

EP 0 811 296 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

25.09.2002 Bulletin 2002/39

(21) Application number: 95939979.1

(22) Date of filing: 14.11.1995

(51) Int Cl.7: **H04Q 7/38**, G01S 5/14

(86) International application number: PCT/US95/14862

(87) International publication number: WO 96/015636 (23.05.1996 Gazette 1996/23)

(54) LOCATING SYSTEM AND METHOD USING A MOBILE COMMUNICATIONS NETWORK

ORTSBESTIMMUNGSSYSTEM UND -VERFAHREN UNTER VERWENDUNG EINES MOBILEN KOMMUNIKATIONSNETZES

SYSTEME DE LOCALISATION ET MÉTHODE D'UTILISATION D'UN RESEAU DE COMMUNICATION MOBILE

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL

Designated Extension States: LT LV SI

(30) Priority: 16.11.1994 US 340755

(43) Date of publication of application: 10.12.1997 Bulletin 1997/50

(73) Proprietor: @Track Communications, Inc. Richardson, TX 75081 (US)

(72) Inventor: WORTHAM, Larry, C. Garland, TX 75044 (US)

(74) Representative: Horner, David Richard et al D Young & Co, 21 New Fetter Lane London EC4A 1DA (GB)

(56) References cited:

US-A- 5 119 102 EP-A- 0 320 913 US-A- 5 155 490 US-A- 5 225 842 US-A- 5 317 323 US-A-5323322 US-A- 5 327 144 US-A-5389934

GOUD P ET AL: "A SPREAD SPECTRUM RADIOLOCATION TECHNIQUE AND ITS APPLICATION TO CELLULAR RADIO" PROCEEDINGS OF THE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERSAND SIGNAL PROCESSING, US, NEW YORK, IEEE, vol. -, 1991, pages 661-664, XP000280384

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

30

35

40

45

50

Description

TECHNICAL FIELD OF THE INVENTION

[0001] This invention relates to locating systems, and more particularly to a locating system and method using a mobile communications network.

1

BACKGROUND OF THE INVENTION

[0002] Mobile communications technology has enjoyed substantial growth over the past decade. Many cars, trucks, airplanes, boats, and other vehicles are equipped with devices that allow convenient and reliable mobile communication through a network of satellite-based or land-based transceivers. Advances in this technology have also led to widespread use of handheld, portable mobile communications devices.

[0003] Many customers of mobile communications systems also require an accurate determination of their position, and perhaps reporting of this position to a remote location. For example, a cellular telephone in a vehicle or carried by a person offers a convenient communication link to report position information. The position information may be generated by traditional positioning systems, including a satellite-based positioning system such as the global positioning system (GPS), or a land-based positioning system, such as LORAN-C. These approaches, however, may not be suitable for particular applications that require great position accuracy.

[0004] One location system is described in European Patent No. EP-A-0 320 913. The Abstract states that the patent includes a method for locating a mobile station, and a base station and mobile station for carrying out the method. The method includes transmitting identity signals and time pulses from fixed radio telephone stations of known location. The fixed radio telephone stations are in highly precise chronological synchronization. The transmission time is greater than the travel time of the time pulse and a distance between two stations can be calculated by eliminating multiples. With the aid of at least three fixed stations, the location of the mobile station can be calculated using the radio telephone system.

SUMMARY OF THE INVENTION

[0005] In accordance with the present invention, the disadvantages and problems associated with previous techniques used to locate and report the position of a vehicle, person, or object equipped with a mobile communications device have been substantially reduced or eliminated. One aspect of the present invention provides a differential positioning system that integrates positioning technology with an existing mobile communications infrastructure.

[0006] According to an embodiment of the present invention, a locating system using a cellular telephone

network and a positioning system includes a reference positioning receiver having known position coordinates. The reference positioning receiver receives first position signals from the positioning system and generates correction data in response to the first position signals and the known position coordinates. A transmitter site of the cellular telephone network is coupled to the reference positioning receiver and transmits the correction data generated by the reference positioning receiver. A mobile unit in communication with the cellular telephone network and the positioning system receives correction data transmitted by the transmitter site. The mobile unit also receives second position signals from the positioning system and determines the location of the mobile unit in response to the second position signals and the correction data.

[0007] According to another embodiment of the present invention, a system for locating a mobile unit within the service area of a mobile communications network includes a plurality of transmitter sites having known position coordinates, each transmitter site broadcasting time-of-arrival (TOA) data. A mobile communications device on the mobile unit receives the TOA data transmitted by at least three transmitter sites. A memory on the mobile unit stores known position coordinates of the transmitter sites. A processor receives the TOA data from the mobile communications device and determines the position of the mobile unit in response to the TOA data received from the transmitter sites and the known position coordinates of the transmitter sites stored in the memory.

[0008] Important technical advantages of the present invention include improving the accuracy of existing positioning systems using a mobile communications system. In particular, existing transmitter sites of a mobile communications network may be used as reference points to transmit position correction data to mobile units within the mobile communications network service area. Other important technical advantages include integration of communicating, locating, and reporting functions for an overall reduction in the cost and complexity of the system. For example, a differential GPS (DGPS) positioning system may use an existing communications link, such as the overhead message stream of a cellular telephone network, to send correction data from the transmitter site to the mobile unit. Important technical advantages may also include accurate and immediate position fixes without relying on calculations performed at a remote location. Other important technical advantages may also include implementation of a time-of-arrival (TOA) positioning system within the mobile communications network without land-based or satellitebased positioning technology. Other technical advantages are readily apparent to one skilled in the art from the following figures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] For a more complete understanding of the present invention and for further features and advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:

FIGURE 1 illustrates a differential positioning system:

FIGURE 2 illustrates an alternative embodiment of the differential positioning system of FIGURE 1; FIGURE 3 is a schematic representation of a trans-

FIGURE 3 is a schematic representation of a transmitter site associated with a reference positioning receiver;

FIGURE 4 is a schematic representation of a mobile unit;

FIGURE 5 is a schematic representation of a central host: and

FIGURE 6 illustrates an alternative positioning system.

DETAILED DESCRIPTION OF THE INVENTION

[0010] FIGURE 1 illustrates several components used in a differential positioning system 10. The system includes components of a satellite-based or land-based positioning system 12 and components of a mobile communications network 14. Differential positioning system 10 provides accurate and immediate position information to vehicle 16 equipped with a mobile unit 17.

[0011] Positioning system 12 is illustrated as a satellite-based radio navigation system, such as the NAVS-TAR positioning system (GPS). The description uses the NAVSTAR GPS as a representative positioning system 12, but any land-based or satellite-based system may be used. For example, positioning system 12 may be a land-based LORAN-C, a space-based GLONASS, or any other appropriate positioning technology. In general, positioning system 12 comprises a plurality of space-based or land-based transmitters that emit position signals.

[0012] The NAVSTAR GPS consists of a number of satellites in approximately twelve hour, inclined orbits of the earth, each satellite transmitting position signals. The GPS concept of operation is based upon satellite ranging. With position signals from three satellites, a GPS receiver can make an accurate calculation of its position in three dimensions. To make a valid position fix, the GPS receiver measures the propagation times of position signals from the satellites to a very high accuracy. This is accomplished by synchronizing the transmission of position signals to an atomic clock. However, to reduce costs and complexity, the GPS receiver may not maintain such an accurate clock, which introduces a clock bias $(C_{\rm B})$ between the satellite clock and the GPS receiver clock. By measuring the apparent sat-

ellite signal propagation times from four satellites rather than three, the redundancy can be used to solve C_B . The signal propagation times correspond to ranges of the GPS receiver from the satellites, related by the speed of light. Prior to correction for the clock bias C_B , the apparent ranges of the satellites are all in error by a fixed amount and are called pseudoranges.

[0013] Two positioning services are provided by the NAVSTAR GPS. The precise positioning service (PPS) which is reserved for military use provides accuracy to within twenty-one meters (2drms). The statistical term "2drms" refers to a value that falls within two standard deviations (using the root-mean-squared method) of the sampled performance data mean. Therefore, a stated accuracy of twenty-one meters (2drms) means that the position error has an error of less than twenty-one meters approximately ninety-five percent of the time.

[0014] The standard positioning service (SPS) which is available for general use provides accuracy to within thirty meters (2drms). However, the SPS signal accuracy is intentionally degraded to protect U.S. national security interests. This process, called selective availability, degrades the accuracy of SPS position fixes to within one hundred meters (2drms). The SPS may be degraded in a number of ways, for example, by providing slightly inaccurate satellite orbital data to the receivers or by dithering the ranging information. Certain applications require better accuracy than provided by degraded SPS, SPS, or even PPS.

[0015] Differential GPS technology (DGPS) may provide location accuracies to within three meters (2drms). Such accuracies allow, for example, accurate positioning of a delivery truck on a street map or precise locating for an in-vehicle navigation system. The precision of the GPS system is improved by broadcasting differential correction data to a GPS receiver. A typical DGPS positioning system, such as the one implemented by the U.S. Coast Guard, uses known position coordinates of a reference station to compute corrections to GPS parameters, error sources, and resultant positions. This correction data is transmitted to GPS receivers to refine received position signals or computed position.

[0016] Traditional DGPS positioning systems require the user to carry both a GPS receiver and an additional communications device to receive the correction data. For example, the Coast Guard implementation requires a maritime radio beacon receiver to obtain GPS correction data. This Coast Guard system is described in a document entitled "Implementation of the U.S. Coast Guard's Differential GPS Navigation Service," U.S.C.G. Headquarters, Office of Navigation Safety and Waterway Services, Radio Navigation Division, June 28, 1993. Another system, described in U.S. Patent No. 5,311,194, entitled "GPS Precision Approach and Landing System for Aircraft" and issued to Brown, describes a differential GPS implementation for use in a precision approach and landing system for aircraft. In this system, the aircraft is required to carry a broadband GPS receiv-

er with added functionality to receive pseudolite signals that contain the correction data.

[0017] Differential positioning system 10 in FIGURE 1 implements the DGPS concept using positioning system 12 integrated with mobile communications network 14 to accurately determine the location of vehicle 16. Differential positioning system 10 utilizes components of mobile communications network 14 as reference stations that provide correction data to vehicle 16 over an existing communications link, such as the control channel, overhead message stream, or paging channel of a cellular telephone network. Mobile communications network 14 may be a cellular telephone network, specialized mobile radio (SMR), enhanced specialized mobile radio (ESMR), a personal communications service (PCS), a satellite-based or land-based paging system, a citizen's band (CB), a dedicated radio system, such as those used by police and firefighters, or any other appropriate mobile communications technology.

[0018] Differential positioning system 10 is described with reference to location of vehicle 16. The present invention contemplates location of all types of vehicles, including cars, trucks, airplanes, boats, barges, rail cars, truck trailers, or any other movable object that is desirable to locate or track. Furthermore, differential positioning system 10 can also be used to accurately locate a person carrying a portable or hand-held mobile unit 17. Potential applications of this technology may include delivery service dispatch, less-than-full-load (LTL) trucking applications, in-vehicle navigation systems, surveying applications, collision avoidance, emergency location using mobile 911 services, or any other application requiring accurate positioning information of a vehicle, object, or person.

[0019] Differential positioning system 10 provides a more accurate position fix than currently available navigation services, and may provide these fixes near instantaneously or "on the fly." In some applications, low frequency and low accuracy updates are sufficient, but other applications may need better accuracy and higher frequency updates in near real-time. For example, a delivery truck may require accurate, high frequency position fixes for in-vehicle navigation to locate a specific delivery address or to provide real-time directions to the driver. Differential positioning system 10 may provide these high frequency updates without relying on off-vehicle computations prevalent in previous DGPS implementations. In addition, the same delivery truck may send lower frequency position reports to a remote location. These position reports may be sent at fixed time intervals, on-demand, or as a result of a predetermined reporting event. Differential positioning system 10 may provide both low and high frequency position fixes and reports in such a hybrid navigation and position reporting system.

[0020] Satellite-based positioning system 12 is a navigation system using NAVSTAR GPS, GLONASS, or other satellite-based or land-based radio navigation

system to provide ranging data to mobile unit 17. Satellites 18, 20, 22 maintain accurate and synchronized time and simultaneously transmit position signals that contain satellite specific and system information required by mobile unit 17 to generate position fixes. The position signals transmitted by satellites 18, 20, 22 may include high precision clock and ephemeris data for a particular satellite, low precision clock and ephemeris (called "almanac") data for every satellite in the constellation, health and configuration status for all satellites, user text messages, and parameters describing the offset between GPS system time and UTC.

[0021] Mobile unit 17 receives position signals over message data streams 26, 28, 30 from satellites 18, 20, 22, respectively. Additional satellites (not shown) may also communicate message data streams to mobile unit 17. Typically, mobile unit 17 receives at least four satellite message data streams to solve for position information independent of inherent clock bias (C_B) between positioning system 12 and mobile unit 17. Currently the NAVSTAR GPS system has twenty-one active satellites at 11,000 mile orbits of fifty-five degrees inclination with the equator. In normal conditions, mobile unit 17 may receive position signals from seven satellites.

[0022] Using information from position signals 26, 28, 30 and optionally additional message data streams, mobile unit 17 may determine its position using accurate satellite position information transmitted by satellites 18, 20, 22 and pseudorange data represented by the time of arrival of message data streams 26, 28, 30 to mobile unit 17. Using SPS this position fix may be accurate to within 30 meters (2drms) or 100 meters (2drms) when selective availability degradation is activated. If mobile unit 17 is allowed to operate using PPS, then the position fix may be accurate to within 21 meters (2drms). [0023] To provide a more accurate position fix for mobile unit 17, satellites 18, 20, 22 also transmit message data streams 32, 34, 36, respectively, to a reference po-

data streams 32, 34, 36, respectively, to a reference positioning receiver 38 on or in proximity to a transmitter site 40 of mobile communications network 14. Reference positioning receiver 38 performs similar calculations to determine a position fix from position signals received from satellites 18, 20, 22. Reference positioning receiver 38 compares the computed position fix to known position coordinates and generates correction data for transmission over correction data stream 44 to mobile unit 17 for further refinements of position fix provided by mobile positioning receiver 24 (FIGURE 4).

[0024] The known position coordinates of transmitter

site 40 may be determined by traditional surveying techniques. In addition, reference positioning receiver 38 may perform position fixes over a statistically significant period of time to determine the known position coordinates. Filtering or averaging position fixes by reference positioning receiver 38 over time removes or substantially reduces the effect of selective availability degradation and may provide a more accurate position determination than uncorrupted SPS or even PPS.

25

40

50

55

[0025] One type of correction data generated by reference positioning receiver 38 is a position correction which is applied to the position fix of mobile positioning receiver 24 (FIGURE 4) of mobile unit 17 to achieve a more accurate position fix. The position correction may be in latitude/longitude, compass direction and distance, or any other appropriate coordinate system. When using a GPS positioning system 12, this technique provides accurate correction data when mobile unit 17 and reference positioning receiver 38 are located in a satellite common view area of approximately thirty square miles. In the satellite common view area all receivers operating in positioning system 12 receive approximately the same pseudorange errors assuming they are all listening to the same group of satellites 18, 20, 22. This correction method places less correction data in correction data stream 44 than other methods, but the validity of those correction terms decreases rapidly as the distance between mobile unit 17 and reference positioning receiver 38 increases. The usefulness of this correction method is impaired when mobile unit 17 and reference positioning receiver 38 compute their position fixes using position signals from different satellites. Furthermore, this method requires that both mobile unit 17 and reference positioning receiver 38 compute a navigation solution.

[0026] In an alternative correction method, reference positioning receiver 38 computes pseudorange corrections (PRCs) to each satellite 18, 20, 22, which are then transmitted over correction data stream 44 to mobile unit 17 to refine its navigation solution. The PRCs for satellites 18, 20, 22 in view of reference positioning receiver 38 are the difference between the pseudorange and the computed range to each satellite 18, 20, 22 based on the known position coordinates of reference positioning receiver 38. Each PRC message includes an identification of the satellite 18, 20, 22 and a linear measure of the PRC. Although this method may include more transmission of data, it may result in a more accurate position fix. Furthermore, such a scheme provides additional flexibility to allow mobile unit 17 to use navigation data from any of the satellites that reference positioning receiver 38 has furnished PRCs.

[0027] An additional correction method generates position corrections based on possible combinations of satellites 18, 20, 22 currently in view of reference positioning receiver 38. This approach may be computationally intensive at reference positioning receiver 38, but would allow for a simple adjustment of the solution computed by mobile unit 17. The number of position corrections (PCs) may be computed using the following formula:

No. of PCs =
$$\frac{n!}{r! (n-r)!}$$

where n is the number of satellites in the common view area and r is the number of satellites used in the position

correction calculation. For example, for a position fix using four satellites and with six satellites in the satellite common view area, reference positioning receiver 38 would have to generate fifteen PCs corresponding to fifteen combinations of four satellites each.

[0028] Each satellite 18, 20, 22 sends an identifier in its respective message data stream. Both mobile unit 17 and reference positioning receiver 38 may use these identifiers to generate satellite group IDs (SGIDs) that identify the specific combination of satellites used for a position fix. Reference receiver 38 may generate the position correction for fifteen combinations (four satellites chosen from a total of six), and tag the position corrections with the appropriate SGIDs. Mobile unit 17, having determined an SGID for its position fix, may then choose the proper position correction identified by the same SGID to ensure that mobile unit 17 and reference positioning receiver 38 use the same combination of satellites. Using this scheme with the NAVSTAR GPS, there would be 10,626 unique SGIDs for satellite combinations of four out of twenty-four satellites in the planned constellation.

[0029] The size and structure of a correction data message generated by reference positioning receiver 38 and transmitter over correction data stream 44 depends on the correction method employed and the precision required. A single pseudorange correction (PRC) message for a satellite in the satellite common view area may include a satellite ID, the range correction in a selected precision, and other associated portions of the message, such as a header, delimiter, and checksum. A typical PRC message for six satellites described in the Motorola GPS Technical Reference Manual (October 1993) is fifty-two bytes long, including the header, delimiter, and checksum.

[0030] The size and structure of a single position correction message also depends on the precision required and the transmission protocol. A typical position correction message may include a four byte SGID (1 through 10,626), a one byte latitude correction, and a one byte longitude correction. A multiple position correction message for fifteen satellite combinations (four satellites chosen from a total of six) may total 90 bytes of correction data. Appropriate header, delimiter and checksum bytes consistent with the communication protocol of mobile communications network 14 may be added.

[0031] The precision of pseudorange or position corrections depends on the anticipated range of error and the number of bytes allocated to the correction data. For example, one byte of eight bits may provide correction in the range of +/- 127 meters with one meter bit resolution. One byte may also provide correction in 0.25 meter bit resolution over a range of approximately +/- 32 meters. The precision, correction range, and byte allocation is a design choice that considers various factors, such as the available bandwidth in correction data stream 44, the accuracy of the unrefined position fix at mobile unit 17, the correction method employed, and the

35

40

50

55

inherent inaccuracies of positioning system 12.

[0032] Correction data stream 44 allows correction data to be transmitted from reference positioning receiver 38 to mobile unit 17. In one embodiment, correction data stream 44 may be the control channel, paging channel, or overhead message stream currently implemented in cellular telephone technology. Currently, the control channel provides paging of incoming calls, handoff instructions, and other features of the cellular telephone network, but may be modified by one skilled in the art to include transmission of correction data. Correction data stream 44 may also be implemented using any other communication link between transmitter site 40 and mobile communications device 42 (FIGURE 4) in mobile unit 17, whether or not the communication link requires seizing of a voice or data channel.

[0033] There are several developing technologies that may provide a convenient implementation of correction data stream 44. For example, cellular digital packet data (CDPD) technology allows integration of data and voice using the existing cellular telephone infrastructure. In a CDPD system, digital packets of data and analog voice segments share the same channel. Other developments in digital cellular communications, such as code division multiple access (CDMA) and time division multiple access (TDMA), allow digital data and digital voice signals to be interspersed on a communications channel. These technologies integrate digital data transmission in a mobile communications network 14, and therefore provide a convenient implementation scheme for correction data stream 44.

[0034] Using the technologies mentioned above or other appropriate digital communications link, transmitter site 40 may either continuously broadcast correction data over correction data stream 44, such as in the control channel of the cellular telephone network, or only send correction data to mobile unit 17 when requested by a feature code request or by any other appropriate manner. Transmitter site 40 may send correction data to mobile unit 17 in one large packet or in several smaller packets interspersed with other data used for mobile communications. The correction data may be packaged in existing, but unused, bytes of the control channel or in a dedicated protocol. One possible implementation would place correction data in the extended protocol described in the EIA/TIA-533 mobile communications standard, which provides for bidirectional communication between transmitter site 40 and mobile unit 17.

[0035] Reference positioning receiver 38 may continuously receive position updates and continuously compute correction data for transmission to mobile unit 17 over correction data stream 44. Alternatively, reference positioning receiver 38 may send correction data over correction data stream 44 at predetermined time intervals, at designated times when correction data stream 44 can accommodate the additional traffic, or when requested by mobile unit 17.

[0036] Reference positioning receiver 38 may include

an additional capability to ensure that correction data transmitted to mobile unit 17 by transmitter site 40 is current. This may be accomplished by including a time stamp in the correction data message to account for latency in the system. Using GPS technology as an example, satellites 18, 20, 22 in positioning system 12 provide position navigation data each second. Reference positioning receiver 38 may include an additional byte that indicates the delay in seconds of the correction data. The mobile unit 17 may save time-stamped position signals and later synchronize and correct the position signals with the time-stamped correction data received from transmitter site 40. The post-processing to refine past position fixes may be performed by mobile positioning receiver 24 (FIGURE 4) or other separate processor in mobile unit 17.

[0037] Correction data stream 44 may be part of the control channel, part of a seized voice or data channel, or a separate channel requiring mobile unit 17 to re-tune to the correction data stream channel to receive valid corrections for the area. Mobile unit 17 may continuously monitor correction data stream 44 transmitted from transmitter site 40. Furthermore, mobile unit 17 may alternately tune between several correction data streams 44 from several transmitter sites 40 to determine the strongest signal, usually relating to the nearest transmitter site 40. This strongest channel select feature of mobile unit 17 assures that reference positioning receiver 38 and mobile unit 17 will be in close proximity and receive position signals from the same group or nearly the same group of satellites 18, 20, 22. For a typical transmitter site spacing in a cellular telephone network, the distance between mobile unit 17 and reference positioning receiver 38 may be less than five miles, well within the satellite common view area of the GPS system.

[0038] Differential positioning system 10, as illustrated in FIGURE 1, contemplates placing reference positioning receiver 38 on each transmitter site 40 within mobile communications network 14. When using GPS technology as positioning system 12 and a cellular telephone network as mobile communications network 14, the satellite common view area may be much larger than the coverage area of a single transmitter site 40, thereby obviating the need to have reference positioning receivers 38 on each transmitter site 40. For example, differential positioning system 10 may include reference positioning receivers 38 on selected transmitter sites 40 of mobile communications network 14. In this configuration, mobile unit 17, which may be capable of simultaneously monitoring correction data streams 44 from multiple transmitter sites 40, may still receive correction data from a transmitter site 40 that is currently not providing communication service to mobile unit 17. Selected transmitter sites 40 equipped with reference positioning receivers 38 may be spaced so that mobile unit 17 located anywhere in mobile communications network 14 can receive correction data of sufficient signal strength from one of the selected transmitter sites 40 equipped

with reference positioning receivers 38.

[0039] FIGURE 2 shows an alternative embodiment of differential positioning system 10 that places reference receivers 38 on selected transmitter sites 40 in mobile communications network 14. As in FIGURE 1, transmitter site 40 is associated with reference positioning receiver 38, which receives position signals in message data streams 32, 34, 36 from satellites 18, 20, 22, respectively. However, mobile unit 17 is located in an area serviced by transmitter site 46, which is not equipped with reference positioning receiver 38. Furthermore, mobile unit 17 is unable to receive correction data directly from transmitter site 40 due to the inability to monitor communications from transmitter sites 40 and 46, the distance from transmitter site 40, or other reasons. However, mobile unit 17 is close enough to reference positioning receiver 38 to receive navigation data from at least a subset of satellites 18, 20, 22 serving reference positioning receiver 38. Using any of the correction methods described above with reference to FIGURE 1, reference positioning receiver 38 generates correction data and transmits this correction data through link 48 to transmitter site 46. Transmitter site 46 transmits correction data generated by reference positioning receiver 38 over correction data stream 44 to mobile unit 17. Mobile unit 17 uses the correction data to refine a position fix derived from position signals received from satellites 18, 20, 22 over message data streams 26, 28, 30.

[0040] Differential positioning system 10, illustrated in FIGURE 2, reduces the number of reference positioning receivers 38 required by networking correction data through link 48 between transmitter sites 40, 46. Link 48 between transmitter sites 40, 46 may include microwave communications, bidirectional paging or control channels, direct land-line connections, switching stations such as MTSOs, or any other appropriate communications device to send correction data from transmitter site 40 to transmitter site 46.

[0041] FIGURE 3 is a schematic representation of transmitter site 40 associated with reference positioning receiver 38. Reference positioning receiver 38 may be mounted directly on transmitter site 40 or on a separate structure or mounting. Reference positioning receiver 38 includes an antenna 50, receiver 51, controller 52, and memory 54. The following description relates to the operation of reference positioning receiver 38 with a GPS positioning system, however, the same concepts apply to other land-based and satellite-based positioning systems.

[0042] Reference positioning receiver 38 receives position signals in message data streams 32, 34, 36 from satellites 18, 20, 22, respectively. The position signals include navigation data, such as ephemeris, almanac, and clock correction data. Ephemeris data includes detailed information about the specific satellite course over the next two hours, the almanac data includes less detailed information about the complete satellite constellation for a longer period, and the clock correction data

includes information to correct for clock errors. The satellite transmissions received by antenna 50 consist of a direct sequence spread spectrum signal containing the ephemeris, almanac, and clock correction data at a rate of fifty bits per second. In the case of the SPS, a pseudorandom noise signal with a chip rate of 1.023 MHz that is unique to each satellite is used to spread the spectrum of the information which is then transmitted on a center frequency of 1575.42 MHz.

[0043] Receiver 51 receives satellite position signals having a bandwidth of approximately 2 MHz and a signal-to-noise ratio of approximately -20 dB. The relative movement between satellites 18, 20, 22 and reference positioning receiver 38 causes an additional Doppler frequency offset from the GPS center frequency. To recover the navigation data and measure the propagation time of the satellite position signals, receiver 51 must cancel or allow for the Doppler frequency offset and generate the proper coarse/acquisition code associated with each satellite 18, 20, 22 to despread the signal. Once synchronization with the pseudorandom noise signal is achieved, receiver 51 may extract the ephemeris, almanac, and clock correction data and pass this information to controller 52.

[0044] Controller 52 receives navigation data from at least three satellites and uses this information to determine a navigation solution based on well-known triangulation techniques. In a four satellite fix, with each satellite position represented by coordinates (X_n, Y_n, Z_n) with the indice n equal to one through four, the position coordinates (X, Y, Z) of reference positioning receiver 38 may be determined by solving the following equations:

$$(X_1 - X)^2 + (Y_1 - Y)^2 + (Z_1 - Z)^2 = (R_1 - C_B)^2$$

$$(X_2 - X)^2 + (Y_2 - Y)^2 + (Z_2 - Z)^2 = (R_2 - C_B)^2$$

$$(X_3 - X)^2 + (Y_3 - Y)^2 + (Z_3 - Z)^2 = (R_3 - C_B)^2$$

$$(X_4 - X)^2 + (Y_4 - Y)^2 + (Z_4 - Z)^2 = (R_4 - C_B)^2$$

where R_1 , R_2 , R_3 , R_4 are pseudorange measurements from the satellites and C_B is a common clock bias. Controller 52 may use certain data stored in memory 54 to arrive at a navigation solution. Controller 52 may then compare the instantaneous navigation solution (X, Y, Z) to known position coordinates (X_0 , Y_0 , Z_0) stored in memory 54 to generate position correction data in latitude/longitude, compass direction and distance, or other appropriate coordinate system.

[0045] In an alternative embodiment, controller 52 may receive ephemeris, almanac, and clock correction data from satellites 18, 20, 22 and compute a pseudor-

25

40

ange (R_N) for each satellite. Since the satellite signal contains information on the precise satellite orbits and controller 52 has known position coordinates (X_0, Y_0, Z_0) stored in memory 54, the true range to each satellite 18, 20, 22 can be calculated. By comparing the true range and the measured pseudorange, a pseudorange correction (PRC) for each satellite 18, 20, 22 may be computed and sent as correction data. As described above with reference to FIGURE 1, controller 52 may also provide position correction data based on navigation solutions using all possible combinations of satellites 18, 20, 22 currently in view of reference positioning receiver 38.

[0046] Correction data in any of the various forms described above is sent by controller 52 to channel controller 56 of transmitter site 40 over communication link 58. Communication link 58 may be a direct wire connection, a radio communication link, a connection through a switched telephone system, or other appropriate communication link. Depending on the configuration of differential positioning system 10, channel controller 56 may send correction data to radio duplexer 60 for transmission over transmitter site antenna 62 to mobile unit 17. Alternatively, channel controller 56 may pass correction data through link 48 to transmitter site 46 currently serving mobile unit 17.

[0047] Also shown in FIGURE 3 as part of transmitter site 40 are time-of-arrival (TOA) data generator 64 and clock 66 that may be used in an alternative positioning system 200 described with reference to FIGURE 6. TOA data generator 64 generates a TOA data message and sends this message to channel controller 56 for transmission to mobile unit 17 over transmitter site antenna 62. The TOA data message may include a precise time of transmission based on information maintained by clock 66. Clock 66 and TOA data generator 64 are shown as elements of transmitter site 40, but it should be understood that their functions may also be implemented in a central or distributed device accessible by transmitter sites 40, 46 of mobile communications network 14.

[0048] FIGURE 4 is a schematic representation of a mobile unit 17 that includes mobile positioning receiver 24, mobile communications device 42, and other associated hardware and software, described below. Mobile positioning receiver 24 is similar in construction and function to reference positioning receiver 38 and includes an antenna 82, receiver 84, controller 86, and memory 88. In operation, mobile positioning receiver 24 receives position signals from satellites 18, 20, 22 over message data streams 26, 28, 30 at antenna 82. Receiver 84 processes these signals to extract ephemeris, almanac, and clock correction data. Controller 86 receives this information and computes a navigation solution or pseudorange measurements. These calculations performed by controller 86 may use data stored in memory 88.

[0049] Mobile communications device 42 includes an

antenna 90, transceiver 92, and hand set 94. In operation, mobile communications device 42 receives correction data at antenna 90 over correction data stream 44. The correction data may be transmitted directly from transmitter site 40 equipped with reference positioning receiver 38 as described with reference to FIGURE 1, or indirectly through link 48 and transmitter site 46 as described with reference to FIGURE 2. As described above, the correction data may be in a variety of forms, including single or multiple position corrections, or pseudorange corrections to each satellite. Correction data is then stripped from correction data stream 44 by transceiver 92. Correction data may be passed to processor 100 over link 95 or over any other appropriate path, such as through bus drivers 112 and modem or dual tone multifrequency (DTMF) coder/decoder 110. Hand set 94 provides traditional voice or data communication using mobile communications device 42.

[0050] Processor 100 manages the communicating, locating, and reporting features of mobile unit 17. Processor 100 receives a navigation solution or pseudorange measurements from controller 86 and correction data from transceiver 92. Coupled to processor 100 is memory 102 which may contain programs, databases, and other information required by processor 100 to perform its functions. For example, memory 102 may contain a table of known position coordinates of transmitter sites 40 for use in computing the position of mobile unit 17 in the alternative positioning system 200 described with reference to FIGURE 6. Memory 102 may be random access memory (RAM), read-only memory (ROM), CD-ROM, removable memory devices, or any other device that allows storage or retrieval of data.

[0051] Processor 100 and controller 86, as well as memory 102 and memory 88, may be separate or integral components of mobile unit 17. For example, controller 86 may include a port that directly receives correction data and allows mobile positioning receiver 24 to output a refined position fix. Mobile unit 17 contemplates any arrangement, processing capability, or task assignment between controller 86 and processor 100. [0052] In operation, processor 100 generates a refined position fix for mobile unit 17 based on the navigation solution or pseudorange measurements from controller 86 and the correction data from transceiver 92. This refined position fix may be sent to output device 104 to generate a moving or static display of vehicle 16 on a map represented by map data stored in memory 102. Alternatively, output device 104 may produce audible information, such as directions or location updates, to the operator of vehicle 16.

[0053] Processor 100 is also coupled to input device 106 that allows operation of mobile unit 17. Input device 106 may be a keypad or touch screen, as well as voice recognition software and hardware that can accept audible commands and information. Furthermore, both output device 104 and input device 106 may include fixed or removable storage media, such as magnetic

25

35

computer discs, CD-ROM, or other suitable media to both receive output and provide input to processor 100. [0054] Processor 100 may also generate data messages for transmission to a remote location using mobile communications device 42. The data messages may include the refined position fix of mobile unit 17, the time of reporting, or information input by the vehicle operator, as well as any other information collected by processor 100 from various sensors 108. For example, sensors 108 may include various engine sensors, truck trailer sensors, security monitors, or other devices generating information on the status or condition of mobile unit 17, vehicle 16, or its operator. The generation and transmission of a data message may be based on elapsed time, movement of mobile unit 17, sensor readings, or any other piece of information that may necessitate reporting to a remote location. The data messages are sent from processor 100 through modem or DTMF coder/decoder 110 to bus drivers 112, and then to transceiver 92 for transmission over antenna 90 to a remote location, such as central host 120 (FIGURE 5). Data messages may also be sent directly to transceiver 92 over link 95. [0055] Mobile unit 17 may also include a clock 116 coupled to processor 100 that may be used to synchronize the navigation solutions or pseudorange measurements received from controller 86 with latent correction data received from transceiver 92. Clock 116 may also be used in alternative positioning system 200 described with reference to FIGURE 6. In operation, clock 116 provides accurate time to processor 100, and may receive clock correction updates from mobile positioning receiver 24 or through correction data from mobile communications device 42.

[0056] Components of mobile unit 17 shown in FIG-URE 4 may be packaged into one or more housings. Mobile unit 17 may be mounted to vehicle 16 or an object to be tracked. Mobile unit 17 may also be packaged as a portable, hand-held device that provides personal locating, communicating, and reporting functions. For example, a portable, hand-held mobile unit 17 may be 40 used by surveyors, rescue teams, individuals that may change forms of transportation, or any other application requiring portability of mobile unit 17.

[0057] FIGURE 5 is a schematic representation of a central host 120. Central host 120 receives communications from mobile unit 17, such as reports generated by processor 100, through link 122. Link 122 may be one or a combination of dedicated telephone lines, switched telephone lines, microwave communications links, satellite-based communications links, or any other suitable communication link that allows mobile unit 17 to transmit data to or receive data from central host 120. [0058] A data message from mobile unit 17 enters central host 120 through a modem or DTMF coder/decoder 124 and passes to central controller 126. Coupled to central controller 126 is memory 128 and input/output device 130. Memory 128 may be RAM, ROM, CD-ROM, removable memory devices, or any other device that al-

lows storage or retrieval of data. Input/output 130 includes any variety of output devices, such as a display, a speaker to provide audible information, removable storage media, or any other appropriate output device. Input/output device 130 may also include a variety of input devices, such as a keyboard, mouse, touch screen, removable storage media, or any other appropriate input device.

[0059] Central controller 126 receives data messages from mobile unit 17 and processes this information to locate, track, dispatch, and communicate with mobile unit 17. For example, central controller 126 can maintain a database in memory 128 of all mobile units 17 with their current location, status, and relevant sensor readings. This database can also be used to initiate communication with mobile unit 17. Furthermore, central controller 126 may perform a call delivery function that routes incoming calls to mobile unit 17 through link 122. This aspect of call delivery is fully described in Application Serial No. 08/095,166, entitled "Method and Apparatus for a Nation-Wide Cellular Telephone Network" filed July 20, 1993, and Application Serial No. 08/175,256 entitled "Data Messaging in a Communications Network" filed December 28, 1993, both applications commonly owned by the assignee of the present application, and both applications hereby incorporated by reference.

[0060] FIGURE 6 illustrates an alternative positioning system 200 that utilizes equipment of the existing mobile communications network 14 to locate vehicle 16 equipped with a modified mobile unit 17. Mobile unit 17 communicates with transmitter sites 202, 204, 206 over communications links 208, 210, 212, respectively. Communication links 208, 210, 212 may be the control channel, overhead message stream, or paging channel of a cellular telephone network, a portion or all of a seized voice or data channel, or a dedicated channel. Transmitter sites 202, 204, 206 may be coupled to a network in a variety of ways. For example, transmitter site 202 is coupled to transmitter site 204 over land-line connections through MTSO 214. Transmitter site 202 is coupled to transmitter site 206 over a microwave or other radio link 216. Transmitter site 204 is coupled to transmitter site 206 over a direct or dedicated connection 218.

[0061] Positioning system 200 operates in a similar fashion to an aspect of differential positioning system 10 described with reference to FIGUREs 1 and 2, but does not rely on a positioning system 12 to transmit navigation data. Instead, transmitter sites 202, 204, 206 50 transmit time-of-arrival (TOA) data over respective communications links 208, 210, 212. Mobile unit 17 receives TOA data and computes the position of mobile unit 17 using the TOA data and known position coordinates of transmitter sites 202, 204, 206.

[0062] The TOA data from transmitter sites 202, 204, 206 may be transmitted in a variety of ways. In one method, a network clock 220 synchronizes the instantaneous transmission of TOA data from transmitter sites

35

45

202, 204, 206. Using this method, the time of reception at mobile unit 17 provides pseudorange measurements to transmitter sites 202, 204, 206. As in differential positioning system 10 of FIGUREs 1 and 2, a fourth transmitter site allows the position of mobile unit 17 to be computed without regard for a clock bias (C_B) between network clock 220 and clock 116 (FIGURE 4) maintained on mobile unit 17.

[0063] In another embodiment, transmitter sites 202, 204, 206 transmit TOA data at different times, but include the time of transmission in the message to mobile unit 17. Assuming cellular transmitter sites 202, 204, 206 maintain synchronized time through network clock 220, mobile unit 17 can generate pseudorange measurements by comparing the message time of arrival to the time of transmission.

[0064] Transmitter sites 202, 204, 206 and mobile unit 17 may have different configurations when operating in positioning system 200. Referring to FIGURE 3, transmitter site 40 does not need an associated reference positioning receiver 38 to provide location information in positioning system 200. Transmitter site 40, however, does include TOA data generator 64 and clock 66 to generate the TOA data for transmission to mobile unit 17. Referring now to FIGURE 4, mobile unit 17 does not require mobile positioning receiver 24 for operation within positioning system 200. TOA data is received by transceiver 92 and sent to processor 100, which uses the TOA data to compute pseudoranges to cellular transmitter sites 202, 204, 206. Using well-known triangulation techniques described with reference to FIG-URE 3, processor 100 may then compute a position fix of mobile unit 17 using the pseudoranges and known position coordinates of transmitter sites 202, 204, 206 stored in memory 102.

[0065] Although the present invention has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art, and it is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims.

Claims

A locating system using a cellular telephone network, the locating system having a reference positioning receiver (38) located at a transmitter site (40) of the cellular telephone network and a mobile unit (17) in communication with the cellular telephone network, the reference positioning receiver (38) having known position coordinates and the transmitter site (40) of the cellular telephone network being coupled to the reference positioning receiver (38), characterized in that:

the reference positioning receiver (38) is operable to receive first position signals from a po-

sitioning system (12), the reference positioning receiver (38) further operable to generate correction data in response to the first position signals and the known position coordinates;

the transmitter site (40) of the cellular telephone network is operable to receive correction data generated by the reference positioning receiver (38), the transmitter site (40) operable to transmit the correction data generated by the reference positioning receiver (38); and

the mobile unit (17) is operable to communicate with the positioning system (12), the mobile unit (17) operable to receive correction data transmitted by the transmitter site (40), the mobile unit (17) further operable to receive second position signals from the positioning system (12) and to determine the location of the mobile unit (17) in response to the second position signals and the correction data.

- The system of Claim 1, characterized in that the transmitter site (40) transmits the correction data in a control channel.
- The system of Claim 1, characterized in that the mobile unit (17) further comprises:

a mobile communications device (42) in communication with the cellular telephone network, the mobile communications device operable to receive correction data transmitted by the transmitter site (40);

a mobile positioning receiver (24) coupled to the mobile communications device (42), the mobile positioning receiver operable to receive second position signals from the positioning system (12); and

a processor (100) coupled to the mobile communications device (42) and the mobile positioning receiver (24), the processor (100) operable to determine the location of the mobile unit (17) in response to the second position signals received from the mobile positioning receiver (24) and the correction data received from the mobile communications device (42).

4. A locating system using a mobile communications network, the locating system having a reference positioning receiver (38) located at a first transmitter site (40) of the mobile communications network, the reference positioning receiver (38) having known position coordinates and the first transmitter site (40) of the mobile communications network being coupled to the reference positioning receiver (38),

a second transmitter site (46) of the mobile communications network coupled to the first transmitter site (40), and a mobile unit (17) in communication with the mobile communications network, characterized in that:

the reference positioning receiver (38) is operable to receive first position signals from a positioning system (12), the reference positioning receiver (38) further operable to generate correction data in response to the first position signals and the known position coordinates;

the first transmitter site (40) is operable to receive correction data generated by the reference positioning receiver (38);

the second transmitter site (46) is operable to transmit correction data received from the first transmitter site (40); and

the mobile unit (17) is operable to communicate with the second transmitter site (46) and the positioning system (12), the mobile unit (17) operable to receive correction data transmitted by the second transmitter site (46), the mobile unit (17) further operable to receive second position signals from the positioning system (12) and to determine the location of the mobile unit (17) in response to the second position signals and the correction data.

- 5. The system of Claim 4, characterized in that the system further comprises a communications link coupled to the first and second transmitter sites, the communications link operable to receive correction data from the first transmitter site (40) and to transmit the correction data to the second transmitter site (46).
- The system of Claim 4, characterized in that the second transmitter site (46) transmits the correction data in a control channel.
- 7. The system of Claim 4, characterized in that the mobile unit (17) further comprises:

a mobile communications device (42) in communication with the cellular telephone network, the mobile communications device operable to receive correction data transmitted by the second transmitter site (46);

a mobile positioning receiver (24) coupled to the mobile communications device (42), the mobile positioning receiver operable to receive second position signals from the positioning system (12); and a processor (100) coupled to the mobile communications device (42) and the mobile positioning receiver (24), the processor operable to determine the location of the mobile unit (17) in response to the second position signals received from the mobile positioning receiver (24) and the correction data received from the mobile communications device (42).

- 8. The system of Claim 1 or Claim 4, characterized in that the known position coordinates of the reference positioning receiver (38) are based on data received by the reference positioning receiver (38) from the positioning system (12) over a statistically significant period of time.
 - The system of Claim 1 or Claim 4, characterized in that the correction data comprises a position correction representing a comparison between a position fix based on the first position signals and the known position coordinates of the reference positioning receiver (38).
 - 10. The system of Claim 1 or Claim 4, characterized in that:

the first position signals comprise time-of-arrival data received by the reference positioning receiver (38) from a plurality of satellites (18, 20, 22); and

the correction data comprises performance corrections for each satellite.

11. The system of Claim 1 or Claim 4, characterized in that the system further comprises:

a memory (102) coupled to the mobile unit (17), the memory operable to store map data; and

a display (104) coupled to the mobile unit (17), the display operable to display the location of the mobile unit and the map data.

- 12. The system of Claim 1 or Claim 4, characterized in that the system further comprises a central controller (126) coupled to the mobile unit (17), the central controller operable to receive the location of the mobile unit.
 - The system of Claim 1 or Claim 4, characterized in that the mobile unit (17) is mounted on a vehicle (16).
- 14. The system of Claim I or Claim 4, characterized in that the mobile unit (17) is housed in a portable, hand-held housing (94).

35

45

50

15. An apparatus for locating a vehicle (16) within the service area of a cellular telephone network, the apparatus having a mobile communications device (42) on the vehicle and coupled to a transmitter site (40) of the cellular telephone network, characterized by:

a positioning receiver (24) on the vehicle (16) and operable to receive first position signals from a positioning system (12);

the mobile unit communications device (42) operable to receive from the transmitter site (40) correction data generated at the transmitter site; and

a processor (100) on the vehicle (16) and coupled to the positioning receiver (24) and the mobile communications device (42), the processor operable to determine the location of the vehicle in response to the first position signals and the correction data.

- 16. The apparatus of Claim 15, characterized in that the mobile communications device (42) receives the correction data in a control channel transmitted by the transmitter site (40) of the cellular telephone network.
- 17. The apparatus of Claim 15, characterized in that the apparatus further comprises:

a memory (102) coupled to the processor (100), the memory operable to store map data; and

a display (104) coupled to the processor (102), the display operable to display the location of the vehicle (16) and the map data.

- 18. The apparatus of Claim 15, characterized in that the apparatus further comprises a central controller (126) coupled to the mobile communications device (42), the central controller operable to receive the location of the vehicle (16).
- The apparatus of Claim 15, characterized in that the correction data comprises a position correction.
- 20. The apparatus of Claim 15, characterized in that the correction data comprises pseudorange corrections from a plurality of satellites (18,20,22) in the positioning system (12).
- 21. A method for locating a mobile unit (17) within the service area of a cellular telephone network, characterized by:

receiving first position signals from a position-

ing system (12) at a reference positioning receiver (38) having known position coordinates, the reference positioning receiver (38) located at a transmitter site (40) of a cellular telephone network;

generating, at the transmitter site (40), correction data in response to the first position signals and the known position coordinates;

receiving, from the transmitter site (40), correction data at a cellular transceiver (92) in the mobile unit (17);

receiving second position signals from a positioning system (12) at a mobile positioning receiver (24) in the mobile unit (17); and

determining the location of the mobile unit (17) in response to the second position signals and the correction data.

- 22. The method of Claim 21, characterized in that the correction data is received at the cellular transceiver (92) in a control channel.
- 23. The method of Claim 21, characterized in that the correction data comprises a position correction representing a comparison between a position fix based on the first position signals and the known position coordinates of the reference positioning receiver (38).
- 24. The method of Claims 21,22 or 23, characterized in that:

the positioning system comprises a plurality of satellites (18,20,22); and

the correction data comprises pseudorange corrections for each satellite.

- 25. The method of any of Claims 21 to 24, characterized in that the method further comprises displaying the location of the mobile unit on a map.
- 26. The method of any of Claims 21 to 25, characterized in that the method further comprises receiving the location of the mobile unit at a remote location.
- 27. The method of any of Claims 21 to 26, characterized in that the positioning system is GPS.

Patentansprüche

 Ortungssystem unter Verwendung eines Mobiltelefonnetzes, wobei das Ortungssystem einen Bezugspositionsempfänger (38) hat, der am Ort eines Senders (Sendestelle) (40) des Mobiltelefonnetzes angeordnet ist, und eine mobile Einheit (17) hat, die in Kommunikationsverbindung mit dem mobilen Telefonnetz bzw. Funktelefonnetz steht, wobei der Bezugspositionsempfänger (38) bekannte Positionskoordinaten hat und die Sendestelle (40) des Funktelefonnetzes mit dem Bezugspositionsempfänger (38) verbunden ist, dadurch gekennzeichnet, daß

der Bezugspositionsempfänger so betreibbar ist, daß er erste Positionssignale von einem Ortungssystem (12) empfängt, wobei der Bezugspositionsempfänger (38) weiterhin so betreibbar ist, daß er Korrekturdaten in Reaktion auf die ersten Positionssignale und die bekannten Positionskoordinaten erzeugt,

die Sendestelle (40) des Funktelefonnetzes so betreibbar ist, daß sie die Korrekturdaten empfängt, welche durch den Bezugspositionsempfänger (38) erzeugt wurde, wobei die Sendestelle (40) in der Lage ist, die von dem Bezugspositionsempfänger (38) erzeugten Korrekturdaten zu senden, und wobei

die mobile Einheit (17) so betreibbar ist, daß sie mit dem Ortungssystem (12) in Kommunikationsverbindung tritt, wobei die mobile Einheit (17) so betreibbar ist, daß sie die von der Sendestelle (40) gesendeten Korrekturdaten empfängt, wobei die mobile Einheit (17) weiterhin so betreibbar ist, daß sie zweite Positionssignale von dem Ortungssystem (12) empfängt und so, daß sie die Position der mobilen Einheit (17) in Reaktion auf die zweiten Positionssignale und die Korrekturdaten bestimmt.

- System nach Anspruch 1, dadurch gekennzeichnet, daß die Sendestelle (40) die Korrekturdaten in einem Steuerkanal sendet.
- System nach Anspruch 1, dadurch gekennzeichnet, daß die mobile Einheit (17) weiterhin aufweist 40

eine mobile Kommunikationseinrichtung (42), die in Verbindung mit dem Funktelefonnetz steht, wobei die mobile Kommunikationseinrichtung so betreibbar ist, daß sie die von der Sendestelle (40) gesendeten Korrekturdaten empfängt,

einen mobilen Ortungsempfänger (24), der mit der mobilen Kommunikationseinrichtung (42) verbunden ist, wobei der mobile Ortungsempfänger so betreibbar ist, daß er zweite Positionssignale von dem Ortungssystem (12) empfängt, und

einen Prozessor (100), der mit der mobilen Kommunikationseinrichtung (42) und dem mobilen Ortungsempfänger (24) verbunden ist, wobei der Prozessor (100) so betreibbar ist, daß er die Stelle bzw. Position der mobilen Einheit (17) in Reaktion auf die von dem mobilen Ortungsempfänger (24) empfangenen zweiten Positionssignale und den von der mobilen Kommunikationseinrichtung (42)

empfangenen Korrekturdaten zu bestimmen.

4. Ortungssystem unter Verwendung eines Funkkommunikationsnetzes, wobei das Ortungssystem einen Bezugspositionsempfänger (38) hat, der bei einer ersten Sendestelle (40) des Funkkommunikationsnetzes angeordnet ist, wobei der Bezugspositionsempfänger (38) bekannte Positionskoordinaten hat und die erste Sendestelle (40) des mobilen Kommunikationsnetzes mit dem Bezugspositionsempfänger (38) verbunden ist, eine zweite Sendestelle (46) des Funkkommunikationsnetzes mit der ersten Sendestelle (40) verbunden ist und eine mobile Einheit (17) in Verbindung mit dem mobilen Kommunikationsnetz steht, dadurch gekennzeichnet, daß

der Bezugspositionsempfänger (38) so betreibbar ist, daß er erste Positionssignale von einem Ortungssystem (12) empfängt, der Bezugspositionsempfänger (38) weiterhin so betreibbar ist, daß er Korrekturdaten in Reaktion auf die ersten Positionssignale und die bekannten Positionskoordinaten hat,

die erste Sendestelle (40) so betreibbar ist, daß sie Korrekturdaten empfängt, welche von dem Bezugspositionsempfänger (38) erzeugt wurden,

die zweite Sendestelle (46) so betreibbar ist, daß sie Korrekturdaten sendet, die sie von der ersten Sendestelle (40) empfangen hat, und

die mobile Einheit (17) so betreibbar ist, daß sie mit der zweiten Sendestelle (46) und dem Ortungssystem (12) in Kommunikationsverbindung steht, wobei die mobile Einheit (17) so betreibbar ist, daß sie Korrekturdaten empfängt, die durch die zweite Sendestelle gesendet wurden, wobei die mobile Einheit (17) weiterhin so betreibbar ist, daß sie zweite Positions- bzw. Ortungssignale von dem Ortungssystem (12) empfängt, und um den Ort der mobilen Einheit (17) in Reaktion auf die zweiten Positionssignale und die Korrekturdaten zu bestimmen.

- 5. System nach Anspruch 4, dadurch gekennzeichnet, daß das System weiterhin ein Kommunikations-Verbindungsglied (Link) aufweist, welches mit den ersten und zweiten Sendestellen verbunden ist, wobei das Kommunikationslink so betreibbar ist, daß es Korrekturdaten von der ersten Sendestelle (40) empfängt und die Korrekturdaten an die zweite Sendestelle (46) sendet.
- System nach Anspruch 4, dadurch gekennzeichnet, daß die zweite Sendestelle (46) die Korrekturdaten in einem Steuerkanal sendet.
- System nach Anspruch 4, dadurch gekennzeichnet, daß die mobile Einheit weiterhin aufweist:

45

50

15

20

30

45

ein mobiles Kommunikationsgerät (42), welches mit dem Funktelefonnetz in Kommunikationsverbindung steht, wobei das mobile Kommunikationsgerät so betreibbar ist, daß es von der zweiten Sendestelle (46) gesendete Korrekturdaten empfängt,

einen mobilen Ortungsempfänger, der mit dem mobilen Kommunikationsgerät (42) verbunden ist, wobei der mobile Ortungsempfänger so betreibbar ist, daß er zweite Positionssignale von dem Positioniersystem (12) empfängt, und

einen Prozessor (100), der mit dem mobilen Kommunikationsgerät (42) und dem mobilen Positionsempfänger (24) verbunden ist, wobei der Prozessor so betreibbar ist, daß er den Ort bzw. die Position der mobilen Einheit in Reaktion auf die zweiten von dem mobilen Ortungsempfänger (24) und die von dem mobilen Kommunikationsgerät (42) empfangenen Korrekturdaten bestimmt.

- System nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die bekannten Positionskoordinaten des Bezugspositionsempfängers (38) auf Daten beruhen, die durch den Bezugspositionsempfänger (38) von dem Ortungssystem (12) über eine statistisch signifikante Zeitdauer hinweg empfangen wurden.
- 9. System nach Anspruch 1 oder Anspruch 4, dadurch gekennzeichnet, daß die Korrekturdaten eine Positionskorrektur aufweisen, welche einem Vergleich zwischen einer Positionsfestlegung auf der Basis der ersten Ortungssignale und den bekannten Positionskoordinaten des Bezugspositionsempfängers (38) entsprechen.
- 10. System nach Anspruch 1 oder Anspruch 4, dadurch gekennzeichnet, daß

die ersten Ortungssignale Ankunftszeitdaten entsprechen, die durch den Bezugspositionsempfänger (38) von einer Mehrzahl von Satelliten (18, 20, 22) empfangen wurden, und

die Korrekturdaten Leistungskorrekturen für jeden Satelliten aufweisen.

11. System nach Anspruch 1 oder Anspruch 4, dadurch gekennzeichnet, daß das System weiterhin aufweist:

einen Speicher (102), der mit der mobilen Einheit (17) verbunden ist, wobei der Speicher so betreibbar ist, daß er Plan- bzw. Kartendaten speichert, und

eine Anzeige (104), die mit der mobilen Einheit

(17) verbunden ist, wobei die Anzeige so betreibbar ist, daß sie die Position der mobilen Einheit und die Kartendaten anzeigt.

- 12. System nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß das System weiterhin eine zentrale Steuerung (126) aufweist, die mit der mobilen Einheit (17) verbunden ist, wobei die zentrale Steuerung so betreibbar ist, daß sie die Position der mobilen Einheit empfängt.
- System nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die mobile Einheit (17) auf einem Fahrzeug (16) montiert ist.
- 14. System nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die mobile Einheit (17) in einem tragbaren, von Hand zu haltenden Gehäuse (94) aufgenommen ist.
- 15. Vorrichtung zur Ortung eines Fahrzeuges (16) innerhalb eines Servicebereiches eines Funktelefonnetzes, wobei die Vorrichtung ein mobiles Kommunikationsgerät (42) auf dem Fahrzeug aufweist und mit einer Sendestelle (40) des Funktelefonnetzes verbunden ist, gekennzeichnet durch

einen Ortungsempfänger (24) auf dem Fahrzeug (16), der so betreibbar ist, daß er erste Ortungssignale von einem Ortungssystem (12) empfängt,

das mobile Kommunikationsgerät (42), welches so betreibbar ist, daß es von der Sendestelle (40) Korrekturdaten empfängt, die in der Sendestelle erzeugt wurden, und

einen Prozessor (100) auf dem Fahrzeug (16), welcher mit dem Ortungsempfänger (24) und dem mobilen Kommunikationsgerät (42) verbunden ist, wobei der Prozessor so betreibbar ist, daß er die Position des Fahrzeuges in Reaktion auf die ersten Positionssignale und die Korrekturdaten bestimmt.

- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das mobile Kommunikationsgerät (42) die Korrekturdaten in einem Steuerkanal empfängt, welche von der Sendestelle (40) des Funktelefonnetzes gesendet werden.
- Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Vorrichtung weiterhin aufweist:

einen Speicher (102), der mit dem Prozessor (100) verbunden ist, wobei der Speicher in der Lage ist, Kartendaten zu speichern, und

eine Anzeige (104), die mit dem Prozessor (102) verbunden ist, wobei die Anzeige so betreibbar ist, daß sie die Position des Fahrzeu-

30

45

50

ges (16) und die Kartendaten anzeigt.

- 18. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Vorrichtung weiterhin eine zentrale Steuerung (126) aufweist, die mit dem mobilen Kommunikationsgerät (42) verbunden ist, wobei die zentrale Steuerung so betreibbar ist, daß sie die Position des Fahrzeuges (16) empfängt.
- Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Korrekturdaten eine Positionskorrektur aufweisen.
- Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Korrekturdaten Pseudobereichskorrekturen von einer Mehrzahl von Satelliten (18, 20, 22) in dem Ortungssystem (12) aufweisen.
- 21. Verfahren zum Lokalisieren einer lokalen Einheit (17) in einem Servicebereich eines Funktelefonnetzes, gekennzeichnet durch:

Empfangen erster Positions- bzw. Ortungssignale von einem Ortungssystem (12) an einem Bezugspositionsempfänger (38), der bekannte Positionskoordinaten hat, wobei der Bezugspositionsempfänger (38) bei der Sendestelle (40) eines Funktelefonnetzes lokalisiert ist,

Erzeugen von Korrekturdaten in der Sendestelle (40) in Reaktion auf die ersten Positionssignale und die bekannten Positionskoordinaten,

Empfangen von Korrekturdaten von der Sendestelle (40) an einem Mobilempfänger (92) in der Mobileinheit (17),

Empfangen zweiter Positionssignale von einem Ortungssystem (12) an einem mobilen Ortungsempfänger (24) in der mobilen Einheit (17) und Bestimmen der Position der mobilen Einheit (17) in Reaktion auf die zweiten Positionssignale und die Korrekturdaten.

- Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Korrekturdaten an dem mobilen Empfänger (92) in einem Steuerkanal empfangen werden.
- 23. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Korrekturdaten eine Positionskorrektur aufweisen, welche einem Vergleich zwischen einer Positionsfestlegung auf der Basis der ersten Positionssignale und den bekannten Positionskoordinaten des Bezugspositionsempfängers (38) entsprechen.

24. Verfahren nach Anspruch 21, 22 oder 23, dadurch gekennzeichnet, daß

das Ortungssystem eine Mehrzahl von Satelliten (18, 20, 22) aufweist, und

die Korrekturdaten Pseudobereichskorrekturen für jeden Satelliten aufweisen.

- 25. Verfahren nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß das Verfahren weiterhin das Anzeigen der Position der mobilen Einheit auf einer Karte aufweist.
- 26. Verfahren nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, daß das Verfahren weiterhin den Empfang der Position der mobilen Einheit an einem ferngelegenen Ort aufweist.
- Verfahren nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, daß das Ortungssystem GPS ist.

Revendications

Système de localisation utilisant un réseau téléphonique cellulaire, le système de localisation comportant un récepteur (38) de positionnement de référence situé au niveau d'un site (40) d'émetteur du réseau téléphonique cellulaire et un poste mobile (17) en communication avec le réseau téléphonique cellulaire, le récepteur (38) de positionnement de référence ayant des coordonnées de position connues et le site (40) d'émetteur du réseau téléphonique cellulaire étant raccordé au récepteur (38) de positionnement de référence, caractérisé :

en ce que le récepteur (38) de positionnement de référence est utilisable pour recevoir des premiers signaux de position provenant d'un système (12) de positionnement, le récepteur (38) de positionnement de référence étant en outre utilisable pour engendrer des données de correction en réponse aux premiers signaux de position et aux coordonnées de position connues :

en ce que le site (40) d'émetteur du réseau téléphonique cellulaire est utilisable pour recevoir des données de correction engendrées par le récepteur (38) de positionnement de référence, le site (40) d'émetteur étant utilisable pour émettre les données de correction engendrées par le récepteur (38) de positionnement de référence; et

en ce que le poste mobile (17) est utilisable pour communiquer avec le système (12) de positionnement, le poste mobile (17) étant utilisable pour recevoir des données de correction émises par le site (40) d'émetteur, le poste mo-

30

35

bile (17) étant en outre utilisable pour recevoir des seconds signaux de position provenant du système (12) de positionnement et pour déterminer la localisation du poste mobile (17) en réponse aux seconds signaux de position et aux données de correction.

 Système selon la revendication 1, caractérisé en ce que le site (40) d'émetteur émet les données de correction dans une voie de commande.

3. Système selon la revendication 1, caractérisé en ce que le poste mobile (17) comprend en outre :

un dispositif mobile (42) de télécommunications en communication avec le réseau téléphonique cellulaire, le dispositif mobile de télécommunications étant utilisable pour recevoir des données de correction émises par le site (40) d'émetteur;

un récepteur mobile (24) de positionnement raccordé au dispositif mobile (42) de télécommunications, le récepteur mobile de positionnement étant utilisable pour recevoir des seconds signaux de position provenant du système (12) de positionnement; et

un processeur (100) raccordé au dispositif mobile (42) de télécommunications et au récepteur mobile (24) de positionnement, le processeur (100) étant utilisable pour déterminer la localisation du poste mobile (17) en réponse aux seconds signaux de position reçus du récepteur mobile (24) de positionnement et aux données de correction reçues du dispositif mobile (42) de télécommunications.

4. Système de localisation utilisant un réseau de communications du service mobile, le système de localisation comportant un récepteur (38) de positionnement de référence situé au niveau d'un premier site (40) d'émetteur du réseau de télécommunications du service mobile, le récepteur (38) de positionnement de référence ayant des coordonnées de position connues et le premier site (40) d'émetteur du réseau de télécommunications du service mobile étant raccordé au récepteur (38) de positionnement de référence, un second site (46) d'émetteur du réseau de télécommunications du service mobile raccordé au premier site (40) d'émetteur, et un poste mobile (17) en communication avec le réseau de télécommunications du service mobile, caractérisé:

> en ce que le récepteur (38) de positionnement de référence est utilisable pour recevoir des premiers signaux de position provenant d'un système (12) de positionnement, le récepteur (38) de positionnement de référence étant en

outre utilisable pour engendrer des données de correction en réponse aux premiers signaux de position et aux coordonnées de position connues;

en ce que le premier site (40) d'émetteur est utilisable pour recevoir des données de correction engendrées par le récepteur (38) de positionnement de référence;

en ce que le second site (46) d'émetteur est utilisable pour émettre des données de correction reçues du premier site (40) d'émetteur; et en ce que le poste mobile (17) est utilisable pour communiquer avec le second site (46) d'émetteur et avec le système (12) de positionnement, le poste mobile (17) étant utilisable pour recevoir des données de correction émises par le second site (46) d'émetteur, le poste mobile (17) étant en outre utilisable pour recevoir des seconds signaux de position provenant du système (12) de positionnement et pour déterminer la localisation du poste mobile (17) en réponse aux seconds signaux de position et aux données de correction.

- 5. Système selon la revendication 4, caractérisé en ce que le système comprend en outre une liaison de télécommunications raccordée aux premier et second sites d'émetteur, la liaison de télécommunications étant utilisable pour recevoir des données de correction provenant du premier site (40) d'émetteur et pour émettre les données de correction vers le second site (46) d'émetteur.
- Système selon la revendication 4, caractérisé en ce que le second site (46) d'émetteur émet les données de correction dans une voie de commande.
- Système selon la revendication 4, caractérisé en ce que le poste mobile (17) comprend en outre :

un dispositif mobile (42) de télécommunications en communication avec le réseau téléphonique cellulaire, le dispositif mobile de télécommunications étant utilisable pour recevoir des données de correction émises par le second site (46) d'émetteur;

un récepteur mobile (24) de positionnement raccordé au dispositif mobile (42) de télécommunications, le récepteur mobile de positionnement étant utilisable pour recevoir des seconds signaux de position provenant du système (12) de positionnement; et

un processeur (100) raccordé au dispositif mobile (42) de télécommunications et au récepteur mobile (24) de positionnement, le processeur étant utilisable pour déterminer la localisation du poste mobile (17) en réponse aux seconds signaux de position reçus du récepteur

35

mobile (24) de positionnement et aux données de correction reçues du dispositif mobile (42) de télécommunications.

- 8. Système selon la revendication 1 ou la revendication 4, caractérisé en ce que les coordonnées de position connues du récepteur (38) de positionnement de référence sont basées sur des données reçues par le récepteur (38) de positionnement de référence du système (12) de positionnement sur une période de temps statistiquement significative.
- Système selon la revendication 1 ou la revendication 4, caractérisé en ce que les données de correction comprennent une correction de position représentant une comparaison entre une position fixe basée sur les premiers signaux de position et les coordonnées de position connues du récepteur (38) de positionnement de référence.
- Système selon la revendication 1 ou la revendication 4, caractérisé :

en ce que les premiers signaux de position comprennent des données d'heure d'arrivée reçues par le récepteur (38) de positionnement de référence en provenance d'une pluralité de satellites (18, 20, 22) ; et

en ce que les données de correction comprennent des corrections de performance pour chaque satellite.

11. Système selon la revendication 1 ou revendication 4, caractérisé en ce que le système comprend en outre :

une mémoire (102) raccordée au poste mobile (17), la mémoire étant utilisable pour mémoriser des données de cartographie; et un afficheur (104) raccordé au poste mobile (17), l'afficheur étant utilisable pour afficher la localisation du poste mobile et les données de cartographie.

- 12. Système selon la revendication 1 ou la revendication 4, caractérisé en ce que le système comprend en outre un régisseur central (126) raccordé au poste mobile (17), le régisseur central étant utilisable pour recevoir la localisation du poste mobile.
- 13. Système selon la revendication 1 ou la revendication 4, caractérisé en ce que le poste mobile (17) est monté sur un véhicule (16).
- 14. Système selon la revendication 1 ou la revendication 4, caractérisé en ce que le poste mobile (17) est logé dans un boîtier portatif (94) tenu à la main.

15. Appareil de localisation d'un véhicule (16) à l'intérieur d'une zone de service d'un réseau téléphonique cellulaire, l'appareil comportant un dispositif mobile (42) de télécommunications sur le véhicule et étant raccordé à un site (40) d'émetteur du réseau téléphonique cellulaire, caractérisé:

par un récepteur (24) de positionnement sur le véhicule (16) et utilisable pour recevoir des premiers signaux de position provenant d'un système (12) de positionnement;

en ce que le dispositif (42) de télécommunications de poste mobile est utilisable pour recevoir du site (40) d'émetteur, des données de correction engendrées au niveau du site d'émetteur : et

par un processeur (100) disposé sur le véhicule (16) et raccordé au récepteur (24) de positionnement et au dispositif mobile (42) de télécommunications, le processeur étant utilisable pour déterminer la localisation du véhicule en réponse aux premiers signaux de position et aux données de correction.

- 5 16. Appareil selon la revendication 15, caractérisé en ce que le dispositif mobile (42) de télécommunications reçoit les données de correction dans une voie de commande émise par le site (40) d'émetteur du réseau téléphonique cellulaire.
 - 17. Appareil selon la revendication 15, caractérisé en ce que l'appareil comprend en outre :

une mémoire (102) raccordée au processeur (100), la mémoire étant utilisable pour mémoriser des données de cartographie; et un afficheur (104) raccordé au processeur (102), l'afficheur étant utilisable pour afficher la localisation du véhicule (16) et les données de cartographie.

- 18. Appareil selon la revendication 15, caractérisé en ce que l'appareil comprend en outre un régisseur central (126) raccordé au dispositif mobile (42) de télécommunications, le régisseur central étant utilisable pour recevoir la localisation du véhicule (16).
- Appareil selon la revendication 15, caractérisé en ce que les données de correction comprennent une correction de position.
- 20. Appareil selon la revendication 15, caractérisé en ce que les données de correction comprennent des corrections de pseudo-distance provenant d'une pluralité de satellites (18, 20, 22) du système (12) de positionnement.
- 21. Procédé de localisation d'un poste mobile (17) à l'in-

térieur de la zone de service d'un réseau téléphonique cellulaire, caractérisé :

par la réception de premiers signaux de position provenant d'un système (12) de positionnement au niveau d'un récepteur (38) de positionnement de référence ayant des coordonnées de position connues, le récepteur (38) de positionnement de référence étant situé au niveau d'un site (40) d'émetteur d'un réseau téléphonique cellulaire; par la production, au niveau du site (40) d'émet-

par la production, au niveau du site (40) d'émetteur, de données de correction en réponse aux premiers signaux de position et aux coordonnées de position connues;

par la réception, depuis le site (40) d'émetteur, de données de correction au niveau d'un émetteur-récepteur cellulaire (92) du poste mobile (17):

par la réception de seconds signaux de position provenant d'un système (12) de positionnement au niveau d'un récepteur mobile (24) de positionnement du poste mobile (17); et par la détermination de la localisation du poste mobile.(17) en réponse aux seconds signaux 25 de position et aux données de correction.

- 22. Procédé selon la revendication 21, caractérisé en ce que les données de correction sont reçues au niveau de l'émetteur-récepteur cellulaire (92) dans une voie de commande.
- 23. Procédé selon la revendication 21, caractérisé en ce que les données de coordonnées comprennent une correction de position représentant une comparaison entre une position fixe basée sur les premiers signaux de position et les coordonnées de position connues du récepteur (38) de positionnement de référence.
- 24. Procéde selon les revendications 21, 22 ou 23, caractérisé :

en ce que le système de positionnement comprend une pluralité de satellites (18, 20, 22) ; et en ce que les données de correction comprennent des corrections de pseudo-distance pour chaque satellite.

- 25. Procédé selon l'une quelconque des revendications 21 à 24, caractérisé en ce que le procédé comprend en outre l'affichage de la localisation du poste mobile sur une carte.
- 26. Procédé selon l'une quelconque des revendications 21 à 25, caractérisé en ce que le procédé comprend en outre la réception de la localisation du poste mobile à une localisation distante.

27. Procédé selon l'une quelconque des revendications 21 à 26, caractérisé en ce que le système de positionnement est le GPS (pour « Global Positioning System » - système mondial de localisation).

