

Algorithmen und Datenstrukturen Angewandte Informatik WS 2022/23 Prof. Dr. Oliver Bittel

Aufgabenblatt 3

Kürzeste Wege in London mit dem Dijkstra- und dem A*-Verfahren

Der Spielplan des Spiels "Scotland Yard" (Ravensburger; Spiel des Jahres 1983) besteht aus einer Menge von 199 Knoten (nummeriert von 1 bis 199), die durch Taxi, Bus oder U-Bahn verbunden sind. Auf der Web-Seite finden Sie einen Spielplan als jpg-Datei, eine Textdatei mit allen Kantenverbindungen, eine Textdatei mit x-y-Koordinaten (Pixelkoordinaten) der Knoten und eine Klasse zur Animation des Spielplans mit der Möglichkeit Knoten und Verbindungen farblich zu markieren.

Lösen Sie folgende Teilaufgaben:

- 1. Implementieren Sie die Klasse **ShortestPath** wie in der <u>Javadoc</u> beschrieben. <u>Achten Sie darauf, dass die Suche abgebrochen wird, sobald der Zielknoten erreicht ist.</u> Testen Sie Ihre Klasse mit dem kleinen Beispielgraphen, der in der Klasse **ExampleGraph** definiert ist.
- 2. Testen Sie die Klasse ShortestPath nun mit dem Scotland-Yard-Spielplan. Dazu ist eine Klasse **ScotlandYard** (siehe <u>Javadoc</u>) zu erstellen. Eine rudimentäre Klasse ist bereits vorhanden. In der main-Methode sind einige Testfälle vorgegeben.
- 3. Animieren Sie die Suche searchShortestPath(s,g) graphisch mit der gegebenen Animationsklasse. Zeichnen Sie die vom Algorithmus besuchten Kandidatenknoten und den gefundenen kürzesten Weg in unterschiedlichen Farben ein (siehe Abb. oben). Beobachten Sie den Unterschied zwischen A* und dem Dijkstra-Verfahren.