Numerical Analysis homework #1

陈澎 3220103443 *

信息与计算科学, 信计 2201, Zhejiang University

2024年9月17日

I.

I-a

The width of interval at the nth step is 2^{1-n} .

I-b

The supremum of the distance between the root r and the midpoint of the interval is 2^{-n} .

II.

denote $h_n = b_n - a_n$ $(n = 0, 1, 2, 3, \dots)$, where $[a_n, b_n]$ is the interval of nth step. Let c_n be the midpoint of $[a_n, b_n]$ and let p be zero point. Then

$$h_n = 2^{-(n+1)}h_0$$

$$\frac{|c_n - p|}{p} \le \frac{h_n}{a_0} \le \epsilon$$
i.e. $2^{n+1} \ge \frac{b_0 - a_0}{a_0 \epsilon}$
i.e. $n \ge \frac{\log(b_0 - a_0) - \log \epsilon - \log a_0}{\log 2} - 1$

III.

	x_0	x_1	x_2	x_3	x_4
x	-1	-0.8125	-0.770804	-0.768832	-0.768828
p(x)	-3	-0.46582	-0.0201379	-4.37084e-005	-2.07412e-010

^{*}Electronic address: cpzju@zju.edu.cn

IV.

$$0 = f(p) = f(x_n - e_n)$$

$$= f(x_n) - e_n f'(\xi_n), \text{ where } \xi_n \text{ is between } p \text{ and } x_n$$

$$e_{n+1} = \left(1 - \frac{f'(\xi_n)}{f'(x_0)}\right) e_n$$

so s = 1, $c = 1 - \frac{f'(\xi_n)}{f'(x_0)}$.

V.

Let $g(x) = \arctan x, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Then

$$g'(x) = \frac{1}{x^2 + 1} \le 1$$

g'(x) = 1, iff x = 0.

since $g(x) \in \mathcal{C}^1$ and $g: (-\frac{\pi}{2}, \frac{\pi}{2}) \to (-\frac{\pi}{2}, \frac{\pi}{2})$,

thus it converges as

$$\lim_{n \to \infty} x_n = 0$$

VI.

Let $g(x) = \frac{1}{p+x}, x \in (0,1)$, then

$$x_{n+1} = g(x_n)$$

where $x_1 = 1/p$.

Because p > 1, so $0 < x_n < 1$.

$$|g'(x)| = \frac{1}{(x+p)^2} < 1$$

since $g(x) \in \mathcal{C}^1$ and $g: (0,1) \to (0,1)$, thus it converges.

Let g(x) = x, we get

$$\lim_{n \to \infty} x_n = x = \frac{-p + \sqrt{p^2 + 4}}{2}$$

VII.

The problem is the zero point can be negative which changes the equality so that we cannot measure n correctly.

Actually, we can use absolute error instead of relative error to measure it appropriately.

Denote $h_n = b_n - a_n$ $(n = 0, 1, 2, 3, \dots)$, where $[a_n, b_n]$ is the interval of nth step. Let c_n be the midpoint of $[a_n, b_n]$ and let p be zero point. Then

$$h_n = 2^{-(n+1)}h_0$$

$$|c_n - p| \le h_n \le \epsilon$$

$$i.e. \quad 2^{n+1} \ge \frac{b_0 - a_0}{\epsilon}$$

$$i.e. \quad n \ge \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2} - 1$$

VIII.

VIII-a

Let p be the zero of multiplicity k of the function f, we can denote $f(x) = (x-p)^k q(x)$, and $g(x) = x - \frac{f(x)}{f'(x)}$. So the iteration can be expressed as $x_{n+1} = g(x_n)$.

$$\begin{split} g'(x) &= 1 - \frac{f'(x)^2 - f(x)f''(x)}{(f'(x))^2} \\ &= \frac{f(x)f''(x)}{(f'(x))^2} \\ &= \frac{(x-p)^k q(x)(k(k-1)(x-p)^{k-2}q(x) + 2k(x-p)^{k-1}q'(x) + q''(x)(x-p)^k)}{(k(x-p)^{k-1}q(x) + q'(x)(x-p)^k)^2} \\ &= \frac{(x-p)^{2k-2}q(x)(k(k-1)q(x) + 2k(x-p)q'(x) + q''(x)(x-p)^2)}{(x-p)^{2k-2}(kq(x) + q'(x)(x-p))^2} \\ &= \frac{q(x)(k(k-1)q(x) + 2k(x-p)q'(x) + q''(x)(x-p)^2)}{(kq(x) + q'(x)(x-p))^2} \end{split}$$

since $g'(p) = 1 - \frac{1}{k} < 1$, it converges linearly as[1]

$$\lim_{n \to \infty} \frac{|x_{n+1} - p|}{|x_n - p|} = |g'(p)|$$

VIII-b

Let p be the zero of multiplicity k of the function f, we can denote $f(x) = (x-p)^k q(x)$, and $g(x) = x - k \frac{f(x)}{f'(x)}$. So the iteration can be expressed as $x_{n+1} = g(x_n)$.

$$g'(x) = 1 - k \frac{f'(x)^2 - f(x)f''(x)}{(f'(x))^2}$$

$$= 1 - k + k \frac{(x-p)^k q(x)(k(k-1)(x-p)^{k-2}q(x) + 2k(x-p)^{k-1}q'(x) + q''(x)(x-p)^k)}{(k(x-p)^{k-1}q(x) + q'(x)(x-p)^k)^2}$$

$$= 1 - k + k \frac{q(x)(k(k-1)q(x) + 2k(x-p)q'(x) + q''(x)(x-p)^2)}{(kq(x) + q'(x)(x-p))^2}$$

since g'(p) = 0, it converges quadratically as [1]

$$\lim_{n \to \infty} \frac{|x_{n+1} - p|}{|x_n - p|^2} = \frac{|g''(p)|}{2}$$

References

[1] Richard L. Burden and J. Douglas Faires. *Numerical Analysis*. 9th ed. Richard Stratton, 2010. Chap. 2, pp. 80–81.