CS445 Final Project Proposal

Motivation

We chose to focus on implementing the pix2pix-zero^[1] paper due to its novel approach to zero-shot image-to-image translation, leveraging pre-trained text-to-image diffusion models without the need for task-specific training or manual text prompting. Our interest lies in understanding and assessing the effectiveness of its unique mechanism for automatic editing direction discovery and cross-attention guidance for content preservation. Through this project, we hope to delve deep into the mechanics of pix2pix-zero, validating its claimed capacities and exploring its potential limitations. We also want to expand our understanding of diffusion models and their practical applications in real-world image editing.

Milestones

- Week1 (04/01 04/07):
 - o Literature review and environment setup
- Week2 (04/08 04/14):
 - o Implementing automatic editing direction discovery mechanisms
 - o Implementing cross-attention guidance for content preservation
 - o Perform initial image-to-image translation tasks as outlined in the paper
- Week3 (04/15 04/21):
 - o Perform quantitative and qualitative evaluations
 - Ablation study
- Week4 (04/22 04/28):
 - o Model acceleration with conditional GANs
 - Explore potential limitations
- Week5 (04/29 05/05):
 - o Gradio demo
 - Wrap up final report and code
 - Final submission

Evaluation

- Quantitative evaluation
 - Edit similarity rate: measuring whether the edit was applied successfully by using CLIP Acc to assess alignment with target attributes.
 - Content preservation: measuring whether the structure of the input and edited image is consistent by using Structure Dist.
 - o Background preservation: measuring if the background regions of the image stay unchanged after edits by calculating the background LPIPS error.
- Qualitative evaluation

- Create a diverse set of test images, including both real and synthetic images, to evaluate the model's robustness and versatility across various domains and editing tasks.
- Ablation study
 - Perform ablation studies to understand the contribution of key components of the methods, such as the automatic discovery of editing directions and cross-attention guidance.

Resources

- Data
 - o Images can be retrieved from the <u>LAION 5B dataset</u>, which is mentioned in Appendix D of the pix2pix-zero paper.
- Computation
 - o GPU compute environment can be accessed via Google Colab.
- GitHub repo
 - o Project's source code: https://github.com/pix2pixzero/pix2pix-zero
 - o Stable diffusion model: https://github.com/CompVis/stable-diffusion
 - o BLIP: https://github.com/salesforce/LAVIS?tab=readme-ov-file

Group Contribution

We plan on assigning 1-2 members to each milestone. The specific assignments will depend on members' background, interest, and expertise. This will be determined after performing the Literature Review milestone in Week 1.

Xiaoran Du	TBD
Simon Liu	TBD
Mohul Varma	TBD
Pascal Adhikary	TBD

Reference

1. Parmar, Gaurav, et al. "Zero-shot image-to-image translation." ACM SIGGRAPH 2023 Conference Proceedings. 2023.