Extending Existing Blockchains with Virtualchain

Jude Nelson*, Muneeb Ali*[†], Ryan Shea[†], Michael J. Freedman*

Pretend cryptocurrencies do not exist

What's in a Proof-of-Work Blockchain?

- Total ordering of writes
- "Stable" view ordering (*)
- Append-only
- 100% replicated
- Tamper-resistant
- Anyone can write
- Fixed growth rate (pay-to-play)
- Hard to upgrade once deployed

Distributed Applications and Blockchains

Replicated state machines (RSMs) on top?

Strategy: store input history RSM₄ Bootstrapping state RSM₄ RSM, RSM₄ RSM, RSM₄ block n-3 block n-2 block n-1 block n

Advantages

- Open app membership
- Survive total app failure
- Blockchain-agnostic
- App-agnostic

Challenges

- Blockchain failure
 - Goes offline
 - "Centralization" attacks
- Blockchain forks
 - Data loss
 - Chain reorganization

Virtualchain

- Fork*-consistent RSMs on existing blockchains
- Fork detection & recovery
- Cross-chain migration

Fork*-Consistency (Li & Maziéres, NSDI'07) $FS_a = \{1, 2, 3, 4, 6\}$ RSMs in "fork sets" Fork set shares history Partition after fork detection op_6 op_7 $FS_b = \{1, 2, 3, 4, 7\}$ **FORK!** op₄ op_5 op₁ op_3 op₂ $FS_c = \{1, 2, 3, 5\}$ FORK! Time →

RSM fork set

Nakamoto Consensus Creates Fork Sets

RSM₁

S₁

Multiple leaders

RSM₁

S₁

Conflicting writes

Reorganizations Create Fork Sets

Conflicting TXs discarded

Solution: Consensus Hashes

- In-band app-level consensus
- Used for:
 - Identifying fork sets (multiplexing)
 - Fork detection and recovery
 - Blockchain migration
 - Lightweight fork set selection

Consensus Hash Construction

- *CH(n)*: cryptographic hash
- Covers state transition history ("journal")

In-band Consensus

- Fork sets: agree on *CH(n)* for all *n*
- Client: embed latest *CH* in input TX
 - Obtained from preferred fork set
- Server: consider TX only if CH is "recent"
 - "Send/ACK" with K-block timeout

Lightweight Fork Set Selection

• Given *CH*(*n*), search for *characteristic state transitions*

Dealing with Blockchain Forks

- Most forks are short-lived
 - Avoid with "confirmations"
- Long-lasting forks are rare
 - But widely noticed!
 - Due to bugs or attacks

Fork/Reorganization Detection

- Continuously audit CH history
- Alert on disagreement

Joining Fork Sets

Cross-chain Migration

On Centralization, Trust, and Cryptocurrencies

- Already trust RSM author
- Use CHECKPOINT, MIGRATE judiciously
 - Ignore with no loss of security
- Cryptocurrency: RSM input rate-limiter
 - RSMs becoming key use-case
 - Cloud market is >10x more valuable

Example: Bitcoin OP_RETURN Usage

Source: Harry Kalodner

Concluding Remarks

- In production for >1 year in Blockstack
- https://github.com/blockstack/blockstack-virtualchain
- Ali, Nelson, Shea, Freedman (ATC'16)
- Migrated from Namecoin to Bitcoin

Thank you! Questions?