

Universidade Federal de Campina Grande Ciência da Computação

Descarga Eletrostática e Componentes Eletrônicos

Disciplina

Laboratório de Organização e Arquitetura de Computadores

Professor

Elmar Melcher

elmar@dsc.ufcg.edu.br

Nome **Kleber Sobrinho Matrícula:** 119210988.

kleber.sobrinho@ccc.ufcg.edu.br

Campina Grande – PB Julho de 2021

Premissa - Descarga eletrostática seus efeitos em componentes eletrônicos e como evitar.

Introdução

A cada ano, incontáveis milhões de dispositivos eletrônicos são destruídos ou danificados por Electrostatic Discharge (ESD), ou descarga eletrostática. Além de ser invisível a olho nu, a ESD pode afetar os componentes eletrônicos em qualquer estágio, desde a fabricação do dispositivo até mesmo o transporte e uso do dispositivo.

À medida que as peças eletrônicas, como as unidades de processamento central do computador (CPUs), ficam cada vez mais compactadas, os transistores encolhem e se tornam cada vez mais vulneráveis à descargas eletrostáticas.

Muitos componentes eletrônicos são sensíveis a tensões eletrostáticas tão baixas quanto 30 V e correntes tão baixas quanto 0,001 A. Exemplos de dispositivos sensíveis à eletrostática:

Electrostatic Voltag To Damage	e To Destroy
30	1,800
100	200
100	300
100	-
140	7,000
190	2,500
250	3,000
150	500
300	2,500
300	2,500
380	7,000
500	1,500
680	1,000
1,000	2,500
	To Damage 30 100 100 100 140 190 250 150 300 300 380 500 680

Fonte: https://tinyurl.com/57pwmuup

Eletrostática e ESD

Existem muitos exemplos de fenômenos eletrostáticos, desde aqueles tão simples como a atração do invólucro de plástico para a mão após ser removido de uma embalagem até o dano de componentes eletrônicos durante a fabricação.

A eletrostática envolve o acúmulo de carga na superfície dos objetos devido ao contato com outras superfícies. Embora a troca de carga aconteça sempre que duas superfícies entram em contato e se separam, os efeitos da troca de carga geralmente são percebidos apenas quando pelo menos uma das superfícies é isolante, ou seja, possui alta resistência ao fluxo elétrico. Essas cargas que foram transferidas então "presas" permanecem no objeto até que se direcionam para o solo ou sejam rapidamente neutralizadas por uma descarga (ESD). Por exemplo, o fenômeno familiar de um "choque" estático é causado pela neutralização da carga acumulada no corpo a partir do contato com superfícies isoladas.

Efeitos da ESD

A maneira como os circuitos integrados (ICs) falham como resultado de ESD também varia e também depende de uma série de fatores, incluindo a maneira como a carga é dissipada para a topologia dentro do IC.

Uma das maneiras mais óbvias em que um IC pode falhar como resultado de ESD ocorre quando a carga estática causa a queima do circuito. Em alguns casos, a conexão ou o componente podem não ser completamente destruídos. Em vez disso, ele só pode ser parcialmente destruído. Quando isso acontece, o dispositivo continuará a operar e pode não ter nenhuma redução detectável em seu desempenho. Em outras ocasiões, pode haver uma ligeira degradação na operação.

Outra maneira pela qual a ESD pode causar falha é quando a própria tensão causa algum dano dentro do IC. É bem possível que a tensão rompa uma camada de óxido isolante, deixando o IC permanentemente danificado. Novamente, isso pode destruir o chip imediatamente ou deixar uma área parcialmente danificada com uma falha latente.

Dano Latente

Quando um dano foi causado ao dispositivo, mas ele ainda permanece operacional, o defeito o deixa com o que é denominado um defeito latente.

Fonte: https://tinyurl.com/vkvu3v2h

Esses defeitos latentes são particularmente preocupantes pois podem desencadear futuras falhas no equipamento, reduzindo assim sua confiabilidade. Estima-se que, para cada dispositivo que sofre danos instantâneos, pelo menos dez são afetados por danos latentes e falharão posteriormente.

Como evitar a descarga eletrostática?

Para transportar esses componentes sensíveis a descargas eletrostáticas, normalmente são utilizadas bolsas antiestáticas. Essas bolsas são geralmente de tereftalato de polietileno (PET) de plástico e possuem uma cor distinta.

Fonte: https://en.wikipedia.org/wiki/Antistatic_bag

Na imagem acima podemos observar uma placa de rede dentro de uma bolsa antiestática.

O manuseio descuidado é responsável por muitas falhas induzidas por ESD. Uma forma altamente eficaz de proteção contra descargas eletrostáticas é usar uma pulseira que se conecta ao aterramento (imagem abaixo).

Fonte: https://www.amazon.com/iFixit-Anti-static-Wrist-Strap-Adjustable/dp/B00B2T9C8Y

Outra forma de também descarregar a energia estática, seria tocar em um corpo aterrado (por exemplo, uma torneira, uma janela metálica) e o excedente de carga elétrica seria conduzido para fora do corpo da pessoa. Entretanto este processo não garante que a seguir a pessoa se carregue novamente.

Referências

https://en.wikipedia.org/wiki/Electrostatics

https://en.wikipedia.org/wiki/Electrostatic-sensitive_device

https://circuitsbyus.com/static-electricity-can-cause-3-types-of-damage-in-electronic-components/

https://www.electronics-notes.com/articles/constructional_techniques/electrostatic-discharge/esd-effects-how-affects-electronics.php

https://www.ap-static.com/news/company-news/27.html

https://www.arrow.com/en/research-and-events/articles/controlling-electrostatic-discharge-damage-in-electronic-devices

https://www.weidinger.eu/en/i/what-is-esd-about

https://en.wikipedia.org/wiki/Antistatic bag