Introduction to Supersymmetry Preliminaries to my Master's Thesis

Philipp Schreiner ph.schreiner@edu.uni-graz.at

University of Graz

February 1, 2022

Motivation

Algebraic considerations

Extension of Poincaré algebra Irreps of the SUSY algebra Lagrangian

The MSSM

Particle content Gauge structure Potential SUSY Breaking

Summary and Outlook

Fine-tuning problem

$$\Delta m_{\rm H}^2 = \frac{\lambda_s}{16\pi^2} \Lambda_{\rm UV}^2 + \dots$$

Goal: Relate bosons and fermions

- ▶ Spin is spacetime property; not isolated from Poincaré algebra
- ⇒ Have to extend Poincaré algebra!

Coleman-Mandula-Theorem: Full symmetry algebra of S-matrix for consistent four-dimensional QFT (satisfying locality, finiteness of particles, etc.) is

$$\begin{split} [P_{\mu}, P_{\nu}] &= 0 \\ [M_{\mu\nu}, P_{\lambda}] &= i(\eta_{\nu\lambda} P_{\mu} - \eta_{\mu\lambda} P_{\nu}) \\ [M_{\mu\nu}, M_{\rho\sigma}] &= -i(\eta_{\mu\rho} M_{\nu\rho} - \eta_{\mu\sigma} M_{\nu\rho} - \eta_{\nu\rho} M_{\mu\sigma} + \eta_{\nu\sigma} M_{\mu\rho}) \end{split}$$

combined trivially with an internal symmetry algebra.

Coleman-Mandula-Theorem: Full symmetry algebra of S-matrix for consistent four-dimensional QFT (satisfying locality, finiteness of particles, etc.) is

$$\begin{split} [P_{\mu}, P_{\nu}] &= 0 \\ [M_{\mu\nu}, P_{\lambda}] &= i(\eta_{\nu\lambda} P_{\mu} - \eta_{\mu\lambda} P_{\nu}) \\ [M_{\mu\nu}, M_{\rho\sigma}] &= -i(\eta_{\mu\rho} M_{\nu\rho} - \eta_{\mu\sigma} M_{\nu\rho} - \eta_{\nu\rho} M_{\mu\sigma} + \eta_{\nu\sigma} M_{\mu\rho}) \end{split}$$

combined trivially with an internal symmetry algebra.

We may not just extend the Poincaré part! But ...

Haag-Łopuszański-Sohnius-Theorem: If one extends Lie-algebra to a *graded* algebra, the full symmetry may be the internal symmetries and the Poincaré-algebra **extended** by

$$\begin{aligned} \{Q_{a}, Q_{a}^{\dagger}\} &= 2\sigma_{a\dot{a}}^{\mu} P_{\mu} \\ [Q_{a}, P_{\mu}] &= 0 \\ [Q_{a}, M_{\mu\nu}] &= (\sigma_{\mu\nu})_{a}^{b} Q_{b} \end{aligned}$$

where Q_a are anticommuting generators.

Super-Poincaré-Algebra: or SUSY-Algebra for short:

$$\begin{split} &[P_{\mu},P_{\nu}] = 0 \\ &[M_{\mu\nu},P_{\lambda}] = i(\eta_{\nu\lambda}P_{\mu} - \eta_{\mu\lambda}P_{\nu}) \\ &[M_{\mu\nu},M_{\rho\sigma}] = -i(\eta_{\mu\rho}M_{\nu\rho} - \eta_{\mu\sigma}M_{\nu\rho} - \eta_{\nu\rho}M_{\mu\sigma} + \eta_{\nu\sigma}M_{\mu\rho}) \\ &\{Q_{a},Q_{\dot{a}}^{\dagger}\} = 2\sigma_{a\dot{a}}^{\mu}P_{\mu} \\ &[Q_{a},P_{\mu}] = 0 \\ &[Q_{a},M_{\mu\nu}] = (\sigma_{\mu\nu})_{a}^{b}Q_{b} \end{split}$$

combined trivially with an internal symmetry algebra.¹

¹Now: possibility of non-trivially added internal symmetry, c.f. R-symmetry

- ▶ Irreps of Poincaré algebra: notion of particle of given *m* and *S*
- SUSY algebra changes notion of particle!
- ▶ Luckily: Poincaré ⊂ SUSY
- ⇒ Irreps of SUSY algebra will be (reducible) reps of Poincaré algebra

Observations:

- Particles within supermultiplet have same m and internal symmetry structure but different S
- Fermionic and bosonic dof match within multiplet

Observations:

- Particles within supermultiplet have same m and internal symmetry structure but different S
- Fermionic and bosonic dof match within multiplet
- Fermions have 2 dof (use Weyl Fermions as basic objects)

$$\mathcal{L} \ = \ - \tfrac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} \ + \ i \lambda^{a\dagger} \overline{\sigma}^{\mu} (D_{\mu} \lambda)_{a} \ + \ (D_{\mu} \phi)^{\dagger} \left(D^{\mu} \phi \right) + i \chi^{\dagger} \overline{\sigma}^{\mu} (D_{\mu} \chi)$$

Gauge Multiplet

$$\mathcal{L} = \left(-\frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu} + i \lambda^{a\dagger} \overline{\sigma}^{\mu} (D_{\mu} \lambda)_{a} \right) + \left((D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) + i \chi^{\dagger} \overline{\sigma}^{\mu} (D_{\mu} \chi) \right)$$

Gauge Multiplet

Chiral Multiple

$$\begin{split} \mathcal{L} \; &= \overline{\left(-\frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu} \; + \; i \lambda^{a\dagger} \overline{\sigma}^{\mu} (D_{\mu} \lambda)_{a} \right)} + \overline{\left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) + i \chi^{\dagger} \overline{\sigma}^{\mu} (D_{\mu} \chi)} \\ &- \; \frac{1}{2} g (\phi^{\dagger} T^{a} \phi)^{2} - \left| \frac{\partial W(\phi)}{\partial \phi} \right|^{2} \; - \; \frac{1}{2} \left[\left(\frac{\partial^{2} W(\phi)}{\partial \phi \partial \phi} \right) \chi \chi + \mathrm{h.c.} \right] - \; \sqrt{2} \; g \left[\left(\phi^{\dagger} T^{a} \chi \right) \lambda_{a} \; + \lambda^{a\dagger} \left(\chi^{\dagger} T_{a} \phi \right) \right] \end{split}$$

Gauge Multiplet

Chiral Multiple

$$\mathcal{L} = \boxed{ -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{a\dagger}\overline{\sigma}^{\mu}(D_{\mu}\lambda)_{a} + \left[(D_{\mu}\phi)^{\dagger} \left(D^{\mu}\phi \right) + i\chi^{\dagger}\overline{\sigma}^{\mu}(D_{\mu}\chi) \right] } \\ - \boxed{ \frac{1}{2}g(\phi^{\dagger}T^{a}\phi)^{2} - \left| \frac{\partial W(\phi)}{\partial \phi} \right|^{2} - \frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi)}{\partial \phi\partial \phi} \right)\chi\chi + \text{h.c.} \right] - \sqrt{2} \ g\left[\left(\phi^{\dagger}T^{a}\chi \right)\lambda_{a} + \lambda^{a\dagger} \left(\chi^{\dagger}T_{a}\phi \right) \right] }$$
Scalar Potential

Gauge Multiplet Chira

$$\mathcal{L} \ = \ \boxed{ -\frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu} \ + \ i \lambda^{a\dagger} \overline{\sigma}^{\mu} (D_{\mu} \lambda)_{a} + \left[(D_{\mu} \phi)^{\dagger} \left(D^{\mu} \phi \right) + i \chi^{\dagger} \overline{\sigma}^{\mu} (D_{\mu} \chi) \right] } \\ - \left[\frac{1}{2} g (\phi^{\dagger} T^{a} \phi)^{2} - \left| \frac{\partial W(\phi)}{\partial \phi} \right|^{2} \right] - \left[\frac{1}{2} \left[\left(\frac{\partial^{2} W(\phi)}{\partial \phi \partial \phi} \right) \chi \chi \right] + \text{h.c.} \right] - \sqrt{2} \ g \left[\left(\phi^{\dagger} T^{a} \chi \right) \lambda_{a} \ + \lambda^{a\dagger} \left(\chi^{\dagger} T_{a} \phi \right) \right] \\ \text{Scalar Potential} \qquad \text{Yukawa Couplings}$$

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{a\dagger}\overline{\sigma}^{\mu}(D_{\mu}\lambda)_{a} \\ -\frac{1}{2}g(\phi^{\dagger}T^{a}\phi)^{2} - \left|\frac{\partial W(\phi)}{\partial \phi}\right|^{2} \\ -\frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi)}{\partial \phi\partial \phi}\right)\chi\chi\right] + \text{h.c.} - \sqrt{2}g\left[\left(\phi^{\dagger}T^{a}\chi\right)\lambda_{a} + \lambda^{a\dagger}\left(\chi^{\dagger}T_{a}\phi\right)\right] \\ \text{Scalar Potential} & \text{Yukawa Couplings} & \text{Gaugino Couplings} \end{bmatrix}$$

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{a\dagger}\overline{\sigma}^{\mu}(D_{\mu}\lambda)_{a} \\ -\frac{1}{2}g(\phi^{\dagger}T^{a}\phi)^{2} - \left|\frac{\partial W(\phi)}{\partial \phi}\right|^{2} \\ -\frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi)}{\partial \phi\partial \phi}\right)\chi\chi\right] + \text{h.c.} - \left[\frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi)}{\partial \phi\partial \phi}\right)\chi\chi\right] + \text{h.c.} \right] \\ -\frac{1}{2}g(\phi^{\dagger}T^{a}\phi)^{2} - \left(\frac{\partial W(\phi)}{\partial \phi}\right)^{2} - \left(\frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi)}{\partial \phi\partial \phi}\right)\chi\chi\right] + \text{h.c.} \right] \\ -\frac{1}{2}g(\phi^{\dagger}T^{a}\phi)^{2} - \left(\frac{\partial W(\phi)}{\partial \phi}\right)^{2} -$$

- ► Multiple gauge and chiral multiplets possible (and mixing)
- $W(\phi) = M^{ij}\phi_i\phi_j + y^{ijk}\phi_i\phi_j\phi_k$ (no field adjoints!)
- ▶ Independent couplings: M_{ij}, y_{ijk}, g

What's left to do?

- General Lagrangian restrictive due to SUSY, Renormalizability and Gauge Invariance
- ⇒ May only choose:
 - Particle content (participating multiplets)
 - ► Gauge groups (g)
 - ▶ Potential W (M_{ij} and y_{ijk})

What's left to do?

- General Lagrangian restrictive due to SUSY, Renormalizability and Gauge Invariance
- ⇒ May only choose:
 - Particle content (participating multiplets)
 - ▶ Gauge groups (g)
 - ▶ Potential $W(M_{ij} \text{ and } y_{ijk})$

Choose them to specify specific model

⇒ Minimal Supersymmetric Standard Model

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets				
Gauge Multiplets				

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets				
Gauge Multiplets			W Z g γ	

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets		e		
Gauge Multiplets			W Z g γ	

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets				
Gauge Multiplets			W Z g γ	,

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets	H _u H _d			
Gauge Multiplets			W Z g y	,

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets		e υ μ c τ t		
	H _u)	\widetilde{H}_u \widetilde{H}_d		
Gauge Multiplets		\widetilde{W} \widetilde{Z} \widetilde{g} $\widetilde{\gamma}$	W Z g γ	

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets				$\begin{array}{ccc} \operatorname{lepton} & \to & \operatorname{slepton} \\ \operatorname{quark} & \to & \operatorname{squark} \\ & \operatorname{higgs} & \to & \operatorname{higgsino} \end{array}$
Gauge Multiplets		\widetilde{W} \widetilde{Z} \widetilde{g} $\widetilde{\gamma}$	W Z g y	$W \rightarrow wino$ gluon \rightarrow gluino photon \rightarrow photino

The MSSM: Gauge structure

	Spin 0	Spin 1/2	Spin 1	Gauge Structure
Chiral Multiplets		e		fund. rep. keep charges from SM and extend to superpartners
	H_u H_d	\widetilde{H}_{u} \widetilde{H}_{d}		
Gauge Multiplets		\widetilde{W} \widetilde{Z} \widetilde{g} $\widetilde{\gamma}$	W Z g	adj. rep.

The MSSM: Potential

Standard Model: (right handed, left handed)

$$V(\phi^{\dagger}\phi) = -\mu^2 \phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2$$

$$\mathcal{L}_{\text{Yukawa}} = -\bar{\mathbf{u}}\mathbf{y}^{u}Q\phi^{\text{c.c.}} - \bar{\mathbf{d}}\mathbf{y}^{d}Q\phi - \bar{\mathbf{e}}\mathbf{y}^{e}L\phi + \text{h.c.}$$

The MSSM: Potential

Standard Model: (right handed, left handed)

$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L}_{\text{Yukawa}} = -\bar{\mathbf{u}}\mathbf{y}^{u}Q\phi^{\text{c.c.}} - \bar{\mathbf{d}}\mathbf{y}^{d}Q\phi - \bar{\mathbf{e}}\mathbf{y}^{e}L\phi + \text{h.c.}$$

MSSM:1

$$W_{\text{MSSM}} = \mu' H_u H_d + \tilde{\mathbf{u}} \mathbf{y}^u \tilde{Q} H_u - \tilde{\mathbf{d}} \mathbf{y}^d \tilde{Q} H_d - \tilde{\mathbf{e}} \mathbf{y}^e \tilde{L} H_d$$

The MSSM: Potential

Standard Model: (right handed, left handed)

$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

$$\mathcal{L}_{\text{Yukawa}} = -\bar{\mathbf{u}}\mathbf{y}^{u}Q\phi^{\text{c.c.}} - \bar{\mathbf{d}}\mathbf{y}^{d}Q\phi - \bar{\mathbf{e}}\mathbf{y}^{e}L\phi + \text{h.c.}$$

MSSM:1

$$W_{\text{MSSM}} = \mu' H_u H_d + \tilde{\mathbf{u}} \mathbf{y}^u \tilde{Q} H_u - \tilde{\mathbf{d}} \mathbf{y}^d \tilde{Q} H_d - \tilde{\mathbf{e}} \mathbf{y}^e \tilde{L} H_d$$

This is why we need two Higgs in the MSSM!

¹Remember: $W(\phi) = M^{ij}\phi_i\phi_j + y^{ijk}\phi_i\phi_j\phi_k$; couplings from derivatives of W

SUSY Breaking

 $\checkmark~W_{
m MSSM}$ uses Yukawa couplings from SM; only introduces μ'

SUSY Breaking

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- ✓ Almost all interactions from SM can be recovered in MSSM

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- ✓ Almost all interactions from SM can be recovered in MSSM
- \times except $-\mu^2 \phi^{\dagger} \phi$ which we need for BEH effect

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- ✓ Almost all interactions from SM can be recovered in MSSM
- \times except $-\mu^2 \phi^{\dagger} \phi$ which we need for BEH effect
- × SUSY at our energies obviously broken

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- ✓ Almost all interactions from SM can be recovered in MSSM
- \times except $-\mu^2 \phi^{\dagger} \phi$ which we need for BEH effect
- × SUSY at our energies obviously broken

⇒ Need to break SUSY (explicitly)

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- √ Almost all interactions from SM can be recovered in MSSM
- \times except $-\mu^2 \phi^{\dagger} \phi$ which we need for BEH effect
- × SUSY at our energies obviously broken

- ⇒ Need to break SUSY (explicitly)
 - Soft SUSY breaking terms (couplings with pos. mass dim.)

- $\checkmark~W_{
 m MSSM}$ uses Yukawa couplings from SM; only introduces μ'
- √ Almost all interactions from SM can be recovered in MSSM
- \times except $-\mu^2 \phi^{\dagger} \phi$ which we need for BEH effect
- × SUSY at our energies obviously broken
- ⇒ Need to **break** SUSY (explicitly)
 - Soft SUSY breaking terms (couplings with pos. mass dim.)
 - × This introduces 105 new parameters

Extend Poincaré algebra

Outlook

Eventually:

- Apply the FMS-formalism to MSSM-like theories
- Study gauge invariant composite states
- Special interest: Lightest supersymmetric particle (LSP) as DM candidate

Outlook

For now: Consider minimal toy model where BEH works

$$\mathcal{L} = -\frac{1}{4} W_{\mu\nu}^{a} W_{a}^{\mu\nu} + i w^{a\dagger} \bar{\sigma}^{\mu} (D_{\mu} w)_{a}$$
$$+ (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) + i \chi^{\dagger} \bar{\sigma}^{\mu} (D_{\mu} \chi)$$
$$- \frac{g}{\sqrt{2}} \left[(\phi^{\dagger} \tau^{a} \chi) w_{a} + w^{a\dagger} (\chi^{\dagger} \tau_{a} \phi) \right]$$
$$- \left(-\mu^{2} \phi^{\dagger} \phi + \frac{g}{8} (\phi^{\dagger} \phi)^{2} \right)$$

References

lan J. R. Aitchison. "Supersymmetry and the MSSM: An Elementary introduction". In: (May 2005). arXiv: hep-ph/0505105.

Stephen P. Martin. "A Supersymmetry primer". In: Adv. Ser. Direct. High Energy Phys. 18 (1998). Ed. by Gordon L. Kane, pp. 1–98. DOI: 10.1142/9789812839657_0001. arXiv: hep-ph/9709356.

Harald JW Muller-Kirsten and Armin Wiedemann. *Introduction to supersymmetry*. Vol. 80. World Scientific Publishing Company, 2010.