Energy Consumption Prediction Framework in Model-based Development for Edge Devices

Yue Hou Azumi Takuya

Saitama Univ. Saitama Univ. Japan Japan

Outline

- Background
- Proposed Prediction Framework
- Evaluation
- Conclusion

Edge Device

Development of Edge Device

- The count of devices is increasing
- Systems is becoming complex

Development of Systems on Edge Devices

- The cost is becoming significant.
- The reusability of the code developed with traditional method is limited.

MATLAB/Simulink

■ What is MATLAB/Simulink

- -MATLAB
 - A programming and numeric computing platform developed by MathWorks.
- -Simulink
 - A block diagram environment for Model-based Development integrated with MATLAB.

■ Why Use MATLAB/Simulink

- -Efficiency
 - Simplifies complex numerical calculations and visualization.
- Integration
 - Provides an easy-to-use environment.
- Versatility
 - Used in various industries, such as engineering and finance.

Model-based Development (MBD)

What is MBD

-uses graphical models to guide design and implementation

- -allows engineers to verify system behavior and performance by simulation
- -MBD with MATLAB/Simulink and Embedded Coder supports automatic code generation

```
void untitled_step(void)
{
    /* Outport: '<Root>/Outport' incorporates:
    * Inport: '<Root>/Inport'
    * Inport: '<Root>/Input'
    * Sum: '<Root>/add'
    */
    rty.Outport = rtU.input1 + rtU.input2;
}
```

Low Level Virtual Machine Intermediate Representation (LLVM-IR)

What is LLVM-IR

- -A low-level programming language used as the primary IR within the LLVM compiler framework.
- -Serves as a bridge between high-level languages and the machine code, enabling code analysis and transformation.

■ Why Use LLVM-IR

- Portability
 - Easy to support multiple target platforms.
- -Optimization
 - Facilitates various optimizations both at the compile time and at run time.
- -Flexibility
 - Allows developers to create compilers for new programming languages more easily, or extend the capabilities of existing languages.

System Model

MBD Sequence

- Modeling
- -Simulation
- Code Generation
- -Compile
- Write in

Energy Consumption Description Schema

- Objective
 - Provide a universal framework to describe energy consumption for any given instruction.

■ Energy Consumption Description Schema

- -Three-Tier Structure
 - Top Layer
 - -CommonInstructionSet
 - Middle Layer
 - -Instruction
 - Bottom Layer
 - PowerConsumption

■Time and Energy Consumption of Instructions

- -Correlation of Time and Energy
 - Premise: Execution time of code is directly linked to energy consumption.
 - Validation: Accurate time predictions validate energy consumption estimates.
- -Importance of Measurement
 - Accuracy: Precise measurement of individual instructions is critical—errors directly affect overall prediction reliability.
 - Technique: A cyclic execution approach is commonly used for better precision in predicting individual instructions' time and energy use.

■Time and Energy Consumption of Instructions

- Execution Time Measurement
 - Challenge: Selecting an accurate timing method is crucial for exact execution time capture.
 - Tools: While standard libraries offer timing functions, their precision may be insufficient.
 - Advanced Method: The experiment utilizes the DWT (Data Watchpoint and Trace Unit) on the SONY Spresense board, enhancing accuracy by directly accessing specific registers.
 - Consideration: Using DWT presents risks such as clock overruns, which must be managed.

■Extract the Operation Part from Generated Code

Experimental Environment

■Target device

-SONY Spresense (ARM Cortex M4F)

■Measurement device

-AVHzY CT-3 USB tester

Experimental

■Basic Evaluation

- Measure the power consumption and execution time of basic instructions on the target device
- Create test scripts to obtain actual execution time and power consumption in a single core environment

Experimental

■Basic Evaluation

- -Test Scripts
 - Four arithmetic operations (add,sub,mul,div)
- Predicting power consumption
 - Focus on the "for" statement part

Test Scripts

	Number of Execution	Total Time (clock cycles)	Total Energy (nanojoules)
load	8	16.018	13.248
store	4	4.005	3.456
add	1	1.001	0.864
sub	3	1.001	0.864
mul	1	1.001	0.864
udiv	1	5.006	3.888
for	1	4.007	3.24
Total	1,5	32.039	26,424

Time and Energy Consumption of Instructions

Power Consumption Prediction Focus on "for"

Experimental

■Evaluation with Models

For Iterator Subsystem Construction

Experimental Environment

■Evaluation with Models

- -Code generated by Embedded Coder
- Execute in user code with function calls
- -Convert to LLVM-IR instructions
- Make predictions with a prediction tool

```
for (sl_iter = 1; sl_iter <= tmp; sl_iter++) {
    /* Gain; '<Sl>/Gain' incorporates;
    # Inport; '<Root>/Inport'
    * Inport; '<Root>/Input'
    * Sum; '<Sl>/Sum'
    */
    z = (x + y) * k;

/* Sum; '<Sl>/Suml' incorporates;
    * Inport; '<Root>/Inportl'
    */
    b = z = a;

/* Product; '<Sl>/Divide' incorporates;
    * Inport; '<Root>/Inport2'
    */
    d = b / c;
}
```

Experimental Environment

■Evaluation with Models

- -Result
 - Prediction
 - -2,059,200,000 nJ
 - Measurement
 - -1,980,000,000 nJ
 - Error: 4%
- Error Analysis
 - Precision of the equipment
 - -1,000 times per second

