Table of contents

- Bitcoin addresses
- Wallets

- Bitcoin address
 - O A private key is a secret random number
 - A public key is derived from private key
 - Using elliptic curve multiplication, irreversible
 - o An address is derived from public key
 - One way
 - Don't lose private keys

- Bitcoin address
 - o 26-35 alphanumeric characters
 - Usually produced from public keys/scripts of users
 - Base58CheckEncode(RIPEMD160(SHA256(PublicKey or Script)))
 - O Avoid sharing longer public keys | publicly shareable
 - Signify a private/public key pair
 - Payment script (in case of P2SH)

3

- Base58Check encoding
 - Uses 58 characters
 - Set of lowercase, uppercase English letters, and digit
 - Except 0 (number zero), O (capital o), I (lower L), I (capital i)

Common address types and their prefixes

Туре	Version prefix (hex)	Base-58 result's prefix
P2PKH address	0x00	1
P2SH address	0x05	3
P2PKH Testnet address	0x6F	m or n
P2SH Testnet address	0xC4	2
Private key WIF	0x80	5, K, or L
BIP32 extended public key	0x0488B21E	xpub
Bech32 (SegWit)	0x0303000203 (for checksum only)	bc1

7

- Vanity address
 - O Address that starts with some human-meaningful text
 - 1BigHit9XN991TquuvZpDB9dSV52v9pY9w
 - 1234mNnAPb8YnCsbacaNhB4BqwxB4U4321
 - Repeatedly generate candidate private keys
 - 58 possibilities for every character
 - Testing billions of keys
 - k-characters string at start, generate 58^k addresses (on avg)

- Vanity address
 - o Tools/technique
 - In Bitcoin, Private key x | public key is g^x | Address $H(g^x)$
 - Exponentiation shows scalar multiplication in elliptic curve group
 - Exponentiation slow
 - Generate x
 - o Try *x+1*, ...
 - o $g^{x+1} = x.g^x$
 - o Multiplication is faster than exponentiation
 - 12 (1 is fixed) => 1 in 58 keys
 - 123 (1 is fixed) => 1 in 3,364 keys
 - O Deceiving trust with resembling vanity addresses

g

- How to safely store private key?
 - Hot storage
 - Storing keys in an online computer
 - Risky
 - Small amount
 - o Cold storage
 - Offline (e.g., paper?)
 - Not so convenient
 - Large/archival amount

- Wallets
 - Containers for private keys
 - Implemented as structured files or simple databases
 - O Contain keys, not coins
- Nondeterministic wallets
 - O Random | Type-0 | JBOK
 - o Collections of randomly generated private keys
 - Needs regular backup
 - o "Use an address only once" is difficult here

11

- Deterministic wallets
 - o Seeded | Type-1
 - O Contains private keys that are derived from a seed
 - Through a one-way hash function
 - Seed can recover all keys, import/export wallet
 - Single backup
 - 12-24 Mnemonic words encode random number (seed)

- Hierarchical Deterministic (HD) wallets
 - Type-2
 - Keys derived in a tree fashion
 - Seed => Parent/Master => Children => Grandchildren
 - Possibility with different keys and ChainCode (CC)
 - Parent private key+CC => Child private key+CC
 - Parent public key+CC => Child public key+CC
 - Parent private key+CC => Child public key+CC

Seed

- Hierarchical Deterministic (HD) wallets
 - Single backup
 - o Organization
 - Each child key can generate its own key-pairs
 - Use different tree branches for different purpose/department

- Hierarchical Deterministic (HD) wallets
 - Generate public keys independently (without private keys)
 - Parent public key+CC => Child public key+CC
 - Store parent public key on server, generate new receiving addresses

 One can't spend funds associated with child address using parent private key

15

- Hardware wallet
 - Secure hardware device
 - Storage in protected area of microcontroller
 - Can't transfer keys out of device in plaintext
 - Immune to viruses (unlike software wallets)
 - Open source software
 - O KeepKey uses USB connection, authorization via it's display/button
 - Ledger Nano X uses Bluetooth to connect with mobile devices

- Paper wallets
 - o Cold storage
 - Offline BTC storage
 - O Private keys printed on paper
 - May also include the address
 - Can be derived from private key

17

- Paper wallets
 - Security against loss of key (e.g., computer mishap)
 - Paper wallet keys are generated offline (no internet)
 - Client-side JavaScripts, and then printed
 - Never stored on a computer (no hackers, keyloggers)
 - O Same issues as a paper
 - Vulnerable to theft, copy

Paper wallets

O Paper wallets come in many shapes, sizes, and designs

- Sophisticated paper wallets use BIP0038 encrypted private keys
 - Printed keys are protected by a passphrase
- Deposit funds into paper wallet several times
 - Withdraw all funds at once, spending everything
 - Spending exposes private key online

19

- Online wallets
 - O Like a local wallet that you manage yourself
 - Info is stored in cloud
 - Access via a web interface
 - Service provider
 - Delivers the code that runs on your browser/app
 - Stores your keys
 - O Convenient, no s/w installation
 - O Trust them, their code, their storage encryption

- Bitcoin exchanges
 - O Accept deposits in BTC, USD, EUR, etc.
 - Allow banking-like activities (send/receive BTC, convert funds)
 - Tx among customers of same exchange do not happen on blockchain
 - Connect Bitcoin economy with fiat currency economy
 - o Risks
 - Non-regulated
 - Reserve fraction
 - Proof of reserve
 - O Self Tx of an amount as a proof of reserve
 - Proof of liabilities
 - o Merkle tree
 - Show customers partial tree from users' leaf up to root

21