Welcome to BMI-330

Translational Bioinformatics

Li Liu, MD. MS. (BMI-330)

Get to Know Each Other

Introduce yourself

- Name, major, year of study
- Where are you joining us from?
- What is in your Zoom background? (real or virtual)

Play a game

- 3 students in a group
- Tell a short story with random words

Share the story with the class

Bioinformatics

Why Cellular & Molecular Information?

"The key to every biological problem must finally be sought in the cell."

- E. B. Wilson

Motivating Questions in Molecular Biology

Translational Bioinformatics (TBI)

Bench

Basic Bioinformatics Research

Genomic Medicine

Pharmacogenomics

Precision Medicine

Bedside

Improved Human Health

Bioinformatics + Genomic Medicine

Miller's syndrome

~8,000 mutations in ~4,600 genes

~650 mutations

10 mutations in one gene (DHODH)

PMID: 19915526

Bioinformatics + Pharmacogenomics

Drug target identification

Drug Design

PMID: 17366700 PMID: 15055986

Bioinformatics + Precision Medicine

Dr. Watson

- □ Genome sequenced in 2007
- Hypertension, treated with a β-blocker that makes him inappropriately sleepy.

Homozygous variants

CYP2D6: involved with metabolism of 25% of commonly prescribed drugs, including β-blockers. Carriers of homozygous variants are poor metabolizers.

The health provider reduced the dosage of Dr. Watson's medicine to avoid unwanted side effects and keep his blood pressure under good control.

PMID: 18421352

Interdisciplinary

Big Data

Scientific Approaches

Attention!

▶ Bioinformatics is not only about human.

Attention!

- ▶ Bioinformatics is not only about Medicine.
 - Agriculture

Homeland security

Environment

Outer space

Class Objectives

- Identify and describe the major areas of TBI
- Critically appraise existing applications and methods in these areas

- Hands-on practice to analyze example datasets
- Describe likely future applications and probable growth areas

Prerequisites

- Biomedical Knowledge
- Molecular Biology / Genetics
- Programming skill (optional)
 - Which language to learn?
- Operating system
 - LINUX (second half of the semester)
 - ASU HPC Cluster

Textbook

Required

Recommended

ISBN 978-0199651566

http://www.ncbi.nlm.nih.gov/books/NBK21054/

Areas in Bioinformatics & Example Topics

- Sequence Analysis > Structure Analysis
- **Functional Analysis**

BIOLOGICAL DATABASE

Topics & Schedules

Date	Topic	Homework	Chapter
Jan. 12	Course Overview		Ch. 1
Jan. 14	Primer on Genetics and Genomics		NCBI eBook
Jan. 19 – Jan. 26	Biological Databases	HW-1	Ch. 3 & 4
Jan. 28 – Feb. 9	Sequence Alignment, Motifs & Domains	HW-2, 3	Ch. 5
Feb. 11	Phylogenetic Analysis		Ch. 5
Feb. 16	Gene Calling	HW-4	Ch. 2
Feb. 18	Structure Analysis		Ch. 6
Feb. 23	Functional Analysis of Genetic Variants		
Feb. 25	Case Study – Ebola Virus Genome		
Mar. 2	Study Time		
Mar. 4	Midterm Exam		
Mar. 9 – Mar. 16	Genomics: Technologies and Analysis		Ch. 2
Mar. 18	Linux & ASU High-performance Computing		
Mar. 23 – Mar. 25	Computer Lab – Analyze NGS data		
Mar. 30	Disease Association Analysis	HW-5	Ch. 2
Apr. 1 – Apr. 6	Transcriptomics: Technologies and Analysis	HW-6	Ch. 9
Apr. 8	Proteomics, Metabolomics & Other Omics		Ch. 9
Apr. 13	Pathway and Network Analysis		Ch. 8
Apr. 15	Project Final Presentation		
Apr. 20	Project Final Presentation		
Apr. 22	Study Time		
Apr. 27	Final Exam (9:50 - 11:40 AM)		

Class Activities

Before class:

- Read assigned materials: book chapters and papers
- Install necessary computational packages
- Download example datasets

During class:

- After class (homework)
 - Unfinished computational lab exercises
 - Submit results on Blackboard.

Term Project – Disease Genes

- Bioinformatics analysis of coronaviruses
- * Team
 - 4 persons in each team
 - Decide by March 9th (the first class after midterm)
- Oral presentation

Grading

- Homework: 20%
 - Reading: textbook chapters
 - Written assignments:
 - Usually due in one week after assignment
 - Submit through the Blackboard.
 - □ Late submission: 10% off for each late day, no assignment accepted after answers are posted.
- Class discussion participation: 10%
- Midterm Exam: 25%
- Final Exam: 25%
- Final project: 20%
 - ▶ 10% from presentation
 - 10% from peer evaluations

Academic Integrity

- University Policies
 (http://provost.asu.edu/academicintegrity/students).
- All assignments and projects submitted must be the original work of the student(s) submitting it.
 - □ cite references.

Cite References

Examples:

- Books:
 - □ Lesk AM (2014) Introduction to Bioinformatics. 4th edition. *Oxford University Press, UK*.
- Journal Articles:
 - □ Venter JC, et al. (2010) The sequence of the human genome. Science 291(5507):1304-1351.
- Websites:
 - □ Alzheimer's Foundation of America (2016) Alzheimer's statistics www.alzfdn.org/AboutAlzheimers/statistics.html

Office Hours

Time:

2:00PM – 3:00PM (Tues. and Thur.)

Phone:

(480)727-9813

Email:

<u>liliu@asu.edu</u>

hchen294@asu.edu (TA)

Office:

BDB220B (Biodesign Institute Bldg. B 220B – Tempe)

Homework

- Reading
 - ▶ Chapter 1: pages 1 18
 - ▶ Chapter 2: pages 59 64, 88 95

Online resources on the website of the textbook:

http://global.oup.com/uk/orc/biosciences/bioinf/leskbioinf4e/

QUESTIONS?