Universidad de Sevilla

Escuela Técnica Superior de Ingeniería Informática

Testing report

ACME SOFTWARE FACTORY

OUR FIRST PROJECT IN D&T

Grado en Ingeniería Informática – Ingeniería del Software Diseño y Pruebas 2

Curso 2023 - 2024

Grupo de prácticas: C2-009

Autores por orden alfabético

León Madroñal, Juan Carlos

Testing report

Índice de contenido

1. Resumen ejecutivo	3
2. Tabla de revisiones	
3. Introducción	5
4. Functional testing	6
5. Performance testing	11
6. Conclusiones	16
7. Bibliografía	17

Testing report

1. Resumen ejecutivo

Este documento proporciona una visión completa de las pruebas funcionales y de rendimiento que se le han realizado a nuestro proyecto. Analizar la siguiente información es crucial para saber si vamos por buen camino y si nuestro proyecto tiene una correcta optimización.

Testing report

2. Tabla de revisiones

Fecha	Versión	Descripción	
27/05/2024	1.0	Primera versión del documento	
07/05/2024	1.1	Actualización y nueva suite para julio	

Testing report

3. Introducción

Este informe de pruebas se organiza en dos capítulos principales: *functional testing* y *performance testing*.

En *functional testing*, se lista los casos de prueba implementados, organizados por requisitos. Cada caso de prueba incluye una descripción breve y una evaluación de su efectividad en la detección de errores.

En *performance testing*, se muestran gráficos y un intervalo de confianza del 95% para los tiempos de respuesta del sistema en dos ordenadores distintos. Esto se realiza para hacer una contrastación de hipótesis para determinar cuál de los dos es más potente.

Este informe busca proporcionar una evaluación clara y precisa del sistema, asegurando su calidad y rendimiento.

Testing report

4. Functional testing

Requirement #6:

Para este requisito, se han implementado las siguientes pruebas:

- List: se comprueba que un patrocinador puede listar todos sus patrocinios.
- **Show**: se comprueba que un patrocinador puede ver correctamente un patrocinio de su propiedad en concreto.
- **Delete**: se comprueba que un patrocinador puede borrar un patrocinio suyo siempre que este no se encuentre publicado.
- **Create**: en *create-negative* se prueban todos los datos límite para los que no se debería crear un patrocinio, mientras que en *create-positive* se fuerzan estos límites para datos que si debiesen permitir crear un patrocinio.
- Update: al igual que en el caso anterior, forzamos los límites para casos positivos (update-positive) y para casos negativos (update-negative) de actualización de un patrocinio.
- Publish: ya que el publish actúa también como un update, hemos seguido la misma metodología que para el testing del update, añadiendo las restricciones correspondientes indicadas en los requisitos correspondientes a la publicación de patrocinios

Hacking:

• En *wrong role* se comprueba que siendo un usuario anónimo/admin no podemos hacer ninguna de las acciones anteriores.

Testing report

- En *wrong user* se hace login como sponsor2 y se comprueba que no deja hacer acciones sobre un patrocinio perteneciente al sponsor1.
- En *wrong action* se hace login con sponsor1 y se comprueba que no podemos borrar, actualizar o publicar un patrocinio ya publicado.

Como apreciamos en la imagen, nuestra suite de tests para *sponsor.sponsorship* está notablemente cerca del 100% salvo en el servicio que corresponde al *delete*, debiéndose al método unbind de la misma que, aunque está implementado no llega a ejecutarse.

Testing report

Requirement #7:

Para este requisito, se han implementado las siguientes pruebas:

- **List**: se comprueba que un patrocinador puede listar todas las facturas para un patrocinio de su propiedad.
- **Show**: se comprueba que un patrocinador puede ver correctamente una factura correspondiente a un patrocinio suyo.
- **Delete**: se comprueba que un patrocinador puede borrar una factura de su propiedad siempre que esta no se encuentre publicada.
- **Create**: en *create-negative* se prueban todos los datos límites para los que no se debería crear una factura, mientras que en *create-positive* se fuerzan estos límites para datos que si deberían permitir crear una factura.
- Update: al igual que en el caso anterior, forzamos los límites para casos positivos (update-positive) y para casos negativos (update-negative) de actualización de un patrocinio. Además, update-negative-currency comprueba los casos en los que no se debe actualizar una factura si ya hay una divisa definida para un patrocinio y sus facturas (esta revisión ya va incluida en las pruebas create-negative y publishnegative).
- Publish: como se mencionó anteriormente, ya que el publish actúa también como un update hemos seguido la misma metodología que para el testing del update, añadiendo las restricciones correspondientes indicadas en los requisitos correspondientes a la publicación de facturas

Testing report

Hacking:

- En *wrong role* se comprueba que siendo un usuario anónimo/admin no podemos hacer ninguna de las acciones anteriores.
- En *wrong user* se hace login como sponsor2 y se comprueba que no deja hacer acciones sobre una factura asociada a un patrocinio del sponsor1.
- En *wrong action* se hace login con sponsor1 y se comprueba que no podemos borrar, actualizar o publicar una factura ya publicada.

Como apreciamos en la imagen, nuestra suite de tests para *sponsor.invoice* es similar a la de los patrocinios y ocurre el mismo problema en el servicio *delete*, ya que el método unbind está implementado, pero no llega a ejecutarse.

Testing report

Eficacia en la detección de errores

Aun siendo la segunda vez que se desarrolla la suite de tests para el S04, se ha encontrado el siguiente error mientras se elaboraba la misma:

- 1. Error mostrado sin necesidad en sponsorship.publish:
 - Problema: Al publicar un patrocinio se mostraba el error de que la divisa no coincidía con la de sus facturas, aunque todas estas estuvieran todavía en draftMode, algo que no es correcto teniendo en cuenta el análisis de los requisitos hecho.
 - **Solución**: Se ha tenido que añadir el condicional correspondiente antes de comprobar si se tiene que mostrar o no el error, es decir, que al menos una de sus facturas debe estar publicada para que ese error pueda o no mostrarse.

Testing report

5. Performance testing

En este apartado se van a mostrar las pruebas de rendimiento realizadas. Se ha ejecutado la suite de prueba en:

- Caso 1. Mi portátil personal: Lenovo IdeaPad Gaming 3 15IAH7 (Intel Core i7-12650H / 16GB RAM / SSD)
- Caso 2. Portátil de mi compañero: HP Pavilion Gaming 15 (Intel Core i7-9750H / 8GB RAM / SSD)

Métricas para el Caso 1:

request-path	response-status	time
Promedio /		5,95507
Promedio /anonymous/system/s	ign-in	5,35636596
Promedio /any/system/welcome		2,658610855
Promedio /authenticated/system	/sign-out	4,53424975
Promedio /sponsor/invoice/creat	e	43,90755552
Promedio /sponsor/invoice/dele	te	34,99923333
Promedio /sponsor/invoice/list		10,95426222
Promedio /sponsor/invoice/publ	ish	42,45820476
Promedio /sponsor/invoice/show	ı	10,86491978
Promedio /sponsor/invoice/upda	te	45,66275308
Promedio /sponsor/sponsorship/	create	44,90766458
Promedio /sponsor/sponsorship/	delete	37,4363335
Promedio /sponsor/sponsorship/	list	10,59003796
Promedio /sponsor/sponsorship/	publish	72,14877566
Promedio /sponsor/sponsorship/	show	13,76766083
Promedio /sponsor/sponsorship/	update	68,93346236
Promedio general		24,66049027

Testing report

También se ha calculado el intervalo de confianza del 95 % para el tiempo que tarda en atender las solicitudes anteriores mi portátil. Nos quedaría:

Interval (ms)	3,16887788	3,4744908
Interval (s)	0,00316888	0,00347449

Testing report

Métricas para el Caso 2:

request-path	response-status	time
Promedio /		7,282119443
Promedio /anonymous/system/sign-in		6,439721631
Promedio /any/system/welcome		3,183471905
Promedio /authenticated/system/sign-out		5,533542014
Promedio /sponsor/invoice/create		52,9141835
Promedio /sponsor/invoice/delete		42,04277604
Promedio /sponsor/invoice/list		13,09894469
Promedio /sponsor/invoice/publish		50,85955614
Promedio /sponsor/invoice/show		13,02504702
Promedio /sponsor/invoice/update		54,59588787
Promedio /sponsor/sponsorship/create		53,95081398
Promedio /sponsor/sponsorship/delete		44,61132392
Promedio /sponsor/sponsorship/list		12,68100658
Promedio /sponsor/sponsorship/publish		86,69515257
Promedio /sponsor/sponsorship/show		16,5208449
Promedio /sponsor/sponsorship/update		82,63638826
Promedio general		29,59841686

Testing report

También se ha calculado el intervalo de confianza del 95 % para el tiempo que tarda en atender las solicitudes anteriores el portátil de mi compañero. Nos quedaría:

Interval (ms)	3,80295062	4,16933838
Interval (s)	0,00380295	0,00416934

Análisis de los resultados obtenidos:

Viendo los tiempos de la ejecución de la suite de tests se puede apreciar como el equipo del Caso 1 tiene ligeramente más rendimiento que el del Caso 2.

Como se aprecia en los gráficos, las peticiones más livianas son las que se graban primero en cada caso de test, es decir, las que tienen que ver con la petición al *welcome* y al inicio de sesión. Por otra parte, las peticiones más demandantes son las que tienen que ver con la publicación y actualización de facturas, ya que estas peticiones realizan validaciones y consultas a la base de datos no solo ya sobre facturas, sino también sobre sus patrocinios.

Análisis estadístico:

Estas observaciones son echas a simple vista y debemos realizar un análisis estadístico para comparar los rendimientos. Para ello se calculó un intervalo de confianza del 95% para los tiempos medios de respuesta de uno y otro equipo. Una vez calculado esto, podemos realizar un contraste de hipótesis al 95% de confianza (prueba Z):

Caso 1		
Media	3,32168434	
Error típico	0,07795695	
Mediana	1,5462995	
Moda	1,4725	
Desviación estándar	9,07319732	
Varianza de la muestra	82,3229096	
Curtosis	65,6072689	
Coeficiente de asimetría	7,43954566	
Rango	165,39	
Mínimo	1,2394	
Máximo	166,6294	
Suma	44995,5361	
Cuenta	13546	
Nivel de confianza (95,0%)	0,15280646	

Testing report

Caso 2		
Media	3,9861445	
Error típico	0,09345963	
Mediana	1,86093044	
Moda	1,7237	
Desviación estándar	10,8775126	
Varianza de la muestra	118,320281	
Curtosis	64,8884228	
Coeficiente de asimetría	7,41136286	
Rango	197,690935	
Mínimo	1,45866567	
Máximo	199,149601	
Suma	53996,3134	
Cuenta	13546	
Nivel de confianza (95,0%)	0,18319388	

Contraste de hipótesis al 95% de confianza:

Prueba z para medias de dos muestras		
	Caso 1	Caso 2
Media	3,31988585	3,9861445
Varianza (conocida)	82,3229096	118,320281
Observaciones	13560	13560
Diferencia hipotética de las medias	0	
z	-5,49940654	
P(Z<=z) una cola	1,9054E-08	
Valor crítico de z (una cola)	1,64485363	
Valor crítico de z (dos colas)	3,8107E-08	
Valor crítico de z (dos colas)	1,95996398	
valor critico de 2 (dos colas)	1,55550556	

El **valor crítico de z (dos colas)** es extremadamente pequeño, lo que indica una diferencia estadísticamente significativa entre los tiempos de respuesta de los dos ordenadores. Además, esto nos dice que la diferencia no es tanto fruto del azar como de la diferencia de rendimiento de ambos equipos. También, si miramos las estadísticas de cada caso, vemos que el intervalo de confianza es menor en el Caso 1, por lo que dicho equipo tendría unos resultados más consistentes y menos variables que el equipo del Caso 2.

Testing report

6. Conclusiones

En conclusión, tras analizar toda la información anterior, podemos afirmar que tenemos bien cubierta toda la funcionalidad de los requisitos S04-006 y S04-007.

Por último, dejar claro que tanto toda la información anterior como la realización de las pruebas mostradas se ha realizado sobre la rama "#411/R/Task-S04-009", por si desea reproducir o verificar lo que vea necesario. En la bibliografía puede encontrar el enlace al repositorio del proyecto.

Testing report

7. Bibliografía

- https://github.com/DP2-C1-009/Acme-SF-D04