

My Internship Experience:Development and Research Projects

[2024.04.22 - 2024.07.19]

Presenter: Chanyoung Ahn

Overview of projects

- 1 Lecture Materials: developed three lecture materials on MPI
- 2 Git Website: documentation for PaScaL_TDMA library
- 3 Benchmark: performance benchmark of large sparse matrix using three libraries

1

Lecture Materials

https://github.com/cold-young/2024_KISTI_Intern/

Developed three lecture materials on MPI

* MPI 병렬컴퓨팅교육 운영 2회 (강지훈, 권오경) : 상반기 1회 완료

파이썬을 이용한 MPI 병렬프로그래밍

Wrote up 6+ jupyter notebook materials for MPI Workshop

Python으로 실습하는 병렬컴퓨팅

Wrote up a jupyter notebook material for MPI Workshop

MNIST segmentation NN w/ MPI

Converted NN w/ MPI example to Python from C code

Overview of projects

- 1 Lecture Materials: developed three lecture materials on MPI
- 2 Git Website: documentation for PaScaL_TDMA library
- 3 Benchmark: performance benchmark of large sparse matrix using three libraries

엑사스케일 선형 해석자 수치 라이브러리 개발 / HPC Library for Exascale Linear Solvers

1단계 - 2차 연도(2024)													
4-14-16		추진 일정								책임기관			
추진내용	1	2	3	4	5	6	7	8	9	10	11	12	(소속기관)
2 수치 라이브러리 통합 저장소 구축													강지훈
국가슈퍼컴퓨터 5호기 대상 최적 병렬화 및 성능 평가													(KISTI)

2

Git Website

Documentation for PaScaL_TDMA library

Second year targets of 엑사스케일 선형 해석자 수치 라이브러리 개발

Why

2 수치 라이브러리 통합 저장소 구축

강지훈 (KISTI)

https://xccels.github.io/PaScaL_TDMA/

Role

 Develop GitHub repository & PaScaL_TDMA Library documentation site

Result

- Created xccels/PaScaL_TDMA repository
- Wrote up 5+ documentation web pages

3

Benchmark

Performance benchmark of large sparse matrix using three libraries

Parallel performance benchmark of large sparse matrix

CDE

using SuperLU-DIST, Strumpack and PaScaL TDMA *1안찬영, 1권오경 #1강지훈

	Total time (sec.)
SuperLU-DIST	348.092226
Strumpack	337.743508
PaScaL_TDMA	0.034142

Why

Second year targets of 엑사스케일 선형 해석자 수치 라이브러리 개발

국가슈퍼컴퓨터 5호기 대상 최적 병렬화 및 성능 평가

강지훈 (KISTI)

Role

Parallel benchmark of large sparse matrix using three libraries

Result

- PaScaL_TDMA is best suited to compute large tridiagonal matrices.
- (ongoing) Conference poster for targeting CDE in 2024

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

*1안찬영, 1권오경 #1강지훈

Problem We need to find suitable sparse matrix solvers that enhance efficiency.

Challenge Sparse matrix solver encounter challenges in computational efficiency,

becoming a computational bottleneck.

Solution We provide a comparative performance benchmark of three parallel solvers.

3

Benchmark

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Experimental setup

Benchmark total and factorization times with nine large sparse matrices

Comparative performance benchmark of three parallel solvers; SuperLU-DIST, Strumpack, and PaScaL_TDMA

^{*} All the computations were executed on the Nurion manycore cluster at KISTI.

	r/c	nnz	ratio
g7jac200	59,310	717,620	2.38E-04
torso1	116,158	8,516,500	6.31E-04
twotone	120,750	1,206,265	8.40E-05
stomach	213,360	3,021,648	6.64E-05
ML_Laplace	377,002	27,582,698	1.95E-04
RM07R	381,689	37,464,962	2.57E-04
mc2depi	525,825	2,100,225	7.60E-06
ecology1	1,000,000	4,996,000	5.00E-06
256 ³ TDM	16,777,216	50,331,646	1.79E-07

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Overall performance

Benchmark of Three Parallel Solvers on a 256³ Tri-diagonal Matrix

	Total time (sec)	speed up (2^5)
SuperLU-DIST	348.092226	1.2
STRUMPACK	337.743508	3.9
PaScaL_TDMA	0.034142	15.5

* A 256³ tri-diagonal matrix was tested in Nurion normal nodes, with a range of 1–4096 cores.

- PaScaL_TDMA computes the 256³ tri-diagonal matrix in the shortest total time of 0.034142 seconds.
- The solver also shows the best improvement in computation speed due to parallelization.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Baseline 1: SuperLU-DIST (1/3)

Optimization of -r -c Parameters for RM07R

np	r	c
2	1	2
4	1	4
8	2	4
16	2	8
32	4	8
64	4	16
128	8	16
256	16	16
512	16	32

- Two parameters, -r and -c, affect the performance of total and factorization times.
- As the number of cores increases, the optimized value of parameter -c tends to rise from 1 to 2, 4 ... 16.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

g7jac200

RM07R

ML_Laplace

mc2depi

ecology1

speed up

 (2^{5})

10.1

8.1

3.4

1.1

1.7

Baseline 1: SuperLU-DIST (2/3)

Benchmark of SuperLU-DIST on Six Large Sparse Matrices

256 ³ TDM	16,777,216	1.79E-07	1.2
		ve been tested ange of 1–1024	

ratio

2.38E-04

2.57E-04

1.95E-04

7.60E-06

5.00E-06

r/c

59,310

381,689

377,002

525,825

1,000,000

$$nnz_ratio = \frac{The number of nonezero}{The number of all elements}$$

(a) Total Time

(b) Factorization Time

• The efficiency of parallelization tends to decrease as the nonzero ratio decreases in SuperLU-DIST.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Baseline 1: SuperLU-DIST (3/3)

Benchmark of SuperLU-DIST on Two Large Sparse Matrices

(a) Total Time in two outliers

(b) Total Time in six matrices

The parallelization of two outlier matrices tends to increase as the nonzero ratio decreases in SuperLU-DIST.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Baseline 1 & 2: SuperLU-DIST vs. STRUMPACK

As the diagonal components become denser, SuperLU may tend to outperform STRUMPACK.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Conclusion & Discussion

- PaScaL_TDMA performs tri-diagonal matrix computations 10,000 times faster than baseline solvers.
- PaScaL_TDMA remains stable with increased cores and maintains high computation speed.
 (SuperLU-DIST: over 16 cores, STRUMPACK: 64 cores)
- The results of these performance benchmarks highlight the necessity for optimized solvers based on matrix structure.

Parallel Performance Benchmark of Large Sparse Matrix using SuperLU-DIST, Strumpack, and PaScaL_TDMA

Future Work

- It is essential to conduct a comprehensive performance comparison of the three solvers, including a time analysis with MPI functionality.
- Matrix structure impacts parallelization performance;
 analyzing this can provide valuable insights for developing more suitable libraries.
 - Diagonal matrix form reduces parallelization impact in SuperLU-DIST.
 - Increased density of diagonal components decrease parallelization impact in STRUMPACK.

Conclusion

1 Lecture Materials: developed three lecture materials on MPI

* MPI 병렬컴퓨팅교육 운영 2회 (강지훈, 권오경) : 상반기 1회 완료

- 2 Git Website: documentation for PaScaL_TDMA library
- 3 Benchmark: performance benchmark of large sparse matrix using three libraries

엑사스케일 선형 해석자 수치 라이브러리 개발 / HPC Library for Exascale Linear Solvers 1단계 - 2차 연도(2024) 추진 일정 책임기관 추진내용 (소속기관) 수치 라이브러리 통합 저장소 구축 강지훈 PaScaL_TDMA repo / website (KISTI) 국가슈퍼컴퓨터 5호기 대상 최적 병렬화 및 성능 평가 평가항목 가중치(%) 연차 연차별 목표(조건/환경) Benchmark two baselines on Nurion 삼중대각행렬 해석자에 대해 5호기(NURION KNL)에서 1024노드 (1단계) knl, from 1 node to 32 nodes. (50%) (정량) 유사 수치 라이브러리 대비 성능 20 (65,536코어, 3PF)까지 경쟁 라이브러리(SuperLU, Strumpack, 1, 2차 연도 ScaLAPACK)와의 성능 비교 및 70%의 성능 달성 * 2023 연차보고서 / 1-2. 평가 주안점의 차년도 목표

Thank you for listening

Presenter: Chanyoung Ahn

Diagonal Correlation Factor (Fail)

	r/c	nnz	nonzero ratio	Diagonal correlation factor	superlu speedup	strumpack speedup	PTDMA
g7jac200	59,310	837,936	2.38E-04	0.933829	10.1	0.9	
torso1	116,158	8,516,500	6.31E-04	0.118738	1.4	3.8	
twotone	120,750	1,224,224	8.40E-05	0.985866	18.2	0.9	
stomach	213,360	3,021,648	6.64E-05	0.999528	3.0	2.6	
ML_Laplace	377,002	27,689,972	1.95E-04	0.999949	3.4	3.9	
RM07R	381,689	37,464,962	2.57E-04	0.805946	8.1	error	
mc2depi	525,825	2,100,225	7.60E-06	0.999998	1.1	2.5	
ecology1	1,000,000	4,996,000	5.00E-06	0.999999	1.7	3.0	
256 ³ TDM	16,777,216	50331646	1.79E-07	0.999999	1.2	3.9	15.5

Pearson Correlation Factor

$$r_{XY} = rac{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight) \left(Y_{i} - \overline{Y}
ight)}{\sqrt{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight)^{2}} \sqrt{\sum_{i}^{n} \left(Y_{i} - \overline{Y}
ight)^{2}}}$$

All Matrices Benchmark in SuperLU-DIST

All Matrices Benchmark in STRUMPACK

Useful links

https://xccels.github.io/PaScaL_TDMA/	Public repository / PaScaL_TDMA Library
https://github.com/cold-young/2024_KISTI_Intern/	Public repository / MPI with segmentation materials, documentation for Supercomputing
https://github.com/cold-young/2024-CDE-KISTI/	Private repository / All benchmark files: three benchmark file, raw data, and visualization utils
Google Drive	Google Drive / All benchmark data; Total and factorization times of three solvers