${\bf Experimento~09-PSI-3212}$ Natanael Magalhães Cardoso, nUSP: 8914122

Item 1.a

Figura 1: Esquema do circuito.

Figura 2: Simulação para V_e e V_c com o potenciômetro ajustado em 150 $\Omega.$

Figura 3: Simulação para V_e e V_c com o potenciômetro ajustado em 600 $\Omega.$

Figura 4: Simulação para V_e e V_c com o potenciômetro ajustado em 6.2 k Ω .

Figura 5: Simulação para V_e e V_c com o potenciômetro ajustado em 7.7 k Ω .

Figura 6: Simulação para V_e e V_c com o potenciômetro ajustado em 10 k Ω .

Item 1.b

Nas figuras 2, 3 e 4, as curvas de V_c apresentam um regime amortecido ou subamortecido, sendo que, no primeiro caso, a tensão demora mais tempo para estabilizar-se que

o tempo de inversão do sinal da fonte. A tensão V_c na figura 5 está mais próxima de uma resposta criticamente amortecida enquanto a curva da figura 6 aproxima-se mais de um regime superamortecido, por demorar mais para estabilizar-se com a tensão da fonte. Em ambos os casos, a tensão do capacitor sempre tende a estabilizar-se com tensão de entrada (fonte).

Item 2.a

Figura 7: Simulação para regime subamortecido.

$$R_p = 800 \ \Omega$$

$$R_{eq} = R_p + R_g + R_{sL} = (800 + 50 + 200) \ \Omega = 1.05 \ k\Omega$$

Item 2.b

Figura 8: Período de oscilação.

Do simulador: $\Delta x = T = 260.11 \ \mu \text{s}$, então:

$$\omega_d = \frac{2\pi}{T} = \frac{2\pi}{\Delta x} = \frac{2\pi}{260.11 \ \mu \text{s}} = 24155.88 \ \text{rad/s}$$

Item 2.c.1

Figura 9: Valores para primeiro e quinto pico da oscilação.

Item 2.c.2

n	l	A_n (V)	t_n
1		6.680	$130.22 \ \mu s$
5)	0.265	$1.17 \mathrm{\ ms}$

Tabela 1: Valores medidos na simulação da figura 9. A_n calculado usando $A_n = V_c - V_e$.

Item 2.c.3

Da definição de logarítmo:

$$\log_{\beta} x = \alpha \iff \beta^x = \alpha \tag{1}$$

Da expressão da amplitude:

$$A(t) = A_0 e^{-\alpha t} \implies e^{-\alpha t} = \frac{A(t)}{A_0}$$
 (2)

 $(1) \to (2)$:

$$-\alpha t = \ln \left(\frac{A(t)}{A_0} \right) \ \Rightarrow \ \alpha = -\frac{1}{t} \ln \left(\frac{A(t)}{A_0} \right)$$

A curva de A(t) da figura 10 mostra o gráfico da amplitude em função do tempo $A(t)=A_0e^{-\alpha t}$ para $A_0=V_g=10$ V e $\alpha=\alpha_{exp}$. Ou seja, $A(t)=10e^{-3103.68t}$ [V].

Figura 10: Curva A(t) e tensão V_c .

Item 2.c.4

Para
$$A_n = 0.265$$
 V, $A_0 = 6.68$ V, $\Delta t = t_5 - t_1 = 1.04$ ms

$$\alpha_{exp} = -\frac{1}{1.04} \ln \left(\frac{0.265}{6.68} \right) = 3103.68 \text{ rad/s}$$

Para $R_{eq}=1.05~\mathrm{k}\Omega$ e L $=170~\mathrm{mH}$

$$\alpha_{teo} = \frac{R_{eq}}{2L} = \frac{1.05 \cdot 10^3 \ \Omega}{2 \cdot 170 \cdot 10^{-3} \ \mathrm{H}} = 3088.24 \ \mathrm{rad/s}$$

Item 3

$$R_p = 7.2 \text{ k}\Omega \qquad \qquad R_{eq} = 7.45 \text{ k}\Omega$$

Figura 11: Simulação para 7.2 k Ω de resistência no potenciômetro.

Item 4.a

$$R_p = 9.2 \text{ k}\Omega$$
 $R_{eq} = 9.45 \text{ k}\Omega$

Figura 12: Simulação para 9.2 k Ω de resistência no potenciômetro.

Item 4.b

Pelas equações teóricas de α e ω :

$$\alpha^2 = \frac{R^2}{4L^2} \qquad \qquad \omega^2 = \frac{1}{LC}$$

Temos, portanto, os valores:

$$\alpha^2 = \frac{(9.45 \cdot 10^3 \ \Omega)^2}{4 \cdot (170 \cdot 10^{-3} \ H)^2} = 772.51 \cdot 10^6 \ rad/s$$
$$\omega^2 = \frac{1}{(170 \cdot 10^{-3} \ H)(10 \cdot 10^{-9} \ F)} = 588.24 \cdot 10^6 \ rad/s$$

Como $\omega^2 < \alpha^2$, o regime é superamortecido. No amortecimento crítico, onde $\omega^2 = \alpha^2$, por outro lado, a tensão V_c estabiliza-se mais rápido.