

Affine Transformations in 3D

General form

$$\begin{bmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

Or:
$$Q = MP$$

Elementary 3D Affine Transformations

Translation

$$\begin{bmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

Scaling Around the Origin

$$\begin{bmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

Shear Around the Origin

Along x-axis

$$\begin{bmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

3D Rotation

Various representations possible

Decomposition into axis rotations

x-roll, y-roll, z-roll

Counterclockwise positive angle assumption

Three Axes to Rotate Around

Reminder: 2D Rotation

$$Q_x = \cos\theta P_x - \sin\theta P_y$$

$$Q_y = \sin\theta P_x + \cos\theta P_y$$

In matrix form:

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Or:

$$Q = \mathbf{R}(\theta)P$$

Z-Roll

$$Q_x = \cos \theta P_x - \sin \theta P_y$$

$$Q_y = \sin \theta P_x + \cos \theta P_y$$

$$Q_z = P_z$$

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & 0\\ \hline 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

X-Roll

Cyclic indexing

$$x \to y \to z \to x \to y$$

$$\left[\begin{array}{c} x \\ y \\ z \end{array}\right] \rightarrow \left[\begin{array}{c} x \\ y \\ z \\ x \end{array}\right]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ y \end{bmatrix} \qquad Q_y = \cos \theta \, P_y - \sin \theta \, P_z$$

$$Q_z = \sin \theta \, P_y + \cos \theta \, P_z$$

$$Q_x = P_x$$

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Y-Roll

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ x \\ y \end{bmatrix}$$

$$Q_z = \cos \theta P_z - \sin \theta P_x$$

$$Q_x = \sin \theta P_z + \cos \theta P_x$$

$$Q_y = P_y$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inversion of Transformations

Translation: $T^{-1}(t_x, t_y, t_z) = T(-t_x, -t_y, -t_z)$

Rotation: $R^{-1}_{axis}(\theta) = R_{axis}(-\theta)$

Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Shearing: $Sh^{-1}(a) = Sh(-a)$

Inverse of Rotations

Pure rotation only, no scaling or shear

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

$$\mathbf{M}^{-1} = \mathbf{M}^T$$

Since the rotation matrix M is an orthonormal matrix

Composition of 3D Affine Transformations

The composition of affine transformations is an affine transformation

Any 3D affine transformation can be performed as a series of elementary affine transformations

Rigid Body Transformations

Translations and rotations

Preserves lines, angles and distances

Composite 3D Rotation About the Origin

$$R(\theta_1, \theta_2, \theta_3) = R_z(\theta_3)R_y(\theta_2)R_x(\theta_1)$$

- This is known as the "Euler angle" representation of 3D rotations
- The order of the rotation matrices is important !!
- Note: The Euler angle representation suffers from singularities

Guerrilla CG Tutorial 13: The 3D Rotation Problem

Gimbal Lock

$$\begin{split} \mathbf{R}(\theta_1,\theta_2,\theta_2) &= \mathbf{R}_{\mathbf{z}}(\theta_3)\mathbf{R}_{\mathbf{y}}(\theta_2)\mathbf{R}_{\mathbf{z}}(\theta_1) \\ &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_2 & 0 & \sin\theta_2 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta_2 & 0 & \cos\theta_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ 0 & \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \mathbf{Let} \ \theta_2 &= \mathbf{90}^\circ \quad (\sin(90^\circ) = 0, \cos(90^\circ) = 1) \colon \\ \mathbf{R}(\theta_1, 90^\circ, \theta_3) &= \mathbf{R}_{\mathbf{z}}(\theta_3)\mathbf{R}_{\mathbf{y}}(90^\circ)\mathbf{R}_{\mathbf{z}}(\theta_1) \\ &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ 0 & \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta_3 & -\sin\theta_3 & 0 & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \sin\theta_1 & \cos\theta_1 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \cos\theta_3 \sin\theta_1 - \sin\theta_2 \cos\theta_1 & \cos\theta_2 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & 0 \\ 0 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & -\cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \cos\theta_3 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & \cos\theta_2 \cos\theta_1 + \sin\theta_3 \sin\theta_1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{bmatrix}$$

Loss of a Rotational Degree of Freedom

$$\begin{split} \mathbf{R}(\pmb{\theta}_1,90^c,\pmb{\theta}_3) &= \begin{bmatrix} 0 & \cos\theta_3\sin\theta_1 - \sin\theta_3\cos\theta_1 & \cos\theta_1\cos\theta_1 + \sin\theta_3\sin\theta_1 & 0 \\ 0 & \cos\theta_3\cos\theta_1 + \sin\theta_3\sin\theta_1 & -\cos\theta_3\sin\theta_1 + \sin\theta_3\cos\theta_1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \sin(\theta_1-\theta_3) & \cos(\theta_1-\theta_3) & 0 \\ 0 & \cos(\theta_1-\theta_3) & -\sin(\theta_1-\theta_3) & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \sin\theta & \cos\theta & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{R}(\pmb{\theta}), \end{split}$$

where $\theta = \theta_1 - \theta_3$

Thus, the two remaining rotational degrees of freedom, θ_1 and θ_3 , have collapsed into a single rotational degree of freedom θ , which is the difference of the two rotational angles

Guerrilla CG Tutorial: 14 – Euler (Gimbal Lock) Explained

There are Alternatives

It is often convenient to use other representations of 3D rotations that do not suffer from Gimbal Lock

- Advanced concepts
 - Quaternions
 - Exponential Maps

Rotation Around an Arbitrary Axis

Euler's theorem:

Any rotation or sequence of rotations around a point is equivalent to a single rotation around an axis that passes through the point

What does the matrix look like?

Rotation Around an Arbitrary Axis

Vector (axis): u

Rotation angle: β

Point: P

Method:

- 1. Two rotations to align **u** with x-axis
- 2. Do x-roll by β
- 3. Undo the alignment

Derivation

$$\cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$

2.
$$\mathbf{R}_{x}(\beta)$$

$$\sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$

3.
$$\mathbf{R}_{y}(-\theta) \mathbf{R}_{z}(\phi)$$

$$\sin(\phi) = u_y/|\mathbf{u}|$$
$$\cos(\phi) = \sqrt{u_x^2 + u_z^2}/|\mathbf{u}|$$

$$R_y(-\theta) R_z(\phi) R_x(\beta) R_z(-\phi) R_y(\theta)$$

We should add translation too if the axis is not through the origin

- 1. Affine transformations are composed of elementary ones
- 2. Preservation of affine combinations of points
- 3. Preservation of lines and planes
- 4. Preservation of parallelism of lines and planes
- 5. Relative ratios are preserved

Affine Combinations of Points

$$W = a_1 P_1 + a_2 P_2$$

$$T(W) = T(a_1 P_1 + a_2 P_2) = a_1 T(P_1) + a_2 T(P_2)$$

Proof: from linearity of matrix multiplication

$$MW = M(a_1P_1 + a_2P_2) = a_1MP_1 + a_2MP_2$$

Preservations of Lines and Planes

$$L(t) = (1 - t)P_1 + tP_2$$

$$T(L) = (1 - t)T(P_1) + tT(P_2) = (1 - t)MP_1 + tMP_2$$

$$Pl(s,t) = (1 - s - t)P_1 + tP_2 + sP_3$$

$$T(Pl) = (1 - s - t)T(P_1) + tT(P_2) + sT(P_3)$$

$$= (1 - s - t)MP_1 + tMP_2 + sMP_3$$

Preservation of Parallelism

$$L(t) = P + t\mathbf{u}$$

$$ML = M(P + t\mathbf{u}) = MP + M(t\mathbf{u}) \rightarrow$$

 $ML = MP + t(M\mathbf{u})$

 ${f Mu}$ independent of P

Similarly for planes

Transformations of Coordinate Systems

Coordinate systems consist of basis vectors and an origin (point)

They can be represented as affine matrices

Therefore, we can transform them just like points and vectors

This provides an alternative way to think of transformations—

as changes of coordinate systems

Transforming a Point by Transforming Coordinate Systems

Transforming a Point by Transforming Coordinate Systems

Transforming a Point by Transforming Coordinate Systems

Reminder: Coordinate Systems

Coordinate system: *O*, **a**, **b**, **c**,

$$\mathbf{v} = [v_1 \ v_2 \ v_3]^T \rightarrow \mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$$

$$P = [p_1 \ p_2 \ p_3]^T \to P - O = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

 $P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$

Reminder: Coordinate Systems

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & O \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \to \mathbf{v} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & O \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{bmatrix}$$

$$P = O + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \to P = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & O \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix}$$

Transforming C_1 into C_2

What is the relationship

$$C_1: P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$C_2: P = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

$$O'=T(O),$$

$$i' = T(i),$$

$$\mathbf{j}' = T(\mathbf{j}),$$

$$\mathbf{k}' = T(\mathbf{k})$$

Derivation

By definition P is the linear combination of vectors $\mathbf{i'}, \mathbf{j'}, \mathbf{k'}$ and point O'.

$$P = x'\mathbf{i}' + y'\mathbf{j}' + z'\mathbf{k}' + O'$$

In coordinate system C_1 :

$$P_{C_1} = x' \mathbf{i}'_{C_1} + y' \mathbf{j}'_{C_1} + z' \mathbf{k}'_{C_1} + O'_{C_1}$$

Derivation

$$P_{C_1} \ = \ x' \mathbf{i}_{C_1}' + y' \mathbf{j}_{C_1}' + z' \mathbf{k}_{C_1}' + O_{C_1}'$$

We know that $[\mathbf{i}'_{C_1},\mathbf{j}'_{C_1},\mathbf{k}'_{C_1},O'_{C_1}]=T([\mathbf{i},\mathbf{j},\mathbf{k},O])$

$$\begin{split} P_{C_1} &= x'T(\mathbf{i}) + y'T(\mathbf{j}) + z'T(\mathbf{k}) + T(O) \\ &= x'\mathbf{M}\mathbf{i} + y'\mathbf{M}\mathbf{j} + z'\mathbf{M}\mathbf{k} + \mathbf{M}O \\ &= x'\mathbf{M} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + y'\mathbf{M} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + z'\mathbf{M} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \mathbf{M} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \mathbf{M} \begin{bmatrix} x' \\ 0 \\ 0 \\ 0 \end{bmatrix} + \mathbf{M} \begin{bmatrix} 0 \\ y' \\ 0 \\ 0 \end{bmatrix} + \mathbf{M} \begin{bmatrix} 0 \\ 0 \\ z' \\ 0 \end{bmatrix} + \mathbf{M} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= \mathbf{M} \begin{bmatrix} \begin{bmatrix} x' \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ y' \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ z' \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} = \mathbf{M} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} \end{split}$$

P in C_1 vs P in C_2

$$C_1 \mapsto C_2$$
 T

$$P_{C_1} = \mathbf{M} P_{C_2}$$

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

Transformations as a Change of Basis

So, we know that

$$P_{C_1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M} P_{C_2}$$

Now, what is M with respect to the basis vectors?

$$P_{C_2} = x' \mathbf{i}'_{C_2} + y' \mathbf{j}'_{C_2} + z' \mathbf{k}'_{C_2} + O'_{C_2} = x' \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + y' \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + z' \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P_{C_2} = x' \mathbf{i}'_{C_2} + y' \mathbf{j}'_{C_2} + z' \mathbf{k}'_{C_2} + O'_{C_2} = x' \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + y' \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + z' \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P_{C_1} = x'\mathbf{i}'_{C_1} + y'\mathbf{j}'_{C_1} + z'\mathbf{k}'_{C_1} + O'_{C_1} = x' \begin{bmatrix} i'_x \\ i'_y \\ i'_z \\ 0 \end{bmatrix} + y' \begin{bmatrix} j'_x \\ j'_y \\ j'_z \\ 0 \end{bmatrix} + z' \begin{bmatrix} k'_x \\ k'_y \\ k'_z \\ 0 \end{bmatrix} + \begin{bmatrix} O'_x \\ O'_y \\ O'_z \\ 1 \end{bmatrix}$$

$$P_{C_1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M}P_{C_2}$$

Transformations as a Change of Basis

$$P_{C_1} = \mathbf{M} P_{C_2}$$

$$P_{C_1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M} P_{C_2}$$

That is:

We can view transformations as a change of coordinate system

Successive Transformations of the Coordinate System

$$\begin{matrix} C_1 \mapsto C_2 \mapsto C_3 \\ T_1 & T_2 \end{matrix}$$

Working backwards:
$$P_{C_2} = \mathbf{M}_2 P_{C_3} \rightarrow \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M}_2 \begin{bmatrix} x'' \\ y'' \\ z'' \\ 1 \end{bmatrix}$$

$$P_{C_1} = \mathbf{M}_1 P_{C_2} \rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{M}_1 \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M}_1 \mathbf{M}_2 \begin{bmatrix} x'' \\ y'' \\ z'' \\ 1 \end{bmatrix}$$

Rule of Thumb

Transforming a point *P*:

Transformations: T_1 , T_2 , T_3

Matrix: $\mathbf{M} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$

Point is transformed by MP

Each transformation happens with respect to the same coordinate system

Transforming a coordinate system:

Transformations: T_1 , T_2 , T_3 (not generally the same as the ones above)

Matrix: $\mathbf{M} = \mathbf{M}_1 \mathbf{M}_2 \mathbf{M}_3$

A point has coordinates MP in the original coordinate system

Each transformation happens with respect to **previous** coordinate system

Rule of Thumb

To find the transformation matrix that transforms P from C_A coordinates to C_B coordinates, we find a sequence of transformations that align C_B to $C_{A,}$ accumulating matrices from left to right

Explanation of This Rule

If we think coordinate systems,

M takes C_A from the left and produces C_B on the right:

$$C_A \stackrel{\longrightarrow}{\mathbf{M}_B} = C_B$$

After this transformation we "talk" in C_B coordinates (right side).

If we think points, then we go the other way; \mathbf{M} takes P_B on the right and produces the P_A coordinates on the left:

$$P_A = \overline{\mathbf{M}}_B P_B$$

Transformation \mathbf{M} : ${}_{A}\mathbf{M}_{B}$

Explanation of This Rule

Transformation M: ${}_{A}\mathbf{M}_{B}$

Consider this simple example, where to produce C_B we translate C_A by +1 along the x axis:

$$P_A = (2,1)$$
 $P_B = (1,1)$

If we move C_A by +1 in x to transform it into C_B then the x coordinate of P with respect to the new system is reduced by 1 (C_B is closer to P than C_A by 1).

So, if we want to transform the coordinates of P from C_B to C_A we need to add 1 in x. Exactly what we need to do to transform C_A to C_B .

Remember

Transformations are represented by affine matrices Rotate/Scale/Shear Translate

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{m}_{14} \\ m_{24} \\ m_{34} \\ 0 & 1 \end{bmatrix}$$

Coordinate systems are represented by

affine matrices too

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transforming Coordinate Systems vs Transforming Points: An Example

Let point
$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
 wrt the comonical coordinate system $\mathbf{I} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & O \end{bmatrix}$,

where

$$\mathbf{\hat{i}} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \qquad \mathbf{j} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \qquad \mathbf{k} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix}, \qquad O = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix};$$

i.e, the point is represented as

$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = xi + yj + zk + O$$

$$= \begin{bmatrix} i & j & k & O \end{bmatrix} P$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{I}P = P$$

(Note: The canonical coordinate system is represented by the affine identity matrix I

Transforming Coordinate Systems vs Transforming Points: An Example

Now, let's transform point P to point P' by applying an affine transformation T_1 represented by the affine matrix M_1 ; i.e.,

$$P' = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \mathbf{M}_1 P \qquad \Longrightarrow \qquad P = \mathbf{M}_1^{-1} P'$$

Next, let's apply T_2 represented by M_2 to transform P' to P''; i.e.,

$$P'' = \begin{bmatrix} x'' \\ y'' \\ z'' \\ 1 \end{bmatrix} = \mathbf{M}_2 P' \qquad \Longrightarrow \qquad P' = \mathbf{M}_2^{-1} P''$$

So,

$$P'' = \mathbf{M_2}P'$$
$$= \mathbf{M_2}\mathbf{M_1}P$$

However, from the coordinate system point of view:

$$P - \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} - IP$$

$$= IM_1^{-1}P'$$

$$= IM_1^{-1}M_2^{-1}P''$$

$$= \begin{bmatrix} i & j & k & O \end{bmatrix} M_1^{-1}M_2^{-1}P''$$

Transforming Coordinate Systems vs Transforming Points: An Example

For example, let \mathbf{M}_1 be a translation by +1 and let \mathbf{M}_2 be a scaling by +2, both in the i axis:

$$\boxed{ \underline{M_1} = \begin{bmatrix} 1 & 0 & 0 & +1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} } \qquad \boxed{ \underline{M_2} = \begin{bmatrix} +2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} }$$

So

$$\mathbf{M_2M_1}P = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 2x+2 \\ y \\ z \\ 1 \end{bmatrix} = P''$$

Now

$$\mathbf{M}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{2}^{-1} = \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So

$$\begin{aligned} \mathbf{I}\mathbf{M}_{1}^{-1}\mathbf{M}_{2}^{-1}P'' &- \left(\left(\mathbf{I}\mathbf{M}_{1}^{-1} \right)\mathbf{M}_{2}^{-1} \right)P'' \\ &= \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{M}_{2}^{-1} \\ &= \begin{bmatrix} 1/2 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2x+2 \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = P \end{aligned}$$

Transforming Coordinate Systems vs Transforming Points

In general, if we transform point P to Q by applying a series of n transformations, M_1 , followed by M_2 , ..., followed by M_n ; i.e.,

$$Q = \mathbf{M_n} \dots \mathbf{M_2} \mathbf{M_1} P$$

then,

$$P = \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \dots \mathbf{M}_n^{-1} Q.$$

This can be interpreted as the canonical coordinate system, represented by I, being transformed by \mathbf{M}_1^{-1} , then being transformed by \mathbf{M}_2^{-1} , ..., then being transformed by \mathbf{M}_n^{-1} . On the LHS of the above equation, the coordinates of point P are relative to the canonical coordinate system I, whereas the coordinates of point Q on the RHS are relative to the coordinate system represented by $\mathbf{M} = \mathbf{I} \ \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \dots \mathbf{M}_n^{-1}$.