

Social Network Analysis

NETWORK MEASURES

Tanmoy Chakraborty https://tanmoychak.com/

Where's the similarity?

Official Release

Jul 15, 2012

Nov 16, 2011

Popularity

One billion views in 6 months

30 million views within 2 months

Total YouTube Views

Over 3.9 billion views by 2021

Over 235 million views by 2020

VIRAL MARKETING

https://www.businesstoday.in/magazine/case-study/kolaveri-disuccess-case-study/story/22957.html

Online Social Media: Some Interesting Questions

- What is the dynamics when a post receives high visibility on online social media?
- How to publicise a post on online social media?
- How to find the social media celebrities in such a vast online world?
- How to identify the prolific users in a specific domain in social media?
- What are the role of prolific users when a post becomes viral in social network?
- How to determine if two social media users are similar in terms of online activities?
- How do we know if similar users are connected in a network?

Network Measures: Classification

■ Microscopic

- Degree
- Local clustering coefficient
- Node centrality

Mesoscopic

- Connected components
- Giant components
- Group centralities

■ Macroscopic

- Degree distribution
- Path and diameter
- Edge density
- Global clustering coefficient
- Reciprocity and Assortativity

Degree of a Node

- For an undirected, unweighted network, the degree of a node v is defined as the number of nodes in the network to which there is an edge from v.
- In other words, for an undirected, unweighted network, the degree of a node \mathbf{v} is the number of edges of the network that are incident on \mathbf{v} .
- Putting differently, for an undirected, unweighted network, the degree of a node \mathbf{v} is the number of neighbours of the node \mathbf{v} .
- In graph G₁, degrees of the nodes 1 through 5 are 2, 3, 4, 2, 3, respectively.
- In graph G_2 , degrees of the nodes 1 through 5 are 3, 5, 7, 5, 4, respectively.
- Note: A self-loop is counted twice in evaluating the degree of a node.

Weighted Degree of a Node

- ☐ For an undirected, weighted network, the weighted degree of a node is defined as the sum of weights of the edges incidents on that node
- \square For the weighted undirected graph G_3 , the weighted degrees of the nodes are as follows:
 - Weighted degree of node 1 is 11
 - Weighted degree of node 2 is 22
 - Weighted degree of node 3 is 26
 - Weighted degree of node 4 is 16
 - Weighted degree of node 5 is 22

Indegree and Outdegree of a Node

- ☐ In a directed network, the indegree of a node is defined as the number of incoming edges to the node
- ☐ In a directed network, the outdegree of a node is defined as the number of outgoing edges from the node
- \square For the directed graph G_4 , the indegrees and outdegrees of the nodes are as follows:
 - Indegrees of the nodes 1 through 5 are 2, 2, 3, 1, 1
 - Outdegrees of the nodes 1 through 5 are 1, 3, 1, 2, 2

Sum of the Degrees...

- ☐ For an unweighted, undirected network, the sum of the degrees of the nodes in a graph is twice the number of edges in the graph
- Proof
 - ✓ When we add an edge **e** to graph, it joins a pair of vertices v_i and v_i of the graph.
 - \checkmark Prior to the addition of the edge **e** to graph, let the degrees of the nodes v_i and v_i be d_i and d_i .
 - ✓ After addition of the edge \mathbf{e} to graph, the revised degrees of the nodes v_i and v_j be $d_i + 1$ and $d_j + 1$. The degrees of the other nodes remain unaffected.
 - ✓ Then, on addition of an edge **e**, the sum of degrees of the nodes in G is incremented by 2 from its previous value. The fact is true for the addition of any edge to the graph.
 - ✓ If we add |E| number of edges to the graph one-by-one, the sum of the degrees is enhanced by $2 \times |E|$.
 - ✓ If a graph has no edges, all the nodes have degree zero, and so, the sum of the degrees is zero.
 - ✓ Thus, a graph with |E| edges has its sum of the degrees of the nodes as $2 \times |E|$.

Degree Distribution

- Degree distribution of a network is the (probability) distribution of the degrees of nodes over the whole network.
- \square A network G(V,E) has N=|V| nodes.
- \square Let P_k denote the probability that a randomly chosen node has degree k.
- \square Then, $P_k = \frac{N_k}{N}$, where N_k refers to the number of nodes of degree k in the network.
- \square The distribution (k, P_k) represents the degree distribution of the concerned graph,

 \square The mean degree, denoted $\langle k \rangle$, is given by $\langle k \rangle = \sum_k k P_k$.

Degree Distribution: Example

 G_1

 \square For graph G_1 , we have the following:

$$N = 5$$
, and $N_1 = 0$, $N_2 = 2$, $N_3 = 2$, $N_4 = 1$.

$$\square$$
 The above implies, $P_1 = 0, P_2 = 0.4, P_3 = 0.4, P_4 = 0.2,$

Cumulative Degree Distribution

- \square Cumulative degree distribution (CDD) is given by the fraction of nodes with degree smaller than k.
- \square In other words, it is the distribution (k, C_k) , where $C_k = \frac{\sum_{k' \leq k} N_{k'}}{N}$

- $lue{}$ Complementary cumulative degree distribution (CCDD) is given by the fraction of nodes with degree greater than or equal to k.
- \square In other words, it is the distribution (k, CC_k) , where $CC_k = 1 C_k$

Degree Distribution: Example

$$\square$$
 For graph G_1 , we have the following:

$$N = 5$$
, and $N_1 = 0$, $N_2 = 2$, $N_3 = 2$, $N_4 = 1$.

$$\square$$
 The above implies, $P_1 = 0, P_2 = 0.4, P_3 = 0.4, P_4 = 0.2,$

$$C_1 = 0$$
, $C_2 = 0.4$, $C_3 = 0.8$, $C_4 = 1.0$,

and

$$CC_1 = 1.0, CC_2 = 0.6, CC_3 = 0.2 CC_4 = 0.0.$$

Power Law

A **power law** is a functional relationship between two quantities: one quantity varies as a power of another.

Example: the area of a square in terms of the length of its side. If the length is doubled, the area is multiplied by a factor of four.

Scale invariant:

- One attribute of power laws is their scale invariance.
- Given a relation $f(x) = ax^{-k}$, scaling the argument x by a constant factor c causes only a proportionate scaling of the function itself.

$$f(cx)=a(cx)^{-k}=c^{-k}f(x)\propto f(x)$$

Degree distribution follows power law

The incoming (a) and outgoing (b) degree distribution of the WWW sample mapped in the 1999 study of Albert *et al*.

The degree distribution is shown on double logarithmic axis (log-log plot), in which a power law follows a straight line.

The symbols correspond to the empirical data and the line corresponds to the power-law fit, with degree exponents γ_{in} = 2.1 and γ_{out} = 2.45.

The green line shows the degree distribution predicted by a Poisson function with the average degree $\langle k_{in} \rangle = \langle k_{out} \rangle = 4.60$ of the WWW sample.

- In an undirected network,
 - Two nodes are called adjacent if they are linked by an edge.
 - Two edges are called incident if they share a common end-node.
- \square In graph G_1 , the nodes **1** and **2** are adjacent, **1** and **3** are adjacent, and so on.
- \square In graph G_1 , the edges e_1 and e_2 are incident, e_1 and e_3 are incident, and so on
- ☐ A walk in a network is an alternating sequence of nodes and edges, where every consecutive node pair is adjacent, and every consecutive edge pair is incident.
- A walk may pass through a node or an edge more than once. The length of a walk is the number of edges in the sequence.
- \square In graph G_1 , the sequence $\{3, e_3, 2, e_4, 5, e_6, 3, e_5, 4, e_7, 5, e_4, 2\}$ is a walk of length 6.
- ☐ For a simple graph, the edges from the above sequence may be omitted.

- A walk in a network is called
 - a closed walk if the last node in the sequence is same as the first node; else it is called an open walk.
 - a trail if the sequence has no repeated edge.
 - a path if the sequence has neither a repeated edge nor a repeated node. In other words, a path is an open trail having no repeated nodes.
 - a cycle if the sequence has all the edges distinct, and all the nodes, except the first and the last nodes, are also distinct. In other words, a cycle is a closed path with the only repetition of the first and the last nodes in the sequence.
- \square In graph G_1 ,
 - ☐ the sequence {2, 5, 4, 3, 2, 1, 3, 4, 5, 2} is a closed walk.
 - ☐ the sequence **{5, 4, 3, 2, 1, 3}** is a trail.
 - \square the sequence $\{5, 4, 3, 2, 1\}$ is a path.
 - \square the sequence $\{5, 4, 3, 2, 5\}$ is a cycle.

- The distance between nodes v_i and v_j in a graph is defined as the length of the shortest path between the nodes v_i and v_j .
- \square In graph G_1 , the distance between 1 and 4 is 2, the same between 1 and 5 is also 2.
- ☐ The diameter of a network is defined as the maximum distance between any pair of nodes in the network.
- \square The diameter of the graph G_1 is 2.
- \square For a graph G with n nodes, the average path length l_G is defined as the average number of steps along the shortest paths for all possible pairs of nodes in the network.

$$l_G = \frac{\sum_{i \neq j} d_{ij}}{n(n-1)}$$
, where d_{ij} is distance between nodes v_i and v_j

 \square The density of a graph G(V, E), denoted $\rho(G)$, is defined as the ratio of the number of edges in the graph to the total number of possible edges in the network. Mathematically,

$$\rho(G) = \frac{2 \times |E|}{|V| \times (|V| - 1)}$$

 \square For the graph G_1 , the average path length is:

$$\frac{2 \times (1+1+2+2+1+2+1+1+1)}{5 \times 4} = \frac{26}{20} = 1.3$$

 \square For the graph G_1 , the network density is:

$$\frac{2 \times 7}{5 \times 4} = 0.7$$

Clusters in Social Networks

The Friendship Network of Daniel Himmelstein

A Facebook Friendship Network Example

https://blog.dhimmel.com/friendship-network/

- ☐ In social networks, we often find
 - tightly-knit groups here and there
 - less dense ties away from these groups
- ☐ Indicative of friendship structures in social media
- Measure used to capture these phenomena
 - Local clustering coefficient
 - Global clustering coefficient

Local Clustering Coefficient

□ In a network G(V, E), the local clustering coefficient of node $v_i \in V$, denoted C_i , is defined as

$$C_i = \frac{Number\ of\ edges\ between\ neighbors\ of\ v_i}{Number\ of\ maximum\ possible\ edges\ between\ neighbors\ of\ v_i}$$

- \square In graph G_1 ,
 - the local clustering coefficient of node 2 is $^{2}/_{3}$
 - the local clustering coefficient of node 3 is $\frac{3}{6}$ i.e. $\frac{1}{2}$
 - and so on...

Local Clustering Coefficient

The local clustering coefficient C_i for a vertex v_i in a network G(V, E) is given by the proportion of edges between the vertices within its neighborhood divided by the number of links that could possibly exist between them.

$$C_{i} = \frac{2 \times |\{e_{jk} | v_{j}, v_{k} \in N_{i}, e_{jk} \in E\}|}{k_{i}. (k_{i} - 1)}$$

Where N_i is the neighbourhood of the vertex v_i , and $k_i = |N_i|$.

https://www.researchgate.net/publication/236604411 Suicide Ideation of Individuals in Online Social Networks/figures?lo=1

Global Clustering Coefficient

 \square The global clustering coefficient C of a network G is defined as

$$C = \frac{Total\ number\ of\ closed\ triplets\ in\ G}{Total\ number\ of\ triplets\ (open\ \&\ closed)\ in\ G}$$

- $\ \square$ In the graph G_2 , there is three closed triplet viz., [1,2,3], [2,3,1], and [3,1,2].
- □ In the graph G_2 , there is five triplets, viz., (1,2,3), (2,3,1), (3,1,2), (2,1,4), and (3,1,4).
- \square Thus, the global clustering coefficient of the graph G_2 is $^3/_5$.

Connected Components

- ☐ In a typical social network, there are loose links that connect the tightly-knit clusters
- \square In an undirected network G, two nodes v_i and v_j are said to be connected if there exists a path between v_i and v_j .
- ☐ An entire network is said to be connected if any pair of nodes in the network is connected.
- □ Connected subnetworks of a network, if exist, are called components of the network.
- ☐ In real-world networks, there often exist one giant component (consuming major chunk of nodes) and many smaller components.
- ☐ In a network, connectedness shows resilience to link breakdowns.

Centrality

- Measures how "central" a node is in the network
- What counts as "central" may depend on the context

Four Ps

- Prestige
- Prominence
- Importance
- Power

Degree Centrality

 \square The degree centrality $C_d(v)$ of a node v in a network G(V, E) is defined as:

$$C_d(v) = \frac{\deg(v)}{\max_{u \in V} \deg(u)}$$

- Particularly useful for marketing scenarios, wherein the detected influential user can promote a product/service across her followers
- □ Degree centrality of the nodes 1 through 5 in network G_1 are $^2/_4$, $^3/_4$, $^4/_4$, $^2/_4$, and $^3/_4$, respectively; i.e., 0.5, 0.75, 1.0, 0.5, and 0.75, respectively. So, node 3 is most central according to degree centrality measure.

Closeness Centrality

- A means for detecting nodes that can spread information very efficiently through a graph
- ☐ The measure is useful in
 - Examining/restricting the spread of fake news/misinformation in social media
 - Examining/restricting the spread of a disease in epidemic modelling
 - Controlling/restricting the flow of vital information and resources within an organization (a terrorist network, for example)
- \square The closeness centrality C(v) of a node v in a network G(V, E) is defined as

$$C(v) = \frac{|V| - 1}{\sum_{u \in V \setminus \{v\}} d(u, v)}$$

Where d(u, v) denotes the distance of node u from node v

☐ The measure indicates how close a node from the rest of the network

Closeness Centrality

 \square In graph G_1 , the closeness centrality for the nodes are as follows

$$C(1) = \frac{5-1}{1+1+2+2} = \frac{4}{6} = 0.67$$

$$C(2) = \frac{5-1}{1+1+2+1} = \frac{4}{5} = 0.80$$

$$C(3) = \frac{5-1}{1+1+1+1} = \frac{4}{4} = 1.0$$

$$C(4) = \frac{5-1}{2+2+1+1} = \frac{4}{6} = 0.67$$

$$C(1) = \frac{5-1}{2+1+1+1} = \frac{4}{5} = 0.80$$

☐ Clearly, node 3 is most central according to closeness centrality measure

Betweenness Centrality

- ☐ A measure to compute how central a node is in between paths of the network
- ☐ A measure to compute how many (shortest) paths of the network pass through the node
- Useful in identifying
 - the articulation points, i.e., the points in a network which, if removed, may disconnect the network
 - The super spreaders in analyzing disease spreading in epidemiology
 - the suspected spies in security networks
- \square The betweenness centrality $C_R(v)$ of a node v in a network G(V, E) is defined as

$$C_B(v) = \sum_{x,y \in V \setminus \{v\}} \frac{\sigma_{xy}(v)}{\sigma_{xy}}$$

where σ_{xy} denotes the number of shortest paths between nodes x and y in the network, $\sigma_{xy}(v)$ denotes the same passing though v. If x=y, then $\sigma_{xy}=1$.

Betweenness Centrality

- \square To find the betweenness centrality of node v=3 in graph G_1
- \square The following matrix is of the form $\sigma_{xy}(v)|\sigma_{xy}$

$\sigma_{xy}(v) \sigma_{xy}$	1	2	3	4	5
1	0 1	0 1		1 1	1 2
2	0 1	0 1		1 2	0 1
3					-
4	1 1	1 2		0 1	0 1
5	1 2	0 1		0 1	0 1

☐ Thus the betweenness centrality of node $3 = \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{2} = 4$

Betweenness Centrality: Variants

- ☐ The edge betweenness centrality refers to the fraction of all pairs of shortest paths of the network that pass through a given edge.
- Computation is more-or-less similar to that of betweenness centrality
- ☐ The flow betweenness centrality the fraction of all paths (not necessarily the shortest paths) of the network that pass through a given edge.
- ☐ Clearly, flow betweenness centrality measure is computationally expensive than betweenness or edge betweenness centrality measures.

Eigenvector Centrality

■ Measures a node's importance by taking into consideration the preference of its neighbors

Uses a recursive approach

■ A node has a higher eigenvector centrality, if it is directly connected to other nodes having high eigenvector centrality

Generally applied on directed networks

https://www.slideshare.net/mdeiters/you-might-also-like-implementing-user-recommendations-in-rails/63-Eigenvector Centrality PageRankThursday June 10

Eigenvector Centrality

 \square The eigenvector centrality x_v of a node v in a network G(V, E) is given by

$$x_v = \frac{1}{\lambda_1} \sum_{t \in N(v)} x_t = \frac{1}{\lambda_1} \sum_{t \in V} (a_{vt} \times x_t)$$

where λ_1 is the largest eigen value of the matrix $A=(a_{ij})$, the adjacency matrix of the network G

 \square The largest eigen value λ_1 is obtained by solving the equation

$$A.X = \lambda_1.X$$

lacksquare X above is a column vector, whose v^{th} entry is x_v , the eigen vector centrality of the node v

Katz Centrality

- ☐ An extension of eigenvector centrality
- ☐ Can be used to compute centrality in directed networks such as citation networks and the World Wide Web
- Mostly suitable in the analysis of directed acyclic graphs
- ☐ Computes the relative influence of a node in a network by considering all immediate neighbors and all further nodes connected to the node
- Connections with distant neighbors are, however, penalized by an attenuation factor

Katz Centrality: Attenuation Factor

https://www.geeksforgeeks.org/katz-centrality-centrality-measure/

- ☐ Let us consider the influence of *Jose* in the network, and also let the attenuation factor be α , $0 < \alpha < 1$
- ☐ Immediate neighbours of Jose are *Diego, Aziz, Bob, Priya*, and *Sri*. Influence of these neighbours on Jose would be attenuated at a factor of α
- ☐ Second order neighbours of Jose are *Agneta*, *John*, Samantha, and Kim. Influence of these neighbours on Jose would be attenuated at a factor of α^2
- ☐ The (only) third order neighbour of Jose is **Jane.** Influence of these neighbours on Jose would be attenuated at a factor of α^3

Katz Centrality

 \square The Katz centrality of a node v_i in a network G(V, E), denoted $C_{Katz}(i)$, is defined as

$$C_{Katz}(i) = \sum_{k=1}^{\infty} \sum_{j=1}^{|V|} \alpha^k \times A_{ji}^k$$

where A is the adjacency matrix of G

- \square Matrix A^k indicates the presence/absence of a path of length k between a node-pair
- \Box The entry A_{ii}^k in A^k matrix indicates the total number of k-hop walks between node j and node i

PageRank

- Devised by Larry Page and Sergey Brin in 1998
- Devised as a part of a research project about a new kind of search engine
- Based upon the concepts of eigenvector centrality and Katz centrality measures
- Used to rate the importance of web pages on the web
- ☐ A page's importance is determined by the importance of the web pages linked to the page
- ☐ The algorithm is inherently recursive because the page further contributes to the importance of the web pages linked to it

PageRank

 \square The PageRank for a network node v_i in a network G(V, E), denoted $PG(v_i)$, is defined as

$$PG(v_i) = \frac{1 - d}{|V|} + d \sum_{v_t \in Inneighbor(v_i)} \frac{PG(v_t)}{outdeg(v_t)}$$

where d is constant, called the damping factor

 \square Though there are many works to determine the optimal value for d, it is usually set as d=0.85

PageRank: The Random Surfer model

- ☐ A random surfer surfing through the Internet by
 - a. opening a webpage at random, and
 - b. moving across webpages by randomly clicking hyperlinks in the page he is in
 - c. repeating the steps (a) and (b) at random
- lacktriangle The surfer follows hyperlinks to surf with probability d
- \Box The surfer jumps to pages to surf with probability (1-d)
- Since there are |V| number of vertices in the network, the probability of choosing a random webpage is $\frac{1-d}{|V|}$
- ☐ Hence, we have the First term of the PageRank equation

PageRank: The Random Surfer model

- lacktriangle The surfer is in a page v_t and he decides to follow a hyperlink
- \Box The probability that he decides to follow hyperlink than random jump is d
- lacktriangle At node v_t , he has $outdeg(v_t)$ number of options
- \Box The PageRank contribution of the page v_t is $PG(v_t)$
- ☐ The above contribution is divided across the available hyperlinks (outward links)
- ☐ However, the surfer could be anywhere in network
- lacksquare Hence the total possible contribution with this choice $d\sum_{\substack{t=1 \ t
 eq i}}^{|V|} rac{PG(v_t)}{outdeg(v_t)}$
- ☐ Hence, we have the Second term of the PageRank equation

Hub & Authority

- Nodes having high out-degree are called hubs in a network
- □ Nodes having high in-degree are called to have authority in a network
- In connection with a citation network
 - ☐ Hub nodes are survey papers which cite large number of papers
 - ☐ Authoritative nodes are seminal papers that are cited by large number of papers
- ☐ PageRank considers only the authoritativeness of a node in a network
- But it does not consider the hubness of a node separately
- ☐ However, the later kind of nodes may drag important information regarding the network, too

Hub & Authority

 \square For node v, its hubness is determined by the cumulative authoritativeness of nodes that v points to.

$$hub(v) = \sum_{u \in out(v)} auth(u)$$

where out(v) denotes the set of nodes pointed by v

 \Box On the other hand, its authoritativeness is computed by the cumulative hubness of the nodes pointing to v,

$$auth(v) = \sum_{u \in in(v)} hub(u)$$

https://slideplayer.com/slide/10495834/

where in(v) denotes the set of nodes pointing to v

☐ Kleinberg proposed Hyperlink-Induced Topic Search (HITS) algorithm exploiting these concepts

Assortative Mixing

https://www.wolfram.com/mathematica/new-in-9/social-network-analysis/homophily-and-assortativity-mixing.html

- □ In friendship kind of social networks,
 □ individuals often choose to associate with others having similar characteristics
 □ age, nationality, location, race, income, educational level, religion, or language are common characteristics
 □ Homophily
 □ In intimate relationship kind of network,
 □ mixing is also disassortative by gender
 □ most people prefer to have affair with opposite sex
- Assortativity or assortative mixing is a measure to gauge these mixing tendencies

Heterophily

Assortative Mixing

- □ A common practice to find similarity between nodes is to use a correlation coefficient
- ☐ The Pearson correlation coefficient is a good choice if we want degree-based assortativity
- \square For two data (degree) distribution x and y, the Pearson correlation coefficient r_{xy} is given by

$$r_{xy} = \frac{N\sum xy - \sum x\sum y}{\sqrt{(N\sum x^2 - (\sum x)^2)(N\sum y^2 - (\sum y)^2)}}$$

- \blacksquare If $r_{xy} = 1$, then nodes x and y are perfectly assortative (homophily)
- \square If $r_{xy} = -1$, then nodes x and y are perfectly disassortative (heterophily)
- \square If $r_{xy} = 0$, then nodes x and y are non-assortative

Transitivity

- A metric to determine the linkage between a pair of nodes
- Very important in social networks, and to a lesser degree in other networks.
- In abstract mathematics, if entity x is related to entity y, and also entity y is related to entity z, then the transitivity of the relation ensures that entity x is related to entity z.
- In social networks, a complete transitivity may yield: "Friends of my friends are my friends"
 - Utterly Absurd in real networks!
- ☐ In fact, a complete transitivity would imply that each component of a network is a clique!!
- However, partial transitivity is useful: "Friends of my friend are more likely my friend than some randomly chosen member from the population"

Transitivity

- A complete graph is surely transitive
- ☐ A measure of transitivity intends to capture how close a network is to a complete graph
- ☐ A network with higher transitivity are likely to form dense clusters
- Two ways to capture this tendency
 - Local clustering coefficient
 - Global clustering coefficient

Reciprocity

- ☐ Relevant for directed networks
- A measure of the likelihood of vertices in a directed network to be mutually linked.
- Networks that transport information or material, mutual links facilitate the transportation process
- An important phenomenon for such applications
- ☐ Informally, reciprocity refers to: "If you would follow me, most likely I shall follow you back"
- May be considered a simplified version of transitivity

Reciprocity

- □ Reciprocity counts the closed loops of length 2
- \square The reciprocity R of a network G is defined as

$$C = \frac{Total\ number\ of\ reciprocal\ pairs\ in\ G}{Total\ number\ of\ pairs\ (reciprocal\ \&\ nonreciprocal)\ in\ G}$$

 \Box For graph G, the reciprocity is $\frac{1}{3}$

Reciprocity

 \Box The reciprocity R for a graph G(V,E) having adjacency matrix $A=\left(a_{ij}\right)$ is given by

$$R = \frac{2}{|E|} \sum_{i < j} (a_{ij}. a_{ji})$$

■On simplification,

$$R = \frac{2}{|E|} \times \frac{1}{2} Trace(A^2) = \frac{Trace(A^2)}{|E|}$$

 \square In the above expression, $Trace(\cdot)$ function denotes the sum of the diagonal elements of its argument square matrix

Measuring Structural Equivalence

■Common Neighbors

Number of common neighbors shared in the neighborhoods of the nodes a and b

$$\sigma_{CN}(a,b) = |N(a) \cap N(b)|$$

■ Jaccard Similarity

Normalizes the common neighbors by the combined size of the neighborhoods of the two nodes

$$\sigma_{CN}(a,b) = \frac{|N(a) \cap N(b)|}{|N(a) \cup N(b)|}$$

■Cosine Similarity

Normalizes the common neighbors by the individual sizes of the neighborhoods

$$\sigma_{CN}(a,b) = \frac{|N(a) \cap N(b)|}{\sqrt{|N(a)||N(b)|}}$$

Degeneracy: Core Number

- ☐ The coreness or core number of a node is the order of the highest-order core that the node belongs to
- \square A node has a core number k in network G if
 - \square It belongs to the k-core subgraph, but
 - \square does not belong to the (k + 1)-core subgraph of G
- ☐ In the example network, nodes inside the central-most 4-core subgraph have core number 4
- ■Similar to centrality, core number is a measure of prestige of a node in a network

Degeneracy: Core-Periphery

- Real-world networks often consists of
 - A dense and connected core, and
 - Surrounding the core by disconnected and scrambled periphery
- ☐ The structure above is termed as the core-periphery structure of the network

Other Metrics

Structural Equivalence

https://en.wikipedia.org/wiki/Similarity_(network_science)#:~:text=Similarity%20in%20network%20analysis%20occurs,automorphic%20equivalence%2C%20and%20regular%20equivalence.

- ■Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes
- ☐ Two actors must be exactly substitutable in order to be structurally equivalent
- ■In the attached network,
 - \square nodes E and F are structurally equivalent, since these two nodes have same pattern ties (viz. a single tie) with the node B
 - \square Also, nodes H and I are structurally equivalent, since these two nodes have same pattern ties (viz. a single tie) with the node D
- Exact structural equivalence is likely to be rare (particularly in large networks)
- ☐ The degree of structural equivalence is what interests us the most

Automorphic Equivalence

https://en.wikipedia.org/wiki/Similarity_(network_science)#:~:t ext=Similarity%20in%20network%20analysis%20occurs,automorphic%20equivalence%2C%20and%20regular%20equivalence.

- ☐ Similarly, E, F, H, and I are also equivalent in the following sense
 ☐ They report to a store manager (different boss here)
 ☐ Nobody report to these persons
- ☐ The above approach of equivalence is automorphic equivalence

Regular Equivalence

https://en.wikipedia.org/wiki/Similarity_(network_science)#:~:text=Similarity%20in%20network_%20analysis%20occurs,automorphic%20equivalence%2C%20and%20regular%20equivalence.

- ☐ Two actors are regularly equivalent if they are equally related to equivalent others
- ☐ Two mothers are regularly equivalent, since
 - each has a similar pattern of connections with a husband,
 - ☐ with their children,
 - ☐ with their in-laws, etc.
 - ☐ The store managers are regularly equivalent, since
 - each has a similar pattern of connections with their employees at their stores, and
 - with the general manager at the central headquarter

Degeneracy

- \square A k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k
- \square The degeneracy of a graph is the smallest value of k for which it is k-degenerate
- \square A k-core of a graph G is a maximal connected subgraph of G in which all vertices have degree at least k

A 2-degenerate graph with one of its 2-core highlighted

https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)

END