VIDEO ON-DEMAND SYSTEM

Publication number: JP9298734 (A) 1997-11-18

Publication date:

SHIOYAMA KENJI

Inventor(s): Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

H04N7/16; H04L29/08; H04N7/173; H04N7/16; H04L29/08; H04N7/173; (IPC1-7): H04N7/16; H04L29/08; H04N7/173

- European:

Application number: JP19960109242 19960430 Priority number(s): JP19960109242 19960430

Abstract of **JP 9298734 (A)**

PROBLEM TO BE SOLVED: To warrant video reproduction in real time by preventing overflow/ underflow of a communication buffer caused by deviation in precision of clock generating sections of a video server and a communication terminal equipment, SOLUTION: A buffer monitor section 125 monitors a data amount of a video stream stored in a communication buffer 124. When the mount reaches a prescribed threshold level, a 2nd command processing section 122 sends a command to a video server 101 to revise a basic speed to a transmission speed stored in pairs with the threshold level. A transmission section 116 revises the basic transmission speed into a commanded transmission and sends the video stream to a communication terminal equipment 102.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-298734

(43)公開日 平成9年(1997)11月18日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
H04N	7/16			H 0 4 N	7/16	Z	
H04L	29/08				7/173		
H 0 4 N	7/173			H 0 4 L	13/00	307C	

審査請求 未請求 請求項の数3 OL (全 10 頁)

(21)出願番号

特願平8-109242

(71)出願人 000005821

(22)出願日

平成8年(1996)4月30日

松下電器産業株式会社 大阪府門真市大字門真1006番地

(72)発明者 塩山 健司

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 中島 司朗

(54) 【発明の名称】 ビデオオンデマンドシステム

(57)【要約】

【課題】 ビデオサーバと通信端末との両クロック生成 部の精度のずれによって生じる通信バッファのオーバ、 アンダフローを防止してリアルタイムな映像再生を保証 する。

【解決手段】 バッファ監視部125は、通信バッファ 124に蓄積される映像ストリームのデータ量を監視す る。所定のしきい値に達したときに、第2コマンド処理 部122は、しきい値と組にして記憶されている送信速 度に変更するようビデオサーバ101にコマンドを送信 する。送出部116は、基本となる送信速度から指示さ れた送信速度に変更して映像ストリームを通信端末10 2に送信する。

【特許請求の範囲】

【請求項1】 ネットワークと、

ネットワークを介して受信した映像ストリームを一旦通 信バッファに記憶させ、順次復号化して映像を再生する 複数の端末と、

前記各端末から指定された映像の送信要求を受け付けて、指定された映像を符号化した映像ストリームを前記ネットワークを介して各端末にそれぞれ送信するビデオサーバとからなるビデオオンデマンドシステムであって、

前記端末は、

前記通信バッファに記憶されている映像ストリームの再 生速度の基準となるタイミングパルスを生成する端末側 クロック生成手段と、

前記端末側クロック生成手段の生成したタイミングパルスに従い、前記通信バッファに記憶されている映像ストリームを順次復号化して映像を再生させる復号化制御手段と

前記通信バッファに記憶されたデータ量を監視し、データ量に応じた映像ストリームの送信速度の変更指示を出力するバッファ監視手段とを備え、

前記ビデオサーバは、

映像ストリームを蓄積する蓄積手段と、

映像ストリームの送信速度の基準となるタイミングパル スを生成するサーバ側クロック生成手段と、

前記サーバ側クロック生成手段で生成されたタイミング パルスに従い前記蓄積手段から映像ストリームを読み出 して所定の送信速度で各端末に送信する送信手段と、

前記各端末のバッファ監視手段からの変更指示を受けたときには、前記送信手段に替わり、当該変更指示と前記サーバ側クロック生成手段の生成したタイミングパルスとに従い、所定の送信速度から指示された送信速度に変更して各端末に映像ストリームを送信する速度変更送信手段とを備えたことを特徴とするビデオオンデマンドシステム。

【請求項2】 前記端末のバッファ監視手段は、

前記ビデオサーバからの映像ストリームの所定の送信速度とそれに応じた前記通信バッファのデータ量の第1及び第2しきい値とそのしきい値と組になる変更すべき送信速度とを記録した管理テーブルを有し、

前記通信バッファのデータ量が前記管理テーブルに記録 された第1又は第2しきい値に達するのを監視するデー タ量監視部と、

前記データ量監視部が達したと判定した第1又は第2しきい値と組にされた送信速度を前記管理テーブルから取得し、前記速度変更送信手段に変更指示とともに出力する変更指示部とを備えることを特徴とする請求項1記載のビデオオンデマンドシステム。

【請求項3】 前記管理テーブルに記録されている前記 第1しきい値は、前記通信バッファの容量から前記送出 手段から送信される1回分のデータパケットのデータ量を差し引いた値に設定され、

前記第2しきい値は、前記通信バッファのデータ量が前記送出手段から送信される1回分のデータパケットのデータ量が到達しなければ、前記復号化制御手段で全て処理されてしまう最大データ量の値に設定されていることを特徴とする請求項2記載のビデオオンデマンドシステム

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ビデオオンデマンド(以下「VOD」という)システムに関し、特にビデオサーバの各端末への映像ストリームの送信速度の調整に関する。

[0002]

【従来の技術】近年、ユーザからの要求に応じて、映画、ニュース、ショッピング情報等を提供するVODシステムが注目されている。従来のVODシステムは、図4に示すように、ビデオサーバ401と、通信ネットワーク402と、複数の通信端末403、404、405、…とを備えている。

【0003】ビデオサーバ401は、符号化された映像ストリームを蓄積し、各通信端末403、404、405、…のユーザからの映像の指定に応じて映像ストリームを送信するため、第1通信インタフェース部406と、第1コマンド処理部407と、ハードディスク408と、蓄積部409と、第1クロック生成部410と、送出部411とを備えている。

【0004】通信端末403は、ビデオサーバ401からネットワーク402を介して送信されてきた映像ストリームを受信し、デコードして映像を再生するため、ユーザインタフェース部412と、第2コマンド処理部413と、第2インタフェース部414と、通信バッファ415と、第2クロック生成部416と、デコード部417と、TV受像機418とを備えている。

【0005】なお、通信端末404、405、…も通信端末403と同様の構成を有している。以上のように構成されたVODシステムの映像再生の動作の概略について説明する。通信端末403のユーザインタフェース部412からユーザが再生を希望する映像タイトルを指定すると、第2コマンド処理部413が映像タイトル指定のコマンドを発行する。第2通信インタフェース部414は、第2コマンド処理部413が発行したコマンドを通信ネットワーク402を介してビデオサーバ401の第1通信インタフェース部406に送信する。

【0006】ビデオサーバ401の第1通信インタフェース部406は、受信したコマンドを第1コマンド処理部407に通知する。第1コマンド処理部407は、蓄積部409に指定された映像タイトルの映像ストリームをハードディスク408から読み出すよう指示する。蓄

積部409は、符号化された映像ストリームをハードディスク408から順次読み出し、一時記憶するとともに、送出部411を起動する。送出部411は、第1クロック生成部410の発生するタイミングパルスに従い、蓄積部409に一時記憶されている映像ストリームを所定の送出速度で第1通信インタフェース部406に送出する。第1通信インタフェース部406は、送出部411から送出された映像ストリームを通信ネットワーク402を介して映像を指定してきた通信端末403の第2送信インタフェース部414に順次送信する。

【0007】第2送信インタフェース部414は、受信した映像ストリームを送信バッファ415に順次一時記憶させる。デコード制御部417は、通信バッファ415に一時記憶された映像ストリームのデータ量が一定量(連続したフレームの生成に必要な量)に達したときには、第2クロック生成部416の生成するタイミングパルスに従い、映像ストリームを読み出し、デコードして映像フレームを生成してTV受像機418に再生する。端末404、405、…も同様に、ビデオサーバ401から送信された映像ストリームを各端末404、405、…が有する独自の第2クロック生成部(図示せず)が生成するタイミングパルスに従い、デコード制御部が映像フレームを生成してTV受像機(図示せず)に再生する。

[0008]

【発明が解決しようとする課題】ところで、上記従来の ビデオオンデマンドシステムでは、ビデオサーバ401 は、第1クロック生成部410の生成するタイミングパルスに従い各通信端末403、404、405、…に映 像ストリームを所定の送信速度で送信する。一方、各通 信端末403等も、独自の第2クロック生成部416等 の生成するタイミングパルスに従い映像ストリームを所 定の速度で映像フレームにデコードして再生する。

【0009】したがって、第1クロック生成部410と 第2クロック生成部416等とが発生するタイミングパ ルスの精度が異なると、映像ストリームの送信速度と再 生速度とのバランスが崩れ、時間の経過とともに通信バ ッファ415等に一時記憶される映像ストリームのデー タ量がアンダフローやオーバフロー状態となる場合があ る。即ち、ビデオサーバ401の第1クロック生成部4 10の精度が通信端末403の第2クロック生成部41 6のそれよりもプラス方向の精度のとき、通信端末40 3での映像の再生速度が遅くなり、時間の経過とともに 通信バッファ415に一時記憶されるデータ量が増加 し、オーバフローすることになる。また通信端末404 の第2クロック生成部の精度が第1クロック生成部41 〇のそれよりもマイナス方向の精度のとき、通信バッフ ァのデータ量がアンダフローすることになる。この結 果、TV受像機418等で再生される映像にコマ落ち等 が発生する。

【 0 0 1 0】本発明は、上記課題に鑑み、ビデオサーバ側のタイミングパルスの生成精度と、通信端末側のタイミングパルスの生成精度との間にずれが生じていても、通信端末での映像再生に支障のないビデオオンデマンドシステムを提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は、ネットワーク と、ネットワークを介して受信した映像ストリームを一 旦通信バッファに記憶させ、順次復号化して映像を再生 する複数の端末と、前記各端末から指定された映像の送 信要求を受け付けて、指定された映像を符号化した映像 ストリームを前記ネットワークを介して各端末にそれぞ れ送信するビデオサーバとからなるビデオオンデマンド システムであって、前記端末は、前記通信バッファに記 憶されている映像ストリームの再生速度の基準となるタ イミングパルスを生成する端末側クロック生成手段と、 前記端末側クロック生成手段の生成したタイミングパル スに従い、前記通信バッファに記憶されている映像スト リームを順次復号化して映像を再生させる復号化制御手 段と、前記通信バッファに記憶されたデータ量を監視 し、データ量に応じた映像ストリームの送信速度の変更 指示を出力するバッファ監視手段とを備え、前記ビデオ サーバは、映像ストリームを蓄積する蓄積手段と、映像 ストリームの送信速度の基準となるタイミングパルスを 生成するサーバ側クロック生成手段と、前記サーバ側ク ロック生成手段で生成されたタイミングパルスに従い前 記蓄積手段から映像ストリームを読み出して所定の送信 速度で各端末に送信する送信手段と、前記各端末のバッ ファ監視手段からの変更指示を受けたときには、前記送 信手段に替わり、当該変更指示と前記サーバ側クロック 生成手段の生成したタイミングパルスとに従い、所定の 送信速度から指示された送信速度に変更して(データパ ケットの送信間隔を変更して) 各端末に映像ストリーム を送信する速度変更送信手段とを備えたこととしてい る。

【0012】また、本発明は、前記端末のバッファ監視 手段は、前記ビデオサーバからの映像ストリームの所定 の送信速度とそれに応じた前記通信バッファのデータ量 の第1及び第2しきい値とそのしきい値と組になる変更 すべき送信速度とを記録した管理テーブルを有し、前記 通信バッファのデータ量が前記管理テーブルに記録された第1又は第2しきい値に達するのを監視するデータ量 監視部と、前記データ量監視部が達したと判定した第1又は第2しきい値と組にされた送信速度を前記管理テーブルから取得し、前記速度変更送信手段に変更指示とともに出力する変更指示部とを備えることとしている。

【0013】更に、本発明は、前記管理テーブルに記録されている前記第1しきい値は、前記通信バッファの容量から前記送出手段から送信される1回分のデータパケットのデータ量を差し引いた値に設定され、前記第2し

きい値は、前記通信バッファのデータ量が前記送出手段 から送信される1回分のデータパケットのデータ量が到 達しなければ、前記復号化制御手段で全て処理されてし まう最大データ量の値に設定されていることとしてい る。

[0014]

【発明の実施の形態】以下、本発明に係るVODシステムについて、図面を参照しながら説明する。図1は、本発明に係るVODシステムの一実施の形態の構成図である。このVODシステムは、ビデオサーバ101と、通信端末102と、ビデオサーバ101と複数の通信端末102、103、104、…とを接続する通信ネットワーク105とを備えている。

【0015】通信ネットワーク105には、ローカルエリアネットワーク (LAN) や非同期伝送モード (ATM)網が用いられる。ビデオサーバ101は、第1通信インタフェース部111と、第1コマンド処理部112と、蓄積部114と、第1クロック生成部115と、送出部116とを備えている。

【0016】通信端末102は、ユーザインタフェース部121と、第2コマンド処理部122と、第2インタフェース部123と、通信バッファ124と、バッファ監視部125と、第2クロック生成部126と、デコード制御部127と、TV受像機128とを備えている。なお、通信端末103、104、…も、通信端末102と同様の構成を有している。

【0017】第1通信インタフェース部111は、通信端末102、103、104、…と通信ネットワーク105を介して接続されている。第2通信インタフェース部123から送信されたコマンドを受信し、第1コマンド処理部112に通知する。また、第1コマンド処理部112から映像ストリームのタイトルの通知を受けると、第2通信インタフェース部123に該タイトルを送信する。送出部116から送出された映像ストリームを通信ネットワーク105を介して各通信端末102、103、104、…の第2通信インタフェース部123に送信する。

【0018】第1コマンド処理部112は、蓄積部114に映像ストリームを蓄積するときに予め、各タイトルの映像ストリームごとに、基本となる送信速度、映像種別等の映像ストリームに関する情報と、蓄積部114の映像ストリームの蓄積された記憶媒体のアドレス、蓄積部114の読み出し速度等の読み出しに必要な情報とを記憶している。また、第1通信インタフェース部111から通知されたコマンドを解析処理する。コマンドが通信端末102からタイトル要求であるときには、第1通信インタフェース部111に通信端末102の第2通信インタフェース部123と接続するよう指示し、記憶している映像ストリームのタイトルを第2通信インタフェース部123を介して、第2コマンド処理部122に送

信するよう第1通信インタフェース部111に指示する。コマンドがタイトルを指定した映像ストリームの送信要求であるときには、送信要求をした通信端末とそのタイトルとの情報であるリンク情報を記憶する。併せて、蓄積部114に指定されたタイトルの読み出しに必要な情報を通知し、送出部116に該タイトルの映像ストリームに関する情報とリンク情報とを通知する。

【0019】また、コマンドが送信速度制御情報であるときには、リンク情報にその送信速度制御情報を追加して記憶するとともに、送出部116に送信速度制御情報に従う送信速度を通知する。即ち、コマンドがマイナスの送信速度制御情報であるときには、基本となる送出速度より遅い送出速度を、プラスの送信速度制御情報であるときには、基本となる送出速度より速い送出速度を通知する。

【0020】蓄積部114は、ハードディスク等の記憶媒体を含み、ハードディスクには多数のタイトルの映像ストリームを記憶している。このハードディスクに記憶されている映像ストリームの映像ストリームに関する情報や読み出しに必要な情報は第1コマンド処理部112に記憶されている。また、蓄積部114は、第1コマンド処理部112から読み出しに必要な情報の通知を受けると、通知されたアドレスに従い記憶媒体から映像ストリームを通知された読み出し速度で読み出す。

【0021】第1クロック生成部115は、映像ストリームの送出タイミングの基準となるタイミングパルスを生成する。送出部116は、第1コマンド処理部112から映像ストリームに関する情報とリンク情報との通知を受けると、蓄積部114が読み出した映像ストリームを、映像ストリームに関する情報に含まれる基本となる送信速度になるよう、第1クロック生成部115で生成されるタイミングパルスを基にして、第1通信インタフェース部112に転送する。

【0022】なお、第1コマンド処理部112から送信 速度制御情報に従う送信速度を通知されたときには、映 像ストリームの送信速度を基本となる送信速度から変更 後の送信速度に応じて第1通信インタフェース部112 に転送する。ユーザインタフェース部121は、通信端 末102において、ユーザからの要求を受け付け、第2 コマンド処理部122に通知する。即ち、ビデオサーバ 101から映像ストリームの送信を受け、TV受像機1 28で再生映像を視聴したいユーザは、先ずユーザイン タフェース部121で通信ネットワーク105をビデオ サーバ101と接続するよう指示する。これを受けて、 ユーザインタフェース部121は、第2コマンド処理部 122に接続指示を通知する。TV受像機128に表示 された映像ストリームのタイトルを見たユーザによっ て、ユーザインタフェース部121は、タイトルの指定 を受けると、第2コマンド処理部122にタイトルを通 知する。

【0023】第2コマンド処理部122は、ユーザインタフェース部121から接続指示の通知を受けると、第2通信インタフェース部123に接続指示のコマンドをビデオサーバ101に送信するよう指示する。また、ユーザインタフェース部121からタイトルの通知を受けると、タイトルを指定した送信要求コマンドを第2通信インタフェース部123に通知する。

【0024】第2コマンド処理部122は、第2通信インタフェース部123からタイトルの通知を受けると、その一覧を記憶するとともに、TV受像機128にタイトルの一覧の表示をさせる。また、第2通信インタフェース部123から映像ストリームを受信したことを通知されると、バッファ監視部125を起動する。また第2コマンド処理部122は、バッファ監視部125から送信速度を減速する旨の通知を受けると、マイナスの送信速度制御情報のコマンドを発行し、第2通信インタフェース部123に通知する。

【0025】第2通信インタフェース部123は、第2コマンド処理部122からコマンドの通知を受けると、通信ネットワーク105を介してビデオサーバ101の第1通信インタフェース部111にコマンドを送信する。第1通信インタフェース部111からタイトルを受信すると第2コマンド処理部122に通知し、映像ストリームを受信すると、通信バッファ124に順次蓄積するとともに、第2コマンド処理部122に映像ストリームを受信したことを通知する。

【0026】また、第2通信インタフェース部123は、第2コマンド処理部122からマイナスまたはプラスの送信速度制御情報のコマンドを通知されると、ビデオサーバ101に通信ネットワーク105を介してコマンドを送信する。通信バッファ124は、第2通信インタフェース部123から映像ストリームの通知を受けると、順次映像ストリームを蓄積する。

【0027】バッファ監視部125は、後述する管理テーブルを記憶している。第2コマンド処理部122から起動されると、通信バッファ124に蓄積されている映像ストリームのデータ量が管理テーブルに記録されている所定のしきい値に達したか否かを判定する。この所定のしきい値は、デコード制御部127が通信バッファ124に蓄積された映像ストリームをデコード処理するのに必要なデータ量である。所定のしきい値に達したときは、デコード制御部127を起動する。

【0028】バッファ監視部125は、引き続き通信バッファ124に蓄積されている映像ストリームのデータ量を監視し、データ量が管理テーブルに記録されている第1しきい値である上限値または第2しきい値である下限値に達したか否かを判定する。第1しきい値に達したときは第2コマンド処理部122に映像ストリームの送

信速度を管理テーブルに組にして記録されている送信速度に減速する旨の通知をし、第2しきい値に達したときは第2コマンド処理部122に映像ストリームの送信速度を管理テーブルに組にして記録されている送信速度に加速する旨の通知をする。

【0029】第2クロック生成部126は、通信バッファ124に蓄積されている映像ストリームを一定速度でデコードするため、所定のタイミングパルスを生成する。デコード制御部127は、バッファ監視部125から起動されると、通信バッファ124に蓄積されている映像ストリームを第2クロック生成部126が生成するタイミングパルスに従い、一定速度でデコードし、TV 受像機128に再生させる。

【0030】TV受像機128は、デコード制御部127でデコードされた映像ストリームを映像として再生する。なお、本実施の形態のビデオオンデマンドシステムでは、映像ストリームの再生に関する構成部分について説明したけれども、音声データの再生等の構成部分を有することは勿論であるけれども、本発明の主眼とするところから離れるので、その説明は省略する。

【0031】次に、本実施の形態の動作を図2に示すフローチャートを用いて説明する。先ず、ユーザは通信端末102のユーザインタフェース部121からビデオサーバ101に映像の提供を受けたい旨の指示を与える。これによって、第1通信インタフェース部111と第2通信インタフェース部123とが通信ネットワーク105を介して接続状態となる(S202)。TV受像機128に表示されたタイトルを見たユーザがユーザインタフェース部121からビデオサーバ101に映像ストリームのタイトルを指定して、映像ストリームの送出を要求する(S204)。

【0032】ビデオサーバ101の第1コマンド処理部112は、通信端末102の第2コマンド処理部122からのコマンドを通信ネットワーク105を介して受けると、蓄積部114に指定された映像ストリームの読み出しに必要な情報を通知し、送出部116に映像ストリームの送出に必要な情報を通知する(S206)。送出部116は、蓄積部114の読み出した映像ストリームを第1クロック生成部115の生成したタイミングパルスに従い、基本となる送信速度で通信ネットワーク105を介して通信端末102に送信する(S208)。

【0033】通信端末102では、第2通信インタフェース部123を介してビデオサーバ101から送信されてきた映像ストリームを通信バッファ124に蓄積する(S210)。バッファ監視部125は、デコード制御部127を起動させたか否かを判定し(S212)、起動させていないときは、通信バッファ124に蓄積されている映像ストリームのデータ量が所定のしきい値に達するまで待ち(S214)、達したときは、デコード制御部127を起動する。デコード制御部127は、第2

クロック生成部126の生成するタイミングパルスに従い、映像ストリームを順次TV受像機128に再生出力させ(S216)、S212に戻る。

【0034】S212において、デコード制御部127 が既に起動されているときは、バッファ監視部125 は、通信バッファ124に記憶されている映像ストリー ムのデータ量が第1しきい値を超えているか否かを判定 する(S218)。超えているときは、第2コマンド処 理部122は、マイナスの速度制御情報(第1しきい値 に組にされた送信速度)をコマンドとしてビデオサーバ 101に送信するよう第2通信インタフェース部123 に通知する(S220)。ビデオサーバ101がこのコ マンドを受けると、第1コマンド処理部112は、マイ ナスの速度制御情報に従い、送出部116に映像ストリ ームの送信速度を変更して通知し、送出部116は、変 更後の遅い送信速度で映像ストリームを第1通信インタ フェース部111を介して通信端末102に送信する (S222)。これによって、通信端末102の通信バ ッファ124がオーバフローすることが防止される。

【0035】S218において、バッファ監視部125 は、第1しきい値を超えないと判定したときは、通信バ ッファ124に蓄積されている映像ストリームのデータ 量が第2しきい値未満であるか否かを判定し(S22 4)、第2しきい値未満でなければ、通信バッファのデ ータ量は正常であるのでS216に移る。第2しきい値 未満であると判定したときは、第2コマンド処理部12 2は、プラスの速度制御情報 (第2しきい値に組にされ た送信速度)をコマンドとしてビデオサーバ101に送 信するよう第2通信インタフェース部123に通知する (S226)。ビデオサーバ101がこのコマンドを受 けると、第1コマンド処理部112は、プラスの速度制 御情報に従い、送出部116に映像ストリームの送信速 度を変更して通知し、送出部116は、変更後の速い送 信速度で映像ストリームを第1通信インタフェース部1 11を介して通信端末102に送信する(S228)。 これによって、通信端末102の通信バッファ124が アンダフローすることが防止される。

【0036】以上のように、第1クロック生成部115の生成するタイミングパルスと第2クロック生成部126の生成するタイミングパルスとの精度が異なることによっても、通信バッファ124に蓄積される映像ストリームのデータ量が一定範囲内に保され、再生される映像が途切れるような不都合を生じない。

[0037]

【実施例】次に、本発明の実施の形態の具体例を実施例に基づいて説明する。通信端末102に提供される映像ストリームは、例えばMPEG(Moving Picture Experts Group)の符号化データとして蓄積部114のハードディスクに予め蓄積する。蓄積された映像ストリームは、第1通信インタフェース部111によって通信ネッ

トワーク105を介して第2通信インタフェース部123に送信される。映像ストリームのビットレートを4Mbpsとする場合、通信端末102のデコード制御部127での映像再生において、映像再生を途切れないようするためには、ビデオサーバ101の送出部116は、リアルタイムに500Kバイト/秒の映像ストリームのデータを送信する必要がある。

【0038】このため、第1通信インタフェース部11 1は、データ転送の単位を8Kバイトとすると、1単位 あたり16m秒以内にデータ転送する必要がある。な お、本実施例では、通信バッファ124のバッファ容量 を300Kバイト、デコード制御部127がデコード処 理を開始するのに必要なデータ量の所定のしきい値を2 30Kバイトとする。

【0039】ビデオサーバ101の送出部116は、第1クロック生成部115が生成するタイミングパルスに従い、映像ストリームを4Mbpsで送信する。一方、通信端末102のデコード制御部127は、第2クロック生成部126が生成するタイミングパルスに従い、4Mbpsで映像ストリームの符号化データをデコード処理し、TV受像機128に映像を再生する。

【0040】上述したように、通信バッファ124に映像ストリームのデータ量が230Kバイト蓄積されたときに映像の再生が開始されるので、通信バッファ124のデータ量は、8Kバイト/16m秒ごとにデータ転送による増加と、4Mbpsでのデコード処理による減少を繰り返し、230Kバイトを最大値としてデータが増減することになる。

【0041】通信バッファ124のデータ量は、記憶領域が全て使用されるまで70Kバイト、デコード処理によってデータが全て処理されるまで230Kバイトの余裕が存在する。したがって、第1クロック生成部115と第2クロック生成部126とのタイミングパルスの生成精度が一致しているときには、デコード制御部127での映像の再生に支障はない。

【0042】しかしながら、第1クロック生成部115 及び第2クロック生成部126のタイミングパルスの生 成精度を30ppmとすると、最大60ppmの誤差が 生じ、ビデオサーバ101と通信端末102との間で約 4.6時間で1秒のずれを生じ、同様に9.2分で映像 1フレーム分のずれを生じる。このようなズレは通信端 末102での映像の再生を途切れさせる原因となる。

【0043】そこで、バッファ監視部125は、図3に示すような管理テーブル301を有し、第1しきい値を292Kバイトに設定し、第2しきい値を230Kバイトに設定している。第1しきい値は、映像ストリームのデータパケットが通信バッファ124に次に転送されたときに、通信バッファ124がオーバフローする値である。第2しきい値は、映像ストリームのデータパケットが通信バッファ124に次に転送されるまでにデコード

制御部127のデコード処理で最大に消費される値であり、通信バッファ124がアンダフローする可能性がある値である。

【0044】管理テーブル301には、デコード制御部 127が映像ストリームの再生を開始する所定のしきい 値と、上記第1しきい値と組にされた低速の映像ストリ ームの送信速度と、第2しきい値と組にされた高速の映 像ストリームの送信速度とが予め記録されている。これ らのしきい値や送信速度は、基本となる送信速度や通信 バッファ124の容量によって異なる値が設定される。 【0045】バッファ監視部125が通信バッファ12 4のデータ量が第1しきい値を超えたと判定したとき、 第2コマンド生成部122は、その通知を受けて、マイ ナスの速度制御情報として、送信速度を例えば3.9M bpsに変更するコマンドを発行する。また、バッファ 監視部125が通信バッファ124の最もデータ量を消 費する直前のデータ量が第2しきい値未満と判定したと き、第2コマンド生成部122は、その通知を受けて、 プラスの速度制御情報として、送信速度を例えば4.1 Mbpsに変更するコマンドを発行する。これによっ て、ビデオサーバ101の送出部116は、映像ストリ ームの送信速度を変更する。この結果、通信バッファ1 24がオーバフローやアンダフローをすることはない。 【0046】なお、このコマンドを受け取った第1コマ ンド処理部112は、通信端末102、103、10 4、…ごとの速度制御情報を記憶しておけば、別の映像 ストリームの送出要求であっても、基本となる送信速度 が一致すれば、記憶している速度制御情報で映像ストリ ームを送信することができる。これによって、第1クロ ック生成部115と第2クロック生成部のタイミングパ ルスの生成精度のずれを吸収することができる。また一 度、速度制御情報によって、ビデオサーバ101と通信 端末102とのずれが修正されると、以後の修正は不要 となる。

[0047]

【発明の効果】本発明は、ネットワークと、ネットワークを介して受信した映像ストリームを一旦通信バッファに記憶させ、順次復号化して映像を再生する複数の端末と、前記各端末から指定された映像の送信要求を受け付けて、指定された映像を符号化した映像ストリームを前記ネットワークを介して各端末にそれぞれ送信するビデオサーバとからなるビデオオンデマンドシステムであって、前記端末は、前記通信バッファに記憶されている映像ストリームの再生速度の基準となるタイミングパルスを生成する端末側クロック生成手段と、前記端末側クロック生成手段の生成したタイミングパルスに従い、前記通信バッファに記憶されている映像ストリームを順次復号化して映像を再生させる復号化制御手段と、前記通信バッファに記憶されたデータ量を監視し、データ量に応じた映像ストリームの送信速度の変更指示を出力するバ

ッファ監視手段とを備え、前記ビデオサーバは、映像ス トリームを蓄積する蓄積手段と、映像ストリームの送信 速度の基準となるタイミングパルスを生成するサーバ側 クロック生成手段と、前記サーバ側クロック生成手段で 生成されたタイミングパルスに従い前記蓄積手段から映 像ストリームを読み出して所定の送信速度で各端末に送 信する送信手段と、前記各端末のバッファ監視手段から の変更指示を受けたときには、前記送信手段に替わり、 当該変更指示と前記サーバ側クロック生成手段の生成し たタイミングパルスとに従い、所定の送信速度から指示 された送信速度に変更して各端末に映像ストリームを送 信する速度変更送信手段とを備えるよう構成し、バッフ ァ監視手段は通信バッファに記憶されているデータ量の 変化に応じて送信速度の変更指示をし、ビデオサーバの 速度変更送信手段は映像ストリームの送信速度を変更し て送信するので、端末側クロック生成手段とサーバ側ク ロック生成手段とのタイミングパルスの生成精度にずれ が生じていても、通信バッファがオーバフローやアンダ フローすることが防止され、指定された映像を途切れる ことなく再生することができる。

【0048】また、本発明は、前記端末のバッファ監視 手段は、前記ビデオサーバからの映像ストリームの所定 の送信速度とそれに応じた前記通信バッファのデータ量 の第1及び第2しきい値とそのしきい値と組になる変更 すべき送信速度とを記録した管理テーブルを有し、前記 通信バッファのデータ量が前記管理テーブルに記録され た第1又は第2しきい値に達するのを監視するデータ量 監視部と、前記データ量監視部が達したと判定した第1 又は第2しきい値と組にされた送信速度を前記管理テー ブルから取得し、前記速度変更送信手段に変更指示とと もに出力する変更指示部とを備えるよう構成し、データ 量監視部が管理テーブルに記録されている第1しきい値 又は第2しきい値に通信バッファのデータ量が達したと 判定したとき、変更指示部が対応する送信速度を速度変 更送信手段に出力するので、速度変更送信手段が映像ス トリームの送信速度を変更して送信でき、映像再生のリ アルタイム性が保証される。

【0049】更に、本発明は、前記管理テーブルに記録されている前記第1しきい値は、前記通信バッファの容量から前記送出手段から送信される1回分のデータパケットのデータ量を差し引いた値に設定され、前記第2しきい値は、前記通信バッファのデータ量が前記送出手段から送信される1回分のデータパケットのデータ量が到達しなければ、前記復号化制御手段で全て処理されてしまう最大データ量の値に設定されているよう構成し、通信バッファの記憶容量に応じて、第1及び第2しきい値が設定されているので、通信バッファがオーバフローやアンダフローすることが防止され、かつ、映像再生に支障をきたすことなく、リアルタイムな再生ができる。

【図面の簡単な説明】

【図1】本発明(に係るビデオス	オンデマンドシステムの一	112	第1コマンド処理部
実施の形態の構			114	蓄積部
【図2】本実施の形態の動作を説明するフローチャート			115	第1クロック生成部
である。			116	送出部
【図3】本実施	の形態のバッ	ファ監視部に記憶されてい	121	ユーザインタフェース部
る管理テーブル			122	第2コマンド処理部
		マンドシステムの構成図で	123	第2通信インタフェース部
ある。			124	通信バッファ
【符号の説明】			125	バッファ監視部
101	ビデオサー	ーバ	126	第2クロック生成部
102,103	. 104	通信端末	127	デコード制御部
105	通信ネッ	トワーク	128	TV受像機
1 1 1	第1通信	インタフェース部	301	管理テーブル

【図1】

【図3】

基本送信	速度 10 Mbps	
基本送信速度	4 Mbps	
しきい	変更速度	
所定のしきい値	230Kバイト	
第1しきい値	292Kバイト	4.1 Mbps
第2しきい値	230Kバイト	3.9 Mbps

【図2】

【図4】

