Quartus

Rafał Walkowiak IIn PP Wer 1.2 10.2015

Altera Quartus

- Narzędzie projektowe dla FPGA I CPLD
- Umożliwia:
 - wprowadzenie projektu,
 - syntezę logiczną i symulację funkcjonalną,
 - przydział do układów logicznych i ich łącznie,
 - symulację czasową,
 - analizę czasową,
 - zarządzanie użyciem mocy i
 - programowanie układu FPGA

Altera Quartus

- Używamy (2015/2016) QUARTUS wersji 13.0 sp1 gdyż współpracuje z symulatorem Altera University Program
- Możliwość darmowego pobrania programów (cele edukacyjne) ze strony altera.com

Quartus interfejs użytkownika

- Okno główne: pliki, raporty, inne okna
- Projekt nawigator: hierarchia, pliki projektu, skróty komend
- Okno statusu: status przetwarzania zadań
- Okno komunikatów: informacje, błędy, ostrzeżenia
- Dynamicznie zmieniające się menu

Quartus okno główne

Projekt w Quartus

Praca zorganizowana w ramach projektów.

Projekt składa się z:

- plików projektowych i bibliotek,
- informacji o parametrach i ograniczeniach,
- hierarchii projektu i informacjach o wydaniach.

Etapy procesu projektowania w PLD

- Wprowadzanie projektu
 - Schemat edytor blokowy
 - Język definiowania sprzętu HDL
 - Formaty reprezentacji projektu w systemach EDA
- 2. Symulacja na poziomie przesłań międzyrejestrowych RTL (czy projekt poprawny logicznie?)
 - weryfikacja logiczna modelu bez opóźnień
- 3. Synteza (przydział elementów logicznych modelu do standardowych elementów)
 - minimalizacja modelu logicznego
 - optymalizacja modelu logicznego
 - przydział elementów logicznych do podstawowych elementów składowych układu cyfrowego

Etapy procesu projektowania dla PLD

- 4. Umieszczanie i łączenie (moduły ang. fitter router)
 - przydział elementów logicznych do jednostek logicznych sprzętu
 - uwzględnienie wprowadzonych ograniczeń na realizację projektu
 - realizacja połączeń
- 5. Analiza czasowa (czy spełnione są ograniczenia czasowe?):
 - 1. Badanie, optymalizacja i prezentacja efektywności czasowej
 - 2. sprawdzanie i informowanie o przekroczeniach ograniczeń czasowych
- 6. Symulacja czasowa:
 - Sprawdza poprawność czasową logiki
 - Korzysta z listy połączeń uwzględniających czas
 - Wymaga wektorów wymuszeń na wejściach układu
- 7. Programowanie i badanie sprzętu

Podstawowe działania (1)

TWORZENIE NOWEGO PROJEKTU

- File> New Project
 - katalog,
 - nazwa projektu,
 - nazwa elementu najwyższego poziomu w hierarchii projektu
 - dołączenie plików projektu (np. plików komponentów biblioteki)
 - określenie układu docelowego EP2C35F672C6 dla DE2,
 EP2C70F896C6 dla DE2-70

Tworzenie nowego projektu za pomocą kreatora (katalog, nazwa, jednostka główna)

Tworzenie nowego projektu za pomocą kreatora projektu

UWAGA: DLA DE2 EP2C35F672C6, DLA DE2-70 EP2C70F896C6

Tworzenie nowego projektu za pomocą kreatora pliki schematu blokowego

Schemat blokowy –

umieszczanie podstawowych elementów logicznych 1

Schemat blokowy – umieszczanie podstawowych elementów logicznych 2

Schemat blokowy – zapis pliku w ramach projektu

Wprowadzenie powiązań sygnałów i wyprowadzeń układu FPGA

Component	DE0	DE0-Nano	DE1	DE2	DE2-70	DE2-115
SW_0	PIN_J6	PIN_M1	PIN_L22	PIN_N25	PIN_AA23	PIN_AB28
SW_1	PIN_H5	PIN_T8	PIN_L21	PIN_N26	PIN_AB26	PIN_AC28
$LEDG_0$	PIN_J1	PIN_A15	PIN_U22	PIN_AE22	PIN_W27	PIN_E21

Table 2. DE-Series Pin Assignments

Przykładowe przyporządkowania sygnałów podłączonych do elementów płytki do wyprowadzeń układu FPGA (różne wersje układów). Pozostałe informacje w plikach <u>DE2 pin assignments.csv</u>, <u>DE2 70 pin assignments.csv</u>

Wprowadzenie powiązań sygnałów układu i wyprowadzeń układu FPGA

- Kroki realizowane w Assignment editor opisano na kolejnych stronach
- Wg podręcznika: Quartus II Introduction Using Schematic Designs

wybrać: Assignments > Assignment Editor

W rozwijanym menu Category wybrać All.

Wbrać przycisk <<new>> w lewym górnym rogu okna tworząc nowy wpis w tabeli. Wybrać (dwuklik) pole w kolumnie oznaczonej nagłówkiem To dla uzyskania przycisku Node Finder. Po wybraniu przycisku pojawi się okno jak na poniższym rysunku:

W oknie filtru wybrać: Pins: all

Pojawiające się w oknie **Nodes found** nazwy wyprowadzeń układu skopiować strałką do okna **Selected Nodes**. Po potwierdzeniu OK wybrane sygnały pojawią się w kolumnie **To** w Assignment Editor.

Wybranie (dwuklik) w Assignment Editor pola na prawo od nazwy sygnału w kolumnie Assignment Name spowoduje pojawienie się poniższego menu w którym wpisując pierwszą literę nazwy L należy znaleźć i wybrać opcję Location (Accepts wildcards/groups). (należy powtórzyć dla każdego sygnału ze schematu uzyskując Location w kolumnie Assignment Name)

W odpowiadjącej sygnałowi kolumnie Value należy wpisać (uzyskany np. z pliku <u>DE2 pin assignments.csv</u> lub <u>DE2 70 pin assignments.csv</u>) opis wyprowadzenia układu FPGA do którego chcemy podłączyć sygnał projektowanego urządzenia.

Zamykając okno Assignment Editor powodujemy zapis przyporządkowań do pliku.

Format pliku przyporządkowań (*.QSF) sygnałów projektu do wyprowadzeń układu FPGA jest pokazany poniżej. Ten plik tekstowy można przygotować również poza programem Quartus i wczytać opcją Import Assignments.

```
set_location_assignment PIN_N26 -to b //b podłaczono do SW1 set_location_assignment PIN_P25 -to c //c podłaczono do SW2 set_location_assignment PIN_AE22 -to y0 //y0 podłaczono do LEDG0 set_location_assignment PIN_AF22 -to y1 //y1 podłaczono do LEDG1 set_location_assignment PIN_W19 -to y2 //y2 podłaczono do LEDG2 set_location_assignment PIN_N25 -to a //a podłaczono do SW0
```

Kompilacja projektu – analiza wejścia, synteza i

optymalizacja modelu logicznego, przydział do sprzętu, asemblacja, analiza czasowa

Symulacja - Altera U.P. Simulator

- File>Open Project
- File>New>University
 Program VWF
- Edit >Insert > Insert
 Node or Bus
 - Node Finder

Podstawowe działania - symulator

Definiowanie wektora testowego: zbioru sygnałów, okresu symulacji i wymuszeń: Altera U.P. Simulator

- Przydatne opcje:
 - Edit> End time
 - View>Fit in window
 - Edit>Insert Node or Bus Node
 - View>Snap to grid
 - Selection Tool ikona w kształcie strzałki
 - Waveform editing Tool ikona ze zmieniającym się stanem magistrali
 - Edit>Value edycja stanu wymuszenia

Symulacja - Altera U.P. Simulator

Użyteczne opcje:

- Edit > Set End Time
- Edit > Grid Size
- Edit > Snap to Grid
- Edit > Snap to Transition

Przygotowanie i uruchomienie symulacji:

- Simulation > Options wybór Quartus II simulator
- Simulation > Run timing simulation

Symulacja - Altera U.P. Simulator

- Wyniki symulacji widoczne w Simulation Waveform Editor
- Szersze informacje na temat symulacji i edycji pliku wektorów testowych w:
- Introduction to Simulation of VHDL Designs: Altera corporation University Program May 2013

Przykłady symulacji –

Przykłady symulacji – symulacja czasowa - realizacja w sprzęcie

Przykłady symulacji – symulacja czasowa (powiększenie)

Podstawowe działania ALTERA

Programowanie i konfiguracja FPGA

Tryb: JTAG – ładowanie danych konfiguracyjnych układu bezpośrednio do FPGA, pozostają do wyłączenia zasilania. Do programowania w tym trybie: przełącznik trybu programowania płyty DE2 w stan RUN

- Tools>Programmer
- Hardware Setup > USB-blaster
- Korzystamy z *.sof (SRAM object file) (Add file)
- Ustawienie przełącznika DE2 w stan RUN
- Program/Configure
- Start

Programowanie FPGA

Tools/Programmer; Wykorzystujemy interfejs USB-Blaster

Podstawowe działania VHDL(1)

Nowy plik VHDL:

- File>New>VHDL
- okreslenie nazwy: File>Save As > Box Add file to current project
- Umieszczanie wzorców elementów w pliku VHDL:
 - Edit>Insert Template>VHDL
- Dodawanie/usuwanie plików do/z projektu:
 - Assignments> Settings> Files
 - Project> Add/Remove Files in Project

Podstawowe działania VHDL (2)

Przydział sygnałów do wyprowadzeń układu:

- Assignments > Import Assignments
- Wybrać plik DE2_pin_assignments.csv
- oznaczenia sygnałów w projekcie zgodne z DE2 user manual lub powiązanie nazw portów z oznaczeniem wyprowadzeń
- przyporządkowanie sygnałów projektu do wyprowadzeń układu FPGA

Kompilacja:

Processing>Start Compilation

Polecane źródła informacji na temat DE2 i Quartus

- Prezentacje na temat podstaw korzystania z Quartus
 - Quartus II Introduction Using VHDL Design
 - Introduction to Simulation of VHDL Designs: Altera corporation University Program May 2013

Oprogramowanie dostępne w celach edukacyjnych na www.altera.com w sekcji Altera University Program Design Software

- Podręcznik użytkownika płyty DE2
 - DE2 Development and Education Board User Manual

Przekształenie grafu stanów w opis automatu w VHDL


```
library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;
use IEEE.std logic unsigned.all;
entity przejscie is
     port (
              CLK: in STD_LOGIC;
              czas c: in STD LOGIC;
end przejscie;
architecture przejscie arch of przejscie is
attribute enum encoding: string;
type SregO_type is (
  S1, S2, S3, S4, S5
attribute enum encoding of SregO type: type is
     "00001"&
                                             -- S1
signal Sreg0: Sreg0 type;
begin
Sreg0 machine: process (CLK)
begin
if CLK'event and CLK = '1' then
     if start='1' then
     end process;
-- signal assignment statements for combinatorial outputs
zs assignment:
zs <= '1' when (Sreg0 = S1) else
```

Przykładowe wyniki pracy: Symulacja pracy prostego procesora,

zapis zawartości rejestru do pamięci adresowanej zawartością rejestru

Implementacja VHDL i DE2 na laboratorium PTC, autor: student 3 roku informatyki PP 2010/2011