Recommender System

Spring 2024

Hongchang Gao

- 1. MAE and RMSE
 - Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

• Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Actually good
Item 237
Item 899

Recommended (predicted as good)	
Item 345	
Item 237	
Item 187	

- 2. Precision and Recall
 - Precision: a measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved
 - E.g. the proportion of recommended movies that are actually good

$$Precision = \frac{tp}{tp + fp} = \frac{|good\ movies\ recommended|}{|all\ recommendations|}$$

- Recall: a measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
 - E.g. the proportion of all good movies recommended

$$Recall = \frac{tp}{tp + fn} = \frac{|good\ movies\ recommended|}{|all\ good\ movies|}$$

- Rank position is important!
 - Relevant items are more useful when they appear earlier in the recommendation list
 - Particularly important in recommender systems as lower ranked items may be overlooked by users

Actually good	
Item 237	
Item 899	

Scenario-1: Recommended (predicted as good)
Item 237
Item 345
Item 187

Scenario-2: Recommended (predicted as good)	Scenario-3: Recommended (predicted as good)
Item 345	Item 345
Item 237	Item 187
Item 187	Item 237

- Precision@K
 - Precision for the top-k recommended items

Top-k recommendation (sorted result)

$$Precision = \frac{tp}{tp + fp} = \frac{|good\ movies\ recommended|}{|all\ recommendations|}$$

$$P@1 = 1/1 = 1$$

$$P@2 = 1/2 = 0.5$$

$$P@3 = 1/3 = 0.33$$

$$P@4 = 2/4 = 0.5$$

$$P@5 = 3/5 = 0.6$$

$$P@n = 3/n$$

- Recall@K
 - Recall for the top-k recommended items
 - Could return trivial result!

Top-k recommendation (sorted result)

$$Recall = \frac{tp}{tp + fn} = \frac{|good\ movies\ recommended|}{|all\ good\ movies|}$$

Recall@1=

Recall@2=

Recall@3=

Recall@4=

Recall@5=

Recall@6=

Recall@7=

Average Precision

AP@
$$n = \frac{1}{GTP} \sum_{k=1}^{n} \text{precision@} k \times \text{relevance@} k$$

- n the total number of items you are interested in
- GTP the total number of ground truth positives
- relevance@k: an indicator function which equals 1 if the item at rank k is relevant and equals to 0 otherwise.

Average Precision

AP@
$$n = \frac{1}{GTP} \sum_{k=1}^{n} \text{precision@} k \times \text{relevance@} k$$

$$P@1 = 1/1 = 1$$

$$P@2 = 1/2 = 0.5$$

$$P@3 = 1/3 = 0.33$$

$$P@4 = 2/4 = 0.5$$

$$P@5 = 3/5 = 0.6$$

$$P@n = 3/n$$

- Normalized Discounted Cumulative Gain (NDCG)
 - Measure the ranking quality

- Cumulative Gain (CG)
 - The sum of the relevance of recommendations
 - Does not consider the rank!

$$CG_{pos} = \sum_{i=1}^{pos} rel_i$$

Rank	Hit?
1	
2	Χ
3	X
4	Χ
5	

$$CG_{pos} = 0 + 1 + 1 + 1 + 0 = 3$$

- Discounted Cumulative Gain (DCG)
 - Logarithmic reduction factor
 - highly relevant item appearing lower in the recommendation list should be penalized

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$

Rank	Hit?
1	
2	X
3	X
4	X
5	

$$DCG_5 = \frac{1}{\log_2 2} + \frac{1}{\log_2 3} + \frac{1}{\log_2 4} = 2.13$$

Rank	Hit?
1	
2	
3	X
4	X
5	X

- Idealized discounted cumulative gain (IDCG)
 - Assume that items are ordered by decreasing relevance
 - the maximum possible DCG

$$IDCG_{pos} = rel_1 + \sum_{i=2}^{|h|-1} \frac{rel_i}{\log_2 i}$$

Rank	Hit?	Ideal
1		X
2	Χ	X
3	X	X
4	Χ	
5		

$$IDCG_5 = 1 + \frac{1}{\log_2 2} + \frac{1}{\log_2 3} = 2.63$$

- Normalized discounted cumulative gain (NDCG)
 - Normalized to the interval [0..1]

$$NDCG_{pos} = \frac{DCG_{pos}}{IDCG_{pos}}$$

Rank	Hit?	Ideal
1		X
2	Χ	X
3	Χ	X
4	Χ	
5		

$$DCG_5 = \frac{1}{\log_2 2} + \frac{1}{\log_2 3} + \frac{1}{\log_2 4} = 2.13$$

$$IDCG_5 = 1 + \frac{1}{\log_2 2} + \frac{1}{\log_2 3} = 2.63$$

$$NDCG_5 = \frac{DCG_5}{IDCG_5} = \frac{2.13}{2.63} \approx 0.81$$

Collaborative Filtering

Singular Value Decomposition

- Provide a way to understand the hidden structure in the data
 - Each row of U can be viewed as the representation of a user
 - Each column of V can be viewed as the representation of an item

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & \\ \vdots & \vdots & \ddots & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1r} \\ \vdots & \ddots & \\ u_{m1} & & u_{mr} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \dots \\ 0 & \ddots & \\ \vdots & & s_{rr} \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & \\ v_{r1} & & v_{rn} \end{pmatrix}$$

$$m \times n$$

$$r \times r$$

$$r \times r$$

- **X**: *m x n* matrix (e.g., m users, n videos)
- **U**: *m x r* matrix (m users, r factors)
- **S**: *r* x *r* diagonal matrix (strength of each 'factor') (r: rank of the matrix)
- **V**: r x n matrix (n videos, r factor)

Singular Value Decomposition

Provide a low-rank approximation for the rating matrix

Truncated SVD
$$\boldsymbol{A}_k = \boldsymbol{U}_k \boldsymbol{\Sigma}_k \boldsymbol{V}_k^T$$
 of \boldsymbol{A} thus satisfies

$$\|\boldsymbol{A} - \boldsymbol{A}_k\|_F = \min_{\mathsf{rank}(\boldsymbol{B})=k} \|\boldsymbol{A} - \boldsymbol{B}\|_F$$

	Avatar	The Matrix	Up
Marco	?	4	2
Luca	3	2	?
Anna	5	?	3

	Avatar	The Matrix	Up
Marco	? 5	4	2
Luca	3	2	2 ?
Anna	5	? 2	3

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & \\ \vdots & \vdots & \ddots & \\ x_{m1} & x_{mn} & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & u_{1r} \\ \vdots & \ddots & \\ u_{m1} & u_{mr} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \dots \\ 0 & \ddots & \\ \vdots & s_{rr} \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & \\ v_{r1} & v_{rn} \end{pmatrix}$$

Singular Value Decomposition

• Problems:

- Complete input matrix:
 - All elements should be available
- Large portion of missing values
- Heuristics to pre-fill missing values
 - Item's average rating
 - Missing values as zeros

	Avatar	The Matrix	Up
Marco	?	4	2
Luca	3	2	?
Anna	5	?	3

- Matrix completion:
 - No need to pre-fill missing values
 - Good performance
 - The best single-model approach to collaborative filtering

	Avatar	The Matrix	Up
Marco	?	4	2
Luca	3	2	?
Anna	5	?	3

Avatar The Matrix

2?

- Matrix completion
 - Learn a latent representation (vector) for each user and each item
 - Missing values are estimated by the dot product

$$r_{ij} \approx p_i q_j$$

Matrix Completion-Example

Assume the dimensionality of the latent representation is 1

Latent representation for items The Matrix Avatar **A**vatar The Matrix Up Learn (2.24)(1.92)latent 2 Anni 4 Anni representation (1.98)3 **Bob** Bob 3 (1.21)Latent 5 Charlie 3 Charlie 5 representation (2.30)for users

Loss function

$$\min_{oldsymbol{Q},oldsymbol{P}}\sum_{(i,j)\in\Omega}(v_{ij}-[oldsymbol{Q}^Toldsymbol{P}]_{ij})^2$$

	A vatar (2.24)	The Matrix (1.92)	Up (1.18)
Anni (1.98)		4 (3.8)	2 (2.3)
Bob (1.21)	3 (2.7)	2 (2.3)	
Charlie (2.30)	5 (5.2)		3 (2.7)

• Inference

	Avatar (2.24)	The Matrix (1.92)	Up (1.18)		Avatar (2.24)	The Matrix (1.92)	Up (1.18)
Anni (1.98)		4 (3.8)	2 (2.3)	Anni (1.98)	? (4.4)	4 (3.8)	2 (2.3)
Bob (1.21)	3 (2.7)	2 (2.3)		Bob (1.21)	3 (2.7)	2 (2.3)	? (1.4)
Charlie (2.30)	5 (5.2)		3 (2.7)	Charlie (2.30)	5 (5.2)	? (4.4)	3 (2.7)

Introduce bias and regularization

$$\min_{\boldsymbol{Q},\boldsymbol{P},\boldsymbol{u},\boldsymbol{m}} \sum_{(i,j)\in\Omega} (v_{ij} - \mu - u_i - m_j - [\boldsymbol{Q}^T\boldsymbol{P}]_{ij})^2 + \lambda \left(\|\boldsymbol{Q}\| + \|\boldsymbol{P}\| + \|\boldsymbol{u}\| + \|\boldsymbol{m}\|\right)$$

- mu: the average rating over all items
- m_j: the bias for the j-th item
- u_i: the bias for the i-th user

Optimization (simple case)

$$L_{ij}(P,Q)=(r_{ij}-p_iq_j)^2$$

SGD to minimize the squared loss iteratively computes:

$$p_i \leftarrow p_i - \eta \frac{\partial L_{ij}(P,Q)}{\partial p_i} = p_i + \eta(\varepsilon_{ij} \cdot q_j)$$
 $q_j \leftarrow q_j - \eta \frac{\partial L_{ij}(P,Q)}{\partial q_i} = q_j + \eta(\varepsilon_{ij} \cdot p_i)$ where $\varepsilon_{ij} = r_{ij} - p_i q_j$