Overview

- **≻**Introduction
- **≻**Logic Gates
- > Flip Flops
- Registers
- **≻**Counters
- ➤ Multiplexer/ Demultiplexer
- ➤ Decoder/ Encoder

Introduction

Digital Computer

A computer that stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next

Binary digits

The states of a digital computer typically involve binary digits. A binary digit is called a **bit**

CSE211 Computer Organization and Design

Boolean Algebra

Figure 1-3 Truth table and logic diagram for F = x + y'z.

x	y	z	F
0	0	0	0
0 0 0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(a) Truth table

(b) Logic diagram

Boolean Identities

TABLE 1-1 Basic Identities of Boolean Algebra

(1)
$$x + 0 = x$$

(3)
$$x + 1 = 1$$

$$(5) x + x = x$$

$$(7) x + x' = 1$$

$$(9) x + y = y + x$$

$$(11) x + (y + z) = (x + y) + z$$

$$(13) x(y+z) = xy + xz$$

(15)
$$(x + y)' = x'y'$$

$$(17) (x')' = x$$

(2)
$$x \cdot 0 = 0$$

$$(4) x \cdot 1 = x$$

(6)
$$\chi \cdot \chi = \chi$$

$$(8) x \cdot x' = 0$$

$$(10) xy = yx$$

$$(12) x(yz) = (xy)z$$

$$(14) x + yx = (x + y)(x + z)$$

$$(16) (xy)' = x' + y'$$

Logic Gates

Name	Symbol	Function	Truth Table
AND	$\frac{A}{B}$	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0
OR	$A \longrightarrow X$	X = A + B	A B X 0 0 0 0 1 1 1 0 1
NOT	A	X = A'	1 A 1 X 0 1 1 0
Buffer	A ————————————————————————————————————	X = A	A X 0 0 1 1
NAND	A X	X = (AB)'	A B X 0 0 1 0 1 1 1 1 1 0
NOR	A X	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 0
XOR Exclusive OR	$\stackrel{A}{\Longrightarrow} \longrightarrow -X$	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 0 1 1 1 0
XNOR Exclusive NOR or Equivalence	А	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

Is NAND Gate a complement of AND gate?
 a)True
 b)False

Types of circuits

- 1) Combinational Circuits
- 2) Sequential Circuits

Flip Flops

Characteristics

- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

The Storage elements employed in clocked sequential circuits, capable of storing one bit of information, are called **Flip Flops**

The most common types of flip flops are

- ➤SR (Set Reset)
- ➤D (Data)
- ≽JK
- ➤T (Toggle)

Clocked Flip Flops

In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable.

Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the C terminal (as shown in fig).

Edge Triggered Flip Flops

State transition occurs at the rising edge or falling edge of the clock pulse

- Circuits contains memory elements?
- a) Combinational Circuits
- b) Sequential Circuits

Lecture 1

Flip Flops

Flip Flop	Graphical Symbol	Characteristic Table
SR (Set Reset)	- S Q	S R Q(t+1) 0 0 Q(t) 0 1 0 1 0 1 1 1 indeterminate (forbidden)
D (Data)	- J Q - C K Q' -	D Q(t+1) 0 0 1 1

CSE211 Computer Organization and Design

Pradeep Kumar

Lecture 1

Flip Flops

Flip Flop	GraphicalSymbol	Characteristic Table
J-K		J K Q(t+1) 0 0 Q(t) 0 1 0 1 0 1 1 1 Q'(t)
T (Toggle)		T Q(t+1) 0 Q(t) 1 Q'(t)

CSE211 Computer Organization and Design

Pradeep Kumar