Тема 2 б)

Контрольные задания

- 1. Записать функцию $f(x) = \sin^3 x$ в виде выражения Maple. Вычислить ее точное и приближенное значение при $x = \pi/4$. Использовать три способа: присваивание переменной значение, команду eval и команду subs. Можно использовать команду unassign для отмены присваивания (см. предыдущую тему).
- 2. Записать функцию $f(x,y) = \left(\frac{\arctan(x+y)}{\arctan(x-y)}\right)^2$ в виде функционального оператора и вычислить ее значения при x=1, y=0 и при $x=(1+\sqrt{3})/2$, $y=(1-\sqrt{3})/2$.
- 3. Задать функцию $f(x,y) = \frac{x^3y^2 x^2y^3}{(xy)^5}$ тремя способами вычислить ее значение при x=a, y=1/a: 1) с помощью оператора присваивания; 2) в виде функционального оператора 3) с помощью команды unapply.
- 4. Задать кусочно-непрерывную функцию $y = \begin{cases} x^2 2x + 2, -3 \le x \le 4 \\ x 5, x < -3 \end{cases}$ (команда -x 2, x > 4piecewise).
- 5. Решить уравнение $\sqrt{x+2} = 2-x$.
- 5. Решить уравнений $\begin{cases} x + 2y + 3z = 8, \\ 3x + y + z = 6, \\ 2x + y + 2z = 6. \end{cases}$ 7. Найти все точные решения системы $\begin{cases} x^2 5xy + 6y^2 = 0, \\ x^2 + y^2 = 10. \end{cases}$ в аналитическом виде.
- 8. Найти все решения тригонометрического уравнения $\sin^4 x \cos^4 x = 1/2$.
- 9. Найти численное решение уравнения $e^x = 2(1-x)^2$.
- 10. Решить неравенство $2 \ln^2 x \ln x < 1$. Получить решение в виде интервального множества и в виде ограничения по искомой переменной.
- 11. Решить неравенство $x^2 + 2|x + 3| 10 \le 0$. Получить решение в виде интервального множества и в виде ограничения по искомой переменной.
- 12. Проверить, являются ли значения x=1, x=2 и x=3корнями $x^3 - 16x^2 + 51x - 36 = 0$ (команда subs).
- 13. Вычислить приближенно все вещественные решения уравнения $9.5 x^2 = 4 \sin(2x) + 4$ (использовать график для подбора интервалов поиска корней). Проверить каждое из найденных решений, подставляя его в первоначальное уравнение. Найти комплексные корни с помощью пакета RootFinding.
- 14. Решить уравнение с параметрами $ax^3 bx^2 + cx = 0$ относительно x. Определить значения параметров, при которых уравнение будет иметь 1) кратные корни, 2) все вещественные корни. Записать ответ в текстовом комментарии.