TUGAS PERTEMUAN 5 PENGANTAR SISTEM OPERASI

Resume Chapter 7 (Operating System by William Stallings)

Disusun oleh:

Rama Pramudya Wibisana 2022320019

PROGRAM STUDI SISTEM INFORMASI
FAKULTAS INFORMATIKA
UNIVERSITAS BINA INSANI

BEKASI

2023

CHAPTER 7 OPERATING SYSTEM (OS)

A. DEFINISI OS

Operating System (OS) merupakan suatu program yang mengatur eksekusi program-program aplikasi dan berfungsi sebagai interface antara pengguna komputer dengan hardware komputer.

B. TUJUAN DAN FUNGSI OS

1. Tujuan OS

- a. Kemudahan (OS Membuat komputer lebih mudah untuk digunakan)
- b. Efisiensi (OS memungkinkan sumber daya sistem komputer digunakan dengan cara yang efisien)
- c. Kemampuan berkembang (OS harus disusun sedemikian rupa sehingga memungkinkan pengembangan yang efektif)

Layers dan Gambaran Sistem Komputer

2. Fungsi OS

- a. Pembuatan program
- b. Eksekusi Program
- c. Akses ke perangkat I/O
- d. Akses terkontrol ke file
- e. Akses sistem
- f. Deteksi error dan respons
- g. Laporan

C. TIPE OS

- 1. Interaktif
- 2. Batch
- 3. Single program (uni-programming)
- 4. Multi-programming (Multi-tasking)

1. Sistem-sistem Lama

- a. Akhir 1940 sampai pertengahan 1950
- b. Tidak ada sistem operasi
- c. Program berhubungan langsung dengan hardware
- d. Terdapat dua masalah utama:
 - Penjadwalan (Scheduling)
 - Waktu setup (Setup time)

2. Sistem Batch Sederhana

- a. Program resident monitor
- b. Pengguna mengajukan job ke operator
- c. Monitor mengontrol rangkaian event untuk memproses kumpulan job
- d. Setiap job dibuat bercabang agar Kembali ke monitor apabila pengolahannya selesai, pada posisi ini monitor akan mulai memuatkan secara otomatis program berikutnya

- e. Monitor menangani scheduling
- Monitor merupakan Teknik sistem operasi batch dengan menggunakan potongan software
- ❖ Job merupakan sebuah program tunggal
- * Resident memory merupakan bagian monitor yang berada di memori utama

3. Job Control Language (JCL)

- a. Instruksi untuk monitor
- b. Diawali oleh \$
- c. e.g
- **❖** \$JOB
- ❖ \$FTN
- ❖ Some Fortran Instuctions
- **❖** \$LOAD
- ❖ \$RUN
- ❖ Some data
- ❖ \$END

4. Fitur Hardware Yang Diperlukan

- a. Proteksi memori
 - Untuk melindungi monitor
- b. Timer
 - Untuk mencegah job memonopoli sistem
- c. Instuksi istimewa (privileged instuctions)
 - Hanya dieksekusi monitor
 - e.g I/O
- d. interrupts
 - dibolehkan untuk melepaskan dan mendapatkan Kembali control

5. Sistem Batch Multi-programmed

- a. Perangkat I/O sangat lambat
- b. Ketika sebuah program menunggu untuk I/O, program lain bisa menggunakan CPU

6. Sistem Pembagian Waktu

- a. Mengizinkan Pengguna untuk berkomunikasi langsung dengan komputer
 - i.e. Interactive
- b. Multi-programming mengizinkan sejumlah Pengguna untuk berkomunikasi dengan komputer

7. Penjadwalan (Scheduling)

- a. Kunci untuk dapat multi-programming
- b. Penjadwalan Long term
 - Ditetapkan dimana program diajukan untuk diproses
 - Derajat pengontrolan multi-programming
 - Saat diajukan, sebuah job akan diproses untuk penjadwalan short them
 - Atau akan menukar job untuk penjadwalan medium term
- c. Penjadwalan Medium term
 - Bagian dari fungsi penukaran
 - Biasanya berdasarkan pada kebutuhan untuk mengatur multiprogramming
 - Jika tidak ada virtual memori, maka pengaturan memori juga sebuah isuue
- d. Penjadwalan Short term
 - Pengatur pengiriman berita (Dispatcher)
 - Fine grained decisions of which job to execute next
 - i.e which job actually gets to use the processor in the next time slot
- e. I/O

8. Gerbang Proses

9. Process Control Block

- a. Identifikasi
- b. Gerbang
- c. Priori
- d. Program counter
- e. Memory pointers
- f. Data isi
- g. Status I/O
- h. Informasi laporan

10. Managemen Memori

- a. Uni-program (program tunggal)
 - Memori dipisah menjadi dua
 - Satu untuk OS (monitor)
 - Satu untuk eksekusi program
- b. Multi-program
 - Pengguna merupakan bagian dari proses yang sedang aktif

11. Swapping (Penukaran)

- a. Swapping merupakan antrian long term proses penyimpanan pada disk
- Swapping merupakan proses pada memori utama dalam keadaan ready (i.e semua I/O di blocked)
 - OS akan memindahkan proses yang di block ke antrian, antrian ini adalah proses yang dikeluarkan sementara atau ditunda
 - Pemindahan pada proses ready atau sebuah proses baru
 - Tetapi swapping adalah proses I/O
- c. Masalah : I/O lebih lambat dibandingkanCPU dan CPU akan mempunyai banyak waktu kosong (tidak bekerja)
- d. Solusi
 - menambah memori utama
 - Mahal
 - Diutamakan untuk program besar
 - Swapping
 - Memindahkan isi memori utama ke memori sekunder

12. Pembagian (Partitioning)

- a. Membagi memori kedalam bagian-bagian untuk alokasi pemrosesan (termasuk OS)
- b. Fixed-sized partitions (partisi tetap)
 - Membagi memori utama dengan ukuran yang tetap
 - Setiap proses yang berukuran kecil atau sama dapat menempati sembarang partisi
 - Jika partisi penuh, maka OS dapat men-swap beberapa proses dan memuatkan proses lain
 - Tidak efisien dalam penggunaan memori karena adda fragmentasi internal, jumlah proses aktif tetap

13. Partisi Dinamis

- a. Partisi yang digunakan memiliki Panjang dan jumlah yang berbeda beda
- b. Proses dialokasikan ke dalam partisi yang ukurannya sama dengan proses
- c. Terdapat ruang kosong diakhir memori, terlalu kecil untuk digunakan
 - Satu ruang kosong kecil memori terbuang
- d. Ketika semua proses dibloked, OS akan men-swap sebuah proses dan menempatkan proses lain

14. Variable Sized Partitions

- a. Proses baru ukurannya mungkin lebih kecil dari proses yang di-swap
- b. Akan terjadi ruang kosong lagi
- c. Akan menimbulkan banyak ruang kosong
- d. Solusi:
 - Koalisi menggabungkan semua ruang kosong menjadi ruang kosong yang besar
 - Kompaksi OS menggeser proses proses menjadi berada dalam suatu blok, sehingga terdapat ruang kosong yang besar (c.f. disk defragmentation)

e. Relokasi

- Tidak ada jaminan bahwa proses akan menempati partisi yang sama dalam memori
- Instruksi terdiri dari alamat
 - Lokasi data
 - Alamat data instuksi (branching)
 - Alamat logika referensi ke sebuah lokasi memori
 - Alamat fisik lokasi actual di dalam memori

f. Paging

- Memori utama dibagi menjadi ukuran yang sama, chunk kecil -page frames
- Program dibagi menjadi proses proses berukuran sama (chunk) pages
- Mengalokasikan frame semua page ke sebuah proses
- OS menjaga daftar frame yang bebas
- Menggunakan page table untuk menunjukkan lokasi semua page proses

15. Virtual Memory

- a. Tuntunan Paging
 - Tidak memuat semua page proses di dalam memory
 - Hanya memuat page seperti yang diminta
- b. Page Vault
 - Page yang diinginkan tidak berada dalam memori
 - OS harus men-swap page yang diinginkan
 - Diperlukan untuk men-swap sebuah page agar terdapat ruang kosong
 - Menyeleksi page yang dikeluarkan berdasarkan history

16. Thrashing

- Terlalu banyak proses pada memori yang kecil
- OS terlalu banyak melakukan swapping
- Kecil atau tidak ada proses yang selesai
- Disk menyala sepanjang waktu
- Solusi:
 - Penggunaan algoritma penempatan yang baik
 - Memperkecil jumlah proses yang bekerja

17. Segmentasi

- Paging adakalanya tidak berguna bagi programmer
- Segmentasi dimungkinkan bagi programmer
- Biasanya program dan data dialokasikakn di segment yang berbeda
- Segmentasi memungkinkan pemrograman menganggap memori terdiri dari kumpulan ruang alamat / segment
- Keunggulan segmentasi:
 - Menyederhanakan penanganan perkembangan struktur data
 - Memungkinkan program untuk diubah dan dikomplasi ulang secara independent, tanpa relinking dan memuat kembali seluruh program
 - Membiarkan dirinya untuk berbagi pakai proteksi
 - Memungkinkan dilakukan proteksi
 - Beberapa sistem menggabungkan segmentasi dan paging