Chapter 2

SLR Model Evaluation

Chanwoo Yoo, Division of Advanced Engineering, Korea National Open University

This work is a derivative of 'Regression Methods' by Iain Pardoe, Laura Simon and Derek Young, used under CC BY-NC.

Contents

- 1. Common Error Variance
- 2. Coefficient of Determination
- 3. Inference for the Parameter

1. Common Error Variance

1. Error Variance

• σ^2 quantifies how much the responses (y) vary around the (unknown) mean population regression line $\mu_Y = E(Y) = \beta_0 +$ $\beta_1 x$.

2. Estimation of Error Variance

- We don't know σ^2 because it is a population parameter.
- sample variance

•
$$s^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$$

• Estimation of μ with \bar{y} costs one degree of freedom(df).

2. Estimation of Error Variance

- Mean Square Error (MSE)
 - Estimates of σ^2

•
$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

• Estimation of two population parameters (β_0 and β_1) costs two degrees of freedom.

3. Code: MSE

```
> print(model$df.residual)
[1] 8
> print(sum(model$residuals^2))
[1] 597.386
> print(sprintf("MSE=%0.2f",
sum(model$residuals^2)/model$df.residual))
[1] "MSE=74.67"
```

3. Code: MSE

```
> anova(model)
Analysis of Variance Table
Response: wt
         Df Sum Sq Mean Sq F value Pr(>F)
ht
          1 5202.2 5202.2 69.666 3.214e-05 ***
Residuals 8 597.4 74.7
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

2. Coefficient of Determination

1. Sum of Squares

• SSR(regression sum of squares) quantifies how far the estimated sloped regression line, \hat{y}_i , is from the horizontal "no relationship line," the sample mean or \bar{y} .

•
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• SSE(error sum of squares) quantifies how much the data points, y_i , vary around the estimated regression line, \hat{y}_i .

•
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

1. Sum of Squares

- SSTO(total sum of squares) quantifies how much the data points, y_i , vary around their mean, \bar{y} .
 - $SSTO = \sum_{i=1}^{n} (y_i \bar{y})^2$
- SSTO = SSR + SSE
 - $\sum_{i=1}^{n} (y_i \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2 + \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

2. Situation 1

•
$$SSR = 119.1$$

•
$$SSE = 1708.5$$

•
$$SSTO = 1827.6$$

$$\frac{SSR}{SSTO} = \frac{119.1}{1827.6} = 0.065$$

3. Situation 2

•
$$SSR = 6679.3$$

•
$$SSE = 1708.5$$

$$\frac{SSR}{SSTO} = \frac{6679.3}{8487.8} = 0.799$$

4. r^2

• The "coefficient of determination" or "r-squared value," denoted r^2 , is the regression sum of squares divided by the total sum of squares.

•
$$r^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

5. Interpretation of r^2

- $r^2 \times 100$ percent of the variation in y is 'explained by' the variation in predictor x.
 - Caution: Large r-squared value does not imply that x causes the changes in y.
 - Causation is different from association.
 - e.g. ice cream and shark

5. Interpretation of r^2

- What's considered a large r-squared value?
 - It depends on the research area.

6. Results: Height and Weight

3. Inference for the Parameter

1. Confidence Interval for β_1

- $100(1-\alpha)$ percent confidence interval for β_1
 - sample estimate ± (t-multiplier × standard error)

•
$$b_1 \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \times \left(\frac{\sqrt{MSE}}{\sqrt{\sum (x_i - \bar{x})^2}}\right)$$

-n-2: degree of freedom(df)

1. Confidence Interval for β_1

- If the confidence interval for β_1 contains 0, then we conclude that there is no evidence of a linear relationship between the predictor x and the response y in the population.
- If the confidence interval for β_1 does not contain 0, then we conclude that there is evidence of a linear relationship between the predictor x and the response y in the population.

- Null hypothesis $H_0: \beta_1 = \beta$
- Alternative hypothesis $H_A: \beta_1 \neq \beta$
- $\beta = 0$

$$t^* = \frac{b_1 - \beta}{se(b_1)} = \frac{b_1 - \beta}{\left(\frac{\sqrt{MSE}}{\sqrt{\sum (x_i - \overline{x})^2}}\right)}$$

■ We use the resulting test statistic to calculate the P-value. As always, the P-value is the answer to the question "how likely is it that we'd get a test statistic t* as extreme as we did if the null hypothesis were true?" The P-value is determined by referring to a t-distribution with n-2 degrees of freedom.

If the P-value is smaller than the significance level α , we reject the null hypothesis in favor of the alternative. We conclude "there is sufficient evidence at the α level to conclude that there is a linear relationship in the population between the predictor x and response y."

• If the P-value is larger than the significance level α , we fail to reject the null hypothesis. We conclude "there is not enough evidence at the α level to conclude that there is a linear relationship in the population between the predictor x and response y."

3. Dataset

Skin Cancer Dataset

4. Code: Skin Cancer

```
skincancer <- read.table("skincancer.txt", header=T)</pre>
attach(skincancer)
model <- lm(Mort ~ Lat)</pre>
plot(x=Lat, y=Mort,
     xlab="Latitude (at center of state)", ylab="Mortality
(deaths per 10 million)",
     panel.last = lines(sort(Lat), fitted(model)[order(Lat)]))
summary(model)
confint(model, level=0.95)
detach(skincancer)
```

5. Results: Skin Cancer

5. Results: Skin Cancer

```
> summary(model)
Call:
lm(formula = Mort ~ Lat)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 389.1894 23.8123 16.34 < 2e-16 ***
Lat -5.9776 0.5984 -9.99 3.31e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

5. Results: Skin Cancer

6. Factors affecting the confidence interval for β_1

•
$$width = 2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \left(\frac{\sqrt{MSE}}{\sqrt{\sum (x_i - \bar{x})^2}}\right)$$

- As the confidence level decreases, the width of the interval decreases.
- As MSE decreases, the width of the interval decreases.

6. Factors affecting the confidence interval for β_1

•
$$width = 2 \times t_{\left(\frac{\alpha}{2}, n-2\right)} \times \left(\frac{\sqrt{MSE}}{\sqrt{\sum (x_i - \bar{x})^2}}\right)$$

- The more spread out the predictor x values, the narrower the interval.
- As the sample size increases, the width of the interval decreases.

7. Possible outcomes concerning β_1

- When we don't reject the null hypothesis,
 - We committed a Type II error. That is, in reality $\beta_1 \neq 0$ and our sample data just didn't provide enough evidence to conclude that $\beta_1 \neq 0$.
 - There really is not much of a linear relationship between x and y.
 - There is a relationship between x and y it is just not linear.

7. Possible outcomes concerning β_1

- When we do reject the null hypothesis,
 - We committed a Type I error. That is, in reality $\beta_1 = 0$, but we have an unusual sample that suggests that $\beta_1 \neq 0$.
 - The relationship between x and y is indeed linear.
 - A linear function fits the data okay, but a curved ("curvilinear") function would fit the data even better.

Next

Chapter 3 SLR Estimation & Prediction