UnfoldingComparison ATLAS/CMS -

LHC TOP WG meeting 14-15 Nov 2019, CERN Olaf Behnke (DESY)

Tip: overview talk on unfolding methods in HEP by M. Kuusela

https://indico.desy.de/indico/event/22731/session/5/contribution/24/material/slides/0.pdf

Precision dσ^{tt}/dx measurements with 2016 data

- → Measurements reach few percent uncertainties
- \rightarrow Highly sensitive to gluon PDF, α_s and m_t
- → Use different statistical tools for detector corrections (=unfolding), lets compare them

Compare dott/dx measurements

	ATLAS lepton+jets 2015/16, 36 fb ⁻¹ arXiv:1908.07305	CMS Dilepton 2016, 36 fb ⁻¹ arXiv:1904.05237
Unfolding Tool	D'Agostini iterative arXiv:1010.0632 via RooUnfold arXiv:1105.1160	TUnfold JINST 7 (2012) T10003
Regularisation	Early stopping after few iterations	Tikhonov curvature
Statistical uncertainties	Pseudo experiments	Error propagation
Model uncertainties	Unfold alternative MCs with nominal MC	Unfold data with alternative MC

Unfolding means estimating λ from D=y+b

Unfolding of λ

Detector effects + background

Max. Likelihood solution gaussian approximation

Same # of λ and y bins: $\lambda = K^{-1} y$

More y bins: minimize $\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \, \mathbf{V_y}^{-1} \, [\mathbf{y} - \mathbf{K}\lambda]$

Often instable high frequency components of unfolded $\lambda \rightarrow$ regularisation

TUnfold:

$$\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda] + \boldsymbol{\tau}^2 ||\mathbf{L}(\lambda - \lambda_0)||^2$$
Bias vector

Regularisation strength

Matrix: unity, 1st or 2nd derivatives

Regularisation strength criterion

should use objective criteria such as Akaike information, Cross validation and numerous others

TUnfold:

$$\chi^2 = [\mathbf{y} - \mathbf{K}\lambda]^t \mathbf{V_y}^{-1} [\mathbf{y} - \mathbf{K}\lambda] + \boldsymbol{\tau}^2 ||\mathbf{L}(\lambda - \lambda_0)||^2$$

Two criteria available for choosing τ :

- 1. L-curve: balancing the two χ^2 terms ---
- 2. Minimizing average global correlation

Do we really always need regularisation?

Unfolding without regularisation

CMS: $d\sigma^{tt}(p_T(t),y(t))$

PhD thesis
I. Korol, DESY
Uni Hamburg

$$\tau = 0$$

with V = covariance matrix from unfolding

→ Looks ok

$\tau = 0.0006$ from min. global correlation

→ Correl. spread out

CMS Results published in EPJC 77 (2017) 459

Regularisation effect → final PDF fit

Add $d\sigma^{tt}(m_{tt},y_{tt})$ to proton PDF fit \rightarrow constrain g(x) at high x

D'Agostini iterative unfolding arXiv:1010.0632

$$\lambda_j^{(k+1)} = \frac{\lambda_j^{(k)}}{\sum_{i=1}^n K_{ij}} \sum_{i=1}^n \frac{K_{ij} y_i}{\sum_{l=1}^p K_{il} \lambda_l^{(k)}}, \quad j = 1, \dots, p$$

- Biased towards $\lambda_j^{(0)}$ = Signal MC, inheriting lack of high frequencies
- Converges slowly to unregularized max. likelihood estimation
- Statistical uncertainties attractively small but grow with k (as bias 🔌)
- When to stop iteration? (Default in RooUnfold: 4) Need to tune for each analysis! Some analysis "It was found that after 80 iterations the unfolding bias is small enough as well as the Poisson-induced stat. fluctuations do not yet contribute."

How can we check/control biases? → See following slides

ATLAS lepton+jets: stress tests

Unfold MC p_Tt,had spectra, reweighted by straight line

Bottomline test

Idea: Comparing theory models to unfolded data should NOT be more discriminative than comparing folded theories to detector data

 \rightarrow assess with data-model χ^2 tests at both levels (stat. uncert. only)

Hadronic event shape analysis example with SVD unfolding

Material from talk M. Weber, PHYSTAT 2011

MC Generator	χ^2 values between	χ^2 values between
	data and smeared mc	unfolded data and Gen mc
PYTHIA6	421	398
HERWIG++	211	200
MADGRAPH	2590	2570
ALPGEN	3860	3860

Chi2 order is the same before and after unfolding, values are similar

No sign of too strong regularisation in this example

Bottomline test in CMS lepton+jets tt analysis

- → Number of needed iterations depend on bin-size/resolution
- → Don't use blindly the RooUnfold default of 4 iterations

Statistical uncertainties

ATLAS Lepton+jet

- using sampling techniques (pseudo experiments)
- for data, signal and background MCs

Flexible, can also handle correlations between different unfolded spectra

CMS Dilepton

- using TUnfold errorpropagation
- for data, signal and background MCs

Fast

Generator model uncertainties of response matrix

ATLAS Lepton+jet

 Unfold alternative Signal MCs using the nominal MC for detector corrections (fixed response matrix)

+

Avoid effects from data statistical fluctuations

Assume signal MC ≅ signal data

CMS Dilepton

 Unfold data with using alternative Signal MCs for detector corrections (varied response matrices)

Different distributions within bins

- → Different response matrices
- → Model Systematics

Reduced effects within smaller bins

• Idea: unfold with fine bins and then aggregate results in wide bins

→ Improved modelling systematics, as detailed in talk https://indico.desy.de/indico/event/22731/session/5/contribution/24/material/slides/0.pdf

Summary

✓ New levels of precision (few %) reached in ATLAS and CMS unfolded dott/dx with 2016 data

√ Several powerful unfolding tools available: TUnfold, SVD,

D'Agostini, Full Bayes and more

✓ Need careful optimisation of binning, regularisation and closure and bias tests (e.g. bottomline* test)

✓ Outlook: Will probably see more profile likelihood based unfoldings

ATLAS-CONF-2019-025

Appendix

Unfolding with removing 'bad' events from Response Matrix

Invented example: compare two bin event counts to theory:

Theory prediction at gen level: (150, 50)

Data true values at gen level: (100, 100)

events:
$$K_G = \begin{pmatrix} 0.6 & 0.6 \\ 0 & 0.6 \end{pmatrix}$$

Response Matrix: Good events: $K_G = \begin{pmatrix} 0.6 & 0. \\ 0. & 0.6 \end{pmatrix}$ Bad events: $K_B = \begin{pmatrix} 0.2 & 0.2 \\ 0.2 & 0.2 \end{pmatrix}$

Fold theory to detector level: (130, 70)

<Data> at detector level: (100, 100)

Take example: observed data events (100,100):

- 1. Correct for good events fraction \rightarrow (60,60)
- 2. Unfold to gen level with $K_G^{-1} \rightarrow (100,100)$

Det. level:

$$\chi^2$$
 data-theory
= $9^2 + 9^2 = 18$

Unfolded level:

CMS example for profile likelihood unfolding

Performed with Higgs combine tool

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

Smeared $P_T \rightarrow$

Underflow bins and 2d-TUnfolding

Example: top p_T cross sections

Include underflow bin(s) in unfolding and publish results in fiducial region

→ minimizes MC model systematics for migrations in- and out fiducial range

Other fiducial cuts, e.g rapidity y of top

- → useful to include for unfolding of p_T also underflow bin in y (and for any other fiducial cut variable)
- → TUnfold provides multi-dimensional unfolding with automated internal mapping to 1d-arrays

H1 TUnfolded jet cross sections EPC C75 (2015) 2, 65

	Extended analysis phase space	Measurement phase space for jet cross sections
NC DIS phase space	$100 < Q^2 < 40000\mathrm{GeV}^2$	$150 < Q^2 < 15000\mathrm{GeV}^2$
	0.08 < y < 0.7	0.2 < y < 0.7
Jet polar angular range	$-1.5 < \eta_{\mathrm{lab}}^{\mathrm{jet}} < 2.75$	$-1.0 < \eta_{\rm lab}^{\rm jet} < 2.5$
Inclusive jets	$P_{\mathrm{T}}^{\mathrm{jet}} > 3 \mathrm{GeV}$	$7 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
Dijets and trijets	$3 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
		$M_{12} > 16\mathrm{GeV}$

- → Simultaneously unfolded 1,2 and 3 jet event cross sections
- → Among the worldwide most precise jet measurements
- → Unfolding effort pays off

Wide bins and model systematics

Generator events more uniformly distributed in bin

More generator events at low bin edge

- → Different response matrices K
- → Contributes to model systematics