$\label{eq:Aufgabe 1} \mbox{ (Brauergruppe der reellen Zahlen).} \\ \mbox{Zeigen Sie, dass } \mbox{Br}(\mathbb{R}) \cong \mathbb{Z}/2\mathbb{Z}.$

(2 Punkte)

$Gr(\mathbb{R}) = H^2(Gal(\mathbb{R}^{sap}/\mathbb{R}), (x) = H^2(2/22, (x))$	
Da 2/22 zyhwh ist exhalfen har H	$(2/22, C^{*}) \cong \hat{H}^{\circ}(2/22, C^{*})$
	(il) -)
$\stackrel{\sim}{=} H^{\circ}(2/22, \mathbb{C}^{\times})/_{in}(N_{G}; \mathbb{C}^{\times} \to \mathbb{C}^{\times}) = \mathbb{C}^{\times}$	$/ R^{+} = R^{+} = Z/2 $
≠1-> [Z-1 ²	

Für einen lokalen Körper K sei π_K eine Uniformisierende und es bezeiche $U_K=\mathscr{O}_K^{\times}$ die Einheitengruppe und $U_K^{(n)} = 1 + \pi_K^n \mathcal{O}_K$ für $n \ge 1$ ihre Untergruppe der n-Einheiten. Für eine endliche Galoiserweiterung L/Knichtarchimedischer lokaler Körper betrachten wir die Untergruppe

$$U_{L/K} := \langle \frac{\sigma(u)}{u} | u \in U_L^{(1)}, \sigma \in \operatorname{Gal}(L/K) \rangle$$

von $U_L^{(1)}$. Zeigen Sie:

(a) Die Abbildung ℓ : Gal $(L/K) \to U_L/U_{L/K}, \sigma \mapsto \frac{\sigma(\pi_L)}{\pi_L}$, ist ein wohldefinierter Gruppenhomomorphismus.

$$\frac{\sigma(v_{\Pi L})}{v_{\Pi L}} = \frac{\sigma(v)}{\sigma(v)} = \frac{$$

$$e(\sigma_{\overline{1}}) - e(\sigma_{\overline{1}}) = e(\sigma_{\overline{1}}) = e(\sigma_{\overline{1}}) - e(\sigma_{\overline{1}}) = e(\sigma_{\overline{1}}) =$$

$$= \frac{\sigma(T(n))}{T(n)} = \frac{\sigma(n)}{n} \quad \text{with} \quad M_{L} \quad \text{with} \quad \int (\sigma \tau) = \rho(\sigma) \cdot \rho(\tau)$$

(b) Ist L/K rein verzweigt mit zyklischer Galoisgruppe von Primzahlordnung, so ist die Folge

$$1 \longrightarrow \operatorname{Gal}(L/K)^{\operatorname{ab}} \stackrel{\ell}{\longrightarrow} U_L/U_{L/K} \stackrel{\operatorname{N}_{L/K}}{\longrightarrow} U_K \longrightarrow 1$$

exakt.

$$= \frac{2 \times V_{L}}{\sqrt{v_{L}}} = \frac{2 \times V_{L}}{\sqrt{v_$$

Erlandeny (A): Dei V de envertige Fortsetzing vo Benety mit K. TXU - / < ~L/k) KX. $(n, v) \rightarrow 11.$ $(x) \rightarrow 11.$ (= II The re-Neplus = The TEG - Nepplus is get V(MIN (TILM-U))=V(T), h, TI VG. NCIK(U))=PIN kulisal/takgrinden tobst that his grown t also die Surgentwitht ML MA gezept.

	Hinweis: Nutzen Sie die Auflösbarkeit von $Gal(L/K)$, um auf den zyklischen Fall zu reduzieren.	
	1/n/h) 1/n zyh(p)A	
	Lir kong per Indahan andergen, das	
	pre horst for alle [wit [[ih] < n golf.	
	Andoned ar Ad 18861HA 30, 6AS L/n Zyhingh	
JG	1 -) Gal(L/M) e) U/Um m) Um -) 1	
	1 -> 461 (1/h) - l) Un/4 2 2 2 1	
3.2	1) Gal((/h) e ML/u/h NL/h Mh) 1	
	<u> </u>	
	hal(LIM) ML/MCIM	
	Cal (L/h) ML/NLIA	
	Gal CM/h)	

(c) Ist L/K rein verzweigt, so ist die Folge (\clubsuit) exakt.

Sei K ein Körper und A eine (multiplikative) abelsche Gruppe. Ein Steinberg-Symbol auf K mit Werten in A ist ein Gruppenhomomorphismus (-,-): $K^{\times} \otimes_{\mathbb{Z}} K^{\times} \to A, x \otimes y \mapsto (x,y)$, derart, dass (x,1-x)=1 für alle $x \in K^{\times} \setminus \{1\}$. Das Galois-Symbol aus Aufgabe 4 von Blatt 9 ist ein Steinberg-Symbol. Zeigen Sie:

(a) Die Abbildung

$$(-,-)_{\infty} \colon \mathbb{R}^{\times} \otimes_{\mathbb{Z}} \mathbb{R}^{\times} \longrightarrow \mathbb{Z}^{\times}, \quad x \otimes y \mapsto \begin{cases} -1 & (x,y < 0) \\ 1 & (\text{sonst}) \end{cases}$$

ist ein Steinberg-Symbol.

$$\times = 0 = | 1 - \times > 0 = | (\times, 1 - \times) = 7$$

Aufgabe 4 (Milnor-K-Theorie).

(4 Punkte)

Für einen Körper F definieren wir seine (2-te) Milnor-K-Theorie

$$K_2^{\mathrm{M}}(F) := F^{\times} \otimes_{\mathbb{Z}} F^{\times} / \langle x \otimes 1 - x | x \in F^{\times} \setminus \{1\} \rangle.$$

Für $x \otimes y \in \mathbb{F}^{\times} \otimes_{\mathbb{Z}} F^{\times}$ schreiben wir $\{x,y\}$ für die zugehörige Restklasse in $K_2^M(F)$. Zeigen Sie, dass $K_2^M(F)$ für einen endlichen Körper die triviale Gruppe ist. *Hinweis:* Zerlegen Sie F disjunkt in Quadrate und Nichtquadrate.

$$F^{1} := (F^{2})^{2}$$

$$\overline{F}^{1} := F^{2} (F^{2})^{2}$$

$$\overline{F}^{1} := F^{2} (F^{2})^{2}$$

$$L$$
 is and F^* zun $2-\Lambda$. Auch? $2-x=x^2$

$$X \in F^{q} = 1$$
 $1 - x \in F^{q}$ $\{x_{1}^{2}y_{1}^{2} = \{x_{1}, y_{2}^{2}\}$
 $= 1 - y^{2} = (y_{1} - y_{1})(y_{1} + y_{2})$

$$\{\times^n,\times^n\}=\{x,x^{n-n}\}$$

$$1-x^{k}=(1-x)(1+\cdots+x^{k-1})$$

$$\langle x, 7-x^{\kappa} \rangle = \langle x, 7-x \rangle + \langle x, 7+\cdots + x^{\kappa-1} \rangle$$