L60: Digital Logic Lab

Note: This work must be completed by the end of the lab on WEEK OF FEB 29, 2016

Name:	ID:

Goals:

- 1. Be able to use Karnaugh maps.
- 2. Be able to compute Hamming codes.

Tasks

• Create a circuit that, given 6 data bits, computes the corresponding 4 Hamming checkbits.

Deliverables:

- Hand in the four Karnaugh maps for checkbits 1, 2, 4, and 8.
- Use the labelling scheme C₁C₂D₃C₄D₅D₆D₇C₈D₉D₁₀, where *C* denotes a check bit and *D* denotes a data bit.
- Be sure to label the data inputs in ascending order (e.g., C_1 uses D_3 , D_5 , D_7 , D_9 , so D_3D_5 should be on top and D_7D_9 should be on the left hand side of the Karnaugh map for C_1).
- Go to https://kazuhikoarase.github.io/simcirjs/ and implement the circuit based on your Karnaugh maps. You are allowed (and encouraged) to use exclusive OR (XOR) gates where appropriate. (XOR is labelled EOR in SimCir.)
- Hand in a printout (screen snapshot) or your circuit.