

Figure 2.38: Problem 2.5.1.

2.5 PROBLEMS

Problem 2.5.1. Find a unit vector that is perpendicular to the body diagonal of a cube shown in the figure.

Problem 2.5.2. Find the angle between the lines from the center of one face to the corners on the opposite face of a cube.

Problem 2.5.3. Two body diagonals of a cube cross at the center of the cube. Find the angle between them.

Problem 2.5.4. Three vectors \vec{A} , \vec{B} , and \vec{C} are placed on the adjacent edges of a parallelepiped with their tails at the common vertex. Prove that $\vec{A} \cdot (\vec{B} \times \vec{C})$ is equal to the volume of the parallelepiped.

Problem 2.5.5. Prove the following identity for arbitrary vectors \vec{A} , \vec{B} , and \vec{C} :

$$\vec{A} \cdot \left(\vec{B} \times \vec{C} \right) = \vec{B} \cdot \left(\vec{C} \times \vec{A} \right) = \vec{C} \cdot \left(\vec{A} \times \vec{B} \right).$$

Problem 2.5.6. Prove that, if the magnitude of the two vectors \vec{A} and \vec{B} are equal, then $\vec{A} + \vec{B}$ and $\vec{A} - \vec{B}$ are perpendicular to each other.

Problem 2.5.7. Prove that, if $|\vec{A} - \vec{B}| = |\vec{A} + \vec{B}|$, then vector \vec{A} is perpendicular to vector \vec{B} .

Problem 2.5.8. Suppose $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$. Is $\vec{B} = \vec{C}$? Why or why not? Give a graphical interpretation of the given statement also.

Problem 2.5.9. Suppose $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$. Is $\vec{B} = \vec{C}$? Why or why not? What is the most we can say about \vec{B} and \vec{C} ? Give a graphical interpretation of the given statement also.

Problem 2.5.10. Suppose $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$ and $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$. Is $\vec{B} = \vec{C}$? Why or why not?

Problem 2.5.11. Prove the following identity for vector cosines, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, where α , β , and γ are angles a vector makes with the positive x, y and z-axes respectively.

Problem 2.5.12. We proved the law of cosines in the text using the scalar product of vectors placed on the sides of a triangle. Prove the law of sines by using the vector product between vectors on the sides of a triangle. The law of sine says that if the sides of a triangle have lengths A, B, and C and the angles opposite to the sides are $\angle A$, $\angle B$, and $\angle C$ respectively, then

$$\frac{\sin \angle A}{A} = \frac{\sin \angle B}{B} = \frac{\sin \angle C}{C}$$

2.5. PROBLEMS

67

Problem 2.5.13. Prove that an arbitrary vector \vec{A} can always be written as a sum of a vector parallel to a vector \vec{B} and a vector perpendicular to \vec{B} . That is, show that

$$\vec{A} = a\vec{B} + b\vec{B}_{\perp},$$

where $\vec{B} \cdot \vec{B}_{\perp} = 0$, and a and b are some scalars. Hint: Use the projection of \vec{A} on \vec{B} to construct the vector you need for the vector parallel to \vec{B} . Let \vec{A}_1 be the vector parallel to \vec{B} that you need. Then, show that $\vec{A} - \vec{A}_1$ is a vector that is perpendicular to vector \vec{B} .