1. Given universe  $\mathcal{U}=\{3,4,5,7,9,10,11,23\}$  ;  $A=\{5,7,9,10,11,23\}$ ; and  $B=\{5,3,7\}$ . Find the following:

• 
$$\overline{(B-A)} \cap B$$
 =  $(B-A) \cup \overline{B}$   
=  $\{3\} \cup \{4,9,10,11,23\} = \overline{\{3,4,9,10,11,23\}}$ 

$$\bullet \overline{A \cup \overline{B}} = \widehat{A} \cap \widehat{B} = \widehat{B} - A = \overline{\left\{3\right\}}$$

$$\bullet |B \times \mathcal{P}(A \times B)| = 3(2^{3.6}) = \overline{3(2^{18})}$$

$$\bullet |A \cup B| = 3 + 6 - 2 = \boxed{7}$$

2. Find the number of PINs using  $\{0, ..., 9\}$ , with 7 digits, no repeated numbers, where the first digit cannot be 3 and the fourth digit cannot be 5.

3. Find the number of DNA sequences using  $\{A, G, T, C\}$ , of length 5, where the first and second location cannot repeat, and the first location cannot be A.

$$= 4^{5} - 4^{3}(4 + 4 - 1)$$

$$= 4^{5} - 7(4^{3})$$

a) Negate the statement.

b) Write the assumptions, translated to algebraic equations.

$$\overline{z}^2 - 7 = 6k$$
 and  $\overline{z} = 2m$ 

c) We will use the assumptions to show the falsehood 2|7, which is translated 7 = 2w for some integer w. Show the proof steps, from assumptions to 2|7.

$$= (2m)^2 - 7 = 64$$

$$= (2(2m^2 - 3k) = 7)$$

- 5. Use a direct proof to prove:  $\forall z \in \mathbb{Z}, z \mod 3 = 2 \Rightarrow 9 | (3z^2 + 6)$ .
  - a) Write the assumption, translated to an algebraic equation.

b) Write what we want to show, translated to an algebraic equation.

c) Proof steps:

of steps:  

$$3z^2+6=3(3k+2)^2+6$$

$$=3(9k^2+12k+4)+6$$

$$=17k^2+36k+12+6$$

- 6. Use induction to prove:  $\forall n \in \mathbb{Z}$ , if  $n \geq 4$  then  $3|(2^{2n-5}+1)$ .

a) Show the base case.

$$2^{2(4)-5}$$
 $4/=2+1=9=3(3)$ 

b) State the induction assumption, translate to algebraic equation.

$$\sqrt{2^{2k-5}+1} = 3m$$

c) State what we need to show, translate to algebraic equation.

that we need to show, translate to
$$\begin{array}{c|c}
2(k+1) - S \\
+ 1 = 3p
\end{array}$$

d) Do the proof steps.

the proof steps.  

$$2^{2(k+1)-5} + 1 = 2^{2k-5} + 1$$

$$= 2^{2k-5} + 1$$

$$= 2^{2k-5} + 1$$

$$= 2^{2k-5} + 1$$

$$= 3(2^{2k-5}) + 2^{2k-5} + 1$$

$$= 3(2^{2k-5}) + 3m$$

$$= 3(2^{2k-5}) + 3m$$

$$= 3(4m-1)$$

## 

7. Consider the sequence  $a_n = (n^2 + 10) \mod 12$ ; starting at n = 1. Use it to encrypt the word SAT. Your answer will be the new word.

| n | letter | std. num. | find $a_n$  |    | encrypt               | letter |
|---|--------|-----------|-------------|----|-----------------------|--------|
| 1 | S      | 19        | 11 mod 12 = | [] | 19+11 = 30 mod 26 = 4 | D      |
| 2 | A      |           | 14 mod 12 = | 2  | (1+2) mod 26 = 3      | Ċ      |
| 3 | Т      | 20        | 19 mod 12 = | 7  | (20+7) mod 26 = 1     | A      |
|   |        |           |             |    |                       |        |

8. Consider the one-time-pad sequence  $a_n = (2, 8, 11)$ ; starting at n = 1. It has been used to encrypt a message, and the encrypted message is DDF. Use the same sequence to decrypt and find the original word.

| n | letter | std. num. | $a_n$ | decrypt            | letter |
|---|--------|-----------|-------|--------------------|--------|
| 1 | D      | 4         | 2     | (4-2) mod 26 = 2   | B      |
| 2 | D      | 4         | 8     | (4-8) mod 26 = 22  | V      |
| 3 | F      | 6         | 11    | (6-11) mod 26 = 21 | И      |
|   |        |           |       |                    |        |

9. Consider the BBS (Blum Blum Shub) sequence  $a_n = (a_{n-1})^2 \mod pq$ ; with  $a_0 = 2$  and with p = 5, q = 5. Starting at n = 1, use this sequence to encrypt the binary number 1010. Your answer will be the new binary number. You may use either method from class.

| n | bit | find $a_n$     | encrypt   |       | bit |
|---|-----|----------------|-----------|-------|-----|
| 1 | 1   | 4 mod 25 = 4   | 1+4 =5    | mod 2 | )   |
| 2 | 0   | 16 mod 25 = 16 | 0+16 = 16 | mod 2 | 0   |
| 3 | 1   | 256 mod 25 = 6 | 1+6=7     | m.d2  | 1   |
| 4 | 0   | 36 mod 25 = 11 | 0+11 = 11 | mod 2 | 1   |
|   |     |                |           |       |     |

10, From 7 library books, how many subsets of exactly 3 books are there? Answer as a whole number.

$$\left[ \begin{pmatrix} 7 \\ 3 \end{pmatrix} \right] = \frac{7.6.5}{3.2.1} = \left[ 3.5 \right]$$

For 4 books and 9 shelves of a bookcase, find the number of ways to distribute the books on the shelves (just in piles, not in order.)

= 6561

- For 8 books and 6 shelves of a bookcase, find the number of plans for shelving, where at least 3 books are planned for the top shelf (a plan only tells how many books on each shelf.)  $0\ell \left( \frac{13}{r} \right) \left( \frac{12}{q} \right) \left( \frac{11}{q} \right) \left( \frac{10}{q} \right) = 252$
- For 4 books and 9 shelves of a bookcase, find the number of ways to distribute the books on the shelves, where the bottom shelf has at most one book (just in piles, not in order.)  $9^4 \binom{4}{2} 8^2 \binom{4}{3} 8^4 1$
- For 7 books and 9 shelves of a bookcase, find the number of ways to place the books on the shelves in ordered rows, where the bottom shelf has no more than 2 books.

$$7! \left( \left( \begin{array}{c} 7+9-1 \\ 9-1 \end{array} \right) - \left( \left( \begin{array}{c} (7-3)+9-1 \\ 9-1 \end{array} \right) \right) = \left[ \left( \begin{array}{c} 15 \\ 8 \end{array} \right) - \left( \begin{array}{c} 12 \\ 8 \end{array} \right) \right] 7!$$

$$7! \left( \binom{7+8-1}{8-1} + \binom{(7-1)+8-1}{8-1} + \binom{(7-2)+8-1}{8-1} \right)$$

$$= \left( \binom{14}{7} + \binom{13}{7} + \binom{12}{7} \right) 7!$$

- 1 .. Given the original statement of implication:  $((x < 2y) \land (x \ge 5)) \Rightarrow ((y > 8) \lor (3x \text{ is even})).$ 
  - Find the contrapositive of the original; write it without "not" and without "~."

(2) 
$$(y \leq 8 \land 3 \times \text{odd}) \Rightarrow (\chi \geqslant 2 y \lor \chi < 5)$$

• Find the negation of the original; write it without "not" and without "~."

$$(3) \qquad (\chi < 2 \% \land \chi \geqslant 5) \land (\% \leq 8 \land 3 \% \text{ odd})$$

2. Given the statement:

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{N} \text{ s.t. } (yx \ge y + 7) \Rightarrow ((x \text{ is even }) \land (y + x \text{ is odd })).$$

• Find its negation; write it without "not" and without "~."

- 3. Given the original statement "If you have salt then you have sodium." Answer the following without "not" and without "∼.'
  - Write the original statement using the word sufficient.

• Write the converse of the original using the words "only if".

• Write the contrapositive of the original using the word necessary.



- binary: 1101011, hexidecimal: 6B

   binary: 11111010, hexidecimal: 7A

   hexidecimal: FA3

   hexidecimal: FA3
- binary: 1010 decimal:

5. Suppose that P = F (false) and Q = T (true). Find whether each of these statements is true (T) or false (F). Put a box around each final answer of T or F.



 $\boldsymbol{\mathcal{G}}$  . For  $\mathcal{S} = \{1, -3, -4, -12\},$  find an example making the following true:

$$\exists x \in S \text{ s.t. } ((x \mid 7) \lor (|x| > 3)) \Rightarrow ((x \text{ is odd }) \land (x \le -1))$$

7. Given the inputs of each circuit, fill in the outputs.





