

Seminario Doctorado en Ingeniería Industrial "Econometric Modeling and Solving Social Problems"

Hanns DE LA FUENTE-MELLA, Ing., Dr.

CASE 1 Analysis of the Factors of Chilean City Hall Using Econometric Modeling and Stochastic Frontier

Hanns DE LA FUENTE-MELLA, Ing. Dr. Mauricio ALVARADO-MARTINEZ, Std.

Introduction

- The City Hall in Chile are fundamental by the decentralization of the country
- Represent a way to be more connected to and with people, their problems, needs and desires
- > In Chile there are **346 City Hall** belonging to the different communes (different characteristics)
- The factors that influence the efficiency of the City Hall in Chile will be determined, based on the quality of life index of the cities
- For the above, an **econometric model** was developed that explains the determinants of the efficiency of the City Hall in Chile
- Therefore, the elements that make it efficient and improve the quality of life of citizens are fundamentals for to be identified

Mission of the Town Hall in Chile

meet the needs of the local community and ensure their participation in the economic, social and cultural progress of the city or group of cities, with a sense of efficiency and equity, improving the quality of life of its inhabitants

Theoretical Framework

- Quality of Life Index (QoL)
 - "Multidimensional concept, includes welfare aspects (well-being) and social policies: material and non-material, objective and subjective, individual and collective" (Palomba, 2002)
 - "Quality of life is the subjective evaluation of the satisfactory character of life as a whole" (Szalai, 1980)
 - "Quality of life is the patient's appreciation of his life and satisfaction with his current level of functioning compared to what perceives as possible or ideal" (Celia and Tulsky, 1990)
 - "It is a subjective sensation of physical, psychological and social well-being. It includes, as subjective aspects: intimacy, emotional expression, perceived safety, personal productivity and objective health. As objective aspects: material well-being, harmonious relations with the physical and social environment and with the community, and health objectively perceived" (Ardilla, 2003)
 - "It is a composite measure of physical, mental and social well-being, as perceived by each individual and each group; and of happiness, satisfaction and reward" (Levy and Anderson, 1980)

Theoretical Framework

- Quality of Life Index (QoL) (Architecture-PUC)
 - > Its a survey of the inhabitants of the communes (Chilean City Hall) where they are asked by:

housing and environment

health

sociocultural conditions

business environment

work condition

connectivity

Hypothesis of this Research

there is not a positive relation between City Hall Budget and Own City Hall Incomes with the Efficiency

Efficiency

rate of domestic violence has a negative relation with the QoL in the City Hall in Chile

Efficiency

higher per capita income and population wealth have a negative effect on efficiency

overcrowding has a negative relation with the QoL in the City Hall in Chile

the best efficiency indexs are in the central/south area of the country

population density has a negative relationship with the QoL in the City Hall (Kerstens, 1996; Sampaio de Sousa and Stosic, 2003)

Objective

general objetive

determine the factors that influence the quality of life of the City Hall in Chile

especific objective

estimate the efficiency of the town hall of Chile based on the index of quality of urban life

Methodology

- Descriptive Analysis
- Regressions Models (Stepwise)
- Final Regression Model
- Cluster Analysis
- > Technical Efficiency (Stochastic Frontier Analysis)

- □ 91 city hall in Chile, 2018
- city hall over 50,000 population
- 10 metropolitan areas
- 25 intermediates cities
- all regional capitals

http://datos.gob.cl/

https://reportescomunales.bcn.cl/

	Descriptive Statistics							
Manus I no Consider		Mean	Std. Deviation	N				
Max: Las Condes Min: Lo Espejo	Quality of Life Index	42,736	10,0215	91				
	PSU	,46804	,160510	91				
	Population Density	3.575,76198	5.092,858885	91				
Max: Lo Espejo Min: Vitacura	Overcrowding	,19669	,044588	91				
Max: Puente Alto	Rate of Domestic Violence	549,28571	158,273526	91				
Min: Puerto Varas	Municipal Budget (1,000 CLP\$)	7.774.292,11	7.621.969,636	91				
Max: Providencia Min: Lota	Own Incomes (1,000 CLP\$)	15.619.075,68	20.172.956,959	91				

Methodology (Regression Models-Stepwise)

				Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	75,389	3,238	200	23,281	,000	r orer unice	·
	overcrowding	-166,014	16,061	-,739	-10,337	,000	1,000	1,000
2	(Constant)	60,561	5,420	·	11,173	,000	,	,
	overcrowding	-131,195	18,490	-,584	-7,095	,000	,678	1,475
	PSU	17,049	5,136	,273	3,319	,001	,678	1,475
3	(Constant)	62,952	5,243		12,008	,000		
	overcrowding	-109,437	19,076	-,487	-5,737	,000	,583	1,716
	PSU	18,718	4,942	,300	3,787	,000	,670	1,493
	rate of domestic violence	-,014	,004	-,214	-3,039	,003	,844	1,184
4	(Constant)	63,439	5,044		12,576	,000		
	overcrowding	-98,066	18,775	-,436	-5,223	,000	,556	1,798
	PSU	20,169	4,780	,323	4,220	,000	,662	1,510
	rate of domestic violence	-,016	,004	-,258	-3,713	,000	,803,	1,246
	municipal budget	-2,412E-7	,000	-,183	-2,843	,006	,933	1,072
5	(Constant)	62,932	4,858		12,953	,000		
	overcrowding	-92,377	18,184	-,411	-5,080	,000	,549	1,821
	PSU	19,927	4,601	,319	4,331	,000	,662	1,511
	rate of domestic violence	-,015	,004	-,239	-3,554	,001	,794	1,259
	municipal budget	-2,347E-7	,000	-,179	-2,874	,005	,932	1,073
	population density	,000	,000	-,172	-2,800	,006	,948	1,055
6	(Constant)	59,438	4,688		12,678	,000		
	overcrowding	-79,504	17,535	-,354	-4,534	,000	,524	1,908
	PSU	16,368	4,457	,262	3,673	,000	,626	1,597
	rate of domestic violence	-,013	,004	-,209	-3,264	,002	,779	1,283
	municipal budget	-2,152E-7	,000	-,164	-2,790	,007	,927	1,079
	population density	,005	,000	-,218	-3,668	,000	,900	1,111
	own incomes	1,119E-7	,000	,225	3,434	,001	,742	1,348

Methodology (Regression Models-Stepwise)

		Α	NOVA			
		Sum of		Mean		
Model		Squares	df	Square	F	Sig.
1	Regression	4931,256	1	4931,256	106,84 8	,000 ^b
	Residual	4107,515	89	46,152		
	Total	9038,770	90			
2	Regression	5388,296	2	2694,148	64,946	,000°
	Residual	3650,474	88	41,483		
	Total	9038,770	90			
3	Regression	5738,581	3	1912,860	50,427	,000 ^d
	Residual	3300,189	87	37,933		
	Total	9038,770	90			
4	Regression	6022,134	4	1505,534	42,921	,000e
	Residual	3016,636	86	35,077		
	Total	9038,770	90			
5	Regression	6276,820	5	1255,364	38,634	,000 ^f
	Residual	2761,950	85	32,494		
	Total	9038,770	90			
6	Regression	6616,807	6	1102,801	38,248	,000 ^g
	Residual	2421,963	84	28,833		
	Total	9038,770	90			

	Model Summary											
				Std. Error		Cho	ange Sta	tistics				
		R	Adjusted	of the	R Square	F			Sig. F	Durbin-		
Model	R	Square	R Square	Estimate	Change	Change	df1	df2	Change	Watson		
1	,739ª	,546	,540	6,7935	,546	106,84 8	1	89	,000			
2	,772b	,596	,587	6,4407	,051	11,018	1	88	,001			
3	,797 ^c	,635	,622	6,1590	,039	9,234	1	87	,003			
4	,816 ^d	,666	,651	5,9226	,031	8,084	1	86	,006			
5	,833e	,694	,676	5,7003	,028	7,838	1	85	,006			
6	,856 ^f	,732	,713	5,3696	,038	11,792	1	84	,001	1,986		

Methodology (Regression Final Iteration)

Model Summary										
					Change Statistics					
			Adjusted R	Std. Error of the	R Square					
Model	R	R Square	Square	Estimate	Change	F Change	df1	df2	Sig. F Change	Durbin-Watson
Quality of Life										
Index	,856ª	,732	,713	5,3696	,732	38,248	6	84	,000	1,986

	ANOVA								
Model		Sum of Squares	df	Mean Square	F	Sig.			
Quality of Life	Regression	6616,807	6	1102,801	38,248	,000b			
Index	Residual	2421,963	84	28,833					
	Total	9038,770	90						

		Unstandardized Coefficients				95,0% Confidence Interval for B		Collinearity Statistics	
Model		В	Std. Error	t	Sig.	Lower Bound	Upper Bound	Tolerance	VIF
Quality of Life Index	(Constant)	59,438	4,688	12,678	,000	50,115	68,761		
	PSU	16,368	4,457	3,673	,000	7,505	25,230	,626	1,597
	population density	,005	,000	-3,668	,000	-,001	,000	,900	1,111
	overcrowding	-79,504	17,535	-4,534	,000	-114,374	-44,635	,524	1,908
	rate of domestic violence	-,013	,004	-3,264	,002	-,021	-,005	,779	1,283
	municipal budget	-2,152E-7	,000	-2,790	,007	,000	,000	,927	1,079
	own incomes	1,119E-7	,000	3,434	,001	,000	,000	,742	1,348

Methodology (Hierarchical Cluster-Dendogram)

Methodology (Cluster k-means)

Methodology (Technical Efficiency (Stochastic Frontier Analysis)

Cobb-Douglas

$$\ln q_{it} = X_{it}\beta + v_{it} - u_{it}$$

Translogarithmic

$$\ln q_{it} = \beta_0 + \sum_{i=1}^n \beta_1 \ln X_i + 0.5 \sum_{i=1}^n \sum_{i=1}^n \beta_i \ln X_i \ln X_j$$

$$LR = -2(\ln(LRtest(Cobb - Douglas)) - \ln(LRtest(Translog))) = -2(\ln(303) - \ln(405)) = 0.577$$

Cobb-Douglas

$$QLI_i = e_i^{\alpha} * PSU_i^{\beta_1} * PopulationDensity_i^{\beta_2} * Overcrowding_i^{\beta_3} *$$

RateDomesticViolence_i^{β_4} * MunicipalBudget_i^{β_5} * OwnIncomes_i^{β_6} * ($v_{it} - u_{it}$)

Testing the absence of the technical inefficiency effects

Likelihood-ratio statistic (Kodde & Palm, 1986)

LR	Critical Value	Decision	Conclusion
305,88	7.045	Reject Ho	Technical inefficiency effects

Methodology (Technical Efficiency (Stochastic Frontier Analysis)

Function: Cobb-Douglas

Endogenous Variable: Quality of Life Index (QLI)

Exogenous Variable: PSU, Population Density Overcrowding, Rate of Domestic Violence, Municipal Budget and Own Incomes

 $QLI_i = e_i^{\alpha} * PSU_i^{\beta_1} * Population Density_i^{\beta_2} * Overcrowding_i^{\beta_3} *$

RateDomesticViolence_i^{β_4} * *MunicipalBudget*_i^{β_5} * *OwnIncomes*_i^{β_6} * $(v_{it} - u_{it})$

Methodology (Technical Efficiency (Stochastic Frontier Analysis)

0,39317003 80 Quinta Normal

0,36848419

id City Hall

3 Vitacura

5 Concón

6 Osorno

7 Valdivia

8 Temuco

10 Lo Barnechea

11 Viña del Mar

14 San Pedro de la Paz

0,43246087 40 Coquimbo

0,41449048 60 Antofagasta

9 Castro

12 Penco

13 La reina

15 Ñuñoa

16 Macul

18 Rengo

17 Talagante

19 San Ramon

20 Puerto Montt

1 Punta Arenas

2 Puerto Varas

4 Providencia

Efficiency Average: 0,407048582

Penco

Conclusion and Results

- Currently there is a growing interest in the Town Hall due to the search for decentralization in Chile
- Since it is known the excessive centralism in the economic, political and administrative spheres in Chile in comparison with other Latin American countries
- > OECD recommends strengthening the regions so as not to continue to slow the development of the country

Efficiency of City Hall in Chile

Therefore, to knows the factors that determine the Town Hall efficiency is of high interest since it shows us the aspects that require special attention in new public policies regarding the management of the City Hall as well as, and more importantly, the quality of life of the people

Conclusion and Results

- The research allows us to contrasts between different City Hall (North, Center and South)
- Allows us to verify centralization of the country
- Evidencing the variables that affect in greater proportion according to our econometric/stochastic model results

Conclusion and Results

Tocopilla higher per capita income and popula**tion weafficient**have a negative effect on efficiency **Top Ten** Cluster Result Viña del Mar Concón Cordoba_ Santiago Vitacura Lac Candac Providencia Lo Barnechea Lo Barnecnea Argentina Providencia Bahнa Blanca Vitacura Valdivia San Carlos de Bariloche Temuco Osorno Castro Easter Island (Isla de Pascua) Atlantic Ocea **Puerto Varas** Commodoro Rivadavia **Punta Arenas**

Bolivia

CASE 2

Forecasting Performance Measures for Traffic Safety using Deterministic and Stochastic Models

By

Alexander Paz, Ph.D., P.E.; Hanns de la Fuente-Mella, Ing., Dr. & Naveen Veeramisti, Std. Transportation Research Center

University of Nevada, Las Vegas

United States of America

Introduction

Moving Ahead Progress in 21st Century (Map-21) https://www.fhwa.dot.gov/map21/

- Performance based Highway Safety is one of the 10 performance provisions
- Federal Highway Administration is seeking criteria to assess traffic safety regarding
 - the number of fatalities
 - the number of serious injuries
 - Fatalities per Vehicle Miles Traveled (VMT)
 - Serious injuries per VMT
- State Department of Transportation (DOTs) and Metropolitan Organizations are required to use these four measures to conduct federal-aid highway programs and assess performance

Background

Quality data

- Model Minimum uniform Crash Criteria Guidelines
- DOTs have their own crash database. For ex: NDOT has "Nevada Citation and Accident Tracking System" database
- For many DOTs, the development of forecasting methods is in early stage of research
- Many traffic safety analysts at DOTs use Aspirational approaches such as zero-fatality goals or 5-Year Rolling Average models
- Many DOTs set targets using the aspirational approach rather than modelbased approach

Problem Statement

The Problem:

What methodology to use, by state DOTs, for the forecasting of safety performance measures so as to set targets for the reduction of fatalities and serious injuries and reach MAP-21 policy goals?

Methodology

- Four independent and univariate time-series of crash datasets
 - Number of fatalities aggregated monthly (1994 2012)
 - Number of serious injuries aggregated monthly (1994 2012)
 - Fatalities/100 Million VMT aggregated annually (1995-2013)
 - Serious injuries/100 Million VMT aggregated annually (1995-2013)
- Monthly data for statewide VMT was unavailable. Hence seasonal data were not used for the last two performance measures
- Deterministic and Stochastic Models were tested to determine the best estimates
- Results were compared using root-mean-square error (RMSE) and mean absolute percentage error (MAPE)

Time Series – Number of Serious Injuries

Time Series – Fatalities/100 Million VMT

Time Series – Fatalities/100 Million VMT

Deterministic Forecasting methods

Simple Exponential Smoothing:

$$Y_{t+1} = \alpha X_t + (1-\alpha)Y_t \tag{1}$$

(2)

Holt:

Brown:

Damped-trend:

$$Y_{t+1} = Y_t + T_t$$

$$Y_t = \alpha X_t + (1 - \alpha)(Y_{t-1} + T_{t-1})$$

$$T_t = \beta (Y_t - Y_{t-1}) + (1 - \beta)T_{t-1}$$

$$Y_{t+1} = Y_t + T_t$$

$$Y_t = \alpha X_t + (1 - \alpha)(Y_{t-1} * T_{t-1})$$

$$T_t = \beta (Y_t / Y_{t-1}) + (1 - \beta)T_{t-1}$$
(3)

$$Y_{t+1} = Y_t + T_t$$

$$Y_t = \alpha X_t + (1 - \alpha)(Y_{t-1} + \theta T_{t-1})$$

$$T_t = \beta (Y_t - Y_{t-1}) + (1 - \beta)\theta T_{t-1}$$
(4)

where:

 Y_{t+1} = forecasted value for time period t+1

 Y_t = forecasted level value which represents the smoothed value up to time period t

 T_t = trend estimate at time period t (slope of the trend line that we are fitting at time period t)

 X_t = observed value at time period t

 α , β = smoothing parameters (should be between 0 and 1)

 θ = damping parameter (should be between zero and 1)

Deterministic Forecasting

Winter Additive and Multiplicative Models:

$$Y_{t+1} = (Y_t + T_t) * S_t$$

$$Y_t = \alpha \frac{X_t}{S_{t-c}} + (1 - \alpha)(Y_{t-1} + T_{t-1})$$

$$T_t = \beta (Y_t - Y_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_t = \gamma \frac{X_t}{Y_t} + (1 - \gamma)S_{t-c}$$
(5)

where:

 Y_{t+1} = forecasted value for the time period t+1

 Y_t = forecasted Level value which represents the smoothed value up to time period t

 T_t = trend estimate at time period t (slope of the trend line that we are fitting at time period t)

 X_t = observed value \mathfrak{F} time period t

 α , β , = smoothing parameter

S_t = seasonal parameter estimate

Results of Deterministic Forecasting

Number of Fatalities and Serious Injuries:

Deterministic Model/	Number o	f Fatalities	Number of Serious Injuries		
Performance Measures	MAPE	RMSE	MAPE	RMSE	
Simple	25.698	7.361	12.309	29.891	
Holt	25.469	7.374	12.185	29.942	
Brown	25.691	7.419	12.681	30.520	
Damped Trend	25.703	7.393	12.304	30.025	
Simple Seasonal	22.770	6.729	10.724	25.638	
Winter Additive	22.503	6.735	10.476	25.593	
Winter Multiplicative	23.126	6.890	10.644	26.138	

Fatalities/100 Million VMT and Serious Injuries/100 Million VMT

Deterministic Model/		ies/ 100 on VMT	Serious Injuries/ 100 Million VMT		
Performance Measures	MAPE	RMSE	MAPE	RMSE	
Simple	7.714	0.166	8.987	1.262	
Holt	6.888	0.158	5.916	0.916	
Brown	8.659	0.176	6.300	1.015	
Damped Trend	6.867	0.163	5.291	0.911	

Stochastic Forecasting Model

(ARIMA (p,d,q)) Model:

$$\hat{y}_{t} = \phi_{0} + \sum_{i=1}^{p} \phi_{i} y_{t-i} - \sum_{i=1}^{q} \theta_{i} \mathcal{E}_{t-i} + \mathcal{E}_{t}$$

$$y_{t} = Y_{t} \qquad \text{for d} = 0$$

$$y_{t} = Y_{t} - Y_{t-1} \qquad \text{for d} = 1$$

$$y_{t} = (Y_{t} - Y_{t-1}) - (Y_{t-1} - Y_{t-2}) \text{ for d} = 2$$

The differencing, if any, must be reversed to obtain a forecast for the original series

 Y_t = observed values

 y_t = differenced (stationarized series)

= Forecast of the station arized series

= Forecast of the original series

 Φ = autoregressive parameters

 θ = moving average parameters

 Φ_0 = model constant is assumed different from zero

 ε_t = error

p = the number of autoregressive terms

d = the number of nonseasonal differences

q = the number of moving-average terms

if
$$d = 0$$
 $\hat{Y}_t = \hat{y}_t$

if
$$d=1$$
 $\hat{Y}_t = \hat{y}_t + Y_{t-1}$

if
$$d = 2$$
 $\hat{Y}_t = (\hat{y}_t + Y_{t-1}) + (Y_{t-1} - Y_{t-2})$

Results of ARIMA model

Stochastic Model/	Fatalities/1		Serious Injuries/ 100 Million VMT		
Performance Measures	MAPE	RMSE	MAPE	RMSE	
ARIMA(0,1,0)	7.254	0.158	5.232	0.984	
ARIMA(0,1,1)	7.105	0.162	5.054	1.009	
ARIMA(0,1,2)	7.209	0.168	4.679	0.907	
ARIMA(0,1,3)	6.587	0.167	4.763	0.928	

Forecast of Fatalities and Serious Injuries

Stochastic Model/		ber of lities	Number of Serious Injuries		
Performance Measures	MAPE	RMSE	MAPE	RMSE	
SARIMA(0,0,5)(0,1,1) ₁₂	25.120	7.756	12.214	30.111	
SARIMA(0,0,4)(0,1,1) ₁₂	25.910	7.519	12.303	30.113	
SARIMA(0,0,3)(0,1,1) ₁₂	25.665	7.870	12.855	31.489	
SARIMA(0,0,2)(0,1,1) ₁₂	25.662	7.892	13.406	32.663	
SARIMA(0,0,1)(0,1,1) ₁₂	27.017	7.993	13.676	33.132	

Best Fit Model

Conclusions

- ➤ Historically, aspirational models or simple moving average were used. In many cases, this would led to grossly overestimating or underestimating traffic safety
- ➤ This research aimed to forecast traffic-safety performance measures using observed time series crash data
- ➤ Of all models, SARIMA(0,0,5)(0,1,1) model was determined to be best for use with Nevada data
- > These forecasts could be used to determine targets for future safety-improvement programs and policies
- Policy makers need to have access to robust crash-forecast models that enable them to prioritize and implement realistic and economically viable safety policies and programs

Business Intelligence - Proof of Concept

CASE 3

Gobiernos Corporativos y Asimetrías de Información. Modelamiento Econométrico del Spread (Bid-Ask) para una muestra de Empresas Chilenas

Berta SILVA PALAVECINOS, Dra.

Ricardo CAMPOS ESPINOZA, PhD.

David CADEMARTORI ROSSO, Mg.

Hanns DE LA FUENTE-MELLA, Ing. Dr.

Introducción

Crisis económicas-financieras, y los efectos que éstas producen en el valor de las inversiones

- constante preocupación por **generar transparencia** sobre la gestión administrativa-contablefinanciera en las entidades que emiten valores

Se ha puesto en duda la calidad de la información que reciben los inversionistas

- esto es aún más grave cuando éstos son Fondos de Pensiones, dado los **efectos sociales** que producen Estados Unidos de Norteamérica (ENRON), Europa (PARMALAT), Chile (**La POLAR**)

A mayor revelación de información se disminuyen las asimetrías de información en el mercado de capitales

- tal hecho aumenta la liquidez de los mercados y el valor de la empresa

La correcta asignación de recursos por el mercado exige que los inversionistas reciban información oportuna y de calidad

calidad de los Gobiernos Corporativos

Introducción

- ¿El tamaño del corredor, medido como su patrimonio, afecta al spread?
- ¿El tamaño del corredor, medido como la cartera propia disponible, afecta al spread?
- ¿El nivel de actividad del corredor, medido como la cantidad ofertada de compra y de venta, afecta al spread?

Separación entre la propiedad y el control (no existe alineamiento de los correspondientes objetivos perseguidos)

 dilema de agenciamiento, que recoge la Teoría de la Firma (Jensen and Meckling, 1976)

La asimetría de información surge porque algunos participantes del mercado tienen ventajas de información sobre otros

 respecto de las compañías emisoras de valores o de otras circunstancias que puedan afectar el valor de los mismos (Ramírez and Yáñez, 2010)

Importancia que exista transparencia y revelación de información

 las empresas que adoptan pobres prácticas en este aspecto experimentarán graves asimetrías de información (Chen et al., 2007)

Medición de las asimetría de información a través del spread del bid-ask de los precios accionarios

- un spread mayor se asocia a una mayor asimetría de información (Amihud and Mendelson, 1989; Coller and Yohn, 1997; Kim and Verrecchia, 1994; Bollen, Smith and Whaley, 2004)
- hay evidencias de que el spread es menor cuando hay más información disponible sobre el activo (Copeland and Galai, 1983; Glosten and Milgrom, 1985)
- la presencia de corredores con mejor nivel de información conduce a un spread mayor (Glosten and Milgrom, 1985)
- el mercado accionario es de carácter monopólico (Benston and Hagerman, 1974),
 debido a que tiene pocos actores y que las barreras de entrada para nuevos actores no son bajas

En un mercado plenamente activo se formaría naturalmente un precio de equilibrio entre la oferta y la demanda, cuando ello no ocurre surge el precio bid y el precio ask

Principales medidas de spread que se observan en la literatura financiera

Principales medidas de spread que se observan en la interatura manciera					
Absoluto (\$)	Relativo (%)				
(PV) - (PC)	(PV-PC)				
	$\frac{(PV+PC)}{}$, $\ln(PV) - \ln(PC)$				
	2				
En la escala original	Escala modificada				
$(PV) - (PC), \frac{(PV - PC)}{(PV + PC)}$	$\ln(PV) - \ln(PC), \frac{(\ln PV - \ln PC)}{\frac{(\ln PV + \ln PC)}{2}}$				
Relativas al mismo momento	Relativas a un momento pasado				
$(PV_t) - (PC_t), \frac{(PV_t - PC_t)}{(PV_t + PC_t)}$	$\frac{1}{2} \left[\left(\frac{(PV_t - PC_t)}{(PV_t + PC_t)/2} + \frac{(PV_{t-1} - PC_{t-1})}{\left((PV_{t-1} + PC_{t-1})/2\right)} \right) \right]$				
Basadas sólo en puntas	Basadas en precio de transacción				
$(PV) - (PC), \frac{(PV - PC)}{\frac{(PV + PC)}{2}}$	$2\left[PT - \frac{(pV - pC)}{2}\right], 2\left[PT - \left(\frac{pV - pC}{2}\right) / \left(\frac{pV - pC}{2}\right)\right] *100$				

Metodología

Modelos econométricos univariantes (Aguas Andinas S.A.)

- 21.420 observaciones
- GARCH (1,1) (desviación típica como término de la ecuación del modelo)

$$Bid_Ask_Aguas_A_t = Q + 0.350061*(\mu_{t\text{-}1}{}^2 - Q_{t\text{-}1}) + 0.410890*(Bid_Ask_Aguas_A_{t\text{-}1} - Q_{t$$

 $Bid_Ask_Aguas_A_t = (A-B)/((A+B)/2)$

$$Q = 0.001205 + \ 0.997144 * \ (Q_{t\text{-}1} \text{ - } 0.001205) + 0.044185 * \ (\ \mu_{t\text{-}1}^2 \ - Bid_Ask_Aguas_A_{t\text{-}1})$$

(diferencia relativa sobre su media)

Test hipótesis distribución Extreme-Max residuos Aguas Andinas S.A.

Method	Value	Adj. Value	Probability
Cramer-von Mises (W2)	274.6647	275.0400	< 0.01
Watson (U2)	269.3139	269.6819	< 0.01
Anderson-Darling (A2)	1444.409	1446.383	< 0.01

Estimación de los residuos para la serie Bid-Ask de Aguas Andinas S.A.

Pronóstico estático para la serie Bid-Ask de Aguas Andinas S.A.

Root Mean Squared Error Mean Absolute Error Mean Abs. Percent Error Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion

0.036196 0.436004 0.032659 0.371566

A B MEDIOF ---- ± 2 S.E.

Metodología

Modelos econométricos univariantes (GASCO)

- 9.320 observaciones
- ARCH (2) (desviación típica como término de la ecuación del modelo)

GARCH =
$$5.56\,E+12 + 0.202423*\,\mu_{t-1}^2 + 0.06652*\,\mu_{t-2}^2$$

 $Bid_Ask_Gasco_t = (A-B)$

(diferencia directa entre ask y bid)

Test hipótesis distribución Logistic residuos Gasco

Method	Value	Adj. Value	Probability	
Cramer-von Mises (W2)	31.78816	31.79156	< 0.005	
Watson (U2)	31.78816	31.79156	< 0.005	
Anderson-Darling (A2)	232.3372	232.3434	< 0.005	

Pronóstico estático para la serie Bid-Ask de Gasco

Root Mean Squared Error
Mean Absolute Error
Mean Abs. Percent Error
Theil Inequality Coefficient
Bias Proportion
Variance Proportion
Covariance Proportion
1464059.
851996.4
237.6470
0.437324
0.142101
0.398694
0.459205

Estimación de los residuos para la serie Bid-Ask de Gasco

___ B_AF ----- ± 2 S.E.

Metodología

Modelos econométricos multivariantes (Aguas Andinas S.A.)

Dependent Variable: A_B_MEDIO

Mariabla	O #5 - : t	Ctd F	1.01-1:-1:-	Db		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	DOL	
D_BCI_COM	0.005240	0.001449	3.614753	0.0003	BCI	
D_CELFIN_COM	0.003559	0.000839	4.243625	0.0000	CELFIN	
D_CORPBANCA_COM					CORPBANCA	
D_MERRILL_VEN	2 2 4 4 2 5 2				MERRILL LYNCH	
D_PENTA_VEN	-0.014352	0.001630	-8.804615	0.0000	-	
D_VALORESSEC_VEN	-0.007451	0.001911	-3.898063	0.0001	PENTA	
D_YRARRAZ_COM	0.114172	0.001210	94.39418	0.0000	VALORES SECURITY	
TAMANO_COM	111112163	111111111111111111111111111111111111111	3 1 3 1 7 7 8	1111117		
TAMANO_VEN INVENTARIO_COM					TAMANOZRATRIMONO)	
INVENTARIO_COM	-0.002979	0.000786	-11.69538	0.0000	TAMANO (CARTERA PROPIA)	
C C	0.028105	0.000700	46.09495	0.0000		
AR(1)	0.617367	0.005381	114.7354	0.0000		
AIX(1)	0.017307	0.005501	114.7554	0.0000		
R-squared	0.559161	Mean dependent var		0.030460	D_Corredor _{i_} Ven = Variable dicotómica (1: Corredor Venta i en el periodo t, 0: Otro Corredor Venta i en el periodo t).	
Adjusted R-squared	0.558913	S.D. depende		0.041999	Confedor Venta i en er penodo t).	
S.E. of regression	0.027893	Akaike info cri	Akaike info criterion -4.32		D_Corredor _{i_} Com = Variable dicotómica (1: Corredor Compra i en el periodo t, 0: Otro	
Sum squared resid	16.65487	Schwarz criter	ion	-4.315402	Corredor Compra i en el periodo t).	
Log likelihood	46280.61	Hannan-Quinr	n criter.	-4.318662	D_Tamaño_Com = Variable dicotómica (1: Patrimonio Grande Corredor Compra en el	
F-statistic	2262.614	Durbin-Watso	nstat	2.220700	periodo t, 0: Otro Patrimonio Corredor Compra en el periodo t).	
Prob(F-statistic)	0.000000					
					D_Tamaño_Ven = Variable dicotómica (1: Patrimonio Grande Corredor Venta en el	
Inverted AR Roots	.62				periodo t, 0: Otro Patrimonio Corredor Venta en el periodo t).	
					D_Inventario_Com = Variable dicotómica (1: Inventario Cartera de Acciones Propia "Grande" Corredor Compra en el periodo t, 0: Otro Inventario Cartera de Acciones	

Propia Corredor Compra en el periodo t).

D_Inventario_Ven = Variable dicotómica (1: Inventario Cartera de Acciones Propia "Grande"

Propia Corredor Venta en el periodo t).

Corredor Venta en el periodo t, 0: Otro Inventario Cartera de Acciones

Metodología Modelos econométricos multivariantes (GASCO)

Dependent Variable: B_A

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
CANTIDAD_COM	8.528114	2.035679	4.189321	0.0000		BCI
CANTIDAD_VEN	-1.2806					ÇĂNŢĮDAD OFERTADA COMPRA
D_BANCHILE_COM D_BCI_VEN	39861 -649869.1	85147.42	-7.632281	0.0000		
D_CELFIN_COM	352190.4	51876.31	6.789042	0.0000		EANTIDADIOFERTADA VENTA
D_CONS_COM	642407.6	74385.36	8.636210	0.0000		
D_CORP_COM	38684					CORPBANCA
D_EURO_COM	34848	54540.74	7 44 47 40	0.0000		EUROAMÉRICA
D_LA_COM D_PENTA_COM	366549.5 437439.9	51519.71 106976.4	7.114743 4.089124	0.0000		
D_SANT_COM	219975.4	97582.70	2.254245	0.0000		LARRAÍN VIAL
D_SEC_COM	2175257	237838.5	9.145938	0.0000		DENTA.
TAMANO_COM	66262					TAMAÑO (PATRIMONIO)
TAMANO_VEN	-23900					TAMANO (PATRIMONIO) SANTANDER INVESTMENT
INVENTARIO_VEN	-309395.0	44329.53	-6.979435	0.0000		TAMANO (CARTERA PROPIA)
C AR(1)	1285334. 0.588096	46302.93 0.008399	27.75923 70.02102	0.0000		VALURES SECURITY
R-squared	0.371513	Mean depend		1446993.	Cantidad_Com	= Cantidad ofertada de compra de las acciones de Gasco en el periodo t
Adjusted R-squared	0.370432	S.D. depender		1648726.	Cantidad Van	- Contide de forte de de vente de les essience de Conse en el novie de t
S.E. of regression	1308187.	Akaike info cri Schwarz criter		31.00800	Cantidad_Ven	= Cantidad ofertada de venta de las acciones de Gasco en el periodo t.
Sum squared resid Log likelihood	1.59E+16 -144464.8	Hannan-Quinr		31.02103 31.01243	D Corredori Ven	= Variable dicotómica (1: Corredor Venta i en el periodo t, 0:
F-statistic	343.6644	Durbin-Watso		2.202063		Corredor Venta i en el periodo t).
Prob(F-statistic)	0.000000					1
					D_Corredori_Com	= Variable dicotómica (1: Corredor Compra i en el periodo t, 0: Otro
Inverted AR Roots	.59					Corredor Compra i en el periodo t).
					D_Tamaño_Com	= Variable dicotómica (1: Patrimonio Grande Corredor Compra en el
						periodo t, 0: Otro Patrimonio Corredor Compra en el periodo t).
					D_Tamaño_Ven	= Variable dicotómica (1: Patrimonio Grande Corredor Venta en el

t.

periodo t, 0: Otro Patrimonio Corredor Venta en el periodo t).

Corredor Venta en el periodo t, 0: Otro Inventario Cartera de Acciones

D_Inventario_Ven = Variable dicotómica (1: Inventario Cartera de Acciones Propia "Grande"

Propia Corredor Venta en el periodo t).

Otro

Resultados y Conclusiones

Respecto a la explicación de la varianza del spread

- la contribución individual media de las variables, inventario y patrimonio del corredor es mayor que la contribución que hace la variable cantidad de acciones para explicar el comportamiento del spread
- la elección del inversionista por el tipo de intermediario no es menor. Mientras mayor es el tamaño del corredor, mayor es la influencia en el spread
- el tamaño de los corredores y la magnitud del inventario en acciones les permiten mantener carteras más diversificadas, y por lo tanto, estos corredores poseen más alternativas para ofrecer en la compra y venta de acciones, disminuyendo el spread de sus operaciones

Resultados y Conclusiones

Limitaciones y Futuras Investigaciones

- otras empresas del mercado chileno
- otros sectores industriales
- medir de diferentes formas spread
- nuevos indicadores que permitan medir la revelación de la calidad de información (Haat et al., 2006, Botosan, 1997)

Seminario Doctorado en Ingeniería Industrial "Econometric Modeling and Solving Social Problems"

