K-Nearest Neighbors

```
In [1]:
         import os
         import sys
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy
         from mlxtend.plotting import plot_decision_regions
         from sklearn.datasets import load_breast_cancer, load_iris
         from sklearn.model_selection import train_test_split, cross_val_score
         from sklearn.neighbors import KNeighborsClassifier as KNC, kneighbors_graph
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
         %matplotlib inline
In [2]:
        f1_values_set1 = np.random.randint(low=12, high=17, size=50)
         f2_values_set1 = np.random.randint(low=20, high=25, size=50)
         f1 values set2 = np.random.randint(low=2, high=7,size=50)
         f2_values_set2 = np.random.randint(low=10, high=15, size=50)
         dummy_dataset1 = pd.DataFrame({'f1':f1_values_set1,
In [3]:
                                     'f2':f2_values_set1})
         dummy_dataset2 = pd.DataFrame({'f1':f1_values_set2,
                                     'f2':f2_values_set2})
         dummy_data = pd.concat([dummy_dataset1,dummy_dataset2],axis=0).reset_index(drop=True
         dummy_data['label'] = dummy_data['f1'].apply(lambda val: 1 if val > 7 else 0)
In [4]:
         dummy_data.head()
In [5]:
Out[5]:
           f1 f2 label
        0 12 22
        1 13 23
                     1
        2 12 20
        3 12 21
                     1
        4 16 24
        sns.set context(context='poster')
In [6]:
         plt.figure(figsize=(9,6))
         sns.scatterplot(x='f1',y='f2',hue='label',data=dummy_data)
Out[6]: <AxesSubplot:xlabel='f1', ylabel='f2'>
```



```
In [7]: X_train, X_test, y_train, y_test = train_test_split(dummy_data.iloc[:,0:-1],dummy_da
In [8]: X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[8]: ((60, 2), (40, 2), (60,), (40,))
```

K=1

```
In [9]: knc = KNC(n_neighbors=1)
In [10]: knc_model = knc.fit(X_train,y_train)
In [11]: y_predict = knc.predict(X_test)
In [12]: accuracy_score(y_test,y_predict), precision_score(y_test,y_predict), recall_score(y_test)
Out[12]: (1.0, 1.0, 1.0)
```

K=1, Weighted KNN with distance metric as Canberra

```
In [13]: knc2 = KNC(n_neighbors=1, weights='distance',algorithm='ball_tree',metric=scipy.spat
In [14]: knc_model2 = knc2.fit(X_train,y_train)
In [15]: y_predict2 = knc_model2.predict(X_test)
In [16]: accuracy_score(y_test,y_predict2), precision_score(y_test,y_predict2), recall_score(
Out[16]: (1.0, 1.0, 1.0)
In [17]: # pd.DataFrame(knc2.kneighbors_graph(X=X_train,n_neighbors=1,mode='connectivity').to
sns.set_context('paper')
```

3/21/2021 M3 KNN

```
plt.spy(knc2.kneighbors_graph(X=X_train.iloc[0:10,],n_neighbors=5,mode='distance'))
plt.show()
```


VIF Calculation

```
from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
In [102...
           df.head()
In [103...
Out[103...
             carat depth price
          0
              0.23
                     61.5
                            326
              0.21
                     59.8
          1
                            326
          2
              0.23
                     56.9
                            327
          3
              0.29
                     62.4
                            334
              0.31
                     63.3
                            335
In [104...
           df.values
Out[104... array([[2.300e-01, 6.150e+01, 3.260e+02],
                  [2.100e-01, 5.980e+01, 3.260e+02],
                  [2.300e-01, 5.690e+01, 3.270e+02],
                  [7.000e-01, 6.020e+01, 2.822e+03],
                  [7.000e-01, 6.070e+01, 2.822e+03],
                  [9.000e-01, 6.400e+01, 2.822e+03]])
           vif_df = pd.DataFrame()
In [350...
           vif_df['Values'] = [vif(df.values,i) for i in range(len(df.columns))]
           vif_df['Features'] = df.columns
           vif df
In [351...
                       Features
Out[351...
                Values
          0 60.169063
                           carat
            11.015691
                          depth
          2 37.304660
                           price
           from sklearn.preprocessing import StandardScaler
In [110...
           ss = StandardScaler()
           brst_can = cancer_df.copy(deep=True)
In [120...
           brst_can.head()
Out[120...
                                                                                    mean
              mean
                      mean
                                mean
                                       mean
                                                    mean
                                                                 mean
                                                                           mean
                                                                                              mean
                                                                                 concave
```

area smoothness compactness concavity

radius texture perimeter

diı

symmetry

points

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	diı
0 17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	
1 20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	
2 19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	
3 11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	
4 20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	

5 rows × 31 columns

```
In [121... brst_can = pd.DataFrame(ss.fit_transform(brst_can.iloc[:,0:-1]),columns=cancer_df.il
In [124... brst_can.head()
```

Out[124...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	n symm
0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	2.21
1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	0.00
2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	0.93
3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	2.86
4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	-0.00

5 rows × 30 columns

```
In [125... cancer_vif = pd.DataFrame()
    cancer_vif['Values'] = [vif(brst_can.values,i) for i in range(len(brst_can.columns))
    cancer_vif['Features'] = brst_can.columns
```

In [126... cancer_vif

Out[126...

	Values	Features
0	3806.115296	mean radius
1	11.884048	mean texture
2	3786.400419	mean perimeter
3	347.878657	mean area
4	8.194282	mean smoothness
5	50.505168	mean compactness
6	70.767720	mean concavity
7	60.041733	mean concave points
8	4.220656	mean symmetry
9	15.756977	mean fractal dimension

	Values	Features
10	75.462027	radius error
11	4.205423	texture error
12	70.359695	perimeter error
13	41.163091	area error
14	4.027923	smoothness error
15	15.366324	compactness error
16	15.694833	concavity error
17	11.520796	concave points error
18	5.175426	symmetry error
19	9.717987	fractal dimension error
20	799.105946	worst radius
21	18.569966	worst texture
22	405.023336	worst perimeter
23	337.221924	worst area
24	10.923061	worst smoothness
25	36.982755	worst compactness
26	31.970723	worst concavity
27	36.763714	worst concave points
28	9.520570	worst symmetry
29	18.861533	worst fractal dimension

KNN on Breast Cancer Dataset

Out[19]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809
•••								•••	
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	concave points	mean symmetry	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	

569 rows × 31 columns

```
In [49]: for k in range(1,21)[::2]:
    knn_dec_reg = KNC(n_neighbors=k,weights='distance',algorithm='kd_tree',leaf_size
    knn_dec_reg.fit(cancer_df.iloc[:,0:2],y=cancer_df['Label'])
    with plt.style.context('seaborn-bright'):
        plt.figure(figsize=(14,7))
        plot_decision_regions(X=cancer_df.iloc[:,0:2].values,y=cancer_df['Label'].va
        plt.title("{}-NN".format(k))
        plt.show()
```


Only TRAIN and TEST

```
X_train, X_test, y_train, y_test = train_test_split(cancer_df.iloc[:,0:-1],cancer_df
In [36]:
In [21]:
          X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[21]: ((341, 30), (228, 30), (341,), (228,))
In [22]:
          def filt(val):
              if val%2 != 0:
                  return val
In [23]:
          neighbors = list(filter(filt, [val for val in range(0,32)]))
          neighbors
Out[23]: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
In [24]:
          acc_scr = []
          rec_scr = []
          prec_scr = []
```

15

20

25

```
for neighbor in neighbors:
    knn_model = KNC(n_neighbors=neighbor)
    knn_model.fit(X_train, y_train)
    knn_y_predict = knn_model.predict(X_test)
    acc_scr.append(accuracy_score(y_test,knn_y_predict))
    rec_scr.append(recall_score(y_test,knn_y_predict))
    prec_scr.append(precision_score(y_test,knn_y_predict))

with plt.style.context('seaborn'):
    sns.lineplot(x=neighbors,y=acc_scr,label='acc')
    sns.lineplot(x=neighbors,y=prec_scr,label='prec')
    sns.lineplot(x=neighbors,y=rec_scr,label='rec')
```


TRAIN, CV and TEST

```
In [25]: X1, X_test, y1, y_test = train_test_split(cancer_df.iloc[:,0:-1],cancer_df['Label'],
In [26]: X_train, X_cv, y_train, y_cv = train_test_split(X1,y1,test_size=0.30,random_state=42
In [27]: X_train.shape, X_test.shape, y_train.shape, y_test.shape, X_cv.shape, y_cv.shape
Out[27]: ((278, 30), (171, 30), (278,), (171,), (120, 30), (120,))
```

CV performance metrics

```
In [28]: acc_scr_cv = []
    rec_scr_cv = []
    prec_scr_cv = []

for neighbor in neighbors:
        knn_model = KNC(n_neighbors=neighbor,weights='distance',algorithm='kd_tree',leaf
        knn_model.fit(X_train, y_train)
        y_cv_pred = knn_model.predict(X_cv)
        acc_scr_cv.append(accuracy_score(y_cv,y_cv_pred))
        rec_scr_cv.append(recall_score(y_cv,y_cv_pred))
        prec_scr_cv.append(precision_score(y_cv,y_cv_pred))

with plt.style.context('seaborn'):
        sns.lineplot(x=neighbors,y=acc_scr_cv,label='acc_cv')
        sns.lineplot(x=neighbors,y=rec_scr_cv,label='prec_cv')
        sns.lineplot(x=neighbors,y=rec_scr_cv,label='rec_cv')
```


CV Error

```
In [29]: acc_scr_cv_err = [(1 - val)*10 for val in acc_scr_cv]
    prec_scr_cv_err = [(1 - val)*10 for val in prec_scr_cv]
    rec_scr_cv_err = [(1 - val)*10 for val in rec_scr_cv]
```

```
In [30]: with plt.style.context('seaborn'):
    sns.lineplot(x=neighbors,y=acc_scr_cv_err,label='acc_cv_err')
    sns.lineplot(x=neighbors,y=prec_scr_cv_err,label='prec_cv_err')
    sns.lineplot(x=neighbors,y=rec_scr_cv_err,label='rec_cv_err')
```


TEST set performance metrics

Predicting Class Probability

In [33]: print(knn_cancer_model.predict_proba(X_test))

```
[[0.10727533 0.89272467]
             0.
[1.
 [0.90987962 0.09012038]
 [0.01882241 0.98117759]
 [0.01403691 0.98596309]
             0.
[1.
 [1.
             0.
 [0.96872456 0.03127544]
 [0.02335353 0.97664647]
 [0.12278102 0.87721898]
 [0.03116392 0.96883608]
 [0.98430656 0.01569344]
 [0.12262872 0.87737128]
 [0.57084654 0.42915346]
 [0.02223204 0.97776796]
 Γ1.
             0.
 [0.11867577 0.88132423]
 Γ0.
             1.
 [0.
             1.
 「1.
             0.
 [0.28898917 0.71101083]
 [0.0501302 0.9498698]
 Г1.
             0.
 [0.
             1.
 [0.
             1.
 [0.0243354 0.9756646 ]
 [0.02509231 0.97490769]
 [0.
             1.
 [0.
             1.
 [1.
             0.
 [0.
             1.
 [0.01898134 0.98101866]
             1.
 [0.19632132 0.80367868]
             1.
 [0.01658878 0.98341122]
 [0.92674356 0.07325644]
 [0.03880247 0.96119753]
 [1.
             0.
 [0.15321879 0.84678121]
 [0.
             1.
 [0.80984493 0.19015507]
 [0.
             1.
 [0.02596695 0.97403305]
 [0.
             1.
 [0.05303708 0.94696292]
 [0.
             1.
 [0.
             1.
 [0.05255506 0.94744494]
 [0.01350674 0.98649326]
 [1.
             0.
 [1.
             0.
 [0.04146001 0.95853999]
 [0.05088521 0.94911479]
 [0.
             1.
 [0.09863321 0.90136679]
 [0.
             1.
 [1.
             0.
 [0.20776767 0.79223233]
 [0.01592945 0.98407055]
 [0.02672009 0.97327991]
 [1.
             0.
 [1.
             0.
 [0.0593718 0.9406282 ]
 [0.01424098 0.98575902]
```

[0.03313167 0.96686833] [0.9668277 0.0331723] 0. [1. [0. 1. [0.04307508 0.95692492] [0.25743538 0.74256462] [0.98509099 0.01490901] [0.05410487 0.94589513] [0.56849597 0.43150403] [0. 1. [0.05490436 0.94509564] [0.11694131 0.88305869] [0.21835167 0.78164833] [0.0187632 0.9812368] [0.04211452 0.95788548] [0.95263292 0.04736708] [0.05722965 0.94277035] [0.16149533 0.83850467] 0. [1. [1. 0. [0.4904376 0.5095624 [0.23756747 0.76243253] 0. [1. [0. 1. [0.01563645 0.98436355] [0.05989591 0.94010409] [0.19446449 0.80553551] [0.25130616 0.74869384] [0.01627946 0.98372054] [0. 1. [0. 1. [1. 0. [0.87381559 0.12618441] [0.01393219 0.98606781] 0. [0.96537113 0.03462887] [0. 1. [1. 0. [1. 0. [0.13782438 0.86217562] [0.06321966 0.93678034] [0.0183746 0.9816254] 0. [0.11049027 0.88950973] [0.16877216 0.83122784] [0.9697765 0.0302235] [0.01915967 0.98084033] [0.08137518 0.91862482] 0. [1. [0. 1. [1. 0. 1. [0.05219805 0.94780195] 1. [0.57208783 0.42791217] [0.09643647 0.90356353] [0.02692151 0.97307849] [0.04566413 0.95433587] [1. 0. [0.04912859 0.95087141] [1. 0. [0.84654748 0.15345252] [0. 1. [0.05269405 0.94730595] [1. 0. [1. 0. [0.4721521 0.5278479] [0.19556569 0.80443431] [0. 1.

```
[0.48016319 0.51983681]
[0.7242847 0.2757153 ]
[0.08481298 0.91518702]
           1.
[0.13835626 0.86164374]
[0.75779242 0.24220758]
[0.04599738 0.95400262]
           0.
[1.
            1.
[0.
[0.
            1.
[0.43795616 0.56204384]
[0.02604189 0.97395811]
           0.
[1.
            0.
[1.
[0.68907434 0.31092566]
[0.11228702 0.88771298]
[0.78476206 0.21523794]
[0.02011579 0.97988421]
           1.
[0.11952399 0.88047601]
[0.0162412 0.9837588 ]
            0.
[1.
            0.
[1.
[0.
            1.
[0.14078314 0.85921686]
[0.
           1.
[0.
            1.
[0.
            1.
[0.0233792 0.9766208 ]
            1.
[0.50005405 0.49994595]
[0.02265209 0.97734791]
           1.
[0.18478532 0.81521468]
           1.
[0.19417011 0.80582989]
[0.0505732 0.9494268 ]]
```

Locality Sensitive Hashing

```
import numpy as np
In [34]:
          class HashTable:
              def __init__(self, hash_size, inp_dimensions):
                  self.hash size = hash size
                  self.inp_dimensions = inp_dimensions
                  self.hash table = dict()
                  self.projections = np.random.randn(self.hash size, inp dimensions)
              def generate_hash(self, inp_vector):
                  bools = (np.dot(inp_vector, self.projections.T) > 0).astype('int')
                  return ''.join(bools.astype('str'))
              def __setitem__(self, inp_vec, label):
                  hash_value = self.generate_hash(inp_vec)
                  self.hash table[hash value] = self.hash table\
                      .get(hash_value, list()) + [label]
              def getitem (self, inp vec):
                  hash_value = self.generate_hash(inp_vec)
                  return self.hash_table.get(hash_value, [])
          hash_table = HashTable(hash_size=4, inp_dimensions=20)
```

In [35]: class LSH:

3/21/2021 M3 KNN

```
def __init__(self, num_tables, hash_size, inp_dimensions):
                 self.num_tables = num_tables
                 self.hash_size = hash_size
                 self.inp_dimensions = inp_dimensions
                 self.hash_tables = list()
                 for i in range(self.num_tables):
                      self.hash_tables.append(HashTable(self.hash_size, self.inp_dimensions))
             def __setitem__(self, inp_vec, label):
                 for table in self.hash_tables:
                     table[inp_vec] = label
             def __getitem__(self, inp_vec):
                 results = list()
                 for table in self.hash_tables:
                     results.extend(table[inp_vec])
                 return list(set(results))
In [ ]:
In [ ]:
In [ ]:
```