27 05 2019

11. Методи розв'язання крайових задач для звичайних диференційних рівнянь

Почнемо з постановки крайових задач.

1. Нелінійна двоточкова крайова задача:

$$\frac{\mathrm{d}\vec{U}}{\mathrm{d}x} = \vec{F}\left(x, \vec{U}\right), \quad a < x < b, \tag{1}$$

$$\vec{\varphi}\left(\vec{U}(a), \vec{U}(b)\right) = \vec{d},$$
 (2)

де
$$\vec{U}=(u_1,\ldots,u_m)^\intercal$$
, $u_k=u_k(x)$, $\vec{F}=(f_1,\ldots,f_m)^\intercal$, $f_k=f_k(x,\vec{U})$, $\vec{\varphi}=(\varphi_1,\ldots,\varphi_m)^\intercal$, $\varphi_k=\varphi_k(\vec{U}(a),\vec{U}(b))$, $\vec{d}=(d_1,\ldots,d_m)^\intercal$, d_k —числа.

2. Лінійна двоточкова крайова задача:

$$\frac{\mathrm{d}\vec{U}}{\mathrm{d}x} = A(x)\vec{U}(x) + \vec{F}(x),\tag{3}$$

$$B_1 \vec{U}(a) + B_2 \vec{U}(b) = \vec{d},$$
 (4)

де $A(x)=(a_{ij}(x))_{i,j=1}^m$, $ec F=(f_1,\dots,f_m)^\intercal$, $f_k=f_k(x)$, B_1 , B_2 — числові матриці m imes m, \vec{d} — числовий вектор.

Означення: Крайові умови (2) і (4) називаються *нероздільними*.

Означення: Часто зустрічаються розділені крайові умови. Наприклад, для лінійної

$$C_1 \vec{U}(a) = \vec{d}_1, \quad C_2 \vec{U}(b) = \vec{d}_2,$$
 (4')

де $C_1-(m-k) imes m$ -матриця повного рангу, $C_2-k imes m$ -матриця повного рангу,

Твердження: До (3), (4') зводиться крайова задача для рівнянь вищих порідків.

Доведення: Справді, нехай задана крайова задача

$$\begin{cases} u^{(m)}(x) = p_1(x)u^{(m-1)}(x) + \dots + p_m(x)u(x) + f(x), \\ \alpha_{i,1}u^{(m-1)}(a) + \dots + \alpha_{i,m}u(a) = \mu_i, & i = \overline{1, m - k}, \\ \beta_{i,1}u^{(m-1)}(b) + \dots + \beta_{i,m}u(b) = \nu_i, & i = \overline{1, k}. \end{cases}$$
(5)

27.05.2019

$$\vec{Y}(x) = \vec{Y}_0(x) + \sum_{i=1}^m c_i \vec{Y}_i(x).$$
(13)

Справді, $\forall c_i$ він задовольняє (9), а самі c_i знаходяться з (10):

$$B_1\left(\vec{Y}_0 + \sum_i c_i \vec{Y}_i(a)\right) +$$

$$+ B_2\left(\vec{Y}_0(b) + \sum_i c_i \vec{Y}_i(b)\right) = \vec{d},$$

$$(14)$$

або

$$(B_1 + B_2 Y(b))\vec{c} = \vec{d} - B_2 \vec{Y}_0(b). \tag{15}$$

Розв'язуючи цю СЛАР знаходимо c_i . За єдиністю $ec{Y}(x) = ec{U}(x)$

Алгоритм А1:

- 1. Розв'язуємо задачу Коші (11), знаходимо $\vec{Y}_0(b)$.
- 2. Розв'язуємо m задач Коші (12), знаходимо Y(b).
- 3. Розв'язуємо СЛАР (15), знаходимо c_i , $i = \overline{1, n}$.
- 4. $ec{Y}(x) = ec{U}(x)$ знаходимо з (13).

Складність цього алгоритму така ж, як і складність розв'язування m+1 задачі Коші.

Якщо крайові умови розділені, тобто

$$C_1 \vec{U}(a) = \vec{d}_1, \quad C_2 \vec{U}(b) = \vec{d}_2,$$
 (16)

то можна зменшити кількість задач Кошы, які необхідно розв'язати. Для цього побудуємо

$$C_1 \vec{V}_0 = \vec{d}_1. \tag{17}$$

Це завжди можна зробити, оскільки кількість рівнянь менша за кількість невідомих. Далі будуємо $ec{V}_i$, $i=\overline{1,k}$ такі, що

$$C_1 \vec{V}_i = 0, \quad i = \overline{1, k}. \tag{18}$$

Знову ж таки, це можна здійсними бо ${
m rang}\ C_1=m-k$, тобто не повний.

Після цього всього розв'язуємо задачі Коші

Вона зводиться до задачі (3), (4') з

$$A(x) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 0 & 1 \\ p_m & p_{m-1} & p_{m-2} & \dots & p_1 \end{pmatrix}, \tag{6}$$

$$C_1 = (\alpha_{ij})_{i=1,m-k}^{j=\overline{i},\overline{m}}, \quad C_2 = (\beta_{ij})_{i=\overline{i},\overline{m}}^{j=\overline{i},\overline{m}},$$
 (7)

$$\vec{d}_1 = (\mu_1, \dots, \mu_{m-k})^{\mathsf{T}}, \quad \vec{d}_2 = (\nu_1, \dots, \nu_k)^{\mathsf{T}}.$$
 (8)

Зауваження: Вважаємо, що всі задачі мають єдині розв'язки.

Розглянемо методи розв'язування цих задач.

11.1. Метод стрільби

Розглянемо крайову задачу з нерозділеними крайовими умовами:

$$\frac{\mathrm{d}\vec{U}}{\mathrm{d}x} = A(x)\vec{U}(x) + \vec{F}(x),\tag{9}$$

$$B_1 \vec{U}(a) + B_2 \vec{U}(b) = \vec{d},$$
 (10)

Метод стрільби водить крайову задачу до послідовності з m+1 задач Коші, а саме:

$$\frac{\mathrm{d}\vec{Y}_0}{\mathrm{d}x} = A(x)\vec{Y}_0, \quad \vec{Y}_0(a) = 0. \tag{11}$$

$$\frac{\mathrm{d}\vec{Y_i}}{\mathrm{d}x} = A(x)\vec{Y_i}(x), \quad \vec{Y_u}(a) = \vec{\delta}_i, \tag{12}$$

для
$$i=\overline{1,m}$$
, де $\delta_i=(\delta_{ij})_{j=1}^m$

Означення: Матриця $Y(x) = \left(ec{Y}_i(x)
ight)_{i=\overline{1,m}}$ називається *фундаментальною* матрицею однорідної системи (9).

Розв'язок (9) шукаємо у вигляді:

27.05.2019

Numerical Analysis | established about 4000 years ago
$$\frac{\mathrm{d}\vec{Y}_0}{\mathrm{d}x} = A\vec{Y}_0 + \vec{F}, \quad \vec{Y}_0(a) = \vec{V}_0 \tag{19}$$

$$\frac{\mathrm{d}\vec{Y}_i}{\mathrm{d}x} = A\vec{Y}_i, \quad \vec{Y}_i(a) = \vec{V}_i, \quad i = \overline{1, k}. \tag{20}$$

Сталі c_i знаходимо з другої крайової умови.

Алгоритм А2:

- Розв'язуємо СЛАР (17)-(18).
- 2. Розв'язуємо задачу Коші (19).
- 3. Розв'язуємо k задач Коші (20).
- 4. Розв'язуємо СЛАР

$$B_2 \vec{Y}(b) \equiv C_2 \left(\vec{Y}_0(b) + \sum_{i=1}^k c_i \vec{Y}(b) \right) = \vec{d}_2$$
 (21)

5 P038'930K

$$ec{Y}(x) = ec{Y}_0(x) + \sum_{i=1}^k c_i ec{Y}_i(x).$$
 (22)

Оскільки для А1 та А2 розв'язок задачі Коші шукається чисельно, то фактично маємо не всю функцію $ec{Y}_i(x)$ а значення

$$\vec{Y}_i(x_n), \quad n = \overline{0, N}, \quad x_n \in [a, b].$$
 (23)

Їх треба запамя'ятовувати щоб розв'язати (22). Цього недоліку можна уникнути:

Алгоритм А3:

- Розв'язуємо СЛАР (17)-(18).
- 2. Розв'язуємо задачу Коші (19).
- 3. Розв'язуємо k задач Коші (20) і запам'ятовуємо лише $ec{Y}_i(x_N) = ec{Y}_i(b).$
- 4. Розв'язуємо СЛАР (21).
- 5. Розв'язуємо ще одну задачу Коші:

Numerical Analysis | established about 4'000 years ago $rac{{
m d} \vec{Y}}{{
m d} x}=A \vec{Y}, \quad \vec{Y}(a)=\vec{V}_0+\sum^k_i \vec{V}_i.$

6. Тоді за формулою (22) $ec{Y}(x) = ec{U}(x)$.

Зауваження: Зрозуміло, що «стріляти», тобто починати розв'язувати задачу Коші, треба з того боку, де задано більше крайових умов.

Зауваження (*суттєвий недолік алгоритмів!*) Серед власних значень A(x), як правило, ϵ такі, що $\mathrm{Re}\lambda_i(x)>0$. Тоді лінійно незалежні розв'язки задачі Коші наростають експоненціально. Це призводить до наростання похибок заокруглень та погано обумовленої матриці системи (15) або (21) (розв'язки $ec{Y}_i(x)$ стають майже лінійно

Тому [a,b] розбивають на проміжки $[x_{p-1},x_p]$, $p=\overline{1,M}$, і розв'язують задачу Коші на підпроміжках, а в кінці $x=x_{n}$ ортогоналізують отримані розв'язки. Зрозуміло, що для x=b отримують не $ec{Y}_i(b)$, а деякі $ec{W}_i(b)$, які залежать від $ec{Y}_i(b)$ та відповідних перетворень ортогоналізації. З їх допомогою по $ec{W}_i(b)$ обчислюють $ec{Y}_i(b)$ та «прогоняють» ці умови для всіх значень

$$\vec{Y}(a) = \vec{Y}_0(a) + \sum_i c_i \vec{Y}_i(a).$$
 (25)

Така ідея метода ортогональної прогонки Годунова, що широко застосовується на практиці.

11.2. Метод пристрілки

Це метод для розв'язування крайової задачі для нелінійних рівнянь аналогічний методу

Розглянемо крайову задачу з розділеними крайовими умовами:

$$\frac{\mathrm{d}\vec{U}}{\mathrm{d}x} = \vec{F}\left(x, \vec{U}\right), \quad a < x < b, \tag{26}$$

$$u_i(a) = c_i, \quad i = \overline{k+1, m},\tag{27}$$

$$\varphi\left(\vec{U}(b)\right) = d_i, \quad i = \overline{1, k}.$$
 (28)

При x=a невідомі k початкових умов $u_i(a)$, $i=\overline{1,k}$. Будемо їх шукати.

https://csc-knu.github.io/numerical-analysis/lectures/11.html#114-метод-продовження-за-параметрог

Метод лінеаризації для задачі (35) це аналог методу Ньютона для систем нелінійних рівнянь. Нехай $ec{Y}_0(x)$ — деяке наближення. Побудуємо його уточнення $ec{Z}_0(x)$ до точного розв'язку $\vec{U}(x)$

$$\vec{U}(x) = \vec{Y}_0(x) + \vec{Z}_0(x). \tag{37}$$

3 (35) маємо

$$\frac{\mathrm{d}Z_0}{\mathrm{d}x} = \Phi_F\left(x, \vec{V}\right) \vec{Z}_0(x) + \vec{F}\left(x, \vec{Y}_0\right) - \frac{\mathrm{d}\vec{Y}_0}{\mathrm{d}x}.$$
(38)

Замінюючи середнє значення $ec{V}(x)$ на $ec{Y}_0(x)$ отримаємо лінійне рівняння:

$$\frac{d\vec{Z}_0}{dz} = \Phi_F\left(x, \vec{Y}_0\right) \vec{Z}_0 + \vec{F}\left(x, \vec{Y}_0\right) - \frac{d\vec{Y}_0}{dx}.$$
(39)

Аналогічно

$$\Phi_{a}\left(\vec{Y}_{0}(a), \vec{Y}_{0}(b)\right) \vec{Z}_{0}(a) +
+ \Phi_{b}\left(\vec{Y}_{0}(a), \vec{Y}_{0}(b)\right) \vec{Z}_{0}(b) =
= \vec{d} - \vec{\varphi}\left(\vec{Y}_{0}(a), \vec{Y}_{0}(b)\right),$$
(40)

•
$$\Phi_F = \left(rac{\partial F_i}{\partial u_i}
ight)^m$$
 — матриця Якобі правої частини $ec F\left(x,ec U
ight)$;

•
$$\Phi_a = \left(\frac{\partial \varphi_i}{\partial u_j}(a)\right)_{i,j=1}^m$$
, $\Phi_b = \left(\frac{\partial \varphi_i}{\partial u_j}(b)\right)_{i,j=1}^m$ — матриці Якобі для $\vec{\varphi}\left(\vec{U}(a),\vec{U}(b)\right)$ по

Задача (39)–(40) — лінійна і розв'язується методом стрільби (з ортогоналізацією). Розв'язавши цю задачу, маємо настуне наближення $ec{Y}_1(x) = ec{Y}_0(x) + ec{Z}_0(x)$. Цей процес продовжуємо до виконання умови точності $\| ec{Z}_k(x) \| < arepsilon.$

Недоліки методу:

1. Наявність похідної $\mathrm{d}\vec{Y}_0/\mathrm{d}x$ в правій частині. Оскільки розв'язок задач Коші чисельний, то для її обчислення треба застосовувати формули чисельного диференціювання. Це може привести до великих похибок за рахунок нестійкості задачі чисельного диференціювання.

$$\begin{cases} \frac{d\vec{Y}}{dx} = \vec{F}\left(x, \vec{Y}\right), & a < x < b \\ \vec{Y}(a) = \vec{C} = (c_i)_{i=1}^m, \end{cases}$$
(29)

де c_i , $i=\overline{1,k}$ — невідомі. Їх шукаємо з крайової умови (28):

$$f_i(c_1,\ldots,c_k) \equiv \varphi_i\left(\vec{\varphi}(b;c_1,\ldots,c_k)\right) - d_i = 0, \quad i = \overline{1,k}. \tag{30}$$

Це система нелінійних рівнянь. Задаємо початкові значення $c_i^{(0)}$, $i=\overline{1,k}$. За якимось ітераційним методом знаходимо її розв'язок. Найзручніше використовувати метод січних.

Метод пристрілки найбільш прозоро виглядає для k=1. У цьому випадку нам необхідно знайти тільки c_1 . Використаємо метод ділення навпіл. Знайдемо $c_1^{(0)}$ таке, що

$$\varphi_1\left(\vec{y}\left(b;c_1^{(0)}\right)\right) - d_1 > 0,\tag{31}$$

та $c_{\scriptscriptstyle 1}^{(1)}$ таке, що

$$\varphi_1\left(\vec{y}\left(b;c_1^{(1)}\right)\right) - d_1 < 0. \tag{32}$$

Тоді вибираємо

$$c_1^{(2)} = \frac{c_1^{(0)} + c_1^{(1)}}{2}. (33)$$

3 інтервалів $\left[c_1^{(0)},c_1^{(2)}\right]$, $\left[c_1^{(1)},c_1^{(2)}\right]$ (можливо кінці в іншому порядку) вибираємо такий, що $arphi\left(ec{y}\left(b;c_{1}
ight)
ight)-d_{1}$ змінює знак. Процес продовжуємо до виконання умови

$$\left| \varphi_1 \left(\vec{y} \left(b, c_1^{(k)} \right) \right) - d_1 \right| < \varepsilon,$$
 (34)

ле ε — задана точність

11.3. Метод лінеаризації

Розглянемо задачу:

$$\frac{d\vec{U}}{dx} = \vec{F}(x, \vec{U}), \quad a < x < b, \tag{35}$$

Numerical Analysis I established about 4'000 years ago

$$\vec{\varphi}\left(\vec{U}(a), \vec{U}(b)\right) = \vec{d},$$
 (36)

2. Збіжність залежить від вибору \vec{Y}_0 .

11.4. Метод продовження за параметром

Суттєвим недоліком методу ліанерізації є необхідність задавати хороше початкове наближення та чисельне диференціювання попереднього наближення. Розглянемо метод, який позбавлений цих недоліків

Розглянемо задачу знаходження вектора $\vec{U}(x) = (u_i)_{i=1}^n$, що задовольняє умовам:

$$\frac{d\vec{U}}{dx} = \vec{F}(x, \vec{U}), \quad a < x < b,$$
(41)

$$\vec{\varphi}\left(\vec{U}(a), \vec{U}(b)\right) = \vec{d}\,,\tag{42}$$

Нехай розв'язок цієї задачі існує та єдиний.

Розв'яжемо задачу Коші

$$\frac{\mathrm{d}\vec{Y}}{\mathrm{d}x} = \vec{F}\left(x, \vec{Y}\right), \quad \vec{Y}(a) = \vec{Y}_0. \tag{43}$$

Вибір $ec{Y}_0$ здійснимо так, щоб було задовольнялося як можна більша кількість з крайових умов (42). Наприклад, якщо $arphi_i\left(ec{U}(a),ec{U}(b)
ight)\equiv u_i(a)$, то вибираємо $y_{0,i}=d_i$.

Обчислимо $ec{d}_0=ec{arphi}\left(ec{Y}(a),ec{Y}(b)
ight)$. Якщо $ec{d}_0\equivec{d}$, то $ec{Y}\equivec{U}$. Але, як правило, $ec{d}_0
eqec{d}$ і тому необхідно уточнювати початкове наближення. Розглянемо параметричну крайову задачу

$$\frac{d\vec{V}}{dx} = \vec{F}(x, \vec{V}), \quad a < x < b, \tag{44}$$

$$\vec{\varphi}\left(\vec{V}(a), \vec{V}(b)\right) = \lambda \vec{d} + (1 - \lambda)\vec{d}_0,\tag{45}$$

яка залежить від параметра λ : $ec{V}=ec{V}(x,\lambda)$. Ясно, що $ec{V}(x,0)=ec{Y}(x)$, а $ec{V}(x,1)=ec{U}$

Спробуємо продовжити розв'язок задачі (44)–(45) від відомого $\vec{Y}(x)$ до шуканого $\vec{U}(x)$. Для цього продиференціюємо (44)–(45) по λ

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial \vec{V}}{\partial \lambda} = \sum_{i=1}^{n} \frac{\partial \vec{F}}{\partial u_{j}} \cdot \frac{\partial V_{j}}{\partial \lambda}, \quad a < x < b, \tag{46}$$

 $\sum_{j=1}^n \frac{\partial \vec{\varphi}}{\partial u_j}(a) \cdot \frac{\partial \vec{V}}{\partial \lambda}(a) + \sum_{j=1}^n \frac{\partial \vec{\varphi}}{\partial u_j}(b) \cdot \frac{\partial \vec{V}}{\partial \lambda}(b) = \vec{d} - \vec{d}_0,$ (47)

Позначимо $ec{Z} = \partial ec{V}/\partial \lambda$. Тоді останню систему можна записати у вигляді:

$$\frac{\mathrm{d}\vec{Z}}{\mathrm{d}x} = \vec{\Phi}_F \left(x, \vec{V} \right) \vec{Z}, \quad a < x < b, \tag{48}$$

$$\vec{\Phi}_{a} \left(\vec{V}(a), \vec{V}(b) \right) \vec{Z}(a) +$$

$$+ \vec{\Phi}_{b} \left(\vec{V}(a), \vec{V}(b) \right) \vec{Z}(b) =$$

$$- \vec{d} - \vec{d} \diamond$$

$$(49)$$

$$\frac{\partial \vec{V}}{\partial \lambda} = \vec{Z}, \quad \vec{V}(x,0) = \vec{Y}_0 \tag{50}$$

- ullet $\Phi_F=\left(rac{\partial F_i}{\partial u_j}
 ight)_{i=1}^n$ матриця Якобі правої частини (41), $ec F\left(x,ec U
 ight)$;
- $\Phi_a = \left(rac{\partial arphi_i}{\partial u_j}(a)
 ight)_{i,j=1}^n$ матриця Якобі лівої частини $ec{arphi}\left(ec{U}(a),ec{U}(b)
 ight)$ крайової умови
- $\Phi_b = \left(\dfrac{\partial \varphi_i}{\partial u_j}(b) \right)_{i,i=1}^n$ матриця Якобі лівої частини $ec{arphi}\left(ec{U}(a), ec{U}(b) \right)$ крайової умови (42) по другому аргументу $\vec{U}(b)$;

Задача (48)–(50) не простіше ніж вихідна задача (41)–(42), а ще й складніша за неї. Спростимо її, застосувавши до задачі Коші (50) чисельний метод, наприклад, метод Ейлера:

$$ec{V}^{(k+1)}(x) = ec{V}^{(k)}(x) + \Delta \lambda \vec{Z}^{(k)}(z), \quad ec{V}^{(0)}(x) = ec{Y}(x).$$
 (51)

Tyr
$$ec{V}^{(k)}=ec{V}(x,\lambda_k)$$
, $\Delta\lambda=\lambda_{k+1}-\lambda_k$, $\lambda_0=0$, $\lambda_K=1$, $k=\overline{1,K}$.

Знайдене наближення ${ec V}^{(k+1)}(x)$ використовується для знаходження наступного наближення ${ec Z}^{(k+1)}$ лінійної крайової задачі (48)–(49).

Повністю алгоритм розв'язання крайової задачі (41)–(42) цим методом такий:

1. Розв'язуємо задачу Коші (43) . Задаємо початкові значення ${ec V}^{(0)}(x) = {ec Y}(x)$

$$\frac{\mathrm{d}\vec{Z}^{(k)}}{\mathrm{d}x} = \Phi_F\left(x, \vec{V}^{(k)}\right) \vec{Z}^{(k)}, \quad a < x < b, \tag{52}$$

$$\vec{\Phi}_{a}\left(\vec{V}^{(k)}(a), \vec{V}^{(k)}(b)\right) \vec{Z}^{(k)}(a) + + \vec{\Phi}_{b}\left(\vec{V}^{(k)}(a), \vec{V}^{(k)}(b)\right) \vec{Z}^{(k)}(b) = = \vec{d} - \vec{d}_{0},$$
(53)

3. Продовжуємо розв'язок по параметру λ :

2. Для $k=\overline{1,K}$ розв'язуємо лінійні крайові задачі:

$$\vec{V}^{(k+1)}(x) = \vec{V}^{(k)}(x) + \Delta \lambda \vec{Z}^{(k)}(x).$$
 (54)

4. Шуканий розв'язок $ec{U}(x) pprox ec{V}^{(K)}(x)$.

Лінійні крайові задачі пункту 2 розв'язуються, наприклад, методом стрільби. Для розв'язання задачі Коші (50) можна застосовувати більш точні методи ніж метод Ейлера.