WHAT IS CLAIMED IS:

L	1.	An	edae	counter	comprising
L	- •	1.711	Cago	COULTCCE	COMPLIBITIO

4

5

6

7

8

1

2

3

1

2

3

4

- an input receiving an input signal and an output

 on which an output signal is driven; and
 - a set of logic gates between the input and output, the logic gates configured to change a state of the edge counter with each transition of the input signal and to produce an output signal having a cycle corresponding to a predetermined number of transitions of the input signal.
- 1 2. The edge counter according to claim 1, wherein 2 the predetermined number may be odd or even.
 - 3. The edge counter according to claim 1, wherein a signal path between the input and output through the logic gates includes a sequence of only two logic gates.
 - 4. The edge counter according to claim 1, wherein the logic gates generate a set of intermediate signals, at least one of the intermediate signals changing state in response to transition of the input signal.

1

2

3

4

5

- 5. A wireless receiver including the edge counter according to claim 1, the wireless receiver further comprising one of a local oscillator and a clock divider employing the edge counter.
 - 6. A wireless communications system including the wireless receiver according to claim 5, the wireless communications system further a wireless transmitter and a communications path between the transmitter and the receiver.

1	7. A	method	of	designing	an	edge	counter	comprising:
<u></u>	,							

- defining a number of intermediate signals
- 3 sufficient to count a predetermined number of edges;
- determining states of the intermediate signals to
- 5 be generated; and
- from the determined states, deriving a set of
- 7 logic gates receiving an input signal, generating the
- 8 intermediate states in response to transitions in the input
- 9 signal, and producing an output signal having a cycle
- 10 corresponding to the predetermined number of edges within
- 11 the input signal.
 - 1 8. The method according to claim 7, further
 - 2 comprising:
 - inserting gray codes for states of the
 - 4 intermediate signals in a table in a manner corresponding
 - 5 to changes based on input clock signal transitions.
 - 1 9. The method according to claim 8, further
 - 2 comprising:
 - inserting the gray codes in the table to
 - 4 correspond to a transition in the output signal.

- 1 10. The method according to claim 9, further 2 comprising:
- identifying rows containing gray codes matching a row value.
- 1 11. The method according to claim 10, further 2 comprising:
- generating a Karnaugh map for the states of the intermediate signals corresponding to the identified rows; and
- designing a set of logic gates to implement the logic function represented by the Karnaugh map.
- 1 12. The method according to claim 11, further 2 comprising:
- generating a Karnaugh map for each of the intermediate signals and the output signal.
- 1 13. The method according to claim 7, further 2 comprising:
- designing the logic gates to have a two gate delay between the input signal and the output signal.

, , , , ,

4

5

6

7

8

9

10

11

1

2

1 14	. An	edge	counter	designed	by	the	steps	of:
------	------	------	---------	----------	----	-----	-------	-----

defining a number of intermediate signals
sufficient to count a predetermined number of edges;

determining states of the intermediate signals to be generated; and

from the determined states, deriving a set of logic gates receiving an input signal, generating the intermediate states in response to transitions in the input signal, and producing an output signal having a cycle corresponding to the predetermined number of edges within the input signal.

- 15. The edge counter according to claim 14, further designed by the step of:
- inserting gray codes for states of the intermediate signals in a table in a manner corresponding to changes based on input clock signal transitions.
- 1 16. The edge counter according to claim 15, further 2 designed by the step of:
- inserting the gray codes in the table to correspond to a transition in the output signal.

l	17.	The	edge	counter	according	to	claim	16,	further
2	designed l	by th	e ste	p of:					

- identifying rows containing gray codes matching a
 row value.
- 1 18. The edge counter according to claim 17, further 2 designed by the steps of:
- generating a Karnaugh map for the states of the intermediate signals corresponding to the identified rows; and
- designing a set of logic gates to implement the logic function represented by the Karnaugh map.
- 1 19. The edge counter according to claim 18, further 2 designed by the step of:
- generating a Karnaugh map for each of the intermediate signals and the output signal.
- 1 20. The edge counter according to claim 14, further 2 designed by the step of:
- designing the logic gates to have a two gate delay between the input signal and the output signal.