Jnanesh Sathisha Karmar- EE25BTECH11029

Question If with reference to the right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , $\alpha = 3\hat{i} - \hat{j}$, $\beta = 2\hat{i} + \hat{j} - 3\hat{k}$, then express β in the form $\beta = \beta_1 + \beta_2$ where β_1 is parallel to α and β_2 is perpendicular to α .

Solution Given details:

$$\alpha = 3\hat{i} - \hat{j} = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} \tag{1}$$

$$\beta = 2\hat{i} + \hat{j} - 3\hat{k} = \begin{pmatrix} 2\\1\\-3 \end{pmatrix} \tag{2}$$

 β_1 is a projection of β on α

The projection formula for projection is:

$$\beta_1 = \frac{\beta^{\mathrm{T}} \alpha}{\|\alpha^2\|} \alpha \tag{3}$$

$$= \frac{\left(2 \quad 1 \quad -3\right) \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}}{(3)^2 + (-1)^2 + (0)^2} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} \tag{4}$$

$$=\frac{5}{10} \begin{pmatrix} 3\\-1\\0 \end{pmatrix} \tag{5}$$

$$= \begin{pmatrix} \frac{3}{2} \\ \frac{-1}{2} \\ 0 \end{pmatrix} \tag{6}$$

Now according to the given equation:

$$\beta = \beta_1 + \beta_2 \tag{7}$$

$$\beta_2 = \beta - \beta_1 \tag{8}$$

$$\beta_2 = \begin{pmatrix} 2\\1\\-3 \end{pmatrix} - \begin{pmatrix} \frac{3}{2}\\\frac{-1}{2}\\0 \end{pmatrix} \tag{9}$$

$$\beta_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ -3 \end{pmatrix} \tag{10}$$

1

Lets verify wheter β_2 is perpendicular to α For that:

$$\alpha^T \cdot \beta_2 = 0 \tag{11}$$

$$\begin{pmatrix} 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$$
(12)

Therefore β_2 is perpendicular to α Therefore β is:

$$\beta = \beta_1 + \beta_2 \tag{13}$$

$$\beta = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ -3 \end{pmatrix} \tag{14}$$

3D Lines from C Library

Fig. 0. vectors