Practical ML Project - Classifying Manner of Exercises

Michael Nichols
March 23, 2018

Executive Summary

The goal of the project is to predict the manner in which individuals did a certain exercise. In this project, the goal is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. ### Target Variable The outcome variable is classe, a factor variable with 5 levels. For this data set, "participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in 5 different fashions:

- exactly according to the specification (Class A)
- throwing the elbows to the front (Class B)
- lifting the dumbbell only halfway (Class C)
- lowering the dumbbell only halfway (Class D)
- throwing the hips to the front (Class E)

Class A corresponds to the specified execution of the exercise, while the other 4 classes correspond to common mistakes."

Prediction evaluations will be based on maximizing the accuracy and minimizing the out-of-sample error. All other available variables after cleaning will be used for prediction.

Findings

Basic Steps to Build the Model:

- 0. "Set the seed." Ensure reproducibility for the model.
- 1. Read in the dataset
- 2A. Preserve only the variables that included data in at least 98% of records. This removed 100 variables. (160 to 60)
- 2B. Remove 7 additional variables that did not appear to have any predictive value. This included things like name and times of the records.
 - 3. Partition the dataset. The original data came in two CSV files, one labeled 'training' and one labeled 'testing.' The test dataset included the final 20 questions for the final evaluation. In order to build the model without overfitting, I split the training set randomly in a 70/30 split into a training subset and validation set. This validation is used to test the accuracy of the models.
 - 4. Build & train the models! By attempting to predict the classe, the proper algorithm to use for the model needed to work with factor variables. (i.e. a classification problem) With this in mind, I built two models and compared the prediction accuracy of each to decide the best fit.
- 4A. Attempt 1 Random Forest. Out-of-the-box random forest model from the randomForest R package produced the greatest accuracy.
- 4B. Attempt 2 Generalized Boosted Model. Despite using custom tuning parameters (3-fold cross validation), this model did not perform as well as the random forest model. This model's accuracy was 96.18%.
 - 5. Test each model against the validation set and examine the accuracy.
 - 6. Predict using the best model (Random Forest) against the test set.

Prediction Results using a Random Forest model:

Accuracy: 99.42% Out of Sample Error Rate: .58%

Problem Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

More information is available from the website here: http://web.archive.org/web/20161224072740/http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Environment Setup: load dataset, R packages, & ensure reproducibility

Initial Exploration & Cleansing

```
# evaluate datasets
dim(training)

## [1] 19622 160
dim(testing)

## [1] 20 160
# as expected, test dataset contains 20 records for final
# evaluation
```

```
# convert to DF's
training <- as.data.frame(training)</pre>
testing <- as.data.frame(testing)</pre>
# Remove columns with >= 98% of NA or '' values
relevant_Columns <- !apply(training, 2, function(x) sum(is.na(x)) >
    0.98 \mid \mid sum(x == "") > 0.98)
training <- training[, relevant_Columns]</pre>
testing <- testing[, relevant_Columns]</pre>
# convert target variable to factor
training$classe <- as.factor(training$classe)</pre>
# include classe in testing set as NA
testing$classe <- NA
# review training and test sets again to remove additional
# unneeded columns names(testing) # first seven variables can
# be removed based on our goal (times, username, etc.)
# names(training)
testing[, 1:7] <- NULL
training[, 1:7] <- NULL</pre>
# show final dataset dimensions ~ over 100 unneccessary
# variables removed
dim(training)
## [1] 19622
                 53
dim(testing)
## [1] 20 54
```

Prepare cross validation

Since we already have the final test set, we'll create a validation set within the training dataset using a 70/30 random split.

A B C D E ## 3906 2658 2396 2252 2525

##

Algorith Attempt #1 -> Random Forest

```
# Algorithm 1: Random Forest build the model
modFit_RF <- randomForest(classe ~ ., data = TrainingSet, ntree = 100,</pre>
    mtry = 16)
# predict using decision tree model against validation set
prediction_RF <- predict(modFit_RF, ValidationSet)</pre>
\# review accuracy against the validation set
confusionMatrix(prediction_RF, ValidationSet$classe)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  Α
                       В
                            С
                                  D
                                       Ε
##
            A 1672
                       6
                            0
                                  0
                                       0
            В
                  2 1131
                            3
                                       0
##
                                  1
            С
                  0
                       2 1021
                                  6
                                       3
##
            D
##
                  0
                       0
                            2
                               956
                                       2
            E
##
                  0
                       0
                            0
                                  1 1077
```

```
## Overall Statistics
##
##
                Accuracy : 0.9952
##
                  95% CI: (0.9931, 0.9968)
##
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                   Kappa: 0.994
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                     Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                       0.9988 0.9930 0.9951 0.9917
                                                       0.9954
## Specificity
                       0.9986 0.9987 0.9977 0.9992
                                                       0.9998
## Pos Pred Value
                       0.9964 0.9947
                                       0.9893
                                               0.9958
                                                       0.9991
## Neg Pred Value
                      0.9995 0.9983
                                      0.9990 0.9984
                                                       0.9990
## Prevalence
                      0.2845 0.1935
                                      0.1743
                                               0.1638
                                                       0.1839
## Detection Rate
                      0.2841 0.1922
                                      0.1735 0.1624
                                                       0.1830
## Detection Prevalence 0.2851 0.1932
                                       0.1754 0.1631
                                                        0.1832
                      0.9987 0.9959
## Balanced Accuracy
                                      0.9964 0.9954
                                                       0.9976
```

Algorithm Attempt #2 -> Generalized Boosted Model

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1271
##	2	1.5229	nan	0.1000	0.0876
##	3	1.4642	nan	0.1000	0.0651
##	4	1.4195	nan	0.1000	0.0537
##	5	1.3840	nan	0.1000	0.0449
##	6	1.3544	nan	0.1000	0.0448
##	7	1.3253	nan	0.1000	0.0368
##	8	1.2994	nan	0.1000	0.0302
##	9	1.2795	nan	0.1000	0.0326
##	10	1.2564	nan	0.1000	0.0303
##	20	1.0996	nan	0.1000	0.0165
##	40	0.9298	nan	0.1000	0.0086
##	60	0.8240	nan	0.1000	0.0063
##	80	0.7420	nan	0.1000	0.0045
##	100	0.6796	nan	0.1000	0.0036

##	120	0.6252	nan	0.1000	0.0027
##	140	0.5816	nan	0.1000	0.0020
##	150	0.5612	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1868
##	2	1.4895	nan	0.1000	0.1316
##	3	1.4056	nan	0.1000	0.1042
##	4	1.3384	nan	0.1000	0.0873
##	5	1.2820	nan	0.1000	0.0736
##	6	1.2349	nan	0.1000	0.0656
##	7	1.1927	nan	0.1000	0.0593
##	8	1.1545	nan	0.1000	0.0463
##	9	1.1236	nan	0.1000	0.0428
##	10	1.0952	nan	0.1000	0.0466
##	20	0.8930	nan	0.1000	0.0180
##	40	0.6762	nan	0.1000	0.0095
##	60	0.5496	nan	0.1000	0.0056
##	80	0.4617	nan	0.1000	0.0044
##	100	0.3961	nan	0.1000	0.0039
##	120	0.3454	nan	0.1000	0.0021
##	140	0.3065	nan	0.1000	0.0024
##	150	0.2872	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2371
##	2	1.4595	nan	0.1000	0.1582
##	3	1.3578	nan	0.1000	0.1218
##	4	1.2789	nan	0.1000	0.1011
##	5	1.2142	nan	0.1000	0.0788
##	6	1.1625	nan	0.1000	0.0855
##	7	1.1085	nan	0.1000	0.0738
##	8	1.0629	nan	0.1000	0.0530
##	9	1.0277	nan	0.1000	0.0630
##	10	0.9884	nan	0.1000	0.0523
##	20	0.7543	nan	0.1000	0.0231
##	40	0.5284	nan	0.1000	0.0125
##	60	0.4053	nan	0.1000	0.0090
##	80	0.3193	nan	0.1000	0.0043
##	100	0.2612	nan	0.1000	0.0026
##	120	0.2166	nan	0.1000	0.0029
##	140	0.1830	nan	0.1000	0.0016
##	150	0.1699	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1257
##	2	1.5242	nan	0.1000	0.0825
##	3	1.4683	nan	0.1000	0.0659
##	4	1.4242	nan	0.1000	0.0568
##	5	1.3888	nan	0.1000	0.0436
##	6	1.3597	nan	0.1000	0.0430
##	7	1.3315	nan	0.1000	0.0407
##	8	1.3046	nan	0.1000	0.0350
##	9	1.2803	nan	0.1000	0.0329
	_			-	

##	10	1.2587	nan	0.1000	0.0283
##	20	1.1049	nan	0.1000	0.0183
##	40	0.9335	nan	0.1000	0.0086
##	60	0.8254	nan	0.1000	0.0058
##	80	0.7450	nan	0.1000	0.0050
##	100	0.6818	nan	0.1000	0.0032
##	120	0.6298	nan	0.1000	0.0031
##	140	0.5852	nan	0.1000	0.0024
##	150	0.5664	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1880
##	2	1.4871	nan	0.1000	0.1307
##	3	1.4046	nan	0.1000	0.1016
##	4	1.3384	nan	0.1000	0.0824
##	5	1.2836	nan	0.1000	0.0704
##	6	1.2396	nan	0.1000	0.0590
##	7	1.2006	nan	0.1000	0.0542
##	8	1.1650	nan	0.1000	0.0603
##	9	1.1273	nan	0.1000	0.0489
##	10	1.0959	nan	0.1000	0.0403
##	20	0.8989	nan	0.1000	0.0267
##	40	0.6828	nan	0.1000	0.0088
##	60	0.5539	nan	0.1000	0.0068
##	80	0.4640	nan	0.1000	0.0051
##	100	0.3960	nan	0.1000	0.0035
##	120	0.3461	nan	0.1000	0.0022
		0.0101		0.2000	0.00==
##	140	0.3039	nan	0.1000	0.0014
##	140 150	0.3039 0.2870	nan nan	0.1000	0.0014
##	140 150	0.3039 0.2870	nan nan	0.1000 0.1000	0.0014 0.0010
## ##	150	0.2870	nan	0.1000	0.0010
## ## ##	150 Iter	0.2870 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0010 Improve
## ## ## ##	150 Iter 1	0.2870 TrainDeviance 1.6094	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0010 Improve 0.2302
## ## ## ##	150 Iter 1 2	0.2870 TrainDeviance 1.6094 1.4612	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0010 Improve 0.2302 0.1544
## ## ## ## ##	150 Iter 1 2 3	0.2870 TrainDeviance 1.6094 1.4612 1.3599	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257
## ## ## ## ## ##	150 Iter 1 2 3 4	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047
## ## ## ## ## ##	150 Iter 1 2 3 4 5	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633	NalidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527
## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554 0.0221
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554 0.0221 0.0140
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020
# # # # # # # # # # # # # # # # # # #	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181 0.1865	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0737 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020 0.0020
#####################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020
######################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181 0.1865 0.1729	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020 0.0020 0.0018
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181 0.1865 0.1729 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020 0.0020 0.0018 Improve
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181 0.1865 0.1729 TrainDeviance 1.6094	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020 0.0020 0.0018 Improve 0.1274
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.2870 TrainDeviance 1.6094 1.4612 1.3599 1.2791 1.2125 1.1591 1.1099 1.0633 1.0231 0.9895 0.7613 0.5288 0.4008 0.3214 0.2650 0.2181 0.1865 0.1729 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0010 Improve 0.2302 0.1544 0.1257 0.1047 0.0839 0.0778 0.0608 0.0527 0.0554 0.0221 0.0140 0.0065 0.0049 0.0039 0.0020 0.0020 0.0018 Improve

##	4	1.4220	nan	0.1000	0.0516
##	5	1.3882	nan	0.1000	0.0484
##	6	1.3556	nan	0.1000	0.0444
##	7	1.3266	nan	0.1000	0.0341
##	8	1.3043	nan	0.1000	0.0345
##	9	1.2815	nan	0.1000	0.0338
##	10	1.2593	nan	0.1000	0.0278
##	20	1.1057	nan	0.1000	0.0193
##	40	0.9313	nan	0.1000	0.0080
##	60	0.8227	nan	0.1000	0.0048
##	80	0.7455	nan	0.1000	0.0052
##	100	0.6803	nan	0.1000	0.0019
##	120	0.6275	nan	0.1000	0.0031
##	140	0.5824	nan	0.1000	0.0022
##	150	0.5645	nan	0.1000	0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1858
##	2	1.4890	nan	0.1000	0.1290
##	3	1.4064	nan	0.1000	0.0994
##	4	1.3408	nan	0.1000	0.0845
##	5	1.2872	nan	0.1000	0.0794
##	6	1.2374	nan	0.1000	0.0600
##	7	1.1982	nan	0.1000	0.0519
##	8	1.1647	nan	0.1000	0.0542
##	9	1.1301	nan	0.1000	0.0475
##	10	1.0996	nan	0.1000	0.0450
##	20	0.9015	nan	0.1000	0.0183
##	40	0.6870	nan	0.1000	0.0117
##	60	0.5590	nan	0.1000	0.0082
##	80	0.4627	nan	0.1000	0.0041
##	100	0.3994	nan	0.1000	0.0023
##	120	0.3449	nan	0.1000	0.0031
##	140	0.3028	nan	0.1000	0.0028
##	150	0.2855	nan	0.1000	0.0019
##	_				
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2343
##	2	1.4589	nan	0.1000	0.1643
##	3	1.3554	nan	0.1000	0.1180
##	4	1.2780	nan	0.1000	0.1073
##	5	1.2121	nan	0.1000	0.0818
##	6	1.1589	nan	0.1000	0.0752
##	7	1.1113	nan	0.1000	0.0665
##	8	1.0673	nan	0.1000	0.0591
##	9	1.0290	nan	0.1000	0.0607
##	10	0.9897	nan	0.1000	0.0445
##	20	0.7540	nan	0.1000	0.0212
##	40	0.5328	nan	0.1000	0.0072
##	60	0.4001	nan	0.1000	0.0064
##	80	0.3185	nan	0.1000	0.0028
##	100	0.2607	nan	0.1000	0.0021
##	120	0.2196	nan	0.1000	0.0023
##	140	0.1856	nan	0.1000	0.0013

```
##
      150
                  0.1728
                                               0.1000
                                                         0.0012
                                      nan
##
                                            StepSize
##
  Iter
          TrainDeviance
                           ValidDeviance
                                                         Improve
                  1.6094
                                               0.1000
                                                         0.2384
##
        1
                                      nan
##
        2
                  1.4595
                                      nan
                                               0.1000
                                                         0.1584
##
        3
                                               0.1000
                                                         0.1232
                  1.3589
                                      nan
##
        4
                                               0.1000
                                                         0.1025
                  1.2808
                                      nan
                                                         0.0937
##
        5
                  1.2159
                                      nan
                                               0.1000
##
        6
                  1.1581
                                      nan
                                               0.1000
                                                         0.0746
##
        7
                  1.1108
                                      nan
                                               0.1000
                                                         0.0669
##
        8
                  1.0691
                                      nan
                                               0.1000
                                                         0.0576
        9
##
                                               0.1000
                                                         0.0624
                  1.0323
                                      nan
##
       10
                  0.9944
                                               0.1000
                                                         0.0610
                                      nan
##
       20
                  0.7564
                                      nan
                                               0.1000
                                                         0.0223
##
       40
                  0.5329
                                               0.1000
                                                         0.0098
                                      nan
##
       60
                  0.4051
                                               0.1000
                                                         0.0066
                                      nan
##
       80
                                                         0.0039
                  0.3269
                                               0.1000
                                      nan
##
      100
                  0.2714
                                               0.1000
                                                         0.0031
                                      nan
##
      120
                  0.2261
                                               0.1000
                                                         0.0017
                                      nan
##
      140
                  0.1931
                                      nan
                                               0.1000
                                                         0.0025
##
      150
                  0.1780
                                      nan
                                               0.1000
                                                         0.0008
# predict using GBM on the validation set
prediction_GBM <- predict(modFit_GBM, ValidationSet)</pre>
# review accuracy against the validation set
confusionMatrix(prediction_GBM, ValidationSet$classe)
## Confusion Matrix and Statistics
##
##
             Reference
                            С
                                       Ε
## Prediction
                  Α
                       В
                                  D
                      36
                                       3
            A 1652
                            0
                                  2
##
            В
                 17 1065
                            18
                                  5
                                      12
##
            C
                  1
                      36
                          997
                                 34
                                       6
                  3
                       2
##
            D
                            9
                                914
                                      13
##
            Ε
                       0
                            2
                                  9 1048
##
## Overall Statistics
##
##
                   Accuracy: 0.9645
##
                     95% CI: (0.9594, 0.9691)
##
       No Information Rate : 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9551
##
   Mcnemar's Test P-Value: 1.723e-06
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                                     0.9350
                                               0.9717
                                                        0.9481
                                                                  0.9686
                            0.9869
## Specificity
                            0.9903
                                     0.9890
                                               0.9842
                                                        0.9945
                                                                  0.9975
## Pos Pred Value
                           0.9758
                                     0.9534
                                               0.9283
                                                        0.9713
                                                                  0.9887
## Neg Pred Value
                           0.9948
                                     0.9845
                                               0.9940
                                                        0.9899
                                                                  0.9930
```

```
## Prevalence
                           0.2845
                                    0.1935
                                              0.1743
                                                       0.1638
                                                                 0.1839
## Detection Rate
                           0.2807
                                    0.1810
                                              0.1694
                                                       0.1553
                                                                 0.1781
## Detection Prevalence
                                    0.1898
                           0.2877
                                              0.1825
                                                       0.1599
                                                                 0.1801
## Balanced Accuracy
                           0.9886
                                    0.9620
                                              0.9779
                                                       0.9713
                                                                 0.9830
```

Both models perform extremely well, but across the board, the random forest model outperforms the generalized boosted model. The final accuracy of the RF model against the validation set exceeds 99%.

```
Kappa AccuracyLower AccuracyUpper AccuracyNull
        Accuracy
## RF 0.9952421 0.9939814
                                0.9931309
                                              0.9968362
                                                            0.284452
## GBM 0.9644860 0.9550631
                                0.9594365
                                              0.9690679
                                                            0.284452
       AccuracyPValue McnemarPValue
## RF
                    0
                                NaN
## GBM
                    0
                      1.723477e-06
```

A B A A E D B A A B C B A E E A B B B

Final Prediction / Quiz

```
predict(modFit_RF, testing)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
```

Levels: A B C D E

Appendix

Plot 1: displays model accuracy increases across cross validation sets as boosting iterations rise

Plot 2: displays decreasing model error rate as # of trees expands

Plot 3: displays top 10 most important variables based on predictions for each outcome variable option

