선형대수 숙제 5 답

3.
$$C = \begin{bmatrix} 9 & -6 & -3 \\ 6 & -4 & 2 \\ -3 & -2 & 1 \end{bmatrix}$$

4.
$$\frac{1}{\det A} AC^{T} = \frac{1}{-12} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 9 & 6 & -3 \\ -6 & -4 & -2 \\ -3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5.
$$C = \begin{bmatrix} -15 & -5 & 1 \\ 6 & 2 & -3 \\ -2 & -5 & 1 \end{bmatrix}$$

6.
$$\frac{1}{\det A}AC^{T} = \frac{1}{-13}\begin{bmatrix} 1 & 0 & 2\\ 0 & 1 & 5\\ -1 & 3 & 0 \end{bmatrix}\begin{bmatrix} -15 & 6 & -2\\ -5 & 2 & -5\\ 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

7.
$$\lambda_1$$
, = 4, $x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\lambda_2$$
, = -1, $\mathbf{x}_2 = \begin{bmatrix} -2\\1 \end{bmatrix}$

8.
$$\lambda_1 = -3, x_1 = \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix}$$

$$\lambda_2$$
, = 2, $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

9.
$$S = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, S^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix},$$

$$\Lambda = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix},$$

10.
$$S^{-1}AS =$$

$$\begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} = \Lambda$$

11.
$$A^3 = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 26 \\ 26 & 51 \end{bmatrix}$$

$$A^3 = (S\Lambda S^{-1})^3 = S\Lambda^3 S^{-1} =$$

$$\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 64 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} 12 & 26 \\ 26 & 51 \end{bmatrix}$$

12.
$$\det A = -4$$
, $\lambda_1 \lambda_2 = -4$

13.
$$tr(A)=3$$
, $\lambda_1 + \lambda_2 = 3$

14.
$$tr(AB) = tr(\begin{bmatrix} 4 & 0 \\ 4 & 6 \end{bmatrix}) = 10$$

 $tr(BA) = tr(\begin{bmatrix} 6 & 7 \\ 0 & 4 \end{bmatrix}) = 10$

15.
$$\lambda_1$$
, = 0, $x_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

$$\lambda_2$$
, = 5, $x_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\lambda_1, \lambda_2$$
는 실수, $\mathbf{x}_1^T \mathbf{x}_2 = \mathbf{0}$