知识点回顾

一、两个随机变量相互独立的定义

设X,Y是两个r.v,若对任意的x,y,有

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

则称X和Y相互独立.

设X,Y是两个r.v,若对任意的x,y,有

$$F(x,y) = F_X(x)F_Y(y)$$

则称 X 和 Y 相互独立.

离散型随机变量独立的判定条件

X和 Y相互独立 \iff 对(X,Y)的所有可能取值(x_i,y_i),有

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

即
$$\mathbf{p}_{ij} = p_{i.} p_{.j}$$

逆否命题

X和 Y 不相互独立 \iff 存在(X,Y)的某个可能取值(x_{i0},y_{i0})

s.t.
$$P(X = x_{i0}, Y = y_{j0}) \neq P(X = x_{i0})P(Y = y_{j0})$$

连续型随机变量独立的判定条件

$$X$$
和 Y 相互独立 \iff $f(x,y) = f_X(x)f_Y(y)$ 几乎处处成立

即着
$$D = \{(x, y) | f(x, y) \neq f_X(x) f_Y(y) \},$$
 则 $S(D) = 0.$

逆否命题

x和 y 不相互独立 \iff 存在面积不为0的区域 D, 当 $(x,y)\in D$ 时, f $(x,y)\neq f_{x}(x)f_{y}(y)$

§ 3.3 条件分布

若限制Y=1.7(X),在这个条件下去求X的条件分布.

体重X的分布

身高Y的分布

1、二维离散 r.v.的条件分布

定义1 设二维离散型 $\mathbf{r.v.}(X,Y)$ 的联合分布列

$$P(X = x_i, Y = y_j) = p_{ij}, \quad i, j = 1, 2, \dots$$

若
$$p_{\bullet j} = P(Y = y_j) = \sum_{i=1}^{\infty} p_{ij} > 0$$

则称
$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}} \triangleq p_{i/j}$$

$$i = 1, 2, \cdots$$

为在 $Y = y_i$ 的条件下, X的条件分布列.

若
$$p_{i\bullet} = P(X = x_i)$$

$$p_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} > 0,$$

利尔
$$P(Y = y_j | X = x_i) = \frac{\sum_{j=1}^{j=1} p_{ij} > 0,}{P(X = x_i, Y = y_j)} = \frac{p_{ij}}{p_{i\bullet}} \triangleq p_{j/i}$$

为在 $X=x_i$ 的条件下Y的条件分布列.

类似乘法公式

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j|X = x_i)$$

$$= P(Y = y_j)P(X = x_i|Y = y_j)$$
 $i, j = 1, 2, \cdots$

 $j=1,2,\cdots$

类似于全概率公式

$$P(X = x_i) = \sum_{j=1}^{\infty} p_{ij} = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j)$$

$$= \sum_{i=1}^{\infty} P(X = x_i | Y = y_j) P(Y = y_j) \quad i = 1, 2, \dots$$

类似于Bayes公式

$$P(Y = y_j \mid X = x_i) = \frac{P(Y = y_j)P(X = x_i \mid Y = y_j)}{\sum_{j=1}^{\infty} p_{ij}}$$
 $j = 1, 2, \dots$

例1 设X与Y独立,且 $X\sim P(\lambda_1),Y\sim P(\lambda_2)$.求 在已知X+Y=n的条件下X的条件分布.

若X和Y相互独立,它们分别服从参数为 λ_1 , λ_2 的泊松分布,Z=X+Y 服从参数为 $\lambda_1+\lambda_2$ 的泊松分布.

$$P(X = i) = \frac{\lambda_1^{i}}{i!} e^{-\lambda_1}$$
 $i = 0, 1, 2, ...$

$$P(Y = j) = \frac{\lambda_2^{j}}{j!} e^{-\lambda_2}$$
 $j = 0, 1, 2, ...$

于是

$$P(Z = k) = \sum_{i=0}^{k} P(X = i, Y = k - i)$$

$$P(Z = k) = \sum_{i=0}^{k} P(X = i, Y = k - i)$$

$$= \sum_{i=0}^{k} \frac{\lambda_{1}^{i}}{i!} e^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{k-i}}{(k-i)!} e^{-\lambda_{2}}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{2}^{k-i}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} (\lambda_{1} + \lambda_{2})^{k}, \quad k = 0, 1, ...$$

$$Z=X+Y\sim P(\lambda_1+\lambda_2)$$

概率论

$$P(X = k|X+Y=n) = \frac{P(X = k, X + Y = n)}{P(X + Y = n)}$$

$$=\frac{P(X=k)P(Y=n-k)}{P(X+Y=n)}$$

$$=\frac{\lambda_{1}^{k}e^{-\lambda_{1}}}{k!}\cdot\frac{\lambda_{2}^{n-k}}{(n-k)!}e^{-\lambda_{2}}$$

$$\frac{(\lambda_1 + \lambda_2)^n}{e^{-(\lambda_1 + \lambda_2)}}$$

$$\frac{(n-k)!}{n} = \frac{n!}{k!(n-k)!} \frac{\lambda_1^k \lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}$$

$$=C_n^k\left(rac{\lambda_1}{\lambda_1+\lambda_2}
ight)^k\left(rac{\lambda_2}{\lambda_1+\lambda_2}
ight)^{n-k}$$

k=0,1,...n

二维离散 r.v. 的条件分布函数

定义2 给定 $Y = y_i$ 的条件下X的条件分布函数为

$$F(x | y_j) = P(X \le x | Y = y_j)$$

$$= \sum_{x_i \le x} P(X = x_i | Y = y_j) = \sum_{x_i \le x} p_{i|j},$$

给定 $X=x_i$ 的条件下Y的条件分布函数为

$$F(y | x_i) = P(Y \le y | X = x_i)$$

$$= \sum_{y_j \le y} P(Y = y_j | X = x_i) = \sum_{y_j \le y} p_{j|i}$$

2、二维连续 r.v.的条件分布和条件密度

当(X,Y)连续时,条件分布 $P(X \le x | Y = y)$,

因为P(Y = y) = 0,考虑

$$P(X \le x \mid y \le Y \le y + \Delta y)$$
当 $\Delta y \to 0$ 的极限

则设 $\Delta y > 0$ 可知 $P(X \le x | y \le Y \le y + \Delta y)$

$$= \frac{P(X \le x, y < Y \le y + \Delta y)}{P(y < Y \le y + \Delta y)} = \frac{F(x, y + \Delta y) - F(x, y)}{F_Y(y + \Delta y) - F_Y(y)}$$

$$= \frac{\left[F(x, y + \Delta y) - F(x, y)\right]/\Delta y}{\left[F_Y(y + \Delta y) - F_Y(y)\right]/\Delta y}$$

$$\lim_{\Delta y \to 0} \frac{\left[F(x, y + \Delta y) - F(x, y) \right] / \Delta y}{\left[F_Y(y + \Delta y) - F_Y(y) \right] / \Delta y}$$

$$= \frac{\frac{\partial F(x, y)}{\partial y}}{\frac{\partial F(y, y)}{\partial y}} = \frac{\int_{-\infty}^{x} f(u, y) du}{f_{Y}(y)}$$

$$\stackrel{\text{def.}}{=} P(X \le x | Y = y)$$

f(x,y)连续 f_Y(y)≠0,连续

定义3 若
$$f_Y(y) > 0$$
,则称 $F_{X|Y}(x|y) = \int_{-\infty}^{x} \frac{f(u,y)}{f_Y(y)} du$

为给定Y = y 的条件下X 的条件分布函数.

称
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

为给定Y = y的条件下X的条件概率密度函数.

类似地, 称
$$F_{Y|X}(y|x) = \int_{-\infty}^{y} \frac{f(x, y)}{f_X(x)} dy$$

为给定X = x 的条件下Y的条件分布函数;

称
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

为给定X = x 的条件下Y 的条件概率密度函数.

注意

 $F_{X|Y}(x|y), f_{X|Y}(x|y)$ 仅是x的函数,

y是常数,对每一 $p_Y(y) > 0$ 的y处,只要符合定义的条件,都能定义相应的函数.

$$F_{Y|X}(y|x)$$
, $f_{Y|X}(y|x)$ 相仿论述.

◆ 类似于乘法公式:

$$f(x, y) = f_X(x) f_{Y|X}(y|x)$$
 $f_X(x) > 0$
= $f_Y(y) f_{X|Y}(x|y)$ $f_Y(y) > 0$

类似于全概率公式

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} f_{X|Y}(x|y) f_Y(y) dy$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\infty}^{+\infty} f_{Y|X}(y|x) f_{X}(x) dx$$

类似于Bayes公式

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)} = \frac{f_{Y|X}(y|x)f_{X}(x)}{\int_{-\infty}^{+\infty} f_{Y|X}(y|x)f_{X}(x)dx}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)} = \frac{f_{X|Y}(x|y)f_{Y}(y)}{\int_{-\infty}^{+\infty} f_{X|Y}(x|y)f_{Y}(y)dy}$$

例2 已知(X,Y)服从圆域 $x^2 + y^2 \le r^2$ 上的均匀为

布,求
$$f_{X|Y}(x|y)$$
, $f_{Y|X}(y|x)$

解
$$f(x,y) = \begin{cases} \frac{1}{\pi r^2}, & x^2 + y^2 < r^2 \\ 0, & 其他 \end{cases}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \begin{cases} \int_{-\sqrt{r^2 - x^2}}^{+\sqrt{r^2 - x^2}} \frac{1}{\pi r^2} dy, & -r < x < r = \begin{cases} \frac{2\sqrt{r^2 - x^2}}{\pi r^2}, & -r < x < r \\ 0, & \text{#.e.} \end{cases}$$

同理
$$f_{Y}(y) = \begin{cases} \frac{2\sqrt{1-y}}{\pi r^2}, & -r < y < 0. \end{cases}$$
 其他

当
$$-r < y < r$$
 时,

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \begin{cases} \frac{1}{2\sqrt{r^2 - y^2}}, & -\sqrt{r^2 - y^2} < x < \sqrt{r^2 - y^2} \\ 0, & \text{#} \end{cases}$$

一这里y是常数,当Y=y时,

$$X \sim U\left(-\sqrt{r^2-y^2},\sqrt{r^2-y^2}\right)$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$= \begin{cases} \frac{1}{2\sqrt{r^2 - x^2}}, & -\sqrt{r^2 - x^2} < y < \sqrt{r^2 - x^2} \\ 0, & \sharp \& \end{cases}$$

— 这里x是常数,当X=x时,

$$Y \sim U\left[-\sqrt{r^2-x^2}, \sqrt{r^2-x^2}\right]$$

例3 已知
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
 求 $f_{X|Y}(x|y)$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}exp\left\{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\}$$

$$\frac{1}{\sqrt{2\pi}\sigma_2}exp\left\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right\}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{1-\rho^{2}}} exp \left\{ -\frac{1}{2\sigma_{1}^{2}(1-\rho^{2})} \left[(x-\mu_{1}) - \rho \frac{\sigma_{1}}{\sigma_{2}} (y-\mu_{2}) \right]^{2} \right\}$$

$$= \frac{1}{\sqrt{2\pi} \sigma_{1} \sqrt{1 - \rho^{2}}} exp \left\{ -\frac{1}{2\sigma_{1}^{2} (1 - \rho^{2})} \left[x - (\mu_{1} + \rho \frac{\sigma_{1}}{\sigma_{2}} (y - \mu_{2})) \right]^{2} \right\}$$

$$f_{X|Y}(x|y)$$
 $N\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2)\right)$

同理,

$$f_{Y|X}(y|x) N\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x-\mu_1), \sigma_2^2(1-\rho^2)\right)$$

例4 已知
$$X \sim N(\mu, \sigma_1^2), Y/X = x \sim N(x, \sigma_2^2)$$
 概率论 求 $f_Y(y)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} exp\left\{-\frac{(x-\mu)^2}{2\sigma_1^2}\right\}$$

$$f(y|x) = \frac{1}{\sqrt{2\pi\sigma_2}} exp\left\{-\frac{(y-x)^2}{2\sigma_2^2}\right\}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f_X(x) f(y \mid x) dx$$

$$Y \sim N(\mu, \sigma_1^2 + \sigma_2^2)$$

§ 3.5 两个随机变量的函数的分布

- 多维离散 R.V 函数的分布
- 多维连续 R.V 函数的分布——分布函数法
 - $M=\max(X,Y)$ 及 $N=\min(X,Y)$ 的分布
- Z = X + Y 的分布

已知n维 $\mathbf{r.v.}(X_1, X_2, \dots, X_n)$ 的概率分布, $g(x_1,x_2,\dots,x_n)$ 为已知的n元函数,

 $\vec{X} Z = g(X_1, X_2, \dots, X_n)$ 的概率分布

方法》转化为 (X_1, X_2, \dots, X_n) 的事件

当随机变量 X, Y 的联合分布已知时, 如何求出它们的函数

$$Z = g(X, Y)$$

的分布?

方法 将与Z有关的事件转化成与(X,Y)有 关的事件

一. 离散型随机变量函数的分布

设随机变量 (X,Y) 的分布列为

$$P(X = x_i, Y = y_j) = p_{ij}, \quad i, j = 1, 2, \dots$$

由已知函数g(x,y)可求出随机变量Z的

所有可能取值,则Z的概率分布为

$$P(Z = Z_k) = \sum_{i,j: g(x_i,y_j)=z_k} p_{ij}, \quad k = 1, 2, \dots$$

例1 设二维 $\mathbf{r.v.}(X,Y)$ 的概率分布为

Y	-1	1	2	
-1	1/4	1/6	1/8	
0	1/4	1/8	1/12	

求 $Z_1 = X + Y$ $Z_2 = XY$ $Z_3 = Y/X$ $Z_4 = \max\{X,Y\}$ 的概率分布

解

胜	P	1/4	1/4	1/6	1/8	1/8	1/12
	(X,Y)	(-1,-1)	(-1,0)	(1,-1)	(1,0)	(2,-1)	(2,0)
	$Z_1 = X + Y$	-2	-1	0	1	1	2
	$Z_2 = XY$	1	0	-1	0	-2	0
	$Z_3 = Y/X$	1	0	-1	0	-1/2	0
Z_4	$= \max\{X,Y\}$	-1	0	1	1	2	3 (1)

LL	. /	
HV		学
	•	.

X+Y	-2	-1	0	1	2
P	1/4	1/4	1/6	1/4	1/12
X Y	-2	-1	0	1	
\boldsymbol{P}	1/8	1/6	11/24	1/4	
Y/X	-1	-1/2	0	1	
P	1/6	1/8	11/24	1/4	
mov(VV)	-1	0	1	2	
$\max\{X,Y\}$	-1		1		
P	1/4	1/4	7/24	5/24	

例2 若 X、Y独立, $P(X=k)=a_k$, k=0, 1, 2, ..., $P(Y=k)=b_k$, k=0,1,2,...,求 Z=X+Y 的分布列.

解
$$P(Z = k) = P(X + Y = k)$$

 $= \sum_{i=0}^{k} P(X = i, Y = k - i)$
 $= \sum_{i=0}^{k} P(X = i) P(Y = k - i)$

由独立性

 $=a_0b_k+a_1b_{k-1}+...+a_kb_0$ k=0,1,2,...

例3 若 X 和 Y 相互独立,它们分别服从参数为 λ_1, λ_2 的泊松分布,证明Z=X+Y服从参数为 $\lambda_1+\lambda_2$ 的泊松分布.

解依题意

$$P(X = i) = \frac{\lambda_1^i}{i!} e^{-\lambda_1}$$
 $i = 0, 1, 2, ...$

$$P(Y = j) = \frac{\lambda_2^{j}}{j!} e^{-\lambda_2}$$
 $j = 0, 1, 2, ...$

于是

$$P(Z = k) = \sum_{i=0}^{k} P(X = i, Y = k - i)$$

$$P(Z = k) = \sum_{i=0}^{k} P(X = i, Y = k - i)$$

$$= \sum_{i=0}^{k} \frac{\lambda_{1}^{i}}{i!} e^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{k-i}}{(k-i)!} e^{-\lambda_{2}}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{2}^{k-i}$$

$$= \frac{e^{-(\lambda_{1} + \lambda_{2})}}{k!} (\lambda_{1} + \lambda_{2})^{k}, \quad k = 0, 1, ...$$

$$Z=X+Y\sim P(\lambda_1+\lambda_2)$$

具有可加性的两个离散分布

口设 $X \sim P(\lambda_1), Y \sim P(\lambda_2)$,且独立,

则
$$X + Y \sim P(\lambda_1 + \lambda_2)$$

口设 $X \sim b(n_1, p), Y \sim b(n_2, p)$, 且独立,

则
$$X + Y \sim b (n_1 + n_2, p)$$

关于二项分布可加性的证明

设 $X \sim b(n,p)$, $Y \sim b(m,p)$, 且X与Y独立,则 Z = X + Y的可能取值为0,1,2,...,n+m

$$P(Z = k) = \sum_{i=0}^{k} P(X = i, Y = k - i) = \sum_{i=0}^{k} P(X = i)P(Y = k - i)$$

- •当i > n时, $\{X = i\}$ 是不可能事件;
- •当k-i>m时, $\{Y=k-i\}$ 是不可能事件; 考虑 $k-m \le i \le n$

 $\exists \exists a = \max\{0, k-m\}, b = \min\{n,k\}$

记
$$a = \max\{0, k-m\}, b = \min\{n,k\}$$

$$P(Z = k) = \sum_{i=a}^{b} P(X = i)P(Y = k - i)$$

$$= \sum_{i=a}^{b} \binom{n}{i} p^{i} (1 - p)^{n-i} \cdot \binom{m}{k-i} p^{k-i} (1 - p)^{m-(k-i)}$$

$$= p^{k} (1 - p)^{n+m-k} \sum_{i=a}^{b} \binom{n}{i} \cdot \binom{m}{k-i}$$

$$= \binom{n+m}{k} p^k (1-p)^{n+m-k} \cdot \sum_{i=a}^b \binom{n}{i} \cdot \binom{m}{k-i} = \binom{n+m}{k}$$

$$\left| \sum_{i=a}^{b} \binom{n}{i} \cdot \binom{m}{k-i} \right| = \binom{n+m}{k}$$

推广
$$X_1 \sim b(n_1,p) \ X_2 \sim b(n_2,p) \ \cdots \ X_k \sim b(n_k,p)$$

特别当
$$n_1 = n_2 = \cdots = n_k = 1$$
时

则
$$Z = X_1 + X_2 + \cdots + X_k \sim b(k,p)$$

二. 连续型随机变量函数的分布

$$(X,Y) \sim f(x,y), Z = g(X,Y), \% f_Z(z)$$

1. 分布函数法

$$F_{Z}(z) = P(Z \leq z) = P(g(X,Y) \leq z)$$

$$= \iint_{g(x,y) \le z} f(x,y) dx dy$$

例4:设X、Y相互独立,且都服从相同的分布 N(0,1),

求
$$Z = \sqrt{X^2 + Y^2}$$
的分布密度 $f_Z(z)$

解: 由题意
$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^{2}}{2}}, \quad -\infty < y < +\infty$$

(X,Y)的联合分布密度为

$$f(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}, (x,y) \in \mathbb{R}^2$$

当
$$z \le 0$$
时, $F_Z(z) = 0$ 当 $z > 0$ 时,

$$F_{Z}(z) = P\{Z \leq z\} = P\{\sqrt{X^2 + Y^2} \leq z\}$$

$$= \iint_{x^2+y^2 \le z} \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}} dx dy$$

$$F_{z}(z) = \int_{0}^{2\pi} d\theta \int_{0}^{z} \frac{1}{2\pi} e^{-\frac{r^{2}}{2}} r dr$$

$$f_{Z}(z) = \begin{cases} ze^{-\frac{z^{2}}{2}} & z > 0\\ 0 & z \leq 0 \end{cases}$$

1. 设二维连续随机变量(X,Y)的联合密度函数为。

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y & x^2 \le y \le 1\\ 0 & \sharp \text{ the } \end{cases}$$

- (1) 求条件密度函数 f(y|x);
- (2) 求条件概率 $p(Y \ge 0.75 | X = 0.5)$.

2.已知当
$$y>0$$
 时,在条件 $Y=y$ 下 X 的条件密度函数为 $f_{X|Y}(x|y)=\begin{cases} \frac{1}{y} & 0 < x < y \\ 0 & 其他 \end{cases}$

Y 的密度函数为
$$f_{Y}(y) = \begin{cases} ye^{-y}, y > 0 \\ 0, 其他 \end{cases}$$

- 求(1) (X, Y) 的联合密度函数 f(x,y); (2) 随机变量 X 的概率密度函数 $f_{X}(x)$;
 - (3)条件概率 P(X > 4 | X > 1).