# Preparazione per prova intercorso

Tutorato 2020/2021

Considerare l'automa A definito dal diagramma di stato in figura. Determinare in dettaglio tutti gli elementi della quintupla che lo definisce. A accetta o meno le stringhe 1101, 1021,  $\epsilon$ ?

Giustificare la risposta. Risposte non giustificate non sono valutate.



Determinare in dettaglio tutti gli elementi della quintupla che lo definisce.



$$(Q, \Sigma, \delta, q0, F)$$
  
 $Q = \{A, B, C, D, E\}$   
 $\Sigma = \{0, 1, 2\}$   
 $q0 = A$   
 $F = \{A, E\}$ 

### δ:

|   | 0     | 1      | 2   | ε   |
|---|-------|--------|-----|-----|
| A | {A}   | {B, E} | {A} | Ø   |
| В | {B}   | {B}    | Ø   | {C} |
| С | {C,D} | {E}    | Ø   | Ø   |
| D | Ø     | {D}    | {E} | Ø   |
| E | {E}   | Ø      | {B} | Ø   |

Considerare l'automa A definito dal diagramma di stato in figura. Determinare in dettaglio tutti gli elementi della quintupla che lo definisce. A accetta o meno le stringhe 1101, 1021,  $\epsilon$ ?

Giustificare la risposta. Risposte non giustificate non sono valutate.



W **=** 8 ∈ L

Α



|   | 0     | 1      | 2   | ε   |
|---|-------|--------|-----|-----|
| A | {A}   | {B, E} | {A} | Ø   |
| В | {B}   | {B}    | Ø   | {C} |
| С | {C,D} | {E}    | Ø   | Ø   |
| D | Ø     | {D}    | {E} | Ø   |
| E | {E}   | Ø      | {B} | Ø   |

Considerare l'automa A definito dal diagramma di stato in figura. Determinare in dettaglio tutti gli elementi della quintupla che lo definisce. A accetta o meno le stringhe 1101, 1021,  $\epsilon$ ?

Giustificare la risposta. Risposte non giustificate non sono valutate.







|   | 0     | 1      | 2   | ε   |
|---|-------|--------|-----|-----|
| A | {A}   | {B, E} | {A} | Ø   |
| В | {B}   | {B}    | Ø   | {C} |
| С | {C,D} | {E}    | Ø   | Ø   |
| D | Ø     | {D}    | {E} | Ø   |
| E | {E}   | Ø      | {B} | Ø   |





|   | 0     | 1      | 2   | ε   |
|---|-------|--------|-----|-----|
| A | {A}   | {B, E} | {A} | Ø   |
| В | {B}   | {B}    | Ø   | {C} |
| С | {C,D} | {E}    | Ø   | Ø   |
| D | Ø     | {D}    | {E} | Ø   |
| E | {E}   | Ø      | {B} | Ø   |

w = <mark>1021</mark> ∈ L





|   | 0     | 1      | 2   | ε   |
|---|-------|--------|-----|-----|
| A | {A}   | {B, E} | {A} | Ø   |
| В | {B}   | {B}    | Ø   | {C} |
| С | {C,D} | {E}    | Ø   | Ø   |
| D | Ø     | {D}    | {E} | Ø   |
| E | {E}   | Ø      | {B} | Ø   |

Determinare la 5-tupla che lo descrive (specificandone ognuna delle componenti).

Per ognuna delle seguenti stringhe determinare se essa appartiene o meno a L(N): bb, abaa, abb



Determinare la 5-tupla che lo descrive (specificandone ognuna delle componenti).

Per ognuna delle seguenti stringhe determinare se essa appartiene o meno a L(N): bb, abaa, abb



$$(Q, \Sigma, \delta, q0, F)$$
  
 $Q = \{q0, q1, q2, q3, q4\}$   
 $\Sigma = \{a,b\}$   
 $F = \{q2, q4\}$ 

e  $\delta$  è definita come segue:

|            | а        | b        | ε |
|------------|----------|----------|---|
| q0         | {q1}     | {q3}     | Ø |
| q1         | {q1, q2} | {q1}     | Ø |
| q2         | Ø        | Ø        | Ø |
| <b>q</b> 3 | {q3}     | {q3, q4} | Ø |
| q4         | Ø        | Ø        | Ø |

 $w = bb \in L$ 





|    | а        | b        | 3 |
|----|----------|----------|---|
| q0 | {q1}     | {q3}     | Ø |
| q1 | {q1, q2} | {q1}     | Ø |
| q2 | Ø        | Ø        | Ø |
| q3 | {q3}     | {q3, q4} | Ø |
| q4 | Ø        | Ø        | Ø |





|    | а        | b        | ε |
|----|----------|----------|---|
| q0 | {q1}     | {q3}     | Ø |
| q1 | {q1, q2} | {q1}     | Ø |
| q2 | Ø        | Ø        | Ø |
| q3 | {q3}     | {q3, q4} | Ø |
| q4 | Ø        | Ø        | Ø |

w = <mark>ab</mark>b ∉ ∟ q0 а b b



|    | а        | b        | ε |
|----|----------|----------|---|
| q0 | {q1}     | {q3}     | Ø |
| q1 | {q1, q2} | {q1}     | Ø |
| q2 | Ø        | Ø        | Ø |
| q3 | {q3}     | {q3, q4} | Ø |
| q4 | Ø        | Ø        | Ø |

## Disegnare l'automa avente

Q = 
$$\{q0, q1, q2, q3\}$$
,  
 $\Sigma = \{a,b\}$ ,  
stato iniziale q0,  
F =  $\{q3\}$   
e funzione di transizione

|    | а    | b        | 3    |
|----|------|----------|------|
| q0 | {q1} | {q0, q2} | Ø    |
| q1 | {q2} | {q1}     | {q1} |
| q2 | {q1} | {q2, q3} | {q2} |
| q3 | {q3} | Ø        | {q3} |

Accetta o meno le stringhe aaa, bb, bbbb?

## Disegnare l'automa avente

Q =  $\{q0, q1, q2, q3\}$ ,  $\Sigma = \{a,b\}$ , stato iniziale q0, F =  $\{q3\}$ e funzione di transizione

|    | а    | b        | 3    |
|----|------|----------|------|
| q0 | {q1} | {q0, q2} | Ø    |
| q1 | {q2} | {q1}     | {q1} |
| q2 | {q1} | {q2, q3} | {q2} |
| q3 | {q3} | Ø        | {q3} |



Accetta o meno le stringhe aaa, bb, bbbb?

w = <mark>aa</mark>a ∉ ∟





|    | а    | b        | 3    |
|----|------|----------|------|
| q0 | {q1} | {q0, q2} | Ø    |
| q1 | {q2} | {q1}     | {q1} |
| q2 | {q1} | {q2, q3} | {q2} |
| q3 | {q3} | Ø        | {q3} |

 $w = bb \in L$ q0 b b q0 q2 b b 3 q0 b/ b 3 **q2** q3 q2

3

q3

3

q2



# $w = bbbb \in L$

|    | а    | b        | 3    |
|----|------|----------|------|
| q0 | {q1} | {q0, q2} | Ø    |
| q1 | {q2} | {q1}     | {q1} |
| q2 | {q1} | {q2, q3} | {q2} |
| q3 | {q3} | Ø        | {q3} |





Definire un automa deterministico A con alfabeto  $\Sigma = \{0, 1\}$  il cui linguaggio sia

 $L(A) = \{w \in \Sigma^* \mid w \text{ contiene la sottostringa 000 ma non la sottostringa 111}\}$ 

Vedere L(A) come intersezione di L' e L" Creare gli automi per le due condizioni ed utilizzare la costruzione per l'intersezione  $L(A) = \{w \in \Sigma^* \mid w \text{ contiene la sottostringa 000 ma non la sottostringa 111}\}$ 

L' =  $\{w \in \Sigma^* \mid w \text{ contiene la sottostringa 000}\}$ 

 $\overline{L}$ " = {w  $\in \Sigma^*$  | w **non** contiene la sottostringa 111}

L" = { $w \in \Sigma^*$  |  $w \in \Sigma^*$  |

L' = { $w \in \Sigma^* \mid w \text{ contiene la sottostringa 000}}$ 

$$A' = (Q', \Sigma, \delta', q0', F')$$

dove  $\delta$ ' è



Q' = 
$$\{q0', q1', q2', q3'\}$$
  
\(\Sigma = \{0,1\}\)

$$\Sigma = \{0, 1\}$$
  
F' = \{q3'\}

L" =  $\{w \in \Sigma^* \mid w \text{ contiene la sottostringa 111}\}$ 

$$A'' = (Q'', \Sigma, \delta'', q0'', F'')$$

dove  $\delta$ " è

 $\Sigma = \{0,1\}$ F" = \{q3\"\}



 $T' = \{ w \in \Sigma^* \mid w \text{ non contiene la sottostringa 111} \}$ 

$$\overline{A''} = (Q'', \Sigma, \overline{\delta''}, q0'', \overline{F''})$$

dove  $\delta$ " è



Q" = {q0", q1", q2", q3"}  
$$\Sigma = \{0,1\}$$

Siano A' = (Q', 
$$\Sigma$$
,  $\delta$ ', q0', F') e L(A') = L'  
e A" = (Q",  $\Sigma$ ,  $\delta$ ", q0", F") e L(A") = L",  
definiamo A = (Q,  $\Sigma$ ,  $\delta$ , q0, F)  
$$Q = Q' \times Q''$$

$$\begin{array}{l} \delta: Q \ x \ \Sigma \to Q \ dove \\ \delta\ ((p1,\,p2),\,a) = (\delta'(p1,\,a),\,\delta''(p2,\,a)) \ con \ p1 = Q', \ p2 \ \in \ Q'', \ a \ \in \ \Sigma \end{array}$$

t.c. 
$$L(A) = L' \cap L''$$

q0 = (q0', qo'')

 $F = F' \times F''$ 

L' = {
$$w \in \Sigma^*$$
 |  $w$  contiene la sottostringa 000}

$$A' = (Q', \Sigma, \delta', q0', F')$$

dove δ' è



Q' = {q0', q1', q2', q3'}  

$$\Sigma = \{0,1\}$$
  
F' = {q3'}



$$\overline{A}$$
" = (Q",  $\Sigma$ ,  $\overline{\delta}$ ", q0",  $\overline{F}$ ")

Q" = {q0", q1", q2", q3"}  
$$\Sigma = \{0,1\}$$

dove  $\delta$ " è



- a) Dati i linguaggi L' e L" definirne la concatenazione L = L'L".
- b)Illustrare la dimostrazione che la classe dei linguaggi regolari é chiusa per l'operazione di concatenazione utilizzando come esempio guida l'automa C che riconosce la concatenazione dei linguaggi dei due automi A e B descritti sotto. Non sono accettate né dimostrazioni generiche, né il diagramma di C senza giustificazioni.

A) 
$$Q = \{q_0, q_1, q_2\}$$
, stato iniziale  $q_0, F = \{q_0, q_1\}$ ,  $\Sigma = \{0, 1, 2\}$ , e funzione di transizione 
$$\begin{vmatrix} 0 & 1 & 2 \\ q_0 & q_0 & q_1 & q_0 \\ q_1 & q_1 & q_2 & q_2 \\ q_2 & q_0 & q_2 & q_1 \end{vmatrix}$$

$$B) Q' = \{r_0, r_1, r_2, r_3\} \text{ stato iniziale } r_0, F' = \{r_0, r_3\}, \Sigma = \{0, 1, 2\}, \text{ e funzione di transizione } \begin{cases} 0 & 1 & 2 \\ r_0 & r_1 & r_2 & r_3 \\ r_1 & r_2 & r_0 & r_1 \\ r_3 & r_1 & r_0 & r_0 \end{cases}$$

Si deve fornire e giustificare la quintupla che definisce l'automa C.

1. A. Dati, luguaggi L'e L" defunce l'op de concernance L'L" = fxy | x E L', y E L" } Concatenace i due luguaggi (vedi traccia 1) A = (Q, E, S, Qo, F) B = (Q', E, S', ro, F') C = (Q", E, 8", 90, F') · Q' = QUQ' . 8": Q" x EE → P(Q") HQEQ", HQE EE S(q,a) se q E Q/F 5°, (δ(q,a) se q € F, a + ε sq.a) U/rol. se q € F, a = E → Norva usata. 5'(q,a) se q ∈ Q' di transizione estesa,



N = (Q,  $\Sigma$ ,  $\delta$ , q0, F) Q = {q0, q1, q2, q3}, F = {q3},  $\Sigma$  = {0,1} e funzione di transizione

|    | 0        | 1       | ε    |
|----|----------|---------|------|
| q0 | {q0, q2} | {q1}    | Ø    |
| q1 | {q1}     | {q2}    | Ø    |
| q2 | {q1}     | {q2,q3} | {q3} |
| q3 | {q3}     | Ø       | {q2} |

$$D = (Q', \Sigma, \delta', q0', F')$$

Dato NFA N =  $(Q, \Sigma, \delta, q0, F)$ ,

il DFA che riconosce lo stesso linguaggio

è D = (Q', 
$$\Sigma$$
,  $\delta$ ', q0', F')

dove Q' =  $\mathbf{P}(Q)$  $\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)) \text{ con } r \in R\} \text{ e } R \in Q'$  $q0' = E(\{q0\})$  $F' = \{R \in Q' \mid R \text{ contiene uno stato accettate di N}\}$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5, q0, F)<br>, q2, q3},<br>= {0,1}<br>di transizio | one     |            | {q0}<br>{q1}<br>{q2} | {q0, q2, q3}<br>{q1}<br>{q1} | {q1}<br>{q2, q3<br>{q2,q3 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|------------|----------------------|------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                  | 1       | ε          | {q3}                 | {q3,q2}                      | Ø                         |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (a0 a2)                                            | (a1)    | a          | {q0,q1}              | Q                            | {q1,q2                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | {q0, q2}                                           | {q1}    | Ø          | {q0,q2}              | Q                            | {q1, q2                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {q1}                                               | {q2}    | Ø          | {q0,q3}              | {q0,q2,q3}                   | {q1}                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {q1}                                               | {q2,q3} | {q3}       | {q1,q2}              | {q1}                         | {q2,q3                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {q3}                                               | Ø       | {q2}       | {q1,q3}              | {q1,q2,q3}                   | {q2,q3                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |         |            | {q2,q3}              | {q1,q2,q3}                   | {q2,q3                    |
| $O = (Q', \Sigma, \delta', q0', F')$<br>$Q' = \{\{q0\}, \{q1\}, \{q2\}, \{q3\}, \{q0,q1\}, \{q0,q2\}, \{q0,q3\}, \{q1,q2\}, \{q1,q3\}, \{q2,q3\}, \{q0,q1,q2\}, \{q0,q2,q3\}, \{q0,q1,q3\}, \{q1,q2,q3\}, \{q0,q1,q2,q3\}\},$ Itato iniziale $\{q0\}$ , $F = \{\{q3\}, \{q0,q3\}, \{q1,q3\}, \{q2,q3\}, \{q0,q2,q3\}, \{q1,q2,q3\}, \{q0,q1,q2,q3\}\},$ In the function of the property of t |                                                    |         | {q0,q1,q2} | Q                    | {q1,q2                       |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |         | {q0,q2,q3} | Q                    | {q1,q2                       |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |         | {q0,q1,q3} | Q                    | {q1,q2                       |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |         | {q1,q2,q3} | {q1,q2,q3}           | {q2,q3                       |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |         | Q          | Q                    | {q1,q2,                      |                           |

# **Pumping Lemma**

 $\exists$  n  $\in$  N detta costante di Pumping t.c.

=> L è regolare

$$\forall$$
 w  $\in$  L,  $|w| >= n$   
 $\exists$  xyz = w con x, y, z  $\in$   $\Sigma^*$ 

 $\exists xyz = w conx, y, z \subseteq z$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E} e$ 

$$\forall k \ge 0 xy^kz \in L$$

# **Pumping Lemma**

 $\forall$  n  $\in$  N detta costante di Pumping t.c.

<= L NON è regolare

 $\exists w \in L, |w| >= n$ 

 $\forall xyz = w con x, y, z \in \Sigma^*$ 

 $con |xy| \le n$ 

 $y \neq \varepsilon e$ 

 $\exists k \ge 0 xy^kz \notin L$ 

Enunciare il Pumping Lemma.

Sia  $L = \{w \mid w = xx^R, x \in \{0,1\}^*\}$ . Mostrare che L non appartiene alla classe dei linguaggi regolari. Applicare il Pumping Lemma. (Nota:  $x^R$  rappresenta il reverse della stringa x)

$$\exists w \in L, |w| >= n$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

 $w = a^n bba^n$ 

$$\exists w \in L, |w| >= n$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

$$\exists w \in L, |w| >= n$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

$$w = a^n bba^n$$

$$x = a^{i}$$
  
 $y = a^{j}$   
 $z = a^{n-i-j}bba^{n}$ 

$$\exists w \in L, |w| >= n$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

$$w = a^n bba^n$$

$$x = a^{i}$$
  
 $y = a^{j}$   
 $z = a^{n-i-j}bba^{n}$ 

$$i+j \le n$$
  
 $j > 0$   
 $k=0$   $xz = a^i a^{n-i-j} bba^n = a^{n-j} bba^n$ 

 $\forall$  n  $\in$  N detta costante di Pumping t.c.

$$\exists w \in L, |w| \ge n$$
  
 $\forall xvz = w con x, v, z \in \Sigma^*$ 

con 
$$|xy| \le n$$
  
 $y \ne \mathcal{E}$  e  
 $\exists k \ge 0 xy^kz \notin L$ 

$$w = a^n bba^n$$

$$x = a^{i}$$
  
 $y = a^{j}$   
 $z = a^{n-i-j} bba^{n}$ 

$$i+j \le n$$
  
 $j > 0$   
 $k=0$   $xz = a^i a^{n-i-j} bba^n = a^{n-j} bba^n$ 

 $xz \notin L$  perchè se  $xz \in L \Leftrightarrow xz = x'x''$  con  $x''=x'^R$  x' deve essere della forma  $a^{n-j}b \in x'' = ba^n$  ma  $x''=/=x'^R$  dato che n-j=/=n essendo j>0.

Dimostrate che il liuguaggio L. Eww Iw & Eaibs & non e regulares Sopponiamo per assurdo che Lsia regolare, austa Liverafica il pumping lemma Sa pla costante del pumpino. Sia w = apbbap, Iwizp Per il pumping lemma, esistono x, q, z & & tauche w=xuz=abba IXOLEO, OFTE AREO XONEEL Allora, y=a

Siak=0 la stanga xz = a bba Poiche la patola xz ha solo aus b auota w deve Piure cont e we deve imajore coub. P-E

Quende w=a

b e coutemporaneamente w = a b

Assurdo poiche p+t + p 600

Qual l'une e repolore

Usare il Pumping Lemma per dimostrare che  $L = \{ \ a^n b^m c^{m+n} \ | \ n,m > 0 \ \}$  NON è regolare.

L={ 
$$a^nb^mc^{m+n} | n,m>0$$
 }

$$\exists w \in L, |w| >= p$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le p$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

L={ 
$$a^nb^mc^{m+n} | n,m>0$$
 }

$$\forall$$
 p  $\in$  N detta costante di Pumping t.c.

$$\exists w \in L, |w| >= p$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le p$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

$$w = a^p b^p c^{2p}$$
  
 $|w| = p+p+2p = 4p >= p$ 

L={ 
$$a^nb^mc^{m+n} | n,m>0$$
 }

xz ∉ L ...

$$\exists w \in L, |w| >= p$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le p$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^k z \notin L$ 

$$w = a^{p}b^{p}c^{2p}$$

$$|w| = p+p+2p = 4p >= p$$

$$x = a^{i}$$

$$y = a^{j}$$

$$z = a^{p-i-j}b^{p}c^{2p}$$

$$i+j <= p$$

$$j > 0$$

$$k=0 \qquad xz = a^{i}a^{p-i-j}b^{p}c^{2p} = a^{p-j}b^{p}c^{2p}$$

L={ 
$$a^nb^mc^{m+n} | n,m>0$$
 }

$$\forall$$
 p  $\in$  N detta costante di Pumping t.c.

$$\exists w \in L, |w| >= p$$
  
 $\forall xyz = w con x, y, z \in \Sigma^*$ 

con 
$$|xy| \le p$$
  
 $y \ne \mathcal{E} e$   
 $\exists k \ge 0 xy^kz \notin L$ 

$$w = a^{p}b^{p}c^{2p}$$

$$|w| = p+p+2p = 4p >= p$$

$$x = a^{i}$$

$$y = a^{j}$$

$$z = a^{p-i-j}b^{p}c^{2p}$$

$$i+j \le n$$

 $xz = a^{i} a^{p-i-j} b^{p} c^{2p} = a^{p-j} b^{p} c^{2p}$ 

xz ∉ L perchè xz apparterrebbe a L ⇔ p-j+p=2p, ma ciò non è vero perchè j>0

j > 0

k=0

24 Dimostrate che il linguaggio L= la b c In,m>03 uou e regolare Suppositamo per assurdo che L sia regolare, allora L verifica il pumping Cemma Sia p la costante del pumping Sia w= approse, lw1 ≥ p Pez 11 pumping lemma, esistano x, q, z e s\* tauche w = xqz = a b c 1x4140, 4 + E, V K20 X4 ZEL Quiadi g=0t, 0 et = p Cousideramo K=O La struga xz = a b c Questo poiche il numero di occorrenze dia eb è minoze del numero di occorrenze del carattere c

20-t + 20

p-t+p # 2p

porche too

Determinare, utilizzando il metodo studiato, le espressioni regolari corrispondenti ai DFA dell'esercizio precedente

A) 
$$Q = \{q_0, q_1, q_2\}$$
, stato iniziale  $q_0, F = \{q_0, q_1\}, \Sigma = \{0, 1, 2\}$ , e funzione di transizione

|       | 0              | 1     | 2     |
|-------|----------------|-------|-------|
| $q_0$ | 90<br>91<br>90 | $q_1$ | $q_0$ |
| $q_1$ | $q_1$          | $q_2$ | $q_2$ |
| $q_2$ | $q_0$          | $q_2$ | $q_1$ |





Per agui stato diverso da qs e qa, couside damo la trepla

(qi, qrip, qi)

Eliminiamo qrip e aggiorinamo le etichette degli archi da qi aqi
in modo che il nuovo automa riconosca lo stesso luiguaggio.

• Rimoviamo qo

(s, qo, qn) 
$$s \to qo \to qr$$
  $s \to qr$ 

(s, qo, qn)  $s \to qo \to qr$   $s \to qr$ 

(q2, qo, qn)  $q_2 \to qo \to qr$   $q_2 \to qr$ 

(Q2, Q0, QA)

0(002)\*

92

Per ogui stato diverso da 95 e 91, consideramo la tupla (91, 91p, 9) Eliminiamo grip e aggiorenamo le etichette degli archi da qi agi in modo che il nuovo automa riconosca lo stesso luguaggio. Rimoviamo go 0,2 (002) 1 (s, 90, 91) 0,2 (0U2)\* (S, 90, 9A) 3 0,2 0(002)\*1 (92, 90, 91) Q2 -> Q0 -91 0(002)\* (Q2, Q0, QA) 92 (OU2) 1 92 0(002)\*1 01002









- Sintetizzare la dimostrazione che per ogni espressione regolare esiste un NFA equivalente.
- Determinare (illustrando il metodo studiato) l'espressione regolare equivalente all'automa in figura











# Da RegExpr ad automa

- 1. Data l'espressione regolare E = (01 U 100)\*, applicare le regole studiate per costruire un automa A tale che L(A) = L(E).
- 2. Fornire due stringhe in L(E) e due non in L(E)



$$E = (01 U 100)^*$$

$$\mathsf{E} = \mathsf{0} \qquad \qquad \mathsf{0}$$

$$E = 01$$

$$E = (01 U 100)^*$$



$$E = (01 \ U \ 100)^*$$





$$E = (01 U 100)^*$$





# $E = (01 U 100)^*$

2. Fornire due stringhe in L(E) e due non in L(E)

$$W = \epsilon$$
?  
 $W = 0$ ?  
 $W = 1$ ?

w = 01? w = 10 ?w = 100 ?

w = 10001? w = 1001?

w = 0101?

$$E = (01 U 100)^*$$

2. Fornire due stringhe in L(E) e due non in L(E)

$$W = 0 \notin L(E)$$
  
 $W = 1 \notin L(E)$   
 $W = 01 \subseteq L(E)$   
 $W = 10 \notin L(E)$   
 $W = 1000 \subseteq L(E)$   
 $W = 10001 \subseteq L(E)$   
 $W = 1001 \notin L(E)$   
 $W = 0101 \subseteq L(E)$   
 $W = 01100 \subseteq L(E)$ 

 $M = \varepsilon \in \Gamma(E)$ 

# Da RegExpr ad automa

- 1. Data l'espressione regolare E = ((0U1)00)\* U (0U1)\*, applicare le regole studiate per costruire un automa A tale che L(A) = L(E).
- 2. Fornire due stringhe in L(E) e due non in L(E)

$$E = ((0U1)00)^* U (0U1)^*$$

$$E = 0 \longrightarrow 0$$

$$E = 1 \longrightarrow 1$$

$$E = ((0U1)00)^* U (0U1)^*$$

$$\mathsf{E} = \mathsf{0} \qquad \qquad \mathsf{0}$$

$$E = 1 \longrightarrow 1$$



$$E = ((0U1)00)^* U (0U1)^*$$

$$\mathsf{E} = \mathsf{0} \qquad \longrightarrow \qquad \mathsf{0}$$



$$E = ((0U1)00)^* U (0U1)^*$$





# $E = ((0U1)00)^* U (0U1)^*$





$$E = ((0U1)00)^* U (0U1)^*$$



## $E = ((0U1)00)^* U (0U1)^*$



$$E = ((0U1)00)^* U (0U1)^*$$

2. Fornire due stringhe in L(E) e due non in L(E)

$$W = \varepsilon$$
?  
 $W = 0$ ?  
 $W = 1$ ?  
 $W = 01$ ?  
 $W = 10$ ?  
 $W = 100$ ?

$$E = ((0U1)00)^* U (0U1)^*$$

2. Fornire due stringhe in L(E) e due non in L(E)

$$W = \mathcal{E} \in L(E)$$

$$W = 0 \in L(E)$$

$$W = 1 \in L(E)$$

$$W = 01 \in L(E)$$

$$W = 10 \in L(E)$$

$$W = 100 \in L(E)$$

Cosa non appartiene a L(E)???

$$E = ((0U1)00)^* U (0U1)^*$$

2. Fornire due stringhe in L(E) e due non in L(E)

$$W = \mathcal{E} \in L(E)$$

$$W = 0 \in L(E)$$

$$W = 1 \in L(E)$$

$$W = 01 \in L(E)$$

$$W = 10 \in L(E)$$

$$W = 100 \in L(E)$$

Cosa non appartiene a L(E)???

Con 
$$\Sigma = \{0,1\}, L(E) = \Sigma^*$$

- (a) Fornire la definizione formale di Macchina di Turing deterministica multinastro.
- (b) Per la macchina in figura, fornire l'albero delle computazioni su input 110;



Transizioni non indicate portano in  $q_{Rej}$ .



Fornire l'albero delle computazioni su input 110.



- Fornire la definizione di Macchina di Turing M.
- 2) Sia M una Macchina di Turing con alfabeto input  $\Sigma = \{a, b\}$ . Per ognuna delle seguenti stringhe w, fornire la sequenza di configurazioni della computazione di M su input w.

(a) 
$$w = 01$$
,  $(b)w = 01101$ 



0-Stato iniziale, 3-Stato accept, 4-Stato Reject



0-Stato iniziale, 3-Stato accept, 4-Stato Reject





Fornire uno stayer M a due nastri che avendo in input una stringa binaria copia il primo carattere e lo scrive dopo l'ultimo carattere dell'input. Per esempio: sull'input vuoto, la macchina deve fermarsi nello stato accept con blank sul primo nastro (ignorare la posizione della testine al termine dalla computazione); su input 0, la macchina deve fermarsi nello stato accept con 00 sul primo nastro; su input 0110, la macchina deve fermarsi nello stato accept con 01100 sul primo nastro Fornire:

- l'implementazione (cioé il diagramma degli stati) di M giustificando il passaggio dal punto 1) al punto 2).

$$(2,2) \rightarrow (2,2)(R,S)$$

$$(4,0) \rightarrow (3,3)(R,S)$$

$$(0,0) \rightarrow (0,0)(R,S)$$

$$(0,0) \rightarrow (0,0)(S,S)$$

$$(2,2) \rightarrow (2,4)(R,S)$$

$$(2,2) \rightarrow (2,4)(R,S)$$

 $(0,2) \rightarrow (0,2) (R, S)$ 

$$(9,x) \rightarrow (9,x), (8,8)$$

$$(x,-) \rightarrow (x,x), (8,8)$$

$$(9,0) \rightarrow (9,x), (8,8)$$

$$(-,x) \rightarrow (x,x)(8,8)$$

$$(-,x) \rightarrow (-,x) \rightarrow (-,x)(8,8)$$

$$(-,x) \rightarrow (-,x)(8,8)$$

$$(-,x) \rightarrow (-,x)(8,8)$$

$$(-,x) \rightarrow (-,x)(8,8)$$