CSC 4350 – Computer Networks

Domain Name System (DNS)

September 17, 2024

Note

• Material in this lecture is heavily borrowed from Kurose & Ross' "Computer Networking: A Top Down Approach, 8th Edition"

DNS - Internet's Directory Service

- Services Provided by DNS
- Overview of How DNS Works
 - Distributed, hierarchical database
 - DNS caching
- DNS Records and Messages
 - DNS Messages
 - Inserting Records into the DNS Database

Directory Service

- How can we be identified?
 - Driver's license number
 - SSN
 - Date of birth
 - One may be more appropriate than another, depending on context
- Identifier for a host hostname
 - Mnemonic and appreciated by humans (<u>www.google.com</u>, <u>www.apple.com</u>)
 - Hostnames provide little, if any, information about the location within the internet of the host
 - Hosts identified via IP addresses
 - Consists of four bytes and has a rigid hierarchical structure
 - Each period separates numbers 0-255
 - Hierarchical scan the address from left to right more specific information obtained

Services Provided by DNS

- Reconcile preferences of names v. IP addresses need a directory service that translates hostnames to IP addresses.
 - Main task of DNS
- DNS
 - Distributed database implemented in a hierarchy of DNS servers
 - An application-layer protocol that allows hosts to query the distributed database
 - Servers are often UNIX machines running Berkeley Internet Name Domain (BIND)

Example

- Browser running on some user's host requests the URL www.someschool.edu/index.html
- In order to be able to send an HTTP request message to the web server <u>www.someschool.edu</u>, the user's host must first obtain the IP address
- Steps
 - The same user machine runs the client side of the DNS application
 - The browser extracts the hostname <u>www.someschool.edu</u> from the URL and passes the hostname to the client side of the DNS application
 - The DNS client sends a query containing the hostname to a DNS server
 - The DNS client eventually receives a reply, which includes the IP address for the hostname
 - Once browser receives IP address from DNS, it can initiate a TCP connection to the HTTP server process located at port 80 at that address
- Potential delay for look-up

What Else Does DNS Do?

Host aliasing

- Host with a complicated hostname can have one or more alias names
 - Example: relay1.west-coast.enterprise.com
 - Could have two aliases: enterprise.com and <u>www.enterprise.com</u>
 - The relay1.west-cost... is said to be a canonical hostname
 - Alias hostnames are typically more mnemonic than canonical hostnames
 - DNS can be invoked to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host

Mail server aliasing

- If Bob has an account with Yahoo Mail, his address might be bob@yahoo.com
- The hostname of the Yahoo mail server is more complicated and less mnemonic than yahoo.com
- DNS can be invoked by a mail application to obtain canonical hostname for a supplied alias hostname as well as the IP address of the host
- MX record permits company's mail server and web server to have identical (aliased) hostnames
 - A company's web server and mail server can both be called enterprise.com

What Else Does DNS Do?

- Load distribution
 - Buy sites are replicated over multiple servers, with each server running on a different end system and each having a different IP address
 - DNS database contains this set of IP addresses
 - When clients make a DNS query for a name mapped to a set of addresses, server responds with the entire set of IP addresses, but rotates the order of the addresses within each reply
 - DNS distributes the traffic among the replicated servers

How DNS Works

- Suppose some application running in a user's host needs to translate a hostname to an IP address
- Application will invoke the client side of DNS, specifying the hostname that needs to be translated
- DNS in the user's host then takes over, sending a query message into the network.
- All DNS query/reply messages are sent within UDP datagrams to port 53
- After a certain delay, the DNS in the user's host receives a DNS reply message that provides the desired mapping, then passed to the invoking application
- Might think of as a black box that implements the service is complex, consisting of a large number of DNS servers around the globe

DNS and Centralized Design

- Clients direct all queries to the single DNS server
- DNS server responds directly to the querying clients
- Not appropriate for the growing number of hosts
- Problems
 - A single point of failure if the DNS server crashes, so does the Internet
 - Traffic volume a single server would have to handle all DNS queries for all of the HTTP requests/email messages generated by millions of hosts
 - Distant centralized database a single DNS server cannot be "close to" all querying clients
 - If put in NYC, then all queries from Australia must travel to the other side of the globe, maybe even slow/congested links
 - Maintenance
 - Single DNS server would have to keep records for all internet hosts
 - Huge centralized database
 - Frequent updates for every new host

Distributed, Hierarchical Database

- Dealing with scale DNS uses a large number of servers, organized in hierarchical fashion and distributed around the world
- No single DNS server has all the mappings for all of the hosts in the internet
- Mappings are distributed across the DNS servers
- First approximation three classes of DNS servers
 - Root DNS servers
 - Top-level Domain DNS Servers (TLD)
 - Authoritative DNS servers
 - See next slide for possible placement/alignment

Figure 2.17 – Portion of the Hierarchy of DNS Servers

Example with Amazon

- DNS client wants to determine the IP address for <u>www.amazon.com</u>
- The client first contacts one of the root servers, which returns IP addresses for TLD servers for the top-level domain com
- Client contacts one of the TLD servers, which returns the IP address of an authoritative server for amazon.com
- Client contacts one of the authoritative servers for amazon.com, which returns the IP address of the hostname www.amazon.com

More on the Classes of DNS Servers

Root DNS Servers

- More than 1000 scattered all over the world
- Copies of 13 different root servers, managed by 12 different organizations and coordinated through the Internet Assigned Numbers Authority (IANA)
- Provide the IP addresses of the TLD servers

TLD Servers

- For each of the top-level domains .com, .org, .net, .edu, .gov and country domains, there is a TLD server
- Verisign Global Registry Services maintains the TLD servers for the com top-level domain
- Educause maintains the TLD servers for the edu top-level domain
- Etc.

More on the Classes of DNS Servers

Authoritative DNS Servers

- Every organization with publicly accessible hosts on the internet must provide publicly accessible DNS records that map names to IP addresses
- Organization can choose to implement its own authoritative DNS server
- Alternative: organization pays to have these records stored in an authoritative DNS server of some service provider
- Most companies/universities maintain their own primary/secondary authoritative DNS server

Local DNS Server

- Does not strictly belong to the hierarchy of servers, but part of DNS architecture
- Each ISP has a local DNS server
- When a host connects to an ISP, the ISP provides the host with the IP addresses of one or more
 of its local DNS servers
- Host's local DNS server is typically "close to" the host

Example – Trying to Get to gaia.cs.umass.edu

- Host cse.nyu.edu sends a DNS query message to its local DNS server, dns.nyu.edu
- Query message contains the hostname to be translated (gaia)
- Local DNS server forwards the query message to a root DNS server
 - Takes note of the edu suffix and returns to the local DNS several IP addresses for TLD servers responsible for edu
- Local DNS server resends query to one of the TLD servers
 - TLD server takes note of the umass.edu suffix and responds with the IP address of authoritative DNS server for Umass
- Local DNS server resends the query message directly to dns.umass.edu
 - Responds with the IP address of gaia.cs.umass.edu
- Use recursive, iterative queries in theory, any query can be iterative or recursive
- Normal pattern: query from the requesting host to the local DNS server is recursive, remaining queries are iterative

Figure 2.19 – Interaction of the Various DNS Servers

DNS Caching

- Used a bit to improve the delay performance and reduce the number of DNS messages coming from around the internet
- In a query chain, when a DNS server receives a DNS reply, it can cache the mapping in its local memory
- If hostname/IP address pair is cached in a DNS server and another query arrives to the DNS server for the same hostname, the DNS server can provide the desired IP address
- DNS servers discard cached information after a period of time

Figure 2.20 – Recursive Queries in DNS

DNS Records and Messages

- DNS servers that implement the DNS distributed database store resource records (RRs), including those that provide hostname-to-IP address mappings
- Each DNS reply message carries one or more resource records
- An RR four-tuple that contains the following fields
 - Name
 - Value
 - Type
 - TTL time to live of the resource record
 - Meaning of Name and Value depend on Type

Resource Records...

- If Type = A
 - Name is a hostname
 - Value is the IP address for the hostname
 - Example: (relay1.bar.foo.com, 145.37.93.126, A) is a type-A record
- If Type = NS
 - Name is a domain
 - Value is the hostname of an authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain
 - Example: (foo.com, dns.foo.com, NS) is a type NS record

Resource Records

- If Type = CNAME
 - Value is a canonical hostname for the alias hostname Name
 - Can provide querying hosts the canonical name for a hostname
 - (foo.com, relay1.bar.foo.com, CNAME) is a CNAME record
- If Type = MX
 - Value is the canonical name of a mail server that has an alias hostname Name
 - (foo.com, mail.bar.foo.com, MX)
 - Allow hostnames of mail servers to have simple aliases
 - A company can have the same aliased name for its mail server and for one of its other servers
 - Obtain canonical name for the mail server, a DNS client would query for the MX record
 - Obtain canonical name for the other server, DNS client would query for the CNAME record

Other Thoughts...

- If a DNS server is authoritative for a particular hostname, DNS server will contain a Type A record for the hostname
- If a server is not authoritative for a hostname, then the server will contain a Type NS record for the domain that includes the hostname
 - Will also contain a Type A record that provides the IP address of the DNS server in the value field of the NS record

Figure 2.21 – DNS Message Format

Identification	Flags	
Number of questions	Number of answer RRs	—12 bytes
Number of authority RRs	Number of additional RRs	
Questions (variable number of questions)		Name, type fields for a query
Answers (variable number of resource records)		RRs in response to query
Authority (variable number of resource records)		Records for authoritative servers
Additional information (variable number of resource records)		—Additional "helpful" info that may be used

DNS Messages

- Two kinds of messages: query and reply
 - Both have same format
- Semantics
 - First 12 bytes header section
 - Query 16-bit number
 - Identifier is copied into the reply message to a query, allowing the client to match received replies with sent queries
 - Flag field
 - 1-bit query/reply flag indicates whether the message is a query (0) or reply (1)
 - 1-bit authoritative flag is set in a replay when a DNS server is an authoritative server for a queried name
 - 1-bit recursion-desired flag set when a client desires that the DNS server perform recursion when it doesn't have the record
 - 1-bit recursion-available field set in a reply if DNS server supports recursion

DNS Messages

- Semantics
 - Header there are also four number-of fields
 - Indicate the number of occurrences of the four types of data sections that follow the header
 - Question section information about the query being made
 - Name field that contains the name that is being queried
 - Type field that indicates the type of question being asked about the name
 - Host address associated with a name (Type A)
 - Mail server for a name (Type MX)
 - Answer section reply from a DNS server
 - Contains resource records for the name that was originally queried; can return multiple RRs in the answer, since a hostname can have multiple IP addresses
 - Authority section records of other authoritative servers
 - Additional section other helpful records
 - Example: answer field in a reply to an MX query contains a resource record providing the canonical hostname of a mail server; additional section contains a Type A record providing the IP address for the canonical hostname of the mail server

Inserting Records Into the DNS Database

- How to add? Example...
- Created a new start up called Network Utopia
- Register the domain name networkutopia.com at a registrar
 - Commercial entity that verifies the uniqueness of the domain name, enters the domain name into the DNS database and collects a small fee from you for its services
- When registering domain name, you also need to provide the registrar with the names and IP addresses of your primary and secondary authoritative DNS servers
 - Names: dns1.networkutopia.com, dns2.networkutopia.com
 - IP addresses: 212.2.212.1, 212.212.212.2
- For each of the authoritative servers, registrar would then make sure that a Type NS and Type A
 record are entered into the TLD com servers
- Inserts
 - (networkutopia.com, dns1.networkutopia.com, NS)
 - (dns1.networkutopia.com, 212.2.212.1, A)
- Make sure the Type A resource record for the web server and the Type MX resource record for your mail server are entered into your authoritative DNS servers