On the use of polynomial interpolation to improve the performance of dynamic programming algorithms with discrete distance metrics

Evan Senter

2015

Outline

Motivation

Computational RNA background

Problem definition

Optimization using Fast Fourier Transform

Results

Goal of Presentation

Structure of talk

- Provide motivation for synthetic RNA design
- Overview of thermodynamic-based computational analysis
- Describe algorithm to generate a discretized, coarse-grained energy landscape
- Show how polynomial interpolation improves asymptotics
- Highlight practical applications of energy landscapes

Why RNA?

- ► The central dogma of DNA is a lie
- RNA has been shown to regulate many aspects of the cellular machinery
- ► What was once considered 'junk DNA' is now appreciated as non-coding RNA 'ncRNA'

Why RNA?

- RNA is an enzymatically active molecule (hydroxyl group on 2' carbon is highly reactive)
- Secondary structure is more mathematically tractable than proteins
- Interesting applications of cis-regulation via motifs in the 5' untranslated region of coding RNAs

Outline

Motivation

Computational RNA background

Problem definition

Optimization using Fast Fourier Transform

Results

RNA Representation

Sequence

An RNA sequence is a string $\mathbf{s} = s_1, \dots, s_n$, where $s_i \in \{A, U, G, C\}$

Structure

An secondary structure $\mathcal S$ compatible with $\mathbf s$ is a collection of base pair tuples such (i,j), such that:

- $ightharpoonup (\mathbf{s}_i, \mathbf{s}_j) \in \mathbb{B}$
- ▶ $1 \le i \le i + \theta < j \le n$ where $\theta \ge 0$
- ► Given (i, j), (x, y) from $S, i = x \iff j = y$
- ► Given (i, j), (x, y) from $S, i < x < j \iff i < y < j$

$$\mathbb{B} = \{(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)\}$$

Structural Motifs

Structural Motifs

- 1. Exterior loop
- 2. Stack
- 3. Interior loop
- 4. Multiloop
- 5. Bulge
- 6. Hairpin

RNA Notation

Yeast tRNA^{phe} dot-bracket notation

```
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA (((((((.....))))).((((.....)))))).....
```

Yeast tRNA^{phe} structural diagram

Outline

Motivation

Computational RNA background

Problem definition

Optimization using Fast Fourier Transform

Results

Problem Definition

Desire

Given an input sequence s and two input structures A, B, we would like to compute all possible structures S compatible with s, and bin them into discrete sets based on their *distance* to A and B

Issue

Consider $\mathbb S$ to be the set of all structures compatible with $\mathbf s$. It has been shown that $|\mathbb S|$ grows exponentially with sequence length n

Refinement

Rather than store $\mathbb S$ at any point in time, we will use dynamic programming to compute the thermodynamic properties of these bins

Concrete Example

Input

Structures

Output

$$GGAAACC = s$$

$$\dots = A$$

$$(\dots) = B$$

```
..... 0.00 \frac{\text{kcal}}{\text{mol}}, [0, 1]
.(...) 4.10\frac{\text{kcal}}{\text{mol}}, [1, 2]
(....) 4.20\frac{\text{kcal}}{\text{mol}}, [1, 2]
((...)) 2.10 \frac{kcal}{mol}, [2, 1]
```

Concrete Example

Energy landscape between two metastable structures of *L.collosoma* spliced leader RNA

Base Pair Distance

Symmetric distance

$$d_{\mathsf{BP}}(\mathcal{S},\,\mathcal{T}) = |\mathcal{S} \cup \mathcal{T}| - |\mathcal{S} \cap \mathcal{T}|$$

Distance between two structures

$$\begin{split} d_{\mathsf{BP}}(\mathcal{S}_{[i,j]},\,\mathcal{T}_{[i,j]}) &= |\{(x,y): i \leq x < y \leq j,\\ (x,y) &\in \mathcal{S} - \mathcal{T} \text{ or } (x,y) \in \mathcal{T} - \mathcal{S}\}| = k \end{split}$$

Parameterized Partition Function, 1D

${f Z}$ binned by k

Recursions to compute $\mathbf{Z}_{i,j}^k$

Structural decomposition from one target

$$\mathbf{Z}_{i,j}^{k} = \mathbf{Z}_{i,j-1}^{k-b_0} + \sum_{\substack{s_r s_j \in \mathbb{B}, \\ i < r < j}} \left(e^{\frac{-E_0(r,j)}{RT}} \sum_{w+w'=k-b(r)} \mathbf{Z}_{i,r-1}^{w} \mathbf{Z}_{r+1,j-1}^{w'} \right)$$

Parameterized Partition Function, 2D

${f Z}$ binned by x,y pairs

Recursions to compute $\mathbf{Z}_{i,j}^{x,y}$

Structural decomposition from two targets

$$\begin{split} \mathbf{Z}_{i,j}^{x,y} &= \mathbf{Z}_{i,j-1}^{x-\omega_0,y-\beta_0} + \\ &\sum_{\substack{s_k s_j \in \mathbb{B}, \\ i < k < j}} \left(e^{\frac{-E_0(k,j)}{RT}} \sum_{u+u' = x - \omega(k)} \sum_{v+v' = y - \beta(k)} \mathbf{Z}_{i,k-1}^{u,v} \cdot \mathbf{Z}_{k+1,j-1}^{u',v'} \right) \end{split}$$

Partition function of a variable x

Only compute $\mathcal{Z}_{i,j}(x)$ x instead of $\mathbf{Z}_{i,j}^{x,y}$

$$\mathcal{Z}_{i,j}(x) = \mathcal{Z}_{i,j-1}(x) \cdot x^{\omega_0 n + \beta_0} + \sum_{\substack{s_k s_j \in \mathbb{B}, \\ i \leq k < j}} \left(e^{\frac{-E_0(k,j)}{RT}} \cdot \mathcal{Z}_{i,k-1}(x) \cdot \mathcal{Z}_{k+1,j-1}(x) \cdot x^{\omega(k)n + \beta(k)} \right)$$

Outline

Motivation

Computational RNA background

Problem definition

Optimization using Fast Fourier Transform

Results

FFT background

Complex kth roots of unity

$$\omega_0 = \exp(\frac{0 \cdot 2\pi i}{n^2}), \omega_1 = \exp(\frac{1 \cdot 2\pi i}{n^2}), \dots, \omega_{n^2 - 1} = \exp(\frac{(n^2 - 1) \cdot 2\pi i}{n^2})$$

Evaluate $\mathcal{Z}_{i,j}(x)$ x for all n^2 roots of unity

$$y_0 = \mathcal{Z}(\omega_0), \dots, y_{n^2-1} = \mathcal{Z}(\omega_{n^2-1})$$

Represent results of evaluation in column form

$$\mathbf{Y} = (y_0, \dots, y_{n^2-1})^{\mathsf{T}}$$

Vandermonde matrix

Matrix construction

$$V_{n} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1\\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1}\\ 1 & \omega^{2} & \omega^{4} & \dots & \omega^{2(n-1)}\\ 1 & \omega^{3} & \omega^{6} & \dots & \omega^{3(n-1)}\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix}$$

Definition

Define the FFT to be the $O(n\log n)$ algorithm to compute the Discrete Fourier Transform (DFT), defined as the matrix product $\mathbf{Y} = V_n \mathbf{A}$

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n^2-1} \end{pmatrix} = V_n \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n^2-1} \end{pmatrix}$$

Since we defined $\mathbf{Y} = (y_0, \dots, y_{n-1})^T$, where:

$$y_0 = \mathcal{Z}(\omega_0), \dots, y_{n^2 - 1} = \mathcal{Z}(\omega n^2 - 1))$$

and $\omega_k=\exp(\frac{2\pi ki}{n^2})$, it follows that the coefficients $c_{rn+s}={\bf Z}_{1,n}^{rn+s}$ in the polynomial:

$$\mathcal{Z}(x) = c_0 + c_1 x + \dots + c_{n^2 - 1} x^{n^2 - 1}$$

can be computed using the Fast Fourier Transform, and:

$$c_{rn+s} = \sum_{\substack{\mathcal{S} \text{ such that} \\ d_{\mathrm{BP}}(\mathcal{S}, \mathcal{A}) = r, \, d_{\mathrm{BP}}(\mathcal{S}, \mathcal{B}) = s}} e^{\frac{-E(\mathcal{S})}{RT}}$$

Outline

Motivation

Computational RNA background

Problem definition

Optimization using Fast Fourier Transform

Results

Performance Characteristics

Sequence Length

Performance Characteristics

- Approach using FFT goes from $O(n^7)$ to $O(n^5)$
- We observe a real performance gain in line with 100x speedup
- ▶ Memory requirements drop from O(n⁴) to O(n²)
- More consistent performance characteristics

Questions?

Thanks for your time!