Definitionen von Stetigkeit

Jendrik Stelzner

10. Dezember 2014

Im Folgenden wollen wir die unterschiedlichen Definitionen der Stetigkeit einer Abbildung $f \colon \mathbb{R} \to \mathbb{R}$ angebeben und ihre Äquivalenz beweisen.

Inhaltsverzeichnis

1 Grundlegende Definitionen		ndlegende Definitionen	1
	1.1	ε - δ -Stetigkeit	1
	1.2	Folgenstetigkeit	2
	1.3	Stetigkeit über Grenzwerte	2
	1.4	Äquivalenz der Stetigkeitsbegriffe	3
2	Topologische Stetigkeit		5
3	3 Lösungen der Übungsaufgaben		5

Grundlegende Definitionen

1.1 ε - δ -Stetigkeit

Definition 1. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt ε - δ -stetig im Punkt $x \in \mathbb{R}$, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$
 für alle $y \in \mathbb{R}$.

Die Abbildung f heißt ε - δ -stetig, falls f ε - δ -stetig an jeder Stelle $x \in \mathbb{R}$ ist.

Beispiel(e). Wir betrachten die Abbildung $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Für alle $y \in \mathbb{R}$ haben wir

$$|x^{2} - y^{2}| = |(x+y)(x-y)| = |x+y||x-y| \le (|x|+|y|)|x-y|$$

$$\le (|x|+|x|+|x-y|)|x-y| = 2|x||x-y|+|x-y|^{2},$$
(1)

wobei wir die Dreiecksungleichung für $|x+y| \leq |x| + |y|$ und |y| = |x| + |x-y|

nutzen. Wir unterscheiden nun zwischen zwei Fällen: Ist x=0, so ist $|x^2-y^2|=|y|^2$ für alle $y\in\mathbb{R}$. Wählt man dann $\delta:=\sqrt{\varepsilon}$, so ist für alle $y\in\mathbb{R}$ mit $|y|=|x-y|<\delta$ auch $|x^2-y^2|=|y|^2<\varepsilon$. Ist $x\neq 0$, so ergibt sich für $\delta:=\min\{\varepsilon/(4|x|),\sqrt{\varepsilon/2}\}$ aus (1), dass für alle $y\in\mathbb{R}$

 $\mathrm{mit}\; |x-y|<\delta$

$$\left|x^2-y^2\right| \leq 2|x||x-y|+|x-y|^2 < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist

Übung 1.

Es sei $f: \mathbb{R} \to \mathbb{R}$ ε - δ -stetig an der Stelle $x \in \mathbb{R}$. Zeigen Sie: Ist f(x) > 0, so gibt es ein $\delta > 0$ mit f(y) > 0 für alle $y \in (x - \delta, x + \delta)$. Gilt die Aussage auch für f(x) < 0 oder $f(x) \neq 0$?

Übung 2.

Es seien $f, g: \mathbb{R} \to \mathbb{R}$. Zeigen Sie: Ist $f \in \delta$ -stetig an der Stelle $x \in \mathbb{R}$ und $g \in \delta$ -stetig an der Stelle f(x), so ist die Komposition $g \circ f \in \delta$ -stetig an der Stelle x.

Wir erhalten damit, dass für zwei ε - δ -stetige Abbildungen $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ auch die Verknüpfung $g \circ f \varepsilon$ - δ -stetig ist.

1.2 Folgenstetigkeit

Definition 2. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt *folgenstetig an* $x \in \mathbb{R}$, falls für jedes Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \to x$ für $n \to \infty$ auch die Folge $(f(x_n))_{n \in \mathbb{N}}$ konvergiert und

$$\lim_{n \to \infty} f(x_n) = f(x) = f\left(\lim_{n \to \infty} x_n\right).$$

f heißt folgenstetig, falls f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Beispiel(e). Wir betrachten erneut die Abbildung $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ an einer Stelle $x \in \mathbb{R}$. Ist $(x_n)_{n \in \mathbb{N}}$ eine Folge mit $\lim_{n \to \infty} x_n = x$, so folgt aus den bekannten Eigenschaften konvergenter Folgen, dass auch die Folge $(x_n^2)_{n \in \mathbb{N}}$ konvergiert und

$$\lim_{n \to \infty} x_n^2 = \lim_{n \to \infty} (x_n \cdot x_n) = \left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} x_n\right) = x \cdot x = x^2.$$

Das zeigt, dass f an jeder Stelle $x \in \mathbb{R}$ folgenstetig ist.

Übung 3.

Es seien $f, g \colon \mathbb{R} \to \mathbb{R}$ beide folgenstetig an der Stelle $x \in R$. Zeigen Sie, dass auch die Funktionen f + g und $f \cdot g$ folgenstetig an der Stelle x sind.

1.3 Stetigkeit über Grenzwerte

Definition 3. Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung und $x_0 \in \mathbb{R}$. Für $y \in \mathbb{R}$ schreiben wir $\lim_{x \uparrow x_0} f(x) = y$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 - \delta < x < x_0$,

und bezeichnen y dann als den linksseitigen Limes von f an x_0 . Analog schreiben wir $\lim_{x \to x_0} f(x) = f(y)$, falls

für alle
$$\varepsilon > 0$$
 existiert $\delta > 0$, s.d. $|f(x_0) - f(x)| < \varepsilon$ für alle $x_0 < x < x_0 + \delta$.

Wir nennen y dann denn rechtsseitigen Limes von f an x_0 . Existieren links- und rechtsseitiger Limes von f an v0 und ist $\lim_{x \uparrow x_0} f(x) = \lim_{x \downarrow x_0} f(x)$, so nennen wir

$$\lim_{x \to x_0} f(x) \coloneqq \lim_{x \uparrow x_0} f(x) = \lim_{x \downarrow x_0} f(x)$$

den beidseitgen Limes von f an x_0 .

Definition 4. Eine Abbildung $f: \mathbb{R} \to \mathbb{R}$ heißt linksstetig an der Stelle $x \in \mathbb{R}$, falls $\lim_{y \uparrow x} f(y) = f(x)$. f heißt rechtsstetig an der Stelle x, falls $\lim_{y \downarrow x} f(y) = f(x)$. f heißt beidseitig stetig an x, falls $\lim_{y \to x} f(y) = f(x)$. (Insbesondere müssen die entsprechenden Grenzwerte existieren.)

f heißt linksstetig, falls f an jeder Stelle $x \in \mathbb{R}$ linksstetig ist, und rechtsstetig, falls f an jeder Stelle $x \in \mathbb{R}$ rechtsstetig ist. Ist f an jeder Stelle $x \in \mathbb{R}$ beidseitig stetig, so heißt f beidseitig stetig.

Bemerkung 5. Rechts-, Links- und beidseitige Limites sind eindeutig (sofern sie existieren).

Übung 4.

Zeigen Sie, dass f genau dann beidseitig stetig ist, wenn f links- und rechtsstetig ist.

Übung 5.

Zeigen Sie, dass für eine monoton steigende Funktion $f: \mathbb{R} \to \mathbb{R}$ an jeder Stelle $x \in \mathbb{R}$ sowohl der linksseitige als auch der rechtsseitige Limes exitieren, und dass

$$\lim_{y \uparrow x} f(y) = \sup\{f(y) \mid y < x\} \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \inf\{f(y) \mid y > x\}.$$

Wie sieht es für eine monoton fallende Funktion aus?

Übung 6.

Es sei $f : \mathbb{R} \to \mathbb{R}$ und $x \in \mathbb{R}$. Zeigen Sie, dass $\lim_{x \to x_0} f(x) = a$ genau dann, wenn

für alle
$$\varepsilon > 0$$
 gibt es $\delta > 0$ mit $|f(y) - a| < \varepsilon$ für $|x - y| < \delta$ und $y \neq x$.

1.4 Äquivalenz der Stetigkeitsbegriffe

Wir wollen nun zeigen, dass die verschiedenen Stetigkeitsbegriffe äquivalent zueinander sind.

Proposition 6. *Es sei* $f: \mathbb{R} \to \mathbb{R}$ *und* $x \in \mathbb{R}$. *Dann sind äquivalent:*

- 1. f ist ε - δ -stetig an der Stelle x.
- 2. f ist folgenstetig an der Stelle x.
- 3. f ist beidseitig stetig an der Stelle x.

Beweis. $(1\Rightarrow 2)$ Sei $(x_n)_{n\in\mathbb{N}}$ ein Folge mit $\lim_{n\to\infty}x_n=x$. Sei $\varepsilon>0$ beliebig aber fest. Da f ε - δ -stetig an x ist, gibt es $\delta>0$ mit $|f(x)-f(y)|<\varepsilon$ falls $|x-y|<\delta$. Da $\lim_{n\to\infty}x_n=x$ gibt es $N\in\mathbb{N}$ mit $|x-x_n|<\delta$ für alle $n\geq N$. Für alle $n\geq N$ ist also $|f(x)-f(x_n)|<\varepsilon$. Wegen der Beliebigkeit von $\varepsilon>0$ folgt, dass $\lim_{n\to\infty}f(x_n)=f(x)$. Das zeigt, dass f folgenstetig an x ist.

 $(2\Rightarrow 1)$ Angenommen, f ist nicht ε - δ -stetig an x. Dann gibt es $\varepsilon>0$, so dass es für jedes $\delta>0$ ein $y\in\mathbb{R}$ mit $|x-y|<\delta$ und $|f(x)-f(y)|\geq\varepsilon$ gibt. Insbesondere gibt es für jedes $n\geq 1$ ein $x_n\in\mathbb{R}$ mit $|x-x_n|<1/n$ und $|f(x)-f(x_n)|\geq\varepsilon$. Es ist dann $\lim_{n\to\infty}x_n=x$ aber nicht $\lim_{n\to\infty}f(x_n)=f(x)$. Dies steht im Widerspruch zur Folgenstetigkeit von f an x.

 $(1\Rightarrow 3)$ Sei $\varepsilon>0$ beliebig aber fest. Da f ε - δ -stetig an x ist, gibt es $\delta>0$ mit $|f(x)-f(y)|<\varepsilon$ für alle $y\in\mathbb{R}$ mit $|x-y|<\delta$. Inbesondere ist $|f(x)-f(y)|<\varepsilon$

für alle $y \in (x - \delta, x)$ und für alle $y \in (x, x + \delta)$. Also ist f sowohl rechts- als auch linksstetig an x, und somit beidseitig stetig an x.

 $(3\Rightarrow 1)$ Es sei $\varepsilon>0$ beliebig aber fest. Da f beidseitig stetig an x ist, existiert der beidseitige Limes $\lim_{y\to x}f(y)$ und es ist $f(x)=\lim_{y\to x}f(y)$. Nach Übung 6 gibt daher $\delta>0$, so dass $|f(x)-f(y)|<\varepsilon$ für alle $y\in\mathbb{R}$ mit $|x-y|<\delta$ und $x\neq y$; für x=y gilt dies offenbar ebenfalls. Also ist f ε - δ -stetig an x.

Statt zwischen den verschiedenen Stetigkeitsbegriffen zu unterscheiden, sprechen wir von nun an nur noch von Stetigkeit.

Übung 7.

Es sei

$$\mathcal{O} := \{ f \colon \mathbb{R} \to \mathbb{R} \mid f \text{ ist stetig} \}.$$

Zeigen Sie:

- 1. Alle konstanten Funktionen sind in \mathcal{O} enthalten.
- 2. \mathcal{O} ist ein \mathbb{R} -Vektorraum unter punktweiser Addition und Skalarmultiplikation, d.h. für alle $f,g\in\mathcal{O}$ ist (f+g)(x)=f(x)+g(x) und für alle $f\in\mathcal{O}$ und $\lambda\in\mathbb{R}$ ist $(\lambda f)(x)=\lambda f(x)$.
- 3. Zeigen Sie, dass für zwei stetige Abbildungen $f,g\in\mathcal{O}$ das das punktweise Produkt $f\cdot g$ stetig ist, d.h. $(f\cdot g)(x)=f(x)\cdot g(x)$ für alle $x\in\mathbb{R}$.

Insgesamt zeigt dies, dass $\mathcal O$ eine $\mathbb R$ -Algebra bildet. (Um genau zu sein zeigt es, dass $\mathcal O$ eine $\mathbb R$ -Unteralgebra von $\mathsf{Abb}(\mathbb R,\mathbb R)$ ist.

Übung 8.

1. Zeigen Sie, dass der Betrag

$$|\cdot|: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$$

stetig ist.

2. Folgern Sie, dass für zwei stetige Abbildungen $f,g\colon\mathbb{R}\to\mathbb{R}$ auch $\max(f,g)$ und $\min(f,g)$ stetig sind, wobei für alle $x\in\mathbb{R}$

$$\max(f,g)(x) = \max\{f(x),g(x)\} \quad \text{und} \quad \min(f,g)(x) = \min\{f(x),g(x)\}.$$

Übung 9.

Es seien

$$f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \sin\left(\frac{1}{x}\right)$$

und

$$g \colon \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{falls } x \neq 0, \\ 0 & \text{falls } x = 0. \end{cases}$$

- 1. Zeigen Sie, dass sich f nicht stetig auf $\mathbb R$ fortsetzen lässt, d.h. es gibt keine stetige Funktion $h \colon \mathbb R \to \mathbb R$ mit h(x) = f(x) für alle $x \neq 0$.
- 2. Zeigen Sie, dass die Abbildung g stetig ist.
- 3. Es sei $x_0 \in \mathbb{R}$ und $s \colon \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$ eine Abbildung, die in einer Umgebung von x_0 beschränkt sei, d.h. es gebe ein $\varepsilon > 0$ und eine Konstante C > 0, so dass $|s(x)| \le C$ für alle $x \in (x_0 \varepsilon, x_0 + \varepsilon)$ mit $x \ne x_0$. Zeigen Sie: Für eine stetige Abbildung $h \colon \mathbb{R} \to \mathbb{R}$ mit $h(x_0) = 0$ ist die Abbildung $h \cdot s$ stetig an x_0 .

2 Topologische Stetigkeit

Definition 7. Für $x \in \mathbb{R}$ und $\varepsilon > 0$ definieren wir den offenen ε -Ball um x als

$$B_{\varepsilon}(x) := \{ y \in \mathbb{R} \mid |x - y| < \varepsilon \}.$$

Definition 8. Eine Teilmenge $U\subseteq\mathbb{R}$ heißt *offen*, falls es für jedes $x\in U$ ein $\varepsilon>0$ gibt, so dass $B_{\varepsilon}\subseteq U$.

Beispiel(e). 1. Die leere Menge ist offen, da die Bedingung dort leer ist.

2. Offene Intervalle sind offen: Ist I=(a,b) eine offenes Intervall und $x\in I$, so ist für

$$\varepsilon := \min\{x - a, b - x\}$$

auch $B_{\varepsilon}(x) \subseteq I$.

3. Abgeschlossene nicht-leere Intervalle sind nicht offen: Ist I=[a,b] eine abgeschlossenen Intervall, dass nicht leer ist (also $a \leq b$), so gibt es kein $\varepsilon > 0$, so dass $B_{\varepsilon}(a) \subseteq I$, dann es ist $a - \varepsilon/2 \in B_{\varepsilon}(x)$, aber $a - \varepsilon/2 \notin I$.

Lemma 9. 1. Die leere Menge \emptyset sowie \mathbb{R} selbst sind offen.

- 2. Ist $\{U_i \mid i \in I\}$ eine beliebige Kollektion offener Mengen, so ist auch die Vereinigung $\bigcup_{i \in I} U_i$ offen.
- 3. Sind $U_1, \ldots, U_n \subseteq \mathbb{R}$ offen, so ist auch der Schnitt $U_1 \cap \cdots \cap U_n$ offen.

Definition 10. Es sei $x \in \mathbb{R}$ ein Punkt. Eine Menge $V \subseteq \mathbb{R}$ heißt *Umgebung von x*, falls es ein $\varepsilon > 0$ gibt, so dass $B_{\varepsilon}(x) \subseteq V$.

Übung 10.

Zeigen Sie, dass eine Menge $U\subseteq\mathbb{R}$ genau dann offen ist, wenn U für jedes $x\in U$ eine Umgebung von x ist.

Übung 11.

Zeigen Sie, dass eine Menge $V\subseteq\mathbb{R}$ genau Umgebung eines Punktes $x\in\mathbb{R}$ ist, wenn es eine offene Menge $U\subseteq\mathbb{R}$ mit $x\in U\subseteq V$ gibt.

Übung 12.

Zeigen Sie:

- 1. Ist $V\subseteq\mathbb{R}$ Umgebung eines Punktes $x\in\mathbb{R}$, so auch jedes Teilmenge $W\subseteq\mathbb{R}$ mit $V\subseteq\mathbb{R}$ eine Umgebung von V
- 2. Sind $V_1, \ldots, V_n \subseteq \mathbb{R}$ Umgebungen von $x \in \mathbb{R}$, so ist auch $V_1 \cap \cdots \cap V_n$ eine Umgebung von x.

3 Lösungen der Übungsaufgaben

Lösung 1.

Da f an der Stelle $x \in \delta$ -stetig ist, gibt es $\delta > 0$, so dass

$$|f(x) - f(y)| < \frac{f(x)}{2}$$
 für alle $y \in \mathbb{R}$ mit $|x - y| < \delta$.

Durch die Dreiecksungleichung ergibt sich, dass

$$|f(y)| \geq |f(x)| - |f(x) - f(y)| \quad \text{für alle } y \in \mathbb{R}.$$

Zusammen ergibt sich damit, dass für alle $y \in \mathbb{R}$ mit $|x-y| < \delta$

$$|f(y)| \ge |f(x)| - |f(x) - f(y)| > f(x) - \frac{f(x)}{2} = \frac{f(x)}{2} > 0.$$

Dass $|x-y|<\delta$ bedeutet gerade, dass $y\in(x-\delta,x+\delta)$, wodurch sich die Aussage ergibt.

Lösung 2.

Sei $\varepsilon>0$ beliebig aber fest. Wegen der ε - δ -Stetigkeit von g an der Stelle f(x) gibt es $\delta'>0$, so dass

$$|f(x) - y'| < \delta' \Rightarrow |g(f(x)) - g(y')| < \varepsilon$$
 für alle $y' \in \mathbb{R}$.

Wegen der ε - δ -Stetigkeit von f an x gibt es ein $\delta > 0$, so dass

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \delta'$$
 für alle $y \in \mathbb{R}$.

Für alle $y \in \mathbb{R}$ ist daher

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \delta' \Rightarrow |g(f(x)) - g(f(y))| < \varepsilon.$$

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies, dass $g \circ f \varepsilon - \delta$ -stetig an der Stelle x ist.

Lösung 3.

Es sei $(x_n)_{n\in\mathbb{N}}$ eine Folge mit $\lim_{n\to\infty}x_n=x$. Da f und g folgenstetig an der Stelle x sind, sind auch die Folgen $(f(x_n))_{n\in\mathbb{N}}$ und $(g(x_n))_{n\in\mathbb{N}}$ konvergent und es gilt

$$\lim_{n\to\infty} f(x_n) = f(x) \quad \text{und} \quad \lim_{n\to\infty} g(x_n) = g(x).$$

Nach den üblichen Rechenregeln für Folgen konvergieren daher auch die Folgen

$$((f+g)(x_n))_{n\in\mathbb{N}} = (f(x_n) + g(x_n))_{n\in\mathbb{N}}$$

und

$$((f \cdot g)(x_n))_{n \in \mathbb{N}} = (f(x_n) \cdot g(x_n))_{n \in \mathbb{N}},$$

und es gilt

$$\lim_{n \to \infty} (f+g)(x_n) = \lim_{n \to \infty} f(x_n) + g(x_n) = f(x) + g(x) = (f+g)(x)$$

sowie

$$\lim_{n \to \infty} (f \cdot g)(x_n) = \lim_{n \to \infty} f(x_n) \cdot g(x_n) = f(x) \cdot g(x) = (f \cdot g)(x).$$

Dies zeigt, dass auch f + g und $f \cdot g$ folgenstetig an x sind.

Lösung 4.

f ist genau dann beidseitig stetig, wenn f an jeder Stelle $x \in \mathbb{R}$ beidseitig stetig ist, wenn also f an jeder Stelle $x \in \mathbb{R}$ sowohl links- als auch rechtsstetig ist. Dies ist äquivalent dazu, dass f an jeder Stelle rechtstetig ist, und an jeder Stelle auch linksstetig ist. Dies bedeutet, dass f links- und rechtsstetig ist.

Lösung 5.

Es sei f monoton steigend und $x \in \mathbb{R}$. Wir wollen zeigen, dass $a \coloneqq \sup_{y < x} f(y)$ die Eigenschaften des linksseitigen Limes erfüllt. Sei hierfür $\varepsilon > 0$ beliebig aber fest. Nach der ε -Charakterisierung des Supremums gibt es ein $y_0 < x$ mit $a - \varepsilon < f(y_0)$. Aus der Monotonie von f folgt, dass

$$a - \varepsilon < f(y_0) \le f(y) \le \sup_{y' < x} f(y') = a$$
 für alle $y_0 \le y < x$.

Für $\delta := x - y_0 > 0$ ist also $|f(y) - a| < \varepsilon$ für alle $y \in (x - \delta, x)$. Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies, dass $\lim_{y \uparrow x} f(y) = a$.

Analog zeigt man, dass $\lim_{y\downarrow x} f(y) = \inf_{x < y} f(x)$. Für monoton fallende Funktionen zeigt man analog, dass obere und untere Grenzwerte an jeder Stelle existieren, und dass für alle $x \in \mathbb{R}$

$$\lim_{y \uparrow x} f(y) = \inf_{y < x} f(y) \quad \text{und} \quad \lim_{y \downarrow x} f(y) = \sup_{y > x} f(y).$$

Lösung 6.

Angenommen, es ist $a=\lim_{y\to x}f(y)$. Dann ist sowohl $\lim_{y\uparrow x}f(y)=a$ als auch $\lim_{y\downarrow x}f(y)=a$. Sei $\varepsilon>0$ beliebig aber fest. Da $\lim_{y\uparrow x}f(y)=a$ gibt es $\delta_1>0$, so dass

$$|f(y) - a| < \varepsilon$$
 für alle $y \in (x - \delta_1, x)$.

Da $\lim_{y \mid x} f(y) = a$ gibt es $\delta_2 > 0$, so dass

$$|f(y) - a| < \varepsilon$$
 für alle $y \in (x, x + \delta_2)$.

Für $\delta := \min\{\delta_1, \delta_2\}$ ist damit

$$|f(y) - a| < \varepsilon$$
 für alle $y \in (x - \delta, x + \delta)$ mit $y \neq x$.

Wegen der Beliebigkeit von $\varepsilon > 0$ zeigt dies eine der Implikationen.

Angenommen, es gibt für jedes $\varepsilon>0$ ein $\delta>0$, so dass $|f(y)-a|<\varepsilon$ für alle $y\in (x-\delta,x+\delta)$ mit $y\neq x$. Insbesondere gilt dann $|f(y)-a|<\varepsilon$ für alle $y\in (x-\delta,x)$ und $y\in (x,x+\delta)$, we shalb dann $\lim_{y\uparrow x}f(y)=a$ und $\lim_{y\downarrow x}f(y)=a$. Somit ist $\lim_{y\to x}f(y)=a$.

Lösung 8.

1. Es sei $x \in \mathbb{R}$ und $(x_n)_{n \in \mathbb{N}}$ eine Folge mit $\lim_{n \to \infty} x_n = x$. Wie wir bereits wissen, ist dann auch die Folge $(|x_n|)_{n \in \mathbb{N}}$ konvergent und

$$\lim_{n \to \infty} |x_n| = \left| \lim_{n \to \infty} x_n \right| = |x|.$$

Wegen der Beliebigkeit der Folge (x_n) folgt, dass der Betrag folgenstetig an x ist. Aus der Beliebigkeit der Stelle $x \in \mathbb{R}$ folgt, dass der Betrag folgenstetig ist.

2. Wir bemerke, dass für alle $x,y\in\mathbb{R}$

$$\max(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2} = \frac{x+y+|x-y|}{2},$$

denn für $x \leq y$ ist $x-y \leq 0$ und somit

$$\frac{x + y + |x - y|}{2} = \frac{x + y - (x - y)}{2} = y = \max(x, y),$$

und für $y \le x$ ist $x - y \ge 0$ und somit

$$\frac{x + y + |x - y|}{2} = \frac{x + y + (x - y)}{2} = x = \max(x, y).$$

Die Stetigkeit von

$$\max(f,g) = \frac{f+g+|f-g|}{2}$$

ergibt sich aus den schon bekannten Aussagen über Kombination stetiger Abbildungen. Analog zeigt man, dass

$$\min(x,y) = \frac{x+y-|x-y|}{2} \quad \text{für alle } x,y \in \mathbb{R},$$

und dass damit min(f, g) stetig ist.