

Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024

HA8401H : Calcul Différentiel et Intégral en Plusieurs Variables Chapitre 1 : Rappels et premières notions

Philippe Castillon (1)

Rappels et remise en jambes

Exercice 1. Les fonctions sinus hyperbolique et cosinus hyperbolique sont définies pour tout $x \in \mathbb{R}$ par

$$\sinh x = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} \qquad \text{et} \qquad \cosh x = \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}.$$

- 1. rappeler rapidement les propriétés de ces fonctions (parité, continuité, dérivabilité, limites en $\pm \infty$) et l'allure de leurs graphes.
- 2. Montrer que ces fonctions satisfont des identités similaires (mais légèrement différentes) aux formules trigonométriques des fonctions cos et sin.
- 3. On défini la tangente hyperbolique par $\tanh x = \frac{\sinh x}{\cosh x}$.
 - (a) Étudier le fonction tanh (on notera I son intervalle de définition). Déterminer son image $J = \tanh(I)$ et montrer que tanh est une bijection de I sur J.
 - (b) On note arg
tanh : $J \to I$ la bijection réciproque de tanh. Montrer que arg
tanh est dérivable et calculer sa dérivée.
 - (c) Exprimer argtanh y à l'aide de la fonction ln.

Exercice 2. Autour de la dérivabilité.

- 1. Soient $D \subset \mathbb{R}$ et $f: D \to \mathbb{R}$.
 - (a) Rappeler la définition d'une fonction croissante (resp. strictement croissante). Si f est dérivable sur D, quel lien y-a-t'il entre la monotonie de f et sa dérivée?
 - (b) On suppose que $D = \mathbb{R}^*$ et $f(x) = \frac{1}{x}$. La fonction f est-elle monotone? Que vaut sa dérivée?
 - (c) On suppose que $D = \mathbb{R} \setminus \mathbb{Z}$ et $f(x) = \lfloor x \rfloor$. La fonction f est-elle monotone? Est-elle dérivable? Que vaut sa dérivée?
- 2. On considère $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \left\{ \begin{array}{cc} x^3 \ln |x| & \text{ si } x \neq 0 \\ 0 & \text{ si } x = 0 \end{array} \right.$ Quelle est la régularité de f?

Exercice 3. Calculer les développements limités suivants :

1.
$$e^{\cos x} - (1+x)^x$$
 en 0, à l'ordre 2.

3.
$$\ln(3e^x + e^{-x})$$
 en 0 à l'ordre 3.

2.
$$\frac{\sqrt{x-1}}{\ln x}$$
 en 1 à l'ordre 3.

4. $\ln(a+x)$ en 0 à l'ordre n, pour tout $n \in \mathbb{N}$ et tout a > 0.

^{1.} Département de Mathématiques, CC 051, Université Montpellier II, Pl. Eugène Bataillon, 34095 Montpellier cedex 5. Mèl : philippe.castillon@umontpellier.fr

Exercice 4. Soit $f:[-\frac{1}{2},+\infty)\to\mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{\sin(2x)\sqrt{1+2x}}{e^x - 1} & \text{si } x \neq 0\\ 2 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue sur son domaine de définition et calculer sa limite en $+\infty$.
- 2. On s'intéresse à la dérivabilité de f en 0.
 - (a) Donner le développement limité en 0 à l'ordre 2 de $x\mapsto \sqrt{1+2x}$.
 - (b) Calculer le développement limité en 0 à l'ordre 2 de $x \mapsto \frac{\sin(2x)}{e^x 1}$.
 - (c) En déduire le développement limité de f en 0 à l'ordre 2.
 - (d) Montrer que f est dérivable en 0, donner l'équation de sa tangente et la position de son graphe par rapport à la tangente au voisinage de 0.

Exercice 5. Pour chacune des fonctions suivantes, donner le domaine de définition, montrer que la fonction est dérivable sur ce domaine et calculer sa dérivée.

1.
$$g(x) = \int_{1}^{e^x} \sqrt{1 + (\ln t)^2} dt$$

2.
$$f(x) = \int_{3x}^{x^2} e^{\cos t} dt$$

Exercice 6. Calculer les intégrales suivantes

1.
$$\int_0^{\pi} \frac{\sin t}{4 - \cos t} dt$$
 3. $\int_{-1}^1 \ln(1 + t^2) dt$ (IPP)

2.
$$\int_{-1}^{1} \frac{dx}{\cosh x}$$
 (poser $y = e^{x}$) 4.
$$\int_{1}^{e^{\pi}} \sin(\ln u) du$$
 (changement de variable)

Exercice 7. Intégrales de Wallis Pour tout $n \in \mathbb{N}$, on note $I_n = \int_0^{\frac{\pi}{2}} \sin^n t dt$.

- 1. Calculer I_0 et I_1 .
- 2. Montrer que pour tout $n \in \mathbb{N}$ on a $I_{n+2} = \frac{n+1}{n+2}I_n$.
- 3. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante et que $I_{n+1}\sim I_n$. On pourra utiliser ce qui précède pour trouver un encadrement de $\frac{I_{n+1}}{I_n}$
- 4. Montrer que pour tout $n \in \mathbb{N}$ on a $(n+1)I_{n+1}I_n = \frac{\pi}{2}$ et en déduire que $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Représentation de fonctions

Exercice 8. Déterminer et représenter le domaine de définition des fonctions suivantes :

1.
$$f(x,y) = \frac{\ln(y)}{\sqrt{x-y}}$$
,

2.
$$f(x, y, z) = \frac{\ln(x^2 + 1)}{yz}$$
.

2

Exercice 9. Déterminer et représenter les courbes de niveau des fonctions suivantes :

1.
$$f(x,y) = \det\left(\left(\frac{1}{2}\right),\left(\frac{x}{y}\right)\right)$$
,

3.
$$f(x,y) = e^{y-x^2}$$
,

2.
$$f(x,y) = (x-1)^2 + y^2$$
,

4.
$$f(x,y) = \| \begin{pmatrix} x \\ y \end{pmatrix} \|_{\infty} = \max (|x|, |y|),$$

Exercice 10. Associer à chaque fonction $(1 \ \text{à} \ 6)$ une surface $(a \ \text{à} \ f)$ et des courbes de niveau $(I \ \text{à} \ \text{VI})$.

Exercice 11. On pose $r(x,y) = \sqrt{x^2 + y^2}$ (distance à l'origine). On s'intéresse au cas particulier f(x,y) = g(r(x,y)), pour une certaine fonction $g : \mathbb{R} \to \mathbb{R}$.

1. Donner les équations des fonctions polynomiales (de degré 4) en double puits dont les graphes sont les suivants :

2. En déduire l'expression des fonctions dont le graphe sont les surfaces de révolutions suivantes :

Exercice 12. Associer à chaque champ de vecteurs suivants sa représentation graphique :

1.
$$f(x,y) = (-x, -y)$$

3.
$$f(x,y) = \frac{(1,x-y)}{\sqrt{1+(x-y)^2}}$$

4. $f(x,y) = (e^{-0.3x^2}, 0)$

5.
$$f(x,y) = (.8, .5)$$

2.
$$f(x,y) = (y, -x)$$

4.
$$f(x,y) = (e^{-0.3x^2}, 0)$$

6.
$$f(x,y) = (-x, \ln(y^2 + 1))$$

Pour s'entrainer

Exercice 13. On considère la fonction $\sinh : \mathbb{R} \to \mathbb{R}$.

- 1. Montrer que sinh est une bijection. On note argsinh : $\mathbb{R} \to \mathbb{R}$ sa réciproque.
- 2. Montrer que argsinh est dérivable.
- 3. Exprimer argsinh y à l'aide des fonctions ln et $\sqrt{\ }$.

Exercice 14. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{1+|x|}$.

- 1. Montrer que f est continue et dérivable sur \mathbb{R} . Traiter séparément la dérivabilité en 0 et sur \mathbb{R}^* .
- 2. Déterminer $J = f(\mathbb{R})$ et montrer que f est une bijection de \mathbb{R} sur J. La réciproque $f^{-1}: J \to \mathbb{R}$ est-elle dérivable?
- 3. Déterminer l'expression de $f^{-1}(y)$ en fonction de y.

Exercice 15. Pour tout $n \in \mathbb{N}$, on note $f_n, g_n : \mathbb{R} \to \mathbb{R}$ les fonctions définies par

$$f_n(x) = \begin{cases} x^n \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 et
$$g_n(x) = \begin{cases} x^n \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que les fonctions f_n et g_n sont \mathscr{C}^{∞} sur \mathbb{R}^* . Pour $n \geq 2$, exprimer f'_n et g'_n en fonctions de $f_{n-1}, f_{n-2}, g_{n-1}$ et g_{n-2} .
- 2. Les fonctions f_0 , f_1 , g_0 et g_1 sont-elles continues? dérivables? de classe \mathscr{C}^1 ?
- 3. Montrer que pour tout $n \in \mathbb{N}$ on a la propriété suivante : les fonctions f_{2n} et g_{2n} sont n fois dérivables, et les fonctions f_{2n+1} et g_{2n+1} sont de classe \mathscr{C}^n .

Exercice 16. Calculer les développements limités suivants :

1.
$$\sqrt{1+\sin x}$$
 en 0, à l'ordre 3.

2. $\frac{\cos x}{1+x^2}$, en 0, à l'ordre 4.

3. $\frac{1}{1+\cos x}$, en 0, à l'ordre 4.

4. $\cos(\ln x)$ en 1 et en $e^{\frac{\pi}{2}}$, à l'ordre 3.

5. $\frac{x^2 \sin x}{1+x}$, en 0, à l'ordre 5.

6. \sqrt{x} , $\ln x$ et e^x en a à l'ordre n, pour tout a>0 et tout $n\in\mathbb{N}$.

Exercice 17. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{\cos(2x) - 1}{x(e^x - 1)} & \text{si } x \neq 0 \\ -2 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. On s'intéresse à la dérivabilité de f en 0.
 - (a) Donner les développements limités en 0 à l'ordre 4 de $x \mapsto \cos(2x) 1$ et $x \mapsto x(e^x 1)$.
 - (b) En déduire le développement limité de f en 0 à l'ordre 2.
 - (c) Montrer que f est dérivable en 0, donner l'équation de sa tangente et la position de son graphe par rapport à la tangente au voisinage de 0.

Exercice 18. Calculer les intégrales suivantes.

1.
$$\int_{0}^{1} \frac{\arctan t}{1+t^{2}} dt$$
2.
$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin x dx$$
3.
$$\int_{0}^{1} \frac{e^{x} dx}{\sqrt{e^{x}+1}}$$
(changement de variable)
$$4. \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dt}{\cot t}$$
(poser $x = \sin t$)

Exercice 19. On note $I = \int_0^{\frac{\pi}{2}} \frac{\cos t}{\cos t + \sin t} dt$ et $J = \int_0^{\frac{\pi}{2}} \frac{\sin t}{\cos t + \sin t} dt$.

- 1. En utilisant le changement de variable, montrer que I = J.
- 2. Calculer I + J et en déduire I et J.
- 3. En utilisant ce qui précède, calculer $\int_0^1 \frac{dx}{x+\sqrt{1-x^2}}$.

Exercice 20. Déterminer et représenter le domaine de définition des fonctions suivantes :

5

1.
$$f(x,y) = \frac{\sqrt{-y+x^2}}{y}$$
, 2. $f(x,y) = \ln(x+y)$,

Exercice 21. Déterminer et représenter les courbes de niveau des fonctions suivantes :

1. $f(x,y) = \langle (\frac{1}{2}), (\frac{x}{y}) \rangle$,

3. $f(x,y) = \| \begin{pmatrix} x \\ y \end{pmatrix} \|_1 = |x| + |y|,$

 $2. \ f(x,y) = y - \cos(x),$

4. $f(x,y) = \| \begin{pmatrix} x \\ y \end{pmatrix} \|_2 = \sqrt{x^2 + y^2},$

Exercice 22. Associer à chaque fonction (1 à 6) une surface (a à f) et des courbes de niveau (I à VI).

- 1. $\sin(xy)$

Développements limités à connaître

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\ln(1+x) = \sum_{k=1}^{n} (-1)^{k+1} \frac{x^{k}}{k} + o(x^{n}) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} (\prod_{j=0}^{k-1} (\alpha - j)) \frac{x^{k}}{k!} + o(x^{n}) = 1 + \alpha x + \alpha (\alpha - 1) \frac{x^{2}}{2} + \dots + \alpha (\alpha - 1) \dots (\alpha - n + 1) \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n}) = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\sinh x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) = x + \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cosh x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n}) = 1 + \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

En particulier, le troisième DL de cette liste donne, pour $\alpha = -1$,

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n) = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n)$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n) = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$