# 도전하는 머신러닝 개발자 백재훈입니다

2024 - PORTFOLIO

## CONTACT

2hhunbaek@gmail.com +82 10 4578 5164







## 도전하는 머신러닝 개발자 백재훈입니다

하리라(I will do it)와 우수함(Excellence)의 우를 합친 하리우라 Computer Vision에서 도전적으로 프로젝트를 우수하게 진행 할 능력이 있는 머신러닝 개발자입니다.

## 백재훈/JAEHUN BAEK

1995.07.01 / 경기도 시흥시

Tel. (+82) 010-4578-5164 Email. 2hhunbaek@gmail.com github. hariura

#### **GRADUATION**

2013 은행고등학교 졸업2021 명지대학교 수학과 졸업2023 아주대학교 대학원 수학과 데이터사이언스 전공 졸업

#### **SKILL**

| python     | 95 |
|------------|----|
| tensorflow | 95 |
| pytorch    | 80 |
| git        | 80 |
| docker     | 60 |

#### **AWARDS**

2022 아주대학교 데이터 경진대회 장려상 2022 안전한 자율주행을 위한 인공지능 알고리즘 개발 챌린지 장려상

#### **PROJECT**

2021 모바일 구강건강관리 어플리케이션에서 이상치 탐지

2022 안전한 자율주행을 위한 인공지능 알고리즘 개발 챌린지 2023 도로 위험물 탐지 객체 확대 연구

## 모바일 구강건강관리 어플리케이션 에서 이상치 탐지 알고리즘 개발



## **ABOUT PROJECT**

활동기간: 4월 2021-3월 2022 (12개월)

소속 : 명지대학교 대학원, 아주대학교 대학원

인원 : 5

출처 : 연구 과제

## 모바일 구강건강관리 어플리케이션에서 이상치 탐지 알고리즘 개발

### 연구배경:

- 1. 모바일 구강 건강 어플리케이션에 이상치 탐지 알고리즘을 적용,
- 2. 구강 이미지가 아닌 이미지에 대해서 구강 정보를 제공하지 않도록 필터링 작업



목표 : 이진 분류 모델과 오토 인코더 모델의 정확도(약 90%)보다 높은 성능 요구

역할: 구강 이미지는 입을 포함하고, 구강 이미지가 아니면 입을 포함하지 않는 특성을 이용해, 입의 유무를 감지하는 객체 탐지 모델(YOLOv3)을 사용하여 이상치 탐지 구현.

배운점 : 머신러닝을 이용한 신뢰성 확보를 통해 사용자 경험의 중요성 체감





- 문제 해결을 위한 연구:
- 지도학습으로 모든 이상치에 대한 고려하는 것은 어렵기에, 적은 구강 이미지(340장)만 학습에 이용 (one class)
- Tensorflow2로 작성된 YOLOv3 모델을 이용해 transfer learning 진행
- 성능 향상을 위한 추가 연구: (뒷장 기재)
- 입에 대한 라벨링 기준 비교
- Loss 함수 수정
- 기초 통계량을 활용한 임계값 설정
- 성능 지표:
- 테스트 데이터 9962장 (normal: 5023, abnormal: 4939)를 사용
- 정확도 0.9980 달성 (4번째 lambda = 10, EL 모델)
- 객체 탐지 베이스 라인 대비 정확도에 대한 에러율을 14.55배 감소
- 성과
- 한국산업응용수학회에 2022년12월에 논문 게재

TABLE 7. Confusion matrices without the classification loss

| $\lambda_{ m conf} = 1$ , IL |             | Predicted         |      |
|------------------------------|-------------|-------------------|------|
| 700                          | onf — 1, 1L | Negative Positive |      |
| nal                          | Negative    | 4902              | 37   |
| Act                          | Positive    | 253               | 4770 |

| ١   | $_{\rm onf}=1$ , EL | Predicted |          |
|-----|---------------------|-----------|----------|
| Ac. | onf — 1, LL         | Negative  | Positive |
| nal | Negative            | 4938      | 1        |
| Act | Positive            | 132       | 4891     |

| $\lambda_{\mathrm{conf}} = 10$ , IL |              | Predicted        |      |
|-------------------------------------|--------------|------------------|------|
| AC0                                 | onf = 10, IL | Negative Positiv |      |
| ual                                 | Negative     | 4910             | 29   |
| Act                                 | Positive     | 71               | 4952 |

| $\lambda_{ m conf}=10$ , EL |              | Predicted |          |
|-----------------------------|--------------|-----------|----------|
| 700                         | onf = 10, EL | Negative  | Positive |
| nal                         | Negative     | 4927      | 12       |
| Act                         | Positive     | 8         | 5015     |

TABLE 8. Accuracy, Precision, Recall and F1-score without the classification loss

|                                     | Accuracy                  | Precision        | Recall           | F1-score         |
|-------------------------------------|---------------------------|------------------|------------------|------------------|
| $\lambda_{\rm conf} = 1$ , IL       | 0.9709 (40.0130)          | 0.9923 (40.0217) | 0.9496 (40.0043) | 0.9705 (40.0128) |
| $\lambda_{\mathrm{conf}} = 1$ , EL  | 0.9866 ( <b>7</b> 0.0079) | 0.9998 (40.0012) | 0.9737 ( 0.0167) | 0.9866 (▼0.0079) |
|                                     | 0.9900 (40.0023)          | , , ,            | , ,              | ` '              |
| $\lambda_{\mathrm{conf}} = 10$ , EL | 0.9980 (40.0012)          | 0.9976 ( 0.0020) | 0.9984 (40.0044) | 0.9980 (40.0012) |



FIGURE 4. ROC curve and AUC for 4 cases without the classification loss

## 성능향상을 위한 연구

- 1. 입에 대한 라벨링 기준 비교
- 구강 이미지에서 찾을 객체인 입(입술 포함, 미포함)을 정의하여
- 학습 성능 비교



FIGURE 2. Bounding boxes including lips (top) and excluding lips (bottom).

- 2. Loss 함수 수정
- 적은 데이터를 통한 one class 객체 탐지를 위해 loss 수정 및 웨이트 조절

**Sum Square Error loss** 

Loss = 
$$\underbrace{\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \widehat{x}_i)^2 + (y_i - \widehat{y}_i)^2 + (\sqrt{w_i} - \sqrt{\widehat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\widehat{h}_i})^2 \right]}_{\text{Regression Loss (or Bounding box coordinate loss)}}$$

$$+ \underbrace{\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} (C_i - \widehat{C}_i)^2 + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} (C_i - \widehat{C}_i)^2}_{\text{Confidence Loss}}$$

$$+ \underbrace{\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \widehat{p}_i(c))^2,}_{\text{Classification Loss}}$$
(1)

### Using GloU, CE and Focal loss

Loss = 
$$\sum_{i=0}^{S^{2}} \sum_{j=0}^{B} (1 - GIoU(X_{ij}, \widehat{X}_{ij}))$$
GIoU Loss (or Bounding box coordinate loss)
$$+ \underbrace{\lambda_{\text{conf}}^{\text{weight}} \left[ -\sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \underbrace{\left(1 - \widehat{C}_{ij}\right)^{2} \log \widehat{C}_{ij} - \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \underbrace{\widehat{C}_{ij}^{2} \log (1 - \widehat{C}_{ij})}_{\text{Confidence Loss}} \right]}_{\text{Confidence Loss}}$$

$$+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} (-\log \widehat{p}_{i}(c)), \tag{3}$$

- 3. 기초 통계량을 활용한 임계값 설정
- 객체탐지에 대한 확률을 기준으로 임계값을 설정하여 이상치 탐지 정확도 향상



Figure 19: Histograms for Exp 6 ■ : Validation set ■ : Anomaly set 상단 표는 학위논문발췌

## 도로 위험물 탐지 객체 확대 연구



## **ABOUT PROJECT**

활동기간 : 1월 2023 - 4월 2023 (4개월)

소속: 아주대학교 대학원

인원 : 3

출처: 연구 과제 (다리소프트)

## 도로 위험물 탐지 객체 확대 연구

### 연구 배경 :

실시간 도로위험정보 서비스 시스템 구축 사업 마련을 위한 추진방향 및 전략 제시

목표: 차량 주행 중 발생할 수 있는 위험물(공사, 보행자, 사고 차량)을 실시간으로 판단

## 역할:

- 1. 데이터 부재로 블랙박스 뷰로 되어 있는 사고 데이터 공수 및 라벨링
- 2. 객체 탐지 모델(YOLOv7)으로 모델 학습

배운점 : 사고 데이터의 획득 및 전처리에서의 어려움에도 목표 달성을 위한 방법 탐구





- 데이터 수집 및 모델 개발:
- 1. 데이터 수집: 유튜브의 차량 사고 영상에서 이미지 추출 및 라벨링
- 2. 작업 단축: 1차로 학습된 모델을 사용하여 추가 데이터에 대해서 전처리 분량 80% 단축
- 성능 측정:
- 공사와 보행자는 이미지 기반, 사고 차량은 시퀀스 기반으로 평가
- 이미지 기반: 하나의 프레임에서 어느 하나의 위험 요인을 정확히 탐지하면 예측으로 판단하는 accuracy metric
- 시퀀스 기반: 영상의 일정 구간에서 사고 장면을 하나라도 탐지하면 예측으로 판단하는 accuracy metric
- 모델 개선:
- 사고 차량 탐지에서 "전복-〉 전복, 정상, 파손 차량 "으로 클래스의 수를 변경해가며 정확도 향상
- 모델 성능:

위험물 판단 정확도 98.6% (285장) 사고판단 정확도 98.1% (54영상)

## Sequence metric

Sequence detection: False



Sequence detection: True



## 안전한 자율주행을 위한 인공지능 알고리즘 개발 챌린지 LIDAR, 3D OBJECT DETECTION



## **ABOUT PROJECT**

활동기간: 10월 2022 - 11월 2022 (2개월)

소속: 아주대학교 대학원

인원:3

주최: 한국교통안전공단, (주)미디어그룹사람과숲

## 안전한 자율주행을 위한 인공지능 알고리즘 개발 챌린지

### 연구배경:

자율주행을 위한 컴퓨터 비전 머신러닝 알고리즘 개발에 대학원생 팀 참여

## 목표:

2D Object Detection (2D-OD), 2D Semantic Segmentation (2D-SS) and 3D Object Detection (3D-OD) 에서 높은 스코어 달성

## 역할:

새로운 도메인에 대한 도전으로 3D-OD 담당, 데이터 전처리, 모델 학습, 결과 도출

배운점: 도메인 확장 경험을 통한 도전적인 문제를 이해 할 수 있는 시각 확장







- 데이터 수집 및 모델 개발:
- 데이터:대회에서 PCD 형식의 LiDAR 데이터를 제공
- 모델: openPCDet 프레임워크의 PV-RCNN 이용해 custom data 학습
- 전처리 문제해결 :
- 구글링으로 명확히 이해가 되지 않았던 heading angle 부분은 현직자 커뮤니티 통해 해결
- KITTI 데이터 학습 방법을 참고해 npy파일 변환후 학습이 안되는 상황 해결
- 학습의 용이성을 위해 제시된 8개의 클래스 중 클래스의 분포가 높은 3개를 선별해서 사용
- 주요성과
- 스코어 mAP 60 달성
- 종합된 결과로 장려상(3위) 수상

#### 안전한 자율주행을 위한 인공지능 알고리즘 개발 챌린지

```
[53]: # add intensity 1, dtype 32
      points = np.hstack(|array,np.full((array.shape(0),1),1, dtype=np.float32)))
      np.save("/Users/jh/Desktop/GitHub/30_project/000160_1"+ '.npy', points)
      pcd = o3d.io.read_point_cloud(file)
      array = np.asarray(pcd.points , dtype=np.float32)
      points = np.hstack([array,np.full((array.shape(0],1),0, dtype=np.float32)])
      np.save("/Users/jh/Desktop/GitHub/30_project/000160_2"+ '.npy', points)
[55]: # add intensity 1, dtype 64
      pcd = 03d.io.read_point_cloud(file)
      points = np.hstack([array,np.full((array.shape[0],1),1)])
      np.save("/Users/jh/Desktop/GitHub/3D_project/000160_3"+ '.npy', points)
[56]: # add intensity 0, dtype 64
      pcd = o3d.io.read_point_cloud(file)
      points = np.hstack([array,np.full((array.shape(0],1),0)])
      np.save("/Users/jh/Desktop/GitHub/3D_project/000160_4"+ '.npy', points)
[57]: # add intensity 0, dtype 32
      pcd = o3d.io.read_point_cloud(file)
      array = np.asarray(pcd.points , dtype=np.float32)
      points = np.hstack([array,np.full((array.shape[0],1),0, dtype=np.float32)])
      points = points.round(3)
      np.save("/Users/jh/Desktop/GitHub/30_project/000160_5"+ '.npy', points)
[58]: # add intensity 1, dtype 32
      pcd = a3d.ia.read_point_cloud(file)
      array = np.asarray(pcd.points , dtype=np.float32)
      points = np.hstack([array,np.full((array.shape[0],1),1, dtype=np.float32)])
      np.save("/Users/jh/Desktop/GitHub/30_project/000160_6"+ '.npy', points)
```



# 감사합니다. 잘부탁드립니다!

2024 - JAEHUN BAEK

## CONTACT

2hhunbaek@gmail.com +82 10 4578 5164

