compare-expression-distributions-of-all-genes-wrt-different-comparison cohorts 2023.11.29

09.19.33

hbeale

November 30, 2023

Contents

COMPARE DISTRIBUTIONS FOR FOR OUTLIERS ACROSS COHORTS	2
expression in samples not in the compendium	3
Calculate statistics for each cohort	4
assess changes for all genes	Ę
changes plotted	Ę
plot boxplots for TCGA and PEDAYA	8
Boxplots of all genes	ę
medians for all druggable genes	13
medians for genes that are outliers in TCGA and not Treehouse	13
IQRs for all druggable genes	14
IQRs for genes that are outliers in TCGA and not Treehouse	15
Assign gene groups	16
Figure out how best threshold for excluding genes with very low expressoin	20
characterize relative distribution of all genes by gene group	23
Review data to identify a good quantitative IQR cutoff	23
Review data to see identify a good quantitative shift cutoff	25
Summary of differences	26
Text summary	26

Version 2023.11.21_11.24.15 - focuses on genes found only relative to TCGA, not relative to any other cohort. Previous versions focused on outliers detected relative to TCGA and not treehouse, irrespective of whatever other cohorts they were outliers in

Version 2023.11.29_09.19.33 - focuses on all druggable genes, not only genes that were outliers vs one cohort or another

COMPARE DISTRIBUTIONS FOR FOR OUTLIERS ACROSS COHORTS

```
outlier_genes_detected <- unique(outliers$gene)
expr <- read_tsv("../input_data/druggable_TumorCompendium_v11_PolyA_hugo_log2tpm_58581genes_2020-04-09.
 rename(Sample_ID = TH_id) %>%
 mutate(ever_outlier_in_ckcc2 = Gene %in% outlier_genes_detected)
## Rows: 1414917 Columns: 3
## -- Column specification -------
## Delimiter: "\t"
## chr (2): Gene, TH_id
## dbl (1): log2TPM1
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
stanford_samples <- read_tsv("../gather_input_data/comparison_to_non_CARE_cohorts/data/TH03_TH34_rollu
                           col names = "Sample ID") %>%
 mutate(cohort = "TH03_TH34")
## Rows: 110 Columns: 1
## -- Column specification --------
## Delimiter: "\t"
## chr (1): Sample_ID
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
TCGA_samples <- read_tsv("../gather_input_data/comparison_to_non_CARE_cohorts/data/TCGA_rollup.sample_
                           col_names = "Sample_ID") %>%
mutate(cohort = "TCGA")
## Rows: 9806 Columns: 1
## -- Column specification --------
```

Delimiter: "\t"

```
## chr (1): Sample_ID
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
PEDAYA_samples <- read_tsv("../gather_input_data/comparison_to_non_CARE_cohorts/data/PEDAYA_rollup.sam
                             col_names = "Sample_ID") %>%
 mutate(cohort = "PEDAYA")
## Rows: 2814 Columns: 1
## -- Column specification -------
## Delimiter: "\t"
## chr (1): Sample_ID
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
pan_cancer_samples <- expr %>%
 select(Sample_ID) %>%
 distinct() %>%
 mutate(cohort = "Treehouse_pc")
samples_in_cohorts <- bind_rows(</pre>
 stanford_samples,
 TCGA_samples,
 PEDAYA_samples,
 pan_cancer_samples)
tabyl(samples_in_cohorts,
     cohort)
##
         cohort
                  n
                        percent
         PEDAYA 2814 0.11045257
##
##
           TCGA 9806 0.38489618
##
      TH03 TH34
                 110 0.00431762
## Treehouse_pc 12747 0.50033363
```

expression in samples not in the compendium

```
relevant_gene_name_conversion <- gene_name_conversion %>%
  filter(HugoID %in% outlier_genes_detected)
rsem kitchen sink data <- tibble(file name = list.files(</pre>
  path = rsem_path,
  pattern = "_rsem_genes.results")) %>%
  rowwise() %>%
  mutate(rsem_raw = list(read_tsv(file.path(rsem_path, file_name),
                                      show_col_types = FALSE
                                      ))) %>%
  unnest(rsem_raw) %>%
  filter(gene_id %in% relevant_gene_name_conversion$EnsGeneID) %>%
  mutate(Sample_ID = str_extract(file_name, "TH[R]?[0-9]{2}_[0-9]{4}_S[0-9]{2}")) %>%
  left_join(relevant_gene_name_conversion,
            by=c("gene_id"="EnsGeneID")) %>%
    group_by(Sample_ID, HugoID) %>%
    summarize(sum_TPM = sum(TPM),
              n=n()) %>%
    mutate(log2TPM1 = log2(sum_TPM +1))
## `summarise()` has grouped output by 'Sample_ID'. You can override using the
## `.groups` argument.
table(rsem_kitchen_sink_data$n)
##
##
   1
         2
## 275
patient_expression_from_rsem_files <- rsem_kitchen_sink_data %>%
  select(gene = HugoID,
         log2TPM1,
         Sample ID)
patient_expression_from_compendia <- outliers %>%
  select(Sample_ID, gene) %>%
  distinct() %>%
  left_join(expr,
            by=c("Sample_ID", "gene"="Gene")) %>%
  na.omit() # excludes samples not in compendium
patient_expression <- bind_rows(</pre>
  patient_expression_from_rsem_files,
  patient_expression_from_compendia)
length(outlier_genes_detected)
## [1] 56
```

Calculate statistics for each cohort

assess changes for all genes

changes plotted

Warning: Removed 13 rows containing missing values (`geom_point()`).

Warning: Removed 3 rows containing missing values (`geom_point()`).

The IQR usually increased irrespective of the direction of change of the medi fraction change_in_ped_relative_to_TCGA

 $\#geom_tile(aes(x=stat,\ y=\ fct_reorder(Gene,\ change_in_ped_relative_to_TCGA),\ fill\ =\ change_in_ped_relat$

plot boxplots for TCGA and PEDAYA

Boxplots of all genes


```
table(outliers$comparison_cohort)
##
                        TCGA
##
         PEDAYA
                                TH03_TH34 Treehouse_pc Treehouse_pd
##
             26
                          98
                                       53
                                                    72
TCGA_only_outliers <- outliers %>%
  group_by(gene, Sample_ID) %>%
  mutate(TCGA_only = "TCGA" %in% comparison_cohort &
           n() == 1) \%
  filter(TCGA_only) %>%
  arrange(Sample_ID, gene)
n_distinct(TCGA_only_outliers$gene)
## [1] 16
TP_cohort_expr_of_TCGA_only_outliers <- TP_cohort_expr %>%
         filter(Gene %in% TCGA_only_outliers$gene)
ggplot(TP_cohort_expr_of_TCGA_only_outliers) +
  geom_boxplot(aes(y=cohort, x=log2TPM1,
                   fill = cohort),
               outlier.shape = NA) +
  facet_wrap(~Gene, ncol = 1,
             strip.position = "left") +
 theme(strip.text.y.left = element_text(angle = 0),
       axis.text.y = element_blank(),
       panel.spacing = unit(0.2, "lines")) +
  scale_fill_bright()
```



```
manual_annotation_of_pedaya_relative_to_TCGA <- tribble(</pre>
  ~Gene, ~IQR, ~shift,
  "BCL6", "wider", "none",
  "CCND1", "wider", "lower",
  "CCND3", "wider", "higher",
  "CDK9", "wider", "higher",
  "ETV1", "wider", "lower",
  "FGFR1", "wider", "higher",
  "FGFR2", "wider", "lower",
  "FGFR3", "wider", "lower",
  "GATA2", "wider", "none",
  "HMOX1", "wider", "lower",
  "IGF2", "wider", "none",
  "KDR", "wider", "lower",
  "MTOR", "similar", "higher",
  "PARP2", "similar", "higher",
  "PDGFRA", "wider", "lower",
  "PIK3CD", "wider", "higher",
  "PTCH1", "wider", "higher",
  "RPTOR", "similar", "higher",
  "TSC2", "wider", "higher",
  "VEGFA", "wider", "lower") %>%
  filter(Gene %in% TCGA_only_outliers$gene)
\# cat(pasteO("\"", unique(sort(TCGA_only_outliers\$gene)), "\""), sep = ", \n")
```

medians for all druggable genes

medians for all druggable genes

medians for genes that are outliers in TCGA and not Treehouse

medians for genes that are outliers in TCGA and not Treehouse

IQRs for all druggable genes

```
geom_point() +
# geom_text_repel(aes(label = Gene)) +
geom_abline() +
coord_equal() +
scale_y_continuous(breaks = c(0:3)) +
expand_limits(y=0,x=0) +
ggtitle("IQRs for genes that are outliers in TCGA and not Treehouse") +
scale_color_highcontrast()
```

IQRs for genes that are outliers in TCGA and not Treehouse

IQRs for genes that are outliers in TCGA and not Treehouse

IQRs for genes that are outliers in TCGA and not Treehouse

Assign gene groups

```
gene groups <- tibble(Gene = unique(expr$Gene),</pre>
       gene_group = case_when(
         Gene %in% TCGA_only_outliers$gene ~ "outlier_in_TCGA_only",
         Gene %in% outlier_genes_detected ~ "other outlier",
         TRUE ~ "not a CKCC2 outlier"))
cohort_thresholds_by_gene_group <- left_join(cohort_thresholds_for_plot,</pre>
                                         gene_groups,
                                         by = "Gene")
cohort_thresholds_by_gene_group_longer <- cohort_thresholds_by_gene_group %>%
  select(-change_in_treehouse_relative_to_TCGA, -change_in_ped_relative_to_TCGA,
         -order_by_me) %>%
 pivot_longer(cols = c("PEDAYA", "TCGA", "THO3_TH34", "Treehouse_pc"),
               names_to = "cohort")
ggplot(cohort_thresholds_by_gene_group_longer %>%
         filter(stat == "median")) +
  geom histogram(aes(x=value, fill = cohort)) +
  facet_grid(gene_group ~ cohort) +
  scale_fill_bright()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure out how best threshold for excluding genes with very low expression

```
cohort_thresholds_by_gene_group %>%
  filter(stat == "q75",
         gene_group == "not a CKCC2 outlier") %>%
  ungroup %>%
  arrange(PEDAYA) %>%
 head()
## # A tibble: 6 x 10
                             TCGA TH03_TH34 Treehouse_pc change_in_ped_relative_~1
              stat PEDAYA
     <chr>>
              <fct> <dbl> <dbl>
                                       <dbl>
                                                    <dbl>
                                                                               <dbl>
## 1 HSP90AB6P q75 0
                            0
                                                                          NaN
## 2 HSP90AA4P q75
                    0.0144 0.0287
                                      0.0144
                                                   0.0145
                                                                           -0.500
## 3 ROS1
               q75
                    0.0144 0.176
                                      0.0704
                                                   0.0977
                                                                           -0.919
              q75
## 4 HSP90B3P
                    0.0286 0.0145
                                      0.0426
                                                                            0.971
                                                   0.0145
## 5 PIK3C2G
              q75
                    0.0566 0.356
                                      0.0976
                                                   0.239
                                                                           -0.841
                    0.0841 0.0842
                                                                           -0.00165
## 6 HSP90AA5P q75
                                      0.0426
                                                   0.0841
## # i abbreviated name: 1: change_in_ped_relative_to_TCGA
## # i 3 more variables: change_in_treehouse_relative_to_TCGA <dbl>,
      order_by_me <dbl>, gene_group <chr>
cohort_thresholds_by_gene_group %>%
  filter(stat == "up_outlier_threshold",
         gene_group == "not a CKCC2 outlier") %>%
  ungroup %>%
  arrange(PEDAYA) %>%
 head()
## # A tibble: 6 x 10
##
                                 TCGA TH03_TH34 Treehouse_pc change_in_ped_relati~1
    Gene stat
                        PEDAYA
     <chr>
              <fct>
                         <dbl> <dbl>
                                          <dbl>
                                                       <dbl>
                                                                               <dbl>
                               0
## 1 HSP90AB6P up outl~ 0
                                                                         {\tt NaN}
## 2 HSP90AA4P up_outl~ 0.0359 0.0718
                                         0.0359
                                                      0.0362
                                                                          -0.500
              up outl~ 0.0359 0.441
## 3 ROS1
                                         0.176
                                                      0.244
                                                                          -0.919
## 4 HSP90B3P up_outl~ 0.0714 0.0362
                                                                          0.971
                                         0.107
                                                      0.0362
## 5 PIK3C2G
              up_outl~ 0.141 0.891
                                         0.244
                                                      0.597
                                                                          -0.841
                                         0.107
                                                                          -0.000707
## 6 HSP90AA5P up_outl~ 0.189 0.189
                                                      0.188
## # i abbreviated name: 1: change_in_ped_relative_to_TCGA
## # i 3 more variables: change_in_treehouse_relative_to_TCGA <dbl>,
      order_by_me <dbl>, gene_group <chr>
min_outlier_threshold <- 2</pre>
# up outlier threshold less than two in all cohorts
included_genes_cohort_thresholds_by_gene_group_longer <- cohort_thresholds_by_gene_group_longer %>%
  group_by(Gene) %>%
  mutate(low_expression = all(value < min_outlier_threshold)) %>%
  filter(! low expression)
included_genes_expr_by_gene_group <- left_join(TP_cohort_expr,</pre>
                                gene groups,
                                by = "Gene") %>%
  filter(Gene %in% included_genes_cohort_thresholds_by_gene_group_longer$Gene)
```


characterize relative distribution of all genes by gene group

```
median_diff <- 0.25</pre>
IQR_diff <- 0.5</pre>
dist_shifts_by_gene_group <- cohort_thresholds_by_gene_group %>%
# filter(stat == "median") %>%
  group_by(gene_group, Gene) %>%
  summarize(median_shift_in_ped_relative_to_TCGA = case_when(
    change_in_ped_relative_to_TCGA[stat == "median"] > median_diff ~ "increase",
    change in ped relative to TCGA[stat == "median"] < (-1*median diff) ~ "decrease",
   TRUE ~ "no shift"),
   IQR_shift_in_ped_relative_to_TCGA = case_when(
    change_in_ped_relative_to_TCGA[stat == "IQR"] > IQR_diff ~ "wider",
    change_in_ped_relative_to_TCGA[stat == "IQR"] > (-1*IQR_diff) ~ "narrower",
   TRUE ~ "similar")
## `summarise()` has grouped output by 'gene_group'. You can override using the
## `.groups` argument.
dist_shifts_by_gene_group %>%
 kbl %>%
  kable_styling(full_width = FALSE)
tabyl(dist_shifts_by_gene_group,
      gene_group, median_shift_in_ped_relative_to_TCGA) %>%
 adorn_title()
##
                         median_shift_in_ped_relative_to_TCGA
##
              gene_group
                                                      decrease increase no shift
##
    not a CKCC2 outlier
                                                             9
                                                                     10
                                                                               36
                                                             7
                                                                      7
##
           other outlier
                                                                               26
## outlier_in_TCGA_only
                                                                               11
tabyl(dist_shifts_by_gene_group,
      gene_group, IQR_shift_in_ped_relative_to_TCGA) %>%
  adorn_title()
##
                         IQR_shift_in_ped_relative_to_TCGA
##
                                                   narrower similar wider
              gene_group
   not a CKCC2 outlier
##
                                                         36
           other outlier
                                                         24
                                                                  0
                                                                       16
##
## outlier_in_TCGA_only
                                                          4
```

Review data to identify a good quantitative IQR cutoff

gono group	Gene	median shift in ped relative to TCGA	IQR_shift_in_ped_relative_to_
gene_group not a CKCC2 outlier	AKT3	no shift	narrower
not a CKCC2 outlier	ARAF	no shift	narrower
not a CKCC2 outlier	AURKA	no shift	
not a CKCC2 outlier	AURKB	no shift	narrower
not a CKCC2 outlier	AURKC		narrower
		no shift	narrower
not a CKCC2 outlier	BCL2	increase	narrower
not a CKCC2 outlier	BRAF	no shift	narrower
not a CKCC2 outlier	CDK2	no shift	narrower
not a CKCC2 outlier	CDK6	increase	wider
not a CKCC2 outlier	EGFR	decrease	narrower
not a CKCC2 outlier	ERBB2	decrease	narrower
not a CKCC2 outlier	ERBB3	decrease	wider
not a CKCC2 outlier	FLT1	no shift	narrower
not a CKCC2 outlier	FLT3	increase	wider
not a CKCC2 outlier	GLI1	no shift	narrower
not a CKCC2 outlier	HRAS	no shift	wider
not a CKCC2 outlier	HSP90AA1	no shift	narrower
not a CKCC2 outlier	HSP90AA2P	increase	narrower
not a CKCC2 outlier	HSP90AA4P	no shift	narrower
not a CKCC2 outlier	HSP90AA5P	increase	narrower
not a CKCC2 outlier	HSP90AA6P	decrease	narrower
not a CKCC2 outlier	HSP90AB1	no shift	narrower
not a CKCC2 outlier	HSP90AB2P	decrease	similar
not a CKCC2 outlier	HSP90AB3P	no shift	narrower
not a CKCC2 outlier	HSP90AB4P	increase	wider
not a CKCC2 outlier	HSP90AB6P	no shift	similar
not a CKCC2 outlier	HSP90B2P	increase	wider
not a CKCC2 outlier	HSP90B3P	no shift	wider
not a CKCC2 outlier	IGF1R	no shift	narrower
not a CKCC2 outlier	IL6R	no shift	narrower
not a CKCC2 outlier	JAK2	no shift	narrower
not a CKCC2 outlier	JAK3	no shift	wider
not a CKCC2 outlier	KRAS	no shift	narrower
not a CKCC2 outlier	MAP2K1	no shift	narrower
not a CKCC2 outlier	MET	decrease	narrower
not a CKCC2 outlier	MLST8	no shift	narrower
not a CKCC2 outlier	NRAS	no shift	narrower
not a CKCC2 outlier	NTRK1	increase	wider
not a CKCC2 outlier	PDGFRB	no shift	wider
not a CKCC2 outlier	PIK3C2A	no shift	narrower
not a CKCC2 outlier	PIK3C2B	no shift	narrower
not a CKCC2 outlier	PIK3C2G	decrease	similar
not a CKCC2 outlier	PIK3C3	no shift	narrower
not a CKCC2 outlier	PIK3CA	no shift	narrower
not a CKCC2 outlier	PIK3CB	no shift	narrower
not a CKCC2 outlier	PIK3CG	increase	wider
not a CKCC2 outlier	PIK3R3	no shift	narrower
not a CKCC2 outlier	PIK3R4	no shift	narrower
not a CKCC2 outlier	PIK3R6	increase	wider
not a CKCC2 outlier	ROS1	decrease	similar
not a CKCC2 outlier	SMO	no shift	wider
not a CKCC2 outlier	STAT3	no shift	narrower
not a CKCC2 outlier	STAT5B	no shift	wider
not a CKCC2 outlier	TEK	decrease ₂₄	narrower
not a CKCC2 outlier	TSC1	no shift	wider
other outlier	AKT1	no shift	wider
other outlier	AKT2	no shift	wider
11 11	A T TZ	1 • 6	• 1

Gene	stat	PEDAYA	TCGA	pct_change	abs_change	IQR	shift
PARP2	IQR	1.2	1.0	24.1%	0.23	similar	higher
FGFR3	IQR	3.7	3.1	20.9%	0.64	wider	lower
BCL6	IQR	2.2	1.5	42.5%	0.65	wider	none
TSC2	IQR	1.6	0.8	87.6%	0.73	wider	higher
PTCH1	IQR	2.4	1.5	61.7%	0.90	wider	higher
GATA2	IQR	2.9	2.0	46.2%	0.91	wider	none
CCND3	IQR	2.1	1.1	94.0%	1.04	wider	higher
CDK9	IQR	1.8	0.7	153.0%	1.11	wider	higher
FGFR1	IQR	3.3	2.1	59.0%	1.24	wider	higher
PIK3CD	IQR	2.8	1.6	83.1%	1.29	wider	higher
HMOX1	IQR	3.1	1.8	73.3%	1.32	wider	lower
KDR	IQR	3.2	1.7	84.0%	1.45	wider	lower
PDGFRA	IQR	4.0	2.4	65.0%	1.57	wider	lower
ETV1	IQR	4.1	2.2	85.1%	1.89	wider	lower
FGFR2	IQR	4.2	2.3	82.2%	1.90	wider	lower
IGF2	IQR	6.3	2.9	115.0%	3.36	wider	none

```
arrange(abs_change) %>% # change to pct_change to view alternative consideration
adorn_pct_formatting(,,,pct_change) %>%
filter(stat == "IQR") %>%
kbl(digits = c(NA, NA, 1, 1, NA, 2, NA, NA)) %>%
kable_styling(full_width = F)

# IQR change greater than 0.5 log2TPM1

# percent cutoff doesn't really work, because some relatively small pcts are large in log2tpm1 space,
# e.g. FGFR3, BCL6, wider
```

Review data to see identify a good quantitative shift cutoff

if PEDAYA median is 0.25 higher or lower than TCGA median, the shift is higher or lower, respectively
percent cutoff doesn't really work, because some relatively small pcts are large in log2tpm1 space,

Gene	stat	PEDAYA	TCGA	pct_change	abs_change	IQR	shift
FGFR2	median	1.3	3.5	-61.5%	-2.14	wider	lower
FGFR3	median	1.2	3.1	-61.2%	-1.90	wider	lower
HMOX1	median	3.7	4.7	-20.2%	-0.95	wider	lower
PDGFRA	median	1.6	2.4	-33.5%	-0.82	wider	lower
KDR	median	2.0	2.5	-19.1%	-0.48	wider	lower
ETV1	median	1.8	2.2	-18.3%	-0.41	wider	lower
IGF2	median	2.8	3.0	-5.0%	-0.15	wider	none
BCL6	median	4.3	4.4	-2.6%	-0.12	wider	none
GATA2	median	2.0	2.0	-0.3%	-0.01	wider	none
CDK9	median	5.7	5.3	8.0%	0.42	wider	higher
TSC2	median	5.7	5.3	8.9%	0.47	wider	higher
CCND3	median	6.0	5.5	9.0%	0.50	wider	higher
PARP2	median	4.7	4.0	16.1%	0.65	similar	higher
PTCH1	median	2.8	2.1	35.8%	0.75	wider	higher
FGFR1	median	5.3	4.5	16.6%	0.75	wider	higher
PIK3CD	median	3.2	2.4	33.0%	0.80	wider	higher

Summary of differences

```
#manual_annotation_of_pedaya_relative_to_TCGA
tabyl(manual_annotation_of_pedaya_relative_to_TCGA, IQR)
##
        IQR n percent
##
   similar 1 0.0625
##
      wider 15 0.9375
tabyl(manual_annotation_of_pedaya_relative_to_TCGA, shift)
##
     shift n percent
   higher 7 0.4375
##
             0.3750
     lower 6
      none 3 0.1875
```

Text summary

Each sample in the study was compared to TCGA, PEDAYA, Stanford and the full Treehouse compendium. Often genes would be identified as outliers with respect to multiple cohorts. We investigated the exceptions, genes found as outliers with respect to only one cohort. The cohort with the largest number of uniquely detected outliers was TCGA, We analyzed the distribution of expression for the outlier genes that were identified in any samples by comparison with TCGA and no other cohorts. Because the addition of pediatric samples is the primary difference between TCGA and the other cohorts, we focussed on comparing the PEDAYA cohort and TCGA

Of those 16, 15 had wider distributions (>0.5log2(TPM+1) bigger) in PEDAYA than TCGA, while one was similar. For 7, the median was higher (by more than 0.25 log2TPM1) in PEDAYA than TCGA. For 6, the median was lower (by more than 0.25 log2TPM1) in PEDAYA than TCGA. For 3, the medians were similar in PEDAYA and TCGA.

The Treehouse compendium is 77% TCGA (which is 96% adult). The remaining 23% of the Treehouse compendium is 97% PEDAYA (<=30). In the genes we looked at, the changes in distribution between TCGA

and Treehouse compendium were consistent with the effects of adding the distribution of PEDAYA samples. The differences in the treehouse compendium from TCGA is mostly due to the addition of PEDAYA samples.