Ungubugya wool D3 no nyory Merogu Paramazamin Brunainus crygent spynnu M80-2095 Konnedaro & O. C. Bapuani N135

Baganue:

Bapuart 135 Konyedarob Fran 14. Tena: lemenne glover bennoù 311 1. f(X)=-6x,+x, → extr Boganue: X,+2X, 58 a) (ociabute que zagaru 1 (pauxorpere nouu 3x1-X2 53 нашищий) и задачи 2 (раниобреть поиси sumusqua) coorbercr by name glouer bennere za-X, 20, X, 20 дачи и решиль их граджиний. 2. $f(X) = x_1 - 2x_2 \rightarrow extr$ δ) Umouzya pewerne cuunseuc-uetogoa npanux zagar 1 u 2 (U D.3 N2), kaŭtu pewerne coot-betitrijouzun gboùtheruna zagar u cpabrute ux c noujrennoum b n. α) $-X_4 + X_2 \leq 1$ $2x_1-x_2>2$ X,30, X230

3. Решение двойльвенной задачи микейного программирования

Задание а). Пример 1. Dano: $f(X) = -6X_1 + X_2 \rightarrow max$ X, +2X, 58 (1) $3X_1 - X_2 \le 3$ (2) X, X, >0 (3)

Составить двойственную зодачу и кайти её решение градически.

В прямой задаче требуется найти мансинум, учавие части ограничений упямой задачи

Праная задача содерний г ограничения, значий, в двойственной задаче будет г перинен-

праная задачи содержит г перешенних, значит, в двойственной задаче будет г ограни-

Коэффициенты целевой ф-или двойственной задачи - правые части ограничений приной

Правне части ограничений двой ственной задачи - ноэргрициенты ценьой до-или правой задачи, ч. е. (-6).

Обе перешенные прямой задачи необринатаюны, следовательно, оба ограничения двойновенной задачи сбудут перавенствани вида ">"

Рервое ограничение прямой задачи является кер-вой види " \leq ", значит перешенная $u, \geq 0$. Разучили: $q(u) = 8u + 3u \rightarrow min$ Naurum: $g(U) = 8u + 3u_2 \rightarrow min$

We + 3We ≥ -6 (1) 24,-42 = 1 (2)

4,30, 4,30 (3)

Дия градиченного решения задачи построим МДР, задаванное ограничениями (1)-(3). Ограничение (1) в задаче определяется прямой И, + 34 2 = -6, проходящей через Точни!

MDP в задаче будет ограничено этой приной и будет содержать точну (0,0), $\tau.$ К. при подстановие ноординат этой точни в ограничение (1) получаетие верное неравентью! $0 + 3.0 \ge -6$.

Ограничение (2) в задаче определяется прямой 2 и, - и = 1, проходящей через точни:

U, U₂
0 -1
2 0

MDP b zagare object orpanireno stoù pravoù u HE object cogepniate torny (0,0), T.K. npu nogetarobre noopgurat stoù term b orpanirence (2) na myraeter nebepnoe repa-beneto: 20-0>1.

Очаничения (3) в задаче задалот I-ю четверть ноординатной плосности. « DP вымочает все точии, в и-рих очаничения выпалкаются одновранению. Отнечия крайние точии получившегося множенова: А

Noctpouse yeaquest grynnique $\nabla g(U) = (8,3)^T b$ Forme (0,0).

Построим минию урових ор-им д (И)=С, проходимую через Точиз (0,0). Для этого кайдём значение константы С, подставив координаты точии в цалевую до-им»:

C = 3.0 + 3.0 = 0, и зачан построин преную $8u_1 + 3u_2 = 0$. Замечин, что построенная пря-

Построин ещё одну мини уровня до-ции, пересененнями ИДР, и очнений ёё Ф.

Будан исновь чочку минимуна ср-ши нам полнятью чочку насания минии уровня и МДР при парамленнам переносе мини Ф., в направления, противоналочным урадиекту срушции. Нам видно из черчема, это чочка A=(2,0). Томин образан получено решение задачи пошна минимуна срушищий:

U, = 2, U, =0, g(A)=g(Umin)=8. 1/2+3.0=4.

Boganue S). Rpanep 1.

Dano: $f(X) = -6x_1 + x_2 \longrightarrow max$ $x_1 + 2x_2 \le 8 \quad (1)$

 $3X_1 - X_2 \le 3(2)$

X1, X, 20 (3)

Найги решение увой съвенной задача, используря решение симплем-меходом прамой задачи.

Pewerne:

Решим прящие задачу симпленс-методам (см. UD3 13). Расилотрим 1-10 и последнного

re un	3a N1		,-6	1	0	0	Ci
Cit	511	5P.	X	X2	X3	Xq	ri
0	X3	8	1	2	1	0	9
0	Xų	3	3	-1	0	1	-3
		Δ	-6	1	0	0	

1-it 7-it

Pemerme apanoù zagaru navogute le Taduase N2, T.K. bie cumulus pazacetu nenono mutallnu, u b coctab Sazuenus ne broget ucuquet bennue repanennue.

eluna Nr			-6	1	0	0	Ci
Cip	bn.	5P.	X	K2	Xz	Xu	12
1	X ₂	4	至	1	1	0	
0	Xy	7	圣	0	1/2	1	
		Δ	-13	0		0	
		Z	1/2	1	1 5	0	
			-		1 11 ×	TUF	

Barmana copony Z: $Z_{i} = \left(\binom{1}{0}, \binom{1}{2}\right) = \frac{1}{2},$ $Z_{2} = \left(\binom{1}{0}, \binom{1}{0}\right) = 1,$ $Z_{3} = \left(\binom{1}{0}, \binom{1}{2}\right) = \frac{1}{2},$ $Z_{4} = \left(\binom{1}{0}, \binom{0}{1}\right) = 0.$

Оппинання значения двойственнях перешеннях находятья в строие 7 при перешенных, соответствующих начанным сведиания, в корядие смедования стембров единичной матрацые.

 $u_{i}^{*}=\frac{1}{2}$, $u_{i}^{*}=0$, $g(u_{min}^{*})=8\cdot\frac{1}{2}+3\cdot 0=4$

Значения друшции на оптинальной решении праной и двойственной задачи совнадант.

Orbet: gbourbenne zagara uneet penenne: $u_i^* = \frac{1}{2}$, $u_i^* = 0$, $g(u_{min}^*) = 4$.

Задание а). Пример 2. Dano: f(X)=x,-2x,-min -X,+X, 51 (1) $2X_1 - X_1 \ge 2$ (2) X1, X, 30 (3) Составить двойственную задачу и найти её решение графичения. В прямой задаче требуется найти минимум, значит умночим др-чимо на (-1) и перейдём хадаче почна манимума $f(X) = -x_1 + 2x_2 \longrightarrow max$ Правне части ограничений прямой задачи необрицательный Прямах задача содержит г ограничения, значит, в двойственной задаче сбудет г пераненних. Прямах задача содержит г пераненних, значит, в двойственной задаче сбудет г ограничения. Матрица поэрдрициентов при перешениих в ограничениях праной задачи имеет вид (-1), значит матрица поэррициентов при переменных в ограничениях двойственnoû zagaru upuwer bug (1 2). Конфрициенты ценевой рушими двойственной задачи-правые части ознаничений прамой задачи, Т.С. (1 2). Правие части ограничений двойственной задачи - кожрупизанный целевой доминан manoù zagaru, T.e. (-1) Обе пераценные прямой задачи пеотрицатемия, следовательно, оба ограничения двыственной задачи будут перавинтвами вида ">". Replot orpanirence uprioù zagara abiseñes repabenciban biga "=", znarañ nepenennas u, =0 Bropot orpanirence upravoù zagara abiseñes repabenciban biga "=", znarañ nepenennas u, <0 $g(\mathcal{K}) = \mathcal{K}_1 + 2\mathcal{K}_2 \rightarrow min$ - U, + 2 U2 & -1 (1) W, - W2 \ 2 (2) U, 20, U, 50 (3) Для графиченного решения задачи построны МДР, задаванное ограничениями (1)-(3).
Ограничение (1) в зодаче огределяеть пряной -и,+2и2=-1, проходящей через точне: MDP в задаче будет ограничено этой праной и будет содержать точну (0,0), Т. и. при подітановне поординат этой точни в ограничение (1) получатья вержое нер-во: $-0+2\cdot0 > -1$. Ограничение (2) в задаче определяется прямой и,-и,=2, проходящей через гочни!

MDP в задаче будет ограничено этой працой и НЕ обудет содержать точну (0,0), т. к. при подстано вне ноординат этой точни в ограничение (2) нолучается невермое кер-во: $0-0 \ge 2$.
Ограничения (3) в задаче задачет \overline{M} -ю четверть ноординатной плочности.

МДР вимочает все чочи, в и-рих ограничных выпачиноты одноврешеню. Отметим урай-

Notipous rpaqueur que $\nabla g(\mathcal{U}) = (1, 2)^{T}$ brown (0, 0).

Потрочи шин уровие p-иш g(U)=C, ироходицую через точи g(0,0). Дие это найдём значение помланти C, подставив поординати точии в имеврю g-имо: $C=0+2\cdot0=0$, и зачен построчи ираную $u_1+2u_2=0$. Заметим, что построчная ираная перпепдину-

Kan bugno uz reptenen. MDP que gannoù gboùetbernoù zagarn HE cynserbyet,

cregolaterono, sururyua le zagare net.

Baganue S). Repluy 2. Dano: $f(X) = x_1 - 2x_2 - \infty extr$ $-x_1 + x_2 \le 1, (1)$

 $2x_1 - x_2 \ge 2$, (2) $x_1, x_2 \ge 0$. (3)

Найли решение двойть венной задачи, испающих решение симпеш-методом прамой задачи.

lemenne: Решим прамую задочу симием-методам (см. И Д 3 N3). Раниограм 140 м последниого Таблици. Taduna NA

Завершение решения прямой задачи какодитья в чабине 1/3, т. и. среди эменеров

Д-столоца нег на одного положительного элемента

reluya N3			-1	2	0	0	- M	Cj
Cis	50	5P	X,	Xı	X3	Xų	X5	ri
2	X ₂	4	0	1	2	-1	1	
-1	Xı	3	1	0	1	-1	1	
		4	0	0	-3	1	-M-1	
			A)-clousen					

Среди элементов -стелбува нет положительних, медоватаномо, прямая задача не имеet pemenur (l'acegithem neorpanurentos-TU MDP), aregobaterono, gloaitben-nas zagara Toume ne uneet pernenus,

corracio ythemigenuo1. Ромученные выводи об отмучетвии решений прамой и двойственной задич

colnagarot.

Очвет: двой ствених задача не имеет решених, согламо ужерпидению 1.