ST 740: Markov Chain Monte Carlo

Alyson Wilson

Department of Statistics North Carolina State University

October 2, 2013

Quick Review

- Model
 - 1 Likelihood
 - Prior
 - Conjugate
 - Diffuse
 - Informative/noninformative
 - Proper/improper
- Bayes' Theorem: Posterior is proportional to prior times likelihood

Quick Review

- Summarizing the posterior distribution: usually one dimensional summaries of marginal posterior distributions, posterior distributions of functions of parameters, or predictive distributions
 - ① Analytical
 - · Conjugate prior distribution: posterior distribution has "nice" form
 - Marginal distributions
 - Conditional distributions

$$\pi(heta_1 \,|\, \mathbf{y}) = \int \pi(heta_1 \,|\, heta_2, y) \pi(heta_2 \,|\, \mathbf{y}) d heta_2$$

- Simulation
 - Nonconjugate prior distributions
 - Functions of parameters
 - Brute force, rejection, SIR/weighted bootstrap, Metropolis, Metropolis-Hastings
 - MCMC: Gibbs sampling

Short Stochastic Process Tutorial

A stochastic process is a sequence of random variables $\{X(t), t \in T\}$ where

- X(t) is the state of the process at time t
- T is the set of time points at which we observe X(t)
- The state space is the set of possible values of X(t)

Short Stochastic Process Tutorial

- Here we consider discrete time stochastic processes, with either discrete or continuous state space
- Colloquially, a stochastic process has the *Markov property* if, given the present, the future does not depend on the past.

For a discrete-time Markov chain, we can write:

$$P(X(t) \in A | X(t-1) = x_{t-1}, ..., X(1) = x_1)$$

= $P(X(t) \in A | X(t-1) = x_{t-1})$

 A process in discrete time with the Markov property is called a Markov chain

Discrete Time, Discrete Space Markov Chain

A simple example of a Markov chain is the random walk. At each time point, move right one step with probability p or move left one step with probability 1-p.

$$p(j+1|j) = p$$

 $p(j-1|j) = 1-p$

Starting at X(0) = 0 move left or right by 1 with probability p = 0.5 over T = 200 steps.

Random Walk

Another Example: Gary's Mood

On any given day, Gary is either cheerful (C), so-so (S), or grumpy (G). If he is cheerful today, then he will be C, S, or G tomorrow with respective probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C, S, or G tomorrow with probabilities 0.3, 0.4, 0.3. If he is grumpy today, then he will be C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Let X(n) denote Gary's mood on the nth day. We have a discrete time, discrete state space (C, S, G) Markov chain.

Another Example: Gary's Mood

Let p(j | i) be the probability that the process, when in state i, next make a transition to state j. We can collect these probabilities in a matrix P that we call the *one-step transition probability* matrix.

$$P = \left(\begin{array}{ccc} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{array}\right)$$

Define $p^n(j \mid i)$ as probability of getting to state j from state i in n steps. You can calculate the n-step transition matrix by matrix multiplying P by itself n times.

Properties of Markov Chains

Theorem: Irreducible, ergodic Markov chains have a limiting distribution:

$$\lim_{n\to\infty}p^n(j\mid i)=\pi_j$$

with $p^n(j \mid i)$ the probability that we reach j from i after n steps or transitions.

We can think of π_j as the long-run proportion of the time that the stochastic process will be in state j.

Markov Chain Simulation

- **Idea:** Suppose that sampling from $\pi(\theta \mid \mathbf{y})$ is hard, but that we can generate (somehow) a Markov chain $\{\theta(t), t \in T\}$ with stationary distribution $\pi(\theta \mid \mathbf{y})$.
- Situation is different from the usual stochastic process case:
 - Here we know the stationary distribution.
 - We seek transitions $\pi(\theta^{(t+1)} | \theta^{(t)})$ that will take us to the stationary distribution.
- Idea: start from some initial guess $\theta^{(0)}$ and let the chain run for n steps (n large), so that it reaches its stationary distribution.

Markov Chain Simulation

- After convergence, all additional steps in the chain are draws from the stationary distribution $\pi(\theta \mid \mathbf{y})$.
- MCMC methods all based on the same idea; difference is just in how the transitions in the MC are created.

Gibbs Sampling

- A MCMC iterative algorithm that produces Markov chains with joint stationary distribution $\pi(\theta \mid \mathbf{y})$ by cycling through all possible full conditional (posterior) distributions.
- Example: suppose that $\theta = (\theta_1, \theta_2, \theta_3)$, and that the target distribution is $\pi(\theta_1, \theta_2, \theta_3 | \mathbf{y})$. Steps in the Gibbs sampler are:
 - **1** Start with a guess $(\theta_1^{(0)}, \theta_2^{(0)}, \theta_3^{(0)})$
 - **2** Draw $\theta_1^{(1)}$ from $\pi(\theta_1 | \theta_2 = \theta_2^{(0)}, \theta_3 = \theta_3^{(0)}, \mathbf{y})$
 - **3** Draw $\theta_2^{(1)}$ from $\pi(\theta_2|\theta_1=\theta_1^{(1)},\theta_3=\theta_3^{(0)},\mathbf{y})$
 - **4** Draw $\theta_3^{(1)}$ from $\pi(\theta_3|\theta_1 = \theta_1^{(1)}, \theta_2 = \theta_2^{(1)}, \mathbf{y})$
- Steps above complete one iteration of the Gibbs sampler
- Repeat the steps above n times, and after convergence (more later), draws $(\theta_1^{(k)}, \theta_2^{(k)}, \theta_3^{(k)})$ are sample from stationary distribution $\pi(\theta \mid \mathbf{y})$.

Two-Parameter Case

Consider the two parameter case, where we are interested in sampling from $\pi(\theta_1, \theta_2 \mid \mathbf{y})$.

- The full conditional distributions are $\pi(\theta_1 | \theta_2, \mathbf{y})$ and $\pi(\theta_2 | \theta_1, \mathbf{y})$.
- If $\pi(\theta_1 \mid \theta_2, \mathbf{y})$ and $\pi(\theta_2 \mid \theta_1, \mathbf{y})$ are easier to sample from than $\pi(\theta_1, \theta_2 \mid \mathbf{y})$, then we should consider using Gibbs sampling to get a sample from $\pi(\theta_1, \theta_2 \mid \mathbf{y})$.

The Non-Conjugate Normal Example

Let $Y \mid \mu, \sigma^2 \sim \text{Normal}(\mu, \sigma^2)$, with (μ, σ^2) unknown.

Consider the prior:

$$\mu \sim \mathsf{Normal}(\theta_0, \tau_0^2)$$

 $\sigma^2 \sim \mathsf{InverseGamma}(\nu_0, \eta_0).$

The joint posterior distribution is

$$\pi(\mu, \sigma^2 \mid \mathbf{y}) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \exp\{-\frac{1}{2\sigma^2} \sum (y_i - \mu)^2\}$$

$$\times \exp\{-\frac{1}{2\tau_0^2} (\mu - \theta_0)^2\}$$

$$\times \left(\frac{1}{\sigma^2}\right)^{\nu_0 + 1} \exp\left(-\frac{\eta_0}{\sigma^2}\right)$$

Full Conditional Distributions

For μ

Collect terms with μ in them

$$\begin{split} \pi(\mu \,|\, \sigma^2, \mathbf{y}) &\propto & \exp\left(-\frac{1}{2\sigma^2} \sum (y_i - \mu)^2\right) \exp\left(-\frac{1}{2\tau_0^2} (\mu - \theta_0)^2\right) \\ &\propto & \exp\left(-\frac{1}{2\sigma^2} (n\mu^2 - 2n\bar{y}\mu) - \frac{1}{2\tau_0^2} (\mu^2 - 2\theta_0\mu)\right) \\ &\propto & \exp\left(-\frac{1}{2} \frac{n\tau_0^2 + \sigma^2}{\sigma^2\tau_0^2} [\mu^2 - 2\left(\frac{n\tau_0^2\bar{y} + \sigma^2\theta_0}{n\tau_0^2 + \sigma^2}\right)\mu]\right) \\ &\propto & \operatorname{Normal}(\theta_n, \tau_n^2), \end{split}$$

Full Conditional Distributions

$$\theta_{n} = \frac{n\tau_{0}^{2}\bar{y} + \sigma^{2}\theta_{0}}{n\tau_{0}^{2} + \sigma^{2}}$$

$$= \frac{\frac{n}{\sigma^{2}}\bar{y} + \frac{1}{\tau_{0}^{2}}\theta_{0}}{\frac{n}{\sigma^{2}} + \frac{1}{\tau_{0}^{2}}}$$

$$\tau_{n}^{2} = \frac{\sigma^{2}\tau_{0}^{2}}{n\tau_{0}^{2} + \sigma^{2}}$$

$$= \frac{1}{\frac{n}{\sigma^{2}} + \frac{1}{\tau_{0}^{2}}}.$$

Full Conditional Distributions

For σ^2

Collect terms with σ^2 in them

$$\pi(\sigma^2 \mid \mu, \mathbf{y}) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2} + \nu_0 + 1} \exp\left(-\frac{1}{2\sigma^2} \sum (y_i - \mu)^2 - \frac{\eta_0}{\sigma^2}\right)$$
$$\propto \operatorname{InverseGamma}(\frac{n}{2} + \nu_0, \eta_0 + \frac{1}{2} \sum (y_i - \mu)^2)$$

How do we implement the Gibbs sampler?

Gamma Example

Suppose that our sampling distribution is $\operatorname{Gamma}(\alpha,\beta)$ and we choose independent marginal prior distributions $\pi(\alpha) \sim \operatorname{Gamma}(2,1)$ and $\pi(\beta) \sim \operatorname{Gamma}(5,1)$.

$$\pi(\alpha, \beta \mid \mathbf{y}) \propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} \exp(-\beta \sum y_i) (\prod y_i)^{\alpha - 1} \exp(-(\alpha + \beta)) \alpha \beta^4$$

$$\propto \frac{\beta^{n\alpha + 4}}{\Gamma(\alpha)^n} \exp(-\beta (\sum y_i + 1)) \alpha \exp(-\alpha) (\prod y_i)^{\alpha - 1}$$

How do we implement the Gibbs sampler?