

Unit 12

——Design Sequential Circuits with Flip Flops 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

Some examples

- □模8可逆计数器
- □自动售卖机
- □时序锁
- □二进制串行加法器
- □ 串行输入的8421BCD码检测器
- □ 奇偶校验器
- □ 码制转换器
- □ 序列信号发生器

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹ 确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹ 确定T₄: 看Q₁ⁿ→Q₁ⁿ⁺¹

X=0: 加法; X=1: 减法

Z: 进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	Q _n
1	$\bar{\mathbf{Q}}_{n}$

2. 状态转换真值表

输	λ	顼	!态		次态			输入		输出
X	Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T_3	T ₂	T₁	Z
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	0	1	1	0	0	1	0
0	0	1	1	1	0	0	1	1	1	0
0	1	0	0	1	0	1	0	0	1	0
0	1	0	1	1	1	0	0	1	1	0
0	1	1	0	1	1	1	0	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	1	1	0
1	0	1	1	0	1	0	0	0	1	0
1	1	0	0	0	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0	1	0
1	1	1	0	1	0	1	0	1	1	1
1	1	1_	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_3 = \overline{X} Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

$$T_2 = \overline{X} Q_1^n + X \overline{Q_1^n}$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n}$$

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 Y, 1 Y
- 每次投币只接收一枚硬币
- 机器收到1.5 Y,给出一瓶饮料
- 机器收到2.0 Y,给出一瓶饮料,找回0.5 Y

 $X_1 X_{0.5} = 00: 0 Y$

 $X_1 X_{0.5} = 01: 0.5 Y$

 $X_1 X_{0.5} = 10$: 1Y

Y=1/0: 给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

 S_0 —初始状态,无投币

S₁—机器收到0.5¥

S₂—机器收到1.0 字 (2个 0.5 字, or 1个1.0 字)

Solution 1:

Mealy circuit

if (机器又收到1个0.5Y)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1Y)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态		S ⁿ⁺¹ / Z									
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$							
S ₀	S ₀ / 00	S ₁ /00	S ₂ /00	X/XX							
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX							
S ₂	S ₂ /00	S ₀ / 10	S ₀ / 11	X/XX							

④ 状态表

现态		S ⁿ⁺¹ / Z										
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	$X_1X_{0.5}=10$	X ₁ X _{0.5} =11								
S ₀	S ₀ / 00	S ₁ /00	S ₂ /00	X/ XX								
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX								
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX								

2. 状态化简

3. 状态分配

S _o —	— 00
S₁ —	— 01
S ₂ —	 10

 $\begin{array}{c|cccc}
 & 0 & 1 \\
0 & S_0 & S_1 \\
1 & S_2 &
\end{array}$

需要2个D触发器

4. 状态转换真值

	辅	入	现	态	次	次态		输入		出	
	X_1	X _{0.5}	Q_2^n	$\mathbf{Q_1}^{\mathbf{n}}$	Q_2^{n+1}	Q_1^{n+1}	D_2	D_1	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	
	0	0	1	1	Х	Χ	X	Х	Х	Х	
	0	1	0	0	0	1	0	1	0	0	Ī
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
[0	1	1	1	Х	Χ	X	Х	Х	Х	Γ
	1	0	0	0	1	0	1	0	0	0	Ī
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
	1	0	1	1	X	Χ	X	X	Χ	X	
	1	1	0	0	Х	Х	Х	Х	Х	Х	١
	1	1	0	1	Х	Χ	X	X	Х	Х	
	1	1	1	0	Х	X	X	X	Х	Х	
	1	1	1	1	Х	X	X	Х	X	X	

确定D₂: 看Q₂ⁿ⁺¹ 确定D₁: 看Q₁ⁿ⁺¹

5. 卡诺图化简

$$\mathbf{D}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{\text{n}} + \mathbf{Q}_1^{\text{n}} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_1^{\text{n}} \overline{\mathbf{Q}}_2^{\text{n}}$$

$$\mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_1^{\ n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{\ n} \overline{\mathbf{Q}}_2^{\ n}$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

n Q ₁n			
0Ò	01	11	10
0	0	Х	0
0	0	Х	0
Х	Х	Х	Х
0	0	Х	1
	0 X	0 0 0 0 X X	0 0 X 0 0 X X X X

$$Z = X_1 Q_2^n$$

6. 电路实现

!)电路需要预置

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ=11 X₁X_{0.5} 分别为 00 ,01,10时,带入计算 $\bigcap_{n} \mathbf{Q}_{2}^{n+1} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $\begin{cases} \mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n} \end{cases}$ $Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$ $Z = X_1 Q_2^n$ $X_1X_{0.5} / YZ$ 01/00 00/00 00 10/10 非自 40/00 01/10 01/00 启动 10/11 01110 00/00 00/00

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5¥

S。—机器收到1.0 Y

S3-机器收到1.5Y

S₄—机器收到2.0¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S ₂	S ₃	00
S ₂	S ₂	S ₃	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S ₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

Q_2				
Q_3^n	00	01	11	10
0	S ₀	S ₃		S ₁
1	S ₄			S ₂

需	要3	个	D触	发	器
---	----	---	----	---	---

_	— 000 — 010
S 2-	— 110
$S_3 - S_4 -$	— 001 — 100

S₁ — 010

S₂ — 110

 $S_3 - - 001$

S₄ —— 100

4. 状态转换真值表

辅	入		现	态		次态		输	λ		输出	出
X_1	$X_{0.5}$	Q_3^n	Q_2^n	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Ζ
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	Χ	X	Х	X	X	X

5. 卡诺图化简

n Q ,n	X ₁ =0		
00	01	11	10
0	0	X	0
0	X	Х	0
0	Х	Х	1
0	0	Х	0
n Q ₁n	Х	′ ₁ =1	- 1
00	01	11	10
0	0	X	رٰ 1_
0	Х	Х	0
Х	Х	Х	Х
Х	X	X	Х
	0 0 0 0 0 00 0 0 0	00 01 0 0 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 X 0 0 X	00 01 11 0 0 X 0 X X 0 X X 0 X X 0 0 X nQ ₁ n X ₁ =1 00 01 11 0 0 X 0 X X

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$D_2 = \overline{X}_{0.5}Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5}Q_2^n$$

$$D_1 = X_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_1Q_2^n$$

 $Y = \overline{Q}_2^n Q_3^n + Q_1^n \overline{Q}_2^n + X_{0.5} \overline{Q}_3^n Q_2^n$

$X_{0.5}Q_3$	ⁿ Q ₁ ⁿ 00	X ₁ 01	=0 11	10	
00	0	0	Х	0	
01	1	X	X	0	
11	1	Х	Х	0	
10	0	0	X	0	
$Q_2^n Q_1^n \qquad X_1 = 1$ $X_{0.5} Q_3^n \qquad 00 \qquad 01 \qquad 11 \qquad 10$					
$X_{0.5}Q_3$		-		10	
X _{0.5} Q ₃ ^Q 2 00		-		10	
$X_{0.5}Q_3$	00	01	11		
X _{0.5} Q ₃ h 00	00	01	11 X	0	

$$Z = \overline{Q}_2^n Q_3^n$$

$$D_{3} = \overline{X}_{0.5}Q_{3}^{n}Q_{2}^{n} + \overline{Q}_{3}^{n} X_{0.5}Q_{2}^{n} + X_{1}\overline{Q}_{2}^{n}$$

$$D_{2} = \overline{X}_{0.5}Q_{3}^{n} + \overline{Q}_{2}^{n} X_{0.5} + X_{1}\overline{Q}_{2}^{n} + \overline{X}_{1}\overline{X}_{0.5}Q_{2}^{n}$$

$$D_{1} = X_{0.5}Q_{3}^{n}Q_{2}^{n} + \overline{Q}_{3}^{n} X_{1}Q_{2}^{n}$$

$$Y = \overline{Q}_{2}^{n}Q_{3}^{n} + Q_{1}^{n}\overline{Q}_{2}^{n} + X_{0.5}\overline{Q}_{3}^{n}Q_{2}^{n}$$

$$Z = \overline{Q}_{2}^{n}Q_{3}^{n}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ➤ Moor型电路中的状态总数相对要多 一些,需要使用较多的触发器资源。
- ➤ Moor型电路的输出只与状态有关, 输出没有毛刺。