PHYSICS 2426 Fall 2019 Equation Sheet Exam 2

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$$

$$K = \frac{E_0}{E}$$

$$\epsilon = K\epsilon_0$$

Electrostatics Basics

$$\vec{E}_{\rm pt.} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

$$ec{F}_E = q_0 ec{E}$$

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\epsilon_0}$$

$$V_a - V_b = -\int_b^a \vec{E} \cdot d\vec{l}$$

$$V_a - V_b = -\int_b^a \vec{E} \cdot d\vec{l}$$
 $\vec{E} = -\vec{\nabla}V$ or $\vec{E} = -\frac{dV}{dr}\hat{r}$

$$V_{\text{point}} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$K = \frac{1}{2}mv^2$$

$$U_{elec} = q_0 V$$

$$W_{ext} = \Delta U + \Delta K$$

Capacitors, Capacitance and Stored Energy

$$C \equiv Q/V$$

$$U = \frac{Q^2}{2C}$$

$$u = \frac{1}{2}\epsilon_0 E^2$$

$$u = \frac{1}{2}\epsilon_0 E^2$$
 $C_{\text{par plates}} = \frac{\epsilon_0 A}{d}$

$$C_{eq,par} = C_1 + C_2 + C_3 + \cdots$$

$$\frac{1}{C_{eq,ser}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

Current, Resistance and Emf

$$I \equiv \frac{dQ}{dt} = n|q|v_d A$$

$$\vec{J} = nq\vec{v}_d$$

$$E = \rho J$$

$$I \equiv \frac{dQ}{dt} = n|q|v_d A$$
 $\vec{J} = nq\vec{v}_d$ $E = \rho J$ $V = IR$ with $R \equiv \rho \frac{L}{A}$

$$R_{eq,ser} = R_1 + R_2 + R_3 + \cdots$$

$$R_{eq,ser} = R_1 + R_2 + R_3 + \cdots$$
 $\frac{1}{R_{eq,par}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$

$$I_{in} = I_{out}$$

$$\sum V_{loop} = 0$$

RC Circuits

$$\overline{q(t) = \varepsilon C} \left(1 - e^{-t/RC} \right)$$

$$q(t) = Q_0 e^{-t/_{RC}}$$

$$i(t) = \frac{\varepsilon}{R} e^{-t/RC}$$

$$i(t) = I_0 e^{-t/_{RC}}$$