I Lemme de l'étoile pour les langages hors-contexte

On admet la version suivante du lemme de l'étoile pour les langages hors-contextes :

Théorème : Lemme de l'étoile hors-contexte

Si L est un langage hors-contexte alors il existe un entier n tel que, pour tout mot $t \in L$ tel que $|t| \geq n$, il existe $u, v, w, x, y \in \Sigma^*$ tels que t = uvwxy avec :

- $|vwx| \leq n$;
- $vx \neq \varepsilon$;
- $\forall i \in \mathbb{N}, uv^i wx^i y \in L$.

Soient $L_1 = \{a^n b^n c^p \mid n, p \in \mathbb{N}\}\$ et $L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}.$

1. Montrer que L_1 est un langage hors-contexte.

Solution: L_1 est engendré par la grammaire avec les règles $S \longrightarrow XY$, $X \longrightarrow aXb \mid \varepsilon$ et $Y \longrightarrow cY \mid \varepsilon$.

2. Montrer que L_2 n'est pas un langage hors-contexte.

 $\underline{\text{Solution}}$: Supposons par l'absurde que L_2 est un langage hors-contexte et soit n l'entier donné par le lemme de l'étoile hors-contexte.

Soit $t = a^n b^n c^n$. Comme $t \in L_2$ et $|t| \ge n$, on peut écrire t = uvwxy avec $|vwx| \le n$, $vx \ne \varepsilon$ et $\forall i \in \mathbb{N}, uv^i wx^i y \in L_2$. Comme $|vwx| \le n$, vwx ne peut pas contenir à la fois des a et des c. Supposons par exemple que vwx ne contienne pas de c. Alors uv^2wx^2y contient n c mais un nombre de a ou b strictement supérieur à n (car $vx \ne \varepsilon$), ce qui contredit L_2 .

3. Montrer que l'ensemble des langages hors-contextes n'est pas stable par intersection ni par passage au complémentaire.

Solution: Soit $L_3 = \{a^p b^n c^n \mid n, p \in \mathbb{N}\}$. L_3 est hors-contexte (grammaire similaire à L_1) mais $L_1 \cap L_3 = L_2$ n'est pas hors-contexte.

Comme les langages hors-contextes sont stables par union (voir cours), s'ils étaient stables par complémentaire alors $L_1 \cap L_3 = \overline{\overline{L_1}} \cup \overline{L_3}$ serait hors-contexte, ce qui est faux.

II Algorithmes de Borůvka

Soit G = (S, A) un graphe non-orienté connexe et pondéré par $w : A \longrightarrow \mathbb{R}$. On note n = |S| et p = |A|. On suppose que tous les poids de G sont distincts (c'est-à-dire : w injective) et que $S = \{0, ..., n-1\}$.

II.1 Théorie

1. Montrer que G possède un arbre couvrant de poids minimum.

 $\underline{\text{Solution}}$: Étant connexe, G possède bien un arbre couvrant, obtenu par exemple avec un arbre de parcours en profondeur (constitué de toutes les arêtes parcourues dans le DFS).

Ainsi l'ensemble $E = \{w(T) \mid T \text{ arbre couvrant de } G\}$ est non vide et fini donc il possède un minimum.

2. Montrer que G possède un unique arbre couvrant de poids minimum.

Solution : Supposons par l'absurde que G possède deux arbres couvrants T et T' de poids minimum. Soit e l'arête de poids minimum appartenant à exactement un de ces deux arbres. Supposons par exemple que e appartient à T. Comme il contient n sommets et n arêtes, T'+e contient un cycle C. T n'a pas de cycle donc C contient une arête e' qui n'appartient pas à T.

Soit T'' = T' + e - e'. Alors:

- T'' est connexe. En effet, si $u, v \in S$ alors il existe un chemin P de u à v dans T'. Si P passe par e', on remplace e' par le reste du chemin dans C. Ainsi, il existe un chemin de u à v dans T''.
- T'' est un arbre couvrant car il contient n-1 arêtes et est connexe.
- w(T'') = w(T') + w(e) w(e') < w(T') car w(e) < w(e'), tous les poids étant distincts.

T'' contredit l'hypothèse de minimalité de T'. Ainsi, G possède bien un unique arbre couvrant de poids minimum.

On appelle T^* l'unique arbre couvrant de poids minimum de G.

Soit $X \subset S$. On dit qu'une arête est sûre pour X si elle est de poids minimum parmi les arêtes ayant exactement une extrémité dans X. Autrement dit, une arête e est sûre pour X si $w(e) = \min\{w(e') \mid \{u,v\} \in A, u \in X, v \notin X\}$.

L'objectif de l'algorithme de Borůvka est de construire un arbre couvrant de poids minimum T en conservant une partition F de S, correspondant aux composantes connexes de T.

À chaque étape, on ajoute une arête sûre pour chaque composante connexe de F:

$$F \longleftarrow \{\{x\} \mid x \in S\}$$

$$T \longleftarrow \emptyset$$

$$\mathbf{Tant} \ \mathbf{que} \ |F| > 1 :$$

$$E \longleftarrow \emptyset$$

$$\mathbf{Pour} \ C \in F :$$

$$e \longleftarrow \text{ arête sûre pour } C$$

$$E \longleftarrow E \cup \{e\}$$

$$F \longleftarrow \text{ partition de } S \text{ obtenue en fusionnant les composantes}$$

$$\text{ connexes de } F \text{ avec les arêtes de } E$$

$$T \longleftarrow T \cup E$$

$$\mathbf{Renvoyer} \ T$$

L'étape de fusion des composantes connexes consiste, pour chaque arête $e = \{u, v\}$ de E, à remplacer dans F les composantes connexes C_1 et C_2 contenant u et v par leur union $C_1 \cup C_2$.

3. Appliquer l'algorithme de Borůvka sur le graphe suivant, en donnant à chaque l'ensemble des arêtes de T à la fin de chaque passage dans la boucle **Tant que** :

4. Montrer que l'algorithme de Borůvka termine, en utilisant un variant de boucle.

Solution : |F| est strictement décroissant à chaque itération de la boucle **Tant que** et $|F| \ge 0$ donc l'algorithme termine.

5. Soit $X \subset S$ et e une arête sûre pour X. Montrer que T^* contient e.

Solution: Notons $e = \{u, v\}$ et supposons que T^* ne contienne pas e.

 $T^* + e$ contient un cycle C car il a n arêtes pour n sommets.

Soit $e^* \neq e$ une arête de C ayant exactement une extrémité dans X. $w(e) < w(e^*)$ car e est sûre pour X.

 $T^* + e - e^*$ contient n - 1 arêtes et est acyclique (s'il possédait un cycle C', on pourrait y remplacer e par le reste du cycle dans C pour obtenir un cycle dans T^*).

Ainsi, $T^* + e - e^*$ est un arbre couvrant de poids strictement inférieur à T^* , ce qui est absurde.

6. Montrer que l'algorithme de Borůvka renvoie bien T^* .

Solution: L'algorithme ne rajoute dans T que des arêtes appartenant à T^* , donc T est toujours un sous-ensemble de T^* . De plus, T ne contient qu'une composante connexe à la fin donc $T = T^*$.

II.2 Implémentation

On va utiliser une structure d'Union-Find pour représenter les composantes connexes de F, sous la forme d'un tableau uf de taille n tel que uf . (x) soit le père de x dans l'arbre contenant x. Si x est une racine, uf . (x) contiendra x. On n'utilisera pas d'optimisation de type union par rang ou compression de chemin.

7. Écrire une fonction create : int -> int array telle que create n renvoie un tableau de taille n initialisé avec les entiers de 0 à n - 1.

Solution:

```
let create n =
  let uf = Array.make n 0 in
  for i = 0 to n - 1 do
    uf.(i) <- i
  done;
  uf</pre>
```

8. Écrire une fonction find : int array -> int -> int telle que find uf x renvoie la racine de l'arbre contenant x dans la structure d'Union-Find représentée par le tableau uf.

Solution:

```
let rec find uf i =
   if uf.(i) = i then i
   else find uf uf.(i)
```

9. Écrire une fonction union : int array -> int -> int -> unit telle que union uf x y fusionne les composantes connexes de x et y dans la structure d'Union-Find représentée par le tableau uf.

Solution:

```
let union uf x y =
  let rx = find uf x in
  let ry = find uf y in
  uf.(rx) <- ry</pre>
```

10. Écrire une fonction meme_cc : int array -> int -> int -> bool telle que meme_cc uf x y détermine si x et y sont dans la même composante connexe.

<u>Solution</u>:

```
let meme_cc uf i j =
   find uf i = find uf j
```

11. Écrire une fonction n_cc : int array -> int telle que n_cc uf renvoie le nombre de composantes connexes dans uf.

Solution:

```
let n_cc uf =
  let n = Array.length uf in
  let ans = ref 0 in
  for i = 0 to n - 1 do
    if uf.(i) = i then incr ans
  done;
!ans
```

Le graphe G est représenté par une liste d'adjacence $\mathfrak g$ telle que $\mathfrak g$. (i) contient une liste des arêtes partant de i, où chaque arête est un couple (w,j) où w est le poids de l'arête et i et j les extrémités de l'arête.

12. Écrire une fonction aretes_sures : (float * int) list array -> int array -> (float * int * int) array telle que

aretes_sures g uf renvoie un tableau ans de taille n où, si i est une racine dans uf, ans.(i) contient l'arête sûre pour la composante connexe de i.

Si i n'est pas une racine, ans.(i) contiendra (max_float, -1, -1).

Solution: On parcourt chaque arête et on met à jour l'arête sûre de la composantes connexe si elle est plus petite.

```
let aretes_sures g uf =
  let n = Array.length g in
  let ans = Array.make n (max_float, -1, -1) in
  for u = 0 to n - 1 do
    let rec aux = function
      | [] -> ()
      \mid (w, v) :: q \rightarrow if not (meme_cc uf u v) then (
        let e = (w, u, v) in
        let e_{-} = ans.(find uf u) in
        if e_ > e then ans.(find uf u) <- e;</pre>
        let e_ = ans.(find uf v) in
        if e_{-} > e then ans.(find uf v) <- e
      );
      aux q in
    aux g.(u)
  done;
  ans
```

13. Écrire une fonction boruvka : (float * int) list array -> (float * int) list array renvoyant l'arbre couvrant de poids minimum de G par l'algorithme de Borůvka.

<u>Solution</u>:

```
let boruvka g =
  let n = Array.length g in
  let uf = create n in
  let t = Array.make n [] in
  while n_cc uf > 1 do
    let ans = aretes_sures g uf in
    for i = 0 to n - 1 do
     let (w, u, v) = ans.(i) in
     if u <> -1 then (
        t.(u) <- (w, v) :: t.(u);
        t.(v) <- (w, u) :: t.(v);
        union uf u v
    )
    done
  done;
  t;;</pre>
```

14. Quitte à utiliser l'optimisation par compression de chemin et union par rang, on suppose que union et find sont en O(1). Montrer que la complexité de l'algorithme de Borůvka est en $O(p \log n)$. Comparer avec l'algorithme de Kruskal.

Solution : À chaque étape, |F| est divisé au moins par deux donc l'algorithme s'arrête en $O(\log n)$ étapes.

À chaque étape, on parcourt en O(p) toutes les arêtes.

La complexité est donc en $O(p \log n)$, comme l'algorithme de Kruskal.

III Théorème de Chomsky-Schützenberger

III.1 Langage de Dyck

Soit $n \in \mathbb{N}^*$. On définit $\Sigma_n = \{a_1, \overline{a_1}, a_2, \overline{a_2}, ..., a_n, \overline{a_n}\}$. Les lettres a_i seront appelées parenthèses ouvrantes et les $\overline{a_i}$ sont les parenthèses fermantes.

Soit $G_n = (\Sigma_n, \{S\}, R, S)$, où R contient les règles :

$$S \longrightarrow a_1 S \overline{a_1} S \mid a_2 S \overline{a_2} S \mid \dots \mid a_n S \overline{a_n} S \mid \varepsilon$$

On définit le langage D_n de Dyck d'ordre n comme celui engendré par G_n .

On note Pref(u) l'ensemble des préfixes d'un mot u.

1. Représenter graphiquement un arbre de dérivation de $u = a_1 a_2 \overline{a_2} a_3 \overline{a_3} \overline{a_1}$ pour G_3 .

Solution:

2. Soit $L = \{u \in \Sigma_1^* \mid \forall v \in \operatorname{Pref}(u), |v|_{a_1} \geq |v|_{\overline{a_1}} \text{ et } |u|_{a_1} = |u|_{\overline{a_1}} \}$. Montrer que $D_1 = L$.

Solution :

 $D_1 \subset L$: Soit H_n : « Si $S \Rightarrow^n u \in \Sigma_1^*$ alors $u \in L$ ».

 H_1 est vraie car $\varepsilon \in L$.

Soit $n \geq 2$. Supposons H_k vraie pour k < n. Soit $u \in \Sigma_1^*$ tel que $S \Rightarrow^n u$.

On a alors $S \to a_1 S \overline{a_1} S \Rightarrow^{n-1} a_1 v \overline{a_1} w = u$ avec $S \Rightarrow^k v$ et $S \Rightarrow^{n-k} w$.

D'après l'hypothèse de récurrence, $v \in L$ et $w \in L$.

Comme $|v|_{a_1} = |v|_{\overline{a_1}}$ et $|w|_{a_1} = |w|_{\overline{a_1}}$, on a $|u|_{a_1} = |v|_{a_1} + 1 + |w|_{a_1} = |v|_{\overline{a_1}} + 1 + |w|_{\overline{a_1}} = |u|_{\overline{a_1}}$.

On peut montrer aussi que tout préfixe de u vérifie la propriété. Ainsi, $u \in L$.

 $L \subset D_1$: Soit H_n : « Si $u \in L$ et |u| = n alors $u \in D_1$ ».

 H_0 est vraie car $\varepsilon \in D_1$.

Soit $n \ge 1$. Supposons H_k vraie pour k < n. Soit $u = u_1 ... u_n \in L$.

Notons $i = \min\{j \mid |u_1...u_j|_{a_1} = |u_1...u_j|_{\overline{a_1}}\}$ (*i* est bien défini car $|u_1...u_n|_{a_1} = |u_1...u_n|_{\overline{a_1}}$).

Soit $v = u_1...u_i$ et $w = u_{i+1}...u_n$. On peut montrer que $v \in L$ et $w \in L$.

D'après l'hypothèse de récurrence, $S \Rightarrow^* v$ et $S \Rightarrow^* w$.

Donc $S \to a_1 S \overline{a_1} S \Rightarrow^* a_1 v \overline{a_1} S \Rightarrow^* a_1 v \overline{a_1} w = u$.

3. En déduire que D_1 n'est pas régulier.

Solution : Supposons D_1 régulier et soit n l'entier donné par le lemme de l'étoile.

Soit $u = a_1^n \overline{a_1}^n$. Comme $u \in D_1$ et $|u| \ge n$, on peut écrire u = xyz avec $|y| \ge 1$, $|xy| \le n$ et $\forall i \in \mathbb{N}, xy^iz \in D_1$.

Comme $|xy| \le n$, y ne peut contenir que des a_1 . Donc xy^2z contient plus de a_1 que de $\overline{a_1}$: contradiction.

4. Montrer que $D_2 \neq \{u \in \Sigma_n \mid \forall v \in \operatorname{Pref}(u), \forall i \in [1, 2], |v|_{a_i} \geq |v|_{\overline{a_i}} \text{ et } |u|_{a_i} = |u|_{\overline{a_i}}\}$?

```
Solution: Soit u = a_1 a_2 \overline{a_1 a_2}.

|u|_{a_1} = |u|_{\overline{a_1}} = 1 et \forall v \in \operatorname{Pref}(u), |v|_{a_1} \geq |v|_{\overline{a_1}}

Mais u \notin D_2 car si S \Rightarrow^* u alors S \Rightarrow a_1 S \overline{a_1} S \Rightarrow^* a_1 a_2 \overline{a_1 a_2} ce qui est impossible.
```

On définit le type suivant :

```
type lettre = 0 of int | F of int
```

tel qu'une lettre a_i sera représentée par 0 i et une lettre $\overline{a_i}$ par F i.

5. Écrire une fonction dyck : lettre list -> bool qui détermine si un mot u est un mot d'un langage de Dyck D_n pour un certain $n \in \mathbb{N}$, en complexité linéaire en la taille de u.

On pourra utiliser une pile (sous forme d'une liste OCaml).

Solution : On utilise une pile (sous forme de liste) pour vérifier si le mot est bien parenthésé :

- Si on lit a_i , on l'ajoute à la pile.
- Si on lit $\overline{a_i}$, on vérifie que le sommet de la pile est a_i et on le retire.

Si la pile est vide à la fin, le mot est bien parenthésé.

Soient Σ et Γ deux alphabets. On appelle morphisme de mots une fonction $\varphi: \Sigma^* \longrightarrow \Gamma^*$ telle que pour tout $u, v \in \Sigma^*$, $\varphi(uv) = \varphi(u)\varphi(v)$.

Remarque : il suffit de définir un morphisme de mots sur les lettres, car si $u = u_1...u_n \in \Sigma^*$ alors $\varphi(u) = \varphi(u_1)...\varphi(u_n)$. Si L est un langage, on note $\varphi(L) = \{\varphi(u) \mid u \in L\}$.

6. Montrer que si φ est un morphisme de mots, alors $\varphi(\varepsilon) = \varepsilon$.

```
\underline{\text{Solution}}: \text{Soit } u = \varphi(\varepsilon). \text{ Alors } u = \varphi(\varepsilon) = \varphi(\varepsilon) = \varphi(\varepsilon) = \varphi(\varepsilon) = u^2. \text{ D'où } |u| = |u|^2 = 2|u|. \text{ Donc } |u| = 0 \text{ et } u = \varepsilon.
```

7. Donner sans justification une expression régulière de $\varphi(D_1)$ pour le morphisme de mots φ défini par $\varphi(a_1) = aa$ et $\varphi(\overline{a_1}) = \varepsilon$.

```
\underline{\text{Solution}}: Il s'agit de (aa)^*.
```

8. Soit φ un morphisme de mots. Montrer que si L est un langage hors-contexte alors $\varphi(L)$ est un langage hors-contexte.

```
Solution: Soit G = (\Sigma, V, R, S) une grammaire hors-contexte engendrant L. On étend \varphi aux variables en posant \varphi(X) = X pour X \in V. On définit alors G' = (\Gamma, V, R', S) où R' = \{X \longrightarrow \varphi(u) \mid X \longrightarrow u \in R\}. On montre alors que L(G') = \varphi(L(G)).
```

III.2 Théorème de Chomsky-Schützenberger

Soit $G = (\Sigma, V, R, S)$ une grammaire hors-contexte. On dit que G est en forme normale de Chomsky si toutes les règles de production sont de l'une des formes suivantes :

- $X \longrightarrow a$, avec $a \in \Sigma$
- $X \longrightarrow YZ$, avec $Y, Z \in V$

On admet que si G est une grammaire quelconque, alors il existe une grammaire G' en forme normale de Chomsky telle que $L(G') = L(G) \setminus \{\varepsilon\}$.

- 9. Donner sans justification le langage engendré par la grammaire G_0 en forme normale de Chomsky définie par les règles suivantes :
 - $S \longrightarrow AX \mid AB$
 - $X \longrightarrow SB$
 - $A \longrightarrow a$
 - $B \longrightarrow b$

Solution: On peut montrer par double inclusion que $L(G_0) = \{a^n b^n \mid n \in \mathbb{N}\}.$

On veut démontrer :

Théorème : Chomsky-Schützenberger

Un langage L est hors-contexte si et seulement il existe un langage régulier K, un langage de Dyck D_n et un morphisme de mots φ tels que $L = \varphi(D_n \cap K)$.

10. On suppose L hors-contexte et K régulier sur un même alphabet Σ . En considérant $A = (\Sigma, Q, \delta, q_0, F)$ un automate fini déterministe reconnaissant K et $G = (\Sigma, V, R, S)$ une grammaire en forme normale de Chomsky engendrant L, montrer que $L \cap K$ est un langage hors-contexte.

Pour cela, on construira une grammaire G' ayant un symbole initial S' et une variable $X_{p,q}$ pour toute variable $X \in V$ et tout états $p,q \in Q$.

Solution: On pose $G' = (\Sigma, V', R', S')$ où $V' = \{S'\} \cup \{X_{p,q} \mid X \in V, p, q \in Q\}$ et R' contient les règles:

- $S' \longrightarrow S_{q_0,q_f}$, pour tout état $q_f \in F$;
- $X_{q,\delta(q,a)} \longrightarrow a$, pour toute règle $X \longrightarrow a \in R$ et tout $q \in Q$;
- $X_{p,q} \longrightarrow Y_{p,r}Z_{r,q}$, pour tout règle $X \longrightarrow YZ \in R$ et tout $p,q,r \in Q$.
- 11. En déduire un sens du théorème.

Solution : Supposons $L = \varphi(D_n \cap K)$ avec K régulier. D'après la question précédente, $D_n \cap K$ est hors-contexte. Donc L est hors-contexte d'après la question 8.

Soit $G = (\Sigma, V, R, S)$ une grammaire hors-contexte en forme normale de Chomsky. On numérote les règles de la forme $X \longrightarrow YZ$ par $r_1, r_2, ..., r_k$. On pose $G' = (\Sigma', V, R', S)$ où :

- $\Sigma' = \Sigma \cup \{\overline{a} \mid a \in \Sigma\} \cup \bigcup_{i=1}^k \{a_i, \overline{a_i}, b_i, \overline{b_i}, c_i, \overline{c_i}\}$;
- $R' = \{X \longrightarrow a_i b_i Y \overline{b_i} c_i Z \overline{c_i} \overline{a_i}$, pour $i \in [1, k]$ et $r_i = X \longrightarrow YZ\} \cup \{X \longrightarrow a\overline{a}$, pour $X \longrightarrow a \in P\}$.
- 12. Montrer qu'il existe n tel que $L(G') \subset D_n$.

Solution : Avec les notations de l'énoncé, on pose $n=3k+|\Sigma|$ et $\Sigma_n=\Sigma'$. Montrons un résultat plus fort, c'est-à-dire que pour $X\in V$, si $X\Rightarrow^\ell u$ avec $u\in\Sigma'^*$, alors $u\in D_n$, par récurrence sur la taille des dérivations ℓ :

- si $\ell = 1$, alors la dérivation est de la forme $X \longrightarrow a\overline{a}$, avec $a \in \Sigma$. Dès lors, $S_n \Rightarrow aS_n\overline{a}S_n \Rightarrow a\overline{a}S_n \Rightarrow a\overline{a}$ est une dérivation de u dans G_n (on a renommé le symbole de départ en S_n pour ne pas confondre avec S);
- si on suppose le résultat vrai pour toute dérivation de taille $<\ell$, avec $\ell>1$ fixé, alors la première dérivation immédiate est de la forme : $X\Rightarrow a_ib_iY\overline{b_i}c_iZ\overline{c_ia_i}$. De plus, il existe v et w tels que $u=a_ib_iv\overline{b_i}c_iw\overline{c_ia_i}$ et $Y\Rightarrow^*v$, $Z\Rightarrow^*w$. Par hypothèse de récurrence, v et w sont dans D_n . Dès lors, $S_n\Rightarrow a_iS_n\overline{a_i}S_n\Rightarrow^*a_ib_iS_n\overline{b_i}S_n\overline{a_i}c_iS_n\overline{c_i}S_n\overline{a_i}S_n\Rightarrow^*a_ib_iv\overline{b_i}\overline{a_i}c_iw\overline{c_ia_i}=u$.

On conclut par récurrence.

On pose $\varphi: \Sigma'^* \longrightarrow \Sigma^*$ le morphisme de mots défini par :

- pour $a \in \Sigma$, $\varphi(a) = a$ et $\varphi(\overline{a}) = \varepsilon$;
- pour $i \in [1, k]$, $\varphi(a_i) = \varphi(\overline{a_i}) = \varphi(b_i) = \varphi(\overline{b_i}) = \varphi(c_i) = \varphi(\overline{c_i}) = \varepsilon$.

13. Montrer que $L(G) = \varphi(L(G'))$.

Solution : On remarque que pour toute règle $X \longrightarrow \alpha \in R'$, alors $X \longrightarrow \varphi(\alpha) \in R$. Un raisonnement par récurrence et la définition des morphismes de mots permet donc de conclure que $\varphi(L(G')) \subset L(G)$. Réciproquement, pour toute règle $X \longrightarrow \alpha \in R$, il existe β tel que $X \longrightarrow \beta \in R'$ et $\alpha = \varphi(\beta)$. De la même manière, cela donne l'inclusion réciproque.

Pour L un langage sur un alphabet Σ , on note $P(L) \subset \Sigma$ l'ensemble des premières lettres des mots de L, $F(L) \subset \Sigma^2$ l'ensemble des facteurs de taille 2 des mots de L et $N(L) = \Sigma^2 \setminus F(L)$.

14. On pose $K = P(L(G'))\Sigma'^* \setminus \Sigma'^* N(L(G'))\Sigma'^*$. Montrer que K est un langage régulier.

Solution : P(L(G')) et N(L(G')) sont réguliers car finis. Par concaténation et différence de langages réguliers, K est régulier.

15. Montrer le théorème de Chomsky-Schützenberger.

Solution: Montrons que $L(G') = D_n \cap K$, où D_n est le langage défini à la question 12 et K le langage défini à la question précédente. On a déjà montré $L(G') \subset D_n$. De plus, $L(G') \subset R$, car tout mot de L(G') commence par une première lettre d'un mot de L(G') et ne contient aucun facteur de taille 2 de N(L(G')). Cela montre la première inclusion.

Pour $X \in V$, si on note L(G',X) le langage engendré par (Σ',V,P',X) et $K_X = P(L(G',X))\Sigma'^* \setminus \Sigma'^* N(L(G',X))\Sigma'^*$, alors on peut montrer par récurrence sur la taille des mots que $D_n \cap R_X \subset L(G',X)$. Dès lors, $D_n \cap K = D_n \cap K_S \subset L(G',S) = L(G')$.

Finalement, par la question 13, $L(G) = \varphi(L(G')) = \varphi(D_n \cap R)$.

Pour conclure complètement, on remarque que si L est un langage hors-contexte, alors il existe G une grammaire en forme normale de Chomsky telle que $L \setminus \{\varepsilon\} = L(G)$. Dès lors quitte à considérer $K \cup \{\varepsilon\}$ si $\varepsilon \in L$, on obtient le résultat voulu.