Physics 2250: Problem Set IX

Jeremy Favro

December 4, 2024

Problem 1. Determine both the DC impedance and the impedance at a frequency of f = 1 kHz of the circuits shown below.

Solution 1. Here $f = 1 \text{kHz} \implies \omega = 2000 \pi \text{rad s}^{-1}$

(a)

$$Z = \left(\frac{1}{R} + j\omega C\right)^{-1} + j\omega L$$

$$= \frac{R}{1 + j\omega CR} + j\omega L$$

$$= \frac{R + (j\omega L)(1 + j\omega CR)}{1 + j\omega CR}$$

$$= \frac{R(1 - j\omega CR) + (j\omega L)(1 + (\omega CR)^2)}{1 + (\omega CR)^2}$$

$$= \frac{R - j\omega CR^2 + j\omega L + j\omega L(\omega CR)^2}{1 + (\omega CR)^2}$$

$$= \frac{R}{1 + (\omega CR)^2} + \frac{-\omega CR^2 + \omega L + \omega L(\omega CR)^2}{1 + (\omega CR)^2}j$$

Which means that the DC impedance ($\omega=0$) is just R, and impedance with a frequency of 1kHz is $\approx 91.9997-25.1338j\Omega$

(b)

$$Z = \left(\frac{1}{R} + \frac{1}{j\omega L}\right)^{-1} + \frac{1}{j\omega C}$$

$$= \frac{j\omega LR}{R + j\omega L} + \frac{1}{j\omega C}$$

$$= \frac{j\omega LR^2 + (\omega L)^2 R}{R^2 + (\omega L)^2} - \frac{j}{\omega C}$$

$$= \frac{j\omega LR^2 (\omega C) + (\omega L)^2 R (\omega C)}{(\omega C) \left(R^2 + (\omega L)^2\right)} - \frac{j\left(R^2 + (\omega L)^2\right)}{(\omega C) \left(R^2 + (\omega L)^2\right)}$$

$$= \frac{j\omega LR^2 (\omega C) + (\omega L)^2 R (\omega C) - \left(R^2 + (\omega L)^2\right)j}{(\omega C) \left(R^2 + (\omega L)^2\right)}$$

$$= \frac{j\omega LR^2 (\omega C) + (\omega L)^2 R (\omega C) - \left(R^2 + (\omega L)^2\right)j}{(\omega C) \left(R^2 + (\omega L)^2\right)}$$

$$= \frac{(\omega L)^2 R}{R^2 + (\omega L)^2} + \frac{L (\omega R)^2 C - \left(R^2 + (\omega L)^2\right)j}{(\omega C) \left(R^2 + (\omega L)^2\right)}j$$

Which means that the DC impedance is infinite, and the impedance at a frequency of 1kHz is $89.8302 - 32.2716j\Omega$

Problem 2. A purely sinusoidal voltage of $V_s(t)$ of amplitude 10V and frequency $\omega = 300 \,\mathrm{rad}\,\mathrm{s}^{-1}$ is applied in the circuit shown below.

- (a) Find the equivalent circuit impedance, \tilde{Z}_{tot}
- (b) Find the total circuit current, $\tilde{I}(t)$
- (c) Find the average power expended in the circuit, and compare this to the DC power expended in the circuit (i.e. the power expended when powered by a simple 10V battery)

Solution 2.

(a)

$$\begin{split} Z &= \left(j\omega C + \frac{1}{R + j\omega L}\right)^{-1} \\ &= \left(\frac{1 + (R + j\omega L) j\omega C}{R + j\omega L}\right)^{-1} \\ &= \frac{R + j\omega L}{1 + (R + j\omega L) j\omega C} \\ &= \frac{R + j\omega L}{1 - \omega^2 LC + j\omega CR} \\ &= \frac{(R + j\omega L)(1 - \omega^2 LC - j\omega CR)}{(1 - \omega^2 LC)^2 + (\omega CR)^2} \\ &= \frac{j\omega L - j\omega^3 L^2 C + \omega^2 LRC + R - \omega^2 LRC - j\omega CR^2}{(1 - \omega^2 LC)^2 + (\omega CR)^2} \\ &= \frac{j\omega L - j\omega^3 L^2 C - j\omega CR^2 + R}{(1 - \omega^2 LC)^2 + (\omega CR)^2} \\ &= \frac{R}{(1 - \omega^2 LC)^2 + (\omega CR)^2} + \frac{\omega L - \omega^3 L^2 C - \omega CR^2}{(1 - \omega^2 LC)^2 + (\omega CR)^2} j \\ &= 10.4632 + 15.5367i\Omega \end{split}$$

In phasor notation this is $\sqrt{10.4632^2 + 15.5367^2}e^{i\arctan(\frac{15.5367}{10.4632})} = 18.7315e^{0.9782j}$

(b) $V_s(t)$ in phasor notation is $10e^{300tj}$

$$\begin{split} \tilde{I}(t) &= \frac{V_s(t)}{\tilde{Z}_{tot}} \\ \tilde{I}(t) &= \frac{10e^{300tj}}{18.7315e^{0.9782j}} \\ \tilde{I}(t) &= 0.5339e^{(300t-0.9782)j} \end{split}$$

(c)

$$\begin{split} \langle P \rangle &= \frac{1}{2} \operatorname{Re} \left[V(t) \tilde{I}^*(t) \right] \\ &= \frac{1}{2} \operatorname{Re} \left[10 e^{300tj} \cdot 0.5339 e^{-j(300t - 0.9782)} \right] \\ &= \frac{1}{2} \operatorname{Re} \left[5.339 e^{0.9782j} \right] \\ &= 2.6695 \operatorname{Re} \left[\cos(0.9782) + j \sin(0.9782) \right] \\ &= 1.4909 \mathrm{W} \end{split}$$

DC power is just $P = \frac{V^2}{R} = \frac{10V^2}{10\Omega} = 10W$

Problem 3. Consider the two Op-Amp filter circuits shown below. Each has a sinusoidal input, V_i , and component values of C = 500nF, R = 1k Ω , $R_1 = 100\Omega$, $R_2 = 10$ k Ω .

For each filter:

- (a) Use qualitative reasoning to predict the output (V_o) at low and at high input frequencies to determine the broad filter type.
- (b) Find analytical expressions for
 - i. The output voltage in terms of the input voltage, $V_o(V_i)$.
 - ii. The magnitude of the output relative to the input, $\left| \frac{V_o}{V_i} \right|$.
 - iii. The phase difference between the output and input, $\Delta \phi_{V_o-V_i}$
- (c) Use any software of your choice to plot $\left|\frac{V_o}{V_i}\right|$ and $\Delta\phi_{V_o-V_i}$ for frequencies up to $\omega=2$ MHz. Make sure to annotate your plots with proper and legible labels. Plot $\left|\frac{V_o}{V_i}\right|$ on a log-log scale and $\Delta\phi_{V_o-V_i}$ on a linear-log scale.
- (d) Find the (exact or approximate) frequency and phase difference at which $\left|\frac{V_o}{V_i}\right|=1$

Solution 3.

- (a) At $\omega = 0$ in filter (a) the capacitor acts like an open meaning that the op-amp is in a non-inverting configuration where $V_o = \left(1 + \frac{R_2}{R_1}\right) V_i = 101 V_i$. As $\omega \to \infty$ in filter (a) the capacitor acts like a wire, meaning the op-amp does nothing so $V_o = 0$. So, filter (a) is a low pass filter with some gain. In filter (b) at $\omega = 0$ the capacitor acts like an open, dropping all of V_i , meaning that $V_o = 0$. As $\omega \to \infty$ the capacitor acts like a wire meaning that the op-amp is in a non-inverting configuration where $V_o = \left(1 + \frac{R_2}{R_1}\right) V_i = 101 V_i$. So, filter (b) is a high pass filter with some gain.
- (b) i. The output voltage in terms of the input voltage, $V_o(V_i)$.
 - ii. The magnitude of the output relative to the input, $\left| \frac{V_o}{V_i} \right|$.
 - iii. The phase difference between the output and input, $\Delta \phi_{V_0-V_i}$
- (c) Use any software of your choice to plot $\left|\frac{V_o}{V_i}\right|$ and $\Delta\phi_{V_o-V_i}$ for frequencies up to $\omega=2$ MHz. Make sure to annotate your plots with proper and legible labels. Plot $\left|\frac{V_o}{V_i}\right|$ on a log-log scale and $\Delta\phi_{V_o-V_i}$ on a linear-log scale.
- (d) Find the (exact or approximate) frequency and phase difference at which $\left|\frac{V_o}{V_i}\right|=1$