Опыты Майкельсона-Морли и Кеннеди-Торндайка показали, что скорость света «почти» не зависит от системы отсчёта. Если быть точнее, то было установлено, что скорости света во всех направлениях в двух системах отсчёта, двигающихся относительно друг друга со скоростью 60 км/с, отличаются не более, чем на 2 м/с. Позднее, постоянство скорости света было проверено множеством различных способов и с куда большей точностью.

Постулат СТО: скорость света постоянна во всех системах отсчёта. Ничто не может передвигаться быстрее скорости света. Скорость света обозначается через c. ($c \approx 299792458 \,\mathrm{m/c}$) Преобразование пространства-времени \mathbb{R}^4 , удовлетворяющие этому условию называются преобразованиями \mathcal{J} оренца.

Для удобства будем измерять время в метрах $_6$ (и писать $_6$). $_6$ — время, за которое свет пролетает один метр. На занятиях полезно иметь с собой хороший калькулятор.

Задача 1. Выразите одну величину через другую (и обратно):

- **a)** M_6 через секунду; **б)** скорость в M/C через скорость в M/M_6 ; **в)** год времени через M_6 ;
- г) ускорение свободного падения $g = 9.8 \,\mathrm{m/c}$ через ускорение в $\mathrm{m/m_6}^2$.

Разберёмся сначала с «одномерным» миром. То есть множество событий — \mathbb{R}^2 . Каждую задачу нужно решить «дважды»: считая, что время измеряется в метрах и в секундах.

Задача 2. Найдите все возможные мировые линии света в \mathbb{R}^2 .

Задача 3. Опишите преобразования Лоренца в \mathbb{R}^2 .

Задача 4. а) На обычной плоскости заданы два обычных вектора (x_1, y_1) и (x_2, y_2) . Докажите, что площадь параллелограмма, натянутого на эти вектора равна $x_1y_2 - x_2y_1$. Это число называется *определителем* матрицы $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$. **б)** Что происходит с определителем, если переставить строки или столбцы? **в)** Если умножить первую строку на число? **г)** Если к первой строке прибавить вторую?

Задача 5. Объясните, почему имеет смысл рассматривать только преобразования с определителем, равным единице (строго говоря, только они называются преобразованиями Лоренца).

Задача 6. Как перейти в систему отсчёта ракеты, летящей со скоростью u вправо? Как обратно?

Задача 7. Изобразите в \mathbb{R}^2 и \mathbb{R}^3 множество точек: **a)** в которые можно попасть из данной (это множество называется *конусом будущего*); **б)** в которые можно посветить из данной; **в)** из которых можно попасть в данную (*конус прошлого*). Какой физический смысл конуса будущего и прошлого?

Задача 8. Докажите, что для любой пары различных событий найдётся ракета, в системе которой события либо одновременны (говорят, что интервал между ними *пространственноподобный*), либо происходят в одной и той же точке пространства (интервал временноподобный), либо принадлежат мировой линии света (интервал *светоподобный*).

Задача 9. Пускай одно из событий находится в начале координат. Найдите множество точек пространства-времени, для которых интервал пространственно-, временно- и светоподобный.

Задача 10. (Парадокс поезда) Пусть на поезде, движущемся со скоростью, близкой к скорости света (такой поезд, видимо, стоит ожидать раньше всего в Японии (если где-нибудь ещё не научатся значительно влиять на скорость света)), едут три человека: A в голове, O— в середине и B— в хвосте поезда. На земле около пути стоит четвёртый человек O'. В тот самый момент, когда O проезжает мимо O', сигналы ламп от A и B достигают O и O'. Покажите, что на вопрос«Кто раньше включил фонарь?» наблюдатели O и O' дадут различные ответы.

Задача 11. а) Покажите, что если два события происходят одновременно и в одном и том же месте в одной системе отсчёта, то они будут одновременными в любой другой системе отсчёта. **б**) Покажите, что если два события происходят одновременно в разных точках в одной системе отсчёта, то они не будут одновременными ни в какой другой системе отсчёта.

Задача 12. а) Покажите, что ни время, ни расстояние не являются инвариантными в СТО. **б)** Докажите, что для любых событий, соединяемых пространственноподобным интервалом найдётся две ракеты такие, что в системе одной первое событие происходит раньше, а в системе второй — наоборот.

Задача 13. а) Придумайте, как реализовать матрицу преобразования Лоренца подобно матрице поворота. Аргумент, похожий на угол в матрице поворота называется *параметром скорости*.

б) Выразите всё через всё и обратно.

Задача 14. Объясните, как складываются скорости и параметры скорости.

Для тех, кто в танке

Задача 3.

- а) Пусть A линейная часть замены координат. Докажите, что $A(\frac{1}{1}) = \binom{a}{a}$.
- **б)** Докажите, что $A\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ -a \end{pmatrix}$.
- **в**) Найдите вид матрицы A.

a

Задача 4. Как найти площадь параллелограмма?

Задача 5.

- а) Пусть в базисе $\{e_x, e_t\}$ замена имеет матрицу A с определителем $\det A$. Каков геометрический смысл знака определителя?
- **б)** Докажите, что имеет смысл рассматривать только преобразования с положительным определителем.
- **в)** Как Вы думаете, есть ли способ «надёжно» измерить метр расстояния и метр времени, то есть так, чтобы результаты были одинаковы в любой системе отсчёта?
- **r)** Докажите, что матрицу с положительным определителем можно представить в виде произведения матрицы с единичным определителем и константы.

Задача 6.

- а) Опишите мировую линию ракеты в системе отсчёта лаборатории и ракеты.
- **б)** Какое преобразование переводит мировую линию ракеты в системе отсчёта лаборатории в мировую линию ракеты в системе отсчёта ракеты?

Задача 8.

- (Решите задачу 9. : вяквяроП) (в
- (Воспользуйтесь задачей 6. : аксанодоП) (**д**

Задача 13.

- а) По определению $\operatorname{ch} \varphi = \frac{e^{\varphi} + e^{-\varphi}}{2}$, $\operatorname{sh} \varphi = \frac{e^{\varphi} e^{-\varphi}}{2}$, $\operatorname{th} \varphi = \frac{\operatorname{sh} \varphi}{\operatorname{ch} \varphi}$, $\operatorname{cth} \varphi = \frac{\operatorname{ch} \varphi}{\operatorname{sh} \varphi}$. Докажите, что $\operatorname{ch}^2 \varphi \operatorname{sh}^2 \varphi = 1$.
- **б)** Пусть th $\varphi = u$, и $A = \begin{pmatrix} \cosh \varphi & -\sinh \varphi \\ -\sinh \varphi & \cosh \varphi \end{pmatrix}$. Является ли A преобразованием Лоренца?
- в) Куда переходит мировая линия центра лаборатории при замене координат?
- \mathbf{r}) Вычислите $\operatorname{arcsh} u$, $\operatorname{arcch} u$ и $\operatorname{arcth} u$ через u.