MATH 2267 Week 1

Sets, Functions and Inequalities

Overview

- Part 1: Sets
 - What are sets?
 - How can we use them?
- Part 2: Functions
 - What are functions?
 - Types of Functions
 - Standard Functions and their properties
 - Exponential
 - Logarithm
 - Trigonometric Functions
- Part 3: Inequalities
 - An introduction
 - Solving inequalities

Part 1: Sets What are sets?

- A set is <u>a collection of distinct objects called elements</u>
- Examples:
 - {1,2,3,4} is a **set** of numbers
 - {apples, bananas, figs, oranges} is a set of fruits
- These are **NOT** sets:
 - {all young workers} ← objects not clearly specified
 - $\{1,2,3,4,\sqrt{9}\}$ \leftarrow objects not unique $(\sqrt{9}=3)$

Part 1: Sets

How do we write them?

- List all of the objects:
 - {1,2,3,4}
 - {2,4,6,8,...}
- Use Set-Builder Notation:
 - {variables | conditions that elements of set must satisfy}
 - $\{n \mid n \text{ is a positive integer, and } n \leq 4\} = \{1,2,3,4\}$
 - $\{x \mid -2 \le x < 4\}$

Part 1: Sets Standard Sets

- ϕ is the empty set
 - Contains no elements
 - Every set contains the empty set
- N is the set of natural numbers {1,2,3, ...}
 - Some textbooks include 0, so be careful
- \mathbb{Z} is the set of integers $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Q is the set of rational numbers
 - Can be written as $\frac{a}{b}$ where a and b are integers
- R is the set of real numbers
 - Any "standard" number (that you'll come across in this course)

Part 1: Sets

Standard Sets

- Can specify points in 2-, 3- or higher-dimensional space:
 - \mathbb{R}^2 is the set of all real points on a 2-dimensional plane (x,y)
 - \mathbb{R}^3 is the set of all real points in a 3-dimensional space (x,y,z)
- Can do the same with other sets:
 - \mathbb{N}^2 would be the set of pairs of natural numbers (e.g. (1,1), (1,2))
 - $\mathbb{R} \times \mathbb{Q}$ would be the set of pairs of a real number with a rational number (e.g. (1,1), $(\pi, 0.5)$, etc)
- Use in Set-Builder Notation:
 - Declare what sort of values we want:
 - $\{n \in \mathbb{N} \mid n \le 4\} = \{1,2,3,4\}$
 - $\{(x,y) \in \mathbb{R}^2 | \sqrt{x^2 + y^2} = 2\}$

∈ means "element of"

- Don't have to use this style:
 - $\{x \in \mathbb{Z} \mid x < 3\} = \{x \mid x \in \mathbb{Z} \text{ and } x < 3\}$

Part 1: Sets Sets of Real Numbers

- Can write intervals in shorthand
 - $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
 - $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
 - $[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$
 - $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$
 - $\bullet \ \ (-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$
 - $(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$
 - $(a, \infty) = \{x \in \mathbb{R} \mid x > a\}$
 - $[a, \infty) = \{x \in \mathbb{R} \mid x \ge a\}$

(means "don't include end point"

[means "include end point"

Part 1: Sets Comparing Sets

- € means "element of"
- ∉ means "not an element of"
- ⊆ means subset, or "is contained by"
 - N ⊆ 7.
 - $\{1,2,3\} \subseteq \{1,2,3\}$
 - $A \subseteq A$
- ⊊ means proper subset, or "is contained by, but not equal to"
 - $\{1,2,3\} \subsetneq \{1,2,3,4\}$
 - $\mathbb{N} \subsetneq \mathbb{Z}$
- - Different people use it slightly differently, so be careful
 - We'll be using it as being meaning proper subset (same definition as ⊊)
- Supersets, meaning "contains"
 - \supseteq (Superset): $\{1,2,3,4\} \supseteq \{1,2,3,4\}$
 - \supseteq (Proper Superset) : $\{1,2,3,4\} \supseteq \{1,2,3\}$
 - ⊃ is equally ambiguous as ⊂ : For this class, use it as meaning ⊋

Part 1: Sets

Operations on Sets

- $A \cup B$, the **union** of A and B, equals:
 - $\{x \mid x \in A \text{ or } x \in B\}$
- Union of infinitely many sets:

$$A \cup B \cup C \cup D \cup ...$$

- $A \cap B$, intersection of A and B, equals
 - $\{x \mid x \in A \text{ and } x \in B\}$
- Intersection of infinitely many sets:

$$A \cap B \cap C \cap D \cap \dots$$

- *A*\B, difference of A and B, equals
 - $\{x \mid x \in A \text{ and } x \notin B\}$

Part 1: Sets Examples

- Write the elements of $\{x \in \mathbb{N} \mid x < 5\}$
 - {1,2,3,4}
- Are the following statements true?
 - $\pi \in \mathbb{Q}$
 - $(1,\sqrt{2}) \in \mathbb{R}^2$
 - $0.5 \in \{x \in \mathbb{Z} \mid 2x = 1\}$
 - $\frac{1}{3} \in \{x \in \mathbb{R} \mid 9x^2 = 1\}$

Part 1: Sets **Examples**

- Write the elements of $\{x \in \mathbb{N} \mid x < 5\}$
 - {1,2,3,4}
- Are the following statements true?

•
$$\pi \in \mathbb{Q}$$

•
$$(1,\sqrt{2}) \in \mathbb{R}^2$$

•
$$0.5 \in \{x \in \mathbb{Z} \mid 2x = 1\}$$

•
$$0.5 \in \{x \in \mathbb{Z} \mid 2x = 1\}$$
 FALSE $(0.5 \notin \mathbb{Z}, RHS \text{ is empty})$

•
$$\frac{1}{3} \in \{x \in \mathbb{R} \mid 9x^2 = 1\}$$

TRUE

Part 1: Sets Examples

- Describe all the subsets of each of {dog, cat, budgie}
 - ϕ , {dog}, {cat}, {budgie}, {dog, cat}, {dog, budgie}, {cat, budgie}, {dog, cat, budgie}
- Using interval notation, write:
 - R\{3}
 - $(-\infty,3) \cup (3,\infty)$
 - $\{x \in \mathbb{R} \mid x^2 < 4\}$
 - (-2,2)
 - $\{x \in \mathbb{R} \mid x(x-1) \ge 0\}$
 - $(-\infty,0] \cup [1,\infty)$

MATH 2267

Week 1: Part 2

Functions

Part 2: Functions

Notation and Terminology

- *X*, *Y* are two sets
- A function $f: X \to Y$ is a relation such that for each $x \in X$, f assigns a unique $y \in Y$ to it, denoted by y = f(x).
- x is called the independent variables
- y is called the dependent variable
- X is the domain of f
- $R = \{y \in Y | y = f(x) \text{ for some } x \in X\}$ is called the range of f
- A function $f: X \to Y$ is called a real function or real-valued function.

Part 2: Functions Examples of functions

Power function (p is some real constant)

$$f(x): D \to \mathbb{R}, \qquad f(x) = x^p$$

the domain $D \subset \mathbb{R}$ depends on the value of p

Polynomial

For
$$a_0, a_1, ..., a_n \in \mathbb{R}$$
 and $n \in \mathbb{N}$, function $p(x) : \mathbb{R} \to \mathbb{R}$ given by
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

Is call a polynomial, its order is n if $a_n \neq 0$.

• Rational function (p(x)) and q(x) are polynomials)

$$r(x): \mathbb{R} \to \mathbb{R}, \qquad r(x) = \frac{p(x)}{q(x)}$$

Part 2: Functions

Some notes on finding domain/range

- If you can't calculate a function's value at a point, then that point isn't in the domain. e.g.
 - $f(x) = \frac{\sin(x)}{x}$ has domain $\mathbb{R}\setminus\{0\}$, because we can't divide by zero
 - $g(x) = \sqrt{x}$ has domain $[0, \infty)$, because we can't take the square root of a negative number
 - This holds for real numbers. Complex numbers let you do this, but that's outside of this course
- The range can often be determined by plotting the function
 - We'll explore this in the tutorial

Part 2: Functions Exponential Function

- $f(x) = b^x$ (where b is some constant in $(0, \infty)$
- b: base
- x: exponent (power)
- The most common choice for b is $e = 2.71828 \dots$
 - e is called Euler's number, we'll look at it next week in Limits
- b = 10 is also common, and is referred to as scientific notation. Julia uses this:
 - -1.5e6 means -1.5×10^6 (-1,500,000)
 - 9e-15 means 9×10^{-15} (0.000,000,000,000)

Part 2: Functions

Exponential Function

Properties

•
$$b^x > 0$$

•
$$b^x \times b^y = b^{x+y}$$

•
$$\frac{b^x}{b^y} = b^{x-y}$$

•
$$b^0 = 1$$

•
$$b^{-x} = \frac{1}{b^2}$$

$$\frac{b^x}{b^x} = b^{x-x} \Rightarrow 1 = b^0$$

•
$$b^{-x} = \frac{1}{b^x}$$
 $\frac{1}{b^x} = \frac{b^0}{b^x} = b^{0-x} = b^{-x}$

•
$$(ab)^x = a^x b^x$$

•
$$(b^x)^y = b^{xy}$$

•
$$b^{\frac{1}{n}} = \sqrt[n]{b}$$

•
$$b^{\frac{1}{n}} = \sqrt[n]{b}$$
 $\sqrt{b^2} = (b^2)^{\frac{1}{2}} = b^{2 \times \frac{1}{2}} = b^1 = b$

- If b > 1, then b^x grows as x increases
- If b < 1, then b^x decreases as x increases

Part 2: Functions Exponential Function

- Example
 - Turn $\frac{\sqrt[3]{2^x} 4^x}{4^3 4^{x/3}}$ into a power of 2

$$\frac{\sqrt[3]{2^x} \, 4^x}{4^3 4^{x/3}} = \frac{(2^x)^{\frac{1}{3}} (2^2)^x}{(2^2)^3 (2^2)^{\frac{x}{3}}}$$

$$= \frac{2^{\frac{x}{3}}2^{2x}}{2^{6}2^{\frac{2x}{3}}}$$

$$= 2^{(\frac{x}{3} + 2x - \frac{2x}{3} - 6)}$$

$$= 2^{(\frac{6x}{3} - \frac{x}{3} - 6)}$$

$$=2^{(\frac{5x}{3}-6)}$$

Part 2: Functions

Logarithmic Functions

- The log function with base b is defined by
 - $\log_b x = y \iff x = b^y$
 - That is, the log function reverses the exponential function, and is it's inverse. This means that when combined, they cancel each other out:
 - $\log_b(b^y) = y$ and $b^{\log_b x} = x$
 - Any base b > 0 is allowed
 - b = e = 2.718 ... is the most important and popular
 - b = 10 and b = 2 are also sometimes used
- The natural log function $\log_e x$ is written as $\log(x)$ or $\ln(x)$
- Julia uses $\log(x)$ for $\log_e x$ and $\log(b,x)$ for $\log_b x$

Properties

•
$$\log_b(xy) = \log_b x + \log_b y$$

•
$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

•
$$\log_b(x^y) = y \log_b x$$

$$b^{x}b^{y} = b^{x+y}$$

$$\frac{b^x}{b^y} = b^{x-y}$$

- Example
 - Express $ln(2\sqrt[3]{9})$ in terms of ln 2 and ln 3

•
$$\ln(2\sqrt[3]{9}) = \ln(2(3^2)^{\frac{1}{3}})$$

$$= \ln\left(2 \times 3^{\frac{2}{3}}\right)$$

$$= \ln 2 + \ln \left(3^{\frac{2}{3}}\right)$$

$$= \ln 2 + \frac{2}{3} \ln 3$$

- Example
 - Simplify $e^{-2 \ln x}$

$$e^{-2 \ln x} = \frac{1}{e^{2 \ln x}}$$
$$= \frac{1}{e^{\ln x^2}}$$
$$= \frac{1}{x^2}$$

• Simplify $\log_{10}(0.01 \times 10^x)$

$$\log_{10}(0.01 \times 10^{x}) = \log_{10}(10^{-2}10^{x})$$
$$= \log_{10}10^{x-2}$$
$$= x - 2$$

- Example
 - Solve the equation ln(y 1) = 2 for y

$$\ln(y-1) = 2 \Rightarrow e^{\log(y-1)} = e^2$$
$$y-1 = e^2$$
$$y = e^2 + 1$$

Part 2: Functions

Logarithmic Functions

- Example
 - Find y if $\ln(x^2 1) 2\ln(x + 1) = \ln y$

•
$$\ln y = \ln(x^2 - 1) - 2\ln(x + 1)$$

•
$$\ln y = \ln(x^2 - 1) - \ln((x + 1)^2)$$

• Since
$$\frac{x^2-1}{(x+1)^2} = \frac{(x+1)(x-1)}{(x+1)^2} = \frac{x-1}{x+1}$$

• We have
$$\ln y = \ln \frac{x-1}{x+1} \Rightarrow y = \frac{x-1}{x+1}$$

Part 2: Functions

Logarithmic Functions

- Conversion (Change of Base)
 - $y = \log_b x$ can be expressed in terms of $\log_a x$ according to the log conversion formula:

$$\bullet \log_b x = \frac{\log_a x}{\log_a b}$$

- Example
 - Evaluate log₇ 23 using the natural logarithm function on your calculator.

•
$$\log_7 23 = \frac{\log_e 23}{\log_e 7} = \frac{\ln 23}{\ln 7} \approx 1.61$$

Part 2: Functions *Trigonometric Functions*

- Sine, cosine and tangent Functions
 - $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$
 - $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$
 - $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$
 - NOTE
 - $(\sin \theta)^n$ is written as $\sin^n \theta$
 - $\sin \theta^n$ usually represents $\sin(\theta^n)$
 - Converting between degrees and radians
 - radians = $\frac{\pi}{180}$ × degrees
 - degrees = $\frac{180}{\pi}$ × radians

 θ is restricted to $(0^0, 90^0)$ θ is restricted to $(0, \frac{\pi}{2})$

Part 2: Functions *Examples*

- The angle of inclination of the top of a flagpole from a distance of 30m is 22 degrees. How high is the flagpole?
 - $\tan 22^{\circ} = \frac{h}{30}$
 - $h = 30 \tan 22^{\circ} \approx 12.12m$

Part 2: Functions *Trigonometric Functions*

- Extension to arbitrary angle
 - $\sin \theta = \frac{y}{r}$, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$
 - Signs for $\sin \theta$, $\cos \theta$ and $\tan \theta$ change according to the signs of x and y
- Important identities:

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Part 2: Functions

Inverse functions asin and *acos*

- What are the values of $\theta \in [0^0, 360^0)$ such that $\cos \theta = 1/2$?
 - $a\cos\frac{1}{2} = 60^{\circ}$
 - $\cos \theta > 0$, so quadrants 1 and 4
 - $\theta = 60^{\circ}$, $(360 60)^{\circ} = 300^{\circ}$
- Solve $\sin \theta = -\frac{1}{2}$ for $\theta \in [0,2\pi)$
 - asin $-\frac{1}{2} = -\frac{\pi}{6} \left(= 2\pi \frac{\pi}{6} = \frac{11\pi}{6} \right)$
 - $\sin \theta < 0$ so quadrants 3 and 4
 - $\bullet \ \theta = \pi + \frac{\pi}{6}, 2\pi \frac{\pi}{6}$
 - $\bullet \ \theta = \frac{7\pi}{6}, \frac{11\pi}{6}$

Calculators can usually help here!

$$a\sin x = \theta$$

(i.e. $\sin^{-1} x = \theta$)

$$-90^{\circ} \le \theta \le 90^{\circ}$$
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
(Same applies to tan)

$$a\cos x = \theta$$

(i.e. $\cos^{-1} x = \theta$)

$$0 \le \theta \le 180^{\circ}$$
$$0 \le \theta \le \pi$$

Part 2: Functions Periodic Functions

- If a function has a repeating pattern, it's said to be periodic
 - The size of a single instance of the pattern is called its period.
 More formally,
 - If for all values of x, f(x) = f(x+T) $f(x) ext{ is a periodic function with period } T$
 - $\sin \theta$, $\cos \theta$ and $\tan \theta$ are all periodic functions
 - $\sin \theta$ and $\cos \theta$ both have period 2π
 - $\tan \theta$ has period π (180 degrees)

Part 2: Functions *Odd and Even Functions*

- Odd and even functions are "reflected" in the line x=0
 - f(x) is **even** if f(x) = f(-x) ----- symmetric about y axis
 - f(x) is **odd** if f(x) = -f(-x) ---- symmetric about origin

- cos(x) is even as $cos \theta = cos(-\theta)$
- $\sin(x)$ is odd as $\sin \theta = -\sin(-\theta)$

Part 2: Functions *Examples*

- Classify the following functions as odd, even or neither
 - $\bullet \ f(x) = x$
 - $f(x) = x^2$
 - $f(x) = x^3$
 - $f(x) = e^x$
 - $f(x) = \tan(x)$ hint: $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Part 2: Functions **Examples**

Classify the following functions as odd, even or neither

$$f(x) = x$$

ODD
$$f(-x) = -x = -f(x)$$

•
$$f(x) = x^2$$

EVEN
$$f(-x) = (-x)^2 = x^2 = f(x)$$

•
$$f(x) = x^3$$

ODD
$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

•
$$f(x) = e^x$$

NEITHER
$$f(-x) = e^{-x} = \frac{1}{e^x} \neq e^x = f(x)$$

•
$$f(x) = \tan(x)$$

•
$$f(x) = \tan(x)$$
 hint: $\tan(x) = \frac{\sin(x)}{\cos(x)}$

•
$$f(-x) = \tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan(x) = -f(x)$$

Part 2: Functions

Increasing and Decreasing Functions

- A function is said to be an increasing function if for any values $x_2 \ge x_1$,
 - $f(x_2) \ge f(x_1)$
- Likewise, a function is decreasing if:
 - $f(x_2) \le f(x_1)$
- Example:
 - $f(x) = e^x$ is an increasing function
 - $f(x) = e^{-x}$ is a decreasing function
- We'll touch on this more next week

MATH 2267

Week 1: Part 3

Inequalities

Introduction

- Inequalities are relations between unequal quantities
- Each inequality has one of the 4 possible inequality signs
 - 3 > 2 "greater than" inequality
 - $|x| \ge x$ "greater or equal to" inequality
 - |x| < 3 "less than" inequality
 - $|y-1| \le x$ "less or equal to" inequality
- Geometry:
 - $y \le x$: all points $(x, y) \in R^2$ on or under line y = x
 - $y > x^2$: all points $(x, y) \in R^2$ above the curve $y = x^2$

Introduction

- Properties of Inequalities after operations
 - An inequality will remain unchanged by adding or subtracting equal quantities to or from both sides

$$3 > 2$$
 \Rightarrow $\frac{3+a>2+a}{\text{and } 3-a>2-a}$ for any real a

 Multiplying or dividing both sides of an inequality by a positive number the inequality will not change

$$3 > 2 \implies \frac{3a > 2a}{\text{and } \frac{3}{a} > \frac{2}{a}} \quad \text{for any } a > 0$$

 Multiplying or dividing both sides of an inequality by a negative number the inequality will change direction

$$3 > 2 \implies \frac{-2 \times 3 < -2 \times 2}{\text{and } -\frac{3}{2} < -\frac{2}{2}}$$

 Swap the left and right hand sides of the inequality the inequality sign changes direction

$$3 > 2 \implies 2 < 3$$

Solving Inequalities

 Solving inequalities involves some manipulations such as the operations mentioned in the last slide.

```
• Example: Solve -9 > -3x.

Multiply by -1 (change ">" to "<"):

9 < 3x

Swap sides (change "<" to ">"):

3x > 9

Divide by 3 (">" remains):

x > 3 \leftarrow the solution
```

Solving Inequalities

Example. Solve inequality for $x: \frac{2x-3}{9} > 1$ Solution.

Multiply by 9 (">" remain unchanged):

$$2x - 3 > 9$$

Add 3 (">" remain unchanged):

Divide by 2 (">" remain unchanged):

Solving Inequalities

Example. Solve inequality for x in $\frac{x-3}{x+5} > 0$

Solution. Both numerator and denominator must have the same sign \Rightarrow (1) or (2) below must hold.

(1)
$$x - 3 > 0$$
 and $x + 5 > 0$

(2)
$$x - 3 < 0$$
 and $x + 5 < 0$

(1)
$$\Rightarrow x > 3$$
 and $x > -5 \Rightarrow x > 3$

(2)
$$\Rightarrow x < 3$$
 and $x < -5 \Rightarrow x < -5$

The solution is:
$$x < -5$$
 or $x > 3$.
or $x \in (-\infty, -5) \cup (3, \infty)$

Next Week

- Polynomial factorization
- Sequences and series
- Arithmetic and Geometric Progressions
- Compound interests