12 CHAPTER 2. SETS

The set A and B are equal, denote by A = B, whenever every element of A is in B and every element of B is in A. A common technique to prove that two sets are equal is to show that they are subsets of each other.

Theorem 2.0.10. Let A and B be sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Since Theorem 2.0.10 is a double implication it is necessary to prove two implications. While this can be done in a linear fashion (The proof only uses double implications.), it is not always easy to construct a proof which only uses double implications.

Proof. This proof breaks the double implication into two implications and prove them individually.

 (\Rightarrow) We want to show, if A = B then $A \subseteq B$ and $B \subseteq A$.

Direct Proof

Suppose A = B. Let $x \in A$. Then $x \in B$ since A = B. By definition $A \subseteq B$. Now let $x \in B$. Then $x \in A$ since A = B. Therefore $B \subseteq A$.

 (\Leftarrow) We want to show, if $A \subseteq B$ and $B \subseteq A$ then A = B.

<u>Direct Proof</u>

Suppose $A \subseteq B$ and $B \subseteq A$. Then every element in A is in B and every element in B is in A. By definition, A = B.

Problem 2.0.11. Let A, B, and C be sets such that $A \in B$. Prove that if $B \subseteq C$ then $A \in C$.