Social Choice Theory Overview

Tyler Zhu

October 22, 2018

Thanks to Prof. Wes Holliday for his talk on Arrow's Theorem and Infinite Electorates, from which these notes are based on.

1 Introduction

1.1 Profiles

Let X (the alternatives) and V (the voters) be nonempty sets. Let O(X) be the set of strict weak orders on X. A **profile** is a function $\mathbf{P}: ZV \to O(X)$.

- Write $x\mathbf{P}_i y$ for $\langle x, y \rangle \in \mathbf{P}(i)$.
- Let $\mathbf{P}(x,y) = \{i \in V | x\mathbf{P}_i y\}.$
- Let $\mathbf{P}_{|\{x,y\}}$ be the function mapping each $i \in V$ to $\mathbf{P}(i) \cap \{x,y\}^2$.

1.2 SWFs

A social welfare function (SWF) is a function $f: O(X)^V \to O(X)$.

- Think of $f(\mathbf{P})$ as society's preference ranking, given the profile \mathbf{P} of individual preference rankings.
- Write $xf(\mathbf{P})y$ for $\langle x,y\rangle \in f(\mathbf{P})$.

2 Axioms

- Universal Domain (UD)
 - Idea: our SWF should work on any collection of ballots.
 - Formally: dom(f) is the set of all profiles.
- Independence of Irrelevant Alternatives (IIA)
 - Idea: the social preference for x vs. y should depend only on how each voter ranked x vs. y.
 - Formally: for any profiles ${f P}$ and ${f P}'$ such that ${f P}_{|\{x,y\}}={f P}'_{|\{x,y\}}$:

$$xf(\mathbf{P})y \iff xf(\mathbf{P}')y.$$

- Ranking (R)
 - Idea: our voting system should yield a ranking of the candidates.
 - Formally: for any profile P, f(P) is a strict weak order.
- Pareto (P)
 - Idea: if every voter prefers x to y, then society should prefer x to y.
 - Formally: for any profile **P** with $V \subseteq \mathbf{P}(x,y)$, we have $xf(\mathbf{P})y$.

- Nondictatorship (ND)
 - Idea: no one voter should have their way no matter how others vote.
 - Formally: there is no $i \in V$ such that for all profiles **P**, if x**P**_iy then xf(**P**)y.

The main results are the following.

Theorem 1 (Arrow 1951). If $|X| \geq 3$ and V is finite, then there is no SWF satisfying Universal Domain, Independence of Irrelevant Alternatives, Ranking, Pareto, and Nondictatorship.

Theorem 2 (Fishburn 1970). If V is infinite, then there is a SWF satisfying Universal Domain, Independence of Irrelevant Alternatives, Ranking, Pareto, and Nondictatorship.