Durée: 1 heure. Aucun document autorisé. Ce contrôle sera noté sur 10 points. Justifier TOUT.

Convention: On utilisera la lettre x (resp. z) pour une variable réelle (resp. complexe).

- 1. (4 pts) Déterminer le rayon de convergence des séries entières suivantes :
 - a) $\sum_{n} 2^{n} z^{2n}$,

b) $\sum_{n} n^{\ln n} z^n$,

- c) $\sum_{n} \frac{(2n)!}{(n!)^2} z^n$, d) $\sum_{n} n \cos(\frac{n\pi}{2}) z^n$.
- 2. (2 pts) Donner des exemples :
 - a) une série entière dont le domaine de convergence est exactement D(0,1);
 - b) une série entière dont le domaine de convergence est exactement $\overline{D}(0,1)$;
- 3. (2 pts) Application du théorème d'Abel radial.
 - a) Montrer que $\ln(1+x) = \sum_{n \geq 1} (-1)^{n-1} \frac{x^n}{n}$ pour $x \in]-\rho, \rho[$, où ρ est son rayon de convergence que vous déterminerez. (Indication : considérer la série géométrique $\sum_{n>0} x^n$.)
 - b) Montrer que $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$.
- 4. (4 pts + Bonus 2 pts) Vrai ou faux? Justifier si vrai, en donner un contre-exemple si faux. Soit $S(z) = \sum_{n \ge 0} a_n z^n$ de rayon de convergence 1.
 - a) Si S(1) converge, alors $\lim_{x\to 1^-} S(x)$ existe.
 - b) Si $\lim_{x\to 1^-} S(x)$ existe, alors S(1) converge.
 - c) La série dérivée $S'(z) = \sum_n na_n z^{n-1}$ converge partout sur D(0,1).
 - d) La série dérivée $S'(z) = \sum_n na_n z^{n-1}$ converge partout où S(z) converge.
 - e) Si S(z) converge uniformément sur D(0,1), alors S(z) converge sur $\overline{D}(0,1)$. (Un peu dur.)
 - f) Si S(z) converge sur $\overline{D}(0,1)$, alors S(z) converge uniformément sur D(0,1). (Dur. Devinez!)
- **5.** (1 pt) Pour tout $n \in \mathbb{Z}$, dénotons par φ_n la fonction $\mathbb{R} \mapsto \mathbb{C}$, $t \mapsto e^{int}$. Calculer soigneusement l'intégrale $\int_0^{2\pi} \varphi_m \overline{\varphi_n}$ pour tous $m, n \in \mathbb{Z}$.

Fin du suiet.

En dehors du CC: (Théorème de Liouville) Soit $f(z) = \sum_{n>0} a_n z^n$ une fonction développable en série entière sur C tout entier. On se propose de montrer que

Si f(z) est bornée sur \mathbb{C} par une constante M>0, alors f(z) est une constante.

- a) Soit R > 0. Montrer que la série numérique $\sum_{n \geq 0} a_n R^n$ est absolument convergente.
- b) En déduire que pour tout $N \in \mathbb{N}$, la série

$$\sum_{n>0} a_n R^{n-N} e^{i(n-N)\theta}, \quad \theta \in [0, 2\pi]$$

en la variable θ converge normalement vers la fonction $\frac{f(Re^{i\theta})}{R^Ne^{iN\theta}}$.

- c) Calculer $\int_0^{2\pi} e^{im\theta} d\theta$ pour tout $m \in \mathbb{Z}$.
- d) En déduire que

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\theta})}{R^N e^{iN\theta}} d\theta = a_N.$$

e) Montrer que $|a_N| \leq \frac{M}{R^N}$. En conclure.

On pourrait aussi considérer la réciproque d'Exercice 4 (e) : si S(z) converge sur $\overline{D}(0,1)$, alors S(z) converge uniformément sur D(0,1). Celle-ci est fausse, cependant le contre-exemple n'est pas facile à construire ; voici une construction sous forme d'« exercice ».

Considérons la série entière

$$S(z) = \sum_{k \in \mathbb{N}} a_k z^k$$
, avec $a_k = \sum_{n > 0} \delta_n \frac{1}{(1 + i\varepsilon_n)^n}$.

où $(\delta_n)_{n\in\mathbb{N}}$ et $(\varepsilon_n)_{n\in\mathbb{N}}$ sont deux suites dans $\mathbb{R}_{>0}$ tendant vers 0 telles que

(ACV) La série numérique $\sum_{n} \frac{\delta_{n}}{\varepsilon_{n}}$ converge;

(DV) La suite $\left(\frac{\delta_n}{\varepsilon_n^2}\right)_n$ diverge vers $+\infty$.

Cet exercice a pour but de montrer que S(z) converge sur $\overline{D}(0,1)$ mais la convergence n'y est pas uniforme.

- a) Justifier que les a_k sont bien définis. Donner un exemple de $(\delta_n)_n$ et $(\varepsilon_n)_n$ vérifiant toutes les conditions ci-dessus, de sorte que cet exercice n'est pas vide! (Indication : considérer des suites de type $1/n^{\alpha}$.)
- b) (Question sur des séries numériques.) Soit $\sum_{n\in\mathbb{N}}u_n$ une série numérique absolument convergente. Soit $(\lambda_n)_n$ une suite dans D(0,1). Montrer que la suite numérique $(\sum_n u_n \lambda_n^N)_{N\in\mathbb{N}}$ est bien définie et que

$$\lim_{N \to +\infty} \sum_{n} u_n \lambda_n^N = 0.$$

Vous pourrez montrer d'abord que $\left|\sum_{n}u_{n}\lambda_{n}^{N}\right| \leq \sum_{n=0}^{m}\left|a_{n}\right|\left|\lambda_{n}\right|^{N} + \sum_{n=m+1}^{+\infty}\left|a_{n}\right|$ pour tout $m \in \mathbb{N}$.

- c) Soit $z \in \overline{D}(0,1)$. Montrer que $|1+i\varepsilon_n-z| \ge \varepsilon_n$ si z=1, et $|1+i\varepsilon_n-z| \ge \operatorname{Re}(1-z) > 0$ si $z \ne 1$. En déduire l'absolue convergence de $\sum_n \frac{\delta_n}{1+i\varepsilon_n-z}$ pour tout $z \in \overline{D}(0,1)$.
- d) Montrer que

$$\sum_{k=0}^{N} a_k z^k - \sum_{n \ge 0} \frac{\delta_n}{1 + i\varepsilon_n - z} = -\sum_{n \ge 0} \frac{\delta_n}{1 + i\varepsilon_n - z} \left(\frac{z}{1 + i\varepsilon_n}\right)^{N+1}.$$

En déduire que S(z) converge partout sur $\overline{D}(0,1)$ et que sa somme fait

$$S(z) = \sum_{n>0} \frac{\delta_n}{1 + i\varepsilon_n - z}.$$

e) Soit $z \in \overline{D}(0,1)$. Montrer que Re $\left(\frac{1}{1+i\varepsilon_n-z}\right) = \frac{\text{Re}(1-z)}{|1+i\varepsilon_n-z|^2} \ge 0$ pour tout $n \in \mathbb{N}$. En déduire que

$$\operatorname{Re} S(z) \geq \frac{\operatorname{Re}(1-z)}{\left|1+i\varepsilon_n-z\right|^2}, \quad \forall n \in \mathbb{N}.$$

f) Posons $z_n = \frac{1+i\varepsilon_n}{|1+i\varepsilon_n|}$ (qui est l'intersection de $[0,1+i\varepsilon_n]$ avec le cercle unité). Montrer que

$$\frac{\operatorname{Re}(1-z_n)}{\left|1+i\varepsilon_n-z_n\right|^2}\sim \frac{2\delta_n}{\varepsilon_n^2},\quad n\to+\infty.$$

g) Montrer que S(z) n'est pas bornée sur $\overline{D}(0,1)$. En conclure.