Data

The collision dataset is collected by SDOT Traffic Management Division, Traffic Records Group in Seattle, which includes all collisions provided by SPD and recorded by Traffic Records from 2004/01/01 to 2020/05/20.

Data understanding: There are 194673 records of collisions and 38 attributes in the dataset. The **target variable** is SEVERITYCODE, which is **unbalanced** as 136485 records belong to category 1 (property damage) and 58188 records belong to category 2 (injury).

There are 5 variables selected to be explored and potentially used as input in modelling.

	1 1	, i	0
Variable	Description	# of missing values	Type
ADDRTYPE	Collision address type	1926	Categorical
JUNCTIONTYPE	Category of junction at	6329	Categorical
	which collision took		
	place		
WEATHER	A description of the	5081	Categorical
	weather conditions		
	during the time of the		
	collision		
ROADCOND	The condition of the	5012	Categorical
	road during the collision		
LIGHTCOND	The light conditions	5170	Categorical
	during the collision		

These variables will be further explored and analyzed regarding their distribution and correlation with the target variable, collision severity.

Data Preparation: Two to four variables out of 5 will be selected, cleaned and transformed if necessary, to build the predictive classification model.

Modeling: K-Nearest neighbors, decision trees, logistic regression and support vector machine will be trained based on the dataset, which will be divided randomly into training and testing datasets.

Evaluation: The project will select the best classifier based on their performance on the testing dataset. The metrics include Accuracy, Jaccard index and F1-score.

Deployment: The classifier will be used by the department of transportation and traffic to send more effective warnings of potential collision severity to drivers based on the conditions in different environments.

If there are further data released, the models will be reevaluated to see whether and how the prediction performance can be improved.