GSM,GPRS, UMTS (IMT 2000 Architecture)

Markus Unterleitner
Advanced Computer Networks

Outline

- GSM
- HSCSD, GPRS, EDGE
- IMT-2000
- UMTS

GSM

Global System for Mobile communications

GSM-Architecture

GSM-Architecture (2)

- MS Mobile Station
 - SIM Subscriber Identity Module
- Basestation Subsystem
 - BTS Base Transceiving Station
 - BSC Base Station Controller
- Network node
 - MSC Mobile Switching Center
 - Registers
- GMSC- Gateway Services Switching Center

GSM-Architecture (3)

- Registers
 - HLR Home Location Register
 - VLR Visitor Location Register
 - AUC Authentication Center
 - EIR Equipment Identity Register

GSM - Frequencies

- **GSM-900**:
 - Uplink: 890,2 MHz 915 MHz (25 MHz)
 - Downlink: 935,2 MHz 960 MHz (25 MHz)
 - Uplink-Downlink distance: 45 MHz
- Frequency Division Multiple Access
 - Channels are 200 kHz wide.
 - 124 pairs of channels
- Time Division Multiple Access
 - 8 connections each channel
 - Theoretical 124*8 = 992 channel to use.

GSM - Frequencies (2)

GSM-1800:

- Uplink: 1725,2 1780,4 MHz
- Downlink: 1820,2 1875,4 MHz
- Uplink-Downlink distance: 95 MHz
- 384 pairs of channels

GSM-Link

- Fullrate-Channel (Speech)
 - 13 kBit/s
- Halfrate-Channel (Speech)
 - 6,5 kBit/s
- GSM-Data-Channel
 - 9,6 kBit/s

GSM-Security

- User Authentication (Challenge-Response-Method)
 - AUC generates RAND -> transfers to MS
 - SIM of MS has secret Key and A3-Algorithm
 - SIM calculates SRES (signed response) from RAND -> transfer to AUC
 - AUC has secret Key and A3-Algorithm
 - AUC calculates SRES too -> compares it with response
 - if identical AUC authorizes the network access

GSM-Security (2)

GSM Communication Encrypting

HSCSD, GPRS, EDGE

Enhancing the GSM-Standard

HSCSD

- High Speed Circuit Switched Data
- Enhancement of GSM Standard
- Channeloriented Data Service (Channelbundle)
- New Channelcoding: 14.4 kBit/s
- Maximum speed: 57 kBit/s

GPRS – Key features

- General Packet Radio Service
- GSM Infrastructure Enhancement
- Packetoriented Data Service
- Allows IP packets to be sent and received across mobile networks.
- Theoretical maximum speed: 171.2 kbps using all 8 time slots.

GPRS – Networking

- Information is split into separate but related "packets".
- GPRS radio resources are used only when users are actually sending or receiving data.
- More efficient for Networkoperator

GPRS – Networking (2)

- Some time slots on some frequencies are reserved for packet traffic.
- Time slots are dynamically managed by base station.
- Time slots are divided into several logical channels used for different purposes.

GPRS - Limitations

- GPRS does impact a network's existing cell capacity.
 - Only limited resources.
 - Use for one purpose precludes simultaneous use for another.

GPRS - Limitations (2)

- Maximum speed of 171.2 kbps only theoretically.
 - Single user would need all 8 time slots.
 - Network operator would never allow that.
 - Bandwidth limited.

-> EDGE, UMTS

GPRS - Applications

- Chat
- Textual and visual information
- Still & moving images
- Web browsing
- Document sharing/Collaborate working
- Audio
- Email, File Transfer...

EDGE-Standard

- Enhanced Datarate for Global Evolution
- GSM/GPRS-Network Enhancement
- Datarate compareable to UMTS Network (384 kBit/s and more)
- Less efficient than WCDMA of UMTS
 - Based on GSM Multiplexmethod (TDMA/FDMA)
- Changing GSM Modulation from GPSK to 8PSK
- Much cheaper than UMTS(existing network)

Universal Mobile Telecommunication System

IMT-2000

- 1992 ITU issued blueprint about 3rd generation mobile telephony called IMT-2000
 - International Mobile Telecommunications
 - 2000 meant:
 - Year it was supposed to go into service
 - Frequency to operate in MHz
 - Bandwidth in kHz

IMT-2000 (2)

- In 2000 none of the three was achieved.
- Basic services of IMT-2000 network:
 - High-quality voice transmission
 - Messaging (e-mail, fax, sms, chat...)
 - Multimedia (playing music, videos,...)
 - Internet access (surfing)
- -> 3G

UMTS

- UMTS based on complete new Network (UTRAN)
- W-CDMA (Wideband Code Division Multiple Access)
- Including QoS
- Offered data rate targets are:
 - 144 kbits/s satellite and rural outdoor
 - 384 kbits/s urban outdoor
 - 2048 kbits/s indoor and low range outdoor

UMTS - Architecture

UMTS – Architecture (2)

- MS Mobile Station
 - USIM UMTS Subscriber Identity Module
- UTRAN UMTS Terrestrial Radio Access Network
 - RNS Radio Network Subsystem
 - RNC Radio Network Controller
 - Node B Base station
- Network node
 - UMSC UMTS Mobile Switching Center
 - Registers
- GMSC- Gateway Services Switching Center

UTRAN – radio access

- UMTS Modulation is 4PSK
- UMTS Multiplexing
 - Wideband CDMA for air interface.
 - Orthogonal Spreadingcode for each user
 - Orthogonal Scramblingcode (Goldcode) between cells
- 5 MHz bandwidth
- Hierarchical cell structure:
 - Satellite
 - Macro-cells
 - Micro-cells
 - Pico-cells

UMTS – Cell layers

UMTS – frequency spectrum

- Up/Downlink Frequency
 - Uplink: 1920 1980MHz
 - Downlink: 2110 2170MHz
- Own subband for satellite service:
 - Uplink: 1980 MHz to 2010 MHz
 - Downlink: 2170 MHz to 2200 MHz

UMTS - Advantages

- Broad offer of services
- Speed, variety and user-friendliness of a service significantly improved compared with GSM.
- Only bearer services are standardized
- Actual application is called teleservice

UMTS - teleservices

- Teleservice created individually by a service provider using bearer services.
- Only 4 teleservices standardized:
 - Speech
 - Fax
 - SMS
 - Emergency call

UMTS - Applications

- Fast Internet / Intranet
- Streaming / Download (Video, Audio)
- Videoconferences
- Multimedia-Messaging, E-Mail
- Mobile E-Commerce (M-Commerce)
- Location Based Services
- Mobile Entertainment (Games,...)

References

- GSM World: www.gsmworld.com
- UMTS World: www.umtsworld.com
- Vodafone:
 http://www.vodafone.de/askd2/D2-
 http://www.vodafone.de/askd2/D2-
 http://www.vodafone.de/askd2/D2-
 http://www.vodafone.de/askd2/D2-
 http://www.vodafone.de/askd2/D2-
 http://www.vodafone.de/askd2/D2-
- TU-Wien: http://www.nt.tuwien.ac.at/mobile/projects/UMTS/en/
- Computer networks, Andrew S. Tanenbaum, 4th Edition, Pearson