Assignment 1	
1 transpach	
Menbers:	
I- ABHTNAV RALHAN	
221202684	
ABHINAVR8@UNI-KOBLENZ.DE	
2 MEET AKOLIA	
221201592	
MEETAKOLIA @, UNI-KOBLENZ. DE	
TILL I MOLLAG, UNI - ROCCINZ-BE	
3. DOHROV	
3 DVAINOV	
	0

ill	Proof: for the nodes #V, Vo V = V, UV? of a regular bipartite graph Gr. VI = Vel holds
	Edges in V, = V, . d.
Jan C	Je know that every edge in the bipartite graph connects a node in V, with node in V2 : \[V_1 \cd = V_2 \cd = \ V_1 = V_2 \cd
3 P	roof: If all vertices have degree? In an undisported graph, the number of evertices is even.
	By bandshaking lenna, Ed (vi) = 2e i=1
	degree of vertices is even. Som of degrees of vertices with degree 3 is even.
	in (no. of nodes) must be an even number.

(4) Proof: Criven a graph $C_1 = (V, E)$ with a nodes $|E| \leq 1$ $(n^2 - n)$ holds. $F = \{e_1, e_2, \dots e_n\}$ Max no. of edges for $V_1 = (n-1)$ $V_2 = (n-2)$ \Rightarrow total nax. no. of edges in graph = (n-1) + (n-2) + ... + 3+2+1 $= h \cdot (n-1)$