

Interoperability on the Internet of Things

IfM 2pm Thu 7 Nov 2013

pilgrim.beart@1248.io

Today

- My background
- M2M and IoT today
- Lessons from TSB IoT Interop Demonstrator
 - HyperCat: machine-discoverable APIs
- 1248 work in progress
- Concluding thoughts

My background

Smart Energy Analytics

Smart Heating

Smart Appliances

Smart Home

Information

Analysis on how I & when I use energy to help understand my bill and advice on how to save.

- Heating
- Cooling
- · Hot water

Remote Control

Appliances

Locks

Lights

- Security
- Cameras

M2M a precursor to IoT From vertical silos to horizontal IoT

old each provider delivered entire vertical

SUPPLY CHAIN
CONNECTED HOME
TRANSPORT SERVICES
DRUG TRIALS
SMART METERS

new each provider delivers horizontal slice

TSB IoT Interoperability Demonstrator

- £6m project, 1 year
- Goal: Break down the vertical M2M silos!
- ~40 entities, most already with vertical end-to-end platforms

1248.io, Aimes Grid Services, AlertMe, Amey, ARM, Avanti, BalfourBeatty, BRE, British Telecom, Carillion, Critical Software, Ctrl-Shift, EDF, Enlight, ExplorerHQ, Flexeye, Guildford Borough Council, IBM, Intel, Intellisense.io, Intouch, LivingPlanIT, London City Airport, Merseyside Transport, Milligan Retail, Neul, Open Data Institute, Placr, SH&BA, Stakeholder Design, Traak, UK Highways Agency, Westminster City Council, Xively and the Universities of Birmingham, Cambridge, Lancaster, Surrey, UCL & Open University

- 8 clusters with diverse use-cases:
 - Airports
 - Transport logistics
 - Schools and Campuses
 - Homes
 - Streets

Q1: Work out what problem we all share

Q2: Implement

Q3: Interop

Q4: Serendipity

Everyone's system architecture

You need data from several data services

All services support the same open standards

But each is organised differently

/customers/building/room/temperature

/users/hubs/devices/

/localauthority/street/post

So for each service you have to...

- Read the documentation
- Write code specific to that service

Everyone wants an ecosystem

If each application is specific to each service we call it "vertical-integration".

To grow, we need to go "horizontal" and build an ecosystem where all applications work with all services

...but Humans Don't Scale

But adapting 10 Applications x 10 services = 100 pieces of code to write

(and imagine 1,000,000 Applications...)

Problem: Services not machine-browsable

An application cannot automatically discover a new service's resources ... so a human has to write code every time to enable it to do that.

HyperCat: Makes services machine-browsable

HyperCat makes life easier for everyone

- Developers
 - More data, quicker
- Service and Data providers
 - More customers
- End-customers
 - More choice
- Ecosystems and markets
 - Removes barriers

HyperCat Developer 101

Where to get started

- Very simple spec (6 pages)
 - http://www.openiot.org/apis
- Build on the open standards you already use
 - HTTPS, RESTful, JSON
- Growing set of Catalogues to test against
- Growing set of Tools for Client & Services
 - Online, and as Code Libraries
 - See http://wiki.1248.io

How to use HyperCat

- GET http(s)://cat
- Returns a catalogue:
 - Tagged with metadata
 - Containing zero or more Resource items
- Each Resource item:
 - Has an HREF pointer to the resource
 - Is tagged with metadata, so you can tell what it is
- The only defined metadata tag is for the catalogue itself
 - Catalogues can contain catalogues
- Security model & basic search

Pathfinder
Scalable, Open-Source
HyperCat server

HyperCat is not a panacea

- Applications and Services still have to agree on high level semantics
 - i.e. if a service provides temperatures in °C then the application needs to understand °C
- What HyperCat does is enable an application to <u>find</u> those things that it does understand, in any service
 - e.g. "show me all the resources which are in "C"

IoT work in progress...

All the things we kicked out of scope!

- Data formats: (JSON certainly, and...)
 - JSON-LD
 - SenML
- Ontologies (general, and more & more specific)
- Registration
- Standard Licenses
- Key management
- Monetisation models
- "run-anywhere" Rules
 - Rollups, triggers. Message-passing paradigm. Database-agnostic.

1248 work in progress

Our business Your business geras DATA VALUE-ADD **INFRASTRUCTURE SENSORS**

Geras

- A live and historical streaming data service for loT devices and hubs
- Built for scale (C* & RabbitMQ)
- Interfaces:
 - MQTT (streaming pubsub)
 - HTTP(S)
 - Supports pure HTML5 apps
 - MQTT over Websockets
 - JSONP

Management Dash (live data) geras

Showing 1 to 3 of 3 entries

Charts, rollups, windowing

- "Weekly minimum this month"
- "Yearly average"
- "Daily sum"
- etc.

Data format is SenML

Streaming JSON, in and out

```
"e":[
  {"t":1001, "n": "temperature", "v":22.5, "u": "Cel"},
  {"t":1001, "n": "power", "v":1210000, "u": "W"},
  {"t":1002, "n": "temperature", "v":22.5, "u": "Cel"},
  {"t":1002, "n": "power", "v":1210000, "u": "W"},
  {"t":1007, "n": "temperature", "v":22.5, "u": "Cel"},
  {"t":1007, "n": "power", "v":1210000, "u": "W"}
"bn": "http://example.org/thing1/"
```


Feeding data in

HTTP(S) POST (bulk SenML)

```
curl -XPOST -u "APIKEY:"
  https://geras.1248.io/series/foo
  --header "Content-Type: application/json"
  -d@data.json
```

MQTT publish raw values

```
mosquitto_pub -v -u APIKEY
   -h geras.1248.io
   -t /foo/temperature
   -m "22.5"
```


Reading data out

HTTP(S) GET (SenML)

```
curl -XGET -u "APIKEY:"
  https://geras.1248.io/series/foo/temperature?
    rollup=min&interval=1d

curl -XGET -u "APIKEY:"
  https://geras.1248.io/series/foo?recursive
```

MQTT subscribe (SenML)

mosquitto_sub -v -u APIKEY -h geras.1248.io -t /foo/#

Discovery HYPER/CAT

Per-user HyperCat (SenML resources)

```
curl -XGET -u "APIKEY:" https://geras.1248.io/cat
```

- Public HyperCat of user shares
 - Everything discoverable, optional keys for resources

```
curl -XGET http://geras.1248.io/publiccat
```


Metadata search and storage

Per-stream searchable JSON properties

```
curl -XPOST -u "APIKEY:" -d@tags.json
    https://geras.1248.io/tags/foo/temperature

curl -XGET -u "APIKEY:"
    https://geras.1248.io/tags/foo/temperature

curl -XGET -u "APIKEY:"
    https://geras.1248.io/tagsearch?manufacturer=acme
```

Streaming graph UI (MQTT)

Sign-up as a beta tester!

Thoughts

ARM's acquisition of Sensinode

(personal view)

- "Symmetry-breaking"
- Sensinode literally wrote the book (& RFCs):
 - 6LoWPAN (IPv6 over 802.15.4 radio)
 - CoAP (binary HTTP over UDP for constrained environs)
 - DTLS (SSL for UDP, ECC/RSA + AES)
 - LWM2M (OMA device management standard, bootstrap, registration, upgrade, telemetry)

From edge to centre

Billions of tiny sensors

Very large databases

"Open"

Not (necessarily):

- Free
- Public

Means:

- My service works with your service
- We can swap providers without a lot of effort
- Requires less trust

Interoperability on the Internet of Things

pilgrim.beart@1248.io