AEROFIT BIZ CASE STUDY

To analyse,interprete and visualize the given Netflix data and to solve the related problems to get insights we need functions and methods, so we must import Python libraries into our work notebook.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.colors as col
from scipy.stats import norm
```

To get the data into our work space we use the below code(to read csv files) and saving the whole set of data into a single variable(dataframe) which makes analysis easier

```
data = pd.read_csv('aerofit.csv')
```

data.head(2)

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75

data.tail(2)

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
178	KP781	47	Male	18	Partnered	4	5	104581	120	
179	KP781	48	Male	18	Partnered	4	5	95508	180	

data.sample(2)

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
79	KP281	50	Female	16	Partnered	3	3	64809	66
123	KP481	33	Female	16	Partnered	5	3	53439	95

```
\ensuremath{\text{\#}} TO GET NO. OF ROWS & COLUMNS:
```

data.shape

(180, 9)

TO GET TOTAL ELEMENTS IN THE DATASET (i.e., the dot product of no. of rows & columns)

data.size

1620

To get index

data.index

```
RangeIndex(start=0, stop=180, step=1)
```

```
# TO GET THE NAMES OF THE COLUMNS
data.columns
    dtype='object')
# TO GET THE NAMES OF THE COLUMNS(alternate method)
data.keys()
    dtype='object')
# To get memory usage of each column
data.memory_usage()
    Index
                   128
    Product
                   1440
    Age
                   1440
    Gender
                   1440
    Education
                   1440
    MaritalStatus
                   1440
    Usage
                   1440
    Fitness
                   1440
    Income
                   1440
    Miles
                   1440
    dtype: int64
# TO GET THE TOTAL INFORMATION ABOUT THE DATASET.
# info function let us know the columns with their data types and no. of non-null values & the total memory usage
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 180 entries, 0 to 179
    Data columns (total 9 columns):
                 Non-Null Count Dtype
    0 Product 180 non-null
1 Age 180 non-null
1 Conder 180 non-null
                     180 non-null object
                                   int64
        Gender 180 non-null Education 180 non-null
                                   obiect
     3
                                   int64
        MaritalStatus 180 non-null
                                   object
                 180 non-null
        Usage
                                    int64
     6 Fitness
                     180 non-null
                                    int64
        Income
                     180 non-null
                                    int64
     8 Miles
                     180 non-null
                                    int64
    dtypes: int64(6), object(3)
    memory usage: 12.8+ KB
```

From the above analysis we get to know that all columns are integer data type except "Product", "Gender" and "MaritalStatus" columns which is of object type

▼ TO ANALYSE THE BASIC METRICS

```
# To get the data type of each column
data.dtypes
     Product
                     object
     Age
                      int64
     Gender
                     object
     Education
                     int64
     MaritalStatus
                     object
     Usage
                      int64
                      int64
     Fitness
     Income
                      int64
     Miles
                      int64
     dtype: object
```

▼ STATISTICAL SUMMERY

data.describe()

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

Describe function returns the glimpse of the data with the statistical values from all over the data just to predict the normal ranges and average ranges to the particular elements. Note: it will display only the numerical values and return from the numerical values.

▼ INFERENCE:

- 1. Age group of the users is from 18 to 50
- 2. The Customers use the product atleast twice a week
- 3. Income range of the customers vary from 30,000(approx.) to maximum of 104581. This implies the Users are from varied income group

 $\ensuremath{\text{\#}}$ To get statistical values for the object data type

data.describe(include = object)

	Product	Gender	MaritalStatus
count	180	180	180
unique	3	2	2
top	KP281	Male	Partnered
freq	80	104	107

Accessing the rows with their iloc(integer location) values

data.iloc[:4]

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85

Accessing selected range of rows using external location values

data.loc[3:6]

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
5	KP281	20	Female	14	Partnered	3	3	32973	66
6	KP281	21	Female	14	Partnered	3	3	35247	75

 $\ensuremath{\text{\#}}$ Accessing the specified columns for all rows using external location

data.loc[:,['Product','Gender','Usage']]

	Product	Gender	Usage
0	KP281	Male	3
1	KP281	Male	2
2	KP281	Female	4
3	KP281	Male	3
4	KP281	Male	4
175	KP781	Male	6
176	KP781	Male	5
177	KP781	Male	5
178	KP781	Male	4
179	KP781	Male	4
180 rd	ows × 3 col	umns	

▼ NON-GRAPHICAL ANALYSIS:

```
data['Product'].unique()
    array(['KP281', 'KP481', 'KP781'], dtype=object)

data['Product'].value_counts()

    KP281    80
    KP481    60
    KP781    40
    Name: Product, dtype: int64
```

▼ INFERENCE:

The most used product is 'KP281'

```
data['Gender'].value_counts()

Male     104
Female     76
Name: Gender, dtype: int64
```

▼ INFERENCE:

There are more MALE(104) users than Female(76) users

```
data['MaritalStatus'].value_counts()

Partnered 107
Single 73
Name: MaritalStatus, dtype: int64
```

▼ INFERENCE:

The Aerofit products are more popular among the Partnered users

```
\label{lem:data:groupby(['Product', 'Gender']).agg({'Gender':'count'}).rename(columns={'Gender':'count'}).reset\_index()} \\
```

	Product	Gender	count	
0	KP281	Female	40	ılı
1	KP281	Male	40	
2	KP481	Female	29	
3	KP481	Male	31	
4	KP781	Female	7	
5	KP781	Male	33	

▼ INFERENCE:

For all Produts Male users dominate female users except for KP281 which has equal number of male and female users

```
data.groupby('Product').agg({'Miles':'mean'}).reset_index()
```

	Product	Miles
0	KP281	82.787500
1	KP481	87.933333
2	KP781	166.900000

INFERENCE:

Outliers are present among KP781 users.

▼ VISUAL ANALYSIS

▼ UNIVARIATE

```
# plotting charts in subplots
plt.figure(figsize=(15,12))
plt.subplot(3,2,1)
sns.histplot(data = data, x='Age', kde=True, color='green', bins = 30)

plt.subplot(3,2,2)
sns.histplot(data = data, x='Gender', kde=True, color='red', bins = 10)

plt.subplot(3,2,3)
sns.histplot(data = data, x='Education', kde=True, color='green', bins = 5)

plt.subplot(3,2,4)
sns.histplot(data = data, x='Usage', kde=True, color='red', bins = 5)

plt.subplot(3,2,5)
sns.histplot(data = data, x='Fitness', kde=True, color='green', bins = 5)

plt.subplot(3,2,6)
sns.histplot(data = data, x='Income', kde=True, color='red', bins = 20)
```

sns.countplot(data = data,x='MaritalStatus')

plt.show()

INFERENCE:

We have a visual evidence that,

- 1. Users around the age group of 25 are more when compared to others.
- 2. As we already analysed the product KP281 is the most frequently used one.
- 3. Male Users are more than Female users
- 4. Aerofit products are more popular among the married people.

FIOUUCE

1

▼ BOXPLOT - CHECK FOR OUTLIERS

```
plt.figure(figsize=(12,12))

plt.subplot(3,2,1)
sns.boxplot(data = data, y='Age',orient='v')

plt.subplot(3,2,2)
sns.boxplot(data = data, y='Education',orient='v')

plt.subplot(3,2,3)
sns.boxplot(data = data, y='Usage',orient='v')

plt.subplot(3,2,4)
sns.boxplot(data = data, y='Fitness',orient='v')

plt.subplot(3,2,4)
sns.boxplot(data = data, y='Fitness',orient='v')

plt.subplot(3,2,5)
sns.boxplot(data = data, y='Income',orient='v')

plt.subplot(3,2,6)
sns.boxplot(data = data, y='Miles',orient='v')
```


INFERENCE:

- 1. There are only very few outliers for 'Age', 'Education', 'Usage', 'Fitness'
- 2. In case of 'Income' and 'Miles' the outliers are more

▼ BIVARIATE

Product-wise comparison of various parameters

```
plt.figure(figsize=(12,8))

plt.subplot(3,2,1)
sns.countplot(data=data, x='Product', hue='MaritalStatus',palette='Set2')
plt.title('Product vs Marital Status')

plt.subplot(3,2,2)
sns.countplot(data=data, x='Product', hue='Usage',palette='Set2')
plt.title('Product vs Usage')

plt.subplot(3,2,5)
sns.countplot(data=data, x='Product', hue='Fitness',palette='Set2')
plt.title('Product vs Fitness')

plt.subplot(3,2,6)
sns.countplot(data=data, x='Product', hue='Education',palette='Set2')
plt.title('Product vs Education')
```

Text(0.5, 1.0, 'Product vs Education')

INFERENCE:

We can clearly visualise that,

- 1. Marital Status For all the Product types the Married/Partnered Users are more
- 2. Usage KP281 aand KP481 users, use it mostly thrice a week whereas KP781 users, use it four times a week which means KP781 users are more frequent users
- 3. Fitness Most users of products KP281 and KP481 belong to the fitness band 3 but most of KP781 users are more fit as they belong to
- 4. Education Most of KP281 and KP481 users have 16 years of education where as KP781 users mostly have 18 years of education

MULTIVARIATE

sns.heatmap(data.corr(),cmap='RdYlGn',annot=True)

INFERENCE:

- 1. Fitness always have a strong correlation with usage and miles.
- 2. Income has a good correlation with all other parameters.
- 3. overall, we can say that all the parameters in this case are interdependent.

▼ PAIRPLOT

pairplot gives complete relation between all the range of statistical attributes in data sns.pairplot(data = data)

▼ PRODUCT-WISE & GENDER-WISE ANALYSIS:

```
plt.figure(figsize=(15,15))
plt.subplot(3,3,1)
sns.boxplot(data = data,x='Gender', y='Age',hue='Product',palette='Set3')
plt.title('Product Vs Age')

plt.subplot(3,3,2)
sns.boxplot(data = data, x='Gender', y='Education',hue='Product',palette='Set3')
plt.title('Product Vs Education')

plt.subplot(3,3,3)
sns.boxplot(data = data,x='Gender', y='Usage',hue='Product',palette='Set3')
plt.title('Product Vs Usage')

plt.subplot(3,3,4)
sns.boxplot(data = data,x='Gender', y='Fitness',hue='Product',palette='Set3')
```

```
plt.title('Product Vs Fitness')

plt.subplot(3,3,5)
sns.boxplot(data = data,x='Gender', y='Income',hue='Product',palette='Set3')
plt.title('Product Vs Income')

plt.subplot(3,3,6)
sns.boxplot(data = data,x='Gender', y='Miles',hue='Product',palette='Set3')
plt.title('Product Vs Miles')
```


▼ INFERENCE:

People with,

- 1. higher education,
- 2. more income,
- 3. tend to use treadmill more than 4 times a week,
- 4. walk more than 100 miles a week,
- 5. and are more fit

prefer using KP781

▼ CHECK FOR DUPLICATE VALUES

```
data.duplicated().sum()
```

0

▼ INFERENCE

This shows that there are no duplicate values

▼ CHECK FOR MISSING VALUES:

```
data.isna().sum()

Product 0
Age 0
Gender 0
Education 0
MaritalStatus 0
Usage 0
Fitness 0
Income 0
Miles 0
dtype: int64
```

▼ INFERENCE:

This shows that there are no null values

▼ DETECTING DATA OF OUTLIER VALUES

```
sns.set_style(style='whitegrid')
plt.figure(figsize=(12,12))
plt.subplot(3,2,1)
sns.boxplot(data = data, y='Age',orient='v')
plt.subplot(3,2,2)
sns.boxplot(data = data, y='Education',orient='v')
plt.subplot(3,2,3)
sns.boxplot(data = data, y='Usage',orient='v')
plt.subplot(3,2,4)
sns.boxplot(data = data, y='Fitness',orient='v')
plt.subplot(3,2,4)
sns.boxplot(data = data, y='Fitness',orient='v')
plt.subplot(3,2,5)
sns.boxplot(data = data, y='Income',orient='v')
plt.subplot(3,2,6)
sns.boxplot(data = data, y='Miles',orient='v')
```


	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
156	KP781	25	Male	20	Partnered	4	5	74701	170	
157	KP781	26	Female	21	Single	4	3	69721	100	
161	KP781	27	Male	21	Partnered	4	4	90886	100	
175	KP781	40	Male	21	Single	6	5	83416	200	

data[data['Income']>80000]

		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	159	KP781	27	Male	16	Partnered	4	5	83416	160
	160	KP781	27	Male	18	Single	4	3	88396	100
	161	KP781	27	Male	21	Partnered	4	4	90886	100
	162	KP781	28	Female	18	Partnered	6	5	92131	180
	164	KP781	28	Male	18	Single	6	5	88396	150
	166	KP781	29	Male	14	Partnered	7	5	85906	300
	167	KP781	30	Female	16	Partnered	6	5	90886	280
	168	KP781	30	Male	18	Partnered	5	4	103336	160
data[data['Miles']>	175]							

	Product	Age	Gender	Education MaritalStatus		Usage	Fitness	Income	Miles
23	KP281	24	Female	16	Partnered	5	5	44343	188
84	KP481	21	Female	14	Partnered	5	4	34110	212
142	KP781	22	Male	18	Single	4	5	48556	200
148	KP781	24	Female	16	Single	5	5	52291	200
152	KP781	25	Female	18	Partnered	5	5	61006	200
154	KP781	25	Male	18	Partnered	6	4	70966	180
155	KP781	25	Male	18	Partnered	6	5	75946	240
158	KP781	26	Male	16	Partnered	5	4	64741	180
162	KP781	28	Female	18	Partnered	6	5	92131	180
163	KP781	28	Male	18	Partnered	7	5	77191	180
165	KP781	29	Male	18	Single	5	5	52290	180
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
170	KP781	31	Male	16	Partnered	6	5	89641	260
171	KP781	33	Female	18	Partnered	4	5	95866	200
173	KP781	35	Male	16	Partnered	4	5	92131	360
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
179	KP781	48	Male	18	Partnered	4	5	95508	180

data[data['Usage']>5]

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
154	KP781	25	Male	18	Partnered	6	4	70966	180
155	KP781	25	Male	18	Partnered	6	5	75946	240
162	KP781	28	Female	18	Partnered	6	5	92131	180
163	KP781	28	Male	18	Partnered	7	5	77191	180
164	KP781	28	Male	18	Single	6	5	88396	150
166	KP781	29	Male	14	Partnered	7	5	85906	300
167	KP781	30	Female	16	Partnered	6	5	90886	280
170	KP781	31	Male	16	Partnered	6	5	89641	260
175	KP781	40	Male	21	Single	6	5	83416	200

INFERENCE:

- 1. There are only few outliers in case of Age, Education and Usage.
- 2. There are many outliers in case of ${\bf Income}$ and ${\bf Miles}$

→ STATISTICAL ANALYSIS:

PROBABILITY:

MARGINAL PROBABILITY:

```
data['Product'].describe()
                180
     count
     unique
               KP281
     top
     freq
                 80
     Name: Product, dtype: object
# To get the percentage contribution of each product
data['Product'].value_counts(normalize=True)
     KP281
             0.444444
     KP481
             0.333333
     KP781
             0.222222
     Name: Product, dtype: float64
pdt_cnt = data['Product'].value_counts()
plt.title('Distribution of Products')
plt.pie(pdt_cnt,labels=pdt_cnt.index,autopct='%.0f%%')
plt.show()
```

Distribution of Products

▼ INFERENCE:

KP281 being the most popular product with KP481 in the second position followed by KP781

data.value_counts()

Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
KP281	18	Male	14	Single	3	4	29562	112	1
KP481	30	Female	13	Single	4	3	46617	106	1
	31	Female	16	Partnered	2	3	51165	64	1
			18	Single	2	1	65220	21	1
		Male	16	Partnered	3	3	52302	95	1
KP281	34	Female	16	Single	2	2	52302	66	1
		Male	16	Single	4	5	51165	169	1
	35	Female	16	Partnered	3	3	60261	94	1
			18	Single	3	3	67083	85	1
KP781	48	Male	18	Partnered	4	5	95508	180	1
Length:	180,	dtype: i	nt64						

data['Gender'].value_counts(normalize=True)

Male 0.577778 Female 0.422222

```
Name: Gender, dtype: float64
plt.figure(figsize=(10,10))
plt.subplot(3,3,5)
pdt_cnt = data['Product'].value_counts()
plt.title('Products Distribution')
plt.pie(pdt_cnt,labels=pdt_cnt.index,autopct='%.0f%%')
plt.subplot(3,3,1)
gender_cnt = data['Gender'].value_counts()
plt.title('Gender Distribution')
\verb|plt.pie| (gender\_cnt,labels=gender\_cnt.index,autopct='\%.0f\%')|
plt.subplot(3,3,3)
ms_cnt = data['MaritalStatus'].value_counts()
plt.title('Marital Status Distribution')
plt.pie(ms_cnt,labels=ms_cnt.index,autopct='%.0f%%')
plt.subplot(3,3,7)
us_cnt = data['Usage'].value_counts()
plt.title('Usage Distribution')
plt.pie(us_cnt,labels=us_cnt.index,autopct='%.0f%%')
plt.subplot(3,3,9)
ft_cnt = data['Fitness'].value_counts()
plt.title('Fitness Distribution')
plt.pie(ft_cnt,labels=ft_cnt.index,autopct='%.0f%%')
plt.show()
```


Marital Status Distribution

Partnered 59%

INFERENCE:

- 1. KP281 Most Popular Product
- 2. Male contibutes more than female
- 3. People with Partnered marital status use this product more
- 4. Most Aerofit Customers hit the treadmill thrice a week
- 5. Their Customers are mostly has fitness scale of 3

CONDITIONAL PROBABILITY:

▼ PROBABILITY OF EACH PARAMETER FOR A GIVEN PRODUCT

```
data['Gender'].where(data['Product']=='KP281').value counts(normalize=True)
     Male
               0.5
     Female
               0.5
     Name: Gender, dtype: float64
data['Gender'].where(data['Product']=='KP481').value_counts(normalize=True)
     Male
               0.516667
     Female
               0.483333
     Name: Gender, dtype: float64
data['Gender'].where(data['Product']=='KP781').value_counts(normalize=True)
     Male
               0.825
     Female
               0.175
     Name: Gender, dtype: float64
temp = data['Product'].unique()
# to get probability of each gender for the given product
for i in range(len(temp)):
 y = data['Gender'].where(data['Product']==temp[i]).value_counts(normalize=True)
 print('PROBABILITY OF EACH GENDER FOR THE PRODUCT',temp[i])
 print(y)
     PROBABILITY OF EACH GENDER FOR THE PRODUCT KP281
     Male
               0.5
     Female
               0.5
     Name: Gender, dtype: float64
     PROBABILITY OF EACH GENDER FOR THE PRODUCT KP481
     Male
               0.516667
     Female
               0.483333
     Name: Gender, dtype: float64
     PROBABILITY OF EACH GENDER FOR THE PRODUCT KP781
               0.825
     Male
     Female
               0.175
     Name: Gender, dtype: float64
```

▼ INFERENCE:

KP281 and KP481 - almost equal contribution by both gender KP781 - Male users dominate female with 82.5%

```
temp = data['Product'].unique()

# to get probability of each MaritalStatus for the given product

for i in range(len(temp)):
    y = data['MaritalStatus'].where(data['Product']==temp[i]).value_counts(normalize=True)
    print('PROBABILITY OF EACH MARITAL STATUS FOR THE PRODUCT',temp[i])
    print(y)

    PROBABILITY OF EACH MARITAL STATUS FOR THE PRODUCT KP281
    Partnered 0.6
```

```
Single 0.4
Name: MaritalStatus, dtype: float64
PROBABILITY OF EACH MARITAL STATUS FOR THE PRODUCT KP481
Partnered 0.6
Single 0.4
Name: MaritalStatus, dtype: float64
PROBABILITY OF EACH MARITAL STATUS FOR THE PRODUCT KP781
Partnered 0.575
Single 0.425
Name: MaritalStatus, dtype: float64
```

INFERENCE:

Partnered users are more compared to single users for all product category

▼ IMPACT OF INCOME ON THE PRODUCT TYPE

INFERENCE:

KP281 and KP481 - Preferred by Mid-level income group. KP781 - Preferred by High-level income group

▼ AGE VS PRODUCT

```
temp = data['Product'].unique()

# to get the average age of users of the given product

for i in range(len(temp)):
    avg_age = data['Age'].where(data['Product']==temp[i]).mean()
    print('AVERAGE AGE OF USERS OF THE PRODUCT',temp[i])
    print(avg_age)

    AVERAGE AGE OF USERS OF THE PRODUCT KP281
    28.55
    AVERAGE AGE OF USERS OF THE PRODUCT KP481
    28.9
    AVERAGE AGE OF USERS OF THE PRODUCT KP781
    29.1
```

INFERENCE:

Users of these Product are almost of the same age group of around 30 years with some outliers.

▼ FITNESS PERCENT OF EACH GENDER FOR THE GIVEN PRODUCT

```
temp = data['Product'].unique()
temp_gender = data['Gender'].unique()
# to get fitness percent of each gender for the given product
for i in range(len(temp)):
```

```
for j in range(len(temp_gender)):
 y = data['Fitness'].where((data['Product']==temp[i])&(data['Gender']== temp_gender[j])).value_counts(normalize=True)
  print('FITNESS PERCENTAGE OF ',temp_gender[j],' FOR THE PRODUCT',temp[i])
   FITNESS PERCENTAGE OF Male FOR THE PRODUCT KP281
   3.0
         0.700
   4.0
          0.150
   2.0
         0.100
   1.0
         0.025
   5.0
         0.025
   Name: Fitness, dtype: float64
   FITNESS PERCENTAGE OF Female FOR THE PRODUCT KP281
   3.0
         0.650
   2.0
         0.250
   4.0
         0.075
   5.0
         0.025
   Name: Fitness, dtype: float64
   FITNESS PERCENTAGE OF Male FOR THE PRODUCT KP481
         0.677419
         0.193548
   4.0
         0.129032
   Name: Fitness, dtype: float64
   FITNESS PERCENTAGE OF Female FOR THE PRODUCT KP481
   3.0
        0.620690
   2.0
         0.206897
   4.0
         0.137931
   1.0
        0.034483
   Name: Fitness, dtype: float64
   FITNESS PERCENTAGE OF Male FOR THE PRODUCT KP781
   5.0
         0.727273
         0.181818
         0.090909
   3.0
   Name: Fitness, dtype: float64
   FITNESS PERCENTAGE OF Female FOR THE PRODUCT KP781
   5.0
        0.714286
   4.0
         0.142857
   3.0
         0.142857
   Name: Fitness, dtype: float64
```

▼ INFERENCE:

Irrespective of Gender, the Users of KP781 are more fit with around 72% of users comes under fitness band 5

```
avg_income = data['Income'].mean()
data['Product'].where((data['Gender']=='Male')&(data['Income']>=avg_income)).value_counts(normalize=True)
     KP781
             0.613636
     KP281
             0.227273
     KP481
             0.159091
     Name: Product, dtype: float64
avg_income = data['Income'].mean()
data['Product'].where((data['Gender']=='Female')&(data['Income']>=avg_income)).value_counts(normalize=True)
     KP281
             0.421053
     KP481
             0.315789
     KP781
             0.263158
     Name: Product, dtype: float64
df = data[['Product','Gender','MaritalStatus']].melt()
df1=df.groupby(['variable','value'])[['value']].count()/len(data)
df1.rename(columns={'value':'% contribution'}).reset_index()
```

	variable	value	% contribution
0	Gender	Female	0.422222
1	Gender	Male	0.577778
2	MaritalStatus	Partnered	0.594444
3	MaritalStatus	Single	0.405556
4	Product	KP281	0.44444
5	Product	KP481	0.333333
6	Product	KP781	0.222222

BUSINESS INSIGHTS:

1. PRODUCT:

- 1. 3 unique products KP281, KP481, KP781
- 2. KP281 most preferred with overall contribution of 44%

2. AGE:

- 1. Age group varies from 18 years to 50 years
- 2. Most people belong to the age group of 25 years
- 3. KP781 users have most outliers when age is considered

3. MARITAL STATUS:

- 1. Partnered/Married users are more than that of unmarried users
- 2. Partnered users contribute 59% of the total

4. GENDER:

- 1. Male users dominate female users
- 2. Male 57%, Female 42%

5. USAGE:

- 1. KP281, KP481 average usage is thrice a week
- 2. KP781 average usage is 4 times a week

6. EDUCATION:

- 1. KP281, KP481 average education of the users is 16 years
- 2. KP781 average education of the users is 18 year

OBSERVATION:

People with,

- 1. higher education,
- 2. more income,
- 3. tend to use treadmill more than 4 times a week,
- 4. walk more than 100 miles a week,
- 5. and are more fit

prefer using KP781

▼ RECOMMENDATIONS:

- 1. KP281, KP481 most suited for mid-level income group.
- 2. KP781 marketed among premium customers.
- 3. KP781 Most suited for more fit persons who use treadmill almost 5 to 7 days a week and walk more than 100 miles which means its suited for a **sporty** persons and **fitness freak**.
- 4. Survey is recommended for income group below 40,000 to get a wider graph.
- 5. Promote Products among Single (Marital status) with workshops and free trials.
- 6. Encourage Female users emphasize on the importance of fitness.