

Đề cương luận văn thạc sĩ

Nghiên cứu phát triển kỹ thuật đếm số phần tử trên dòng dữ liệu

Học viên: Lê Anh Quốc ID: 2070428

Người hướng dẫn khoa học: PGS. TS. THOẠI NAM

Outline

- 1. Giới thiệu
- 2. Các công trình nghiên cứu liên quan
- 3. Phát biểu bài toán
- 4. Mục tiêu, đối tượng và giới hạn nghiên cứu
- 5. Cơ sở lý thuyết
- 6. Phương pháp thực hiện
- 7. Kế hoạch triển khai

8. Nội dung dự kiến của luận văn

Giới thiệu

Giới thiệu

- Úng dụng và dịch vụ trực tuyến đóng vai trò quan trọng trong cuộc sống hiện đại.
- DAU là chỉ số quan trọng để đánh giá hiệu quả hoạt động của các ứng dụng và dịch vụ này.
- Theo dõi DAU giúp:
 - Đánh giá mức độ tương tác và quan tâm của người dùng.
 - Đo lường hiệu quả của chiến dịch marketing và quảng cáo.
 - Hỗ trợ ra quyết định kinh doanh.

Giới thiệu

Thách thức:

- Đếm DAU trên dữ liệu lớn và tốc độ truy cập cao.
- Tổng hợp DAU từ nhiều nguồn dữ liệu khác nhau.
- Đếm DAU theo nhiều khoảng thời gian và tiêu chí khác nhau.

Giải pháp:

- Sử dụng các thuật toán đếm hiệu suất cao và tin cậy.
- Xây dựng hệ thống tổng hợp dữ liệu linh hoạt và đồng bộ.
- Áp dụng các kỹ thuật phân tích dữ liệu chi tiết và chuyên sâu.

Các công trình nghiên cứu liên

quan

LogLog [1]

Thuật toán LogLog cho phép ước lượng số lượng từ vựng khác nhau trong toàn bộ tác phẩm của Shakespeare chỉ trong một lần quét và với độ chính xác cỡ vài phần trăm, sử dụng một lượng bộ nhớ phụ nhỏ. Phiên bản cơ bản đã được xác minh qua phân tích toàn diện và có phiên bản tối ưu hóa có khả năng song song.

HyperLogLog [2]

Thuật toán HYPERLOGLOG là một thuật toán xác suất gần tối ưu, được thiết kế để ước lượng số lượng các phần tử khác nhau trong các tập dữ liệu rất lớn. Sử dụng bộ nhớ phụ có kích thước m đơn vị, HYPERLOGLOG thực hiện một lần quét qua dữ liệu và tạo ra một ước lượng về số lượng phần tử khác nhau với độ chính xác tương đối là khoảng $\frac{1.04}{\sqrt{m}}$. Thuật toán này có khả năng ước lượng số lượng phần tử lớn hơn 10^9 với độ chính xác khoảng 2% chỉ sử dụng 1.5 kilobytes bộ nhớ, đồng thời có khả năng song song hoá tối ưu và thích nghi với mô hình cửa sổ trượt (sliding windown).

HyperLogLog++ [3]

Bài báo giới thiệu một thuật toán mới ước lượng số lượng luồng hoạt động trong dòng dữ liệu, sử dụng cơ chế cửa số trượt kết hợp với thuật toán HyperLogLog. Thuật toán này có độ chính xác cao, lỗi tiêu chuẩn khoảng $\frac{1.04}{\sqrt{m}}$, với m là số lượng thanh ghi trong bộ nhớ. Dù cần bộ nhớ bổ sung so với HyperLogLog, tổng bộ nhớ cần thiết không vượt quá $5m\ln(\frac{n}{m})$ byte, với n là số luồng thực sự trong cửa sổ trượt. Kết quả lý thuyết được xác minh trên cả dữ liệu thực và tổng hợp.

Sliding HyperLogLog [4]

Bài báo giới thiệu một thuật toán mới ước lượng số lượng luồng hoạt động trong dòng dữ liệu, sử dụng cơ chế cửa số trượt kết hợp với thuật toán HyperLogLog. Thuật toán này có độ chính xác cao, lỗi tiêu chuẩn khoảng $\frac{1.04}{\sqrt{m}}$, với m là số lượng thanh ghi trong bộ nhớ. Dù cần bộ nhớ bổ sung so với HyperLogLog, tổng bộ nhớ cần thiết không vượt quá $5m\ln(\frac{n}{m})$ byte, với n là số luồng thực sự trong cửa sổ trượt. Kết quả lý thuyết được xác minh trên cả dữ liệu thực và tổng hợp.

ExaLogLog [5]

ExaLogLog là một cấu trúc dữ liệu mới cho việc đếm độc lập xấp xỉ, tương tự như HyperLogLog, nhưng tiêu tốn ít hơn 43% không gian với cùng lỗi ước lượng.

Phát biểu bài toán

Phát biểu bài toán

Bài toán 1: Phát triển thuật toán để ước lượng số lượng phần tử (cardinality estimation) trong một khoảng thời gian trên một dòng dữ liệu (data stream).

Bài toán 2: Mở rộng thuật toán để ước lượng số lượng phần tử trong một khoảng thời gian trên nhiều dòng dữ liệu.

Mục tiêu, đối tượng và giới hạn nghiên cứu

Mục tiêu

Mục tiêu chính:

- Phát triển kỹ thuật đếm số lượng phần tử hiệu quả, có chính xác cao trên dòng dữ liệu.
- Nâng cao hiệu suất xử lý dữ liệu lớn, đáp ứng nhu cầu ngày càng tăng trong kỷ nguyên số.
- Đóng góp vào sự phát triển của công nghệ dữ liệu lớn, mở ra tiềm năng ứng dụng rộng lớn trong nhiều lĩnh vực.

Mục tiêu cụ thể:

- Phân tích và đánh giá các kỹ thuật đếm số lượng phần tử hiện có.
- Đề xuất và triển khai kỹ thuật đếm số lượng phần tử mới, tối ưu hóa hiệu suất và độ chính xác.
- Thực hiện thí nghiệm để chứng minh tính ưu việt của kỹ thuật mới so với các kỹ thuật hiện có.
- Phân tích kết quả thí nghiệm, rút ra kết luận và đề xuất hướng nghiên cứu tiếp theo.

Giới hạn

- Đề tài tập trung nghiên cứu kỹ thuật đếm số lượng phần tử trên dòng dữ liệu dạng văn bản.
- Các kỹ thuật được đề xuất và triển khai có thể chưa áp dụng được cho tất cả các loại dữ liệu.
- Nghiên cứu chỉ giới hạn trong thời gian cho phép.

Đối tượng nghiên cứu

Đối tượng nghiên cứu của đề tài "Nghiên cứu phát triển kỹ thuật đếm số lượng phần tử trên dòng dữ liệu" Đối tượng nghiên cứu chính:

- Dòng dữ liệu dạng văn bản có chứa nhiều phần tử cần đếm.
- Các kỹ thuật đếm số lượng phần tử hiện có và mới được đề xuất.

Dối tượng nghiên cứu cụ thể:

- Số phần tử có thể là userID, IP address hoặc bất kỳ đối tượng nào tương đương mà có thể đếm được nhờ định danh của nó.
- Các ứng dụng xử lý dữ liệu lớn có nhu cầu đếm số lượng phần tử hiệu quả.

Cơ sở lý thuyết

Cơ sở lý thuyết

Các thuật toán xác suất phổ biến nhất để ước lương số lương được sử dung trong thực tế là họ các thuật toán LogLog bao gồm thuật toán LogLog, được đề xuất bởi Marianne Durand và Philippe Flajolet vào năm 2003 [1], và các kế thừa của nó HyperLogLog và HyperLogLog++. Các thuật toán này sử dụng một phương pháp tương tư như thuật toán Đếm Xác Suất trong việc ước lương số lương n bằng cách quan sát số lượng lớn nhất của các số không dấu hàng đầu trong biểu diễn nhị phân của các giá trị. Tất cả chúng đều yêu cầu một bộ nhớ phụ trợ và thực hiện một lần duyết qua dữ liệu để tạo ra một ước lượng về số lượng. Mỗi phần tử trong tập dữ liêu được tiền xử lý bằng cách áp dụng một hàm băm h chuyển đổi các phần tử thành số nguyên phân bố đều đặn đủ trên một phạm vi scala $\{0, 1, ..., 2^M - 1\}$ hoặc, tương đương, trên tập hợp các chuỗi nhi phân có độ dài M:

$$h(x) = j = \sum_{k=0}^{M-1} j_k \cdot 2^k := (i_0 i_1 ... i_{M-1})_2, i_k \in \{0, 1\}$$

Cơ sở lý thuyết

Dầu tiên, chúng ta chia tập dữ liệu ban đầu hoặc dòng dữ liệu đầu vào thành một số tập con, mỗi tập con này được lập chỉ mục bởi một trong m bộ đếm đơn giản. Sau đó, theo phương pháp trung bình ngẫu nhiên, vì có một hàm băm đơn giản, chúng ta chọn bộ đếm cho phần tử cụ thể x bằng cách sử dụng một phần của giá trị băm của nó h(x), trong khi phần còn lại được sử dụng để cập nhật bộ đếm tương ứng.

Tất cả các thuật toán được thảo luận ở đây dựa trên việc quan sát các mẫu 0^k1 xuất hiện ở đầu của các giá trị cho bộ đếm cụ thể, và gán mỗi mẫu với chỉ số của nó, gọi là hạng (rank). Hạng tương đương với vị trí bit 1 đầu tiên từ trái qua phải trong biểu diễn nhị phân của giá trị băm của phần tử được lập chỉ mục và có thể được tính bằng công thức:

$$rank(i) = \begin{cases} \min_{i_k \neq 0}, & \text{for } i > 0, \\ M \text{for } i = 0 \end{cases}$$

Mỗi bộ đếm đơn giản xây dựng quan sát về số lượng của riêng mình dựa trên các hạng đã nhìn thấy, ước lượng cuối cùng của số lượng được tạo ra từ quan sát bằng một hàm đánh giá.Liên quan đến lưu trữ, thuật toán

LogLog algorithm

Ý tưởng cơ bản của thuật toán LogLog bắt đầu bằng việc tính toán hạng cho mỗi phần tử đầu vào dựa trên một hàm băm đơn giản h. Vì chúng ta có thể mong đợi rằng khoảng $\frac{n}{2^k}$ phần tử có thể có $rank(\cdot) = k$, trong đó n là tổng số phần tử được lập chỉ mục vào một bộ đếm, hạng quan sát tối đa có thể cung cấp một dấu hiệu tốt về giá trị của log_2n :

$$R = \max_{x \in D} (rank(x)) \approx log_2 n.$$

Tuy nhiên, ước lượng như vậy có sai số khoảng ± 1.87 lần nhị phân, điều này không thực tế. Để giảm sai số, thuật toán LogLog sử dụng một kỹ thuật phân nhóm dựa trên việc trung bình ngẫu nhiên và chia tập dữ liệu thành $m=2^p$ tập con $S_0,S_1,...,S_{m-1}$, trong đó tham số độ chính xác p xác định số bit được sử dụng trong điều hướng.

Do đó, đối với mỗi phần tử x từ tập dữ liệu, p bit đầu tiên của giá trị băm h(x) M-bit có thể được lấy để tìm ra chỉ số j của tập con thích hợp.

$$j = (i_0 i_1 ... i_{p-1})_2$$

và phần còn lại (M-p) bit được lập chỉ mục vào bộ đếm tương ứng

LogLog algorithm

Algorithm 1: Estimatin cardinality with *LogLog*

```
Input: Dataset D
```

Input: Array of *m LogLog* counters with hash function *h*

Output: Cardinality estimation $COUNTER[j] \leftarrow 0, j = 0...m - 1$

for
$$x \in D$$
 do

$$i \leftarrow h(x) := (i_0 i_1 ... i_{M-1})_2, i_k \in \{0,1\}$$

$$j \leftarrow (i_0 i_1 ... i_{M-1})_2$$

$$r \leftarrow rank((i_p i_{p+1} ... i_{M-1})_2)$$

$$COUNTER[i] \leftarrow max(COUNTER[i].r)$$

end

$$R \leftarrow \frac{1}{m} \sum_{k=0}^{m-1} \text{COUNTER[j]}$$

return
$$\alpha_m \cdot m \cdot 2^R$$

LogLog algorithm

Sai số tiêu chuẩn δ của thuật toán LogLog có mối quan hệ nghịch với số lượng bộ đếm sử dụng m và có thể được xấp xỉ gần như là:

$$\delta \approx \frac{1.3}{\sqrt{m}}$$

Do đó, với m=256, sai số tiêu chuẩn là khoảng 8% và với m=1024, nó giảm xuống còn khoảng 4%. Yêu cầu lưu trữ của thuật toán LogLog có thể được ước tính là $O(log_2log_2n)$ bit nếu cần đến đến n. Cụ thể hơn, tổng không gian được yêu cầu bởi thuật toán để đếm đến n là $m \cdot log_2log_2\frac{n}{m}(1+O(1))$.

So sánh với thuật toán Đếm Xác suất trong đó mỗi bộ đếm yêu cầu 16 hoặc 32 bit, thuật toán LogLog yêu cầu bộ đếm nhỏ hơn nhiều $\{COUNTER[j]\}_{j=0}^{m-1}$, thường là 5 bit mỗi bộ đếm. Tuy nhiên, trong khi thuật toán LogLog cung cấp hiệu quả lưu trữ tốt hơn so với thuật toán Đếm Xác suất, nó đôi chút ít chính xác hơn.

Giả sử chúng ta cần đếm định lượng cho đến 2^{30} , tức là khoảng 1 tỷ, với độ chính xác khoảng 4%. Như đã đề cập, cho sai số tiêu chuẩn như vậy, cần m=1024 ngăn, mỗi ngăn sẽ nhận xấp xỉ $\frac{n}{m}=2^{20}$ phần tử.

Một cải tiến của thuật toán LogLog, gọi là HyperLogLog, đã được đề xuất bởi Philippe Flajolet, Eric Fusy, Olivier Gandouet và Frederic Meunier vào năm 2007 [2]. Thuật toán HyperLogLog sử dụng hàm băm 32-bit, một hàm đánh giá khác nhau và các sửa lỗi bias khác nhau. Tương tư như thuật toán LogLog, HyperLogLog sử dụng ngẫu nhiên hóa để xấp xỉ định lượng của một tập dữ liệu và đã được thiết kế để xử lý các định lượng lên đến 10^9 với một hàm băm 32-bit đơn lẻ h chia tập dữ liệu thành $m=2^p$ tập con, với độ chính xác $p\in 4...16$. Ngoài ra, hàm đánh giá khác biệt thuật toán HyperLogLog so với LogLog tiêu chuẩn. Thuật toán LogLog gốc sử dụng trung bình hình học (geometric mean) trong khi HyperLogLog sử dụng một hàm dựa trên phiên bản chuẩn hóa của trung bình điều hòa (harmonic mean):

$$\hat{\mathbf{n}} \approx \alpha_{m} \cdot m^{2} \cdot \left(\sum_{j=0}^{m-1} 2^{-COUNTER[j]} \right),$$

với

$$\alpha_m = \left(m \int_{-\infty}^{\infty} \left(\log_2\left(\frac{2+x}{x}\right)\right)^m dx\right)^{-1}$$

18

 \acute{Y} tưởng đằng sau việc sử dụng trung bình điều hòa là nó giảm phương sai do tính chất của nó để kiểm soát các phân phối xác suất lệch.

Table 1: α_m for most used values of m

m	$\alpha_{\it m}$
64	0.673
256	0.697
1024	0.709
$\geq 2^7$	$\frac{0.7213 \cdot m}{m+1.079}$

Tuy nhiên, ước lượng $\hat{\mathbf{n}}$ yêu cầu một sự điều chỉnh cho các phạm vi nhỏ và lớn do lỗi phi tuyến. Flajolet và các đồng nghiệp đã tìm thấy từ kinh nghiệm rằng đối với các định lượng nhỏ $n < \frac{5}{2}m$ để đạt được ước lượng tốt hơn, thuật toán HyperLogLog có thể được sửa lỗi bằng Đếm Tuyến Tính bằng cách sử dụng một số bộ đếm COUNTER[j] khác không (nếu một bộ đếm có giá trị là không, chúng ta có thể nói chắc chắn rằng tập con cụ thể đó là trống).

Do đó, cho các phạm vi định lượng khác nhau, được biểu diễn dưới dạng các khoảng trên ước lượng \hat{n} , thuật toán cung cấp các sửa lỗi sau:

$$n = \left\{ \begin{array}{ll} \mathsf{LINEARCOUNTER}, & \hat{n} \leq \frac{5}{2} m \text{ and } \exists_j : \mathit{COUNTER}[j] \neq 0 \\ -2^{32} \log \left(1 - \frac{\hat{n}}{2^{32}}\right), & \hat{n} > \frac{1}{30} 2^{32} \\ \hat{n}, & \mathit{otherwise}. \end{array} \right.$$

Tuy nhiên, đối với n=0, sự sửa lỗi có vẻ không đủ và thuật toán luôn trả về một kết quả xấp xỉ 0.7m.

Vì thuật toán HyperLogLog sử dụng một hàm băm 32-bit, khi định lượng tiến gần đến $2^{32}\approx 4\cdot 10^9$, hàm băm gần như đạt đến giới hạn của nó và xác suất va chạm tăng lên. Đối với các phạm vi lớn như vậy, thuật toán HyperLogLog ước lượng số lượng giá trị băm khác nhau và sử dụng nó để xấp xỉ định lượng. Tuy nhiên, trong thực tế, có nguy cơ rằng một số lượng cao hơn không thể được đại diện và sẽ bị mất, ảnh hưởng đến độ chính xác.

Xem xét một hàm băm mà ánh xạ vũ trụ thành các giá trị có độ dài M bit. Tối đa, một hàm như vậy có thể mã hóa 2^M giá trị khác nhau và nếu định lượng ước lượng n tiến dần đến giới hạn này, đụng độ hàm băm trở nên ngày càng có khả năng xảy ra.

Không có bằng chứng cho thấy một số hàm băm phổ biến (ví dụ: MurmurHash3, MD5, SHA-1, SHA-256) hoạt động đáng kể tốt hơn các hàm khác trong các thuật toán *HyperLogLog* hoặc các biến thể của nó.

Algorithm 2: Estimatin cardinality with HyperLogLog

Input: Dataset D

Input: Array of $m \ Log Log$ counters with hash function h

Output: Cardinality estimation $COUNTER[j] \leftarrow 0, j = 0...m - 1$

for $x \in D$ do

$$i \leftarrow h(x) := (i_0 i_1 ... i_{M-1})_2, i_k \in \{0,1\}$$

 $j \leftarrow (i_0 i_1 ... i_{M-1})_2$

$$r \leftarrow \operatorname{rank}((i_p i_{p+1} ... i_{M-1})_2)$$

$$COUNTER[i] \leftarrow max(COUNTER[i],r)$$

end

$$R \leftarrow \frac{1}{m} \sum_{k=0}^{m-1} \text{COUNTER[j]}$$

$$\hat{n} = \alpha_m \cdot m^2 \cdot \frac{1}{R}$$

$$n \leftarrow \hat{n}$$

if
$$\hat{n} \leq \frac{5}{2}m$$
 then

$$Z \leftarrow \underset{j=0...m-1}{count} (COUNTER[j] == 0)$$

Tương tự như thuật toán LogLog, có một sự đánh đối rõ ràng giữa sai số tiêu chuẩn δ và số lượng bộ đếm m:

$$\delta \approx \frac{1.04}{\sqrt{m}}$$
.

Yêu cầu bộ nhớ không tăng tuyến tính theo số lượng phần tử (không giống như, ví dụ, thuật toán Đếm Tuyến Tính), phân bổ (M=p) bit cho các giá trị băm và có tổng cộng $m=2^p$ bộ đếm, bộ nhớ cần thiết là

$$\lceil \log_2 (M+1-p) \rceil \cdot 2^p$$
 bits

hơn nữa, vì thuật toán chỉ sử dụng hàm băm 32-bit và độ chính xác $p \in 4...16$, yêu cầu bộ nhớ cho cấu trúc dữ liệu HyperLogLog là $5 \cdot 2^p$ bit. Do đó, thuật toán HyperLogLog cho phép ước lượng các định lượng vượt xa 10^9 với độ chính xác thông thường là 2% trong khi chỉ sử dụng một bộ nhớ chỉ $1.5~{\rm KB}$.

Ví dụ, cơ sở dữ liệu trong bộ nhớ nổi tiếng Redis duy trì cấu trúc dữ liệu *HyperLogLog* của 12 KB để xấp xỉ các định lượng với sai số tiêu chuẩn là 0.81.%. Trong khi *HyperLogLog*, so với *LogLog*, đã cải thiện ước lượng

Sau một thời gian, vào năm 2013 [4], một phiên bản cải tiến của HyperLogLog đã được phát triển, đó là thuật toán HyperLogLog++, được công bố bởi Stefan Heule, Marc Nunkesser và Alexander Hall và tập trung vào các định lượng lớn hơn và sửa lỗi sai tốt hơn.

Cải tiến đáng chú ý nhất của thuật toán HyperLogLog + + là việc sử dụng hàm băm 64-bit. Rõ ràng, càng dài giá trị đầu ra của hàm băm, càng nhiều phần tử khác nhau có thể được mã hóa. Sự cải thiện này cho phép ước lượng các định lượng lớn hơn rất nhiều so với 10^9 phần tử duy nhất, nhưng khi định lượng tiến gần đến $2^64 \approx 1.8 \cdot 10^{19}$, đụng độ hàm băm cũng trở thành một vấn đề đối với HyperLogLog + +.

Thuật toán HyperLogLog++ sử dụng chính xác hàm đánh giá giống như được đưa ra trong HyperLogLog. Tuy nhiên, nó cải thiện việc sửa lỗi sai. Các tác giả của thuật toán đã thực hiện một loạt các thí nghiệm để đo lường sai lệch và phát hiện rằng đối với $n \leq 5m$, sai lệch của thuật toán HyperLogLog gốc có thể được sửa lỗi hơn bằng cách sử dụng dữ liệu thực nghiệm được thu thập trong quá trình thí nghiệm.

Ngoài bài báo gốc, Heule và đồng nghiệp cung cấp các giá trị được xác

return $y(\hat{n})$

Algorithm 3: Correcting bias in *HyperLogLog++*

```
Input: Estimate \hat{n} with precicion p
Output: Bias-corrected cardinality estimate
n_{low} \leftarrow 0, n_{up} \leftarrow 0, j_{low} \leftarrow 0, j_{up} \leftarrow 0
for j \leftarrow 0 tolength(RAWESTIMATEDATA[p-4]) do
     if RAWESTIMATEDATA[p-4][j] \geq \hat{n} then
         j_{low} \leftarrow j - 1, j_{up} \leftarrow j
         n_{low} \leftarrow RAWESTIMATEDATA[p-4][j_{low}]
         n_{\mu p} \leftarrow RAWESTIMATEDATA[p-4][j_{\mu p}]
         break
    end
end
b_{low} \leftarrow BIASDATA[p-4][j_{low}]
b_{\mu\rho} \leftarrow BIASDATA[p-4][j_{\mu\rho}]
y = interpolate((n_{low}, n_{low} - b_{low}), (n_{up}, n_{up} - b_{up}))
```

Ví dụ (1), giả sử chúng ta đã tính toán ước lượng định lượng $\hat{n}=2018.34$ bằng cách sử dụng công thức

$$\hat{n} \approx \alpha_m \cdot m^2 \cdot \left(\sum_{j=0}^{m-1} 2^{-COUNTER[j]} \right),$$

và muốn sửa chúng cho độ chính xác $p=10(m=2^{10})$. Đầu tiên chúng ta kiểm trang mảng RAWESTIMATEDATA[6] và xác định giá trị \hat{n} , như vậy giá trị này rơi vào khoảng 73 đến 74, với RAWESTIMATEDATA[6][73] = 2003.1804 và RAWESTIMATEDATA[6][74] = 2026.071.

$$2003.1804 \le \hat{n} \le 2026.071.$$

Ước lượng chính xác nằm trong khoảng:

$$[2023.1804 - 134.1804, 2026.071 - 131.071] = [1869.0, 1895.0]$$

và để tính toán ước lượng được sửa, chúng ta có thể nội suy giá trị đó, ví dụ, sử dụng tìm kiếm k-nearest neighbor hoặc chỉ là một nội suy tuyến

Theo các thí nghiệm thực hiện bởi các tác giả của HyperLogLog++, ước lượng n_{lin} được tính theo thuật toán Linear Counting vẫn tốt hơn cho các số lượng phần tử nhỏ so với giá trị được hiệu chỉnh sai số n. Do đó, nếu ít nhất một bộ đếm trống tồn tại, thuật toán sẽ tính toán thêm ước lượng tuyến tính và sử dụng một danh sách các ngưỡng thực nghiệm, có thể tìm thấy trong Bảng 3.4, để chọn xem ước lượng nào nên được ưu tiên. Trong trường hợp như vậy, giá trị được hiệu chỉnh sai số n chỉ được sử dụng khi ước lượng tuyến tính n_{lin} vượt qua ngưỡng \varkappa_m cho m hiện tại. Trong ví dụ (1), khi $m=2^{10}$, chúng ta tính được giá trị được hiệu chỉnh sai số $n \approx 1886.218$. Để xác định xem chúng ta có nên ưu tiên giá tri này so với ước lương bằng Linear Counting hay không, chúng ta cần tìm ra số lượng bộ đếm trống Z trong cấu trúc dữ liệu của HyperLogLog++. Vì chúng ta không có giá trị trong ví du của chúng ta, hãy giả định rằng Z = 73. Do đó, ước lượng tuyến tính là:

$$n_{lin} = 2^{10} \cdot \log\left(\frac{2^{10}}{73}\right) \approx 2704.$$

Tiếp theo, chúng ta so sánh n_{lin} với ngưỡng $\varkappa_m = 900$ từ Table 2, mà là

Table 2: Ngưỡng thực nghiệm \varkappa_m cho các giá trị độ chính xác được hỗ trợ

р	m	\varkappa_m
4	2 ⁴	10
5	2^{5}	20
6	2 ⁶	40
7	2 ⁷	80
8	2 ⁸	220

р	m	\varkappa_m
9	2 ⁹	400
10	2 ¹ 0	900
11	2 ¹ 1	1800
12	2 ¹ 2	3100
13	2 ¹ 3	6500

р	m	\varkappa_m
14	2 ¹ 4	11500
15	2 ¹ 5	20000
16	2 ¹ 6	50000
17	2 ¹ 7	120000
18	2 ¹ 8	350000

if $\hat{n} < 5m$ then

end

 $n \leftarrow \mathsf{CorrectBias}(\hat{n})$

Algorithm 4: Estimating cardinality with *HyperLogLog++*

```
Input: Dataset D
Input: Array of m LogLog counters with hash function h
Output: Cardinality estimation
COUNTER[j] \leftarrow 0, j = 0...m - 1
for x \in D do
     i \leftarrow h(x) := (i_0 i_1 ... i_{63})_2, i_k \in \{0, 1\}
    j \leftarrow (i_0 i_1 ... i_{p-1})_2
     r \leftarrow COUNTER[i] \leftarrow \max(COUNTER[i], r)
end
\mathbf{R} \leftarrow \sum_{k=0}^{m-1} 2^{-\textit{COUNTER[j]}}
\hat{n} = \alpha_m \cdot m^2 \cdot \frac{1}{R}
n \leftarrow \hat{n}
```

Độ chính xác của HyperLogLog++ tốt hơn so với HyperLogLog cho một phạm vi lớn của các số lượng phần tử và tương đương tốt cho phần còn lại. Đối với các số lượng phần tử từ 12000 đến 61000, việc hiệu chỉnh sai số cho phép giảm thiểu sai số và tránh một đỉnh sai số khi chuyển đổi giữa các phụ thuộc (sub-algorithns).

Tuy nhiên, vì HyperLogLog++ không cần lưu trữ giá trị băm, chỉ cần một cộng với kích thước tối đa của số lượng số không đầu tiên, yêu cầu bộ nhớ không tăng đáng kể so với HyperLogLog và chỉ yêu cầu $6 \cdot 2^p$ bit. Thuật toán HyperLogLog++ có thể được sử dụng để ước lượng số lượng phần tử

khoảng $7.9 \cdot 10^9$ với một tỷ lệ lỗi điển hình là 1.625%, sử dụng $2.56~{\rm KB}$ bộ nhớ.

HyperLogLog++ algorithm

Như đã đề cập trước đó, thuật toán sử dụng phương pháp lấy trung bình ngẫu nhiên và chia tập dữ liệu thành $m=2^p$ tập con $\{COUNTER[j]\}_{j=0}^{m-1}$, mỗi bộ đếm xử lý thông tin về $\frac{n}{m}$ phần tử. Heule và đồng nghiệp đã nhận thấy rằng đối với $n \ll m$, hầu hết các bộ đếm không bao giờ được sử dụng và không cần phải được lưu trữ, do đó lưu trữ có thể được hưởng lợi từ một biểu diễn thưa thớt. Nếu số lượng phần tử n nhỏ hơn rất nhiều so với m, thì HyperLogLog++ yêu cầu bộ nhớ đáng kể ít hơn so với các phiên bản trước đó.

Thuật toán HyperLogLog++ trong phiên bản thưa thốt chỉ lưu trữ các cặp (j, COUNTER[j]), biểu diễn chúng dưới dạng một số nguyên duy nhất bằng cách nối các mẫu bit của chúng. Tất cả các cặp như vậy được lưu trữ trong một danh sách đã sắp xếp duy nhất của các số nguyên. Vì chúng ta luôn tính toán hạng cực đại, nên chúng ta không cần phải lưu trữ các cặp khác nhau có cùng chỉ số, thay vào đó chỉ cần lưu trữ cặp có chỉ số cực đại.

Trong thực tế, để cung cấp trải nghiệm tốt hơn, người ta có thể duy trì một danh sách không được sắp xếp khác để thực hiện các thêm nhanh

Phương pháp thực hiện

Bài toán 1

Phát triển thuật toán để ước lượng số lượng phần tử (cardinality estimation) trong một khoảng thời gian trên một dòng dữ liệu (data stream): Trong phương pháp này, chúng tôi sẽ trình bày quá trình phát triển thuật toán sử dụng HyperLogLog để ước lượng số lượng phần tử trên một dòng dữ liệu. Bằng cách sử dụng cấu trúc dữ liệu HyperLogLog thep khung thời gian, ví dụ như mỗi giờ hoặc mỗi phút và các kỹ thuật tối ưu, chúng tôi xây dựng một thuật toán hiệu quả và chính xác để đếm số lượng phần tử duy nhất trong dữ liệu dòng.

- Bước 1: Xác định khoảng thời gian Đầu tiên, chúng tôi sẽ xác định khoảng thời gian mà chúng tôi muốn đếm số lượng phần tử. Ví dụ, mỗi giờ hoặc mỗi phút.
- Bước 2: Lưu trữ HyperLogLog Tiếp theo, chúng tôi sẽ lưu trữ cấu trúc HyperLogLog cho mỗi khoảng thời gian. Cấu trúc dữ liệu sẽ bao gồm cặp $\langle T_1, HLL_1 \rangle$, trong đó T_1 là thời điểm đại diện cho khung thời gian cu thể.
- Bước 3: Sử dụng kết quả Cuối cùng, khi cần, chúng tôi có thể truy vấn và sử dụng kết quả từ các cấu trúc HyperLogLog lưu trữ theo

Bài toán 2

Mở rộng thuật toán để ước lượng số lượng phần tử trong một khoảng thời gian trên nhiều dòng dữ liệu: Trong phương pháp này, chúng tôi sẽ sẽ mở rộng thuật toán 1 để ước lượng trên nhiều dòng dữ liệu. Ví dụ khi chúng ta cần biết có bao nhiêu người dùng đã đăng nhập vào hệ thống vào ngày hôm qua, do dữ liệu người dùng được lưu ở trên nhiều hệ thống như web, application và cũng như trên các bộ phận khác nhau của doanh nghiệp. Khi đó chúng ta sẽ có nhiều nguồn dữ liệu khác nhau và cần một thuật toán để kết hợp các nguồn dữ liệu này để tổng hợp cho ra ước lượng số lượng cuối cùng.

- Bước 1: Tổng hợp dữ liệu Đầu tiên, chúng ta đã lưu trữ dữ liệu trên một dòng dữ liệu như thuật toán ở trên.
- Bước 2: Tổng hợp HyperLogLog Tiếp theo, chúng tôi sẽ sẽ tiến hành tổng hợp các dữ liệu từ nhiều nơi khác nhau $\langle T_1, HLL_1 \rangle, \langle T_2, HLL_2 \rangle, ..., \langle T_N, HLL_N \rangle, \text{ trong đó } T_1, T_2, ..., T_N \text{ là các khoảng thời gian giống nhau nên } T_1 = T_2 = T_N \text{ và đặt chung là } T, \text{ và } HLL_1 \text{ là dữ liệu HyperLogLog trong khoảng thời gian, ví dụ từ } 12:00 ngày hôm qua cho đến 12:00 ngày hôm nay.}$

Kế hoạch triển khai

Kế hoạch triển khai

#	Tuần	Nội dung công việc
1	1 - 2	Bài báo liên quan mới nhất và bổ sung cơ sở lý thuyết
		về các kỹ thuật ước lượng số lượng trên dòng dữ liệu
2	3 - 4	Thu thập dữ liệu, chuẩn hoá và tiền xử lý. Hiện thực
		bài toán 1 ước lượng số lượng phần tử trên dòng dữ liệu
3	5 - 6	Mở rộng để ước lượng số lượng phần tử trên
		nhiều dòng dữ liệu. Đánh giá hiệu suất và độ chính xác.
4	7 - 8	Phân tích và so sánh kết quả, đánh giá ưu nhược điểm.
		Đề suất phương pháp tối ưu hiệu suất và độ chính xác.
5	9 - 10	Ứng dụng kết quả nghiên cứu.
		Đề suất hướng phát triển và nghiên cứu tiếp theo.
6	11 - 12	Đề xuất và đánh giá các giải pháp
7	1 - 14	Tổng hợp kết quả và viết báo cáo

Nội dung dự kiến của luận văn

Nội dung dự kiến của luận văn

- **Chương 1: Giới thiệu**. Tầm quan trọng của việc phát triển kỹ thuật đếm số phần tử trên dòng dữ liệu trong ngữ cảnh dữ liệu lớn.
- Chương 2: Các công trình nghiên cứu liên quan. Các công trình nghiên cứu liên quan, phương pháp giải quyết vấn đề. Đánh giá tính khả thi của đề tài.
- **Chương 3: Kiến thức nền tảng.** Giới thiệu về tính chất, phương pháp truy vấn và xử lý trên dòng dữ liệu. Giới thiệu về HyperLogLog và nguyên lý hoạt động và đánh giá hiệu suất, độ chính xác trên dòng dữ liệu.
- **Chương 4: Hiện thực và thử nghiệm.** Trong chương này sẽ trình bày chi tiết cách thức hiện thực của từng thuật toán.
- **Chương 5: Kết quả và đánh giá.** Trong chương này sẽ nêu ra các kết quả đạt được của các kỹ thuật, cũng như phương pháp đánh giá dựa trên kết quả thực nghiệm.
- **Chương 6: Kết luận.** Đánh giá ưu điểm và nhược điểm của mô hình và đề xuất hướng nghiên cứu phát triển kỹ thuật đếm số phần tử trong tương lai.

Kết luận

Kết luân

Việc giám sát và quản lý số lượng người dùng đóng vai trò quan trọng trong việc tối ưu hóa hiệu quả hoạt động, nâng cao trải nghiệm người dùng, hỗ trợ ra quyết định kinh doanh sáng suốt và đảm bảo an ninh mạng cho doanh nghiệp.

Phân bổ tài nguyên hợp lý: Đảm bảo hệ thống hoạt động ổn định, tránh quá tải, lãng phí tài nguyên, tối ưu hóa chi phí vận hành.

Nâng cao trải nghiệm người dùng: Giảm thiểu lỗi hệ thống, lag, giật, loading lâu, mang đến trải nghiệm mượt mà, thu hút và giữ chân khách hàng.

Phát hiện và khắc phục sự cố kịp thời: Nhận diện sớm các dấu hiệu bất thường, sự cố hệ thống, từ đó có biện pháp khắc phục nhanh chóng, hạn chế ảnh hưởng đến hoạt động kinh doanh.

Hiểu rõ hành vi người dùng: Phân tích dữ liệu truy cập, hành vi click chuột, sở thích, nhu cầu của người dùng để cá nhân hóa trải nghiệm, đề xuất sản phẩm/dịch vụ phù hợp, nâng cao hiệu quả marketing và dự báo xu hướng thị trường.

Hỗ trợ ra quyết định kinh doanh: Đánh giá hiệu quả chiến dịch

Tài liệu tham khảo i

Marianne Durand and Philippe Flajolet.

Loglog counting of large cardinalities.

In Algorithms-ESA 2003: 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003. Proceedings 11, pages 605–617. Springer, 2003.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. **Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.**

Discrete mathematics & theoretical computer science, (Proceedings), 2007.

Tài liệu tham khảo ii

Stefan Heule, Marc Nunkesser, and Alexander Hall.

Hyperloglog in practice: Algorithmic engineering of a state of the art cardinality estimation algorithm.

In Proceedings of the 16th International Conference on Extending Database Technology, pages 683–692, 2013.

Yousra Chabchoub and Georges Heébrail.

Sliding hyperloglog: Estimating cardinality in a data stream over a sliding window.

In 2010 IEEE International Conference on Data Mining Workshops, pages 1297–1303. IEEE, 2010.

Otmar Ertl.

Exaloglog: Space-efficient and practical approximate distinct counting up to the exa-scale.

arXiv preprint arXiv:2402.13726, 2024.