LVV-T2190 Plots

This notebook is designed to query the EFD and make diagnostics plots for the execution of Test Case LVV-T2190.

This test case consists of applying 1 um to the 7th component of the Annular Zernike Coefficient.

Then it resets the corrections and applies 2 um to the same component.

This means that we can expect to have three values for each metric (at +1um, at 0um, and at +2um).

We can expect that that each telemetry on the third row will be twice the values of the first row.

If they are not, it can mean that the corrections are not properly calculated or that their relationship with the Zernike Coefficients are not linear.

When executing the tests, duplicate the notebook and rename it using the test execution name.

```
In [1]: from lsst.ts import utils

# Extract your name from the Jupyter Hub
    __executed_by__ = os.environ["JUPYTERHUB_USER"]

# Extract execution date
    __executed_on__ = utils.astropy_time_from_tai_unix(utils.current_tai())
    __executed_on__.format = "isot"

# This is used later to define where Butler stores the images
summit = os.environ["LSST_DDS_PARTITION_PREFIX"] == "summit"

print(f"\nExecuted by { __executed_by__} on { __executed_on__}."
    f"\n At the summit? {summit}")
```

```
lsst.ts.utils.tai INFO: Update leap second table
lsst.ts.utils.tai INFO: current_tai uses the system TAI clock
Executed by isotuela on 2022-05-31T16:14:45.531.
At the summit? True
```

Set Up

1 de 23

```
In [2]: import os
    import sys
    import logging

import numpy as np
    import pandas as pd

from astropy.time import Time
    from astropy import units as u
    from datetime import timedelta, datetime

import lsst_efd_client

import matplotlib.pyplot as plt
    from matplotlib.colors import LogNorm

from pandas.plotting import register_matplotlib_converters

In [3]: %config Application.log_level="ERROR"
In [41: %matplotlib inline
```

Time window for the test execution.

Update the cells below to reflect the time when the test was executed. This is the time window used to query the EFD.

```
In [21]: test_execution = "LVV-E1868"
    time_start_utc = "2022-05-31T16:18:36.763"
    time_end_utc = "2022-05-31T16:20:54.337"

# test_execution = "LVV-E1788"
    # time_start_utc = "2022-04-08T14:20:42"
    # time_end_utc = "2022-04-08T15:21:31"
In [22]: start = Time(time_start_utc, format="isot", scale="utc")
end = Time(time_end_utc, format="isot", scale="utc")
```

Initialization

We start by setting up a logger for the notebook and configuring the EFD Client.

```
In [7]: log = logging.getLogger("LVV-T2190")
log.setLevel(logging.DEBUG)
In [8]: lsst_efd_client.EfdClient.list_efd_names()
```

```
['tucson_teststand_efd',
 Out[8]:
          'test_efd',
          'summit_efd',
          'ncsa_teststand_efd',
          'ldf_stable_efd',
          'ldf_int_efd',
          'base_efd']
In [9]: efd_name = "summit_efd"
In [10]: client = lsst_efd_client.EfdClient(efd_name)
In [11]: start.strftime("%m/%d/%Y, %H:%M:%S"), end.strftime("%m/%d/%Y, %H:%M:%S")
         ('05/31/2022, 16:19:24', '05/31/2022, 16:20:54')
Out[11]:
In [12]: log.debug(f"{start.utc}, {end}")
         LVV-T2190 DEBUG: 2022-05-31T16:19:24.763, 2022-05-31T16:20:54.337
In [13]: os.makedirs("plots", exist_ok=True)
```

Displaying results

Display degrees of freedom

The degrees of freedom are the first step performed by the OFC in converting the wavefront errors into corrections.

It is composed of two parts, the "aggregated" and the "visit" degrees of freedom. The "aggregated" is the combination of all corrections computed so far whereas the "visit" contains only the degrees of freedom from the last correction.

These values are published as vectors of 50 elements each in the "degreeOfFreedom" event. As with the annularZernikeCoeff case above we need to query them individually and then build the vectors afterwards.

```
In [23]: degrees_of_freedom = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_degreeOfFreedom',
    [f"aggregatedDoF{i}" for i in range(50)] + [f"visitDoF{i}" for i
```

Out[24]:		aggregatedDoF0	aggregatedDoF1	aggregatedDoF2	aggregatedDoF
	2022-05-31 16:18:47.910000+00:00	0.169121	0.054919	-71.852360	-11.85612
1	2022-05-31 16:19:36.906000+00:00	0.000000	0.000000	0.000000	0.0000C
1	2022-05-31 6:20:06.802000+00:00	0.338241	0.109839	-143.704721	-23.71225

3 rows × 100 columns

During the [LVV-T2190] test, we first issue an $\,1\,$ um $\,$ aberration, reset the the corrections, and then issue a $\,2\,$ um $\,$ aberration.

Common sense says that row 2 and row 0 must have a factor of 2 of difference.

```
In [25]: degrees_of_freedom.iloc[2] / degrees_of_freedom.iloc[0]
         aggregatedDoF0
                            2.0
Out[25]:
                            2.0
         aggregatedDoF1
         aggregatedDoF2
                            2.0
                            2.0
         aggregatedDoF3
                            2.0
         aggregatedDoF4
         visitDoF45
                            2.0
         visitDoF46
                            2.0
         visitDoF47
                            2.0
         visitDoF48
                            2.0
         visitDoF49
                            2.0
         Length: 100, dtype: float64
```

We need to unpack the data from the EFD query into vectors that are easier to plot.

```
In [26]:
         aggregated_dof = np.array([degrees_of_freedom[f"aggregatedDoF{i}"] for i in
         visit_dof = np.array([degrees_of_freedom[f"visitDoF{i}"] for i in range(50)]
In [27]: comp_dof_idx = dict(
                      m2HexPos=dict(
                          startIdx=0,
                          idxLength=5,
                          state0name="M2Hexapod",
                      ),
                      camHexPos=dict(
                          startIdx=5,
                          idxLength=5,
                          stateOname="cameraHexapod",
                      ),
                      M1M3Bend=dict(
                          startIdx=10, idxLength=20, stateOname="M1M3Bending", rot_mat
                      M2Bend=dict(startIdx=30, idxLength=20, state0name="M2Bending",
                  )
```

And we finally plot them.

```
In [28]: fig, axes = plt.subplots(2,2, figsize=(10,6), dpi=90)
         for i in range(len(aggregated_dof)):
             axes[0][0].plot(
                  aggregated_dof[i][
                      comp dof idx["m2HexPos"]["startIdx"]:
                      comp_dof_idx["m2HexPos"]["startIdx"]+comp_dof_idx["m2HexPos"]["i
              )
             axes[0][1].plot(
                  aggregated_dof[i][
                      comp_dof_idx["camHexPos"]["startIdx"]:
                      comp dof idx["camHexPos"]["startIdx"]+comp dof idx["camHexPos"]]
                  ]
             )
             axes[1][0].plot(
                  aggregated_dof[i][
                      comp_dof_idx["M2Bend"]["startIdx"]:
                      comp_dof_idx["M2Bend"]["startIdx"]+comp_dof_idx["M2Bend"]["idxLe
                  1
             )
             axes[1][1].plot(
                  aggregated_dof[i][
                      comp_dof_idx["M1M3Bend"]["startIdx"]:
                      comp_dof_idx["M1M3Bend"]["startIdx"]+comp_dof_idx["M1M3Bend"]["i
                  1
              )
         ax_titles = ["M2 Hexapod DoF", "Camera Hexapod DoF", "M2 DoF", "M1M3 DoF"]
         for i in range(4):
             r = i // 2
             c = i % 2
             axes[r][c].set_title(ax_titles[i])
             axes[r][c].set_xlabel("axis")
             axes[r][c].set_ylabel("dof")
             axes[r][c].grid("-", alpha=0.2)
         fig.suptitle(f"{test_execution} - Degrees of Freedom")
         fig.patch.set_facecolor('white')
         plt.subplots_adjust(hspace=0.4, wspace=0.3)
         fig.savefig(f"plots/{test_execution}_dof.png")
```

LVV-E1868 - Degrees of Freedom

Step 8

Display Camera Hexapod Correction

```
In [29]: cam_hexapod_correction_computed_xyz = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_cameraHexapodCorrection',
    ["x", "y", "z"],
    start.utc,
    end.utc
)

cam_hexapod_correction_computed_uv = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_cameraHexapodCorrection',
    ["u", "v"],
    start.utc,
    end.utc
)
```

```
cam_hexapod_correction_applied_xyz = await client.select_time_series(
In [30]:
              'lsst.sal.MTHexapod.logevent_uncompensatedPosition',
              ["x", "y", "z", "MTHexapodID"],
             start.utc,
             end.utc,
             index=1
         )
         cam_hexapod_correction_applied_uv = await client.select_time_series(
              'lsst.sal.MTHexapod.logevent_uncompensatedPosition',
              ["u", "v", "MTHexapodID"],
             start.utc,
             end.utc,
             index=1
         )
         cam_hexapod_correction_command_xyz = await client.select_time_series(
In [31]:
              'lsst.sal.MTHexapod.command_move',
              ["x", "y", "z", "MTHexapodID"],
             start.utc,
             end.utc,
             index=1
         )
         cam_hexapod_correction_command_uv = await client.select_time_series(
              'lsst.sal.MTHexapod.command_move',
              ["u", "v", "MTHexapodID"],
             start.utc,
             end.utc,
             index=1
In [ ]: cam_hexapod_correction_computed_xyz
In [ ]: cam_hexapod_correction_computed_uv
        cam_hexapod_correction_applied_xyz
In []: cam_hexapod_correction_applied_uv
In [ ]: cam_hexapod_correction_command_xyz
In [ ]: cam_hexapod_correction_command_uv
```

```
In [32]: fig, axs = plt.subplots(figsize=(14, 6), ncols=5)
         for panel, label in enumerate("xyz"):
              ax = plt.subplot(1,5,panel+1)
              ax.bar(
                  [-0.5],
                  cam_hexapod_correction_computed_xyz[label],
                  width=0.5
              )
              ax.bar(
                  [0.],
                  cam_hexapod_correction_applied_xyz[label],
                  width=0.5
              ax.bar(
                  [0.5],
                  cam_hexapod_correction_command_xyz[label],
                  width=0.5
              ax.set_xticks([0])
              ax.set_xticklabels([label])
              ax.set_ylabel("Position (micron)")
          for panel, label in enumerate("uv"):
              ax = plt.subplot(1,5,panel+4)
              x = [0.]
              b0 = ax.bar(
                  [-0.5],
                  cam_hexapod_correction_computed_uv[label],
                  width=0.5,
              b1 = ax.bar(
                  [0.],
                  cam_hexapod_correction_applied_uv[label],
                  width=0.5,
              )
              b2 = ax.bar(
                  [0.5],
                  cam_hexapod_correction_command_uv[label],
                  width=0.5,
              )
              ax.set_xticks([0])
              ax.set_xticklabels([label])
              ax.set_ylabel("Position (degrees)")
          fig.suptitle(f"{test_execution} - Camera Hexapod\nComputed/Applied/Commanded
          fig.tight_layout(h_pad=0.3)
          fig.patch.set_facecolor('white')
```

fig.savefig(f"plots/{test_execution}_camera_hexapod.png")

Display M2 Hexapod Correction

```
In [331: m2_hexapod_correction_computed_xyz = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_m2HexapodCorrection',
    ["x", "y", "z"],
    start.utc,
    end.utc
)

m2_hexapod_correction_computed_uv = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_m2HexapodCorrection',
    ["u", "v"],
    start.utc,
    end.utc
)
```

```
In [34]: m2_hexapod_correction_applied_xyz = await client.select_time_series(
    'lsst.sal.MTHexapod.logevent_uncompensatedPosition',
    ["x", "y", "z", "MTHexapodID"],
    start.utc,
    end.utc,
    index=2
)

m2_hexapod_correction_applied_uv = await client.select_time_series(
    'lsst.sal.MTHexapod.logevent_uncompensatedPosition',
    ["u", "v", "MTHexapodID"],
    start.utc,
    end.utc,
    index=2
)
```

9 de 23

```
In [35]:
         m2_hexapod_correction_command_xyz = await client.select_time_series(
              'lsst.sal.MTHexapod.command move',
              ["x", "y", "z", "MTHexapodID"],
              start.utc,
              end.utc,
              index=2
          m2_hexapod_correction_command_uv = await client.select_time_series(
              'lsst.sal.MTHexapod.command_move',
              ["u", "v", "MTHexapodID"],
              start.utc,
              end.utc,
              index=2
          )
In [36]: m2_hexapod_correction_command_xyz
Out[36]:
                                                                       z MTHexapodID
                                                  X
                                                             У
          2022-05-31 16:18:47.972000+00:00 -0.054919
                                                     -71.852360 -0.169121
                                                                                    2
          2022-05-31 16:19:36.942000+00:00 0.000000
                                                      0.000000 0.000000
                                                                                    2
                                                                                    2
          2022-05-3116:20:06.852000+00:00 -0.109839 -143.704721 -0.338241
In [37]:
         m2 hexapod correction computed xyz
Out[37]:
                                                  X
                                                             У
                                                                       Z
           2022-05-31 16:18:47.911000+00:00 -0.054919
                                                     -71.852360
                                                                -0.169121
          2022-05-31 16:19:36.907000+00:00 0.000000
                                                      0.000000
                                                               0.000000
          2022-05-3116:20:06.803000+00:00 -0.109839 -143.704721 -0.338241
In [38]:
         m2_hexapod_correction_applied_xyz
Out[38]:
                                                                       z MTHexapodID
                                                  Х
                                                             У
          2022-05-31 16:18:47.977000+00:00 -0.054919
                                                     -71.852360
                                                                                    2
                                                                -0.169121
                                                                                    2
          2022-05-31 16:19:36.945000+00:00 0.000000
                                                      0.000000 0.000000
          2022-05-3116:20:06.858000+00:00 -0.109839 -143.704721 -0.338241
                                                                                    2
         m2_hexapod_correction_command_uv
In [39]:
Out[39]:
                                                           v MTHexapodID
                                                 u
          2022-05-31 16:18:47.972000+00:00 0.003293 0.000002
                                                                        2
          2022-05-31 16:19:36.942000+00:00 0.000000 0.000000
                                                                        2
          2022-05-31 16:20:06.852000+00:00 0.006587 0.000005
                                                                        2
In [40]: m2_hexapod_correction_computed_uv
```

Out[40]:		u	v		
	2022-05-31 16:18:47.911000+00:00	0.003293	0.000002		
	2022-05-31 16:19:36.907000+00:00	0.000000	0.000000		
	2022-05-31 16:20:06.803000+00:00	0.006587	0.000005		
In [41]:	m2_hexapod_correction_applied_	.uv			
In [41]: Out[41]:	<pre>m2_hexapod_correction_applied_</pre>	uv u	V	MTHexapodID	
	m2_hexapod_correction_applied_ 2022-05-3116:18:47.977000+00:00		v	MTHexapodID 2	
		u		· ·	

```
In [42]: | fig, axs = plt.subplots(figsize=(16, 6), ncols=5)
         for panel, label in enumerate("xyz"):
              ax = axs[panel]
              ax.bar(
                  [-0.5],
                  m2_hexapod_correction_computed_xyz[label],
                  width=0.5
              )
              ax.bar(
                  m2_hexapod_correction_applied_xyz[label],
                  width=0.5
              )
              ax.bar(
                  [0.5].
                  m2_hexapod_correction_command_xyz[label],
                  width=0.5
              )
              ax.set_xticks([0])
              ax.set_xticklabels([label])
              ax.set_ylabel("Position (micron)")
         for panel, label in enumerate("uv"):
              ax = axs[panel + 3]
              ax.bar(
                  [-0.5],
                  m2_hexapod_correction_computed_uv[label],
                  width=0.5
              )
              ax.bar(
                  [0.],
                  m2_hexapod_correction_applied_uv[label],
                  width=0.5
              )
              ax.bar(
                  m2_hexapod_correction_command_uv[label],
                  width=0.5
              )
              ax.set_xticks([0])
              ax.set_xticklabels([label])
              ax.set_ylabel("Position (degrees)")
          fig.suptitle(f"{test_execution} - M2 Hexapod\nComputed/Applied/Commanded Cor
         fig.tight_layout(h_pad=0.3)
          fin natab ant fananalam/|...bital|
```

```
fig.savefig(f"plots/{test_execution}_m2_hexapod.png")
```


Display M2 Correction

```
In [43]: m2_correction = await client.select_time_series(
    'lsst.sal.MTAOS.logevent_m2Correction',
    [f"zForces{i}" for i in range(72)],
    start.utc,
    end.utc
)
```

```
In [44]: m2_correction
```

Out[44]: zForces0 zForces1 zForces2 zForces3 zForces4 zForces5 2022-05-31 -0.759188 -0.741219 -0.704368 -0.630182 -0.518267 -0.390221 16:18:47.938000+00:00 2022-05-31 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 16:19:36.908000+00:00 2022-05-31 -1.518376 -1.482438 -1.408735 -1.260364 -1.036534 -0.780443 16:20:06.805000+00:00

3 rows × 72 columns

```
In [45]: m2_correction_applied = await client.select_time_series(
    'lsst.sal.MTM2.command_applyForces',
    [f"axial{i}" for i in range(72)],
    start.utc,
    end.utc
)
```

```
In [46]: m2_correction_applied
```

Out[46]:		axial0	axial1	axial2	axial3	axial4	axial5	
	2022-05-31 16:18:47.972000+00:00	-0.759188	-0.741219	-0.704368	-0.630182	-0.518267	-0.390221	
	2022-05-31 16:19:36.943000+00:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	2022-05-31 16:20:06.853000+00:00	-1.518376	-1.482438	-1.408735	-1.260364	-1.036534	-0.780443	

3 rows × 72 columns

```
In [47]: plt.plot(m2_correction.T)
  plt.plot(m2_correction_applied.T)
```

Out[47]: [<matplotlib.lines.Line2D at 0x7f2d4ff45640>, <matplotlib.lines.Line2D at 0x7f2d4ff457c0>, <matplotlib.lines.Line2D at 0x7f2d4ff45910>]


```
In [49]: aa = np.loadtxt('%s/notebooks/M2_FEA/data/M2_1um_72_force.txt'%(os.environ['
# to have +x going to right, and +y going up, we need to transpose and rever
m2_xact = -aa[:,2]
m2_yact = -aa[:,1]
```

In [50]: m2_yact

```
Out[50]: array([-1.333500e-16, -3.328670e-01, -6.511849e-01, -9.410446e-01,
                 -1.189774e+00, -1.386507e+00, -1.522641e+00, -1.592229e+00,
                 -1.592229e+00, -1.522641e+00, -1.386507e+00, -1.189774e+00,
                 -9.410446e-01, -6.511849e-01, -3.328670e-01, 0.000000e+00,
                  3.328670e-01, 6.511849e-01, 9.410446e-01, 1.189774e+00,
                  1.386507e+00, 1.522641e+00, 1.592229e+00, 1.592229e+00,
                  1.522641e+00, 1.386507e+00, 1.189774e+00, 9.410446e-01,
                  6.511849e-01, 3.328670e-01, -1.675856e-01, -4.913528e-01,
                 -7.816342e-01, -1.018647e+00, -1.186244e+00, -1.272997e+00,
                 -1.273000e+00, -1.186249e+00, -1.018657e+00, -7.816469e-01,
                 -4.913655e-01, -1.676011e-01, 1.675856e-01, 4.913528e-01,
                  7.816342e-01, 1.018647e+00, 1.186244e+00, 1.272997e+00,
                  1.273000e+00, 1.186249e+00, 1.018657e+00, 7.816469e-01,
                  4.913655e-01, 1.676011e-01, 3.893820e-16, -3.427044e-01,
                 -6.440729e-01, -8.677580e-01, -9.867773e-01, -9.867773e-01,
                 -8.677580e-01, -6.440729e-01, -3.427044e-01, 0.000000e+00,
                  3.427044e-01, 6.440729e-01, 8.677580e-01, 9.867773e-01,
                  9.867773e-01, 8.677580e-01, 6.440729e-01, 3.427044e-01])
In [51]: aa = np.array(m2_correction.T)
In [52]: aa.shape
         (72, 3)
Out[52]:
In [53]: m2_correction.T
                              2022-05-31
                                                                           2022-05-31
Out[53]:
                                                     2022-05-31
                    16:18:47.938000+00:00
                                         16:19:36.908000+00:00
                                                                 16:20:06.805000+00:00
           zForces0
                                -0.759188
                                                            0.0
                                                                             -1.518376
           zForces1
                                -0.741219
                                                            0.0
                                                                             -1.482438
                                -0.704368
                                                            0.0
                                                                             -1.408735
           zForces2
           zForces3
                                -0.630182
                                                            0.0
                                                                             -1.260364
                                                            0.0
                                                                             -1.036534
           zForces4
                                -0.518267
                                                            0.0
                                                                             -0.277485
          zForces67
                                -0.138743
                                                            0.0
         zForces68
                                 0.136610
                                                                              0.273219
         zForces69
                                 0.387046
                                                            0.0
                                                                              0.774092
          zForces70
                                 0.604225
                                                            0.0
                                                                              1.208450
          zForces71
                                 0.773663
                                                            0.0
                                                                              1.547327
         72 rows × 3 columns
```

In [54]: m2_correction_applied.T

Out[541:	2022-05-31 16:18:47.972000+00:00	2022-05-31 16:19:36.943000+00:00	2022-05-31 16:20:06.853000+00:00
axial0	-0.759188	0.0	-1.518376
axial1	-0.741219	0.0	-1.482438
axial2	-0.704368	0.0	-1.408735
axial3	-0.630182	0.0	-1.260364
axial4	-0.518267	0.0	-1.036534
axial67	-0.138743	0.0	-0.277485
axial68	0.136610	0.0	0.273219
axial69	0.387046	0.0	0.774092
axial70	0.604225	0.0	1.208450
axial71	0.773663	0.0	1.547327

72 rows × 3 columns

```
In [55]: fig, axes = plt.subplots(1, 3, figsize=(14,6))
         for panel, timestamp in enumerate(m2_correction_applied.index):
             img = axes[panel].scatter(
                 m2_xact,
                 m2_yact,
                  c=m2_correction_applied.T[timestamp],
                  s=200,
                 vmin=-1.5,
                 vmax=1.5
             )
             axes[panel].axis('equal')
         axes[0].set_title("+1um")
         axes[1].set_title("zero")
         axes[2].set_title("+2um")
         fig.patch.set_facecolor('white')
         fig.suptitle(f"{test_execution} - Step 8\nM2 Corrections", x=0.435)
         fig.tight_layout()
         fig.colorbar(img, ax=axes, label="Correction [um]", pad=0.01)
         fig.savefig(f"plots/{test_execution}_m2.png")
```


Display M1M3 Correction

```
In [56]:
         FATABLE_XPOSITION = 2
         FATABLE YPOSITION = 3
         FATABLE = np.array([
              [0,101,0.776782776,0,-2.158743,'SAA',3,1,'NA',-1,-1,0,-1],
              [1,102,1.442567993,0,-2.158743,'DAA',1,17,'+Y',-1,0,1,0],
              [2,103,2.10837793,0,-2.158743,'DAA',4,17,'+Y',-1,1,2,1],
              [3,104,2.774187988,0,-2.158743,'DAA',2,17,'+Y',-1,2,3,2],
              [4,105,3.439998047,0,-2.158743, 'DAA',3,17,'+Y',-1,3,4,3],
              [5,106,3.968012939,0,-2.158743,'SAA',2,1,'NA',-1,-1,5,-1],
              [6,107,0.44386499,-0.57660498,-2.158743,'SAA',1,1,'NA',-1,-1,6,-1],
              [7,108,1.109675049,-0.57660498,-2.158743,'DAA',4,18,'+Y',-1,4,7,4],
              [8,109,1.775484985,-0.57660498,-2.158743,'DAA',2,18,'+Y',-1,5,8,5],
              [9,110,2.441295898,-0.57660498,-2.158743, 'DAA',3,18,'+Y',-1,6,9,6],
              [10,111,3.107080078,-0.57660498,-2.158743,'DAA',1,18,'+Y',-1,7,10,7],
              [11,112,3.772891113,-0.57660498,-2.158743, 'DAA',4,19,'-X',0,-1,11,8],
              [12,113,0,-1.153209961,-2.158743,'DAA',2,19,'+Y',-1,8,12,9],
              [13,114,0.776782776,-1.153209961,-2.158743,'DAA',3,19,'+Y',-1,9,13,10], [14,115,1.442567993,-1.153209961,-2.158743,'DAA',1,19,'+Y',-1,10,14,11],
              [15,116,2.10837793,-1.153209961,-2.158743,'DAA',4,20,'+Y',-1,11,15,12],
              [16,117,2.774187988,-1.153209961,-2.158743,'DAA',2,20,'+Y',-1,12,16,13]
              [17,118,3.439998047,-1.153209961,-2.158743,'DAA',3,20,'+Y',-1,13,17,14],
              [18,119,3.9005,-0.997687012,-2.158743,'SAA',2,2,'NA',-1,-1,18,-1],
              [19,120,0.44386499,-1.729819946,-2.158743, 'DAA',1,20,'+Y',-1,14,19,15],
              [20,121,1.109675049,-1.729819946,-2.158743,'DAA',4,21,'+Y',-1,15,20,16]
              [21,122,1.775484985,-1.729819946,-2.158743,'DAA',2,21,'+Y',-1,16,21,17],
              [22,123,2.44127002,-1.729819946,-2.158743,'DAA',3,21,'+Y',-1,17,22,18],
              [23,124,3.107080078,-1.729819946,-2.158743,'DAA',1,21,'+Y',-1,18,23,19]
              [24,125,3.724452881,-1.517949951,-2.158743,'SAA',4,1,'NA',-1,-1,24,-1],
              [25,126,0,-2.306419922,-2.158743,'DAA',2,22,'+Y',-1,19,25,20],
              [26,127,0.776782776,-2.306419922,-2.158743,'DAA',3,22,'+Y',-1,20,26,21],
              [27,128,1.442567993,-2.306419922,-2.158743,'DAA',1,22,'-X',1,-1,27,22],
              [28,129,2.10837793,-2.306419922,-2.158743,'DAA',4,22,'+Y',-1,21,28,23],
              [29,130,2.774187988,-2.306419922,-2.158743,'DAA',2,23,'+Y',-1,22,29,24],
              [30,131,3.387954102,-2.167409912,-2.158743,'SAA',3,2,'NA',-1,-1,30,-1],
              [31,132,0.44386499,-2.883030029,-2.158743,'DAA',1,23,'+Y',-1,23,31,25],
              [32,133,1.109675049,-2.883030029,-2.158743,'DAA',4,23,'+Y',-1,24,32,26],
              [33,134,1.775484985,-2.883030029,-2.158743,'DAA',2,24,'+Y',-1,25,33,27],
              [34,135,2.44127002,-2.883030029,-2.158743, 'DAA',3,23, '-X',2,-1,34,28],
              [35,136,2.939364014,-2.745179932,-2.158743,'SAA',4,2,'NA',-1,-1,35,-1],
              [36,137,0.221945206,-3.459629883,-2.158743,'DAA',2,25,'+Y',-1,26,36,29]
              [37,138,0.88772998,-3.459629883,-2.158743,'DAA',3,24,'+Y',-1,27,37,30],
              [38,139,1.553540039,-3.267429932,-2.158743,'SAA',1,2,'NA',-1,-1,38,-1],
              [39,140,2.089733887,-3.436389893,-2.158743,'SAA',4,3,'NA',-1,-1,39,-1],
              [40,141,0.365734589,-4.00525,-2.158743,'SAA',1,3,'NA',-1,-1,40,-1],
              [41,142,1.085088013,-3.87276001,-2.158743,'SAA',2,3,'NA',-1,-1,41,-1],
              [42,143,1.60401001,-3.692780029,-2.158743,'SAA',3,3,'NA',-1,-1,42,-1],
              [43,207,-0.44386499,-0.57660498,-2.158743,'SAA',1,4,'NA',-1,-1,43,-1],
              [44,208,-1.109680054,-0.57660498,-2.158743,'DAA',4,24,'+Y',-1,28,44,31],
              [45,209,-1.77548999,-0.57660498,-2.158743,'DAA',2,26,'+Y',-1,29,45,32],
              [46,210,-2.441300049,-0.57660498,-2.158743,'DAA',3,25,'+Y',-1,30,46,33]
              [47,211,-3.107080078,-0.57660498,-2.158743,'DAA',1,24,'+Y',-1,31,47,34],
              [48,212,-3.772889893,-0.57660498,-2.158743,'DAA',4,25,'+X',3,-1,48,35],
              [49,214,-0.77678302,-1.153209961,-2.158743,'DAA',3,26,'+Y',-1,32,49,36]
              [50,215,-1.442569946,-1.153209961,-2.158743,'DAA',1,25,'+Y',-1,33,50,37]
              [51,216,-2.108379883,-1.153209961,-2.158743,'DAA',4,26,'+Y',-1,34,51,38]
              [52,217,-2.774189941,-1.153209961,-2.158743,'DAA',2,27,'+Y',-1,35,52,39]
              [53,218,-3.44,-1.153209961,-2.158743,'DAA',3,27,'+Y',-1,36,53,40],
```

```
[34,219,-3.9003,-0.997087012,-2.138743, 3AA ,2,4, NA ,-1,-1,34,-1],
[55,220,-0.44386499,-1.729819946,-2.158743,'DAA',1,26,'+Y',-1,37,55,41],
[56,221,-1.109680054,-1.729819946,-2.158743,'DAA',4,27,'+Y',-1,38,56,42]
[57,222,-1.77548999,-1.729819946,-2.158743, 'DAA',2,28,'+Y',-1,39,57,43]
[58,223,-2.44127002,-1.729819946,-2.158743,'DAA',3,28,'+Y',-1,40,58,44],
[59,224,-3.107080078,-1.729819946,-2.158743,'DAA',1,27,'+Y',-1,41,59,45]
[60,225,-3.724449951,-1.517949951,-2.158743,'SAA',4,4,'NA',-1,-1,60,-1],
[61,227,-0.77678302,-2.306419922,-2.158743,'DAA',3,29,'+Y',-1,42,61,46],
[62,228,-1.442569946,-2.306419922,-2.158743,'DAA',1,28,'+X',4,-1,62,47],
[63,229,-2.108379883,-2.306419922,-2.158743,'DAA',4,28,'+Y',-1,43,63,48]
[64,230,-2.774189941,-2.306419922,-2.158743,'DAA',2,29,'+Y',-1,44,64,49]
[65,231,-3.387949951,-2.167409912,-2.158743,'SAA',3,4,'NA',-1,-1,65,-1],
[66,232,-0.44386499,-2.883030029,-2.158743,'DAA',1,29,'+Y',-1,45,66,50],
[67,233,-1.109680054,-2.883030029,-2.158743,'DAA',4,29,'+Y',-1,46,67,51]
[68,234,-1.77548999,-2.883030029,-2.158743,'DAA',2,30,'+Y',-1,47,68,52],
[69,235,-2.44127002,-2.883030029,-2.158743,'DAA',3,30,'+X',5,-1,69,53],
[70,236,-2.939360107,-2.745179932,-2.158743,'SAA',4,5,'NA',-1,-1,70,-1]
[71,237,-0.221945007,-3.459629883,-2.158743,'DAA',2,31,'+Y',-1,48,71,54]
[72,238,-0.88772998,-3.459629883,-2.158743,'DAA',3,31,'+Y',-1,49,72,55],
[73,239,-1.553540039,-3.267429932,-2.158743,'SAA',1,5,'NA',-1,-1,73,-1]
[74,240,-2.08972998,-3.436389893,-2.158743,'SAA',4,6,'NA',-1,-1,74,-1],
[75,241,-0.365734985,-4.00525,-2.158743,'SAA',1,6,'NA',-1,-1,75,-1],
[76,242,-1.085089966,-3.87276001,-2.158743,'SAA',2,5,'NA',-1,-1,76,-1],
[77,243,-1.60401001,-3.692780029,-2.158743,'SAA',3,5,'NA',-1,-1,77,-1],
[78,301,-0.77678302,0,-2.158743,'SAA',3,6,'NA',-1,-1,78,-1],
[79,302,-1.442569946,0,-2.158743,'DAA',1,30,'+Y',-1,50,79,56],
[80,303,-2.108379883,0,-2.158743,'DAA',4,30,'+Y',-1,51,80,57],
[81,304,-2.774189941,0,-2.158743, 'DAA',2,32,'+Y',-1,52,81,58],
[82,305,-3.44,0,-2.158743,'DAA',3,32,'+Y',-1,53,82,59],
[83,306,-3.96801001,0,-2.158743,'SAA',2,6,'NA',-1,-1,83,-1],
[84,307,-0.44386499,0.576605408,-2.158743,'SAA',1,7,'NA',-1,-1,84,-1],
[85,308,-1.109680054,0.576605408,-2.158743,'DAA',4,31,'+Y',-1,54,85,60],
[86,309,-1.77548999,0.576605408,-2.158743,'DAA',2,33,'+Y',-1,55,86,61],
[87,310,-2.441300049,0.576605408,-2.158743, 'DAA',3,33, '+Y',-1,56,87,62],
[88,311,-3.107080078,0.576605408,-2.158743,'DAA',1,31,'-Y',-1,57,88,63],
[89,312,-3.772889893,0.576605408,-2.158743,'DAA',4,32,'+X',6,-1,89,64],
[90,313,0,1.15321106,-2.158743,'DAA',2,34,'+Y',-1,58,90,65],
[91,314,-0.77678302,1.15321106,-2.158743,'DAA',3,34,'+Y',-1,59,91,66],
[92,315,-1.442569946,1.15321106,-2.158743,'DAA',1,32,'+Y',-1,60,92,67],
[93,316,-2.108379883,1.15321106,-2.158743, 'DAA',4,33, '+Y',-1,61,93,68],
[94,317,-2.774189941,1.15321106,-2.158743,'DAA',2,35,'+Y',-1,62,94,69],
[95,318,-3.44,1.15321106,-2.158743,'DAA',3,35,'+Y',-1,63,95,70],
[96,319,-3.9005,0.997686584,-2.158743,'SAA',2,7,'NA',-1,-1,96,-1],
[97,320,-0.44386499,1.72981604,-2.158743, 'DAA',1,33, '+Y',-1,64,97,71],
[98,321,-1.109680054,1.72981604,-2.158743,'DAA',4,34,'+Y',-1,65,98,72],
[99,322,-1.77548999,1.72981604,-2.158743,'DAA',2,36,'+Y',-1,66,99,73],
[100,323,-2.44127002,1.72981604,-2.158743, 'DAA',3,36,'+Y',-1,67,100,74]
[101,324,-3.107080078,1.72981604,-2.158743,'DAA',1,34,'+Y',-1,68,101,75]
[102,325,-3.724449951,1.517954956,-2.158743,'SAA',4,7,'NA',-1,-1,102,-1]
[103,326,0,2.306422119,-2.158743, 'DAA',2,37, '+Y',-1,69,103,76],
[104,327,-0.77678302,2.306422119,-2.158743,'DAA',3,37,'+Y',-1,70,104,77]
[105,328,-1.442569946,2.306422119,-2.158743,'DAA',1,35,'+X',7,-1,105,78]
[106,329,-2.108379883,2.306422119,-2.158743,'DAA',4,35,'+Y',-1,71,106,79
[107,330,-2.774189941,2.306422119,-2.158743,'DAA',2,38,'+Y',-1,72,107,80
[108,331,-3.387949951,2.167406982,-2.158743,'SAA',3,7,'NA',-1,-1,108,-1]
[109,332,-0.44386499,2.8830271,-2.158743,'DAA',1,36,'+Y',-1,73,109,81],
[110,333,-1.109680054,2.8830271,-2.158743, 'DAA',4,36, '+Y',-1,74,110,82],
[111,334,-1.77548999,2.8830271,-2.158743,'DAA',2,39,'-Y',-1,75,111,83],
[112,335,-2.44127002,2.8830271,-2.158743,'DAA',3,38,'+X',8,-1,112,84],
         2 020260107 2 7/E100000
                                  2 1507/2 ICAAI / O INIAI
```

])

```
[115,000,-2.30,101,1.1.1.1.2.,0000001.2.1.0., NA ,-1,-1,111,112,-11]
[114,337,-0.221945007,3.45963208,-2.158743,'DAA',2,40,'+Y',-1,76,114,85]
[115,338,-0.88772998,3.45963208,-2.158743,'DAA',3,39,'+Y',-1,77,115,86],
[116,339,-1.553540039,3.267430908,-2.158743,'SAA',1,8,'NA',-1,-1,116,-1]
[117,340,-2.08972998,3.436391113,-2.158743,'SAA',4,9,'NA',-1,-1,117,-1],
[118,341,-0.365734985,4.00525,-2.158743,'SAA',1,9,'NA',-1,-1,118,-1],
[119,342,-1.085089966,3.872762939,-2.158743,'SAA',2,8,'NA',-1,-1,119,-1]
[120,343,-1.60401001,3.692779053,-2.158743,'SAA',3,8,'NA',-1,-1,120,-1],
[121,407,0.44386499,0.576605408,-2.158743,'SAA',1,10,'NA',-1,-1,121,-1],
[122,408,1.109675049,0.576605408,-2.158743,'DAA',4,37,'+Y',-1,78,122,87]
[123,409,1.775484985,0.576605408,-2.158743,'DAA',2,41,'+Y',-1,79,123,88]
[124,410,2.441295898,0.576605408,-2.158743,'DAA',3,40,'+Y',-1,80,124,89]
[125,411,3.107080078,0.576605408,-2.158743,'DAA',1,37,'-Y',-1,81,125,90]
[126,412,3.772891113,0.576605408,-2.158743,'DAA',4,38,'-X',9,-1,126,91],
[127,414,0.776782776,1.15321106,-2.158743,'DAA',3,41,'+Y',-1,82,127,92],
[128,415,1.442567993,1.15321106,-2.158743,'DAA',1,38,'+Y',-1,83,128,93],
[129,416,2.10837793,1.15321106,-2.158743,'DAA',4,39,'+Y',-1,84,129,94],
[130,417,2.774187988,1.15321106,-2.158743, 'DAA',2,42,'+Y',-1,85,130,95]
[131,418,3.439998047,1.15321106,-2.158743,'DAA',3,42,'+Y',-1,86,131,96],
[132,419,3.9005,0.997686584,-2.158743,'SAA',2,9,'NA',-1,-1,132,-1],
[133,420,0.44386499,1.72981604,-2.158743,'DAA',1,39,'+Y',-1,87,133,97],
[134,421,1.109675049,1.72981604,-2.158743, 'DAA',4,40, '+Y',-1,88,134,98],
[135,422,1.775484985,1.72981604,-2.158743, 'DAA',2,43, '+Y',-1,89,135,99],
[136,423,2.44127002,1.72981604,-2.158743,'DAA',3,43,'+Y',-1,90,136,100],
[137,424,3.107080078,1.72981604,-2.158743, 'DAA',1,40,'+Y',-1,91,137,101]
[138,425,3.724452881,1.517954956,-2.158743,'SAA',4,10,'NA',-1,-1,138,-1]
[139,427,0.776782776,2.306422119,-2.158743, 'DAA',3,44,'+Y',-1,92,139,102
[140,428,1.442567993,2.306422119,-2.158743,'DAA',1,41,'-X',10,-1,140,103
[141,429,2.10837793,2.306422119,-2.158743,'DAA',4,41,'+Y',-1,93,141,104]
[142,430,2.774187988,2.306422119,-2.158743,'DAA',2,44,'+Y',-1,94,142,105
[143,431,3.387954102,2.167406982,-2.158743,'SAA',3,9,'NA',-1,-1,143,-1],
[144,432,0.44386499,2.8830271,-2.158743,'DAA',1,42,'+Y',-1,95,144,106],
[145,433,1.109675049,2.8830271,-2.158743, 'DAA',4,42,'+Y',-1,96,145,107]
[146,434,1.775484985,2.8830271,-2.158743,'DAA',2,45,'-Y',-1,97,146,108],
[147,435,2.44127002,2.8830271,-2.158743,'DAA',3,45,'-X',11,-1,147,109],
[148,436,2.939364014,2.745180908,-2.158743,'SAA',4,11,'NA',-1,-1,148,-1]
[149,437,0.221945206,3.45963208,-2.158743,'DAA',2,46,'+Y',-1,98,149,110]
[150,438,0.88772998,3.45963208,-2.158743,'DAA',3,46,'+Y',-1,99,150,111],
[151,439,1.553540039,3.267430908,-2.158743,'SAA',1,11,'NA',-1,-1,151,-1]
[152,440,2.089733887,3.436391113,-2.158743,'SAA',4,12,'NA',-1,-1,152,-1]
[153,441,0.365734589,4.00525,-2.158743,'SAA',1,12,'NA',-1,-1,153,-1],
[154,442,1.085088013,3.872762939,-2.158743,'SAA',2,10,'NA',-1,-1,154,-1]
[155,443,1.60401001,3.692779053,-2.158743,'SAA',3,10,'NA',-1,-1,155,-1],
```

```
In [57]: m1m3_xact = np.float64(FATABLE[:, FATABLE_XPOSITION])
    m1m3_yact = np.float64(FATABLE[:, FATABLE_YPOSITION])
```

In [58]: m1m3_yact

```
Out[58]: array([ 0.
                                                          0.
                                             0.
                              -0.57660498, -0.57660498, -0.57660498, -0.57660498,
                 -0.57660498, -0.57660498, -1.15320996, -1.15320996, -1.15320996,
                 -1.15320996, -1.15320996, -1.15320996, -0.99768701, -1.72981995,
                 -1.72981995, -1.72981995, -1.72981995, -1.72981995, -1.51794995,
                 -2.30641992, -2.30641992, -2.30641992, -2.30641992, -2.30641992,
                 -2.16740991, -2.88303003, -2.88303003, -2.88303003, -2.88303003,
                 -2.74517993, -3.45962988, -3.45962988, -3.26742993, -3.43638989,
                            , -3.87276001, -3.69278003, -0.57660498, -0.57660498,
                 -0.57660498, -0.57660498, -0.57660498, -0.57660498, -1.15320996,
                 -1.15320996, -1.15320996, -1.15320996, -1.15320996, -0.99768701,
                 -1.72981995, -1.72981995, -1.72981995, -1.72981995, -1.72981995,
                 -1.51794995, -2.30641992, -2.30641992, -2.30641992, -2.30641992,
                 -2.16740991, -2.88303003, -2.88303003, -2.88303003, -2.88303003,
                 -2.74517993, -3.45962988, -3.45962988, -3.26742993, -3.43638989,
                            , -3.87276001, -3.69278003,
                                                          0.
                 -4.00525
                                                                        0.
                  0.
                               0.
                                             0.
                                                           0.
                                                                        0.57660541,
                  0.57660541,
                               0.57660541,
                                             0.57660541,
                                                           0.57660541,
                                                                        0.57660541,
                  1.15321106,
                               1.15321106,
                                             1.15321106,
                                                           1.15321106,
                                                                        1.15321106,
                  1.15321106,
                               0.99768658,
                                             1.72981604,
                                                           1.72981604,
                                                                        1.72981604,
                               1.72981604,
                                                           2.30642212,
                  1.72981604,
                                             1.51795496,
                                                                        2.30642212,
                                                                        2.8830271 ,
                  2.30642212,
                               2.30642212,
                                             2.30642212,
                                                           2.16740698,
                               2.8830271 ,
                                             2.8830271 ,
                                                                        3.45963208,
                  2.8830271 ,
                                                           2.74518091,
                                             3.43639111,
                  3.45963208,
                               3.26743091,
                                                           4.00525
                                                                        3.87276294,
                  3.69277905,
                               0.57660541,
                                             0.57660541,
                                                           0.57660541,
                                                                        0.57660541,
                  0.57660541,
                               0.57660541,
                                             1.15321106,
                                                           1.15321106,
                                                                        1.15321106,
                  1.15321106.
                               1.15321106,
                                             0.99768658,
                                                           1.72981604,
                                                                        1.72981604,
                  1.72981604,
                               1.72981604,
                                             1.72981604,
                                                           1.51795496,
                                                                        2.30642212,
                  2.30642212,
                               2.30642212,
                                             2.30642212,
                                                           2.16740698,
                                                                        2.8830271 ,
                  2.8830271 ,
                               2.8830271 ,
                                             2.8830271 ,
                                                           2.74518091,
                                                                        3.45963208,
                  3.45963208,
                               3.26743091,
                                             3.43639111,
                                                           4.00525
                                                                        3.87276294,
                  3.69277905])
In [59]:
         m1m3_correction = await client.select_time_series(
              'lsst.sal.MTAOS.logevent m1m3Correction',
              [f"zForces{i}" for i in range(156)],
              start.utc,
              end.utc
          m1m3_correction_applied = await client.select_time_series(
In [60]:
              'lsst.sal.MTM1M3.command applyActiveOpticForces',
              [f"zForces{i}" for i in range(156)],
              start.utc,
              end.utc
         m1m3 correction
In [61]:
```

Out[61]:		zForces0	zForces1	zForces2	zForces3	zForces4	zForces5	2
	2022-05-31 16:18:47.937000+00:00	0.018060	-0.022865	-0.027896	-0.002299	0.027176	0.049886	Ę
	2022-05-31 16:19:36.908000+00:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	(
	2022-05-31 16:20:06.804000+00:00	0.036121	-0.045731	-0.055792	-0.004598	0.054353	0.099772	1

3 rows × 156 columns

In [62]: m1m3_correction_applied

Out[62]:		zForces0	zForces1	zForces2	zForces3	zForces4	zForces5	2
	2022-05-31 16:18:47.973000+00:00	0.018060	-0.022865	-0.027896	-0.002299	0.027176	0.049886	Ę
	2022-05-31 16:19:36.943000+00:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	(
	2022-05-31 16:20:06.853000+00:00	0.036121	-0.045731	-0.055792	-0.004598	0.054353	0.099772	1

3 rows × 156 columns

```
In [63]: fig, axes = plt.subplots(1, 3, figsize=(17, 7))

for ax, time in zip(axes.flatten(), m1m3_correction.T):
    img = ax.scatter(m1m3_xact, m1m3_yact, c=m1m3_correction.T[time], s=150,
    ax.axis('equal')
    ax.set_title(f"applied forces\n{time}")

fig.patch.set_facecolor('white')
fig.suptitle(f"{test_execution} - Step 9\nM1 Corrections", x=0.43)
fig.tight_layout()
fig.colorbar(img, ax=axes, label="Correction [um]", pad=0.01)
fig.savefig(f"plots/{test_execution}_m1.png")
```


about:srcdoc

In	[]:	
In]]:	
In]]:	