CS/IT-405

CS/IT-405

B. E. (Fourth Semester) EXAMINATION, Dec., 2003 (Common for CS & IT Engg.)

DISCRETE STRUCTURES

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Answer any five questions. All questions carry equal marks.

 (i) Prove that if A and B are finite sets: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

(ii) Define Mathematical Induction. Use it to prove : 2+4+6+....+2n=n(n+1).

- (iii) Given $A = \{1, 2\}, B = \{x, y, z\}$ and $C = \{3, 4\}$. Find $A \times B \times C$.
- 2. (i) Consider the relation R on the set Z of integers: $x \equiv y \pmod{m}$, m is an integer > 1. Show that it defines an equivalence relation on Z.
 - (ii) Consider the set Z of integers. Define a R b by $b = a^r$ for some positive integer r. Show that R is a partial order on Z.

- 3. (i) Obtain the converse, inverse and contrapositive of the conditional statement $p \rightarrow q$.
 - (ii) Write the negation of the statement: If she works, she will earn money.
 - (iii) Test the validity of the argument: If I study, then I will not fail in Mathematics. If I do not play basket ball, then I will study. But I failed in Mathematics Therefore, I must have played basket ball.
 - (iv) Show that $p \lor \sim (p \land r)$ is equivalent $(p \lor \sim q) \lor \sim r.$
 - (v) Ajoy loves Nina. Ajoy loves Anita too. Does Ajoy really loves Nina?
- (i) Let A = {a, b}. Construct an automation M which will accept the language L (M) = $\{a^r b^s : r > 0, s > 0\}$.
 - (ii) Let M be the finite state machine with state table :

i a P ilik mil	a	b
S ₀	S ₁ , x	S2, y
S ₁	S ₃ , y	S ₁ , z
S ₂	S ₁ , z	So, x
S ₃	S ₀ , z	S2, x

- Find the input set A, the state set S the output set Z and the initial state.
- Draw the transitional diagram of M.

RGPVONLINE.COM

Let w = aababaabbab is an input word. Find the output word V.

- (i) Prove that a finite connected graph G is Eulerian if and only if each vertex has even degree.
 - (ii) Define planar graph, regular and bipartite graph. Draw the graph K_{2.5}.
 - (iii) Define a tree, spanning tree, minimum spanning tree.
- 6. (i) Let a, b, c be numeric functions such that a*b=c. Given:

$$a_n = \begin{cases} 1 & r = 0 \\ 2 & r = 1, \\ 0 & r \ge 2 \end{cases} \quad C_r = \begin{cases} 1 & r = 0 \\ 0 & r \ge 1 \end{cases}$$

Determine b.

- (ii) Solve the recurrence relation: $a_r 7 a_{r-1} + 10 a_{r-2} = 0$, given $a_0 = 0$, $a_1 = b$.
- 7. (i) Let H be a normal subgroup of group G. Then the cosets of H in G form a group under coset multiplication:

$$(a \, H) (b \, H) = ab \, H.$$

Prove it.

- (ii) Prove that a finite integral domain is a field.
- 8. Write short notes on any three of the following:
 - (i) A relational model for data bases
 - (ii) A pigeon hole principle
 - (iii) Shortest path in weighted graph
 - (iv) Lattice, distributive lattice, complement of an element