An Introduction to Gradient Boosting Machine

Chengliang Tang

10/25/2017

What is Boosting?

- One of the most powerful learning ideas introduced in the last twenty years.
- Originally designed for classification problems, also extended to regression problems.
- Motivation: combine the outputs of many "weak" classifiers to produce a powerful "committee".
- "Weak" classifier: classifiers with error rates slightly better than a random guessing.
- Attention: weak learners should not be highly correlated.

How to combine?

- Repeated modified versions of data
- A sequence of weak classifiers $G_m(x)$
- A weighted majority vote

$$G(x) = sign\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

How to combine? Final Classifier
$$G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$$

Weighted Sample $G_M(x)$

Weighted Sample $G_M(x)$

Weighted Sample $G_M(x)$

Training Sample $G_M(x)$

Example: AdaBoost.M1

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Performance

Why is Boosting successful?

Basis function expansions

$$G(x) = sign\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

More general,

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$

Why is Boosting successful?

Minimizing loss function

$$\min_{\{\beta_m,\gamma_m\}_1^M} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M \beta_m b(x; \gamma_m)\right)$$

Greedy approximation:

Sequentially adding new basis functions to the expansion

Forward stagewise additive learning

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Why is Boosting successful?

 AdaBoost.M1 is equivalent to forward stagewise additive modeling using the exponential loss function

$$L(y, f(x)) = \exp(-yf(x))$$

i.e., $(\beta_m, G_m) = arg \min_{\beta, G} \sum_{i=1}^{N} \exp[-y_i(f_{m-1}(x_i) + \beta G(x_i))]$

Exponential loss

- Binary classification: Output $Y \in \{-1,1\}$
- Regression function for classification f(x): G(x) = sign(f(x))
- Margin: yf(x) Loss: $\exp(-yf(x))$
- Large positive margin means the prediction is correct and well within the classification boundary.
- Large negative margin means the prediction is wrong and very much across the classification boundary.

Boosting trees

Decision trees:

Partition the space of all joint predictor variable values into disjoint regions R_j , $j=1,2,\ldots,J$ (terminal nodes of the tree)

Prediction rule

$$x \in R_j \Longrightarrow f(x) = \gamma_j$$

Formal expression

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j)$$

Boosting trees

Boosted tree model

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m)$$

Each step m,

$$\widehat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^n L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Parameter Setting

Tree size

$$J_m = J, m = 1, 2, ..., M$$

Boosting iterations

$$L(f_M) \searrow$$
, as $M \nearrow$

 M^* : monitor prediction risk as a function of M on a validation sample

Shrinkage

$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^{J} \gamma_{jm} I(x \in R_{jm})$$

Thanks!