STOR 614 - Linear Programming, Spring 2019 Homework No. 6

Zhenghan Fang

May 22, 2019

Problem 1.

(a)

Convert to standard form

The initial tableau:

							Basic var
1	1	0	1	0	0	0	z = 0
0	-2	-1	1	1	0	-5	$s_1 = -5$
0	-1	2	-2	0	1	-2	$s_1 = -5$ $s_2 = -2$

Iteration 1:

							Basic var
1	1	0	1	0	0	0	z = 0
0	-2	-1	1	1	0	-5	$z = 0$ $s_1 = -5$ $s_2 = -2$
0	-1	2	-2	0	1	-2	$s_2 = -2$
ratio	1/2	0	NA	NA	NA		

Dual BFS: (0,0)

 s_1 leaves and x_2 enters.

Iteration 2:

z	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	1	0	1	0	0	0	z = 0
0	2	1	-1	-1	0	5	$x_2 = 5$
0	-5	0	0	2	1	-12	$z = 0$ $x_2 = 5$ $s_2 = -12$
ratio	1/5	NA	NA	NA	NA		

Dual BFS: (0,0)

 s_2 leaves and x_1 enters.

Iteration 3:

z	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	0	0	1	2/5	1/5	-12/5	z = -12/5
0	0	1	-1	-1/5	2/5	1/5	$x_2 = 1/5$
0	1	0	0	-2/5	-1/5	12/5	$x_1 = 12/5$
ratio	1/5	NA	NA	NA	NA		

Dual BFS: (2/5,1/5)

No leaving variable to choose.

Terminate. x = (12/5, 1/5, 0) is optimal, and the optimal value is -12/5.

(b)

Convert to standard form.

The initial tableau:

										Basic var
1	3	4	2	1	5	0	0	0	0	z = 0
0	1	-2	-1	1	1	1	0	0	-3	$s_1 = -3$
0	-1	-1	-1	1	1	0	1	0	-2	$s_2 = -2$
0	1	1	-2	2	-3	0	0	1	4	$s_2 = -2$ $s_3 = 4$

Iteration 1:

\overline{z}	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	rhs	Basic var
1	3	4	2	1	5	0	0	0	0	z = 0
0	1	-2	$\begin{bmatrix} -1 \end{bmatrix}$	1	1	1	0	0	-3	$s_1 = -3$
										$s_2 = -2$
0	1	1	-2	2	-3	0	0	1	4	$s_3 = 4$
ratio	NA	2	2	NA	NA	NA	NA	NA		

Dual BFS: (0,0,0)

 s_1 leaves and x_3 enters.

Iteration 2:

\overline{z}	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	rhs	Basic var
1	5	0	0	3	7	2	0	0	-6	z = -6
0	-1	2	1	-1	-1	-1	0	0	3	$x_3 = 3$ $s_2 = 1$
0	-2	1	0	0	0	-1	1	0	1	$s_2 = 1$
0	-1	5	0	0	-5	-2	0	1	10	$s_3 = 10$
ratio	NA	2	2	NA	NA	NA	NA	NA		

Dual BFS: (2,0,0)

No leaving variable to choose.

Terminate. x = (0, 0, 3, 0, 0) is optimal. The optimal value is -6.

Problem 2.

Proof. If (a) holds, then (b) cannot hold, because

$$p^T A > 0, x \ge 0, x \ne 0 \implies p^T A x > 0,$$

which contradicts with Ax = 0.

Suppose that (a) does not hold. Let
$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
. Consider the pair

Primal: max
$$\mathbf{1}^T x$$
 Dual: min 0
$$s.t \quad Ax = 0 \qquad \qquad s.t \quad p^T A \geqslant \mathbf{1}$$
 $x \geqslant 0$

The primal has a unique optimal solution x=0 and the optimal value is 0. Then the dual is feasible, so there exists p such that $p^T A \ge 1 > 0$.

Problem 3.

Proof. If (b) holds, then

$$a^{T}x \leq \sum_{i=1}^{m} \lambda_{i} a_{i}^{T}x \leq \sum_{i=1}^{m} \lambda_{i} (\max_{i=1,\dots,m} a_{i}^{T}x) = \max_{i=1,\dots,m} a_{i}^{T}x$$

for any $x \ge 0$.

Suppose that (a) holds. Consider the pair

Primal: max
$$a^Tx$$
 Dual: min $\sum_{i=1}^m p_i$
$$s.t \quad a_i^Tx \leqslant 1, \quad i=1,...,m$$

$$s.t \quad \sum_{i=1}^m p_i a_i \geqslant a$$

$$p_i \geqslant 0, \quad i=1,...,m$$

The primal is not infeasible (x = 0 is a trivial feasible solution). Thus, the primal has an optimal solution and the optimal value is bounded by 1. Thus, the optimal value of the dual is ≤ 1 . Thus, there exist coefficients p_i 's, such that

$$\sum_{i=1}^{m} p_i \leqslant 1,$$

$$\sum_{i=1}^{m} p_i a_i \geqslant a,$$

$$p_i \geqslant 0, \quad i = 1, ..., m.$$

$$(3.1)$$

Furthermore, consider the pair

Primal: max
$$a^Tx$$
 Dual: min $\sum_{i=1}^m -q_i$
$$s.t \quad a_i^Tx \leqslant -1, \quad i=1,...,m \qquad \qquad s.t \quad \sum_{i=1}^m q_ia_i \geqslant a$$

$$x \geqslant 0 \qquad \qquad q_i \geqslant 0, \quad i=1,...,m$$

If the primal is infeasible, then the dual is unbounded (dual cannot be infeasible because of (3.1)). If the primal is feasible, then the primal optimal value is ≤ -1 . Therefore, either way, there exist coefficients q_i 's, such that

$$\sum_{i=1}^{m} -q_i \leqslant -1 \implies \sum_{i=1}^{m} q_i \geqslant 1,$$

$$\sum_{i=1}^{m} q_i a_i \geqslant a,$$

$$q_i \geqslant 0, \quad i = 1, ..., m.$$

$$(3.2)$$

From (3.1) and (3.2), and that the feasible set of dual problem is convex, we get statement (b).

Problem 4.

- (a) The optimal solution is (0, 25, 25, 0, 0). The optimal objective function value is 300.
- (b) The dual LP:

$$\begin{array}{cccc}
\min & 50y_1 & +100y_2 \\
s.t & y_1 & +2y_2 & \geqslant 3 \\
& y_1 & +3y_2 & \geqslant 7 \\
& y_1 & +y_2 & \geqslant 5 \\
& y_1 & \geqslant 0 \\
& y_2 & \geqslant 0
\end{array}$$

A dual optimal solution is $(y_1, y_2) = (4, 1)$. The dual has only one optimal solution, because the primal LP has a nondegenerate optimal BFS.

(c) The reduced cost for x_1 will be $3 - \Delta$. For $\Delta \leq 3$, $\{x_3, x_2\}$ continues to be an optimal basis. For $\Delta \leq 3$, an optimal solution is (0, 25, 25), and the optimal value is 300. For $\Delta = 4$,

the tableau is

\overline{z}	x_1	x_2	x_3	s_1	s_2	rhs	Basic var	ratio
1	-1	0	0	4	1	300	z = 300	
0	0.5	0	1	1.5	-0.5	25	$x_3 = 25$	50
0	0.5	1	0	-0.5	0.5	25	$x_2 = 25$	50

 x_1 enters and x_3 leaves.

z	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	0	0	2	7	0	350	z = 350
							$x_1 = 50$
0	0	1	-1	-2	1	0	$x_2 = 0$

An optimal solution is (50, 0, 0, 0, 0), and the optimal value is 350.

(d)

							Basic var
1	3	0	$-\Delta$	$4 - \Theta$	1	300	$z = 300$ $x_3 = 25$
0	0.5	0	1	1.5	-0.5	25	$x_3 = 25$
0	0.5	1	0	-0.5	0.5	25	$x_2 = 25$

\overline{z}	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	$3 + 0.5\Delta$	0	0	$4 - \Theta + 1.5\Delta$	$1-0.5\Delta$	$300 + 25\Delta$	$z = 300 + 25\Delta$
0	0.5	0	1	1.5	-0.5	25	$x_3 = 25$
0	0.5	1	0	-0.5	0.5	25	$x_2 = 25$

For the current basis to remain optimal, we need

$$3 + 0.5\Delta \geqslant 0$$

$$4 - \Theta + 1.5\Delta \geqslant 0$$

$$1 - 0.5\Delta \geqslant 0$$

Thus, for $-6 \le \Delta \le 2$ and $\Theta \le 4 + 1.5\Delta$, this tableau shows an optimal solution. Optimal solution: (0, 25, 25, 0, 0), optimal value: $300 + 25\Delta$. $(\Delta, \Theta) = (2, 2)$ belongs to that range.

(e) Basic var x_2 rhs x_1 1 3 0 0 1 $300 + 4\Delta$ $z = 300 + 4\Delta$ 4 $x_3 = 25 + 1.5\Delta$ 0.50 1.5 -0.5 $25 + 1.5\Delta$ $25 - 0.5\Delta \mid x_2 = 25 - 0.5\Delta$ 1 -0.50.5 $0 \ 0.5$

For the current basis to remain optimal, we need

$$25 + 1.5\Delta \geqslant 0$$

$$25 - 0.5\Delta \geqslant 0$$

Thus, for $-50/3 \le \Delta \le 50$, the current basis continue to be optimal. The optimal value is $300 + 4\Delta$. When $\Delta = 100$,

\overline{z}	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	3	0	0	4	1	700	z = 700
0	0.5	0	1	1.5	-0.5	175	$x_3 = 175$
0	0.5	1	0	-0.5	0.5	-25	$x_2 = -25$

 x_2 leaves and s_1 enters.

z	x_1	x_2	x_3	s_1	s_2	rhs	Basic var
1	7	8	0	0	5	500	z = 500
0	2	3	1	0	1	100	$x_3 = 100$ $s_1 = 50$
0	-1	-2	0	1	-1	50	$s_1 = 50$

An optimal solution is (0, 0, 100, 50, 0), and the optimal value is 500.

Problem 5.

oblem 5.

(a) Basis:
$$\{x_1, x_6, x_3\}$$
. $A_B = \begin{bmatrix} 6 & 0 & 5 \\ 3 & 1 & 3 \\ 3 & 0 & 5 \end{bmatrix}$. $A_B^{-1} = \begin{bmatrix} 1/3 & 0 & -1/3 \\ -2/5 & 1 & -1/5 \\ -1/5 & 0 & 2/5 \end{bmatrix}$. $c_B = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$. BFS:

(5/3, 0, 3, 0, 0, 1, 0). Objective function value = 17.

(b) The largest value is 3. The optimal value is 17. If x_4, x_5, x_7 are zero, the optimal

value is reached. Thus the set of optimal solutions is {
$$\begin{vmatrix} 1/3\lambda+5/3\\\lambda\\3-\lambda\\0\\0\\1\\0 \end{vmatrix} \mid 0\leqslant\lambda\leqslant 3\}.$$

(c) If the coefficient of x_3 is $4 + \Delta$, the tableau will be

\overline{z}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	rhs	Basic var
1	0	2	$-\Delta$	1	1/5	0	3/5	17	z = 17
0	1	-1/3	0	2/3	1/3	0	-1/3	5/3	$x_3 = 175$
0	0	0	0	-1	-2/5	1	-1/5	1	$\begin{vmatrix} x_3 = 175 \\ x_2 = -25 \end{vmatrix}$
0	0	1	1	0	-1/5	0	2/5	3	$x_2 = -25$

\overline{z}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	rhs	Basic var
1	0	$2 + \Delta$	0	1	$1/5 - 1/5\Delta$	0	$3/5 + 2/5\Delta$	$17 + \Delta$	$z = 17 + \Delta$
0	1	-1/3	0	2/3	1/3	0	-1/3	5/3	$x_3 = 175$
0	0	0	0	-1	-2/5	1	-1/5	1	$x_2 = -25$
0	0	1	1	0	-1/5	0	2/5	3	$x_2 = -25$

Thus, the smallest value is
$$4-1.5=2.5$$
. The optimal value is 15.5 . The optimal value is reached if $x_2, x_4, x_5=0$. Thus, the set of optimal solutions is $\left\{ \begin{array}{c|c} 1/3\lambda+5/3 \\ 0 \\ -2/5\lambda+3 \\ 0 \\ 0 \\ 1/5\lambda+1 \\ \lambda \end{array} \right] \mid 0\leqslant \lambda\leqslant 5/2 \}.$

(d) If the value is $25 + \Delta$, the tableau will be

\overline{z}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	rhs	Basic var
1	0	2	0	1	1/5	0	3/5	$17 + 1/5\Delta$	z = 17
0	1	-1/3	0	2/3	1/3	0	-1/3	$5/3 + 1/3\Delta$	$x_3 = 175$
0	0	0	0	-1	-2/5	1	-1/5	$1-2/5\Delta$	$x_2 = -25$
0	0	1	1	0	-1/5	0	2/5	$3-1/5\Delta$	$x_2 = -25$

Thus, the largest value is 27.5. The new optimal basis will be $\{x_1, x_5, x_3\}$.

(e) Because the dual optimal solution is (1/5, 0, 3/5), the rate of change of the primal optimal value in response to a change in the largest value of resource 1, 2, 3 are 1/5, 0, 3/5, respectively. Thus, if we purchase n packages of resources, the primal optimal value increases by $3n \times 1/5 + 4n \times 3/5 = 3n$, and the cost increases by 5n. The increase of cost is greater than the increase of earnings, so we should not purchase any of this package.