DERSE GELMEDEN ÖNCE...

Sayısal Fizik Kitabının pdf link aşağıdadır.

Sayisal Fizik Bekir Karaoğlu 2nciBaski (https://www.seckin.com.tr/kitap/966813697)

Bu dosyadaki 2. üniteyi Gauss İntegrali kısmına kadar okuyup anlamaya çalışın...

In [1]:

```
import IPython.display as ipd
vid = ipd.YouTubeVideo('hr1xp3tVgUQ', start=17)
link = ipd.Markdown(r'## [Programlama öğrenmenin yaşı yok!](https://youtu.be/hr1xp3tVgU
Q?t=16)')
display(link)
display(vid)
```

Out[1]:

lyMgW1Byb2dyYW1sYW1hIMO2xJ9yZW5tZW5pbiB5YcWfxLEgeW9rlV0oaHR0cHM6Ly95b3

Out[1]:

SAYISAL TÜREV ve İNTEGRAL

SAYISAL TÜREV

$$f'(x)=\lim_{h o 0}rac{f(x+h)-f(x)}{h}$$
 veya $f'(x)=\lim_{x o x_0}rac{f(x)-f(x_0)}{x-x_0}$

In [2]:

```
import sympy as sm
from sympy.parsing.sympy_parser import parse_expr
import IPython.display as ipd
f, x, x_0, h, = sm.symbols('f, x, x_0, h')
f = sm.Function('f')

ft = sm.series(f(x), x, x_0, 4)
ft_tex0 = sm.latex(ft)
ft_texp = sm.latex(ft.subs({x:x_0+h, x_0:x}))
ft_texm = sm.latex(ft.subs({x:x_0-h, x_0:x}))

ft_tex0 = ft_tex0.replace(r'\rightarrow', r'\rightarrow'') # rightarrow''ün sağına bir b
oşluk ekle
ipd.display(ipd.Markdown("### $f(x) = %s$"%ft_tex0))
ipd.display(ipd.Markdown("### $f(x+h) = %s$"%ft_texm))
ipd.display(ipd.Markdown("### $f(x-h) = %s$"%ft_texm))
```

Out[2]:

$$egin{split} f(x) &= f(x_0) + (x-x_0) \, rac{d}{d\xi_1} f(\xi_1) \Big|_{\,\xi_1 = x_0} \, + rac{(x-x_0)^2 \, rac{d^2}{d\xi_1^2} f(\xi_1) \Big|_{\,\xi_1 = x_0}}{2} \, + \ &+ O\left((x-x_0)^4; x
ightarrow x_0
ight) \end{split}$$

Out[2]:

$$f(x+h) = f(x) + h rac{d}{d\xi_1} f(\xi_1) \Big|_{\xi_1 = x} \, + rac{h^2 rac{d^2}{d\xi_1^2} f(\xi_1) \Big|_{\xi_1 = x}}{2} \, + rac{h^3 rac{d^3}{d\xi_1^3} f(\xi_1)}{2}$$

Out[2]:

$$f(x-h) = f(x) - h rac{d}{d\xi_1} f(\xi_1) \Big|_{\xi_1 = x} \, + rac{h^2 rac{d^2}{d\xi_1^2} f(\xi_1) \Big|_{\xi_1 = x}}{2} - rac{h^3 rac{d^3}{d\xi_1^3} f(\xi_1)}{2}$$

In [3]:

```
import sympy as sm
import IPython.display as ipd
f, x, x0, h = sm.symbols('f, x, x0, h')
f = sm.Function('f')
def ft(f, x, h=0, n=3):
    x0 = sm.symbols('x0')
    theSeries = sm.series(f(x), x, x0, n).doit()
    if h == 0:
        ss = theSeries
    else:
        ss = theSeries.subs({x:x0+h, x0:x})
    ssl = sm.latex(ss).replace(r'\rightarrow', r'\rightarrow')
    return ss, ssl
fxph, fxpl = ft(f, x, h)
fxmh, fxml = ft(f, x, -h)
fx_left = f(x+h) - f(x-h)
fx\_right = fxph - fxmh
solw0 = sm.expand(sm.solve(fx_left-fx_right, sm.Derivative(f(x), x))[0])
sol = solw0.remove0()
00 = solw0 - sol
sol0 = sm.simplify(sol) + 00
ipd.display(ipd.Markdown("$%s = %s$"%(f(x+h), fxpl)))
ipd.display(ipd.Markdown("$%s = %s$"%(f(x-h), fxml)))
ipd.display(ipd.Markdown("$%s = %s$"%(fx_left, sm.latex(fx_right))))
ipd.display(ipd.Markdown("$\%s = %s$"%(sm.latex(sm.Derivative(f(x), x)), sm.latex(sol0
))))
```

Out[3]:

$$f(h+x)=f(x)+hrac{d}{dx}f(x)+rac{h^2rac{d^2}{dx^2}f(x)}{2}+O\left(h^3
ight)$$

Out[3]:

$$f(-h+x)=f(x)-hrac{d}{dx}f(x)+rac{h^2rac{d^2}{dx^2}f(x)}{2}+O\left(h^3
ight)$$

Out[3]:

$$-f(-h+x)+f(h+x)=2hrac{d}{dx}f(x)+O\left(h^3
ight)$$

Out[3]:

$$rac{d}{dx}f(x)=rac{-f(-h+x)+f(h+x)}{2h}+O\left(h^2
ight)$$

$$\xi_1 o x$$

$$f(x+h)=f(x)+hf'(x)+rac{h^2}{2}f''(x)+rac{h^3}{6}f'''(x)+\mathcal{O}\left(h^4
ight)$$

$$hf'(x)=f(x+h)-f(x)-rac{h^2}{2}f''(x)-rac{h^3}{6}f'''(x)+\mathcal{O}\left(h^4
ight)$$

$$f'(x)=rac{1}{h}\Big[f(x+h)-f(x)-rac{h^2}{2}f''(x)-rac{h^3}{6}f'''(x)+\mathcal{O}\left(h^4
ight)\Big]$$

$$f'(x)=rac{f(x+h)-f(x)}{h}-rac{h}{2}f''(x)-rac{h^2}{6}f'''(x)+rac{1}{h}\mathcal{O}\left(h^4
ight)$$

$$f'(x) = rac{f(x+h)-f(x)}{h} - h\left[rac{1}{2}f''(x) - rac{h}{6}f'''(x) + rac{1}{h^2}\mathcal{O}\left(h^4
ight)
ight]$$

$$f'(x) = rac{f(x+h) - f(x)}{h} + \mathcal{O}(h)$$

$$f'(x) pprox rac{f(x+h)-f(x)}{h}$$

In [4]:

```
# Yukarıdaki yöntemi kullanarak verilen herhangi bir f(x) fonksiyonun
# x = x_0 noktasında (x_0 herhangi bir reel sayı) sayısal türevini alan
# programı yazınız.

# ileri türev
x = 1.
h = 0.1

def f(x):
    return x**2 + x**3

fts = (f(x+h) - f(x))/h
ftt = 2*x + 3*x**2

print ftt, fts, fts-ftt
```

5.0 5.41 0.41

In [5]:

```
# simetrik türev
x = 1.
h = 0.1

def f(x):
    return x**2 + x**3

fts = (f(x+h) - f(x-h))/(2.*h)
ftt = 2*x + 3*x**2

print ftt, fts, fts-ftt
```

5.0 5.01 0.01

$$f'(x) = rac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h}$$

In [6]:

```
import sympy as sm
import IPython.display as ipd
f, x, x0, h = sm.symbols('f, x, x0, h')
f = sm.Function('f')
def ft(f, x, h=0, n=3):
   x0 = sm.symbols('x0')
   theSeries = sm.series(f(x), x, x0, n).doit()
    if h == 0:
        ss = theSeries
    else:
        ss = theSeries.subs({x:x0+h, x0:x})
    ssl = sm.latex(ss).replace(r'\rightarrow', r'\rightarrow')
    return ss, ssl
n=5
fxph, fxpl = ft(f, x, h, n)
fxmh, fxml = ft(f, x, -h, n)
fxp2h, fxp2l = ft(f, x, 2*h, n)
fxm2h, fxm2l = ft(f, x, -2*h, n)
fx_left = f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2-h)
fx_right = fxm2h - 8*fxmh + 8*fxph - fxp2h
solw0 = sm.expand(sm.solve(fx_left-fx_right, sm.Derivative(f(x), x))[0])
sol = solw0.remove0()
00 = solw0 - sol
sol0 = sm.simplify(sol) + 00
ipd.display(ipd.Markdown("$%s = %s$"%(f(x+h), fxpl)))
ipd.display(ipd.Markdown("$\%s = \%s$"%(f(x+2*h), fxp21)))
ipd.display(ipd.Markdown("$%s = %s$"%(f(x-h), fxml)))
ipd.display(ipd.Markdown("$%s = %s$"%(f(x-2*h), fxm21)))
ipd.display(ipd.Markdown("$%s = %s$"%(sm.latex(fx_left), sm.latex(fx_right))))
ipd.display(ipd.Markdown("$%s = %s$"%(sm.latex(sm.Derivative(f(x), x)), sm.latex(sol0))
))))
```

Out[6]:

$$f(h+x) = f(x) + hrac{d}{dx}f(x) + rac{h^2rac{d^2}{dx^2}f(x)}{2} + rac{h^3rac{d^3}{dx^3}f(x)}{6} + rac{h^4rac{d^4}{dx^4}f(x)}{24} + O\left(h^5
ight)$$

Out[6]:

$$f(2*h+x) = f(x) + 2hrac{d}{dx}f(x) + 2h^2rac{d^2}{dx^2}f(x) + rac{4h^3rac{d^3}{dx^3}f(x)}{3} + rac{2h^4rac{d^4}{dx^4}f(x)}{3} + O\left(h^5
ight)$$

Out[6]:

$$f(-h+x) = f(x) - h rac{d}{dx} f(x) + rac{h^2 rac{d^2}{dx^2} f(x)}{2} - rac{h^3 rac{d^3}{dx^3} f(x)}{6} + rac{h^4 rac{d^4}{dx^4} f(x)}{24} + O\left(h^5
ight)$$

Out[6]:

$$f(-2*h+x) = f(x) - 2hrac{d}{dx}f(x) + 2h^2rac{d^2}{dx^2}f(x) - rac{4h^3rac{d^3}{dx^3}f(x)}{3} + rac{2h^4rac{d^4}{dx^4}f(x)}{3} + O\left(h^{rac{1}{2}}
ight)$$

Out[6]:

$$f(-2h+x)-8f(-h+x)+8f(h+x)-f(-h+x+2)=-(8f(x)-8hrac{d}{dx}f(x)) \ +8f(x)+4hrac{d}{dx}f(x)+4h^2rac{d^2}{dx^2}f(x)-rac{4h^3rac{d^3}{dx^3}f(x)}{3}+rac{h^4rac{d^4}{dx^4}f(x)}{3}+O\left(h^5
ight)$$

Out[6]:

$$rac{d}{dx}f(x)=rac{f(-2h+x)-8f(-h+x)+8f(h+x)-f(-h+x+2)}{12h}+O\left(h^4
ight)$$

In [7]:

```
x = 1.
h = 0.1

def f(x):
    return x**2 + x**3

fts = (f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2*h))/(12.*h)
ftt = 2*x + 3*x**2

print ftt, fts, fts-ftt
```

5.0 5.0 1.7763568394e-15

In [8]:

```
# simetrik türev
x = 1.
h = 0.1

def f(x):
    return x**2 + x**3

fts1 = (f(x+h) - f(x-h))/(2.*h)
fts2 = (f(x+h) - 2*f(x) + f(x-h))/h**2.

ftt1 = 2*x + 3*x**2
ftt2 = 2 + 6*x

print ftt1, fts1, fts1-ftt1
print ftt2, fts2, fts2-ftt2
```

5.0 5.01 0.01 8.0 8.0 4.97379915032e-14

Sayısal Türev Kavramının Bir Fizik Problemine Uygulanması

Bir boyutlu hareket eden bir sistemin konumunun ve hızının zaman bağlılığı Newton'un 2nci (ec F=mec a) yasası kullanılarak aşağıdaki gibi hesaplanabilir.

$$egin{aligned} F &= m rac{\Delta v}{\Delta t} \implies rac{\Delta v}{\Delta t} = rac{F}{m} \implies v(t + \Delta t) = v(t) + rac{F}{m} \Delta t \ v &= rac{\Delta x}{\Delta t} \implies \Delta x = v \Delta t \implies x(t + \Delta t) = x(t) + v(t) \Delta t \end{aligned}$$

F=-kx kuvveti uygulanan yay için örnek:

In [9]:

```
# Kitapta pylab ve numpy kütüphaneleri kullanılarak
# F = -kx kuvvetli yay sistemi için çözüm.
from pylab import *
from numpy import *
def f(x,v,t):
    return -x
n=200
h=6.28/float(n)
t=zeros(n,float)
x=zeros(n,float)
v=zeros(n,float)
v[0]=1.0
for i in range(1,n):
    t[i]=h*i
    x[i]=x[i-1]+v[i-1]*h
    v[i]=v[i-1]+f(x[i-1],v[i-1],t[i-1])*h
plot(t,x,"k-")
plot(t,v,"k--")
xlabel("t")
ylabel("x(t), v(t)")
grid()
show()
```

Out[9]:

F=-kx kuvveti uygulanan yay için örnek: (Python programı farklı)

In [10]:

```
# Hesaplama için standart Python, çizim için matplotlib.pyplot
# kullanılarak F = -kx kuvvetli yay sistemi için çözüm.
import matplotlib.pyplot as plt
%matplotlib inline
def f(x,v,t):
    return -x # harmonik salınıcı
n=200
h=6.28/float(n)
t = [0]
x = [0]
v = [1.0]
a = [0.]
for i in range(1,n):
    t = t + [h*i]
    x = x + [x[i-1] + v[i-1]*h]
    v += [v[i-1] + f(x[i-1],v[i-1],t[i-1])*h]
    a += [(v[i]-v[i-1])/h]
plt.plot(t,x,"b-", label="Konum")
plt.plot(t,v,"r--", label=u"Hiz")
plt.plot(t,a,"g--", label=u"İvme")
plt.xlabel("t")
plt.ylabel("x(t), v(t)")
plt.grid()
plt.legend()
plt.show()
```

Out[10]:

Kinematik fonksiyonu

Yukarıdaki hesaplamaları ve çizimi yapan kısım Python fonksiyonu olarak yeniden yazıldı. Böylece sadece kuvvet fonksiyonu ve başlangıç değerleri tanımlanarak sistemler incelenebilir.

In [11]:

```
import matplotlib.pyplot as plt
%matplotlib inline
def kinematik(n = 100, t0=0., tn=10.0, x0=0., v0=1., a0=-10.):
    t, x, v, a = [t0], [x0], [v0], [a0]
    dt = abs(tn-t0)/float(n)
    for i in range(1, n):
        t += [dt*i]
        x += [x[i-1] + v[i-1]*dt]
        v += [v[i-1] + f(x[i-1],v[i-1],t[i-1])*dt]
        a += [(v[i]-v[i-1])/dt]
    plt.plot(t,x,"b-", label="Konum")
   plt.plot(t,v,"r--", label=u"Hız")
    plt.plot(t,a,"g--", label=u"İvme")
    plt.xlabel("t")
    plt.ylabel("x(t), v(t)")
    plt.grid()
    plt.legend()
    plt.show()
```

Serbest düşen cisim:

```
\Sigma F = -mg
```

In [12]:

```
def f(x,v,t):
    return -10

#kinematik(n = 100, t0=0., tn=10.0, x0=0., v0=1., a0=-10.)
kinematik(n=500, v0=0.)
```

Out[12]:

Direnç kuvveti varken:

```
\Sigma F = -mg + cv^2
```

In [13]:

```
def f(x,v,t):
    return -10+.5*v**2

#kinematik(n = 100, t0=0., tn=10.0, x0=0., v0=1., a0=-10.)
kinematik(n=500, v0=0.)
```

Out[13]:

Harmonik salıncı

 $\Sigma F = -kx$ durumu:

In [14]:

```
def f(x,v,t):
    return -x

pi = 3.14159
kinematik(n = 10000, tn=4*pi, x0=1., v0=0., a0=0.)
```

Out[14]:

Sönümlü yayın davranışı:

 $\Sigma F = -kx - bv$ durumu:

In [15]:

```
def f(x,v,t):
    return -x - .5*v # sönümlü harmonik salınıcı

pi = 3.14159
kinematik(n = 2000, tn=8*pi, x0=1., v0=0., a0=0.)
```

Out[15]:

Direnç kuvveti $\Sigma F = -kx - cv^2$ durumu:

In [16]:

```
def f(x,v,t):
    return -x - .5*v**3/abs(v) # sönümlü harmonik salınıcı

pi = 3.14159
kinematik(n = 20000, tn=8*pi, x0=1., v0=1e-17, a0=0.)
```

Out[16]:

y=f(x) şeklinde bir fonksiyonun çizimi

In [17]:

```
import matplotlib.pyplot as plt
%matplotlib inline

plt.plot([1,2,3,4,5])
plt.show()
```

Out[17]:

In [18]:

```
import matplotlib.pyplot as plt
%matplotlib inline
def f(x):
    return x**2
xi = 0.
xs = 10.
nn = 10.
dx = abs(xs-xi)/nn
x1 = []
y1 = []
x = xi
while x<=xs:</pre>
    x1 = x1 + [x]
    yl = yl + [f(x)]
    x = x + dx
plt.plot(x1, y1)
plt.show()
```

Out[18]:

In [19]:

```
import matplotlib.pyplot as plt
%matplotlib inline
def f(x):
    return x**2
xi = 0.
xs = 10.
nn = 10.
dx = abs(xs-xi)/nn
x1 = []
yl = []
x = xi
while x<=xs:
    x1 = x1 + [x]
    yl = yl + [f(x)]
    x = x + dx
# renkler
# {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}
plt.plot(xl, yl, "ko")
plt.plot(xl, yl)
plt.grid()
plt.show()
```

Out[19]:

SAYISAL İNTEGRAL

f(x) = x fonksiyonunun sayısal integrali

Sol kenar kullanılarak alınan integral

In [20]:

```
def f(x):
    return x
xi = 0.
xs = 10.
nn = 10.
dx = abs(xs-xi)/nn
i = 0.
toplam = 0.
print "%5s %5s"%("x", "f(x)")
while i<nn:</pre>
   x = xi + i*dx
    i = i + 1
    toplam = toplam + f(x)
    print "%5s %5s"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
    x f(x)
```

```
x f(x)
0.0 0.0
1.0 1.0
2.0 2.0
3.0 3.0
4.0 4.0
5.0 5.0
6.0 6.0
7.0 7.0
8.0 8.0
9.0 9.0
f(x)'in 0.0 ile 10.0 araliğindaki integrali = 45.0
```

In [21]:

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[:-1]):
    plt.bar(x+dx/2., fl[i], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[21]:

f(x) = x fonksiyonunun sayısal integrali

Sağ kenar kullanılarak alınan integral

In [22]:

```
def f(x):
   return x
xi = 0.
xs = 10.
nn = 10.
dx = abs(xs-xi)/nn
i = 1.
toplam = 0.
print "%5s %5s"%("x", "f(x)")
while i<=nn:</pre>
   x = xi + i*dx
   i = i + 1
   toplam = toplam + f(x)
    print "%5s %5s"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
    x f(x)
  1.0
      1.0
      2.0
  2.0
```

```
3.0 3.0

4.0 4.0

5.0 5.0

6.0 6.0

7.0 7.0

8.0 8.0

9.0 9.0

10.0 10.0

f(x)'in 0.0 ile 10.0 araliğindaki integrali = 55.0
```

In [23]:

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[1:]):
    plt.bar(x-dx/2., fl[i+1], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[23]:

f(x) = exp(x) fonksiyonunun integrali

Sol kenar kullanılarak alınan integral

In [24]:

```
from math import *
def f(x):
    return exp(x)
xi = 0.
xs = 4.
nn = 10.
dx = abs(xs-xi)/nn
i = 0.
toplam = 0.
print "%5s %5s"%("x", "f(x)")
while i<nn:</pre>
    x = xi + i*dx
    i = i + 1
    toplam = toplam + f(x)
    #print "%5s %5s"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
print "f(x)'in tam integrali = %s"%(exp(4)-1)
    x f(x)
f(x)'in 0.0 ile 4.0 aralığındaki integrali = 43.5912635459
```

In [25]:

f(x)'in tam integrali = 53.5981500331

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[:-1]):
    plt.bar(x+dx/2., fl[i], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[25]:

f(x) = exp(x) fonksiyonunun integrali

Sağ kenar kullanılarak alınan integral

```
In [26]:
```

```
from math import *
def f(x):
    return exp(x)
xi = 0.
xs = 4.
nn = 10.
dx = abs(xs-xi)/nn
i = 1.
toplam = 0.
print "%5s %5s"%("x", "f(x)")
while i<=nn:</pre>
    x = xi + i*dx
    i = i + 1
    toplam = toplam + f(x)
    print "%5s %5s"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
    x f(x)
  0.4 1.49182469764
  0.8 2.22554092849
  1.2 3.32011692274
```

```
1.6 4.9530324244
 2.0 7.38905609893
 2.4 11.0231763806
 2.8 16.4446467711
 3.2 24.5325301971
 3.6 36.5982344437
 4.0 54.5981500331
f(x)'in 0.0 ile 4.0 aralığındaki integrali = 65.0305235591
```

In [27]:

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[1:]):
    plt.bar(x-dx/2., fl[i+1], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[27]:

$f(x) = \sin(x)$ fonksiyonunun integrali

Sol kenar kullanılarak alınan integral

2.51327412287 0.587785252292 2.93215314335 0.207911690818 3.35103216383 -0.207911690818 3.76991118431 -0.587785252292 4.18879020479 -0.866025403784 4.60766922527 -0.994521895368 5.02654824574 -0.951056516295 5.44542726622 -0.743144825477 5.8643062867 -0.406736643076

```
In [28]:
from math import *
def f(x):
    return sin(x)
xi = 0.
xs = 2*pi
nn = 15.
dx = abs(xs-xi)/nn
i = 0.
toplam = 0.
print "%5s %5s"%("x", "f(x)")
while i<nn:</pre>
    x = xi + i*dx
    i = i + 1
    toplam = toplam + f(x)
    print "%5s %5s"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
    x f(x)
  0.0
      0.0
0.418879020479 0.406736643076
0.837758040957 0.743144825477
1.25663706144 0.951056516295
1.67551608191 0.994521895368
2.09439510239 0.866025403784
```

f(x)'in 0.0 ile 6.28318530718 aralığındaki integrali = 1.86019653227e-16

In [29]:

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[:-1]):
    plt.bar(x+dx/2., fl[i], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[29]:

$f(x) = \sin(x)$ fonksiyonunun integrali

Sağ kenar kullanılarak alınan integral

In [30]:

```
from math import *
def f(x):
    return sin(x)
xi = 0.
xs = 2*pi
nn = 15.
dx = abs(xs-xi)/nn
i = 1.
toplam = 0.
print "%13s %26s"%("x", "f(x)")
while i<=nn:</pre>
    x = xi + i*dx
    i = i + 1
    toplam = toplam + f(x)
    print "%+25.20f %+25.20f"%(x, f(x))
toplam = toplam*dx
print "f(x)'in %s ile %s aralığındaki integrali = %s"%(xi, xs, toplam)
            Χ
                                     f(x)
```

```
+0.41887902047863906363
                            +0.40673664307580015276
  +0.83775804095727812726
                            +0.74314482547739413310
  +1.25663706143591724640
                            +0.95105651629515353118
  +1.67551608191455625452
                            +0.99452189536827340088
  +2.09439510239319526264
                            +0.86602540378443870761
  +2.51327412287183449280
                            +0.58778525229247324813
  +2.93215314335047327887
                            +0.20791169081775973115
  +3.35103216382911250903
                            -0.20791169081775906502
  +3.76991118430775173920
                            -0.58778525229247302608
  +4.18879020478639052527
                            -0.86602540378443837454
  +4.60766922526502931134
                            -0.99452189536827328986
                            -0.95105651629515364220
  +5.02654824574366898560
  +5.44542726622230777167
                            -0.74314482547739457718
 +5.86430628670094655774
                            -0.40673664307580092991
  +6.28318530717958623200
                          -0.00000000000000024493
f(x)'in 0.0 ile 6.28318530718 aralığındaki integrali = 8.34238828953e-17
```

In [31]:

```
import matplotlib.pyplot as plt
%matplotlib inline

xl = [xi+i*dx for i in range(int(nn+1))]
fl = [f(x) for x in xl]

for i, x in enumerate(xl[1:]):
    plt.bar(x-dx/2., fl[i+1], dx)

plt.plot(xl, fl, "k-", lw="2")
plt.show()
```

Out[31]:

TRAPEZ Yöntemi

```
In [32]:
```

```
from sympy import *
from IPython.display import Markdown, display
init_printing()

X, i, dx = symbols('X, i, dx')
x = IndexedBase('x')
f = IndexedBase('f')

def b(X):
    return (X-x[i+1])/(x[i]-x[i+1])

def c(X):
    return (X-x[i])/(x[i+1]-x[i])

P = lambda X: b(X)*f[i] + c(X)*f[i+1]

integ1 = simplify(integrate(P(X),(X, x[i], x[i+1])))
integ2 = simplify(integ1.subs(x[i+1], x[i]+dx))

S = lambda j: integ2.subs(i,j)
```

In [33]:

```
display(Markdown("$\Large P(X) = %s$"%latex(P(X))))

display(Markdown("$s_i \eqsim \int\limits^{x_{i+1}}_{x_i} P(x) dx = %s$"%latex(integ 1)))

display(Markdown("$\Large s_i \eqsim \int\limits^{x_{i}+dx}_{x_i} P(x) dx = %s$"%late x(integ2)))

display(Markdown("$S \eqsim \large %s$"%latex(simplify(sum([S(j) for j in range(1,16, 1)])))))
```

Out[33]:

$$P(X) = rac{(X - x_{i+1})f_i}{-x_{i+1} + x_i} + rac{(X - x_i)f_{i+1}}{x_{i+1} - x_i}$$

Out[33]:

$$s_i pprox \int\limits_{x_i}^{x_{i+1}} P(x) dx = rac{f_{i+1} x_{i+1}}{2} - rac{f_{i+1} x_i}{2} + rac{f_i x_{i+1}}{2} - rac{f_i x_i}{2}$$

Out[33]:

$$s_i \eqsim \int\limits_{x_i}^{x_i+dx} P(x) dx = rac{dx(f_{i+1}+f_i)}{2}$$

Out[33]:

$$S pprox rac{dx(2f_{10} + 2f_{11} + 2f_{12} + 2f_{13} + 2f_{14} + 2f_{15} + f_{16} + f_{1} + 2f_{2} + 2f_{3} + 2f_{4} + 2f_{5} + 2f_{6} + 2f_{7} + 2f_{8} + 2f_{9})}{2}$$

In [34]:

```
def trapez_integral(xi=0., xs=10., nn=10.):
    dx = abs(xs-xi)/nn
    i = 1.
    toplam = 0.
    print "%5s %5s"%("x", "f(x)")
    while i<nn:</pre>
        x = xi + i*dx
        i = i + 1
        toplam = toplam + f(x)
        #print "%5s %5s"%(x, f(x))
    toplam = (toplam + (f(xi)+f(xs))/2.)*dx
    return toplam
def yamuk(x1,x2,y1,y2):
    return plt.fill([x1, x1, x2, x2], [0, y1, y2, 0])
def trapez_grafik(xi=0., xs=10., nn=10.):
    dx = abs(xs-xi)/nn
    # yamuklar için gerekli bilgiler
    xl = [xi+i*dx for i in range(int(nn+1))]
    fl = [f(x) \text{ for } x \text{ in } xl]
    # asıl fonksiyon için gerekli bilgiler
    xlf = [xi+i*dx/10. for i in range(int(10*nn+1))]
    flf = [f(x) for x in xlf]
    # trapez için gerekli yamukları çiziyor
    for i, x in enumerate(x1[:-1]):
        yamuk(xl[i], xl[i+1], fl[i], fl[i+1])
    # asıl fonksiyonu çiziyor
    plt.plot(xlf, flf, "k-", lw="2")
    plt.show()
```

In [35]:

```
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return x

xi, xs, nn = 0., 10., 10.

toplam = trapez_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
trapez_grafik(xi, xs, nn)
```

x f(x) f(x)'in 0.0 ile 10.0 aralığındaki integrali = 50.0

Out[35]:

In [36]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return exp(x)

xi, xs, nn = 0., 4., 5.

toplam = trapez_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
trapez_grafik(xi, xs, nn)
```

x f(x) f(x)'in 0.0 ile 4.0 aralığındaki integrali = 56.4266839578

Out[36]:

In [37]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return sin(x)

xi, xs, nn = 0., 2*pi, 6.

toplam = trapez_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
trapez_grafik(xi, xs, nn)
```

x f(x) f(x)'in 0.0 ile 6.28318530718 aralığındaki integrali = -1.28244712915e-16 Out[37]:

SIMPSON Yöntemi

3 noktalı Simpson

Aşağıda verilen kod 3 nokta içeren Simpson integral yönteminin elde edilişini gösterir.

In [38]:

```
from sympy import *
from IPython.display import Markdown, display
init_printing()
X, i, dx = symbols('X, i, dx')
x = IndexedBase('x')
f = IndexedBase('f')
def a(X):
    return (X-x[i])*(X-x[i+1])/((x[i-1]-x[i])*(x[i-1]-x[i+1]))
def b(X):
    return (X-x[i-1])*(X-x[i+1])/((x[i]-x[i-1])*(x[i]-x[i+1]))
def c(X):
    return (X-x[i-1])*(X-x[i])/((x[i+1]-x[i-1])*(x[i+1]-x[i]))
P = lambda X: a(X)*f[i-1] + b(X)*f[i] + c(X)*f[i+1]
integ1 = simplify(integrate(P(X),(X, x[i-1], x[i+1])))
integ2 = simplify(integ1.subs(x[i-1], x[i]-dx).subs(x[i+1], x[i]+dx))
S = lambda j: integ2.subs(i,j)
```

In [39]:

```
display(Markdown("$\Large P(X) = %s$"%latex(P(X))))

display(Markdown("$s_i \eqsim \int\limits^{x_{i+1}}_{x_{i-1}} P(x) dx = %s$"%latex(inte g1)))

display(Markdown("$\Large s_i \eqsim \int\limits^{x_{i}+dx}_{x_{i}-dx} P(x) dx = %s$"%latex(integ2)))

display(Markdown("$S \eqsim \large %s$"%latex(simplify(sum([S(j) for j in range(1,16,2)])))))
```

Out[39]:

$$P(X) = rac{(X - x_{i+1})(X - x_{i-1})f_i}{(-x_{i+1} + x_i)(-x_{i-1} + x_i)} + rac{(X - x_{i+1})(X - x_i)f_{i-1}}{(-x_{i+1} + x_{i-1})(x_{i-1} - x_i)} + rac{(X - x_{i-1})f_i}{(x_{i+1} - x_i)}$$

Out[39]:

$$s_i pprox \int\limits_{x_{i-1}}^{x_{i+1}} P(x) dx \ 2f_{i+1}x_{i+1}^2 x_{i-1} - 2f_{i+1}x_{i+1}^2 x_i - f_{i+1}x_{i+1}x_{i-1}^2 - 2f_{i+1}x_{i+1}x_{i-1}x_i + 3f_{i+1}x_{i+1}x_i^2 - f_{i+1}x_{i-1}^3 + 4f_{i+1}x_{i-1}^2 x_i - 3f_{i+1}x_{i-1}x_i^2 + 2f_{i+1}x_{i-1}^2 x_i - 3f_{i-1}x_{i-1}x_i^2 - f_{i+1}x_{i+1}^3 x_{i-1} - 3f_{i+1}x_{i-1}x_i^2 + 2f_{i+1}x_{i-1}^3 x_i - 3f_{i-1}x_{i-1}x_i^2 - f_{i+1}x_{i+1}^3 x_{i-1} - 3f_{i+1}x_{i-1}x_i^2 + 2f_{i+1}x_{i-1}^3 x_i - 3f_{i-1}x_{i-1}x_i^2 - f_{i+1}x_{i+1}^3 x_{i-1} - 3f_{i+1}x_{i-1} - 3f_{i+1$$

Out[39]:

$$s_i pprox \int\limits_{x_i-dx}^{x_i+dx} P(x) dx = rac{dx(f_{i+1}+f_{i-1}+4f_i)}{3}$$

Out[39]:

$$S pprox rac{dx(f_0 + 2f_{10} + 4f_{11} + 2f_{12} + 4f_{13} + 2f_{14} + 4f_{15} + f_{16} + 4f_1 + 2f_2 + 4f_3 + 2f_4 + 4f_5 + 2f_6 + 4f_7 + 2f_8 +$$

4 noktalı Simpson

Aşağıda verilen kod 4 nokta içeren Simpson integral yönteminin elde edilişini gösterir.

In [40]:

```
from sympy import *
from IPython.display import Markdown, display
init_printing()
X, i, dx = symbols('X, i, dx')
x = IndexedBase('x')
f = IndexedBase('f')
def a(X):
              return (X-x[i])*(X-x[i+1])*(X-x[i+2])/((x[i-1]-x[i])*(x[i-1]-x[i+1])*(x[i-1]-x[i+2])
]))
def b(X):
              return (X-x[i-1])*(X-x[i+1])*(X-x[i+2])/((x[i]-x[i-1])*(x[i]-x[i+1])*(x[i]-x[i+2]))
def c(X):
              return (X-x[i-1])*(X-x[i])*(X-x[i+2])/((x[i+1]-x[i-1])*(x[i+1]-x[i])*(x[i+1]-x[i+2])
]))
def d(X):
              return (X-x[i-1])*(X-x[i])*(X-x[i+1])/((x[i+2]-x[i-1])*(x[i+2]-x[i])*(x[i+2]-x[i+1])
]))
P = lambda X: a(X)*f[i-1] + b(X)*f[i] + c(X)*f[i+1] + d(X)*f[i+2]
integ1 = simplify(integrate(P(X),(X, x[i-1], x[i+2])))
integ2 = simplify(integ1.subs(x[i-1], x[i]-dx).subs(x[i+1], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]+dx).subs(x[i+2], x[i]
2*dx))
S = lambda j: integ2.subs(i,j)
```

In [41]:

```
display(Markdown("$\Large P(X) = %s$"%latex(P(X))))
display(Markdown("$s_i \eqsim \int\limits^{x_{i+2}}_{x_{i-1}} P(x) dx = %s$"%latex(inte g1)))
display(Markdown("$\Large s_i \eqsim \int\limits^{x_{i}+2dx}_{x_{i}-dx} P(x) dx = %s$"%latex(integ2)))
display(Markdown("$S \eqsim \large %s$"%latex(simplify(sum([S(j) for j in range(1,16,3)])))))
```

Out[41]:

$$P(X) = rac{(X - x_{i+1})(X - x_{i+2})(X - x_{i-1})f_i}{(-x_{i+1} + x_i)(-x_{i+2} + x_i)(-x_{i-1} + x_i)} + rac{(X - x_{i+1})(X - x_{i+2})(X - x_{i+2})(X - x_{i+1})(-x_{i+2} + x_{i-1})}{(X - x_{i+2})(X - x_{i-1})(X - x_i)f_{i+1}} + rac{(X - x_{i+2})(X - x_{i-1})(X - x_i)f_{i+1}}{(x_{i+1} - x_{i+2})(x_{i+1} - x_{i-1})(x_{i+1} - x_i)}$$

Out[41]:

$$s_i pprox \int\limits_{x_{i+1}}^{x_{i+2}} P(x) dx =$$

 $f_{i+1}x_{i+2}^5x_{i-1} - f_{i+1}x_{i+2}^5x_{i} - 2f_{i+1}x_{i+2}^4x_{i-1}^2 - f_{i+1}x_{i+2}^4x_{i-1}x_{i} + 3f_{i+1}x_{i+2}^4x_{i}^2 + 8f_{i+1}x_{i+2}^3x_{i-1}^2x_{i} - 6f_{i+1}x_{i+2}^3x_{i-1}x_{i}^2 - 2f_{i+1}x_{i+2}x_{i-1}x_{i}^2 + 3f_{i+1}x_{i-1}^5x_{i} - 3f_{i+1}x_{i-1}^4x_{i}^2 + 2f_{i+1}x_{i-1}^3x_{i}^3 - 4f_{i+2}x_{i+1}^3x_{i+2}^2x_{i-1} + 2f_{i+2}x_{i+1}^3x_{i-1}^3x_{i}^3 - 8f_{i+2}x_{i+1}^3x_{i-1}^2x_{i}^2 - 6f_{i+1}x_{i+2}x_{i-1}^2x_{i}^2 + 3f_{i+2}x_{i+1}^2x_{i+2}^3x_{i-1} - 3f_{i+2}x_{i+1}^2x_{i+2}^3x_{i}^2 + 3f_{i+2}x_{i+1}^2x_{i+2}^2x_{i-1}^2 - 3f_{i+2}x_{i+1}^2x_{i+2}^3x_{i+2}^2x_{i+1}^2x_{i+2}^2x_{i+2}^2x_{i+2}^2x_{i+2}^2x_{i-1}^2 - 3f_{i+2}x_{i+1}^2x_{i+2}^$

Out[41]:

$$s_i pprox \int \limits_{x_i - dx}^{x_i + 2dx} P(x) dx = rac{3dx(3f_{i+1} + f_{i+2} + f_{i-1} + 3f_i)}{8}$$

Out[41]:

$$S pprox rac{3 dx (f_0 + 3 f_{10} + 3 f_{11} + 2 f_{12} + 3 f_{13} + 3 f_{14} + f_{15} + 3 f_1 + 3 f_2 + 2 f_3 + 3 f_4 + 3 f_5 + 2 f_6 + 3 f_7 + 3 f_8 + 2 f_9)}{8}$$

```
def simpson_integral(xi=0., xs=10., nn=10.):
    if nn%2==1:
        nn += 1
        print "nn çift sayıya çevirildi. yeni değeri %s'dir."%nn
    dx = abs(xs-xi)/nn
    # tek indisliler
    i = 1.
    toplam_tek = 0.
    #print "%5s %5s"%("x", "f(x)")
    while i<=nn-1:
        x = xi + i*dx
        i = i + 2
        toplam_tek += f(x)
        #print "%5s %5s"%(x, f(x))
    # cift indisliler
    i = 2.
    toplam_cift = 0.
    #print "%5s %5s"%("x", "f(x)")
    while i<=nn-2:</pre>
        x = xi + i*dx
        i = i + 2
        toplam_cift += f(x)
        #print "%5s %5s"%(x, f(x))
    toplam = (4*toplam_tek + 2*toplam_cift + f(xi) + f(xs))*dx/3.
    return toplam
# f(x)'i temsil eden polinom fonksiyon
def phi(x, xi, dx):
    phi1 = (x-xi)*(x-xi-dx)*f(xi-dx)/2.
    phi2 = -(x-xi+dx)*(x-xi-dx)*f(xi)
    phi3 = (x-xi+dx)*(x-xi)*f(xi+dx)/2.
    phiT = (phi1 + phi2 + phi3)/dx**2.
    return phiT
def simpson_grafik(xi=0., xs=10., nn=10.):
    if nn%2==1:
        nn += 1
        print "nn çift sayıya çevirildi. yeni değeri %s'dir. "%nn
    dx = abs(xs-xi)/nn
    # polinom için gerekli x ve f değerleri
    xl = [xi + i*dx for i in range(int(nn))]
    fl = [f(x) \text{ for } x \text{ in } xl]
    # polinom çizimi
    for sx in x1[1::2]:
        xlphi = [sx-dx+i*dx/10. for i in range(21)]
        flphi = [phi(x, sx, dx/10.) for x in xlphi]
        plt.fill_between(xlphi[:11], flphi[:11])
        plt.fill_between(xlphi[10:21], flphi[10:21])
    # fonksiyon için gerekli x ve f değerleri
    xlf = [xi + i*dx/5. for i in range(int(5*nn+1))]
    flf = [f(x) for x in xlf]
    # fonksiyon çizimi
    plt.plot(xlf, flf, "k-", lw="2")
    plt.show()
```

In [43]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return x

xi, xs, nn = 0., 10., 10.
toplam = simpson_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
simpson_grafik(xi, xs, nn)
```

f(x)'in 0.0 ile 10.0 aralığındaki integrali = 50.0

Out[43]:

In [44]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return sin(x)

xi, xs, nn = 0., 2*pi, 6.
toplam = simpson_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
simpson_grafik(xi, xs, nn)
```

f(x)'in 0.0 ile 6.28318530718 aralığındaki integrali = -3.1802104181e-16

Out[44]:

TRAPEZ ve SİMPSON Karşılaştırması

In [45]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return exp(x)

xi, xs, nn = 0., 1., 10.
toplam = simpson_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
simpson_grafik(xi, xs, nn)
int_simpson = toplam
```

f(x)'in 0.0 ile 1.0 aralığındaki integrali = 1.71828278192

Out[45]:

In [46]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(x):
    return exp(x)

xi, xs, nn = 0., 1., 10.
toplam = trapez_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, toplam)
trapez_grafik(xi, xs, nn)
int_trapez = toplam
```

x f(x) f(x)'in 0.0 ile 1.0 aralığındaki integrali = 1.71971349139

Out[46]:

In [47]:

```
int_tam = exp(1.) - 1.
print "trapez =", int_trapez
print "simpson =", int_simpson
print "tam =", int_tam
print "trapez - tam =", int_trapez - int_tam
print "simpson - tam =", int_simpson - int_tam
```

TEKİL İNTEGRALLER

$$\int_0^\infty rac{e^{-x}}{(1+e^x)} dx pprox \int_0^{20} rac{e^{-x}}{(1+e^x)} dx$$

İntegrand (integralin içi) çok hızlı sıfıra yaklaşıtığı için sonsuz yerine uygun bir üst sınır alabiliriz.

In [48]:

```
from math import *

def f(x):
    return exp(-x)/(1+exp(x))

print simpson_integral(xi=0., xs=10., nn=50.)
simpson_grafik(xi=0., xs=10., nn=50.)
```

0.306862787035

Out[48]:

$$u=e^{-x}$$
 değişken dönüşümü yapılırsa $\int_0^1 rac{u}{(u+1)} dx$

In [49]:

```
from math import *

def f(u):
    return u/(u+1.)

print simpson_integral(xi=0., xs=1., nn=50.)
simpson_grafik(xi=0., xs=1., nn=50.)
```

0.306852814445

Out[49]:

In [50]:

```
import numpy as np

ul = np.linspace(0,1, 10)

print "f(u) fonksiyonunun davranışı"
for u in ul:
    print "%.5f %5f"%(u, f(u))
```

```
f(u) fonksiyonunun davranışı

0.00000 0.000000

0.11111 0.100000

0.22222 0.181818

0.33333 0.250000

0.44444 0.307692

0.55556 0.357143

0.66667 0.400000

0.77778 0.437500

0.88889 0.470588

1.00000 0.500000
```

$$\int_0^1 rac{\cos(x)}{\sqrt{x}} dx pprox \int_arepsilon^1 rac{\cos(x)}{\sqrt{x}} dx$$
 ; $arepsilon o 0$

arepsilon'u sıfıra yakın bir sayı seçerek tekillikten kurtulmaya çalışabiliriz. Fakat bu durumda sayısal hesap güvenilmez hale gelebilir. Sadece arepsilon'u küçültmek yeterli olmayabilir. Bu Δx 'i de (integral alma adım miktarı) küçültmek gerekebilir.

In [51]:

```
from math import *

def f(x):
    return cos(x)/sqrt(x)

print simpson_integral(xi=0.0001, xs=1., nn=50.)
simpson_grafik(xi=0.0001, xs=1., nn=50.)
```

2.29663518785

Out[51]:

Hem arepsilon hem de Δx çok küçük hale getirilirse...

In [52]:

```
from math import *

def f(x):
    return cos(x)/sqrt(x)

print simpson_integral(xi=0.0000001, xs=1., nn=500000.)
simpson_grafik(xi=0.0000001, xs=1., nn=50.)
```

1.80927726651

Out[52]:

$$x=u^2$$
 dönüşümü ile $\int_0^1 rac{\cos(x)}{\sqrt{x}} dx = \int_0^1 2 \cos(u^2) du$ olur.

Bu şekilde tekillik ortadan kalkmış olur.

In [53]:

```
from math import *

def f(u):
    return 2*cos(u**2)

print simpson_integral(xi=0., xs=1., nn=50.)
simpson_grafik(xi=0., xs=1., nn=50.)
```

1.80904847623

Out[53]:

Fresnel İntegralleri

In [54]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(d):
    return cos(pi*d**2./2.)

xi, xs, nn = 0., 1., 100.
Cd = simpson_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, Cd)
simpson_grafik(xi, xs, nn)
```

f(x)'in 0.0 ile 1.0 aralığındaki integrali = 0.779893402099

Out[54]:

In [55]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline

def f(d):
    return sin(pi*d**2./2.)

xi, xs, nn = 0., 1., 100.
Sd = simpson_integral(xi, xs, nn)
print "f(x)'in %s ile %s araliğindaki integrali = %s"%(xi, xs, Sd)
simpson_grafik(xi, xs, nn)
```

f(x)'in 0.0 ile 1.0 aralığındaki integrali = 0.438259145745

Out[55]:

In [56]:

```
print ((Cd+.5)**2. + (Sd+.5)**2.)/2.
```

1.25922867266

In [57]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline
def f(d):
    return cos(pi*d**2./2.)
xi, nn = 0., 100.
di = -1.
ds = 4.
dd = abs(ds-di)/nn
d = []
Cd = []
for i in range(int(nn)+1):
    d += [di + i*dd]
    Cd += [simpson_integral(xi, d[i], nn)]
plt.plot(d, Cd)
plt.show()
```

Out[57]:

In [58]:

```
from math import *
import matplotlib.pyplot as plt
%matplotlib inline
def f(d):
    return sin(pi*d**2./2.)
xi, nn = 0., 100.
di = -1.
ds = 4.
dd = abs(ds-di)/nn
d = []
Sd = []
for i in range(int(nn)+1):
    d += [di + i*dd]
    Sd += [simpson_integral(xi, d[i], nn)]
plt.plot(d, Sd)
plt.show()
```

Out[58]:

In [59]:

```
Id = []
for i in range(int(nn)+1):
        Id += [((Cd[i] + 0.5)**2. + (Sd[i] + 0.5)**2.)/2.]

plt.plot(d, Id)
plt.xlabel('d')
plt.ylabel('I/I0')
plt.show()
```

Out[59]:

In [0]: