Examen final Hiver 2000

Problème no. 1 (20 points)

Le circuit suivant est initialement au repos.

La source de tension v_s représente une source de tension continue de 120 V que l'on applique brusquement à t = 0.

- a) Déterminer le courant $i_3(t)$. Tracer en fonction du temps le courant $i_3(t)$.
- b) Quelle est la durée du régime transitoire?

Problème no. 2 (20 points)

Le circuit suivant est initialement au repos.

La source de tension v_s représente une source de tension continue de 50 V que l'on applique brusquement à t = 0.

- a) Déterminer (sans tracer) le courant i₁(t).
- b) Quelle est la durée du régime transitoire?

Problème no. 3 (20 points)

Soit le circuit suivant:

Le commutateur S est à la position 1 depuis très longtemps. À t = 0, S change de position de 1 à 2 et demeure à cette position pour le reste du temps.

Déterminer et tracer en fonction du temps la tension v₂(t).

Problème no. 4 (20 points)

Le circuit suivant est en régime sinusoïdal permanent.

a) Déterminer le **module** et la **phase** de l'impédance $Z_{ab}(j\omega)$ vue par la source V_s .

Tracer en fonction de ω le module et la phase de $Z_{ab}(j\omega)$.

<u>Suggestion</u>: Considérer deux valeurs particulières ($\omega = 0$ et $\omega \to \infty$) et quelques valeurs intermédiaires de ω

b) La source de tension v_s est une source sinusoïdale d'amplitude 100 V et de fréquence 500 Hz. Calculer les phaseurs tensions \mathbf{V}_R et \mathbf{V}_L . Vérifier que $\mathbf{V}_R + \mathbf{V}_L = \mathbf{V}_s$.

Remarque: On a $v_s(t) = 100\cos(1000\pi t)$ et $V_s = 100\underline{/0^\circ}$