

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

دورة: 2022

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمربن الأول: (04 نقاط)

الدالة العددية المعرّفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f) ، $(O; \vec{i}, \vec{j})$ مماس (C_f) مماس في النقطة ذات الفاصلة O كما هو مبيّن في الشكل المقابل.

- (T) بقراءة بيانية: عيّن f'(0) و f'(x) و أعط معادلة للمماس (f'(0)
- f(x) = x + m ناقش بيانيا، حسب قيم الوسيط الحقيقي m، عدد حلول المعادلة: (2
 - $f(x) = (x^2 + a)e^x + b$ بيّن أنّ a = 1 و b = -1 و a = 1
- . الدالة العددية المعرّفة على \mathbb{R} بين أنّ الدالة $g(C_g)$ و $g(x)=(x^2+1)e^{|x|}-1$ بين أنّ الدالة g (وجية ثم اشرح كيفية إنشاء g) انطلاقا من g0 انطلاقا من g1 انطلاقا من g3 المعلم السابق.

التمرين الثانى: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كلّ حالة من الحالات التالية:

 $f(x) = \frac{x^2 - x + \ln x}{x}$: ب $]0;+\infty[$ بالدالة العددية المعرّفة على $]0;+\infty[$

 $+\infty$ عند f عند المائل لمنحنى الدالة y=x-1

 $\ln(2x-1) + \ln(2x+1) = \ln 3$... (E) : x نعتبر المعادلة (E) ذات المجهول الحقيقي \mathbb{R} للمعادلة (E) حلان متمايزان في

 $F(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب ب \mathbb{R} ب الدالة العدديتان المعرّفتان على \mathbb{R} ب الدالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب دالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$

 $u_n=rac{n+1}{n}$ كما يلي: \mathbb{N}^* كما يلي: (u_n) (4

 $\ln 2022$ هي $\ln u_1 + \ln u_2 + \dots + \ln u_{2022}$: قيمة المجموع

التمرين الثالث: (05 نقاط)

: يلي المعتوى منسوب إلى المعلم المتعامد المتجانس $(O;\vec{i},\vec{j})$ ، $(O;\vec{i},\vec{j})$ المستقيمان المعرفان كما يلي

. (
$$\Delta$$
): $y = -\frac{1}{2}x + 1$ (D) : $y = x$

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

$$u_{n+1}=-\,rac{1}{2}u_n+1$$
 و $u_0=-4:$ المتتالية العددية (u_n) معرّفة على $u_0=-4:$

- محور الشكل المقابل على ورقة الإجابة ثم مثّل على حامل محور (1 الفواصل الحدود: u_1 ، u_2 ، u_1 ، u_0 : الفواصل الحدود:
 - . رتیبه 2 برّر إجابتك (u_{n}) برّر إجابتك (2

$$(u_n)$$
 ضع تخمينا حول تقارب المتتالية $-$

$$v_n = \left(u_n - \frac{2}{3}\right)^2$$
: ب \mathbb{N} ب المنتالية العددية المعرّفة على (v_n)

$$v_0$$
 بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{1}{4}$ ثم احسب أ

$$\lim_{n \to +\infty} v_n$$
 واستنتج أنّ v_n متقاربة. وأ $\lim_{n \to +\infty} v_n$ بدلالة v_n ثم احسب

$$v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{14}{3}\right)^{2n} \times \left(\frac{1}{2}\right)^{n^2-n}$$
 ، n عدد طبیعي (4

التمرين الرابع: (07 نقاط)

$$g(x) = \frac{2x^2 - 2x - 1}{x^2} + \ln x$$
: ب]0; +∞[باكة العددية المعرّفة على]0; +∞[باكة العددية المعرّفة على يا

$$]0;+\infty[$$
 بيّن أنّ الدّالة g متزايدة تماما على الدّالة (1

$$1,2 قبل حلا وحيدا $lpha$ حيث $g\left(x
ight)=0$ قبل أنّ المعادلة $1,2$$$

$$]0;+\infty[$$
 على $g(x)$ على $g(x)$

$$f(x) = \left(\frac{1}{x} - 2 - \ln x\right)e^{-x}$$
 : ب $[0; +\infty[$ لمعرّفة على $[0; +\infty[$ المعرّفة على الدالة العددية $[0; +\infty[$

$$\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$$
 تمثيلها البياني في المستوى المنسوب إلى المعلم المتعامد المتجانس و $\left(C_f
ight)$

$$\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$
 ثم احسب (1) أ- بيّن أنّ

ب- فسر النتيجتين السابقتين بيانيا.

$$f'(x) = \frac{g(x)}{e^x}$$
 ، موجب تماما ، عدد حقیقي عدد حقیقي عدد کلّ عدد (2

 $oldsymbol{-}$ استنتج اتجاه تغیّر الدّالة f وشکّل جدول تغیّراتها.

$$\left(f\left(lpha
ight)\simeq-0.4$$
 و $f\left(0.65
ight)\simeq0$: نأخذ $\left(C_{f}
ight)$ و (3

$$F(x) = e^{-x}(2 + \ln x)$$
 بالدّالة العددية المعرّفة على $[0; +\infty[$ بيا الدّالة العددية المعرّفة على $[0; +\infty[$

$$]0;+\infty$$
ال المجال على المجال F دالة أصلية للدالة f على المجال المجال أ

$$0 < \lambda < \frac{1}{2}$$
 :عدد حقیقی یحقق $S(\lambda) = \int_{\lambda}^{1/2} f(x) dx$ ب- نضع

احسب $S(\lambda)$ ثم فسّر النتيجة بيانيا.

الموضوع الثاني

التمرين الأول: (04 نقاط)

الدالة العددية المعرفة على $[-1;+\infty[$ بـ: $]-1;+\infty[$ عدد حقيقي. f(x)=a الدالة العددية المعرفة على الدالة العددية ال

كما هو مبيّن في الشكل المقابل.

$$(T)$$
 بقراءة بيانية، عيّن $f'(0)$ وأعط معادلة للمماس (1

$$a=1$$
 بيّن أنّ (2

ناقش بیانیا، حسب قیم الوسیط الحقیقی
$$m$$
، عدد وإشارة $f(x)+x-m=0$

ج- أنشئ (C_g) في المعلم السابق.

التّمرين الثاني: (04 نقاط)

عين الاقتراح الصّحيح الوحيد من بين الاقتراحات الثّلاثة في كل حالة من الحالات التالية مع التّبرير:

:ديمة
$$I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$$
 عيث $I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$ عيث (1

$$\frac{e+1}{2e} \quad (\Rightarrow \qquad \qquad \frac{e-1}{2e} \quad (\Rightarrow$$

$$1 - \frac{1}{e}$$
 (5

$$v_n = u_n + \alpha$$
 ، $u_{n+1} = \frac{1}{3}u_n + 3$ ، $u_0 = 3$: ب \mathbb{N} يا المنتاليتان العدديتان المعرفتّان على (v_n) و (u_n)

حيث α عدد حقيقي. قيمة العدد الحقيقي α حتّى تكون المتتالية (v_n) هندسية هي:

$$\frac{2}{9}$$
 (÷

 (C_f)

$$\frac{9}{2}$$
 (ب

$$-\frac{9}{2}$$
 (1)

 $\ln(x+1) \le f(x) \le e^x - 1$: موجب تماما عددية تُحقق، من أجل كلّ عدد حقيقي x موجب تماما f

$$\lim_{x \to 0} \frac{f(x)}{x}$$
 هي:

$$y'' = 2 - \frac{1}{x^2} \cdot \dots \cdot (E)$$
 : (E) is it is it is it.

$$H'(1)=2$$
 و الذي يُحقق $H(1)=4$ على $H'(1)=3$ عبارة الحل H للمعادلة $H'(1)=3$ على $H'(1)=3$

$$H(x) = x^2 - x + 4 - \ln x$$
 (\Rightarrow $H(x) = x^2 - x + 1 + \ln x$ (\Rightarrow $H(x) = x^2 - x + 4 + \ln x$ (\Rightarrow

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

التمرين الثالث: (05 نقاط)

$$\begin{cases} u_0 \times u_2 = e^2 \\ \ln u_1 + \ln u_7 = -4 \end{cases}$$
 :ثنية المعرّفة على $\mathbb N$ وحدودها موجبة تماما حيث:

$$(u_n)$$
 المتتالية u_1 والأساس u_1 والأساس $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ هن أجل كلّ عدد طبيعي

$$S_n = u_0 + u_1 + \dots + u_n$$
 :حيث S_n المجموع (2

$$v_{n+1}=v_n+u_n$$
 ، n ومن أجل كلّ عدد طبيعي $v_0=e^3$: المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_n=\frac{e^{3-n}-e^4}{1-e}$ ، $v_n=\frac{e^{3-n}-e^4}{1-e}$.

$$rac{1}{e}v_n = rac{1}{1-e}\left(u_n - e^3
ight)$$
 ، n عدد طبیعي ، n عدد طبیعي - أ (4 $S_n' = rac{1}{e}v_0 + rac{1}{e}v_1 + \dots + rac{1}{e}v_n$: عبتر المجموع $S_n' = rac{1}{1-e}\left[S_n - (n+1)e^3
ight]$ ، n عدد طبیعي $S_n' = rac{1}{1-e}\left[S_n - (n+1)e^3
ight]$ ، n عدد طبیعی

التّمرين الرّابع: (07 نقاط)

الدّالة العدديّة المعرّفة على
$$\mathbb{R}$$
 بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى المنسوب إلى المعلم المتعامد المتجانس $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$

$$\lim_{x \to -\infty} f(x) = +\infty \quad \text{قين أنّ } \quad \lim_{x \to +\infty} f(x)$$
 احسب (1)

$$f'(x) = -\frac{1}{2}e^{-2x}(e^x - 2)(4e^x - 1)$$
 ، x عدد حقیقی x عدد حقیقی x اثبت أنّه من أجل كلّ عدد حقیقی x عدد حقیقی x عدد x عدد المحالین x عدد x متناقصة تماما علی كلّ من المجالین x متناقصة تماما علی x متناقصة تماما علی x مشكّل جدول تغیّراتها.

$$+\infty$$
 عند C_f عند $y=-2x+4$ عند Δ بالنسبة إلى Δ

$$0$$
 أكتب معادلة لـ T مماس الفاصلة C_f مماس معادلة لـ (4

$$\left(f\left(-\ln 4\right)\simeq -3,2\right)$$
 و $\left(T\right)$ و المنحنى $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$ انشئ $\left(\Delta\right)$

لسابق.
$$h$$
 الدالة المعرّفة على \mathbb{R} بـ: $P(C_h)$ به $P(x) = -\frac{1}{2}e^{-2x} + \frac{9}{2}e^{-x} + 2x - 2$ به المعلم السابق. $P(C_h)$ الدالة المعرّفة على $P(C_h)$ به الدالة المعرّفة على $P(C_h)$ به المعلم السابق. $P(C_h)$ اعتمادًا على $P(C_h)$ اعتماد على $P(C_h)$ اعتمادًا على $P(C_h)$ اعتماد على $P(C_h$

انتهى الموضوع الثاني

العلامة		عناصر الإجابة (الموضوع الأول)		
مجموع	مجزأة			
		التمرين الأول: (04 نقاط)		
	0.25	f'(0) = 1		
01	0.25	$f'(0) = 1$ $\lim_{x \to -\infty} f(x) = -1$	(1	
01	0.5	(T): y = x	i ·	
	0.353	المعادلة لا تقبل حلا $m < 0$		
0.75	0.25×3	المعادلة تقبل حلين متمايزين $m>0$	(2	
		المعادلة تقبل حلا معدوما $m=0$		
		a=1 $b=-1$ تبيان أنّ		
01	0.5+0.5	$f'(x) = (x^2 + 2x + a)e^x$	(3	
-		$\begin{cases} a=1\\b=-1 \end{cases} \begin{cases} f'(0)=1\\ \lim_{x\to -\infty} f(x)=b \end{cases}$		
		$b = -1 \qquad \lim_{x \to -\infty} f(x) = b$		
	0.50	الدالة 8 زوجية		
		$g(x) = f(x) \qquad x \in [0; +\infty[$		
	0.25	ينطبق على (C_f) في المجال $[0;+\infty[$ ينطبق على (C_f) في المجال $[0;+\infty[$		
		محور الفواصل (C_{ε})		
4.25		3		
1.25		2-	(4	
		11	(4	
	0.5			
		2 -1 0 1 2		
	<u> </u>	التمرين الثاني: (04 نقاط)	l .	
	0.50	$\lim_{x \to +\infty} (f(x) - (x-1)) = 0$	(1	
01	0.50	$x \rightarrow +\infty$		
01	0.50	x=1خاطئة لأن (E) : عناه $x=1$ أي $x>1/2$	(2	
OI	0.50			
01	0.50	$F'(x) = f(x) : \mathbb{R}$ من أجل كل x من أجل كل	(3	
	0.50		1	
01	0.50	خاطئة لأن 2022 - «2023	(4	
91	0.50	$\ln u_1 + \ln u_2 + \dots + \ln u_{2022} = \ln \frac{2 \times 3 \times \dots \times 2023}{1 \times 2 \times \dots \times 2022} = \ln 2023$		

		الإجابة النمودجية. مادة: الرياضيات. الشعبة: علوم جريبية. بكالور		
التمرين الثالث: (05 نقاط)				
01	0.25×4	נהמט ווברפני: עם נייני עם נייני עם מיני של מ	(1	
	0.25	ا لیست رتببة (u_n) لیست رتببة	(2	
01	0.50	$u_1>u_2$ و $u_0< u_1$ التبرير:		
	0.25	ب- التخمين $(u_n):$ متقاربة		
	0.50	$v_{n+1} = \frac{1}{4}v_n \qquad -1$ $v_0 = \frac{196}{9}$	(3	
2.75	0.50	$v_n = \frac{196}{9} \left(\frac{1}{4}\right)^n$		
	0.50	$\lim_{n \to +\infty} v_n = 0$		
	0.25	$\lim_{n \to +\infty} u_n = \frac{2}{3}$		
0.25	0.25	تبيان أنّ: $v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{196}{9}\right)^n \left(\frac{1}{4}\right)^{0+1+2+\dots+n-1} = \left(\frac{14}{3}\right)^{2n} \left(\frac{1}{2}\right)^{n^2-n}$ تمنح العلامة 0.25 لكل محاولة	(4	

		التمرين الرابع: (07 نقاط)	
			(I
1.25	0.50	$g'(x) = \frac{x^2 + 2x + 2}{x^3}$	
	0.50	g'(x) > 0	
	0.25	$[0;+\infty]$ ومنه g متزایدة تماما علی	
	0.75	$lpha$ أحسب مبرهنة القيم المتوسطة $g\left(x ight)$ تقبل حلا وحيدا أ	(2
		$1,2 < \alpha < 1,3$ حيث	
1.25	0.50	$:g\left(x ight)$ ب $-$ اشارة	
		$\begin{array}{c ccc} x & 0 & a & +\infty \\ \hline g(x) & - & 0 & + \end{array}$	
			(Π
	0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{1}{xe^x} - \frac{2}{e^x} - \frac{\ln x}{x} \times \frac{x}{e^x} \right] = 0$ أ- تبيان أن أ	(1
	0.25		
01		$\lim_{x \to 0} f(x) = +\infty$	
		ب-التفسير البياني	
	0.25×2	(C_f) معادلتي المستقيمين المقاربين للمنحني $x=0\;;\;y=0$	
	0.75	$f'(x) = \frac{g(x)}{e^x} - \mathfrak{f}$	(2
	0.25×2	f اتجاه تغیّر الدّالة f	
1.75		$[lpha;+\infty[$ متزایدة تماما علی $lpha;+\infty[$ ومتناقصة تماما علی f	
1.73		جدول تغيّراتها.	
	0.5	$x \mid 0 \alpha +\infty$ $f'(x) \mid - 0 +$	
	0.3	$f(x)$ $+\infty$ $f(\alpha)$	
		$\left(\left. C_f ight)$ إنشاء المنحنى	(3
		$\binom{3}{2}$ $\binom{C_f}{2}$	
0.50	0.5	(C_f)	
		1 0 1 2 3 4	
1.25	0.5	$F'(x)=f(x)$ ، $x\in \left]0;+\infty\right[$ أ-التحقق :من أجل كل	(4

	يا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
	0.5	$S(\lambda) = \left[F(x)\right]_{\lambda}^{0.5} = \frac{2 - \ln 2}{\sqrt{e}} - \frac{2 + \ln \lambda}{e^{\lambda}} .$	
	0.25	$\begin{pmatrix} C_f \end{pmatrix}$ التفسير: $S(\lambda)$ مساحة الحيز من المستوي المحدد ب $x = \frac{1}{2}$ ، $x = \lambda$ وحامل محور الفواصل والمستقيين ذي المعادلتين	
		عناصر الإجابة (الموضوع الثاني)	
		التمرين الأول: (04 نقاط)	
01.25	0.50 0.75	f'(0) = -1 $(T): y = -x$	(1
0.50	0.50	$a=1$ و منه $\begin{cases} f'(x)=a-rac{2}{x+1}: a=1 \\ f'(0)=-1 \end{cases}$	(2
0.75	0.25×3	المناقشة البيانية: $m < 0$ المعادلة لا تقبل حلا $m < 0$ للمعادلة حلا معدوما $m = 0$ للمعادلة حلين مختلفين في الإشارة $m > 0$	(3
	0.50 0.25	اً- تبيان أنّ: $g(-2-x)=g(x) (-2-x)\in D_g \ , \ x\in D_g$ من أجل كل $x=-1$ معادلة محور تناظر لـ (C_g)	
	0.25	g(x)=f(x) على $g(x)=f(x)$ عبيان أنّ	
1.50	0.50	(C_g) simil	(4
التّمرين الثاني: (04 نقاط)			
01	0.50 0.50	$I = \int_{1}^{2} (x-1)e^{x^2-2x} dx = \left[\frac{1}{2}e^{x^2-2x}\right]_{1}^{2}$ الاقتراح الصحيح هو ب	(1
01	0.50 0.50	$v_{n+1} = u_{n+1} + \alpha = \frac{1}{3}v_n + \frac{2}{3}\alpha + 3$ الاقتراح الصحيح هو أ) لأن	(2

	ريا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
01	0.50 0.50	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$ الاقتراح الصحيح هو أ) لأن: $H'(x) = 2x + \frac{1}{x} + c$ و	(3
01	0.50 0.50	$H'(x) = 2x + \frac{1}{x} + c$ و الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ ومنه $H(x) = x^2 - x + 4 + \ln x$ ومنه $H(x) = 4$	(4
		التمرين الثالث: (05 نقاط)	
01.50	0.50 0.50	$u_1 = e$ _\int $q = \frac{1}{e}$	(1
	0.50	$u_n=e^{2-n}$ ، n عدد طبیعي عدد التحقّق أنّه من أجل كلّ عدد طبیعي	
01	0.50	$S_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	(2
	0.50	$S_n = \frac{e^3}{e - 1} \left(1 - \frac{1}{e^{n+1}} \right)$	
1.50	0.75+0.25	$v_n = rac{e^{3-n}-e^4}{1-e}$: أ- البرهان بالتّراجع $\lim_{x o +\infty} rac{e^{3-n}-e^4}{1-e} = rac{e^4}{-1+e}$ ب-	(3
	0.50	$\lim_{x \to +\infty} \frac{e^{3-n} - e^4}{1 - e} = \frac{e^4}{-1 + e} - \Box$	
01	0.50	$\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$ ا- تبیان أن	(4
	0.50	$S_n' = \frac{1}{1-e} \left[S_n - (n+1)e^3 \right]$ ب- التحقق أن	
		التّمرين الرّابع: (07 نقاط)	
	0.25	$\lim_{x \to +\infty} f(x) = -\infty$	(1
0.75	0.50	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} e^{-2x} (1 - 9e^x - 4xe^{2x} + 8e^{2x}) = +\infty$	
	0.75	$f'(x) = -\frac{1}{2}e^{-2x}(e^x - 2)(4e^x - 1)$: أ- إثبات أن	(2
1 75	0.50	ب-اتجاه التغییر	
1.75	0.50	جدول التغیرات	

الصفحة 5 من 6

بكالوريا 2022	الشعبة: علوم تجريبية.	مادة: الرياضيات.	الإجابة النموذجية.
---------------	-----------------------	------------------	--------------------

	ري 2022	ام جابه الممودجية. الماداد الرياطيات. السعبة. حلوم جريبية. المحافو	
	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 5$	(3
	0.50	$\lim_{x \to +\infty} (f(x) - (-2x + 4)) = 0$	
		(Δ) بالنسبة إلى المراسة وضعية بالنسبة المراسة وضعية بالنسبة المراسة وضعية المراس	
1.50	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-x}(e^{-x} - 9)$	
		$]-\ln 9;+\infty[$ المجال على المجال المجال $\left(C_f ight)$	
	0.70	$]{-}\infty;-\ln 9[$ اسفل Δ على المجال C_f	
	0.50	$(C_f) \cap (\Delta) = \left\{ A(-\ln 9; 4 + 2\ln 9) \right\}$	
0.75	0.75	$(T): y = \frac{3}{2}x$	(4
		$[-1,9;+\inftyigl[$ المنحنى C_f على المجال T و Δ	(5
1.50	0.50	$\begin{array}{c c} & 2 & \\ & 1 & \\ \hline & 1 & \\ \hline & (C_f) & 1 & 2 \\ \end{array}$	
	0.50	(T) -2 -3	
	0.25	a=-1 –	(6
	0.25	b = 2	
0.75	0.25	$h(x) = -f(x) + 2 \qquad \neg$	
		ننشئ (C_{-f}) صورة (C_{f}) بالتناظر بالنسبة لحامل محور الفواصل ثم	
		$2ec{j}$ صورة (C_{-f}) بالانسحاب ذو الشعاع $\left(C_{h} ight)$	