

刮大學考试回忆版

Nankai University 🐉 🖨 😘 📦

版本无参考答案版

命题人罗延安

整理佚名

2019-2020 学年第二学期原子物理

—、	填空题	(每空	2	分)	
•		\	_	/J /	

1. 微分散射截面的物理意义	
9. 沟到了和灾后理	
2. 泡利不相容原理	
3. 电子的 4 个量子数为	,,和。第3层最多可容纳
个电子,这层可以分为	_ 个子壳层,每个子壳层最多可以容纳 个。
4. 斯特恩-盖拉赫实验中, 处于 3F	$\mathcal{D}_{1/2}$ 的原子,经过磁场后分裂为 条,处于 $^4G_{5/2}$ 的原子经
过磁场后分裂为条。	
5. 原子中 K,L 层填满, M 层填沫	$\frac{1}{3}$ 的原子的电子组态是
	σ
个, m_l 和 m_s 都相同的有	个。
7. 原子核的平均结合能是轻核大运	E是中等质量的原子核大?。
8.C 原子的电子组态是	,组成的原子态有,其中基态为。
二、应用题 $($ 每题 10 $分)$	
9 请简要叙述从琴射线的连续证纸	7. 标识读的产生机制

- |2. 请简要叙述伦琴射线的连续谱和标识谱的产生机制。
- |3. 已知 |3. 已知 |3. 的一个电子在基态 |3. 另一个跃迁到 |3. |3. 日如 |3. 以上,请在能级图中标出
- (1) 可能的原子态;
- (2) 标出一条允许跃迁和禁戒跃迁;
- (3) 找出一条正常塞曼效应和一条反常塞曼效应的跃迁。
- 4.(1) 氢原子基态的结合能是多少?
- (2) 氢原子中的电子从结合能 0.544eV 的状态跃迁到激发能 10.2eV 的状态, 求释放出光子的能量, 并 在能级图中标出量子数。
- |5.Na 原子 $3^2P_{1/2} \rightarrow 3^2S_{1/2}$ 从跃迁,将其放入磁场中,磁场磁感应强度 2.5T,未放入磁场中时光谱波长 为 5896 埃。
- (1) 平行于磁场方向观察能看到几条?
- (2) 观察到的谱线波长时多少 (已知洛伦兹单位为 $46.7B m^{-1}$)

- 6. 设计实验验证电子自旋的存在,并且自旋量子数为 $\frac{1}{2}$ 。
- 7. 核反应 $\frac{11}{5}B(p,n)^{11}_6C$ 的反应阈能为 3.01MeV,已知氢原子和中子的质量差是 0.76MeV,求
- (1) 求 ${}_{5}^{11}B$ 和 ${}_{6}^{11}C$ 的质量差 (单位用 MeV);
- (2) 反应能是多少?该反应是吸能反应还是放能反应?