Equations

Chapter 2 Motion in One Dimension

DISPLACEMENT	$\Delta x = x_f - x_i$
AVERAGE VELOCITY	$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$
AVERAGE SPEED	average speed = $\frac{\text{distance traveled}}{\text{time of travel}}$
AVERAGE ACCELERATION	$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$
DISPLACEMENT	$\Delta x = \frac{1}{2}(\nu_i + \nu_f)\Delta t$
These equations are valid only for constantly accelerated, straight-line motion.	$\Delta x = \nu_i \Delta t + \frac{1}{2} a (\Delta t)^2$
FINAL VELOCITY	$v_f = v_i + a\Delta t$
These equations are valid only for constantly accelerated, straight-line motion.	$v_f^2 = v_i^2 + 2a\Delta x$

Chapter 3 Two-Dimensional Motion and Vectors

This equation is valid only for right triangles. TANGENT, SINE, AND $\cos \theta = \frac{\text{opp}}{\text{hyp}}$ $\cos \theta = \frac{\text{adj}}{\text{hyp}}$

 $c^2 = a^2 + b^2$

These equations are valid only for right triangles.

PYTHAGOREAN THEOREM

VERTICAL MOTION OF A PROJECTILE
$$v_{y,f} = a_y \Delta t$$
THAT FALLS FROM REST

These equations assume that air resistance is negligible, and apply only when the initial vertical velocity is zero. On Earth's surface, $a_y = -g = -9.81 \text{ m/s}^2$.

 $\Delta y = \frac{1}{2} a_y (\Delta t)^2$

HORIZONTAL MOTION OF A
$$v_x = v_{x,i} = \text{constant}$$
 PROJECTILE $\Delta x = v_x \Delta t$ $\Delta t = v_x \Delta t$