## Deep Learning CSI\_7\_DEL



Week 9:Deep Belief Networks



#### **Deep Belief Networks**

- Probabilistic generative model.
- Introduced by Hinton et al in 2006.
- Non-linear dimensionality reduction.
- Captures correlations between the activities of the hidden features in the preceding layers.
- A Greedy layer-by-layer unsupervised training (Vanishing gradient?)



#### Deep Belief Networks: Characteristics

- Generative: DBN can produce randomly created values for the input values. Some research paper refer to this as dreaming.
- Probabilistic: DBNs are used for classification tasks. The output is the probability that certain input belongs a particular class.
- Multi-layered: like other neural networks, DBN is made up of multiple layers.
- Stochastic latent variables: Since DBN is made up of stacked RBMs, it produces random (*stochastic*) values that can not be directly observed (*latent*).

  London South Bank University

#### **DBN vs Feedforward Neural Networks**

| Deep Belief Networks                                         | Feedforward Neural Networks                                     |
|--------------------------------------------------------------|-----------------------------------------------------------------|
| Input must be <b>Binary</b>                                  | Input can be decimal or binary                                  |
| The output is <b>a class</b> to which the input belongs      | The output can be <b>a class</b> or a <b>numeric</b> prediction |
| Can generate <b>plausible input</b> based on a given outcome | Can not perform like DBN                                        |



#### **DBN Applications**

- Generating and reconstructing images (Hinton et al 2007)
- Collaborative filtering for recommender system(Salakhutdinov et al., <u>2007</u>).
- Motion-capture data (Taylor et. al. 2007).
- Images and information retrieval and reconstruction. (Gehler et al. <u>2006</u>)



#### **DBN** Architecture

- Input fed to the DBN network passes through a series of layers.
- DBN is made up of stacked RBM
- The hidden units become the output to the next layers
- Adding additional RBMs causes deeper DBN.
- Even though RBMs are unsupervised, the desired outcome in DBN is supervised.
- A final logistic regression layer is included to associate the given input to an output class.

Source: <a href="https://www.mdpi.com/2072-4292/14/6/1484/htm">https://www.mdpi.com/2072-4292/14/6/1484/htm</a>



#### **DBN Architecture: Stacked RBMs**

- Each RBM has visible layer v and a single layer h.
- $RBM_1$  is trained using the visible neurons
- The hidden layer  $h_2$  of  $RBM_2$  is trained using the previously trained layer  $h_1$ .
- The output of  $h_2$  is used to train  $RBM_3$  and son on.





Source: https://www.sciencedirect.com/science/article/pii/B9780128154809000116

#### Early DBN: Hinton's 2006 Experiment

- First DBN network was trained by Hinton in 2006
- The input was a 28X28 pixels or 784 single bit vector
- Monochrome and single channel (black & white)
- 3 layers of stacked RBMs
- L1= 500 neurons, L2= 500 neurons, L3= 200 neurons
- The output neurons here are 10 digits.



#### **DBN Dreaming of Digits**

- The following digits have been created using DBN and were taking from Hinton's (2006) deep learning paper
- The first row shows zeros generated by DBN using contrastive divergence by Gibbs sampling.





Source: Hinton et al 2006

#### **Energy function / Cost function**

- Low energy translates to high probability (High accuracy).
- In the case of DBN, there is an energy function for each RBM layer.
- The total energy of the joint configuration of the visible and hidden neurons can be formulated:

$$E(v,h) = -\sum_{i} a_i v_i - \sum_{j} b_j h_j - \sum_{i,j} w_{ij} v_i h_j$$
$$= -a^T v - b^T h - v^T W h$$

• Where  $a_i$ ,  $b_i$  are biases, weights represents  $w_{ji}$  and  $v_i$ ,  $b_j$  are the corresponding visible and hidden units.

#### Recap: RBM: Hidden and Visible units

• In For any hidden unit  $h_i$ , he probability P that  $h_i$  can be turn on can be computed as follow:

$$P(h_i=1)=rac{1}{1-e^{-z_i}}$$
 (a sigmoid basically also called partition function)

 $z_i$  represents the sum of all input combinations:

$$z_{i} = \sum_{i} w_{ji} v_{i} + b_{i}$$

Where  $w_{ji}$  is the weight connection between the visible and the hidden neurons and  $b_i$  is the bias added to the visible neuron.

• Similarly, for any hidden unit  $v_i$ , he probability P that  $v_i$  can be turn on can be computed as follow:

$$P(v_i = 1) = \frac{1}{1 - e^{-y_i}}$$
Where  $y_i = \sum_i w_{ii} v_i + b_i$ 

 Once this output is calculated, it gets passed on the next layer as input



#### **DBN Training**

- DBN is pretrained using an algorithm called Greedy layer-wise training.
- Each RBM layer is trained separately with gradient descent.
- The purpose of this algorithm is to produce binary vector to feed into the contrastive divergence algorithm.
- The weights for each layer are updated using:

$$w_{ij}(t+1) = w_{ij}(t) + \eta \frac{\partial \log p(v)}{\partial w_{ij}}$$

$$\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty$$

• Where  $\langle v_i h_i \rangle$  is the average over many generated samples



#### **DBN Training:**

- Several steps of Gibbs sampling executed on each RBM layer.
- The logistic layer is trained using backpropagation.
- The whole network weights are adjusted in a single passed (fine-tuning)





#### **Contrastive Divergence by Gibbs sampling**

- RBMs layers in DBN are pretrained using CD.
- The CD algorithm works as follow:

Step 1: Initialise the visible units using a random training vector

**Step 2:** Start Gibb Sampling and repeat for N step:

**Step 2.1:** Update the hidden neurons given the visible neuron  $p(h_j = 1|V) = \sigma(b_j + \sum_i v_i w_{ij})$ 

**Step 2.2:** Update the visible neurons given the hidden neuron  $p(v_i = 1|H) = \sigma(a_i + \sum_j h_j w_{ij})$ 

Step 2.3: Re—update the hidden neurons given the constructed visible neurons using equation

in 2.1

Step 2.4: Update the weight  $W_{new} = W_{old} + \Delta W$ 

 Once this is done, DBN feeds the output of the current RBM hidden layer to the next RBM input layer as an input.



#### **Example: MNIST Dataset**





#### **Example: Greedy Algorithm Training**

Layer-by-layer Greedy Training

```
[BernoulliRBM] Iteration 1, pseudo-likelihood = -26.72, time = 0.07s
[BernoulliRBM] Iteration 2, pseudo-likelihood = -26.19, time = 0.10s
[BernoulliRBM] Iteration 3, pseudo-likelihood = -24.22, time = 0.10s
[BernoulliRBM] Iteration 4, pseudo-likelihood = -23.68, time = 0.11s
[BernoulliRBM] Iteration 5, pseudo-likelihood = -22.78, time = 0.11s
[BernoulliRBM] Iteration 6, pseudo-likelihood = -22.26, time = 0.12s
[BernoulliRBM] Iteration 7, pseudo-likelihood = -22.44, time = 0.10s
[BernoulliRBM] Iteration 8, pseudo-likelihood = -22.40, time = 0.11s
[BernoulliRBM] Iteration 9, pseudo-likelihood = -21.67, time = 0.12s
[BernoulliRBM] Iteration 10, pseudo-likelihood = -21.30, time = 0.13s
[BernoulliRBM] Iteration 1, pseudo-likelihood = -45.36, time = 0.11s
[BernoulliRBM] Iteration 2, pseudo-likelihood = -44.76, time = 0.20s
[BernoulliRBM] Iteration 3, pseudo-likelihood = -43.70, time = 0.17s
[BernoulliRBM] Iteration 4, pseudo-likelihood = -44.89, time = 0.18s
[BernoulliRBM] Iteration 5, pseudo-likelihood = -43.69, time = 0.18s
[BernoulliRBM] Iteration 6, pseudo-likelihood = -42.48, time = 0.17s
[BernoulliRBM] Iteration 7, pseudo-likelihood = -43.42, time = 0.17s
[BernoulliRBM] Iteration 8, pseudo-likelihood = -43.12, time = 0.17s
[BernoulliRBM] Iteration 9, pseudo-likelihood = -43.96, time = 0.16s
[BernoulliRBM] Iteration 10, pseudo-likelihood = -44.07, time = 0.16s
```

RBM 1 training

RBM 2 training



#### **Example: Model performance**

| Model performance: |              |              |          |              |
|--------------------|--------------|--------------|----------|--------------|
|                    | precision    | recall       | f1-score | support      |
|                    |              |              |          |              |
| e                  | 1.00         | 1.00         | 1.00     | 27           |
| 1                  | 0.93         | 0.74         | 0.83     | 35           |
| 2                  | 0.79         | 0.86         | 0.83     | 36           |
| 3                  | 0.86         | 0.83         | 0.84     | 29           |
| 4                  | 0.97         | 0.97         | 0.97     | 30           |
| 5                  | 0.97         | 0.97         | 0.97     | 40           |
| 6                  | 1.00         | 1.00         | 1.00     | 44           |
| 7                  | 0.93         | 0.97         | 0.95     | 39           |
| 8                  | 0.85         | 0.85         | 0.85     | 39           |
| 9                  | 0.82         | 0.88         | 0.85     | 41           |
|                    |              |              |          |              |
| accuracy           | ,            |              | 0.91     | 360          |
| macro avg          | 0.91         | 0.91         | 0.91     | 360          |
| weighted avg       | 0.91         | 0.91         | 0.91     | 360          |
|                    |              |              |          |              |
|                    | <del>-</del> | <del>-</del> | <u> </u> | <del>-</del> |



## **Example: RBM 1 Components**

256 components extracted by RBM 1



## **Example: RBM 2 components**

256 components extracted by RBM 2



#### **Example: Logistic Classification**

#### Multi input classification results



#### Single classification result

This shape was predicted as number 5





#### **DBN** Limitations

- Very restrictive!
- Sometimes slow to train given the number of samples.
- The input can only be binary and not continuous.
- DBNs can only be used for classification and not for regression



#### **Summary**

- A DBN network undergo unsupervised and supervised training.
- During the unsupervised training, DBN does not use the output labels.
- During the supervised training, on training data with labels is used.
- Once the unsupervised phase is finished, the output from the layers is refined with supervised logistic regression.
- The logistic function layer is used for classification task.



# Questions & Answers



