# COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

February 15, 2023

Lecture 12: DFA Minimization

▶ Given a DFA when can we say there are redundant states?

- Given a DFA when can we say there are redundant states?
- Every regular language has a unique minimal DFA (upto isomorphism)

- Given a DFA when can we say there are redundant states?
- Every regular language has a unique minimal DFA (upto isomorphism)
- ▶ Rough idea: Given  $M = (Q, \Sigma, q_0, \delta, F)$ 
  - Get rid of inaccessible states.

- Given a DFA when can we say there are redundant states?
- Every regular language has a unique minimal DFA (upto isomorphism)
- ▶ Rough idea: Given  $M = (Q, \Sigma, q_0, \delta, F)$ 
  - Get rid of inaccessible states.
  - Collapse "equivalent" states.





 $L = \{ \text{Strings of length } \geq 2 \}$ 



 $L = \{ \text{Strings of length } \geq 2 \}$ 









$$L = \{a^m \mid m \equiv 1 \pmod{3}\}$$

- How do we know two states can be collapsed without changing the language of the DFA?
- Can we do this formally?
- Is there an efficient algorithm for doing this?
- How do we know we can't collapse further?

- How do we know two states can be collapsed without changing the language of the DFA?
- Can we do this formally?
- Is there an efficient algorithm for doing this?
- How do we know we can't collapse further?

- How do we know two states can be collapsed without changing the language of the DFA?
- ► Can we do this formally?
- ▶ Is there an efficient algorithm for doing this?
- ▶ How do we know we can't collapse further?
- **③** Should not collapse an accept and a reject state! If  $\hat{\delta}(s,x) = p \in F$  and  $\hat{\delta}(s,y) = q \notin F$ , so cannot collapse p and q!
- ② If we are collapsing p and q, better also collapse  $\delta(p,a)$  and  $\delta(q,a)$  for all  $a \in \Sigma$ .

Inductively, these two imply that we cannot collapse p and q if  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  for some string x.

- How do we know two states can be collapsed without changing the language of the DFA?
- ► Can we do this formally?
- ▶ Is there an efficient algorithm for doing this?
- ▶ How do we know we can't collapse further?
- Should not collapse an accept and a reject state! If  $\hat{\delta}(s,x) = p \in F$  and  $\hat{\delta}(s,y) = q \notin F$ , so cannot collapse p and q!
- ② If we are collapsing p and q, better also collapse  $\delta(p,a)$  and  $\delta(q,a)$  for all  $a \in \Sigma$ .

Inductively, these two imply that we cannot collapse p and q if  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  for some string x. Turns out this is necessary and sufficient to decide if a pair of states can be collapsed or not!

Define a relation  $\equiv$  on the set of states:

Define a relation  $\equiv$  on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

**Exericse:** Show that  $\equiv$  is an equivalence relation.

Define a relation  $\equiv$  on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

**Exericse:** Show that  $\equiv$  is an equivalence relation.

$$[p] \coloneqq \{q \mid q \equiv p\}$$
 Equivalence classes

Every element  $p \in Q$  is contained in exactly one equivalence class [p].

$$p \equiv q \iff [p] = [q]$$

Define a relation  $\equiv$  on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

**Exericse:** Show that  $\equiv$  is an equivalence relation.

$$[p] := \{q \mid q \equiv p\}$$
 Equivalence classes

Every element  $p \in Q$  is contained in exactly one equivalence class [p].

$$p \equiv q \iff [p] = [q]$$

Why not define an automaton whose states are just these equivalence classes?

Define a relation  $\equiv$  on the set of states:

$$p \equiv q \iff \forall x \in \Sigma^* (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

**Exericse:** Show that  $\equiv$  is an equivalence relation.

$$[p] := \{q \mid q \equiv p\}$$
 Equivalence classes

Every element  $p \in Q$  is contained in exactly one equivalence class [p].

$$p \equiv q \iff [p] = [q]$$

Why not define an automaton whose states are just these equivalence classes? (This is exactly the "collapsing states" we wanted!)

#### **Quotient Automaton**

$$M/\equiv:=(Q',\Sigma,\delta',s',F')$$
, where

$$\qquad \qquad Q' \coloneqq \{[p] \mid p \in Q\}$$

#### **Quotient Automaton**

$$M/\equiv:=(Q',\Sigma,\delta',s',F')$$
, where

- $P Q' \coloneqq \{ [p] \mid p \in Q \}$
- $\bullet \ \delta'([p],a) \coloneqq [\delta(p,a)]$

#### **Quotient Automaton**

$$M/\equiv:=(Q',\Sigma,\delta',s',F')$$
, where

- $P Q' \coloneqq \{[p] \mid p \in Q\}$
- $b'([p],a) \coloneqq [\delta(p,a)]$
- $\triangleright$  s' = [s]
- $F' = \{[p] \mid p \in F\}$

#### **Quotient Automaton**

 $M/\equiv:=(Q',\Sigma,\delta',s',F')$ , where

- $\blacktriangleright \ Q' \coloneqq \{[p] \mid p \in Q\}$
- $\bullet \ \delta'([p],a) \coloneqq [\delta(p,a)]$
- $\triangleright$  s' = [s]
- ▶  $F' = \{ [p] | p \in F \}$

Is the definition of  $\delta'$  well-defined?

#### **Quotient Automaton**

$$M/\equiv:=(Q',\Sigma,\delta',s',F')$$
, where

- $P Q' \coloneqq \{[p] \mid p \in Q\}$
- $b'([p],a) \coloneqq [\delta(p,a)]$
- $\triangleright$  s' = [s]
- ▶  $F' = \{ [p] | p \in F \}$

Is the definition of  $\delta'$  well-defined?

**Claim:** If  $p \equiv q$  then is  $[\delta(p, a)] = [\delta(q, a)]$ 

#### **Quotient Automaton**

 $M/\equiv:=(Q',\Sigma,\delta',s',F')$ , where

- $P Q' \coloneqq \{[p] \mid p \in Q\}$
- $\bullet \ \delta'([p],a) \coloneqq [\delta(p,a)]$
- $\triangleright s' = [s]$
- ▶  $F' = \{ [p] | p \in F \}$

Is the definition of  $\delta'$  well-defined?

**Claim:** If  $p \equiv q$  then is  $[\delta(p,a)] = [\delta(q,a)]$  Let  $p \equiv q$ ,  $a \in \Sigma$  and  $y \in \Sigma^*$ 

$$\hat{\delta}(\delta(p,a),y) \in F \iff \hat{\delta}(p,ay) \in F$$

#### **Quotient Automaton**

 $M/\equiv:=(Q',\Sigma,\delta',s',F')$ , where

- $\blacktriangleright \ Q' \coloneqq \{[p] \mid p \in Q\}$
- $b'([p],a) \coloneqq [\delta(p,a)]$
- $\triangleright s' = [s]$
- $F' = \{ [p] \mid p \in F \}$

Is the definition of  $\delta'$  well-defined?

**Claim:** If  $p \equiv q$  then is  $[\delta(p,a)] = [\delta(q,a)]$  Let  $p \equiv q$ ,  $a \in \Sigma$  and  $y \in \Sigma^*$ 

$$\hat{\delta}(\delta(p,a),y) \in F \iff \hat{\delta}(p,ay) \in F 
\iff \hat{\delta}(q,ay) \in F 
\iff \hat{\delta}(\delta(q,a),y) \in F \quad \square$$

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta'}([p], x) = [\hat{\delta}(p, x)]$ 

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{rcl} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

$$\hat{\delta'}([p],xa) = \hat{\delta'}(\hat{\delta'}([p],x),a)$$
 (by definition of  $\hat{\delta'}$ )

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{lll} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{rcl} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta'}([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

$$\begin{split} \hat{\delta'}([p],xa) &= \hat{\delta'}(\hat{\delta'}([p],x),a) \text{ (by definition of } \hat{\delta'}) \\ &= \delta'([\hat{\delta}(p,x)],a) \text{ (by induction hypothesis)} \\ &= \left[\delta(\hat{\delta}(p,x),a)\right] \text{ (by definition of } \delta') \end{split}$$

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{lll} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

$$\begin{split} \hat{\delta}'([p],xa) &= \hat{\delta}'(\hat{\delta}'([p],x),a) \text{ (by definition of } \hat{\delta}') \\ &= \delta'([\hat{\delta}(p,x)],a) \text{ (by induction hypothesis)} \\ &= [\delta(\hat{\delta}(p,x),a)] \text{ (by definition of } \delta') \\ &= [\hat{\delta}(p,xa)] \text{ (by definition of } \hat{\delta}) \end{split}$$

Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta'}([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{rcl} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

$$\begin{split} \hat{\delta}'([p],xa) &= \hat{\delta}'(\hat{\delta}'([p],x),a) \text{ (by definition of } \hat{\delta}') \\ &= \delta'([\hat{\delta}(p,x)],a) \text{ (by induction hypothesis)} \\ &= [\delta(\hat{\delta}(p,x),a)] \text{ (by definition of } \delta') \\ &= [\hat{\delta}(p,xa)] \text{ (by definition of } \hat{\delta}) \end{split}$$

Claim:  $L(M/\equiv) = L(M)$ 



Claim: For all  $x \in \Sigma^*$ ,  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$ 

**Proof.** By induction on |x|.

Basis: For  $x = \varepsilon$ ,

$$\begin{array}{rcl} \hat{\delta'}([p],\varepsilon) &=& [p] & \text{ (by definition of } \hat{\delta'}) \\ &=& [\hat{\delta}(p,\varepsilon)] & \text{ (by definition of } \hat{\delta}) \end{array}$$

Induction step: Assume  $\hat{\delta}'([p], x) = [\hat{\delta}(p, x)]$  and let  $a \in \Sigma$ .

$$\begin{split} \hat{\delta'}([p],xa) &= \hat{\delta'}(\hat{\delta'}([p],x),a) \text{ (by definition of } \hat{\delta'}) \\ &= \delta'([\hat{\delta}(p,x)],a) \text{ (by induction hypothesis)} \\ &= [\delta(\hat{\delta}(p,x),a)] \text{ (by definition of } \delta') \\ &= [\hat{\delta}(p,xa)] \text{ (by definition of } \hat{\delta}) \end{split}$$

Claim:  $L(M/\equiv) = L(M)$  Exercise!

## **Cannot Collapse Further**

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

Apply this relation on  $M/\equiv$ .

$$[p] \approx [q]$$

$$\Longrightarrow \forall x(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$[p] \approx [q]$$

$$\implies \forall x (\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$\implies \forall x ([\hat{\delta}(p, x)] \in F' \iff [\hat{\delta}(q, x)] \in F')$$

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$[p] \approx [q]$$

$$\implies \forall x(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$\implies \forall x([\hat{\delta}(p, x)] \in F' \iff [\hat{\delta}(q, x)] \in F')$$

$$\implies \forall x(\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$[p] \approx [q]$$

$$\implies \forall x (\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$\implies \forall x ([\hat{\delta}(p, x)] \in F' \iff [\hat{\delta}(q, x)] \in F')$$

$$\implies \forall x (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

$$\implies p \equiv q$$

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$[p] \approx [q]$$

$$\implies \forall x (\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$\implies \forall x ([\hat{\delta}(p, x)] \in F' \iff [\hat{\delta}(q, x)] \in F')$$

$$\implies \forall x (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

$$\implies p \equiv q$$

$$\implies [p] = [q]$$

Define

$$[p] \approx [q] \iff \forall x \in \Sigma^*(\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

Apply this relation on  $M/\equiv$ .

$$[p] \approx [q]$$

$$\implies \forall x (\hat{\delta}'([p], x) \in F' \iff \hat{\delta}'([q], x) \in F')$$

$$\implies \forall x ([\hat{\delta}(p, x)] \in F' \iff [\hat{\delta}(q, x)] \in F')$$

$$\implies \forall x (\hat{\delta}(p, x) \in F \iff \hat{\delta}(q, x) \in F)$$

$$\implies p \equiv q$$

$$\implies [p] = [q]$$

The relation  $\approx$  is just equality (=)!



# An algorithm for DFA minimization

Let M be a DFA with no inaccessible states. We will mark (unordered) pairs of states  $\{p,q\}$  if we discover a reason why they are not equivalent.

- $oldsymbol{0}$  Write down a table of pairs  $\{p,q\}$ , initially unmarked.
- **②** Mark  $\{p,q\}$  if  $p \in F$  and  $q \notin F$ , or vice-versa.
- Repeat until no change occurs: if there exists an unmarked pair  $\{p,q\}$  such that  $\{\delta(p,a),\delta(q,a)\}$  is marked for some  $a\in\Sigma$  then mark  $\{p,q\}$ .
- **4** When done,  $p \equiv q$  iff  $\{p, q\}$  is not marked.

# An algorithm for DFA minimization

Let M be a DFA with no inaccessible states. We will mark (unordered) pairs of states  $\{p,q\}$  if we discover a reason why they are not equivalent.

- $oldsymbol{0}$  Write down a table of pairs  $\{p,q\}$ , initially unmarked.
- **②** Mark  $\{p,q\}$  if  $p \in F$  and  $q \notin F$ , or vice-versa.
- Repeat until no change occurs: if there exists an unmarked pair  $\{p,q\}$  such that  $\{\delta(p,a),\delta(q,a)\}$  is marked for some  $a\in\Sigma$  then mark  $\{p,q\}$ .
- **4** When done,  $p \equiv q$  iff  $\{p, q\}$  is not marked.

#### Remarks:

▶ If p and q are marked in Step 2 then definitely they are not equivalent as witnessed by the empty string!

# An algorithm for DFA minimization

Let M be a DFA with no inaccessible states. We will mark (unordered) pairs of states  $\{p,q\}$  if we discover a reason why they are not equivalent.

- $oldsymbol{0}$  Write down a table of pairs  $\{p,q\}$ , initially unmarked.
- ② Mark  $\{p,q\}$  if  $p \in F$  and  $q \notin F$ , or vice-versa.
- **②** Repeat until no change occurs: if there exists an unmarked pair  $\{p,q\}$  such that  $\{\delta(p,a),\delta(q,a)\}$  is marked for some  $a\in\Sigma$  then mark  $\{p,q\}$ .
- **4** When done,  $p \equiv q$  iff  $\{p, q\}$  is not marked.

#### Remarks:

- ▶ If *p* and *q* are marked in Step 2 then definitely they are not equivalent as witnessed by the empty string!
- ▶ Same pair  $\{p,q\}$  has to be visited by the algorithm multiple times (status might change because of other  $\checkmark$  filled in the table)

Given: DFA A

Given: DFA A

Output: sets of states of A equivalent to each other





Given: DFA A

Output: sets of states of A equivalent to each other

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

#### Example

0 - 1 - - 2 - - - 3 - - - - 4 - - - - 5

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

#### Example

0 - 1 - - 2 - - - 3 - - - - 4 - - - - 5

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Example

(Red color indicates final states.)

$$\begin{array}{ccccccc}
0 \\
\checkmark & 1 \\
- & \checkmark & 2 \\
- & \checkmark & - & 3 \\
\checkmark & - & \checkmark & \checkmark & 4 \\
- & \checkmark & - & \checkmark & 5
\end{array}$$

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Example

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Example

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Example

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Example

# **E**xample



Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

Algorithm

Let  $Q = \{q_1, ..., q_n\}.$ 

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

#### Algorithm

Let 
$$Q = \{q_1, ..., q_n\}.$$

1. For each  $1 \le i < j \le n$ , initialize T(i, j) = --

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Algorithm

Let 
$$Q = \{q_1, ..., q_n\}.$$

- 1. For each  $1 \le i < j \le n$ , initialize T(i, j) = --
- 2. For each  $1 \le i < j \le n$

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Algorithm

Let 
$$Q = \{q_1, ..., q_n\}.$$

- 1. For each  $1 \le i < j \le n$ , initialize T(i, j) = --
- 2. For each  $1 \le i < j \le n$ If  $(q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)$  $T(i,j) \leftarrow \checkmark$
- 3. Repeat

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Algorithm

Let 
$$Q = \{q_1, ..., q_n\}.$$

- 1. For each  $1 \le i < j \le n$ , initialize T(i, j) = --
- 2. For each  $1 \le i < j \le n$ If  $(q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)$  $T(i,j) \leftarrow \checkmark$
- 3. Repeat  $\{ \text{ For each } 1 \leq i < j \leq n \}$

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: sets of states of A equivalent to each other

### Algorithm

Let 
$$Q = \{q_1, \ldots, q_n\}$$
.

- 1. For each  $1 \le i < j \le n$ , initialize T(i,j) = --
- 2. For each  $1 \le i < j \le n$ If  $(q_i \in F \text{ AND } q_j \notin F) \text{ OR } (q_i \in F \text{ AND } q_j \notin F)$  $T(i,j) \leftarrow \checkmark$
- 3. Repeat

$$\left\{ \begin{array}{l} \text{For each } 1 \leq i < j \leq n \\ \text{If } \exists a \in \Sigma, T(\delta(q_i, a), \delta(q_j, a)) = \checkmark \\ \text{then } T(i, j) \leftarrow \checkmark \\ \right\} \\ \end{array}$$

Untill T stays unchanged.

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

**Proof.** By induction (Exercise!).

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

**Proof.** By induction (Exercise!).

An automaton view of the algorithm:

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \rightarrow 2^{\mathcal{Q}}$  defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \rightarrow 2^{\mathcal{Q}}$  defined as

$$\Delta(\{p,q\},a) \coloneqq \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S} \coloneqq \{\{p,q\} \mid p \in F, q \notin F\}$$

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{ \{p,q\} \mid p,q \in Q, p \neq q \}$$

 $\Delta: \mathcal{Q} \rightarrow 2^{\mathcal{Q}}$  defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S}\coloneqq\{\{p,q\}\mid p\in F, q\notin F\}$$

• Step 2 marks elements of S.

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \big\{ \big\{ p,q \big\} \mid p,q \in Q, p \neq q \big\}$$

 $\Delta: \mathcal{Q} \rightarrow 2^{\mathcal{Q}}$  defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S}\coloneqq \{\{p,q\}\mid p\in F, q\notin F\}$$

- Step 2 marks elements of S.
- ▶ Step 3 marks pairs in  $\Delta(\{p,q\},a)$  when  $\{p,q\}$  is marked for some  $a \in \Sigma$ .

**Claim:** The pair  $\{p,q\}$  is not marked by the algorithm if and only if there exists  $x \in \Sigma^*$  such that  $\hat{\delta}(p,x) \in F$  and  $\hat{\delta}(q,x) \notin F$  or vice-versa, i.e., if and only if  $p \not\equiv q$ .

Proof. By induction (Exercise!).

An automaton view of the algorithm:

$$\mathcal{Q} = \{\{p,q\} \mid p,q \in Q, p \neq q\}$$

 $\Delta: \mathcal{Q} \rightarrow 2^{\mathcal{Q}}$  defined as

$$\Delta(\{p,q\},a) := \{\{p',q'\} \mid p = \delta(p',a), q = \delta(q',a)\}$$

$$\mathcal{S}\coloneqq \{\{p,q\}\mid p\in F, q\notin F\}$$

- Step 2 marks elements of S.
- ▶ Step 3 marks pairs in  $\Delta(\{p,q\},a)$  when  $\{p,q\}$  is marked for some  $a \in \Sigma$ .
- ▶ Claim above says  $p \neq q \iff \{p,q\}$  if and only if  $\{p,q\}$  is reachable from  $\mathcal{S}$ .

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

#### Example

|   |   |   | 2 |   |   |        |
|---|---|---|---|---|---|--------|
| a | 1 | 3 | 4 | 5 | 5 | 5<br>5 |
| b | 2 | 4 | 3 | 5 | 5 | 5      |

Minimization problem (for fixed  $\Sigma$ )

Given: DFA A

Output: DFA B s.t. L(A) = L(B) and B has the smallest

number of states possible for recognizing L(A)

#### Example

|   | l |   | 2 |   |   |   |
|---|---|---|---|---|---|---|
| а | 1 | 3 | 4 | 5 | 5 | 5 |
| b | 2 | 4 | 3 | 5 | 5 | 5 |