Prof. Dr. M. Vetter, O. Martin/A. Theopold

In-tutorial exercise sheet 12

supporting the lecture Mathematical Statistics

(Discussion in the tutorial on 10. February 2015)

Exercise 1.

Let X be a random variable with Lebesgue density

$$f(x,\vartheta) = e^{-(x-\vartheta)} \mathbb{1}_{[\vartheta,\infty)}(x).$$

- a) Find a statistic $T: \mathcal{X} \to \mathbb{R}$ such that the distribution family $\mathcal{P} = \{P_{\vartheta} \sim f(\cdot, \vartheta) | \vartheta \in \mathbb{R}\}$ has monotone likelihood ratio in T.
- b) Derive a UMP test with level α for the hypotheses

$$H: \vartheta \leq \vartheta_0 \quad \text{vs.} \quad K: \vartheta > \vartheta_0.$$

Exercise 2.

Let X_1, \ldots, X_n be i.i.d. $\gamma(p, b)$ distributed, i.e. their density is

$$f(x,(p,b)) = \frac{b^p}{\Gamma(p)} x^{p-1} e^{-bx}, \ x > 0,$$

for b > 0 and a fixed p > 0.

- a) Compute the ML estimator for b.
- b) State the likelihood-ratio test for the hypotheses

$$H : b = b_0 \quad \text{vs.} \quad K : b \neq b_0$$

for $b_0 > 0$.

Exercise 3.

X is uniformly distributed on the interval $[-\vartheta,\vartheta]$. Compute the ML estimator for ϑ .

Exercise 4.

Examples for knwoledge questions:

- a) Explain the following terms: MSE, UMVU estimator, sufficiency, completeness, Bayes estimator, ML estimator, power function, level- α test, UMP test, likelihood-ratio test
- b) Use your own words to explain the following theorems: Cramer-Rao inequality, Neyman criterion, Rao-Blackwell theorem, Lehmann-Scheffe theorem, Neyman-Pearson lemma, Gauß-Markov theorem