopeptidase, PfA-M1, and a leucine		
		aminopeptidase, PfA-M17. Aminopeptidase inhibitors, including bestatin, nitrobestatin,		
		and amastatin, have antimalarial activity in		
		culture and different combinations of endo-		
		and aminopeptidase inhibitors show		
		synergism.		
		The major objectives of this project are:		
		• Novel antimalarial compounds having better		
		therapeutic index.		
		• Insight into mode of action and binding		
		interactions between aminopeptidases and the		
		designed inhibitors will open up avenues for		
		development of new antimalarial drugs.		

	Du Beliko Duris	Design and evaluation of novel Beta-3 adrenoreceptor agonists for potential antidepressant activity Designing of β3-adrenergic receptor inhibitors: β3-adrenergic receptor (β3-AR) is known to mediate various pharmacological and physiological effects such as thermogenesis in brown tissue adipocytes, lipolysis in white adipocytes and intestinal smooth muscle relaxation. It also plays an important role in glucose homeostasis and energy balance. β3-ARs are also expressed in human heart, gall bladder, gastrointestinal tract, prostate and urinary bladder detrusor, brain as well as in near-term myometrium. Recently, reverse transcription PCR experiments have detected the existence of β3-AR mRNA indiscrete regions of rat and human brain, including hippocampus, hypothalamus, amygdala, and cerebral cortex, areas known to be involved in thought processes and possibly responsible for the negative thoughts associated with depressive episodes of bipolar disorder. These diverse functions make β3-adrenergic receptors important drug targets.	Science and Technology (DST), Ministry of Science and Technology, Government of India.	
2.	Dr. Rekha Puria	Identification and validation of novel anticancer drug targets in target of rapamycin (TOR) signaling pathway. (Co-PI: Dr. Shakti Sahi and Dr. Vikrant Nain)	Department of Biotechnology, Govt of India	2012-2015

		O 1 004 0010 04	D	2012 2015
		Genome scale fitness profiling of transposon	Department of	2012-2015
		mutant library for identification of novel	Science and	
		components of Target of Rapamycin (TOR)	Technolgy, Govt	
		signaling pathway. (Co-PI: Dr. Shakti Sahi and	of India	
		Dr. Vikrant Nain)		
3.	Dr. Jai Prakash	Identification of Molecular Pathways in	Department of	2013-2016
	Muyal	Alveoli Regeneration in an Established	Biotechnology	
		Emphysematous Lung: All Trans Retinoic	(DBT), India	
		Acid - A Way to Novel Therapy Option		
		Pulmonary Emphysema is a chronic lung disease		
		and one of the most important causes of		
		morbidity and mortality in our modern society		
		and is referred to as a pulmonary inflammatory		
		disease in which destruction of the lung's gas-		
		exchange structures leads to inadequate		
		oxygenation, disability and frequently death. To		
		date, there is no curative therapy available that		
		can restore functional lung parenchyma that has		
		been lost in an emphysematous lung. Recently,		
		all-trans retinoic acid has been found to enhance		
		epithelial repairs and improves survival of alveoli		
		in rats after lung injury. However, the molecular		
		mechanisms contributing to its potential		
		regenerative effects in animal model for		
		•		
		emphysema is not known. Therefore, the		
		objective of this project is to identify those		
		pathways which play crucial role in alveoli		
		regeneration by using genomics and proteomics		
		tools.	-	
4.	Dr. Savneet Kaur	Investigations on cell intrinsic and extrinsic	Department of	3 yrs (Ongoing)
		factors involved in age- and disease- induced	Science and	
		senescence of endothelial progenitor cells.	Technolgy, Govt	

I	CT 11	
The project proposes to study EPC senescence in aged and cardiovascular disease subjects. The study aims to reveal important cell intrinsic changes that occur in aged and diseased EPC stem cell pool, as well as the extrinsic cues occurring in their microenvironment that act in conjunction with the intrinsic factors. The study would also play a pioneering role in elucidating the role of important cell senescent pathways in affecting angiogenic functions of EPC.	of India	
Investigations on the Contribution of Endothelial Progenitor Cells and Cancer Stem Cells towards Tumor Vascularization in Hepatocellular Carcinoma. (Co-PI: Dr. Deepali Singh) The current project aims to analyze the contribution of an important oncogenic protein of Hepatitis B virus, HBx, in the initiation and progression of hepatocellular carcinoma (HCC) via hepatic cancer stem cells. The study would shed light on HBx-associated molecular pathways responsible for the transformation of normal hepatic cells/stem cells into a tumorigenic phenotype of cancer stem cells (CSCs) that lead to the genesis and development of HCC in patients with chronic HBV infection. The study would provide insights into the underlying angiogenic mechanisms that further lead to the invasion and distal metastasis of this highly vascularized cancer. The project would help in	Department of Biotechnology, Govt of India (RGYI)	3 yrs (Ongoing)

T T	Г			
		the identification of HBx-activated molecular markers and pathogenesis mechanisms that are specific to CSC pools in HBV-HCC. This understanding and identification of novel targets may thus lead to the development of innovative		
		therapeutic molecules for the treatment of HCC,		
		which is otherwise a poor prognosis tumor.		
		Contribution of angiogenesis and	Indian Council of	Recently
		inflammation to fibrogenesis and regeneration	Medical Research	Approved
		in non-alcoholic fatty liver diseases (NAFLD):	(ICMR)	
		The current project would comprehensively		
		investigate specific angiogenic and inflammatory markers and mechanisms that are activated		
		during different clinical stages of NAFLD and		
		also study their correlation with liver fibrogenesis		
		and regeneration. The project would address		
		differential gene expression studies in different		
		patient groups (blood samples and biopsies) and		
		controls to analyze a correlation between		
		different angiogenic markers and liver		
		fibrogenesis and regeneration. The project would		
		also undertake various in vitro studies using		
		isolated rat liver cells under pathophysiological		
		conditions to determine the relationship between		
		angiogenesis and fibrogenesis/regeneration		
5. Di	r. Vikrant Nain	Development of meganucleases for targeted	Department of	2012-2015
		genome engineering in rice (Co-PI: Dr. Shakti	Biotechnology,	
		Sahi)	Govt of India	
		Development of drought tolerant rice by	Council of	2012-2015
		expression of RNA chaperon gene (Co-PI: Dr.	Scientific and	
		Shakti Sahi	Industrial	

			Research (CSIR)	
6.	Dr. Vishwas Tripathi	Molecular mechanisms of anti-cancer effect of Crocetin and its synergistic effect with Cisplatin in Smokeless Tobacco & Nicotine induced Head and Neck Cancer Cells	Department of Science and Technolgy, Govt of India	2013-2016
		Isolation and characterization of anti- tubercular principle from contaminating bacterial strain. (Co-PI)	Department of Biotechnology, Govt of India	2013-2015
7.	Dr. Nagendra Singh	Characterization of RNA modifying enzymes from <i>Pseudomonas aeruginisa</i> . (Co-PI: Dr. Imteyaz Qamar)	Indian Council of Medical Research (ICMR)	Approved 2014- 2017
		RNA modification is an essential step for stability and function of rRNA and tRNA molecules, catalyzed by various RNA modifying enzymes. The objective is structural and functional characterization of these enzymes from Pseudomonas aeruginosa, which can serve as new drug target for designing inhibitors with antimicrobial therapeutic values.		
		Structural basis of nickel transport in <i>Kleibsilella pneumonae</i> . Nickel is an essential trace element for bacterial growth. The transportation of nickel is tightly regulated by an operon in bacteria as higher concentrations of nickel also cause cell death. The idea is to characterize the DNA binding elements, which are responsible for the expression of the nickel transporter operon in <i>K. pneumonae</i> .	Indian Council of Medical Research (ICMR)	Approved 2014- 2017

8.	Dr. Deepali Singh	Characterization of a DexD/H family helicase	Department of	Approved
		towards stress response in plants. (Co-PI: Dr.	Biotechnology,	
		Sachin Teotia)	Govt of India	