Assignment 13

Challa Akshay Santoshi - CS21BTECH11012

June 20, 2022

Outline

Question

Solution

Question

Excercise 11 Quetion 12

Show that, if the process $X(\omega)$ is white noise with zero mean and autocovariance $Q(u)\delta(u-v)$, then its inverse Fourier transform, x(t) is WSS with power spectrum $\frac{Q(\omega)}{2\pi}$.

Definitions

Inverse Fourier transform of $X(\omega)$ is given by

$$X(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 (1)

From the Fourier-inversion formula, it follows that

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{j\omega t} d\omega$$
 (2)

The process x(t) is WSS iff $E\{X(\omega)\}=0$ for $\omega \neq 0$ and

$$E\{X(u)X^*(v)\} = Q(u)\delta(u-v)$$
(3)

Proof

Let $x(t_1)$ and $x(t_2)$ be the inverse Fourier transform of X(u) and X(v) respectively.

$$E\{x(t_1)x^*(t_2)\} = E\{\left(\frac{1}{2\pi}\int_{-\infty}^{\infty}X(u)e^{jut_1}du\right)\left(\frac{1}{2\pi}\int_{-\infty}^{\infty}X^*(v)e^{-jvt_2}dv\right)\}$$
(4)

$$= \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\{X(u)X^*(v)\} e^{j(ut_1 - vt_2)} dudv$$
 (5)

$$=\frac{1}{4\pi^2}\int\limits_{-\infty}^{\infty}(\int\limits_{-\infty}^{\infty}Q(u)\delta(u-v)e^{j(ut_1-vt_2)}dv)du \tag{6}$$

Proof

$$E\{x(t_1)x^*(t_2)\} = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} Q(u)e^{ju(t_1-t_2)}du$$
 (7)

$$=\frac{1}{4\pi^2}\int\limits_{-\infty}^{\infty}Q(u)e^{ju\tau}du\tag{8}$$

$$=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty}\frac{Q(u)}{2\pi}e^{ju\tau}du\tag{9}$$

$$R_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{Q(\omega)}{2\pi} e^{j\omega\tau} d\omega$$
 (10)

Finding Power Spectrum

To find the Power Spectrum, we compare the equations given below,

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{j\omega t} d\omega$$
 (11)

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{Q(\omega)}{2\pi} e^{j\omega\tau} d\omega$$
 (12)

Therefore the Power Spectrum is

$$S_{XX}(\omega) = \frac{Q(\omega)}{2\pi} \tag{13}$$

