Nombres complexes

Forme algébrique et forme trigonométrique

1

Représenter dans le plan complexe les points d'affixe respectives:

$$1+i$$
, $-1-i$, 5, -3 , $3i$, $4-4i$, $3+3i$.

Sans calcul, par des considérations géométriques, donner un argument de chacun de ces nombres.

⊳ 2

On considère le plan muni d'un repère orthonormé direct $(O, \vec{e}_1, \vec{e}_2)$. Dans chacun des cas suivants, représenter l'ensemble des points M dont l'affixe z vérifie l'égalité proposée.

1)
$$|z| = 4$$
,

4)
$$\arg(z) \equiv \frac{\pi}{6} \ [2\pi],$$

2)
$$Re(z) = -2$$
,

5)
$$\arg(z) \equiv -\frac{2\pi}{3} \ [\pi]$$

3)
$$Im(z) = 1$$
,

6)
$$arg(z) \equiv \pi \left[\frac{\pi}{4}\right]$$
.

⊳ 3

Donner la forme algébrique des nombres complexes suivants:

$$z_1 = 3 + 2i - 1 + 3i,$$
 $z_6 = (2 + 2i - 1) + 3i,$ $z_6 = (12 + 2i - 1) + 3i,$ $z_7 = \frac{1}{1+i},$

$$z_2 = 12 - 31 - 4(-3 + 61),$$
 $z_7 = \frac{1}{1+i},$ $z_7 = \frac{1}{1+i}$

$$z_3 = (2+i)(3-2i),$$
 $z_8 = \frac{1+2i}{1-2i},$

$$z_4 = (4-3i)^2$$
 $z_9 = \frac{1}{2+i} - \frac{1}{3+i},$ $z_5 = (1+i)(2-3i)(1+i),$ $z_{10} = \frac{(1+i\sqrt{3})^{31}}{(1-i)^{18}}$

Soit
$$z_1 = \frac{\sqrt{3}+\mathrm{i}}{-\sqrt{3}+\mathrm{i}}$$
 et $z_2 = \frac{4\mathrm{i}}{1-\mathrm{i}\sqrt{3}}$.

- 1) Mettre ces deux nombres sous forme trigonométrique.
- 2) En déduire la forme algébrique de z_1z_2 , $\overline{z_1}z_2^2$ et $\frac{z_1}{z_2}$.

⊳ 5

On pose $z_1 = e^{i\frac{\pi}{3}}$, $z_2 = 3e^{-i\frac{\pi}{4}}$ et $z_3 = \sqrt{2}e^{i\frac{2\pi}{3}}$. Écrire les complexes suivants sous forme trigonométrique :

$$z_1\,z_2,\quad \frac{z_1}{z_2},\quad z_1^3,\quad z_1\,z_2\,z_3,\quad z_3^4,\quad \frac{z_2}{z_3},\quad \frac{1}{z_3},\quad \overline{z_3}\,z_1\,z_2.$$

Dans chacun des cas suivants, écrire z_k sous forme trigonométrique en déduire sa forme algébrique. Mêmes questions pour \bar{z}_k et $\frac{1}{z_k}$.

$$\begin{split} z_1 &= \frac{6}{1+\mathrm{i}}, & z_4 &= -4\,\mathrm{e}^{\mathrm{i}\frac{\pi}{4}}, \\ z_2 &= (1+\mathrm{i}\sqrt{3})^4, & z_5 &= (2\sqrt{3}+2\,\mathrm{i})^5\,\mathrm{e}^{-\mathrm{i}\frac{\pi}{3}}, \\ z_3 &= 3\,\mathrm{i}\,\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}, & z_6 &= \frac{(2+2\,\mathrm{i})^6}{(1-\mathrm{i})^4}\,\mathrm{e}^{\mathrm{i}\frac{4\pi}{3}}. \end{split}$$

Exprimer un argument de chacun des complexes suivants à l'aide d'un arc-tangente :

$$z_1 = 2 + \mathrm{i}, \quad z_2 = -3 - \mathrm{i}, \quad z_3 = -\sqrt{3} + \sqrt{5} \, \mathrm{i}, \quad z_4 = \sqrt{3} - 2 \, \mathrm{i}.$$

Soit $z=\frac{1+\mathrm{i}\,\sqrt{3}}{1-\mathrm{i}}$. Déterminer les entiers naturels n pour lesquels $z^n\in\mathbb{R}$. Même question pour $z^n\in\mathrm{i}\mathbb{R}$.

▶ 9

On se propose de résoudre l'équation : $\bar{z} = jz^2$ où $z \in \mathbb{C}$ et $j = e^{i\frac{2\pi}{3}}$. Déterminer le module de toute solution de l'équation. Résoudre l'équation.

▶ 10

Résoudre dans \mathbb{C} les équations suivantes, d'inconnue z:

1)
$$2\bar{z} = i - 1$$
,

5)
$$z = 2\bar{z} - 2 + 6i$$
,

2)
$$i\bar{z} - \bar{z} + 2 - i = 0$$
,

6)
$$2z + i\bar{z} = 5 - 4i$$
,

3)
$$(2z+1-i)(i\bar{z}+i-2)=0$$
, 7) $z^2-\bar{z}+2=0$,

7)
$$z^2 - \bar{z} + 2 = 0$$
.

4)
$$\frac{\bar{z}-1}{\bar{z}+1}=i$$
,

8)
$$4z^2 + 8 |z^2| - 3 = 0.$$

▶ 11

Soit $(a,b) \in \mathbb{R}^2$. Préciser à quelles conditions les expressions suivantes existent, puis déterminer leurs modules et arguments:

1)
$$\cos(a) - i \sin(a)$$
, 4) $\frac{1 + e^{in\frac{\pi}{3}}}{1 + e^{i\frac{\pi}{3}}}$, 7) $\frac{e^{ia} + e^{ib}}{e^{ia} - e^{ib}}$.

4)
$$\frac{1+e^{in\frac{\pi}{3}}}{1+e^{i\frac{\pi}{3}}}$$
,

7)
$$\frac{e^{ia} + e^{ib}}{e^{ia} - e^{ib}}$$

2)
$$\sin(a) - i\cos(a)$$
, **5)** $1 + ie^{-ia}$

5)
$$1 + ie^{-ia}$$

3)
$$e^{ia} - 1$$
,

3)
$$e^{ia} - 1$$
, 6) $\frac{1 + i \tan(a)}{1 - i \tan(a)}$,

▶ 12

Soit M un point du plan d'affixe z.

- 1) Déterminer les points M tels quel $z + \bar{z} = |z|$.
- 2) Déterminer les points M tels que z, $\frac{1}{z}$ et 1-z aient même module.

▶ 13

Soit $z \in \mathbb{C}$. Montrer que $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \leq \sqrt{2} |z|$.

Applications à la trigonométrie

▶ 14

Soit $Z = \frac{1+\mathrm{i}}{\sqrt{3}+\mathrm{i}}$.

- 1) Déterminer la forme algébrique et la forme trigonométrique de ${\it Z}$.
- 2) En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

▶ 15 Linéarisation

Soit x un nomre réel. Linéariser $(\cos x)^2 \sin(2x)$ et $\cos^4(x) \sin^3(x)$.

▶ 16 Développements

Soit x un réel quelconque.

- 1) a. Développer $(\cos(x) + i\sin(x))^6$ à l'aide de l'identité remarquable.
 - **b.** En déduire l'expression le cos(6x) en fonction de cos(x) et de sin(6x) en fonction de sin(x).
- 2) Exprimer $\sin(5x)$ en fonction de $\sin(x)$.

Équations d'inconnue complexe, deuxième degré.

▶ 17

Factoriser dans € les expressions suivantes :

- 1) $x^2 5$.
- **4)** $x^2 + a$ où $a \in \mathbb{R}$,
- **2)** $x^2 + 1$,
- **5)** $x^2 + a$ où $a \in \mathbb{C}^*$,
- 3) $2x^2 + 5$.
- **6)** $x^2 + 2x + i$.

⊳ 18

- 1) Montrer que l'équation (E) : $z^4 + z^3 + 6z^2 + 4z + 8 = 0$ admet deux solutions imaginaires pures.
- **2)** En factorisant, résoudre l'équation (E).

▶ 19 | Calcul de racines carrées

- 1) Calculer les racines carrées complexes de -8+6i sous forme algébrique.
- 2) Pour les nombres complexes suivants :

$$-8i$$
, $-1+i$, $\sqrt{3}+i$,

- **a.** calculer les racines carrées complexes sous forme trigonométrique ;
- b. les représenter dans le plan complexe;
- **c.** calculer les racines carrées complexes sous forme algébrique;
- 3) Déduire de la question précédente les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et de $\sin\left(\frac{\pi}{12}\right)$.

▶ 20

Résoudre les équations suivantes d'inconnue $z\in\mathbb{C}$:

- 1) $z^2 (3+2i)z + 5 i = 0$, (oui, c'est moche)
- **2)** $z^4 + z^2 + 1 = 0$,
- 3) $\bullet \bullet$ θ étant un paramètre pris dans $]0, \pi[$, $z^4 + 2z^2(1 + \cos\theta)\cos\theta + (1 + \cos\theta)^2 = 0$.

▶ 21

Déterminer tous les couples (u, v) de nombres complexes tels que

$$\begin{cases} u v = \frac{1}{2}, \\ u + 2 v = \sqrt{3}. \end{cases}$$

Donner les couples solutions sous forme trigonométrique.

Racines n-ièmes complexes et résolution d'équations

▶ 22 Calcul de racines n-ièmes complexes

- 1) Déterminer les racines quatrièmes complexes de $e^{i\pi/3}$. Représenter leurs images dans le plan complexe.
- 2) Faire de même pour les racines sixièmes complexes de -8.

► 23 Racines cinquièmes de l'unité

- 1) Déterminer les racines cinquièmes de l'unité et les représenter sur un dessin.
- 2) Indépendamment de la question précédente, montrer que :

(E)
$$z^5 - 1 = 0 \iff z = 1 \text{ ou } z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2} = 0.$$

- 3) Soit $u=z+\frac{1}{z}$. Développer u^2 et exprimer $z^2+z+1+\frac{1}{z}+\frac{1}{z^2}$ en fonction de u et u^2 .
- **4)** En déduire les solutions de l'équation (E) sous forme algébrique.
- **5)** Donner les valeurs exactes de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$.

► 24

On souhaite trouver toutes les solutions complexes de l'équation

(E)
$$x^5 + x^4 + x^3 + x^2 + x + 1 = 0$$
.

- 1) Que devient le premier membre quand on le multiplie par (x-1)?
- 2) En déduire l'ensemble des solutions de l'équation cidessus. Combien a-t-on trouvé de solutions ?

 Comparer au degré de l'équation (E).
- **3)** Soit *n* un entier naturel non nul. Déterminer les solutions complexes de l'équation

$$x^{n} + x^{n-1} + \dots + x^{2} + x + 1 = 0$$

4) Même question pour l'équation $1-x+x^2-x^3+x^4=0$.

▶ 25

On résoudra les équations suivantes à l'aide de changements d'inconnues.

- 1) Résoudre $\left(\frac{z+1}{iz+1}\right)^4 = 1$.
- 2) A Résoudre $\left(\frac{z^2+1}{z^2-1}\right)^8=1$.
- 3) Soit $n \in \mathbb{N}$, $n \ge 2$. Résoudre $(z-1)^n = (z+1)^n$.

Applications à la géométrie

▶ 26

On considère le plan muni d'un repère orthonormé direct (O, i, x).

- 1) Soit D le point de coordonnées $(\sqrt{3},3)$. Quelle est son affixe z_D ?
- 2) Soit A, B, C d'affixes respectives

$$z_A = \sqrt{3} + i$$
, $z_B = -\sqrt{3} - i$, $z_C = 2i$.

- **a.** Calculer les modules des affixes de tous les points, puis placer les points dans le repère.
- **b.** Quelles conclusions géométriques peut-on tirer de l'observation des modules?
- c. Quelle est la nature du quadrilatère AOCD?
- **3)** Déterminer l'affixe du point *E* pour que *ABEC* soit un parallèlogramme.

⊳ 27

Soit A, B, C, D, M, G des points du plan, muni d'un repère orthonormé direct, d'affixes respectives a, b, c, d, z et g. On suppose A, B et C distincts.

Exprimer à l'aide des complexes les conditions suivantes :

- **1)** M est le milieu de [AB],
- **2)** Le triangle ABC est rectangle en A (puis isocèle en A, rectangle isocèle en A, équilatéral)
- **3)** *G* est le centre de gravité du triangle *ABC*.

⊳ 28

Déterminer la nature des transformations du plan qui correspondent aux applications complexes :

1)
$$z \mapsto z + i$$
,

4)
$$z \mapsto \frac{1}{2}z - i\frac{\sqrt{3}}{2}z$$
,

2)
$$z \mapsto z - 1 + i$$
,

5)
$$z \mapsto \sqrt{3}z$$
,

3)
$$z \mapsto iz$$
,

6)
$$z \mapsto -z$$
.

▶ 29

Soit A et B les points du plan complexe d'affixes respectives $z_A=1+\mathrm{i}$ et $z_B=\sqrt{2}\,\mathrm{i}$.

- 1) Déterminer la nature du triangle OAB.
- 2) Soit O_1 , A_1 et B_1 les images respectives de O, A et B par la translation de vecteur \vec{v} d'affixe -2+3i. Déterminer l'affixe des points O_1 , A_1 , B_1 .
- 3) Soit O_2 , A_2 et B_2 les images respectives de O, A et B par l'homothétie de centre O et de rapport B. Calculer la distance A_2B_2 .

⊳ 30

Soit $z_A=2+2i$ et $z_B=1-\mathrm{i}\sqrt{3}$, A et B les points associés respectivement à z_A et z_B dans le plan complexe. On appelle C l'image de A par la rotation de centre O et d'angle $\frac{5\pi}{6}$.

- 1) Calculer l'affixe z_C de C.
- 2) Prouver que $\frac{z_C-z_B}{z_A-z_B}$ est un imaginaire pur. Calculer le module de ce quotient.
- 3) En déduire la nature du triangle ABC.

▶ 31

Déterminer, dans chaque cas, l'ensemble M des points du plan dont l'affixe z vérifie :

- 1) |z-2i|=|z+2|;
- **2)** |iz-1| = |z+2|.

► 32 Égalité du parallélogramme

1) Montrer que, pour tous complexes z et z':

$$|z+z'|^2 + |z-z'|^2 = 2(|z|^2 + |z'|^2).$$

2) En déduire que dans un parallélogramme ABCD :

$$AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2$$
.

► 33 Théorème d'Al-Kashi (loi des cosinus)

À l'aide des nombres complexes, montrer que dans tout triangle ABC:

$$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cos(\overrightarrow{AB}, \overrightarrow{AC}).$$