

Введение в теорию моделей и SAT+SMT

Летняя практика, Переславль-Залесский 21 июля 2022 г.

Сигнатура с сортами

Определение

Сигнатура — множество пар вида \langle имя, местность \rangle . Алгебра $\mathcal A$ — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке, $\mathcal A = \langle \{\mathcal N_i\}, \{c_i\}, \{f_i: \mathcal N_{i_1} \times \dots \mathcal N_{i_{k_i}} \to \mathcal N_i'\} \rangle$.

Сигнатура с сортами

Определение

Сигнатура — множество пар вида \langle имя, местность \rangle . Алгебра \mathcal{A} — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке, $\mathcal{A} = \langle \{\mathcal{N}_i\}, \{c_i\}, \{f_i: \mathcal{N}_{i_1} \times \dots \mathcal{N}_{i_k} \to \mathcal{N}_i'\} \rangle$.

Иными словами, в алгебре у функций сигнатуры не

бестиповые, а оснащены простыми типами.

- $f(x) = (x \ x)$ нет сортов;
- f(x, y) = if x then y * 2 else y есть сорта.

Сигнатура с сортами

Определение

Сигнатура — множество пар вида \langle имя, местность \rangle . Алгебра \mathcal{A} — набор носителей (сортов), выделенных элементов и функций первого порядка в сигнатуре данных носителей. На формальном языке,

$$\mathcal{A} = \langle \{\mathcal{N}_i\}, \{c_i\}, \{f_i: \mathcal{N}_{i_1} \times \dots \mathcal{N}_{i_{k_i}} \rightarrow \mathcal{N}_i'\} \rangle.$$

Иными словами, в алгебре у функций сигнатуры не бестиповые, а оснащены простыми типами.

- f(x) = (x x) нет сортов;
- f(x, y) = if x then y * 2 else y есть сорта.

Зачем многосортные алгебры нужны в CS?

- Сигнатура Σ синтаксис ЯП;
- $\Sigma(X) + \Gamma_X$ (контекст) множество термов ЯП.
- Алгебра над Σ семантика ЯП.

Универсальные алгебры

Контекст — это способ отображения переменных в их значения. Выполнимость φ в контексте Γ пишем как $\Gamma \vdash \varphi$. Например, $\chi: 3 \vdash \chi + 3 = 6$.

- В CS выделенные значения функции от нуля аргументов (конструкторы).
- Каждой константе в Σ соответствует ровно один носитель из \mathcal{A} ;
- Каждому функциональному символу в Σ соответствует отображение с такой же сигнатурой.
- Каждому присвоению сорта (утверждению о типизации) в контексте Γ вида x_i : T_i соответствует окружение отображение из x_i в множество носителей \mathcal{A} .

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\bullet \ \mathcal{A}[\![f(M_1,\ldots\,M_n)]\!]\eta = f^{\mathcal{A}}(\mathcal{A}[\![M_1]\!]\eta,\ldots,\mathcal{A}[\![M_n]\!]\eta).$

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\mathcal{A}[[f(M_1, \ldots, M_n)]]\eta = f^{\mathcal{A}}(\mathcal{A}[M_1]]\eta, \ldots, \mathcal{A}[[M_n]]\eta).$
- Множество натуральных чисел интерпретация термов над сигнатурой $\{s(\bullet), z\}$ единственный одноместный конструктор + константа.
- Множество двоичных деревьев интерпретация термов над сигнатурой $\{\langle \bullet, \bullet \rangle, e\}$ единственный двухместный конструктор + константа.
- Свободная алгебра каждый функциональный символ интерпретируется собой.

Интерпретации

Пусть η — окружение. Значение $\mathcal{A}[\![M]\!]\eta$ (читаем: интерпретация M) определяется рекурсивно.

- $\bullet \ \mathcal{A}[\![x]\!]\eta = \eta(x)$
- $\mathcal{A}[\![f(M_1,\ldots,M_n)]\!]\eta = f^{\mathcal{A}}(\mathcal{A}[\![M_1]\!]\eta,\ldots,\mathcal{A}[\![M_n]\!]\eta).$
- Множество натуральных чисел интерпретация термов над сигнатурой $\{s(\bullet),z\}$ единственный одноместный конструктор + константа.
- Множество двоичных деревьев интерпретация термов над сигнатурой $\{\langle \bullet, \bullet \rangle, e\}$ единственный двухместный конструктор + константа.
- Свободная алгебра каждый функциональный символ интерпретируется собой.

Лемма о подстановке: $[M[x := N]] \eta = [M] (\eta[x := [N]] \eta)$.

Выполнимость уравнения в окружении η принято обозначать $\mathcal{A}, \eta \models M = N[\Gamma]$, где η согласовано с Γ (т.е. значения переменных имеют правильные типы).

- Выполнимость в модели: $\mathcal{A} \models M = \mathbb{N}[\Gamma]$ (для любого окружения).
- Общезначимость: $\models M = N[\Gamma]$ (для любого окружения в любой алгебре).

Свободные модели

Рассмотрим сигнатуру Σ и множество формул логики первого порядка P над Σ . Алгебра $\mathcal A$ называется свободной моделью (loose model) над $\langle \Sigma, P \rangle$, если $\mathcal A \models P$.

Свободные модели

Рассмотрим сигнатуру Σ и множество формул логики первого порядка P над Σ . Алгебра $\mathcal A$ называется свободной моделью (loose model) над $\langle \Sigma, P \rangle$, если $\mathcal A \models P$.

Проанализируем свободные модели спецификации:

сорта: bool

сигнатура: True, False : bool

 \Rightarrow : bool \rightarrow bool

аксиомы: $\forall x (True \Rightarrow x = x)$

 $\forall x(False \Rightarrow x = True)$

Свободные модели

Рассмотрим сигнатуру Σ и множество формул логики первого порядка P над Σ . Алгебра $\mathcal A$ называется свободной моделью (loose model) над $\langle \Sigma, P \rangle$, если $\mathcal A \models P$.

Проанализируем свободные модели спецификации:

сорта: bool

сигнатура: True, False: bool

 \Rightarrow : bool \rightarrow bool

аксиомы: $\forall x (True \Rightarrow x = x)$

 $\forall x(False \Rightarrow x = True)$

Много проблем: термы смешиваются между собой, а также могут появиться термы, которых нет в спецификации. $_{6/40}$

Инициальные алгебры

Пусть \mathcal{C} — множество алгебр над сигнатурой Σ (Σ -алгебр) и $\mathcal{A} \in \mathcal{C}$. \mathcal{A} называется инициальной, если для любой $\mathcal{A}' \in \mathcal{C}$ существует единственный гомоморфизм из \mathcal{A} в \mathcal{A}' .

Инициальные алгебры

Пусть \mathcal{C} — множество алгебр над сигнатурой Σ (Σ -алгебр) и $\mathcal{A} \in \mathcal{C}$. \mathcal{A} называется инициальной, если для любой $\mathcal{A}' \in \mathcal{C}$ существует единственный гомоморфизм из \mathcal{A} в \mathcal{A}' .

- «Никакого мусора» в \mathcal{A} должно быть так мало различных элементов, насколько возможно.
- «Никакой путаницы» в $\mathcal A$ элементы должны быть равны только если без этого равенства не обойтись.

Пример инициальной модели

Уравнения — аксиомы инициальной модели. Поскольку каждая сигнатура определяет уникальный терм, и никаких других термов нет, то равенство можно понимать как факторизацию: термы попадают в один класс эквивалентности, если можно доказать, что они равны, и из этого класса рассматривается только один представитель.

сорта: nat

сигнатура: zero : nat

succ, pred: nat \rightarrow nat

уравнения: pred(succ(x)) = x

Пример инициальной модели

Уравнения — аксиомы инициальной модели. Поскольку каждая сигнатура определяет уникальный терм, и никаких других термов нет, то равенство можно понимать как факторизацию: термы попадают в один класс эквивалентности, если можно доказать, что они равны, и из этого класса рассматривается только один представитель.

сорта: nat

сигнатура: zero : nat

succ, pred: nat \rightarrow nat

уравнения: pred(succ(x)) = x

Появляются термы вида pred(zero) (желаемые ли?). Также несократимые термы вида succ(pred(zero)) — точно не желаемые.

Спецификация списков

list, atom, bool сорта:

true, false: bool nil: list сигнатура:

 $cond_x : bool \rightarrow x \rightarrow x \rightarrow x$

isempty? : list \rightarrow bool cons : atom \rightarrow list \rightarrow list

 $cdr : list \rightarrow list$ $car: list \rightarrow atom$

 $cdr(cons \times I) = I$ car(cons x I) = xуравнения: isempty? $(cons \times I) = false$

isempty? nil = true

 $cond_{\alpha}$ true x y = x $cond_b$ true v1 v2 = v1

 $cond_1$ true |1| |2| = |1| $cond_1$ false |1| |2| = |2|

 $cond_{\alpha}$ false x y = y

 $cond_h$ false v1 v2 = v2

Спецификация списков

list, atom, bool сорта:

true, false: bool nil : list сигнатура:

 $cond_x : bool \rightarrow x \rightarrow x \rightarrow x$

isempty? : list \rightarrow bool cons : atom \rightarrow list \rightarrow list

 $cdr : list \rightarrow list$ $car: list \rightarrow atom$

car(cons x I) = xуравнения:

 $cdr(cons \times I) = I$ isempty? nil = true isempty? $(cons \times I) = false$

 $cond_{\alpha}$ false x y = y $cond_{\alpha}$ true x y = x $cond_b$ true v1 v2 = v1 $cond_h$ false v1 v2 = v2 $cond_1$ true |1| |2| = |1| $cond_1$ false |1| |2| = |2|

Выполняется ли уравнение (cons (car I)(cdr I)) = I в инициальной модели?

Спецификация списков

list, atom, bool сорта:

true, false: bool nil: list сигнатура:

 $cond_x : bool \rightarrow x \rightarrow x \rightarrow x$

isempty? : list \rightarrow bool cons : atom \rightarrow list \rightarrow list

 $cdr : list \rightarrow list$

 $car: list \rightarrow atom$

car(cons x I) = x $cdr(cons \times I) = I$ уравнения: isempty? $(cons \times I) = false$

isempty? nil = true

 $cond_{\alpha}$ false x y = y $cond_{\alpha}$ true x y = x $cond_b$ true v1 v2 = v1 $cond_h$ false v1 v2 = v2

 $cond_1$ true |1| |2| = |1| $cond_1$ false |1| |2| = |2|

Выполняется ли уравнение (cons (car I)(cdr I)) = I в инициальной модели? Ответ: нет, проблема с термами вида (cdr nil) и (car nil).

Работа над ошибками

 Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)

Работа над ошибками

- Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)
- Null-неопределённости. Положим, что (car nil) произвольно, (cdr nil)=nil. Уничтожается индуктивное равенство между списками.

Работа над ошибками

- Ничего не делаем. Пусть (car nil) и (cdr nil) будут новыми термами в инициальной алгебре. К чему это приведёт? (спойлер: к добавлению бесконечного множества ошибочных термов разных сортов)
- Null-неопределённости. Положим, что (car nil) произвольно, (cdr nil)=nil. Уничтожается индуктивное равенство между списками.
- Введение терма-ошибки.

Наивная обработка ошибок

```
уравнения: car nil = error_{\alpha}
cdr nil = error_{l}
cons error_{\alpha} l = error_{l}
cons \times error_{l} = error_{l}
car error_{l} = error_{\alpha}
cdr error_{l} = error_{l}
```


Наивная обработка ошибок

```
car nil = error_a
уравнения:
                 cdr nil = error_1
                 cons error<sub>0</sub> I = error_1
                 cons \times error_1 = error_1
                 car error_1 = error_0
                 cdr error_1 = error_1
                 isempty? error_1 = error_b
                 cond_a \ error_b \times y = error_a
                 cond_b \ error_b \times y = error_b
                 cond_l error_b \times y = error_l
```


Наивная обработка ошибок

```
ypaвнения: car nil = error<sub>a</sub>
  cdr nil = error<sub>l</sub>
  cons error<sub>a</sub> l = error<sub>l</sub>
  cons x error<sub>l</sub> = error<sub>l</sub>
  car error<sub>l</sub> = error<sub>a</sub>
  cdr error<sub>l</sub> = error<sub>l</sub>
  isempty? error<sub>l</sub> = error<sub>b</sub>
  cond<sub>a</sub> error<sub>b</sub> x y = error<sub>a</sub>
  cond<sub>b</sub> error<sub>b</sub> x y = error<sub>b</sub>
  cond<sub>l</sub> error<sub>b</sub> x y = error<sub>l</sub>
```

Проблема с аксиомой car $(cons \times I) = x - us$ -за неё можно доказать, что в данной модели любой терм равен ошибке.

Кардинальность моделей

Скажем, что множества M_1 и M_2 имеют одинаковую кардинальность, если существует биекция из M_1 в M_2 .

Теорема Кантора

Булеан 2^M всякого множества M имеет кардинальность, большую, чем у M.

Доказательство: Предположим, что требуемая биекция q существует. Возьмём $\mathfrak{T}=\{y\in M\,|\,y\notin q(y)\}$. Теперь рассмотрим w такой, что $q(w)=\mathfrak{T}$.

Теоремы Левенгейма-Сколема

О повышении мощности

Если алгебраическая спецификация S имеет модель хотя бы \mathbb{N} -кардинальности, тогда для любой кардинальности Ξ , превосходящей кардинальность этой модели, найдётся модель S кардинальности, не меньшей Ξ .

Теоремы Левенгейма-Сколема

О повышении мощности

Если алгебраическая спецификация S имеет модель хотя бы \mathbb{N} -кардинальности, тогда для любой кардинальности Ξ , превосходящей кардинальность этой модели, найдётся модель S кардинальности, не меньшей Ξ .

О понижении мощности

Если алгебраическая спецификация имеет контрмодель, тогда она имеет конечную контрмодель.

Основа современных методов анализа программ — Satisfiability Modulo Theories (поиск конечной контрмодели).

Бескванторный SMT-фрагмент

- Можно объявлять параметры: (declare-fun x () String).
- Далее параметры связываются допущениями: (assert (str.contains x "a")).

Когда описание построено, у его отрицания ищется конечная контрмодель. Таким образом, в отрицании нет формул с кванторами существования.

Примеры

```
(declare-fun x () String)
(declare-fun y1 () String)
(declare-fun y2 () String)
(declare-fun y3 () String)
(declare-fun z1 () String)
(declare-fun z2 () String)
(declare-fun z3 () String)
(assert (or
       (= x (str.++ y1 "A" y2 "B" y3))
       (= x (str.++ z1 "B" z2 "A" z3))))
(assert (or
       (not (str.contains x "A"))
       (not (str.contains x "B"))))
```



```
(declare-fun z () String)
(declare-fun x () String)

(assert (= x (str.++ "a" z z) ))
(assert (= x (str.replace_all z "bb" "a" ) ))
```


(Алгоритм Девиса-Патнема-Логемана-Лавленда)

- Основная решающая процедура SAT-солверов.
- Манипулирует условиями как пропозициональными переменными.
- Два основных подалгоритма (угадывание и распространение информации).
 - Если A_i одна в дизъюнкте, присваиваем ей значение, порождающее **T** (тривиализуем).
 - Если A_i входит во все дизъюнкты с одним знаком, тривиализуем все эти дизъюнкты.
 - Иначе строим гипотезу про значение очередной переменной и проверяем её на противоречие.

Принимает формулу в конъюнктивной нормальной форме.

Пример работы DPLL

$$(B \lor \neg A) \& (\neg C \lor \neg B) \& (A \lor C \lor \neg B) \& (A \lor D)$$

Пример работы DPLL

$$(B \lor \neg A) \& (\neg C \lor \neg B) \& (A \lor C \lor \neg B) \& (A \lor D)$$

• Последний дизъюнкт тривиализуется подстановкой D := **T**.

Пример работы DPLL

$$(B \lor \neg A) \& (\neg C \lor \neg B) \& (A \lor C \lor \neg B) \& (A \lor D)$$

- ullet Последний дизъюнкт тривиализуется подстановкой $D \coloneqq oldsymbol{\mathsf{T}}.$
- Угадываем $B^d := \mathbf{T}$. Получаем следующую формулу: $\neg \ C \ \& \ (A \lor C)$

$(B \lor \neg A) \& (\neg C \lor \neg B) \& (A \lor C \lor \neg B) \& (A \lor D)$

- ullet Последний дизъюнкт тривиализуется подстановкой $D \coloneqq oldsymbol{\mathsf{T}}.$
- Угадываем $B^d := \mathbf{T}$. Получаем следующую формулу: $\neg \ C \ \& \ (A \lor C)$
- Устанавливаем $C := \mathbf{F}$ и распространяем: A

$(B \lor \neg A) \& (\neg C \lor \neg B) \& (A \lor C \lor \neg B) \& (A \lor D)$

- Последний дизъюнкт тривиализуется подстановкой $D := {f T}.$
- Угадываем $B^d := \mathbf{T}$. Получаем следующую формулу: $\neg C \& (A \lor C)$
- ullet Устанавливаем $C := \mathbf{F}$ и распространяем: A
- Формула SAT, желаемая подстановка: [A := T; B := T; C := F; D := T].

Анализ логических формул над теориями.

Основное отличие от чистого DPLL:

• Вызывает солвер для теории Т при угадывании (и в конце, если угадываний не было).

Если солвер обнаружил конфликт между условиями C_1 и C_2 , тогда в формулу добавляется дизъюнкт $\neg C_1 \lor \neg C_2$.

$$((x+1>0) \lor (x+y>0)) \ \& \ ((x<0) \lor (x+y>4)) \ \& \ \neg (x+y>0)$$

$$((x+1>0) \lor (x+y>0)) \ \& \ ((x<0) \lor (x+y>4)) \ \& \ \neg (x+y>0)$$

• Распространяем $x + y > 0 := \mathbf{F}$.

$$((x+1>0) \lor (x+y>0)) \ \& \ ((x<0) \lor (x+y>4)) \ \& \ \neg (x+y>0)$$

- Распространяем x + y > 0 := F.
- Распространяем $x + 1 > 0 := \mathbf{T}$.

$$((x+1>0) \lor (x+y>0)) \ \& \ ((x<0) \lor (x+y>4)) \ \& \ \neg (x+y>0)$$

- Распространяем $x + y > 0 := \mathbf{F}$.
- Распространяем $x + 1 > 0 := \mathbf{T}$.
- Угадываем $x < 0 := \mathbf{T}$ и вызываем солвер. Солвер находит противоречие между x < 0 и x+1>0. Добавляем подходящий дизъюнкт в формулу и откатываемся до $x < 0 := \mathbf{F}$. $\underline{((x+1>0) \lor (x+y>0))} \ \& \ ((x<0) \lor (x+y>4)) \ \& \ \overline{\neg (x+y>0)} \ \& \ (\neg (x<0) \lor \neg (x+1>0))$
- Распространяем x+y>4, все дизъюнкты разобраны. Вызываем солвер. Находится противоречие, и точек отката уже нет. Формула UNSAT.

Объединение нескольких теорий

Объединение теорий способом Нельсона-Оппена:

- Разделить переменные (с введением дополнительных);
- Для каждого из подмножеств найти своё решение с помощью DPLL(T);
- Если оба решения существуют, согласовать их на разделённых переменных.

Объединение нескольких теорий

Объединение теорий способом Нельсона-Оппена:

- Разделить переменные (с введением дополнительных);
- Для каждого из подмножеств найти своё решение с помощью DPLL(T);
- Если оба решения существуют, согласовать их на разделённых переменных.

На языке классов типов получится следующее.

- Даны два разных типа, однако оба из них принадлежат классу Eq (то есть имеют равенство).
- Составные выражения одного типа рассматриваются как унитарные для другого.
- Строятся две отдельные модели, причём с дополнительными условиями на Eq.
- Происходит возврат к классу Eq и модель проверяется на противоречие.

$$(((\texttt{car}\ x) + 3 = \texttt{y}) \lor (\texttt{x} = (\texttt{cons}\ \texttt{y} + 1\ \texttt{nil}))) \ \& \ ((\texttt{car}\ \texttt{x}) > \texttt{y} + 1)$$

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

$$((u_1+3=y) \lor (x=(cons\ u_2\ nil))))\ \&\ (u_1>y+1)\ \&\ (u_1=(car\ x))\ \&\ (u_2=y+1)$$

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

 Разделяем переменные так, чтобы условия были на две теории отдельно:

$$((u_1+3=y) \lor (x=(cons\ u_2\ nil))))\ \&\ (u_1>y+1)\ \&\ (u_1=(car\ x))\ \&\ (u_2=y+1)$$

• Распространяем три последних условия: $(u_1 > y + 1) = \mathbf{T}$, $(u_1 = (car\ x)) = \mathbf{T}$, $(u_2 = y + 1) = \mathbf{T}$.

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

$$((u_1+3=y) \lor (x=(cons\; u_2\; nil))))\;\&\; (u_1>y+1)\;\&\; (u_1=(car\; x))\;\&\; (u_2=y+1)$$

- Распространяем три последних условия: $(u_1 > y + 1) = T$, $(u_1 = (car\ x)) = T$, $(u_2 = y + 1) = T$.
- Угадываем $(\mathfrak{u}_1+3=\mathfrak{y})=\mathbf{T}$ и вызываем солверы для IA и для LIA. Первый Ок, на втором получаем противоречие с условием $\mathfrak{u}_1>\mathfrak{y}+1.$
- Добавляем условие $(\neg(u_1+3=y) \lor \neg(u_1>y+1))$ и откатываемся к $(u_1+3=y)=\mathbf{F}$.

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

$$((u_1 + 3 = y) \lor (x = (cons \ u_2 \ nil)))) \& (u_1 > y + 1) \& (u_1 = (car \ x)) \& (u_2 = y + 1)$$

- Распространяем три последних условия: $(u_1 > y + 1) = \mathbf{T}$, $(u_1 = (car\ x)) = \mathbf{T}$, $(u_2 = y + 1) = \mathbf{T}$.
- Угадываем $(\mathfrak{u}_1+3=\mathfrak{y})=\mathbf{T}$ и вызываем солверы для IA и для LIA. Первый Ок, на втором получаем противоречие с условием $\mathfrak{u}_1>\mathfrak{y}+1.$
- Добавляем условие $(\neg(u_1 + 3 = y) \lor \neg(u_1 > y + 1))$ и откатываемся к $(u_1 + 3 = y) = \mathbf{F}$.
- Распространяем ($x = (cons \ u_2 \ nil)$) = **T**. Разбирать больше нечего, вызываем солверы для IA и для LIA. Оба Ок.

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

$$((u_1+3=y) \lor (x=(cons\; u_2\; nil))))\;\&\; (u_1>y+1)\;\&\; (u_1=(car\; x))\;\&\; (u_2=y+1)$$

- Угадываем $(u_1+3=y)={f T}$ и вызываем солверы для IA и для LIA. Первый Ок, на втором получаем противоречие с условием $u_1>y+1$.
- Добавляем условие $(\neg(u_1 + 3 = y) \lor \neg(u_1 > y + 1))$ и откатываемся к $(u_1 + 3 = y) = \mathbf{F}$.
- Распространяем ($x = (cons \ u_2 \ nil)$) = **T**. Разбирать больше нечего, вызываем солверы для IA и для LIA. Оба Ок.
- Теперь требуется согласовать условия на разделённые переменные \mathfrak{u}_1 и \mathfrak{u}_2 (по равенству и неравенству). IA-солвер говорит, что $\mathfrak{u}_1=\mathfrak{u}_2$; однако LIA-солвер выводит $\mathfrak{u}_1\neq\mathfrak{u}_2$.

$$(((car x) + 3 = y) \lor (x = (cons y + 1 nil))) & ((car x) > y + 1)$$

$$\begin{array}{l} ((u_1+3=y) \lor (x=(cons\;u_2\;nil))))\;\&\;(u_1>y+1)\;\&\;(u_1=\\ (car\;x))\;\&\;(u_2=y+1) \end{array}$$

- Угадываем $(u_1+3=y)={f T}$ и вызываем солверы для IA и для LIA. Первый Ок, на втором получаем противоречие с условием $u_1>y+1$.
- Добавляем условие $(\neg(u_1+3=y) \lor \neg(u_1>y+1))$ и откатываемся к $(u_1+3=y)=\mathbf{F}.$
- Распространяем ($x = (cons \ u_2 \ nil)$) = **T**. Разбирать больше нечего, вызываем солверы для IA и для LIA. Оба Ок.
- Противоречие, модель UNSAT.

Свойства метода Нельсона-Оппена

- Корректен только для мономорфных сигнатур!
- Алгоритм всегда завершается.
- Если возвращается противоречие, то модель точно UNSAT.
- В противном случае модель точно SAT, если каждая из комбинируемых теорий стабильно инфинитна.

Теория T стабильно инфинитна \Leftrightarrow каждая бескванторная формула теории T выполнима в бесконечной модели для T.

Пример, когда всё сложнее

$$(|(x"abc")| = |y| + 3) & (xw = y) & (contains w "a")$$

- После разделения переменных обе теории имеют модели.
- Однако при согласовании разделённых переменных мало информации о том, что выводится в терминах одной теории — от теории строк необходимы дополнительные условия:

Пример, когда всё сложнее

$$(|(x"abc")| = |y| + 3) & (xw = y) & (contains w "a")$$

- После разделения переменных обе теории имеют модели.
- Однако при согласовании разделённых переменных мало информации о том, что выводится в терминах одной теории от теории строк необходимы дополнительные условия:|y| = |x| + |w|, |x| abc = x + 3, |w| > 0.
- Теории строк и LIA связаны дополнительными функциями, определёнными только в многосортной алгебре.

Язык строковых условий

- Предикаты:
 - (str.contains str_arg str_sub)
 - (= str1 str2)

Аргумент str_is функций str.replace(.)* и str_sub предиката str.contains не должен быть пустым словом (пустое слово в .smt2 — это "").

Язык строковых условий

• Предикаты:

- (str.contains str_arg str_sub)
- (= str1 str2)

• Функции:

- o (str.replace str_arg str_is str_to);
- (str.replace_all str_arg str_is str_to);
- (str.len str) (базовая, но не является предметом практического задания);
- (str.++ str_arg+).

Apryment str_is функций str.replace(.)* и str_sub предиката str.contains не должен быть пустым словом (пустое слово в .smt2 — это "").

Общий алгоритм обработки строк

- Формируется первый блок условий на длины и отправляется в LIA-солвер;
- Оттуда возвращается в нормализованном виде;
- Производится расщепление по анализу длин;
- Производится нормализация;
- После всех указанных действий опять производится извлечение условий на длины и проверка из LIA-солвером.

Расщепление: анализ длин

- Конкатенация очевидно (сумма).
- str.contains неравенство.
- str.replace уравнение с расщеплением внутри теории строк.
- str.replace_all ??? уравнение с расщеплением???

Преобразование Нильсена

Лемма Леви

Если уравнение в словах имеет вид $x \Phi_1 = y \Phi_2$, тогда выполнено хотя бы одно из условий $x = y x' \lor y = x y'$.

Ветвление по подстановкам вида $x \to y \, x'$ и $y \to x \, y'$ называется преобразованием Нильсена. В классическом варианте переменные, вводимые для записи суффиксов, сохраняют имя исходных переменных.

Дерево решения уравнения

Если w не пуст, то начинается с **A**, либо уравнение не выполняется.

После подстановок $w \to \varepsilon$, $w \to \mathbf{A}$ w_1 равные термы слева и справа сокращаются. Ветви дерева, приводящие к противоречию, отбрасываются.

Свертка дерева решения уравнения в граф

Уравнение w_1 **A** = **A** w_1 повторяет исходное с точностью до переименования w_1 в w. Его развертка происходит точно так же.

Множество корней: $w \in \mathbf{A}^*$.

Что плохо умеют SMT-солверы

- Продвинутое сопоставление с образцом (в том числе решение уравнений в словах общего вида);
- Анализ кратности (т.к. алгебра целых чисел сводится к алгебре действительных, а потом рассматривается расщепление по целым значениям).


```
(declare-fun x () String)
(declare-fun y () String)
(assert (= (str.++ x x y y y) (str.++ "BB" x x)))
(declare-fun z () String)
(assert (str.contains z "B"))
(assert (= (str.++ z "A") (str.++ "A" z) ))
```



```
(declare-fun i () String)
(declare-fun x () String)
(assert (not (str.contains x "a")))
(assert (= i (str.replace_all x "a" "b" ) ))
(assert (not (= i x)))
(declare-fun x () String)
(assert (= (str.++ x x "AB" x "AB")
           (str.++ "BBAA" x x x)))
```



```
(declare-fun x () String)
(declare-fun y () String)
(assert (= (str.++ "AB" x) (str.++ x "BA")))
(assert (= (str.++ y y) x))
(declare-fun x () String)
(declare-fun y () String)
(assert (= (str.++ "AB" x) (str.++ x y)))
(assert (not (str.contains x "AB")))
(assert (not (= x "A")))
(assert (not (= x "")))
```



```
(declare-fun x () String)
(assert (str.contains (str.++ x x) "AB"))
(assert (not (str.contains x "AB")))
(assert (not (str.contains x "BA")))
(declare-fun x () String)
(assert (str.contains (str.replace_all x "AB" "") "CA"))
(assert (not (str.contains x "ABC")) )
(assert (not (str.contains x "CA")) )
```



```
(declare-fun x () String)
(declare-fun y () String)
(assert (and (and
               (str.contains (str.++ x y) "AB")
               (not (= x (str.++ y "A")))
             (not
               (or (str.contains y "B")
                    (str.contains (str.++ y x) "AB"))
               )))
```



```
(declare-fun x () String)
(declare-fun y () String)
(declare-fun n1 () String)
(declare-fun n2 () String)
(declare-fun n3 () String)

(assert (not (str.contains (str.++ n1 n2 n3) "A")))
(assert (= (str.++ x x) (str.++ y y y)))
(assert (= x (str.++ n1 "A" n2 "A" n3)))
```


Источники проблем

- str.contains под отрицанием;
- нелинейные конкатенации с двух сторон от равенства;
- str.replace_all с неявным расщеплением.

Более точная характеризация?

Почему так странно?

Неразрешимая задача — задача, существование алгоритма (в общепринятом смысле) решения которой приводит к противоречию.

- Фрагмент str.++, str.replace_all с равенством неразрешим.
- Фрагмент только str.++ с равенством PSPACE-полон...
- …и NP-полон даже в предположении, что каждый параметр не входит в совокупность условий более чем дважды.
- Насчёт фрагмента str.++, str.len никто ничего не знает.