

مبانی یادگیری ماشین Intro to Machine Learning

بابک نجار اعرابی

دانشکده مهندسی برق و کامپیوتر دانشگاه تهران

نيم سال اول سال تحصيلي 04-1403

موضوع این جلسه

مروری بر روش های بهینه سازی جلسه اول

Babak Nadjar Araabi

School of Electrical & Computer Eng University of Tehran

ECE-UT - Fall 2024

Minima and Maxima

Minima and Maxima, 3D

A saddle point (in red) on the graph of $z = x^2 - y^2$ (hyperbolic paraboloid)

A Local Vicinity (infinite-small)

Unconstrained Optimization

An extreme point of a function $f(\mathbf{X})$ defines either a maximum or a minimum of the function. Mathematically, a point $\mathbf{X}_0 = (x_1^0, \dots, x_j^0, \dots, x_n^0)$ is a maximum if

$$f(\mathbf{X}_0 + \mathbf{h}) \le f(\mathbf{X}_0)$$

for all $\mathbf{h} = (h_1, \dots, h_j, \dots, h_n)$, where $|h_j|$ is sufficiently small for all j. In a similar manner, \mathbf{X}_0 is a minimum if

$$f(\mathbf{X}_0 + \mathbf{h}) \ge f(\mathbf{X}_0)$$

Necessary Condition for Extreme Point

Theorem 20.1-1. A necessary condition for \mathbf{X}_0 to be an extreme point of $f(\mathbf{X})$ is that

$$\nabla f(\mathbf{X}_0) = 0$$

Because the necessary condition is also satisfied at inflection and saddle points, it is more appropriate to refer to the points obtained from the solution of $\nabla f(\mathbf{X}_0) = \mathbf{0}$ as **stationary** points. The next theorem establishes the sufficiency conditions for \mathbf{X}_0 to be an extreme point.

Sufficient Condition for Extremum

Theorem 20.1-2. A sufficient condition for a stationary point \mathbf{X}_0 to be an extremum is that the Hessian matrix \mathbf{H} evaluated at \mathbf{X}_0 satisfy the following conditions:

- (i) **H** is positive definite if \mathbf{X}_0 is a minimum point.
- (ii) **H** is negative definite if \mathbf{X}_0 is a maximum point.

In general, if $|\mathbf{H}|_{\mathbf{X}_0}$ is indefinite, \mathbf{X}_0 must be a saddle point. For nonconclusive cases, \mathbf{X}_0 may or may not be an extremum, and the sufficiency condition becomes rather involved, because higher-order terms in Taylor's expansion must be considered.

1D Function

If $f''(y_0) = 0$, higher-order derivatives must be investigated as the following theorem requires.

Theorem 20.1-3. Given y_0 , a stationary point of f(y), if the first (n-1) derivatives are zero and $f^{(n)}(y_0) \neq 0$, then

- (i) If n is odd, y_0 is an inflection point.
- (ii) If n is even, then y_0 is a minimum if $f^{(n)}(y_0) > 0$ and a maximum if $f^{(n)}(y_0) < 0$.

Newton-Raphson Method

In general, the necessary condition $\nabla f(\mathbf{X}) = \mathbf{0}$ may be highly nonlinear and, hence, difficult to solve. The Newton-Raphson method is an iterative algorithm for solving simultaneous nonlinear equations.

Consider the simultaneous equations

$$f_i(\mathbf{X}) = 0, i = 1, 2, \dots, m$$

Let \mathbf{X}^k be a given point. Then by Taylor's expansion

$$f_i(\mathbf{X}) \approx f_i(\mathbf{X}_k) + \nabla f_i(\mathbf{X}_k)(\mathbf{X} - \mathbf{X}_k), i = 1, 2, \dots, m$$

Thus, the original equations, $f_i(\mathbf{X}) = 0, i = 1, 2, \dots, m$, may be approximated as

$$f_i(\mathbf{X}_k) + \nabla f_i(\mathbf{X}_k)(\mathbf{X} - \mathbf{X}_k) = 0, i = 1, 2, \dots, m$$

These equations may be written in matrix notation as

$$\mathbf{A}_k + \mathbf{B}_k(\mathbf{X} - \mathbf{X}_k) = \mathbf{0}$$

If \mathbf{B}_k is nonsingular, then

$$\mathbf{X} = \mathbf{X}_k - \mathbf{B}_k^{-1} \mathbf{A}_k$$

Iterative Process in Newton-Raphson

The idea of the method is to start from an initial point X_0 , and then use the equation above to determine a new point. The process may or may not converge depending on the selection of the starting point. Convergence occurs when two successive points, X_k and X_{k+1} , are approximately equal (within specified acceptable tolerance).

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

 $f'(x_k) = \frac{f(x_k)}{x_k - x_{k+1}}$ —meaning that x_{k+1} is determined

from the slope of f(x) at x_k , where $\tan \theta = f'(x_k)$

