CS60050 Machine Learning

Decision Trees

Somak Aditya

Assistant Professor Department of CSE August 8, 2024 Sudeshna Sarkar

Professor CoE AI, Department of CSE

Decision Trees

- Why are we talking about decision trees?
- Minimal prereqs: Doesn't rely on a ton of linear algebra, probability, or calc.
- So we can focus on some important ML concepts and notation, including model selection, overfitting/underfitting
- Explainability
- Decision trees can be incredibly useful as they can more easily be interpreted and altered by humans than other ML algorithms
- Basis of very powerful set of techniques: Random Forests
- Random forests train many simple decision trees (ML topic: ensemble learning)
- While powerful, random forests unfortunately have poor explainablility

Regression Model

• Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

Model

Regression Model

• Regression: learning a model to predict a numerical output (but not numbers that just represent categories, that would be classification)

Model: Nearest neighbor

- Does the memorization algorithm learn?
- A. Yes
- B. No
- C. I have no clue

Recap

- Learning problem (classification)
 Find a function that
 best separates the data
- What function?

Linear:

$$Y = sign(\theta^T X)$$

Limitations of Linear Functions

Decision Trees

Decision Trees for Classification

- Find "many" lines that best "separates" the data.
- Repeatedly partition feature space \mathbb{R}^d
- Assign a label to each partition.
- For test data point, easy to find which partition it lies

Components of a Decision Tree

Built Smaller for Illustration

A decision tree is a classifier in the form of a tree structure with two types of nodes:

- **Decision node (Internal)**: Specifies a choice or test of some attribute
 - An outcome ☐ A branch
- **Leaf node**: Indicates classification of an

Each internal node tests an attribute

Each branch corresponds to an

Each leaf node assigns a classification

Slide credit: ai.berkeley.edu, Illustration: Purushottam Kar, IITK

Type of Internal Tests

Types of Leaves

Binary Feature

Classification

$$y = POS$$

Categorical Feature

Regression

$$y = 5.2$$

Numeric Feature

Probability Estimate

$$p(y = 0) = .3$$

 $p(y = 1) = .3$
 $p(y = 2) = .4$

Decision Trees vs Linear Models

Classification in a Nutshell

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Learning Decision Tree from Data

Training Data

Model: Decision Tree

Issues

- ☐ Given some training examples, what decision tree should be generated?
 ☐ One proposal: learn the smallest tree that is fits the data
 ☐ Possible method:
 ☐ Exhaustive search over the space of decision trees
 ☐ This is NP-hard.
- ☐ Efficient algorithms available to learn a reasonably accurate (potentially suboptimal) decision tree in reasonable time
 - Employs greedy strategy
 - Locally optimal choices about which attribute to use next to partition the data

Building a Decision Tree (GREEDY)

```
Function BuildTree(dataset, attributes) returns a DT
  # dataset : dataset at current node, attributes: current set of attributes
  If attributes is empty OR
     all labels in dataset are the same:
     # Leaf node
     class = most common class in dataset
                                                       Binary
  else
                                                         Test
      # Internal node
      att \( CHOOSE-BEST-ATTRIBUTE(dataset, attributes)
      tree ← A new DT with root test att
      LeftNode = BuildTree(dataset(att = 1), attributes - \{att\})
      RightNode = BuildTree(dataset(att = 0), attributes - \{att\})
      add branch to tree with value 1, subtree LeftNode
      add branch to tree with value 0, subtree RightNode
      # generalize for multiple values
```


Decision Tree (Learn & Predict)

```
Function BuildTree(dataset,attributes) returns a DT
  # dataset : dataset at current node, attributes: current set of
attributes
  If attributes is empty OR
      all labels in dataset are the same:
      # Leaf node
      class = most common class in dataset
  else
       # Internal node
       att ← CHOOSE-BEST-ATTRIBUTE(dataset, attributes)
       tree ← A new DT with root test att
       For each value v<sub>i</sub> of attribute att:
             ChildNode<sub>i</sub> = BuildTree(D(att = v_i), attributes—{att})
             add branch to tree with value v<sub>i</sub>, subtree ChildNode<sub>i</sub>
      return tree
```

Prediction

```
\operatorname{def} f(x'):
```

Let *current node* = root while(true):

- if *current node* is internal (non-leaf):
 - Let a = attribute associated with current node
 - Go down branch labeled with value x'_a
- if *current node* is a leaf:
 - return label y stored at that leaf

Decision Tree (Choices)

```
Function BuildTree(dataset,attributes) returns a DT
  # dataset : dataset at current node, attributes: current set of
attributes
  If attributes is empty OR
      all labels in dataset are the same:
      # Leaf node
      class = most common class in dataset
  else
      # Internal node
       att ← CHOOSE-BEST-ATTRIBUTE(dataset, attributes)
      tree ← A new DT with root test att
       For each value v<sub>i</sub> of attribute att:
             ChildNode<sub>i</sub> = BuildTree(D(att = v_i), attributes—{att})
             add branch to tree with value v<sub>i</sub>, subtree ChildNode<sub>i</sub>
      return tree
```

Choices

1. When to stop

- no more input features
- all examples are classified the same
- too few examples to make an informative split

2. Which test to split on

• split gives smallest error.

Decision Stumps

- Split data based on a single attribute
- Majority vote at leaves

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

 Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

 Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

 Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Choosing an attribute

Idea: good attribute splits examples into subsets that are (ideally) all positive or all negative

Which is better: *Patrons?* or *Type?*

Heuristic based on "information gain".

 We want attributes that split the examples to sets that are relatively pure in one label; this way we are closer to a leaf node.

Heuristic to Pick the Attribute

- Preference bias: Occam's Razor
- •William of Ockham (1285-1347)

"non sunt multiplicanda entia praeter necessitatem" entities are not to be multiplied beyond necessity

- Learning the minimal decision tree consistent with data is NP-hard
- Heuristic based on "information gain".
 - We want attributes that split the examples to sets that are relatively pure in one label; this way we are closer to a leaf node.

Which Attribute is "best"?

How to determine the Best Split?

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

Homogeneous,

High degree of impurity

Low degree of impurity

Information gain: measures how well a given attribute separates the training examples according to their target classification

Gini Index: At each node measures, what is the error if you use the most prevalent label

Background: Information theory

- Claude Shannon's seminal work: Mathematical Theory of Communication in 1948
- Information in a message (information entropy)
 - minimum #bits needed to store/send using a good encoding
- If probability distribution $P(p_1, p_2, ..., p_n)$ for n messages, its information (or *entropy*) is:

$$H(P) = -(p_1 \log p_1 + p_2 \log p_2 + \dots + p_n \log p_n)$$

Think we need to send message using A, B, C, D

- If probability is 25% each, we need 2-bits for each. Expected number of bits –
 0.25 * 2 + 0.25 * 2 + 0.25 * 2 + 0.25 * 2 = 2
- If probability is 70%, 26%, 2%, 2%. We can use variable-length codes: 0, 10, 110, 111. Expected number of bits = 0.7 * 1 + 0.26*2 + 0.04*3 = 1.34

Claude Shannon
Work done in Bell
Labs

Entropy of a Distribution

Quantifies the amount of uncertainty associated with a specific probability distribution

$$H(X) = \sum_{x} p(X = x) \log_2 \frac{1}{p(X = x)}$$

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

$$H(P)$$

= -.5 * (-1) + 0.5
* (-1)
= 1

$$H(P) = -\left(\frac{2}{3} * \log\left(\frac{2}{3}\right) + \frac{1}{3} * \log\left(\frac{1}{3}\right)\right) = 0$$

$$= 0.92$$

$$H(P) = -(1 * 1 + 0 * \log(0)) = 0$$

$$H(P)$$

= $-(1*1 + 0*log(0))$
= 0

Entropy (Measure I)

Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{\kappa} p(Y = y_i) \log_2 p(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

A measure for uncertainty purity information content

Loss for Decision Trees

Should we stop splitting (in the first place)? Or continue?

$$Loss(S) = \frac{1}{n} \sum_{i=1}^{n} Entropy(Leaf(S_i))$$

Information Gain ~.2

Information Gain – reduction in Entropy (loss) from a change to the model

Information Gain wrt original ~.53

Information Gain

Gain(S,A): expected reduction in entropy due to splitting S on attribute A

$$Gain(S,A) = Entropy(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} \times Entropy(S_v)$$

S_v is the subset of S for which attribute A has value v and

Information Gain Computation

Entropy([21+,5-]) = 0.71
Entropy([8+,30-]) = 0.74

$$Gain(S,A_1) = Entropy(S)$$

$$-\frac{26}{64} * Entropy([21+,5-])$$

$$-\frac{38}{64} * Entropy([8+,30-])$$

= 0.27

Entropy([18+,33-]) = 0.94
Entropy([8+,30-]) = 0.62

$$Gain(S, A_2)$$

= $Entropy(S) - \frac{51}{64} * Entropy([18+,33-])$
 $-\frac{13}{64} * Entropy([11+,2-])$
= 0.12

Conditional Entropy

Entropy Definition

$$H(Y) = \sum_{y} p(Y = y) \log_2 \frac{1}{p(Y=y)}$$

$$H(Y) = -\sum_{y} p(Y = y) \log_2 p(Y = y)$$

Conditional Entropy

Entropy after splitting on a particular feature

• Must consider expected value over both branches!

Mutual Information: I(Y;X) = H(Y) - H(Y|X)

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy: $H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information: I(Y;X) = H(Y) - H(Y|X)

- Entropy measures the expected # of bits to code one random draw from X.
- For a decision tree, we want to reduce the entropy of the random variable we are trying to predict!

Conditional entropy is the expected value of specific conditional entropy $E_{P(X=x)}[H(Y | X=x)]$

Which to college a colleting critarion $-1/1-y/2=\omega/-1/y=y/2=x/1/x=x$

Informally, we say that **mutual information** is a measure of the following: If we know X, how much does this reduce our uncertainty about Y?

An Illustration: DT with Real-Valued Features

DT with Real-Valued Features

Example:

- Length (L): 10 15 21 28 32 40 50
- Class: + + + -
- Check thresholds:

How to find the split with the highest gain ?

For each continuous feature A:

- Sort examples according to the value of A
- For each ordered pair (x,y) with different labels
- Check the mid-point as a possible threshold.

Decision Trees

A few tools

Majority vote:

•
$$\hat{y} = \underset{c}{\operatorname{argmax}} \frac{N_c}{N}$$

Classification error rate:

•	ErrorRate =	$= \frac{1}{N} \sum_{i} \mathbb{I}(y^{(i)})$	$\neq \hat{y}^{(i)}\big)$
---	-------------	--	---------------------------

- What fraction did we predict incorrectly
- Expected value

•
$$\mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x) P(X = x) \text{ or } \mathbb{E}[f(X)] = \int_{\mathcal{X}} f(x) p(x) dx$$

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
2	5.9	3.0	5.1	1.8

- Which of the following trees would be learned by the decision tree learning algorithm using "error rate" as the splitting criterion?
- (Assume ties are broken alphabetically.)

Dataset:

Υ	Α	В	С
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

Gini Impurity: Decision Trees (Measure II)

- Gini impurity estimates the following
 - Choose an element randomly.
 - Label it using the distribution of labels on the set.
 - How often the element is incorrectly labeled?
- For a set of items with ${\it C}$ classes, with relative frequency p_c for class c, the probability of choosing an item with label c is p_c , and the probability of misclassifying the item is

$$\sum_{k\neq c} p_k = 1 - p_c$$

• The Gini Index is computed by summing pairwise products of these probabilities for each class label:

$$GINI(p) = \sum_{c=1}^{c} p_c (1 - p_c) = 1 - \sum_{c=1}^{c} p_c^2$$

Examples of Computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) = 1/6 P(C2) = 5/6
Gini = 1 -
$$(1/6)^2$$
 - $(5/6)^2$ = 0.278

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Measure of Impurity: Gini Index

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

 $p(j \mid t)$ is the relative frequency of class j at node t

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information [n_c: number of classes]
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Splitting Based on GINI

Used in CART, SLIQ, SPRINT.

When a node *p* is split into *k* partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Continuous Attributes: Computing Gini Index

- Use binary decisions (A<v and A>=v)
- Many choice.
- Each value v has a count matrix associated with it
 - Class counts with A >= v
 - Class counts with A < v
- Method to choose best v
 - For each v, scan the dataset to get the count matrix. Compute Gini Index.
 - Choose the one with min. Gini Index.
 - Inefficient. Repetition of work!

Tid	Refund	Marital Status	Taxable Income	Cheat		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No No		No	o No		0	Ye	es Ye		s	Yes		No		No		N	0	No			
•		Taxable Income																					
Sorted Values Split Positions			60	70		75		5	85		90		95		100		120		125		220		
		5	5	65		7	2 80		0	87		9	92		7	11	0	12	22	17	172		230
and a second sec		<=	^	<=	>	"	>	<=	^	"	>	<=	>	<=	>	<=	>	<=	^	\	^	<=	^
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	0.420 0.400		0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420		

Continuous Attributes: Variance (Measure III)

Another Example of Splitting Criteria:

Variance Reduction

If a node is entirely homogeneous, then the variance is zero.

- 1. For each split, individually calculate the variance of each child node
- 2. Calculate the variance of each split as the weighted average variance of child nodes
- 3. Select the split with the lowest variance

Practical Issues

- Missing Values
- Attributes with different costs
 - Change information gain so that low cost attribute are preferred
- Dealing with features with different # of values

Experimental Machine Learning

- Machine Learning is an Experimental Field
- Basics:
 - Split your data into two (or three) sets:
 - Training data (often 70-90%)
 - Test data (often 10-20%)
 - Development data (10-20%)
- You need to report performance on test data, but you are not allowed to look at it.
 - You are allowed to look at the development data (and use it to tweak parameters)