

<u>Help</u> 🗘

sandipan_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

☆ Course / Week 12: Eigenvalues and Eigenvectors / 12.2 Getting Started

()

12.2.4 Eigenvalues and Vectors of 3 × 3 Matrices

□ Bookmark this page

Previous

■ Calculator

Week 12 due Dec 29, 2023 10:42 IST Completed

12.2.4 Eigenvalues and Vectors of 3 x 3 Matrices

4/4 points (graded)

Let
$$A=egin{pmatrix} 3 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 2 \end{pmatrix}$$
 . Then which of the following are true:

• $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue 3.

✓ Answer: TRUE

Just multiply it out.

• $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue -1.

TRUE

✓ Answer: TRUE

Just multiply it out.

• $egin{pmatrix} 0 \ \chi_1 \ 0 \end{pmatrix}$, where $\chi_1
eq 0$ is a scalar, is an eigenvector associated with eigenvalue -1.

TRUE

✓ Answer: TRUE

Just multiply it out.

• $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is an eigenvector associated with eigenvalue 2.

TRUE ~

✓ Answer: TRUE

Just multiply it out.

Submit

Answers are displayed within the problem

Homework 12.2.4.2

10.0/10.0 points (graded)

Let
$$A=egin{pmatrix}lpha_{0,0}&0&0\\0&lpha_{1,1}&0\\0&0&lpha_{2,2}\end{pmatrix}$$
 . Then which of the following are true:

• $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue $lpha_{0,0}$.

TRUE ~

✓ Answer: TRUE

Just multiply it out.

• $egin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue $lpha_{1,1}.$

TRUE ✓ Answer: TRUE

Just multiply it out.

• $egin{pmatrix} 0 \ \chi_1 \ 0 \end{pmatrix}$ where $\chi_1
eq 0$ is an eigenvector associated with eigenvalue $lpha_{1,1}$.

TRUE ~

✓ Answer: TRUE

Just multiply it out.

 $egin{aligned} egin{aligned} 0 \ 0 \ 1 \end{aligned}$ is an eigenvector associated with eigenvalue $lpha_{2,2}.$

TRUE 🗸

✓ Answer: TRUE

Just multiply it out.

Submit

Answers are displayed within the problem

Video 12.2.4 Part 2

▶ 0:00 / 0:00

▶ 2.0x

4》

×

CC

66

Start of transcript. Skip to the end.

Dr. Robert van de Geijn: So hopefully, you

remembered that the diagonal elements of a diagonal matrix are its eigenvalues,

and then the eigenvectors can be found as the unit basis vectors.

What about this one?

Here we have a 3 by 3 upper triangular matrix.

Video

▲ Download video file

Transcripts

Homework 12.2.4.3

10.0/10.0 points (graded)

Let $A=egin{pmatrix} 3 & 1 & -1 \ 0 & -1 & 2 \ 0 & 0 & 2 \end{pmatrix}$. Then which of the following are true:

- $\mathbf{3}$, $-\mathbf{1}$, and $\mathbf{2}$ are eigenvalues of A.
- $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue ${\bf 3}$.

TRUE	•

✓ Answer: TRUE

Just multiply it out.

• $\begin{pmatrix} -1/4 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector associated with eigenvalue -1.

✓ Answer: TRUE

Just multiply it out.

• $egin{pmatrix} -1/4\chi_1 \ \chi_1 \ 0 \end{pmatrix}$ where $\chi_1
eq 0$ is an eigenvector associated with eigenvalue -1.

Answer: TRUE

Just multiply it out.

• $\begin{pmatrix} 1/3 \\ 2/3 \\ 1 \end{pmatrix}$ is an eigenvector associated with eigenvalue 2.

Answer: TRUE

Just multiply it out.

Submit

• Answers are displayed within the problem

Video 12.2.4 Part 3

Start of transcript. Skip to the end.

matrix are its eigenvalues. And then once you subtract off the

eigenvalue from the diagonal,

should have remembered that again, the diagonal elements of a triangular

you should be able to reduce the system to row echelon form

and find the eigenvectors associated

0:00 / 0:00

X 66 ▶ 2.0x CC

Video

▲ <u>Download video file</u>

Transcripts

- **L** Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Homework 12.2.4.4

1/1 point (graded)

Let
$$A=egin{pmatrix}lpha_{0,0}&lpha_{0,1}&lpha_{0,2}\0&lpha_{1,1}&lpha_{1,2}\0&0&lpha_{2,2}\end{pmatrix}$$
 . Then the eigenvalues of this matrix are $lpha_{0,0}$, $lpha_{1,1}$, and $lpha_{2,2}$.

TRUE

✓ Answer: TRUE

Submit

Answers are displayed within the problem

Homework 12.2.4.5

1/1 point (graded)

Consider $m{A} = egin{pmatrix} m{1} & m{0} & m{0} \\ m{2} & m{0} & m{1} \\ m{1} & m{0} & m{0} \end{pmatrix}$. Which of the following is true about this matrix:

(Mark all correct answers)

This matrix is defective.

Answer:

$$\det\begin{pmatrix} 1-\lambda & 0 & 0 \\ 2 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{pmatrix}) = \begin{bmatrix} \underbrace{(1-\lambda)(-\lambda)^2}_{-(1-\lambda)\lambda^2} + 0 + 0 \end{bmatrix} - \begin{bmatrix} \underbrace{0+0+0}_{0} \end{bmatrix}$$

$$\begin{array}{c}
\lambda^3 - \lambda^2 \\
 - (1 - \lambda)\lambda^2
\end{array}$$

So, $\lambda_0 = \lambda_1 = 0$ is a double root, while $\lambda_2 = 1$ is the third root.

 $\lambda_2 = 1$:

$$A - \lambda_2 I = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & -1 \end{array}\right)$$

We wish to find a nonzero vector in the null space:

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

By examination, I noticed that

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & -1 \end{array}\right) \left(\begin{array}{c} 1 \\ 3 \\ 1 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

Eigenpair:

$$(1, \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}).$$

 $\lambda_0 = \lambda_1 = 0$

$$A - 0I = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)$$

Reducing this to row-echelon form gives us the matrix

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right).$$

Notice that there is only one free variable, and hence this matrix is defective! The sole linearly independent eigenvector associated with $\lambda=0$ is

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
.

Eigenpair:

$$(0,\begin{pmatrix}0\\1\\0\end{pmatrix})$$

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>