TD 09 – Méthode probabiliste

Exercice 1. Test

Deux cent étudiants participent à un concours de maths. Le concours comporte 6 questions. Pour chaque question, au moins 120 étudiants ont réussi à répondre correctement à la question. Montrer qu'il existe deux étudiants qui avaient tout bon à eux deux (i.e. tels que pour chaque question, au moins un des étudiants a bien répondu).

Exercice 2. Intervalle

Soit *S* une union d'intervalles inclus dans le segment [0,1]. On suppose que la longueur totale de *S* est strictement supérieure à 1/2. Montrer qu'il existe deux points $x,y \in S$ tels que |x-y| = 0.1.

Exercice 3. Polynome

Soit $P = z^2 + az + b$ un polynôme de degré 2, avec $a, b \in \mathbb{C}$. Supposons que pour tout $z \in \mathbb{C}$ tel que |z| = 1, on ait |P(z)| = 1. Montrer que a = b = 0. Indice : on pourra considérer $\mathbf{E}\left[|P(Z)|^2\right]$, où Z est choisi uniformément sur le cercle unité.

Exercice 4. Lemme local de Lovasz

Soit k > 6. On se donne une famille $(A_i)_{i \in I}$ de sous-ensembles d'un ensemble fini F telle que

- 1. Pour tout $i \in I$, $card(A_i) = k$,
- 2. Pour tout $x \in F$, card $\{i \in I : x \in A_i\} \le \frac{2^k}{8k}$

En utilisant le lemme local de Lovász, montrer qu'il existe une partition $F = F_1 \cup F_2$ telle que

$$\forall i \in I$$
, $A_i \cap F_1 \neq \emptyset$ et $A_i \cap F_2 \neq \emptyset$.

Exercice 5. Permutation

On dit qu'une permutation $\{x_1, ..., x_{2n}\}$ de l'ensemble $\{1, ..., 2n\}$ vérifie la propriété P si pour un moins un indice $i \in \{1, ..., 2n-1\}$, on a $|x_i - x_{i+1}| = n$. Montrer que pour tout n, il existe strictement plus de permutation avec la propriété P que sans. *Indice : on pourra utiliser la formule de Poincaré (sans partir pour autant dans des calculs trop compliqués)*.

Exercice 6. Tournaments

A Tournament on a set V of n players is an orientation of the edges of the complete graph K_n (i.e., for $x,y \in V$ either $(x,y) \in E$ or $(y,x) \in E$). Prove that for every positive integer n, there exists a tournament on n vertices with at least $n!2^{-(n-1)}$ Hamiltonian paths (an Hamiltonian path is a path going through each vertex exactly once).