Projekt

STEROWNIKI ROBOTÓW

Założenia projektowe

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opis projektu	:				
2	Założenia projektowe					
	2.1 Mechanika	6				
	2.2 Elektronika					
	2.3 Komunikacja					
3	Konfiguracja mikrokontrolera	į				
	3.1 Konfiguracja pinów					
4	Harmonogram pracy					
	l.1 Zakres prac					
	1.2 Kamienie milowe					
	1.3 Wykres Gantta					
	4.4 Podział pracy					

1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.

Rysunek 1: Architektura systemu

2 Założenia projektowe

2.1 Mechanika

1. Napęd

Napęd będzie realizowany na tylną oś za pomocą silnika szczotkowego DC. Regulacja prędkości oparta o regulator PID oraz sterowanie PWM.

2. Sterowanie

Skręcanie będzie oparte o serwomechanizm. Serwomechanizm realizuje skręt przednich kół za pomocą poprzecznej belki przymocowanej do kół.

3. Rama

Rama zbudowana z klocków lego. Posiada duże możliwości dopasowania do zmian w trakcie projektu.

2.2 Elektronika

1. Mikrokontroler

Sterownik dostarczony przez prowadzącego STM32L476GDiscovery.

2. Pomiar prędkości

Realizowany za pomocą enkoderów znajdujących się w kołach robota.

3. Zasilanie

Oparte o akumulatory li-ion 18650 lub powerbank. Dopasowanie napięcia za pomocą przetwornicy step-up MT3608 do napędu kół oraz step-down do zasilania mikrokontrolera i modułu Wi-Fi w standardzie 3.3V.

2.3 Komunikacja

1. Połaczenie ze smartfonem

Realizowane za pomocą modułu Wi-Fi ESP8266. W telefonie do komunikacji posłuży aplikacja RoboRemo.

2. Połączenie modułu Wi-Fi z mikrokontrolerem Realizowane za pomocą portu szeregowego.

3 Konfiguracja mikrokontrolera

Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 3: Konfiguracja zegarów mikrokontrolera

3.1 Konfiguracja pinów

PIN	Tryb pracy	Funkcja/etykieta
PC14	OSC32_IN* RCC_OSC32_IN	
PC15	OSC32_OUT* RCC_OSC32_OUT	
PH0	OSC_IN* RCC_OSC_IN	
PH1	OSC_OUT*	RCC_OSC_OUT
PD5	USART2_TX	USART_TX
PD6	USART2_RX	USART_RX
PE11	TIM1_CH2	PWM1_Skręt
PE14	TIM1_CH4	PWM2_Silnik
PA1	GPIO_Input	JOY_LEFT
PA2	GPIO_Input	JOY_RIGHT
PA3	GPIO_Input	JOY_UP
PA4	GPIO_Input	JOY_DOWN

Tabela 1: Konfiguracja pinów mikrokontrolera

4 Harmonogram pracy

4.1 Zakres prac

1. Zapoznanie się z mikrokontrolerem Wykorzystane to tego celu zostaną poradniki ze strony www.forbot.pl. [1–3]

4.2 Kamienie milowe

- 1. Implementacja działającego prototypu sterowanego joystickiem na płytce.
- 2. Implementacja regulacji prędkości w oparciu o regulator PID [5].
- 3. Implementacja sterowania smartfonem [4].

4.3 Wykres Gantta

Nr zadania	Opis Zadania			
1	Określenie założeń projektu i przygotowanie planu			
2	Oddanie etapu 1			
3	3 Schemat elektryczny i elektroniczny			
4 Schemat mechaniczny				
5	Budowanie odpowiednich algorytmów			
6	Budowa modułu elektronicznego			
7	Budowa modułu mechanicznego			
8	Integracja części mechanicznej oraz elektronicznej			
9	Oddanie etapu 2			
10	Utworzenie modułu integrującego robota z telefonem			
11	Integracja ze sobą wszystkich modułów			
12	Stworzenie interfejsu użytkownika			
13	Oddanie etapu 3			

Tabela 2: Tabela zadań do wykresu Gantta

Rysunek 4: Diagram Gantta

4.4 Podział pracy

Albert Lis	%	Michał Moruń	%
Schemat elektryczny i elektroniczny		Schemat mechaniczny	
Budowanie odpowiednich algorytmów		Budowanie odpowiednich algorytmów	
Budowa modułu elektronicznego		Budowa modułu mechanicznego	
Integracja części mechanicznej oraz		Integracja części mechanicznej oraz	
elektronicznej		elektronicznej	

Tabela 3: Podział pracy – Etap II

Albert Lis	%	Michał Moruń	%
Utworzenie modułu integrującego robota z telefonem		Stworzenie interfejsu użytkownika	
Integracja ze sobą wszystkich modułów		Integracja ze sobą wszystkich modułów	

Tabela 4: Podział pracy – Etap III

Literatura

- [1] Kurs STM32 F4 z wykorzystaniem HAL oraz Cube
- $[2]\ {\rm Kurs}\ {\rm STM32}\ {\rm F1}\ {\rm z}$ wykorzystaniem bibliotek STD Periph
- $[3]\ {\rm Kurs\ STM32\ F1}$ z wykorzystaniem bibliotek HAL
- [4] ESP8266 Arduino Core Documentation
- $[5]\,$ K. Amborski, A. Murusak "Teoria sterowania w ćwiczeniach" 1978