F-07 (ANSYS)

Формулировка задачи:

Дано: Стержень постоянной жёсткости с шарнирными опорами по краям нагружен распределённой силой q и сосредоточенной силой силой $q \cdot l$. E — модуль упругости материала; I_z — изгибный момент инерции.

Построить: Эпюру внутренней перерезывающей силы Q_Y ; Эпюру внутреннего изгибающего момента M_Z .

Аналитический расчёт (см. F-07) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню только пункты, относящиеся к прочностным расчётам:

 ${\tt M_M} > {\tt Preferences} > {\tt Otmetute}$ "Structural" > OK

Нумеровать точки и линии твердотельной модели:

```
U_M > PlotCtrls > Numbering >
OTMETUTE KP, LINE;

Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Add Cystons Delete
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $I/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие	Результат
4	Cвойства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Material Edit Fevote Help Material Color Fevote Help Material Models Defined Material Models Available Material Models Defined Material Models Available Material Number 1 Ti Temperatures 0 EX PROY Add Temperature Delete Temperature OK Caxol Help
	Твердотельное моделирование	,
5	Ключевые точки— границы участков: $A \to 1$, $B \to 2$, $C \to 3$ и $D \to 4$ М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X, Y, Z пишем 0, 0, 0 > Apply > NPT пишем 2 X, Y, Z пишем l , 0, 0 > Apply > NPT пишем 3 X, Y, Z пишем $3 \times l$, 0, 0 > Apply > NPT пишем 4 X, Y, Z пишем $4 \times l$, 0, 0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	Y X 2 3 4

Nº	Действие	Результат
6	Tpu yчастка — mpu линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 3 и 4 > OK	Y X T.1 2 T.2 3 T.3 4
7	Onopы:Левая:M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "UX"Lab2 установить "UY" > OKПравая:M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 3 ключевую точку > OK > Lab2 установить "UY" > OK	X T.1 2 T.2 3 T.3 4

№	Действие	Результат
8	Cocpedomoченная сила: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку > OK > Lab установить "FY" VALUE установить "-1/2" > OK	X T.1 2 T.2 3 T.3 4
	Конечноэлементная модель	
9	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	
10	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK	Edit Window C Window 1 C Window 2 C Window 3 C Window 4 C Window 5 Display Type C Entity Plots Graph Plots Wey Points Lines F ON Areas F ON Wolumes F ON Nodes D On Dements D On Dements D On Dements D On

№	Действие	Результат
11	Участки без распределённых нагрузок можно бить одним конечным элементом, участок с распределённой нагрузкой (длиной 2*l) разобъём на 20 элементов: М_М > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines > Левой кнопкой мыши кликаем на линии L1 и L3 > ОК NDIV пишем 1 > Аррlу > Левой кнопкой мыши кликаем на линии L2 > ОК NDIV пишем 20 > ОК Обновляем изображение: U_M > Plot > Lines При необходимости корректируйте масштаб: или	X T.1 2
12	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение: U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные конечные элементы, чёрные точки - их узлы.	<mark>У</mark> 7_ X
13	Поперечная распределённая нагрузка q: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Pressure > On Beams > Левой кнопкой мыши отмечаем 20 элементов среднего участка > Apply > LKEY пишем 1 VALI пишем q > OK	X

14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	Y X
	Расчёт	
15	Запускаем расчёт:M_M > Solution > Solve > Current LSКогда он закончится, появится окно «Solution is done!». Закройте это окно.	
	Просмотр результатов	
16	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	

```
Силовая схема:
    U M > PlotCtrls > Symbols >
    [/PBC] устанавливаем в положение "For Individual"
    Убираем галочку с "Miscellaneous"
    Surface Load Symbols устанавливаем Pressures
    Show pres and convect as устанавливаем Arrows
    > OK >
    В окне "Applied Boundary Conditions"
      U установить "Off"
    Rot установить "Off"
      F установить "Symbol+Value"
      М установить "Symbol+Value"
17
    > OK >
    В окне "Reactions"
    NFOR установить "Off"
    NMOM установить "Off"
    RFOR установить "Symbol+Value"
    RMOM установить "Symbol+Value"
    > OK
    Обновляем изображение: U M > Plot > Elements
    Получаем тот же результат, что и на рис. 1а. (числа, выделенные синим цветом).
    В рабочем поле видим следующее:
    - Красным цветом начерчены внешняя сила и распределённая нагрузка;
    - Малиновым цветом нарисованы реактивные силы.
    Цветовая шкала будет состоять из десяти цветов:
    U M > PlotCtrls > Style > Contours > Uniform Contours >
    NCONT пишем 10
    > OK
```

No	Действие	Результат
19	Cocmaвление эпюры внутренней перерезывающей силы: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "2" > Apply > "By sequence num", "SMISC,", "8" > OK > > OK > Close	
20	Инвертирование эпюры внутренней перерезывающей силы: Строчку SMISC2 умножаем на -1, получаем строчку QYI: М_М > General Postproc > Element Table > Multiply LabR пишем QYI FACT1 пишем -1 Lab1 устанавливаем SMIS2 Lab2 устанавливаем -none- > Apply Строчку SMISC8 умножаем на -1, получаем строчку QYJ: М_М > General Postproc > Element Table > Multiply LabR пишем QYJ FACT1 пишем -1 Lab1 устанавливаем SMIS8 Lab2 устанавливаем SMIS8 Lab2 устанавливаем -none- > OK Смотрим таблицу результатов:	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMS2 SMS 2 Time= 1,0000 (Current) SMS8 SMS 8 Time= 1,0000 (Current) OYI CALC SMUL Time= 1,0000 (Current)
	Смотрим таолицу результатов: M_M > General Postproc > Element Table > Define Table > Close	

№	Действие	Результат
21	Прорисовка эпюры внутренней перерезывающей силы: М_М > General Postproc > Plot Results > Contour Plot > Line Elem Res > Установить LabI в положение "QYI" Установить LabJ в положение "QYJ" > ОК Получаем тот же результат, что и на рис. 16 (только числа, выделенные синим цветом). Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.	1 LINE STRESS STEE=1 SUB =1 TIME=1 QYI QYI MIN =-1.5 ELEM=21 MAX =-5 ELEM=2 -1.5 -1.173 .1 .5
22	Для того, чтобы лучше понимать, каким точкам стержня какое значение эпюры соответствует, повторите действие №17. Увидите, совмещённые с эпюрой внешние силы (кроме распределённых, увы) и реакции.	LINE STRESS STEP=1 SUB =1 TIME=1 QYI QYI MIN =-1.5 ELLEM=21 MAX =.5 ELLEM=2 F RFOR -1.5 -1.173 .1 .5
23	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	A Present here inst.

Прорисовка эпюры внутреннего изгибающего момента:

 ${\tt M_M}$ > General Postproc > Plot Results > Contour Plot

> Line Elem Res >

LabI установить "SMIS6"

LabJ установить "SMIS12"

Fact пишем 1

> OK

Получаем тот же результат, что и на *puc. 1в.* (только числа, выделенные синим цветом). Значения показывает цветовая шкала.

Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.

Поиск координаты x_{max} максимума эпюры:

Определить координату максимума мы можем с погрешностью, не превышающей размер конечного элемента. Чем меньше размер элемента на участке с максимумом (чем больше на этом участке элементов), тем точнее мы определим значемие x_{max} .

Выделяем элемент, в одном из узлов которого внутренний изгибающий момент максимален (номер этого элемента 7 указан при прорисовке эпюры).

U_M > Plot > Replot

Видим кусочек эпюры только на выделенном элементе. Максимум на левом (то есть, начальном) узле. Номер начального узла выделенного элемента равен 8:

U M > List > Elements > Nodes+Attributes

Координата узла №8 равна $x_8 = 1,5*l \approx x_{max}$:

U M > List > Elements > Nodes+Attributes

Как и должно быть (см. рис.1): $x_{max}=l+x^*=l+0,5^*l=1,5^*l$. Значит, в данном частном случае, максимум эпюры точно приходится на узел №8.

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.