Logistic Regression

Outline

- Task Introduction
- Feature extraction
- Code
- Improvement Tips

Task Introduction

- Binary Classification
- Adult Data Set

Attribute, Input Salary condition, Output

ge	workclass	fnlwgt	education	education_nur	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_we	native_country	
	State-gov	77516	Bachelors	13	Never-marrie	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-	83311	Bachelors	13	Married-civ-s	Exec-manage	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-clea	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-s	Handlers-clea	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-s	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-s	Exec-manage	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spou	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-	209642	HS-grad	9	Married-civ-s	Exec-manage	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-marrie	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-s	Exec-manage	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-s	Exec-manage	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-s	Prof-specialty	Husband	Asian-Pac-Isl	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-marrie	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-marrie	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K

Feature extraction

ex:

1. 15歲,女,台灣:[15,1,1,0]

2. 20歲,男,美國:[20,0,0,1]

[age, female_or_male, is_Taiwan, is_US]

Feature

Feature: One-hot encoding

```
1 age,fnlwgt,sex,capital_gain,capital_loss,hours_per_week, Federal-gov, Local-gov, Never-worked, Private, Self-
N ± master [1:X train
[1:X_train ]
```

Label:

1 label

0 : <= 50k

1:>50K

```
2 0
   3 0
   4 0
   5 0
   6 0
   7 0
   8 0
   9 1
  10 1
  11 1
  12 1
  13 1
  14 0
  15 0
  16 1
  17 0
  18 0
  19 0
  20 0
  21 1
  22 1
  23 0
  24 0
  25 0
  26 0
  27 1
  28 0
  29 1
  30 0
  31 0
  32 0
  33 0
  34 0
     ± master [1:Y train ]
[1:Y train ]
```

Download

- Link
 - Download zip
 - git clone https://github.com/riviera1020/AI_school_logistic_regression.git
- File
 - main.py:主程式
 - answer.py:正確答案
 - feature/: 幫大家抽好啦
 - X_train, Y_train: training data
 - X_test, ans.csv: testing data
 - logitsic_params/: 存model

Code

- 用編輯器開main.py
 - Vim, Sublime text, NotePad
- 流程
 - Define model architecture
 - Define model optimizer
 - Compile model
 - Training
 - Inference
- Three step
 - Step 1: Function Set
 - Step 2: Goodness of a Function
 - Step 3: Find the best function

```
def train(X_train, Y_train):
    # TODO, 1
    # Define model arch
    # TODO, 2
    # Define optimizer
    # TODO, 3
    # Compile model
    # TODO, 4
    # Start training
def infer(X_test, Y_test):
    # TODO, 5
    # load and inference
```

Define model architecture

Sequential

- 容器: Sequential()
 - model = Seuqential()
 - model.add(layer_object)
- Linear layer
 - Dense(input_dim,units,use_bias)
 - input_dim: feature的維度
 - units: 輸出的維度
 - use_bias:True
- Activation
 - Activation('sigmoid')

Define model architecture - Code

```
# TODO, 1
# Define model arch
model = Sequential()
feat_dims = X_train.shape[1]
model.add(Dense(input_dim = feat_dims, units = 1, use_bias = True))
model.add(Activation('sigmoid'))
```

Step 1: Function Set

Define model optimizer

Stochastic Gradient Descent

```
# TODO, 2
# Define optimizer
sgd = optimizers.SGD(lr=0.001)
```

- Arguments
 - Ir: learning rate, 走多大步

Compile model

```
BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)
Batch size
predict
answer
```

Arguments

• loss : cross entropy — Step 2: Goodness of a Function

• optimizer : sgd ————— Step 3: Find the best function

• metrics:計算accuracy的方式

Start training

看data幾次

```
# TODO, 4
# Start training
model.fit(X_train, Y_train, epochs = 10)
model.save('./logistic_params/logistic.h5')
```

Training Code

```
def train(X_train, Y_train):
    # TODO, 1
    # Define model arch
    model = Sequential()
    feat_dims = X_train.shape[1]
    model.add(Dense(input_dim = feat_dims, units = 1, use_bias = True))
    model.add(Activation('sigmoid'))
    # TODO, 2
    # Define optimizer
    sqd = optimizers.SGD(lr=0.001)
    # TODO, 3
    # Compile model
    model.compile(loss = 'binary_crossentropy',
                  optimizer = sqd,
                  metrics = ['accuracy'])
    # TODO, 4
    # Start training
    model.fit(X_train, Y_train, epochs = 10)
    model.save('./logistic_params/logistic.h5')
```

Inference

```
def infer(X_test, Y_test):
    # TODO, 5
    # load and inference
    model = load_model('./logistic_params/logistic.h5')
    loss, acc = model.evaluate(X_test, Y_test)
    print('Accuracy : ' + str(acc))
```

Run Code

Type commands in command line Train:

python main.py --train

Test:

python main.py --infer

Try to adjust the following parameters:

- epochs
- |r

```
name: GeForce GTX 960 major: 5 minor: 2 memoryClockRate(GHz): 1.291
pciBusID: 0000:01:00.0
totalMemory: 3.94GiB freeMemory: 3.25GiB
2018-08-19 17:57:00.091913: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1227] Device peer to peer matrix
2018-08-19 17:57:00.091925: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1233] DMA: 0 1
2018-08-19 17:57:00.091930: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 0: Y N
2018-08-19 17:57:00.091933: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 1: N Y
2018-08-19 17:57:00.091941: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0,
2018-08-19 17:57:00.417698: I tensorflow/core/common runtime/qpu/qpu_device.cc:993] Creating TensorFlow device (/jo
b:localhost/replica:0/task:0/device:GPU:0 with 5641 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6
GB, pci bus id: 0000:05:00.0, compute capability: 6.1)
2018-08-19 17:57:00.437818: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/jo
b:localhost/replica:0/task:0/device:GPU:1 with 2978 MB memory) -> physical GPU (device: 1, name: GeForce GTX 960, p
ci bus id: 0000:01:00.0, compute capability: 5.2)
32561/32561 [===============] - 2s 62us/step - loss: 0.4722 - acc: 0.7804
32561/32561 [========================== ] - 1s 41us/step - loss: 0.3488 - acc: 0.8439
Epoch 3/10
32561/32561 [====
                                      ==] - 1s 40us/step - loss: 0.3345 - acc: 0.8465
Epoch 4/10
32561/32561 [=================== ] - 1s 41us/step - loss: 0.3291 - acc: 0.8484
32561/32561 [=================== ] - 1s 40us/step - loss: 0.3261 - acc: 0.8492
Epoch 6/10
32561/32561 [=
                                      ==] - 1s 40us/step - loss: 0.3241 - acc: 0.8500
Epoch 7/10
Epoch 9/10
32561/32561 [===================== ] - 1s 40us/step - loss: 0.3211 - acc: 0.8511
32561/32561 [======================== ] - 1s 41us/step - loss: 0.3204 - acc: 0.8516
 riviera1020@531:~/AI School$
```

Improvement tips

- 你其實用過了
 - Normalize
- Overfitting
 - Early stop
- Gradient Descent
 - Momentum
 - Adaptive Learning Rate
- Deep Network
 - Other activation

Normalize

Attribute:

Age, captial_gain <-> one-hot

ex:

1. 15歲,女,台灣:[15,1,1,0]

2. 20歲,男,美國:[20,0,0,1]

Source of figure: http://cs231n.github.io/neural-networks-2/

Normalize - how

關掉Normalize

```
def main(opts):
   # Load feature and label
    X_train, Y_train, X_test, Y_test = load_data(opts.train_data_path,
                                                 opts.train_label_path,
                                                 opts.test_data_path,
                                                 opts.test_label_path)
   # Normalization
   #X_train, X_test = normalize(X_train, X_test)
   # To train or to infer
    if opts.train:
        train(X_train, Y_train)
    elif opts.infer:
        infer(X_test, Y_test)
    else:
        print("Error: Argument --train or --infer not found")
    return
```

Comment掉試試看

Overfitting – early stop

Implement Earlystop in keras

model.fit(X_{all} , Y_{all} , epochs = 10, validation_split = 0.1)

Gradient Descent - momentum

The value of a network parameter w

Gradient Descent - momentum

Gradient Descent – Adaptive learning rate

RmsProp

Error Surface can be very complex when training NN.

Gradient Descent – Adaptive learning rate

Adam: rmsprop + momentum

Deep Network

Any dimension you want!

Deep Network

只需要在第一層宣告

```
# TODO, 1
# Define model arch
model = Sequential()
feat_dims = X_train.shape[1]
model.add(Dense(input_dim = feat_dims, units = 1024, use_bias = True))
model.add(Activation('sigmoid'))
model.add(Dense(units = 512, use_bias = True))
model.add(Activation('sigmoid'))
model.add(Dense(units = 1, use_bias = True))
model.add(Activation('sigmoid'))
```

Deep Network

Other activation

Rectified Linear Unit (ReLU)


```
# TODO, 1
# Define model arch
model = Sequential()
feat_dims = X_train.shape[1]
model.add(Dense(input_dim = feat_dims, units = 1024, use_bias = True))
model.add(Activation('relu'))
model.add(Dense(input_dim = feat_dims, units = 512, use_bias = True))
model.add(Activation('relu'))
model.add(Dense(input_dim = feat_dims, units = 1, use_bias = True))
model.add(Activation('sigmoid'))
```

Implement Time

- Finish original logistic regression
- Adjust epochs, lr
- Try improvement tips

FAQ