```
Math 251, Mon 20-Sep-2021 -- Mon 20-Sep-2021
Discrete Mathematics
Fall 2021
```

Monday, September 20th 2021

Wk 4, Mo

Topic:: Functions Read:: Rosen 2.3

HW:: WW functions due Thurs.

Warmup:

(a) f(1101) = 3 f(100101)ve (b) f(1001) = 3, f(100101) = 3

- 1. For a bit string S, let f(S) give
 - a) the position of a 0-bit in S
 - b) the number of 1-bits in S 1/65

In either case, is f a function from the set of all bit strings to Z?

- 2. Given f(x) = 3x+1 and g(x) = sqrt(x).
 - a) Is f a function from R to R?
 - b) Is f surjective? \\ c) Is f injective?

 - d) Does f have an inverse function? If so, what is it? $\sqrt{(x)} = \frac{1}{3}$
 - e) Is g(f(x)) a function from R to R? (mention partial functions)

Some special functions

- characteristic functions on a set

Given any set A $\chi_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

- floor and ceiling functions
 - 1. arrange in ascending order: ceil(x), floor(x), x-1, x+1, x
 - 2. give an alternate expression for

floor(-x)

ceil(-x)

floor(x + n), where n is an integer

floor(2x)

- logarithms

MATH 251 Notes

For b > 1, define log_b(x)
Properties of logs
 inverse to b^x
 log_b (xy) = log_b x + log_b y
 log_b (x/y) = log_b x - log_b y
 log_b (x^a) = a log_b x
 log_a x = log_b x / log_b a

"f is a fn from <amain> to <a domain>."

Other phrases:

f is a fn. of a real variable ... Lomain = IR

"f is real-valued"

Codomain = IR

f is surjective precisely when: range (f) = codomain(f) $\forall y \in codomain \exists x \in domain (f(x) = y)$

f is injective precisely when: $\forall x, \in domain \ \forall x_z \in domain \ (f(x_1) = f(x_2) \rightarrow x_1 = x_2)$.

(i.e. current get the same y-value out of f from 2 different x-values.)

Ex.] $f(x) = x^2$ as a fn. from \mathbb{R} to \mathbb{R} is not injective

A bijective fn. is both surjective and injective. As a result, it has an inverse that is a function returning from B to A (if
$$f:A \rightarrow B$$
).

Turuse of
$$f(x) = 3x + 1$$

Solve for x :
$$y = -1 = 3x$$

$$x = \frac{1}{3}y - \frac{1}{3}$$

$$f^{-1}(x) = \frac{x}{3} - \frac{1}{3}$$

$$(g \circ f)(x) = g(f(x))$$

For example above

$$g(f(x)) = g(3x+1) = \sqrt{3x+1}$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2, \qquad \begin{bmatrix} -3.9 \\ 2 \end{bmatrix} = -4$$

Some special funcitons

Identity function. $\iota: A \to B$ requires $A \subseteq B$.

Indicator functions. Given a set $A \subseteq \mathbb{R}$, the indicator function on the set A is defined as

$$\chi_A(x) := \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

• evaluating an indicator function

$$\chi_{[0,5)}(5) = 0$$
 but $\chi_{[0,5)}(\pi) = 1$.

• graph of an indicator function

The floor/ceiling functions.

- how defined
- True or false?

1.
$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor)$$

2.
$$\forall x \in \mathbb{R} \ \forall m \in \mathbb{Z} \ (\lfloor x + m \rfloor = \lfloor x \rfloor + m)$$

3.
$$\forall x \in \mathbb{R} (|-x| = -|x|)$$

4.
$$\forall x \in \mathbb{R} (|2x| = |x| + |x + 0.5|)$$

5.
$$|\cdot|: \mathbb{R} \to \mathbb{Z}$$
 is a bijection.