ADAMAS UNIVERSITY

ADAMAS UNIVERSITY END SEMESTER EXAMINATION

(Academic Session: 2020 – 21)

UNIVERSITY PURSUE EXCELLENCE	`	,	
Name of the Program:	B.Sc. (Hons.) Computer Science	Semester:	II
Paper Title:	Probability and Statistics	Paper Code:	SDS11502
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	03

- 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.
- 2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.
- **3.** Assumptions made if any, should be stated clearly at the beginning of your answer.

	Group A Answer All the Questions (5 x 1 = 5)		
1	Define probability of an event.	R	CO2
2	Define the random variable for the hyper-geometric distribution.	R	CO2
3	A random variable X follows uniform distribution with mean 1 and	R	CO2
	variance $\frac{4}{3}$. Find its parameter values.		
4	What do you mean by sampling distribution?	U	CO3
5	Define a statistical hypothesis.	R	CO3
	Group B		
6 a)	Answer All the Questions (5 x 2 = 10) Define central, non-central and raw moments.	R	CO1
0 4)	(OR)	IX .	COI
6 b)	What do you mean by scatter diagram? Explain with example.	R	CO1
7 a)	Give at least four examples of a random variable which follow a	U	CO2
/ α)	Poisson distribution.	C	002
	(OR)		
7 b)	Give two examples of each geometric and exponential distribution.	U	CO2
8 a)	Find the maximum likelihood estimator of parameter of an exponential	R	CO3
	distribution based on the random sample $X_1, X_2,, X_n$ of size n .		
	(OR)		
8 b)	Find the maximum likelihood estimator of parameter of a Poisson	R	CO3
	distribution based on the random sample $X_1, X_2,, X_n$ of size n .		
9 a)	What are the various properties of correlation coefficients?	R	CO4
	(07)		
0.1.)	(OR)	T T	00.4
9 b)	Show that the two independent random variables are uncorrelated but	U	CO4
10 -)	converse of this is not necessarily true.	TI	004
10 a)	Show that the product of regression coefficient of Y on X and the	U	CO4
	regression coefficient of X on Y is equal to $r^2(X,Y)$. Here $r(X,Y)$		
	denotes the correlation coefficient between <i>X</i> and <i>Y</i> .		
	(OR)		
10 b)	If one of the regression coefficients is greater than unity, then the other	U	CO4
	must be less than unity.		
	Group C		

	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	Discuss various terminologies in defining a random experiment. (OR)	R	CO2
11 b)	Check that the given joint function of random variable X and Y is pdf. If yes, find marginal density of (i) X given Y, and (ii) Y given X. $f(x,y) = \begin{cases} x+y & 0 \le (x,y) \le 1 \\ 0 & , otherwise \end{cases}$	U	CO2
12 a)	 Show that: i) Probability of an impossible event is zero. ii) The probability of a complementary Ā of A is given as P(Ā) = 1 - P(A). iii) If B ⊂ A, then (a) P(A ∩ B̄) = P(A) - P(B) (b) P(B) ≤ P(A). 	U	CO2
	(OR)		
12 b)	Let random variable X have the following distribution form:	U	CO2
13 a)	Define conditional probability of event. The odds that person X speaks the truth are 3:2 and the odds that person Y speak the truth are 5:3. In what percentage of cases are the likely to contradict each other on an identical point?	U	CO2
	(ORU		
13 b)	Define Bayes' theorem. Box I contain 1 white, 2 black and 3 red balls; box II contain 2 white, 1 ball and 1 red balls; box III contain 4 white, 5 black and 3 red balls. One box is selected at random and 2 balls are drawn. It is found that one ball is red one is white. What is the probability that they came from box I, box II and box III.	U	CO2
14 a)	Define χ^2 -distribution. We collect a random sample of ten bags. Each bag has 100 pieces of candy and five flavours. Test for the goodness of fit for the distribution of candy in the bags. Take $\chi^2_{(4)} = 9.488$ at given level of significance $\alpha = 0.05$. Flavour Apple Lime Cherry Orange Grape	U	CO3
	Fred. 180 250 120 225 225		
14 b)	i) Define F-distribution. ii) Define standard error, tolerance interval, prediction interval.	R	CO3
15 a)	Define t-distribution. Find the t-test value for the following two sets of values: 7, 2, 9, 8 and 1, 2, 3, 4?	U	CO3
	(OR)	U	~~*
15 b)	Discuss the testing of one sample mean for both standard deviation known and unknown. A Little League baseball coach wants to know if his team is representative of other teams in scoring runs. Nationally, the average number of runs scored by a Little League team in a game is 5.7. He chooses five games at random in which his team scored 5, 9, 4, 11, and 8 runs. Is it likely that his team's scores could have come from the national distribution? Assume an alpha level of 0.05.		CO3
16 a)	Discuss the procedure of obtaining the maximum likelihood estimator of θ in the case of one-parametric distribution function $f(x, \theta)$.		CO3
161)	(OR)	4.75	
16 b)	Sample of two types of electric bulbs were tested for length of life and	AP	CO3

		Type A	Type B		
	Sample no.	$n_1 = 8$	$n_2 = 7$		
	Sample means	$\bar{x}_1 = 1234 \text{hrs}$	$\bar{x}_2 = 1036 \text{hrs}$		
	Sample SD	$s_1 = 36 \text{hrs}$	$s_2 = 40$ hrs		
	Is the difference in the means sufficient to warrant that Type A is				
	superior to Type B regarding length of life?				
17 a)	7 a) Obtained the correlation coefficient between observed and estimated		U	CO4	
	values of random varia	ables.			
		(OI	R)		
17 b)	Discuss the method of	least square estimate	for the fitting of $Y = aX^b$.	U	CO4