گروه آموزشی :		نام و نام خانوادگی :
تاريخ : ا	ل ل درنخانېسنۍ نهرون	شماره دانشجویی :
وقت : دقيقه	•	نام مدرس :
(ديفرانسيل (امتحان میان ترم درس :
	17 -17 (25/	نيمسال (

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

۱۵ نمره انمره معادله دیفرانسیل دسته منحنیهای
$$y = ae^{x} + be^{-x}$$
 را بنویسید. $y = ae^{x} + be^{-x}$ را حل کنید. ۱۵ معادله دیفرانسیل دسته منحنیهای $\sqrt{x} \ y' = x\sqrt{-x+y}$ را حل کنید. ۱۵ معادله مرتبه اول $y = x\sqrt{x} \ y' = x\sqrt{-x+y}$ را حل کنید. ۱۵ معادله مرتبه اول $y = x\sqrt{x} \ y' = x\sqrt{-x+y}$ را حل کنید. ۱۵ معادله دیفرانسیل زیر را حل کنید. $y = x\sqrt{x} \ y' = x\sqrt{-x+y}$ را حل کنید. ($\sin y - x\sqrt{x} \ y' = x\sqrt{x}$

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۳–۱۳۹۲

y'' = 1 جواب سوال y'' = 1 وش اول : از طرفین رابطه دو بار مشتق می گیریم. y'' = 1 جواب سوال y'' = 1 و بار مشتق می گیریم. $y' = \frac{y'' + y'}{1 + y'} - be^{-x}$ و از تساوی اول داریم $a = \frac{y'' + y'}{1 + y'} e^{-tx}$ یعنی y'' + y' = Yolution و از تساوی اول داریم $y = \frac{y'' + y'}{y'} + \frac{y'' - fy'}{y'}$: اگر مقادیر $b = \frac{y'' - fy'}{y'}$ اگر مقادیر $b = \frac{y'' - fy'}{y'}$ یعنی این معادله را می توان به صورت $y'' - \pi y' - \pi y = 0$ نوشت. $y'e^x + ye^x = aae^{ax}$ و از طرفین مشتق می گیریم. $ye^x = ae^{ax} + b$ روش دوم دوم وش $\frac{(y''+y')e^{-\mathfrak{f}x}-\mathfrak{f}(y'+y)e^{-\mathfrak{f}x}}{^{\wedge}}=\cdot$: اکنون داریم از طرفین مشتق می گیریم از طرفین مشتق ا $y'' - ry' - fy = \cdot$ و در نتیجه $e^{-fx} = \cdot$ و در نتیجه را به کار y=xu مینویسیم متغیر متغیر بنابر این یک معادله دیفرانسیل همگن است. تغییر متغیر y'=x بنابر این یک معادله دیفرانسیل همگن است.

$$u+xu'= \mathsf{r}\sqrt{-\mathsf{l}+u} \ o \ x \frac{du}{dx} = \mathsf{r}\sqrt{-\mathsf{l}+u} - u \ o \frac{du}{\mathsf{r}\sqrt{-\mathsf{l}+u}-u} = \frac{dx}{x} \ o \int \frac{du}{\mathsf{r}\sqrt{-\mathsf{l}+u}-u} = \int \frac{dx}{x}$$
 می بریم.

برای حل انتگرال از تغییر متغیر u + t' = -1 + t استفاده می کنیم.

 $x'-\frac{1}{v}x=-\frac{\cos y}{v}x^{r}$ جواب سوال $x'=-\frac{\cos y}{v}$ اگر معادله را به صورت $x'=-\frac{\cos y}{v}$ بنویسیم داریم : اگر معادله را به صورت $x'=-\frac{\cos y}{v}$ $\frac{x'}{x^r} - \frac{1}{v} \times \frac{1}{x^r} = -\frac{\cos y}{v}$: که یک معادله برنولی بر حسب x است. طرفین معادله را بر x تقسیم می کنیم:

با اعمال تغییر متغیر متغیر $u=\frac{v}{v}$ داریم $u=-\frac{v}{v}$ داریم $u=-\frac{v}{v}$ با اعمال تغییر متغیر مت

 $u = y^{-r}(c + \int y^{r}(\frac{r\cos y}{v})dy) = y^{-r}(c + \int ry\cos y\,dy) = y^{-r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(c + ry\sin y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos y + r\cos y) \qquad \qquad \theta = e^{\int \frac{r}{y}dy} = y^{r}(r\cos$

 $y' = x'(c + 7y \sin y + 7\cos y) :$ يس $\frac{1}{x'} = \frac{1}{y'}(c + 7y \sin y + 7\cos y)$

: تاگر معادله را به صورت $x^{r}\cos ydy = xdy - ydx$ بنویسیم خواهیم داشت :

 $x^{r} \cos y dy = x^{r} d(\frac{y}{y}) \rightarrow \cos y dy = \frac{1}{r} d(\frac{y}{y}) \rightarrow y \cos y dy = \frac{y}{r} d(\frac{y}{y})$

: است ینیر متغیر $u=rac{y}{x}$ داریم $u=\frac{y}{x}$ داریم $u=\frac{y}{x}$ داریم با اعمال تغییر متغیر متغیر است

 $y\sin y + \cos y + a = \frac{u^{\mathsf{T}}}{\mathsf{T}} \to u^{\mathsf{T}} = \mathsf{T}y\sin y + \mathsf{T}\cos y + c \xrightarrow{u = \frac{y}{x}} y^{\mathsf{T}} = x^{\mathsf{T}}(\mathsf{T}y\sin y + \mathsf{T}\cos y + c)$

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۷ گروه هماهنگ) نیمسال اول ۹۳–۱۳۹۲

 $M = \sin y - \forall y e^{-x} \sin x$, $N = \cos y + \forall e^{-x} \cos x$

جواب سوال ۴: داريم:

 $M_{v} = \cos y - Ye^{-x}\sin x$, $N_{x} = -Ye^{-x}\cos x - Ye^{-x}\sin x$

این معادله کامل نیست اما چون $\frac{M_y-N_x}{N}=\frac{\cos y+{
m t}e^{-x}\cos x}{\cos y+{
m t}e^{-x}\cos x}=$ ا ین معادله کامل نیست اما چون است بنابر این یک عامل انتگرالساز

یک متغیره بر حسب x دارد.

: و با ضرب این عامل انتگرالساز در طرفین معادله داریم $\mu = e^{\int dx} = e^x$ داریم

 $(e^x \sin y - \forall y \sin x)dx + (e^x \cos y + \forall \cos x)dy = \cdot$

 $e^x \sin y + \mathsf{r} y \cos x = c$: که یک معادله کامل است و جواب آن عبارت است از

جواب سوال Δ : معادله مشخصه معادله همگن عبارت است از $m^{r}+f=r$ که دو ریشه مختلط $m=\pm ri$ دارد.

 $y_h = A \sin tx + B \cos tx$: یعنی جواب معادله همگن برابر است با

 $y_{p_{1}}=cx+d$ و $y_{p_{1}}=(ax+b)e^{-x}$ و کنیم فرض می کنیم فرض به کمک روش ضرایب نامعین فرض می کنیم

 $y''_{p_x} = \cdot$ و داريم $y''_{p_x} = (ax + b - 4a)e^{-x}$ و داريم

 $y = y_{p_1} \rightarrow y_{p_1}'' + fy_{p_2} = (\delta axe^{-x} - fa + \delta b) = xe^{-x} \rightarrow \delta a = f$, $-fa + \delta b = f$

 $\rightarrow a = \frac{1}{\Delta}, b = \frac{1}{12} \longrightarrow y_{p_1} = \frac{1}{12} (\Delta x + 1)e^{-x}$

 $y = y_{p_{\uparrow}} \rightarrow y''_{p_{\uparrow}} + fy_{p_{\uparrow}} = fcx + fd = x \rightarrow c = \frac{1}{6}, d = \cdot \rightarrow y_{p_{\uparrow}} = \frac{1}{6}x$

 $y_g = y_h + y_{p_1} + y_{p_2} = A \sin tx + B \cos tx + \frac{1}{t^2} (\Delta x + t) e^{-x} + \frac{1}{t} x$ و جواب عمومی معادله برابر است با

سيدرضا موسوى