

Kourosh Davoudi kourosh@uoit.ca

Week 1: Introduction

CSCI 4150U: Data Mining

Welcome to Data Mining!

- What we learn this week:
 - Course Description
 - Structure
 - Goal
 - Content
 - Introduction to Data Mining
 - Data

Kourosh Davoudi

- Assistant Professor in Computer Science (Ontario Tech University)
- Postdoctoral Fellowship : (University of Waterloo)
- PhD: Computer Science (York University)
- Previous business partners:

Kourosh Davoudi

Area of interest:

How about you?

- How do you like your major?
- What is your favorite course?
- Which jobs in computer science are you interested in?
- What do you expect from this course?
- Which programming languages have you work with?

•

Course Structure

Final Lab Reports Quizzes Participation

Course Outcomes

- Understanding the Data Mining Basic Concepts
- Develop a Data Mining Pipeline

Course Content (Subject to Change)

- 1. Introduction to data mining
- 2. Data
- 3. Data Exploratory Analysis
- 4. Classification I (Basic Techniques)
- 5. Classification II (Alternative Techniques)
- 6. Clustering I (Basic Concepts and Techniques)
- 7. Clustering II (Advanced Concepts and Algorithms)
- 8. Anomaly Detection
- 9. Association Rule Mining

Evaluation Components

Component	Due Date	Weight
Class Activities and Participation		5 %
Quiz I	Feb 8, 2021 (class time)	15 %
Midterm Lab Report I	Feb 26, 2021, 11:59 PM	15 %
Quiz II	Mar 8, 2021 (class time)	15 %
Final Lab Report II	Apr 9, 2021, 11:59 PM	15 %
Final Exam	TBA by the university	35 %

Useful Textbooks

Introduction to Data Mining, 2'nd Edition Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar

Data Mining: Concepts and Techniques
Jiawei Han, Micheline Kamber and Jian Pei

Communication

Piazza

 Please note that questions about lectures/assignments/exams should be posted to the Piazza

Office Hours and Contacts

Course Instructor:

Dr. Kourosh Davoudi

- Email: kourosh@uoit.ca (For official matters. Email subject should be: 4050U)

- Office Location: UA 2015

- Office Hours: TBA or by appointment (online)

- **Phone:** (905) 721-8668 x 2779

- Webpage: http://dmlab.science.uoit.ca/hdavoudi/

We have great TAs:

Marzieh Najafabadi: Marzieh.AhmadiNajafabadi@ontariotechu.ca

Aref Divshali: <u>Aref.AbedjooyDivshali@ontariotechu.ca</u>

Teaching Philosophy

Instructor (facilitator)

Some suggestions/comments

- The lectures are fast or slow
- I am here only for a grade/requirement
- I feel that I need some background
- I need help due to pandemic issue
- I have some questions related to the labs

We are here and try our best to facilitate your learning process

Introduction to Data Mining

Outline and Learning Outcome

- Why data mining?
- What is data mining?
- Why not use classical data analysis?
- Know about origin of data mining
- Explain data mining tasks

Large-scale Data is Everywhere!

Social Networking: Twitter

Traffic Patterns

Cyber Security

Sensor Networks

E-Commerce

Computational Simulations

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Purchases at department/ grocery stores, e-commerce
 - Bank/Credit Card transactions

Tweets sent today

- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services
 - e.g. in Customer Relationship Management

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - telescopes scanning the skies
 - high-throughput biological data
 - scientific simulations
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

fMRI Data from Brain

Surface Temperature of Earth

Sky Survey Data

Gene Expression Data

What is Data Mining?

- Many Definitions
 - Non-trivial extraction of implicit, previously unknown and potentially useful information from data
 - Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

What is (not) Data Mining?

What is not Data Mining?

- Look up phone number in phone directory
- Query a Web search engine for information about "Amazon"

What is Data Mining?

- Certain names are more prevalent in certain US locations (O'Brien, O'Rourke, O'Reilly... in Boston area)
- Group together similar documents returned by search engine

Why not use classical data analysis?

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional techniques may be unsuitable due to data that is
 - Large-scale
 - High dimensional
 - Heterogeneous
 - Complex
 - Distributed

A key component of the emerging field of data science and data-driven discovery

Data Mining Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining Tasks ... Income range of applicant? < \$30K \$30-70K > \$70K Criminal record? Criminal record? (Years in present job? 1-5 (no bun) loan no ban ban (no ban loan Clustering Makes credit card payments? 125K 100K **I**pan (no loan) Single Divorced Married Divorced 220K Single Married 10 No Single 0 12 Yes Divorced 220K 13 No Single 0

Predictive Modeling: Classification

 Find a model for class attribute as a function of the values of other attributes

Class

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

...

...

Classification Example

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Clustering

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```


Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

Class Activity

Which tasks are data mining?

- A. Predicting the house price in a an area based on the features
- B. Finding companies producing a same product in an area
- C. Monitoring the heart rate of a patient for abnormalities
- Extracting the frequencies of a sound wave
- E. Predicting the outcomes of tossing a (fair) pair of dice

3 Things to do:

- 1. Register in piazza
- 2. Register in ThurningPoint (via Canvas)
- 3. Review the Syllabus

