

Displays

Human vision
Colour and colourimetry

The eye

- Projection of the light on the retina: light sensitive cells
- Macula (Yellow spot): most sensitive part of the retina
 - 0.01% of the surface
 - 10% of receptors
- Blind spot: attachment of the eye nerves: no receptors

Retina

- Retina
 - different layers
 - nerves are located on the top
 - rods: intensity
 - cones: color
- 130 million receptors
 - >120 million rods
 - 6-7 million cones
- 1.2 million neurons
 - → cross connections

Eye spectral sensitivity curves

Rods (scotopic sight /low-light)

 $V(\lambda)$

cones

→ 1W @ 550nm ⇔ 2W@ 610nm

(photopic sight/ well-lit)

440nm 540nm 580nm

4

Lumineous flux

- Spectral density $F_S^e(\lambda)$:

 The amount of radiation energy per unit time per unit wavelength through a given surface area Units: W/m (or W/Hz for $F_S^e(\nu)$)
- Luminous flux F:Units: lumen

$$F = K \int_0^\infty F_S^e(\lambda) V(\lambda) d\lambda$$

$$K \equiv 683 \frac{lumen}{Watt} (lm/W)$$

Black body radiation spectrum (per unit surface area) radiant excitance $M_S^e(mW/m^2nm)$

5

Lighting efficiency

- Incandescent lamps
 - Filament is heated by the Joule effect
 - Spectrum ~ black body radiator
 - 10 20 lumen / Watt input power

filament (Tungsten: 2000 - 3000 K)

- LED lighting
 - Radiative recombination in semiconductor
 - Narrow spectrum
 - white light LED= blue LED + phosphor layer
 - 80 120 lumen / Watt input power

Colour perception

- Eye = sensitive to colours
 - doesn't detect wavelength
 - sensitivity to colours due to different cones
 - cones are excited differently
 - 3D color space
- Metameric pair
 - two spectra that excite the cones identically

Colour coordinates

- 3 light sources with (additive) primary colours:
 - e.g. red, green, blue

- Colour coordinates of a given colour
 - = intensity of each source, which results in a given color by additive mixing
 - = depends on the selected primary colours

Animal Vision

Mantis shrimp

16 receptors!

Additive color mixing

- 3 primary light sources
 - red, green, blue
 - spectrum
 - \sim sensitivity of the cones
 - variable intensity
 - \rightarrow any color impression
- Examples:
 - stage lighting
 - TV, displays

Subtractive colour mixing

- 3 primary colours (filters)
 - yellow, cyan, magenta
 - only the spectral overlap remains
 - variable intensity→ any color impression
- Examples:
 - reflection from an object
 - filters
 - mixing of paints
 - offset printing

Color space is a 3D linear vector space

- Light source $A \rightarrow coordinates R_A$, G_A , B_A
- Light source B \rightarrow coordinates R_B, G_B, B_B
- Light source A + Light source B \rightarrow coordinates $R_A + R_B$, $G_A + G_B$, $B_A + B_B$
 - This follows from physiological observation

Colour coordinates in the CIE XYZ-system

Normalization

$$x = X / (X+Y+Z)$$

$$y = Y / (X+Y+Z)$$

$$z = Z / (X+Y+Z)$$

13

Colour coordinates in the CIE XYZ-system

Colour temperature

- Temperature of the black body with similar color effect
- Point on the black body line that is the closest to the source spectrum
- Holds only for point close to the black body line
- e.g. the colour temperature of the color K is approx. 8000K

https://en.wikipedia.org/wiki/Planckian locus

Colour coordinates in the CIE XYZ-system

Hue= dominating spectral color

$$hue = S$$

Chroma

$$chroma = \frac{|OK|}{|OS|}$$

Value = measure of darkness or brightnessvalue = Y (0-10)

the Munsell color system

Colour coordinates in the CIE XYZ-system

- on the edge monochromatic colors are found
- An arbitrary spectrum is a weighted sum of the points on the edge
- New color coordinates:
 - select 2 primary colors
 - → any color on the line can be obtained
 - select 3 primary colors
 - →any color within the triangle can be obtained
- Selected primary colors should be as saturated as possible
 - RGB basis can form more colors than rgb

Colour banding in displays

Intensity resolution

https://en.wikipedia.org/wiki/Colour_banding

https://en.wikipedia.org/wiki/Dither

High dynamic range video

- The dynamic range in the intensity is increased (Y in the Hue, Chroma, Value system)
- Standard dynamic range is 8 bits with 64 intensity levels used
- HDR10 Media Profile
 - wide-gamut Rec. 2020 color space, bit depth of 10-bits
 - allows for display HDR video with luminance level of up to 1,000 cd/m2
- Dolby vision 12-bit color depth + metadata (use 10,000 cd/m2)

RGB color space parameters								
<u>Color</u> <u>space</u>	White point		<u>Primary colors</u>					
	X _W	Y _W	× _R	y _R	X _G	У _G	X _B	y _B
ITU-R BT.2020	0.3127	0.3290	0.708	0.292	0.170	0.797	0.131	0.046

ITU-R Recommendation BT.2020

By CIExy1931.svg: Sakuramboderivative work: GrandDrake (talk) - CIExy1931.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21864661

Example: Colour Perception

- From the CIE chromaticity diagram below deduce the relative excitation of the colour receptors for monochromatic light with a wavelength of 500 or 600 nm, respectively.
- Why is there no combination of monochromatic light sources that cause a response at the point (0.00, 0.00)?

Photonics _____ Displays

Coordinates of 500 nm or 600 nm monochromatic light

y = 0.54

500 nm: z = 1 - 0.01 - 0.54 = 0.45

y = 0.38

600 nm: z = 1 - 0.62 - 0.38 = 0.0

Example

Why is there no combination of monochromatic light sources that cause a response at the point (0.00, 0.00)?

$$x = 0 \& y = 0 \rightarrow z = 1.0$$
 This cannot be done

Photonics Displays

Finally

There is a lot more to photonics

Institute of Electrical and Electronics Engineers

https://spectrum.ieee.org/

https://www.ieee.org//

OPTICS & PHOTONICS NEWS

https://www.optica-opn.org/

https://www.optica.org/

Both magazines can be accessed through TU/e library