# Laporan praktikum Data Mining Agung Dwi Nugroho 3122600006

### dataset titanic.csv, dan tampilkan

import pandas as pd

dataset = pd.read\_csv('titanic.csv')
dataset

Analisis : Menampilkan data csv menjadi table

| [₹] | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket    | Fare    | Cabin | Embarked |
|-----|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|-----------|---------|-------|----------|
|     | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171 | 7.2500  | NaN   | S        |
|     | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599  | 71.2833 | C85   | С        |

# rows, cols jumlah baris dan kolom pada dataset, dan tampilkan

```
[5] rows,cols = dataset.shape

print("jumlah baris : ",rows)
print("jumlah colom : ",cols)
```



#### Analisis : Menampilkan banyak row dan colom data csv

# data ambil dataset kolom fitur (Age, Fare), dan tampilkan

```
data = dataset.loc[:,['Age','Fare']]
data
```

Analisis : Menampilkan data dengan hanya memilih Age dan Fare saja



# class ambil dataset kolom kelas (Survived)

```
[7] Class = dataset['Survived']
    Class
```

Analisis : Menampilkan data survived

| Survived |   |  |  |
|----------|---|--|--|
| 0        | 0 |  |  |
| 1        | 1 |  |  |
| 2        | 1 |  |  |
| 3        | 1 |  |  |
| 4        | 0 |  |  |

# Lakukan pengisian missing value pada fitur Age dengan nilai mean dari masing-masing class

data['Age'] = data['Age'].fillna(data.groupby(Class)['Age'].transform('mean'))
data

#### Analisis:

Mengisi data value yang kosong dengan rata" value dari nilai yang lain

|   | Age       | Fare    |     |
|---|-----------|---------|-----|
| 0 | 22.000000 | 7.2500  | 11. |
| 1 | 38.000000 | 71.2833 | +1  |
| 2 | 26.000000 | 7.9250  |     |
| 3 | 35.000000 | 53.1000 |     |
| 4 | 35.000000 | 8.0500  |     |
|   |           |         |     |

## Min-Max(0-1)

```
[9] data_min_max_manual = (data - data.min()) / (data.max() - data.min())

data_normalisasi_min_max_manual = pd.DataFrame(data_min_max_manual, columns=['Age', 'Fare'])

data_normalisasi_min_max_manual
```

### Analisis :

Membuat normalisasi data dengan metode min max dengan rumus (data - datakecil) / (databesar - datakecil)

| - | Age      | Fare     |     |
|---|----------|----------|-----|
| 0 | 0.271174 | 0.014151 | 11. |
| 1 | 0.472229 | 0.139136 | +1  |
| 2 | 0.321438 | 0.015469 |     |
| 3 | 0.434531 | 0.103644 |     |
| 4 | 0.434531 | 0.015713 |     |

### Z-Score

```
data_z_score_manual = (data - data.mean()) / data.std()

data_normalisais_z_score_manual = pd.DataFrame(data_z_score_manual, columns=['Age', 'Fare'])
data_normalisais_z_score_manual
```

#### Analisis:

Membuat normalisasi data dengan metode z score dengan rumus (data - data rata rata) / std

|   | Age       | Fare      |     |
|---|-----------|-----------|-----|
| 0 | -0.595670 | -0.502163 | 11. |
| 1 | 0.634089  | 0.786404  | +1  |
| 2 | -0.288230 | -0.488580 |     |
| 3 | 0.403509  | 0.420494  |     |
| 4 | 0.403509  | -0.486064 |     |

### Sigmoidal

```
import numpy as np

data_sigmoidal = 1 / (1 + np.exp(-data))

data_normalisasi_sigmoidal = pd.DataFrame(data_sigmoidal, columns=['Age', 'Fare'])
data_normalisasi_sigmoidal
```

#### Analisis : Membuat normalisasi data dengan metode sigmodial dengan

|   | Age | Fare     | 田  |
|---|-----|----------|----|
| 0 | 1.0 | 0.999290 | 11 |
| 1 | 1.0 | 1.000000 | +1 |
| 2 | 1.0 | 0.999639 |    |
| 3 | 1.0 | 1.000000 |    |
| 4 | 1.0 | 0.999681 |    |

Link google collab : https://colab.research.google.com/drive/1awB6g87Q2l8kQZ-H3Ak5D KmCJfuP9zs6?usp=sharing