CSC3113 Theory Of Computation

Pre-Requisite

- Basic Mathematical Concepts
 - Sets, Graphs, Relations, and Languages
 - Definitions, Theorems, and Proofs

Mashiour Rahman
Assistant Professor
Computer Science Department
American International University-Bangladesh

Assumed Background

- **♯** Sets / Sequences
- Functions / Relations
- **#** Equivalence relations / Partitions
- **#** Graphs
- Types of proof
 - **□** Proof by construction

 - Proof by induction

Sets

- **♯** The symbols ∈ and ∉denote set membership and non membership, respectively. example: $7 \in \{7, 21, 57\}$ and $8 \notin \{7, 21, 57\}$
- \blacksquare Subset: $A \subset B$, Every element of A is an element of B.
 - **☐** Proper Subset: If A is a subset of B and not equal to B.
- **#** *Multiset*: {7} and {7,7} are different as mItisets but identical as sets.
- \blacksquare Infinite set: natural numbers $N = \{1,2,3,...\}$ and integers $Z = \{...,-2,-1,0,1,2,...\}$, contains infinitely many elements.
- \blacksquare Empty set: Set with 0 members, written as \emptyset .
- - $|n| = m^2$ for some $m \in N$ means the set of perfect squares.
- **T** Cardinality of a set: the number of elements in it.
- **Set Operations:**
 - **□** Compliment: A, is the set of all elements under consideration that are not in A.
 - \blacksquare Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$, the set we get by combining all the elements of in A and B. example: $\{7, 21\} \cup \{9, 5, 7\} = \{7, 21, 9, 5\}$. $\bigcup S = \{x : x \in P \text{ for some set } P \in S\}$ is the set whose elements are the elements of all the sets in S. example, $\bigcup S=\{a,b,c,d\}$ if $S=\{\{a,b\},\{b,c\},\{c,d\}\}$.

Sets

- Intersection: $A \cup B = \{x : x \in A \text{ and } x \in B\}$, the set of elements that are in both A and B. example: $\{7, 21\} \cap \{9, 5, 7\} = \{7\}$. $\bigcap S = \{x : x \in P \text{ for each set } P \in S\}$ is the set whose elements are the
- elements of all the sets in S. example, $\bigcap S = \{c,d\}$ if $S = \{\{a,c,d\},\{c,d\},\{b,c,d\}\}\}$.

 Two sets A and B are equal, written as A = B, if $A \subseteq B$ and $B \subseteq A$.
- Difference of two sets A and B, written A-B, is the set of all elements of A that are not elements of B. That is, $A-B=\{x:x\in A \text{ and } x\not\in B\}$.
- \blacksquare Two sets are *disjoint* if they have no element in common. That is, $A \cap B = \phi$.
- **\Box** *Power Set*: Power set of a set *A* is the set of all subsets of *A*. if $A = \{0, 1\}$, then the power set of $A = \{\phi, \{0\}, \{1\}, \{0,1\}\}$.
- \blacksquare A partition of a nonempty set A is a subset Π of 2^A such that,
 - \blacksquare Each element of Π is empty.
 - \blacksquare Distinct numbers of Π are disjoint.
 - $\square \cup \Pi = A$.
 - \blacksquare Example, $\{\{a, b\}\{c\}\{d\}\}$ is a partition of $\{a, b, c, d\}$.

Sequences

- **♯** Sequence: a list of object in some order.
 - **□** (7, 21, 57) is a sequence of 7, 21, and 57.
- \blacksquare Order matters, so (7, 21, 57) is not the same as (21, 7, 57).
- \blacksquare Repetition is allowed, so (7, 21, 57) is not the same as (7, 21, 7, 57).
- **Tuple**: Finite sequence.
- \blacksquare *K-Tuple*: A sequence with *k* elements.
- **♯** *Pair*: A 2-tuple is called a *pair*.
- \blacksquare Cartesian product/cross product of A and B, written $A \times B$, is the set of all pairs wherein the first element is a member of A and the second element is a member of B.

If
$$A = \{1,2\}$$
 and $B = \{x, y, z\}$,
 $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$
 $A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}$

Functions

- A function maps an input to an output.
- \blacksquare Also called *mapping*, written as f(a) = b, meaning, if f is a function whose output value is b when the input value is a.
- **Domain**: the set of possible inputs.
- **A** Range: the set of outputs.
- \blacksquare The notation for saying that f is a function with domain D and range R is $f: D \to R$.
- $\not\equiv k$ -ary function: a function with k arguments (arity of a function).
 - \blacksquare Input: $(a_1, a_2, \dots a_k)$, a k-tuple (argument).
 - \blacksquare unary function if k = 1
 - \blacksquare binary function if k = 2

Relations

- **♯** *Predicate* (*property*): a function whose range is {TRUE, FALSE}.
- **\blacksquare** Relation: a property whose domain is a set of k tuples, A^k for a set A.
- **\blacksquare** Relation, k-ary relation or k-ary relation on A is written as $R(a_1, a_2, \ldots, a_k)$.
- **♯** Binary relation: 2-ary relation. Customary infix notation aRb, where R is the relation between the elements a and b.
- \blacksquare Inverse of a binary relation $R \subseteq A \times B$, denoted $R^{-1} \subseteq B \times A$ is simply the relation $\{(b, a) : (a, b) \in R\}.$
- **Equivalence relation**: two objects being equal
 - \blacksquare reflexive: $\forall x, xRx$.
 - \blacksquare symmetric: $\forall xy$, xRy iff yRx
 - \blacksquare transitive: $\forall xyz$, xRy and $yRz \Rightarrow xRz$

Graphs

- (edges). G = (V, E).
- **II** Undirected graph:
 - **d** degree of a node: the number of edges at a particular node.
 - **p** path: a sequence of nodes connected by edges.
 - simple path: a path that doesn't repeat any nodes.
 - **I** *cycle*: a path starts and ends in the same node
 - **#** tree: no cycle
 - leaves: nodes of degree 1 in a tree.
 - root: special designated node.
- **■** Directed graph:
 - in-degree and out-degree
 - directed path
 - **■** directed acyclic graph (DAG)
- \blacksquare Sub Graph: Graph G is a subgraph of graph H, if the nodes of G are a subset of the nodes of H (i.e. $G.V \subseteq H.V$).
- **I** connected: every two nodes of a graph have a path between them.
 - **I** strongly connected: every 2 nodes of a di-graph have a path between them.

Strings

- **I** Strings of characters.
- \blacksquare Alphabet: any finite set, Σ and Γ designate alphabets and a typewriter font for symbols from an alphabet. Example: $\Sigma_1 = \{0,1\}, \Sigma_2 = \{a, x, y, z\}, \Gamma = \{0,1, x, z\}.$
- A string over an alphabet: a finite sequence of symbols from the alphabet. If $\Sigma_1 = \{0,1\}$, then 01001 is a string over Σ_1 .
- **\blacksquare** Length of a string w: |w|.
- \blacksquare Empty string: ε .
- \blacksquare String z is a substring of string w if z appears consecutively within w. Example: z=cad, w=abracadabra.
- \blacksquare If w=xv for some x, then v is a *suffix* of w; If w=vy for some y, then v is a *prefix* of w.
- \blacksquare If w has length n, we can write $w = w_1 w_2 \dots w_n$ where each $w \in \Sigma$. Reverse of w, written w^R , is the string obtained by writing w in the opposite order (i.e. $w_n w_{n-1} \dots w_1$).
- \blacksquare Concatenation of two strings x and y, written xy, is the string obtained by appending y to the end of x, as in $x_1 \dots x_n y_1 \dots y_n$. To concatenate a string with itself many

Languages

- A language is a set of strings.
- \blacksquare The set of all strings of all lengths, including the empty string, over an alphabet Σ is denoted by Σ^* .
- **Lexicographic ordering** of strings is the same as the familiar dictionary ordering, expect that shorter strings precede longer strings. Example: Lexicographic ordering of all strings over the alphabet $\Sigma = \{0,1\}$ is $(\varepsilon,0,1,00,01,10,11,000,...)$.
- \blacksquare A language L over the alphabet A is a subset of A^* . $L \subseteq A^*$.

Proofs

- ➡ Proof: a convincing logical argument that a statement is true.
 - **I** convincing in an absolute sense
- # Methods of proof
 - \blacksquare The pigeonhole principle: there are n pigeonholes, n + 1 or more pigeons, and every pigeon occupies a hole, then some hole must have at least two pigeons.
 - **□** *Proof by construction*: Prove a particular type of objects exists by constructing the object.
 - Proof by contradiction: Assume a theorem is false and then show that this assumption leads to a false consequence.
 - - A predicate: P,
 - lack A basis: $\exists k$, P(k) is true,
 - An induction hypothesis: for some $n \ge k$, P(k), P(k + 1), \cdots , P(n) are true.
 - An inductive step: P(n + 1) is true given the induction hypothesis.