

cs4341 Digital Logic & Computer Design

Lecture Notes 2

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Number Representation

Remember the two examples:

They all mean the same thing but in different "language system".

Different language systems may or may not share the same alphabet "symbols"

$$(Gift)_{English} =$$

$$(Gift)_{German} =$$

$$(Gift)_{Norwegian} =$$

Sometimes same words have different meanings in the different "language systems"

Review: Positional Number System

Binary System:

r = 2 or base 2

Digit set: {0, 1}

Octal System:

r = 8 or base 8

Digit set: {0, 1, 2, 3, 4, 5, 6, 7}

Hexadecimal System:

r = 16 or base 16

Digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Review: Numerical Values

An integer N of length n and base r is represented as:

$$(N)_r = (b_{n-1}, b_{n-2}, ..., b_1, b_0)_r$$

And has a numerical value of:

$$b_{n-1}r^{n-1} + b_{n-2}r^{n-2} + ... + b_1r^1 + b_0r^0$$

Can be representation using the summation formula:

$$\sum_{i=0}^{n-1} b_i r^i$$

Conversion Between Bases

- From any base *r* to Decimal: use the numerical value polynomial
- From Decimal to base *t*: use the repeated division method
- To convert $(N)_{10}$ to $(M)_t$, we repeatedly divide N by t. The remainder after each step is one digit of the required base t, starting from the right most digit.

Conversion Example

Convert (37)₁₀ to Binary

1.4	~ 4	04	×
/ 4		$\Lambda \Lambda \Lambda$	- 1
			10

Division	Quotient	Remainder	
37 / 2	18	1 -	Least significant b
18 / 2	9	0	
9/2	4	1	
4/2	2	0	
2/2	1	0	
1/2	0	1 ←	Most significant bi
			Stop when 0

Conversion Example

Convert (422)₁₀ to Hexadecimal

 $(422)_{10} = (1A6)_{16}$

Division	Quotient	Remainder	
422 / 16	26	6	Least significant bit
26 / 16	1	A	
1 / 16	0	1 -	Most significant bit
			Stop when 0

Binary, Octal & Hexadecimal Conversions

- ➤ Observation: Octal (8) is a power of $2 = 2^3$. Hence, each octal digit can be represented in exactly 3 binary bits.
 - ➤ To convert from binary to octal, divide the word into groups of 3 starting from the LSB and convert each into an octal digit.
 - > To convert from octal to binary, simply reverse the process
- ➤ Observation: Hexadecimal (16) is a power of $2 = 2^4$. Hence, each hexadecimal digit can be represented in exactly 4 binary bits.
 - To convert from binary to hexadecimal, divide the word into groups of 4 starting from the LSB and convert each into a hexadecimal digit.
 - > To convert from hexadecimal to binary, simply reverse the process

Conversion Example

Convert (1101000101)₂ to Octal

$$1\ 101\ 000\ 101 = 1505 = (1505)_8$$

Convert (12A7F)₁₆ to Binary

1 2 A 7 F = 0001 0010 1010 0111 1111=

 $(10010101001111111)_2$

Famous Conversion Table

(1990) (1990) (1990) (1990) (1990)	500000000000000000000000000000000000000	500 ST 100 ST	1831(52) ()
Decimal	Binary	Octal	Hex
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Important Property

The largest possible value of a number of length n-digits in base system r is:

Representing Fractions

 \triangleright A Number N_r can have a fraction part:

$$N_r = b_{n-1}b_{n-2} \dots b_1b_0$$
Integer Part

Fraction Part

Radix Point

> The numerical value is calculated as:

$$> b_{n-1} \times r^{n-1} + ... + b_1 \times r + b_0 +$$
 (Integer part)
 $> b_{-1} \times r^{-1} + b_{-2} \times r^{-2} ... + b_{-m} \times r^{-m}$ (Fraction part)

Representing Fractions

$$N_{r} = \sum_{i=0}^{i=n-1} b_{i} \times r^{i} + \sum_{j=-1}^{j=-m} b_{j} \times r^{j}$$

Examples

$$(2409.87)_{10} = 2 \times 10^{3} + 4 \times 10^{2} + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$$

$$(1101.1001)_2 =$$

$$2^{3} + 2^{2} + 2^{0} + 2^{-1} + 2^{-4} = 13.5625$$

$$(703.64)_8 =$$

$$7 \times 8^2 + 3 + 6 \times 8^{-1} + 4 \times 8^{-2} = 451.8125$$

$$(A1F.8)_{16} =$$

$$10 \times 16^2 + 16 + 15 + 8 \times 16^{-1} = 2591.5$$

Signed Numbers

- > To carry out the various arithmetic operations, we need numbers as positive or negative.
- > Three notations are commonly used:
 - Sign-magnitude
 - > (r-1)'s Complement
 - r's complement
- ➤ In Binary, 2's complement is widely used.

Sign-Magnitude Representation

- > Independent representation of sign and magnitude.
- > MSB is the sign bit: o means positive and 1 means negative
- > Using n-bits, then largest represented magnitude is:

$$2^{n-1} - 1$$

Sign-Magnitude Examples

Sign-magnitude representation of +27 using 8-bit register

Sign-magnitude representation of -27 using 8-bit register

1	0	0	1	1	0	1	1
---	---	---	---	---	---	---	---

Properties of Sign-Magnitude

- > Two representations of the zero: +o and -o
- > Symmetric range of represented positive and negative values
 - For n-bit register, range is from $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
 - \triangleright For example, using 8-bit register, range is -127 to +127
- > Hard to implement addition and subtraction
 - > Sign and magnitude parts must be processed separately
 - > Sign bit should be examined to determine addition or subtraction
 - > Increases the cost of the logic circuit

1's Complement Representation

- \succ Given a binary number N, the 1's complement of N is obtained by flipping each bit in N (0 becomes 1, and 1 becomes 0).
- \triangleright Example: 1's complement of (01101001)₂ = (10010110)₂
- > If N consists of n-bits then, 1's complement of $N = (2^n 1) N$

2's Complement Representation

- > Used in most computers today
- ➤ Definition: given a binary number N, the 2's complement of N =1's complement + 1
- \triangleright Example: 1's complement of (01101001)₂ = (10010110)₂
- \geq 2's complement of (01101001)₂ = (10010110 + 1)_{2 =} (10010111)₂
- \triangleright If N consists of n-bits then, 2's complement of $N = 2^n N$

2's Complement Example

starting value	00100100 ₂ = +36	
step1: reverse the bits (1's complement)	110110112	
step 2: add 1 to the value from step 1	+ 1 ₂	
sum = 2's complement representation	11011100 ₂ = -36	

2's Complement Representation

- Another way to obtain the 2's complement: Starting at the least significant 1:
- Leave all the Os to its right unchanged
- > Complement all the bits to its left

```
Binary Value

= 00100 1 00

2's Complement

= 11011 1 00
```

Ranges for Unsigned and Signed Numbers

- For n-bit unsigned integers: Range is 0 to $(2^n 1)$
- For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1} 1)$:
 - \triangleright Positive range: 0 to $(2^{n-1} 1)$
 - \triangleright Negative range: -2^{n-1} to -1

Note: in 2's Complement, there is only one zero: 2's complement of o = o

Unsigned and Signed Values

➤ Positive numbers:

➤ Signed value = Unsigned value

➤ Negative numbers:

> To obtain the signed value, we assign a negative weight to MSB and add to the rest of the bit values.

$$N = b_{n-1} \times (-2^{n-1}) + b_{n-2} \times 2^{n-2} + \dots + b_0 \times 2^0$$

Example

Find the numerical value of signed number (10110100)₂

- \triangleright Value = -128 + 32 + 16 + 4 = -76
- If we store this number in 16-bit memory instead, would the numerical value change?

Example

Find the signed and unsigned ranges in 4-bit binary representation

- \triangleright Unsigned: 0000_2 to $1111_2 = 0_{10} 15_{10}$
- ➤ Signed (using 2's Complement):
 - \triangleright Positive Range: $0111_2 (+7_{10})$ to $0000_2 (0_{10})$
 - \triangleright Negative Range: 1000_2 (-8₁₀) to 1111_2 (-1₁₀)

Ranges for Unsigned and Signed Numbers

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
0000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

To Do List

- ➤ Review lecture notes
- ➤ Read chapter 1 until 1.5