A 卷

清华大学本科生考试试题专用纸

考试课程 电路原理

????年?月?日

班级______ 姓名_____ 学号______

- 一、(24分)求解下列各题
 - 1. 求谐振角频率和谐振时的入端阻抗。

2. 求卷积积分 r(t) = e(t) * h(t)。

3. 求下图二端口的 Y 参数。

4. 下图中,已知 $u_s(t) = 220\sqrt{2}\sin 314t \text{ V}$,电流 表 A_2 与 A_3 读数相等。试求电流表 A_1 、 A_2 和 A_3 的读数(均为有效值)。

二、(8分)电路如图所示。其中 u_C , i_{L1} 和 i_{L2} 为状态变量,状态方程的标准形式为

三、(12分)图示二端口网络 N 的传输参数为

$$T = \begin{pmatrix} 2 & 8\Omega \\ 0.5S & 2.5 \end{pmatrix}.$$

- (1) 求虚线框所示二端口网络的传输参数。
- (2) 电阻 R 为何值时它获最大功率? 求此最大功率。

- 四、(12 分)题图电路为对称三相电路。 已知对称三相负载消耗的额定有功功率 P=2.85kW,额定线电压 $U_I=380$ V,功率因数 $\cos\varphi=0.866$ (感性)。线路阻抗 $Z_I=0.866+i0.5$ Ω 。
 - (1) 若要使负载工作在额定电压下,求三相电源电压 $\dot{U}_{\rm A}, \dot{U}_{\rm B}, \dot{U}_{\rm C}$ (设 $\dot{U}_{\rm A'B'}=380\angle30^{\circ}{\rm V}$);
 - (2) 画出两表法测量三相电源发出总功率的另一块功率表接线图,并求所画功率表读数。

五、(14分)右图电路在换路前处于稳态,电容无初始储能。t=0时合开关 S_1 , t=3s时将开关 S_2 由端钮 1 合至

2。求换路后的电流 i, 并画其曲线。

- 六、(10分)电路如题图所示, t=0时打开开关S。
 - (1) 以电容电压 u_C 为变量列写微分方程;
 - (2) 判定电容电压 $u_C(t)$ 暂态过程的性质,并定性画出 $u_C(t)$ 的波形 (不必计算出结果)。

- 七、(12 分)图示周期性非正弦稳态电路中,已知 $u_{\mathrm{S}}(t)=U_{\mathrm{0}}+U_{\mathrm{1m}}\sin 1000t$, $R_{\mathrm{1}}=2\Omega$,
 - R_2 =2 Ω , L_1 =1mH, L_2 =2mH, M=1mH, C=500 μ F。 电容两端电压的有效值 U_C =12V, 电容中电流的有效值 I_C =2.5A。

- (1) 求电源电压的有效值;
- (2) 求电源发出的平均功率。
- 八、(8分)电路如图所示。已知 $i_s = \varepsilon(t)A$,电容电压及电阻电压的单位阶跃响应分别为

$$u_C(t) = (1 - e^{-t})\varepsilon(t)V,$$

$$u_R(t) = (1 - 0.25e^{-t})\varepsilon(t)V.$$
若 $u_C(0^-) = 2V$, $i_S(t) = \delta(t)A$, 求电阻电压 u_R .

