

General Description

The AP2114 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 1A (Min) continuous load current.

The AP2114 features low power consumption.

The AP2114 is available in 1.2V, 1.5V, 1.8V, 2.5V and 3.3V regulator output and 0.8V to 5V adjustable output, and available in excellent output accuracy $\pm 1.5\%$, it is also available in an excellent load regulation and line regulation performance.

The AP2114 is available in standard packages of SOT-223, TO-252-2(1), TO-252-2(3), TO-252-2(4), TO-263-3, SOIC-8 and PSOP-8.

Features

- Output Voltage Accuracy: ±1.5%
- Output Current: 1A (Min)
- Fold-back Short Current Protection: 50mA
- Low Dropout Voltage (3.3V): 450mV (Typ) @I_{OUT}=1A
- Stable with 4.7µF Flexible Cap: Ceramic, Tantalum and Aluminum Electrolytic
- Excellent Line Regulation: 0.02%/V (Typ), 0.1%/V (Max) @ I_{OUT}=30mA
- Excellent Load Regulation: 0.2%A (Typ) @ I_{OUT}=1mA to 1A
- Low Quiescent Current: 60μA (1.2V/1.5V/1.8V /2.5V/ADJ)
- Low Output Noise: $30\mu V_{RMS}$
- PSRR: 68dB @ Freq=1KHz(1.2V/1.5V/1.8V /ADJ)
- OTSD Protection
- Operating Temperature Range: -40°C to 85°C
- ESD: MM 400V, HBM 4000V

Applications

- LCD Monitor
- LCD TV
- STB

Figure 1. Package Types of AP2114

Pin Configuration

Figure 2. Pin Configuration of AP2114 (Top View)

Pin Descriptions

	Pin Numb	er			
SOT-223 (H), TO-263-3, TO-252-2 (1) (D) TO-252-2 (3) (D) TO-252-2 (4) (D)	SOT-223 (HA), TO-252-2 (1) (DA) TO-252-2 (3) (DA) TO-252-2 (4) (DA)	SOIC-8, PSOP-8 (Fixed)	SOIC-8, PSOP-8 (ADJ)	Pin Name	Function
1	2	1, 3, 5, 6, 7	2, 3, 5, 7	GND	Ground
2	3	2	8	VOUT	Regulated Output
3	1	4	1	VIN	Input Voltage Pin
		8	4	EN	Chip Enable, H–Normal Work, L– Shutdown Output
			6	ADJ	Adjust Output

Functional Block Diagram

 $A(B)\{C\}$

A: SOT-223(H), TO-263-3, TO-252-2(1)/(3)/(4)(D)

B: SOIC-8, PSOP-8

C: SOT-223 (HA), TO-252-2(1)/(3)/(4)(DA)

For Fixed Versions

Functional Block Diagram (Continued)

For ADJ Version

Figure 3. Functional Block Diagram of AP2114

Ordering Information

Package	Temperature Range	Output Voltage	Part Number	Marking ID	Packing Type
		1.2V (H)	AP2114H-1.2TRG1	GH12C	Tape & Reel
		1.5V (H)	AP2114H-1.5TRG1	GH16G	Tape & Reel
SOT-223	-40 to 85°C	1.8V (H)	AP2114H-1.8TRG1	GH12D	Tape & Reel
		2.5V (H)	AP2114H-2.5TRG1	GH14C	Tape & Reel
		3.3V (H)	AP2114H-3.3TRG1	GH12E	Tape & Reel
		1.2V (HA)	AP2114HA-1.2TRG1	GH13B	Tape & Reel
		1.5V (HA)	AP2114HA-1.5TRG1	GH16H	Tape & Reel
SOT-223	-40 to 85°C	1.8V (HA)	AP2114HA-1.8TRG1	GH14D	Tape & Reel
		2.5V (HA)	AP2114HA-2.5TRG1	GH14E	Tape & Reel
		3.3V (HA)	AP2114HA-3.3TRG1	GH14F	Tape & Reel
		1.2V (D)	AP2114D-1.2TRG1	AP2114D-1.2G1	Tape & Reel
TO-252-2 (1)/		1.5V (D)	AP2114D-1.5TRG1	AP2114D-1.5G1	Tape & Reel
TO-252-2 (3)/	-40 to 85°C	1.8V (D)	AP2114D-1.8TRG1	AP2114D-1.8G1	Tape & Reel
TO-252-2 (4)		2.5V (D)	AP2114D-2.5TRG1	AP2114D-2.5G1	Tape & Reel
		3.3V (D)	AP2114D-3.3TRG1	AP2114D-3.3G1	Tape & Reel
		1.2V (DA)	AP2114DA-1.2TRG1	AP2114DA-1.2G1	Tape & Reel
TO-252-2 (1)/		1.5V (DA)	AP2114DA-1.5TRG1	AP2114DA-1.5G1	Tape & Reel
TO-252-2 (3)/	-40 to 85°C	1.8V (DA)	AP2114DA-1.8TRG1	AP2114DA-1.8G1	Tape & Reel
TO-252-2 (4)		2.5V (DA)	AP2114DA-2.5TRG1	AP2114DA-2.5G1	Tape & Reel
		3.3V (DA)	AP2114DA-3.3TRG1	AP2114DA-3.3G1	Tape & Reel
		1.2V	AP2114S-1.2TRG1	AP2114S-1.2G1	Tape & Reel
		1.5V	AP2114S-1.5TRG1	AP2114S-1.5G1	Tape & Reel
TO-263-3	-40 to 85°C	1.8V	AP2114S-1.8TRG1	AP2114S-1.8G1	Tape & Reel
		2.5V	AP2114S-2.5TRG1	AP2114S-2.5G1	Tape & Reel
		3.3V	AP2114S-3.3TRG1	AP2114S-3.3G1	Tape & Reel
		1.2V	AP2114M-1.2TRG1	2114M-1.2G1	Tape & Reel
		1.5V	AP2114M-1.5TRG1	2114M-1.5G1	Tape & Reel
		1.8V	AP2114M-1.8TRG1	2114M-1.8G1	Tape & Reel
SOIC-8	-40 to 85°C	2.5V	AP2114M-2.5TRG1	2114M-2.5G1	Tape & Reel
		3.3V	AP2114M-3.3TRG1	2114M-3.3G1	Tape & Reel
		ADJ	AP2114M-ADJG1	2114M-ADJG1	Tube
		ADJ	AP2114M-ADJTRG1	2114M-ADJG1	Tape & Reel

Ordering Information (Continued)

Package	Temperature Range	Output Voltage	Part Number	Marking ID	Packing Type
		1.2V	AP2114MP-1.2TRG1	2114MP-1.2G1	Tape & Reel
		1.5V	AP2114MP-1.5TRG1	2114MP-1.5G1	Tape & Reel
		1.8V	AP2114MP-1.8TRG1	2114MP-1.8G1	Tape & Reel
PSOP-8	-40 to 85°C	2.5V	AP2114MP-2.5TRG1	2114MP-2.5G1	Tape & Reel
		3.3V	AP2114MP-3.3TRG1	2114MP-3.3G1	Tape & Reel
		ADI	AP2114MP-ADJG1	2114MP-ADJG1	Tube
		ADJ	AP2114MP-ADJTRG1	2114MP-ADJG1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Valu	e	Unit
Power Supply Voltage	$V_{\rm IN}$	6.5		V
Operating Junction Temperature Range	T_{J}	150	150	
Storage Temperature Range	T_{STG}	-65 to 1	.50	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260		°C
		SOIC-8	144	
		PSOP-8	143	
Thermal Resistance (Junction to	0	SOT-223	128	00/11/
Ambient) (No Heatsink)	$ heta_{ m JA}$	TO-252-2 (1)/ TO-252-2 (3)/ TO-252-2 (4)	90	°C/W
		TO-263-3	73	
ESD (Machine Model)		400	400	
ESD (Human Body Model)		4000		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.5	6.0	V
Operating Ambient Temperature Range	T _A	-40	85	°C

Electrical Characteristics

AP2114-1.2 Electrical Characteristics (Note 2)

 $(V_{IN}=2.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \le T_A \le 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	V_{OUT}	$V_{IN} = 2.5V$, $1 \text{mA} \le I_{OUT} \le 30 \text{mA}$	V _{OUT} ×98.5%	1.2	V _{OUT} ×101.5%	V
Input Voltage	$V_{\rm IN}$				6.0	V
Maximum Output Current	$I_{OUT(MAX)} \\$	V_{IN} =2.5V, V_{OUT} =1.182V to 1.218V	1			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V_{IN} =2.5V, 1mA \le I _{OUT} \le 1A		0.2	1	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.5V\(\leq V_{IN}\)\(\leq 6V\), I_{OUT}\(=30mA\)	-0.1	0.02	0.1	%/V
Dropout Voltage	V_{DROP}	$I_{OUT}=1.0A$		1200	1300	mV
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =0mA		60	75	μА
Power Supply Rejection	PSRR	Ripple 1Vp-p f=100Hz V _{IN} =2.5V,		68		dB
Ratio	Torux	$I_{OUT} = 100 \text{mA}$ f=1KHz		68		d B
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I_{OUT} =30mA, T_A =-40°C to 85°C		±30		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V		50		mA
RMS Output Noise	$V_{ m NOISE}$	10Hz ≤ f ≤100kHz (No Load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high, regulator on	1.5			V
V _{EN} Low Voltage	V_{IL}	Enable logic low, regulator off			0.4	V
Standby Current	I_{STD}	V_{IN} =2.5V, V_{EN} in OFF mode		0.01	1.0	μА
Start-up Time	t_{S}	No Load		20		μs
EN Pull Down Resistor	R_{PD}			3.0		ΜΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Low		60		Ω
Thermal Shutdown Temperature	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYOTSD}			25		
		SOIC-8		74.6		
Thermal Resistance	0	PSOP-8		43.7		00/337
(Junction to Case)	$ heta_{ m JC}$	SOT-223 TO-252-2 (1) /(3) /(4)	+	50.9 35	-	°C/W
		TO-263-3		22		†

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-1.5 Electrical Characteristics (Note 2)

 $(V_{IN}=2.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \le T_A \le 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Symbol	Test (Conditions	Min	Тур	Max	Unit		
$V_{ m OUT}$	V _{IN} =2.5V, 1mA	$\leq I_{OUT} \leq 30 \text{mA}$	V _{OUT} ×98.5%	1.5	V _{OUT} ×101.5%	V		
$V_{\rm IN}$					6.0	V		
$I_{\text{OUT}(\text{MAX})}$	V _{IN} =2.5V, V _{OUT}	=1.478V to 1.523V	1			A		
$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V _{IN} =2.5V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1	%/A		
$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.5V≤V _{IN} ≤6V, I ₀	OUT=30mA	-0.1	0.02	0.1	%/V		
V_{DROP}	$I_{OUT}=1.0A$			800	1000	mV		
I_Q	V_{IN} =2.5V, I_{OUT} =	-0mA		60	75	μΑ		
PSRR	Ripple 1Vp-p	f=100Hz		68		dB		
TORK	$I_{OUT}=100\text{mA}$	f=1KHz		68		ub		
$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I_{OUT} =30mA, T_A	=-40°C to 85°C		±30		ppm/°C		
I_{SHORT}	V _{OUT} =0V			50		mA		
V_{NOISE}	10 Hz \leq f \leq 100 kl	Hz (No Load)		30		μV_{RMS}		
V_{IH}	Enable logic hig	h, regulator on	1.5			V		
$V_{\rm IL}$	Enable logic low	v, regulator off			0.4	v		
I_{STD}	V _{IN} =2.5V, V _{EN} is	n OFF mode		0.01	1.0	μА		
t_{S}	No Load			20		μs		
R_{PD}				3.0		ΜΩ		
R_{DCHG}	Set EN pin at Lo)W		60		Ω		
T_{OTSD}				160		°C		
T_{HYOTSD}				25				
	SOIC-8			74.6				
								0.00
$ heta_{ m JC}$		2) /(4)				°C/W		
						-		
	V_{OUT} V_{IN} $I_{OUT(MAX)}$ $\triangle V_{OUT}/V_{OUT}$ $\triangle V_{OUT}/V_{OUT}$ $\triangle V_{IN}$ V_{DROP} I_{Q} $PSRR$ $\triangle V_{OUT}/V_{OUT}$ $\triangle T$ I_{SHORT} V_{NOISE} V_{IH} V_{IL} I_{STD} t_{S} R_{PD} R_{DCHG} T_{OTSD}	$\begin{array}{c ccccc} V_{OUT} & V_{IN} = 2.5 \text{V}, 1 \text{mA} \\ \hline V_{IN} & \\ \hline I_{OUT(MAX)} & V_{IN} = 2.5 \text{V}, V_{OUT} \\ \hline \triangle V_{OUT} / V_{OUT} & \\ \hline \triangle V_{OUT} / V_{OUT} & \\ \hline \triangle V_{OUT} / V_{OUT} & \\ \hline \triangle V_{IN} = 2.5 \text{V}, 1 \text{mA} \\ \hline \\ \hline \triangle V_{OUT} / V_{OUT} & \\ \hline \triangle V_{IN} = 2.5 \text{V}, 1 \text{mA} \\ \hline I_{Q} & V_{IN} = 2.5 \text{V}, I_{OUT} = \\ \hline PSRR & Ripple 1 Vp-p \\ V_{IN} = 2.5 \text{V}, I_{OUT} = 100 \text{mA} \\ \hline \\ \hline \triangle V_{OUT} / V_{OUT} & \\ \hline \Delta T & I_{OUT} = 30 \text{mA}, T_{A} \\ \hline I_{SHORT} & V_{OUT} = 0 \text{V} \\ \hline V_{NOISE} & 10 \text{Hz} \leq f \leq 100 \text{kl} \\ \hline V_{IL} & Enable logic hig \\ \hline V_{IL} & Enable logic low \\ \hline I_{STD} & V_{IN} = 2.5 \text{V}, V_{EN} \text{ i} \\ \hline t_{S} & No Load \\ \hline R_{PD} & \\ \hline R_{DCHG} & Set EN pin at Log \\ \hline T_{OTSD} & \\ \hline T_{HYOTSD} & \\ \hline \\ \hline \Theta_{JC} & SOIC-8 \\ \hline PSOP-8 \\ \hline SOT-223 & \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-1.8 Electrical Characteristics (Note 2)

 $(V_{IN}=2.8V, C_{IN}=4.7\mu F (Ceramic), C_{OUT}=4.7\mu F (Ceramic), Typical T_A= 25°C, Bold typeface applies over -40°C ≤ T_A ≤ 85°C ranges, unless otherwise specified (Note 3))$

Parameter	Symbol	Test C	Conditions	Min	Тур	Max	Unit
Output Voltage	V_{OUT}	V _{IN} =2.8V, 1mA	\leq I _{OUT} \leq 30mA	V _{OUT} ×98.5%	1.8	V _{OUT} ×101.5%	V
Maximum Output Current	$I_{OUT(MAX)}$	V _{IN} =2.8V, V _{OUT} =1.773V to 1.827V		1.0			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V _{IN} =2.8V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1.0	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.8V≤V _{IN} ≤6V, I ₀	_{OUT} =30mA	-0.1	0.02	0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1.0A			500	700	mV
Quiescent Current	I_Q	V _{IN} =2.8V, I _{OUT} =	e0mA		60	75	μΑ
Power Supply Rejection		Ripple 1Vp-p	f=100Hz		68		
Ratio	PSRR	V_{IN} =2.8V, I_{OUT} =100mA	V _{IN} =2.8V, I _{OUT} =100mA f=1KHz		68		dB
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA, T _A	=-40°C to 85°C		±30		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	$V_{ m NOISE}$	10Hz ≤ f ≤100kI	Hz (No load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic hig	h, regulator on	1.5			3.7
V _{EN} Low Voltage	V_{IL}	Enable logic low	v, regulator off			0.4	V
Standby Current	I_{STD}	V _{IN} =2.8V, V _{EN} in	n OFF mode		0.01	1.0	μА
Start-up Time	t_{S}	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo)W		60		Ω
Thermal Shutdown Temperature	T _{OTSD}				160		0.0
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
		SOIC-8			74.6		
		PSOP-8			43.7		
Thermal Resistance (Junction to Case)	θ_{JC}	SOT-223			50.9		°C /W
(TO-252-2 (1) /(3	3) /(4)		35		
		TO-263-3			22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-2.5 Electrical Characteristics (Note 2)

 $(V_{IN}=3.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \le T_A \le 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test Co	nditions	Min	Тур	Max	Unit	
Output Voltage	$V_{ m OUT}$	V _{IN} =3.5V, 1mA ≤	$\leq I_{OUT} \leq 30 \text{mA}$	V _{OUT} ×98.5%	2.5	V _{OUT} ×101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =3.5V, V _{OUT} =	1.0			A		
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	Vout=2.5V, V_{IN} =1 $ImA \le I_{OUT} \le 1A$	Vout+1V		0.2	1.0	%/A	
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	3.5V≤V _{IN} ≤6V, I _{OU}	_{UT} =30mA	-0.1	0.02	0.1	%/V	
Dropout Voltage	V_{DROP}	$I_{OUT} = 1 A$			450	750	mV	
Quiescent Current	I_Q	V _{IN} =3.5V, I _{OUT} =0	mA		60	80	μΑ	
Power Supply Rejection	DCDD	Ripple 1Vp-p	f=100Hz		65		1D	
Ratio	PSKK	PSRR V_{IN} =3.5V, I_{OUT} =100mA f =1KHz	65		dB			
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA			±30		ppm/°C	
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	10Hz ≤ f ≤100kHz	Z		30		μV_{RMS}	
V _{EN} High Voltage	V_{IH}	Enable logic high,	, regulator on	1.5			**	
V _{EN} Low Voltage	$V_{ m IL}$	Enable logic low,	regulator off			0.4	V	
Standby Current	I_{STD}	V_{IN} =3.5V, V_{EN} in	OFF mode		0.01	1.0	μΑ	
Start-up Time	t_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Low	I		60		Ω	
Thermal Shutdown Temperature	T _{OTSD}				160			
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C	
		SOIC-8			74.6			
Thormal Dogister		PSOP-8			43.7		°C /W	
Thermal Resistance (Junction to Case)	$\theta_{\rm JC}$	SOT-223			50.9			
,		TO-252-2 (1) /(3)	/(4)		35			
		ТО-263-3			22			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-3.3 Electrical Characteristics (Note 2)

 $(V_{IN}=4.3V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25°C, Bold typeface applies over -40°C ≤ T_A ≤ 85°C ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test (Conditions	Min	Тур	Max	Unit
Output Voltage	V_{OUT}	V _{IN} =4.3V, 1mA	$L \le I_{OUT} \le 30 \text{mA}$	V _{OUT} ×98.5%	3.3	V _{OUT} ×101.5%	V
Maximum Output Current	I _{OUT(MAX)}	$V_{IN} = 4.3 \text{ V}, V_{OUT} = 3.25 \text{ V} \text{ to } 3.35 \text{ V}$		1.0			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V _{IN} =4.3V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1.0	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	4.3V≤V _{IN} ≤6V, I	OUT=30mA	-0.1	0.02	0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1A			450	750	mV
Quiescent Current	I_Q	V _{IN} =4.3V, I _{OUT} =	=0mA		65	90	μΑ
Power Supply Rejection	PSRR	Ripple 1Vp-p V _{IN} =4.3V,	f=100Hz		65		dB
Ratio		$I_{OUT}=100 \text{mA}$	f=1KHz		65		42
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA			±30		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V _{NOISE}	10 Hz \leq f \leq 100 k	Hz (No load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic hig	gh, regulator on	1.5			V
V _{EN} Low Voltage	V_{IL}	Enable logic lov	v, regulator off			0.4	V
Standby Current	I_{STD}	V_{IN} =4.3V, V_{EN} i	in OFF mode		0.01	1.0	μΑ
Start-up Time	$t_{\rm S}$	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		$M\Omega$
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	ow		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		°C
Thermal Shutdown Hysteresis	T _{HYOTSD}				25		30
		SOIC-8			74.6		
		PSOP-8 SOT-223			43.7		
Thermal Resistance (Junction to Case)	$\theta_{\rm JC}$				50.9		°C/W
		TO-252-2 (1) /(3) /(4)		35		1
		TO-263-3			22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-ADJ Electrical Characteristics (Note 2)

 $(V_{IN}=2.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \leq T_A \leq 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test	Conditions	Min	Тур	Max	Unit
Reference Voltage	$V_{ m REF}$	V _{IN} =2.5V, 1mA	$V_{IN} = 2.5V$, $1 \text{mA} \le I_{OUT} \le 30 \text{mA}$		0.8	V _{REF} ×101.5%	V
Input Voltage	V _{IN}					6.0	V
Maximum Output Current	$I_{OUT(MAX)} \\$	V_{IN} =2.5V, V_{OUT}	V_{IN} =2.5V, V_{OUT} = 0.788V to 0.812V				A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V _{IN} =2.5V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.5V\(\leq V_{IN}\)\(\leq 6V, \)	I _{OUT} =30mA	-0.1	0.02	0.1	%/V
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =	=0mA		60	75	μΑ
Power Supply Rejection	DCDD	Ripple 1Vp-p	f=100Hz		68		αĿ
Ratio	PSRR	V _{IN} =2.5V, I _{OUT} =100mA	f=1KHz		68		dB
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA, T _A	A =-40°C to 85°C		±30		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V_{NOISE}	10 Hz \leq f \leq 100 k	Hz (No Load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic hig	gh, regulator on	1.5			V
V _{EN} Low Voltage	V_{IL}	Enable logic lov	w, regulator off			0.4	V
Standby Current	I_{STD}	V _{IN} =2.5V, V _{EN}	in OFF mode		0.01	1.0	μА
Start-up Time	t_{S}	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Low			60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		00
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
Thermal Resistance (Junction to Case)	$\theta_{ m JC}$	SOIC-8 PSOP-8			74.6 43.7		°C/W

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Typical Performance Characteristics

Figure 4. Ground Current vs. Output Current

Figure 5. Ground Current vs. Output Current

Figure 6. Ground Current vs. Output Current

Figure 7. Ground Current vs. Output Current

Figure 8. Quiescent Current vs. Temperature

Figure 9. Quiescent Current vs. Temperature

Figure 11. Quiescent Current vs. Temperature

Figure 12. Quiescent Current vs. Input Voltage

Figure 13. Quiescent Current vs. Input Voltage

Figure 14. Quiescent Current vs. Input Voltage

Figure 15. Quiescent Current vs. Input Voltage

Figure 16. Output Voltage vs. Temperature

Figure 17. Output Voltage vs. Temperature

Figure 18. Output Voltage vs. Temperature

Figure 19. Output Voltage vs. Temperature

2.0 1.8 1.6 1.4 Output Voltage (V) 1.2 T_Δ=-40°C 1.0 T_A=25°C 8.0 T_A=85°C 0.6 C_{IN} =4.7 μ F 0.4 C_{OUT} =4.7 μ F I_{OUT}=10mA 0.2 Continuous Airflow 10scfm 0.0 1.0 3.5 4.0 4.5 5.0 5.5 0.5 1.5 2.0 2.5 3.0 Input Voltage (V)

Figure 20. Output Voltage vs. Input Voltage

Figure 21. Output Voltage vs. Input Voltage

Figure 23. Output Voltage vs. Input Voltage

Figure 24. Output Voltage vs. Output Current

Figure 25. Output Voltage vs. Output Current

Figure 26. Output Voltage vs. Output Current

Figure 27. Output Voltage vs. Output Current

Figure 28. Output Voltage vs. Output Current

Figure 29. Output Voltage vs. Output Current

Figure 30. Dropout Voltage vs. Output Current

Figure 31. Dropout Voltage vs. Output Current

Figure 32. Dropout Voltage vs. Output Current

Figure 33. Max. Output Current vs. Input Voltage

Figure 34. Max. Output Current vs. Input Voltage

Figure 35. Max. Output Current vs. Input Voltage

Figure 36. Max. Output Current vs. Input Voltage

Figure 37. Max. Output Current vs. Input Voltage

Note 4: Considering power dissipation and thermal behavior, we suggest provide enough design margins in application design which are no less than 30% at least.

Figure 38. Output Short Current vs. Temperature

Figure 39. Output Short Current vs. Temperature

Figure 40. Output Short Current vs. Temperature

Figure 41. Output Short Current vs. Temperature

Figure 43. PSRR vs. Frequency

AP2114_3.3V T_A=25°C 70 $C_{IN}=1\mu F$ C_{OUT} =4.7 μ F 60 Ripple=1Vp-p 50 PSRR (dB) 40 30 20 I_{OUT}=10mA - - I_{OUT}=100mA 10 Frequency (Hz)

Figure 44. PSRR vs. Frequency

Figure 45. PSRR vs. Frequency

Figure 46. Load Transient

Typical Application

Figure 47. Typical Application of AP2114

Mechanical Dimensions

SOT-223 Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-252-2 (1) Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-252-2 (3) Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-252-2 (4) Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-263-3 Unit: mm(inch)

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Mechanical Dimensions (Continued)

PSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

AP2111H-1.8TRG1 AP2111H-2.5TRG1 AP2111HA-3.3TRG1 AP2111H-3.3TRG1 AP2114H-1.2TRG1 AP2114HA
1.2TRG1 AP2114H-1.8TRG1 AP2114DA-1.2TRG1 AP2114H-2.5TRG1 AP2114DA-3.3TRG1 AP2114H-3.3TRG1

AP2114HA-1.8TRG1 AP2114HA-2.5TRG1 AP2114DA-2.5TRG1 AP2114D-3.3TRG1 AP2114D-1.8TRG1 AP2114DA
1.8TRG1 AP2111H-4.8TRG1 AP2114D-2.5TRG1 AP2114D-1.2TRG1 AP2114HA-3.3TRG1 AP2111H-1.2TRG1

AP2114S-3.3TRG1 AP2114S-1.2TRG1 AP2114S-1.8TRG1