Formal Distributional Semantics

Aurélie Herbelot

University of Trento Centre for Mind/Brain Sciences

Trento 2016

Do distributions model meaning?

Evaluating models of meaning

- A model of word meaning:
 - Cats are robots from Mars that chase mice.
 - Dogs are robots from Mars that chase cats.
 - Trees are 3D holograms from Jupiter.
- A similarity-based evaluation of this model would find that cats and dogs are very similar, but both are much less similar to trees.
- A good model of language?

A representation of meaning?

- A theory of meaning has to say how language relates to the world.
 For instance, model-theoretic semantics says that the meaning of cat is the set of all cats in a world.
- In distributionalism, meaning is the way we use words to talk about the world. No metaphysical assumptions.
- So if we use the words 'robots from Mars' to talk about cats, all is fine (see whales and fish).
- Not quite...

A representation of meaning?

- We can't get rid of the world so easily...
- There are systematic dependencies between lexical and world knowledge (well researched in model-theoretic semantics).
- Example:
 - Kim writes books: $\exists x^*[book'(x^*) \land write'(Kim, x^*)]$
 - Kim likes books: GEN x[book'(x) → like'(Kim, x)]
- We observe an effect of the lexicon over the quantification of the object, i.e. over a certain model of the world.
- Conversely, how can we utter The neighbour's cat has lungs? (The problem of unobserved data: Landauer & Dumais 1997 continued...)

A representation of meaning?

- Distributional semantics does not explain how our knowledge of language and our knowledge of the world interact.
- If only we had stuck with model-theoretic semantics...

• But model-theoretic semantics is bad at modelling abstract terms, adjective classes, explaining language acquisition, giving an account of senses, etc... It has no cognitive plausibility.

What should we do?

- Find a way to travel between the world of language and the world of things, and back.
- I.e. find a mapping between distributional and model-theoretic semantics:
 - Find a vectorial representation of model theory.
 - Define a function to map distributional vectors to set-theoretic vectors.

The curious case of quantifiers

The logical meaning of quantifiers

Aristotle's 'square of opposition'

	Affirmation	Denial
Universal	Every A is B	No A is B
Particular	Some A is B	Not every A is B

- Modern formal logic:
 - \exists : $\exists x [cat'(x) \land sleep'(x)]$
 - \forall : $\forall x[cat'(x) \longrightarrow sleep(x)]$

Generalised quantifiers

- Quantifiers have a restrictor and a scope.
 All cats are mammals. Some cats are ginger.
- Simple interpretation: set overlap.

• The logic selects *individuals* over which to quantify: $\exists x, \forall x,$ etc.

Beyond \exists and \forall

- no: monotone decreasing.
- most: what is most? More than half? Nearly all?
- many: Many cars have a GPS, Many dogs have three legs.
- the, a: The cat sleeps, The cat is a mammal, A cat sleeps, A cat is independent, Have you fed the fish?
- Ø: generics (Carlson 1977). Cats are mammals, Ducks lay eggs, Mosquitoes carry malaria.
- ...

The pragmatics of quantifiers

- Some quantifiers 'feel better' than others.
- Gumball machine experiments: You got two/some/some of/all (the) gumballs (Degen & Tanenhaus 2015).

The psychology of quantifiers

- Children acquire quantifiers *after* generics (Hollander et al 2002).
- Children acquire numerical abilities (counting) after the Approximate Number Sense (ANS) (Mazzocco et al 2011).

"Who has more crayons?"

 Adults make quantification 'mistakes': (All) ducks lay eggs. (Leslie et al 2011).

Non-grounded quantification

- All cats are mammals, Most cats have four legs, We had profiteroles for dessert (at the restaurant last night).
- In non-grounded quantification, it is often unclear what exactly the restrictor's set consists of. E.g. no one knows the exact composition of the set of cats.
- Often, the set will anyway be too large to count: Most ants have six legs.

Quantifying over non-grounded sets (Work with Eva Maria Vecchi)

Do people have models in their heads?

- Premise 1: people have conceptual knowledge.
- Premise 2: concepts are not sets (concept ant is not the set of ants).
- Is quantification derivable from concepts?
- To what extent are the resulting models shared amongst individuals?

The research question

- How do native speakers of English model relations between non-grounded sets?
- Given the generic Bats are blind:
 - how do humans quantify the statement? (some, most, all bats?)
 - what does this say about their concepts of bat and blindness?
- Problem: explicit quantification cannot directly be studied from corpora, being rare in naturally occurring text (7% of all NPs – see Herbelot & Copestake 2011).

Quantifying the McRae norms

- The McRae norms (2005): a set of feature norms elicited from 725 human participants for 541 concepts.
- The dataset contains 7257 concept-feature pairs such as:
 - airplane used-for-passengers
 - bear is-brown
- ... quantified.

Annotation setup

- Three native English speakers (one Southeast-Asian and two American speakers, all computer science students.
- For each concept-feature pair (C, f) in the norms, provide a label expressing the ratio of instances of C having the feature f.
- Allowable labels: NO, FEW, SOME, MOST, ALL.
- An additional label, KIND, for usages of the concept as a kind (e.g. beaver symbol-of-Canada).

Minimising quantifier pragmatics

- The quantification of bats are blind depends on:
 - the speaker's beliefs about the concepts bat and blind (lexical semantics, world knowledge);
 - their personal interpretation of quantifiers in context (pragmatics of quantifier use).
- We focus on what people believe about the actual state of the world (regardless of their way of expressing it), and how this relates to their conceptual and lexical knowledge.
- The meaning of the labels NO,FEW,SOME,MOST,ALL must be fixed (as much as possible!)

Annotation guidelines

- ALL: 'true universal' which either a) doesn't allow exceptions (as in the pair cat is-mammal) or b) may allow some conceivable but 'unheard-of' exceptions.
- MOST: all majority cases, including those where the annotator knew of actual real-world exceptions to a near-definitional norm.
- NO/FEW mirror ALL/MOST.
- SOME is not associated with any specific instructions.
- Additional guidelines: in case of hesitation, choose the label corresponding to lower set overlap (i.e. prefer SOME to MOST, MOST to ALL, etc).

Disclaimer

Disclaimer

- We are not modelling the way that speakers naturally use the determiners some, most, all, etc.
- We are modelling the perceived overlap between the set denoted by a noun and the set denoted by a predicate
- Fixing the labels' interpretation does not completely suppress all unwanted effects (see 'generic' trap, Leslie 2011).

Example annotations

Concept	Feature	
	is_muscular	ALL
ape	is_wooly	MOST
	lives_on_coasts	SOME
	is_blind	FEW
	has_3_wheels	ALL
	used_by_children	MOST
tricycle	is_small	SOME
	used_for_transportation	FEW
	a_bike	NO

Table: Example annotations for McRae feature norms.

Participants took 20 or less hours to complete the task, which they
did at their own pace, in as many sessions as they wished.

Inter-annotator agreement

- We need an inter-annotator agreement measure that assumes separate distributions for all three coders.
- We would also like to account for the seriousness of the disagreements: a disagreement between NO and ALL should be penalised more than one between MOST and ALL.
- Weighted Kappa (κ_w , Cohen 1968) satisfies both requirements:

$$\kappa_{W} = 1 - \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} w_{ij} o_{ij}}{\sum_{i=1}^{k} \sum_{j=1}^{k} w_{ij} e_{ij}}$$
(1)

The weight matrix

- Weighted kappa requires a weight matrix to be set, to quantify disagreements.
- Setup 1: we use prevalence estimates from the work of Khemlani et al (2009) (after some mapping of their classification to ours).
- Setup 2: we exhaustively search the space of possible weights and report the highest agreement – under the assumption that more accurate prevalence estimates will result in higher agreement.

Prevalence estimates (Khemlani et al 2009)

Predication type	Example	Prevalence
Principled	Dogs have tails	92%
Quasi-definitional	Triangles have three sides	92%
Majority	Cars have radios	70%
Minority characteristic	Lions have manes	64%
High-prevalence	Canadians are right-handed	60%
Striking	Pit bulls maul children	33%
Low-prevalence	Rooms are round	17%
False-as-existentials	Sharks have wings	5%

Table: Classes of generic statements with associated prevalence, as per Khemlani (2009).

Results

	$\kappa_{\it W}^{12}$	$\kappa_{\it W}^{13}$	$\kappa_{\it W}^{23}$	κ_{w}^{A}
full				
кн09	.37	.34	.50	.40
BEST	.44	.40	.50	.45
maj				
кн09	.49	.48	.60	.52
BEST	.57	.53	.67	.59

Table : κ_W for MCRAE_{full} and MCRAE_{maj}. Best estimates for exhaustive search are NO (0%), FEW (5%), SOME (35%), MOST (95%), ALL (100%)

Per-feature agreement

BR Label	Example	Freq.	$\kappa_{\it W}^{12}$	$\kappa_{\it W}^{13}$	$\kappa_{\it W}^{\it 23}$	$\kappa_{\it W}^{\it A}$
taxonomic	axe a_tool	713	.66	.48	.56	.57
visual-form	ball is_round	2330	.48	.44	.54	.49
function	hoe used_for_farming	1489	.36	.35	.50	.40
encyclopaedic	wasp builds_nests	1361	.39	.34	.37	.37
visual-colour	pen is_red	421	.44	.27	.30	.34
visual-motion	canoe floats	332	.28	.20	.46	.31
smell	skunk smells_bad	24	.34	.48	.12	.31
taste	pear tastes_sweet	84	.22	.29	.36	.29
tactile	toaster is _hot	242	.19	.31	.30	.27
sound	tuba is_loud	143	.11	.10	.36	.19

Table : Per-feature agreement for MCRAE $_{\it full}$, sorted by $\kappa_{\it w}^{\it A}$

General observations

- Substantial agreement on the majority test set: humans do have similar 'models' of the world (phew!)
- Even when features are reliably produced for a given concept, their quantification may vary significantly between annotators.
- Agreement is highly dependent on the corresponding functional or sensory type.
- No wonder children acquire generics before quantifiers...
- No wonder explicit quantification is infrequent (a cause for disagreements)...

Many speakers, many worlds

- There isn't one model of the world out there. There are as many world as there are speakers. (Bad for a cognitively plausible truth-theoretic semantics.)
- Can we explain how models emerge in a speaker-dependent way?
- Can we explain how the speaker-dependent models significantly overlap?

From distributional to set-theoretic spaces (Work with Eva Maria Vecchi)

Distributional semantics

'Meaning is use'.

- DS is a general representation of the usages of a word. Akin to concept representation.
- Rarely talked about: DS is by nature a theory that accommodates speaker-dependent effects.

A state-of-the-art distributional cat (Baroni et al, 2014)

0.042 seussentennial
0.041 scaredy
0.035 saber-toothed
0.034 un-neutered
0.034 meow
0.034 unneutered
0.033 fanciers
0.033 pussy
0.033 pedigreed
0.032 sabre-toothed
0.032 tabby
0.032 civet
0.032 redtail
0.032 meowing
0.032 felis
0.032 whiskers
0.032 morphosys
0.031 meows
0.031 scratcher

0.031	mouser
0.031	orinthia
0.031	scarer
0.031	repeller
0.031	miaow
0.031	sphynx
0.031	headbutts
0.031	spay
0.030	
0.030	yowling
0.030	flat-headed
0.030	genzyme
0.030	tail-less
0.030	shorthaired
	longhaired
0.030	short-haired
0.030	siamese
0.030	english/frenc

0.029 sabertooth
0.029 woodpile
0.029 mewing
0.029 ragdoll
0.029 purring
0.029 whiskas
0.029 shorthair
0.029 scalded
0.029 retranslation
0.029 feral
0.028 whisker
0.028 silvestris
0.028 laziest
0.028 flap
0.028 purred
0.028 mummified
0.028 cryptozoologica

0.030 strangling

Do cats have heads?

- grep "head" state-of-the-art-cat-distribution.txt
- 0.031179 headbutts
 0.030823 flat-headed
 0.016109 two-headed
 0.009172 headless
- 0.002176 pilgrim
 0.002176 out
 0.002173 head
 0.002169 merge
 0.002165 idjot

Do cats have heads?

- grep "head" state-of-the-art-cat-distribution.txt
- 0.031179 headbutts
 0.030823 flat-headed
 0.016109 two-headed
 0.009172 headless
- 0.002176 pilgrim
 0.002176 out
 0.002173 head
 0.002169 merge
 0.002165 idjot

Do cats have heads?

- grep "head" state-of-the-art-cat-distribution.txt
- 0.031179 headbutts
 0.030823 flat-headed
 0.016109 two-headed
 0.009172 headless
- 0.002176 pilgrim
 0.002176 out
 0.002173 head
 0.002169 merge
 0.002165 idiot

From words to worlds

I picked some pears today. They're really nice.

The reporters asked questions at the press conference.

The addax is a mammal.

[Pictures: CC by beautifulcataya, NASA and Zachi Evenor.]

A set-theoretic vector space

Distributional vector spaces

The context *meow* is very related to *cat*.

The context *sleep* is moderately related to *cat*.

Weight: how lexically characteristic a context is for a target.

Set-theoretic vector spaces

The attribute *has head* applies to ALL cats.

The attribute *is ginger* applies to SOME cats.

Weight: the set overlap between target and attribute.

QMR: The McRae norms, quantified

Concept	Feature	
	is_muscular	ALL
	is_wooly	MOST
ape	lives_on_coasts	SOME
	is_blind	FEW
	has_3_wheels	ALL
	used_by_children	MOST
tricycle	is_small	SOME
	used_for_transportation	FEW

Axes and hatchets

21/2	hatahat
axe	hatchet
a tool	a tool
is sharp	is sharp
has a handle	has a handle
used for cutting	used for cutting
has a metal blade	made of metal
a weapon	an axe
has a head	is small
used for chopping	_
has a blade	_
is dangerous	_
is heavy	_
used by lumberjacks	_
used for killing	_

- Inconsistencies in McRae.
- Ideally, each concept would be annotated against all features. That is 541 * 2172 = 1, 175,052 annotations!

AD: The animal-only dataset

- Additional animal data from Herbelot (2013): a set of 72 animal concepts with quantification annotations along 54 features.
- Comprehensiveness of annotation: the 72 concepts were annotated along all 54 features. This ensures the availability of a large number of negatively quantified pairs (e.g. *cat is-fish*).

From quantifiers to weights

 Both McRae and AD datasets are annotated with natural language quantifiers rather than set cardinality ratios, so we convert the annotation into a numerical format:

$$\begin{array}{ccc} \text{ALL} & \rightarrow & 1 \\ \text{MOST} & \rightarrow & 0.95 \\ \text{SOME} & \rightarrow & 0.35 \\ \text{FEW} & \rightarrow & 0.05 \\ \text{NO} & \rightarrow & 0 \end{array}$$

 These weights correspond to the best weighted kappa obtained for the McRae dataset (see H&V).

Converting annotated data into vectors

Concept	Features	Annotations
	an_axe	ALL
	a_tool	ALL
	has_a_handle	ALL
hatchet	is_sharp	MOST
	is_made_of_metal	MOST
	is _used_for_cutting	MOST
	is _small	SOME

Converting annotated data into vectors

Vector	Dimensions	Weights
	an_axe	1
	a_tool	1
	has_a_handle	1
	is_sharp	0.95
hatchet	is_made_of_metal	0.95
naichei	is _used_for_cutting	0.95
	is _small	0.35
	has_a_beak	0
	taste_good	0

Experiments

Three configurations

Space	# train	# test	# dims	# test
	vec.	vec.		inst.
MT_{QMR}	400	141	2172	1570
MT_{AD}	60	12	54	648
$MT_{\mathit{QMR}+\mathit{AD}}$	410	145	2193	1595

The mapping function

- Two distributional spaces:
 - a co-occurrence based space (DS_{cooc} see paper for details);
 - context-predicting vectors (DS_{Mikolov}) available as part of the word2vec project (Mikolov et al, 2013).
- We learn a function f: DS → MT that transforms a distributional semantic vector for a concept to its model-theoretic equivalent.
- f: linear function. We estimate the coefficients of the function using (multivariate) partial least squares regression (PLSR).

Results

Model-Theoretic		Distributional		
train	test	DS_{cooc}	$DS_{Mikolov}$	human
MT_{QMR}	MT _{QMR}	0.350	0.346	0.624
MT_{AD}	MT_{AD}	0.641	0.634	_
$MT_{\mathit{QMR}+\mathit{AD}}$	$MT_{\mathit{QMR}+\mathit{AD}}$	0.569	0.523	_

- Results for the QMR and AD dataset taken separately, as well as their concatenation.
- Performance on the domain-specific AD is very promising, at 0.641 correlation.
- Performance increases substantially when we train and test over the two datasets (MT_{QMB+AD}).

Results

Model-Theoretic		Distributional		
train	test	DS_{cooc}	DS _{Mikolov}	human
$MT_{\mathit{QMR}+\mathit{AD}}$	MT _{animals}	0.663	0.612	_
$MT_{\mathit{QMR}+\mathit{AD}}$	MT _{no-animals}	0.353	0.341	_

- We investigate whether merging the datasets generally benefits all McRae concepts or just the animals.
- The result on the $MT_{animals}$ test set, which includes animals from the AD and the McRae datasets, shows that this category fares very well, at $\rho=0.663$.
- No improvements for concepts of other classes.

Results

Model-Theoretic		Distributional		
train	test	DS_{cooc}	$DS_{Mikolov}$	human
MT_{QMR}	MT _{QMR} animals	0.419	0.405	0.663
$MT_{\mathit{QMR}+\mathit{AD}}$	$MT_{\mathit{QMR}^{\mathit{animals}}}$	0.666	0.600	0.663

- We quantify the specific improvement to the McRae animal concepts by comparing the correlation obtained on the McRae animal features (MT_{QMRanimals}) after training on a) the McRae data alone and b) the merged dataset.
- Performance increases from 0.419 to 0.666 on that specific set.
 This is in line with the inter-annotator agreement (0.663).

Error analysis

- Nearest neighbour analysis: the system suffers from the missing features in the OMR data.
- In the gold standard itself, some pairs are not as close to each other as they should be:

```
axe – hatchet 0.50
alligator – crocodile 0.47
church – cathedral 0.45
dishwasher – fridge 0.21
```

Compare with ape - monkey 0.97.

Mapping back to quantifiers

Instance	Mapped	Gold
raven a_bird	most	all
pigeon has_hair	few	no
elephant has_eyes	most	all
crab is_blind	few	few
snail a_predator	no	no
octopus is_stout	no	few
turtle roosts	no	few
moose is_yellow	no	no
cobra hunted_by_people	some	some
snail forages	few	no
chicken is_nocturnal	few	no
moose has_a_heart	most	all
pigeon hunted_by_people	no	few
cobra bites	few	most

Producing 'true' statements with 73% accuracy.

Conclusion

Travelling between language and world

0.042 seussentennial 0.041 scaredy 0.035 saber-toothed 0.034 un-neutered 0.034 meow 0.034 unneutered 0.033 fanciers 0.033 pussy 0.033 pedigreed 0.032 sabre-toothed 0.032 tabby 0.032 civet 0.032 redtail 0.032 meowing 0.032 felis 0.032 whiskers 0.032 morphosys / 0.031 meows 0.031 scratcher ... 1 walks
1 purrs
1 meows
1 has-eyes
1 has-a_heart
1 has-a_head
1 has-paws
1 has-fur
1 has-claws

1 has-a_tail
1 has-4_legs
1 an-animal
1 a-mammal
1 a-feline
0.7 is-independent
0.7 eats-mice
0.7 is-carnivorous
0.3 is-domestic

Meaning??

