(19) World Intellectual Property Organization International Bureau

LENDO BONTON IN CONTRACTO I TO THE CONTRACTOR OF CONTRACTOR CONTRA

(43) International Publication Date 10 October 2002 (10.10.2002)

PCT

(10) International Publication Number WO 02/079398 A2

						<u> </u>	
(51)	International Par	tent Classification7:	C	12N	60/314,018	21 August 2001 (21.08.2001)	US
					60/315,227	27 August 2001 (27.08.2001)	US
(21)	International Ap	plication Number: P	CT/US02/0	7355	60/318,403	10 September 2001 (10.09.2001)	US
` ′	•	•			60/318,510	10 September 2001 (10.09.2001)	US
(22)	International Fil	ing Dates & March 20	002 (08.03.2	20021	60/322,360	14 September 2001 (14.09.2001)	US
(22)	auternational Fit	ing Date. 6 March 20		2002)	60/322,296	14 September 2001 (14.09.2001)	US
	T T	•			60/325,378	27 September 2001 (27.09.2001)	US
(25)	Filing Language:		Er	ıglish	60/332,486	9 November 2001 (09.11.2001)	US
			;		60/345,399	9 November 2001 (09.11.2001)	US
(26)	Publication Lang	guage:	Er	ıglish	10/094,886	7 March 2002 (07.03.2002)	US
(30)	Priority Data:		· .		(63) Related by con	tinuation (CON) or continuation-in-	.nart
(••,	60/274,194	8 March 2001 (08	8 03 2001)	US	(CIP) to earlie	• •	part
	60/274,281	8 March 2001 (08	,	US	US	10/094,886 (CID
	60/274,322	8 March 2001 (08	,	US	Filed on	7 March 2002 (07.03.2	
	60/274,849	9 March 2001 (09		US	US	60/274,194 (
	60/275,578	13 March 2001 (13		US	Filed on	8 March 2001 (08.03.2	. ,
	60/275,579	13 March 2001 (13	•	US	US	60/274,281 (,
	60/275,601	13 March 2001 (13		US	Filed on	8 March 2001 (08.03.2	
	60/276,000	14 March 2001 (14	,	US	US	60/274,322 (
	60/276,776	16 March 2001 (16		US	Filed on	•	
	60/276,994	19 March 2001 (19	,	US	US	8 March 2001 (08.03.2	
	60/277,239	20 March 2001 (20	,	US	Filed on	60/274,849 (, ,
	60/277,327	20 March 2001 (20		US	US	9 March 2001 (09.03.2	,
	60/277,338	20 March 2001 (20	,	US		60/275,235 (
	60/277,791	•	,		Filed on US	12 March 2001 (12.03.2	
	60/277,833	21 March 2001 (21		US US		60/275,578 (
	60/278,152	22 March 2001 (22	,		Filed on US	13 March 2001 (13.03.2	
	•	23 March 2001 (23	,	US US		60/275,579 (, ,
	60/278,894	26 March 2001 (26			Filed on	13 March 2001 (13.03.2	
	60/278,999	27 March 2001 (27	•	US	US	60/275,601 (
	60/279,036	27 March 2001 (27		US	Filed on	13 March 2001 (13.03.2	
	60/280,233	30 March 2001 (30	,	US	US	60/276,000 (
	60/280,802	2 April 2001 (02		US	Filed on	14 March 2001 (14.03.2	•
	60/288,052	2 May 2001 (02		US	US	60/276,776 (
	60/288,066	2 May 2001 (02	•	US	Filed on	16 March 2001 (16.03.2	,
	60/288,228	2 May 2001 (02	•	US	US	60/276,994 (
	60/291,766	17 May 2001 (17	•	US	Filed on	19 March 2001 (19.03.2	,
	60/296,693	7 June 2001 (07		US	US	60/277,239 (• •
	60/296,856	8 June 2001 (08	•	US	Filed on	20 March 2001 (20.03.2	
	60/303,230	5 July 2001 (05		US	US	60/277,327 (
	60/303,237	5 July 2001 (05		US	Filed on	20 March 2001 (20.03.2	:001)
	60/310,913	8 August 2001 (08	•	US	US	60/277,338 (
	60/311,978	13 August 2001 (13		US	Filed on	20 March 2001 (20.03.2	
	60/312,191	14 August 2001 (14		US	US	60/277,791 (
	60/312,916	16 August 2001 (16	-	US	Filed on	21 March 2001 (21.03.2	:001)
	60/313,182	17 August 2001 (17	,	US	US	60/277,833 (
	60/313,626	20 August 2001 (20).08.2001)	US	Filed on	22 March 2001 (22.03.2	:001)
						[Continued on next p	age]

(54) Title: THERAPEUTIC POLYPEPTIDES, NUCLEIC ACIDS ENCODING SAME, AND METHODS OF USE

(57) Abstract: Diclosed herein are nucleic acid sequences that encode G-coupled protein-receptor related polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further disclodes therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.

US	60/278,152 (CIP)
Filed on	23 March 2001 (23.03.2001)
US	60/278,894 (CIP)
Filed on	26 March 2001 (26.03.2001)
US	60/278,999 (CIP)
Filed on US	27 March 2001 (27.03.2001)
Filed on	60/279,036 (CIP) 27 March 2001 (27.03.2001)
US	60/280,233 (CIP)
Filed on	30 March 2001 (30.03.2001)
US	60/280,802 (CIP)
Filed on	2 April 2001 (02.04.2001)
US	60/288,052 (CIP)
Filed on	2 May 2001 (02.05.2001)
US	60/288,066 (CIP)
Filed on	2 May 2001 (02.05.2001)
US	60/288,228 (CIP)
Filed on	2 May 2001 (02.05.2001)
US	60/291,766 (CIP)
Filed on	17 May 2001 (17.05.2001)
US	60/296,693 (CIP)
Filed on	7 June 2001 (07.06.2001)
US	60/296,856 (CIP)
Filed on US	8 June 2001 (08.06.2001)
Filed on	60/303,230 (CIP) 5 July 2001 (05.07.2001)
US	60/303,237 (CIP)
Filed on	5 July 2001 (05.07.2001)
US	60/310,913 (CIP)
Filed on	8 August 2001 (08.08.2001)
US	60/311,978 (CIP)
Filed on	13 August 2001 (13.08.2001)
US	60/312,191 (CIP)
Filed on	14 August 2001 (14.08.2001)
US	60/312,916 (CIP)
Filed on	16 August 2001 (16.08.2001)
US	60/313,182 (CIP)
Filed on	17 August 2001 (17.08.2001)
US	60/313,626 (CIP)
Filed on	20 August 2001 (20.08.2001)
US Vilodom	60/314,018 (CIP)
Filed on US	21 August 2001 (21.08.2001) 60/315,227 (CIP)
Filed on	27 August 2001 (27.08.2001)
US	60/318,403 (CIP)
Filed on	10 September 2001 (10.09.2001)
US	60/318,510 (CIP)
Filed on	10 September 2001 (10.09.2001)
US	60/322,296 (CIP)
Filed on	14 September 2001 (14.09.2001)
US	60/322,360 (CIP)
Filed on	14 September 2001 (14.09.2001)
US	60/325,378 (CIP)
Filed on	27 September 2001 (27.09.2001)
US	60/332,486 (CIP)
Filed on	9 November 2001 (09.11.2001)
US	60/345,399 (CIP)
Filed on	9 November 2001 (09.11.2001)

(71) Applicant (for all designated States except US): CURA-GEN CORPORATION [US/US]; 555 Long Wharf Drive, 11th floor, New Haven, CT 06511 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KEKUDA, Ramesh [IN/US]; 1213 Avalon Valley Drive, Danbury, CT 06810 (US). TCHERNEV, Velizar, T. [BG/US]; 45 Jefferson Road #3-12, Branford, CT 06405 (US). LIU, Xiaohong [CN/US]; 96 Montova Circle, Branford, CT 06405 (US). SPYTEK, Kimberly, A. [US/US]; 28 Court Street #1, New Haven, CT 06511 (US). PATTURAJAN, Meera [IN/US]; 45 Harrison Avenue, Apartment 1C, Branford, CT 06405 (US). BURGESS, Catherine, E. [US/US]; 90 Carriage Hill Drive, Wethersfield, CT 06109 (US). VERNET, Corine, A., M. [FR/US]; 1739 Foxon Road, Apartment L6, Branford, CT 06471 (US). LI, Li [CN/US]; 56 Jerimoth Road, Branford, CT 06405 (US). GOR-MAN, Linda [US/US]; 329 Monticello Drive, Branford, CT 06405 (US). MALYANKAR, Uriel, M. [IN/US]; 229 Branford Road, # 330, Branford, CT 06405 (US). BOLDOG, Ferenc, L. [HU/US]; 1687 Hartford Turnpike, North Haven, CT 06473 (US). GUO, Xiaojia [CN/US]; 713 Robert Frost Drive, Branford, CT 06405 (US). SHENOY, Suresh, G. [IN/US]; 15 Millwood Drive, Branford, CT 06405 (US). PADIGARU, Muralidhara [IN/US]; 71 Hampton Park, Branford, CT 06405 (US). TAUPIER, Raymond, J., Jr. [US/US]; 34 Pardee Place Extension, East Haven, CT 06512 (US). MILLER, Charles, E. [US/US]; 98 Saddle Hill Drive, Guilford, CT 06437 (US). CASMAN, Stacie, J. [US/US]; 17 Peck Street, North Haven, CT 06473 (US). PENA, Carol, E., A. [US/US]; 604 Orange Street, #2, New Haven, CT 06511 (US). GANGOLLI, Esha, A. [IN/US]; 31 Strawberry Hill Road, Madison, CT 06443 (US). GUSEV, Vladimir [UA/US]; 1209 Durham Road, Madison, CT 06443 (US). SMITHSON, Glennda [US/US]; 125 Michael Drive, Guilford, CT 06435 (US). ZERHUSEN, Bryan, D. [US/US]; 337 Monticello Drive, Branford, CT 06405 (US). GERLACH, Valerie [US/US]; 18 Rock Pasture Road, Branford, CT 06405 (US). POCHART, Pascale, F-J. [FR/US]; 99 Country Way, Madison, CT 06443 (US). FERNANDES, Elma, R. [IN/US]; 77 Florence Road #2B, Branford, CT 06405 (US). SHIMKETS, Richard, A. [US/US]; 5 Indian Meadows Drive, Guilford, CT 06437 (US). RASTELLI, Luca [IT/US]; 52 Pepperbush Lane, Guilford, CT 06437 (US). SPADERNA, Steven, K. [US/US]; 261 Deerfield Drive, Berlin, CT 06037 (US). LAROCHELLE, William, J. [US/US]; 15 Devonshire Lane, Madison, CT 06443 (US). ZHONG, Mei [CA/US]; Apartment 1B, 45 Harrison Avenue, Branford, CT 06405 (US). KHRAMTSOV, Nikolai, V. [RU/US]; 38 Montoya Circle, Branford, CT 06405 (US). VOSS, Edward, Z. [US/US]; 123 Knollwood Drive, Wallingford, CT 06492 (US). HERRMANN, John, L. [US/US]; 78 Barnshed Lane, Guilford, CT 06437 (US).
- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P., C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

[Continued on next page]

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

THERAPEUTIC POLYPEPTIDES, NUCLEIC ACIDS ENCODING SAME, AND METHODS OF USE

FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to novel polypeptides having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof. Methods of use encompass diagnostic and prognostic assay procedures as well as methods of treating diverse pathological conditions.

BACKGROUND OF THE INVENTION

Eukaryotic cells are characterized by biochemical and physiological processes, which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates or, more particularly, organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways include constituted of extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.

Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, such as two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine

1

effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.

Signaling processes may elicit a variety of effects on cells and tissues including by way of nonlimiting example, induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.

5

10

15

20

25

30

Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected of suffering from a condition brought on by diminished or suppressed levels of a protein effector of interest. Therefore there is a need to assay for the level of the protein effector of interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest.

SUMMARY OF THE INVENTION

The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86. The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed. The invention also involves fragments of any of the mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer

between 1 and 86, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed.

In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n-1, wherein n is an integer between 1 and 86. The variant polypeptide where any amino acid changed in the chosen sequence is changed to provide a conservative substitution.

5

10

15

20

25

30

In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.

In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 wherein said therapeutic is the polypeptide selected from this group.

In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.

In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first

subject as compared to the control sample indicates the presence of or predisposition to the disease.

In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.

5

10

15

20

25

30

In another embodiment, the invention involves a method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.

In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level relative to a wild-type test animal The promoter may or may not b the native gene promoter of the transgene.

In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, the method including introducing a cell sample

expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.

5

10

15

20

25

30

In another embodiment, the invention involves a method of treating or preventing a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, the method including administering the polypeptide to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.

In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 or a biologically active fragment thereof.

In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86; a variant of a mature form of the amino acid sequence selected from the group consisting of SEO ID NO: 2n, wherein n is an integer between 1 and 86 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.

In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence

selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.

In another embodiment, the invention involves an isolated nucleic acid molecule including a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.

5

10

15

20

25

30

In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-1, wherein n is an integer between 1 and 86.

In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.

In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID

5

10

15

20

25

30

NO: 2n, wherein n is an integer between 1 and 86, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86, or a complement of the nucleotide sequence.

In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.

In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.

In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.

In another embodiment, the invention involves a method for determining the presence of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian

subject; and comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides novel nucleotides and polypeptides encoded thereby. Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as "NOVX nucleic acids" or "NOVX polynucleotides" and the corresponding encoded polypeptides are referred to as "NOVX polypeptides" or "NOVX proteins." Unless indicated otherwise, "NOVX" is meant to refer to any of the novel sequences disclosed herein. Table 1 provides a summary of the NOVX nucleic acids and their encoded polypeptides.

25

5

10

15

20

TABLE 1. Sequences and Corresponding SEQ ID Numbers

NOVX Assignment	Internal Identification	SEQ ID NO (nucleic acid)	SEQ ID NO (polypeptide)	Homology
la	CG58548-01	1	2	Neurexophilin 1 Precursor-like
1b	174307940	3	4	Neurexophilin 1 Precursor-like
lc	CG58548-02	5	6	Neurexophilin 1 Precursor-like
1d	CG58548-03	7	8	Neurexophilin 1 Precursor-like
2a	CG58542-01	9	10	Neurophilin-like
2b	169679583	11	12	Neurophilin-like
2c	169679634	13	14	Neurophilin-like
3a	CG58540-01	15	16	Cytoplasmic-Antiproteinase 3-like

4a	CG56340-03	17	18	Interferon-like
4b	174308150	19	20	Interferon-like
5a	CG58514-01	21	22	Leprecan-like
6a	CG57887-01	23	24	Tumor suppressor-like
7a	CG57885-01	25	26	Procholoecytstokinin Precursor-like
8a	CG57865-01	27	28	Secreted protein-like
8b	171651532	29	30	Secreted protein-like
9a	CG54503-03	31	32	Gliacolin -like
10a	CG58600-01	33	34	Olfactomedin-like
11a	CG57572-01	35	36	CMP-N-Acetylneuraminate-beta-
			-	galactosamide-alpha-2,3-
				sial vltransferase like
12a	CG57518-01	37	38	Neural cell adhesion protein Big-2
				precursor-like
12b	170108372	39	40	Neural cell adhesion protein Big-2
122	1			precursor-like
12c	170108393	41	42	Neural cell adhesion protein Big-2
				precursor-like
12d	170343246	43	44	Neural cell adhesion protein Big-2
				precursor-like
12e	170343692	45	46	Neural cell adhesion protein Big-2
				precursor-like
12f	170684238	47	48	Neural cell adhesion protein Big-2
				precursor-like
12g	170534177	49	50	Neural cell adhesion protein Big-2
ŭ				precursor-like
13a	CG57409-03	51	52	Neural cell adhesion protein Big-2
				precursor-like
13b	CG57409-05	53	54	MAM and Ig domain-containing
				protein-like
13c	CG57409-06	55	56	MAM and Ig domain-containing
				protein
14a	CG59262-01	57	58	Calcium bindling protein S100P-
				like
15a	CG58635-01	59	60	S-100-like
15b	CG58635-02	61	62	Secretory carrier membrane protein-
				like
15c	CG58635-03	63	64	Secretory carrier membrane protein-
				like
16a	CG59209-01	65	66	CG3714-like
16b	174308417	67	68	CG3714-like
16c	174308429	69	70	CG3714-like
17a	CG59368-01	71	72	Preoptic regulatory factor-2-like
18a	CG58628-01	73	74	Adipophilin-like
18b	174228350	75	76	Adipophilin-like
18c	174228354	77	78	Adipophilin-like
18d	188888733	79	80	Adipophilin-like
19a	CG59342-01	81	82	FIS-like
20a	CG59486-01	83	84	Zn finger protein-like
21a	CG59446-01	85	86	Neurotransmission associated
	002511001		00	protein-like
21b	174308261	87	88	Neurotransmission associated
		"	J U	protein-like
21c	174308266	89	90	Neurotransmission associated
2.0		"	70	protein-like
21d	174308278	91	92	Neurotransmission associated
	1	1 "		protein-like
21e	174308283	93	94	Neurotransmission associated

1

21f	174308287	95	96	Neurotransmission associated protein-like
21g	174308293	97	98	Neurotransmission associated protein-like
21h	174308301	99	100	Neurotransmission associated protein-like
21i	174308311	101	102	Neurotransmission associated protein-like
21j	174308315	103	104	Neurotransmission associated
21k	174308321	105	106	protein-like Neurotransmission associated
211	174308327	107	108	protein-like Neurotransmission associated
21m	174308337	109	110	protein-like Neurotransmission associated
21n	CG59446-02	111	112	Protein-like Neurotransmission associated
	0050075 01	1,2	111	protein-like
22a	CG59375-01	113	114	Drebrin -like
23a	CG59321-01	115	116	UNC5H2-like
23b	CG59321-02	117	118	UNC5H2-like
24a	CG59591-01	119	120	Trypsin inhibitor-like
25a	CG59588-01	121	122	ISLR pecursor-like
26a	CG59584-01	123	124	Ovostatin precursor-like
26b	CG59584-02	125	126	Ovostatin precursor-like
27a	CG59417-01	127	128	Chymotrypsin precursor-like
28a	CG59415-01	129	130	Laminin type EGF-like
28b	191815704	131	132	Laminin type EGF-like
28c	191815724	133	134	Laminin type EGF-like
28d	CG59415-02	135	136	Laminin type EGF-like
29a	CG59297-01	137	138	Polycystic kidney disease 1 Protein- like
30a	CG59264-01	139	140	Polycystic kidney disease 2 Protein- like
31a	CG59623-01	141	142	Slit-like
32a	CG59247-01	143	144	Protein-tyrosine sulfotransferase- like
33a	CG59430-01	145	146	Serine Protease inhibitor-like
34a	CG59305-01	147	148	Fibronectin type III-like
34b	CG59305-02	149	150	Fibronectin type III-like
35a	CG59547-01	151	152	Adipophilin-like
36a	CG58508-01	153	154	Small inducible cytokine A4 precursor -like
36b	CG58508-02	155	156	Small inducible cytokine A4 precursor -like
36c	170072532	157	158	Small inducible cytokine A4 precursor -like
36d	170072551	159	160	Small inducible cytokine A4 precursor -like
36e	170072555	161	162	Small inducible cytokine A4 precursor -like
36f	CG58508-03	163	164	Small inducible cytokine A4 precursor -like
37a	CG59819-01	165	166	Latent transforming growth factor- like
37b	CG59819-02	167	168	Latent transforming growth factor- like
37c	CG59819-03	169	170	Latent transforming growth factor- like

38a	CG59685-01	171	172	Thrombospondin-like
38b	175070296	173	174	Thrombospondin-like
38c	175070324	175	176	Thrombospondin-like
39a	CG57167-01	177	178	Urokinase plasminogen activator surface receptor-like
40a	CG59841-01	179	180	Agrin precursor-like
41a	CG59895-01	181	182	Major urinary protein 4 precursor- like
41b	CG59895-02	183	184	Major urinary protein 4 precursor- like
42a	CG59889-01	185	186	KIAA1199-like
42b	CG59889-02	187	188	KIAA1199-like
42c	CG59889-04	189	190	KIAA1199-like
43a	CG59512-02	191	192	Small inducible cytokine A3-like
43b	CG59512-01	193	194	Small inducible cytokine A3-like
44a	CG56801-02	195	196	Thrombomodulin-like

Table 1 indicates homology of NOVX nucleic acids to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table 1 will be useful in therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table 1.

5

10

15

20

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

Consistent with other known members of the family, of proteins, identified in column 5 of Table 1, the NOVX polypeptides of the present invention show homology to, and contain domains that are characteristic of, other members of such protein families. Details of the sequence relatedness and domain analysis for each NOVX are presented in Examples 1-44.

The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table 1.

The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example 47.

Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds

according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g.a variety of cancers.

Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.

NOVX clones

10

15

20

25

30

NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.

The NOVX genes and their corresponding encoded proteins are useful for preventing, treating or ameliorating medical conditions, e.g., by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each of the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.

The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the presence or amount of the nucleic acid or the protein are to be assessed, as well as potential therapeutic applications such as the following: (i) a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and (v) a composition promoting tissue regeneration in vitro and in vivo (vi) biological defense weapon.

In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more

10

15

20

25

30

than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) an amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86; (d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and (e) a fragment of any of (a) through (d).

In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86; (b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; (c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86; (d) a variant of the amino acid sequence selected from the group consisting of SEO ID NO: 2n, wherein n is an integer between 1 and 86, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; (e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86 or any variant of said polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and (f) the complement of any of said nucleic acid molecules.

In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86; (b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; (c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1

and 86; and (d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.

NOVX Nucleic Acids and Polypeptides

5

10

15

20

25

30

One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids (e.g., NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised double-stranded DNA.

A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of a naturally occurring polypeptide, precursor form, or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length gene product encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an ORF described herein. The product "mature" form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (host cell) in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from

5

10

15

20

25

30

į

a post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.

The term "probe", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), and 100 nt, or as many as approximately, e.g., 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.

The term "isolated" nucleic acid molecule, as used herein, is a nucleic acid which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5'- and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, 0.1 kb, or less of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (*e.g.*, brain, heart, liver, spleen, etc.). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, culture medium, or of chemical precursors or other chemicals.

A nucleic acid molecule of the invention, e.g., a nucleic acid molecule having the nucleotide sequence SEQ ID NOS: 2n-1, wherein n is an integer between 1 and 86, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, et al., (eds.), MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993).

5

10

15

20

25

30

A nucleic acid of the invention can be amplified using cDNA, mRNA or, alternatively, genomic DNA as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be used as probes.

In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or a portion of this nucleotide sequence (e.g., a fragment that can be used as a probe or primer or a fragment encoding a biologically-active portion of A NOVX polypeptide). A nucleic acid molecule that is complementary to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, is one that is sufficiently complementary to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, thereby forming a stable duplex.

As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.

5

10

15

20

25

30

"Fragments" provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and are at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.

A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5' direction of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3' direction of the disclosed sequence.

"Derivatives" are nucleic acid sequences or amino acid sequences formed from the native compounds either directly, by modification, or by partial substitution. "Analogs" are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound, e.g. they differ from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type. Homologs are nucleic acid sequences or amino acid sequences of a particular gene that are derived from different species.

Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins of the invention under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1993, and below.

A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those

5

10

15

20

30

sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for A NOVX polypeptide of species other than humans, including, but not limited to vertebrates, and thus can include, e.g., frog, mouse, rat, rabbit, dog, cat, cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding a human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, as well as a polypeptide possessing NOVX biological activity. Various biological activities of the NOVX proteins are described below.

A NOVX polypeptide is encoded by the open reading frame ("ORF") of a NOVX nucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be translated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted by a stop codon. An ORF that represents the coding sequence for a full protein begins with an ATG "start" codon and terminates with one of the three "stop" codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a *bona fide* cellular protein, a minimum size requirement is often set, e.g., a stretch of DNA that would encode a protein of 50 amino acids or more.

The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises a substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86; or of a naturally occurring mutant of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86.

Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various

embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express A NOVX protein, such as by measuring a level of A NOVX-encoding nucleic acid in a sample of cells from a subject e.g., detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.

"A polypeptide having a biologically-active portion of A NOVX polypeptide" refers to polypeptides exhibiting activity similar, but not necessarily identical, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically-active portion of NOVX" can be prepared by isolating a portion SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, that encodes a polypeptide having A NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.

NOVX Nucleic Acid and Polypeptide Variants

10

15

20

25

30

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NOS:2n, wherein n is an integer between 1 and 86.

In addition to the human NOVX nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population (e.g., the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding A NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the

result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from the human SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the NOVX cDNAs of the invention can be isolated based on their homology to the human NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500, 750, 1000, 1500, 2000 or more nucleotides in length. In yet another embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.

10

15

20

25

30

Homologs (i.e., nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences (e.g., paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.

As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess at Tm, 50% of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at

5

10

15

20

25

30

pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60 °C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.

Stringent conditions are known to those skilled in the art and can be found in Ausubel, et al., (eds.), CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Preferably, the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65 °C, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50 °C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 °C, followed by one or more washes in 1X SSC, 0.1% SDS at 37 °C. Other conditions of moderate stringency that may be used are well-known within the art. See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.

In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40 °C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH

7.4), 5 mM EDTA, and 0.1% SDS at 50 °C. Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations). See, e.g., Ausubel, et al. (eds.), 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.

Conservative Mutations

5

10

15

20

25

30

In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, thereby leading to changes in the amino acid sequences of the encoded NOVX proteins, without altering the functional ability of the NOVX proteins. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence SEQ ID NOS:2n, wherein n is an integer between 1 and 86. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well known within the art.

Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 45% homologous to the amino acid sequences SEQ ID NOS:2n, wherein n is an integer between 1 and 86. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 86; more preferably at least about 70% homologous SEQ ID NOS:2n, wherein n is an integer between 1 and 86; still more preferably at least about 80% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 86; even more preferably at least about 90% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 86; and most preferably at least about 95% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 86.

An isolated nucleic acid molecule encoding A NOVX protein homologous to the protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 86, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.

5

10

15

20

25

30

Mutations can be introduced into SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of A NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.

The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.

In one embodiment, a mutant NOVX protein can be assayed for (i) the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or

biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein and A NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; (e.g. avidin proteins).

In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function (e.g., regulation of insulin release).

Antisense Nucleic Acids

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of A NOVX protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 86, or antisense nucleic acids complementary to A NOVX nucleic acid sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding A NOVX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons, which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein. The term "noncoding region" refers to 5' and 3' sequences, which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation

start site of NOVX mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).

5

25

30

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, 10 xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine. 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 15 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the 20 antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding A NOVX protein to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified

such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. A α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other. See, e.g., Gaultier, et al., 1987. Nucl. Acids Res. 15: 6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, e.g., Inoue, et al., 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, e.g., Inoue, et al., 1987. FEBS Lett. 215: 327-330.

Ribozymes and PNA Moieties

5

10

15

20

25

30

Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.

In one embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of A NOVX cDNA disclosed herein (i.e., SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, e.g., U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al. NOVX mRNA can also be

used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid (e.g., the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, e.g., Helene, 1991. Anticancer Drug Des. 6: 569-84; Helene, et al. 1992. Ann. N.Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.

In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, e.g., Hyrup, et al., 1996. Bioorg Med Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics (e.g., DNA mimics) in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996. supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.

10

15

20

25

30

PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene (e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S₁ nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).

In another embodiment, PNAs of NOVX can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes (e.g., RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking,

number of bonds between the nucleobases, and orientation (see, Hyrup, et al., 1996. supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996. supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, e.g., Mag, et al., 1989. Nucl Acid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, e.g., Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, e.g., Petersen, et al., 1975. Bioorg. Med. Chem. Lett. 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, e.g., Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, e.g., Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.

NOVX Polypeptides

5

10

15

20

25

30

A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in SEQ ID NOS:2n, wherein n is an integer between 1 and 86. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in SEQ ID NOS:2n, wherein n is an integer between 1 and 86, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.

In general, A NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed

by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.

One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, NOVX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, A NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" polypeptide or protein or biologically-active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the NOVX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language "substantially free of cellular material" includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about 10% of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins. When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the NOVX protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.

Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the NOVX proteins (e.g., the amino acid sequence shown in SEQ ID NOS:2n, wherein n is an integer between 1 and 86) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of A NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A biologically-active portion of A NOVX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acid residues in length.

5

10

15

20

25

30

Moreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.

In an embodiment, the NOVX protein has an amino acid sequence shown SEQ ID NOS:2n, wherein n is an integer between 1 and 86. In other embodiments, the NOVX protein is substantially homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 86, and retains the functional activity of the protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 86, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence SEQ ID NOS:2n, wherein n is an integer between 1 and 86, and retains the functional activity of the NOVX proteins of SEQ ID NOS:2n, wherein n is an integer between 1 and 86.

DETERMINING HOMOLOGY BETWEEN TWO OR MORE SEQUENCES

To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").

The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known

in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. J Mol Biol 48: 443-453. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86.

The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.

CHIMERIC AND FUSION PROTEINS

5

10

15

20

25

30

The invention also provides NOVX chimeric or fusion proteins. As used herein, A NOVX "chimeric protein" or "fusion protein" comprises A NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An "NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to A NOVX protein SEQ ID NOS:2n, wherein n is an integer between 1 and 86, whereas a "non-NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, e.g., a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within A NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of A NOVX protein. In one embodiment, A NOVX fusion protein comprises at least one biologically active portion of A NOVX protein. In another embodiment, A NOVX fusion protein comprises at least three

biologically active portions of A NOVX protein. Within the fusion protein, the term "operatively-linked" is intended to indicate that the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another. The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.

In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the NOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX polypeptides.

5

10

15

20

25

30

In another embodiment, the fusion protein is A NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of NOVX can be increased through use of a heterologous signal sequence.

In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between A NOVX ligand and A NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction *in vivo*. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of A NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g. promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with A NOVX ligand.

A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two

consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the NOVX protein.

NOVX AGONISTS AND ANTAGONISTS

5

10

15

20

25

30

ŕ

The invention also pertains to variants of the NOVX proteins that function as either NOVX agonists (i.e., mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis (e.g., discrete point mutation or truncation of the NOVX protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade, which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.

Variants of the NOVX proteins that function as either NOVX agonists (*i.e.*, mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants (*e.g.*, truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (*e.g.*, for phage display) containing the set of NOVX sequences therein. There are a variety of methods, which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the

desired set of potential NOVX sequences. Methods for synthesizing degenerate oligonucleotides are well known within the art. See, e.g., Narang, 1983. Tetrahedron 39: 3; Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.

5

10

15

20

25

30

POLYPEPTIDE LIBRARIES

In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of A NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of A NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S₁ nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.

Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, e.g., Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.

NOVX Antibodies

The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that

contain an antigen-binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, antibody molecules obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NOs: 2n, wherein n is an integer between 1 and 86, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

Polyclonal Antibodies

5

10

15

20

25

30

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson

(The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

Monoclonal Antibodies

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San

5

10

15

20

25

30

Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur et al., <u>Monoclonal Antibody Production Techniques and Applications</u>, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding,1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light

chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv. Fab, Fab', F(ab'), or other antigenbinding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances. Fy framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

30

5

10

15

20

25

Human Antibodies

Fully human antibodies essentially relate to antibody molecules in which the entire sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein.

Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

5

10

15

20

25

30

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al. (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively

from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

F_{ab} Fragments and Single Chain Antibodies

5

10

15

20

25

30

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)2}$ fragment; (iii) an F_{ab}

fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

Bispecific Antibodies

5

10

15

20

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a

5

10

15

20

25

30

mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding

sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

Heteroconjugate Antibodies

5

10

15

20

25

30

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and

antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., <u>J. Exp Med.</u>, <u>176</u>: 1191-1195 (1992) and Shopes, <u>J. Immunol.</u>, <u>148</u>: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. <u>Cancer Research</u>, <u>53</u>: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., <u>Anti-Cancer Drug Design</u>, <u>3</u>: 219-230 (1989).

Immunoconjugates

5

10

15

20

25

30

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is

administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

5 Immunoliposomes

10

15

20

25

30

The antibodies disclosed herein can also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>82</u>: 3688 (1985); Hwang et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).

Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention

Antibodies directed against a protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of the protein (e.g., for use in measuring levels of the protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, antibodies against the proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antigen binding domain, are utilized as pharmacologically-active compounds (see below).

An antibody specific for a protein of the invention can be used to isolate the protein by standard techniques, such as immunoaffinity chromatography or immunoprecipitation. Such an antibody can facilitate the purification of the natural protein antigen from cells and of recombinantly produced antigen expressed in host cells. Moreover, such an antibody can be used to detect the antigenic protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the antigenic protein. Antibodies directed against the protein can be used diagnostically to monitor protein levels in tissue as part of a

clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Therapeutics

5

10

15

20

25

30

Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.

Alternatively, the effect may be one in which the antibody elicits a physiological result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.

A therapeutically effective amount of an antibody of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount

required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.

Pharmaceutical Compositions of Antibodies

10

15

20

25

30

Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa.: 1995; Drug Absorption Enhancement: Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhorne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 4), 1991, M. Dekker, New York.

If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example,

hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.

ELISA Assay

5

10

15

20

25

30

An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., F_{ab} or $F_{(ab)2}$) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term "biological sample", therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro

techniques for detection of an analyte mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. *In vitro* techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in "ELISA: Theory and Practice: Methods in Molecular Biology", Vol. 42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; "Immunoassay", E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and "Practice and Thory of Enzyme Immunoassays", P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, *in vivo* techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

NOVX Recombinant Expression Vectors and Host Cells

5

10

15

20

25

30

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding A NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).

5

10

15

20

25

30

The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as *Escherichia coli*, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in *Escherichia coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the

recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. *Gene* 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amrann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).

10

15

20

25

30

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. *See, e.g.*, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (see, e.g., Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the NOVX expression vector is a yeast expression vector. Examples of vectors for expression in yeast *Saccharomyces cerivisae* include pYepSec1 (Baldari, *et al.*, 1987. *EMBO J.* 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. *Cell* 30: 933-943), pJRY88 (Schultz *et al.*, 1987. *Gene* 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).

Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. *Nature* 329: 840) and pMT2PC (Kaufman, *et al.*, 1987. *EMBO J.* 6: 187-195). When used in mammalian cells, the expression vector's control functions are

5

10

15

20

25

30

often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub, et al., "Antisense RNA as a molecular tool for genetic analysis," Reviews-Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

5

10

15

20

25

30

A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a

recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.

5 Transgenic NOVX Animals

10

15

20

25

30

The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing NOVX-encoding nucleic acid into the male pronuclei of a fertilized oocyte (e.g., by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The human NOVX cDNA sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of

NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of A NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the NOVX gene. The NOVX gene can be a human gene (e.g., the cDNA of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).

Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous NOVX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous NOVX protein). In the homologous recombination vector, the altered portion of the NOVX gene is flanked at its 5'- and 3'-termini by additional nucleic acid of the NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'- and 3'-termini) are included in the vector. See, e.g., Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced NOVX

5

10

15

20

25

30

gene has homologously-recombined with the endogenous NOVX gene are selected. See, e.g., Li, et al., 1992. Cell 69: 915.

The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras. See, e.g., Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp. 113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.

In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, See, e.g., Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell (e.g., a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G_0 phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (e.g., the somatic cell) is isolated.

Pharmaceutical Compositions

;

5

10

15

20

25

30

The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration,

5

10

15

20

25

30

suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., A NOVX protein or anti-NOVX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient

such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or com starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

5

10

15

20

25

30

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent

on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent No. 5,328,470) or by stereotactic injection (see, e.g., Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Screening and Detection Methods

5

10

15

20

25

30

The isolated nucleic acid molecules of the invention can be used to express NOVX protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect NOVX mRNA (e.g., in a biological sample) or a genetic lesion in A NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein (e.g.; diabetes (regulates insulin release); obesity (binds and transport lipids); metabolic disturbances associated with obesity, the metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.

The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, *supra*.

Screening Assays

5

10

15

20

25

30

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, *i.e.*, candidate or test compounds or agents (*e.g.*, peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, *e.g.*, NOVX protein expression or NOVX protein activity. The invention also includes compounds identified in the screening assays described herein.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of A NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. See, e.g., Lam, 1997. Anticancer Drug Design 12: 145.

A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, e.g., nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et al., 1994. Proc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; Cho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J. Med. Chem. 37: 1233.

Libraries of compounds may be presented in solution (e.g., Houghten, 1992. Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science

5

10

15

20

25

30

249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991. J. Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to A NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A NOVX protein, wherein determining the ability of the test compound to interact with A NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule. As used herein, a "target molecule" is a molecule with which A NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses A NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or A NOVX

protein or polypeptide of the invention. In one embodiment, A NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g. a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.

5

10

15

20

25

30

Determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e. intracellular Ca²⁺, diacylglycerol, IP₃, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising A NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting A NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A NOVX protein, wherein determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.

In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to A NOVX target molecule by one of the methods described

5

10

15

20

25

30

above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate A NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, *supra*.

In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A NOVX protein, wherein determining the ability of the test compound to interact with A NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of A NOVX target molecule.

The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of NOVX protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylglucoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton[®] X-100, Triton[®] X-114, Thesit[®], Isotridecypoly(ethylene glycol ether)_n, N-dodecyl--N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPSO).

In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is

incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.

In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or protein in the presence of the candidate compound is compared to the level of expression of NOVX mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater (i.e., statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of NOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression. The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.

In yet another aspect of the invention, the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993. Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX ("NOVX-binding proteins" or "NOVX-bp") and modulate NOVX activity. Such NOVX-binding proteins are also likely to be involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming A NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.

The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.

25 Detection Assays

10

15

20

30

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.

Chromosome Mapping

5

10

15

20

25

30

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences, SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome. The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.

Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. See, e.g., D'Eustachio, et al., 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.

Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one

step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.

The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).

10

15

20

25

30

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, e.g., in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland, et al., 1987. Nature, 325: 783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the NOVX gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Tissue Typing

5

10

15

20

25

30

The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymorphisms," described in U.S. Patent No. 5,272,057).

Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the 5'- and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).

Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

Predictive Medicine

The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for

prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in A NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.

Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics"). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX in clinical trials.

These and other agents are described in further detail in the following sections.

DIAGNOSTIC ASSAYS

10

15

20

25

30

An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The

nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 86, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.

5

10

15

20

25

30

An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescentlylabeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of

NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.

The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.

10

15

20

25

30

5

PROGNOSTIC ASSAYS

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant NOVX expression or activity. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder. Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected (e.g., wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be

administered the agent to treat a disorder associated with aberrant NOVX expression or activity).

5

10

15

20

25

30

The methods of the invention can also be used to detect genetic lesions in A NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding A NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: (i) a deletion of one or more nucleotides from A NOVX gene; (ii) an addition of one or more nucleotides to A NOVX gene; (iii) a substitution of one or more nucleotides of A NOVX gene, (iv) a chromosomal rearrangement of A NOVX gene; (v) an alteration in the level of a messenger RNA transcript of A NOVX gene, (vi) aberrant modification of A NOVX gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type splicing pattern of a messenger RNA transcript of A NOVX gene, (viii) a non-wild-type level of A NOVX protein, (ix) allelic loss of A NOVX gene, and (x) inappropriate post-translational modification of A NOVX protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in A NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to A NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated

that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

5

10

15

20

25

30

Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); Qβ Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in A NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations in NOVX can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, e.g., Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence.

Examples of sequencing reactions include those based on techniques developed by Maxim and

Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci. USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, e.g., Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).

5

10

15

20

25

30

Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, e.g., Myers, et al., 1985. Science 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S₁ nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton, et al., 1988. Proc. Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in NOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of *E. coli* cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. *See, e.g.,* Hsu, *et al.,* 1994. *Carcinogenesis* 15: 1657-1662. According to an exemplary embodiment, a probe based on A NOVX sequence, *e.g.,* a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. *See, e.g.,* U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP)

may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, e.g., Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79. Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen, et al., 1991. Trends Genet. 7: 5.

5

10

15

20

25

30

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE). See, e.g., Myers, et al., 1985. Nature 313: 495. When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki, et al., 1986. Nature 324: 163; Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, e.g., Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3'-terminus of one primer where,

under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, e.g., Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, e.g., Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving A NOVX gene.

Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

PHARMACOGENOMICS

10

15

20

25

30

Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity (e.g., NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancerassociated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.) In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to

5

10

15

20

25

30

determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin. Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome Pregnancy Zone Protein Precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate

agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with A NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.

MONITORING OF EFFECTS DURING CLINICAL TRIALS

10

15

20

25

30

Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of NOVX (e.g., the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.

By way of example, and not of limitation, genes, including NOVX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates NOVX activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.

In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of A NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, i.e., to decrease the effectiveness of the agent.

Methods of Treatment

5

10

15

20

25

30

The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), atrioventricular (A-V) canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, and other diseases, disorders and conditions of the like.

These methods of treatment will be discussed more fully, below.

DISEASE AND DISORDERS

Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with

Therapeutics that antagonize (i.e., reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: (i) an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (i.e., due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (see, e.g., Capecchi, 1989. Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.

Diseases and disorders that are characterized by decreased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase (i.e., are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.

Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, and the like).

PROPHYLACTIC METHODS

10

15

20

25

30

In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity. Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation

of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, A NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.

Therapeutic Methods

5

10

15

20

25

30

Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of A NOVX protein, a peptide, A NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding NOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of A NOVX protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering A NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.

Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect. One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation (e.g., cancer or immune associated disorders). Another example of such a situation is where the subject has a gestational disease (e.g., preclampsia).

Determination of the Biological Effect of the Therapeutic

5

10

15

20

25

30

In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.

In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.

Prophylactic and Therapeutic Uses of the Compositions of the Invention

The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders including, but not limited to: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancerassociated cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.

As an example, a cDNA encoding the NOVX protein of the invention may be useful in gene therapy, and the protein may be useful when administered to a subject in need thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias.

Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule (i.e., some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which

immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

5

Examples

EXAMPLE 1.

The NOV1 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 1A.

Table 1A. NOV1 Sequence Analysis			
	SEQ ID NO: 1	813 bp	
NOV1a, CG58548-01 DNA Sequence	CAAAACAAATTAAAAGATGAAGGAATACTATATCCATGTAACATGTGCCAATTTAACG AACGGTGGAAAGCTCAGAACTTCTGAAATCAGGAAGCAGCAAATCCACACTAAAGCACA TATGGACAGAAAGCAGCAAAGACTTGTCTATCAGCCGACTCCTGTCACAGACTTTTCG TGGCAAAGAATGATACAGATTTGGACCTGAGATATGACACCCCAGAACCTTATTCT GAGCAAGACCTCTGGGACTGCTGAGGAACCTCACAGACCTTCAAGAGCCTCGGCCCA GGGCCAAGAGAAGGCCCATTGTTAAAACGGGCAAGTTTAAGAAAATGTTTGGATGGGG CGATTTTCATTCCAACACTCAAAAACAGTGAAGCTGAACCTGTTGATAACTGGGAAAATT GTAGATCATGCAATGGGACATTTAGTGTTTATTTCAGGCATAATTCAACTGGTCAAG GGAATGTATCTGCAGCTTGGTACCCCCTACAAAAATCGTGGAATTTGAATATGAA AAGGTTGACAAGGCTACCAAGAACACTCTGCAACTATGACCCTTTCAAAAACCTGTT ACCAGGAGCAAACCCAAAGATCCTGGCACTATGACCCTTTCAAAAACCTGTT CTGTATTTACATTTCCTTTTTATAGTACAGATTATAAACTGGTACAGAAAAGTGTGCCCT GACTACAACCACACACCCTTACTTTCCCTCGGGATGAAGGTGACCCTT GACTACAACCACACACCCCTTACTTTCCCTCGGGATGAAGGTGAACATTGGG G		
	ORF Start: ATG at 17	ORF Stop:	TGA at 797
	SEQ ID NO: 2	260 aa	MW at 29905.5kD
NOV1a, CG58548-01 Protein Sequence	MKEYYIHVTCANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRLLSQTFRGKEND TDLDLRYDTPEPYSEQDLWDWLRNSTDLQEPRPRAKRRPIVKTGKFKKMFGWGDFHSN IKTVKLNLLITGKIVDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQQTVID AKDSKSFNCRIEYEKVDKATKNTLCNYDPSKTCYQEQTQSHVSWLCSKPFKVICIYIS FYSTDYKLVQKVCPDYNYHSDTPYFPSG		
	SEQ ID NO: 3	771 bp	
NOV1b, 174307940 DNA Sequence	GGATCCGTAACATGTGCCAATTTAACGAACGTGGAAAGTCAGAACTTCTGAAATCAG GAAGCAGCAAATCCACACTAAAGCACATATGGACAGAAAGCAGCAAAGACTTGTCTAT CAGCCGACTCCTGTCACAGACTTTTCGTGGCAAAGAATGATACAGATTTGGACCTG AGATATGACACCCCAGAACCTTATTCTGAGCAAGACCTCTGGGACTGGCTGAGGAACT CCACAGACCTTCAAGAGCCTCGGCCCAGGGCCAAGAGAAGGCCCATTGTTAAAACGGG CAAGTTTAAGAAAATGTTTGGATGGGCGATTTTCATTCCAACATCAAAACAGTGAAG CTGAACCTGTTGATAACTGGGAAAATTGTAGATCATGGCAATGGGACATTTAGTTTT ATTTCAGGCATAATTCAACTGGTCAAGGGAAATGTATCTGTCAGCTTGGTACCCCCTAC AAAAATCGTGGAATTTGACTTGGCACAACAAACCGTGATTGAT		

	TTCCCTCGGGACTCGAG		
	ORF Start: GGA at 1	ORF Stop:	E at 772
	SEQ ID NO: 4	257 aa	MW at 29326.8kD
NOV1b, 174307940 Protein Sequence	GSVTCANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRLLSQTFRGKENDTDLDL RYDTPEPYSEQDLWDWLRNSTDLQEPRPRAKRRPIVKTGKFKKMFGWGDFHSNIKTVK LNLLITGKIVDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQQTVIDAKDSK SFNCRIEYEKVDKATKNTLCNYDPSKTCYQEQTQSHVSWLCSKPFKVICIYISFYSTD YKLVQKVCPDYNYHSDTPYFPSGLE		
	SEQ ID NO: 5	813 bp	
NOV1c, CG58548-02 DNA Sequence	CAAAACAAATTAAAAGATGAAGGAATACTATATCCATGTAACATGTGCCAATTTAACGAAACGTGGAAAGTCAGAACTTCTGAAATCAGGAAGCAGCAAATCCACACTAAAGCACAAACGGTGGAAAGCAGAAGCAGCAAATCCACACTAAAGCACAATGTGACAGAAAGCAGAAAGCAGAAAGCAGAAAGCAGAAAGAA		
	ORF Start: ATG at 17	ORF Stop:	TGA at 797
	SEQ ID NO: 6	260 aa	MW at 29905.5kD
NOV1c, CG58548-02 Protein Sequence	TDLDLRYDTPEPYSEQDLWDWLRIKTVKLNLLITGKIVDHGNGTFS	INSTDLQEPRI VYFRHNSTG(LCNYDPSKT(HIWTESSKDLSISRLLSQTFRGKEND PRAKRRPIVKTGKFKKMFGWGDFHSN QGNVSVSLVPPTKIVEFDLAQQTVID CYQEQTQSHVSWLCSKPFKVICIYIS
	SEQ ID NO: 7	627 bp	
NOV1d, CG58548-03 DNA Sequence	CAAAACAAATTAAAAGATGAAGGAATACTATATCCATGTAACATGTGCCAATTTAAC AACGGTGGAAAGTCAGAACTTCTGAAATCAGGAAGCAGCAAATCCACACTAAAGCAC TATGGACAGAAAGACTTGTCTATCAGCCGACTCCTGTCACAGACTTTTC TGGCAAAGAAGAATACAGATTTGAACCTGTTGATAACTGGGAAAATTGTAGATCA GGCAATGGGACATTTAGTGTTTATTTCAGGCATAATTCAACTGGTCAAGGGAATGTA CTGTCAGCTTGGTACCCCCTACAAAAATCGTGGAATTTGACTTGGCACAACAAACCG GATTGATGCCAAAGATTCCAAGTCTTTTAATTGTCGCATTGAATATGAAAAGGTTGA AAGGCTACCAAAGAACACACTCTGCAACTATGACCCTTCAAAAACCTGTTACCAGGAG AAACCCAAAGTCATGTATCCTGGCTCTCCCAAGCCCCTTAAGGTGATCTGTATTT CATTTCCTTTTATAGTACAGATTATAAACTGGTACAGAAAGTGTGCCCTGACTACAA		
	ORF Start: ATG at 17	ORF Stop:	TGA at 614
	SEQ ID NO: 8	199 aa	MW at 22496.1kD
NOV1d, CG58548-03 Protein Sequence	MKEYYIHVTCANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRLLSQTFRGKEND TDLNLLITGKIVDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQQTVIDAKD SKSFNCRIEYEKVDKATKNTLCNYDPSKTCYQEQTQSHVSWLCSKPLKVICIYISFYS TDYKLVQKVCPDYNYHSDTPYFPSG		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1B.

Table 1B. Comparison of NOV1a against NOV1b through NOV1d.		
Protein Sequence	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV1b	8260 3255	236/253 (93%) 236/253 (93%)
NOV1c	1260 1260	243/260 (93%) 243/260 (93%)
NOV1d	1260 1199	161/260 (61%) 164/260 (62%)

Further analysis of the NOV1a protein yielded the following properties shown in Table 1C.

	Table 1C. Protein Sequence Properties NOV1a	
PSort analysis:	0.5297 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV1a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 1D.

5

	Table 1D. Geneseq Results for NOV1a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
ABB11858	Human neurexophilin homologue, SEQ ID NO:2228 - Homo sapiens, 305 aa. [WO200157188-A2, 09- AUG-2001]	8260 53305	253/253 (100%) 253/253 (100%)	e-152
AAB43066	Human ORFX ORF2830 polypeptide sequence SEQ ID NO:5660 - Homo sapiens, 253 aa. [WO200058473-A2, 05-OCT-2000]	8260 1253	253/253 (100%) 253/253 (100%)	e-152
AAM57924	Human brain expressed single exon probe encoded protein SEQ ID NO: 30029 - Homo sapiens, 235 aa. [WO200157275-A2, 09-AUG-2001]	14248 1235	235/235 (100%) 235/235 (100%)	e-140
AAB28778				5e-73

	fragment encoded by gene 45 - Homo sapiens, 128 aa. [WO200055198-A1, 21-SEP-2000]	1128	128/128 (100%)	
AAB28779	Protein fragment encoded by gene 45 - Homo sapiens, 128 aa. [WO200055198-A1, 21-SEP-2000]	104231 1128	127/128 (99%) 127/128 (99%)	4e-72

In a BLAST search of public sequence databases, the NOV1a protein was found to have homology to the proteins shown in the BLASTP data in Table 1E.

	Table 1E. Public BLASTP Results for NOV1a			
Protein Accession Number	Protein/Organism/Length	NOV1a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P58417	Neurexophilin 1 precursor - Homo sapiens (Human), 271 aa.	8260 19271	253/253 (100%) 253/253 (100%)	e-151
Q61200	Neurexophilin 1 precursor - Mus musculus (Mouse), 253 aa (fragment).	8260 1253	253/253 (100%) 253/253 (100%)	e-151
Q63366	Neurexophilin 1 precursor (Neurophilin) - Rattus norvegicus (Rat), 271 aa.	8260 19271	251/253 (99%) 252/253 (99%)	e-150
O95156	Neurexophilin 2 precursor - Homo sapiens (Human), 262 aa (fragment).	72260 74262	153/189 (80%) 170/189 (88%)	3e-93
Q28145	Neurexophilin 2 precursor (Neurophilin) - Bos taurus (Bovine), 264 aa.	72260 76264	153/189 (80%) 170/189 (88%)	4e-93

PFam analysis predicts that the NOV1a protein contains the domains shown in the Table 1F.

	Table 1F. Domain	Analysis of NOV1a	
Pfam Domain	NOV1a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

EXAMPLE 2.

The NOV2 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 2A.

	Table 2A. NOV2 Sequence Analysis		
	SEQ ID NO: 9	796 bp	
NOV2a, CG58542-01 DNA Sequence	AGGAGGAAGATGCAACTGACTCGCTGCTTCCTGTTTCCTGGTGCAGGGTAGCCTCT ATCTGGTCATCTGTGGCCAGGATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGA TGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCTCGGAAGCGGGGCCACATCTCACCT AAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCTCGGCCCCCCCC		
	ORF Start: ATG at 10	ORF Stop:	TGA at 766
	SEQ ID NO: 10	252 aa	MW at 28126.7kD
NOV2a, CG58542-01 Protein Sequence	MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSR		
	SEQ ID NO: 11	702 bp	
NOV2b, 169679583 DNA Sequence	GGATCCCAGGATGATGGTCCTCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGG GCCAGCCCCGGCCCCGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCC CATGGCCAATTCCACTCTCCTAGGGCTGCTGGCCCCCCCC		
	ORF Start: GGA at 1	ORF Stop:	
NOV2b,			MW at 26037.0kD ISPKSRPMANSTLLGLLAPPGEAWGI IVALNLLVTGKIVDHGNGTFSVHFQH
169679583 Protein Sequence	NATGOGNISISLVPPSKAVEFHO	DEQQIFIEAK	ASKIFNCRMEWEKVERGRRTSLCTHD STDYRLVQKVCPDYNYHSDTPYYPSG
	SEQ ID NO: 13	702 bp	
NOV2c, 169679634 DNA Sequence	GCCAGCCCCGGCCCCGGGTGCCTCATGGCCAATTCCACTCTCCTACCTTGGCTGGGCACCCCCAACCGCCCAACTCTTTTGGCTGGGGCGACTTCCGTCACAGGGAAGATTGTGGACAAATGCCACAGGCCAGGGAAACATAGCCACAGGCCAGGGAAACATAGTTCCACCAGGAACAGCAGATCCACAGGAACAGCAGATCCACAGGAACAGCAGATC	PEGGAAGCGG GGCTGCTGG GAACCACG TACTCCAAC CATGCCATG PCTCCATCAAC CATCATCAAC	GGACCCTGAGCGTGATGACCACGAGG GGCCACATCTCACCTAAGTCCCGCCC CCCGCCTGGGGAGGCTTGGGGCATT CCCCCCACCCTCAGCCAAGGTGAAGA ATCAAGACGGTGGCCCTGAACCTGCT GGACCTTCAGCGTCCACTTCCAACAC CCTCGTGCCCCCCAGTAAAGCTGTAG GCCAAGGCCTCCAAAATCTTCAACTG GCCGGACCTCGCTTTGCACCCACAC

	CCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCC AGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTATCGGCTGGT CCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATCTGGG CTCGAG		
	ORF Start: GGA at 1	ORF Stop	o: 5 at 703
	SEQ ID NO: 14	234 aa	MW at 26037.0kD
NOV2c, 169679634 Protein Sequence	LGQPPNRPNHSPPPSAKVKK NATGQGNISISLVPPSKAVE	IFGWGDFYSNI FHQEQQIFIEA	HISPKSRPMANSTLLGLLAPPGEAWGI KTVALNLLVTGKIVDHGNGTFSVHFQH KASKIFNCRMEWEKVERGRRTSLCTHD YSTDYRLVQKVCPDYNYHSDTPYYPSG

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.

Table 2B. Comparison of NOV2a against NOV2b through NOV2c.		
Protein Sequence	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV2b	23252 3232	218/230 (94%) 218/230 (94%)
NOV2c	23252 3232	218/230 (94%) 218/230 (94%)

Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.

	Table 2C. Protein Sequence Properties NOV2a
PSort analysis:	0.7666 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)
SignalP analysis:	Likely cleavage site between residues 23 and 24

A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 2D.

5

Table 2D. Geneseq Results for NOV2a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU29174	Human PRO polypeptide sequence #151 - Homo sapiens, 252 aa. [WO200168848-A2, 20-SEP-2001]	1252 1252	252/252 (100%) 252/252 (100%)	e-154

AAM39340	Human polypeptide SEQ ID NO 2485 - Homo sapiens, 252 aa. [WO200153312-A1, 26-JUL-2001]	1252 1252	252/252 (100%) 252/252 (100%)	e-154
AAB87571	Human PRO1327 - Homo sapiens, 252 aa. [WO200116318-A2, 08- MAR-2001]	1252 1252	252/252 (100%) 252/252 (100%)	e-154
AAB66150	Protein of the invention #62 - Unidentified, 252 aa. [WO200078961-A1, 28-DEC-2000]	1252 1252	252/252 (100%) 252/252 (100%)	e-154
AAY99401	Human PRO1327 (UNQ687) amino acid sequence SEQ ID NO:218 - Homo sapiens, 252 aa. [WO200012708-A2, 09-MAR-2000]	1252 1252	252/252 (100%) 252/252 (100%)	e-154

In a BLAST search of public sequence databases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.

Table 2E. Public BLASTP Results for NOV2a				
Protein Accession Number	Protein/Organism/Length	NOV2a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q91VX5	SIMILAR TO NEUREXOPHILIN 3 - Mus musculus (Mouse), 252 aa.	1252 1252	243/252 (96%) 246/252 (97%)	e-148
Q9Z2N5	Neurexophilin 3 precursor - Rattus norvegicus (Rat), 252 aa.	1252 1252	242/252 (96%) 246/252 (97%)	e-148
O95157	Neurexophilin 3 - Homo sapiens (Human), 221 aa (fragment).	32252 1221	221/221 (100%) 221/221 (100%)	e-134
P58417	Neurexophilin 1 precursor - Homo sapiens (Human), 271 aa.	79252 97271	114/175 (65%) 143/175 (81%)	7e-68
Q63366	Neurexophilin 1 precursor (Neurophilin) - Rattus norvegicus (Rat), 271 aa.	79252 97271	114/175 (65%) 143/175 (81%)	7e-68

PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.

Table 2F. Domain Analysis of NOV2a					
Pfam Domain	NOV2a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
No Significant Matches Found					

EXAMPLE 3.

The NOV3 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 3A.

	Table 3A. NOV3 Sequence Analysis				
	SEQ ID NO: 15	1173 bp			
NOV3a, CG58540-01 DNA Sequence	AAGATACTGTGTCAAGATAACCC CCTCTGCCCTGGCCATGGTTCTC CCAGATAGAGTCTCTGTCTCTGTC. CAGTCGCTTCTCACTGAAGTGAA ACAGGCTCTTTGGAGAGAAAACT TCAATTCTACCATGCTGAGCTGA	TTCGCACAAC CTAGGGGCAA ACCCAGGCTGC TGTCAGTTCC AGGAGCTTTC CTCAAAAAAG GAAACCAGGC TTGACAAGGA ATATTTACCC ATGCTTCCGA ACTCACAGCC CCAAAATTTA TTGTTGATGC GAGGCAGCGG CCCAGGTTCTG	TGGTACTTTTGCCATACGCCTTTTA GTGTTCTGTTCTCTGTGAGCATCT AGGGAAACACCGCAACCCAGATGGC GAGTGCAGACATTCATCGGGCTTTC ACACAGTACCTGCTGAGAACGGCCA TCTCAACGTTTAAGGAATCCTGTCT CTTTATCAGAGCTGCAGAAGAGTCC ACCGAAGGTAAAATTGAAGAGTTGT TGGTTCTTGTGAATGCTGTCTATTT GAACACCGAGGAGAGAGACTGTTTAAA CAAATGATGTTTAAGCAATCTACTT AAATCTTGGTGCTTCCATATGTTGG CGAGACCACTGACTGAGAACGGTG TGGACCACAGACTGTATATGAGACCGTG TGGACCACTGACTTGAGAACGGTG TCGAAGCCACTGCACTG		
	ORF Start: ATG at 11	ORF Stop:	TAA at 1157		
	SEQ ID NO: 16	382 aa	MW at 43163.1kD		
NOV3a, CG58540-01 Protein Sequence	SLLCHPGWSADIHRAFQSLLTEV HABLKELSFIRAAEESRKHINTW WDEQFDKENTEERLFKVSKASKE NMIIMLPDETTDLRTVEKSLTFE	NKAGTQYLLE VSKKTEGKIE EKPVQMMFKQ KLTAWTKPDC DLCLSKFVHE	SISSALAMVLLGAKGNTATOMAQIE TANRLFGEKTCOFLSTFKESCLOFY ELLPGSSIDAETRLVLVNAVYFRGN STFKKTYIGEIFTQILVLPYVGKEL MKSTEVEVLLPKFKLQEDYDMESVL SFVEVNEEGTEAAAASSCFVVAECC		

Further analysis of the NOV3a protein yielded the following properties shown in Table

5 3B.

	Table 3B. Protein Sequence Properties NOV3a				
PSort analysis:	0.6881 probability located in mitochondrial inner membrane; 0.6500 probability located in plasma membrane; 0.3773 probability located in mitochondrial intermembrane space; 0.3157 probability located in mitochondrial matrix space				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV3a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 3C.

	Table 3C. Geneseq Results for NOV3a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY55841	Human cytoplasmic antiproteinase-3 protein (CAP-3) - Homo sapiens, 376 aa. [WO9957273-A2, 11-NOV-1999]	1382 1376	328/382 (85%) 353/382 (91%)	0.0	
AAR99254	Cytoplasmic antiproteinase-3 protein - Homo sapiens, 376 aa. [WO9624650- A2, 15-AUG-1996]	1382 1376	328/382 (85%) 353/382 (91%)	0.0	
AAU30834	Novel human secreted protein #1325 - Homo sapiens, 566 aa. [WO200179449-A2, 25-OCT-2001]	1382 191566	324/382 (84%) 351/382 (91%)	0.0	
AAB11125	Human thrombin inhibitor protein - Homo sapiens, 376 aa. [US6133422- A, 17-OCT-2000]	1382 1376	279/382 (73%) 314/382 (82%)	e-153	
AAB59176	Thrombin inhibitor protein - Unidentified, 376 aa. [US6156540-A, 05-DEC-2000]	1382 1376	279/382 (73%) 314/382 (82%)	e-153	

In a BLAST search of public sequence databases, the NOV3a protein was found to have homology to the proteins shown in the BLASTP data in Table 3D.

	Table 3D. Public BLASTP Results for NOV3a				
Protein Accession Number	Protein/Organism/Length	NOV3a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P50453	Cytoplasmic antiproteinase 3 (CAP3) (CAP-3) (Protease inhibitor 9) (Serpin B9) - Homo sapiens (Human), 376 aa.	1382 1376	328/382 (85%) 353/382 (91%)	0.0	
Q96J44	SERINE (OR CYSTEINE) PROTEINASE INHIBITOR, CLADE B (OVALBUMIN), MEMBER 6 - Homo sapiens (Human), 376 aa.	1382 1376	279/382 (73%) 314/382 (82%)	e-153	
P35237	Placental thrombin inhibitor (Cytoplasmic antiproteinase) (CAP) (Protease inhibitor 6) - Homo sapiens (Human), 376 aa.	1382 1376	278/382 (72%) 312/382 (80%)	e-152	
O02739	Serine proteinase inhibitor B-43 - Bos taurus (Bovine), 378 aa.	1382 1378	252/382 (65%) 303/382 (78%)	e-139	
Q60854				e-136	

(SERINE (OR CYSTEINE)	1378	301/383 (78%)	
PROTEINASE INHIBITOR, CLADE B			
(OVALBUMIN), MEMBER 6) - Mus			
musculus (Mouse), 378 aa.			

PFam analysis predicts that the NOV3a protein contains the domains shown in the Table 3E.

Table 3E. Domain Analysis of NOV3a					
Pfam Domain	NOV3a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
serpin: domain 1 of 1	1382	170/400 (42%) 314/400 (78%)	8.8e-159		

EXAMPLE 4.

The NOV4 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 4A.

	Table 4A. NOV4 Sequence Analysis				
	SEQ ID NO: 17	502 bp			
NOV4a, CG56340-03 DNA Sequence	GCAATATTGGCAACATCCCAATGGCCCTGTCCTTTTCTTTACTGATGGCCGTGCTGGT GCTCAGCTACAAATCCATCTGTTCTCTGGGCTGATCTCTCTC				
	ORF Start: ATG at 21	ORF Stop:	TGA at 474		
	SEQ ID NO: 18	151 aa	MW at 17402.8kD		
NOV4a, CG56340-03 Protein Sequence	MALSFSLLMAVLVLSYKSICSLGCDLPQTHSLGNRRALILLAQMGRISPFSCLKDRHD FGFPQEEFDGNQFQKAQAISVLHEMIQQTFNLFSTKDSSATWEQSLLEKFSTELNQQL TEKKYSPCAWEVVRAEIMRSFSLSKIFQERLRRKE				
	SEQ ID NO: 19	396 bp			
NOV4b, 174308150 DNA Sequence	GGATCCTGTGATCTGCCTCAGACCCACAGCCTGGGTAATAGGAGGGCCTTGATACTCC TGGCACAAATGGGAAGAATCTCTCCTTTCTCCTGCCTGAAGGACAGACA				
	ORF Start: GGA at 1 ORF Stop: at 397				
	SEQ ID NO: 20	132 aa	MW at 15360.3kD		
NOV4b, 174308150 Protein	GSCDLPQTHSLGNRRALILLAQMGRISPFSCLKDRHDFGFPQEEFDGNQFQKAQAISV LHEMIQQTFNLFSTKDSSATWEQSLLEKFSTELNQQLTEKKYSPCAWEVVRAEIMRSF SLSKIFQERLRRKELE				

l ~		
Sequence		i i
Sodanno	į į	ł

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 4B.

Table 4B. Comparison of NOV4a against NOV4b and NOV4c.		
Protein Sequence	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV4b	24151 3130	128/128 (100%) 128/128 (100%)

Further analysis of the NOV4a protein yielded the following properties shown in Table 4C.

	Table 4C. Protein Sequence Properties NOV4a		
PSort analysis:	0.5231 probability located in outside; 0.1317 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 24 and 25		

A search of the NOV4a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 4D.

5

	Table 4D. Geneseq Results for NOV4a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAP20108	Sequence encoded by leukocyte interferon LeIF F cDNA - Homo sapiens, 189 aa. [GB2079291-A, 20-JAN-1982]	1151 1189	151/189 (79%) 151/189 (79%)	7e-77		
AAP40123	Sequence encoded by the cDNA insert of the recombinant plasmid CG-pBR 322/HLycIFN-1'b - Homo sapiens, 189 aa. [EP100561-A, 15-FEB-1984]	1151 1189	150/189 (79%) 150/189 (79%)	3e-76		
AAP30179	Sequence of a polypeptide with human lymphoblastoid interferon activity encoded by plasmid CG-pBR 322/HL gamma cIFN-1'b - Homo sapiens, 189 aa. [EP76489-A, 13-APR-1983]	1151 1189	150/189 (79%) 150/189 (79%)	3e-76		

AAB49780	Human interferon alpha-f amnio acid sequence - Homo sapiens, 189 aa. [WO200107608-A1, 01-FEB-2001]	1151 1189	141/189 (74%) 145/189 (76%)	2e-71
AAR62368	Interferon alpha consensus sequence - Synthetic, 187 aa. [WO9420122-A, 15- SEP-1994]	1151 1187	139/189 (73%) 144/189 (75%)	7e-69

In a BLAST search of public sequence databases, the NOV4a protein was found to have homology to the proteins shown in the BLASTP data in Table 4E.

	Table 4E. Public BLASTP Results for NOV4a					
Protein Accession Number	Protein/Organism/Length	NOV4a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
E968396	ARTIFICIAL SEQUENCE FOR CDNA INSERT OF RECOMBINANT PLASMID CG- PBR 322/HLYCIFN-1'B - vectors, 189 aa.	1151 1189	151/189 (79%) 151/189 (79%)	3e-76		
E968985	POLYPEPTIDE FOR THE USE OF IMMUNOMODULATOR, ANTI-TUMOR-AGENT - vectors, 189 aa.	1151 1189	151/189 (79%) 151/189 (79%)	3e-76		
P01568	Interferon alpha-21 precursor (Interferon alpha-F) (LeIF F) - Homo sapiens (Human), 189 aa.	1151 1189	151/189 (79%) 151/189 (79%)	3e-76		
CAA00629	ARTIFICIAL SEQUENCE FOR CDNA INSERT OF RECOMBINANT PLASMID CG- PBR 322/HLYCIFN-1'B - synthetic construct, 189 aa.	1151 1189	150/189 (79%) 150/189 (79%)	1e-75		
Q14608	LEUKOCYTE INTERFERON- ALPHA - Homo sapiens (Human), 181 aa.	9151 1181	143/181 (79%) 143/181 (79%)	3e-72		

PFam analysis predicts that the NOV4a protein contains the domains shown in the Table 4F.

Table 4F. Domain Analysis of NOV4a				
Pfam Domain	NOV4a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
interferon: domain 1 of 2	1115	81/116 (70%) 109/116 (94%)	4.9e-71	

33/36 (92%)

EXAMPLE 5.

The NOV5 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 5A.

Table 5A. NOV5 Sequence Analysis				
	SEQ ID NO: 21	203 bp		
NOV5a, CG58514-01 DNA Sequence	ACCTCTTTGCCACCATACCATGAAGGTATGCGTGATTGTCCTGTCTCCTCGTGATAGCCGCCTTCTGCTCTGTAGCACCCGAATTCCAAACCAAAAGAGGGCAAGTCTGCGCTGACCCCAGTGAGTCCTGGGTCCAGGAGTACGTGTATGACCTGCTGAACTGAGCTGCTCAGAGACAGGAAGT			
	ORF Start: ATG at 20	ORF St	op: TGA at 176	
	SEQ ID NO: 22	52 aa	MW at 5408.4kD	
NOV5a, CG58514-01 Protein Sequence	MKVCVIVLSLLVIIAAFCSVA	LSAPNSKPKE <i>I</i>	ASKSALTPVSPGSRSTCMTWN	

Further analysis of the NOV5a protein yielded the following properties shown in Table

5 5B.

10

	Table 5B. Protein Sequence Properties NOV5a			
PSort analysis:	0.8200 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen)			
SignalP analysis:	Likely cleavage site between residues 24 and 25			

A search of the NOV5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 5C.

Table 5C. Geneseq Results for NOV5a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	i	

In a BLAST search of public sequence databases, the NOV5a protein was found to have homology to the proteins shown in the BLASTP data in Table 5D.

Table 5D. Public BLASTP Results for NOV5a

Protein Accession Number	Protein/Organism/Length	NOV5a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
B60407	monocyte adherence-induced protein 5 alpha - human, 52 aa.	152 152	43/52 (82%) 48/52 (91%)	4e-19

PFam analysis predicts that the NOV5a protein contains the domains shown in the Table 5E.

	Table 5E. Domain Analysis of NOV5a				
Pfam Domain	NOV5a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
	No Significant	Matches Found			

EXAMPLE 6.

5

The NOV6 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 6A.

	Table 6A. NOV	6 Sequence Analysis
	SEQ ID NO: 23	2305 bp
NOV6a, CG57887-01 DNA Sequence	SEQ ID NO: 23 ATTTTTCCCCTCGGCTC GCTGCTACTGCTGCTGCTCCCGGGGGGGGCCCCCTACGCGGGGGGCCCCCCAGGGGGCCTCCGGGCCCCAGGGGGCCCCAGGGGGCCCCAGGGGGCCCAGGGGGG	
	GGAGCCAGGTCTGGCTA' AGGGGCTCACGGTGCTTC GGGTGCTAAGCTGCTTC	ETGGGGTGCTGCTGCAGCTGGCTAAGGATGCAGCTGGGGCT PCGTGGTCGCCGCTCCCCTCACACCCCCCATGAACGCTTCG AAGGCTGCGCAGCTGGCCCGGGCTGGGACAGTGGGCAGTCA PGGAGGTGAGCGAGCGGGTGCGGACCTTGACCCAGGCCTAC CCTGCATCTGTCCTTCACCCACCTGGTGTGCCGCAGCGCCA

	CGTCCTGGACCCTGACACGGAG GACTACAGCGGACTCCTCTACCT CGGAGCCCAACGCCCTCACTGTC GGCCTTCAGCTCCGGTGTCGAGA CGCTGTGCCCTGGCACTGTGGCA TAGAAGCCAAAGAACTGCTGCAG	AGTGCTGGCG CAACGATGAC ACGGCTCGGG ATCCCCATGG CACGTGGGCA GAGTCACAGG	GTCACCCAGTGCACGAGACAACTG GGAGCCCCCAGCCTACACCTATCGG TTCCAGGGTGGGGACCTGTTCTCA TGCGTCTCGCTGTGGGCGCCTTGT GGTGTGGGCCGTGACTCGGGACGG CCTGAGCACAGGGAGCAGGAGAGAGAAGA AGGAGGAGGAGAAGAGAAGAGAAGA TAGCCGCAGGCACCAGAGGGTCCAA
	GACAAGACTGGAAGGGCACCTCG CTTGAGGATGTGGCCACTTGACT ORF Start: ATG at 36	TGTGGAAGGC	GAGCTGTGAGTGGCTGAGCCAGCTC CATCTTGATG TGA at 2244
	SEQ ID NO: 24	736 aa	MW at 81805.5kD
NOV6a, CG57887-01 Protein Sequence	LLREALRSQAALGRVRLDCGASC AALRRADCLTQCAARRLGPGGAA AAAHTFFVANPMHLQMREDMAKY GLALPRLEEALQGSLAQMESCRA LQCRQRCVGEAATRPGRSFPVPD DEAAKRALNQYQAQLGEPRPGLG WTPAALIPEALREKLREDQEKRP ERAVLDGLLTPAECGVLLQLAKD RAGTVGSQGAKLLLEVSERVRTL HPVHADNCVLDPDTGECWREPPA	AADPGAALPA RLRVGSALRD RRMSGVRPQS DCEGPEEQQG FLPNQLRRLH PREDIQRFII WDHEPVKPKF AAGAGARSGY TQAYFSPERF YTYRDYSGLI TRGRRCALAL	PQAPDLLYADGLRAYAAGAWAPAVA VLLGAPEPDSGPGPTQGWERQLLR VAFRRREPYNYLQRAYYQLKKLDLAA FRDLETPPHWAAYDTGLELLGRQEA BEEEEDGAASQGGLYEAIAGHWIQV BEAHAQVGNLSQAIENVLSVLLFYPE BRSLGEKRQLYYAMEHLGTSFKDPDP PLTYWKDVLLLEGVTLTQDSRQLNGS RGRRSPHTPHERFEGLTVLKAAQLA PLHLSFTHLVCRSAIEGEQEQRMDLS LYLNDDFQGGDLFFTEPNALTVTARV WHTWAPEHREQEWIEAKELLQESQE

Further analysis of the NOV6a protein yielded the following properties shown in Table

	Table 6B. Protein Sequence Properties NOV6a				
PSort analysis:	0.4991 probability located in lysosome (lumen); 0.3700 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 21 and 22				

A search of the NOV6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several

5 homologous proteins shown in Table 6C.

6B.

Table 6C. Geneseq Results for NOV6a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB93142	Human protein sequence SEQ ID NO:12045 - Homo sapiens, 736 aa. [EP1074617-A2, 07-FEB-2001]	37714 35720	314/706 (44%) 421/706 (59%)	e-162	
AAB93215				e-161	

	NO:12194 - Homo sapiens, 736 aa. [EP1074617-A2, 07-FEB-2001]	35720	421/706 (59%)	
AAB88373	Human membrane or secretory protein clone PSEC0109 - Homo sapiens, 736 aa. [EP1067182-A2, 10-JAN-2001]	37714 35720	313/706 (44%) 421/706 (59%)	e-161
AAB36392	Human tumour suppressor Gros1-S protein SEQ ID NO:4 - Homo sapiens, 736 aa. [WO200065047-A1, 02-NOV- 2000]	37714 35720	312/706 (44%) 419/706 (59%)	e-160
AAB36393	Mouse tumour suppressor Gros1-L protein SEQ ID NO:6 - Mus musculus, 747 aa. [WO200065047- A1, 02-NOV-2000]	24714 22722	308/721 (42%) 424/721 (58%)	e-159

In a BLAST search of public sequence databases, the NOV6a protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.

Table 6D. Public BLASTP Results for NOV6a				
Protein Accession Number	Protein/Organism/Length	NOV6a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q13512	PROTEIN B - Homo sapiens (Human), 551 aa.	186736 1551	551/551 (100%) 551/551 (100%)	0.0
Q15740	CHROMOSOME 12P13 SEQUENCE, COMPLETE SEQUENCE (HYPOTHETICAL 62.3 KDA PROTEIN) - Homo sapiens (Human), 551 aa.	186736 1551	550/551 (99%) 550/551 (99%)	0.0
O88836	CHROMOSOME 6 BAC-284H12 (RESEARCH GENETICS MOUSE BAC LIBRARY) COMPLETE SEQUENCE (RESEARCH GENETICS MOUSE BAC LIBRARY) (GENE RICH CLUSTER, B GENE) - Mus musculus (Mouse), 545 aa.	190736 1545	477/549 (86%) 508/549 (91%)	0.0
Q96SL5	CDNA FLJ14774 FIS, CLONE NT2RP4000051, WEAKLY SIMILAR TO SYNAPTONEMAL COMPLEX PROTEIN SC65 - Homo sapiens (Human), 736 aa.	37714 35720	314/706 (44%) 421/706 (59%)	e-161
Q96SK8	CDNA FLJ14791 FIS, CLONE NT2RP4001064, WEAKLY SIMILAR	37714 35720	313/706 (44%) 421/706 (59%)	e-161

 	 ,	
PROTEIN SC65 - Homo sapiens		
(Human), 736 aa.		

PFam analysis predicts that the NOV6a protein contains the domains shown in the Table 6E.

Table 6E. Domain Analysis of NOV6a						
Pfam Domain	NOV6a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
	No Significant	Matches Found				

EXAMPLE 7.

5

10

The NOV7 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 7A.

	Table 7A. NOV7 Sequence Analysis					
	SEQ ID NO: 25	372 bp				
NOV7a, CG57885-01 DNA Sequence	GACGCAGCCGGTGCCTCCCGGGCGCCCCGTAGGCAGCTGAGCTGAGCTGGCAAGACCCCATCCCTCACTTCTGCCAAGACCCCATCCCCTCACTTCTGCCCC	GCGTGTGCCTGTGTGTGCTGATGGCGGTACTGGCGGCTGG GCCTCCCGCAGATCCCGCGGGCTCCGGGCTGCAGCGGGCA CAGCTGAGGGTATCGCAGAGAACGGATGGCGAGTCCCGAG TGGCAAGATACATCCAGCAGGCCCGGAAAGGTAAGAATGC TTCTGCCCTTGTTCCCAGGCTCCCGATGCTGACCCTCTTC GGGATGACCTCTCTCGGTAGGAAACAAGCAACATGATTTC				
	ORF Start: ATG at 3	ORF Stop	p: TGA at 336			
	SEQ ID NO: 26	111 aa	MW at 11598.4kD			
NOV7a, CG57885-01 Protein Sequence	MNSGVCLCVLMAVLAAGALTQPVPPADPAGSGLQRAEEAPRRQLRVSQRTDGF GALLARYIQQARKGKNAASPSLTSALVPRLPMLTLFSSASLMGMTSLGRKQAT					

Further analysis of the NOV7a protein yielded the following properties shown in Table 7B.

	Table 7B. Protein Sequence Properties NOV7a				
PSort analysis:	0.8200 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in microbody (peroxisome)				
SignalP analysis:	Likely cleavage site between residues 21 and 22				

A search of the NOV7a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 7C.

•	Table 7C. Geneseq Results for NOV7a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE10339	Human cholecystokinin (CCK) - Homo sapiens, 136 aa. [WO200168828-A2, 20-SEP-2001]	1110 22129	82/113 (72%) 86/113 (75%)	1e-35	
AAB24381	Human procholecystokinin amino acid sequence SEQ ID NO:1 - Homo sapiens, 115 aa. [WO200061192-A2, 19-OCT-2000]	1110 1108	82/113 (72%) 86/113 (75%)	1e-35	
AAY04729	Rat brain cholecystokinin precursor amidation region - Rattus sp, 105 aa. [WO9910361-A1, 04-MAR-1999]	5110 1104	56/106 (52%) 62/106 (57%)	1e-19	
AAB24382	Human CCK A amino acid sequence CCK-58 SEQ ID NO:2 - Homo sapiens, 58 aa. [WO200061192-A2, 19-OCT-2000]	4691 141	31/46 (67%) 34/46 (73%)	1e-07	

In a BLAST search of public sequence databases, the NOV7a protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.

	Table 7D. Public BLASTP Results for NOV7a				
Protein Accession Number	Protein/Organism/Length	NOV7a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P06307	Procholecystokinin precursor (CCK) - Homo sapiens (Human), 115 aa.	1110 1108	82/113 (72%) 86/113 (75%)	4e-35	
P23362	Procholecystokinin precursor (CCK) - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 115 aa.	1110 1108	77/113 (68%) 83/113 (73%)	3e-32	
P01356	Procholecystokinin precursor (CCK) - Sus scrofa (Pig), 114 aa.	1110 1107	66/113 (58%) 73/113 (64%)	2e-24	
Q9DCL5	ADULT MALE KIDNEY CDNA, RIKEN FULL-LENGTH ENRICHED LIBRARY, CLONE:0610025O15, FULL INSERT SEQUENCE - Mus musculus (Mouse), 115 aa.	1110	63/113 (55%) 71/113 (62%)	1e-22	
P09240	Procholecystokinin precursor (CCK) - Mus musculus (Mouse), 115 aa.	1110 1108	62/113 (54%) 69/113 (60%)	2e-21	

PFam analysis predicts that the NOV7a protein contains the domains shown in the Table 7E.

Table 7E. Domain Analysis of NOV7a					
Pfam Domain	NOV7a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Gastrin: domain 1 of 1	271	37/80 (46%) 64/80 (80%)	7.5e-22		

EXAMPLE 8.

The NOV8 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 8A.

	Table 8A. NOV8 Sequence Analysis				
	SEQ ID NO: 27	479 bp			
NOV8a, CG57865-01 DNA Sequence	TGACTGTATCGCCGGAATTCATGAAGGATCGATTCAAGTGGTTGTCGCTGGAGCTGCT CCTGCTGATAGGCGCCGCAGTCGCCTTTCCGGACGCGCTCCGGCGGACACGTGCGTG				
	ORF Start: ATG at 21	ORF Start: ATG at 21 ORF Stop: TAA at 456			
	SEQ ID NO: 28	145 aa	MW at 16248.2kD		
NOV8a, CG57865-01 Protein Sequence	MKDRFKWLSLELLLIGAAVAFPDGAPADTCVKQRANQPNHGKARSQPAHSNPYEVVA VAQTYHPGQQISVVIYPHSDQSTVFRGFFLQARDANSNEWIGEWVQSENTKTIPECSA ITHSDNRDKLGAKLIWKAPQNKRGQVYFT				
	SEQ ID NO: 29	384 bp			
NOV8b, 171651532 DNA Sequence	GGATCCTTTCCGGACGGCGTCCGGCGGACACGTGCGTGAAGCAGCGGGCGAATCAGC CGAATCATGGCAAGGCCCGGAGTCAGCCGGCTCACTCGAATCCGTACGAGGTGGTGGC CGTTGCGCAGACCTACCATCCCGGCCAGCAGATATCGGTGGTCATCTATCCGCACTCG GACCAGAGCACTGTCTTCCGGGGATTCTTCCTGCAGGCGCGCGATGCCAACTCGAACG AGTGGATCGGCGAGTGGGTGTAGAGCGAGAACACCAAGACCATTCCAGAGTGCTCGGC CATCACGCACTCGGACAACCGGGACAAGCTGGGGGCCAAGCTCATCTGGAAGGCACCG CAAAATAAGCGGGGACAAGTCTACTTCACGCTCGAG				
	ORF Start: GGA at 1 ORF Stop: TAG at 253				
	SEQ ID NO: 30	84 aa	MW at 9265.1kD		
NOV8b, 171651532 Protein Sequence	GSFPDGAPADTCVKQRANQPNHG DQSTVFRGFFLQARDANSNEWIG		NPYEVVAVAQTYHPGQQISVVIYPHS		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 8B.

Table 8B. Comparison of NOV8a against NOV8b and NOV8c.			
Protein Sequence NOV8a Residues/ Identities/ Match Residues Similarities for the Matched Region			
NOV8b	21103 284	82/83 (98%) 83/83 (99%)	

Further analysis of the NOV8a protein yielded the following properties shown in Table 8C.

	Table 8C. Protein Sequence Properties NOV8a			
PSort analysis:	0.6377 probability located in outside; 0.1821 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 22 and 23			

A search of the NOV8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 8D.

Table 8D. Geneseq Results for NOV8a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
	No Significant	Matches Found	i		

In a BLAST search of public sequence databases, the NOV8a protein was found to have homology to the proteins shown in the BLASTP data in Table 8E.

	Table 8E. Public BLASTP Results for NOV8a					
Protein Accession Number	Protein/Organism/Length	NOV8a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q9VAN1	CG14515 PROTEIN - Drosophila melanogaster (Fruit fly), 145 aa.	1145 1145	144/145 (99%) 144/145 (99%)	6e-82		

PFam analysis predicts that the NOV8a protein contains the domains shown in the Table 8F.

Table 8F. Domain Analysis of NOV8a			
Pfam Domain	NOV8a Match Region		Expect Value

		Similarities for the Matched Region	
Reeler: domain 1 of 1	30145	31/150 (21%) 78/150 (52%)	2.8e-05

EXAMPLE 9.

The NOV9 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 9A.

	Table 9A. NOV9 Sequence Analysis				
	SEQ ID NO: 31	669 bp			
NOV9a, CG54503-03 DNA Sequence	TCCCGCGGGCCAGCGCACTACGAGATGCTGGGTCGCCGCATGGTGTGCGACCCGC ATGGGCCCGTGGCCCTGGTCCCGACGGCGCGCCTGCTTCCGTGCCCCCCTTCCCGCC AGGCGCCAAGGGAGAGGTGGGCCGGCGGGAAAGCAGGCCTGCGGGGGCCCCTTGGA CCACCAGGTCCAAGAGGCCCCCAGGAGAACCCGGCAGGCCAGGCCCCCC				
	ORF Start: TCC at 1	ORF Stop: 1	th at 670		
	SEQ ID NO: 32	223 aa	MW at 23296.1kD		
NOV9a, CG54503-03 Protein Sequence	SRGPAHYEMLGRCRMVCDPHGPRGPGPDGAPASVPPFPPGAKGEVGRRGKAGLRGPPC PPGPRGPPGEPGRPGPPGPGPGGVAPAAGYVPRIAFYAGLRRPHEGYEVLRFDDV VTNVGNAYEAASGKFTCPMPGVYFFAYHVLMRGGDGTSMWADLMKNGQVRASAIAQDD DQNYDYASNSVILHLDVGDEVFIKLDGGKVHGGNTNKYSTFSGFIIYPD				

Further analysis of the NOV9a protein yielded the following properties shown in Table

5 9B.

	Table 9B. Protein Sequence Properties NOV9a
PSort analysis:	0.8276 probability located in lysosome (lumen); 0.4500 probability located in cytoplasm; 0.4128 probability located in microbody (peroxisome); 0.1000 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 9C.

Table 9C. Geneseq Results for NOV9a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV9a	Identities/	Expect Value

		Match Residues	the Matched Region	
AAG64212	Murine HSP47 interacting protein, #2 - Mus sp, 255 aa. [JP2001145493- A, 29-MAY-2001]	5223 20255	169/236 (71%) 183/236 (76%)	1e-91
AAM40913	Human polypeptide SEQ ID NO 5844 - Homo sapiens, 755 aa. [WO200153312-A1, 26-JUL-2001]	19222 519754	90/242 (37%) 121/242 (49%)	2e-32
AAM39127	Human polypeptide SEQ ID NO 2272 - Homo sapiens, 744 aa. [WO200153312-A1, 26-JUL-2001]	19222 508743	90/242 (37%) 121/242 (49%)	2e-32
AAM40607	Human polypeptide SEQ ID NO 5538 - Homo sapiens, 255 aa. [WO200153312-A1, 26-JUL-2001]	19223 43252	82/218 (37%) 112/218 (50%)	3e-30
AAM38821	Human polypeptide SEQ ID NO 1966 - Homo sapiens, 253 aa. [WO200153312-A1, 26-JUL-2001]	19223 41250	82/218 (37%) 112/218 (50%)	3e-30

In a BLAST search of public sequence databases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9D.

	Table 9D. Public BLASTP Results for NOV9a				
Protein Accession Number	Protein/Organism/Length	NOV9a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O88992	C1q-related factor precursor - Mus musculus (Mouse), 258 aa.	1223 15258	171/244 (70%) 183/244 (74%)	2e-93	
O75973	C1q-related factor precursor - Homo sapiens (Human), 258 aa.	1223 15258	174/244 (71%) 185/244 (75%)	4e-93	
Q9ESN4	Gliacolin precursor - Mus musculus (Mouse), 255 aa.	5223 20255	169/236 (71%) 183/236 (76%)	5e-91	
Q921S8	PROCOLLAGEN, TYPE VIII, ALPHA 1 - Mus musculus (Mouse), 744 aa.	19222 509743	94/241 (39%) 123/241 (51%)	3e-34	
Q9D2V4	PROCOLLAGEN, TYPE VIII, ALPHA 1 - Mus musculus (Mouse), 744 aa.	19222 509743	94/241 (39%) 123/241 (51%)	3e-34	

PFam analysis predicts that the NOV9a protein contains the domains shown in the Table 9E.

Table 9E. Domain Analysis of NOV9a

Pfam Domain	NOV9a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
Collagen: domain 1 of 1	3592	36/60 (60%) 49/60 (82%)	0.0043	
C1q: domain 1 of 1	96220	43/140 (31%) 92/140 (66%)	6.4e-29	

EXAMPLE 10.

The NOV10 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 10A.

	Table 10A. NOV10 Sequence Analysis				
	SEQ ID NO: 33	1642 bp			
NOV10a, CG58600-01 DNA Sequence	ATTGAAGATAAAGACAATGAGG CCAGTGCCCTTGCTTCTCCCTA GGAGGAGCACAGGAGTTGGTG GGGGACCTCCTCCACCAACTTC TTTTGGCTGACTCTGACCAGTG TGAGAAAAGAAA	TCTTCTTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	TCTTCCTTCCTTTCCTTCCAG GGCACATGCCATTGTATGGTTC AACAGCTACAAAGTACAGCTCA AGTCAGTGAGTGCACGGCC CACATGCTGAAGTCCTGGAATC TCAACCTGCTGTGCCTGGAGCT CATGGAGGTGTTAGTGTGGCT AACGCAGGTGTTAGTGTGGCT CATGGAGGTGTTAGTGTGGCC GACAAAAAATAGGCCGAAAATA ATAAGGCAGTCCTCAGGACC GGTTGCTCTCTACGTACAGAT TATAATGACCTCGCACTGCTGA GCAGTGGAAAATAAGCCTGACT TCCAGTAGAAGTTGTGTACAA CATGGCCAAAAATGACCTTTCC GCCACCTATAACAACCGCTTTT CTGGTGATGAGAAGGGCTGTG GGTTGTCAGAGAGCCTTTCC GCGACTATAACAACCGCTTTT CAGTACAAGCCACCACGAGA GGAGGCCCCCCACGAAA CCCACCTCAGACCACAAGC TACTGCCCTCAGACCACAAAA CCCAGGGCTAGCCACAAAA CCCAGGGCTAGCAAAATGACCTTCCACAAAA CCCAGGGCTAGCAAAATGAA CCCAGGGCTAGCAAAAATCCCACCAAAA CCCAGGGCTAGCAAAAATCCCACCAAAA		
	ORF Start: TCA at 3	ORF Stop: TGA			
	SEQ ID NO: 34		7 at 57251.3kD		
NOV10a, CG58600-01 Protein Sequence	SSEYPDFLPSFFPFLSSSTFSSPSPSSSSLPSFPSQLVRSVSSSVDEGGTCH LPNNPIPLEQLEQLQSTAQELICKYEQKLSRVSECARAIEDKDNEVLEMSHMLK SALASPYENPGFNLLCLELEGAQELVTQLKAMGGVSVAGDLLHQLQSQVTNASI LADSDQCSFGALQQEVDVLEKRKVERFLKIKTKNRPKIHFPPAMNSCAHGGLQE LVVQLTRRGFSYKAGPWGRDSAPNPASSLYWVAPLRTDGRYFDYYRLCKSYNDI NYEERKMGYGDGSGNVVYKNFMYFNYCGTSDMAKMDLSSNTLVLWRLLPGATYN CAGVPWKDLDFAGDEKGLWVLYATEESKGNLVVSRLNASTLEVEKTWRTSQYKE AFMACGVLYALHSLNTHQEEIFYAFDTTTGQERRLSILLDKMLEKLQGINYCPS				

YVFSDGYLINYDLTFLTMKTRLPRPPTRRPSGAHAPPKPVKPNEASRP

Further analysis of the NOV10a protein yielded the following properties shown in Table 10B.

	Table 10B. Protein Sequence Properties NOV10a				
PSort analysis:	0.3700 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1800 probability located in nucleus; 0.1000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	No Known Signal Sequence Predicted				

A search of the NOV10a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 10C.

5

	Table 10C. Geneseq Results for NOV10a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY54368	Protein encoded by colon specific gene (CSG) clone 2348122 - Homo sapiens, 510 aa. [WO9960161-A1, 25-NOV-1999]	5480 32506	219/482 (45%) 310/482 (63%)	e-114	
AAY22201	Human extracellular mucous matrix glycoprotein protein sequence - Homo sapiens, 510 aa. [US5929033-A, 27-JUL-1999]	5480 32506	219/482 (45%) 310/482 (63%)	e-114	
AAE03653	Human extracellular matrix and cell adhesion molecule-17 (XMAD-17) - Homo sapiens, 510 aa. [WO200142285-A2, 14-JUN-2001]	10480 35506	217/477 (45%) 308/477 (64%)	e-114	
AAB50955	Human PRO698 protein - Homo sapiens, 510 aa. [WO200073348-A2, 07-DEC-2000]	10480 35506	217/477 (45%) 308/477 (64%)	e-114	
AAB65169	Human PRO698 (UNQ362) protein sequence SEQ ID NO:67 - Homo sapiens, 510 aa. [WO200073454-A1, 07-DEC-2000]	10480 35506	217/477 (45%) 308/477 (64%)	e-114	

In a BLAST search of public sequence databases, the NOV10a protein was found to have homology to the proteins shown in the BLASTP data in Table 10D.

Table 10D. Public BLASTP Results for NOV10a				
Protein Accession Number	Protein/Organism/Length	NOV10a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9H1L6	BA209J19.1.1 (GW112 PROTEIN) - Homo sapiens (Human), 510 aa.	10480 35506	217/477 (45%) 308/477 (64%)	e-113
Q07081	Olfactomedin precursor (Olfactory mucus protein) - Rana catesbeiana (Bull frog), 464 aa.	53477 32460	155/441 (35%) 247/441 (55%)	2e-68
AAL66227	NOELIN-1 - Xenopus laevis (African clawed frog), 485 aa.	28478 48475	114/458 (24%) 194/458 (41%)	1e-32
AAL66226	NOELIN-2 - Xenopus laevis (African clawed frog), 458 aa.	32478 25448	113/454 (24%) 192/454 (41%)	3e-32
O95362	GW112 PROTEIN - Homo sapiens (Human), 187 aa.	139315 2176	77/178 (43%) 107/178 (59%)	7e-32

PFam analysis predicts that the NOV10a protein contains the domains shown in the Table 10E.

Table 10E. Domain Analysis of NOV10a					
Pfam Domain	NOV10a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
OLF: domain 1 of 1	224481	93/294 (32%) 170/294 (58%)	8.1e-72		

EXAMPLE 11.

The NOV11 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 11A.

Table 11A. NOV11 Sequence Analysis				
	SEQ ID NO: 35	1134 bp		
NOV11a, CG57572-01 DNA Sequence	GGGAGGTCGCCATCAGG GCTCACCTTCCTCGTGC ATGGTGGCCACCACCTG AGAGACTGATCAAGCAC CTCAGCCTGGTTCGATG AACGCGCTCTTGGAGA AGCCCAATATCATCAAC CCCAATGCTGGAGAAGA GGCAACCTGAGGCAATT CGGCAGGGTTTGAAGCT GAGCTTCCGGGAGCTGG	TTTATTTCTGAAAAGAGGAGTTCCTGCCACCCATTGCA ACAGTGAAGATGGTGACCCTGCGGAAGAGGACCCTGAAAGT TCTTCATCTTCCTCACCTCCTTCCTGAACTACTCCCACGCC TTTCCCCAAGAAGATGGCCCTGGAGCTCTTGGAGAACCTGA AGGCCCTGCACTTGCACCACTGCATCAGGCAGCATGGGCT AGAGGTTCAACCAGATAGTGCAGCTGCTGCTGACTGCCCAG CAACACCTACCAATGGTGGCTGAGGCTCCAGCAGGAAGAA AATACCATCAAGGAATTCAGAGCAGTACCTGGGAATGTGGA GGTCGGTGGGCTGCTGCACCTGGGAACTCG GTCATATCACAATTTTATGCTCAGGATGAACAAGGCACCCA GCTGCCGGGAGCAAAACCGCCCACCATCTGGTGTACCCTGA GGGACAATGTCAGCATGGTCCTGGTGCCCTTAAAGACCATG		

	CGGTCCTCGTGAAGATCAGAGTGAAACAGGATAAGATCCTGATCTACCACCCAGCCTT CATCAAGTATGTCTTCGACAACTGGCTGCAGAGCCACAGGCGGTACCCACTCACCAGC ATCCTCTCGGTCATCTTCTCAATGCATGCTCTGCGATAAGGTAGACTTGTATAGCTTCG GAGCAGATAGCAAAGGGAACTGGCACCACTACTGGGAGAACAACCTGTCTGCGGGGTC TTTTCACAAGACGGGGGTGCACGATGCAGGCTTTGAGTCTAACGTGACGGCCACCTTG GCTTCATCAATAAAATCCCGATCTTCAAGGGGAGATGACACAGTGAAGGGGTGAGGAT GGATGCCCCATCATGCCTCTGCGTTTCAAGCC			
	ORF Start: ATG at 85	ORF Stop:	TGA at 1096	
	SEQ ID NO: 36	337 aa	MW at 38559.2kD	
NOV11a, CG57572-01 Protein Sequence	TCTHCIRQHGLSAWFDERFNQIV KEFRAVPGNVDPMLEKRSVGCWH SKTAHHLVYPESFRELGDNVSMV	QLLLTAQNA CAVVGNSGN LVPLKTMNL RRYPLTSIL	ATTWFPKKMALELLENLKRLIKHRPC LLEDNTYQWWLRLQQEKKPNIINNTI LRQLSYHNFMLRMNKAPTAGFEAAAG EWVVSTTTTGAISHTYTPVLVKIRVK SVIFSMHVCDKVDLYSFGADSKGNWH SIKSRSSRGDDTVKG	

Further analysis of the NOV11a protein yielded the following properties shown in Table 11B.

	Table 11B. Protein Sequence Properties NOV11a				
PSort analysis:	0.8200 probability located in outside; 0.5054 probability located in lysosome (lumen); 0.1565 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	Likely cleavage site between residues 31 and 32				

A search of the NOV11a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several

5 homologous proteins shown in Table 11C.

	Table 11C. Geneseq Results for NOV11a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAR65244	Human ST30 sialyltransferase - Homo sapiens, 340 aa. [WO9504816-A, 16-FEB-1995]	1331 1339	274/339 (80%) 292/339 (85%)	e-158	
AAR65240	Porcine ST30 sialyltransferase - Sus scrofa, 343 aa. [WO9504816-A, 16-FEB-1995]	5331 6342	234/337 (69%) 272/337 (80%)	e-137	
AAR41670	Porcine sialyltransferase - Sus scrofa, 343 aa. [WO9318157-A, 16-SEP-1993]	5331 6342	234/337 (69%) 272/337 (80%)	e-137	
AAR75198	Rat Gal-beta-1,3GalNAc,alpha-2,3-	12332 12350	149/341 (43%) 203/341 (58%)	6e-78	

norvegicus, 350 aa. [JP07236477-A, 12-SEP-1995]			
Rat P-F4M active fragment, SF-314R - Rattus norvegicus, 314 aa. [JP07236477-A, 12-SEP-1995]	50332 26314	135/290 (46%) 183/290 (62%)	3e-76

In a BLAST search of public sequence databases, the NOV11a protein was found to have homology to the proteins shown in the BLASTP data in Table 11D.

	Table 11D. Public BLASTP Results for NOV11a				
Protein Accession Number	Protein/Organism/Length	NOV11a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q11201	CMP-N-acetylneuraminate-beta- galactosamide-alpha-2, 3-sialyltransferase (EC 2.4.99.4) (Beta-galactoside alpha-2,3- sialyltransferase) (Alpha 2,3-ST) (Gal- NAC6S) (Gal-beta-1,3-GalNAc-alpha- 2,3-sialyltransferase) (ST3GALIA) (ST3O) (ST3GALA.1) (SIAT4-A) - Homo sapiens (Human), 340 aa.	1331 1339	278/339 (82%) 295/339 (87%)	e-160	
Q9UN51	ALPHA-2,3-SIALYLTRANSFERASE - Homo sapiens (Human), 340 aa.	1331 1339	276/339 (81%) 294/339 (86%)	e-159	
P54751	CMP-N-acetylneuraminate-beta-galactosamide-alpha-2, 3-sialyltransferase (EC 2.4.99.4) (Beta-galactoside alpha-2,3-sialyltransferase) (Alpha 2,3-ST) (GAL-NAC6S) (GAL-beta-1,3-GALNAC-alpha-2,3-sialyltransferase) (ST3GALIA) (ST3O) (ST3GALA.1) (SIAT4-A) - Mus musculus (Mouse), 337 aa.	4331 1336	230/336 (68%) 273/336 (80%)	e-137	
A45073	Gal beta 1,3GalNAc alpha 2,3- sialyltransferase - pig, 343 aa.	5331 6342	234/337 (69%) 272/337 (80%)	e-137	
Q02745	CMP-N-acetylneuraminate-beta-galactosamide-alpha-2, 3-sialyltransferase (EC 2.4.99.4) (Beta-galactoside alpha-2,3-sialyltransferase) (Alpha 2,3-ST) (GAL-NAC6S) (GAL-beta-1,3-GALNAC-alpha-2,3-sialyltransferase) (ST3GALIA) (ST3O) (ST3GALA.1) (SIAT4-A) - Sus scrofa (Pig), 343 aa.	5331 6342	234/337 (69%) 272/337 (80%)	e-136	

PFam analysis predicts that the NOV11a protein contains the domains shown in the Table 11E.

Table 11E. Domain Analysis of NOV11a					
Pfam Domain	NOV11a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
IF3: domain 1 of 1	193202	6/10 (60%) 9/10 (90%)	6.3		
Glyco_transf_29: domain 1 of 1	60331	97/324 (30%) 223/324 (69%)	4.7e-73		

EXAMPLE 12.

The NOV12 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 12A.

Table 12A. NOV12 Sequence Analysis			
	SEQ ID NO: 37	4295 bp	
NOV12a,	TCTTCGTCGCCGCTCTCTC	TCTCACCTCTCAGGGAAAGGGGGGGACATAGGGGCGTCG	
CG57518-01 DNA		CCCCCGCCGCTCTCGGGCTGCGCCGCCTCGCGGGGAT	
	GAAGCACCGGCCGTGAAGA	TGGAGGTGACCTGCCTTCTACTTCTGGCGCTGATCCCCT	
Sequence	TCCACTGCCGGGGACAAGG	AGTCTACGCTCCAGCCCAGGCGCAGATCGTGCATGCGGG	
	CCAGGCATGTGTGGTGAAA	GAGGACAATATCAGCGAGCGTGTCTACACCATCCGGGAG	
	GGGGACACCCTCATGCTGC	AGTGCCTTGTAACAGGGCACCCTCGACCCCAGGTACGGT	
	GGACCAAGACGGCAGGTAG	CGCCTCGGACAAGTTCCAGGAGACATCGGTGTTCAACGA	
		ATTGCACGCACGCAGGGCGGCCGCTACTACTGCAAGGCT	
	GAGAACGGCGTGGGGGTGC	CGGCCATCAAGTCCATCCGCGTGGACGTGCAGTACCTGG	
	ATGAGCCAATGCTGACGGT	GCACCAGACGGTGAGCGATGTGCGAGGCAACTTCTACCA	
	GGAGAAGACGGTGTTCCTG	CGCTGTACTGTCAACTCCAACCCGCCTGCCCGCTTCATC	
		CCCTATCCCACAGCCAGGACAATGGGGTTGACATCTATG	
	AGCCCCTCTACACTCAGGG	GGAGACCAAGGTCCTGAAGCTGAAGAACCTGCGGCCCCA	
	GGACTATGCCAGCTACACC	TGCCAGGTGTCTGTGCGTAACGTGTGCGGCATCCCAGAC	
	AAGGCCATCACCTTCCGGC	TCACCAACACCACGGCACCACCAGCCCTGAAGCTGTCTG	
	TGAACGAAACTCTGGTGGT	GAACCCTGGGGAGAATGTGACGGTGCAGTGTCTGCTGAC	
	AGGCGGTGATCCCCTCCCC	CAGCTGCAGTGGTCCCATGGGCCTGGCCCACTGCCCCTG	
		GCACCCTCAGCATCCCTTCAGTGCAGGCCCGGGACTCTG	
		CACCAACAATGTGGGCAACCCTGCCAAGAAGACTGTCAA	
		AAGAACGCTACATTCCAGATCACTCCTGACGTGATCAAA	
		TGGGCCAGGACCTGAAGCTATCGTGCCACGTGGATGCAG	
		CTACCAGTGGTTCAAGAATGGCAAGCCGGCACGCATGTC	
		CGCAATGATCCTGAGCTGCCCGCAGTCACCAGCAGCCTA	
		TCAGTGACTATGGCACCTACCTGTGCATGGCTTCTTTCC	
		CCTCAGCGTCGAGGTCAACATCTCCTCTGAGACAGTGCC	
	GCCCACCATCAGTGTGCCC	AAGGGTAGGGCCGTGGTGACCGTGCGCGAGGGATCGCCT	
		TGCGGGGCAAGCCGCGGCCGCCAGTGCTCTGGTCCCGCG	
		GCTGCCCTCGGGGCTGCCCCTGGAGGAGACTCCGGACGG	
		GTGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACG	
		ACGTGCGCCCCGTGAGGCCCAGGTGCAGCTGAACGTGC	
		GCCCAGTTCCCAGGACGTGCGCCAGGCGCTGGGCCGGCC	
		CTGCTGCGAGGCAGCCCCAGCGCATCGCCTCGGCTGTG	
		TGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGG	
		GCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTA	
		GATGTGGGCTCGGCTGCCTCTTCCAGGTCTCCGCC	
		ATTACTTCGACACCCCAACCCCACCCGCAGCCACAAGC	
	TGTCCAAGAACTACTCCTA	CGTGCTGCAGTGGACTCAGAGGGAGCCCGACGCTGTCGA	

CCCTGTGCTCAACTACAGACTCAGCATCCGCCAGTTGAACCAGCACAATGCGGTGGTC AAGGCCATCCCGGTCCGGCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCCTGACCG ATCTCCGTGTGCCCCACAGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGC TGGTGACATGGCCTCCCGCATCATCCACTACACAGAGCGCCAGATCCGCTGGCCCCCA GTCCTGGCTCTGAGGACCCTGTCCTCTGGTCCCAAGCAGGGTATCCTCTGCAGAGCCC CACACCTCAGTTCTGACTTGGTTTCCCCGCTTGCTTTCTCAGCCATCAACTCTCCGAA CCTTTCAGACAACACCTGCCACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGAC CTGACAGACAACTTTGACTGGACGCGGCAGAATGCCCTCACCCAGAACCCCAAACGCT CCCCAACACTGGTCCCCCACCGACATAAGTGGCACCCCTGAGGGCTACTACATGTT CATCGAGACATCGAGGCCTCGGGAGCTGGGGGACCGTGCAAGGTTAGTGAGTCCCCTC TACAATGCCAGCGCCAAGTTCTACTGTGTCTCCTTCTTCTACCACATGTACGGGAAAC ACATCGGCTCCCTCAACCTCCTGGTGCGGTCCCGGAACAAGGGGGCTCTGGACACGCA CGCCTGGTCTCTCAGTGGCAATAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATC AGCCCCAGTGGGCCCTTCCAGATTATTTTTGAGGGGGTTCGAGGCCCGGGCTACCTGG GGGATATTGCCATAGATGACGTCACACTGAAGAAGGGGGGAGTGTCCCCGGAAGCAGAC CTTTCATCCCCTATGGATGACGGAGAGCTTACAGATGACCCTATTGAATGCAAGCACC TTTGGATCCATAGAGTGGACAGTAAAGGTGCTCAGTACATGTTGGCTGAGCTGAACTG CATACATGTGGCCCCCAGGTTCCTGGTCTTTATGGACGAAGGGCACAAGGTTGGTGAA AAGGACTCCGGGGGCCAGCCCTTCCAAGTTTACACTGATTTCTCCTTTTTACCCTCATG CTATCCCTGAGAAGATGTCAATAATGCCCACGTTACAGGTGGGAAAACTGAGGCTTAG AGAGGAGGAGGAATCTGCCTACGGTCACACAGCTGCAAAGGCTAGAGCTGGGACCAGG AGCTGGTCTCTTAACCGACCACCTGAGCTCAAGAGCTTTTCTCTCTGGACCAACATGA CCCAAAGTGTGCGCGAGCCTATCACAGGTCCCCTGCAATGCCAAACATACACGCACAG CAATACACAACACCTGGGGACATGGATGAAGCTGGAAACCATCATTCTCAGCAAACTG CCTCTCTCTCTCACCTGAACTTCCCCTCTCCTCAAACTCTCGAGGCCACGCCTCTAT GTCCTTGGATGATGATGACGACGACGACGATGATGATGATGATGATGACGACGAT GACAATGATGATGATGAAGGAAGGACCTACAGAATCCCTCCAGGCTCTGACCTCA GTGCTTGTGGGTGGATGACCACATGTCGCAGGGAGACTCCACAGGTCCTCCCGA TGAGAAGCACTCTTATGCCAAAGAGGAGACTCAGGCCAAACTGACAGGACCAGGAATT AGCTACCCTGGTAAACCCAGCTATCGACTGCACCCGAGCGGCTACACACCACTGGAGC AGTTCAGGGAGAAAGCCACCGGCATGCTCACCCCGTATGTCTCTGGCTCTGTTTCCTC TTTCTGCTTCCCCTTCCCCACCTCTGAGTCTCTGTGTTCTGCTCATGCCAATTCCCCT TCTGCCTGTCTCTGCCCGCTTCTCTCTCTGGGCTGGTCTCTCCGAGACTCTGTTCCCT TGGCTGGCATGCCCTCCACCTCCCCTGATGCTGGAGCAGTTCAGGGAGAAAGCCACCG GCATGCTCACCGTATGTCTCTGGCTCTGTTTCCTCTTTTCTGCTTCCCCTTCCCCACCT **TGA**

ORF Start: ATG at 135 ORF Stop: TGA at 4293 SEQ ID NO: 38 1386 aa MW at 153195.2kD

NOV12a, CG57518-01 Protein Sequence

MEVTCLLLLALIPFHCRGOGVYAPAQAQIVHAGQACVVKEDNISERVYTIREGDTLML QCLVTGHPRPQVRWTKTAGSASDKFQETSVFNETLRIERIARTQGGRYYCKAENGVGV PAIKSIRVDVQYLDEPMLTVHQTVSDVRGNFYQEKTVFLRCTVNSNPPARFIWKRGSD TLSHSODNGVDIYEPLYTQGETKVLKLKNLRPQDYASYTCQVSVRNVCGIPDKAITFR LTNTTAPPALKLSVNETLVVNPGENVTVQCLLTGGDPLPQLQWSHGPGPLPLGALAQG GTLSIPSVQARDSGYYNCTATNNVGNPAKKTVNLLVRSMKNATFQITPDVIKESENIQ LGQDLKLSCHVDAVPQEKVTYQWFKNGKPARMSKRLLVTRNDPELPAVTSSLELIDLH FSDYGTYLCMASFPGAPVPDLSVEVNISSETVPPTISVPKGRAVVTVREGSPAELQCE VRGKPRPPVLWSRVDKEAALLPSGLPLEETPDGKLRLERVSRDMSGTYRCQTARYNGF nvrpreaqvqlnvqfppevepssqdvrqalgrpvllrcsllrgspqriasavwrfkgq LLPPPPVVPAAAEAPDHAELRLDAVTRDSSGSYECSVSNDVGSAACLFQVSAKAYSPE IYFDTPNPTRSHKLSKNYSYVLQWTQREPDAVDPVLNYRLSIRQLNQHNAVVKAIPVR RVEKGQLLEYILTDLRVPHSYEVRLTPYTTFGAGDMASRIIHYTERQIRWPPVLALRT LSSGPKQGILCRAPHLSSDLVSPLAFSAINSPNLSDNTCHFEDEKICGYTQDLTDNFD WTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGDRARLVSPLYNASAK FYCVSFFYHMYGKHIGSLNLLVRSRNKGALDTHAWSLSGNKGNVWQQAHVPISPSGPF QIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQTDPNKGARREGAACDGLKFHLSSPMD DGELTDDPIECKHLWIHRVDSKGAOYMLAELNCIHVAPRFLVFMDEGHKVGEKDSGGO PFQVYTDFSFYPHAIPEKMSIMPTLQVGKLRLREEEESAYGHTAAKARAGTRSWSLNR

	PPELKSFSLWTNMTQSVREPITGPLQCQTYTHSNTQHLGTWMKLETIILSKLTQEQKT KHHMFSLTTQSAPPSLFSPELPLSSNSRGHASMSLDDDDDDDDDDDDDDDDDDDDDD GRKTYRIPPGSDLSACGWVNDHMSQGDSTGPPDEKHSYAKEETQAKLTGPGISYPGKI SYRLHPSGYTPLEQFREKATGMLTPYVSGSVSSFCFPFPTSESLCSAHANSPSACLCI LLSLGWSLRDSVPLAGMPSTSPDAGAVQGESHRHAHRMSLALFPLSASPSPP			
	SEQ ID NO: 39	906 bp		
NOV12b, 170108372 DNA Sequence	AGAATGTGACGTGCAGTGTCTCTGTCCCATGGGCCTGCCCATGGCCCACTGCAGAGAAGACACCTGCCAAGAAGAAGACACTCCAGAGAAGACACTCCAGAGAAGACACTCCAGAGAAGACACTCCAGAGAAGACACCAGAGAAGACACCAGAGAAGACACCAGAGAAGA	CTGTCTGTGAACGAAACTCTGGTGGTGAACCCTGGGG TGCTGACAGGCGGTGATCCCCCAGCTGCAGTG GCCCCTGGGTGCTCTCGCCCAGCTGCACTG GCCCCTGGGTGCTCTCGCCCAGCTGCACTCAGC GACTCTGGCTACTACAACTGCACAGCCACCAACAATG CTGTCAACCTGCTGGTGCGATCCATGAAGAACGCTAGC GATCAAAGAGAGTGAGAACATCCAGCTGGCCAGGAC GATCAAAGAGAGTGAGACATCCAGCTGGCCAGTGGT GCATGTCCAAGCGGCTGCTGGTGACCTACCAGTGGT GCATGTCCAAGCGGCTGCTGGTGACCTCAGCTATATTCTTTCCCAGGGGCACCTCAGCTCGCCCAACGACTCAGCTCG CAGTGCCGCCCACCATCAGTGTGCCCAAGGGTAGGGC ATCGCCTGCCGACCTCAGCGTCGCCCTCAGCGTCGCCCGCC		
	ORF Start: GGT at 1	ORF Stop:	·	
	SEQ ID NO: 40	302 aa	MW at 32832.1kD	
NOV12b, 170108372 Protein Sequence	I PSVQARDSGYYNCTATNNVG LKLSCHVDAVPQEKVTYQWFK GTYLCMASFPGAPVPDLSVEVI	VNETLVVNPGENVTVQCLLTGGDPLPQLQWSHGPGPLPLGALAQGGTLS GYYNCTATNNVGNPAKKTVNLLVRSMKNATFQITPDVIKESENIQLGQD VPQEKVTYQWFKNGKPARMSKRLLVTRNDPELPAVTSSLELIDLHFSDY PGAPVPDLSVEVNISSETVPPTISVPKGRAVVTVREGSPAELQCEVRGK VDKEAALLPSGLPLEETPDGKLRLERVSRDMSGTYRCQTARYNGFNVRP DEF		
	SEQ ID NO: 41	906 bp		
NOV12c, 170108393 DNA Sequence	AGAATGTGACGTGCAGTGTC: GTCCCATGGGCCTGGCCCACTG ATCCCTTCAGTGCAGGCCCACTG ATCCCTTCAGTGCAGGCCCAGGC TGGGCAACCCTGCCAAGAAGAG ATTCCAGATCACTCCTGACGTG CTGAAGCTATCGTGCCACGGGCACC TGAGCTGCCCGCAGTCACCAGG GGCACCTACCTGTGCATGGCT AGGTCAACATCTCCTCTGAGAC CGTGGTGACCGTGCGCGAGGGG CCGCGGCCCCCTGGAGGAGCACTCC CATGAGCGGACCTACCGCTGC CGTGAGGCCCAGGTGCACGCTGC CGTGAGGCCCAGGTGCACGCTGC	CTGTCTGTGAACGAAACTCTGGTGGTGAACCCTGGGG CTGCTGACAGGCGGTGATCCCCCAGCTGCAGTG CGCCCTGGGTGCTCTGGCCCAGCTGCAGTG CGCCCTGGGTGCTCTGGCCCAGGGTGCACCACCAACAATG CTGTCAACCTGCTGGTGCGATCCATGAAGAACGCTAC CGATCAAAGAGAGTGAGAACATCCAGCTGGCCAGGAC CGATGCAAGAGAGAGAAAGTGACCACCAACAATGATCCAGCTGCCAAGAGACCTACCAGTGT CCAGCCTAGAGCTCATTGACCTGCACTCAGTGACTATTTTCCCAGGGGCACCCGACCTCAGCGTCG CAGTCCCACCACCACCACCACCACCACCACCACCACCACCACC		
	ORF Start: GGT at 1	ORF Stop:		
	SEQ ID NO: 42	302 aa	MW at 32848.2kD	
NOV12c, 170108393 Protein Sequence	IPSVQARDSGYYNCTATNNVGI LKLSCHVDAVPQEKVTYQWFKI GTYLCMASFPGAPVPDLSVEVI	NPAKKTVNLLVI NGKPARMSKRLI NISSETVPPTI	PLPQLQWSHGPGPLPLGALAQGGTLS RSMKNATFQITPDVIKESENIQLGQD LVTRNDPELPAVTSSLELIDLHFSDY SVPKGRAVVTVREGSPAELQCEVRGK LERVSRDMSGTYRCQTARYNGFNVRP	

	SEQ ID NO: 43	720 bp	,	
NOV12d, 170343246 DNA Sequence	GGTACCTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGA AGGGCAGCTGCTGGAGTACATCCTGACCGATCTCCGTGTGCCCCACAGCTATGAGGT CCGCCTCACACCCTATACCACCTTCGGGGCTTGTGACATCTCCGC TACACAGAGCCCATCAACTCTCCGAACCCTTCAGACAACACCTGCCACTTTGAGGATG AGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGCAGAA TGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCCACCGACATAAGT GGCACCCCTGAGGGCTACTACATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGG ACCGTGCAAGGTTAGTGAGTCCCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTC CTTCTTCTCACCACATGTACGGGAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCC CGGAACAAAGGGGCTCTGGACACGCCCTGGTCTCTCAGTGGCAATAAGGGCAATG TGTGGCAGGCCCATTTGCCCCATCAGCCCCAGTGGGCCCTTCCAGATTATTTTTGA GGGGGTTCGAGGCCCGGGCTACCTGGGGGAATTGCCATAGATGACGTCACCTCAAACGAACACTGAAG			
	ORF Start: GGT at 1	ORF Stop: at	721	
	SEQ ID NO: 44	240 aa	MW at 26966.1kD	
NOV12d, 170343246 Protein Sequence	YTEPINSPNPSDNTCHFEDEK GTPEGYYMFIETSRPRELGDRI RNKGALDTHAWSLSGNKGNVW KGECPREF	ICGYTQDLTDNF ARLVSPLYNASA QQAHVPISPSGP	PHSYEVRLTPYTTFGAGDMASRIIH DWTRQNALTQNPKRSPNTGPPTDIS KFYCVSFFYHMYGKHIGSLNLLVRS FQIIFEGVRGPGYLGDIAIDDVTLK	
	SEQ ID NO: 45	720 bp		
NOV12e, 170343692 DNA Sequence	GGTACCTTGAACCAGCACAATGCGGTGGTCAAGGCCATCCCGGTCCGGCGTGTGGAGA AGGGGCAGCTGCTGGAGTACATCCTGACCGATCTCCGTTGCCCCACAGCTATGAGGT CCGCCTCACACCCTATACCACCTTCGGGGCTGGTGACATGGCCTCCCGCATCATCAC TACACAGAGCCCATCAACTCTCCGAACCTTTCAGACAACACCTGCCACTTTGAGGATG AGAAGATCTGTGGCTATACCCAGGACCTGACAGACAACTTTGACTGGACGCGGAGAA TGCCCTCACCCAGAACCCCAAACGCTCCCCCAACACTGGTCCCCCACCGACATAAGT GGCACCCCTGAGGGCTACTACAATGTCATCGAGACATCGAGGCCTCGGGAGCTGGGGG ACCGTGCAAGGTTAGTAAGTCCCCTCTACAATGCCTGCCCAAGTTCTACTGTGTCTC CTTCTTCTACCACATGTACGGGAAACACACTGGTCCCTCAACCTCCTGGTGCGGTCC CGGAACAAAGGGGCTCTGGACACGCCCGCTTGCTCTCAGTGGCAATAAGGGGCAATG TGTGGCAGCAGGCCCATGTGCCCATCAGCCCCAGTGGCCCTTCCAGATTATTTTTGA GGGGGTTCGAGGCCCATGTGCCCATCAGCCCCATAGATGACGTCACACTGAAG AAGGGGTTCGAGGCCCGGGCTACCTGGGGATATTTCCAACGTCACACTGAAG			
	ORF Start: GGT at 1	ORF Stop: at	721	
	SEQ ID NO: 46	240 aa	MW at 26998.2kD	
NOV12e, 170343692 Protein Sequence	GTLNQHNAVVKAIPVRRVEKGQLLEYILTDLRVPHSYEVRLTPYTTFGAGDMASRIIH YTEPINSPNLSDNTCHFEDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDIS GTPEGYYMFIETSRPRELGDRARLVSPLYNACAKFYCVSFFYHMYGKHIGSLNLLVRS RNKGALDTHAWSLSGNKGNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLK KGECPREF			
	SEQ ID NO: 47	720 bp		
NOV12f, 170684238 DNA Sequence	AGGGGCAGCTGCTGGAGTACA: CCGCCTCACACCCTATACCACC TACACAGAGCCCATCAACTCTC AGAAGATCTGTGGCTATACCCA TGCCCTCACCCAGAACCCCAAA GGCACCCCTGAGGGCTACTACC ACCGTGCAAGGTTAGTGAGTC CTTCTTCTACCACATGTACGGC CGGAACAAAAGGGGCTCTGGACA TGTGGCAGCAGGCCCATGTGC	CCTGACCGATO CTTCGGGGCTGG CGGAACCTTTCA AGGACCTGACAG ACGCTCCCCAA ATGTTCATCGAG CCCTCTACAATG BAAACACATCGG ACGCACGCCTGG	GCCATCCCGGTCCGGCGTGTGGAGA TCCGTGTGCCCCACAGCTATGAGGT TGACATGGCCTCCCGCATCATCAC GACAACACCTGCCACTTTGAGGATG GACAACTTTGACTGGACGCGGCAGAA ACACTGGTCCCCCCACCGACATAAGT GACATCGAGGCCTCGGGAGCTGGGGG GCCAGCGCCAAGTTCTACCGTGTCTC GCTCCCTCAACCTCCTGGTGCGGTACGTCCTCTCTCAGTGGCAATAAGGGCAATG AGTGGGCCCTTCCAGATTATTTTTGA TGCCATAGATGACGTCACACTGAAG	

	AAGGGGAGTGTCCCCGGGAATTC				
	ORF Start: GGT at 1	ORF Stop: at 721			
	SEQ ID NO: 48	240 aa	MW at 27035.1kD		
NOV12f, 170684238 Protein Sequence	YTEPINSPNLSDNTCHFEDEK: GTPEGYYMFIETSRPRELGDRI	VEKGQLLEYILTDLRVPHSYEVRLTPYTTFGAGDMASRIIH EDEKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDIS LGDRARLVSPLYNASAKFYRVSFFYHMYGKHIGSLNLLVRS GNVWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLK			
	SEQ ID NO: 49	496 bp			
NOV12g, 170534177 DNA Sequence	GCCCTCACCCAGAACCCCAAACGCACCCCTGAGGGCTACTACACCCCTGAGGGCTACTACACCCCTTCTTCTATCACATGTACGGGACAAAAGGGGCTCTGGACACGTGGCAGCAGGCCCATGTGCCCCATGTGCCCCAAAACGCCCCATGTGCCCAAAACGGGCCCATGTGCCCAAAACGGCCCCATGTGCCCAAAACGCCCCATGTGCCCAAAACGCCCCATGTGCCCAAAACGCCCCATGTGCCCAAAACGCCCCATGTGCCCAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACGCCCATGTGCCCAAAAACGCCCCATGTGCCCAAAAACAAAAAAAA	AGGACCTGACAGACAACTTTGACTGGACGCGGCAGAAT ACGCTCCCCCAACACTGGTCCCCCCCCCGACATAAGTG ATGTTCATCGAGACATCGAGGCCTCGGGAGCTGGGGGA CCCTCTACAATGCCAGCGCCAAGTTCTACTGTGTCTCC GAAACACATCGGCTCCCTCAACCTCCTGGTGCGGTCCC ACGCACGCCTGGTCTCTCAGTGGCAATAATGTTTTTGAG CCATCAGTCCCAGTTATTTTTTGAG			
	ORF Start: GGT at 2	ORF Stop: at 497			
	SEQ ID NO: 50	165 aa	MW at 18420.5kD		
NOV12g, 170534177 Protein Sequence	GTCGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELGD RARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNLLVRSRNKGALDTHAWSLSGNKGNV WQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQTEF				

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.

Table 12B. Comparison of NOV12a against NOV12b through NOV12g.				
Protein Sequence	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV12b	239536 3300	283/298 (94%) 283/298 (94%)		
NOV12c	239536 3300	284/298 (95%) 284/298 (95%)		
NOV12d	683959 3239	234/277 (84%) 235/277 (84%)		
NOV12e	683959 3239	234/277 (84%) 235/277 (84%)		
NOV12f	683959 3239	234/277 (84%) 235/277 (84%)		
NOV12g	801962 3164	161/162 (99%) 162/162 (99%)		

Further analysis of the NOV12a protein yielded the following properties shown in Table 12C.

	Table 12C. Protein Sequence Properties NOV12a			
PSort analysis:	0.3700 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 19 and 20			

A search of the NOV12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 12D.

	Table 12D. Geneseq Results for NOV12a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE00582	Human nuclear cell adhesion molecule homologue, NCAM_d_1 protein - Homo sapiens, 946 aa. [WO200129215-A2, 26-APR-2001]	23959 15912	487/946 (51%) 656/946 (68%)	0.0	
AAE00581	Human cell adhesion molecule homologue (CAM-H) protein #1 - Homo sapiens, 1018 aa. [WO200129215-A2, 26-APR-2001]	23959 15912	487/946 (51%) 656/946 (68%)	0.0	
AAE00586	Human nuclear cell adhesion molecule homologue, NCAM_d_2 protein - Homo sapiens, 891 aa. [WO200129215-A2, 26-APR-2001]	71959 8857	455/898 (50%) 617/898 (68%)	0.0	
AAY72717	HBXDJ03 clone human attractin-like protein #2 - Homo sapiens, 448 aa. [WO200116156-A1, 08-MAR-2001]	508965 1418	416/458 (90%) 417/458 (90%)	0.0	
AAY72714	HBXDJ03 clone human attractin-like protein #1 - Homo sapiens, 448 aa. [WO200116156-A1, 08-MAR-2001]	508965 1418	406/458 (88%) 407/458 (88%)	0.0	

In a BLAST search of public sequence databases, the NOV12a protein was found to

5 have homology to the proteins shown in the BLASTP data in Table 12E.

	Table 12E. Public BLASTP Results for NOV12a				
Protein Accession Number	Protein/Organism/Length	NOV12a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	

CAB86654	DJ402N21.3 (NOVEL PROTEIN WITH IMMUNOGLOBULIN DOMAINS) - Homo sapiens (Human), 299 aa (fragment).	239536 1299	298/299 (99%) 298/299 (99%)	e-172
CAB86653	DJ402N21.2 (NOVEL PROTEIN WITH MAM DOMAIN) - Homo sapiens (Human), 273 aa (fragment).	683965 1243	242/283 (85%) 242/283 (85%)	e-138
Q9DBX0	1200011103RIK PROTEIN - Mus musculus (Mouse), 267 aa.	689965 1237	227/277 (81%) 232/277 (82%)	e-129
Q9GMT4	HYPOTHETICAL 51.2 KDA PROTEIN - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 448 aa.	508959 1414	205/461 (44%) 281/461 (60%)	e-109
CAB86655	DJ402N21.1 (NOVEL PROTEIN) - Homo sapiens (Human), 127 aa (fragment).	1127 1127	127/127 (100%) 127/127 (100%)	3e-68

PFam analysis predicts that the NOV12a protein contains the domains shown in the Table 12F.

Table 12F. Domain Analysis of NOV12a				
Pfam Domain	Pfam Domain NOV12a Match Region Similarities for the Matched Region		Expect Value	
ig: domain 1 of 7	53110	14/61 (23%) 42/61 (69%)	2.5e-08	
ig: domain 2 of 7	150216	14/70 (20%) 51/70 (73%)	3.7e-09	
ig: domain 3 of 7	255310	18/58 (31%) 38/58 (66%)	2.4e-08	
PKD: domain 1 of 1	239327	22/100 (22%) 56/100 (56%)	7.3	
ig: domain 4 of 7	350417	15/69 (22%) 49/69 (71%)	6.3e-11	
ig: domain 5 of 7	456516	18/64 (28%) 46/64 (72%)	1.7e-08	
ig: domain 6 of 7	553617	16/66 (24%) 39/66 (59%)	0.00011	
fn3: domain 1 of 1	643733	20/93 (22%) 53/93 (57%)	0.98	
ig: domain 7 of 7	801875	7/78 (9%) 54/78 (69%)	37	

MAM: domain 1 of 1	793958	65/180 (36%)	1.3e-52
		132/180 (73%)	

EXAMPLE 13.

The NOV13 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 13A.

Table 13A. NOV13 Sequence Analysis			
	SEQ ID NO: 51	4169 bp	
NOV13a,	TCTTCGTCGCCGCTCTC	TCTCTCACCTCTCAGGGAAAGGGGGGGACATAGGGGCGTCG	
CG57409-03 DNA	CGGGGCCCCGGCGAATG	CGCCCCCCCCCCCTCTCGGGCTGCGCCCCCCCCGGGGAT	
b	GAAGCACCGGCCGTGAA	GATGGAGGTGACCTGCCTTCTACTTCTGGCGCTGATCCCCT	
Sequence	TCCACTGCCGGGGACAA	- GGAGTCTACGCTCCAGCCCAGGCGCAGATCGTGCATGCGGG	
	CCAGGCATGTGTGGTGA	AAGAGGACAATATCAGCGAGCGTGTCTACACCATCCGGGAG	
	GGGGACACCCTCATGCT	GCAGTGCCTTGTAACAGGGCACCCTCGACCCCAGGTACGGT	
	GGACCAAGACGGCAGGT	AGCGCCTCGGACAAGTTCCAGGAGACATCGGTGTTCAACGA	
	GACGCTGCGCATCGAGC	GTATTGCACGCACGCAGGGCGGCCGCTACTACTGCAAGGCT	
	GAGAACGGCGTGGGGGT	GCCGGCCATCAAGTCCATCCGCGTGGACGTGCAGTACCTGG	
1	ATGAGCCAATGCTGACG	GTGCACCAGACGGTGAGCGATGTGCGAGGCAACTTCTACCA	
	GGAGAAGACGGTGTTCC	TGCGCTGTACTGTCAACTCCAACCCGCCTGCCCGCTTCATC	
	TGGAAGCGGGGTTCCGA	TACCCTATCCCACAGCCAGGACAATGGGGTTGACATCTATG	
	AGCCCCTCTACACTCAG	GGGGAGACCAAGGTCCTGAAGCTGAAGAACCTGCGGCCCCA	
	GGACTATGCCAGCTACA	CCTGCCAGGTGTCTGTGCGTAACGTGTGCGGCATCCCAGAC	
	AAGGCCATCACCTTCCG	GCTCACCAACACCACGGCACCACCAGCCCTGAAGCTGTCTG	
	TGAACGAAACTCTGGTG	GTGAACCCTGGGGAGAATGTGACGGTGCAGTGTCTGCTGAC	
	•	CCCAGCTGCAGTGGTCCCATGGGCCTGGCCCACTGCCCCTG	
		TGGCACCCTCAGCATCCCTTCAGTGCAGGCCCGGGACTCTG	
		GCCACCAACAATGTGGGCAACCCTGCCAAGAAGACTGTCAA	
ļ.		TGAAGAACGCTACATTCCAGATCACTCCTGACGTGATCAAA	
		GCTGGGCCAGGACCTGAAGCTATCGTGCCACGTGGATGCAG	
		ACCTACCAGTGGTTCAAGAATGGCAAGCCGGCACGCATGTC	
		CCCGCAATGATCCTGAGCTGCCCGCAGTCACCAGCAGCCTA	
		CTTCAGTGACTATGGCACCTACCTGTGCATGGCTTCTTTCC	
	1 -	GACCTCAGCGTCGAGGTCAACATCTCCTCTGAGACAGTGCC	
		CCAAGGGTAGGGCCGTGGTGACCGTGCGCGAGGGATCGCCT	
:	•	GGTGCGGGCAAGCCGCGGCCAGTGCTCTGGTCCCGCG	
1		CTGCTGCCCTCGGGGCTGCCCCTGGAGGAGACTCCGGACGG	
		GAGTGAGCCGAGACATGAGCGGGACCTACCGCTGCCAGACG	
		CAACGTGCGCCCCGTGAGGCCCAGGTGCAGCTGAACGTGC	
		GAGCCAGTTCCCAGGACGTGCGCCAGGCGCTGGGCCGGCC	
		CGCTGCTGCGAGGCAGCCCCCAGCGCATCGCCTCGGCTGTG	
		GCTGCTGCCGCCGCCGCCTGTTGTTCCCGCCGCCGCCGAGG	
		CTGCGCCTCGACGCCGTAACTCGCGACAGCAGCGGCAGCTA	
		ACGATGTGGGCTCGCCTGCCTCTTCCAGGTCTCCGCC	
		GTTTTACTTCGACACCCCAACCCCACCCGCAGCCACAAGC	
,		TACGTGCTGCAGTGGACTCAGAGGGAGCCCGACGCTGTCGA	
		GACTCAGCATCCGCCAGTTGAACCAGCACAATGCGGTGGTC	
		GCGTGTGGAGAAGGGGCAGCTGCTGGAGTACATCCTGACCG	
	1	AGCTATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGC	
		GCATCATCCACTACACAGAGCCCATCAACTCTCCGAACCTT	
		CTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTGA	
		ACGCGGCAGAATGCCCTCACCCAGAACCCCAAACGCTCCCC	
		CCGACATAAGTGCCCTCACCCAGAACCCCAAACGCTCCCC	
		GGAGCTGGGGGACCCCTGAGGGCTACTACATGTTCATC	
		GGAGCTGGGGGACCGTGCAAGGTTAGTGAGTCCCCTCTACA TACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACACAT	
		TACTGTGTCTCCTTCTTCTACCACATGTACGGGAAACACAT	
1			
	TIGGTCTCTCAGTGGCAA	TAAGGGCAATGTGTGGCAGCAGGCCCATGTGCCCATCAGCC	

	TATTGCCATAGATGACGTCACA CCCAATAAAGGTGCAAGACGGG CATCCCCTATGGATGACGGAGA GATCCATAGAGTGGACAGTAAA CATGTGGCCCCAGGTTCCTGG ACTCCGGGGGCCAGCCCTTCCA CCCTGAGAAGATGTCAATAATG GAGGAGGAATCTGCCTACGGTC GGTCTCTTAACCGACCACCTGA AAGTGTGCGCGAGCCTATCACA AAGAACACTGGGGACATGGA AAGAACACTGGGGACATGGA AAGAAGAGAGAAAACACCA TCTCTTCTCACCTGAACTCCC TTGGATGATGATGATGACGAC ATGATGATGATGATGACGAC ATGATGATGATGATGACGAC CAGGGAGAAAGCCACCACCTCT CCGGTAAACCCACCTCTC CCTGTCCCCTTCCCCACCTCTC CCTGTCTCTCCCCCCCTCTA	CTGAAGAAGGC AAGGAGCTGCC AGCTTACAGAT AGCTTACACT CCCACGTTACA ACACAGCTGCA ACACACGCTGCA ACACACGCTGCA ACACACGCTGCA ACACACGCTGCA ACACACCACGA ACACCCCCGTA ACACCCCCCGTA ACACCCCCCCGTA ACACCCCCCGTA ACACCCCCCCCCC	
	ORF Start: ATG at 135	ORF Stop: T	T
	SEQ ID NO: 52	1315 aa	MW at 145782.9kD
NOV13a, CG57409-03 Protein Sequence	QCLVTGHPRPQVRWTKTAGSAS PAIKSIRVDVQYLDEPMLTVHQ TLSHSQDNGVDIYEPLYTQGET LTNTTAPPALKLSVNETLVVNP GTLSIPSVQARDSGYYNCTATN LGQDLKLSCHVDAVPQEKVTYQ FSDYGTYLCMASFPGAPVPDLS VRGKPRPPVLWSRVDKEAALLP NVRPREAQVQLNVQFPPEVEPS LLPPPPVVPAAAEAPDHAELRL FYFDTPNPTRSHKLSKNYSYVL RVEKGQLLEYILTDLRVPHSYE FEDEKICGYTQDLTDNFDWTRQ ELGDRARLVSPLYNASAKFYCV KGNVWQQAHVPISPSGPFQIIF REGAACDGLKFHLSSPMDDGEL LVFMDEGHKVGEKDSGGQPFQV GHTAAKARAGTRSWSLNRPPEL WMKLETIILSKLTQEQKTKHHM DDDDDDDDDDDDDDDDDDDDDRRKT EETQAKLTGPGISYPGKPSYRL SESLCSAHANSPSACLCPLLSG	DKFQETSVFNE TVSDVRGNFYQ KVLKLKNLRPQ GENVTVQCLLT NVGNPAKKTVN WFKNGKPARMS VEVNISSETVE SGLPLEETPDO SQDVRQALGRE DAVTRDSSGSY VRLTPYTTFGS NALTQNPKRSE SFFYHMYGKHI EGVRGPGYLGI TDDPIECKHLW YTDFSFYPHAI KSFSLWTNMTQ FSLTTQSAPPS YRIPPGSDLSS HPSGYTPLEQE LVSPRLCSLGW	EQACVVKEDNISERVYTIREGDTLML ETLRIERIARTQGGRYYCKAENGVGV EKTVFLRCTVNSNPPARFIWKRGSD DYASYTCQVSVRNVCGIPDKAITFR TGGDPLPQLQWSHGPGPLPLGALAQG NLLVRSMKNATFQITPDVIKESENIQ EKRLLVTRNDPELPAVTSSLELIDLH PPTISVPKGRAVVTVREGSPAELQCE EKLRLERVSRDMSGTYRCQTARYNGF PVLLRCSLLRGSPQRIASAVWRFKGQ ECSVSNDVGSAACLFQVSAKAYSPE DPVLNYRLSIRQLNQHNAVVKAIPVR AGDMASRIIHYTEPINSPNLSDNTCH PNTGPPTDISGTPEGYYMFIETSRPR IGSLNLLVRSRNKGALDTHAWSLSGN DIAIDDVTLKKGECPRKQTDPNKGAR NIHRVDSKGAQYMLAELNCIHVAPRF PEKMSIMPTLQVGKLRLREEESAY ESVREPITGPLQCQTYTHSNTQHLGT SLFSPELPLSSNSRGHASMSLDDDDD ACGWVNDHMSQGDSTGPPDEKHSYAK FREKATGMLTPYVSGSVSSFCFPFFT WHALHLP
	SEC ID NO. 52	1500 5-	
	SEQ ID NO: 53	1500 bp	

	GTGCTGCAGTGGACTCAGAGGGAGCCCGACGCTGTCGACCCTGTGCTCAACTACAGAC TCAGCATCCGCCAGTTGAACCAGCACAATGCGGTGGTCAAGCCATCCCGGTCCGGCG TGTGGAGAAGGGCAGCTGCTGGAGTACATCCTGACCGATCTCGTGTGCCCCACAGC TATGAGGTCCGCCTCACACCCTATACCACCTTCGGGGCTGGTGACATGGCCTCCCGCA TCATCCACTACACAGAGCGCCAGATCCGCTGGCCCCCAGTCCTGGCTCTGAGGACCT GTCCTCTGGTCCCAAGCAGGGTATCCTCTGCAGAGCCCCACACCTCAGTTCTGACTTG GTTTCCCCGCTTGCTTTCTCAGCATCCACTCTCCGAACCTTTCAGACAACACCTGCC ACTTTGAGGATGAGAAGATCTGTGGCTATACCCAGGACCTTGACAGACA		
	ORF Start: ATG at 12	ORF Stop: T	T
	SEQ ID NO: 54	488 aa	MW at 54357.1kD
NOV13b, CG57409-05 Protein Sequence	MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPEVEPSSQDVRQALGRPVLLRCSLLRG SPQRIASAVWRFKGQLLPPPPVVPAAAEAPDHAELRLDAVTRDSSGSYECSVSNDVGS AACLFQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYVLQWTQREPDAVDPVLNYRLSIR QLNQHNAVVKAIPVRVEKGQLLEYILTDLRVPHSYEVRLTPYTTFGAGDMASRIIHY TERQIRWPPVLALRTLSSGPKQGILCRAPHLSSDLVSPLAFSAINSPNLSDNTCHFED EKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPRELG DRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNPLVRSRNKGALDTHAWSLSGNKGN VWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQTDPNKVVVMPG SGAPCQSSPQLWGPMAIFLLALQR		
	SEQ ID NO: 55	1828 bp	
NOV13c, CG57409-06 DNA Sequence	TGAGCCGAGACATGAGCGGGACCCCAGTTCCCAGGCCGCCCCTGAGGCCCAGCCGCGCGCG	CCTACCGCTGC GGTGCAGCTGCA CAGGCGCTGCG GCATCGCCGCGCGCGCGCGCAGCACCCGCAGCCCGCAGCCCGCACGCACCCCACCCCCACCCCCACCCCCACCCCCACCCCCACCCC	CAGACGGCCCGTATAATGGCTTCAA ACGTGCAGTTCCCGCCGGAGGTGAGAG CCGGCCCGTGCTCCTCGCCTGCTGCTCGC GCTGTGTGGCGTTCTCAAAGGGCAGCT CCGAGGCGCCGGATCACGCGGAGCTG CCGCCAAAGCCTACAGCCCGGAGTT ACAAGCTGTCCAAGAACTACTCCTAC TGTCGACCCTGTGCTCAACTACAGAC TGTCGACCCTGTGCTCAACTACAGAC GTGGTCAAGGCATCCCGGTCCGGCG TGACCGATCTCCGTGTGCCCACAGC CCGCGGCTGTGACACTACTGACTTG ACAGCCTCTCGGCTCTGAGGACCCT GAGCCCCACCTCAGTTCTGACTTG CCGAACCTTTCAGACAACACCTGCC CAGGACCTGACAGACAACTTTGACTG ACAGGTCCCCAAAGCACACTGCCCCCCCCCC

	ACCGGAACACAAACCACAACCACGAGGGCGCCTCAGAATACCCAGAGGGCCCAA TACGCCGACCCGCTGTCACGAGCGCCCACGAGCGCAGAACACGACAGGCACACAACC AGCCGGAGCAAGACGGAGCCCAGGAGCCCCGGGGACATAGACCCCAGCAAGCGACACAC AAGGACGCGCACAGAGCGCACACACTAACA		
	ORF Start: ATG at 12 ORF Stop: TGA at 1521		
	SEQ ID NO: 56	503 aa	MW at 55764.4kD
NOV13c, CG57409-06 Protein Sequence	MSGTYRCQTARYNGFNVRPREAQVQLNVQFPPEVEPSSQDVRQALGRPVLLRCSLLRG SPQRIASAVWRFKGQLLPPPPVVPAAAEAPDHAELRLDAVTRDSSGSYECSVSNDVGS AACLFQVSAKAYSPEFYFDTPNPTRSHKLSKNYSYVLQWTQREPDAVDPVLNYRLSIR QLNQHNAVVKAIPVRRVEKGQLLEYILTDLRVPHSYEVRLTPYTTFGAGDMASRIIHY TERQIRWPPVLALRTLSSGPKQGILCRAPHLSSDLVSPLAFSAINSPNLSDNTCHFED EKICGYTQDLTDNFDWTRQNALTQNPKRSPNTGPPTDISGTPEGYYMFIETSRPELG DRARLVSPLYNASAKFYCVSFFYHMYGKHIGSLNPLVRSRNKGALDTHAWSLSGNKGN VWQQAHVPISPSGPFQIIFEGVRGPGYLGDIAIDDVTLKKGECPRKQTDPNKGARREG GGGAESGGSCAWRGFLSVEGGCSGLNRGSDCLMMGIRWL		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 13B.

Table 13B. Comparison of NOV13a against NOV13b through NOV13c.				
Protein Sequence	rotein Sequence NOV13a Residues/ Identities/ Match Residues Similarities for the Matched Re			
NOV13b	508925 1458	403/458 (87%) 403/458 (87%)		
NOV13c	508925 1458	403/458 (87%) 403/458 (87%)		

Further analysis of the NOV13a protein yielded the following properties shown in Table 13C.

Table 13C. Protein Sequence Properties NOV13a		
PSort analysis:	0.3700 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)	
SignalP analysis:	Likely cleavage site between residues 19 and 20	

A search of the NOV13a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 13D.

5

Table 13D. Geneseq Results for NOV13a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV13a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAE00582	Human nuclear cell adhesion molecule homologue, NCAM_d_1 protein - Homo sapiens, 946 aa. [WO200129215-A2, 26-APR-2001]	23919 15912	488/906 (53%) 657/906 (71%)	0.0
AAE00581	Human cell adhesion molecule homologue (CAM-H) protein #1 - Homo sapiens, 1018 aa. [WO200129215-A2, 26-APR-2001]	23919 15912	488/906 (53%) 657/906 (71%)	0.0
AAE00586	Human nuclear cell adhesion molecule homologue, NCAM_d_2 protein - Homo sapiens, 891 aa. [WO200129215-A2, 26-APR-2001]	71919 8857	456/858 (53%) 618/858 (71%)	0.0
AAY72717	HBXDJ03 clone human attractin-like protein #2 - Homo sapiens, 448 aa. [WO200116156-A1, 08-MAR-2001]	508925 1418	418/418 (100%) 418/418 (100%)	0.0
AAY72714	HBXDJ03 clone human attractin-like protein #1 - Homo sapiens, 448 aa. [WO200116156-A1, 08-MAR-2001]	508925 1418	408/418 (97%) 408/418 (97%)	0.0

In a BLAST search of public sequence databases, the NOV13a protein was found to have homology to the proteins shown in the BLASTP data in Table 13E.

	Table 13E. Public BLASTP Results for NOV13a				
Protein Accession Number	Protein/Organism/Length	NOV13a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAB86654	DJ402N21.3 (NOVEL PROTEIN WITH IMMUNOGLOBULIN DOMAINS) - Homo sapiens (Human), 299 aa (fragment).	239536 1299	298/299 (99%) 298/299 (99%)	e-172	
CAB86653	DJ402N21.2 (NOVEL PROTEIN WITH MAM DOMAIN) - Homo sapiens (Human), 273 aa (fragment).	683925 1243	243/243 (100%) 243/243 (100%)	e-145	
Q9DBX0	1200011I03RIK PROTEIN - Mus musculus (Mouse), 267 aa.	689925 1237	228/237 (96%) 233/237 (98%)	e-136	
Q9GMT4	HYPOTHETICAL 51.2 KDA PROTEIN - Macaca fascicularis (Crab eating macaque) (Cynomolgus monkey), 448 aa.	508919 1414	206/421 (48%) 282/421 (66%)	e-115	
CAB86655	DJ402N21.1 (NOVEL PROTEIN) - Homo sapiens (Human), 127 aa (fragment).	1127 1127	127/127 (100%) 127/127 (100%)	3e-68	

PFam analysis predicts that the NOV13a protein contains the domains shown in the Table 13F.

Table 13F. Domain Analysis of NOV13a				
Pfam Domain	NOV13a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
ig: domain 1 of 7	53110	14/61 (23%) 42/61 (69%)	2.5e-08	
ig: domain 2 of 7	150216	14/70 (20%) 51/70 (73%)	3.7e-09	
ig: domain 3 of 7	255310	18/58 (31%) 38/58 (66%)	2.4e-08	
PKD: domain 1 of 1	239327	22/100 (22%) 56/100 (56%)	7.3	
ig: domain 4 of 7	350417	15/69 (22%) 49/69 (71%)	6.3e-11	
ig: domain 5 of 7	456516	18/64 (28%) 46/64 (72%)	1.7e-08	
ig: domain 6 of 7	553617	16/66 (24%) 39/66 (59%)	0.00011	
fn3: domain 1 of 1	643733	20/93 (22%) 53/93 (57%)	0.98	
ig: domain 7 of 7	761835	7/78 (9%) 54/78 (69%)	37	
MAM: domain 1 of 1	753918	65/180 (36%) 132/180 (73%)	1.3e-52	

EXAMPLE 14.

The NOV14 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 14A.

Table 14A. NOV14 Sequence Analysis				
	SEQ ID NO: 57	330 bp		
NOV14a, CG59262-01 DNA Sequence GAAACCAGTTGATACTGCTGCCGACAGGCCAGCTCGAGATGGCCATGGA GGGGAACTGAAACTTCTCCACCGCTATTCTGGCAAGGCAAGGAAGG				
ORF Start: ATG at 43 ORF Stop: TAA at 322				
SEQ ID NO: 58 93 aa MW at 10861.6kD				

NOV14a,	MAMDTMIRIFHRYSGKARKRFKLSKGELKLLLQRELTEFLSCQKETQLVDKIVQDLDA
CG59262-01 Protein	NKDNEVDFNEFVVMVAALTVACNDYFVEQLKKKGK
Sequence	

Further analysis of the NOV14a protein yielded the following properties shown in Table 14B.

	Table 14B. Protein Sequence Properties NOV14a		
PSort analysis:	0.7000 probability located in plasma membrane; 0.5337 probability located in mitochondrial inner membrane; 0.3627 probability located in mitochondrial intermembrane space; 0.2997 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 14C.

	Table 14C. Geneseq Results for NOV14a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM40258	Human polypeptide SEQ ID NO 3403 - Homo sapiens, 94 aa. [WO200153312- A1, 26-JUL-2001]	286 892	50/85 (58%) 66/85 (76%)	3e-23	
AAB45531	Human S100A1 protein - Homo sapiens, 94 aa. [DE19915485-A1, 19- OCT-2000]	286 892	50/85 (58%) 66/85 (76%)	3e-23	
ABB12007	Human Ca-binding protein S100P homologue, SEQ ID NO:2377 - Homo sapiens, 113 aa. [WO200157188-A2, 09-AUG-2001]	284 25107	43/83 (51%) 59/83 (70%)	3e-18	
AAB45545	Human S100P protein - Homo sapiens, 95 aa. [DE19915485-A1, 19-OCT-2000]	284 789	43/83 (51%) 59/83 (70%)	3e-18	
AAB45544	Human S100B protein - Homo sapiens, 95 aa. [DE19915485-A1, 19-OCT-2000]	284 789	43/83 (51%) 59/83 (70%)	3e-18	

In a BLAST search of public sequence databases, the NOV14a protein was found to have homology to the proteins shown in the BLASTP data in Table 14D.

	Table 14D. Public BLASTP Results for NOV14a				
Protein Accession Number	Protein/Organism/Length	NOV14a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
AAL30893	S100Z PROTEIN - Homo sapiens (Human), 99 aa.	193 799	93/93 (100%) 93/93 (100%)	4e-47	
S35985	S-100 protein alpha chain - weatherfish, 95 aa.	289 794	52/88 (59%) 70/88 (79%)	3e-25	
P35467	S-100 protein, alpha chain - Rattus norvegicus (Rat), 93 aa.	286 791	52/85 (61%) 66/85 (77%)	4e-23	
BCBOIA	S-100 protein alpha chain - bovine, 94 aa.	286 892	50/85 (58%) 66/85 (76%)	le-22	
CAC16547	SEQUENCE 1 FROM PATENT WO0061742 - Homo sapiens (Human), 94 aa.	286 892	50/85 (58%) 66/85 (76%)	1e-22	

PFam analysis predicts that the NOV14a protein contains the domains shown in the Table 14E.

Table 14E. Domain Analysis of NOV14a				
Pfam Domain	Identities/ Similarities for the Matched Region	Expect Value		
S_100: domain 1 of 1	242	20/44 (45%) 31/44 (70%)	2.8e-09	
efhand: domain 1 of 1	4876	6/29 (21%) 25/29 (86%)	0.0012	

EXAMPLE 15.

The NOV15 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 15A.

Table 15A. NOV15 Sequence Analysis			
	SEQ ID NO: 59	773 bp	
NOV15a, CG58635-01 DNA Sequence	CCGTGGGTTCTCTTCCCTACA ATCCCTGTGAAGCCCTGCTTCT AGGTCCTGGTGAAGAGGATCTA CAACCTCATTGCCTGCCTGGCC CTGGCCTTCGTGTGGCTGCTCC CTGTCTACAAGGCCTTCCGGGC CTTCGGAGCCCAGTTTGTCCTG GCGTGCGGCTGGCTACAAA	GTGGGGCCTCCTTCAAGAGACAAAGTCTGGTTCTGT GAAAAGGAGAACAACTTCCCGCCACTGCCCAAGTTC ACCAGAACTTCTCCGACGAGATCCCAGTGGAGCACC CCGGCTGTGGATGGTTTACTGCGCCACCCTCGGCGT TGGTGGATCGGCGAGGCTCGGGGACCAACTTCGGC TGTTCACGCCTTGCGGCTACGTGTGCTGGTTCCTGC CGACAGCTCCTTTAATTTCATGGCGTTTTTCTTCAT ACCGTCATCCAGGCGATTGGCTTCTCCGGCTGGGC TTGGATTCTTCCAGTACAGCCCGGGCGCTGCCGTGG TTTGGATTCTCCGGCTGCCGTGC	

	CATGAAGGTGCACAGGATCTACCGAGGGGCTGGCGGAAGCTTCCAGAAGGCACAGACG GAGTGGAACACGGGCACTTGGCGGAACCCACCGTCGAGGGAGG				
	ORF Start: ATG at 18	ORF Stop: TAG at 762			
	SEQ ID NO: 60	248 aa	MW at 27780.0kD		
NOV15a, CG58635-01 Protein Sequence	ARWGLLQETKSGSVRGFSVPTEKENNFPPLPKFIPVKPCFYQNFSDEIPVEHQVLVKR LYRLWMVYCATLGVNLIACLAWWIGGGSGTNFGLAFVWLLLFTPCGYVCWFRPVYKAF RADSSFNFMAFFFIFGAQFVLTVIQAIGFSGWGACGWLSAIGFFQYSPGAAVVMLLPA LMFSVSAAMMAIAIMKVHRIYRGAGGSFQKAQTEWNTGTWRNPPSREAQYNNFSGNSL PEYPTVPSYPGSGQWP				
	SEQ ID NO: 61	773 bp			
NOV15b, CG58635-02 DNA Sequence	AGCCTTGGGTTGAAGGGATGAGGTGGGGCCTCCTTCAAGAGACAAAGTCTGGTTCTGT CCGTGGGTTCTCTGTCCCTACAGAAAAGGAGAAAACTTCCCGCCACTGCCCAAGTTC ATCCCTGTGAAGCCCTGCTTCTACCAGAAACTTCTCCGACGAGATCCCAGTGGAGCACC AGGTCCTGGTGAAGAGGATCTACCGGCTGTGGATGTTTTACTGCGCCACCCTCGGCGT CAACCTCATTGCCTGCCTGGCCTG				
	ORF Start: ATG at 18	ORF Stop:	TAG at 762		
	SEQ ID NO: 62	248 aa	MW at 27828.1kD		
NOV15b, CG58635-02 Protein Sequence	IYRLWMFYCATLGVNLIACLAWW RADSSFNFMAFFFIFGAQFVLTV	IGGGSGTNF0 IQAIGFSGW0	FIPVKPCFYQNFSDEIPVEHQVLVKR SLAFVWLLLFTPCGYVCWFRPVYKAF BACGWLSAIGFFQYSPGAAVVMLLPA PEWNTGTWRNPPSREAQYNNFSGNSL		
	SEQ ID NO: 63	654 bp			
NOV15c, CG58635-03 DNA Sequence	CTACAGAAAAGGAGAACAACTTC CTTCTACCAGAACTTCTCCGACG ATCTACCGGCTGTGGATGTTTTA TGGCCTGGTGGATCGGCGAGGC GCTCCTGTTCACGCCTTGCGGCT CGCGGCTGGCTGTCGGCAATTGG TGCTGCTTCCAGCCATCATGTTC GAAGGCGCACAGGATCTACCGAG TGGAACACGGGCACTTGGCGGAA	TGAGGTGGGGCCTCCTTCAAGAGACAAAGTCTGGTTCTGTCCGTGGGTTCCCGGTCC TACAGAAAAGGAGAAAACTTCCCGCCACTGCCCAAGTTCATCCCTGTGAAGCCCTG TTCTACCAGAACTTCTCCGACGAGATCCCAGTGGAGCACCAGGTCCTGGTGAAGAGG TCTACCGGCTGTGGATGTTTTACTGCGCCACCCTCGGCGTCAACCTCATTGCCTGCC			
	ORF Start: ATG at 1 ORF Stop: TAG at 643				
	SEQ ID NO: 64	214 aa	MW at 24129.8kD		
NOV15c, CG58635-03 Protein Sequence	MRWGLLQETKSGSVRGFPVPTEKENNFPPLPKFIPVKPCFYQNFSDEIPVEHQVLVKR IYRLWMFYCATLGVNLIACLAWWIGGGSGTNFGLAFVWLLLFTPCGYVCWFRPVYKAF RGWLSAIGFFQYSPGAAVVMLLPAIMFSVSAAMMAIAIMKAHRIYRGAGGSFQKAQTE WNTGTWRNPPSREAQYNNFSGNSLPEYPTVPSYPGSGQWP				

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 15B.

Table 15B. Comparison of NOV15a against NOV15b through NOV15c.				
Protein Sequence NOV15a Residues/ Identities/ Match Residues Similarities for the Matche				
NOV15b	1248 1248	217/248 (87%) 217/248 (87%)		
NOV15c	1248 1214	191/248 (77%) 191/248 (77%)		

Further analysis of the NOV15a protein yielded the following properties shown in Table 15C.

	Table 15C. Protein Sequence Properties NOV15a		
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.0300 probability located in mitochondrial inner membrane		
SignalP analysis:	Likely cleavage site between residues 17 and 18		

A search of the NOV15a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 15D.

5

	Table 15D. Geneseq Results for NOV15a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAM93439	Human polypeptide, SEQ ID NO: 3078 - Homo sapiens, 229 aa. [EP1130094-A2, 05-SEP-2001]	21248 2229	226/228 (99%) 227/228 (99%)	e-138
AAM93704	Human polypeptide, SEQ ID NO: 3635 - Homo sapiens, 132 aa. [EP1130094-A2, 05-SEP-2001]	21150 2131	127/130 (97%) 129/130 (98%)	1e-75
AAM25225	Human protein sequence SEQ ID NO:740 - Homo sapiens, 185 aa. [WO200153455-A2, 26-JUL-2001]	21131 35145	109/111 (98%) 110/111 (98%)	1e-64
AAY11904	Human 5' EST secreted protein SEQ ID No: 504 - Homo sapiens, 108 aa. [WO9906550-A2, 11-FEB-1999]	21126 2107	102/106 (96%) 103/106 (96%)	7e-60

AAB62698	Human membrane recycling protein (HMRP)-1 - Homo sapiens, 347 aa.	23229 131338	102/208 (49%) 140/208 (67%)	5e-56
	[US6235715-B1, 22-MAY-2001]			

In a BLAST search of public sequence databases, the NOV15a protein was found to have homology to the proteins shown in the BLASTP data in Table 15E.

	Table 15E. Public BLASTP Re	sults for NC)V15a	
Protein Accession Number	Protein/Organism/Length	NOV15a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q969E2	HYPOTHETICAL 25.7 KDA PROTEIN (SIMILAR TO SECRETORY CARRIER MEMBRANE PROTEIN 4) - Homo sapiens (Human), 229 aa.	21248 2229	226/228 (99%) 227/228 (99%)	e-138
Q9ET20	SECRETORY CARRIER MEMBRANE PROTEIN 4 - Rattus norvegicus (Rat), 230 aa.	23248 4230	193/227 (85%) 208/227 (91%)	e-118
Q9JKV5	SECRETORY CARRIER MEMBRANE PROTEIN 4 - Mus musculus (Mouse), 230 aa.	23248 4230	190/227 (83%) 208/227 (90%)	e-117
Q9JKE3	SECRETORY CARRIER MEMBRANE PROTEIN 5 - Rattus norvegicus (Rat), 235 aa.	22246 3234	135/232 (58%) 167/232 (71%)	2e-81
Q9JKD3	SECRETORY CARRIER MEMBRANE PROTEIN 5 - Mus musculus (Mouse), 235 aa.	22246 3234	134/232 (57%) 166/232 (70%)	7e-81

PFam analysis predicts that the NOV15a protein contains the domains shown in the Table 15F.

Table 15F. Domain Analysis of NOV15a			
Pfam Domain	NOV15a Match Region	Identities/ Similarities for the Matched Region	Expect Value
TspO_MBR: domain 1 of 1	63190	30/164 (18%) 91/164 (55%)	9.5
chloroa_b-bind: domain 1 of 1	181195	5/15 (33%) 12/15 (80%)	3.7

EXAMPLE 16.

The NOV16 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 16A.

	Table 16A. NOV16 Sequence Analysis		
	SEQ ID NO: 65	1642 bp	
NOV16a, CG59209-01 DNA Sequence	GCGGAGTCCGGACGTCGGGAGCAGGATGCCGGGGAGCAGGACCCCAGGCGCGCGGGGCGGCGCTGCTCACTGACCTCTACCAGGCCACCATGGCGTTGGGCTATTGGCGCGCGGGCGG		
	ORF Start: ATG at 26		TGA at 1619
	SEQ ID NO: 66	531 aa	MW at 56889.8kD
NOV16a, CG59209-01 Protein Sequence	MAAEQDPEARAGRPLLTDLYQATMALGYWRAGRARDAAEFELFFRRCPFGGAFALVI LRDCVRFLRAFDVQFLASVLPPDTDPAFFEHLRALDCSEVTVRALPEAPSPSPQVPI QVSGPLLVVQLLETPLLCLVSYASLVATNAARVRLIAGPEKRLLEMGLRRAQGPMGI SLHLQLPGGFDSSSNVLAGQLRGVPVAGTLAHSFVTSFSGSEVPPDPMLAPAAGEGI VDLAAKAQVWLEQVCAHLGGGVQEPHPGERAAFVAYALAFPRAFQGLLDTYSVWRSG PNFLAVALALGELGYRAVGVRLDSGDLLQQAQEIRKVFRAAAAQFQVPWLESVLIVI NNIDEEALARLAQEGSEVNVIGIGTSVVTCPQQPSLGGVYKLVAVGGQPRMKLTEDI KQTLPGSKAAFRLLGSDGSPLMDMLQLAEEPVPQAGQELRVWPPGAQEPCTVRPAQV PLLRLCLQQGQLCEPLPSLAESRALAQLSLSRLSPEHRRLRSPAQYQVVLSERLQAI NSLCAGQSP		ALDCSEVTVRALPEAPSPSPQVPLL TRLIAGPEKRLLEMGLRRAQGPMGPD FVTSFSGSEVPPDPMLAPAAGEGPG TVAYALAFPRAFQGLLDTYSVWRSGL EIRKVFRAAAAQFQVPWLESVLIVVS PSLGGVYKLVAVGGQPRMKLTEDPE PQAGQELRVWPPGAQEPCTVRPAQVE
	SEQ ID NO: 67	1179 bp	
NOV16b, 174308417 DNA Sequence	AGATCTACCAACGCAGCGCGCTTCGCTTGATCGCAGGGCCAGAGAAGCGGCTGCTAG AGATGGGCCTGAGGCGGCTCAGGGCCCCGATGGGGGCCTGACAGCCTCCACCTACAG CTACCTGGGCGGCTTCGACAGCAGCAGCACCTGCTAGCGGGCCAGCTGCGAGGTGTG CCGGTGGCCGGGACCCTGGCCCACTCCTTCGTCACTTTCCTTTTCAGGCAGCGAGGTGC CCCCTGACCCGATGTTGGCGCCAGCAGCTGGTGAGGGCCCTGGGGTGGACCTGGCGGC CAAAGCCCAGGTGTGGCTGGAGCAGGTGTGTGCCCACCTGGGGCTGGGGTGCAGGAG		

	TCCAGGGCCTCCTGGACACCTA AGTCGCCCTGGCCCTGGAGAG GGTGACCTGCTACAGCAGGCTC AGTTCCAGGTGCCCTGGCTGGAC GGAGGCGCTGGCCCGACTGGCCC ACCAGTGTGGTCACCTGCCCCC CCGTGGGGGGCCAGCCACGAAT TGGGAGCAAGGCTGCTTTCCGG CTGCAGTTAGCAGAAGAGCCAG CAGGGGCCCAGGAGCCCTGCAC CTGCCTCCAGCAGGGACCCTGCAC TTGGCCCAGCTGTCCCTGAGCC	CCGCATCCAGGCGAGCGGCAGCCTTTGTGGCCTATGCCTTGGCTTTTCCCCGGGCCT TCCAGGGCCTCCTGGACACCTACAGCGTGTGGAGGAGTGGTCTCCCAACTTCCTAGC AGTCGCCCTGGCCCTGGAGAGAGCTGGGCTACCGGGCAGTGGGCGGAGGCTGGACAGT GGTGACCTGCCTAGCAGGATCCGCAAGGTCTTCCGAGCTGCAGCCC AGTTCCAGGTGCCCTGGCTGGAGTCAGTCCTCATCGTAGTCAGCAACAACATTGACGA GGAGGCGCTGGCCCGACTGGCCCAGGAGGCAGTGAGGTGAATTGACTAGC ACCAGTGTGGTCACCTGCCCCAACAGCCTTCCCTGGGTGGCGTCTATAAGCTGGTGG CCGTGGGGGGCCAGCCACGAATGAAGCTGACCGAGGACCCCGAGAAGCAGACGCTGCC TGGGAGCAAGGCTTTCCGGCTCCTGGGCTCTGACGGGTCTCCACTCATGGACATG CTGCAGTTAGCAGAAGAGCCACACAGCCTGCCCAGGAGGCCCAGGAGCCACTACTGCGCT CAGGGGCCCAGGAGCCCTGCACCGTGAGGCCCAGGTGGAGCCACTACTGCGGCT CTGCCTCCAGCAGGACAGCTGTGAGCCCTCCCATCCTGGAGCCCTG CACAGTACCAGGAGCCCTGAGCCCAGGCCCTGGAGAGCCCTG CACAGTACCAGGTGTCTCCCGAGAGGCCCTGGTGAACAGTCTGTGTGC CACAGTACCAGCTGTTCCCGAGAGGCTGCAGGCCCTGGTGAACAGTCTGTGTGC		
	ORF Start: AGA at 1	ORF Stop:	at 1180	
	SEQ ID NO: 68	393 aa	MW at 41797.4kD	
NOV16b, 174308417 Protein Sequence	RSTNAARVRLIAGPEKRLLEMGLRRAQGPDGGLTASTYSYLGGFDSSSNVLAGQLRGV PVAGTLAHSFVTSFSGSEVPPDPMLAPAAGEGPGVDLAAKAQVWLEQVCAHLGLGVQE PHPGERAAFVAYALAFPRAFQGLLDTYSVWRSGLPNFLAVALALGELGYRAVGVRLDS GDLLQQAQEIRKVFRAAAAQFQVPWLESVLIVVSNNIDEEALARLAQEGSEVNVIGIG TSVVTCPQQPSLGGVYKLVAVGGQPRMKLTEDPEKQTLPGSKAAFRLLGSDGSPLMDM LQLAEEPVPQAGQELRVWPPGAQEPCTVRPAQVEPLLRLCLQQGQLCEPLPSLAESRA LAQLSLSRLSPEHRRLRSPAQYQVVLSERLQALVNSLCAGQSPLE			
	SEQ ID NO: 69	1179 bp		
NOV16c, 174308429 DNA Sequence	AGATCTACCAACGCAGCGCGCTTCGCTTGATCGCAGGGCCAGAGAAGCGGCTGCTAGAGATGGGCCTGAGGGCCTGAGGGCCCGATGGGGCCTGACAGCCTCCACCTACAGGCTGCTGGGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGAGGGCCTGGGGGGGCAGGGGGCAGCTGCGAGGGCCAGCTGGGGGGGCAGGGGGGCAGGGGGCAGCTGGGGGGGCAGGGGGCAGCCTGGGGGGGCAGGGGGCAGCCGGCCAGCCGGCCAGCCGGCCAGCCGGCCAGCCGGCCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCGGCAGCCCTACAGGGGCTTTCCCCGGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGGCCTTCCCAGCCCCAGGAGATCCAGCCCCAGGAGATCCAGCAGCCTTCCCAGCCTTCCCAGCCCCAACAACAACAATTGACGAACAACAATTGACGAACAACATTGACGAACAACAACATTGACGAACAACAACAACAACAACAACAACAACAACAACAAC			
	ORF Start: AGA at 1	ORF Stop:	at 1180 MW at 41825.4kD	
NOV16c, 174308429 Protein Sequence	SEQ ID NO: 70 393 aa MW at 41825.4kD RSTNAARVRLIAGPEKRLLEMGLRRAQGPDGGLTASTYSYLGGFDSSNVLAGQLRGV PVAGTLAHSFVTSFSGSEVPPDPMLAPAAGEGPGVDLAAKAQVWLEQVCAHLGLGVQE PHPGERAAFVAYALAFPRAFQGLLDTYSVWRSGLPNFLAVALALGELGYRAVGVRLDS GDLLQQAQEIRKVFRAAAAQFQVPWLESVLIVVSNNIDEEALARLAQEGSEVNVIGIG TSVVTCPQQPSLGGVYKLVAVGGQPRMKLTEDPEKQTLPGSKAAFRLLGSDGSPLMDM LQLAEEPVPQVGQELRVWPPGAQEPCTVRPAQVEPLLRLCLQQGQLCEPLPSLAESRA LAQLSLSRLSPEHRRLRSPAQYQVVLSERLQALVNSLCAGQSPLE			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B.

Table 16B. Comparison of NOV16a against NOV16b through NOV16c.			
Protein Sequence NOV16a Residues/ Similarities for the Matched R		Identities/ Similarities for the Matched Region	
NOV16b	143531 2391	351/391 (89%) 353/391 (89%)	
NOV16c	143531 2391	350/391 (89%) 352/391 (89%)	

Further analysis of the NOV16a protein yielded the following properties shown in Table 16C.

	Table 16C. Protein Sequence Properties NOV16a		
PSort analysis:	0.4500 probability located in cytoplasm; 0.3000 probability located in microbody (peroxisome); 0.2864 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV16a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 16D.

5

	Table 16D. Geneseq Results for NOV16a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV16a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAG33687	Arabidopsis thaliana protein fragment SEQ ID NO: 40861 - Arabidopsis thaliana, 553 aa. [EP1033405-A2, 06- SEP-2000]	14531 4548	231/547 (42%) 330/547 (60%)	e-113
AAG33686	Arabidopsis thaliana protein fragment SEQ ID NO: 40860 - Arabidopsis thaliana, 574 aa. [EP1033405-A2, 06-SEP-2000]	14531 25569	231/547 (42%) 330/547 (60%)	e-113
AAG33685	Arabidopsis thaliana protein fragment SEQ ID NO: 40859 - Arabidopsis thaliana, 591 aa. [EP1033405-A2, 06- SEP-2000]	14531 42586	231/547 (42%) 330/547 (60%)	e-113

AAY74114	Human prostate tumor EST fragment derived protein #301 - Homo sapiens, 223 aa. [DE19820190-A1, 04-NOV- 1999]	334531 26223	197/198 (99%) 198/198 (99%)	e-109
AAG29216	Arabidopsis thaliana protein fragment SEQ ID NO: 34723 - Arabidopsis thaliana, 435 aa. [EP1033405-A2, 06-SEP-2000]	14474 4432	200/468 (42%) 278/468 (58%)	1e-95

In a BLAST search of public sequence databases, the NOV16a protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.

	Table 16E. Public BLASTP Results for NOV16a			
Protein Accession Number	Protein/Organism/Length	NOV16a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BRG0	HYPOTHETICAL 58.1 KDA PROTEIN - Homo sapiens (Human), 542 aa (fragment).	1531 5542	514/539 (95%) 516/539 (95%)	0.0
Q9VQX4	CG3714 PROTEIN - Drosophila melanogaster (Fruit fly), 541 aa.	14531 13536	234/525 (44%) 330/525 (62%)	e-120
O80459	AT2G23420 PROTEIN - Arabidopsis thaliana (Mouse-ear cress), 574 aa.	14531 25569	231/547 (42%) 330/547 (60%)	e-112
AAK68525	HYPOTHETICAL 57.8 KDA PROTEIN - Caenorhabditis elegans, 511 aa.	13445 9449	198/443 (44%) 290/443 (64%)	e-101
Q95XX1	HYPOTHETICAL 59.9 KDA PROTEIN - Caenorhabditis elegans, 531 aa.	13445 29469	198/443 (44%) 290/443 (64%)	e-101

PFam analysis predicts that the NOV16a protein contains the domains shown in the Table 16F.

	Table 16F. Domain	Analysis of NOV16a	
Pfam Domain	NOV16a Match Region	Identities/ Similarities for the Matched Region	Expect Value
No Significant Matches Found			

EXAMPLE 17.

5

The NOV17 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 17A.

	Table 17A. NOV17 Sequence Analysis			
	SEQ ID NO: 71	572 bp		
NOV17a, CG59368-01 DNA Sequence	CCGTGGTGCACGCGCTGCCCCGCATCAACCGCATGGTGCTGCTGCTACCTCATCCGC			
	ORF Start: ATG at 33	ORF Stop	o: TAG at 258	
	SEQ ID NO: 72	75 aa	MW at 8638.2kD	
NOV17a, CG59368-01 Protein Sequence	MVLCYLIRFLQVFVQPANVAVTKMD LRVLIQHLDTSFMEGVL	VSNLAMVM	APNCLRCQSDDPRVIFENTRKEMSF	

Further analysis of the NOV17a protein yielded the following properties shown in Table 17B.

	Table 17B. Protein Sequence Properties NOV17a		
PSort analysis:	0.8134 probability located in mitochondrial intermembrane space; 0.5255 probability located in mitochondrial matrix space; 0.2672 probability located in lysosome (lumen); 0.2537 probability located in mitochondrial inner membrane		
SignalP analysis:	Likely cleavage site between residues 20 and 21		

A search of the NOV17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 17C.

5

Table 17C. Geneseq Results for NOV17a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE03048	Human preoptic regulatory factor-2 (hPORF-2) protein #1 - Homo sapiens, 75 aa. [WO200142464-A2, 14-JUN- 2001]	175 175	75/75 (100%) 75/75 (100%)	1e-37	

In a BLAST search of public sequence databases, the NOV17a protein was found to have homology to the proteins shown in the BLASTP data in Table 17D.

Table 17D. Public BLASTP	Results for NOV17a	

Protein Accession Number	Protein/Organism/Length	NOV17a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9C0H5	KIAA1688 PROTEIN - Homo sapiens (Human), 1094 aa (fragment).	175 10201094	75/75 (100%) 75/75 (100%)	4e-37
P18890	Putative preoptic regulatory factor-2 precursor (PORF-2) - Rattus norvegicus (Rat), 75 aa.	175 175	74/75 (98%) 75/75 (99%)	5e-37
Q9VDE9	CG3421 PROTEIN - Drosophila melanogaster (Fruit fly), 1309 aa.	175 12351309	48/75 (64%) 58/75 (77%)	2e-21

PFam analysis predicts that the NOV17a protein contains the domains shown in the Table 17E.

Table 17E. Domain Analysis of NOV17a						
Pfam Domain	NOV17a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
No Significant Matches Found						

EXAMPLE 18.

5

The NOV18 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 18A.

	Table 18A. NOV18 Sequence Analysis				
	SEQ ID NO: 73	1452 bp			
NOV18a, CG58628-01 DNA Sequence	GATCCCAGATCCAGTGT GCTCTGCCCTGGTCAGG AGGACAGGCACCGCTGCCT GTGGCCACTATGAACAGG CCTTTCTCCAGCAACCTT CAGTGTCACGGGTGTGGT AAGCGCTCCGTGAGCCAT ATCACTTCCTGCCATGA CCCTGAAGTGGTTCGGT GGCTCCTGTAAGACCGT GATAGACCACACACGGGCAGAGCAAACCGTG GATAGACCACATGCAGTG CACGAGCTGTGGGGGGAA TGGAGCTGTGGGGGGAA TGGAGCTGCAGACCGTG AGAGGCTCTGGAGTCCAGGGGCTGCGGGGCAGGCTGCAGGCTGCAGGCCGCCGCGCCCCTTGCGTGGGGGGCAGTGTGGGGGGACGTGCAGGGCCCCTGCGGGCGCCCCTGCCGGACGCGCCCCTGCGGGCGCCCCTGCGGGCGCCCCCTGCGGACGCCCCCCTGCCGGCCCCCCCTGCCGCCCCCCCC	ACCCTGTTTGCAGCACGATGTCTGAAGAAGAGGCGGCTCA GTGGGAGCAGGACCAGCAGAACGTGGTGCAGCGTGTGGTG GCCACGTGCACCGCGGTCTGCGATGTTTACAGTGCAGCCA TGGGCTCCGCCTGCCGCTGCTGAGAACTGCGTGTGCGG GGACCACGCCCAGCCGCTGCTCGAGCACCTGCAGCCCCAG CTCGCCTGCAGGGGCCTGGACAAGCTGGAAGAAGCTTC CGGAGACGGTAGTGACCTCAGCCAAGGACGTGGTGGCCAG GGACCTGGCCGGAGGGGCCGCGCGTGAGGCTGGAGCTG GCTGTGGATGTTGTACTGGAAAAATCAGAGGAGCTGGTGG GCGGAGAAGACTCGCGGCACTGGCGCTGAGGCTGAAGG GGAGGATCAGAGGACACTCTTGTGCGCCTC ATCCGCCACCTGGCCTACGAGCACTTTTGTGCGCCTC ATCCGCCACCTGGCCCAGCCCCTGCCCTG			

	CCAGCAGAGAGCCTGGGAGGCAG AGGATGGGTGTTGCCGGGGACAT	ATCGGGGGCCTGACCCCCGCTGGGCGCACCTGGACTGGCCGGC GGGAGGCAGACACAGGGACGGGAGTGGGAATGGGGAC CGGGGACATCTGCGAGCAGGAACCCGAGACCCCAGCTGCCCGG ATGCCCGAGCTGGACTTCTGACCCATGGGCCAGTGGAGGCGGGG			
	ORF Start: ATG at 36	ORF Stop: TGA at 1425			
	SEQ ID NO: 74	463 aa	MW at 50804.9kD		
NOV18a, CG58628-01 Protein Sequence	LAENCVCGLTTRALDHAQPLLEH SAKDVVASSVTGVVDLARRGRRW ALAAEAEGPEVGSVEDQRRQQGY QLQETLELIDHMQCGVTPTAPAC TQELQGTVEALESSVRGLPAGAQ GRVAHAHACVDELLELVVQAVPL	AAQIPRSSVWEQDQQNVVQRVVALPLVRATCTAVCDVYSAAKDRHPLLGSACR VCGLTTRALDHAQPLLEHLQPQVATMNSLACRGLDKLEEKLPFLQQPSETVVT VASSVTGVVDLARRGRRWSVELKRSVSHAVDVVLEKSEELVDHFLPMTEELA AEGPEVGSVEDQRRQQGYFVRLGSLSARIRHLAYEHSVGKLRQSKHRAQDTLA LELIDHMQCGVTPTAPACPGKVHELWGEWGQRPPESRRRSQVELETLVLSRSL GTVEALESSVRGLPAGAQEKVAEVRRSVDALQTAFADARCFRDVPAAALAEGR AHACVDELLELVVQAVPLPWLVGPFAPILVERPEPLPDLADLVDEVIGGPDPR WPAQQRAWEAEHRDGSGNGDGDRMGVAGDICEQEPETPSCPVKHTLMPELDF			
	SEQ ID NO: 75	978 bp			
NOV18b, 174228350 DNA Sequence	CGTGCACCGCGGTCTGCGATGTT CTCCGCCTGCCGCCTGCTGAGA CACGCCCAGCCGCTGCTCGAGCA CCTGCAGGGGCCTGCTCAAGCA CCTGCAGGGGCCTGACAAAGCTG GACGGTGGTGACCCTCAGCCAAGG CTGGCCCGGAGGGGCCGGCGCTG TGGATGTTGTACTGGAAAAATCA GGAAGAGCTCGCGGCACTGGCGG GATCAGAGGAGACACCTG GGACACCTGGCCCAGCTGCAGG GTGACCCCCACCGCCCCGGCCCG GCCAGCGCCCTCCGAGAGCCCCA GCCAGCGCCTGCCCAGCGCCCA CCCTGCAGAGCCCCAGCCCCA	GTGCAGCGTGTGGTGGCTCTGCCCCTGGTCAGGGCCA TTTACAGTGCAGCCAAGGACAGCACCCGCTGCTGGG GAACTGCGTGTGCGGCCCTGACCACCCCTGCCCTG			
	ORF Start: AGA at 1	ORF Stop:			
	SEQ ID NO: 76	326 aa	MW at 35954.4kD		
NOV18b, 174228350 Protein Sequence	HAQPLLEHLQPQLATMNSLACRG LARRGRRWSVELKRSVSHAVDVV DQRRQQGYFVRLGSLSARIRHLA	LDKLEEKLPI LEKSEELVDI YEHSVGKLR(PESRRRSQAI	DRHPLLGSACRLAENCVCGLTTRALD FLQQPSETVVTSAKDVVASSVTGVVD HFLPMTEEELAALAAEAEGPEVGSVE QSKHRAQDTLAQLQETLELIDHMQCG ELETLVLSRSLTQELQGTVEALESSV DVVD		
	SEQ ID NO: 77	978 bp			
NOV18c, 174228354 DNA Sequence	CGTGCACCGCGGTCTGCGATGTT CTCCGCCTGCCGCCTGCCTGAGA CACGCCCAGCCGCTGCTCGAGCA CCTGCAGGGGCCTGGACAAGCTG GACGGTGGTGACCTCAGCCAAGG CTGGCCCGGAGGGGCCGGCGCTG TGGATGTTGTACTGGAAAAATCA GGAAGAGCTCGCGGCACTGGCGG GATCAGAGGAGACAGCAGGGCTA GCCACCTGGCCTACGAGCACTCT GGACACCTGGCCCAGCTGCAGG	TACAGTGCA(ACTGCGTGTY ACTGCAGCCO GAAGAGAAGA ACGTGGTGGA GAGGAGCTGGA CTGAGGCTGGA CTTTGTGCGC CTTGGGGAAAA AGACGCTGG	EGTGGCTCTGCCCTGGTCAGGGCCA GCCAAGGACAGGCACCCGCTGCTGGG GCGGCCTGACCACCCGTGCCCTGGAC CCAGCTGGCCACTATGAACAGCCTCG CTTCCCTTTCTCCAGCAACCTTCGGA CCAGCAGTGTCACCGGTGTGGTGGAC GCTGAAGCGCTCCGTGAGCCATGCTG STGGATCACTTCCTGCCATGACGGA AAGGCCCTGAAGTGGGTTCGGTGGAG CCTCGGCTCCCTGTAGCACGGATCC CTGAGGCAGAGCAAACACCGTGCCCA AGCTGATAGACCACATGCAGGTGCGAG GCTGATAGACCACATGCAGGTGGGG		

	GTCCCGCAGCCTGACCCAGGAGGTGGGGCCTGCCCGCCGGCGCCCC	CGCCGCCGGAGCCAGGCAGAGCTGGAGACGCTGGTGCT AGCTGCAGGGCACGGTAGAGGCTCTGGAGTCCAGCGTG CCAGGAGAAGGTGGCTGAGGTGCGGCGCAGTGTGGATG GATGCCCGCTGCTTCAGGGACGTGGTCGAC			
	ORF Start: AGA at 1	ORF Stop:	ORF Stop:		
	SEQ ID NO: 78	326 aa	MW at 35984.4kD		
NOV18c, 174228354 Protein Sequence	HAQPLLEHLQPQLATMNSLACRO LARRGRRWSVELKRSVSHAVDVV DQRRQQGYFVRLGSLSARIRHLI VTPTAPARPGKVHELWGEWGQRI WGLPAGAQEKVAEVRRSVDALQ	AVCDVYSAAKDRHPLLGSACRLAENCVCGLTTRALD SLDKLEEKLPFLQQPSETVVTSAKDVVASSVTGVVD /LEKSEELVDHFLPMTEEELAALAABAEGPEVGSVE AYEHSVGKLRQSKHRAQDTLAQLQETLELIDHMQCG PPESRRRSQAELETLVLSRSLTQELQGTVEALESSV PAFADARCFRDVVD			
	SEQ ID NO: 79	1401 bp			
NOV18d, 188822733 DNA Sequence	ACCAGCAGAACGTGGTGCAGCGCGGGGGCGGGGCGGGGC	retegtegen scaecca agent scaecca agent scecca agent secce agent segecta agent segect agent scaect agent scaect agent scaect agent scaect agent scaect agent scaect agent scaect agent scaecca agent scaec	CCCCAGATCCAGTGTGTGGGAGCAGG CTGCCCTGGTCAGGGCCACGTGCAC ACAGGCACCCGTGCCTGGACCACGCC GACCACCCGTGCCCTGGACCACGCCC GCCACTATGAACAGCCTCGCCTGCAG TTCTCCAGCAACCTTCGGAGACGGTG TGTCACGGGTGTGGTGGACCTGGATGT ACTTCCTGCCCATGACGGAGGATGAACAG TGAAGTGGGTTCGGTGGAGGATCAGA TCCCTGTCAGCACGGTGTGGAGGATCAGA TCCCTGTCAGCACGGAGGATCAGA TCCCTGTCAGCACGGATCCCCACCT AGAGCAAACACCGTGCCCAGGACACC AGACCACTGCAGGATCTGCCCACCT AGACCACATGCAGTGTGGGGTGACCC GAGCTGTGGGGGGAATCGGCCAGCG AGCTGTGGGGGGATCTGCCCGC GCCTGTCAGCACTTGTGGGCCCAGCC GCCTGCAGCCGCTGCCCAGCC GCCTGCCAGCCTGCCAGCC ACGTGCAGCGCCCCTGCCCAGC CCGTGCAGCGCCCACCTTGTGGACCC TGGACGAGGTCATCCTTGTGACCG TGGACGAGGTCATCCTTGTGACCG TGGACGAGGTCATCCTTGCAAC ACGGGGCCAGCTGGCCGAACCCACCACACACGCGCCCCTGAC GCAGAGAGCCTGGGGGCCCTGAC ACGGGGAGCCTGGGGGCCCTGAC ACGGGGGAGCCTGGCAGACACAACGCAGCGGGACATCTGCGA ACGCACACCCTGATGCCCGAGCTGGAC ACGGGGTGTTGCCGGGGACATCTGCGA ACGCACACCCTGATGCCCGAGCTGGAC		
	ORF Start: AGA at 1	ORF Stop:			
	SEQ ID NO: 80	467 aa	MW at 51331.4kD		
NOV18d, 188822733 Protein Sequence	CRLAENCVCGLTTRALDHAQPLI VTSAKDVVASSVTGVVDLARRGF LAALAAEAEGPEVGSVEDQRRQQ LAQLQETLELIDHMQCGVTPTAE SLTQELQGTVEALESSVWGLPAC GRGRVAHAHACVDELLELVVQAV	JEHLQPQLATM RRWSVELKRSV GYFVRLGSLS PARPGKVHELW JAQEKVAEVRI VPLPWLVGPFI	LVRATCTAVCDVYSAAKDRHPLLGSA MNSLACRGLDKLEEKLPFLQQPSETV VSHAVDVVLEKSEELVDHFLPMTEEE SARIRHLAYEHSVGKLRQSKHRAQDT NGEWGQRPPESRRRSQAELETLVLSR RSVDALQTAFADARCFRDVPAAALAE APILVERPEPLPDLADLVDEVIGGPD VAGDICEQEPETPSCPVKHTLMPELD		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 18B.

Table 18B. Comparison of NOV18a against NOV18b through NOV18d.

Protein Sequence	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Region
NOV18b	18339 3324	307/322 (95%) 308/322 (95%)
NOV18c	18339 3324	306/322 (95%) 307/322 (95%)
NOV18d	1463 3465	447/463 (96%) 448/463 (96%)

Further analysis of the NOV18a protein yielded the following properties shown in Table 18C.

	Table 18C. Protein Sequence Properties NOV18a
PSort analysis:	0.3000 probability located in microbody (peroxisome); 0.3000 probability located in nucleus; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen)
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV18a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 18D.

	Table 18D. Geneseq Results for NOV18a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY67240	Human adipophilin-like protein (HALP) amino acid sequence - Homo sapiens, 434 aa. [US5989820-A, 23-NOV-1999]	19385 22428	163/407 (40%) 234/407 (57%)	1e-77	
AAW59883	Amino acid sequence of the cDNA clone ADF (HFKFY79) - Homo sapiens, 452 aa. [WO9831800-A2, 23-JUL-1998]	19388 22431	149/411 (36%) 223/411 (54%)	4e-64	
AAM25962	Human protein sequence SEQ ID NO:1477 - Homo sapiens, 139 aa. [WO200153455-A2, 26-JUL-2001]	1117 23139	116/117 (99%) 117/117 (99%)	4e-62	
AAY99534	Human adipocyte-specific differentiation-related protein ADRP - Homo sapiens, 437 aa. [WO200031532-A1, 02-JUN-2000]	12384 2411	140/416 (33%) 222/416 (52%)	1e-59	

AAW53264 Human adipocyte-specific differentiation-related protein - Homo sapiens, 437 aa. [US5739009-A, 14-APR-1998]	59
--	----

In a BLAST search of public sequence databases, the NOV18a protein was found to have homology to the proteins shown in the BLASTP data in Table 18E.

	Table 18E. Public BLASTP Results for NOV18a				
Protein Accession Number	Protein/Organism/Length	NOV18a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9D6M0	2310076L09RIK PROTEIN - Mus musculus (Mouse), 448 aa.	1463 1448	329/463 (71%) 368/463 (79%)	0.0	
Q9BS03	CARGO SELECTION PROTEIN (MANNOSE 6 PHOSPHATE RECEPTOR BINDING PROTEIN) - Homo sapiens (Human), 434 aa.	19385 22428	163/407 (40%) 234/407 (57%)	4e-77	
O60664	Cargo selection protein TIP47 (47 kDa mannose 6-phosphate receptor- binding protein) (47 kDa MPR-binding protein) (Placental protein 17) - Homo sapiens (Human), 434 aa.	19385 22428	163/407 (40%) 234/407 (57%)	6e-77	
Q9DBG5	1300012C15RIK PROTEIN (RIKEN CDNA 1300012C15 GENE) - Mus musculus (Mouse), 437 aa.	19385 22432	160/411 (38%) 232/411 (55%)	4e-73	
Q9CZK1	1300012C15RIK PROTEIN - Mus musculus (Mouse), 437 aa.	19385 22432	160/411 (38%) 232/411 (55%)	6e-73	

PFam analysis predicts that the NOV18a protein contains the domains shown in the Table 18F.

Table 18F. Domain Analysis of NOV18a					
Pfam Domain	NOV18a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
Man-6-P_recep: domain 1 of 1	156168	9/13 (69%) 9/13 (69%)	0.7		
perilipin: domain 1 of 1	10369	139/411 (34%) 240/411 (58%)	1.4e-76		

EXAMPLE 19.

The NOV19 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 19A.

Table 19A. NOV19 Sequence Analysis				
	SEQ ID NO: 81	774 bp		
NOV19a, CG59342-01 DNA Sequence	GTAGAGTTTTTCAGGTTGCTCCTGGAAACCATGCCGAAAGTAGTGTCTCGGTCAGTAG TCTGCTCTGC			
	ORF Start: ATG at 31	ORF Stop: TAA at 772		
	SEQ ID NO: 82	247 aa	MW at 28211.1kD	
NOV19a, CG59342-01 Protein Sequence	MPKVVSRSVVCSDTRDREEYDDGEKPLHVYYCLCGQVVLVLDCQLEKLPMRPRDRSR IDAAKHAHKFCNTEDEETMYLRRPEGIELQYRKKCAKCGLLLFYQSQPKNAPVTFIVI GAVVKFGQGFGKTNIYTQKQEPPKKVMMTKRTKDMGKFSSVTVSTIDEEEEEIEARE ADSYAQNAKVIEKQLERKGMSKRPLQELAEWEPQEKRTYDTGSPSAKKWQMRGSGAFI CPGPPQMALGMSGHH			

Further analysis of the NOV19a protein yielded the following properties shown in

5 Table 19B.

	Table 19B. Protein Sequence Properties NOV19a			
PSort analysis:	0.4500 probability located in cytoplasm; 0.3600 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV19a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 19C.

I	Table 19C. Geneseq Results for NOV19a				
	Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAG01784	Human secreted protein, SEQ ID NO: 5865 - Homo sapiens, 87 aa. [EP1033401-A2, 06-SEP-2000]	186 186	85/86 (98%) 86/86 (99%)	3e-46
AAM41425	Human polypeptide SEQ ID NO 6356 - Homo sapiens, 92 aa. [WO200153312-A1, 26-JUL-2001]	139215 985	65/77 (84%) 69/77 (89%)	4e-28
AAM39639	Human polypeptide SEQ ID NO 2784 - Homo sapiens, 80 aa. [WO200153312-A1, 26-JUL-2001]	143215 173	63/73 (86%) 66/73 (90%)	6e-27
AAG60283	Arabidopsis thaliana protein fragment SEQ ID NO: 78065 - Arabidopsis thaliana, 236 aa. [EP1033405-A2, 06- SEP-2000]	1119 1122	44/127 (34%) 64/127 (49%)	2e-09
AAG59843	Arabidopsis thaliana protein fragment SEQ ID NO: 77448 - Arabidopsis thaliana, 230 aa. [EP1033405-A2, 06- SEP-2000]	1119 1116	42/123 (34%) 63/123 (51%)	8e-09

In a BLAST search of public sequence databases, the NOV19a protein was found to have homology to the proteins shown in the BLASTP data in Table 19D.

Table 19D. Public BLASTP Results for NOV19a				
Protein Accession Number	Protein/Organism/Length	NOV19a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9H5V9	CDNA: FLJ22965 FIS, CLONE KAT10418 - Homo sapiens (Human), 222 aa.	1215 1215	202/215 (93%) 206/215 (94%)	e-114
AAH21479	HYPOTHETICAL 25.6 KDA PROTEIN - Mus musculus (Mouse), 222 aa.	1215 1215	201/215 (93%) 205/215 (94%)	e-113
Q9CWC1	C330007P06RIK PROTEIN - Mus musculus (Mouse), 250 aa.	1202 1202	197/202 (97%) 198/202 (97%)	e-111
Q9V412	BG:DS00941.3 PROTEIN - Drosophila melanogaster (Fruit fly), 247 aa.	1193 1218	106/220 (48%) 145/220 (65%)	2e-50
Q95Q06	Y66D12A.8 PROTEIN - Caenorhabditis elegans, 244 aa.	13194 29207	79/187 (42%) 114/187 (60%)	1e-30

PFam analysis predicts that the NOV19a protein contains the domains shown in the Table 19E.

Table 19E. Domain Analysis of NOV19a				
Pfam Domain	NOV19a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
No Significant Matches Found				

EXAMPLE 20.

The NOV20 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 20A.

	Table 20A. NOV20 Sequence Analysis				
	SEQ ID NO: 83	324 bp			
NOV20a, CG59486-01 DNA Sequence	AACTCCTGGCCTCAAGATCCACC CCTTCCTTCCTTCCTTCCT AAAGGCCAGGCGCAGTGGCTCAT	CGCCTCGAC TCCTTCCTT CGTCTGTAAT	STTTCCCCATGTTGCCAGCTGGCCTCGCCTCCCCAAAGGCCCAGCCCCTCTCTTTCCTTCTTCTTTTAAAAAAAA		
	ORF Start: ATG at 40	ORF St	top: TAA at 295		
	SEQ ID NO: 84	85 aa	MW at 9476.2kD		
NOV20a, CG59486-01 Protein Sequence	MLPAGLELLASRSTRLDLPKAQPLSFLPSFLPSFLVFKKKKKGQAQWLMSVIPA LWEAKAGRSQGQEIKTILANTVKPHLY				

Further analysis of the NOV20a protein yielded the following properties shown in

5 Table 20B.

Table 20B. Protein Sequence Properties NOV20a			
PSort analysis:	0.6238 probability located in microbody (peroxisome); 0.6000 probability located in nucleus; 0.3600 probability located in mitochondrial matrix space; 0.1830 probability located in lysosome (lumen)		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV20a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 20C.

Table 20C. Geneseq Results for NOV20a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value

AAB95050	Human protein sequence SEQ ID NO:16847 - Homo sapiens, 112 aa. [EP1074617-A2, 07-FEB-2001]	3585 62112	38/51 (74%) 42/51 (81%)	4e-15
ABB11422	Human Zn finger protein homologue, SEQ ID NO:1792 - Homo sapiens, 670 aa. [WO200157188-A2, 09-AUG- 2001]	4785 632670	32/39 (82%) 35/39 (89%)	1e-12
AAM85296	Human immune/haematopoietic antigen SEQ ID NO:12889 - Homo sapiens, 81 aa. [WO200157182-A2, 09-AUG- 2001]	3784 1967	35/49 (71%) 41/49 (83%)	1e-12
AAM94124	Human reproductive system related antigen SEQ ID NO: 2782 - Homo sapiens, 107 aa. [WO200155320-A2, 02-AUG-2001]	4185 63107	33/45 (73%) 38/45 (84%)	3e-12
AAM91494	Human immune/haematopoietic antigen SEQ ID NO:19087 - Homo sapiens, 58 aa. [WO200157182-A2, 09-AUG- 2001]	4985 2258	32/37 (86%) 34/37 (91%)	3e-12

In a BLAST search of public sequence databases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table 20D.

	Table 20D. Public BLASTP Results for NOV20a				
Protein Accession Number	Protein/Organism/Length	NOV20a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9UI59	PRO0478 - Homo sapiens (Human), 87 aa.	885 787	50/82 (60%) 59/82 (70%)	4e-18	
P39189	Alu subfamily SB sequence contamination warning entry - Homo sapiens (Human), 587 aa.	4785 139	30/39 (76%) 35/39 (88%)	1e-10	
P39192	Alu subfamily SC sequence contamination warning entry - Homo sapiens (Human), 585 aa.	4785 139	29/39 (74%) 34/39 (86%)	5e-10	
P39191	Alu subfamily SB2 sequence contamination warning entry - Homo sapiens (Human), 603 aa.	4785 139	29/39 (74%) 33/39 (84%)	9e-10	
P39190	Alu subfamily SB1 sequence contamination warning entry - Homo sapiens (Human), 587 aa.	4785 139	28/39 (71%) 33/39 (83%)	3e-09	

PFam analysis predicts that the NOV20a protein contains the domains shown in the Table 20E.

Table 20E. Domain Analysis of NOV20a			
Pfam Domain	NOV20a Match Region	Identities/ Similarities for the Matched Region	Expect Value
No Significant Matches Found			

EXAMPLE 21.

The NOV21 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 21A.

	Table 21A. NOV21	Sequence Analysis	
	SEQ ID NO: 85	1572 bp	
NOV21a, CG59446-01 DNA Sequence	GGCCGAGGACTCCAGCGTGCC TGGGAAGATGGCCGCCCGTG TTGATCCAAGCCACCCTCAGT AAGAAAAGCTGACACAGGAGC GCCGCTGCTCAGTGACACAGGAGCC CTGGTGAACACCGTCCTGAAG TCCAGCTGCAGGTGAAGCCCT GGACATGGTGCCCAAGCCACC TGGTCCTCAGTGACTGTGCCA GCTCTCCTTCCTGGTGAACAC CTGCCCAATCTAGTGAAAAAC TGTATGCAGACCTCCTGCAGC GCAAGTTGTTGACCTCACAG CCCTGACAATGCCCACCCTGG CAGCCTCATCGTGACTCACAG CAGCTCATCGTGACTCACAG AAGAATTCATGGTGATCATAG AAGCATCGGGTATCATAG AACTCTGGGATTGTTGCTGTTC TCCACTCCATCCTGCTGCTGA ATTGGTGAAGGCTTCTTGTTC GTGCTTACTCAGCTTTTGTTCCACTCCTTTTCCACTCCATCCTTTTCCACTCCATCCTTTTCCACTCCATCCTTTTCCACTCCATCCTTTTCCACTCCATCCTTTTCCACTCCATCCTTTTTCACTCAAGCATCCATC	GACTTCCAGACCCACTGCCCGGGAGAGAGAGAGAGAGAGA	CC
	ORF Start: ATG at 124	ORF Stop: TGA at 1441	
	SEQ ID NO: 86	439 aa MW at 47572.2kD	
NOV21a, CG59446-01 Protein Sequence	LSAMREKPAGGIPVLGSLVNT VAGFNTPLVKTIVEFHMTTEA FLVNALAKQVMNLLVPSLPNL DLLYPAIKGDTIQLYLGAKLL IVSQDVVKAAVAAVLSPEEFM	TLSPTAVLILGPKVIKEKLTQELKDHNATSILQQL VLKHIIWLKVITANILQLQVKPSANDQELLVKIPL QATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHK IVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRL IDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSHPF IVLLDSVLPESAHRLKSSIGLINEKEASSEAQFYTK IGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVS	DM LS EF SL GD

	KALGFEAAESSLTKDALVLTPAS	LWKPSSPVSQ	
	SEQ ID NO: 87	1392 bp	
NOV21b, 174308261 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAC AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCACACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCACCAGCATCCTGTGCTGGGCAGCCTGGTGAACACCCGTC CTGAAACACATCATCTGGCTGAAGGTCATCACAGGTAACATCCTCCAGCTGCAGGTGA AGCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGG ATTCAACACGCCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAA GCCACCATCCGCATGGACACCAGTGCAAGTGGCCCCACCCCGCCTGGTCCTCAGTGACT GTGCCACCAGCCATGGAGCCTGCGCATCCAACTGCTGATAAGCTCTCTTCCTTGGT AAAAACCAGCTTTAGCTAAGCAGGTCATGAACCTCCTAGTGCATAATGCAGTCTCTTCTT GCAGCTGGTGAAGGTGCCCATTCCCTCAGCACTTGAGCTCTCTTC GTATCCTGCCATCAAGGGTGACACCATTCAGCTCTCACTGGGGGCCAAGTTGTTGGAC TCACAGGGAAAGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCTGACAATGCCCA CCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCAGGACCTCCTGACAATGCCCA GGCTGCTGTGCTCTCCCAGAAGAATTCATGGTCCTGTTGGACTCCTGAGAAACCTCCTGAG AGTGCCCATCGGCTGAAGTCAAGCATCAGGCTGAATAAAGCTCCGAGTTTTTAAAG CCAAGGCCATCCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTTTTTAACA CCAAGGCCATGCCAAGTGGCCCAACTGATCGTGCTGGAAGTTTTTCCCTCCAGTGAA GCCCTCCGCCCTTTGTTCACCCTGGGCATCGAACCACCTCGGAAGCTCAGTTTTACA CCAAAGGTGACCAACTTATACTCAACTTGAACACCAGCTCGGAACCTCAGCT GATGAACTCTGGGTTCCAACCTGAACCAACTCTGAAAAACATCATCACCTGAG ATCATCCACTCCATCCTGCCGAACCAGAATGGCAAATTAAAACATCATCACCTGAG ATCATCCACTCCATCCTGCCGAACCAGAATGGCAAATTAAAACATCATCACCTGAG TGTCATTGGTGAAGGCCCTTCGCGAACCAGAATTAAAACATCATCACCTGAG TTCATCCACTCCATCCTGCCGAACCAGAATGGCAACTTAAAACAATCATCACCTGAG TTCATTCGTGAAGGCCCTTGGGATTCCAAGGCAGCTCACCTAACCAAGGATGCCCAA		
	ORF Start: AAG at 1	ORF Stop: LV at 1393	
	SEQ ID NO: 88	464 aa MW at 50459.5kD	
NOV21b, 174308261 Protein Sequence	LKHIIWLKVITANILQLQVKPSA ATIRMDTSASGPTRLVLSDCATS KNQLCPVIEASFNGMYADLLQLV SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGPT ALRPLFTLGIEASSEAQFYTKGD	DHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV NDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ HGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV KVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLD IPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE QIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSE QLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITE KALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE	
	SEQ ID NO: 89	1392 bp	
NOV21c, 174308266 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCCGACACAAGGACTGAAGGACCACACACCACCAGCATCCTGCAGCAGCTGCCGATGCTCAGTGCCATGCGGGAAAAGCCACACACCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGCGGGAAAAGCCAGCC		

	GATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAG ATCATCCACTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAG TGTCATTGGTGAAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGC CCTTGTGCTTACTCCAGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGCTCGAG		
	ORF Start: AAG at 1	ORF Stop):
	SEQ ID NO: 90	464 aa	MW at 50433.4kD
NOV21c, 174308266 Protein Sequence	KLPTAVLILGPKVIKEKPTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLV LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTT ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLE KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAF SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSV SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFF ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNI IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVS		
	SEQ ID NO: 91	1392 bp	
NOV21d, 174308278 DNA Sequence	AGGAGCTGAAGGACCACAACGCCCATGCGGGAAAAGCCAGCC	CACCAGCATC GGCATCCCTG AGGTCATCAC GCTGCTAGTC ACCATCGTGG GTGCAAGTGC ACGAGCCTCCAA ATGAACCTCC ACCATTCAGC ACCATTCAGC GCTTCATCAGC GCTTCATCAGC GCATCCAGC GCATCCAGC GCATCCAGC GCACCTAGC GAACTGATCG CCAACTGATCG CCAACTGATCG CCAACTGATCG CCAACTGATCG CCAACTGATCG CCAACTGAAC CCAACCTGAAC CCAACCAGAA	CAAAAGTCATCAAAGAAAAGCTGACAC CTGCAGCAGCTGCCGCTGCTCAGTGC CTGCTGGGCAGCTGCCGCTGCTCAGTGC CTGCTGGGCAGCTGCCGCTGCAGCTGACACCCCCCGCTGGACATGGTGGCCCAA CCCCACCCGCCTGGTCCTCAGTGACT CCTGCTGCATAAGCTCTCCTTCCTGGT CTTCAATGGCATTTTACAGACCTCC CATTGACCGTCTGGAGTTTTGACCTTCT CTTCACTGGGGCCAAGTTGTTGACC CCTCTGCAGACTTCCTGACATTGACCACC CCTCTGCAGACTTCCTGACAATCCCAGCCAACCTCC CCTTGCAGCTTCCCTGACAATCCCAGC CCTCTGCAGACCTCCCTGACAATCCCAGC CCCAGCTCCCGAGTTTTTTATAGA CCCAGCTCGGAAGCTCCCAGTTATACA CAACATCAGCTCTGAAACCTCCCAGTAAA CAACATCAGCTCTGAAACCTCCCAGTAAA CAACATCAGCTCTGATCAGTCCAGCT CATGTTCTGAAAAACATCACTCAGGA CTGGCAAATTAAGATCTGGGGTCCCAG CCCAGCTCCCAGTTCCCCAGGATCCCAGCTCCCAGCTCCAGCTCCCAGCTCCAGCCCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCTCCCAGCCCCCACCCCCACCCCCACCCCCACCCCCACCCCCC
	ORF Start: AAG at 1	ORF Stor	
	SEQ ID NO: 92	464 aa	MW at 50430.4kD
NOV21d, 174308278 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ ATIHMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLD SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSE ALRPLFTLGIEASSEAQFYTKGDQLILLNNISSDRIQLMNSGIGWFQPDVLKNIITE IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE		
	SEQ ID NO: 93	1392 bp	
NOV21e, 174308283 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAC AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTC CTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGA AGCCCTCGGCCAATGACCAGGAGCTGCTAGTTAAGATCCCCCTGGACATGGTGGCTGG		

	GCCACCATCCGCATGGACACCAGGTGCCACCAGCCATGGGAGCCTTGGAACGCCTTAGCTAAGCAGGTCATGAAAAAACCAGCTGTGATCCCGTGATCTGCAGCTGGCCCATTTGCAGCTGCCATCTCACAGGGAACACCCCTGGACAACTCCCGTGAACACCCCTGGACAACTCCCGTGAAGCAACTGCCATCGGCTGAAGTCAAGCCCAAGGCCATCAGCCCAAGGCCATCAGCCCAAGGCCAAGGCCAAGGCCCCTTGAAGCCCAAGGCCCAAGGCCCCTCGCCCCCCCC	IGCAAGTGGC IGGAACCTCCT IGAGGCTTCC ICCCTCAGCA ICCATTCAGCT ITCATTCATTCATCATCATCATCATCATCATCATCATCATC	GTTCCACATGACGACTGAGGCCCAA CCCACCCGCCTGGTCCTCAGTGACT TGCTGCATAAGCTCTCCTTCCTGGT AGTGCCATCCCTGCCCAATCTAGTG TTCAATGGCATGTATGCAGACCTCC TTGACCGTCTGGAGTTTGACCTTCT CTACCTGGGGGCCAAGTTGTTGGAC TCTGCAGCTTCCCTGACAATGCCAG GTCAGGACGTGGTGAAAGCTGCAGT CCTGTTGGACTCTGTGCTTCCTGAG ATCAATGAAAAGGCTGCAGATAAGC AGGACACTCCCGAGTTTTTTATAGA GCTGGAAGTGTTTCCCTCCAGTGAA GCCAGCTCGGAAGCTCCAGTTTTACA ACATCAGCCCTGATCGGATCCAGCT
	ATCATCCACTCCATCCTGCTGCCCCCGTCATTGGTGAAGGCCTTGGGA	BAACCAGAAT TTCGAGGCAG	TGTTCTGAAAAACATCATCACTGAG GGCAAATTAAGATCTGGGGTCCCAG CTGAGTCCTCACTGACCAAGGATGC CAGCTCTCCTGTCTCCCAGCTCGAG
	ORF Start: AAG at 1	ORF Stop:	
		 	NOV at 50421 41-D
	SEQ ID NO: 94	464 aa	MW at 50431.4kD
NOV21e, 174308283 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLD SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSE ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISPDRIQLMNSGIGWFQPDVLKNIITE IIHSILLPNONGKLRSGVPASLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE		
	SEQ ID NO: 95	1392 bp	
NOV21f, 174308287 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCAGGAGCTGCAGGAGCAGAAAAGCCAGCC	CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGGA CCATCGTGCA CGCATCCACC CGCATCCACC CGCATCCACC CCCTCAGCA CCCTCACCA CCCTCACCTC CACCCTCACCA CCCCTCACCA CCCCTCACCAC CCCCCCACCACACAC CCCCCCACACCACACAC CCCCCC	AAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC GCTGGCAGCTGCTGGTGACACCTC GCTAACATCCTCCAGCTGCAGGTGA AGATCCCCCTGGACATGGTGGCTGA GGTCCACATGACGACTGAGGCCCAA CCCACCCGCCTGGTCCTCAGTGACT TGCTGCATAAGCTCTCCTTCCTGGT AGTGCCATCCCTGCCAATCTAGTG TTCAATGGCATGATGACCTCC TTGACCGTCTGGAGTTTGACCTTCT CTACCTGGGGGCCAAGTTGTTGAC GTCAGGACTTCCTGACAATGCCAG TCTGAGACTTCCTGACAATGCCAG TCAGGACGTTGTGTCTTCTTAGA GCTGTTGGACTCTGTGCTTCCTGAG ATCAATGAAAAGGCTGCAGT CCTGTTGGACTCTCCTGAGATAGC AGGACACTCCCGAGTTTTTTAAGA GCTGGAAGTGTTTCCTCAGTGAA GCCAGCTCGGAAGCTCAGTTTTACA ACATCAGCTCTGATCGGATCCAGCT TGTTCTGAAAAACATCATCACTGAG GGCAAATTAAGATCTGGGTCCCAG CTGAGTCCTCACTGACCAAGGATGC CAGCTCCCCTCCC
		 	D GV + 50425 41 D
1	SEQ ID NO: 96	464 aa	MW at 50435.4kD

NOV21f,		KDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV	
174308287 Protein Sequence	LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTVQLYLGAKLLD SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSE ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITE IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE		
	SEQ ID NO: 97	1392 bp	
NOV21g, 174308293 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAGGAGCTGCACTGCAGACCACACCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTCATGCGGGAAAAGCCACACACCCACC		
	ORF Start: AAG at 1	ORF Stop:	
	SEQ ID NO: 98	464 aa MW at 50477.5kD	
NOV21g, 174308293 Protein Sequence	LKHIIWLKVITANILQLQVKPSA ATIRMDTSASGPTRLVLSDCATS KNQLCPVIEASFNGMYADLLQLV SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST ALRPLFTLGIEASSEAQFYTKGI IIHSILLPNQNGRLRSGVPVSLV	CDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV LNDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ EHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV VKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLD HIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE CQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSE LQLILNLNNISSDRIQLMNSGIGWFQPDVLKNITTE KALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE	
	SEQ ID NO: 99	1392 bp	
NOV21h, 174308301 DNA Sequence	AGGAGCTGAAGGACCACAACGCCCATGCGGGAAAAGCCAGCC	CCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAC CACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC GCATCCTGTGCTGGGCAGCTGCTGGTGAACACCGTC AGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGA CCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGG ACCATCGTGGAGTTCCACATGACGACTGAGGCCCAA CTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACT CCGCATCCAACTGCTGCATAAGCTCTCCTTGCT ATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTG CCGAGGCTTCCTTCAATGGCATTATGCAGACCTCC TCCCTCAGCATTGACCTCTGAGTTTTGACCTTCT ACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGAC GGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCA	

	CCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGT GGCTGCTGTGCTCTCCCAGAAGAATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAG AGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAGGCTGCAGATAAGC TGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCAAGTTTTTTATAGA CCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCAGTGAA GCCCTCCGCCCTTTGTTCACCCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTACA CCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCCGGATCCAGCT GATGAACGCTGGGATTGGCTGGTTCCAACCTGATGTTCTCAAAAACATCATCACTGAG ATCATCCACTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAG TGTCATTGGTGAAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCCTCACCAAGGATGC CCTTGTGCTTACTCCAGCCTCCTTGTGGAAAACCCCAGCTCTCCTGTCCCCAGCTCGAG		
	ORF Start: AAG at 1	ORF Stop	•
	SEQ ID NO: 100	464 aa	MW at 50418.5kD
NOV21h, 174308301 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTVLKHVIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAGATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPJSLSIDRLEFDLLYPAIKGDTIQLYLGAKLLISQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPFSAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPKFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYTKGDQLILMLNNISSDRIQLMNAGIGWFQPDVLKNITTEIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE		
	SEQ ID NO: 101	1392 bp	
NOV21i, 174308311 DNA Sequence	AGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAC AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCACCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCCGGTGAACACCGTC CTGAAGCACGTCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGA AGCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGG ATTCAACACGCCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAA GCCACCATCCGCATGGACACCAGTGCAAGTGGCCCACCCGCCTGGTCCTCAGTGACT GTGCCACCAGCCATGGAGCCTGCGCATCCAACTGCTGCATAAGCTCTCCTTCCT		
	ORF Start: AAG at 1	ORF Stop:	
	SEQ ID NO: 102	464 aa	MW at 50360.4kD
NOV21i, 174308311 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSPVNT LKHVIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEA ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNL KNQLCPVIEASFNGMYADLLQLVKVPISLSIGRLEFDLLYPAIKGDTIQLYLGAKLL SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLP SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPKFFIDQGHAKVAQLIVLEVFPSS ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIIT IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQL		

	SEQ ID NO: 103	1392 bp		
NO.	 			
NOV21j,			AAAGTCATCAAAGAAAAGCTGACAC	
174308315 DNA	AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGCAGCCTGGTGAACACCGTC			
Sequence				
_	CTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGA			
	AGCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGG ATTCAACACGCCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAA			
			CCCACCTGACGACTGAGGCCCAA	
İ			TGCTGCATAAGCTCTCCTTCCTGGT	
			AGTGCCATCCCTGCCCAATCTAGTG	
	I .		TTCAATGCATGTATGCAGACCTCC	
	I .		TTGACCGTCTGGAGTTTGACCTTCT	
			CTACCTGGGGGCCAAGTTGTTGGAC	
			TCTGCAGCTTCCCTGACAATGCCCA	
			GTCAGGACGTGGTGAAAGCTGCAGT	
			CCTGTTGGACTCTGTGCTTCCTGAG	
	AGTGCCCATCGGCTGAAGTCAAG	CATCGGGCTG	ATCAATGAAAAGGCTGCAGATAAGC	
	TGGGATCTACCCAGATCGTGAAG.	ATCCTAACTC	AGGACACTCCCGAGTTTTTTATAGA	
	CCAAGGCCATGCCAGGGTGGCCC	AACTGATCG1	GCTGGAAGTGTCTCCCTCCAGTGAA	
	GCCCTCCGCCCTTTGTTCACCCT	GGGCATCGAA	GCCAGCTCGGAAGCTCAGTTTTACA	
	1		ACATCAGCTCTGATCGGATCCAGCT	
			TGTTCTGAAAAACATCATCACTGAG	
İ	1		GGCAAATTAAGATCTGGGGTCCCAG	
	1		SATGAGTCCTCACTGACCAAGGATGC	
	CCTTGTGCTTACTCCAGCCTCCT		CAGCTCTCCTGTCTCCCAGCTCGAG	
	ORF Start: AAG at 1	ORF Stop:	v	
	SEQ ID NO: 104	464 aa	MW at 50461.4kD	
137/33/31:	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVN LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTE ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNI KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLI SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLI SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHARVAQLIVLEVSPS ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNII			
NOV21j, 174308315 Protein Sequence	LKHIIWLKVITANILQLQVKPSA ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST ALRPLFTLGIEASSEAQFYTKGD	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDI QLILNLNNIS	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE	
174308315 Protein	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS KNQLCPVIEASFNGMYADLLQLV SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST ALRPLFTLGIEASSEAQFYTKGD IIHSILLPNQNGKLRSGVPVSLV	NDQELLVKIE HGSLRIQLLH KVPISLSIDF IPFSLIVSQE QIVKILTQDE QLILNLNNIS KALGFEADES	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV YLEFDLLYPAIKGDTIQLYLGAKLLD OVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE	
174308315 Protein Sequence	LKHIIWLKVITANILQLQVKPSALATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST- ALRPLFTLGIEASSEAQFYTKGD- IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE	
174308315 Protein Sequence NOV21k,	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST- ALRPLFTLGIEASSEAQFYTKGD- IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT-	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST- ALRPLFTLGIEASSEAQFYTKGD- IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT- AGGAGCTGAAGGACCACAACGCC.	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC	
174308315 Protein Sequence NOV21k,	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST- ALRPLFTLGIEASSEAQFYTKGD- IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT- AGGAGCTGAAGGACCCCACACGCCC CATGCGGGAAAAGCCCAGCCC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCCTGT	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCAGCCGGAGCCTGAAGCACATCATCTGGCTGAAGCCCTGCTGAAGCCCTGAACGCCCTGAAGCCCTGAAGCCCTGAACGCCCTGAAGCCCTGAAGCCCTGAACGCCCTGAAGCCCTGAAGCCCTGAACGCCCTGAACCTGAACGCCCTGAACCTGAACGCCCTGAACCTGAACGCCCTGAACACACAC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCCTGT	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE AAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC GCTGGGCAGCCTGCTGCAGGCTGCTGAACACCTGC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCAGCCGGAGGCTGAAGCACATCATCTGGCTGAAGAGCCCTGAAGCACATCATCTGGCTGAAGAGCCCTGCAGCCCAATGACCAGGAGGAGCCCTGAAGCACATCATCTGGCTGAAGAGCCCTCGGCCCAATGACCAGGAGGAGCCCTGAAGCACATCATCTGGCTGAAGAGCCCTCGGCCCAATGACCAGGAGGAGACCCTCGCCCAATGACCAGGAGGAGACCCAGGAGGAGACCCTCGGCCCAATGACCAGGAGGAGACCCAGGAGAGCCCTCGGCCCAATGACCAGGAGAGACCCAGGAGAGACCCAGGAGAGACCAGGACGAGACCAGACCAGGAGACCCAGGAGACCCAGGAGACCCAGGAGACCACACGCAGAGACCAGGACGAC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCCTGT GGTCATCACAC CTGCTAGTCA	PLDMVAGFNTPLVKTIVEFHMTTEAQ (KLSFLVNALAKQVMNLLVPSLPNLV LEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE SDRIQLMNSGIGWFQPDVLKNIITE SLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCACACGCCGAGGCTGAAGCACATCATCTGGCTGAAGAGCACATCATCTGGCTGAAGAGCCCTCGGCCAATGACCAGGAGGATCATCAACACGCCCTGGTCAAGAGAGACCCCCTGGTCAAGAGAGACACCCCTGGTCAAGAGAGACACCCCTGGCCCAAGAGAGAG	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCGTCGTGGACCACCC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE IAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC IGCTGGGCAGCCTGCTGCAGTGC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCCACACGCC. CATGCGGGAAAAGCCACACGCC. CATGCGGGAAAAGCCAGCCGAGG CTGAAGCACATCATCTGGCTGAAA AGCCCTCGGCCAATGACCAGGAGG ATTCAACACGCCCCTGGTCAAGAG GCCACCATCCGCATGGACACCAGG	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGGA TGCAAGTGGC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAAGCAGCTGCCGCTGCTCAGTGC IGCTGGGCAGCCTGCTGCAGTGC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATCATGACGACTGCAGGTGAACACCGTC IGCTACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATGACGACTGAGGCCCAA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCCACACGCC. CATGCGGGAAAAGCCACCACGCCGAGCCTGAAGCACATCATCTGGCTGAACACGCCCTGAAGCACATCATCTGGCTGAACACGCCCTGGACACGCCCTGAAGCACACGCCCTGAAGCACACGCCCTGAAGCACACCACTCGCCATGACCACGCCCTGGCCAAGACGCCCTGGCCAATGACCAGGAGGCCACCATCCGCATGGACACCACGCCTGGTCAAGACGCCCCTGGTCAAGACGCCCCTGGTCAAGACGCCCCTGGTCAAGACGCCCACCACCCAC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGGA TGCAAGTGGC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAAGCAGCTGCCGCTGCTCAGTGC IGCTGGGCAGCCTGCTGCAGTGC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATCATGACGACTGCAGGTGAACACCGTC IGCTACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATGACGACTGAGGCCCAA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCACCACGCGAGC CTGAAGCACATCATCTGGCTGAA: AGCCCTCGGCCAATGACCAGGAG ATTCAACACGCCCTGGTCAAGA: GCCACCATCCGCATGGACACCACG GTGCCACCAGCCATGGAGCCCTGGAACACGCC GTGCCACCAGCCATGGAGACACCAGG GTGCCACCAGCCATGGAGACACCAGG GTGCCACCAGCCATGGAGAGCCTGAACACGCCTTAGCTAAGCAGGTCACAGCACCATGGAACACCAGG	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GGTCATCACAC CTGCTAGTCA CCATCGTGGA TGCAACTCCT IGGAACTCCT IGGAACTCCT	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAAGCAGCTGCCGCTGCTCAGTGC IGCTAACATCCTCCAGCTGACACCGTC IGCTAACATCCTCCAGCTGAGCTGACACCTCCCCCTGGACATGCTGAGCTGACACCTTCCTGGCTGACACCTTGCTGACACCCTCCAGCTGAGCTGACACCCTCCCCCCTGGACATGGTGACACCCTCGGCTGACACCCCCCCC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC: CATGCGGGAAAAGCCCAGGAGCCTGAAGCACACCACCACCCTGCACCAGGAGCACCACCACCACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGAACACCCCTGGCCAATGACCAGGAGCACCACCATCCGCATGGACACCACGGTGCCACCACCAGCCATGGACACCACGGAACACCCTTAGCTAAGCAGGTCACAAAAACCAGCTGTGTCCCGTGATCACAAAAACCAGCTGTGTCCCGTGATCACAAAAACCAGCTTGTCCCGTGATCACAAAAACCAGCTTGTCCCGTGATCACAAAAACCAGCTTGTCCCGTGATCACAAAAAACCAGCTTGTCCCGTGATCACAACAACACCAGCTGTCCCCGTGATCACAAAAAACCAGCTTGTCCCGTGATCACAAAAAACCAGCTTTAGCTAAAAAACCAGCTTGTCCCGTGATCACAAAAAACCAGCTTGTCCCGTGATCACAACAACCAGCTTGTCCCGTGATCACAACAACCAGCTTGTCCCGTGATCACAAAAAACACAGCTTTAGCTAAAAAACCCGCTTGTCCCGTGATCACAAAAAACACAGCTTGTCCCGTGATCACAAAAAACACAGCTTGTCCCGTGATCACAAAAAACACAGCTTGTCCCGTGATCACAAAAAACACAGCTTTAGCTAAAAAACACAGCTTTAGCTAAAAAACACAGCTTTAGCTAAAAAACACAGCTTGTCCCGTGATCACAAAAAAAA	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATC GGTCATCACA CTGCTAGTCA CCATCGTGGA CCGAGCTCCT CGAGCTTCCT CGAGCCTCCT CGAGGCTTCC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAAGCAGCAGCTGCCGCTGCTCAGTGC TGCAGCAGCAGCTGCCGGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGA IAGATCCCCCTGGACATGGTGGCTGA ICCCACCGCCTGGTCCTAGTGCTGCTGAGTGCCTGACACCTGCCCAATCCAGTGACTTCCTGGT TGCTGCATAAGCTCTCCTGGTTCAGTGCTGAGTGCCCAACCCGCCTGGTCCTCAGTGACTTCTGCTGCTGCCAATCTAGTG	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACACGCC: CATGCGGGAAAAGCCACACGCCCCATGCGGGAAAAGCCACACGCCCCTGAAGCACACCCCCTGAAGCACCACTCGCCTGATCAACACGCCCTGGTCAAGACGCCCTGGCCAACGACCACCACCCCTGGTCAAGACGCCCTGGTCAAGACGCCCTTGGCCACCACCATCGCATGGACACCACGCTGCACCACCATCCGCATGGACACCACGCACCATCCGCATGGACACCACGCTGCCACCACCACCACCATGCCACCACCACCACCACCACCACCACCACCACCACCACCA	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC ACCATCATCACAC CCATCATCACAC CCATCGTGGA CCGCATCCAAC IGAACCTCCT CGAGGCTTCC ICCCTCAGCA CCATTCAGCA	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCTGGCAGCTGCCGCTGCTCAGTGC IGCTAACATCCTCCAGCTGCAGGTGA LAGATCCCCTGGACATGGTGGCTGA LAGATCCCCTGGACATGTGGCTGG IGTTCCACATGACGACTGAGGCCCAA CCCACCCGCCTGGTCCTCAGTGACT TGCTGCATAAGCTCTCCTTCCTGGT TGCTGCATAAGCTCTCCTTCCTGGT TTGCTGCATAAGCTCTCTCTTGTC TTGATGCATCTGGAGTTTGACCTTCCTTGTT CTTACCTGGGGGCCAAGTTTGACCTTCT CTTACCTGGGGGCCAAGTTTTGGAC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACACGCC: CATGCGGGAAAAGCCACACGCCC CATGCGGGAAAAGCCACACGCCC CTGAAGCACATCATCTGGCTGAAG ATTCAACACGCCCTGGTCAAGAG ATTCAACACGCCCTGGTCAAGAG GCCACCATCCGCATGGACACCACG GTGCCACCAGCCATGGACACCACG GTGCCACCAGCCATGGACACCACG GTGCCACCAGCCATGGACACCACG GTGCCACCAGCCATGGACCCTGGAAAAACCAGCTTTAGCTAAGCAGGTCACTGGACGCTGTGTCCCGTGATC TGCAGCTGGTGAAGGTGCCCATTTGCAGCTGGCAAAAGCAGCTGTGAAGGTGCCCATTTCACAGGGGAAAGGCTGACAAGTGCCCATCAGGGAACACCACTCGCATCAAGGGTGACCACTCCACAGGGAAAAACCAGCTGTCACAGGGTGACCACTCCACAGGGAAAAGCCCAACTCACAGGGTGACCACTCACAGGGGAAAAGCCAAGTGCCCAACTCACAGGGTGACCAAGTGCCCAAG	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GGCATCCCTG CGCATCACAC CTGCTAGTGA CCGCATCCCTC CGAGGCTTCC CGAGGCTTCC CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCTTCAGCA CCTTCAATAAC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC TGCTGGCAGCACCTGCTGCAGTGC TGCTGCCAGTGCCGCTGAACACCCGTC TGCTGCCAGTGCTGACACCTTCCTGGTTGACACCTTCCAGTGCTGACACTTCCACTGACACTTCCTGGTTCTTCCTGGT TTGCTGCATAAGCTCTCCTTCCTGGT TTGCTGCATAAGCTCTCCTTCCTGGT TTCAATGGCATGTATGCAGACCTCC TTGACCGTCTGGAGTTTTGACCTTCT TTTACTTGGGGGCCAAGTTGTTGAC TTTACTTGGGGGCCAAGTTGTTGACCTTCT TCTACCTTGGGGGCCAAGTTGTTGACCTCC TCTACCTTGGGGGCCAAGTTGTTGACCTCC TCTACCTGGGGGCCAAGTTGTTGACCTCC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC: CATGCGGGAAAAAGCCAGCCGGAGGCTGAAGCACACCACCATCGCATGACACACGCCCTGGCCAAGAGGCCACACCACGCCGCCACCACCACCACCACC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNINIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGGA CCATCGTGCA CCGAGCCTCC CGAGCCTCC CCGAGCCTCC CCCCTCAGCA CCATTCAGCA CCATTCAGCA CCATCATCAGCA CCATTCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE LAAAGTCATCAAAGAAAAGCTGACAC TGCAGCAGCTGCCGCTGCTCAGTGC IGCTAACATCCTCCAGCTGCAGGTGA IAGATCCCCCTGGACATGGTGGCTGG IGTTCCACATGACGACTGAGGTGA ICCCACCCGCCTGGTCCTCAGTGCT TGCTGCATAAGCTCTCCTCAGTGACT TTGCTGCATAAGCTCTCCTCAGTGCTTCTTGCTGCATAGCTTCTTCTTGCTGTCTTCTTGCTGCTTTCTTGCTTTCTTGCAGTTGTTGACTTCTTTCT	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC: CATGCGGGAAAAGCCAGCCGGAGGCTGAAGCACATCATCTGGCTGAAGAGCCCTCGGCCAATGACCAGGAGGCCCACACCACCAGGAGGCCCACACCACCAGGAGG	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GGATCCTGT GGTCATCACA CCGCATCCTGT GGAACTCCT CGAGCTCCT CCGAGCTCCT CCCTCAGCA CCATTCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGCA CCTCATCAGGT CTCATCATGAGA AATTCATGGT	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICCAGCAGCTGCCGCTGCTCAGTGC IGCTAACATCAAAGAAAAGCTGACAC IGCTAACATCCTCCAGCTGCAGGTGA ICCCACCGCCTGGACATGGTGGCTGA ICCCACCGCCTGGACATGTGAGCT ITGCAGATGACGACTTCCTGGT ITGCATAAGCTTATGCAGACTCC ITGCAGCTGCTGCCAATCTAGTG ITTCAATGGCATGTTTGACCTTC ITTCAATGGCATGTTTGACCTTC ITTGACGTCTGGAGTTTGACCTTC ICTACCTGGGGGCCAAGTTTGTTGGAC ICCTACCTGGGGGCCAAGTTGTTGGAC ICCTGCAGACTTCCTGACATGCCA ICCTGCAGCTTCCTGACATGCCCA ICTCAGGGCTTCCTGACATGCCCA ICTCAGGGCTTCCTGACATGCCCA ICTCAGGGCTTCCTGACATGCCCA ICTCAGGACGTTCCTGACATGCCCA ICTCAGGACGTGGTGAAAGCTGCCAA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCAGCCGGAGGCTGAAGCACATCATCTGGCTGAAGAGCCCTCGGCCAATGACCAGGAGGAGCCTCAGCAGCCCTGGTCAAGAGCCCACACGCCCTGGTCAAGAGCCCTTAGCTAAGCAGGTCACAGACGCCTTAGCTAAGCAGGTCACAAAAACCAGCTGTTCCCGTTAGCTAGTTCCAGCTGTAGCAGGTGACACTCTGCCATCAAGGGTGACACTCCCTTGCACAAGAGTGACCACTCCCTTGGAAAACCAGCTCATCAGGGTGACAAGTGCCCTTGGAAAAACCAGCTGTCACAGGGTGACAAGTGCCCTTGGAAAAACTCCCGTTCAGCGGGCTGCTGTGCTCTCCCAGAAGAGAGGTGACCACTGGGCTGCTGTTCTCCAGAAGAGAGTGCCCATCAGGGTAAGTCCCCTTGGACAACATCCCGTTCAGAAGAGAGTGACCAAGTGCCCATCGGCTGAAGTCAAGGGTGACAAGTGCCCATCGGCTGAAGTCAAGGGTGACCAAGTGCCCATCGGCTGAAGTCAAGGAGAGAGA	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGGA CCATCCTCAC CCATCCTCAC CCATCCTCAC CCATCCTCAC CCATCACCT CCATCCTCAC CCATCCTCAC CCATCCTCAC CCATCCTCAC CCATCCTCAC CCATCCACC CCACC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICCAGCAGCTGCCGCTGCTCAGTGC IGCTGGCAGCTGCCGGTGCAGCTGC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATGACGACTGCAGGTGAACACCGTC IGCTACATGACGACTGAGGCCCAA ICCCACCGCCTGGTCCTCAGTGACT ITGCTGCATAAGCTCTCCTTCTGGT ITGCTGCATAAGCTCTCCTTCTGGT ITGCTGCATAGGCGCCAATTGCAGCCTC ITGCTGCTGGGGCCAAGTTGTTGACCTTC ICTACCTGGGGGCCAAGTTGTTGGAC ICTCTGCAGGTTCCTTGAGACTTCCTTGAG ICTCAGGACGTTGTAAAGCTTCCTACTGAG ICTCAGGACGTTGTAAAGCTGCCAATTGTTGGAC ICTGTGGAGCTTCCTTGAGTGACAATGCCCA ICTCAGGACGTGGTGAAAGCTGCAGT ICTGTTGGACCTTCTTGTGGAC ICTCTGTTGGACTTCCTTGAG ICTCAATGAAAAGGCTGCAGTTAAAGCTCCTGAG ICTCAATGAAAAAGGCTGCAGATAAAGC	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCACACGCCCCATGCGGGAAAAGCCAGCC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGA CCATCGTGA CCATCGTGA CCATCCTCAC CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CCATCACCT CATCACCT ATCACCT CATCAC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAGCAGCAGCTGCCGCTGCTCAGTGC IGCTGGCAGCCTGCTGCAGTGCAGCCTGCAGCAGCAGCTGCAGCTGCAGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGAACACCGTC IGCTACATGACGACTGAGGCCCAA ICCCACCGCCTGGTCCTCAGTGACT ITGCTGCATAAGCTCTCCTTCCTGGT ITGCTGCATAAGCTCTCCTTCCTGGT ITGCTGCATAGGAGTTGAGCTTCTTCTTGTG ITTCAATGGCATGTAGTGAGCTTCTTCTTGACGTCTGGAGGTTTGACCTTCT ICTACCTGGGGGCCAAGTTGTTGGAC ICTCTGCAGGTTCCTTGAGACATTGCAGT ICTTGCAGCTTCCTGAGACATTGCAGT ICTTGCAGGTTCCTTGAGACATTGCAGT ICTTGCAGGTTCCTTGAGACATTGCAGT ICTTGCAGGTTCCTTGAGACATTGCAGT ICTTGCAGGACGTGTGAAAGCTGCAGT ICTTGAATGAAAAGGTTGCAGT ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCTGAG ICCTGTTGGACTTCCCGAGTTTTTTATAGA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCACACGCCCCATGCAGGACACACCCCCATGCAGCACACGCCCCTGAAGCACACCCCCATGCAGCACACGCCCATGCAGCACACGCCCATGAAGCACACCCCCTGGTCAAGACGCCCTGGCCATGCAGACACGCCCTGGTCAAGACACGCCTTAGCTAAGCAGCTCTAACACACGCCTTAGCTAAGCAGGTCACAAAAACCAGCTGTGTCCCGTTCACGCTGAACACGCCTGCCATCAAGGGTGACACACTCCCTTCACAGGAAAAACCAGCTGTAAAGCAGGTGACCAAGTGCCCTTGGAACACTCCCTTCAGAAGACACTCCCGTTCAGCCCCCTGGAACACTCCCGTTCAGACACTCCCTTCAGAAGACACTCCCGTTCAGACACTCCCATCAGAGACACTCCCGTTCAGACACTCCCATCAGAGACACTCCCATCAGAGACACTCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCAAGGCCCCAAGGCCCCCAAGGCCCAAGGCCCCCC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDT QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGT GGTCATCACA CCATCGTGAA CCATCGTGAA CCATCAGCA CCATC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAGCAGCAGCTGCCGCTGCTCAGTGC IGCTGGCAGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGA IGCTACATGACGACTGCAGTGACCTCAGTGCCACCCGCCTGGTCCTCAGTGACT ITCCACATGACGACTGCCCAATCTAGTG ITCCATGGCATTAGTGACTTCCTTGGT ITCAATGGCATTATGCAGCTTCCTTGT ITCTACTGGGGGCCAAGTTGTTGGAC ITCTGCAGCTTCCTGGACATTGTGGAC ITCTGCAGCTTCCTGGACATTGTGAC ITCTGCAGCTTCCTTGACATTGCAGCCAAGTTGTTGGAC ITCTGCAGCTCTGTGGACATTGTTGACCTTC ITCTGCAGCTTCCTTGACAATTGCAGCCAAGTTGTTGGAC ITCTGCAGCTCTGTGGACTTCCTTGAGACTTCCTGAGGACTTGCAGTTCCTTGAGGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACATGAAAAGCTGCAGTTAAGAAAGGCTGCAGATTAAGAAAGGCTGCAGATTAAGAAGGCTGCAGATTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGCTGCAGTTAAGAGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTATAAGAGGCTGGAAGTGTTTTTTATAGA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: IIHSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCACACGCCGAGGCTGAAGCACATCATCTGGCTGAAGAGCCCTGGGCCATGAGAGAGCCACACGCCGGAGGCCTGAAGACGCCCTGGTCAAGAGCCACCATGCAGCCAGC	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDE QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGE GGTCATCACA CCGCTCGGCCC CCCTCAGCA CCGCTCAGCA CCATCCAGCA CCATCAGCA CCCTCAGCA CCCCTCAGCA CCCTCAGCA CCCCCAGCA CCCCTCAGCA CCCCCAGCA CCCCCCAGCA CCCCCAGCA CCCCCCAC CCCCCAGCA CCCCCCAC CCCCCCAC CCCCCCCAC CCCCCCCAC CCCCCC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV LLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICCAGCAGCTGCCGCTGCTCAGTGC ICCTGGCAGCAGCTGCAGCTGACACCCTC ICCTAACATCCTCCAGCTGCAGGTGA ICCCACCCGCCTGGTCCTCAGTGC ITCCACATGACGACTGCAGGTGA ICCCACCGCCTGGTCCTCAGTGACT ITCATGACGATTTTCCTTCT ITCTGACGTCTGGAGTTTTACACTTCTTCTGACGTTCCTGAGATTTTTTTCTCTTCTGAGGACTTCCTTGCTGACATTCCTTCTTCTCTTCTTCTTCTACCTGGGGCCAATTGTTGACCTTCTTCTTCTTCTACCTGGGGCCAATTGTTGACCTTCTTCTTCTTCTACCTGGGTGAAAGCTTCCTTGAGGTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTTGAGCTTCCTAATGCAATGCCAGTTTTTATAGA ICCTGATGAAAAAGGCTGCAGTTTTTATAGA ICCTGGAAGTTTTTCCCTCCAGTGTA ICCTGGGAAGTTTTTCCATGTAGC ICCTGGGAAGTTTTTCCATGTAGC ICCTGGGAAGTTTTTCCATGTAGACTCCAGTGTAAGCCTCCAGTGTAAGCTCCAGTGTAAGGCTCCAGTGTAAGCCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTAAGCTCCAGTGTACACAGCTCCAGTGTAAGCTCAGAGAAGCTCCAGTAGAGCTCAGTAGAAGCTCAGATTTTACAAGCTCAGAGAAGCTCAGAGATGTTTACCAGAGAGCTCAGAGAGA	
174308315 Protein Sequence NOV21k, 174308321 DNA	LKHIIWLKVITANILQLQVKPSAL ATIRMDTSASGPTRLVLSDCATS: KNQLCPVIEASFNGMYADLLQLV. SQGKVTKWFNNSAASLTMPTLDN SAHRLKSSIGLINEKAADKLGST: ALRPLFTLGIEASSEAQFYTKGD: I HSILLPNQNGKLRSGVPVSLV. SEQ ID NO: 105 AAGCTTCCCACTGCAGTTCTCAT: AGGAGCTGAAGGACCACAACGCC. CATGCGGGAAAAGCCAGCCGGAGC CTGAAGCACATCATCTGGCTGAACAGCCCCTGAAGCACATCACCAGCAGAGCCTGAAGCACACCACGCCTGGTCAAGAGCCACCATCAGCAGAGCCACCATGCAGAGAGCCACCATGCAGAGAGCCACCATGCAGAGAGCCACATGCAGAGAGCCTTAGCTAAGCAGGTCACTGCAGCTGAAAAACCAGCTGTGAAGGTGCCCATTTGCAGCTGGAAAAGCAGGTGAAAGGTGACCAAGTGCCCTTGGACAAGGTGACCAGTGCCAGAACATCCCGTTCAGAAGGTGCCCATCTGGACTAGAGAGACACTTCCAGAAGGCCATCCCGTTCAGAAGGCCATCCCGTTCAGAAGGCCATGCCAGAAGGTGCCCATGCAGAAGGCCATGCCAGAGGTGCCCTTGAAGGCCAAGGTGCCCCTCCAGAAGGCCATTTTACCCCTCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCAAAAGCTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAGGTGACCAACTTTATACTCCCCAAAAACACACCAACTTTATACTCCCCAAAAAA	NDQELLVKIE HGSLRIQLLE KVPISLSIDE IPFSLIVSQE QIVKILTQDE QLILNLNNIS KALGFEADES 1392 bp CCTCGGCCCA ACCAGCATCC GCATCCTGE GGTCATCACA CCGTCGTGA CCGCTCAGCA CCGATCCAGCA CCGATCCAGCA CCGTCAGCA CCCTCAGCA CCCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCTCAGCA CCCCCAGCA CCCCTCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCAGCA CCCCCCAC CCCCCAC CCCCCCAC CCCCCCAC CCCCCC	PLDMVAGFNTPLVKTIVEFHMTTEAQ IKLSFLVNALAKQVMNLLVPSLPNLV ILEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PEFFIDQGHARVAQLIVLEVSPSSE ISDRIQLMNSGIGWFQPDVLKNIITE ISLTKDALVLTPASLWKPSSPVSQLE ICAGCAGCAGCTGCCGCTGCTCAGTGC IGCTGGCAGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGTGAACACCGTC IGCTAACATCCTCCAGCTGCAGGTGA IGCTACATGACGACTGCAGTGACCTCAGTGCCACCCGCCTGGTCCTCAGTGACT ITCCACATGACGACTGCCCAATCTAGTG ITCCATGGCATTAGTGACTTCCTTGGT ITCAATGGCATTATGCAGCTTCCTTGT ITCTACTGGGGGCCAAGTTGTTGGAC ITCTGCAGCTTCCTGGACATTGTGGAC ITCTGCAGCTTCCTGGACATTGTGAC ITCTGCAGCTTCCTTGACATTGCAGCCAAGTTGTTGGAC ITCTGCAGCTCTGTGGACATTGTTGACCTTC ITCTGCAGCTTCCTTGACAATTGCAGCCAAGTTGTTGGAC ITCTGCAGCTCTGTGGACTTCCTTGAGACTTCCTGAGGACTTGCAGTTCCTTGAGGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACTTCCTGAGACATGAAAAGCTGCAGTTAAGAAAGGCTGCAGATTAAGAAAGGCTGCAGATTAAGAAGGCTGCAGATTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGCTGCAGTTAAGAGCTGCAGTTAAGAAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTAAGAGGCTGCAGTTATAAGAGGCTGGAAGTGTTTTTTATAGA	

	ATCATCCACTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAG TGTCATTGGTGAAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGC CCTTGTGCTTACTCCAGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGCTCGAG		
	ORF Start: AAG at 1	ORF Stop:	
	SEQ ID NO: 106	464 aa	MW at 50419.5kD
NOV21k, 174308321 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVN LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTE ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPN KNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKL SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL SAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPS ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNII IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ		PLDMVAGFNTPLVKTIVEFHMTTEAQ KLLSFLVNALAKQVMNLLVPSLPNLV RLEFDLLYPAIKGDTIQLYLGAKLLD DVVKAAVAAVLSPEEFMVLLDSVLPE PPEFFIDQGHAKVAQLIVLEVFPSSV SSDRIQLMNSGIGWFQPDVLKNIITE
	SEQ ID NO: 107	1392 bp	
NOV211, 174308327 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTC AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCTC CATGCGGGAAAAGCCAGCCGGAGGCATCCTGTGCTGGGCAGCCTGGTGAACAC CTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAC AGCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGCAC ATTCAACACGCCCTTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGG GCCACCATCCGCATGGACACCAGTGCAAGTGGCCCCCCGCCTGGTCCTCAGT GTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGCATAAGCTCTCCTTCC GAACGCCTTAGCTAAGACCATGCAGCTTCCTTCAATGGCATGTATCCAGAC TGCAGCTGTGTCCCGTGATCGAGGCTTCCTTCAATGGCATGTATCCAGAC TGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTTGAGTTTTTTTCCACAGGGAAAAGCAGCTCCTTCAGTGCAATCTTCACAGGGAAAAACCACCTTCAGCTCTAATCTTCACAGGGAAAAACCACCTTCAGCTCTAATCTTCACAGGGAAAAACATCCCGTTCAGCCTCATCTGAGCTCTAGGACCTTCTTTTTCCCTCAGAAAAACCAGCTCTCCCAGAAGAATTCATGGACCTCTTTTTTTT		TIGCAGCAGCTGCCGCTGCTCAGTGC TIGCTGGCAGCTGCCGCTGAACACCGTC AGCTAACATCCTCCAGCTGCAGGTGA AGATCCCCCTGGACATGGTGGCTGG AGTTCCACATGACGACTGAGGCCCAA CCCACCCGCCTGGTCCTCAGTGACT TIGCTGCATAAGCTCTCCTTCCTGGT TAGTGCCATCCCTGCCCAATCTAGTG TTCAATGGCATGTATTGCAGACCCCC ATTGACCGTCTGGAGTTTTGACCTTCT TCTACCTGGGGGCCAAGTTGTTGGAC TCTGCAGCTTCCCTGACAATGCCAGT TCCTGCAGCTTCCTTGTGCTTCCTGAG AGTCAGGACTCTGTGCTTCCTGAG AGTCAGGACTCCCGAGTTTTTTATAGA TGCTGGAAGTTTTTCCCTCCAGTGAA AGCCAGCTCGGAAGCTCAGTTTTACA AACATCAGCTCTGATCGGATCCAGCT ATGTTCTGAAAAACCTCAGCT ATGTTCTGAAAAAACATCATCACTGAG
	ORF Start: AAG at 1	ORF Stop:	
	SEQ ID NO: 108	464 aa	MW at 50403.4kD
NOV211, 174308327 Protein Sequence	KLPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREKPAGGIPVLGSLVNTV LKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQ ATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLSFLVNALAKQVMNLLVPSLPNLV KNQLCPVIEASFNGMYADPLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLD SQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPE SAHRLKSSIGLINEKAADKLGSTQIVKILTQDAPEFFIDQGHAKVAQLIVLEVFPSSE ALRPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITE IIHSILLPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQLE		
	SEQ ID NO: 109	1392 bp	
NOV21m, 174308337 DNA Sequence	AAGCTTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGACAC AGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGC CATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTC CTGAAGCACGTCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGA AGCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGG ATTCAACACGCCCCTGGCCAAGACCATCGTGGAGTTCACATGACGACTGAGGCCCAA		

CG59446-02 Protein	MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPL LSAMREKPAGGIPVLGSLVNTVLKHVIWLKVITANILQLQVKPSANDQELLVKIPLDM VAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLHKLS FLVNALAKQVMNLLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEF DLLYPAIKGDTIQLYLGAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVK AAVAAVLSPEEFMVLLDSVVNLSTRQRIGPPRPHHRNFLNTGCP		
NOV21n,	SEQ ID NO: 112	334 aa	MW at 36309.5kD
	ORF Start: ATG at 19	<u>-</u>	TAA at 1021
			
		CCTCAGCACAA	GGCAGAGAATAGGGCCGCCCAGGCC
	10.0.000.000.000.000.000.000		CAACATCCCGTTCAGCCTCATCGTG GTGCTCTCTCCAGAAGAATTCATGG
			GAAAGGTGACCAAGTGGTTCAATAA CAACATCCCGTTCAGCCTCATCGTG
	ATTGACCGTCTGGAGTTTGACC	TTCTGTATCCT	GCCATCAAGGGTGACACCATTCAGC
			AGCTGTGTCCCGTGATCGAGGCTTC GGTGAAGGTGCCCATTTCCCTCAGC
			TTAGCTAAGCAGGTCATGAACCTCC
	CCCCACCGCCTGGTCCTCAGT	GACTGTGCCAC	CAGCCATGGGAGCCTGCGCATCCAA
	1		ACGCCCCTGGTCAAGACCATCGTGG TCCGCATGGACACCAGTGCAAGTGG
			GGCCAATGACCAGGAGCTGCTAGTC
	TGCTGGGCAGCCTGGTGAACAC	CGTCCTGAAGC	ACGTCATCTGGCTGAAGGTCATCAC
Sequence			GAAAAGCCAGCGCGGAGGCATCCCTG
CG59446-02 DNA			CCACTGCAGTTCTCATCCTCGGCCC GAAGGACCACAACGCCACCAGCATC
NOV21n,			ACCTTCACCCTTCTCTGTGGTTTGC
	SEQ ID NO: 111	1023 bp	
			SLTKDALVLTPASLGKPSSPVSQLE
	1	-	SDRIQLMNSGIGWFQPDVLKNIITE
	1 · - ·	_	PKFFIDQGHAKVAQLIVLEVFPSSE
•			LEFDLLHPAIKGDTIQLYLGAKLLD VVKAAVAAVLSPEEFMVLLDSVLPE
Sequence		-	KLSFLVNALAKQVMNLLVPSLPNLV
174308337 Protein		_	LDMVAGFNTPLAKTIVEFHMTTEAQ
NOV21m,	KLPTAVLILGPKVIKEKLTQEL	KDHNATSILQQ	LPLLSAMREKPAGGIPVLGSLVNTV
	SEQ ID NO: 110	464 aa	MW at 50251.2kD
	ORF Start: AAG at 1	ORF Stop:	
			CAGCTCTCCTGTCTCCCAGCTCGAG
			CTGAGTCCTCACTGACCAAGGATGC
	ATCATCCACTCCATCCTACTGC	CGAACCAGAAT	GGCAAATTAAGATCTGGGGTCCCAG
	1		TGTTCTGAAAAACATCATCACTGAG
			GCCAGCTCGGAAGCTCAGTTTTACA ACATCAGCTCTGATCGGATCCAGCT
			GCTGGAAGTGTTTCCCTCCAGTGAA
			AGGACACTCCCAAGTTTTTTATAGA
			ATCAATGAAAAGGCTGCAGATAAGC
			GTCAGGACGTGGTGAAAGCTGCAGT CCTGTTGGACTCTGTGCTTCCTGAG
	I .		TCTGCAGCTTCCCTGACAATGCCCA
			CTACCTGGGGGCCAAGTTGTTGGAC
			TTGACCGTCTGGAGTTTGACCTTCT
	GAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTG AAAAACCAGCTGTGTCCCGTGATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCC		
	GTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGCATAAGCTCTCCTTCCT		

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 21B.

Table 21B. Comparison of NOV21a against NOV21b through NOV21n.			
Protein Sequence	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV21b	25439 3462	388/472 (82%) 393/472 (83%)	
NOV21c	25439 3462	405/468 (86%) 405/468 (86%)	
NOV21d	25439 3462	405/468 (86%) 405/468 (86%)	
NOV21e	25439 3462	404/468 (86%) 404/468 (86%)	
NOV21f	25439 3462	405/468 (86%) 406/468 (86%)	
NOV21g	25439 3462	405/468 (86%) 406/468 (86%)	
NOV21h	25439 3462	404/468 (86%) 406/468 (86%)	
NOV21i	25439 3462	403/468 (86%) 404/468 (86%)	
NOV21j	25439 3462	405/468 (86%) 405/468 (86%)	
NOV21k	25439 3462	406/468 (86%) 406/468 (86%)	
NOV211	25439 3462	405/468 (86%) 405/468 (86%)	
NOV21m	25439 3462	402/468 (85%) 404/468 (85%)	
NOV21n	1318 1310	308/318 (96%) 310/318 (96%)	

Further analysis of the NOV21a protein yielded the following properties shown in Table 21C.

Table 21C. Protein Sequence Properties NOV21a		
PSort analysis:	0.6138 probability located in outside; 0.4772 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)	

SignalP analysis:	Likely cleavage site between residues 25 and 26
allalysis.	

A search of the NOV21a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 21D.

	Table 21D. Geneseq Results for NOV21a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY77126	Human neurotransmission-associated protein (NTAP) 2799056 - Homo sapiens, 484 aa. [WO200001821-A2, 13-JAN-2000]	1439 1484	431/492 (87%) 431/492 (87%)	0.0
AAG63976	Amino acid sequence of a human Lng103 polypeptide - Homo sapiens, 484 aa. [WO200161055-A2, 23-AUG- 2001]	1439 1484	430/492 (87%) 431/492 (87%)	0.0
AAU29163	Human PRO polypeptide sequence #140 - Homo sapiens, 484 aa. [WO200168848-A2, 20-SEP-2001]	1439 1484	430/492 (87%) 431/492 (87%)	0.0
AAB87564	Human PRO1357 - Homo sapiens, 484 aa. [WO200116318-A2, 08- MAR-2001]	1439 1484	430/492 (87%) 431/492 (87%)	0.0
AAB66124	Protein of the invention #36 - Unidentified, 484 aa. [WO200078961- A1, 28-DEC-2000]	1439 1484	430/492 (87%) 431/492 (87%)	0.0

In a BLAST search of public sequence databases, the NOV21a protein was found to have homology to the proteins shown in the BLASTP data in Table 21E.

5

Table 21E. Public BLASTP Results for NOV21a				
Protein Accession Number	Protein/Organism/Length	NOV21a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96HK6	SIMILAR TO DNA SEGMENT, CHR 2, MASSACHUSETTS INSTITUTE OF TECHNOLOGY 19 - Homo sapiens (Human), 484 aa.	1439 1484	428/492 (86%) 431/492 (86%)	0.0
Q61114				e-127

	GLAND PROTEIN - Mus musculus (Mouse), 474 aa.	1473	324/482 (66%)	
Q9BWZ6	DJ1187J4.1.1 (NOVEL PROTEIN SIMILAR TO MOUSE VON EBNER SALIVARY GLAND PROTEIN, ISOFORM 1.) - Homo sapiens (Human), 285 aa (fragment).	200439 1285	232/293 (79%) 232/293 (79%)	e-116
Q9BQP8	BA49G10.6 (SIMILAR TO MURINE VON EBNER MINOR SALIVARY GLAND PROTEIN, ISOFORM 1) - Homo sapiens (Human), 199 aa (fragment).	1199 1199	199/199 (100%) 199/199 (100%)	e-107
Q9H4V6	DJ1187J4.1.2 (NOVEL PROTEIN SIMILAR TO MOUSE VON EBNER SALIVARY GLAND PROTEIN, ISOFORM 2.) - Homo sapiens (Human), 213 aa.	272439 1213	160/221 (72%) 160/221 (72%)	1e-73

PFam analysis predicts that the NOV21a protein contains the domains shown in the Table 21F.

Table 21F. Domain Analysis of NOV21a			
Pfam Domain	NOV21a Match Region	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	

EXAMPLE 22.

The NOV22 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 22A.

Table 22A. NOV22 Sequence Analysis			
	SEQ ID NO: 113	2020 bp	
NOV22a, CG59375-01 DNA Sequence	GCCTTTATAGATGCTGTG GCTGCAAGAGGCCTACGT TTTACCTATGAAGGCAAC TGGAGGAGATGGTGGAGG GAAGGACCCCAACTCTGG GTGAACGATGTGCGGAAG CATCATGGAGAAGGTGGC GGCCGCTTCCAGGACGTG AGACCAATGCGTGTCTG AGAGGACCCTGAGACCTT CGGCAGCTGGAGACCTT CGGCAGCTGGAGCAGAG	CATGACAAACCTCCAGACCTGTGGAGACTGAAGGCTGAGA GGGCCGAGGAGTTTGCCAACTACAGCAGGTCATGCCCAGC GCGGTGGTCATCCCCAGCAACTACAGCAGGTCATGCCCAGC GCGGTGGTCACCCGAGAAGTCCCCGACCGACTGGGCTCTC AGCAATGACATCCGCGTGGCTGGCACAGCGGAGGGTGGCC AGCTCAACAGCGGGAAGGTGATGTACGCCTTCTGCAGAGT ACTGCCCAAATTTGTCCTCATCAACTGGACAGGCGAGGGC GGAGCCTGTGCCAGCCACGTCAGCACCATGGCCAGCTTCC CCATCAACGCACGGCCAACGAGAGGATGTGGAGCCTGAGTG CAAGGCTTCAGGTGCCAACTACAGCTTTCACAAGAGAGAG	

		-	GAGAGGGCCATGTCCACCACCTCCA		
	TCTCCAGTCCTCAGCCTGGCAA	GCTGAGGAGCC	CCTTCCTGCAGAAGCAGCTCACCCA		
	ACCAGAGACCCACTTTGGCAGA	GAGCCAGCTGC	TGCCATCTCAAGGCCCAGGGCAGAT		
	CTCCCTGCTGAGGAGCCGGCGC	CCAGCACTCCT	CCATGTCTGGTGCAGGCAGAAGAGG		
	AGGCTGTGTATGAGGAACCTCC	AGAGCAGGAGA	CCTTCTACGAGCAGCCCCCACTGGT		
	GCAGCAGCAAGGTGCTGGCTCT	GAGCACATTGA	CCACCACATTCAGGGCCAGGGGCTC		
	AGTGGGCAAGGGCTCTGTGCCC	GTGCCCTGTAC	GACTACCAGGCAGCCGACGACACAG		
1	AGATCTCCTTTGACCCCGAGAA	CCTCATCACGG	GCATCGAGGTGATCGACGAAGGCTG		
	GTGGCGTGGCTATGGGCCGGAT	GCCATTTTGC	ATGTTCCCTGCCAACTACGTGGAGC		
	TCATTGAGTGAGGCTGAGGGCA	CATCTTGCCCT	TCCCCTCTCAGACATGGCTTCCTTA		
	TTGCTGGAAGAGGAGGCCTGGG	AGTTGACATTC	AGCACTCTTCCAGGAATAGGACCCC		
ł	CAGTGAGGATGAGGCCTCAGGG	CTCCCTCCGGC	TTGGCAGACTCAGCCTGTCACCCCA		
	AATGCAGCAATGGCCTGGTGAT	FCCCACACAT	CTTCCTGCATCCCCGACCCTCCCA		
	GACAGCTTGGCTCTTGCCCCTG	ACAGGATACTO	AGCCAAGCCCTGCCTGTGGCCAAGC		
	CCTGAGTGGCCACTGCCAAGCT	GCGGGGAAGGC	TCCTGAGCAGGGGCATCTGGGAGGC		
l	TCTGGCTGCCTTCTGCATTTAT	TTGCCTTTTT1	CTTTTTCTCTTGCTTCTAAGGGGTG		
i	GTGGCCACCACTGTTTAGAATG	FTGGCCACCACTGTTTAGAATGACCCTTGGGAACAGTGAACGTAGAGAATNGTTTTTA			
i	GCAGAGTTGTGACCAAAGTCAG				
l	TTGTTGGAGCCTGCTCTGTGCT	TTGTTGGAGCCTGCTCTGTGCTCCCCACTCCATTTCTCTGTCCCTCTGCCTGGGCTAT			
İ	GGGAAGTGGGGATGCAGATGGC	AAGCTCCCACC	CTGGGTATTCAAAAA		
	ORF Start: ATG at 10	ORF Stop:	TGA at 1585		
	SEQ ID NO: 114	525 aa	MW at 58507.2kD		
NOV22a, CG59375-01 Protein Sequence	EGNSNDIRVAGTGEGGLEEMVE VRKGACASHVSTMASFLKGAHV QDVGPQAPVVSGSVYQKTNAVS EQERRERELREAARREQRYQEQ PREIFKQKERAMSTTSISSPQP EEPAPSTPPCLVQAEEEAVYEE GLCARALYDYQAADDTEISFDP	ELNSGKVMYAF TINARAEEDVE EIKRVGKDSFW RWRGQSRTWEC GKLRSPFLQKC PPEQETFYEQF ENLITGIEVII	CPALQEAYVRVVTEKSPTDWALFTY CRVKDPNSGLPKFVLINWTGEGVND CPECIMEKVAKASGANYSFHKESGRF MAKAEDPETLSERNKREREEEAQRQL MAKAEDPETLSERNKREREEEAQRQL MAKAEDPETLSERNKREREEAARQL MAKAEDPETLSERNKREEAARQL MAKAEDPETLSERNKREREEAARQL MAKAEDPETLSERNKREREEAARQL MAKAEDPETLSERNKREREEAARQL MAKAEDPETLSERNKREREEAARQL MAKAEDPETLSERNKRE		
I	1				

Further analysis of the NOV22a protein yielded the following properties shown in Table 22B.

	Table 22B. Protein Sequence Properties NOV22a	
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)	
SignalP analysis:	No Known Signal Sequence Predicted	

A search of the NOV22a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 22C.

Table 22C. Geneseq Results for NOV22a				
Geneseq	Protein/Organism/Length [Patent #,	NOV22a	Identities/	Expect
Identifier	Date]	Residues/	Similarities for	Value

		Residues	Region	
AAB93895	Human protein sequence SEQ ID NO:13840 - Homo sapiens, 439 aa. [EP1074617-A2, 07-FEB-2001]	28465 3439	407/440 (92%) 411/440 (92%)	0.0
AAY85662	Human tyrosine kinase substrate tks118/Dresh protein sequence - Homo sapiens, 431 aa. [WO200061750-A2, 19-OCT-2000]	28465 3431	399/440 (90%) 403/440 (90%)	0.0
AAB20896	Human dreblin-like protein and SH3 domain sequence SEQ ID NO:1 - Homo sapiens, 431 aa. [JP2000197489-A, 18-JUL-2000]	28465 3431	398/440 (90%) 403/440 (91%)	0.0
AAM79569	Human protein SEQ ID NO 3215 - Homo sapiens, 458 aa. [WO200157190-A2, 09-AUG-2001]	28465 31458	397/439 (90%) 401/439 (90%)	0.0
AAM78585	Human protein SEQ ID NO 1247 - Homo sapiens, 430 aa. [WO200157190-A2, 09-AUG-2001]	28465 3430	397/439 (90%) 401/439 (90%)	0.0

In a BLAST search of public sequence databases, the NOV22a protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.

	Table 22D. Public BLASTP Res	ults for NO	V22a	
Protein Accession Number	Protein/Organism/Length	NOV22a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q96K74	CDNA FLJ14461 FIS, CLONE MAMMA 1000173, HIGHLY SIMILAR TO HOMO SAPIENS SRC HOMOLOGY 3 DOMAIN- CONTAINING PROTEIN HIP-55 MRNA - Homo sapiens (Human), 439 aa.	28465 3439	407/440 (92%) 411/440 (92%)	0.0
Q96F30	SIMILAR TO SRC HOMOLOGY 3 DOMAIN-CONTAINING PROTEIN HIP-55 - Homo sapiens (Human), 431 aa.	28465 3431	399/440 (90%) 403/440 (90%)	0.0
Q9UJU6	SRC HOMOLOGY 3 DOMAIN- CONTAINING PROTEIN HIP-55 (DREBRIN F) - Homo sapiens (Human), 430 aa.	28465 3430	397/439 (90%) 401/439 (90%)	0.0
Q9NR72	CERVICAL SH3P7 (MUCIN-	28465 3430	395/439 (89%) 401/439 (90%)	0.0

	sapiens (Human), 430 aa.			
Q62418	DREBRIN-LIKE SH3 DOMAIN- CONTAINING PROTEIN SH3P7 - Mus musculus (Mouse), 433 aa.	29465 4433	345/439 (78%) 371/439 (83%)	0.0

PFam analysis predicts that the NOV22a protein contains the domains shown in the Table 22E.

Table 22E. Domain Analysis of NOV22a			
Pfam Domain	NOV22a Match Region	Identities/ Similarities for the Matched Region	Expect Value
cofilin_ADF: domain 1 of 1	35158	27/151 (18%) 101/151 (67%)	7.8e-21
SH3: domain 1 of 1	408455	16/58 (28%) 31/58 (53%)	0.0038
Peptidase_M36: domain 1 of 1	486509	11/24 (46%) 13/24 (54%)	2.9

EXAMPLE 23.

The NOV23 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 23A.

	Table 23A. NOV23 Sequence Analysis		
	SEQ ID NO: 115	2898 bp	
NOV23a, CG59321-01 DNA Sequence	CCTTTCCCAGACTCTCTTCGCCCTTCCCGAATCCATC	CANTGACATGCAGAAAGCAGGTCAGGTCACAAGATGCAC CGGAGAGTTGGATCTGATGGCAGGAACTGACAATGGCGA CCATCAGCCTCCTGGGACACTGCCTCATTTCATAGAGGA	

CAGATGATGCTTATATTATCAAGAGCAACCCTATTGCACTCAGGTGCAAAGCGAGGCC AGCCATGCAGATATTCTTCAAATGCAACGGCGAGTGGGTCCATCAGAACGAGCACGTC TCTGAAGAGACTCTGGACGAGAGCTCAGGTTTGAAGGTCCGCGAAGTGTTCATCAATG TTACTAGGCAACAGGTGGAGGACTTCCATGGGCCCGAGGACTATTGGTGCCAGTGTGT GGCGTGGAGCCACCTGGGTACCTCCAAGAGCAGGAAGGCCTCTGTGCGCATAGCCTAT TTACGGAAAAACTTTGAACAAGACCCACAAGGAAGGGAAGTTCCCATTGAAGGCATGA TTGTACTGCACTGCCGCCCACCAGAGGGAGTCCCTGCTGCCGAGGTGGAATGGCTGAA AAATGAAGAGCCCATTGACTCTGAACAAGACGAGAACATTGACACCAGGGCTGACCAT AACCTGATCATCAGGCAGGCACGGCTCTCGGACTCAGGAAATTACACCTGCATGGCAG CCAACATCGTGGCTAAGAGGAGAAGCCTGTCGGCCACTGTTGTGGTCTACGTGAATGG AGGCTGGTCTTCCTGGACAGAGTGGTCAGCCTGCAATGTTCGCTGTGGTAGAGGATGG CAGAAACGTTCCCGGACCTGCACCAACCCAGCTCCTCTCAATGGTGGGGCCTTTTGTG AGGGAATGTCAGTGCAGAAAATAACCTGCACTTCTCTTTTGTCCTGTGGATGGGAGCTG GGAAGTGTGGAGCGAATGGTCCGTCTGCAGTCCAGAGTGTGAACATTTGCGGATCCGG GAGTGCACAGCACCCCCGAGAAATGGGGGCAAATTCTGTGAAGGTCTAAGCCAGG AATCTGAAAACTGCACAGATGGTCTTTGCATCCTAAACTCCACCACCATGCAGGAACC CAAGGTGACTGCCCTTCAGACGCTATGCCAAATTGAGAATGCCAGCGACATTGCTTTG TACTCGGGCTTGGGTGCCGTCGTGGCCGTTGCAGTCCTGGTCATTGGTGTCACCC TTTACAGACGGAGCCAGAGTGACTATGGCGTGGACGTCATTGACTCTTCTGCATTGAC AGGTGGCTTCCAGACCTTCAACTTCAAAACAGTCCGTCAAGGGAACTCCCTGCTCCTG

	,		
	TGCAGGACCCTCTGGACAAGGAC	CTCATGACA	CCGGACATACAGCGGACCCATCTGTC AGAGTCCTCACTCTTTAACCCTTTGTC
	GCTGAGTACCACGGCAAGAATC	ATTCCAGGAC	TGGTTTCCCTGGGAGTGTCTGAGAGA TTTTCCCCATGGAAACAACCACAGCT
			TACATCCAAAATCTGTCATCACTCCC TTGGCCATTTAGGGGGGGGCGCTTAGTA
			ACACGGTGCCATCCCAGAGGAGAATT
			GAACCCAGGTCAGATGGCTCTGAGGT
	1		CAGACATGATCGTCACCACTCCCTTT
	I .		GTGATGTCAGTGGAAGATGAATCTAC
	ATCCTGTTACTGCCTTTTGGAC	CCTTTGCGT	CGTCATGTGCTCCTGGACAGCTTTGGG
	3		CTGTGCCGTGAAGCAACTGAAGGTGG
			GATTACAACTTGAGAGTTTACTGTGT FTTTCAGATGAAAGGCATCAAGGTGGA
			CAAAGGGAATACCTTTAGTCTTCAGA
	1		BAGAATTAAACCATTCACTGCCTGCCA
	B .		ACCGGCAGCCCCTGCACTGTGCCTTC AGCTGTCCTGCAAAATCTGCATTCGGC
	ŧ		CAGACATCAATCTGCATTCGGC
	1		GCACTTTCCCTGCACAGACTGGCCCC
			AGCGGATTTGTGCTACATTTGATACCC
	1		GCACAGAAAAACAGCATCAACAGGAG CATCTGCTGTCATTTTGAACCTGTGG
	1		CTCCTGCCTGTCTTTTGAACCTGTGG
ļ			TCAGAATCCCAGCTTGATGAAGCCGA
	CTTCAACTACAGCAGGCAAAATC	GACTCTAGI	CCACTTCCTCCATGAGACAGAGT
	ORF Start: ATG at 21		TAG at 2871
	SEQ ID NO: 116	950 aa	MW at 105960.6kD
NOV23a,		こて いしゅつかいしょうしょう	ST DECTROADONI DUETECHANAVIT
CG59321-01 Protein Sequence	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWSA ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKT ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGI INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFA CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL	GEWVHQNEHV GRKASVRIAY DENIDTRADH ACNVRCGRGW GPECEHLRIF QIENASDIAL TVRQGNSLLL TWSLGVSER FGHLGGRLV PPDMIVTTPF ACHVLLDSFO TVSDERHQGG GNRQPLHCAF GSTFPAQTGF GPSAVILNLW	CALPESIPSAPGTLPHFIEEPDDAYII VSEETLDESSGLKVREVFINVTRQQVE VLKKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD VSGLGAAVVAVAVLVIGVTLYRRSQS INSAMQPDLTVSRTYSGPICLQDPLDK RAEYHGKNHSRTFPHGNNHSFSTMHPR VMPNTGVSLLIPHGAIPEENSWEIYMS PALTIPHCADVSSEHWNIHLKKRTQQG GTYALTGEPITDCAVKQLKVAVFGCMS GQLLEEPKLLHFKGNTFSLQISVLDIP SLERYTPTTTQLSCKICIRQLKGHEQ KAFKIPYSIRQRICATFDTPNAKGKD JEARHQHDGDLDSLACALEEIGRTHTK
CG59321-01 Protein Sequence	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKS ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPIKTELRTTGV INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFE CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIR QIENASDIAI TVRQGNSLLI FWYSLGVSER FPDMIVTTPF ACHVLLDFGG VVSDERHQGG ENRQPLHCAR DSTFPAQTGE GPSAVILNLW	SEETLDESSGLKVREVFINVTRQQVE LRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK LAEYHGKNHSRTFPHGNNHSFSTMHPR MPNTGVSLLIPHGAIPEENSWEIYMS FALTIPHCADVSSEHWNIHLKKRTQQG STYALTGEPITDCAVKQLKVAVFGCMS GQLLEEPKLLHFKGNTFSLQISVLDIP FSLERYTPTTTQLSCKICIRQLKGHEQ LYAFKIPYSIRQRICATFDTPNAKGKD REARHQHDGDLDSLACALEEIGRTHTK
CG59321-01 Protein Sequence	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKX ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGI INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFE CNSLDYNLRVYCVDNTPCAFQE PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WOMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCC	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIE QIENASDIAI TVRQGNSLLI FWYSLGVSER VFGHLGGRLV PPDMIVTTPF ACHVLLDSGG FOR TOTAL OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR OSTFPAQTGE GENRQPLHCAR	SEETLDESSGLKVREVFINVTRQQVE LRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK LAEYHGKNHSRTFPHGNNHSFSTMHPR IMPNTGVSLLIPHGAIPEENSWEIYMS FALTIPHCADVSSEHWNIHLKKRTQQG STYALTGEPITDCAVKQLKVAVFGCMS GQLLEEPKLLHFKGNTFSLQISVLDIP TSLERYTPTTTQLSCKICIRQLKGHEQ LYKAFKIPYSIRQRICATFDTPNAKGKD LEARHQHDGDLDSLACALEEIGRTHTK
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKX ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGV INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFA CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WOMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTTA	GEWVHQNEHV GEKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIR QIENASDIAI TVRQGNSLLI FMVSLGVSER VFGHLGGRLV PPDMIVTTPF ACHVLLDSGG ENRQPLHCAR DSTFPAQTGE EPSAVILNLW 2181 bp	SEETLDESSGLKVREVFINVTRQQVE LRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK RAEYHGKNHSRTFPHGNNHSFSTMHPR IMPNTGVSLLIPHGAIPEENSWEIYMS FALTIPHCADVSSEHWNIHLKKRTQQG STYALTGEPITDCAVKQLKVAVFGCMS GQLLEEPKLLHFKGNTFSLQISVLDIP TSLERYTPTTTQLSCKICIRQLKGHEQ PKAFKIPYSIRQRICATFDTPNAKGKD MEARHQHDGDLDSLACALEEIGRTHTK CGAATTGGGTTTACCATTGACAATGCT TAGTAAGAGGGCTCTGGTCACAACTGCA
CG59321-01 Protein Sequence	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWSI ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKX ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGV INQEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFI CNSLDYNLRVYCVDNTPCAFQEV ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTTI TCAATGACATGCAGAAAGCAGGG	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIE QUENASDIAL TVRQGNSLLL FMVSLGVSER FFGLGGRLV FPDMIVTTPF ACHVLLDSGG FNRQPLHCAF DSTFPAQTGF GEPSAVILNLW 2181 bp TGTTTTTAAT AGGCATGAAT	SEETLDESSGLKVREVFINVTRQQVE LRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK LAEYHGKNHSRTFPHGNNHSFSTMHPR IMPNTGVSLLIPHGAIPEENSWEIYMS FALTIPHCADVSSEHWNIHLKKRTQQG STYALTGEPITDCAVKQLKVAVFGCMS GQLLEEPKLLHFKGNTFSLQISVLDIP TSLERYTPTTTQLSCKICIRQLKGHEQ LYKAFKIPYSIRQRICATFDTPNAKGKD LEARHQHDGDLDSLACALEEIGRTHTK
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWSI ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCO DYGVDVIDSSALTGGFQTFNFKS ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGV INQGEPRSDGSEVLLSPEVTCGFI KWEEVMSVEDESTSCYCLLDPFI CNSLDYNLRVYCVDNTPCAFQES PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQES LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTTI TCAATGACATGCAGAAAGCAGGT TGGGCGGGAGGGAACGGGGGGTGG TCCATCCCATC	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIE QUENASDIAL TVRQGNSLLL WYSLGVSEE VFGHLGGRLV PFDMIVTTPE ACHVLLDSFG VVSDERHQGG ENRQPLHCAE DSTFPAQTHE EFSAVILNLW AGCATGAAT TCGCGCCCGCT GCCCAAGGAA CACTGCCTCA	SEETLDESSGLKVREVFINVTRQQVE CLRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK RECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK RAEYHGKNHSRTFPHGNNHSFSTMHPR MPNTGVSLLIPHGAIPEENSWEIYMS PALTIPHCADVSSEHWNIHLKKRTQQG RYALTGEPITDCAVKQLKVAVFGCMS RYALTGEPITDCAVKGLKVAVFGCMS RYALTGEPTTTQLSCKICIRQLKGHEQ PKAFKIPYSIRQRICATFDTPNAKGKD REARHQHDGDLDSLACALEEIGRTHTK RGAATTGGGTTTACCATTGACAATGCT RGTAAGAGGGCTCTGGTCACAACTGCA RGCTCCCGTGGCTGGGCTGTGTTTC LCTGACAATGGCGAAGCCCTTCCCGAA
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS/ ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLC DYGVDVIDSSALTGGFQTFNFK ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGV INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPF/ CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTT/ TCAATGACATGCAGAAAGCAGGT TGGGCGGGAGGGAACGGGGGTGG TCCATCCCATC	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIE QIENASDIAL TVVRQGNSLLL TVVRQGNSLLL TVVRQGNSLLL TVVRQGNSLLL TVVRQGNSLLL TVVRDGRHQGG TVSDERHQGG TVSDERHQGG TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTFPAQTGE TSTTTTAAT TAGCATGAAT TCGCGCCGCT TGCACTCAGGAA TACTGCCTCAGGAA TCGCACTCAGGAA TCACTCACTCAGCA TCGCACTCAGGAA TCACTCACTCAGCA TCCACTCACTCAC TCCACTCACTCACTCAC TCCACTCACT	SEETLDESSGLKVREVFINVTRQQVE PLRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK PLECTAPPPRNGGKFCEGLSQESENCTD PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRQGS PLASSELGAAVVAVAVLVIGVTLYRRQGS PLASSELGAAVSELIPHGAIPESNSSEIYMS PLATIPHCADVSSEHWNIHLKKRTQQG PLASTEGEPITDCAVKQLKVAVFGCMS PLASTEGEPITDCAVKQLKVAVFGCMS PLASTEGEPITTQLSCKICIRQLKGHEQ PLASTEGEPITTQLSCKICIRQLKGHEQ PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTACAATGCT PLASTE
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS/ ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCC DYGVDVIDSSALTGGFQTFNFK ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGI INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPF/ CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCATGATTTCGGTTGTTGACTT/ TCAATGACATGCAGAAAGCAGGT TGCACGGGGGGGGGG	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIF QIENASDIAL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TRGHLGGRLW TEGHLGGRLW TEGHLW TEGHLGGRLW TEGHLW SEETLDESSGLKVREVFINVTRQQVE PLRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPPRNGGKFCEGLSQESENCTD PLECTAPPHGNNHSFSTMHPR PLECTAPT PHOADVSEHWNIHLKKRTQQG PLECTAPT PHOADVSSEHWNIHLKKRTQQG PLECTALTGEPITDCAVKQLKVAVFGCMS PLECTAPTTTQLSCKICIRQLKGHEQ PLECTAPTTTQLSCKICIRQLKGHEQ PLECTAPTTTTQLSCKICIRQLKGHEQ PLECTAPTTTTQLSCKICIRQLKGHEQ PLECTAPTTTTQLSCKICIRQLKGHEQ PLECTAPTTTTQLSCKICIRQLKGHEQ PLECTAPTTTCATGCTTTGACAATGCT PLECTAPTTCCCTTGCTGGGCTTGCTTTCCCGAA PLECTAPTTCCTTGACAATGCTT PLECTAPTTCCTTGCAAAGGCCTTTCCCGAA PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGGCCAGCCATGCAGAT PLECTAPTTCATAGAGGAGCCCTTCCTGAAGAGAGCCCTTCCTGAAGAGCCCTTCCTGAAGAGCCCTTCCTGAAGAGCCCTTCCTGAAGAGAGCCCTTCCTGAAGAGCCCTTCCTGAAGAGCCCCTTCCCGAACCAGAGCAGAGCCCCTTCCCGAACCAGATGATGCTT PLECTAPTTCATAGAGAGAGCCCCTTCCCGAACCAGATGATGCTT PLECTAPTTCATAGAGAGAGCCCCTTCCCGAACCAGATGATGCTT PLACTATAGAGGAGCCCCTTCCCGAACCAGATGATGCTT PLACTATAGAGGAGACCCCTTCCCGAACCAGATGATGCTT PLACTATAGAGAGAGAGCCCCTTCCCGAACCAGATGATGCTT PLACTAGATAGAGAGAGAGACCCCTTCCCGAACCAGATGATGCTT PLACTAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWSI ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCC DYGVDVIDSSALTGGFQTFNFK ELMTESSLFNPLSDIKVKVQSSI INMPYIQNLSSLPTRTELRTTGI INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFI CNSLDYNLRVYCVDNTPCAFQEV PPLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTTT TCAATGACATGCAGAAGCAGGT TCCATCCATCAGCTCCTGGGGAC ATATTATCAAAGAGCAACCCTATT ATTCTTCAAATGCAACGGCGGGTTCAATTCTTCAAATGCAACGGCGGGTTTGACTTGAT	GEWVHQNEHV GERKASVRIAY DENIDTRADH ACNVRCGRGW GEPECEHLRIF QUENASDIAL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNLGGRLV FEDMIVTTPF ACHVLLDSFG FOR TRADT GETTTTTAAT AGCATGAAT TCGCGCGCGAAGAA CACTGCCTCA TGGGGTCCAGGA	SEETLDESSGLKVREVFINVTRQQVE PLRKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK PLECTAPPPRNGGKFCEGLSQESENCTD PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRSQS PLASSELGAAVVAVAVLVIGVTLYRRQGS PLASSELGAAVVAVAVLVIGVTLYRRQGS PLASSELGAAVSELIPHGAIPESNSSEIYMS PLATIPHCADVSSEHWNIHLKKRTQQG PLASTEGEPITDCAVKQLKVAVFGCMS PLASTEGEPITDCAVKQLKVAVFGCMS PLASTEGEPITTQLSCKICIRQLKGHEQ PLASTEGEPITTQLSCKICIRQLKGHEQ PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTTACCATTGACAATGCT PLASTEGGTTACAATGCT PLASTE
CG59321-01 Protein Sequence NOV23b, CG59321-02 DNA	KSNPIALRCKARPAMQIFFKCNO DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQI RSLSATVVVYVNGGWSSWTEWS ITCTSLCPVDGSWEVWSEWSVCS GLCILNSTTMQEPKVTALQTLCQ DYGVDVIDSSALTGGFQTFNFKI ELMTESSLFNPLSDIKVKVQSSI NKMPYIQNLSSLPTRTELRTTGG INQGEPRSDGSEVLLSPEVTCGI KWEEVMSVEDESTSCYCLLDPFF CNSLDYNLRVYCVDNTPCAFQEV PFLWRIKPFTACQEVPFSRVWCS ILQVQTSILESERETITFFAQEI WQMLAQKNSINRRNLSYFATQSS LSNISESQLDEADFNYSRQNGL SEQ ID NO: 117 CGGCCAGTCAGAACAATCCTCCT TCCTGATTTCGGTTGTTGACTTT TCAATGACATGCAGAAGCAGGT TGGGCGGGAGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	SEWVHQNEHV SERKASVRIAY SERKASVRIAY SERIDTRADH ACNVRCGRGW SEPECEHLRIF QUENASDIAL TVRQGNSLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLLL TVRQGNSLL TVRQGNSLLL VRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQGNSL TVRQNSL T	SEETLDESSGLKVREVFINVTRQQVE LIKKNFEQDPQGREVPIEGMIVLHCRP INLIIRQARLSDSGNYTCMAANIVAKR IQKRSRTCTNPAPLNGGAFCEGMSVQK LECTAPPPRNGGKFCEGLSQESENCTD LYSGLGAAVVAVAVLVIGVTLYRRSQS LNSAMQPDLTVSRTYSGPICLQDPLDK LAEYHGKNHSRTFPHGNNHSFSTMHPR MPNTGVSLLIPHGAIPEENSWEIYMS LATIPHCADVSSEHWNIHLKKRTQQG LYSALTIGEPITDCAVKQLKVAVFGCMS CALTEPKLLHFKGNTFSLQISVLDIP PKAFKIPYSIRQRICATFDTPNAKGKD LEARHQHDGDLDSLACALEEIGRTHTK LGAATTGGGTTTACCATTGACAATGCT LAGTAAGAGGGCTCTGGTGGGTTTTC LCTGACAATGCTGACAACTGCA LTTTCATAGAGGAGCCAGCCATGCAGAT LTTCATAGAGGAGCCAGCCATGCAGAT LTGCAAAGCGAGGCCAGCCATGCAGAC LAGTGTTCATCAAATGCTTCAGAACAGCT LAGAACGAGCACGCCTTCTCAAAGAGACT LAGAACGAGCACGCCTTCTCAAAGACCT LAGAACGAGCACGCCTTCTCAAAGACCT LAGAACGAGCACGCCTTCTCAAAGACCT LAGAACGAGCACGCCTTCTCAAAGACCT LAGAACGAGCACGCCTTCTCAAAGACCT LAGAACGAGCACGTCTCTGAAAGACCT LAGAACGAGCACGTCTCTGAAAGAACCT LAGGTGTTCATCAAATGTTACTAGGCCAAC

	CATTGACTCTGAACAAGACGAGA AGGCAGGCACGGCTCTCGGACTC CTAAGAGGGAGAAGCCTGTCGGCC CTGGACCAGACCCAACCCA	ACATTGACA AGGAAATTA ACTGTTGTG ATGTTCGCT TCTCAATGG CTTTGTCCT AGTGTAAAAA ACTGTTGTACA ATTCTGTACA ATTCTGTACA ATTCACAGGT AACGCGTGA ATTCAGACAGGT TCAGATGAA AAGGAATA AATTAAACC CCGCACCCC AGACATCAAT CCGGATTGTC CCGGATTGTC CCGGATTGTC CCGGATTGTC CCCGGATTGTC CCCGGATTGTC CCCGGATTGTC CCCGGATTGTC CCCGGATTGTC CCCCGCATCAAT CCCGGATTGTC CCCCCCCTCCAC CCCCCCCCCC	GTGGAATGGCTGAAAAATGAAGAGCC CCAGGGCTGACCATAACCTGATCATC CACCTGCATGGCAGCCACACATCGTGG GTCTACGTGGATGGAGGCTGGTCTTC GTGGTAGAGGATGGCAGAAACGTTCC TGGGGCCTTTTGTGAGGAAGTGTGGAG ATTTGCGGATCCGGGAAGTGTGAGC AGGTCTAAGCCAGGAATCTGAAAACT CCTCTTCATGAAATTAAAACCCCAAAG CGGGCTTGGGTGCTGCCGTGGCC CAGACGGAGCCAGAGTGACTATGGCG AACTCCCTGCTCCTGAATGCGAGCAC AGCAACTGAAGGTGGCGGTTTTGGC GAGACTTACTGTGTGGCCCTCTGAAACCC CAGACGAGCCAGAGTGACTATGGCG AACTCCCTGCTCCTGAATCCGACCCCAAGCCTCTGAATCCCTGCACTCCTGAATCCCTGAATCCCTGAATCCCTTCAGACCTCCTGAATCCCTCTCACTCCCTGAAGCCCCCAAAGCCTCCTGAACCCCTAGACCTCCTCCCTGAACCCCCAAAGCCTCCAAACCCCCAAAGCCTTCACCTTCACATTCGCCCCAAAGCCTTCACCCCAAAGCCTTCACACCCCAAAGCCTTCACCTACACACAC
	AGGCAAAATGGACTCTAGTCCAC		
	ORF Start: ATG at 125		TAG at 2162
	SEQ ID NO: 118	679 aa	MW at 75724.8kD
NOV23b, CG59321-02 Protein Sequence	KSNPIALRCKARPAMQIFFKCNG DFHGPEDYWCQCVAWSHLGTSKS PEGVPAAEVEWLKNEEPIDSEQD RSLSATVVVYVNGGWSSWTEWSA ITCTSLCPVDGSWEVWSEWSVCS GLCILDKKPLHEIKPQSIENASD IDSSALTGNSLLLNASTLQPLER FQEVVSDERHQGGQLLEEPKLLH VWCSNRQPLHCAFSLERYTPTTI	EWVHQNEHV RKASVRIAY ENIDTRADH CNVRCGRGW PECEHLRIR RIALYSGLGA RQRVKQLKV FKGNTFSLQ PULSCKICIR ILAQKNSINR	ALPESIPSAPGTLPHFIEEPDDAYII SEETLDESSGLKVREVFINVTRQQVE LRKNFEQDPQGREVPIEGMIVLHCRP NLIIRQARLSDSGNYTCMAANIVAKR QKRSRTCTNPAPLINGGAFCEGMSVQK ECTAPPPRNGGKFCEGLSQESENCTD AVVAVAVLVIGVTLYRRSQSDYGVDV AGFGCMSCNSLDYNWRVYCVDKTPWA ISVLDIPPFLWRIKPFTACQEVPVSR QLKGHEQILQVQTSILETGPKAFKIP NLSYFATQSSPSAVILNLWEARHQHD FNYSRONGL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 23B.

Table 23B. Comparison of NOV23a against NOV23b and NOV23c.		
Protein Sequence NOV23a Residues/ Identities/ Match Residues Similarities for the Matched Regi		
NOV23b	27444 27426	357/419 (85%) 361/419 (85%)

Further analysis of the NOV23a protein yielded the following properties shown in Table 23C.

	Table 23C. Protein Sequence Properties NOV23a
PSort analysis:	0.8411 probability located in mitochondrial inner membrane; 0.7000 probability located in plasma membrane; 0.3000 probability located in microbody (peroxisome); 0.2057 probability located in mitochondrial matrix space
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV23a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 23D.

	Table 23D. Geneseq Results for NOV23a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAU12244	Human PRO4326 polypeptide sequence - Homo sapiens, 945 aa. [WO200140466-A2, 07-JUN-2001]	26925 26933	499/915 (54%) 651/915 (70%)	0.0
AAW78900	Rat UNC-5 homologue UNC5H-2 - Rattus sp, 943 aa. [WO9837085-A1, 27-AUG-1998]	25925 23931	487/916 (53%) 648/916 (70%)	0.0
AAB50691	Human UNC5C protein SEQ ID NO:90 - Homo sapiens, 931 aa. [WO200073328-A2, 07-DEC-2000]	34936 49930	465/921 (50%) 621/921 (66%)	0.0
AAW78898	Rat UNC-5 homologue UNC5H-1 - Rattus sp, 898 aa. [WO9837085-A1, 27-AUG-1998]	26936 23897	417/921 (45%) 582/921 (62%)	0.0
AAM79128	Human protein SEQ ID NO 1790 - Homo sapiens, 943 aa. [WO200157190-A2, 09-AUG-2001]	24936 31942	422/955 (44%) 588/955 (61%)	0.0

In a BLAST search of public sequence databases, the NOV23a protein was found to have homology to the proteins shown in the BLASTP data in Table 23E.

	Table 23E. Public BLASTP Results for NOV23a				
Protein Accession Number	Protein/Organism/Length	NOV23a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
BAB83663	KIAA1777 PROTEIN (UNC5H4) - Homo sapiens (Human), 948 aa.	27950 30948	906/926 (97%) 910/926 (97%)	0.0	

O08722	TRANSMEMBRANE RECEPTOR UNC5H2 - Rattus norvegicus (Rat), 945 aa.	25925 25933	488/916 (53%) 649/916 (70%)	0.0
Q9D398	6330415E02RIK PROTEIN - Mus musculus (Mouse), 945 aa.	1925 1933	491/940 (52%) 656/940 (69%)	0.0
O08747	ROSTRAL CEREBELLAR MALFORMATION PROTEIN - Mus musculus (Mouse), 931 aa.	34936 49930	468/921 (50%) 622/921 (66%)	0.0
O95185	TRANSMEMBRANE RECEPTOR UNC5C - Homo sapiens (Human), 931 aa.	34936 49930	465/921 (50%) 621/921 (66%)	0.0

PFam analysis predicts that the NOV23a protein contains the domains shown in the Table 23F.

	Table 23F. Domain Analysis of NOV23a				
Pfam Domain NOV23a Match Region S		Identities/ Similarities for the Matched Region	Expect Value		
ig: domain 1 of 1	165225	16/63 (25%) 43/63 (68%)	5.2e-07		
tsp_1: domain 1 of 2	248297	23/54 (43%) 33/54 (61%)	1.6e-07		
tsp_1: domain 2 of 2	304351	23/54 (43%) 32/54 (59%)	0.0014		
ZU5: domain 1 of 1	538638	33/115 (29%) 68/115 (59%)	7.8e-21		
death: domain 1 of 1	855933	21/87 (24%) 61/87 (70%)	4.4e-13		

EXAMPLE 24.

The NOV24 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 24A.

Table 24A. NOV24 Sequence Analysis				
	SEQ ID NO: 119	898 bp		
NOV24a, CG59591-01 DNA Sequence	CTGCTCTTCTGGGCTGGCC CCCCGGCCCAGCCCGAGAC GTACCGCCGGAAGCGCCAG AACCACATCCGGGCCAGTC ACAAGCGGCTGGCCAGGG GCCTTCACAGCTGATGAGA CGGTCCGTAGTGGATCTCA	AGCTATGCCCTGCTGCCCAGCACCGTGGGCCTGGCAGGC CAGGCAGTGAACGCCTTGATAATGCTAATGCTACCCAG GCACGGCTATGCGGCTCCTGAGTGGCCTGGAGGTGCCCAG CATCTCTGTGAGAGACATGAATGCCTTACTGGATTATCAC GTGTACCCACCTGCCGCCAACATGGAATACATGGTGTGGG CTGCCGAAGCCTGGGCCACCCAGTGCATCTGGGCACATGG ATACGTGGGCCAGAACCTCCCATCCATTCTGGCCAGTAC ATGAAGTCCTGGTCTGAGGAGAAGTGCATTACTTGTTTC ACCCACACTGCCCTGGCGCTGCGATGGCCCCACTGCTC		

	CCATTATACCCAGATGGTGTGGGCATCCTCCAATCGGCTGGGCTGTGCCATCCACACC TGTAGTAGCATCAGTGTCTGGGGCAACACCTGGCATCGGGCGGCATACCTGGTCTGCA ACTATGCCATTAAGGGCAACTGGATTGGCGAGTCCCCGTACAAGATGGGAAAGCCGTG CTCCTCCTGTCCCCCCAGTTATCAAGGCAGCTGCAATAGCAACATGTGCTTCAAGGGG CTGAAATCCAACAAGTTCACGTGGTTCTGAATTTTCTCTGGGCTTTGGTGCGCCTCCA GCTGGGCCTGACCCTCCATGTCCTGCCCTCAAAAAACCTGGGTGGAGAAATAATTGTTT CTTTAAAGGATATGAGTTAGAATCACCC		
	ORF Start: ATG at 23	ORF Stop	o: TGA at 782
	SEQ ID NO: 120	253 aa	MW at 28604.6kD
NOV24a, CG59591-01 Protein Sequence	SVRDMNALLDYHNHIRASVYPE VGQNLSIHSGQYRSVVDLMKSV	VNALIMPNATPAPAQPESTAMRLLSGLEVPRYRRKRHI PPAANMEYMVWDKRLARAAEAWATQCIWAHGPSQLMRY SWSEEKWHYLFFAPRDCNPHCPWRCDGPTCSHYTQMVW NTWHRAAYLVCNYAIKGNWIGESPYKMGKPCSSCPPSY	

Further analysis of the NOV24a protein yielded the following properties shown in Table 24B.

	Table 24B. Protein Sequence Properties NOV24a			
PSort analysis:	0.4400 probability located in lysosome (lumen); 0.3798 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 24 and 25			

A search of the NOV24a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several

5 homologous proteins shown in Table 24C.

	Table 24C. Geneseq Results for NOV24a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAR79914	Trypsin inhibitory protein, isolated from human T98G cells - Homo sapiens, 198 aa. [JP07242700-A, 19-SEP-1995]	57253 1197	130/197 (65%) 159/197 (79%)	3e-86	
AAR79915	Human trypsin inhibitory protein, residues 11-198 - Homo sapiens, 188 aa. [JP07242700-A, 19-SEP-1995]	67253 1187	125/187 (66%) 152/187 (80%)	1e-83	
AAU29058	Human PRO polypeptide sequence #35 - Homo sapiens, 500 aa. [WO200168848-A2, 20-SEP-2001]	19243 10242	112/235 (47%) 155/235 (65%)	3e-70	
AAM41693	Human polypeptide SEQ ID NO 6624	19243 93325	112/235 (47%) 155/235 (65%)	3e-70	

	[WO200153312-A1, 26-JUL-2001]			
AAM39907	Human polypeptide SEQ ID NO 3052 - Homo sapiens, 300 aa. [WO200153312-A1, 26-JUL-2001]	19243 10242	112/235 (47%) 155/235 (65%)	3e-70

In a BLAST search of public sequence databases, the NOV24a protein was found to have homology to the proteins shown in the BLASTP data in Table 24D.

	Table 24D. Public BLASTP Results for NOV24a				
Protein Accession Number	Protein/Organism/Length	NOV24a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9H3Y0	DJ881L22.3 (NOVEL PROTEIN SIMILAR TO A TRYPSIN INHIBITOR) - Homo sapiens (Human), 253 aa.	1253 1253	253/253 (100%) 253/253 (100%)	e-159	
O43692	25 KDA TRYPSIN INHIBITOR - Homo sapiens (Human), 258 aa.	37253 41257	137/217 (63%) 170/217 (78%)	6e-90	
Q98ST6	SUGARCRISP - Gallus gallus (Chicken), 258 aa.	22253 20257	140/238 (58%) 179/238 (74%)	8e-90	
Q99MM7	SUGARCRISP - Mus musculus (Mouse), 258 aa.	3253 2257	144/256 (56%) 186/256 (72%)	1e-89	
Q98ST5	COCOACRISP - Gallus gallus (Chicken), 523 aa.	14243 14242	111/230 (48%) 158/230 (68%)	6e-71	

PFam analysis predicts that the NOV24a protein contains the domains shown in the Table 24E.

	Table 24E. Domain Analysis of NOV24a				
Pfam Domain NOV24a Match Region Similarities Expect Value for the Matched Region					
SCP: domain 1 of 1	67215	54/173 (31%) 96/173 (55%)	2.9e-21		

EXAMPLE 25.

5

The NOV25 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 25A.

Table 25A. NOV25 Sequence Analysis				
	SEQ ID NO: 121	2345 bp		
NOV25a,	AGGAGCCGCGATGTTCCCC	<u>AGGAGCCGCGATGTTCCCCCTTCGGGCCCTGTGGTTGGTCTGGGCGCTTCTAGGAGTG</u>		

GCCGGATCATGCCCGGAGCCGTGCGCCTGCGTGGACAAGTACGCTCACCAGTTCGCGG CG59588-01 DNA Sequence GCTTAGTCTGTCCGCGAACAAGATCACTGTGCTGCGGCGCGGGGCCTTCGCCGACGTC ACACAGGTCACGTCGCTGTGGCTGGCGCACAATGAGGTGCGCACCGTGGAGCCAGGCG CACTGGCCGTGCTGAGTCAGCTCAAGAACCTCGATCTGAGCCACAACTTCATATCCAG CTTTCCGTGGAGCGACCTGCGCAACCTGAGCGCGCTGCAGCTGCTCAAAATGAACCAC AACCGCCTGGGCTCTCTGCCCCGGGACGCACTCGGTGCGCTACCCGACCTGCGTTCCC TGCGCATCAACAACAACCGGCTGCGTACGCTGGCGCCTGGCACCTTCGACGCGCTTAG CGCGCTGTCACACTTGCAACTCTATCACAATCCCTTCCACTGCGGCTGCGGCCTTGTG TGGCTGCAGGCCTGGGCCGCGAGCACCCGGGTGTCCTTACCCGAGCCCGACTCCATTG CTGTGCACCGCCCAGCGTGCATCTGAGTGCCGAGCCACCGCTTGAAGCACCCGGCACC CCACTGCGCGCAGGACTGGCGTTCGTGTTACACTGCATCGCCGACGGCCACCCTACGC CTCGCCTGCAATGGCAACTTCAGATCCCCGGTGGCACCGTAGTCTTAGAGCCACCGGT GATTTGCTGACGCAGACCCAAACGCCGACTCCAGCACCCGCTTGGCCGGCGC CCCCAGCCACACCGCGCTTCCTGGCCCTCGCAAATGGCTCCCTGTTGGTGCCCCTCCT GAGTGCCAAGGAGGCGGGCGTCTACACTTGCCGTGCACACAATGAGCTGGGCGCCAAC TCTACGTCAATACGCGTGGCGGTGGCAGCAACCGGGCCCCCAAAACACGCGCCTGGCG CCGGGGGAGAACCCGACGGACAGGCCCCGACCTCTGAGCGCAAGTCCACAGCCAAGGG CCGGGGCAACAGCGTCCTGCCTTCCAAACCCGAGGGCAAAATCAAAGGCCAAGGCCTG GCCAAGGTCAGCATTCTCGGGGAGACCGAGACGGAGCCGGAGGAGGACACAAGTGAGG GAGAGGAGGCCGAAGACCAGATCCTCGCGGACCCGGCGGAGGAGCAGCGCTGTGGCAA CGGGGACCCCTCTCGGTACGTTTCTAACCACGCGTTCAACCAGAGCGCAGAGCTCAAG CCGCACGTCTTCGAGCTGGGCGTCATCGCGCTGGATGTGGCGGAGCGCGAGGCGCGGG TGCAGCTGACTCCGCTGGCTGCGCGCTGGGGCCCTGGGCCGGGGGCTGGCGGAGC GCGGCAGTGCAGTGGTCCCGCGTAGAGGAAGGCGTCAACGCCTACTGGTTCCGCGGCC TGCGGCCGGGTACCAACTACTCCGTGTGCCTGGCGCTGGCGGGGGGAAGCCTGCCACGT GCAAGTGGTGTTTTCCACCAAGAAGGAGCTCCCATCGCTGCTGGTCATAGTGGCAGTG AGCGTATTCCTCCTGGTGCTGGCCACAGTGCCCCTTCTGGGCGCCGCCTGCTGCCATC TGCTGGCTAAACACCCGGGCAAGCCCTACCGTCTGATCCTGCGGCCTCAGGCCCCTGA CCCTATGGAGAAGCGCATCGCCGCAGACTTCGACCCGCGTGCTTCGTACCTCGAGTCC GGGAGGCCTTGATGAAGACGCGGAGCAGGGAGACCCAAGTGGGGACCTGCAGAGAGA TTCGAGGCGGCTCTGAGTACAGCGATCGGCTGCCCCTGGGCGCCGAGGCGGTCAACA TCGCCCAGGAGATTAATGGCAACTACAGGCAGACGGCAGGCTGAACCTCCGCCCGTCC GGCCCGCCCATTCCCGACCTCCACCTAGGGTGCCTGGGAGCAGCAGTCTAGGGCTGGC AGGACTTATGTCCCCCGTCCCCAAC ORF Stop: TGA at 2246 ORF Start: ATG at 11 MW at 78989.2 kD **SEQ ID NO: 122** 2345 aa MFPLRALWLVWALLGVAGSCPEPCACVDKYAHQFADCAYKELREVPEGLPANVTTLSL NOV25a. SANKITVLRRGAFADVTQVTSLWLAHNEVRTVEPGALAVLSQLKNLDLSHNFISSFPW CG59588-01 Protein SDLRNLSALQLLKMNHNRLGSLPRDALGALPDLRSLRINNNRLRTLAPGTFDALSALS Sequence HLOLYHNPFHCGCGLVWLQAWAASTRVSLPEPDSIACASPPALQGVPVYRLPALPCAP PSVHLSAEPPLEAPGTPLRAGLAFVLHCIADGHPTPRLQWQLQIPGGTVVLEPPVLSG EDDGVGAEEGEGEGDGDLLTQTQAQTPTPAPAWPAPPATPRFLALANGSLLVPLLSAK EAGVYTCRAHNELGANSTSIRVAVAATGPPKHAPGAGGEPDGQAPTSERKSTAKGRGN SVLPSKPEGKIKGQGLAKVSILGETETEPEEDTSEGEEAEDQILADPAEEQRCGNGDP SRYVSNHAFNQSAELKPHVFELGVIALDVAEREARVQLTPLAARWGPGPGGAGGAPRP GRRPLRLLYLCPAGGGAAVOWSRVEEGVNAYWFRGLRPGTNYSVCLALAGEACHVQVV FSTKKELPSLLVIVAVSVFLLVLATVPLLGAACCHLLAKHPGKPYRLILRPQAPDPME

Further analysis of the NOV25a protein yielded the following properties shown in Table 25B.

KRIAADFDPRASYLESEKSYPAGGEAGGEEPEDVOGEGLDEDAEQGDPSGDLQREESL

AACSLVESQSKANQEEFEAGSEYSDRLPLGAEAVNIAQEINGNYRQTAG

	Table 25B. Protein Sequence Properties NOV25a			
PSort analysis:	0.4600 probability located in plasma membrane; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside			
SignalP analysis:	Likely cleavage site between residues 19 and 20			

A search of the NOV25a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 25C.

	Table 25C. Geneseq Results for NOV25a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE09450	Human sbg34976IGBa protein #1 - Homo sapiens, 745 aa. [WO200160850-A1, 23-AUG-2001]	1745 1745	745/745 (100%) 745/745 (100%)	0.0	
AAU12205	Human PRO4329 polypeptide sequence - Homo sapiens, 745 aa. [WO200140466-A2, 07-JUN-2001]	1745 1745	745/745 (100%) 745/745 (100%)	0.0	
AAB40448	Human ORFX ORF212 polypeptide sequence SEQ ID NO:424 - Homo sapiens, 209 aa. [WO200058473-A2, 05-OCT-2000]	265472 2209	208/208 (100%) 208/208 (100%)	e-120	
AAM93734	Human polypeptide, SEQ ID NO: 3699 - Homo sapiens, 428 aa. [EP1130094-A2, 05-SEP-2001]	1417 1385	217/426 (50%) 260/426 (60%)	e-107	
AAU12317	Human PRO215 polypeptide sequence - Homo sapiens, 428 aa. [WO200140466-A2, 07-JUN-2001]	1417 1385	217/426 (50%) 260/426 (60%)	e-107	

In a BLAST search of public sequence databases, the NOV25a protein was found to have homology to the proteins shown in the BLASTP data in Table 25D.

	Table 25D. Public BLASTP Results for NOV25a				
Protein Accession Number	Protein/Organism/Length	NOV25a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9P263	KIAA1465 PROTEIN - Homo	104745 1642	642/642 (100%) 642/642 (100%)	0.0	

	(fragment).			
O14498	ISLR PRECURSOR - Homo sapiens (Human), 428 aa.	1417 1385	217/426 (50%) 260/426 (60%)	e-106
BAA85972	ISLR PRECURSOR - Mus musculus (Mouse), 428 aa.	4417 1385	209/421 (49%) 258/421 (60%)	e-102
O88279	MEGF4 - Rattus norvegicus (Rat), 1531 aa.	20246 734933	77/232 (33%) 113/232 (48%)	1e-25
Q9WVB5	SLIT1 - Mus musculus (Mouse), 1531 aa.	20246 734933	77/232 (33%) 113/232 (48%)	1e-25

PFam analysis predicts that the NOV25a protein contains the domains shown in the Table 25E.

	Table 25E. Domain Analysis of NOV25a					
Pfam Domain	NOV25a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
LRRNT: domain 1 of 1	1950	12/33 (36%) 20/33 (61%)	0.27			
LRR: domain 1 of 5	5275	7/25 (28%) 18/25 (72%)	1.4			
LRR: domain 2 of 5	7699	5/25 (20%) 18/25 (72%)	31			
LRR: domain 3 of 5	100123	11/25 (44%) 20/25 (80%)	0.0026			
LRR: domain 4 of 5	124147	10/25 (40%) 18/25 (72%)	0.099			
LRR: domain 5 of 5	148171	9/25 (36%) 19/25 (76%)	0.14			
LRRCT: domain 1 of 1	181231	19/54 (35%) 41/54 (76%)	1.5e-14			
ig: domain 1 of 1	253357	13/108 (12%) 70/108 (65%)	0.01			

EXAMPLE 26.

The NOV26 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 26A.

Table 26A. NOV26 Sequence Analysis					
SEQ ID NO: 123 4426 bp					
NOV26a,	NOV26a, ATGTACTGTTTTTTGCGATCTGCCGTTTCGTTCTTCTGCCTCAGCCTCCCCAGGTGC				

CG59584-01 DNA Sequence

GGGGTTATAGGTGTGAGCCACTGTGCCTGGCTATTCTTTTATTACAGTATGTTCTGCT GATTCCTTCTGTTCTACAAGAAGGCTCTTTGGATAAAGCTTGTGCCCCAGCTTTTTAAT CTCACTGAATCTGTTGTTTTGACGGTCTCCCTCAACTATGGTGAGGTCCAGACCAAAA TATTTGAAGAAAATGTTACTGGAGAAAATTTCTTCAAATGCATCAGCTTTGAGGTTCC TCAGGCCAGATCTGACCCACTGGCATTTATTACATTTTCTGCTAAAGGAGCCACTCTC AACCTGGAAGAGAGGAGATCTGTGGCAATCAGATCCAGAGAGAATGTGGTCTTTGTAC AGACTGATAAACCCACCTACAAGCCTGGACAGTATAATAAAAAGCCGATCAGTCACAT **AATGCCAGTGATAGCAGTCACTGAACAGGATCCAGAAGGCAATCGAATACAACAGTGG** GTGAATGAGGAGTCTGTGGGAGGGATTCTACAACTCTCCTTCCAGTTAATCTCAGAGC CCATCCTCGGATGGTATGAAATCACCGTGGAGATGCTCAATGAGAAGAAAACATATCA CTCCTTCTCTGTGGAAGAATATGTGTTACCCAAATTTCAAATGACTGTGGATGCACCA GAAAATATCTTAGTTGTGGACTCTGAATTCAAAGTGAATGTCTGTGCCTTGTATACCT **ATGGTGAACCTGTGGACGGGAAGGTCCAACTTAGTGTGTGCAGAGAATCTACGGCTTA** TCATTCATGTGCTCATCTTATCAGTTCACTCTGTAAAAATTTTACCTTGGGGAAAGAT GGCTGTGTCTCCAAGTTTATTAACACAGATGCTTTTGAGTTAAATCGGGAAGGATACT GGAGTTTCCTCAAAGTGCATGCTCTTGTTACAGAGCTTACAGGCTCCAAGTACGTATA CATAGACTCATCAGTGGTGAAGATTAGTTTTGAGAATATGGATATGTCCTACAAACAG GGACTCCCTTATTTTGGCCAGATTAAATTGCTTAATCCAGACAACTCTCCAATCCCAA ATGAAGTTGTTCAGTTGCATCTGAAGGACAAAATCGTGGGAAACTACACCACAGATGT **AAATGGCATCGCTCAGTTTTTCTTGGACACATATACGTTTACATACCCAAATATCACT** TTGAAAGCAGCCTACAAGGCCAATGAAAATTGCCAGGCTCATGGCTGGGTGTTGCCTC **AATACCCTCAGCCCGAGTACTTTGCATATCGATTTTACTCCAAGATGAATAGCTTCCT** AAAGATTGTCCAAGAGATGGAAGAACTGAGATGCAACCAGCAGAAGAGGGTGCTAGTG CACTGCATTCTCAATATGGAAGACTTTGAAGACAAAACCTACACAGCAGACTTCAATT ATTTGGTGATTTCAAAAGGTGTAATCATTCTTCATGGGCAACAGAAAATTGAGATCAA CGAAAATGGGAGGAAGGGCATATTTTCCATTTCTATAGACATTAACCCTGAATTAGCG CCCTCAGTACATATGCTTGTCTATAGCTTGCATCCTGGAGGAGAAATGGTCACTGATA GCACCCAATTCCAATTGAGAAATGTTAACATAAAGTTCTCTAACGAGCAGGGCTTACC TGGTTCCAATGCTAGTCTCTGTCTTCAAGCGGCGCCTGTCTTATTCTGTGCCCTCAGG GCTGTGGATAGGAATGTCCTTCTACTGAAATCTGAACAACAGCTGTCAGCTGAAAGTG TGTATAACATGGTTCCAAGTATAGAGCCGTATGGTTATTTCTACCATGGCCTCAATCT TGATGATGGCAAGGAAGACCCTTGCATTCCTCAGAGGGATATGTTCTACAATGGTTTA TATTACACACCTGTAAGCAACTATGGGGATGGAGATATCTATAATATTGTCAGGAACA TGGGTCTAAAAGTCTTTACCAATCTCCATTACCGAAAACCAGAAGTATGTGTGATGGA GAGAAGGCTGCCACTCCCTAAGCCGCTTTATCTGGAAACAGAAAATTATGGTCCAATG CGTAGTGTTCCGTCTAGAATTGCATCTAGTGGAATCAGAGGGGAGAATGCTGACTATG TAGAACAGGCTATAATTCAAACAGTAAGAACAAACTTCCCAGAGACATGGATGTGGGA CCTCGTCAGTGTCGATTCCTCAGGCTCTGCCAATCTTTCGTTCCTCATTCCTGATACG ATAACCCAATGGGAGGCAAGTGGCTTTTGTGTGAATGGTGACGTTGGATTTGGCATTT CCTCTACAACCACTCTAGAAGTCTCCCAACCTTTCTTTATTGAGATTGCCTCACCCTT TTCGGTTGTTCAAAATGAACAATTTGATTTGATTGTCAATGTCTTCAGCTACCGGAAT ACATGTGTAGAGATTTCTGTTCAAGTGGAGGAGTCTCAGAATTATGAAGCAAATATTC CTGGACTATTATACCTAAGAAATTGGGCAAAGTGAATATCACTGTAGTTGCTGAGTCC AAACAAAGCAGTGCTTGCCCAAATGAAGGAATGGAGCAGCAAAAGCTAAACTGGAAAG ACACTGTGGTCCAAAGCTTCTTAGTAGAGCCTGAAGGTATTGAAAAGGAAAGGACCCA GAGTTTCCTTATCTGTACAGAAGGTGCCAAAGCCTCCAAGCAGGGAGTTTTGGACTTG CCAAACGATGTAGTAGAAGGGTCAGCCAGAGGCTTTTTCACTGTTGTGGGGGATATTC TAGGACTTGCCTTGCAGAATCTGGTTGTTCTCCAAATGCCCTATGGAAGTGGAGAGCA GAATGCTGCCCTACTAGCATCTGATACTTATGTTCTGGACTATCTGAAATCTACTGAG GGCAATTATCTTTCAAAAACTCTGATGGTTCCTATAGTGTGTTTTTGGCAGCAGAGTCA GAAAGGAAGCATATGGCTCAGTGCTCTTACTTTTAAGACATTGGAGAGAATGAAAAAA TATGTATTCATTGATGAAAATGTTCAAAAACAGACCTTAATCTGGCTTTCAAGCCAAC AGAAAACAAGCGGCTGCTTTAAGAATGATGGCCAGCTTTTCAACCACGCCTGGCAGGG TGGAGATGAAGAGGACATTTCACTCACTGCGTATGTTGTTGGGATGTTCTTTGAAGCT GGGGCGCATTGGACAGTGGTGTCACTAATGGCTATAATCATGCAATTCTAGCTTATG CTTTTGCCTTAGCTGGAAAAGAGAAGCAAGTGGAATCTTTACTCCAAACCCTGGATCA ATCTGCCCCAAAACTAAATAATGTCATCTACTGGGAAAGAGAAAGGAAACCCAAGACA GAAGAATTTCCATCCTTTATTCCCTGGGCACCTTCTGCTCAGACTGAGAAGAGTTGCT ACGTGCTGTTGGCTGTCATTTCCCGGAAAATTCCTGACCTCACCTATGCTAGTAAGAT

	TGTGCAGTGGCTTGCCCAACG	GATGAATTCCC	ATGGAGGCTTTTCTTCCAACCAGGAT		
	CAAAACACTGTCACCTTTAGCAGTGAAGGATCCAGTGAGATTTTCCAGGTTAACG				
	ATAACCGCCTACTGGTCCAAC	GTTCAGAAGTA	ACACAGGCACCTGGAGAATACACAGT		
1	AGATGTGGAAGGACACGGTTG	TACATTTATCO	AGGCCACCCTTAAGTACAATGTTCTC		
	CTACCTAAGAAGGCATCTGGA	TTTTCTCTTTC	CTTGGAAATAGTAAAGAACTACTCTT		
	CGACTGCTTTTGACCTCACAG	TGACCCTCAAA	TACACTGGAATTCGCAATAAATCCAG		
	TATGGTGGTTATAGATGTAAA	AATGCTATCAG	GATTTACTCCAACCATGTCATCCATT		
	GAAGAGCTTGAAAACAAGGGC	CAAGTGATGAA	GACTGAAGTCAAGAATGACCATGTTC		
	PTTCTACTTGGAAAATGTAGGTTTTGGTCGAGCAGACAGTTTCCCTTTTTCTGTTGA				
	CAGAGCAACCTTGTGTTCAACATTCAGCCAGCCCAGCCATGGTCTACGATTATTAT				
	AAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGACAGTAGTTCAGTTTCCGAG				
	BAGACAAAGCAATTACTAGAAGAGTTGGAGAAGCATTTCTTGTAACAAACTGATTCT				
	CTGTATCAAACCTGGAAAAAA	ATCATGAACCA	TCTGACATCGTGAACAGTCTGCAGTG		
}	GGCTATGGTTTCTTGTCAAGT	CTTATTTCCTT	ATCATCCCATTAAATGTTGTCATTTT		
	GCAAAAAAAAAAAAAA				
	ORF Start: ATG at 1	ORF Stop: T	GA at 4234		
	SEQ ID NO: 124	1411 aa	MW at 158867.0kD		
NOV26a,	MYCFLRSAVSFFCLSLPRCWC	YRCEPLCLAII	LLQYVLLI PSVLQEGSLDKACAQLFN		
CG59584-01 Protein	1		CISFEVPOARSDPLAFITFSAKGATL		
1			KKPISHIMPVIAVTEODPEGNRIQOW		
Sequence		_	NEKKTYHSFSVEEYVLPKFQMTVDAP		
			CRESTAYHSCAHLISSLCKNFTLGKD		
1)	_	TGSKYVYIDSSVVKISFENMDMSYKO		
	GLPYFGOIKLLNPDNSPIPNE	VVOLHLKDKIV	GNYTTDVNGIAQFFLDTYTFTYPNIT		
	1 -	-	SKMNSFLKIVQEMEELRCNQQKRVLV		
	1	-	OOKIEINENGRKGIFSISIDINPELA		
	I .		SNEOGLPGSNASLCLQAAPVLFCALR		
			FYHGLNLDDGKEDPCIPQRDMFYNGL		
			PEVCVMERRLPLPKPLYLETENYGPM		
			PETWMWDLVSVDSSGSANLSFLIPDT		
	1		TEIASPFSVVQNEQFDLIVNVFSYRN		
1	1	_	GGRKTNVWTIIPKKLGKVNITVVAES		
	,		IEKERTOSFLICTEGAKASKOGVLDL		
			PYGSGEONAALLASDTYVLDYLKSTE		
	B .		VFWQQSQKGSIWLSALTFKTLERMKK		
			FNHAWQGGDEEDISLTAYVVGMFFEA		
			LLQTLDQSAPKLNNVIYWERERKPKT		
		_	LTYASKIVQWLAQRMNSHGGFSSNQD		
	<u> </u>		APGEYTVDVEGHGCTFIQATLKYNVL		
	•		GIRNKSSMVVIDVKMLSGFTPTMSSI		
1			SFPFSVEQSNLVFNIQPAPAMVYDYY		
1	EKEEYALAFYNIDSSSVSE				
	SEQ ID NO: 125	4501 bp			
		<u> </u>			
NOV26b,	<u> </u>		CCCTCAGTAGATATCCTTGTCTATA		
CG59584-02 DNA			AGCACCCAATTCCGAATTGAGAAATG		
Sequence			AAGAAAAAGTTTACCAGGATCCAAT		
Bequence			TCTTTGTGCTCTTTGGGCTGTAGACC		
			CTGTCAGCACAAACTGTGTATAGTCA		
1			TCAGAGGACTTAACTTAGAAGATGGC		
1			CCTTTACAATGGAATTTATTACACAC		
1			GACCTTGTGAAGGATCCTCAAAACAA		
	1	-	TCCGAAATATTACCCAACTCTCGTTC		
1	l .		CTGGATTGTTGTGAAAAGAAACTCAA		
	1		AGATATGTGCTGCCCAAGTTTGAAGT		
1	l e e e e e e e e e e e e e e e e e e e		CAGATGATGAATTCCAAGTGGATGTA		
1	1		AGGGGAAACCCAAATCCGGGTGTGCA		
1	GAGAGTATTTTTCTTCAAGCA	ATTGTGAGAA	AATGAAAATGAAATATGTGAGCAATT		
1	TATTGCACAGTTGGAAAATGG	STTGTGTTTTCT	CAAATTGTAAATACAAAAGTCTTCCAA		
<u> </u>					

CTCTACCGTTCGGGATTGTTCATGACATTTCATGTCGCTGTAATTGTTACAGAATCTG GGACAGTTATGCAGATCAGCGAGAAGACCTCAGTTTTTATCACTCAATTGCTTGGAAC TGTAAACTTTGAGAACATGGATACATTCTATAGAAGAGGGATTTCTTATTTTGGAACT CTTAAATTTTCGGATCCCAATAATGTACCTATGGTGAACAAGTTGTTGCAACTGGAGC TCAATGATGAATTTATAGGAAATTACACTACGGATGAGAATGGCGAAGCTCAATTTTC CATTGACACTTCAGACATATTTGATCCAGAGTTCAACCTAAAAGCCACATATGTTCGA CCTGAGAGCTGCTATCTTCCCAGCTGGTTGACGCCTCAGTACTTGGATGCTCACTTCT TAGTCTCACGCTTTTACTCCCGAACCAACAGCTTCCTGAAGATTGTTCCAGAACCAAA GCAGCTTGAATGTAATCAACAGAAGGTTGTTACTGTGCATTACTCCCTAAACAGTGAA GCATATGAGGATGATTCCAATGTAAAGTTCTTCTATTTGATGATGGTAAAAGGAGCTA TCTTACTCAGTGGACAAAAGGAAATCAGAAACAAAGCCTGGAATGGAAACTTCTCGTT CCCAATCAGCATCAGTGCTGATCTGGCTCCTGCAGCCGTCCTGTTTGTCTATACCCTT CACCCAGTGGGGAAATTGTGGCTGACAGTGTCAGATTCCAGGTTGACAAGTGCTTTA AACACAAGGTTAACATAAAGTTCTCTAACGAGCAGGGCTTACCTGGTTCCAATGCTAG TCTCTGTCTTCAAGCGGCGCCTGTCTTATTCTGTGCCCTCAGGGCTGTGGATAGGAAT GTCCTTCTACTGAAATCTGAACAACAGCTGTCAGCTGAAAGTGTGTATAACATGGTTC CAAGTATAGAGCCGTATGGTTATTTCTACCATGGCCTCAATCTTGATGATGGCAAGGA AGACCCTTGCATTCCTCAGAGGGATATGTTCTACAATGGTTTATATTACACACCTGTA AGCAACTATGGGGATGGAGATATCTATAATATTGTCAGGAACATGGGTCTAAAAGTCT TTACCAATCTCCATTACCGAAAACCAGAAAAAATTATGGTCCAATGCGTAGTGTTCCG TCTAGAATTGCATGTAGCTAGTGGAATCAGAGGGGAGAATGCTGACTATGTAGAACAG GCTATAATTCAAACAGTAAGAACAAACTTCCCAGAGACATGGATGTGGGACCTCGTCA GTGTCGATTCCTCAGGCTCTGCCAATCTTTCGTTCCTCATTCCTGATACGATAACCCA ATGGGAGGCAAGTGGCTTTTGTGTGAATGGTGACGTTGGATTTGGCATTTCCTCTACA ACCACTCTAGAAGTCTCCCAACCTTTCTTTATTGAGATTGCCTCACCCTTTTCGGTTG TTCAAAATGAACAATTTGATTTGATTGTCAATGTCTTCAGCTACCGGAATACATGTGT AGAGATTTCTGTTCAAGTGGAGGAGTCTCAGAATTATGAAGCAAATATTCATACCTTG CAGTGCTTGCCCAAATGAAGGAATGGAGCAGCAAAAGCTAAACTGGAAAGACACTGTG GTCCAAAGCTTCTTAGTAGAGCCTGAAGGTATTGAAAAGGAAAGGACCCAGAGTTTCC TTATCTGTACAGAAGGTGCCAAAGCCTCCAAGCAGGGAGTTTTGGACTTGCCAAACGA TGTAGTAGAAGGGTCAGCCAGAGGCTTTTTCACTGTTGTGGGGGATATTCTAGGACTT GCCTTGCAGAATCTGGTTGTTCTCCAAATGCCCTATGGAAGTGGAGAGCAGAATGCTG CCCTACTAGCATCTGATACTTATGTTCTGGACTATCTGAAATCTACTGAGCAACTGAC AGAGGAAGTTCAATCTAAGGCTTTCTTTTCTCTTATCTAATGGTTATCAAAGGCAATTA TCTTTCAAAAACTCTGATGGTTCCTATAGTGTGTTTTGGCAGCAGAGTCAGAAAGGAA GCATATGGCTCAGTGCTCTTACTTTTAAGACATTGGAGAGAATGAAAAAATATGTATT CATTGATGAAAATGTTCAAAAACAGACCTTAATCTGGCTTTCAAGCCAACAGAAAACA AGCGGCTGCTTTAAGAATGATGGCCAGCTTTTCAACCACGCCTGGGAGGGTGGAGATG AAGAGGACATTTCACTCACTGCGTATGTTGTTGGGATGTTCTTTGAAGCTGGGCTCAA TTTCACTTTTCCTGCTCTACGAAACGCACTCTTTTGCCTTGAAGCGGCATTGGACAGT GGTGTCACTAATGGCTATAATCATGCAATTCTAGCTTATGCTTTTGCCTTAGCTGGAA AAGAGAAGCAAGTGGAATCTTTACTCCAAACCCTGGATCAATCTGCCCCAAAACTAAA TAATGTCATCTACTGGGAAAGAGAAAGGAAACCCAAGACAGAAGAATTTCCATCCTTT ATTCCCTGGGCACCTTCTGCTCAGACTGAGAAGAGTTGCTACGTGCTGTTGGCTGTCA TTTCCCGGAAAATTCCTGACCTCACCTATGCTAGTAAGATTGTGCAGTGGCTTGCCCA ACGGATGAATTCCCATGGAGGCTTTTCTTCCAACCAGACACCTGATGATACTCTGTTC AAATTATATACGGGCCAAAAAGAAGCTTTCGCTCTAGTTCTGTGGGCTATACACTGG GAAAAGCAAATGAAAAGAAGGAAAACAGGAGAAATGGGGGTGAAGGATCCAGTGAGAT TTTCCAGGTTAACGGTCATAACCGCCTACTGGTCCAACGTTCAGAAGTAACACAGGCA CCTGGAGAATACACAGTAGATGTGGAAGGACACGGTTGTACATTTATCCAGGCCACCC TTAAGTACAATGTTCTCCTACCTAAGAAGGCATCTGGATTTTCTCTTTCCTTGGAAAT AGTAAAGAACTACTCTTCGACTGCTTTTGACCTCACAGTGACCCTCAAATACACTGGA ATTCGCAATAAATCCAGTATGGTGGTTATAGATGTAAAAATGCTATCAGGATTTACTC CAACCATGTCATCCATTGAAGAGCTTGAAAACAAGGGCCAAGTGATGAAGACTGAAGT CAAGAATGACCATGTTCTTTTCTACTTGGAAAATGTAGGTTTTGGTCGAGCAGACAGT TGGTCTACGATTATTATGAAAAAGAAGAATATGCCCTAGCTTTTTACAACATCGACAG TAGTTCAGTTTCCGAGTGAGACAAAGCAATTACTAGAAGAGTTGGAGAAGCATTTCTT GTAACAAACTGATTCTTCTGTATCAAACCTGGAAAAAAATCATGAACCATCTGACATC

	GTGAACAGTCTGCAGTGGGCT TTAAATGTTGTCATTTTGCAA		TCAAGTCTTATTTCCTTATCATCCCA AAA
	ORF Start: TCC at 1	ORF Stop: To	GA at 4309
	SEQ ID NO: 126	1436 aa	MW at 161836.4kD
NOV26b, CG59584-02 Protein Sequence	IDLQVSAASNSLCALWAVDQS LKVPCLEDEHILYNGIYYTPA QLISEPMFGDYWIVVKRNSRE CAKYNFGQPVQGETQIRVCRE LYRSGLFMTFHVAVIVTESGT LKFSDPNNVPMVNKLLQLELN PESCYLPSWLTPQYLDAHFLV AYEDDSNVKFFYLMMVKGAIL HPSGEIVADSVRFQVDKCFKE VLLKSEQQLSAESVYNMVPS SNYGDGDIYNIVRNMGLKVFT AIIQTVRTNFPETWMWDLVSV TTLEVSQPFFIEIASPFSVVC KINGSEVIQAGGRKTNVWTII VQSFLVEPEGIEKETQSFII SFKNSDGSYSVFWQQSQKGSI SGCFKNDGQLFNHAWEGGDEE GVTNGYNHAILAYAFALAGKE IPWAPSAQTEKSCYVLLAVIS KLYTGQKESFRSSSVGYTLGE PGEYTVDVEGHGCTFIQATLE	WLLLRNYGQLS WADFGKDGYDL TVTHQFAVKRY YFSSSNCEKNE YMQISEKTSVF IDEFIGNYTTDE YSRFYSRTNSFL LISGQKEIRNKA IKVNIKFSNEQG SIEPYGYFYHGL YNLYRKPEKIM YDSSGSANLSFL INEQFDLIVNVF ICKTEGAKASKQG LLASDTYVLDYL IKLSALTFKTLE EDISLTAYVVGM IKQVESLLQTLD IKKIPDLTYASK IKQVESLLQTLD IKKIPDLTYASK IKQVESLLQTLD IKKIPLTYASK IKQVESLLQTLD	QFRIEKCFENQVNLNFSKEKSLPGSN AQTVYSQLYSRELHGYYFRGLNLEDG VKDPQNNRIFQRQNVTSFRNITQLSF VLPKFEVTVNAPQTVTISDDEFQVDV NEICEQFIAQLENGCVSQIVNTKVFQ ITQLGTVNFENMDTFYRRGISYFGT NGEAQFSIDTSDIFDPEFNLKATYVR KIVPEPKQLECNQQKVVTVHYSLNSE WNGNFSFPISISADLAPAAVLFVYTL LPGSNASLCLQAAPVLFCALRAVDRN NLDDGKEDPCIPQRDMFYNGLYYTPV VQCVVFRLELHVASGIRGENADYVEQ IPDTITQWEASGFCVNGDVGFGISST SYRNTCVEISVQVEESQNYEANIHTL VAESKQSSACPNEGMEQQKLNWKDTV VLDLPNDVVEGSARGFFTVVGDILGL KSTEQLTEEVQSKAFFLLSNGYQRQL EMKKYVFIDENVQKQTLIWLSSQQKT IFFEAGLNFTFPALRNALFCLEAALDS QSAPKLNNVIYWEREKKPKTEEFPSF IVQWLAQRMNSHGGFSSNQTPDDTLF IGEGSSEIFQVNGHNRLLVQRSEVTQA IFSLSLEIVKNYSSTAFDLTVTLKYTG IQVMKTEVKNDHVLFYLENVGFGRADS IAFYNIDSSSVSE

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 26B.

Table 26B. Comparison of NOV26a against NOV26b and NOV26c.				
Protein Sequence NOV26a Residues/ Identities/ Match Residues Similarities for the Matched Reg				
NOV26b	1641411 1501436	997/1311 (76%) 1072/1311 (81%)		

Further analysis of the NOV26a protein yielded the following properties shown in Table 26C.

	Table 26C. Protein Sequence Properties NOV26a
PSort analysis:	0.8200 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1380 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane)
SignalP analysis:	Likely cleavage site between residues 46 and 47

A search of the NOV26a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 26D.

	Table 26D. Geneseq Results for NOV26a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB50673	Human alpha-2 macroglobulin protein SEQ ID NO:59 - Homo sapiens, 1474 aa. [WO200073328- A2, 07-DEC-2000]	351407 301468	552/1458 (37%) 846/1458 (57%)	0.0	
AAY97157	Human alpha-2-macroglobulin - Homo sapiens, 1474 aa. [WO200046246-A1, 10-AUG-2000]	351407 301468	551/1458 (37%) 846/1458 (57%)	0.0	
AAR11334	Recombinant human alpha-2 macroglobulin - Homo sapiens, 1474 aa. [WO9103557-A, 21-MAR-1991]	351407 301468	549/1458 (37%) 844/1458 (57%)	0.0	
AAR11749	Human alpha-2 macroglobulin bait region mutant - Homo sapiens, 1484 aa. [WO9103557-A, 21-MAR-1991]	351407 301478	546/1460 (37%) 842/1460 (57%)	0.0	
AAB43949	Human cancer associated protein sequence SEQ ID NO:1394 - Homo sapiens, 1285 aa. [WO200055350- A1, 21-SEP-2000]	1871407 21279	497/1295 (38%) 753/1295 (57%)	0.0	

In a BLAST search of public sequence databases, the NOV26a protein was found to have homology to the proteins shown in the BLASTP data in Table 26E.

Table 26E. Public BLASTP Results for NOV26a				
Protein Accession Number	Protein/Organism/Length	NOV26a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P20740	Ovostatin precursor (Ovomacroglobulin) - Gallus gallus (Chicken), 1473 aa.	11402 11461	640/1482 (43%) 931/1482 (62%)	0.0
P01023	Alpha-2-macroglobulin precursor (Alpha-2-M) - Homo sapiens (Human), 1474 aa.	351407 301468	552/1458 (37%) 846/1458 (57%)	0.0
CAA01532	ALPHA 2-MACROGLOBULIN	351407 301468	550/1458 (37%) 845/1458 (57%)	0.0

	1474 aa.			
P06238	Alpha-2-macroglobulin precursor (Alpha-2-M) - Rattus norvegicus (Rat), 1472 aa.	261408 131467	552/1477 (37%) 852/1477 (57%)	0.0
CAA01533	ALPHA 2-MACROGLOBULIN 690-740 - Homo sapiens (Human), 1484 aa.	351407 301478	547/1460 (37%) 844/1460 (57%)	0.0

PFam analysis predicts that the NOV26a protein contains the domains shown in the Table 26F.

Table 26F. Domain Analysis of NOV26a				
Pfam Domain	NOV26a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
A2M_N: domain 1 of 1	35611	178/655 (27%) 381/655 (58%)	3.3e-96	
A2M: domain 1 of 3	7171096	137/414 (33%) 268/414 (65%)	2.2e-95	
prenyltrans: domain 1 of 1	11941214	7/21 (33%) 15/21 (71%)	4.4	
A2M: domain 2 of 3	11141218	45/110 (41%) 72/110 (65%)	le-19	
A2M: domain 3 of 3	12261402	61/242 (25%) 125/242 (52%)	1.1e-35	

EXAMPLE 27.

The NOV27 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 27A.

Table 27A. NOV27 Sequence Analysis			
	SEQ ID NO: 127	880 bp	
NOV27a, CG59417-01 DNA Sequence	CCTCCTGGGTACCACCTTC CTGTCCAGGATCGTGAATC CCCTGCAGGACAAAACCGC GGTGGTCACCGCTGCCCAC TTTGACCAGGGCTCTGACCA AGAACCCCAAGTTCAGCAT CACACCTGCCGCGGGGACAC CCAACAAGACCCCTGACAA ATGCAAGAAGTCCTGGGGC GGCGTCTCCTCCTGCATGA	CGGCACCATGCTTTCCTCTGGCTCCTCTCTGCTGGGC CGGCTGCGGGGTCCCCGCCATCCACCCTGTGTTCAGCGGC CGGCTGCGGGGTCCCCGGCTCCTGGCCCTGGCAGGTGT CTTCCACTTCTGCGGGGGGCTCCTCATCAGCGAGGACTG CTGCGGGGTCAGGACCTCCGACGTGGTCGTGGCTGGGAG AGGAGACATCCAGGTCCTGAAGATCGCCAAGGTCTTCA CCTGACCGTGAACAATGACATCACCCTGCTGAAGCTGGC CCAGACAGTTCCGCCGTGTGCCCAGCGCCGACGAC CTGTGTGCCACCACAGGCTGGGCAAGACCAAGTACAACG AGCTGCAGCAGGCCCTCCTCTTCCAATGCCGA CAGGAGGATCACCGACGTGATCATCTCTCCAGAGGACAGT CAGGAGGATCACCGACGTGATCATCTCTGCCAGAAGGACGACG TGTGTCCTGGGGCAGCCCCTCCTCTCCAGAAGGACCGACG	

	CGCTGTGTACGCCCGTGTCACCAAGCTCATACCCTGGGTGCAGAAGATCCTGGCCGCC AACTGAGCCCGCAGCTCCTGCCACCCCTGCCTTAAGATTTCCCATTAAATGCATCTGT TTAGAAAAAA		
	ORF Start: ATG at 27 ORF Stop: TGA at 816		
	SEQ ID NO: 128	263 aa	MW at 28046.9kD
NOV27a, CG59417-01 Protein Sequence	MAFLWLLSCWALLGTTFGCGVPAIHPVFSGLSRIVNGEDAVPGSWPWQVSLQDKTGF		OQGSDEENIQVLKIAKVFKNPKFSILT PAGTLCATTGWGKTKYNANKTPDKLQ

Further analysis of the NOV27a protein yielded the following properties shown in Table 27B.

Table 27B. Protein Sequence Properties NOV27a			
PSort analysis:	0.3700 probability located in outside; 0.1040 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 19 and 20		

A search of the NOV27a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 27C.

5

	Table 27C. Geneseq Results for NOV27a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB98504	Human chymotrypsin serine protease catalytic domain - Homo sapiens, 231 aa. [WO200129056-A1, 26-APR-2001]	33263 1231	226/231 (97%) 228/231 (97%)	e-132	
AAY99596	Bovine chymotrypsinogen A - Bos taurus, 245 aa. [WO200032759-A1, 08-JUN-2000]	19263 1245	197/245 (80%) 213/245 (86%)	e-116	
AAB11711	Mouse serine protease BSSP5 (mBSSP5) SEQ ID NO:4 - Mus sp, 264 aa. [WO200031243-A1, 02-JUN- 2000]	1263 1264	150/264 (56%) 188/264 (70%)	5e-87	
AAB11710	Human serine protease BSSP5 (hBSSP5) SEQ ID NO:2 - Homo sapiens, 264 aa. [WO200031243-A1, 02-JUN-2000]	1263 1264	141/264 (53%) 184/264 (69%)	2e-82	

Human pancreatic cancer antigen protein sequence SEQ ID NO:642 -	132263 2133	127/132 (96%) 129/132 (97%)	1e-71
Homo sapiens, 133 aa. [WO200055320-A1, 21-SEP-2000]			

In a BLAST search of public sequence databases, the NOV27a protein was found to have homology to the proteins shown in the BLASTP data in Table 27D.

Table 27D. Public BLASTP Results for NOV27a					
Protein Accession Number	Protein/Organism/Length	NOV27a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P17538	Chymotrypsinogen B precursor (EC 3.4.21.1) - Homo sapiens (Human), 263 aa.	1263 1263	257/263 (97%) 259/263 (97%)	e-152	
P04813	Chymotrypsinogen 2 precursor (EC 3.4.21.1) - Canis familiaris (Dog), 263 aa.	1263 1263	228/263 (86%) 241/263 (90%)	e-135	
Q9CR35	2200008D09RIK PROTEIN - Mus musculus (Mouse), 263 aa.	1263 1263	223/263 (84%) 246/263 (92%)	e-135	
P07338	Chymotrypsinogen B precursor (EC 3.4.21.1) - Rattus norvegicus (Rat), 263 aa.	1263 1263	222/263 (84%) 244/263 (92%)	e-135	
Q9DC86	2200008D09RIK PROTEIN - Mus musculus (Mouse), 263 aa.	1263 1263	222/263 (84%) 246/263 (93%)	e-134	

PFam analysis predicts that the NOV27a protein contains the domains shown in the Table 27E.

Table 27E. Domain Analysis of NOV27a				
Pfam Domain	NOV27a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
trypsin: domain 1 of 1	34256	109/261 (42%) 194/261 (74%)	5.6e-102	

EXAMPLE 28.

5

The NOV28 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 28A.

Table 28A. NOV28 Sequence Analysis			
SEQ ID NO: 129 1749 bp			

NOV28a,	ICCCCTCCCCACCCTCCCTAAACI	TOCCCC ATO	GCCCCGAAGGCCTAGTCCCAGCT			
CG59415-01 DNA	GTGCTCTGGGGCCTCAGCCTCTCCAACCTCCCAGGACCTATCTGGCTCCAGCCCT CTCCACCTCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTCATACCTGCCGGGG					
Sequence	ACTGGTTGACAGCTTTAACAAGGGCCTGGAGAAACCATCCGGGACAACTTTGGAGGT					
	1		CAAATACAAAGACAGTGAGACCCGCC			
	1		CAGACTTCGAGTGCCACCGCCTGCT			
	1		GTTTCACAAGCAGCAGGAGGCCCCG			
]	GACCTCTTCCAGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGCAC					
	1	TCGGGCCCTCCTGCCTTCCTGTCCTGGGGGAACAGAGAGGCCCTGCGGTGGCTACGG				
	ì		CGGGCACTGTGACTGCCAAGCCGGC			
	1		rggctactttgaggcagaacgcaacg			
	1		CCTGTGCCCGATGCTCAGGACCTGA			
	1		GGCCCTGCATCACCTCAAGTGTGTA			
	GACATTGATGAGTGTGGCACAGAGGGGAGCCAACTGTGGAGCTGACCAATTCTGCGT					
	ACACTGAGGGCTCCTATGAGTG	CGAGACTGT	SCCAAGGCCTGCCTAGGCTGCATGGG			
	1		CTGGCTATCAGCAGGTGGGCTCCAAG			
	TGTCTCGATGTGGATGAGTGTG/	GACAGAGGT	TGTCCCGGGAGAGACAAGCCCAGT			
	GTGAAAACACCGAGGGCGGTTAT	CGCTGCATC	rgtgccgagggctacaagcagatgga			
	AGGCATCTGTGTGAAGGAGCAG	TCCCAGAGT	CAGCAGGCTTCTTCTCAGAGATGACA			
	GAAGACGAGTTGGTGGTGCTGC/	GCAGATGTT	CTTTGGCATCATCATCTGTGCACTGG			
	CCACGCTGGCTGCTAAGGGGGA	TTGGTGTTC	ACCGCCATCTTCATTGGGGCTGTGGC			
	GGCCATGACTGGGTACTGGTTGT	CAGAGCGCA	STGACCGTGTGCTGGAGGGCTTCATC			
	AAGGGCAGATAATCGCGGCCACC	CACCTGTAGG	ACCTCCTCCCACCCACGCTGCCCCCA			
	GAGCTTGGGCTGCCCTCCTGCTC	GACACTCAG	SACAGCTTGGTTTATTTTTGAGAGTG			
	GGGTAAGCACCCCTACCTGCCT	racagagcag	CCCAGGTACCCAGGCCCGGGCAGACA			
	AGGCCCCTGGGGTAAAAGTAG	CCTGAAGGT	GGATACCATGAGCTCTTCACCTGGCG			
	GGGACTGGCAGGCTTCACAATG	rgtgaatttc	AAAAGTTTTTCCTTAATGGTGGCTGC			
			rcctcacaggggtgggccatcacag			
	CTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGTTCTGTGTTCACCACATCCCCACA					
		ATCTCAGGAA.	<u>ATAAAGAAAGGTCTTGGAAAGTTAAA</u>			
	AAAAAAA					
	ORF Start: ATG at 23	ORF Stop:	TAA at 1286			
	SEQ ID NO: 130	421 aa	MW at 45520.1kD			
NOV28a,	MAPWPPKGLVPAVLWGLSLFLN1	LPGPIWLQPS	PPPQSSPPPQPHPCHTCRGLVDSFNK			
CG59415-01 Protein	GLERTIRDNFGGGNTAWEEENL	SKYKDSETRL	VEVLEGVCSKSDFECHRLLELSEELV			
Sequence	1		GPSCLPCPGGTERPCGGYGQCEGEGT			
Sequence	(a)		SHLVCSACFGPCARCSGPEESNCLQC			
	1	_	TEGSYECRDCAKACLGCMGAGPGRCK			
			ENTEGGYRCICAEGYKQMEGICVKEQ			
	7	FFGIIICALA	TLAAKGDLVFTAIFIGAVAAMTGYW L			
	SERSDRVLEGFIKGR					
	SEQ ID NO: 131	1011 bp				
NOV28b.	SEQ ID NO: 131	<u> </u>	TCCCCCGCCTCAGCCCCATCCGTGTC			
NOV28b,	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC	CCAGTCTTC				
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCCACCTCC ATACCTGCCGGGGGACTGGTTGAC	CCAGTCTTC CAGCTTTAAC	AAGGGCCTGGAGAGAACCATCCGGGA			
	SEQ ID NO: 131 GGATCCCAGCCCTCCCACCTCC ATACCTGCCGGGGACTGGTTGACCACCTTTGGAGGTGGAAACACTC	CCAGTCTTC CAGCTTTAAC CCTGGGAGG	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCTCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGGGCCACCGCCTGCTGGAGCTGAG	CCAGTCTTC CAGCTTTAAC GCCTGGGAGG IGCTGGAGGG IGAGGAGCTG	AAGGGCCTGGAGAGAGCCTCCGGAA AAGAGAATTTGTCCAAATACAAGAC TGGGTGCGAAGTCAGACTTCGAGT GTGGAGAGACTGGTGGTTCACAAGCA			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCTCTCCACCTCC ATACCTGCCGGGGGACTGGTTGAG CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGG GCCACCGCCTGCTGGAGCTGAGGGCAGGAGGCCCCGGACCTCTTCC	CCAGTCTTC CAGCTTTAAC GCCTGGAGG IGCTGGAGGG IGAGGAGCTG CAGTGGCTGT	TCCCCCGCCTCAGCCCCATCCGTGTC AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTGTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCTCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGGCCACCGCCTGCTGGAGCTGAGGGCAGGAGGCCCCGGACCTCTTCCCCCGCAGGCACCTCTTCCCCCGCAGGCACCTCTTCCCCCGCAGGCACCTCTCGGGCCCTC	CCCAGTCTTC CAGCTTTAAC. GCCTGGAGGG TGCTGGAGGGC TGAGGAGCTGC CAGTGGCTGC	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGGCCCT			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC ATACCTGCCGGGGGACTGGTTGAG CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGGCCACCGCCTGCTGGAGCTGAGGGCAGGAGGCCCCGGACCTCTTCCCCCGCAGGCACCTCTTCCCCGCAGGCACCTCTCGGCCGGAGCACTTCGGGCCCTGCGGGGGAGCACGTGTGAGGCGCGGGGCAGTGTGAGGCGCGGGCAGTGTGAGGCAGTGTGAGAGGCAGTGTGAG	CCCAGTCTTC CAGCTTTAAC GCCTGGAGGG TGCTGGAGGGT TGAGGAGCTG CAGTGGCTGT CCTGCCTTCC AGGAGAAGGG	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGGCCCT ACACGAGGGGGCAGCGGCACTGTGA			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC ATACCTGCCGGGGGACTGGTTGAG CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGG GCACCGCCTGCTGGAGCTGAGG GCAGGAGGCCCCGGACCTCTTCC CCCGCAGGCACCTTCGGGCCCT GCGGTGGCTACGGGCAGTGTGAG CTGCCAAGCCGGCTACGGGGGT	CCCAGTCTTCC CAGCTTTAAC GCCTGGAGGG TGCTGGAGGGTGGAGGAGCTGC CAGTGGCTGTCCCAGCCTTCCCAGGAGAAGGGAGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGAAGGGCCTGTG	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGGCCCT ACACGAGGGGGCAGCGGCACTGTGA GCCAGTGTGGCCTTGCAG			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC ATACCTGCCGGGGGACTGGTTGAG CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGG GCACCGCCTGCTGGAGCTGAGG GCAGGAGGCCCCGGACCTCTTCC CCCGCAGGCACCTTCGGGCCCT GCGGTGGCTACGGGCAGTGTGAG CTGCCAAGCCGGCTACGGGGGTG GCAGAACGCAACGC	CCCAGTCTTCC CAGCTTTAAC GCCTGGGAGG GGCTGGAGGGTGGAGGAGCTGC CAGTGGCTGTCC CCTGCCTTCC AGGAGAAGGG BAGGCCTGTG	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGCCCT ACACGAGGGGGCACTGTGA GCCAGTTTTGAGGCCCTTGTGAGCTCTTTGAGGCCCTTGTGAGCCCTTGTGAGGCCACTGTGAGGCCCTTGTGAGGCCTTGTGAGGCCTTGTGAGGCCTTGTGTGCCCGAT			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC ATACCTGCCGGGGACTGGTTGAG CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGG GCACCGCCTGCTGGAGCTGAG GCAGGAGGCCCCGGACCTCTTCC CCCGCAGGCACCTTCGGGCCCT GCGGTGGCTACGGGCAGTGTGAG CTGCCAAGCCGGCTACGGGGGT GCAGAACGCAACGC	CCCAGTCTTCC CAGCTCTTTAAC GCCTGGGAGGG TGCTGGAGGGCTGC CAGTGGCTGTCC CCTGCCTTCC AGGAGAAGGG BAGGCCTGTG TGGTATGTTCC	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGCCCT ACACGAGGGGGCACTGTGA GCCAGTGTGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGG GCACCGCCTGCTGGAGCTGAGG GCAGGAGGCCCCGGACCTCTCG CCCGCAGGCACCTTCGGGCCTG GCGGTGGCTACGGGCAGTGTGAC CTGCCAAGCCGGTACGGGGGT GCAGAACGCAACGC	CCCAGTCTTCC CAGCTCTTAAC. GCCTGGAGGG IGCTGGAGGCTGC CAGTGGCTGTCC CAGGAGAAGGG AGGACAAGGG BAGGCCTGTG IGGTATGTTCC CTGTTTGCAA BAGTGTGGCA	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGGCCCT ACACGAGGGGGCACTGTGA GCCAGTGTTGCCCGATTTGAG GCCTTGTTTTGAGCCCTTGTGCCCGAT TGCAAGAAGAGGGCCTGCACTCACACACACACACACACAC			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGG GCACCGCCTGCTGGAGCTGAG GCAGGAGGCCCCGGACCTCTTCC CCCGCAGGCACCTCTCGGCCCT GCGGTGGCTACGGGCAGTGTGAC CTGCCAAGCCGGCTACGGGGGGT GCAGAACCGCAACCCAGCCATCC GCTCAGGACCTGAGGAATCAAAC CCTCAAGTGTGTAGACACTGAGG	CCCAGTCTTCC CAGCTCTTTAAC. GCCTGGAGGG IGCTGGAGGCTGC CAGTGGCTGTCC CCTGCCTTCC AGGAGAAGGG BAGGCCTGTG IGGTATGTTC CTGTTTGCAA BAGTGTGGCA BAGTGTGGCA	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGCCCT ACACGAGGGGGCACTGTGA GCCAGTGTGGCCTTGGCTGCTGAGCTTTTGAG GCCTTGTTTTTGGCCCTTGTGCCCGAT TGCAAGAAGAGGGCTGCACTCA CAGAGGGAGCCAACTGTGAGCCTGCACCACACAGAGAGAG			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGGC GCACCGCCTGCTGGAGCTCTCC CCCGCAGGCCCTCTTCGGCCCTC GCGGTGGCTACGGGCACTCTCAC GCGAGACCGCTACGGGGGTC GCAGAACCGCAACCCCACCCC	CCCAGTCTTCC CAGCTGGAGGG IGCTGGAGGGCTGC CAGTGGCTGCCTTCC AGGAGAAGGG BAGGCCTGTG TGTTTGCAA BAGTGTGGCA BAGTGTGTTTGCAA BAGTGTGGCA BAGTGTGGCA BAGTGTGGCA BAGTGTGGCA BAGTGTGGCA BAGTGTGGCA BAGTGTGGCA	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGTGCAGCCAGGTGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGGCCCT ACACGAGGGGGCACTGTGA GCCAGTGTTTTGAGGCCCTGCAGTTTTGAG GCCTTGTTTTTGGCCCCTGTGCCCGAT TGCAAGAAGGGCCTGCACCACACAGAGAGGCCTGCC CAGAGGGGACCAGCTGCCCACC CAGAGGAGGCCCAACTGTGGAGCTGAC CAGAGGGAGCCAACTGTGGAGCTGAC CTGCCGAGACTGTGCCAAGGCCTGCC AAGAAGTGTAGCCCTGGCTATCAGCA			
191815704 DNA	SEQ ID NO: 131 GGATCCCAGCCCTCTCCACCTCC ATACCTGCCGGGGACTGGTTGAC CAACTTTGGAGGTGGAAACACTC AGTGAGACCCGCCTGGTAGAGG GCACCGCTGCTGGAGCTGAG GCAGGAGGCCCCGGACCTCTCC CCCGCAGGCACCTTCGGCCCT GCGGTGGCTACGGGCACT CTGCCAAGCCGCTACGGGGGT GCAGAACGCAACGC	CCCAGTCTTCC CAGCTGGAGGG IGCTGGAGGAGCTGC CAGTGGCTGTCC AGGAGAAGGG BAGGCCTGTG CTGTTTTGCAA BAGTGTGTGCA BAGTGTGTGCAA BAGTGTGTGCAA BAGTGTGGCAA BCTCCTATGA AGGTCGCTGTG CTGGTTGGAA	AAGGGCCTGGAGAGAACCATCCGGGA AAGAGAATTTGTCCAAATACAAAGAC TGTGTGCAGCAAGTCAGACTTCGAGT GTGGAGAGCTGGTGGTTTCACAAGCA GCTCAGATTCCCTGAAGCTCTGCTGC CTGTCCTGGGGGAACAGAGAGCCCT ACACGAGGGGGCACTGTGA GCCAGTGTGGCCTTGGCTGCTGAGCTTTTGAG GCCTTGTTTTTGGCCCTTGTGCCCGAT TGCAAGAAGAGGGCTGCACTCA CAGAGGGAGCCAACTGTGAGCCTGCACCACACAGAGAGAG			

	AGCAGATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTTCTC AGAGATGACAGAAGACGAGCTCGAG			
	ORF Start: GGA at 1	ORF Stop:		
	SEQ ID NO: 132	337 aa	MW at 36352.1kD	
NOV28b, 191815704 Protein Sequence	GSQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLERTIRDNFGGGNTAWEEENLSKYKD SETRLVEVLEGVCSKSDFECHRLLELSEELVESWFHKQQEAPDLFQWLCSDSLKLCC PAGTFGPSCLPCPGGTERPCGGYGQCEGEGTRGGSGHCDCQAGYGGEACGQCGLGYFE AERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDECGTEGANCGAD QFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECETEVCPGE NKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELE			
	SEQ ID NO: 133	1011 bp		
NOV28c, 191815724 DNA Sequence	GGATCCCAGCCTCTCCACCTCCCAAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTC ATACCTGCCGGGGACTGGTTGACAGCTTTAACAAGGGCCTGAGAGAAACCATCCGGGA CAACTTTGGAGGTGGAAACACTGCCTGGGAGGAGAAAATTTGTCCAAATACAAAGAC AGTGAGACCCGCCTGGTAGAGGTGCTGGAGGGTGTGTGCAGCAAGTCAGACTTCGAGT GCCACCGCCTGCTGGAGCTGAGGGAGCTGTGTGCAGCAAGTCAGACTTCGAGC GCAGGAGGCCCCGGACCTCTTCCAGTGGCTTGCCTGGAGAGCTCGTGAGCCCTGCCGCAGGCACCTCTCCCTGCCTTCCCTGTCCTGGGGGAACAGAGAGGCCCT GCGCTGGCTGCGGGCAGTGTAAAGAGAAAGGGACACGAGAGGGCACCTTTGAG CCTGCCAAGCCGGCCATCTGGTAAGTTCCGCTTGTTTTTGGCCCCTGTGCCCGAT GCTCAAGCCGACCACCCACCATCTGGTATGTTCGGCTTGTTTTTGGCCCCTGTGCCCGAT GCTCAAGTGTGAGAATCAAACTGTTTGCAATGCAA			
	ORF Start: GGA at 1	ORF Stop:		
	SEQ ID NO: 134	337 aa	MW at 36292.1kD	
NOV28c, 191815724 Protein Sequence	SETRLVEVLEGVCSKSDFECHRI PAGTFGPSCLPCPGGTERPCGGC AERNASHLVCSACFGPCARCSGI	LLELSEELVE: CGQCEGEGTRO PEESNCLQCK IGAGPGRCKKO	LERTIRDNFGGGNTAWEBENLSKYKD SWWFHKQQEAPDLFQWLCSDSLKLCC GGSGHCDCQAGYGGEACGQCGLGYFE KGWALHHLKCVDIDECGTEGANCGAD CSPGYQQVGSKCLDVDBCETEVCPGE BSAGFFSEMTEDBLE	
	SEQ ID NO: 135	1646 bp		
NOV28d, CG59415-02 DNA Sequence	GGCGACGCGTCCCAGCCTGGGTAAAGATGGCCCCATGGCCCCGAAGGGCCTAGTC CCAGCTGTGCTCTGGGGCCTCAGCCTCTTCCTCAACCTCCCAGGACCTATCTGGCTCC AGCCCTCTCCACCTCCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTCATACCTG CCGGGGACTGGTTGACAGCTCTTAACAAGGGCCTGGAGAAACCATCCGGGACAACTTT GGAGGTGGAAACACTGCCTGGGAGGAAGAGAATTTGTCCAAATACAAAGACAGTGAGA CCCGCCTGGTAGAGGTGCTGGAGGGTTGTCCAGCAAGTCAGACTTCGAGTGCCACCG CCTGCTGGAGCTGAGTGAGGAGCTGGTGGAGAGTCTGGTGTTTCACAAGCAGCAGGAG GCCCCGGACCTCTTCCAGTGGCTGTGCTCAGAGTCCTGTGCCCCCGCAG GCACCTTCGGGCCCTCCTGCCTTCCTGTGCGGGAACAGAAGAGAGGCCTGGCGTGG CTACGGGCAGTGTGAAGGAGAAGGGACACGAGGGGCACTTTGAGGCAGAAC GCCGGCTACGGGGTAAGGCCTGTGCCTTGCTTTTTGGCCCCTTGCCCCAG ACCTCAGGAATCAAACTGTTTTCGCATTGTTTTTGGCCCCTTGTCCTCAAG TCTGAGAATCAAACTGTTTGCAATGCAA			

	TGTGGATGAGTGTGAGACAGAGG GAGGGCGGTTATCGCTGCATCTG TGAACAGAAGACGAGTTGGTGGT CACTGGCCACGCTGGCTGCTAAG TGTGGCGGCCATGACTGGCTACT TTCATCAAGGGCAGATAATCGCG CCCCAGAGCTTGGGCTGCCTC AGAGTGGGGTAAGCACCCCTACC	TGTGTCCGGG TGCCGAGGGC GCTGCAGCAG GGCGACTTGG GGTTGTCAGA GCCACCCT CTGCTGGACA TGCCTTACAG AGTAGCCCTG CAATGTGTGA	CTCTGACCCCTCCCTCCCTCAAGA AGAGAACAAGCAGTGTGAAAACACC TACAAGCAGATGGAAGGCATCTGTG ATGTTCTTTGGCATCATCATCTGTG TGTTCACCGCCATCTTCATTGGGGC GCGCAGTGACCGTGTGCTGAGGGC GTAGGACCTCCTCCCACCCACGCTG CTCAGGACAGGTTGGTTTATTTTTG AGCAGCCCAGGTACCCAGGCCCGG AAGGTGGATACCATGAGCTCTTCAC ATTCAAAAGTTTTTCCTTAATGGTG
1	ORF Start: ATG at 29	ORF Stop:	TAA at 1238
	SEQ ID NO: 136		MW at 42961.2kD
NOV28d, CG59415-02 Protein Sequence	GLERTIRDNFGGGNTAWEEENLS ESWWFHKQQEAPDLFQWLCSDSL RGGSGHCDCQAGYGGEACGQCGL KKGWALHHLKCVDCAKACLGCMG	KYKDSETRLV KLCCPAGTFG GYFEAERNAS AGPGRCKKCS GGDGQDGVRC	PPQSSPPPQPHPCHTCRGLVDSFNK EVLEGVCSKSDFECHRLLELSEELV PSCLPCPGGTERPCGGYGQCEGEGT HLVCSACFGPCARCSGPEESNCLQC PGYQQVGSKCLVSLLLMDTGTGSPS WVGGPSRTLTPPSPQDVDECETEVC

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 28B.

Table 28B. Comparison of NOV28a against NOV28b through NOV28d.			
Protein Sequence	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Region	
NOV28b	44364 17336	307/321 (95%) 307/321 (95%)	
NOV28c	46364 19336	286/319 (89%) 286/319 (89%)	
NOV28d	1348 1381	270/384 (70%) 275/384 (71%)	

Further analysis of the NOV28a protein yielded the following properties shown in Table 28C.

	Table 28C. Protein Sequence Properties NOV28a			
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 30 and 31			

A search of the NOV28a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 28D.

5

	Table 28D. Geneseq Results for NOV28a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU12316	Human PRO214 polypeptide sequence - Homo sapiens, 420 aa. [WO200140466-A2, 07-JUN-2001]	1421 1420	418/421 (99%) 418/421 (99%)	0.0	
AAM41685	Human polypeptide SEQ ID NO 6616 - Homo sapiens, 513 aa. [WO200153312-A1, 26-JUL-2001]	1421 94513	418/421 (99%) 418/421 (99%)	0.0	
AAM39899	Human polypeptide SEQ ID NO 3044 - Homo sapiens, 420 aa. [WO200153312-A1, 26-JUL-2001]	1421 1420	418/421 (99%) ₎ 418/421 (99%)	0.0	
AAB68594	PRO214 - Homo sapiens, 420 aa. [WO200105836-A1, 25-JAN-2001]	1421 1420	418/421 (99%) 418/421 (99%)	0.0	
AAB27228	Human EXMAD-6 SEQ ID NO: 6 - Homo sapiens, 420 aa. [WO200068380-A2, 16-NOV-2000]	1421 1420	418/421 (99%) 418/421 (99%)	0.0	

In a BLAST search of public sequence databases, the NOV28a protein was found to have homology to the proteins shown in the BLASTP data in Table 28E.

	Table 28E. Public BLASTP Results for NOV28a				
Protein Accession Number	Protein/Organism/Length	NOV28a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q9Y409	HYPOTHETICAL 44.9 KDA PROTEIN - Homo sapiens (Human), 417 aa.	1418 1417	413/418 (98%) 413/418 (98%)	0.0	
Q91XD7	UNKNOWN (PROTEIN FOR MGC:18896) - Mus musculus (Mouse), 420 aa.	1421 1420	383/421 (90%) 405/421 (95%)	0.0	
Q96HD1	UNKNOWN (PROTEIN FOR MGC:8447) - Homo sapiens (Human), 422 aa.	1362 1361	348/362 (96%) 353/362 (97%)	0.0	
Q9CYA0	5730592L21RIK PROTEIN - Mus musculus (Mouse), 350 aa.	33346 16330	154/316 (48%) 200/316 (62%)	e-100	
Q60438	HT PROTEIN - Cricetulus griseus (Chinese hamster), 348 aa.	9339 3324	156/333 (46%) 202/333 (59%)	4e-97	

PFam analysis predicts that the NOV28a protein contains the domains shown in the Table 28F.

Table 28F. Domain Analysis of NOV28a				
Pfam Domain	NOV28a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
laminin_EGF: domain 1 of 1	168211	11/60 (18%) 32/60 (53%)	0.11	
zf-MYND: domain 1 of 1	218243	10/43 (23%) 15/43 (35%)	4.7	
PHD: domain 1 of 1	217277	12/64 (19%) 38/64 (59%)	2.8	
TIL: domain 1 of 1	249309	17/79 (22%) 37/79 (47%)	8.1	
Furin-like: domain 1 of 1	189310	36/188 (19%) 76/188 (40%)	6.5	
EB: domain 1 of 1	292344	15/62 (24%) 35/62 (56%)	0.3	

EXAMPLE 29.

The NOV29 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 29A.

	Table 29A. NOV29 Sequence Analysis			
	SEQ ID NO: 137	6997 bp		
NOV29a, CG59297-01 DNA Sequence	TGGGAACCAGCTCAAAGG TTGTGACCAGCTTGCACA CAGGAAAGGTGTCTCCAG GCACTGACAAGAGCTGGG GTGGGTCGAGGTCTATGC CCTTGGTGTGCTCTGAAT CAGCTTCCAGGCAGAAGA TAATGAAAAAACACAGGC AACAGTGCTGATTCTGCACC GCCTGGCATTCTTGAACT TGAACCCTGCTCTAATT TGAACCCTGTTCTTAATT ATTCCGTGTTCATATTGACCCAGTTCTTCAGAATCACCAGTTCATAAAGACCCAGTTCAAAAGACCCAGTACTCAAAAGACCCAGCACTCAAAAGACCCAGCAAGTGGAACTCCAAGAAAAACCCCCCAAGTGAACCCCCCAAGTGAAAAAACCCCCCAAGTGAACCCCCCCAAGTGAAAAAAAA	ATCGCAGCCTTGCCCCTGCTCTCCTTGGTGCAGCCTGCTC ATGAGGATGTAGGAAGAAGCTGGTCTGCTGACTGTCATAC GGACATGGCCGAGGAGGAGCCCAGAACATTTCTGATGAC GGCCTGCTGCCTTCCCTTTGGTGGTGAGCTGTCTGTGA GGTCTTCATCTGTGAGCCGTGAGCTGTCTGTGA GTCTTCATCTGTGCAGCTGTAGCCCTCCTGGAGGTGGAT TAATCATGTGCTTCTTATGAGTGATGGGAAGTGTGGCTGT ACATTTGGAAAACACAGGCGCATCCCAA ACATTTGGAAAACAACTAGTGAAGCAGCCTTCGATTGTGAT TGTTGTTAATGAAAAAAACACAGGCGCCTCTGGATTGTGAT CCGAGTCTTTGCTGACAGCAGTATTGGGGAGAATTCTGAC CCCCAGCTTCACGGCATCCCACGGCCTTCC CCCCCAGCTTCACGGCATCCGAGTCTCGATTCTGAGATCCTC CCTCCTGTGGCCATCCTAGCTCGAAATTCTGAGAACTCA GCTCCCTGGAAGTGGAAGCTCGGGCACTCCAAATTCGGGAC TTCTGGAGAGGCTCTCTGTCTGATGATGATTTCGGGAC AGGCTACACAACATGTCTGAGGCAATTGGCGTGACTGCCT AAGGAGTCTTATTATTATGTGGGCATTGGCCATGAGCCGTG AGCAGTGTCCATGAAGATGAAGTGCTTTTTCTTGACACACAACATGCCCTCACACACA		

TATTTTGGAGAGGATCCACCAGTGAGGACAACTTCAAGAAGCATTAAAAAAAGACTCA GCATCCCCCAATGGTATCGTGTGATGGTTAAGGCTTCCAACAGGATGAGCAGTGTGGT CTCTGAGCCCCATGTCATCAGGGTGCAGAAGAAAATTGTGGCCAATCGGCTCACGTCC CCCTCCTCAGCTCTGGTAAATGCCAGTGTGGCCTTTGAGTGCTGGATCAACTTCGGCA CAGATGTTGCCTACCTGTGGGACTTTGGGGATGGCACCGTCAGCCTGGGGAGCAGCTC CAGCAGCCATGTCTACAGTAGGGAAGGAGAATTTACAGTGGAGGTCCTTGCCTTCAAT AATGTCAGTGCCTCCACTCTAAGACAGCAACTTTTCATCGTGTGCGAGCCCTGCCAGC CACCCTGGTGAAGAACATGGGGCCTGGGAAAGTCCAGATATGGAGGTCTCAGCCTGT GAGGCTGGGAGTGACGTTTGAAGCTGCAGTCTTCTGTGATATTTCCCAAGGTCTTTCT ACACTCACAGACAGACCCTCATCCTCCCGAGCCACACCTTGGAGTATGGGAACTACAC TGCCCTTGCCAAGGTTCAGATTGAAGGCAGTGTGGTGTACAGCAACTACTGTGTGGGC CTGGAGGTGCGAGCCCAGGCCCCTGTCAGTGTGATCTCCGAGGGCACACACCTATTCT TCTCCAGGACCACCTCATCCCCCATTGTCCTCAGAGGGACCCAGTCCTTCGACCCTGA CGACCCTGGGGCGACTCTCAGCCACTCCGATGACTTCTCCAACAGGTATCACTGGGAA TGCGCCACCGCTGGCTCCCCAGCACATCCCTGCTTCGACTCCTCCACTGCACACCAAC TGGATGCCGCGCTCCCACTGTTTCCTTTGAGGCACAATGGCTCAGTGACAGCTATGA TCAGTTCCTTGTGATGCTGAGGGTCTCCAGTGGTGGCCGGAACTCTTCTGAGACCCGG GTGTTCCTGTCCCCTACCCTGACTCGGCGTTCAGATTCGTCCACATCTCCTGGGTCA GGACTGCAGTGAAATACCGAATCTGTCTTATTCCTGGGATCTCTTTTTAGTCAATGCA ACAGAAAAGAATAGGATAGAAGTCCGTGTGAACACTTGTGAGGCACCAGCAGAAGAGG TGACACACTCAAGGGCTGCTTCTGACCTCAGTGTGATATGGAAGGCTGCGCCCAACAC CTGTGTAGGCAGTTTTATTGAGCTAAAGCCACAGTTCAGAAGGACCTGCGATGTGACA CACTGCCCAGAGGGCTGTGTCCGTCACCACCTCGCCTGTCTTTTTGGGCCAGCTGCACA AGTCATCACAGTTAAACCTGCTGCCCACTGAGCCTGGCACTGCAGATCCTGATGCAAC GACCACACCATTCTCACGGGAACCTTCACCCGTGACCCTTGGCCAACCTGCCACTTCA GCTCCAAGGGGAACCCCCACAGAGCCCATGACTGGAGTCTACTGGATTCCTCCTGCGG GGGACTCTGCAGTCCTGGGGGAGGCTCCAGAGGAAGGTTCACTAGACCTAGAGCCAGG AGCCCTGACCCTCACCTCTGCTAAGGACACCAGCTTTCCAGGATCAGGACCTAGCT AGGCAGAGCCGAGCCTGTCCTCATGATTGACTGGCCCAAGGCCCTGCTGGGTCGAGCA ACTCTCTGAGCAGTGGAGAGACGTACGTCCTGCAAGTGTCTGTGGCTTCGAAGCATGG CTTACTGGGTAAAGCTCAGCTGTACTTGACAGTCAACCCGGCTCCTCGGGACATGGCC TGTCAGGTGCAGCCCCACCATGGTCTGGAAGCACACCCGTCTTCAGTGTCTTCTGCA TGTCTGGAAAACCGGACTTCCATTATGAATTTAGTTACCAGATAGGAAACACCTCCAA ACACACTTTGTACCATGGGAGAGACACCCAGTATTATTTTGTGTTGCCAGCTGGTGAG CACTTGGACAATTACAAAGTCATGGTTTCCACTGAAATCACAGATGGCAAAGGCTCCA AGGTCCAGCCGTGCACTGTGGTGGTGACTGTGCTGCCCCGCTACCATGGAAATGACTG TCTGGGCGAGGACCTGTATAATTCCAGCCTGAAAAACCTTTCTACCCTCCAGCTGATG GGGAGTTACACAGAAATCAGGAACTACATCACTGTGATCACCAGAATCCTGAGTCGTT TGTCTAAGGAGGACAAAACTGCCTCCTGCAACCAATGGTCACGAATACAGGATGCATT AATTTCTTCAGTATGCAGATTGGCTTTTGTAGATCAGCTAGGCTTTATGAGTGCGGTT CTCATCCTCAAGTACACCCGGGCACTCCTTGCTCAAGGCCAGTTCTCGGGGCCATTTG TGATTGACAAAGGAGTGAGGCTTGAGCTCATCGGTCTCATATCCAGAGTCTGGGAAGT CTCTGAGCAAGAAACTCGAAGGAGGAAGTCTATCGACATGAAGAAGGAATTACAGTC ATCTCAGATTTATTGTTGATTGGTGGAGTTGTGGGCCTCAACCTCTATACCTGCTCCA GCAGAAGACCCATCAACAGGCAATGGCTAAGGAAACCCGTGATGGTCGAGTTTGGGGA GGAGGATGGCCTGGATAATAGGAGAAATAAAACGACATTTGTATTACTTCGGGATAAA GTGAATCTCCATCAGTTCACTGAGCTTTCCGAAAACCCCCAGGAATCTCTACAGATAG AAATTGAATTTTCCAAACCTGTTACAAGGGCATTTCCCGTCATGTTGCTAGTAAGATT CTCTGAGAAACCTACTCCCTCTGATTTTCTTGTGAAGCAGATCTACTTCTGGGATGAG TCAATTGTGCAGATTTATATACCTGCTGCTTCTCAGAAAGATGCCAGTGTAGGCTATT TATCCTTATTGGATGCTGACTATGACAGAAAACCTCCAAACAGATATTTAGCTAAGGC TGGAAATCTGAACGTTTCTCTCCACAACCAGGGACTTCTCCTGAAAAAGTGAACTGCA GCTACCATCGCCTCGCGGCATTCGCTCTCCTAAGGAGAAAGCTGAAGGCCAGTTTTGA AGTGAGTGACATTTCCAAGCTACAGAGCCACCCAGAAAACTTGCTTCCCAGTATTTTT ATTATGGGTTCTGTGATTCTTTATGGATTTTTGGTCGCTAAAAGTAGACAAGTAGATC

ATCATGAAAAAAGAAAGCTGGTTACATCTTTCTGCAAGAAGCTTCCCTGCCGGGCCA TCAGCTATATGCGGTCGTCATTGACACTGGCTTCCGAGCTCCGGCCAGCGCTCCTGCC CAACTGGGCCTGCTGAGGAAGATCCGCCTCTGGCACGACAGCCGTGGGCCTTCCCCAG GCTGGTTCATCAGCCACGTGATGGTGAAGGAGCTGCACACGGGACAGGGCTGGTTCTT CCCTGCCCAGTGCTGGCTGTCTGCCGGCAGGCATGATGGTCGCGTGGAGCGGGAGCTC ACCTGTCTGCAAGGGGGACTCGGCTTCCGGAAGCTTTTCTATTGCAAGTTCACAGAGT ACCTGGAGGATTTCCATGTCTGGCTGTCGGTGTACAGCAGGCCCTCCTCCAGCCGCTA CCTGCACACGCCGCGCCTCACCGTGTCCTTCTCCCTGCTGTGCGTCTACGCGTGTCTC ACTGCCCTGGTTGCTGGAGGGCAAGAGCAGGTGAGAGCCATCGCTTTTCCTTATA GCAGCTTCCAGATCCGACTACACTGTGGCCCCTTTTTGCCTAAGAAATCAACAAAGCT GAGAAGGAACAGGAGGCTCTGCCCGGCTCAGCAAGGTACCTGCGACTTGTCCTCATG GCCCTGTTCTCCTGAGCAGCCCCTTCATTGCTGGGGAACACGCTTGGCGAACCACCTC TTTCCTTCTGCAGGAAGCCCCGGGGTCTGCCCGAGTGGAGCCACACAGCCCACTTAGA GCCTGAAACAGGAAGGAAGTGAAGCCCAGAAGAATTCAGAAAGCCCTGTGTGTCTACT CAGTAAATACCGGCAGGACCGTGGGAGAGACACTGTGGAGCAGCAAGGCTCGGGCACC CAGCAGTGGTTTGGAGGGACTAATGCCCCAGTGGTCAAGGGCCCTTCAGCCTTGGTGG AGCTCTGCAGTGTGGGCCATTTGTGGGACCGCTTCTTTGGCCTGCAGTTTGGGGACAG GATTTCTAGCCTACAGGTATGCCTCATGGCCTTGGGTTTTGCTTGGAAAAGAAGAGGCT GACAACCACTTTTTTACTGAGTCTTTATGTGAGGCTACCAGGGATCTGGACTCTGAAT TGGCAGAACGTTCCTGGACTCGCCTCCCCTTCTCTTCAAGCTGCAGTATTCCTGACTG TGCAGGCGAGGTTGAAAAAGTCTTGGCTGCCCGACAACAAGCTCGCCACCTGCGCTGG GTCGCACACGGGCTGCCCTGAGAGACATTTCCATGGACATCCTCATGCTGCTTCTGCT CGGAAAGAATTTACAAGAAATGCCAGAAACTGCTTGGGTGGCCTGAGAAACATCGCTG ACTGGTGGGACTGGAGTCTGACCACACTTCTGGATGGCCTGTACCCGGGAGGCACCCC GTCAGCCCGTGTGCCGGGGGCTCAGCCTGGAGCTCTTGGAGGAAAATGCTACCTAATA GGCAGTTCCGTAATTAGGCAGCTAAAAGTTTTTCCTAGGCATTTATGCAAGCCTCCCA GGCCATTTTCAGCACTCATCGAAGACTCTATTCCTACATGTAGTCCCGAAGTTGGAGG CCCTGAGAACCCCTACCTGATAGACCCAGAGAACCAAAACGTGACCCTGAATGGTCCT GGGGCTGTGGGACAAGGAGGACTGTGTGCTCAGCCTGGGCAGAACAAGGACTGAAG CCCACACAGCCCTGTCCCGACTCAGGGCCAGCATGTGGATTGACCGCAGCACCAGGGC TGTGTCTGTGČÄCTTCACTCTCTÄTÄACCCTCCAACCCAACTCTTCACCAGCGTGTCC CTGAGAGTGGAGATCCTCCCTACGGGGAGTCTCGTCCCCTCATCCCTGGTGGAGTCAT TCAGCATCTTCCGCAGCGACTCAGCCCTGCAGTACCACCTCATGCTTCCCCAGGTGAG CTGACCTGCCTCTTGGGCCTCCTGGAGGTGCACAGGAAGATGGGGCTTCACCTGGGCT GGGCTTCTCCACCAGACAGGACTAGTTCCCTACCCAT

ORF Start: ATG at 1 ORF Stop: TGA at 6904 SEQ ID NO: 138 2301 aa MW at 254558.5kD

NOV29a, CG59297-01 Protein Sequence

MGWRGLIAALPLLSLVQPALGTSSKDEDVGRSWSADCHTCDQLAQDMAEEAAQNISDD QERCLQAACCLSFGGELSVSTDKSWGLHLCSCSPPGGGLWVEVYANHVLLMSDGKCGC PWCALNGKAEDRESQSPSSSASRQKNIWKTTSEAALSVVNEKTQAVVNEKTQAPLDCD NSADSLRVFADSSIGENWTLQMVCDPDTWMRGPSSHGLPPGIPRTPSFTASQSGSEIL YPPTQHPPVAILARNSDNFMNPVLNCSLEVEARAPPNLGFRVHMASGEALCLMMDFGD SSGVEMRLHNMSEAMAVTAYHQYSKEGVYMLKAVIYNEFHGTEVELGPYYVEIGHEAV SAFMNSSSVHEDEVLVFADSQVNQKTVSVYTNGTVFATDTDITFTAVTKETIPLEFEW YFGEDPPVRTTSRSIKKRLSIPQWYRVMVKASNRMSSVVSEPHVIRVQKKIVANRLTS PSSALVNASVAFECWINFGTDVAYLWDFGDGTVSLGSSSSSHVYSREGEFTVEVLAFN NVSASTLRQQLFIVCEPCQPPLVKNMGPGKVQIWRSQPVRLGVTFEAAVFCDISQGLS YTWNLMDSEGLPVSLPAAVDTHRQTLILPSHTLEYGNYTALAKVQIEGSVVYSNYCVG LEVRAQAPVSVISEGTHLFFSRTTSSPIVLRGTQSFDPDDPGATLSHSDDFSNRYHWE CATAGSPAHPCFDSSTAHQLDAAAPTVSFEAQWLSDSYDQFLVMLRVSSGGRNSSETR vflspypdsafrfvhiswvsfkdtfvnwndelslqamcedcseipnlsyswdlflvna TEKNRIEVRVNTCEAPAEEVTHSRAASDLSVIWKAAPNTCVGSFIELKPQFRRTCDVT HCPEGCVRHHLACLLGQLHKSSQLNLLPTEPGTADPDATTTPFSREPSPVTLGQPATS aprgtptepmtgvywi ppagdsavlgeapeegsldlepgpqskgslmtgrsersqpth SPDPHLSAKDTSFPGSGPSLSAEESPGDGDNLVDPSLSAGRAEPVLMIDWPKALLGRA

VFQGYSSSGITEQTVTIKPYSLSSGETYVLQVSVASKHGLLGKAQLYLTVNPAPRDMA CQVQPHHGLEAHTVFSVFCMSGKPDFHYEFSYQIGNTSKHTLYHGRDTQYYFVLPAGE HLDNYKVMVSTEITDGKGSKVQPCTVVVTVLPRYHGNDCLGEDLYNSSLKNLSTLQLM GSYTEIRNYITVITRILSRLSKEDKTASCNQWSRIQDALISSVCRLAFVDQLGFMSAV LILKYTRALLAQGQFSGPFVIDKGVRLELIGLISRVWEVSEQENSKEEVYRHEEGITV ISDLLLIGGVVGLNLYTCSSRRPINRQWLRKPVMVEFGEEDGLDNRRNKTTFVLLRDK VNLHQFTELSENPQESLQIEIEFSKPVTRAFPVMLLVRFSEKPTPSDFLVKQIYFWDE ${\tt SIVQIYIPAASQKDASVGYLSLLDADYDRKPPNRYLAKAVNYTVHFQWIRCLFWDKRE}$ WKSERFSPQPGTSPEKVNCSYHRLAAFALLRRKLKASFEVSDISKLQSHPENLLPSIF IMGSVILYGFLVAKSRQVDHHEKKKAGYIFLQEASLPGHQLYAVVIDTGFRAPASAPA QLGLLRKIRLWHDSRGPSPGWFISHVMVKELHTGQGWFFPAQCWLSAGRHDGRVEREL TCLQGGLGFRKLFYCKFTEYLEDFHVWLSVYSRPSSSRYLHTPRLTVSFSLLCVYACL TALVAAGGQEQVRAIAFPYSSFQIRLHCGPFLPKKSTKLTVLREKFKPGEASLAAWGP **EKEQEGSARLSKVPATCPHGPVLLSSPFIAGEHAWRTTSFLLQEAPGSARVEPHSPLR** GGAQTEAPHGGSERRGLSRGLKQEGSEAQKNSESPVCLLSKYRQDRGRDTVEQQGSGT QQWFGGTNAPVVKGPSALVELCSVGHLWDRFFGLQFGDRISSLQVCLMALGFAWKRRA DNHFFTESLCEATRDLDSELAERSWTRLPFSSSCSIPDCAGEVEKVLAARQQARHLRW AHPPSKAQLRGTRQRMRRESRTRAALRDISMDILMLLLLLCVIYGRFSQDEYSLNQAI RKEFTRNARNCLGGLRNIADWWDWSLTTLLDGLYPGGTPSARVPGAOPGALGGKCYLI GSSVIRQLKVFPRHLCKPPRPFSALIEDSIPTCSPEVGGPENPYLIDPENQNVTLNGP GGCGTREDCVLSLGRTRTEAHTALSRLRASMWIDRSTRAVSVHFTLYNPPTQLFTSVS LRVEILPTGSLVPSSLVESFSIFRSDSALQYHLMLPQVS

Further analysis of the NOV29a protein yielded the following properties shown in Table 29B.

	Table 29B. Protein Sequence Properties NOV29a			
PSort analysis:	0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 22 and 23			

A search of the NOV29a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 29C.

5

	Table 29C. Geneseq Results for NOV29a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU14647	Novel bone marrow polypeptide #46 - Homo sapiens, 488 aa. [WO200157187-A2, 09-AUG-2001]	196683 1488	487/488 (99%) 487/488 (99%)	0.0	
AAU29269	Human PRO polypeptide sequence #246 - Homo sapiens, 300 aa. [WO200168848-A2, 20-SEP-2001]	20462300 1255	254/255 (99%) 255/255 (99%)	e-147	
AAE03429				e-139	

	protein HETDB76, SEQ ID NO: 112 - Homo sapiens, 561 aa. [WO200132675-A1, 10-MAY-2001]	1240	240/240 (99%)	
AAU14741	Novel bone marrow polypeptide #140 - Homo sapiens, 142 aa. [WO200157187-A2, 09-AUG-2001]	478618 2142	140/141 (99%) 140/141 (99%)	5e-79
AAB41274	Human ORFX ORF1038 polypeptide sequence SEQ ID NO:2076 - Homo sapiens, 160 aa. [WO200058473-A2, 05-OCT-2000]	16211738 43160	116/118 (98%) 116/118 (98%)	5e-66

In a BLAST search of public sequence databases, the NOV29a protein was found to have homology to the proteins shown in the BLASTP data in Table 29D.

15

	Table 29D. Public BLASTP Results for NOV29a				
Protein Accession Number	Protein/Organism/Length	NOV29a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q96Q08	KIAA1879 PROTEIN - Homo sapiens (Human), 995 aa (fragment).	14491734 212538	77/332 (23%) 136/332 (40%)	5e-17	
CAB59175	SEQUENCE 3 FROM PATENT WO9518225 - Homo sapiens (Human), 1614 aa (fragment).	16211737 403523	45/121 (37%) 67/121 (55%)	2e-16	
CAB59174	SEQUENCE 1 FROM PATENT WO9518225 - Homo sapiens (Human), 4339 aa (fragment).	16211737 31283248	45/121 (37%) 67/121 (55%)	2e-16	
O42181	PKD1 PROTEIN - Fugu rubripes (Japanese pufferfish) (Takifugu rubripes), 4578 aa.	308795 20002473	120/517 (23%) 191/517 (36%)	2e-16	
Q15141	POLYCYSTIC KIDNEY DISEASE 1 PROTEIN - Homo sapiens (Human), 4292 aa.	16211737 31613281	45/121 (37%) 67/121 (55%)	2e-16	

PFam analysis predicts that the NOV29a protein contains the domains shown in the Table 29E.

Table 29E. Domain Analysis of NOV29a				
Pfam Domain	NOV29a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
PKD: domain 1 of 2	371454		0.14	

		50/94 (53%)	
PKD: domain 2 of 2	456536	24/93 (26%) 61/93 (66%)	3.7e-09
REJ: domain 1 of 1	592710	39/144 (27%) 74/144 (51%)	0.0013
hormone3: domain 1 of 1	12211233	6/13 (46%) 13/13 (100%)	7.8
GPS: domain 1 of 1	14971544	13/54 (24%) 31/54 (57%)	0.18
PLAT: domain 1 of 1	16231684	15/69 (22%) 46/69 (67%)	2e-05

EXAMPLE 30.

The NOV30 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 30A.

	Table 30A. NOV30 Sequence Analysis				
	SEQ ID NO: 139	3095 bp			
NOV30a,	CTGGCCAGACCCTGCCTCCA	GCCACCGAGGCACATTACCTGGGCCCAACAGATGTCCT			
CG59264-01 DNA	GGCAGCGGGGCCACAGTATC	CTCCTCATGCGTCCACTCTCTTCAAGCCCAGTGCAAAG			
	AAAGCAGCGAATCCCAGCAC	CTGAAAATACCCAGGAGGTCCTCGAACCCACTCTGGT			
Sequence	AACTCTCAACCCCTCATCTC	CGAGCACGTGGGGCTTGGGGCCACGTTTGTATGTTGGG			
	GAGGGCCCTGTGTTTTGGGG	GAATGCAGCTCCCTTCTGCAGAGATGGGAGGTGGTCAT			
	GAAGCTGGACCGCAAGGCCT	TGGCTCGCGATCCGCCCGCTTCAGCCTCCCAAAGTACT			
	GGGATTACAAGAGTGAGCCA	CTGCGCCAGGCCTCAAACATCAATGTTGATACCTGTTT			
	TCAAAGTACTGGAAGAAGGT	AGGGGTAAGGACAAGGAACCGGGAGGAGTGGAGGGCGT			
	CACTGGGTTTCGGCGTCTGG	CAAGCGGTTCAGCTGTCTGCTCCCTAGCAGCCGGCCTT			
	CGGGTCGGGCGTCTCCGCCG	GCTACTGCCGCTTCAGTTCTCCCGGTGTGGCCACGAGT			
	CGGGTGAGTCTCGGTTCGAA	GACACTCAGCCGGGGATGCCAGAGCCTGTGGGCAGCCG			
	TATCGAACACGCAGGGTATC	GTGGCAATCCAGAACGCTTTTCTGAATGGGATAGTTTG			
	AAAGAAGGGCAGGCGTCTTT	GTGGCACGGTAGGAACTGGGATGCACTTTCGCCGCCCA			
	GAGAGAAATACATAAAATCT	'ATTGAGCGAGCGCTTGTTAATTATATGTGCCTTCTGCT			
	TATTATATGCCTACAGGTCA	CAGGAACCTCAAGTATTTCACAGAATGATGCCAAGGAG			
•	CGCAGTTTCTACACCATCCC	TCCCGATCAGACCACATCTATTCCAATCTCAGTCTCAA			
	ACTCTTCCCCTTTTTCAACT	CACATTAATGAATTCACTAAGTACCTAGCACTGAGAAT			
	AAAAAGCGAAAGCAGCATCC	GTCTTCTCTACTCTCACACAGCTTACAGTCCACAGCAA			
	AGCGCAAGTCATCAAACACA	CCTGGTTGGCAGTGCCCAGATTCGTCAAGTGAGGGTCC			
	AGGAAAGCTCTTGCCCTCTT	GCCCAGCAGCCGCAGTATCTCAACGGATGCCGTGCACC			
	ATATTCCCTGGATGCTGAAG	ACATGGCAGACTATGGGTGGCAGTACCAGAGCCAGGAC			
	CAACGTCAAGGGTATCCCAT	CTGGGGCAAACTCACTGTGTACCGGGGAGGAGGCTACG			
	TGGTCCCCTTGTCCAGGACT	'AGGCAACAAGAGCGAAACTCTGTCCCTGGCAAAAAAAA			
	GAACACCTGGCTGGACGCCC	TGACCAGAGCTGTGTTTGTGGAGTCCACTGTCTACAAC			
	GCCAACGTCAACCTGTTCTG	CATTGTCACGCTGACGCTAGAGACCAGCGCTCTGGGTG			
	GGTATTTTGAATTTCTTTTC	AAGAAATTCATAAATTTCTATCTAACTTTGGGGTCATT			
	CGTGGTAGCGGCAGAGCTCA	TCTACTTCCTCTTTCTCCTCTACTACATTGTGGTGCAA			
	GTGCTTGAATCCAGGAGGCA	CAGGTTGCACTATTTCTGCAGCAAGTGGAACCTTCTGG			
	AGCTGGCCATCATCCTGGCC	AGCTGGAGCGCCTGGCGGTGTTTGTGAAGAGGGCTGT			
	CCTGGCCGAAAGGGACCTCC	'AGATCATTGAGACTGAGGGCGCTCTACCGAACTTCCAA			
	GCTGTTCAAGGATCAACTAT	'ACAAATGAACAAATTATCCGCCTTCCTGGTACTCCTGT			
	CCACAGTGAAGCTTTGGCAT	CTGCTCAGGTTGAATCCCAAAATGAACATGATCACGGC			
		GCGACATTTCAGGCTTTATGATTGTCATCCTTACCATG			
	CTCCTGGCTTACTCCATCGC	GGTAAGTATCTGCTTTGGGTGGAAACTCCGTTCCTACA			

			AGCCTTCAGCTGGGAATCTTCAACTA		
			GCTCCTTCCTCATTGGATCCCCACTG		
			TTTTTTTTGAGATGGAGTATGGCTA		
			GACACCAAGACAGGAGCTGCTCAGGG		
•			GACGCTCTCTAAAAAAAAAAAGAAAG		
			ACTTGAATCCGGGAGAGGGAGGTTGC		
			AGAGGCACTATGTGCCGGGGCGTCAG		
	TCTGCTTGTCAAGAAAAAAATG	ATGGATGGGA	AGAAAAAGATCACACATCAACATCAA		
	CATATGAAAAGCATGAGAGACA	AAAAATTTA	AGAGGACCTCCCCTCACTGCATTTTC		
	CCTCACCACAACCCCTCACTCC	CAAGACTTTC	CCAAAAGATCAGGAAACTAAGCCTGA		
	GAGAAGCCAATGTGAGGACAAC	GTGGGTCACG	GGAGCCGGGAGCGGGCACTTGAAGCG		
			CGTAAGGGTCATGAGAGGCGACCGAA		
	GGATTTTAAGTGTAGGGGAGAA	GAAGTTGAGG	AGCCGGGATATCATTGGAAGGATCTT		
	GGAGTCAGTGGCAGGCAAACAA	AATTTAGGTA	AGGACTCACAGGAAGAGGTGAGGCAG		
}	ATGGAGGAATTATCCAAGAGTG	AAGTGCACAG	ATGGGAAACAGCCCACAGGAACACCG		
	TTGTGACTGTAGCATGCGGTAC.	AAAGGGCCCT	GAGTGCCAGCCTAAGCAACAGAGCAA		
	GACTCAGTCTCAAAAAAAAACAA	АСААААААА	TCCCTGGGCGTGGTGGCTCATGCCTG		
}	TAATCTCAACACTTTGGGAGAA	AAATATATAT	ATTTTTCCCCTTAAATTATCATGTTG		
1	CAGGCCGGGCACAGTGGCTCAT	GCCTGCAATC	CCAGCACTTTGGGAGGCCAAGGCAGG		
	CGGATCACCTGACGTAAGGAG				
	ORF Start: ATG at 52	ORF Stop:	TAA at 2959		
	SEQ ID NO: 140	969 aa	MW at 108791.3kD		
NOV30a,	MSWQRGHSILLMRPLSSSPVQR	KQRIPAPEKY	PGGPRTHSGNSQPLICEHVGLGATFV		
CG59264-01 Protein	CWGGPCVLGECSSLLQRWEVVM	KLDRKALARI	PPASASQSTGITRVSHCARPQTSMLI		
• • • • • • • • • • • • • • • • • • •	PVFKVLREGRGKDKEPGGVEGV	TGFRRLASGS			
Sequence		KDKEPGGVEGVTGFRRLASGSAVCSLAAGLRVGRLRRLLPLQFSF			
			ERFSEWDSLKEGQASLWHGRNWDALS		
•	HESGESRFEDTQPGMPEPVGSR	IEHAGYRGNE			
	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL	IEHAGYRGNE IICLQVTGTS	ERFSEWDSLKEGQASLWHGRNWDALS		
	HESGESRFEDTOPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI	IEHAGYRGNE IICLQVTGTS KSESSIRLLY	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV		
	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG		
	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAL NTWLDALTRA	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG VFVESTVYNANVNLFCIVTLTLETSA		
	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK LGGYPEFLFKKFINFYLTLGSF	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI NTWLDALTRA VVAAELIYFI	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG VFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN		
•	HESGESRFEDTOPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQOPQYLNGCRAP GYVVPLSRTROOERNSVPGKKK LGGYPEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI NTWLDALTRA VVAAELIYFI LAERDLQIIE	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG VFVESTVYNANVNLFCIVTLTLETSA		
•	HESGESRFEDTOPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQOPQYLNGCRAP GYVVPLSRTROOERNSVPGKKK LGGYPEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV PGWQYQSQDQRQGYPIWGKLTVYRGG VFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN TEGALPNFQAVQGSTIQMNKLSAFLV		
•	HESGESRFEDTOPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQOERNSVPGKKK LGGYFEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA SYKTLFDAAETMVSLQLGIFNY	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAL NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS EEVLDYSPVI	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV OYGWQYQSQDQRQGYPIWGKLTVYRGG AVFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN CTEGALPNFQAVQGSTIQMNKLSAFLV GGFMIVILTMLLAYSIAVSICFGWKLR GSFLIGSPLHLATFLFFFFFFLRWS		
•	HESGESRFEDTOPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK LGGYFEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA SYKTLFDAAETMVSLQLGIFNY MAIASHRQPSLKEDTKTGAAQG	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS EEVLDYSPVI PLGTAVRKGA	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG AFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN CTEGALPNFQAVQGSTIQMNKLSAFLV GFMIVILTMLLAYSIAVSICFGWKLR AGSFLIGSPLHLATFLFFFFFFLRWS ARRSLKKKRKKKNILEEAGESLESGRG		
•	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK LGGYFEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA SYKTLFDAAETMVSLQLGIFNY MAIASHRQPSLKEDTKTGAAQG RLQFERKREGAKGRGTMCRGVS	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAL NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS EEVLDYSPVI PLGTAVRKGA LLVKKKMMDO	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG VFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN CTEGALPNFQAVQGSTIQMNKLSAFLV GFMIVILTMLLAYSIAVSICFGWKLR CGSFLIGSPLHLATFLFFFFFFLRWS NRSLKKKRKKKNILEEAGESLESGRG		
	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK LGGYFEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA SYKTLFDAAETMVSLQLGIFNY MAIASHRQPSLKEDTKTGAAQG RLQFERKREGAKGRGTMCRGVS HFPSPQPLTPKTFPKDQETKPE	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAL NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS EEVLDYSPVI PLGTAVRKGA LLVKKKMMDC RSQCEDNVGE	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG AFVESTVYNANVNLFCIVTLTLETSA FLLYYIVVQVLESRRHRLHYFCSKWN CTEGALPNFQAVQGSTIQMNKLSAFLV GFMIVILTMLLAYSIAVSICFGWKLR AGSFLIGSPLHLATFLFFFFFFLRWS ARRSLKKKRKKKNILEEAGESLESGRG		
-	HESGESRFEDTQPGMPEPVGSR PPREKYIKSIERALVNYMCLLL VSNSSPFSTHINEFTKYLALRI RVQESSCPLAQQPQYLNGCRAP GYVVPLSRTRQQERNSVPGKKK LGGYFEFLFKKFINFYLTLGSF LLELAIILASWSALAVFVKRAV LLSTVKLWHLLRLNPKMNMITA SYKTLFDAAETMVSLQLGIFNY MAIASHRQPSLKEDTKTGAAQG RLQFERKREGAKGRGTMCRGVS HFPSPQPLTPKTFPKDQETKPE	IEHAGYRGNE IICLQVTGTS KSESSIRLLY YSLDAEDMAI NTWLDALTRA VVAAELIYFI LAERDLQIIE ALRRAWGDIS EEVLDYSPU PLGTAVRKGA LLVKKKMMDO RSQCEDNVGE	ERFSEWDSLKEGQASLWHGRNWDALS SISQNDAKERSFYTIPPDQTTSIPIS SHTAYSPQQSASHQTHLVGSAQIRQV YGWQYQSQDQRQGYPIWGKLTVYRGG LVFVESTVYNANVNLFCIVTLTLETSA LFLLYYIVVQVLESRRHRLHYFCSKWN TEGALPNFQAVQGSTIQMNKLSAFLV GGFMIVILTMLLAYSIAVSICFGWKLR GSFLIGSPLHLATFLFFFFFFFRWS LRRSLKKKRKKKNILEEAGESLESGRG LKKKITHQHQHMKSMRDNLKKEDLPSL GSRERALEAGRATGAGLSFVVRVMRG EKDSQEEVRQMEELSKSEVHRWETAHR		

Further analysis of the NOV30a protein yielded the following properties shown in Table 30B.

	Table 30B. Protein Sequence Properties NOV30a			
PSort analysis:	0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi body; 0.3869 probability located in mitochondrial inner membrane; 0.3000 probability located in endoplasmic reticulum (membrane)			
SignalP analysis:	No Known Signal Sequence Predicted			

A search of the NOV30a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 30C.

5

	Table 30C. Geneseq Results for NOV30a					
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value		
AAB68450	Amino acid sequence of a human PKD2 polypeptide - Homo sapiens, 968 aa. [US6228591-B1, 08-MAY-2001]	15967 2961	322/1001 (32%) 493/1001 (49%)	e-125		
AAY78946	Polycystic kidney disease PKD2 amino acid sequence - Homo sapiens, 968 aa. [US6031088-A, 29-FEB- 2000]	15967 2961	322/1001 (32%) 493/1001 (49%)	e-125		
AAM51861	Murine polycystic kidney disease protein 2 - Mus musculus, 966 aa. [WO200177331-A1, 18-OCT-2001]	63967 39959	302/960 (31%) 467/960 (48%)	e-116		
AAB68448	Amino acid sequence of an internal fragment of human PKD2 - Homo sapiens, 866 aa. [US6228591-B1, 08-MAY-2001]	423967 295859	188/580 (32%) 303/580 (51%)	2e-76		
AAY70245	Human Polycystin-L protein - Homo sapiens, 805 aa. [WO200012046-A2, 09-MAR-2000]	217807 75668	164/616 (26%) 289/616 (46%)	2e-60		

In a BLAST search of public sequence databases, the NOV30a protein was found to have homology to the proteins shown in the BLASTP data in Table 30D.

Table 30D. Public BLASTP Results for NOV30a				
Protein Accession Number	Protein/Organism/Length	NOV30a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q13563	Polycystin 2 (Autosomal dominant polycystic kidney disease type II protein) (Polycystwin) (R48321) - Homo sapiens (Human), 968 aa.	15967 2961	320/1001 (31%) 490/1001 (47%)	e-123
O35245	Polycystin 2 - Mus musculus (Mouse), 966 aa.	63925 39916	295/917 (32%) 454/917 (49%)	e-114
G02640	polycystic kidney disease protein 2 - human, 608 aa (fragment).	383967 6601	202/611 (33%) 321/611 (52%)	6e-92
Q9UP35	POLYCYSTIN-L - Homo sapiens (Human), 805 aa.	217807 75668	165/616 (26%) 290/616 (46%)	3e-60
Q9P0L9				3e-60

2-LIKE PROTEIN - Homo sapiens	75668	290/616 (46%)	
(Human), 805 aa.			

PFam analysis predicts that the NOV30a protein contains the domains shown in the Table 30E.

Table 30E. Domain Analysis of NOV30a				
Pfam Domain	NOV30a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
ion_trans: domain 1 of 1	489688	41/233 (18%) 139/233 (60%)	2.4e-06	

EXAMPLE 31.

The NOV31 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 31A.

Table 31A. NOV31 Sequence Analysis			
	SEQ ID NO: 141	2316 bp	
NOV31a, CG59623-01 DNA Sequence	SEQ ID NO: 141 CCTGAGCCTCATTGGGGGG GAACCCCTCTCCTCGCTCC CGTGCCCGCGGCTCCCCGT GGGCATTGCTCTCCTCGCTCC TGCTCCTGCAGCAACCAGG TCCCAGCAGCATCCCGGT GGTGATCCGGACGACACCAGACCTCGCCCAGCACCTCTTCTTGACAA GTCCAGCTCCTGCGCCCCAATACATCCCGGCCCCAACACCTCCAGCCCCCCAACACCTCCCCCAACACCTCCCCCCCC		
	GGCCGGCCTGGGGACGCGG GCTCCTCGCGGCCCACGGA CGCCCTCAAGGACCTGGAC GTGGCCATCACGTTCATGC	GAACCGCCAGGGCCCACGACAGACGGTGTCTGGGGTGGG GCCGGCCTGCCTCTTTTACCACGGCACCCGCCCCGC	

	GGGGGTGGTGTGGGCGGGACAGG TCAACCACCACCACTACGTGGCTG CGGCGGGGGCTGCGGGGCAAAGG	CACCTGGCC GCCGCCTTCA GCCCGCCTGG BAACGTGCAA	GGCCGCCGCGGCCGCGTGGCCAGT CTGCCCGCCCTGGAGCGAGACCACC AGGCGCACTACAGCAGCAACCCCAG CCTCAACTCCATCCACGAACCTCTG GAGACGCAGATCTGAGGCGGCGGGG AGGTCCCAGCCCGGCGGGCGCAGC
	ORF Start: ATG at 111	ORF Stop:	TGA at 2250
	SEQ ID NO: 142	713 aa	MW at 76433.0kD
NOV31a, CG59623-01 Protein Sequence	VACSCSNQASRVICTRRDLAEVPA LSKNLVRKIEVGAFNGLPSLNTLE SYAFNRVPSLRRLDLGELKRLEYI ELELSGNRLDLIRPGSFQGLTSLF SLPHDLFTPLHRLERVHLNHNPWF RYIGELDQSHFTCYAPVIVEPPTI GSYRVRISVLHDGTLNFTNVTVQI GSGGGGPGGSGGVGGGSGGYTYFT GGGRPGDAAGPASSSTTAPAPRSS CFVAITFMAAVMLVAFYKLRKQHO	ASIPVNTRYLE ELFDNRLTTV ESEAAFEGLV EKLWLMHAQV HCNCDVLWLS DLNVTEGMAA DTGQYTCMVT FTVTVETLET ERPTEKAFTV DLHKHHGPTR	LGAGGGGVAVTSAAGGSPPATSCP NLQENGIQVIRTDTFKHLRHLEILQ PTQAFEYLSKLRELWLRNNPIESIP NLRYLNLGMCNLKDIPNLTALVRLE ATIERNAFDDLKSLEELNLSHNNLM WWLKETVPSNTTCCARCHAPAGLKG ELKCRTGTSMTSVNWLTPNGTLMTH NSAGNTTASATLNVSAVDPVAAGGT QPGEEALQPRGTEKEPPGPTTDGVW PITDVTENALKDLDDVMKTTKIIIG TVEIINVEDELPAASAVSVAAAAAV AHYSSNPSGGGCGGKGPPGLNSIHE

Further analysis of the NOV31a protein yielded the following properties shown in Table 31B.

	Table 31B. Protein Sequence Properties NOV31a			
PSort analysis:	0.7000 probability located in plasma membrane; 0.3000 probability located in microbody (peroxisome); 0.2000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in mitochondrial inner membrane			
SignalP analysis:	Likely cleavage site between residues 38 and 39			

A search of the NOV31a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 31C.

	Table 31C. Geneseq Results for NOV31a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAE13006	Human leucine-rich repeat (LRR) family member protein - Homo sapiens, 713 aa. [WO200175105-A2, 11-OCT-2001]	1713 1713	712/713 (99%) 712/713 (99%)	0.0	
AAU12355	Human PRO331 polypeptide sequence - Homo sapiens, 640 aa. [WO200140466-A2, 07-JUN-2001]	54713 44640	406/660 (61%) 485/660 (72%)	0.0	

AAU00826	Human immune response protein PRO331 (UNQ292) - Homo sapiens, 640 aa. [WO200119991-A1, 22-MAR- 2001]	54713 44640	406/660 (61%) 485/660 (72%)	0.0
AAB53089	Human angiogenesis-associated protein PRO331, SEQ ID NO:137 - Homo sapiens, 640 aa. [WO200053753-A2, 14-SEP-2000]	54713 44640	406/660 (61%) 485/660 (72%)	0.0
AAB65292	Human PRO331 protein sequence SEQ ID NO:501 - Homo sapiens, 640 aa. [WO200073454-A1, 07-DEC- 2000]	54713 44640	406/660 (61%) 485/660 (72%)	0.0

In a BLAST search of public sequence databases, the NOV31a protein was found to have homology to the proteins shown in the BLASTP data in Table 31D.

	Table 31D. Public BLASTP Results for NOV31a				
Protein Accession Number	Protein/Organism/Length	NOV31a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAD10322	SEQUENCE 1 FROM PATENT WO0175105 - Homo sapiens (Human), 713 aa.	1713 1713	712/713 (99%) 712/713 (99%)	0.0	
Q9NT99	HYPOTHETICAL 45.1 KDA PROTEIN - Homo sapiens (Human), 422 aa (fragment).	216637 1422	422/422 (100%) 422/422 (100%)	0.0	
T46266	hypothetical protein DKFZp761A179.1 - human, 421 aa (fragment).	216636 1421	421/421 (100%) 421/421 (100%)	0.0	
Q9HCJ2	KIAA1580 PROTEIN - Homo sapiens (Human), 640 aa (fragment).	54713 44640	406/660 (61%) 485/660 (72%)	0.0	
Q9HBW1	BRAIN TUMOR ASSOCIATED PROTEIN NAG14 - Homo sapiens (Human), 653 aa.	42713 34653	381/672 (56%) 475/672 (69%)	0.0	

PFam analysis predicts that the NOV31a protein contains the domains shown in the Table 31E.

Table 31E. Domain Analysis of NOV31a				
Pfam Domain	NOV31a Match Region	Identities/ Similarities for the Matched Region	Expect Value	

LRRNT: domain 1 of 1	5685	13/31 (42%) 21/31 (68%)	4.8e-06
LRR: domain 1 of 9	87110	6/25 (24%) 18/25 (72%)	1.1
LRR: domain 2 of 9	111134	9/25 (36%) 17/25 (68%)	0.38
LRR: domain 3 of 9	135158	8/25 (32%) 19/25 (76%)	0.074
LRR: domain 4 of 9	159182	10/25 (40%) 18/25 (72%)	0.013
LRR: domain 5 of 9	183207	7/26 (27%) 19/26 (73%)	42
LRR: domain 6 of 9	208229	8/25 (32%) 17/25 (68%)	1.5
LRR: domain 7 of 9	230253	12/25 (48%) 20/25 (80%)	0.0068
LRR: domain 8 of 9	254277	5/25 (20%) 16/25 (64%)	70
LRR: domain 9 of 9	278301	14/25 (56%) 20/25 (80%)	0.00088
LRRCT: domain 1 of 1	311362	19/54 (35%) 36/54 (67%)	6.2e-05
ig: domain 1 of 1	378438	15/65 (23%) 41/65 (63%)	2.2e-07

EXAMPLE 32.

The NOV32 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 32A.

	Table 32A. NOV32 Sequence Analysis				
	SEQ ID NO: 143	1206 bp			
NOV32a, CG59247-01 DNA Sequence	TTGACCATGGTGGCTGGC AGATATTAATGTGCCAGG GGATGGAGACCACGTGGA AGTATGCTCTGCAGCGGC TGCACCGCAGCAAGGAGA GTCCAAGTCTGGCCACAA CTGGACATTGCCATGCAC CCCATGTCTCTCCAACA CCTGTCACACCTGTTCTC TCCATGCACTCCTTGATC ATGGCACTGCCTCACCA GGAGGTGGGCAAGGACAA	CTAACGGAATTTTTAGGGGATGATAAATATGTTCAACATC TGTGCCCTGGCCCTGGTGATGGTTGTCCAGCTGGGCAGC CAGTGCTGGCAGGTGAAGCCCCGAGTGGACCCTGTAGATC GTACCACTACAGCAAGGCCATGCCACTCATCTTCATGAGC ACCATGCTGATACTCACTGGGCTGGATGCCCACCTTGAGG CGCACATCATCCCTTGTGTGCTGGCCATGCACCACGACGCTG GAAACTACAGCTGGACAAGGCGGGCGTGACTGACGAGGTG GCCTTCATCCTGGAGGTGATCTCTAAGCAAAGGGAGCCAG AGGACCACTTCAGACTCAAGTCCCTTGAATCACTGGTCTA CAGCTCCAAGTTCCTGCTTATGGCTCAGGACCACGCATGTC ACATGCAAGGTCACTATGCAGGCTTCGACCTCAGCAGCT AGTGGAACAAGGCCATAGAGGTGATTACACCCAGTGCAT GTGCCTGCTCGTGTACTACAAGGAACTGGTGCCTAGG CCAGACCATCTCGGCATCACCCCGAGCAACACTGTCCTCCC			

	ACCATCAAGACCTCACTGGCAAGTGGAATGGCATCTCCCTGTCTAAGATCCAGTGGTCCATGGATGAGATGAGATCCAGTGGACCTGGAAGTGAACCTGGAAGTGCTCTCCAAGTGGACTCACCACATCGAGGACATGGGACATGGCCAGACTGCCCATGCTGGCTCAGCTTAGCCATGACCCCTATGCAAATACCCTCCCCAACCCCCACTTCCACTATAGCAACCCTGACCCCCATCATCATCAGTAACGCACCAACCA			
	ORF Start: ATG at 38	ORF Stop:	TGA at 1157	
	SEQ ID NO: 144	373 aa	MW at 41568.3kD	
NOV32a, CG59247-01 Protein Sequence	MPLIFMSSMLCSGTMLILTGLDA AGVTDEVLDIAMQAFILEVISKQ MAQDSHVSMHSLITCKVTIAGFD KELVLPRSFLRLIPDHLGITWSN	HLEVHRSKET REPAHVLSNK LSSYGNCLTK TVLHHQDLTG LSLAMTPMQI	AVLAGEAPSGPCRSDGDHVEYHYSKA THIIPCVLAMHQAWSKSGHKKLQLDK KDHFRLKSLESLVYLSHLFSSSKFLL KWNKAIEVMYTQCMEVGKDKCLLVYY KWNGISLSKIQWSMDEVIKPVNLEV PSPTPTSTIATLTPIIISNAHQVRD	

Further analysis of the NOV32a protein yielded the following properties shown in Table 32B.

	Table 32B. Protein Sequence Properties NOV32a				
PSort analysis:	0.4600 probability located in plasma membrane; 0.1279 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 28 and 29				

A search of the NOV32a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 32C.

	Table 32C. Geneseq Results for NOV32a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAM93565	Human polypeptide, SEQ ID NO: 3341 - Homo sapiens, 377 aa. [EP1130094-A2, 05-SEP-2001]	10373 10377	240/376 (63%) 273/376 (71%)	e-123	
AAM93219	Human polypeptide, SEQ ID NO: 2626 - Homo sapiens, 377 aa. [EP1130094-A2, 05-SEP-2001]	10373 10377	240/376 (63%) 273/376 (71%)	e-123	
AAY69421	Amino acid sequence of human TPST-2 polypeptide - Homo sapiens, 377 aa. [WO9965712-A2, 23-DEC- 1999]	10373 10377	240/376 (63%) 273/376 (71%)	e-123	

AAY84306	A human tyrosylprotein sulfotransferase 2 (TPST-2) polypeptide - Homo sapiens, 377 aa. [WO200014250-A1, 16-MAR-2000]	10373 10377	240/376 (63%) 273/376 (71%)	e-123
AAY06625	Human tyrosylprotein sulfotransferase TPST-2 - Homo sapiens, 377 aa. [WO9938980-A2, 05-AUG-1999]	10373 10377	240/376 (63%) 273/376 (71%)	e-123

In a BLAST search of public sequence databases, the NOV32a protein was found to have homology to the proteins shown in the BLASTP data in Table 32D.

	Table 32D. Public BLASTP Results for NOV32a				
Protein Accession Number	Protein/Organism/Length	NOV32a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
O60704	Protein-tyrosine sulfotransferase 2 (EC 2.8.2.20) (Tyrosylprotein sulfotransferase-2) (TPST-2) - Homo sapiens (Human), 377 aa.	10373 10377	240/376 (63%) 273/376 (71%)	e-122	
O88856	Protein-tyrosine sulfotransferase 2 (EC 2.8.2.20) (Tyrosylprotein sulfotransferase-2) (TPST-2) - Mus musculus (Mouse), 376 aa.	10373 10376	237/375 (63%) 270/375 (71%)	e-121	
O70281	Protein-tyrosine sulfotransferase 1 (EC 2.8.2.20) (Tyrosylprotein sulfotransferase-1) (TPST-1) - Mus musculus (Mouse), 370 aa.	10324 10332	159/326 (48%) 213/326 (64%)	2e-78	
O60507	Protein-tyrosine sulfotransferase 1 (EC 2.8.2.20) (Tyrosylprotein sulfotransferase-1) (TPST-1) - Homo sapiens (Human), 370 aa.	10363 10368	168/369 (45%) 226/369 (60%)	2e-78	
Q9VYB7	Probable protein-tyrosine sulfotransferase (EC 2.8.2.20) (Tyrosylprotein sulfotransferase) (TPST) - Drosophila melanogaster (Fruit fly), 385 aa.	46324 57333	131/280 (46%) 182/280 (64%)	5e-68	

PFam analysis predicts that the NOV32a protein contains the domains shown in the Table 32E.

Table 32E. Domain Analysis of NOV32a					
Pfam Domain	NOV32a Match Region	Identities/	Expect Value		

		for the Matched Region	
Sulfotransfer: domain 1 of	36313	38/311 (12%) 150/311 (48%)	7.9

EXAMPLE 33.

The NOV33 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 33A.

	Table 33A. NOV33 Sequence Analysis			
	SEQ ID NO: 145	1240 bp		
NOV33a, CG59430-01 DNA Sequence	GGCTGGGGCTCATTGTGTGGCCC GGCCCCAGGACAGCAGCCCTGG ACATAGACTTTGCCTTCAAGCTC CATTCTCTTCTC	TGGTTGACCA GCCTGCCTG TACAGACAGT TCTCCCTGGC CCTGGAGGGC TTCTGGGATC AACAACACTT AAGGACCTCG AGCACAGCGCT TCTTCATCTT AACACTGATT AACACTGATT ATTTCTAGAA TCCCTGGGCA GGCCTCTCAT CACCAGCGTTCATCT CACCAGCATTC	GGTGGCTGCTGGTCACTGTGCTCAT AGAAGCTTCTGATCTCATCCATTCT AGAAGCTTCTGATCTCATCCATTCT CCCTGCCACAAAATCTCTGTGAGCA TGGCTTTGAACGCCCCCGGGGAGAA CCTTGGCCATGCTTTCTTGGGGGGCC CTGGGGTTCACCCTCACCGTGGTGC CTGCTGATCAGGCTCCGTGGGCAGGGC CGCAGAAAACCACAGCGGTTCTGGT AGCCCTTTGACTCACGGGTTCCAGC CCTGTGGGTGCCCATGATGAAGGAGA CCCCAACAGGGGCAGGAGAGACC CCCGACAGGGGCAAGATGAAGGAGA CCCCCAACAGGGCAAGATGAAGGAGA CCCCCAACAGGGCAAGATGAGGCAG CAAGTGGACTGAAGATTCTCAAAGTA CACCTGCAGACTGAACATTTCTAAAGTA CACCTGCAGCTGATGACGATGAAGAA CACCTCACCCCTGGGCCTCGCCCAGA CAGCTCACCCCTGGGCCTCGCCCAGA CAGCTCACCCCTGGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGCTCACCCCTTGGCCTCGCCCAGA CAGAAGATTGTAAACCCACTGGGAT	
	ORF Start: ATG at 18	ORF Stop:	TAA at 1218	
	SEQ ID NO: 146	400 aa	MW at 44726.0kD	
NOV33a, CG59430-01 Protein Sequence	MEASRWWLLVTVLMAGAHCVALVDQEASDLIHSGPQDSSPGPALPCHKISVSNIDFAKLYRQLALNAPGENILFSPVSISLALAMLSWGAPVASRTQLLEGLGFTLTVVPEEEDGFWDLLIRLRGQGPRLLLTMDQRRFSGLGARANQSLEEAQKHIDEYTEQQTQGKLCWEKDLGSETTAVLVNHMLLRAEWMKPFDSRATSPKEFFVDEHSAVWVPMMKEKASHFLHDRELQCSVLRMDHAGNTTTFFIFPNRGKMRQLEDALLPETLIKWDSLLRLDFHFFFSISRTCRLEMLLPKVTVGGGFPGQPGLNISKVSWGWCVQRASHKAMMTLDERGSEAATSIQLTPGPRPDLDFPPTLGTEFSRPFLVMTFHTETGSMLFLEKIVNPLG			

Further analysis of the NOV33a protein yielded the following properties shown in

5 Table 33B.

	Table 33B. Protein Sequence Properties NOV33a		
PSort analysis:	0.4600 probability located in plasma membrane; 0.1700 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		

SignalP	Likely cleavage site between residues 20 and 21
· · · ·	
analysis:	i

A search of the NOV33a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 33C.

	Table 33C. Geneseq Results for NOV33a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAB68434	Amino acid sequence of human serpin protease Zserp11 - Homo sapiens, 366 aa. [WO200138534-A2, 31-MAY-2001]	1400 1366	352/400 (88%) 356/400 (89%)	0.0	
AAO13910	Human polypeptide SEQ ID NO 27802 - Homo sapiens, 495 aa. [WO200164835-A2, 07-SEP-2001]	7399 80493	164/431 (38%) 234/431 (54%)	4e-67	
AAG73736	Human colon cancer antigen protein SEQ ID NO:4500 - Homo sapiens, 446 aa. [WO200122920-A2, 05-APR- 2001]	7399 31444	164/431 (38%) 234/431 (54%)	4e-67	
AAY28643	Human serine protease inhibitor from cDNA clone HETDK50 - Homo sapiens, 422 aa. [WO9940183-A1, 12-AUG-1999]	7399 7420	164/431 (38%) 234/431 (54%)	4e-67	
AAB74691	Human protease and protease inhibitor PPIM-24 - Homo sapiens, 422 aa. [WO200110903-A2, 15-FEB-2001]	7399 7420	163/431 (37%) 233/431 (53%)	1e-66	

In a BLAST search of public sequence databases, the NOV33a protein was found to have homology to the proteins shown in the BLASTP data in Table 33D.

Table 33D. Public BLASTP Results for NOV33a				
Protein Accession Number	Protein/Organism/Length	NOV33a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
CAC42686	SEQUENCE 1 FROM PATENT WO0138534 - Homo sapiens (Human), 366 aa.	1400 1366	352/400 (88%) 356/400 (89%)	0.0
Q96BZ5				5e-66

	PROTEIN - Homo sapiens (Human), 427 aa.	9424	235/423 (55%)	
P29622	Kallistatin precursor (Kallikrein inhibitor) (Protease inhibitor 4) - Homo sapiens (Human), 427 aa.	8398 9424	161/423 (38%) 235/423 (55%)	1e-65
P05544	Contrapsin-like protease inhibitor 3 precursor (CPI-23) (Serine protease inhibitor 1) (SPI-1) - Rattus norvegicus (Rat), 413 aa.	12398 9412	151/412 (36%) 222/412 (53%)	3e-60
S08102	serine proteinase inhibitor 1 - rat, 403 aa.	36398 22402	145/388 (37%) 213/388 (54%)	4e-60

PFam analysis predicts that the NOV33a protein contains the domains shown in the Table 33E.

Table 33E. Domain Analysis of NOV33a				
Pfam Domain	NOV33a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
serpin: domain 1 of 3	46137	48/93 (52%) 74/93 (80%)	8.9e-31	
serpin: domain 2 of 3	154306	68/168 (40%) 105/168 (62%)	6.5e-34	
serpin: domain 3 of 3	332398	31/71 (44%) 53/71 (75%)	1.1e-14	

EXAMPLE 34.

5

The NOV34 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 34A.

	Table 34A. NOV34 Sequence Analysis			
	SEQ ID NO: 147	1026 bp		
NOV34a, CG59305-01 DNA Sequence	GCTCCCGGATAATGAGCACCCACCAATCCCCAGTCCTTCCT	AGCCTGCCTGGCAGCTGACACCCAGCCCTCCCCCA TGTGGCAGGCTGGCCTGGACAAGATGAAGCTGGG CAGGAGGAGGCAGATGACCAGCAGCTGCTGGAACCA AGCGCCGCAATGCCCTGCGTGAGTTCCTGACCTCGG GCGCCACCACCCCCGCATGCAGCTGCTGCGTAAGTG CCCAAGCACCTGGCCCTGGACCAGAACCCGCTG AGCTCATCGACCCCTGGAAGTTCCAGCGCATGAAGA GATCCAGCTCCTGCTCGGAGGACCTGTTGGAACA CTGGATGCCCTGGTCGCCAGACCACGCCC TGGAGCGCGCTGCTCGGCAGCCCAGCC		

	TTCGACGTCCGAAACCTGCTGCCCAACCGATCCTATAAGTTCACCATCAAGAGGGCCG AGACCTCCACGCTGGTGTACGAGCCCTGGAGGGACAGCCTCACCCTGCACACCAAGCC GGAGCCCCTGGAGGGGCCCGCCCTCAGCCACTCTGTCTGA			
	ORF Start: ATG at 1	ORF Stop: TGA at 1024		
	SEQ ID NO: 148	341 aa	MW at 38993.7kD	
NOV34a, CG59305-01 Protein Sequence	MPQPRGGQPAWQLTPSPPPSSRIMSTHVAGLGLDKMKLGNPQSFLDQEEADDQQLLEP EAWKTYTERRNALREFLISDLSPHLLKRHHARMQLLRKCSYYIEVLPKHLALGDQNPL VLPSALFQLIDPWKFQRMKKVGTAQTKIQLLLLGDLLEQLDHGRAELDALLRSPDPRP FLADWALVERRLADVSAVMDSFLTMMVPGRLHVKHRLVSDVSATKIPHIWLMLSTKMP VVFDRKASAAHQDWARLRWFVTIQPATSEQYELRFRLLDPRTQQECAQCGVIPVAACT FDVRNLLPNRSYKFTIKRAETSTLVYEPWRDSLTLHTKPEPLEGPALSHSV			
	SEQ ID NO: 149	1026 bp		
NOV34b, CG59305-02 DNA Sequence	ATGCCACAGCCCAGGGAGGCCAGCCTGCCTGGCAGCCTGCCCCCCCC			
	ORF Start: ATG at 1	ORF Stop:	TGA at 1024	
	SEQ ID NO: 150	341 aa	MW at 38993.7kD	
NOV34b, CG59305-02 Protein Sequence	MPQPRGGQPAWQLTPSPPPSSRIMSTHVAGLGLDKMKLGNPQSFLDQEEADDQQLLEF EAWKTYTERRNALREFLTSDLSPHLLKRHHARMQLLRKCSYYIEVLPKHLALGDQNPL VLPSALFQLIDPWKFQRMKKVGTAQTKIQLLLLGDLLEQLDHGRAELDALLRSPDPRF FLADWALVERRLADVSAVMDSFLTMMVPGRLHVKHRLVSDVSATKIPHIWLMLSTKMF VVFDRKASAAHQDWARLRWFVTIQPATSEQYELRFRLLDPRTQQECAQCGVIPVAACT FDVRNLLPNRSYKFTIKRAETSTLVYEPWRDSLTLHTKPEPLEGPALSHSV			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 34B.

Table 34B. Comparison of NOV34a against NOV34b and NOV34c.				
Protein Sequence NOV34a Residues/ Identities/ Match Residues Similarities for the Matched Regio				
NOV34b	1341 1341	328/341 (96%) 328/341 (96%)		

Further analysis of the NOV34a protein yielded the following properties shown in Table 34C.

	Table 34C. Protein Sequence Properties NOV34a		
PSort analysis:	0.4500 probability located in cytoplasm; 0.4466 probability located in microbody (peroxisome); 0.2245 probability located in lysosome (lumen); 0.1000 probability located in mitochondrial matrix space		
SignalP analysis:	No Known Signal Sequence Predicted		

A search of the NOV34a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 34D.

Table 34D. Geneseq Results for NOV34a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
	No Significant	Matches Found	i	

In a BLAST search of public sequence databases, the NOV34a protein was found to have homology to the proteins shown in the BLASTP data in Table 34E.

Table 34E. Public BLASTP Results for NOV34a				
Protein Accession Number	Protein/Organism/Length	NOV34a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BVV2	HYPOTHETICAL 36.5 KDA PROTEIN - Homo sapiens (Human), 318 aa.	24341 1318	318/318 (100%) 318/318 (100%)	0.0
Q9D9W3	1700026M20RIK PROTEIN - Mus musculus (Mouse), 163 aa.	66173 2109	89/108 (82%) 96/108 (88%)	6e-46

PFam analysis predicts that the NOV34a protein contains the domains shown in the Table 34F.

Table 34F. Domain Analysis of NOV34a					
Pfam Domain NOV34a Match Region Similarities Expect V					
fn3: domain 1 of 1	231312	10/87 (11%) 52/87 (60%)	5.9		

EXAMPLE 35.

The NOV35 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 35A.

Table 35A. NOV35 Sequence Analysis				
	SEQ ID NO: 151	1610 bp		
NOV35a, CG59547-01 DNA Sequence	NOV35a, CGTCTTCGGGACGCCCGCCTCTTCGCCTTTCGCTGCAGTCCGTCGATTTCTTTC			
	ORF Start: ATG at 69	ORF Stop:	TAA at 1380	
	SEQ ID NO: 152	437 aa	MW at 48148.2kD	
NOV35a, CG59547-01 Protein Sequence	MASVAVDPQPSVVTRVVNLPLVSSTYDLMSSAYLSTKDQYPYLKSVCEMXENGVKTIT SVAMTSALPIIQKLEPQIAVADTYACKGLDRIEERLPILNQPSTQIVANAKGAVTGAK DAVTTTVTGAKDSVASTITGVMDKTKGAVTGSVEKTKSVVSGSINTVLGSRMMQLVSS GVENALTKSELLVEQYLPLTEEELEKEAKKVEGFDLVQKPSYYVRLGSLSTKLHSRAY QQALSRVKEAKQKSQQTISQLHSTVHLIEFARKNVYSANQKIQDAQDKLYLSWVEWKR SIGYDDTDESHCAEHIESRTLAIARNLTQQLQTTCHTLLSNILCVPQNIPHHFLQKGV MAGDIYSVFRNAASFKEVSDSLLTSSKGQLQKMKESLDDVMDYLVYKTPLNWLVGPFY POLTESQNAQDQGAEMDKSSQETORSEHKTH			

Further analysis of the NOV35a protein yielded the following properties shown in

5 Table 35B.

Table 35B. Protein Sequence Properties NOV35a				
PSort analysis:	0.6500 probability located in cytoplasm; 0.1000 probability located in mitochondrial matrix space; 0.1000 probability located in lysosome (lumen); 0.0000 probability located in endoplasmic reticulum (membrane)			

SignalP	No Known Signal Sequence Predicted
analysis:	

A search of the NOV35a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 35C.

	Table 35C. Geneseq Results for NOV35a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAY99534	Human adipocyte-specific differentiation-related protein ADRP - Homo sapiens, 437 aa. [WO200031532-A1, 02-JUN-2000]	1300 138437	289/300 (96%) 289/300 (96%)	e-161	
AAW53264	Human adipocyte-specific differentiation-related protein - Homo sapiens, 437 aa. [US5739009-A, 14- APR-1998]	1300 138437	289/300 (96%) 289/300 (96%)	e-161	
AAB58800	Breast and ovarian cancer associated antigen protein sequence SEQ ID 508 - Homo sapiens, 250 aa. [WO200055173-A1, 21-SEP-2000]	51300 1250	238/250 (95%) 238/250 (95%)	e-133	
AAW06798	Murine p154 - Mus sp, 425 aa. [US5541068-A, 30-JUL-1996]	1298 138423	231/298 (77%) 256/298 (85%)	e-125	
AAR45151	Sequence of mouse adipocyte polypeptide (ap) p154 - Acomys cahirinus, 425 aa. [US5268295-A, 07-DEC-1993]	1298 138423	231/298 (77%) 256/298 (85%)	e-125	

In a BLAST search of public sequence databases, the NOV35a protein was found to have homology to the proteins shown in the BLASTP data in Table 35D.

	Table 35D. Public BLASTP Results for NOV35a				
Protein Accession Number	Protein/Organism/Length	NOV35a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
CAC09025	SEQUENCE 22 FROM PATENT WO0031532 - Homo sapiens (Human), 437 aa.	1300 138437	289/300 (96%) 289/300 (96%)	e-160	
Q9BSC3			•	e-160	

	RELATED PROTEIN - Homo sapiens (Human), 437 aa.	138437	289/300 (96%)	
Q99541	Adipophilin (Adipose differentiation-related protein) (ADRP) - Homo sapiens (Human), 437 aa.	1300 138437	287/300 (95%) 287/300 (95%)	e-159
Q9TUM6	Adipophilin (Adipose differentiation-related protein) (ADRP) - Bos taurus (Bovine), 450 aa.	1282 138419	239/282 (84%) 258/282 (90%)	e-132
Q9MZE5	ADIPOSE DIFFERENTIATION- RELATED PROTEIN - Sus scrofa (Pig), 404 aa (fragment).	1267 138404	231/267 (86%) • 246/267 (91%)	e-127

PFam analysis predicts that the NOV35a protein contains the domains shown in the Table 35E.

Table 35E. Domain Analysis of NOV35a					
Pfam Domain NOV35a Match Region Similarities Expect of the Matched Region					
SPX: domain 1 of 1	29153	24/347 (7%) 80/347 (23%)	8		
perilipin: domain 1 of 1	1259	166/411 (40%) 247/411 (60%)	7.4e-89		

Example 36.

The NOV36 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 36A.

	Table 36A. NOV36 Sequence Analysis					
	SEQ ID NO: 153	355 bp	-			
NOV36a, CG58508-01 DNA Sequence	ACCTCTTTGCCACCAATACCATGAAGCTCTGCGTGACTGTCCTCTCTCT					
	ORF Start: ATG at 21	ORF Sto	pp: TGA at 297			
	SEQ ID NO: 154	92 aa	MW at 10146.6kD			
NOV36a, CG58508-01 Protein Sequence	MKLCVTVLSLLVLVAAFCSLALSAPMGSDPPTACCFSYTARKLPHNFVVDYYETSSLC SQPAVVFQTKRGKQVCADPSESWVQEYVYDLELN					
	SEQ ID NO: 155	355 bp				

NOV36b, CG58508-02 DNA Sequence	ACCTCTTTGCCACCAATACCATGAAGCTCTGCGTGACTGTCCTGTCTCTGAGCAGCTC AGTTCAGTTC				
	ORF Start: ATG at 21	ORF Sto	p: TAG at 297		
	SEQ ID NO: 156	92 aa	MW at 10149.6kD		
NOV36b, CG58508-02 Protein Sequence	MKLCVTVLSLLVLVAAFCSPALSAPMGSDPPTACCFSYTARKLPRNFVVDYYETS				
	SEQ ID NO: 157	219 bp			
NOV36c, 170072532 DNA Sequence	GGAAGCTTCCTCGCAACTTTGTGG	TAGATTAC AAGAGGCA GACCTGGA			
	ORF Start: GGA at 1	ORF Sto	p:		
	SEQ ID NO: 158	73 aa	MW at 8175.1kD		
NOV36c, 170072532 Protein Sequence	GSAPMGSDPPTACCFSYTARKLPRNFVVDYYETSSLCSQPAVVFQTKRGKQVCADF SWVQEYVYDLELNLE				
	SEQ ID NO: 159	219 bp			
NOV36d, 170072551 DNA Sequence	GGAAGCTTCCTCGCAACTTTGTGG	TAGATTAC \AAGAAGC	CGCCTGCTGCTTTTCTTACACCGCGA TATGAGACCAGCAGCCTCTGCTCCCA AGCAAGTCTGTGCTGATCCCAGTGAA AACTGAACCTCGAG		
	ORF Start: GGA at 1	ORF Sto	p:		
	SEQ ID NO: 160	73 aa	MW at 8205.1kD		
NOV36d, 170072551 Protein Sequence	GSAPMGSDPPTACCFSYTARKLPF SWVQEYVYDLELNLE	NFVVDYY	TSSLCSQPAVVFQTKRSKQVCADPSE		
	SEQ ID NO: 161	219 bp			
NOV36e, 170072555 DNA Sequence	GGAAGCTTCCTCGCAACTTTGTG	TAGATTAC AAAGAAGC	CCGCTTGCTGCTTTTCTTACACCGCGA CTATGAGACCAGCAGCCTCTGCTCCCA AAGCAAGTCTGTGCTGATCCCAGTGAA AACTGAACCTCGAG		
	ORF Start: GGA at 1	ORF Sto	p:		
	SEQ ID NO: 162	73 aa	MW at 8205.1kD		
NOV36e, 170072555 Protein Sequence	GSAPMGSDPPTACCFSYTARKLPF SWVQEYVYDLELNLE	arklprnfvvdyyetsslcsqpavvfqtkrskqvcadpse			
	SEQ ID NO: 163	301 bp			
NOV36f, CG58508-03 DNA Sequence	CAGCCTCACCTCTGAGAAAACCTCTTTTCCACCAATACCATGAAGCTCTGCGTGACT TCCTGTCTCTCATGCTAGTAGCTGCCTTCTGCTCTCCAGCGCTCTCAGCCAGC				

	AGGGAAGGTCACCTGAGCCCGGATGCTTCTCCATGAGACACATCTCCTCCATACTCAC GACTCCTCTCA ORF Start: ATG at 40 ORF Stop: TGA at 154				
	SEQ ID NO: 164	38 aa	MW at 3940.8kD		
NOV36f, CG58508-03 Protein Sequence	MKLCVTVLSLLMLVAAFCSPA	KLCVTVLSLLMLVAAFCSPALSASCGIPNQKKQASLC			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 36B.

Table 36B. Comparison of NOV36a against NOV36b through NOV36f.				
Protein Sequence	NOV36a Residues/ Match Residues	Identities/ Similarities for the Matched Region		
NOV36b	1592 1592	76/78 (97%) 76/78 (97%)		
NOV36c	2392 271	69/70 (98%) 69/70 (98%)		
NOV36d	2392 271	68/70 (97%) 68/70 (97%)		
NOV36e	2392 271	68/70 (97%) 68/70 (97%)		
NOV36f	127 127	23/27 (85%) 24/27 (88%)		

Further analysis of the NOV36a protein yielded the following properties shown in Table 36C.

Table 36C. Protein Sequence Properties NOV36a		
PSort analysis:	0.8200 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen)	
SignalP analysis:	Likely cleavage site between residues 24 and 25	

A search of the NOV36a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 36D.

5

Table 36D. Geneseq Results for NOV36a				
Geneseq	Protein/Organism/Length [Patent #,	NOV36a	Identities/	Expect
Identifier	Date]	Residues/	Similarities	Value

		Residues	Matched Region	
AAR36770	MIP-1beta - Homo sapiens, 92 aa. [WO9309799-A, 27-MAY-1993]	192 192	89/92 (96%) 90/92 (97%)	9e-48
AAB15789	Human chemokine MIP1beta SEQ ID NO: 20 - Homo sapiens, 92 aa. [WO200042071-A2, 20-JUL-2000]	192 192	88/92 (95%) 89/92 (96%)	6e-47
AAW82717	Human Act-2 protein - Homo sapiens, 92 aa. [WO9854326-A1, 03-DEC- 1998]	192 192	88/92 (95%) 89/92 (96%)	6e-47
AAW76225	Human chemokine MIP-1beta domain protein fragment - Homo sapiens, 92 aa. [WO9838212-A2, 03-SEP-1998]	192 192	88/92 (95%) 89/92 (96%)	6e-47
AAW76223	Human chemokine MIP-1beta domain protein from clone MPB-X - Homo sapiens, 331 aa. [WO9838212-A2, 03- SEP-1998]	192 192	88/92 (95%) 89/92 (96%)	6e-47

In a BLAST search of public sequence databases, the NOV36a protein was found to have homology to the proteins shown in the BLASTP data in Table 36E.

	Table 36E. Public BLASTP Results for NOV36a					
Protein Accession Number	Protein/Organism/Length	NOV36a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
P13236	Small inducible cytokine A4 precursor (Macrophage inflammatory protein 1-beta) (MIP-1-beta) (T-cell activation protein 2) (ACT-2) (PAT 744) (H400) (SIS-gamma) (Lymphocyte activation gene-1 protein) (LAG-1) (HC21) (G-26 T lymphocytesecreted protein) - Homo sapiens (Human), 92 aa.	192 192	88/92 (95%) 89/92 (96%)	2e-46		
P46632	Small inducible cytokine A4 precursor (Macrophage inflammatory protein 1-beta) (MIP-1-beta) (Immune activation protein 2) (ACT-2) - Oryctolagus cuniculus (Rabbit), 92 aa.	192 192	75/92 (81%) 84/92 (90%)	7e-39		
P50230	Small inducible cytokine A4 precursor (Macrophage inflammatory protein 1-beta) (MIP-1-beta) - Rattus norvegicus (Rat), 92 aa.	192 192	71/92 (77%) 81/92 (87%)	3e-38		

P14097	Small inducible cytokine A4 precursor (Macrophage inflammatory protein 1-beta) (MIP-1-beta) (H400 protein) (SIS-gamma) (ACT2) - Mus musculus (Mouse), 92 aa.	192 192	69/92 (75%) 82/92 (89%)	1e-36
CAA01323	HUMAN ACT-2 SYNTHETIC GENE PROTEIN - synthetic construct, 74 aa (fragment).	1992 174	69/74 (93%) 69/74 (93%)	2e-35

PFam analysis predicts that the NOV36a protein contains the domains shown in the Table 36F.

Table 36F. Domain Analysis of NOV36a				
Pfam Domain	NOV36a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
IL8: domain 1 of 1	2489	25/70 (36%) 60/70 (86%)	2.6e-32	

EXAMPLE 37.

The NOV37 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 37A.

	Table 37A. NOV37 Sequence Analysis				
	SEQ ID NO: 165	5285 bp			
NOV37a, CG59819-01 DNA Sequence	SEQ ID NO: 165 GGCCGGGGGGGGGGGCCGGA GCGGGGGCCTGCCTCAGGTG CGCACGGCGCTTGCCCTGAGGG GCCAGGTTGCCCTGAGGG GCCAGGTACAGCCGCAGCTC TCCCCTCGGAGAGGACCCGG CAGACCGCCGCCGCCGCCCCCCAATCCCGGCGG AAGTTGTGCGCTCCAAGGTG GGTTCACCAGAAGCAGCAGC GGCTGGAGTAAGGCCCCTGG GTCAGAATGGAGGATGTGT GGGCAAAGCCTGTGAAACAA CAGAGTCCTGGGGCTGCTTC CATCTAAGAAGGCAGCACCT CCTCAAGCCGAAGCCTTCCAGCCTAGGTG CTTCTCCCAGAGCGTGGT CCTCAAGCCGAAGCCTTCCCCTCAAGCCTAGGCCTTCCCAGGCCTAGGCCTTCCCAGGCCTAGGTCCTTCCCAGAGCCTTGGTCCCTTTCTTCCCAGGCCTAGGCCCCTTTAAGATATGTGCAGG				
	ATGAATGGTGGCCAGTGCAG GAAAACTTTGTCAGATCCCA CCAGCAGCCAGGCAAGGCGT CTGACCGTGACTAGCCAGCA	TTCAAGGGACAAATGTCAGTGCCCTCCAAATTTCACAG GTCCATGGTGCCAGCGTGCCTAAACTTTATCAGCATTC TGGGGACGCATGTCATCCATTCAACACATACCTTGCCT AGGAGTCAAAGTGAAATTTCCTCCTAACATAGTCAATA GAAGCTTCCGTCCAGATACATCAGGTTTCAAGAATTGA			

TGGCCCAACAGGCCAGAAGACAAAAGAAGCTCAACCAGGCCAATCCCAAGTCTCGTAC CAAGGGCTTCCTGTCCAGAAGACCCAGACCATACATTCCACATACTCCCACCAGCAGG TCATTCCTCACGTCTACCCCGTGGCTGCTAAGACACAGCTTGGCCGGTGCTTCCAGGA AACCATTGGGTCACAGTGTGGCAAAGCGCTCCCTGGCCTTTCAAAGCAAGAGGACTGC TGTGGAACTGTGGGTACCTCCTGGGGCTTTAACAAATGCCAGAAATGCCCCAAGAAAC CATCTTATCATGGATACAACCAAATGATGGAATGCCTACCGGGTTATAAGCGGGTTAA CAACACCTTTTGCCAAGATATTAATGAATGTCAGCTACAAGGTGTATGCCCTAATGGT GAGTGTTTGAATACCATGGGCAGCTATCGATGTACCTGCAAAATAGGATTTGGGCCGG ATCCTACCTTTCAAGTTGTGTTCCTGATCCCCCTGTGATCTCGGAAGAGAAAGGGCC ACCAAGCAGCTCTGCTGTTGTAGTGTGGGCCAAGGCCTGGGGCCCACACTGTGAGAAAT GTCCCCTTCCAGGCACAGCTGCTTTTAAGGAAATCTGTCCTGGTGGAATGGGTTATAC GGTTTCTGGCGTTCATAGACGCAGGCCAATCCATCACCATGTAGGTAAAGGACCTGTA TTTGTCAAGCCAAAGAACACTCAACCTGTTGCTAAAAGTACTCATCCTCCACCTCTCC CAGCCAAGGAAGACCCAGTGGAGGCCCTGACCTTCTCCCGGGAACACGGGCCAGGAGT GGCGGAGCCAGAAGTGGCAACTGCACCCCCTGAAAAGGAAATACCTTCATTGGATCAA GAGAAAACCAAACTTGAGCCTGGTCAACCCCAGCTGTCTCCAGGCATTTCCGCTATTC ATCTGCATCCACAGTTTCCAGTAGTGATTGAAAAAACATCACCTCCTGTGCCTGTTGA AGTAGCTCCTGAAGCTTCTACGTCTAGTGCCAGCCAAGTGATTGCTCCTACTCAAGTG ACAGAAATCAATGAATGTACTGTGAACCCTGATATCTGTGGAGCAGGACACTGCATTA ACCTACCAGTGAGATATACCTGTATATGCTACGAGGGCTACAGGTTCAGTGAACAACA GAGGAAATGTGTGTATATTGATGAGTGTACTCAGGTCCAACACCTCTGCTCCCAGGGC CGCTGTGAAAACACCGAGGGAAGTTTCTTGTGCATTTGCCCAGCAGGATTTATGGCCA GTGAGGAGGGTACTAACTGCATAGATGTTGACGAATGCCTGAGGCCGGACGTCTGTGG GGAGGGGCACTGTGTCAATACTGTGGGGGCCTTCCGGTGTGAATACTGTGACAGCGGG TACCGCATGACTCAGAGAGGCCGTTGTGAGGATATTGATGAATGTTTGAATCCAAGCA CTTGTCCAGATGAGCAGTGTGTGAATTCTCCTGGATCTTACCAGTGCGTTCCCTGCAC AGAAGGATTCCGAGGCTGGAATGGACAGTGCCTTGATGTGGACGAGTGCCTGGAACCA AACGTCTGCGCAAATGGTGATTGTTCCAACCTTGAAGGCTCCTACATGTGTTCATGCC ACAAAGGCTATACCCGGACTCCGGACCACAAGCACTGTAGAGATATTGATGAATGTCA GCAAGGGAATCTATGTGTAAACGGGCAGTGCAAAAATACCGAGGGCTCCTTCAGGTGC ACCTGTGGACAGGGGTACCAGCTGTCGGCAGCTAAAGACCAGTGTGAAGACATTGATG AATGCCAGCACCGTCATCTCTGTGCTCATGGGCAGTGCAGGAACACTGAGGGCTCTTT TCAATGTGTGTGTGACCAGGGTTACAGAGCATCTGGGCTTGGAGACCACTGTGAAGAT ATCAATGAATGCTTGGAGGACAAGAGTGTTTGCCAGAGAGGAGACTGCATTAATACTG CAGGGTCCTATGATTGTACTTGTCCGGATGGATTTCAGCTAGATGACAATAAAACATG TCAAGATATTAATGAATGTGAACATCCAGGGCTCTGTGGTCCGCAAGGGGAGTGCCTA AACACAGAGGGTTCTTTCCATTGTGTCTGCCAGCAGGGTTTCTCAATCTCTGCAGATG GCCGTACGTGTGAAGATATTGATGAATGTGTAAACAACACTGTTTGTGACAGTCACGG GTTTTGTGACAATACAGCTGGCTCCTTCCGCTGCCTCTGTTATCAGGGCTTTCAAGCC CCACAGGATGGGCAAGGGTGTGGATGTGAATGAATGTGAACTGCTCAGTGGGGTGT AAACCAAGAGTACAGCCCCATGACTGGGCAGTGCCGCTCCCGGACCTCCACAGATTTA GATGTAGATGTAGATCAACCCAAAGAAGAAAGAAAGAATGCTACTATAATCTCAATG ACGCCAGTCTCTGTGATAATGTGTTGGCCCCCAATGTCACGAAACAAGAATGCTGCTG TACATCAGGCGTGGGATGGGGAGATAACTGCGAAATCTTCCCCTGCCCGGTCTTGGGA ACTGCTGAGTTCACTGAAATGTGTCCCAAAGGGAAAGGTTTTGTGCCTGCTGGAGAAT CATCTTCTGAAGCTGGTGGTGAGAACTATAAAGATGCAGATGAATGCCTACTTTTTGG ACAAGAAATCTGCAAAAATGGTTTCTGTTTGAACACTCGGCCTGGGTATGAATGCTAC TGTAAGCAAGGGACGTACTATGATCCTGTGAAACTGCAGTGCTTTGATATGGATGAAT GTCAAGACCCCAGTAGTTGTATTGATGGCCAGTGTGTTAATACAGAGGGCTCTTACAA CTGCTTCTGTACTCACCCCATGGTCCTGGATGCGTCAGAAAAAAGATGTATACGACCG GCTGAGTCAAACGAACAAATAGAAGAAACTGATGTCTACCAAGATTTGTGCTGGGAAC ATCTGAGTGATGAATACGTGTGTAGCCGGCCTCTTGTGGGCAAGCAGACAACGTACAC TGAGTGCTGCTGTATGGAGAGGCCTGGGCGATGCAGTGTGCCCCTTGCCCCCTG AAGGATTCAGATGACTATGCTCAGCTGTGTAACATCCCCGTGACGGGACGCCGGCAGC CATATGGACGGGACGCCTTGGTTGACTTCAGTGAACAGTATACTCCAGAAGCCGATCC CTACTTCATCCAAGACCGTTTTCTAAATAGCTTTGAGGAGTTACAGGCTGAGGAATGC GGCATCCTCAATGGATGTGAAAATGGTCGCTGTGTGAGGGTCCAGGAAGGTTACACCT GCGATTGCTTTGATGGGTATCACTTGGATACTGCCAAGATGACCTGTTTCGATGTAAA TGAATGCGATGAGTTGAACAACCGGATGTCTCTCTGCAAGAATGCCAAGTGCATTAAC

	ACCGATGGTTCCTACAAGTGTTTGTGTCTGCCAGGCTACGTGCCTTCTGACAAGCCAA ACTACTGCACTCCGTTGAATACCGCCTTGAATTTAGAGAAAGACAGTGACCTGGAGTG AAACAGAATCTACATAACCTAAGCCCATATACTCTGCACTGTGTAAAGGAAAAGGGAG AAATGTA		
	ORF Start: ATG at 56	ORF Stop: T	GA at 5219
	SEQ ID NO: 166	1721 aa	MW at 186900.6kD
NOV37a, CG59819-01 Protein Sequence	MAGAWLRWGLLLWAGLLASSAHGRLRRITYVVHPGPGLAAGALPLSGPPRSRTFNVAL		
	SEQ ID NO: 167	5126 bp	
NOV37b, CG59819-02 DNA Sequence	GCGGGGGCCTGGCTCAGGTGG CGCACGGCCGCTGCGAGGA CGGCGCTTGCCCTGAGCGG GCCAGGTACAGCCGCAGCTCG TCCCCTCGGAGAGGACCCGGC CAGACCGCCGCCGCCGCCCCCCCAACGCCGCC AAGTTGTGCGCTCCAAGGTGC GGCTGAAATGAGGCCCTGGC GTCAGAATGAGGAGTGTTC CAGAATGAGGCTGTGAAACAAT CAGAGTCCTGGGCTGAAACAAT CAGAGTCCTGGGCTGCTCC CATCTAAGAAGCAGCTTCCC CTTCAAGCCGAAGCCTTCAGT CCTTAAGAATCTCAGCCCAGA CCCTTTAAGATATGTGCAGGA CCCTTTAAGATATGTCAGGCAGAGCCCAGA	GGGCTCCTGCT TCACCTACGTG GCCCCCGCGTT GCGGCTGCCGG GCACGAGCCTG CACCCGGCAGC CACCCGGCAGC CACCCGGCAGC TCCCAGAGGTC TCCCAGAGGTC TCCGGCCCAG ATCGCCCAGAGGTC ATTCACCATGG AGGGGTTTCA	CONTROL OF THE PROPERTY OF THE

TGCTGCCGACACCCTGACGGCCACGAACTTCCGAGTGGTAATTTGCCATCTTCCATGT ATGAATGGTGGCCAGTGCAGTTCAAGGGACAAATGTCAGTGCCCTCCAAATTTCACAG GAAAACTTTGTCAGATCCCAGTCCATGGTGCCAGCGTGCCTAAACTTTATCAGCATTC CCAGCAGCCAGGCAAGGCGTTGGGGACGCATGTCATCCATTCAACACATACCTTGCCT CTGACCGTGACTAGCCAGCAAGGAGTCAAAGTGAAATTTCCTCCTAACATAGTCAATA TCCATGTGAAACATCCTCCTGAAGCTTCCGTCCAGATACATCAGGTTTCAAGAATTGA TGGCCCAACAGGCCAGAAGACAAAAGAAGCTCAACCAGGCCAATCCCAAGTCTCGTAC CAAGGGCTTCCTGTCCAGAAGACCCAGACCATACATTCCACATACTCCCACCAGCAGG TCATTCCTCACGTCTACCCCGTGGCTGCTAAGACACAGCTTGGCCGGTGCTTCCAGGA AACCATTGGGTCACAGTGTGGCAAAGCGCTCCCTGGCCTTTCAAAGCAAGAGGACTGC TGTGGAACTGTGGGTACCTCCTGGGGCTTTAACAAATGCCAGAAATGCCCCAAGAAAC CATCTTATCATGGATACAACCAAATGATGGAATGCCTACCGGGTTATAAGCGGGTTAA CAACACCTTTTGCCAAGATATTAATGAATGTCAGCTACAAGGTGTATGCCCTAATGGT GAGTGTTTGAATACCATGGGCAGCTATCGATGTACCTGCAAAATAGGATTTGGGCCGG ATCCTACCTTTTCAAGTTGTGTTCCTGATCCCCCTGTGATCTCGGAAGAGAAAGGGCC ACCAAGCAGCTCTGCTGTTGTAGTGTGGGGCAAGGCCTGGGGCCCACACTGTGAGAAAT GTCCCCTTCCAGGCACAGCCAAGGAAGAGCCAGTGGAGGCCCTGACCTTCTCCCGGGA ACACGGGCCAGGAGTGGCGGAGCCAGAAGTGGCAACTGCACCCCCTGAAAAGGAAATA CCTTCATTGGATCAAGAGAAAACCAAACTTGAGCCTGGTCAACCCCAGCTGTCTCCAG GCATTTCCGCTATTCATCTGCATCCACAGTTTCCAGTAGTGATTGAAAAAACATCACC GCTCCTACTCAAGTGACAGAAATCAATGAATGTACTGTGAACCCTGATATCTGTGGAG CAGGACACTGCATTAACCTACCAGTGAGATATACCTGTATATGCTACGAGGGCTACAG GTTCAGTGAACAACAGAGGAAATGTGTGTATATTGATGAGTGTACTCAGGTCCAACAC CTCTGCTCCCAGGGCCGCTGTGAAAACACCGAGGGAAGTTTCTTGTGCATTTGCCCAG CAGGATTTATGGCCAGTGAGGAGGGTACTAACTGCATAGATGTTGACGAATGCCTGAG GCCGGACGTCTGTGGGGAGGGGCACTGTGTCAATACTGTGGGGGCCTTCCGGTGTGAA TACTGTGACAGCGGGTACCGCATGACTCAGAGAGGCCGTTGTGAGGATATTGATGAAT GTTTGAATCCAAGCACTTGTCCAGATGAGCAGTGTGTGAATTCTCCTGGATCTTACCA GTGCGTTCCCTGCACAGAAGGATTCCGAGGCTGGAATGGACAGTGCCTTGATGTGGAC GAGTGCCTGGAACCAAACGTCTGCGCAAATGGTGATTGTTCCAACCTTGAAGGCTCCT ACATGTGTTCATGCCACAAAGGCTATACCCGGACTCCGGACCACAAGCACTGTAGAGA TATTGATGAATGTCAGCAAGGGAATCTATGTGTAAACGGGCAGTGCAAAAATACCGAG GGCTCCTTCAGGTGCACCTGTGGACAGGGGTACCAGCTGTCGGCAGCTAAAGACCAGT GTGAAGACATTGATGAATGCCAGCACCGTCATCTCTGTGCTCATGGGCAGTGCAGGAA CACTGAGGGCTCTTTTCAATGTGTGTGTGACCAGGGTTACAGAGCATCTGGGCTTGGA GACCACTGTGAAGATATCAATGAATGCTTGGAGGACAAGAGTGTTTGCCAGAGAGGAG TGACAATAAAACATGTCAAGATATTAATGAATGTGAACATCCAGGGCTCTGTGGTCCG CAAGGGGAGTGCCTAAACACAGAGGGTTCTTTCCATTGTGTCTGCCAGCAGGGTTTCT CAATCTCTGCAGATGGCCGTACGTGTGAAGATATTGATGAATGTGTAAACAACACTGT TTGTGACAGTCACGGGTTTTGTGACAATACAGCTGGCTCCTTCCGCTGCCTCTGTTAT CGTGTGTGCTGATGAAAACCAAGAGTACAGCCCCATGACTGGGCAGTGCCGCTCCCGG ACTATAATCTCAATGACGCCAGTCTCTGTGATAATGTGTTGGCCCCCAATGTCACGAA ACAAGAATGCTGCTGTACATCAGGCGTGGGATGGGGAGATAACTGCGAAATCTTCCCC TGCCCGGTCTTGGGAACTGCTGAGTTCACTGAAATGTGTCCCAAAGGGAAAGGTTTTG TGCCTGCTGGAGAATCATCTTCTGAAGCTGGTGGTGAGAACTATAAAGATGCAGATGA ATGCCTACTTTTTGGACAAGAAATCTGCAAAAATGGTTTCTGTTTGAACACTCGGCCT GGGTATGAATGCTACTGTAAGCAAGGGACGTACTATGATCCTGTGAAACTGCAGTGCT TTGATATGGATGAATGTCAAGACCCCAGTAGTTGTATTGATGGCCAGTGTGTTAATAC AGAGGGCTCTTACAACTGCTTCTGTACTCACCCCATGGTCCTGGATGCGTCAGAAAAA AGATGTATACGACCGGCTGAGTCAAACGAACAAATAGAAGAAACTGATGTCTACCAAG ATTTGTGCTGGGAACATCTGAGTGATGAATACGTGTGTAGCCGGCCTCTTGTGGGCAA GCAGACAACGTACACTGAGTGCTGCTGTCTGTATGGAGAGGCCTGGGCGATGCAGTGT GCCCTCTGCCCCCTGAAGGATTCAGATGACTATGCTCAGCTGTGTAACATCCCCGTGA CGGGACGCCGGCAGCCATATGGACGGGACGCCTTGGTTGACTTCAGTGAACAGTATAC TCCAGAAGCCGATCCCTACTTCATCCAAGACCGTTTTCTAAATAGCTTTGAGGAGTTA

	CAGGCTGAGGAATGCGGCATCCTCAATGGATGTGAAAATGGTCGCTGTGTGAGGGTCC AGGAAGGTTACACCTGCGATTGCTTTGATGGGTATCACTTGGATACTGCCAAGATGAC CTGTTTCGATGTAAATGAATGCGATGAGTTGAACAACCGGATGTCTCTCTGCAAGAAT GCCAAGTGCATTAACACCGATGGTTCCTACAAGTGTTTGTGTCTGCCAGGCTACGTGC CTTCTGACAAGCCAAACTACTGCACTCCGTTGAATACCGCCTTGAATTTAGAGAAAGA CAGTGACCTGGAGTGAAACAGAATCTACATAACCTAAGCCCATATACTCTGCACTGTG TAAAGGAAAAGGGAGAAATGTA		
	ORF Start: ATG at 56	ORF Stop: T	GA at 5060
	SEQ ID NO: 168	1668 aa	MW at 181174.9kD
NOV37b, CG59819-02 Protein Sequence	SEQ ID NO: 168 1668 aa MW at 181174.9kD MAGAWLRWGLLLWAGLLASSAHGRLRRITYVVHPGPGLAAGALPLSGPPRSRT		GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMHPLSVH EALTFSREHGPGVAEPEVATAPPEKE VVIEKTSPPVPVEVAPEASTSSASQV CICYEGYRFSEQQRKCVYIDECTQVQ IDVDECLRPDVCGEGHCVNTVGAFRC VNSPGSYQCVPCTEGFRGWNGQCLDV PDHKHCRDIDECQQGNLCVNGQCKNT CAHGQCRNTEGSFQCVCDQGYRASGL CPDGFQLDDNKTCQDINECEHPGLCG DECVNNTVCDSHGFCDNTAGSFRCLC NVEGSFLCVCADENQEYSPMTGQCRS VLAPNVTKQECCCTSGVGWGDNCEIF ENYKDADECLLFGQEICKNGFCLNTR IDGQCVNTEGSYNCFCTHPMVLDASE CSRPLVGKQTTYTECCCLYGEAWAMQ
	SEQ ID NO: 169	6074 bp	
NOV37c, CG59819-03 DNA Sequence	GGCCGGGGGAGGGGCCGGAC GCGGGGGCCTGGCTCAGGTGG CGCACGCCGCTGCCAGGCGG GCCAGGTACAGCCGCAGCTCG TCCCCTCGGAGAGGACCCGCCCCCCCCCC	GGGCTCCTGCT TCACCTACGTG GCCCCCGCGTT GCGGCTGCCGG GCACGAGCCTG CCACGGCAGC CCAGGAGAGACC GCAGGAGAGACC TCCCAGAGGGGTCA TCCCGCCACAA AGCTGCCCACAC TCGGCCACAA TCGGCCACAA TCGGCCACAA TCGGCCCCACAA TCGGCCCCCCTACCAAGAGTC TACCAAGAGTC	GGTCGCGCCGCTGGGGCCCGCATG CTGGGCAGGGCTCCTCGG GTGCACCCGGGCCCGGCCTGCAGC GGCGCCCCAGCCGTGCCTCCCCGGGGCCCCGGCCTCAAC CCGCCCCCAGCCGTGCCTCCCCCGGGG CCGGGCGGCGGGCCCTGCAGGGGCT CCGGGCGGCGGGGCGG

GGCCGCATCAAGGTGGTCTTTACTCCGAGCATCTGTAAAGTGACCTGCACCAAGGGCA GCTGTCAGAACAGCTGTGAGAAGGGGAACACCACCACTCTCATTAGTGAGAATGGTCA TGCTGCCGACACCCTGACGGCCACGAACTTCCGAGTGGTAATTTGCCATCTTCCATGT ATGAATGGTGGCCAGTGCAGTTCAAGGGACAAATGTCAGTGCCCTCCAAATTTCACAG GAAAACTTTGTCAGATCCCAGTCCATGGTGCCAGCGTGCCTAAACTTTATCAGCATTC CCAGCAGCCAGGCAAGGCGTTGGGGACGCATGTCATCCATTCAACACATACCTTGCCT CTGACCGTGACTAGCCAGCAAGGAGTCAAAGTGAAATTTCCTCCTAACATAGTCAATA TCCATGTGAAACATCCTCCTGAAGCTTCCGTCCAGATACATCAGGTTTCAAGAATTGA TGGCCCAACAGGCCAGAAGACAAAAGAAGCTCAACCAGGCCAATCCCAAGTCTCGTAC CAAGGGCTTCCTGTCCAGAAGACCCAGACCATACATTCCACATACTCCCACCAGCAGG TCATTCCTCACGTCTACCCCGTGGCTGCTAAGACACAGCTTGGCCGGTGCTTCCAGGA AACCATTGGGTCACAGTGTGGCAAAGCGCTCCCTGGCCTTTCAAAGCAAGAGGACTGC TGTGGAACTGTGGGTACCTCCTGGGGCTTTAACAAATGCCAGAAATGCCCCAAGAAAC CATCTTATCATGGATACAACCAAATGATGGAATGCCTACCGGGTTATAAGCGGGTTAA CAACACCTTTTGCCAAGATATTAATGAATGTCAGCTACAAGGTGTATGCCCTAATGGT GAGTGTTTGAATACCATGGGCAGCTATCGATGTACCTGCAAAATAGGATTTGGGCCGG ATCCTACCTTTCAAGTTGTGTTCCTGATCCCCCTGTGATCTCGGAAGAGAAAGGGCC ACCAAGCAGCTCTGCTGTTGTAGTGTGGGCCAAGGCTGGGCCACACTGTGAGAAATGTC CCCTTCCAGGCACAGCTGCTTTTAAGGAAATCTGTCCTGGTGGAATGGGTTATACGGT TTCTGGCGTTCATAGACGCAGGCCAATCCATCACCATGTAGGTAAAGGACCTGTATTT GTCAAGCCAAAGAACACTCAACCTGTTGCTAAAAGTACTCATCCTCCACCTCTCCCAG CCAAGGAAGAGCCAGTGGAGGCCCTGACCTTCTCCCGGGAACACGGGGCCAGGAGTGC GGAGCCAGAAGTGGCAACTGCACCCCCTGAAAAGGAAATACCTTCATTGGATCAAGAG AAAACCAAACTTGAGCCTGGTCAACCCCAGCTGTCTCCAGGCATTTCCGCTATTCATC TGCATCCACAGTTTCCAGTAGTGATTGAAAAAACATCACCTCCTGTGCCTGTTGAAGT AGCTCCTGAAGCTTCTACGTCTAGTGCCAGCCAAGTGATTGCTCCTACTCAAGTGACA GAAATCAATGAATGTACTGTGAACCCTGATATCTGTGGAGCAGGACACTGCATTAACC TACCAGTGAGATATACCTGTATATGCTACGAGGGCTACAGGTTCAGTGAACAACAGAG GAAATGTGTGGATATTGATGAGTGTACTCAGGTCCAACACCTCTGCTCCCAGGGCCGC TGTGAAAACACCGAGGGAAGTTTCTTGTGCATTTGCCCAGCAGGATTTATGGCCAGTG AGGAGGGTACTAACTGCATAGATGTTGACGAATGCCTGAGGCCGGACGTCTGTGGGGA GGGGCACTGTGTCAATACTGTGGGGGCCTTCCGGTGTGAATACTGTGACAGCGGGTAC CGCATGACTCAGAGAGGCCGTTGTGAGGATATTGATGAATGTTTGAATCCAAGCACTT GTCCAGATGAGCAGTGTGTGAATTCTCCTGGATCTTACCAGTGCGTTCCCTGCACAGA AGGATTCCGAGGCTGGAATGGACAGTGCCTTGATGTGGACGAGTGCCTGGAACCAAAC GTCTGCGCAAATGGTGATTGTTCCAACCTTGAAGGCTCCTACATGTGTTCATGCCACA AAGGCTATACCCGGACTCCGGACCACAAGCACTGTAGAGATATTGATGAATGTCAGCA AGGGAATCTATGTGTAAACGGGCAGTGCAAAAATACCGAGGGCTCCTTCAGGTGCACC TGTGGACAGGGGGGTTACCAGCTGTCGGCAGCTAAAGACCAGTGTGAAGACATTGATG AATGCCAGCACCGTCATCTCTGTGCTCATGGGCAGTGCAGGAACACTGAGGGCTCTTT TCAATGTGTGTGTGACCAGGGTTACAGAGCATCTGGGGCTTGGAGACCACTGTGAAGAT ATCAATGAATGCTTGGAGGACAAGAGTGTTTGCCAGAGAGGAGACTGCATTAATACTG CAGGGTCCTATGATTGTACTTGTCCGGATGGATTTCAGCTAGATGACAATAAAACATG TCAAGATATTAATGAATGTGAACATCCAGGGCTCTGTGGTCCACAAGGGGAGTGCCTA **AACACAGAGGGTTCTTTCCATTGTGTCTGCCAGCAGGGTTTCTCAATCTCTGCAGATG** GCCGTACGTGTGAAGATGTGAATGTGAACTGCTCAGTGGGGTGTGTGGTGAAGC CTTCTGTGAAAACGTGGAAGGGTCCTTCCTGTGCGTGTGTGCTGATGAAAACCAAGAG TACAGCCCCATGACTGGGCAGTGCCGCTCCCGGACCTCCACAGATTTAGATGTAGATG TAGATCAACCCAAAGAAGAAAGAAGAATGCTACTATAATCTCAATGACGCCAGTCT CTGTGATAATGTGTTGGCCCCCAATGTCACGAAACAAGAATGCTGCTGTACATCAGGC GCGGGATGGGGAGATAACTGCGAAATCTTCCCCTGCCCGGTCTTGGGAACTGCTGAGT TCACTGAAATGTGTCCCAAAGGGAAAGGTTTTGTGCCTGCTGGAGAATCATCTTCTGA AGCTGGTGGTGAGAACTATAAAGATGCAGATGAATGCCTACTTTTTGGACAAGAAATC TGCAAAAATGGTTTCTGTTTGAACACTCGGCCTGGGTATGAATGCTACTGTAAGCAAG GGACGTACTATGATCCTGTGAAACTGCAGTGCTTTGATATGGATGAATGTCAAGACCC CAGTAGTTGTATTGATGGCCAGTGTGTTAATACAGAGGGCTCTTACAACTGCTTCTGT ACTCACCCCATGGTCCTGGATGCGTCAGAAAAAGATGTATACGACCGGCTGAGTCAA ACGAACAAATAGAAGAAACTGATGTCTACCAAGATTTGTGCTGGGAACATCTGAGTGA TGAATACGTGTGTAGCCGGCCTCTTGTGGGCAAGCAGCAACGTACACTGAGTGCTGC TGTCTGTATGGAGAGGCCTGGGGCATGCAGTGTGCCCTCTGCCCCCTGAAGGATTCAG

	ATGACTATGCTCAGCTGTGTA/	ACATCCCCGTG	ACGGGACGCCGGCAGCCATATGGACG
	GGACGCCTTGGTTGACTTCAGTGAACAGTATACTCCAGAAGCCGATCCCTACTTCATC		
	CAAGACCGTTTTCTAAATAGCTTTGAGGAGTTACAGGCTGAGGAATGCGGCATCCTCA		
	ATGGATGTGAAAATGGTCGCT(GTGTGAGGGTC(CAGGAAGGTTACACCTGCGATTGCTT
	TGATGGGTATCACTTGGATAC	GCCAAGATGA	CCTGTGTCGATGTAAATGAATGCGAT
			rgccaagtgcattaacaccgatggtt
			CCTTCTGACAAGCCAAACTACTGCAC
1			ACAGTGACCTGGAGTGAAACAGAATC
			STAAAGGAAAAGGGAGAAATGTATTA
	TACTTGAGACATTGCACCTAC	CCCGGAAGGCTC	GAAATACGGAAACAGCATGGAGTTG
			ATGAGCCCGATAGGTGTGGCAGACCA
i			AGTCTGTTCATATGTAAAATTCAATG
			CAGAAGGTTGTATTATTATGTTGTTT
1			
	FGTTTTTTTACTATTGCTTGATTAAATTTGGCATTTAAATAGTGGTGGAAATATTTTA FATAATTTTCATTTTTTGGTTGTGCAGTTCCTTGGCTACTGTTTTTCTTTTACTTCAG		
			ATACAATATTGTTAAGCTGTATTATA
1			CCTGGAGCATTTTTGAAATTCAAATT
İ			CCAAAACTTTGTATACACATTTGGAG
			ATTTTAATGTCCGTTCTTAGCCAAGC
			CACTGAAATGGAAGAGTTTATAAGCT
			AACAAAAATTTTTAAAAATTTGATGA
			AATCACCATTTTTGTAGAAAAAATTC
i			PATAAGTTGTATCCCACTCTCCCCAC
			AGTGTCTTTTACAAGTTAATCATTAA
	ATTTGTTAGATCTTGTTATGG		
	ORF Start: ATG at 56	ORF Stop: To	<u></u>
	SEQ ID NO: 170	1679 aa	MW at 182193.4kD
	MAGAWLRWGLLLWAGLLASSAHGRLRRITYVVHPGPGLAAGALPLSGPPRSRTFNVAL		
NOV37c,			
NOV37c,	NARYSRSSAAAGAPSRASPGV	PSERTRRTSKP	GGAALQGLRPPPPPPPPPPARPAVPGG
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ	PSERTRRTSKPO VVRSKVPQETQ:	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC
•	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC	PSERTRRTSKPO VVRSKVPQETQ: QNGGMCLRPQL	GGAALQGLRPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS	PSERTRRTSKPO VVRSKVPQETQ QNGGMCLRPQLO SKKADTLPRVS	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP	PSERTRRTSKPO VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP	PSERTRRTSKPO VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS CMNGGQCSSRDKCQCPPNFTG	PSERTRRTSKP VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS CMNGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI	PSERTRRTSKP VVRSKVPQETQ: QNGGMCLRPQL SKKADTLPRVS: KYFPAQKGISG: CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS CMNGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI YQGLPVQKTQTIHSTYSHQQV	PSERTRRTSKP VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS CMNGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI YQGLPVQKTQTIHSTYSHQQV	PSERTRRTSKP VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS CMNGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI YQGLPVQKTQTIHSTYSHQQV CCGTVGTSWGFNKCQKCPKKP GECLNTMGSYRCTCKIGFGPD	PSERTRRTSKP VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC PTFSSCVPDPP	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI YQGLPVQKTQTIHSTYSHQQV CCGTVGTSWGFNKCQKCPKKP GECLNTMGSYRCTCKIGFGPD LTKQLCCCSVGKAGPHCEKCP	PSERTRRTSKPOVRSKVPQETQI QNGGMCLRPQLO SKKADTLPRVSI KYFPAQKGISGI CQNSCEKGNTT KLCQIPVHGASI HVKHPPEASVQIPHVAAKTI SYHGYNQMMECI PTFSSCVPDPP LPGTAAFKEIC	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA	PSERTRRTSKPOVRSKVPQETQIONGGMCLRPQLOSKKADTLPRVSICONSCEKGNTTKLCQIPVHGASIPHVKHPPEASVQIPHVAAKTOSYHGYNQMMECTPTFSSCVPDPPLPGTAAFKEICKEEPVEALTFS	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL HQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA	PSERTRRTSKPOVRSKVPQETQIONGGMCLRPQLOSKKADTLPRVSICONSCEKGNTTKLCQIPVHGASIPHVKHPPEASVQIPHVAAKTOSYHGYNQMMECTPTFSSCVPDPPLPGTAAFKEICKEEPVEALTFS	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL HQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL	PSERTRRTSKPOVRSKVPQETQLONGGMCLRPQLOSKKADTLPRVSKYFPAQKGISGCONSCEKGNTTKLCQIPVHGASHVKHPPEASVQIPVAAKTSYHGYNQMMECTPTFSSCVPDPPLPGTAAFKEICKEEPVEALTFSHPQFPVVIEKT	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL TEINECTVNPDICGAGHCINL	PSERTRRTSKPOVRSKVPQETQL QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFS HPQFPVVIEKT PVRYTCICYEG	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL HQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. RCENTEGSFLCICPAGFMASE	PSERTRRTSKPOVRSKVPQETQLONGGMCLRPQLOSKKADTLPRVSKYFPAQKGISGCONSCEKGNTTKLCQIPVHGASHVKHPPEASVQIPHVYPVAAKTSYHGYNQMMECTPTFSSCVPDPPLPGTAAFKEICKEEPVEALTFSHPQFPVVIEKTPVRYTCICYEGEGTNCIDVDEC	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC	PSERTRRTSKPOVRSKVPQETQLONGGMCLRPQLOSKKADTLPRVSKYFPAQKGISGCONSCEKGNTTKLCQIPVHGASHVKHPPEASVQIPHYPVAAKTOSYHGYNQMMECTERFSCVPDPPLFGTAAFKEICKEEPVEALTFSHPQFPVVIEKTPVRYTCICYEGEGTNCIDVDECPDEQCVNSPGS	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC.	PSERTRRTSKPOVRSKVPQETQLONGGMCLRPQLOSKKADTLPRVSKYFPAQKGISGCONSCEKGNTTKLCQIPVHGASHVKHPPEASVQIPHVYPVAAKTSCYHGYNQMMECHPGTAAFKEICKEEPVEALTFSKPQFPVIEKTPVRYTCICYEGEGTNCIDVDECPDEQCVNSPGSGYTRTPDHKHC	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE	PSERTRRTSKPOVRSKVPQETQLONGGMCLRPQLOSKKADTLPRVSKYFPAQKGISGCONSCEKGNTTKLCQIPVHGASHVKHPPEASVQIPHYYPVAAKTSYHGYNQMMECHPGTAAFKEICKEEPVEALTFSKPQFPVIEKTPVRYTCICYEGEGTNCIDVDECPHEQCVNSPGSGYTRTPDHKHCCQHRHLCAHGQ	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA	PSERTRRTSKPO VVRSKVPQETQ VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFS HPQFPVVIEKT PVRYTCICYEG EGTNCIDVDEC PDEQCVNSPGS GYTRTPDHKHC CQHRHLCAHGQ GSYDCTCPDGF	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV PREHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG	PSERTRRTSKPO VVRSKVPQETQ VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFS HPQFPVVIEKE PVRYTCICYEG EGTNCIDVDEC PDEQCVNSPGS GYTRTPDHKHC CQHRHLCAHGQ GSYDCTCPDGF RTCEDVNECEL	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG. EYSPMTGQCRSRTSTDLDVDV	PSERTRRTSKPO VVRSKVPQETQ VVRSKVPQETQ QNGGMCLRPQL SKKADTLPRVS KYFPAQKGISG CQNSCEKGNTT KLCQIPVHGAS HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFS HPQFPVVIEKE PVRYTCICYEG EGTNCIDVDEC PDEQCVNSPGS GYTRTPDHKHC CQHRHLCAHGQ GSYDCTCPDGF RTCEDVNECEL DQPKEEKKECY	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECLEQVQHLCQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCCTS
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG. EYSPMTGQCRSRTSTDLDVDVU. GAGWGDNCEIFPCPVLGTAEF	PSERTRRTSKPO VVRSKVPQETQ: VVRSKVPQETQ: SKKADTLPRVS: KYFPAQKGISG: CQNSCEKGNTT KLCQIPVHGAS: HVKHPPEASVQ IPHVYPVAAKT: SYHGYNQMMEC: PTFSSCVPDPP LPGTAAFKEIC: KEEPVEALTFS: HPQFPVVIEKT PVRYTCICYEG EGTNCIDVDEC: PDEQCVNSPGS GYTRTPDHKHC: CQHRHLCAHGQ GSYDCTCPDGF RTCEDVNECEL DQPKBEKKECY TEMCPKGKGFV	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVBCLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCCTS
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG. EYSPMTGQCRSRTSTDLDVDV. GAGWGDNCEIFPCPVLGTAEF.	PSERTRRTSKPOVRSKVPQETQIONGGMCLRPQLISKADTLPRVSING SCENGITT KLCQIPVHGASTHVKHPPEASVQIPHVAAKTISYHGYNQMMECTOFFSCVPDPPLPGTAAFKEICKEEPVEALTFSIPHVYPVAKTIPVRYTCICYEGETNCIDVDECPDEQCVNSPGSIGYTRTPDHKHCQGSYDCTCPDGFRTCEDVNECELDQPKBEKKECYTYDPVKLQCF	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP CRNTEGSFQCVCDQGYRASGLGDHCE CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCTS PAGESSSEAGGENYKDADECLLFGQE DMDECQDPSSCIDGQCVNTEGSYNCF
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS PLSSQSVVIHHGQTQEYVLKP TGRIKVVFTPSICKVTCTKGS. CMMGGQCSSRDKCQCPPNFTG PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV CCGTVGTSWGFNKCQKCPKKP GECLNTMGSYRCTCKIGFGPD LTKQLCCCSVGKAGPHCEKCP FVKPKNTQPVAKSTHPPPLPA EKTKLEPGQPQLSPGISAIHL TEINECTVNPDICGAGHCINL RCENTEGSFLCICPAGFMASE YRMTQRGRCEDIDECLNPSTC NVCANGDCSNLEGSYMCSCHK TCGQGGYQLSAAKDQCEDIDE DINECLEDKSVCQRGDCINTA LNTEGSFHCVCQQGFSISADG EYSPMTGQCRSRTSTDLDVDV GAGWGDNCEIFPCPVLGTAEF ICKNGFCLNTRPGYECYCKQG	PSERTRRTSKPO VVRSKVPQETQ: VVRSKVPQETQ: SKKADTLPRVS: SKKADTLPRVS: KYFPAQKGISG: CQNSCEKGNTT KLCQIPVHGAS: HVKHPPEASVQ IPHVYPVAAKT: SYHGYNQMMEC: PTFSSCVPDPP LPGTAAFKEIC: KEEPVEALTFS: HPQFPVVIEKT PVRYTCICYEG EGTNCIDVDEC: PDEQCVNSPGS GYTRTPDHKHC: CQHRHLCAHGQ GGSYDCTCPDGF RTCEDVNECEL DQPKBEKKECY TYYDPVKLQCF EQIEETDVYQD	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCTS PAGESSSEAGGENYKDADECLLFGQE DMDECQDPSSCIDGQCVNTEGSYNCF LCWEHLSDEYVCSRPLVGKQTTYTEC
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG. EYSPMTGQCRSRTSTDLDVDV. GAGWGDNCEIFPCPVLGTAEF. ICKNGFCLNTRPGYECYCKQG. CTHPMVLDASEKRCIRPAESN. CCLYGEAWGMQCALCPLKDSD.	PSERTRRTSKPO VVRSKVPQETQ: VVRSKVPQETQ: SKKADTLPRVS: SKKADTLPRVS: KYFPAQKGISG: CQNSCEKGNTT KLCQIPVHGAS: HVKHPPEASVQ IPHVYPVAAKT SYHGYNQMMEC: PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFS: HPQFPVVIEKT PVRYTCICYEG EGTNCIDVDEC PDEQCVNSPGS GYTRTPDHAHC CQHRHLCAHGQ GSYDCTCPDGF RTCEDVNECEL DQPKBEKKECY TEMCPKGKGFV TYYDPVKLQCF EQIEETDVYQD DYAQLCNIPVT	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQGGQLCVNGGYRASGLGDHCE CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCCTS PAGESSSEAGGENYKDADECLLFGQE DMDECQDPSSCIDGQCVNTEGSYNCF LCWEHLSDEYVCSRPLVGKQTTYTEC GRRQPYGRDALVDFSEQYTPEADPYF
CG59819-03 Protein	NARYSRSSAAAGAPSRASPGV. QLHPNPGGHPAAAPFTKQGRQ. HGWSKAPGSQRCTKPSCVPPC. GQSPGAASSWGPPEQAAKHTS. PLSSQSVVIHHGQTQEYVLKP. TGRIKVVFTPSICKVTCTKGS. CMNGGQCSSRDKCQCPPNFTG. PLTVTSQQGVKVKFPPNIVNI. YQGLPVQKTQTIHSTYSHQQV. CCGTVGTSWGFNKCQKCPKKP. GECLNTMGSYRCTCKIGFGPD. LTKQLCCCSVGKAGPHCEKCP. FVKPKNTQPVAKSTHPPPLPA. EKTKLEPGQPQLSPGISAIHL. TEINECTVNPDICGAGHCINL. RCENTEGSFLCICPAGFMASE. YRMTQRGRCEDIDECLNPSTC. NVCANGDCSNLEGSYMCSCHK. TCGQGGYQLSAAKDQCEDIDE. DINECLEDKSVCQRGDCINTA. LNTEGSFHCVCQQGFSISADG. EYSPMTGQCRSRTSTDLDVDV. GAGWGDNCEIFPCPVLGTAEF. ICKNGFCLNTRPGYECYCKQG. CTHPMVLDASEKRCIRPAESN. CCLYGEAWGMQCALCPLKDSD. IQDRFLNSFEELQAEECGILN.	PSERTRRTSKPO VVRSKVPQETQI VVRSKVPQETQI SKKADTLPRVSI SKKADTLPRVSI KYFPAQKGISGI CQNSCEKGNTT KLCQIPVHGASI HVKHPPEASVQI IPHVYPVAAKT SYHGYNQMMECI PTFSSCVPDPP LPGTAAFKEIC KEEPVEALTFSI HPQFPVVIEKT PVRYTCICYEG EGTNCIDVDECI PDEQCVNSPGS GYTRTPDHKHC CQHRHLCAHGQ GSYDCTCPDGF RTCEDVNECEL DQPKBEKKECY TTEMCPKGKGFV TYYDPVKLQCF EQIEETDVYQD DYAQLCNIPVT GCENGRCVRVQ	GGAALQGLRPPPPPPPPPPARPAVPGG SGGGSRLQVHQKQQLQGVNVCGGRCC CVCKPGTKGKACETIAAQDTSSPVFG PVAQMTLTLKPKPSVGLPQQIHSQVT EQSTEGSFPLRYVQDQVAAPFQLSNH TLISENGHAADTLTATNFRVVICHLP VPKLYQHSQQPGKALGTHVIHSTHTL IHQVSRIDGPTGQKTKEAQPGQSQVS QLGRCFQETIGSQCGKALPGLSKQED LPGYKRVNNTFCQDINECQLQGVCPN VISEEKGPCYRLVSSGRQCMYPLSVH PGGMGYTVSGVHRRRPIHHHVGKGPV REHGARSAEPEVATAPPEKEIPSLDQ SPPVPVEVAPEASTSSASQVIAPTQV YRFSEQQRKCVDIDECTQVQHLCSQG LRPDVCGEGHCVNTVGAFRCEYCDSG YQCVPCTEGFRGWNGQCLDVDECLEP RDIDECQQGNLCVNGQCKNTEGSFRC CRNTEGSFQCVCDQGYRASGLGDHCE CRNTEGSFQCVCDQGYRASGLGDHCE QLDDNKTCQDINECEHPGLCGPQGEC LSGVCGEAFCENVEGSFLCVCADENQ YNLNDASLCDNVLAPNVTKQECCCTS PAGESSSEAGGENYKDADECLLFGQE DMDECQDPSSCIDGQCVNTEGSYNCF LCWEHLSDEYVCSRPLVGKQTTYTEC

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 37B.

Table 37B. Comparison of NOV37a against NOV37b through NOV37c.			
Protein Sequence NOV37a Residues/ Identities/ Similarities for the Matched		Identities/ Similarities for the Matched Region	
NOV37b	191721 191668	1561/1703 (91%) 1562/1703 (91%)	
NOV37c	191721 191679	1565/1704 (91%) 1565/1704 (91%)	

Further analysis of the NOV37a protein yielded the following properties shown in Table 37C.

Table 37C. Protein Sequence Properties NOV37a			
PSort analysis:	0.3700 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)		
SignalP analysis:	Likely cleavage site between residues 24 and 25		

A search of the NOV37a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 37D.

Table 37D. Geneseq Results for NOV37a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV37a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAR22461	Masking protein high polymer unit precursor MPU-P - Rattus rattus, 1712 aa. [JP04066597-A, 02-MAR-1992]	11721 11712	1525/1721 (88%) 1603/1721 (92%)	0.0
AAR14584	TGF beta 1 binding protein encoded by clone BPA 13 - Homo sapiens, 1355 aa. [WO9113152-A, 05-SEP- 1991]	3421721 161355	1324/1380 (95%) 1326/1380 (95%)	0.0
AAR53089	Human masking protein subunit hMPU-P - Homo sapiens, 845 aa. [JP06092995-A, 05-APR-1994]	7421586 1845	841/845 (99%) 841/845 (99%)	0.0
AAR53086	Human masking protein subunit hMPU-1 - Homo sapiens, 756 aa. [JP06092995-A, 05-APR-1994]	8321586 2756	752/755 (99%) 752/755 (99%)	0.0
AAR53087				0.0

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1	hMPU-2 - Homo sapiens, 752 aa.	1752	749/752 (99%)	
	mvii 0-2 - Homo sapiens, 752 aa.	1/52	177/132 (77/0)	l i
	[JP06092995-A, 05-APR-1994]	1		1 :
1	[JF00032333-A, V3-AFK-1334]	1		1

In a BLAST search of public sequence databases, the NOV37a protein was found to have homology to the proteins shown in the BLASTP data in Table 37E.

	Table 37E. Public BLASTP Results for NOV37a				
Protein Accession Number	Protein/Organism/Length	NOV37a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
Q00918	Latent transforming growth factor beta binding protein 1 precursor (Transforming growth factor beta-1 binding protein 1) (TGF-beta1-BP-1) (Transforming growth factor beta-1 masking protein, large subunit) - Rattus norvegicus (Rat), 1712 aa.	11721 11712	1536/1721 (89%) 1611/1721 (93%)	0.0	
O88349	LATENT TGF BETA BINDING PROTEIN - Mus musculus (Mouse), 1713 aa.	11720 11712	1523/1721 (88%) 1603/1721 (92%)	0.0	
P22064	Latent transforming growth factor beta binding protein 1 precursor (Transforming growth factor beta-1 binding protein 1) (TGF-beta1-BP-1) - Homo sapiens (Human), 1394 aa.	3421721 161394	1369/1380 (99%) 1370/1380 (99%)	0.0	
O35806	LATENT TGF-BETA BINDING PROTEIN-2 LIKE PROTEIN - Rattus norvegicus (Rat), 1764 aa.	721705 751760	710/1748 (40%) 937/1748 (52%)	0.0	
Q14767	LATENT TRANSFORMING GROWTH FACTOR-BETA- BINDING PROTEIN-2 (LTBP-2) - Homo sapiens (Human), 1821 aa.	741706 871818	693/1810 (38%) 919/1810 (50%)	0.0	

PFam analysis predicts that the NOV37a protein contains the domains shown in the Table 37F.

Table 37F. Domain Analysis of NOV37a			
Pfam Domain	NOV37a Match Region	Identities/ Similarities for the Matched Region	Expect Value
EGF: domain 1 of 18	191218	15/47 (32%) 19/47 (40%)	0.0056

EGF: domain 2 of 18	403430	15/47 (32%) 23/47 (49%)	0.00014
wap: domain 1 of 1	385433	12/57 (21%) 30/57 (53%)	9.3
TB: domain 1 of 4	566609	15/48 (31%) 41/48 (85%)	6e-13
EGF: domain 3 of 18	630665	14/47 (30%) 27/47 (57%)	1e-05
Keratin_B2: domain 1 of 1	578717	40/180 (22%) 64/180 (36%)	1.5
TB: domain 2 of 4	687728	25/47 (53%) 40/47 (85%)	1.1e-21
Arthro_defensin: domain 1 of 1	874901	9/37 (24%) 18/37 (49%)	8.4
EGF: domain 4 of 18	877913	15/47 (32%) 27/47 (57%)	1.8e-05
EGF: domain 5 of 18	919955	15/47 (32%) 27/47 (57%)	6e-05
granulin: domain 1 of 2	942957	6/16 (38%) 12/16 (75%)	0.57
EGF: domain 6 of 18	961996	15/47 (32%) 22/47 (47%)	7.9
EGF: domain 7 of 18	10021036	13/47 (28%) 27/47 (57%)	50
EGF: domain 8 of 18	10421077	15/47 (32%) 24/47 (51%)	0.00066
EGF: domain 9 of 18	10831118	16/47 (34%) 30/47 (64%)	0.00019
EGF: domain 10 of 18	11241159	14/47 (30%) 28/47 (60%)	0.00026
EGF: domain 11 of 18	11651200	14/47 (30%) 26/47 (55%)	0.0071
EGF: domain 12 of 18	12061242	13/47 (28%) 27/47 (57%)	0.00073
granulin: domain 2 of 2	12261244	10/19 (53%) 15/19 (79%)	20
EGF: domain 13 of 18	12481284	13/47 (28%) 0.000 25/47 (53%)	
EGF: domain 14 of 18	12901327		0.0037

		27/47 (57%)	
TB: domain 3 of 4	13571400	24/47 (51%) 36/47 (77%)	2e-18
EGF: domain 15 of 18	14281465	14/47 (30%) 27/47 (57%)	0.014
EGF: domain 16 of 18	14711506	15/47 (32%) 29/47 (62%)	1.2e-05
TB: domain 4 of 4	15341576	18/47 (38%) 40/47 (85%)	8.6e-18
EGF: domain 17 of 18	16251660	16/47 (34%) 26/47 (55%)	0.0004
EGF: domain 18 of 18	16661705	16/49 (33%) 31/49 (63%)	5.8e-06

EXAMPLE 38.

The NOV38 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 38A.

	Table 38A. NOV38 Sequence Analysis			
	SEQ ID NO: 171	1034 bp		
NOV38a, CG59685-01 DNA Sequence	GCGCCGCCCGGCGCTCCTGGAACCCCGGTTCGCGGCGATGCCACCCCAGC AAGCCGCCGCAGTTCAGTGCTTGGATATTTGAAAGTACAATAGTTGGTTTCCTTGCACCCCCCACCCCACCCCACCCCACCCCACCCCACCCCACTCGCATCACACACA			
	ORF Start: ATG at 291	ORF Stop:	TGA at 1008	
	SEQ ID NO: 172	239 aa	MW at 27062.1kD	
NOV38a, CG59685-01 Protein Sequence	MHLRLISWLFIILNFMEYIGSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCH PRLFFALERIGMKQIGVCLSSCPSGYYGTRYPDINKCTSKCPHEKADCDTCFNKNFCI KCKSGFYLHLGKCLDNCPEGLEANNHTMECVSSVHCEVSEWNPWSPCTKKGKTCGFKF GTETRVREIIQHPSAKGNLCPPTNETRKCTVQRKKCQKGERGTIIITKCACLNPHNLI HFSFYFL			
	SEQ ID NO: 173	585 bp		
NOV38b,			CGAAGAATGCATCCTAACGTTAGTC ATTACAATGGATGTTTGTCATGTAA	

175070296 DNA Sequence	GCCCAGACTATTTTTTGCTCTGGAAAGAATTGGCATGAAGCAGATTGGAGTATGTCTC TCTTCATGTCCAAGTGGATATTATGGAACTCGATATCCAGATATAAATAA			
	ORF Start: GGA at 1	ORF Stop:	at 586	
	SEQ ID NO: 174	195 aa	MW at 21781.8kD	
NOV38b, 175070296 Protein Sequence	GSQNASRGRRQRRMHPNVSQGCRGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCL SSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEA NNHTMECVSIVHCEVSEWNPWSPCTKKGKTCGFKRGTETRVREIIQHPSAKGNLCPPT NETRKCTVORKKCOKGERGLE			
	SEQ ID NO: 175	585 bp		
NOV38c, 175070324 DNA Sequence	GGATCCCAAAACGCCTCCCGGGGAAGGCGCCAGCGAAGAATGCATCCTAACGTTAGTC AAGGCTGCCAAGGAGGCTGTCCAACATGCTCAGATTACAATGGATGTTTGTCATGTAA GCCCAGACTATTTTTTGCTCTGGAAAGAATTGGCATGAAGCAGATTGGAGTATGTCTC TCTTCATGTCCAAGTGGATATTATGGAACTCGATATCCAGATATAAATAA			
	ORF Start: GGA at 1	ORF Stop:	at 586	
	SEQ ID NO: 176	195 aa	MW at 21753.8kD	
NOV38c, 175070324 Protein Sequence	GSQNASRGRRQRRMHPNVSQGCQGGCATCSDYNGCLSCKPRLFFALERIGMKQIGVCL SSCPSGYYGTRYPDINKCTKCKADCDTCFNKNFCTKCKSGFYLHLGKCLDNCPEGLEA NNHTMECVSIVHCEVSEWNPWSPCTKKGKTCGFKRGTETRVREIIQHPSAKGNLCPPT NETRKCTVQRKKCQKGERGLE			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 38B.

Table 38B. Comparison of NOV38a against NOV38b through NOV38c.			
Protein Sequence NOV38a Residues/ Identities/ Similarities for the Match		Identities/ Similarities for the Matched Region	
NOV38b	20216 1193	179/197 (90%) 180/197 (90%)	
NOV38c	20216 1193	180/197 (91%) 180/197 (91%)	

Further analysis of the NOV38a protein yielded the following properties shown in Table 38C.

Table 38C. Protein	Sequence Properties	NOV38a	
	•		

	0.5500 probability located in endoplasmic reticulum (membrane); 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside
SignalP analysis:	Likely cleavage site between residues 22 and 23

A search of the NOV38a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 38D.

	Table 38D. Geneseq Results for NOV38a			
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAE13170	Human SCR-1 related protein - Unidentified, 292 aa. [WO200177169-A2, 18-OCT-2001]	1216 1212	211/216 (97%) 211/216 (97%)	e-130
AAE13168	Human stem cell growth factor-like protein #4 - Homo sapiens, 272 aa. [WO200177169-A2, 18-OCT-2001]	1216 1212	211/216 (97%) 211/216 (97%)	e-130
AAE13163	Human secreted protein from clone DA228_6 - Homo sapiens, 265 aa. [WO200177169-A2, 18-OCT-2001]	1216 1212	211/216 (97%) 211/216 (97%)	e-130
AAE13150	Human stem cell growth factor-like protein #2 - Homo sapiens, 272 aa. [WO200177169-A2, 18-OCT-2001]	1216 1212	211/216 (97%) 211/216 (97%)	e-130
AAM78328	Human protein SEQ ID NO 990 - Homo sapiens, 272 aa. [WO200157190-A2, 09-AUG-2001]	1216 1212	211/216 (97%) 211/216 (97%)	e-130

In a BLAST search of public sequence databases, the NOV38a protein was found to

5 have homology to the proteins shown in the BLASTP data in Table 38E.

Table 38E. Public BLASTP Results for NOV38a				
Protein Accession Number	Protein/Organism/Length	NOV38a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9BXY4	THROMBOSPONDIN - Homo sapiens (Human), 272 aa.	1216 1212	211/216 (97%) 211/216 (97%)	e-129
CAD10541	SEQUENCE 12 FROM PATENT	2216 3213	210/215 (97%) 210/215 (97%)	e-129

	273 aa.			
Q96K87	CDNA FLJ14440 FIS, CLONE HEMBB1000915, WEAKLY SIMILAR TO SUBTILISIN-LIKE PROTEASE PACE4 PRECURSOR (EC 3.4.21) - Homo sapiens (Human), 292 aa.	1216 1212	209/216 (96%) 209/216 (96%)	e-127
Q9CSB2	2810459H04RIK PROTEIN - Mus musculus (Mouse), 217 aa (fragment).	1216 1212	196/216 (90%) 201/216 (92%)	e-120
CAD10542	SEQUENCE 31 FROM PATENT WO0177169 - Mus musculus (Mouse), 279 aa.	1216 1214	197/218 (90%) 202/218 (92%)	e-119

PFam analysis predicts that the NOV38a protein contains the domains shown in the Table 38F.

Table 38F. Domain Analysis of NOV38a			
Pfam Domain	NOV38a Match Region	Identities/ Similarities for the Matched Region	Expect Value
GASA: domain 1 of 1	1100	19/121 (16%) 59/121 (49%)	6
EB: domain 1 of 1	80129	14/64 (22%) 32/64 (50%)	6.3
Plexin_repeat: domain 1 of 1	98147	10/72 (14%) 31/72 (43%)	3.2
tsp_1: domain 1 of 1	155210	20/61 (33%) 46/61 (75%)	0.002

EXAMPLE 39.

The NOV39 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 39A.

Table 39A. NOV39 Sequence Analysis			
	SEQ ID NO: 177	1020 bp	
NOV39a, CG57167-01 DNA Sequence	GGTCCCAAGCCCTGCAGT CAGGGCCATGAAGCTGCC TCTCTGGACACCGGGTAT GGCCTCCTGCGGGCCAGA GGTGCGCGGCTGCACAAC CCCAACCTGAGCCAAGCA GTATCGGGGTCCACCAGC	ATTCTGCTCTGCCTCTTTGGGGCTGCGCTCTGCCTGACAG GCTACAGCTTTGAGCACACCTACTTTGGCCCCTTTGACCT CAGCATCTCCTGTCCTCATGAGTGCTTTGAGGCTATCCTG CGCGCGCGGTGACCCTGGTGCGGAAGGGCTGCTGGACCG CGCAATCGAACCCGGACGCGCTGCCGCAGACTACTCGGT TGACAAATGCAACGCCCACCTCATGACTCATGACGCCCTC CCCGACCGCCGACGCCCCCCCTCATGACTCATGACGCCCTC ATGACTGCGCTATCGCCACGAGTCCAGTGTCA CCCGACCGCGACGCCCACGCAGTCCAGTGCCACTCA	

	GCCCTGGACAGCCATCGACCTC GAAATCCATGACCCAGCCCTTCA CAGGTCCTGGCCCTGCTCCTCCC AGCGAGGTGAAATTCTCCAAGCA CCTTGAGCAAAATCCTAAAGGAC CATTCTAGGCCATGTGACAAGGC	CCAGGGCTCC ACCAGTGCTT CAGTCCTCCT FATAAAGATC FCAATAGTAG CCTTCAGGTG FTCACATTTA	CTCCTGCACCACCGAGGGCACCACCA FGCTGTGAGGGGTACCTCTGCAACAG CAGCCACCACCCCTCCCCGAGCACTA GCTGAAAAACACACACAGGCAAAGTTC AGGGAAGACTTCCTGGAGGAATTCAC CTGGCAAAAAGACACACAGGCAGGAGGAAGCG FCTTTACATCCTGACATACAAGGGGA CTGAGCACCTACTATGTGCAAGGCAC AA
	ORF Start: ATG at 1	ORF Stop:	TAA at 1018
	SEQ ID NO: 178	339 aa	MW at 36956.0kD
NOV39a, CG57167-01 Protein		AGQTQSNPDA	YFGPFDLRAMKLPSISCPHECFEAIL LPPDYSVVRGCTTDKCNAHLMTHDAL

Further analysis of the NOV39a protein yielded the following properties shown in Table 39B.

	Table 39B. Protein Sequence Properties NOV39a				
PSort analysis:	0.8200 probability located in outside; 0.4575 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)				
SignalP analysis:	Likely cleavage site between residues 24 and 25				

A search of the NOV39a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 39C.

	Table 39C. Geneseq Results for NOV39a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAU29261	Human PRO polypeptide sequence #238 - Homo sapiens, 251 aa. [WO200168848-A2, 20-SEP-2001]	1244 3246	243/244 (99%) 244/244 (99%)	e-148	
AAB31206	Amino acid sequence of human polypeptide PRO4356 - Homo sapiens, 251 aa. [WO200077037-A2, 21-DEC-2000]	1244 3246	243/244 (99%) 244/244 (99%)	e-148	
AAB18919	A novel polypeptide designated PRO4356 - Homo sapiens, 251 aa. [WO200056889-A2, 28-SEP-2000]	1244 3246	243/244 (99%) 244/244 (99%)	e-148	

ABB16784	Human nervous system related polypeptide SEQ ID NO 5441 - Homo sapiens, 252 aa. [WO200159063-A2, 16-AUG-2001]	1244 4247	240/244 (98%) 240/244 (98%)	e-146
AAM24186	Human EST encoded protein SEQ ID NO: 1711 - Homo sapiens, 253 aa. [WO200154477-A2, 02-AUG-2001]	1244 3248	233/246 (94%) 234/246 (94%)	e-137

In a BLAST search of public sequence databases, the NOV39a protein was found to have homology to the proteins shown in the BLASTP data in Table 39D.

	Table 39D. Public BLASTP Results for NOV39a					
Protein Accession Number	Protein/Organism/Length	NOV39a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value		
Q96DR2	CDNA FLJ30469 FIS, CLONE BRAWH1000037, WEAKLY SIMILAR TO UROKINASE PLASMINOGEN ACTIVATOR SURFACE RECEPTOR PRECURSOR - Homo sapiens (Human), 208 aa.	42244 1203	202/203 (99%) 203/203 (99%)	e-122		
Q9D7Z7	2210003I03RIK PROTEIN - Mus musculus (Mouse), 256 aa.	1244 1244	175/244 (71%) 201/244 (81%)	e-109		
Q9UJ74	HYPOTHETICAL 36.0 KDA PROTEIN (C4.4A PROTEIN) - Homo sapiens (Human), 346 aa.	20212 27222	62/203 (30%) 96/203 (46%)	6e-15		
O55162	METASTASIS-ASSOCIATED GPI- ANCHORED PROTEIN - Rattus norvegicus (Rat), 352 aa.	9232 19242	70/235 (29%) 103/235 (43%)	1e-14		
O95274	GPI-ANCHORED METASTASIS- ASSOCIATED PROTEIN HOMOLOG - Homo sapiens (Human), 346 aa.	20212 27222	62/203 (30%) 95/203 (46%)	le-14		

PFam analysis predicts that the NOV39a protein contains the domains shown in the Table 39E.

Table 39E. Domain Analysis of NOV39a					
Pfam Domain	NOV39a Match Region	Identities/ Similarities for the Matched Region	Expect Value		
	No Significant	Matches Found			

EXAMPLE 40.

The NOV40 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 40A.

Table 40A. NOV40 Sequence Analysis				
	SEQ ID NO: 179	6797 bp		
NOV40a,		AGTGGGGCGCAGAGCCGGGGCCATGCCTCC		
CG59841-01 DNA	GCTGCCGCTGGCGCGGGACAC	CCGGCAGCCGCCTGCCCCCGCTGCTGCGAGGC		
	TTCATGGTGCCCTGCAACGCC	TGCCTGATCCTGCTGGCCACCGCCACGCTCGGCTTCG		
Sequence	CGGTGCTGCTGTTCCTCAACA	ACTGTAAACCCGGGACCCACTTCACTCCAGTGCCTCC		
	GACGCCTCCTGATCCATGCCT	CGGGGTGCAGTGTGCATTTGGGGCGACGTGTGCTGTG		
		GAATGCCTGCAGGCGTGCTCGAGCCTCTACGATCCTG		
	i e	CATACGGCAGCGCGTGCGAGCTGGAGGCCACGGCCTG		
		GGTGGCGCGCAAAGGACCCTGTGGTTCGCGGGACCCC		
	TGCTCCAACGTGACCTGCAGC	TTCGGCAGCACCTGTGCGCGGCTCGGCCGACGGGCTGA		
	1	CGACCTGCCGTGGCGCCCCCGAGGGGACCGTCTGCGG		
		CGGCGAGTGCCAGCTCCTGCGCCGCGCCTGCGCCCGC		
		TTCGACGGCCCTTGTGACCCCTGTCAGGGCGCCCTCC		
	1	GTGTGAACCCGCGCACGCGCGCCCCTGAGATGCTCCT		
		CCGGCAGGCGCCAGTGTGTGGGGACGACGGAGTCACC		
		GGCCGATCGGGGCCGCCCGGGGTCTCCTCCTGCAGA		
		AGGGTCGAGACCAGTGCCCGGAGCCCTGCCGGTTCAA		
		TGGCCGTCCCGCTGCTCCTGCGACCGCGTCACCTGT		
		TGTGCCCAGGACGGGCGCACGTATGACAGTGATTGCT		
		GCAGCAGCGTGCCATCCCCAGCAAGCACCAGGGCCC		
		ATGCCTCGGGGTGCAGTGTGCATTTGGGGCGACGTGT		
		GCGTGTGAATGCCTGCAGGCGTGCTCGAGCCTCTACG		
		GCGTCACATACGGCAGCGCGTGCGAGCTGGAGGCCAC		
	1	GATCCAGGTGGCGGACCGCTGCGGGCAGTGCCGCTTT		
		ACCGGGCGCTGCGTGTGCCCCTCTGAATGCGTGGCTT		
		CCGACGGGCACACGTACCCCAGCGAGTGCATGCTGCA		
		GATCAGCCTGCACGTGGCCTCAGCTGGACCCTGTGAG		
		GCTTTTGGGGCTGTGTGCTCCGCAGGGCAGTGTGTGT		
	•	CGCCGGCCCGTGTGTGGCAGCGACGGTGTCACCTA		
	I	GGAAGCCGCCTGCCTCCAGCAGACACAGATCGAGGAG		
		CAGGCCGAGTGCGGTTCCGGAGGCTCTGGCTCTGGGG		
	3	AGCTGTGCCGGCAGCGCGTGGCATCTGGGACGAGGA		
		CTGTGACTTCAGCTGCCAGAGTGTCCCAGGCAGCCCG		
j		ACCTACAGCACCGAGTGTGAGCTGAAGAAGGCCAGGT		
	1	ACGTAGCGGCCCAGGGAGCCTGCCGAGGCCCCACCTT		
		CCCCTTACACTGTGCCCAGACGCCCTACGGCTGCTGC		
1		CCGGGGCGTGGCTGGCTGCCCCAGTGCCTGCC		
		ACGGCGCACCTGTGACCCAGCCACAGGCCAGTGCTC		
		CCTCAGGTGTGACCGCTGTGAGCCTGGCTTCTGGAAC		
		GGCCGGAGTGGCTGTACACCCTGCAGCTGTGATCCCC		
		TGTGAGCAGATGACGGGGCTGTGCTCGTGTAAGCCCGG		
		GCAGTGTCCAGACGGCCGTGCCCTGGGCCCCGCGGGC		
		SCCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTG		
İ		GCTGCGACCTGTGCGGAGATGCGCTGTGAGTTCGGTG		
		CTGTGGGTCAGATGGAGTCACATACGGCAACGAGTGT		
		CCGCCAGGGCCTGCAAATCTCTATCCAGAGCCTGGGCC		
1		CCCAGCACTCACCCGACATCTCTATCCAGAGCCTGGGCC		
		CCAGCACTCACCCGACATCTGCCTCCGTGACTGTGAC		
		CAGCAGACTGCCGGCCCCCCGGCGCCCTCCCCTGCCCCTG		
		ACCACCGTGTGGCCCGTGCTGACGGTGCCCCCCACGGC		
]		rggtggcgtccgcctttggtgaatctggcagcactgat Bagcggggaccagaggccagtgggtggctctggg		
	GGAAGCAGCGATGAGGAACTC	PAGCOGOGACCAGGAGGCCAGTGGGGGGGGGGGGGGGGGGG		

GGCTCGAGCCCTTGGAGGGCAGCAGCGTGGCCACCCTGGGCCACCTGTCGAGAGGGC TTCCTGCTACAACTCCGCGTTGGGCTGCTGCTCTGATGGGAAGACGCCCTCGCTGGAC GCAGAGGGCTCCAACTGCCCCGCCACCAAGGTGTTCCAGGGCGTCCTGGAGCTGGAGG GCGTCGAGGGCCAGGAGCTGTTCTACACGCCCGAGATGGCTGACCCCAAGTCAGAACT GTTCGGGGAGACAGCCAGGAGCATTGAGAGCACCCTGGACGACCTCTTCCGGAATTCA GACGTCAAGAAGGATTTCCGGAGTGTCCGCTTGCGGGACCTGGGGCCCGGCAAATCCG TCCGCGCCATTGTGGATGTGCACTTTGACCCCACCACAGCCTTCAGGGCACCCGACGT GGCCCGGGCCCTGCTCCGGCAGATCCAGGTGTCCAGGCGCCCGGTCCTTGGGGGTGAGG CGGCCGCTGCAGGAGCACGTGCGATTTATGGACTTTGACTGGTTTCCTGCGTTTATCA CGGGGGCCACGTCAGGAGCCATTGCTGCGGGAGCCACGGCCAGAGCCACCACTGCATC GCGCCTGCCGTCCTCTGCTGTGACCCCTCGGGCCCCGCACCCCAGTCACAAAGCCAG CCCGTTGCCAAGACCACGGCAGCCCCCACCACCACGTCGGCCCCCACCACTGCCCCCA GCCGTGTGCCCGGACGTCGGCCCCCGGCCCCCAGCAGCCTCCAAAGCCCTGTGACTC ACAGCCCTGCTTCCACGGGGGACCTGCCAGGACTGGGCATTGGGCGGGGGCTTCACC TGCAGCTGCCCGGCAGGCAGGGGAGGCGCCGTCTGTGAGAAGGTGCTTGGCGCCCCTG TGCCGGCCTTCGAGGGCCGCTCCTTCCTGGCCTTCCCCACCCTCCGCGCCTACCACAC GCTGCGCCTGGCACTGGAATTCCGGGCGCTGGAGCCTCAGGGGCTGCTGCTGTACAAT GGCAACGCCCGGGGCAAGGACTTCCTGGCATTGGCGCTGCTAGATGGCCGCGTGCAGC TCAGGTTTGACACAGGTTCGGGGCCGGCGGTGCTGACCAGTGCCGTGCCGGTAGAGCC GGGCCAGTGGCACCGCCTGGAGCTGTCCCGGCACTGGCGCCGGGGCACCCTCTCGGTG GATGGTGAGACCCCTGTTCTGGGCGAGAGTCCCAGTGGCACCGACGGCCTCAACCTGG ACACAGACCTCTTTGTGGGCGGCGTACCCGAGGACCAGGCTGCCGTGGCGCTGGAGCG GACCTTCGTGGGCCCCGGCCTGAGGGGGTGCATCCGTTTGCTGGACGTCAACAACCAG CGCCTGGAGCTTGGCATTGGGCCGGGGGCTGCCACCCGAGGCTCTGGCGTGGGCGAGT GCGGGGACCACCCCTGCCTGCCAACCCCTGCCATGGCGGGGCCCCATGCCAGAACCT GGAGGCTGGAAGGTTCCATTGCCAGTGCCCGCCCGGCCGCGTCGGACCAACCTGTGCC GATGAGAAGAGCCCCTGCCAGCCCAACCCCTGCCATGGGGCGGCGCCCTGCCGTGTGC TGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCCCTGGGGCGTGAGGGCACCTTCTGCCA GACAGCCTCGGGGCAGGACGGCTCTGGGCCCTTCCTGGCTGACTTCAACGGCTTCTCC CACCTGGAGCTGAGAGGCCTGCACACCTTTGCACGGGACCTGGGGGAGAAGATGGCGC TGGAGGTCGTGTTCCTGGCACGAGGCCCCAGCGGCCTCCTGCTCTACAACGGGCAGAA GACGGACGGCAAGGGGGACTTCGTGTCGCTGGCACTGCGGGACCGCCGCCTGGAGTTC CGCTACGACCTGGGCAAGGGGGCAGCGGTCATCAGGAGCAGGGAGCCAGTCACCCTGG GAGCCTGGACCAGGGTCTCACTGGAGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGG CGACGCCCCGTGTGTTGGGGGAGTCCCCGGTTCCGCACACCGTCCTCAACCTGAAG GAGCCGCTCTACGTAGGGGGCGCTCCCGACTTCAGCAAGCTGGCCCGTGCTGCTGCCG TGTCCTCTGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCGGAGGCCGCCAGCTGCT CCTATGTGTGCCTGTGTCCCGGGGGATTCTCAGGACCGCACTGCGAGAAGGGGCTGGT GGAGAAGTCAGCGGGGACGTGGATACCTTGGCCTTTGACGGGCGGACCTTTGTCGAG TACCTCAACGCTGTGACCGAGAGCGAGAAGGCACTGCAGAGCAACCACTTTGAACTGA GCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCG GGCAGACTATGTGGCACTGGCCATTGTGGACGGCCACCTGCAACTGAGCTACAACCTG GGCTCCCAGCCCGTGGTGCTGCGTTCCACCGTGCCCGTCAACACCAACCGCTGGTTGC GGGTCGTGGCACATAGGGAGCAGAGGGAAGGTTCCCTGCAGGTGGGCAATGAGGCCCC TGTGACCGGCTCCTCCCCGCTGGGCGCCACGCAGCTGGACACTGATGGAGCCCTGTGG CTTGGGGGCCTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACGGCACAG GCTTTGTGGGCTGCTTGCGGGATGTGGTGGTGGGCCGGCACCCGCTGCACCTGCTGGA GGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCATGAGCTGGCACCAGA GCCCGCGCCCGCTGTAATTATTTTCTATTTTTGTAAACTTGTTGCTTTTTGATATGA TTTTCTTGCCTGAGTGTTGGCCGGAGGGACTGCTGGCCCGGCCTCCCTTCCGTCCAGG CAGCCGTGCTGCAGACAGACCTAGTGCTGAGGGATGGACAGGCGAGGTGGCAGCGTGG AGGGCTCGGCGTGGATGGCAGCCTCAGGACACACCCCTGCCTCAAGGTGCTGAGCC CCCGCCTTGCACTGCGCCTGCCCCACGGTGTCCCCGCCGGGAAGCAGCCCCGGCTCCT GTCTGATGGGGCCCTTCCTCCGGGTGACCCCACAGGGCCTTTCCAAGCCCCTATTTGA GCTGCTCCTTCCTGTGTGTGCTCTGGACCCTGCCTCGGCCTCCTGCGCCAATACTGTG CAGCCCAGGCTGCTGAGGAGCAGAGCCAGACCAGGCCGATCTGGGTGTCCTGACC CTCAGCTGGCCCTGCCCAGCCACCCTGGACATGACCGTATCCCTCTGCCACACCCCAG

	GCCCTGCGAGGGGCTATCGAGAGGAGCTCACTGTGGGATGGGGTTGACCTCTGCCGCCTGCCT			
	SEO ID NO: 180	1931 aa	MW at 201789.3kD	
NOV40a, CG59841-01 Protein Sequence	VPPTPPDPCLGVQCAFGATCA TACTLGREIQVARKGPCGSRDI VCGSDGADYPGECQLLRRACAI MLLRPESCPARQAPVCGDDGV' RFNAVCLSRRGRPRCSCDRVT' QGPCDQAPSPCLGVQCAFGAT' EATACTLGREIQVADRCGQCR: MLHVHACTHQISLHVASAGPCI VTYGSACELREAACLQQTQIBDDEDSEDGPCVCDFSCQSVPGS: PTFAPLPPVAPLHCAQTPYGCC QCSCRPGVGGLRCDRCEPGFWI KPGVAGPKCGQCPDGRALGPAI TCPEANATKVCGSDGVTYGNE: TVTTPGLLLSQALPAPPGALP: PTAPSPAPSLVASAFGESGST: ERASCYNSALGCCSDGKTPSLI SELFGETARSIESTLDDLFRN: PDVARALLRQIQVSRRRSLGV' TASRLPSSAVTPRAPHPSHTSCCDSQPCFHGGTCQDWALGGGF' YHTLRLALEFRALEPQGLLLY' VEPGQWHRLELSRHWRGTLS LERTFVGAGLRGCIPLLDVNN: QNLEAGRFHCQCPPGRVGFTCFCQTASGQDGSGPFLADFNGF GQKTDGKGDFVSLALRDRLE RVGDGPRVLGESPVPHTVLNL QULTPEHVLRQVDVTSFAGHP GLVEKSAGDVDTLAFDGRTFV TERADYVALAIVDGHLQLSYN	VKNGQAACECL(PCSNVTCSFGS: RQENVFKKFDG: RQENVFKKFDG: RQENVFKKFDG: RYENDCVMGRS(CDGAYRPVCAQI CAVKNGQAACE: FGALCEAETGR(ETCGDAVCAFG, EARAGPCEQAE: PVCGSDGVTYS' CQDNITAARGV(NFRGIVTDGRS; GCEADASAPAT' CQLKTIACRQG: LAPSSTAHSQT' DGSSDEELSGD(DAEGSNCPATK; SDVKKDFRSVR: RRPLQEHVRFM QPVAKTTAAPT' TCSCPAGRGGA' NGNARGKDFLA VDGETPVLGES QRLELGIGPGAADACKSPCQLAPSTALGCAPSTALGCAPSCAPCLAPSTALGCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPC	LLATATLGFAVLLFLNNCKPGTHFTP QACSSLYDPVCGSDGVTYGSACELEA ICARSADGLTASCLCPATCRGAPEGT PCDPCQGALPDPSRSCRVNPRTRPE GAARGLLLQKVRSGQCQGRDQCPEPC DGRTYDSDCWRQQAECRQQRAIPSKH CLQACSSLYDPVCGSDGVTYGSACEL CVCPSECVALAQPVCGSDGHTYPSEC AVCSAGQCVCPRCEHPPPGPVCGSDG CGSGGSGSGEDGDCEQELCRQRGGIW TECELKKARCESQRGLYVAAQGACRG GLAGCPSACQCNPHGSYGGTCDPATG GCTPCSCDPQGAVRDDCEQMTGLCSC CAEMRCEFGARCVEESGSAHCVCPML LQISIQSLGPCQEAVAPSTHPTSASV TPPPSSRPRTTASVPRTTVWPVLTVP QEASGGGSGGLEPLEGSSVATPGPPV VFQGVLELEGVEGQELFYTPEMADPK LRDLGPGKSVRAIVDVHFDPTTAFRA DFDWFPAFITGATSGAIAAGATARAT TRRPPTTAPSRVPGRRPPAPQQPPKP VCEKVLGAPVPAFEGSFLAFFTLRA LALLDGRVQLRFDTGSGPAVLTSAVP PSGTDGLNLDTDLFVGGVPEDQAAVA ATRGSGVGECGDHPCLPNPCHGGAPC CHGAAPCRVLPEGGAQCECPLGREGT ARDLGEKMALEVVFLARGPSGLLLYN IRSREPVTLGAWTRVSLERNGRKGAL FSKLARAAVSSGFDGAIQLVSLGGR GASCVPREAAYVCLCPGGFSGPHCEK ALQSNHFELSLRTEATQGLVLWSGKA VPVNTNRWLRVVAHREQREGSLQVGN PALPKAYGTGFVGCLRDVVVGRHPLH	

Further analysis of the NOV40a protein yielded the following properties shown in Table 40B.

	Table 40B. Protein Sequence Properties NOV40a				
PSort analysis:	0.7900 probability located in plasma membrane; 0.3000 probability located in microbody (peroxisome); 0.3000 probability located in Golgi body; 0.2000 probability located in endoplasmic reticulum (membrane)				
SignalP analysis:	Likely cleavage site between residues 57 and 58				

A search of the NOV40a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 40C.

	Table 40C. Geneseq Results for NOV40a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAW26609	Human agrin - Homo sapiens, 492 aa. [WO9721811-A2, 19-JUN-1997]	14731931 22492	458/471 (97%) 459/471 (97%)	0.0	
AAB93754	Human protein sequence SEQ ID NO:13424 - Homo sapiens, 413 aa. [EP1074617-A2, 07-FEB-2001]	465850 1386	382/386 (98%) 385/386 (98%)	0.0	
AAY73993	Human prostate tumor EST fragment derived protein #180 - Homo sapiens, 416 aa. [DE19820190-A1, 04-NOV-1999]	15161931 1416	416/416 (100%) 416/416 (100%)	0.0	
AAB31889	Amino acid sequence of a human protein - Homo sapiens, 4393 aa. [WO200105422-A2, 25-JAN-2001]	12371930 36394393	253/790 (32%) 352/790 (44%)	7e-90	
ABB10233	Human cDNA SEQ ID NO: 541 - Homo sapiens, 432 aa. [WO200154474-A2, 02-AUG-2001]	14891928 3429	142/449 (31%) 216/449 (47%)	2e-53	

In a BLAST search of public sequence databases, the NOV40a protein was found to have homology to the proteins shown in the BLASTP data in Table 40D.

Table 40D. Public BLASTP Results for NOV40a				
Protein Accession Number	Protein/Organism/Length	NOV40a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
O00468	AGRIN PRECURSOR - Homo sapiens (Human), 2026 aa (fragment).	511931 1372026	1843/1890 (97%) 1855/1890 (97%)	0.0
P25304	Agrin precursor - Rattus norvegicus (Rat), 1959 aa.	11931 11959	1561/1964 (79%) 1678/1964 (84%)	0.0
P31696	Agrin precursor - Gallus gallus (Chicken), 1955 aa.	511928 401952	1178/1931 (61%) 1416/1931 (73%)	0.0
Q90404	Agrin - Discopyge ommata (Electric ray), 1328 aa (fragment).	5981929 11325	731/1353 (54%) 930/1353 (68%)	0.0

Q96IC1	UNKNOWN (PROTEIN FOR IMAGE:3544662) - Homo sapiens	14441931 1488	488/488 (100%) 488/488 (100%)	0.0
1	(Human), 488 aa (fragment).			

PFam analysis predicts that the NOV40a protein contains the domains shown in the Table 40E.

Table 40E. Domain Analysis of NOV40a				
Pfam Domain	NOV40a Match Region	Identities/ Similarities for the Matched Region	Expect Value	
thyroglobulin_1: domain 1 of 1	89133	14/82 (17%) 31/82 (38%)	8.7	
kazal: domain 1 of 9	89133	24/61 (39%) 38/61 (62%)	3.6e-19	
EGF: domain 1 of 11	133176	13/47 (28%) 23/47 (49%)	23	
kazal: domain 2 of 9	163208	21/62 (34%) 33/62 (53%)	5.1e-13	
kazal: domain 3 of 9	233280	18/61 (30%) 33/61 (54%)	7.9e-12	
EGF: domain 2 of 11	286312	8/47 (17%) 19/47 (40%)	39	
kazal: domain 4 of 9	307352	21/61 (34%) 38/61 (62%)	4.1e-16	
kazal: domain 5 of 9	381426	23/62 (37%) 39/62 (63%)	1.7e-13	
EB: domain 1 of 1	393453	16/68 (24%) 35/68 (51%)	3.6	
EGF: domain 3 of 11	423453	9/47 (19%) 17/47 (36%)	1.3e+02	
kazal: domain 6 of 9	441485	19/61 (31%) 38/61 (62%)	1.5e-18	
EGF: domain 4 of 11	493518	10/47 (21%) 19/47 (40%)	99	
kazal: domain 7 of 9	506550	26/62 (42%) 37/62 (60%)	1.5e-17	
kazal: domain 8 of 9	591636	24/62 (39%) 40/62 (65%)	1.2e-16	

EGF: domain 5 of 11	675709	13/49 (27%)	24
		23/49 (47%)	
laminin_EGF: domain 1 of 2	679730	28/61 (46%) 46/61 (75%)	1.2e-20
EGF: domain 6 of 11	735763	10/49 (20%) 20/49 (41%)	18
laminin_EGF: domain 2 of 2	733777	21/59 (36%) 37/59 (63%)	4e-11
EGF: domain 7 of 11	787823	12/47 (26%) 22/47 (47%)	5.1
kazal: domain 9 of 9	809855	25/62 (40%) 41/62 (66%)	5.3e-18
SEA: domain 1 of 1	10161138	39/132 (30%) 112/132 (85%)	1.4e-36
EGF: domain 8 of 11	12191252	16/47 (34%) 24/47 (51%)	0.00054
laminin_G: domain 1 of 3	12861417	70/162 (43%) 119/162 (73%)	3.1e-53
EGF: domain 9 of 11	14391471	16/47 (34%) 27/47 (57%)	5.1e-06
EGF: domain 10 of 11	14781510	16/47 (34%) 25/47 (53%)	0.0002
laminin_G: domain 2 of 3	15541685	70/161 (43%) 119/161 (74%)	6.6e-49
EGF: domain 11 of 11	17041738	14/47 (30%) 25/47 (53%)	2.3e-06
laminin_G: domain 3 of 3	17831914	59/161 (37%) 125/161 (78%)	1.7e-50

EXAMPLE 41.

The NOV41 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 41A.

Table 41A. NOV41 Sequence Analysis			
	SEQ ID NO: 181	770 bp	
NOV41a, CG59895-01 DNA Sequence	CCACTGCTAGAGAAAGAC CCAAGATGATGCTGCTGTT AGAAAACATTTCAGGAGAA ATAGAAGAAGATGGAAGC CTTCTCTGACTTTTAAAT TTGTAAACCAACAGAAAA	ACAGACTGGATATAAAGACAGATGAGCTGGGGAGTGGAGC CCATCCCCAGCAACTGTGGAGGAGGAGGCAGTGCTGTCCCTTA TGCTGTGTCTGGGGTTGACCCTCGTCTGTGCCCAGGAGGA STGGTATTCGGTTCTCTTGGCCTCTGACTGCAGGGAAAAG ATGAGGGTTTTTGTCAAACACACTTGATTACCTGGGGAATT TGCATGAAATAAATGGAAACTGTACTGAAATTAATTTGGC SAACGGACTTAATGTCATGACATACTTGAAACGGACTAT TATAACAAGAATATCAAGAATGGGGAAACATTCCTAATGC	

	TGGAGCTCTATGGTAGAACACCGGATGTGAGCTCACAACTCAAGGAGAGGTTTGTGAA ATATTGTGAAGAACATGGGATTGATAAGGAAAACATATTTGACTTGACCAAAACAGAT CGCTGTCTCCAGGCCCGAGATGAGGGAGCAGCCTAGGACTCCGGGTTGGTGATCTCTG ACACCGGTGGAGAGAGGGTGGCCCAGGGACCAGTGCCTTCCAAAAGCATTAGGGGTTT GCACCCAAAGATACCATAAAAATAATTTGGTAGGAAAGCTTGTGGGAAAATCTTGAAA			
	TCTGGAGTTGGAAGGT			
	ORF Start: ATG at 122 ORF Stop: TAG at 614			
	SEQ ID NO: 182	164 aa	MW at 18854.2kD	
NOV41a, CG59895-01 Protein Sequence	MMLLLLCLGLTLVCAQEEENISGEWYSVLLASDCREKIEEDGSMRVFVKHIDYLGNSS LTFKLHEINGNCTEINLACKPTEKNGLNVIDILETDYDNYIYFYNKNIKNGETFLMLE LYGRTPDVSSQLKERFVKYCEEHGIDKENIFDLTKTDRCLQARDEGAA			
	SEQ ID NO: 183	597 bp		
NOV41b, CG59895-02 DNA Sequence	CCCTCGTCTGTGCCCAGGAGGAAC GTCAAAGATTTCAGGAGAGTGGTA ATAGAAGAAGATGGAAGCATGAGC CTTCTCTGACTTTTAAATTGCATC GGCTTGTAAACCAACAGAAAAGAA GTCATTGACATACTTGAAACGGAC TCAAGAATGGGGAAACATTCCTAA CTCACAACTCAAGGAGAGGTTTG	BAAAACAATG ATTCGGTTCT BGTTTTTGTC BAAATAGAAA ATTGTGTTGT CTATGATAAT ATGCTGGAGC IGAAATATTG	CTGCTGTTGCTGTGTCTGGGGTTGA ATGCTGTGACAAGCAACTTCGATCT CTTGGCCTCTGACTGCAGGGAAAAG AAACACATTGATTACCTGGGGAATT ATGGAAACTGTACTGAAATTAATTT TTCCTCCACAGATAACGGACTTAAT TATATATATTTTTATAACAAGAATA TCTATGGTAGAACCCGGATGTGAG TGAAGAACATGGGATTGATAAGGAA GGGTTTCTGGTATTCTCTTCCTAAA	
	ORF Start: ATG at 28	ORF Stop:	TAA at 577	
	SEQ ID NO: 184	183 aa	MW at 20803.3kD	
NOV41b, CG59895-02 Protein Sequence	MMLLLLCLGLTLVCAQEEENNDAVTSNFDLSKISGEWYSVLLASDCREKIEEDGSMRV FVKHIDYLGNSSLTFKLHEIENGNCTEINLACKPTEKNCVVSSTDNGLNVIDILETDY DNYIYFYNKNIKNGETFLMLELYGRTPDVSSQLKERFVKYCEEHGIDKENIFDLTKVG KSGFLVFSS			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 41B.

Table 41B. Comparison of NOV41a against NOV41b and NOV41c.			
Protein Sequence NOV41a Residues/ Match Residues		Identities/ Similarities for the Matched Region	
NOV41b	13154 13175	124/163 (76%) 125/163 (76%)	

Further analysis of the NOV41a protein yielded the following properties shown in Table 41C.

Table 41C. Protein Sequence Properties NOV41a				
PSort analysis:	0.4180 probability located in outside; 0.1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen)			
SignalP analysis:	Likely cleavage site between residues 16 and 17			

A search of the NOV41a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 41D.

	Table 41D. Geneseq Results for NOV41a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV41a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
AAG68142	Rat TRDH-110 protein sequence SEQ ID NO:10 - Rattus norvegicus, 181 aa. [WO200173022-A1, 04-OCT-2001]	1159 3180	94/179 (52%) 121/179 (67%)	5e-45	
AAU29121	Human PRO polypeptide sequence #98 - Homo sapiens, 180 aa. [WO200168848-A2, 20-SEP-2001]	2160 3180	87/179 (48%) 117/179 (64%)	2e-40	
AAB65225	Human PRO1054 (UNQ519) protein sequence SEQ ID NO:256 - Homo sapiens, 180 aa. [WO200073454-A1, 07-DEC-2000]	2160 3180	87/179 (48%) 117/179 (64%)	2e-40	
AAY66702	Membrane-bound protein PRO1054 - Homo sapiens, 180 aa. [WO9963088- A2, 09-DEC-1999]	2160 3180	87/179 (48%) 117/179 (64%)	2e-40	
AAY25674	Horse allergen 1575778 Equ c 1 protein fragment - Equus sp, 187 aa. [WO9934826-A1, 15-JUL-1999]	1164 1185	92/185 (49%) 110/185 (58%)	2e-39	

In a BLAST search of public sequence databases, the NOV41a protein was found to have homology to the proteins shown in the BLASTP data in Table 41E.

Table 41E. Public BLASTP Results for NOV41a				
Protein Accession Number	Protein/Organism/Length	NOV41a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P11590	Major urinary protein 4 precursor (MUP 4) - Mus musculus (Mouse), 178 aa.	2160 1178	104/179 (58%) 124/179 (69%)	le-47
Q63213	ALPHA-2U GLOBULIN (RAT SALIVARY GLAND (ALPHA)2(MU) GLOBULIN, TYPE 1) - Rattus norvegicus (Rat), 181 aa.	1159 3180	98/179 (54%) 124/179 (68%)	2e-47
S05440	alpha-2u-globulin precursor - rat, 179 aa.	1158 3179	97/178 (54%) 123/178 (68%)	6e-47

Q9JЛ1	ALPHA-2U GLOBULIN - Rattus norvegicus (Rat), 181 aa.	1159 3180	96/179 (53%) 123/179 (68%)	4e-46
Q9JJI3	ALPHA-2U GLOBULIN - Rattus norvegicus (Rat), 181 aa.	1159 3180	96/179 (53%) 122/179 (67%)	2e-45

PFam analysis predicts that the NOV41a protein contains the domains shown in the Table 41F.

Table 41F. Domain Analysis of NOV41a				
Pfam Domain NOV41a Match Region Similarities Expect for the Matched Region				
lipocalin: domain 1 of 1	20155	50/157 (32%) 111/157 (71%)	3e-32	

EXAMPLE 42.

The NOV42 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 42A.

ACATCAGGGACCTCTCCATCCATCATACATTCTCTCGCTGCGTCACAGTCCATGGCTC CAATGGCTTGTTGATCAAGGACGTTGTGGGCCTATAACTCTTTGGGCCACTGCTTCTTC ACGGAAGATGGGCCGGAGGAACGCAACACTTTTGACCACTGTCTTGGCCTCCTTGTCA AGTCTGGAACCCTCCTCCCCTCGGACCGTGACAGCAAGATGTGCAAGATGATCACAGA GGACTCCTACCCAGGGTACATCCCCAAGCCCAGGCAAGACTGCAATGCTGTGTCCACC TTCTGGATGGCCAATCCCAACAACAACCTCATCAACTGTGCCGCTGCAGGATCTGAGG **AAACTGGATTTTGGTTTATTTTTCACCACGTACCAACGGGCCCCTCCGTGGGAATGTA** CTCCCCAGGTTATTCAGAGCACATTCCACTGGGAAAATTCTATAACAACCGAGCACAT TCCAACTACCGGGCTGGCATGATCATAGACAACGGAGTCAAAACCACCGAGGCCTCTG CCAAGGACAAGCGGCCGTTCCTCTCAATCATCTCTGCCAGATACAGCCCTCACCAGGA CGCCGACCCGCTGAAGCCCCGGGAGCCGGCCATCATCAGACACTTCATTGCCTACAAG AACCAGGACCACGGGCCTGGCTGCGCGGGGGGATGTGTGGCTGGACAGCTGCCGGT TTGCTGACAATGGCATTGGCCTGACCCTGGCCAGTGGTGGAACCTTCCCGTATGACGA CGGCTCCAAGCAAGAGATAAAGAACAGCTTGTTTGTTGGCGAGAGTGGCAACGTGGGG ACGGAAATGATGGACAATAGGATCTGGGGCCCTGGCGGCTTGGACCATAGCGGAAGGA CCCTCCCTATAGGCCAGAATTTTCCAATTAGAGGAATTCAGTTATATGATGGCCCCAT CAACATCCAAAACTGCACTTTCCGAAAGTTTGTGGCCCTGGAGGGCCGGCACACCAGC GCCCTGGCCTTCCGCCTGAATAATGCCTGGCAGAGCTGCCCCCATAACAACGTGACCG GCATTGCCTTTGAGGACGTTCCGATTACTTCCAGAGTGTTCTTCGGAGAGCCTGGGCC CTGGTTCAACCAGCTGGACATGGATGGGGATAAGACATCTGTGTTCCATGACGTCGAC GGCACCCAGACTGCATCAATGTTCCCGACTGGAGAGGGGCCATTTGCAGTGGGTGCTA TGCACAGATGTACATTCAAGCCTACAAGACCAGTAACCTGCGAATGAAGATCATCAAG AATGACTTCCCCAGCCACCCTCTTTACCTGGAGGGGGGCGCTCACCAGGAGCACCCATT ACCAGCAATACCAACCGGTTGTCACCCTGCAGAAGGGCTACACCATCCACTGGGACCA GACGGCCCCGCCGAACTCGCCATCTGGCTCATCAACTTCAACAAGGGCGACTGGATC CGAGTGGGGCTCTGCTACCCGCGAGGCACCACATTCTCCATCCTCTCGGATGTTCACA ATCGCCTGCTGAAGCAAACGTCCAAGACGGGCGTCTTCGTGAGGACCTTGCAGATGGA CAAAGTGGAGCAGAGCTACCCTGGCAGGAGCCACTACTACTGGGACGAGGACTCAGGG TGAAAGGCTGTGAGAGGATAAAGATTAAAGCTCTGATTCCAAAGAACGCAGGCGTCAG TGACTGCACAGCCACAGCTTACCCCAAGTTCACCGAGAGGGCTGTCGTAGACGTGCCG ATGCCCAAGAAGCTCTTTGGTTCTCAGCTGAAAACAAAGGACCATTTCTTGGAGGTGA AGATGGAGAGTTCCAAGCAGCACTTCTTCCACCTCTGGAACGACTTCGCTTACATTGA AGTGGATGGGAAGAAGTACCCCAGTTCGGAGGATGGCATCCAGGTGGTGATTGAC GGGAACCAAGGGCGCGTGGTGAGCCACACGAGCTTCAGGAACTCCATTCTGCAAGGCA TACCATGGCAGCTTTTCAACTATGTGGCGACCATCCCTGACAATTCCATAGTGCTTAT GGCATCAAAGGGAAGATACGTCTCCAGAGGCCCATGGACCAGAGTGCTGGAAAAGCTT GGGGCAGACAGGGGTCTCAAGTTGAAAGAGCAAATGGCATTCGTTGGCTTCAAAGGCA GCTTCCGGCCCATCTGGGTGACACTGGACACTGAGGATCACAAAGCCAAAATCTTCCA AGTTGTGCCCATCCCTGTGGTGAAGAAGAAGAAGTTG**TGA**GGACAGCTGCCGCCCGGT GCCACCTCGTGGTAGACTATGACGGTGAC

ORF Start: ATG at 22 ORF Stop: TGA at 4156
SEQ ID NO: 186 1378 aa MW at 155014.9kD

NOV42a, CG59889-01 Protein Sequence

MYYTISRKHILETHLPQNTQSREGAGPNPGATPPPPPVPRASRRLTKRLEREDRSTAL
QPGQQSETLSQKKKRSKNNYAVCLDILIFVLISFFLPLKTPLGETSAAGCPDQSPELQ
PWNPGHDQDHHVHIGQGKTLLLTSSATVYSIHISEGGKLVIKDHDEPIVLRTRHILID
NGGELHAGSALCPFQGNFTIILYGRADEGIQPDPYYGLKYIGVGKGGALELHGQKKLS
WTFLNKTLHPGGMAEGGYFFERSWGHRGVIVHVIDPKSGTVIHSDRFDTYRSKKESER
LVQYLNAVPDGRILSVAVNDEGSRNLDDMARKAMTKLGSKHFLHLGFRVEWTEWFDHD
KVSQTKGGEKISDLWKAHPGKICNRPIDIQQATTMDGVNLSTEVVYKKGQDYRFACYD
RGRACRSYRVRFLCGKPVRPKLTVTIDTNVNSTILNLEDNVQSWKPGDTLVIASTDYS
MYQAEEFQVLPCRSCAPNQVKVAGKPMYLHIGEEIDGVDMRAEVGLLSRNIIVMGEME
DKCYPYRNHICNFFDFDTFGGHIKFALGFKAAHLEGTELKHMGQQLVGQYPIHFHLAG
DVDERGGYDPPTYIRDLSIHHTFSRCVTVHGSNGLLIKDVVGYNSLGHCFFTEDGPEE
RNTFDHCLGLLVKSGTLLPSDRDSKMCKMITEDSYPGYIPKPRQDCNAVSTFWMANPN
NNLINCAAAGSEETGFWFIFHHVPTGPSVGMYSPGYSEHIPLGKFYNNRAHSNYRAGM
IIDNGVKTTEASAKDKRPFLSIISARYSPHQDADPLKPREPAIIRHFIAYKNQDHGAW
LRGGDVWLDSCRFADNGIGLTLASGGTFPYDDGSKQEIKNSLFVGESGNVGTEMMDNR

IWGPGGLDHSGRTLPIGQNFPIRGIQLYDGPINIQNCTFRKFVALEGRHTSALAFRLN
NAWQSCPHNNVTGIAFEDVPITSRVFFGEPGPWFNQLDMDGDKTSVFHDVDGSVSEYP
GSYLTKNDNWLVRHPDCINVPDWRGAICSGCYAQMYIQAYKTSNLRMKIIKNDFPSHP
LYLEGALTRSTHYQQYQPVVTLQKGYTIHWDQTAPAELAIWLINFNKGDWIRVGLCYP
RGTTFSILSDVHNRLLKQTSKTGVFVRTLQMDKVEQSYPGRSHYYWDEDSGLLFLKLK
AQNEREKFAFCSMKGCERIKIKALIPKNAGVSDCTATAYPKFTERAVVDVPMPKKLFG
SQLKTKDHFLEVKMESSKQHFFHLWNDFAYIEVDGKKYPSSEDGIQVVVIDGNQGRVV
SHTSFRNSILQGIPWQLFNYVATIPDNSIVLMASKGRYVSRGPWTRVLEKLGADRGLK
LKEQMAFVGFKGSFRPIWVTLDTEDHKAKIFQVVPIPVVKKKKL

SEO ID NO: 187 7233 bp

NOV42b, CG59889-02 DNA Sequence

GAGCTAGCGCTCAAGCAGAGCCCAGCGCGGTGCTATCGGACAGAGCCTGGCGAGCGCA AGCGGCGCGGGAGCCAGCGGGGCTGAGCGCGGCCAGGGTCTGAACCCAGATTTCCCA GACTAGCTACCACTCCGCTTGCCCACGCCCCGGGAGCTCGCGGCGCCTGGCGGTCAGC GACCAGACGTCCGGGGCCGCTGCGCTCCTGGCCCGCGAGGCGTGACACTGTCTCGGCT ACAGACCCAGAGGGAGCACACTGCCAGG**ATG**GGAGCTGCTGGGAGGCAGGACTTCCTC TTCAAGGCCATGCTGACCATCAGCTGGCTCACTCTGACCTGCTTCCCTGGGGCCACAT CCACAGTGGCTGCTGGGTGCCCTGACCAGAGCCCTGAGTTGCAACCCTGGAACCCTGG CCATGACCAAGACCACCATGTGCATATCGGCCAGGGCAAGACACTGCTGCTCACCTCT TCTGCCACGGTCTATTCCATCCACATCTCAGAGGGAGGCAAGCTGGTCATTAAAGACC ACGACGAGCCGATTGTTTTGCGAACCCGGCACATCCTGATTGACAACGGAGGAGAGCT GCATGCTGGGAGTGCCCTCTGCCCTTTCCAGGGCAATTTCACCATCATTTTGTATGGA AGGGCTGATGAAGGTATTCAGCCGGATCCTTACTATGGTCTGAAGTACATTGGGGTTG GTAAAGGAGGCGCTCTTGAGTTGCATGGACAGAAAAGCTCTCCTGGACATTTCTGAA CAAGACCCTTCACCCAGGTGGCATGGCAGAAGGAGGCTATTTTTTTGAAAGGAGCTGG GGCCACCGTGGAGTTATTGTTCATGTCATCGACCCCAAATCAGGCACAGTCATCCATT CTGACCGGTTTGACACCTATAGATCCAAGAAAGAGAGTGAACGTCTGGTCCAGTATTT GAACGCGGTGCCCGATGGCAGGATCCTTTCTGTTGCAGTGAATGATGAAGGTTCTCGA **AATCTGGATGACATGGCCAGGAAGGCGATGACCAAATTGGGAAGCAAACACTTCCTGC** ACCTTGGATTTAGACACCCTTGGAGTTTTCTAACTGTGAAAGGAAATCCATCATCTTC AGTGGAAGACCATATTGAATATCATGGACATCGAGGCTCTGCTGCTGCCCGGGTATTC TTCAAGACGTGGAGTGGACGGAGTGGTTCGATCATGATAAAGTATCTCAGACTAAAGG TGGGGAGAAAATTTCAGACCTCTGGAAAGCTCACCCAGGAAAAATATGCAATCGTCCC ATTGATATACAGGCCACTACAATGGATGGAGTTAACCTCAGCACCGAGGTTGTCTACA AAAAAGGCCAGGATTATAGGTTTGCTTGCTACGACCGGGGCAGAGCCTGCCGGAGCTA CCGTGTACGGTTCCTCTGTGGGAAGCCTGTGAGGCCCAAACTCACAGTCACCATTGAC ACCAATGTGAACAGCACCATTCTGAACTTGGAGGATAATGTACAGTCATGGAAACCTG GAGATACCCTGGTCATTGCCAGTACTGATTACTCCATGTACCAGGCAGAAGAGTTCCA GGTGCTTCCCTGCAGATCCTGCGCCCCCAACCAGGTCAAAGTGGCAGGGAAACCAATG TGAGCCGGAACATCATAGTGATGGGGGAGATGGAGGACAAATGCTACCCCTACAGAAA CCACATCTGCAATTTCTTTGACTTCGATACCTTTGGGGGGCCACATCAAGTTTGCTCTG GGATTTAAGGCAGCACACTTGGAGGGCACGGAGCTGAAGCATATGGGACAGCAGCTGG TGGGTCAGTACCCGATTCACTTCCACCTGGCCGGTGATGTAGACGAAAGGGGAGGTTA TGACCCACCCACATACATCAGGGACCTCTCCATCCATCATACATTCTCTCGCTGCGTC ACAGTCCATGGCTCCAATGGCTTGTTGATCAAGGACGTTGTGGGCTATAACTCTTTGG GCCACTGCTTCTTCACGGAAGATGGGCCGGAGGAACGCAACACTTTTGACCACTGTCT TGGCCTCCTTGTCAAGTCTGGAACCCTCCTCCCCTCGGACCGTGACAGCAAGATGTGC AAGATGATCACAGAGGACTCCTACCCAGGGTACATCCCCAAGCCCAGGCAAGACTGCA ATGCTGTGTCCACCTTCTGGATGGCCAATCCCAACAACAACCTCATCAACTGTGCCGC TGCAGGATCTGAGGAAACTGGATTTTGGTTTATTTTTCACCACGTACCAACGGGCCCC TCCGTGGGAATGTACTCCCCAGGTTATTCAGAGCACATTCCACTGGGAAAATTCTATA ACAACCGAGCACATTCCAACTACCGGGCTGGCATGATCATAGACAACGGAGTCAAAAC CACCGAGGCCTCTGCCAAGGACAAGCGGCCGTTCCTCTCAATCATCTCTGCCAGATAC AGCCCTCACCAGGACGCCGACCCGCTGAAGCCCCGGGAGCCGGCCATCATCAGACACT TCATTGCCTACAAGAACCAGGACCACGGGGGCCTGGCTGCGCGGGGGGATGTGTGGCT GGACAGCTGCCGGTTTGCTGACAATGGCATTGGCCTGACCCTGGCCAGTGGTGGAACC GTGGCAACGTGGGGACGGAAATGATGGACAATAGGATCTGGGGCCCTGGCGGCTTGGA CCATAGCGGAAGGACCCTCCCTATAGGCCAGAATTTTCCAATTAGAGGAATTCAGTTA

TATGATGGCCCCATCAACATCCAAAACTGCACTTTCCGAAAGTTTGTGGCCCTGGAGG GCCGGCACACCAGCGCCTGGCCTTCCGCCTGAATAATGCCTGGCAGAGCTGCCCCCA TAACAACGTGACCGGCATTGCCTTTGAGGACGTTCCGATTACTTCCAGAGTGTTCTTC TCCATGACGTCGACGGCTCCGTGTCCGAGTACCCTGGCTCCTACCTCACGAAGAATGA CAACTGGCTGGTCCGGCACCCAGACTGCATCAATGTTCCCGACTGGAGAGGGGCCATT TGCAGTGGGTGCTATGCACAGATGTACATTCAAGCCTACAAGACCAGTAACCTGCGAA TGAAGATCATCAAGAATGACTTCCCCAGCCACCCTCTTTACCTGGAGGGGGCGCTCAC CAGGAGCACCCATTACCAGCAATACCAACCGGTTGTCACCCTGCAGAAGGGCTACACC ATCCACTGGGACCAGACGGCCCCCGCCGAACTCGCCATCTGGCTCATCAACTTCAACA AGGGCGACTGGATCCGAGTGGGGCTCTGCTACCCGCGAGGCACCACATTCTCCATCCT CTCGGATGTTCACAATCGCCTGCTGAAGCAAACGTCCAAGACGGCCGTCTTCGTGAGG ACCTTGCAGATGGACAAAGTGGAGCAGAGCTACCTGGCAGGAGCCACTACTACTGGG TGCTTTCTGCTCCATGAAAGGCTGTGAGAGGATAAAGATTAAAGCTCTGATTCCAAAG AACGCAGGCGTCAGTGACTGCACAGCCACAGCTTACCCCAAGTTCACCGAGAGGGCTG TCGTAGACGTGCCGATGCCCAAGAAGCTCTTTGGTTCTCAGCTGAAAACAAAGGACCA TTTCTTGGAGGTGAAGATGGAGAGTTCCAAGCAGCACTTCTTCCACCTCTGGAACGAC TTCGCTTACATTGAAGTGGATGGGAAGAAGTACCCCAGTTCGGAGGATGGCATCCAGG TGGTGGTGATTGACGGGAACCAAGGGCGCGTGGTGAGCCACACGAGCTTCAGGAACTC CATTCTGCAAGGCATACCATGGCAGCTTTTCAACTATGTGGCGACCATCCCTGACAAT TCCATAGTGCTTATGGCATCAAAGGGAAGATACGTCTCCAGAGGCCCATGGACCAGAG TGCTGGAAAAGCTTGGGGCAGACAGGGGTCTCAAGTTGAAAGAGCAAATGGCATTCGT TGGCTTCAAAGGCAGCTTCCGGCCCATCTGGGTGACACTGGACACTGAGGATCACAAA GCCAAAATCTTCCAAGTTGTGCCCATCCCTGTGGTGAAGAAGAAGAAGTTGTGAGGAC AGCTGCCGCCCGGTGCCACCTCGTGGTAGACTATGACGGTGACTCTTGGCAGCAGACC AGTGGGGGATGGCTGGGTCCCCCAGCCCCTGCCAGCAGCTGCCTGGGAAGGCCGTGTT TCAGCCCTGATGGGCCAAGGGAAGGCTATCAGAGACCCTGGTGCTGCCACCTGCCCCT ACTCAAGTGTCTACCTGGAGCCCCTGGGGCGGTGCTGGCCAATGCTGGAAACATTCAC TTTCCTGCAGCCTCTTGGGTGCTTCTCTCTCTATCTGTGCCTCTTCAGTGGGGGTTTGG GGACCATATCAGGAGACCTGGGTTGTGCTGACAGCAAAGATCCACTCTGGCAGGAGCC CTGACCCAGCTAGGAGGTAGTCTGGAGGGCTGGTCATTCACAGATCCCCATGGTCTTC AGCAGACAAGTGAGGGTGGTAAATGTAGGAGAAAGAGCCTTGGCCTTAAGGAAATCTT TACTCCTGTAAGCAAGAGCCAACCTCACAGGATTAGGAGCTGGGGTAGAACTGGCTAT CCTTGGGGAAGAGGCAAGCCCTGCCTCTGGCCGTGTCCACCTTTCAGGAGACTTTGAG TGGCAGGTTTGGACTTGGACTAGATGACTCTCAAAGGCCCTTTTAGTTCTGAGATTCC AGAAATCTGCTGCATTTCACATGGTACCTGGAACCCAACAGTTCATGGATATCCACTG ATATCCATGATGCTGGGTGCCCCAGCGCACACGGGATGGAGAGGTGAGAACTAATGCC TAGCTTGAGGGGTCTGCAGTCCAGTAGGGCAGGCAGTCAGGTCCATGTGCACTGCAAT GCCAGGTGGAGAAATCACAGAGAGGTAAAATGGAGGCCAGTGCCATTTCAGAGGGGAG GCTCAGGAAGGCTTCTTGCTTACAGGAATGAAGGCTGGGGGCATTTTGCTGGGGGGAG GCTGGTGACTACGGGGTCGCCCTTTGCTCACGTCTCTCTGGCCCACTCATGATGGAGA **AGTGTGGTCAGAGGGGAGCAATGGGCTTTGCTGCTTATGAGCACAGAGGAATTCAGTC** CCCAGGCAGCCCTGCCTCTGACTCCAAGAGGGTGAAGTCCACAGAAGTGAGCTCCTGC CTTAGGGCCTCATTTGCTCTTCATCCAGGGAACTGAGCACAGGGGGCCTCCAGGAGAC CCTAGATGTGCTCGTACTCCCTCGGCCTGGGATTTCAGAGCTGGAAATATAGAAAATA TCTAGCCCAAAGCCTTCATTTTAACAGATGGGGAAAGTGAGCCCCCAAGATGGGAAAG AACCACACAGCTAAGGGAGGGCCTGGGGAGCCCCACCCTAGCCCTTGCTGCCACACCA CATTGCCTCAACAACCGGCCCCAGAGTGCCCAGGCACTCCTGAGGTAGCTTCTGGAAA TGGGGACAAGTCCCCTCGAAGGAAAGGAAATGACTAGAGTAGAATGACAGCTAGCAGA TCTCTTCCCTCCTGCTCCCAGCGCACACAACCCGCCCTCCCCTTGGTGTTGGCGGTC CCTGTGGCCTTCACTTTGTTCACTACCTGTCAGCCCAGCCTGGGTGCACAGTAGCTGC **AACTCCCCATTGGTGCTACCTGGCTCTCCTGTCTCTGCAGCTCTACAGGTTAGGCCCA** GCAGAGGGAGTAGGGCTCGCCATGTTTCTGGTGAGCCAATTTGGCTGATCTTGGGTGT CTGAACAGCTATTGGGTCCACCCCAGTCCCTTTCAGCTGCTGCTTAATGCCCTGCTCT CTCCCTGGCCCACCTTATAGAGAGCCCAAAGAGCTCCTGTAAGAGGGAGAACTCTATC TGTGGTTTATAAGCTTGCACGAGGCACCAGAGTCTCCCTGGGTCTTGTGATGAACTAC CTCCCTCCACCCAACTGCACCCATGAGACTCGGTCCAAGAGTCCATTCCCCAGGTGGG AGCCAACTGTCAGGGAGGTCTTTCCCACCAAACATCTTTCAGCTGCTGGGAGGTGACC

	ATAGGGCTCTGCTTTTAAAGATATGGCTGCTTCAAAGGCCAGAGTCACAGGAAGGA					
	TCTTCCAGGGAGATTAGTGGTGATGGAGAGGAGAGTTAAAATGACCTCATGTCCTTCT					
ļ.			AATGCAAGGGTCTCACACTGTGAACC			
ł			<u>AATGTTGAATGTCTTTGGCTCAGTTC</u>			
į			<u> BAGTTGTACATATGTTTCACAGTACA</u>			
1	GGATCTGTACATAAAAGTTTCT	TTCCTAAACC	ATTCACCAAGAGCCAATATCTAGGCA			
1	TTTTCTTGGTAGCACAAATTTT	CTTATTGCTT	AGAAAATTGTCCTCCTTGTTATTTCT			
1	GTTTGTAAGACTTAAGTGAGTT	AGGTCTTTAA	GAAAGCAACGCTCCTCTGAAATGCT			
•	TGTCTTTTTTCTGTTGCCGAAA	TAGCTGGTCC'	TTTTCGGGAGTTAGATGTATAGAGT			
1	GTTTGTATGTAAACATTTCTTG	TAGGCATCAC	CATGAACAAAGATATATTTTCTATTT			
	ATTTATTATATGTGCACTTCAAGAAGTCACTGTCAGAGAAATAAAGAATTGTCTTAAA					
	TGTCATGATTGGAGATGTCCTT	TGTCATGATTGGAGATGTCCTTTGCATTGCTTGGAAGGGGTGTACCTAGAGCCAAGGA				
	AATTGGCTCTGGTTTGGAAAAA	TTTTGCTGTT	ATTATAGTAAACATACAAAGGATGTC			
	СААААААААААААААААА					
	ODE 0: 4 ATC -4 201	ODE Com	3C A -+ 4244			
	ORF Start: ATG at 261	ORF Stop: T				
	SEQ ID NO: 188	1361 aa	MW at 152996.4kD			
NOV42b,			AAGCPDQSPELQPWNPGHDQDHHVHI			
CG59889-02 Protein			PIVLRTRHILIDNGGELHAGSALCPF			
Sequence			GALELHGQKKLSWTFLNKTLHPGGMA			
Bequence			FDTYRSKKESERLVQYLNAVPDGRIL			
ł			FRHPWSFLTVKGNPSSSVEDHIEYHG			
İ			VEWTEWFDHDKVSQTKGGEKISDLWK			
1			QDYRFACYDRGRACRSYRVRFLCGKP			
	1		LVIASTDYSMYQAEEFQVLPCRSCAP			
	1		NIIVMGEMEDKCYPYRNHICNFFDFD			
	1 1 1		YPIHFHLAGDVDERGGYDPPTYIRDL			
	SIHHTFSRCVTVHGSNGLLIKE	VVGYNSLGHC:	FFTEDGPEERNTFDHCLGLLVKSGTL			
†	LPSDRDSKMCKMITEDSYPGYI	PKPRQDCNAV	STFWMANPNNNLINCAAAGSEETGFW			
	FIFHHVPTGPSVGMYSPGYSEH	II PLGKFYNNR	ahsnyragmiidngvktteasakdkr			
]			YKNQDHGAWLRGGDVWLDSCRFADNG			
	IGLTLASGGTFPYDDGSKQEIK	CNSLFVGESGN	VGTEMMDNRIWGPGGLDHSGRTLPIG			
	QNFPIRGIQLYDGPINIQNCTF	RKFVALEGRH	TSALAFRLNNAWQSCPHNNVTGIAFE			
	DVPITSRVFFGEPGPWFNQLDM	(DGDKTSVFHD	VDGSVSEYPGSYLTKNDNWLVRHPDC			
	INVPDWRGAICSGCYAQMYIQA	YKTSNLRMKI	I KNDFPSHPLYLEGALTRSTHYQQYQ			
1	PVVTLQKGYTIHWDQTAPAELA	IWLINFNKGD	WIRVGLCYPRGTTFSILSDVHNRLLK			
	QTSKTGVFVRTLQMDKVEQSYF	GRSHYYWDED	SGLLFLKLKAQNEREKFAFCSMKGCE			
1			VPMPKKLFGSQLKTKDHFLEVKMESS			
	KOHFFHLWNDFAYIEVDGKKYE	SSEDGIQVVV	IDGNQGRVVSHTSFRNSILQGIPWQL			
l			KLGADRGLKLKEQMAFVGFKGSFRPI			
	WVTLDTEDHKAKIFQVVPIPV		_			
	SEQ ID NO: 189	3864 bp				
NOVAZa	GTGCCCTGACCAGAGCCCTGAG	ттось ассет	GGAACCCTGGCCATGACCAAGACCAC			
NOV42c,			GCTCACCTCTTCTGCCACGGTCTATT			
CG59889-04 DNA	CONTCONCATOTO CACCAGGGC	プレン かはしかはじかし アパウセクロ・ログ I A	BCTCACCTCTTCTGCCACGGTCTATT ATTAAAGACCACGACGAGCCGATTGT			
Sequence	TTTCCCA ACCCCCA CATCCTC	SCHAGCIGGIC	ATTAAAGACCACGACGAGCCGATTGT GAGGAGAGCTGCATGCTGGGAGTGCC			
			GAGGAGAGC I GCA I GC I GGGAG I GCC TTTGTATGGAAGGGCTGATGAAGGTA			
1			TTTGTATGGAAGGGCTGATGAAGGTA ATTGGGGTTGGTAAAGGAGGCGCTCT			
			attggggtiggtaaagaaggcgctct Catttctgaacaagacccttcaccca			
			AAGGAGCTGGGGCCACCGTGGAGTTA			
			GTCATCCATTCTGACCGGTTTGACAC			
			TCCAGTATTTGAACGCGGTGCCCGAT			
1	GGCAGGATCCTTTCTGTTGCAC	TGAATGATGA	AGGTTCTCGAAATCTGGATGACATGG			
			CACTTCCTGCACCTTGGATTTAGGGT			
			TATCTCAGACTAAAGGTGGGGAGAAA			
			AATATGCAATCGTCCCATTGATATAC			
			AGCACCGAGGTTGTCTACAAAAAAGG			
			GCAGAGCCTGCCGGAGCTACCGTGTA			
	CGGTTCCTCTGTGGGAAGCCTC	TGAGGCCCAA	ACTCACAGTCACCATTGACACCAATG			

TGAACAGCACCATTCTGAACTTGGAGGATAATGTACAGTCATGGAAACCTGGAGATAC CCTGGTCATTGCCAGTACTGATTACTCCATGTACCAGGCAGAAGAGTTCCAGGTGCTT CCCTGCAGATCCTGCGCCCCCAACCAGGTCAAAGTGGCAGGGAAACCAATGTACCTGC ACATCGGGGAGGAGATAGACGGCGTGGACATGCGGGCGGAGGTTGGGCTTCTGAGCCG GAACATCATAGTGATGGGGGAGATGGAGGACAAATGCTACCCCTACAGAAACCACATC TGCAATTTCTTTGACTTCGATACCTTTGGGGGCCACATCAAGTTTGCTCTGGGATTTA AGGCAGCACACTTGGAGGGCACGGAGCTGAAGCATATGGGACAGCAGCTGGTGGGTCA GTACCCGATTCACTTCCACCTGGCCGGTGATGTAGACGAAAGGGGAGGTTATGACCCA CCCACATACATCAGGGACCTCTCCATCCATCATACATTCTCTCGCTGCGTCACAGTCC ATGGCTCCAATGGCTTGTTGATCAAGGACGTTGTGGGCCTATAACTCTTTGGGCCACTG CTTCTTCACGGAAGATGGGCCGGAGGAACGCAACACTTTTGACCACTGTCTTGGCCTC CTTGTCAAGTCTGGAACCCTCCTCCCCTCGGACCGTGACAGCAAGATGTGCAAGATGA TCACAGAGGACTCCTACCCAGGGTACATCCCCAAGCCCAGGCAAGACTGCAATGCTGT GTCCACCTTCTGGATGGCCAATCCCAACAACAACCTCATCAACTGTGCCGCTGCAGGA TCTGAGGAAACTGGATTTTGGTTTATTTTTCACCACGTACCAACGGGCCCCTCCGTGG GAATGTACTCCCCAGGTTATTCAGAGCACATTCCACTGGGAAAATTCTATAACAACCG AGCACATTCCAACTACCGGGCTGGCATGATCATAGACAACGGAGTCAAAACCACCGAG GCCTCTGCCAAGGACAAGCGGCCGTTCCTCTCAATCATCTCTGCCAGATACAGCCCTC ACCAGGACGCCGACCCGCTGAAGCCCCGGGAGCCGGCCATCATCAGACACTTCATTGC CTACAAGAACCAGGACCACGGGGCCTGGCTGCGCGGGGGGGTGTGTGGCTGGACAGC TGCCGGTTTGCTGACAATGGCATTGGCCTGACCCTGGCCAGTGGTGGAACCTTCCCGT CGTGGGGACGGAAATGATGGACAATAGGATCTGGGGCCCTGGCGGCTTGGACCATAGC GGAAGGACCCTCCCTATAGGCCAGAATTTTCCAATTAGAGGAATTCAGTTATATGATG GCCCATCAACATCCAAAACTGCACTTTCCGAAAGTTTGTGGCCCTGGAGGGCCGGCA CACCAGCGCCCTGGCCTTCCGCCTGAATAATGCCTGGCAGAGCTGCCCCCATAACAAC GTGACCGGCATTGCCTTTGAGGACGTTCCGATTACTTCCAGAGTGTTCTTCGGAGAGC CTGGGCCCTGGTTCAACCAGCTGGACATGGATGGGGATAAGACATCTGTGTTCCATGA CGTCGACGGCTCCGTGTCCGAGTACCCTGGCTCCTACCTCACGAAGAATGACAACTGG CTGGTCCGGCACCCAGACTGCATCAATGTTCCCGACTGGAGAGGGGCCATTTGCAGTG GGTGCTATGCACAGATGTACATTCAAGCCTACAAGACCAGTAACCTGCGAATGAAGAT CATCAAGAATGACTTCCCCAGCCACCCTCTTTACCTGGAGGGGGGCGCTCACCAGGAGC ACCCATTACCAGCAATACCAACCGGTTGTCACCCTGCAGAAGGGCTACACCATCCACT GGGACCAGACGGCCCCGCCGAACTCGCCATCTGGCTCATCAACTTCAACAAGGGCGA CTGGATCCGAGTGGGGCTCTGCTACCCGCGAGGCACCACATTCTCCATCCTCTCGGAT GTTCACAATCGCCTGCTGAAGCAAACGTCCAAGACGGCGTCTTCGTGAGGACCTTGC AGATGGACAAAGTGGAGCAGAGCTACCCTGGCAGGAGCCACTACTACTGGGACGAGGA TGCTCCATGAAAGGCTGTGAGAGGATAAAGATTAAAGCTCTGATTCCAAAGAACGCAG GCGTCAGTGACTGCACAGCCACAGCTTACCCCAAGTTCACCGAGAGGGCTGTCGTAGA CGTGCCGATGCCCAAGAAGCTCTTTGGTTCTCAGCTGAAAACAAAGGACCATTTCTTG GAGGTGAAGATGGAGAGTTCCAAGCAGCACTTCTTCCACCTCTGGAACGACTTCGCTT ACATTGAAGTGGATGGGAAGAAGTACCCCAGTTCGGAGGATGGCATCCAGGTGGTGGT GATTGACGGGAACCAAGGGCGCGTGGTGAGCCACACGAGCTTCAGGAACTCCATTCTG CAAGGCATACCATGGCAGCTTTTCAACTATGTGGCGACCATCCCTGACAATTCCATAG TGCTTATGGCATCAAAGGGAAGATACGTCTCCAGAGGCCCATGGACCAGAGTGCTGGA AAAGCTTGGGGCAGACAGGGGTCTCAAGTTGAAAGAGCAAATGGCATTCGTTGGCTTC **AAAGGCAGCTTCCGGCCCATCTGGGTGACACTGGACACTGAGGATCACAAAGCCAAAA** TCTTCCAAGTTGTGCCCATCCCTGTGGTGAAGAAGAAGAAGTTGTGAGGACAGCTGCC GCCCGGTGCCACCTCGTGGTAGACTATGACGGTGAC

ORF Start: TGC at 2	ORF Stop: TGA at 3815		
SEQ ID NO: 190	1271 aa	MW at 143122.4kD	

NOV42c, CG59889-04 Protein Sequence

CPDQSPELQPWNPGHDQDHHVHIGQGKTLLLTSSATVYSIHISEGGKLVIKDHDEPIV
LRTRHILIDNGGELHAGSALCPFQGNFTIILYGRADEGIQPDPYYGLKYIGVGKGGAL
ELHGQKKLSWTFLNKTLHPGGMAEGGYFFERSWGHRGVIVHVIDPKSGTVIHSDRFDT
YRSKKESERLVQYLNAVPDGRILSVAVNDEGSRNLDDMARKAMTKLGSKHFLHLGFRV
EWTEWFDHDKVSQTKGGEKISDLWKAHPGKICNRPIDIQQATTMDGVNLSTEVVYKKG
QDYRFACYDRGRACRSYRVRFLCGKPVRPKLTVTIDTNVNSTILNLEDNVQSWKPGDT
LVIASTDYSMYQAEEFQVLPCRSCAPNQVKVAGKPMYLHIGEEIDGVDMRAEVGLLSR

NIIVMGEMEDKCYPYRNHICNFFDFDTFGGHIKFALGFKAAHLEGTELKHMGQQLVGQ
YPIHFHLAGDVDERGGYDPPTYIRDLSIHHTFSRCVTVHGSNGLLIKDVVGYNSLGHC
FFTEDGPEERNTFDHCLGLLVKSGTLLPSDRDSKMCKMITEDSYPGYIPKPRQDCNAV
STFWMANPNNNLINCAAAGSEETGFWFIFHHVPTGPSVGMYSPGYSEHIPLGKFYNNR
AHSNYRAGMIIDNGVKTTEASAKDKRPFLSIISARYSPHQDADPLKPREPAIIRHFIA
YKNQDHGAWLRGGDVWLDSCRFADNGIGLTLASGGTFPYDDGSKQEIKNSLFVGESGN
VGTEMMDNRIWGPGGLDHSGRTLPIGQNFPIRGIQLYDGPINIQNCTFRKFVALEGRH
TSALAFRLNNAWQSCPHNNVTGIAFEDVPITSRVFFGEPGPWFNQLDMDGDKTSVFHD
VDGSVSEYPGSYLTKNDNWLVRHPDCINVPDWRGAICSGCYAQMYIQAYKTSNLRMKI
IKNDFPSHPLYLEGALTRSTHYQQYQPVVTLQKGYTIHWDQTAPAELAIWLINFNKGD
WIRVGLCYPRGTTFSILSDVHNRLLKQTSKTGVFVRTLQMDKVEQSYPGRSHYYWDED
SGLLFLKLKAQNEREKFAFCSMKGCERIKIKALIPKNAGVSDCTATAYPKFTERAVVD
VPMPKKLFGSQLKTKDHFLEVKMESSKQHFFHLWNDFAYIEVDGKKYPSSEDGIQVVV
IDGNQGRVVSHTSFRNSILQGIPWQLFNYVATIPDNSIVLMASKGRYVSRGPWTRVLE
KLGADRGLKLKEQMAFVGFKGSFRPIWVTLDTEDHKAKIFQVVPIPVVKKKKL

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 42B.

Table 42B. Comparison of NOV42a against NOV42b through NOV42c.			
Protein Sequence NOV42a Residues/ Identities/ Similarities for the Matched R			
NOV42b	1031366 311349	1257/1320 (95%) 1258/1320 (95%)	
NOV42c	1081366 11259	1259/1259 (100%) 1259/1259 (100%)	

Further analysis of the NOV42a protein yielded the following properties shown in Table 42C.

# · · · ·	Table 42C. Protein Sequence Properties NOV42a
PSort analysis:	0.7900 probability located in plasma membrane; 0.6499 probability located in microbody (peroxisome); 0.3000 probability located in Golgi body; 0.3000 probability located in nucleus
SignalP analysis:	No Known Signal Sequence Predicted

A search of the NOV42a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 42D.

5

Table 42D. Geneseq Results for NOV42a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value
AAY25793				e-169

	encoded from gene 12 - Homo sapiens, 396 aa. [WO9938881-A1, 05-AUG-1999]	10379	301/371 (80%)	
AAB67331	Human neuron progenitor cell clone #3 protein - Homo sapiens, 745 aa. [WO200107607-A2, 01-FEB-2001]	6641357 1701	311/711 (43%) 439/711 (61%)	e-169
AAG73990	Human colon cancer antigen protein SEQ ID NO:4754 - Homo sapiens, 194 aa. [WO200122920-A2, 05-APR- 2001]	807992 1186	183/186 (98%) 184/186 (98%)	e-110
AAY25722	Human secreted protein encoded from gene 12 - Homo sapiens, 129 aa. [WO9938881-A1, 05-AUG-1999]	103192 31120	82/90 (91%) 82/90 (91%)	5e-43
AAY25801	Human secreted protein fragment encoded from gene 12 - Homo sapiens, 45 aa. [WO9938881-A1, 05- AUG-1999]	421465 145	45/45 (100%) 45/45 (100%)	2e-18

In a BLAST search of public sequence databases, the NOV42a protein was found to have homology to the proteins shown in the BLASTP data in Table 42E.

	Table 42E. Public BLASTP Results for NOV42a			
Protein Accession Number	Protein/Organism/Length	NOV42a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
Q9ULM1	KIAA1199 PROTEIN - Homo sapiens (Human), 1013 aa (fragment).	3651378 11013	1013/1014 (99%) 1013/1014 (99%)	0.0
AAH20256	HYPOTHETICAL 110.4 KDA PROTEIN - Homo sapiens (Human), 992 aa.	103996 31979	886/950 (93%) 887/950 (93%)	0.0
Q9NPN9	KIAA1199 HYPOTHETICAL PROTEIN - Homo sapiens (Human), 804 aa (fragment).	5821378 8804	797/797 (100%) 797/797 (100%)	0.0
Q9UHN6	TRANSMEMBRANE PROTEIN 2 - Homo sapiens (Human), 1383 aa.	11357 11339	622/1392 (44%) 843/1392 (59%)	0.0
Q9P2D5	KIAA1412 PROTEIN - Homo sapiens (Human), 1274 aa (fragment).	1081357 41230	575/1275 (45%) 781/1275 (61%)	0.0

PFam analysis predicts that the NOV42a protein contains the domains shown in the Table 42F.

	Table 42F. Domain Analysis of NOV42a					
Pfam Domain	Pfam Domain NOV42a Match Region Similarities Expect Value for the Matched Region					
No Significant Matches Found						

EXAMPLE 43.

The NOV43 clone was analyzed, and the nucleotide and predicted polypeptide sequences are shown in Table 43A.

Table 43A. NOV43 Sequence Analysis				
	SEQ ID NO: 191 641 bp			
NOV43a, CG59512-02 DNA Sequence	AATCATGCAGGTCTCCACTGCTGCCCTTGCTGCCCCTCTGCACCATGGCTCTCTGCAACCAGT TCTCTGCATCACTTGCTGCTGACACGCCGACCGCCTGCTGCTTCAGCTACACCTCCCGGCAGATT CCACAGAATTTCATAGCTGACTACTTTGAGACGAGCAGCCAGTGCTCCAAGCCCGGTGTCATCTT CCTAACCAAGAGAGGGCCGGCAGGTCTGTGCTGACCCCAGTGAGGAGTGGGTCCAGAAATACGTCA GTGACCTGGAGCTGAGTGCCTGAG			
	ORF Start: ATG at 5	ORF Sto	o: TGA at 284	
	SEQ ID NO: 192	92 aa	MW at 10039.3kD	
NOV43a, CG59512-02 Protein Sequence	MQVSTAALAVPLCTMALCNQFSASLAADTPTACCFSYTSRQIPQNFIADYFETSSQCSK PGVIFLTKRGRQVCADPSEEWVQKYVSDLELSA			
	SEQ ID NO: 193	638 bp		
NOV43b, CG59512-01 DNA Sequence	AACCAGTTCTCTGCATCACTTGC CCTCCCGGCAGATTCCACAGAAT CTCCAAGCCCGGTGTCATCTTCC AGTGAGGAGTGGGTCCAGAAATA AGAAGCTTCGAGGCCCAGCGACC CCTTGGGAACATGCGTGTGACCT AACAGCCACACTGTGGGACTCTT CCAGTGAGGAGTGGGTCCAGAAAA CCAGAAGCTTCGAGGCCCAGCGA	TGCAGGTCTCCACTGCTGTCCTTGCTGTCCTCTGCACCATGGCTCTCTGC GTTCTCTGCACCACTGCTGTCCTTGCTGCACACGCCGACCGCCTGCTGCTTCAGCTACA CGGCAGATTCCACAGAATTTCATAGCTGACACGCCGACCGCCTGCTGCTTCAGCTACA AGCCCGGTGTCATCTTCCTAACCAAGCGAAGCCGGCAGGTCTGTGCTGACCCC GGAGTGGGTCCAGAAATATGTCAGCGACCTGGAGCTGAGTGCCTGAGGGTCC CTTCGAGGCCCAGCGACCTCGGTGGGCCCAGTGGGAGAGCAGGAGCCTGAG GGAACATGCGTGTGACCTCCACAGCTACCTCTTCTATGGACTGGTTGTTGCCA CCACACTGTGGGACTCTTCTTAACCAAGCGAAGCCGGCAGGTCTGTGCTGACC GAGGAGTGGGTCCAGAAATATGTCAGCGACCTGGAGCTGAGTGCCTGAGGGT AGCTTCGAGGCCCAGCGACCTCGGTGGGCCCAGTGGGGAGCAGGAGCCTG TGGGAACATGCGTTGTAACCCACAGCTACCTCTTCTATGGACTGCTTGTTGCCTGACGCT		
	SEQ ID NO: 194	92 aa	MW at 10113.4kD	
NOV43b, CG59512-01 Protein Sequence	MQVSTAVLAVLLCTMALCNQFSASLAADTPTACCFSYTSRQIPQNFIADYFETSSQCS KPGVIFLTKRSRQVCADPSEEWVQKYVSDLELSA			

Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 43B.

Table 43B. Comparison of NOV43a against NOV43b and NOV43c.			
Protein Sequence	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Region	

NOV43b	192	89/92 (96%)
	192	89/92 (96%)

Further analysis of the NOV43a protein yielded the following properties shown in Table 43C.

	Table 43C. Protein Sequence Properties NOV43a
PSort analysis:	0.6997 probability located in outside; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen)
SignalP analysis:	Likely cleavage site between residues 28 and 29

A search of the NOV43a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 43D.

5

	Table 43D. Geneseq Results for NOV43a				
Geneseq Identifier	Protein/Organism/Length [Patent #, Date]	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Region	Expect Value	
ABB11876	Human G0S19-2 peptide precursor homologue, SEQ ID NO:2246 - Homo sapiens, 124 aa. [WO200157188-A2, 09-AUG-2001]	193 32124	90/93 (96%) 90/93 (96%)	5e-47	
AAU09185	Human PRO10008 polypeptide - Homo sapiens, 93 aa. [WO200166740-A2, 13-SEP-2001]	193 193	90/93 (96%) 90/93 (96%)	5e-47	
AAY96281	Human chemokine MIP-1alpha - Homo sapiens, 93 aa. [WO200028035-A1, 18-MAY-2000]	193 193	90/93 (96%) 90/93 (96%)	5e-47	
AAB15807	Human chemokine C10 SEQ ID NO: 49 - Homo sapiens, 93 aa. [WO200042071-A2, 20-JUL-2000]	193 193	90/93 (96%) 90/93 (96%)	5e-47	
AAW82721	Human MI10 protein - Homo sapiens, 93 aa. [WO9854326-A1, 03-DEC- 1998]	193 193	90/93 (96%) 90/93 (96%)	5e-47	

In a BLAST search of public sequence databases, the NOV43a protein was found to have homology to the proteins shown in the BLASTP data in Table 43E.

Table 43E. Public BLASTP Results for NOV43a

Protein Accession Number	Protein/Organism/Length	NOV43a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value
P16619	Small inducible cytokine A3 like 1 precursor (Tonsillar lymphocyte LD78 beta protein) (G0/G1 switch regulatory protein 19-2) (G0S19-2 protein) (PAT 464.2) - Homo sapiens (Human), 93 aa.	193 193	90/93 (96%) 90/93 (96%)	2e-46
P10147	Small inducible cytokine A3 precursor (Macrophage inflammatory protein 1-alpha) (MIP-1-alpha) (Tonsillar lymphocyte LD78 alpha protein) (G0/G1 switch regulatory protein 19-1) (G0S19-1 protein) (SIS-beta) (PAT 464.1) - Homo sapiens (Human), 92 aa.	193 192	91/93 (97%) 91/93 (97%)	7e-46
Q96I68	SIMILAR TO SMALL INDUCIBLE CYTOKINE A3 (HOMOLOGOUS TO MOUSE MIP-1A) - Homo sapiens (Human), 93 aa.	193 193	89/93 (95%) 89/93 (95%)	1e-45
Q14745	LD78 ALPHA BETA PRECURSOR - Homo sapiens (Human), 80 aa (fragment).	787 180	76/81 (93%) 77/81 (94%)	5e-38
P50229	Small inducible cytokine A3 precursor (Macrophage inflammatory protein 1- alpha) (MIP-1-alpha) - Rattus norvegicus (Rat), 92 aa.	193 192	71/93 (76%) 82/93 (87%)	1e-35

PFam analysis predicts that the NOV43a protein contains the domains shown in the Table 43F.

Table 43F. Domain Analysis of NOV43a						
Pfam Domain	NOV43a Match Region	Identities/ Similarities for the Matched Region	Expect Value			
IL8: domain 1 of 1	2489	31/70 (44%) 62/70 (89%)	6e-34			

EXAMPLE 44.

The NOV44 clone was analyzed, and the nucleotide and predicted polypeptide

5 sequences are shown in Table 44A.

Table 44A. NOV44 Sequence Analysis				
SEQ ID NO: 195	1737 bp			

ACCCGGGCCCCGCACCTTCCTC CCTAATGACAGTGCGCTCCTCGG GACGGCGGCGTTGGCCGCCGGCG GCGACCCCAAGCGCCTCGGGCCC CACCAGCTATAGCAGGTGGGCAC TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGCGAAGTGAAGGCC	AATGCCAGTC TGGCTGCCGA CCTCTGGATC CTGCGCGGCT GGCTCGACCT TGAGGCCACCT	GTCGAGCACGACTGCTTCGCGCTCT AGATCTGCGACGGCGCCCA TGTCATTTCCTTGCTACTGAACGGC GGCCTGCAGCTGCCACCCGGCTGCG TCCAGTGGGTTACGGAGACAACAA CAATGGGGCTCCCCTCTGCGCCCG				
CCTAATGACAGTGCGCTCCTCGG GACGGCGGCGTTGGCCGCCGGCG GCGACCCCAAGCGCCTCGGGCCC CACCAGCTATAGCAGGTGGGCAC TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGCTGCAGGCCC	TGGCTGCCGA CCTCTGGATC CTGCGCGGCT GGCTCGACCT TGAGGCCACT	TGTCATTTCCTTGCTACTGAACGGC GGCCTGCAGCTGCCACCCGGCTGCG TCCAGTGGGTTACGGGAGACAACAA CAATGGGGCTCCCCTCTGCGGCCCG				
GACGGCGGCGTTGGCCGCCGGCG GCGACCCCAAGCGCCTCGGGCCC CACCAGCTATAGCAGGTGGGCAC TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGTGGAGC	CCTCTGGATC CTGCGCGGCT GGCTCGACCT TGAGGCCACT	GGCCTGCAGCTGCCACCCGGCTGCG TCCAGTGGGTTACGGGAGACAACAA CAATGGGGCTCCCCTCTGCGGCCCG				
GCGACCCCAAGCGCCTCGGGCCC CACCAGCTATAGCAGGTGGGCAC TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGTGGAGC	CTGCGCGGCT GGCTCGACCT TGAGGCCACT	TCCAGTGGGTTACGGGAGACAACAA CAATGGGGCTCCCCTCTGCGGCCCG				
CACCAGCTATAGCAGGTGGGCAC TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGTGGAGC	GGCTCGACCT TGAGGCCACT	CAATGGGGCTCCCCTCTGCGGCCCG				
TTGTGCGTCGCTGTCTCCGCTGC AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGTGGAGC	TGAGGCCACT					
AGCAGCAGTGCGAAGTGAAGGCC CTGCAGGCCACTGGCTGTGGAGC						
CTGCAGGCCACTGGCTGTGGAGC	GATGGCTTCC					
		TCTGCGAGTTCCACTTCCCAGCCAC				
TO A COCCOTTO COCCOCOCCO	CCGGCGCCGC	GGCTGCCGCCGTCTCGATCACCTAC				
36CACCCC311C3CGGCCCGGCG	AGCGGGCTTC	CAGGCGCTGCCGGTGGGCAGCTCCG				
		GCACCGCGCCGCCGGAGCGGTCCA				
		GGACTGCAGCGTGGAGAACGGCGGC				
TGCGAGACCGGCTACCGGCTGGC	GGCCGACCAA	CACCGGTGCGAGGACGTGGATGACT				
GCATACTGGAGCCCAGTCCGTGTCCGCAGCGCTGTGTCAACACACAGGGTGGCT						
GTGCCACTGCTACCCTAACTACGACCTGGTGGACGGCGAGTGTGTGGAGCCC						
CCGTGCTTCAGAGCCAACTGCGAGTACCAGTGCCAGCCCCTGAACCAAACTA						
ORF Start: ATG at 2	ORF Stop:	ΓAG at 1727				
SEQ ID NO: 196		MW at 60266.5kD				
	OPGGSOCVE	HDCFALYPGPATFLNASOICDGLRGH				
LMTVRSSVAADVISLLLNGDGGV	GRRRLWIGLO	OLPPGCGDPKRLGPLRGFOWVTGDNN				
CRPLAVEPGAAAAVSITYGTPF	AARGAGFOAI	LPVGSSAAVAPLGLOLMCTAPPGAVO				
GHWAREAPGAWDCSVENGGCEHT	CNATPGAPRO	COCPAGAALOADGRSCTASATOSCNI				
LCEHECVPNPDOPGSYSCMCETO	YRLAADOHRO	CEDVDDCILEPSPCPORCVNTOGGFE				
CHCYPNYDLVDGECVEPVDPCFF	ANCEYOCOPI	LNOTSYLCVCAEGFAPIPHEPHRCOM				
FCNOTACPADCDPNTOASCECPE	GYILDDGFI	TDIDECENGGFCSGVCHNLPGTFEC				
TCGPDSALARHIGTDCDSGKVDC	GDSGSGEPPI	PSPTPGSTLTPPAVGLVHSGLLIGIS				
TOTAL DOMESTICATED COORNANG	ARAKMEYKC					
	rgcgagcacacgtgcaatgcgat ccgccttgcagcagacggcgc cctttgcgagcacttctgcgtc rgcgagaccggctaccggctgc gcatactggagcccaatccgtgt gtgcactgctacccaactccga rctgcgtttcagagccaactgcga rtttgcaaccagaccaactgcga gttttgcaaccagactacatcct gagtgccctgaaggcttctgctc gagtgccctgaaggcttctgccc catctgcggcccgactcgcccaaggccaa ccaccttgactcctccggccga catcgcgagcctgtctgccga catcgcgagcctgtgcgacagcg catcgcgagcctgtgcgacagccaa ragtgcacgcgcccaggccaa caccttgactcctccggccga catcgcgagcctgtgcgacagccaa ragtgctgcagcacgcaggccaa tagtgctgcagcacgcaggccaa tagtgctgcagcacgtgcgacc CRF Start: ATG at 2 SEQ ID NO: 196 mlgvlvlgalalaglglpapaee lmtvrssvaadvisllincbggv tsyswarldlngaplcgplcva csplavepgaaaavsstygtpe grhareagagagcscert chcypnydlvdgccvepvpecff chcypnydlvdgccvepvpecff fcnqtacpadcdpntqascccpf	rgcgagcacacgtgcaatgcgatccttggggct ccgccttgcagcagacggcgctcttgcaccg cctctgcgagcacttctgcgctgccgaccaa gcatactggagcccaatccggctgccgaccaa gcatactggagcccaatccgtgcgagcctactggtgagcccattctgcaccattc gtgccactgctaccctaactacgacctgtgagcccattcgcgccattc gttttgcaccagagccaactgcagcttcagcccattc gttttgcaaccagagcttcagcccattc gttttgcaaccagagcttctgcagccattc gagtgccctgaaggctacatcctggacgg gagtaccctgaaggctacatcctggacgg gagaaacggcggcttctgctccagcgccattc gagtgccctgaaggctacatcggcctttgccgcca aaggtggacggcggcacagcggctttgccacct caccttgactcctccggccgtggggctcatcgccacttt aagcaggcccgccacaggccaagatgagcatta aagcaggcgccgccagggccaagatgagatac tagtgctgcagcacgcgacggccaacagacgacc CRF Start: ATG at 2 ORF Stop:				

Further analysis of the NOV44a protein yielded the following properties shown in Table 44B.

	Table 44B. Protein Sequence Properties NOV44a					
PSort analysis:	0.4600 probability located in plasma membrane; 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in outside					
SignalP analysis:	Likely cleavage site between residues 24 and 25					

A search of the NOV44a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publications, yielded several homologous proteins shown in Table 44C.

	Table 44C. Geneseq Resu	lts for NOV	14a	
Geneseq Identifier	• •		Identities/ Similarities for the Matched Region	Expect Value
AAR43031	Human thrombomodulin - Homo sapiens, 575 aa. [WO9322447-A, 11-NOV-1993]	1575 1575	571/575 (99%) 571/575 (99%)	0.0
AAR41806	Thrombomodulin - Homo sapiens, 575 aa. [JP05213998-A, 24-AUG-1993]	1575 1575	571/575 (99%) 571/575 (99%)	0.0
AAR11534	Human thrombomodulin type II polypeptide, 575 aa. [WO9104276-A, 04-APR-1991]	1575 1575	571/575 (99%) 571/575 (99%)	0.0
AAP82070	Human thrombomodulin encoded by plasmid p2.1 - synthetic, 575 aa. [WO8809811-A, 15-DEC-1988]	1575 1575	571/575 (99%) 571/575 (99%)	0.0
AAR31572	Human thrombomodulin - Synthetic, 575 aa. [WO9301282-A, 21-JAN- 1993]	1575 1575	571/575 (99%) 571/575 (99%)	0.0

In a BLAST search of public sequence databases, the NOV44a protein was found to have homology to the proteins shown in the BLASTP data in Table 44D.

Table 44D. Public BLASTP Results for NOV44a					
Protein Accession Number	Protein/Organism/Length	NOV44a Residues/ Match Residues	Identities/ Similarities for the Matched Portion	Expect Value	
P07204	Thrombomodulin precursor (Fetomodulin) (TM) (CD141 antigen) - Homo sapiens (Human), 575 aa.	1575 1575	572/575 (99%) 572/575 (99%)	0.0	
THHUB	thrombomodulin precursor [validated] - human, 575 aa.	1575 1575	571/575 (99%) 571/575 (99%)	0.0	
Q9UC32	THROMBOMODULIN - Homo sapiens (Human), 468 aa.	19486 1468	465/468 (99%) 465/468 (99%)	0.0	
P15306				0.0	

	(Fetomodulin) (TM) - Mus musculus (Mouse), 577 aa.	1576	443/579 (76%)	
O35370	THROMBOMODULIN - Rattus norvegicus (Rat), 577 aa.	1574 1576	378/578 (65%) 435/578 (74%)	0.0

PFam analysis predicts that the NOV44a protein contains the domains shown in the Table 44E.

	Table 44E. Domain Analysis of NOV44a						
Pfam Domain	NOV44a Match Region	Identities/ Similarities for the Matched Region	Expect Value				
lectin_c: domain 1 of 1	41169	27/138 (20%) 86/138 (62%)	0.0032				
EGF: domain 1 of 6	245280	14/47 (30%) 28/47 (60%)	1.1e-05				
EGF: domain 2 of 6	288323	14/47 (30%) 26/47 (55%)	0.022				
metalthio: domain 1 of 1	261325	15/73 (21%) 39/73 (53%)	9				
EGF: domain 3 of 6	329362	13/47 (28%) 24/47 (51%)	1.6				
EGF: domain 4 of 6	369404	9/47 (19%) 23/47 (49%)	1.5				
EB: domain 1 of 1	351404	15/61 (25%) 36/61 (59%)	4.8				
EGF: domain 5 of 6	408439	11/47 (23%) 19/47 (40%)	9.4				
EGF: domain 6 of 6	445480	12/47 (26%) 25/47 (53%)	0.7				

5 EXAMPLE 45: Sequencing Methodology and Identofication of NOVX Clones

10

1. GeneCallingTM Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., "Gene expression analysis by transcript profiling coupled to a gene database query" Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological

states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.

2. SeqCallingTM Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.

3. PathCallingTM Technology:

10

15

20

25

30

The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the public human sequence databases, and provided either the full length DNA sequence, or some portion thereof.

5

10

15

20

25

30

The laboratory screening was performed using the methods summarized below:

cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, CA) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U. S. Patents 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).

Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, deletions and other sequence variations.

Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and selected

by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106' and YULH (U. S. Patents 6,057,101 and 6,083,693).

5 4. RACE: Techniques based on the polymerase chain reaction such as rapid amplification of cDNA ends (RACE), were used to isolate or complete the predicted sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.

15

20

25

30

Exon Linking: The NOVX target sequences identified in the present invention were 5. subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain - amygdala, brain - cerebellum, brain - hippocampus, brain - substantia nigra, brain thalamus, brain -whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma - Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading frame cloned into the pCR2.1 vector. The resulting sequences from all clones were assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over 50 bp. In

5

10

15

20

25

30

addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.

6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from both public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.

The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.

Example 46: Identification of Single Nucleotide Polymorphisms in NOVX nucleic acid sequences

Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele. SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.

SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to all or part of the initial or extended sequence were identified by BLASTN searches using the

relevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative coding regions as well as for similarity to the known DNA and protein sequences. Programs used for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other relevant programs.

Some additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database. SeqCalling fragments suitable for inclusion were identified by the CuraToolsTM program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.

The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein. When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 (8) 1249-1265, 2000).

Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.

NOV2a SNP data:

5

10

15

20

25

30

NOV2a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:9 and 10, respectively. The nucleotide sequence of the NOV2a variant differs as shown in Table 46A.

Table 46A SNP data for NOV2a

Variant	N	ucleotic	des	Aı	nino A	eids
V 11 11 11 11 11 11 11 11 11 11 11 11 11	Position	Initial	Modified	Position	Initial	Modified
13377289	384	Т	С	125	His	His
13377288	405	С	T	132	Val	Val
13377287	672	С	Т	221	Val	Val

NOV6a SNP data:

NOV6a has two SNP variants, whose variant positions for its nucleotide and amino

acid sequences is numbered according to SEQ ID NOs:23 and 24, respectively. The nucleotide sequence of the NOV6a variant differs as shown in Table 46B.

Table 46B SNP data for NOV6a							
Variant	Nucleotides				Amino Aci	ds	
V AT IAUL	Position	Initial	Modified	Position	Initial	Modified	
13377290	1592	G	Т	519	Ala	Ala	
13377291	2089	Т	С	685	Ile	Thr	

NOV7a SNP data:

10

NOV7a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:25 and 26, respectively. The nucleotide sequence of the NOV7a variant differs as shown in Table 46C.

Table 46C SNP data for NOV7a							
Variant	Nucleotides			A	Amino Ac	ids	
v ai iaiit	Position	Initial	Modified	Position	Initial	Modified	
13374597	67	С	Т	22	Pro	Leu	
13374596	129	С	Т	43	Gln	End	
13374595	267	С	T	89	Pro	Ser	

15

20

NOV9a SNP data:

NOV9a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:31 and 32, respectively. The nucleotide sequence of the NOV9a variant differs as shown in Table 46D.

Table 46D SNP data for NOV9a								
Variant	Nucleotides			Amino Acids				
	Position	Initial	Modified	Position	Initial	Modified		
13374168	81	С	G	27	Pro	Pro		
13374236	160	С	Α	54	Arg	Arg		
13374237	192	G	Α	64	Gly	Gly		
13375849	355	A	G	119	Asn	Asp		

NOV11a SNP data:

NOV11a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:35 and 36, respectively. The nucleotide sequence of the NOV11a variant differs as shown in Table 46E.

Table 46E SNP data for NOV11a							
Variant	Nucleotides			Amino Acids			
	Position	Initial	Modified	Position	Initial	Modified	
13377303	124	T	С	14	Phe	Leu	
13377301	858	С	T	258	Tyr	Tyr	
13377300	868	Α	G	262	Ser	Gly	
13377299	951	G	A	289	Тгр	End	

10 NOV14a SNP data:

NOV14a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:57 and 58, respectively. The nucleotide sequence of the NOV14a variant differs as shown in Table 46F.

15

Table 46F SNP data for NOV14a								
Variant	Nucleotides			Amino Acids				
	Position	Initial	Modified	Position	Initial	Modified		
13374670	92	С	A	17	Ala	Glu		
13374669	146	Α	G	35	Glu	Gly		
13374668	247	Т	С	69	Phe	Leu		

13374667	266	С	T	75	Ala	Val

NOV15a SNP data:

NOV15a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:59 and 60, respectively. The nucleotide sequence of the NOV15a variant differs as shown in Table 46G.

Table 46G SNP data for NOV15a									
Variant	Nucleotides			Amino Acids					
Y ATIABL	Position	Initial	Modified	Position	Initial	Modified			
13377304	21	Α	G	2	Arg	Gly			
13374822	256	G	T	80	Тгр	Leu			

NOV16a SNP data:

10

NOV16a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:65 and 66, respectively. The nucleotide sequence of the NOV16a variant differs as shown in Table 46H.

Table 46H SNP data for NOV16a									
Variant	N	ucleotic	les	Amino Acids					
	Position	Initial	Modified	Position	Initial	Modified			
13377305	301	С	Т	92	Ala	Ala			
13374717	942	G	Α	306	Arg	Gln			
13377306	1183	T	С	386	Gly	Gly			
13377307	1503	С	Т	493	Ser	Phe			

15

20

NOV18a SNP data:

NOV18a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:73 and 74, respectively. The nucleotide sequence of the NOV18a variant differs as shown in Table 46H.

Table 46H SNP data for NOV18a

Variant	Nucleotides			Amino Acids		
	Position	Initial	Modified	Position	Initial	Modified
13377309	951	С	Т	306	Arg	Ттр

NOV21a SNP data:

NOV21a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:85 and 86, respectively. The nucleotide sequence of the NOV21a variant differs as shown in Table 46I.

Table 46I SNP data for NOV21a								
Variant	Nucleotides			Amino Acids				
Variant	Position	Initial	Modified	Position	Initial	Modified		
13374712	373	A	G	84	Ile	Val		

NOV25a SNP data:

10

NOV25a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:121 and 122, respectively. The nucleotide sequence of the NOV25a variant differs as shown in Table 46J.

Table 46J SNP data for NOV25a								
Variant	Nucleotides			Amino Acids				
Variant	Position	Initial	Modified	Position	Initial	Modified		
13377310	361	С	T	117	Ser	Ser		

15

20

NOV27a SNP data:

NOV27a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:127 and 128, respectively. The nucleotide sequence of the NOV27a variant differs as shown in Table 46K.

Table 46K SNP data for NOV27a							
Variant	Nucleotides			Amino Acids			
A 91 (91)(Position	Initial	Modified	Position	Initial	Modified	

13377311	159	Т	С	45	Trp	Arg
13377314	671	С	T	215	Gly	Gly
13377312	739	Α	G	238	Tyr	Cys
13377313	774	Α	G	250	Thr	Ala

NOV28a SNP data:

NOV28a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:129 and 130, respectively. The nucleotide sequence of the NOV28a variant differs as shown in Table 46K.

Table 46K SNP data for NOV28a									
Variant	N	ucleotic	les	A	Amino Acids				
	Position	Initial	Modified	Position	Initial	Modified			
13377318	145	Т	G	41	Pro	Pro			
13377317	162	A	G	47	His	Arg			
13375785	351	A	G	110	Glu	Gly			
13375450	411	Т	С	130	Leu	Pro			
13377316	577	С	T	185	Ala	Ala			
13377315	968	G	Α	316	Gly	Arg			
13375452	990	Α	G	323	Glu	Gly			

NOV31a SNP data:

10

NOV31a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:141 and 142, respectively. The nucleotide sequence of the NOV31a variant differs as shown in Table 46L.

Table 46L SNP data for NOV31a								
Variant	Nucleotides			Amino Acids				
	Position	Initial	Modified	Position	Initial	Modified		
13377319	1221	Α	G	371	Thr	Ala		

15

NOV34a SNP data:

NOV34a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:147 and 148, respectively. The nucleotide sequence of the NOV34a variant differs as shown in Table 46M.

Table 46M SNP data for NOV34a									
Variant	N	ucleotic	les	Amino Acids					
	Position	Initial	Modified	Position	Initial	Modified			
13377321	240	Т	С	80	Ser	Ser			
13377320	492	Т	164	Asp	Asp				

NOV40a SNP data:

5

10

NOV40a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:179 and 180, respectively. The nucleotide sequence of the NOV40a variant differs as shown in Table 46N.

	Table 46N SNP data for NOV40a									
Variant		Nucleotide	es		Amino Acids					
▼ AI IAII (Position	Initial	Modified	Position	Initial	Modified				
13376614	1732	G	A	561	Gly	Asp				
13376613	3266	С	Т	1072	Phe	Phe				
13376612	4183	Α	G	1378	Asp	Gly				
13376611	4604	С	Т	1518	Gly	Gly				
13376610	4625	С	T	1525	Asp	Asp				
13376609	5491	Т	С	1814	Leu	Pro				
13376596	5589	С	T	1847	Gln	End				
13376597	5637	Т	С	1863	Ser	Pro				
13376608	5765	Т	С	1905	Asp	Asp				
13376607	6469	Α	G	0						

NOV42a SNP data:

NOV42a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:185 and 186, respectively. The nucleotide sequence of the NOV42a variant differs as shown in Table 46O.

Table 460 SNP data for NOV42a						
Variant	N	lucleotic	les	A	mino A	eids
Variant	Position	Initial	Modified	Position	Initial	Modified
13377323	2186	G	Α	722	Gly	Asp
13377322	3820	G	Т	1267	Val	Leu

NOV44a SNP data:

15

20

NOV44a has two SNP variants, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:195 and 196, respectively. The nucleotide sequence of the NOV44a variant differs as shown in Table 46P.

Table 46P SNP data for NOV44a						
Variant		Nucleotides			Amino Acids	
▼ ai tant	Position	Initial	Modified	Position	Initial	Modified
13375190	50	С	T	17	Leu	Phe
13374613	764	A	G	255	Thr	Ala
13374614	1413	С	T	471	Ala	Val
13375192	1419	С	T	473	Ala	Val

10 Example 47. Quantitative expression analysis of clones in various cells and tissues

The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System.

Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 (containing cells and cell lines from normal tissues and cells related to inflammatory conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune diseases), Panel CNSD.01 (containing central nervous system samples from

normal and diseased brains) and CNS_neurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).

RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe and primer sets designed to amplify across the span of a single exon.

5

10

15

20

25

30

First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, β-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.

In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 µg of total RNA were performed in a volume of 20 µl and incubated for 60 minutes at 42°C. This reaction can be scaled up to 50 µg of total RNA in a final volume of 100 µl. sscDNA samples are then normalized to reference nucleic acids as described previously, using 1X TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.

Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration = 250 nM, primer melting temperature (Tm) range = 58°-60°C, primer optimal Tm = 59°C, maximum primer difference = 2°C, probe does not have 5'G, probe Tm must be 10°C greater than primer Tm, amplicon size 75bp to 100bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, TX, USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify coupling of reporter and quencher dyes to the 5' and 3' ends of the probe, respectively. Their final concentrations were: forward and reverse primers, 900nM each, and probe, 200nM.

PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate

(Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another gene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer's instructions. Reverse transcription was performed at 48°C for 30 minutes followed by amplification/PCR cycles as follows: 95°C 10 min, then 40 cycles of 95°C for 15 seconds, 60°C for 1 minute. Results were recorded as CT values (cycle at which a given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.

When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using 1X TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95°C 10 min, then 40 cycles of 95°C for 15 seconds, 60°C for 1 minute. Results were analyzed and processed as described previously.

Panels 1, 1.1, 1.2, and 1.3D

5

10

15

20

25

30

The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.

In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used:

ca. = carcinoma,

* = established from metastasis,

met = metastasis,

s cell var = small cell variant,

non-s = non-sm = non-small,

squam = squamous,

pl. eff = pl effusion = pleural effusion,

glio = glioma,

astro = astrocytoma, and

neuro = neuroblastoma.

General screening panel v1.4

The plates for Panel 1.4 include 2 control wells (genomic DNA control and chemistry 15 control) and 94 wells containing cDNA from various samples. The samples in Panel 1.4 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panel 1.4 are widely available through the American Type Culture 20 Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panel 1.4 are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult 25 lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.

Panels 2D and 2.2

30

The plates for Panels 2D and 2.2 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network

(CHTN) or the National Disease Research Initiative (NDRI). The tissues are derived from human malignancies and in cases where indicated many malignant tissues have "matched margins" obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted "NAT" in the results below. The tumor tissue and the "matched margins" are evaluated by two independent pathologists (the surgical pathologists and again by a pathologist at NDRI or CHTN). This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding (i.e. immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue, in Table RR). In addition, RNA and cDNA samples were obtained from various human tissues derived from autopsies performed on elderly people or sudden death victims (accidents, etc.). These tissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, CA), Research Genetics, and Invitrogen.

15

20

25

30

10

5

Panel 3D

The plates of Panel 3D are comprised of 94 cDNA samples and two control samples. Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines

Panels 4D, 4R, and 4.1D

used in the scientific literature.

Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, CA) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients

5

10

15

20

25

30

was obtained from BioChain (Biochain Institute, Inc., Hayward, CA). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, PA).

Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, MD) and grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5ng/ml, TNF alpha at approximately 5-10ng/ml, IFN gamma at approximately 20-50ng/ml, IL-4 at approximately 5-10ng/ml, IL-9 at approximately 5-10ng/ml, IL-13 at approximately 5-10ng/ml. Endothelial cells were sometimes starved for various times by culture in the basal media from Clonetics with 0.1% serum.

Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco/Life Technologies, Rockville, MD), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20ng/ml PMA and 1-2µg/ml ionomycin, IL-12 at 5-10ng/ml, IFN gamma at 20-50ng/ml and IL-18 at 5-10ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5µg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2x10⁶cells/ml in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol (5.5x10⁻⁵M) (Gibco), and 10mM Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1-7 days for RNA preparation.

Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions.

Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum

(FCS) (Hyclone, Logan, UT), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco), 50ng/ml GMCSF and 5ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes for 5-7 days in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco) and 10% AB Human Serum or MCSF at approximately 50ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at 100ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at 10μg/ml for 6 and 12-14 hours.

10

15

20

25

30

CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CD45RO CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CD14 and CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection. CD45RO beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and plated at 10⁶cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5µg/ml anti-CD28 (Pharmingen) and 3ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.

To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 10⁶cells/ml in DMEM 5% FCS (Hyclone), 100µM non essential amino acids

5

10

15

20

25

30

(Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco). To activate the cells, we used PWM at 5μg/ml or anti-CD40 (Pharmingen) at approximately 10μg/ml and IL-4 at 5-10ng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.

To prepare the primary and secondary Th1/Th2 and Tr1 cells, six-well Falcon plates were coated overnight with 10ug/ml anti-CD28 (Pharmingen) and 2ug/ml OKT3 (ATCC), and then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, German Town, MD) were cultured at 10⁵-10⁶cells/ml in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10 ⁵M (Gibco), 10mM Hepes (Gibco) and IL-2 (4ng/ml). IL-12 (5ng/ml) and anti-IL4 (1μg/ml) were used to direct to Th1, while IL-4 (5ng/ml) and anti-IFN gamma (1µg/ml) were used to direct to Th2 and IL-10 at 5ng/ml was used to direct to Tr1. After 4-5 days, the activated Th1, Th2 and Tr1 lymphocytes were washed once in DMEM and expanded for 4-7 days in DMEM 5% FCS (Hyclone), 100µM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco) and IL-2 (1ng/ml). Following this, the activated Th1, Th2 and Tr1 lymphocytes were re-stimulated for 5 days with anti-CD28/OKT3 and cytokines as described above, but with the addition of anti-CD95L (lug/ml) to prevent apoptosis. After 4-5 days, the Th1, Th2 and Tr1 lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Th1 and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Th1, Th2 and Tr1 after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.

The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1mM dbcAMP at 5x10⁵ cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5x10⁵ cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), 10mM Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10ng/ml and ionomycin at 1μg/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100μM non essential amino acids (Gibco), 1mM sodium pyruvate (Gibco), mercaptoethanol 5.5x10⁻⁵M (Gibco), and 10mM Hepes (Gibco). CCD1106 cells were

activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 1ng/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5ng/ml IL-4, 5ng/ml IL-9, 5ng/ml IL-13 and 25ng/ml IFN gamma.

For these cell lines and blood cells, RNA was prepared by lysing approximately 10^7 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume of bromochloropropane (Molecular Research Corporation) was added to the RNA sample, vortexed and after 10 minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15ml Falcon Tube. An equal volume of isopropanol was added and left at -20°C overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300µl of RNAse-free water and 35µl buffer (Promega) 5µl DTT, 7µl RNAsin and 8µl DNAse were added. The tube was incubated at 37°C for 30 minutes to remove contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at -80°C.

AI_comprehensive panel_v1.0

5

10

15

20

25

30

The plates for AI_comprehensive panel_v1.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, MD). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.

Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital. Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.

Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.

Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three

female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female patients. Four of the patients were taking lebvid and two were on phenobarbital.

Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in age from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti-trypsin deficiencies. Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients that could also have COPD. COPD patients ranged in age from 35-80 and included both smokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.

In the labels employed to identify tissues in the AI_comprehensive panel_v1.0 panel, the following abbreviations are used:

AI = Autoimmunity

15 Syn = Synovial

5

10

Normal = No apparent disease

Rep22 /Rep20 = individual patients

RA = Rheumatoid arthritis

Backus = From Backus Hospital

20 OA = Osteoarthritis

(SS) (BA) (MF) = Individual patients

Adj = Adjacent tissue

Match control = adjacent tissues

-M = Male

-F = Female

30

COPD = Chronic obstructive pulmonary disease

Panels 5D and 5I

The plates for Panel 5D and 5I include two control wells and a variety of cDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.

In the Gestational Diabetes study subjects are young (18 - 40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample (<1 cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose. Patient descriptions are as follows:

Patient 2: Diabetic Hispanic, overweight, not on insulin

Patient 7-9: Nondiabetic Caucasian and obese (BMI>30)

Patient 10: Diabetic Hispanic, overweight, on insulin

Patient 11: Nondiabetic African American and overweight

Patient 12: Diabetic Hispanic on insulin

5

10

15

20

25

30

Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr 2 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows:

Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose

Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated

Donor 2 and 3 AD: Adipose, Adipose Differentiated

Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.

Panel 5I contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the

University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 5I.

In the labels employed to identify tissues in the 5D and 5I panels, the following abbreviations are used:

GO Adipose = Greater Omentum Adipose

SK = Skeletal Muscle

UT = Uterus

5

15

20

25

30

PL = Placenta

AD = Adipose Differentiated

10 AM = Adipose Midway Differentiated

U = Undifferentiated Stem Cells

Panel CNSD.01

The plates for Panel CNSD.01 include two control wells and 94 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.

Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supernuclear Palsy, Depression, and "Normal controls". Within each of these brains, the following regions are represented: cingulate gyrus, temporal pole, globus palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; e.g., Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.

In the labels employed to identify tissues in the CNS panel, the following abbreviations are used:

PSP = Progressive supranuclear palsy
Sub Nigra = Substantia nigra
Glob Palladus= Globus palladus
Temp Pole = Temporal pole
Cing Gyr = Cingulate gyrus
BA 4 = Brodman Area 4

5

10

15

20

25

30

Panel CNS Neurodegeneration V1.0

The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80°C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.

Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from "Normal controls" who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0 = no evidence of plaques, 3 = severe AD senile plaque load). Within each of these brains, the following regions are represented: hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area 7), and occipital cortex (Brodman area 17). These regions were chosen to encompass all levels of neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a "control" region within AD patients. Not all brain regions are represented in all cases.

In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used:

AD = Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy

Control = Control brains; patient not demented, showing no neuropathology

Control (Path) = Control brains; pateint not demented but showing sever AD-like pathology

SupTemporal Ctx = Superior Temporal Cortex

Inf Temporal Ctx = Inferior Temporal Cortex

5

10

A. NOV1a, NOV1c, and NOV1d: NEUREXOPHILIN 1 PRECURSOR

Expression of gene NOV1a and variants NOV1c and NOV1d was assessed using the primer-probe set Ag3371, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB and AC. Please note that NOV1c and NOV1d represent full-length physical clones of the NOV1a gene, validating the prediction of the gene sequence.

Table AA. Probe Name Ag3371

Primers	Sequences		Start Position
Forward	5'-acatatggacagaaagcagcaa-3' (SEQ ID NO:197)	22	114
IUTANA	TET-5'-ttgtctatcagccgactcctgtcaca-3'-TAMRA (SEQ ID NO:198)	26	140
Reverse	5'-tatcattctctttgccacgaaa-3' (SEQ ID NO:199)	22	170

Table AB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3371, Run 210154070	Tissue Name	Rel. Exp.(%) Ag3371, Run 210154070
AD 1 Hippo	7.3	Control (Path) 3 Temporal Ctx	2.1
AD 2 Hippo	25.5	Control (Path) 4 Temporal Ctx	63.7
AD 3 Hippo	3.5	AD 1 Occipital Ctx	13.0
AD 4 Hippo	8.8	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	86.5	AD 3 Occipital Ctx	3.1
AD 6 Hippo	23.2	AD 4 Occipital Ctx	37.9
Control 2 Hippo	28.3	AD 5 Occipital Ctx	56.6
Control 4 Hippo	5.7	AD 6 Occipital Ctx	13.5
Control (Path) 3 Hippo	4.0	Control 1 Occipital Ctx	2.0
AD 1 Temporal Ctx	9.9	Control 2 Occipital Ctx	46.0
AD 2 Temporal Ctx	42.0	Control 3 Occipital Ctx	13.9
AD 3 Temporal Ctx	2.9	Control 4 Occipital Ctx	4.5
AD 4 Temporal Ctx	21.3	Control (Path) 1 Occipital Ctx	90.1
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2 Occipital Ctx	12.2
AD 5 Sup Temporal Ctx	39.0	Control (Path) 3 Occipital Ctx	1.0
AD 6 Inf Temporal Ctx	26.4	Control (Path) 4 Occipital Ctx	27.0
AD 6 Sup Temporal	31.2	Control 1 Parietal Ctx	6.0

Ctx			
Control 1 Temporal Ctx	7.0	Control 2 Parietal Ctx	26.1
Control 2 Temporal Ctx	64.6	Control 3 Parietal Ctx	15.5
Control 3 Temporal Ctx	19.5	Control (Path) 1 Parietal Ctx	82.4
Control 3 Temporal Ctx	6.3	Control (Path) 2 Parietal Ctx	54.3
Control (Path) 1 Temporal Ctx	69.3	Control (Path) 3 Parietal Ctx	5.8
Control (Path) 2 Temporal Ctx	38.4	Control (Path) 4 Parietal Ctx	46.0

Table AC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3371, Run 217043080	Tissue Name	Rel. Exp.(%) Ag3371, Run 217043080
Adipose	0.5	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.6
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.9	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.1	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	0.2	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	0.0	Colon ca. CaCo-2	0.6
Placenta	0.0	Colon cancer tissue	0.0
Uterus Pool	0.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.1	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.2
Ovarian ca. OVCAR-5	2.9	Small Intestine Pool	0.0
Ovarian ca. IGROV-1	0.7	Stomach Pool	0.0
Ovarian ca. OVCAR-8	0.3	Bone Marrow Pool	0.0
Ovary	0.0	Fetal Heart	0.3
Breast ca. MCF-7	1.1	Heart Pool	0.0
Breast ca. MDA-MB- 231	0.0	Lymph Node Pool	0.0
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.1
Breast ca. T47D	2.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	4.9
Breast Pool	0.0	Thymus Pool	0.0
Trachea	0.1	CNS cancer (glio/astro) U87-MG	0.1
Lung	0.1	CNS cancer (glio/astro) U- 118-MG	0.0
Fetal Lung	0.0	CNS cancer (neuro;met)	0.0

		SK-N-AS	
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.2	CNS cancer (astro) SNB-75	0.3
Lung ca. NCI-H146	34.2	CNS cancer (glio) SNB-19	0.4
Lung ca. SHP-77	7.4	CNS cancer (glio) SF-295	0.0
Lung ca. A549	0.0	Brain (Amygdala) Pool	40.9
Lung ca. NCI-H526	0.2	Brain (cerebellum)	26.8
Lung ca. NCI-H23	2.4	Brain (fetal)	100.0
Lung ca. NCI-H460	6.8	Brain (Hippocampus) Pool	50.3
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	56.6
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	62.4
Liver	0.1	Brain (Thalamus) Pool	71.2
Fetal Liver	0.0	Brain (whole)	55.9
Liver ca. HepG2	0.1	Spinal Cord Pool	17.9
Kidney Pool	0.0	Adrenal Gland	49.3
Fetal Kidney	0.9	Pituitary gland Pool	2.6
Renal ca. 786-0	0.0	Salivary Gland	0.7
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	0.0	Pancreas Pool	0.0

CNS_neurodegeneration_v1.0 Summary: Ag3371 This panel confirms the expression of this gene at moderate levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.4 Summary: Ag3371 Moderate expression of the NOV1a gene is seen in all regions of the brain represented on this panel (CT=29.2-31.7), with the highest level of expression in fetal brain. Thus, expression of this gene may be used to distinguish brain from the other samples on this panel. The NOV1a gene encodes a protein with homology to neurexophilins. Neurexophilins are members of a family of neuropeptide-like glycoproteins that bind to alpha-neurexins, receptor-like proteins expressed on the neuronal cell surface (Missler and Sudhof, J Neurosci 18(10):3630-8), 1998). Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

10

15

Panel 4D Summary: Ag3371 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

B. NOV2a: NEUROPHILIN

5

Expression of gene NOV2a was assessed using the primer-probe set Ag3369, described in Table BA. Results of the RTQ-PCR runs are shown in Tables BB, BC and BD.

Table BA. Probe Name Ag3369

Primers	Sequences	Length	Start Position
Forward	5'-gtccacttccaacacaatgc-3' (SEQ ID NO:200)	20	403
IUTODA	TET-5'-agggaaacatctccatcagcctcgt-3'-TAMRA (SEQ ID NO:201)	25	431
Reverse	5'-ctgttcctggtggaactctaca-3' (SEQ ID NO:202)	22	471

Table BB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3369, Run 210153743	Tissue Name	Rel. Exp.(%) Ag3369, Run 210153743
AD 1 Hippo	8.5	Control (Path) 3 Temporal Ctx	4.1
AD 2 Hippo	24.1	Control (Path) 4 Temporal Ctx	36.3
AD 3 Hippo	4.5	AD 1 Occipital Ctx	14.9
AD 4 Hippo	6.8	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	82.9	AD 3 Occipital Ctx	13.9
AD 6 Hippo	17.4	AD 4 Occipital Ctx	27.7
Control 2 Hippo	28.5	AD 5 Occipital Ctx	52.5
Control 4 Hippo	7.5	AD 6 Occipital Ctx	21.3
Control (Path) 3 Hippo	5.0	Control 1 Occipital Ctx	7.7
AD 1 Temporal Ctx	10.3	Control 2 Occipital Ctx	100.0
AD 2 Temporal Ctx	25.2	Control 3 Occipital Ctx	30.1
AD 3 Temporal Ctx	4.4	Control 4 Occipital Ctx	11.5
AD 4 Temporal Ctx	19.2	Control (Path) 1 Occipital Ctx	. 72.7
AD 5 Inf Temporal Ctx	61.6	Control (Path) 2 Occipital Ctx	22.7
AD 5 Sup Temporal Ctx	30.6	Control (Path) 3 Occipital Ctx	4.4
AD 6 Inf Temporal Ctx	22.1	Control (Path) 4 Occipital Ctx	31.0
AD 6 Sup Temporal Ctx	24.1	Control 1 Parietal Ctx	11.9
Control 1 Temporal Ctx	8.4	Control 2 Parietal Ctx	22.4
Control 2 Temporal Ctx	36.9	Control 3 Parietal Ctx	22.7
Control 3 Temporal Ctx	15.8	Control (Path) 1 Parietal Ctx	70.7
Control 3 Temporal Ctx	9.2	Control (Path) 2 Parietal Ctx	37.6
Control (Path) 1 Temporal Ctx	48.6	Control (Path) 3 Parietal Ctx	6.9
Control (Path) 2 Temporal Ctx	32.8	Control (Path) 4 Parietal Ctx	48.3

Table BC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3369, Run 217042734	Tissue Name	Rel. Exp.(%) Ag3369, Run 217042734
Adipose	2.6	Renal ca. TK-10	0.1
Melanoma* Hs688(A).T	4.1	Bladder	0.3
Melanoma* Hs688(B).T	9.1	Gastric ca. (liver met.) NCI-N87	0.2
Melanoma* M14	0.1	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.1
Melanoma* SK-MEL-5	0.3	Colon ca. SW480	3.5
Squamous cell carcinoma SCC-4	0.1	Colon ca.* (SW480 met) SW620	1.3
Testis Pool	2.1	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.1	Colon ca. HCT-116	0.3
Prostate Pool	2.7	Colon ca. CaCo-2	1.8
Placenta	1.7	Colon cancer tissue	1.4
Uterus Pool	5.0	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	0.7	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.4	Colon ca. SW-48	0.9
Ovarian ca. OVCAR-4	0.9	Colon Pool	19.1
Ovarian ca. OVCAR-5	2.0	Small Intestine Pool	10.7
Ovarian ca. IGROV-1	0.0	Stomach Pool	4.1
Ovarian ca. OVCAR-8	0.2	Bone Marrow Pool	5.8
Ovary	2.3	Fetal Heart	0.7
Breast ca. MCF-7	1.0	Heart Pool	7.2
Breast ca. MDA-MB- 231	0.1	Lymph Node Pool	13.5
Breast ca. BT 549	0.2	Fetal Skeletal Muscle	0.7
Breast ca. T47D	13.6	Skeletal Muscle Pool	1.0
Breast ca. MDA-N	0.0	Spleen Pool	0.5
Breast Pool	12.3	Thymus Pool	1.5
Trachea	3.0	CNS cancer (glio/astro) U87-MG	0.2
Lung	1.6	CNS cancer (glio/astro) U- 118-MG	0.1
Fetal Lung	4.6	CNS cancer (neuro;met) SK-N-AS	0.1
Lung ca. NCI-N417	0.8	CNS cancer (astro) SF-539	0.3
Lung ca. LX-1	6.9	CNS cancer (astro) SNB-75	2.7
Lung ca. NCI-H146	0.1	CNS cancer (glio) SNB-19	0.1
Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	0.1
Lung ca. A549	0.0	Brain (Amygdala) Pool	3.0
Lung ca. NCI-H526	0.1	Brain (cerebellum)	100.0
Lung ca. NCI-H23	0.6	Brain (fetal)	12.3
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	3.0
Lung ca. HOP-62	0.1	Cerebral Cortex Pool	9.5

Lung ca. NCI-H522	0.8	Brain (Substantia nigra) Pool	8.1
Liver	0.0	Brain (Thalamus) Pool	9.0
Fetal Liver	0.0	Brain (whole)	9.5
Liver ca. HepG2	0.2	Spinal Cord Pool	2.7
Kidney Pool	12.7	Adrenal Gland	0.9
Fetal Kidney	0.6	Pituitary gland Pool	4.9
Renal ca. 786-0	0.0	Salivary Gland	3.0
Renal ca. A498	0.1	Thyroid (female)	0.6
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.1
Renal ca. UO-31	0.1	Pancreas Pool	11.3

Table BD. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3369, Run 165296636	Tissue Name	Rel. Exp.(%) Ag3369, Run 165296636
Secondary Th1 act	0.8	HUVEC IL-1beta	6.9
Secondary Th2 act	2.9	HUVEC IFN gamma	100.0
Secondary Tr1 act	1.7	HUVEC TNF alpha + IFN gamma	8.3
Secondary Th1 rest	5.7	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	1.3	HUVEC IL-11	10.9
Secondary Tr1 rest	1.4	Lung Microvascular EC none	30.4
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	9.3
Primary Th2 act	1.6	Microvascular Dermal EC none	17.8
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1 beta	7.9
Primary Th1 rest	3.6	Bronchial epithelium TNFalpha + IL1beta	3.8
Primary Th2 rest	7.4	Small airway epithelium none	0.8
Primary Tr1 rest	3.3	Small airway epithelium TNFalpha + IL-1beta	4.0
CD45RA CD4 lymphocyte act	4.8	Coronery artery SMC rest	8.7
CD45RO CD4 lymphocyte act	3.3	Coronery artery SMC TNFalpha + IL-1 beta	1.4
CD8 lymphocyte act	3.8	Astrocytes rest	1.5
Secondary CD8 lymphocyte rest	1.7	Astrocytes TNFalpha + IL-1beta	11.9
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti- CD95 CH11	3.0	CCD1106 (Keratinocytes) none	42.6
LAK cells rest	2.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	27.5
LAK cells IL-2	0.0	Liver cirrhosis	7.3
LAK cells IL-2+IL-12	0.9	Lupus kidney	4.6
LAK cells IL-2+IFN	9.5	NCI-H292 none	7.1

gamma			
LAK cells IL-2+ IL-18	4.0	NCI-H292 IL-4	5.9
LAK cells PMA/ionomycin	3.8	NCI-H292 IL-9	3.6
NK Cells IL-2 rest	1.7	NCI-H292 IL-13	8.5
Two Way MLR 3 day	14.5	NCI-H292 IFN gamma	0.0
Two Way MLR 5 day	6.5	HPAEC none	.13.1
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	4.4
PBMC rest	4.2	Lung fibroblast none	4.4
PBMC PWM	14.2	Lung fibroblast TNF alpha + IL- 1 beta	4.5
PBMC PHA-L	4.0	Lung fibroblast IL-4	7.9
Ramos (B cell) none	0.0	Lung fibroblast IL-9	9.2
Ramos (B cell) ionomycin	3.3	Lung fibroblast IL-13	3.6
B lymphocytes PWM	42.9	Lung fibroblast IFN gamma	28.5
B lymphocytes CD40L and IL-4	4.2	Dermal fibroblast CCD1070 rest	52.9
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	9.9
EOL-1 dbcAMP PMA/ionomycin	0.9	Dermal fibroblast CCD1070 IL- 1 beta	12.3
Dendritic cells none	2.0	Dermal fibroblast IFN gamma	4.6
Dendritic cells LPS	15.0	Dermal fibroblast IL-4	3.5
Dendritic cells anti-CD40	1.8	IBD Colitis 2	2.8
Monocytes rest	1.6	IBD Crohn's	5.0
Monocytes LPS	6.6	Colon	65.1
Macrophages rest	2.9	Lung	88.3
Macrophages LPS	2.2	Thymus	6.7
HUVEC none	7.9	Kidney	24.5
HUVEC starved	18.7		

CNS_neurodegeneration_v1.0 Summary: Ag3369 This panel confirms the expression of the NOV2a gene at moderate levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

5

10

General_screening_panel_v1.4 Summary: Ag3369 Expression of the NOV2a gene is highest in the cerebellum (CT=26.2). Therefore, expression of this gene can be used to distinguish this sample from the others on the panel. In addition, this gene is expressed at moderate levels in hippocampus, thalamus, substantia nigra, cerebral cortex and spinal cord. The NOV2a gene encodes a protein with homology to rat neurexophilin 3. Neurexophilins are members of a family of neuropeptide-like glycoproteins that bind to alpha-Neurexins,

receptor-like proteins expressed on the neuronal cell surface (ref. 1). Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, pituitary gland, heart, and the gastrointestinal tract and at low levels in adrenal gland, thyroid, and skeletal muscle. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes. Expression of this gene is also significantly higher in adult heart (CT = 30) when compared to fetal heart (CT = 33.3), suggesting that it can be used to distinguish adult and fetal sources of this tissue.

Expression of this gene appears to be primarily associated with normal tissues rather than cancer cell lines. NOV2a gene expression appears to be down-regulated in CNS, colon, gastric, and renal cancer cell lines when compared to the corresponding normal tissues. Thus, expression of this gene may be useful as a marker for these types of cancers. Furthermore, application of the NOV2a gene product as a protein therapeutic may be of benefit in the treatment of CNS, colon, gastric, and renal cancer (Missler and Sudhof 1998)).

Panel 4D Summary: Ag3369 Highest expression of the NOV2a gene is seen in gamma interferon treated HUVECs (CT=31.6). Therefore, regulation of the transcript expression in HUVECs suggests that the protein encoded by this transcript may contribute to the inflammatory changes due to gamma interferon. Therefore, therapies designed with the protein encoded by this transcript may reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which endothelial cells and astrocytes are involved, such as lupus erythematosus, asthma, emphysema, Crohn's disease, ulcerative colitis, multiple sclerosis, rheumatoid arthritis, osteoarthritis, and psoriasis.

Significant levels of expression are also seen in normal colon and lung, suggesting that therapeutic modulation of the activity of this protein may be useful in the treatment of inflammatory bowel and lung diseases.

C. NOV3a: PROTEASE INHIBITOR 9

5

10

15

20

25

30

Expression of gene NOV3a was assessed using the primer-probe set Ag3368, described in Table CA.

Table CA. Probe Name Ag3368

Primers	Sequences	Length	Start Position

Forward	5'-gacgagaccactgacttgagaa-3' (SEQ ID NO:203)	22	728
IUYANE	TET-5'-tcacttttgagaaactcacagcctgg-3'-TAMRA (SEQ ID NO:204)	26	765
Reverse	5'-tcttcatacagtctggcttggt-3' (SEQ ID NO:205)	22	791

CNS_neurodegeneration_v1.0 Summary: Ag3368 Expression of this gene is

low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.4 Summary: Ag3368 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

5 Panel 4D Summary: Ag3368 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

D. NOV6a: Growth Suppressor/Leprecan

10

Expression of gene NOV6a was assessed using the primer-probe set Ag3354, described in Table DA. Results of the RTQ-PCR runs are shown in Tables DB, DC and DD.

Table DA. Probe Name Ag3354

Primers	Sequences	Length	Start Position
Forward	5'-gcagcacaccttctttgtag-3' (SEQ ID NO:206)	22	561
Probe	TET-5'-caaaccccatgcacctgcagatg-3'-TAMRA (SEQ ID NO:207)	23	583
Reverse	5'-ccgacattcgtctgtacttagc-3' (SEQ ID NO:208)	22	618

Table DB. CNS neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3354, Run 206533686	Tissue Name	Rel. Exp.(%) Ag3354, Run 206533686
AD 1 Hippo	21.2	Control (Path) 3 Temporal Ctx	7.6
AD 2 Hippo	25.0	Control (Path) 4 Temporal Ctx	36.9
AD 3 Hippo	8.6	AD 1 Occipital Ctx	34.6
AD 4 Hippo	6.8	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	100.0	AD 3 Occipital Ctx	11.9
AD 6 Hippo	31.0	AD 4 Occipital Ctx	17.6
Control 2 Hippo	4.7	AD 5 Occipital Ctx	15.5
Control 4 Hippo	12.0	AD 6 Occipital Ctx	16.8
Control (Path) 3 Hippo	5.8	Control 1 Occipital Ctx	3.0
AD 1 Temporal Ctx	26.6	Control 2 Occipital Ctx	32.8
AD 2 Temporal Ctx	25.2	Control 3 Occipital Ctx	37.1
AD 3 Temporal Ctx	11.4	Control 4 Occipital Ctx	6.0
AD 4 Temporal Ctx	23.3	Control (Path) 1 Occipital Ctx	50.0
AD 5 Inf Temporal Ctx 55.1		Control (Path) 2 Occipital Ctx	16.5
AD 5 SupTemporal Ctx	41.8	Control (Path) 3 Occipital Ctx	2.0

AD 6 Inf Temporal Ctx	39.0	Control (Path) 4 Occipital Ctx	35.1
AD 6 Sup Temporal Ctx	44.8	Control 1 Parietal Ctx	11.8
Control 1 Temporal Ctx	5.8	Control 2 Parietal Ctx	59.0
Control 2 Temporal Ctx	22.2	Control 3 Parietal Ctx	16.4
Control 3 Temporal Ctx	23.7	Control (Path) 1 Parietal Ctx	39.2
Control 4 Temporal Ctx	17.8	Control (Path) 2 Parietal Ctx	31.9
Control (Path) 1 Temporal Ctx	39.2	Control (Path) 3 Parietal Ctx	4.7
Control (Path) 2 Temporal Ctx	32.3	Control (Path) 4 Parietal Ctx	35.4

Table DC. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3354, Run 174285052	Tissue Name	Rel. Exp.(%) Ag3354, Run 174285052
Normal Colon	olon 5.1 Kidney Margin (OD04348)		32.8
Colon cancer (OD06064)	13.8	Kidney malignant cancer (OD06204B)	7.1
Colon Margin (OD06064)	2.5	Kidney normal adjacent tissue (OD06204E)	4.4
Colon cancer (OD06159)	0.0	Kidney Cancer (OD04450- 01)	16.0
Colon Margin (OD06159)	16.8	Kidney Margin (OD04450- 03)	7.2
Colon cancer (OD06297-04)	1.9	Kidney Cancer 8120613	1.5
Colon Margin (OD06297-05)	6.2	Kidney Margin 8120614	1.5
CC Gr.2 ascend colon (ODO3921)	9.7	Kidney Cancer 9010320	10.2
CC Margin (ODO3921)	6.2	Kidney Margin 9010321	3.6
Colon cancer metastasis (OD06104)	3.2	Kidney Cancer 8120607	34.4
Lung Margin (OD06104)	1.9	Kidney Margin 8120608	4.5
Colon mets to lung (OD04451-01)	13.5	Normal Uterus	34.6
Lung Margin (OD04451-02)	6.2	Uterine Cancer 064011	7.1
Normal Prostate	7.4	Normal Thyroid	5.6
Prostate Cancer (OD04410)	5.4	Thyroid Cancer 064010	15.5
Prostate Margin (OD04410)	6.8	Thyroid Cancer A302152	59.0
Normal Ovary	100.0	Thyroid Margin A302153	3.5
Ovarian cancer (OD06283- 03)	14.2	Normal Breast	4.5
Ovarian Margin (OD06283- 07)	7.6	Breast Cancer (OD04566)	6.6
Ovarian Cancer 064008	11.7	Breast Cancer 1024	7.4
Ovarian cancer (OD06145)	11.0	Breast Cancer (OD04590- 01)	17.2
Ovarian Margin (OD06145)	13.0	Breast Cancer Mets (OD04590-03)	6.9

Ovarian cancer (OD06455- 03)	5.4	Breast Cancer Metastasis (OD04655-05)	0.0
Ovarian Margin (OD06455- 07)	7.3	Breast Cancer 064006	17.7
Normal Lung	7.8	Breast Cancer 9100266	6.7
Invasive poor diff. lung adeno (ODO4945-01	11.6	Breast Margin 9100265	11.9
Lung Margin (ODO4945-03)	4.8	Breast Cancer A209073	3.4
Lung Malignant Cancer (OD03126)	19.3	Breast Margin A2090734	22.8
Lung Margin (OD03126)	1.6	Breast cancer (OD06083)	19.9
Lung Cancer (OD05014A)	5.1	Breast cancer node metastasis (OD06083)	39.5
Lung Margin (OD05014B)	8.3	Normal Liver	2.8
Lung cancer (OD06081)	2.7	Liver Cancer 1026	7.6
Lung Margin (OD06081)	2.3	Liver Cancer 1025	3.7
Lung Cancer (OD04237-01)	6.3	Liver Cancer 6004-T	1.3
Lung Margin (OD04237-02)	19.9	Liver Tissue 6004-N	4.8
Ocular Melanoma Metastasis	1.5	Liver Cancer 6005-T	15.0
Ocular Melanoma Margin (Liver)	2.8	Liver Tissue 6005-N	20.2
Melanoma Metastasis	12.2	Liver Cancer 064003	0.6
Melanoma Margin (Lung)	2.7	Normal Bladder	12.7
Normal Kidney	1.8	Bladder Cancer 1023	13.9
Kidney Ca, Nuclear grade 2 (OD04338)	14.1	Bladder Cancer A302173	8.8
Kidney Margin (OD04338)	9.2	Normal Stomach	21.5
Kidney Ca Nuclear grade 1/2 (OD04339)	6.7	Gastric Cancer 9060397	5.3
Kidney Margin (OD04339)	0.6	Stomach Margin 9060396	6.7
Kidney Ca, Clear cell type (OD04340)	0.0	Gastric Cancer 9060395	11.6
Kidney Margin (OD04340)	3.6	Stomach Margin 9060394	13.2
Kidney Ca, Nuclear grade 3 (OD04348)	38.7	Gastric Cancer 064005	7.6

Table DD. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3354, Run 165241958	Tissue Name	Rel. Exp.(%) Ag3354, Run 165241958	
Secondary Th1 act	0.2	HUVEC IL-1 beta	10.6	
Secondary Th2 act	0.4	HUVEC IFN gamma	42.0	
Secondary Tr1 act	0.8	HUVEC TNF alpha + IFN gamma	28.7	
Secondary Th1 rest	0.8	HUVEC TNF alpha + IL4	39.8	
Secondary Th2 rest	0.4	HUVEC IL-11	44.1	
Secondary Trl rest	0.1	Lung Microvascular EC none	61.6	
Primary Th1 act	0.7	Lung Microvascular EC TNFalpha + IL-1beta	49.7	
Primary Th2 act	0.9	Microvascular Dermal EC none	40.3	

		Microsvasular Dermal EC	
Primary Tr1 act	0.6	TNFalpha + IL-1beta	22.7
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	35.8
Primary Th2 rest	0.2	Small airway epithelium none	5.2
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	4.2
CD45RA CD4 lymphocyte act	17.3	Coronery artery SMC rest	39.8
CD45RO CD4 lymphocyte act	0.3	Coronery artery SMC TNFalpha + IL-1 beta	32.8
CD8 lymphocyte act	0.1	Astrocytes rest	27.2
Secondary CD8 lymphocyte rest	0.8	Astrocytes TNFalpha + IL-1beta	22.5
Secondary CD8 lymphocyte act	0.4	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	1.0	KU-812 (Basophil) PMA/ionomycin	0.3
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.2	CCD1106 (Keratinocytes) none	19.9
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	7.0
LAK cells IL-2	0.6	Liver cirrhosis	3.0
LAK cells IL-2+IL-12	0.4	Lupus kidney	1.2
LAK cells IL-2+IFN gamma	0.3	NCI-H292 none	1.2
LAK cells IL-2+ IL-18	0.6	NCI-H292 IL-4	0.2
LAK cells PMA/ionomycin	0.1	NCI-H292 IL-9	0.7
NK Cells IL-2 rest	0.4	NCI-H292 IL-13	0.2
Two Way MLR 3 day	0.3	NCI-H292 IFN gamma	0.1
Two Way MLR 5 day	0.0	HPAEC none	60.7
Two Way MLR 7 day	0.6	HPAEC TNF alpha + IL-1 beta	39.5
PBMC rest	0.3	Lung fibroblast none	70.7
PBMC PWM	0.2	Lung fibroblast TNF alpha + IL- 1 beta	54.0
PBMC PHA-L	0.3	Lung fibroblast IL-4	94.6
Ramos (B cell) none	0.0	Lung fibroblast IL-9	76.3
Ramos (B cell) ionomycin	0.0	Lung fibroblast IL-13	62.9
B lymphocytes PWM	0.9	Lung fibroblast IFN gamma	80.7
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 rest	100.0
EOL-1 dbcAMP	0.9	Dermal fibroblast CCD1070 68.3	
EOL-1 dbcAMP PMA/ionomycin	0.2	Dermal fibroblast CCD1070 IL- 1 beta 63.7	
Dendritic cells none	0.9	Dermal fibroblast IFN gamma	18.3
Dendritic cells LPS	0.1	Dermal fibroblast IL-4	46.7
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.5
Monocytes rest	1.1	IBD Crohn's	3.1
Monocytes LPS	0.3	Colon	10.5

Macrophages rest	0.2	Lung	17.2
Macrophages LPS	0.0	Thymus	6.3
HUVEC none	55.1	Kidney	4.5
HUVEC starved	76.3		

CNS_neurodegeneration_v1.0 Summary: Ag3354 This panel confirms the expression of the NOV6a gene at low to moderate levels in the brains of several individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment.

General_screening_panel_v1.4 Summary: Ag3354 Results from one experiment are not included. The amp plot indicates that there were experimental difficulties with this run.

Panel 2.2 Summary: Ag3354 Highest expression of the NOV6a gene is seen in normal ovary (CT=32.3). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker of ovarian tissue. The NOV6a gene encodes a protein with homology to the human Gros1 and rat leprecan genes. Stable transfection of the mouse Gros1 cDNA into NIH3T3 cells resulted in their slow growth and reduced colony-forming efficiency, suggesting that this protein can act as a growth suppressor. Therefore, use of the NOV6a gene product as a protein therapeutic may be of benefit in the treatment of cancer (Kaul et al., Oncogene 19(32):3576-83, 2000).

Panel 4D Summary: Ag3354 Expression of the NOV6a gene is highest in dermal and lung fibroblasts, regardless of treatment (CTs = 28-30). This gene is also expressed at moderate levels in endothelial cells. Thus, the transcript or the protein it encodes could be used to identify endothelium or fibroblasts. Endothelial cells are known to play important roles in inflammatory responses by altering the expression of surface proteins that are involved in activation and recruitment of effector inflammatory cells. The expression of this gene in dermal fibroblasts and dermal microvascular endothelial cells suggests that this protein product may be involved in inflammatory responses to skin disorders, including psoriasis. Expression in lung fibroblasts and lung microvascular endothelial cells suggests that the protein encoded by this transcript may also be involved in lung disorders including asthma, allergies, chronic obstructive pulmonary disease, and emphysema. Therefore, therapeutic modulation of the protein encoded by this gene may lead to amelioration of symptoms associated with psoriasis, asthma, allergies, chronic obstructive pulmonary disease, and emphysema.

25

5

10

15

20

E. NOV10a: olfactomedin-like

Expression of gene NOV10a was assessed using the primer-probe set Ag3384, described in Table EA. Results of the RTQ-PCR runs are shown in Tables EB, EC, ED, EE and EF.

5 <u>Table EA</u>. Probe Name Ag3384

Primers	Sequences	Length	Start Position
Forward	5'-actactatcggctgtgcaaatc-3' (SEQ ID NO:209)	22	826
PYODE	TET-5'-ctataatgacctcgcactgctgaaaa-3'-TAMRA (SEQ ID NO:210)	26	848
Reverse	5'-catageceatettectetete-3' (SEQ ID NO:211)	22	879

Table EB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3384, Run 210154823	Tissue Name	Rel. Exp.(%) Ag3384, Run 210154823
AD 1 Hippo	36.6	Control (Path) 3 Temporal Ctx	6.8
AD 2 Hippo	48.0	Control (Path) 4 Temporal Ctx	43.2
AD 3 Hippo	5.3	AD 1 Occipital Ctx	39.2
AD 4 Hippo	3.6	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	50.0	AD 3 Occipital Ctx	0.0
AD 6 Hippo	62.0	AD 4 Occipital Ctx	27.5
Control 2 Hippo	7.6	AD 5 Occipital Ctx	13.0
Control 4 Hippo	32.1	AD 6 Occipital Ctx	18.7
Control (Path) 3 Hippo	69.7	Control 1 Occipital Ctx	0.0
AD 1 Temporal Ctx	55.5	Control 2 Occipital Ctx	7.2
AD 2 Temporal Ctx	36.3	Control 3 Occipital Ctx	26.1
AD 3 Temporal Ctx	14.1	Control 4 Occipital Ctx	3.2
AD 4 Temporal Ctx	86.5	Control (Path) 1 Occipital Ctx	36.6
AD 5 Inf Temporal Ctx	67.4	Control (Path) 2 Occipital Ctx	14.4
AD 5 SupTemporal Ctx	100.0	Control (Path) 3 Occipital Ctx	40.9
AD 6 Inf Temporal Ctx	40.6	Control (Path) 4 Occipital Ctx	14.4
AD 6 Sup Temporal Ctx	54.3	Control 1 Parietal Ctx	27.2
Control 1 Temporal Ctx	6.0	Control 2 Parietal Ctx	95.9
Control 2 Temporal Ctx	10.8	Control 3 Parietal Ctx	28.1
Control 3 Temporal Ctx	26.1	Control (Path) 1 Parietal Ctx	20.6
Control 4 Temporal Ctx	6.3	Control (Path) 2 Parietal Ctx	33.7
Control (Path) 1 Temporal Ctx	14.4	Control (Path) 3 Parietal Ctx	26.6
Control (Path) 2	29.7	Control (Path) 4	55.5

	I= 1.10.
Temporal Ctx	IParietal Ctx
1 citipotai Cix	

Table EC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3384, Run 213510091	Tissue Name	Rel. Exp.(%) Ag3384, Run 213510091
Adipose	4.1	Renal ca. TK-10	1.4
Melanoma* Hs688(A).T	1.8	Bladder	29.3
Melanoma* Hs688(B).T	4.7	Gastric ca. (liver met.) NCI-N87	61.1
Melanoma* M14	1.0	Gastric ca. KATO III	0.7
Melanoma* LOXIMVI	3.4	Colon ca. SW-948	0.9
Melanoma* SK-MEL-5	0.3	Colon ca. SW480	0.0
Squamous cell carcinoma SCC-4	0.4	Colon ca.* (SW480 met) SW620	0.4
Testis Pool	14.2	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	3.6	Colon ca. HCT-116	1.6
Prostate Pool	10.3	Colon ca. CaCo-2	1.5
Placenta	7.5	Colon cancer tissue	0.5
Uterus Pool	4.4	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	35.1	Colon ca. Colo-205	0.7
Ovarian ca. SK-OV-3	100.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.9	Colon Pool	26.2
Ovarian ca. OVCAR-5	8.6	Small Intestine Pool	31.2
Ovarian ca. IGROV-1	0.0	Stomach Pool	25.9
Ovarian ca. OVCAR-8	1.6	Bone Marrow Pool	13.6
Ovary	24.0	Fetal Heart	18.9
Breast ca. MCF-7	0.0	Heart Pool	7.6
Breast ca. MDA-MB- 231	0.7	Lymph Node Pool	34.9
Breast ca. BT 549	2.7	Fetal Skeletal Muscle	8.0
Breast ca. T47D	7.5	Skeletal Muscle Pool	2.6
Breast ca. MDA-N	0.0	Spleen Pool	23.2
Breast Pool	31.2	Thymus Pool	30.6
Trachea	14.0	CNS cancer (glio/astro) U87-MG	2.6
Lung	16.3	CNS cancer (glio/astro) U- 118-MG	3.7
Fetal Lung	69.7	CNS cancer (neuro;met) SK-N-AS	0.0
Lung ca. NCI-N417	0.4	CNS cancer (astro) SF-539	1.3
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	3.7
Lung ca. NCI-H146	5.8	CNS cancer (glio) SNB-19	1.0
Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	27.4
Lung ca. A549	1.9	Brain (Amygdala) Pool	2.2
Lung ca. NCI-H526	0.0	Brain (cerebellum)	0.4
Lung ca. NCI-H23	13.8	Brain (fetal)	9.9
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	3.6

Lung ca. HOP-62	11.4	Cerebral Cortex Pool	2.0
Lung ca. NCI-H522	0.9	Brain (Substantia nigra) Pool	4.0
Liver	0.6	Brain (Thalamus) Pool	2.5
Fetal Liver	11.2	Brain (whole)	3.5
Liver ca. HepG2	0.9	Spinal Cord Pool	7.9
Kidney Pool	42.9	Adrenal Gland	10.9
Fetal Kidney	43.8	Pituitary gland Pool	3.5
Renal ca. 786-0	3.1	Salivary Gland	5.4
Renal ca. A498	3.3	Thyroid (female)	4.3
Renal ca. ACHN	4.5	Pancreatic ca. CAPAN2	3.0
Renal ca. UO-31	11.3	Pancreas Pool	29.1

Table ED. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3384, Run 173761690	Tissue Name	Rel. Exp.(%) Ag3384, Run 173761690
Normal Colon	8.2	Kidney Margin (OD04348)	100.0
Colon cancer (OD06064)	0.0	Kidney malignant cancer (OD06204B)	3.2
Colon Margin (OD06064)	3.3	Kidney normal adjacent tissue (OD06204E)	0.8
Colon cancer (OD06159)	0.0	Kidney Cancer (OD04450-01)	6.0
Colon Margin (OD06159)	7.5	Kidney Margin (OD04450- 03)	14.2
Colon cancer (OD06297-04)	0.0	Kidney Cancer 8120613	0.0
Colon Margin (OD06297-05)	9.0	Kidney Margin 8120614	. 2.2
CC Gr.2 ascend colon (ODO3921)	4.3	Kidney Cancer 9010320	2.8
CC Margin (ODO3921)	0.0	Kidney Margin 9010321	7.3
Colon cancer metastasis (OD06104)	4.8	Kidney Cancer 8120607	0.0
Lung Margin (OD06104)	4.2	Kidney Margin 8120608	0.0
Colon mets to lung (OD04451-01)	4.7	Normal Uterus	28.1
Lung Margin (OD04451-02)	6.8	Uterine Cancer 064011	2.3
Normal Prostate	7.2	Normal Thyroid	2.1
Prostate Cancer (OD04410)	6.8	Thyroid Cancer 064010	0.0
Prostate Margin (OD04410)	13.3	Thyroid Cancer A302152	13.7
Normal Ovary	0.0	Thyroid Margin A302153	0.0
Ovarian cancer (OD06283- 03)	2.2	Normal Breast	17.3
Ovarian Margin (OD06283- 07)	3.8	Breast Cancer (OD04566)	2.5
Ovarian Cancer 064008	26.1	Breast Cancer 1024	5.1
Ovarian cancer (OD06145)	4.5	Breast Cancer (OD04590- 01)	3.7
Ovarian Margin (OD06145)	7.2	Breast Cancer Mets (OD04590-03)	7.6

Ovarian cancer (OD06455- 03)	6.9	Breast Cancer Metastasis (OD04655-05)	2.2
Ovarian Margin (OD06455- 07)	0.0	Breast Cancer 064006	9.5
Normal Lung	2.4	Breast Cancer 9100266	2.6
Invasive poor diff. lung adeno (ODO4945-01	17.8	Breast Margin 9100265	1.8
Lung Margin (ODO4945-03)	10.2	Breast Cancer A209073	0.0
Lung Malignant Cancer (OD03126)	0.0	Breast Margin A2090734	1.2
Lung Margin (OD03126)	4.7	Breast cancer (OD06083)	15.8
Lung Cancer (OD05014A)	2.7	Breast cancer node metastasis (OD06083)	9.1
Lung Margin (OD05014B)	7.4	Normal Liver	16.5
Lung cancer (OD06081)	0.0	Liver Cancer 1026	2.0
Lung Margin (OD06081)	9.9	Liver Cancer 1025	13.8
Lung Cancer (OD04237-01)	2.4	Liver Cancer 6004-T	1.3
Lung Margin (OD04237-02)	21.9	Liver Tissue 6004-N	2.1
Ocular Melanoma Metastasis	2.3	Liver Cancer 6005-T	0.0
Ocular Melanoma Margin (Liver)	0.0	Liver Tissue 6005-N	3.0
Melanoma Metastasis	0.0	Liver Cancer 064003	0.0
Melanoma Margin (Lung)	9.1	Normal Bladder	4.7
Normal Kidney	4.0	Bladder Cancer 1023	0.7
Kidney Ca, Nuclear grade 2 (OD04338)	30.4	Bladder Cancer A302173	19.8
Kidney Margin (OD04338)	16.5	Normal Stomach	28.7
Kidney Ca Nuclear grade 1/2 (OD04339)	25.9	Gastric Cancer 9060397	0.0
Kidney Margin (OD04339)	8.4	Stomach Margin 9060396	5.6
Kidney Ca, Clear cell type (OD04340)	2.3	Gastric Cancer 9060395	6.8
Kidney Margin (OD04340)	5.2	Stomach Margin 9060394	2.3
Kidney Ca, Nuclear grade 3 (OD04348)	5.0	Gastric Cancer 064005	0.0

Table EE. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3384, Run 165296536	Tissue Name	Rel. Exp.(%) Ag3384, Run 165296536
Secondary Th1 act	0.0	HUVEC IL-1 beta	2.2
Secondary Th2 act	2.9	HUVEC IFN gamma	7.8
Secondary Tr1 act	13.0	HUVEC TNF alpha + IFN gamma	3.4
Secondary Th1 rest	10.1	HUVEC TNF alpha + IL4	2.7
Secondary Th2 rest	10.0	HUVEC IL-11	1.2
Secondary Tr1 rest	6.0	Lung Microvascular EC none	15.0
Primary Th1 act	2.0	Lung Microvascular EC TNFalpha + IL-1 beta	7.7
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0

Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	2.6
Primary Th1 rest	56.3	Bronchial epithelium TNFalpha 8.7 + IL1beta	
Primary Th2 rest	26.1	Small airway epithelium none 5.5	
Primary Tr1 rest	4.1	Small airway epithelium TNFalpha + IL-1beta	50.7
CD45RA CD4 lymphocyte act	4.9	Coronery artery SMC rest	8.2
CD45RO CD4 lymphocyte act	7.1	Coronery artery SMC TNFalpha + IL-1beta	4.4
CD8 lymphocyte act	8.5	Astrocytes rest	9.1
Secondary CD8 lymphocyte rest	8.9	Astrocytes TNFalpha + IL-1 beta	8.2
Secondary CD8 lymphocyte act	7.0	KU-812 (Basophil) rest	2.5
CD4 lymphocyte none	8.5	KU-812 (Basophil) PMA/ionomycin	33.9
2ry Th1/Th2/Tr1_anti- CD95 CH11	7.3	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	13.8	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	5.3
LAK cells IL-2	30.6	Liver cirrhosis	20.0
LAK cells IL-2+IL-12	25.7	Lupus kidney	11.3
LAK cells IL-2+IFN gamma	20.0	NCI-H292 none	54.7
LAK cells IL-2+ IL-18	28.1	NCI-H292 IL-4	30.4
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-9	39.0
NK Cells IL-2 rest	5.0	NCI-H292 IL-13	15.4
Two Way MLR 3 day	27.0	NCI-H292 IFN gamma	17.3
Two Way MLR 5 day	5.0	HPAEC none	13.7
Two Way MLR 7 day	7.7	HPAEC TNF alpha + IL-1 beta	2.4
PBMC rest	4.2	Lung fibroblast none	24.5
PBMC PWM	27.0	Lung fibroblast TNF alpha + IL- 1 beta 12.5	
PBMC PHA-L	1.8	Lung fibroblast IL-4	15.0
Ramos (B cell) none	0.0	Lung fibroblast IL-9	20.9
Ramos (B cell) ionomycin	5.9	Lung fibroblast IL-13	2.6
B lymphocytes PWM	7.7	Lung fibroblast IFN gamma	18.6
B lymphocytes CD40L and IL-4	1.4	Dermal fibroblast CCD1070 rest 7.1	
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 15.6	
EOL-1 dbcAMP PMA/ionomycin	· 0.0	Dermal fibroblast CCD1070 IL- 1 beta 0.0	
Dendritic cells none	3.0	Dermal fibroblast IFN gamma	13.6
Dendritic cells LPS	4.4	Dermal fibroblast IL-4	5.4
Dendritic cells anti-CD40	3.4	IBD Colitis 2	2.4
Monocytes rest	7.3	IBD Crohn's	0.0
Monocytes LPS	2.7	Colon	11.2

Macrophages rest	4.5	Lung	8.0
Macrophages LPS	0.0	Thymus	88.3
HUVEC none	2.1	Kidney	100.0
HUVEC starved	26.1		

CNS_neurodegeneration_v1.0 Summary: Ag3384 The NOV10a gene, an olfactomedin homolog, is slighly upregulated in the temporal cortex of Alzheimer's disease patients. Members of the olfactomedin family have been implicated in regulating physical properties of the extracellular environment. Therefore, therapeutic inhibition of this protein may be of use in reversing the dementia/memory loss associated with Alzheimer's disease and neuronal death (Kulkarni et al., Genet Res 76(1):41-50, 2000).

General_screening_panel_v1.4 Summary: Ag3384 Expression of the NOV10a gene is highest in an ovarian cancer cell line (CT=30.4). Significant expression of this gene is also seen in a gastric cancer cell line. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of ovarian and gastric cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of ovarian and gastric cancer.

10

15

20

25

30

Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal skeletal muscle, fetal liver and adult/fetal heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.

In addition, this gene has low expression in some samples derived from the central nervous system, including the substantia nigra, fetal brain, and spinal cord. Please see CNS_neurodegeneration_v1.0 for further discussion of the utility of this gene in the central nervous system.

Panel 2.2 Summary: Ag3384 In agreement with Panel 4D below, this gene is expressed at significant levels in the kidney, with highest expression in the kidney margin sample OD04348 (CT = 32.6). There is also low expression in samples from stomach, uterus, lung, and ovary. Thus, expression of this gene could be used to differentiate between the kidney and other samples on this panel and as a marker for kidney tissue.

Panel 4D Summary: Ag3384 Expression of the NOV10a gene is highest in kidney (CT=32.5) and thymus (CT=32.7). Therefore, protein, antibody or small molecule therapies designed with the NOV10a protein could be used to modulate kidney or T cell development

and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney and thymus, including lupus, glomerulonephritis, organ transplant, AIDS treatment or post chemotherapy immune reconstitution.

Panel CNS_1 Summary: Ag3384 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

F. NOV12a and NOV13a: NEURAL CELL ADHESION PROTEIN BIG-2 PRECURSOR

Expression of genes NOV12a and NOV13a was assessed using the primer-probe sets

Ag3228, Ag3261, Ag5267 and Ag5268, described in Tables FA, FB, FC and FD. Results of
the RTQ-PCR runs are shown in Tables FE, FF, FG, FH, FI, FJ and FK.

Table FA. Probe Name Ag3228

Primers	Sequences	Length	Start Position
Forward	5'-gcccttccaagtttacactga-3' (SEQ ID NO:212)	21	3266
IUTARA	TET-5'-tccttttaccctcatgctatccctga-3'-TAMRA (SEQ ID NO:213)	26	3291
Reverse	5'-gtaacgtgggcattattgacat-3' (SEQ ID NO:214)	22	3321

Table FB. Probe Name Ag3261

Primers	Sequences	Length	Start Position
Forward	5'-gcccttccaagtttacactga-3' (SEQ ID NO:215)	21	3266
IUTANA	TET-5'-tccttttaccctcatgctatccctga-3'-TAMRA (SEQ ID NO:216)	26	3291
Reverse	5'-gtaacgtgggcattattgacat-3' (SEQ ID NO:217)	22	3321

Table FC. Probe Name Ag5267

15

20

Primers	Sequences	Length	Start Position
Forward	5'-gcggtcccggaaca-3' (SEQ ID NO:218)	14	2810
Probe	TET-5'-cacgcctggtctctcagtggca-3'-TAMRA (SEQ ID NO:219)	22	2841
Reverse	5'-gcctgctgccacacatt-3' (SEQ ID NO:220)	17	2871

Table FD. Probe Name Ag5268

Primers	Sequences	Length	Start Position
Forward	5'-cagcatcccttcagtgca-3' (SEQ ID NO:221)	18	1013
Probe	TET-5'-cacagccaccaacaatgtgggc-3'-TAMRA (SEQ ID NO:222)	22	1058
Reverse	5'-caccagcaggttgacagtct-3' (SEQ ID NO:223)	20	1093

<u>Table FE</u>. AI_comprehensive panel_v1.0

Tissue Name Rel. Exp.(%) Rel. Exp.(%) Rel. Exp.(%) Rel. Exp.(%) Rel. Exp.(%)						
1 155 te 14 anie Rei. Exp.(70) Rei. Exp.(70) Rei. Exp.(70) Rei. Exp.(70)	Tissue Name	Rel. Exp.(%)	Rel. Exp.(%)	Rel. Exp.(%)	Rel. Exp.(%)	Rel. Exp.(%)

	Ag3228, Run 225147544	Ag3228, Run 229440553	Ag3261, Run 229313855	Ag5267, Run 230473002	Ag5268, Run 230473019
110967 COPD-F	0.0	0.0	0.0	36.9	35.4
110980 COPD-F	0.0	20.2	0.6	40.3	36.6
110968 COPD-M	40.9	27.0	0.0	36.1	35.6
110977 COPD-M	33.7	96.6	2.6	0.0	0.0
110989 Emphysema-F	10.6	25.0	0.0	25.2	29.5
110992 Emphysema-F	0.0	0.0	0.0	12.2	17.9
110993 Emphysema-F	0.0	0.0	0.0	15.2	18.4
110994 Emphysema-F	0.0	0.0	0.0	11.1	23.0
110995 Emphysema-F	0.0	24.3	0.0	18.9	36.9
110996 Emphysema-F	0.0	0.0	0.0	0.0	1.4
110997 Asthma-M	0.0	0.0	0.0	21.2	7.0
111001 Asthma-F	0.0	0.0	0.0	20.4	37.9
111002 Asthma-F	9.7	0.0	0.0	22.4	19.3
111003 Atopic Asthma-F	0.0	0.0	0.7	49.0	45.1
111004 Atopic Asthma-F	0.0	0.0	0.0	49.3	59.9
111005 Atopic Asthma-F	0.0	0.0	0.0	24.3	21.6
111006 Atopic Asthma-F	0.0	0.0	0.0	6.5	5.6
111417 Allergy-M	0.0	0.0	0.0	26.4	36.6
112347 Allergy-M	8.5	0.0	1.0	1.5	3.4
112349 Normal Lung-F	0.0	45.4	1.2	2.9	10.3
112357 Normal Lung-F	20.2	77.9	1.0	51.4	38.7
112354 Normal Lung-M	0.0	23.7	0.0	39.8	21.3
112374 Crohns-F	10.7	0.0	0.0	25.0	19.9
112389 Match Control Crohns-F	12.3	0.0	0.5	18.2	8.2
112375 Crohns-F	0.0	0.0	0.0	24.0	21.2
112732 Match Control Crohns-F	10.9	100.0	1.4	22.7	46.3
112725 Crohns-M	0.0	0.0	0.5	3.1	1.8
112387 Match Control Crohns-M	100.0	0.0	0.0	20.9	19.5
112378 Crohns-M	49.3	43.5	0.8	2.9	9.8
112390 Match Control Crohns-M	9.2	0.0	1.3	45.1	43.2
112726 Crohns-M	9.3	14.0	0.0	50.0	51.4
112731 Match Control Crohns-M	0.0	28.7	1.8	31.0	43.2

112380 Ulcer Col- F	0.0	0.0	0.0	20.6	15.5
112734 Match Control Ulcer Col- F	40.6	58.6	2.2	37.4	46.7
112384 Ulcer Col- F	0.0	0.0	0.0	41.5	25.7
112737 Match Control Ulcer Col- F	9.9	0.0	0.0	27.5	21.3
112386 Ulcer Col- F	0.0	0.0	0.3	25.2	15.9
112738 Match Control Ulcer Col- F	0.0	0.0	0.0	3.0	3.1
112381 Ulcer Col- M	0.0	. 0.0	0.0	4.5	24.0
112735 Match Control Ulcer Col- M	0.0	0.0	0.0	16.4	4.0
112382 Ulcer Col- M	12.2	23.8	0.5	18.7	16.2
112394 Match Control Ulcer Col- M	0.0	0.0	0.0	6.4	9.4
112383 Ulcer Col- M	13.1	23.8	0.7	16.6	9.5
112736 Match Control Ulcer Col- M	0.0	0.0	0.6	14.7	11.3
112423 Psoriasis-F	7.2	24.7	0.0	40.6	15.6
112427 Match Control Psoriasis-F	34.9	49.7	2.8	84.1	53.2
112418 Psoriasis- M	22.8	54.0	100.0	52.1	21.3
112723 Match Control Psoriasis- M	0.0	0.0	0.0	10.4	11.1
112419 Psoriasis- M	0.0	21.6	1.0	61.1	35.4
112424 Match Control Psoriasis- M	0.0	75.3	0.7	23.7	10.7
112420 Psoriasis- M	35.1	15.5	0.0	100.0	100.0
112425 Match Control Psoriasis- M	0.0	23.2	0.0	77.4	38.4
104689 (MF) OA Bone-Backus	0.0	0.0	1.0	16.4	25.7
104690 (MF) Adj "Normal" Bone- Backus	0.0	0.0	0.0	10.4	17.9
104691 (MF) OA	0.0	0.0	0.0	9.6	33.9

104692 (BA) OA 0.0 0.0 0.0 2.7 9.9						
Cartilage-Backus 0.0 0.0 0.0 2.1 39.5 104694 (BA) OA 0.0 25.0 0.7 21.2 39.5 104695 (BA) Adj "Mormal" Bone-Backus 0.0 0.0 0.0 0.0 11.4 23.5 104696 (BA) OA 0.0 0.0 0.0 0.0 11.4 23.5 104696 (BA) OA 0.0 0.0 0.0 0.0 11.4 23.5 104709 (SS) OA 23.0 0.0 0.0 0.0 28.5 31.2 104701 (SS) Adj "Normal" Bone-Backus 0.0 0.0 0.0 0.0 38.2 70.7 104701 (SS) Adj "Normal" Bone-Backus 0.0 0.0 0.0 0.0 38.2 70.7 104702 (SS) OA 0.0 17.3 0.0 65.5 89.5 104702 (SS) OA 0.0 17.3 0.0 65.5 89.5 104702 (SS) OA 0.0 0.0 0.0 0.0 61.1 47.0 112672 OA Bone-Backus 0.0 0.0 0.0 0.0 61.1 47.0 112672 OA Bone-S 0.0 0.0 0.0 0.0 61.1 47.0 112673 OA 0.0 0.0 0.0 0.0 33.7 27.4 112674 OA 0.0 0.0 0.0 0.0 33.7 27.4 112756 OA Bone-P 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 0.0 0.0 2.2 10.4 112758 OA Synovium 0.0 0.0 0.0 0.0 34.9 41.8 113492 Bone2 RA 0.0 0.0 0.0 0.0 33.6 20.0 113495 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 1.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Synovium-Backus					
Cartilage-Backus 0.0 0.0 0.0 2.1 39.5 104694 (BA) OA 0.0 25.0 0.7 21.2 39.5 104695 (BA) Adj "Mormal" Bone-Backus 0.0 0.0 0.0 0.0 11.4 23.5 104696 (BA) OA 0.0 0.0 0.0 0.0 11.4 23.5 104696 (BA) OA 0.0 0.0 0.0 0.0 11.4 23.5 104709 (SS) OA 23.0 0.0 0.0 0.0 28.5 31.2 104701 (SS) Adj "Normal" Bone-Backus 0.0 0.0 0.0 0.0 38.2 70.7 104701 (SS) Adj "Normal" Bone-Backus 0.0 0.0 0.0 0.0 38.2 70.7 104702 (SS) OA 0.0 17.3 0.0 65.5 89.5 104702 (SS) OA 0.0 17.3 0.0 65.5 89.5 104702 (SS) OA 0.0 0.0 0.0 0.0 61.1 47.0 112672 OA Bone-Backus 0.0 0.0 0.0 0.0 61.1 47.0 112672 OA Bone-S 0.0 0.0 0.0 0.0 61.1 47.0 112673 OA 0.0 0.0 0.0 0.0 33.7 27.4 112674 OA 0.0 0.0 0.0 0.0 33.7 27.4 112756 OA Bone-P 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 0.0 0.0 2.2 10.4 112758 OA Synovium 0.0 0.0 0.0 0.0 34.9 41.8 113492 Bone2 RA 0.0 0.0 0.0 0.0 33.6 20.0 113495 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 33.9 19.8 113496 Synovium 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 10.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 1.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113496 Carilage-RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0				0.0	2.7	0.0
104694 (BA) OA 0.0 25.0 0.7 21.2 39.5		0.0	0.0	0.0	2.1	9.9
Bone-Backus 0.0 2.50 0.7 2.12 2.55			26.0	0.7	21.2	20.5
104695 (BA) Adj Normal" Bone-Backus 0.0		0.0	25.0	0.7	21.2	39.3
"Normal" Bone-Backus						
Backus 104696 (BA) OA 23.0 0.0 0.0 0.6 31.0 43.5 31.0 43.5 31.0 43.5 31.0 31.0 43.5 31.0 31.2 31.0 31.2		0.0	0.0	0.0	11.4	23.5
104696 (BA) OA Synovium-Backus 0.0 0.0 0.6 31.0 43.5 Synovium-Backus 0.0 0.0 0.0 0.0 28.5 31.2 104701 (SS) Adj		V. 0	1			
Synovium-Backus 0.0 0.0 0.0 0.0 28.5 31.2						
104700 (SS) OA 23.0 0.0 0.0 28.5 31.2 104701 (SS) Adj "Normal" Bone-Backus 0.0 0.0 0.0 38.2 70.7 104702 (SS) OA 570.7 58.5 589.5 104702 (SS) OA 570.7 58.5 589.5 117093 OA 570.7 58.5 589.5 117093 OA 570.7 58.5 589.5 112672 OA Bone5 0.0 0.0 0.0 0.0 61.1 47.0 112672 OA Bone5 0.0 0.0 0.0 0.0 61.1 47.0 112674 OA 570.7 570.7 570.7 112674 OA 570.7 570.7 570.7 112674 OA 570.7 570.7 570.7 112767 OA 570.7 570.7 570.7 112757 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 570.7 112758 OA 570.7 570.7 570.7 570.7 113493 Synovium2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113493 Cartilage4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113499 Cartilage4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113499 Cartilage4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113500 Bone4 RA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 113495 Cartilage3 12.6 0.0 0.0 0.0 0.0 5.4 14.1		0.0	0.0	0.6	31.0	43.5
Bone-Backus Done						
104701 (SS) Adj Normal* Bone-Backus 0.0 0.0 0.0 38.2 70.7 104702 (SS) OA Synovium-Backus 0.0 17.3 0.0 65.5 89.5 117093 OA Cartilage Rep7 11.6 18.7 1.5 34.6 62.4 112672 OA Bone5 0.0 0.0 0.0 0.0 61.1 47.0 112673 OA Synovium5 0.0 0.0 0.0 0.0 20.3 21.8 112674 OA Synovial Fluid 0.0 0.0 0.0 33.7 27.4 121675 OA Bone9 0.0 0.0 0.0 16.3 20.2 112757 OA 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 0.0 2.2 10.4 112758 OA Synovial Fluid 0.0 0.0 0.0 0.0 2.2 117125 RA Cartilage Rep2 0.0 25.7 0.0 34.9 41.8 113492 Bone2 RA 0.0 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 0.0 0.0 0.0 0.0 2.1 31.0 113501 Bynovium4 0.0 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid 0.0 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid 0.0 0.0 0.0 0.0 19.5 10.6 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 113497 Synovium3 0.0 0.0 0.0 0.0 5.4 14.1		23.0	0.0	0.0	28.5	31.2
"Normal" Bone-Backus 104702 (SS) OA Synovium-Backus 117093 OA Cartilage Rep7 11.6 18.7 1.5 34.6 62.4 12672 OA Bone5 112672 OA Bone5 10.0 0.0 0.0 0.0 61.1 47.0 112673 OA Synovium5 112674 OA Synovium5 112674 OA Synovium5 112674 OA OA Synovium5 117100 OA Cartilage Rep14 112758 OA Bone9 112757 OA Synovium9 112758 OA Synovius Fluid Cells5 1112758 OA Synovius Fluid O.0 0.0 0.0 0.0 0.0 16.3 20.2 10.4 112758 OA Synovius Fluid O.0 0.0 0.0 0.0 0.0 16.3 12.9 Cells9 112752 OA Synovium9 112758 OA Synovius Fluid O.0 0.0 0.0 0.0 0.0 10.3 12.9 Cells9 1171125 RA Cartilage Rep2 1171125 RA Cartilage Rep2 1113492 Bone2 RA 0.0 0.0 0.0 0.8 27.2 19.6 113494 Syn Fluid O.0 0.0 0.0 0.0 0.0 17.6 113494 Syn Fluid O.0 0.0 0.0 0.0 0.0 0.0 17.6 113494 Syn Fluid O.0 0.0 0.0 0.0 0.0 0.0 12.1 31.0 113500 Bone4 RA 0.0 0.0 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 O.0 0.0 0.0 0.0 1.0 43.8 37.6 113502 Syn Fluid O.0 0.0 0.0 0.0 19.5 10.6 113495 Cartilage3 RA 113495 Cartilage3 RA 113495 Cartilage3 RA 113495 Synovium3 O.0 0.0 0.0 0.0 19.5 10.6 113495 Cartilage3 RA 113495 Synovium3 O.0 0.0 0.0 0.0 15.5 17.8 113495 Synovium3 O.0 0.0 0.0 0.0 5.4 14.1						
Note Note					20.0	70.7
104702 (SS) OA Synovium-Backus 11.6		0.0	0.0	0.0	38.2	/0./
Synovium-Backus	Backus					
Synovium-Backus 11.6	104702 (SS) OA	0.0	173	0.0	65.5	89.5
Cartilage Rep7 11.6 16.7 1.3 34.0 32.7 112672 OA Bone5 0.0 0.0 0.0 0.0 61.1 47.0 112673 OA Synovium5 0.0 0.0 0.0 0.0 20.3 21.8 Synovium5 112674 OA Synovial Fluid cells5 117100 OA Cartilage Rep14 0.0 0.0 0.0 0.0 16.3 20.2 117100 OA Cartilage Rep14 0.0 0.0 0.0 0.0 16.3 20.2 1172756 OA Bone9 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA Synovium9 0.0 0.0 0.0 0.0 2.2 10.4 Synovium9 1172758 OA Synovium9 0.0 0.0 0.0 0.0 2.2 10.4 Synovium9 1172758 OA Synovial Fluid Cells9 117125 RA Cartilage Rep2 0.0 0.0 0.0 0.3 12.9 Cells9 117125 RA 0.0 0.0 0.0 0.8 27.2 19.6 113492 Bone2 RA 0.0 0.0 0.0 0.8 27.2 19.6 113492 Bone2 RA 0.0 0.0 0.0 0.0 34.9 41.8 Cartilage Rep2 0.0 0.0 0.0 0.0 35.6 20.0 17.6 RA 113494 Syn Fluid Cells RA 0.0 0.0 0.0 35.8 1.0 35.6 20.0 Cells RA 0.0 0.0 0.0 0.0 33.9 19.8 RA 113500 Bone4 RA 0.0 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 0.0 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 0.0 19.5 10.6 Cells RA 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 RA 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 0.0 5.4 14.1	Synovium-Backus	0.0	17.5	0.0	05.5	0,,0
Cartilage Rep7	117093 OA	11.6	10.7	15	34.6	62.4
112672 OA Bone5		11.6	18.7	1.5	34.0	02.4
112673 OA Synovium5 0.0 0.0 0.0 0.0 20.3 21.8 112674 OA Synovial Fluid 0.0 0.0 0.0 0.0 33.7 27.4 117100 OA Cartilage Rep14 0.0 0.0 0.0 0.0 16.3 20.2 112756 OA Bone9 0.0 0.0 0.0 0.0 5.1 2.8 112757 OA Synovium9 0.0 0.0 0.0 2.2 10.4 112758 OA Synovium9 0.0 0.0 0.0 0.0 2.2 10.4 112758 OA Synovial Fluid 0.0 0.0 0.0 0.4 10.3 12.9 117125 RA Cartilage Rep2 0.0 25.7 0.0 34.9 41.8 113492 Bone2 RA 0.0 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 0.0 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid 0.6 35.8 1.0 35.6 20.0 113499 Cartilage4 0.0 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 113497 Synovium3 0.0 0.0 0.0 0.0 5.4 14.1 113497 Synovium3 0.0 0.0 0.0 0.0 5.4 14.1		0.0	0.0	0.0	61.1	47.0
Synovium5 0.0 0.0 0.0 0.0 20.5 21.6 112674 OA OA OA OA OA OA OA OA		V.V.	 			
112674 OA Synovial Fluid Cells5 Cartilage Rep14 O.0 O.		0.0	0.0	0.0	20.3	21.8
Symovial Fluid cells5 0.0 0.0 0.0 33.7 27.4			<u> </u>			
117100 OA						
117100 OA Cartilage Rep14		0.0	0.0	0.0	33.7	27.4
Cartilage Rep14 0.0 0.0 0.0 0.0 10.3 20.2 112756 OA Bone9 0.0 0.0 0.0 5.1 2.8 112757 OA Synovium9 0.0 0.0 0.0 2.2 10.4 112758 OA Synovial Fluid Cells9 0.0 0.0 0.4 10.3 12.9 117125 RA Cartilage Rep2 0.0 25.7 0.0 34.9 41.8 113492 Bone2 RA Cartilage Rep2 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 RA 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bon	cells5					
Cartilage Rep14 0.0 0.0 0.0 5.1 2.8 112756 OA Bone9 0.0 0.0 0.0 5.1 2.8 112757 OA 0.0 0.0 0.0 2.2 10.4 Synovium9 0.0 0.0 0.0 10.3 12.9 Cells9 0.0 0.0 0.4 10.3 12.9 117125 RA Cartilage Rep2 0.0 0.0 0.0 34.9 41.8 113492 Bone2 RA Cartilage Rep2 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 RA 0.0 0.0 0.0 20.0 17.6 RA 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113496 Bone3 RA 9.4 24.5 <td>117100 OA</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>163</td> <td>20.2</td>	117100 OA	0.0	0.0	0.0	163	20.2
112757 OA Synovium9 0.0 0.0 0.0 0.0 2.2 10.4	Cartilage Rep14	0.0	0.0	0.0	10.5	20.2
112757 OA Synovium9	112756 OA Bone9	0.0	0.0	0.0	5.1	2.8
Synovium9 0.0 0.0 0.0 0.0 10.3 12.9					2.2	10.4
112758 OA Synovial Fluid Cells9		0.0	0.0	0.0	2.2	10.4
Synovial Fluid Cells9						
Cells9 117125 RA Cartilage Rep2 0.0 25.7 0.0 34.9 41.8 113492 Bone2 RA 113493 Synovium2 RA 0.0 0.0 0.8 27.2 19.6 113494 Syn Fluid Cells RA 0.0 0.0 0.0 20.0 17.6 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		0.0	0.0	0.4	10.3	12.9
117125 RA Cartilage Rep2 0.0 25.7 0.0 34.9 41.8 113492 Bone2 RA 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 RA 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		0.0	0.0	""	1	1
Cartilage Rep2 0.0 25.7 0.0 34.5 41.6 113492 Bone2 RA 0.0 0.0 0.0 20.0 17.6 113493 Synovium2 RA 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1			- 	 		
113492 Bone2 RA 0.0 0.0 0.8 27.2 19.6 113493 Synovium2 RA 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		0.0	25.7	0.0	34.9	41.8
113493 Synovium2 0.0 0.0 0.0 20.0 17.6 113494 Syn Fluid Cells RA 9.6 35.8 1.0 35.6 20.0 113499 Cartilage4 RA 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1				1	27.0	10.6
RA 0.0 0.	113492 Bone2 RA	0.0	0.0	0.8	21.2	19.0
RA 0.0 0.	113493 Synovium2	0.0	0.0	ا م	20.0	176
Cells RA 9.6 33.8 1.0 35.0 113499 Cartilage4 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1	RA	0.0	0.0	0.0	20.0	• • • • • • • • • • • • • • • • • • • •
Cells RA 9.6 33.8 1.0 35.0 113499 Cartilage4 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1	113494 Syn Fluid		25.0	1.0	25.6	20.0
113499 Cartilage4 0.0 0.0 0.0 52.1 31.0 113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		9.6	35.8	1.0	33.0	20.0
RA 0.0 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1			<u> </u>			
113500 Bone4 RA 0.0 0.0 1.0 43.8 37.6 113501 Synovium4 RA 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1	1	0.0	0.0	0.0	52.1	31.0
113501 Synovium4 0.0 0.0 0.0 33.9 19.8 113502 Syn Fluid Cells4 RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1				1.0	43.8	37.6
RA 0.0 48.6 0.0 19.5 10.6 113495 Cartilage3 RA 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		U.U	V.0	1.0	7.0	77.5
RA 113502 Syn Fluid Cells4 RA 113495 Cartilage3 RA 113496 Bone3 RA 113497 Synovium3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0	0.0	0.0	33.9	19.8
Cells4 RA 0.0 48.0 0.0 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		3.0				<u> </u>
Cells4 RA 113495 Cartilage3 12.6 0.0 0.6 15.5 17.8 RA 113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1	113502 Syn Fluid	0.0	48.6	1 00	19.5	10.6
RA 12.6 0.0 0.0 15.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6		0.0	70.0	5.0		
RA 12.6 0.0 0.0 15.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6	113495 Cartilage3	12.5	^^	0.6	15.5	17.9
113496 Bone3 RA 9.4 24.5 0.7 24.0 18.3 113497 Synovium3 0.0 0.0 0.0 5.4 14.1		12.6	0.0	U.0	13.3	17.0
113497 Synovium3 0.0 0.0 0.0 5.4 14.1	\	04	24.5	0.7	24.0	18.3
ITTA I I I I I I I I I I I I I I I I I I		0.0	0.0	0.0	5.4	14.1
RA 0.0 0.0 1.0 23.3 21.2				 	 	21.2
113498 Syn Fluid 0.0 0.0 1.0 23.3 21.2	113498 Syn Fluid	0.0	0.0	1.0	<u> </u>	21.2

Cells3 RA					
117106 Normal Cartilage Rep20	0.0	0.0	0.0	22.7	27.2
113663 Bone3 Normal	0.0	0.0	0.2	4.4	4.3
113664 Synovium3 Normal	0.0	0.0	0.5	0.7	4.5
113665 Syn Fluid Cells3 Normal	0.0	0.0	0.3	1.0	3.2
117107 Normal Cartilage Rep22	0.0	0.0	0.0	8.7	9.8
113667 Bone4 Normal	0.0	29.3	0.8	22.1	39.2
113668 Synovium4 Normal	0.0	81.8	1.2	40.1	26.8
l 13669 Syn Fluid Cells4 Normal	0.0	0.0	0.0	25.0	41.5

Table FF. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3228, Run 206533575	Rel. Exp.(%) Ag3261, Run 209990365	Rel. Exp.(%) Ag5267, Run 230510331	Rel. Exp.(%) Ag5268, Run 230510332
AD 1 Hippo	85.3	0.0	27.5	27.4
AD 2 Hippo	0.0	0.0	48.3	60.3
AD 3 Hippo	23.7	100.0	26.6	26.2
AD 4 Hippo	12.2	15.2	20.6	32.3
AD 5 Hippo	22.4	45.7	60.7	76.8
AD 6 Hippo	71.2	33.9	66.4	100.0
Control 2 Hippo	0.0	0.0	60.7	31.4
Control 4 Hippo	24.5	39.5	22.4	43.8
Control (Path) 3 Hippo	0.0	3.1	0.6	5.9
AD 1 Temporal Ctx	0.0	38.2	62.4	35.4
AD 2 Temporal Ctx	0.0	12.9	56.3	5.9
AD 3 Temporal Ctx	0.0	54.7	20.0	34.6
AD 4 Temporal Ctx	21.8	23.3	42.9	12.0
AD 5 Inf Temporal Ctx	86.5	28.5	66.0	60.3
AD 5 Sup Temporal Ctx	28.3	52.9	61.1	92.7
AD 6 Inf Temporal Ctx	100.0	96.6	37.9	56.3
AD 6 Sup Temporal Ctx	39.8	67.8	57.8	46.7
Control 1 Temporal Ctx	52.5	37.9	13.6	16.0
Control 2	0.0	3.2	36.6	29.7

Temporal Ctx				
Control 3 Temporal Ctx	0.0	10.2	15.9	13.3
Control 3 Temporal Ctx	0.0	16.6	20.7	26.1
Control (Path) 1 Temporal Ctx	54.3	1.7	81.2	51.8
Control (Path) 2 Temporal Ctx	0.0	0.0	30.4	25.3
Control (Path) 3 Temporal Ctx	0.0	0.0	13.1	12.9
Control (Path) 4 Temporal Ctx	10.8	16.5	36.3	22.1
AD 1 Occipital Ctx	10.7	0.0	26.8	31.0
AD 2 Occipital Ctx (Missing)	0.0	0.0	0.0	0.0
AD 3 Occipital Ctx	0.0	9.9	16.4	30.1
AD 4 Occipital Ctx	0.0	1.4	33.9	15.3
AD 5 Occipital Ctx	66.0	0.0	50.0	14.8
AD 6 Occipital Ctx	0.0	1.8	11.9	25.5
Control 1 Occipital Ctx	0.0	25.7	4.7	4.8
Control 2 Occipital Ctx	0.0	6.1	38.4	27.0
Control 3 Occipital Ctx	0.0	6.8	19.2	15.5
Control 4 Occipital Ctx	0.0	2.4	12.6	22.5
Control (Path) 1 Occipital Ctx	50.7	17.7	100.0	66.9
Control (Path) 2 Occipital Ctx	0.0	8.9	9.7	7.1
Control (Path) 3 Occipital Ctx	0.0	0.0	7.6	5.0
Control (Path) 4 Occipital Ctx	0.0	26.8	18.4	20.6
Control 1 Parietal Ctx	0.0	72.2	13.3	39.0
Control 2 Parietal Ctx	30.8	19.2	60.3	67.4
Control 3 Parietal Ctx	0.0	8.5	15.2	16.2
Control (Path) 1 Parietal Ctx	22.7	12.2	80.1	48.6
Control (Path) 2 Parietal Ctx	22.1	15.8	37.6	11.0
Control (Path) 3 Parietal Ctx	0.0	0.0	8.0	15.7

Control (Path) 4 Parietal Ctx	0.0	37.1	44.1	38.7	
T WITH CAN					

Table FG. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3228, Run 213333208	Rel. Exp.(%) Ag3261, Run 216512991	Tissue Name	Rel. Exp.(%) Ag3228, Run 213333208	Rel. Exp.(%) Ag3261, Run 216512991
Adipose	0.0	0.0	Renal ca. TK-10	0.0	0.0
Melanoma* Hs688(A).T	0.0	0.0	Bladder	0.0	0.0
Melanoma* Hs688(B).T	0.8	0.0	Gastric ca. (liver met.) NCI-N87	1.0	0.0
Melanoma* M14	0.0	0.0	Gastric ca. KATO III	0.0	0.0
Melanoma* LOXIMVI	0.0	0.0	Colon ca. SW-948	0.0	0.0
Melanoma* SK- MEL-5	0.0	0.0	Colon ca. SW480	0.0	0.0
Squamous cell carcinoma SCC- 4	0.0	0.0	Colon ca.* (SW480 met) SW620	0.0	0.0
Testis Pool	0.0	0.0	Colon ca. HT29	1.1	0.0
Prostate ca.* (bone met) PC-3	0.0	0.0	Colon ca. HCT-116	0.0	0.0
Prostate Pool	0.0	0.0	Colon ca. CaCo-2	0.0	0.0
Placenta	0.0	0.0	Colon cancer tissue	0.0	0.0
Uterus Pool	0.0	0.0	Colon ca. SW1116	0.0	0.0
Ovarian ca. OVCAR-3	1.0	0.0	Colon ca. Colo-205	0.0	0.0
Ovarian ca. SK- OV-3	9.6	0.1	Colon ca. SW-48	0.0	0.0
Ovarian ca. OVCAR-4	0.0	0.0	Colon Pool	1.6	44.8
Ovarian ca. OVCAR-5	0.0	0.0	Small Intestine Pool	1.8	0.0
Ovarian ca. IGROV-1	0.0	0.0	Stomach Pool	0.0	0.0
Ovarian ca. OVCAR-8	0.0	0.0	Bone Marrow Pool	0.0	0.0
Ovary	1.2	0.0	Fetal Heart	0.0	0.0
Breast ca. MCF- 7	0.0	0.0	Heart Pool	0.0	0.0
Breast ca. MDA- MB-231	4.4	0.0	Lymph Node Pool	2.4	0.0
Breast ca. BT 549	1.1	0.0	Fetal Skeletal Muscle	0.8	0.0
Breast ca. T47D	0.0	0.0	Skeletal Muscle Pool	0.0	0.0
Breast ca. MDA- N	3.5	0.0	Spleen Pool	0.0	0.0
Breast Pool	0.0	0.0	Thymus Pool	0.8	0.0

Trachea	0.9	0.0	CNS cancer (glio/astro) U87- MG	24.7	100.0
Lung	0.0	0.0	CNS cancer (glio/astro) U-118- MG	6.6	0.1
Fetal Lung	0.0	0.0	CNS cancer (neuro;mct) SK-N- AS	0.0	0.0
Lung ca. NCI- N417	0.0	0.0	CNS cancer (astro) SF-539	0.0	0.0
Lung ca. LX-1	3.6	0.0	CNS cancer (astro) SNB-75	3.8	0.0
Lung ca. NCI- H146	0.8	0.0	CNS cancer (glio) SNB-19	0.0	0.0
Lung ca. SHP- 77	0.0	0.0	CNS cancer (glio) SF-295	1.8	0.0
Lung ca. A549	0.0	0.0	Brain (Amygdala) Pool	0.8	0.0
Lung ca. NCI- H526	0.0	0.0	Brain (cerebellum)	100.0	1.2
Lung ca. NCI- H23	6.2	0.0	Brain (fetal)	24.8	0.4
Lung ca. NCI- H460	0.4	0.0	Brain (Hippocampus) Pool	0.0	0.0
Lung ca. HOP- 62	0.7	0.0	Cerebral Cortex Pool	1.1	0.0
Lung ca. NCI- H522	6.0	0.1	Brain (Substantia nigra) Pool	2.0	0.0
Liver	0.6	0.0	Brain (Thalamus) Pool	2.0	0.0
Fetal Liver	0.0	0.0	Brain (whole)	1.9	0.1
Liver ca. HepG2	0.0	0.0	Spinal Cord Pool	0.0	0.0
Kidney Pool	3.7	0.0	Adrenal Gland	0.0	1.5
Fetal Kidney	1.4	0.0	Pituitary gland Pool	0.0	0.0
Renal ca. 786-0	0.0	0.0	Salivary Gland	0.0	0.0
Renal ca. A498	2.3	0.0	Thyroid (female)	0.0	42.6
Renal ca. ACHN	0.5	0.0	Pancreatic ca. CAPAN2	0.0	0.0
Renal ca. UO-31	0.0	0.0	Pancreas Pool	1.8	2.4

Table FH. General_screening_panel_v1.5

Tissue Name	Rel. Exp.(%) Ag5267, Run 232936653	Rel. Exp.(%) Ag5267, Run 254397162	Rel. Exp.(%) Ag5268, Run 232936654	Tissue Name	Rel. Exp.(%) Ag5267, Run 232936653	Rel. Exp.(%) Ag5267, Run 254397162	Rel. Exp.(%) Ag5268, Run 232936654
Adipose	0.1	1.6	1.2	Renal ca. TK-10	0.3	3.0	3.7
Melanoma* Hs688(A).T	0.4	5.2	4.4	Bladder	0.1	0.6	0.8
Melanoma*	0.6	9.5	7.9	Gastric ca. (liver	0.0	0.4	0.4

Hs688(B).T	T			met.) NCI-N87			
Melanoma* M14	0.0	0.1	0.4	Gastric ca. KATO III	0.0	0.0	0.0
Melanoma* LOXIMVI	0.0	0.7	0.6	Colon ca. SW- 948	0.0	0.0	0.0
Melanoma* SK-MEL-5	0.6	8.5	10.8	Colon ca. SW480	0.2	3.1	3.0
Squamous cell carcinoma SCC-4	0.0	0.0	0.1	Colon ca.* (SW480 met) SW620	0.0	0.6	0.3
Testis Pool	0.1	1.1	0.6	Colon ca. HT29	0.0	0.0	0.0
Prostate ca.* (bone met) PC-3	0.0	0.1	0.0	Colon ca. HCT- 116	0.2	2.7	4.3
Prostate Pool	0.1	1.3	1.2	Colon ca. CaCo- 2	0.0	0.1	0.1
Placenta	0.0	0.2	0.2	Colon cancer tissue	0.1	1.2	1.1
Uterus Pool	0.2	2.7	1.5	Colon ca. SW1116	0.0	0.2	0.4
Ovarian ca. OVCAR-3	0.0	0.4	0.5	Colon ca. Colo- 205	0.0	0.0	0.0
Ovarian ca. SK-OV-3	0.5	6.7	8.0	Colon ca. SW- 48	0.0	0.0	0.0
Ovarian ca. OVCAR-4	0.1	1.3	2.8	Colon Pool	0.3	3.2	2.7
Ovarian ca. OVCAR-5	0.1	2.0	1.9	Small Intestine Pool	0.4	5.5	4.7
Ovarian ca. IGROV-1	0.0	0.4	0.3	Stomach Pool	0.2	1.7	2.4
Ovarian ca. OVCAR-8	0.1	0.6	2.1	Bone Marrow Pool	0.2	3.0	1.5
Ovary	0.2	2.9	2.1	Fetal Heart	0.1	1.1	1.2
Breast ca. MCF-7	0.0	0.0	0.1	Heart Pool	100.0	2.9	1.5
Breast ca. MDA-MB- 231	0.5	7.5	11.1	Lymph Node Pool	0.5	7.2	4.4
Breast ca. BT 549	0.9	12.1	12.5	Fetal Skeletal Muscle	0.3	3.6	3.4
Breast ca. T47D	0.2	2.5	2.2	Skeletal Muscle Pool	0.1	0.9	0.7
Breast ca. MDA-N	0.3	3.0	6.1	Spleen Pool	0.1	1.4	3.2
Breast Pool	0.5	5.2	3.4	Thymus Pool	0.2	2.7	2.5
Trachea	0.1	0.9	1.3	CNS cancer (glio/astro) U87-MG	0.1	1.7	1.2
Lung	0.2	1.7	1.3	CNS cancer (glio/astro) U- 118-MG	0.6	9.5	9.1
Fetal Lung	0.3	4.4	5.0	CNS cancer	0.0	0.4	0.4

				(neuro;met) SK- N-AS			
Lung ca. NCI-N417	0.0	0.6	1.9	CNS cancer (astro) SF-539	0.0	0.7	0.7
Lung ca. LX-1	0.3	4.4	1.4	CNS cancer (astro) SNB-75	2.6	37.9	44.1
Lung ca. NCI-H146	0.0	0.1	0.1	CNS cancer (glio) SNB-19	0.0	0.5	0.6
Lung ca. SHP-77	0.0	0.3	0.4	CNS cancer (glio) SF-295	0.3	2.9	3.4
Lung ca. A549	0.3	3.5	3.2	Brain (Amygdala) Pool	0.2	2.3	2.7
Lung ca. NCI-H526	0.0	0.2	0.2	Brain (cerebellum)	8.5	100.0	100.0
Lung ca. NCI-H23	0.1	0.3	0.3	Brain (fetal)	3.3	45.4	34.2
Lung ca. NCI-H460	0.1	0.2	1.8	Brain (Hippocampus) Pool	0.4	4.1	3.5
Lung ca. HOP-62	0.1	1.2	2.4	Cerebral Cortex Pool	0.3	3.1	3.3
Lung ca. NCI-H522	1.2	20.7	18.6	Brain (Substantia nigra) Pool	0.2	2.8	2.8
Liver	0.0	0.2	0.2	Brain (Thalamus) Pool	0.3	4.5	4.8
Fetal Liver	0.0	0.3	0.3	Brain (whole)	1.0	10.8	7.5
Liver ca. HepG2	0.0	0.0	0.0	Spinal Cord Pool	0.3	5.3	6.0
Kidney Pool	0.8	9.2	9.2	Adrenal Gland	0.2	3.5 .	3.2
Fetal Kidney	0.1	0.7	1.2	Pituitary gland Pool	0.1	1.5	1.7
Renal ca. 786-0	0.0	0.3	0.2	Salivary Gland	0.0	0.4	0.2
Renal ca. A498	0.5	6.3	6.9	Thyroid (female)	0.0	0.4	0.1
Renal ca. ACHN	0.4	5.6	6.7	Pancreatic ca. CAPAN2	0.0	0.0	0.0
Renal ca. UO-31	0.2	2.2	2.6	Pancreas Pool	0.2	3.0	2.4

Table FI. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3228, Run 173762591	Tissue Name	Rel. Exp.(%) Ag3228, Run 173762591
Normal Colon	5.3	Kidney Margin (OD04348)	0.0
Colon cancer (OD06064)	0.0	Kidney malignant cancer (OD06204B)	0.0
Colon Margin (OD06064)	0.0	Kidney normal adjacent tissue (OD06204E)	0.0
Colon cancer (OD06159)	0.0	Kidney Cancer (OD04450- 01)	0.0

Colon Margin (OD06159)	0.0	Kidney Margin (OD04450- 03)	0.0
Colon cancer (OD06297-04)	0.0	Kidney Cancer 8120613	0.0
Colon Margin (OD06297-05)	0.0	Kidney Margin 8120614	0.0
CC Gr.2 ascend colon (ODO3921)	0.0	Kidney Cancer 9010320	0.0
CC Margin (ODO3921)	0.0	Kidney Margin 9010321	0.0
Colon cancer metastasis (OD06104)	0.0	Kidney Cancer 8120607	0.0
Lung Margin (OD06104)	0.0	Kidney Margin 8120608	0.0
Colon mets to lung (OD04451-01)	0.0	Normal Uterus	0.0
Lung Margin (OD04451-02)	0.0	Uterine Cancer 064011	0.0
Normal Prostate	0.0	Normal Thyroid	0.0
Prostate Cancer (OD04410)	0.0	Thyroid Cancer 064010	0.0
Prostate Margin (OD04410)	0.0	Thyroid Cancer A302152	5.4
Normal Ovary	0.0	Thyroid Margin A302153	0.0
Ovarian cancer (OD06283- 03)	0.0	Normal Breast	0.0
Ovarian Margin (OD06283- 07)	14.4	Breast Cancer (OD04566)	0.0
Ovarian Cancer 064008	100.0	Breast Cancer 1024	0.0
Ovarian cancer (OD06145)	0.0	Breast Cancer (OD04590- 01)	0.0
Ovarian Margin (OD06145)	0.0	Breast Cancer Mets (OD04590-03)	0.0
Ovarian cancer (OD06455- 03)	0.0	Breast Cancer Metastasis (OD04655-05)	0.0
Ovarian Margin (OD06455- 07)	0.0	Breast Cancer 064006	0.0
Normal Lung	0.0	Breast Cancer 9100266	0.0
Invasive poor diff. lung adeno (ODO4945-01	0.0	Breast Margin 9100265	0.0
Lung Margin (ODO4945-03)	0.0	Breast Cancer A209073	0.0
Lung Malignant Cancer (OD03126)	0.0	Breast Margin A2090734	0.0
Lung Margin (OD03126)	0.0	Breast cancer (OD06083)	0.0
Lung Cancer (OD05014A)	0.0	Breast cancer node metastasis (OD06083)	0.0
Lung Margin (OD05014B)	0.0	Normal Liver	0.0
Lung cancer (OD06081)	0.0	Liver Cancer 1026	0.0
Lung Margin (OD06081)	11.7	Liver Cancer 1025	23.8
Lung Cancer (OD04237-01)	0.0	Liver Cancer 6004-T	0.0
Lung Margin (OD04237-02)	0.0	Liver Tissue 6004-N	0.0
Ocular Melanoma Metastasis	0.0	Liver Cancer 6005-T	0.0
Ocular Melanoma Margin (Liver)	0.0	Liver Tissue 6005-N	0.0
Melanoma Metastasis	0.0	Liver Cancer 064003	0.0
Melanoma Margin (Lung)	0.0	Normal Bladder	5.0
Normal Kidney	0.0	Bladder Cancer 1023	0.0
Kidney Ca, Nuclear grade 2	0.0	Bladder Cancer A302173	0.0

(OD04338)			
Kidney Margin (OD04338)	7.3	Normal Stomach	0.0
Kidney Ca Nuclear grade 1/2 (OD04339)	0.0	Gastric Cancer 9060397	0.0
Kidney Margin (OD04339)	0.0	Stomach Margin 9060396	0.0
Kidney Ca, Clear cell type (OD04340)	0.0	Gastric Cancer 9060395	17.3
Kidney Margin (OD04340)	0.0	Stomach Margin 9060394	0.0
Kidney Ca, Nuclear grade 3 (OD04348)	0.0	Gastric Cancer 064005	0.0

Table FJ. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag5267, Run 230510063	Rel. Exp.(%) Ag5268, Run 230510184	Tissue Name	Rel. Exp.(%) Ag5267, Run 230510063	Rel. Exp.(%) Ag5268, Run 230510184
Secondary Th1 act	0.0	0.6	HUVEC IL-1beta	1.4	0.8
Secondary Th2 act	4.3	7.5	HUVEC IFN gamma	4.8	5.8
Secondary Trl act	3.4	2.9	HUVEC TNF alpha + IFN gamma	3.8	8.4
Secondary Th1 rest	0.6	1.0	HUVEC TNF alpha + IL4	0.4	0.3
Secondary Th2 rest	2.1	0.8	HUVEC IL-11	0.4	0.0
Secondary Tr1 rest	0.8	0.5	Lung Microvascular EC none	0.0	0.0
Primary Th1 act	0.0	0.3	Lung Microvascular EC TNFalpha + IL- 1beta	0.4	2.7
Primary Th2 act	0.6	1.3	Microvascular Dermal EC none	0.0	0.0
Primary Tr1 act	0.8	1.1	Microsvasular Dermal EC TNFalpha + IL- lbeta	0.2	0.0
Primary Th1 rest	0.2	0.0	Bronchial epithelium TNFalpha + IL1 beta	0.7	0.2
Primary Th2 rest	0.3	0.5	Small airway epithelium none	0.2	0.1
Primary Tr1 rest	0.2	1.4	Small airway epithelium TNFalpha + IL-1 beta	1.6	1.2
CD45RA CD4 lymphocyte act	1.6	0.9	Coronery artery SMC rest	0.9	0.9
CD45RO CD4 lymphocyte act	3.4	1.5	Coronery artery SMC TNFalpha + IL-1beta	1.9	2.6
CD8 lymphocyte act	0.4	1.4	Astrocytes rest	8.8	11.2
Secondary CD8 lymphocyte rest	0.1	1.3	Astrocytes TNFalpha + IL-1beta	11.0	14.9
Secondary CD8 lymphocyte act	0.2	0.0	KU-812 (Basophil) rest	1.4	0.0
CD4 lymphocyte none	0.9	2.3	KU-812 (Basophil) PMA/ionomycin	9.3	0.6
2ry	1.8	4.1	CCD1106	4.8	0.9

			Total I		
Th1/Th2/Tr1_anti- CD95 CH11			(Keratinocytes) none		
LAK cells rest	6.2	7.7	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	1.2	1.8
LAK cells IL-2	3.3	2.3	Liver cirrhosis	2.0	0.9
LAK cells IL-2+IL- 12	1.2	0.2	NCI-H292 none	0.4	0.5
LAK cells IL-2+IFN gamma	0.7	3.5	NCI-H292 IL-4	1.8	0.6
LAK cells IL-2+ IL- 18	0.6	2.2	NCI-H292 IL-9	1.4	1.7
LAK cells PMA/ionomycin	41.8	26.4	NCI-H292 IL-13	2.8	2.5
NK Cells IL-2 rest	9.0	9.8	NCI-H292 IFN gamma	5.6	8.7
Two Way MLR 3 day	2.9	1.8	HPAEC none	0.2	0.6
Two Way MLR 5 day	3.5	0.7	HPAEC TNF alpha + IL-1 beta	4.9	4.1
Two Way MLR 7 day	2.7	1.4	Lung fibroblast none	46.7	41.5
PBMC rest	0.3	0.0	Lung fibroblast TNF alpha + IL-1 beta	9.7	7.3
PBMC PWM	0.0	0.0	Lung fibroblast IL-4	23.5	24.8
PBMC PHA-L	1.2	1.1	Lung fibroblast IL-9	32.5	36.9
Ramos (B cell) none	0.0	0.0	Lung fibroblast IL-13	18.6	14.4
Ramos (B cell) ionomycin	0.0	0.0	Lung fibroblast IFN gamma	73.7	82.9
B lymphocytes PWM	0.7	1.9	Dermal fibroblast CCD1070 rest	1.8	1.0
B lymphocytes CD40L and IL-4	7.6	4.1	Dermal fibroblast CCD1070 TNF alpha	0.3	3.5
EOL-1 dbcAMP	7.7	9.9	Dermal fibroblast CCD1070 IL-1 beta	2.0	2.1
EOL-1 dbcAMP PMA/ionomycin	100.0	100.0	Dermal fibroblast IFN gamma	11.7	13.3
Dendritic cells none	0.5	1.1	Dermal fibroblast IL- 4	4.0	3.5
Dendritic cells LPS	0.4	0.0	Dermal Fibroblasts rest	10.1	3.5
Dendritic cells anti- CD40	0.4	0.2	Neutrophils TNFa+LPS	0.0	0.0
Monocytes rest	0.0	0.0	Neutrophils rest	0.7	0.4
Monocytes LPS	3.0	4.2	Colon	0.6	0.0
Macrophages rest	0.0	0.9	Lung	0.7	0.2
Macrophages LPS	0.7	0.8	Thymus	1.1	0.7
HUVEC none	0.7	0.0	Kidney	2.4	0.7
HUVEC starved	1.2	1.8			

Table FK. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3228, Run 164389698	Rel. Exp.(%) Ag3261, Run 164537293	Tissue Name	Rel. Exp.(%) Ag3228, Run 164389698	Rel. Exp.(%) Ag3261, Run 164537293
Secondary Th1 act	0.0	0.0	HUVEC IL-1 beta	0.0	0.0
Secondary Th2 act	2.8	2.2	HUVEC IFN gamma	0.0	7.5
Secondary Tr1 act	0.0	2.8	HUVEC TNF alpha + IFN gamma	0.0	0.0
Secondary Th1 rest	0.0	0.0	HUVEC TNF alpha + IL4	0.0	0.0
Secondary Th2 rest	0.0	0.0	HUVEC IL-11	0.0	0.0
Secondary Tr1 rest	2.3	0.0	Lung Microvascular EC none	1.7	0.0
Primary Th1 act	0.0	0.0	Lung Microvascular EC TNFalpha + IL- 1beta	0.0	0.0
Primary Th2 act	6.0	0.0	Microvascular Dermal EC none	0.0	0.0
Primary Tr1 act	0.0	0.0	Microsvasular Dermal EC TNFalpha + IL- Ibeta	0.0	0.0
Primary Th1 rest	2.3	0.0	Bronchial epithelium TNFalpha + IL1beta	2.4	8.9
Primary Th2 rest	0.0	2.2	Small airway epithelium none	0.0	0.0
Primary Trl rest	2.6	4.3	Small airway epithelium TNFalpha + IL-1beta	2.0	0.0
CD45RA CD4 lymphocyte act	0.0	0.0	Coronery artery SMC rest	0.0	0.0
CD45RO CD4 lymphocyte act	0.0	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.0	0.0
CD8 lymphocyte act	1.3	0.0	Astrocytes rest	0.0	0.0
Secondary CD8 lymphocyte rest	0.0	0.0	Astrocytes TNFalpha + IL-1beta	0.0	0.0
Secondary CD8 lymphocyte act	0.0	0.0	KU-812 (Basophil) rest	0.0	0.0
CD4 lymphocyte none	0.0	0.0	KU-812 (Basophil) PMA/ionomycin	2.6	3.4
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.0	0.0	CCD1106 (Keratinocytes) none	0.0	0.0
LAK cells rest	20.7	30.6	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0	0.0
LAK cells IL-2	0.0	3.0	Liver cirrhosis	9.3	7.2
LAK cells IL-2+IL-	0.0	0.0	Lupus kidney	0.0	0.0
LAK cells IL-2+IFN gamma	3.4	16.0	NCI-H292 none	0.0	0.0
LAK cells IL-2+ IL- 18	10.3	9.2	NCI-H292 IL-4	0.0	6.8
LAK cells PMA/ionomycin	100.0	63.7	NCI-H292 IL-9	0.0	0.0

NK Cells IL-2 rest	0.0	0.0	NCI-H292 IL-13	0.0	4.2
Two Way MLR 3 day	8.6	8.5	NCI-H292 IFN gamma	5.1	0.0
Two Way MLR 5 day	2.1	16.8	HPAEC none	0.0	0.0
Two Way MLR 7 day	14.7	2.3	HPAEC TNF alpha + IL-1 beta	0.0	0.0
PBMC rest	0.0	0.0	Lung fibroblast none	2.4	0.0
PBMC PWM	0.0	0.0	Lung fibroblast TNF alpha + IL-1 beta	0.0	3.6
PBMC PHA-L	0.0	0.0	Lung fibroblast IL-4	0.0	0.0
Ramos (B cell) none	0.0	0.0	Lung fibroblast IL-9	0.0	7.0
Ramos (B cell) ionomycin	0.0	0.0	Lung fibroblast IL-13	2.8	0.0
B lymphocytes PWM	0.0	0.0	Lung fibroblast IFN gamma	6.0	17.3
B lymphocytes CD40L and IL-4	0.0	2.6	Dermal fibroblast CCD1070 rest	0.0	0.0
EOL-1 dbcAMP	2.7	2.6	Dermal fibroblast CCD1070 TNF alpha	0.0	0.0
EOL-1 dbcAMP PMA/ionomycin	66.4	47.6	Dermal fibroblast CCD1070 IL-1 beta	0.0	0.0
Dendritic cells none	0.0	18.0	Dermal fibroblast IFN gamma	0.0	0.0
Dendritic cells LPS	2.9	13.5	Dermal fibroblast IL- 4	0.0	0.0
Dendritic cells anti- CD40	8.1	7.4	IBD Colitis 2	0.0	3.4
Monocytes rest	0.0	4.5	IBD Crohn's	0.0	2.3
Monocytes LPS	0.0	0.0	Colon	7.4	6.2
Macrophages rest	68.8	100.0	Lung	15.6	14.8
Macrophages LPS	31.6	63.3	Thymus	0.0	0.0
HUVEC none	0.0	0.0	Kidney	0.0	0.0
HUVEC starved	0.0	0.0			

AI_comprehensive panel_v1.0 Summary: Ag5267/Ag5268 Results from two experiments using different probe/primer sets show expression of this transcript in several normal and disease tissues; these results disagree with the data generated with the other two primer/probe sets. This observation suggests that the AG5267 and Ag5268 primer/probe sets may detect an isoform of the transcript with a wider expression pattern than that detected by Ag3228 and Ag3261. Please see Panel 4D for a discussion of the potential role of this protein in inflammation and its therapeutic utility. Ag3261 Significant expression of the NOV12a gene is limited to one psoriasis sample. Ag3228 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

CNS_neurodegeneration_v1.0 Summary: Ag3261/Ag5267/Ag5268 Results from three experiments using this panel confirm the expression of this gene at low levels in the

10

brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders. Results from one experiment with the Ag3228 probe/primer set show low/undetectable levels (CTs>35) of expression in all the samples on this panel.

5

10

15

20

25

30

General_screening_panel_v1.4 Summary: Ag3228 Highest expression of the NOV12a gene is seen in the cerebellum (CT = 30.4). Thus, expression of this gene can be used as a marker for cerebellum. Furthermore, this highly brain-preferential expression suggests a specific role for this gene product in the brain. The NOV12a gene encodes a protein with homology to neural cell adhesion molecules (NCAM). NCAM related proteins, such as Nr-CAM, play a critical role in neurite extension (ref. 1). Therefore, the introduction of ligands specific for this gene product, such as contactin, in directed brain regions may have utility in fostering focal neurite outgrowth and, thus may have utility in therapeutically countering neurite degeneration in neurodegenerative diseases such as Alzheimer's disease, ataxias, and Parkinson's disease.

Results from a second experiment with the Ag3261 probe and primer set are not included. The amp plot indicates that there were experimental difficulties with this run (Sakurai et al., J Cell Biol 154(6):1259-73, 2001).

General_screening_panel_v1.5 Summary: Ag5268 Significant expression of the NOV12a gene is seen in the brain. Please see Panel 1.4 for discussion of utility of this gene in the brain. Significant expression is also seen in brain cancer cell lines. Thus, expression of this gene could be used to differentiate between brain derived samples and other samples on this panel.

Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.

Panel 2.2 Summary: Ag3228 Significant expression of this gene is seen exclusively in an ovarian cancer sample (CT = 33.8). Therefore, expression of this gene may be used to distinguish ovarian cancers from the other samples on this panel. Furthermore, therapeutic

modulation of the activity of the protein encoded by this gene may be beneficial in the treatment of ovarian cancer.

Panel 4.1D Summary: Ag5267/Ag5268 Results from two experiments using different probe/primer sets are in good agreement with each other and show a similar overall pattern of expression as in Panel 4 but at much higher levels. This may result from differences in the two panels or from differences in the probe/primer sets used. The NOV12a transcript is expressed in LAK cells and treatment of the LAK cells with PMA and ionomycin upregulates the expression of this transcript. This transcript is also induced in activated EOL cells and in fibroblasts. The NOV12a gene encodes a putative NCAM, a type of cell surface protein often involved in cellular interaction, adhesion and signaling. Therefore, therapeutics designed with the protein encoded for this transcript could be important in the treatment of diseases such as asthma, emphysema, psoriasis and arthritis.

Panel 4D Summary: Ag3228/Ag3261 Results from two experiments using identical probe/primer sets are in good agreement. The NOV12a transcript is expressed in LAK cells and treatment of the LAK cells with PMA and ionomycin upregulates the expression of this transcript. The NOV12a gene encodes a putative NCAM, a type of cell surface protein often involved in cellular interaction, adhesion and signaling. Therefore, therapeutics designed with the protein encoded for this transcript could be important in the treatment of diseases such as asthma, emphysema, psoriasis and arthritis.

20

25

10

15

G. NOV13b and NOV13c: protein containing MAM and Ig domains

Expression of genes NOV13b and NOV13c was assessed using the primer-probe set Ag5267, described in Table GA. Results of the RTQ-PCR runs are shown in Tables GB, GC, GD and GE.

Table GA. Probe Name Ag5267

Primers	Sequences	Length	Start Position
Forward	5'-gcggtcccggaaca-3' (SEQ ID NO:224)	14	1166
Probe	TET-5'-cacgcctggtctctcagtggca-3'-TAMRA (SEQ ID NO:225)	22	1197
Reverse	5'-gcctgctgccacacatt-3' (SEQ ID NO:226)	17	1227

Table GB. AI comprehensive panel_v1.0

Tissue Name	Rel. Exp.(%) Ag5267, Run 230473002	Tissue Name	Rel. Exp.(%) Ag5267, Run 230473002
110967 COPD-F	36.9	112427 Match Control Psoriasis-F	84.1
110980 COPD-F	40.3	112418 Psoriasis-M	52.1
110968 COPD-M	36.1	112723 Match Control	10.4

		Psoriasis-M	
110977 COPD-M	0.0	112419 Psoriasis-M	61.1
110989 Emphysema-F	25.2	112424 Match Control Psoriasis-M	23.7
110992 Emphysema-F	12.2	112420 Psoriasis-M	100.0
110993 Emphysema-F	15.2	112425 Match Control Psoriasis-M	77.4
110994 Emphysema-F	11.1	104689 (MF) OA Bone- Backus	16.4
110995 Emphysema-F	18.9	104690 (MF) Adj "Normal" Bone-Backus	10.4
110996 Emphysema-F	0.0	104691 (MF) OA Synovium-Backus	9.6
110997 Asthma-M	21.2	104692 (BA) OA Cartilage- Backus	2.7
111001 Asthma-F	20.4	104694 (BA) OA Bone- Backus	21.2
111002 Asthma-F	22.4	104695 (BA) Adj "Normal" Bone-Backus	11.4
111003 Atopic Asthma-F	49.0	104696 (BA) OA Synovium- Backus	31.0
111004 Atopic Asthma-F	49.3	104700 (SS) OA Bone- Backus	28.5
111005 Atopic Asthma-F	24.3	104701 (SS) Adj "Normal" Bone-Backus	38.2
111006 Atopic Asthma-F	6.5	104702 (SS) OA Synovium- Backus	65.5
111417 Allergy-M	26.4	117093 OA Cartilage Rep7	34.6
112347 Allergy-M	1.5	112672 OA Bone5	61.1
112349 Normal Lung-F	2.9	112673 OA Synovium5	20.3
112357 Normal Lung-F	51.4	112674 OA Synovial Fluid cells5	33.7
112354 Normal Lung-M	39.8	117100 OA Cartilage Rep14	16.3
112374 Crohns-F	25.0	112756 OA Bone9	5.1
112389 Match Control Crohns-F	18.2	112757 OA Synovium9	2.2
112375 Crohns-F	24.0	112758 OA Synovial Fluid Cells9	10.3
112732 Match Control Crohns-F	22.7	117125 RA Cartilage Rep2	34.9
112725 Crohns-M	3.1	113492 Bone2 RA	27.2
112387 Match Control Crohns-M	20.9	113493 Synovium2 RA	20.0
112378 Crohns-M	2.9	113494 Syn Fluid Cells RA	35.6
112390 Match Control Crohns-M	45.1	113499 Cartilage4 RA	52.1
112726 Crohns-M	50.0	113500 Bone4 RA	43.8
112731 Match Control Crohns-M	31.0	113501 Synovium4 RA	33.9
112380 Ulcer Col-F	20.6	113502 Syn Fluid Cells4 RA	19.5
112734 Match Control Ulcer Col-F	37.4	113495 Cartilage3 RA	15.5

112384 Ulcer Col-F	41.5	113496 Bone3 RA	24.0
112737 Match Control Ulcer Col-F	27.5	113497 Synovium3 RA	5.4
112386 Ulcer Col-F	25.2	113498 Syn Fluid Cells3 RA	23.3
112738 Match Control Ulcer Col-F	3.0	117106 Normal Cartilage Rep20	22.7
112381 Ulcer Col-M	4.5	113663 Bone3 Normal	4.4
112735 Match Control Ulcer Col-M	16.4	113664 Synovium3 Normal	0.7
112382 Ulcer Col-M	18.7	113665 Syn Fluid Cells3 Normal	1.0
112394 Match Control Ulcer Col-M	6.4	117107 Normal Cartilage Rep22	8.7
112383 Ulcer Col-M	16.6	113667 Bone4 Normal	22.1
112736 Match Control Ulcer Col-M	14.7	113668 Synovium4 Normal	40.1
112423 Psoriasis-F	40.6	113669 Syn Fluid Cells4 Normal	25.0

Table GC. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag5267, Run 230510331	Tissue Name	Rel. Exp.(%) Ag5267, Run 230510331
AD 1 Hippo	27.5	Control (Path) 3 Temporal Ctx	13.1
AD 2 Hippo	48.3	Control (Path) 4 Temporal Ctx	36.3
AD 3 Hippo	26.6	AD 1 Occipital Ctx	26.8
AD 4 Hippo	20.6	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	60.7	AD 3 Occipital Ctx	16.4
AD 6 Hippo	66.4	AD 4 Occipital Ctx	33.9
Control 2 Hippo	60.7	AD 5 Occipital Ctx	50.0
Control 4 Hippo	22.4	AD 6 Occipital Ctx	11.9
Control (Path) 3 Hippo	0.6	Control 1 Occipital Ctx	4.7
AD 1 Temporal Ctx	62.4	Control 2 Occipital Ctx	38.4
AD 2 Temporal Ctx	56.3	Control 3 Occipital Ctx	19.2
AD 3 Temporal Ctx	20.0	Control 4 Occipital Ctx	12.6
AD 4 Temporal Ctx	42.9	Control (Path) 1 Occipital Ctx	100.0
AD 5 Inf Temporal Ctx	66.0	Control (Path) 2 Occipital Ctx	9.7
AD 5 Sup Temporal Ctx	61.1	Control (Path) 3 Occipital Ctx	7.6
AD 6 Inf Temporal Ctx	37.9	Control (Path) 4 Occipital Ctx	18.4
AD 6 Sup Temporal Ctx	57.8	Control 1 Parietal Ctx	13.3
Control 1 Temporal Ctx	13.6	Control 2 Parietal Ctx	60.3
Control 2 Temporal Ctx	36.6	Control 3 Parietal Ctx	15.2
Control 3 Temporal Ctx	15.9	Control (Path) 1	80.1

		Parietal Ctx	
Control 3 Temporal Ctx	20.7	Control (Path) 2 Parietal Ctx	37.6
Control (Path) 1 Temporal Ctx	81.2	Control (Path) 3 Parietal Ctx	8.0
Control (Path) 2 Temporal Ctx	30.4	Control (Path) 4 Parietal Ctx	44.1

Table GD. General_screening_panel_v1.5

Tissue Name	Rel. Exp.(%) Ag5267, Run 232936653	Rel. Exp.(%) Ag5267, Run 254397162	Tissue Name	Rel. Exp.(%) Ag5267, Run 232936653	Rel. Exp.(%) Ag5267, Run 254397162
Adipose	0.1	1.6	Renal ca. TK-10	0.3	3.0
Melanoma* Hs688(A).T	0.4	5.2	Bladder	0.1	0.6
Melanoma* Hs688(B).T	0.6	9.5	Gastric ca. (liver met.) NCI-N87	0.0	0.4
Melanoma* M14	0.0	0.1	Gastric ca. KATO III	0.0	0.0
Melanoma* LOXIMVI	0.0	0.7	Colon ca. SW-948	0.0	0.0
Melanoma* SK- MEL-5	0.6	8.5	Colon ca. SW480	0.2	3.1
Squamous cell carcinoma SCC- 4	0.0	0.0	Colon ca.* (SW480 met) SW620	0.0	0.6
Testis Pool	0.1	1.1	Colon ca. HT29	0.0	0.0
Prostate ca.* (bone met) PC-3	0.0	0.1	Colon ca. HCT-116	0.2	2.7
Prostate Pool	0.1	1.3	Colon ca. CaCo-2	0.0	0.1
Placenta	0.0	0.2	Colon cancer tissue	0.1	1.2
Uterus Pool	0.2	2.7	Colon ca. SW1116	0.0	0.2
Ovarian ca. OVCAR-3	0.0	0.4	Colon ca. Colo-205	0.0	0.0
Ovarian ca. SK- OV-3	0.5	6.7	Colon ca. SW-48	0.0	0.0
Ovarian ca. OVCAR-4	0.1	1.3	Colon Pool	0.3	3.2
Ovarian ca. OVCAR-5	0.1	2.0	Small Intestine Pool	0.4	5.5
Ovarian ca. IGROV-1	0.0	0.4	Stomach Pool	0.2	1.7
Ovarian ca. OVCAR-8	0.1	0.6	Bone Marrow Pool	0.2	3.0
Ovary	0.2	2.9	Fetal Heart	0.1	1.1
Breast ca. MCF- 7	0.0	0.0	Heart Pool	100.0	2.9
Breast ca. MDA- MB-231	0.5	7.5	Lymph Node Pool	0.5	7.2
Breast ca. BT 549	0.9	12.1	Fetal Skeletal Muscle	0.3	3.6

Breast ca. T47D	0.2	2.5	Skeletal Muscle Pool	0.1	0.9
Breast ca. MDA-N	0.3	3.0	Spleen Pool	0.1	1.4
Breast Pool	0.5	5.2	Thymus Pool	0.2	2.7
Trachea	0.1	0.9	CNS cancer (glio/astro) U87- MG	0.1	1.7
Lung	0.2	1.7	CNS cancer (glio/astro) U-118- MG	0.6	9.5
Fetal Lung	0.3	4.4	CNS cancer (neuro;met) SK-N- AS	0.0	0.4
Lung ca. NCI- N417	0.0	0.6	CNS cancer (astro) SF-539	0.0	0.7
Lung ca. LX-1	0.3	4.4	CNS cancer (astro) SNB-75	2.6	37.9
Lung ca. NCI- H146	0.0	0.1	CNS cancer (glio) SNB-19	0.0	0.5
Lung ca. SHP- 77	0.0	0.3	CNS cancer (glio) SF-295	0.3	2.9
Lung ca. A549	0.3	3.5	Brain (Amygdala) Pool	0.2	2.3
Lung ca. NCI- H526	0.0	0.2	Brain (cerebellum)	8.5	100.0
Lung ca. NCI- H23	0.1	0.3	Brain (fetal)	3.3	45.4
Lung ca. NCI- H460	0.1	0.2	Brain (Hippocampus) Pool	0.4	4.1
Lung ca. HOP- 62	0.1	1.2	Cerebral Cortex Pool	0.3	3.1
Lung ca. NCI- H522	1.2	20.7	Brain (Substantia nigra) Pool	0.2	2.8
Liver	0.0	0.2	Brain (Thalamus) Pool	0.3	4.5
Fetal Liver	0.0	0.3	Brain (whole)	1.0	10.8
Liver ca. HepG2	0.0	0.0	Spinal Cord Pool	0.3	5.3
Kidney Pool	0.8	9.2	Adrenal Gland	0.2	3.5
Fetal Kidney	0.1	0.7	Pituitary gland Pool	0.1	1.5
Renal ca. 786-0	0.0	0.3	Salivary Gland	0.0	0.4
Renal ca. A498	0.5	6.3	Thyroid (female)	0.0	0.4
Renal ca. ACHN	0.4	5.6	Pancreatic ca. CAPAN2	0.0	0.0
Renal ca. UO-31	0.2	2.2	Pancreas Pool	0.2	3.0

Table GE. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag5267, Run 230510063	Tissue Name	Rel. Exp.(%) Ag5267, Run 230510063
Secondary Th1 act	0.0	HUVEC IL-1beta	1.4

Secondary Th2 act	4.3	HUVEC IFN gamma	4.8
Secondary Tr1 act	3.4	HUVEC TNF alpha + IFN	3.8
Secondary 171 act	J.4 	gamma	5.0
Secondary Th1 rest	0.6	HUVEC TNF alpha + IL4	0.4
Secondary Th2 rest	2.1	HUVEC IL-11	0.4
Secondary Tr1 rest	0.8	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.4
Primary Th2 act	0.6	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.8	Microsvasular Dermal EC TNFalpha + IL-1beta	0.2
Primary Th1 rest	0.2	Bronchial epithelium TNFalpha + IL1 beta	0.7
Primary Th2 rest	0.3	Small airway epithelium none	0.2
Primary Tr1 rest	0.2	Small airway epithelium TNFalpha + IL-1beta	1.6
CD45RA CD4 lymphocyte act	1.6	Coronery artery SMC rest	0.9
CD45RO CD4 lymphocyte act	3.4	Coronery artery SMC TNFalpha + IL-1 beta	1.9
CD8 lymphocyte act	0.4	Astrocytes rest	8.8
Secondary CD8 lymphocyte rest	0.1	Astrocytes TNFalpha + IL-1beta	11.0
Secondary CD8 lymphocyte act	0.2	KU-812 (Basophil) rest	1.4
CD4 lymphocyte none	0.9	KU-812 (Basophil) PMA/ionomycin	9.3
2ry Th1/Th2/Tr1_anti- CD95 CH11	1.8	CCD1106 (Keratinocytes) none	4.8
LAK cells rest	6.2	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	1.2
LAK cells IL-2	3.3	Liver cirrhosis	2.0
LAK cells IL-2+IL-12	1.2	NCI-H292 none	0.4
LAK cells IL-2+IFN gamma	0.7	NCI-H292 IL-4	1.8
LAK cells IL-2+ IL-18	0.6	NCI-H292 IL-9	1.4
LAK cells PMA/ionomycin	41.8	NCI-H292 IL-13	2.8
NK Cells IL-2 rest	9.0	NCI-H292 IFN gamma	5.6
Two Way MLR 3 day	2.9	HPAEC none	0.2
Two Way MLR 5 day	3.5	HPAEC TNF alpha + IL-1 beta	4.9
Two Way MLR 7 day	2.7	Lung fibroblast none	46.7
PBMC rest	0.3	Lung fibroblast TNF alpha + IL- 1 beta	9.7
PBMC PWM	0.0	Lung fibroblast IL-4	23.5
PBMC PHA-L	1.2	Lung fibroblast IL-9	32.5
Ramos (B cell) none	0.0	Lung fibroblast IL-13	18.6
Ramos (B cell) ionomycin	0.0	Lung fibroblast IFN gamma	73.7
B lymphocytes PWM	0.7	Dermal fibroblast CCD1070 rest	1.8
B lymphocytes CD40L	7.6	Dermal fibroblast CCD1070	0.3

EOL-1 dbcAMP	7.7	Dermal fibroblast CCD1070 IL- 1 beta	2.0
EOL-1 dbcAMP PMA/ionomycin	100.0	Dermal fibroblast IFN gamma	11.7
Dendritic cells none	0.5	Dermal fibroblast IL-4	4.0
Dendritic cells LPS	0.4	Dermal Fibroblasts rest	10.1
Dendritic cells anti-CD40	0.4	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.0	Neutrophils rest	0.7
Monocytes LPS	3.0	Colon	0.6
Macrophages rest	0.0	Lung	0.7
Macrophages LPS	0.7	Thymus	1.1
HUVEC none	0.7	Kidney	2.4
HUVEC starved	1.2		

AI_comprehensive panel_v1.0 Summary: Ag5267 This panel confirmes the expression of the NOV13b gene in several normal and disease tissues with relevance to human immune function. Please see Panel 4.1D for a discussion of the potential role of this protein in inflammation and its therapeutic utility.

CNS_neurodegeneration_v1.0 Summary: Ag5267 Results from this experiment show the expression of this gene at low levels in the brains of several individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment.

The NOV13b gene encodes a protein with homology to neural cell adhesion molecules (NCAM). NCAM related proteins, such as Nr-CAM, play a critical role in neurite extension (ref. 1). Therefore, the introduction of ligands specific for this gene product, such as contactin, in directed brain regions may have utility in fostering focal neurite outgrowth and, thus may have utility in therapeutically countering neurite degeneration in neurodegenerative diseases such as Alzheimer's disease, ataxias, and Parkinson's disease (Sakurai et al., 2001).

General_screening_panel_v1.5 Summary: Ag5267 Results from one experiment are not included. The amp plot indicates that there were experimental difficulties with this run.

Panel 4.1D Summary: Ag5267 The NOV13b transcript is expressed in LAK cells and treatment of the LAK cells with PMA and ionomycin upregulates the expression of this transcript. This transcript is also induced in activated EOL cells and in fibroblasts. The NOV13b gene encodes a putative NCAM, a type of cell surface protein often involved in cellular interaction, adhesion and signaling. Therefore, therapeutics designed with the protein encoded for this transcript could be important in the treatment of diseases such as asthma, emphysema, psoriasis and arthritis.

5

10

15

20

H. NOV18a: Adipophilin

5

Expression of gene NOV18a was assessed using the primer-probe set Ag5737, described in Table HA. Results of the RTQ-PCR runs are shown in Tables HB and HC.

Table HA. Probe Name Ag5737

Primers	Sequences	Length	Start Position
Forward	5'-gagacagcagggctactttgt-3' (SEQ ID NO:227)	21	611
IUTARE	TET-5'-cacctggcctacgagcactctgtg-3'-TAMRA (SEQ ID NO:228)	24	663
Reverse	5'-gtgtttgctctgcctcagttt-3' (SEQ ID NO:229)	21	690

Table HB. General_screening_panel_v1.5

Tissue Name	Rel. Exp.(%) Ag5737, Run 245385011	Tissue Name	Rel. Exp.(%) Ag5737, Run 245385011
Adipose	7.5	Renal ca. TK-10	0.4
Melanoma* Hs688(A).T	0.0	Bladder	57.8
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	3.0
Melanoma* M14	0.0	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.7
Melanoma* SK-MEL-5	2.1	Colon ca. SW480	1.8
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	1.6	Colon ca. HT29	1.8
Prostate ca.* (bone met) PC-3	0.4	Colon ca. HCT-116	6.2
Prostate Pool	1.7	Colon ca. CaCo-2	1.4
Placenta	0.0	Colon cancer tissue	1.4
Uterus Pool	0.2	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	7.1	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.5
Ovarian ca. OVCAR-5	25.7	Small Intestine Pool	6.0
Ovarian ca. IGROV-1	2.3	Stomach Pool	3.7
Ovarian ca. OVCAR-8	8.2	Bone Marrow Pool	0.3
Ovary	5.2	Fetal Heart	11.8
Breast ca. MCF-7	7.9	Heart Pool	5.6
Breast ca. MDA-MB- 231	0.0	Lymph Node Pool	1.0
Breast ca. BT 549	0.1	Fetal Skeletal Muscle	1.4
Breast ca. T47D	1.9	Skeletal Muscle Pool	100.0
Breast ca. MDA-N	0.0	Spleen Pool	1.7
Breast Pool	0.2	Thymus Pool	4.0
Trachea	12.6	CNS cancer (glio/astro) U87-MG	0.0
Lung	1.2	CNS cancer (glio/astro) U- 118-MG	0.7

Fetal Lung	3.8	CNS cancer (neuro;met) SK-N-AS	0.7
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	0.4	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	0.4	CNS cancer (glio) SNB-19	4.8
Lung ca. SHP-77	1.6	CNS cancer (glio) SF-295	0.2
Lung ca. A549	0.0	Brain (Amygdala) Pool	2.0
Lung ca. NCI-H526	0.4	Brain (cerebellum)	0.9
Lung ca. NCI-H23	2.0	Brain (fetal)	0.7
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	1.6
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	1.6
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	2.8
Liver	6.3	Brain (Thalamus) Pool	4.2
Fetal Liver	11.0	Brain (whole)	2.2
Liver ca. HepG2	0.7	Spinal Cord Pool	6.0
Kidney Pool	5.8	Adrenal Gland	1.5
Fetal Kidney	5.6	Pituitary gland Pool	4.1
Renal ca. 786-0	0.2	Salivary Gland	12.7
Renal ca. A498	0.0	Thyroid (female)	2.0
Renal ca. ACHN	0.1	Pancreatic ca. CAPAN2	0.2
Renal ca. UO-31	0.0	Pancreas Pool	10.7

Table HC. Panel 5 Islet

Tissue Name	Rel. Exp.(%) Ag5737, Run 244646641	Tissue Name	Rel. Exp.(%) Ag5737, Run 244646641
97457_Patient- 02go_adipose	24.1	94709_Donor 2 AM - A_adipose	0.0
97476_Patient-07sk_skeletal muscle	14.7	94710_Donor 2 AM - B_adipose	0.0
97477_Patient-07ut_uterus	0.0	94711_Donor 2 AM - C_adipose	0.0
97478_Patient- 07pl_placenta	0.0	94712_Donor 2 AD - A_adipose	0.0
99167_Bayer Patient 1	93.3	94713_Donor 2 AD - B_adipose	2.4
97482_Patient-08ut_uterus	0.0	94714_Donor 2 AD - C_adipose	0.0
97483_Patient- 08pl_placenta	0.0	94742_Donor 3 U - A_Mesenchymal Stem Cells	0.0
97486_Patient-09sk_skeletal muscle	6.8	94743_Donor 3 U - B_Mesenchymal Stem Cells	0.0
97487_Patient-09ut_uterus	0.0	94730_Donor 3 AM - A_adipose	0.0
97488_Patient- 09pl_placenta	0.0	94731_Donor 3 AM - B_adipose	0.0
97492_Patient-10ut_uterus	0.0	94732_Donor 3 AM - C_adipose	0.0
97493_Patient- 10pl_placenta	0.0	94733_Donor 3 AD - A_adipose	0.0
97495_Patient- 11go_adipose	5.0	94734_Donor 3 AD - B_adipose	0.0
97496_Patient-11sk_skeletal	29.7	94735_Donor 3 AD - C_adipose	0.0

muscle			
97497_Patient-11ut_uterus	0.0	77138_Liver_HepG2untreated	6.3
97498_Patient- l lpl_placenta	0.0	73556_Heart_Cardiac stromal cells (primary)	0.0
97500_Patient- 12go_adipose	34.4	81735_Small Intestine	16.7
97501_Patient-12sk_skeletal muscle	100.0	72409_Kidney_Proximal Convoluted Tubule	0.0
97502_Patient-12ut_uterus	0.0	82685_Small intestine_Duodenum	0.0
97503_Patient- 12pl_placenta	0.0	90650_Adrenal_Adrenocortical adenoma	0.0
94721_Donor 2 U - A_Mesenchymal Stem Cells	0.0	72410_Kidney_HRCE	0.0
94722_Donor 2 U - B_Mesenchymal Stem Cells	0.0	72411_Kidney_HRE	0.0
94723_Donor 2 U - C_Mesenchymal Stem Cells	0.0	73139_Uterus_Uterine smooth muscle cells	0.0

General_screening_panel_v1.5 Summary: Ag5737 Expression of the NOV18a gene is highest in adult skeletal muscle (CT = 28.2) and is much lower in fetal skeletal muscle (CT = 34.4). Thus, expression of this gene may be used to distinguish adult and fetal skeletal muscle. Among other tissues with metabolic or endocrine function, this gene is expressed at low to moderate levels in adipose, liver, heart, pancreas, adrenal gland, pituitary gland and thyroid. The NOV18a gene encodes a protein with homology to adipophilin. Adipophilin is believed to be involved in fatty acid uptake in adipocytes and is associated with lipid globules in many types of animal cells (ref. 1-2). This gene product may be a critical player in lipid homeostasis; therefore, therapeutic modulation of the activity of the NOV18a gene or its protein product may be a treatment for metabolic disease, including obesity and diabetes.

10

15

20

In addition, this gene is expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Finally, expression of this gene appears to be primarily associated with normal tissues as compared to cancer cell lines. NOV18a gene expression appears to be down regulated in CNS and renal cancer cell lines. Therefore, use of the NOV18a gene product as a protein therapeutic may be of benefit in the treatment of CNS and renal cancers (Londos et al., Semin Cell Dev Biol. 10(1):51-8, 1999; Serrero et al., Biochim Biophys Acta. 1488(3):245-54, 2000).

Panel 5 Islet Summary: Ag5737 The NOV18a gene is moderately expressed in the pancreatic islets of Langerhans (CT = 32.4), as well as in a sample of skeletal muscle. The

NOV18a gene encodes a protein with homology to adipophilin, which is believed to be involved in fatty acid uptake in adipocytes and is associated with lipid globules in many types of animal cells. Lipid homeostasis is critically involved in insulin secretion by islet beta cells. Therapeutic modulation of this gene product may be a treatment for the beta cell secretory defect in Type 2 diabetes (Unger and Orci, FASEB J. 15(2):312-21, 2001; Unger and Zhou, Diabetes. 50 Suppl 1:S118-21, 2001).

I. NOV19a:

Expression of gene NOV19a was assessed using the primer-probe set Ag3549, described in Table IA.

Table IA. Probe Name Ag3549

Primers	Sequences	Length	Start Position
Forward	5'-ccccaggaaaagaggacata-3' (SEQ ID NO:230)	20	649
IDEODE	TET-5'-tgacacaggttctccctctgcaaaa-3'-TAMRA (SEQ ID NO:231)	25	669
Reverse	5'-ctgaggaggacctggacagt-3' (SEQ ID NO:232)	20	725

CNS_neurodegeneration_v1.0 Summary: Ag3549 Expression of the NOV19a gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.4 Summary: Ag3549 Expression of the NOV19a gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4D Summary: Ag3549 Expression of the NOV19a gene is low/undetectable in all samples on this panel (CTs>35).

J. NOV20a:

20

Expression of gene NOV20a was assessed using the primer-probe set Ag3866, described in Table JA.

Table JA. Probe Name Ag3866

Primers	Sequences	Length	Start Position
Forward	5'-gaactcctggcctcaagatc-3' (SEQ ID NO:233)	20	58
	TET-5'-aaaggcccagccctctctttcct-3'-TAMRA (SEQ ID NO:234)	24	96
Reverse	5'-aggaaggaaggaagga-3' (SEQ ID NO:235)	20	116

CNS_neurodegeneration_v1.0 Summary: Ag3866 Expression of the CG59846-01 gene is low/undetectable in all samples on this panel (CTs>35). The amp plot indicates that there is a high probability of a probe failure.

General_screening_panel_v1.4 Summary: Ag3866 Expression of the CG59846-01 gene is low/undetectable in all samples on this panel (CTs>35). The amp plot indicates that there is a high probability of a probe failure.

Panel 2.2 Summary: Ag3866 Expression of the CG59846-01 gene is

low/undetectable in all samples on this panel (CTs>35). The amp plot indicates that there is a high probability of a probe failure.

Panel 4.1D Summary: Ag3866 Expression of the CG59846-01 gene is low/undetectable in all samples on this panel (CTs>35). The amp plot indicates that there is a high probability of a probe failure.

10

K. NOV21a: Neurotransmission-associated protein

Expression of gene NOV21a was assessed using the primer-probe set Ag675, described in Table KA.

Table KA. Probe Name Ag675

Primers	Sequences		Start Position
Forward	5'-ccttagctaagcaggtcatgaa-3' (SEQ ID NO:236)	22	659
IPTODE	TET-5'-ctagtgccatccctgcccaatctagt-3'-TAMRA (SEQ ID NO:237)	26	685
Reverse	5'-attgaaggaagcctcgatca-3' (SEQ ID NO:238)	20	731

15

Panel 1.1 Summary: Ag675 Expression of the NOV21a gene is low/undetectable in all samples on this panel (CTs>35).

L. NOV21n: Neurotransmission-associated Protein (NTAP)

Expression of gene NOV21n was assessed using the primer-probe set Ag675,

20 described in Table LA.

Table LA. Probe Name Ag675

Primers	Sequences	Length	Start Position
Forward	5'-ccttagctaagcaggtcatgaa-3' (SEQ ID NO:239)	22	554
	TET-5'-ctagtgccatccctgcccaatctagt-3'-TAMRA (SEQ ID NO:240)	26	580
Reverse	5'-attgaaggaagcctcgatca-3' (SEQ ID NO:241)	20	626

Panel 1.1 Summary: Ag675 Expression of the NOV21a gene is low/undetectable in all samples on this panel (CTs>35).

25 M. NOV22a: drebrin

Expression of gene NOV22a was assessed using the primer-probe set Ag3946, described in Table MA.

Table MA. Probe Name Ag3946

Primers	Sequences	Length	Start Position
Forward	5'-ggtgattcccacacatcctt-3' (SEQ ID NO:242)	20	1583
UTODO	TET-5'-accctcccagacagcttggctctt-3'-TAMRA (SEQ ID NO:243)	24	1616
Reverse	5'-caqqqcttgqctcagtatc-3' (SEQ ID NO:244)	19	1651

Panel CNS_1 Summary: Ag3946 Expression of the NOV22a gene is

5 low/undetectable in all samples on this panel (CTs>35).

N. NOV23a: UNC5H2 homolog

10

Expression of gene NOV23a was assessed using the primer-probe set Ag3546, described in Table NA. Results of the RTQ-PCR runs are shown in Tables NB, NC, ND, NE and NF.

Table NA. Probe Name Ag3546

Primers	Sequences	Length	Start Position
Forward	5'-ccatgaacagatcctccaagt-3' (SEQ ID NO:245)	21	2447
	TET-5'-tgaacgagaaaccatcactttcttcg-3'-TAMRA (SEQ ID NO:246)	26	2489
Reverse	5'-ggaaagtgctgtcctcttgtg-3' (SEQ ID NO:247)	21	2515

Table NB. CNS neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3546, Run 210629739	Tissue Name	Rel. Exp.(%) Ag3546, Run 210629739
AD 1 Hippo	8.0	Control (Path) 3 Temporal Ctx	6.6
AD 2 Hippo	28.1	Control (Path) 4 Temporal Ctx	33.4
AD 3 Hippo	3.7	AD 1 Occipital Ctx	15.1
AD 4 Hippo	7.9	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	85.9	AD 3 Occipital Ctx	7.6
AD 6 Hippo	18.7	AD 4 Occipital Ctx	37.6
Control 2 Hippo	27.4	AD 5 Occipital Ctx	47.6
Control 4 Hippo	6.5	AD 6 Occipital Ctx	21.5
Control (Path) 3 Hippo	4.2	Control 1 Occipital Ctx	4.2
AD 1 Temporal Ctx	10.9	Control 2 Occipital Ctx	59.9
AD 2 Temporal Ctx	75.8	Control 3 Occipital Ctx	25.0
AD 3 Temporal Ctx	6.3	Control 4 Occipital Ctx	4.7
AD 4 Temporal Ctx	26.1	Control (Path) 1 Occipital Ctx	98.6
AD 5 Inf Temporal Ctx	100.0	Control (Path) 2	17.3

		Occipital Ctx	
AD 5 Sup Temporal Ctx	32.3	Control (Path) 3 Occipital Ctx	4.7
AD 6 Inf Temporal Ctx	38.2	Control (Path) 4 Occipital Ctx	22.4
AD 6 Sup Temporal Ctx	41.8	Control 1 Parietal Ctx	7.6
Control 1 Temporal Ctx	5.5	Control 2 Parietal Ctx	36.9
Control 2 Temporal Ctx	40.9	Control 3 Parietal Ctx	23.0
Control 3 Temporal Ctx	21.6	Control (Path) 1 Parietal Ctx	97.9
Control 3 Temporal Ctx	18.6	Control (Path) 2 Parietal Ctx	32.8
Control (Path) 1 Temporal Ctx	72.7	Control (Path) 3 Parietal Ctx	4.3
Control (Path) 2 Temporal Ctx	48.3	Control (Path) 4 Parietal Ctx	57.0

Table NC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3546, Run 213391156	Tissue Name	Rel. Exp.(%) Ag3546, Run 213391156
Adipose	0.3	Renal ca. TK-10	0.7
Melanoma* Hs688(A).T	0.0	Bladder	0.4
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	0.3
Melanoma* M14	3.4	Gastric ca. KATO III	0.4
Melanoma* LOXIMVI	0.6	Colon ca. SW-948	0.2
Melanoma* SK-MEL-5	0.4	Colon ca. SW480	1.9
Squamous cell carcinoma SCC-4	0.8	Colon ca.* (SW480 met) SW620	0.4
Testis Pool	0.8	Colon ca. HT29	0.5
Prostate ca.* (bone met) PC-3	0.4	Colon ca. HCT-116	1.3
Prostate Pool	15.8	Colon ca. CaCo-2	0.2
Placenta	0.0	Colon cancer tissue	0.7
Uterus Pool	0.5	Colon ca. SW1116	0.4
Ovarian ca. OVCAR-3	0.3	Colon ca. Colo-205	0.3
Ovarian ca. SK-OV-3	0.2	Colon ca. SW-48	0.6
Ovarian ca. OVCAR-4	0.5	Colon Pool	6.6
Ovarian ca. OVCAR-5	0.3	Small Intestine Pool	6.9
Ovarian ca. IGROV-1	16.3	Stomach Pool	3.0
Ovarian ca. OVCAR-8	17.7	Bone Marrow Pool	0.4
Ovary	0.1	Fetal Heart	0.4
Breast ca. MCF-7	0.2	Heart Pool	1.6
Breast ca. MDA-MB- 231	0.1	Lymph Node Pool	5.0
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.4
Breast ca. T47D	1.2	Skeletal Muscle Pool	0.2
Breast ca. MDA-N	3.0	Spleen Pool	0.4

Breast Pool	14.6	Thymus Pool	5.5
Trachea	0.1	CNS cancer (glio/astro) U87-MG	0.5
Lung	0.0	CNS cancer (glio/astro) U- 118-MG	3.3
Fetal Lung	0.2	CNS cancer (neuro;met) SK-N-AS	0.4
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.6
Lung ca. LX-1	0.4	CNS cancer (astro) SNB-75	4.7
Lung ca. NCI-H146	0.1	CNS cancer (glio) SNB-19	14.2
Lung ca. SHP-77	8.1	CNS cancer (glio) SF-295	0.7
Lung ca. A549	9.4	Brain (Amygdala) Pool	15.7
Lung ca. NCI-H526	0.6	Brain (cerebellum)	12.2
Lung ca. NCI-H23	0.8	Brain (fetal)	100.0
Lung ca. NCI-H460	6.3	Brain (Hippocampus) Pool	28.7
Lung ca. HOP-62	0.9	Cerebral Cortex Pool	51.4
Lung ca. NCI-H522	0.9	Brain (Substantia nigra) Pool	37.4
Liver	0.0	Brain (Thalamus) Pool	35.1
Fetal Liver	0.8	Brain (whole)	47.3
Liver ca. HepG2	0.0	Spinal Cord Pool	4.7
Kidney Pool	4.9	Adrenal Gland	3.0
Fetal Kidney	28.7	Pituitary gland Pool	6.3
Renal ca. 786-0	2.0	Salivary Gland	0.1
Renal ca. A498	0.2	Thyroid (female)	1.4
Renal ca. ACHN	0.5	Pancreatic ca. CAPAN2	0.9
Renal ca. UO-31	2.0	Pancreas Pool	7.3

Table ND. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3546, Run 173762016	Tissue Name	Rel. Exp.(%) Ag3546, Run 173762016	
Normal Colon	26.4	Kidney Margin (OD04348)	100.0	
Colon cancer (OD06064)	0.0	Kidney malignant cancer (OD06204B)	0.0	
Colon Margin (OD06064)	0.0	Kidney normal adjacent tissue (OD06204E)	13.0	
Colon cancer (OD06159)	0.0	Kidney Cancer (OD04450- 01)	58.2	
Colon Margin (OD06159)	1.6	Kidney Margin (OD04450- 03)	51.4	
Colon cancer (OD06297-04)	3.8	Kidney Cancer 8120613	14.5	
Colon Margin (OD06297-05)	7.2	Kidney Margin 8120614	22.5	
CC Gr.2 ascend colon (ODO3921)	0.0	Kidney Cancer 9010320	0.0	
CC Margin (ODO3921)	5.5	Kidney Margin 9010321	12.6	
Colon cancer metastasis (OD06104)	0.0	Kidney Cancer 8120607	6.3	
Lung Margin (OD06104)	11.5	Kidney Margin 8120608	12.0	
Colon mets to lung	0.0	Normal Uterus	17.7	

(OD04451-01)			
Lung Margin (OD04451-02)	7.3	Uterine Cancer 064011	1.8
Normal Prostate	11.1	Normal Thyroid	0.0
Prostate Cancer (OD04410)	16.5	Thyroid Cancer 064010	0.0
Prostate Margin (OD04410)	32.5	Thyroid Cancer A302152	0.0
Normal Ovary	0.0	Thyroid Margin A302153	1.4
Ovarian cancer (OD06283- 03)	3.6	Normal Breast	4.4
Ovarian Margin (OD06283- 07)	0.0	Breast Cancer (OD04566)	0.0
Ovarian Cancer 064008	4.9	Breast Cancer 1024	0.0
Ovarian cancer (OD06145)	0.0	Breast Cancer (OD04590-01)	0.0
Ovarian Margin (OD06145)	0.0	Breast Cancer Mets (OD04590-03)	0.0
Ovarian cancer (OD06455- 03)	0.0	Breast Cancer Metastasis (OD04655-05)	0.0
Ovarian Margin (OD06455- 07)	0.0	Breast Cancer 064006	0.0
Normal Lung	0.0	Breast Cancer 9100266	1.7
Invasive poor diff. lung adeno (ODO4945-01	0.0	Breast Margin 9100265	0.0
Lung Margin (ODO4945-03)	3.7	Breast Cancer A209073	0.0
Lung Malignant Cancer (OD03126)	0.0	Breast Margin A2090734	0.0
Lung Margin (OD03126)	0.0	Breast cancer (OD06083)	0.0
Lung Cancer (OD05014A)	0.0	Breast cancer node metastasis (OD06083)	0.0
Lung Margin (OD05014B)	7.4	Normal Liver	0.0
Lung cancer (OD06081)	0.0	Liver Cancer 1026	0.0
Lung Margin (OD06081)	1.5	Liver Cancer 1025	0.0
Lung Cancer (OD04237-01)	0.0	Liver Cancer 6004-T	2.1
Lung Margin (OD04237-02)	10.8	Liver Tissue 6004-N	0.0
Ocular Melanoma Metastasis	0.0	Liver Cancer 6005-T	0.0
Ocular Melanoma Margin (Liver)	0.0	Liver Tissue 6005-N	0.0
Melanoma Metastasis	0.0	Liver Cancer 064003	0.0
Melanoma Margin (Lung)	0.0	Normal Bladder	. 0.0
Normal Kidney	21.8	Bladder Cancer 1023	0.0
Kidney Ca, Nuclear grade 2 (OD04338)	40.3	Bladder Cancer A302173	0.0
Kidney Margin (OD04338)	3.2	Normal Stomach	9.9
Kidney Ca Nuclear grade 1/2 (OD04339)	94.6	Gastric Cancer 9060397	0.0
Kidney Margin (OD04339)	19.9	Stomach Margin 9060396	0.0
Kidney Ca, Clear cell type (OD04340)	2.1	Gastric Cancer 9060395	0.0
Kidney Margin (OD04340)	26.1	Stomach Margin 9060394	0.0
Kidney Ca, Nuclear grade 3 (OD04348)	0.0	Gastric Cancer 064005	0.0

Table NE. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3546, Run 166453846	Tissue Name	Rel. Exp.(%) Ag3546, Run 166453846
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1 beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	0.2
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1 beta	0.0
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.0
CD8 lymphocyte act	0.0	Astrocytes rest	1.8
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	1.5
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	0.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	Lupus kidney	10.7
LAK cells IL-2+IFN gamma	0.0	NCI-H292 none	0.0
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-4	0.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-9	0.0
NK Cells IL-2 rest	0.0	NCI-H292 IL-13	0.0
Two Way MLR 3 day	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 5 day	0.0	HPAEC none	0.0
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
PBMC rest	0.0	Lung fibroblast none	0.0
PBMC PWM	0.0	Lung fibroblast TNF alpha + IL- 1 beta	0.2
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.0

Ramos (B cell) none	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IL-13	0.0
B lymphocytes PWM	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 rest	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells anti-CD40	0.0	IBD Colitis 2	1.9
Monocytes rest	0.0	IBD Crohn's	7.0
Monocytes LPS	0.0	Colon	100.0
Macrophages rest	0.0	Lung	0.2
Macrophages LPS	0.0	Thymus	30.6
HUVEC none	0.0	Kidney	6.3
HUVEC starved	0.0		

Table NF. Panel CNS_1

Tissue Name	Rel. Exp.(%) Ag3546, Run 171647125	Tissue Name	Rel. Exp.(%) Ag3546, Run 171647125
BA4 Control	47.3	BA17 PSP	33.7
BA4 Control2	49.0	BA17 PSP2	13.0
BA4 Alzheimer's2	10.5	Sub Nigra Control	14.8
BA4 Parkinson's	58.6	Sub Nigra Control2	24.5
BA4 Parkinson's2	90.1	Sub Nigra Alzheimer's2	15.5
BA4 Huntington's	49.0	Sub Nigra Parkinson's2	47.6
BA4 Huntington's2	13.5	Sub Nigra Huntington's	31.4
BA4 PSP	16.5	Sub Nigra Huntington's2	23.5
BA4 PSP2	41.5	Sub Nigra PSP2	7.4
BA4 Depression	14.5	Sub Nigra Depression	0.9
BA4 Depression2	14.0	Sub Nigra Depression2	5.2
BA7 Control	62.9	Glob Palladus Control	7.0
BA7 Control2	29.5	Glob Palladus Control2	11.4
BA7 Alzheimer's2	13.7	Glob Palladus Alzheimer's	9.9
BA7 Parkinson's	21.0	Glob Palladus Alzheimer's2	3.5
BA7 Parkinson's2	61.1	Glob Palladus Parkinson's	66.9
BA7 Huntington's	63.7	Glob Palladus Parkinson's2	6.6
BA7 Huntington's2	73.7	Glob Palladus PSP	3.3
BA7 PSP	70.2	Glob Palladus PSP2	8.3
BA7 PSP2	48.0	Glob Palladus	3.6

		Depression	
BA7 Depression	17.8	Temp Pole Control	22.5
BA9 Control	34.6	Temp Pole Control2	83.5
BA9 Control2	100.0	Temp Pole Alzheimer's	15.2
BA9 Alzheimer's	7.7	Temp Pole Alzheimer's2	10.7
BA9 Alzheimer's2	30.1	Temp Pole Parkinson's	37.9
BA9 Parkinson's	51.4	Temp Pole Parkinson's2	35.8
BA9 Parkinson's2	67.8	Temp Pole Huntington's	59.0
BA9 Huntington's	72.2	Temp Pole PSP	9.4
BA9 Huntington's2	24.8	Temp Pole PSP2	10.4
BA9 PSP	23.8	Temp Pole Depression2	11.1
BA9 PSP2	7.4	Cing Gyr Control	73.2
BA9 Depression	11.7	Cing Gyr Control2	33.7
BA9 Depression2	18.4	Cing Gyr Alzheimer's	25.0
BA17 Control	65.1	Cing Gyr Alzheimer's2	14.5
BA17 Control2	75.8	Cing Gyr Parkinson's	30.4
BA17 Alzheimer's2	19.8	Cing Gyr Parkinson's2	35.4
BA17 Parkinson's	51.4	Cing Gyr Huntington's	72.2
BA17 Parkinson's2	67.8	Cing Gyr Huntington's2	21.2
BA17 Huntington's	48.6	Cing Gyr PSP	13.8
BA17 Huntington's2	37.1	Cing Gyr PSP2	7.5
BA17 Depression	15.4	Cing Gyr Depression	6.9
BA17 Depression2	35.4	Cing Gyr Depression2	14.2

CNS_neurodegeneration_v1.0 Summary: Ag3546 This panel confirms the expression of the NOV23a gene at significant levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.4 Summary: Ag3546 Highest expression of the NOV23a gene is detected in fetal brain (CT=25.2). In addition, this gene is expressed at high levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord (CTs=26-29). Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

The NOV23a gene encodes a homologue of rat UNC5H2 gene. Members of UNC5H are membrane receptors for netrin-1 and crucial for axon guidance and neuronal migration. Netrins are a family of chemotropic factors that guide axon outgrowth during development. In situ hybridization has revealed that the netrin 1 receptors, DCC1 and UNC5H2 mRNAs are expressed by normal adult retinal ganglion cells (RGCs). In addition, expression of DCC1 and UNC5H2 mRNA is down regulated in RGCs that has undergone axotomy. Thus, netrin-1, DCC, and UNC5H2 may contribute to regulating the regenerative capacity of adult RGCs (Ref.1). Thus, high expression of the NOV23a gene in both fetal and adult brain, suggests this gene product may also play a role in the regenerative capacity of adult RGCs.

Recently, it was shown that netrin-1 receptors UNC5H (UNC5H1, UNC5H2, UNC5H3) also act as dependence receptors. They induce apoptosis, but this effect is blocked in the presence of netrin-1. Thus, during development of the nervous system, the presence of netrin-1 is crucial to maintain survival of UNC5H- and DCC-expressing neurons, especially in the ventricular zone of the brainstem (Ref. 2). Therefore, the NOV23a gene product along with Netrin 1 may be important in the survival of the neurons.

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Significant expression is also detected in fetal liver and fetal lung. Interestingly, this gene is expressed at much higher levels in fetal (CTs = 32-34.9) when compared to adult liver and lung (CTs = 40). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver or lung, respectively (Ellezam et al., Exp Neurol 168(1):105-15, 2001; Llambi et al., EMBO J 20(11):2715-22, 2001).

Panel 2.2 Summary: Ag3546 Expression of the NOV23a gene on this panel is seen primarily in kidney derived tissue (CTs=32-33). Thus, expression of this gene could be used to differentiate between kidney derived samples and other samples on this panel.

Panel 4D Summary: Ag3546 Expression of the NOV23a gene is highest in normal colon (CT=28.3). Therefore, expression of this gene may be used to distinguish colon from the other tissues on this panel. Furthermore, expression of this gene is decreased in colon samples from patients with IBD colitis and Crohn's disease relative to normal colon. Therefore, therapeutic modulation of the activity of the protein encoded by this gene may be useful in the treatment of inflammatory bowel disease.

Panel CNS_1 Summary: Ag3546 This panel confirms the expression of the NOV23a gene at significant levels in the brains of an independent group of individuals. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

5

O. NOV24a: Trypsin inhibitor

Expression of gene NOV24a was assessed using the primer-probe set Ag3485, described in Table OA. Results of the RTQ-PCR runs are shown in Tables OB and OC.

Table OA. Probe Name Ag3485

Primers	Sequences	Length	Start Position
Forward	5'-gccttcacagctgatgagatac-3' (SEQ ID NO:248)	22	349
DYONA	TET-5'-aacctctccatccattctggccagta-3'-TAMRA (SEQ ID NO:249)	26	380
Reverse	5'-tcagaccaggacttcatgagat-3' (SEQ ID NO:250)	22	420

10

Table OB. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3485, Run 217215038	Tissue Name	Rel. Exp.(%) Ag3485, Run 217215038
Adipose	0.0	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	0.0	Bladder	0.0
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	1.4
Melanoma* M14	0.5	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	0.0	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	0.0	Colon ca. SW480	0.9
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	3.1
Testis Pool	0.8	Colon ca. HT29	0.0
Prostate ca.* (bone met) PC-3	0.0	Colon ca. HCT-116	0.0
Prostate Pool	0.0	Colon ca. CaCo-2	0.0
Placenta	1.1	Colon cancer tissue	1.7
Uterus Pool	0.0	Colon ca. SW1116	1.1
Ovarian ca. OVCAR-3	0.0	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	2.3	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.0
Ovarian ca. OVCAR-5	0.0	Small Intestine Pool	0.0
Ovarian ca. IGROV-1	0.0	Stomach Pool	0.0
Ovarian ca. OVCAR-8	0.8	Bone Marrow Pool	0.0
Ovary	0.0	Fetal Heart	0.0
Breast ca. MCF-7	0.0	Heart Pool	0.0
Breast ca. MDA-MB- 231	0.0	Lymph Node Pool	0.0
Breast ca. BT 549	0.0	Fetal Skeletal Muscle	0.0

Breast ca. T47D	0.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.0	Spleen Pool	0.0
Breast Pool	0.0	Thymus Pool	0.0
Trachea	0.0	CNS cancer (glio/astro) U87-MG	0.0
Lung	0.0	CNS cancer (glio/astro) U- 118-MG	0.0
Fetal Lung	0.0	CNS cancer (neuro;met) SK-N-AS	0.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	4.1	CNS cancer (astro) SNB-75	0.0
Lung ca. NCI-H146	7.9	CNS cancer (glio) SNB-19	0.0
Lung ca. SHP-77	4.6	CNS cancer (glio) SF-295	0.0
Lung ca. A549	100.0	Brain (Amygdala) Pool	0.0
Lung ca. NCI-H526	0.0	Brain (cerebellum)	0.0
Lung ca. NCI-H23	7.9	Brain (fetal)	0.0
Lung ca. NCI-H460	0.0	Brain (Hippocampus) Pool	0.0
Lung ca. HOP-62	0.0	Cerebral Cortex Pool	0.0
Lung ca. NCI-H522	0.0	Brain (Substantia nigra) Pool	0.0
Liver	0.0	Brain (Thalamus) Pool	0.0
Fetal Liver	0.0	Brain (whole)	0.0
Liver ca. HepG2	0.0	Spinal Cord Pool	0.0
Kidney Pool	0.0	Adrenal Gland	0.0
Fetal Kidney	1.1	Pituitary gland Pool	0.0
Renal ca. 786-0	0.0	Salivary Gland	1.3
Renal ca. A498	0.0	Thyroid (female)	0.0
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.0
Renal ca. UO-31	0.0	Pancreas Pool	0.0

Table OC. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3485, Run 166441741	Tissue Name	Rel. Exp.(%) Ag3485, Run 166441741
Secondary Th1 act	0.0	HUVEC IL-1 beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	0.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	0.0
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1 beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	0.0
Primary Trl rest	0.0	Small airway epithelium	0.0

		TNFalpha + IL-1beta	
CD45RA CD4 lymphocyte	0.0	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte	0.0	Coronery artery SMC TNFalpha + IL-1 beta	0.0
CD8 lymphocyte act	0.0	Astrocytes rest	0.0
Secondary CD8	0.0	Astrocytes TNFalpha + IL-1 beta	9.2
Secondary CD8	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.0	CCD1106 (Keratinocytes) none	0.0
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
LAK cells IL-2	0.0	Liver cirrhosis	0.0
LAK cells IL-2+IL-12	0.0	Lupus kidney	0.0
LAK cells IL-2+IFN gamma	0.0	NCI-H292 none	0.0
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-4	0.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-9	0.0
NK Cells IL-2 rest	0.0	NCI-H292 IL-13	0.0
Two Way MLR 3 day	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 5 day	0.0	HPAEC none	0.0
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
PBMC rest	0.0	Lung fibroblast none	0.0
PBMC PWM	0.0	Lung fibroblast TNF alpha + IL- 1 beta	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.0
Ramos (B cell) none	0.0	Lung fibroblast IL-9	0.0
Ramos (B cell) ionomycin	0.0	Lung fibroblast IL-13	0.0
B lymphocytes PWM	0.0	Lung fibroblast IFN gamma	0.0
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 rest	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	0.0	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.0
Monocytes rest	0.0	IBD Crohn's	0.0
Monocytes LPS	0.0	Colon	0.0
Macrophages rest	0.0	Lung	100.0
Macrophages LPS	0.0	Thymus	0.0
HUVEC none	0.0	Kidney	0.0
HUVEC starved	0.0		

CNS_neurodegeneration_v1.0 Summary: Ag3485 Expression of the NOV24a gene is low/undetectable in all samples on this panel (CTs>35).

General_screening_panel_v1.4 Summary: Ag3485 Expression of the NOV24a gene is restricted to two samples derived from lung cancer cell lines (CTs=30-34). Thus, expression of this gene could be used to differentiate between these sample and other samples on this panel and as a marker to detect the presence of lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of lung cancer.

Panel 4D Summary: Ag3485 Expression of the NOV24a gene is restricted to normal lung tissue. This specific expression in lung derived tissue in both this panel and panel 1.4 suggests a role for this gene in the normal homeostasis of this tissue. Therapeutic modulation of the expression or function of this gene may be useful in maintaining or restoring normal function to the lung during inflammation.

15 P. NOV26a and NOV26b: Ovostatin

Expression of gene NOV26a and variant NOV26b was assessed using the primer-probe set Ag1282, described in Table PA. Results of the RTQ-PCR runs are shown in Tables PB, PC, PD, PE and PF.

Table PA. Probe Name Ag1282

Primers	es Sequences		Start Position
Forward	5'-ttcgcaataaatccagtatggt-3' (SEQ ID NO:251)	22	3929
	TET-5'-tgctatcaggatttactccaaccatgtca-3'-TAMRA (SEQ ID NO:252)	29	3968
Reverse	5'-ttgttttcaagctcttcaatgg-3' (SEQ ID NO:253)	22	3998

Table PB. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag1282, Run 216588406	Tissue Name	Rel. Exp.(%) Ag1282, Run 216588406
Adipose	0.5	Renal ca. TK-10	1.1
Melanoma* Hs688(A).T	0.0	Bladder	0.4
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	1.7
Melanoma* M14	100.0	Gastric ca. KATO III	1.2
Melanoma* LOXIMVI	0.9	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	11.2	Colon ca. SW480	3.3
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	1.5
Testis Pool	5.3	Colon ca. HT29	0.4
Prostate ca.* (bone met)	0.0	Colon ca. HCT-116	2.5

10

PC-3			
Prostate Pool	0.3	Colon ca. CaCo-2	0.6
Placenta	0.4	Colon cancer tissue	0.5
Uterus Pool	0.2	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	2.1	Colon ca. Colo-205	0.1
Ovarian ca. SK-OV-3	0.7	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.2	Colon Pool	0.5
Ovarian ca. OVCAR-5	0.8	Small Intestine Pool	1.4
Ovarian ca. IGROV-1	0.2	Stomach Pool	0.2
Ovarian ca. OVCAR-8	0.1	Bone Marrow Pool	0.2
Ovary	0.6	Fetal Heart	1.6
Breast ca. MCF-7	0.3	Heart Pool	0.2
Breast ca. MDA-MB- 231	0.6	Lymph Node Pool	0.4
Breast ca. BT 549	0.9	Fetal Skeletal Muscle	1.6
Breast ca. T47D	0.8	Skeletal Muscle Pool	0.1
Breast ca. MDA-N	45.1	Spleen Pool	0.8
Breast Pool	0.7	Thymus Pool	2.5
Trachea	0.5	CNS cancer (glio/astro) U87-MG	0.4
Lung	0.3	CNS cancer (glio/astro) U- 118-MG	0.3
Fetal Lung	4.9	CNS cancer (neuro;met) SK-N-AS	0.5
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.1
Lung ca. LX-1	1.6	CNS cancer (astro) SNB-75	9.0
Lung ca. NCI-H146	2.3	CNS cancer (glio) SNB-19	0.2
Lung ca. SHP-77	1.1	CNS cancer (glio) SF-295	0.7
Lung ca. A549	1.1	Brain (Amygdala) Pool	0.9
Lung ca. NCI-H526	0.4	Brain (cerebellum)	0.6
Lung ca. NCI-H23	2.8	Brain (fetal)	2.9
Lung ca. NCI-H460	0.1	Brain (Hippocampus) Pool	1.0
Lung ca. HOP-62	0.7	Cerebral Cortex Pool	1.1
Lung ca. NCI-H522	2.0	Brain (Substantia nigra) Pool	0.8
Liver	0.0	Brain (Thalamus) Pool	1.1
Fetal Liver	0.9	Brain (whole)	0.8
Liver ca. HepG2	0.3	Spinal Cord Pool	0.5
Kidney Pool	1.0	Adrenal Gland	0.1
Fetal Kidney	3.6	Pituitary gland Pool	0.1
Renal ca. 786-0	0.6	Salivary Gland	0.1
Renal ca. A498	0.0	Thyroid (female)	0.1
Renal ca. ACHN	0.6	Pancreatic ca. CAPAN2	1.3
Renal ca. UO-31	0.1	Pancreas Pool	0.9

Table PC. Panel 1.3D

				Y	1
1	Tissue Name	Rel. Exp.(%) Ag1282, Run	Tissue Name	Rel. Exp.(%) Ag1282, Run	
Į	1 issue i unite	167614616		167614616	į

Liver adenocarcinoma	9.2	Kidney (fetal)	4.9
Pancreas	0.5	Renal ca. 786-0	0.3
Pancreasic ca. CAPAN 2	1.3	Renal ca. A498	1.9
	0.3	Renal ca. RXF 393	0.1
Adrenal gland	0.3	Renal ca. ACHN	0.8
Thyroid			0.4
Salivary gland	0.1	Renal ca. UO-31	2.1
Pituitary gland	0.3	Renal ca. TK-10	0.2
Brain (fetal)	11.1	Liver	
Brain (whole)	0.7	Liver (fetal)	1.4
Brain (amygdala)	1.1	Liver ca. (hepatoblast) HepG2	0.7
Brain (cerebellum)	0.3	Lung	0.5
Brain (hippocampus)	1.5	Lung (fetal)	8.0
Brain (substantia nigra)	2.3	Lung ca. (small cell) LX-1	1.3
Brain (thalamus)	2.4	Lung ca. (small cell) NCI-H69	13.2
Cerebral Cortex	1.0	Lung ca. (s.cell var.) SHP-77	5.9
Spinal cord	0.7	Lung ca. (large cell)NCI- H460	0.1
glio/astro U87-MG	0.4	Lung ca. (non-sm. cell) A549	0.3
glio/astro U-118-MG	0.4	Lung ca. (non-s.cell) NCI-H23	2.4
astrocytoma SW1783	0.4	Lung ca. (non-s.cell) HOP-62	1.4
neuro*; met SK-N-AS	0.7	Lung ca. (non-s.cl) NCI- H522	2.6
astrocytoma SF-539	0.3	Lung ca. (squam.) SW 900	2.5
astrocytoma SNB-75	7.8	Lung ca. (squam.) NCI- H596	49.7
glioma SNB-19	0.2	Mammary gland	2.5
glioma U251	1.2	Breast ca.* (pl.ef) MCF-	0.5
glioma SF-295	0.6	Breast ca.* (pl.ef) MDA- MB-231	0.8
Heart (fetal)	5.1	Breast ca.* (pl.ef) T47D	0.3
Heart	0.7	Breast ca. BT-549	0.1
Skeletal muscle (fetal)	3.3	Breast ca. MDA-N	100.0
Skeletal muscle	0.5	Ovary	1.3
Bone marrow	3.9	Ovarian ca. OVCAR-3	2.6
Thymus	15.9	Ovarian ca. OVCAR-4	0.1
Spleen	1.2	Ovarian ca. OVCAR-5	2.7
Lymph node	4.6	Ovarian ca. OVCAR-8	0.1
Colorectal	2.5	Ovarian ca. IGROV-1	0.6
Stomach	0.6	Ovarian ca.* (ascites) SK-OV-3	1.3
Small intestine	1.8	Uterus	1.4
Colon ca. SW480	2.8	Placenta	0.2

Colon ca.* SW620(SW480 met)	5.3	Prostate	0.5
Colon ca. HT29	0.3	Prostate ca.* (bone met)PC-3	0.0
Colon ca. HCT-116	1.6	Testis	17.4
Colon ca. CaCo-2	0.8	Melanoma Hs688(A).T	0.0
Colon ca. tissue(ODO3866)	0.2	Melanoma* (met) Hs688(B).T	0.0
Colon ca. HCC-2998	3.1	Melanoma UACC-62	2.8
Gastric ca.* (liver met) NCI-N87	1.9	Melanoma M14	79.6
Bladder	0.9	Melanoma LOX IMVI	2.1
Trachea	0.3	Melanoma* (met) SK- MEL-5	9.9
Kidney	0.4	Adipose	1.9

Table PD. Panel 2D

Tissue Name	Rel. Exp.(%) Ag1282, Run 170849610	Tissue Name	Rel. Exp.(%) Ag1282, Run 170849610
Normal Colon	3.3	Kidney Margin 8120608	0.0
CC Well to Mod Diff (ODO3866)	0.4	Kidney Cancer 8120613	0.1
CC Margin (ODO3866)	0.4	Kidney Margin 8120614	0.1
CC Gr.2 rectosigmoid (ODO3868)	1.3	Kidney Cancer 9010320	0.1
CC Margin (ODO3868)	0.1	Kidney Margin 9010321	0.1
CC Mod Diff (ODO3920)	3.6	Normal Uterus	0.3
CC Margin (ODO3920)	0.8	Uterus Cancer 064011	2.5
CC Gr.2 ascend colon (ODO3921)	0.9	Normal Thyroid	0.4
CC Margin (ODO3921)	0.4	Thyroid Cancer 064010	0.3
CC from Partial Hepatectomy (ODO4309) Mets	0.9	Thyroid Cancer A302152	0.2
Liver Margin (ODO4309)	0.2	Thyroid Margin A302153	0.4
Colon mets to lung (OD04451- 01)	0.2	Normal Breast	1.8
Lung Margin (OD04451-02)	0.2	Breast Cancer (OD04566)	1.6
Normal Prostate 6546-1	. 1.8	Breast Cancer (OD04590-01)	0.7
Prostate Cancer (OD04410)	0.8	Breast Cancer Mets (OD04590-03)	2.3
Prostate Margin (OD04410)	1.1	Breast Cancer Metastasis (OD04655-05)	0.7
Prostate Cancer (OD04720-01)	0.7	Breast Cancer 064006	0.8
Prostate Margin (OD04720-02)	1.6	Breast Cancer 1024	1.2
Normal Lung 061010	2.6	Breast Cancer 9100266	0.9
Lung Met to Muscle (ODO4286)	0.3	Breast Margin 9100265	0.5
Muscle Margin (ODO4286)	0.2	Breast Cancer A209073	1.6
Lung Malignant Cancer	0.9	Breast Margin A209073	1.5

(OD03126)			
Lung Margin (OD03126)	0.7	Normal Liver	0.1
Lung Cancer (OD04404)	0.5	Liver Cancer 064003	0.3
Lung Margin (OD04404)	0.6	Liver Cancer 1025	0.1
Lung Cancer (OD04565)	0.8	Liver Cancer 1026	0.1
Lung Margin (OD04565)	0.4	Liver Cancer 6004-T	0.0
Lung Cancer (OD04237-01)	25.5	Liver Tissue 6004-N	0.9
Lung Margin (OD04237-02)	0.7	Liver Cancer 6005-T	0.3
Ocular Mel Met to Liver (ODO4310)	100.0	Liver Tissue 6005-N	0.0
Liver Margin (ODO4310)	0.4	Normal Bladder	1.1
Melanoma Mets to Lung (OD04321)	21.8	Bladder Cancer 1023	0.2
Lung Margin (OD04321)	0.5	Bladder Cancer A302173	6.5
Normal Kidney	0.5	Bladder Cancer (OD04718-01)	1.4
Kidney Ca, Nuclear grade 2 (OD04338)	0.4	Bladder Normal Adjacent (OD04718-03)	0.7
Kidney Margin (OD04338)	0.7	Normal Ovary	0.8
Kidney Ca Nuclear grade 1/2 (OD04339)	0.2	Ovarian Cancer 064008	2.9
Kidney Margin (OD04339)	0.1	Ovarian Cancer (OD04768-07)	3.8
Kidney Ca, Clear cell type (OD04340)	0.8	Ovary Margin (OD04768- 08)	0.2
Kidney Margin (OD04340)	0.6	Normal Stomach	1.2
Kidney Ca, Nuclear grade 3 (OD04348)	0.5	Gastric Cancer 9060358	0.8
Kidney Margin (OD04348)	0.2	Stomach Margin 9060359	0.7
Kidney Cancer (OD04622-01)	0.3	Gastric Cancer 9060395	0.8
Kidney Margin (OD04622-03)	0.0	Stomach Margin 9060394	0.2
Kidney Cancer (OD04450-01)	0.1	Gastric Cancer 9060397	0.5
Kidney Margin (OD04450-03)	0.1	Stomach Margin 9060396	0.2
Kidney Cancer 8120607	0.0	Gastric Cancer 064005	2.5

Table PE. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag1282, Run 169828985	Tissue Name	Rel. Exp.(%) Ag1282, Run 169828985
Secondary Th1 act	12.0	HUVEC IL-1 beta	2.6
Secondary Th2 act	19.3	HUVEC IFN gamma	2.6
Secondary Tr1 act	21.6	HUVEC TNF alpha + IFN gamma	1.4
Secondary Th1 rest	7.5	HUVEC TNF alpha + IL4	3.1
Secondary Th2 rest	12.1	HUVEC IL-11	3.4
Secondary Trl rest	9.6	Lung Microvascular EC none	6.4
Primary Th1 act	20.0	Lung Microvascular EC TNFalpha + IL-1beta	9.5
Primary Th2 act	19.6	Microvascular Dermal EC none	10.4
Primary Tr1 act	24.3	Microsvasular Dermal EC	10.2

		TNFalpha + IL-1beta	
Primary Th1 rest	23.8	Bronchial epithelium TNFalpha + IL1beta	3.4
Primary Th2 rest	16.3	Small airway epithelium none	0.0
Primary Tr1 rest	54.0	Small airway epithelium TNFalpha + IL-1beta	2.7
CD45RA CD4 lymphocyte act	7.6	Coronery artery SMC rest	0.3
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1 beta	0.1
CD8 lymphocyte act	23.3	Astrocytes rest	1.1
Secondary CD8 lymphocyte rest	9.3	Astrocytes TNFalpha + IL-1beta	2.4
Secondary CD8 lymphocyte act	16.4	KU-812 (Basophil) rest	14.5
CD4 lymphocyte none	3.6	KU-812 (Basophil) PMA/ionomycin	9.4
2ry Th1/Th2/Tr1_anti- CD95 CH11	23.7	CCD1106 (Keratinocytes) none	4.6
LAK cells rest	7.9	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	2.4
LAK cells IL-2	26.8	Liver cirrhosis	2.2
LAK cells IL-2+IL-12	5.5	NCI-H292 none	10.6
LAK cells IL-2+IFN gamma	10.8	NCI-H292 IL-4	18.2
LAK cells IL-2+ IL-18	14.0	NCI-H292 IL-9	24.5
LAK cells PMA/ionomycin	1.5	NCI-H292 IL-13	14.8
NK Cells IL-2 rest	29.1	NCI-H292 IFN gamma	11.1
Two Way MLR 3 day	8.0	HPAEC none	3.3
Two Way MLR 5 day	7.0	HPAEC TNF alpha + IL-1 beta	5.3
Two Way MLR 7 day	9.6	Lung fibroblast none	1.1
PBMC rest	0.3	Lung fibroblast TNF alpha + IL- 1 beta	0.6
PBMC PWM	4.0	Lung fibroblast IL-4	0.0
PBMC PHA-L	12.7	Lung fibroblast IL-9	0.3
Ramos (B cell) none	8.2	Lung fibroblast IL-13	0.0
Ramos (B cell) ionomycin	11.5	Lung fibroblast IFN gamma	0.0
B lymphocytes PWM	10.7	Dermal fibroblast CCD1070 rest	5.4
B lymphocytes CD40L and IL-4	35.6	Dermal fibroblast CCD1070 TNF alpha	24.3
EOL-1 dbcAMP	9.2	Dermal fibroblast CCD1070 IL- 1 beta	5.0
EOL-1 dbcAMP PMA/ionomycin	10.3	Dermal fibroblast IFN gamma	0.3
Dendritic cells none	1.2	Dermal fibroblast IL-4	1.6
Dendritic cells LPS	0.7	Dermal Fibroblasts rest	0.8
Dendritic cells anti-CD40	0.3	Neutrophils TNFa+LPS	0.3
Monocytes rest	1.1	Neutrophils rest	0.6
Monocytes LPS	2.4	Colon	8.4
Macrophages rest	2.2	Lung	5.1

Macrophages LPS	0.1	Thymus	100.0
HUVEC none	1.1	Kidney	1.3
HUVEC starved	3.6		

Table PF. Panel 4D

Tissue Name	Rel. Exp.(%) Ag1282, Run 166374199	Tissue Name	Rel. Exp.(%) Ag1282, Run 166374199
Secondary Th1 act	6.7	HUVEC IL-1beta	1.8
Secondary Th2 act	9.0	HUVEC IFN gamma	2.2
Secondary Tr1 act	15.8	HUVEC TNF alpha + IFN gamma	1.4
Secondary Th1 rest	5.0	HUVEC TNF alpha + IL4	1.1
Secondary Th2 rest	5.3	HUVEC IL-11	1.8
Secondary Tr1 rest	4.9	Lung Microvascular EC none	3.2
Primary Th1 act	18.6	Lung Microvascular EC TNFalpha + IL-1beta	7.2
Primary Th2 act	15.6	Microvascular Dermal EC none	12.7
Primary Tr1 act	16.2	Microsvasular Dermal EC TNFalpha + IL-1beta	7.9
Primary Th1 rest	39.2	Bronchial epithelium TNFalpha + IL1 beta	3.5
Primary Th2 rest	23.7	Small airway epithelium none	0.0
Primary Tr1 rest	33.0	Small airway epithelium TNFalpha + IL-1beta	4.8
CD45RA CD4 lymphocyte act	4.7	Coronery artery SMC rest	0.1
CD45RO CD4 lymphocyte act	9.4	Coronery artery SMC TNFalpha + IL-1beta	0.4
CD8 lymphocyte act	11.3	Astrocytes rest	0.3
Secondary CD8 lymphocyte rest	3.9	Astrocytes TNFalpha + IL-1beta	5.0
Secondary CD8 lymphocyte act	10.4	KU-812 (Basophil) rest	9.2
CD4 lymphocyte none	2.3	KU-812 (Basophil) PMA/ionomycin	9.2
2ry Th1/Th2/Tr1_anti- CD95 CH11	11.9	CCD1106 (Keratinocytes) none	2.3
LAK cells rest	4.3	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.4
LAK cells IL-2	16.5	Liver cirrhosis	1.1
LAK cells IL-2+IL-12	6.7	Lupus kidney	0.7
LAK cells IL-2+IFN gamma	7.9	NCI-H292 none	15.3
LAK cells IL-2+ IL-18	6.8	NCI-H292 IL-4	23.3
LAK cells PMA/ionomycin	2.0	NCI-H292 IL-9	19.1
NK Cells IL-2 rest	18.6	NCI-H292 IL-13	15.3
Two Way MLR 3 day	5.4	NCI-H292 IFN gamma	13.7
Two Way MLR 5 day	3.6	HPAEC none	2.6
Two Way MLR 7 day	4.1	HPAEC TNF alpha + IL-1 beta	1.6

PBMC rest	1.0	Lung fibroblast none	0.0
PBMC PWM	21.9	Lung fibroblast TNF alpha + IL- 1 beta	0.3
PBMC PHA-L	16.7	Lung fibroblast IL-4	0.1
Ramos (B cell) none	7.1	Lung fibroblast IL-9	0.0
Ramos (B cell) ionomycin	35.1	Lung fibroblast IL-13	0.0
B lymphocytes PWM	32.5	Lung fibroblast IFN gamma	0.0
B lymphocytes CD40L and IL-4	39.8	Dermal fibroblast CCD1070 rest	5.7
EOL-1 dbcAMP	6.4	Dermal fibroblast CCD1070 TNF alpha	37.1
EOL-1 dbcAMP PMA/ionomycin	4.5	Dermal fibroblast CCD1070 IL- 1 beta	3.6
Dendritic cells none	0.7	Dermal fibroblast IFN gamma	1.2
Dendritic cells LPS	0.8	Dermal fibroblast IL-4	0.8
Dendritic cells anti-CD40	0.3	IBD Colitis 2	4.0
Monocytes rest	0.0	IBD Crohn's	2.0
Monocytes LPS	0.8	Colon	13.4
Macrophages rest	1.7	Lung	6.9
Macrophages LPS	0.0	Thymus	2.4
HUVEC none	2.7	Kidney	100.0
HUVEC starved	3.6		

General_screening_panel_v1.4 Summary: Ag1282 Highest expression of the NOV26a gene is seen in a melanoma cell line. In addition, significantly higher levels of expression are seen in a breast cancer cell line. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of melanoma and breast cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of melanoma and breast cancers.

5

10

15

Among tissues with metabolic function, this gene is expressed at moderate levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.

In addition, this gene is expressed at much higher levels in fetal lung, liver and skeletal muscle tissue (CTs=27-29) when compared to expression in the adult counterpart (CTs=30-32). Thus, expression of this gene may be used to differentiate between the fetal and adult source of these tissue.

5

10

15

20

25

30

This molecule is a novel ovostatin that is also expressed at moderate in the gegions of the CNS examined and may therefore be a target for the treatment of neurologic diseases.

Panel 1.3D Summary: Ag1282 Expression of the NOV26a gene is consistent with expression in Panel 1.4. The expression of this gene appears to be highest in a sample derived from a breast cancer cell line (MDA-N) (CT=26.9). In addition, there appears to be substantial expression in other samples derived from lung cancer cell lines and melanoma cell lines. Thus, the expression of this gene could be used to distinguish MDA-N cells from other samples in the panel. This gene encodes a novel ovostatin. Ovostatins are protease inhibitors that have been shown to support the growth of tumor cells in the absence of serum. They have also been shown to mediate accelerated fibroblast growth, collagen deposition and capillary formation. These activities suggest a role for this ovostatin homolog in tumor progression and proliferation. Thus, therapeutic targeting of this gene product may block the uncontrolled growth of cancer cells related to the action of the NOV26a gene. This could occur in any possible combination of cell growth, collagen deposition or capillary formation, especially in those cancer types like lung, breast and melanoma tumors where the gene is overexpressed in the tumor compared to the normal adjacent tissue. Please see Panel 1.4 for additional utility of this gene.

Panel 2D Summary: Ag1282 Highest expression of the NOV26a gene is seen in a sample derived from an ocular melanoma metastasis to the liver (CT=27). In addition, there appears to be substantial expression in other samples derived from lung cancers. Thus, expression of this gene could be used to distinguish liver cancer cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of liver or lung cancer.

Panel 3D Summary: Ag1282 Results from one experiment with the NOV26a gene are not included. The amp plot indicates that there were experimental difficulties with this run.

Panels 4 and 4.1D Summary: Ag1282 The NOV26a gene, an ovostatin-like protein, is related to ovostatin, a known inhibitor of proteinases of all four mechanistic classes, (serine proteinases, cysteine proteinases, aspartyl proteinases, and metalloproteinases) (see references). Highest expression of the gene is seen in the thymus and kidney (CTs=28-29). In addition, moderate to low levels of expression are seen in most of the samples on this panel. Thus, the NOV26a protein product may be useful as a therapeutic protein for the reduction of various proteolytic activities involved in inflammatory and autoimmune diseases such as, but not limited to, Crohn's disease, ulcerative colitis, multiple sclerosis, chronic

obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, lupus erythematosus, or psoriasis, wound healing, and infection (Saxena and Tayyab, Cell Mol Life Sci 53(1):13-23, 1997; Ofuji et al., Periodontal Clin Investig 14(2):13-22, 1992)

5 Q. NOV28a: Laminin-type EGF like protein

Expression of gene NOV28a was assessed using the primer-probe set Ag399, described in Table QA. Results of the RTQ-PCR runs are shown in Tables QB, QC, QD, QE and QF.

Table OA. Probe Name Ag399

10

Primers	Sequences	Length	Start Position
Forward	5'-geggecatgactgggtact-3' (SEQ ID NO:254)	19	1217
Probe	TET-5'-agcacacggtcactgcgctctga-3'-TAMRA (SEQ ID NO:255)	23	1241
Reverse	5'-gcgattatctgcccttgatga-3' (SEQ ID NO:256)	21	1272

Table QB. CNS neurodegeneration v1.0

Tissue Name	Rel. Exp.(%) Ag399, Run 225436712	Tissue Name	Rel. Exp.(%) Ag399, Run 225436712
AD 1 Hippo	17.4	Control (Path) 3 Temporal Ctx	10.8
AD 2 Hippo	33.7	Control (Path) 4 Temporal Ctx	35.8
AD 3 Hippo	18.4	AD 1 Occipital Ctx	33.9
AD 4 Hippo	14.7	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	100.0	AD 3 Occipital Ctx	16.0
AD 6 Hippo	52.9	AD 4 Occipital Ctx	30.4
Control 2 Hippo	41.5	AD 5 Occipital Ctx	36.3
Control 4 Hippo	8.4	AD 6 Occipital Ctx	70.2
Control (Path) 3 Hippo	8.1	Control 1 Occipital Ctx	7.5
AD 1 Temporal Ctx	33.7	Control 2 Occipital Ctx	79.6
AD 2 Temporal Ctx	51.8	Control 3 Occipital Ctx	28.5
AD 3 Temporal Ctx	19.3	Control 4 Occipital Ctx	8.8
AD 4 Temporal Ctx	46.0	Control (Path) 1 Occipital Ctx	68.3
AD 5 Inf Temporal Ctx	69.7	Control (Path) 2 Occipital Ctx	16.6
AD 5 SupTemporal Ctx	32.1	Control (Path) 3 Occipital Ctx	4.6
AD 6 Inf Temporal Ctx	48.3	Control (Path) 4 Occipital Ctx	28.9
AD 6 Sup Temporal Ctx	59.0	Control 1 Parietal Ctx	13.7
Control 1 Temporal Ctx	7.7	Control 2 Parietal Ctx	42.0
Control 2 Temporal Ctx	36.6	Control 3 Parietal Ctx	18.6
Control 3 Temporal Ctx	25.7	Control (Path) 1 Parietal Ctx	66.4

Control 4 Temporal Ctx	11.2	Control (Path) 2 Parietal Ctx	31.4
Control (Path) 1 Temporal Ctx	59.9	Control (Path) 3 Parietal Ctx	6.7
Control (Path) 2 Temporal Ctx	51.8	Control (Path) 4 Parietal Ctx	48.3

Table QC. Panel 1.1

Tissue Name	Rel. Exp.(%) Ag399, Run 109660137	Tissue Name	Rel. Exp.(%) Ag399, Run 109660137
Adrenal gland	3.6	Renal ca. UO-31	2.2
Bladder	4.1	Renal ca. RXF 393	0.1
Brain (amygdala)	1.5	Liver	7.5
Brain (cerebellum)	16.6	Liver (fetal)	4.6
Brain (hippocampus)	4.9	Liver ca. (hepatoblast) HepG2	0.0
Brain (substantia nigra)	17.2	Lung	1.7
Brain (thalamus)	6.5	Lung (fetal)	5.9
Cerebral Cortex	15.9	Lung ca. (non-s.cell) HOP-62	100.0
Brain (fetal)	4.8	Lung ca. (large cell)NCI- H460	3.4
Brain (whole)	12.9	Lung ca. (non-s.cell) NCI-H23	1.7
glio/astro U-118-MG	0.8	Lung ca. (non-s.cl) NCI- H522	3.9
astrocytoma SF-539	1.9	Lung ca. (non-sm. cell) A549	3.9
astrocytoma SNB-75	1.1	Lung ca. (s.cell var.) SHP-77	0.3
astrocytoma SW1783	0.2	Lung ca. (small cell) LX-1	4.2
glioma U251	1.1	Lung ca. (small cell) NCI-H69	0.6
glioma SF-295	1.4	Lung ca. (squam.) SW 900	0.8
glioma SNB-19	4.8	Lung ca. (squam.) NCI- H596	1.5
glio/astro U87-MG	3.1	Lymph node	1.6
neuro*; met SK-N-AS	1.3	Spleen	1.1
Mammary gland	4.4	Thymus	1.4
Breast ca. BT-549	0.4	Ovary	3.1
Breast ca. MDA-N	1.6	Ovarian ca. IGROV-1	2.9
Breast ca.* (pl.ef) T47D	8.8	Ovarian ca. OVCAR-3	2.1
Breast ca.* (pl.ef) MCF-7	1.2	Ovarian ca. OVCAR-4	3.1
Breast ca.* (pl.ef) MDA- MB-231	0.4	Ovarian ca. OVCAR-5	3.6
Small intestine	10.8	Ovarian ca. OVCAR-8	3.8
Colorectal	3.6	Ovarian ca.* (ascites) SK-OV-3	0.8

0.5	Pancreas	21.5
0.9	Pancreatic ca. CAPAN 2	0.2
1.3	Pituitary gland	19.9
0.6	Placenta	3.2
3.0	Prostate	7.9
0.3	Prostate ca.* (bone met) PC-3	8.1
1.0	Salivary gland	8.1
5.9	Trachea	2.1
4.5	Spinal cord	4.1
34.6	Testis	4.5
1.8	Thyroid	13.6
36.9	Uterus	2.7
11.3	Melanoma M14	1.1
14.5	Melanoma LOX IMVI	0.0
22.2	Melanoma UACC-62	1.6
8.6	Melanoma SK-MEL-28	13.8
0.7	Melanoma* (met) SK- MEL-5	0.9
0.3	Melanoma Hs688(A).T	0.2
0.9	Melanoma* (met) Hs688(B).T	0.2
1.7		
	0.9 1.3 0.6 3.0 0.3 1.0 5.9 4.5 34.6 1.8 36.9 11.3 14.5 22.2 8.6 0.7 0.3 0.9	0.9 Pancreatic ca. CAPAN 2 1.3 Pituitary gland 0.6 Placenta 3.0 Prostate 0.3 Prostate ca.* (bone met) PC-3 1.0 Salivary gland 5.9 Trachea 4.5 Spinal cord 34.6 Testis 1.8 Thyroid 36.9 Uterus 11.3 Melanoma M14 14.5 Melanoma LOX IMVI 22.2 Melanoma UACC-62 8.6 Melanoma UACC-62 8.6 Melanoma SK-MEL-28 0.7 Melanoma Hs688(A).T Melanoma* (met) Hs688(B).T

Table QD. Panel 1.2

Tissue Name	Rel. Exp.(%) Ag399, Run 119216109	Tissue Name	Rel. Exp.(%) Ag399, Run 119216109
Endothelial cells	3.1	Renal ca. 786-0	1.5
Heart (Fetal)	13.9	Renal ca. A498	0.7
Pancreas	54.0	Renal ca. RXF 393	0.6
Pancreatic ca. CAPAN 2	0.6	Renal ca. ACHN	1.2
Adrenal Gland	27.5	Renal ca. UO-31	3.6
Thyroid	64.6	Renal ca. TK-10	2.4
Salivary gland	22.5	Liver	24.3
Pituitary gland	100.0	Liver (fetal)	7.3
Brain (fetal)	25.5	Liver ca. (hepatoblast) HepG2	3.2
Brain (whole)	51.4	Lung	8.4
Brain (amygdala)	12.7	Lung (fetal)	20.0
Brain (cerebellum)	10.5	Lung ca. (small cell) LX-1	3.8
Brain (hippocampus)	30.1	Lung ca. (small cell) NCI-H69	1.2
Brain (thalamus)	18.6	Lung ca. (s.cell var.) SHP-77	0.6
Cerebral Cortex	30.4	Lung ca. (large cell)NCI- H460	6.0

Spinal cord	11.1	Lung ca. (non-sm. cell) A549	8.0
glio/astro U87-MG	6.8	Lung ca. (non-s.cell) NCI-H23	2.5
glio/astro U-118-MG	1.6	Lung ca. (non-s.cell) HOP-62	40.3
astrocytoma SW1783	0.6	Lung ca. (non-s.cl) NCI- H522	6.7
neuro*; met SK-N-AS	3.7	Lung ca. (squam.) SW 900	1.7
astrocytoma SF-539	1.5	Lung ca. (squam.) NCI- H596	3.4
astrocytoma SNB-75	0.7	Mammary gland	21.9
glioma SNB-19	9.9	Breast ca.* (pl.ef) MCF-7	3.5
glioma U251	3.1	Breast ca.* (pl.ef) MDA- MB-231	1.3
glioma SF-295	4.5	Breast ca.* (pl. ef) T47D	27.0
Heart	41.2	Breast ca. BT-549	1.9
Skeletal Muscle	85.3	Breast ca. MDA-N	3.7
Bone marrow	1.7	Ovary	3.4
Thymus	3.7	Ovarian ca. OVCAR-3	6.6
Spleen	5.4	Ovarian ca. OVCAR-4	3.8
Lymph node	8.7	Ovarian ca. OVCAR-5	9.4
Colorectal Tissue	1.3	Ovarian ca. OVCAR-8	7.3
Stomach	24.1	Ovarian ca. IGROV-1	8.7
Small intestine	30.4	Ovarian ca. (ascites) SK- OV-3	2.4
Colon ca. SW480	0.4	Uterus	10.2
Colon ca.* SW620 (SW480 met)	4.0	Placenta	12.7
Colon ca. HT29	2.1	Prostate	30.8
Colon ca. HCT-116	1.1	Prostate ca.* (bone met) PC-3	15.7
Colon ca. CaCo-2	3.0	Testis	21.6
Colon ca. Tissue (ODO3866)	0.3	Melanoma Hs688(A).T	0.3
Colon ca. HCC-2998	6.2	Melanoma* (met) Hs688(B).T	0.4
Gastric ca.* (liver met) NCI-N87	15.4	Melanoma UACC-62	3.4
Bladder	5.0	Melanoma M14	1.7
Trachea	6.7	Melanoma LOX IMVI	0.1
Kidney	16.7	Melanoma* (met) SK- MEL-5	2.2
Kidney (fetal)	28.7		

Table QE. Panel 1.3D

Tissue Name	Rel. Exp.(%) Ag399, Run 165678157	Tissue Name	Rel. Exp.(%) Ag399, Run 165678157
Liver adenocarcinoma	5.4	Kidney (fetal)	19.1

Pancreas	10.2	Renal ca. 786-0	3.1
Pancreatic ca. CAPAN 2	6.4	Renal ca. A498	8.0
Adrenal gland	18.3	Renal ca. RXF 393	7.3
Thyroid	20.4	Renal ca. ACHN	1.5
Salivary gland	17.8	Renal ca. UO-31	11.4
Pituitary gland	26.1	Renal ca. TK-10	2.4
Brain (fetal)	24.8	Liver	14.4
Brain (whole)	94.0	Liver (fetal)	32.1
Brain (amygdala)	80.7	Liver ca. (hepatoblast) HepG2	10.3
Brain (cerebellum)	82.4	Lung	12.6
Brain (hippocampus)	100.0	Lung (fetal)	29.9
Brain (substantia nigra)	37.1	Lung ca. (small cell) LX- 1	5.6
Brain (thalamus)	85.9	Lung ca. (smail cell) NCI-H69	4.1
Cerebral Cortex	77.4	Lung ca. (s.cell var.) SHP-77	6.0
Spinal cord	28.7	Lung ca. (large cell)NCI- H460	13.3
glio/astro U87-MG	9.0	Lung ca. (non-sm. cell) A549	3.7
glio/astro U-118-MG	24.3	Lung ca. (non-s.cell) NCI-H23	2.6
astrocytoma SW1783	4.3 、	Lung ca. (non-s.cell) HOP-62	38.4
neuro*; met SK-N-AS	2.9	Lung ca. (non-s.cl) NCI- H522	2.4
astrocytoma SF-539	5.0	Lung ca. (squam.) SW 900	2.9
astrocytoma SNB-75	13.6	Lung ca. (squam.) NCI- H596	3.0
glioma SNB-19	28.5	Mammary gland	14.0
glioma U251	35.6	Breast ca.* (pl.ef) MCF-7	5.4
glioma SF-295	5.9	Breast ca.* (pl.ef) MDA- MB-231	11.4
Heart (fetal)	38.4	Breast ca.* (pl.ef) T47D	14.1
Heart	20.2	Breast ca. BT-549	10.9
Skeletal muscle (fetal)	17.1	Breast ca. MDA-N	1.4
Skeletal muscle	50.7	Ovary	8.1
Bone marrow	4.8	Ovarian ca. OVCAR-3	7.4
Thymus	7.6	Ovarian ca. OVCAR-4	6.3
Spleen	16.2	Ovarian ca. OVCAR-5	5.6
Lymph node	39.5	Ovarian ca. OVCAR-8	9.5
Colorectal	14.6	Ovarian ca. IGROV-1	0.5
Stomach	25.0	Ovarian ca.* (ascites) SK-OV-3	3.9
Small intestine	43.2	Uterus	36.6
Colon ca. SW480	1.6	Placenta	7.4
Colon ca.* SW620(SW480 met)	2.5	Prostate	21.2
<u></u>		20	

Colon ca. HT29	0.4	Prostate ca.* (bone met)PC-3	17.2
Colon ca. HCT-116	3.6	Testis	23.5
Colon ca. CaCo-2	6.5	Melanoma Hs688(A).T	2.8
Colon ca. tissue(ODO3866)	3.6	Melanoma* (met) Hs688(B).T	2.3
Colon ca. HCC-2998	3.1	Melanoma UACC-62	5.5
Gastric ca.* (liver met) NCI-N87	20.2	Melanoma M14	16.6
Bladder	3.7	Melanoma LOX IMVI	0.2
Trachea	15.1	Melanoma* (met) SK- MEL-5	2.0
Kidney	14.8	Adipose	10.7

Table QF. Panel 4D

Tissue Name	Rel. Exp.(%) Ag399, Run 165296356	Tissue Name	Rel. Exp.(%) Ag399, Run 165296356
Secondary Th1 act	36.9	HUVEC IL-1beta	7.7
Secondary Th2 act	40.3	HUVEC IFN gamma	56.3
Secondary Trl act	44.1	HUVEC TNF alpha + IFN gamma	45.7
Secondary Th1 rest	24.0	HUVEC TNF alpha + IL4	40.9
Secondary Th2 rest	16.5	HUVEC IL-11	22.1
Secondary Tr1 rest	29.3	Lung Microvascular EC none	68.8
Primary Th1 act	29.9	Lung Microvascular EC TNFalpha + IL-1beta	61.1
Primary Th2 act	24.1	Microvascular Dermal EC none	54.0
Primary Trl act	46.7	Microsvasular Dermal EC TNFalpha + IL-1beta	45.1
Primary Th1 rest	54.7	Bronchial epithelium TNFalpha + IL1beta	95.9
Primary Th2 rest	34.6	Small airway epithelium none	21.5
Primary Tr1 rest	44.1	Small airway epithelium TNFalpha + IL-1beta	43.5
CD45RA CD4 lymphocyte act	26.1	Coronery artery SMC rest	50.3
CD45RO CD4 lymphocyte act	23.8	Coronery artery SMC TNFalpha + IL-1beta	60.3
CD8 lymphocyte act	23.0	Astrocytes rest	61.1
Secondary CD8 lymphocyte rest	14.5	Astrocytes TNFalpha + IL-1beta	60.7
Secondary CD8 lymphocyte act	16.3	KU-812 (Basophil) rest	18.6
CD4 lymphocyte none	24.3	KU-812 (Basophil) PMA/ionomycin	23.8
2ry Th1/Th2/Tr1_anti- CD95 CH11	20.0	CCD1106 (Keratinocytes) none	23.7
LAK cells rest	31.9	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	30.4
LAK cells IL-2	24.8	Liver cirrhosis	10.2

LAK cells IL-2+IL-12	25.5	Lupus kidney	9.9
LAK cells IL-2+IFN gamma	65.5	NCI-H292 none	40.6
LAK cells IL-2+ IL-18	41.5	NCI-H292 IL-4	42.0
LAK cells PMA/ionomycin	27.2	NCI-H292 IL-9	47.3
NK Cells IL-2 rest	29.1	NCI-H292 IL-13	38.7
Two Way MLR 3 day	56.6	NCI-H292 IFN gamma	28.9
Two Way MLR 5 day	18.3	HPAEC none	53.2
Two Way MLR 7 day	10.5	HPAEC TNF alpha + IL-1 beta	51.1
PBMC rest	12.1	Lung fibroblast none	43.8
PBMC PWM	75.3	Lung fibroblast TNF alpha + IL- 1 beta	58.2
PBMC PHA-L	24.1	Lung fibroblast IL-4	67.4
Ramos (B cell) none	41.2	Lung fibroblast IL-9	47.6
Ramos (B cell) ionomycin	88.9	Lung fibroblast IL-13	30.8
B lymphocytes PWM	100.0	Lung fibroblast IFN gamma	35.6
B lymphocytes CD40L and IL-4	87.1	Dermal fibroblast CCD1070 rest	57.4
EOL-1 dbcAMP	17.6	Dermal fibroblast CCD1070 TNF alpha	81.8
EOL-1 dbcAMP PMA/ionomycin	40.1	Dermal fibroblast CCD1070 IL- 1 beta	34.6
Dendritic cells none	38.7	Dermal fibroblast IFN gamma	24.3
Dendritic cells LPS	17.7	Dermal fibroblast IL-4	47.3
Dendritic cells anti-CD40	20.6	IBD Colitis 2	4.5
Monocytes rest	27.2	IBD Crohn's	8.8
Monocytes LPS	7.9	Colon	44.8
Macrophages rest	40.1	Lung	60.7
Macrophages LPS	19.2	Thymus	81.2
HUVEC none	22.4	Kidney	77.9
HUVEC starved	51.1		

CNS_neurodegeneration_v1.0 Summary: Ag399 This panel confirms the expression of the NOV28a gene at low levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

5

10

Panel 1.1 Summary: Ag399 Highest expression of the NOV28a gene is seen in a lung cancer (non-s.cell) cell line HOP-62 (CT=21). Therefore, expression of this gene can be used in distinguishing this sample from other samples in the panel. The NOV28a gene encodes a laminin-type EGF-like protein, which belongs to the laminin family. Laminins are the major noncollagenous components of basement membranes that mediate cell adhesion, growth

migration, and differentiation (Please see Ref. 1 in panel 1.4). Therefore, the moderate to high expression of this gene in samples throughout this panel suggests the possibility of a wider role of this gene product in cell adhesion, growth migration, and differentiation.

Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

5

10

15

20

25

30

In addition, this gene is expressed at significant levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression (Beck et al., FASEB J. 4: 148-160, 1990).

Panel 1.2 Summary: Ag399 Highest expression of the NOV28a gene is seen in the pituitary gland (CT=22). Therefore, expression of this gene can be used in distinguishing this sample from other samples in the panel. In addition, moderate to high expression of this gene is seen samples throughout this panel suggesting the possibility of a wider role of this gene product in cell adhesion, growth migration, and differentiation.

Among tissues with metabolic or endocrine function, this gene is expressed at high to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at significant levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 1.3D Summary: Ag399 Highest expression of the NOV28a gene is detected in brain (hippocampus) sample (CT=29). High expression of this gene is also seen throughout the CNS, including in amygdala, substantia nigra, thalamus, cerebellum, cerebral cortex, spinal cord and glioma cells. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression. In addition, expression of this gene can be used to distinguish the brain

derived tissue samples from other samples used in this panel. The NOV28a gene encodes a laminin-type EGF-like protein, which belongs to the laminin family. Laminins are the major noncollagenous components of basement membranes that mediate cell adhesion, growth migration, and differentiation (Beck et al., 1990). Normal brain cells can produce laminin, fibronectin and collagen type IV when confronted by invading glioma cells. laminin also stimulates cell migration of several human glioma cell lines in vitro (Tysnes et al., Invasion Metastasis 17(5):270-80, 1997).

5

10

15

20

25

30

Low levels of expression of NOV28a gene is also observed in almost all the samples used in this panel suggesting the possibility of a wider role of this gene product in cell adhesion, growth migration; and differentiation.

Among the tissue with metabolic function, this gene is expressed at low to moderate levels in a number of tissues, including adipose, adrenal gland, gastrointestinal tract, pancreas, skeletal muscle and thyroid. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Panel 4D Summary: Ag399 NOV28a codes for laminin-type EGF-like protein, with highest expression in B lymphocytes activated with PWM (CT=30). In addition, this gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_v1.5 and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.

R. NOV29a: polycystic kidney disease 1 protein

Expression of gene NOV29a was assessed using the primer-probe set Ag3519, described in Table RA. Results of the RTQ-PCR runs are shown in Tables RB, RC and RD.

Table RA. Probe Name Ag3519

Primers	Sequences	Length	Start Position
Forward	5'-cacaaatggaactgtgtttgc-3' (SEQ ID NO:257)	21	1134
Probe	TET-5'-cacagacacagacattacatttacagctg-3'-TAMRA (SEQ ID NO:258)	29	1155
Reverse	5'-tccaggggtattgtttcctt-3' (SEQ ID NO:259)	20	1189

Table RB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3519, Run 210630118	Tissue Name	Rel. Exp.(%) Ag3519, Run 210630118
AD 1 Hippo	5.4	Control (Path) 3 Temporal Ctx	10.7
AD 2 Hippo	43.2	Control (Path) 4 Temporal Ctx	62.0
AD 3 Hippo	7.7	AD 1 Occipital Ctx	17.8
AD 4 Hippo	6.7	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	90.1	AD 3 Occipital Ctx	8.5
AD 6 Hippo	58.6	AD 4 Occipital Ctx	23.7
Control 2 Hippo	11.9	AD 5 Occipital Ctx	17.6
Control 4 Hippo	14.1	AD 6 Occipital Ctx	31.9
Control (Path) 3 Hippo	4.8	Control 1 Occipital Ctx	4.9
AD 1 Temporal Ctx	21.8	Control 2 Occipital Ctx	43.8
AD 2 Temporal Ctx	44.1	Control 3 Occipital Ctx	39.5
AD 3 Temporal Ctx	3.6	Control 4 Occipital Ctx	11.0
AD 4 Temporal Ctx	50.0	Control (Path) 1 Occipital Ctx	66.0
AD 5 Inf Temporal Ctx	57.0	Control (Path) 2 Occipital Ctx	22.5
AD 5 Sup Temporal Ctx	24.1	Control (Path) 3 Occipital Ctx	8.1
AD 6 Inf Temporal Ctx	74.7	Control (Path) 4 Occipital Ctx	33.2
AD 6 Sup Temporal Ctx	100.0	Control 1 Parietal Ctx	21.2
Control 1 Temporal Ctx	15.9	Control 2 Parietal Ctx	42.6
Control 2 Temporal Ctx	20.4	Control 3 Parietal Ctx	17.0
Control 3 Temporal Ctx	11.7	Control (Path) 1 Parietal Ctx	45.4
Control 3 Temporal Ctx	8.2	Control (Path) 2 Parietal Ctx	44.8
Control (Path) 1 Temporal Ctx	52.9	Control (Path) 3 Parietal Ctx	14.6
Control (Path) 2 Temporal Ctx	31.9	Control (Path) 4 Parietal Ctx	80.7

Table RC. General_screening_panel_v1.4

5

	Tissue Name	Rel. Exp.(%) Ag3519, Run 216863023	Tissue Name	Rel. Exp.(%) Ag3519, Run 216863023
į		210803023		210803023

Adipose	6.6	Renal ca. TK-10	1.9
Melanoma* Hs688(A).T	0.7	Bladder	10.7
Melanoma* Hs688(B).T	0.0	Gastric ca. (liver met.) NCI-N87	11.6
Melanoma* M14	3.9	Gastric ca. KATO III	0.9
Melanoma* LOXIMVI	0.9	Colon ca. SW-948	1.4
Melanoma* SK-MEL-5	· 15.8	Colon ca. SW480	3.4
Squamous cell carcinoma SCC-4	0.8	Colon ca.* (SW480 met) SW620	2.9
Testis Pool	11.6	Colon ca. HT29	0.6
Prostate ca.* (bone met) PC-3	1.8	Colon ca. HCT-116	3.5
Prostate Pool	5.3	Colon ca. CaCo-2	11.2
Placenta	7.9	Colon cancer tissue	12.8
Uterus Pool	6.3	Colon ca. SW1116	0.9
Ovarian ca. OVCAR-3	3.2	Colon ca. Colo-205	4.8
Ovarian ca. SK-OV-3	7.6	Colon ca. SW-48	2.0
Ovarian ca. OVCAR-4	0.4	Colon Pool	8.2
Ovarian ca. OVCAR-5	31.6	Small Intestine Pool	14.1
Ovarian ca. IGROV-1	0.0	Stomach Pool	22.1
Ovarian ca. OVCAR-8	0.5	Bone Marrow Pool	3.8
Ovary	2.1	Fetal Heart	45.4
Breast ca. MCF-7	0.9	Heart Pool	29.9
Breast ca. MDA-MB- 231	2.1	Lymph Node Pool	6.2
Breast ca. BT 549	3.4	Fetal Skeletal Muscle	17.2
Breast ca. T47D	100.0	Skeletal Muscle Pool	34.2
Breast ca. MDA-N	3.6	Spleen Pool	6.0
Breast Pool	26.1	Thymus Pool	14.4
Trachea	19.2	CNS cancer (glio/astro) U87-MG	0.3
Lung	1.6	CNS cancer (glio/astro) U- 118-MG	1.8
Fetal Lung	5.4	CNS cancer (neuro;met) SK-N-AS	2.2
Lung ca. NCI-N417	0.4	CNS cancer (astro) SF-539	0.9
Lung ca. LX-1	2.0	CNS cancer (astro) SNB-75	3.0
Lung ca. NCI-H146	1.0	CNS cancer (glio) SNB-19	1.0
Lung ca. SHP-77	0.2	CNS cancer (glio) SF-295	5.6
Lung ca. A549	2.3	Brain (Amygdala) Pool	5.8
Lung ca. NCI-H526	0.2	Brain (cerebellum)	8.7
Lung ca. NCI-H23	6.2	Brain (fetal)	7.5
Lung ca. NCI-H460	36.9	Brain (Hippocampus) Pool	5.0
Lung ca. HOP-62	3.4	Cerebral Cortex Pool	6.3
Lung ca. NCI-H522	1.6	Brain (Substantia nigra) Pool	11.0
Liver	1.7	Brain (Thalamus) Pool	10.3
Fetal Liver	2.8	Brain (whole)	21.0
Liver ca. HepG2	1.0	Spinal Cord Pool	8.2

Kidney Pool	21.6	Adrenal Gland	3.5
Fetal Kidney	4.3	Pituitary gland Pool	3.0
Renal ca. 786-0	0.0	Salivary Gland	1.7
Renal ca. A498	0.4	Thyroid (female)	3.8
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.3
Renal ca. UO-31	0.4	Pancreas Pool	4.5

Table RD. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3519, Run 166407136	Tissue Name	Rel. Exp.(%) Ag3519, Run 166407136
Secondary Th1 act	0.9	HUVEC IL-1 beta	16.5
Secondary Th2 act	0.9	HUVEC IFN gamma	32.1
Secondary Tr1 act	1.7	HUVEC TNF alpha + IFN gamma	5.2
Secondary Th1 rest	0.4	HUVEC TNF alpha + IL4	72.7
Secondary Th2 rest	0.5	HUVEC IL-11	30.6
Secondary Tr1 rest	0.3	Lung Microvascular EC none	2.8
Primary Th1 act	0.5	Lung Microvascular EC TNFalpha + IL-1beta	4.4
Primary Th2 act	3.1	Microvascular Dermal EC none	4.1
Primary Tr1 act	, 1.6	Microsvasular Dermal EC TNFalpha + IL-1beta	4.0
Primary Th1 rest	1.5	Bronchial epithelium TNFalpha + IL1beta	3.3
Primary Th2 rest	0.9	Small airway epithelium none	1.9
Primary Tr1 rest	1.3	Small airway epithelium TNFalpha + IL-1beta	11.2
CD45RA CD4 lymphocyte act	2.3	Coronery artery SMC rest	0.0
CD45RO CD4 lymphocyte act	3.7	Coronery artery SMC TNFalpha + IL-1beta	0.0
CD8 lymphocyte act	3.7	Astrocytes rest	2.0
Secondary CD8 lymphocyte rest	3.2	Astrocytes TNFalpha + IL-1 beta	4.1
Secondary CD8 lymphocyte act	0.8	KU-812 (Basophil) rest	0.4
CD4 lymphocyte none	2.0	KU-812 (Basophil) PMA/ionomycin	1.9
2ry Th1/Th2/Tr1_anti- CD95 CH11	1.6	CCD1106 (Keratinocytes) none	2.3
LAK cells rest	3.3	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	14.1
LAK cells IL-2	5.8	Liver cirrhosis	14.8
LAK cells IL-2+IL-12	7.6	Lupus kidney	7.5
LAK cells IL-2+IFN gamma	5.9	NCI-H292 none	2.0
LAK cells IL-2+ IL-18	6.2	NCI-H292 IL-4	1.4
LAK cells PMA/ionomycin	2.8	NCI-H292 IL-9	4.1
NK Cells IL-2 rest	2.2	NCI-H292 IL-13	1.4

Two Way MLR 3 day	8.5	NCI-H292 IFN gamma	0.9
Two Way MLR 5 day	3.3	HPAEC none	50.7
Two Way MLR 7 day	1.5	HPAEC TNF alpha + IL-1 beta	100.0
PBMC rest	0.8	Lung fibroblast none	0.9
PBMC PWM	5.3	Lung fibroblast TNF alpha + IL- 1 beta	0.4
PBMC PHA-L	3.4	Lung fibroblast IL-4	1.4
Ramos (B cell) none	3.3	Lung fibroblast IL-9	1.7
Ramos (B cell) ionomycin	0.9	Lung fibroblast IL-13	2.9
B lymphocytes PWM	4.3	Lung fibroblast IFN gamma	1.2
B lymphocytes CD40L and IL-4	5.4	Dermal fibroblast CCD1070 rest	1.3
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	2.2
EOL-1 dbcAMP PMA/ionomycin	2.6	Dermal fibroblast CCD1070 IL- 1 beta	0.3
Dendritic cells none	9.7	Dermal fibroblast IFN gamma	0.1
Dendritic cells LPS	5.2	Dermal fibroblast IL-4	1.6
Dendritic cells anti-CD40	17.3	IBD Colitis 2	6.7
Monocytes rest	0.9	IBD Crohn's	2.2
Monocytes LPS	15.5	Colon	15.6
Macrophages rest	27.0	Lung	12.8
Macrophages LPS	18.8	Thymus	6.9
HUVEC none	22.8	Kidney	7.9
HUVEC starved	37.4		

CNS_neurodegeneration_v1.0 Summary: Ag3519 This panel confirms the expression of the NOV29a gene at low levels in the brain in an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

10

15

General_screening_panel_v1.4 Summary: Ag3519 Expression of NOV29a is highest in one of the breast cancer T47D cell line (CT=29). Therefore, expression of this gene may be used to distinguish this sample from the other samples on this panel. In addition, low to moderate expression of this gene is detected in large number of samples used in this panel. Therefore, this gene may be playing an important role in cellular function.

In addition, this gene is expressed at moderate levels (CTs=31-33) in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Among tissues with metabolic or endocrine function, this gene is expressed at low to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Moderate expression of this gene is detected in Kidney sample (CT=31). This gene codes for protein similar to polycystic kidney disease (PKD) protein, which is thought to function as part of a multiprotein membrane-spanning complex involved in cell-cell or cell-matrix interactions. Mutations in either of 2 different PKD genes (PKD1 or PKD2) give rise to Autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a major, inherited disorder that is characterized by the growth of large, fluid-filled cysts from the tubules and collecting ducts of affected kidneys, and by a number of extrarenal manifestations including liver and pancreatic cysts, hypertension, heart valve defects, and cerebral and aortic aneurysms (Ref. 1). Therefore, therapeutic modulation of this gene or its protein product may be beneficial in the treatment of ADPKD (Calvet and Grantham, Semin Nephrol 21(2):107-23, 2001).

Panel 4D Summary: Ag3519 Low to moderate expression of NOV29a gene is detected in large number of samples used in this panel. Interestingly, expression in LPS stimulated monocytes (CT=32) is higher than in resting monocytes (CT=36). treatment of resting monocytes (CT=36) with LPS stimulated the expression this gene (CT=32). Therefore, expression of this gene may be used to distinguish between these two samples. Highest expression of this gene is seen in TNFalpha + IL-1 beta treated HPAEC (CT=29.4). Based on expression in this panel, therapeutic modulation of this gene or its protein product may be beneficial in the treatment of general autoimmunity, rheumatoid disease, asthma, and B-cell disorders.

S. NOV30a: POLYCYSTIN 2

5

10

15

20

25

30

Expression of gene NOV30a was assessed using the primer-probe set Ag3522, described in Table SA.

Table SA. Probe Name Ag3522

Primers	Sequences	Length	Start Position
Porward	5'-aacttccaagctgttcaaggat-3' (SEQ ID NO:260)	22	1732
	TET-5'-aatgaacaaattatccgccttcctgg-3'-TAMRA (SEQ ID NO:261)	26	1764
Reverse	5'-agcttcactgtggacaggagta-3' (SEQ ID NO:262)	22	1790

CNS_neurodegeneration_v1.0 Summary: Ag3522 Expression of NOV30a gene is low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.4 Summary: Ag3522 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4.1D Summary: Ag3522 Results from one experiment with this gene are not included. The amp plot indicates that there were experimental difficulties with this run.

T. NOV31a: SLIT-like protein

15

Expression of gene NOV31a was assessed using the primer-probe sets Ag907 and Ag1925, described in Tables TA and TB. Results of the RTQ-PCR runs are shown in Tables TC, TD, TE and TF.

Table TA. Probe Name Ag907

Primers	Sequences		Start Position
Forward	5'-aaagctccagcgtgttgag-3' (SEQ ID NO:263)	19	516
Probe	TET-5'-acctcgatcttgcgcaccaggtt-3'-TAMRA (SEQ ID NO:264)	23	468
Reverse	5'-gagattctgcagctgagcaa-3' (SEQ ID NO:265)	20	447

Table TB. Probe Name Ag1925

Primers	rs Sequences		Start Position
Forward	5'-aaagctccagcgtgttgag-3' (SEQ ID NO:266)	19	516
Probe	TET-5'-acctcgatcttgcgcaccaggtt-3'-TAMRA (SEQ ID NO:267)	23	468
Reverse	5'-gagattctgcagctgagcaa-3' (SEQ ID NO:268)	20	447

Table TC. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag907, Run 224758723	Tissue Name	Rel. Exp.(%) Ag907, Run 224758723
AD 1 Hippo	20.3	Control (Path) 3 Temporal Ctx	12.6
AD 2 Hippo	37.6	Control (Path) 4 Temporal Ctx	37.1
AD 3 Hippo	10.2	AD 1 Occipital Ctx	19.8
AD 4 Hippo	13.7	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	100.0	AD 3 Occipital Ctx	11.3
AD 6 Hippo	39.5	AD 4 Occipital Ctx	16.5
Control 2 Hippo	27.4	AD 5 Occipital Ctx	46.7
Control 4 Hippo	15.4	AD 6 Occipital Ctx	22.4
Control (Path) 3 Hippo	10.7	Control 1 Occipital Ctx	8.4
AD 1 Temporal Ctx	16.3	Control 2 Occipital Ctx	62.0
AD 2 Temporal Ctx	27.2	Control 3 Occipital Ctx	25.3
AD 3 Temporal Ctx	8.8	Control 4 Occipital Ctx	14.1

AD 4 Temporal Ctx	19.3	Control (Path) 1 Occipital Ctx	70.2
AD 5 Inf Temporal Ctx	82.4	Control (Path) 2 Occipital Ctx	15.3
AD 5 Sup Temporal Ctx	44.4	Control (Path) 3 Occipital Ctx	8.4
AD 6 Inf Temporal Ctx	46.3	Control (Path) 4 Occipital Ctx	31.2
AD 6 Sup Temporal Ctx	50.0	Control 1 Parietal Ctx	11.7
Control 1 Temporal Ctx	9.5	Control 2 Parietal Ctx	48.3
Control 2 Temporal Ctx	37.4	Control 3 Parietal Ctx	17.0
Control 3 Temporal Ctx	19.1	Control (Path) 1 Parietal Ctx	66.0
Control 3 Temporal Ctx	17.8	Control (Path) 2 Parietal Ctx	24.3
Control (Path) 1 Temporal Ctx	52.5	Control (Path) 3 Parietal Ctx	9.2
Control (Path) 2 Temporal Ctx	31.6	Control (Path) 4 Parietal Ctx	48.3

Table TD. Panel 1.2

Tissue Name	Rel. Exp.(%) Ag907, Run 119452094	Rel. Exp.(%) Ag907, Run 125218394	Tissue Name	Rel. Exp.(%) Ag907, Run 119452094	Rel. Exp.(%) Ag907, Run 125218394
Endothelial cells	0.0	0.0	Renal ca. 786-0	0.0	0.0
Heart (Fetal)	3.9	8.9	Renal ca. A498	0.7	0.1
Pancreas	4.3	0.0	Renal ca. RXF 393	0.0	0.0
Pancreatic ca. CAPAN 2	0.0	0.0	Renal ca. ACHN	0.6	0.1
Adrenal Gland	1.4	0.0	Renal ca. UO-31	0.0	0.0
Thyroid	2.0	0.0	Renal ca. TK-10	0.0	0.0
Salivary gland	1.9	0.4	Liver	1.1	0.1
Pituitary gland	52.1	6.4	Liver (fetal)	0.3	0.0
Brain (fetal)	50.3	15.7	Liver ca. (hepatoblast) HepG2	0.0	0.0
Brain (whole)	100.0	37.9	Lung	1.6	0.2
Brain (amygdala)	40.9	31.2	Lung (fetal)	3.2	0.5
Brain (cerebellum)	26.6	12.5	Lung ca. (small cell) LX-1	2.4	0.4
Brain (hippocampus)	60.7	35.4	Lung ca. (small cell) NCI-H69	0.0	0.0
Brain (thalamus)	49.0	22.5	Lung ca. (s.cell var.) SHP-77	0.0	0.0
Cerebral Cortex	77.4	100.0	Lung ca. (large cell)NCI-H460	1.5	0.3
Spinal cord	31.6	18.0	Lung ca. (non- sm. cell) A549	2.0	0.2
glio/astro U87-MG	0.0	0.0	Lung ca. (non- s.cell) NCI-H23	2.0	1.7

alia/ama II 110			T		1
glio/astro U-118- MG	0.0	0.0	Lung ca. (non- s.cell) HOP-62	0.0	0.0
astrocytoma SW 1783	0.0	0.0	Lung ca. (non- s.cl) NCI-H522	12.7	5.1
neuro*; met SK-N- AS	2.8	0.2	Lung ca. (squam.) SW 900	0.4	0.0
astrocytoma SF- 539	0.0	0.0	Lung ca. (squam.) NCI- H596	0.0	0.0
astrocytoma SNB- 75	0.0	0.0	Mammary gland	1.7	0.1
glioma SNB-19	0.1	0.0	Breast ca.* (pl.ef) MCF-7	0.1	0.1
glioma U251	0.1	0.0	Breast ca.* (pl.ef) MDA-MB-231	0.0	0.0
glioma SF-295	1.9	0.1	Breast ca.* (pl. ef) T47D	0.0	0.0
Heart	0.1	0.0	Breast ca. BT- 549	0.0	0.0
Skeletal Muscle	0.3	0.0	Breast ca. MDA- N	2.9	0.3
Bone marrow	0.0	0.0	Ovary	2.7	2.6
Thymus	0.1	0.0	Ovarian ca. OVCAR-3	0.1	0.0
Spleen	1.6	0.1	Ovarian ca. OVCAR-4	0.1	0.0
Lymph node	2.0	0.6	Ovarian ca. OVCAR-5	5.3	0.5
Colorectal Tissue	0.0	0.0	Ovarian ca. OVCAR-8	0.0	0.0
Stomach	2.7	1.1	Ovarian ca. IGROV-1	3.8	1.2
Small intestine	4.2	0.7	Ovarian ca. (ascites) SK-OV- 3	0.0	0.0
Colon ca. SW480	0.0	0.0	Uterus	7.3	2.2
Colon ca.* SW620 (SW480 met)	0.0	0.0	Placenta	4.6	1.1
Colon ca. HT29	0.0	0.0	Prostate	2.8	0.6
Colon ca. HCT- 116	0.0	0.0	Prostate ca.* (bone met) PC-3	0.9	0.0
Colon ca. CaCo-2	0.1	0.0	Testis	4.4	0.4
Colon ca. Tissue (ODO3866)	0.0	0.0	Melanoma Hs688(A).T	0.0	0.0
Colon ca. HCC- 2998	10.4	4.3	Melanoma* (met) Hs688(B).T	0.0	0.0
Gastric ca.* (liver met) NCI-N87	0.6	0.0	Melanoma UACC-62	0.0	0.0
Bladder	0.1	0.0	Melanoma M14	0.6	0.0
Trachea	0.2	0.0	Melanoma LOX IMVI	0.0	0.0
Kidney	0.1	0.0	Melanoma* (met) SK-MEL-5	1.5	0.4

Kidney (fetal)	0.0	17.3		ļl

Table TE. Panel 4D

Tissue Name	Rel. Exp.(%) Ag1925, Run 147205814	Tissue Name	Rel. Exp.(%) Ag1925, Run 147205814
Secondary Th1 act	1.1	HUVEC IL-1beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	0.5
Secondary Tr1 act	1.0	HUVEC TNF alpha + IFN gamma	0.0
Secondary Th1 rest	1.4	HUVEC TNF alpha + IL4	0.4
Secondary Th2 rest	0.0	HUVEC IL-11	0.7
Secondary Tr1 rest	0.0	Lung Microvascular EC none	100.0
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	69.7
Primary Th2 act	0.5	Microvascular Dermal EC none	0.0
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	1.0
Primary Th1 rest	0.9	Bronchial epithelium TNFalpha + IL1beta	0.0
Primary Th2 rest	0.0	Small airway epithelium none	1.2
Primary Tr1 rest	3.4	Small airway epithelium TNFalpha + IL-1beta	0.0
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	5.1
CD45RO CD4 lymphocyte act	0.6	Coronery artery SMC TNFalpha + IL-1 beta	13.0
CD8 lymphocyte act	0.0	Astrocytes rest	84.7
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	28.3
Secondary CD8 lymphocyte act	0.4	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	1.2	KU-812 (Basophil) PMA/ionomycin	1.0
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.9	CCD1106 (Keratinocytes) none	1.2
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.7
LAK cells IL-2	0.8	Liver cirrhosis	3.7
LAK cells IL-2+IL-12	0.0	Lupus kidney	0.0
LAK cells IL-2+IFN gamma	0.7	NCI-H292 none	0.7
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-4	0.9
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-9	0.0
NK Cells IL-2 rest	2.3	NCI-H292 IL-13	0.7
Two Way MLR 3 day	0.0	NCI-H292 IFN gamma	0.0
Two Way MLR 5 day	0.0	HPAEC none	2.0
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	5.5
PBMC rest	0.0	Lung fibroblast none	1.2
PBMC PWM	0.6	Lung fibroblast TNF alpha + IL-	0.0

		1 beta	
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.7
Ramos (B cell) none	1.0	Lung fibroblast IL-9	0.0
Ramos (B cell) ionomycin	1.5	Lung fibroblast IL-13	0.0
B lymphocytes PWM	0.8	Lung fibroblast IFN gamma	0.6
B lymphocytes CD40L and IL-4	2.1	Dermal fibroblast CCD1070 rest	0.0
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	0.2	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	0.4
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.0
Monocytes rest	3.3	IBD Crohn's	0.0
Monocytes LPS	0.6	Colon	28.5
Macrophages rest	0.8	Lung	41.5
Macrophages LPS	0.5	Thymus	3.2
HUVEC none	0.0	Kidney	2.0
HUVEC starved	0.0		

Table TF. Panel CNS_1

Tissue Name	Rel. Exp.(%) Ag907, Run 171791128	Tissue Name	Rel. Exp.(%) Ag907, Run 171791128
BA4 Control	33.7	BA17 PSP	42.0
BA4 Control2	51.1	BA17 PSP2	23.3
BA4 Alzheimer's2	15.5	Sub Nigra Control	62.4
BA4 Parkinson's	68.8	Sub Nigra Control2	45.7
BA4 Parkinson's2	96.6	Sub Nigra Alzheimer's2	20.6
BA4 Huntington's	35.1	Sub Nigra Parkinson's2	79.6
BA4 Huntington's2	35.1	Sub Nigra Huntington's	67.8
BA4 PSP	20.0	Sub Nigra Huntington's2	36.6
BA4 PSP2	51.8	Sub Nigra PSP2	9.2
BA4 Depression	31.0	Sub Nigra Depression	15.2
BA4 Depression2	21.2	Sub Nigra Depression2	13.4
BA7 Control	54.3	Glob Palladus Control	27.9
BA7 Control2	65.1	Glob Palladus Control2	16.6
BA7 Alzheimer's2	21.8	Glob Palladus Alzheimer's	21.8
BA7 Parkinson's	33.2	Glob Palladus Alzheimer's2	11.4
BA7 Parkinson's2	62.0	Glob Palladus Parkinson's	100.0
BA7 Huntington's	54.7	Glob Palladus Parkinson's2	23.5
BA7 Huntington's2	64.2	Glob Palladus PSP	7.8
BA7 PSP	48.3	Glob Palladus PSP2	21.3

BA7 PSP2	30.6	Glob Palladus Depression	14.6
BA7 Depression	17.7	Temp Pole Control	16.7
BA9 Control	31.0	Temp Pole Control2	57.8
BA9 Control2	66.9	Temp Pole Alzheimer's	15.9
BA9 Alzheimer's	11.0	Temp Pole Alzheimer's2	9.2
BA9 Alzheimer's2	35.8	Temp Pole Parkinson's	51.8
BA9 Parkinson's	46.7	Temp Pole Parkinson's2	53.6
BA9 Parkinson's2	52.9	Temp Pole Huntington's	56.3
BA9 Huntington's	58.6	Temp Pole PSP	6.9
BA9 Huntington's2	43.5	Temp Pole PSP2	7.0
BA9 PSP	32,3	Temp Pole Depression2	25.7
BA9 PSP2	11.7	Cing Gyr Control	69.3
BA9 Depression	12.6	Cing Gyr Control2	48.0
BA9 Depression2	20.4	Cing Gyr Alzheimer's	24.3
BA17 Control	87.1	Cing Gyr Alzheimer's2	21.5
BA17 Control2	69.7	Cing Gyr Parkinson's	47.0
BA17 Alzheimer's2	27.9	Cing Gyr Parkinson's2	42.3
BA17 Parkinson's	87.7	Cing Gyr Huntington's	82.9
BA17 Parkinson's2	99.3	Cing Gyr Huntington's2	42.0
BA17 Huntington's	64.6	Cing Gyr PSP	32.1
BA17 Huntington's2	46.0	Cing Gyr PSP2	7.6
BA17 Depression	39.0	Cing Gyr Depression	11.3
BA17 Depression2	81.2	Cing Gyr Depression2	25.2

CNS_neurodegeneration_v1.0 Summary: Ag907 This panel confirms the expression of the NOV31a gene at significant levels in the brain in an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.2 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

Panel 1.2 Summary: Ag907 Two independent experiments with same probe and primer sets produce results that are in excellent agreement, with high expression of the NOV31a gene, a Slit homolog, throughout the CNS, including in amygdala, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. The Slits are a family of secreted guidance proteins that can repel neuronal migration and axon growth via interaction with their cellular roundabout receptors, making this an excellent candidate neuronal guidance protein for axons, dendrites and/or growth cones in general (Ref. 1-2). Therapeutic modulation of the levels of this protein, or possible signaling via this protein may be of utility in

enhancing/directing compensatory synaptogenesis and fiber growth in the CNS in response to neuronal death (stroke, head trauma), axon lesion (spinal cord injury), or neurodegeneration (Alzheimer's, Parkinson's, Huntington's, vascular dementia or any neurodegenerative disease). Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

In addition, low to moderate expression of this gene is also detected in a melanoma, testis, prostate, prostate cancer, placenta, uterus, ovarian cancer, a breast cancer, mammary gland, lung cancer, adult and fetal lung, adult and fetal liver, lymph node, spleen, skeletal muscle, stomach, small intestine, a colon cancer and a renal cancer sample suggesting the possibility of a wider role in intercellular signaling.

5

10

15

20

25

30

Among tissues with metabolic or endocrine function, this gene is expressed at low to moderate levels in pancreas, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes (Battye et al., J. Neurosci. 21: 4290-4298, 2001; Itoh et al., Brain Res. Mol. Brain Res. 62: 175-186, 1998).

Panel 4D Summary: Ag907 Moderate to high expression of the NOV31a gene is seen in samples derived from colon, lung, astrocytes, coronary artery SMC, and lung microvascular EC cells. Highest expression of this gene is seen in untreated lung microvascular EC cells (CT=29.3). Thus, the expression of this gene could be used to distinguish these samples from the other samples in the panel. Furthermore, expression of this gene is decreased in colon samples from patients with IBD colitis and Crohn's disease (CT=40) relative to normal colon (CT=31.1). Therefore, therapeutic modulation of the activity of the SLIT-like protein encoded by this gene may be useful in the treatment of inflammatory bowel disease.

Expression of this gene is in TNFalpha + IL-1beta treated astrocytes and to resting astrocytes (CT=29.53; 84.7%). suggests that therapeutic modulation of the activity of the SLIT-like protein encoded by this gene may also be useful in the treatment of CNS inflammatory disease.

Panel CNS_1 Summary: Ag907 This panel confirms expression of the NOV31a gene in the brain. Please see Panel 1.2 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

Expression of gene NOV32a was assessed using the primer-probe set Ag3408, described in Table UA. Results of the RTQ-PCR runs are shown in Tables UB and UC.

Table UA. Probe Name Ag3408

Primers	Sequences	Length	Start Position
Porward	5'-atcctggaggtgatctctaagc-3' (SEQ ID NO:269)	22	431
DYANA	TET-5'-ccatgtgctctccaacaaggaccact-3'-TAMRA (SEQ ID NO:270)	26	466
Reverse	5'-gattcaagggacttgagtctga-3' (SEQ ID NO:271)	22	492

Table UB. General_screening_panel_v1.4

5

Tissue Name	Rel. Exp.(%) Ag3408, Run 216838909	Tissue Name	Rel. Exp.(%) Ag3408, Run 216838909
Adipose	0.3	Renal ca. TK-10	4.0
Melanoma* Hs688(A).T	0.5	Bladder	3.7
Melanoma* Hs688(B).T	0.5	Gastric ca. (liver met.) NCI-N87	7.4
Melanoma* M14	0.4	Gastric ca. KATO III	4.0
Melanoma* LOXIMVI	0.8	Colon ca. SW-948	0.5
Melanoma* SK-MEL-5	3.3	Colon ca. SW480	4.7
Squamous cell carcinoma SCC-4	1.3	Colon ca.* (SW480 met) SW620	2.7
Testis Pool	0.4	Colon ca. HT29	4.5
Prostate ca.* (bone met) PC-3	1.1	Colon ca. HCT-116	6.0
Prostate Pool	0.9	Colon ca. CaCo-2	5.6
Placenta	0.5	Colon cancer tissue	1.9
Uterus Pool	1.9	Colon ca. SW1116	1.3
Ovarian ca. OVCAR-3	2.7	Colon ca. Colo-205	0.2
Ovarian ca. SK-OV-3	2.3	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.1	Colon Pool	49.7
Ovarian ca. OVCAR-5	22.4	Small Intestine Pool	4.4
Ovarian ca. IGROV-1	1.4	Stomach Pool	1.6
Ovarian ca. OVCAR-8	1.7	Bone Marrow Pool	1.1
Ovary	1.1	Fetal Heart	9.9
Breast ca. MCF-7	1.4	Heart Pool	6.1
Breast ca. MDA-MB- 231	2.5	Lymph Node Pool	5.7
Breast ca. BT 549	3.1	Fetal Skeletal Muscle	2.0
Breast ca. T47D	100.0	Skeletal Muscle Pool	4.8
Breast ca. MDA-N	2.4	Spleen Pool	0.6
Breast Pool	4.5	Thymus Pool	2.8
Trachea	0.8	CNS cancer (glio/astro) U87-MG	4.8
Lung	0.3	CNS cancer (glio/astro) U- 118-MG	5.6
Fetal Lung	1.7	CNS cancer (neuro;met) SK-N-AS	5.1

Lung ca. NCI-N417	1.0	CNS cancer (astro) SF-539	2.2
Lung ca. LX-1	3.0	CNS cancer (astro) SNB-75	5.9
Lung ca. NCI-H146	2.5	CNS cancer (glio) SNB-19	1.1
Lung ca. SHP-77	2.0	CNS cancer (glio) SF-295	3.1
Lung ca. A549	1.5	Brain (Amygdala) Pool	0.4
Lung ca. NCI-H526	1.1	Brain (cerebellum)	0.7
Lung ca. NCI-H23	4.9	Brain (fetal)	1.6
Lung ca. NCI-H460	2.7	Brain (Hippocampus) Pool	0.3
Lung ca. HOP-62	0.5	Cerebral Cortex Pool	0.5
Lung ca. NCI-H522	6.1	Brain (Substantia nigra) Pool	0.5
Liver	0.0	Brain (Thalamus) Pool	0.5
Fetal Liver	0.5	Brain (whole)	0.2
Liver ca. HepG2	2.4	Spinal Cord Pool	0.9
Kidney Pool	9.6	Adrenal Gland	0.4
Fetal Kidney	5.0	Pituitary gland Pool	0.4
Renal ca. 786-0	1.4	Salivary Gland	0.0
Renal ca. A498	0.9	Thyroid (female)	0.0
Renal ca. ACHN	1.1	Pancreatic ca. CAPAN2	3.7
Renal ca. UO-31	0.3	Pancreas Pool	4.5

Table UC. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3408, Run 165296440	Tissue Name	Rel. Exp.(%) Ag3408, Run 165296440
Secondary Th1 act	12.9	HUVEC IL-1 beta	7.4
Secondary Th2 act	19.3	HUVEC IFN gamma	10.9
Secondary Tr1 act	7.6	HUVEC TNF alpha + IFN gamma	23.3
Secondary Th1 rest	6.9	HUVEC TNF alpha + IL4	34.9
Secondary Th2 rest	0.0	HUVEC IL-11	5.2
Secondary Tr1 rest	3.1	Lung Microvascular EC none	20.4
Primary Th1 act	32.8	Lung Microvascular EC TNFalpha + IL-1beta	24.1
Primary Th2 act	32.1	Microvascular Dermal EC none	6.9
Primary Tr1 act	42.0	Microsvasular Dermal EC TNFalpha + IL-1beta	14.1
Primary Th1 rest	55.9	Bronchial epithelium TNFalpha + IL1beta	18.7
Primary Th2 rest	15.6	Small airway epithelium none	0.0
Primary Tr1 rest	30.4	Small airway epithelium TNFalpha + 1L-1 beta	40.6
CD45RA CD4 lymphocyte act	11.0	Coronery artery SMC rest	10.9
CD45RO CD4 lymphocyte act	18.8	Coronery artery SMC TNFalpha + IL-1beta	6.3
CD8 lymphocyte act	20.2	Astrocytes rest	3.3
Secondary CD8 lymphocyte rest	1.9	Astrocytes TNFalpha + IL-1 beta	3.6
Secondary CD8	15.7	KU-812 (Basophil) rest	7.2 ·

lymphocyte act			
CD4 lymphocyte none	2.3	KU-812 (Basophil) PMA/ionomycin	43.5
2ry Th1/Th2/Tr1_anti- CD95 CH11	6.7	CCD1106 (Keratinocytes) none	24.7
LAK cells rest	8.1	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	5.3
LAK cells IL-2	29.5	Liver cirrhosis	23.5
LAK cells IL-2+IL-12	15.3	Lupus kidney	2.8
LAK cells IL-2+IFN gamma	35.4	NCI-H292 none	38.4
LAK cells IL-2+ IL-18	47.3	NCI-H292 IL-4	100.0
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-9	60.3
NK Cells IL-2 rest	42.9	NCI-H292 IL-13	25.7
Two Way MLR 3 day	9.7	NCI-H292 IFN gamma	8.1
Two Way MLR 5 day	7.3	HPAEC none	10.9
Two Way MLR 7 day	17.3	HPAEC TNF alpha + IL-1 beta	20.0
PBMC rest	0.0	Lung fibroblast none	6.5
PBMC PWM	42.6	Lung fibroblast TNF alpha + IL- 1 beta	14.0
PBMC PHA-L	21.9	Lung fibroblast IL-4	47.3
Ramos (B cell) none	46.7	Lung fibroblast IL-9	18.4
Ramos (B cell) ionomycin	94.0	Lung fibroblast IL-13	15.0
B lymphocytes PWM	48.3	Lung fibroblast IFN gamma	25.2
B lymphocytes CD40L and IL-4	37.4	Dermal fibroblast CCD1070 rest	82.4
EOL-1 dbcAMP	13.7	Dermal fibroblast CCD1070 TNF alpha	87.1
EOL-1 dbcAMP PMA/ionomycin	8.1	Dermal fibroblast CCD1070 IL- 1 beta	32.3
Dendritic cells none	0.0	Dermal fibroblast IFN gamma	13.1
Dendritic cells LPS	14.7	Dermal fibroblast IL-4	57.0
Dendritic cells anti-CD40	7.2	IBD Colitis 2	0.0
Monocytes rest	0.0	IBD Crohn's	0.0
Monocytes LPS	0.0	Colon	9.5
Macrophages rest	23.3	Lung	16.2
Macrophages LPS	0.0	Thymus	12.3
HUVEC none	11.7	Kidney	14.9
HUVEC starved	33.7		

CNS_neurodegeneration_v1.0 Summary: Ag3408 Expression of this gene is low/undetectable (CTs > 34) across all of the samples on this panel.

General_screening_panel_v1.4 Summary: Ag3408 Highest expression of NOV32a is detected in a breast cancer cell line (CT=2). Therefore, expression of this gene may be used to distinguish this sample from other samples on this panel. In addition, moderate expression of this gene is also observed in an ovarian cancer cell line. Hence, therapeutic modulation of

the activity of this gene product may be beneficial in the treatment of breast and ovarian cancers.

This gene is expressed at low to moderate levels in a number of tissues with metabolic or endocrine function, including gastrointestinal tract, pancreas, and skeletal muscle.

Therefore, therapeutic modulation of the activity of this gene may prove useful in the . treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

Panel 4D Summary: Ag3408 Highest expression of the NOV32a gene is seen in IL-4 treated NCI-H292 cells (CT=31). However, this gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues.

Interestingly, expression of this gene is stimulated in PWM/PHA-L treated PBMC cells, IL-2/IL-2+IFN gamma/IL-2+ IL-18 treated LAK cells and ionomycin treated Ramos (B-cell) cells. Therefore, small molecules that antagonize the function of this gene product may be useful as therapeutic drugs to reduce or eliminate the symptoms in patients with autoimmune and inflammatory diseases in which T and B cells play a part in the initiation or progression of the disease process, such as systemic lupus erythematosus, Crohn's disease, ulcerative colitis, multiple sclerosis, chronic obstructive pulmonary disease, asthma, emphysema, rheumatoid arthritis, or psoriasis.

V. NOV33a: SERINE PROTEASE INHIBITOR

Expression of gene NOV33a was assessed using the primer-probe set Ag3436, described in Table VA. Results of the RTQ-PCR runs are shown in Table VB.

Table VA. Probe Name Ag3436

Primers	Sequences	Length	Start Position
Forward	5'-cctcagagctgagtggatga-3' (SEQ ID NO:272)	20	593
Probe	TET-5'-ccctttgactcacgtgccaccag-3'-TAMRA (SEQ ID NO:273)	23	615
Reverse	5'-cgctgtgctcatctacaaaga-3' (SEQ ID NO:274)	21	649

Table VB. Panel 4D

5

10

15

20

25

Tissue Name	Rel. Exp.(%) Ag3436, Run 166397093	Tissue Name	Rel. Exp.(%) Ag3436, Run 166397093
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0

0.0		0.0
	HUVEC IFN gamma HUVEC TNF alpha + IFN	
0.0	gamma	0.0
4.6	HUVEC TNF alpha + IL4	0.0
0.0	HUVEC IL-11	0.0
0.0	Lung Microvascular EC none	0.0
0.0	Lung Microvascular EC TNFalpha + IL-1 beta	0.0
0.0	Microvascular Dermal EC none	0.0
1.9	Microsvasular Dermal EC TNFalpha + IL-1beta	0.0
0.0	Bronchial epithelium TNFalpha + IL1 beta	0.0
0.0	Small airway epithelium none	0.0
0.0	Small airway epithelium TNFalpha + IL-1beta	0.0
0.0	Coronery artery SMC rest	0.0
0.0	Coronery artery SMC TNFalpha + IL-1 beta	0.0
0.0	Astrocytes rest	0.0
0.0	Astrocytes TNFalpha + 1L-1beta	0.0
0.0	KU-812 (Basophil) rest	0.0
0.0	KU-812 (Basophil) PMA/ionomycin	. 0.0
0.0	CCD1106 (Keratinocytes) none	0.0
0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.0
0.0	Liver cirrhosis	100.0
0.0	Lupus kidney	1.2
0.0	NCI-H292 none	0.0
0.0	NCI-H292 IL-4	0.0
0.0	NCI-H292 IL-9	0.0
0.0	NCI-H292 IL-13	0.0
		0.0
		0.0
		0.0
		0.0
0.0	Lung fibroblast TNF alpha + IL- 1 beta	0.0
0.0		0.0
0.0		0.0
		0.0
		0.0
0.0	Dermal fibroblast CCD1070 rest	0.0
	4.6 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.6

EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 TNF alpha	0.0
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	2.4	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	0.0	Dermal fibroblast IL-4	0.0
Dendritic cells anti-CD40	2.0	IBD Colitis 2	4.6
Monocytes rest	0.0	IBD Crohn's	2.7
Monocytes LPS	0.0	Colon	42.3 ·
Macrophages rest	0.0	Lung	10.9
Macrophages LPS	10.9	Thymus	0.0
HUVEC none	0.0	Kidney	0.0
HUVEC starved	0.0		

CNS_neurodegeneration_v1.0 Summary: Ag3436 Expression of NOV33a gene is low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.4 Summary: Ag3436 Expression of NOV33a gene is low/undetectable (CTs > 35) across all of the samples on this panel.

Panel 4D Summary: Ag3436 Highest expression of the NOV33a gene is detected in a liver cirrhosis sample (CT=31.8). Thus, expression of this gene can be used to distinguish this sample from other samples in this panel. Furthermore, therapeutic modulation of the expression or function of this gene could reduce or inhibit fibrosis that occurs in liver cirrhosis. In addition, expression of this gene could also be used for the diagnosis of liver cirrhosis.

Furthermore, low but significant expression of this gene is detected in the colon (CT=33.1). Expression of this gene is decreased in colon samples from patients with IBD colitis and Crohn's disease (CTs>35). Therefore, therapeutic modulation of the activity of the protein encoded by this gene may be useful in the treatment of inflammatory bowel disease. A related serine protease inhibitor, camostat mesilate, has been used to induce and maintain remission in two patients with ulcerative colitis, to whom salicylazosulfapyridine could not be administered due to previous side effects (Senda et al., Intern Med 32(4):350-4, 1993).

20 W. NOV34a and NOV34b: Fibronectin type III -like

Expression of gene NOV34a and NOV34b was assessed using the primer-probe set Ag3538, described in Table WA. Results of the RTQ-PCR runs are shown in Tables WB and WC. Please note that NOV34b represents a full-length physical clone of the NOV34a gene, validating the prediction of the gene sequence.

Table WA. Probe Name Ag3538

5

10

15

25

Primers	Sequences	Length	Start Position
Forward	5'-gttccagcgcatgaagaag-3' (SEQ ID NO:275)	19	390
IUTABA	TET-5'-acagctcagaccaagatccagctcct-3'-TAMRA (SEQ ID NO:276)	26	415
Reverse	5'-ggtcgagctgttccaacag-3' (SEQ ID NO:277)	19	454

Table WB. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3538, Run 217044748	Tissue Name	Rel. Exp.(%) Ag3538, Run 217044748
Adipose	0.2	Renal ca. TK-10	0.1
Melanoma* Hs688(A).T	0.7	Bladder	0.6
Melanoma* Hs688(B).T	0.1	Gastric ca. (liver met.) NCI-N87	15.0
Melanoma* M14	1.1	Gastric ca. KATO III	6.0
Melanoma* LOXIMVI	0.8	Colon ca. SW-948	0.0
Melanoma* SK-MEL-5	1.4	Colon ca. SW480	29.9
Squamous cell carcinoma SCC-4	7.1	Colon ca.* (SW480 met) SW620	0.7
Testis Pool	100.0	Colon ca. HT29	9.3
Prostate ca.* (bone met) PC-3	6.0	Colon ca. HCT-116	5.6
Prostate Pool	0.5	Colon ca. CaCo-2	2.2
Placenta	0.2	Colon cancer tissue	2.1
Uterus Pool	1.2	Colon ca. SW1116	0.0
Ovarian ca. OVCAR-3	12.9	Colon ca. Colo-205	0.0
Ovarian ca. SK-OV-3	0.0	Colon ca. SW-48	2.0
Ovarian ca. OVCAR-4	1.5	Colon Pool	1.6
Ovarian ca. OVCAR-5	16.0	Small Intestine Pool	4.2
Ovarian ca. IGROV-1	13.8	Stomach Pool	0.6
Ovarian ca. OVCAR-8	4.8	Bone Marrow Pool	0.6
Ovary	0.5	Fetal Heart	0.7
Breast ca. MCF-7	2.5	Heart Pool	0.3
Breast ca. MDA-MB- 231	0.0	Lymph Node Pool	1.8
Breast ca. BT 549	20.9	Fetal Skeletal Muscle	0.0
Breast ca. T47D	21.0	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	1.0	Spleen Pool	3.8
Breast Pool	2.4	Thymus Pool	3.6
Trachea	8.7	CNS cancer (glio/astro) U87-MG	0.6
Lung	0.7	CNS cancer (glio/astro) U- 118-MG	2.2
Fetal Lung	9.1	CNS cancer (neuro;met) SK-N-AS	4.0
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	0.0
Lung ca. LX-1	3.8	CNS cancer (astro) SNB-75	1.1
Lung ca. NCI-H146	3.2	CNS cancer (glio) SNB-19	23.0
Lung ca. SHP-77	0.0	CNS cancer (glio) SF-295	1.2

Lung ca. A549	0.0	Brain (Amygdala) Pool	0.0
Lung ca. NCI-H526	0.0	Brain (cerebellum)	0.0
Lung ca. NCI-H23	19.5	Brain (fetal)	9.8
Lung ca. NCI-H460	1.2	Brain (Hippocampus) Pool	0.0
Lung ca. HOP-62	3.4	Cerebral Cortex Pool	0.9
Lung ca. NCI-H522	0.4	Brain (Substantia nigra) Pool	0.0
Liver	0.0	Brain (Thalamus) Pool	0.9
Fetal Liver	0.0	Brain (whole)	0.0
Liver ca. HepG2	0.0	Spinal Cord Pool	0.5
Kidney Pool	3.3	Adrenal Gland	0.0
Fetal Kidney	2.2	Pituitary gland Pool	1.4
Renal ca. 786-0	0.0	Salivary Gland	1.9
Renal ca. A498	2.0	Thyroid (female)	3.0
Renal ca. ACHN	10.6	Pancreatic ca. CAPAN2	15.9
Renal ca. UO-31	1.3	Pancreas Pool	2.0

Table WC. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3538, Run 166446357	Tissue Name	Rel. Exp.(%) Ag3538, Run 166446357
Secondary Th1 act	0.0	HUVEC IL-1beta	0.6
Secondary Th2 act	1.8	HUVEC IFN gamma	1.3
Secondary Trl act	0.4	HUVEC TNF alpha + IFN gamma	0.4
Secondary Th1 rest	1.1	HUVEC TNF alpha + IL4	1.6
Secondary Th2 rest	0.4	HUVEC IL-11	1.3
Secondary Trl rest	0.4	Lung Microvascular EC none	1.5
Primary Th1 act	1.8	Lung Microvascular EC TNFalpha + IL-1beta	0.9
Primary Th2 act	1.6	Microvascular Dermal EC none	1.8
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	1.5
Primary Th1 rest	0.6	Bronchial epithelium TNFalpha + IL1beta	1.3
Primary Th2 rest	0.4	Small airway epithelium none	0.1
Primary Tr1 rest	1.2	Small airway epithelium TNFalpha + IL-1beta	1.3
CD45RA CD4 lymphocyte act	0.3	Coronery artery SMC rest	0.5
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1 beta	0.5
CD8 lymphocyte act	0.0	Astrocytes rest	0.5
Secondary CD8 lymphocyte rest	2.0	Astrocytes TNFalpha + IL-1beta	1.3
Secondary CD8 lymphocyte act	1.5	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	1.1	KU-812 (Basophil) PMA/ionomycin	1.1
2ry Th1/Th2/Tr1_anti-	0.6	CCD1106 (Keratinocytes) none	4.3

CD95 CH11			
LAK cells rest	0.8	CCD1106 (Keratinocytes) TNFalpha + IL-1 beta	7.2
LAK cells IL-2	1.9	Liver cirrhosis	13.6
LAK cells IL-2+IL-12	0.4	Lupus kidney	0.4
LAK cells IL-2+IFN gamma	2.3	NCI-H292 none	1.5
LAK cells IL-2+ IL-18	1.8	NCI-H292 IL-4	0.8
LAK cells PMA/ionomycin	0.7	NCI-H292 IL-9	0.0
NK Cells IL-2 rest	0.1	NCI-H292 IL-13	0.4
Two Way MLR 3 day	1.3	NCI-H292 IFN gamma	1.8
Two Way MLR 5 day	0.6	HPAEC none	1.5
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	1.3
PBMC rest	0.3	Lung fibroblast none	4.7
PBMC PWM	0.6	Lung fibroblast TNF alpha + IL- 1 beta	2.5
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.3
Ramos (B cell) none	0.2	Lung fibroblast IL-9	0.5
Ramos (B cell) ionomycin	0.1	Lung fibroblast IL-13	0.0
B lymphocytes PWM	0.5	Lung fibroblast IFN gamma	0.1
B lymphocytes CD40L and IL-4	1.4	Dermal fibroblast CCD1070 rest	0.0
EOL-1 dbcAMP	0.5	Dermal fibroblast CCD1070 TNF alpha	0.8
EOL-1 dbcAMP PMA/ionomycin	3.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	0.5	Dermal fibroblast IFN gamma	0.0
Dendritic cells LPS	2.3	Dermal fibroblast IL-4	0.0
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.6
Monocytes rest	0.0	IBD Crohn's	0.6
Monocytes LPS	2.6	Colon	100.0
Macrophages rest	1.8	Lung	8.4
Macrophages LPS	3.1	Thymus	0.5
HUVEC none	0.8	Kidney	1.3
HUVEC starved	2.4		

CNS_neurodegeneration_v1.0 Summary: Ag3538 Expression of this gene is low/undetectable (CTs > 35) across all of the samples on this panel.

General_screening_panel_v1.4 Summary: Ag3538 Highest expression of the NOV34a gene is detected in sample derived from testis (CT=29.8). Thus, expression of this gene can be used to distinguish this sample from other samples in the panel. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of fertility disorders and hypogonadism.

In addition, significant expression of this gene is seen in pancreatic, CNS, colon, gastric, renal, lung, breast, ovarian and squamous cell carcinoma cell lines. Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of these cancers.

Interestingly, this gene is expressed at much higher levels in fetal (CT = 33) when compared to adult brain samples (CT=36-40). This observation suggests that expression of this gene can be used to distinguish fetal from adult brain.

Panel 4D Summary: Ag3538 Highest expression of NOV34a is detected in sample derived from colon (CT=29.78). Thus, expression of this gene can be used to distinguish this sample from other samples in the panel. Furthermore, expression of this gene is decreased in colon samples from patients with IBD colitis and Crohn's disease (CTs>37) relative to normal colon. Therefore, therapeutic modulation of the activity of the GPCR encoded by this gene may be useful in the treatment of inflammatory bowel disease.

15

20

10

5

X. NOV35a: ADIPOPHILIN (ADIPOSE DIFFERENTIATION-RELATED PROTEIN)

Expression of gene NOV35a was assessed using the primer-probe set Ag5733, described in Table XA. Results of the RTQ-PCR runs are shown in Table XB.

Table XA. Probe Name Ag5733

Primers	Sequences	Length	Start Position
Forward	5'-agttgatccacaaccgagtgt-3' (SEQ ID NO:278)	21	83
	TET-5'-ccttggtgagctccacgtatgacct-3'-TAMRA (SEQ ID NO:279)	25	127
Reverse	5'-actgagataggctgaggacatg-3' (SEQ ID NO:280)	22	152

Table XB. General screening panel v1.5

Tissue Name	Rel. Exp.(%) Ag5733, Run 245455392	Tissue Name	Rel. Exp.(%) Ag5733, Run 245455392
Adipose	15.8	Renal ca. TK-10	76.8
Melanoma* Hs688(A).T	13.1	Bladder	11.5
Melanoma* Hs688(B).T	25.3	Gastric ca. (liver met.) NCI-N87	5.8
Melanoma* M14	23.7	Gastric ca. KATO III	0.0
Melanoma* LOXIMVI	38.4	Colon ca. SW-948	2.3
Melanoma* SK-MEL-5	13.6	Colon ca. SW480	13.0
Squamous cell carcinoma SCC-4	0.0	Colon ca.* (SW480 met) SW620	24.0
Testis Pool	3.3	Colon ca. HT29	2.3

Prostate ca.* (bone met) 4.2 Colon ca. HCT-1 PC-3 1.3 Colon ca. CaCo-1 Prostate Pool 1.3 Colon ca. CaCo-1 Placenta 19.1 Colon cancer tiss Uterus Pool 3.3 Colon ca. SW11 Ovarian ca. OVCAR-3 4.2 Colon ca. Colo-2 Ovarian ca. SK-OV-3 0.9 Colon ca. SW-48 Ovarian ca. OVCAR-4 2.2 Colon Pool Ovarian ca. OVCAR-5 0.8 Small Intestine P Ovarian ca. IGROV-1 0.0 Stomach Pool Ovarian ca. OVCAR-8 2.4 Bone Marrow Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid Lung 0.8 CNS cancer (glid<	2 25.9 Sue 14.9 16 0.0 205 5.2 3 12.3 2.2 2001 2.4 3.0 2.5 5.0 2.6 old 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Placenta	14.9 16 0.0 16 0.0 16 16 16 16 16 16 16 1
Uterus Pool 3.3 Colon ca. SW11	16 0.0 205 5.2 3 12.3 2.2 2001 2.4 3.0 201 2.5 5.0 2.6 01 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. OVCAR-3 4.2 Colon ca. Colo-2 Ovarian ca. SK-OV-3 0.9 Colon ca. SW-48 Ovarian ca. OVCAR-4 2.2 Colon Pool Ovarian ca. OVCAR-5 0.8 Small Intestine P Ovarian ca. IGROV-1 0.0 Stomach Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal Muscle Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Trachea 3.2 CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular)	205 5.2 3 12.3 2.2 2001 2.4 3.0 201 2.5 5.0 2.6 01 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. SK-OV-3 0.9 Colon ca. SW-48 Ovarian ca. OVCAR-4 2.2 Colon Pool Ovarian ca. OVCAR-5 0.8 Small Intestine P Ovarian ca. IGROV-1 0.0 Stomach Pool Ovarian ca. OVCAR-8 2.4 Bone Marrow Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal Muscle Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Trachea 3.2 CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular) CNS cancer (glicular)	3 12.3 2.2 Pool 2.4 3.0 2.5 5.0 2.6 0l 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. OVCAR-4 2.2 Colon Pool Ovarian ca. OVCAR-5 0.8 Small Intestine P Ovarian ca. IGROV-1 0.0 Stomach Pool Ovarian ca. OVCAR-8 2.4 Bone Marrow Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal Muscle Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Trachea 3.2 CNS cancer (glid U87-MG CNS cancer (glid U87-MG CNS cancer (glid U87-MG	2.2 Pool 2.4 3.0 Pool 2.5 5.0 2.6 01 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. OVCAR-5 0.8 Small Intestine P Ovarian ca. IGROV-1 0.0 Stomach Pool Ovarian ca. OVCAR-8 2.4 Bone Marrow Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal Muscle Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool CNS cancer (glid U87-MG CNS cancer (glid CNS cancer (glid CNS cancer (glid CNS cancer (glid	2.4 3.0 3.0 501 2.5 5.0 2.6 01 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. IGROV-1 0.0 Stomach Pool Ovarian ca. OVCAR-8 2.4 Bone Marrow Pool Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB-231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal M Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (gliculary-MG CNS cancer (gliculary-MG CNS cancer (gliculary-MG	3.0 2.5 5.0 2.6 0l 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovarian ca. OVCAR-8 2.4 Bone Marrow Po Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB- 231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal M Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid CN	2.5 5.0 2.6 ol 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Ovary 2.6 Fetal Heart Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB- 231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal M Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid U87-MG	5.0 2.6 ol 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Breast ca. MCF-7 0.4 Heart Pool Breast ca. MDA-MB- 231 12.6 Lymph Node Pool Breast ca. BT 549 63.7 Fetal Skeletal M Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid	2.6 ol 5.6 uscle 4.0 Pool 34.2 1.4 3.1
Breast ca. MDA-MB- 12.6 Lymph Node Pool 231 Fetal Skeletal M Breast ca. BT 549 63.7 Fetal Skeletal M Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glied U87-MG) Lung 0.8 CNS cancer (glied U87-MG)	ol 5.6 uscle 4.0 Pool 34.2 1.4 3.1
231 12.6 Lymph Node Po	uscle 4.0 Pool 34.2 1.4 3.1
Breast ca. T47D 1.9 Skeletal Muscle Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid CN	Pool 34.2 1.4 3.1
Breast ca. MDA-N 12.6 Spleen Pool Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG U87-CNS cancer (glid	1.4 3.1
Breast Pool 2.6 Thymus Pool Trachea 3.2 CNS cancer (glid U87-MG Lung 0.8 CNS cancer (glid CNS canc	3.1
Trachea 3.2 CNS cancer (glid U87-MG CNS cancer (glid U87-MG CNS cancer (glid	o/actro)
U87-MG U87-MG CNS cancer (glid	o/astro) 0.0
	o/astro) U- 0.0
Fetal Lung 6.1 CNS cancer (neu SK-N-AS	uro;met) 6.4
Lung ca. NCI-N417 0.1 CNS cancer (astr	ro) SF-539 12.9
Lung ca. LX-1 20.4 CNS cancer (astr	ro) SNB-75 2.2
Lung ca. NCI-H146 0.0 CNS cancer (glic	o) SNB-19 0.0
Lung ca. SHP-77 1.1 CNS cancer (glie	o) SF-295 0.1
Lung ca. A549 5.6 Brain (Amygdal	a) Pool 0.6
Lung ca. NCI-H526 0.6 Brain (cerebellum	m) 1.3
Lung ca. NCI-H23 3.6 Brain (fetal)	2.6
Lung ca. NCI-H460 0.8 Brain (Hippocan	npus) Pool 0.7
Lung ca. HOP-62 10.2 Cerebral Cortex	<u> </u>
Lung ca. NCI-H522 9.7 Brain (Substantia	a nigra) 0.7
Liver 21.5 Brain (Thalamus	s) Pool 0.7
Fetal Liver 25.9 Brain (whole)	5.1
Liver ca. HepG2 100.0 Spinal Cord Poo	l 1.2
Kidney Pool 5.2 Adrenal Gland	9.7
Fetal Kidney 4.4 Pituitary gland P	Pool 0.3
Renal ca. 786-0 14.1 Salivary Gland	3.3
Renal ca. A498 77.9 Thyroid (female	
Renal ca. ACHN 15.9 Pancreatic ca. C.	
Renal ca. UO-31 18.4 Pancreas Pool	33.2

General_screening_panel_v1.5 Summary: Ag5733 Highest expression of NOV35a is detected in sample derived from liver cancer cell line (CT=24). Thus, expression of this

gene can be used to distinguish this sample from other samples in this panel. In addition, high expression of this gene is also associated with renal cancer, melanoma, breast cancer, colon cancer, and lung cancer cell lines. Therefore, therapeutic modulation of this gene product may be beneficial in the treatment of these cancers.

This gene is expressed at moderate to high levels in a number of tissues with metabolic or endocrine function, including adipose, adrenal gland, gastrointestinal tract, pancreas, skeletal muscle and thyroid. The NOV35a gene codes for adipophilin, which belongs to perilipin family. Perilipin is known to play a role in regulation of triacylglycerol hydrolysis and lipid metabolism of adipose tissue (Ref.1). Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression (Tansey et al., Proc Natl Acad Sci U S A 98(11):6494-9, 2001).

Y. NOV37a, NOV37b and NOV37c: Latent transforming growth factor beta binding protein 1

Expression of gene NOV37a, NOV37b and NOV37c was assessed using the primerprobe set Ag3596, described in Table YA. Results of the RTQ-PCR runs are shown in Tables YB, YC and YD.

Table YA. Probe Name Ag3596

5

10

15

20

25

Primers	Sequences	Length	Start Position
Forward	5'-gatgtatacgaccggctgagt-3' (SEQ ID NO:281)	21	4569
Probe	TET-5'-cgaacaaatagaagaaactgatgtctacca-3'-TAMRA (SEQ ID NO:282)	30	4594
Reverse	5'-agatgttcccagcacaaatct-3' (SEQ ID NO:283)	21	4624

Table YB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3596, Run 211010102	Tissue Name	Rel. Exp.(%) Ag3596, Run 211010102
AD 1 Hippo	16.7	Control (Path) 3 Temporal Ctx	6.1
AD 2 Hippo	35.8	Control (Path) 4 Temporal Ctx	20.9
AD 3 Hippo	9.5	AD 1 Occipital Ctx	15.8

AD 4 Hippo	16.3	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	29.9	AD 3 Occipital Ctx	4.8
AD 6 Hippo	100.0	AD 4 Occipital Ctx	30.1
Control 2 Hippo	17.1	AD 5 Occipital Ctx	25.2
Control 4 Hippo	33.2	AD 6 Occipital Ctx	19.5
Control (Path) 3 Hippo	11.4	Control 1 Occipital Ctx	7.4
AD 1 Temporal Ctx	26.8	Control 2 Occipital Ctx	29.5
AD 2 Temporal Ctx	32.1	Control 3 Occipital Ctx	10.7
AD 3 Temporal Ctx	8.7	Control 4 Occipital Ctx	17.8
AD 4 Temporal Ctx	38.2	Control (Path) 1 Occipital Ctx	44.4
AD 5 Inf Temporal Ctx	32.3	Control (Path) 2 Occipital Ctx	7.7
AD 5 Sup Temporal Ctx	54.0	Control (Path) 3 Occipital Ctx	1.5
AD 6 Inf Temporal Ctx	43.8	Control (Path) 4 Occipital Ctx	10.6
AD 6 Sup Temporal Ctx	60.7	Control l Parietal Ctx	14.6
Control 1 Temporal Ctx	8.7	Control 2 Parietal Ctx	33.2
Control 2 Temporal Ctx	16.4	Control 3 Parietal Ctx	9.2
Control 3 Temporal Ctx	9.3	Control (Path) 1 Parietal Ctx	29.1
Control 3 Temporal Ctx	14.0	Control (Path) 2 Parietal Ctx	30.8
Control (Path) 1 Temporal Ctx	38.4	Control (Path) 3 Parietal Ctx	4.0
Control (Path) 2 Temporal Ctx	20.9	Control (Path) 4 Parietal Ctx	21.5

Table YC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3596, Run 218307094	Tissue Name	Rel. Exp.(%) Ag3596, Run 218307094
Adipose	2.5	Renal ca. TK-10	0.0
Melanoma* Hs688(A).T	4.8	Bladder	7.1
Melanoma* Hs688(B).T	10.4	Gastric ca. (liver met.) NCI-N87	1.8
Melanoma* M14	0.0	Gastric ca. KATO III	4.0
Melanoma* LOXIMVI	0.3	Colon ca. SW-948	0.6
Melanoma* SK-MEL-5	1.9	Colon ca. SW480	0.3
Squamous cell carcinoma SCC-4	1.2	Colon ca.* (SW480 met) SW620	0.0
Testis Pool	5.8	Colon ca. HT29	0.4
Prostate ca.* (bone met) PC-3	63.7	Colon ca. HCT-116	0.9
Prostate Pool	8.1	Colon ca. CaCo-2	4.7
Placenta	7.5	Colon cancer tissue	10.9
Uterus Pool	9.5	Colon ca. SW1116	0.4
Ovarian ca. OVCAR-3	12.7	Colon ca. Colo-205	0.0

Ovarian ca. SK-OV-3	8.4	Colon ca. SW-48	0.0
Ovarian ca. OVCAR-4	0.7	Colon Pool	20.7
Ovarian ca. OVCAR-5	5.3	Small Intestine Pool	7.3
Ovarian ca. IGROV-1	5.1	Stomach Pool	8.5
Ovarian ca. OVCAR-8	9.2	Bone Marrow Pool	9.5
Ovary	5.5	Fetal Heart	16.4
Breast ca. MCF-7	5.0	Heart Pool	8.1
Breast ca. MDA-MB- 231	5.1	Lymph Node Pool	24.5
Breast ca. BT 549	21.2	Fetal Skeletal Muscle	3.7
Breast ca. T47D	14.6	Skeletal Muscle Pool	2.5
Breast ca. MDA-N	0.1	Spleen Pool	1.2
Breast Pool	19.8	Thymus Pool	11.3
Trachea	5.4	CNS cancer (glio/astro) U87-MG	46.3
Lung	3.2	CNS cancer (glio/astro) U- 118-MG	0.2
Fetal Lung	18.3	CNS cancer (neuro;met) SK-N-AS	1.4
Lung ca. NCI-N417	0.2	CNS cancer (astro) SF-539	2.7
Lung ca. LX-1	0.0	CNS cancer (astro) SNB-75	14.6
Lung ca. NCI-H146	0.5	CNS cancer (glio) SNB-19	5.8
Lung ca. SHP-77	0.6	CNS cancer (glio) SF-295	100.0
Lung ca. A549	7.7	Brain (Amygdala) Pool	0.7
Lung ca. NCI-H526	0.0	Brain (cerebellum)	0.3
Lung ca. NCI-H23	6.5	Brain (fetal)	2.8
Lung ca. NCI-H460	1.2	Brain (Hippocampus) Pool	2.0
Lung ca. HOP-62	2.2	Cerebral Cortex Pool	1.3
Lung ca. NCI-H522	4.4	Brain (Substantia nigra) Pool	0.9
Liver	0.2	Brain (Thalamus) Pool	1.3
Fetal Liver	9.3	Brain (whole)	1.5
Liver ca. HepG2	0.0	Spinal Cord Pool	1.4
Kidney Pool	22.2	Adrenal Gland	2.1
Fetal Kidney	5.9	Pituitary gland Pool	1.1
Renal ca. 786-0	0.0	Salivary Gland	1.5
Renal ca. A498	0.3	Thyroid (female)	0.4
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.8
Renal ca. UO-31	0.0	Pancreas Pool	14.6

Table YD. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag3596, Run 169910408	Tissue Name	Rel. Exp.(%) Ag3596, Run 169910408
Secondary Th1 act	0.0	HUVEC IL-1beta	15.6
Secondary Th2 act	0.0	HUVEC IFN gamma	14.6
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	10.0
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	11.3

Secondary Th2 rest	0.0	HUVEC IL-11	7.2
Secondary Tr1 rest	0.0	Lung Microvascular EC none	13.2
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1 beta	8.9
Primary Th2 act	0.0	Microvascular Dermal EC none	29.1
Primary Tr1 act	0.1	Microsvasular Dermal EC TNFalpha + IL-1 beta	18.7
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	2.4
Primary Th2 rest	0.0	Small airway epithelium none	6.3
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	1.9
CD45RA CD4 lymphocyte act	5.6	Coronery artery SMC rest	19.6
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1beta	16.8
CD8 lymphocyte act	0.0	Astrocytes rest	7.6
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	7.0
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	1.1
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	3.4
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.0	CCD1106 (Keratinocytes) none	1.4
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	1.0
LAK cells IL-2	0.0	Liver cirrhosis	2.0
LAK cells IL-2+IL-12	0.2	NCI-H292 none	1.8
LAK cells IL-2+IFN gamma	0.1	NCI-H292 IL-4	3.0
LAK cells IL-2+ IL-18	0.1	NCI-H292 IL-9	3.4
LAK cells PMA/ionomycin	0.0	NCI-H292 IL-13	2.1
NK Cells IL-2 rest	0.0	NCI-H292 IFN gamma	1.3
Two Way MLR 3 day	0.0	HPAEC none	5.1
Two Way MLR 5 day	0.0	HPAEC TNF alpha + IL-1 beta	4.0
Two Way MLR 7 day	0.0	Lung fibroblast none	81.2
PBMC rest	0.2	Lung fibroblast TNF alpha + IL- 1 beta	68.3
PBMC PWM	0.0	Lung fibroblast IL-4	59.5
PBMC PHA-L	0.0	Lung fibroblast IL-9	100.0
Ramos (B cell) none	16.0	Lung fibroblast IL-13	81.8
Ramos (B cell) ionomycin	10.7	Lung fibroblast IFN gamma	88.9
B lymphocytes PWM	0.2	Dermal fibroblast CCD1070 rest	20.9
B lymphocytes CD40L and IL-4	0.8	Dermal fibroblast CCD1070 TNF alpha	14.4
EOL-1 dbcAMP	0.0	Dermal fibroblast CCD1070 IL- 1 beta	13.6
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast IFN gamma	20.4

Dendritic cells none	0.0	Dermal fibroblast IL-4	58.2
Dendritic cells LPS	0.0	Dermal Fibroblasts rest	53.2
Dendritic cells anti-CD40	0.0	Neutrophils TNFa+LPS	0.1
Monocytes rest	0.1	Neutrophils rest	0.0
Monocytes LPS	0.0	Colon	3.2
Macrophages rest	0.0	Lung	13.9
Macrophages LPS	0.0	Thymus	1.8
HUVEC none	14.1	Kidney	5.4
HUVEC starved	14.9		

CNS_neurodegeneration_v1.0 Summary: Ag3596 This panel confirms the expression of the NOV37a gene at low levels in the brain in an independent group of individuals. This gene is found to be upregulated in the temporal cortex of Alzheimer's disease patients. Blockade of this gene product may be useful in the treatment of this disease and decrease neuronal death.

5

10

15

20

25

General_screening_panel_v1.4 Summary: Ag3596 Highest expression of the NOV37a gene is detected in one of the CNS cancer cell line (CT=26). Thus, expression of this gene can be used to distinguish this sample from other samples in this panel. In addition, significant expression of this gene is also associated with prostate cancer (CT=27). Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of CNS cancer or prostate cancer.

In prostatic carcinoma there is immunohistochemical evidence that TGF-beta 1 is produced without the associated-LTBP1 in malignant cells, although TGF beta1-LTBP1 complexes are present in cystectomized prostatic and benign prostatic hyperplastic tissues (Eklov et al., Cancer Res. 53, 3193-3197, 1993).

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.

In addition, this gene is expressed at significant levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 4.1D Summary: Ag3596 Highest expression of the NOV37a gene is detected in IL-9 treated lung fibroblast (CT=27.3). In addition, high expression of this gene is detected in TNF alpha + IL-1 beta/IL-4/IL-13/IFN gamma treated as well as untreated lung fibroblast and also in IFN gamma treated and untreated dermal fibroblasts. Thus, expression of this gene can be used to distinguish the lung and dermal fibroblast samples from other samples in this panel. Also, modulation of this gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, psoriasis and idiopathic pulmonary fibrosis (IPF).

Recently, Saika et al. (Saika et al., Graefes Arch Clin Exp Ophthalmol 239(3):234-41, 2001) have shown that LTBP-1, beta 1-LAP and fibrillin-1 co-localize to the ECM of the filtering bleb and of cultured conjunctival fibroblasts. Both conjunctival epithelium and fibroblasts are considered to be the source of TGF beta in healing bleb. ECM secreted by in vivo and in vitro subconjunctival fibroblasts may works as a scavenger or repository of TGF beta.

Z. NOV39a: Urokinase plasminogen activator surface receptor precursor

Expression of gene NOV39a was assessed using the primer-probe set Ag3134, described in Table ZA. Results of the RTQ-PCR runs are shown in Tables ZB, ZC, ZD, ZE and ZF.

Table ZA. Probe Name Ag3134

5

10

15

20

Primers	Sequences	Length	Start Position
Forward	5'-agctttgagcacacctactttg-3' (SEQ ID NO:284)	22	82
	TET-5'-cccagcatctcctgtcctcatgagt-3'-TAMRA (SEQ ID NO:285)	25	133
Reverse	5'-agagacaggatagcctcaaagc-3' (SEQ ID NO:286)	22	158

Table ZB. CNS neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3134, Run 209055794	Tissue Name	Rel. Exp.(%) Ag3134, Run 209055794
AD 1 Hippo	0.0	Control (Path) 3 Temporal Ctx	0.0
AD 2 Hippo	23.3	Control (Path) 4 Temporal Ctx	15.4
AD 3 Hippo	0.5	AD 1 Occipital Ctx	0.0
AD 4 Hippo	0.0	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	100.0	AD 3 Occipital Ctx	0.0

AD 6 Hippo	38.7	AD 4 Occipital Ctx	15.7
Control 2 Hippo	19.3	AD 5 Occipital Ctx	37.1
Control 4 Hippo	0.8	AD 6 Occipital Ctx	8.5
Control (Path) 3 Hippo	0.2	Control 1 Occipital Ctx	0.0
AD 1 Temporal Ctx	0.0	Control 2 Occipital Ctx	70.2
AD 2 Temporal Ctx	29.9	Control 3 Occipital Ctx	0.3
AD 3 Temporal Ctx	0.0	Control 4 Occipital Ctx	0.0
AD 4 Temporal Ctx	0.0	Control (Path) 1 Occipital Ctx	65.5
AD 5 Inf Temporal Ctx	74.7	Control (Path) 2 Occipital Ctx	3.5
AD 5 Sup Temporal Ctx	29.5	Control (Path) 3 Occipital Ctx	0.0
AD 6 Inf Temporal Ctx	36.3	Control (Path) 4 Occipital Ctx	4.5
AD 6 Sup Temporal Ctx	44.8	Control 1 Parietal Ctx	0.9
Control 1 Temporal Ctx	0.0	Control 2 Parietal Ctx	22.7
Control 2 Temporal Ctx	33.0	Control 3 Parietal Ctx	7.3
Control 3 Temporal Ctx	7.0	Control (Path) 1 Parietal Ctx	76.3
Control 3 Temporal Ctx	1.2	Control (Path) 2 Parietal Ctx	9.8
Control (Path) I Temporal Ctx	52.1	Control (Path) 3 Parietal Ctx	0.0
Control (Path) 2 Temporal Ctx	14.3	Control (Path) 4 Parietal Ctx	45.1

Table ZC. Panel 1.3D

Tissue Name	Rel. Exp.(%) Ag3134, Run 165552410	Tissue Name	Rel. Exp.(%) Ag3134, Run 165552410
Liver adenocarcinoma	0.0	Kidney (fetal)	0.0
Pancreas	0.0	Renal ca. 786-0	0.0
Pancreatic ca. CAPAN 2	0.0	Renal ca. A498	0.0
Adrenal gland	1.3	Renal ca. RXF 393	0.0
Thyroid	0.0	Renal ca. ACHN	0.0
Salivary gland	0.1	Renal ca. UO-31	0.0
Pituitary gland	0.5	Renal ca. TK-10	0.0
Brain (fetal)	13.8	Liver	0.0
Brain (whole)	75.3	Liver (fetal)	0.0
Brain (amygdala)	32.3	Liver ca. (hepatoblast) HepG2	0.0
Brain (cerebellum)	29.5	Lung	15.8
Brain (hippocampus)	33.9	Lung (fetal)	4.2
Brain (substantia nigra)	31.2	Lung ca. (small cell) LX-1	0.2
Brain (thalamus)	97.3	Lung ca. (small cell) NCI-H69	0.9
Cerebral Cortex	29.7	Lung ca. (s.cell var.) SHP-77	0.0

Spinal cord 19.5				
Selectal muscle (fetal) Selectal muscle	Spinal cord	19.5		2.0
astrocytoma SW1783	glio/astro U87-MG	0.0		0.0
No.	glio/astro U-118-MG	0.0	Lung ca. (non-s.cell) NCI-H23	0.0
astrocytoma SF-539	strocytoma SW1783	0.0		2.2
astrocytoma Sn-399 0.0 900 0.1 astrocytoma SnB-75 0.0 Lung ca. (squam.) NCI-H596 0.1 glioma SNB-19 5.6 Mammary gland 1.1 glioma U251 4.2 Breast ca.* (pl.ef) MCF-7 0.0 glioma SF-295 0.3 Breast ca.* (pl.ef) MDA-MB-231 0.0 Heart (fetal) 0.0 Breast ca.* (pl.ef) T47D 0.0 Heart 0.0 Breast ca.* (pl.ef) T47D 0.0 Skeletal muscle (fetal) 0.0 Breast ca. (pl.ef) T47D 0.0 Skeletal muscle (fetal) 0.0 Breast ca. MDA-N 0.0 Skeletal muscle 0.0 Ovary 0.0 Bone marrow 0.0 Ovarian ca. OVCAR-3 0.0 Thymus 0.0 Ovarian ca. OVCAR-4 0.0 Spleen 21.3 Ovarian ca. OVCAR-4 0.0 Spleen 21.3 Ovarian ca. OVCAR-5 0.0 Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca.* (ascites) SK-OV-3 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca.* SW620(SW480 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate 0.0 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. HCC-2998 0.0 Melanoma H5688(A).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-NS7 Bladder 0.2 Melanoma LOX IMVI 0.0	neuro*; met SK-N-AS	0.7		0.0
Bioma SNB-19 S.6 Mammary gland SNB-19 S.6 Mammary gland SNB-19 S.6 Mammary gland SNB-19 SNB-19 SNB-19 SNB-19 SNB-19 SNB-19 SNB-19 SNB-23 SNB-295 SNB-295 SNB-23	strocytoma SF-539	0.0		0.1
Second Second	strocytoma SNB-75	0.0		0.1
Second Second	glioma SNB-19	5.6	Mammary gland	1.1
Heart (fetal)	glioma U251	4.2	Breast ca.* (pl.ef) MCF-	0.0
Heart	glioma SF-295	0.3		0.0
Skeletal muscle (fetal) 0.0 Breast ca. MDA-N 0.0 Skeletal muscle 2.0 Ovary 0.0 Bone marrow 0.0 Ovarian ca. OVCAR-3 0.0 Thymus 0.0 Ovarian ca. OVCAR-4 0.0 Spleen 21.3 Ovarian ca. OVCAR-5 0.0 Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. VCAR-8 11.6 Colorectal 0.1 Ovarian ca. OVCAR-8 11.6 Stomach 2.2 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. OVCAR-8 11.6 Colorectal 0.0 Uterus 5.1 Color ca. SW620(SW480 0.8 Placenta 100.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon	Heart (fetal)	0.0	Breast ca.* (pl.ef) T47D	0.0
Skeletal muscle 2.0 Ovary 0.0 Bone marrow 0.0 Ovarian ca. OVCAR-3 0.0 Thymus 0.0 Ovarian ca. OVCAR-4 0.0 Spleen 21.3 Ovarian ca. OVCAR-5 0.0 Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca.* (ascites) 0.4 SK-OV-3 SK-OV-3 0.4 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca.* SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. tissue(ODO3866) 5.3 Melanoma* (met) Hs688(B).T 0.0 Colon ca. + (liver met) 0.0 Melanoma M14 12.9 Bladder	leart	0.0	Breast ca. BT-549	0.4
Bone marrow 0.0 Ovarian ca. OVCAR-3 0.0	Skeletal muscle (fetal)	0.0	Breast ca. MDA-N	0.0
Thymus 0.0 Ovarian ca. OVCAR-4 0.0 Spleen 21.3 Ovarian ca. OVCAR-5 0.0 Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca. * (ascites) 0.4 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca. *SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. CaCo-2 0.7 Melanoma* (met) 0.0 tissue(OD03866) 5.3 Melanoma* (met) 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) 0.0 Melanoma LOX IMVI 0.0 Bladder 0.2 Melanoma LOX IMVI 0.0	Skeletal muscle	2.0	Ovary	0.0
Spleen 21.3 Ovarian ca. OVCAR-5 0.0 Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca.* (ascites) SK-OV-3 0.4 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca. *SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. CaCo-2 0.7 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Bone marrow	0.0	Ovarian ca. OVCAR-3	0.0
Lymph node 2.0 Ovarian ca. OVCAR-8 11.6 Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca.* (ascites) SK-OV-3 0.4 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca.* SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. CaCo-2 0.7 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Thymus	0.0	Ovarian ca. OVCAR-4	0.0
Colorectal 0.1 Ovarian ca. IGROV-1 0.0 Stomach 2.2 Ovarian ca.* (ascites) SK-OV-3 0.4 Small intestine 3.0 Uterus 5.1 Colon ca. SW480 0.8 Placenta 100.0 Colon ca.* SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. CaCo-2 0.7 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Spleen	21.3	Ovarian ca. OVCAR-5	0.0
Stomach 2.2 Ovarian ca.* (ascites) SK-OV-3 O.4	Lymph node	2.0	Ovarian ca. OVCAR-8	11.6
Stomach Stom	Colorectal	0.1	Ovarian ca. IGROV-1	0.0
Colon ca. \$W480 0.8 Placenta 100.0 Colon ca. \$SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. tissue(ODO3866) 5.3 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Stomach	2.2		0.4
Colon ca.* SW620(SW480 met) 0.0 Prostate 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.6 Colon ca. HCT-116 0.0 Testis 0.3 Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. tissue(ODO3866) 5.3 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Small intestine	3.0	Uterus	5.1
Melanoma UACC-62 Melanoma LOX IMVI Melan	Colon ca. SW480	0.8	Placenta	100.0
Colon ca. H129 0.0 met)PC-3 0.0		0.0	Prostate	0.0
Colon ca. CaCo-2 0.7 Melanoma Hs688(A).T 0.0 Colon ca. tissue(ODO3866) 5.3 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Colon ca. HT29	0.0		0.6
Colon ca. tissue(ODO3866) 5.3 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) NCI-N87 0.0 Melanoma M14 12.9 Bladder 0.2 Melanoma LOX IMVI 0.0	Colon ca. HCT-116	0.0	Testis	0.3
tissue(ODO3866) 5.3 Hs688(B).T 0.0 Colon ca. HCC-2998 0.0 Melanoma UACC-62 0.0 Gastric ca.* (liver met) 0.0 Melanoma M14 12.9 NCI-N87 0.2 Melanoma LOX IMVI 0.0	Colon ca. CaCo-2	0.7	Melanoma Hs688(A).T	0.0
Gastric ca.* (liver met) 0.0 Melanoma M14 12.9 NCI-N87 0.2 Melanoma LOX IMVI 0.0		5.3		0.0
NCI-N87 O.0 Melanoma IOX IMVI 0.0 O.0		0.0	Melanoma UACC-62	0.0
		0.0	Melanoma M14	12.9
Malanamat (mad/CV	Bladder	0.2	Melanoma LOX IMVI	0.0
Trachea 4.3 Melanoma* (met) SK- 0.0 MEL-5	Trachea	4.3	Melanoma* (met) SK- MEL-5	0.0
Kidney 0.0 Adipose 0.0	Kidney	0.0		0.0

Table ZD. Panel 2D

		·	Rel. Exp.(%) Ag3134,
		Tissue Name	
I Tissue Name	Rel. Exp.(%) Ag3134,		

	Run 165910588		Run 165910588
Normal Colon	10.6	Kidney Margin 8120608	1.3
CC Well to Mod Diff (ODO3866)	7.4	Kidney Cancer 8120613	0.7
CC Margin (ODO3866)	0.9	Kidney Margin 8120614	0.0
CC Gr.2 rectosigmoid (ODO3868)	0.7	Kidney Cancer 9010320	4.4
CC Margin (ODO3868)	0.0	Kidney Margin 9010321	3.5
CC Mod Diff (ODO3920)	3.1	Normal Uterus	2.4
CC Margin (ODO3920)	2.7	Uterus Cancer 064011	7.5
CC Gr.2 ascend colon (ODO3921)	12.6	Normal Thyroid	0.9
CC Margin (ODO3921)	1.5	Thyroid Cancer 064010	3.3
CC from Partial Hepatectomy (ODO4309) Mets	7.9	Thyroid Cancer A302152	6.1
Liver Margin (ODO4309)	0.0	Thyroid Margin A302153	3.7
Colon mets to lung (OD04451- 01)	3.8	Normal Breast	15.1
Lung Margin (OD04451-02)	15.1	Breast Cancer (OD04566)	0.0
Normal Prostate 6546-1	4.9	Breast Cancer (OD04590- 01)	4.9
Prostate Cancer (OD04410)	7.1	Breast Cancer Mets (OD04590-03)	6.1
Prostate Margin (OD04410)	6.0	Breast Cancer Metastasis (OD04655-05)	0.2
Prostate Cancer (OD04720-01)	23.5	Breast Cancer 064006	5.3
Prostate Margin (OD04720-02)	15.0	Breast Cancer 1024	25.7
Normal Lung 061010	25.7	Breast Cancer 9100266	6.3
Lung Met to Muscle (ODO4286)	1.0	Breast Margin 9100265	6.1
Muscle Margin (ODO4286)	0.1	Breast Cancer A209073	17.1
Lung Malignant Cancer (OD03126)	9.1	Breast Margin A209073	14.0
Lung Margin (OD03126)	24.8	Normal Liver	0.0
Lung Cancer (OD04404)	85.9	Liver Cancer 064003	0.4
Lung Margin (OD04404)	4.5	Liver Cancer 1025	0.2
Lung Cancer (OD04565)	42.0	Liver Cancer 1026	2.5
Lung Margin (OD04565)	5.0	Liver Cancer 6004-T	0.0
Lung Cancer (OD04237-01)	26.1	Liver Tissue 6004-N	0.1
Lung Margin (OD04237-02)	41.5	Liver Cancer 6005-T	3.1
Ocular Mel Met to Liver (ODO4310)	12.2	Liver Tissue 6005-N	0.0
Liver Margin (ODO4310)	0.0	Normal Bladder	9.1
Melanoma Mets to Lung (OD04321)	0.0	Bladder Cancer 1023	1.3
Lung Margin (OD04321)	27.2	Bladder Cancer A302173	23.7
Normal Kidney	6.0	Bladder Cancer (OD04718-01)	100.0
Kidney Ca, Nuclear grade 2 (OD04338)	6.5	Bladder Normal Adjacent (OD04718-03)	1.4
Kidney Margin (OD04338)	9.5	Normal Ovary	3.1

Kidney Ca Nuclear grade 1/2 (OD04339)	0.5	Ovarian Cancer 064008	9.6
Kidney Margin (OD04339)	1.9	Ovarian Cancer (OD04768-07)	0.5
Kidney Ca, Clear cell type (OD04340)	0.0	Ovary Margin (OD04768- 08)	2.3
Kidney Margin (OD04340)	3.6	Normal Stomach	9.8
Kidney Ca, Nuclear grade 3 (OD04348)	0.0	Gastric Cancer 9060358	0.6
Kidney Margin (OD04348)	8.7	Stomach Margin 9060359	0.0
Kidney Cancer (OD04622-01)	0.7	Gastric Cancer 9060395	5.4
Kidney Margin (OD04622-03)	0.6	Stomach Margin 9060394	0.1
Kidney Cancer (OD04450-01)	0.0	Gastric Cancer 9060397	10.7
Kidney Margin (OD04450-03)	3.2	Stomach Margin 9060396	0.3
Kidney Cancer 8120607	0.2	Gastric Cancer 064005	2.4

Table ZE. Panel 3D

Tissue Name	Rel. Exp.(%) Ag3134, Run 166618735	Tissue Name	Rel. Exp.(%) Ag3134, Run 166618735
Daoy- Medulloblastoma	4.4	Ca Ski- Cervical epidermoid carcinoma (metastasis)	9.4
TE671- Medulloblastoma	0.0	ES-2- Ovarian clear cell carcinoma	0.0
D283 Med- Medulloblastoma	0.0	Ramos- Stimulated with PMA/ionomycin 6h	0.0
PFSK-1- Primitive Neuroectodermal	6.9	Ramos- Stimulated with PMA/ionomycin 14h	0.0
XF-498- CNS	0.0	MEG-01- Chronic myelogenous leukemia (megokaryoblast)	0.0
SNB-78- Glioma	0.2	Raji- Burkitt's lymphoma	0.0
SF-268- Glioblastoma	0.6	Daudi- Burkitt's lymphoma	0.0
T98G- Glioblastoma	0.1	U266- B-cell plasmacytoma	0.0
SK-N-SH- Neuroblastoma (metastasis)	0.0	CA46- Burkitt's lymphoma	0.0
SF-295- Glioblastoma	0.0	RL- non-Hodgkin's B-cell lymphoma	0.0
Cerebellum	26.2	JM1- pre-B-cell lymphoma	0.0
Cerebellum	19.3	Jurkat- T cell leukemia	0.0
NCI-H292- Mucoepidermoid lung carcinoma	1.1	TF-1- Erythroleukemia	0.0
DMS-114- Small cell lung cancer	0.0	HUT 78- T-cell lymphoma	0.0
DMS-79- Small cell lung cancer	100.0	U937- Histiocytic lymphoma	0.0
NCI-H146- Small cell lung cancer	28.1	KU-812- Myelogenous leukemia	0.0
NCI-H526- Small cell lung cancer	2.1	769-P- Clear cell renal carcinoma	0.0
NCI-N417- Small cell lung cancer	0.0	Caki-2- Clear cell renal carcinoma	0.0

NCI-H82- Small cell lung cancer	0.0	SW 839- Clear cell renal carcinoma	0.7
NCI-H157- Squamous cell lung cancer (metastasis)	0.0	G401- Wilms' tumor	0.0
NCI-H1155- Large cell lung cancer	2.6	Hs766T- Pancreatic carcinoma (LN metastasis)	4.1
NCI-H1299- Large cell lung cancer	0.4	CAPAN-1- Pancreatic adenocarcinoma (liver metastasis)	0.4
NCI-H727- Lung carcinoid	0.3	SU86.86- Pancreatic carcinoma (liver metastasis)	0.0
NCI-UMC-11- Lung carcinoid	0.0	BxPC-3- Pancreatic adenocarcinoma	12.7
LX-1- Small cell lung cancer	6.5	HPAC- Pancreatic adenocarcinoma	0.0
Colo-205- Colon cancer	0.0	MIA PaCa-2- Pancreatic carcinoma	0.0
KM12- Colon cancer	3.7	CFPAC-1- Pancreatic ductal adenocarcinoma	6.7
KM20L2- Colon cancer	0.0	PANC-1- Pancreatic epithelioid ductal carcinoma	1.7
NCI-H716- Colon cancer	0.3	T24- Bladder carcinma (transitional cell)	0.4
SW-48- Colon adenocarcinoma	19.2	5637- Bladder carcinoma	6.3
SW1116- Colon adenocarcinoma	0.0	HT-1197- Bladder carcinoma	76.8
LS 174T- Colon adenocarcinoma	2.9	UM-UC-3- Bladder carcinma (transitional cell)	0.0
SW-948- Colon adenocarcinoma	0.0	A 204- Rhabdomyosarcoma	0.0
SW-480- Colon adenocarcinoma	4.3	HT-1080- Fibrosarcoma	0.0
NCI-SNU-5- Gastric carcinoma	18.8	MG-63- Osteosarcoma	0.0
KATO III- Gastric carcinoma	1.7	SK-LMS-1- Leiomyosarcoma (vulva)	0.0
NCI-SNU-16- Gastric carcinoma	19.6	SJRH30- Rhabdomyosarcoma (met to bone marrow)	0.0
NCI-SNU-1- Gastric carcinoma	1.5	A431- Epidermoid carcinoma	27.9
RF-1- Gastric adenocarcinoma	0.0	WM266-4- Melanoma	4.7
RF-48- Gastric adenocarcinoma	0.0	DU 145- Prostate carcinoma (brain metastasis)	0.0
MKN-45- Gastric carcinoma	0.0	MDA-MB-468- Breast adenocarcinoma	25.0
NCI-N87- Gastric carcinoma	0.0	SCC-4- Squamous cell carcinoma of tongue	0.0
OVCAR-5- Ovarian carcinoma	0.4	SCC-9- Squamous cell carcinoma of tongue	0.1
RL95-2- Uterine carcinoma	5.3	SCC-15- Squamous cell carcinoma of tongue	1.1
HelaS3- Cervical adenocarcinoma	0.0	CAL 27- Squamous cell carcinoma of tongue	37.4

Table ZF. Panel 4D

Tissue Name	Rel. Exp.(%) Ag3134, Run 164527747	Tissue Name	Rel. Exp.(%) Ag3134, Run 164527747
Secondary Th1 act	0.0	HUVEC IL-1 beta	0.0
Secondary Th2 act	0.0	HUVEC IFN gamma	2.4
Secondary Trl act	0.0	HUVEC TNF alpha + IFN gamma	66.4
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.1
Secondary Th2 rest	0.0	HUVEC IL-11	0.0
Secondary Tr1 rest	0.0	Lung Microvascular EC none	2.2
Primary Th1 act	0.0	Lung Microvascular EC TNFalpha + IL-1beta	5.6
Primary Th2 act	0.1	Microvascular Dermal EC none	1.3
Primary Tr1 act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta	2.6
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1 beta	15.0
Primary Th2 rest	0.0	Small airway epithelium none	40.6
Primary Tr1 rest	0.0	Small airway epithelium TNFalpha + IL-1beta	10.6
CD45RA CD4 lymphocyte act	0.0	Coronery artery SMC rest	0.1
CD45RO CD4 lymphocyte act	0.0	Coronery artery SMC TNFalpha + IL-1beta	0.1
CD8 lymphocyte act	0.0	Astrocytes rest	2.3
Secondary CD8 lymphocyte rest	0.0	Astrocytes TNFalpha + IL-1beta	1.7
Secondary CD8 lymphocyte act	0.0	KU-812 (Basophil) rest	0.0
CD4 lymphocyte none	0.0	KU-812 (Basophil) PMA/ionomycin	0.0
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.0	CCD1106 (Keratinocytes) none	25.9
LAK cells rest	0.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	100.0
LAK cells IL-2	0.0	Liver cirrhosis	1.7
LAK cells IL-2+IL-12	0.0	Lupus kidney	0.1
LAK cells IL-2+IFN gamma	0.0	NCI-H292 none	0.4
LAK cells IL-2+ IL-18	0.0	NCI-H292 IL-4	2.7
LAK cells PMA/ionomycin	0.1	NCI-H292 IL-9	0.9
NK Cells IL-2 rest	0.0	NCI-H292 IL-13	0.4
Two Way MLR 3 day	0.0	NCI-H292 IFN gamma	27.9
Two Way MLR 5 day	0.0	HPAEC none	0.0
Two Way MLR 7 day	0.0	HPAEC TNF alpha + IL-1 beta	0.0
PBMC rest	0.0	Lung fibroblast none	0.0
PBMC PWM	0.1	Lung fibroblast TNF alpha + IL- l beta	0.0
PBMC PHA-L	0.0	Lung fibroblast IL-4	0.6

Ramos (B cell) none	0.0	Lung fibroblast IL-9	0.1
Ramos (B cell) ionomycin	0.0	Lung fibroblast IL-13	1.8
B lymphocytes PWM	0.0	Lung fibroblast IFN gamma	8.8
B lymphocytes CD40L and IL-4	0.0	Dermal fibroblast CCD1070 rest	0.0
EOL-1 dbcAMP	0.1	Dermal fibroblast CCD1070 TNF alpha	0.4
EOL-1 dbcAMP PMA/ionomycin	0.0	Dermal fibroblast CCD1070 IL- 1 beta	0.0
Dendritic cells none	0.0	Dermal fibroblast IFN gamma	40.1
Dendritic cells LPS	0.0	Dermal fibroblast lL-4	0.0
Dendritic cells anti-CD40	0.0	IBD Colitis 2	0.0
Monocytes rest	· 0.0	IBD Crohn's	0.0
Monocytes LPS	0.0	Colon	2.7
Macrophages rest	0.0	Lung	10.8
Macrophages LPS	0.0	Thymus	2.6
HUVEC none	0.0	Kidney	13.8
HUVEC starved	0.0		

CNS_neurodegeneration_v1.0 Summary: Ag3134 This panel confirms the expression of this gene at low to moderate levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.3D for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

5

10

15

20

Panel 1.3D Summary: Ag3134 Expression of the NOV39a gene is highest in placenta (CT = 29.5). In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord (CTs = 29.5-32). Thus, expression of this gene may be used to distinguish brain and placenta from the other samples on this panel. Furthermore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Panel 2D Summary: Ag3134 Expression of this gene is highest in a bladder cancer sample (CT = 28.3). Interestingly, expression in the matched normal adjacent bladder tissue is much lower (CT = 34.5). In addition, the NOV39a gene is expressed at higher levels in a number of other tumor samples when compared to normal matched adjacent tissue.

Specifically, expression of this gene is upregulated in gastric cancers and lung cancers. Thus, expression of this gene can be used to distinguish bladder, gastric and lung cancers.

Furthermore, therapeutic modulation of the activity of this gene or its protein product, using small molecule drugs, antibodies, or protein therapeutics, may be of benefit in the treatment of bladder, gastric and lung cancer.

The NOV39a gene encodes a protein with homology to urokinase plasminogen activator surface receptor precusor, which has previously been shown to play an important role in metastasis of lung and other cancers (Lakka et al., Clin Cancer Res 7(4):1087-93, 2001). In addition, it has been shown that inhibition of urokinase-type plasminogen activator receptor gene using antisense technology reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines (Lakka et al., Clin Cancer Res 7(4):1087-93, 2001). This observation suggests that therapeutic inhibition of the NOV39a gene may also be useful for reducing tumor cell invasion and metastasis.

Panel 3D Summary: Ag3134 Expression of this gene is highest in a lung cancer cell line (CT = 29). The NOV39a gene is expressed at moderate levels in a number of other cancer cell lines including several lung, gastric, and bladder cancer cell lines. This observation is consistent with what is seen in Panel 2D.

Panel 4D Summary: Ag3134 Expression of the NOV39a gene is upregulated in activated keratinocytes as well as in IFN gamma treated dermal fibroblasts. Therefore, modulation of the activity of the protein encoded by this gene using small molecule drugs or antibodies may be useful in the treatment of psoriasis. The NOV39a gene encodes a protein with homology to urokinase plasminogen activator surface receptor precusor. Consistent with a potential role for this gene in psoriasis, alterations in plasminogen activator expression have previously been shown to be occur in psoriasis (Spiers et al., J Invest Dermatol 102(3):333-8, 1994).

In addition, expression of this gene is upregulated in TNF alpha + IFN gamma treated HUVEC cells (CT=29.8) and IFN gamma treated NCI-H292 cells (CT=31) as compared to their untreated counterparts (CTs=37-40). This gene also shows a moderate expression in normal lung. The expression of this gene in the activated mucoepidermoid cell line (NCI-H292 cells), and the endothelial cells (HUVEC) suggests that this gene may be important in the proliferation or activation of these cell types. Therefore, therapeutics designed with the protein encoded by the gene may reduce or eliminate symptoms caused by inflammation in lung epithelia in chronic obstructive pulmonary disease, asthma, allergy, and emphysema.

AA. NOV40a: novel human agrin

5

10

15

20

25

30

Expression of gene NOV40a was assessed using the primer-probe set Ag3605, described in Table AAA. Results of the RTQ-PCR runs are shown in Tables AAB, AAC, AAD, AAE and AAF.

Table AAA. Probe Name Ag3605

5

Primers	Sequences	Length	Start Position
Forward	5'-gaccccaagtcagaactgttc-3' (SEQ ID NO:287)	21	3174
IUTODE	TET-5'-attgagagcaccctggacgacctett-3'-TAMRA (SEQ ID NO:288)	26	3213
Reverse	5'-gaaatccttcttgacgtctgaa-3' (SEQ ID NO:289)	22	3245

Table AAB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3605, Run 210997601	Tissue Name	Rel. Exp.(%) Ag3605, Run 210997601
AD 1 Hippo	12.2	Control (Path) 3 Temporal Ctx	10.9
AD 2 Hippo	27.2	Control (Path) 4 Temporal Ctx	57.0
AD 3 Hippo	15.3	AD 1 Occipital Ctx	26.1
AD 4 Hippo	34.4	AD 2 Occipital Ctx (Missing)	0.0
AD 5 Hippo	100.0	AD 3 Occipital Ctx	12.0
AD 6 Hippo	32.3	AD 4 Occipital Ctx	24.7
Control 2 Hippo	37.9	AD 5 Occipital Ctx	44.4
Control 4 Hippo	20.7	AD 6 Occipital Ctx	13.5
Control (Path) 3 Hippo	7.5	Control 1 Occipital Ctx	10.0
AD 1 Temporal Ctx	28.7	Control 2 Occipital Ctx	51.8
AD 2 Temporal Ctx	31.9	Control 3 Occipital Ctx	17.3
AD 3 Temporal Ctx	17.4	Control 4 Occipital Ctx	14.9
AD 4 Temporal Ctx	31.2	Control (Path) 1 Occipital Ctx	90.8
AD 5 Inf Temporal Ctx	87.1	Control (Path) 2 Occipital Ctx	19.8
AD 5 Sup Temporal Ctx	51.4	Control (Path) 3 Occipital Ctx	7.4
AD 6 Inf Temporal Ctx	42.9	Control (Path) 4 Occipital Ctx	44.8
AD 6 Sup Temporal Ctx	51.1	Control 1 Parietal Ctx	14.6
Control 1 Temporal Ctx	17.3	Control 2 Parietal Ctx	53.6
Control 2 Temporal Ctx	50.3	Control 3 Parietal Ctx	18.6
Control 3 Temporal Ctx	23.7	Control (Path) 1 Parietal Ctx	76.3
Control 3 Temporal Ctx	20.3	Control (Path) 2 Parietal Ctx	36.6
Control (Path) 1 Temporal Ctx	78.5	Control (Path) 3 Parietal Ctx	12.0
Control (Path) 2 Temporal Ctx	50.3	Control (Path) 4 Parietal Ctx	64.2

Table AAC. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3605, Run 213406184	Tissue Name	Rel. Exp.(%) Ag3605, Run 213406184
Adipose	1.4	Renal ca. TK-10	19.3
Melanoma* Hs688(A).T	2.6	Bladder	8.4
Melaпота* Hs688(В).Т	4.6	Gastric ca. (liver met.) NCI-N87	87.7
Melanoma* M14	6.7	Gastric ca. KATO III	17.8
Melanoma* LOXIMVI	4.8	Colon ca. SW-948	9.2
Melanoma* SK-MEL-5	2.6	Colon ca. SW480	25.0
Squamous cell carcinoma SCC-4	9.0	Colon ca.* (SW480 met) SW620	5.0
Testis Pool	1.3	Colon ca. HT29	26.8
Prostate ca.* (bone met) PC-3	21.0	Colon ca. HCT-116	4.9
Prostate Pool	0.9	Colon ca. CaCo-2	13.6
Placenta	0.9	Colon cancer tissue	10.2
Uterus Pool	0.4	Colon ca. SW1116	5.1
Ovarian ca. OVCAR-3	77.4	Colon ca. Colo-205	1.8
Ovarian ca. SK-OV-3	42.0	Colon ca. SW-48	1.2
Ovarian ca. OVCAR-4	9.5	Colon Pool	1.9
Ovarian ca. OVCAR-5	39.2	Small Intestine Pool	0.6
Ovarian ca. IGROV-1	22.1	Stomach Pool	1.5
Ovarian ca. OVCAR-8	18.0	Bone Marrow Pool	0.6
Ovary	1.5	Fetal Heart	1.4
Breast ca. MCF-7	7.7	Heart Pool	0.7
Breast ca. MDA-MB- 231	22.7	Lymph Node Pool	2.1
Breast ca. BT 549	13.2	Fetal Skeletal Muscle	0.9
Breast ca. T47D	100.0	Skeletal Muscle Pool	0.4
Breast ca. MDA-N	4.8	Spleen Pool	0.7
Breast Pool	1.6	Thymus Pool	1.8
Trachea	2.8	CNS cancer (glio/astro) U87-MG	5.9
Lung	0.2	CNS cancer (glio/astro) U- 118-MG	11.7
Fetal Lung	11.4	CNS cancer (neuro;met) SK-N-AS	1.2
Lung ca. NCI-N417	1.4	CNS cancer (astro) SF-539	6.7
Lung ca. LX-1	10.5	CNS cancer (astro) SNB-75	22.8
Lung ca. NCI-H146	0.1	CNS cancer (glio) SNB-19	25.0
Lung ca. SHP-77	1.1	CNS cancer (glio) SF-295	35.1
Lung ca. A549	15.6	Brain (Amygdala) Pool	1.7
Lung ca. NCI-H526	5.4	Brain (cerebellum)	1.4
Lung ca. NCI-H23	18.9	Brain (fetal)	7.0
Lung ca. NCI-H460	11.5	Brain (Hippocampus) Pool	1.6
Lung ca. HOP-62	23.7	Cerebral Cortex Pool	1.9

Lung ca. NCI-H522	1.8	Brain (Substantia nigra) Pool	2.8
Liver	0.5	Brain (Thalamus) Pool	2.7
Fetal Liver	0.8	Brain (whole)	3.4
Liver ca. HepG2	15.5	Spinal Cord Pool	1.8
Kidney Pool	1.5	Adrenal Gland	0.2
Fetal Kidney	5.8	Pituitary gland Pool	0.3
Renal ca. 786-0	46.3	Salivary Gland	1.1
Renal ca. A498	13.8	Thyroid (female)	3.3
Renal ca. ACHN	14.3	Pancreatic ca. CAPAN2	23.7
Renal ca. UO-31	41.5	Pancreas Pool	3.0

Table AAD. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3605, Run 173764229	Tissue Name	Rel. Exp.(%) Ag3605, Run 173764229	
Normal Colon	4.7	Kidney Margin (OD04348)	100.0	
Colon cancer (OD06064)	6.3	Kidney malignant cancer (OD06204B)	21.6	
Colon Margin (OD06064)	2.3	Kidney normal adjacent tissue (OD06204E)	23.2	
Colon cancer (OD06159)	2.1	Kidney Cancer (OD04450- 01)	53.2	
Colon Margin (OD06159)	1.8	Kidney Margin (OD04450- 03)	21.3	
Colon cancer (OD06297-04)	2.0	Kidney Cancer 8120613	1.1	
Colon Margin (OD06297-05)	3.0	Kidney Margin 8120614	14.1	
CC Gr.2 ascend colon (ODO3921)	3.6	Kidney Cancer 9010320	20.3	
CC Margin (ODO3921)	1.3	Kidney Margin 9010321	15.0	
Colon cancer metastasis (OD06104)	1.1	Kidney Cancer 8120607	71.7	
Lung Margin (OD06104)	1.0	Kidney Margin 8120608	12.2	
Colon mets to lung (OD04451-01)	4.5	Normal Uterus	7.3	
Lung Margin (OD04451-02)	6.7	Uterine Cancer 064011	6.9	
Normal Prostate	2.1	Normal Thyroid	4.3	
Prostate Cancer (OD04410)	3.9	Thyroid Cancer 064010	27.0	
Prostate Margin (OD04410)	3.4	Thyroid Cancer A302152	19.1	
Normal Ovary	7.6	Thyroid Margin A302153	8.1	
Ovarian cancer (OD06283- 03)	27.9	Normal Breast	14.0	
Ovarian Margin (OD06283- 07)	2.0	Breast Cancer (OD04566)	13.4	
Ovarian Cancer 064008	16.0	Breast Cancer 1024	35.1	
Ovarian cancer (OD06145)	10.1	Breast Cancer (OD04590- 01)	31.6	
Ovarian Margin (OD06145)	8.2	Breast Cancer Mets (OD04590-03)	8.7	
Ovarian cancer (OD06455- 03)	28.9	Breast Cancer Metastasis (OD04655-05)	13.3	

Ovarian Margin (OD06455- 07)	1.9	Breast Cancer 064006	21.5
Normal Lung	2.9	Breast Cancer 9100266	17.7
Invasive poor diff. lung adeno (ODO4945-01	9.4	Breast Margin 9100265	16.5
Lung Margin (ODO4945-03)	7.9	Breast Cancer A209073	13.2
Lung Malignant Cancer (OD03126)	7.5	Breast Margin A2090734	35.4
Lung Margin (OD03126)	7.0	Breast cancer (OD06083)	24.5
Lung Cancer (OD05014A)	17.0	Breast cancer node metastasis (OD06083)	21.5
Lung Margin (OD05014B)	11.7	Normal Liver	5.0
Lung cancer (OD06081)	12.2	Liver Cancer 1026	15.5
Lung Margin (OD06081)	2.4	Liver Cancer 1025	12.2
Lung Cancer (OD04237-01)	1.8	Liver Cancer 6004-T	7.8
Lung Margin (OD04237-02)	16.2	Liver Tissue 6004-N	6.1
Ocular Melanoma Metastasis	8.4	Liver Cancer 6005-T	25.0
Ocular Melanoma Margin (Liver)	2.9	Liver Tissue 6005-N	12.4
Melanoma Metastasis	4.0	Liver Cancer 064003	12.9
Melanoma Margin (Lung)	3.8	Normal Bladder	14.2
Normal Kidney	10.9	Bladder Cancer 1023	9.5
Kidney Ca, Nuclear grade 2 (OD04338)	35.4	Bladder Cancer A302173	12.2
Kidney Margin (OD04338)	20.4	Normal Stomach	8.7
Kidney Ca Nuclear grade 1/2 (OD04339)	52.9	Gastric Cancer 9060397	8.9
Kidney Margin (OD04339)	16.6	Stomach Margin 9060396	7.4
Kidney Ca, Clear cell type (OD04340)	16.6	Gastric Cancer 9060395	7.0
Kidney Margin (OD04340)	7.4	Stomach Margin 9060394	7.5
Kidney Ca, Nuclear grade 3 (OD04348)	11.2	Gastric Cancer 064005	6.9

Table AAE. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag3605, Run 169943454	Tissue Name	Rel. Exp.(%) Ag3605, Run 169943454
Secondary Th1 act	1.0	HUVEC IL-1 beta	15.6
Secondary Th2 act	5.1	HUVEC IFN gamma	12.9
Secondary Trl act	2.5	HUVEC TNF alpha + IFN gamma	37.6
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	31.4
Secondary Th2 rest	0.4	HUVEC IL-11	14.9
Secondary Tr1 rest	0.4	Lung Microvascular EC none	79.0
Primary Th1 act	3.6	Lung Microvascular EC TNFalpha + IL-1beta	100.0
Primary Th2 act	1.1	Microvascular Dermal EC none	49.7
Primary Tr1 act	3.4	Microsvasular Dermal EC TNFalpha + IL-1beta	56.6

Primary Th1 rest	0.9	Bronchial epithelium TNFalpha + IL1 beta	78.5
Primary Th2 rest	0.5	Small airway epithelium none	31.0
Primary Tr1 rest	0.2	Small airway epithelium TNFalpha + IL-1beta	81.8
CD45RA CD4 lymphocyte act	43.5	Coronery artery SMC rest	17.2
CD45RO CD4 lymphocyte act	5.0	Coronery artery SMC TNFalpha + IL-1 beta	22.2
CD8 lymphocyte act	3.9	Astrocytes rest	80.1
Secondary CD8 lymphocyte rest	3.7	Astrocytes TNFalpha + IL-1beta	82.9
Secondary CD8 lymphocyte act	3.3	KU-812 (Basophil) rest	2.6
CD4 lymphocyte none	0.3	KU-812 (Basophil) PMA/ionomycin	0.6
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.3	CCD1106 (Keratinocytes) none	70.7
LAK cells rest	5.0	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	77.4
LAK cells IL-2	2.8	Liver cirrhosis	13.2
LAK cells IL-2+IL-12	1.4	NCI-H292 none	57.8
LAK cells IL-2+IFN gamma	2.3	NCI-H292 IL-4	62.4
LAK cells IL-2+ IL-18	2.9	NCI-H292 IL-9	61.6
LAK cells PMA/ionomycin	6.8	NCI-H292 IL-13	53.6
NK Cells IL-2 rest	1.6	NCI-H292 IFN gamma	67.4
Two Way MLR 3 day	10.7	HPAEC none	21.5
Two Way MLR 5 day	6.5	HPAEC TNF alpha + IL-1 beta	37.6
Two Way MLR 7 day	4.3	Lung fibroblast none	22.4
PBMC rest	0.0	Lung fibroblast TNF alpha + IL- 1 beta	71.2
PBMC PWM	5.0	Lung fibroblast IL-4	16.2
PBMC PHA-L	5.5	Lung fibroblast IL-9	31.9
Ramos (B cell) none	0.4	Lung fibroblast IL-13	18.7
Ramos (B cell) ionomycin	0.2	Lung fibroblast IFN gamma	23.0
B lymphocytes PWM	2.4	Dermal fibroblast CCD1070 rest	15.9
B lymphocytes CD40L and IL-4	1.5	Dermal fibroblast CCD1070 TNF alpha	15.9
EOL-1 dbcAMP	3.4	Dermal fibroblast CCD1070 IL- 1 beta	17.2
EOL-1 dbcAMP PMA/ionomycin	18.3	Dermal fibroblast IFN gamma	7.2
Dendritic cells none	14.8	Dermal fibroblast IL-4	7.2
Dendritic cells LPS	48.3	Dermal Fibroblasts rest	4.3
Dendritic cells anti-CD40	9.7	Neutrophils TNFa+LPS	0.0
Monocytes rest	0.9	Neutrophils rest	0.2
Monocytes LPS	66.4	Colon	7.0
Macrophages rest	16.2	Lung	23.3
Macrophages LPS	54.7	Thymus	5.8

HUVEC none	9.3	Kidney	23.2
HUVEC starved	14.4		

Table AAF. Panel CNS_1

Tissue Name	Rel. Exp.(%) Ag3605, Run 171648697	Tissue Name	Rel. Exp.(%) Ag3605, Run 171648697
BA4 Control	23.8	BA17 PSP	21.9
BA4 Control2	44.4	BA17 PSP2	14.4
BA4 Alzheimer's2	7.5	Sub Nigra Control	37.9
BA4 Parkinson's	66.0	Sub Nigra Control2	31.0
BA4 Parkinson's2	80.7	Sub Nigra Alzheimer's2	26.4
BA4 Huntington's	23.5	Sub Nigra Parkinson's2	80.1
BA4 Huntington's2	49.3	Sub Nigra Huntington's	76.3
BA4 PSP	19.5	Sub Nigra Huntington's2	29.7
BA4 PSP2	34.9	Sub Nigra PSP2	11.1
BA4 Depression	20.6	Sub Nigra Depression	34.4
BA4 Depression2	21.3	Sub Nigra Depression2	18.8
BA7 Control	53.2	Glob Palladus Control	40.3
BA7 Control2	47.6	Glob Palladus Control2	35.8
BA7 Alzheimer's2	13.6	Glob Palladus Alzheimer's	20.0
BA7 Parkinson's	39.8	Glob Palladus Alzheimer's2	21.8
BA7 Parkinson's2	60.7	Glob Palladus Parkinson's	100.0
BA7 Huntington's	41.8	Glob Palladus Parkinson's2	25.0
BA7 Huntington's2	62.9	Glob Palladus PSP	17.9
BA7 PSP	36.1	Glob Palladus PSP2	7.2
BA7 PSP2	25.0	Glob Palladus Depression	15.5
BA7 Depression	20.0	Temp Pole Control	15.3
BA9 Control	36.6	Temp Pole Control2	76.8
BA9 Control2	83.5	Temp Pole Alzheimer's	14.3
BA9 Alzheimer's	17.1	Temp Pole Alzheimer's2	14.7
BA9 Alzheimer's2	34.4	Temp Pole Parkinson's	76.3
BA9 Parkinson's	70.7	Temp Pole Parkinson's2	77.4
BA9 Parkinson's2	74.2	Temp Pole Huntington's	39.8
BA9 Huntington's	55.5	Temp Pole PSP	7.4
BA9 Huntington's2	45.1	Temp Pole PSP2	8.1
BA9 PSP	28.7	Temp Pole Depression2	31.6
BA9 PSP2	8.2	Cing Gyr Control	82.4
BA9 Depression	18.0	Cing Gyr Control2	82.4
BA9 Depression2	0.0	Cing Gyr Alzheimer's	27.4
BA17 Control	74.7	Cing Gyr Alzheimer's2	36.3

BA17 Control2	86.5	Cing Gyr Parkinson's	46.3
BA17 Alzheimer's2	20.3	Cing Gyr Parkinson's2	42.6
BA17 Parkinson's	75.3	Cing Gyr Huntington's	70.7
BA17 Parkinson's2	85.3	Cing Gyr Huntington's2	37.6
BA17 Huntington's	47.0	Cing Gyr PSP	21.6
BA17 Huntington's2	26.6	Cing Gyr PSP2	13.9
BA17 Depression	24.8	Cing Gyr Depression	21.3
BA17 Depression2	41.2	Cing Gyr Depression2	32.5

CNS_neurodegeneration_v1.0 Summary: Ag3605 This panel confirms the expression of this gene at moderate levels in the brains of an independent group of individuals. However, no differential expression of this gene was detected between Alzheimer's diseased postmortem brains and those of non-demented controls in this experiment. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

General_screening_panel_v1.4 Summary: Ag3605 Expression of the NOV40a gene is highest in a breast cancer cell line (CT = 25.2). In addition, expression of this gene is primarily associated with cancer cell lines rather than with normal tissues. Specifically, expression of this gene is upregulated in pancreatic, CNS, colon, gastric, renal, lung, breast, ovarian, and prostate cancer cell lines when compared to their respective normal tissues. Thus, therapeutic modulation of the activity of this gene or its protein product, using small molecule drugs, antibodies or protein therapeutics, may be of benefit in the treatment of these types of cancers.

10

15

20

25

In addition, this gene is expressed at moderate levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. The NOV40a gene encodes a protein with homology to agrin, a neuronal aggregating factor that induces the aggregation of acetylcholine receptors and other postsynaptic proteins on muscle fibers and is crucial for the formation of the neuromuscular junction. More recently, it has been shown that agrin plays an important role in defining neuronal responses to excitatory neurotransmitters both in vitro and in vivo (Hilgenberg et al., Mol Cell Neurosci 19(1):97-110, 2002; Bixby et al., J Neurobiol 50(2):164-79, 2002). The NOV40a gene expression in the central nervous system is consistent with the hypothesis that this protein may have similar functions as agrin. Therefore, this gene may play

a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

Among tissues with metabolic or endocrine function, this gene is expressed at moderate levels in pancreas, adipose, thyroid, and the gastrointestinal tract and at low levels in adrenal gland, pituitary gland, skeletal muscle, heart, and liver. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes. In support of this hypothesis, decreased glomerular expression of agrin in has been observed in diabetic nephropathy (Yard et al., Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol 9(3):214-22, 2001).

Panel 2.2 Summary: Ag3605 Expression of the NOV40a gene is highest in a sample of normal kidney (CT = 27.4). Interestingly, expression of this gene appears to be upregulated in a number of ovarian and renal cancers when compared to the matched control margins. Thus, expression of this gene could be used as a marker for ovarian and renal carcinoma. Furthermore, therapeutic modulation of the activity of this gene or its protein product, using small molecule drugs, antibodies or protein therapeutics, could be of benefit in the treatment of renal and ovarian cancer. This gene is expressed at moderate levels in the remaining samples on this panel, with little or no difference in expression levels between tumor and normal tissue.

10

15

20

25

30

Panel 4.1D Summary: Ag3605 Expression of the NOV40a gene is highest in lung microvascular endothelial cells, microvascular dermal endothelial cells, mucoepidermoid cell line NCI-H292, astrocytes, and keratinocytes. Therefore, small molecule drug, antibody or protein therapeutics designed against the protein encoded by the NOV40a gene could reduce or inhibit inflammation in asthma, emphysema, allergy, psoriasis, muscular dystrophy and multiple sclerosis.

The NOV40a gene encodes a protein with homology to agrin. Recently, it has been demonstrated that agrin, an aggregating protein crucial for formation of the neuromuscular junction, is also expressed in lymphocytes and is important in reorganization of membrane lipid microdomains and setting the threshold for T cell signaling (Khan et al., Science 292(5522):1681-6, 2001). T cell activation is dependent on both a primary signal delivered through the T cell receptor and a secondary costimulatory signal mediated by coreceptors. Costimulation is thought to act through the specific redistribution and clustering of membrane and intracellular kinase-rich lipid raft microdomains at the contact site between T cells and antigen-presenting cells. This site has been termed the immunologic synapse. Khan et al.

(2001) concluded that agrin induces the aggregation of signaling proteins and the creation of signaling domains in both immune and nervous systems through a common lipid raft pathway.

Panel CNS_1 Summary: Ag3605 This panel confirms the expression of this gene at low levels in the brains of an independent group of individuals. Please see Panel 1.4 for a discussion of the potential utility of this gene in treatment of central nervous system disorders.

AB. NOV41a: MAJOR URINARY PROTEIN 4 PRECURSOR (MUP 4)

Expression of gene NOV41a was assessed using the primer-probe set Ag2289, described in Table ABA. Results of the RTQ-PCR runs are shown in Tables ABB, ABC, and ABD.

Table ABA. Probe Name Ag2289

5

10

Primers	Sequences	Length	Start Position
Forward	5'-gagcccactgctagagaaagac-3' (SEQ ID NO:290)	22	55
	TET-5'-tgctgtcccttaccaagatgatgctg-3'-TAMRA (SEQ ID NO:291)	26	105
Reverse	5'-accccagacacagcaacag-3' (SEQ ID NO:292)	19	131

Table ABB. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag2289, Run 209731955	Tissue Name	Rel. Exp.(%) Ag2289, Run 209731955
AD 1 Hippo	1.0	Control (Path) 3 Temporal Ctx	0.5
AD 2 Hippo	14.6	Control (Path) 4 Temporal Ctx	14.9
AD 3 Hippo	0.0	AD 1 Occipital Ctx	10.7
AD 4 Hippo	6.3	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	29.7	AD 3 Occipital Ctx	0.0
AD 6 Hippo	100.0	AD 4 Occipital Ctx	6.7
Control 2 Hippo	4.2	AD 5 Occipital Ctx	5.6
Control 4 Hippo	2.1	AD 6 Occipital Ctx	16.2
Control (Path) 3 Hippo	0.0	Control 1 Occipital Ctx	1.4
AD 1 Temporal Ctx	7.1	Control 2 Occipital Ctx	27.4
AD 2 Temporal Ctx	5.9	Control 3 Occipital Ctx	7.6
AD 3 Temporal Ctx	0.0	Control 4 Occipital Ctx	4.3
AD 4 Temporal Ctx	9.8	Control (Path) 1 Occipital Ctx	28.9
AD 5 Inf Temporal Ctx	8.4	Control (Path) 2 Occipital Ctx	7.0
AD 5 SupTemporal Ctx	1.9	Control (Path) 3 Occipital Ctx	0.0
AD 6 Inf Temporal Ctx	47.3	Control (Path) 4 Occipital Ctx	2.1
AD 6 Sup Temporal Ctx	61.1	Control 1 Parietal Ctx	1.8

Control 1 Temporal Ctx	2.2	Control 2 Parietal Ctx	13.1
Control 2 Temporal Ctx	29.7	Control 3 Parietal Ctx	11.0
Control 3 Temporal Ctx	6.9	Control (Path) 1 Parietal Ctx	29.7
Control 4 Temporal Ctx	0.0	Control (Path) 2 Parietal Ctx	6.9
Control (Path) 1 Temporal Ctx	4.9	Control (Path) 3 Parietal Ctx	0.0
Control (Path) 2 Temporal Ctx	16.8	Control (Path) 4 Parietal Ctx	1.2

Table ABC. Panel 1.3D

Tissue Name	Rel. Exp.(%) Ag2289, Run 151630364	Tissue Name	Rel. Exp.(%) Ag2289, Run 151630364	
Liver adenocarcinoma	4.8	Kidney (fetal)	3.3	
Pancreas	0.0	Renal ca. 786-0	0.0	
Pancreatic ca. CAPAN 2	0.0	Renal ca. A498	6.1	
Adrenal gland	0.0	Renal ca. RXF 393	0.0	
Thyroid	0.0	Renal ca. ACHN	0.0	
Salivary gland	0.0	Renal ca. UO-31	0.0	
Pituitary gland	0.0	Renal ca. TK-10	0.0	
Brain (fetal)	86.5	Liver	0.0	
Brain (whole)	38.2	Liver (fetal)	0.0	
Brain (amygdala)	51.8	Liver ca. (hepatoblast) HepG2	0.0	
Brain (cerebellum)	3.6	Lung	6.1	
Brain (hippocampus)	100.0	Lung (fetal)	4.2	
Brain (substantia nigra)	18.8	Lung ca. (small cell) LX- 1	22.5	
Brain (thalamus)	20.9	Lung ca. (small cell) NCI-H69	0.0	
Cerebral Cortex	66.9	Lung ca. (s.cell var.) SHP-77	4.3	
Spinal cord	0.0	Lung ca. (large cell)NCI- H460	0.0	
glio/astro U87-MG	3.3	Lung ca. (non-sm. cell) A549	0.0	
glio/astro U-118-MG	2.6	Lung ca. (non-s.cell) NCI-H23	0.0	
astrocytoma SW1783	0.0	Lung ca. (non-s.cell) HOP-62	0.0	
neuro*; met SK-N-AS	0.0	Lung ca. (non-s.cl) NCI- H522	0.0	
astrocytoma SF-539	0.0	Lung ca. (squam.) SW 900	0.0	
astrocytoma SNB-75	0.0	Lung ca. (squam.) NCI- H596	0.0	
glioma SNB-19	3.4	Mammary gland	4.2	
glioma U251	0.0	Breast ca.* (pl.ef) MCF-	0.0	

•			
glioma SF-295	5.7	Breast ca.* (pl.ef) MDA- MB-231	0.0
Heart (fetal)	0.0	Breast ca.* (pl.ef) T47D	0.0
Heart	0.0	Breast ca. BT-549	0.0
Skeletal muscle (fetal)	25.3	Breast ca. MDA-N	6.2
Skeletal muscle	0.0	Ovary	5.4
Bone marrow	0.0	Ovarian ca. OVCAR-3	0.0
Thymus	0.0	Ovarian ca. OVCAR-4	0.0
Spleen	3.2	Ovarian ca. OVCAR-5	0.0
Lymph node	3.9	Ovarian ca. OVCAR-8	25.9
Colorectal	16.4	Ovarian ca. IGROV-1	0.0
Stomach	0.0	Ovarian ca.* (ascites) SK-OV-3	0.0
Small intestine	0.0	Uterus	0.0
Colon ca. SW480	0.3	Placenta	0.0
Colon ca.* SW620(SW480 met)	5.1	Prostate	0.0
Colon ca. HT29	0.0	Prostate ca.* (bone met)PC-3	0.0
Colon ca. HCT-116	3.4	Testis	2.5
Colon ca. CaCo-2	0.0	Melanoma Hs688(A).T	0.0
Colon ca. tissue(ODO3866)	0.0	Melanoma* (met) Hs688(B).T	0.0
Colon ca. HCC-2998	0.0	Melanoma UACC-62	0.0
Gastric ca.* (liver met) NCI-N87	0.0	Melanoma M14	0.0
Bladder	0.0	Melanoma LOX IMVI	0.0
Trachea	0.0	Melanoma* (met) SK- MEL-5	0.0
Kidney	6.0	Adipose	0.0

Table ABD. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag2289, Run 169828803	Tissue Name	Rel. Exp.(%) Ag2289, Run 169828803	
Secondary Th1 act	0.0	HUVEC IL-1beta	0.0	
Secondary Th2 act	0.0	HUVEC IFN gamma	0.0	
Secondary Tr1 act	0.0	HUVEC TNF alpha + IFN gamma	0.0	
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.0	
Secondary Th2 rest	0.0	HUVEC IL-11	0.0	
Secondary Trl rest	0.0	Lung Microvascular EC none	0.0	
Primary Th1 act	5.7	Lung Microvascular EC TNFalpha + IL-1beta	0.0	
Primary Th2 act	0.0	Microvascular Dermal EC none	0.0	
Primary Trl act	0.0	Microsvasular Dermal EC TNFalpha + IL-1beta 0.0		
Primary Th1 rest	0.0	Bronchial epithelium TNFalpha + IL1beta	0.0	
Primary Th2 rest	0.0	Small airway epithelium none	0.0	

Primary Tr1 rest 0.0 Small airway epithelium TNFalpha + IL-1 beta 0.0	
Coronery artery SMC Test Coronery artery SMC Test Coronery artery SMC TNFalpha ct ct LI_1beta ct ct LI_1beta ct ct ct ct ct ct ct	
Act	
Secondary CD8 Secondary CD	
Secondary CD8 Secondary CD	
Secondary CD8 Secondary CD	
Imphocyte act	
CD4 lymphocyte none O.0 PMA/ionomycin O.0	
CD95 CH11 12.5 CCD1106 (Keratinocytes) none 0.0	
LAK cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL-12 0.0 NCI-H292 none 15.1 LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 27.9 LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 27.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 18.6 NCI-H292 IFN gamma 12.7 Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
LAK cells IL-2+IL-12 0.0 NCI-H292 none 15.1 LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 27.9 LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 27.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 18.6 NCI-H292 IFN gamma 12.7 Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 27.9 LAK cells IL-2+ IL-18 0.0 NCI-H292 IL-9 27.0 LAK cells PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 18.6 NCI-H292 IFN gamma 12.7 Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
Samma 0.0 NCI-H292 IL-4 27.9	
LAK cells 0.0 NCI-H292 IL-13 0.0 PMA/ionomycin 18.6 NCI-H292 IFN gamma 12.7 NK Cells IL-2 rest 18.6 NCI-H292 IFN gamma 12.7 Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
PMA/ionomycin 0.0 NCI-H292 IL-13 0.0 NK Cells IL-2 rest 18.6 NCI-H292 IFN gamma 12.7 Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
Two Way MLR 3 day 59.5 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-1 0.0 0.0	
Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-	
Two Way MLR 5 day 0.0 HPAEC TNF alpha + IL-1 beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 Lung fibroblast TNF alpha + IL-	
Lung fibroblast TNF alpha + IL-	
DDMC root Lung fibroblast TNF alpha + IL-	
PBMC rest 0.0 1 beta 0.0	
PBMC PWM 0.0 Lung fibroblast IL-4 0.0	
PBMC PHA-L 0.0 Lung fibroblast IL-9 0.0	70.74
Ramos (B cell) none 0.0 Lung fibroblast IL-13 0.0	
Ramos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 0.0	
B lymphocytes PWM 0.0 Dermal fibroblast CCD1070 rest 0.0	
B lymphocytes CD40L 0.0 Dermal fibroblast CCD1070 and IL-4 0.0 TNF alpha 0.0	
EOL-1 dbcAMP 22.1 Dermal fibroblast CCD1070 IL- 1 beta 0.0	
EOL-1 dbcAMP PMA/ionomycin 12.9 Dermal fibroblast IFN gamma 0.0	
Dendritic cells none 26.2 Dermal fibroblast IL-4 0.0	
Dendritic cells LPS 0.0 Dermal Fibroblasts rest 0.0	
Dendritic cells anti-CD40 42.6 Neutrophils TNFa+LPS 0.0	
Monocytes rest 0.0 Neutrophils rest 0.0	
Monocytes LPS 0.0 Colon 0.0	
Macrophages rest 19.9 Lung 18.4	
Macrophages LPS 0.0 Thymus 15.3	
HUVEC none 0.0 Kidney 100.0	
HUVEC starved 0.0	

CNS_neurodegeneration_v1.0 Summary: Ag2289 This panel does not show differential expression of the NOV41a gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.3D for discussion of utility of this gene in the central nervous system.

Panel 1.3D Summary: Ag2289 Expression of the NOV41a gene appears to be highly brain specific, with highest expression in hippocampus (CT=30). Therefore, this gene may play a role in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.

5

10

15

20

25

30

In addition, this gene is expressed at much higher levels in fetal skeletal muscle tissue (CT=32) when compared to expression in the adult counterpart (CT=40). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue. Furthermore, the relative overexpression of this gene in fetal skeletal muscle suggests that the protein product may enhance muscular growth or development in the fetus and thus may also act in a regenerative capacity in the adult. Therefore, therapeutic modulation of the protein encoded by this gene could be useful in treatment of muscle related diseases. More specifically, treatment of weak or dystrophic muscle with the protein encoded by this gene could restore muscle mass or function.

This gene is a homolog of MUP, whose murine homolog has been shown to have pheremone binding activity (Timm et al., Protein Sci 10(5):997-1004, 2001; Novotny et al., Proc R Soc Lond B Biol Sci 266(1432):2017-22, 1999). Based on the homology, this protein may play a role in sexual maturation and cycling in adult females.

Panel 2.2 Summary: Ag2289 Expression of the NOV41a gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4.1D Summary: Ag2289 The NOV41a gene is only expressed at detectable levels in the kidney (CT=34.7). The putative protein encoded for by this gene may allow cells within the kidney to respond to specific microenvironmental signals. Therefore, therapies designed with the protein encoded by this gene may modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.

Panel CNS_1 Summary: Ag2289 Expression of the NOV41a gene is low/undetectable in all samples on this panel (CTs>35).

AC. NOV41b: MAJOR URINARY PROTEIN 4 PRECURSOR

Expression of gene NOV41b was assessed using the primer-probe set Ag2321, described in Table ACA.

Table ACA. Probe Name Ag2321

5

10

15

Primera	Sequences	Length	Start Position
Forward	5'-caggaggaagaaacaatgatg-3' (SEQ ID NO:293)	22	73
IUTARE	TET-5'-tgtgacaagcaacttcgatctgtcaa-3'-TAMRA (SEQ ID NO:294)	26	96
Reverse	5'-aaccgaataccactctcctgaa-3' (SEQ ID NO:295)	22	126

Panel 1.3D Summary: Ag2321 Expression of the NOV41b gene is low/undetectable in all samples on this panel (CTs>35).

Panel 2.2 Summary: Ag2321 Expression of the NOV41b gene is low/undetectable in all samples on this panel (CTs>35).

Panel 4D Summary: Ag2321 Expression of the NOV41b gene is low/undetectable in all samples on this panel (CTs>35).

AD. NOV42a and CG59889-02 and NOV42c: KIAA1199

Expression of gene NOV42a, variant CG59889-02 and full length clone NOV42c was assessed using the primer-probe set Ag3626, described in Table ADA. Results of the RTQ-PCR runs are shown in Tables ADB, ADC, ADD, ADE and ADF. Please note that NOV42c represents a full-length physical clone of the NOV42c gene, validating the prediction of the gene sequence

Table ADA. Probe Name Ag3626

Primers	Sequences	Length	Start Position
Forward	5'-ctgaggatcacaaagccaaa-3' (SEQ ID NO:296)	20	4091
	TET-5'-atcttccaagttgtgcccatccctgt-3'-TAMRA (SEQ ID NO:297)		4111
Reverse	5'-cagctgtcctcacaacttcttc-3' (SEQ ID NO:298)	22	4146

Table ADB. AI comprehensive panel_v1.0

Tissue Name	Rel. Exp.(%) Ag3626, Run 234222205	Tissue Name	Rel. Exp.(%) Ag3626, Run 234222205
110967 COPD-F	1.0	112427 Match Control Psoriasis-F	13.7
110980 COPD-F	1.6	112418 Psoriasis-M	1.8
110968 COPD-M	2.2	112723 Match Control Psoriasis-M	15.1
110977 COPD-M	8.5	112419 Psoriasis-M	4.6
110989 Emphysema-F	16.3	112424 Match Control Psoriasis-M	2.0
110992 Emphysema-F	4.3	112420 Psoriasis-M	12.2

110993 Emphysema-F	3.3	112425 Match Control Psoriasis-M	9.6
110994 Emphysema-F	1.2	104689 (MF) OA Bone- Backus	22.7
110995 Emphysema-F	11.6	104690 (MF) Adj "Normal" Bone-Backus	12.4
110996 Emphysema-F	1.6	104691 (MF) OA Synovium-Backus	28.5
110997 Asthma-M	0.9	104692 (BA) OA Cartilage- Backus	45.1
111001 Asthma-F	2.6	104694 (BA) OA Bone- Backus	39.8
111002 Asthma-F	9.2	104695 (BA) Adj "Normal" Bone-Backus	26.2
111003 Atopic Asthma-F	4.0	104696 (BA) OA Synovium- Backus	45.4
111004 Atopic Asthma-F	7.6	104700 (SS) OA Bone- Backus	13.1
111005 Atopic Asthma-F	2.0	104701 (SS) Adj "Normal" Bone-Backus	31.6
111006 Atopic Asthma-F	2.4	104702 (SS) OA Synovium- Backus	13.0
111417 Allergy-M	3.4	117093 OA Cartilage Rep7	8.4
112347 Allergy-M	0.4	112672 OA Bone5	31.6
112349 Normal Lung-F	0.1	112673 OA Synovium5	15.7
112357 Normal Lung-F	13.8	112674 OA Synovial Fluid cells5	15.1
112354 Normal Lung-M	1.5	117100 OA Cartilage Rep14	2.3
112374 Crohns-F	28.9	112756 OA Bone9	100.0
112389 Match Control Crohns-F	3.5	112757 OA Synovium9	0.6
112375 Crohns-F	43.8	112758 OA Synovial Fluid Cells9	1.9
112732 Match Control Crohns-F	8.2	117125 RA Cartilage Rep2	1.3
112725 Crohns-M	6.1	113492 Bone2 RA	4.2
112387 Match Control Crohns-M	15.6	113493 Synovium2 RA	2.0
112378 Crohns-M	0.2	113494 Syn Fluid Cells RA	5.5
112390 Match Control Crohns-M	16.8	113499 Cartilage4 RA	4.3
112726 Crohns-M	6.5	113500 Bone4 RA	9.5
112731 Match Control Crohns-M	6.1	113501 Synovium4 RA	6.1
112380 Ulcer Col-F	5.0	113502 Syn Fluid Cells4 RA	3.7
112734 Match Control Ulcer Col-F	29.9	113495 Cartilage3 RA	3.9
112384 Ulcer Col-F	21.9	113496 Bone3 RA	7.4
112737 Match Control Ulcer Col-F	0.5	113497 Synovium3 RA	2.4
112386 Ulcer Col-F	0.9	113498 Syn Fluid Cells3 RA	3.3
112738 Match Control	2.0	117106 Normal Cartilage	1.8

Ulcer Col-F		Rep20	
112381 Ulcer Col-M	0.1	113663 Bone3 Normal	0.8
112735 Match Control Ulcer Col-M	8.5	113664 Synovium3 Normal	0.1
112382 Ulcer Col-M	4.0	113665 Syn Fluid Cells3 Normal	0.2
112394 Match Control Ulcer Col-M	2.0	117107 Normal Cartilage Rep22	1.2
112383 Ulcer Col-M	14.9	113667 Bone4 Normal	8.1
112736 Match Control Ulcer Col-M	4.4	113668 Synovium4 Normal	6.0
112423 Psoriasis-F	3.3	113669 Syn Fluid Cells4 Normal	17.0

Table ADC. CNS_neurodegeneration_v1.0

Tissue Name	Rel. Exp.(%) Ag3626, Run 206916253	Tissue Name	Rel. Exp.(%) Ag3626, Run 206916253
AD 1 Hippo	17.7	Control (Path) 3 Temporal Ctx	8.2
AD 2 Hippo	26.6	Control (Path) 4 Temporal Ctx	23.7
AD 3 Hippo	10.1	AD 1 Occipital Ctx	25.5
AD 4 Hippo	6.7	AD 2 Occipital Ctx (Missing)	0.0
AD 5 hippo	100.0	AD 3 Occipital Ctx	11.4
AD 6 Hippo	31.4	AD 4 Occipital Ctx	12.2
Control 2 Hippo	10.9	AD 5 Occipital Ctx	55.9
Control 4 Hippo	31.4	AD 6 Occipital Ctx	35.8
Control (Path) 3 Hippo	14.6	Control 1 Occipital Ctx	22.8
AD 1 Temporal Ctx	25.7	Control 2 Occipital Ctx	69.3
AD 2 Temporal Ctx	33.0	Control 3 Occipital Ctx	23.7
AD 3 Temporal Ctx	12.9	Control 4 Occipital Ctx	9.7
AD 4 Temporal Ctx	16.5	Control (Path) 1 Occipital Ctx	63.3
AD 5 Inf Temporal Ctx	72.7	Control (Path) 2 Occipital Ctx	19.8
AD 5 SupTemporal Ctx	46.3	Control (Path) 3 Occipital Ctx	1.9
AD 6 Inf Temporal Ctx	38.4	Control (Path) 4 Occipital Ctx	56.3
AD 6 Sup Temporal Ctx	43.8	Control 1 Parietal Ctx	13.2
Control 1 Temporal Ctx	22.2	Control 2 Parietal Ctx	47.6
Control 2 Temporal Ctx	20.3	Control 3 Parietal Ctx	12.1
Control 3 Temporal Ctx	12.6	Control (Path) 1 Parietal Ctx	66.9
Control 4 Temporal Ctx	10.7	Control (Path) 2 Parietal Ctx	46.3
Control (Path) 1 Temporal Ctx	45.1	Control (Path) 3 Parietal Ctx	6.2
Control (Path) 2	21.2	Control (Path) 4	51.4

		
Townson! Ctr	Parietal Ctx	1
Temporal Ctx	Parietal Ctx	

Table ADD. General_screening_panel_v1.4

Tissue Name	Rel. Exp.(%) Ag3626, Run 213406211	Tissue Name	Rel. Exp.(%) Ag3626, Run 213406211
Adipose	0.0	Renal ca. TK-10	2.9
Melanoma* Hs688(A).T	61.1	Bladder	0.7
Melanoma* Hs688(B).T	86.5	Gastric ca. (liver met.) NCI-N87	1.8
Melanoma* M14	0.5	Gastric ca. KATO III	100.0
Melanoma* LOXIMVI	0.1	Colon ca. SW-948	9.9
Melanoma* SK-MEL-5	1.6	Colon ca. SW480	0.9
Squamous cell carcinoma SCC-4	0.3	Colon ca.* (SW480 met) SW620	19.2
Testis Pool	0.3	Colon ca. HT29	3.8
Prostate ca.* (bone met) PC-3	0.6	Colon ca. HCT-116	0.5
Prostate Pool	0.1	Colon ca. CaCo-2	0.1
Placenta	0.4	Colon cancer tissue	9.5
Uterus Pool	0.0	Colon ca. SW1116	2.5
Ovarian ca. OVCAR-3	0.5	Colon ca. Colo-205	6.0
Ovarian ca. SK-OV-3	0.2	Colon ca. SW-48	6.3
Ovarian ca. OVCAR-4	0.0	Colon Pool	0.1
Ovarian ca. OVCAR-5	1.4	Small Intestine Pool	0.3
Ovarian ca. IGROV-1	0.2	Stomach Pool	0.5
Ovarian ca. OVCAR-8	0.7	Bone Marrow Pool	0.1
Ovary	0.6	Fetal Heart	0.1
Breast ca. MCF-7	0.1	Heart Pool	0.0
Breast ca. MDA-MB- 231	25.2	Lymph Node Pool	0.1
Breast ca. BT 549	0.1	Fetal Skeletal Muscle	0.0
Breast ca. T47D	4.8	Skeletal Muscle Pool	0.0
Breast ca. MDA-N	0.4	Spleen Pool	0.1
Breast Pool	0.2	Thymus Pool	0.5
Trachea	0.6	CNS cancer (glio/astro) U87-MG	0.6
Lung	0.1	CNS cancer (glio/astro) U- 118-MG	2.0
Fetal Lung	0.5	CNS cancer (neuro;mct) SK-N-AS	0.4
Lung ca. NCI-N417	0.0	CNS cancer (astro) SF-539	1.9
Lung ca. LX-1	36.3	CNS cancer (astro) SNB-75	3.3
Lung ca. NCI-H146	4.2	CNS cancer (glio) SNB-19	0.2
Lung ca. SHP-77	2.1	CNS cancer (glio) SF-295	0.3
Lung ca. A549	0.2	Brain (Amygdala) Pool	0.2
Lung ca. NCI-H526	0.0	Brain (cerebellum)	1.2
Lung ca. NCI-H23	0.7	Brain (fetal)	0.7
Lung ca. NCI-H460	0.2	Brain (Hippocampus) Pool	0.4

Lung ca. HOP-62	0.1	Cerebral Cortex Pool	0.5
Lung ca. NCI-H522	0.1	Brain (Substantia nigra) Pool	0.3
Liver	0.0	Brain (Thalamus) Pool	0.4
Fetal Liver	0.0	Brain (whole)	0.9
Liver ca. HepG2	8.7	Spinal Cord Pool	1.3
Kidney Pool	0.1	Adrenal Gland	0.1
Fetal Kidney	0.1	Pituitary gland Pool	0.1
Renal ca. 786-0	0.1	Salivary Gland	0.0
Renal ca. A498	0.0	Thyroid (female)	0.1
Renal ca. ACHN	0.0	Pancreatic ca. CAPAN2	0.1
Renal ca. UO-31	0.1	Pancreas Pool	0.2

Table ADE. Panel 2.2

Tissue Name	Rel. Exp.(%) Ag3626, Run 173764230	Tissue Name	Rel. Exp.(%) Ag3626, Run 173764230
Normal Colon	13.8	Kidney Margin (OD04348)	16.6
Colon cancer (OD06064)	43.5	Kidney malignant cancer (OD06204B)	7.5
Colon Margin (OD06064)	5.8	Kidney normal adjacent tissue (OD06204E)	3.7
Colon cancer (OD06159)	5.3	Kidney Cancer (OD04450- 01)	12.5
Colon Margin (OD06159)	4.0	Kidney Margin (OD04450- 03)	4.0
Colon cancer (OD06297-04)	52.5	Kidney Cancer 8120613	0.0
Colon Margin (OD06297-05)	9.2	Kidney Margin 8120614	10.3
CC Gr.2 ascend colon (ODO3921)	47.6	Kidney Cancer 9010320	20.2
CC Margin (ODO3921)	8.0	Kidney Margin 9010321	7.3
Colon cancer metastasis (OD06104)	15.7	Kidney Cancer 8120607	14.3
Lung Margin (OD06104)	0.0	Kidney Margin 8120608	4.8
Colon mets to lung (OD04451-01)	83.5	Normal Uterus	5.3
Lung Margin (OD04451-02)	4.0	Uterine Cancer 064011	8.5
Normal Prostate	0.0	Normal Thyroid	0.0
Prostate Cancer (OD04410)	4.0	Thyroid Cancer 064010	0.0
Prostate Margin (OD04410)	4.5	Thyroid Cancer A302152	30.8
Normal Ovary	21.9	Thyroid Margin A302153	0.0
Ovarian cancer (OD06283- 03)	58.2	Normal Breast	9.5
Ovarian Margin (OD06283- 07)	22.1	Breast Cancer (OD04566)	4.6
Ovarian Cancer 064008	42.9	Breast Cancer 1024	11.6
Ovarian cancer (OD06145)	33.4	Breast Cancer (OD04590-01)	34.2
Ovarian Margin (OD06145)	51.4	Breast Cancer Mets (OD04590-03)	14.1

Ovarian cancer (OD06455- 03)	26.6	Breast Cancer Metastasis (OD04655-05)	36.6
Ovarian Margin (OD06455- 07)	0.9	Breast Cancer 064006	14.9
Normal Lung	10.2	Breast Cancer 9100266	2.9
Invasive poor diff. lung adeno (ODO4945-01	8.7	Breast Margin 9100265	9.8
Lung Margin (ODO4945-03)	17.8	Breast Cancer A209073	7.6
Lung Malignant Cancer (OD03126)	45.1	Breast Margin A2090734	9.4
Lung Margin (OD03126)	10.7	Breast cancer (OD06083)	17.4
Lung Cancer (OD05014A)	60.3	Breast cancer node metastasis (OD06083)	33.9
Lung Margin (OD05014B)	9.5	Normal Liver	5.5
Lung cancer (OD06081)	18.2	Liver Cancer 1026	18.3
Lung Margin (OD06081)	5.4	Liver Cancer 1025	5.0
Lung Cancer (OD04237-01)	12.7	Liver Cancer 6004-T	18.3
Lung Margin (OD04237-02)	100.0	Liver Tissue 6004-N	9.7
Ocular Melanoma Metastasis	4.6	Liver Cancer 6005-T	30.1
Ocular Melanoma Margin (Liver)	4.0	Liver Tissue 6005-N	14.7
Melanoma Metastasis	4.7	Liver Cancer 064003	8.1
Melanoma Margin (Lung)	1.9	Normal Bladder	10.2
Normal Kidney	3.0	Bladder Cancer 1023	39.2
Kidney Ca, Nuclear grade 2 (OD04338)	4.6	Bladder Cancer A302173	41.8
Kidney Margin (OD04338)	5.2	Normal Stomach	6.3
Kidney Ca Nuclear grade 1/2 (OD04339)	18.2	Gastric Cancer 9060397	21.9
Kidney Margin (OD04339)	5.0	Stomach Margin 9060396	20.2
Kidney Ca, Clear cell type (OD04340)	2.0	Gastric Cancer 9060395	27.5
Kidney Margin (OD04340)	11.7	Stomach Margin 9060394	4.7
Kidney Ca, Nuclear grade 3 (OD04348)	3.9	Gastric Cancer 064005	17.6

Table ADF. Panel 3D

Tissue Name	Rel. Exp.(%) Ag3626, Run 182098824	Tissue Name	Rel. Exp.(%) Ag3626, Run 182098824
Daoy- Medulloblastoma	0.2	Ca Ski- Cervical epidermoid carcinoma (metastasis)	15.2
TE671- Medulloblastoma	0.0	ES-2- Ovarian clear cell carcinoma	0.4
D283 Med- Medulloblastoma	2.2	Ramos- Stimulated with PMA/ionomycin 6h	0.2
PFSK-1- Primitive Neuroectodermal	1.2	Ramos- Stimulated with PMA/ionomycin 14h	0.4
XF-498- CNS	0.6	MEG-01- Chronic myelogenous leukemia (megokaryoblast)	0.6
SNB-78- Glioma	11.0	Raji- Burkitt's lymphoma	0.3

SF-268- Glioblastoma	0.6	Daudi- Burkitt's lymphoma	0.5
T98G- Glioblastoma	4.1	U266- B-cell plasmacytoma	0.2
SK-N-SH- Neuroblastoma	7.1	0200- D-cen plasmacytoma	V.2
(metastasis)	1.1	CA46- Burkitt's lymphoma	0.0
SF-295- Glioblastoma	0.5	RL- non-Hodgkin's B-cell lymphoma	0.3
Cerebellum	1.4	JM1- pre-B-cell lymphoma	2.1
Cerebellum	4.2	Jurkat- T cell leukemia	0.5
NCI-H292- Mucoepidermoid lung carcinoma	5.8	TF-1- Erythroleukemia	0.5
DMS-114- Small cell lung cancer	0.0	HUT 78- T-cell lymphoma	1.0
DMS-79- Small cell lung cancer	16.2	U937- Histiocytic lymphoma	0.1
NCI-H146- Small cell lung cancer	4.9	KU-812- Myelogenous leukemia	0.0
NCI-H526- Small cell lung cancer	1.1	769-P- Clear cell renal carcinoma	0.0
NCI-N417- Small cell lung cancer	0.2	Caki-2- Clear cell renal carcinoma	0.0
NCI-H82- Small cell lung cancer	0.0	SW 839- Clear cell renal carcinoma	0.0
NCI-H157- Squamous cell lung cancer (metastasis)	2.1	G401- Wilms' tumor	0.0
NCI-H1155- Large cell lung cancer	19.3	Hs766T- Pancreatic carcinoma (LN metastasis)	28.7
NCI-H1299- Large cell lung cancer	0.8	CAPAN-1- Pancreatic adenocarcinoma (liver metastasis)	0.4
NCI-H727- Lung carcinoid	17.0	SU86.86- Pancreatic carcinoma (liver metastasis)	1.1
NCI-UMC-11- Lung carcinoid	1.9	BxPC-3- Pancreatic adenocarcinoma	4.1
LX-1- Small cell lung cancer	100.0	HPAC- Pancreatic adenocarcinoma	7.2
Colo-205- Colon cancer	31.2	MIA PaCa-2- Pancreatic carcinoma	0.0
KM12- Colon cancer	57.8	CFPAC-1- Pancreatic ductal adenocarcinoma	2.2
KM20L2- Colon cancer	14.4	PANC-1- Pancreatic epithelioid ductal carcinoma	0.4
NCI-H716- Colon cancer	1.6	T24- Bladder carcinma (transitional cell)	0.0
SW-48- Colon adenocarcinoma	26.8	5637- Bladder carcinoma	0.2
SW1116- Colon adenocarcinoma	9.9	HT-1197- Bladder carcinoma	0.0
LS 174T- Colon adenocarcinoma	17.3	UM-UC-3- Bladder carcinma (transitional cell)	0.0
SW-948- Colon adenocarcinoma	4.2	A204- Rhabdomyosarcoma	0.0
SW-480- Colon adenocarcinoma	21.0	HT-1080- Fibrosarcoma	30.6
NCI-SNU-5- Gastric	0.5	MG-63- Osteosarcoma	0.3

KATO III- Gastric carcinoma	0.9	SK-LMS-1- Leiomyosarcoma (vulva)	0.2
NCI-SNU-16- Gastric carcinoma	0.7	SJRH30- Rhabdomyosarcoma (met to bone marrow)	0.3
NCI-SNU-1- Gastric carcinoma	0.3	A431- Epidermoid carcinoma	0.1
RF-1- Gastric adenocarcinoma	0.0	WM266-4- Melanoma	10.4
RF-48- Gastric adenocarcinoma	0.0	DU 145- Prostate carcinoma (brain metastasis)	0.8
MKN-45- Gastric carcinoma	32.3	MDA-MB-468- Breast adenocarcinoma	0.0
NCI-N87- Gastric carcinoma	29.3	SCC-4- Squamous cell carcinoma of tongue	0.1
OVCAR-5- Ovarian carcinoma	0.8	SCC-9- Squamous cell carcinoma of tongue	0.2
RL95-2- Uterine carcinoma	0.0	SCC-15- Squamous cell carcinoma of tongue	0.2
HelaS3- Cervical adenocarcinoma	0.3	CAL 27- Squamous cell carcinoma of tongue	0.5

Table ADG. Panel 4.1D

Tissue Name	Rel. Exp.(%) Ag3626, Run 169946026	Tissue Name	Rel. Exp.(%) Ag3626, Run 169946026
Secondary Th1 act	0.4	HUVEC IL-1 beta	0.2
Secondary Th2 act	0.1	HUVEC IFN gamma	0.2
Secondary Tr1 act	0.3	HUVEC TNF alpha + IFN gamma	0.2
Secondary Th1 rest	0.0	HUVEC TNF alpha + IL4	0.1
Secondary Th2 rest	0.6	HUVEC IL-11	0.2
Secondary Trl rest	0.2	Lung Microvascular EC none	0.7
Primary Th1 act	0.3	Lung Microvascular EC TNFalpha + IL-1beta	1.2
Primary Th2 act	0.6	Microvascular Dermal EC none	0.1
Primary Tr1 act	0.6	Microsvasular Dermal EC TNFalpha + IL-1beta	0.7
Primary Th1 rest	0.2	Bronchial epithelium TNFalpha + IL1beta	0.5
Primary Th2 rest	0.2	Small airway epithelium none	1.1
Primary Tr1 rest	0.3	Small airway epithelium TNFalpha + IL-1beta	1.1
CD45RA CD4 lymphocyte act	29.1	Coronery artery SMC rest	28.5
CD45RO CD4 lymphocyte act	0.3	Coronery artery SMC TNFalpha + IL-1beta	19.9
CD8 lymphocyte act	0.1	Astrocytes rest	61.6
Secondary CD8 lymphocyte rest	0.2	Astrocytes TNFalpha + IL-1beta	100.0
Secondary CD8 lymphocyte act	0.6	KU-812 (Basophil) rest	0.3
CD4 lymphocyte none	0.3	KU-812 (Basophil)	0.3

		PMA/ionomycin	
2ry Th1/Th2/Tr1_anti- CD95 CH11	0.5	CCD1106 (Keratinocytes) none	0.6
LAK cells rest	0.7	CCD1106 (Keratinocytes) TNFalpha + IL-1beta	0.9
LAK cells IL-2	0.4	Liver cirrhosis	0.4
LAK cells IL-2+IL-12	0.0	NCI-H292 none	9.5
LAK cells IL-2+IFN gamma	0.6	NC1-H292 IL-4	5.5
LAK cells IL-2+ IL-18	0.2	NCI-H292 IL-9	4.2
LAK cells PMA/ionomycin	0.3	NCI-H292 IL-13	2.5
NK Cells IL-2 rest	0.6	NCI-H292 IFN gamma	1.2
Two Way MLR 3 day	1.4	HPAEC none	0.1
Two Way MLR 5 day	0.6	HPAEC TNF alpha + IL-1 beta	2.2
Two Way MLR 7 day	0.4	Lung fibroblast none	75.8
PBMC rest	0.2	Lung fibroblast TNF alpha + IL- 1 beta	11.1
PBMC PWM	5.1	Lung fibroblast IL-4	53.6
PBMC PHA-L	8.3	Lung fibroblast IL-9	27.2
Ramos (B cell) none	0.3	Lung fibroblast IL-13	34.2
Ramos (B cell) ionomycin	0.8	Lung fibroblast IFN gamma	20.4
B lymphocytes PWM	0.4	Dermal fibroblast CCD1070 rest	99.3
B lymphocytes CD40L and IL-4	0.9	Dermal fibroblast CCD1070 TNF alpha	64.6
EOL-1 dbcAMP	0.1	Dermal fibroblast CCD1070 IL- 1 beta	64.2
EOL-1 dbcAMP PMA/ionomycin	0.6	Dermal fibroblast IFN gamma	3.3
Dendritic cells none	0.3	Dermal fibroblast IL-4	1.4
Dendritic cells LPS	0.2	Dermal Fibroblasts rest	66.9
Dendritic cells anti-CD40	0.8	Neutrophils TNFa+LPS	0.1
Monocytes rest	0.9	Neutrophils rest	0.0
Monocytes LPS	40.6	Colon	0.1
Macrophages rest	0.1	Lung	8.8
Macrophages LPS	0.5	Thymus	1.2
HUVEC none	0.4	Kidney	0.3
HUVEC starved	0.1		

AI_comprehensive panel_v1.0 Summary: Ag3626 The NOV42a transcript is expressed in both normal and disease tissue. Transcript expression is higher in some joint tissues isolated from osteoarthritic (OA) patients as compared to normal joint tissues, with highest expression in an OA bone sample (CT=28.5). These findings suggest that the transscript or the protein it encodes could be used to detect osteoarthritic tissues. Furthermore, therapies designed with the protein encoded for by this transcript could be important for the treament of arthritis.

CNS_neurodegeneration_v1.0 Summary: Ag3626 This panel does not show differential expression of the NOV42a gene in Alzheimer's disease. However, this expression profile shows the presence of this gene in the brain. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic diseases.

General_screening_panel_v1.4 Summary: Ag3626 Results from one experiment with the NOV42c gene are not included. The amp plot indicates that there were experimental difficulties with this run.

5

10

15

20

25

30

Panel 2.2 Summary: Ag3626 The expression of this gene appears to be highest in a sample derived from a normal lung tissue (CT=30.8). In addition, there appears to be substantial expression in other samples derived from lung cancers, bladder cancers, breast cancers, ovarian cancers and colon cancers. Thus, the expression of this gene could be used to distinguish normal lung tissue from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of lung, bladder, breast, ovarian and colon cancer.

Panel 3D Summary: Ag3626 The expression of this gene appears to be highest in a sample derived from a lung cancer cell line (LX-1) (CT=27.5). In addition, there appears to be substantial expression in other samples derived from colon cancer cell lines and gastric cancer cell lines. Thus, the expression of this gene could be used to distinguish LX-1 cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of colon or gastric cancer.

Panel 4.1D Summary: Ag3626 Highest expression of the NOV42c gene is seen in TNF-alpha and IL-1 beta treated astrocytes. This expression suggests that therapeutics designed against the protein encoded by this gene may be useful for the treatment of inflammatory CNS diseases such as multiple sclerosis. In addition, this gene is expressed in clusters of samples from both treated and untreated lung and dermal fibroblasts. Therefore, modulation of the expression or activity of the protein encoded by this transcript may be beneficial for the treatment of lung inflammatory diseases such as asthma, and chronic obstructive pulmonary diseases, inflammatory skin diseases such as psoriasis, atopic dermatitis, ulcerative dermatitis, ulcerative colitis.

OTHER EMBODIMENTS

Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.

5

10

We claim:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:

- a) a mature form of the amino acid sequence selected from the group consisting of SEO ID NO: 2n, wherein n is an integer between 1 and 86;
- b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed;
- c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86;
- d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and
- e) a fragment of any of a) through d).
- 2. The polypeptide of claim 1 that is a naturally occurring allelic variant of the sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86.
- 3. The polypeptide of claim 2, wherein the allelic variant comprises an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n, wherein n is an integer between 1 and 86.
- 4. The polypeptide of claim 1 that is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution.

5. A pharmaceutical composition comprising the polypeptide of claim 1 and a pharmaceutically acceptable carrier.

- 6. A kit comprising in one or more containers, the pharmaceutical composition of claim 5.
- 7. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease selected from a pathology associated with the polypeptide of claim 1, wherein the therapeutic is the polypeptide of claim 1.
- 8. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising:
 - (a) providing the sample;
 - (b) introducing the sample to an antibody that binds immunospecifically to the polypeptide; and
 - (c) determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.
- 9. A method for determining the presence of or predisposition to a disease associated with altered levels of the polypeptide of claim 1 in a first mammalian subject, the method comprising:
 - a) measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and
 - b) comparing the amount of the polypeptide in the sample of step (a) to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease,

wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

- 10. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising:
 - (a) introducing the polypeptide to the agent; and

- (b) determining whether the agent binds to the polypeptide.
- 11. The method of claim 10 wherein the agent is a cellular receptor or a downstream effector.
- 12. A method for identifying a potential therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising:
 - (a) providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide;
 - (b) contacting the cell with a composition comprising a candidate substance; and
 - (c) determining whether the substance alters the property or function ascribable to the polypeptide;

whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.

- 13. A method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the polypeptide of claim 1, the method comprising:
 - a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein the test animal recombinantly expresses the polypeptide of claim 1;
 - b) measuring the activity of the polypeptide in the test animal after administering the compound of step (a); and
 - c) comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of claim 1.
- 14. The method of claim 13, wherein the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an

increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene.

- 15. A method for modulating the activity of the polypeptide of claim 1, the method comprising introducing a cell sample expressing the polypeptide of the claim with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.
- 16. A method of treating or preventing a pathology associated with the polypeptide of claim 1, the method comprising administering the polypeptide of claim 1 to a subject in which such treatment or prevention is desired in an amount sufficient to treat or prevent the pathology in the subject.
- 17. The method of claim 16, wherein the subject is a human.
- 18. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, or a biologically active fragment thereof.
- 19. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of:
 - a) a mature form of the amino acid sequence given SEQ ID NO: 2n, wherein n is an integer between 1 and 86;
 - b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed;

c) the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86;

- d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed;
- e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2n, wherein n is an integer between 1 and 86, or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and
- f) the complement of any of the nucleic acid molecules.
- 20. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.
- 21. The nucleic acid molecule of claim 19 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.
- 22. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-1, wherein n is an integer between 1 and 86.
- 23. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of
 - a) the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86;
 - b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86, is changed from that selected from the group consisting of the

chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed;

. . .4

- c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86; and
- a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86, is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.
- 24. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO: 2n-1, wherein n is an integer between 1 and 86, or a complement of the nucleotide sequence.
- 25. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.
- 26. A vector comprising the nucleic acid molecule of claim 19.
- 27. The vector of claim 26, further comprising a promoter operably linked to the nucleic acid molecule.
- 28. A cell comprising the vector of claim 27.
- 29. A method for determining the presence or amount of the nucleic acid molecule of claim 19 in a sample, the method comprising:
 - (a) providing the sample;

(b) introducing the sample to a probe that binds to the nucleic acid molecule; and

thereby determining the presence or amount of the nucleic acid molecule in the sample.

- 30. The method of claim 29 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
- 31. The method of claim 30 wherein the cell or tissue type is cancerous.
- 32. A method for determining the presence of or predisposition to a disease associated with altered levels of the nucleic acid molecule of claim 19 in a first mammalian subject, the method comprising:
 - a) measuring the amount of the nucleic acid in a sample from the first mammalian subject; and
 - b) comparing the amount of the nucleic acid in the sample of step (a) to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease;

wherein an alteration in the level of the nucleic acid in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
Потикр.		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.