Marijuana Legalization and Violent Crime

Yuanjing Zhu & Emmanuel Ruhamyankaka

```
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
%config InlineBackend.figure_format = 'retina'
```

Exercise 1

Load the dataset

Out[]:	t[]: Y I		COUNTY	VIOLENT	F_DRUGOFF	total_population
	0	1980	Alameda County	4504	3569	1105379.0
	1	1981	Alameda County	4699	3926	1122759.3
	2	1982	Alameda County	4389	4436	1140139.6
	3	1983	Alameda County	4500	5086	1157519.9
	4	1984	Alameda County	3714	5878	1174900.2

```
In [ ]: print(f"Time period: {df['YEAR'].min()} - {df['YEAR'].max()}")
```

Time period: 1980 - 2018

- A single row represent a county in California in a given year.
- The entities being tracked are counties in California.
- The time period is from 1980 to 2018.

Exercise 2

Calculate each county's average drug arrest rate for the period from 2007-2009.

Outſ	1:	drug arrest rat	te
Out		urug arrest rat	re

COUNTY	
San Francisco County	873.961738
Mendocino County	599.799767
Tehama County	585.300555
Humboldt County	499.572904
Plumas County	492.429787

Calculate the median value across counties

The median value of average durg arrest rate across the counties is: 0.30%

Create an indicator called treated for counties with above-median average drug arrest rates during this period.

Out[]: drug arrest rate indicator

COUNTY

San Francisco County	873.961738	1
Mendocino County	599.799767	1
Tehama County	585.300555	1
Humboldt County	499.572904	1
Plumas County	492.429787	1

```
In [ ]: # make sure the indicator works as expected
assert avg_drug_arrest_rate.indicator.sum() == avg_drug_arrest_rate.shape[0] / 2, \
"The indicator is not working as expected"
```

Exercise 3

Create a violent_rate variable with is violent arrests per 100,000 people.

```
In [ ]: df['violent_rate'] = df['VIOLENT'] / df['total_population'] * 100000
    df.head()
```

Out[]:		YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	violent_rate
	0	1980	Alameda County	4504	3569	1105379.0	407.462056
	1	1981	Alameda County	4699	3926	1122759.3	418.522474
	2	1982	Alameda County	4389	4436	1140139.6	384.952860
	3	1983	Alameda County	4500	5086	1157519.9	388.762215
	4	1984	Alameda County	3714	5878	1174900.2	316.111956

Exercise 4

Difference-in-differences analysis

```
Out[ ]:
                                                                                        drug
             YEAR COUNTY VIOLENT F_DRUGOFF total_population violent_rate
                                                                                               indicator post 2010
                                                                                   arrest rate
                    Alameda
             1980
                                  4504
                                              3569
                                                           1105379.0
                                                                       407.462056 394.457331
                                                                                                                 0
                                                                                                      1
                      County
                    Alameda
             1981
                                  4699
                                              3926
                                                           1122759.3
                                                                       418.522474 394.457331
                                                                                                                 0
                                                                                                      1
                      County
                    Alameda
             1982
                                  4389
                                              4436
                                                           1140139.6
                                                                       384.952860 394.457331
                                                                                                      1
                                                                                                                 0
                      County
                    Alameda
             1983
                                  4500
                                              5086
                                                           1157519.9
                                                                       388.762215 394.457331
                                                                                                                 0
                      County
                    Alameda
             1984
                                  3714
                                              5878
                                                           1174900.2
                                                                       316.111956 394.457331
                                                                                                      1
                                                                                                                 0
                      County
```

```
In [ ]: years_to_keep = [2007, 2008, 2009, 2016, 2017, 2018]
# subset to only inclde the years we want to keep

df_new_sub = df_new.loc[df_new['YEAR'].isin(years_to_keep), :]

treatment = df_new_sub.loc[df_new_sub['indicator'] == 1, :]

control = df_new_sub.loc[df_new_sub['indicator'] == 0, :]
```

(a) Calculating the change in violent arrest rates for our treated groups from before legalization to after

The change in violent crime rate for treated counties is: -26.80

(b) Calculating difference in difference estimator

The Diff in Diff is: -7.42

- From pre-post analysis of the treatment group, we can see that the violent rate has decreased by 26.8 (per 100,000 people) after legalization, indicating that the legalization of marijuana is effective.
- Results from Difference-in-difference analysis indicate that there was a decrease in violent crime rates in both the treated and control counties, but the decrease was greater in the treated counties. Specifically, the decrease in violent rate (per 100,000 people) of the treated counties was 7.42 percentage points greater than the decrease in the control counties, suggesting the legalization of marijuana has a positive effect on reducing violent crime rates.

Exercise 5

regressing violent rate on treated, post, and the interaction

```
In [ ]: import statsmodels.formula.api as smf

model = smf.ols(formula='violent_rate ~ indicator*post_2010', data=df_new_sub).fit()
model.get_robustcov_results(cov_type='cluster', groups=df_new_sub['COUNTY']).summary()
```

Dep. Variable:	violent_rate	R-squared:	0.221
Model:	OLS	Adj. R-squared:	0.214
Method:	Least Squares	F-statistic:	11.00
Date:	Mon, 06 Mar 2023	Prob (F-statistic):	8.45e-06
Time:	20:34:05	Log-Likelihood:	-2094.1
No. Observations:	348	AIC:	4196.
Df Residuals:	344	BIC:	4212.
Df Model:	3		
Covariance Type:	cluster		

Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	319.7820	17.638	18.131	0.000	284.463	355.101
indicator	106.8289	23.385	4.568	0.000	60.001	153.657
post_2010	-19.3816	9.892	-1.959	0.055	-39.189	0.426
indicator:post_2010	-7.4181	18.869	-0.393	0.696	-45.203	30.367

Omnibus:	53.945	Durbin-Watson:	0.741
Prob(Omnibus):	0.000	Jarque-Bera (JB):	81.621
Skew:	0.965	Prob(JB):	1.89e-18
Kurtosis:	4.380	Cond. No.	6.85

Notes:

[1] Standard Errors are robust to cluster correlation (cluster)

- The coefficient on the interaction term is 7.42, which is the same as the difference-in-difference estimator we calculated in Exercise 4. This suggests that holding all other variables constant, the decrease in violent rate of treated coutries between pre and post legalization is 7.42 percentage points greater than the decrease in violent rate of control counties between pre and post legalization.
- However, the p-value of the interaction term is 0.696 (>0.05), indicating it is not statistically significant. This suggests that the difference-in-difference could be due to chance.

Exercise 6

plot a difference in difference model

```
In [ ]: df_pre = df_new.loc[(df_new['YEAR']>=2000)&(df_new['YEAR']<=2009), :]</pre>
        df_post = df_new.loc[(df_new['YEAR'].isin([2016, 2017, 2018])), :]
        # prepare data for plotting
        treatment_pre_plt = df_pre.loc[df_pre['indicator']==1, :].\
            groupby('YEAR')['violent_rate'].mean()
```

```
treatment post plt = df post.loc[df post['indicator']==1, :].\
    groupby('YEAR')['violent rate'].mean()
control_pre_plt = df_pre.loc[df_pre['indicator']==0, :].\
    groupby('YEAR')['violent_rate'].mean()
control_post_plt = df_post.loc[df_post['indicator']==0, :].\
    groupby('YEAR')['violent rate'].mean()
# start plotting
plt.figure(figsize=(7,5))
plt.grid('on')
plt.plot(treatment_pre_plt.index, treatment_pre_plt.values,\
          marker='o', label='treatment', c='blue')
plt.plot(treatment post plt.index, treatment post plt.values,\
          marker='o', c='blue')
plt.plot(control_pre_plt.index, control_pre_plt.values, marker='v', \
         label='control', c='red')
plt.plot(control_post_plt.index, control_post_plt.values, marker='v', \
         c='red')
plt.vlines(2010, 300, 435, linestyles='dashed', colors='black')
plt.xticks(np.arange(2000, 2020, 2))
plt.text(2008.5, 440, 'Began drug legalization', fontsize=12)
plt.xlabel('Year')
plt.ylabel('Violent crime rate')
plt.title('Violent crime rate by year and treatment status')
plt.legend()
plt.show()
```

Violent crime rate by year and treatment status

Yes, there is parallel trend for these two datasets. This might impair the validity of the difference-indifference estimator since both the treated and control counties are experiencing a decrease in violent rate, suggesting that there might be some other reasons that cause the decrease in violent rate instead of the legalization of marijuana.

Exercise 7

running the regression with county and year as fixed effects

Out[]: PanelOLS Estimation Summary

	ranciolo Estimation Sammary					
Dep. Variable:	violent_rate	R-squared:	0.0013			
Estimator:	PanelOLS	R-squared (Between):	-0.0109			
No. Observations:	348	R-squared (Within):	0.0155			
Date:	Mon, Mar 06 2023	R-squared (Overall):	-0.0104			
Time:	20:44:30	Log-likelihood	-1858.7			
Cov. Estimator:	Unadjusted					
		F-statistic:	0.3829			
Entities:	58	P-value	0.5366			
Avg Obs:	6.0000	Distribution:	F(1,284)			
Min Obs:	6.0000					
Max Obs:	6.0000	F-statistic (robust):	0.3829			
		P-value	0.5366			
Time periods:	6	Distribution:	F(1,284)			
Avg Obs:	58.000					
Min Obs:	58.000					
Max Obs:	58.000					

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper Cl
indicator:post_2010	-7.4181	11.989	-0.6188	0.5366	-31.016	16.180

F-test for Poolability: 17.282

P-value: 0.0000

Distribution: F(62,284)

Included effects: Entity, Time

• With all the additional fixed effects, there is no concrete evidence that marijuana legalization reduced violent crime.

• Even though the coefficient of the interaction term is -7.42, indicating that the decrease in violent rate of treated counties is larger than the decrease in violent rate of control counties, the p-value of the interaction term is 0.5366 (>0.05), indicating it is not statistically significant.

Therefore, we cannot reject the null hypothesis that the difference-in-difference estimator is zero.