Математическая логика — 2 V семестр

Лектор: Виктор Львович Селиванов Записывал: Глеб Минаев Редактировал: Борис Алексеевич Золотов

МКН СПбГУ, осень 2022

Содержание

L	Лог	гика предикатов
	1.1	Истинность и доказуемость
		1.1.1 Структура
		1.1.2 Термы и формулы
	1.2	Значение термов и формул
2	Hej	разрешимость и неполнота
3	Вве	едение в вычислительность
1	Л	Гогика предикатов
1.	1 I	Истинность и доказуемость

1.1.1 Структура

Бурбаки классифицировал структуры как:

- 1) операции,
- 2) частичные порядки,
- 3) топологические структуры.

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции— это структуры алгебраические, "частичные порядки— структуры отношением.

Определение 1. Сигнатура — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции $A^n \to A$, предикатные символы — как функции $A^m \to \{u; \pi\}$, а константы — как элементы A (или, что равносильно, функции $\{\emptyset\} \to A$).

 σ -структуры (структуры сигнатуры σ) — пара (A, I), где A — непустое множество, а I — интерпретация сигнатурных символов σ в A.

Пример 1. Сигнатура упорядоченного кольца $-\langle +, \cdot; <; 0, 1 \rangle$. Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

Определение 2. \mathbb{A} , $\mathbb{B} - \sigma$ -структуры. Тогда $\varphi : \mathbb{A} \to \mathbb{B}$ называется гомоморфизм, если оно задаёт $\varphi : A \to B$, что для всякой функции f^n из сигнатуры σ и для всяких $a_1, \ldots, a_n \in A$

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката P^m в сигнатуре σ и всяких $a_1, \ldots, a_m \in A$

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры σ

$$\varphi(c_A) = c_B$$
.

 φ — изоморфизм, если φ — гомоморфизм, биективен, и φ^{-1} — гомоморфизм.

 \mathbb{A} называется $nodcmpy\kappa mypoù$ \mathbb{B} ($\mathbb{A}\subseteq\mathbb{B}$), если $A\subseteq B$ и $\varphi:A\to B, a\mapsto a$ гомоморфизм.

1.1.2 Термы и формулы

Определение 3. Фиксируем некоторое множество V — "множество переменных" —, символы \land , \lor , \rightarrow , \neq и символы $\forall x$ и $\exists x$ для всякого $x \in V$.

Терм — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- ullet для всяких термов t_1,\ldots,t_n и функции f^n выражение $f(t_1,\ldots,t_n)$ терм.

 Φ ормула — это понятие, рекурсивно определяемое следующими соотношениями:

- ullet для всяких термов $t_1,\,t_2$ выражение $t_1=t_2-{
 m формула},$
- для всяких предиката P^n из σ и термов t_1, \ldots, t_n выражение $P(t_1, \ldots, t_n)$ формула,
- для всяких формул φ и ψ выражения $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, $\neq \varphi$ формулы,
- для всяких формулы φ и переменной x выражения $\forall x \varphi$ и $\exists x \varphi$ формулы.

 $\operatorname{For}_{\sigma}$ — множество всех формул с сигнатурой σ .

Пример 2. В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

Задача 1. Семейтсва термов и формул задаются контекстно свободными грамматиками.

Определение 4. Переменная x называется csofodhoй в формуле φ , если есть вхождение x не покрывается никаким квантором $\forall x$ и никаким квантором $\exists x$. $\mathrm{FV}(\varphi)$ — множество всех свободных переменных формулы φ .

1.2 Значение термов и формул

Определение 5. Пусть t — терм в сигнатуре σ , а \mathbb{A} — σ -структура. Тогда $t^{\mathbb{A}}: A^n \to A$ — o значивание t, некоторая функция, полученная подставлением вместо констант их значений в \mathbb{A} и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы $f^{\mathbb{A}}: A^n \to \{\mathfrak{u}; \pi\}$.

2 Неразрешимость и неполнота

3 Введение в вычислительность