Projet Cryptographie RAMASSAMY Luc

Question 4:

Soient $y_1y_2y_3$ les 3 premiers octets sortis du second LFSR, on a s_2 = {1 $\parallel y_3 \parallel y_2 \parallel y_1$ } On peut donc obtenir l'état intial s_2 du second LFSR de la manière suivante $y_i = z_i - x_i - c_i$ % 256 avec c1 = 0 et c_{i+1} = 1 si y_i + x_i > 255

Question 5:

Si l'on connaît les 6 premiers octets z_1 à z_6 on peut alors pour chaque état initial possible du LFSR de longueur 17, reécupérer dans un premier x_1 à x_3 puis calculer les y_1 à y_3 correspondant nous ce correspond à l'état initial du LFSR de longueur 25, nous permettant x_4 à X_6 et y_4 à y_6 , on peut alors calculer les z_4 à z_6 correspondant et les comparer aux z originaux et si il y a correspondance, on a alors trouvé les initialisations de chaque LFSR composant le CSS et donc la clé secrète de ce dernier.