Entrega Proyecto de Ingeniería de Software I

Por

Andrés Maya Fabian Acuña Mateo Villa

Docente María Clara Gómez Álvarez

Facultad de Ingenierías Especialización en Ingeniería de Software

1. Título: Revisión sistemática de la aplicación de redes neuronales artificiales para el mejoramiento del transporte público en Latinoamérica

2. Estrategia de búsqueda

2.1 Problema

La movilidad en muchas ciudades en crecimiento en el mundo se ha visto afectada por el crecimiento económico y migración de las poblaciones. La aparición de nuevas necesidades en el desplazamiento de las personas ha llevado a que surja la necesidad de la creación de diferentes medios de transporte. (UNAL, n.d.)

2.2 Preguntas de investigación

- ¿Cómo pueden las redes neuronales artificiales mejorar el transporte público en tiempos de espera, seguridad y movilidad?
- ¿Es posible aplicar algoritmos de redes neuronales artificiales en la toma de decisiones con el fin de mejorar el transporte público en las ciudades latinoamericanas?

2.3 Palabras clave

Redes neuronales, transporte público, inteligencia artificial, RNA, modelos de predicción

3. Selección de fuentes

3.1. Cadenas de búsqueda

Determinar dos cadenas de búsqueda como mínimo

- **A.** (artificial neural networks) and (public transport)
- **B.** (public transport) AND (neural network) AND (time optimization)

3.2. Listado de fuentes

Seleccionar 4 bases de datos, y en cada una de ellas hacer la consulta con las dos cadenas de búsqueda definidas previamente:

Cadena búsqueda	Science Direct	EbscoHost	ISI-Web of Science	Emerald
(artificial neural	79	8	23	225
networks) and (public				
transport)				
(public transport) AND	1275	0	2	156
(neural network) AND				
(time optimization)				

3.3. Definir los criterios de inclusión y exclusión de los estudios (de la búsqueda)

INCLUSIÓN	EXCLUSIÓN
Idioma: Español, Inglés	Tipo: Libros
Año de publicación: 2010 a 2019	Área: Medicina
Tipo: Artículos de investigación	

4. Fuente de búsqueda: ScienceDirect

Tomando una cadena de búsqueda, extraer 3 artículos de la fuente ScienceDirect

Listar los 3 artículos encontrados en ScienceDirect

ID	Título	Autor	Referencia
1	Multi-output bus travel time prediction	Niklas Christoffer	(Petersen, Rodrigues, &
	with convolutional LSTM neural	Petersen	Pereira, 2019)
	network		
2	Modelling public transport trips by	Hilmi Berk Celikoglu	(Celikoglu & Cigizoglu, 2007)
	radial basis function neural networks	Hikmet Kerem Cigizoglu	
3	Short Term Traffic Prediction on the	Carl Goves	(Goves, North, Johnston, &
	UK Motorway Network Using	Robin North	Fletcher, 2016)
	Neural Networks	Ryan Johnston Graham Fletcher	

5. Bibliografía

- Celikoglu, H. B., & Cigizoglu, H. K. (2007). Modelling public transport trips by radial basis function neural networks. *Mathematical and Computer Modelling*, 45(3–4), 480–489. https://doi.org/10.1016/J.MCM.2006.07.002
- Goves, C., North, R., Johnston, R., & Fletcher, G. (2016). Short Term Traffic Prediction on the UK Motorway Network Using Neural Networks. In *Transportation Research Procedia*. https://doi.org/10.1016/j.trpro.2016.05.019
- Petersen, N. C., Rodrigues, F., & Pereira, F. C. (2019). Multi-output bus travel time prediction with convolutional LSTM neural network. *Expert Systems with Applications*. https://doi.org/10.1016/j.eswa.2018.11.028
- UNAL. (n.d.). Congestión vehicular ¿un problema de movilidad? Instituto de Estudios Urbanos. Retrieved February 17, 2019, from http://ieu.unal.edu.co/en/noticias-del-ieu/item/congestion-vehicular-un-problema-de-movilidad