ARBORI ECHILIBRAŢI

(BALANCED TREES)

Analiza arborilor binari de căutare

- operațiile specifice se execută în timp dependent de înălțimea arborelui (complexitate timp O(h)).
- în cel mai rău caz pentru n elemente înălțimea este n-1 (arbore degenerat) $\Rightarrow \theta(n)$ complexitate în caz defavorabil.
- cazul ideal: arbore echilibrat a cărui înălțime să fie $O(log_2n)$.
 - ideea: la fiecare nod să păstrăm *echilibrarea*.
 - când un nod îşi pierde *echilibrul* \Rightarrow **reechilibrare** (prin rotații specifice).
- sunt mai multe moduri de definire a echilibrării ⇒ variante de arbori de căutare echilibrați.
 - arbori AVL, arbori splay, arbori roşu-negru, B-arbori, etc.
 - caracteristică comună: înălțimea arborelui este $O(log_2n)$.

ARBORI AVL

Definiție 0.1 Un **Arbore AVL** (Adelson Velski Landis) este un ABC care satisface următoarea proprietate (invariant AVL):

- dacă x este un nod al AVL, atunci:
 - înălțimea subarborelui stâng al lui x diferă de înălțimea subarborelui drept al lui x cu 0, 1 sau -1 (0, 1 sau -1 se numește **factor de echilibrare**).

Proprietate. Înălțimea unui arbore AVL cu n noduri este $\theta(log_2n)$.

- $\bullet \ N(h)$ numarul minim de noduri ale unui arbore AVL de înălțime h.
 - -N(0)=1
 - -N(1)=2

$$-N(h)=N(h-1)+N(h-2)+1$$

- $\bullet\,$ În AVL cheile (elementele) memorate în noduri sunt distincte.
- 6 situații de reechilibrare (Knuth);
- 4 tipuri de rotații pentru reechilibrare:
 - 1. o singură rotație spre stânga (SRS);
 - 2. dublă rotație spre stânga (DRS);
 - 3. o singură rotație spre dreapta (SRD);
 - 4. dublă rotație spre dreapta (DRD).