STATS 217: Introduction to Stochastic Processes I

Lecture 23

- This week, we will study continuous time Markov chains.
- As before, we will assume that the state space is discrete. (often, it will)
- We will also assume that the Markov chains under consideration are time-homogeneous i.e. that the transition rates do not depend on the time.

We say that $(X_t)_{t\geq 0, t\in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$\mathbb{P}[X_{t+s} = j \mid X_s = i, X_{s_{n-1}} = i_{n-1}, \dots, X_{s_0} = i_0] = \mathbb{P}[X_{t+s} = j \mid X_s = i]$$

We say that $(X_t)_{t\geq 0, t\in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$\mathbb{P}[X_{t+s} = j \mid X_s = i, X_{s_{n-1}} = i_{n-1}, \dots, X_{s_0} = i_0] = \mathbb{P}[X_{t+s} = j \mid X_s = i]$$

$$= \mathbb{P}[X_t = j \mid X_0 = i]$$

$$= \mathbb{P}[X_t = j \mid X_0 = i]$$

$$= \mathbb{P}[X_t = j \mid X_0 = i]$$

We say that $(X_t)_{t\geq 0, t\in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$\mathbb{P}[X_{t+s} = j \mid X_s = i, X_{s_{n-1}} = i_{n-1}, \dots, X_{s_0} = i_0] = \mathbb{P}[X_{t+s} = j \mid X_s = i]$$

$$= \mathbb{P}[X_t = j \mid X_0 = i]$$

$$=: \rho_{ij}^t.$$

- for all integers $n \ge 0$,
- for all $0 \le s_0 < s_1 < \dots s_{n-1} < s$,
- for all 0 < t, and
- for all $j, i, i_0, \ldots, i_{n-1} \in \Omega$.

3/13

We say that $(X_t)_{t\geq 0, t\in \mathbb{R}}$ is a (time-homogeneous) continuous time Markov chain (CTMC) on the state space Ω if

$$\mathbb{P}[X_{t+s} = j \mid X_s = i, X_{s_{n-1}} = i_{n-1}, \dots, X_{s_0} = i_0] = \mathbb{P}[X_{t+s} = j \mid X_s = i]$$

$$= \mathbb{P}[X_t = j \mid X_0 = i]$$

$$=: p_{ij}^t.$$

- for all integers $n \ge 0$,
- for all $0 \le s_0 < s_1 < \dots s_{n-1} < s$,
- for all 0 < t, and
- for all $j, i, i_0, \ldots, i_{n-1} \in \Omega$.

As before, we will let P^t denote the $|\Omega| \times |\Omega|$ matrix with $P^t(i,j) = p_{ij}^t$.

Lecture 23 STATS 217 3 / 13

- Let N(t) denote a PPP with rate λ .
- Then, N(t) is a CTMC on the state space \mathbb{Z} with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \mathbb{P}[\mathsf{Pois}(\lambda t) = (j - i)].$$

$$= e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$$

Lecture 23 STATS 217 4 / 13

- Let N(t) denote a PPP with rate λ .
- Then, N(t) is a CTMC on the state space \mathbb{Z} with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \mathbb{P}[\mathsf{Pois}(\lambda t) = (j - i)].$$
"conknuisation of a DTMC"

- For a very general example, suppose that Y_n is a DTMC with state space Ω and with transition probabilities U_{ii}
- You Y. Ya, Ya, Yy,... • Then, $X_t = Y_{N(t)}$ is a CTMC on the state space Ω

4/13 Lecture 23 STATS 217

- Let N(t) denote a PPP with rate λ .
- Then, N(t) is a CTMC on the state space \mathbb{Z} with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \mathbb{P}[\mathsf{Pois}(\lambda t) = (j - i)].$$

- For a very general example, suppose that Y_n is a DTMC with state space Ω and with transition probabilities U_{ii}
- Then, $X_t = Y_{N(t)}$ is a CTMC on the state space Ω with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \sum_{\ell > 0} \mathbb{P}[X_t = j \mid X_0 = i, N(t) - N(0) = \ell] \cdot \mathbb{P}[N(t) - N(0) = \ell]$$

X(=i X=j e.g. exactly two transitions have happened (U2).

- Let N(t) denote a PPP with rate λ .
- ullet Then, N(t) is a CTMC on the state space $\mathbb Z$ with transition probabilities

$$\mathbb{P}[X_t = j \mid X_0 = i] = \mathbb{P}[\mathsf{Pois}(\lambda t) = (j - i)].$$

- For a very general example, suppose that Y_n is a DTMC with state space Ω and with transition probabilities U_{ij}
- Then, $X_t = Y_{N(t)}$ is a CTMC on the state space Ω with transition probabilities

$$\mathbb{P}[X_{t} = j \mid X_{0} = i] = \sum_{\ell \geq 0} \mathbb{P}[X_{t} = j \mid X_{0} = i, N(t) - N(0) = \ell] \cdot \mathbb{P}[N(t) - N(0) = \ell]
= \sum_{\ell \geq 0} (U^{\ell})_{ij} \left\{ e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!} \cdot \right\}$$

 Lecture 23
 STATS 217
 4 / 13

Heat kernel

• Given the transition matrix U on Ω , the **heat kernel** H_t is defined on $\Omega \times \Omega$ by

Heat kernel

• Given the transition matrix U on Ω , the **heat kernel** H_t is defined on $\Omega \times \Omega$ by

$$H_t(i,j) = \sum_{\ell \geq 0} (U^{\ell})_{ij} \cdot e^{-\lambda t} \frac{(\lambda t)^{\ell}}{\ell!}.$$

• The previous slide shows that H_t is the time t transition matrix of the CTMC $X_t = Y_{N(t)}$, where Y is a DTMC with transition matrix U and N(t) is a PPP with rate λ .

Heat kernel

• Given the transition matrix U on Ω , the **heat kernel** H_t is defined on $\Omega \times \Omega$ by

$$H_t(i,j) = \sum_{\ell \geq 0} (U^{\ell})_{ij} \cdot e^{-\lambda t} \frac{(\lambda t)^{\ell}}{(\ell!)}.$$

- The previous slide shows that H_t is the time t transition matrix of the CTMC $X_t = Y_{N(t)}$, where Y is a DTMC with transition matrix U and N(t) is a PPP with rate λ .
- A more compact way to write H_t is as

ite
$$H_t$$
 is as
$$e^{\gamma t} = 1 + x + \frac{x^2}{2!} + \frac{x^2}{3!} + \dots$$

$$H_t = e^{\lambda t(U-I)} = \underbrace{e^{tQ}}_{=},$$

where
$$Q$$
 denotes the $\Omega \times \Omega$ matrix $Q = \lambda(\underbrace{U-I})$.
$$e^{\pm \lambda \cdot (Q-\underline{I})} = \underbrace{e^{\pm \lambda \cdot \underline{I}}}_{identity} \underbrace{e^{\pm \lambda \cdot \underline{U}}}_{identity} \underbrace{e^{\pm \lambda \cdot \underline{U}}}_{identit$$

• For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the **jump rates** by

$$\rho \stackrel{h}{\sim}_{j} = \underbrace{\mathbb{R}\left[\chi_{h} = j \mid \chi_{0} = i \right]}_{h \rightarrow 0} q_{ij} := \lim_{h \rightarrow 0} \frac{p_{ij}^{h}}{h} \quad \stackrel{\forall i \neq j}{\leadsto}.$$

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the **jump rates** by

$$\boxed{q_{ij} := \lim_{h \to 0} \frac{p_{ij}^h}{h}} \quad \forall i \neq j.$$

We will set

$$\widetilde{q}_{ii} = -\sum_{j \neq i} q_{ij} =: -\lambda_i.$$
The cause of this $\sum_{j \neq i} q_{ij} = 0$

- For a DTMC, the transition matrix encodes the probability of transitioning from one state to another in the first step.
- In continuous time, the 'first step is infinitesimally small'.
- Accordingly, we define the jump rates by

$$\widehat{q_{ij}} = \lim_{h \to 0} \frac{p_{ij}^h}{h} \quad \forall i \neq j.$$

$$\lambda_{i} = \sum_{j \neq i} q_{ij} = -\lambda_{i}.$$

$$\gamma_{ij} = \sum_{j \neq i} q_{ij} = -\lambda_{i}.$$

We will set

• In particular, for any $i \in \Omega$,

$$r_{ij}:=\frac{q_{ij}}{\Delta_i}\ j\neq i$$
 is a probability distribution on $\Omega\setminus\{i\}$.

Lecture 23 STATS 217 6 / 13

• For a PPP with rate λ , the only non-zero jump rates are $q_{i,i+1} = \lambda$ for all $i \geq 0$ and $q_{ii} = -\lambda$ for all $i \geq 0$.

Lecture 23 STATS 217 7 / 13

- For a PPP with rate λ , the only non-zero jump rates are $q_{i,i+1} = \lambda$ for all $i \geq 0$ and $q_{ii} = -\lambda$ for all $i \geq 0$.
- For $X_t = Y_{N(t)}$ as before, where Y_n is a DTMC on the state space Ω with transition probabilities U_{ij} , the jump rates are (for $i \neq j$)

$$(\rho^{h})_{ij} = (e^{hQ})_{ij}$$

$$q_{ij} = \lim_{h \to 0} \frac{p_{ij}^{h}}{h}$$

$$= \lim_{h \to 0} \frac{(e^{hQ})_{ij}}{h}$$

- For a PPP with rate λ , the only non-zero jump rates are $q_{i,i+1} = \lambda$ for all $i \geq 0$ and $q_{ii} = -\lambda$ for all $i \geq 0$.
- For $X_t = Y_{N(t)}$ as before, where Y_n is a DTMC on the state space Ω with transition probabilities U_{ij} , the jump rates are (for $i \neq j$)

$$q_{ij} = \lim_{h \to 0} \frac{p_{ij}^{h}}{h}$$

$$= \lim_{h \to 0} \frac{(e^{hQ})_{ij}}{h}$$

$$= Q_{i,j}$$

$$\Rightarrow \lambda (U_{i,j} - I_{i,j})$$

$$\Rightarrow \lambda \cdot U_{i,j} \qquad \text{since} \qquad i \neq j.$$

- For a PPP with rate λ , the only non-zero jump rates are $q_{i,i+1} = \lambda$ for all $i \geq 0$ and $q_{ii} = -\lambda$ for all $i \geq 0$.
- For $X_t = Y_{N(t)}$ as before, where Y_n is a DTMC on the state space Ω with transition probabilities U_{ij} , the jump rates are (for $i \neq j$)

$$q_{ij} = \lim_{h \to 0} \frac{p_{ij}^h}{h}$$

$$= \lim_{h \to 0} \frac{(e^{hQ})_{ij}}{h}$$

$$= Q_{i,j}$$

$$= \lambda \cdot (U - I)_{i,j}$$

$$= \lambda \cdot U_{ij}.$$

 Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.

o intermediate q: if you have the jump rates,
how do you simulate the
process

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- As an example, consider a continuous-time branching process where each individual independently dies at rate μ and gives birth to a new individual at rate λ .
- This corresponds to a CTMC with the jump rates

$$q(n,n+1)=\lambda n$$
 convenient + intuitive . $q(n,n-1)=\mu n$.

- Typically, it is easier to describe a CTMC using jump rates and then compute the transition probabilities from the jump rates.
- As an example, consider a continuous-time branching process where each individual independently dies at rate μ and gives birth to a new individual at rate λ .
- This corresponds to a CTMC with the jump rates

$$q(n, n + 1) = \lambda n$$
$$q(n, n - 1) = \mu n.$$

• We will now discuss how to construct a CTMC from the jump rates.

How can we construct/simulate (say on a computer) a CTMC with given jump rates q_{ij} ?

How can we construct/simulate (say on a computer) a CTMC with given jump rates q_{ij} ?

• Recall that for a DTMC (Y_n) on the state space Ω with transition probabilites U_{ij} and for N(t) a PPP with rate λ , the jump rates of $X_t = Y_{N(t)}$ are

$$q_{ij} = U_{ij}\lambda, \quad i \neq j.$$

$$q_{i'i} = -\sum_{j \neq i} q_{i'j}$$

How can we construct/simulate (say on a computer) a CTMC with given jump rates q_{ij} ?

• Recall that for a DTMC (Y_n) on the state space Ω with transition probabilites U_{ij} and for N(t) a PPP with rate λ , the jump rates of $X_t = Y_{N(t)}$ are

$$q_{ij} = U_{ij}\lambda, \quad i \neq j.$$

• We will basically reverse this process.

Lecture 23 STATS 217 9 / 13

• First, suppose that $\Lambda:=\sup_i\lambda_i<\infty$, where recall that $\lambda_i=\sum_{j\neq i}q_{ij}$.

e.g.
$$q(n, n+1) = \lambda n$$

 $q(n, n-1) = \mu n$
does not satisfy $n < \infty$

Lecture 23 STATS 217 10 / 13

- First, suppose that $\Lambda := \sup_i \lambda_i < \infty$, where recall that $\lambda_i = \sum_{i \neq i} q_{ij}$.
- Let N(t) be a PPP with rate Λ .

- First, suppose that $\Lambda := \sup_i \lambda_i < \infty$, where recall that $\lambda_i = \sum_{i \neq i} q_{ij}$.
- Let N(t) be a PPP with rate Λ .
- Let (Y_n) be a DTMC on the state space Ω with transition probabilities U_{ij} where

$$U_{ij} = \underbrace{9ij}_{\Lambda} \qquad j \neq i$$

$$\underbrace{\sum_{i \neq j} U_{ij}}_{i \neq j} = \underbrace{\sum_{i \neq j} q_{ij}}_{\Lambda} = \underbrace{\lambda_{i}}_{\Lambda} \leq \underline{1}$$

Lecture 23 STATS 217 10 / 13

- First, suppose that $\Lambda := \sup_i \lambda_i < \infty$, where recall that $\lambda_i = \sum_{j \neq i} q_{ij}$.
- Let N(t) be a PPP with rate Λ .
- Let (Y_n) be a DTMC on the state space Ω with transition probabilities U_{ij} where

$$U_{ij} = q_{ij}/\Lambda \quad i \neq j$$
 $U_{ij} = 1 - \lambda_i/\Lambda.$

- First, suppose that $\Lambda := \sup_i \lambda_i < \infty$, where recall that $\lambda_i = \sum_{i \neq i} q_{ij}$.
- Let N(t) be a PPP with rate Λ .
- Let (Y_n) be a DTMC on the state space Ω with transition probabilities U_{ij} where

$$U_{ij} = q_{ij}/\Lambda \quad i \neq j$$

 $U_{ii} = 1 - \lambda_i/\Lambda.$

ullet Then, $X_t = Y_{N(t)}$ is a CTMC with jump rate from i to j for i
eq j given by

$$\Lambda U_{ij} = q_{ij}$$

as desired.

• What if $\Lambda = \infty$? For instance, this is the case for the branching process example we discussed earlier.

- What if $\Lambda = \infty$? For instance, this is the case for the branching process example we discussed earlier.
- Given jump rates q_{ij} , let

$$U_{ij}:=r_{ij}=rac{q_{ij}}{\lambda_i}\quad i
eq j.$$

- What if $\Lambda = \infty$? For instance, this is the case for the branching process example we discussed earlier.
- Given jump rates q_{ij} , let

$$U_{ij}:=r_{ij}=rac{q_{ij}}{\lambda_i}\quad i\neq j.$$

• Recall that r_{ij} and hence U_{ij} is a probability distribution on $\Omega \setminus \{i\}$.

• Let Y_0,Y_1,\ldots denote a DTMC with $\mathbb{P}[Y_{n+1}=j\mid Y_n=i]=U_{ij}\quad i\neq j$ $\mathbb{P}[Y_{n+1}=i\mid Y_n=i]=0.$

• Let Y_0, Y_1, \ldots denote a DTMC with

$$\mathbb{P}[Y_{n+1} = j \mid Y_n = i] = U_{ij} \quad i \neq j$$

$$\mathbb{P}[Y_{n+1} = i \mid Y_n = i] = 0.$$

• Given $Y_0 = i_0$, $Y_1 = i_1$, $Y_2 = i_2$, ..., generate independent random variables t_1, t_2, \ldots with

$$t_i \sim \mathsf{Exp}(\lambda_{i-1}).$$

• Let Y_0, Y_1, \ldots denote a DTMC with

$$\mathbb{P}[Y_{n+1} = j \mid Y_n = i] = U_{ij} \quad i \neq j$$

 $\mathbb{P}[Y_{n+1} = i \mid Y_n = i] = 0.$

• Given $Y_0 = i_0$, $Y_1 = i_1$, $Y_2 = i_2$, ..., generate independent random variables t_1, t_2, \ldots with

$$t_i \sim \mathsf{Exp}(\lambda_{i-1}).$$

• Let $T_0 := 0$ and

$$T_n:=t_1+\cdots+t_n.$$

• Let Y_0, Y_1, \ldots denote a DTMC with

$$\mathbb{P}[Y_{n+1} = j \mid Y_n = i] = U_{ij} \quad i \neq j$$

 $\mathbb{P}[Y_{n+1} = i \mid Y_n = i] = 0.$

• Given $Y_0 = i_0, Y_1 = i_1, Y_2 = i_2, \ldots$, generate independent random variables t_1, t_2, \ldots with

$$t_i \sim \mathsf{Exp}(\lambda_{i-1}).$$

• Let $T_0 := 0$ and

• Finally, let

$$X(t) = Y_n \quad \forall T_n \leq t < T_{n+1}.$$

• Why does this work?

• Why does this work? $- \gamma$ which we have $i \neq j$ where $i \neq j$ we have $i \neq j$, we have

$$\lim_{h\to 0} \frac{p_{ij}^h}{h} = \lim_{h\to 0} \frac{1}{h} \mathbb{P}[\mathsf{Exp}(\lambda_i) \le h] \cdot \mathbb{P}[Y_1 = j \mid Y_0 = i]$$

- Why does this work?
- For any $i \neq j$, we have

- Why does this work?
- For any $i \neq j$, we have

$$\lim_{h \to 0} \frac{p_{ij}^h}{h} = \lim_{h \to 0} \frac{1}{h} \mathbb{P}[\mathsf{Exp}(\lambda_i) \le h] \cdot \mathbb{P}[Y_1 = j \mid Y_0 = i]$$

$$= \lim_{h \to 0} \frac{1 - e^{-\lambda_i h}}{h} \cdot \mathbb{P}[Y_1 = j \mid Y_0 = i]$$

$$= \lambda_i \cdot U_{ij}$$

- Why does this work?
- For any $i \neq j$, we have

$$\lim_{h \to 0} \frac{\rho_{ij}^h}{h} = \lim_{h \to 0} \frac{1}{h} \mathbb{P}[\mathsf{Exp}(\lambda_i) \le h] \cdot \mathbb{P}[Y_1 = j \mid Y_0 = i]$$

$$= \lim_{h \to 0} \frac{1 - e^{-\lambda_i h}}{h} \cdot \mathbb{P}[Y_1 = j \mid Y_0 = i]$$

$$= \lambda_i \cdot U_{ij}$$

$$= \lambda_i \cdot \frac{q_{ij}}{\lambda_i}$$

$$= q_{ij},$$

as desired.