Predicción personalizada de primas de seguro médico usando Machine Learning

Diego J. Puentes Fernández

Ciencia de Datos

Índice

- 1. Descripción del problema
- 2. Origen y descripción de los datos
- 3. Primer procesamiento y mapeo de los datos
- 4. Construcción del dataset para modelado
- 5. Visualización de variables principales
- 6. Caracterización de Outliers en la variable objetivo
- 7. Primera Propuesta de Modelado
- 8. Segunda propuesta de Modelado: Replanteando el Problema
- 9. Resultados del modelado por intervalos personalizados

Predicción personalizada de primas de seguro médico usando Machine Learning

Diego Puentes, Universidad de La Habana Julio 2025

Descripción del problema

El objetivo de este trabajo es predecir, a partir de características personales y de salud de los individuos, el coste de la prima "out of pocket" de su seguro médico utilizando técnicas de aprendizaje automático.

Origen y descripción de los datos

Los datos utilizados provienen de tres fuentes principales: el Medical Expenditure Panel Survey (MEPS), el Clinical Classifications Software Refined (CCSR) y el Crosswalk for Clinical Information Reporting (CCIR).

- MEPS: Encuesta nacional de gastos médicos en Estados Unidos, que recopila información detallada sobre el uso de servicios de salud, gastos y seguros médicos de la población.
- CCSR: Herramienta de clasificación que agrupa diagnósticos clínicos de acuerdo a códigos ICD-10, facilitando el análisis de condiciones de salud.
- CCIR: Tabla de correspondencia que permite mapear códigos y categorías clínicas entre diferentes sistemas de clasificación.

Primer procesamiento y mapeo de los datos

Se implementó una función de mapeo para convertir las columnas de los archivos CSV originales en nombres más entendibles y descriptivos, utilizando los archivos de usuario SAS provistos por MEPS (archivos .txt). Además, se realizó un análisis exploratorio de los datos, cuyos resultados principales se resumen en la siguiente tabla:

Indicador	Valor
Demografía (fyc)	
Columnas disponibles	dwelling_unit_id, person_id, person_unique_id, panel marital_status_2022, region_2022, total_healthcare_e
Edad (mín, máx, Q1, Q3, media, mediana)	poverty_category_2022, insurance_coverage_2022, pe 0.0, 85.0, 23.0, 64.0, 43.56, 45.0
Cantidad de personas por raza	
Non-Hispanic White only	12211
Hispanic	4883
Non-Hispanic Black only	3244
Non-Hispanic Asian only	1220
Non-Hispanic Other/multi-race	873
Cantidad de personas por estado civil	
Married	8602
Never married	5495
Under 16 - not applicable	3765
Divorced	2546
Widowed	1619
Separated	397
-7	6
-8	1
Cantidad de personas por región	
South	8602
West	5693
Midwest	4498
Northeast	3443
Inapplicable	195
Cantidad de personas por categoría de pobreza	
High income	8282
Middle income	6269
Poor/negative	3725
Low income	3105
Near poor	1050
Cantidad de personas individuales	22431
Condiciones médicas (cond)	
Columnas disponibles	person_unique_id, condition_id, panel_number, cond
Condiciones médicas distintas	206
Media de condiciones por persona	4.80
Top 5 condiciones más comunes	
CIR007	5391
END010	4268
MUS010	3061
END002	2334
MBD005	2158
Primas y pagos (prpl)	
Estadísticas out_of_pocket_premium_edited	mín: 0.0, máx: 4583.33, media: 306.68, mediana: 21
Cantidad de valores válidos	13075
Empleo (jobs)	
Estadísticas hours_per_week	mín: 1.0, máx: 168.0, media: 35.83, mediana: 40.0, 0

Columnas disponibles en los datasets:

- Condiciones médicas (cond): person_unique_id, condition_id, panel_number, condition_round, age_at_diagnosis, injury_flag, icd10_code, ccsr_category_1
- Características personales y demográficas (fyc): dwelling_unit_id, person_id, person_unique_id, panel_number, age_last_birthday, sex, race_ethnicity, marital_status_2022, region_2022, total_healthcare_exp_2022, total_out_of_pocket_exp_2022, poverty_category_2022, insurance_coverage_2022, perceived_health_status, person_weight_2022
- Empleo (jobs): person_unique_id, job_id, panel_number, round_number, insurance_offered, temporary_job, salaried_employee, hourly_wage, hours_per_week
- **Historial de seguros (prpl):** person_unique_id, panel_number, round_number, insurance_coverage, out_of_pocket_premium, out_of_pocket_premium_edited

No todas estas columnas ofrecían información relevante para el objetivo del trabajo. Para facilitar el análisis y la integración de la información, se decidió crear un archivo JSON unificado por persona, con la siguiente estructura anidada de campos principales:

```
{
  "edad": ,
  "sexo": ,
  "raza_etnicidad": ,
  "estado_civil": ,
  "region": ,
  "categoria_pobreza": ,
  "cobertura_seguro": ,
  "estado_salud_percibido": ,
  "condiciones_medicas_actuales": [
    {
      "descripcion_ccsr": ,
      "edad_diagnostico":
    },
    . . .
  ],
  "condiciones_medicas_pasadas": [],
  "historial_empleo": [
    {
      "seguro_ofrecido": ,
      "trabajo_temporal": ,
      "empleado_asalariado": ,
      "salario_por_hora": ,
      "horas_por_semana":
    },
  ],
  "historial_seguros": [
    {
      "cobertura_seguro": ,
```

```
"prima_out_of_pocket_editada":
    },
    ...
]
```

Para la generación del archivo JSON final, se aplicaron los siguientes filtros y criterios de limpieza:

- Se filtró la información de cada persona para conservar únicamente los registros correspondientes al máximo número de round reflejado en su historial de seguros. Esto garantiza que no exista desfase temporal entre la información demográfica, clínica y de seguros considerada para el análisis.
- Se seleccionaron únicamente aquellas personas que tuvieran al menos una entrada válida de la variable objetivo, es decir, un valor válido de prima_out_of_pocket_editada en su historial de seguros.
- Para cada persona, se eliminaron del historial de seguros los registros que no tuvieran un valor válido de prima_out_of_pocket_editada, de modo que sólo se conservaron las entradas relevantes para el modelado.

Construcción del dataset para modelado

A partir del archivo JSON unificado, se construyó un dataset tabular donde cada fila representa un embedding asociado a una persona individual. El proceso de construcción y transformación de variables fue el siguiente:

- Se mantuvieron los valores originales de las variables numéricas.
- Se aplicó codificación one-hot (one hot encoding) a las variables categóricas principales (sexo, raza/etnicidad, estado civil, región).
- Se identificaron las 20 enfermedades (CCSR) con mayor correlación con la variable objetivo y se agregaron como features binarios (presencia/ausencia) mediante label encoding.
- Se agregó el número total de enfermedades por persona (ccsr_num_total) y el número de enfermedades no incluidas entre las 20 principales (ccsr_otra_condicion).
- Para la variable objetivo (prima_out_of_pocket_editada), si una persona tenía más de una entrada válida, se tomó la media de sus valores.

En resumen, las columnas seleccionadas y la transformación aplicada a cada una fueron:

Columna	Transformación aplicada
edad	Se mantuvo igual (numérica)
estado_salud_percibido	Label encoding (1-4)
ccsr_num_total	Se mantuvo igual (numérica)
ccsr_otra_condicion	Se mantuvo igual (numérica)
sexo_Male	One hot encoding
raza_etnicidad_Non-Hispanic Asian only	One hot encoding
raza_etnicidad_Non-Hispanic Black only	One hot encoding
raza_etnicidad_Non-Hispanic Other race or multi-race	One hot encoding
raza_etnicidad_Non-Hispanic White only	One hot encoding
estado_civil_Married	One hot encoding
estado_civil_Never married	One hot encoding
estado_civil_Separated	One hot encoding
estado_civil_Under 16 - not applicable	One hot encoding
estado_civil_Widowed	One hot encoding
region_Midwest	One hot encoding
region_Northeast	One hot encoding
region_South	One hot encoding
region_West	One hot encoding
ccsr_Essential hypertension	One hot encoding (presencia/ause
ccsr_Disorders of lipid metabolism	One hot encoding (presencia/ause
ccsr_Diabetes mellitus without complication	One hot encoding (presencia/ause
ccsr_Bacterial infections	One hot encoding (presencia/ause
ccsr_Osteoarthritis	One hot encoding (presencia/ause
ccsr_Cataract and other lens disorders	One hot encoding (presencia/ause
ccsr_Esophageal disorders	One hot encoding (presencia/aus
ccsr_Retinal and vitreous conditions	One hot encoding (presencia/ause
ccsr_Other general signs and symptoms	One hot encoding (presencia/ause
ccsr_Abnormal findings without diagnosis	One hot encoding (presencia/ause
ccsr_Other specified bone disease and musculoskeletal deformities	One hot encoding (presencia/ause
ccsr_Otitis media	One hot encoding (presencia/ause
ccsr_Osteoporosis	One hot encoding (presencia/aus
ccsr_Thyroid disorders	One hot encoding (presencia/aus
ccsr_Neurodevelopmental disorders	One hot encoding (presencia/ause
ccsr_Other and ill-defined heart disease	One hot encoding (presencia/aus
ccsr_Other specified upper respiratory infections	One hot encoding (presencia/ause
ccsr_Nutritional deficiencies	One hot encoding (presencia/aus
ccsr_Other specified inflammatory condition of skin	One hot encoding (presencia/aus
ccsr_General sensation/perception signs and symptoms	One hot encoding (presencia/aus
prima_out_of_pocket_editada	Se mantuvo igual (media por per

Cuadro 2: Resumen de las columnas y transformaciones aplicadas en el dataset final para modelado.

Visualización de variables principales

En esta sección se presentan las principales visualizaciones generadas durante el análisis exploratorio y la construcción del dataset. Todas las imágenes fueron exportadas desde el notebook y se encuentran en la raíz del proyecto.

Figura 1: Cantidad de personas por región.

Figura 2: Cantidad de personas por raza/etnicidad.

Figura 3: Cantidad de personas con cada una de las 20 enfermedades principales (CCSR).

Figura 4: Cantidad de personas por rango de edad (5 años).

Figura 5: Cantidad de personas por rango de pagos de prima (de 100 en 100).

Figura 6: Cantidad de personas por sexo.

Caracterización de Outliers en la variable objetivo

Se identificaron los outliers de la variable objetivo (prima_out_of_pocket_editada) como aquellos con |z| > 3 respecto a la media. A continuación se resumen sus características comparadas con el resto del dataset:

Característica	Outliers	Resto
Cantidad de outliers	186	10000+
Porcentaje sobre el total	1.83%	98.17%
Edad (media)	36.76	42.13
Nº total de enfermedades (media)	2.15	2.96
N^{o} de otras condiciones (media)	1.53	2.00
Sexo masculino (proporción)	0.46	0.48
Región (proporción)		
Midwest	0.27	0.23
Northeast	0.18	0.17
South	0.19	0.35
West	0.35	0.26
Estado civil (proporción)		
Married	0.55	0.48
Never married	0.20	0.23
Separated	0.00	0.01
Under 16 - not applicable	0.23	0.15
Widowed	0.01	0.04
Raza/etnicidad (proporción)		
Non-Hispanic Asian only	0.06	0.07
Non-Hispanic Black only	0.04	0.11
Non-Hispanic Other/multi-race	0.02	0.04
Non-Hispanic White only	0.74	0.64
Enfermedades principales (proporción)		
Essential hypertension	0.13	0.21
Disorders of lipid metabolism	0.11	0.16
Diabetes mellitus without complication	0.02	0.08
Bacterial infections	0.01	0.02
Osteoarthritis	0.02	0.06
Cataract and other lens disorders	0.01	0.02
Esophageal disorders	0.02	0.06
Retinal and vitreous conditions	0.01	0.02
Other general signs and symptoms	0.02	0.03
Abnormal findings without diagnosis	0.01	0.02
Other specified bone disease and musculoskeletal deformities	0.00	0.01
Otitis media	0.02	0.03
Osteoporosis	0.01	0.01
Thyroid disorders	0.05	0.07
Neurodevelopmental disorders	0.08	0.04
Other and ill-defined heart disease	0.00	0.01
Other specified upper respiratory infections	0.03	0.03
Nutritional deficiencies	0.02	0.02
Other specified inflammatory condition of skin	0.04	0.03
General sensation/perception signs and symptoms	0.00	0.00

Cuadro 3: Comparación de características entre outliers y el resto del dataset para la variable objetivo.

Los outliers representan el 1.8 % de la muestra y tienden a ser ligeramente más jóvenes, con menos enfermedades y menor proporción de condiciones crónicas que el resto. La mayoría son de raza blanca no hispana y residen en la región Oeste o Midwest, con menor presencia en el Sur. No se observa una diferencia marcada en sexo ni en estado civil, aunque hay una ligera mayor proporción de casados y menores de 16 años. En cuanto a enfermedades, los outliers presentan menor prevalencia de hipertensión, diabetes y dislipidemias.

En conclusión, los outliers no presentan características demográficas o clínicas radicalmente distintas al resto del dataset, lo que sugiere que los valores extremos de la variable objetivo pueden deberse a factores no capturados en las variables disponibles o a variabilidad natural en los datos.

Primera Propuesta de Modelado

La primera propuesta de modelado consistió en construir un modelo capaz de predecir con exactitud el valor de la prima "out of pocket" que una persona debería pagar por su seguro médico, a partir de las variables disponibles en el dataset procesado.

Sin embargo, la predicción exacta de la prima "out of pocket" resulta un reto considerable con la información disponible, y requiere considerar enfoques alternativos de modelado, técnicas de manejo de outliers y posiblemente la incorporación de variables adicionales, como se muestra a continuación.

Métricas de evaluación utilizadas

Para evaluar el desempeño de los modelos de regresión en la predicción de la prima "out of pocket", se emplearon las siguientes métricas:

- MAE (Mean Absolute Error / Error Absoluto Medio): Indica el promedio de las diferencias absolutas entre los valores predichos y los reales. Es una métrica intuitiva y robusta frente a outliers, ya que mide el error promedio en las mismas unidades que la variable objetivo.
- RMSE (Root Mean Squared Error / Raíz del Error Cuadrático Medio): Penaliza más fuertemente los errores grandes que el MAE, ya que eleva al cuadrado las diferencias antes de promediar. Es útil para identificar si el modelo comete errores grandes con frecuencia.
- R² (Coeficiente de determinación): Mide la proporción de la varianza de la variable objetivo explicada por el modelo. Un valor cercano a 1 indica buen ajuste, mientras que valores cercanos a 0 o negativos indican bajo poder predictivo.

Estas métricas son relevantes porque permiten comparar modelos de manera objetiva, considerando tanto la magnitud promedio del error (MAE), la sensibilidad a errores grandes (RMSE) y la capacidad explicativa global del modelo (R²).

Modelos para el primer problema

Para abordar la predicción de la prima "out of pocket" se seleccionaron cuatro modelos de regresión representativos:

- Linear Regression: Modelo lineal base, útil como referencia y para identificar relaciones lineales simples.
- Random Forest: Ensamble de árboles de decisión, robusto ante relaciones no lineales y capaz de manejar variables categóricas codificadas.
- Gradient Boosting: Ensamble secuencial que optimiza el error, adecuado para capturar patrones complejos y relaciones no lineales.
- XGBoost: Variante avanzada de boosting, eficiente y con regularización, ampliamente utilizada en competencias de ciencia de datos.

Estos modelos fueron elegidos por su complementariedad: permiten comparar desde un enfoque lineal simple hasta técnicas de ensamble y boosting que pueden capturar relaciones más complejas y no lineales presentes en los datos.

Resultados sin ajuste de hiperparámetros

Figura 7: Curvas de aprendizaje de los 4 modelos sin ajuste de hiperparámetros.

Modelo	MAE	RMSE	\mathbf{R}^2
LinearRegression	191.64	252.57	0.06
RandomForest	203.96	269.36	-0.07
GradientBoosting	187.45	248.91	0.08
XGBoost	198.06	260.85	-0.01

Cuadro 4: Comparación de métricas de los modelos sin ajuste de hiperparámetros.

Resultados con ajuste de hiperparámetros

Figura 8: Curvas de aprendizaje de los 4 modelos tras ajuste de hiperparámetros.

Modelo	MAE	RMSE	${f R}^2$
LinearRegression	191.64	252.57	0.06
RandomForest	188.90	250.27	0.07
GradientBoosting	187.30	248.44	0.09
XGBoost	187.36	248.76	0.08

Cuadro 5: Comparación de métricas de los modelos tras ajuste de hiperparámetros.

Conclusiones sobre el desempeño de los modelos

En general, todos los modelos presentan un desempeño modesto, con valores de MAE y RMSE relativamente altos en comparación con la media de la variable objetivo, y valores de R² bajos (cercanos a 0). Esto indica que la capacidad explicativa de los modelos sobre la variabilidad de la prima es limitada.

El ajuste de hiperparámetros mejora ligeramente el desempeño de los modelos de ensamble (Random Forest, Gradient Boosting y XGBoost), pero la mejora es marginal. El modelo lineal sirve como referencia y muestra que la relación entre las variables disponibles y la prima no es predominantemente lineal.

Las razones de este desempeño limitado están asociadas a la estructura del dataset:

- La variable objetivo presenta una alta dispersión y asimetría, con una cola de valores extremos (outliers), lo que dificulta que los modelos ajusten correctamente tanto los valores típicos como los atípicos.
- Las variables explicativas disponibles muestran correlaciones muy bajas con la variable objetivo, tanto lineales como no lineales, y en conjunto los modelos lineales apenas explican un 5 % de la variabilidad de la prima (R^2 multivariable lineal ≈ 0.05).
- Ninguna variable individualmente, ni siquiera con ajustes polinómicos, logra explicar una fracción significativa de la variabilidad de la prima (todas las correlaciones y R² individuales son cercanas a cero).
- Existen relaciones complejas y factores no observados que los modelos no pueden capturar completamente, lo que justifica la necesidad de modelos no lineales, a pesar del poco escazo éxito en esta tarea.

En conclusión, aunque los modelos avanzados de boosting y ensamble logran un desempeño ligeramente superior, la predicción exacta de la prima "out of pocket" sigue siendo un reto considerable con la información disponible.

Segunda propuesta de Modelado: Replanteando el Problema

Ante la dificultad de predecir con precisión un único valor de prima "out of pocket" para cada individuo, se propone un replanteamiento del problema: en lugar de estimar un valor puntual, predecir **intervalos de primas** que sean relevantes y útiles para la toma de decisiones.

En este enfoque, para cada individuo se busca determinar una lista de tres valores que representen límites superiores de intervalos de prima:

- Excelente: Límite superior de lo que se consideraría una prima muy baja o especialmente favorable para el perfil del individuo.
- Buena: Límite superior de una prima razonable o aceptable para el perfil del individuo.
- Regular: Límite superior de una prima que, aunque no es óptima, sigue siendo aceptable dentro del contexto del mercado y las características del individuo.

De este modo, el modelo no intenta predecir un único número exacto, sino proporcionar una referencia personalizada de rangos de prima, facilitando la comparación y la toma de decisiones informadas.

Ventajas de este enfoque:

- La alta dispersión y asimetría de la variable objetivo, así como la baja capacidad explicativa de los modelos lineales, sugieren que predecir intervalos puede ser más robusto y útil que intentar ajustar un valor puntual.
- El enfoque por intervalos permite acomodar la variabilidad natural y los factores no observados presentes en el dataset, ofreciendo una predicción más realista y accionable.
- Los intervalos pueden adaptarse a la distribución real de primas observada en el dataset, reflejando mejor la incertidumbre y la heterogeneidad de los casos individuales.

En la siguiente sección se mostrarán los resultados obtenidos aplicando este segundo enfoque de modelado basado en intervalos personalizados de prima.

Resultados del modelado por intervalos personalizados

Para cada uno de los tres límites de prima (excelente, buena y regular), se entrenaron los cuatro modelos principales tanto sin ajuste de hiperparámetros como con ajuste. A continuación se presentan primero los resultados sin ajuste y luego los resultados con ajuste de hiperparámetros.

Límite Excelente

Figura 9: Curvas de aprendizaje para el límite excelente (sin ajuste de hiperparámetros).

Modelo	MAE	RMSE	\mathbf{R}^2
LinearRegression	16.68	21.89	0.72
GradientBoosting	2.65	3.36	0.9935
RandomForest	0.00	0.00	1.00
XGBoost	0.17	0.30	0.9999

Cuadro 6: Métricas para el límite excelente (sin ajuste de hiperparámetros).

Figura 10: Curvas de aprendizaje para el límite excelente (con ajuste de hiperparámetros).

Modelo	MAE	RMSE	\mathbf{R}^2
LinearRegression	16.68	21.89	0.72
GradientBoosting	0.48	0.67	0.9997
RandomForest	0.26	0.52	0.9998
XGBoost	0.47	0.65	0.9998

Cuadro 7: Métricas para el límite excelente (con ajuste de hiperparámetros).

Límite Bueno

Figura 11: Curvas de aprendizaje para el límite bueno (sin ajuste de hiperparámetros).

Modelo	MAE	RMSE	${f R}^2$
LinearRegression	36.15	46.48	0.56
GradientBoosting	4.15	5.70	0.9933
RandomForest	0.01	0.13	1.00
XGBoost	0.25	0.53	0.9999

Cuadro 8: Métricas para el límite bueno (sin ajuste de hiperparámetros).

GradientBoosting LinearRegression EntrenamientoValidación 2.0 ₩ 36 ₩ 1.5 1.0 2000 3000 Tamaño de muestra 2000 3000 Tamaño de muestra XGBoost 2.5 2.0 WAE MAE 1.0 1.0 0.5 1000 1000 2000 3000 Tamaño de muestra

Curvas de aprendizaje (MAE) - limite_bueno

Figura 12: Curvas de aprendizaje para el límite bueno (con ajuste de hiperparámetros).

Modelo	MAE	RMSE	${f R}^2$
LinearRegression	36.15	46.48	0.56
GradientBoosting	0.73	1.07	0.9998
RandomForest	0.24	0.73	0.9999
XGBoost	0.71	1.03	0.9998

Cuadro 9: Métricas para el límite bueno (con ajuste de hiperparámetros).

Límite Regular

Figura 13: Curvas de aprendizaje para el límite regular (sin ajuste de hiperparámetros).

Modelo	MAE	RMSE	${f R}^2$
LinearRegression	56.67	69.25	0.35
GradientBoosting	5.86	7.79	0.9918
RandomForest	0.00	0.09	1.00
XGBoost	0.08	0.14	1.00

Cuadro 10: Métricas para el límite regular (sin ajuste de hiperparámetros).

GradientBoosting 3.5 3.0 57 2.5 ₩ 2.0 1.5 53 1.0 3000 naño de muestr 2000 3000 Tamaño de muestr Entrenamiento Entrenamiento 3.5 3.0 MAE 1.5 1.0

Curvas de aprendizaje (MAE) - limite_regular

Figura 14: Curvas de aprendizaje para el límite regular (con ajuste de hiperparámetros).

Modelo	MAE	RMSE	${f R}^2$
LinearRegression	56.67	69.25	0.35
GradientBoosting	0.49	0.72	0.9999
RandomForest	0.29	1.08	0.9998
XGBoost	0.64	0.92	0.9999

Cuadro 11: Métricas para el límite regular (con ajuste de hiperparámetros).

Conclusiones del modelado por intervalos

Los resultados muestran que el enfoque de predicción de intervalos personalizados permite obtener un ajuste mucho más preciso que la predicción de un valor único de prima. En todos los límites y para todos los modelos de ensamble (Random Forest, Gradient Boosting y XGBoost), los valores de MAE y RMSE son extremadamente bajos y los coeficientes de determinación \mathbb{R}^2 se acercan a 1, indicando un ajuste casi perfecto.

Incluso el modelo lineal mejora notablemente su desempeño respecto al modelado de la prima puntual, aunque sigue siendo superado por los modelos de ensamble y boosting.

En conclusión, el modelado por intervalos personalizados es una alternativa mucho más robusta y útil para este tipo de datos, ya que permite acomodar la alta variabilidad y dispersión de la variable objetivo, proporcionando referencias realistas y personalizadas para la toma de decisiones en seguros médicos.