$Update\ of\ the\ Quasi-Analytical\ Algorithm\ (QAA_v6)$

	$r_{rs}(\lambda) = R_{rs}(\lambda)/(0.52 + 1.7 R_{rs}(\lambda))$	
	$u(\lambda) = \frac{-g_0 + \sqrt{(g_0)^2 + 4g_1 * r_{rs}(\lambda)}}{2g_1}$, where $g_0 = 0.089$ and $g_1 = 0.1245$	
	IF $R_{rs}(670) < 0.0015 \text{ sr}^{-1} (QAA_v5)$	(else)
2	$\chi = \log \left(\frac{r_{rs}(443) + r_{rs}(490)}{r_{rs}(55x) + 5\frac{r_{rs}(670)}{r_{rs}(490)} r_{rs}(670)} \right)$ $a(\lambda_0) = a(55x) = a_w(\lambda_0) + 10^{h0 + h1} \chi + h2\chi^2$	$a(\lambda_0) = a(670)$ $= a_w(670) + 0.39 \left(\frac{Rrs(670)}{Rrs(443) + Rrs(490)}\right)^{1.14}$
3	$b_{bp}(\lambda_0) = b_{bp}(55x) = \frac{u(\lambda_0) \times a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(55x)$	$b_{bp}(\lambda_0) = b_{bp}(670) = \frac{u(\lambda_0) \times a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(670)$
4	$b_{bp}(\lambda_0) = b_{bp}(55x) = \frac{u(\lambda_0) \times a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(55x)$ $b_{bp}(\lambda_0) = b_{bp}(670) = \frac{u(\lambda_0) \times a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(670)$ $\eta = 2.0 \left(1 - 1.2 \exp\left(-0.9 \frac{r_{rs}(443)}{r_{rs}(55x)}\right) \right)$	
5	$b_{bp}\!\left(\lambda ight)\!=b_{bp}\!\left(\lambda_0 ight)\!\!\left(rac{\lambda_0}{\lambda} ight)^{\!\eta}$	
6	$a(\lambda) = (1 - u(\lambda))(b_{bw}(\lambda) + b_{bp}(\lambda)) / u(\lambda)$	
7 & 8	$\zeta = 0.74 + \frac{0.2}{0.8 + r_{rs}(443)/r_{rs}(55x)}$	
	$\xi = e^{S(442.5 - 415.5)}, S = 0.015 + \frac{0.002}{0.6 + r_{rs}(443) / r_{rs}(55x)}$	
9 & 10	$a_g(443) = \frac{a(412) - \zeta a(443)}{\xi - \zeta} - \frac{a_w(412) - \zeta a_w(443)}{\xi - \zeta}$	
	$a_{dg}(\lambda) = a_g(443)e^{-S(\lambda-443)}, \ a_{ph}(\lambda) = a(\lambda) - a_{dg}(\lambda) - a_w(443)$	