1. semestrální práce – přechodný děj

Jméno: Jan Kaska	Kroužek: E1L1	Obvod č.: 2
-------------------------	----------------------	--------------------

Úloha A – kmitavý přechodný děj s nulovými počátečními podmínkami

Vlastní čísla matice A: $\lambda_{1,2}=-5{,}2381\pm21{,}7385{\,}{\rm j}$ perioda vlastních kmitů: $T_v=289{,}0349{\,}{\rm ms}$ Graf časových průběhů i_L(t) a u_C(t) získaný numerickým řešením

Graf časových průběhů i_L(t) a u_C(t) získaný simulací obvodu

Úloha B - přechodný děj na mezi aperiodicity s nenulovými počátečními podmínkami

Hodnota proměnného odporu: $R_x=1.5236~\Omega$

Vlastní čísla matice A: $\lambda_{1,2} = -28,9646$

Graf časových průběhů $i_L(t)$ a $u_C(t)$ získaný numerickým řešením

Graf časových průběhů i_L(t) a u_C(t) získaný simulací obvodu

Diskuze výsledků:

V případě obvodu a) vyšla vlastní čísla matice A komplexně sdružená, což vede na výslednou funkci s prvky sinus a kosinus, a tedy kmitavý přechodný děj. Perioda vlastních kmitů v tomto případě vyšla $T_v=289,0349~\mathrm{ms}$. Jak je z grafů patrné, hodnoty se čase 4τ ještě zcela neustálily, pro kontrolu proto byla pokusně zvolena delší doba, konkrétně 6τ , kdy už bylo jasně patrné, že se hodnoty shodují s teoretickými výpočty. Graf numerického řešení a simulace vyšel totožně a dle očekávání průběhy napětí i proudu kmitají, než se ustálí na předpokládaných hodnotách. Kritický odpor $R_x=1.5236~\Omega$ byl vypočítán tak, aby vyšlo právě jedno dvojnásobné vlastní číslo matice. Vlastní funkce je poté součet dvou exponenciel. Grafy simulace a numerického řešení se opět shodují, při pokusném snížení hodnoty odporu pod kritickou hodnotu se obvod znovu rozkmitává. Závěrem lze tedy usuzovat, že vypočítané hodnoty jsou správné.