代数幾何ゼミ

石井大海

早稲田大学基幹理工学部 数学科四年

2014年1月22日

変数の冪による部分空間を使った求解Ⅰ

Exercise 4-9

 $V_i = \text{span}\{[x_i]^j \mid 0 \le j\} \subseteq A$ とし、 $B_i = \{[1], \dots, [x_i^{m_i-1}]\}$ が V_i の基底であるとする.

- ① 乗算行列 m_{x_i} のこの基底に関する制限 $m_{x_i} \upharpoonright V_i$ の上の基底に関する表現行列は何か? $I \cap k[x_i]$ の生成元を求める際と同様に求められることを示せ
- ② $m_{x_i}|V_i$ の固有多項式およびその根は何か?
- ① 上のように連続した冪の形で基底 B_i が取れることも示さなくてはならないが、これは証明の結果として明らかになる。 $[x_i] \cdot [x_i^d] = a_{0d} + a_{1d}[x_i] + \cdots + a_{m_i-1,d}[x_i^{m_i-1}]$ とおく.すると m_{x_i} の基底 B_i に関する表現行列は、 $\tilde{m}_{x_i} = (a_{j,k})_{0 \leq j,k < m_i}$ となる.今 $[1], \ldots, [x_n^{m_i-1}]$ は一次独立なので,

$$[x_i] \cdot [x_i^d] = 1 \cdot [x_i^{d+1}] \quad (0 \le d < m_i - 1)$$

変数の冪による部分空間を使った求解 ||

よって、 $a_{jd} = \delta_{j,d+1}$ $(0 \le d < m_i - 1)$ である。また、 $I \cap k[x_i]$ の生成元を求めるアルゴリズムの性質より、

$$h_i(x_i) = x_i^{m_i} - (c_{m_i-1}x_i^{m_i-1} + \cdots + c_1x_i + c_0)$$

があって $I \cap k[x_i] = \langle h_i(x_i) \rangle$ となる。特に $h_i([x_i]) = 0$ より $[x_i]^{m_i} = c_{m_i-1}[x_i]^{m_i-1} + \cdots + c_1[x_i] + c_0$ である。以上より,

$$a_{jk} = \begin{cases} \delta_{j,k+1} & (0 \le k < m_i - 1) \\ c_j & (k = m_i - 1) \end{cases}$$

変数の冪による部分空間を使った求解 |||

2 上の行列を具体的に書き下してみると、以下のようになる:

$$egin{bmatrix} 0 & & c_0 \ 1 & & c_2 \ & \ddots & & dots \ & & 1 & c_{m_i-1} \end{bmatrix}$$

これは多項式 $h_i(x_i) = x_i^{m_i} - \sum_{j=0}^{m_i-1} c_j x_i^j$ の同伴行列である. よって \tilde{m}_{x_i} の最小多項式は $h_i(m_i)$ となる。 \tilde{m}_{x_i} の固有多項式を χ_i とおけば,Cayley-Hamilton の定理から $h_i \mid \chi_i$ であり,その根は一致する。特に, $\deg \chi_i = \deg h_i = m_i$ なので,結局 \tilde{m}_{x_i} の固有多項式は単元倍の差を除いて $I \cap k[x_i]$ の生成元と一致する。この時,前回までの議論から χ_i の根は V(I) の点の第 i 座標の値と一致する。

この議論を逆に辿れば、[x;] の生成する部分 k-代数の基底として連続する冪を取ってこれることが判る.

変数の冪による部分空間を使った求解 IV

Exercise 4-10

上の演習問題の結果と系 4.6 を演習 4 の方程式に適用せよ.

 m_{x_i} の固有値は V(I) の第 i 座標の値全体と一致し、その最小多項式は $I \cap k[x_i]$ のモニックな生成元 $q(x_i)$ と一致するのであった。上の結果から q(x) は $m_{x_i}|V_i$ の固有多項式でもある。よって、一般により複雑で高次な行列である m_{x_i} の固有値を求める代わりに、q(x) の同伴行列の固有値を求める事が出来るだろう。この結果については、次の問題の後で比較検討する。

第n座標の値が異なる場合の求解法I

Exercise 4-16 (Shape lemma)

 $I = \sqrt{I}$ をゼロ次元イデアルとし、V(I) の第 n 座標がみな相異なるとする. x_n が最後に来るような lex 順序に関する被約 Gr"obner 基底を G とする.

- ① |V(I)| = m の時,剰余類 $1, [x_n], ..., [x_n^{m-1}]$ が互いに一次独立となり,従って A の基底となることを示せ.
- ② ある $h_i \in k[x_n], \deg h_i < m (1 \leq i \leq n)$ があって,G は $g_1 = x_1 h_1(x_n), \ldots, g_{n-1} = x_{n-1} h_{n-1}(x_n), g_n = x_n^m h_n(x_n)$ から成ることを示せ.
- ③ 第n座標が与えられたとき、V(I)の全ての点を求める方法を与えよ。

第n座標の値が異なる場合の求解法 II

① $V(I) = \{p_1, \dots, p_m\}$ とし、 p_i の第 n 座標を $p_i^{(n)}$ と書くことにする。仮定より $p_i^{(n)}$ は相異なる。 $c_0 + c_1[x_n] + \dots + c_{m-1}[x_n^{m-1}] = 0$ としよう。このとき

$$c_0 + c_1 x_n + \cdots + c_{m-1} x_n^{m-1} \in I \cap k[x_n]$$

である. $p_i \in V(I)$ より $g(p_i) = g(p_i^{(n)}) = 0$ $(1 \le i \le m)$ である. よって、g は少なくとも m 個の異なる零点を持つ.ここで $g \ne 0$ とすると、g は高々 m-1 次なので m 個の因子を持つことに反する.よって g=0 であり、 $c_i=0$.よって $1,\ldots,[x_n^{m-1}]$ は一次独立である.特に、 $\dim A = m$ より A の基底となる.

第n座標の値が異なる場合の求解法 Ⅲ

② 前項より A の基底として $[1], ..., [x_n^{m-1}]$ が取れるので、

$$[x_i] = a_{0i} + a_{1i}[x_n] + \dots + a_{m-1,i}[x_n^{m-1}] \quad (1 \le i < n)$$
$$[x_n^m] = a_{0n} + a_{1n}[x_n] + \dots + a_{m-1,n}[x_n^{m-1}]$$

を満たす a_{ij} が一意に存在する.そこで, $h_i(x_n) = a_{0i} + a_{1i}x_n + \cdots + a_{m-1,i}x_n^{m-1}$ とおけば,これが題意を満たすことを示す.特に被約 Gröbner 基底の一意性より, $G' = \{g_1, \dots, g_n\}$ が lex に関する I の被約 Gröbner 基底であることを示せば十分である.

① $\underline{G'}$ が $\langle G' \rangle$ の Gröbner 基底であること。今,i < j なら $\mathrm{LT}(g_i)$ と $\mathrm{LT}(g_i)$ は互いに素である。よって各 $S(g_i,g_j)$ は G' を法としてゼロに簡約されることがわかる。よって G' は $\langle G' \rangle$ の Gröbner 基底である。

第n座標の値が異なる場合の求解法 IV

② $\underline{G'=I}$. $G\subseteq I'$ は上での定め方より明らかなので、逆向きの包含関係を示す. $f\in I$ を取る. これを g_1,\ldots,g_n により割り算する:

$$f = p_1g_1 + \cdots + p_ng_n + r$$

この時、割り算アルゴリズムの性質から $r = f - \sum p_i g_i$ は g_1, \dots, g_n のいずれの先頭項でも割れない。特に $\mathrm{LT}(g_i) = x_i$ (i < n) より、r は x_1, \dots, x_{n-1} を含まないので、 $r \in I \cap k[x_n]$ となる。今、系 6 および演習問題 2.2 より、 g_n は $I \cap k[x_n]$ のモニックな生成元であるから、 $g_n \mid r$ となる。割り 算アルゴリズムの性質から r = 0 または $\deg r < \deg f$ となるが、 $\deg r < \deg f$ とすると g_n が $I \cap k[x_n]$ の生成元であることに反する。よって r = 0 である。以上より $\overline{f}^{G'} = 0$ となるので、 $f \in \langle G' \rangle$ となる。

以上より、G' が I の lex に関する Gröbner 基底であることが 判った. 特に、各 g_i の形から G' は明らかに被約である. よって示された

第 n座標の値が異なる場合の求解法 V

③ x_n での相異なる値が与えられているとする. FGLM アルゴリズムなどにより I の lex に関する被約 Gröbner 基底 G を求めれば,上の議論からこの元は x_1, \ldots, x_{n-1} を x_n で表したものになっている. よって G の各元に x_n の値を代入すれば,各点での値が求まる.

比較I

	平均誤差	最大誤差	最小誤差	速度
m _{xi} の固有値	8.4525 <i>e</i> -15	$3.9088e{-14}$	$6.6613e{-16}$	21.62(ms)
左固有ベクトル	7.1401 <i>e</i> -14	$6.7264e{-13}$	$6.3541e{-15}$	296.00(<i>ms</i>)
同伴行列の固有値	3.1256e-12	2.2570e-11	$4.0309e{-15}$	105.36(<i>ms</i>)
変数の冪基底 (土策 n 座標判定)	1.4177 <i>e</i> -6	1.3166 <i>e</i> -5	3.9459e-10	208.04(<i>ms</i>)

- 誤差(元のイデアルに代入した値)に関して
 - m_{x_i} の固有値を直に計算する方法と左固有ベクトル法は大体近い(左固有ベクトルは乱択なので少しずつ変動がある)
 - 同伴行列はそれほど良くはないが、一応使い物にはなりそう

比較 ||

- 速度に関して
 - 乗算回数が一番多い筈の固有値法が一番速い
 - 左固有ベクトル法と同伴行列法は三倍ほど差がある
 - いずれも消去イデアルの生成元を計算している. プロファイル を取った所, $I \cap k[x_i]$ の生成元を求める所で時間を喰っている.
 - 現時点では [1],..., [x_i] が一次従属になるまで繰り返し LU 分解を行って方程式を解こうとしている
 - 前の時点での計算結果を捨てているので効率が悪い
 - LU 分解は n^3 オーダーなので、累積で n^4 オーダーくらいに なってしまう
 - 線型方程式の解き方を工夫しないと, 折角固有値計算の回数を 減らしても効率がかなり悪くなる

その他

- 左固有ベクトル法を実装する上で気付いたこと
 - いきなり係数の大きな多項式を生成すると誤差が大きく蓄積 する
 - → 最初は絶対値が5以下くらいから初めて、失敗する度に段々係数を大きくする