CLAIMS

What is claimed is:

1	1.	A method of obtaining a parameter of interest of an earth formation using		
2		a tool conveyed within a borehole in the earth formation, the tool having a body		
3		with a	finite, non-zero conductivity, said method comprising:	
4		(a)	using a transmitter on the tool for producing a first electromagnetic signal	
5			in the earth formation;	
6		(b)	using at least one receiver axially separated from said transmitter on said	
7			tool for receiving a second temporal signal resulting from interaction of	
8			said first signal with the earth formation, said second temporal signal	
9			dependent upon said conductivity and said parameter of interest; and	
0		(c)	using a processor for obtaining from said second signal a third temporal	
1			signal indicative of said parameter of interest and substantially	
2			independent of said conductivity.	
1	2.	The m	ethod of claim 1, further comprising using said processor for determining	
2		from s	aid third signal said parameter of interest.	
			•	
1	3.	The m	ethod of claim 1, wherein said parameter of interest is at least one of (i) a	
2		resisti	vity of said formation, and, (ii) a distance to a bed boundary in said	
3		format	tion.	

414-34865-US 29

1	4.	The method of claim 1, wherein a sensitivity of said third temporal signal to said
2		earth formation is substantially independent of a spacing between said transmitte
3		and said at least one receiver.
1	5.	The method of claim 4, wherein said spacing between said transmitter and said a
2		least one receiver is approximately 2 meters.
1	6.	The method of claim 1, wherein using said processor in (c) further comprises
2		representing said second signal by a Taylor series expansion.
1	7.	The method of claim 6, wherein said Taylor series expansion is in one half of od
2		integer powers of time.
1	8.	The method of claim 7, further comprising subtracting from said second signal a
2		least one leading term of the Taylor series expansion.
1	9.	The method of claim 1, wherein using said processor in (c) further comprises
2		applying a filter operation to said second signal.
1	10.	The method of claim 9, wherein said filtering operation further comprises a

414-34865-US 30

differential filtering operation.

2

- 1 11. The method of claim 10, wherein said differential filtering operation is of the
- $\frac{\partial \left(t^{1/2}H_z\right)}{\partial t}$
- 3 wherein t is time and H_z is a representation of said second signal.
- 1 12. The method of claim 9, wherein said filtering operation further comprises an integral filtering operation.
- 1 13. The method of claim 12, wherein said integral filtering operation further comprises defining a first and a second specified time.
- 1 14. The method of claim 1 wherein said tool is conveyed into the earth formation on one of (i) a drilling tubular, and, (ii) a wireline.
- 1 15. A system for determining a parameter of interest of an earth formation having a borehole therein, comprising:
- (a) a tool for use within said borehole, said tool having a body with a finite,
 non-zero conductivity;
- 5 (b) a transmitter for producing a first electromagnetic signal in the earth formation;
- 7 (c) at least one receiver axially separated from said transmitter on said tool for receiving a second temporal signal resulting from interaction of said first

31

9		signal with the earth formation, said second temporal signal dependent	
10		upon said conductivity and said parameter of interest; and	
11		(d) a processor for obtaining from said second signal a third temporal signal	
12		indicative of said parameter of interest and substantially independent of	
13		said conductivity.	
1	16.	The system of claim 15, wherein said processor determines from said third signal	
2		said parameter of interest.	
1	17.	The system of claim 15, wherein said parameter of interest is at least one of (i) a	
2		resistivity of said formation, and, (ii) a distance to a bed boundary in said	
3		formation.	
1	18.	The system of claim 15, wherein a sensitivity of said third temporal signal to said	
2		earth formation is substantially independent of a spacing between said transmitter	
3		and said at least one receiver.	
1	19.	The system of claim 18, wherein said spacing between said transmitter and said at	
2		least one receiver is approximately 2 meters.	
1	20.	The system of claim 15, wherein said processor represents said second signal by	

414-34865-US 32

a Taylor series expansion.

2

1 21. The system of claim 20, wherein said Taylor series expansion is in one half of odd

2 integer powers of time.

1 22. The system of claim 21, wherein said processor further subtractins from said

2 second signal at least one leading term of said Taylor series expansion.

1 23. The system of claim 15, wherein said processor in further applies a filtering

2 operation to said second signal.

1 24. The system of claim 23, wherein said filtering operation further comprises a

2 differential filtering operation.

1 25. The system of claim 24, wherein said differential filtering operation is of the form

$$\frac{\partial \left(t^{1/2}H_{z}\right)}{\partial t}$$

3 wherein t is time and H_z is a representation of said second signal.

26. The system of claim 23, wherein said filtering operation further comprises an

2 integral filtering operation.

1 27. The system of claim 26, wherein said integral filtering operation further

2 comprises defining a first and a second specified time.

- 1 28. The system of claim 15 further comprising a drilling tubular for conveying said
- 2 tool into the earth formation.
- 1 29. The system of claim 15 further comprising a wireline for conveying said tool into
- 2 the earth formation.