VIRTUAL MENDERY Project Exam Help

https://tutorcs.com

Lecturer: Hui Annie Guo WeChat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Recall: Overview of Memory Hierarchy

- registers ↔ memory
 - by compiler/programmer

Processor Control **Tertiary** Secondary Storage Storage Removable (Disk) Disk) Second Main Assignment Projectate 3 Level Memory (DRAM)

cache ↔ memory

• by the hardware https://tutorcs.com

WeChat: cstutorcs

- memory ↔ disks
 - by the hardware and operating system (virtual memory)
 - by the programmer

Lecture overview

- Topics
 - A glance of virtual memory
 - A hardwatesigntmicnvillwoject Exam Help
 - Page table
 - TLB

https://tutorcs.com

WeChat: cstutorcs

- Suggested reading
 - H&P Chapter 5.7
 - https://en.wikipedia.org/wiki/Virtual_memory

Virtual memory

- A memory management technique
 - Use the main memory and disk to create an illusion of very large memory to the user.
- · Use main memory as a cache tor the secondary (disk) storage com
 - Managed mainly by the operating system (OS) WeChat: cstutores

Virtual memory (cont.)

- Programs have separate virtual memory space
- · A processisian programi what visibling executed
- Processes share the main memory
 - Each gets a private address space, holding its code and data

 WeChat: cstutorcs
 - They are protected from each other by OS

Virtual memory (cont.)

- Page
 - A virtual block
- Page hit Assignment Project Exam Help
 - Data accessed are in the main memory
- Page fault https://tutorcs.com
 - Data accessed/aclmot inthermain memory

Virtual memory (cont.)

- The basic tasks of using virtual memory
 - Translation between virtual address (VA) and physical address (PA)
 - · Access control of physical memory space
- The control of the control of the control of the carried out in a component, called memory well at cstutores management unit (MMU)
 - · VM translation "miss" is effectively a page fault

Four design issues

- Where to place a page?
 - Fully associative or highly associative
- How to find a page?
 Assignment Project Exam Help

 Address translation
- Which page should be replaced on a page fault?

 WeChat: cstutores
 - Sophisticated (LRU + "working set")
- What happens when you want to write a page back?
 - Always write-back and write allocate
 - Disk writes take millions of clock cycles

Memory access with virtual address

- Given a virtual address, the address translation generates two possible results
 - PA
 Page hit Assignment Project Exam Help
 - no PA https://tutorcs.com
- Page fault WeChat: cstufores fault handler **Processor** Ø **Secondary** Addr. Main Memory **Translation** Memory **VA** PA OS performs this transfer

Address translation

- Virtual address
 - Virtual page number + Page offset
- Physical address
 - · Physical page number at Page; effset xam Help
- Translation is based on page table

https://tutorcs.com

Page table (PT)

- Usually is implemented in the physical memory.
- Stores page placement information
 - An array of page table entries (PTE), indexed by virtual page number (VPN)

 https://tutorcs.com

 Page table register (PTR) points to the page table
 - location in the memory cstutores
- If a page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If a page is not present
 - PTE refers to the location in the swap space on disk

Translation using page table

In-class exercise (1)

- Assume a program is executed in a virtual memory space with the page size of 8KB without page fault. The PTR for the execution is set to 0x00110. The figure to the right shows the contents of a set of main memory locations.
 - (a) What is the Page offset field size in the virtual address rat: cstutorcs

main memory				
ADDR	CONTENTS			
0x00000	0x0000			
0x00100	0x0010			
0x00110	0x0022			
0x00120	0x0045			
0x00130	0x0078			
0x00145	0x0010			
0x10000	0x2333			
0x10020	0x4444			
0x22000	0x1111			
0x22020	0x2222			
0x45000	0x5555			
0x45020	0x6676			

In-class exercise (1)

- Assume a program is executed in a virtual memory space with the page size of 8KB without page fault. The PTR for the execution is set to 0x00110. Figure to the right shows the contents of a set of main memory locations.
 - (b) Does a PA exist for the following virtual addres Chat: cstutorcs

 0x010020

	main memory					
Ţ	ADDR	CONTENTS				
	0x00000	0x0000				
	0x00100	0x0010				
	0x00110	0x0022				
	0x00120	0x0045				
	0x00130	0x0078				
	0x00145	0x0010				
	0x10000	0x2333				
	0x10020	0×4444				
	0x22000	0x1111				
	0x22020	0x2222				
	0x45000	0x5555				
	0x45020	0x6676				

In-class exercise (1)

- Assume a program is executed in a virtual memory space with the page size of 8KB without page fault. The PTR for the execution is set to 0x00110. Figure to the right shows the contents of a set of main memory locations.
 - (c) What value will be returned to processor if it equests to the following address?

0x010020

	main memory					
ŗ	ADDR	CONTENTS				
	0x00000	0x0000				
	0x00100	0x0010				
	0x00110	0x0022				
	0x00120	0x0045				
	0x00130	0x0078				
	0x00145	0x0010				
	0x10000	0x2333				
	0x10020	0×4444				
	0x22000	0x1111				
	0x22020	0x2222				
	0x45000	0x5555				
	0x45020	0x6676				

In-class exercise (2)

• For the virtual memory space, physical memory size and the page size given in exercise (1), what is the size of a page table?

Assignment Project Exam Help

https://tutorcs.com

What if the villuahaddress increased to 32 bits?

Multiple level page table*

- Only store a fraction of the table in the memory
 - Dividing the page table into a set of sub-tables Ssignment Project Exam Help
 - Some sub-tables stored in the memory, and
 - Other sub-tables paged out to the disk

Translation with multi-level page table*

Fast translation using TLB

- Address translation incurs extra memory references
 - access PT

 Assignment Project Exam Help

 access the actual memory
- But access to thange that the mas good locality
 - Leading to the Laplace ignitores

TLB: Translation look-aside buffer

- Is a special cache for page table
- Implemented on the processor chip
- · Offers a fastigation Patranslation lelp
- Just like any other cache, TLB can be https://tutorcs.com
 organized as
 - fully associative, Chat: cstutorcs
 - · set associative, or
 - direct mapped

TLB: Translation look-aside buffer (cont.)

- TLBs are usually small, typically not more than 128~256 entries
 - This permits fully associative lookup on high-end machines. Assignment Project Exam Help
 - Most mid-range machines yes set associative organizations.

WeChat: cstutorcs

CPU datapath with TLB

- The delay of TLB lookup is less than one clock cycle
 - E.g. 1/2 clock cycles, as compared to many clock cycles of the page-table based translation

Further improvement

- Reduce the impact of address translation on performance
 - Use the slack time in a pipeline stage execution Assignment Project Exam Help
 Overlap TLB access with another processor
 - Overlap TLB access with another processor operation https://tutorcs.com

WeChat: cstutorcs

MIPS R3000 Pipeline

Inst Fetch	Dcd/ Reg	ALU / V.A	Memory	Write Reg
TLB	RF	Operation		WB
I-Cache		V.A. TLB	D-Cache	

Overlap I-cache with TLB access

- High order bits of VA are used to look up in TLB
- Low order bits of VA are used as index to search in cache
- · Both can be performed in parallel
- · See next slide Vitorhdemonstration

Overlap I-cache with TLB access (cont.)

IF cache hit AND (cache tag = PA) THEN deliver data to CPU
ELSE IF cache miss AND TLB hit THEN
access memory with the PA from the TLB
ELSE do standard VA translation

Summary of memory hierarchy

- Common principles apply at all levels of the memory hierarchy
- Based on the notion of caching
 Assignment Project Exam Help
 At each level in the hierarchy, four issues
- At each level in the hierarchy, four issues should be addites settors.com
 - Block placement Chat: cstutores
 - Block identification
 - Replacement on a miss
 - Write policy