University of Rome "La Sapienza"

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2018/2019

Prof. Luca locchi

Luca locchi

11. Hidden Markov Models and Partially Obs

1 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sapienza University of Rome, Italy Master in Artificial Intelligence and Robotics Machine Learning (2018/19)

11. Hidden Markov Models and Partially Observable MDPs

Overview

- Hidden Markov Models (HMM)
- Learning in HMM
- Partially Observable Markov Decision Processes (POMDP)
- Policy trees
- Example: POMDP tiger proglem

Luca locchi

11. Hidden Markov Models and Partially Obs

3 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Markov Chain

Dynamic system evolving according to the Markov property.

Future evolution depends only on the current state \mathbf{X}_t

Hidden Markov Models (HMM)

- states x_t are discrete and non-observable,
- observations (emissions) z_t can be either discrete or continuous.
- \bullet controls \mathbf{u}_t are not present (i.e., evolution is not controlled by our system),

Luca locchi

11. Hidden Markov Models and Partially Obs

5 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

HMM representation

 $\mathsf{HMM} = \langle \mathbf{X}, \mathbf{Z}, \pi_0 \rangle$

• transition model: $P(\mathbf{x}_t|\mathbf{x}_{t-1})$

• observation model: $P(\mathbf{z}_t|\mathbf{x}_t)$

• initial distribution: π_0

State transition matrix $\mathbf{A} = \{A_{ij}\}$

$$A_{ij} \equiv P(\mathbf{x}_t = j | \mathbf{x}_{t-1} = i)$$

Observation model (discrete or continuous):

$$b_k(\mathbf{z}_t) \equiv P(\mathbf{z}_t|\mathbf{x}_t=k)$$

Initial probabilities:

$$\pi_0 = P(\mathbf{x}_0)$$

11. Hidden Markov Models and Partially Obs

HMM examples of applications

Handwriting recognition

Similar structure for speech/gesture/activity recognition.

Luca locchi

11. Hidden Markov Models and Partially Obs

7 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

HMM examples of applications

HMM factorization

Application of chain rule on HMM:

$$P(\mathbf{x}_{0:T}, \mathbf{z}_{1:T}) = P(\mathbf{x}_0)P(\mathbf{z}_0|\mathbf{x}_0)P(\mathbf{x}_1|\mathbf{x}_0)P(\mathbf{z}_1|\mathbf{x}_1)P(\mathbf{x}_2|\mathbf{x}_1)P(\mathbf{z}_2|\mathbf{x}_2)\dots$$

Luca locchi

11. Hidden Markov Models and Partially Obs

9 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

HMM inference

Given HMM = $\langle \mathbf{X}, \mathbf{Z}, \pi_0 \rangle$,

Filtering

$$P(\mathbf{x}_T = k | \mathbf{z}_{1:T}) = \frac{\alpha_T^k}{\sum_j \alpha_T^j}$$

Smoothing

$$P(\mathbf{x}_t = k | \mathbf{z}_{1:T}) = \frac{\alpha_t^k \beta_t^k}{\sum_j \alpha_t^j \beta_t^j}$$

Luca locchi

11. Hidden Markov Models and Partially Obs

10 / 29

Forward step

Forward iterative steps to compute

$$\alpha_t^k \equiv P(\mathbf{x}_t = k, \mathbf{z}_{1:t})$$

- For each state *k* do:
 - $\bullet \ \alpha_0^k = \pi_0 b_k(\mathbf{z}_0)$
- For each time t = 1, ..., T do:
 - For each state k do:
 - $\alpha_t^k = b_k(\mathbf{z}_t) \sum_j \alpha_{t-1}^j A_{jk}$

Luca locchi

11. Hidden Markov Models and Partially Obs

11 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Backward step

Backward iterative steps to compute

$$\beta_t^k \equiv P(\mathbf{z}_{t+1:T}|\mathbf{x}_t = k)$$

- For each state k do:
 - $\beta_T^k = 1$
- For each time $t = T 1, \dots, 1$ do:
 - For each state *k* do:
 - $\bullet \ \beta_t^k = \sum_j \beta_{t+1}^j A_{kj} b_j(\mathbf{z}_{t+1})$

Learning in HMM

Given output sequences, determine maximum likelihood estimate of the parameters of the HMM (transition and emission probabilities).

Case 1: states can be observed at training time

Transition and observation models can be estimated with statistical analysis

$$A_{ij} = \frac{|\{i \to j \text{ transitions}\}|}{|\{i \to * \text{ transitions}\}|}$$

$$b_k(v) = \frac{|\{observe \ v \land state \ k\}|}{|\{observe \ * \land state \ k\}|}$$

Luca locchi

11. Hidden Markov Models and Partially Obs

13 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Learning in HMM

Case 2: states cannot be observed at training time

Compute a **local** maximum likelihood with an Expectation-Maximization (EM) method (e.g., Baum-Welch algorithm).

POMDP agent

Combines decision making of MDP and non-observability of HMM.

Luca locchi

11. Hidden Markov Models and Partially Obs

15 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

POMDP graphical model

POMDP representation

$$POMDP = \langle \mathbf{X}, \mathbf{A}, \mathbf{Z}, \delta, r, o \rangle$$

- X is a set of states
- A is a set of actions
- Z is a set of observations
- $P(\mathbf{x}_0)$ is a probability distribution of the initial state
- $\delta(\mathbf{x}, a, \mathbf{x}') = P(\mathbf{x}'|\mathbf{x}, a)$ is a probability distribution over transitions
- $r(\mathbf{x}, a)$ is a reward function
- $o(\mathbf{x}', a, \mathbf{z}') = P(\mathbf{z}'|\mathbf{x}', a)$ is a probability distribution over observations

Luca locchi

11. Hidden Markov Models and Partially Obs

17 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Example: tiger problem

Two closed doors hide a treasure and a tiger.

- $X = \{s_L, s_R\}$
- $\mathbf{A} = \{Open_L, Open_R, Listen\}$
- $\mathbf{Z} = \{t_L, t_R\}$
- $P(\mathbf{x}_0) = <0.5, 0.5>$
- $\delta(\mathbf{x}, a, \mathbf{x}')$ Listen does not change state, Open actions restart the situation with 0.5 probability between s_L , s_R
- $r(\mathbf{x}, a) = 10$ if opening the treasure door, -100 if opening the tiger door, -1 if listening
- $o(\mathbf{x}', a, \mathbf{z}') = 0.85$ correct perception, 0.15 wrong perception

Solution concept for POMDP

Solution: *policy*, but we do not know the states!

Option 1: map from history of observations to actions

- histories are too long!

Option 2: belief state

- probability distribution over the current state

Luca locchi

11. Hidden Markov Models and Partially Obs

19 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Belief MDP

Belief $b(\mathbf{x}) = \text{probability distribution over the states.}$

POMDP can be described as an MDP in the belief states, but belief states are infinite.

- B is a set of belief states
- A is a set of actions
- \bullet $\tau(b, a, b')$ is a probability distribution over transitions
- $\rho(b, a, b')$ is a reward function

Policy: $\pi: \mathbf{B} \mapsto \mathbf{A}$

Computing Belief States

Given current belief state b, action a and observation \mathbf{z}' observed after execution of a, compute the next belief state $b'(\mathbf{x}')$

$$b'(\mathbf{x}') \equiv SE(b, a, \mathbf{z}') \equiv P(\mathbf{x}'|b, a, \mathbf{z}')$$

$$= \frac{P(\mathbf{z}'|\mathbf{x}', b, a)P(\mathbf{x}'|b, a)}{P(\mathbf{z}'|b, a)}$$

$$= \frac{P(\mathbf{z}'|\mathbf{x}', a) \sum_{\mathbf{x} \in \mathbf{X}} P(\mathbf{x}'|b, a, \mathbf{x})P(\mathbf{x}|b, a)}{P(\mathbf{z}'|b, a)}$$

$$= \frac{o(\mathbf{x}', a, \mathbf{z}') \sum_{\mathbf{x} \in \mathbf{X}} \delta(\mathbf{x}, a, \mathbf{x}')b(\mathbf{x})}{P(\mathbf{z}'|b, a)}$$

Luca locchi

11. Hidden Markov Models and Partially Obs

21 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Belief MDP transition and reward functions

Transition function

$$au(b,a,b') = P(b'|b,a) = \sum_{\mathbf{z} \in \mathbf{Z}} P(b'|b,a,\mathbf{z}) P(\mathbf{z}|b,a)$$

$$P(b'|b, a, \mathbf{z}) = 1$$
if $b' = SE(a, b, \mathbf{z})$, 0 otherwise

Reward function

$$\rho(b,a) = \sum_{\mathbf{x} \in \mathbf{X}} b(\mathbf{x}) r(\mathbf{x},a)$$

Value function in POMDP

$$V(b) = \max_{a \in \mathbf{A}} [\rho(b, a) + \gamma \sum_{b'} (\tau(b, a, b')V(b'))]$$

Replacing $\tau(b, a, b')$ and $\rho(b, a)$ and considering that $P(b'|b, a, \mathbf{z}) = 1$, if $b' = SE(a, b, \mathbf{z}) = b_{\mathbf{z}}^{a}$, and 0 otherwise

$$V(b) = \max_{a \in \mathbf{A}} [\sum_{\mathbf{x} \in \mathbf{X}} b(\mathbf{x}) r(\mathbf{x}, a) + \gamma \sum_{\mathbf{z} \in \mathbf{Z}} P(\mathbf{z}|b, a) V(b_{\mathbf{z}}^{a})]$$

Luca locchi

11. Hidden Markov Models and Partially Obs

23 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Value iteration for belief MDP

- Discretize the distributions b(x)
- Apply value iteration on the discretized belief MDP

A similar method can be devised for any MDP solving technique.

Solution concept in POMDP

Policy trees

Luca locchi

11. Hidden Markov Models and Partially Obs

25 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Value function for tiger problem

One-step policies: $\pi_1 = Open_L$, $\pi_2 = Open_R$, $\pi_3 = Listen$

$$\alpha_{\pi_1} = \langle -100, 10 \rangle$$

$$\alpha_{\pi_2} = \langle 10, -100 \rangle$$

$$\alpha_{\pi_3} = \langle -1, -1 \rangle$$

One-step optimal value function:

$$V^{(1)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

Value function for tiger problem

Two-step policies:

 $\pi_1 = \textit{Listen}; (t_L : \textit{Listen}, t_R : \textit{Listen}) \rightarrow \alpha_{\pi_1} = \langle -2, -2 \rangle$ $\pi_2 = \textit{Listen}; (t_L : \textit{Open}_R, t_R : \textit{Open}_L) \rightarrow \alpha_{\pi_2} = \langle -7.5, -7.5 \rangle$ $\pi_3 = \textit{Open}_L; (t_L : \textit{Open}_L, t_R : \textit{Open}_L) \rightarrow \alpha_{\pi_3} = \langle -145, -35 \rangle$ $\pi_4 = \textit{Open}_L; (t_L : \textit{Listen}, t_R : \textit{Listen}) \rightarrow \alpha_{\pi_4} = \langle -101, 9 \rangle$ $\pi_5 = \textit{Open}_R; (t_L : \textit{Listen}, t_R : \textit{Listen}) \rightarrow \alpha_{\pi_5} = \langle 9, -101 \rangle$... and many others

Two-step optimal value function:

$$V^{(2)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

Luca locchi

11. Hidden Markov Models and Partially Obs

27 / 29

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Value function for tiger problem

Three-step policies:

 $\pi_1 = Listen; (t_L, t_L : Open_R, t_R, t_R : Open_L, t_L, t_R or t_R, t_L : Listen)$... and many many others ...

Three-step optimal value function:

$$V^{(3)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

References

Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, vol. 101, issues 12, 1998, pages 99134.

Luca locchi

11. Hidden Markov Models and Partially Obs

29 / 29