

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Examining the bi-directional long run relationship between renewable energy consumption and GDP growth

Usama Al-mulali ^{a,*}, Hassan Gholipour Fereidouni ^{a,1}, Janice Ym Lee ^{a,2}, Che Normee Binti Che Sab ^b^a Centre for Real Estate Studies, Department of Real Estate, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 Johor Bahru Johor, Malaysia^b Economic Section, Universiti Sains Malaysia, 11800 USM, Malaysia

ARTICLE INFO

Article history:

Received 7 October 2012

Received in revised form

1 February 2013

Accepted 3 February 2013

Available online 1 March 2013

Keywords:

Renewable energy consumption

GDP growth

FMOLS

ABSTRACT

The bi-directional long run relationship between renewable energy consumption and GDP growth has been investigated in high income, upper middle income, lower middle income, and high income countries. To achieve this goal, the fully modified OLS was utilized. The results revealed that 79% of the countries have a positive bi-directional long run relationship between renewable energy consumption and GDP growth. This represents the feedback hypothesis. On the other hand, 19% of the countries showed no long run relationship between the variables. This represents the neutrality hypothesis. Besides, 2% of the countries showed a one way long run relationship from GDP growth to renewable energy consumption, confirming the conservation hypothesis, and from renewable energy consumption and GDP growth representing the growth hypothesis. Despite the mixed results across countries, it has been proved that the more persistent and significant the bi-directional long run relationship between the variables is, the higher the income countries are.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1. Introduction	209
2. Data and methodology	210
3. The econometric results	210
4. Conclusion and discussion of results.	211
Appendix A.	211
Appendix B.	221
Appendix C.	221
References	221

1. Introduction

The increasing concern about greenhouse gas emissions, which doubled over the last three decades, and the constant fluctuation in the price of fossil fuels encouraged many countries in the world to increase their investment on renewable energy. The renewable energy investment, industries, and policies have

been rapidly increasing, especially in recent years. Based on the World Development Indicators (WDI), the renewable energy consumption increased more than 55% during the period 1980–2009. The increase in renewable energy consumption might have a huge impact on the world economic output. Despite the large amount of literature which has investigated the GDP growth–energy consumption relationship, there are only few studies that examine the relationship between renewable energy consumption and GDP growth. Moreover, most of the studies have focused on the bi-directional causal relationship between the energy consumption and GDP growth. Thus, the main goal of this study is to examine the renewable energy consumption–GDP growth relationship. In addition, unlike previous studies, this study will examine the bi-directional long run relationship

* Corresponding author. Tel.: +60 174587786.

E-mail addresses: usama_81z@yahoo.com (U. Al-mulali), hassanhg@gmail.com (H.G. Fereidouni), janicelee@utm.my (Y.M.J. Lee), csnormee@usm.my (C.N.B.C. Sab).

¹ Tel.: +60 174809810.² Tel: +06 197772188.

between renewable energy consumption and GDP growth since the sign of the long run relationship between these variables has important consequences for policy implications. More than 108 countries categorized as low income, lower middle income, upper middle income, and high income will be investigated.

The investigation of the energy consumption–GDP growth relationship has been widely covered by different studies that investigate different countries and regions using different econometrics methodologies. Tables A1–A4 review (see Appendix A) the studies that investigated the relationship between total energy consumption–GDP growth, renewable energy consumption–GDP growth, electricity consumption–GDP growth, and fossil fuel energy consumption–GDP growth respectively. This paper covered 81 studies focusing on the Granger causality test results. A number of studies revealed a bi-directional causal relationship between energy consumption (by type) and GDP growth. This relationship represents the *feedback hypothesis*. The meaning of the feedback hypothesis is that the energy consumption and GDP are jointly determined and affect each other. In addition, a one way causal relationship from energy consumption to GDP growth was found by a number of studies. This relationship represents the *growth hypothesis*, which means that energy conservation policies on energy consumption adversely affect GDP growth. Moreover, a one way causal relationship from GDP growth to energy consumption was found in a number of studies. The relationship is called the *conservation hypothesis*. Thus, energy conservation policies might implement a little or no effect on GDP growth. Finally, a number of studies found no causal relationship between energy consumption and GDP growth. This relationship represents the *neutrality hypothesis*, which means that energy conservation policies have no effect on GDP growth.

While 45% of the studies found the feedback hypothesis, 10% of the studies found the neutrality hypothesis. In addition, while the conservation hypothesis was confirmed by 25% of the studies, the growth hypothesis was confirmed by 20% of the studies.

2. Data and methodology

Two variables will be used in this study. The first is the electricity consumption from renewable sources measured in kilowatt-hour (ELR). This variable is used by Apergis and Payne [35,37–41] as an indicator of renewable energy consumption. The other variable is the gross domestic (GDP) measured in millions of constant 2000 US dollars. In addition, the time period varied across the countries is based on data availability. The data source for both variables was taken from the World Development Indicators (WDI) [83] data base. Table B1 reviews the investigated countries based on income and the data availability for each country (see Appendix B).

Prior to implementing the FMOLS, it is important to examine whether the variables are stationary, hence, the Phillips–Perron (PP) test, which is one of most common unit root test, will be used. The Phillips–Perron (PP) test uses non-parametric statistical methods to control the serial correlation in the error term. It is basically based on the following statistics:

$$t_{\hat{\alpha}} = t_{\alpha} \left(\frac{\gamma_0}{f_0} \right)^{1/2} - \frac{T(f_0 - \gamma_0)(se(\hat{\alpha}))}{2f_0^{1/2}s} \quad (1)$$

where $\hat{\alpha}$ is the estimate, t_{α} is the t -ratio of α , $se(\hat{\alpha})$ is the coefficient standard error, s is the standard error, γ_0 is a consistent estimate of the error variance, and f_0 is an estimator of the residual spectrum at frequency zero.

The PP unit root test has three cases. They are: without constant and trend ($\beta_1 = \beta_2 = 0$), with constant but no trend ($\beta_2 = 0$), and with constant and trend as in the test Eq. 1 above. The following null and

the alternative hypotheses for each of the three cases are $H_0: \alpha = 0$ (y_t is non-stationary) and $H_1: \alpha < 0$ (y_t is stationary).

Since α is generally expected to be negative, the estimated τ statistic will have a negative sign. The τ test statistic ($= \hat{\alpha}/se(\hat{\alpha})$) is used to test the null hypothesis, i.e., the more negative the critical value is, the stronger the rejection of the null hypothesis in favor of the alternative hypothesis. This means there is a unit root at some chosen level of significance. Therefore, a larger negative τ value is an indication of stationarity.

Since the main goal of this study is to examine the bi-directional long run relationship between renewable energy consumption and GDP growth in low, lower middle, upper middle and high income countries, the fully modified least square (FMOLS) established by Phillips and Hansen [82] will be used. This cointegration equation can work with variables that are stationary at different levels. It can also eliminate the long run correlation problem that exists between the cointegrating equation and stochastic regressor innovations. The FMOLS is basically unbiased and has fully efficient mixture normal asymptotics allowing for standard Wald tests using asymptotic Chi-square statistical inference. Moreover, it can work with variables that are stationary in different levels. This has an important advantage because economic time series are stationary at different levels, which may lead to produce misleading results. This problem can be controlled by the FMOLS.

The FMOLS estimator is presented as follows:

$$\hat{\theta} = \begin{bmatrix} \hat{\beta} \\ \hat{\gamma}_1 \end{bmatrix} = \left(\sum_{t=1}^T z_t z_t' \right)^{-1} \left(\sum_{t=1}^T z_t y_t^+ - T \begin{bmatrix} \hat{\lambda}_{12}' \\ 0 \end{bmatrix} \right) \quad (2)$$

where Z_t is the deterministic trend and stochastic regressor, and the estimation of the FMOLS is the construction of long run covariance matrix estimators, namely $\hat{\Omega}$ and $\hat{\Lambda}$. The scalar estimator can be defined as follows:

$$\hat{\omega}_{12} = \hat{\omega}_{11} - \hat{\omega}_{12} \hat{\Omega}_{22}^{-1} \hat{\omega}_{21} \quad (3)$$

where ω is interpreted as the long run variance of the residuals. We can also apply a degree of freedom correction to $\hat{\omega}_{12}$.

3. The econometric results

The PP unit root test is utilized. Tables B2–B5 (see Appendix B) review the PP unit root test results for low income, lower middle income, upper middle income, and high income countries. The results reveal that all the variables are stationary, thus, we will proceed with the FMOLS test to examine the bi-directional long run relationship between renewable energy consumption and GDP growth. The FMOLS results are separated based on the income level. Table C1 (see Appendix C) reviews the FMOLS test results for low income countries. The results show that 11 out of 17 countries have a bi-directional positive long run relationship between renewable energy consumption and GDP growth. This indicates a long run feedback relationship which represents the feedback hypothesis. On the other hand, four of the countries, namely Congo, Democratic Republic, Ghana, Kyrgyz Republic, and Togo have no relationship between renewable energy consumption and GDP growth. This indicates the neutrality hypothesis. In addition, while a one way long run relationship from renewable energy consumption and GDP growth in Uzbekistan is found confirming the growth hypothesis, a one way long run relationship is found from GDP growth to renewable energy consumption in Zambia indicating the conservation hypothesis. However, the results for all low income countries reveal that there is a long run bi-directional long run relationship between renewable energy consumption and GDP growth, confirming the feedback hypothesis.

Table C2 reviews (see Appendix C) the FMOLS test results for lower middle income countries, showing that 23 out of 33 countries have a bi-directional long run relationship between renewable energy consumption and GDP growth indicating the feedback hypothesis. In addition, eight countries show no long run relationship between the variables, confirming the neutrality hypothesis. Moreover, a one way long run relationship from renewable energy consumption and GDP growth is found, indicating the growth hypothesis. However, the results for overall lower middle income countries reveal a bi-directional long run relationship between the variables, representing the feedback hypothesis.

The FMOLS test results for upper middle income countries in Table C3 (see Appendix C) show that 70% of the countries confirm the feedback hypothesis by the bi-directional long run relationship between renewable energy consumption and GDP growth. In addition, 29% of the countries reveal no long run relationship between the variables, representing the neutrality hypothesis, while 1% of the countries show a one way long run relationship from renewable energy consumption to GDP growth, indicating the growth hypothesis. The results for all upper middle income countries confirm the feedback hypothesis.

Table C4 (see Appendix C) shows the FMOLS results for high income countries showing that 28 out of 32 countries have a bi-directional long run relationship between renewable energy consumption and growth (feedback hypothesis). On the other hand, three of the countries, namely Croatia, Switzerland, and Trinidad and Tobago, show no long run relationship between the variables (neutrality hypothesis), while a one way long run relationship from GDP growth to renewable energy consumption is found in Italy, confirming the conservation hypothesis. In addition, the feedback hypothesis is confirmed in all high income countries.

4. Conclusion and discussion of results

The goal of this study was to examine the bi-directional long run relationship between the renewable energy consumption and

GDP growth. These countries were categorized as low income, lower middle income, upper middle income and high income. To achieve the main goal of this study, the fully modified OLS test was utilized and the results were mixed across income countries. However, 79% of the countries were found to have a positive bi-directional long run relationship between renewable energy consumption and GDP growth, confirming the feedback hypothesis. However, 19% of the countries showed no long run relationship between the variables confirming the neutrality hypothesis. In addition, 2% of the countries showed a one way long run relationship from GDP growth to renewable energy consumption confirming the conservation hypothesis and from renewable energy consumption and GDP growth, representing the growth hypothesis. The results revealed that the bi-directional long run relationship between the variables is more significant the higher income the countries are. Since the renewable energy consumption plays an important role in promoting GDP growth for most of the investigated countries, it is important for these countries to increase their investments on renewable energy, because it is a clean source of energy and has less negative environmental impact. In addition, the renewable energy is important, because it increases energy security owing to the fact that countries will be less dependent on imported fossil fuels. Moreover, the Renewables Global Status Report [83] showed that during the period 2008–2011, the renewable energy projects helped to create more than 3.5 million jobs in the renewable energy industries worldwide. Thus, the increase in the investment in the renewable energy projects can help increase the level of employment.

Appendix A

Summary of the results reached by the previous studies that explored the GDP growth–energy consumption (by type); see Tables A1–A4.

Table A1
Summary of the studies on GDP growth–energy consumption relationship.

Author	Time period	Country	Methodology	Causality results	Hypothesis
Oh and Lee [1] Fallahi [2]	1970–1999 1960–2005	South Korea USA	VEC model MS-VAR model	GDP ↔ ENC GDP ↔ ENC 1970–2001 GDP ≠ ENC 2002–2005	Feedback hypothesis Feedback hypothesis Neutrality hypothesis
Huang et al. [3]	1972–2002	Countries by income	GMM panel model	GDP ≠ ENC in low income GDP → ENC positively in middle income GDP → ENC negatively in high income GDP ↔ ENC	Neutrality hypothesis Conservation hypothesis Conservation hypothesis Feedback hypothesis
Zhixin and Xin [4]	1980–2008	Shandong Province	Cobb–Douglas production function		
Balcilar et al. [5]	1990–2006	G-7 countries	Bootstrap rolling window estimation	GDP ≠ ENC	Neutrality hypothesis
Tsani [6]	1960–2006	Greece	Toda and Yamamoto	ENC → GDP IND and RESD ↔ GDP GDP ↔ ENC	Growth hypothesis Feedback hypothesis Feedback hypothesis
Apergis and Payne [7]	1991–2005	Commonwealth of Independent States	Panel model		
Lee and Chang [8]	1971–2002	Asian countries	Panel model	ENC → GDP	Growth hypothesis
Apergis and Payne [9]	1980–2004	Central American countries	Panel model	ENC → GDP	Growth hypothesis
Belke et al. [10]	1981–2007	OECD countries	Panel model	GDP ↔ ENC	Feedback hypothesis
Mehrara [11]	1971–2002	Oil exporting countries	Panel model	GDP → ENC	Conservation hypothesis
Rufael [12]	1971–2004	African countries	VAR model	ENC → GDP in 40% of the countries GDP → ENC 60% of the counties	Growth hypothesis Conservation hypothesis

Table A1 (continued)

Author	Time period	Country	Methodology	Causality results	Hypothesis
Soytas and Sari [13]	1950–1990	G-7 and emerging countries	VAR model	GDP↔ENC in Argentina GDP→ENC in Italy and Korea	Feedback hypothesis Conservation hypothesis Growth hypothesis
Lee [14] Lise and Montfort [15]	1975–2001 1970–2003	Developing countries Turkey	Panel model VEC Granger causality	ENC→GDP in Turkey, France, Germany and Japan ENC→GDP GDP→ENC	Growth hypothesis Conservation hypothesis
Lee and Chang [16]	1965–2002 1971–2002	Developed countries Developing countries	Panel model	GDP↔ENC in developed countries GDP→ENC in developing countries ENC→GDP ENC→GDP	Feedback hypothesis Conservation hypothesis Growth hypothesis
Apergis and Payne [17] Narayan and Smyth [18]	1980–2005 1972–2002	South Africa G7-countries	Panel model Panel model	GDP↔ENC in developed countries ENC→GDP ENC→GDP	Feedback hypothesis Conservation hypothesis Growth hypothesis
Mahadevan and Adjaye [19]	1971–2002	Developed and developing countries	Panel model	GDP↔ENC in developed countries ENC→GDP	Growth hypothesis
Ozturk et al. [20]	1971–2005	Low and middle income countries	Panel model	GDP↔ENC in middle income countries GDP→ENC	Feedback hypothesis
Belloumi [21] Akkemik and Göksal [22]	1971–2004 1980–2007	Tunisia Developed and developing countries	VAR model Panel model	GDP↔ENC GDP↔ENC in 70% of the countries GDP≠ENC in 20% of the countries	Conservation hypothesis Feedback hypothesis Feedback hypothesis
Al-Irani [23]	1971–2002	GCC countries	Panel model	ENC→GDP GDP→ENC	Growth hypothesis Conservation hypothesis
Kahsai [24]	1980–2007	SSA countries	Panel model	GDP↔ENC in all SSA and low income countries ENC→GDP GDP→ENC in all China	Feedback hypothesis
Zhang and Xu [25]	1995–2008	China	Panel model	IND↔ENC in eastern China GDP↔ENC in Hungary GDP≠ENC in Albania, Bulgaria, and Romania	Growth hypothesis Conservation hypothesis
Ozturk and Acaravci [26]	1980–2006	Albania, Bulgaria, Hungary and Romania	ADRL model and VEC Granger causality	IND↔ENC GDP↔ENC in Hungary GDP≠ENC in Albania, Bulgaria, and Romania	Feedback hypothesis Feedback hypothesis Neutrality hypothesis
Bowden and Payne [27]	1949–2006	USA	Toda-Yamamoto	GDP↔ENC IND→ENC	Feedback hypothesis Conservation hypothesis
Shuyun and Donghua [28]	1985–2007	China	Panel model	GDP↔ENC	Feedback hypothesis
Lee [29]	1971–2001	G-11 countries	VAR model	GDP↔ENC in the US ENC→GDP in Canada, Belgium, the Netherlands and Switzerland GDP→ENC in France, Italy and Japan	Feedback hypothesis Growth hypothesis
Dagher and Yacoubian [30]	1980–2009	Lebanon	VAR model	GDP↔ENC	Conservation hypothesis
Mishra et al. [31]	1980–2005	Pacific Island countries	Panel model	GDP↔ENC	Feedback hypothesis

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship, GDP is the gross domestic product, ENC is total energy consumption, IND is the industrial sector, and RESD is the residential sector.

Table A2

Summary of the studies on GDP growth–renewable energy consumption relationship.

Author	Time period	Country	Methodology	Causality results	Hypothesis
Menyah and Rafael [32]	1960–2007	USA	VAR model	GDP→RE	Conservation hypothesis
Menegaki [33]	1997–2007	Europe	Panel model	GDP≠RE	Neutrality hypothesis
Apergis et al. [34]	1984–2007	Developed and developing countries	Panel model	GDP↔RE	Feedback hypothesis
Apergis and Payne [35]	1990–2007	Emerging countries	Panel model	GDP↔RE	Feedback hypothesis
Tugcu et al. [36]	1980–2009	G-7 countries	ADRL model	GDP↔RE	Feedback hypothesis
Apergis and Payne [37]	1990–2007	Developed and developing countries	Panel model	GDP↔RE	Feedback hypothesis
Apergis and Payne [38]	1992–2007	Eurasia	Panel model	GDP↔RE	Feedback hypothesis
Apergis and Payne [39]	1985–2005	OECD	Panel model	GDP↔RE	Feedback hypothesis
Sadorsky [40]	1994–2003	Emerging countries	Panel model	GDP↔RE	Feedback hypothesis
Apergis and Payne [41]	1985–2006	Central America	Panel model	GDP↔RE	Feedback hypothesis

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship, RE is the renewable energy consumption and GDP is the gross domestic product.

Table A3

Summary of the studies on GDP growth–electricity consumption relationship.

Author	Time period	Country	Methodology	Causality results	Hypothesis
Ho and Siu [42]	1966–2002	Hong Kong	Time series model	ELC → GDP	Growth hypothesis
Apergis and Payne [43]	1990–2006	88 Countries by income	Panel model	ELC ↔ GDP in high, upper and lower middle income ELC → GDP	Feedback hypothesis
Tang [44]	1972–2003	Malaysia	ADLR	ELC ↔ GDP	Growth hypothesis
Mozumder and Marathe [45]	1971–1999	Bangladesh	VAR model	GDP → ELC	Feedback hypothesis
Narayan et al. [46]	1980–2006	Seven regions	Panel model	ELC ↔ GDP for all regions GDP → ELC in the Middle East	Conservation hypothesis
Bildirici and Kayikçi [47]	1990–2009	Commonwealth States	Panel model	ELC → GDP	Growth hypothesis
Kouakou [48]	1971–2008	Cote d'Ivoire	ADRL	ELC ↔ GDP ELC → IND	Feedback hypothesis
Ciarreta and Zarraga [49]	1970–2007	Europe	Panel model	ELC → GDP	Growth hypothesis
Altinay and Karagol [50]	1950–2000	Turkey	VAR model	ELC → GDP	Growth hypothesis
Rufael [51]	1971–2001	African countries	Toda and Yamamoto	ELC ↔ GDP in Egypt, Gabon, and Morocco ELC → GDP in Benin, Congo and Tunisia GDP → ELC in Cameroon, Senegal, Nigeria, Zambia and Zimbabwe ELC ≠ GDP in Algeria, Congo Rep, Kenya, South Africa, Sudan	Feedback hypothesis
Yuan et al. [52]	1978–2004	China	VAR model	ELC → GDP	Growth hypothesis
Ouédraogo [53]	1968–2003	Burkina Faso	ADRL	ELC ↔ GDP	Feedback hypothesis
Shiu and Lam [54]	1971–2000	China	VAR model	ELC → GDP	Growth hypothesis
Odhihambo [55]	1971–2006	South Africa	Time series model	ELC ↔ GDP	Feedback hypothesis
Abosedra et al. [56]	1995–2005	Lebanon	VAR model	ELC → GDP	Growth hypothesis
Ozturk and Acaravci [57]	1971–2006	MENA	ADRL	ELC ≠ GDP	Neutrality hypothesis
Yoo and Kwak [58]	1975–2006	South America	Time series model	ELC → GDP in Argentina, Brazil, Chile, Columbia, and Ecuador ELC ↔ GDP in Venezuela ELC ≠ GDP in Peru	Growth hypothesis
Ahamad and Islam [59]	1971–2008	Bangladesh	VEC model	ELC ↔ GDP	Feedback hypothesis
Shahbaz et al. [60]	1971–2007	Portugal	VEC model	ELC ↔ GDP	Feedback hypothesis
Acaravci and Ozturk [61]	1990–2006	Transition countries	Panel model	ELC ≠ GDP	Feedback hypothesis
Chandran et al. [62]	1971–2003	Malaysia	ADRL	ELC → GDP	Growth hypothesis
Narayan and Smyth [63]	1974–2002	Middle East	Panel model	ELC ↔ GDP	Feedback hypothesis
Yoo [64]	1971–2002	ASEAN	Time series model	ELC ↔ GDP in Malaysia and Singapore GDP → ELC in Thailand and Indonesia	Feedback hypothesis
Shahbaz and Lean [65]	1972–2009	Pakistan	Cobb–Douglas production function	ELC ↔ GDP	Conservation hypothesis
Narayan and Singh [66]	1971–2002	Fiji Islands	Time series model	ELC → GDP	Growth hypothesis
Shengfeng et al. [67]	1953–2009	China	Time series model	ELC → GDP	Growth hypothesis
Chen et al. [68]	1971–2001	Asian countries	Panel model	ELC ↔ GDP	Feedback hypothesis
Jamil and Ahmad [69]	1960–2008	Pakistan	Time series model	GDP → ELC	Conservation hypothesis

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship, ELC is the total electricity consumption and GDP is the gross domestic product.

Table A4

Summary of the studies on fossil fuel energy consumption–GDP growth relationship.

Authors	Period	Country	Method	Causality results	Hypothesis
Yoo [70]	1968–2002	South Korea	VAR model	CCON ↔ GDP	Feedback hypothesis
Jinke et al. [71]	1980–2005	OECD and non-OECD countries	Time series model	GDP → CCON in Japan and China GDP ≠ CCON in India, South Korea and South Africa	Conservation hypothesis
Rufael [72]	1965–2005	Major Coal Consuming Countries	Toda and Yamamoto non-Causality Test	CCON → GDP in India and Japan GDP → CCON in China and South Korea GDP ↔ CCON in South Africa and the United States	Neutrality hypothesis
Apergis and Payne [73]	1980–2005	OECD countries	Panel model	CCON ↔ GDP	Growth hypothesis
Li and Leung [74]	1953–2007	China	Panel model	CCON ↔ GDP	Conservation hypothesis

Table A4 (continued)

Authors	Period	Country	Method	Causality results	Hypothesis
Behmire and Manso [75]	1976–2009	OECD	Panel model	OCON ↔ GDP	Feedback hypothesis
Ke et al. [76]	1980–2005	Developed and developing countries	VAR model	GDP → CCON in Japan and China GDP ≠ CCON in India and South Africa	Conservation hypothesis
Apergis and Payne [77]	1992–2005	67 Countries	Panel model	NCON ↔ GDP	Neutrality hypothesis
Al-mulali [78]	1980–2009	MENA countries	Panel model	OCON ↔ GDP GDP ↔ OCON EM ↔ OCON EM ↔ OCON	Feedback hypothesis
Zou and Chau [79]	1953–2002	China	VAR model	OCON ↔ GDP	Feedback hypothesis
Apergis and Payne [80]	1980–2006	Emerging Countries	Panel model	CCON ↔ GDP	Feedback hypothesis
Kum et al. [81]	1970–2008	G-7 countries	Bootstrap-corrected causality test	NCON → GDP in Italy GDP → NCON in UK NCON ↔ GDP in France, Germany and United States	Growth hypothesis Conservation hypothesis Feedback hypothesis

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship, GDP is the gross domestic product, NCON is the natural gas energy consumption, CCON is the coal consumption, OCON is the oil consumption, and EM the CO₂ emission from energy consumption.

Table B1

Investigated countries categorized by income and the data availability for each country.

Country	Data availability	Country	Data availability	Country	Data availability
Low-income countries					
Bangladesh	1980–2009	Zambia	1980–2009		
Congo, Dem. Rep.	1980–2009	Zimbabwe	1980–2009		
Ethiopia	1980–2009				
Ghana	1980–2009				
Haiti	1990–2009				
Kenya	1980–2009				
Kyrgyz Republic	1990–2009				
Mozambique	1980–2009				
Nepal	1980–2009				
Senegal	1980–2009				
Tajikistan	1990–2009				
Tanzania	1988–2009				
Togo	1980–2009				
Uzbekistan	1990–2009				
Vietnam	1985–2009				
Lower-middle-income countries					
Albania	1984–2009	India	1980–2009	Tunisia	1980–2009
Angola	1985–2009	Indonesia	1980–2009	Turkmenistan	1980–2009
Armenia	1990–2009	Iran, Islamic Rep.	1980–2009	Ukraine	1990–2009
Azerbaijan	1990–2009	Jordan	1980–2009		
Bolivia	1980–2009	Moldova	1990–2009		
Cameroon	1980–2009	Morocco	1980–2009		
China	1980–2009	Nicaragua	1980–2009		
Congo, Rep.	1980–2009	Nigeria	1980–2009		
Cote d'Ivoire	1980–2009	Pakistan	1980–2009		
Ecuador	1980–2009	Paraguay	1980–2009		
Egypt, Arab Rep.	1980–2009	Philippines	1980–2009		
El Salvador	1980–2009	Sri Lanka	1980–2009		
Georgia	1990–2009	Sudan	1980–2009		
Guatemala	1980–2009	Syrian Arab Republic	1980–2009		
Honduras	1980–2009	Thailand			
Upper-middle-income countries					
Algeria	1980–2009	Malaysia	1980–2009		
Argentina	1980–2009	Mexico	1980–2009		
Belarus	1990–2009	Panama	1980–2009		
Brazil	1980–2009	Peru	1980–2009		
Chile	1980–2009	Poland	1985–2009		
Colombia	1980–2009	Romania	1987–2009		
Costa Rica	1980–2009	Russian Federation	1990–2009		
Cuba	1980–2009	South Africa	1980–2009		
Dominican Republic	1980–2009	Turkey	1980–2009		
Gabon	1980–2009	Uruguay	1980–2009		

Table B1 (continued)

Country	Data availability	Country	Data availability	Country	Data availability
Jamaica	1980–2009	Venezuela	1980–2009		
Kazakhstan	1990–2009				
Latvia	1990–2009				
Lebanon	1988–2009				
Macedonia, FYR	1990–2009				
High-income countries					
Australia	1980–2009	Israel	1980–2009	United Kingdom	1980–2009
Austria	1980–2009	Italy	1980–2009	United States	1980–2009
Belgium	1980–2009	Japan	1980–2009		
Bulgaria	1980–2009	Korea, Rep.	1980–2009		
Canada	1980–2009	Luxembourg	1980–2009		
Croatia	1990–2009	Netherlands	1980–2009		
Czech Republic	1990–2009	New Zealand	1980–2009		
Denmark	1980–2009	Norway	1980–2009		
Finland	1980–2009	Portugal	1980–2009		
France	1980–2009	Slovak Republic	1982–2009		
Germany	1980–2009	Slovenia	1990–2009		
Greece	1980–2009	Spain	1980–2009		
Hungary	1980–2009	Sweden	1980–2009		
Iceland	1980–2009	Switzerland	1980–2009		
Ireland	1980–2009	Trinidad and Tobago	1980–2009		

Table B2

Phillips–Perron test results for low-income countries.

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Bangladesh	LGDP	1.166244	2.341105	4.466634 ^a	4.833232 ^a
	LELR	0.971199	3.623240 ^c	7.949784 ^a	7.861465 ^a
Congo, Dem. Rep.	LGDP	1.960610	1.208663	5.209758 ^a	5.709420 ^a
	LELR	1.411467	2.799558	6.327858 ^a	6.194073 ^a
Ethiopia	LGDP	0.405135	0.933162	2.974841 ^b	3.101559
	LELR	0.277185	2.877168	5.944109 ^a	5.828621 ^a
Ghana	LGDP	0.709387	0.907673	4.006639 ^b	4.132281 ^b
	LELR	2.463579	1.710776	5.070176 ^a	4.945404 ^a
Haiti	LGDP	1.274924	2.755247 ^c	4.647660 ^a	2.905363
	LELR	2.958212 ^c	3.249891	4.335288 ^a	4.174413 ^b
Kenya	LGDP	0.818321	2.754566	3.954640 ^a	4.096100 ^c
	LELR	2.719808 ^c	2.415073	4.843160 ^a	4.933349 ^a
Kyrgyz Republic	LGDP	0.308546	0.820081	2.344664	3.624503 ^c
	LELR	1.963132	1.715413	3.969807 ^a	4.076151 ^a
Mozambique	LGDP	0.294653	1.439414	4.543710 ^a	4.766245 ^a
	LELR	0.421028	1.446891	7.535602 ^a	7.299324 ^a
Nepal	LGDP	0.947151	0.764783	5.371479 ^a	5.893832 ^a
	LELR	1.730588	3.683449 ^b	6.114201 ^a	6.364342 ^a
Senegal	LGDP	0.107466	1.561267	4.509555 ^a	4.469643 ^a
	LELR	0.295824	2.223260	3.829431 ^a	3.837001 ^b
Tajikistan	LGDP	0.116274	1.131270	2.742795 ^c	4.183180 ^b
	LELR	1.969993	1.986443	4.660153 ^a	4.569780 ^a
Tanzania	LGDP	0.064420	2.629156	3.538080 ^b	3.275945 ^c
	LELR	1.916770	2.742050	4.807633 ^a	4.669123 ^a
Togo	LGDP	0.029644	2.073680	3.922949 ^a	3.861915 ^b
	LELR	2.665290 ^c	2.629140	8.201308 ^a	8.236733 ^a
Uzbekistan	LGDP	1.311202	1.587433	1.720493	4.416852 ^b
	LELR	1.940718	2.963700	7.176692 ^a	7.217041 ^a
Vietnam	LGDP	0.667501	3.450941 ^b	3.290658 ^b	3.403190 ^c
	LELR	1.803734	1.359015	3.323654 ^b	3.706415 ^b
Zambia	LGDP	0.347908	2.227091	3.492502	3.803572 ^b
	LELR	2.315879	2.164324	8.006671 ^a	6.759497 ^a

Table B2 (continued)

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Zimbabwe	LGDP	1.985777	2.833395	4.561765 ^a	4.306133 ^a
	LELR	2.218774	2.624462	5.944004 ^a	5.970183 ^a
Low income countries	LGDP	2.911064	1.365870	2.741880 ^c	3.197680
	LELR	1.143285	1.642497	4.905637 ^a	4.908511 ^a

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance at 10%.**Table B3**

Phillips–Perron test results for lower middle-income countries.

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Albania	LGDP	0.021672	2.452084	3.976898 ^a	4.253218 ^b
	LELR	2.640289 ^c	3.289282 ^b	5.799326 ^a	4.427835 ^a
Angola	LGDP	0.815858	0.726522	3.626700 ^b	2.966749
	LELR	1.290846	0.991150	4.286213 ^a	4.952334 ^a
Armenia	LGDP	1.170754	2.091726	3.306350 ^c	1.837459
	LELR	1.839517	1.885492	3.242490 ^b	3.138142
Azerbaijan	LGDP	1.313959	2.708816	3.518798 ^b	1.802225
	LELR	4.217113 ^b	4.151375 ^b	6.244849 ^a	5.780899 ^a
Bolivia	LGDP	1.003929	1.861147	4.529202 ^a	5.352817 ^a
	LELR	0.405410	2.439995	6.654119 ^a	6.643183 ^a
Cameroon	LGDP	0.589144	1.418045	4.949178 ^a	4.931290 ^a
	LELR	2.122095	6.294485 ^a	7.836035 ^a	7.996590 ^a
China	LGDP	2.556402	1.481494	3.314052 ^b	3.660392 ^a
	LELR	0.753671	1.156352	5.085354 ^a	4.990613 ^a
Congo, Rep.	LGDP	0.228999	1.024728	4.765653 ^a	5.054027 ^a
	LELR	3.433148	3.269805 ^c	6.187889 ^a	6.313845 ^a
Cote d'Ivoire	LGDP	0.120918	2.658416	4.904845 ^a	4.947802 ^a
	LELR	3.061352 ^b	4.251751 ^b	3.535447 ^b	3.348885 ^c
Ecuador	LGDP	0.119818	3.072841	3.403266 ^b	3.741318 ^a
	LELR	2.808142	2.127506	3.479552 ^a	4.419145 ^a
Egypt, Arab Rep.	LGDP	0.540779	3.963802 ^b	3.967059 ^a	3.774811 ^a
	LELR	1.010457	2.665870	6.388914 ^a	6.304879 ^a
El Salvador	LGDP	1.704536	1.448098	2.081740	4.481842 ^a
	LELR	0.006165	3.334514 ^c	7.870237 ^a	7.758624 ^a
Georgia	LGDP	0.426519	2.790983	4.551252 ^b	2.004486
	LELR	2.381109	3.415063 ^c	5.606767 ^a	3.573180 ^b
Guatemala	LGDP	0.692499	1.698445	4.439523 ^a	4.714024 ^a
	LELR	2.236715	2.678545	5.656112 ^a	5.902403 ^a
Honduras	LGDP	1.096275	0.718752	3.728732 ^a	4.000980 ^b
	LELR	1.651246	1.746786	4.581206 ^a	4.526207 ^a
India	LGDP	1.753497	0.525694	2.290727	5.734544 ^a
	LELR	0.455079	2.243821	5.169568 ^a	5.115464 ^a
Indonesia	LGDP	0.030204	1.946647	5.425259 ^a	5.586147 ^a
	LELR	3.652342 ^c	1.984126	4.057280 ^a	5.224816 ^a
Iran, Islamic Rep.	LGDP	0.432838	0.847757	4.319865 ^a	4.375189 ^a
	LELR	2.552026	2.649316	5.155131 ^a	5.048103 ^a
Jordan	LGDP	1.756508	0.224202	1.661740	3.964928 ^b
	LELR	2.932589 ^c	4.414936 ^b	5.422144 ^a	5.310830 ^a
Moldova	LGDP	0.233564	1.382555	2.870809 ^c	4.153858 ^b
	LELR	1.387745	3.221722	6.367881 ^a	6.186069 ^a

Table B3 (continued)

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Morocco	LGDP	0.978356	3.286619 ^c	4.983288 ^a	4.926413 ^a
	LELR	2.126532	5.110622 ^a	5.081676 ^a	4.968880 ^a
Nicaragua	LGDP	1.111451	2.616598	4.824999 ^a	4.804267 ^a
	LELR	1.552686	2.178356	6.313321 ^a	6.215166 ^a
Nigeria	LGDP	0.378797	2.086587	4.027548 ^a	5.449999 ^a
	LELR	1.497563	0.633267	5.294884 ^a	5.814896 ^a
Pakistan	LGDP	0.597930	1.374572	5.045704 ^a	5.374669 ^a
	LELR	1.926266	2.083013	4.783669 ^a	4.954560 ^a
Paraguay	LGDP	1.154401	3.570883 ^c	3.598069 ^b	3.747746 ^b
	LELR	2.446061	2.951246	4.886836 ^a	3.936693 ^b
Philippines	LGDP	0.806226	2.987532	3.589702 ^b	3.751560 ^b
	LELR	2.553324	3.269252	4.683781 ^a	4.716796 ^a
Sri Lanka	LGDP	1.041626	4.444059 ^a	4.136584 ^b	4.264512 ^b
	LELR	2.109658	2.524453	6.585516 ^a	6.597009 ^a
Sudan	LGDP	0.012732	0.909358	4.581374 ^a	4.752276 ^a
	LELR	0.714351	1.140900	2.689419 ^c	2.502217
Syrian Arab Republic	LGDP	1.335904	0.208139	3.669314 ^b	4.252529 ^a
	LELR	3.169483 ^c	2.783900	3.556915 ^b	1.167133
Thailand	LGDP	1.177897	2.195349	2.971624 ^c	2.931942
	LELR	0.212386	4.222880 ^b	4.912255 ^a	4.790067 ^a
Tunisia	LGDP	0.944601	3.329376 ^b	4.835051 ^a	4.886093 ^a
	LELR	2.653149	3.624422 ^b	6.388021 ^a	6.235508 ^a
Turkmenistan	LGDP	1.952016	1.208303	1.207564	3.770265 ^b
	LELR	1.616209	2.520299	3.794816 ^b	3.886751 ^b
Ukraine	LGDP	2.288630	1.300635	2.421763	4.616209 ^a
	LELR	3.573198 ^b	3.922833 ^b	5.036479 ^a	4.956473 ^a
Lower middle income countries	LGDP	2.843684	0.223154	3.097998 ^b	3.704523 ^b
	LELR	1.248078	1.348990	4.832542 ^a	4.880935 ^a

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance at 10%.**Table B4**

Phillips–Perron test results for upper middle-income countries.

Country	Variables	Phillips–Perron Test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Algeria	LGDP	0.237950	0.682606	4.215806 ^a	4.336832 ^a
	LELR	3.211752 ^b	3.312708 ^c	8.256078 ^a	8.171883 ^a
Argentina	LGDP	1.628487	2.120054	5.754466 ^a	5.651874 ^a
	LELR	1.473237	3.312388 ^c	5.285984 ^a	5.158931 ^a
Belarus	LGDP	2.390737	1.014430	6.034846 ^a	5.745753 ^a
	LELR	3.169602	1.049322	4.321252 ^a	4.589262 ^b
Brazil	LGDP	0.571563	2.842481	3.598698 ^b	3.598329 ^b
	LELR	1.197706	2.448344	5.551457 ^a	5.704901 ^a
Chile	LGDP	0.337775	3.074108	4.805467 ^a	2.914213 ^b
	LELR	1.209045	4.271724 ^b	5.272655 ^a	5.196658 ^a
Colombia	LGDP	0.705354	3.614812 ^b	3.571090 ^c	3.665244 ^b
	LELR	1.608244	2.077113	5.444806 ^a	5.604462 ^a
Costa Rica	LGDP	0.016193	5.195673 ^a	8.695431 ^a	8.453773 ^a
	LELR	0.598432	2.576324	7.635970 ^a	7.511892 ^a
Cuba	LGDP	0.526517	1.006500	4.100751 ^a	4.338648 ^a
	LELR	1.284407	3.297995 ^c	6.064778 ^a	6.045768 ^a

Table B4 (continued)

Country	Variables	Phillips–Perron Test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Dominican Republic	LGDP	0.167948	2.307129	6.124363 ^a	6.165685 ^a
	LELR	2.610180	2.646284	6.523216 ^a	3.856170 ^b
Gabon	LGDP	0.139806	2.080362	4.194086 ^a	4.116963 ^a
	LELR	4.709269 ^b	5.856958 ^a	7.083411 ^a	7.457571 ^a
Jamaica	LGDP	0.630496	2.584037	4.458788 ^b	4.371149 ^a
	LELR	2.860096 ^c	2.708540	4.984715 ^a	5.003558 ^a
Kazakhstan	LGDP	1.246882	1.160359	1.940820	3.690814 ^b
	LELR	2.773411	2.966049	3.330360 ^b	3.076775 ^b
Latvia	LGDP	1.552416	2.577911	3.465394 ^c	3.724340 ^b
	LELR	5.585377 ^a	5.363511 ^a	7.095828 ^a	7.084005 ^a
Lebanon	LGDP	0.193184	3.235948	3.382096 ^a	4.040920 ^b
	LELR	4.046937 ^a	3.777231 ^b	4.278155 ^b	4.174295 ^a
Macedonia, FYR	LGDP	0.104681	2.089703	2.977493 ^b	2.958741
	LELR	2.751080	4.469265 ^b	5.373354 ^a	3.746388 ^b
Malaysia	LGDP	0.238942	2.242060	4.066451 ^a	3.916078 ^b
	LELR	2.731677	2.950956	3.334054 ^a	3.096487
Mexico	LGDP	0.430184	2.739681	4.705672 ^a	4.728462 ^a
	LELR	2.886627 ^c	4.709787 ^b	6.953942 ^a	6.873690 ^a
Panama	LGDP	0.739136	2.290997	3.269029 ^b	3.526985 ^b
	LELR	1.758787	4.228242 ^a	6.401973 ^a	6.474735 ^a
Peru	LGDP	0.226984	5.262833 ^a	6.759028 ^a	6.954781 ^a
	LELR	1.164672	3.772695 ^b	7.035625 ^a	6.899213 ^a
Poland	LGDP	0.168350	2.990047	5.073308 ^a	5.178119 ^a
	LELR	2.327954	0.654556	0.597056	5.030022 ^a
Romania	LGDP	1.035557	1.316236	2.187276	4.011775 ^a
	LELR	3.022420 ^b	3.462824 ^c	6.470717 ^a	3.406770 ^a
Russian Federation	LGDP	1.543979	1.176820	2.178544	3.500469 ^c
	LELR	2.797437	2.813823 ^c	5.192587 ^a	4.370121 ^a
South Africa	LGDP	0.271907	2.653803	4.219951 ^a	4.213137 ^b
	LELR	3.716982 ^b	3.883382 ^b	7.247600 ^a	7.116996 ^a
Turkey	LGDP	0.018064	2.883081	5.315870 ^a	5.278086 ^a
	LELR	1.732605	2.394519	6.669766 ^a	6.664711 ^a
Uruguay	LGDP	1.293465	3.022717	3.344723 ^b	2.987785 ^b
	LELR	4.699195 ^a	4.569412 ^a	8.846227 ^a	8.939890 ^a
Venezuela	LGDP	0.906305	0.964004	5.234990 ^a	6.383502 ^a
	LELR	2.447437	2.447437	3.526866 ^b	4.447747 ^a
Upper middle income countries	LGDP	0.633175	2.799120	2.813811 ^c	3.175853
	LELR	1.235864	1.813583	5.885298 ^a	5.947716 ^a

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance at 10%.**Table B5**

Phillips–Perron test results for high-income countries.

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Australia	LGDP	0.149783	2.880320	3.880300 ^a	3.847454 ^b
	LELR	0.672062	3.833589 ^b	6.066043 ^a	5.941069 ^a
Austria	LGDP	0.405110	1.728886	4.046680 ^a	3.902825 ^b
	LELR	1.475964	3.398623 ^c	6.043225 ^a	5.920863 ^a
Belgium	LGDP	0.001933	2.240558	3.675944 ^b	3.445108 ^a
	LELR	1.874076	0.997726	4.339949 ^a	6.031570 ^a

Table B5 (continued)

Country	Variables	Phillips–Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
Bulgaria	LGDP	0.240354	0.684857	4.790951 ^a	5.272858 ^a
	LELR	2.579418	2.664761	5.668387 ^a	5.744274 ^a
Canada	LGDP	0.960725	2.907342	2.428193	4.333350 ^b
	LELR	2.009307	2.885644	5.950361 ^a	5.970615 ^a
Croatia	LGDP	1.420788	5.489100 ^a	2.705870 ^c	2.358971
	LELR	0.964580	1.429746	3.258070 ^b	8.414971 ^a
Czech Republic	LGDP	0.213249	2.432037	4.545821 ^a	3.831105 ^b
	LELR	1.025701	2.968573	5.868577 ^a	5.715749 ^a
Denmark	LGDP	0.346893	1.980699	4.063243 ^b	3.889298 ^b
	LELR	2.955855	0.279579	4.008515 ^a	5.901608 ^a
Finland	LGDP	0.688452	3.055171	3.750749 ^b	3.643334 ^b
	LELR	2.156225	3.585484 ^c	6.786446 ^a	6.689729 ^a
France	LGDP	0.569686	1.593851	3.995827 ^a	3.876787 ^b
	LELR	1.980197	0.847109	3.560129 ^b	4.613224 ^a
Germany	LGDP	0.573535	3.954704 ^b	3.636506 ^b	3.434770 ^c
	LELR	1.153783	2.790396	5.031216 ^a	5.298197 ^a
Greece	LGDP	0.573535	3.954704 ^b	3.636506 ^b	3.434770 ^c
	LELR	1.153783	2.790396	5.031216 ^a	5.298197 ^a
Hungary	LGDP	0.567612	2.998347	2.717041 ^c	2.453994
	LELR	0.866592	0.522600	3.982414 ^b	4.327327 ^a
Iceland	LGDP	0.965474	3.541458 ^c	2.607148 ^c	2.503227
	LELR	1.932671	0.341574	4.250431 ^a	5.017249 ^a
Ireland	LGDP	0.052469	3.022682	3.543621 ^b	3.266718 ^c
	LELR	2.279396	0.069575	6.539346 ^a	8.217953 ^a
Israel	LGDP	0.799874	1.425118	4.205649 ^b	4.159572 ^b
	LELR	1.507575	3.303380 ^c	5.429992 ^a	5.361996 ^a
Italy	LGDP	0.719051	4.109829 ^a	3.863424 ^a	3.788849 ^a
	LELR	1.251816	2.618865	5.882125 ^a	6.178223 ^a
Japan	LGDP	2.203162	1.085855	3.619134 ^b	3.764975 ^b
	LELR	3.944583 ^a	5.089074 ^a	10.28234 ^a	10.16996 ^a
Korea, Rep.	LGDP	1.770380	1.025805	3.849313 ^a	4.086934 ^a
	LELR	3.410811 ^b	3.753553 ^b	5.450245 ^a	5.455538 ^a
Luxembourg	LGDP	0.213776	4.512680 ^a	3.568203 ^a	3.275920 ^a
	LELR	0.606570	1.798140	5.926330 ^a	5.515506 ^a
Netherlands	LGDP	0.081316	2.728337	4.256028 ^a	4.001503 ^a
	LELR	1.401916	11.79143 ^a	7.394560 ^a	7.426910 ^a
New Zealand	LGDP	1.123687	3.709396 ^b	3.164720 ^b	3.073033 ^b
	LELR	1.333876	3.479194 ^b	9.215535 ^a	9.071785 ^a
Norway	LGDP	0.252559	2.228641	3.240593 ^b	2.936628
	LELR	3.117517 ^a	4.048198 ^a	5.689701 ^a	5.549064 ^a
Portugal	LGDP	0.432374	1.590733	3.390090 ^b	3.291827 ^c
	LELR	1.432392	5.582948 ^a	8.244982 ^a	8.072276 ^a
Slovak Republic	LGDP	0.062291	4.513176 ^a	3.650527 ^b	3.460675 ^b
	LELR	1.249645	2.105985	5.084221 ^a	4.985771 ^a
Slovenia	LGDP	0.088865	2.662013	3.250049 ^b	2.962028
	LELR	2.678830	3.882015 ^b	3.817399 ^b	3.743206 ^a
Spain	LGDP	0.007918	4.560368 ^a	3.413424 ^b	3.206606 ^b
	LELR	0.629820	3.779937 ^b	7.031500 ^a	5.585938 ^a
Sweden	LGDP	0.600181	4.159755 ^b	3.392065 ^b	3.492211 ^b
	LELR	3.724315 ^a	4.337722 ^a	7.600040 ^a	7.454386 ^a
Switzerland	LGDP	0.494755	1.648721	4.226897 ^a	4.123810 ^a
	LELR	3.470321 ^a	3.597013 ^a	6.346283 ^a	6.239291 ^a
Trinidad and Tobago	LGDP	0.209913	1.118147	3.744176 ^a	4.071734 ^b
	LELR	3.282252 ^b	3.221467	6.539331 ^a	6.421278 ^a
United Kingdom	LGDP	0.579054	3.060567	2.620928	5.882659 ^a
	LELR	1.795661	1.685099	7.142001 ^a	8.046186 ^a

Table B5 (continued)

Country	Variables	Phillips-Perron test			
		Level		First difference	
		Intercept	Intercept and trend	Intercept	Intercept and trend
United States	LGDP	3.238347 ^b	0.104619	2.657438 ^c	2.650505
	LELR	2.394404	3.093511	4.964470 ^a	4.849509 ^a
High income countries	LGDP	1.826241	3.293388 ^c	2.877602	3.511687 ^b
	LELR	0.069945	2.179575	6.234728 ^a	6.202204 ^a

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance at 10%.**Table C1**
FMOLS test results for the low-income countries.

Country	LELR → LGDP	LGDP → LELR	Relationship
Bangladesh	1.256212 ^c	0.599064 ^c	LELR ↔ LGDP
Congo, Dem. Rep.	-0.168734	-0.076451	LELR ≠ LGDP
Ethiopia	0.321829 ^c	0.958560 ^c	LELR ↔ LGDP
Ghana	0.715447	0.207384	LELR ≠ LGDP
Haiti	-0.925342 ^c	-0.283652 ^c	LELR ↔ LGDP
Kenya	1.041801 ^c	0.436079 ^c	LELR ↔ LGDP
Kyrgyz Republic	0.141729	-0.109043	LELR ≠ LGDP
Mozambique	0.194980 ^a	3.242306 ^a	LELR ↔ LGDP
Nepal	0.637167 ^c	1.470522 ^c	LELR ↔ LGDP
Senegal	0.443629 ^c	1.605056 ^c	LELR ↔ LGDP
Tajikistan	6.149984 ^c	0.088456 ^c	LELR ↔ LGDP
Tanzania	2.147207 ^b	0.329801 ^b	LELR ↔ LGDP
Togo	0.325145	0.606576	LELR ≠ LGDP
Uzbekistan	1.073712 ^c	0.249473	LELR → LGDP
Vietnam	0.461696 ^c	0.830932 ^c	LELR ↔ LGDP
Zambia	1.485116	0.126090 ^c	LGDP → LELR
Zimbabwe	-0.272414 ^c	-1.242117 ^b	LELR ↔ LGDP
Low income countries	0.139769 ^c	1.148459 ^c	LELR ↔ LGDP

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship.

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance 10%.**Table C2**
FMOLS test results for the lower middle-income countries.

Country	LELR → LGDP	LGDP → LELR	Relationship
Albania	1.903652 ^c	0.124972	LELR → LGDP
Angola	1.640342 ^c	0.542334 ^c	LELR ↔ LGDP
Armenia	-0.303457	-0.006862	LELR ≠ LGDP
Azerbaijan	2.514689 ^c	0.136756 ^c	LELR ↔ LGDP
Bolivia	1.234799 ^c	0.722035 ^c	LELR ↔ LGDP
Cameroon	1.019596 ^c	0.653443 ^c	LELR ↔ LGDP
China	1.510331 ^a	0.655310 ^a	LELR ↔ LGDP
Congo, Rep.	0.457517	0.214969	LELR ≠ LGDP
Cote d'Ivoire	0.817398 ^c	0.676564 ^c	LELR ↔ LGDP
Ecuador	0.552048 ^c	0.700920 ^c	LELR ↔ LGDP
Egypt, Arab Rep.	2.917433 ^c	0.305860 ^c	LELR ↔ LGDP
El Salvador	2.342501 ^b	0.375487 ^b	LELR ↔ LGDP
Georgia	2.815467 ^c	0.106856 ^b	LELR ↔ LGDP
Guatemala	0.585675 ^c	1.074742 ^c	LELR ↔ LGDP
Honduras	0.892767 ^c	0.377385 ^c	LELR ↔ LGDP
India	1.829803 ^c	0.520993 ^c	LELR ↔ LGDP
Indonesia	0.551272 ^b	1.141041 ^b	LELR ↔ LGDP
Iran, Islamic Rep.	0.561386 ^c	0.319963	LELR → LGDP
Jordan	0.691215 ^c	1.395653 ^c	LELR ↔ LGDP
Moldova	-0.245661	-0.213980	LELR ≠ LGDP
Morocco	1.086057 ^c	0.568278 ^c	LELR ↔ LGDP
Nicaragua	0.357510	0.181439	LELR ≠ LGDP
Nigeria	0.585734	0.053511	LELR ≠ LGDP

Table C2 (continued)

Country	LELR → LGDP	LGDP → LELR	Relationship
Pakistan	1.445755 ^b	0.571314 ^b	LELR ↔ LGDP
Paraguay	0.114559 ^c	2.271837 ^b	LELR ↔ LGDP
Philippines	1.550020 ^c	0.533638 ^c	LELR ↔ LGDP
Sri Lanka	1.697865 ^c	0.388005 ^c	LELR ↔ LGDP
Sudan	1.140096 ^c	0.481897 ^c	LELR ↔ LGDP
Syrian Arab Republic	1.145820	0.087932	LELR ≠ LGDP
Thailand	1.266631 ^c	0.619627 ^c	LELR ↔ LGDP
Tunisia	0.912286 ^b	0.610680 ^b	LELR ↔ LGDP
Turkmenistan	-0.190247	-0.351028	LELR ≠ LGDP
Ukraine	-0.103904	-0.014293	LELR ≠ LGDP
Lower middle income countries	1.137901 ^a	0.705498 ^a	LELR ↔ LGDP

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship.

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance 10%.**Table C3**
FMOLS test results for the upper middle-income countries.

Country	LELR → LGDP	LGDP → LELR	Relationship
Algeria	0.162844	0.311425	LELR ≠ LGDP
Argentina	1.058039 ^b	0.437707 ^b	LELR ↔ LGDP
Belarus	0.890279 ^a	0.860758 ^a	LELR ↔ LGDP
Brazil	1.748498 ^a	0.530300 ^a	LELR ↔ LGDP
Chile	1.804104 ^a	0.485167 ^a	LELR ↔ LGDP
Colombia	1.644107 ^a	0.476144 ^a	LELR ↔ LGDP
Costa Rica	1.489493 ^a	0.652514 ^a	LELR ↔ LGDP
Cuba	0.989283 ^a	0.719137 ^a	LELR ↔ LGDP
Dominican Republic	0.649660	0.225399	LELR ≠ LGDP
Gabon	0.951966 ^a	0.311299 ^a	LELR ↔ LGDP
Jamaica	-0.777064	-0.171757	LELR ≠ LGDP
Kazakhstan	1.359134	-0.002914	LELR ≠ LGDP
Latvia	0.879854	0.072222	LELR ≠ LGDP
Lebanon	0.437895	0.058988	LELR ≠ LGDP
Macedonia, FYR	0.868478 ^b	0.380806 ^c	LELR ↔ LGDP
Malaysia	1.210046 ^a	0.493706 ^a	LELR ↔ LGDP
Mexico	2.996612 ^a	0.260818 ^a	LELR ↔ LGDP
Panama	1.354176 ^a	0.618006 ^a	LELR ↔ LGDP
Peru	1.902350 ^a	0.466427 ^a	LELR ↔ LGDP
Poland	1.109394 ^a	0.702398 ^a	LELR ↔ LGDP
Romania	2.462609 ^b	0.087589	LELR → LGDP
Russian Federation	9.177892 ^a	0.037619 ^a	LELR ↔ LGDP
South Africa	0.267979	0.368285	LELR ≠ LGDP
Turkey	1.497527 ^a	0.502781 ^a	LELR ↔ LGDP
Uruguay	0.450420	0.068310	LELR ↔ LGDP
Venezuela	0.649396 ^b	0.556060 ^b	LELR ↔ LGDP
Upper middle income countries	1.182502 ^a	0.752943 ^a	LELR ↔ LGDP

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship.

^a Denotes significance at 1%.^b Denotes significance at 5%.^c Denotes significance 10%.

Table C4

FMOLS test results for the high-income countries.

Country	LELR → LGDP	LGDP → LELR	Relationship
Australia	4.104953 ^a	0.218526 ^a	LELR ↔ LGDP
Austria	4.569521 ^a	0.195882 ^a	LELR ↔ LGDP
Belgium	0.552342 ^a	1.255256 ^a	LELR ↔ LGDP
Bulgaria	1.480617 ^a	0.270366 ^b	LELR ↔ LGDP
Canada	3.866907 ^a	0.218416 ^a	LELR ↔ LGDP
Croatia	2.068971	0.071861	LELR ≠ LGDP
Czech Republic	1.674770 ^a	0.553097 ^a	LELR ↔ LGDP
Denmark	0.279180 ^a	3.349329 ^a	LELR ↔ LGDP
Finland	1.796504 ^a	0.465213 ^a	LELR ↔ LGDP
France	1.117813 ^a	0.896251 ^a	LELR ↔ LGDP
Germany	0.595302 ^b	0.769776 ^a	LELR ↔ LGDP
Greece	1.260183 ^a	0.509291 ^a	LELR ↔ LGDP
Hungary	0.624578 ^a	1.347146 ^a	LELR ↔ LGDP
Iceland	1.162612 ^a	0.747607 ^a	LELR ↔ LGDP
Ireland	1.313909 ^a	0.488124 ^a	LELR ↔ LGDP
Israel	0.604038 ^a	1.596873 ^a	LELR ↔ LGDP
Italy	1.923663	0.123778 ^b	LGDP → LELR
Japan	4.777530 ^a	0.091640 ^a	LELR ↔ LGDP
Korea, Rep.	2.139118 ^a	0.166302 ^a	LELR ↔ LGDP
Luxembourg	1.406863 ^b	0.319626 ^b	LELR ↔ LGDP
Netherlands	0.422542 ^a	2.191660 ^a	LELR ↔ LGDP
New Zealand	4.340116 ^a	0.198029 ^a	LELR ↔ LGDP
Norway	5.148164 ^a	0.147298 ^a	LELR ↔ LGDP
Portugal	1.888873 ^a	0.283431 ^a	LELR ↔ LGDP
Slovak Republic	1.769200 ^a	0.460973 ^a	LELR ↔ LGDP
Slovenia	3.356386 ^a	0.167195 ^a	LELR ↔ LGDP
Spain	1.552312 ^a	0.380234 ^a	LELR ↔ LGDP
Sweden	2.916504 ^a	0.116764 ^a	LELR ↔ LGDP
Switzerland	2.188939	0.038269	LELR ≠ LGDP
Trinidad and Tobago	−1.016282	−0.158471	LELR ≠ LGDP
United Kingdom	0.927781 ^a	0.932103 ^a	LELR ↔ LGDP
United States	2.744496 ^a	0.177002 ^a	LELR ↔ LGDP
High income countries	4.152089 ^a	0.224263 ^a	LELR ↔ LGDP

Note: ↔ indicates a bi-directional causal relationship, → indicates a one way causal relationship, and ≠ indicates no causal relationship.

^a Denotes significance at 1%.

^b Denotes significance at 5%.

Appendix B

The classification of the countries and the Unit Root Test Results; see Tables B1–B5

Appendix C

The fully modified OLS test results; see Tables C1–C4

References

- [1] Oh W, Lee K. Causal relationship between energy consumption and GDP revisited: the case of Korea 1970–1999. *Energy Economics* 2004;26:51–9.
- [2] Fallahi F. Causal relationship between energy consumption (EC) and GDP: a Markov-switching (MS) causality. *Energy* 2011;36:4165–70.
- [3] Huang BN, Hwang MJ, Yang CW. Causal relationship between energy consumption and GDP growth revisited: a dynamic panel data approach. *Ecological Economics* 2008;67:41–54.
- [4] Zixin Z, Xin R. Causal relationships between energy consumption and economic growth. *Energy Procedia* 2011;5:2065–71.
- [5] Balciar M, Ozdemir ZA, Arslanturk Y. Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window. *Energy Economics* 2010;32:1398–410.
- [6] Tsani SZ. Energy consumption and economic growth: a causality analysis for Greece. *Energy Economics* 2010;32:582–90.
- [7] Apergis N, Payne JE. Energy consumption and economic growth: evidence from the Commonwealth of Independent States. *Energy Economics* 2009;31:641–7.
- [8] Lee CC, Chang CP. Energy consumption and economic growth in Asian economies: a more comprehensive analysis using panel data. *Resource and Energy Economics* 2008;30:50–65.
- [9] Apergis N, Payne JE. Energy consumption and economic growth in Central America: evidence from a panel cointegration and error correction model. *Energy Economics* 2009;31:211–6.
- [10] Belke A, Dobnik F, Dreger C. Energy consumption and economic growth: new insights into the cointegration relationship. *Energy Economics* 2011;33:782–9.
- [11] Mehrara M. Energy consumption and economic growth: the case of oil exporting countries. *Energy Policy* 2007;35:2939–45.
- [12] Rufael YW. Energy consumption and economic growth: the experience of African countries revisited. *Energy Economics* 2009;31:217–24.
- [13] Soytas U, Sari R. Energy consumption and GDP: causality relationship in G-7 countries and emerging markets. *Energy Economics* 2003;25:33–7.
- [14] Lee CC. Energy consumption and GDP in developing countries: a cointegrated panel analysis. *Energy Economics* 2005;27:415–27.
- [15] Lise W, Montfort KV. Energy consumption and GDP in Turkey: is there a cointegration relationship? *Energy Economics* 2007;29:1166–78.
- [16] Lee CC, Chang CP. Energy consumption and GDP revisited: a panel analysis of developed and developing countries. *Energy Economics* 2007;29:1206–23.
- [17] Apergis N, Payne JE. Energy consumption and growth in South America: evidence from a panel error correction model. *Energy Economics* 2010;32:1421–6.
- [18] Narayan PK, Smyth R. Energy consumption and real GDP in G7 countries: new evidence from panel cointegration with structural breaks. *Energy Economics* 2008;30:2331–41.
- [19] Mahadevan R, Adjaye JA. Energy consumption, economic growth and prices: a reassessment using panel VECM for developed and developing countries. *Energy Policy* 2007;35:2481–90.
- [20] Ozturk I, Aslan A, Kalyoncu H. Energy consumption and economic growth relationship: evidence from panel data for low and middle income countries. *Energy Policy* 2010;38:4422–8.
- [21] Belloumi M. Energy consumption and GDP in Tunisia: cointegration and causality analysis. *Energy Policy* 2009;37:2745–53.
- [22] Akkemik KA, Göksal K. Energy consumption-GDP nexus: heterogeneous panel causality analysis. *Energy Economics* 2012;34:865–73.
- [23] Al-Iriani MA. Energy–GDP relationship revisited: an example from GCC countries using panel causality. *Energy Policy* 2006;34:3342–50.
- [24] Kahsai MS, Nondo C, Schaeffer PV, Gebremedhin TG. Income level and the energy consumption–GDP nexus: evidence from sub-Saharan Africa. *Energy Economics* 2012;34:739–46.
- [25] Zhang C, Xu J. Retesting the causality between energy consumption and GDP in China: evidence from sectoral and regional analyses using dynamic panel data. *Energy Economics* 2012;34:1782–9.
- [26] Ozturk I, Acaravci A. The causal relationship between energy consumption and GDP in Albania, Bulgaria, Hungary and Romania: Evidence from ARDL bound testing approach. *Applied Energy* 2010;87:1938–43.
- [27] Bowden N, Payne JE. The causal relationship between U.S. energy consumption and real output: a disaggregated analysis. *Journal of Policy Modeling* 2009;31:180–8.
- [28] Shuyun Y, Donghua Y. The causality between energy consumption and economic growth in China: using panel method in a multivariate framework. *Energy Procedia* 2011;5:808–12.
- [29] Lee CC. The causality relationship between energy consumption and GDP in G-11 countries revisited. *Energy Policy* 2006;34:1086–93.
- [30] Dagher L, Yacoubian T. The causal relationship between energy consumption and economic growth in Lebanon. *Energy Policy* 2012;50:795–801.
- [31] Mishra V, Smyth R, Sharma S. The energy–GDP nexus: evidence from a panel of Pacific Island countries. *Resource and Energy Economics* 2009;31:210–20.
- [32] Menyah K, Rufael YW. CO₂ emissions, nuclear energy, renewable energy and economic growth in the US. *Energy Policy* 2010;38:2911–5.
- [33] Menegaki AN. Growth and renewable energy in Europe: a random effect model with evidence for neutrality hypothesis. *Energy Economics* 2011;33:257–63.
- [34] Apergis N, Payne JE, Menyah K, Rufael YW. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. *Ecological Economics* 2012;69:2255–60.
- [35] Apergis N, Payne JE. Renewable and non-renewable electricity consumption-growth nexus: evidence from emerging market economies. *Applied Energy* 2011;88:5226–30.
- [36] Tugcu CT, Ozturk I, Aslan A. Renewable and non-renewable energy consumption and economic growth relationship revisited: evidence from G7 countries. *Energy Economics* 2012;34:1942–50.
- [37] Apergis N, Payne JE. Renewable and non-renewable energy consumption-growth nexus: evidence from a panel error correction model. *Energy Economics* 2012;34:733–8.
- [38] Apergis N, Payne JE. Renewable energy consumption and growth in Eurasia. *Energy Economics* 2010;32:1392–7.
- [39] Apergis N, Payne JE. Renewable energy consumption and economic growth: evidence from a panel of OECD countries. *Energy Policy* 2010;38:656–60.
- [40] Sadorsky P. Renewable energy consumption and income in emerging economies. *Energy Policy* 2009;37:4021–8.
- [41] Apergis N, Payne JE. The renewable energy consumption–growth nexus in Central America. *Applied Energy* 2011;88:343–7.
- [42] Ho CY, Siu KM. A dynamic equilibrium of electricity consumption and GDP in Hong Kong: an empirical investigation. *Energy Policy* 2007;35:2507–13.
- [43] Apergis N, Payne JE. A dynamic panel study of economic development and the electricity consumption–growth nexus. *Energy Economics* 2011;33:770–81.
- [44] Tang CF. A re-examination of the relationship between electricity consumption and economic growth in Malaysia. *Energy Policy* 2008;36:3077–85.
- [45] Mozumder P, Marathe A. Causality relationship between electricity consumption and GDP in Bangladesh. *Energy Policy* 2007;35:395–402.

- [46] Narayan PK, Narayan S, Popp S. Does electricity consumption panel Granger cause GDP? A new global evidence. *Applied Energy* 2010;87:3294–8.
- [47] Bildirici ME, Kayikçi F. Economic growth and electricity consumption in former Soviet Republics. *Energy Economics* 2012;34:747–53.
- [48] Kouakou AK. Economic growth and electricity consumption in Côte d'Ivoire: evidence from time series analysis. *Energy Policy* 2011;39:3638–44.
- [49] Ciarreta A, Zarraga A. Economic growth–electricity consumption causality in 12 European countries: a dynamic panel data approach. *Energy Policy* 2010;38:3790–6.
- [50] Altinay G, Karagöl G. Electricity consumption and economic growth: evidence from Turkey. *Energy Economics* 2005;27:849–56.
- [51] Rufael YW. Electricity consumption and economic growth: a time series experience for 17 African countries. *Energy Policy* 2006;34:1106–14.
- [52] Yuan J, Zhao C, Yu S, Hu Z. Electricity consumption and economic growth in China: cointegration and co-feature analysis. *Energy Economics* 2007;29: 1179–91.
- [53] Ouédraogo IM. Electricity consumption and economic growth in Burkina Faso: a cointegration analysis. *Energy Economics* 2010;32:524–31.
- [54] Shiu A, Lam PL. Electricity consumption and economic growth in China. *Energy Policy* 2004;32:47–54.
- [55] Odhiambo NM. Electricity consumption and economic growth in South Africa: a trivariate causality test. *Energy Economics* 2009;31:635–40.
- [56] Abosedra S, Dah A, Ghosh S. Electricity consumption and economic growth, the case of Lebanon. *Applied Energy* 2009;86:429–32.
- [57] Ozturk I, Acaravci A. Electricity consumption and real GDP causality nexus: evidence from ARDL bounds testing approach for 11 MENA countries. *Applied Energy* 2011;88:2885–92.
- [58] Yoo SH, Kwak SY. Electricity consumption and economic growth in seven South American countries. *Energy Policy* 2012;38:181–8.
- [59] Ahamad MG, Islam AKM. Electricity consumption and economic growth nexus in Bangladesh: revisited evidences. *Energy Policy* 2011;39:6145–50.
- [60] Shahbaz M, Tang CF, Shabbir M.S. Electricity consumption and economic growth nexus in Portugal using cointegration and causality approaches. *Energy Policy* 2011;39:3529–36.
- [61] Acaravci A, Ozturk I. Electricity consumption–growth nexus: evidence from panel data for transition countries. *Energy Economics* 2010;32:604–8.
- [62] Chandran VGR, Sharma S, Madhavan K. Electricity consumption–growth nexus: the case of Malaysia. *Energy Policy* 2010;38:606–12.
- [63] Narayan PK, Smyth R. Multivariate granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries. *Energy Policy* 2009;37:229–36.
- [64] Yoo SH. The causal relationship between electricity consumption and economic growth in the ASEAN countries. *Energy Policy* 2006;34:3573–82.
- [65] Shahbaz M, Lean HH. The dynamics of electricity consumption and economic growth: a revisit study of their causality in Pakistan. *Energy* 2012;39: 146–53.
- [66] Narayan PK, Singh B. The electricity consumption and GDP nexus for the Fiji Islands. *Energy Economics* 2007;29:1141–50.
- [67] Shengfeng X, Sheng X, Taiting Z, Luella Z. The relationship between electricity consumption and economic growth in China. *Physics Procedia* 2012;24:56–62.
- [68] Chen ST, Kuok HI, Chen CC. The relationship between GDP and electricity consumption in 10 Asian countries. *Energy Policy* 2007;35:2611–21.
- [69] Jamal F, Ahmad E. The relationship between electricity consumption, electricity prices and GDP in Pakistan. *Energy Policy* 2010;38:6016–25.
- [70] Yoo SH. Causal relationship between coal consumption and economic growth in Korea. *Applied Energy* 2006;83:1181–9.
- [71] Jinks L, Hauling S, Damming G. Causality relationship between coal consumption and GDP: difference of major OECD and non-OECD countries. *Applied Energy* 2008;85:421–9.
- [72] Rufael YW. Coal consumption and economic growth revisited. *Applied Energy* 2010;87:160–7.
- [73] Apergis N, Payne JE. Coal consumption and economic growth: evidence from a panel of OECD countries. *Energy Policy* 2010;38:1353–9.
- [74] Li R, Leung GCK. Coal consumption and economic growth in China. *Energy Policy* 2012;40:438–43.
- [75] Bemire NB, Manos JP. Crude oil conservation policy hypothesis in OECD (organization for economic cooperation and development) countries: a multivariate panel Granger causality test. *Energy* 2012;43:253–60.
- [76] Key LJ, Hua WF, Ling SH. Differences in coal consumption patterns and economic growth between developed and developing countries. *Procedia Earth and Planetary Science* 2009;1:1744–50.
- [77] Apergis N, Payne JE. Natural gas consumption and economic growth: a panel investigation of 67 countries. *Applied Energy* 2012;87:2759–63.
- [78] Al-mullah U. Oil consumption, CO₂ emission and economic growth in MENA countries. *Energy* 2011;36:6165–71.
- [79] Zoo G, Chua KW. Short- and long-run effects between oil consumption and economic growth in China. *Energy Policy* 2006;34:3644–55.
- [80] Apergis N, Payne JE. The causal dynamics between coal consumption and growth: evidence from emerging market economies. *Applied Energy* 2010;87:1972–7.
- [81] Kim H, Ocalá O, Aslan A. The relationship among natural gas energy consumption, capital and economic growth: bootstrap-corrected causality tests from G-7 countries. *Renewable and Sustainable Energy Reviews* 2012;16:2361–5.
- [82] Phillips CB, Hansen B. Statistical inference in instrumental variables regression with I(1) processes. *Review of Economics Studies* 1990;57:99–125.
- [83] The World Bank. Washington, DC: World Development Indicators. <<http://data.worldbank.org/data-catalog/world-development-indicators>>; 2012.