P1 de Álgebra Linear I – 2012.1

31 de março de 2012.

Nome:	Matrícula:
Assinatura:	Turma:
Preencha CORRETA e COMPLETAMENTI cula, assinatura e turma).	E todos os campos (nome, matrí-
Provas sem nome não serão corrigidas e ter	
campos matrícula, assinatura e turma não	-
forma errada serão penalizadas com a perda	de 1 ponto por campo.

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	2.a	2.b	2.c	3.a	3.b	3.c	3.d	4.a	4.b	soma
\mathbf{V}	1.0	0.5	0.5	0.5	1.0	0.5	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N													

Instruções – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1)

- a) Encontre, se possível, dois vetores não nulos \bar{u} e \bar{v} de \mathbb{R}^3 tais que os vetores $\bar{u} + \bar{v}$ e $\bar{u} \bar{v}$ tenham o mesmo módulo.
- **b)** Considere dois vetores \bar{u}_1 e \bar{u}_2 de \mathbb{R}^3 que têm módulo 13, isto é, $||\bar{u}_1|| = ||\bar{u}_2|| = 13$. Calcule o produto escalar $(\bar{u}_1 + \bar{u}_2) \cdot (\bar{u}_1 \bar{u}_2)$.
- c) Considere vetores não nulos \bar{u} , \bar{v} de \mathbb{R}^3 e defina

$$\bar{w} = \alpha \, \bar{u}, \qquad \alpha \in \mathbb{R}.$$

Determine α para que os vetores $(\bar{v} - \bar{w})$ e \bar{u} sejam ortogonais. Note que o valor de α depende dos vetores \bar{u} e \bar{v} .

- **2)** Considere os pontos A = (1, 0, 1), B = (0, 2, 2) e C = (2, 1, 2).
- a) Determine uma equação cartesiana do plano π que contém os pontos A,B e C.
- b) Determine um ponto D tal que os pontos A,B,C e D formem um paralelogramo P.
- c) Determine a área do paralelogramo P do item anterior.

3) Considere as retas r_1 de equação paramétrica

$$x = 1 + t$$
, $y = 1 + 2t$, $z = 1 + 2t$, $t \in \mathbb{R}$

e r_2 cujas equações cartesianas são

$$y - z = 0$$
, $2x - y = 2$.

- a) Determine equações cartesianas da reta r_1 .
- **b)** Determine a equação cartesiana do plano ρ que contém o ponto Q = (1,0,0) e é ortogonal à reta r_1 .
- c) Determine, se possível, um ponto P da reta r_2 tal que a distância entre P e r_1 seja 1/3.
- d) Considere os pontos $A = (1, 1, 1) \in r_1$ e $B = (2, 2, 2) \in r_2$. Determine um ponto C de r_1 tal que o triângulo de vértices A, B, C seja retângulo e os lados AC e BC sejam seus catetos.

a) Considere os planos de equações cartesianas

$$\pi: 2x + y - z = 1, \quad \pi': x + 3y - z = -1.$$

Determine a equação cartesiana de um plano τ que contenha o ponto (1,0,0) e a interseção dos três planos π , π' e τ seja uma reta.

b) Considere os planos de π_1, π_2, π_3 de equações cartesianas

$$\pi_1$$
: $x + 2y + 3z = a$
 π_2 : $2x + 4y + z = b$
 π_3 : $3x + 2y + kz = c$.

$$\pi_3$$
: $3x + 2y + kz = c$

Mostre que a interseção destes três planos sempre é um ponto, independentemente dos valores de a, b, c e k.