Devoir maison n°1: Fonctions contractantes, dilatantes et points fixes

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Problème 1 -

Partie A - Fonctions contractantes et rétrécissantes.

1) Soient $k \in \mathbb{R}_+^*$, et f une fonction lipschitzienne définie sur I qui respecte donc pour tous $x,y \in I, |f(x)-f(y)| \leq k|x-y|$. Montrons que cette fonction est continue.

Soit y dans I. Pour tout $\varepsilon>0$, posons $\alpha=\frac{\varepsilon}{k}$. Dans les cas où $|x-y|<\alpha$, on obtient :

$$|x-y|<\frac{\varepsilon}{k} \Longleftrightarrow k|x-y|<\varepsilon$$

Et comme f est lipschitzienne, $|f(x)-f(y)| \leq k|x-y| < \varepsilon$ donc $|f(x)-f(y)| < \varepsilon$.

Nous avons prouvé que quelque soit le point y que l'on choisit dans le domaine de définition I de $f, \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, |x-y| < \alpha \Rightarrow |f(x)-f(y)| < \varepsilon$ ie toute fonction lipschitzienne est continue.

2) Soit f une fonction contractante définie sur I, et $x, y \in I$. Il existe donc $k \in]0,1[$ tel que $|f(x) - f(y)| \le k|x - y|$ (*).

$$\mathrm{Or}: k < 1 \Longrightarrow k|x-y| < |x-y| \Longrightarrow |f(x) - f(y)| < |x-y| \text{ d'après (*)}$$

f est donc rétrécissante.

De plus,

$$|f(x)-f(y)|<|x-y|\Longrightarrow |f(x)-f(y)|\leqslant 1\times |x-y|$$

f est donc 1-lipschitzienne.

Partie B - Fonctions rétrécissantes et point fixe.

Partie C - Fonctions dilatantes.

On fixe $f : \mathbb{R} \to \mathbb{R}$ continue et dilatante.

3) a) La fonction $g: x \mapsto x + e^x$ est continue sur \mathbb{R} comme somme de fonctions continues. De plus, si $x, y \in \mathbb{R}$,

$$\begin{split} |g(x) - g(y)| &= |(x - y) + (e^x - e^y)| \stackrel{\text{Triangulaire}}{\geqslant} |x - y| + |e^x - e^y| \\ &\geqslant |x - y| \end{split}$$

Donc g est bien dilatante.

b) La fonction g_{λ} est continue sur $]-\infty;\lambda[$ et sur $]\lambda;+\infty[$ car ses restrictions à ces intervalles sont continues. Montrons que g_{λ} est continue en λ . D'une part,

$$\lim_{x\to\lambda^-}g(x)=\lim_{x\to\lambda^-}-x=-\lambda$$

et d'autre part,

$$\lim_{x\to\lambda^+}g(x)=\lim_{x\to\lambda^+}\lambda-2x=\lambda-2\lambda=-\lambda$$

Comme les limites de g (qui existent par continuité avant et après λ) en λ coı̈ncident avec $g(\lambda)=-\lambda$, on en déduit que g est continue en λ et donc sur tout $\mathbb R$. Montrons maintenant que g est dilatante. On distingue trois cas :

- $x, y < \lambda : |g(x) g(y)| = |y x| = |x y| \geqslant |x y|$
- $x, y \geqslant \lambda : |g(x) g(y)| = |2y 2x| = 2|x y| \geqslant |x y|$
- $x < \lambda$ et $y \geqslant \lambda : |g(x) g(y)| = |2y \lambda x| = |(y \lambda) + (y x)| \stackrel{\text{Triangulaire}}{\geqslant} |x y|$

Ce qui montre que g est bien dilatante