## Examen Final de Sistemas Inteligentes: Bloque 2 ETSINF, Universitat Politècnica de València, 26 de enero de 2015

Apellidos: Nombre:

 $\square 3B \square 3C \square 3D \square 3E \square 3F$ Grupo: □3A  $\square$  RE1

Cuestiones (2 puntos; tiempo estimado: 30 minutos)

Marca cada recuadro con una única opción de entre las dadas.





B) 
$$7 < J \le 14$$
  $J = 10$ 

C) 
$$14 < J \le 21$$

D) 
$$21 < J$$



2 D Sean 
$$X, Y y Z$$
 tres variables aleatorias. Se dice que  $X$  e  $Y$  son condicionalmente independientes dada  $Z$  si y solo si 
$$P(X=x,Y=y\mid Z=z) = P(X=x\mid Z=z)P(Y=y\mid Z=z) \qquad \text{para todo } x,\,y\,y\,z.$$

Si se cumple esta igualdad, podemos calcular  $P(Z=z\mid X=x,Y=y)$  como sigue:

A) 
$$P(Z = z \mid X = x, Y = y) = \frac{P(X = x, Y = y, Z = z)}{P(X = x, Y = y)}$$

B) 
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

B) 
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$
  
C)  $P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x \mid Z = z) P(Y = y \mid Z = z)}{P(X = x, Y = y)}$ 

D) De las tres maneras anteriores.

3 C Se quiere construir un sistema de reconocimiento de formas para dígitos manuscritos representados mediante cadenas de contorno de 4 direcciones; esto es, mediante cadenas de símbolos en el alfabeto 
$$\Sigma = \{1, 2, 3, 4\}$$
. Dada una secuencia de cadenas de entrenamiento con sus correspondientes etiquetas de clase, construiremos el sistema como sigue:

- A) Emplearemos el algoritmo Perceptrón y obtendremos un clasificador lineal.
- B) Aprenderemos un Árbol de Decisión y Clasificación mediante el algoritmo ADC.
- C) Diseñaremos un clasificador basado en modelos de Markov aplicando el algoritmo de re-estimación por Viterbi.
- D) Las tres opciones anteriores son válidas.

4 C En un problema de clasificación en tres clases 
$$(C = \{a, b, c\})$$
, en el que se dispone de 100 muestras de la clase  $a$ , 100 muestras de la clase  $b$  y 100 muestras de la clase  $c$ , sea  $y$  un hecho o dato. La decisión óptima de clasificación para  $y$  es la clase  $a$  con una probabilidad a posteriori de 0.50. ¿Cuál de las siguientes afirmaciones es correcta?

A) 
$$P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y)$$
  
B)  $P(Y = y \mid C = a) = \frac{0.5 \ P(C = a)}{P(Y = y)}$   
C)  $P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$ 

B) 
$$P(Y = y \mid C = a) = \frac{0.5 P(C = a)}{P(Y = u)}$$

C) 
$$P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$$

D) Ninguna de las anteriores.

5 C Dado un clasificador lineal de 2 clases 
$$\circ$$
 y  $\bullet$  definido por su conjunto de pesos  $\mathbf{a}_{\circ} = (0, -1, 1)^t$  y  $\mathbf{a}_{\bullet} = (0, 1, -1)^t$ , ¿Qué conjunto de pesos de los siguientes no define un clasificador equivalente al dado?

A) 
$$\mathbf{a}_{\circ} = (1, -1, 1)^t \text{ y } \mathbf{a}_{\bullet} = (1, 1, -1)^t$$
  $f(z) = az + b \text{ con } a = 1 \text{ y } b = 0$ 

B) 
$$\mathbf{a} = (-1, -2, 2)^t \mathbf{v} \mathbf{a} = (-1, 2, -2)^t \mathbf{f}(z) = az + b \cos a = 2 \mathbf{v} \mathbf{b} = -1$$

A) 
$$\mathbf{a}_{\circ} = (1, -1, 1)^t \text{ y } \mathbf{a}_{\bullet} = (1, 1, -1)^t$$
  
B)  $\mathbf{a}_{\circ} = (-1, -2, 2)^t \text{ y } \mathbf{a}_{\bullet} = (-1, 2, -2)^t$   
C)  $\mathbf{a}_{\circ} = (0, 2, -2)^t \text{ y } \mathbf{a}_{\bullet} = (0, -2, 2)^t$   
D)  $\mathbf{a}_{\circ} = (0, -2, 2)^t \text{ y } \mathbf{a}_{\bullet} = (0, 2, -2)^t$   
 $f(z) = az + b \text{ con } a = 2 \text{ y } b = 0$   
 $f(z) = az + b \text{ con } a = 2 \text{ y } b = 0$ 

D) 
$$\mathbf{a}_{\circ} = (0, -2, 2)^t$$
 y  $\mathbf{a}_{\bullet} = (0, 2, -2)^t$   $f(z) = az + b \operatorname{con} a = 2$  y  $b = 0$ 

6 A En la figura de la derecha se representan dos muestras de aprendizaje bidimensionales de 2 clases: 
$$(x_1, \circ)$$
 y  $(x_2, \bullet)$ . Dados el conjunto de pesos  $\mathbf{a}_\circ = (0, 1, -2)^t$  y  $\mathbf{a}_\bullet = (0, 0, 1)^t$ , si aplicamos una iteración del algoritmo Perceptrón con factor de aprendizaje  $\alpha = 1.0$  y margen  $b = 0.5$  a partir del conjunto de pesos y muestras de aprendizaje dadas, ¿cuántos errores de clasificación se producen sobre las muestras de aprendizaje con el nuevo conjunto de pesos?



A) 0 
$$\mathbf{a}_{\circ} = (1, 1, -2)^t \text{ y } \mathbf{a}_{\bullet} = (-1, 0, 1)^t$$

- B) 1
- C) 2
- D) 3

## Examen Final de Sistemas Inteligentes: Bloque 2 ETSINF, Universitat Politècnica de València, 26 de enero de 2015

Apellidos: Nombre:

Grupo:  $\Box 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F \Box RE1 \Box RE2$ 

Problemas (3 puntos; tiempo estimado: 60 minutos)

## 1. (1.5 puntos)

Para aprender un árbol de clasificación se dispone de una muestra de entrenamiento formada por 6 vectores bidimensionales pertenecientes a 3 clases, A, B y C. Estos vectores se muestran en la figura a la derecha  $(A = \circ, B = \bullet \text{ y } C = \times)$ . En las primeras invocaciones recursivas del algoritmo ADC (con  $\epsilon = 0.5$  bits) se ha producido el sub-árbol con tres nodos que se muestra en la figura de abajo. Este sub-arbol corresponde a una primera división óptima de la muestra de entrenamiento en dos subconjuntos mediante el "split" (2,4.0) (es decir,  $y_2 \leq 4$ ). En este proceso inicial se han obtenido los parámetros que se muestran en la tabla.



| Nodo  | Split | $P(A \mid t_i)$ | $P(B \mid t_i)$ | $P(C \mid t_i)$ | $P_{t_i}(L)$ | $P_{t_i}(R)$ | $\mathcal{I}(t_i)$ | $\Delta \mathcal{I}(t_1)$ |
|-------|-------|-----------------|-----------------|-----------------|--------------|--------------|--------------------|---------------------------|
| $t_1$ | (2,4) | 1/2             | 1/3             | 1/6             | 1/2          | 1/2          | 1.459              | 1.000                     |
| $t_2$ | _     | 1               | 0               | 0               | _            | _            | 0                  | _                         |
| $t_3$ |       | 0               | 2/3             | 1/3             |              |              |                    |                           |
| $t_4$ |       |                 |                 |                 |              |              |                    |                           |
| $t_5$ |       |                 |                 |                 |              |              |                    |                           |



a) Explicar cómo se obtienen los siguientes valores de la tabla:  $P(A \mid t_1)$ ,  $P(B \mid t_1)$ ,  $P(C \mid t_1)$ ,  $P_{t_1}(R)$  y  $\mathcal{I}(t_1)$ . El nodo raiz  $(t_1)$  representa a los 6 los datos disponibles. De ellos hay 3 de la clase A, 2 de la clase B y 1 de la clase C. Por tanto:  $P(A \mid t_1) = 3/6 = 1/2$ ,  $P(B \mid t_1) = 2/6 = 1/3$ ,  $P(C \mid t_1) = 1/6$ 

El "split" (2,4.0)  $(t_2 \le 4)$  divide el árbol raiz en dos subárboles: uno enraizado en  $t_2$ , que representa 3 datos tales que  $y_2 \le 4$ , y otro en  $t_3$ , que representa otros 3 datos tales que  $y_2 > 4$ . Así pues:  $P_{t_1}(R) = 3/6 = 1/2$ 

Finalmente: 
$$\mathcal{I}(t_1) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{3}\log_2\frac{1}{3} - \frac{1}{6}\log_2\frac{1}{6} \approx 1.459 \text{ bits}$$

b) Calcular la impureza del nodo  $t_3$ .  $\mathcal{I}(t_3) = 0 - \frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \approx 0.918 \text{ bits}$ 

c) Encontrar el "split" óptimo para el nodo  $t_3$ , completar la ejecución del algoritmo ADC y completar las celdas de tabla que están en blanco.

El nodo  $t_3$  representa los vectores  $((1,5)^t,B),((3,5)^t,B),((5,5)^t,C)$  para los que solo hay dos particiones posibles, correspondientes a los "splits":  $y_1 \le 2$  y  $y_1 \le 4$ . Los decrementos de impureza correspondientes son:

$$\Delta \mathcal{I}(1,2,t_3) = \mathcal{I}(t_3) - \frac{1}{3}\mathcal{I}(t_4) - \frac{2}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - \frac{2}{3} \cdot 1 = 0.251 \text{ bits}$$
  
 $\Delta \mathcal{I}(1,4,t_3) = \mathcal{I}(t_3) - \frac{2}{3}\mathcal{I}(t_4) - \frac{1}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - 0 = 0.918 \text{ bits}$ 

De estos, el mayor decremento es para el split (1,4) (o sea,  $y_1 \leq 4$ ).

El árbol resultante y los parámetros correspondientes se muestran abajo en la figura y tabla, respectivamente.

| Nodo  | Split | $P(A \mid t_i)$ | $P(B \mid t_i)$ | $P(C \mid t_i)$ | $P_{t_i}(L)$ | $P_{t_i}(R)$ | $\mathcal{I}(t_i)$ | $\Delta \mathcal{I}(t_1)$ |
|-------|-------|-----------------|-----------------|-----------------|--------------|--------------|--------------------|---------------------------|
| $t_1$ | (2,4) | 1/2             | 1/3             | 1/6             | 1/2          | 1/2          | 1.459              | 1.000                     |
| $t_2$ | _     | 1               | 0               | 0               | _            | _            | 0                  | _                         |
| $t_3$ | (1,4) | 0               | 2/3             | 1/3             | 2/3          | 1/3          | 0.918              | 0.918                     |
| $t_4$ | _     | 0               | 1               | 0               | _            | <u> </u>     | 0                  | _                         |
| $t_5$ | _     | 0               | 0               | 1               | 1            | _            | 0                  | _                         |



## 2. (1.5 puntos) Sea M el modelo de Markov:



Calcula la probabilidad exacta de que M genere la cadena bbac,  $P_M(bbac)$ , mediante el algoritmo Forward.



 $P_M(bbac) = 0.0013104$