

Ethernet-коммутаторы агрегации

MES2300-xx, MES3300-xx, MES3500I-08P, MES3500I-10P, MES5312, MES5316A, MES5324A, MES5332A, MES5310-48, MES5400-24, MES5400-48, MES5400-32

Мониторинг и управление Ethernet-коммутаторами MES по SNMP, версия ПО 6.6.5.4

Версия документа	Дата выпуска	Содержание изменений	
Версия 1.17	23.12.2024	Синхронизация с версией ПО 6.6.5.4	
Версия 1.16	01.11.2024	Изменения в разделе:	
		4.1 Системные ресурсы	
Версия 1.15	12.08.2024	Изменения в разделе:	
		3.2 Работа с ТFTP-сервером	
		3.4 Обновление программного обеспечения	
		4.1 Системные ресурсы	
Версия 1.14	24.05.2024	Изменения в разделе:	
		6.1 Параметры Ethernet-интерфейсов	
Версия 1.13	18.04.2024	Синхронизация с версией ПО 6.6.3	
Версия 1.12	15.03.2024	Синхронизация с версией ПО 6.6.2.15	
Версия 1.11	29.02.2024	Синхронизация с версией ПО 6.6.2.9	
Версия 1.10	15.12.2023	Добавлен раздел:	
		6.2 Группы агрегации каналов — Link Aggregation Group (LAG)	
Версия 1.9	09.10.2023	Изменения в разделе:	
		4.1 Системные ресурсы	
Версия 1.8	07.09.2023	Синхронизация с версией ПО 6.5.1.4	
Версия 1.7	18.06.2023	Изменения в разделе:	
		2 КРАТКИЕ ОБОЗНАЧЕНИЯ	
Версия 1.6	07.04.2023	Изменения в разделе:	
		12 ФУНКЦИИ УПРАВЛЕНИЯ	
Версия 1.5	10.03.2023	Синхронизация с версией ПО 6.5.0	
Версия 1.4	30.09.2022	Изменения в разделе:	
		6.1 Параметры Ethernet-интерфейсов	
Версия 1.3	29.07.2022	Добавлен раздел:	
		20 КОНФИГУРАЦИЯ VXLAN	
Версия 1.2	31.01.2022	Вторая публикация	
Версия 1.1	04.02.2021	Первая публикация	
Версия программного обеспечения	6.6.5.4		

СОДЕРЖАНИЕ

1	НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP	ε
2	КРАТКИЕ ОБОЗНАЧЕНИЯ	ε
3	РАБОТА С ФАЙЛАМИ	g
3.1	Сохранение конфигурации	g
3.2	Работа с ТFTP-сервером	11
3.3	Автоконфигурирование коммутатора	13
3.4	Обновление программного обеспечения	14
4	УПРАВЛЕНИЕ СИСТЕМОЙ	17
4.1	Системные ресурсы	17
4.2	Системные параметры	26
4.3	Параметры стека	28
4.4	Управление устройством	29
5	НАСТРОЙКА СИСТЕМНОГО ВРЕМЕНИ	32
6	КОНФИГУРИРОВАНИЕ ИНТЕРФЕЙСОВ	34
6.1	Параметры Ethernet-интерфейсов	34
6.2	Группы агрегации каналов — Link Aggregation Group (LAG)	44
6.3	Конфигурирование VLAN	45
6.4	Настройка и мониторинг errdisable-состояния	50
6.5	Настройка voice vlan	52
6.6	Настройка LLDP	53
7	НАСТРОЙКА IPV4-АДРЕСАЦИИ	55
8	НАСТРОЙКА IPV6-АДРЕСАЦИИ	57
9	HACTPOЙKA GREEN ETHERNET	58
10	НАСТРОЙКА КОЛЬЦЕВЫХ ПРОТОКОЛОВ	59
10.1	Протокол ERPS	59
10.2	Настройка протокола Spanning Tree	61
11	ГРУППОВАЯ АДРЕСАЦИЯ	
11.1	Правила групповой адресации (multicast addressing)	
11.2	Функции ограничения multicast-трафика	
12	ФУНКЦИИ УПРАВЛЕНИЯ	
12.1	Механизм ААА	70
12.2	Настройка доступа	74
13	ЗЕРКАЛИРОВАНИЕ ПОРТОВ	76
14	ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ	78
14.1	Диагностика оптического трансивера	
15	ФУНКЦИИ ОБЕСПЕЧЕНИЯ БЕЗОПАСТНОСТИ	
15.1	Функции обеспечения защиты портов	
15.2	, . Контроль протокола DHCP и опции 82	
15.3	Защита IP-адреса клиента (IP source Guard)	
15.4	Контроль протокола ARP (ARP Inspection)	
15.5	Проверка подлинности клиента на основе порта (802.1x)	
15.6	Механизм обнаружения петель (loopback-detection)	
15.7	Контроль широковещательного шторма (storm-control)	
16	КОНФИГУРИРОВАНИЕ ІР И МАС АСР (СПИСКИ КОНТРОЛЯ ДОСТУПА)	
17	КОНФИГУРАЦИЯ ЗАЩИТЫ ОТ DOS-ATAK	
18	КАЧЕСТВО ОБСЛУЖИВАНИЯ — QOS	
18.1	Настройка QoS	
18.2	Статистика QoS	
19	МАРШРУТИЗАЦИЯ	
19.1	Статическая маршрутизация	
19.2	Динамическая маршрутизация	
20	КОНФИГУРАЦИЯ VXLAN	
-		

ПРИЛОЖЕНИЕ А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ	110
ПРИЛОЖЕНИЕ Б. ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL	
ПРИЛОЖЕНИЕ В. ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST С ПРИВЯЗКОЙ К N	
	116

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Обозначение	Описание
[]	В квадратных скобках в командной строке указываются необязательные параметры, но их ввод предоставляет определенные дополнительные опции.
{}	В фигурных скобках в командной строке указываются обязательные параметры.
«,» «-»	Данные знаки в описании команды используются для указания диапазонов.
« »	Данный знак в описании команды обозначает «или».
«/»	Данный знак при указании значений переменных разделяет возможные значения и значения по умолчанию.
Курсив Calibri	Курсивом Calibri указываются переменные или параметры, которые необходимо заменить соответствующим словом или строкой.
Полужирный курсив	Полужирным курсивом выделены примечания и предупреждения.
<Полужирный курсив>	Полужирным курсивом в угловых скобках указываются названия клавиш на клавиатуре.
Courier New	Полужирным Шрифтом Courier New записаны примеры ввода команд.

Примечания и предупреждения

Примечания содержат важную информацию, советы или рекомендации по использованию и настройке устройства.

Предупреждения информируют пользователя о ситуациях, которые могут нанести вред устройству или человеку, привести к некорректной работе устройства или потере данных.

1 НАСТРОЙКА SNMP-СЕРВЕРА И ОТПРАВКИ SNMP-TRAP

snmp-server server snmp-server community public ro snmp-server community private rw snmp-server host 192.168.1.1 traps version 2c private

2 КРАТКИЕ ОБОЗНАЧЕНИЯ

• **ifIndex** — индекс порта.

Может принимать следующие значения:

1. Коммутаторы доступа

Модель коммутатора	Индексы	
	- индексы 49-72 — gigabitethernet 1/0/1-24;	
	- индексы 105-108 — tengigabitethernet 1/0/1-4;	
	- индексы 157-180 — gigabitethernet 2/0/1-24;	
	- индексы 213-216 — tengigabitethernet 2/0/1-4;	
	- индексы 265-288 — gigabitethernet 3/0/1-24;	
	- индексы 321-324 — tengigabitethernet 3/0/1-4;	
	- индексы 373-396 — gigabitethernet 4/0/1-24;	
MES2300-24	- индексы 429-432 — tengigabitethernet 4/0/1-4;	
MES2300-24P MES2300B-24	- индексы 481-504 — gigabitethernet 5/0/1-24;	
MES2300B-24F	- индексы 537-540 — tengigabitethernet 5/0/1-4;	
MES2300D-24P	- индексы 589-612 — gigabitethernet 6/0/1-24;	
	- индексы 645-648 — tengigabitethernet 6/0/1-4;	
	- индексы 697-720 — gigabitethernet 7/0/1-24;	
	- индексы 753-756 — tengigabitethernet 7/0/1-4;	
	- индексы 805-828 — gigabitethernet 8/0/1-24;	
	- индексы 861-864 — tengigabitethernet 8/0/1-4;	
	- индексы 1000-1031 — Port-Channel 1-32;	
	- индексы 7000-7063 — loopback 1-64.	

2. Коммутаторы агрегации

Модель коммутатора	Индексы
MES3300-08F	- индексы 49-72 — gigabitethernet 1/0/1-24;
MES3300-16F	- индексы 105-108 — tengigabitethernet 1/0/1-4;
MES3300-24	- индексы 157-180 — gigabitethernet 2/0/1-24;
MES3300-24F	
MES3300-48	- индексы 213-216 — tengigabitethernet 2/0/1-4;
MES3300-48F	- индексы 265-288 — gigabitethernet 3/0/1-24;

	- индексы 321-324 — tengigabitethernet 3/0/1-4;
	- индексы 373-396 — gigabitethernet 4/0/1-24;
	- индексы 429-432 — tengigabitethernet 4/0/1-4;
	- индексы 481-504 — gigabitethernet 5/0/1-24;
	- индексы 537-540 — tengigabitethernet 5/0/1-4;
	- индексы 589-612 — gigabitethernet 6/0/1-24;
	- индексы 645-648 — tengigabitethernet 6/0/1-4;
	- индексы 697-720 — gigabitethernet 7/0/1-24;
	- индексы 753-756 — tengigabitethernet 7/0/1-4;
	- индексы 805-828 — gigabitethernet 8/0/1-24;
	- индексы 861-864 — tengigabitethernet 8/0/1-4;
	- индексы 1000-1031 — Port-Channel 1-32;
	- индексы 7000-7063 — loopback 1-64.
	- индексы 1-32 — tengigabitethernet 1/0/1-32;
	- индексы 53-84 — tengigabitethernet 2/0/1-32;
	- индексы 105-136 — tengigabitethernet 3/0/1-32;
MES5312	- индексы 157-188 — tengigabitethernet 4/0/1-32;
MES5316A	- индексы 209-240 — tengigabitethernet 5/0/1-32;
MES5324A MES5332A	- индексы 261-292 — tengigabitethernet 6/0/1-32;
	- индексы 313-344 — tengigabitethernet 7/0/1-32;
	- индексы 365-396 — tengigabitethernet 8/0/1-32;
	- индексы 1000-1127 — Port-Channel 1-128;
	- индексы 7000-7063 — loopback 1-64.

3. Индустриальные коммутаторы

Модель коммутатора	Индексы	
	- индексы 49-76 — gigabitethernet 1/0/1-28;	
	- индексы 157-184 — gigabitethernet 2/0/1-28;	
	- индексы 265-292 — gigabitethernet 3/0/1-28;	
	- индексы 373-400 — gigabitethernet 4/0/1-28;	
	- индексы 481-508 — gigabitethernet 5/0/1-28;	
MES2300DI-28	- индексы 589-616 — gigabitethernet 6/0/1-28;	
	- индексы 697-724 — gigabitethernet 7/0/1-28;	
	- индексы 805-832 — gigabitethernet 8/0/1-28;	
	- индексы 1000-1031 — Port-Channel 1-32;	
	- индексы 7000-7063 — loopback 1-64.	
	- индексы 49-60 — gigabitethernet 1/0/1-12;	
MES3500I-08P	- индексы 1000-1031 — Port-Channel 1-32;	
MES3500I-10P	- индексы 7000-7063 — loopback 1-64.	

4. Коммутаторы для ЦОД

Модель коммутатора	Индексы
	- индексы 1-48 — tengigabitethernet 1/0/1-48;
	- индексы 49-72 — twentyfivegigabitethernet 1/0/1-24;
	- индексы 103-108 — hundredgigabitethernet 1/0/1-6;
	- индексы 109-156 — tengigabitethernet 2/0/1-48;
	- индексы 157-180 — twentyfivegigabitethernet 2/0/1-24;
	- индексы 211-216 — hundredgigabitethernet 2/0/1-6;
	- индексы 217-264 — tengigabitethernet 3/0/1-48;
	- индексы 265-288 — twentyfivegigabitethernet 3/0/1-24;
	- индексы 319-324 — hundredgigabitethernet 3/0/1-6;
	- индексы 325-372 — tengigabitethernet 4/0/1-48;
	- индексы 373-396 — twentyfivegigabitethernet 4/0/1-24;
MECE 240 40	- индексы 427-432 — hundredgigabitethernet 4/0/1-6;
MES5310-48 MES5400-24	- индексы 433-480 — tengigabitethernet 5/0/1-48;
MES5400-48	- индексы 481-504 — twentyfivegigabitethernet 5/0/1-24;
MES5410-48	- индексы 535-540 — hundredgigabitethernet 5/0/1-6;
	- индексы 541-588 — tengigabitethernet 6/0/1-48;
	- индексы 589-612 — twentyfivegigabitethernet 6/0/1-24;
	- индексы 643-648 — hundredgigabitethernet 6/0/1-6;
	- индексы 649-696 — tengigabitethernet 7/0/1-48;
	- индексы 697-720 — twentyfivegigabitethernet 7/0/1-24;
	- индексы 751-756 — hundredgigabitethernet 7/0/1-6;
	- индексы 757-804 — tengigabitethernet 8/0/1-48;
	- индексы 805-828 — twentyfivegigabitethernet 8/0/1-24;
	- индексы 859-864 — hundredgigabitethernet 8/0/1-6;
	- индексы 1000-1127 — Port-Channel 1-128;
	- индексы 7000-7063 — loopback 1-64.
	- индексы 1-32 - hundredgigabitethernet 1/0/1-32
	- индексы 33-160 - twentyfivegigabitethernet 1/0/1-128
	- индексы 161-162 - tengigabitethernet 1/0/1-2
	- индексы 163-194 - hundredgigabitethernet 2/0/1-32
	- индексы 195-322 - twentyfivegigabitethernet 2/0/1-128
MES5500-32	- индексы 323-324 - tengigabitethernet 2/0/1-2
	- индексы 325-356 - hundredgigabitethernet 3/0/1-32
	- индексы 357-484 - twentyfivegigabitethernet 3/0/1-128
	- индексы 485-486 - tengigabitethernet 3/0/1-2
	- индексы 487-518 - hundredgigabitethernet 4/0/1-32
	- индексы 519-646 - twentyfivegigabitethernet 4/0/1-128
	- индексы 519-646 - twentyfivegigabitethernet 4/0/1-128

- индексы 647-648 tengigabitethernet 4/0/1-2
 индексы 649-680 hundredgigabitethernet 5/0/1-32
 индексы 681-808 twentyfivegigabitethernet 5/0/1-128
 индексы 809-810 tengigabitethernet 5/0/1-2
 индексы 811-842 hundredgigabitethernet 6/0/1-32
 индексы 843-970 twentyfivegigabitethernet 6/0/1-128
 индексы 971-972 tengigabitethernet 6/0/1-2
 индексы 973-1004 hundredgigabitethernet 7/0/1-32
 индексы 1005-1132 twentyfivegigabitethernet 7/0/1-128
 индексы 1133-1134 tengigabitethernet 7/0/1-2
 индексы 1135-1166 hundredgigabitethernet 8/0/1-32
 индексы 1167-1294 twentyfivegigabitethernet 8/0/1-128
 индексы 1295-1296 tengigabitethernet 8/0/1-2
 индексы 3000-3127 Port-Channel 1-128
 индексы 7000-7063 loopback 1-64
 - index-of-rule индекс правила в ACL всегда кратен 20. Если при создании правил будут указаны индексы не кратные 20, то после перезагрузки коммутатора порядковые номера правил в ACL станут кратны 20;
 - **Значение поля N** в IP и MAC ACL любое правило занимает от 1 до 3 полей в зависимости от его структуры;
 - IP address IP-адрес для управления коммутатором;

В приведенных в документе примерах используется следующий IP-адрес для управления: **192.168.1.30**;

ip address of tftp server — IP-адрес TFTP-сервера;

В приведенных в документе примерах используется следующий IP-адрес TFTP-сервера: **192.168.1.1**;

• **community** — строка сообщества (пароль) для доступа по протоколу SNMP.

Мониторинг и управление Ethernet-коммутаторами MES по SNMP

В приведенных в документе примерах используются следующие community:

```
private — права на запись (rw);public — права на чтение (ro).
```

3 РАБОТА С ФАЙЛАМИ

3.1 Сохранение конфигурации

Сохранение конфигурации в энергонезависимую память

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
  1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
  1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
  1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
  1.3.6.1.4.1.89.87.2.1.12.1 i {startupConfig(3)} \
  1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo(4)}
```

Пример

```
Команда CLI:
copy running-config startup-config

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Сохранение конфигурации в энергозависимую память из энергонезависимой

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)}
```

Пример

```
Команда CLI:
copy startup-config running-config

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 3 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

Удаление конфигурации из энергонезависимой памяти

MIB: RADLAN-rndMng

Используемые таблицы: rndAction — 1.3.6.1.4.1.89.1.2

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.1.2.0 i {eraseStartupCDB (20)}
```

Пример удаления startup-config

```
Koмaндa CLI:
delete startup-config

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.1.2.0 i 20
```

3.2 Работа с ТГТР-сервером

<u>Копирование конфигурации из энергозависимой памяти на ТҒТР-сервер</u>

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
   1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
   1.3.6.1.4.1.89.87.2.1.7.1 i {runningConfig(2)} \
   1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
   1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
   1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
   1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)} \
   1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)}
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)} применяется в случае использования отличного от дефолтной VRF.

Пример копирования из running-config на TFTP-сервер

```
Команда CLI:
copy running-config tftp://192.168.1.1/MES-config.cfg [vrf test]

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.11.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i 2
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 і 2 применяется в случае использования отличного от дефолтной VRF: vrf test.

Копирование конфигурации в энергозависимую память с ТҒТР-сервера

MIB: rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
  1.3.6.1.4.1.89.87.2.1.3.1 i {tftp(3)} \
  1.3.6.1.4.1.89.87.2.1.4.1 a {ip address of tftp server} \
  1.3.6.1.4.1.89.87.2.1.6.1 s "MES-config.cfg" \
  1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
  1.3.6.1.4.1.89.87.2.1.12.1 i {runningConfig(2)} \
```



```
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)} \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)}
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)} применяется в случае использования отличного от дефолтной VRF.

Пример копирования с TFTP-сервера в running-config

```
Команда CLI:
copy tftp://192.168.1.1/MES-config.cfg running-config [vrf test]

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 2 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i 2
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 і 2 применяется в случае использования отличного от дефолтной VRF: vrf test.

<u>Копирование конфигурации из энергонезависимой памяти на ТFTP-сервер</u>

MIB: файл rlcopy.mib

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> -t 5 -r 3 <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.7.1 i {startupConfig (3)} \
1.3.6.1.4.1.89.87.2.1.8.1 i {tftp(3)} \
1.3.6.1.4.1.89.87.2.1.9.1 a {ip address of tftp server} \
1.3.6.1.4.1.89.87.2.1.11.1 s "MES-config.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo (4)} \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)}
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)} применяется в случае использования отличного от дефолтной VRF.

Пример копирования из startup-config на TFTP-сервер

```
Команда CLI:
boot config tftp://192.168.1.1/MES-config.cfg [vrf test]

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 1 \
1.3.6.1.4.1.89.87.2.1.7.1 i 2 \
1.3.6.1.4.1.89.87.2.1.8.1 i 3 \
1.3.6.1.4.1.89.87.2.1.9.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.11.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i 2
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 і 2 применяется в случае использования отличного от дефолтной VRF: vrf test.

Копирование конфигурации в энергонезависимую память с ТҒТР-сервера

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

Пример копирования startup-config c TFTP-сервера

```
Команда CLI:
boot config tftp://192.168.1.1/MES-config.cfg

Команда SNMP:
snmpset -v2c -c private -t 5 -r 3 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "conf.cfg" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 \
1.3.6.1.4.1.89.87.2.1.12.1 i 3 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4
```

3.3 Автоконфигурирование коммутатора

<u>Включение автоматического конфигурирования, базирующегося на DHCP (включено по умолчанию)</u>

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClOption67Enable — 1.3.6.1.4.1.89.76.9

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.76.9.0 i {enable(1), disable(2)}
```

```
Koмaндa CLI:
boot host auto-config

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.76.9.0 i 1
```

3.4 Обновление программного обеспечения

Обновление программного обеспечения коммутатора

Проходит в два этапа:

1. Загрузка образа ПО

MIB: RADLAN-COPY-MIB

Используемые таблицы: rlCopyEntry — 1.3.6.1.4.1.89.87.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.87.2.1.3.1 i {tftp (3)} \
1.3.6.1.4.1.89.87.2.1.4.1 a {ip add of tftp server} \
1.3.6.1.4.1.89.87.2.1.6.1 s "image name" \
1.3.6.1.4.1.89.87.2.1.8.1 i {local(1)} \
1.3.6.1.4.1.89.87.2.1.12.1 i {image(8)} \
1.3.6.1.4.1.89.87.2.1.17.1 i {createAndGo(4)}\
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)}
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i {number of vrf (default 1)} применяется в случае использования отличного от дефолтной VRF.

Пример

```
Команда CLI:
boot system tftp://192.168.1.1/mes5300a-611-R2.ros [vrf test]

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.87.2.1.3.1 i 3 \
1.3.6.1.4.1.89.87.2.1.4.1 a 192.168.1.1 \
1.3.6.1.4.1.89.87.2.1.6.1 s "mes5300a-611-R2.ros" \
1.3.6.1.4.1.89.87.2.1.8.1 i 1 1.3.6.1.4.1.89.87.2.1.12.1 i 8 \
1.3.6.1.4.1.89.87.2.1.17.1 i 4 \
1.3.6.1.4.1.35265.1.23.3.11.1.1.1 i 2
```


Команда 1.3.6.1.4.1.35265.1.23.3.11.1.1.1 і 2 применяется в случае использования отличного от дефолтной VRF: vrf test.

2. Смена активного образа коммутатора

MIB: RADLAN-DEVICEPARAMS-MIB

Используемые таблицы: rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.2.13.1.1.3.1 i {image1 (1), image2 (2)}
```

```
Koмaндa CLI:
boot system inactive-image

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.2.13.1.1.3.1 i 1
```


После загрузки ПО с ТҒТР-сервера данная команда применяется автоматически.

Перезагрузка коммутатора

MIB: rlmng.mib

Используемые таблицы: rlRebootDelay — 1.3.6.1.4.1.89.1.10

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.1.10.0 t {задержка времени перед перезагрузкой}
```

Пример перезагрузки, отложенной на 8 минут

```
Команда CLI:
reload in 8
Команда SNMP:
snmpset -v2c -c private -r 0 192.168.1.30 \
1.3.6.1.4.1.89.1.10.0 t 48000
```


Для указания моментальной перезагрузки требуется указать значение t=0.

Просмотр образа ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndActiveSoftwareFile — 1.3.6.1.4.1.89.2.13.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.2.13.1.1.2
```

Пример

```
Команда CLI:
show bootvar

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.13.1.1.2
```


1) Возможные варианты:

image1(1) image2(2)

2) Посмотреть активный образ ПО после перезагрузки можно в rndActiveSoftwareFileAfterReset — 1.3.6.1.4.1.89.2.13.1.1.3.

Просмотр загруженных образов ПО

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndlmageInfoTable — 1.3.6.1.4.1.89.2.16.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.2.16.1
```


Пример

```
Команда CLI:
show bootvar
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.16.1
```

Просмотр текущей версии ПО коммутатора

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: rndBrgVersion — 1.3.6.1.4.1.89.2.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.2.4
```

Пример

```
Koмaндa CLI:
show version

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.4
```

<u>Просмотр текущей HW версии</u>

MIB: RADLAN-DEVICEPARAMS-MIB.mib

Используемые таблицы: genGroupHWVersion — 1.3.6.1.4.1.89.2.11.1

```
Koмaндa CLI:
show system id

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.2.11.1
```

4 УПРАВЛЕНИЕ СИСТЕМОЙ

4.1 Системные ресурсы

Просмотр серийного номера коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitGenParamSerialNum — 1.3.6.1.4.1.89.53.14.1.5

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.14.1.5
```

Пример

```
Команда CLI:
show system id
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.14.1.5
```

<u>Просмотр информации о загрузке tcam</u>

MIB: RADLAN-QOS-CLI-MIB

Используемые таблицы: rlQosClassifierUtilizationPercent — 1.3.6.1.4.1.89.88.36.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.88.36.1.1.2
```

Пример

```
Komaндa CLI:
show system tcam utilization

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.88.36.1.1.2
```

Просмотр максимального количества хостов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpSFftEntries — 1.3.6.1.4.1.89.29.8.9.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.29.8.9.1
```

```
Koмaндa CLI:
show system router resources

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.9.1
```


Просмотр используемого количества хостов

MIB: rlfft.mib

Используемые таблицы: rlSysmngTcamAllocInUseEntries - 1.3.6.1.4.1.89.204.1.1.1.5

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1
```

Пример

```
Команда CLI:
show system router resources
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.204.1.1.1.5.5.116.99.97.109.49.1
```

Просмотр максимального количества маршрутов

MIB: rltuning.mib

Используемые таблицы: rsMaxlpPrefixes — 1.3.6.1.4.1.89.29.8.21.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.29.8.21.1
```

Пример

```
Komaндa CLI:
show system router resources

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.21.1
```

Просмотр используемого количества маршрутов

MIB: rlip.mib

Используемые таблицы: rllpTotalPrefixesNumber — 1.3.6.1.4.1.89.26.25

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.25
```

```
Koмaндa CLI:
show system router resources

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.25
```

Просмотр максимального количества ІР-интерфейсов

MIB: rltuning.mib

Используемые таблицы: rsMaxIpInterfaces — 1.3.6.1.4.1.89.29.8.25.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.29.8.25.1
```

Пример

```
Koмaндa CLI:
show system router resources

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.29.8.25.1
```

Просмотр используемого количества ІР-интерфейсов

MIB: rlip.mib

Используемые таблицы: rllpAddressesNumber — 1.3.6.1.4.1.89.26.23

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.23
```

Пример

```
Koмaндa CLI:
show system router resources

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.23
```

Просмотр системного МАС-адреса коммутатора

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackMacAddr — 1.3.6.1.4.1.89.53.4.1.7

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.4.1.7
```

```
Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4.1.7
```


Про<u>смотр Uptime коммутатора</u>

Команда акутальна для Uptime меньше 497 дней.

MIB: SNMPv2-MIB

Используемые таблицы: sysUpTime - 1.3.6.1.2.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.1.3
```

Пример просмотра Uptime коммутатора

```
Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.1.3
```

Просмотр счётчика Uptime коммутатора в секундах

MIB: eltSystemGlobal.mib

Используемые таблицы: eltSysUpTimeInSec - .1.3.6.1.4.1.35265.1.23.1.10.3.1.1

```
snmpget -v2c -c <community> \langle IP \text{ address} \rangle  .1.3.6.1.4.1.35265.1.23.1.10.3.1.1.0
```

Просмотр счётчика Uptime коммутатора в секундах

```
Команда SNMP:

snmpget -v2c -c private 192.168.1.30 \
.1.3.6.1.4.1.35265.1.23.1.10.3.1.1.0
```

Просмотр счётчика Uptime коммутатора в секундах для юнита в стеке

MIB: ELTEX-PHYSICAL-DESCRIPTION-MIB.mib

Используемые таблицы: eltPhdUnitEnvParamTable - .1.3.6.1.4.1.35265.1.23.53.7

```
snmpget -v2c -c <community> <IP address> \
.1.3.6.1.4.1.35265.1.23.53.7.1.1.{unit}
```

Просмотр счётчика Uptime коммутатора в секундах для юнита в стеке

```
Команда SNMP:
snmpget -v2c -c private 192.168.1.30 \
.1.3.6.1.4.1.35265.1.23.53.7.1.1.1
```

Просмотр Uptime порта

MIB: SNMPv2-MIB, IF-MIB

Используемые таблицы:

```
sysUpTime — 1.3.6.1.2.1.1.3
ifLastChange — 1.3.6.1.2.1.2.2.1.9
```

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.1.3 snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.2.2.1.9. {ifindex}
```

Пример просмотра Uptime порта TenGigabitethernet 1/0/23

```
Команда CLI: show interface status TenGigabitethernet 1/0/23

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.1.3 snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.2.2.1.9.23
```


Из вывода первой команды необходимо отнять вывод второй команды. Полученное значение и будет являться uptime порта.

Включение сервиса мониторинга приходящего на СРИ трафика

MIB: rlsct.mib

Используемые таблицы: rlSctCpuRateEnabled — 1.3.6.1.4.1.89.203.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.203.1.0 i {true(1), false(2)}
```

Пример

```
Komaндa CLI:
service cpu-input-rate

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.203.1.0 i 1
```

<u>Просмотр счетчиков и количества обрабатываемых СРИ пакетов в секунду (по типам трафика)</u>

MIB: rlsct.mib

Используемые таблицы: eltCpuRateStatisticsTable — 1.3.6.1.4.1.35265.1.23.1.773.1.2.1

Пример просмотра количества обрабатываемых CPU в секунду пакетов

```
Команда CLI:
show cpu input-rate detailed

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.773.1.2.1.1.2
```


Привязка индексов к типам трафика:

```
stack(1)
http(2)
telnet(3)
ssh(4)
snmp(5)
ip(6)
arp(7)
arpinspec(8)
stp(9)
ieee(10)
routeUnknown(11)
ipHopByHop(12)
mtuExceeded(13)
ipv4Multicast(14)
ipv6Multicast(15)
dhcpSnooping(16)
igmpSnooping(17)
mldSnooping(18)
ttlExceeded(19)
ipv4IllegalAddress(20)
ipv4HeaderError(21)
ipDaMismatch(22)
sflow(23)
logDenyAces(24)
dhcpv6Snooping(25)
vrrp(26)
logPermitAces(27)
ipv6HeaderError (28)
```

<u>Изменение лимитов СРИ</u>

MIB: eltSwitchRateLimiterMIB.mib

Используемые таблицы: eltCPURateLimiterTable — 1.3.6.1.4.1.35265.1.23.1.773.1.1.1

Пример установки ограничения SNMP-трафика для CPU в 512 pps

```
Команда CLI:

service cpu-rate-limits snmp 512

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.35265.1.23.1.773.1.1.1.2.4 i 512
```


Список индексов:

eltCPURLTypeHttp(1) eltCPURLTypeTeInet(2) eltCPURLTypeSsh(3) eltCPURLTypeSnmp(4)

```
eltCPURLTypeIp(5)
eltCPURLTypeLinkLocal(6)
eltCPURLTypeArpRouter(7)
eltCPURLTypeArpInspec(9)
eltCPURLTypeStpBpdu(10)
eltCPURLTypeOtherBpdu(11)
eltCPURLTypeIpRouting(12)
eltCPURLTypeIpPoptions(13)
eltCPURLTypeIpOptions(13)
eltCPURLTypeIpMpSnoop(14)
eltCPURLTypeIgmpSnoop(16)
eltCPURLTypeMidSnoop(17)
eltCPURLTypeSflow(18)
eltCPURLTypeLogDenyAces(19)
eltCPURLTypeIpErrors(20)
eltCPURLTypeOther(22)
```

<u>Мониторинг загрузки СРИ</u>

MIB: rlmng.mib

Используемые таблицы:

```
rlCpuUtilDuringLastSecond — 1.3.6.1.4.1.89.1.7 rlCpuUtilDuringLastMinute — 1.3.6.1.4.1.89.1.8 rlCpuUtilDuringLast5Minutes — 1.3.6.1.4.1.89.1.9
```

- Загрузка за последних пять секунд: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.7;
- Загрузка за 1 минуту: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.8;
- Загрузка за 5 минут: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.1.9.

Пример просмотра загрузки CPU за последние пять секунд

```
Koмaндa CLI:
show cpu utilization

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.1.7
```

<u>Включение мониторинга загрузки СРИ по процессам</u>

MIB: RADLAN-rndMng

 $\mathsf{Используемые}\ \mathsf{таблицы:}\ \mathsf{rlCpuTasksUtilEnable}\ -1.3.6.1.4.1.89.1.6$

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.1.6.0 i {true(1), false(2)}
```

```
Команда CLI:
service tasks-utilization

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.1.6.0 i 1
```


<u>Мониторинг загрузки CPU по процессам</u>

MIB: ELTEX-MES-MNG-MIB

Используемые таблицы:

 $eltCpuTasksUtilStatisticsUtilizationDuringLastSSeconds \\ -1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3 \\ eltCpuTasksUtilStatisticsUtilizationDuringLastMinute \\ -1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.4 \\ eltCpuTasksUtilStatisticsUtilizationDuringLast5Minutes \\ -1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.5 \\$

Пример просмотра загрузки по процессам за последние 5 секунд

Команда CLI: show tasks utilization Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.1.9.1.2.1.1.3

Привязка индексов к процессам

LTMR (0)	3SWQ (62)	MSRP (124)
ROOT (1)	POLI (63)	MUXT (125)
HWAW (2)	OBSR (64)	DMNG (126)
IT18 (3)	NTPL (65)	DSYN (127)
IV11 (4)	L2HU (66)	HSES (128)
MEMT (5)	L2PS (67)	HSEU (129)
DDFG (6)	RROt (68)	HSCS (130)
SYLG (7)	LBDR (69)	UDLS (131)
CDB_ (8)	LBDT (70)	L2TS (132)
SNMP (9)	SFSM (71)	STPS (133)
NTST (10)	NSCT (72)	DTSA (134)
CNLD (11)	UDLD (73)	SS2M (135)
IOTG (12)	NSFP (74)	DSND (136)
IOUR (13)	NVCT (75)	STMB (137)
IOTM (14)	NACT (76)	MRDP (138)
CPUT (15)	NSTM (77)	MLDP (139)
HOST (16)	NINP (78)	XMOD (140)
CPUM (17)	CNCT (79)	URGN (141)
STUT (18)	QStT (80)	AAAT (142)
MEMV (19)	STPT (81)	AATT (143)
TBI_ (20)	L2PT (82)	SCPT (144)
BRMN (21)	L2UT (83)	DH6C (145)
TMNG (22)	BRGS (84)	RCLA (146)
COPY (23)	FHSS (85)	RCLB (147)
TRNS (24)	FHSF (86)	RCDS (148)
MROR (25)	FLNK (87)	PVNT (149)
DFST (26)	FFTT (88)	SETX (150)
SFTR (27)	IPAT (89)	EVTX (151)
SFMG (28)	IP6M (90)	SERX (152)
HCLT (29)	IP6L (91)	SCRX (153)
HCPT (30)	IP6C (92)	EVRX (154)
HCWT (31)	IP6R (93)	HLTX (155)
EVLC (32)	RPTS (94)	LACP (156)

SELC (33)	ARPG (95)	GRN_ (157)
SCLC (34)	IPG_ (96)	VPCM (158)
EVAU (35)	DNSC (97)	VPCB (159)
SEAU (36)	ICMP (98)	OAMT (160)
EVFB (37)	TFTP (99)	IPMT (161)
EVLT (38)	IPRD (100)	SNTP (162)
EPOE (39)	PNGA (101)	DHCP (163)
EVSC (40)	SLAP (102)	DHCp (164)
EVAN (41)	UDPR (103)	RELY (165)
CRPT (42)	VRRP (104)	MSSS (166)
HUTT (43)	TRCE (105)	WBAM (167)
HUTX (44)	SSLP (106)	WNTT (168)
ESTC (45)	WBSO (107)	RADS (169)
SSTC (46)	WBSR (108)	SPRT (170)
DSPT (47)	GOAH (109)	SNAS (171)
I2DT (48)	HTTC (110)	SNAE (172)
UNQt (49)	ECHO (111)	SNAD (173)
BOXS (50)	TNSR (112)	MNGT (174)
BSNC (51)	TNSL (113)	UTST (175)
BOXM (52)	SSHP (114)	SOCK (176)
B_RS (53)	SSHU (115)	SSHC (177)
TRMT (54)	SSHS (116)	TCPP (178)
D_SP (55)	SSHL (117)	MSCm (179)
D_LM (56)	PTPT (118)	STSA (180)
PLCT (57)	NBBT (119)	STSB (181)
PLCR (58)	MDLS (120)	STSC (182)
SW2M (59)	MSDP (121)	STSD (183)
exRX (60)	LICT (122)	STSE (184)
3SWF (61)	SQIN (123)	STSF (185)

Просмотр общего объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryEntry - 1.3.6.1.4.1.35265.41.1.2.1.1

```
Команда CLI:
show cpu utilization

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.41.1.2.1.1.3.0
```


Просмотр свободного объема оперативной памяти

MIB: ELTEX-PROCESS-MIB.mib

Используемые таблицы: eltexProcessMemoryEntry - 1.3.6.1.4.1.35265.41.1.2.1.1

Пример

```
Команда CLI: show cpu utilization

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.41.1.2.1.1.7.0
```

Включение поддержки сверхдлинных кадров (jumbo-frames)

MIB: radlan-jumboframes-mib.mib

Используемые таблицы: rlJumboFrames — 1.3.6.1.4.1.89.91

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.91.2.0 i {enabled(1), disabled(2)}
```

Пример

```
Команда CLI:
port jumbo-frame

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.91.2.0 i 1
```

4.2 Системные параметры

Контроль состояния блоков питания

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Основной блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.2;
- Резервный блок питания: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.3.

Пример просмотра состояния основного блока питания

```
Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.2
```


1) для основного блока питания возможны следующие состояния:

```
normal (1)
warning (2)
critical (3)
shutdown (4)
notPresent (5)
notFunctioning (6)
```

2) для резервного блока питания возможны следующие состояния:

```
normal (1)
warning (2)
critical (3)
shutdown (4)
notPresent (5)
notFunctioning (6)
```

Контроль состояния вентиляторов

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

- Вентилятор 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.4
- Вентилятор 2: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.5
- Вентилятор 3: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.6
- Вентилятор 4: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.7

Пример просмотра состояния вентилятора 3 коммутатора MES5332A

```
Команда CLI:
show system

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.6
```


Возможны следующие состояния:

```
normal (1)
notFunctioning (5)
```

Контроль показаний температурных датчиков

MIB: RADLAN-MIB

Используемые таблицы: rlEnv — 1.3.6.1.4.1.89.83.2.1.1.1.4

Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.83.2.1.1.1.4

Пример просмотра температуры датчика

```
Kоманда CLI:
show system sensors

Kоманда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.83.2.1.1.1.4
```


<u>Контроль состояния температурных датчиков</u>

MIB: rlphysdescription.mib

 $\mathsf{Используемые}$ таблицы: rlPhdUnitEnvParamTable — 1.3.6.1.4.1.89.53.15

Температурный датчик 1: snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.89.53.15.1.11

Пример

```
Koмaндa CLI:
show system sensors

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.15.1.11
```

4.3 Параметры стека

Мониторинг параметров стека

MIB: rlphysdescription.mib

Используемые таблицы: rlPhdStackTable — 1.3.6.1.4.1.89.53.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.4
```

Пример просмотра параметров стека

```
Команда CLI:
show stack

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.4
```

Мониторинг стековых портов

MIB: rlphysdescription.mib

Используемые таблицы: rlCascadeTable — 1.3.6.1.4.1.89.53.23

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.53.23
```

Пример просмотра состояния стековых портов

```
Koмaндa CLI:
show stack links

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.53.23
```

4.4 Управление устройством

Задать/сменить hostname на устройстве

MIB: SNMPv2-MIB

Используемые таблицы: sysName — 1.3.6.1.2.1.1.5

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.2.1.1.5.0 s "{hostname}"
```

Пример присвоения hostname "mes5332A"

```
Команда CLI:
hostname mes2324

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.1.5.0 s "mes5332A"
```

Включение/отключение management acl

MIB: RADLAN-MNGINF-MIB

Используемые таблицы:

```
rlMngInfEnable — 1.3.6.1.4.1.89.89.2
rlMngInfActiveListName — 1.3.6.1.4.1.89.89.3
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.89.2.0 i {true(1), false(2)}\
```

Пример включения management acl с именем eltex

1.3.6.1.4.1.89.89.3.0 s {name}do ping

```
Команда CLI:
management access-class eltex

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.89.2.0 i 1 \
1.3.6.1.4.1.89.89.3.0 s eltex
```

Использование утилиты ping

MIB: rlapplication.mib

Используемые таблицы: rsPingInetTable — 1.3.6.1.4.1.89.35.4.2

```
snmpset -v2c -c <community> <IP address>\

1.3.6.1.4.1.89.35.4.1.1.2.{IP address>} i {Packet count}\
1.3.6.1.4.1.89.35.4.1.1.3.{IP address>} i {Packet Size}\
1.3.6.1.4.1.89.35.4.1.1.4.{IP address>} i {Packet Timeout}\
1.3.6.1.4.1.89.35.4.1.1.5.{IP address>} i {Ping Delay}\
1.3.6.1.4.1.89.35.4.1.1.6.{IP address>} i {Send SNMP Trap(2)}\
1.3.6.1.4.1.89.35.4.1.1.14.{IP address>} i {createAndGo(4), destroy(6), active(1)}
```


Пример команды ping узла 192.168.1.1

```
Команда CLI:

ping 192.168.1.1 count 10 size 250 timeout 1000

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.35.4.1.1.2.192.168.1.1 i 10 \

1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250 \

1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000 \

1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0 \

1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2 \

1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 4
```


При установке в поле rsPingEntryStatus значения 4 (createAndGo) создаётся и активируется операция ping.

Чтобы повторно пропинговать удалённый хост, требуется в поле rsPingEntryStatus выставить значение 1(active).

После окончания операции обязательно надо удалить все записи, выставив в поле rsPingEntryStatus значение 6 (destroy). Иначе через CLI и SNMP операцию ping до другого хоста выполнить не удастся.

Пример удаления:

```
snmpset -v2c -c private 192.168.1.30\
1.3.6.1.4.1.89.35.4.1.1.2.192.168.1.1 i 10\
1.3.6.1.4.1.89.35.4.1.1.3.192.168.1.1 i 250\
1.3.6.1.4.1.89.35.4.1.1.4.192.168.1.1 i 1000\
1.3.6.1.4.1.89.35.4.1.1.5.192.168.1.1 i 0\
1.3.6.1.4.1.89.35.4.1.1.6.192.168.1.1 i 2\
1.3.6.1.4.1.89.35.4.1.1.14.192.168.1.1 i 6
```

Мониторинг утилиты ріпд

MIB: rlapplication.mib

Используемые таблицы: rsPingEntry — 1.3.6.1.4.1.89.35.4.1.1

```
snmpwalk -v2c -c <community> <IP address>\
```

1.3.6.1.4.1.89.35.4.1.1. (Количество отправленых пакетов (7), Количество принятых пакетов (8), Минимальное время ответа (9), Средние время ответа (10), Максимальное время ответа (11)}

Пример просмотра количества принятых пакетов

```
Команда CLI:
ping 192.168.1.1
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.35.4.1.1.8
```


При установке в поле rsPingEntryStatus значения 6 (destroy) мониторинг будет запрещён до создания новой операции.

Настройка системного журнала

MIB: DRAFT-IETF-SYSLOG-DEVICE-MIB

Используемые таблицы: snmpSyslogCollectorEntry — 1.3.6.1.4.1.89.82.1.2.4.1

```
snmpset -v2c -c <community> -t 10 -r 5 <IP address> \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "{name}" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i
                                 \{ipv4(1), ipv6(2)\} \setminus
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x {ip add in HEX} \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u {udp port number}
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i {syslog facility(16-24)} \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i {severity level} \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример добавления сервера для логирования

```
Команда CLI:
logging host 192.168.1.1 description 11111
Команда SNMP:
snmpset -v2c -c private -t 10 -r 5 192.168.1.30 \
1.3.6.1.4.1.89.82.1.2.4.1.2.1 s "11111" \
1.3.6.1.4.1.89.82.1.2.4.1.3.1 i 1 \
1.3.6.1.4.1.89.82.1.2.4.1.4.1 x COA80101 \
1.3.6.1.4.1.89.82.1.2.4.1.5.1 u 514 \
1.3.6.1.4.1.89.82.1.2.4.1.6.1 i 23 \
1.3.6.1.4.1.89.82.1.2.4.1.7.1 i 6 \
1.3.6.1.4.1.89.82.1.2.4.1.9.1 i 4
```


Severity level задается следующим образом:

```
emergency(0),
alert(1),
critical(2),
error(3),
warning(4),
notice(5),
info(6),
debug(7)
Facility:
```

local0(16),

local1(17),

local2(18),

local3(19),

local4(20),

local5(21),

local6(22),

local7(23),

no-map(24)

5 НАСТРОЙКА СИСТЕМНОГО ВРЕМЕНИ

Настройка адреса SNTP-сервера

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfigServerInetTable — 1.3.6.1.4.1.89.92.2.2.17

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.{ip
                                       address
                                                 in
                                                      DEC.
                                                            Байты
                                                                     IP-адреса
разделяются точками} і {true(1), false(2). Указание значения poll} \
 1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.{ip address in
                                                    DEC.
                                                            Байты
                                                                     IP-адреса
разделяются точками} и 0 \
                                                in DEC.
 1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.{ip
                                        address
                                                             Байты
                                                                     ІР-адреса
разделяются точками} i {createAndGo(4), destroy(6)}
```

Пример указания SNTP-сервера с IP-адресом 91.226.136.136

```
Команда CLI:

sntp server 91.226.136.136 poll

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.17.1.3.1.4.91.226.136.136 i 1 \
1.3.6.1.4.1.89.92.2.2.17.1.9.1.4.91.226.136.136 u 0 \
1.3.6.1.4.1.89.92.2.2.17.1.10.1.4.91.226.136.136 i 4
```

<u>Установка времени опроса для SNTP-клиента</u>

MIB: rlsntp.mib

Используемые таблицы: rlSntpNtpConfig — 1.3.6.1.4.1.89.92.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.1.4.0 i {range 60-86400}
```

Пример установки времени опроса в 60 секунд

```
Команда CLI:

sntp client poll timer 60

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.92.2.1.4.0 i 60
```


Чтобы вернуться к настройкам по умолчанию достаточно установить время в 1024 сек.

Настройка работы одноадресных SNTP-клиентов

MIB: rlsntp.mib

Используемые таблицы: rlSntpConfig — 1.3.6.1.4.1.89.92.2.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.2.2.5.0 i {true(1), false(2)}
```


Пример разрешения последовательного опроса SNTP-серверов

```
Koмaндa CLI:
sntp unicast client poll

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.2.2.5.0 i 1
```

Добавление часового пояса

MIB: rlsntp.mib

Используемые таблицы: rlTimeSyncMethodMode — 1.3.6.1.4.1.89.92.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.92.1.6.0 s "{TimeZone}" \
1.3.6.1.4.1.89.92.1.7.0 s "{NameZone}"
```

Пример добавления часового пояса на устройстве

```
Команда CLI:
clock timezone test +7

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.92.1.6.0 s "+7:00" \
1.3.6.1.4.1.89.92.1.7.0 s "test"
```

6 КОНФИГУРИРОВАНИЕ ИНТЕРФЕЙСОВ

6.1 Параметры Ethernet-интерфейсов

1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.1.{ifIndex}

Просмотр Description порта

MIB: IF-MIB или eltMng.mib

```
Используемые таблицы: ifAlias — 1.3.6.1.2.1.31.1.1.118 или iflongDescr —
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.31.1.1.1.1.18.{ifIndex}
snmpwalk -v2c -c <community> <IP address> \
```

Пример просмотра Description на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces description TenGigabitEthernet 1/0/23

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.31.1.1.1.18.23
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.1.1.31.1.1.1.23
```

Просмотр Description vlan

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qVlanStaticTable - 1.3.6.1.2.1.17.7.1.4.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.7.1.4.3.1.1.\{vlan\ id\}
```

Пример просмотра Description vlan 100

```
Komaнда CLI:
show interfaces description vlan 100

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.4.3.1.1.1
```

Просмотр скорости на интерфейсе

MIB: IF-MIB

Используемые таблицы: if High Speed -1.3.6.1.2.1.31.1.1.1.15

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.31.1.1.1.15.{ififndex}
```

Пример выключения negotiation на TenGigabitethernet 1/0/23

Komaндa CLI: show interface status TenGigabitethernet 1/0/23 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.1.15.23

Включение/выключение автосогласования скорости на интерфейсе

MIB: rlinterfaces.mib

Используемые таблицы: swlfSpeedDuplexAutoNegotiation — 1.3.6.1.4.1.89.43.1.1.16

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.16.{ifIndex} i {negotiation(1), no negotiation(2)}
```

Пример выключения negotiation на TenGigabitethernet 1/0/23

```
Komaндa CLI:
interface TenGigabitethernet 1/0/23
no negotiation

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.16.23 i 2
```

Установка режимов автосогласования скорости на интерфейсе

MIB: swinterfaces.mib

Используемые таблицы: swlfAdminSpeedDuplexAutoNegotiationLocalCapabilities — 1.3.6.1.4.1.89.43.1.1.40

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.40.{ifIndex} x "{negotiation mode(HEX-string)}"
```

Пример настройки автосогласования на скорости 1000f и 10000f на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
negotiation 1000f 10000f

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.40.23 x 14
```


- 1) В двоичной системе 1000f и 10000f записывается как 00110000000. В HEX системе счисления это 180.
- 2) Описание битов

```
Default(0),
Unknown(1),
TenHalf(2),
TenFull(3),
```



```
FastHalf(4),
FastFull(5),
GigaHalf(6),
GigaFull(7),
TenGigaFull(8),
FiveGigaFull(9),
TwoPointFiveFull(10).
```

Порядок битов

109876543210

Просмотр duplex-режима порта

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsDuplexStatus — 1.3.6.1.2.1.10.7.2.1.19

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.10.7.2.1.19.\{ifindex\}\
```

Пример просмотра режима duplex порта TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
show interfaces status TenGigabitEthernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.2.1.19.23
```


Расшифровка выдаваемых значений

unknown (1) halfDuplex (2) fullDuplex (3)

Смена duplex-режима на интерфейсе

MIB: RADLAN-rlInterfaces

 $\mathsf{Используемые}$ таблицы: $\mathsf{swlfDuplexAdminMode} - 1.3.6.1.4.1.89.43.1.1.3$

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.3.{ifIndex} i {none(1),half(2),full (3)}
```

Пример смены режима duplex порта TenGigabitethernet 1/0/23

```
Komaнда CLI:
interface TenGigabitethernet 1/0/23
duplex half

Komaнда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.3.23 i 2
```

Просмотр среды передачи интерфейса

MIB: EtherLike-MIB

Используемые таблицы: swlfTransceiverType — 1.3.6.1.4.1.89.43.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.7.\{ifindex\}\
```

Пример просмотра среды передачи порта TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
show interfaces status TenGigabitEthernet 1/0/1
Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.7.23
```


Расшифровка выдаваемых значений

Copper (1)
FiberOptics (2)
ComboCopper (3)
ComboFiberOptics (4)

Управление потоком (flowcontrol)

MIB: RADLAN-rlInterfaces

 $\mathsf{Используемые}$ таблицы: $\mathsf{swlfFlowControlMode} - 1.3.6.1.4.1.89.43.1.1.14$

Пример включения управления потоком на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
flowcontrol on

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.14.23 i 1
```

Просмотр административного состояния порта

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.2.2.1.7.\{ifIndex\}
```

Пример просмотра статуса порта TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interfaces status TenGigabitEthernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.7.23
```


Возможные варианты

up(1) down(2) testing(3)

Включить/выключить конфигурируемый интерфейс

MIB: IF-MIB

Используемые таблицы: ifAdminStatus — 1.3.6.1.2.1.2.2.1.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.7.{ifIndex} i {up(1),down(2)}
```

Пример

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
shutdown

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.2.2.1.7.23 i 2
```

Включить/выключить расщепление на конфигурируемом интерфейсе

MIB: eltMesHardwareMib

Используемые таблицы: eltHardwareInterfaceEntry — 1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.14.1.1.3.1.2.{ifIndex} i {4*25g(3),1*100g(1)}
```

Пример включения расщепления порта HundredGigabitEthernet1/0/2 для коммутатора MES5500-32

```
Koмaндa CLI:
interface HundredGigabitEthernet1/0/2
hardware profile portmode 4x25g

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1.2.1 i 3
```

Просмотр фактического состояния расщепления порта

MIB: eltMesHardwareMib

Используемые таблицы: eltHardwareInterfaceEntry — 1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1.3.{ifIndex}
```


Пример просмотра статуса расщепления порта HundredGigabitEthernet1/0/2 для коммутатора MES5500-32

Koмaндa CLI: show hardware profile portmode Koмaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.14.1.1.3.1.3.2

Возможные варианты

1*100g(1) 4*25g(3)

Просмотр состояния расщепления порта после перезагрузки

MIB: eltMesHardwareMib

Используемые таблицы: eltHardwareInterfaceEntry — 1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1

Пример просмотра статуса расщепления порта HundredGigabitEthernet1/0/2 после перезагрузки для коммутатора MES5500-32

```
Koмaндa CLI:
show hardware profile portmode

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.14.1.1.1.3.1.2.2
```


Возможные варианты

1*100g(1) 4*25g(3)

Просмотр оперативного состояния порта

MIB: IF-MIB

Используемые таблицы: ifOperStatus — 1.3.6.1.2.1.2.2.1.8

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.2.2.1.8.\{ifIndex\}
```

Пример просмотра статуса порта TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interfaces status TenGigabitEthernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.8.23
```


Возможные варианты

up(1) down(2)

Определение типа подключения порта

MIB: rlinterfaces.mib

Используемые таблицы: swlfTransceiverType - 1.3.6.1.4.1.89.43.1.1.7

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.7.\{ifIndex\}\
```

Пример определения типа порта TenGigabitethernet 1/0/23

```
Komaндa CLI:
show interfaces status

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.7.23
```


Возможные варианты

regular (1)
fiberOptics (2)
comboRegular (3)
comboFiberOptics (4)

Просмотр счетчика unicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInUcastPkts — 1.3.6.1.2.1.2.2.1.11

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.2.2.1.11.\{ifIndex\}
```

Пример просмотра счетчика входящих unicast-пакетов на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.11.23
```

Просмотр счетчика multicast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInMulticastPkts — 1.3.6.1.2.1.31.1.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.31.1.1.1.2.\{ifindex\}\
```


Пример просмотра счетчика входящих multicast-пакетов на интерфейсе TenGigabitethernet 1/0/23

Koмaндa CLI: show interface counters TenGigabitethernet 1/0/23 Komaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.2.1.31.1.1.2.23

Просмотр счетчика broadcast-пакетов на интерфейсе

MIB: IF-MIB

Используемые таблицы: ifInBroadcastPkts — 1.3.6.1.2.1.31.1.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.31.1.1.1.3.\{ifindex\}
```

Пример просмотра счетчика входящих broadcast-пакетов на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.31.1.1.3.23
```

Просмотр счетчиков октетов на интерфейсе

MIB: IF-MIB

Используемые таблицы:

```
ifInOctets — 1.3.6.1.2.1.2.2.1.10
ifHCInOctets — 1.3.6.1.2.1.31.1.1.1.6
ifOutOctets — 1.3.6.1.2.1.2.2.1.16
ifHCOutOctets — 1.3.6.1.2.1.31.1.1.1.10

snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.2.2.1.10.{ifindex}
```

Пример просмотра счетчика принятых октетов на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.2.2.1.10.23
```


Под октетом имеется в виду количество байт.

1 октет = 1 байт

Просмотр счетчика FCS Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsFCSErrors — 1.3.6.1.2.1.10.7.2.1.3


```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.10.7.2.1.3.{ifindex}
```

Пример просмотра счетчика FCS Errors на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.2.1.3.23
```

Просмотр счетчика Internal MAC Rx Errors на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3StatsInternalMacReceiveErrors — 1.3.6.1.2.1.10.7.2.1.16

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.10.7.2.1.16.\{ifindex\}\
```

Пример просмотра счетчика Internal MAC Rx Errors на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.2.1.16.23
```

<u>Просмотр счетчика Transmitted Pause Frames на интерфейсе</u>

MIB: EtherLike-MIB

Используемые таблицы: dot3OutPauseFrames — 1.3.6.1.2.1.10.7.10.1.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.10.7.10.1.4.\{ifindex\}\
```

Пример просмотра счетчика Transmitted Pause Frames на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.10.1.4.23
```

Просмотр счетчика Received Pause Frames на интерфейсе

MIB: EtherLike-MIB

Используемые таблицы: dot3InPauseFrames — 1.3.6.1.2.1.10.7.10.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.10.7.10.1.3.\{ifindex\}\
```


Пример просмотра счетчика Received Pause Frames на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interface counters TenGigabitethernet 1/0/23
Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.10.7.10.1.3.23
```

Очистка счетчиков интерфейсов

MIB: rlInterfaces.mib

Используемые таблицы: rllfClearPortMibCounters — 1.3.6.1.4.1.89.54.4

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.54.4.0 x {битовая маска}
```

Пример очистки счетчика интерфейсов

1) В значении очистки счетчиков в стеке задается битовая маска для всех портов всех юнитов стека:

2) Посмотреть значение битовой маски можно командой:

```
snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.54.9.0
```

Мониторинг загрузки портов коммутатора

MIB: eltMes.mib

Используемые таблицы: eltSwlfUtilizationEntry — 1.3.6.1.4.1.35265.1.23.43.2.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.43.2.1.{parametr}
```


Пример

Koмaндa CLI: show interfaces utilization Koмaндa SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.43.2.1.1

Список возможных параметров

eltSwlfUtilizationIfIndex(1)

eltSwIfUtilizationAverageTime(2)

eltSwlfUtilizationCurrentInPkts(3)

eltSwlfUtilizationCurrentInRate(4)

eltSwlfUtilizationCurrentOutPkts(5)

eltSwlfUtilizationCurrentOutRate(6)

eltSwIfUtilizationAverageInPkts(7)

eltSwlfUtilizationAverageInRate(8)

eltSwlfUtilizationAverageOutPkts(9)

eltSwlfUtilizationAverageOutRate(10)

Включение/выключение режима однонаправленной передачи порта

MIB: ELTEX-MES-eltInterfaces

Используемые таблицы: eltSwlfTable — 1.3.6.1.4.1.35265.1.23.43.1

Пример включения режима однонаправленной передачи порта

```
Koмaндa CLI:
interface TenGigabitEthernet1/0/1
unidirectional send-only
exit

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.43.1.1.15.1 i 1
```

6.2 Группы агрегации каналов — Link Aggregation Group (LAG)

Включение/выключение работы интерфейса в составе группы агрегации

MIB: IEEE8023-LAG-MIB

Используемые таблицы:

```
dot3adAggPortTable — 1.2.840.10006.300.43.1.2.1
```


Пример включения channel-group на TenGigabitethernet 1/0/1

```
Команда CLI:
interface TenGigabitethernet 1/0/1
channel-group 1 mode auto

Команда SNMP:
sudo snmpset -v2c -c private 192.168.1.30 \
1.2.840.10006.300.43.1.2.1.1.20.1 x "A2" \
1.2.840.10006.300.43.1.2.1.1.4.1 i 10000
```

Пример выключения channel-group на TenGigabitethernet 1/0/1

```
Команда CLI:
interface TenGigabitethernet 1/0/1
no channel-group

Команда SNMP:
sudo snmpset -v2c -c private 192.168.1.30 \
1.2.840.10006.300.43.1.2.1.1.20.1 s '"'\
1.2.840.10006.300.43.1.2.1.1.4.1 i 0
```

6.3 Конфигурирование VLAN

<u>Добавление VLAN в vlan database</u>

MIB: rlvlan.mib

Используемые таблицы:

```
rldot1qVlanStaticList1to1024 — 1.3.6.1.4.1.89.48.69.1.2 rldot1qVlanStaticList1025to2048 — 1.3.6.1.4.1.89.48.69.1.3 rldot1qVlanStaticList2049to3072 — 1.3.6.1.4.1.89.48.69.1.4 rldot1qVlanStaticList3073to4094 — 1.3.6.1.4.1.89.48.69.1.5 snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.69.1.2 x {битовая маска}
```

Пример создания vlan 994 во vlan database

- 1) При расчете битовой маски для vlan 1025-2048 выполнить вычитание 1024 от необходимого vlan, а затем уже выполнять расчет маски. Аналогично для vlan 2049-3072: необходимо отнять 2048 перед расчетом. Для 3073-4094 вычесть 3072. Битовая маска должна включать в себя не менее 10 символов.
- 2) Пример расчета битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».

<u>Добавление VLAN на порт</u>

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.68.1.{1-8}.{ifIndex} x {vlan в виде битовой маски}
```

Пример добавления vlan 622 и 3100 на интерфейс TenGigabitEthernet 1/0/23 в режим trunk

Пример добавления vlan 622 на интерфейс TenGigabitEthernet 1/0/23 в качестве native vlan

Пример добавления vlan 622 на интерфейс TenGigabitEthernet 1/0/23 в режиме access

1. Перечень таблиц:

```
rldot1qPortVlanStaticEgressList1to1024 -- 1.3.6.1.4.1.89.48.68.1.1. \{ifindex\} \\ rldot1qPortVlanStaticEgressList1025to2048 -- 1.3.6.1.4.1.89.48.68.1.2. \{ifindex\} \\ rldot1qPortVlanStaticEgressList2049to3072 -- 1.3.6.1.4.1.89.48.68.1.3. \{ifindex\} \\ rldot1qPortVlanStaticEgressList3073to4094 -- 1.3.6.1.4.1.89.48.68.1.4. \{ifindex\} \\ rldot1qPortVlanStaticEgressList3073to4094 -- 1.3.6.1.4.
```


rldot1qPortVlanStaticUntaggedEgressList1to1024 — 1.3.6.1.4.1.89.48.68.1.5.{ifindex} rldot1qPortVlanStaticUntaggedEgressList1025to2048 1.3.6.1.4.1.89.48.68.1.6.{ifindex} rldot1qPortVlanStaticUntaggedEgressList2049to3072 1.3.6.1.4.1.89.48.68.1.7.{ifindex} rldot1qPortVlanStaticUntaggedEgressList3073to4094 1.3.6.1.4.1.89.48.68.1.8.{ifindex}

- 2. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».
- 3. Битовая маска должна включать в себя не менее 10 символов.

<u>Запретить default VLAN на порту</u>

MIB: eltVlan.mib

Используемые таблицы: eltVlanDefaultForbiddenPorts — 1.3.6.1.4.1.35265.1.23.5.5.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.5.5.1.0 x {порт в виде битовой маски}
```

Пример запрета default vlan на порту TenGigabitEthernet 1/0/23

Команда CLI:

```
interface TenGigabitethernet 1/0/23
switchport forbidden default-vlan
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.5.5.1.0 \times 0000020000
```


- 1. Пример составления битовой маски приведен в разделе «Приложение А. Методика расчета битовой маски».
- 2. Битовая маска должна включать в себя не менее 10 символов.

Просмотр имени VLAN

MIB: rlvlan.mib

Используемые таблицы: rldot1qVlanStaticName — 1.3.6.1.4.1.89.48.70.1.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.70.1.1.\{vlan\}\
```

Пример просмотра имени vlan 994

Команда CLI:

show vlan tag 994

Команда SNMP:

```
snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.89.48.70.1.1.994
```


Просмотр членства порта во VLAN

MIB: rlvlan.mib

Используемые таблицы: rldot1qPortVlanStaticTable — 1.3.6.1.4.1.89.48.68

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.68.1.\{1-4\}.\{ifindex\}\ snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.68.1.\{5-8\}.\{ifindex\}\
```

Пример просмотра VLAN на TenGigabitethernet 1/0/23

```
Команда CLI:
show interfaces switchport TenGigabitethernet 1/0/23

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.1.23
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.68.1.5.23
```


1. В примере представлены 2 команды snmpwalk. Если порт Tagged — значения в выводе второй команды принимают нулевое значение и номер VLAN соответствует значениям вывода первой команды. Если порт Untagged — в выводе второй команды присутствуют значения, отличные от нуля, и номер VLAN соответствует этим значениям.

2. Перечень таблиц:

```
\label{eq:ridot1qPortVlanStaticEgressList1to1024} - 1.3.6.1.4.1.89.48.68.1.1.\{ifindex\} \\ rldot1qPortVlanStaticEgressList1025to2048 - 1.3.6.1.4.1.89.48.68.1.2.\{ifindex\} \\ rldot1qPortVlanStaticEgressList2049to3072 - 1.3.6.1.4.1.89.48.68.1.3.\{ifindex\} \\ rldot1qPortVlanStaticEgressList3073to4094 - 1.3.6.1.4.1.89.48.68.1.4.\{ifindex\} \\ rldot1qPortVlanStaticUntaggedEgressList1to1024 - 1.3.6.1.4.1.89.48.68.1.5.\{ifindex\} \\ rldot1qPortVlanStaticUntaggedEgressList1025to2048 - 1.3.6.1.4.1.89.48.68.1.6.\{ifindex\} \\ rldot1qPortVlanStaticUntaggedEgressList2049to3072 - 1.3.6.1.4.1.89.48.68.1.7.\{ifindex\} \\ rldot1qPortVlanStaticUntaggedEgressList3073to4094 - 1.3.6.1.4.1.89.48.68.1.8.\{ifindex\} \\ \end{aligned}
```

3. Полученные в результате выполнения запроса значения представляют из себя битовую маску, методика расчета которой приведена в разделе «Приложение А. Методика расчета битовой маски».

Настройка режима работы порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeEntry — 1.3.6.1.4.1.89.48.22.1

Пример настройки интерфейса TenGigabitEthernet 1/0/23 в режим trunk

Koмaндa CLI: interface TenGigabitEthernet 1/0/23 switchport mode trunk Koмaндa SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.48.22.1.1.21 i 2

Просмотр режима порта

MIB: rlvlan.mib

Используемые таблицы: vlanPortModeState — 1.3.6.1.4.1.89.48.22.1

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.22.1.1.{ifindex}
```

Пример просмотра режима на TenGigabitethernet 1/0/23

```
Koмaндa CLI:
show interfaces switchport TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.48.22.1.1.23
```


Возможные варианты

general(1) access(2) trunk (3) customer (7)

Назначить pvid на интерфейс

MIB: Q-BRIDGE-MIB.mib

Используемые таблицы: dot1qPortVlanTable — 1.3.6.1.2.1.17.7.1.4.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.4.5.1.1.{ifindex} u {1-4094}
```

Пример назначения pvid 15 для TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
switchport general pvid 15

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.7.1.4.5.1.1.23 u 15
```


Настройка тар тас

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanGroupTable — 1.3.6.1.4.1.89.48.45

Пример

```
Команда CLI:
vlan database
map mac a8:f9:4b:33:29:c0 32 macs-group 1

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.45.1.3.168.249.75.51.41.192.32 i 1 \
1.3.6.1.4.1.89.48.45.1.4.168.249.75.51.41.192.32 i 4
```

<u>Установка правила классификации VLAN, основанного на привязке к МАС-адресу, для</u> интерфейса

MIB: rlvlan.mib

Используемые таблицы: vlanMacBaseVlanPortTable — 1.3.6.1.4.1.89.48.46.1.2

Пример включения правила классификации VLAN для интерфейса TenGigabitEthernet 1/0/23

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
switchport general map macs-group 1 vlan 20

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.46.1.2.23.1 u 1 \
1.3.6.1.4.1.89.48.46.1.3.23.1 i 4
```

6.4 Настройка и мониторинг errdisable-состояния

Просмотр настроек для автоматической активации интерфейса

MIB: rlinterfaces recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.128.2.1.2
```

Пример просмотра настроек для автоматической активации интерфейса

```
Koмaндa CLI:
show errdisable recovery

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.2.1.2
```

Просмотр причины блокировки порта

MIB: rlErrdisableRecoveryIfReason

Используемые таблицы: rlErrdisableRecoveryIfReason — 1.3.6.1.4.1.89.128.3.1.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.128.3.1.1
```

Пример

```
Koмaндa CLI:
show errdisable interfaces

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.128.3.1.1
```


Возможные варианты:

loopback-detection (1) port-security (2) dot1x-src-address (3) acl-deny (4) stp-bpdu-guard (5) stp-loopback-guard (6) unidirectional-link (7) dhcp-rate-limit (8) l2pt-guard (9) storm-control (10)

Настройка автоматической активации интерфейса

MIB: rlinterfaces recovery.mib

Используемые таблицы: rlErrdisableRecoveryEnable — 1.3.6.1.4.1.89.128.2.1.2

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.128.2.1.2. {index of reason} i {true(1), false(2)}
```

Пример включения автоматической активации интерфейса в случае loopback detection

```
Команда CLI:
errdisable recovery cause loopback-detection

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.128.2.1.2.1 i 1
```


Возможные значения index of reason, в зависимости от типа выполняемой настройки:

```
loopback detection — (1)
port-security — (2)
dot1x-src-address — (3)
acl-deny — (4)
stp-bpdu-guard — (5)
stp-loopback-guard (6)
unidirectional-link — (8)
storm-control — (9)
l2pt-guard — (11)
```

Настройка интервала выхода интерфейса из errdisable состояния

MIB: rlinterfaces_recovery.mib

Используемые таблицы: rlErrdisableRecoveryInterval — 1.3.6.1.4.1.89.128.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.128.1.0 i {interval 30-86400}
```

Пример настройки 30 секундного интервала выхода из состояния errdisable

```
Koмaндa CLI:
errdisable recovery interval 30

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.128.1.0 i 30
```

6.5 Настройка voice vlan

Добавление voice vlan

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceAdminVid — 1.3.6.1.4.1.89.48.54.8

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.54.8.0 i {vlan id}
```

Пример добавления voice vlan id 10

```
Команда CLI:
voice vlan id 10

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.8.0 i 10
```

Активация voice vlan на интерфейсе

MIB: RADLAN-vlanVoice-MIB

Используемые таблицы: vlanVoiceOUIBasedPortTable — 1.3.6.1.4.1.89.48.54.12.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.54.12.5.1.1.{ifIndex} i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.{ifIndex} u {voice vlan id}
```

Пример

```
Команда CLI:
interface TenGigabitethernet 1/0/23
voice vlan enable

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.5.1.1.23 i 1 \
1.3.6.1.4.1.89.48.54.12.5.1.2.23 u 10
```

<u>Редактирование таблицы ОИІ</u>

MIB: rlvlanVoice.mib

Используемые таблицы: vlanVoiceOUIBasedTable — 1.3.6.1.4.1.89.48.54.12.4

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.48.54.12.4.1.3.{OUI in DEC. Байты разделяются точками} i {createAndGo(4), destroy(6)}
```

Пример

```
Команда CLI:
voice vlan oui-table add 002618

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.54.12.4.1.3.0.38.24 i 4
```

6.6 Настройка LLDP

Глобальное включение/отключение LLDP

MIB: rlLldp.mib

Используемые таблицы: rlLldpEnabled — 1.3.6.1.4.1.89.110.1.1.1

Пример отключения LLDP

```
Команда CLI:
no Lldp run

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.1.1.0 i 2
```


<u>Настройка lldp-med политики с указанием номера voice vlan для тегированного трафика</u> voice vlan

MIB: rllldb.mib

Используемые таблицы: rlLldpXMedLocMediaPolicyContainerTable — 1.3.6.1.4.1.89.110.1.2.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.110.1.2.1.1.2.1 i {voice(1), voice-signaling(2), guest-voice(3),
guest-voice-signaling(4), softphone-voice(5), video-conferencing(6), streaming-
video(7), video-signaling(8)} \
1.3.6.1.4.1.89.110.1.2.1.1.3.1 i {vlan} \
1.3.6.1.4.1.89.110.1.2.1.1.4.1 i {priority} \
1.3.6.1.4.1.89.110.1.2.1.1.7.1 {true(1), false(2)} \
1.3.6.1.4.1.89.110.1.2.1.1.9.1 i {createAndGo(4), destroy(6)}
```

Пример настройки политики lldp-med с указанием VLAN 10, указанием приоритета 4

```
Команда CLI:
lldp med network-policy 1 voice vlan 10 vlan-type tagged up 4

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.2.1.1.2.1 i 1 \
1.3.6.1.4.1.89.110.1.2.1.1.3.1 i 10 \
1.3.6.1.4.1.89.110.1.2.1.1.4.1 i 4 \
1.3.6.1.4.1.89.110.1.2.1.1.7.1 i 1 \
1.3.6.1.4.1.89.110.1.2.1.1.7.1 i 4
```

Настройка lldp-med политики для тегированного трафика voice vlan

MIB: rllldb.mib

Используемые таблицы: rlLldpXMedNetPolVoiceUpdateMode — 1.3.6.1.4.1.89.110.1.7

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.110.1.7.0 i {manual(0), auto(1)}
```

Пример настройки политики lldp-med в режиме auto

```
Koмaндa CLI:
no lldp med network-policy voice auto

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.110.1.7.0 i 1
```

7 НАСТРОЙКА IPV4-АДРЕСАЦИИ

Создание IP-адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.26.1.1.2.{ip address(DEC)} i {ifIndex} \
1.3.6.1.4.1.89.26.1.1.3.{ip address(DEC)} a {netmask}
```

Пример настройки IP-адреса 192.168.10.30/24 на vlan 30

```
Команда CLI:
interface vlan 30
ip address 192.168.10.30 /24

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \
1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0
```

Удаление IP-адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rslpAddrEntry — 1.3.6.1.4.1.89.26.1.1

Пример удаления IP-адреса 192.168.10.30 на интерфейсе vlan 30

```
Команда CLI:
interface vlan 30
no ip address 192.168.10.30

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.1.1.2.192.168.10.30 i 100029 \
1.3.6.1.4.1.89.26.1.1.3.192.168.10.30 a 255.255.255.0 \
1.3.6.1.4.1.89.26.1.1.6.192.168.10.30 i 2
```

Получение IP-адреса по DHCP на interface vlan

MIB: radlan-dhcpcl-mib.mib

Используемые таблицы: rlDhcpClActionStatus — 1.3.6.1.4.1.89.76.3.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.76.3.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```


Пример

```
Команда CLI:
interface vlan 30
ip address dhcp
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \1.3.6.1.4.1.89.76.3.1.2.100029 i 4
```

Добавить/удалить шлюз по умолчанию

MIB: rlip.mib

Используемые таблицы: rllnetStaticRouteEntry — 1.3.6.1.4.1.89.26.28.1

Пример добавления ip default-gateway 192.168.1.10

```
Команда CLI:

ip default-gateway 192.168.1.10

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.26.28.1.7.1.4.0.0.0.0.0.1.4.192.168.1.10.0 u 4 \

1.3.6.1.4.1.89.26.28.1.8.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4 \

1.3.6.1.4.1.89.26.28.1.10.1.4.0.0.0.0.0.1.4.192.168.1.10.0 i 4
```

8 НАСТРОЙКА IPV6-АДРЕСАЦИИ

Включение/выключение IPv6-адресации на interface vlan

MIB: ip-mib.mib

Используемые таблицы: ipv6InterfaceEnableStatus — 1.3.6.1.2.1.4.30.1.5

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.30.1.5.{ifindex} i {enable(1), disable(2)}
```

Пример включения IPv6-адресации на vlan 2

```
Команда CLI:
interface vlan 2
ipv6 enable

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.4.30.1.5.100001 i 1
```

Создание/удаление IPv6-адреса на interface vlan

MIB: rlip.mib

Используемые таблицы: rllpAddressEntry — 1.3.6.1.4.1.89.26.36.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.36.1.5.{количество байт в адресе}.{каждый байт в десятичном виде через разделитель}.2.0 і {ifindex} \ 1.3.6.1.4.1.89.26.36.1.13.{количество байт в адресе}.{каждый байт в десятичном виде через разделитель}.2.0 и {маска в десятичном виде}\ 1.3.6.1.4.1.89.26.36.1.11.{количество байт в адресе}.{каждый байт в десятичном виде через разделитель}.2.0 і {createAndGo (4), destroy(6)}
```

Пример добавления адреса 2001::1/64 на vlan 2

```
Команда CLI:
interface vlan 2
ipv6 address 2001::1/64

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.26.36.1.5.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 100001 \
1.3.6.1.4.1.89.26.36.1.13.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 u 64 \
1.3.6.1.4.1.89.26.36.1.11.2.16.32.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.2.0 i 4
```

9 HACTPOЙKA GREEN ETHERNET

<u>Глобальное отключение green-ethernet short-reach</u>

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthShortReachEnable — 1.3.6.1.4.1.89.134.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.134.2.0 i {true (1), false (2)}
```

Пример отключения green-ethernet short-reach

```
Koмaндa CLI:
no green-ethernet short-reach
Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.2.0 i 2
```

Глобальное отключение green-ethernet energy-detect

MIB: rlgreeneth.mib

Используемые таблицы: rlGreenEthEnergyDetectEnable — 1.3.6.1.4.1.89.134.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.134.1.0 i {true (1), false (2)}
```

Пример отключения green-ethernet energy-detect

```
Koмaндa CLI:
no green-ethernet energy-detect

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.134.1.0 i 2
```

Просмотр параметров green-ethernet

MIB: rlGreenEth.mib

Используемые таблицы: rlGreenEthCumulativePowerSaveMeter — 1.3.6.1.4.1.89.134.5

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.134.5
```

Пример просмотра параметров green-ethernet

```
Koмaндa CLI:
show green-ethernet

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.134.5
```

10 НАСТРОЙКА КОЛЬЦЕВЫХ ПРОТОКОЛОВ

10.1 Протокол ERPS

Определение номера west-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.2
```

Пример

```
Команда CLI: show erps

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.2
```

Просмотр состояния west-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSWestPortState —1.3.6.1.4.1.35265.35.1.1.3.1.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.3
```

Пример

```
Команда CLI:
show erps vlan 10
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.3
```


Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

<u>Определение номера east-порта</u>

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPort — 1.3.6.1.4.1.35265.35.1.1.3.1.1.4

```
snmpwalk -v2c -c <community> <IP address> \setminus 1.3.6.1.4.1.35265.35.1.1.3.1.1.4
```


Пример

```
Команда CLI:
show erps

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.4
```

Просмотр состояния east-порта

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSEastPortState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.5

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.5
```

Пример

```
Команда CLI:
show erps vlan 10
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.5
```


Возможные состояния порта:

- 1. Forwarding (1)
- 2. Blocking (2)
- 3. Signal-fail (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)

Просмотр состояния кольца

MIB: ELTEX-BRIDGE-ERPS-V2-MIB.mib

Используемые таблицы: eltexErpsMgmtRAPSRingState — 1.3.6.1.4.1.35265.35.1.1.3.1.1.12

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.35.1.1.3.1.1.12
```

Пример

```
Команда CLI:
show erps vlan 10
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.35.1.1.3.1.1.12
```


Возможные состояния кольца erps:

- 1. Init (1)
- 2. Idle(2)
- 3. Protection (3)
- 4. Manual-switch (4)
- 5. Forced-switch (5)
- **6. Pending (6)**

10.2 Настройка протокола Spanning Tree

Включение/отключение протокола spanning-tree

MIB: radlan-brgmacswitch.mib

Используемые таблицы: rldot1dStp — 1.3.6.1.4.1.89.57.2.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.3.0 i {enabled(1), disabled(2)}
```

Пример отключения spanning-tree

```
Koмaндa CLI:
no spanning-tree

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.3.0 i 2
```

Включение/отключение протокола spanning-tree на конфигурируемом интерфейсе

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpPortTable — 1.3.6.1.2.1.17.2.15.1.4

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.2.15.1.4.{ifIndex} i {enabled(1), disabled(2)}
```

Пример отключения работы spanning-tree на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
spanning-tree disable

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.2.15.1.4.23 i 2
```

<u>Включение/выключение режима обработки пакетов BPDU интерфейсом, на котором</u> выключен протокол STP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortTable — 1.3.6.1.4.1.89.57.2.13.1.4

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.57.2.13.1.4.{ifIndex} i {filtering(1), flooding(2)}
```

Пример включения фильтрации BPDU на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
interface tengigabitethernet 1/0/23
spanning-tree bpdu filterin

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.57.2.13.1.4.23 i 1
```


Настройка режима работы протокола spanning-tree

MIB: draft-ietf-bridge-rstpmib.mib

Используемые таблицы: dot1dStpVersion - 1.3.6.1.2.1.17.2.16

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.2.16.0 i {stp(0), rstp(2), mstp(3)}
```

Пример установки режима работы протокола Spanning-tree

```
Koмaндa CLI:
spanning-tree mode rstp

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.2.1.17.2.16.0 i 2
```

Просмотр роли порта в STP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1dStpPortRole — 1.3.6.1.4.1.89.57.2.13.1.7

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.57.2.13.1.7.\{ifindex\}\
```

Пример просмотра роли TenGigabitethernet 1/0/23 в STP

```
Koмaндa CLI:
show spanning-tree TenGigabitethernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.57.2.13.1.7.23
```


Возможные состояния порта:

- 1. Disabled (1)
- 2. Alternate (2)
- 3. Backup(3)
- 4. Root(4)
- 5. Designated(5)

Просмотр состояния порта в MSTP

MIB: radlan-bridgemibobjects-mib.mib

Используемые таблицы: rldot1sMstpInstancePortState — 1.3.6.1.4.1.89.57.6.2.1.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.57.6.2.1.4.1.\{ifindex\}\
```

Пример просмотра состояния TenGigabitethernet 1/0/23 в mstp

Команда CLI:

show spanning-tree TenGigabitethernet0/23

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.4.1.89.57.6.2.1.4.1.23

Возможные состояния порта:

- 1. Disabled (1)
- 2. Blocking (2)
- 3. Listening (3)
- 4. Forwarding(5)

Количество перестроений (topology change)

MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTopChanges — 1.3.6.1.2.1.17.2.4.0

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.2.1.17.2.4.0
```

Пример просмотра количества перестроений

Команда CLI:

show spanning-tree

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.2.1.17.2.4.0

Просмотр времени с последнего перестроения (topology change)

MIB: MIB: BRIDGE-MIB

Используемые таблицы: dot1dStpTimeSinceTopologyChange — 1.3.6.1.2.1.17.2.3.0

Пример просмотра с последнего перестроения

Команда CLI:

show spanning-tree

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.2.1.17.2.3.0

Просмотр интерфейса, с которого принят последний topology change

MIB: eltBridgeExtMIB.mib

Используемые таблицы: eltdot1dStpLastTopologyChangePort — 1.3.6.1.4.1.35265.1.23.1.401.0.5.2

snmpwalk -v2c -c <community> <IP address> \1.3.6.1.4.1.35265.1.23.1.401.0.5.2

Пример просмотра интерфейса, с которого принят последний topology change

Команда CLI:

show spanning-tree

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.4.1.35265.1.23.1.401.0.5.2

11 ГРУППОВАЯ АДРЕСАЦИЯ

11.1 Правила групповой адресации (multicast addressing)

Запрещение динамического добавления порта к многоадресной группе

MIB: rlbrgmulticast.mib

Используемые таблицы: rlBrgStaticInetMulticastEntry — 1.3.6.1.4.1.89.116.5.1

Пример запрета изучения группы 239.200.200.17 на порту TenGigabitEthernet 1/0/23 в vlan 622

- 1) Суммарное количество цифр в OID 1.3.6.1.4.1.89.116.5.1.6 и OID 1.3.6.1.4.1.89.116.5.1.7 должно быть одинаковым и чётным.
- 2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Запрещение прохождения незарегистрированного Multicast-трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastUnregFilterEnable — 1.3.6.1.4.1.89.55.4.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.4.1.0 x "{Битовая маска для интерфейсов}"
```

Пример запрещения прохождения незарегистрированного Multicast-трафика для портов TenGigabitEthernet 1/0/20-21

```
Команда CLI:
interface range TenGigabitEthernet 1/0/20-21
bridge multicast unregistered filtering

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.4.1.0 x "000018000000000"
```


- 1) Для удаления настройки надо заменить соответствующие портам поля в битовой маске на 0.
- 2) Методику расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

Фильтрация многоадресного трафика

MIB: rlbrgmulticast.mib

Используемые таблицы: rlMacMulticastEnable — 1.3.6.1.4.1.89.55.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.1.0 i {true(1), false(2)}
```

Пример включения фильтрации многоадресного трафика

```
Koмaндa CLI:
bridge multicast filtering

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.1.0 i 1
```

Глобальное включение igmp snooping

MIB: rlbrgmulticast.mib

Используемые таблицы: rllgmpSnoopEnable — 1.3.6.1.4.1.89.55.2.2

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.2.2.0 i {true(1), false(2)}
```

Пример

```
Команда CLI:
ip igmp snooping

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.2.2.0 i 1
```

Включение igmp snooping в vlan

MIB: rlbrgmulticast.mib

 $\mathsf{Используемые}$ таблицы: rllgmpMldSnoopVlanEnable — 1.3.6.1.4.1.89.55.5.5.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.55.5.5.1.3.1.{vlan id} i {true(1), false(2)}
```

Пример включения igmp snooping в vlan 30

```
Команда CLI:
ip igmp snooping vlan 30

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.55.5.5.1.3.1.30 i 1
```

Просмотр таблицы igmp snooping

MIB: rlbrgmulticast.mib

Используемые таблицы: rligmpMldSnoopMembershipTable — 1.3.6.1.4.1.89.55.5.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.55.5.4
```

Пример

```
Команда CLI: show ip igmp snooping groups

Команда SNMP: snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.55.5.4
```

Настройка multicast-tv vlan (MVR)

MIB: rlvlan.mib

Используемые таблицы: vlanMulticastTvEntry — 1.3.6.1.4.1.89.48.44.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.48.44.1.1.{ifIndex} u {vlan-id} \
1.3.6.1.4.1.89.48.44.1.2.50 i {createAndGo(4), destroy (6)}
```

Пример настройки multicast-tv vlan 622 на интерфейсе TenGigabitEthernet 1/0/23

```
Команда CLI:
interface tengigabitethernet 1/0/23
switchport access multicast-tv vlan 622

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.48.44.1.1.23 u 622 \
1.3.6.1.4.1.89.48.44.1.2.23 i 4
```


Настройка режима работы multicast-tv vlan <customer/access/trunk/general> зависит от режима настройки порта, т.е. от команды switchport mode customer/access/trunk/general.

11.2 Функции ограничения multicast-трафика

Создание multicast snooping profile

MIB: eltIpMulticast.mib

Используемые таблицы: eltMeslpMulticast — 1.3.6.1.4.1.35265.1.23.46.1

Пример создания профиля с именем IPTV (предположим, что профиль будет иметь порядковый номер 3)

```
Команда CLI:

multicast snooping profile IPTV

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.35265.1.23.46.1.1.2.3 s IPTV \

1.3.6.1.4.1.35265.1.23.46.1.1.3.3 i 1 \

1.3.6.1.4.1.35265.1.23.46.1.1.4.3 i 4
```

Указание диапазонов Multicast-адресов в multicast snooping profile

MIB: eltIpMulticast.mib

Используемые таблицы: eltMeslpMulticast — 1.3.6.1.4.1.35265. 1.23.46.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.3.1.3.{index of rule}.{Index of profile} i
{ip(1),ipv6(2)} \
1.3.6.1.4.1.35265. 1.23.46.3.1.4.{index of rule}.{Index of profile} x {ip-адрес
начала диапазона в шестнадцатеричном виде} \
1.3.6.1.4.1.35265. 1.23.46.3.1.5.{index of rule}.{Index of profile} x {ip-адрес
конца диапазона в шестнадцатеричном виде} \
1.3.6.1.4.1.35265. 1.23.46.3.1.6.{index of rule}.{Index of profile} i
{createAndGo(4), destroy(6)}
```

Пример ограничения Multicast-групп 233.7.70.1-233.7.70.10 для профиля с именем IPTV (предположим, что профиль имеет порядковый номер 3. В первом профиле 2 правила, во втором — 1)

```
Команда CLI:
multicast snooping profile IPTV
match ip 233.7.70.1 233.7.70.10

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.3.1.3.4.3 i 1 \
1.3.6.1.4.1.35265.1.23.46.3.1.4.4.3 x E9074601 \
1.3.6.1.4.1.35265.1.23.46.3.1.5.4.3 x E907460A \
1.3.6.1.4.1.35265.1.23.46.3.1.6.4.3 i 4
```


index of rule — считается по сумме всех правил во всех профилях.

Назначение multicast snooping profile на порт

MIB: eltIpMulticast.mib

Используемые таблицы: eltMeslpMulticast — 1.3.6.1.4.1.35265. 1.23.46.7.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265. 1.23.46.7.1.1.{ifIndex}.{Index of profile} i {ifIndex} \
1.3.6.1.4.1.35265. 1.23.46.7.1.2.{ifIndex}.{Index of profile} i {Index of profile} \
1.3.6.1.4.1.35265. 1.23.46.7.1.3.{ifIndex}.{Index of profile} i
{createAndGo(4), destroy(6)}
```


Пример добавления профиля test (с индексом профиля 3) на интерфейс TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
multicast snooping add test

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.7.1.1.23.3 i 23 \
1.3.6.1.4.1.35265.1.23.46.7.1.2.23.3 i 3 \
1.3.6.1.4.1.35265.1.23.46.7.1.3.23.3 i 4
```

Настройка ограничения количества Multicast-групп на порту

MIB: eltIpMulticast.mib

Используемые таблицы: eltMesIpMulticast — 1.3.6.1.4.1.35265.1.23.46.6.1

Пример настройки ограничения в три Multicast-группы на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
multicast snooping max-groups 3

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.46.6.1.2.23 i 3
```

12 ФУНКЦИИ УПРАВЛЕНИЯ

12.1 Механизм ААА

Добавление нового пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAALocalUserTable — 1.3.6.1.4.1.89.79.17

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.17.1.1.{number of letters}.{Login in DEC, каждая буква логина отделяется от следующей точкой} s {login} \
1.3.6.1.4.1.89.79.17.1.2.{number of letters}.{Login in DEC, каждая буква логина отделяется от следующей точкой} s "#{encoding password}" \
1.3.6.1.4.1.89.79.17.1.3.{number of letters}.{Login in DEC, каждая буква логина отделяется от следующей точкой} i {privelege level(1-15)} \
1.3.6.1.4.1.89.79.17.1.4.{number of letters}.{Login in DEC, каждая буква логина отделяется от следующей точкой} i {create and go(4)}
```

Пример добавления пользователя techsup с паролем password и уровнем привилегий 15

```
Команда CLI:
username techsup password password privilege 15

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.17.1.1.7.116.101.99.104.115.117.112 s techsup \
1.3.6.1.4.1.89.79.17.1.2.7.116.101.99.104.115.117.112 s
"#5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8" \
1.3.6.1.4.1.89.79.17.1.3.7.116.101.99.104.115.117.112 i 15
\1.3.6.1.4.1.89.79.17.1.4.7.116.101.99.104.115.117.112 i 4
```


- 1. Логин переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII.
- 2. Пароль задается исключительно в шифрованном виде, пишется обязательно в кавычках, перед паролем добавляется #.

<u>Настройка методов авторизации для login-пользователя</u>

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0),
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
line(1),enable(2),local(3)radius(4),tacacs(5),none(6)} \
```


 $1.3.6.1.4.1.89.79.15.1.10.15.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} і {disable (0), enable(1)} \ <math>1.3.6.1.4.1.89.79.15.1.10.15.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} і {disable (0), enable(1)}$

Пример

Команда CLI: aaa authentication login authorization default radius local Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 i 4 \ 1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10 8.116 i 4 \ 1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 i 3 \ 1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10 8.116 i 3 \ 1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.10 8.116 i 1 \ 1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.110.95.100.101.102.97.117.1 08.116 i 1

authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.15 разрешает прохождение авторизации для login-пользователя.

108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается login_c_default).

108.111.103.105.110.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается login_n_default).

Удаление настройки методов авторизации для login-пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i \{deny(0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6) \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} і {deny (0),
line (1), enable (2), local (3) radius (4), tacacs (5), none (6) \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} і {deny (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.15.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой\} і \{deny\ (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.10.15.{"login c default" in DEC, каждая буква логина
отделяется от следующей точкой} і \{disable (0), enable (1)\}
1.3.6.1.4.1.89.79.15.1.10.15.{"login n default" in DEC, каждая буква логина
отделяется от следующей точкой} і {disable (0), enable(1)}
```


Пример удаления методов авторизации для login-пользователя

```
Команда CLI:
no aaa authentication login default
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 3 \
1.3.6.1.4.1.89.79.15.1.2.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 3 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.99.95.100.101.102.97.117.108
.116 i 0 \
1.3.6.1.4.1.89.79.15.1.3.15.108.111.103.105.110.95.110.95.100.101.102.97.117.10
8.116 i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.99.95.100.101.102.97.117.10
8.116 i 0 \
1.3.6.1.4.1.89.79.15.1.10.15.108.111.103.105.110.95.110.95.100.101.102.97.117.1
08.116 i
```


authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.15 разрешает прохождение авторизации для login-пользователя.

108.111.103.105.110.95.99.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается login_c_default).

108.111.103.105.110.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается login_n_default).

<u>Настройка методов авторизации для enable-пользователя</u>

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} i \{deny (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \setminus
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} i \{deny (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \setminus
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login c default" in DEC, каждая буква
логина отделяется от следующей точкой} і {deny (0),
line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login n default" in DEC, каждая буква
логина отделяется от следующей точкой} і {deny (0),
line (1), enable (2), local (3) radius (4), tacacs (5), none (6) }
1.3.6.1.4.1.89.79.15.1.10.16.{"login_c_default" in DEC, каждая буква логина
отделяется от следующей точкой} і {disable (0), enable(1)} \
1.3.6.1.4.1.89.79.15.1.10.16.{"login n default" in DEC, каждая буква логина
отделяется от следующей точкой} і {disable (0), enable(1)}
```

Пример настройки методов авторизации для enable-пользователя

Команда CLI: aaa authentication enable authorization default radius enable Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.1 08.116 i 4 \ 1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 i 4 \ 1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 i 2 \ 1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117. 108.116 i 2 \ 1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117. 108.116 i 1 \ 1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 i 1

authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.16 разрешает прохождение авторизации для enable-пользователя.

101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_c_default).

101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_n_default).

Удаление настройки методов авторизации для enable-пользователя

MIB: rlaaa.mib

Используемые таблицы: rlAAAMethodListEntry — 1.3.6.1.4.1.89.79.15.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0), line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0), line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0), line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.{authindex}.16.{"login_n_default" in DEC, каждая буква логина отделяется от следующей точкой} i {deny (0), line(1), enable(2), local(3) radius(4), tacacs(5), none(6)} \
1.3.6.1.4.1.89.79.15.1.10.16.{"login_c_default" in DEC, каждая буква логина отделяется от следующей точкой} i {disable (0), enable(1)} \
```


Пример удаления методов авторизации для enable-пользователя

Команда CLI: no aaa authentication enable default Команда SNMP: snmpset -v2c -c private 192.168.1.30 \ >1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117. 108.116 i 2 \ >1.3.6.1.4.1.89.79.15.1.2.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117 .108.116 i 2 \ >1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117. 108.116 i 0 \ >1.3.6.1.4.1.89.79.15.1.3.16.101.110.97.98.108.101.95.110.95.100.101.102.97.117 .108.116 i 0 \ >1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.99.95.100.101.102.97.117 .108.116 i 0 \ >1.3.6.1.4.1.89.79.15.1.10.16.101.110.97.98.108.101.95.110.95.100.101.102.97.11 7.108.116 i 0

authindex — индекс метода авторизации. Доступные значения от 2 до 7. Первым используется метод с наименьшим номером.

Поле 1.3.6.1.4.1.89.79.15.1.10.16 разрешает прохождение авторизации для enable-пользователя.

101.110.97.98.108.101.95.99.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_c_default).

101.110.97.98.108.101.95.110.95.100.101.102.97.117.108.116 переводится из ASCII-таблицы (расшифровывается enable_n_default).

12.2 Настройка доступа

Включение TELNET-сервера

MIB: radlan-telnet-mib.mib

Используемые таблицы: rlTelnetEnable — 1.3.6.1.4.1.89.58.7

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.58.7.0 i {on(1), off(2)}
```

Пример включения TELNET-сервера

```
Koмaндa CLI:
ip telnet server

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.58.7.0 i 1
```

Включение SSH-сервера

MIB: rlssh.mib

Используемые таблицы: rlSshServerEnable — 1.3.6.1.4.1.89.78.2.102

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.78.2.102.0 i \{on(1), off(2)\}\
```

Пример включения SSH-сервера

```
Команда CLI:
ip ssh server
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.78.2.102.0 i 1
```

Просмотр активных сессий

MIB: rlAAA.mib

Используемые таблицы: rlAAAUserInetName — 1.3.6.1.4.1.89.79.57.1.5

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.79.57.1.5
```

Пример просмотра активных сессий

```
Команда CLI:
show users
Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.79.57.1.5
```

13 ЗЕРКАЛИРОВАНИЕ ПОРТОВ

Настройка зеркалирования портов

MIB: rlspan.mib

Используемые таблицы:

1.3.6.1.4.1.89.219.2.1.5.{session id} i {vlan id} \

```
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.219.3.1.4.{session id}.1.{ifindex src port} i {rx(1), tx(2),
both(3)} \
```

 $1.3.6.1.4.1.89.219.3.1.5. \{session\ id\}.1. \{ifindex\ src\ port\}\ i\ \{createAndGo(4), destroy(6)\}$

1.3.6.1.4.1.89.219.2.1.6.{session id} i {createAndGo(4), destroy(6)}

Пример зеркалирования трафика с интерфейса TenGigabitEthernet 1/0/16 на интерфейс TenGigabitEthernet 1/0/17

```
Команда CLI:
monitor session 7 destination interface TenGigabitEthernet 1/0/17
monitor session 7 source interface TenGigabitEthernet 1/0/16

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.219.2.1.2.7 i 17 \
1.3.6.1.4.1.89.219.2.1.3.7 i 1 \
1.3.6.1.4.1.89.219.2.1.4.7 i 1 \
1.3.6.1.4.1.89.219.2.1.5.7 i 1 \
1.3.6.1.4.1.89.219.2.1.6.7 i 4

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.219.3.1.4.7.1.16 i 3 \
1.3.6.1.4.1.89.219.3.1.5.7.1.16 i 4
```

Настройка зеркалирования vlan

MIB: rlspan.mib

Используемые таблицы:

```
rlSpanDestinationTable — 1.3.6.1.4.1.89.219.2
rlSpanSourceTable — 1.3.6.1.4.1.89.219.3

snmpset -v2c -c <community> <IP address> \
    1.3.6.1.2.1.16.22.1.3.1.1.4.{ifindex vlan}.{ifindex dst port} i {copyRxOnly(1)} \
    1.3.6.1.2.1.16.22.1.3.1.1.5.{ifindex vlan}.{ifindex dst port} i {createAndGo(4), destroy(6)}
```


Пример настройки зеркалирования vlan 622 на интерфейс TenGigabitEthernet 1/0/17

```
Команда CLI:monitor session 7 destination interface TenGigabitEthernet 1/0/17monitor session 7 source interface vlan 622Команда SNMP:snmpset -v2c -c private 192.168.1.30 \1.3.6.1.4.1.89.219.2.1.2.1 i 17 \1.3.6.1.4.1.89.219.2.1.3.1 i 1 \1.3.6.1.4.1.89.219.2.1.4.1 i 1 \1.3.6.1.4.1.89.219.2.1.5.1 i 1 \1.3.6.1.4.1.89.219.2.1.6.1 i 4snmpset -v2c -c private 192.168.1.30 \1.3.6.1.4.1.89.219.3.1.4.1.2.100621 i 1 \1.3.6.1.4.1.89.219.3.1.5.1.2.100621 i 4
```

14 ФУНКЦИИ ДИАГНОСТИКИ ФИЗИЧЕСКОГО УРОВНЯ

14.1 Диагностика оптического трансивера

<u>Снятие показаний DDM</u>

MIB: rlphy.mib

Используемые таблицы: rlPhyTestGetResult — 1.3.6.1.4.1.89.90.1.2.1.3

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.90.1.2.1.3.{индекс порта}.{тип параметра}
```

Пример запроса показаний DDM с интерфейса TenGigabitethernet 1/0/23 (для всех параметров)

```
Komaндa CLI:
show fiber-ports optical-transceiver interface TenGigabitethernet 1/0/23

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.90.1.2.1.3.23
```


Тип параметра может принимать следующие значения:

```
rlPhyTestTableTransceiverTemp (5) — температура SFP-трансивера; rlPhyTestTableTransceiverSupply (6) — напряжение питания в мкВ; rlPhyTestTableTxBias (7) — ток смещения в мкА; rlPhyTestTableTxOutput (8) — уровень мощности на передаче в mDbm; rlPhyTestTableRxOpticalPower (9) — уровень мощности на приеме в mDbm.
```

Просмотр серийного номера SFP-трансивера

MIB: eltMes.mib

Используемые таблицы: eltMesPhdTransceiver — 1.3.6.1.4.1.35265.1.23.53

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.53.1.1.1.6.{индекс порта}
```

Пример просмотра серийного номера SFP с интерфейса TenGigabitEthernet 1/0/23 (для всех параметров)

```
Koмaндa CLI:
show fiber-ports optical-transceiver interface TenGigabitEthernet 1/0/23

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.53.1.1.1.6.23
```

15 ФУНКЦИИ ОБЕСПЕЧЕНИЯ БЕЗОПАСТНОСТИ

15.1 Функции обеспечения защиты портов

<u>Ограничение количества МАС-адресов, изучаемых на Ethernet-портах</u>

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.38.{ifIndex} i {max mac addresses}
```

Пример ограничения в 20 MAC-адресов на порт TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
port security max 20

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.38.23 i 20
```

Включение port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfPortLocklfRangeTable — 1.3.6.1.4.1.89.43.6

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.43.6.1.3.1 i {locked(1), unlocked(2)} \
1.3.6.1.4.1.89.43.6.1.4.1 i {discard(1), forwardNormal(2), discardDisable(3), действие над пакетом, не попавшим под правила port security} \
1.3.6.1.4.1.89.43.6.1.5.1 i {true(1), false(2). Для отправки трапов} \
1.3.6.1.4.1.89.43.6.1.6.1 i {частота отправки трапов (сек)} \
1.3.6.1.4.1.89.43.6.1.2.1 x {ifindex в виде битовой маски}
```

Пример настройки port security для интерфейсов TenGigabitEthernet 1/0/21-23

```
Команда CLI:
interface range TenGigabitEthernet 1/0/21-23
port security discard trap 30

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.6.1.3.1 i 1 \
1.3.6.1.4.1.89.43.6.1.4.1 i 1 \
1.3.6.1.4.1.89.43.6.1.5.1 i 1 \
1.3.6.1.4.1.89.43.6.1.5.1 i 2 \
1.3.6.1.4.1.89.43.6.1.6.1 i 30 \
1.3.6.1.4.1.89.43.6.1.2.1 x "00000E0000"
```


Методика расчета битовой маски приведена в разделе «Приложение А. Методика расчета битовой маски».

Установка режима работы port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1

```
snmpset -v2c -c <community> <IP address> \
  1.3.6.1.4.1.89.43.1.1.37.{ifIndex} i {disabled(1), dynamic(2), secure-
permanent(3), secure-delete-on-reset(4)}
```

Пример настройки режима ограничения по количеству изученных MAC-адресов на порту TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
port security mode max-addresses

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.37.23 i 2
```

Просмотр статуса port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockAdminStatus — 1.3.6.1.4.1.89.43.1.1.8

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.8
```

Пример просмотра статуса port security

```
Komaндa CLI:
show ports security

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.8
```

Просмотр типа port security

MIB: rlinterfaces.mib

Используемые таблицы: swlfAdminLockAction — 1.3.6.1.4.1.89.43.1.1.20

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.20
```

Пример просмотра типа port security

```
Koмaндa CLI:
show ports security

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.20
```

<u>Просмотр максимально заданного количества МАС-адресов, изучаемых на Ethernet портах</u>

MIB: rlinterfaces.mib

Используемые таблицы: swlfLockMaxMacAddresses — 1.3.6.1.4.1.89.43.1.1.38

Пример просмотра максимально заданного количества MAC-адресов, изучаемых на Ethernetпортах

```
Koмaндa CLI:
show ports security

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.38
```

Перевод порта в режим изоляции и внутри группы портов

MIB: rlprotectedport.mib

Используемые таблицы: rlProtectedPortsTable — 1.3.6.1.4.1.89.132.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.132.1.1.1.{Ifindex} i {not-protected(1), protected(2)}
```

Пример настройки изоляции на портах TenGigabitEthernet 1/0/21 и TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface range TenGigabitEthernet 1/0/23
switchport protected-port

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.132.1.1.1.21 i 2 \
1.3.6.1.4.1.89.132.1.1.1.23 i 2
```

Создание статической привязки в МАС-таблице

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qStaticUnicastTable - 1.3.6.1.2.1.17.7.1.3.1

```
snmpset -v2c -c <community> -t 20 -r 0 <IP address> \ 1.3.6.1.2.1.17.7.1.3.1.1.4.{vlan id}.{mac address(DEC). Байты MAC-адреса разделяются точками}.{ifIndex} i {other(1), invalid(2), permanent(3), deleteOnReset(4), deleteOnTimeout(5)}
```

Пример привязки MAC-адреса 00:22:68:7d:0f:3f в vlan 622 к интерфейсу TenGigabitethernet 1/0/23 в режиме secure (по умолчанию используется режим permanent)

```
Команда CLI:
mac address-table static 00:22:68:7d:0f:3f vlan 622 interface tenGigabitethernet 1/0/23 secure

Команда SNMP:
snmpset -v2c -c private -t 20 -r 0 192.168.1.30 \
1.3.6.1.2.1.17.7.1.3.1.1.4.622.0.34.104.125.15.63.23 i 1
```


Просмотр МАС-таблицы

MIB: Q-BRIDGE-MIB

Используемые таблицы: dot1qTpFdbTable — 1.3.6.1.2.1.17.7.1.2.2

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.2.1.17.7.1.2.2
```

Пример просмотра МАС-таблицы

```
Komaндa CLI:
show mac address-table

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2
```

Создание статической привязки в ARP-таблице

MIB: RFC1213-MIB

Используемые таблицы: ipNetToMediaTable — 1.3.6.1.2.1.4.22

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.2.1.4.22.1.2.{vlan id}.{IP address} x {,,MAC address"} \
1.3.6.1.2.1.4.22.1.3.{vlan id}.{IP address} a {IP address} \
1.3.6.1.2.1.4.22.1.4.{vlan id}.{IP address} i 4
```

Пример привязки ір 192.168.1.21 и MAC aa:bb:cc:dd:ee:ff к vlan 1

```
Команда CLI:

arp 192.168.1.21 aa:bb:cc:dd:ee:ff vlan 1

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.2.1.4.22.1.2.100000.192.168.1.21 x "aabbccddeeff" \

1.3.6.1.2.1.4.22.1.3.100000.192.168.1.21 a 192.168.1.21 \

1.3.6.1.2.1.4.22.1.4.100000.192.168.1.21 i 4
```


- 1. Для удаления привязки необходимо в поле 1.3.6.1.2.1.4.22.1.4 присвоить значение 2.
- 2. IP-адрес устройства и IP-адрес создаваемой статической записи в ARP-таблице должны находиться в одной подсети.

Просмотр ARP-таблицы

MIB: RFC1213-MIB.mib, Q-BRIDGE-MIB.mib

Используемые таблицы:

Пример просмотра ARP-таблицы

```
Команда CLI:
show arp

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.4.22.1.2
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.17.7.1.2.2.1
```


- 1. Значение таблицы pNetToMediaPhysAddress отображает IP-адрес и MAC-адрес VLAN.
- 2. Значение таблицы dot1qTpFdbEntry отображает статус и идентификационный номер порта, с которого доступно устройство.

15.2 Контроль протокола DHCP и опции 82

Включение/выключение DHCP-сервера на коммутаторе

MIB: rldhcp.mib

Используемые таблицы: rlDhcpRelayInterfaceListTable — 1.3.6.1.4.1.89.38.29

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.38.30.0 i {true(1), false(2)}
```

Пример включения DHCP-сервера на коммутаторе

```
Команда CLI:
ip dhcp server

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.30.0 i 1
```

Просмотр записей таблицы dhcp snooping

MIB: rlBridgeSecurity.mib

Используемые таблицы: rllpDhcpSnoopEntry — 1.3.6.1.4.1.89.112.1.11.1

```
snmpwalk -v2c -c <community> <IP address> \setminus 1.3.6.1.4.1.89.112.1.11.1
```

Пример просмотра таблицы dhcp snooping

```
Команда CLI:
Show ip dhep snooping binding

Команда SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.112.1.11.1
```


Включение/выключение dhcp snooping глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnable — 1.3.6.1.4.1.89.112.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.2.0 i {enable(1), disable(2)}
```

Пример глобального включения dhcp snooping

```
Команда CLI:
ip dhcp snooping

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.2.0 i 1
```

Включение/выключение dhcp snooping во vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopEnableVlanTable — 1.3.6.1.4.1.89.112.1.12

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.1.12.1.2.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения dhcp snooping в vlan 622

```
Команда CLI:
ip dhcp snooping vlan 622

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.12.1.2.622 i 4
```

Настройка IP DHCP information option

MIB: rlbridgesecurity.mib

Используемые таблицы: rllpDhcpOpt82InsertionEnable — 1.3.6.1.4.1.89.112.1.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.1.8.0 i {enable(1), disable(2)}
```

Пример

```
Команда CLI:
ip dhcp information option

Команда SNMP:
snmpset -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.112.1.8.0 i 1
```

Настройка доверенного порта DHCP

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopTrustedPortTable — 1.3.6.1.4.1.89.112.1.13


```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.89.112.1.13.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса TenGigabitEthernet 1/0/23

```
Komaндa CLI:
interface TenGigabitEthernet 1/0/23
ip dhcp snooping trust

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.13.1.2.23 i 4
```

Настройка DHCP relay во VLAN

MIB: rldhcp.mib

Используемые таблицы:

```
rlDhcpRelayInterfaceListVlanId1To1024 — 1.3.6.1.4.1.89.38.29.1.3 rlDhcpRelayInterfaceListVlanId1025To2048 — 1.3.6.1.4.1.89.38.29.1.4 rlDhcpRelayInterfaceListVlanId2049To3072 — 1.3.6.1.4.1.89.38.29.1.5 rlDhcpRelayInterfaceListVlanId3073To4094 — 1.3.6.1.4.1.89.38.29.1.6 snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.38.29.1.3.1 x {битовая маска}
```

Пример настройки IP DHCP relay enable на vlan 1

```
Команда CLI:
Interface vlan 1
ip dhcp relay enable

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.29.1.3.1 x 800000000000
```

Пример настройки IP DHCP relay enable на 1026 vlan

```
Команда CLI:
Interface vlan 1026
ip dhcp relay enable

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.38.29.1.4.1 x 40000000000
```


Пример расчета битовой маски можно посмотреть в разделе «Приложение А. Методика расчета битовой маски».

15.3 Защита IP-адреса клиента (IP source Guard)

Включение/отключение ip source quard глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardEnable — 1.3.6.1.4.1.89.112.2.2


```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.2.2.0 i {enable(1), disable(2)}
```

Пример глобального включения ip source guard

```
Команда CLI:
ip source-guard

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.2.2.0 i 1
```

Создание статической привязки ip source quard

MIB: rlbridge-security.mib

Используемые таблицы: rllpDhcpSnoopStaticTable — 1.3.6.1.4.1.89.112.1.10

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.1.10.1.3.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} а {ip address (DEC)} \ 1.3.6.1.4.1.89.112.1.10.1.4.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} і {ifIndex} \ 1.3.6.1.4.1.89.112.1.10.1.5.{vlan id}.{MAC in DEC. Каждый байт MAC-адреса отделяется от предыдущего точкой} і {createAndGo(4), destroy(6)}
```

Пример привязки MAC-адреса 00:11:22:33:44:55 к IP 192.168.1.34, vlan 622, интерфейсу TenGigabitEthernet 1/0/23

```
Команда CLI:
ip source-guard binding 00:11:22:33:44:55 622 192.168.1.34 TenGigabitEthernet 1/0/23

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.1.10.1.3.622.0.17.34.51.68.85 a 192.168.1.34 \
1.3.6.1.4.1.89.112.1.10.1.4.622.0.17.34.51.68.85 i 23 \
1.3.6.1.4.1.89.112.1.10.1.5.622.0.17.34.51.68.85 i 4
```

Включение/выключение ip source quard на порту

MIB: rlbridge-security.mib

Используемые таблицы: rllpSourceGuardPortTable — 1.3.6.1.4.1.89.112.2.5

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.2.5.1.2.<ifIndex> i {createAndGo(4), destroy(6)}
```

Пример включения ip source guard на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
ip source-guard

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.2.5.1.2.23 i 4
```

15.4 Контроль протокола ARP (ARP Inspection)

Включение/выключение ARP Inspection глобально

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnable — 1.3.6.1.4.1.89.112.3.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.3.2.0 i {enable(1), disable (2)}
```

Пример глобального включения arp inspection

```
Koмaндa CLI:
ip arp inspection

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.2.0 i 1
```

Включение/выключение ARP Inspection во VLAN

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectEnableVlanTable — 1.3.6.1.4.1.89.112.3.6

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.112.3.6.1.3.{vlan id} i {createAndGo(4), destroy(6)}
```

Пример включения arp inspection в vlan 622

```
Команда CLI:
ip arp inspection vlan 622

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.6.1.3.622 i 4
```

Настройка доверенного порта ARP Inspection

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectTrustedPortRowStatus — 1.3.6.1.4.1.89.112.3.7.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.3.7.1.2.{ifIndex} i {createAndGo(4), destroy(6)}
```

Пример настройки доверенного интерфейса TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
ip arp inspection trust

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.7.1.2.23 i 4
```


Привязка ip arp inspection list к vlan

MIB: rlbridge-security.mib

Используемые таблицы: rllpArpInspectAssignedListName — 1.3.6.1.4.1.89.112.3.6.1.2

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.112.3.6.1.2.{vlan id} s {list name}
```

Пример привязки листа с именем test к vlan 622

```
Koмaндa CLI:
ip arp inspection list assign 100 test

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.112.3.6.1.2.622 s test
```

15.5 Проверка подлинности клиента на основе порта (802.1x)

Включение аутентификации 802.1х на коммутаторе

MIB: dot1xPaeSystem.mib

Используемые таблицы: dot1xPaeSystemAuthControl - 1.0.8802.1.1.1.1.1.1

```
snmpset -v2c -c <community> <IP address> \ 1.0.8802.1.1.1.1.1.1.0 i {enabled(1), disabled(2)}
```

Пример включения 802.1х

```
Команда CLI:
dot1x system-auth-control

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.1.0 i 1
```

<u>Включение периодической повторной проверки подлинности (переаутентификации)</u> клиента

MIB: draft-ietf-bridge-8021x.mib

 $\mathsf{Используемые}$ таблицы: $\mathsf{dot}1\mathsf{x}\mathsf{AuthReAuthEnabled} - 1.0.8802.1.1.1.1.2.1.1.13$

```
snmpset -v2c -c <community> <IP address> \ 1.0.8802.1.1.1.1.2.1.1.13.{ifIndex} i {true(1), false(2)}
```

Пример включения периодической повторной проверки подлинности клиента на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface tengigabitethernet 1/0/23
dot1x reauthentication

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.13.23 i 1
```

Установка периода между повторными проверками подлинности

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.12

```
snmpset -v2c -c <community> <IP address> \
1.0.8802.1.1.1.1.2.1.1.12.{ifIndex} u {size 300-4294967295}
```

Пример установки периода в 300 с между повторными проверками на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface tengigabitethernet 1/0/23
dot1x timeout reauth-period 300

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.12.23 u 300
```

Настройка режимов аутентификации 802.1х на интерфейсе

MIB: draft-ietf-bridge-8021x.mib

Используемые таблицы: dot1xAuthConfigTable — 1.0.8802.1.1.1.1.2.1.1.6

```
snmpset -v2c -c <community> <IP address> \ 1.0.8802.1.1.1.1.2.1.1.6.\{ifIndex\} i \{force-Unauthorized(1), auto(2), force-Authorized(3)\}
```

Пример настройки аутентификации 802.1х в режиме auto на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface tengigabitethernet 1/0/23
dot1x port-control auto

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.0.8802.1.1.1.1.2.1.1.6.23 i 2
```

Включение аутентификации, основанной на МАС-адресах пользователей

MIB: radlan-dot1x-mib.mib

Используемые таблицы: rldot1xAuthenticationPortTable -1.3.6.1.4.1.89.95.10.1.1

Пример включения аутентификации, основанной только на MAC-адресах на интерфейсе TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface tengigabitethernet 1/0/23
dot1x authentication mac

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.95.10.1.1.23 i 3
```


Разрешение наличия одного/нескольких клиентов на авторизованном порту 802.1Х

MIB: rlInterfaces.mib

Используемые таблицы: swlfTable — 1.3.6.1.4.1.89.43.1.1.30

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.43.1.1.30.{ifIndex} i {single(1), none(2), multi-sessions(3)}
```

Пример разрешения наличия нескольких клиентов на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
dot1x host-mode multi-sessions

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.43.1.1.30.23 i 3
```

<u>Включение одного или двух методов проверки подлинности, авторизации и учета (AAA)</u> для использования на интерфейсах IEEE 802.1x

MIB: rlaaa.mib

Используемые таблицы: rlAAAEapMethodListTable — 1.3.6.1.4.1.89.97.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.97.1.1.1.7.{"default" in DEC, каждая буква отделяется от следующей точкой} s {authentication list} \1.3.6.1.4.1.89.97.1.1.2.7.{"default" in DEC, каждая буква отделяется от следующей точкой} i {Deny(0), radius(1), none(2)} \ 1.3.6.1.4.1.89.97.1.1.3.7.{"default" in DEC, каждая буква отделяется от следующей точкой} i {Deny(0), radius(1), none(2)} \ 1.3.6.1.4.1.89.97.1.1.7.7.{"default" in DEC, каждая буква отделяется от следующей точкой} i 1
```

Пример включения списка RADIUS-серверов для аутентификации пользователя

```
Команда CLI:

ааа authentication dot1x default radius none

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.97.1.1.1.7.100.101.102.97.117.108.116 s default \
1.3.6.1.4.1.89.97.1.1.2.7.100.101.102.97.117.108.116 i 1 \
1.3.6.1.4.1.89.97.1.1.3.7.100.101.102.97.117.108.116 i 2 \
1.3.6.1.4.1.89.97.1.1.7.7.100.101.102.97.117.108.116 i 1
```


- 1) Для того, чтобы вернуться к настройкам по умолчанию, достаточно значения поменять на Deny(0).
- 2) Default переводится из ASCII в HEX с помощью таблицы, которую можно найти по ссылке https://ru.wikipedia.org/wiki/ASCII.

Добавление указанного сервера в список используемых RADIUS-серверов

MIB: rlaaa.mib

Используемые таблицы: rlRadiusServerInetTable — 1.3.6.1.4.1.89.80.8

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.80.8.1.2.1.4.{ip address (DEC)}.{default UDP port 1812}.{default UDP port 1813} x "{ip adress(HEX)}" \
1.3.6.1.4.1.89.80.8.1.1.1.4.{ip address (DEC)}.{default UDP port 1812}.{default UDP port 1813} i {ipv4(1), ipv6(2), ipv4z(3)} \
1.3.6.1.4.1.89.80.8.1.3.1.4.{ip address(DEC)}.{default UDP port 1812}.{default UDP port 1813} i {default UDP port 1812} \
1.3.6.1.4.1.89.80.8.1.4.1.4.{ip address(DEC)}.{default UDP port 1812}.{default UDP port 1813} i {default UDP port 1813} \
1.3.6.1.4.1.89.80.8.1.9.1.4.{ip address (DEC)}.{default UDP port 1812}.{default UDP port 1813} s "#{encoding key}" \
1.3.6.1.4.1.89.80.8.1.13.1.4.{ip address (DEC)}.{default UDP port 1812}.{default UDP port 1813} i {createAndGo(4), destroy(6)}
```

Пример

```
Команда CLI:
radius-server host 192.168.1.10 encrypted key da90833f59be

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.80.8.1.2.1.4.192.168.1.10.1812.1813 x "c0a8010a" \
1.3.6.1.4.1.89.80.8.1.1.1.4.192.168.1.10.1812.1813 i 1 \
1.3.6.1.4.1.89.80.8.1.3.1.4.192.168.1.10.1812.1813 i 1812 \
1.3.6.1.4.1.89.80.8.1.4.1.4.192.168.1.10.1812.1813 i 1813 \
1.3.6.1.4.1.89.80.8.1.9.1.4.192.168.1.10.1812.1813 s "#da90833f59be" \
1.3.6.1.4.1.89.80.8.1.13.1.4.192.168.1.10.1812.1813 i 4
```

15.6 Механизм обнаружения петель (loopback-detection)

Глобальное включение loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdEnable — 1.3.6.1.4.1.89.127.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.127.1.0 i { true(1), false(2) }
```

Пример глобального включения loopback-detection

```
Komaндa CLI:
loopback-detection enable

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.1.0 i 1
```


<u>Изменение интервала loopback-detection</u>

MIB: rllbd.mib

Используемые таблицы: rlLbdDetectionInterval -1.3.6.1.4.1.89.127.2

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.127.2.0 I { seconds 1-60 }
```

Пример изменения интервала loopback-фреймов на 23 секунды

```
Koмaндa CLI:
loopback-detection interval 23

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.2.0 i 23
```

Изменение режима работы loopback-detection

MIB: rllbd.mib

Используемые таблицы: rlLbdMode — 1.3.6.1.4.1.89.127.3

Пример изменения режима работы loopback-detection на source-mac-addr

```
Koмaндa CLI:
loopback-detection mode src-mac-addr

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.3.0 i 1
```

Включение/отключение loopback-detection на интерфейсах

MIB: rllbd.mib

Используемые таблицы: rlLbdPortAdminStatus — 1.3.6.1.4.1.89.127.4.1.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.127.4.1.1.{ifindex} i { enable(1), disable(2)}
```

Пример включения loopback-detection на интерфейсе TenGigabitethernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitethernet 1/0/23
loopback-detection enable

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.127.4.1.1.23 i 1
```

Просмотр рабочего состояния loopback-detection на интерфейсе

MIB: rllbd.mib

Используемые таблицы: rlLbdPortOperStatus — 1.3.6.1.4.1.89.127.4.1.2

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.127.4.1.2.{ifindex}
```

Пример просмотра состояния loopback-detection на интерфейсе TenGigabitethernet 1/0/23

Команда CLI:

show loopback-detection TenGigabitethernet 1/0/23

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \setminus 1.3.6.1.4.1.89.127.4.1.2.23

При использовании SNMP-команды:

- 1 состояние inactive,
- 2 состояние active,
- 3 loopdetected.

Просмотр заблокированных VLAN в режиме vlan-based

MIB: rllbd.mib

Используемые таблицы: eltMesLdb — 1.3.6.1.4.1.35265.1.23.127

```
snmpwalk -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.1.23.127.4.1.3.{ifindex}.{vlan}
```

Пример просмотра состояния vlan 2 на порту TenGigabitethernet 1/0/23

Команда CLI:

show loopback-detection TenGigabitethernet 1/0/2

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 $\$ 1.3.6.1.4.1.35265.1.23.127.4.1.3.23.622

Возможные состояния:

- 1 active,
- 2 blocked.

15.7 Контроль широковещательного шторма (storm-control)

Настройка storm-control на интерфейсе

MIB: RADLAN-MIB

Используемые таблицы: rlStormCtrl — 1.3.6.1.4.1.89.77

Пример включения storm-control для broadcast-трафика на интерфейсе TenGigabitethernet 1/0/23

```
Команда CLI:
interface TenGigabitethernet 1/0/23
storm-control broadcast kbps 10000 trap shutdown

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.3.23.1 i 1 \
1.3.6.1.4.1.89.77.12.1.2.23.1 u 1000 \
1.3.6.1.4.1.89.77.12.1.4.23.1 i
```

Пример отключения storm-control для broadcast-трафика на интерфейсе TenGigabitethernet 1/0/23

```
Komaнда CLI:
interface TenGigabitethernet 1/0/23
no storm-control broadcast

Komaнда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.1 u 0
```

Включить/выключить storm-control для unknown unicast-трафика

MIB: radlan-stormctrl.mib

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

```
snmpset -v2c -c <community> <IP address> \ iso.3.6.1.4.1.89.77.12.1.2.{ifIndex}.5 u {Kbps,отключить (0)}
```

Пример включения контроля неизвестного одноадресного трафика до 50 кбит/с

```
Komaнда CLI:
interface TenGigabitethernet 1/0/23
storm-control unicast Kbps 50

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.5 u 50
```

16 КОНФИГУРИРОВАНИЕ ІР И МАС АСР (СПИСКИ КОНТРОЛЯ ДОСТУПА)

Создание mac access-list

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

```
Команда CLI:
mac access-list extended 7-mac

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.207 s "7-mac" \
1.3.6.1.4.1.89.88.7.1.3.207 i 1 \
1.3.6.1.4.1.89.88.7.1.4.207 i 4
```

Создание ip access-list (ACL)

MIB: qosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания IP ACL с индексом 107

```
Команда CLI:
ip access-list extended 7-ip

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.107 s "7-ip" \
1.3.6.1.4.1.89.88.7.1.3.107 i 2 \
1.3.6.1.4.1.89.88.7.1.4.107 i 4
```


Пример наполнения ACL правилами подробно рассмотрен в разделе «Приложение Б. Пример создания типового IP ACL».

Привязка IP или MAC ACL к порту

MIB: qosclimib.mib

Используемые таблицы:

```
rlQoslfAclIn — 1.3.6.1.4.1.89.88.13.1.14
rlQoslfPolicyMapStatus — 1.3.6.1.4.1.89.88.13.1.13
```



```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.14.{ifIndex}.2 i {Index-of-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1
```

Пример назначения правила с индексом 107 (название ACL 7-ip) на порт TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
service-acl input 7-ip

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.23.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.23.2 i 1
```


Для удаления ACL с порта достаточно индекс ACL заменить на 0. snmpset -c -v2c private 192.168.1.301.3.6.1.4.1.89.88.13.1.14.50.2 i 0 1.3.6.1.4.1.89.88.13.1.13.50.2 i 1

Привязка IP и MAC ACL к порту

MIB: qosclimib.mib

Используемые таблицы:

```
rlQoslfAclIn — 1.3.6.1.4.1.89.88.13.1.14
rlQoslfIpv6AclIn — 1.3.6.1.4.1.89.88.13.1.201.3.6.1.4.1.89.88.13.1.20
rlQoslfPolicyMapStatus — 1.3.6.1.4.1.89.88.13.1.13

snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.14.{Ifindex}.2 i {Index-of-mac-acl} \
1.3.6.1.4.1.89.88.13.1.20.{Ifindex}.2 i {Index-of-ip-acl} \
1.3.6.1.4.1.89.88.13.1.13.{ifIndex}.2 i 1
```

Пример назначения правила с индексом 107 и 207 (название ACL 7-ір для IP ACL и 7-тас для MAC ACL) на порт TenGigabitEthernet 1/0/23 (Ifindex 23)

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
service-acl input 7-mac 7-ip

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.14.23.2 i 207 \
1.3.6.1.4.1.89.88.13.1.20.23.2 i 107 \
1.3.6.1.4.1.89.88.13.1.13.23.2 i 1
```


Для удаления ACL с порта достаточно индекс IP и MAC ACL заменить на 0.

```
snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.14.23.2 i 0 \ 1.3.6.1.4.1.89.88.13.1.20.23.2 i 0 \ 1.3.6.1.4.1.89.88.13.1.13.23.2 i 1
```

Создание policy-тар и привязка к нему ACL

MIB: gosclimib.mib

Используемые таблицы:

```
rlQosClassMapTable — 1.3.6.1.4.1.89.88.9
rlQosPolicyMapTable — 1.3.6.1.4.1.89.88.11
rlQosPolicyClassPriorityRefTable — 1.3.6.1.4.1.89.88.39
```

Схема: создание policy-map проводится в несколько запросов

1. Создаем class и назначаем ему свойства

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.2.{index-of-class} s "{name-of-class-map}" \
1.3.6.1.4.1.89.88.9.1.3.{index-of-class} i {matchAll (1)} \
1.3.6.1.4.1.89.88.9.1.7.{index-of-class} i {index-of-acl} \
1.3.6.1.4.1.89.88.9.1.9.{index-of-class} i {Mark vlan disable (1), enable(2)} \
1.3.6.1.4.1.89.88.9.1.13.{index-of-class} i {create and go(4),destroy(6)}
```

2. Создаем policy-map и включаем его

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.11.1.2.{index-of-policy-map} s {name-of-policy-map} \
1.3.6.1.4.1.89.88.11.1.3.{index-of-policy-map} i {createAndGo(4), destroy(6)}
```

3. Привязываем class-map к policy-map

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.39.1.2.1.{index-of-class} i {index-of-class} \
1.3.6.1.4.1.89.88.39.1.3.1.{index-of-class} i {index-of-policy-map}
```

4. Создаем ограничение скорости для class-map

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.10.1.2.{Number-of-class-in-policy} s {Policer-cm-20} \
1.3.6.1.4.1.89.88.10.1.3.{Number-of-class-in-policy} i {single(1),
aggregate(2)} \
1.3.6.1.4.1.89.88.10.1.4.{Number-of-class-in-policy} i {rate} \
1.3.6.1.4.1.89.88.10.1.5.{Number-of-class-in-policy} i {burst} \
1.3.6.1.4.1.89.88.10.1.6.{Number-of-class-in-policy} i {none(1), drop(2),
remark(3)} \
1.3.6.1.4.1.89.88.10.1.8.{Number-of-class-in-policy} i {createAndGo(4),
destroy(6)}
```

5. Привязываем ограничение скорости к class-map

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.88.9.1.6.{index-of-class} i {Number-of-class-in-policy}
```

6. Задаем значение метки трафику DSCP, соѕ или указываем выходную очередь 1.3.6.1.4.1.89.88.233

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.9.1.4.{index-of-class} i {setDSCP(3), setQueue(4), setCos(5)} \
1.3.6.1.4.1.89.88.9.1.5.{index-of-class} i {Mark value of DSCP/queue/cos(DEC)}
```


Пример: IP ACL c index-of-acl = 107 привязывается к class-map с именем test и выставляется метка DSCP = 36(DEC), cos = 4 и queue = 8 для трафика, подпавшего под IP ACL. Class test привязывается к policymap с именем test1.

```
Команда CLI:
qos advanced
 ip access-list extended 7-ip
permit ip any any
exit
class-map test
match access-group 7-ip
exit
policy-map test1
class test
set dscp 36
set queue 8
set cos 4
police 97000 524288 exceed-action drop
exit.
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \setminus
1.3.6.1.4.1.89.88.9.1.2.20 s "test" \
1.3.6.1.4.1.89.88.9.1.3.20 i 1 \
1.3.6.1.4.1.89.88.9.1.7.20 i 107 \setminus
1.3.6.1.4.1.89.88.9.1.9.20 i 1 \
1.3.6.1.4.1.89.88.9.1.13.20 i 4
snmpset -v2c -c private 192.168.1.30
1.3.6.1.4.1.89.88.11.1.2.1 s "test1" \
1.3.6.1.4.1.89.88.11.1.3.1 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.39.1.2.1.20 i 20 \
1.3.6.1.4.1.89.88.39.1.3.1.20 i 1
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.10.1.2.1 s "Policer-cm-20" \
1.3.6.1.4.1.89.88.10.1.3.1 i 1 \
1.3.6.1.4.1.89.88.10.1.4.1 u 97000 \
1.3.6.1.4.1.89.88.10.1.5.1 u 524288 \
1.3.6.1.4.1.89.88.10.1.6.1 i 2 \
1.3.6.1.4.1.89.88.10.1.8.1 i 4
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.6.20 i 1
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.4.20 i 3 \
1.3.6.1.4.1.89.88.9.1.5.20 i 36
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.4.20 i 4 \
1.3.6.1.4.1.89.88.9.1.5.20 i 8
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.9.1.4.20 i 5 \
1.3.6.1.4.1.89.88.9.1.5.20 i 4
```


<u>Назначение Policy-тар на порт</u>

MIB: qosclimib.mib

Используемые таблицы: rlQoslfPolicyMapPointerIn — 1.3.6.1.4.1.89.88.13.1.3

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.3.{Ifindex}.2 i {Index-of-policy-map}
```

Пример назначения policy-map с индексом 1 на порт TenGigabitEthernet 1/0/23

Команда CLI:

interface TenGigabitEthernet 1/0/23
service-policy input test1

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.88.13.1.3.23.2 i 1

17 КОНФИГУРАЦИЯ ЗАЩИТЫ ОТ DOS-ATAK

Включение security-suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteGlobalEnable — 1.3.6.1.4.1.89.120.1

```
snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.1.0 i {enable-
global-rules-only (1), enable-all-rules-types (2), disable (3)}
```

Пример включения класса команд security-suite для всех правил

```
Koмaндa CLI:
security-suite enable

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.1.0 i 2
```

Настройка режима работы security suite

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteSynProtectionMode — 1.3.6.1.4.1.89.120.10

```
snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.10.0 i {disabled (1), report (2), block (3)}
```

Пример включения режима report

```
Koмaндa CLI:
security-suite syn protection mode report

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.10.0 i 2
```

Выключить защиту от TCP-пакетов с одновременно установленными SYN- и FIN- флагами

MIB: rlSecuritySuiteMib

Используемые таблицы: rlSecuritySuiteDenySynFinTcp — 1.3.6.1.4.1.89.120.9

```
snmpset -v2c -c <community> <IP address> 1.3.6.1.4.1.89.120.9.0 i {(deny (1), permit (2)}
```

Пример включения режима report

```
Koмaндa CLI:
security-suite deny syn-fin

Koмaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.120.9.0 i 2
```

18 КАЧЕСТВО ОБСЛУЖИВАНИЯ — QOS

18.1 Настройка QoS

Ограничение исходящей скорости на Ethernet-портах

MIB: gosclimib.mib

Используемые таблицы: rlQoslfPolicyEntry — 1.3.6.1.4.1.89.88.13.1

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.13.1.6.{ifindex πορτa}.2 i {disable(1),enable
(1)} \
1.3.6.1.4.1.89.88.13.1.7.{ifindex πορτa}.2 i {traffic-shape} \
1.3.6.1.4.1.89.88.13.1.8.{ifindex πορτa}.2 i {Burst size in bytes}
```

Пример ограничения исходящей скорости на порту до значения 20 Мбит/с

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
traffic-shape 20480 500000

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.13.1.6.23.2 i 2 \
1.3.6.1.4.1.89.88.13.1.7.23.2 i 20480 \
1.3.6.1.4.1.89.88.13.1.8.23.2 i 500000
```

<u>Ограничение входящей скорости на Ethernet-портах</u>

MIB: RADLAN-STORMCTRL-MIB

Используемые таблицы: rlStormCtrlRateLimCfgTable — 1.3.6.1.4.1.89.77.12

Пример ограничения входящей скорости на интерфейсе TenGigabitEthernet 1/0/23 до значения 10 Мбит/с

```
Команда CLI:
interface TenGigabitEthernet 1/0/23
rate-limit 10240 burst 500000

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.77.12.1.2.23.6 u 10240 \
1.3.6.1.4.1.89.77.12.1.5.23.6 u 500000
```


Для отключения rate-limit на интерфейсе необходимо выполнить (на примере интерфейса TenGigabitethernet 1/0/23):

snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.89.77.12.1.2.23.6 u 0 1.3.6.1.4.1.89.77.12.1.5.23.6 u 128000

Создание профиля gos tail-drop и расширение дескрипторов для очередей

MIB: eltQosTailDropMIB.mib

Используемые таблицы: eltQosTailDropProfileQueueTable — 1.3.6.1.4.1.35265.1.23.12.1.1.1

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.12.1.1.1.4.{Номер профиля (1-4)}.{номер очереди(1-8)} і {size (0-11480)}
```

Пример

```
Команда CLI:
qos tail-drop profile 2
queue 1 limit 900

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.1.4.2.1 i 900
```


Чтобы вернуться к настройкам по умолчанию достаточно установить значение параметра равным 12.

Установка размера пакетного разделяемого пула для порта

MIB: eltQosTailDropMIB.mib

Используемые таблицы: eltQosTailDropProfileTable — 1.3.6.1.4.1.35265.1.23.12.1.1.4

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2{номер профиля (1-4)} і {size (0-11480)}
```

Пример

```
Команда CLI:
qos tail-drop profile 2
port-limit 900

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.1.23.12.1.1.4.1.2.2 i 900
```

Назначение созданного профиля на интерфейс

MIB: eltQosTailDropMIB.mib

Используемые таблицы: eltQosTailDropIfConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.2

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.{IfIndex} і {номер профиля (1-4)}
```

Пример

```
Koмaндa CLI:
interface TenGigabitEthernet 1/0/23
qos tail-drop profile 2
```

Команда SNMP:

```
snmpset -v2c -c private 192.168.1.30 \setminus 1.3.6.1.4.1.35265.1.23.12.1.1.2.1.1.23 i 2
```

Просмотр отображения глобальных лимитов, дескрипторов, буферов

MIB: ELTEX-MES-QOS-TAIL-DROP-MIB

Используемые таблицы: eltQosTailDropConfigTable — 1.3.6.1.4.1.35265.1.23.12.1.1.3

```
snmpwalk -v2c -c <community> <ip address> \ 1.3.6.1.4.1.35265.1.23.12.1.1.3
```

Пример

Команда CLI:

show qos tail-drop

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.12.1.1.3

<u>Просмотр таблицы вывода текущих аллоцированных ресурсов qos (лимитов,</u> дескрипторов, буферов)

MIB: ELTEX-MES-QOS-TAIL-DROP-MIB

Используемые таблицы: eltQosTailDropStatusTable — 1.3.6.1.4.1.35265.1.23.12.1.2.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.12.1.2.1
```

Пример

Команда CLI:

show gos tail-drop

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 \ 1.3.6.1.4.1.35265.1.23.12.1.2.1

Просмотр Tail Drop счетчиков по очередям

MIB: RADLAN-COPY-MIB

Используемые таблицы: eltMesCountersMIB — 1.3.6.1.4.1.35265.1.23.1.8

Пример просмотра счетчиков для первой очереди

Команда CLI:

show interface TenGigabitethernet 1/0/23

Команда SNMP:

18.2 Cmamucmuкa QoS

Включение/выключение QoS-статистики

MIB: qosclimib.mib

Используемые таблицы: eltCountersQosStatisticsEnable — 1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1.0 i {включить(1), выключить(2)}
```

Пример настройки статистики QoS

```
      Команда CLI:

      qos statistics interface

      Команда SNMP:

      snmpset -v2c -c private 192.168.1.30 \

      1.3.6.1.4.1.35265.1.23.1.8.1.1.1.1.0 i 1
```

Просмотр счетчиков QoS-статистики

MIB: qosclimib.mib

Используемые таблицы: rlInterfaceQueueStatisticsTxPackets — 1.3.6.1.4.1.89.233.2.1.4

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.233.2.1. {Hoмep счетчика}.{ifIndex}.{Homep очереди}
```

Пример снятия показаний счетчика TxPackets на 4 очереди интерфейса TenGigabitEthernet 1/0/23

```
Koмaндa CLI:
show qos statistics interface

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.233.2.1.4.23.4
```


Возможные номера счетчиков:

- 1. Все счетчики ()
- 2. Счетчик Queue(2)
- 3. Счетчик txpackets(4)
- 4. Счетчик TxBytes(5)
- **5. Счетчик droppedpackets(6)**
- 6. Счетчик DroppedBytes(7)

Пример очистки счетчиков QoS-статистики

MIB: qosclimib.mib

Используемые таблицы: rlInterfaceQueueStatisticsClear — 1.3.6.1.4.1.89.233.1.0

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.233.1.0 i 1
```


Пример

Команда CLI:

clear qos statistics

Команда SNMP:

snmpset -v2c -c private 192.168.1.30 \ 1.3.6.1.4.1.89.233.1.0 i 1

19 МАРШРУТИЗАЦИЯ

19.1 Статическая маршрутизация

Просмотр таблицы маршрутизации

MIB: IP-FORWARD-MIB

Используемые таблицы: ipCidrRouteTable — 1.3.6.1.2.1.4.24.4

Пример

```
Koмaндa CLI:
show ip route

Koмaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.2.1.4.24.4
```

Просмотр статических маршрутов

MIB: rlip.mib

Используемые таблицы: rllpStaticRouteTable — 1.3.6.1.4.1.89.26.17.1

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.26.17.1
```

Пример

```
Koмaндa CLI:
show running-config routing

Komaндa SNMP:
snmpwalk -v2c -c public 192.168.1.30 \
1.3.6.1.4.1.89.26.17.1
```

19.2 Динамическая маршрутизация

Просмотр соседства OSPF

MIB: rlip.mib

Используемые таблицы: rlOspfNbrTable — 1.3.6.1.4.1.89.210.11

```
snmpwalk -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.210.11
```


Пример

Команда CLI:

show ip ospf neighbor

Команда SNMP:

snmpwalk -v2c -c public 192.168.1.30 $\ 1.3.6.1.4.1.89.210.11$

20 КОНФИГУРАЦИЯ VXLAN

Создание VXLAN-инстанса

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1, eltexEvpnVxlanFirstFreeIndex - 1.3.6.1.4.1.35265.56.1.1.3

```
snmpget -v2c -c <community> <IP address> 1.3.6.1.4.1.35265.56.1.1.3
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.35265.56.1.1.1.3.{index} i { adminStatusUp(1),
adminStatusDown(2) } \
1.3.6.1.4.1.35265.56.1.1.1.1.4.{index} i { vni } \
1.3.6.1.4.1.35265.56.1.1.1.1.5.{index} i { vlan } \
1.3.6.1.4.1.35265.56.1.1.1.1.6.{index} s { vxlan_name } \
1.3.6.1.4.1.35265.56.1.1.1.1.2.{index} i 4
```

Пример

```
Команда CLI:
vxlan VX105
vni 10105
vlan 105
exit

Команда SNMP:
snmpget -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.3
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.35265.56.1.1.1.1.3.4 i 1 \
1.3.6.1.4.1.35265.56.1.1.1.1.4.4 i 10105 \
1.3.6.1.4.1.35265.56.1.1.1.1.5.4 i 105 \
1.3.6.1.4.1.35265.56.1.1.1.1.6.4 s "VX105" \
1.3.6.1.4.1.35265.56.1.1.1.1.2.4 i 4
```


Сначала получаем номер первого свободного индекса, а затем используем его для создания VXLAN-инстанса.

Удаление VXLAN-инстанса

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1

```
snmpset -v2c -c <community> <IP address>
1.3.6.1.4.1.35265.56.1.1.1.1.2.{index} i 6
```

Пример удаления VXLAN-инстанса

```
      Команда CLI:

      no vxlan VX105

      Команда SNMP:

      snmpset -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.1.1.2.4 i 6
```


Просмотр VXLAN-инстансов

MIB: ELTEX-EVPN-MIB

Используемые таблицы: eltexEvpnVxlanTable — 1.3.6.1.4.1.35265.56.1.1.1

```
snmpwalk -v2c -c <community> <IP address> 1.3.6.1.4.1.35265.56.1.1.1.1
```

Пример просмотра VXLAN-инстансов

Команда SNMP:

snmpwalk -v2c -c private 192.168.1.30 1.3.6.1.4.1.35265.56.1.1.1.1

ПРИЛОЖЕНИЕ А. МЕТОДИКА РАСЧЕТА БИТОВОЙ МАСКИ

Битовые маски состоят из 128 байт (шестнадцатеричных разрядов всего 256). Каждый разряд обозначает четыре VLAN/порта. По номеру VLAN/порта определяется нужное поле.

Пример 1

Записать битовую маску для интерфейсов TenGigabitEthernet 2/0/16-17:

- для 1G интерфейсов ifIndex начинается с 1;
- для порта te2/0/16 ifIndex равен 68, для te2/0/17 69.

Определение номера разряда:

68/4=17 69/4=17,25 (Каждый разряд отвечает за 4 ifIndex. При делении ifindex на 4 для определения № разряда для записи, полученное значение округляется в большую сторону).

Если нам нужны порты te2/0/16-17 (ifindex 68,69), то они должны быть записаны в 17 и 18 поле. В двоичной последовательности 17 поле будет записано следующим образом 0001 (Последняя 1 — 68 индекс). Переводим в НЕХ, получаем 1.

В двоичной последовательности 18 поле будет записано следующим образом 1000 (Первая 1 — 69 индекс). Переводим в НЕХ, получаем 8.

Итого в битовой маске будет 16 нулей, 1, 8: 0000000000000018.

Пример 2

Записать битовую маску для vlan 622, 3100.

622/4=155,5 (Каждый 0 отвечает за 4 vlan. При делении vlan на 4 для определения № поля для записи округление всегда идет вверх).

Если нам нужен vlan 622, то он должен быть записан в 156 поле.

В двоичной последовательности 156 поле будет записано следующим образом: 0100 (вторая 1-622 vlan). Переводим в HEX, получаем 4.

Итого в битовой маске будет 155 нулей и 4:

- 3100/4=775

Требуется принять во внимание, что для указания номера VLAN берутся таблицы rldot1qPortVlanStaticEgressList1to1024

rldot1qPortVlanStaticEgressList1025to2048

rldot1qPortVlanStaticEgressList2049to3072

rldot1qPortVlanStaticEgressList3073to4094

Так как наш vlan попадает в 4 таблицу, то 775-256*3=7.

Vlan 3100 будет записан в 7 поле данной таблицы.

В двоичной последовательности 7 поле будет записано следующим образом: 0001 (Последняя 1 - 3100 vlan). Переводим в HEX, получаем 1.

Итого в битовой маске будет 6 нулей и 1: 0000001.

ПРИЛОЖЕНИЕ Б. ПРИМЕР СОЗДАНИЯ ТИПОВОГО IP ACL

В данном приложении рассмотрен пример наполнения IP ACL c index-of-acl = 107 правилами вида:

```
ip access-list extended 7-ip deny udp any bootps any bootpc ace-priority 20 permit igmp any any ace-priority 40 deny ip any 224.0.0.0 15.255.255.255 ace-priority 60 permit ip 37.193.119.7 0.0.0.0 any ace-priority 80 permit ip 10.130.8.3 0.0.0.0 any ace-priority 100 permit ip 192.168.0.0 0.0.0.15 any ace-priority 120 permit ip 37.193.119.7 0.0.0.0 any ace-priority 140 exit
```

Создание правила deny udp any bootps any bootpc

MIB: qosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} і {protocol(1)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} х {protocol index (HEX)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} і {Значение в таблице порта для протокола = 0. Константа для этого правила} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} і {udp-port-src(6)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} і {Number of source port (DEC)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 2} х {source ір(НЕХ)} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 3} і { udp-port-dst(6)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 3} і {Number of dst port (DEC)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 3} х {dst ір(НЕХ)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny(2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {udp(3)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
1.3.6.1.4.1.89.88.31.1.7.{index-of-acl}.{index-of-rule} i {значение поля 3} \
1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила deny udp any bootps any bootpc в IP ACL 7-ip (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Komaндa CLI:
ip access-list extended 7-ip
deny udp any bootps any bootpc ace-priority 20
exit

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 1 \
```



```
1.3.6.1.4.1.89.88.5.1.4.1 x "0x11 FF" \
1.3.6.1.4.1.89.88.5.1.3.1 i 0 \
1.3.6.1.4.1.89.88.5.1.2.2 i 6 \
1.3.6.1.4.1.89.88.5.1.3.2 i 67 \
1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00" \
1.3.6.1.4.1.89.88.5.1.2.3 i 7 \
1.3.6.1.4.1.89.88.5.1.3.3 i 68 \
1.3.6.1.4.1.89.88.5.1.4.3 x "0x00 00"

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.4.1.20 i 3 \
1.3.6.1.4.1.89.88.31.1.5.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 2 \
1.3.6.1.4.1.89.88.31.1.7.1.20 i 3 \
```

Создание правила permit igmp any any

MIB: gosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit. snmpset -v2c -c <community> <IP address> \

```
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {igmp (8)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 4}
```

Пример добавления правила permit igmp any в IP ACL 7-ip (т.к. предполагается, что правило второе по счету, то index-of-rule=40)

```
Команда CLI:
ip access-list extended 7-ip
permit igmp any any ace-priority 40
exit

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.4 i 1 \
1.3.6.1.4.1.89.88.5.1.4.4 x "0x02 FF"

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.40 i 1 \
1.3.6.1.4.1.89.88.31.1.3.1.40 i 1 \
1.3.6.1.4.1.89.88.31.1.5.1.40 i 8 \
1.3.6.1.4.1.89.88.31.1.5.1.40 i 4
```

Создание правила deny ip any any 224.0.0.0 15.255.255.255

MIB: gosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 5} і {ip-dest(3)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 5} х {dst ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как deny.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {deny (2)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 5}
```

Пример добавления правила deny ip any any 224.0.0.0 15.255.255.255 в IP ACL 7-ip (т.к. предполагается, что правило третье по счету, то index-of-rule=60)

```
Komaндa CLI:
ip access-list extended 7-ip
deny ip any any 224.0.0.0 15.255.255.255 ace-priority 60
exit

Komaндa SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.5 i 3 \
1.3.6.1.4.1.89.88.5.1.4.5 x "0xE0 00 00 0F FF FF FF"

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.60 i 2 \
1.3.6.1.4.1.89.88.31.1.3.1.60 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.60 i 1 \
1.3.6.1.4.1.89.88.31.1.5.1.60 i 5
```

Создание правила permit ip any any 37.193.119.7 0.0.0.0 any

MIB: qosclimib.mib

 ${\sf Используемые}$ таблицы: rlQosTupleTable — 1.3.6.1.4.1.89.88.5, rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 6}
```

Пример добавления правила permit ip 37.193.119.7 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило четвертое по счету, то index-of-rule=80)

```
Команда CLI:
ip access-list extended 7-ip
permit ip 37.193.119.7 0.0.0.0 any ace-priority 80
exit

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.6 i 2 \
1.3.6.1.4.1.89.88.5.1.4.6 x "0x25 C1 77 07 00 00 00 "

snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.80 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.80 i 1 \
1.3.6.1.4.1.89.88.31.1.6.1.80 i 6
```

<u>Создание правила permit ip 10.130.8.3 0.0.0.0 any</u>

MIB: qosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 7}
```

Пример добавления правила permit ip 10.130.8.3 0.0.0.0 any в IP ACL 7-ip (т.к. предполагается, что правило пятое по счету, то index-of-rule=100)

```
Команда CLI:
ip access-list extended 7-ip
permit ip 10.130.8.3 0.0.0.0 any ace-priority 100
exit

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.7 i 2 \
```



```
1.3.6.1.4.1.89.88.5.1.4.7 x "0x0A 82 08 03 00 00 00 00"

snmpset -v2c -c private 192.168.1.30 \

1.3.6.1.4.1.89.88.31.1.3.1.100 i 1 \

1.3.6.1.4.1.89.88.31.1.4.1.100 i 1 \

1.3.6.1.4.1.89.88.31.1.6.1.100 i 7
```

<u>Создание правила permit ip any any 192.168.0.0 0.0.0.15 any</u>

MIB: gosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: Создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \ 1.3.6.1.4.1.89.88.5.1.2.{значение поля 8} і {ip-source(2)} \ 1.3.6.1.4.1.89.88.5.1.4.{значение поля 8} х {source ip +wildcard mask (HEX)}
```

2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 8}
```

Пример добавления правила permit ip 192.168.0.0 0.0.0.15 any в IP ACL 7-ip (т.к. предполагается, что правило шестое по счету, то index-of-rule=120)

```
      Команда CLI:

      ip access-list extended 7-ip

      permit ip 192.168.0.0 0.0.0.15 any ace-priority 120

      exit

      Команда SNMP:

      snmpset -v2c -c private 192.168.1.30 \

      1.3.6.1.4.1.89.88.5.1.2.8 i 2 \

      1.3.6.1.4.1.89.88.5.1.4.8 x "0xC0 A8 00 00 00 00 0F"

      snmpset -v2c -c private 192.168.1.30 \

      1.3.6.1.4.1.89.88.31.1.3.1.120 i 1 \

      1.3.6.1.4.1.89.88.31.1.4.1.120 i 1 \

      1.3.6.1.4.1.89.88.31.1.6.1.120 i 8
```

1. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
    1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit (1)} \
    1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {ip (1)} \
    1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 9} \
    1.3.6.1.4.1.89.88.31.1.6.{index-of-acl}.{index-of-rule} i {значение поля 10}
```

ПРИЛОЖЕНИЕ В. ПРИМЕР СОЗДАНИЯ, НАПОЛНЕНИЯ И УДАЛЕНИЯ OFFSET-LIST C ПРИВЯЗКОЙ К MAC ACL

В данном приложении рассмотрен пример создания и наполнения MAC ACL c index-of-acl = 207 правилами вида:

```
mac access-list extended 7-mac
offset-list PADO 12 12 00 88 12 13 00 63 12 15 00 07
deny any any offset-list PADO ace-priority 20
```

Создание mac access-list

MIB: gosclimib.mib

Используемые таблицы: rlQosAclTable — 1.3.6.1.4.1.89.88.7

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.7.1.2.{index-of-acl} s "{name-of-acl}" \
1.3.6.1.4.1.89.88.7.1.3.{index-of-acl} i {type-of-acl: mac(1), ip (2)} \
1.3.6.1.4.1.89.88.7.1.4.{index-of-acl} i {createAndGo(4), destroy(6)}
```

Пример создания MAC ACL с индексом 207

```
Команда CLI:
mac access-list extended 7-mac

Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.7.1.2.1 s "7-mac" \
1.3.6.1.4.1.89.88.7.1.3.1 i 1 \
1.3.6.1.4.1.89.88.7.1.4.1 i 4
```

Создание правила в MAC ACL на основе EtherType

MIB: qosclimib.mib

Используемые таблицы:

```
rlQosTupleTable — 1.3.6.1.4.1.89.88.5
rlQosAceTidxTable — 1.3.6.1.4.1.89.88.31
```

Схема: создание правила проводится в два запроса.

1. Задаются параметры правила.

```
snmpset -v2c -c <community> <IP address> \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 1} і {mac-src(10), mac-dest(11), vlan(12)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 1} х {protocol index (НЕХ)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 1} і {Значение в таблице порта для протокола = 0. Константа для этого правила} \
1.3.6.1.4.1.89.88.5.1.2.{значение поля 2} і {ether-type(17)} \
1.3.6.1.4.1.89.88.5.1.3.{значение поля 2} і {ether-type (DEC)} \
1.3.6.1.4.1.89.88.5.1.4.{значение поля 2} х {Нулевое поле - константа}
```


2. Привязка правила по индексу (index-of-rule) к ACL по индексу (index-of-acl) как permit.

```
snmpset -v2c -c <community> <IP address> \
.1.3.6.1.4.1.89.88.31.1.3.{index-of-acl}.{index-of-rule} i {permit(1)
.1.3.6.1.4.1.89.88.31.1.4.{index-of-acl}.{index-of-rule} i {mac(5)} \
.1.3.6.1.4.1.89.88.31.1.5.{index-of-acl}.{index-of-rule} i {значение поля 1} \
.1.3.6.1.4.1.89.88.31.1.9.{index-of-acl}.{index-of-rule} i {значение поля 2}
```

Пример добавления правила permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 в MAC ACL 7-mac (т.к. предполагается, что правило первое по счету, то index-of-rule=20)

```
Команда CLI:
mac access-list extended 7-mac
permit 00:1f:c6:8b:c6:8a 00:00:00:00:00:00 any 806 0000 ace-priority 20
exit
Команда SNMP:
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.5.1.2.1 i 10 \
1.3.6.1.4.1.89.88.5.1.2.2 i 17 \
1.3.6.1.4.1.89.88.5.1.4.1 x "0x001fc68bc68a000000000000" \
1.3.6.1.4.1.89.88.5.1.3.1 i 0 \
1.3.6.1.4.1.89.88.5.1.3.2 i 2054 \
1.3.6.1.4.1.89.88.5.1.4.2 x "0x00 00"
snmpset -v2c -c private 192.168.1.30 \
1.3.6.1.4.1.89.88.31.1.3.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.4.1.20 i 5 \
1.3.6.1.4.1.89.88.31.1.5.1.20 i 1 \
1.3.6.1.4.1.89.88.31.1.9.1.20 i 2
```


ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Для получения технической консультации по вопросам эксплуатации оборудования ООО «Предприятие «ЭЛТЕКС» вы можете обратиться в Сервисный центр компании:

Форма обратной связи на сайте: https://eltex-co.ru/support/

Servicedesk: https://servicedesk.eltex-co.ru

На официальном сайте компании вы можете найти техническую документацию и программное обеспечение для продукции ООО «Предприятие «ЭЛТЕКС», обратиться к базе знаний или оставить интерактивную заявку:

Официальный сайт компании: https://eltex-co.ru/

База знаний: https://docs.eltex-co.ru/display/EKB/Eltex+Knowledge+Base

Центр загрузок: https://eltex-co.ru/support/downloads