MICHAEL B. SULLIVAN

SOFTWARE

	ALL D. SULLIVAIN 61, 🄁 mbsullivan@utexas.edu, 🕲 http://lph.ece.utexas.edu/user	s/mbsullivan
RESEARCH INTERESTS	I am interested in the design of dependable and efficient computer systems. My current research provides strong-yet-inexpensive reliability in computer memory and arithmetic.	
EDUCATION	University of Texas, Austin, TX Ph.D. Student in Computer Engineering - Advisors: Mattan Erez & Earl E. Swartzlander, Jr. M.S.E. in Computer Engineering	2008–2015 May 2011
	George Mason University, Fairfax, VA M.S. in Computer Science B.S. in Computer Engineering and B.A. in Mathematics, summa cum laude	Jan 2009 May 2007
SELECTED AWARDS	Cockrell School of Engineering Fellowship National Defense Science & Engineering (NDSEG) Graduate Fellowship Outstanding Achievement Award in Graduate Computer Science GMU University Scholar	2011-13 2008-11 2009 2004-08
SELECTED PUBLICATIONS	"Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Computer Memory," in the <i>International Symposium on High Performance Computer Architecture (HPCA)</i> , February 2015.	
	"A Locality-Aware Memory Hierarchy for Energy-Efficient GPU Architectures," in the <i>International Symposium on Microarchitecture (MICRO)</i> , December 2013.	
	"Truncated Logarithmic Approximation," in the <i>International Symposium on Computer Arithmetic (ARITH)</i> , April 2013.	
	"Containment Domains: A Scalable, Efficient, and Flexible Resilience Scheme for Exascale Systems," in the <i>Conference on High Perf. Computing, Networking, Storage and Analysis (SC)</i> .	
PROFESSIONAL EXPERIENCE	NVIDIA Corporation, Santa Clara, CA Research Scientist, Architecture Research Group (ARG)	2015-present
	University of Texas, Austin, TX Research Assistant, Locality Parallelism and Hierarchy Lab (LPH)	2010-2015
	Los Alamos National Laboratory (LANL), Los Alamos, NM Research Assistant, Applied Computer Science (CCS-7)	2011
	George Mason University, Fairfax, VA Research Assistant, Lab for the Study and Simulation of Human Movement Research Assistant, Neural Engineering Lab	2008 2007–08
	Argonne National Laboratory, Argonne, IL Research Assistant, Mathematics and Computer Science (MCS)	2007
	University of California at Irvine, Irvine, CA Research Assistant, Nanotechnology Lab	2006
HARDWARE	VHDL/Verilog and the Synopsys tools for RTL design and analysis; Pin for binary instrumentation and workload characterization; Gem5 for microarchitectural simulation.	

C/C++, Matlab, Python; Cuda/OpenCL/MPI/OpenMP; exact & heuristic optimization.