

HIGH VOLTAGE AND HIGH CURRENT DARLINGTON TRANSISTOR ARRAY

DESCRIPTION

The ULN2003 is a monolithic high voltage and high current Darlington transistor arrays. It consists of seven NPN darlington pairs that features high-voltage outputs with common-cathode clamp diode for switching inductive loads. The collector-current rating of a single darlington pair is 500mA. The darlington pairs may be parrilleled for higher current capability. Applications include relay drivers,hammer drivers, lampdrivers,display drivers(LED gas discharge),line drivers, and logic buffers.

The ULN2003 has a 2.7k Ω series base resistor for each darlington pair for operation directly with TTL or 5V CMOS devices.

- * 500mA rated collector current(Single output)
- * High-voltage outputs: 50V
- * Inputs compatibale with various types of logic.
- * Relay driver application

ULN2003AE DIP-16

ULN2003AU SOP-16

LOGIC DIAGRAM PAIR)

SCHEMATIC(EACH DARLINGTON

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

	(10: =0 0)		1
Characteristic	Symbol	Value	Unit
Colletor-Emitter Voltage	VCE	50	V
Input Voltage	VI	30	V
Peak Collector Current	lo	500	mA
Total Emitter-terminal	Іок	500	mA
Power Dissipation	Pd	950 Tamb=25°C	mW
		495 Tamb<85°C	mW
Operating Temperature	Topr	-40~ +85	°C
Storage Temperature	Tstg	-65 ~ +150	°C

Note: All volatge values are with repect to the emitter/substrate terminal ${\sf E}$, unless otherwise noted.

ELECTRICAL CHARACTERISTICS(Ta=25°C,unless otherwise specified)

	· · ·	(ra=25 O, driless otherwise spe	,			
Characteristic	Test Figure	Symbol	Test Conditions	Min	Тур	Max	Units
On-state Input Voltage	6	VI(ON)	VCE=2V,Ic=200mA			2.4	V
			VCE=2V,Ic=250mA			2.7	
			VCE=2V,Ic=300mA			3	
Collector-Emitter Saturation Voltage	5	VCE(SAT)	II=250μA,Ic=100mA		0.9	1.1	V
			II=350μA,Ic=200mA		1	1.3	
			II=500μA,Ic=350mA		1.2	1.6	
Collector Cutoff Current	1	ICEX	VCE=50V,II=0			50	μΑ
	2		VCE=50V,II=0,Ta=70°C			100	
Clamp Forward Voltage	8	VF	IF=350mA		1.7	2	V
Off-state Input Current	3	II(OFF)	VCE=50V,IC=500mA,	50	65		μА
			Ta=70°C				
Input Current	4	- II	VI=3.85V		0.95	1.35	mA
Clamp Reverse Current	7	lR	VR=50V			50	μА
			VR=50V, Ta=70°C			100	
Input Capacitance		CI	VI=0,f=1MHz		15	25	pF
Propagation delay time, low-to- high-level output	9	tPLH			0.25	1	μs
Propagation delay time, high-to- low-level output	9	tPHL			0.25	1	μs
High-level output Voltage after switching	10	Vон	Vs=50V,Io=300mA	Vs-20			mV

www.slkormicro.com

TEST CIRCUITS

Figure 1 ICEX Test Circuit

Figure 2 ICEX Test Circuit

Figure 3 II(off) Test Circuit

Figure 4 II(on) Test Circuit

Note: II is fixed for measuring VCE(sat), variable for measuring HFE.

Figure 6 VI(on) Test Circuit

Figure 5 HFE,VCE(sat) Test Circuit

Figure 7 IR Test Circuit

Figure 8 VF Test Circuit

Figure 9. Propagation Delay Time Waveforms

Note: A. The Pulse generatoe has the following characteristics: PRR=12.5kHz, Zo=50 Ω B. CL includes proble and jig capacitance.

Figure 10. Latch-up Test Circuit and Voltage Waveforms

www.slkormicro.com

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATION CIRCUIT

Use of pullup Resistor to increase drive Current

www.slkormicro.com