Model-theoretic Semantics: Names and verbs

Models

A model M for predicate logic is an ordered pair $\langle U, \llbracket \cdot \rrbracket \rangle$, in which:

- *U* is a a nonempty set of individuals;
- $[\![\cdot]\!]$ is an interpretation function.

Ling-exp \longrightarrow $\llbracket \cdot \rrbracket$ \longrightarrow some object built from U

A sample model

a: a girl named Ada

 $U = \{\mathsf{a}, \mathsf{b}, \mathsf{c}\}$ b: a girl named Becky

c: a girl named Cindy

Facts

- a, b and c are girls.
- a and b danced, but c didn't.
- a saw b, but b didn't see a.
- c saw a, and a saw c, too.
- a and c are Americans, but b is a British.

Names

$$[Ada] = a$$
 $[Becky] = b$ $[Cindy] = c$

Type e

Intransitive verbs

$$[\![\mathsf{dance}]\!] = \{x \mid x \; \mathsf{dances}\} = \{\mathsf{a},\mathsf{b}\} \subseteq U$$

Characteristic functions

$$[dance] = \begin{bmatrix} a & \longrightarrow & 1 \\ b & & \\ c & \longrightarrow & 0 \end{bmatrix}$$

Type $e \rightarrow t$

Transitive verbs

$$\begin{split} \llbracket \text{see} \rrbracket &= \{ \langle x, y \rangle \mid x \text{ saw } y \} \\ &= \{ \langle \mathsf{a}, \mathsf{b} \rangle, \ \langle \mathsf{c}, \mathsf{a} \rangle, \ \langle \mathsf{a}, \mathsf{c} \rangle \} \subseteq U \times U \end{split}$$

Characteristic functions

$$\llbracket see \rrbracket = \begin{bmatrix} \langle \mathsf{a}, \mathsf{b} \rangle & & 1 \\ \langle \mathsf{a}, \mathsf{c} \rangle & & \\ \langle \mathsf{c}, \mathsf{a} \rangle & & \\ \langle \mathsf{c}, \mathsf{b} \rangle & & \\ \langle \mathsf{c}, \mathsf{c} \rangle & & \\ \langle \mathsf{b}, \mathsf{c} \rangle & & 0 \end{bmatrix} = \begin{bmatrix} \mathsf{a} & \longrightarrow & \begin{bmatrix} \mathsf{a} & & 1 \\ \mathsf{b} & & & \\ \mathsf{c} & & 0 \end{bmatrix} \\ \mathsf{b} & \longrightarrow & \begin{bmatrix} \mathsf{a} & \longrightarrow & 1 \\ \mathsf{b} & & & \\ \mathsf{c} & \longrightarrow & 0 \end{bmatrix} \\ \mathsf{c} & \longrightarrow & \begin{bmatrix} \mathsf{a} & \longrightarrow & 1 \\ \mathsf{b} & & & \\ \mathsf{c} & \longrightarrow & 0 \end{bmatrix}$$

Type $e \rightarrow e \rightarrow t$

Combination

Functional Application

$$\frac{f :: a \to b \qquad x :: a}{f(x) :: b}$$

- 1. [Ada danced] = [danced]([Ada])
- 2. [Ada saw Becky] = [saw]([Becky])([Ada])

Formal concepts

Set "a collection of distinct objects, considered as an object in its own right" Defining sets

- Extensionally: {a,b,c}
- Intensionally: $\{x \mid x \text{ is a girl}\}$

Empty set: ∅ or {}

Relations between sets

- Proper subset: $A \subset B$ iff $A \subseteq B$ and $B \not\subseteq A$
- Equivalence: A = B iff $A \subseteq B$ and $B \subseteq A$
- Superset: $B \supset A$ iff $A \subseteq B$

Power sets $\wp(A) = \{B \mid B \subset A\}$

Pairs $\langle a, b \rangle \neq \langle b, a \rangle$ n-tuples $\langle a, b, c, ... \rangle$

Relations as sets of pairs (Cartesian products)

 $A \times B := \{ \langle x, y \rangle \mid x \in A \text{ and } y \in B \}$

Function any relation where each input is paired with at most one output

injection

bijection

surjection

Type a 'name tag' of a set (D_e, D_t)

Basic types: e (individuals); t (truth values)

Function types: $a \rightarrow b$