

Utilizing Machine Learning For Early Diagnosis And Prediction Of Heart Diseases.

COURSE OF ACTION

<u>INTRODUCTION</u>

Machine Learning (ML) is playing a vital role in the early detection and diagnosis of heart diseases. By analyzing clinical data, patient history, lifestyle factors, and physiological measurements, ML models can accurately predict the likelihood of heart-related conditions. These intelligent systems support healthcare professionals in making timely, data-driven decisions, which is crucial for effective treatment and prevention. Commonly used techniques include logistic regression, decision trees, random forests, and neural networks. Overall, ML enhances the precision, speed, and reliability of heart disease prediction and risk assessment.

Heart Disease Dataset - Variable Summary

No.	Variable	Full Form / Description	Data Type	Variable Type
1	age	Age of the patient	Integer	Continuous (Numerical)
2	sex	Sex (1 = male; 0 = female)	Integer	Categorical (Binary)
3	ср	Chest pain type	Integer	Nominal (Categorical)
4	trestbps	Resting blood pressure (mm Hg)	Integer	Continuous (Numerical)
5	chol	Serum cholesterol (mg/dl)	Integer	Continuous (Numerical)
6	fbs	Fasting blood sugar > 120 mg/dl	Integer	Categorical (Binary)
7	restecg	Resting electrocardiographic results	Integer	Nominal (Categorical)
8	thalach	Max heart rate achieved	Integer	Continuous (Numerical)
9	exang	Exercise induced angina	Integer	Categorical (Binary)
10	oldpeak	ST depression from exercise	Float	Continuous (Numerical)
11	slope	Slope of peak exercise ST segment	Integer	Ordinal (Categorical)
12	ca	No. of major vessels (0-3)	Integer	Ordinal (Categorical)
13	thal	Thalassemia	Integer	Nominal (Categorical)
14	target	Heart disease presence	Integer	Categorical (Binary)

DATA SET OVERVIEW

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

	age	sex	СФ	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
count	287.000000	291.000000	286.000000	287.000000	290.000000	288.000000	294.000000	286.000000	295.000000	290.000000	288.000000	275.000000	292.000000	285.000000
mean	54.571429	0.683849	1.000000	131.383275	246.575862	0.145833	0.530612	149.772727	0.332203	1.056207	1.399306	0.727273	2.315068	0.554386
std	8.994615	0.465774	1.042938	17.725159	51.414081	0.353553	0.526514	22.520184	0.471804	1.177696	0.622124	1.026200	0.617649	0.497908
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	88.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	48.000000	0.000000	0.000000	120.000000	211.250000	0.000000	0.000000	134.500000	0.000000	0.000000	1.000000	0.000000	2.000000	0.000000
50%	56.000000	1.000000	1.000000	130.000000	240.500000	0.000000	1.000000	152.000000	0.000000	0.800000	1.000000	0.000000	2.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.000000	0.000000	1.000000	166.000000	1.000000	1.750000	2.000000	1.000000	3.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000	3.000000	1.000000

CHECK FOR NULL VALUES

DATATYPE MATCHING(NUMERICAL AND CATEGORICAL)

BEFORE

AFTER

```
₹
     age
                 float64
                   int64
     sex
                   int64
     СР
                 float64
     trestbps
     cho1
                 float64
     fbs
                   int64
                   int64
     restecg
     thalach
                 float64
                   int64
     exang
     oldpeak
                 float64
     slope
                   int64
                   int64
     ca
     thal.
                   int64
     target
                 float64
     dtype: object
```

OUTLIER REMOVAL BOX PLOT(BEFORE)

AFTER REMOVAL

SKEWNESS ADDRESSING

SKEWNESS ADDRESSING (CONT.)

STANDARDIZATION

ENCODING (One Hot Encoding (Nominal) And Ordinal Encoding)

	age	sex	trestbps	chol	fbs	thalach	exang	oldpeak	slope t	arget	cp_3	restecg_1	restecg_2	ca_0.6931471805599453	ca_1.0986122886681096	ca_1.3862943611198906	ca_1.6094379124341003	thal_1	thal_2	thal_
0	0.952197		0.856223	-0.162807		0.013543	0	1.210817	0	1	True	False	False	False	False	False	False	True	False	False
1	-1.915313		-0.015954	0.196559	0	1.641748	0	1.810138	0	1	False	True	False	False	False	False	False	False	True	Fals
2	-1.474158	0	-0.015954	-0.840788	0	0.981665	0	0.595461	2	1	False	False	False	False	False	False	False	False	True	Fals
3	0.180175	1	-0.654800	-0.097530	0	1.245698	0	0.039565	2	1	False	True	False	False	False	False	False	False	True	Fals
4	0.290464	0	-0.654800	1.972919	0	0.585615	1	-0.188031	2	- 1	False	True	False	False	False	False	False	False	True	Fals

CORRELATION MATRIX

MODELTRAINING

ALgorithms Used

Logistic Regression

Knearest neighbour

LOGISTIC REGRESSION RESULT

Logistic Regr	ession Perfo	rmance:			
3 8	precision	recall	f1-score	support	
0	0.84	0.93	0.89	29	
i i	0.93	0.84	0.89	32	
9					
accuracy			0.89	61	
macro avg	0.89	0.89	0.89	61	
weighted avg	0.89	0.89	0.89	61	
ROC AUC Score	: 0.9386				

K-Nearest Neighbors (KNN) RESULT

	precision	recall	f1-score	support
0	0.82	0.93	0.87	29
1	0.93	0.81	0.87	32
accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.88	0.87	0.87	61

ROC Curve Comparison (Logistic VS KNN)

=== Ensemble (Average of Logistic + KNN probabilities) ===
Ensemble Accuracy: 0.8361

THANK YOU

SUBMITTED BY:

VEDANT SINGH: 23/SE/169