Introduction to Control Systems

by Dr Mihai Ciobotaru

Senior Lecturer in Electrical Engineering
School of Engineering, Macquarie University, Sydney

- Control system applications
- How you can benefit from studying control systems
- The basic features and configurations of control systems
- Analysis and design objectives
- The design process

- Control systems are everywhere!
 - They can be engineered/man made systems.
 - They can be naturally occurring e.g., biological control systems: pancreas to regulate your blood sugar level, movement of eyes to keep object in view, etc.
- Regulation is an important part of any natural and artificial complex system – accomplished by a control system.

 a control system provides an output or response for a given input or stimulus

Simplified description of a control system

Advantages of Control Systems

- 1. Power amplification (a radar antenna)
- 2. Remote control (robots)
- 3. Convenience of input form (temperature control)
- 4. Compensation for disturbances

Response Characteristics and System Configurations

Two major configurations of control systems:

• **open loop** - does not correct for disturbances and is commanded by the input (eg toaster)

• **closed loop** - compensates for disturbances by measuring the output response, feeding that measurement back through a feedback path, and comparing that response to the input at the summing junction.

Analysis and Design Objectives

 Control system responds to an input by undergoing a transient response before reaching a steady-state response

There are several major objectives of systems analysis and design:

- 1. producing the desired transient response
- 2. reducing steady-state error
- 3. achieving stability
- 4. achieving robust design

Stability

Total response = Natural response + Forced response

- Natural response is dependent only on the system, not the input
- Forced response is dependent on the input.

In a control system, the **natural response must either**:

(1) eventually **approach zero**, thus leaving only the forced response, or (2) **oscillate**.

Antenna Azimuth: An Introduction to Position Control Systems

converts a position input command to a position output response

Antenna azimuth position control system

Antenna Azimuth

Antenna Azimuth

Response of a position control system showing effect of high and low controller gain on the output response

The Design Process

The control system design process

Step 1: Transform Requirements into a Physical System

- Requirements: desire to position the antenna from a remote location; weight, dimensions of the system
- Design specifications: desired transient response, steadystate accuracy

Step 2: Draw a Functional Block Diagram

Step 3: Create a Schematic

Step 4: Develop a Mathematical Model (Block Diagram)

- Use physical laws, such as Kirchhoff's laws for electrical networks and Newton's law for mechanical systems
- Mathematical models can be described using
 - 1. Differential equations
 - 2. Laplace transform
 - 3. State-space representation

Step 5: Reduce the Block Diagram

In order to evaluate the system response we reduce the large system's block diagram to a single block with a mathematical description that represents the system from its input to its output

Equivalent block diagram for the antenna azimuth position control system

Step 6: Analyze and Design

- analyze the system to see if the response specifications and performance requirements can be met by simple adjustments of system parameters
- if specifications cannot be met, the designer designs additional hardware in order to achieve a desired performance

Step 6: Analyze and Design

Test waveforms used in control systems

Input	Function	Description	Sketch	Use
Impulse	$\delta(t)$	$\delta(t) = \infty \text{ for } 0 - < t < 0 +$ $= 0 \text{ elsewhere}$ $\int_{0-}^{0+} \delta(t) dt = 1$	$\delta(t)$ $\delta(t)$	Transient response Modeling
Step	u(t)	u(t) = 1 for t > 0 $= 0 for t < 0$	f(t)	Transient response Steady-state error
Ramp	tu(t)	$t \cdot u(t) + to : t \cdot u(t) = 0$ $tu(t) = t \text{ for } t \ge 0$ $= 0 \text{ elsewhere}$	f(t)	Steady-state error

Step 6: Analyze and Design

Test waveforms used in control systems

Input	Function	Description	Sketch	Use
Parabola	$\frac{1}{2}t^2u(t)$	$\frac{1}{2}t^2u(t) = \frac{1}{2}t^2 \text{ for } t \ge 0$ $= 0 \text{ elsewhere}$	f(t)	Steady-state error
Sinusoid	sin ωt		f(1)	Transient response Modeling Steady-state error