1 LSH

1.1 Min Hashing

 $h_{\pi}(C) = \min_{i} \pi(i)$ first row in randomly shuffled column that contains a one.

 $P(h(C_1)=h(C_2))=sim_J(C_1,C_2)$ Jaccard similarity Shuffling implemented with hash function $\pi(i)=ai+b \mod n$

for each column c do for each row r do if c has 1 in row r then for each hash function h_i do $M(i,c) \leftarrow \min\{h_i(r), M(i,c)\}$

1.2 Hashing Signature Matrix

M partitioned into b bands of r rows. Probability C1,C2 collide on at least one band: $1 - (1 - s^r)^b$ Family of hash functions F is (d_11, d_2, p_1, p_2) sensitive if

$$\forall x, y \in S : d(x, y) \le d_1 \implies P[h(x) = h(y)] \ge p_1$$

$$\forall x, y \in S : d(x, y) > d_2 \implies P[h(x) = h(y)] \le p_2$$

r-way and: For $h = [h_1, \cdot, h_r]$ $h(x) = h(y) \leftrightarrow h_i(x) = h_i(y)$ F' is (d_1, d_2, p_1^r, p_2^r) sensitive

b-way or: For $h = [h_1, \cdot, h_b]$ $h(x) = h(y) \leftrightarrow h_i(x) = h_i(y)$ F' is $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$ sensitive

1.3 Other Distance Functions

Cosine distance: Family of hash functions for uniformly random vector **u**

$$h_u(x) = \operatorname{sign}(u^T x)$$
 $P(h_u(x) = h_u(y)) = 1 - \frac{\theta_{x,y}}{\pi}$

Euclidean distance: Family functions for random line divided into a buckets. If distance $d=||x-y||_2>>a$, h(x)=h(y) with low probability. F forms a $(\frac{a}{2},2a,\frac{1}{2},\frac{1}{3})$ sensitive family.

2 Supervised Learning

2.1 Canonical hyperplanes

$$x' = \bar{x} + \frac{w}{||w||} \gamma$$

$$w^T x' + b = w^T \bar{x} + b + \frac{w^T w}{||w||} \gamma = 1$$

$$\gamma = 1/||w||$$

2.2 Formulations

$$\begin{aligned} & \min_{w,b} w^T w \quad s.t. \ y_i(w^T x_i + b) \geq 1 \\ & \min_{w,b} w^T w + C \sum_i \xi_i \quad \text{s.t.} \ y_i(w^T x_i + b) \geq 1 - \xi_i \\ & \min_{w,b} w^T w + C \sum_i \max\{0, 1 - y_i(w^T x_i + b)\} \\ & \min_{w,b} \lambda w^T w + \sum_i \max\{0, 1 - y_i(w^T x_i + b)\} \\ & \min_{w,b} \sum_i \max\{0, 1 - y_i(w^T x_i + b)\} \quad \text{s.t.} \ ||w|| < 1/\lambda \end{aligned}$$

2.3 Online Convex Programming

Regret: $R_T = \sum_{t=1}^{T} l_t - \min_w \sum_{t=1}^{T} f_t(w)$ OCP Regret: $R_T \leq \frac{||S||^2 \sqrt{T}}{2} + (\sqrt{T} - 1/2) ||\nabla f||^2$ for $\eta_t = 1/\sqrt{t}$

> If new point violates margin $y_t(w_t x_t + b) < 1$ Update $w_{t+1} = w_t - \eta_t \nabla f_t(w_t)$ Project $\min\{w, \frac{w}{||w||\lambda}\}$

2.4 Modifications

- SGD: training samples picked at random.
- **PEGASOS:** uses minibatch of random samples, loss function with λ/Tw^Tw term. Strongly convex loss function for better convergence.
- **PSGD:** randomly partition data to k machines which run SGD independently. After T iterations take weighted sum ∀iof obtained weights.

 $w_T = \frac{1}{k} \sum_{i=1}^k w_i$. Parallelization helps if $k = O(1/\lambda)$ or some i

- L1-ball projection: $Proj_S(w) = \arg\min_{||w'||_1 \le c} ||w' w||_2$ using $w_i = \operatorname{sign}(w_i) \max\{w_i \beta, 0\}$
- multi-class: $l(W,(x,y)) = \max_{r \in k \setminus y} [1 (Wx)_y + (Wx)_r]_+$

2.5 Feature selection

L1 regularization: replace $||w||_2$ with $||w||_1$ for sparse solutions.

modified projection: $\bar{w}_i = \text{sign}(w_i) \max\{|w_i| - \beta, 0\}$ where β is computed in linear time.

3 Active Learning

Pick most uncertain points for labeling x^* arg $\min_{x_i \in U} |w^T x_i|$

| 3.1 Hashing a Hyperplane

 $h_{u,v} = [h_u(a), h_v(b)] = [\operatorname{sign}(u^T a), \operatorname{sign}(v^T b)]$ $u, v \mathcal{N}(0, 1)$

Hash family: $h_{u,v}(z) = \begin{cases} h_{u,v}(z,z) & \text{if z is database point ve} \\ h_{u,v}(z,-z) & \text{if z is query hyperplane} \end{cases}$

$$P(h(w) = h(x)) = P(h_u(w) = h_u(x))P(h_v(-w) = h_v(x))$$
$$= \frac{1}{4} - \frac{1}{\pi^2}(\theta - \frac{\pi}{2})^2$$

3.2 Generalised binary search (GBS)

$$D = \{(x_1, y_1) \cdots (x_n, y_n)\} \qquad \mathcal{V}(D) = \{w : \forall (x, y) \in D \ \text{sign}(w^t x) = y\}$$

unlabeled pool: $U = \{x'_1, \dots, x'_n\}$

relevant version space: $\hat{\mathcal{V}}(D, U) = \{h : U \to \{+1, -1\} : \exists w \in \mathcal{V}(D) \forall x \in U \text{ sign}(w^T x) = h(y)\}$

start with
$$D = \{\}$$

while $|\hat{\mathcal{V}}(D, U)| > 1$ do

for each unlabeled example x in a compute do

$$|\hat{\mathcal{V}}(D \cup \{x^+\}, U)| = w_+$$

 $|\hat{\mathcal{V}}(D \cup \{x^-\}, U)| = w_-$

pick example where $|w_{-} - w_{+}|$ is smallest request label and add to D

3.3 Version space reduction

max-min margin: $\max |w_- - w_+|$ ratio margin: $\max \{\frac{w_-}{w_+}, \frac{w_+}{w_-}\}$

3.4 Tricks

- only pick from a random subsample of points
- only use 'fancy' criteria for first 10 examples then switch to uncertainty sampling
- occasionally pick points uniformly at random

4 Unsupervised Learning

4.1 Online K-means

$$L(\mu) = \sum_{i=1}^{N} \min_{j} ||u_{j} - x_{i}||_{2}^{2}$$

$$\frac{\partial f_i(\mu)}{\partial \mu_j} = \begin{cases} 0 & \text{if } j \notin \arg\min||\mu_j - x_i||^2\\ 2(\mu_j - x_i) & \text{otherwise} \end{cases}$$

initialize centers randomly

for
$$t = 1: N$$
 do
 $c \leftarrow \arg \min_j ||\mu_j - x_t||^2$
 $\mu_c \leftarrow \mu_c + \eta_t (x_t - \mu_c)$

Converges to local optimum given $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$

4.2 Constructing Coresets

C is called a
$$(k, \epsilon)$$
 coreset for data D if $(1 - \epsilon)L_k(\mu, D) \le L_k(\mu, C) \le (1 + \epsilon)L_k(\mu, D)$
$$C = \{(x_{R1}, \frac{1}{nq(R1)}), \cdots, (x_{Rn}, \frac{1}{nq(Rn)})\}$$

$$L(\mu, C) = \sum_{i=1}^{n} \frac{1}{nq(R_i)} \min_{j} ||x_{Ri} - \mu_j||^2$$

$$E[L(\mu, C)] = \sum_{l=1}^{N} \sum_{i=1}^{n} \frac{q(l)}{nq(l)} \min_{j} ||x_{Rl} - \mu_j||^2 = L(\mu, D)$$

$$B \leftarrow \emptyset, D \leftarrow D'$$
 while $D' \neq \emptyset$ do

 $S \leftarrow \text{uniformly sample } 10dk \log(\frac{1}{epsilon}) \text{points from } 1$ Remove $\frac{|D'|}{2}$ points nearest to S from D' $B \leftarrow B \cup S$

Partition D into Voronoi cells D_b centered at $b \in B$ $q(x) \propto \frac{5}{|D_b|} + \frac{dist(x,B)^2}{\sum_{x'} dist(x',B)^2} \qquad \gamma(x) = \frac{1}{|C|q(x)}$

 $C \leftarrow \text{sample } 10dk \log^2 n \log(\frac{1}{\delta})/\epsilon^2 \text{ from D via q}$

Can find a coreset in $\mathcal{O}(k^3/\epsilon^{d+1})$ and weak coreset in $\mathcal{O}(\text{poly}(k, d/\epsilon))$

union of two (k, ϵ) coresets is a (k, ϵ) coreset merge: **compress:** (k, δ) coreset of a (k, ϵ) coreset is a $(k, \epsilon + \delta + \epsilon \delta)$

5 Recommender Systems

regret: $\mu^* n - \mu_j \sum_{j=1}^K \mathrm{E}[n_j(n)]$ after n steps where μ^* is expectation of optimal machine payoff and μ_j expectation of machine i.

5.1 Epsilon Greedy

set ϵ_t 1/t and explore with $P = \epsilon_t$, exploit otherwise $R_T = \mathcal{O}(k \log T)$

5.2 Confidence Bounds

Let X_1, X_m be iid RV taking values in [0,1] $\mu = \mathrm{E}[X]$ $\hat{\mu_m} = \frac{1}{m} \sum_{l=1}^m X_l$

then $P(|\mu - \hat{\mu}_m| \ge b) \le 2 \exp(-2b^2 m)$ with $b = \sqrt{\frac{1}{2m} \log \frac{2}{\delta}}$

5.3 UCB1

Optimum in face of uncertainty

$$\begin{split} & \text{set } \hat{\mu}_1, \cdots, \hat{\mu}_k = 0, \, n_1, \cdots, n_k = 0 \\ & \textbf{for } t = 1: T \textbf{ do} \\ & \text{UCB}(i) = \hat{\mu}_i + \sqrt{\frac{2 \log t}{n_i}} \\ & \text{pick } j = \arg \max_i \text{UCB}(i) \text{ and observe } y_t \\ & n_j \leftarrow n_j + 1 \quad \hat{\mu}_j \leftarrow \hat{\mu}_j + \frac{y_t - \hat{\mu}_j}{n_j} \end{split}$$

6 LinUCB

 $y_t = w_i^T z_t + \epsilon_t$ arg min_w $\sum_{t=1}^n (y_t - w_i^T z_i) + ||w||_2^2$ closed form solution: $\hat{w}_i = (D_i^T D_i + I)^{-1} D_i^T y_i$ (Ridge Regression)

$$D_i \begin{bmatrix} - & z_1 & - \\ & \vdots & \\ - & z_n & - \end{bmatrix} \quad y_i = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$|\hat{w}_i^T z_t - w_i^T z^T| \le \alpha \sqrt{z_t^T (D_i^T D_i + I)^{-1} z_t}$$

with probability at least $1-\delta$ as long as $\alpha=1+\sqrt{\log(2/\delta)/2}$ $R_T/T = \mathcal{O}(dd'\operatorname{poly}(\log(T/\sqrt{T})))$

6.1 Hybrid

 $y_t = w_i^T z_t + \beta^T \phi(x_i, z_t) + \epsilon_t$

6.2 Rejection Sampling

for t = 1 : T do

Get next event from log $(\{x_t^{1:k}\}, z_t, a_t, y_t)$ Use bandit algorithm to select a'_{t}

if $a'_t = a_t$ then

feed back reward y_t to the algorithm

else

ignore log line

7 Appendix

7.1 Distance Functions

d(s,t) is a distance function if

a)
$$d(s,t) \ge 0$$
 b) $d(s,s) = 0$ **c)** $d(t,s) = d(s,t)$ **d)** $d(s,r) \le d(s,t) + d(t,r)$

 l_p distance: $d_p(x, x') = (\sum_{i=1}^D |x - x'|^p)^{1/p}$ l_{∞} distance: $d_{\infty}(x, x') = \max_i |x - x'|$

cosine distance: $d(x, x') = \frac{arc \cos(x^T x')}{||x||_2 ||x'||_2}$

edit distance: how many inserts/deletes to transform

one string into another

Jaccard distance: $d(x, x') = 1 - \frac{x \cap x'}{x \mid x' \mid x'}$

7.2 Convex Programming

convex set:

subgradient:

S is convex if $\forall x, x' \in S, \lambda \in [0, 1] \ \lambda x + (1 - \lambda)x' \in S$

convex function:

 $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $\forall x, x' \in S, \lambda \in [0, 1]$ $f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$

for f(x) convex, g(x) is a subgradient of f at x_0 iff $\forall x \ f(x) \geq f(x_0) + g^T(x - x_0)$

7.3 Submodularity

Set function F on V is submodular if $\forall A \subseteq B$ and $s \notin B$ and $a_1, a_2 \notin A$

$$F(A \cup \{s\}) - F(A) \ge F(B \cup \{s\}) - F(B) \quad \text{Dim. return}$$

$$F(S) + F(T) \ge F(S \cup T) + F(S \cap T)$$

$$F(A \cup \{a_1\}) + F(A \cup \{a_2\}) \ge F(A \cup \{a_1, a_2\}) + f(A)$$

Closedness under

Non-negative linear combinations: for F_1, \dots, F_m submodular functions and $\lambda_1, \dots, \lambda_m \geq 0$

$$F(A \cup \{s\}) - F(A) = \left(\sum_{i} \lambda_{i} F_{i}(A \cup \{s\})\right) - \left(\sum_{i} \lambda_{i} F_{i}(A)\right)$$
$$= \sum_{i} \lambda_{i} (F_{i}(A \cup \{s\} - F_{i}(A))) \ge \sum_{i} \lambda_{i} (F_{i}(B \cup \{s\} - F_{i}(B)))$$
$$\ge (F(B \cup \{s\} - F(B)))$$

Restrictions: for F submodular over V and $S, W \subseteq V$

$$F'(S) = F(S \cap W)$$
 submodular

Conditioning: for F submodular over V and $S, W \subseteq V$

$$F'(S) = F(S \cup W)$$
 submodular

Reflection: for F submodular over V

$$F'(S) = F(V \backslash S)$$
 submodular

For $F_{1,2}(A)$, $\max\{F_1(A), F_2(A)\}\$ or $\min\{F_1(A), F_2(A)\}\$ not submodular in general.

Example:

$$\begin{aligned} \max_{j \in A \cup \{s\}} M_{ij} - \max_{j \in A} M_{ij} &= \max\{M_{is}, \max_{j \in A} M_{ij}\} - \max_{j \in A} M_{ij} \\ &= \max\{M_{is} - \max_{j \in A} M_{ij}, 0\} \end{aligned}$$
 If $A \subseteq B$ then $\max_{j \in A} M_{ij} \leq \max_{j \in B} M_{ij}$

Lazy Greedy Algorithm

start with $A_0 = \{\}$

keep ordered list of marginal benefits Δ_i from prev. it. for i=1:k do

 $\Delta_i = F(A_{i-1} \cup \{s^*\})$ where s^* is for top element if i is still top element then

$$A_i = A_{i-1} \cup \{s^*\}$$

else

resort Δ_i and assign greedily