Simple Linear Regression I

Announcements

What is regression analysis

Simple Linear Regression

Lecture 2

Simple Linear Regression I

Reading: Chapter 11

STAT 8020 Statistical Methods II August 23, 2019

Whitney Huang Clemson University

Agenda

Simple Linear Regression I

Announcements

What is regression

Simple Linear Regression

Announcements

What is regression analysis

Announcements

Announcements

What is regression analysis

- Syllabus and lecture notes are in CANVAS and my personal website (link: https://whitneyhuang83. github.io/stat8020_2019Fall.html)
- Academic Continuity Statement is added in the updated syllabus (link: https://whitneyhuang83.github.io/STAT8010_Syllabus_2019_Fall.pdf)
- Please talk to me if you would like to share your data set to be used for this class

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Announcements

Vhat is regression inalysis

Announcements

What is regression analysis

Simple Linear Regression

Simple linear regression

Scatterplot: Is Linear Trend Reasonable?

Simple Linear Regression I

Announcements

What is regression analysis

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

 In SLR we assume there is a linear relationship between X and Y:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- We will need to estimate β_0 (intercept) and β_1 (slope)
- Then we can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our uncertainty regarding the linear relationship

Announcements

analysis

Announcement

What is regression

In order to estimate β_0 and β_1 , we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $\operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

The regression line $\beta_0 + \beta_1 x$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_{1,LS} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

$$\bullet \ \hat{\beta}_{0,\mathrm{LS}} = \bar{Y} - \hat{\beta}_{1,\mathrm{LS}} \bar{X}$$

We also need to **estimate** σ^2

•
$$\hat{\sigma}_{\mathsf{LS}}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_{0,\mathsf{LS}} + \hat{\beta}_{1,\mathsf{LS}} X_i$

Announcements

What is regression analysis

Properties of Least Squares Estimates

- Simple Linear
- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_{1,LS}] = \beta_1; E[\hat{\beta}_{0,LS}] = \beta_0$
 - $E[\hat{\sigma}_{LS}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Simple Linear

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **3** Compute the estimate for σ

Announcements

What is regression analysis

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Announcements

What is regression analysis

Residuals

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{\beta}_{0,LS} + \hat{\beta}_{1,LS} X_i$$

- e_i is NOT the error term $\varepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $\operatorname{Var}[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Announcements

analysis

Announcomente

What is regression

Residual Analysis

Announcement

What is regression

Summary

Simple Linear Regression I

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
 Next time we will talk about
 - More on residual analysis
 - O Normal Error Regression Model and statistical inference for β_0 , β_1 , and σ^2
 - Prediction

Announcements

What is regression analysis