## Big Bird: Transformers for Longer Sequences

Manzil Zaheer Guru Guruganesh

Google Research, USA

MANZILZ@GOOGLE.COM GURUG@GOOGLE.COM

Google Research, Mountain View, CA, USA

Avinava Dubey Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed

AVINAVADUBEY@GOOGLE.COM



### **Intro & Overview**

# Limitations of Previous Transformers-Based Models

 $O(n^2)$  quadratic dependency (mainly in terms of memory)

### To remedy this

- ullet BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear O(n)
- theoretical analysis
- question answering \summarization\ genomics

### **Architecture Overview**



Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence of attention. (a) random attention with r=2, (b) sliding window attention with w=3 (c) global attention with g=2. (d) the combined BIGBIRD model.

### **Random Attention**

Each query attends over r random number of keys



- $ullet O(n^2) o O(r \cdot n) = O(n)$
- the shortest path between any two nodes is logarithmic in the number of nodes

#### **Window Attention**

A sliding window attention, so that during self attention of width w, query at location i attends from i - w/2 to i + w/2 keys.



- $ullet O(n^2) o O(w \cdot n) = O(n)$
- A great deal of information about a token can be derived from its neighboring tokens.
- Simple Erdos-Renyi random graphs do not have a high clustering coefficient, but small world graphs exhibit high clustering coefficient

#### **Global Attention**

- BigBird-ITC
   In internal transformer construction (itc), make some existing tokens "global", which attend over the entire sequence
- BigBird-ETC
   In extended transformer construction (etc), include additional "global" tokens such as CLS

### **Theoretical Result**

• Universal Approximators of sequence to sequence functions

**Definition 1.** The star-graph S centered at 0 is the graph defined on  $\{0, \ldots, n\}$ . The neighborhood of all vertices i is  $N(i) = \{0, i\}$  for  $i \in \{1, \ldots, n\}$  and  $N(0) = \{1, \ldots, n\}$ .

**Theorem 1.** Given  $1 and <math>\epsilon > 0$ , for any  $f \in \mathcal{F}_{CD}$ , there exists a transformer with sparse-attention,  $g \in \mathcal{T}_D^{H,m,q}$  such that  $d_p(f,g) \leq \epsilon$  where D is any graph containing star graph S.

- Turning Complete
- Limitations

We demonstrate a natural task which can be solved by the full attention mechanism in O(1)layers. However, under standard complexity theoretic assumptions, this problem requires  $\tilde{\Omega}(n)$ -layers for any sparse attention layers with  $\tilde{O}(n)$  edges (not just BIGBIRD). (Here  $\tilde{O}$  hides poly-logarthmic factors.)

# **Experimental Results**

QA

| Model       | $\operatorname{HotpotQA}$ |              |      | NaturalQ    |      | TriviaQA                | WikiHop             |
|-------------|---------------------------|--------------|------|-------------|------|-------------------------|---------------------|
| Wiodel      | Ans                       | Sup Joint LA |      | SA          | Full | $\overline{\text{MCQ}}$ |                     |
| RoBERTa     | 73.5                      | 83.4         | 63.5 | -           | -    | 74.3                    | 72.4                |
| Longformer  | 74.3                      | 84.4         | 64.4 | -           | -    | 75.2                    | 75.0                |
| BIGBIRD-ITC | 75.7                      | 86.8         | 67.7 | 70.8        | 53.3 | 79.5                    | $\boldsymbol{75.9}$ |
| BIGBIRD-ETC | 75.5                      | 87.1         | 67.8 | <b>73.9</b> | 54.9 | 78.7                    | $\boldsymbol{75.9}$ |

#### **Document Classification**

| Model           | IMDb [65]      | Yelp-5 [108] | Arxiv [36]                | Patents [54] | Hyperpartisan [48] |
|-----------------|----------------|--------------|---------------------------|--------------|--------------------|
| # Examples      | 25000          | 650000       | 30043                     | 1890093      | 645                |
| # Classes       | 2              | 5            | 11                        | 663          | 2                  |
| Excess fraction | 0.14           | 0.04         | 1.00                      | 0.90         | 0.53               |
| SoTA            | [89] 97.4      | [3] 73.28    | [ <mark>70</mark> ] 87.96 | [70] 69.01   | [41] 90.6          |
| Roberta         | $95.0 \pm 0.2$ | 71.75        | 87.42                     | 67.07        | $87.8 \pm 0.8$     |
| BigBird         | $95.2 \pm 0.2$ | 72.16        | 92.31                     | 69.30        | $92.2 \pm 1.7$     |

#### Summarization

|           |                          | Arxiv |       |              | $\operatorname{PubMed}$ |       |       | BigPatent |       |       |
|-----------|--------------------------|-------|-------|--------------|-------------------------|-------|-------|-----------|-------|-------|
| Μ         | Model                    |       | R-2   | R-L          | R-1                     | R-2   | R-L   | R-1       | R-2   | R-L   |
|           | SumBasic [69]            | 29.47 | 6.95  | 26.30        | 37.15                   | 11.36 | 33.43 | 27.44     | 7.08  | 23.66 |
|           | LexRank [26]             | 33.85 | 10.73 | 28.99        | 39.19                   | 13.89 | 34.59 | 35.57     | 10.47 | 29.03 |
| Prior Art | LSA [98]                 | 29.91 | 7.42  | 25.67        | 33.89                   | 9.93  | 29.70 | -         | -     | -     |
|           | Attn-Seq2Seq [86]        | 29.30 | 6.00  | 25.56        | 31.55                   | 8.52  | 27.38 | 28.74     | 7.87  | 24.66 |
|           | Pntr-Gen-Seq2Seq [78]    | 32.06 | 9.04  | 25.16        | 35.86                   | 10.22 | 29.69 | 33.14     | 11.63 | 28.55 |
|           | Long-Doc-Seq2Seq [21]    | 35.80 | 11.05 | 31.80        | 38.93                   | 15.37 | 35.21 | -         | -     | -     |
|           | Sent-CLF [82]            | 34.01 | 8.71  | 30.41        | 45.01                   | 19.91 | 41.16 | 36.20     | 10.99 | 31.83 |
|           | Sent-PTR [82]            | 42.32 | 15.63 | 38.06        | 43.30                   | 17.92 | 39.47 | 34.21     | 10.78 | 30.07 |
|           | Extr-Abst-TLM [82]       | 41.62 | 14.69 | 38.03        | 42.13                   | 16.27 | 39.21 | 38.65     | 12.31 | 34.09 |
|           | Dancer [32]              | 42.70 | 16.54 | 38.44        | 44.09                   | 17.69 | 40.27 | -         | -     | -     |
| Base      | Transformer              | 28.52 | 6.70  | 25.58        | 31.71                   | 8.32  | 29.42 | 39.66     | 20.94 | 31.20 |
|           | + RoBERTa [77]           | 31.98 | 8.13  | 29.53        | 35.77                   | 13.85 | 33.32 | 41.11     | 22.10 | 32.58 |
|           | $+ 	ext{ Pegasus [107]}$ | 34.81 | 10.16 | 30.14        | 39.98                   | 15.15 | 35.89 | 43.55     | 20.43 | 31.80 |
|           | BIGBIRD-RoBERTa          | 41.22 | 16.43 | <u>36.96</u> | 43.70                   | 19.32 | 39.99 | 55.69     | 37.27 | 45.56 |
| arge      | Pegasus (Reported) [107] | 44.21 | 16.95 | 38.83        | 45.97                   | 20.15 | 41.34 | 52.29     | 33.08 | 41.75 |
|           | Pegasus (Re-eval)        | 43.85 | 16.83 | 39.17        | 44.53                   | 19.30 | 40.70 | 52.25     | 33.04 | 41.80 |
| L         | BIGBIRD-Pegasus          | 46.63 | 19.02 | 41.77        | 46.32                   | 20.65 | 42.33 | 60.64     | 42.46 | 50.01 |

Table 8: Summarization ROUGE score for long documents.

#### Genomics

#### • Promoter Region Prediction

| Model                            | F1           |
|----------------------------------|--------------|
| CNNProm [91]<br>DeePromoter [72] | 69.7<br>95.6 |
| BIGBIRD                          | 99.9         |

Table 10: Comparison.

#### • Chromatin-Profile Prediction

| Model         | $\operatorname{TF}$ | $_{ m HM}$ | DHS  |
|---------------|---------------------|------------|------|
| gkm-SVM [31]  | 89.6                | -          | -    |
| DeepSea [109] | 95.8                | 85.6       | 92.3 |
| BigBird       | 96.1                | 88.7       | 92.1 |

Table 11: Chromatin-Profile Prediction

#### Conclusion

- BigBird satisfies all the known theoretical properties of full transformer
- the extended context modelled by BigBird greatly benefits variety of NLP tasks.
   (question answering and document summarization)
- introduce a novel application of attention based models where long contexts are beneficial: extracting contextual representations of genomics sequences like DNA.