Tutorial week 6

- The figure above shows events occurring for each of two processes, p1 and p2. Arrows between processes denote message transmission.
- Draw and label the lattice of consistent states (p1 state, p2 state), beginning with the initial state (0,0).

- Jones is running a collection of processes $p_1, p_2, ..., p_N$. Each process p_i contains a variable v_i . She wishes to determine whether all the variables $v_1, v_2, ..., v_N$ were ever equal in the course of the execution.
 - (i) Jones' processes run in a synchronous system. She uses a monitor process to determine whether the variables were ever equal. When should the application processes communicate with the monitor process, and what should their messages contain?
 - (ii) Explain the statement *possibly* ($v_1 = v_2$,= ... = v_N). How can Jones determine whether this statement is true of her execution?

• Is it possible to implement either a reliable or an unreliable (process) failure detector using an unreliable communication channel?

• Give a formula for the maximum throughput of a mutual exclusion system in terms of the synchronization delay.