- 1 Compute the values for
 - 1. $\sum_{i=-1}^{4} 3$

$$\sum_{i=-1}^{4} 3 = 3+3+3+3+3+3$$

$$= 3 \cdot 6$$

$$= 18$$

2. $\sum_{i=1}^{5} (\frac{1}{3})^i$

$$\sum_{i=1}^{5} \left(\frac{1}{3}\right)^{i} = \left(\frac{1}{3}\right)^{1} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{3} + \left(\frac{1}{3}\right)^{4} + \left(\frac{1}{3}\right)^{5}$$

$$= \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243}$$

$$= \frac{121}{243}$$

3. $\sum_{i=1}^{n} 3$

$$\sum_{i=1}^{n} 3 = 3 \cdot \sum_{i=1}^{n} 1$$
$$= \frac{3 \cdot n \cdot (n+1)}{2}$$

4. $\sum_{i=-3}^{n} 3$

$$\sum_{i=-3}^{n} 3 = \sum_{i=-3}^{0} 3 + \sum_{i=1}^{n} 3$$

$$= 3 \cdot 4 + \frac{3 \cdot n \cdot (n+1)}{2}$$

$$= \frac{3 \cdot n^{2} + 3 \cdot n + 24}{2}$$

5. $\sum_{k=0}^{n} 2^k + \sum_{k=5}^{n} 2^k$

$$\sum_{k=0}^{n} 2^{k} + \sum_{k=5}^{n} 2^{k} = 2^{n+1} - 1 + \sum_{k=5}^{n} 2^{k}$$

$$= 2^{n+1} - 1 + \sum_{k=0}^{n} 2^{k} - \sum_{k=0}^{4} 2^{k}$$

$$= 2^{n+1} - 1 + 2^{n+1} - 1 - (2^{5} - 1)$$

$$= 2 \cdot 2^{n+1} - 2 - (31)$$

$$= 2 \cdot 2^{n+1} - 33$$

$$= 2^{n+2} - 33$$

6.
$$\sum_{i=0}^{n} (\frac{2}{3})^i + \sum_{i=-4}^{n} (\frac{2}{3})^i$$

$$\begin{split} \sum_{i=0}^{n} (\frac{2}{3})^{i} + \sum_{i=-4}^{n} (\frac{2}{3})^{i} &= \sum_{i=0}^{n} (\frac{2}{3})^{i} + \sum_{i=-4}^{-1} (\frac{2}{3})^{i} + \sum_{i=0}^{n} (\frac{2}{3})^{i} \\ &= 2 \cdot \sum_{i=0}^{n} (\frac{2}{3})^{i} + \sum_{i=-4}^{-1} (\frac{2}{3})^{i} \\ &= 2 \cdot \frac{1}{1 - \frac{2}{3}} + \sum_{i=-4}^{-1} (\frac{2}{3})^{i} \\ &= \frac{2}{\frac{1}{3}} + \sum_{i=-4}^{-1} (\frac{2}{3})^{i} \\ &= 6 + (\frac{2}{3})^{-4} + (\frac{2}{3})^{-3} + (\frac{2}{3})^{-2} + (\frac{2}{3})^{-1} \\ &= \frac{291}{16} \end{split}$$

7.
$$\sum_{i=1}^{n} (i^3 + 2 \cdot i^2 - i + 1)$$

$$\sum_{i=1}^{n} (i^3 + 2 \cdot i^2 - i + 1) = \sum_{i=1}^{n} i^3 + \sum_{i=1}^{n} 2 \cdot i^2 - \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$$

$$= \left(\frac{n(n+1)}{2}\right)^2 + 2 \cdot \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + n$$

$$= \left(\frac{n(n+1)}{2}\right)^2 + \frac{n(n+1)(2n+1)}{3} - \frac{n(n+1)}{2} + n$$

8.
$$\sum_{i=5}^{n} (-4 \cdot i + \frac{i}{5})$$

$$\sum_{i=5}^{n} (-4 \cdot i + \frac{i}{5}) = \sum_{i=5}^{n} -4 \cdot i + \sum_{i=5}^{n} \frac{i}{5}$$

$$= -4 \cdot \sum_{i=5}^{n} i + \frac{1}{5} \cdot \sum_{i=5}^{n} i$$

$$= -4 \cdot \sum_{i=1}^{n} i + \frac{1}{5} \cdot \sum_{i=1}^{n} i + 4 \cdot \sum_{i=1}^{4} i - \frac{1}{5} \cdot \sum_{i=1}^{4} i$$

$$= -4 \cdot \frac{n(n+1)}{2} + \frac{1}{5} \cdot \frac{n(n+1)}{2} + 4 \cdot \frac{4(5)}{2} - \frac{1}{5} \cdot \frac{4(5)}{2}$$

$$= -4 \cdot \frac{n(n+1)}{2} + \frac{n(n+1)}{10} + 40 - 2$$

$$= -4 \cdot \frac{n(n+1)}{2} + \frac{n(n+1)}{10} + 38$$

9.
$$\sum_{j=0}^{k} \sum_{i=1}^{j} (i - j^2 - 2)$$

10.
$$\sum_{j=1}^{m} \sum_{k=1}^{j} (3 \cdot +k - 3 \cdot j + i)$$

11.
$$\sum_{l=-4}^{n} \sum_{j=1}^{k} \sum_{i=1}^{j} (i-4)$$

2. Calculate the answer

1.
$$log_4 x = 5 \rightarrow x = ?$$

$$log_4 x = 5
 x = 4^5$$

2.
$$log_3y = 4 \rightarrow y = ?$$

$$log_3y = 4$$
$$y = 3^4$$

3.
$$x = 7^2 \rightarrow log_7 x = ?$$

$$x = 7^{2}$$

$$log_{7}x = log_{7}7^{2}$$

$$log_{7}x = 2 \cdot log_{7}7$$

$$log_{7}x = 2$$

4.
$$x = 32 \rightarrow log_2 x = ?$$

$$x = 32$$

$$log_2 x = log_2 32$$

$$log_2 x = 5$$

5.
$$2^{log5} + 4^{log6} - 27^{log_35}$$

6.
$$9^{log_32} - 25^{log_54} - 36^{log_67} + 8^{log_86}$$

7.
$$log(4^5 \times 8^3) - log(16 - 8) + log(\frac{2^{10}}{4 \times 3^2})$$

8.
$$log(3^2 \times 64^3) - log(\frac{2^{10} \times 128^3}{9 \times 8^2})$$

10.
$$log16 \times log16$$

11.
$$log^2 16$$

12.
$$log_2log_5625 - log_3log_42^{3^9} + log^42^5 - \frac{log^2(4^3 \times 3^5)}{log_5125}$$

13.
$$loglog_8log256 + log^5(3^2) \times 4^{log7}$$

14.
$$log_6x = 5 \rightarrow log_x6 = ?$$

15.
$$log_y x = 10 \rightarrow log_x y = ?$$

16.
$$log_432 - log_8^24$$

$$17. \ log_48 + log_927 - log_{25}^2 \\ 125 - log_8^3 \\ 16 + log_4 \\ log_256$$

3. Compute the deriative of

1.
$$-5 \cdot x^3 + 2 \cdot x - 1$$

2.
$$3 \cdot x^4 - 2\sqrt{x} + x^{\frac{1}{2}} - 6x^{-\frac{2}{3}} - 5$$

3.
$$x \cdot \sqrt{x} + \sqrt{\sqrt{x}}$$

$$4. \log x - x^2 \ln x + \ln x^4$$

5.
$$ln^3(x\sqrt{2x-3}) + \sqrt{lnx^2}$$

6.
$$\frac{\sqrt[4]{x+5} - lnx}{(x-1)^3}$$

4. Determine the limit of

1.
$$\lim_{x \to \infty} \frac{3x+2}{-5x-6}$$

2.
$$\lim_{x\to\infty} (\frac{1}{x} + 3)$$

3.
$$\lim_{x\to\infty} \frac{x^3+x-\sqrt{3x}}{\sqrt{x}}$$

4.
$$\lim_{x\to\infty} \frac{x^3 + x - \sqrt{3x}}{5 \cdot x^2 \cdot 25 \cdot \sqrt{\sqrt{x}}}$$

5.
$$\lim_{x\to\infty} \frac{x^{0.1}-\sqrt{3}}{\sqrt{\sqrt{x}}}$$

6.
$$\lim_{x\to\infty} \frac{x^x}{2^x}$$

7.
$$\lim_{x\to\infty} \frac{x^x}{x(2^x)}$$

8.
$$\lim_{x\to\infty} \frac{\sqrt{2}^{\log^4 x^3}}{\log(2\cdot x+7)}$$

9.
$$\lim_{x\to\infty} \frac{x+1}{\frac{3\cdot x^{lnx}}{2x^2}}$$

10.
$$\lim_{x\to\infty} \frac{\sqrt{2^{\log x^3}}}{\log^{\ln x}(2x)}$$

5. Compute the exact values for

1.
$$\int_{1}^{n} (2 \cdot x^4 + 5\sqrt{x})$$

2.
$$\int_1^n (x^4 - 3 \cdot x^2 + \frac{1}{x} - \frac{1}{x^2}) dx$$

$$3. \int_1^n \left(\frac{3}{\sqrt{x}} + \ln x + e^x\right) dx$$

4.
$$\int_1^n x \cdot \sin x dx$$

6. Use mathematical induction to prove that

$$1+2+\ldots+n = \frac{n(n+1)}{2}$$

Proof. $1+2+\ldots+n=\frac{n(n+1)}{2}$ Base case n=1: If n=1 then the left hand side and the right hand size is $1=1=\frac{1(2)}{2}$.

Inductive hypothesis: Suppose the theorem holds for all values of n up to some $k, k \geq 1$.

Inductive step: let n = k + 1 then our left hand side is

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1) + 2 \cdot k + 2}{2}$$

$$= \frac{(k+1) \cdot (k+2)}{2}$$

which is equal to our right hand side. By the principle of mathematical induction, the theorem holds for all integers $n \geq 1$.

7. Use mathematical induction to prove that

$$1 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

Proof. Base case n=1: If n=1 then the left hand side and the right hand size is $1^2=1=\frac{1(2)(3)}{6}$.

Inductive hypothesis: Suppose the theorem holds for all values of n up to

some $k, k \ge 1$.

Inductive step: let n = k + 1 then our left hand side is

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= \sum_{i=1}^k i^2 + (k+1)^2 \\ &= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2 \\ &= \frac{k \cdot (k+1) \cdot (2 \cdot k+1) + 6 \cdot (k+1)^2}{6} \\ &= \frac{(6 \cdot (k+1) + k \cdot (2 \cdot k+1)) \cdot (k+1)}{6} \\ &= \frac{(6 \cdot k + 6 + 2 \cdot k^2 + k) \cdot (k+1)}{6} \\ &= \frac{(2 \cdot k^2 + 7 \cdot k + 6) \cdot (k+1)}{6} \\ &= \frac{(2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6) \cdot (k+1)}{6} \\ &= \frac{(2 \cdot k \cdot (k+2) + 3 \cdot (k+2)) \cdot (k+1)}{6} \\ &= \frac{(2 \cdot k + 3) \cdot (k+2) \cdot (k+1)}{6} \end{split}$$

which is equal to our right hand side. By the principle of mathematical induction, the theorem holds for all integers $n \geq 1$.