Rotation around x-, y-, or z-axis

$$\mathbf{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{y}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{z}$$

$$\mathbf{R}_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 & 0\\ \sin \alpha & \cos \alpha & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Anything strange about Ry?

AMES101 8 Lingqi Yan, UC Santa Barb

3D Rotations

Compose any 3D rotation from R_x , R_y , R_z ?

$$\mathbf{R}_{xyz}(\alpha, \beta, \gamma) = \mathbf{R}_x(\alpha) \mathbf{R}_y(\beta) \mathbf{R}_z(\gamma)$$

三维上旋转都可以拆分成 xyz 上的旋转,角度对应轴为拇指的右手定则

$$\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0\\
\sin \alpha & \cos \alpha & 0
\end{array}$$

二维上 xoy 旋转, 0 0 1 其实就是绕 z 旋转,所以看起来是逆时针

ν 绕着 n 旋转,角度 α 是 以 n 为大拇指的右手法则方向 旋转是在垂直 n 的平面上画弧,对应角为 α

罗德里格斯旋转公式可以表示为:

$$\mathbf{v}_{\text{rot}} = \mathbf{v}\cos(\alpha) + (\mathbf{n} \times \mathbf{v})\sin(\alpha) + \mathbf{n}(\mathbf{n} \cdot \mathbf{v})(1 - \cos(\alpha))$$

其中:

- $\mathbf{v}_{\mathrm{rot}}$ 是旋转后的向量。
- v 是原始向量。
- α 是旋转角度 (以弧度为单位)。
- n 是代表旋转轴的单位向量。
- n×v 是 n 和 v 的叉积。
- **n** · **v** 是 **n** 和 **v** 的点积。

解释:

- 1. 第一顷 $\mathbf{v}\cos(\alpha)$:
 - 这一部分代表原始向量 \mathbf{v} 在自身方向上的投影,并乘以 $\cos(\alpha)$ 。它给出了 \mathbf{v} 在原始方向上的分量,该分量根据旋转角度 α 进行缩放。
- 2. 第二项 $(\mathbf{n} \times \mathbf{v}) \sin(\alpha)$:
 - 这一项给出了旋转的垂直分量。 叉积 $\mathbf{n} \times \mathbf{v}$ 生成一个与 \mathbf{n} 和 \mathbf{v} 都垂直的向量, $\sin(\alpha)$ 通过缩放这个垂直方向来实现基于 α 的旋转量。
- 3. 第三顷 $\mathbf{n}(\mathbf{n} \cdot \mathbf{v})(1 \cos(\alpha))$:
 - 这一部分考虑了沿旋转轴 n 的向量分量。由于沿旋转轴的向量不随旋转改变方向,这一项确保该分量不会受旋转影响,只是根据角度适当地缩放。

旋转的可视化:

- 想象你有一个向量 \mathbf{v} ,并希望将其绕某个轴 \mathbf{n} 旋转角度 α 。
- 公式将旋转分解为以下几个分量:
 - 一部分沿着旋转轴 (保持不变) ,
 - 一部分垂直于旋转轴(发生旋转),
 - 另一部分确保围绕旋转轴的旋转量正确。

1. 旋转角度 α 的定义:

- α 是从原始向量 \mathbf{v} 到旋转后的向量 \mathbf{v}_{rot} 的角度。
- 旋转轴 n 是一个固定的单位向量,表示旋转的方向。旋转发生在垂直于该轴的平面上。
- α 以弧度为单位,表示旋转的角度大小,范围通常为 $[0,2\pi]$ 或 $[0^\circ,360^\circ]$ 。

2. 旋转方向:右手法则

为了确定旋转的方向,我们使用 右手法则:

- 伸出右手,大拇指指向旋转轴 n 的方向,手指弯曲的方向就是旋转的方向。
- 如果你用右手的大拇指沿着 ${\bf n}$ 指向(即轴的方向),那么其他四指的弯曲方向就是向量 ${\bf v}$ 围绕 ${\bf n}$ 旋转的方向。
 - 如果角度 α 是正的 (例如 $\alpha > 0$) ,那么旋转是按照右手法则的方向,即顺着你手指弯曲的方向旋转。
 - 如果角度 α 是负的 (例如 $\alpha < 0$) ,那么旋转方向相反,即逆着你手指弯曲的方向旋转。

3. 具体旋转的几何解释:

- n 表示旋转的轴,向量 v 将围绕这根轴在垂直于 n 的平面上旋转。
- α 表示旋转的角度,描述了 \mathbf{v} 到 \mathbf{v}_{rot} 的旋转程度。
- **旋转的轨迹**: 假设 ${\bf v}$ 不与 ${\bf n}$ 平行,则 ${\bf v}$ 在垂直于 ${\bf n}$ 的平面内沿着圆弧旋转。旋转的中心是轴 ${\bf n}$,角度 α 是该圆弧所对应的圆心角。

4. 如何在空间中确定旋转:

设想一个三维空间中的例子:

- 假设 **n** 是沿着 z 轴的单位向量,即 **n** = (0,0,1)。
- 向量 $v \in (1,0,0)$, 即沿 x 轴的单位向量。
- 如果我们围绕 z 轴旋转 $\alpha=90^\circ$ (即 $\frac{\pi}{2}$ 弧度),那么 ${\bf v}$ 会从 x 轴的方向旋转到 y 轴的方向,最终变为 ${\bf v}_{\rm rot}=(0,1,0)$ 。

Perspective Projection

Solve for A and B

$$An + B = n^{2}$$

$$Af + B = f^{2}$$

$$A = n + f$$

$$B = -nf$$

- Finally, every entry in M_{persp->ortho} is known!
- What's next?
 - Do orthographic projection (Mortho) to finish
 - $M_{persp} = M_{ortho} M_{persp \to ortho}$

$$M_{persp o ortho} = egin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ ? & ? & ? & ? \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

```
n 0 0 0
0 n 0 0
0 0 n + f - n f
0 0 1 0
上面是从远到近
然后压缩到【-1, 1】
还得
1/width, 0, 0, 0
1, 1/top, 0, 0,
1, 0, 1/near-far, 0, z 也要压缩到【0, 1】
这里可能不对,但是 homework1 效果却没问题
0, 0, 0, 1
俩个相乘
```

```
Eigen::Matrix4f get_projection_matrix(float eye_fov, float aspect_ratio,
      float zNear, float zFar)
   // Students will implement this function
   Eigen::Matrix4f projection = Eigen::Matrix4f::Identity();
   Eigen::Matrix4f p1,p2;
   p1<<zNear,0,0,0,
       0,zNear,0,0,
       0,0,zNear+zFar,-zNear*zFar,
       0,0,1,0;
   float top=-abs(zNear)*tan((eye fov/2.0)/180.0*acos(-1));
   float width=aspect ratio*top;
   p2<<1.0/width,0,0,0,
       0,1.0/top,0,0,
       0,0,1.0/zNear,0,
       0,0,0,1;
   projection=p2*p1*projection;
```

参数是 相机视角大小、宽高比、近、远

$$\begin{pmatrix}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{n}{t} & 0 & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\
0 & 0 & -1 & 0
\end{pmatrix}$$

https://www.songho.ca/opengl/gl_projectionmatrix.html

https://zhuanlan.zhihu.com/p/509902950

光栅化

```
static bool insideTriangle(int x, int y, const Vector3f* _v)
{
    // TODO : Implement this function to check if the point (x, y) is inside the triangle
    Eigen::Vector3f point((float)x+0.5,(float)y+0.5,0);
    Eigen::Vector3f v0=_v[0];
    Eigen::Vector3f v1=_v[1];
    Eigen::Vector3f v2=_v[2];
    int flag0=(v1-v0).cross(point-v0).z();
    int flag1=(v2-v1).cross(point-v1).z();
    int flag2=(v0-v2).cross(point-v2).z();
    if(flag0>0&&flag1>0&&flag2>0) return true;
    if(flag0<0&&flag1<0&&flag2<0) return true;
    return false;
}</pre>
```

通过叉乘判断点是否在三角形内,三角形是经过 mvp 再放大到屏幕以后的三角形

点在三角形内, 计算出 z, 根据 z-buffer 对像素上色

Barycentric Coordinates

A coordinate system for triangles (α, β, γ)

漫反射

Recap: Lambertian (Diffuse) Term

Shading independent of view direction

镜面反射

Specular Term (Blinn-Phong)

V close to mirror direction ⇔ half vector near normal

• Measure "near" by dot product of unit vectors

向量是单位向量

Blinn-Phong Reflection Model

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$

Bump Mapping

Adding surface detail without adding more triangles

- Perturb surface normal per pixel (for shading computations only)
- "Height shift" per texel defined by a texture
- How to modify normal vector?

How to perturb the normal (in flatland)

- Original surface normal n(p) = (0, 1)
- Derivative at p is dp = c * [h(p+1) h(p)]
- Perturbed normal is then n(p) = (-dp, 1).normalized()

真实的凹凸感

Textures can affect shading!

- Displacement mapping a more advanced approach
 - Uses the same texture as in bumping mapping
 - Actually moves the vertices

Bump / Normal mapping Displacement mapping

Cubic Bézier Curve – de Casteljau

Four input points in total

Same recursive linear interpolations

$$\mathbf{b}^{n}(t) = \mathbf{b}_{0} (1-t)^{3} + \mathbf{b}_{1} 3t(1-t)^{2} + \mathbf{b}_{2} 3t^{2}(1-t) + \mathbf{b}_{3} t^{3}$$

Bézier Curve - General Algebraic Formula

Bernstein form of a Bézier curve of order n:

$$\mathbf{b}^n(t) = \mathbf{b}^n_0(t) = \sum_{j=0}^n \mathbf{b}_j B^n_j(t)$$
 Bézier curve order n (vector polynomial of degree n) Bernstein polynomial (scalar polynomial of degree n)

Bézier control points

(vector in RN)

Bernstein polynomials:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Loop Subdivision — Update

For new vertices:

Collapsing An Edge

• Suppose we simplify a mesh using edge collapsing

Quadric Error Metrics

(二次误差度量)

- How much geometric error is introduced by simplification?
- Not a good idea to perform local averaging of vertices
- Quadric error: new vertex should minimize its sum of square distance (L2 distance) to previously related triangle planes!

shadow maps

Pass 2B: Project to light

• Project visible points in eye view back to light source

(Reprojected) depths from light and eye are not the same. BLOCKED!!

Ray Intersection With Triangle

Triangle is in a plane

- Ray-plane intersection
- Test if hit point is inside triangle

Many ways to optimize...

Ray Intersection With Plane

Ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$$

Plane equation:

$$\mathbf{p}: (\mathbf{p} - \mathbf{p}') \cdot \mathbf{N} = 0$$

Set $\mathbf{p} = \mathbf{r}(t)$ and solve for t

$$(\mathbf{p} - \mathbf{p}') \cdot \mathbf{N} = (\mathbf{o} + t \mathbf{d} - \mathbf{p}') \cdot \mathbf{N} = 0$$

Möller Trumbore Algorithm

$$t = \frac{(\mathbf{p}' - \mathbf{o}) \cdot \mathbf{I}}{\mathbf{d} \cdot \mathbf{N}}$$

A faster approach, giving barycentric coordinate directly Derivation in the discussion section!

$$\vec{\mathbf{O}} + t\vec{\mathbf{D}} = (1 - b_1 - b_2)\vec{\mathbf{P}}_0 + b_1\vec{\mathbf{P}}_1 + b_2\vec{\mathbf{P}}_2$$

$$\begin{bmatrix} t \\ b_1 \\ b_2 \end{bmatrix} = \frac{1}{\vec{\mathbf{S}}_1 \bullet \vec{\mathbf{E}}_1} \begin{bmatrix} \vec{\mathbf{S}}_2 \bullet \vec{\mathbf{E}}_2 \\ \vec{\mathbf{S}}_1 \bullet \vec{\mathbf{S}} \\ \vec{\mathbf{S}}_2 \bullet \vec{\mathbf{D}} \end{bmatrix} \qquad \begin{aligned} \vec{\mathbf{E}}_1 &= \vec{\mathbf{P}}_1 - \vec{\mathbf{P}}_0 \\ \vec{\mathbf{E}}_2 &= \vec{\mathbf{P}}_2 - \vec{\mathbf{P}}_0 \end{aligned} \qquad \begin{aligned} &\text{Hint:} \\ &(1-\text{b1-b2}), \text{ b1, b2 are} \\ &\vec{\mathbf{S}} &= \vec{\mathbf{O}} - \vec{\mathbf{P}}_0 \end{aligned}$$

$$\vec{\mathbf{E}}_1 = \vec{\mathbf{P}}_1 - \vec{\mathbf{P}}_0$$

$$\vec{\mathbf{E}}_2 = \vec{\mathbf{P}}_2 - \vec{\mathbf{P}}_0$$

$$\vec{S} = \vec{O} - \vec{P}_0$$

Cost = (1 div, 27 mul, 17 add)

$$\vec{\mathbf{S}}_1 = \vec{\mathbf{D}} \times \vec{\mathbf{E}}_2$$

$$\vec{S}_2 = \vec{S} \times \vec{E}_1$$

Recall: How to determine

Ray Intersection with Axis-Aligned Box

- Recall: a box (3D) = three pairs of infinitely large slabs
- · Key ideas
 - The ray enters the box only when it enters all pairs of slabs
 - The ray exits the box as long as it exits any pair of slabs
- For each pair, calculate the t_{min} and t_{max} (negative is fine)
- For the 3D box, t_{enter} = max{t_{min}}, t_{exit} = min{t_{max}}
- If t_{enter} < t_{exit}, we know the ray stays a while in the box
 (so they must intersect!) (not done yet, see the next slide)

Ray Intersection with Axis-Aligned Box

- · However, ray is not a line
 - Should check whether t is negative for physical correctness!
- What if t_{exit} < 0?
 - The box is "behind" the ray no intersection!
- What if t_{exit} >= 0 and t_{enter} < 0?
 - The ray's origin is inside the box have intersection!
- In summary, ray and AABB intersect iff
- $t_{enter} < t_{exit} && t_{exit} >= 0$

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

- Partition space into non-overlapping regions
- An object can be contained in multiple regions

Object partition (e.g. BVH)

- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

BVH Traversal

递归到最后 一个包围盒只包含一个三角形

先判断和包围盒相交,递归到最后再返回与三角形的交点,再取俩个交点距离小的

Differential Solid Angles

$$dA = (r d\theta)(r \sin \theta d\phi)$$
$$= r^2 \sin \theta d\theta d\phi$$

$$d\omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\phi$$

BRDF

The Bidirectional Reflectance Distribution Function (BRDF) represents how much light is reflected into each outgoing direction ω from each incoming direction

$$f_r(\omega_i \to \omega_r) = \frac{\mathrm{d}L_r(\omega_r)}{\mathrm{d}E_i(\omega_i)} = \frac{\mathrm{d}L_r(\omega_r)}{L_i(\omega_i)\cos\theta_i\,\mathrm{d}\omega_i} \quad \left[\frac{1}{\mathrm{sr}}\right]$$

反射到一个半球,这里是观察其中一个角度

$$L_r(x,\omega_r) = L_e(x,\omega_r) + L_i(x,\omega_i) \ f(x,\omega_i,\omega_r) \ (\omega_i,n)$$

Reflected Light (Output Image)

Emission

Incident Light (from light source)

BRDF

Cosine of Incident angle

Ray Tracing

$$L = E + KE + K^{2}E + K^{3}E + ...$$

Emission directly
From light sources

Direct Illumination on surfaces

Shading in Rasterization

Indirect Illumination (One bounce indirect) [Mirrors, Refraction]

(Two bounce indirect illum.)

Motivation: Whitted-Style Ray Tracing

Whitted-style ray tracing:

- Always perform specular reflections / refractions
- Stop bouncing at diffuse surfaces

Whitted Style 只考虑了镜面反射和折射

Whitted-Style Ray Tracing is Wrong

But the rendering equation is correct

$$L_o(p,\omega_o) = L_e(p,\omega_o) + \int_{\Omega^+} L_i(p,\omega_i) f_r(p,\omega_i,\omega_o) (n \cdot \omega_i) d\omega_i$$

But it involves

- Solving an integral over the hemisphere, and
- Recursive execution

渲染方程正确, 但是需要求解半球上的积分, 以及递归执行

所以引入概率,变成每个像素多次采样求平均

A Simple Monte Carlo Solution

We want to compute the radiance at p towards the camera

$$L_o(p,\omega_o) = \int_{\Omega^+} L_i(p,\omega_i) f_r(p,\omega_i,\omega_o) (n \cdot \omega_i) d\omega_i$$

Monte Carlo integration:
$$\int_a^b f(x) \, \mathrm{d}x \approx \frac{1}{N} \sum_{k=1}^N \frac{f(X_k)}{p(X_k)} \quad X_k \sim p(x)$$

What's our "f(x)"?
$$L_i(p,\omega_i)f_r(p,\omega_i,\omega_o)(n\cdot\omega_i)$$

What's our pdf?
$$p(\omega_i) = 1/2\pi$$

(assume uniformly sampling the hemisphere)

Path Tracing

From now on, we always assume that only 1 ray is traced at each shading point:

```
shade(p, wo)
Randomly choose ONE direction wi~pdf(w)
Trace a ray r(p, wi)
If ray r hit the light
   Return L_i * f_r * cosine / pdf(wi)
Else If ray r hit an object at q
   Return shade(q, -wi) * f_r * cosine / pdf(wi)
```

This is path tracing! (FYI, Distributed Ray Tracing if N!= 1)

1 ray 是为了防止反射时 ray 数量成指数增长,但是依然存在问题,shade()递归不会停止,所以引入俄罗斯轮盘赌

$$E = P * (Lo / P) + (1 - P) * 0 = Lo$$

Solution: Russian Roulette (RR)

```
shade(p, wo)
   Manually specify a probability P_RR
   Randomly select ksi in a uniform dist. in [0, 1]
   If (ksi > P_RR) return 0.0;

   Randomly choose ONE direction wi~pdf(w)
   Trace a ray r(p, wi)
   If ray r hit the light
        Return L_i * f_r * cosine / pdf(wi) / P_RR
   Else If ray r hit an object at q
        Return shade(q, -wi) * f_r * cosine / pdf(wi) / P_RR
```

要么光直射, 要么物体反射

Sampling the Light

Understanding the reason of being inefficient

there will be 1 ray hitting the light. So a lot of rays are "wasted" if we uniformly sample the hemisphere at the shading point.

对半球 ray 采样,但是光源面积小导致 ray 浪费, 所以第一部分光源直射改成对光源采样

Then we can rewrite the rendering equation as

Now we consider the radiance coming from two parts:

- 1. light source (direct, no need to have RR)
- 2. other reflectors (indirect, RR)

so:

Sampling the Light

```
shade(p, wo)

# Contribution from the light source.

Uniformly sample the light at x' (pdf_light = 1 / A)

L_dir = L_i * f_r * cos θ * cos θ' / |x' - p|^2 / pdf_light

# Contribution from other reflectors.

L_indir = 0.0

Test Russian Roulette with probability P_RR

Uniformly sample the hemisphere toward wi (pdf_hemi = 1 / 2pi)

Trace a ray r(p, wi)

If ray r hit a non-emitting object at q

L_indir = shade(q, -wi) * f_r * cos θ / pdf_hemi / P_RR

Return L_dir + L_indir
```

先对光源采样, 再俄罗斯轮盘赌, 对半球内物体采样反射光

作业七中第一次得到的结果发现大片的黑色,检查以后才明白是在求解光与场景的交点,使用 BVH,当 t_exit=t_enter 时,错误的认为是光线与 AABB 相切,而认为不相交 其实此时的 AABB 是一个平面,应当返回相交从而进一步求交点

Microfacet BRDF

 What kind of microfacets reflect wi to wo? (hint: microfacets are mirrors)

