Index (HKMO Classified Questions by topics)

1983 FI5.4

P 為一運算子使得 $P(A \cdot B) = P(A) + P(B)$ 。

P(A) = y 的意思是 $A = 10^y$ 。若 $d = A \cdot B$,P(A) = 1 及 P(B) = 2,求 d 的值。 P is an operation such that $P(A \cdot B) = P(A) + P(B)$.

P(A) = y means $A = 10^y$. If $d = A \cdot B$, P(A) = 1 and P(B) = 2, find the value of d.

1985 FG10.4

若
$$A = \frac{3^n \cdot 9^{n+1}}{27^{n-1}}$$
 , 求 A 的值。

If $A = \frac{3^n \cdot 9^{n+1}}{27^{n-1}}$, find the value of A.

1988 FG9.4

若
$$C = \frac{3^{4n} \cdot 9^{n+4}}{27^{2n+2}}$$
 , 求 C 的值。

If $C = \frac{3^{4n} \cdot 9^{n+4}}{27^{2n+2}}$, find the value of C.

1989 FG10.4

已知
$$y = \frac{3(2^k) - 4(2^{k-2})}{2^k - 2^{k-1}}$$
, 求 y 的值。

If
$$y = \frac{3(2^k) - 4(2^{k-2})}{2^k - 2^{k-1}}$$
, find the value of y.

1992 FSI.1

已知 $A = (b^m)^n + b^{m+n}$ 。當b = 4,m = n = 1 時,求A的值。

Given $A = (b^m)^n + b^{m+n}$. Find the value of A when b = 4, m = n = 1.

1992 FG8.2

若 $19 \times 243^{\frac{2}{5}} = b$, 求 b 的值。If $19 \times 243^{\frac{2}{5}} = b$, find the value of b.

1993 FI1.1

已知
$$7^{2x} = 36$$
 及 $7^{-x} = (6)^{-\frac{a}{2}}$, 求 a 的值。

Given that $7^{2x} = 36$ and $7^{-x} = (6)^{-\frac{a}{2}}$, find the value of a.

1996 FG6.3

若 n 是一正整數, $m^{2n}=2$ 及 $c=2m^{6n}-4$, 求 c 的值。

If *n* is a positive integer, $m^{2n} = 2$ and $c = 2m^{6n} - 4$, find the value of c.

1997 FG1.2

代數式 $x^6 + x^6 + x^6 + \dots + x^6$ 有 x 項及其總和為 x^b 。求 b 的值。

There are x terms in the algebraic expression $x^6 + x^6 + x^6 + \cdots + x^6$ and its sum is x^b . Find the value of b.

1999 FI5.1

若 $144^p = 10$, $1728^q = 5$ 及 $a = 12^{2p-3q}$,求 a 之值。

If $144^p = 10$, $1728^q = 5$ and $a = 12^{2p-3q}$, find the value of a.

2005 FG2.3

Given that 2x + 5y = 3. If $c = \sqrt{4^{x + \frac{1}{2}} \times 32^y}$, find the value of c.

2006 FG2.3

若
$$n \neq 0$$
 及 $s = \left(\frac{20}{2^{2n+4} + 2^{2n+2}}\right)^{\frac{1}{n}}$, 求 s 的 值。

If $n \neq 0$ and $s = \left(\frac{20}{2^{2n+4} + 2^{2n+2}}\right)^{\frac{1}{n}}$, find the value of s.

2007 FI3.2

若 $x^y = 3$ 及 $b = x^{3y} + 10$, 求 b 的值。

If $x^y = 3$ and $b = x^{3y} - 10$, find the value of b.

2008 HI9

設
$$m$$
 和 n 為正整數。已知表達式 $\left(\left(\left((2)^2\right)^2\right)^{...}\right)^2 = \left(\left(\left((4)^4\right)^4\right)^{...}\right)^4$ 含有 m 個 2 及 n 個 4 。 若 $k = \frac{m}{n}$, 求 k 的 值 。

Let *m* and *n* be a positive integers. Given that the number 2 appears *m* times and the number 4 appears *n* times in the expansion $\left(\left((2)^2\right)^2\right)^{\frac{1}{n}} = \left(\left((4)^4\right)^4\right)^{\frac{1}{n}}$.

If $k = \frac{m}{n}$, find the value of k.

2009 FI4.3

已知
$$p = 9 \left(\frac{1}{2^{2009}} \right)^{\log(1)}$$
, 求 p 的值。

Given that $p = 9 \left(\frac{1}{2^{2009}} \right)^{\log(1)}$, find the value of p.

2009 FG3.2

在
$$99...9 \times 99...9 + 199...9$$
 中,末位的 0 共有 R 個,求 R 的值。 2009 個9 2009 個9

There are *R* zeros at the end of $\underbrace{99...9}_{2009 \text{ of } 9's} \times \underbrace{99...9}_{2009 \text{ of } 9's} + 1\underbrace{99...9}_{2009 \text{ of } 9's}$, find the value of *R*.

2016 HI1

計算 $0.125^{2016} \times (2^{2017})^3$ 的值。

Find the value of $0.125^{2016} \times (2^{2017})^3$.

2016 FG2.4

設
$$d$$
 及 f 為正整數及 $a_1 = 0.9 \circ$ $\ddot{a}_{i+1} = a_i^2$ 及 $\prod_{i=1}^4 a_i = \frac{3^d}{f}$,

求 d 的最小可能值。

Let *d* and *f* be positive integers and $a_1 = 0.9$. If $a_{i+1} = a_i^2$ and $\prod_{i=1}^4 a_i = \frac{3^d}{f}$, determine the smallest possible value of *d*.

Answers

1983 FI5.4	1985 FG10.4	1988 FG9.4	1989 FG10.4	1992 FSI.1
1000	243	9	4	20
1992 FG8.2	1993 FI1.1	1996 FG6.3	1997 FG1.2	1999 FI5.1
171	2	12	7	2
2005 FG2.3 4	$\frac{2006 \text{ FG2.3}}{\frac{1}{4}}$	2007 FI3.2 17	2008 HI9 2	2009 FI4.3 9
2009 FG3.2	2016 HI1	2016 FG2.4		
4018	8	30		