Register No.				

BSc Degree Examination November 2023

Fifth Semester

Common to all branches

20BCT51 - ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (Regulations 2020) Time: Three hours Maximum: 100 marks Answer all Questions $Part - A (10 \times 2 = 20 \text{ marks})$ [CO1,K1] 1. List any four AI applications. [CO1,K2] Write an algorithm for "Generate-and-Test". 2. [CO2,K3] 3. What is categorical data? Give an example. [CO2,K2] Write a formula to calculate the performance metrics accuracy and precision. 4. [CO3,K2] Distinguish between supervised learning and unsupervised learning. 5. [CO3,K1] List any two characteristics of support vector machine. 6. [CO4,K3] Find the Euclidean distance between the data points (5, 7) and (13, 12). 7. [CO4,K3] 8. Find the mean of given cluster {12, 13, 25, 34}. [CO5,K2] Draw the structure of biological neuron and name its parts. 9. [CO5,K1] 10. State the concept of regularization algorithm. Part - B $(5 \times 16 = 80 \text{ marks})$ Elaborate on depth-first search technique. Give an example of a problem for (16) [CO1,K2] 11. a. which depth-first search would work better than breadth-first search. (OR) Write the working principle of Hill climbing technique. Illustrate the different (16) [CO1,K2] types of Hill climbing with suitable example. (10) [CO2,K1] 12. a. Summarize the different types of data with suitable examples. i) [CO2,K1] Enumerate the different types of machine learning tools and its purpose. ii) (6)(OR) Demonstrate Hold – out method and k-fold cros validation method used to train (16) [CO2,K1] b.

a model for supervised learning.

13. a. Apply K-NN learning algorithm to identify the class label for the test sample (16) [CO3,K3] given below.

Training Data

GiveBirth	CanFly	Live in Water	Class
Yes	No	No	Mammals
No	No	No	Non-mammals
No	No	Yes	Non-mammals
Yes	No	Yes	Mammals
No	No	No	Non-mammals
Yes	Yes	No	Mammals
No	Yes	No	Non-mammals
Yes	No	No	Mammals
Yes	No	Yes	Non-mammals
Yes	No	No	Mammals

Test Data:

Give Birth	CanFly	Live in water	Class
Yes	No	Yes	?

(OR)

b. Compute the entropy and information gain to construct to decision tree for the (16) [CO3,K3] given dataset.

Color	Type	Doors	Tyres	Class
Red	SUV	2	Whitewall	+
Blue	Minivan	4	Whitewall	-
Green	Car	4	Whitewall	-
Red	Minivan	4	Blackwall	-
Green	Car	2	Blackwall	+
Green	SUV	4	Blackwall	-
Blue	SUV	2	Blackwall	-
Blue	Car	2	Whitewall	+
Red	SUV	2	Blackwall	-
Blue	Car	4	Blackwall	-
Green	SUV	4	Whitewall	+
Red	Car	2	Blackwall	+
Green	SUV	2	Blackwall	_
Green	Minivan	4	Whitewall	-

14. a. Apply the K-means clustering algorithm to the following dataset, group in to 3 (16) [CO4,K3] clusters. Show the cluster centroids after second iteration.

Sepal Length	Sepal Width		
5.1	3.5		
4.9	3.0		
4.7	3.2		
7.0	3.2		
6.4	3.2		
6.9	3.1		
9.2	3.0		
9.5	3.3		
9.9	3.2		

(OR)

- b. Demonstrate Hierarchical clustering and DBSCAN clustering based techniques (16) [CO4,K3] with suitable example. Compare the merits of these two techniques.
- 15. a. Draw the structure of multilayer ANN. Illustrate the concept of back (16) [CO5,K2] propagation algorithms to train the multilayer neural network.

(OR)

b. Highlight the features of ensemble learning algorithms. Demonstrate the (16) $^{[CO5,K2]}$ various ensemble leaning algorithms with suitable example.

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	21	40	39	_	_	-