Pole Shed App ver 01 2022	
Job Number:	BWhite
Issue:	Consulting Ltd
PRODUCER STATEMENT-PS1-DES	SIGN
ISSUED BY: BWhite Consulting Ltd (Design Engineer: Bevan White)	
TO BE SUPPLIED TO: Hurunui District Council IN RESPECT OF: Propose	ed NEW Farm Shed
AT: 82 Carters Road, Amberley, New Zealand	
LEGAL DESCRIPTION	
We have been engaged by Ezequote Pty Ltd to provide Specific Structural Eng the requirements of Clause(s) B1 of the Building Code for part only (as specified the proposed building work.	
☐ ALL ☐ Part only as specified: Purlins, Rafters, Girts, Poles, Columns, Po	le embedment and all connections
The design has been prepared in accordance with compliance documents to NZ Business, Innovation & Employment Clauses B1/VM1 and B1/VM4	Building Code issued by Ministry of
The proposed building work covered by the producer statement is described on Finumbered A101-A114 Rev-1 dated 05/04/2024 together with the following specified the schedule attached to this statement: Design Featured Report Dated 13/04/2024	ication, and other documents set out in
On behalf of BWhite Consulting Ltd, and subject to:	
 Site verification of the following design assumptions: an Ultimate foundation accordance with NZS3604:2011 The building has a design life of 50 years and am Importance Level 1 Unless specifically noted, compliance of the drawings to None-Specific have not been checked by this practice This Certificate does not cover any other building code clause including. Inspections of the building to be completed by Hurunui District Count undertaking inspections, we cannot issue a producer Statement-PS4-C This Producer Statement- Design is valid for a building consent issued All proprietary products meeting their performance specification requirement 	e codes such as NZS3604 and NZS4229 ag weather tightness cil. As BWhite Consulting Ltd are not Construction Review. within 1 year from the date of issue
I believe on reasonable grounds that a) the building, if constructed in accordance other documents provided or listed in the attached schedule, will comply with the and that b), the presons who have undertaken the design have the necessary comfollow level of construction monitoring/observation:	relevant provisions of the Building Code
✓ CM1 ☐ CM2 ☐ CM3 ☐ CM4 ☐ CM5 or as per agreement with owner/d	eveloper (stated above)
I, Bevan White am CPEng 108276 I am Member of Engineering New Zealand a BE.Civil and holds a current policy of Professional Indemnity Insurance no less	

Signed by Bevan White on behalf of BWhite Consulting Ltd Dated: 13/04/2024

Email: bwhitecpeng@gmail.com Phone: 0211-979786

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise(including negligence), is limited to the sum of \$200,000.

 $This\ form\ is\ to\ accompany\ Form\ 2\ of\ the\ Building(Forms)\ Regulations\ 2004\ for\ the\ application\ of\ a\ Building\ Consent$

Date: 13/04/2024 BWhite
Consulting Ltd

18B Jules Crescent,

Bell Block New Plymouth 4312

New Zealand File No:

DESIGN FEATURES SUMMARY FOR PROPOSED NEW FARM SHED 82 CARTERS ROAD, AMBERLEY, NEW ZEALAND

Site Specific Loads

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & EQ ARI	2000 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	42.77 m/s
Wind Pressure	1.1 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years

Timber

Sawn Timber to be graded to the properties of SG6 and SG8 or better as mentioned on plans, with moisture content of 18% or less for dry and 25% or less for wet.

The following standards have been used in the design of this structure

- NZS 3603:1993 Timber Structures Standard
- NZS 3604:2011 Timber Framed Buildings. Standards New Zealand, 2011
- NZS 3404:1997 Steel Structures
- AS/NZS 1170 2003 Structural Design Actions
- AS/NZS 1170.2 2021 Structural Design Actions-Wind Action
- Branz. "Engineering Basis of NZS 3604". April 2013

Yours Faithfully

BWhite CONSULTING LTD

Bevan White

Director | BE Civil . CMengNZ CPEng

Email: bwhitecpeng@gmail.com Contact: 0211 979 786

 Job No.:
 401 Yard
 Address:
 82 Carters Road, Amberley, New Zealand
 Date:
 13/04/2024

 Latitude:
 -43.152716
 Longitude:
 172.729438
 Elevation:
 43.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	2000 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	42.77 m/s
Wind Pressure	1.1 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp,i = -0.3

For roof CP,e from 0 m To 1.7 m Cpe = -0.9533 pe = -0.75 KPa pnet = -0.75 KPa

For roof CP,e from 1.7 m To 3.40 m Cpe = -0.8733 pe = -0.69 KPa pnet = -0.69 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 6 m Cpe = 0.7 pe = 0.55 KPa pnet = 0.81 KPa

For side wall CP,e from 0 m To 3.4 m Cpe = pe = -0.51 KPa pnet = -0.51 KPa

Maximum Upward pressure used in roof member Design = 0.75 KPa

Maximum Downward pressure used in roof member Design = $0.34~\mathrm{KPa}$

Maximum Wall pressure used in Design = 0.81 KPa

Maximum Racking pressure used in Design = 0.94 KPa

Design Summary

Purlin Design

Purlin Spacing = 650 mm Purlin Span = 7350 mm Try Purlin 240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.37 S1 Downward =13.82 S1 Upward =27.83

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.48 Kn-m	Capacity	9.37 Kn-m	Passing Percentage	633.11 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.08 Kn-m	Capacity	12.49 Kn-m	Passing Percentage	306.13 %
M0.9D-WnUp	-2.3 Kn-m	Capacity	-6.22 Kn-m	Passing Percentage	270.43 %

Pole Shed App Ver 01 2022 0.81 Kn Capacity 18.41 Kn Passing Percentage 2272.84 % $V_{1.35D}$ 2.22 Kn Capacity 24.54 Kn Passing Percentage 1105.41 % $V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$ -1.25 Kn Capacity -30.68 Kn Passing Percentage 2454.40 % $V_{0.9D\text{-W}nUp}$

Deflections

Modulus of Elasticity = 12100 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 22.99 mm

Limit by Woolcock et al, 1999 Span/240 = 30.42 mm

Deflection under Dead and Service Wind = 25.67 mm

Limit by Woolcock et al, 1999 Span/100 = 73.00 mm

Reactions

Maximum downward = 2.22 kn Maximum upward = -1.25 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 3750 mm External Rafter Span = 5813 mm Try Rafter 300x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.88

K8 Upward =0.88 S1 Downward =15.50 S1 Upward =15.50

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	5.35 Kn-m	Capacity	13.69 Kn-m	Passing Percentage	255.89 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	14.73 Kn-m	Capacity	18.26 Kn-m	Passing Percentage	123.96 %
\mathbf{M} 0.9D-WnUp	-8.32 Kn-m	Capacity	-22.82 Kn-m	Passing Percentage	274.28 %
V _{1.35D}	3.68 Kn	Capacity	23.01 Kn	Passing Percentage	625.27 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	10.14 Kn	Capacity	30.68 Kn	Passing Percentage	302.56 %
V _{0.9D-WnUp}	-5.72 Kn	Capacity	-38.35 Kn	Passing Percentage	670.45 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 17.05 mm

Limit by Woolcock et al, 1999 Span/240= 25.00 mm

Deflection under Dead and Service Wind = 19.03 mm

Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 10.14 kn Maximum upward = -5.72 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -40.07 \text{ kn} > -5.72 \text{ Kn}$

Single Shear Capacity under short term loads = -14.56 Kn > -5.72 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3750 mm

Intermediate Span = 3049 mm

Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.66

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	3.92 Kn-m	Capacity	7.46 Kn-m	Passing Percentage	190.31 %
$ m V_{0.9D-WnUp}$	5.15 Kn	Capacity	-32.16 Kn	Passing Percentage	624.47 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 20.055 mm

Limit byWoolcock et al, 1999 Span/100 = 30.49 mm

Reactions

Maximum = 5.15 kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm

Intermediate Span = 3250 mm

Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =0.68

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.78 Kn-m Capacity 7.46 Kn-m Passing Percentage 419.10 % $V_{0.9D\text{-W}nUp}$ 2.19 Kn Capacity 32.16 Kn Passing Percentage 1468.49 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 20.695 mm

Limit by Woolcock et al, 1999 Span/100 = 32.50 mm

Reactions

Maximum = 2.19 kn

Girt Design Front and Back

Girt's Spacing = 900 mm

Girt's Span = 3750 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.53 S1 Downward =11.27 S1 Upward =23.01

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.28 Kn-m	Capacity	1.98 Kn-m	Passing Percentage	154.69 %
$ m V_{0.9D-WnUp}$	1.37 Kn	Capacity	16.08 Kn	Passing Percentage	1173.72 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.94 mm Limit by Woolcock et al, 1999 Span/100 = 37.50 mm

Sag during installation = 11.99 mm

Reactions

Maximum = 1.37 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 3000 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.64 S1 Downward =11.27 S1 Upward =20.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.82 Kn-m	Capacity	2.40 Kn-m	Passing Percentage	292.68 %
$V_{0.9D\text{-W}nUp}$	1.09 Kn	Capacity	16.08 Kn	Passing Percentage	1475.23 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.12 mm Sag during installation =4.91 mm Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Reactions

Maximum = 1.09 kn

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 22.5 m^2

Dead	5.63 Kn	Live	5.63 Kn
Wind Down	7.65 Kn	Snow	14.18 Kn
Moment Wind	8.54 Kn-m	Moment snow	3.03 Kn-m
Phi	0.8	K8	0.88
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	448.86 Kn	PhiMnx Wind	24.04 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	269.32 Kn	PhiMnx Dead	14.43 Kn-m	PhiVnx Dead	37.77 Kn
PhiNcx Snow	359.09 Kn	PhiMnx Snow	19.24 Kn-m	PhiVnx Snow	50.36 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.42 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.19 < 1 \text{ OK}$

Deflection at top under service lateral loads = 16.76 mm < 35.91 mm

Ds =	0.6 mm	Pile Diameter
L=	1500 mm	Pile embedment length
fl =	2700 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Total Area over Pole = 22.5 m^2

Moment Wind = 8.54 Kn-m Moment Snow = 3.03 Kn-m Shear Wind = 3.16 Kn Shear Snow = 3.03 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.16 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.65 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.73 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1500 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 8.54 Kn-m Moment Snow = 3.03 Kn-m Shear Wind = 3.16 Kn Shear Snow = 3.03 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.16 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.65 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.73 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.02 Kn

Uplift on one Pile = 11.81 Kn

Uplift is ok