

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年6月5日 (05.06.2003)

PCT

(10) 国際公開番号 WO 03/046250 A1

(51) 国際特許分類7:

C23C 14/34, C22F 1/18

(HUKUSHIMA, Atsushi) [JP/JP]; 〒319-1535 茨城県 北茨城市 華川町臼場187番地4 株式会社日鉱マテリ

(21) 国際出願番号:

PCT/JP02/07715

アルズ 磯原工場内 Ibaraki (JP).

(22) 国際出願日:

2002年7月30日 (30.07.2002)

(25) 国際出願の言語:

日本語

(74) 代理人: 小越勇(OGOSHI,Isamu); 〒105-0002 東京都 港区 愛宕一丁目二番二号 虎ノ門9森ビル3階 小越国 際特許事務所 Tokyo (JP).

(26) 国際公開の言語:

日本語

(81) 指定国 (国内): CN, JP, KR, SG, US.

(30) 優先権データ: 特願 2001-358713

2001年11月26日(26.11.2001) JP

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR).

(71) 出願人 (米国を除く全ての指定国について): 株式会社 日鉱マテリアルズ (NIKKO MATERIALS COMPANY, LIMITED) [JP/JP]; 〒105-8407 東京都 港区 虎ノ門二 丁目10番1号 Tokyo (JP).

添付公開書類:

国際調查報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 福嶋 篤志

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR

(54)発明の名称:スパッタリングターゲット及びその製造方法

(57) Abstract: A sputtering target produced by stamp forging, characterized in that an average crystal grain size D at a portion where an average crystal grain size is the largest and an average crystal grain size d at a portion where an average crystal grain size is the smallest are related as 1.0<D/d>
D/d<2.0. A method capable of constantly producing a sputtering target excellent in characteristics by improving and elaborating forging and heat treating processes to render a crystal size fine and uniform, and a sputtering target excellent in quality obtained by this method.</p>

(57) 要約:

型鍛造により製造されるスパッタリングターゲットであって、平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均結晶粒径 d とが 1.0 < D / d < 2.0 であることを特徴とするスパッタリングターゲットに関し、鍛造工程及び熱処理工程を改良・工夫することにより、結晶粒径を微細かつ均一にし、特性に優れたスパッタリングターゲットを安定して製造できる方法及びそれによって品質に優れたスパッタリングターゲットを得る。

明細書

5 スパッタリングターゲット及びその製造方法

技術分野

この発明は、型鍛造による複雑な三次元的(立体的)構造を有するスパッタリングターゲット及びその製造方法に関する。

10

30

背景技術

近年、エレクトロニクス分野、耐食性材料や装飾の分野、触媒分野、切削・研磨材や耐摩耗性材料の製作等、多くの分野に金属やセラミックス材料等の被膜を形成するスパッタリングが使用されている。

- 15 スパッタリング法自体は上記の分野で、よく知られた方法であるが、最近では、 特にエレクトロニクスの分野において、複雑な形状の被膜の形成や回路の形成に 適合するスパッタリングターゲットが要求されている。例えば、断面がハット形 状又はドーム形状あるいはそれらが連結したような三次元的(立体的)構造を有 するターゲットが使用されるようになってきた。
- 20 一般に、このような三次元的構造を有するターゲットは、金属を溶解・鋳造したインゴット又はビレットを熱間鍛造した後、焼鈍し、さらに型鍛造して製造されている。このような製造工程において、インゴット又はビレットの熱間鍛造は、 鋳造組織を破壊し、気孔や偏析を拡散、消失させ、さらにこれを焼鈍することにより再結晶化し、ある程度の組織の緻密化と強度を高めることができる。
- 25 次に、この鍛造及び再結晶焼鈍した材料を型鍛造により、所定の三次元的構造 を有するターゲット形状とし、さらに型鍛造後の再結晶焼鈍及び歪み取焼鈍を行 い、最後に表面加工を行って、ターゲットとすることが行われている。

このようなターゲットの製造方法は、通常の平板型ターゲットの製造において は特に問題となることはないが、上記のような断面がハット形状又はドーム形状 あるいはそれらが連結したような三次元的構造を有するターゲットでは、型鍛造

において塑性変形を強く受ける場所と、殆ど受けない場所が出てくるために、そ の後の再結晶焼鈍及び歪み取焼鈍で結晶粒のサイズに異常な差異が出てくること である。

例えば、鍛造方向に面する個所では、単に圧縮力を受けるだけであるが、鍛造 方向に沿う個所すなわち三次元的構造の側壁ではしごきのような強い加工を受け る。

このように、塑性変形を強く受ける場所と弱い場所では、焼鈍の際に再結晶粒 10 の大きさが大きく相違する。すなわち、塑性変形を強く受けた場所では結晶が微 細化し、弱い場所ではそれが粗大化する。また、このような塑性変形を強く受け た場所と弱い場所の境界領域では、それが不規則に混在した状態又は段階的に変 化した結晶構造となる。

一般に、スパッタリングを実施する場合、ターゲットの結晶が細かいほど均一 15 な成膜が可能であり、アーキングやパーティクルの発生が少なく、均一でかつ安 定した特性を持つ膜を得ることができる。

したがって、型鍛造及びその後の焼鈍において発生する上記のような結晶粒の 粗大化や不規則な結晶粒の存在は、アーキングやパーティクルの発生を増加させ、 スパッタ成膜の品質を低下させるという大きな問題が発生する。もとより、歪み が残存する型鍛造品をそのまま使用することは考えられず、これはさらに品質を 低下させる。

以上から、型鍛造により製造される三次元的構造を有するスパッタリングター ゲットは結晶粒の粗大化と不均一性を伴い、膜の性質を低下させるという問題が あった。

25

30

20

発明の開示

本発明は、上記の問題を解決するために、鍛造工程及び熱処理工程を改良・工夫することにより、結晶粒径を微細かつ均一にし、特性に優れたスパッタリングターゲットを安定して製造できる方法及びそれによって品質に優れたスパッタリングターゲットを得ることを課題とする。

25

本発明は、

- 1. 型鍛造により製造されるスパッタリングターゲットであって、平均結晶粒 径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均 5 結晶粒径 d とが 1.0 < D/d < 2.0 であることを特徴とするスパッタリン グターゲット
 - 2. 型鍛造により製造されるチタン等の六方晶系スパッタリングターゲットで あって、ターゲットのエロージョン面において、(002)面及びこれと3
- 0°以内の角度にある(103)面、(014面)、(015)面の強度比の 10 合計が30%以上であり、かつ強度比の平均値の±10%以内であることを特 徴とするスパッタリングターゲット。
 - 3. 型鍛造により製造されるスパッタリングターゲットであって、直径断面に 現れる一つ以上のハット形状又はドーム形状の、開口部径と深さの比率が1:
- 3以下の比率を持つことを特徴とする上記1又は2記載のスパッタリングター 15 ゲット
 - 4. 型鍛造によるスパッタリングターゲットの製造方法において、材料インゴ ット又はビレットの熱間こねくり鍛造又は冷間こねくり鍛造及び歪取り焼鈍を 行った後、冷間プレフォーミング及び再結晶焼鈍を行って結晶粒を調整し、さ
 - らに型鍛造を行うことを特徴とするスパッタリングターゲットの製造方法 5. 型鍛造により製造されるチタン等の六方晶系スパッタリングターゲットで あって、ターゲットのエロージョン面において、(002)面及びこれと3 0°以内の角度にある(103)面、(014面)、(015)面の強度比の 合計が30%以上であり、かつ強度比の平均値の±10%以内であることを特
 - 徴とする上記4記載のスパッタリングターゲットの製造方法。 6. 熱間こねくり鍛造又は冷間こねくり鍛造において、真歪の絶対値の合計を 4以上とすることを特徴とする上記4又は5記載のスパッタリングターゲット の製造方法
- 7. 材料の融点をTmとすると、型鍛造を0.5 Tm以下で行うことを特徴とす る上記4~6記載のスパッタリングターゲットの製造方法 30

- 8. 型鍛造後、歪取り焼鈍又は再結晶焼鈍を行うことを特徴とする上記 4~7の それぞれに 2 記載のスパッタリングターゲットの製造方法
- 5 9. 材料の融点をTmとすると、冷間プレフォーミング後の再結晶焼鈍を、0. 6 Tm以下で行うことを特徴とする上記4~8のそれぞれに記載のスパッタリングターゲットの製造方法
 - 10. 材料の融点をTmとすると、型鍛造後、0.6 Tm以下で歪取り焼鈍又は 再結晶焼鈍を行うことを特徴とする上記8又は9に記載のスパッタリングターゲ
- 10 ットの製造方法
 - 11.20~90%の加工比による冷間プレフォーミングを行うことを特徴とする上記4~10のそれぞれに記載のスパッタリングターゲットの製造方法
 - 12. 冷間プレフォーミング後の再結晶焼鈍により、平均結晶粒径の最も大きい部位の平均結晶粒径D₀と平均結晶粒径の最も小さい部位の平均結晶粒径 d₀
- 15 とが 1. $0 < D_0 / d_0 < 1$. 5とすることを特徴とする上記 $4 \sim 1$ 1 のそれぞれに記載のスパッタリングターゲットの製造方法
 - 13. 冷間プレフォーミング後の再結晶焼鈍により、最終平均結晶粒径の20 0%以下とすることを特徴とする上記4~12のそれぞれに記載のスパッタリングターゲットの製造方法
- 20 14. 型鍛造後の結晶均質化焼鈍又は歪取り焼鈍により、平均結晶粒径を $1\sim5$ 00 μ mの範囲にすることを特徴とする上記 $4\sim1$ 3 のそれぞれに記載のスパッタリングターゲットの製造方法
 - 15. 平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均結晶粒径dとが1. 0 < D/d < 2. 0 であることを特徴と
- 25 する上記 4~13のそれぞれに記載のスパッタリングターゲットの製造方法 16. ターゲット材料が銅、チタン、アルミニウム、ニッケル、コバルト、タン タル又はこれらの合金であることを特徴とする上記 1~15のそれぞれに記載の スパッタリングターゲット及びその製造方法 を提供する。

20

30

図面の簡単な説明

図1はハット型ターゲットに型鍛造したターゲットの構造を示す説明図、図 2は断面ハット型ターゲットを2個つないだような形状のターゲットに型鍛造 したターゲットの構造を示す説明図、図3は面配向測定位置を示す図である。

発明の実施の形態

本発明のスパッタリングターゲットは次のような工程によって製造する。そ 10 の具体例を示すと、まず銅、チタン、アルミニウム、ニッケル、コバルト、タン タル又はこれらの合金等の金属材料を溶解・鋳造し、インゴット又はビレットを 製造する。次に、このインゴット又はビレットを熱間鍛造又は冷間鍛造及び歪 取り焼鈍を行う。

この鍛造によって、鋳造組織を破壊し、気孔や偏析を拡散あるいは消失さることができる。さらにこれを焼鈍することにより再結晶化させ、この熱間又は冷間 鍛造と再結晶焼鈍により、組織の緻密化と強度を高めることができる。

前記熱間及び冷間鍛造はこねくり鍛造(Kneading)が望ましく、繰返しによる熱間又は冷間鍛造は特性改善に有効である。なお、再結晶温度は各金属によって異なるが、歪みの量と温度及び時間を考慮して最適な温度を決定する。

前記熱間こねくり鍛造又は冷間こねくり鍛造において、真歪の絶対値の合計を4以上とすることが望ましい。この条件は、特にタンタルの鍛造に有効である。

次に、冷間プレフォーミングを行う。この冷間プレフォーミングは、材料の 融点をTmとすると、0.3 Tm以下、好ましくは0.2 Tm以下に制御する。

25 また、この際加工度は最終的に要求される結晶粒径によって異なるが、2 0%以上が好ましい。特に50~90%の加工比による加工が望ましい。これ によって、材料中に強度の加工歪みがもたらされる。

このように、冷間プレフォーミングを行う理由は、より大きな加工歪みを導入すること、及びプレフォーミング工程中の材料の温度を可能な限り、一定に保つためである。これによって、導入される歪みを十分大きく、かつ均一にすることが可能となる。

10

この冷間プレフォーミングを行った後、再結晶焼鈍を行って結晶粒を調整する。この冷間プレフォーミング後の再結晶焼鈍を、材料の融点をTmとした場合、0.6Tm以下、好ましくは0.4Tm以下で行うことが望ましい。

これによって、平均結晶粒径の最も大きい部位の平均結晶粒径 D_0 と平均結晶 粒径の最も小さい部位の平均結晶粒径 d_0 とが $1.0< D_0/d_0<1.5$ とする。

この冷間プレフォーミングは本発明の重要な工程の1つであり、これによって、最終工程において微細かつ均一な結晶もつターゲットを得ることが可能となる。

次に、このような微細かつ均一な結晶をもつ冷間プレフォーミング材を型鍛造する。なお、本型鍛造にはスピンニング加工が含まれる。すなわち、本明細書に記載する全ての型鍛造はこのスピンニング加工を含むものとする。

さらに、型鍛造後、結晶均質化焼鈍又は歪取り焼鈍を行う。平均結晶粒径を1 15 ~500μmの範囲にする。

この型鍛造において、前記のような歪みを強く受ける場所と、殆ど受けない場所が出てくるが、歪みを強く受けない場所においては、すでに前工程の冷間プレフォーミングにおいて結晶粒は微細に調整されているので、他の歪みを強く受けた場所との結晶粒径に大きな差異が出てくることはない。

- 20 これによって、型鍛造後の結晶均一化焼鈍又は歪取り焼鈍により、内部に発生した歪みが除去され、全体に渡り、ほぼ均一な結晶粒径を持つターゲットを得ることができる。そして、平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均結晶粒径 dとが 1.0 < D/d < 2.0 であるスパッタリングターゲットが得られる。
- 25 また、特にチタン等の六方晶ターゲットは、該ターゲットのエロージョン面において、(002)面及びこの(002)面に対して30°以内の角度にある(103)面、(014面)及び(015)面の強度比の合計が30%以上であり、かつ該強度比の平均値が±10%以内の面配向を持つターゲットが得られる。このような(002)面を中心とする面配向は、スパッタリングを均30 一にする効果があり、成膜の均一性をもたらす。

実施例及び比較例

次に、実施例について説明する。なお、本実施例は発明の一例を示すための 5 ものであり、本発明はこれらの実施例に制限されるものではない。すなわち、 本発明の技術思想に含まれる他の態様及び変形を含むものである。

なお、下記の実施例及び比較例では純銅と純チタンの例を示したが、アルミニウム、ニッケル、コバルト、タンタル及びこれらの合金においても同様の結果が得られた。

10

15

25

(実施例1)

銅 (6 N) 材料を溶解・鋳造し、インゴットを作成した。次に、このインゴットに対し800° Cで熱間こねくり鍛造を行った。この熱間こねくり鍛造によって、鋳造組織を破壊し、気孔や偏析を拡散及び消失させることができ、均一な組織の鍛造品が得られた。

次に、この熱間こねくり鍛造材を用いて、室温で50%の加工比によるプレフォーミングを実施した。このプレフォーミングを実施した後、300°Cにて2時間の再結晶化焼鈍を行い、結晶粒を調整した。これによって平均結晶粒径が85μmの微細かつ均一な結晶粒度に調整することができた。

20 このような微細かつ均一な結晶を持つプレフォーミング材をハット型ターゲットに型鍛造した。型鍛造は280°Cで行った。型鍛造後、300°Cにて2時間の結晶粒均一化・歪み取り焼鈍を行った。

図1は、この工程で作成したハット型ターゲットの断面図である。図1のC はハット天井部、A, Eはフランジ部、B, Dは側部の、いずれもターゲット 側 (スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:91\mu$ m、 $B:86\mu$ m、 $C:112\mu$ m、 $D:79\mu$ m、 $E:92\mu$ mであり、平均結晶粒径の最も大きい部位の平均結晶粒径 Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=1. 46 という均一な粒径を持つターゲットを作成することができた。

30 以上の結果を、下記比較例と共に、表1に示す。

20

25

型鍛造では前記のような歪みを強く受ける場所と、ほとんど受けない場所が 生じる。本方法においては、型鍛造時歪みを強く受けた場所は、その後の結晶 粒均一化焼鈍において再結晶・粒成長を起こすが、このときの粒径を冷間プレ フォーミング・再結晶化焼鈍後の粒径にそろえるよう、適当な結晶粒均一化焼 鈍の条件を設定した。

また歪みを強く受けない場所においては、すでに前工程の冷間プレフォーミング・再結晶化焼鈍において結晶粒は微細に調整されており、本方法での焼鈍を行う限り著しい粒成長をすることはなく、歪みを受けた場所との結晶粒径に大きな差は生じなかった。

この銅のハット型ターゲットのエロージョン面における(1 1 1)面及び(2 0 0)面のX線回折強度比 I (1 1 1) / I (2 0 0)を求めた。なお、 測定個所は、図 3 の各測定位置である。また、後述する実施例 2 の場合と同様 に、ランダム配向と比較した場合の配向強度比を示す

測定の結果、a位置: 2.6、b位置: 2.7、c位置: 2.9、d位置: 2.5、e位置: 2.6、f位置: 2.5で、ランダム配向 I*(111)/I*(200)=2.08より大きく(111)に配向し、かついずれの位置でも配向の大きな変動はみられなかった。これによって、ターゲットの均一性が保たれていることが分かる。

(比較例1)

実施例1と同様の銅(6N)インゴットを作成した。このインゴットを冷間 鍛造により、冷間で50%の加工比によるプレフォーミングを行い、300° Cにて2時間の再結晶化焼鈍を行った。このプレフォーミング材を400°C で同様にハット型ターゲットに型鍛造した。

型鍛造後425° Cで結晶粒均一化・歪取り焼鈍を行った。このときのA~ E部の平均結晶粒径を同様に表1に示す。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ 30 もターゲット側 (スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:344\mu$ m、 $B:184\mu$ m、 $C:211\mu$ m、 $D:192\mu$ m、 $E:379\mu$ mで全体的に粗大化し、また、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径dとの比D/d=2.06という不均一な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は型鍛造温度及び型鍛造後の焼 鈍温度が高過ぎたことによると考えられる。

10

15

(比較例2)

実施例1と同様の銅(6N)インゴットを作成した。このインゴットを750°Cの熱間鍛造によりプレフォーミングした。このプレフォーミング材を実施例1と同様に280°Cでハット型ターゲットに型鍛造し、型鍛造後300°Cにて2時間の結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を同様に表1に示す。なお、この場合プレフォーミングを実施した後の再結晶化焼鈍は、実施していない。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれもターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

- 平均粒径はそれぞれ $A:724\mu$ m、 $B:235\mu$ m、 $C:257\mu$ m、 $D:244\mu$ m、 $E:773\mu$ mで全体的にさらに粗大化し、また、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=3.29という不均一な粒径を持つターゲットとなった。
- 25 このような平均粒径の粗大化と不均一な粒径は、プレフォーミングが冷間で 行われておらず加工が十分でないこと及びプレフォーミング後の再結晶化焼鈍 がないことによる。

(比較例3)

5 実施例1と同様の銅(6N)インゴットを作成した。このインゴットを750°Cの熱間鍛造によりプレフォーミングした。このプレフォーミング材を650°Cで同様にハット型ターゲットに型鍛造し、型鍛造後700°Cにて、2時間の結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を同様に表1に示す。なお、この場合プレフォーミングを実施した後の再10結晶化焼鈍は、実施していない。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ もターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:2755\mu$ m、 $B:654\mu$ m、 $C:775\mu$ m、 $D:688\mu$ m、 $E:2911\mu$ mで全体的に異常に粗大化し、また、平均結15 晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=4. 45 という著しく不均一かつ粗大な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は、プレフォーミングが冷間で行われておらず加工が十分でないこと及び型鍛造温度が高温に過ぎることによると考えられる。

(比較例4)

実施例同様の銅(6N)インゴットを作成した。このインゴットを400° Cの熱間鍛造によりプレフォーミングした。このプレフォーミング材を実施例 1と同様280°Cでハット型ターゲットに型鍛造し、型鍛造後300°Cで 結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を同 様に表1に示す。なお、この場合プレフォーミングを実施した後の再結晶化焼 鈍は、実施していない。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ もターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

25

20

平均粒径はそれぞれ $A:121\mu$ m、 $B:88\mu$ m、 $C:308\mu$ m、 $D:105\mu$ m、 $E:122\mu$ mとなり比較的細かい結晶粒となったが、センター部 Cのみは粗大化し、平均結晶粒径の最も大きい部位の平均結晶粒径 Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 dとの比D/d=3.50という不均一な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は、プレフォーミングが冷間で 行われておらず加工が十分でないことによると考えられる。

10 表 1

	プレフ	再結	型	焼鈍	7	平均結	晶粒径	(μm)		D/d
*	オーミ	晶化	鍛造		A	·B	С	D	E	
	ング	*					·			
実施	冷間	300	280	300	91	86	112	79	92	1. 42
例1		° C	° C	° C						
比較	冷間	300	400	425	344	184	211	192	379	2. 06
例1		° C	° C	° C						
比較	750	_	280	300	724	235	257	244	773	3. 29
例2	° C ,		° C	° C						
比較	750	_	650	700	2755	654	775	688	2911	4. 45
例3	° C	-	° C	° C						
比較	400		280	300	121	88	308	105	122	3. 50
例4	° C		° C	° C					,	

(実施例2)

チタン (4N5) 材料を溶解・鋳造し、インゴットを作成した。次に、この 15 インゴットに対し650° Cで締め鍛造を行い、ビレットを作成した。このと きの、真歪の絶対値の合計は4である。

次に、このビレットを用いて、室温で50%の加工比によるプレフォーミングを実施した。このプレフォーミングを実施した後、500°Cにて2時間の再結晶化焼鈍を行い、結晶粒を調整した。これによって平均結晶粒径が35μmの微細かつ均一な結晶粒度に調整することができた。

このような微細かつ均一な結晶を持つ冷間プレフォーミング材をハット型ターゲットに型鍛造した。型鍛造は450°Cで行った。型鍛造後、500°Cにて2時間の結晶粒均一化・歪み取り焼鈍を行った。

10 この工程で作成したハット型ターゲットの断面図は、前記図1と同様なので、 図1に基づいて説明する。図1のCはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれもターゲット側(スパッタリングの際エロージョンを受け る側)を示す。

平均粒径はそれぞれ $A:37\mu$ m、 $B:31\mu$ m、 $C:34\mu$ m、D:2915 μ m、 $E:39\mu$ mであり、平均結晶粒径の最も大きい部位の平均結晶粒径D と、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=1. 35という均一な粒径を持つターゲットを作成することができた。

以上の結果を、下記比較例と共に、表2に示す。

また、ハット型ターゲットのエロージョン面における(002)面及びこれ 20 と30°以内の角度にある(103)面、(014面)、(015)面の合計 の強度比を求めた(ここでは、これを(002)面配向率とする)。なお、測 定個所は、後述する図3の各測定位置である。

強度比は、次のようにして求めた。 I (h k l) は X線回折で求められる (h k l) 面の回折ピークの強度である。 I * (h k l) は、 J C P D S (Joint Committee of Power Deffraction Standard) カードの相対強度 (全く ランダムに配向している場合の強度を意味している) である。したがって、 I (h k l) I * (h k l) は、ランダム配向と比較しての(h k l) 面の正規 化された配向強度を示すこととなる。

25

 Σ [I (hkl) /I* (hkl)]は、正規化された強度比の合計である。 したがって、(002) 面配向率は、[I (002) /I* (002) +I (1 5 03) /I* (103) +I (014) /I* (014) +I (015) /I* (015)]/ Σ [I (hkl) /I* (hkl)] で計算できる。

以上から、図3の測定位置 b における面配向を測定した結果、(002)面の強度比6.3%、(103)面の強度比9.9%、(014)面の強度比8.2%、(015)面の強度比7.3%が得られ、強度比の合計が34.3%であった。

同様にして、図3のハット型ターゲットのa、b(再掲)、c、d、e、f及びgの各位置でそれぞれ測定した強度比の合計結果を示すと、a位置:34.3%、b位置(再掲):34.3%、c位置:44.0%、d位置:43.2%、e位置:44.9%、f位置:37.1%及びg位置:43.3%であった。以上から、ターゲットのいずれの位置のエロージョン面においても、(002)面及びこの(002)面に対して30°以内の角度にある(103)面、(014面)及び(015)面の強度比の合計が、いずれの位置でも40±10%と配向に大きな変動がなく、均一性に富む良好なターゲットが得られた。

20 (比較例5)

30

実施例2と同様の締め鍛造ビレットを用いて、冷間で50%の加工比によるプレフォーミングをした。このプレフォーミング材を700°Cでターゲットに型鍛造し、型鍛造後750°Cで結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を表2に示す。

25 同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ もターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれA: 346μ m、B: 140μ m、C: 199μ m、D: 156μ m、E: 325μ mで全体的に粗大化し、また、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=2.47という不均一な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は型鍛造温度及び再結晶化焼鈍 5 温度が高すぎることによると考えられる。

(比較例6)

実施例2と同様の締め鍛造ビレットを用いて、500° Cで熱間プレフォーミングした。このプレフォーミング材を450° Cで比較例2と同様にハット型ターゲットに型鍛造し、型鍛造後500° Cで結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を表2に示す。なお、この場合プレフォーミングを実施した後の再結晶化焼鈍は、実施していない。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ もターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:124\mu$ m、 $B:45\mu$ m、 $C:66\mu$ m、D:53 μ m、 $E:133\mu$ mで全体的に比較的小さな粒径であったが、フランジ部 A, Eが粗大化し、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=2. 96という不均一な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は、プレフォーミングが冷間で 20 行われておらず加工が十分でないこと及び冷間プレフォーミング後の再結晶化 焼鈍がないことによる。

(比較例7)

実施例同様の締め鍛造ビレットを用いて、750°Cで熱間プレフォーミングした。このプレフォーミング材を450°Cで型鍛造し、型鍛造後500°Cで結晶粒均一化・歪取り焼鈍を行った。このときのA~E部の平均結晶粒径を表2に示す。なお、この場合プレフォーミングを実施した後の再結晶化焼鈍は、実施していない。

同様に、Cはハット天井部、A, Eはフランジ部、B, Dは側部の、いずれ もターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

25

平均粒径はそれぞれ $A:156\mu$ m、 $B:56\mu$ m、 $C:87\mu$ m、 $D:61\mu$ m、 $E:177\mu$ mで、比較例6よりもさらに粗大化し、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=2. 90という不均一な粒径を持つターゲットとなった。

このような平均粒径の粗大化と不均一な粒径は、プレフォーミングが冷間で 10 行われておらず加工が十分でないこと及び冷間プレフォーミング後の再結晶化 焼鈍がないことによる。

表 2

	プレフ	再結	型	焼鈍	平均結晶粒径 (μm)					D/d
	オーミ	晶化	鍛造		Α	В	С	D	E	*
	ング									
実施	冷間	500	450	500	37	31	34	29	39	1. 35
例2		°. C	° C	° C						
比較	冷間	500	700	750	346	140	199	156	325	2. 47
例 5		° C	° C	° C						
比較	500	_	450	500	124	45	66	53	133	2. 96
例6	° C		° C	° C						
比較	750		450	500	156	56	87	61	177	2. 90
例7	° C		° C	° C						

15 (実施例3)

銅(6N)材料を溶解・鋳造し、インゴットを作成した。次に、このインゴットに対し800°Cで熱間こねくり鍛造を行った。この熱間こねくり鍛造によって、鋳造組織を破壊し、気孔や偏析を拡散及び消失させることができ、均一な組織の鍛造品が得られた。

次に、この熱間こねくり鍛造材を用いて、室温で50%の加工比によるプレ フォーミングを実施した。このプレフォーミングを実施した後、300°Cに て2時間の再結晶化焼鈍を行い、結晶粒を調整した。これによって平均結晶粒 径が85μmの微細かつ均一な結晶粒度に調整することができた。

このような微細かつ均一な結晶を持つプレフォーミング材を、断面がハット型ターゲットを2個つないだような形状のターゲットに型鍛造した。型鍛造は 280° Cで行った。型鍛造後、300° Cにて2時間の結晶粒均一化・歪み取り焼鈍を行った。

図2は、この工程で作成したターゲット断面図である。図2のCはハット天井部、Aはフランジ部、B, Dは側部、Eはハット連結部の、いずれもターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:100\mu$ m、 $B:94\mu$ m、 $C:118\mu$ m、 $D:96\mu$ m、 $E:92\mu$ mであり、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=1. 28 という均一な粒径を持つターゲットを作成することができた。

以上の結果を、下記比較例と共に、表3に示す。

20 表 3

	プレフ	再結	型	焼鈍		平均結:	晶粒径	(μm)		D/d
	オーミ	晶化	鍛造		A	В	С	D	·E	
	ング			·						
実施	冷間	300	280	300	100	94	118	96	92	1. 28
例3		° C	° C	° C						
比較	400	_	280	300	127	123	278	101	113	2. 46
例8	° C		° C	° C						

(比較例8)

実施例3と同様の銅(6N)インゴットを作成した。このインゴットを400°Cの熱間鍛造によりプレフォーミングした。このプレフォーミング材を実施例4と同様280°Cで断面がハット型ターゲットを2個つないだような形状のターゲットに型鍛造し、型鍛造後300°Cで結晶粒均一化・歪取り焼鈍を行った。

このときのA~E部の平均結晶粒径を同様に表3に示す。なお、この場合プ 10 レフォーミングを実施した後の再結晶化焼鈍は、実施していない。

同様に、Cはハット天井部、Aはフランジ部、B, Dは側部、Eはハット連結部の、いずれもターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:127\mu$ m、 $B:123\mu$ m、 $C:278\mu$ m、 $D:101\mu$ m、 $E:113\mu$ mとなり比較的細かい結晶粒となったが、センター部Cのみは粗大化し、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 d との比D/d=2. 46 という不均一な粒径を持つターゲットとなった。このような不均一な平均粒径は、プレフォーミングが冷間で行われておらず加工が十分でないことによる。

20 (実施例4).

タンタル (5 N) 材料を溶解・EB鋳造し、インゴットを作成した。次に、このインゴットに対し室温こねくり鍛造及び1200℃歪取り焼鈍を繰り返し、真歪の絶対値の合計が8のビレットを作成した。

次に、このビレットを用いて、室温で70%の加工比による圧延プレフォーミングを実施した。このプレフォーミングを実施した後、900°Cにて2時間の再結晶化焼鈍を行い、結晶粒を調整した。これによって平均結晶粒径が75μmの微細かつ均一な結晶粒度に調整することができた。

このような微細かつ均一な結晶を持つ冷間圧延プレフォーミング材を、スピニング加工により断面がハット型ターゲットを2個つないだような形状のター がットにターゲットに成形した。スピニング加工は室温で行った。型鍛造後、925°Cにて2時間の結晶粒均一化・歪み取り焼鈍を行った。

この工程で作成したハット型ターゲットの断面図は、前記図2と同様なので、図1に基づいて説明する。図1のCはハット天井部、Aはフランジ部、B, Dは側部、Eはハット連結部の、いずれもターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

平均粒径はそれぞれ $A:87\mu$ m、 $B:76\mu$ m、 $C:71\mu$ m、 $D:82\mu$ m、 $E:80\mu$ mであり、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径dとの比D/d=1.23という均一な粒径を持つターゲットを作成することができた。

以上の結果を、下記比較例と共に、表4に示す。

表 4

10

	こねく	プレフ	再結	型	焼鈍	平	平均結晶粒径 (μm)			1)	D/d
	り鍛造	オーミ	晶化	鍛造		A	В	С	D	E	8
	比	ング					-				
実施	8	冷間	900	室温	925	87	76	71	82	80	1. 23
例4			° C		° C						
比較	4未満	冷間.	900	室温	925	89	147	78	72	88	2. 04
例 9			° C		° C		_				

15 (比較例9)

実施例4と同様、タンタル (5 N) 材料を溶解・E B 鋳造し、インゴットを作成した。次に、このインゴットに対し室温で鍛造を行い、ビレットを作成した。この際、真歪の絶対値の合計は4以下であった。

次に、このビレットを用いて、室温で70%の加工比による圧延プレフォーミ 20 ングを実施した。このプレフォーミングを実施した後、900°Cにて2時間 の再結晶化焼鈍を行ったが、平均結晶粒径は場所によるばらつきがあり、80~150μmであった。

このような冷間圧延プレフォーミング材を、スピニング加工により断面がハット型ターゲットを2個つないだような形状のターゲットにターゲットに成形した。スピニング加工は室温で行った。型鍛造後、925°Cにて2時間の結晶粒均一化・歪み取り焼鈍を行った。

同様に、Cはハット天井部、Aはフランジ部、B, Dは側部、Eはハット連結部の、いずれもターゲット側(スパッタリングの際エロージョンを受ける側)を示す。

- 平均粒径はそれぞれ $A:89\mu$ m、 $B:147\mu$ m、 $G:78\mu$ m、 $D:72\mu$ m、 $E:88\mu$ mとなり、片方の側壁Bのみが粗大化し、平均結晶粒径の最も大きい部位の平均結晶粒径Dと、平均結晶粒径の最も小さい部位の平均結晶粒径 dとの比D/d=2. 04という不均一な粒径を持つターゲットとなった。
- 15 このように部分的に結晶粒径が大きくなってしまったのは、こねくり鍛造時の鍛錬比が不十分だったためと考えられる。そのため鋳造一次晶が完全に破壊されておらず、一次晶の分布を持ったまま最終形状まで成形されたためと考えられる。

20 発明の効果

本発明は、型鍛造による三次元的構造を有するスパッタリングターゲットの製造方法において、材料インゴット又はビレットの熱間鍛造及び焼鈍を行った後、冷間プレフォーミング及び再結晶焼鈍を行って結晶粒を調整し、さらに型鍛造を行うことによって、平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均結晶粒径dとを1.0<D/d>
25 平均結晶粒径の最も小さい部位の平均結晶粒径dとを1.0<D/d>
0
とすることができ、これによってターゲットの結晶粒を微細化しかつ均一性を維持し、スパッタリングの際のアーキングやパーティクルの発生を抑制して、均一で安定した特性を持つ膜を得ることができるという優れた効果を有する。

請求の範囲

- 5 1. 型鍛造により製造されるスパッタリングターゲットであって、平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も小さい部位の平均結晶粒径dとが1. 0 < D/d < 2. 0 であることを特徴とするスパッタリングターゲット。
- 2. 型鍛造により製造されるチタン等の六方晶系スパッタリングターゲットで 10 あって、ターゲットのエロージョン面において、(002)面及びこれと3 0°以内の角度にある(103)面、(014面)、(015)面の強度比の 合計が30%以上であり、かつ強度比の平均値の±10%以内であることを特 徴とするスパッタリングターゲット。
- 3. 型鍛造により製造されるスパッタリングターゲットであって、直径断面に 現れる一つ以上のハット形状又はドーム形状の、開口部径と深さの比率が1: 3以下の比率を持つことを特徴とする請求の範囲第1又は第2項記載のスパッ タリングターゲット。
 - 4. 型鍛造によるスパッタリングターゲットの製造方法において、材料インゴット又はビレットの熱間こねくり鍛造又は冷間こねくり鍛造及び歪取り焼鈍を
- 20 行った後、冷間プレフォーミング及び再結晶焼鈍を行って結晶粒を調整し、さらに型鍛造を行うことを特徴とするスパッタリングターゲットの製造方法。
 - 5. 型鍛造により製造されるチタン等の六方晶系スパッタリングターゲットであって、ターゲットのエロージョン面において、(002)面及びこれと3
 - 0°以内の角度にある(103)面、(014面)、(015)面の強度比の
- 25 合計が30%以上であり、かつ強度比の平均値の±10%以内であることを特 徴とする請求の範囲第4項記載のスパッタリングターゲットの製造方法。
 - 6. 熱間こねくり鍛造又は冷間こねくり鍛造において、真歪の絶対値の合計を 4以上とすることを特徴とする請求の範囲第4項又は第5項記載のスパッタリ ングターゲットの製造方法。
- 30 7. 材料の融点をTmとすると、型鍛造を 0. 5 Tm以下で行うことを特徴とする請求の範囲第 4 項~第 6 項記載のスパッタリングターゲットの製造方法。

- 8. 型鍛造後、歪取り焼鈍又は再結晶焼鈍を行うことを特徴とする請求の範囲第4項~第7項のそれぞれに記載のスパッタリングターゲットの製造方法。
- 9. 材料の融点をTmとすると、冷間プレフォーミング後の再結晶焼鈍を、0.6 Tm以下で行うことを特徴とする請求の範囲第4項~第8項のそれぞれに記載のスパッタリングターゲットの製造方法。
- 10. 材料の融点をTmとすると、型鍛造後、0.6 Tm以下で歪取り焼鈍又は 10 再結晶焼鈍を行うことを特徴とする請求の範囲第8項又は第9項に記載のスパッ タリングターゲットの製造方法。
 - 11.20~90%の加工比による冷間プレフォーミングを行うことを特徴とする請求の範囲第4項~第10項のそれぞれに記載のスパッタリングターゲットの製造方法。
- 15 12. 冷間プレフォーミング後の再結晶焼鈍により、平均結晶粒径の最も大きい部位の平均結晶粒径 D_o と平均結晶粒径の最も小さい部位の平均結晶粒径 d_o とが1. $0 < D_o / d_o < 1$. 5とすることを特徴とする請求の範囲第4項~第11項のそれぞれに記載のスパッタリングターゲットの製造方法。
- 13. 冷間プレフォーミング後の再結晶焼鈍により、最終平均結晶粒径の20 0%以下とすることを特徴とする請求の範囲第4項~第12項のそれぞれに記載のスパッタリングターゲットの製造方法。
 - 14. 型鍛造後の結晶均質化焼鈍又は歪取り焼鈍により、平均結晶粒径を $1\sim5$ 00 μ mの範囲にすることを特徴とする請求の範囲第4項~第13項のそれぞれに記載のスパッタリングターゲットの製造方法。
- 25 15. 平均結晶粒径の最も大きい部位の平均結晶粒径Dと平均結晶粒径の最も 小さい部位の平均結晶粒径 d とが 1. 0 < D / d < 2. 0 であることを特徴と する請求の範囲第 4 項~第 1 3 項のそれぞれに記載のスパッタリングターゲッ トの製造方法。
- 16. ターゲット材料が銅、チタン、アルミニウム、ニッケル、コバルト、タン 30 タル又はこれらの合金であることを特徴とする請求の範囲第1項~第15項のそれぞれに記載のスパッタリングターゲット及びその製造方法。

.1/2

2/2

図 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07715

	SIFICATION OF SUBJECT MATTER .Cl ⁷ C23C14/34, C22F1/18	1				
According	to International Patent Classification (IPC) or to both n	national classification and IPC				
	DS SEARCHED					
	documentation searched (classification system followed . C1 C23C14/34, C22F1/18, B21J					
			,			
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched			
Jits Koka	uyo Shinan Koho 1926-1996 i Jitsuyo Shinan Koho 1971-2002	Toroku Jitsuyo Shinan Koh Jitsuyo Shinan Toroku Koh	o 1994-2002 o 1996-2002			
	data base consulted during the international search (names, INSPEC	ne of data base and, where practicable, sea	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		Relevant to claim No.			
Х	EP 785292 Al (Japan Energy C 23 July, 1997 (23.07.97),	Corp.),	1,2,16			
	Tables 2, 4, 6, 10, 12					
		9 653498 A1 9 07-090564 A				
	& US 5772860 A & JP tables 2, 4	07-090304 A				
	& JP 07-090563 A & JP	07-090562 A				
	& JP 07-090561 A & JP	07-090560 A				
x	Akifumi MISHIMA, "Kojundo Tit		1,2,16			
ζ-	Zairyo to shite no Riyo", Tit 1996-Nen, Vol.44, No.2, p.84-		<u>.</u>			
	1990-Nell, VOI.11, NO.2, P.O.	-07, 1193. 3, 1				
		*				
	* 1					
		·				
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special	categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with th	ne application but cited to			
conside	ned to be of particular relevance document but published on or after the international filing	understand the principle or theory under "X" document of particular relevance; the	erlying the invention			
date		considered novel or cannot be considered step when the document is taken alone	red to involve an inventive			
cited to	ent which may throw doubts on priority claim(s) or which is e establish the publication date of another citation or other	"Y" document of particular relevance; the considered to involve an inventive step	claimed invention cannot be			
"O" docume	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such	documents, such			
means "P" docume	ent published prior to the international filing date but later e priority date claimed	"&" document member of the same patent f				
Date of the a	actual completion of the international search	Date of mailing of the international search				
28 0	ctober, 2002 (28.10.02)	12 November, 2002 (12.11.02)			
	ailing address of the ISA/	Authorized officer				
Japa	nese Patent Office		1			
Facsimile No	۵.	Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/07715

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6045634 A (Praxair S.T. Technology, Inc.), 04 April, 2000 (04.04.00), Column 4, line 60 to column 5, line 13; examples & JP 11-229130 A Par. Nos. [0021], [0025]	4,6,7,9, 11,12,16
Y	US 5687600 A (Johoson Matthey Electronics, Inc.), 18 November, 1997 (18.11.97), Column 3, lines 7 to 26 (Family: none)	4,6,7,9, 11,12,16
Y	<pre>JP 2000-045067 A (Nippon Steel Corp.), 15 February, 2000 (15.02.00), Par. No. [0021] (Family: none)</pre>	4
Y	<pre>JP 06-010107 A (Sumitomo Sitix Corp.), 18 January, 1994 (18.01.94), Par. Nos. [0010], [0014] (Family: none)</pre>	11
A	US 6210502 Bl (Toho Titanium Co., Ltd.), 03 April, 2001 (03.04.01), Column 2, line 54 to column 3, line 21 & JP 11-269621 A Par. Nos. [0010] to [0014]	4-15
P,X	Satoru SUZUKI, Atsushi FUKUSHIMA, "Spattering-zai no Kaihatsu Doko", Denshi Zairyo, 01 July, 2002 (01.07.02), Vol.41, No.7, p.44-48, Figs. 5, 6	1,3
•		1
	·	*
		*

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

電話番号 03-3581-1101 内線 3416

発明の属する分野の分類(国際特許分類(IPC)) Int. C1' C23C14/34, C22F1/18 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl7 C23C14/34, C22F1/18, B21J5/00 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) JOIS, INSPEC 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 X EP 785292 A1 (TAPAN ENERGY CORPORATION) 1997. 07. 23. 1, 2, 16 TABLE 2, TABLE 4, TABLE 6, TABLE 10, TABLE 12, & EP 785293 A1 & EP 653498 A1 & US 5772860 A & JP 07-090564 A. 表 2. 表 4 & JP 07-090563 A & JP 07-090562 A & JP 07-090561 A & JP 07-090560 A 三島昭史、高純度チタンの電子材料としての利用、チタン、 Χ. 1, 2, 16 1996年, Vol. 44, No. 2, p. 84-87, 図 3, 図 4 区欄の続きにも文献が列挙されている。 │ │ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 12.11.02 国際調査報告の発送日 国際調査を完了した日 28.10.02 特許庁審査官(権限のある職員) 4 G 3028 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 宮澤 尚之

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

国際調査報告

C (信本)	関連すると認められる文献	
C (続き). 引用文献の		関連する 請求の範囲の番号
カテゴリー* Y	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 US 6045634 A (PRAXAIR S. T. TECHNOLOGY, INC.) 2000.04.04, 第4欄第60行~第5欄第13行,実施例 & JP 11-229130 A, [0021]段落, [0025]段落	請求の範囲の合う 4, 6, 7, 9, 11, 12, 16
Y	US 5687600 A (JOHOSON MATTHEY ELECTRONICS, INC.) 1997.11.18, 第3欄第7行〜第26行 (ファミリーなし)	4, 6, 7, 9, 11, 12, 16
Y	JP 2000-045067 A(新日本製鐵株式会社)2000.02.15, [0021]段落 (ファミリーなし)	4
Y	JP 06-010107 A (住友シチックス株式会社) 1994.01.18, [0010]段落, [0014]段落 (ファミリーなし)	11
A	US 6210502 B1 (TOHO TITANIUM CO., LTD.) 2001.04.03, 第2欄第54行~第3欄第21行 & JP 11-269621 A, [0010]段落~[0014]段落	4-15
PX	鈴木了、福嶋篤志,スパッタリング材の開発動向,電子材料, 2002.07.01, Vol.41, No.7, p.44-48, 図5,図6	1, 3
·		
		ú
*		
		3.

様式PCT/ISA/210 (第2ページの続き) (1998年7月)