Resumo de aula 10 - 1/2

Regra de Cadeia 1

Se y=f(u) e u=g(x) forem funções diferenciáveis, então

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Exemplo 1.1. Calcule a derivada de $y = (3x^2 + 1)^4$

Solução.

REGRA 1. $[u^n]' = nu^{n-1} \cdot \frac{du}{dx}$, onde u é uma função de x

Exemplo 1.2. Calcule f'(x) sendo

- (a) $f(x) = (5x^2 1)^3$ (b) $f(x) = \sqrt{x^2 7x}$
- (c) $f(x) = 3(\sin x + \cos x)^3$

Solução.

REGRA 2. $[e^u]' = e^u \cdot \frac{du}{dx}$, , onde u é uma função de x

Exemplo 1.3. Calcule f'(x) sendo $(\mathbf{a})f(x) = e^{2x}$

$$(\mathbf{b})f(x) = e^{-5x}$$

$$(c) f(x) = -2e^{senx}$$

Solução.

REGRA 3.

Sendo \boldsymbol{u} uma função de \boldsymbol{x}

(a)
$$[\cos u]' = -\sin u \cdot \frac{du}{dx}$$

(b)
$$[sen u]' = cos u \cdot \frac{du}{dx}$$

$$(c)[tqu]' = sec^2 u \cdot \frac{du}{dx}$$

$$(d)[\sec u]' = \sec u \cdot tg u \cdot \frac{du}{dx}$$

(e)
$$[\cot u]' = -\csc^2 u \cdot \frac{dx}{dx}$$

selido
$$u$$
 tima runção de x

$$(a)[\cos u]' = -sen u \cdot \frac{du}{dx}$$

$$(b)[sen u]' = \cos u \cdot \frac{du}{dx}$$

$$(c)[tg u]' = sec^2 u \cdot \frac{du}{dx}$$

$$(d)[sec u]' = sec u \cdot tg u \cdot \frac{du}{dx}$$

$$(e)[cotg u]' = -cossec^2 u \cdot \frac{du}{dx}$$

$$(f)[cossec u]' = -cossec u \cdot cotg u \cdot \frac{du}{dx}$$

Exemplo 1.4. Calcule f'(x) sendo

(a)
$$f(x) = cos(2x)$$

(b)
$$f(x) = sen(x^3)$$

(c)
$$f(x) = 2tg(3x)$$

Solução.

REGRA 4. $[\ln u]' = \frac{1}{u} \cdot \frac{du}{dx}$, onde u é uma função de x

Exemplo 1.5. Calcule f'(x) sendo

(a)
$$f(x) = ln(x^2 + 3x + 9)$$

(b)
$$f(x) = -2ln(2x - 3)$$

Solução.

Regra de Cadeia + Regra de Produto e Quociente

Exemplo 1.6. Calcule $\frac{dy}{dx}$

$$(a)y = e^x \cos 2x$$

(b)
$$y = -3x^2 ln(2x+1)$$

$$(c)y = \frac{\cos 5x}{\sin 2x}$$

Solução.