

Strategi pemilihan topik riset meta-analisis, pencarian dan seleksi sumber data dari KTI, serta penyusunan data

Pusat Riset Peternakan
Organisasi Riset Pertanian dan Pangan
Badan Riset dan Inovasi Nasional

Pengertian meta-analisis

Meta-analisis adalah **metodologi statistik** untuk **mensintesis** hasil penelitian di berbagai **studi independent** (Koricheva *et al.* 2013).

- Karya tulis ilmiah /
 KTI
- Data penelitian yang belum dipublikasikan
- Pengetahuan
- Gambaran umum dari fenomena

Menentukan topik dan menghimpun data

Yang perlu dicermati:

- 1. Menentukan **topik**
- Mengumpulkan dan menyeleksi naskah/jurnal yang dirujuk
- 3. Data dari naskah/jurnal terpilih ditabulasi

1. Membuat topik meta-analisis (Yanza 2020)

1. Sumber inspirasi topik

2. Pencarian dan seleksi sumber KTI

Sumber: Basis data scopus → google scholar dan science direct

ii Seleksi: satuan level/dosis tertera, ternak (ayam pedaging/broiler), dan parameter performa

2. Pembatasan sumber KTI

2. Kriteria seleksi

- Level (perlakuan): satuan harus sama dan kalau tidak sama bisa dikonversi
- Subjek: menggunakan subject penelitian yang sama, kalua berbeda terutama komparasi studi ternak ruminansia maka konversi parameter yang terpengaruh oleh masa dan volume tubuh dalam bentuk bobot badan metabolis
- Parameter: sama seperti level perhatikan satuan yang digunakan

2. Contoh: Pencarian sumber KTI

antimicrobial peptide broiler performance

Sekitar 15.500 hasil (0.09 dtk)

An antimicrobial peptide-A3: effects on growth performance, nutrient retention intestinal and faecal microflora and intestinal morphology of broilers

SC Choi, SL Ingale, JS Kim, YK Park, IK Kwon... - British poultry ..., 2013 - Taylor & Francis

- ... a novel **peptide** (AMP-A3), an analogue of the **antimicrobial peptide** HP (2-... **performance**, nutrient retention, excreta and intestinal microflora and small intestinal morphology in **broilers** ...
- ☆ Simpan 59 Kutip Dirujuk 77 kali Artikel terkait 5 versi

Effect of **antimicrobial peptide** microcin J25 on growth **performance**, immune regulation, and intestinal microbiota in **broiler** chickens challenged with Escherichia coli ...

G Wang, Q Song, S Huang, Y Wang, S Cai, H Yu... - Animals, 2020 - mdpi.com

- ... The purpose of this study was to investigate the effects of **antimicrobial peptide** microcin J25 (MccJ25) on growth **performance**, immune regulation, and intestinal microbiota in **broilers**. A ...
- ☆ Simpan 59 Kutip Dirujuk 30 kali Artikel terkait 8 versi >>>

... supplementation with an **antimicrobial peptide-**P5 on growth **performance**, nutrient retention, excreta and intestinal microflora and intestinal morphology of **broilers**

SC Choi, SL Ingale, JS Kim, YK Park, IK Kwon... - Animal Feed Science ..., 2013 - Elsevier

- ... of antimicrobial peptide-P5 (AMP-P5) on growth performance, nutrient retention, excreta and intestinal digesta microflora and intestinal morphology of broilers. ... the growth performance, ...
- ☆ Simpan 59 Kutip Dirujuk 54 kali Artikel terkait 7 versi

... effects of an **antimicrobial peptide**, a cecropin hybrid, on growth **performance**, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in **broilers**

LF Wen, JG He - British Journal of Nutrition, 2012 - cambridge.org

... Abstract The aim of the present study was to evaluate the feasibility of an antimicrobial peptide

[HTML] Effects of antimicrobial peptides on growth performance and small intestinal function in broilers under chronic heat stress

F Hu, X Gao, R She, J Chen, J Mao, P Xiao, R Shi - Poultry science, 2017 - Elsevier

- ... In this study, the effects of swine gut **antimicrobial peptides** (SGAMP) on growth **performance** and the function of the small intestine in **broilers** subjected to heat stress were detected in ...
- ☆ Simpan 59 Kutip Dirujuk 31 kali Artikel terkait 5 versi

Antimicrobial peptides as an alternative to relieve **antimicrobial** growth promoters in poultry

N Nazeer, S Uribe-Diaz... - British Poultry ..., 2021 - Taylor & Francis

... of host cells, such as **antimicrobial peptides** (AMP), may ... mucosal immune system and growth **performance** in food animals, ... varies among different commercial **broiler** lines. For example...

☆ Simpan 59 Kutip Dirujuk 4 kali Artikel terkait 6 versi

Yeast β-d-glucans induced **antimicrobial peptide** expressions against Salmonella infection in **broiler** chickens

Y Shao, Z Wang, X Tian, Y Guo, H Zhang - International journal of ..., 2016 - Elsevier

- ... studies that showed an impairment of **performance** parameters during salmonella infection.
- The decreasing trends in growth **performance** following salmonella infection have been ...

☆ Simpan 59 Kutip Dirujuk 59 kali Artikel terkait 7 versi

Antimicrobial peptides used as growth promoters in livestock production

- G Rodrigues, MR Maximiano, OL Franco Applied Microbiology and ..., 2021 Springer
- ... **broiler** growth **performance** during the challenge with C. perfringens (Grilli et al. 2009). ... best use of **antimicrobial peptides** for economic efficiency and sustainable livestock production.
- ☆ Simpan 夘 Kutip Dirujuk 2 kali Artikel terkait 4 versi

Sumber: Basis data scopus → google scholar

dan **science direct**

Judul

2. Contoh: Seleksi KTI (Choi 2013)

An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers

S.C. Choi, S.L. Ingale, J.S. Kim, Y.K. Park . L.K. Kwon & B.J. Chae

Pages 738-746 | Accepted 28 Jun 2013, Accepted author version posted online: 05 Sep 2013, Published online:08 Jan 2014

Download citation https://doi.org/10.1080/00071668.2013.838746

Abstract

- The present study investigated the effects of dietary supplementation with an antimicrobial peptide-A3 (AMP-A3) on growth performance, nutrient retention, intestinal microflora and intestinal morphology of broilers.
- 2. A total of 320-d-old chicks (Ross 308, average BW 44.0 ± 3.4 g) were randomly allotted to 4 dietary treatments during the days of minut body weight (bw). The dietary treatments were negative control (NC; basal diet) and AMP-A3 (basal diet supplemented with 60 or 90 mg/kg AMP-A3). The NC diet was considered as 0 mg/kg AMP-A3 treatment. Experimental diets were the body and body and the body and the body and finisher phase (d 22-35).
- 3. The overall BW gain and retention of dry matter (DM), gross energy (GE; d 19–21) and crude protein (CP; d 19–21 and d 33–35) were greater in birds fed on the PC and 90 mg/kg AMP-A3 diets than in birds fed on the NC diet. Also, an increase in dietary AMP-A3 linearly improved BW gain and retention of DM, GE (d 19–21) and CP (d 19–21 and d 33–35).
- 4. Birds fed on the PC and 90 mg/kg AMP-A3 diets had fewer excreta coliforms (d 21 and d 35), total anaerobic bacteria (TAB) and *Clostridium* spp. (d 35) and ileum and caecum coliforms (d 35) than birds fed on the NC diet. In addition, birds fed on the diet supplemented with increasing levels of AMP-A3 had linearly reduced excreta TAB (d 35), *Clostridium* spp. and coliforms (d 21 and d 35) and ileum and caecum coliforms (d 35).
- 5. Birds fed on the PC and 90 mg/kg AMP-A3 diets had greater villus height of the duodenum, jejunum and ileum than birds fed on the NC diet. Moreover, birds fed on increasing levels of AMP-A3 diet had increased (linear) villus height of the duodenum, jejunum and ileum.
- 6. These results indicate that 90 mg/kg AMP-A3 has the potential to improve growth performance, nutrient retention and intestinal morphology and to reduce harmful microorganisms in ordiners and cambe used as a potential antimicrobial growth promoter.

Seleksi: **satuan** level/dosis tertera, **ternak** (ayam pedaging/broiler), dan parameter performa

2. Contoh: Alur Seleksi KTI

2. Menelusuri KTI

3. Tabulasi data

- Pengumpulan data dari KTI ke dalam *spreadsheet*
- ii Model statistik meta-analisis mengacu pada *linear mixed* model (St-Pierre 2001)

$$Y_{ij} = B_0 + B_1 X_{ij} + s_i + e_{ij}$$

 Y_{ij} = variabel dependen (fcr)

 B_0 = titik potong (intercept)

 B_1 = koefisien regresi linier (slope)

 X_{ii} = variabel independen (level PAM)

 s_i = efek acak dari perbedaan studi

 e_{ii} = kesalahan yang tidak dapat dijelaskan

3. Contoh: Tabulasi data (Choi 2013)

Table 2. Effect of dietary supplementation of antimicrobial peptide-A3 (AMP-A3) on growth performance of broilers^{1,2}

Item		A	MP-A3, mg/kg		P-values ³			
	PC	0 (NC)	60	90	SEM	T	L	Q
Starter (d 0–21)								
Body weight gain, g	732^{a}	693^{b}	$704^{\rm b}$	722 ^a	4.48	0.010	0.002	0.525
Feed intake, g	1143	1114	1123	1136	4.68	0.126	0.140	0.902
FCR ⁴	1.56	1.61	1.60	1.57	0.01	0.080	0.119	0.680
Finisher (d 22–35)								
Body weight gain, g	1153 ^a	1077^{c}	1088^{c}	$1121^{\rm b}$	10.21	0.016	0.043	0.543
Feed intake, g	2075	2013	2010	2048	15.63	0.439	0.326	0.500
FCR	1.80	1.87	1.85	1.83	0.01	0.098	0.085	0.904
Overall (d 0-35)								
Body weight gain, g	1885 ^a	1769^{c}	1792^{bc}	$1843^{\rm ab}$	13.50	0.001	0.004	0.341
Feed intake, g	3218	3127	3134	3184	17.84	0.217	0.158	0.510
FCR	$1.71^{\rm b}$	1.77^{a}	1.75^{ab}	1.73^{ab}	0.01	0.034	0.056	0.935

 $^{^{}a,b,c}$ Mean values within the same row sharing a common superscript letter are not statistically different at P < 0.05.

Pengumpulan data dari KTI ke dalam *spreadsheet*

¹The dietary treatments were the following: NC: negative control (basal diet without any antimicrobials); PC: positive control (basal diet + 15 mg avilamycin/kg diet) and AMP-A3 (basal diet supplemented with 60 and 90 mg/kg AMP-A3). The NC (diet without antimicrobials) was considered as 0 mg/kg AMP-A3.

²Data are means of 4 pens of 20 birds each.

³T: overall effect of treatments; L: linear effect of increasing AMP-A3; Q: quadratic effect of increasing AMP-A3 (0, 60 and 90 mg/kg of diet).

⁴FCR, feed conversion ratio.

3. Contoh: Tabulasi data

studi	pengarang	tahun	PAM	Level (mg/Kg as fed)	breed	periode starter	periode finisher	total periode	starter bb, Kg	starter pbbh, g/hari	starter kph, g/hari	starter fcr
1	Choi et al.	2013	Kontrol	0.0000	ROSS 308	1-21	22-35	1-35	737.0000	33.0000	53.0500	1.6100
1	Choi et al.	2013	PAM A3	60.0000	ROSS 308	1-21	22-35	1-35	747.9200	33.5200	53.4800	1.6000
1	Choi et al.	2013	PAM A3	90.0000	ROSS 308	1-21	22-35	1-35	765.9800	34.3800	54.1000	1.5700
2	Choi et al.	2013	Kontrol	0.0000	ROSS 308	1-21	22-35	1-35	803.9900	36.1900	55.9500	1.5500
2	Choi et al.	2013	PAM P5	40.0000	ROSS 308	1-21	22-35	1-35	821.0000	37.0000	56.5200	1.5300
2	Choi et al.	2013	PAM P5	60.0000	ROSS 308	1-21	22-35	1-35	836.9600	37.7600	56.7100	1.5000
3	Wen and He	2012	Kontrol	0.0000	Lingnan	14-28	29-42	14-42	542.0000	21.4000	41.3000	1.9300
3	Wen and He	2012	Cecropin A	2.0000	Lingnan	14-28	29-42	14-42	545.5000	21.5000	39.4000	1.8300
3	Wen and He	2012	Cecropin A	4.0000	Lingnan	14-28	29-42	14-42	551.5000	21.9000	38.9000	1.7800
3	Wen and He	2012	Cecropin A	6.0000	Lingnan	14-28	29-42	14-42	545.0000	21.6000	34.7000	1.6100

$$Y_{ij} = B_0 + B_1 X_{ij} + S_i + e_{ij}$$

Tugas Minggu Ke-1

 Mencari sumber KTI yang memiliki kesesuaian dengan topik meta-analisis dan melakukan tabulasi data dari rujukan KTI tersebut (9 Juni 2022)

Selesai Terima kasih

Pusat Riset Peternakan
Organisasi Riset Pertanian dan Pangan
Badan Riset dan Inovasi Nasional

Referensi

Choi S.C., Ingale S.L., Kim J.S., Park Y.K., Kwon I.K., Chae B.J., 2013. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br. Poult. Sci. 54, 738–746, https://doi.org/10.1080/00071668.2013.838746

Sauvant D., Schmidely P., Daudin J.J., St-Pierre N.R., 2008. Meta-analyses of experimental data in animal nutrition. Animal 2, 1203–1214, https://doi.org/10.1017/s1751731108002280

St-Pierre N.R., 2001. Invited review: integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 84, 741–755, https://doi.org/10.3168/jds.S0022-0302(01)74530-4

Yanza, Y.R. et al., 2020. The effects of dietary medium-chain fatty acids on ruminal methanogenesis and fermentation in vitro and in vivo: A meta-analysis. Bahan Presentasi