# Lecture 03b State Space to Transfer Function



## Lecture is on YouTube

The YouTube video entitled 'State Space to Transfer Function' that covers this lecture is located at https://youtu.be/NNJ0sUmrKu8.

## **Outline**

- -Introduction
- -State Space to Transfer Function
- -Matlab Tools

## Introduction

We know that there are several representations of a dynamic system. It would be useful to be able to translate between them.

## **State Space To Transfer Function**

If you require a refresher on state space representations, please see the video entitled 'State Space Representation of Differential Equations' at https://youtu.be/pXvAh1IOO4U.

Recall that the state trajectory is governed by

$$\dot{\bar{x}}(t) = A\,\overline{x}(t) + B\,\overline{u}(t)$$

Taking the Laplace transform of both side yields

AE511 - Classical Control Theory Christopher Lum

$$s \, \overline{X}(s) - \overline{x}(0) = A \, \overline{X}(s) + B \, \overline{U}(s)$$
 recall: for a transfer function, we assume no initial conditions  $\overline{X}(0) = \overline{0}$ 

$$s \overline{X}(s) - A \overline{X}(s) = B \overline{U}(s)$$

$$(s I - A) \overline{X}(s) = B \overline{U}(s)$$

$$(s I - A)^{-1} (s I - A) \overline{X}(s) = (s I - A)^{-1} B \overline{U}(s)$$

$$\overline{X}(s) = (s I - A)^{-1} B \overline{U}(s)$$
 (Eq.1)

Recall that the output of the system is given by

$$\overline{y}(t) = C \overline{x}(t) + D \overline{u}(t)$$

Taking the Laplace transform of both sides yields

$$\overline{Y}(s) = C \, \overline{X}(s) + D \, \overline{U}(s) \qquad \text{recall: } \overline{X}(s) = (s \, I - A)^{-1} \, B \, \overline{U}(s)$$

$$= C \, (s \, I - A)^{-1} \, B \, \overline{U}(s) + D \, \overline{U}(s)$$

$$= \left( C(s \, I - A)^{-1} \, B + D \right) \overline{U}(s)$$

$$\overline{Y}(s) = G(s) \, \overline{U}(s) \qquad \text{(Eq.2)}$$

where 
$$G(s) = C(sI - A)^{-1}B + D$$

Notice that now G(s) is a matrix. For example, if your system has m outputs an p inputs, then G(s) is an m – by – p sized matrix.

#### **Example 1: DC Motor**

Recall the from our discussion on modeling a DC motor as a dynamic system, we derived a state space representation of the system with the state and control vector of

$$\overline{X}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = \begin{pmatrix} \theta(t) \\ \dot{\theta}(t) \\ i(t) \end{pmatrix}$$

$$\overline{u}(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} = \begin{pmatrix} V_a(t) \\ T_L(t) \end{pmatrix}$$

We assume sensors of

AE511 - Classical Control Theory Christopher Lum

$$\overline{y}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix} = \begin{pmatrix} \dot{\theta}(t) \\ \theta(t) \\ T(t) \end{pmatrix}$$
 (note the first output is the velocity, second is the angle)

Recall the state space representation of the DC motor with was

$$\dot{\overline{x}}(t) = A \, \overline{x}(t) + B \, \overline{u}(t)$$
$$\overline{y}(t) = C \, \overline{x}(t) + D \, \overline{u}(t)$$

where 
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -\frac{c}{J_m} & \frac{K_T}{J_m} \\ 0 & -\frac{K_V}{L_a} & -\frac{R_m + R}{L_a} \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & -\frac{1}{J_m} \\ \frac{1}{L_a} & 0 \end{pmatrix}$$
$$C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & K_T \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Where the constants are defined as

To compute the transfer function representation, we can use the equation  $G(s) = C(sI - A)^{-1}B + D$ 

G[s\_] = Cmat.Inverse[s \* IdentityMatrix[3] - A].B + Dmat // Simplify;
G[s] // MatrixForm

$$\left( \begin{array}{c} \frac{KT}{KT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S)} \\ \frac{KT}{s \; \; (KT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S))} \\ \frac{KT}{s \; \; (KT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S))} \\ \frac{KT}{kT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S)} \\ \end{array} \right) \\ \frac{KT}{kT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S)} \\ \left( \begin{array}{c} KT \; KV \\ KT \; KV + \; (C + Jm \; S) \; \; (R + Rm + La \; S) \end{array} \right) \\ \end{array}$$

If we are interested In the transfer function between  $\dot{\theta} = y_1$  and  $V_a = u_1$ , we would then choose the (1,1) element of the transfer function matrix.

AE511 - Classical Control Theory Christopher Lum

Expanded Denominator

$$KT KV + c R + c Rm + (c La + Jm R + Jm Rm) s + Jm La s2$$

Matlab provides a function, 'ss2tf' to do this conversion for you.

So we have

$$G_V(s) = \frac{\dot{\theta}(s)}{V_o(s)} = \frac{K_T}{J_m L_o s^2 + (c L_o + J_m R + J_m R_m) s + (K_T K_V + c R + c R_m)}$$

Using approximate numerical values we can write this as (see Matlab script)

$$G_V(s) = \frac{0.09854}{2.135 \times 10^{-6} \, s^2 + 0.002179 \, s + 0.01034} = \frac{46163}{s^2 + 1021 \, s + 4845}$$

Note that some transfer functions may look to be different but are actually the same. You can examine the differences using the 'zpk' function in Matlab.

### **Cleaning Up Numerical Error in Transfer Functions**

Note that in many situations, a transfer function object in Matlab may not perform pole/zero cancellation properly. To illustrate this, consider the following transfer function

$$P(s) = \frac{s^2 + 15.0001 \, s + 50.0005}{s^3 + 16 \, s^2 + 68 \, s + 80}$$

$$P[s_{]} = \frac{s^2 + 15.0001 \, s + 50.0005}{s^3 + 16 \, s^2 + 68 \, s + 80};$$

Note that the poles of and zeros of this transfer function can be found by finding roots of the denominator and numerator, respectively

Solve[Denominator[P[s]] == 0, s]  
Solve[Numerator[P[s]] == 0, s]  

$$\{\{s \rightarrow -10\}, \{s \rightarrow -4\}, \{s \rightarrow -2\}\}$$
  
 $\{\{s \rightarrow -10.0001\}, \{s \rightarrow -5.\}\}$ 

AE511 - Classical Control Theory

The problem is that there is a pole at -10 and a zero at -10.0001. There are extremely close together but they are not the exact same so Matlab and Mathematica does not perform the pole/zero cancellation.

To allow pole/zero cancellation to occur if poles and zeros are within a range of each other, we developed the CleanUpTransferFunction.m function (see website).

Alternatively, you can use the Matlab function 'minreal', we will cover this in a later video/lecture.

## **Using Matlab**

Go over different representations of a system

'tf' 'ss'

'tf2zpk'

'ss2tf'