Problem 4.47 (USAMO 2011/5). Let P be a point inside convex quadrilateral ABCD. Points Q_1 and Q_2 are located within ABCD such that

$$\angle Q_1BC = \angle ABP, \angle Q_1CB = \angle DCP,$$

 $\angle Q_2AD = \angle BAP, \angle Q_2DA = \angle CDP.$

Prove that $\overline{Q_1Q_2} \parallel \overline{AB}$ if and only if $\overline{Q_1Q_2} \parallel \overline{CD}$.

Solution

Proof. To prove $AB \parallel Q_1Q_2 \iff AB \parallel CD$, we can prove the proportionality of height from Q_1 , Q_2 to AB, AC are equal. let

$$\begin{split} s &= \frac{AQ_2 \sin \angle BAQ_2 \cdot CQ_1 \sin \angle DCQ_1}{BQ_1 \sin \angle ABQ_1 \cdot DQ_2 \sin \angle CDQ_2} = \frac{AQ_2 \sin \angle DAP \cdot CQ_1 \sin \angle BCP}{BQ_1 \sin \angle CBP \cdot DQ_2 \sin \angle ADP} \\ &= \frac{AQ_2 \cdot DP \cdot CQ_1 \cdot BP}{BQ_1 \cdot CP \cdot DQ_2 \cdot AP} \\ &= \frac{DP \cdot BP}{CP \cdot AP} \cdot \frac{\sin \angle ADQ_2 \cdot \sin \angle CBQ_1}{\sin \angle DAQ_2 \cdot \sin \angle BCQ_1} = \frac{DP \cdot BP}{CP \cdot AP} \frac{\sin \angle CDP \cdot \sin \angle ABP}{\sin \angle BAP \cdot \sin \angle DCP} \\ &= \frac{DP \cdot BP \cdot CP \cdot AP}{CP \cdot AP \cdot BP \cdot DP} = 1 \end{split}$$

and we are done

Second solution

Proof. If $AB \parallel CD$, we've proved the problem. Suppose AB and CD intersect at R. We know Q_2 , P are isogonal conjugates with respect to $\triangle RAD$, Q_1 , P are isogonal conjugates with respect to $\triangle RBC$. So Q_1Q_2 and RP are isogonals with respect to $\angle BRC$. R is on Q_1Q_2 . If AB is parallel to Q_1Q_2 and CD is not parallel to Q_1Q_2 , since AB intersects CD at R, R is on Q_1Q_2 , so Q_1Q_2 intersects AB at R, which leads to a contradiction. Similarly we can prove the if AB is not parallel to Q_1Q_2 and CD is parallel to Q_1Q_2 leads to a contradiction. So

$$Q_1Q_2 \parallel AB \iff Q_1Q_2 \parallel CD$$

Remark. It's important to recognize the isogonal conjugate.