March 29th, 2019

Remark. lim sup is the limit of sup. If sup is easy to calculate, find sup and take the limit.

Quiz 1 Solutions

#1. Given set A, int(A), A', determine whether the set is open or closed.

- 1. $A = \mathbb{N} \subset \mathbb{R}$. $int(A) = \emptyset$, $A' = \emptyset$, A is closed.
- 2. $\mathbb{Q} \subset \mathbb{R}$. $int(\mathbb{Q}) = \emptyset$, $\mathbb{Q}' = \mathbb{R}$, \mathbb{Q} is neither open nor closed.
- 3. $C = [0,1] \cup (2,3) \cap \{4\} \subset \mathbb{R}$. $int(C) = (0,1) \cup (2,3)$, $C' = [0,1] \cup [2,3]$, C is neither open nor closed.
- 4. $D = \bigcup_{n=1}^{\infty} \{(\frac{1}{n}, y) : 0 \le y \le 1\} \subset \mathbb{R}^2$. $int(D) = \emptyset$, $D' = D \cup \{(0, y) : 0 \le y \le 1\}$, D is neither open nor closed. $(\because int D \ne D, \overline{D} \ne D)$
- #2. Find a limit point of given set.
 - 1. $A = \mathbb{Q} \subset \mathbb{R}$. 0 is a limit point. (Directly follows from Archimedes' principle)
 - 2. $B = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$. 0 is a limit point of B. (Also directly follows from Archimedes')
 - 3. $C = \{2^{-n} + 3^{-m} : n, m \in \mathbb{N}\} \subset \mathbb{R}$. 0 is a limit point of C. Given $\epsilon > 0$, exists $N \in \mathbb{N}$ such that for $n, m \geq N$, $2^{-n} < \epsilon/2$, $3^{-m} < \epsilon/2$. Then $0 \neq 2^{-n} + 3^{-m} < \epsilon$.
- #3. True or False? If false, find a counterexample.
 - 1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$ True
 - 2. $\overline{A \cap B} = \overline{A} \cap \overline{B}$ False. Set A = (0, 1), B = (1, 2). Correct Statement: $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
 - 3. $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$ False. Set A = [0, 1], B = [1, 2]. Correct Statement: $\operatorname{int}(A) \cup \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$
 - 4. $int(A \cap B) = int(A) \cap int(B)$ True

Thm. $A \subset B \implies \overline{A} \subset \overline{B}$, $\operatorname{int}(A) \subset \operatorname{int}(B)$. **Proof**.

- We need to show $A' \subset B'$. Let $x \in A'$. $\Longrightarrow \forall \epsilon > 0, \ N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$. $\Longrightarrow \forall \epsilon > 0, N(x, \epsilon) \cap (B \setminus \{x\}) \neq \emptyset$ $\Longrightarrow x \in B'$.
- Let $x \in \text{int}(A)$ $\implies \exists \epsilon > 0, N(x, \epsilon) \subset A \implies N(x, \epsilon) \subset B \implies x \in \text{int}(B).$

Proof of (c). $A, B \subset A \cup B$ $\implies \operatorname{int}(A), \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$. Thus $\operatorname{int}(A) \cup \operatorname{int}(B) \subset \operatorname{int}(A \cup B)$

Proof of (d). $A \cap B \subset A, B \implies \operatorname{int}(A, B) \subset \operatorname{int}(A), \operatorname{int}(B)$. Thus $\operatorname{int}(A \cap B) \subset \operatorname{int}(A) \cap \operatorname{int}(B)$ Suppose $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$. Then $\exists \epsilon_A, \epsilon_B > 0$ s.t. $N(x, \epsilon_A) \subset A, N(x, \epsilon_B) \subset B$. Take $\epsilon = \min\{\epsilon_A, \epsilon_B\}/2$. Then $N(x, \epsilon) \subset A, B$. Therefore $N(x, \epsilon) \subset A \cap B, x \in \operatorname{int}(A \cap B)$. **Example.** $A = \{(x, y) : x^2 + 2y^2 < 1\}$. $\operatorname{int}(A) = A, A' = \{(x, y) : x^2 + 2y^2 \le 1\}$.

Suppose $(x_0, y_0) \in A$. $x_0^2 + 2y_0^2 = 1 - \delta < 1$ for some $\delta > 0$. By symmetry, let $x_0, y_0 > 0$. From

$$(x_0 + \epsilon)^2 + 2(y_0 + \epsilon)^2 = x_0^2 + 2y_0^2 + \epsilon(2x_0 + 4y_0 + 3\epsilon) < 1$$

, we want $\epsilon(2x_0 + 4y_0 + 3\epsilon) < \delta$. Set $\epsilon < 1/10$. Then $\epsilon(2x_0 + 4y_0 + 3\epsilon) < \epsilon(2x_0 + 4y_0 + 3) < \delta$. Now set $\epsilon = \min\left\{\frac{1}{2(2x_0 + 4y_0 + 3)}, \frac{1}{100}\right\} > 0$.

Then $|x - x_0| < \epsilon$, $|y - y_0| < \epsilon$. $x_0^2 + 2y_0^2 < (x_0 + \epsilon)^2 + 2(y_0 + \epsilon)^2 < 1$. $N((x_0, y_0), \epsilon) \subset A$.

Interior points are limit points, and for the points (x_0, y_0) on the border, consider a sequence $(x_0 - 1/n, y_0 - 1/n)$. Then the elements are in A and they converge to (x_0, y_0) . Thus the border is also included in A'.

April 1st, 2019

 $\operatorname{int} A: x \in A \text{ s.t. } N(x,\epsilon) \subset A \text{ for some } \epsilon > 0.$

 $A': x \in \mathbb{R}^d \text{ s.t. } N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset \text{ for } \forall \epsilon > 0$

 $\overline{A}: x \in \mathbb{R}^d \text{ s.t. } N(x,\epsilon) \cap A \neq \emptyset, \forall \epsilon > 0, \overline{A} = A \cup A'$

Example. $A = [0, 1) \cup \{2\}$. $1 \in A', 2 \notin A', 2 \in \overline{A}$

Prop 2.3.3 $x \in A' \implies N(x, \epsilon) \cap (A \setminus \{x\})$ 는 무한집합이다.

 \mathbf{Proof} . 유한집합이라고 가정하자. $N(x,\epsilon)\cap (A\backslash\{x\})=\{x_1,\ldots,x_n\}$ 이라 할 수 있다. Set $\delta=\min\{\|x-x_i\|: \forall i\}$. Then $N(x,\delta)\cap (A\backslash\{x\})=\emptyset$. 모순.

그래서 사실은 공집합이 아닌 것으로 정의했지만 사실은 무한집합이다.

Remark. $A' \neq \emptyset \implies A$ 는 무한집합.

(대우) A가 유한집합이면 극한점이 존재하지 않는다. (2.2 보기 4)

(역) 거짓. $A = \{1, 2, \dots\}$ 이면 $A' = \emptyset$.

그러면 역이 언제 성립하나요? 다음 단원 내용!

Definition. Convergence in \mathbb{R}^d

Let $\langle x_n \rangle$ be a sequence in \mathbb{R}^d .

$$\lim_{n \to \infty} x_n = x \iff \forall \epsilon > 0, \exists N \text{ s.t. } (n \ge N \implies ||x_n - x|| < \epsilon)$$

Exercise. $x_n = (x_n^{(1)}, \dots), x = (x_n^{(1)}, \dots)$ 일 때, $x_n \to x \iff \forall i, x_n^{(i)} \to x_n^{(i)}$

Notation. $A \subset \mathbb{R}^d$; $\langle x_n \rangle$ is a sequence in $A \iff \forall n, x_n \in A$

Theorem 2.2.2

- 1. $x \in A' \iff \exists \langle x_n \rangle \text{ in } A \setminus \{x\} \text{ such that } x_n \to x$
- 2. $x \in \overline{A} \iff \exists \langle x_n \rangle \text{ in } A \text{ such that } x_n \to x$

Proof.

- 1. $(\Longrightarrow) x_n \in N\left(x, \frac{1}{n}\right) \cap (A \setminus \{x\})$ 이라 하자. (공집합이 아니므로 이러한 원소가 존재한다.) 그러면 $\|x_n x\| < 1/n$ 이므로 $x_n \in x$ 로 수렴한다. 그리고 $x_n \in A \setminus \{x\}$ 이므로 수열이 $A \setminus \{x\}$ 에 있다.
- 2. Left as exercise. Replace $A \setminus \{x\}$ with A.

Theorem 2.2.3. The following are equivalent.

- 1. F is closed.
- $2. F' \subset F.$
- 3. $F = \overline{F}$
- 4. For a sequence $\langle x_n \rangle$ in F, $\lim_{n \to \infty} x_n = x \implies x \in F$.

Proof.

- $(1) \iff (3) \ (\overline{F}: \text{smallest closed set containing } F.)$
- (2) ⇔ (3) 은 자명.
- $(1) \iff (4)$ by the above theorem. (Thm 2.2.2)

Applications.

1. A' is closed.

Proof. We want to show that $(A')' \subset A'$.

We want to show: $x \in (A')' \implies x \in A'$.

(A') 이 공집합이면 자명. 공집합이 아니라고 가정하고...)

Given $\epsilon > 0$, $N(x,\epsilon) \cap (A' \setminus \{x\}) \neq \emptyset$. Take an element $y \in A'$ from this set. Now set $\delta = \min\{\|x-y\|, \epsilon - \|x-y\|\}$ then we have $N(y,\delta) \cap (A \setminus \{y\}) \neq \emptyset$. $(\because y \in A')$ $z \in N(y,\delta) \cap (A \setminus \{y\})$ 라 하자.

- (a) $z \in A \setminus \{y\} \subset A$.
- (b) $||x z|| \le ||x y|| + ||y z|| < ||x y|| + \delta \le \epsilon \ (z \in N(y, \delta))$
- (c) $||x z|| \ge ||x y|| ||y z|| > ||x y|| \delta \ge 0$ (By the choice of δ .) Thus $x \ne z$.

Therefore $z \in N(x, \epsilon)$ (by (b)), $z \in A \setminus \{x\}$ (by (a), (c)). $x \in A'$ since $N(x, \epsilon) \cap (A \setminus \{x\})$ is not empty.

2. $A \subset \mathbb{R}$: closed and bounded \implies inf $A = \min A$, $\sup A = \max A$. (Existence)

Proof. Let $\sup A = x \notin A$. $(\sup A \in A \cap \mathcal{B})$

Claim. $x \in A'$.

Proof of Claim. $\forall \epsilon > 0, N(x, \epsilon) = (x - \epsilon, x + \epsilon)$

 $x = \sup A$ 이므로 $x - \epsilon$ is not an upper bound.

 $\exists y \text{ such that } y \in (x - \epsilon, x)$

 $y \in N(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$ 이므로 $x \in$ 극한점.

따라서 $x \in A' \subset A$ (closed set 이므로 Thm 2.2.3 (2)) 모순.

 $\sup A \in A$ 이므로 이 값이 최댓값이다.

2.3 유계집합과 코시수열

핵심: Thm 2.3.4, Thm 2.3.7

Definition. $\langle x_n \rangle$: 유계수열(bounded sequence) $\iff \exists M > 0 \text{ s.t. } ||x_n|| \leq M \text{ for all } n \in \mathbb{N}.$

Definition. $n_1 < n_2 < \cdots$: sequence in \mathbb{N} 이라 하자. $\langle x_{n_k} \rangle_{k=1}^{\infty} = (x_{n_1}, x_{n_2}, \dots)$ 를 $\langle x_n \rangle$ 의 부분수열(subsequence)이라 한다.

Theorem 2.3.4 (Bolzano-Weierstrass Theorem)

If $\langle x_n \rangle$ is bounded, there exists a convergent subsequence of $\langle x_n \rangle$.

Idea of Proof. Equivalent formulation for sets.

Definition. Set A is bounded $\iff \exists M > 0$ such that ||x|| < M for all $x \in A$.

Theorem 2.3.2 (Equivalent of 2.3.4) A가 유계이고 무한집합이면, $A' \neq \emptyset$.

Remark. $A' \neq \emptyset \implies A$: 무한집합.

역이 성립하기 위해서는 A가 유계라는 조건이 필요하다.

극한점이 중요한 이유는 계속 수열과 관련이 있기 때문이다.

Example. $A = \{1/n : n \in \mathbb{N}\}$ 을 고려하는 것은 수열 $x_n = 1/n$ 을 고려하는 것이나 마찬가지이다. 이 수열 x_n 이 x 로 수렴하는 것은 $A' = \{x\}$ 와 동치이다. (Hence the name "limit point")이로부터 $x \in A' \iff$ Exists a subsequence of $\langle x_n \rangle$ in $A \setminus \{x\}$ converging to x.

Proof of 2.3.2

1. Lemma 2.3.1 축소구간정리 in \mathbb{R}^d .

B is a closed box in $\mathbb{R}^d \iff B = I_1 \times I_2 \times \cdots \times I_d$, where $I_i = [a_i, b_i]$ for $i = 1, \dots, d$. (I_i is a closed and bounded interval.)

$$B_1 \supset B_2 \supset \cdots \implies \bigcap_{n=1}^{\infty} B_n \neq \emptyset$$

 \mathbf{Proof} . 각 '좌표' I_i 별로 1차원 축소구간정리를 적용하면 된다.

2. Divide and Conquer Strategy

B: Box 일 때, $\operatorname{diam}(B) = \sup\{\|x - y\| : x, y \in B\} = \sqrt{(a_1 - b_1)^2 + \dots + (a_d - b_d)^2}$ Claim. There exists closed boxes B_1, B_2, \dots s.t.

- (a) $B_1 \supset B_2 \supset \cdots$
- (b) $\operatorname{diam} B_n = \frac{1}{2^n} \operatorname{diam} B_1$

(c) $B_n \cap A$: 무한집합

Proof. (Induction) n = 1; B_1 : 충분히 커서 $A \subset B_1$ 인 box 를 잡으면 된다.

Suppose we have B_1, \dots, B_n ; B_n 을 2^d 등분하면 적어도 하나는 A의 원소를 무한개 포함하고 있다. 그 집합을 B_{n+1} 으로 잡는다. (비둘기집의 원리)

이제 $x \in \bigcap_{n=1}^{\infty} B_n$ 으로 잡으면 (축소구간정리에 의해 잡을 수 있다) $x \in A'$. $(A' \neq \emptyset)$ $\because \forall \epsilon > 0$, $\operatorname{diam} B_n < \epsilon$ 인 $N \in \mathbb{N}$ 을 찾아 $n \geq N$ 일 때 부등식이 성립하도록 할 수 있다. 이러한 n 들에 대하여 $B_n \subset N(x,\epsilon)$. 그러면 $N(x,\epsilon) \cap (A \setminus \{x\}) \supset B_n \cap (A \setminus \{x\})$.

April 3rd, 2019

우리가 지금 2.3 을 하고 있는데, 2 가지 중요한 결과가 있어요.

Theorem 2.3.4 $\langle x_n \rangle$ 이 bounded 이면 수렴하는 부분수열을 갖는다. 1

Theorem 2.3.2 A가 유계인 집합이고 무한집합이면 극한점을 가진다. $A' \neq \emptyset$ 증명은 축소구간정리를 박스로 확장해가지고 분할 정복하면 된다.

Recall 2.3.3 $x \in A' \implies N(x, \epsilon) \cap (A \setminus \{x\})$ 는 무한집합이다.

Proof of 2.3.4. $A = \{x_1, x_2, \dots, x_n\}$ 라고 하면 이 집합은 유계이다. (수열이 유계이므로)

1. *A*가 유한집합: 자명.

 $\exists x$ such that x appears infinitely many times in $\langle x_n \rangle$. (PHP) 이 경우에는 부분수열을 x, x, \ldots 로 잡으면 된다. 이는 수렴하는 부분수열이다.

2. *A*가 무한집합²

 $A' \neq \emptyset$ 이므로 $\alpha \in A'$ 이라 하자.

Claim. $\exists n_1 < n_2 < \dots$ such that $||x_{n_k} - \alpha|| < 1/k$.

Proof. (첨자들이 증가하면서 가까워져야 한다는 것이 유일하게 tricky 한 부분이다. 귀납법을 사용하자.) $k=1: x_{n_1} \in N(\alpha,1) \cap (A \setminus \{\alpha\})$ 로 잡으면 된다.

 x_{n_1}, \cdots, x_{n_k} 를 잡았다고 가정: $N(\alpha, \frac{1}{k+1}) \cap (A \setminus \{\alpha\})$ 에서 $x_{n_{k+1}}$ 를 잡아야 하는데 이 집합은 무한집합이다. (Recall 2.3.3) 이 집합에서 첨자가 n_k 보다 큰 항이 반드시 존재하므로 그 중하나를 $x_{n_{k+1}}$ 이라 잡으면 된다.

따라서 $\lim_{k\to\infty} x_{n_k} = \alpha$ (Check as exercise)

Application. (Characterization of lim sup and lim inf)

 x_n 이 bounded 이면, $A = \{x : \exists \text{ subsequence of } x_n \text{ converging to } x\}$. 이 때 Theorem 2.3.4에 의해 $A \neq \emptyset$ 임을 증명하였다.

1. A: closed and bounded $\implies \max(A), \min(A)$ 가 존재한다.

Proof. $B = \{x_1, x_2, \dots\}, C = \{\langle x_n \rangle \text{ 에 무한 번 나타나는 수} \}$ 로 잡자. $A = B' \cup C, C \subset B, C' \subset B'$ 임을 확인해보라! 이를 이용하면 $B' \cup C = (B' \cup C') \cup C = B' \cup (C' \cup C) = B' \cup \overline{C}$ 가 되어 닫힌집합의 합집합은 닫힌 집합이다. A는 closed and bounded 이다.

2. $\limsup x_n = \max(A)$, $\liminf x_n = \min(A)$ (부분수열이 가질 수 있는 극한값들 중 가장 큰 값이 $\limsup x_n$ 가장 작은 값이 $\liminf x_n = \min(A)$

¹증명이 가장 테크니컬 해요!

 $^{^{2}}$ 이제 2 이제 2 이제 2 이지 2 이지

Proof. Recall

$$\limsup x_n = \alpha \iff \begin{cases} \text{(i) } \forall \epsilon > 0, \exists N \text{ s.t } (n \ge N \implies x_n < \alpha + \epsilon) \\ \text{(ii) } \forall \epsilon > 0, x_n > \alpha - \epsilon \text{ for infinitely many } n \end{cases}$$

- (a) 부분수열 $\langle x_{n_k} \rangle \to \beta$ 이면 (i)에 의해 $k \geq N \implies x_{n_k} < \alpha + \epsilon$ 이 되어 $\beta \leq \alpha + \epsilon$. $\beta \leq \alpha$. 그러므로 $\max(A) \leq \alpha$ 이다.
- (b) $\forall \epsilon > 0$, (i), (ii)에 의해 $x_n \in (\alpha \epsilon, \alpha + \epsilon)$ 인 n 이 무한히 많다. 이 유계인 구간에 속하는 수열의 항들에 대해 부분수열을 잡아 (further subsequence) γ 로 수렴하도록 할 수 있다. (Theorem 2.3.4) 그러면 $\langle x_{m_k} \rangle \to \gamma \in [\alpha \epsilon, \alpha + \epsilon]$. 따라서 $\alpha \epsilon \leq \gamma \leq \max(A)$ 가 되어 $\alpha \leq \max(A)$.

따라서 $\max(A) = \alpha$.

Definition. $\langle x_n \rangle$: Cauchy Sequence $\iff \forall \epsilon > 0, \exists N \text{ s.t. } [m, n \geq N \implies ||x_m - x_n|| < \epsilon]$

Prop 2.3.6, Thm 2.3.8 $\langle x_n \rangle$: convergent $\iff \langle x_n \rangle$: Cauchy sequence³ Proof. (\implies) 자명. $||x_m - x_n|| \le ||x_m - \alpha|| + ||x_n - \alpha|| < \epsilon/2 + \epsilon/2 = \epsilon$ 인 $m, n \ge N$ 존재. (\iff) 수렴 값이 없는 상태에서 증명해야 한다. 먼저 수렴 값을 찾아보자.

1. $\langle x_n \rangle$ is bounded.

Proof. $\exists N \text{ s.t. } ||x_m - x_n|| < 1 \text{ for all } m, n \ge N.$ Set $M = \max\{||x_1||, \dots, ||x_{N-1}||, ||x_N|| + 1\}.$ ($||x_m|| < ||x_N|| + 1$) 따라서 $||x_n|| \le M$ for all $n \in \mathbb{N}$.

- 2. There exists a subsequence $\langle x_{n_k} \rangle$ converging to some α . (Thm 2.3.4)
- 3. $\langle x_n \rangle$ converges to α .

Proof. $\epsilon > 0$ 에 대해,

- (a) 코시 수열의 성질에 의해 $\exists N_1$ s.t. $||x_m x_n|| < \epsilon/2$ for all $m, n \ge N_1$.
- (b) 부분수열이 α 로 수렴하므로 $\exists N_2 \text{ s.t. } ||x_{n_k} \alpha|| < \epsilon/2 \text{ for all } k \geq N_2.$

Let $N = \max\{N_1, N_2\}$. $n \ge N_1, n_N \ge n_{N_1} \ge N_1$ 이므로,

$$n > N \implies ||x_n - \alpha|| \le ||x_n - x_{n_N}|| + ||x_{n_N} - \alpha|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$$

³중간고사 전 까지 가장 중요한 정리.

Remark. 우리의 여정을 돌아보자.

- 1. Archimedes' Principle 을 가정하면
 Completeness Axiom ⇒ Monotone Convergence Theorem ⇒ 축소구간정리 ⇒
 Bolzano-Weierstrass Theorem ⇒ Cauchy Convergent Theorem⁴
 (Exercise) ⇒ Completeness Axiom
- 2. **Example**. X = C([0,1]). (Set of functions that are continuous in [0,1]) How would we define ||f g||? $\int_0^1 |f(x) g(x)| dx$? $\max\{|f(x) g(x)| : x \in [0,1]\}$? Only the second choice gives completeness for X.
- 3. Convergence Test without limit value. (Theorem 2.3.9) $\sum_{n=1}^{\infty} a_n \text{ is convergent} \iff \forall \epsilon > 0, \exists N \text{ s.t. } (n > m \geq N \implies |a_{m+1} + \cdots + a_n| < \epsilon)$ Proof. Trivial.

Definition. $\sum a_n$ is absolutely convergent $\iff \sum |a_n|$ is convergent

Theorem. An absolutely convergent series converges.

Proof. Suppose $\sum |a_n|$ converges. For $\forall \epsilon > 0$, there exists N such that $||a_{m+1}| + \cdots + |a_n|| < \epsilon$ for all $m, n \geq N$. Therefore, for $m, n \geq N$,

$$|a_{m+1} + \dots + a_n| < |a_{m+1}| + \dots + |a_n| < \epsilon$$

and $\sum a_n$ converges.

 $^{^4\}mathrm{In}$ any metric spaces, this is the condition for completeness.

April 5th, 2019

Theorem. $\overline{A} \cup \overline{B} = \overline{A \cup B}$

Proof. (\subset) Trivial.

 $(\supset) \ A \subset \overline{A}, \ B \subset \overline{B} \implies A \cup B \subset \overline{A} \cup \overline{B} \implies \overline{A \cup B} \subset \overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}. \text{ The closure of a closed set is itself.}$

6. (2)
$$a_n = \cos\sqrt{2019 + n^2\pi^2}$$

Consider $\delta > 0$, such that

$$(n\pi - \delta)^2 < 2019 + n^2\pi^2 < (n\pi + \delta)^2$$

 $-2n\pi < \frac{2019}{\delta} \pm \delta < 2n\pi$

We can find large enough N such that the above inequality holds for $n \geq N$.

Now we want $b_n = \sqrt{2019 + n^2 \pi^2}$ bounded by $n\pi \pm \delta$.

$$n \ge N, n \text{ even } \implies n\pi - \delta < b_n < n\pi + \delta$$

$$\implies 1 \ge a_n > 1 - \epsilon$$

$$n \ge N$$
, $n \text{ odd} \implies -1 \le a_n < -1 + \epsilon$

Problem 2.3.5

$$(1) \ x_{n+2} = \frac{x_n + x_{n+1}}{2}$$

(2)
$$x_{n+1} = x_n + x(-1)^n \frac{1}{3n+1}$$

Solution.

(1) Write $x_{n+2} - x_{n+1} = a(x_{n+1} - x_n)$ and observe that a = -1/2. Write as

$$x_n = x_{n-1} + \left(-\frac{1}{2}\right)^{n-2} (x_2 - x_1)$$

Then we have

$$x_n = x_2 + \sum_{k=1}^{n-2} \left(-\frac{1}{2}\right)^k (x_2 - x_1)$$

This series converges to $\frac{2x_2 + x_1}{3}$

(2) This is an alternating series. Write as

$$x_n = x_1 + \sum_{k=1}^{n-1} (-1)^k \frac{x}{3n+1}$$

By alternating series test, the second summation term converges, and the series converges to x_1 .

Since a converging sequence is a Cauchy sequence, x_1, x_2 can be any real number.

April 8th, 2019

Section 2.3: Bolzano-Weierstrass Theorem, Cauchy Convergent Theorem In section 2.4, we will be studying about Convergence Tests.

정

2.4 급수의 수렴판정

Cor 2.3.9. $\sum_{n=1}^{\infty} a_n$ is convergent $\iff s_n = \sum_{k=1}^n a_k, \langle s_n \rangle$ is convergent $\iff \langle s_n \rangle$ is Cauchy.

- 1. $\sum_{n=1}^{\infty} a_n$ is convergent $\implies \lim_{n\to\infty} a_n = 0$.
- 2. $\sum_{n=1}^{\infty} |a_n|$ is convergent $\implies \sum_{n=1}^{\infty} a_n$ convergent.

Theorem 2.4.3 (Comparison Test) Suppose $\sum b_n$ converges. If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, $\sum a_n$ converges.

ProofLet $M = \sum b_n$, $s_n = \sum_{k=1}^n a_k$. s_n is increasing and s_n is bounded by M. s_n is convergent by Monotone Convergence Theorem.

Theorem. Suppose sequences a_n, b_n satisfy $0 \le |a_n| \le b_n^5$ and $\sum b_n$ converges. Then $\sum a_n$ is convergent.⁶

Proof. By comparison test and absolute convergence.

Prop 2.4.4 (Root Test) Suppose $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$.

If $\alpha < 1$, $\sum a_n$ converges. If $\alpha > 1$, $\sum a_n$ diverges.

Proof.

- 1. $\alpha < 1$. Take $\epsilon > 0$ such that $\alpha < \alpha + \epsilon < 1$. Then there exists N such that $|a_n|^{1/n} < \alpha + \epsilon$ for all $n \ge N$. Therefore $|a_n| < (\alpha + \epsilon)^n$. Since $\alpha + \epsilon < 1$, $\sum (\alpha + \epsilon)^n$ converges. Apply the comparison test to see that $\sum a_n < \infty$.
- 2. $\alpha > 1$. Take $\epsilon > 0$ such that $\alpha > \alpha \epsilon > 1$. Then $|a_n|^{1/n} > \alpha \epsilon$ for infinitely many n. Then $|a_n| > (\alpha \epsilon)^n > 1$. Therefore $\lim a_n \neq 0$. $\sum a_n$ diverges.

Prop 2.4.5 (Ratio Test) Suppose $a_n \neq 0$. Let $\beta = \limsup |a_{n+1}/a_n|$, $\gamma = \liminf |a_{n+1}/a_n|$. If $\beta < 1$, $\sum a_n$ converges. If $\beta > 1$, $\sum a_n$ diverges.

Proof.

1. $\beta < 1$. Take $\epsilon > 0$ such that $\beta < \beta + \epsilon < 1$. Then $\exists N$ s.t. $|a_{n+1}/a_n| < \beta + \epsilon$ for $n \ge N$. $\implies |a_n| = |a_N| \, |a_{N+1}/a_N| \cdots |a_n/a_{n-1}| < |a_N| \, (\beta + \epsilon)^{n-N}$. Set $b_n = |a_N| \, (\beta + \epsilon)^{n-N}$ and apply comparison test to see that $\sum a_n < \infty$.

⁵Note that this condition can fail for finitely many n.

 $^{^{6}}a_{n}$ may be a very complex expression, but we want b_{n} to be simple, an expression we know that it is convergent.

2. $\gamma > 1$. Take $\epsilon > 0$ such that $\gamma > \gamma - \epsilon > 1$. Then $\exists N$ s.t. $|a_{n+1}/a_n| > \gamma - \epsilon$ for $n \geq N$. Then we see that $|a_n|$ is increasing for $n \geq N$. Thus a_n cannot converge to 0. $\sum a_n$ is divergent.

Remark. If the above limits (ratio, root) exist, elementary tests can be applied. But if the limits turn out to be 1, the test fails. (ND: Non-Deterministic) Check it for $\sum 1/n$, $\sum 1/n^2$. Also, these are weak tests. For most of the series, the limit is 1. Moreover...

Theorem 2.4.6 Suppose $a_n \neq 0$.

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf |a_n|^{\frac{1}{n}} \le \limsup |a_n|^{\frac{1}{n}} \le \limsup \left| \frac{a_{n+1}}{a_n} \right|$$

Thus if the root test works, ratio test also works.⁷

Proof. We only need to prove the last inequality.

Let $\beta = \limsup |a_{n+1}/a_n|$, $\forall \epsilon > 0$. $\Longrightarrow \exists N \text{ s.t. } |a_{n+1}/a_n| \leq \beta + \epsilon \text{ for } n \geq N$. Then if $n \geq N$, $|a_n| \leq |a_N| (\beta + \epsilon)^{n-N}$. (Similar to proof of 2.4.5) Then

$$|a_n|^{1/n} \le (\beta + \epsilon) \left(\frac{|a_n|}{(\beta + \epsilon)^N}\right)^{1/n}$$

and take \limsup on both sides, then $\limsup |a_n|^{1/n} \leq \beta + \epsilon$.

Example.
$$\langle a_n \rangle = \begin{cases} 1/2^n & n \text{ odd} \\ 1/2^{n-2} & n \text{ even} \end{cases}$$

Check that $\limsup |a_n|^{1/n} = 1/2 < 1$, and the series $\sum a_n$ converges by the root test.

But if we use the ratio test here, \limsup value is 2 and \liminf value is 1/8. The ratio test does not tell us anything about the convergence. Also note that the series converges to 2.

Prop 2.4.1 (Rearrangement) $a_n \geq 0.9$ Suppose a bijection $r : \mathbb{N} \to \mathbb{N}$ exists.

1.
$$\sum_{n=1}^{\infty} a_n = s \iff \sum_{n=1}^{\infty} a_{r(n)} = s$$

$$2. \sum_{n=1}^{\infty} = \infty \iff \sum_{n=1}^{\infty} a_{r(n)} = s$$

Proof.

1. (\Longrightarrow) Let $t_n = \sum_{k=1}^n a_{r(k)}$. Then t_n is increasing and bounded by s. Thus t_n converges by MCT, and $\lim t_n \leq s$.

$$s_n = \sum_{k=1}^n a_k \le \sum_{n=1}^\infty a_{r(n)} = t = \lim t_n$$
. $(a_n \ge 0 \text{ was used here.})$ (\longleftarrow) Use $r^{-1}(n)$.

⁷The limit for the ratio test is much easier to calculate than the root test. That's why we use the ratio test.

⁸The ratios are: $2, 1/8, 2, 1/8 \dots$

⁹This is the important condition.

2. Contraposition of (1).

Prop 2.4.2 (Alternating Series Test) For a given sequence x_n , suppose the following holds.

- x_n is decreasing.
- $\lim x_n = 0$.

Then the series $\sum_{k=1}^{\infty} (-1)^{n-1} x_n$ is convergent.

Proof. Let $s_n = \sum_{k=1}^n (-1)^{k-1} x_k$. For m < n,

$$|s_n - s_m| = \left| (-1)^m x_{m+1} + \dots + (-1)^{n-1} x_n \right| = |x_{m+1} - x_{m+2} + \dots \pm x_n| \stackrel{(*)}{\in} [0, x_{m+1}]$$

$$(*): x_{m+1} - x_{m+2} + \dots + x_n = (x_{m+1} - x_{m+2}) + \dots + (x_{n-2} - x_{n-1}) + x_n \ge 0$$
$$= x_{m+1} - (x_{m+2} - x_{m+3}) - \dots - (x_{n-1} - x_n) \le x_{m+1}$$

Check for the case with last term -.

Now, $\forall \epsilon > 0$, find N such that $|x_n| < \epsilon$ for $n \ge N$. Then for $n > m \ge N$, $|s_n - s_m| \le x_{m+1} < \epsilon$. Thus $\langle s_n \rangle$ is a Cauchy sequence and the given series converges.

Example. $a_n = (-1)^{n-1}/n$. $\sum a_n$ converges by alternating series test and converges to log 2.

Remark. The rearrangement of the above example may not converge, or converge to a different value than log 2.

Exam: 1.1 - 2.6

After the midterms we will be covering functions and continuity.

Chapter 1 has been about \mathbb{R} , and in Chapter 2, we have talked about subsets of \mathbb{R}^n .

- 2.1: What is \mathbb{R}^n ? Vector Space, IPS, Metric Space, Normed Space...
- 2.2: Open, closed sets
- 2.3: Bounded sets and Cauchy sequences
- (2.4: Convergence Tests)
- 2.5: Compact Sets
- 2.6: Connect Sets