Introduction

Why use R?

Why not use a spreadsheet?

Todays workshop

- A common scenario
- A friend has emailed you her data in a spreadsheet
- Todays workshop is not about impressing with R code

Why not use a spreadsheet?

- Data manipulation in Excel is VERY risk and time consuming
- A rage of software packages are available for Excel
- Large data sets can exceed the size limits of standard programs
- Spreadsheets don't have the inherent understanding of statistics that R has
- For example handling of NA's
- R is hot!

Why use R?

Why use R?

- Its free
- Its available on most operating systems Windows, OS X, Linux
- There are huge numbers of packages available
- Its becoming the international standard for statistics

Getting Started

Some References

References

- [1] James P. Howard. R Cookbook. O'Reilly Media, Inc, 2011.
- [2] Phil Spector. Data Manipulation with R. Use R series Springer, 2008

Getting Started

Installing R!

Download it

- Open http://www.r-project.org
- Click CRAN (Under download on Top Left)
- Click http://cran.ms.unimelb.edu.au/ University of Melbourne

Windows

- Select Windows
- Select Base
- Download R (suggest latest version)

OS X

- Select Select OS X
- Select R-3.2.2.pkg (or the version that matches your OS version)

Getting Started

How about RStudio

- https://www.rstudio.com/products/rstudio/download/
- Its also on your thumb drive

Getting Started

 $Basic\ steps$

```
2+5
## [1] 7
# Create a sequence of numbers
X = 2:10
# Display basic statistical measures
summary(X)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 4 6 6 8 10
# use q() to quit
```

Getting Started

 $Help\ Functions$

To access the documentation type

help.start() help(summary) args(summary) example(sd) ??package

Help Functions

Search the Web

To search R documentation

- RSiteSearch("key phrase")
- help(adf.test,package="tseries")
- To search for a tutorial for a package vignette(package="packagename")
- For an intro to vignettes see https://cran.r-project.org/web/packages/sos/vignettes/sos.pdf
- Examples on the web http://shiny.rstudio.com/gallery/

Custom Google search focused on R-specific websites

http://rseek.org

Coding Q&A site

http://stackoverflow.com http://stats.stakexchange.com

Some manners

Iterative development

Working Creatively

Research on how to work creatively based on case studies of successful R&D projects developed into Agile

- Keep the manages away
- Work sustainably
- People over process
- Iterative development

Basic R Data types

R Data types

Lists, frames and tables

Vectors

- Vectors $l \leftarrow c(1, 3, 4, 7, 11)$
- Refer to elements using array l[c(2,5)] 2nd and 5th elements of l

Data Frames

```
a <- c(35,23,24,65)
e <- c("Peter", "John", "Mark", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
team <- data.frame(a,e,f)
names(team) <- c("Age","Names","Passed") # variable names
str(team)

## 'data.frame': 4 obs. of 3 variables:
## $ Age : num 35 23 24 65
## $ Names : Factor w/ 3 levels "John","Mark",..: 3 1 2 NA
## $ Passed: logi TRUE TRUE TRUE FALSE</pre>
```

Reading our file

Lets read the table

Check the current directory

Where are we

```
getwd()
setwd("/Users/pcru/SizeDoesMatter1")
dir() #This lists the files
ls() #This lists the variables
```

http://www.statmethods.net/input/contents.html

Lets read the table

 $Reading\ a\ table$

To read a csv table as a table try

```
tab1 \leftarrow \textbf{as.matrix}(\textbf{read.csv}(\textbf{file} = "filetable.csv", sep=",", header=FALSE))
```

But our table is an excel file

- What about a package?
- http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
- Lets use the R package xlsx

Getting help on packages

R Packages CRAN

0101111

Where from

- install command
- install.packages(pkgs)

Citing Packages

• Citing packages

```
x=citation()
x1=citation(package="RSQLite")
toBibtex(x)

sessionInfo()
packages_in_use \( \to \color \) (sessionInfo()$basePkgs, names(sessionInfo()$loadedOnly))
the_citations_list \( \to \lambda \) lapply(X=packages_in_use, FUN=citation)
the_citations_list
```

```
sessionInfo()
## R version 3.1.2 (2014-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
##
## locale:
## [1] C
## attached base packages:
## [1] stats
               graphics grDevices utils
                                             datasets base
## other attached packages:
## [1] knitr_1.11
##
## loaded via a namespace (and not attached):
## [1] evaluate_0.7.2 formatR_1.2
                                    highr_0.5
                                                  methods_3.1.2
## [5] stringr_0.6.2 tools_3.1.2
x<-citation()
toBibtex(x)
## @Manual{,
   title = {R: A Language and Environment for Statistical Computing},
##
##
     author = {{R Core Team}},
##
     organization = {R Foundation for Statistical Computing},
   address = {Vienna, Austria},
     year = {2014},
##
##
     url = {http://www.R-project.org/},
## }
```

Lets read the table

 $An\ example$

```
table1—read.xlsx2("1_R Wkshp_dummy data_OTU table.xlsx", sheetName = "Sheet1", header=FALSE,rowNames=FALSE, transpose=TRUE, endRow=18)
```

Loading the xlsx package

```
## Loading required package: xlsx
## Warning: package 'xlsx' was built under R version 3.1.3
## Loading required package: rJava
## Warning: package 'rJava' was built under R version 3.1.3
## Loading required package: methods## Loading required package:
xlsxjars## Loading required package: xtable
```

Lets read the table

The columns are wrong

	X1	X2	Х3	X4	X5	X6	X7
1	Group	Contaminated					
2	Site	1			2		
3	Sample ID	10000	10001	10002	10003	10004	10005
4	Rep	1	2	3	1	2	3
5	phormidiaceae	24872	24872	5822	7538	7201	7538
6	streptococcaceae	11	7	14	8	10	8

Lets read the table

 $Transpose\ the\ table$

Transposing

We need to transpose the table and set the column names correctly

```
table1t=setNames(data.frame(t(table1[,-1])),table1[,1])
```

http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=Ecdat/man/read.transpose.
Rd&d=R_CC http://stackoverflow.com/questions/17288197/reading-a-csv-file-organized-horizonta

Fields across many columns

Replicating first column

Lets do it the easy way first

```
ctridx<-which(table1t$Group=="Control")
table1t$Group[1:48]<-"Contaminated"
table1t$Group[(ctridx+1):48]<-"Control"</pre>
```

```
ttt ←tablelt$Site
for(i in c(2:length(tablelt$Site)))
{
    temp←as.character(tablelt$Site[i])
    tempb←as.character(ttt[i-1])
    if(tablelt$Site[i]=="")
    {
        ttt[i]←tempb
    }
    if(!tablelt$Site[(i)]=="")
    {
        ttt[i]←temp
    }
}
ttt[i]←temp
}
}
tablelt$Site←ttt
```

```
## X3
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X4
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X5
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X6
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X7
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X8
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X9
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X10
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X11
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X12
## Levels: 1 2 3 4 FALSE TRUE
## X13
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X14
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X15
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X16
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X17
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X18
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X19
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X20
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X21
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X22
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X23
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X24
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X25
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X26
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X27
## Levels: 1 2 3 4 FALSE TRUE
## X28
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X29
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X30
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X31
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X32
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X33
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X34
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X35
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X36
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X37
```

```
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X38
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X39
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X40
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X41
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X42
## Levels: 1 2 3 4 FALSE TRUE
## X43
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X44
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X45
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X46
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X47
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X48
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X49
## 4
## Levels: 1 2 3 4 FALSE TRUE
## rowNames
## FALSE
## Levels: 1 2 3 4 FALSE TRUE
## transpose
## TRUE
## Levels: 1 2 3 4 FALSE TRUE
```

Working with strings

How to work with strings

 $stringer\ package$

• require(stringr)

Lets look at this package

• stri_c(str1, str2)

concatenates two string

• str_len(str)

```
require(stringr)

## Loading required package: stringr

table1t$Rep<-str_replace(table1t$Rep,"[rep]{3}?","\\1")
table1t$Rep<-str_replace(table1t$Rep,"A","1")
table1t$Rep<-str_replace(table1t$Rep,"B","2")
table1t$Rep<-str_replace(table1t$Rep,"C","3")
table1t$Rep<-as.factor(table1t$Rep)</pre>
```

Lets read the table

Reading a table of other types

- http://www.statmethods.net/input/importingdata.html
- $\bullet \ \text{http://stackoverflow.com/questions/17288197/reading-a-csv-file-organized-horizontally}$
- http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=Ecdat/man/read.transpose. Rd&d=R_CC
- Input files from Stata

```
\begin{array}{l} \textbf{library} \, (\, \texttt{foreign} \, ) \\ \texttt{mydata} \, \leftarrow \, \textbf{read} \, . \, \texttt{dta} \, (\, "\, \texttt{c:/mydata.dta"} \, ) \end{array}
```

Morning Tea Time

Back in 20min

Need coffee!!

Working with Data Types

Lets read the next table

 $Reading\ a\ table\ using\ xlxs$

```
setwd("/Users/pcru/SizeDoesMatter1")
#dir()
table2<-read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx", sheetName ="Sheet2")</pre>
```

		O.1	C 1 ID	D	O :11 1 4	C 1 11 /: 1 /
	Group	Site	Sample.ID	Rep	Spill.date	Sample.collection.date
1	Contaminated	1	10000	1	14-May-14	15.5.14
2	Contaminated	1	10001	2	14-May-14	15.5.14
3	Contaminated	1	10002	3	14-May-14	15.5.14
4	Contaminated	2	10003	1	14-May-14	15.5.14
5	Contaminated	2	10004	2	14-May-14	15.5.14
6	Contaminated	2	10005	3	14-May-14	15.5.14

Reading a table Oh NO

- All columns have been set to factors
- Dates have different formats

```
str(table2[,1:11])
## 'data.frame': 48 obs. of 11 variables:
                            : Factor w/ 2 levels "Contaminated",..: 1 1 1 1 1 1 1 1 1 1 ...
                            : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 2 2 2 1 1 1 2 ...
## $ Site
## $ Sample.ID
                            : Factor w/ 18 levels "10000", "10001", ...: 1 2 3 4 5 6 7 8 9 1 .
                            : Factor w/ 9 levels "1","2","3","A",..: 1 2 3 1 2 3 7 8 9 7 ...
## $ Rep
## $ Spill.date
                            : Factor w/ 2 levels "14-May-14", "N/A": 1 1 1 1 1 1 1 1 1 1 1 ...
## $ Sample.collection.date: Factor w/ 4 levels "15.5.14", "17/5/14",..: 1 1 1 1 1 2 2 2 2
##
   $ labnum
                            : Factor w/ 36 levels "2000", "2001", ...: 1 2 3 4 5 6 7 8 9 19 ...
## $ phosphate..ppb.
                            : Factor w/ 39 levels "10", "105", "108", ...: 27 30 28 26 25 27 12
## $ ammonia..ppb.
                            : Factor w/ 41 levels "10", "103", "1042", ...: 10 14 15 6 7 4 31 34
                            : Factor w/ 38 levels "1","10","11",...: 20 23 21 25 17 18 16 14
## $ chlorophyll..ug.L.
                            : Factor w/ 31 levels "100", "120", "31", ...: 5 4 3 7 6 5 8 7 9 11
   $ DO....
```

Lets break it down

First lets reed a few rows only

```
table2<-read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx", sheetName = "Sheet"
sapply(table2,mode)
##
                           Site
                                    Sample.ID
                                                                 Spill.date
           Group
                                                         Rep
     "character"
                                     "numeric"
                                                 "character"
                                                                "character"
##
                      "numeric"
##
        rowNames as.Data.frame
       "logical"
                      "logical"
sapply(table2,class)
##
           Group
                           Site
                                    Sample.ID
                                                         Rep
                                                                 Spill.date
     "character"
                      "numeric"
                                    "numeric"
                                                 "character"
                                                                "character"
##
##
        rowNames as.Data.frame
                      "logical"
##
       "logical"
```

Setting the data types

colClasses

- The variable colClasses can be used to specify the row types.
- \bullet We need to set $\mathbf{stringsAsFactor} {=} \mathbf{FALSE}$ or all columns with be loaded as factors
- The dates are in a non standard format so we need to read them as chars first

```
table2b<-read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx", sheetName = "SheetName" = 
sapply(table2,class)
##
                                                                                                                                                                                                                                                                                                                  Sample.ID
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Spill.date
                                                                                              Group
                                                                                                                                                                                                                                   Site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Rep
                                                                                                                                                                                                                                                                                                                  "numeric"
                                                                                                                                                                                                                                                                                                                                                                                                                            "character"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       "character"
##
                                            "character"
                                                                                                                                                                                      "numeric"
 ##
                                                                  rowNames as.Data.frame
 ##
                                                                "logical"
                                                                                                                                                                                       "logical"
```

Setting the Date Type

```
table2f<-table2
table2f$Spill.date<-as.Date(table2f$Spill.date,"%d-%b-%y")</pre>
table2f$Sample.collection.date<-as.Date(table2f$Sample.collection.date,"%d.%m.%y")
## Error in as.Date.default(table2f$Sample.collection.date, "%d.%m.%y"):
do not know how to convert 'table2f$Sample.collection.date' to
class "Date"
#sapply(table2f,mode)
sapply(table2f,class)
##
           Group
                          Site
                                    Sample.ID
                                                        Rep
                                                               Spill.date
##
     "character"
                     "numeric"
                                    "numeric"
                                                "character"
                                                                    "Date"
       rowNames as.Data.frame
##
##
       "logical"
                     "logical"
```

Setting the Date Type

colClasses

- The as.Data method can take a format string as the second variable
- The format strings are described in help on strptime
- But Spill.data has **two formats**
- We can use the if else function to combine them

```
table2bf<-table2b
table2bf$Spill.date<-as.Date(table2bf$Spill.date,"%d-%b-%y")
cdate1<-as.Date(table2bf$Sample.collection.date,"%d.%m.%y")</pre>
cdate2<-as.Date(table2bf$Sample.collection.date,"%d/%m/%y")</pre>
table2bf$Sample.collection.date<-as.Date(ifelse(!is.na(cdate1),as.Date(cdate1),as.Date(cdate1)
table2bf$Group<-as.factor(table2bf$Group)</pre>
table2bf$Rep<-as.factor(table2bf$Rep)</pre>
na_count <-sapply(table2bf, function(y) sum(length(which(is.na(y)))))</pre>
na_count
##
                     Group
                                               Site
                                                                   Sample.ID
                                                  0
##
                         0
##
                       Rep
                                         Spill.date Sample.collection.date
##
##
                    labnum
                                  phosphate..ppb.
                                                            ammonia..ppb.
##
                                                                   rowNames
       chlorophyll..ug.L.
                                             DO....
##
##
                                                  0
                                                                           0
##
             as.Data.frame
##
dated <- table 2 bf $Sample.collection.date - table 2 bf $Spill.date
```

Working with string

Lets read the next table

require(stringr)

Just fix the Rep column using the stringer package again

```
table2bf$Rep<-str_replace(table2bf$Rep,"[rep]{3}?","\\1")
table2bf$Rep<-str_replace(table2bf$Rep,"A","1")
table2bf$Rep<-str_replace(table2bf$Rep, "B", "2")</pre>
table2bf$Rep<-str_replace(table2bf$Rep, "C", "3")
table2bf$Rep<-as.factor(table2bf$Rep)
str(table2bf)
## 'data.frame': 48 obs. of 13 variables:
## $ Group
                         : Factor w/ 2 levels "Contaminated",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site
                         : num 1 1 1 2 2 2 1 1 1 2 ...
## $ Sample.ID
                         : num 10000 10001 10002 10003 10004 ...
                         : Factor w/ 3 levels "1", "2", "3": 1 2 3 1 2 3 1 2 3 1 ...
## $ Rep
                : Date, format: "2014-05-14" "2014-05-14" ...
## $ Spill.date
## $ Sample.collection.date: Date, format: "2014-05-15" "2014-05-15" ...
## $ labnum
                : num 2000 2001 2002 2003 2004 ...
## $ phosphate..ppb.
                         : num 3020 3253 3169 2999 2879 ...
## $ ammonia..ppb.
                         : num 13880 14598 14676 10984 11657 ...
## $ chlorophyll..ug.L. : num 302 323 315 352 289 296 254 248 250 220 ...
## $ DO....
                         : num 34 33 31 38 36 34 40 38 41 45 ...
## $ rowNames
                         : logi FALSE FALSE FALSE FALSE FALSE ...
## $ as.Data.frame
                      : logi FALSE FALSE FALSE FALSE FALSE ...
```

How to I merge two data sets

How to I merge two data sets

Using the merge command

The inbuilt command merge

- R has a command merge
- Lets start looking at the first 9 lines of the tables and merge them using the Sample ID
- Because otherwise its not uniques

```
\begin{aligned} \mathbf{merge}(x, \ y, \ \mathbf{by} &= \mathbf{intersect}\left(\mathbf{names}(x), \ \mathbf{names}(y)\right), \\ \mathbf{by}.x &= \mathbf{by}, \ \mathbf{by}.y &= \mathbf{by}, \ \mathbf{all} = \mathrm{FALSE}, \ \mathbf{all}.x &= \mathbf{all}, \ \mathbf{all}.y &= \mathbf{all}, \\ \mathbf{sort} &= \mathrm{TRUE}, \ \mathrm{suffixes} &= \mathbf{c}(".x",".y"), \\ \mathrm{incomparables} &= \mathrm{NULL}, \ \ldots) \end{aligned}
```

```
tab1c<-table1t[1:9,]
tab2c<-table2b[1:9,]
m1<-merge(tab1c,tab2c,by.x="Sample ID",by.y="Sample.ID")
m2<-merge(table1t,table2bf,by.x=c("Group","Site","Sample ID"),by.y=c("Group","Site","Sample
m3<-merge(table1t,table2bf,by.x=c("Group","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Sample ID","Rep"),by.y=c("Group","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site","Site
```

Lunch Time

Back in 30 min Provided

How to I append two data sets

Lets load a third data set

Follow up data from contaminated site

```
table3f-read.xlsx2("3_Follow up data from contaminated site_MK.xlsx", sheetName = "Sheet1", header=TF table3f-table3f-table3f-spill.date="Sheet1", header=TF table3f-spill.date="Sheet1", header=TF table3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale3f-spill.date=Tbale
```

How to I append two data sets

Lets load a third data set

Joining table 3 to are merged tables

- We need to be careful to match everything
- Install the plyr package This has lots of useful functions for renaming var etc
- This means we need columns for corynebacteriaceae and porphyromondaceae
- should these be NA or 0
- we will do one of each. generally we would use NA but in this case 0 is perhaps better

```
require (plyr)
Sample.ID←rep(20000,3)
table3fi←cbind(table3f,Sample.ID)
#how many columns I can't count
ncol(table3fi)
ncol(m3)
#now get the cols all right
table3fii←table3fi [c(1,2,24,3,4:23)]
m3i←m3[c(1:4,19:20,5:18,21:26)]
setdiff(names(m3i),names(table3fii))
m3i←rename(m3i,c("Sample ID"="Sample.ID"))
corynebacteriaceae←rep(0,nrow(table3fii))
```

```
porphyromondaceae-rep(NA, nrow(table3fii))
          table3fiii←cbind(table3fii, corynebacteriaceae, porphyromondaceae) setdiff(names(m3ii),names(table3fiii))
          \hspace{.1cm} \hspace{.1
         m3ii[,c(1:4)] ← sapply (m3ii[,c(1:4)], as.character) 
#m3ii[,c("Site")] ← sapply (m3ii[,c("Site")], as.character)
         \begin{array}{l} table 3 fiii \left[\;, \mathbf{c}\left(1{:}4\right)\right] \leftarrow \mathbf{sapply}\left(\; table 3 fiii \left[\;, \mathbf{c}\left(1{:}4\right)\right]\;, \mathbf{as}\;. \mathbf{character}\right) \\ table 3 fiii \left[\;, \mathbf{c}\left(7{:}24\right)\right] \leftarrow \mathbf{sapply}\left(\; table 3 fiii \left[\;, \mathbf{c}\left(7{:}24\right)\right]\;, \mathbf{as}\;. \mathbf{numeric}\right) \\ table 4 \leftarrow \mathbf{rbind}\left(\; m3ii\;, \; table 3 fiii\;\right) \end{array}
          table 4 [,1] \leftarrow \mathbf{sapply}(table 4 [,1], \mathbf{as.factor})
require(plyr)
 ## Loading required package: plyr
Sample.ID<-rep(20000,3)
table3fi<-cbind(table3f,Sample.ID)</pre>
 #how many columns I can't count
ncol(table3fi)
## [1] 24
ncol(m3)
## [1] 27
#now get the cols all right
table3fii<-table3fi[c(1,2,24,3,4:23)]
m3i < -m3[c(1:4,19:20,5:18,21:26)]
setdiff(names(m3i),names(table3fii))
## [1] "Sample ID"
                                                                                                                         "corynebacteriaceae" "porphyromondaceae"
m3ii<-rename(m3i,c("Sample ID"="Sample.ID"))</pre>
corynebacteriaceae<-rep(0,nrow(table3fii))</pre>
porphyromondaceae<-rep(NA,nrow(table3fii))</pre>
table3fiii<-cbind(table3fii, corynebacteriaceae, porphyromondaceae)
setdiff(names(m3ii),names(table3fiii))
## character(0)
m3ii[,c(7:24)] \leftarrow sapply(m3ii[,c(7:24)],as.numeric)
m3ii[,c(1:4)] \leftarrow sapply(m3ii[,c(1:4)],as.character)
\#m3ii[,c("Site")] < -sapply(m3ii[,c("Site")],as.character)
table3fiii[,c(1:4)] <- sapply(table3fiii[,c(1:4)],as.character)</pre>
table3fiii[,c(7:24)] <- sapply(table3fiii[,c(7:24)],as.numeric)
table4<-rbind(m3ii,table3fiii)</pre>
table4[,1] <- sapply(table4[,1],as.factor)</pre>
```

Another Break

Fat or wide

Reshaping Tables reshape2
reshape2
vignette(reshape)

R package

RQLlite

RSQLite

- Suppose merge is not enough? I know about SQL and want to do joins
- Lets Install RSQLite
- We also need to install DBI

```
## Loading required package: RSQLite## Loading required package:
gsubfn## Loading required package: proto
## Warning in doTryCatch(return(expr), name, parentenv, handler):
unable to load shared object '/Library/Frameworks/R.framework/Resources/modules//R.X11.so,'
dlopen(/Library/Frameworks/R.framework/Resources/modules//R.X11.so,
6): Library not loaded: /opt/X11/lib/libSM.6.dylib## Referenced
from: /Library/Frameworks/R.framework/Resources/modules//R.X11.so##
Reason: image not found
## Could not load tcltk. Will use slower R code instead.## Loading
required package: chron
## Warning: package 'chron' was built under R version 3.1.3
## Loading required package: tcltk
```

```
db <- dbConnect(SQLite(), dbname="Test.sqlite")
#getConfig()fstaged.queries
# sqldf(attach "Test1.sqlite" as new)
dbBegin(db)
## [1] TRUE
dbWriteTable(db,"table1",table1t,overwrite=TRUE)
## [1] TRUE</pre>
```

dbl	ReadTable(db,"table1")				
##		Group	Site	Sample.ID	Rep	phormidiaceae
##	X2	Contaminated	1	10000	1	24872
##	ХЗ	Contaminated	1	10001	2	24872
##	X4	Contaminated	1	10002	3	5822
##	X5	Contaminated	2	10003	1	7538
##	X6	Contaminated	2	10004	2	7201
##	X7	Contaminated	2	10005	3	7538
##	X8	Contaminated	1	10006	1	8467
##	Х9	Contaminated	1	10007	2	7340
##	X10	Contaminated	1	10008	3	8467
##	X11	Contaminated	2	10000	1	2000
##	X12	Contaminated	2	10001	2	2083
##	X13	Contaminated	2	10002	3	1899
##	X14	Contaminated	1	10003	1	1947
##	X15	Contaminated	1	10004	2	2733
##	X16	Contaminated	1	10005	3	2385
##	X17	Contaminated	2	10006	1	800
##	X18	Contaminated	2	10007	2	738
##	X19	Contaminated	2	10008	3	800
##	X20	Contaminated	1	10003	1	200
##	X21	Contaminated	1	10004	2	189
##	X22	Contaminated	1	10005	3	271
	X23	Contaminated	2	10006	1	46
	X24	Contaminated	2	10007	2	62
	X25	Contaminated	2	10008	3	94
	X26	Contaminated	3	10009	1	24
	X27	Control	3	10010	2	64
	X28	Control	3	10011	3	21
##	X29	Control	4	10012	1	56
##	X30	Control	4	10013	2	27
	X31	Control	4	10014	3	53
	X32	Control	3	10015	1	115
	X33	Control	3	10016	2	97
	X34	Control	3	10017	3	45
	X35	Control	4	10009	1	33
	X36	Control	4	10010	2	51
	X37	Control	4	10011	3	47
	X38	Control	3	10012	1	105
	X39	Control	3	10013	2	72
	X40	Control	3	10014	3	115
	X41	Control	4	10015	1	18
	X42	Control	4	10016	2	54
	X43	Control	4	10017	3	33
##	X44	Control	3	10012	1	36

##	X45	Control	3	10013	2	58
	X46	Control	3	10014	3	36
	X47	Control	4	10015	1	60
	X48	Control	4	10016	2	164
	X49	Control	4	10017	3	79
	rowNames	FALSE		FALSE		FALSE
##	transpose	TRUE	TRUE	TRUE	TRUE	TRUE
##	01 0110 P 0 2 0	streptococcad				
	X2	a of	11	33		131
	Х3		7	40		200
	X4		14	40		200
##	X5		8	95		151
##	X6		10	83		140
##	X7		8	95		151
##	X8		5	29		132
##	Х9		5	51		168
	X10		5	29		132
##	X11		10	34		97
	X12		17	38		91
##	X13		27	31		51
##	X14		0	0		2
##	X15		1	0		1
##	X16		0	0		2
##	X17		26	33		34
##	X18		22	58		42
##	X19		26	33		34
##	X20		6	5		39
##	X21		2	3		23
##	X22		5	1		39
##	X23		3	9		55
##	X24		1	5		95
##	X25		3	0		55
##	X26		2	6		36
##	X27		3	3		36
	X28		0	4		30
	X29		1	30		79
##	X30		5	9		129
	X31		1	1		124
	X32		0	10		52
	Х33		4	6		13
	X34		0	2		9
	X35		4	4		11
	X36		0	10		41
	X37		0	3		29
##	X38		10	39		288

##	X39	10	29	413
	X40	12	34	481
	X40 X41	5	2	43
	X42	3	5	50
	X43	4	5	86
	X44	10	4	28
	X45	10	1	
	X46	12	0	28 44
	X47	4	7	48
	X48	2	11	111
	X49	3	5	88
	rowNames	FALSE	FALSE	FALSE
##	transpose	TRUE	TRUE	TRUE
##	cranspose	verrucomicrobiaceae		
	X2	977	351	20
	Х3	1500	246	76
	X4	844	246	76
	X5	1006	41	1
	X6	1112	83	6
##	X7	1195	41	0
##	X8	1805	23	0
##	Х9	1906	28	0
##	X10	1902	23	0
##	X11	1244	40	1
##	X12	1933	40	1
##	X13	1244	80	0
##	X14	251	1	0
##	X15	271	0	1
##	X16	299	0	0
##	X17	1348	209	1
	X18	3612	205	0
	X19	1348	209	3
	X20	176	1	0
	X21	211	0	3
	X22	183	1	0
	X23	544	0	9
	X24	611	1	0
	X25	544	0	1
	X26	471	0	0
	X27	500	0	1
	X28	541	0	0
	X29	1405	3	1
	X30	1678	1	1
	X31	1360	0	0
##	X32	1590	0	0

	X33	39		0	0
	X34	19		1	0
##	X35	121	.3	7	2
	X36	346		12	1
##	X37	168		3	0
##	X38	59	90	1	1
##	X39	59	98	0	0
##	X40	63	39	1	0
##	X41	94	<u>1</u> 9	0	0
##	X42	97	74	0	0
##	X43	66	52	0	0
##	X44	26	57	0	0
##	X45	24	<u>1</u> 9	2	0
##	X46	33	37	0	0
##	X47	62	25	0	0
##	X48	88	36	0	0
##	X49	79	91	0	0
##	rowNames	FALS			FALSE
##	transpose	TRU		RUE	TRUE
##		staphylococcaceae		oceanospiri	
	X2	115	274		1438
	ХЗ	342	288		1789
	X4	342	258		1789
	X5	4	365		5
	Х6	9	365		2
	X7	4	365		9
	X8	1	643		14
	Х9	1	941		14
	X10	1	711		14
	X11	0	204		93
	X12	0	229		72
	X13	0	285		93
	X14	0	8		1080
	X15	0	12		1633
	X16	1	12		1080
	X17	4	400		747
	X18	7	733		636
	X19	2	299		747
	X20	1	76		256
	X21	0	63		263
	X22	2	85		256
	X23	1	136		284
	X24	20	643		293
	X25	1	136		293
##	X26	0	31		189

##	X27	1	59	51	10
	X28	0		21	
	X29	0	143	209	96
	X30	0	124	83	34
##	X31	0		42	
##	X32	0	34	26	33
##	X33	0		109	
##	X34	0	18	52	
##	X35	0	96	27	73
	X36	0		143	
	X37	0	74	33	30
##	X38	1		458	34
##	X39	1		381	11
##	X40	0	202	316	35
##	X41	0	38	38	30
##	X42	0		54	18
##	X43	0	56	40	03
##	X44	0	62	39	94
##	X45	0	58	31	11
##	X46	0	66	37	76
##	X47	0	66	77	73
##	X48	0	167	177	78
##	X49	0	40	128	39
##	rowNames	FALSE	FALSE	FALS	SE
##	transpose	TRUE	TRUE	TRU	JE
##		synechococcaceae	rhodospirillaceae	corynebacteria	ceae
##	X2	471	1267		0
##	ХЗ	498	1597		0
##	X4	692	1844		0
##	X5	20	70		0
##	Х6	20	82		0
##	X7	48	70		0
##	X8	27	97		0
##	Х9	83	97		0
##	X10	27	97		0
##	X11	61	579		0
##	X12	61	603		0
##	X13	61	579		0
##	X14	245	2245		0
##	X15	245	2001		0
##	X16	142	2834		0
##	X17	95	1432		0
##	X18	70	1834		0
	X19	95	1432		0
	X20	101	786		0

##	X21	104	844		0
##	X22	101	826		0
##	X23	65	1833		0
##	X24	53	2528		0
##	X25	65	2999		0
##	X26	67	568		0
##	X27	128	1877		0
##	X28	152	582		0
##	X29	769	1699		0
##	X30	954	3145		0
	X31	555	1171		0
	X32	45	323		0
	X33	164	911		0
	X34	513	485		0
##	X35	75	732		0
##	X36	414	3101		0
##	X37	298	1262		0
	X38	807	3586		0
##	X39	1916	5757		0
##	X40	1120	4168		0
	X41	276	821		0
	X42	394	489		0
	X43	498	611		0
##	X44	212	1001		0
##	X45	301	889		0
##	X46	330	943		0
	X47	521	1300		0
	X48	1220	3013		0
	X49	383	1255		0
##	rowNames	FALSE	FALSE		ALSE
##	${\tt transpose}$	TRUE	TRUE	7	ΓRUE
##		porphyromondaceae			
	X2	0			
	ХЗ	0			
	X4	0			
	Х5	0			
##		0			
##	X7	0			
	X8	0			
##		0			
	X10	0			
	X11	0			
	X12	0			
	X13	0			
##	X14	0			

```
## X15
                               0
## X16
## X17
                               0
## X18
                               0
## X19
                              0
## X20
                              0
## X21
                              0
## X22
                               0
## X23
                              0
## X24
                               0
## X25
                              0
## X26
                               0
## X27
                              0
## X28
                               0
## X29
                               0
## X30
## X31
                               0
## X32
                              0
## X33
                              0
## X34
                              0
## X35
                              0
## X36
                              0
## X37
                              0
## X38
                              0
## X39
                              0
## X40
                              0
## X41
                              0
## X42
                              0
## X43
                              0
## X44
                              0
## X45
## X46
                              0
## X47
                               0
## X48
                               0
## X49
                               0
                          FALSE
## rowNames
## transpose
                           TRUE
dbListFields(db,"table1")
                                                       "Site"
    [1] "row_names"
                               "Group"
    [4] "Sample ID"
                               "Rep"
                                                       "phormidiaceae"
##
                                "vibrionaceae"
                                                       "enterobacteriaceae"
   [7] "streptococcaceae"
## [10] "verrucomicrobiaceae" "chloroflexaceae"
                                                       "aeromonadaceae"
## [13] "staphylococcaceae"
                                "clostridiaceae"
                                                       "oceanospirillaceae"
## [16] "synechococcaceae"
                               "rhodospirillaceae"
                                                       "corynebacteriaceae"
```

```
## [19] "porphyromondaceae"
dbListTables(db)
## [1] "table1"
dbGetQuery(db, "SELECT * from table1")
##
      row_names
                         Group Site Sample ID
                                                   Rep phormidiaceae
## 1
             X2 Contaminated
                                   1
                                          10000
                                                     1
                                                                24872
## 2
             X3 Contaminated
                                   1
                                          10001
                                                     2
                                                                24872
## 3
             X4 Contaminated
                                          10002
                                                     3
                                                                 5822
                                   1
## 4
             X5 Contaminated
                                          10003
                                                                 7538
                                   2
                                                     1
## 5
             X6 Contaminated
                                   2
                                          10004
                                                     2
                                                                 7201
## 6
             X7 Contaminated
                                   2
                                          10005
                                                     3
                                                                 7538
## 7
             X8 Contaminated
                                          10006
                                                                 8467
                                   1
                                                     1
## 8
                                                     2
             X9 Contaminated
                                   1
                                          10007
                                                                 7340
## 9
            X10 Contaminated
                                          10008
                                                     3
                                                                 8467
                                   1
## 10
            X11 Contaminated
                                   2
                                          10000
                                                     1
                                                                 2000
## 11
            X12 Contaminated
                                   2
                                          10001
                                                     2
                                                                 2083
## 12
            X13 Contaminated
                                   2
                                          10002
                                                     3
                                                                 1899
## 13
            X14 Contaminated
                                   1
                                          10003
                                                     1
                                                                 1947
## 14
            X15 Contaminated
                                                     2
                                          10004
                                                                 2733
                                   1
## 15
            X16 Contaminated
                                   1
                                          10005
                                                     3
                                                                 2385
## 16
            X17 Contaminated
                                   2
                                          10006
                                                                  800
                                                     1
## 17
            X18 Contaminated
                                   2
                                          10007
                                                     2
                                                                  738
## 18
                                                                  800
            X19 Contaminated
                                   2
                                          10008
                                                     3
## 19
            X20 Contaminated
                                          10003
                                                                  200
                                                     1
            X21 Contaminated
## 20
                                          10004
                                                     2
                                                                  189
                                   1
## 21
            X22 Contaminated
                                   1
                                          10005
                                                     3
                                                                  271
## 22
                                   2
            X23 Contaminated
                                          10006
                                                     1
                                                                   46
## 23
            X24 Contaminated
                                   2
                                          10007
                                                     2
                                                                   62
## 24
                                   2
            X25 Contaminated
                                          10008
                                                     3
                                                                   94
## 25
                                          10009
                                                                   24
            X26 Contaminated
                                   3
                                                     1
## 26
            X27
                      Control
                                   3
                                          10010
                                                     2
                                                                   64
## 27
            X28
                      Control
                                   3
                                          10011
                                                     3
                                                                   21
## 28
             X29
                      Control
                                   4
                                          10012
                                                     1
                                                                   56
## 29
             X30
                      Control
                                   4
                                          10013
                                                     2
                                                                   27
## 30
             X31
                      Control
                                          10014
                                                     3
                                                                   53
## 31
             X32
                                   3
                      Control
                                          10015
                                                     1
                                                                  115
## 32
             X33
                      Control
                                   3
                                          10016
                                                     2
                                                                   97
## 33
            X34
                      Control
                                   3
                                          10017
                                                     3
                                                                   45
## 34
             X35
                      Control
                                          10009
                                                     1
                                                                   33
## 35
                                                     2
             X36
                      Control
                                   4
                                          10010
                                                                   51
## 36
             X37
                      Control
                                   4
                                          10011
                                                     3
                                                                   47
                      Control
## 37
            X38
                                   3
                                          10012
                                                                  105
```

##	38	X39 C	ontrol	3	10013	2	7	72
##	39	X40 C	ontrol	3	10014	3	11	L5
##	40	X41 C	ontrol	4	10015	1	1	18
##	41	X42 C	ontrol	4	10016	2	5	54
##	42		ontrol	4	10017	3	3	33
##	43		ontrol	3	10012	1		36
##	44		ontrol	3	10013	2		58
##	45		ontrol	3	10014	3		36
##	46		ontrol	4	10015	1		30
##	47		ontrol	4	10016	2	16	
##	48		ontrol	4	10017	3	7	79
##	49	rowNames	FALSE	FALSE	FALSE	F1LSE	FALS	SE
##	50	transpose	TRUE	TRUE	TRUE	TRUE	TRU	JE
##		streptococcaceae	vibrio	naceae	enterobad	cteriaceae	verrucon	nicrobiaceae
##	1	11		33		131		977
##	2	7		40		200		1500
##	3	14		40		200		844
##	4	8		95		151		1006
##	5	10		83		140		1112
##	6	8		95		151		1195
##	7	5		29		132		1805
##	8	5		51		168		1906
##	9	5		29		132		1902
##	10	10		34		97		1244
##	11	17		38		91		1933
##	12	27		31		51		1244
##	13	0		0		2		251
##	14	1		0		1		271
##	15	0		0		2		299
##	16	26		33		34		1348
##	17	22		58		42		3612
##	18	26		33		34		1348
##	19	6		5		39		176
##	20	2		3		23		211
##		5		1		39		183
##	22	3		9		55		544
##	23	1		5		95		611
##		3		0		55		544
##		2		6		36		471
##		3		3		36		500
##		0		4		30		541
##		1		30		79		1405
##		5		9		129		1678
##		1		1		124		1360
##	31	0		10		52		1590

	32	4	: 6	13		398
##	33	0	2	9		195
##	34	4	: 4	11		1213
##	35	0	10	41		3461
##	36	0	3	29		1688
##	37	10	39	288		590
		10		413		598
	39	12		481		639
	40	5		43		949
	41	3		50		974
	42	4		86		662
	43	10		28		267
	44					
		12		28		249
	45	1		44		337
	46	4		48		625
	47	2		111		886
	48	3		88		791
	49	FALSE		FALSE		FALSE
	50	TRUE		TRUE		TRUE
##				${\tt staphylococcaceae}$	clostric	
##		351	20	115		274
##		246	76	342		288
##	3	246	76	342		258
##	4	41	1	4		365
##	5	83	6	9		365
##	6	41	0	4		365
##	7	23	0	1		643
##	8	28	0	1		941
##	9	23	0	1		711
##	10	40	1	0		204
##	11	40	1	0		229
##		80	0	0		285
##		1	0	0		8
##		0	1	0		12
		0	0	1		12
##	16	209	1	4		400
	17	205	0	7		733
	18	209	3	2		299
	19	1	0	1		76
	20	0	3	0		63
	21	1	0	2		85
	22	0	9	1		136
	23	1	0	20		643
	24	0	1	1		136
##	25	0	0	0		31

##	26	0	1	1	59
##	27	0	0	0	42
	28	3	1	0	143
##	29	1	1	0	124
##	30	0	0	0	100
##	31	0	0	0	34
##		0	0	0	33
##	33	1	0	0	18
	34	7	2	0	96
	35	12	1	0	100
	36	3	0	0	74
##	37	1	1	1	119
	38	0	0	1	181
	39	1	0	0	202
	40	0	0	0	38
	41	0	0	0	29
	42	0	0	0	56
	43	0	0	0	62
##		2	0	0	58
##		0	0	0	66
##		0	0	0	66
##		0	0	0	167
##	48	0	0	0	40
##	49	FALSE	FALSE	FALSE	FALSE
	50	TRUE	TRUE	TRUE	TRUE
##		oceanospirillaceae			
##		1438	471	1267	
##		1789	498	1597	
##		1789	692	1844	
##		5	20	70	
##		2	20	82	
##	6	9	48	70	
##	7	14	27	97	
##		14	83	97	
##		14	27	97	
##	10	93	61	579	
	11	72	61	603	
	12	93 1080	61	579	
	13 14	1633	245 245	2245 2001	
	15		142	2834	
	16	1080	95	1432	
	17	747 636	70	1834	
	18	747	95	1432	
	TO	141			
77 77	19	256	101	786	

##	20	263	104	844
##				826
	22	256	101	
	23	284	65	1833
		293	53	2528
	24	293	65	2999
	25	189	67	568
	26	510	128	1877
	27	215	152	582
	28	2096	769	1699
##		834	954	3145
##		426	555	1171
##		263	45	323
	32	1095	164	911
	33	523	513	485
	34	273	75	732
	35	1432	414	3101
	36	330	298	1262
	37	4584	807	3586
	38	3811	1916	5757
	39	3165	1120	4168
##		380	276	821
##		548	394	489
	42	403	498	611
	43	394	212	1001
	44	311	301	889
	45	376	330	943
	46	773	521	1300
##		1778	1220	3013
	48	1289	383	1255
##		FALSE	FALSE	FALSE
##	50	TRUE	TRUE	TRUE
##	,	corynebacteriaceae		
##	1	0	(
##		0	(
##		0	(
##		0	(
##		0	(
##		0	(
##		0	(
	10	0	(
##		0	(
	12	0	(
	13	0	(
	10	V		

## 14	0	0	
## 15	0	0	
## 16	0	0	
## 17	0	0	
## 18	0	0	
## 19	0	0	
## 20	0	0	
## 21	0	0	
## 22	0	0	
## 23	0	0	
## 24	0	0	
## 25	0	0	
## 26	0	0	
## 27	0	0	
## 28	0	0	
## 29	0	0	
## 30	0	0	
## 31	0	0	
## 32	0	0	
## 33	0	0	
## 34	0	0	
## 35	0	0	
## 36	0	0	
## 37	0	0	
## 38	0	0	
## 39	0	0	
## 40	0	0	
## 41	0	0	
## 42	0	0	
## 43	0	0	
## 44	0	0	
## 45	0	0	
## 46	0	0	
## 47	0	0	
## 48	0	0	
## 49	FALSE	FALSE	
## 50	TRUE	TRUE	
#dbDisconnect(db)			

R package

svUnit

Another important component of TDD is refactoring and unit tests

• Refactoring http://refactoring.com/

- http://www.r-bloggers.com/my-experience-of-learning-r-from-basic-graphs-to-performance
- TDD in R http://www.slideserve.com/andrew/test-driven-development-in-r
- Version Control tortiseSVN ttp://tortoisesvn.net/}\itemGitHub\url{ttps://github.com/

Cleaning things up

Dropping row and columns

Dropping selected variables

Dropping Row and Columns with too many NAs

Dropping row and columns

Dropping selected variables

Tidy Data

In tidy data:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.
- https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.
 html
- http://pj.freefaculty.org/R/Rtips.html#toc-Subsection-1.11

Spit out the dates and numbers

```
dates4\leftarrowtable4[, \mathbf{c}(5, 6)]
abundance\leftarrowtable4[, \mathbf{c}(7:25)]
```

Adding a new column

Calculating the number of days

Calculating the number of days

We can just subtract as.Date fields

```
dates4<-table4[,c(5,6)]
abundance<-table4[,c(7:25)]
days<-dates4[,2]-dates4[,1]</pre>
```

Centering data

Setting the Relative abundance

Normalizing data

sapply

- Also known as centring the data
- Ecological percentage of the sum of the variables
- We an use sweep to centre the data
- What about divide by 0

```
sweepOutContinu \leftarrow sweep(abundance\ ,2\ ,apply(abundance\ ,2\ ,min\ ,na.rm=TRUE))\\ afterSweepContinu \leftarrow sweep(sweepOutContinu\ ,2\ ,apply(sweepOutContinu\ ,2\ ,max\ ,na.rm=TRUE)\ ,"/")\\ table5 \leftarrow cbind(table4\ [\ ,c\ (1:6)\ ]\ ,afterSweepContinu\ ,days)
```

Now lets have some fun

Making a heat map

Heat map. A graphical output Titles on R plots

A reference on where to go R thumbnails ggplot2 (scatter plot of 2 var and then 3 plots)

What next

Proposed future talks

Help is on the way

- My PhD students
- PhD student in Bioinformatics from Central South Uni

Your feedback on some ideas

- Using Sweave or Knitr
- Advanced Data Cleaning
- Network Centric data analysis

Resources

If you want to improve this style

References

- [1] LaTeX Beamer http://latex-beamer.sourceforge.net/
- [2] Sharelatex Site https://www.sharelatex.com
- $[3] \ A \ Data \ Cleaning \ Mooc \ \texttt{https://www.sharelatex.com}$

The chunk below will not be printed