

Departamento de Ciencias Básicas

Cinemática de la particula

Martha Lucía Barrera Pérez

Estudio del movimiento de los cuerpos

- Mecánica Clásica

- Cinemática (estudia el movimiento de los cuerpos sin tener en cuenta la causa que lo produce).
- Dinámica (estudio de las causas que producen el movimiento)
- Estática (estudio de las condiciones necesarias para que los cuerpos estén en equilibrio)

MECÁNICA

Mecánica Cuántica

Mecánica Relativista

Vector posición

$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$

$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

Dimensión [L]

Vector Desplazamiento

$$\vec{r}_1 = x_1\hat{\imath} + y_1\hat{\jmath} + z_1\hat{k}$$

$$\vec{r}_2 = x_2\hat{\imath} + y_2\hat{\jmath} + z_2\hat{k}$$

$$\overrightarrow{\Delta r} = (x_2 - x_1)\hat{\imath} + (y_2 - y_1)\hat{\jmath} + (z_2 - z_1)\hat{k}$$

$$|\overrightarrow{\Delta r}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Dimensión [L]

Vector Velocidad Media

En la gráfica de posición Vs tiempo La pendiente de la recta secante a dos Puntos sobre la función es la Velocidad media

Vector Velocidad Instantánea

$$\vec{v} = \lim_{\Delta t \to 0} \overrightarrow{v_m} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

Dimensión [L/T]

En la gráfica de posición Vs tiempo La pendiente de la recta tangente a un Punto sobre la función es la velocidad instantánea

Rapidez media

La rapidez media es una magnitud escalar que nos indica la distancia recorrida por unidad de tiempo de un cuerpo en movimiento

 $r_m = \frac{Distancia\ recorrida\ en\ la\ trayectoria}{Tiempo\ empleado\ en\ recorrerla}$

Dimensión [L/T]

Es un escalar

Aceleración media

$$\overrightarrow{a_m} = \frac{\Delta \overrightarrow{v}}{\Delta t} = \frac{\overrightarrow{v_2} - \overrightarrow{v_1}}{t_2 - t_1}$$

Dimensión [L/T²]

En la gráfica de Velocidad Vs tiempo La pendiente de la recta secante a dos Puntos sobre la función es la Aceleración media

Aceleración Instantánea

vector velocidad y vector aceleración

$$\vec{a} = \lim_{\Delta t \to 0} \overrightarrow{a_m} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$
Dimensión [L/T²]

En la gráfica de Velocidad Vs tiempo La pendiente de la recta tangente a un Punto sobre la función es la Aceleración instantánea

Posición, Velocidad y Aceleración

Movimiento Rectilíneo Uniformemente Acelerado

Movimiento Rectilíneo Uniforme

Ecuaciones del MOVIMIENTO RECTILÍNEO

	MRU (Mov. Rectilíneo uniforme)	MRUA (Mov. Rectilíneo uniformemente acelerado)	
Ecuación de posición	$x_f = x_0 + v \cdot (t - t_0)$	$x_f = x_0 + v_0(t_f - t_0) + \frac{1}{2} \cdot a \cdot (t - t_0)^2$	Ecuación de posición
Ecuación de la velocidad	$v = \frac{x_f - x_0}{t_f - t_0}$	Ecuación de la velocidad (también llamada «Ecuación de la velocidad instantánea») $v_f = v_0 + a \cdot (t - t_0) \\ v_f^2 = v_0^2 + 2 \cdot a \cdot (x_f - x_0)^2$ Ecuación de la velocidad media $v_{med} = \frac{x_f - x_0}{t_f - t_0}$	Ecuaciones de la velocidad
Ecuación de la aceleración	NO TIEME	$a = \frac{v_f - v_0}{t_f - t_0}$	Ecuación de la aceleración

Caída Libre

Ecuaciones Movimiento Vertical

	Movimiento Vertical hacia Abajo (+g)	Movimiento Vertical hacia Arriba (-g)
1	$V_f = V_0 + gt$	$V_f = V_0 - gt$
2	$V_f^2 = V_0^2 + 2gh$	$V_f^2 = V_0^2 - 2gh$
3	$h = V_0 t + \frac{1}{2} g t^2$	$d = V_0 t - \frac{1}{2} g t^2$
4	$h_n = V_0 + \frac{1}{2}a(2n-1)$	$d_n = V_0 + \frac{1}{2}g(2n-1)$

Tiro Parabólico

Tiro Semiparabólico

Universidad Autónoma de Bucaramanga

.

.

¡GRACIAS!