OKI semiconductor

MSM2716AS

16384-BIT UV ERASABLE ELECTRICALLY PROGRAMMABLE READ-ONLY MEMORY

GENERAL DESCRIPTION

The MSM2716AS is a read only memory with the capacity of 2048 words x 8 bits whose contents can be erased by ultraviolet ray irradiation. Since the memory contents can be programmed as desired by the user and the alteration is easy, it is ideal for a processor program.

The MSM2716AS is processed as the N-channel silicon gate MOS with floating gates, and is encased in a standard 24-pin ceramic package.

FEATURES

- Single power supply +5V
 Low power Dissipation 525 mW in operation and 132 mW in standby state
 UV erasable and electrically pro-
- grammable.
- Minimum programming time
 100 seconds for all 16,384 bits.
- Full decoding 2048 words x 8 bits
- Static operation No clock requirement
- TTL connection for inputs/outputs (tristate output)
- Easy expansion of memory capacity (wired-OR connection)
- Access time 450 ns
- Pin compatible with INTEL's 2716

FUNCTION TABLE

Pins	CE (18)	OE (20)	Vpp (21)	Vcc (24)	OUTPUTS (9~11, 13~17)
Read	VIL	VIL	+5V	+5V	D out
Stand by	VIH	Don't care	+5V	+5V	High Z
Program	Pulsed V _{IL} to V _{IH}	VIH	+25V	+5V	D in
Program Verify	VIL	VIL	+25V	+5V	D out
Program Inhibit	VIL	V _{IH}	+25V	+5V	High Z

High Z = High Impedance

ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATING

Item	Symbol	Conditions	Rated Value	Unit
Storage Temperature	T _{stg}	-	-55 to +125	°c
Terminal Voltage			(to Vss)	
Address Input and Data Input Program Input Vpp			-0.3 to +6	
			-0.3 to +28	V
Vcc		_	-0.3 to +6	
Power Dissipation	PD		525	mW

READ OPERATION

Operating range (for Vss = 0V)

Item	Symbol	Conditions	Guaranteed Range	Unit
0 0 1 1/1	Vcc		+5 to ±0.25	V
Source Supply Voltage	Vpp		Vcc ± 0.6	V
Operating Temperature	Topr		0 to +70	°c
Number of Leads	N	TTL gate load	1	1 -

DC OPERATING CHARACTERISTICS

($Vcc = 5V \pm 5\%$, $Vpp = Vcc \pm 0.6V$, $Ta = 0^{\circ}C$ to $+70^{\circ}C$ unless specified otherwise)

Item	0	0 1:1:	Gua	11.3		
	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Leak Current	ILI	V _{IN} = 5.25V			10	μΑ
Output Leak Current	ILO	V _{OUT} = 5.25V			10	μΑ
Program Pin Current	Ірр	Vpp = 5.85V			5	mA
Collector Supply Current (Standby)	I _{CC1}	CE = VIH, OE = VIL		10	25	mA
Collector Supply Current (Active)	I _{CC2}	OE = CE = VIL		60	100	mA
"H" Input Voltage	VIH		2.2		V _{CC+1}	٧
"L" Input Voltage	VIL		-0.1		0.8	٧
"H" Output Voltage	Voн	ΙΟΗ = -400 μΑ	2.4			٧
"L" Output Voltage	VOL	I _{OL} = 2.1 mA	1		0.45	V

Note: V_{CC} must be supplied before or when V_{PP} is supplied, and must be cut off when or after V_{PP} is cut off.

AC OPERATING CHARACTERISTICS

 $(Vcc = 5V \pm 5\%, Vpp = Vcc \pm 0.6V, Ta = 0^{\circ} C \text{ to } +70^{\circ} C \text{ unless specified otherwise})$

Item	Symbol	Conditions	Gua			
			Min.	Тур.	Max.	Unit
Address Output Delay Time	tACC	OE = CE = VIL		250	450	ns
CE Output Delay Time	^t CE	OE = VIL		280	450	ns
OE Output Delay Time	^t OE	CE = VIL			120	ns
Output Disable Delay Time	t _{DF}	CE = VIL	0		100	ns

*AC characteristics measuring conditions

Input pulse level 0.8 \sim 2.2V Input rise/fall time Within 20 ns

Output load 1TTL Gate + 100 pF

Timing measurement reference levels Input 1V and 2V, Output 0.8V and 2.4V

TIME CHART

Read Mode

9

PROGRAMMING OPERATION

(Vcc = 5V \pm 5%, Vpp = 25V \pm 1V, Ta = 25°C \pm 5°C unless specified otherwise)

Item	Symbol	Conditions	Gua			
			Min.	Тур.	Max.	Unit
Input Leak Current	בר	V _{IN} = 5.25V/0.45V			10	μΑ
Program Pin Current	IPP1	CE = VIL			6	mA
Programming Current	Ipp ₂	CE = VIH			30	mA
Collector Supply Current	Icc				100	mA
"H" Input Voltage	VIH		2.2		V _{CC+1}	V
"L" Input Voltage	VIL		-0.1		0.8	V

AC CHARACTERISTICS

(Vcc = 5V ± 5%, Vpp = 25V ± 1V, Ta = 25°C ± 5°C unless specified otherwise)

Item	Symbol	Gua	l		
		Min.	Typ.	Max.	Unit
Address Setup Time	^t AS	2			μS
OE Setup Time	tOES	2			μS
Data Setup Time	tDS	2			μS
Address Hold Time	^t AH	2			μS
OE Hold Time	^t OEH	2			μS
Data Hold Time	^t DH	2			μS
Output Disable Delay Time	tDF	0		120	ns
Output Enable Delay Time	^t OE			120	ns
Program Pulse Width	tpW	45	50	55	ms
Program Pulse Fall Time	^t PRT	5			ns
Program Pulse Rise Time	tPFT	5			ns

^{*} AC characteristics measurement conditions are the same as those for read operation.

TIME CHART (PROGRAM MODE)

OPERATION

Read mode

When \overline{OE} is set to "L" level, reading of the memory contents starts 450 ns (TACC) after the address or 120 ns (tOE) after \overline{OE} if the address is already fixed.

Output deselection

Multiple MSM2716AS chips may be combined by wired-OR connection. The data in one MSM2716AS is read when \overline{OE} is at "L" level. Other MSM2716AS chips are set to the output deselection state by setting the \overline{OE} to the "H" level.

Standby mode

Setting \overline{CE} to "H" level causes the power to be decreased to 1/4 of that in the read mode (525 mW \rightarrow 132 mW).

Programming

All bits of the MSM2716AS are set to "H" level at the time of delivery or after erasure. When 0 is written, the corresponding bit goes to "L" level. In the programming mode, \overline{OE} input at $V_{pp}=25V$ is used as "H" level.

The programming data must be supplied in parallel to output pins $(0_0 \sim 0_7)$. The address and input are both TTL level. Supplying $\overline{\text{CE}}$ input (TTL "H" level) at 50 ms intervals after setting up the address and data enables programming. Avoid programming by supplying a DC signal to $\overline{\text{CE}}$ pin.

Program verify

The MSM2716AS can be verified in the programming mode. Vpp for this operation is 25V.

• Program inhibit

Multiple MSM2716AS chips can be programmed in parallel and with different data in this mode. All pins other than $\overline{\text{CE}}$ can be used in common for all chips

Supply TTL "H" level to \overline{CE} pins of the chips to be programmed and TTL "L", level to \overline{CE} pins of the chips not to be programmed.

HANDLING OF MSM2716AS

Since the MSM2716AS is an ERROM of N-channel silicon gate FAMOS type, pay special attention as follows in addition to general handling caution of MOS ICs so as to maintain high reliability.

Attention during writing

Since all bits of the MSM2716AS are erased before delivery, writing can be started as it is. Sufficient erasure is necessary before reprogramming.

For writing operation, avoid a location with strong light intensity. 100-200 lux is allowable.

Attention during erasure

The contents of the MSM2716AS can be erased by irradiation of ultraviolet rays. The charge (electrons) in the floating gates decreases with the time lapse, but erasing time te till the threshold point (where all bits are judged as 1 by a writer) is insufficient. Irradiate for another 2 te for sufficient discharge of electrons.

The irradiation energy for erasure of the MSM2716AS contents is 15W-sec/cm².

• Caution for handling

- (1) Keep away from carpet or cloth that generates static electricity.
- (2) Perfectly ground the using writer and the system in which the MSM2716AS is used.
- (3) If a soldering iron is used, be sure to ground it.
- (4) Always carry in electrically conductive plastic mat.
- (5) The programmed ROM must be encased in electrically conductive plastic mat.
- (6) Do not touch the glass seal portion with a hand to prevent insufficient erasure caused by decreased UV ray transmission.

• Caution for system debugging

Check the functioning status by fluctuating the voltage by $\pm 5\%$.