GUIÃO 04 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

A documentação da linguagem C pode ser consultada em https://en.cppreference.com/w/c

1 – Considere uma **sequência de n elementos inteiros e não ordenada**. Pretende-se determinar quantos elementos dessa sequência respeitam a seguinte propriedade:

array
$$[i] = array [i-1] + array [i+1]$$
, para $0 < i < (n-1)$

- Implemente uma **função eficiente** que determine quantos elementos (resultado da função) de uma sequência com n elementos (n > 2) respeitam esta propriedade.
- Pretende-se determinar experimentalmente a **ordem de complexidade do número de comparações** efetuadas pelo algoritmo e envolvendo elementos da sequência.
- Considere as seguintes **sequências de 10 elementos inteiros**, que cobrem **algumas situações possíveis** de execução do algoritmo.

Determine, para cada uma delas, o número de elementos que obedecem à condição e o número de comparações efetuadas envolvendo elementos da sequência.

1	2	3	4	5	6	7	8	9	10
1	2	1	4	5	6	7	8	9	10
1	2	1	3	2	6	7	8	9	10
0	2	2	0	3	3	0	4	4	0
0	0	0	0	0	0	0	0	0	0

Resultado	
Resultado	
Resultado	
Resultado	
Resultado	

Nº de comparações	
Nº de comparações	

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de comparações efetuadas, podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo sistemático?
- Com base nos resultados experimentais, qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exata e simplificada.
- Calcule o valor dessa expressão para **n** = **10** e compare-o com os resultados obtidos experimentalmente.
- **2 –** Considere uma **sequência de n valores reais**. Pretende-se determinar se os elementos da sequência são sucessivos termos de uma **progressão geométrica**:

$$r = a[1] / a[0]$$
 e $a[i] = r \times a[i-1], i > 1$

- Implemente uma função **eficiente** (utilize um algoritmo em lógica negativa) que verifique se os n elementos (n > 2) de uma sequência de valores reais são sucessivos termos de uma progressão geométrica. A função deverá devolver 1 ou 0, consoante a sequência verificar ou não essa propriedade.
- Pretende-se determinar experimentalmente a **ordem de complexidade do número de multiplicações e divisões** efetuadas pelo algoritmo e envolvendo elementos da sequência.

• Considere as seguintes sequências de 10 elementos, que cobrem as distintas situações possíveis de execução do algoritmo. Determine, para cada uma delas, se satisfazem a propriedade e qual o número de operações de multiplicação e de divisão efetuadas pelo algoritmo.

1	2	3	4	5	6	7	8	9	10
1	2	4	4	5	6	7	8	9	10
1	2	4	8	5	6	7	8	9	10
1	2	4	8	16	6	7	8	9	10
1	2	4	8	16	32	7	8	9	10
1	2	4	8	16	32	64	8	9	10
1	2	4	8	16	32	64	128	9	10
1	2	4	8	16	32	64	128	256	10
1	2	4	8	16	32	64	128	256	512

Resultado	0
Resultado	0
Resultado	1
·	

Nº de operações	Z
Nº de operações	3
Nº de operações	4
Nº de operações	5
Nº de operações	6
Nº de operações	7
Nº de operações	В
Nº de operações	9
Nº de operações	9

Depois da execução do algoritmo responda às seguintes questões:

- Qual é a sequência (ou as sequências) que corresponde(m) ao melhor caso do algoritmo?
- Qual é a sequência (ou as sequências) que corresponde(m) ao pior caso do algoritmo?
- Para as sequências dadas (n = 10) qual foi o número médio de operações efetuadas?
- Qual é a ordem de complexidade do algoritmo? **O(n)**
- Determine formalmente a ordem de complexidade do algoritmo nas situações do melhor caso, do pior caso e do caso médio, considerando uma sequência de tamanho n. Deve obter expressões matemáticas exatas e simplificadas.
- Calcule o valor dessas expressões para n = 10 e compare-os com os resultados obtidos experimentalmente.
- 3 Considere uma sequência de n elementos inteiros e não ordenada. Pretende-se determinar quantos ternos (i, j, k) de índices da sequência respeitam a seguinte propriedade:

$$array [k] = array [i] + array [j], para i < j < k$$

- Implemente uma função eficiente que determine quantos ternos (i, j, k) de índices (resultado da função) de uma sequência com n elementos (n > 2) respeitam essa propriedade.
- Pretende-se determinar experimentalmente a **ordem de complexidade do número de comparações** efetuadas pelo algoritmo e envolvendo elementos da sequência.
- Considere as sequências de 10 elementos indicadas no exercício 1 e outras sequências diferentes à sua escolha; use sequências com 5, 10, 20, 30 e 40 elementos.

Determine, para cada uma delas, quantos ternos (i, j, k) de índices respeitam propriedade e o número de comparações efetuadas.

Depois da execução do algoritmo responda às seguintes questões:

• Em termos do número de comparações efetuadas, podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo sistemático?

- Com base nos resultados experimentais, qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exata e simplificada.
- Calcule o valor da expressão para n = 10 e n = 20; compare-o com os resultados obtidos experimentalmente.

** Exercício Adicional **

4 – Considere uma sequência, possivelmente não ordenada, de n elementos inteiros e positivos. Percorrendo a sequência a partir do seu primeiro elemento (current_value), pretende-se sucessivamente eliminar os elementos seguintes que sejam iguais ou múltiplos ou submúltiplos desse elemento (current_value), sem ordenar a sequência e sem alterar a posição relativa dos elementos. Depois, pretende-se fazer o mesmo a partir do segundo elemento, do terceiro e assim sucessivamente.

Por exemplo, a sequência { 8, 2, 6 } com 3 elementos será transformada na sequência { 8, 6 } com 2 elementos; a sequência { 2, 2, 2, 3, 3, 4, 5, 8, 8, 9 } com 10 elementos será transformada na sequência { 2, 3, 5 } com 3 elementos; e a sequência { 7, 8, 2, 2, 3, 3, 3, 8, 8, 9 } com 10 elementos será transformada na sequência { 7, 8, 3, } com 3 elementos.

• Implemente uma função **eficiente** que, para uma sequência com n elementos (**n > 1**), elimina os elementos iguais ou múltiplos ou submúltiplos como indicado acima.

A função deverá ser *void* e alterar o valor do parâmetro indicador do número de elementos armazenados na sequência (que deve ser <u>passado por ponteiro</u>).

- Pretende-se determinar experimentalmente a **ordem de complexidade do número de comparações** e **do número de deslocamentos** (i.e., cópias) efetuados pelo algoritmo e envolvendo elementos da sequência.
- Considere as sequências de 10 elementos indicadas no exercício 2, bem como outras à sua escolha.
 Determine, para cada uma delas, a sua configuração final, bem como o número de comparações e de deslocamentos efetuados.

Depois da execução do algoritmo responda às seguintes questões:

• Indique uma <u>sequência inicial</u> com 10 elementos que conduza ao **melhor caso do número de comparações** efetuadas. Qual é a <u>sequência final</u> obtida? Qual é o número de comparações efetuadas? Qual é o número de deslocamentos (i.e., cópias) de elementos efetuados?

Inicial:						Nº de comparações	
Final:						Nº de cópias	

• Indique uma sequência inicial com 10 elementos que conduza ao pior caso do número de comparações efetuadas. Qual é a sequência final obtida? Qual é o número de comparações efetuadas? Qual é o número de deslocamentos (i.e., cópias) de elementos efetuados?

Inicial:						Nº de comparações	
Final:						Nº de cópias	

• Determine formalmente a ordem de complexidade do algoritmo nas situações do melhor caso e do pior caso, considerando uma sequência de tamanho n. Deve obter expressões matemáticas exatas e simplificadas.

(3)

Ordern complexidade - O(n3)

For's para somatorio $size^{-1}$ $\sum_{k=2}^{k-1}$ $\sum_{j=1}^{j-1}$ j=0 $size^{-1}$ k-1 j=1k=2 j=1

$$= \sum_{K=Z}^{Size-1} \frac{K(K-1)}{Z} = \frac{1}{Z} \sum_{K=Z}^{Size-1} K^2 - K = \frac{1}{Z} \left(\sum_{K=Z}^{Size-1} K^2 - \sum_{K=Z}^{Size-1} K \right)$$

$$= \frac{4}{Z} \left(\frac{\text{Size (Size-1) (2Size-1)}}{6} - \frac{\text{Size (Size-1)}}{2} \right)$$

$$= \frac{(size)^{2}}{6} - \frac{gize^{2}}{2} + \frac{size}{3}$$

 $O(n^3)$