

JAPAN PATENT OFFICE

12.06.03

REC'D 0 1 AUG 2003

別紙添付の書類に記載されている事項は下記の出願書類は記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 9月20日

出 願 Application Number:

特願2002-275572

[ST. 10/C]:

[JP2002-275572]

出 願 人 Applicant(s):

杉山 治夫 中外製薬株式会社 住友製薬株式会社

> SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月18日

【書類名】

特許願

【整理番号】

185832

【提出日】

平成14年 9月20日

【あて先】

特許庁長官殿

【国際特許分類】

C12N 5/00

A61K 35/12

【発明者】

【住所又は居所】

大阪府大阪市此花区春日出中3丁目1番98号 住友製

薬株式会社内

【氏名】

後藤 正志

【発明者】

【住所又は居所】

大阪府大阪市此花区春日出中3丁目1番98号 住友製

薬株式会社内

【氏名】

高須 秀夫

【発明者】

【住所又は居所】

大阪府箕面市船場西2-19-30

【氏名】

杉山 治夫

【特許出願人】

【識別番号】

595090392

【住所又は居所】 大阪府箕面市船場西2-19-30

【氏名又は名称】

杉山 治夫

【特許出願人】

【識別番号】

000003311

【住所又は居所】

東京都北区浮間5丁目5番1号

【氏名又は名称】

中外製薬株式会社

【特許出願人】

【識別番号】

000183370

【住所又は居所】 大阪府大阪市中央区道修町2丁目2番8号

【氏名又は名称】

住友製薬株式会社

【代理人】

【識別番号】

100062144

【弁理士】

【氏名又は名称】

青山 葆

【選任した代理人】

【識別番号】 100086405

【弁理士】

【氏名又は名称】 河宮 治

【選任した代理人】

【識別番号】 100068526

【弁理士】

【氏名又は名称】 田村 恭生

【選任した代理人】

【識別番号】 100103230

【弁理士】

【氏名又は名称】 高山 裕貢

【先の出願に基づく優先権主張】

【出願番号】 特願2002-171518

【出願日】 平成14年 6月12日

【手数料の表示】

【予納台帳番号】 013262

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【物件名】

委任状 1

【提出物件の特記事項】 手続補足書により提出する。

【包括委任状番号】 0203207

【包括委任状番号】 9809450

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 HLA-A24拘束性癌抗原ペプチド 【特許請求の範囲】

【請求項1】 以下のアミノ酸配列:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号: 2)、

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号: 3)、

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号: 4)、

Ala Tyr Leu Pro Ala Val Pro Ser Leu(配列番号:5)、および

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号: 6)、

のなかから選ばれるいずれかの配列を含むアミノ酸配列を有するペプチド。

【請求項2】 配列番号:2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配列からなる、請求項1記載のペプチド。

【請求項3】 配列番号:2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列を含むアミノ酸配列を有し、かつHLA-A24拘束性のCTL誘導活性を有するペプチド(ただし、配列番号7のアミノ酸配列を有するペプチドは除く)。

【請求項4】 配列番号:2、3、5および6のなかから選ばれるいずれかのアミノ酸配列の第9位のロイシンをフェニルアラニン、トリプトファン、イソロイシンまたはメチオニンに置換した改変アミノ酸配列を含むアミノ酸配列を有する、請求項3記載のペプチド。

【請求項5】 配列番号:4のアミノ酸配列の第9位のフェニルアラニンを トリプトファン、ロイシン、イソロイシンまたはメチオニンに置換した改変アミ ノ酸配列を含むアミノ酸配列を有する、請求項3記載のペプチド。

【請求項6】 配列番号:4のアミノ酸配列の第5位のシステインをアラニン、セリンまたはα-アミノ酪酸に置換した改変アミノ酸配列(配列番号:66、67または68)を含むアミノ酸配列を有する、請求項3記載のペプチド。

【請求項7】 配列番号:2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列からなる、請求項3~6のいずれか記載のペプチド。

【請求項8】 請求項1~7のいずれか記載のペプチドをコードするポリヌクレオチド。

【請求項9】 配列番号:2~6および66~68のなかから選ばれるいずれかのアミノ酸配列をコードする、請求項8記載のポリヌクレオチド。

【請求項10】 請求項8または9記載のポリヌクレオチドを含有する発現ベクター。

【請求項11】 請求項10記載の発現ベクターを含有する細胞。

【請求項12】 請求項11記載の細胞を、ペプチドの発現可能な条件下で培養することを特徴とする、請求項1~7のいずれか記載のペプチドの製造方法。

【請求項13】 請求項 $1\sim7$ のいずれか記載のペプチドに特異的に結合する抗体。

【請求項14】 請求項 $1\sim7$ のいずれかに記載のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体が提示されている抗原提示細胞。

【請求項15】 配列番号: $2\sim6$ および $66\sim68$ のなかから選ばれるいずれかのアミノ酸配列からなる癌抗原ペプチドとHLA-A24抗原との複合体が提示されている、請求項14記載の抗原提示細胞。

【請求項16】 請求項 $1\sim7$ のいずれか記載のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL。

【請求項17】 配列番号: $2\sim6$ および $66\sim6$ 8 のなかから選ばれるいずれかのアミノ酸配列からなる癌抗原ペプチドとHLA-A 2 4 抗原との複合体を認識する、請求項16 記載のCTL。

【請求項18】 請求項1~7のいずれか記載のペプチド、請求項8または9記載のポリヌクレオチド、請求項10記載の発現ベクター、請求項11記載の細胞、請求項14または15記載の抗原提示細胞、あるいは請求項16または17記載のCTLと、薬学的に許容される担体とを含有する医薬組成物。

【請求項19】 請求項1~7のいずれか記載のペプチド、請求項8または9記載のポリヌクレオチド、請求項10記載の発現ベクター、請求項11記載の細胞、請求項14または15記載の抗原提示細胞、あるいは請求項16または1

【請求項20】 以下のa)~f)

- a) Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号: 7) を含むアミノ酸配列を有するペプチド、
- b) 上記 a)のペプチドをコードするポリヌクレオチド、
- c)上記b)のポリヌクレオチドを含有する発現ベクター、
- d)上記c)の発現ベクターを含有する細胞、
- e)上記a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体が提示されている抗原提示細胞、および
- f) 上記 a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL、
- のなかから選ばれるいずれかと薬学的に許容される担体とを含有する医薬組成物。

【請求項21】 以下のa)~f):

- a) 配列番号:7のアミノ酸配列を含むアミノ酸配列を有するペプチド、
- b) 上記 a)のペプチドをコードするポリヌクレオチド、
- c)上記b)のポリヌクレオチドを含有する発現ベクター、
- d) 上記 c) の発現ベクターを含有する細胞、
- e) 上記 a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体が提示されている抗原提示細胞、および
- f)上記a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL、
- のなかから選ばれるいずれかを有効成分とする癌ワクチン。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、HLA-A24拘束性癌抗原ペプチドに関する。より詳細には、本発明は、イン・ビボでCTL誘導能を有するWT1由来のHLA-A24拘束性癌抗原ペプチド、および当該ペプチドの癌ワクチンとしての使用などに関する。

[0002]

【従来の技術】

生体による癌細胞やウイルス感染細胞等の排除には細胞性免疫、とりわけ細胞 傷害性T細胞(CTLと称する)が重要な働きをしている。CTLは、癌細胞上 の癌抗原タンパク質由来の抗原ペプチド(癌抗原ペプチド)とMHC(Major Hi stocompatibility Complex)クラスI抗原(ヒトの場合はHLA抗原と称する) により形成される複合体を認識し、癌細胞を攻撃・破壊する。

[0003]

癌抗原タンパク質は、Immunity, vol.10:281, 1999のtable1に記載のものが代 表例として挙げられる。具体的にはメラノサイト組織特異的タンパク質であるg p 1 0 0 (J. Exp. Med., 179:1005, 1994) 、 MART-1 (Proc. Natl. Acad. Sci .USA, 91:3515, 1994)、およびチロシナーゼ(J.Exp.Med., 178:489, 1993)な どのメラノソーム抗原、メラノーマ以外の癌抗原タンパク質としてはHER2/ n e u (J.Exp.Med., 181:2109, 1995) 、 C E A (J.Natl.Cancer.Inst., 87:98 2, 1995) 、およびPSA(J.Natl.Cancer.Inst., 89:293, 1997)などの癌マー カーが挙げられる。癌抗原ペプチドは、癌抗原タンパク質が細胞内プロテアーゼ によりプロセシングされて生成される約8から11個のアミノ酸から成るペプチ ドであり (Cur. Opin, Immunol., 5:709, 1993; Cur. Opin, Immunol., 5:719, 1993; Cell, 82:13, 1995; Immunol. Rev., 146:167, 1995)、前記のように、 この生成された癌抗原ペプチドとMHCクラスI抗原(HLA抗原)との複合体 が細胞表面に提示され、CTLにより認識される。従って、CTLによる癌細胞 破壊を利用する癌免疫療法剤(癌ワクチン)を開発する場合、CTLを効率良く 誘導できる癌抗原ペプチドを癌抗原タンパク質より同定することが、非常に重要 となる。

[0004]

MHCクラスI分子は、多くのサブタイプが存在し、結合できる抗原ペプチドーのアミノ酸配列にはそれぞれのタイプについて規則性(結合モチーフ)が存在する。例えば、HLA-A2の結合モチーフは、2番目のアミノ酸がロイシン、メチオニンまたはイソロイシン、9番目のアミノ酸がバリン、ロイシンまたはイソ

ロイシンである。またHLA-A24の結合モチーフは、2番目のアミノ酸がチロシン、フェニルアラニン、メチオニンまたはトリプトファン、9番目のアミノ酸がフェニルアラニン、ロイシン、イソロイシン、トリプトファンまたはメチオニンである。また最近では、前記モチーフを含むHLA抗原への推定結合配列をデータベース上で検索することも可能である(例えばBIMASソフト(http://bimas.dcrt.nih.gov/molbio/hla_bind/))。従って、CTLを誘導できる癌抗原ペプチドを癌抗原タンパク質より同定するには、第一に、癌抗原タンパク質のアミノ酸配列より目的のHLAタイプの結合モチーフまたは推定結合配列に一致する約8から11個のアミノ酸より構成されるペプチド領域を同定する。

[0005]

しかしながら、結合モチーフや推定結合配列より同定されたペプチドが必ず免疫原性を有するとは限らない。癌抗原ペプチドは癌抗原タンパク質が細胞内でプロセシングされることにより生成されるため、プロセシングにより生成されないペプチドは抗原ペプチドとはなり得ない。さらに、結合モチーフや推定結合配列を有するペプチドが実際に癌抗原ペプチドとして細胞内で生成されても、多くの癌抗原タンパク質は本来生体に存在する正常な物質であるため、CTLはこれら癌抗原に対してトレランスとなっている場合がある。以上のことから、CTL誘導活性を有する癌抗原ペプチドを同定するためには、目的のHLAタイプの結合モチーフ・推定結合配列による予測のみでは不充分であり、イン・ビボでの免疫原性(CTL誘導活性)の評価が重要となる。

[0006]

Wilms癌の癌抑制遺伝子WT1 (WT1遺伝子)は、Wilms癌、無紅彩、泌尿生殖異常、精神発達遅延などを合併するWAGR症候群の解析からWilms癌の原因遺伝子の1つとして染色体11pl3から単離され (Nature, 343:774, 1990)、そのゲノムDNAは約50kbで10のエキソンから成り、その cDNAは約3kbである。cDNAから推定されるアミノ酸配列は、配列番号:1に示す通りである (Cell., 60:509, 1990 (非特許文献1))。WT1遺伝子はヒト白血病で高発現しており、白血病細胞をWT1アンチセンスオリゴマーで処理するとその細胞増殖が抑制される (特開平9-104627号公報)ことなど

から、WT1遺伝子は白血病細胞の増殖に促進的に働いていることが示唆されている。さらに、WT1遺伝子は、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌においても高発現しており(特開平9-104627号公報、特開平11-35484号公報)、白血病および固形癌における新しい癌抗原タンパク質であることが判明した(J.Immunol.,164:1873-80,2000(非特許文献 2)、J.Clin.Immunol.,20,195-202,2000(非特許文献 3))。癌免疫療法剤(癌ワクチン)は多くの癌患者に対して適用可能であることが好ましいことから、多くの癌種で高発現しているWT1における癌抗原ペプチドの同定、および当該癌抗原ペプチドを利用した癌ワクチンの開発は重要である。これに関してW000/06602号公報(特許文献 1)およびW000/18795号公報(特許文献 2)には、WT1タンパクの部分から成る幾つかの天然型の癌抗原ペプチドが記載されている。

[0007]

前記癌ワクチンの開発においてイン・ビボにおける有用性を評価するには、実験動物として一般に使用されている純系マウスは使用できず、HLAを発現するヒトモデル動物を用いる必要がある。すなわち、癌ワクチンとして用いられるヒト抗原ペプチドは、HLAに提示されることにより特異的免疫応答を誘導することが可能となるものであるが、当該HLAはヒトに特異的なMHCクラスI分子であるため、HLAを有さない非ヒト動物をヒト治療用癌ワクチンのイン・ビボ評価に使用することは出来ない。従って、前記のように癌ワクチンの有用性の評価には、HLAを発現するヒトモデル動物が必要である。

【特許文献1】

国際公開第W000/06602号パンフレット

【特許文献2】

国際公開第W000/18795号パンフレット

【非特許文献1】

Cell., 60:509, 1990

【非特許文献2】

J. Immunol., 164:1873-80, 2000

【非特許文献3】

J. Clin. Immunol., 20, 195-202, 2000

[0008]

【発明が解決しようとする課題】

本発明の目的は、イン・ビボにおいて免疫原性(CTL誘導活性)を有するWT1由来の癌抗原ペプチド、および当該癌抗原ペプチドの癌ワクチンとしての使用などを提供することにある。

[0009]

【課題を解決するための手段】

最近、HLA-A24抗原を発現しイン・ビボでの評価に使用できるヒトモデル動物が作製され、特許出願されている(PCT/JP01/10885、国際出願日:2001年12月12日(優先日:2000年12月13日)、出願人:住友製薬株式会社)。

これにより、HLA-A24拘束性癌抗原タンパク、癌抗原ペプチドおよびそれらの遺伝子をイン・ビボで評価することができるようになった。

[0010]

本発明者らは、前記ヒトモデルマウスを用いて、WT1に由来するHLA-A24拘束性の天然型ペプチドおよび改変型ペプチドの評価を行った。すなわち、BIMASソフト(http://bimas.dcrt.nih.gov/molbio/hla_bind/)により推定したWT1中のHLA-A24抗原への推定結合配列(結合モチーフ)を有するペプチドについて評価した結果、以下の天然型ペプチド:

ペプチドA: Arg Met Phe Pro Asn Ala Pro Tyr Leu (配列番号:8)

ペプチドB: Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号:7)

ペプチドC: Arg Trp Pro Ser Cys Gln Lys Lys Phe (配列番号:9)

ペプチドD: Gln Tyr Arg Ile His Thr His Gly Val Phe (配列番号:10)

ペプチドE: Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe (配列番号:11)

において、唯一ペプチドB(配列番号:7)のみが、イン・ビボにて免疫原性(CT L誘導活性)を有することを見出した。

[0011]

さらに前記ペプチドA~Cの第2位のアミノ酸をチロシン (Tyr) に改変した以下

の改変型ペプチド:

ペプチドF: Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2)

ペプチドG: Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3)

ペプチドH: Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4)

を作製し同様の評価を行った。その結果、改変型ペプチドGは、もとの天然型ペプチドBよりも、より高い免疫原性を有することを見出した。また、天然型ペプチドAおよびCが免疫原性を有していなかったにもかかわらず、その改変型ペプチドFおよびHは、高い免疫原性(CTL誘導活性)を有することを見出した。

[0012]

さらに、前記と同様、BIMASソフトにより検索されたWT1中のHLA-A24抗原への推定結合配列を有するヒトWT1由来の以下の天然型ペプチド(ペプチドK、L)、およびその第2位のアミノ酸をチロシンに改変した以下の改変型ペプチド(ペプチドI、J):

ペプチドK: Ala Leu Leu Pro Ala Val Pro Ser Leu (配列番号:51)

ペプチドL: Asn Gln Met Asn Leu Gly Ala Thr Leu (配列番号:52)

ペプチドI: Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5)

ペプチドJ: Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6)

についても同様の評価を行った。その結果、天然型ペプチドKおよびLは免疫原性 (CTL誘導活性)を有していなかったにもかかわらず、その改変型ペプチドIおよびJはイン・ビボで高い免疫原性 (CTL誘導活性)を有することを見出した。

[0013]

これらの知見から、本発明者らは、前記配列番号:2~6で示された改変型ペプチド、および配列番号:7で示された天然型ペプチドは、癌ワクチンとして種々の形態で利用可能であるとの確信を得た。本発明はかかる知見に基づいて完成されたものである。

[0014]

すなわち、本発明は:

(I) 以下のアミノ酸配列:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号: 2)、

9/

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号: 4)、

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号: 5) 、および

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号: 6)、

のなかから選ばれるいずれかの配列を含むアミノ酸配列を有するペプチド;また は配列番号:2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配 列からなるペプチド;あるいは

配列番号: 2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列を含むアミノ酸配列を有し、かつHLA-A24拘束性のCTL誘導活性を有するペプチド(ただし、配列番号7のアミノ酸配列を有するペプチドは除く)、好ましくは配列番号: 2、3、5および6のなかから選ばれるいずれかのアミノ酸配列の第9位のロイシンをフェニルアラニン、トリプトファン、イソロイシンまたはメチオニンに置換した改変アミノ酸配列を含むアミノ酸配列を有する、本発明のペプチド;配列番号: 4のアミノ酸配列の第9位のフェニルアラニンをトリプトファン、ロイシン、イソロイシンまたはメチオニンに置換した改変アミノ酸配列を含むアミノ酸配列を有する、本発明のペプチド; または配列番号: 4のアミノ酸配列の第5位のシステインをアラニン、セリンまたはαーアミノ酸配列を含むアミノ酸配列の第5位のシステインをアラニン、セリンまたはαーアミノ酸配列を有する、本発明のペプチド;または配列番号: 2、3、4、5および6のなかから選ばれるいずれかのアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列からなる、本発明のペプチド:

(II) 本発明のペプチドをコードするポリヌクレオチド、好ましくは配列番号:2~6および66~68のなかから選ばれるいずれかのアミノ酸配列をコードする、本発明のポリヌクレオチド;あるいは、本発明のポリヌクレオチドを含有する発現ベクター;あるいは、本発明の発現ベクターを含有する形質転換細胞;あるいは、本発明の細胞を、ペプチドの発現可能な条件下で培養することを特徴とする、本発明のペプチドの製造方法;

(III) 本発明のペプチドに特異的に結合する抗体;

- (IV) 本発明のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体が提示されている抗原提示細胞、好ましくは配列番号:2~6および66~68のなかから選ばれるいずれかのアミノ酸配列からなる癌抗原ペプチドとHLA-A24抗原との複合体が提示されている、本発明の抗原提示細胞:
- (V) 本発明のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL、好ましくは配列番号:2~6および66~68のなかから選ばれるいずれかのアミノ酸配列からなる癌抗原ペプチドとHLA-A24抗原との複合体を認識する、本発明のCTL;および
- (VI)本発明のペプチド、本発明のポリヌクレオチド、本発明の発現ベクター、本発明の形質転換細胞、本発明の抗原提示細胞、あるいは本発明のCTLと、薬学的に許容される担体とを含有する医薬組成物、具体的には癌ワクチン、に関する。

[0015]

さらに、本発明は、

(VII) 以下のa) ~f)

- a) Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号:7) を含むアミノ酸配列を有するペプチド、
- b) 上記 a) のペプチドをコードするポリヌクレオチド、
- c)上記b)のポリヌクレオチドを含有する発現ベクター、
- d)上記 c) の発現ベクターを含有する細胞、
- e)上記a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体が提示されている抗原提示細胞、および
- f) 上記 a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL、
- のなかから選ばれるいずれかと薬学的に許容される担体とを含有する医薬組成物 、具体的には癌ワクチンに関する。

[0016]

【発明の実施の形態】

(I) 本発明のペプチド

本発明のペプチドは、ヒトWT1 (Cell., 60:509, 1990、NCBIデータベースAccession No. XP_034418、配列番号: 1) に由来し、イン・ビボでHLA-A24拘束性のCTL誘導活性(免疫原性)を有する。

本発明のペプチドは、抗原提示細胞に提示されて、イン・ビボにてHLA-A24抗原拘束性にCTLを誘導するという特性を有するものである。当該特性は、後述の参考例に詳細に記述されるHLA-A24モデルマウスを用いることにより調べることができる。

[0017]

配列番号:2、3、4、5および6のなかから選ばれるいずれかの配列を含むアミノ酸配列を有する本発明ペプチドは、本発明ペプチド由来の癌抗原ペプチドが抗原提示細胞に提示され、CTLを誘導するという特性を有する限り、何ら制限されないが、その長さは通常9~100個のアミノ酸残基であり、より好ましくは9~50個のアミノ酸残基である。ここに、癌抗原ペプチドとは、抗原提示細胞に提示される、CTL誘導活性を導くペプチドとして定義される。

[0018]

本発明ペプチドは、通常のペプチド化学において用いられる方法に準じて合成することができる。合成方法としては、文献(ペプタイド・シンセシス(Peptide Synthesis), Interscience, New York, 1966; ザ・プロテインズ(The Proteins), Vol 2, Academic Press Inc., New York, 1976; ペプチド合成, 丸善(株), 1975; ペプチド合成の基礎と実験、丸善(株), 1985; 医薬品の開発続 第14巻・ペプチド合成, 広川書店, 1991)などに記載されている方法が挙げられる。

[0019]

また本発明のペプチドは、本発明ペプチドをコードするポリヌクレオチドの配列情報に基づいて、通常のDNA合成および遺伝子工学的手法を用いて製造することもできる。当該DNA合成や各種プラスミドの構築、宿主へのトランスフェクション、形質転換体の培養および培養物からのタンパク質の回収などの操作は、当業者に周知の方法、文献記載の方法(Molecular Cloning, T. Maniatis et al., CS H Laboratory(1983)、DNA Cloning, DM. Glover, IRL PRESS(1985))、あるいは後

述の2.項に記載の方法などに準じて行うことができる。

[0020]

以下、本発明のペプチドについてより詳細に説明する。

[0021]

(1)配列番号:2~6のなかから選ばれるいずれかの配列を含むアミノ酸配列を有するペプチド

本発明は前述のように、配列番号:2~6に示されるWT1由来の改変型ペプチドが、イン・ビボにてCTL誘導活性を有するという新たな知見を得たことに基づく。配列番号:2~6に示される新規なペプチドがイン・ビボにおいてCTL誘導活性を確かに示すという知見は、従来知られていなかった。これら改変型ペプチドのいずれかを含む本発明のペプチドは、癌免疫療法におけるCTL誘導剤の有効成分として、また癌ワクチンの有効成分として有用である。

[0022]

本発明のペプチドは、具体的には以下のアミノ酸配列:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2)、

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3)、

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4)、

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) または

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6) のいずれかを含む。

[0023]

このうちArg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4) を含むアミノ酸配列を有するペプチドおよび Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) を含むアミノ酸配列を有するペプチドが、好ましい。

[0024]

本発明のペプチドとして、より具体的には以下の(1-1)~(1-4)に挙げるペプチドを例示することができる。

[0025]

(1-1) 配列番号:2~6のなかから選ばれるいずれかのアミノ酸配列からなるペプチド

配列番号:2~6のいずれかのアミノ酸配列からなるペプチドの具体例として、 以下に示す癌抗原ペプチドを例示することができる:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2) からなる癌抗原ペプチド

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3) からなる癌抗原ペプチド

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4) からなる癌抗原ペプチド

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) からなる癌抗原ペプチド

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6) からなる癌抗原ペプチド。

[0026]

このうちArg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4) からなる癌抗原ペプチドおよび Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) からなる癌抗原ペプチドが、好ましい。これらのペプチドは、前述のように一般的なペプチド合成法によって製造することができる。また、本発明の参考例に記述のヒトモデル動物に供することによりイン・ビボでのCTL誘導活性を測定することができる。

[0027]

(1-2) 配列番号:2~6のいずれかのアミノ酸配列を含み、モチーフ構造を保持するペプチド

HLA分子には多くのサブタイプが存在し、結合できる抗原ペプチドのアミノ酸配列にはそれぞれのタイプについて規則性(結合モチーフ)が存在することが知られている。HLA-A24の結合モチーフとしては、 $8\sim11$ アミノ酸からなるペプチドのうちの第2位のアミノ酸がチロシン(Tyr)、フェニルアラニン(Phe)、メチオニン(Phe)、またはトリプトファン(Phe)であり、Phe0、C末端のアミノ酸がフェニルアラニン(Phe1、ロイシン(Phe2)、イソロイシン(Phe3、トリプトファン(Phe3、ロイシン(Phe4)、イソロイシン(Phe5、トリプトファン(Phe6、ロイシン(Phe6、ロイシン(Phe6、ロイシン(Phe7) となることが知られている(Phe8、Phe9 (Phe9、Phe9) (Phe9 (Phe9) (Phe9 (Phe9) (Phe9 (Phe9 (Phe9) (Phe9 (Phe9 (Phe9 (Phe9 (Phe9)) (Phe9 (Phe9) (Phe9 (Phe9) (Phe9

ページ: 14/

munogenetics, 41, p178, 1995、J. Immunol., 155, p4307, 1994) 。

[0028]

従ってこの規則性に基づいて、以下に示される9アミノ酸からなる本発明の癌 抗原ペプチド:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2)、

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3)、

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4)、

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) 、または

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6)、

のC末端に、Phe、Leu、Ile、TrpまたはMetを付加した10アミノ酸からなるペプチド、あるいは当該10アミノ酸からなるペプチドのC末端にさらにPhe、Leu、Ile、TrpまたはMetを付加した11アミノ酸からなるペプチドであって、イン・ビボにてCTL誘導活性を有する当該ペプチドも、本発明のペプチドの具体例として例示できる。これらのペプチドも、前述のように一般的なペプチド合成法によって製造することができる。また、本発明の参考例に記述のヒトモデル動物に供することにより、イン・ビボでのCTL誘導活性を測定することができる。

[0029]

(1-3) 配列番号:2~6のいずれかのアミノ酸配列を含むエピトープペプチド 近年、複数のCTLエピトープ (抗原ペプチド) を連結したペプチド (エピトー プペプチド) が、イン・ビボで効率的にCTL誘導活性を有することが示されてい る。例えばJournal of Immunology 1998, 161: 3186-3194には、癌抗原タンパク 質PSA由来のHLA-A2, -A3, -A11, B53拘束性CTLエピトープを連結した約30merの ペプチドが、イン・ビボでそれぞれのCTLエピトープに特異的なCTLを誘導したこ とが記載されている。

[0030]

またCTLエピトープとヘルパーエピトープとを連結させたペプチド(エピトープペプチド)により、効率的にCTLが誘導されることも示されている。ここでヘルパーエピトープとはCD4陽性T細胞を活性化させる作用を有するペプチドを指すものであり(Immunity., 1:751, 1994)、例えばB型肝炎ウイルス由来のH

BVc128-140や破傷風毒素由来のTT947-967などが知られている。当該ヘルパーエピトープにより活性化されたCD4陽性T細胞は、CTLの分化の誘導や維持、およびマクロファージなどのエフェクター活性化などの作用を発揮するため、抗腫瘍免疫応答に重要であると考えられている。このようなヘルパーエピトープとCTLエピトープとを連列したペプチドの具体例として、例えばJournal of Immunology 1999, 162: 3915-3925には、HBV由来HLA-A2拘束性抗原ペプチド6種類、HLA-A11拘束性抗原ペプチド3種類、およびヘルパーエピトープより構成されるペプチドをコードするDNA(ミニジーン)が、イン・ビボでそれぞれのエピトープに対するCTLを効果的に誘導したことが記載されている。また実際に、CTLエピトープ(メラノーマ抗原gp100の第280位~288位からなる癌抗原ペプチド)とヘルパーエピトープ(破傷風毒素由来Tヘルパーエピトープ)とを連結したペプチドが臨床試験に供されている(Clinical Cancer Res., 2001,7:3012-3024)。

[0031]

従って、前記(1-1)や(1-2)に記述したような本発明の癌抗原ペプチドを含む複数のエピトープを連結したペプチド(エピトープペプチド)であってイン・ビボでCTL誘導活性を有するペプチドも、本発明のペプチドの具体例として例示することができる。

ここで、本発明の癌抗原ペプチドに連結させるエピトープがCTLエピトープの場合、用いるCTLエピトープとしては、WT1由来のHLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, -Cw0602などに拘束性のCTLエピトープが挙げられる。これらCTLエピトープは複数個連結することが可能であり、1つのCTLエピトープの長さとしては、各種HLA分子に結合している抗原ペプチドの解析により(Immunogenetics, 41:178, 1995)、8~14 アミノ酸程度を挙げることができる。

[0032]

また本発明の癌抗原ペプチドに連結させるエピトープがヘルパーエピトープの場合、用いるヘルパーエピトープとしては、前述のようなB型肝炎ウイルス由来のHBVc128-140や破傷風毒素由来のTT947-967などが挙げら

[0033]

本発明のエピトープペプチドとして、より具体的には、例えば配列番号:2~6のいずれかのアミノ酸配列の1種または2種以上とヘルパーエピトープとを連結させたペプチドを挙げることができる。より具体的には、例えば配列番号:2~6のいずれかのアミノ酸配列の1種または2種以上と破傷風毒素由来のヘルパーペプチド (例えばPhe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser Ala Ser His Leu Glu;配列番号:32)とを連結させたペプチドや、配列番号:2~6のいずれかのアミノ酸配列の1種または2種以上とAla Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu (配列番号:50、Clinical Cancer Res., 2001,7:3012-3024)とを連結させたペプチドなどが挙げられる。

[0034]

このような複数のエピトープを連結させたペプチド(エピトープペプチド)は、前述のように一般的なペプチド合成法によって製造することができる。またこれら複数のエピトープを連結させたエピトープペプチドをコードするポリヌクレオチドの配列情報に基づいて、通常のDNA合成および遺伝子工学的手法を用いて製造することもできる。すなわち、当該ポリヌクレオチドを周知の発現ベクターに挿入し、得られた組換え発現ベクターで宿主細胞を形質転換して作製された形質転換体を培養し、培養物より目的の複数のエピトープを連結させたエピトープペプチドを回収することにより製造することができる。これらの手法は、前述のように文献記載の方法(Molecular Cloning, T. Maniatis et al., CSH Laboratory (1983)、DNA Cloning, DM. Glover, IRL PRESS(1985))や後述の(II).項に記載の方法などに準じて行うことができる。

[0035]

以上のようにして製造された複数のエピトープを連結させたエピトープペプチドを本発明の参考例に記述のヒトモデル動物に供することにより、イン・ビボでのCTL誘導活性を測定することができる。

[0036]

前記(1-1)~(1-3)に例示したような本発明のペプチドのN末端アミノ酸のアミノ基、またはC末端アミノ酸のカルボキシル基を修飾することも可能である。

[0037]

ここでN末端アミノ酸のアミノ基の修飾基としては、例えば $1\sim3$ 個の炭素数1から6のアルキル基、フェニル基、シクロアルキル基、アシル基が挙げられる。アシル基の具体例としては炭素数1から6のアルカノイル基、フェニル基で置換された炭素数1から6のアルカノイル基、炭素数5から7のシクロアルキル基で置換されたカルボニル基、炭素数1から6のアルキルスルホニル基、フェニルスルホニル基、炭素数1から6のアルコキシカルボニル基、フェニルスルホニル基、炭素数2から6のアルコキシカルボニル基、フェニル基で置換されたアルコキシカルボニル基、炭素数5から7のシクロアルコキシで置換されたカルボニル基、フェノキシカルボニル基等が挙げられる。

C末端アミノ酸のカルボキシル基を修飾したペプチドとしては、例えばエステル体およびアミド体が挙げられ、エステル体の具体例としては、炭素数1から6のアルキルエステル、フェニル基で置換された炭素数0から6のアルキルエステル、炭素数5から7のシクロアルキルエステル等が挙げられ、アミド体の具体例としては、アミド、炭素数1から6のアルキル基の1つまたは2つで置換されたアミド、フェニル基で置換された炭素数0から6のアルキル基の1つまたは2つで置換されたアミド、アミド基の窒素原子を含んで5から7員環のアザシクロアルカンを形成するアミド等が挙げられる。

. [0038]

(2)配列番号:2~6のなかから選ばれるいずれかのアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列を含むアミノ酸配列を有するペプチド(改変ペプチド)

前述のように本発明においては、配列番号:2~6に示されるWT1由来の改変型ペプチドが、イン・ビボでCTL誘導活性を有するという新たな知見を得た。このようなイン・ビボでのCTL誘導活性を有するペプチドのアミノ酸配列をさらに改変することにより、同等またはそれ以上のCTL誘導活性を有するさらなる改変ペ

プチドを得ることができる。従って本発明においては、このような配列番号:2~6のいずれかに示されるペプチドの改変アミノ酸配列を含むアミノ酸配列を有するペプチド(以下、改変ペプチドと称することもある)を提供することができる。

[0039]

すなわち本発明は、配列番号:2、3、4、5および6のいずれかに記載のアミノ酸配列中にアミノ酸残基の改変を含有する改変アミノ酸配列を含むアミノ酸配列を有し、かつCTL誘導活性を有するペプチドを提供するものである。ただし、配列番号7のアミノ酸配列を有するペプチドは本発明のペプチドの範囲から除外される。

[0040]

本発明におけるアミノ酸残基の「改変」とは、1個または数個のアミノ酸残基の置換、欠失、および/または付加を意味し、好ましくは置換である。アミノ酸残基の置換に係る改変の場合、置換されるアミノ酸残基の数、位置および種類は、イン・ビボでのCTL誘導活性を保持する限り特に限定されない。このような改変アミノ酸配列を含むアミノ酸配列を有するペプチドの具体例として、以下に挙げるペプチドが例示される。

[0041]

前述のように、HLA-A24の結合モチーフとして、 $8\sim11$ アミノ酸からなるペプチドのうちの第2位のアミノ酸がチロシン(Tyr)、フェニルアラニン(Phe)、メチオニン(Met)またはトリプトファン(Trp)であり、C末端のアミノ酸がフェニルアラニン(Phe)、ロイシン(Leu)、イソロイシン(Ile)、トリプトファン(Trp)またはメチオニン(Met)となることが知られている(Met)となることが知られている(Met)となることが知られている(Met)。よって、本発明における改変ペプチドでは、配列番号: $2\sim6$ のなかから選ばれるいずれかのアミノ酸配列の第2位および/または第9位のアミノ酸残基を、前記モチーフ上とり得るアミノ酸残基に置換することが可能である。

具体的に第2位のアミノ酸の改変ペプチドとしては、以下に列挙するアミノ酸配列を含みかつイン・ビボでCTL誘導活性を有するペプチドを挙げることができ

る:

Arg Phe Phe Pro Asn Ala Pro Tyr Leu (配列番号:53)、Arg Trp Phe Pro Asn Ala Pro Tyr Leu (配列番号:54)、Arg Phe Pro Gly Val Ala Pro Thr Leu (配列番号:55)、Arg Met Pro Gly Val Ala Pro Thr Leu (配列番号:56)、Arg Trp Pro Gly Val Ala Pro Thr Leu (配列番号:57)、Arg Phe Pro Ser Cys Gln Lys Lys Phe (配列番号:58)、Arg Met Pro Ser Cys Gln Lys Lys Phe (配列番号:59)、Arg Met Pro Ser Cys Gln Lys Lys Phe (配列番号:59)、Ala Phe Leu Pro Ala Val Pro Ser Leu (配列番号:60)、Ala Met Leu Pro Ala Val Pro Ser Leu (配列番号:61)、Ala Trp Leu Pro Ala Val Pro Ser Leu (配列番号:63)、Asn Phe Met Asn Leu Gly Ala Thr Leu (配列番号:64)、Asn Trp Met Asn Leu Gly Ala Thr Leu (配列番号:65)。

より具体的には、前記配列番号:53~65のいずれかに記載のアミノ酸配列からなる癌抗原ペプチドが挙げられる。

本発明の配列番号:2~6に示されるペプチドは、いずれも、ヒトWT1由来の天然型ペプチドの第2位のアミノ酸をチロシンに改変することにより良好なCTL誘導活性を有するに至った改変型ペプチドである。よって、本発明の改変ペプチドは、当該第2位のアミノ酸がチロシンであることが望ましい。一方C末端のアミノ酸については、前記のモチーフ上とり得るアミノ酸に改変することが可能である。

[0042]

この態様における本発明の改変ペプチドとして、以下に列挙するアミノ酸配列を含みかつイン・ビボでCTL誘導活性を有するペプチドを挙げることができる:

Arg Tyr Phe Pro Asn Ala Pro Tyr Phe (配列番号:12)、

Arg Tyr Phe Pro Asn Ala Pro Tyr Trp (配列番号:13)、

Arg Tyr Phe Pro Asn Ala Pro Tyr Ile (配列番号:14)、

Arg Tyr Phe Pro Asn Ala Pro Tyr Met (配列番号:15)、

Arg Tyr Pro Gly Val Ala Pro Thr Phe (配列番号:16)、

Arg Tyr Pro Gly Val Ala Pro Thr Trp (配列番号:17)、Arg Tyr Pro Gly Val Ala Pro Thr Ile (配列番号:18)、Arg Tyr Pro Gly Val Ala Pro Thr Met (配列番号:19)、Arg Tyr Pro Ser Cys Gln Lys Lys Trp (配列番号:20)、Arg Tyr Pro Ser Cys Gln Lys Lys Leu (配列番号:21)、Arg Tyr Pro Ser Cys Gln Lys Lys Ile (配列番号:21)、Arg Tyr Pro Ser Cys Gln Lys Lys Ile (配列番号:22)、Arg Tyr Pro Ser Cys Gln Lys Lys Met (配列番号:23)、Ala Tyr Leu Pro Ala Val Pro Ser Phe (配列番号:24)、Ala Tyr Leu Pro Ala Val Pro Ser Trp (配列番号:25)、Ala Tyr Leu Pro Ala Val Pro Ser Ile (配列番号:26)、Ala Tyr Leu Pro Ala Val Pro Ser Ile (配列番号:26)、Ala Tyr Leu Pro Ala Val Pro Ser Met (配列番号:27)、Asn Tyr Met Asn Leu Gly Ala Thr Phe (配列番号:28)、Asn Tyr Met Asn Leu Gly Ala Thr Trp (配列番号:29)、Asn Tyr Met Asn Leu Gly Ala Thr Ile (配列番号:30)、Asn Tyr Met Asn Leu Gly Ala Thr Ile (配列番号:31)。

より具体的には、前記配列番号:12~31のいずれかに記載のアミノ酸配列からなる癌抗原ペプチドが挙げられる。

さらに、これら第2位のアミノ酸の改変と、C末端のアミノ酸の改変を併せ持つ 癌抗原ペプチドも例示することができる。

[0043]

また、配列番号:4に記載のアミノ酸配列中にはシステイン残基が存在し、それは溶液中にて酸化されてジスルフィド結合を生じる可能性がある。これを避けるには、当該システイン残基を他のアミノ酸残基、例えばアラニン残基やセリン残基などに置換したり、システイン残基と化学構造の類似する α -アミノ酪酸に置換し、改変ペプチドとすることが考えられる。

この態様における本発明の改変ペプチドとして、以下に列挙するアミノ酸配列を含みかつイン・ビボでCTL誘導活性を有するペプチドを挙げることができる: Arg Tyr Pro Ser Ser Gln Lys Lys Phe (配列番号:66)、

Arg Tyr Pro Ser Ala Gln Lys Lys Phe (配列番号:67)、

より具体的には、前記配列番号:66~68のいずれかに記載のアミノ酸配列からなる癌抗原ペプチドが挙げられる。

これらのペプチドは、前述のように一般的なペプチド合成法によって製造することができる。また、本発明の参考例に記述のヒトモデル動物に供することによりイン・ビボでのCTL誘導活性を測定することができる。

[0044]

以上述べた本発明の改変ペプチドに関しても、前記 (1-2) と同様のモチーフ 構造を保持するペプチド、前記 (1-3) と同様の複数のエピトープを連結させたペプチド、あるいは前記 (1-4) と同様のアミノ基もしくはカルボキシル基を修飾したペプチドとすることができる。

[0045]

以上のような本発明のペプチドは、例えば、①後述するCTLの誘導剤、癌ワクチンの有効成分として、また②後述する抗原提示細胞の作製において、有効に用いることができる。

[0046]

(II) 本発明のポリヌクレオチド、発現ベクター、および形質転換細胞

本発明はまた、前記本発明のペプチドをコードするポリヌクレオチドを提供する。本発明のペプチドをコードするポリヌクレオチドは、DNAの形態であってもRNAの形態であっても良い。これら本発明のポリヌクレオチドは、本発明のペプチドのアミノ酸配列情報およびそれによりコードされるDNAの配列情報に基づき容易に製造することができる。具体的には、通常のDNA合成やPCRによる増幅などによって、製造することができる。

[0047]

このような本発明のポリヌクレオチドとしては、以下に示すポリヌクレオチド が例示される:

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号:5) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Arg Tyr Pro Ser Ser Gln Lys Lys Phe (配列番号:66) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Arg Tyr Pro Ser Ala Gln Lys Lys Phe (配列番号:67) を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド、

Arg Tyr Pro Ser Abu Gln Lys Lys Phe (配列番号:68) [ここに、Abuは α -アミノ酪酸である] を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド。

[0048]

具体的には、例えば前記(1-3)に記述したような配列番号:2~6および66~68 のいずれかのアミノ酸配列を含むエピトープペプチドをコードするポリヌクレオチドが挙げられる。より具体的には、例えば配列番号:2~6および66~68のいずれかのアミノ酸配列の1種または2種以上とヘルパーペプチドとを連結させたペプチドをコードするポリヌクレオチドを挙げることができ、例えば配列番号:2~6および66~68のいずれかのアミノ酸配列の1種または2種以上と破傷風毒素由来のヘルパーペプチド(例えばPhe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser Ala Ser His Leu Glu;配列番号:32)とを連結させたペプチドをコードするポリヌクレオチドや、配列番号:2~6および66~68のいずれかのアミノ酸配列の1種または2種以上とAla Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu (配列番号:50、Clinical Cancer Res., 2001,7:3012-3024)とを連結させたペプチドをコードするポリヌクレオチドをコードするポリヌクレオチドを挙げることができる。

[0049]

前記で作製された本発明のポリヌクレオチドを発現ベクターに組み込むことにより、本発明のペプチドを発現するための組換え発現ベクターを作製することができる。

ここで用いる発現ベクターとしては、用いる宿主や目的等に応じて適宜選択することができ、プラスミド、ファージベクター、ウイルスベクター等が挙げられる。

[0050]

例えば、宿主が大腸菌の場合、ベクターとしては、pUC118、pUC119、pBR322、pCR3等のプラスミドベクター、 λ ZAPII、 λ gt11などのファージベクターが挙げられる。宿主が酵母の場合、ベクターとしては、pYES2、pYEUra3などが挙げられる。宿主が昆虫細胞の場合には、pAcSGHisNT-Aなどが挙げられる。宿主が動物細胞の場合には、pKCR、pCDM8、pGL2、pcDNA3.1、pRc/RSV、pRc/CMVなどのプラスミドベクターや、レトロウイルスベクター、アデノウイルスベクター、アデノ関連ウイルスベクターなどのウイルスベクターが挙げられる。

[0051]

前記ベクターは、発現誘導可能なプロモーター、シグナル配列をコードする遺伝子、選択用マーカー遺伝子、ターミネーターなどの因子を適宜有していても良い。

また、単離精製が容易になるように、チオレドキシン、Hisタグ、あるいはGST (グルタチオンS-トランスフェラーゼ) 等との融合タンパク質として発現する配列が付加されていても良い。この場合、宿主細胞内で機能する適切なプロモーター (lac、tac、trc、trp、CMV、SV40初期プロモーターなど) を有するGST融合タンパクベクター (pGEX4Tなど) や、Myc、Hisなどのタグ配列を有するベクター (pcDNA3.1/Myc-Hisなど)、さらにはチオレドキシンおよびHisタグとの融合タンパク質を発現するベクター (pET32a) などを用いることができる。

[0.052]

以上のような本発明のポリヌクレオチドまたはそれを含有する発現ベクターを 本発明の参考例に記述のヒトモデル動物に供することにより、イン・ビボでのCT L誘導活性を測定することができる。

本発明のポリヌクレオチドまたはそれを含有する発現ベクターは、例えば、① 後述する本発明のペプチドの製造において、②後述する遺伝子治療において、また③後述する抗原提示細胞の作製において、有効に用いることができる。

[0053]

前記で作製された発現ベクターで宿主を形質転換することにより、当該発現ベクターを含有する形質転換細胞を作製することができる。

ここで用いられる宿主としては、大腸菌、酵母、昆虫細胞、動物細胞などが挙げられる。大腸菌としては、E. coli K-12系統のHB101株、C600株、JM109株、DH5 α 株、AD494 (DE3) 株などが挙げられる。また酵母としては、サッカロミセス・セルビジエなどが挙げられる。動物細胞としては、L929細胞、BALB/c3T3細胞、C12 7細胞、CH0細胞、COS細胞、Vero細胞、Hela細胞などが挙げられる。昆虫細胞としてはsf9などが挙げられる。

[0054]

宿主細胞への発現ベクターの導入方法としては、前記宿主細胞に適合した通常の導入方法を用いれば良い。具体的にはリン酸カルシウム法、DEAE-デキストラン法、エレクトロポレーション法、遺伝子導入用リピッド (Lipofectamine、Lipofectin; Gibco-BRL社) を用いる方法などが挙げられる。導入後、選択マーカーを含む通常の培地にて培養することにより、前記発現ベクターが宿主細胞中に導入された形質転換細胞を選択することができる。

[0055]

以上のようにして得られた形質転換細胞を好適な条件下で培養し続けることにより、本発明のペプチドを製造することができる。得られたポリペプチドは、一般的な生化学的精製手段により、さらに単離・精製することができる。ここで精製手段としては、塩析、イオン交換クロマトグラフィー、吸着クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィー等が挙げられる。また本発明のポリペプチドを、前述のチオレドキシンやHisタグ、GST等との融合タンパク質として発現させた場合は、これら融合タンパク質やタグの性質を利用した精製法により単離・精製することができる。

[0056]

(III) 本発明の抗体

本発明は、本発明のペプチドに特異的に結合する抗体を提供する。本発明の抗体は、その形態に特に制限はなく、本発明のペプチドを免疫抗原とするポリクローナル抗体であっても良い。

本発明の抗体は前記のように本発明のペプチドに特異的に結合するものであれば特に制限されないが、具体的には、配列番号:2~6および66~68のいずれかに記載のアミノ酸配列からなる癌抗原ペプチドに特異的に結合する抗体を挙げることができる。

[0057]

これらの抗体の製造方法は、すでに周知であり、本発明の抗体もこれらの常法に従って製造することができる(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section 11.12~11.13、Antibodies; A Laboratory Manual, Lane, H, D.ら編, Cold Spring Harber Laboratory Press 出版 New York 1989)。

[0058]

具体的には、本発明のペプチド(例えば配列番号: $2\sim6$ および $66\sim6$ 8のいずれかに記載のアミノ酸配列からなる癌抗原ペプチド)を免疫原として用い、家鬼等の非ヒト動物を免疫し、該免疫動物の血清から常法に従って得ることが可能である。一方、モノクローナル抗体の場合には、本発明のペプチド(例えば配列番号: $2\sim6$ および $66\sim6$ 8 のいずれかに記載のアミノ酸配列からなる癌抗原ペプチド)をマウス等の非ヒト動物に免疫し、得られた脾臓細胞と骨髄腫細胞とを細胞融合させて調製したハイブリドーマ細胞の中から得ることができる(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section $11.4\sim11.11$)。

[0059]

本発明のペプチドに対する抗体の作製は、宿主に応じて種々のアジュバントを 用いて免疫学的反応を高めることによって行うこともできる。そのようなアジュ バントには、フロイントアジュバント、水酸化アルミニウムのようなミネラルゲ

[0060]

以上のように本発明のペプチドを用いて常法により適宜動物を免疫することにより、ペプチドを認識する抗体、さらにはその活性を中和する抗体が容易に作製できる。抗体の用途としては、アフィニティークロマトグラフィー、免疫学的診断等が挙げられる。免疫学的診断は、イムノブロット法、放射免疫測定法(RIA)、酵素免疫測定法(ELISA)、蛍光あるいは発光測定法等より適宜選択できる。このような免疫学的診断は、WT1遺伝子が発現している癌、すなわち胃癌、大腸癌、肺癌、乳癌、胚細胞癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の診断において有効である。

[0061]

(IV) 本発明の抗原提示細胞

本発明は、本発明のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体の提示された抗原提示細胞を提供する。

後述の実施例において、本発明のペプチド投与によりCTL誘導活性が認められたが、これは、末梢血単核球中に、本発明のペプチド由来の癌抗原ペプチドとHL A-A24抗原との複合体の提示された抗原提示細胞が存在し、そして、この複合体の提示された癌細胞を特異的に傷害するCTLが誘導されたことを示すものである。このような、HLA-A24抗原と本発明のペプチド由来の癌抗原ペプチドとの複合体の提示された抗原提示細胞は、後述する細胞療法(DC療法)において有効に用いられる。

[0062]

本発明の抗原提示細胞は、本発明のペプチド由来の癌抗原ペプチドとHLA-A24 抗原との複合体の提示された抗原提示細胞であれば良いが、具体的には、例えば 配列番号:2~6および66~68のいずれかに記載のアミノ酸配列からなる癌 抗原ペプチドとHLA-A24抗原との複合体が樹状細胞の細胞表面に提示された抗原

[0063]

細胞療法において用いられる抗原提示細胞は、癌患者から抗原提示能を有する細胞を単離し、この細胞に本発明のペプチドを体外でパルスするか、または本発明のポリヌクレオチドやそれを含有する発現ベクターを細胞内に導入して、HLA-A24抗原と本発明のペプチド由来の癌抗原ペプチドとの複合体を細胞表面に提示させることにより作製される。ここで「抗原提示能を有する細胞」とは、本発明のペプチドを提示可能なHLA-A24抗原を細胞表面に発現している細胞であれば特に限定されないが、抗原提示能が高いとされている樹状細胞が好ましい。

また、前記抗原提示能を有する細胞にパルスされるものとしては、本発明のペプチドであっても良いし、また本発明のペプチドをコードするポリヌクレオチドやそれを含有する発現ベクターであっても良い。

[0064]

本発明の抗原提示細胞は、例えば癌患者から抗原提示能を有する細胞を単離し、該細胞に本発明のペプチド(例えば配列番号:2~6および66~68のいずれかに記載のアミノ酸配列からなる癌抗原ペプチド)を体外でパルスし、HLA-A24抗原と本発明のペプチド由来の癌抗原ペプチドとの複合体を作製することにより得られる(Cancer Immunol. Immunother., 46:82, 1998、J. Immunol., 158:p1796, 1997、Cancer Res., 59:p1184, 1999)。樹状細胞を用いる場合は、例えば、癌患者の末梢血からフィコール法によりリンパ球を分離し、その後非付着細胞を除き、付着細胞をGM-CSFおよびIL-4存在下で培養して樹状細胞を誘導し、当該樹状細胞を本発明のペプチドと共に培養してパルスすることなどにより、本発明の抗原提示細胞を調製することができる。

[0065]

また、前記抗原提示能を有する細胞に本発明のペプチドをコードするポリヌクレオチド(例えば配列番号:2~6および66~68のいずれかに記載の配列を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド)あるいはそれを含有する発現ベクターを導入することにより本発明の抗原提示細胞を調製する場合は、当該ポリヌクレオチドがDNAの場合は Cancer Res.,56:p5672,1996や

以上のようにして作製された本発明の抗原提示細胞は、後述するCTLの誘導剤 、癌ワクチンの有効成分として、細胞療法(DC療法)において有効に用いられる

[0066]

(V) 本発明のCTL

本発明は、本発明のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTLを提供する。

後述の実施例において、本発明のペプチド投与によりCTL誘導活性が認められたが、これは、末梢血単核球中に、本発明のペプチド由来の癌抗原ペプチドとHL A-A24抗原との複合体の提示された抗原提示細胞が存在し、そして、この複合体の提示された癌細胞を特異的に傷害するCTLが誘導されたことを示すものである。このような、HLA-A24抗原と本発明のペプチド由来の癌抗原ペプチドとの複合体を特異的に認識するCTLは、後述する養子免疫療法において有効に用いられる

[0067]

本発明のCTLは、本発明のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を特異的に認識するものであれば良いが、具体的には、例えば配列番号: $2 \sim 6$ および $6 \sim 6$ 8 のいずれかに記載のアミノ酸配列からなる癌抗原ペプチドとHLA-A24抗原との複合体を特異的に認識するCTLを挙げることができる。

[0068]

養子免疫療法において用いられるCTLは、患者の末梢血リンパ球を単離し、これを本発明のペプチド(例えば配列番号:2~6および66~68のいずれかに記載のアミノ酸配列からなる癌抗原ペプチド)、あるいは本発明のペプチドをコードするポリヌクレオチド(例えば配列番号:2~6および66~68のいずれかに記載の配列を含むアミノ酸配列を有するペプチドをコードするポリヌクレオチド)やそれを含有する発現ベクターでイン・ビトロで刺激する等により作製さ

[0069]

以上のようにして作製された本発明のCTLは、癌ワクチンの有効成分として、 養子免疫療法において有効に用いられる。

[0070]

(VI) 癌ワクチンとしての医薬組成物

以上に記載した本発明のペプチド、本発明のポリヌクレオチド、本発明の発現ベクター、本発明の抗原提示細胞、および本発明のCTLは、それぞれの物質に応じた適切な形態とすることにより、CTLの誘導剤、すなわち癌ワクチンの有効成分とすることができる。以下、具体的に説明する。

[0071]

(6-1) 本発明のペプチドを有効成分とする癌ワクチン

本発明のペプチドは、CTLの誘導能を有するものであり、誘導されたCTLは、細胞傷害作用やリンフォカインの産生を介して抗癌作用を発揮することができる。従って本発明のペプチドは、癌の治療または予防のための癌ワクチンの有効成分とすることができる。すなわち本発明は、本発明のペプチドを有効成分として含有する癌ワクチン(癌ワクチンとしての医薬組成物)を提供する。本発明の癌ワクチンをHLA-A24陽性かつWT1陽性の患者に投与すると、抗原提示細胞のHLA-A24抗原にペプチド(例えば配列番号:2~6および66~68のいずれかに記載のアミノ酸配列からなる癌抗原ペプチド)が提示され、提示されたHLA-A24抗原複合体特異的CTLが増殖して癌細胞を破壊することができ、従って、癌の治療または予防が可能となる。本発明の癌ワクチンは、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療のために使用することができる。

よって、本発明は別の態様として、本発明の癌ワクチンの有効量をHLA-A24陽性かつWT1陽性の患者に投与することにより、癌を治療または予防するための方法を提供する。

[0072]

本発明のペプチドを有効成分とする癌ワクチンは、単一のCTLエピトープを有効成分とするものであっても、また他のペプチド(CTLエピトープやヘルパーエピトープ)と連結したエピトープペプチドを有効成分とするものであっても良い。すなわち近年、複数のCTLエピトープ(抗原ペプチド)を連結したエピトープペプチドが、イン・ビボで効率的にCTL誘導活性を有することが示されている。例えばJournal of Immunology 1998, 161: 3186-3194には、癌抗原タンパク質PS A由来のHLA-A2, -A3, -A11, B53拘束性CTLエピトープ(抗原ペプチド)を連結した約30merのエピトープペプチドが、イン・ビボでそれぞれのCTLエピトープに特異的なCTLを誘導したことが記載されている。またCTLエピトープとヘルパーエピトープとを連結させたエピトープペプチドにより、効率的にCTLが誘導されることも示されている。このようなエピトープペプチドの形態で投与した場合、抗原提示細胞内に取り込まれ、その後、細胞内分解を受けて生じた個々の抗原ペプチドがHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示され、この複合体に特異的なCTLが体内で効率的に増殖し、癌細胞を破壊する。このようにして癌の治療または予防が達成される。

[0073]

また本発明のペプチドを有効成分とする癌ワクチンは、細胞性免疫が効果的に成立するように、医薬として許容されるキャリアー、例えば適当なアジュバントとともに投与したり、粒子状の剤型にして投与することができる。アジュバントとしては、文献 (Clin. Microbiol. Rev., 7:277-289, 1994) に記載のものなどが応用可能であり、具体的には、菌体由来成分、サイトカイン、植物由来成分、水酸化アルミニウム如き鉱物ゲル、リソレシチン、プルロニックポリオールの如き界面活性剤、ポリアニオン、ペプチド、または油乳濁液(エマルジョン製剤)などを挙げることができる。また、リポソーム製剤、直径数μmのビーズに結合させた粒子状の製剤、リピッドを結合させた製剤なども考えられる。

[0074]

投与方法としては、皮内投与、皮下投与、筋肉内投与、静脈内投与などが挙げられる。製剤中の本発明のペプチドの投与量は、治療目的の疾患、患者の年齢、

[0075]

(6-2) 本発明のペプチドをコードするポリヌクレオチド、または発現ベクター を有効成分とするDNAワクチン

前記本発明のペプチドのみならず、当該ペプチドをコードするポリヌクレオチド、およびそれを含有する発現ベクターもまた、癌の治療または予防のためのDN Aワクチンの有効成分とすることができる。すなわち本発明は、本発明のペプチドをコードするポリヌクレオチド、または当該ポリヌクレオチドを含有する発現ベクターを有効成分として含有する癌ワクチン(癌ワクチンとしての医薬組成物)を提供する。また、本発明は別の態様として、本発明のDNAワクチンの有効量をHLA-A24陽性かつWT1陽性の患者に投与することにより、癌を治療または予防するための方法を提供する。

[0076]

近年、複数のCTLエピトープ(抗原ペプチド)を連結したエピトープペプチドをコードするポリヌクレオチド、あるいはCTLエピトープとヘルパーエピトープとを連結させたエピトープペプチドをコードするポリヌクレオチドが、in vivoで効率的にCTL誘導活性を有することが示されている。例えばJournal of Immuno logy 1999, 162: 3915-3925には、HBV由来HLA-A2拘束性抗原ペプチド6種類、HLA-A11拘束性抗原ペプチド3種類、およびヘルパーエピトープを連結したエピトープペプチドをコードするDNA(ミニジーン)が、イン・ビボでそれぞれのエピトープに対するCTLを効果的に誘導したことが記載されている。

[0077]

従って、本発明のペプチドをコードするポリヌクレオチドを1種または2種以上連結させることにより、また場合によっては他のペプチドをコードするポリヌクレオチドも連結させることにより作製されたポリヌクレオチドを、適当な発現ベクターに組み込むことにより、癌ワクチンの有効成分とすることができる。

[0078]

本発明のポリヌクレオチドを癌ワクチン (DNAワクチン) の有効成分として適用する際には、以下の方法が使用され得る。

すなわち、本発明のポリヌクレオチドを細胞内に導入する方法としては、ウイルスベクターによる方法およびその他の方法(日経サイエンス,1994年4月号,20-45頁、月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等)のいずれの方法も適用することができる。

[0079]

ウイルスベクターによる方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス等のDNAウイルスまたはRNAウイルスに本発明のDNAを組み込んで導入する方法が挙げられる。この中で、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルス等を用いた方法が特に好ましい。

その他の方法としては、発現プラスミドを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。

[0080]

本発明のポリヌクレオチドを実際に医薬として作用させるには、当該ポリヌクレオチドを直接体内に導入する in vivo法、およびヒトからある種の細胞を採集し体外でDNAを該細胞に導入しその細胞を体内に戻す ex vivo法がある (日経サイエンス,1994年4月号,20-45頁、月刊薬事,36(1),23-48(1994)、実験医学増刊,12(15),(1994)、およびこれらの引用文献等)。in vivo法がより好ましい。

[0081]

in vivo法により投与する場合は、治療目的の疾患、症状等に応じた適当な投与経路により投与され得る。例えば、静脈、動脈、皮下、皮内、筋肉内等に投与することができる。in vivo法により投与する場合は、例えば、液剤等の製剤形態をとりうるが、一般的には有効成分である本発明のポリヌクレオチドを含有す

る注射剤等とされ、必要に応じて、慣用の担体を加えてもよい。また、本発明のポリヌクレオチドを含有するリポソームまたは膜融合リポソーム (センダイウイルス (HVJ) -リポソーム等) においては、懸濁剤、凍結剤、遠心分離濃縮凍結剤等のリポソーム製剤の形態とすることができる。

製剤中の本発明のポリヌクレオチドの含量は、治療目的の疾患、患者の年齢、体重等により適宜調整することができるが、通常、0.0001mg~100mg、好ましくは0.001mg~10mgの本発明のポリヌクレオチドを、数日ないし数月に1回投与するのが好ましい。

[0082]

以上のような本発明のポリヌクレオチドの癌患者への投与により、抗原提示細胞内で当該ポリヌクレオチドに対応するポリペプチドが高発現する。その後、細胞内分解を受けて生じた個々の癌抗原ペプチドがHLA抗原と結合して複合体を形成し、該複合体が抗原提示細胞表面に高密度に提示され、この複合体特異的なCTLが体内で効率的に増殖し、癌細胞を破壊する。以上のようにして、癌の治療または予防が達成される。本発明のポリヌクレオチドまたは当該ポリヌクレオチドを含有する発現ベクターを有効成分とする癌ワクチンは、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療のために使用することができる。

[0083]

(6-3) 本発明の抗原提示細胞を有効成分とする癌ワクチン

本発明は、本発明の抗原提示細胞を有効成分とする癌ワクチンを提供する。 近年、癌患者の末梢血からリンパ球を分離し、その中から樹状細胞を誘導し、 イン・ビトロでペプチド等をパルスして調製した抗原提示細胞を皮下投与などに より患者に戻す細胞療法 (DC療法) が報告されている (Cancer Immunol. Immunot her.,46:82,1998、J. Immunol.,158:p1796,1997、Cancer Res.,59:p1184,1999、C ancer Res.,56:p5672,1996、J. Immunol.,161: p5607,1998、J. Exp. Med., 184: p 465,1996)。従って前記本発明の抗原提示細胞を、細胞療法における癌ワクチン の有効成分として使用することができる。

[0084]

本発明の抗原提示細胞を有効成分とする癌ワクチンは、抗原提示細胞を安定に維持するために、生理食塩水、リン酸緩衝生理食塩水 (PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与が挙げられる。また投与量は、前記文献記載の投与量が例示される。

前記癌ワクチンを患者の体内に戻すことにより、HLA-A24陽性かつWT1陽性の患者の体内で効率良く特異的なCTLが誘導され、癌を治療または予防することができる。本発明の抗原提示細胞を有効成分とする癌ワクチンは、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療のために使用することができる。

[0085]

(6-4) 本発明のCTLを有効成分とする癌ワクチン

本発明は、本発明のCTLを有効成分とする癌ワクチン(癌ワクチンとしての医薬組成物)を提供する。本発明のCTLは、以下の養子免疫療法において有効に用いられる。

[0086]

メラノーマにおいて、患者本人の腫瘍内浸潤T細胞を体外で大量に培養し、これを患者に戻す養子免疫療法に治療効果が認められている(J. Nat l. Cancer. Inst.,86:1159、1994)。またマウスのメラノーマでは、脾細胞をイン・ビトロで癌抗原ペプチドTRP-2で刺激し、癌抗原ペプチドに特異的なCTLを増殖させ、該CTLをメラノーマ移植マウスに投与することにより、転移抑制が認められている(J. Exp. Med.,185:453,1997)。これは、抗原提示細胞のHLA抗原と癌抗原ペプチドとの複合体を特異的に認識するCTLをイン・ビトロで増殖させた結果に基づくものである。従って、本発明のペプチドあるいは本発明のポリヌクレオチドや発現ベクターを用いて、イン・ビトロで患者末梢血リンパ球を刺激して癌特異的CTLを増やした後、このCTLを患者に戻す治療法は有用であると考えられる。従

[0087]

本発明のCTLを有効成分とする癌ワクチンは、CTLを安定に維持するために、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地等を含むことが好ましい。投与方法としては、静脈内投与、皮下投与、皮内投与が挙げられる。また投与量としては、前記文献記載の投与量が例示される。

前記癌ワクチンを患者の体内に戻すことにより、HLA-A24陽性かつWT1陽性の患者の体内でCTLによる癌細胞の傷害作用が促進され、癌細胞を破壊することにより、癌を治療することができる。本発明のCTLを有効成分とする癌ワクチンは、WT1遺伝子の発現レベルの上昇を伴う癌、例えば白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫などの血液性の癌や、胃癌、大腸癌、肺癌、乳癌、胚細胞癌、肝癌、皮膚癌、膀胱癌、前立腺癌、子宮癌、子宮頸癌、卵巣癌等の固形癌の予防または治療のために使用することができる。

[0088]

(VII) 配列番号:7に記載のアミノ酸配列を含むアミノ酸配列を有するペプチドに基づく癌ワクチン

本発明において、以下のアミノ酸配列:

Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号: 7)

を有するペプチドが、イン・ビボでCTL誘導活性を有することが見出された。当該配列番号:7に記載のアミノ酸配列からなる癌抗原ペプチドは、W000/18795号公報においてHLA-A24抗原への推定結合配列を有するペプチドとして開示されたものである。しかしながらイン・ビボでCTL誘導活性を有し、癌ワクチンとして利用可能であることは本発明において初めて見出された知見である。

[0089]

従って本発明は、以下のa)~f):

- a) 配列番号: 7に記載のアミノ酸配列を含むアミノ酸を有するペプチド、
- b) 上記 a)のペプチドをコードするポリヌクレオチド、
- c)上記b)のポリヌクレオチドを含有する発現ベクター、

- d)上記c) の発現ベクターを含有する細胞、
- e) 上記 a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体の提示された抗原提示細胞、および
- f) 上記 a)のペプチド由来の癌抗原ペプチドとHLA-A24抗原との複合体を認識するCTL、

のなかから選ばれるいずれかを有効成分とする医薬組成物および癌ワクチンを提供する。

当該a)~f)に記載の各物質の作製法、およびこれらの物質の癌ワクチンとしての用途については、全て、前記本発明のペプチド、ポリヌクレオチド、発現ベクター、抗原提示細胞およびCTLの項に記述のとおりである。

[0090]

【実施例】

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。

[0091]

以下の参考例は、HLA-A24抗原を発現するトランスジェニックマウスの作製に 関するものであり、その詳細はPCT/JP01/10885(国際出願日:2001年12月12日(優先日:2000年12月13日)、出願人:住友製薬株式会社)に記載されている。 参考例1

HLA-A2402ゲノムDNA断片のクローニング

(1) HLA-A2402ゲノムDNA断片のクローニング

ヒトHLA-A2402ゲノムDNAをPCRクローニングするため、ヒト腫瘍細胞株RERF-LC -AI細胞(理研細胞バンク RCB0444)を培養し、Genomic Prep Cells and Tissue DNA Isolation Kit (Amersham社製)を用い、添付のプロトコールに従い、ヒトゲノムDNAを精製した。次に、キメラHLA遺伝子の構築に必要なHLA-A2402ゲノムD NA配列についてGenBankデータベースにより調べたところ、Accession番号。Z724 22が該当するものであったが、プロモーター領域(270bp)が登録されていないことが判明した。当該トランスジェニックマウスの作製には、プロモーター、エキソン1~3、およびイントロン1~3を必要とする。そこで、プロモーターを

含むHLA-A2402ゲノムDNAのPCRクローニングにあたり、日本人に多いHLA-A2601のプロモーターの塩基配列(Accession番号. AB005048)を参考にHLA26-1F(5'-CC C AAG CTT ACT CTC TGG CAC CAA ACT CCA TGG GAT-3', 36mer、配列番号:36)を上流プライマーとし、またイントロン3に含まれる塩基配列の一部を改変したもの、すなわちAccession番号. Z72422の5'末より1282番目をGからAに改変したA 24-Bgl II 30(5'-CGG GAG ATC TAC AGG CGA TCA GGT AGG CGC-3', 30mer、配列番号:37)を下流プライマーとして用いた。

[0092]

ここで、当該塩基改変の理由は以下の通りである。すなわち、トランスジェニックマウスにおいて発現するキメラHLAが、エキソン1から3までをHLA-A2402、エキソン4から8までをH-2Kbによって構成されることを目的としており、このようなキメラHLAを作製するために、HLA-A2402ゲノムDNA上流よりイントロン3にコードされる制限酵素Bam HI部位までとH-2KbゲノムDNAのイントロン3より下流とを連結するため、HLA-A2402のイントロン3に人為的に制限酵素Bgl II部位を構築する必要があったからである。

[0093]

次に、 $3'\rightarrow 5'$ のエキソヌクレアーゼ活性の高いNative Pfu DNA Polymerase(S tratagene社製)を用い、添付のプロトコールに従い、上記プライマーペアを用いてHLA-A2402ゲノムDNA断片のPCRクローニングを行った。PCRは95℃45秒で熱処理した後、95℃45秒、66℃ 1 分、および72℃ 4 分を35サイクル繰り返したのち、72℃で10分反応させ、その後 4 ℃に冷却した。増幅遺伝子断片をファージミドベクターpBluescriptの制限酵素Hind IIIおよびBam HI切断部位にライゲーションにより連結して組み換えプラスミドを得た。この組み換えプラスミドを42℃のヒートショック法により大腸菌JM109(東洋紡社製)に導入し、X-GalおよびIPTGを塗布したアンピシリン(50 μ g/ml)含有LB寒天培地(1% バクトトリプトン、0.5% イーストエキストラクト、1%NaCl、2%寒天)で組み換えプラスミドが導入されている白色の大腸菌コロニーを判別し、形質転換体を選択した。

[0094]

(2) HLA-A2402プロモーター領域の塩基配列の決定

上記で得られた形質転換体の4個について、3mlのアンピシリン含有LB培地にて一晩培養したのち、各形質転換体が包含するプラスミドクローンをアルカリ溶解法(F.M. Ausubelら編、CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc.)により精製した。次に、ABI PRISMTM 377DNAシークエンシングシステム(PEバイオチステムズ社製)により塩基配列を解析した。シーケンス解析用サンプルは、ABI PRISMTM Dye Terminator Cycle Sequencing Ready Reactionキット(PEバイオシステムズ社製)を用いて、添付プロトコールに従い、各クローンのシーケンスを解析した。その結果、すべてのクローンについてプロモーター領域を比較すると完全に一致していたことより、GenBankデータベースに登録されていないHLA-A2402のプロモーター領域の塩基配列が決定された。また、Accession番号、Z72422の塩基配列と各クローンを比較したところ、PCR変異はみられない正常な1個のクローンが存在していた。

[0095]

参考例 2

H-2K^bゲノムDNA断片のクローニング

(1)H-2KbゲノムDNA断片のクローニング

マウス腫瘍細胞株EL4細胞(ATCC T1B-39)を培養してマウスゲノムDNAを精製し、PCRクローニングに用いた。DNAの精製方法は、長鎖DNAの増幅に適するTaKaR a LA Taq TM(宝酒造社株式会社製)を用い、添付のプロトコールに従い実施した。次に、キメラHLA遺伝子の構築に必要なH-2Kb遺伝子配列についてGenBankデータベースにより調べたところ、2つに分断されて登録されていた。すなわち、Accession番号。v00746およびv00747である。v00746ではイントロン3の一部迄のH-2Kb上流をコードする1594bp領域が、一方、v00747ではイントロン7の一部迄のH-2Kb下流をコードする1837bp領域が登録されていた。v00746およびv00747により2つに分断されて登録されているイントロン3には制限酵素Bam HI部位が存在していなかったことにより、データベースに登録されているH-2Kb遺伝子は不完全長と推測された。

[0096]

H-2Kb遺伝子には相同な偽遺伝子や相同性の高い遺伝子が存在している (Cell.

, 25:683, 1981)。そこで、当該相同遺伝子と相同性が低く且つv00746のエキソン3にコードされるH-2KB F3(5'-CGC AGG CTC TCA CAC TAT TCA GGT GAT CTC-3', 30mer、配列番号:38)を上流プライマーとし、また v00747の末端に制限酵素Eco RI部位を付加したH-2KB 3R(5'-CGG AAT TCC GAG TCT CTG ATC TTT AGC C CT GGG GGC TC-3', 38mer、配列番号:39)を下流プライマーとして、TaKaRa LA Taq TM(宝酒造社株式会社製)を用いて添付のプロトコールに従い、上記精製マウスゲノムDNAを鋳型にPCR反応を実施した。当該PCRは、98℃10秒および66℃4分25サイクル繰り返したのち、68℃で10分反応させ、その後4℃に冷却した。

[0097]

増幅遺伝子断片をファージミドベクターpBluescriptの制限酵素Kpn IおよびEc o RI切断部位にライゲーションにより連結して組み換えプラスミドを得た。この 組み換えプラスミドを42℃のヒートショック法により大腸菌JM109 (東洋紡社製) に導入し、X-GalおよびIPTGを塗布したアンピシリン含有LB寒天培地で組み換 えプラスミドが導入されている白色の大腸菌コロニーを判別し、形質転換体を選 択した。この形質転換体3個を3mlのアンピシリン含有LB培地にて一晩培養した のち、各形質転換体が包含する組み換えプラスミドクローンを精製し、シーケン スを解析した。方法は上記と同様にして行った。3つの当該クローンの塩基配列 とv00747の塩基配列を比較したところ、2クローンでそれぞれ別々に1ヶ所のPC R変異が、他方1クローンで3ヶ所のPCR変異がみられた。また、3クローン間で は共通しているがv00747と異なる塩基が5ヶ所みられた。これら塩基はイントロ ン6と3'非翻訳領域に相当する領域にあった。更に、未登録のイントロン3領 域においては、3クローン間で異なるPCR変異した塩基が1ヶ所みられた。これよ り、未登録領域の塩基配列部分を決定することができなかったため、3'→5'のエ キソヌクレアーゼ活性の高いポリメラーゼを用いて未登録のイントロン3領域に ついて再度クローニングを行い、塩基配列の決定を行った。

[0098]

(2) H-2Kbイントロン3の塩基配列の決定

未登録領域の塩基配列を決定するため、Native Pfu DNA Polymerase (Stratag ene社製)を用い、添付のプロトコールに従い、上記精製マウスゲノムDNAを鋳型

に未登録のイントロン3を含む領域についてPCRクローニングした。ここでは、v 00746に登録されているH-2kb F5 (5'-AGG ACT TGG ACT CTG AGA GGC AGG GTC TT -3', 29mer、配列番号:40) を上流プライマーとして用い、またv00747に登録さ れているH-2kb 5R (5'-CAT AGT CCC CTC CTT TTC CAC CTG TGA GAA-3', 30mer、 配列番号:41)を下流プライマーとして用いた。PCRは95℃45秒で熱処理した後 、95℃45秒、68℃1分、および72℃4分を25サイクル繰り返したのち、72℃で10 分反応させ、その後4℃に冷却した。増幅遺伝子断片をファージミドベクターpB luescriptの制限酵素Bam HIおよびBgl II切断部位にライゲーションにより連結 して組み換えプラスミドを得た。この組み換えプラスミドを42℃のヒートショッ ク法により大腸菌JM109(東洋紡社製)に導入し、X-GalおよびIPTGを塗布したア ンピシリン含有LB寒天培地で組み換えプラスミドが導入されている白色の大腸菌 コロニーを判別し、形質転換体を選択した。この形質転換体の5個について3ml のアンピシリン含有LB培地にて一晩培養したのち、各形質転換体が包含するプラ スミドクローンを精製し、塩基配列を解析した。方法は上記と同様にして行った 。その結果、解析したクローン間のイントロン3領域について比較すると、すべ てのクローンで完全に一致していた。これよりイントロン3領域の塩基配列を決 定することができた。未登録領域の制限酵素Bam HI部位よりv00747までは、463b pであることも判明した。

[0099]

(3) H-2KbゲノムDNAの構築

前記(2)で未登録領域の塩基配列が決定されたことにより、目的とするキメラHLA遺伝子の構築に必要なH-2KbゲノムDNAの全塩基配列が決定された。その結果、前記(1)で得られた2種類のクローン、すなわち5'末端側にPCR変異の無い1つのクローン(H-2Kb#26)、および3'末端側にPCR変異の無い1つクローン(H-2Kb#20)を組み合わせることにより、目的とするH-2KbゲノムDNAが構築できることが明らかとなった。そこで、これらクローンを制限酵素消化で切断したのち、PCR変異の無いそれぞれの領域を互いに組み合わせることにより、PCR変異の無いそれぞれの領域を互いに組み合わせることにより、PCR変異の無いH-2KbゲノムDNAを構築した。構築方法の模式図を図1に示す。

[0100]

両クローンを制限酵素Bgl II部位およびEco RI部位で切断し、ライゲーションにより連結して組み換えプラスミドを得た。この組み換えプラスミドを42℃のヒートショック法により大腸菌JM109(東洋紡社製)に導入し、X-GalおよびIPTGを塗布したアンピシリン含有LB寒天培地で組み換えプラスミドが導入されている白色の大腸菌コロニーを判別し、形質転換体を選択した。3個の形質転換体を3mlのアンピシリン含有LB培地にて一晩培養したのち、各形質転換体が包含するプラスミドクローンをアルカリ溶解法により精製し、シーケンスを解析した。方法は上記と同様にして行った。その結果、すべての形質転換体がPCR変異の無いH-2KbゲノムDNAをコードするプラスミドを含有することが明らかとなった。

なお、ここで得られたH-2KbゲノムDNAの塩基配列は、後述する配列番号:33に記載の塩基配列の第1551位以降の配列に相当するものである。

[0101]

参考例3

<u>キメラゲノムDNA(HLA-A2402/Kb DNA)の構築</u>

上記実施例1で得られたHLA-A2402ゲノムDNAを含有するプラスミド(HLA-A2402坩1)を制限酵素Bgl II部位で切断し、また上記実施例2で得られたH-2KbのゲノムDNAを含有するプラスミド(H-2Kb#20/26)を制限酵素Bam HI部位で切断し、ライゲーションにより連結して組み換えプラスミドを得た。構築方法の模式図を図2に示す。この組み換えプラスミドを42℃のヒートショック法により大腸菌JM109(東洋紡社製)に導入し、X-GalおよびIPTGを塗布したアンピシリン含有LB寒天培地で組み換えプラスミドが導入されている白色の大腸菌コロニーを判別し、形質転換体を選択した。10個の形質転換体を3m1のアンピシリン含有LB培地にて一晩培養したのち、各形質転換体が包含するプラスミドクローンを精製してシーケンスを解析した。方法は上記と同様にして行った。その結果、3個の形質転換体が目的のキメラ遺伝子(HLA-A2402/Kb DNA、単にA2402/Kb DNAと略することもある)を有するプラスミドを含有することが明らかとなった。構築されたHLA-A2402/Kbのゲノム配列を配列番号:33に記載する。

[0102]

参考例 4

キメラゲノムDNAのスプライシング解析

マウス腫瘍細胞株EL4細胞へ、遺伝子導入装置(島津製作所製)を用い、添付プロトコールに従い、構築したキメラHLA遺伝子(HLA-A2402/Kb遺伝子)をトランスフェクトした。 2日後、トランスフェクトしたEL4細胞およびコントロールとして遺伝子導入していないEL4細胞より、ISOGEN(ニッポンジーン社製)を用いて添付のプロトコールに従って、トータルRNAを精製した。次に、スーパースクリプトチョイスシステム(GIBCO BRL社製)を用いて、添付プロトコールに従い、当該RNAの一部を鋳型にOligo(dT)12-18により逆転写反応を行いcDNAを合成した。更に、当該cDNAの一部を鋳型にNative Pfu DNA Polymerase(Stratagene社製)を用い、添付のプロトコールに従い、キメラ遺伝子を特異的にPCR増幅した。

[0103]

このとき、上流プライマーとしてHLA-A2402遺伝子のエキソン1にコードされ且つH-2Kb遺伝子と相同性の低いChimera-F2(5'-CGA ACC CTC GTC CTG CTA CTC TC-3', 23mer、配列番号:42)を、一方の下流プライマーとしてH-2Kb遺伝子のエキソン8にコードされ且つHLA-A2402遺伝子と相同性が低いChimera-R2(5'-AG C ATA GTC CCC TCC TTT TCC AC-3', 23mer、配列番号:43)を用い、PCRは95℃45秒を熱処理した後、95℃45秒、53℃1分、および72℃2分を40サイクル繰り返したのち、72℃で10分反応させ、その後4℃に冷却した。

[0104]

その結果、トランスフェクトしたEL4細胞においてのみ特異的に約1.1kbp遺伝子断片が増幅したことより、導入したキメラゲノムDNAはマウス細胞内で転写されたこと、すなわちHLAプロモーターが機能し、予想した部位でスプライシングされたmRNAが発現していることが予想された。次に、前記PCRの増幅断片をシークエンス解析した結果、予想通りのHLA-A2402/KbをコードするcDNAの塩基配列が決定された。当該HLA-A2402/KbのcDNAの塩基配列を配列番号:34に、またそのアミノ酸配列を配列番号:35に記載する。さらに、配列番号:33に記載のHLA-A2402/Kbのゲノム配列と配列番号:34に記載のcDNA配列との位置関係を示したものを、図3~図5に示す。

参考例 5

マイクロインジェクション用DNA溶液の製造

構築したキメラHLA遺伝子をコードするプラスミド 11μ gを制限酵素Hind IIIと Eco RI、更にベクターのみを切断する制限酵素Dra Iで消化した。1% SeaKem GTG (ニッポンジーン社製) ゲルで電気泳動したのち、キメラゲノムDNAを含有するゲル片を回収した。その後、Prep-A-Gene purificationキット (バイオ・ラッド社製) を用い、添付プロトコールに従い、導入遺伝子を精製し、1/10 TEバッファー (10mM Tris pH 8、0.1mM EDTA pH 8) に溶解することにより、マイクロインジェクション用DNA溶液を製造した。

[0106]

参考例 6

マウス受精卵への導入とトランスジェニックマウスの同定

C57BL/6系統マウス由来の受精卵を対象に構築したキメラ遺伝子のインジェクションを施行した。

C57BL/6系統マウス由来の受精卵を用いた理由は、C57BL/6系統マウスはクラスI分子としてH-2b系統を発現しており、HLA-A2402と同様な結合モチーフを有するH-2Kdを発現していないことによるものである。すなわち、当該C57BL/6系統のトランスジェニックマウスにHLA-A24拘束性の抗原ペプチドを投与しても、内因性のマウスクラスIによって当該ペプチドが細胞表面に提示されず、交差反応が起こらないという利点を有する。

[0107]

第1回目のインジェクションでは、81個の受精卵を対象に施行し、4匹のレシピエントマウスに移植したが産出されなかった。第2回目のインジェクションでは、50個の受精卵を対象に施行し、2匹のレシピエントマウスに移植することにより4匹が産出されたが離乳前にすべて死亡した。第3回目のインジェクションでは101個の受精卵を対象に施行し、4匹のレシピエントマウスに移植することにより11匹が産出されたが離乳前にすべて死亡した。

[0108]

[0109]

ここでトランスジェニックマウスの同定は、HLA-A2402遺伝子のクローニングで使用したプライマー、すなわちHLA26-1F(配列番号:36)およびA24-Bgl II 30(配列番号:37)を用いて尾DNA調整物を鋳型にTaKaRa LA Taq TM(宝酒造社株式会社製)を用い、添付のプロトコールに従ってPCRを行い、1%アガロースゲル電気泳動を行い、1.5kbpの大きさのDNAバンドがみられるマウスを選別することにより行った。

[0110]

参考例 7

トランスジェニックマウスにおける導入遺伝子産物の発現

実施例 6 で作出された 8 ライン、すなわち 04-2、05-1、04-1、04-5、04-6、10-5、14-1、および 15-2 由来のトランスジェニックマウスより、J.E. Coliganl ら編、CURRENT PROTOCOLS IN IMMUNOLOGY, John Wiley & Sons, Inc. の記載に従い脾臓を摘出し、脾細胞を回収した。トランスジェニックマウス脾細胞における導入遺伝子由来のタンパク質であるHLA- $A2402/K^b$ の細胞表面発現は、フローサイトメトリー法により解析した。このとき、C57BL/6系統マウスより調整した脾細胞をコントロールとして用いた。具体的には、 5×10^6 個の脾細胞をモノクローナルなFITC標識抗HLA抗体B9.12.1(Immunotech社製)で染色した。また、モノクローナ

[0111]

その結果、5ライン、すなわち04-1、04-5、10-5、14-1、および15-2でHLAクラスI特異的な発現がみられ、このうち04-1ラインのみが、繁殖能を有するラインであることが明らかとなった。一方、他の3ライン、すなわち04-6、04-2、および05-1ラインではHLAクラスI特異的な発現はみられなかった。以上により、8ラインのトランスジェニックマウスが作出されたが、クラスIの発現様式であり且つホモ化を達成したのは04-1ラインのみであった。

[0112]

参考例8

HLA-A2402を発現する形質転換細胞の樹立

前記で作製されたトランスジェニックマウスにおけるCTL誘導能の評価のために、HLA-A2402/Kbを安定に発現する形質転換細胞、Jurkat-A2402/Kb細胞を樹立した。

[0113]

(1) 発現ベクターの構築

Tgマウスより脾臓を摘出し、脾細胞を調整した。ISOGEN (ニッポンジーン社製) を用い、添付のプロトコールに従って、トータルRNAを精製した。次に、スーパースクリプトチョイスシステム (GIBCO BRL社製) を用いて、添付プロトコールに従い、当該RNAの一部を鋳型に01igo(dT)₁₂₋₁₈により逆転写反応を行いcDNAを合成した。更に、当該cDNAの一部を鋳型にLA-PCRキット(宝酒造社製)を用い、添付のプロトコールに従った。このとき、上流プライマーとしてchi.PF1 (5'-CCC AAG CTT CGC CGA GGA TGG CCG TCA TGG CGC CCC GAA-3'、配列番号:44)を、一方の下流プライマーとしてchi.PR1 (5'-CCG GAA TTC TGT CTT CAC GCT AGA GAA TGA GGG TCA TGA AC-3'、配列番号:45)を用いた。PCRは95℃45秒で熱処理した後、95℃45秒、60℃1分、および68℃2分を25サイクル繰り返したのち、72℃で10分反応させ、その後4℃に冷却した。PCR増幅遺伝子を発現ベクターpcDNA 3.1(+) (Invitrogen社製)に導入することにより、HLA-A2402/Kbをコードする発

[0114]

(2) Jurkat細胞への導入

10ugの上記ベクターを制限酵素Pvu Iで消化することにより、直線化した。次に、Jurkat細胞(ATCC T1B-152) 5×10^6 個について、遺伝子導入装置(GIBCO BR L社製)を用い、添付プロトコールに従い、構築したキメラHLA遺伝子をトランスフェクトした。96穴プレートに0.5cell/wellで播種し、0.6mg/mlのGeneticin含有培地で培養した。その結果、6穴中(6クローン)にて細胞の増殖が確認された(A-2、A-4、A-6、A-9、A-10、A-11)。これらの中で、A-10において導入遺伝子の発現が最も高かったことより、当クローンをJurkat-A2402/Kb細胞として樹立した。

[0115]

参考例9

トランスジェニックマウスにおけるCTL誘導能試験

ヒト癌抗原HER-2/neuは乳癌、卵巣癌、および肺癌で過剰発現していることで知られ、当該抗原由来ペプチドによってHLA-A24陽性健常人末梢血から特異的CTLを誘導できることが、イン・ビトロ試験により明らかにされている(Int. J. Cancer., 87:553, 2000)。

[0116]

そこで、当該ヒト癌抗原由来のHLA-A24拘束性ペプチドHER-2/neu780-788(配列番号:46)を、破傷風毒素由来のマウスMHCクラスIIのI-Ab拘束性ヘルパーペプチド(Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser Ala Ser His Leu Glu;配列番号:32)と共に当該トランスジェニックマウスに免疫し、ヒトの場合と同様に特異的CTLを誘導し得るか調べた。すなわち、DMSOによりHER-2/neu780-788を40mg/mlに、またヘルパーペプチドを20mg/mlに調整し、生理食塩水で2mg/mlおよび1mg/mlに希釈した。次に、ガラスシリンジを用いて、等量の不完全フロイントアジュバント(和光純薬株式会社製)と混合することによりwater-in-oilエマルションを作製した。200 μ 1の当該薬剤をトランスジェニックマウス(04-1ライン)の尾の皮下に免疫した。実験開始7日後に脾臓を摘出

し、スライドガラスのフロスト部分にて擦り破壊し、脾細胞を回収・調製した。 ACKバッファー $(0.15 \text{M NH}_4\text{Cl}, 10 \text{mM KHCO}_3, 0.1 \text{mM EDTA}, \text{pH7}.2-7.4)$ にて溶血処理した脾細胞の一部をX線照射 (2,000 rad) した後、前記ペプチドを $100 \mu \text{g/ml}$ で1時間パルスして 0.7×106 個/wellで24穴プレートに播種した。このとき、非照射・非ペプチドパルスの 7×106 個/wellの脾細胞を同時に加えて37 C下で再刺激を施行した(ペプチド終濃度 $1 \mu \text{g/ml}$)。培養液には、RPMI1640培地に10%FCS、10 mM HEPES、10 mM HEPES、10 mM HEPES、10 mM HEPES、10 mM L-グルタミン、10 mM L-グルクミン、10 mM L-グルカプトエタノールを含む培養液(CTM培養液)を10 m1 用い、10 m1 にて溶血処理した。

[0117]

他方、実施例 8 で作製したJurkat-A2402/Kb細胞を 3.7MBq/106個で51Crラベル後、前記ペプチドを 100μ g/mlで 1 時間パルスした。(ラベル時間 2 時間、ラベル開始 1 時間後にペプチドを終濃度 100μ g/ml添加)。また、ペプチド非パルスの細胞をコントロール標的細胞として調製した。

[0118]

当該Jurkat-A2402/Kbを標的細胞とし、先に調製されたトランスジェニックマウス脾細胞調製物を添加して、CTLの誘導能を51Crリリースアッセイ(J. Immunol.,159:4753,1997)により測定した。結果を図 6 に示す。結果として、HER-2/n eu780-788で刺激することにより、特異的なCTLの誘導が認められた。

[0119]

さらに、前記HER-2/neu780-788と同様にHLA-A24拘束性癌抗原ペプチドであることが知られているMAGE-3195-203 (配列番号:47)、CEA $_{652-660}$ (配列番号:48)、およびCEA $_{268-277}$ (配列番号:49) を用いて、前記と同様のCTL誘導能試験を行った。結果を図 7 ~ 図 9 に示す。結果として、これら既知のHLA-A24拘束性癌抗原ペプチドで刺激することにより、特異的なCTLの誘導が認められた。

以上の結果から、本発明のHLA-A24トランスジェニックマウスは、HLA-A24拘束性の癌抗原タンパクや癌抗原ペプチドをin vivoで評価することのできるヒトモデル動物であることが明らかとなった。

[0120]

ヒトWT1由来の天然型および改変型ペプチドによるCTL誘導活性

HLA抗原に結合可能な配列を検索するためのBIMASソフト(http://bimas.dcrt.nih.gov/molbio/hla_bind/)を用いて、ヒトWT1 アミノ酸配列中の HLA-A24抗原への推定結合配列を検索した。検索により同定されたペプチドの例を以下に示す

[0121]

ペプチドA:Arg Met Phe Pro Asn Ala Pro Tyr Leu (配列番号:8)

ペプチドB:Arg Val Pro Gly Val Ala Pro Thr Leu (配列番号:7)

ペプチドC:Arg Trp Pro Ser Cys Gln Lys Lys Phe(配列番号:9)

ペプチドD:Gln Tyr Arg Ile His Thr His Gly Val Phe (配列番号:10)

ペプチドE:Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe(配列番号:11)

[0122]

ここでペプチドAはヒトWT1のアミノ酸配列の第126-134位に、ペプチドBは第30 2-310位に、ペプチドCは417-425位に、ペプチドDは第285-294位に、またペプチドEは第326位-335位に、それぞれ該当する配列である。これらのペプチドをFmoc法により合成した。

[0123]

また、前記天然型ペプチドA~Cの第2位のアミノ酸をチロシンに改変した改変型ペプチドについてもFmoc法により合成した。

ペプチドF: Arg Tyr Phe Pro Asn Ala Pro Tyr Leu (配列番号:2)

ペプチドG:Arg Tyr Pro Gly Val Ala Pro Thr Leu (配列番号:3)

ペプチドH: Arg Tyr Pro Ser Cys Gln Lys Lys Phe (配列番号:4)

[0124]

各抗原ペプチドの免疫原性について、先の参考例にて作製したHLA-A2402/Kbトランスジェニックマウスを利用することにより評価した。1ペプチドにつき3匹のトランスジェニックマウスに免疫することにより、それぞれのペプチドの免疫原性を評価した。

[0125]

マウスMHCクラスIIのI-Ab拘束性ヘルパーペプチドである破傷風毒素由来ペプ チド (Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser Al a Ser His Leu Glu;配列番号:32) と共に各合成ペプチドをトランスジェニック マウスに免疫した。すなわち、DMSOに各抗原ペプチドをそれぞれ40mg/ml、 ヘルパーペプチドを20mg/mlに調整し、さらに生理食塩水で2mg/mlお よびlmg/mlにそれぞれ希釈した。次に、ガラスシリンジを用いて、等量の フロイントの不完全アジュバント(IFA)と混合することによりwater-in-oilエ マルジョンを作製し、200μ1の当該エマルジョンをΗLΑ-Α2402/Κ b トランスジェニックマウスの尾底部の皮下に免疫した。実験開始7日後に脾臓 を摘出し、スライドガラスのフロスト部分にて擦り破壊し、脾細胞を回収・調製 した。ACKバッファー (0.15M NH₄Cl、10mM KHCO₃、0.1mM EDTA, pH7.2-7.4) にて溶血処理した脾細胞の一部をX線照射(2,000rad)した後、前記抗原ペプチ ドを100 μg/mlで 1 時間パルスして 7×10 6 個/w e 1 l で 2 4 穴プレートに 播種した。このとき、非照射・非ペプチドパルスの7×105個/wellの脾 細胞を同時に加えて37℃下で6日間イン・ビトロ刺激培養した。この際の培地と して、RPMI-1640培地に10%FCS、10mM HEPES、20mM Lーグルタミン、1mMピルビン酸ナトリウム、1mM MEM非必須アミノ酸、1 %MEMビタミン、 55μ M 2-メルカプトエタノールを用いた。

[0126]

次に、常法に従って細胞傷害性試験を行った。標的細胞(T)として、Jurkata L - A 2 4 0 2 / K b 細胞(参考例 8)、およびペプチドパルスした Jurkata L - A 2 4 0 2 / K b 細胞を用いた。これらの細胞は 3. 7 MBq / 1 0 6 値で 5 1 Cr ラベルし、ペプチドパルスは $1 0 0 \mu g / m 1$ で 1 時間実施された(ラベル時間 2 時間、ラベル開始 1 時間後にペプチドを添加)。イン・ビトロ刺激培養した脾細胞をエフェクター細胞(E)とし、E/T比 8 0 において作用させ、傷害活性を 5 1 Cr リリースアッセイ(J.Immunol., 159:4753, 1997)により測定した。結果を図 $1 0 \sim 2 1 7$ に示す。 Y 軸は傷害活性を示し、X 軸の 1, 2、および 3 は、3 匹のマウスの個体番号を示す。

[0127]

これらの図から明らかな通り、試験したWT1天然型ペプチド5種類の中では、ペプチドBのみが免疫原性を有していた。また、天然型ペプチドBの第2位のアミノ酸をチロシンに改変した改変型ペプチドGは、ペプチドBより高い免疫原性を示した。さらに、天然型ペプチドAおよびCの第2位のアミノ酸をチロシンに改変した改変型ペプチドFおよびHは、もとのペプチドAおよびCが免疫原性を有していなかったにもかかわらず、高い免疫原性を有していた。

以上の結果から、WT1天然型ペプチドB、改変型ペプチドF、G、およびH は、イン・ビボでCTL誘導活性を有する抗原ペプチドとして機能を有することが 明らかとなった。

[0128]

実施例 2

ヒトWT1由来の改変型ペプチドによるCTL誘導活性(II)

実施例1と同様、BIMASソフトにより検索された、HLA-A24抗原への推定結合配列を有するヒトWT1由来の以下の天然型ペプチド(ペプチドK、L)、およびその第2位のアミノ酸をチロシンに改変した改変型ペプチド(ペプチドI、J)を、Fmoc法により合成した。

ペプチドK: Ala Leu Leu Pro Ala Val Pro Ser Leu (配列番号:51)

ペプチドL: Asn Gln Met Asn Leu Gly Ala Thr Leu (配列番号:52)

ペプチドI: Ala Tyr Leu Pro Ala Val Pro Ser Leu (配列番号: 5)

ペプチドJ:Asn Tyr Met Asn Leu Gly Ala Thr Leu (配列番号:6)

[0129]

ここでペプチドKはヒトWT1のアミノ酸配列の第10-18位に、またペプチドLは第239位-247位にそれぞれ該当するペプチドであり、さらにペプチドIおよびJはそれぞれペプチドKおよびLの配列中第2位のアミノ酸残基をチロシンに改変した改変型ペプチドである。これらの天然型および改変型ペプチドについて、実施例1と同様にして免疫原性を評価した。結果を図18、19、21および22に示す。Y軸は傷害活性を示し、X軸の1,2、および3は、3匹のマウスの個体番号を示す。

これらの図から明らかな通り、天然型ペプチドKおよびLが免疫原性を有してい

ないにもかかわらず、改変型ペプチドIおよびJは、いずれも高い免疫原性を有することが示された。

以上の結果から、WT1改変型ペプチドIおよびJは、イン・ビボで細胞傷害性T細胞を誘導する抗原ペプチドとして機能を有することが明らかとなった。

[0130]

実施例3

ヒトWT1由来の改変型ペプチドによる細胞傷害活性

改変型ペプチドによって誘導されたエフェクター細胞の天然型ペプチドに対する交差反応性を試験した。前記改変型ペプチドHをマウスに免疫することにより誘導されたエフェクター細胞(E)と、標的細胞(T)として天然型ペプチドCをパルスしたJurkat-A2402/K b細胞とを、E/T比80において作用させ、傷害活性を51Crリリースアッセイにより測定した。結果を図20に示す。この図から明らかな通り、WT1改変型ペプチドで誘導したエフェクター細胞は変異型および天然型をパルスしたいずれの細胞に対しても細胞傷害活性を示した。

[0131]

実施例4

ヒトWT1由来の改変型ペプチドによるヒト末梢血単核球からのCTL誘導

HLA-A2402陽性の健常人から末梢血単核球を分離し、24ウェルプレートに 4×10 6細胞/ウェルの量で分配し、これに配列番号7の天然型ペプチドまたは配列番号3の改変型ペプチドを $10\,\mu$ Mの濃度になるように添加し、1週間培養した。この際の培地として、45%RPMI1640、45%AIV、10%非働化ヒトAB血清、 $1\times$ 非必須アミノ酸、25ng/ml 2-メルカプトエタノール、50ng/ml ストレプトマイシン、50U/ml ペニシリンを用いた。上記の培養の後、細胞を 2×106 細胞/ウェルに調製し、レスポンダー(responder)細胞とした。他方、上記と同じ健常人から分離した末梢血単核球に、前記いずれかのペプチド $10\,\mu$ Mと共に4時間培養してペプチドパルスし、次に30Gyの放射線照射した後、細胞を 4×106 細胞/ウェルに調製し、スティミュレーター(stimulator)細胞とした。

上記のようにして調製したレスポンダー細胞とスティミュレーター細胞を混合

し、更にIL-2を30U/mlの濃度で加えて培養した。同様なレスポンダー細胞に対 するスティミュレーター細胞による刺激を1週間ごとに3回実施した。このように して得られた細胞の細胞傷害性を 51 Crリリースアッセイにより測定した。標的細 胞(T)として51Crで標識したHLA-A24陽性のC1R-A*2402細胞(Int. J. Cancer, 81, p387, 1999) に配列番号7の天然型ペプチドをパルスした細胞を用い、上記 の通りに配列番号7の天然型ペプチドまたは配列番号3の改変型ペプチドにより刺 激した細胞(エフェクター細胞)(E)をE:T比10、20または40において作用 させ、細胞傷害活性を測定した。結果を図23に示す。この図から明らかな通り、 改変型ペプチドは天然型ペプチドを認識するCTLを誘導することができ、そして 天然型よりも優れたCTL誘導活性を示した。また、標的細胞をWT1陽性でHLA-A24 陽性の肺癌細胞株RERF-LC-AI細胞、WT陽性でHLA-A2402陰性の肺癌細胞株11-18細 胞、またはWT1陰性でHLA-A24陽性の肺癌細胞株11-18細胞を用いて、同様に上記 のエフェクター細胞の細胞傷害活性を51Crリリースアッセイにより測定した。結 果を図24に示す。改変型ペプチドおよび天然型ペプチドにより刺激されたエフェ クター細胞は、WT1とHLA-A2402が共に陽性のRERF-LC-AI細胞のみを特異的に傷害 することから、ペプチド刺激によりHLA-A2402拘束性のWT1特異的CTLが誘導され ていることが示された。また、改変型ペプチドの方が天然型ペプチドよりも優れ たCTL誘導能を示した。

[0132]

実施例 5

システイン残基置換型ペプチドによるCTL誘導活性

ペプチドH(Arg Tyr Pro Ser Cys Gln Lys Lys Phe;配列番号:4)は第5位にシステイン残基を有する。当該システイン残基は溶液中で酸化されジスルフィド結合を生じる可能性がある。そこで、第5位のシステイン残基をセリン残基、アラニン残基、または α -アミノ酪酸に置換した置換型ペプチド(ペプチドM、N、0)を合成し、それぞれのイン・ビボでの免疫原性を検討した。

ペプチドM: Arg-Tyr-Pro-Ser-Ser-Gln-Lys-Lys-Phe (配列番号:66)

ペプチドN:Arg-Tyr-Pro-Ser-Ala-Gln-Lys-Lys-Phe (配列番号:67)

ペプチド0:Arg-Tyr-Pro-Ser-Abu-Gln-Lys-Lys-Phe (配列番号:68)

これらの図から明らかな通り、ペプチドH の第5位のシステイン残基を、セリン残基、アラニン残基、あるいは α -アミノ酪酸に置換したペプチドM、Nおよび0は、置換前のペプチド (ペプチドH) と同等の免疫原性を有していることが示された。

[0133]

実施例6

システイン残基置換型ペプチドによる細胞傷害活性

置換型ペプチドによって誘導されたエフェクター細胞の非置換型ペプチドに対する交差反応性を試験した。ペプチドMまたはNをマウスに免疫することにより誘導されたエフェクター細胞(E)に対して、ペプチドMまたはNをパルス、ペプチドHをパルス、あるいはペプチド非パルスの JurkatーA 2402/Kb細胞を標的細胞(T)として作用させ、エフェクター細胞の細胞傷害活性を51Crリリースアッセイにより測定した。結果を図29および30に示す。

この図から明らかな通り、置換型ペプチドで誘導したエフェクター細胞は、置換型ペプチド(ペプチドM、ペプチドN;図中免疫ペプチド)および非置換型ペプチド(ペプチドH)をパルスしたいずれの細胞に対しても細胞傷害活性を示した

[0134]

【発明の効果】

本発明により、イン・ビボにおいてCTL誘導活性を有するWT1由来のHLA-A24拘束性ペプチド、当該ペプチドをコードするポリヌクレオチド、またはこれらペプチドやポリヌクレオチドを含む癌ワクチンなどが提供される。本発明の癌ワクチンは多くの癌患者を処置することができる。

[0135]

【配列表】

SEQUENCE LISTING

<110> Haruo Sugiyama

Chugai Seiyaku Kabushikikaisha Sumitomo Pharmaceuticals Co., Ltd.

<120> HLA-A24 restricted tumor antigen peptide

<130> 185832

<150> JP 2002-171518

<151> 2002-6-12

<160> 68

<210> 1

<211> 449

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro

1 5 10 15

Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala

20

25

30

Gln	Trp	Ala 35	Pro	Val	Leu	Asp	Phe 40	Ala	Pro	Pro	Gly	Ala 45	Ser	Ala	Туз
Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro	Pro	Ala	Pro	Pro	Pro	Pro	Pro
	50					55					60				
													-		

Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly 65 70 75 80

Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
85 90 95

Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 100 105 110

Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 115 120 125

Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile 130 135 140

Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr

145 150 155 160

Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe 165 170 175

Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln
180 185 190

Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser
195 200 205

Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp 210 215 220

Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln 225 230 235 240

Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser 245 250 255

Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu 260 265 270

Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile 275 280 285

His Thr His Gly Val Phe Arg Gly IIe Gln Asp Val Arg Arg Val Pro 290 295 300

Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys 305 310 315 320

Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys

325

330

335

Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro

340

345

350

Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp 355 360 365

Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln 370 375 380

Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr 385 390 395 400

His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys
405
410
415

Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val 420 425 430

Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
435
440
445

Leu

<210> 2

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 2

Arg Tyr Phe Pro Asn Ala Pro Tyr Leu

1

5

<210> 3

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 3

Arg Tyr Pro Gly Val Ala Pro Thr Leu

1

5

<210> 4

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 4

Arg Tyr Pro Ser Cys Gln Lys Lys Phe

1

5

<210> 5

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 5

Ala Tyr Leu Pro Ala Val Pro Ser Leu

1

5

<210> 6

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 6

Asn Tyr Met Asn Leu Gly Ala Thr Leu

1

5

```
<210> 7
```

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 7

Arg Val Pro Gly Val Ala Pro Thr Leu

1

5

<210> 8

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 8

Arg Met Phe Pro Asn Ala Pro Tyr Leu

1

5

<210> 9

<211> 9

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artif
```

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 9

Arg Trp Pro Ser Cys Gln Lys Lys Phe

1

5

<210> 10

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 10

Gln Tyr Arg Ile His Thr His Gly Val Phe

1

5

10

<210> 11

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 11

Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe

1

5

10

<210> 12

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 12

Arg Tyr Phe Pro Asn Ala Pro Tyr Phe

1

5

<210> 13

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

```
<400> 13
```

Arg Tyr Phe Pro Asn Ala Pro Tyr Trp

1

5

<210> 14

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 14

Arg Tyr Phe Pro Asn Ala Pro Tyr Ile

1

5

<210> 15

, <211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 15

Arg Tyr Phe Pro Asn Ala Pro Tyr Met

1

5

```
<210> 16
```

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 16

Arg Tyr Pro Gly Val Ala Pro Thr Phe

1

<210> 17

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 17

Arg Tyr Pro Gly Val Ala Pro Thr Trp

1

5

<210> 18

- <211> 9
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic Peptide
- <400> 18

Arg Tyr Pro Gly Val Ala Pro Thr Ile

1

5

- <210> 19
- <211> 9
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic Peptide
- <400> 19

Arg Tyr Pro Gly Val Ala Pro Thr Met

1

5

- <210> 20
- <211> 9
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 20

Arg Tyr Pro Ser Cys Gln Lys Lys Trp

1

5

<210> 21

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 21

Arg Tyr Pro Ser Cys Gln Lys Lys Leu

1

. 5

<210> 22

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

```
<400> 22
```

Arg Tyr Pro Ser Cys Gln Lys Lys Ile

1

5

<210> 23

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 23

Arg Tyr Pro Ser Cys Gln Lys Lys Met

1

5

<210> 24

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 24

Ala Tyr Leu Pro Ala Val Pro Ser Phe

1

5

<210> 25

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 25

Ala Tyr Leu Pro Ala Val Pro Ser Trp

1

5

<210> 26

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 26

Ala Tyr Leu Pro Ala Val Pro Ser Ile

1

5

<210> 27

- <211> 9
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic Peptide
- <400> 27

Ala Tyr Leu Pro Ala Val Pro Ser Met

1

5

- <210> 28
- <211> 9
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Synthetic Peptide
- <400> 28

Asn Tyr Met Asn Leu Gly Ala Thr Phe

1

5

- <210> 29
- <211> 9
- <212> PRT
- <213> Artificial Sequence

```
<220>
```

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 29

Asn Tyr Met Asn Leu Gly Ala Thr Trp

1

5

<210> 30

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 30

Asn Tyr Met Asn Leu Gly Ala Thr Ile

1

5

<210> 31

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 31

Asn Tyr Met Asn Leu Gly Ala Thr Met

1

5

<210> 32

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 32

Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser

1

5 -

10

15

Ala Ser His Leu Glu

20

<210> 33

<211> 3857

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: The DNA region from position 1

to position 1550 is derived from human, and the DNA region from position 1551 to position 3857 is derived from mouse.

<400> 33

aagcttactc	tctggcacca	aactccatgg	gatgattttt	cttctagaag	agtccaggtg	60
gacaggtaag	gagtgggagt	cagggagtcc	agttcaggga	cagagattac	gggatgaaaa	120
gtgaaaggag	agggacgggg	cccatgccga	gggtttctcc	cttgtttctc	agacagctct	180
tgggccaaga	ttcagggaga	cattgagaca	gagcgcttgg	cacagaagca	gaggggtcag	240
ggcgaagtcc	cagggcccca	ggcgtggctc	tcagggtctc	aggccccgaa	ggcggtgtat	300
ggattgggga	gtcccagcct	tggggattcc	ccaactccgc	agtttctttt	ctcctctcc	360
caacctatgt	agggtccttc	ttcctggata	ctcacgacgc	ggacccagtt	ctcactccca	420
ttgggtgtcg	ggtttccaga	gaagccaatc	agtgtcgtcg	cggtcgctgt	tctaaagtcc	480
gcacgcaccc	accgggactc	agattctccc	cagacgccga	ggatggccgt	catggcgccc	540
cgaaccctcg	tcctgctact	ctcgggggcc	ctggccctga	cccagacctg	ggcaggtgag	600
tgcggggtcg	ggagggaaac	ggcctctgcg	gggagaagca	aggggcccgc	ctggcggggg	660
cgcaagaccc	gggaagccgc	gccgggagga	gggtcgggcg	ggtctcagcc	actcctcgtc	720
cccaggctcc	cactccatga	ggtatttctc	cacatccgtg	tcccggcccg	gccgcgggga	780
gccccgcttc	atcgccgtgg	gctacgtgga	cgacacgcag	ttcgtgcggt	tcgacagcga	840
cgccgcgagc	cagaggatgg	agccgcgggc	gccgtggata	gagcaggagg	ggccggagta	900
ttgggacgag	gagacaggga	aagtgaaggc	ccactcacag	actgaccgag	agaacctgcg	960
gatcgcgctc	cgctactaca	accagagcga	ggccggtgag	tgaccccggc	ccggggcgca	1020
ggtcacgacc	cctcatcccc	cacggacggg	ccgggtcgcc	cacagtctcc	gggtccgaga	1080
tccaccccga	agccgcggga	ccccgagacc	cttgccccgg	gagaggccca	ggcgccttaa	1140
cccggtttca	ttttcagttt	aggccaaaaa	tcccccggg	titggtcgggg	ccgggcgggg	1200
ctcgggggac	tgggctgacc	gcggggtcgg	ggccaggttc	tcacaccctc	cagatgatgt	1260
ttggctgcga	cgtggggtcg	gacgggcgct	tcctccgcgg	gtaccaccag	tacgcctacg	1320
acggcaagga	ttacatcgcc	ctgaaagagg	acctgcgctc	ttggaccgcg	gcggacatgg	1380
cggctcagat	caccaagcgc	aagtgggagg	cggcccatgt	ggcggagcag	cagagagcct	1440
acctggaggg	cacgtgcgtg	gacgggctcc	gcagatacct	ggagaacggg	aaggagacgc	1500

tgcagcgcac gggtaccagg ggccacgggg cgcctacctg atcgcctgta gatcct	gtgt 1560
gacacacctg taccttgtcc cccagagtca ggggctggga gtcattttct ctggct	acac 1620
acttagtgat ggctgttcac ttggactgac agttaatgtt ggtcagcaag gtgact	acaa 1680
tggttgagtc tcaatggtgt caccttccag gatcatacag ccctaatttt aatatg	aact 1740
caaacacata ttaaattagt tattttccat tccctcctcc attctttgac tacctc	tctc 1800
atgctattga acatcacata aggatggcca tgtttaccca atggctcatg tggatt	ccct 1860
cttagcttct gagtcccaaa agaaaatgtg cagtcctgtg ctgaggggac cagctc	tgct 1920
tttggtcact agtgcgatga cagttgaagt gtcaaacaga cacatagttc actgtc	atca 1980
ttgatttaac tgagtcttgg gtagatttca gtttgtcttg ttaattgtgt gatttc	ttaa 2040
atcttccaca cagattcccc aaaggcccat gtgacccatc acagcagacc tgaaga	taaa 2100
gtcaccctga ggtgctgggc cctgggcttc taccctgctg acatcaccct gacctg	gcag 2160
ttgaatgggg aggagctgat ccaggacatg gagcttgtgg agaccaggcc tgcagg	ggat 2220
ggaaccttcc agaagtgggc atctgtggtg gtgcctcttg ggaaggagca gtatta	caca 2280
tgccatgtgt accatcaggg gctgcctgag cccctcaccc tgagatgggg taagga	gagt 2340
gtgggtgcag agctggggtc agggaaagct ggagctttct gcagaccctg agctgc	tcag 2400
ggctgagagc tggggtcatg accetcacet teatttettg tacetgteet teccag	agcc 2460
tcctccatcc actgtctcca acatggcgac cgttgctgtt ctggttgtcc ttggag	ctgc 2520
aatagtcact ggagctgtgg tggcttttgt gatgaagatg agaaggagaa acacag	gtag 2580
gaaagggcag agtctgagtt ttctctcagc ctcctttaga gtgtgctctg ctcatc	aatg 2640
gggaacacag gcacacccca cattgctact gtctctaact gggtctgctg tcagtt	ctgg 2700
gaactteeta gtgteaagat etteetggaa eteteacage ttttettete acaggt	ggaa 2760
aaggagggga ctatgctctg gctccaggtt agtgtgggga cagagttgtc ctgggg	acat 2820
tggagtgaag ttggagatga tgggagctct gggaatccat aatagctcct ccagag	aaat 2880
cttctaggtg cctgagttgt gccatgaaat gaatatgtac atgtacatat gcatat	acat 2940
ttgttttgtt ttaccctagg ctcccagacc tctgatctgt ctctcccaga ttgtaa	aggt 3000
gacactctag ggtctgattg gggaggggca atgtggacat gattgggttt caggaa	ctcc 3060
cagaatcccc tgtgagtgag tgatgggttg ttcgaatgtt gtcttcacag tgatgg	ttca 3120
tgaccctcat tctctagcgt gaagacagct gcctggagtg gacttggtga cagaca	atgt 3180
cttctcatat ctcctgtgac atccagagcc ctcagttctc tttagtcaag tgtctg	atgt 3240

<210> 34

<211> 1119

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: The DNA region from position 1 to position 618 is derived from human, and the DNA region from position 619 to position 1119 is derived from mouse.

<400> 34

atg gcc gtc atg gcg ccc cga acc ctc gtc ctg cta ctc tcg ggg gcc

48

Met Ala Val Met Ala Pro Arg Thr Leu Val Leu Leu Leu Ser Gly Ala

5

10

15

ctg gcc ctg acc cag acc tgg gca ggc tcc cac tcc atg agg tat ttc 96
Leu Ala Leu Thr Gln Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe

		20					25					30			
tcc aca	tcc		tcc		ccc	ggc.			gag	ccc	cgc	ttc	atc	gcc	144
Ser Thr										•					
Ser III	35	, a1		•••		40	8	- -5			45				
gtg ggc		σtσ	gac	gac	acg		ttc	gtg	cgg	ttc	gac	agc	gac	gcc	192
Val Gly															
50	191	Yaı	пор	шор	55	0111	1110		0	60.			•		
gcg agc	car	add	ata	വമവ		റ മമ	യവ	CCS	tøø		gag	cag	gag	ggg	240
Ala Ser															
65	GIII	ия	MCC	70	110		mu	110	75					80	
ccg gag	tat	taa	നാറ		ແລແ	aca	aaa	ลลล		ลลซ	gcc	cac	tca	cag	288
Pro Glu															
rro Giu	1 9 1	пр	85	oru	Giu	1111	Oly	90	141	2,0			95	-	
		~~~		ata	caa	atc	aca		cac	tac	tac	aac			336
act gac															
Thr Asp	Arg		ASII	Leu	AIg	116	105		nrg	ıyı	1 y 1	110			
	•	100								a.a.o	tac			r aaa	384
gag gcc															001
Glu Ala			HIS	inr	Leu			Met	rne	Gly	125		, vai	. Uly	
	115					120									432
tcg gac															<b>40</b> 2
Ser Asp		Arg	Phe	Leu			lyr	HIS	GII			ı ıyı	. ASI	GIY	
130					135					140					480
aag gat															400
Lys Asp	Tyr	· Ile	Ala			Glu	ı Asp	Let			rırı	) In	r Ala		
145				150					155					160	E90
gac atg															528
Asp Met	Ala	a Ala			Thi	Lys	s Arg			) Gli	ı Ala	a Al			
			165					170					17		-50
gcg gag	g cag	g cag	g aga	a gco	c tac	ct	g ga	g gg	c ac	g tg	c gt	g ga	c gg	g ctc	576

Ala Glu Gln Gln Arg Ala Tyr Leu Glu	Gly Thr Cys Val	Asp Gly Leu
180 185	·	
cgc aga tac ctg gag aac ggg aag gag	acg ctg cag cgc	acg gat tcc 624
Arg Arg Tyr Leu Glu Asn Gly Lys Glu	Thr Leu Gln Arg	Thr Asp Ser
195 200	205	
cca aag gcc cat gtg acc cat cac agc	aga cct gaa gat	aaa gtc acc 672
Pro Lys Ala His Val Thr His His Ser	Arg Pro Glu Asp 1	Lys Val Thr
210 215	220	
ctg agg tgc tgg gcc ctg ggc ttc tac	cct gct gac atc	acc ctg acc 720
Leu Arg Cys Trp Ala Leu Gly Phe Tyr	Pro Ala Asp Ile	Thr Leu Thr
225 230	235	240
tgg cag ttg aat ggg gag gag ctg atc	cag gac atg gag	ctt gtg gag 768
Trp Gln Leu Asn Gly Glu Glu Leu Ile	Gln Asp Met Glu l	Leu Val Glu
245	250	255
acc agg cct gca ggg gat gga acc ttc	cag aag tgg gca	tct gtg gtg 816
Thr Arg Pro Ala Gly Asp Gly Thr Phe	Gln Lys Trp Ala	Ser Val Val
260 265	:	270
gtg cct ctt ggg aag gag cag tat tac	aca tgc cat gtg	tac cat cag 864
Val Pro Leu Gly Lys Glu Gln Tyr Tyr	Thr Cys His Val	Tyr His Gln
275 280	285	
ggg ctg cct gag ccc ctc acc ctg aga	tgg gag cct cct o	cca tcc act 912
Gly Leu Pro Glu Pro Leu Thr Leu Arg	Trp Glu Pro Pro 1	Pro Ser Thr
290 295	300	
gtc tcc aac atg gcg acc gtt gct gtt	ctg gtt gtc ctt g	gga gct gca 960
Val Ser Asn Met Ala Thr Val Ala Val	Leu Val Val Leu (	Gly Ala Ala
305 310	315	320
ata gtc act gga gct gtg gtg gct ttt		•
Ile Val Thr Gly Ala Val Val Ala Phe	Val Met Lys Met	Arg Arg Arg
325	330	335

aac aca ggt gga aaa gga ggg gac tat gct ctg gct cca ggc tcc cag 1056 Asn Thr Gly Gly Lys Gly Gly Asp Tyr Ala Leu Ala Pro Gly Ser Gln 340 345 350 acc tct gat ctg tct ctc cca gat tgt aaa gtg atg gtt cat gac cct 1104 Thr Ser Asp Leu Ser Leu Pro Asp Cys Lys Val Met Val His Asp Pro 355 360 365 cat tct cta gcg tga 1119 His Ser Leu Ala 370

<210> 35

<211> 372

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: The polypeptide region from position 1 to position 206 is derived from human, and the polypeptide region from position 207 to position 372 is derived from mouse.

<400> 35

Met Ala Val Met Ala Pro Arg Thr Leu Val Leu Leu Leu Ser Gly Ala

5 10 15

Leu Ala Leu Thr Gln Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe

20 25 30

Ser Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ala

35 40 45

Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala

	50					55					60				
Ala	Ser	Gln	Arg	Met	Glu	Pro	Arg	Ala	Pro	Trp	Ile	Glu	Gln	Glu	Gly
65					70					75					80
Pro	Glu	Tyr	Trp	Asp	Glu	Glu	Thr	Gly	Lys	Val	Lys	Ala	His	Ser	Gln
				85					90					95	
Thr	Asp	Arg	Glu	Asn	Leu	Arg	Ile	Ala	Leu	Arg	Tyr	Tyr	Asn	Gln	Ser
			100					105					110		
Glu	Ala	Gly	Ser	His	Thr	Leu	Gln	Met	Met	Phe	Gly	Cys	Asp	Val	Gly
		115					120					125			
Ser	Asp	Gly	Arg	Phe	Leu	Arg	Gly	Tyr	His	Gln	Tyr	Ala	Tyr	Asp	Gly
	130					135					140				
Lys	Asp	Tyr	Ile	Ala	Leu	Lys	Glu	Asp	Leu	Arg	Ser	Trp	Thr	Ala	Ala
145					150				•	155					160
Asp	Met	Ala	Ala	Gln	Ile	Thr	Lys	Arg	Lys	Trp	Glu	Ala	Ala	His	Val
				165			•		170					175	
Ala	Glu	Gln	Gln	Arg	Ala	Tyr	Leu	Glu	Gly	Thr	Cys	Val	Asp	Gly	Leu
			180					185					190		
Arg	Arg	Tyr	Leu	Glu	Asn	Gly	Lys	Glu	Thr	Leu	Gln	Arg	Thr	Asp	Ser
		195					200					205			
Pro	Lys	Ala	His	Val	Thr	His	His	Ser	Arg	Pro	Glu	Asp	Lys	Val	Thr
	210					215					220				
Leu	Arg	Cys	Trp	Ala	Leu	Gly	Phe	Tyr	Pro	Ala	Asp	Ile	Thr	Leu	Thr
225					230					235					240
Trp	Gln	Leu	Asn	Gly	Glu	Glu	Leu	Ile	Gln	Asp	Met	Glu	Leu	Val	Glu
				245					250					255	
Thr	Arg	Pro	Ala	Gly	Asp	Gly	Thr	Phe	Gln	Lys	Trp	Ala	Ser	Val	Val
			260					265		•			270		
Val	Pro	Leu	Gly	Lys	Glu	Gln	Tyr	Tyr	Thr	Cys	His	Val	Tyr	His	Gln
		275					280					285			



<210> 36

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 36

cccaagetta etetetggea ecaaaeteea tgggat

36

<210> 37

<211> 30

<212> DNA

<213>	Arti	ficial	Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 37

cgggagatct acaggcgatc aggtaggcgc

30

<210> 38

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 38

cgcaggctct cacactattc aggtgatctc

30

<210> 39

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 39

cggaattccg agtctctgat ctttagccct gggggctc

38

<210> 40

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 40

aggacttgga ctctgagagg cagggtctt

29

<210> 41

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 41

catagtcccc tccttttcca cctgtgagaa

30

<210> 42



- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: PCR primer
- <400> 42
- cgaaccctcg tcctgctact ctc

23

- <210> 43
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: PCR primer
- <400> 43
- agcatagtcc cctccttttc cac

23

- <210> 44
- <211> 39
- <212> DNA
- <213> Artificial Sequence
- <220>

<223> Description of Artificial Sequence: PCR primer

<400> 44

cccaagette gccgaggatg gccgtcatgg cgccccgaa

39

<210> 45

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PCR primer

<400> 45

ccggaattct gtcttcacgc tagagaatga gggtcatgaa c

41

<210> 46

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 46

Pro Tyr Val Ser Arg Leu Leu Gly Ile

5

<210> 47

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 47

Ile Met Pro Lys Ala Gly Leu Leu Ile

5

<210> 48

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 48

Thr Tyr Ala Cys Phe Val Ser Asn Leu

5

<210> 49

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide .

<400> 49

Gln Tyr Ser Trp Phe Val Asn Gly Thr Phe

5

10

<210> 50

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 50

Ala Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu

1

5

10

15

<210> 51

<211> 9

<212> PRT

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 51
Ala Leu Leu Pro Ala Val Pro Ser Leu
  1
                    5
<210> 52
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic Peptide
<400> 52
Asn Gln Met Asn Leu Gly Ala Thr Leu
  1
<210> 53
<211> 9
<212> PRT
```

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

5

1

<210> 55

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 55

Arg Phe Pro Gly Val Ala Pro Thr Leu

1

5

```
<210> 56
```

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 56

Arg Met Pro Gly Val Ala Pro Thr Leu

1

5

<210> 57

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 57

Arg Trp Pro Gly Val Ala Pro Thr Leu

1

5

<210> 58

<211> 9

<212> PRT

<213> Artificial Sequence

```
<220>
```

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 58

Arg Phe Pro Ser Cys Gln Lys Lys Phe

1

5

<210> 59

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 59

Arg Met Pro Ser Cys Gln Lys Lys Phe

1

5

<210> 60

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 60

Ala Phe Leu Pro Ala Val Pro Ser Leu

1

5

<210> 61

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 61

Ala Met Leu Pro Ala Val Pro Ser Leu

1

5

<210> 62

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 62

Ala Trp Leu Pro Ala Val Pro Ser Leu

1

5

<210> 63

<211> 9

<212> PRT

```
<213> Artificial Sequence
```

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 63

Asn Phe Met Asn Leu Gly Ala Thr Leu

1

5

<210> 64

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 64

Asn Met Met Asn Leu Gly Ala Thr Leu

1

5

<210> 65

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

```
<400> 65
```

Asn Trp Met Asn Leu Gly Ala Thr Leu

1

5

<210> 66

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 66

Arg Tyr Pro Ser Ser Gln Lys Lys Phe

1

5

<210> 67

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 67

Arg Tyr Pro Ser Ala Gln Lys Lys Phe

1

5

<210> 68

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<223> Xaa at position 5 stands for Abu.

<400> 68

Arg Tyr Pro Ser Xaa Gln Lys Lys Phe

1

5

## 【図面の簡単な説明】

- 【図1】 本発明のキメラ遺伝子(HLA-A2402/Kb遺伝子)の作製に用いたH-2KbゲノムDNAの構築方法を示す模式図である。
- 【図2】 本発明のキメラ遺伝子であるHLA-A2402/Kb遺伝子の構築方法を示す模式図である。
- 【図3】 配列番号:33に記載のHLA-A2402/Kb ゲノム配列の第1位〜第1300位までと、配列番号:34に記載のHLA-A2402/Kb cDNA配列の第1位〜第407位までの位置関係を示したものである。
- 【図4】 配列番号:33に記載のHLA-A2402/K^b ゲノム配列の第1301位〜第2600位までと、配列番号:34に記載のHLA-A2402/K^b cDNA配列の第408位〜第1015位までの位置関係を示したものである。
- 【図5】 配列番号:33に記載のHLA-A2402/Kb ゲノム配列の第2601位〜第3 857位までと、配列番号:34に記載のHLA-A2402/Kb cDNA配列の第1016位〜第1119 位までの位置関係を示したものである。
- 【図 6 】 HER-2/neu由来抗原ペプチド (HER2/neu₇₈₀₋₇₈₈) で本発明のHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示し



- 【図7】 MAGE-3由来抗原ペプチド(MAGE-3₁₉₅₋₂₀₃)で本発明のHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図8】 CEA由来抗原ペプチド(CEA652-660)で本発明のHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図9】 CEA由来抗原ペプチド(CEA₂₆₈₋₂₇₇)で本発明のHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図10】 ヒトWT1由来抗原ペプチドA(WT1₁₂₆₋₁₃₄)でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図11】 ヒトWT1由来抗原ペプチドB(WT1302-310)でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図12】 ヒトWT1由来抗原ペプチドC(WT1 $_{417-425}$ )でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図 $_{6}$ におけると同義である。
- 【図13】 ヒトWT1由来抗原ペプチドD(WT1₂₈₅₋₂₉₄)でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。
- 【図14】 ヒトWT1由来抗原ペプチドE(WT1326-335)でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。

90/

ヒトWT1由来抗原ペプチドA(WT1₁₂₆₋₁₃₄)の第2位をチロシン 型ペプチド (ペプチドF) でHLA-A24発現トランスジェニックマウ ₅異的CTLが誘導されることを示したグラフである。図中、縦軸、 よび黒棒は、図6におけると同義である。

】 ヒトWT1由来抗原ペプチドB (WT1302-310) の第2位をチロシン 【変型ペプチド (ペプチドG) でHLA-A24発現トランスジェニックマウ 特異的CTLが誘導されることを示したグラフである。図中、縦軸、 および黒棒は、図6におけると同義である。

7】 ヒトWT1由来抗原ペプチドC(WT1417-425)の第2位をチロシン :改変型ペプチド (ペプチドH) でHLA-A24発現トランスジェニックマウ し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、

J18】 ヒトWT1由来抗原ペプチドK (WT110-18) の第2位をチロシンに こ改変型ペプチド(ペプチドI)でHLA-A24発現トランスジェニックマウスを 、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸

【図19】 ヒトWT1由来抗原ペプチドL (WT1239-247) の第2位をチロシン をした改変型ペプチド(ペプチドJ)でHLA-A24発現トラシスジェニックマウス 度し、特異的CTLが誘導されることを示したグラフである。図中、縦軸、横

【図20】 改変型ペプチドHによって誘導されたエフェクター細胞の天然 白棒および黒棒は、図6におけると同義である。 ペプチドに対する交差反応性を試験した結果を示したグラフである。図中、縦 はCTL誘導活性(% Specific Lysis)を、また横軸は各トランスジェニックマ スの名称を示す。また図中、白棒は改変型ペプチド (ペプチドH)をパルスし :標的細胞を用いた結果を、点線棒は天然型ペプチ ド (ペプチドC) をパルスし で標的細胞を用いた結果を、また黒棒はペプチド非ノベルス細胞を用いた結果を示

【図21】 ヒト町1由来抗原ペプチドK (町110-18) でHLA-A24発現トラン スジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフで す。

ある。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。

【図22】 ヒトWT1由来抗原ペプチドL(WT1₂₃₉₋₂₄₇)でHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されないことを示したグラフである。図中、縦軸、横軸、白棒および黒棒は、図6におけると同義である。

【図23】 ヒトWT1由来抗原ペプチドB(WT1 $_{302-310}$ )、またはそのペプチドの第2位をチロシンに改変した改変型ペプチド (ペプチドG) でHLA-A2402陽性の健常人末梢血単核球を in vitroで刺激してCTLが誘導されることを示したグラフである。図中、縦軸は細胞傷害活性を、また横軸はエフェクター細胞(E)とターゲット細胞(T)の比率E/Tを示す。黒丸は改変ペプチド、黒三角は天然型ペプチドで刺激したエフェクター細胞による細胞傷害活性を示す。

【図24】 ヒトWT1由来抗原ペプチドB(WT1302-310)、またはそのペプチドの第2位をチロシンに改変した改変型ペプチド (ペプチドG) でHLA-A2402陽性の健常人末梢血単核球を in vitroで刺激してCTLが誘導されることを示したグラフである。図中、縦軸は細胞傷害活性を、また横軸はエフェクター細胞(E)とターゲット細胞(T)の比率E/Tを示す。改変ペプチドで誘導されたエフェクター細胞のRERF-LC-AI細胞に対する傷害性を黒丸、LK87細胞に対する傷害性を黒三角、11-18細胞に対する傷害性を黒四角で示す。天然型ペプチドで誘導されたエフェクター細胞のRERF-LC-AI細胞に対する傷害性を中空丸、LK87細胞に対する傷害性を中空丸、LK87細胞に対する傷害性を中空

【図25】 ペプチドHでHLA-A24発現トランスジェニックマウスを免疫し、特異的CTLが誘導されることを示したグラフである。図中、縦軸は傷害活性(% S pecific Lysis)を示し、横軸はE/T比を示す。また黒丸はペプチドH(免疫ペプチド)をパルスした標的細胞を用いた結果を、白丸はペプチド非パルス細胞を用いた結果を示す。

【図26】 ペプチドMでHLA-A24発現トランスジェニックマウスを免疫し、 特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、黒丸お よび白丸は図25におけると同義である。

【図27】 ペプチドNでHLA-A24発現トランスジェニックマウスを免疫し、 特異的CTLが誘導されることを示したグラフである。図中、縦軸、横軸、黒丸お









【図8】



【図9】











【図12】







【図14】



【図15】



【図16】



【図17】



【図18】



【図19】



【図20】



【図21】



【図22】







- ── 改変ペプチド刺激エフェクタ─細胞 天然型ペプチドパルスC1R-A*2402標的細胞
- -▲---天然型ペプチド刺激エフェクター細胞 天然型ペプチドパルスC1R-A*2402標的細胞

【図24】



-●- エフェクター細胞:改変ペプチド刺激

標的細胞: RERF-LC-AI細胞(WT1陽性、HLA-A2402陽性)

-▲- エフェクター細胞:改変ペプチド刺激

標的細胞:LK87細胞(WT1陽性、HLA-A2402陰性)

-■ エフェクター細胞:改変ペプチド刺激

標的細胞:11-18細胞(WT1陰性、HLA-A2402陽性)

一〇 エフェクター細胞:天然型ペプチド刺激

標的細胞: RERF-LC-AI細胞(WT1陽性、HLA-A2402陽性)

-△ エフェクター細胞:天然型ペプチド刺激

標的細胞:LK87細胞(WT1陽性、HLA-A2402陰性)

-- エフェクター細胞:天然型ペプチド刺激

標的細胞:11-18細胞(WT1陰性、HLA-A2402陽性)

【図25】



【図26】



【図27】



【図28】





【図29】



【図30】





#### 【要約】

【課題】 イン・ビボでCTL誘導活性を有するWT1由来のHLA-A24拘束性ペプチド、当該ペプチドをコードするポリヌクレオチド、またはこれらペプチドやポリヌクレオチドをin vivoまたはin vitroで利用した癌ワクチンなどを提供すること。

【解決手段】 配列番号:2~6および66~68のいずれかに記載のアミノ酸配列を有するペプチド、前記ペプチドをコードするポリヌクレオチド、および当該ペプチドやポリヌクレオチド等を有効成分として含有する癌ワクチン等。

【選択図】 なし



特許出願の番号 特願2002-275572

受付番号 50201414835

書類名 特許願

担当官 森吉 美智枝 7577

作成日 平成14年 9月27日

<認定情報・付加情報>

【特許出願人】

【識別番号】 595090392

【住所又は居所】 大阪府箕面市船場西2-19-30

【氏名又は名称】 杉山 治夫

【特許出願人】

【識別番号】 000003311

【住所又は居所】 東京都北区浮間5丁目5番1号

【氏名又は名称】 中外製薬株式会社

【特許出願人】

【識別番号】 000183370

【住所又は居所】 大阪府大阪市中央区道修町2丁目2番8号

【氏名又は名称】 住友製薬株式会社

【代理人】 申請人

【識別番号】 100062144

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMP

ビル 青山特許事務所

【氏名又は名称】 青山 葆

【選任した代理人】

【識別番号】 100086405

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMP

ビル 青山特許事務所

【氏名又は名称】 河宮 治

【選任した代理人】

【識別番号】 100068526

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMP

ビル 青山特許事務所

【氏名又は名称】 田村 恭生

【選任した代理人】

次頁有



# 認定・付加情報(続き)

【識別番号】 100103230

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMP

ビル 青山特許事務所

【氏名又は名称】 高山 裕貢

# 特願2002-275572

### 出願人履歴情報

識別番号

[595090392]

1. 変更年月日

1995年 6月 1日

[変更理由]

新規登録

住所

大阪府箕面市船場西2-19-30

氏 名

杉山 治夫



# 出願人履歴情報

識別番号

[000003311]

1. 変更年月日

1990年 9月 5日

[変更理由]

新規登録

住 所

東京都北区浮間5丁目5番1号

氏 名 中外製薬株式会社





# 出願人履歴情報

識別番号

[000183370]

1. 変更年月日

1990年 8月 9日

[変更理由]

新規登録

住 所 氏 名 大阪府大阪市中央区道修町2丁目2番8号

住友製薬株式会社