Chern Class

Tao Huang me@tau.ovh

1 Via an Euler class

Theorem 1.1 (Thom isomorphism). Let $\pi: E \to B$ be an oriented rank n real vector bundle. Then the cohomology group $H^i(E,E_0)$ is zero for i < n, and $H^n(E,E_0)$ contains one and only one cohomology class u whose restriction

$$u|_{(F,F_0)} \in H^n(F,F_0)$$

is equal to the preferred generator u_F for every fiber F. Furthermore the correspondence $y\mapsto y\smile u$ maps $H^k(E)$ isomorphically onto $H^{k+n}\left(E,E_0\right)$ for every integer k.

Definition 1.2. The inclusion $(E,\emptyset) \hookrightarrow (E,E_0)$ induce maps

$$H^r(E, E_0) \to H^r(E) \cong H^r(B)$$
.

The Euler class $e(E) \in H^n(B)$ is the image of u under the composition of these maps.

Note that since E and B are homotopic, $H^k(E) \cong H^k(B)$.

Proposition 1.3 (Gysin sequence). Ther is a long exact sequence:

$$\cdots \to H^{k+n-1}(E_0) \to H^k(B) \xrightarrow{\smile e} H^{k+n}(B) \xrightarrow{\pi_0^*} H^{k+n}(E_0) \to \cdots$$

Proof. By long exact sequence:

$$\cdots \to H^{r-1}(E_0) \to H^r(E, E_0) \to H^r(E) \to H^r(E_0) \to \cdots$$

Then the following diagram commutes:

Corollary 1.4. Let $\pi: E \to B$ be a rank n complex vector bundle, there is an isomorphism:

$$H^k(B) \xrightarrow{\pi_0^*} H^k(E_0),$$

for k < 2n - 1.

Proof. $H^{k-2n}(B) \cong H^{k-2n+1}(B) \cong 0$. Together with proposition 1.3.

Definition 1.5. Let $\pi: E \to B$ be a rank n complex vector bundle over a paracompact space B. Chern class $c_k(E) \in H^{2k}(B_{\mathbb{R}})$ is given by

$$c_k(E) = \begin{cases} \pi_0^{*-1} c_k(E') & k < n \\ e(E_{\mathbb{R}}) & k = n \\ 0 & k > n \end{cases}$$

where $E' \to E_0$ is a vector bundle whose fiber on each point $v \in E_0$ is the quotient space $E/\mathbb{C}\{v\}$, whence E' is a rank n-1 complex vector bundle.

2 via Chern-Weil theory

2.1 Curvature from

Let $\pi: E \to M$ be a smooth rank n complex vector bundle over a smooth manifold M. Denote the space of smooth sections of E over M by $\Gamma(M, E)$.

Definition 2.1. We call any section of $\wedge^k T^*M \otimes E$ an E-valued k-form on M. The set of E-valued k-forms $\Gamma(M, \wedge^k T^*M \otimes E)$ is denoted by $\Omega^k(M; E)$

Definition 2.2. A *connection* on E is an \mathbb{C} -linear map

$$\nabla: \Omega^0(M; E) \to \Omega^1(M; E)$$

such that the Leibniz rule

$$\nabla(fs) = \mathrm{d}f \otimes s + f\nabla s$$

holds for all smooth functions f on M and all smooth sections s of E.

Let X be a tangent vector field on M, one can define a covariant derivative along X

$$\nabla_X: \Omega^0(M; E) \to \Omega^0(M; E),$$

by contracting X with the resulting covariant index in the connection: $\nabla_X(s) = (\nabla(s))(X)$.

Definition 2.3. Let $\varphi_U: U \times \mathbb{C}^n \to \pi^{-1}(U)$ be local trivializations of E. A set of local sections $\{s_1, s_2, \cdots, s_n\}$ is said to be basis of $\Gamma(U, \pi^{-1}(U))$ if for all point $p \in U, \{s_1(p), s_2(p), \cdots, s_n(p)\}$ is a basis for the fiber E_p . Such $\{s_1, s_2, \cdots, s_n\}$ is called *local frame* of E over U.

Definition 2.4. For the given connection ∇ and local frame $\{s_1, s_2, \dots, s_n\}$ on U, we can write:

$$\nabla_X s_i = \sum_j \left(\omega_U\right)_{i,j} (X) s_j,$$

for all vector field X over U, where $\omega_U \in \Omega^1(M; \mathfrak{gl}(n; \mathbb{C}))$, called *connection* 1-form associated to the given local frame.

Definition 2.5. Let ∇ be the given connection on E, one can extend ∇ to a family of operators:

$$\nabla: \Omega^k(M; E) \to \Omega^{k+1}(M; E),$$

by defining

$$\nabla(\omega \otimes s) = d\omega \otimes s + (-1)^k \omega \wedge \nabla s,$$

for all $\omega \in \Omega^k(M), s \in \Omega^0(M; E)$

Definition 2.6. We call $R_{\nabla} = \nabla^2 : \Omega^0(M; E) \to \Omega^2(M; E)$ the curvature tensor of the connection ∇ . In local frame:

$$\nabla^2 s_i(X, Y) = \sum_j (\Omega_U)_{i,j} (X, Y) s_j,$$

where $\Omega_U \in \Omega^2(M; \mathfrak{gl}(n; \mathbb{C}))$ is called *curvature 2-form*.

2.2 Invariant polynomial

Proposition 2.7. For the given vector space V, there is a bijection $\operatorname{Sym}^k V^*$ and homogeneous polynomial of degree k:

$$T \stackrel{\cong}{\mapsto} P_T := (v \mapsto T(v, \dots, v)).$$

Proof. Just notice the *polarization formula*:

$$T(v_1, \dots, v_k) = \frac{1}{k!} \frac{\partial^k}{\partial t_1 \dots \partial t_k} P_T(t_1 v_1 + \dots + t_k v_k).$$

In general, let $G = GL(n; \mathbb{C})$ and $\mathfrak{g} = \mathfrak{gl}(n; \mathbb{C})$.

Definition 2.8. A symmetric k-tensor $T \in \operatorname{Sym}^k \mathfrak{g}^*$ is called G-invariant if

$$g \cdot T = T \quad \forall g \in G.$$

The set of all G-invariant symmetric k-tensor is denoted by $I^k(G)$.

Theorem 2.9 (Chevally restriction theorem). Let G be a complex semi-simple Lie group, $\mathfrak g$ the corresponding Lie algebra, $\mathfrak h$ the Cartan subalgebra and W the Weyl group of $\mathfrak g$. Then G-invariant polynomial on $\mathfrak g$ is isomorphic to W-invariant polynomial on $\mathfrak h$.

2.3 Chern-Weil theory

Theorem 2.10. Let E be a vector bundle over M. Then

- 1. For any $T \in I^k(G)$ and any linear connection ∇ on $E, P_T(\Omega)$ is a closed 2k-form.
- 2. The de Rham cohomology class $[P_T(\Omega)] \in H^{2k}_{dR}(M)$ is independent of the choices of ∇ .
- 3. The Chern-Weil maps

$$\mathcal{CW}: (I^*(G), \circ) \to (H^*_{dR}(M), \wedge), \quad T \mapsto [P_T(\Omega)]$$

is a ring homomorphism, which is called Chern-Weil homomorphism.

Lemma 2.11 (Bianchi identity).

$$d\Omega = \Omega \wedge \omega - \omega \wedge \Omega = [\Omega, \omega].$$

Lemma 2.12. For all $T \in I^k(G)$ and $X, X_1, \dots, X_k \in \mathfrak{g}$, we have

$$T([X, X_1], X_2, \dots, X_k) + T(X_1, [X, X_2], \dots, X_k) + T(X_1, X_2, \dots, [X, X_k]) = 0.$$

proof of theorem **2.10**. 1

$$d P_T (\Omega) = d T(\Omega, \dots, \Omega)$$

$$= \sum_{\alpha} T(\Omega, \dots, d \Omega, \dots, \Omega)$$

$$= \sum_{\alpha} T(\Omega, \dots, [\Omega, \omega], \dots, \Omega)$$

$$= 0$$

2. Let ∇_1, ∇_2 be two different connection on E. The mapping $p_1: M \times \mathbb{R} \to M$ induces two connection $\tilde{\nabla}_1, \tilde{\nabla}_2$ on p_1^*E .

$$\tilde{\nabla} = s\tilde{\nabla}_1 + (1-s)\tilde{\nabla}_2$$

is also a connection on p_1^*E .

Consider $i_{\epsilon}: x \mapsto (x, \epsilon)$, then $i_0^* \tilde{\nabla} = \nabla_0, i_1^* \tilde{\nabla} = \nabla_1$. Hence

$$i_{j}^{*}\left[P_{T}\left(\tilde{\Omega}\right)\right]=\left[P_{T}\left(\Omega_{j}\right)\right], \quad j=1,2.$$

Since the mapping i_0 is homotopic to i_1 , it follows that

$$[P_T(\Omega_0)] = [P_T(\Omega_1)].$$

3. For all $T \in I^k(G), S \in I^l(G), X_1, \cdots, X_{k+l} \in \Omega^*(M)$,

$$P_{T \circ S}(X_1, \cdots, X_{k+l}) = \frac{1}{(k+l)!} \sum_{\sigma \in \mathfrak{S}_{k+l}} T(X_{\sigma(1)}, \cdots, X_{\sigma(k)}) \wedge S(X_{\sigma(k+1)}, \cdots, X_{\sigma(k+l)}).$$

2.4 Chern Class

Definition 2.13. For the given G-invariant polynomial f of degree k, since the cohomology class $[f(\Omega)] \in H^{2k}_{dR}(M)$ does not depend on connections Ω , we will denote it by f(E) and call it the *characteristic class* of E corresponding to f. The *total Chern class* c(E) is defined by:

$$\left[\det\left(I - \frac{1}{2\pi i}\Omega\right)\right] = 1 + \sum_{k=1}^{n} \left(\frac{-1}{2\pi i}\right)^{k} \sigma_{k}(\Omega).$$

Remark 2.14.

$$H^k\left(\mathbb{CP}^n\right) = \begin{cases} \mathbb{R}, & \text{for } k \text{ even and } 0 \leq k \leq 2n \\ 0, & \text{otherwise} \end{cases}.$$

Moreover, $H^k\left(\mathbb{CP}^n\right)=\mathbb{R}[a]/\left(a^{n+1}\right)$, where a is the generator of $H^2\left(\mathbb{CP}^k;\mathbb{Z}\right)$.

Proof. Denote $U = \mathbb{CP}^n - \mathbb{CP}^{n-1} \cong \mathbb{C}^n$ and $V = \mathbb{CP}^n \setminus \{[0 : \cdots : 0 : 1]\}$. $U \cap V = \mathbb{C}^n - \{0\} \approx \mathbb{S}^{2n-1}$. Note that

$$([z_0:\cdots:z_n],t)\mapsto [z_0:\cdots:z_{n-1}:tz_n]$$

defines a homotopy between \mathbb{CP}^{n-1} and V. Using Mayer–Vietoris sequence, the result is clear:

$$\cdots \to H^{k-1}\left(\mathbb{S}^{2n-1}\right) \to H^k\left(\mathbb{CP}^n\right) \to H^k\left(\mathbb{CP}^{n-1}\right) \to \cdots$$

Example 2.15. Riemann sphere, which is isomorphic to complex projective line \mathbb{CP}^1 , has Kahler metric:

$$\frac{\mathrm{d}z\,\mathrm{d}\bar{z}}{\left(1+|z|^2\right)^2}$$

Hence there is a connection on tangent bundle $T\mathbb{CP}^1$ induced by the metric:

$$\begin{split} 2\frac{z\,\mathrm{d}\,\bar{z} + \bar{z}\,\,\mathrm{d}z}{\left(1 + |z|^2\right)^3} &= \mathrm{d}\,\frac{1}{\left(1 + |z|^2\right)^2} \\ &= \mathrm{d}\,\left\langle\frac{\partial}{\partial z}, \frac{\partial}{\partial\bar{z}}\right\rangle \\ &= \left\langle\nabla\frac{\partial}{\partial z}, \frac{\partial}{\partial\bar{z}}\right\rangle + \left\langle\frac{\partial}{\partial z}, \nabla\frac{\partial}{\partial\bar{z}}\right\rangle \\ \nabla\frac{\partial}{\partial z} &= \frac{2z\,\mathrm{d}\bar{z}}{1 + |z|^2} \otimes \frac{\partial}{\partial z}. \end{split}$$

Then it has curvature form

$$\Omega = \frac{2\mathrm{d}z \wedge \mathrm{d}\bar{z}}{(1+|z|^2)^2}.$$

To see the Chern class $c_1(T\mathbb{CP}^1)=[rac{i}{2\pi}\mathrm{tr}\,\Omega]=[rac{i}{2\pi}\Omega]\in H^2_{dR}\left(\mathbb{CP}^1
ight)$ is non-zero,

$$\int c_1 = \frac{i}{\pi} \int \frac{\mathrm{d}z \wedge \mathrm{d}\bar{z}}{(1+|z|^2)^2} = 2.$$

Proposition 2.16. The tirvial bundle $E = M \otimes \mathbb{C}^n$ has total Chern class c(E) = 1.

Proof. Sections s of E can be written by $s=(f_1,\cdots,f_n)$ and E has tirvial connection:

$$\nabla(f_1,\cdots,f_n)=(\mathrm{d}\,f_1,\cdots,\mathrm{d}\,f_n),$$

since

$$\nabla f \cdot (f_1, \dots, f_n) = \nabla (f \cdot f_1, \dots, f \cdot f_n)$$

$$= (d f \cdot f_1 + f \cdot d f_1, \dots, d f \cdot f_n + f \cdot d f_n)$$

$$= d f \otimes (f_1, \dots, f_n) + f \nabla (f_1, \dots, f_n).$$

Then

$$\nabla^{2}(f_{1}, \dots, f_{n}) = \nabla(\operatorname{d} f_{1}, \dots, \operatorname{d} f_{n})$$

$$= (\operatorname{d}^{2} f_{1}, \dots, \operatorname{d}^{2} f_{n}) + (\operatorname{d}^{2} f_{1}, \dots, \operatorname{d}^{2} f_{n})$$

$$= 0.$$

Hence the curvature 2-form $\Omega = 0$.

3 Axiomatic definition

Definition 3.1. The Chern classes satisfy the following four axioms:

Axiom 1. $c_0(E) = 1$ for all E.

Axiom 2 (Naturality). If $f: Y \to X$ is continuous and f^*E is the vector bundle pullback of E, then $(f^*E) = f^*c_k(E)$.

Axiom 3 (Whitney sum formula). If $F \to X$ is another complex vector bundle, then the Chern classes of the direct sum $E \oplus F$ are given by

$$c(E \oplus F) = c(E) \smile c(F).$$

Axiom 4 (Normalization). The total Chern class of the tautological line bundle over \mathbb{CP}^k is 1-a, where a is Poincare-dual to the hyperplane $\mathbb{CP}^{k-1}\subseteq\mathbb{CP}^k$, i.e. the generator of $H^2\left(\mathbb{CP}^k;\mathbb{Z}\right)$

Theorem 3.2 (Poincare duality). If a manifold M is orientable and compact, then

$$I_M: H^k(M) \to \left(H^{n-k}(M)\right)^*$$

$$\omega \mapsto \left(\eta \mapsto \int_M \omega \wedge \eta\right)$$

is an isomorphism.

Remark 3.3. For the complex projective space \mathbb{CP}^n , the hyperplane bundle

$$\mathcal{O}_{\mathbb{CP}^n}(1) = \{ (V, \lambda) \mid V \in \mathbb{CP}^n, \lambda \in V^* \}$$

has the property that there is a exact sequence:

$$0 \to \mathbb{CP}^n \otimes \mathbb{C} \to \mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus (n+1)} \to T\mathbb{CP}^n \to 0,$$

since

$$T\mathbb{CP}^n \oplus (\mathbb{CP}^n \otimes \mathbb{C}) = \operatorname{Hom}(\mathcal{O}(-1), \eta) \oplus \operatorname{Hom}(\mathcal{O}(-1), \mathcal{O}(-1))$$
$$= \operatorname{Hom}(\mathcal{O}(-1), \mathbb{CP}^n \otimes \mathbb{C})$$
$$= \mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus (n+1)},$$

where $\eta = \{(V, v) \mid V \in \mathbb{CP}^n, v \in V^{\perp}\}$. Note that $\phi \in \text{Hom}(\mathcal{O}(-1), \eta)$ defines an element of $T_V \mathbb{CP}^n$ by

$$\mathrm{Id} \oplus \phi : V \to V \oplus V^{\perp} = \mathbb{C}^{n+1}.$$

Denote $a=c\left(\mathcal{O}_{\mathbb{CP}^n}(1)\right)$ Note that $c\left(\mathbb{CP}^n\otimes\mathbb{C}\right)=1$, whence

$$c\left(T\mathbb{CP}^n\right) = c\left(\mathcal{O}_{\mathbb{CP}^n}(1)^{\oplus (n+1)}\right) = (1+a)^{n+1}.$$

Remark 3.4. In local affine coordinates, complex projective space \mathbb{CP}^n has Fubini–Study metric:

$$ds^{2} = \frac{(1 + z_{i}\bar{z}^{i}) dz_{j} d\bar{z}^{j} - \bar{z}^{j} z_{i} dz_{j} d\bar{z}^{i}}{(1 + z_{i}\bar{z}^{i})^{2}}.$$

4 Application

4.1 Chern-Gauss-Bonnet theorem

Theorem 4.1 (Fundamental Theorem of Riemannian Geometry). Let (M,g) be a Riemannian manifold (or pseudo-Riemannian manifold). Then there is a unique connection ∇ called *Levi-Civita connection* on the tangent bundle of M which satisfies the following conditions:

1. (compatible with the metric) for any vector fields X, Y, Z we have

$$\partial_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle,$$

where $\partial_X \langle Y, Z \rangle$ denotes the derivative of the function $\langle Y, Z \rangle$ along vector field X.

2. (torsion free) for any vector fields X, Y,

$$\nabla_X Y - \nabla_Y X = [X, Y]$$

where [X, Y] denotes the Lie bracket for vector fields X, Y.

Theorem 4.2 (Chern–Gauss–Bonnet). For a closed even-dimensional Riemannian manifold M.

$$\chi(M) = \int_{M} e(\Omega),$$

where $\chi(M)$ denotes the Euler characteristic of M, and Ω is the associated curvature form of the Levi-Civita connection.

4.2 Chern polynomial

Definition 4.3. For a complex vector bundle E, the *Chern polynomial* of E is given by:

$$c_t(E) = 1 + c_1(E)t + \dots + c_n(E)t^n.$$

Now, if $E = L_1 \oplus \cdots \oplus L_n$ is a direct sum of complex line bundles, then it follows from the Whitney sum formula (Axiom 3) that:

$$c_t(E) = (1 + a_1(E)t) \cdots (1 + a_n(E)t),$$

where $a_i(E) = c_1(L_i)$ are the first Chern classes.

The roots $a_i(E)$, called the *Chern roots* of E, determine the coefficients of the polynomial:

$$c_k(E) = \sigma_k(a_1(E), \dots, a_n(E)).$$