Causal Tree Algorithm

- ullet Divide data into tree-building \mathcal{S}^{tr} and estimation \mathcal{S}^{est} samples
- ullet Use a greedy algorithm to recursively partition covariate space ${\mathcal X}$ into a deep partition Π
 - At each node the split is selected as the one that minimizes our estimate of EMSE over all
 possible binary splits
 - Preserve minimum number of treated and control units in each child leaf
- Use cross-validation to select the depth d^* of the partition that minimizes an estimate of MSE of treatment effects, using left-out folds as proxies for the test set
- Select partition Π^* by pruning Π to depth d^* , pruning leaves that provide the smallest improvement in goodness of fit
- ullet Estimate the treatment effects in each leaf of Π^* using the estimation sample ${\mathcal S}$

Causal Trees: GSS Survey Experiment

- Survey experiment in the General Social Survey conducted between 1986 and 2010 (Green and Kern, 2012)
- Respondents randomly assigned to one of two questions about public spending
- Experimental condition respondents were asked about "welfare" and in the other they were asked about "assistance to the poor"
- Outcome of interest: expressed support for government spending in this domain

GSS Survey Experiment, 88 covariate correlation matrix

Causal Tree: Visualize the Tree


```
Linear hypothesis test

Hypothesis:
leaf1:W - leaf2:W = 0
leaf1:W - leaf3:W = 0
leaf1:W - leaf4:W = 0
leaf1:W - leaf5:W = 0
leaf1:W - leaf6:W = 0
leaf1:W - leaf7:W = 0

Model 1: restricted model
Model 2: Y ~ leaf + W:leaf

Res.Df Df F Pr(>F)
1 5272
2 5266 6 4.4771 0.0001575 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Relevance v. Position

Search Experiment Tree: Effect of Demoting
Top Link (Test Sample Effects)
Some data

	Honest Estimates			Adaptive Estimates		
	Treatment	Standard		Treatment	Standard	
	Effect	Error	Proportion	Effect	Error	Proportion
Use Test Sample	-0.124	0.004	0.202	-0.124	0.004	0.202
	-0.134	0.010	0.025	-0.135	0.010	0.024
-	-0.010	0.004	0.013	-0.007	0.004	0.013
for Segment	-0.215	0.013	0.021	-0.247	0.013	0.022
Means & Std	-0.145	0.003	0.305	-0.148	0.003	0.304
	-0.111	0.006	0.063	-0.110	0.006	0.064
Errors to Avoid	-0.230	0.028	0.004	-0.268	0.028	0.004
Bias	-0.058	0.010	0.017	-0.032	0.010	0.017
	-0.087	0.031	0.003	-0.056	0.029	0.003
	-0.151	0.005	0.119	-0.169	0.005	0.119
Variance of	-0.174	0.024	0.005	-0.168	0.024	0.005
estimated	0.026 -0.030	0.127 0.026	0.000 0.002	0.286 -0.009	0.124 0.025	0.000 0.002
	0.425	0.026	0.002	-0.009	0.025	0.002
treatment effects	-0.159	0.014	0.011	-0.114	0.013	0.010
in training	-0.014	0.035	0.001	0.008	0.050	0.001
sample 2.5 times	-0.081	0.012	0.013	-0.050	0.012	0.013
<u> </u>	-0.045	0.023	0.001	-0.045	0.021	0.001
that in test	-0.169	0.016	0.011	-0.200	0.016	0.011
sample (adaptive	-0.207	0.030	0.003	-0.279	0.031	0.003
	-0.096	0.011	0.023	-0.083	0.011	0.022
estimates	-0.096	0.005	0.069	-0.096	0.005	0.070
biased)	-0.139	0.013	0.013	-0.159	0.013	0.013
	-0.131	0.006	0.078	-0.128	0.006	0.078

Devia

Deviation from ATE: Adaptive v. Honest Estimates

Low-Dimensional Representations v. Fully Nonparametric Estimation

Causal Trees

- Move the goalpost, but get guaranteed coverage
- Easy to interpret, easy to mis-interpret
- Can be many trees
- Leaves differ in many ways if covariates correlated; describe leaves by means in all covariates

Causal Forests

- Attempt to estimate $\tau(x)$
- Can estimate partial effects
- In high dimensions, still can have omitted variable issues
- Confidence intervals lose coverage in high dimensions (bias)