Chebyshev center based column generation

Chungmok Lee and Sungsoo Park
Speaker. Yerin Kim

Systems Optimization Laboratory Korea Advanced Institute of Science and Technology

January 16, 2019

Outline

1 Introduction

Standard Column Generation Column Generation Techniques Motivation

2 Methodology

Chebyshev center Chebyshev center based column generation Proximity adjusted Chebyshev center Stabilized Chebyshev center algorithm

3 Computational experiments

Computational environment

Case1: Binpacking problem

Case2 : vehicle routing problem with time windows (VRPTW)

Case3: generalized assignment problem (GAP)

4 Conclusion

Standard Column Generation

- ☐ Danzig-Wolfe Decomposition
 - ► An optimization problem (original form) :

$$min c^{T}x$$
s.t. $Ax \ge b$

$$x \in conv(X),$$

▶ Dantzig-Wolfe formulation in linear form (restricted version : $X^k \subseteq X$)

[Restricted Master Problem (RMP)]

$$\begin{aligned} &\min \ \sum_{i \in K} (c^T x^i) \lambda_i, \\ &\text{s.t. } \sum_{i \in K} (A x^i) \lambda_i \geq b, \\ &\sum_{i \in K} \lambda_i = 1, \\ &\lambda_i \geq 0, \quad \forall i \in K. \end{aligned}$$

[Dual of RMP]

$$\max f_D(\pi, \pi_0) = b^T \pi + \pi_0$$
s.t.
$$\sum_{i \in I} (Ax^i)^T \pi + \pi_0 \le c^T x^i, \quad \forall_{i \in K},$$

$$\pi \ge 0.$$

Standard Column Generation

- □ Danzig-Wolfe Decomposition (Cont.)
 - ▶ In the dual space, dual solutions are enhanced toward optimal!

(a) Dual space at the kth iteration.

• $f_D(\tilde{\pi}, \tilde{\pi_0}) \le f_D(\pi^*, \pi_0^*) \le f_D(\pi^k, \pi_0^k)$ (Large is better)

 $\tilde{\Pi}=(\tilde{\pi},\tilde{\pi_0})$: a feasible dual solution to the unrelaxed dual problem $\Pi^*=(\pi^*,\pi_0^*)$: the optimal solution of the unrelaxed dual problem $\Pi^k=(\pi^k,\pi_0^k)$: the dual optimal solution of the dual problem

Standard Column Generation

- ☐ Kelley's cutting plane method (Classical column generation)
 - ▶ solve separation problem (oracle) to find a maximally violated inequality at the current solution.
 - ▶ In the dual space, zigzag movement is appeared.

(b) Classical column generation (Kelley's method).

Standard Column Generation

Simplex based column-generation is a successful method for tackling large-size mathematical programming problems.
However, there are some major drawbacks (F.Vanderbeck,2005):
1. slow convergence (the tailing-off effect);
2. poor columns in the initial stage (the head-in effect);
3. the optimal value of the restricted master problem remains the
same during many iterations (the plateau effect);
4. the dual solution jumps from one extreme point to another

5. the intermediate Lagrangian dual bounds do not converge monotonically (the *yo-yo effect*).

(the bang-bang effect);

☐ Recently, many acceleration schemes for column generation have been proposed.

Column Generation Techniques

- ☐ Stabilized column generation ¹
 - ▶ Bundle method : the dual solution is often constrained to a given interval, and any deviation from the interval is penalized by a penalty function.
 - ▶ Motivation :

Figure 1: The safeguard polyhedron P for k = 3. $\theta^k(u) = \theta(\hat{u})$

- Standard column generation chooses u^k as the highest point in P
- Stabilized column generation : u^k is replaced by some less high but more central point in P

O. Briant, et. al., Comparison of bundle and classical column generation, Mathematical Programming Ser.A 299-344, 113, 2008

Column Generation Techniques

- ☐ Stabilized column generation (Cont.)
 - ► The penalty function for stabilized column generation : a simple V-shaped function
 - Stabilizing center
 - ▶ Slope ϵ determines how much the distance from the best dual solution is penalized.

Figure 2: Stabilization by a penalty

▶ The performance depends largely on how to manage parameters (stabilizing center, ϵ)

Motivation

- ☐ How to improve the convergence?
- ☐ From the literature reviews,

Figure 3: Π^* is the ture optimal solution. Π^k is the optimal solution of the current relaxed dual problem.

Chebyshev center

- Chebyshev center: the deepest point inside the set (the farthest from the exterior)
 - Aussumption : bounded, closed, nonempty convex set
 - ▶ For a convex set of $a_i^T x \leq b_i, \forall i \in \{1, ..., m\}$, the mathematical formulation is

$$\begin{aligned} &\max r\\ &\text{s.t. } a_i^Tx + \left\|a_i\right\|_* r \leq b_i, \forall i \in \{1,\ldots,m\},\\ &r \geq 0. \end{aligned} \qquad \left(\|a_i\|_* \text{is any norm of vector a.} \right)$$

- Accelerated Chebyshev center based cutting plane method(Betro,2004): concept of centering
- □ ACCPM + bundle method(S.Elhedhli and T.G.Moore, 2004) gives good convergence.

Chebyshev center based column generation

☐ Recall the dual of the restricted master problem.

$$\max f_D(\pi, \pi_0) = b^T \pi + \pi_0$$
s.t.
$$\sum_{i \in I} (Ax^i)^T \pi + \pi_0 \le c^T x^i, \quad \forall_{i \in K},$$

$$\pi \ge 0.$$

☐ Chebyshev dual master problem :

$$\max r$$
s.t. $\left(Ax^{i}\right)^{T}\pi + \pi_{0} + \left\|\left(Ax^{i}, 1\right)\right\|_{*} r \leq c^{T}x^{i}, \quad \forall i \in K,$

$$-\pi_{j} + r \leq 0, \quad \forall j = 1, \dots, m,$$

$$-b^{T}\pi - \pi_{0} + \left\|(b, 1)\right\|_{*} r \leq \tilde{Z},$$

$$\pi \geq 0,$$

$$r \geq 0.$$

Chebyshev center based column generation

☐ Chebyshev primal master problem :

$$\begin{aligned} & \max \ \sum_{i \in K} c^T x^i \lambda_i - \tilde{Z}z \\ & \text{s.t.} \ \sum_{i \in K} A x^i \lambda_i - y - b^T z \geq 0, \\ & \sum_{i \in K} \lambda_i - z = 0, \\ & \sum_{i \in K} \left\| \left(A x^i, 1 \right) \right\|_* \lambda_i + \sum_{j=1}^m y_j + \|(b, 1)\|_* z \geq 1, \\ & \lambda_i \geq 0, \quad \forall i \in K \\ & y_j \geq 0, \quad \forall j = 1, \dots, m, \\ & z \geq 0. \end{aligned}$$

□ Pricing subproblem : min
$$(c^T - \pi^T A) x - \pi'_0$$
, s.t. $x \in X$ $(\because z - \|(Ax^i, 1)\|_* r \le z')$

Chebyshev center based column generation

☐ The detailed algoirthm of the column generation based on the Chebyshev center

```
Algorithm 1 Column generation based on the Chebvshev center
 1: procedure ChebyshevCenterColGen
        \tilde{Z} \leftarrow 0
                                                                                                                    DO Or any valid dual bound
        repeat
            Solve the restricted Chebyshev primal master problem
            (\lambda', y', z') and (\pi', \pi'_0) \leftarrow the optimal primal and dual solutions
 5.
            if the optimal value \sum_{i \in K} c^T x^i \lambda_i' - \tilde{Z} z' is greater than \varepsilon z' then
                                                                                                                         \triangleright Equivalently r > \varepsilon z'
                Solve the column generation subproblem using (\pi', \pi'_0) as dual solution
                if new column is identified with x' then

⊳ Reduced cost is negative

                    Add new column (Ax', 1, ||(Ax', 1)||) to the problem
 9:
10.
                    \tilde{Z} \leftarrow b^T \pi' + \pi'_0
                                                                                                                Dupdate the best dual bound
11:
                end if
            end if
13:
        until r < \varepsilon z'
15: end procedure
```

- line 8-9 : z' < 0 ((π', π'_0)is infeasible to daul) \to add the new column.
- $line\ 10\text{-}11: z' \geq 0\ ((\pi',\pi'_0)$ is feasible to dual) \to update the best dual bound \tilde{Z} .
- line 14 : set termination criterion to εz instead of 0.

Proximity adjusted Chebyshev center

☐ The column inequalities attempt to *push* the next Chebyshev center down, while the best dual inequality tries to *lift* it up.

 $\hfill \Box$ By introducing the proximity parameter $\alpha,$ the equation is obtained :

$$\sum_{i \in K} \| \left(A x^{i}, 1 \right) \|_{*} \lambda_{i} + \sum_{j=1}^{m} y_{j} + \alpha \| (b, 1) \|_{*} z \ge 1$$

Proximity adjusted Chebyshev center

- ightharpoonup lpha determines how far the next Chebyshev center point is located from the dual bound inequality.
 - small $\alpha \to \text{update dual bound quickly}$
 - large α → more relevant new columns
 (∵ Chebyshev center ≈ true optimal solution(extreme point))
- ▶ Two more parameters : $T \in \mathbb{R}^+$ and $\Omega \in \mathbb{R}^+$
 - α is increased gradually up to Ω when the best dual value is not updated during the last $\mathcal T$ iterations.

Proximity adjusted Chebyshev center

with T=10 and $\Omega=10$.

- ► Test problem : vehicle routing problem (VRP) C101
- ightharpoonup Small α may lead to frequent updates of the dual bound.

Stabilized Chebyshev center algorithm

☐ Stabilized Chebyshev primal master problem

$$\begin{split} & \min \ \sum_{i \in K} c^T x^i \lambda_i - \tilde{Z}z + \sum_{j=1,\dots,m} \tilde{\Pi}_j \left(\delta_j^+ - \delta_j^- \right) + \tilde{\Pi}_0 \left(\delta_0^+ - \delta_0^- \right) \\ & \text{s.t.} \sum_{i \in K} A x^i \lambda_i - y - b^T z + \delta^+ - \delta^- \geq 0, \\ & \sum_{i \in K} \lambda_i - z + \delta_0^+ - \delta_0^- = 0, \\ & \sum_{i \in K} \left\| \left(A x^i, 1 \right) \right\|_* \lambda_i + \sum_{j=1}^m y_j + \| (b, 1) \|_* z \geq 1, \\ & \lambda_i \geq 0, \quad \forall i \in K, \\ & y_j \geq 0, \quad \forall j = 1, \dots, m, \\ & z \geq 0, \\ & \delta_j^+ \leq \epsilon, \quad \delta_j^- \leq \epsilon, \quad \forall j = 1, \dots, m, \\ & \delta_0^+ \leq \epsilon, \quad \delta_0^- \leq \epsilon. \end{split}$$

reduce to Chebyshev primal master problem iff $\epsilon = 0$.

Computational environment

- □ Test problems
- Case 1. binpacking problem
- Case 2. vehicle routing problem with time windows (VRPTW)
- Case 3. generalized assignment problem (GAP)
- ☐ Algorithms & Parameters
 - lacktriangle Chebyshev with lpha=1
 - ▶ PA Chebyshev with T=10 and $\Omega=100$
 - ▶ Stabilization
 - ► Kelley
 - ▶ Chebyshev+Sta.
 - ▶ PA Chebyshev+Sta. with T=10 and $\Omega=100$ * The penalty coefficient ε was initially set to 0.1, and then sequentially updated to 0.01, 0.001, 0.0001, and 0.
- □ Experiment Setting
 - AMD X2 2.9 GHz PC with 4 GB RAM
 - Optimization solver : CPLEX 10.1

Case1: Binpacking problem

☐ LP relaxation of the standard covering type Dantzig–Wolfe decomposition

$$\begin{aligned} & & [\mathsf{Binpacking\ Primal}] \\ & & \mathsf{min\ } \sum_{p \in P} x_p \\ & \mathsf{s.t.\ } \sum_{p \in P} a_{ip} x_p \geq 1, \quad \forall i = 1, \dots, I \\ & & x_p \geq 0, \quad \forall p \in P. \end{aligned}$$

[Binpacking Dual]

$$\max \sum_{i=1}^{r} \pi_{i}$$
s.t.
$$\sum_{i=1}^{l} a_{ip} \pi_{i} \leq 1, \quad \forall p \in P,$$

$$\pi_{i} \geq 0, \quad \forall i = 1, \dots, I.$$

[Binpacking Chebyshev Primal] min
$$\sum_{p\in P'} x_p - \sum_{i=1}^I \tilde{\pi}_i z$$
 s.t. $\sum_{p\in P'} a_{ip}x_p - y_i - z \geq 0, \quad \forall i=1,\ldots,I$
$$\sum_{p\in P'} \|a_p\| \, x_p + \sum_{i=1} y_i + \alpha \|\vec{1}\| z \geq 1$$

$$x_p > 0, \quad \forall p\in P', \quad y_i > 0, \quad \forall i=1,\ldots,I, \quad z>0.$$

Case1: Binpacking problem

☐ Computational Results

Table 1 Binpacking problem.

Prob	Chebys	shev	PA Chebyshev		Cheby	shev+Sta.	PA Chebyshev+Sta.			Stabi:	lization	Kelley		
	#iter	time (sub%)	#iter	time (sub%)	#iter	time (sub%)	#iter	time	(sub%)	#iter	time (sub%)	#iter	time (sub%)	
u120	373.1	0.4 (35.9%)	360.5	0.4 (32.4%)	201.8	0.3 (34.4%)	244.4	0.3 (35	5.7%)	329.8	0.4 (33.3%)	403.2	0.3 (31.0%)	
u250	760.6	2.2 (31.5%)	727.1	2.4 (27.6%)	398.8	1.8 (31.8%)	576.6	1.9 (28	3.6%)	669.9	2.2 (33.9%)	834.6	1.7 (30.2%)	
u500	1437.6	21.1 (52.0%)	1388.3	20.0 (51.9%)	797.1	14.8 (66.6%)	1154.1	17.0 (5	52.8%)	1222.5	15.7 (42.5%)	1584.0	10.0 (18.0%)	
u1000	2792	1274.7 (92.6%)	2721	1271.2 (92.8%)	1614	824.4 (96.9%)	2303	873.7	(91.8%)	2346	175.0 (59.1%)	3073	82.6 (9.6%)	
t60	268.6	0.3 (66.7%)	250.3	0.3 (66.7%)	100.9	0.1 (44.4%)	94.1	0.1 (42	2.9%)	99.8	0.1 (50.0%)	213.3	0.1 (50.0%)	
t120	483.8	3.2 (87.9%)	445.9	3.2 (89.1%)	177.5	0.4 (52.3%)	200.7	0.5 (68	3.8%)	225.2	0.7 (58.0%)	405.0	0.5 (51.9%)	
t249	819.8	15.2 (86.9%)	741.7	14.9 (85.6%)	370.6	2.3 (48.9%)	494.3	3.5 (63	3.4%)	487.5	11.2 (84.8%)	809.8	3.2 (52.4%)	
t501	1564.9	20.4 (30.1%)	1392.0	16.6 (31.0%)	757.6	14.6 (66.8%)	964.3	17.9 (6	51.7%)	1010.8	393.6 (98.0%)	1594.0	18.0 (39.6%)	

- Chebyshev+Sta. gives the best performance in terms of the iteration number.
- ▶ However, Kelley is the fastest among tested algorithms.
- ▶ In my opinion, it takes pretty long time for each iteration. (Chebyshev master problem is relatively hard to solve as it is.)

Case1: Binpacking problem

☐ Computational Results (Cont.)

Fig. 4. Performance profile graph for the binpacking problems.

(Large is better.)

performance ratio

set of problems)

$$\begin{array}{l} : \ r_{p,s} = \frac{t_{p,s}}{\min_{s \in S}\{t_{p,s}\}}, \, \forall p \in P \\ \text{($S:$ a set of algorithms , $P:$ a} \end{array}$$

performance measure

$$: \rho_s(\tau) = \frac{|\{p \in P | r_{p,s} \le \tau\}|}{|P|}$$

 $(\rho_s(1)$ means the probability that the algorithm s will not be outperformed by the rest of the algorithms.)

Case2: vehicle routing problem with time windows (VRPTW)

☐ Computational Results

Prob	Chebysh	iev	PA Chet	yshev	Chebysh	iev+Sta.	PA Cheb	yshev+Sta.	Stabili	zation	Kelley		
	#iter	time (sub%)	#iter	time (sub%)	#iter	time (sub%)	#iter	time (sub%)	#iter	time (sub%)	#iter	time (sub%	
C101	509	12.3 (96.2%)	634	21.5 (96.0%)	137	2.7 (97.0%)	762	23.3 (96.5%)	273	8.5 (97.7%)	825	35.0 (97.9%)	
C102	935	256.6 (99.7%)	1219	459.1 (99.3%)	220	62.6 (99.8%)	902	323.6 (99.3%)	526	201.6 (99.7%)	1084	447.8 (99.7%)	
C105	685	25.8 (97.9%)	814	46.8 (97.1%)	140	4.8 (98.3%)	1174	73.0 (96.6%)	315	17.5 (98.5%)	1653	107.8 (97.8%	
C106	578	74.5 (99.4%)	814	126.2 (99.0%)	176	9.7 (98.9%)	856	148.3 (98.9%)	443	81.4 (99.6%)	1062	199.9 (99.5%	
C107	799	41.7 (98.4%)	1210	99.2 (97.1%)	173	6.7 (98.5%)	1147	97.2 (97.6%)	376	36.3 (99.1%)	1036	142.1 (99.2%	
C108	599	351.7 (99.9%)	703	584.4 (99.8%)	325	165.2 (99.9%)	695	497.3 (99.8%)	536	390.4 (99.9%)	669	678.4 (99.9%	
C109	563	1070.4 (100.0%)	661	2252.4 (99.9%)	374	553.5 (99.9%)	625	1641.8 (99.9%)	547	1578.1 (100.0%)	666	2113.5 (100.0	
R101	428	4.3 (93.0%)	486	5.9 (88.3%)	284	2.9 (93.1%)	451	5.3 (88.9%)	401	4.7 (93.0%)	466	5.3 (94.0%	
R102	578	24.6 (98.0%)	553	30.3 (97.1%)	369	16.8 (98.4%)	509	26.5 (97.1%)	489	27.4 (98.3%)	573	29.8 (98.6%	
R103	1075	174.1 (99.2%)	594	97.1 (98.7%)	454	61.9 (99.2%)	657	107.3 (98.3%)	543	99.5 (99.3%)	617	115.4 (99.5%	
R105	553	19.2 (97.0%)	573	27.4 (94.1%)	381	13.8 (97.1%)	580	27.8 (94.2%)	492	21.3 (97.0%)	592	27.0 (97.7%	
R106	1215	138.0 (98.7%)	618	101.8 (98.2%)	409	57.5 (99.2%)	623	101.4 (98.2%)	566	104.0 (99.3%)	642	124.5 (99.4%	
R107	1060	361.2 (99.6%)	668	351.2 (99.2%)	397	152.3 (99.7%)	647	309.5 (99.2%)	568	337.2 (99.8%)	693	370.1 (99.8%	
R109	514	57.3 (99.1%)	536	97.7 (98.8%)	360	45.1 (99.1%)	546	101.1 (98.6%)	487	84.4 (99.3%)	580	110.1 (99.5%	
R110	562	188.4 (99.7%)	597	311.2 (99.5%)	412	149.3 (99.7%)	572	272.0 (99.4%)	546	291.3 (99.8%)	592	325.1 (99.8%	
R111	739	194.2 (99.6%)	632	242.2 (99.2%)	383	88.8 (99.5%)	653	242.0 (99.1%)	548	231.8 (99.7%)	660	274.4 (99.7%	
RC101	457	10.9 (96.6%)	503	14.3 (94.0%)	365	9.8 (96.6%)	499	14.0 (93.6%)	448	12.6 (96.4%)	495	13.6 (97.1%	
RC102	598	62.7 (99.1%)	564	84.6 (98.7%)	394	58.5 (99.4%)	557	91.5 (98.7%)	492	92.7 (99.4%)	571	102.7 (99.5%	
RC103	677	274.3 (99.7%)	618	343.6 (99.5%)	410	268.9 (99.8%)	583	319.6 (99.6%)	510	339.1 (99.8%)	580	354.1 (99.83	
tC105	519	30.8 (98.6%)	519	38.5 (97.8%)	354	24.0 (98.6%)	529	40.3 (97.5%)	454	38.2 (98.8%)	547	41.0 (98.93	
C106	470	64.6 (99.3%)	520	97.5 (99.0%)	377	58.8 (99.3%)	523	98.3 (99.1%)	475	89.7 (99.5%)	538	98.0 (99.55	
RC 107	523	382.3 (99.9%)	537	485.6 (99.8%)	373	271.8 (99.9%)	535	558.8 (99.8%)	478	498.1 (99.9%)	553	532.1 (99.99	

► Chebyshev+Sta. gives the best performance in terms of the iteration number and time.

Case2: vehicle routing problem with time windows (VRPTW)

☐ Computational Results (Cont.)

Fig. 5. Performance profile graph for the VRP problems.

Case3: generalized assignment problem (GAP)

☐ Computational Results

Table 3
Generalized assignment problem.

Prob	Chebyshev			PA Chebyshev		Chebyshev+Sta.			PA Chebyshev+Sta.			Stabilization			Kelley's			
	#iter	time	(sub%)	#iter	time	(sub%)	#iter	time	(sub%)	#iter	time	(sub%)	#iter	time	(sub%)	#iter	time	(sub%)
d05100	985	34.6	(57.9%)	861	38.4	(56.3%)	729	23.9	(54.7%)	791	34.7	(60.6%)	712	16.1	(58.9%)	825	26.4	(58.8%)
d10100	233	3.7	(50.9%)	203	3.6	(53.3%)	216	2.4	(39.1%)	229	4.2	(46.0%)	302	4.3	(49.1%)	267	3.8	(50.3%)
d10200	1104	350.6	(49.9%)	1022	518.9	(37.7%)	683	67.5	(33.5%)	1013	483.5	(23.3%)	916	130.5	(46.2%)	1114	225.1	(45.8%)
d20100	126	1.4	(44.6%)	124	1.5	(43.5%)	154	1.6	(39.9%)	136	2.0	(47.3%)	176	2.0	(57.4%)	162	1.8	(54.9%)
d20200	328	34.7	(39.6%)	263	35.5	(43.0%)	396	38.5	(24.8%)	282	35.6	(38.9%)	445	44.2	(33.1%)	411	42.9	(33.6%)
e05100	709	19.8	(55.3%)	675	26.8	(49.8%)	692	15.3	(46.5%)	681	22.8	(57.3%)	617	12.7	(59.0%)	710	21.2	(57.1%)
e10100	276	4.1	(49.9%)	236	5.2	(41.8%)	347	4.6	(44.5%)	252	4.9	(49.0%)	319	4.5	(48.5%)	271	3.5	(48.1%)
e10200	1338	469.7	(39.0%)	1173	734.0	(28.3%)	1260	407.4	(30.2%)	1149	671.8	(24.9%)	950	132.8	(55.0%)	1267	247.9	(47.3%)
e20100	151	1.6	(52.1%)	126	1.8	(52.0%)	227	2.7	(43.5%)	151	2.6	(51.9%)	189	2.2	(53.9%)	168	1.7	(56.1%)
e20200	377	68.1	(61.1%)	292	66.6	(63.3%)	507	65.7	(39.1%)	299	51.9	(48.4%)	495	45.8	(35.6%)	439	37.7	(32.5%)

► PA Chebyshev outperforms the other five algorithms. (The performance gap is not that apparent.)

Case3: generalized assignment problem (GAP)

☐ Computational Results (Cont.)

Fig. 6. Performance profile graph for the GAP problems.

Conclusion

☐ The column generation procedure based on the simplex algorithm often shows desperately slow convergence. (zig-zag movement) Chebyshev center based column generation Chebyshev center Proximity adjusted Chebyshev center ▶ Chebyshev center + Stabilization Proximity adjusted Chebyshev center + Stabilization Computational experiments on the binpacking, VRP, GAP The proposed algorithm could accelerate the column generation procedure.

Discussion

□ Chebyshev doesn't show good performance on the binpacking and GAP.
 ▶ Both have low percentage of solving the sub-problems.
 ▶ The degree of degeneracy on the master problem seems to be big.
 □ The proposed algorithms also largely depend on the algorithmic parameters.
 □ Github page: https://github.com/mody3062/CCG