Máquinas de Turing

IIC3242

Complejidad Computacional

Objetivo: Medir la complejidad computacional de un problema.

Vale decir: Medir la cantidad de recursos computacionales necesarios para solucionar un problema.

- ▶ Tiempo
- Espacio
- **...**

Para hacer esto primero tenemos que introducir la noción de problema.

Problemas de decisión

Alfabeto Σ : Conjunto finito de símbolos.

▶ Ejemplo: $\Sigma = \{0, 1\}$.

Palabra w: Secuencia finita de símbolos de Σ .

• Ejemplo: w = 01101.

 Σ^* : Conjunto de todas las palabras construidas con símbolos de Σ .

Lenguaje *L*: Conjunto de palabras.

▶ Ejemplo: $L = \{0^n 1^n \mid n \in \mathbb{N}\}.$

Problemas de decisión

Problema de decisión asociado a un lenguaje L: Dado $w \in \Sigma^*$, decidir si $w \in L$.

Ejemplo

Podemos ver SAT como un problema de decisión. Suponga que $P = \{p, q\}$:

- ▶ $\Sigma = \{p, q, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}$ Algunas palabras de Σ^* representan fórmulas, mientras que otras tales como $\neg \neg$ y $p \neg q \land \land \lor q$ no representan fórmulas.
- ▶ SAT = $\{w \in \Sigma^* \mid w \text{ representa una fórmula y } w \text{ es satisfacible}\}.$

Complejidad de un problema de decisión

La complejidad de un lenguaje L es la complejidad del problema de decisión asociado a L.

¿Cuándo decimos que L puede ser solucionado eficientemente?

► Cuando existe un algoritmo eficiente que decide *L*.

Ejercicio

Muestre que $L = \{w \in \{0,1\}^* \mid w \text{ es un palíndromo}\}$ puede ser resuelto eficientemente.

¿Cuándo decimos que L es un problema difícil?

▶ Cuando **no existe** un algoritmo eficiente que decide *L*.

Máquinas de Turing

¿Cómo podemos demostrar que un problema es difícil?

▶ Para hacer esto, primero tenemos que formalizar la noción de algoritmo.

¿Qué es un algoritmo? ¿Podemos formalizar este concepto?

Máquinas de Turing: Intento por formalizar este concepto.

¿Podemos demostrar que las máquinas de Turing capturan la noción de algoritmo?

▶ No, el concepto de algoritmo es intuitivo.

Máquinas de Turing

¿Por qué creemos que las máquinas de Turing son una buena formalización del concepto de algoritmo?

- ► Porque cada programa de una máquina de Turing puede ser implementado.
- Porque todos los algoritmos conocidos han podido ser implementados en máquinas de Turing.
- Porque todos los otros intentos por formalizar este concepto fueron reducidos a las máquinas de Turing.
 - Los mejores intentos resultaron ser equivalentes a las máquinas de Turing.

7 / 42

- Todos los intentos "razonables" fueron reducidos eficientemente.
- ► Tesis de Church: **Algoritmo** = **Máquina de Turing**.

Máquinas de Turing: Formalización

Definición

Máquina de Turing (Determinista): $(Q, \Sigma, \Gamma, q_0, \delta, F)$

- Q es un conjunto finito de estados.
- Σ es un alfabeto tal que ⊢, B ∉ Σ.
- ▶ Γ es un alfabeto tal que $\Sigma \cup \{\vdash, \mathtt{B}\} \subseteq \Gamma$.
- $ightharpoonup q_0 \in Q$ es el estado inicial.
- ▶ $F \subseteq Q$ es un conjunto de estados finales.
- $ightharpoonup \delta$ es una función parcial:

$$\delta : Q \times \Gamma \to Q \times \Gamma \times \{I, N, D\}.$$

 δ es llamada función de transición.

Máquinas de Turing: Funcionamiento

La cinta de la máquina de Turing es infinita hacia la derecha.

► El símbolo ⊢ es usado para demarcar la posición 0 de la cinta.

Supuesto

- ▶ Si $\delta(q,\vdash)$ está definido: $\delta(q,\vdash) = (q',\vdash,X)$, con $X \in \{D,N\}$
- ▶ Si $a \in \Gamma \setminus \{\vdash\}$ y $\delta(q, a)$ está definido: $\delta(q, a) = (q', b, X)$, con $b \in \Gamma \setminus \{\vdash\}$.

 Σ es el alfabeto de entrada y Γ es el alfabeto de la cinta.

- ▶ Una palabra $w \in \Sigma^*$ de entrada de largo n es colocada en las posiciones $1, \ldots, n$ de la cinta.
- Las posiciones siguientes (n + 1, n + 2, ...) contienen el símbolo B.

Máquinas de Turing: Funcionamiento

Al comenzar a funcionar, la máquina se encuentra en el estado q_0 y su cabeza lectora está en la posición 1 de la cinta.

En cada instante la máquina se encuentra en un estado q y su cabeza lectora está en una posición p.

- Si el símbolo en la posición p es a y $\delta(q, a) = (q', b, X)$, entonces:
 - ► La máquina escribe el símbolo *b* en la posición *p* de la cinta.
 - ightharpoonup Cambia de estado desde q a q'.
 - ▶ Mueve la cabeza lectora a la posición p-1 si X=I, y a la posición p+1 si X=D. Si X=N, entonces la cabeza lectora permanece en la posición p.

Máquinas de Turing: Aceptación

Los estados de F son utilizados como estados de aceptación.

▶ Una palabra w es aceptada por una máquina M si y sólo si la ejecución de M con entrada w se detiene en un estado de F.

Definición

Lenguaje aceptado por una máquina de Turing M:

$$L(M) = \{ w \in \Sigma^* \mid M \text{ acepta } w \}.$$

Máquinas de Turing: Ejemplo

Queremos construir una máquina que verifique si el número de 0s en una palabra es par: $M = (Q, \Sigma, \Gamma, q_0, \delta, F)$

- $ightharpoonup Q = \{q_0, q_1\}.$
- $\Sigma = \{0, 1\}.$
- ▶ $\Gamma = \{0, 1, \vdash, B\}.$
- ▶ $F = \{q_0\}.$
- \triangleright δ es definida como:

$$\delta(q_0, 0) = (q_1, B, D)$$

 $\delta(q_0, 1) = (q_0, B, D)$
 $\delta(q_1, 0) = (q_0, B, D)$
 $\delta(q_1, 1) = (q_1, B, D)$

Máquinas de Turing: Ejecución

Supongamos que w = 00010:

Máquinas de Turing: Ejecución

Conclusión: La máquina acepta w = 00010.

El lenguaje aceptado por una máquina de Turing: Ejemplos

Ejemplo

Para la máquina M mostrada en las transparencias anteriores:

$$L(M) = \{w \in \{0,1\}^* \mid w \text{ contiene un número par de símbolos } 0\}$$

Ejercicio

Construya una máquina de Turing que acepte el lenguaje $L = \{w \in \{0,1\}^* \mid w \text{ es un palíndromo}\}.$

Complejidad de un algoritmo

Una Máquina de Turing puede no detenerse en alguna entrada.

► Primera noción de algoritmo: MT que se detiene en todas las entradas.

¿Cómo se mide el tiempo de ejecución de un algoritmo?

Para una MT con alfabeto Σ :

- Paso de M: Ejecutar una instrucción de la función de transición.
- ▶ $tiempo_M(w)$: Número de pasos ejecutados por M con entrada $w \in \Sigma^*$.

Complejidad de un algoritmo

Definición

El tiempo de funcionamiento de una MT M en el peor caso es definido por la función t_M :

$$t_M(n) = \max\{ tiempo_M(w) \mid w \in \Sigma^* \ y \ |w| = n \}.$$

Ejercicio

Construya una máquina de Turing que funcione en tiempo $O(n^2)$ y acepte el lenguaje $L = \{w \in \{0,1\}^* \mid w \text{ es un palíndromo}\}.$

Máquinas de Turing con varias cintas

Definición

MT con k cintas: $(Q, \Sigma, \Gamma, q_0, \delta, F)$

- Q es un conjunto finito de estados.
- ▶ Σ es un alfabeto tal que \vdash , $B \notin \Sigma$.
- ▶ Γ es un alfabeto tal que $\Sigma \cup \{\vdash, \mathtt{B}\} \subseteq \Gamma$.
- $ightharpoonup q_0 \in Q$ es el estado inicial.
- ▶ $F \subseteq Q$ es un conjunto de estados finales.
- δ es una función parcial:

$$\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{I, N, D\}^k.$$

 δ es llamada función de transición.

Máquinas de Turing con k cintas: Funcionamiento

La máquina tiene k cintas infinitas hacia la derecha.

► El símbolo ⊢ es usado para demarcar la posición 0 de cada cinta.

 Σ es el alfabeto de entrada y Γ es el alfabeto de las cintas.

- ▶ Una palabra $w \in \Sigma^*$ de entrada de largo n es colocada en las posiciones 1, . . . , n de la primera cinta.
- Las siguientes posiciones (n+1, n+2, ...) de la primera cinta contienen el símbolo B.
- ► Las restantes cintas contienen el símbolo B en las posiciones 1, 2, 3, ...

Máquinas de Turing con k cintas: Funcionamiento

La máquina tiene una cabeza lectora por cinta.

▶ Al comenzar, la máquina se encuentra en el estado q_0 , y cada cabeza lectora está en la posición 1 de su cinta.

En cada instante la máquina se encuentra en un estado q y su cabeza lectora i se encuentra en la posición p_i .

- Si el símbolo en la posición p_i es a_i y $\delta(q, a_1, \ldots, a_k) = (q', b_1, \ldots, b_k, X_1, \ldots, X_k)$, entonces:
 - La máquina escribe el símbolo b_i en la posición p_i de la i-ésima cinta.
 - ightharpoonup Cambia de estado desde q a q'.
 - Mueve la cabeza lectora de la i-ésima cinta a la posición $p_i 1$ si $X_i = I$, y a la posición $p_i + 1$ si $X_i = D$. Si $X_i = N$, entonces la máquina no mueve la cabeza lectora de la i-ésima cinta.

MT con k cintas: Aceptación y complejidad

Una palabra w es aceptada por una MT M con k cintas si y sólo si la ejecución de M con entrada w se detiene en un estado final.

$$L(M) = \{ w \in \Sigma^* \mid M \text{ acepta } w \}.$$

Para una MT con k cintas y alfabeto Σ :

- ► Paso de M: Ejecutar una instrucción de la función de transición.
- ▶ $tiempo_M(w)$: Número de pasos ejecutados por M con entrada $w \in \Sigma^*$.
- ▶ Tiempo de funcionamiento *M* en el peor caso:

$$t_M(n) = \max\{ tiempo_M(w) \mid w \in \Sigma^* \text{ y } |w| = n \}.$$

MT con k cintas: Ejemplo

Ejercicio

Construya una MT M con dos cintas que funcione en tiempo O(n) y acepte el lenguaje $L = \{w \in \{0,1\}^* \mid w \text{ es un palíndromo}\}.$

Solución: Definimos $M = (Q, \Sigma, \Gamma, q_0, \delta, F)$ de la siguiente forma:

- $Q = \{q_0, q_c, q_r, q_v, q_a\}$
- $\Sigma = \{0, 1\}$
- ▶ $\Gamma = \{0, 1, B, \vdash\}$
- ▶ $F = \{q_a\}$

MT con k cintas: Ejemplo

Función δ es definida de la siguiente forma:

Aceptación en distintos modelos

Un lenguaje L es aceptado por una MT M si L = L(M).

▶ ¿Es posible aceptar más lenguajes si se usa cintas adicionales?

Teorema

Si un lenguaje L es aceptado por una MT M_1 con k cintas, entonces L es aceptado por una MT M_2 con una cinta.

Ejercicio

Demuestre el teorema.

ightharpoonup ¿Cuál es la diferencia de complejidad entre M_1 y M_2 ?

Un lenguaje L es aceptado por una MT M en tiempo O(t(n)) si L = L(M) y $t_M(n)$ es O(t(n)).

▶ La definición es idéntica para el caso de $\Omega(t(n))$ y $\Theta(t(n))$.

¿Es posible aceptar más rápido si se usa cintas adicionales?

Teorema

Si un lenguaje L es aceptado por una MT M_1 con k cintas en tiempo O(t(n)), entonces L es aceptado por una MT M_2 con una cinta en tiempo $O(t(n)^2)$.

Ejercicio

Demuestre el teorema.

 \triangleright ¿Es posible reducir la diferencia entre M_1 y M_2 ?

Sea $L = \{ w \in \{0, 1, \#\}^* \mid w \text{ es un palíndromo} \}.$

- ▶ L es aceptado por una MT con dos cintas en tiempo O(n).
- ▶ ¿Puede ser L aceptado en tiempo lineal por una MT con una cinta?

Proposición

Sea M una MT con una cinta. Si L = L(M), entonces M funciona en tiempo $\Omega(n^2)$.

Demostración: Suponga que L = L(M), donde M es una MT con una cinta.

Sin perdida de generalidad, suponemos que M siempre recorre toda la palabra de entrada.

Para $w \in \{0, 1, \#\}^*$, sea w^r la palabra obtenida al escribir w en el sentido inverso.

Defina L_n como el siguiente lenguaje (para n divisible por 4):

$$L_n = \{ w \#^{\frac{n}{2}} w^r \mid w \in \{0,1\}^{\frac{n}{4}} \}.$$

Nótese que $L_n \subseteq L$.

Sea $w \in L_n$ y $\frac{n}{4} \le i \le \frac{3n}{4}$. Entonces $C_i(w)$ es la secuencia de estados $[q_1, \ldots, q_k]$ en que se encuentra M después de moverse entre las posiciones i e i+1 (en cualquiera de las dos direcciones) en la ejecución que tiene a w como entrada.

►
$$C(w) = \{C_i(w) \mid \frac{n}{4} \le i \le \frac{3n}{4}\}.$$

Lema

Si
$$w_1, w_2 \in L_n$$
 y $w_1 \neq w_2$, entonces $C(w_1) \cap C(w_2) = \emptyset$.

Demostración: Suponga que el lema es falso. Entonces existen $i, j \in \{\frac{n}{4}, \dots, \frac{3n}{4}\}$ tales que $C_i(w_1) = C_j(w_2)$.

Sean u_1 y u_2 las palabra formadas por los primeros i símbolos de w_1 y los últimos n-j símbolos de w_2 , respectivamente.

Dado que $C_i(w_1) = C_j(w_2)$, se tiene que u_1u_2 es aceptado por M.

¿Cómo se demuestra esto?

Pero u_1u_2 no es un palíndromo, por lo que tenemos una contradicción.

Para $w \in L_n$, sea s_w la secuencia más corta en C(w).

$$\blacktriangleright S_n = \{s_w \mid w \in L_n\}.$$

Por el lema sabemos que $s_{w_1} \neq s_{w_2}$ si $w_1 \neq w_2$.

▶ Por lo tanto: $|S_n| = |L_n| = 2^{\frac{n}{4}}$

Sea m el largo de la secuencia mas larga en S_n .

► Cantidad de posibles secuencias de largo a lo más *m*:

$$\sum_{i=0}^{m} |Q|^{i} = \frac{|Q|^{m+1} - 1}{|Q| - 1}.$$

De lo anterior concluimos que: $\frac{|Q|^{m+1}-1}{|Q|-1} \ge 2^{\frac{n}{4}}$.

▶ ¿Por qué?

Se tiene entonces que m es $\Omega(n)$.

▶ Por lo tanto existe $w_0 \in L_n$ para el cual $|s_{w_0}|$ es $\Omega(n)$.

Entonces: Todas las secuencias en $C(w_0)$ son de largo $\Omega(n)$.

Conclusión: Con entrada w_0 , la máquina M toma tiempo $\Omega(n^2)$.

▶ Puesto que M tiene que generar $\frac{n}{2}$ secuencias de estados de largo $\Omega(n)$.

IIC3242 - Máquinas de Turing