January 29, 1965 DMIC Memorandům 201

COMPATIBILITY OF MATERIALS WITH ROCKET
PROPELLANTS AND OXIDIZERS

Best Available Copy

DEFENSE METALS INFORMATION CENTER
BATTELLE MEMORIAL INSTITUTE

COLUMBUS, OHIO 43201

The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, aluminum, refractory metals, high-strength alloys for high-temperature service, corrosion—and oxidation—resistant coatings, and thermal—protection systems. Its functions, under the direction of the Office of the Director of Defense Research and Engineering, are as follows:

- To collect, store, and disseminate technical information on the current status of research and development of the above materials.
- To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.
- To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.
- 4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. AF 33(615)-1121 Project No. 8975

Roger J. Runck

Roger J. Runck Director

Roger J. Kunck

The information is this report dame from many sources, and the original language may have been extensively quoted. Quotasient should credit the original authors and the originating agency. The patent questions appear to be involved, the usual preliminary search is advised before making use of the material, and where copyrighted material is used, permission should be obtained for its

LUPIES AVAILABLE FROM OTS \$

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

··· se v se la tealltestillactionally multiplications

AD-613 553

COMPATIBILITY OF MATERIALS WITH ROCKET PROPELLANTS AND OXIDIZERS

W. K. Boyd, et al

Battelle Memorial Institute Columbus, Ohio

January 1965

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Code 23

Sec and ()	Classification

DOC (Security classification of title, body of abote	UMENT CONTROL DATA - R&I)	mode many to about that			
1. ORIGINATING ACTIVITY (Corporate author)	TO THE PROPERTY MAINTENANT MEET OF BAT		CURITY CLASSIFICATION			
Battelle Memorial Institute		Unc	lassified			
Defense Metals Information Cen	ter	25 GROUP				
505 King Avenue, Columbus, Ohi	0 43201					
3. REPORT TITLE						
Compatibility of Materials Wit	h Rocket Propellants and	d Oxidizer	s			
4. DESCRIPTIVE NOTES (Type of report and Inchre DMIC Memorandum	(ve detea)					
S. AUTHOR(5) (Lest name, first name, initial)						
Boyd, W. K., Berry, W. E., and	White, E. L.					
	•					
4. REPORT DATE	74- TOTAL NO. OF PA	GES 75.	NO. OF REFS			
January 29, 1965	40		302			
BE CONTRACT OF GRANT NO.	P. ORIGINATOR'S RE	94: ORIGINATOR'S REPORT NUMBER(S)				
AF 33(615)-1121	DMIC Memora	DMIC Memorandum 201				
& PROJECT NO. 8975						
5,10						
с.	St. OTHER REPORT N	O(5) (Any other	numbers that may be assigned			
đ.	_					
10. A VAILABILITY/LIMITATION NOTICES Cop	ies may be obtained from	DMTC at	no cost by Govern			
ment agencies and by Governmen	t contractors, subcontra	ctors, and	d their summliers.			
Others may purchase copies from						
Information, U. S. Department	of Commerce, Springfield	l. Virginia	22151.			
11. SUPPLEMENTARY NOTES	12. SPONSORING MILIT	12: SPONSORING MILITARY ACTIVITY				
		United States Air Force				
	Research and I					
	Wright-Patters	on Air Fo	rce Base, Ohio 4543			
13. ABSTRACT		_				
Compatibility data as	re summarized for the st	orage and	handling of			
metals and nonmetals in the fo			idizersi ammonia,			

Compatibility data are summarized for the storage and handling of metals and nonmetals in the following rocket propellants and oxidizers: ammonia, HiCal-3, pentaborane, trialkyl boranes, fluorine, TiOX, oxygen difluoride, ozone difluoride, chlorine trifluoride, bromine trifluoride, bromine pentafluoride, iodine pentafluoride, perchloryl fluoride, halogenated hydrocarbons, hydrazine, monomethyl hydrazine, unsymmetrical dinethyl hydrazine, Aerozine-50 hydrogen, hydrogen peroxide, methylene chloride, red fuming nitric acid, white fuming nitric acid, concentrated acid, nitrogen tetroxide, oxygen, ozone, nitronium perchlorate, and sclid propellant ANP-2639 AF. (Author)

DD JORM. 1473

Unclassified

Security Classification

Security Classification

The state of the s	LIN	K A	LINK B		LIN	K C
KEY WORDS	ROLE	WT	ROLE	₩Ŧ	ROLE	WT
Fuels						
Oxidizers						
Compatibility			1			
Light metals			i !			
Refractory metals						
High-strength steels					Ì	
Stainless steels] [
Superalloys	1 1				1	
Other specific metals						
Metals (in general)						
Nonmetallics]]	
	}		1 1			

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantes, Department of Defense activity or other organization (corporate suthor) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. YOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 86, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the aponeor), also enter this number(s).
- -10. AVAILABILITY/LIMITATION NOTICES: Enter may limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "J. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. 8. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Depertment of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The sasignment of links, rules, and weights is optional.

Unclassified

DEFENSE METALS INFORMATION CENTER BATTELLE MEMORIAL INSTITUTE COLUMBUS, OHIO 43201

DWIC NEWOSVARIUM SOT

COMPATIBILITY OF MATERIALS WITH ROCKET PROPELLANTS AND CKIDIZERS

MATASE

In Table 6 on page 12, several entries are in error. The corrections are listed below. In table 29, a rating for Monel is supplied that was inedvertently omitted during copying from the worksheets.

GRRATA FOR TIBLE 6

-				Tempera	ture,					
_		Gas Liquid								
Material	Ciats	Class 2	C1458	Gruss 4	Ciesa	Class 2	C1859	Class 4	References	
309 Stainless Steel	500			570		-			7,207	
309 Co Steinless Steel	500			570					7,207	
310 Stainless Steel	500			660					7,207	
347 Stainless Steel	390			50 0	-310		-320		7,120,207, 274	
430 Stainless Steel		400	390	600					7,207,211	
Armco Iron	39 0	500	167						7,159,160, 207	
Iron (0.004 St)		200	400	390					82,159,160	
Iron (0.79 Si)		160	320	390					82,159,160	
Sheet Steel	390	660		500					7,207	
ME 1010	100	200	400	>400					82,160	
SAE 10.5	•		-55	570					7.207	
SAE 1020				390					7,207	
BAE 1036	665		390	500					7,207	
Susic Wire	000		3,0	570					7,207	
									1,441	
+ MI ckel		1000	7 5 0	>1200					7,73,82,12 143,153,15 160,211,27	
ione i		1000	750	>1200					7,73,82,12	
Incon#1		1000		€750					160,211,27 7,207,211	
Seogidised copper				€400					7,207	
trasa 70-50		20 0		400					82,159,160	
tegnesius MA	140	200							82,159,160	
(1.2% Nn)									94,139,100	
tegnesium PS-1A	140	200							82,159,150	
-		RADA .	fin so	R TABLE	20				,,	
			·~ ·~	w two-	27					
ionel		75	:2	5		100	75		211	

ARCHIVE COPY

TABLE OF CONTENTS

	<u>Page</u>
GENERAL CONSIDERATIONS	1
CLASSIFICATION OF MATERIALS OF CONSTRUCTION	1
Metals	1
SOURCES OF INFORMATION	2
AMMONIA (NH ₃):	2
BORON HIGH-ENERGY FUELS	3
Hi Cal-3	3 3 3
FLUORINE COMPOUNDS	3
Fluorine (F ₂). FLOX. Oxygen Difluoride (OF ₂). Ozone Difluoride (O ₃ F ₂). Chlorine Trifluoride (CTF) (ClF ₃). Bromine Trifluoride (BTF) (BrF ₃) Bromine Pentafluoride (BPF) (BrF ₃) Iodine Pentafluoride (IPF) (IF ₅) Perchloryl Fluoride (PF) (ClO ₃ F) Mixtures With Ferchloryl Fluoride. Halogenated Hydrocarbon Propellants.	3 4 4 4 4 4 5 5 5 5 5 5
HYDRAZINES	5
Hydrazine (N ₂ H ₄)	5 6 6 6
HYDROGEN	6
HYDROGEN PEROXIDE (H202)	7
Aluminum Passivation	7 7 7 7
METHYLENE CHLORIDE (CH ₂ Cl ₂)	8
NITRIC ACID	8
Red Fuming Nitric Acid	8 9 9
NITROGEN TETROXIDE (N204)	9
OXYGÉN	9
OZONE	10
SOLID PROPELLANTS	10
ANP-2639AF	10 10
REFFRENCES	31

COMPATIBILITY OF MATERIALS WITH ROCKET PROPELLANTS AND OXIDIZERS

W. K. Boyd, W. E. Berry, and E. L. White*

GENERAL CONSIDERATIONS

An important consideration in rocket technology is the compatibility of each propellant with the container material. Serious problems arise because many propellants are extremely reactive and their containment is possible only with a few materials of construction. The resistance of many alloys to fuels and oxidizers is dependent entirely on the formation of an inert, corrosion-resistant film or barrier coating. In addition to corrosion problems, the presence of some metals tends to promote decomposition of the propellant. Also, certain metal/oxidizer combinations may ignite if subjected to impact.

Four years ago DMIC Memorandum 65 was issued and included all information available at that time on compatibility of materials of construction with rocket propellants and oxidizers. Since that time additional information on compatibility has been generated for new, as well as the more established, fuels and oxidizers. This report contains these new data combined with the information presented in DMIC Memorandum 65. In order to expand the usefulness of the report, the source of the data is referenced for each material.

This memorandum summarizes the available information on the compatibility of liquid rocket propellants with prominent materials of construction., It is pointed out that compatibility data for materials not ordinarily covered by the Defense-Metals Information Center are included. These data were found during the search for information on materials that are within the scope of the DMIC, and are in-cluded for convenience. I Fuels and exidizers of current interest are discussed. The corrosion data which are presented will apply to storing, handling, and control equipment outside of missiles and to missile components excluding combustion chamber. The compatibility of materials with reaction products in combustion chambers, nozzles, etc., had not been considered. Included in the summary are data for many nonmetallic materials. These data were collected in conjunction with those obtained for metals but no concerted_effort was made to secure compatibility data for nonmetals.

The memorandum is subdivided into sections according to the propellant. Each material of construction is rated for a given medium as belonging to one of four classes, based primarily upon corresion resistance. Consideration also is given to such factors as catalytic decomposition and sensitivity to impact.

CLASSIFICATION OF MATERIALS OF CONSTRUCTION

<u>Metals</u>

Class 1

The Class 1 materials are those which exhibit a corrosion rate of less than 1 mil per year. The material does not promote decomposition of the propellant or oxidizer and is free from impact sensitivity.

*Chief, Associate Chief, and Research Chemical Engineer, Corrosion Research Division, Battelle Memorial Institute, Columbus, Ohio.

Class 2

The materials falling in Class 2 are similar to those in Class 1, except that the corrosion rate may be as great as 5 mils per year.

Class 3

A material in Class 3 shows only fair corrosion resistance; rates of attack may be of the order of 5 to 50 mils per year. The material may also cause a moderate breakdown of the propellant, but it is not shock sensitive under conditions likely to be encountered in service.

Class 4

Materials in this class are not considered usable for containing the propellant; they have corrosion rates greater than 50 mils per year, cause extensive decomposition of the propellant, cause spontaneous ignition, or react on impact.

These classifications are summarized in Table 1.

TABLE 1. COMPATIBILITY CLASSIFICATIONS FOR METALS (a)

	Corrosion	Resistance		Ob a ala
Class	Rating	Penetration Rate, mils/year	Decomposition of Propellant	Shock Sensi- tivity
1	Excellent	<1	No	No
2	Good	<5	No	No
3	Fair	5 to 50	Some	No
4	Poor	>50	Extensive	Yes

(a) The classification of a material is based on the lowest rating of any one of the three properties.

<u>Nonmetals</u>

Ratings for nonmetals are also somewhat arbitrary but wherever possible they follow those described in the Titan II <u>Storable Propellant Handbook</u>. (169) The classifications are summarized in Table 2.

TABLE 2. COMPATIBILITY CLASSIFICATIONS FOR NORMETALS

			1000	
		2	1	_4
Volume Change, percent	0 to +25	-10 to +25	-10 to +25	<-10 or >+25
Durometer Read- ing Change	£3	±10	±10	<-10 or >+10
Affect on Prepel	- None	Blight change	Moderate change	Severe
Visual Exemina- tion	No change	Blight change	Moderate change	Severely blis- tered, or cracked, dis- solved
General Usage	Satisfactory, general use	Setisfactory for reposted short term use	Satisfactory for short time use	Unsatisfactory

The compatibility data have been tabulated according to the maximum temperature permissible for a given material in Classcs 1, 2, and 3. The minimum temperature at which a given material becomes Class 4 (noncompatible) also is listed. For example, a notation of RT under Class 1 means that the material would fall into this classification up to room temperature. It will be noted, in many instances, that no temperature is listed for one of the more resistant classifications. This does not necessarily mean that the meterial does not fall in Class 1 or 2 at some temperature, but rather that insufficient data are available to assign a temperature limit.

Occasional entries indicate that a material has a higher rating at higher temperatures, e.g., Class 1 at 160 F and Class 2 at 80 F. These entries reflect a conflict in reported data. In many of these cases, it is recommended that the original references be consulted where possible, to determine which results were obtained under conditions most nearly simulating the application in question.

In many cases, a material does not fit into a classification because (1) there is a scarcity of numerical data, or (2) the decomposition effects on the propellant are of primary concern. Hydrogen peroxide is a good example of a propellant for which it is difficult to classify construction materials. In such a case, the classification used in the table is described in detail for the material in question. Many materials are listed by trade names. Similar materials marketed under other trade names probably would be given the same classification. However, only materials for which actual data are available are listed.

SOURCES OF INFORMATION

The information on which this memorandum is based came from a variety of sources. A list of references is given at the end of the text. Appropriate references for a particular propellant material are listed at the beginning of each section. References are also included for each individual entry. In addition to reference material obtained from published literature, specialists in companies active in the development of rocket propellants were contacted either by letter, by telephone, or in person. The cooperating companies are listed below.

Aerojet-General Corporation Food Machinery and Chemical Corporation Becco Chemical Division Belmont Smelting and Refining Works, Inc. General Dynamics Corporation Convair Astronautics Division Callery Chemical Company Research and Development Division Celanese Corporation of America Columbia-Southern Chemical Corporation Commercial Solvents Corporation Douglas Aircraft Company, Inc. Diamond Alkali Company The Dow Chemical Company Texas Division E. I. du Pont de Nemours and Company, Inc. Foote Mineral Company Allied Chemical Corporation General Chemical Division Hughes Tool Company HEF, Inc. - Hooker Chemical Corporation and Foote Mineral Company

Hercules Powder Company California Institute of Technology Jet Propulsion Laboratory Lockheed Aircraft Corporation Missile Systems Division Lithium Corporation of America Menasco Manufacturing Company Metal Hydrides, Inc. Monsanto Chemical Company Research and Engineering Division Chemetron Corporation National Cylinder Gas Division Union Carbide Corporation Minde Company Union Carbide Metals Company National Carbon Company Olin-Mathieson Chemical Corporation Pennsalt Chemicals Corporation Thickol Chemical Corporation Reaction Motors Division North American Aviation, Inc. Rocketdyne Division Rohm & Haas Company Stanford Research Institute Solar Aircraft Company Sinclair Research Laboratories, Inc. Titanium Metals Corporation of America Virginia-Carolina Chemical Corporation Wyandotte Chemicals Corporation.

General information on compatibility and properties of large groups of propellants are contained in References 3, 23, 81, 102, 110, 151, 196, 198, 211, and 237. Information on handling, safety, and toxicity is included in References 81, 195, 291, and 302.

*(EHN) AINOMMA

Ammonia is a pungent colorless gas that is alkaline in nature. It can be liquified at room temperature at pressures above 100 psia. The vapor irritates the eyes and respiratory tract. The threshold-limit value of toxicity in the atmosphere is 50 ppm.

Stainless steel, carbon steel, nickel alloys, silver, platinum, gold, and tantalum are sufficiently resistant to anhydrous ammonia to be placed in Class 1, as shown in Table 3. Inconel, gold, platinum, and tantalum are Class 1 materials in moist ammonia. Carbon steel and cast iron are also quite resistant and are normal materials of construction for ammonia service.

The copper alloys are less resistant than steel and have the disadvantage of being susceptible to cracking in ammonia atmosphere.

The upper temperature limit of many metals is related to the initiation of the nitriding process. Inconel is more resistant to nitriding than other nickel alloys, mild steel, or stainless steel.

Many organic materials are suitable for ammonia service. Plastics and elastomers usually resist attack up to their roftening point.

Most inorganic construction materials are not attacked by ammonia. Graphitic materials are considered best for handling ammonia gas at very high temperatures.

*Ammonia: see References 80, 81, 82, 94, 102, 109, 110, 127, 128, 151, 181, 199, 211, 214, 217, 221, 287, and 295.

H1-Ce1-3*

The composition and properties of Hi-Gal-3 are classified.

Many of the common construction materials are compatible with Hi-Cal-3. Mild steels, stainless steels, copper alloys, nickel alloys, aluminum, titanium, tantalum, and lead can all be used up to 120 F and are listed as Class I in Table 4. Above this temperature, no data are available. Organic materials which are compatible with Hi-Cal-3 are listed in Table 4 as Class 2.

Pentaborane (B.H.) **

Pure pentaborane is a clear colorless liquid that possesses an odor similar to that of rotten pumpkin. It is pyrophoric and highly toxic. Maximum allowable exposure is less than 1.0 ppm. It has a vapor pressure of 77 mm at 77 F and boils at 137 F.

Most of the metals used in rocket construction are compatible with pentaborane, including iron, steel, stainless steel, aluminum, copper, brass, magnesium, titanium, etc. Data are presented in Table 5. Teflon, Viton, Kel-F, and fluorosilicon rubber are included among the plastics and elastomers that are compatible with pentaborane. Pentaborane forms shock-sensitive mixtures with most of the chlorinated hydrocarbons that are used as degreesers or solvents.

Trialkyl Boranes***

Materials which have withstood i month's exposure in triethylborane [(C2H5)3B] (a colorless liquid that boils at 203 F) at 160 F with no apparent attack include:

<u>Metals</u>	Nonmetals .
Mild steel Stainless steel	Teflon Phenolite
Aluminum	Garlock 900 packing
Brass	Garlock red rubber
Nickel	Koppers 6200
Monel	Super Dylan polyethylene
Inconel	
Lead	
Copper (pitted)	

Materials which have withstood 2 weeks' exposure in tri-n-butyl borane $[(C_4H_0)_3B]$ (a colorless liquid that exerts a vapor pressure of 20 mm at 228 F) at 122 F with no apparent attack include:

Metals	Nonmetals
Mild steel	Teflon gasket
Stainless steel	Palmetto gasket
Aluminum	Koroseal
Brass	Kel-F
Nickel	Hycar
Copper	Nylon qasket

^{*}Hi-Cal-3: see Reference 103.

A number of fluorine compounds are being considered as oxidizers for rocket-propulsion Lystems, These include fluorine, chlorine trifluoride, bromine trifluoride, bromine pentafluoride, iodine pentafluoride, oxygen difluoride, oxygen difluorideoxygen mixtures, perchloryl fluoride, perchloryl fluoride-tetrafluoro-hydrazine mixtures, and fluorineoxygen mixtures (FLCX). All of these materials are extremely active chemically. Under the proper conditions, they will react with almost every known alement; hence, they present severe corrosion and compatibility problems. These oxidizers, however, are not for the most part susceptible to thermal and catalytic breakdown and present little or no problem in this respect. Therefore, compatibility ratings are based primarily on the reaction of the medium with the material in question.

Fluorine (F2)*

Fluorine is a yellowish gas that has a pungent odor and is irritating to the respiratory tract. The threshold limit of toxicity of fluorine in the atmosphere is 0.1 ppm. It is normally handled as a liquid at -310 to -320 F.

Many metals perform well in liquid and gaseous fluorine as can be seen from the data in Table 6. It is believed that a protective fluoride film which forms in the surface of most metals imparts corrosion resistence. On the other hand, some experiments have revealed no increased corrosion on specimens impresed in liquid fluorine and wire brushed to remove any film, suggesting no passivating effect from metal fluorides.(275)

Traces of water in the system react with fluorine to form hydrofluoric acid. This acid tends to attack some of the materials which are resistent to uncontaminated fluorine. Since moisture may be present in many systems, Monel is usually chosen as a construction material because, in addition to being resistant to fluorine, it also is resistant to hydrofluoric acid.

Titanium ignites** in liquid fluorine if subjected to impact or rupture. However, ignition does not propagate as it does in liquid oxygen. Although ignition has occurred in at least one specimen of eluminum alloys, eluminum is not considered to be impact sensitive in liquid fluorine. (275) Dynamite can explosions against tubes filled with liquid fluorine have failed to cause ignition in Monel, nickel, copper, brass, 304 stainless steel, 316 stainless steel, 347 stainless steel, and 1100 aluminum. (275) Tensile tests to fracture in liquid fluorine have not caused ignition of AM350, 304L stainless steel, 301 stainless steel, ASM 6434, 2014-16 and 7075-16 aluminum, Inconel X, and Ti-6A1-4V. (233)

^{**}Pentaborane: see References 56 and 294,

^{***}Trialkyl boranes: See Reference 57.

^{*}Fluorine: see References 7, 14, 15, 16, 20, 40, 52, 58, 73, 81, 82, 83, 86, 90, 91, 93, 94, 99, 100, 102, 110, 120, 121, 122, 123, 132, 134, 143, 146, 151, 152, 153, 159, 160, 161, 162, 163, 175, 184, 191, 194, 197, 199, 201, 202, 203, 204, 207, 211, 212, 214, 215, 217, 221, 224, 225, 226, 233, 237, 243, 251, 252, 253, 259, 261, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 290, 297, and 299.

^{**}Ignition - fluorine: see References 141, 233, 274, 275, and 276.

Because of its strong oxidizing properties, fluorine reacts readily and often violently with most organic materials. Only the highly fluorinated hydrocarbons such as Teflon and Kel-F withstand continued service.

Cleanliness is essential for fluorine systems. If the metal surfaces in contact with fluorine or for that matter elmost any strong oxidizer are contaminated with organic materials, such as traces of oil or grease, local hot spots may form which in turn may cause the violent burning of the encasing material.

It is recommended that equipment to handle fluorine be first thoroughly cleaned to remove all contaminants, e.g., organic matter, and then passivated with fluorine diluted with an inert gas.

FLOX*

Mixtures of liquid fluorine and liquid oxygen (called FLOX) have received some consideration as oxidizers. Typical ratios are 40:60 and 20:80 fluorine:oxygen. The limited compatibility data that are available for FLOX are summarized in Table 7. In general, it appears that any material which performs well in liquid fluorine also performs well in FLOX.

Oxygen Difluoride (OF,)**

Oxygen difluoride is a colorless gas and a brownish yellow liquid. It boils at -220 F. It is toxic and possesses about the same lethal characteristics as phospene.

The limited data on the compatibility of motorials with oxygen difluoride and oxygen difluoride-oxygen mixtures are cummarized in Tables 8 and 9. In general, the materials behave as well as, or better than, in fluorine. No detonation has been observed in steel cylinders when filled with OF2 liquid or gas and struck by 0.22-celiber long rifle bullets fired from 50 feet, (124)

Ozone Difluoride (O₂F₂)

Ozone difluoride is a viscous blood-red liquid et -297 F. At -250 F it decomposes into oxygen and oxygen difluoride.

There is little published information on ${\rm O_3F_2}$. The corrosive effect of C.05 percent ${\rm O_3F_2}$ -LOX on stainless steel is reported to be about the same order of magnitude as that of fluorine.(83) Compatibility data are summarized in Table 10.

Chlorine Trifiuoride (CTF)(C1F2) ***

Like fluorine, chlorine trifluoride is among the most active chemicals known. It is a nearly colorless gas at atmospheric pressure and room temperature, but can be liquified by the application of slight pressures. CTF reacts violently with water and many organic compounds. It attacks the respiratory tract. The threshold-limit value of toxicity for CTF in air is 0.1 ppm.

*FLOX: see References 224, 266, and 267.
**Cxygen difluoride: see References 83, 124, 224, 238, 282, and 283.

***Chlorine trifluoride: see References 17, 23, 40, 81, 82, 106, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 151, 158, 200, 211, 243, 244, 269, and 286.

Chlorine trifluoride can be handled in many of the common metals shown in Table 11. As with fluorine, a coating is formed on metals, which provides protection from corrosive attack. Among the metals which are resistant to CTF are copper, brass, steel, Monel, and nickel. Of these, Monel and nickel are preferred because of their resistance to hydrogen fluoride and hydrogen chloride, which are formed by reaction of CTF with water. The organic materiels that are compatible are limited to Teflom and Kel-F.

Although some surface staining has occurred in tests employing impact, shock, and perforation, there has been no ignition of low-carbon steel, stainless steel, aluminum, copper, magnesium, or titenium in liquid or gaseous CTF. (114, 115)

Cleaning and passivating treatments similar to those described for metals that are used to contain fluorine must be used for CTF systems to reduce the possibility of rapid reactions.

Bromine Trifluoride (BTF)(BrF3)*

Bromine trifluoride is a colorless liquid that boils at 275 F. Its vapor pressure at 70 F is C.15 psia. It is toxic and has a threshold limit value for toxicity in the atmosphere of O.1 ppm.

Bromine trifluoride reacts violently with many organic compounds and vigorously with water. BTF, like CTF, appears to react with some metals to form a protective coating of the metal fluoride. As shown in Table 4, this coating permits the use of nickel up to about 1300 F, copper to 750 F, and steel to 48C F. The data are not sufficiently detailed to permit a more extensive classification than that shown in Table 12.

Metals which do not form protective coatings are vigorously attacked. Examples of this type of condition are molybdenum and tungsten, either as the pure metal or in an alloy. Titanium is also attacked by BTF. Boron, silicon, columbium, and sulfur all burn in BTF (liquid).

Materials of construction, equipment design, cleaning, passivation, and general handling practice for bromine trifluoride are the same as for chlorine trifluoride.

Bromine Pentafluoride (BPF)(BrF_) **

Bromine pentafluoride is a colorless liquid that boils at 105 F. Its vapor pressure at 70 F is 7 psia. The toxicity threshold-limit value of ${\rm BrF}_5$ in the atmosphere is 0.1 ppm.

Bromine pentafluoride reacts with most of the known elements except nitrogen, oxygen, and the rare gases. Under the proper conditions, it will react with most inorganic compounds except those containing fluorine in their highest valence state. Most organic compounds react violently with BPF at room temperature and atmospheric pressure. Detailed corresion data for metais are not available.

Recommended materials of construction for BPF are the same as those for chlorine trifluoride. The same precautions for cleaning and passivation must be followed.

*Bromine trifluoride: see References 82, 94, 106, 151, 211, 243, and 269.
**Bromine pentafluoride: see References 243 and 269.

Iodine Pentafluoride (IPE)(IF.)*

Iodine pentafluoride is a colorless liquid.

:::: It boils at 207 F and has a vapor pressure of 0.4 psia at 70 F. Its toxicity threshold-limit value is 0.1 ppm.

Indine pentafluoride is the least reactive of the halogen fluorides. Very few quantitative corresion data for common materials of construction in IPF are available. However, it is reported that most metals are only slightly attacked by it at ordinary temperatures. The recommended materials of construction are the same as those for chlorine trifluoride.

IPF reacts violently with water. It also reacts with most organic compounds. Those rich in hydrogen will yield hydrogen fluoride and tend to ignite. Reaction with chlorine-containing compounds tends to release free iodine.

Perchloryl Fluoride (PF)(ClC₂F)**

Perchloryl fluoride is a colorless gas with a sweet odor. It can be liquified at room temperature at pressures in excess of 150 psia. PF affects the respiratory tract and causes "burns" if the liquid is splashed onto the body. The toxicity threshold—limit for PF in air is 3 ppm.

Anhydrous PF is normally shipped in liquid form in steel containers. Table 13 shows other materials which resist PF quite well.

Reactions of PF with water are very slow up to temperatures of about 575 F. However, in the presence of water, Pr becomes more corrosive as indicated in Table 14. Under moist conditions, Types 304, 310, and 314 stainless steels have shown relatively good resistance at room temperatures. Short-time tests also have shown the nickel alloys, Hastelloy C, titanium, and tantalum to have good resistance.

Grenade or cylinder-perforation tests resulted in detonation of titanium in liquid and gaseous perchloryl fluoride.(114,115) Titanium also ignited under impact in perchloryl fluoride but the burning was not sustained. Other metals which underwent these same tests but did not ignite were: steel, stainless steel, copper, magnesium, and alumi-num.(114,115)

Teflon and Kel-F are very resistant to attack by PF. Cther plastics which are suitable are unmodified phenolic resins and epoxy resins. Rubbers which are compounded with harbon black tend to be inflammable, while those with iron oxide fillers are not inflammable. The large surface areas of sponge rubbers make them inflammable. Ordinary oils, greases, and waxes should never be used with PF, however, fluorocarbon compounds are compatible. Many organic materials do not react with PF at room temperature, but if ignited will burn violently. Some inorganic materials react rapidly, e.g., mercury and "Indicating" Drierite.

Mixtures With Perchloryl Fluoride

Compatibility data for materials in 25 percent perchlosyl fluoride-75 percent chlorine trifluoride

*Indine pentafluoride: see References 243 and 269.
**Perchloryl fluoride: see References 81, 82, 83, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 151, 211, 219, and 224.

are summarized in Table 15. With the exception of columbium, molybdenum, and titanium, most metals perform well.

Compatibility data for materials in 50 percent perchloryl fluoride-50 percent tetrafluoro-hydrazine are presented in Table 16. All of the usual metals of rocket construction appear compatible in both the liquid and gas at -109 F. (Tetrafluorohydrazine boils at -100 F. It can be liquified at room temperature at pressures greater than 600 psi.)

Halogenated Hydrocarbon Propellants*

Halogenated hydrocarbon propellants are chiefly fluorinated and chlorinated methane and ethane. Many are well known as refrigerants under the trade names of Freon, Genetron, etc. They range from gases to liquids at room temperature with boiling points of about -200 F to about +200 F.

Impact tests at 70 ft-lb in Propellants 113 and 114B2 have not caused ignition of aluminum, aluminum plus alumina sand, titanium, titanium plus titanium filings, or titanium plus alumina sand.

Tetrafluoroethylene and chlorotetrafluoroethylene plastics and orlon acrylic are generally suitable for use in halogenated hydrocarbon propellants. Polyvinyl alcohol resists these propellants but is sensitive to water. Phenolics, Delrin acetal resin, nylon, polyethylene and vinyls are suitable for use in many applications, but the behavior of different types may vary in different propellants, and thus should be thoroughly tested before use. Methacrylates and polystyrene are generally not suitable. No single elastomer has been found to be compatible in all halogenated hydrocarbon propellants, but a satisfactory combination can usually be found. (68)

HYDRAZINES

Hydrazine (NoHa)**

Hydrazine is a clear oily liquid with an odor similar to that of ammonic. Its vapor pressure at 80 F is 0.31 psia and it boils at 236 F. Hydrazine vapors affect the respiratory tract, nervous system, liver, and kidney, and cause "burns" when spilled on the skin. The toxicity threshold-limit value in the atmosphere is 1 ppm.

The information regarding the compatibility of various metals and nonmetals with hydrazine and

*halogenated hydrocarbon propellants: see References 51, 53, 68, 84, 136, 214, and 279.

**Hydrazine: see References 3, 4, 7, 23, 70, 81, 82, 102, 110, 135, 145, 149, 151, 170, 171, 172, 173, 174, 183, 196, 211, and 216.

hydrezine-water mixtures is not completely consistent. These differences appear to be related to the specific application. For example, a metal may be satisfactory if air exidation of the surface can be prevented. On the other hand, this same metal may be unacceptable for service in which prolonged exposure to air cannot be avoided.

In assessing the compatibility of a material with hydrazine, two major factors must be considered for any given exposure condition. They are:

- (1) The corrosion behavior of the material in contact with hydrazine
- (2) The effect of the material and/or corrosion products on the rate of decomposition of hydrazine.

This is particularly true for carbon and low-alloy steels, copper alloys, and molybdenum. From the corrosion standpoint, they are satisfactory. On the other hand, these metals and/or their corrosion products catalyze hydrazine decomposition at elevated temperatures. Explosions may occur. At one time, it was believed that Type 316 stainless steel (containing molybdenum) caused explosions when contacted by hydrazine at elevated temperature. However, it is now generally agreed that the hazard from misoperation in hydrazine and unsymmetrical hydrazine is no greater with 316 stainless steel than with any of the other 300 series stainless steels. (254)

Most metallic materials of construction are compatible with hydrazine. Data are summarized in Table 22.

Many plastics and rubbers are compatible with hydrazine at room temperature. Graphite and Granhitar are not suitable, since they tend to promote decomposition.

Monomethyl Hydrazine (CH_NHNH_)*

Monomethyl hydrazine is a clear liquid with the odor of ammonia. It has a vapor pressure of 1 psia at 80 F and boils at 189.5 F. Its toxic properties are somewhat similar to those of hydrazine. The recommended threshold limit is 0.5 ppm in the atmosphere.

The following materials can be used in the storage and handling of monomethyl hydrazine:

Metals

303 stainless steels 304 stainless steels 321 stainless steels 347 stainless steels 4130 steel Aluminum alloys to 160 F Aerobraze-I

Nonme tals

Tetrafluoroethylene resins High-density polyethylene Some silicone rubbers Some unplasticized trichlorofluorethylene

hydrezine-water mixtures is not completely consistent. Copper, lead, zinc, and alloys containing more than
These differences appear to be related to the specific application. For example, a metal may be satishydrazine.

Unsymmetrical Dimethyl=Hydrazine (UDMH) [CH] NNH *

UDMH is a clear liquid with the odor of ammonia. Its vapor pressure at 80 F is 8.4 psia and it boils at 146 F. Its toxicity is similar to that of hydrazine but not so severe. The toxicity threshold-limit value of UDMH is 0.5 ppm.

In general, unsymmetrical dimethyl hydrazine affects materials in much the same manner as hydrazine. Of the metals, low-alloy steels, aluminum, and stainless steels are commonly used to contain UDMH. Aluminum is attacked by UDMH if water is present with the attack being in direct proportion to the amount of water. Teflon, Kel-F (unplasticized), nylon, polyethylene, and Haveg 60 are among the plastic materials which are not attacked by UDMH.

Lubricants such as APS C-407, Parkerlube 5 PB, Molykote, and Peraline 12-4 may cause decomposition On the other hand, litharge and glycerine paste, X-Pando, and Q-seal are compatible and can be used for thread compounds and other similar applications. Petroleum and silicone greases do not react, but are dissolved by the UDMH. Data for all materials are summarized in Table 23.

Hydrazine-Unsymmetrical Dimethyl Hydrazine Mixtures**

Much of the information on properties and compatibility of 50:50 N₂H₄:UDMH (Aerozine 50) is summarized in the <u>Titan II Storable Propellant Handbook</u>. (167,168,169) Most of the common metallic materials of construction are compatible with N₂H₄: UDMH at room temperature, including aluminum alloys, steel, stainless steel, nickel alloys, and titanium alloys. As described under "Hydrazine", Type 316 and molybdenum-containing stainless steels are no longer believed to pose an explosion hazard with 50:50 N₂H₄:UDMH. (254) Of the plastic materials only some of the fluorocarbons, polyethylene, polypropylene and polyolefins are Class 1 materials. Compatibility data are summarized in Tables 24 and 25.

HYDROGEN***

Liquid hydrogen boils at -423 F. Hydrogen is not toxic in the usual sense but will cause "burns" if the cold liquid contacts the skin. Hydrogen is readily ignited in air at concentrations of 4 to 74 vol%.

Liquid hydrogen and gaseous hydrogen at low temperatures are both considered to be noncorrosive. Embrittlement of metals by the low temperature of the liquid or gas is a more important factor. As can be seen in Table 26, a number of metals can be

*Unsymmetrical dimethyl hydrazine: see References 3, 7, 23, 24, 54, 60, 61, 62, 63, 79, 81, 82, 92, 102, 110, 145, 151, 155, 156, 157, 164, 171, 172, 173, 174, 182, 196, 198, 211, 227, 228, 281, and 296.

**Hydrazine-unsymmetrical dimethyl hydrazine mixtures: see References 4, 31, 47, 48, 49, 50, 165, 166, 167, 168, 169, 170, 198, 205, and 254.

***Hydrogen: see References 34, 46, 74, 80, 81, 82, 93, 151, 181, 199, 211, and 221.

^{*}Monomethyl hydrazine: see Reference 154.

rated compatible (Class 2) with liquid hydrogen; among these are the 300 series stainless steels, Type 410 stainless steel, aluminum and most of its alloys, some nickel alloys, cobalt alloys, and molybdenum. The use of organic materials is limited because of the effect of the low temperature on their physical properties. To avoid this temperature effect, "warm joints" are used, in which the gasket material is kept at a higher temperature so that only hydrogen gas contacts a joint. Table 26 lists some of the organic materials that can be used with liquid hydrogen.

HYDROGEN PEROXIDE (H,O,)*

Hydrogen peroxide is a colorless liquid that boils at 303 F. Its toxicity threshold-limit value in the atmosphere is 1 ppm.

When considering materials of construction for handling and containing concentrated hydrogen peroxide, both the effect of the H2O2 on the construction material and the effect of the construction material on the H2O2 must receive equal attention. If corrosion of the material takes place, usually the H2O2 will also decompose, although the reverse is not true, for some materials catalytically decompose $\rm H_2O_2$ without much corrosive attack occurring.

One means of reducing the decomposition is to passivate the construction material before use.

Aluminum Passivation

An accepted passivation procedure for aluminum consists of several steps.

- Step 1, thoroughly clean the metal. This step consists of degreasing with trichlorethylene, perchlorethylene, or a detergent wash, or both, depending upon the type of contaminating dirt, followed by thorough rinsing with clean water.
- Step 2, treat with 5 percent nitric acid for 1 or 2 days. Rinse with tap water. Spots or areas which are not passivated can be readily identified. These spots will not have the uniform dull, velvety finish characteristic of passivated aluminum.
- Step 3, reclean unpassivated areas and dig out areas containing iron or other inclusions in the aluminum.
- Step 4, repeat the cleaning and nitric acid treatments until the aluminum is satisfactorily passivated.
- Step 5, treat with stabilized 35 percent H₂O₂ for 1 to 3 days. The passivity of the aluminum can be checked by the amount of decomposition of the 35 percent H₂O₂, by gas bubbles, and by the warming of the solution.
- Step 6, rinse with distilled or deionized water.
- Step 7, expose to 90 percent H₂O₂. During the the first 16 to 24 hours of exposure to strong H₂O₂, equipment must be carefully watched to be sure that the H₂O₂ is not decomposing.

*Hydrogen peroxide: see References 23, 28, 35, 36, 37, 38, 41, 44, 75, 76, 77, 81, 82, 94, 101, 102, 105, 108, 110, 129, 144, 147, 148, 149, 151, 186, 187, 198, 206, 208, 210, 211, 213, 221, 229, 230, 234, 245, 246, 249, 250, 258, and 293.

Modifications of the procedure and other treatments which produce the same result may be used.

Stainless Steel Passivation

The passivating procedure for the 300 series stainless steels is similar to that for aluminum.

- <u>Step 1</u>, clean with appropriate solvents and detergent solutions to remove dirt, grease, and other contamination and rinse with tap water.
- Step 2, treat with 70 percent nitric acid for 4 or 5 hours and rinse with distilled water. An alternative treatment for 17-7PH steel uses a 2 percent Na₂Cr₂O₇ *2H₂O-2O percent HNO₃ solution for 1/2 hour at 120-130 F.
- Step \Im , condition the stainless steel in H_2O_2 of the concentration it will be required to handle. This operation should be observed closely to determine whether decomposition is taking place.
- Step 4, if decomposition takes place, repeat the cleaning and passivating steps.

Some stainless steels may not respond to passivating treatments without prior cleaning by pick-ling in a 3% HF-10% HNO3 solution.

Pretreatment of Plastics

Plastic materials must be cleaned with the appropriate solvents or detergent solutions and rinsed. Next, they should be pre-exposed for 16 to 24 hours in the ${\rm H_2O_2}$ solution in which they will be used.

Discussion

Another method which effectively reduces the decomposition is the addition of sodium stannate to H₂O₂ in about 2.0 ppm concentration. This treatment is effective in reducing decomposition after refilling a container with fresh stannate-free H₂O₂.

In general, the acceptability of a material for ${\rm H}_2{\rm O}_2$ service is based mostly upon the amount of active exygen that is lost by decomposition rather than upon a corrosion rate of the construction material. Accordingly, the "class" ratings used for materials for ${\rm H}_2{\rm O}_2$ have been based on decomposition limits. Table 2" Jescribes these limits in detail for four classes of materials. The table lists the material in each class immediately under the description.

Aluminum, some of its alloys, tantalum, and zirconium are the only metals included in Class 1.

Many aluminum alloys, stainless steel alloys, silicon, and tin fall into Class 2.

Class 3 contains other aluminum alloys, a variety of stainless steel alloys, Inconel X, Alloy H-O75, and Refractalloys 26 and 70.

In general, the presence of copper in an aluminum alloy greatly reduces its compatibility with $\rm H2O_2$. The 1060 alloy is most widely used in 90 percent $\rm H_2O_2$ service; however, several other alloys are considered to be Class 1 materials.

The attack of an aluminum alloy is usually of the smooth overall type, but pitting occurs

occasionally. Pitting is usually attributed to the presence of impurities which cause local breakdown of the H₂O₂. Chloride ions also accelerate the pitting attack. The addition of small amounts of nitrate ion, such as sodium nitrate, tends to reduce the action of the chloride ion. However, the presence of 10 mg Cl⁻ per liter causes accelerated attack even with nitrate present. Anodizing of the metal also reduces the attack by H₂O₂ with chloride, but damage of the anodic coating localizes the pitting in the damaged area. The addition of compounds to H₂O₂ which change the pH in either direction from the neutral point may accelerate attack.

Galvanic coupling of aluminum to stainless steel results in increased attack on the aluminum. Chloride ions in turn increase the galvanic effect.

Many of the higher strength aluminum alloys are not compatible with $\rm H_2O_2$; therefore, one alternative is to use a strong alloy clad with a compatible grade. Of course, special attention must be given to welds, to insure complete covering of the base alloy.

Many cases of decomposition of H_2O_2 in aluminum or other compatible metals is traced to soluble or suspended contamination of the H_2O_2 and not to an effect of the container material.

The table shows that the 300 series stainless steels cannot be rated as Class 1, but give very good Class 2 service. The 300 series steels are used for high-pressure flowing systems and may be welded. Chloride contamination, at the 10-mg-perliter level, does not appear to cause pitting in stainless steels. The galvanic effect in aluminum-stainless steel couples tends to protect the steel. The 17-7PH grades of stainless steel are satisfactory with $\rm H_2O_2$, but the 400 series is not. A 120-grit finish on the 17-7PH steels improved their service.

Lower concentrations of $\rm H2O_2$ (52 to 90 percent) require the same materials of construction as 90 percent $\rm H2O_2$. Higher strength peroxide (98 percent) is, in general, more stable than 90 percent $\rm H_2O_2$ in contact with metals. Aluminum alloys 1060, 5052, and 7072 are rated Class 1. Stainless steels Types 304, 316, and 347, and aluminum alloys 6061 and 356 are rated Class 2.

In the transporting of high-strength $\rm H_2O_2$, 1060 aluminum has been used in tank cars and 43 aluminum or 300 series stainless steels in self-priming centrifugal pumps, while valves, fictings, and instruments are usually made of 300 series stainless steel. (208)

Of the plastics and rubbers, molded Teflon, Kel-F, and Mylar B are rated Class 1 (unrestricted use). Koroseal 700 has been used extensively as gasketing material. Many lubricants exhibit impact sensitivity in H2O2. The fluorinated and chlorinated lubricants appear most promising with a Class 2 rating and no impact sensitivity. Compatibility data for nonmetals in H2O2 are presented in Table 28.

METHYLENE CHLORIDE (CH_Cl_)"

Methylene chloride is a colorless liquid. It boils at 104 F and exerts a vapor pressure of 380 mm at 72 F. The toxicity threshold limit for ${\rm CH_2Cl_2}$ in the atmosphere is 500 .

*Methylene chloride: see Referen. s 127, 128, and 211.

Liquid methylene chloride is compatible with copper, steel, austenitic stainless steels, Hastelloy B, Hastelloy C, asbestos, and graphite. Gaseous methylene chloride is more corrosive, being compatible with Worthite and Durimet 2C. Compatibility data are summarized in Table 29.

NITRIC ACID (HNO,) *

The nitric acid used for propellants is usually in the concentrated form referred to as "fuming nitric acid". In general, the fuming acids contain less than 5 percent water. If the acid contains dissolved oxides of nitrogen, it is known as "red fuming nitric acid" or "RFNA". The $\Re Q_2$ content normally varies from 7 to 30 percent.

Nitrogen dioxide is not present in "white fuming nitric acid" or "WFNA", which contains a minimum of 97 percent ${\rm HNC}_2$.

Hydrofluoric acid may be added to either RFNA or WFNA as a corrosion inhibitor. Listed below are the Military Specification compositions of inhibited and noninhibited acid (MIL-N-7254 C, July 19, 1956):

	White Fuming	
	Type 1	Type 1 A (IMFNA)
Nitric acid (HNO ₃)	97.5% min.	96.8% min.
Nitrugen dioxide (NO2)	0.0 + 0.5%	0.0 + 0.5%
Water (H ₂ C)	2.0% max.	2.0% max.
Hydrofluoric acid (HF)	0.0	C.6 ± 0.1%
	Red Fuming	Nitric Acid
	Type III	Type III A (IRFNA)
Nitric acid (HNO_3)	82.0 - 85%	81.3-84.5%
Nitrogen dioxide (NO2)	14.0 ± 1.0%	14.0 ± 1.0%
Water (H ₂ O)	2.5 ± 0.5%	2.5 ± 0.5%
Hydrofluoric acid (HF)	0.0	0.6 ± 0.1%
0		

Red Fuming Nitric Acid

Red fuming nitric acid is a highly corrosive material; therefore, the choice of construction materials is based upon the corrosion resistance of the material rather than on the catalytic decomposition of the acid. Aluminum and stainless steel alloys are usually used to handle RFNA. The compatibility data in Table 30 indicate that at room temperature, the corrosion rate for aluminum alloys is slightly higher than for the 300 series stainless steels. It should be noted that at 160 F, aluminum alloys are more resistant than stainless steels. Stainless steels and aluminum alloys are usually attacked in a uniform manner. However, selective attack in the heat-affected zone near welds is sometimes produced. Knife-line attack at welds may occur in aluminum alloys above 120 F. The 1060 alloy appears to be free from this attack to higher temperatures. The low-carbon grades of the 300 series stainless steels and those containing columbium or titanium are less susceptible to attack at welds than are the regular grades. Aluminum, when coupled to stainless steel, acts as a sacrificial anode to protect the steel.

*Hitric acid: see References 18, 19, 29, 30, 32, 39, 64, 69, 81, 82, 87, 89, 93, 95, 96, 97, 102, 104, 110, 127, 128, 130, 133, 135, 150, 151, 179, 181, 185, 188, 189, 190, 192, 193, 198, 204, 211, 214, 221, 222, 223, 239, 240, 241, 242, 248, 260, 287, 298, and 300.

As little as 0.1 percent HF added to RFNA greatly reduces the corrosion rate of both aluminum and stainless steel. If this change from RFNA to IRFNA is made in stainless steel equipment and selective attack has already started, the inhibitors are not effective. The HF inhibitor reduces the selective attack at welds, permitting use at higher temperatures.

Titanium and tentalum are both resistant to RFNA; however, caution must be used with the titanium alloys. A pyrophoric reaction may occur with titanium alloys in RFNA which contains less than 1.5 to 2.0 percent H₂O. Both titanium and tantalum are attacked much more rapidly by IRFNA than by the acid without the HF addition.

A number of other alloys are compatible with red fuming nitric acid. These include cobalt alloys, Types 430 and 446 stainless steels, chromium, and for some applications, nickel and some nickel alloys. Platinum, gold, tin, and zirconium may be used. Lowalloy steels, lead, copper, and magnesium are rapidly attacked by either RFNA or IRFNA.

White Fuming Nitric Acid

White fuming nitric acid is similar to red fuming nitric acid with respect to compatibility with construction materials. It is not so stable as RFNA, but compatibility is largely dependent upon corrosion properties rather than on decomposition.

The corrosion behavior of metals in white fuming nitric acid is much the same as that in RFNA. The same materials are resistant and the same materials are severely attacked. However, Table 31 shows that the temperature limits are somewhat lower in the white fuming nitric acid.

Concentrated Nitric Acid

Table 32 has been included to show the compatibility of materials in somewhat less concentrated acids than the fuming grades. It can be seen that acids from 80 percent up to the fuming range are much more corrosive than the more concentrated ones. Stainless steels are the best materials of construction for these acids.

NITROGEN TETROXIDE (NO.)*

Nitrogen tetroxide is an equilibrium mixture of dinitrogen tetroxide and nitrogen dioxide ($N_2O_4<--->2N_{O_2}$). It is a heavy brown liquid that boils at 70.1 F. The liquid causes severe burns on body tissue. The toxicity threshold-limit value in the atmosphere is 5 ppm as N_{O_2} or 2.5 ppm as $N_{O_2}O_4$.

Much of the information on properties and compatibility of N_2O_4 is summarized in the <u>Titan II Storable Propellant Handbook</u>. (167,168,169)

Dry (less than 0.2 percent $\rm H_2O$) nitrogen tetroxide can readily be contained by several metals and their alloys. It is normally handled in aluminum, mild steel, cast iron, or stainless steel, although there have been reported instances of intergranular attack in welded 2014-T6 aluminum. Compatibility data are summarized in Table 33.

*Nitrogen tetroxide: see References 3, 9, 10, 11, 12, 13, 23, 31, 47, 48, 49, 50, 59, 72, 81, 82, 88, 102, 110, 126, 131, 137, 145, 151, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 181, 196, 198, 205, 211, 220, 221, 245, 256, 257, 287, 288, and 292.

Titanium is resistant to N₂O₄ except under impact. It has been found that titanium impacts sporadically under reasonably rell controlled test conditions; the ignition frequency is increased markedly by titanium filings or glass particles on the impact surface; increasing the impact-energy level increases the ignition frequency; and increasing the water content of the N₂O₄ to 2 to 5 percent lowers the ignition frequency. (256,25°,292) The ignitions do not spread beyond the impact area.

Moist N2O4 is, in general, more corrosive because of the nitric acid formed. As shown in Table 34, at levels of up to 1 percent moisture in N2O4, most common metals are still Class 1 at room temperature. With 3.2 percent moisture in N2O4 the corrosion resistance of steel and aluminum alloys drops off markedly even at slight increases in temperature. Data for the latter are summarized in Table 35.

Limited data on the compatibility of materials with flowing N2O4 are presented in Table 36.

The most resistant plastic materials are polymerized fluorinated hydrocarbons such as Teflon and unplasticized Kel-F. Other plastics such as Koroseal, Saran, polyethylene, and Tygon are suitable for short-time exposures. Vinyl plastics, in general, do not hold up well in $W_2\mathcal{Q}_4$.

Asbestos and graphite are satisfactory for packing materials and graphite-waterglass for thread compound.

Impact tests at 60 ft-lb in liquid N₂O₂ have resulted in detonations of polydimethylsiloxane. Similar tests at 70 ft-lb did not cause detonation in polychloroprene, branched or linear polyethylene, polypropylene, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. (125)

OXYGE!:*

Oxygen is a light blue transparent liquid at -297.4 F. In the liquid state it can cause "burns" if spilled on the skin. Oxygen supports combustion and accidental contact should be avoided with oxidizable materials.

Of the elemental materials, oxygen is next to fluorine in reactivity. It will form compounds with all elements except the rare gases. However, the reactivity of liquid oxygen is very low compared with that of gas ous oxygen.

Liquid oxygen is considered to be noncorrosive to most metals. In particular, nickel, Monel, Inconel, copper, aluminum, the 300 series of stainless steels, brass, and silver solder are used in liquid-oxygen-handling equipment.

Several instances have been reported of violent reactions of titanium and liquid oxygen which appeared to be related to impact. The impact sensitivity of titanium in LOX has been investigated rather extensively.** It appears that the ignition of titanium under impact occurs in the following sequence:(138,140)

Oxygen: see References 1, 5, 6, 7, 8, 21, 22, 25, 26, 27, 33, 42, 43, 45, 65, 66, 67, 71, 78, 80, 81, 82, 98, 102, 107, 125, 126, 138, 139, 140, 141, 142, 151, 176, 177, 180, 181, 195, 198, 209, 211, 218, 231, 232, 235, 236, 255, 259, 262, 284, and 285.

Ignition in LOX: see References 7, 22, 27, 42, 43, 65, 66, 71, 78, 126, 138, 139, 140, 141, 142, 176, 177, 180, 198, 218, 235, and 236.

- The impact exposes fresh metal and results in some gaseous oxygen being formed at the point of impact.
- (2) The gaseous oxygen reacts with the fresh metal in an exothermic reaction.
- (3) The heat generated raises the metal temperature sufficiently to result in localized dissolution of any TiO₂ film that might form.
- (4) Thus a protective oxide film does not build up and the reaction proceeds rapidly between the base metal and oxygen.

Ignition of massive titanium is observed in gaseous oxygen at liquid-oxygen temperatures at pressures of about 100 psi and above. This critical pressure limit is lowered only slightly as the temperature of the oxygen is raised to ambient temperature.

Massive aluminum exhibits ignition under severe detonation in LOX. The frequency is not so great nor is the propagation so severe as it is with titanium under the same conditions. Magnesium also ignites under detonation at shock levels higher than those for titanium but lower than those for aluminum.

Organic materials should be avoided with both liquid and gaseous oxygen because of possibilities of emplosions. Currently, there is no single test or group of tests which gives a reliable compatibility rating for organic materials in liquid oxygen service. It is recommended that organic materials be avoided wherever possible and used only with caution. No completely compatible lubricants have been found. Thread antiseize sealants of graphite in chlorinated organic carrier and halogen paraffin oils with pour points as low as -100 F have been used in LOX systems. Teflon, Mylar, and certain chloroprene and Buna-N compounds have been used as static seals while Kel-F-300, Kel-F-500, Kel-F-240, Fluorothene FYTD, Fluorothene FYTS, and certain chloroprene and Buna-N compounds have been used in dynamic seals. (284,285)

Many organic and plastic materials exhibit impact sensitivity in LOK including: (71,126)

- (1) Synthetic elastomers and Thiokols
- (2) Cellulose-based papers
- (3) Silicone- and silicate-based oils and greases
- (4) Thermoplastics such as nylon and phenolics
- (5) Thermo-setting resins (phenolics, silicones, epoxies, etc.)
- (6) Petroleum-based oils and greases.

The fluorocarbon plastics are probably the best choice with respect to impact sensitivity. These, however, should not be used with aluminum. A number of other organic materials might be used, but specific conditions should be carefully studied. The list of references on ignition in LOX contains the results of many impact tests on organic materials, which can be used as a guide to selection.

OZONE

Ozone is colorless in gaseous and liquid state. It boils at 168 F. The toxicity threshold-limit value for ozone in the atmosphere is 0.1 ppm.

There are few data on the compatibility of materials with ozone. It has been shown that 100 percent gaseous ozone can be stored up to 50 days at 5 atm pressure and dry ice temperature (-109 F) in stainless steel, aluminum, and glass with no decomposition of the ozone. (280)

SOLID PROPELLANTS

ANP-2639AF

There are few or no data published in the open literature on the compatibility of materials with solid propellants. Bent beam specimens of the following materials bonded to propellant ANP-2639AF and stressed to 75 percent of the 0.2 percent offset yield strength have survived over 100 days' exposure at room temperature and 180 $F_{\rm t}(289)$

Ladish D6AC 300 M Vascojet 1000 AM-355 (longitudinal) PH 15-7Mo B120VCA titanium (longitudinal and transverse)

Nitronium Perchlorate (NO2C104)

Nitrunium perchlorate is a white crystalline powder at room temperature which has a faint odor of chlorine and nitrogen oxide. Its vapor pressure is less than 0.05 mm at 68 F. It melts and decomposes at 250 to 285 F.

The following materials are reported to be compatible with nitronium perchlorate: (55)

Metals: stainless steel (mild steel if system

is dry)

Nonmetals: glass, Teflon, unplasticized polyvinyl

chloride, polyethylene

Lubricants: Hooker Fluorolube Grease GR-54

Hooker Fluorolube Oil X-30 3M Kel-F Polymer Oil, Grade No. 1 Halocarbon Oil Series B-21.

selection and the present and an experience of the contract of TABLE 3. COMPATIBILITY OF RATERIALS WITH AMMONIA

				Tempo ye	ture, I				
		- 0	15			Lie	NIØ	r	1
Motoriaj	Cless	Class	Cless	Class 4	Cias	Class	C: • • •	Class	References
Metals Liuminum		100	173	>173			175	١	
C2 Stalkless Steel C4 Stalkless Steel	212 '5 (X	100	1,173	<900 <900			1	'"	211,224,2 9 82
	}			1 3			ĺ		58,73,109, 217,221 58,73,217, 221
16 Steinless Steel	A20		75	<900		ĺ		ŀ	201 221 109
47 Stainiese Steel IO Stainiese Steel IBO Stairiese Steel	600 600		ה	65 0 ₹90 0					58,73,221 58,73,217, 221
	75 75	1	}	<900 <900			ł		82
morente Durimet 20 Carpenter 20 Hild Steel Cant Iron	600			1		_	ł		
Cast Iron	600 600 212	75		<900 <900		75	1 25		211,221,28 211,221,28 211,287
Simiron HimCost Irons, Low Cu HimCost Irons, High Cu	75	/=		1		:60	٬٬	Al:	211,287
*1 CR# 1	200		. x<	G1:00		715	İ	775	211,287
Inconel tonel	900 700 900 600		1106 500	51100 C1100		1.5	ļ	71,	211,221,28 211,787 58,127,126
(astelloy B		₩00		>1000				}	1211
(satelley C	600	POC	1	>1000					50,127,126 211
(Betelloy D	500	60C		>1000				1	58,127,128
Hastelloy F Chlorime: 2+3		•~		>; ~o	1		j I	1	152,159
Mickel-Copper Lopper	7.	72		rien			l	.6=	82 127,217,22
Yellow Bress	1	75	ŀ	Plah	İ		1	ie=	12",221,28
Red Bress Tin Bronse	1	75 75	ļ	1191 1192	}		1	Lon	127,221,28
AL Bronte St Bronte		75 75	ļ	#Lgh #Lgh	ĺ			.5e	27,221,28
Su-Nickel	İ	1 63	1	High	į			-ما	287 127,721,28 127,721,28 127,221,28 127,221,28 127,221,28 80,127,22,
Sols Leeg	212	7.		>260	-tg-	75]		211,221
Dow Metal C Dow Metal Fel		iou							e.
Dow Metal H		Low		İ					82 82
Dow Metal Jei Dow Patal M		Low	1	l I					8G 82
Platinum fr-Platinum	212	1	1	i	H1⊈ H1⊈5			-	211,221
Ir-Platinum Rh-miatinum	High migh		j		High High		j	}	221
Silver Ay-Cu	7.	1	l	A		İ	1	not All	211
Titanium Tantalum	175 212 75				212		и: 2*	`	82 2;; 22; 21;
21nc	217	i		¥: y*.	2,7		":?"		22:
Zirconium Organic Materials	'''			ĺ			1		1 ***
Rubber, Herd Linings	l	1		.,5	İ		75	1	+0 €3
Rubber, Herd Linings Rubber, Seft Linings Rubber, Hetural	i	75	1	75				75	21:
GRS Neoprene	l	75 75	Ì	Hot.			1		82 €
Sutyl Rubter Thinkol	-	75	Cold	Het	1			i	62 62
Glass Fatzic and		Fo:							82
Silicone Greases Feweg 41 Epon Silicone Elestomer Silicone Resins	313	401							92 211
Silicone Electoner	"	75	_						R.*
ietion	Fot		7.	l .				ļ	#2 #2
Cork Vinyl Saptiymers		Hot				Hot	1	1	82 82 83
Phenolics Furans		Hot Hot				Hot Hot	1	i	90
Polyethylene		Hot	l			40 t	1	Ì	82
Epl =P Vinylidene Caloride Sulfur Common Bit minous Compusition Delugrament			Cold			••	Cold Jeld		82 52
Rit minous Composition		!	Cold Cold	75		 	De La Pa La		3.
Polystyrere Polyesters Phencl Formalgehyde				75			l		82 82 82 51 219 239
Nonmelals	}			2,0			ŀ		259
G1 a a a	212			! !			l		211
Stonemere Karbate	2,2 >2000		ĺ						21: ac
Carbon	52300 57300								
	211 2,2 3200 3200 3200 3700								20 20 211

Glass Fabric and Stillcome Rubber

	Remarks
Cla	al.
Mild steel	Below 120 F, probably higher
40/50 cambon steel	Below 120 F, probably higher
Hot-rolled primer steel	Below 120 F, probably higher
Type 304 stainless steel	Below 120 F, probably higher
Beryllium copper	Selow 120 F. probably higher
Apra-nickel	Relow 127 E. nrobably binhae
Wavel brass	Below 120 F, probably higher
Phosphor-bronze Phosphorized copper	Below 120 F, probably higher Below 120 F, probably higher
mospiolized copper	serou (20 r, prodebly maner
Kickel	Below 120 F, probably higher
Incone: Monel	Below 120 F, probably higher
(ione)	Below 120 F, probably higher Below 120 F, probably higher
Incoloy	Below 120 F, probably higher
Muminum	Below 120 F. probably higher
_ead	Class 2 at 12º F
1 tanium	Below 120 F, probably higher
Cantalum	Below 120 F, probably higher
Cla	11.2
Organics	
Bakelite	No change at 120 F
aston PVC plastic pipe	No change at 120 F
Epoxy resin Graphite bearing	No change at 120 F No change at 120 F
	No change at 120 F
(el-F 300 (el-F 500	No change at 120 F
Teflon	No change at 120 F
fycar 1001-520-39-5-4 /iton 4411A-58	No change at 120 F No change at 120 F
fycar 1000x88-520-39-20-3	No change at 120 F
lycar 1001-520-37-83-1	No change at 120 F
F4 Fluororubber .9-53 Fluorosilicone rubber	No change at 120 F
lycar 1001-520-37-83-5	Slightly less resilient at 126 F No change at 120 F
(-Pando pipe dope	No change at 120 F
Mylon Zytel 101-NC-10	No change at 120 F
Glas	11.3
Organics	
lycar 1001-520-39-5-2	120 F, Slightly stiffened 120 F, Turns yellow
olyethylene tubing Sarlock 8748 (Buna—N binder)	120 F, Stiffened
arlock 7021 (GRS - high	120 F, Stiffened and roughened
sulfur binder) Gerlock 900 (GRS binder)	100 E. CALES
Mariock 900 (una binder; African Blue Asbestos packing	120 F, Stiffened 120 F, Derkened
eflon asbestos packing	120 F, Weight g ain
Clas	15.4
Organics	
lycar 1001-520-39-5-5	120 F, Blistered
Compressed asbestos gasket	120 F, Fibers loosened
Berlock 7228 (neoprene binder) Nycar 1042-520-24-144-1	120 F, Blistered
Tygon tubing	120 F, Brittle, crazed 120 F, Hardened
Gerlock 7705 (GRS - blue	120 F, Stiffened
asbestos)	
	120 F, Became soft and sticky
Plexiglas	
Plexiglas Fairprene 5051 (neoprene on duck)	77 F. Became heteels
lexiglas atrprene 5051 (neoprene on duck) atrprene 5039 (neoprene on nylon	
Plexiglas airprene 5051 (neoprene on duck) airprene 5039 (neoprene on nylon laturai rubber	120 F, Softened, easily torn
elexiglas airprene 5051 (neoprene on duck) airprene 5039 (neoprene on nylon) letural rubber letional 846, O-ring	120 F, Softened, easily torn 120 F, Stiffened
lexiglas	120 F, Softened, easily torn

. Black a kall a million a management a selfed a management as a management as a management as a management as

	-								
1	_	ō,	i i	Temps re	ture,	110	NId		
Meteriel	Class	Class	Class	Cies	Class	Ciess	Class	Cless	
Metals	<u> </u>	÷	Υ.	<u> </u>			-;-	┷	No ferences
Almino, 3034 7-3 Limino, 3003 N-14	١.				75				
Alminum, 3003 H-14 Aluminum, 5052-6					eeeeeee				
Alminum, 9092-6 Alminum, 6061-87-6 Alminum, 7079-7-6 Alminum, 356-7-6					25		ĺ	1	
U:minum, 356 7-6					100				
Quainum, Chromated Gedmium-Flated Steel					מד		!		
Permitten-Oca ted Alluminum					T0				
opper .					75 75				
Rion Steal Did Stainless Stoel EDG Stainless Steel 321 Stainless Steel 347 Stainless Steel Mannasim Allow End CO				1	ananan				
DNA Stainless Stool NO4 Stainless Stool					33				
321 Stainless Steel 347 Stainless Steel					13				
					. P.				
Nichrome V Mestelloy No. X1256					33				
Titarium, O-110M							1	,	
Titerium, 0-110M Titerium, 0-130AM					33				
Asbestos, Graph									
Imbreura tad				l	75				
Asbestos, Hercules No. 57; K					75				
Pute Carbone Graphitas No. 39					T5				
Neflon Viton Viton Viton A Kel-P No. 5000 Gel-F and Glass Cloty Florogles :					10 10 10				
V1:0- A					75				
Sel-F and Class Class					T2 12			i	
FAUSTINIZIES'S RUDDOT					75				
Foundiass Dow Corning N-7002 Foam Dow Corning N-7003 Foam Mopeo F 10 Foam Mopeo B 49								75	
DON Corning R-7063 Foun								20	
Nopec B 49		' I						− 7≤	
Maturel Rubber Mittie Rubber on Mylon								79 75 75 75 75 75 75 75 75 75 75 75 75 75	
Mitrile Rubber on Hylon Dow Corning 9383 Rubber								70	
ivediou Plastic XSG 156-101								75	ľ
Sezen Mylon Mylez Tyson		1						7: 75 75	
Mylaz	Ì	ŀ						75 75	
Rubstex G=2027K						,		75 75	
Rubstex G-2027N R-betex B-103J						- 1			
Firerfrex, No. XSR Firerfrex, No. SIF								75	
Dow Corning Silastic No. 80-24-480	1	J		Ì	ļ			75	
Gerican Stiestic Mr. 250	Ì	İ			Į	1	ł	73	ļ
Lunticanta				ł	ĺ		- 1		
Rockwell Mordstrom Lube Nr. 921			ŀ	Ì	75			1	i
Molypdenum Disulfide			!		75	l	ļ		
Rockmai: Morrietres : eal		l			1		- 1	_	
Mc. 833 Pockwell Nordatron Lube No. P-21				ĺ	l		ŀ	75	
No. No.21 Rockmes: Nordetrue Lube No. 860	i	l	ĺ			1	ļ	75	
RCCE mell Mordetrom Lube								75	İ
No. 356 Rockwell Mordetros Lube	1		- 1	ł			ļ	75	Į
No. 852-S Rockwell Mordatros Lube No. 9-55	ĺ		- 1					75	İ
[Rotkmell Mordetros Lubel	- 1			- 1				75	
No. 942-8	ł		ſ	- [- 1	- 1		7	1
Mater-Based Lubricants						_		75	*

	ī			Temper	etupe,	,			
1	Class		103				ule .		1
Motorial	1	2	C1000	Class		Clear	3	Class	References
Metals Aluminum 1100	500	600							
primine 1100	300	***	>600	€673	-320	•		-310	7,73,132, 143,153,159,
Aluminum 2017 Aluminum 2024	700	>1900	,,,,,,,	l m	ľ	-320			274 143
Aluminum 3003 Aluminum 9052	700	700	1000	1000		-320	ļ	-310	1120.143
Aluminum 5154 Aluminum 6061	700	>1000	1000	100C	-320		ĺ	-3.:	12.,274 143,274 153
Aluminum 7079 Beryiitum				77.	-32C				153 27: 26º
304 Steinless Steel 304 L Steinless Steel	•∞	+ ∞c	500	>50C	-320	~32C	~3 10		58,211,274
309 Steinless Steel 309 Co Steinless Steel	570 570 500		>406 750						143
310 Stainless Steel 316 Stainless Steel	570 400	66 0	750	>>000	-12c			}	207 7,207
321 Stairless Stee; 347 Stairless [fee]	390	570	750		728		-3.: -3.:		56,211,274 127 126,257,274
410 Stainless Steel 420 Stainless Steel	ĺ			75	728				50,151,211 274
430 Stainless Steel Carponter 20	400 400	400	500	600	-320				7,207,211
PR15 - 796 ₀ AM-350-C AM-356-CX					-320 -320				153,274 274
AM=35C=0 AM=35C=0 AM=35C=0x					-330				274
Cast less Ammes less	750		500	75 >500	-320				274 211 1415% (6142)
Silicon lion leor (9,00481) leon (3,7881)		200	400	75 2400					21. 159,160
Iron (5.7951) Sheet Stee: SAE 1015	750	100 840	300	>300 930					159,160
SAE 1015 SAE 1015	300	200 400	400 575	>400 >300	1		-3,0		207 1,359,335,
SAE 1020 SAE 1:30	390	84:		930		ĺ	ļ		207,211 2,222
Carbor Stee,	7% 7%	575	846	930 930					7,207 82
n Micsel	129C	900	.300	>1300	·		-310		7,73,126,143 153,129,162,
D-Nicke:	- [; 20C	:300	>:300		1	-		211,274
L-Nichel Nickel (low Carbon) Nickel (Electrolytic)	1100	800- 2000	.300	>1300 >1300	ļ		-3:		62 R2
Mickel (Electrolytic) Duranickel Monel	1100	200	.300 .300 .300 .300 .300 .300	300					82 82
1 3.7.0.	1300	;0 2 0	.20C F	>, 200	-3a	-32;	-31.		82 7,73,143, 153,159,16., 207,211,274
Cast More; t-Mone;	40G 600	800 800	:200 1200	1,000			+310	i	207,211,274 82 82
Incorei Mestelley 6	930	1117	200 212	×00			-310		7,207,211 58,127,128,
Hastelley C	95	ł	21.2						211 58,127,128,
Hestolicy D		i	212	- 1					211 56, 211
Copper	200	400	900	>ex:	-32c		-316	ł	73,153,159,
Decaidized Copper Copper ETP	200	73C	:290				l		201,211,214 7
Drass (70-30) Brass (Red) Brass (Red)	200 200 200	400 400	80C 60C	>600 >600				- 1	82 159,160 73,211
Brass (643) Brass (Low-Loaded)	200	~	‱ ∞	2000			-31c	ŀ	73,211 92 120
Brass (Low-leaded) Brass (Ye.low) Brass (Cartridge) Brass (Casting)		- 1			-32c			- 1:	774 774
Brass (Casting) Bgoruse	200	400	700			-32C	ļ		274 73,159,160,
Copper-10% Hickel	200	400		>ex	,			- 1	159
Copper-30% Nickel				- 1	-320 -320			t t	774 774 774
Chromium Piete	400				_		-		774 59,160
Lead		344	100 700	>10C			- 1	1	n:
tegnesium tegnesium Min tegnesium AZBIA-T6 tegnesium AZBIA-T6 tegnesium AZBIC-T6	693	€1.000 €1.000		1	-		1	- 1	43 43
Magnesius 2215-T6 Magnesius A2916-76	<1000	****		ŀ			-37C	- 1	12
Magnesium HK-31 Magnesium HK-31A-H24		İ	1100		-320	1	-310	- 1	27.4
mith Dom-17)			ļ			-32.		i	274
Regnesium HM-31 Regnesium AZ-31					-32:				.53,274
Magnesium AZ-31 (Costed with Dow-17) Magnesium NA (1.295n)		200	İ		-32C				274
Manager of the Company	140	200	ļ					- 1	159,160 159,160
Magnesium J-1H Magnesium H-1A Magnesium Door Metal G	570	600	1000				-31c	- 1	7,207
	210	٠~٠١						+	,,,,

		ARLE 6	, (Cer	tt nued			, <u>, -</u>		
	\vdash	₅		Temper	ture,		w.ld		-
Mater(a)	Ciess	Class	C1 999	C1255	Ciass	cigii		Class	
to lybderum				75	<u> </u>	_		<u> </u>	Mefetences 94,199 211
Platings	212	l	ł	l					ì
Gojć Stoven	7:00		İ		1	-			2:1
S(lve: Silve: Solde: (Fluxon)		.00			1	1		!	21. 82
Tassalum Tuz	212		100	>100			-310	l	211
* *	212	icc	100	>(>) >(>)				-3:0	211
Titantum A-55 Titantum A-70 Titantum Alloy 641-4V		250		~~	l			-320 -310	143
Titatel - A-110AT		ì		l	327(+)	327		~	153,274 86,153,274
Titanium Alloy B-120VCA Titanium Alloy 16V- 2-5A1 Titanium Alloy 8Mn Titanium Alloy 8Mn Titanium 772		350		>350					
2:541 Titanium Alley 8Mn		300		1				-310	8¢ a∧
Cutentum 70A Schapttum			1					-3€	25
		:30	400	75 >700				-310	93 82
Zistitije Zistiije			400	2700			-315	-3.0	82
<u>Independs Noterials</u>			ł						
Rubi (AlgO ₃) Alumina	75 392	14/C							205,226 159,166
Allandur Sintéres Corunaum		1400 1400 1400		Į					52
Sintéred Corumbian Recrystallised Alumira Activéted Liumina Soom Simes		:4%. 40.		же					82 81 87
Soot Siess	212	37.6 400		23.X, r	ε. Ι				 21
Pyres Stitca Transito		48^		748 €				Ι,	82
Astestas		100 100 212							159,160 82
Amorenous Garben Metal Filorides		No 110	,	>2;2					159,166
GaFonhanStOn Baked Sulfur Sements	4 00-	400		>4(C					109,100
Oxpanic Navaria:s									
Lippins Kel P No. 10 N=43 (Oph-) BN Canco Hysic Off			ØI.						225,226
N=43 (U ₂ N=) 3N Canen Hyvác Ott			- 04.5	i National					225,226 225,226 225,226
Glypta:				Nii te Nii te	آ ءَ				159,151,275, 226
Die Coring Fluis 200					e l				225,224 225,226
Die Coring Fluis 25 Lufsty Solvent 178 Leax Top Carbon Tetrachingide					e l				225,226
				A:: t=	•	- 1		,	160,225,226
Greases and Pasies Kel F Med. Max Kel F No. 1 Grease Fiveriabe LG and MG Parmatex No. 3			ORT			1			225,226
Kel F No. 1 Grease			OR:		ŀ	i			225,226 225,226 225,226
Parmatex No. 3 Q-Sea:			OR:			- 1	ŀ		ناته وتهم
Blue Goop Mclyl.be			क्षा कर कर कर कर कर कर कर कर कर कर कर कर कर क			- 1			20,24 20,24
Plast-c-Sea:	i	1	OK:	-	ŀ	- 1			22,7% 22,2%
Permeter Hos. 1 and 2 White Lead				All te	\$,			225,226 225,226
Solids Teflor	₃₉₅ (4)			>396		i			
Kei F	RT.			JRT JRT	- 1		í		225,226 225,226 225,226
Necprere (Glass Filled) Necprere			İ			ļ			225,224
Ribber	75			λi: t	۴				159.160.167.1
GRS Rubber PVC				411 14 587	•		ŀ		211 82 265 200
Plexigres Tyg.7				78C	l	į			225,226 225,226 225,226 225,226 225,226
Pennisals PQC and PCI				TRC TRC		1			225,226
Polystyrane Polysthylana Dom Corring Electomer		1			φ •	1		1	209 225.226
DOM Corring Electomer Milylute No. 2					p		- 1	- 1	225,726 221,226 225,226
Milylite ho. 2 Litherge and Glycerine Phenciic Pleatic				A11 (a	ė j		1		225,235
	1			<u>#1 5</u>	•				23:32
Phenol Formaldehyda	ĺ			75	<u> </u>		J		250
Promitic Coment Promit Formaldehyda Polyfurfuryl Alcohol Polymathyl Methacrylate Polyethare	1							- 1	82 82 82
Polyestara		- 1			•				259 I
Graphits Pressed Garbon (-1)	75	1		^:: :	•	-32.	ł		159.211,215 274

TABLE 7. COMPATIBILITY OF MATERIALS WITH FLOX

				Temer	ture,				j
			15				7 ∘14		
Material	2	C1444	3	Ciass	Cies	C:444 2	21000	Clers	References
FLOK-MG (40% F_MCKS O) Alusinum, 2014-75, Alusinum, 2014-75, Alusinum, 5050-MS4 Alusinum, 5050-MS4 Alusinum, 5051-77 ASAO Stee; 301 Steinless Siee; 303 Steinless Siee; 304 Steinless Siee; 304 Steinless Siee; 304 Steinless Siee; 304 Steinless Siee; 304 Steinless Siee; 304 Steinless Siee; 305 Steinless Siee; 305 Steinless Siee; 306 Steinless Siee; 306 Steinless Siee; 306 Steinless Siee; 307 Steinless Siee; 307 Steinless Siee; 307 Steinless Siee; 308 Steinless Siee; 309 Steinless Siee	RT RT RT			RT RT	-122 -122 -123 -124 -124 -126 -126 -126 -126 -126	-12.			224, 3e4 256 266 266 266 266 266 266 266 267 267 26
Alaminum, 2014 Cadmium Plated 4037					-3×				224
Stee. Droinie 701 on 347 55	i				-32*	-3.55x		! ſ	224 224

TABLE 8. COMPATIBILITY OF MATERIALS WITH CAYOEN DIFTHORIDS $\langle o_{F_2} \rangle^{(224)}$

			_						
				***DET	ture,			_	ĺ
	. 				_	_	2010		
Meterini	CLASS	21446	C: 415 3	C1 4 5 6	C1 + 1 1	Class	C: • • •	Class	References
Matala							1		
Aluminum, 1100-0	-109	ł		ŀ	-109	1			
Aluminum, 2014—T6	-109			ĺ	-109	1			1
Aluminum, 2024—7351	-109		i			1			1
Aluminum, 2219-T6	-109				-109		1	!	
Aluminum, 5456—1343	-109					ĺ			
Aluminum, 6061=Tt	-109			Į	-109	Į.	[
Aluminum, 7079—76	-109			1	1	l	ľ	1	
Pluminum, 7079-T6	-109	ĺ		ĺ	-109	!		i	
Stainless Steel, 301	-109	l			-109		1		
Btainless Steel, 315	-109	l			-109	l i	İ		
Statniess Steel, 347	-109	l			-109		1		
Stainless Steel, 410	-109				- :29			i 1	
PH15=796	-109				-109			l i	
w <u></u> 35≏	-109				-109				
NA-355	-109				-107			i i	
Nickel 2.C	-169				-109		ļ		
Monel 400	-109		i	1 1				l 1	
Inconel X	-109				-109]]	
Rane 4.	-109		!		-109			! 1	
Durenio, 40	-129	i l	·		-109			1	
Duferloy 40 with				1 1				i I	
Electroless N1 Plate	-109			i	-179				j
Copper	-109				-:-0				
Bress 703C	-109				-159				
Titanium, A=136AT	-109				-169		!	,	
Titania, 641-4V	- 50								
				1		!			
Cctumo tumo	-109				-:09		'	l 1	
Tentelum	-109		1		-109			ı 1	
Magnestum	-10+			l J					
Ceffian Little FEF	-3.6	1	- 1		-329				
Teftin 827 TFE	1	-109	- 1	ĺ		1	į		
Fluoroflex ! Tefinn		•••	-139	· }				i 1	
#1-F 5429	1			-1:9		1		! I	
Grachite #GKSF	-179			1				: I	
Daylube TC1 on 347 55				- (29		1			
	1 1							ı I	

⁽a) Jee Reference 82 e.sc.
(b) Jiss, 1s Cleas 4 at all temperatures of fluorine is contaminated with hydrofluoric
side.
(c) Titurium elloys exhibit impact ignition but flume does not propagate.
(d) Raterial is pressure sensitive. Cleas 2 below 390 F and 10-ost pressure. Higher
pressures can be tolerated at room temperature.

	i			Temps 14	ture,	F.			i
		Ç	11		1		qu1g		1
Meteriol	C1499	Class 2	C1 8 8 6	C: +3+	Class	Class	C1433	C1 ***	References
Pu is								Ī - · ·	
Aluminum, 2024-74	212	l	ļ]	l	I	i	1	Ī
Aluminum, 2017-ST	212	i	1	ļ.	l	1	1	í	I
Corret	212	ı	1	ŀ	i	i	ł	1	}
Brass	212		1	i	l		l	1	l
utia Steel	212		ł	ĺ	l	l		1	1
303 Statmiers Steet	4.4	ľ	ĺ	1	ł	i	i	1 .	ľ
304 Statniess Steet	212	ì		1	i	i		l '	
Die Steinless Steel	212	i	ļ.		i	i	l	Ι.	
318 Stainless Stapl	212		1		•	ı	į .	l '	
morthite	2:2	ł	i	1	1	1	1	1	!
Leed.	2.2		ļ			1		i	
Magnesich Dommeta: FSIN	2:	l	ì		ŀ	l	1	1	
Magneston, Journetal, FS:A	212	1	1		l	i i	1	1	
Magnestur-Downers, MA	2:2	i			ĺ	l	1		
Tickel	2:2	1	1	ĺ	ſ	[ſ	f I	
o Morel	2:3	!						1	
r More:	212	l	1		1	l	1	1	
MB Mari	211	!			1	1.	!	1	
S Mount	2.2			[1		Ì l	
R hone:	2:2		Į.		l	i	t	i	
CR Monet	2:2					1		[]	
Insene:	2:2	•				i	l .	t l	
Mastelloy D	2.2	İ	[ĺ	i	ſ	1	1 1	
P)attrum	212					ĺ	ļ	:	
Normetals		!	}	¦	1		1		
teflos	212	ĺ	1	l	l	I	1	1 1	
Ke:-f		l	315	i	l	l	I	1 !	
		-		_	L		<u> </u>	-	

TABLE 10: COMPATIBILITY OF MATERIALS IN COOKE DIFUSDRIDS-LIQUID OXYGEN (5100% O3F2 = BANAVOE LDX) (83)

				Temper	ture,	<u> </u>			
1		G	41		Γ	į,			
Materiaj	Ciass	C. 855 2	C: +** 3	E 111	Class	Cign	: ; ; ;	Class	References
301 Stainless Steel 316 Stainless Steel 347 Stainless Steel 416 Stainless Steel 915-790	-297 -297 -297 -297 -297	-297			-297 -297 -297 -297	-291 -277			

TABLE 11. COMPATIBILITY OF MATERIALS BITS CHLORINE TRIFLUORIDE (CIF3)

				Temper	ture,	P			J
j					Γ	111	e-io]
Motorial	Ciess	Class	Class	Ciake	Class	Citt	C: 856	Class	References
Marin: n		\vdash							
Aluminum, ICoc		l	l			l	i	1	t.
Aluminum, 1000 Aluminum, 1100	er.	ı	1:44		35	1	1	1	11111115
1.001/101,00	95	1	044		85		Į.	ı	17,82,111,
Aluminum, 1100, Melded	81	ł	1	l	85	l	l	ł	115,211
Aluminum, 2014, deides	B*	1	1		85	ı	i	1	1114
Aluminum, 2024	•	l	ļ		85	1	l l	1	
Aluminum, 3001		l	i	ŀ	85		ŀ	ł	111,115
Atuminum, SCS2		l		l	85	ı	l	1	
Aluminum, 6061, Belded	94	l	1	l	85	l	l	1	111,115
Aluminum, 7679	-	l		l	95	l	l	1	:11,:15
Columbium			1	l	7,	l	l	-105	111,115
• • •		l	1	l	ĺ	1		-103	
Copper, ETP	85	i	59C	l	85	I	i	1	17,441,115
CADDOT, DIP		l		ŀ	85	l		1	111,116
Boryllis Copper 28		1		l	85	l		1	111,115
Prispher Brense, 5%		l		l	P.S	l	l	1	111,115
Aluminum Bronze, 8%	85	1		l	R5	l l	i	1	111,115,211
Yellow Brass	9%	i		l	85	l l	1		111,115,211
Mie Brass		i		l	25	l	;		4.1,115
fin Bronze	75	l	1	ļ.	i	l	1	1	2.:
C C \$100,	95		ces :		85	l	ł		17:141,5. 211
1010 Steel (Coated with		ŀ	i	l		1			4
Posbord 401		{	'	!	85	1		i l	1.1.115
10'0 Steel (Guated with		l	l	ľ					
Fosbond 271		l	l	l	85	1			1.1,1,5
ACB Stairless Stee:	85	l	l	l	85	1			1.1,115
304 Stainlass Steel		l	l	l	85	1		1	
316 Stalniess Steel	85	l		l	81.	l		1	15
34º Steinless Steel		l	I	l	85	l	l	1	1115
MI-35C		J .]	j	l	15			62
A-286						73	l		54
Carpenter 2C		l i		ŀ	65	75	l	1	82,111,115
PH15-780 (Rt 950)		i		٠.	85	ĺ	Ì		117
PH15-780 :TH 1050)					95	ł	1	, ,	117
410 Stelfies: Steel		i		i		ĺ			
(Meidea)	85		١ .		85	1	ļ	, ,	1:7
oal Stainless Steel		i					i	1 I	
	85				P.		l	1	107
AM-350 '∰ides'	81,				A*.	l	!	1 I	1. '
PH:5-1Mo (Me:ded:	81.	l i			85	1	ı	1	111

				ie iş en	iture, i	,			
		Ģ	15			L19	فاتم		
Material	Ciass	Class	C1454 3	CLASS	: : :::	Cless	Ciass J	Class	References.
List - The Table		- 24	F F .	= =	7.7.				19 1 1 7
Magnetist, AZ-31B Magnetish, 18-21A Magnetish, HK-31A	977				85 81 81				(11,115 111,115 111,115
Armicket	85	1			85	•		1	iguaigus,
 Mone:	44	j]		£5.]	\$21 17.010,035,
inconel inconel x incoley testoloy X					e e		75 75		111,::5 e: 111,115 e2
Renh 41 Cupro-Mickel, 30% Nickel 200 (Reided) Monel 470 (Reided)	£0				80 80 80	פד			82 111-115 117 117
Nickel-Silver, 1894 (Alloy A) Thorium		647			80				111,115 #2
Titenium, 100A Titenium, G-120AV Citenium, A-110AT				75				70 70	87,111,115 111,115 111,115
itani 🛥			i	400					ec
Zirconium		}		640					0 2
Hormetala Glass Pyrex Glass Stonesare	£ 4	*5							211 62 711
Neopzene Rubber	75								211
Carbon, Karbate # (5:4) Graphite, Karbate ##25: Graphite Graphitar 59 Graphiter 6' Uraphiter ACT-Y2:0}	.)					מ		थंड अध	111,115 111,115 111,115 111,115
Tefion	7				\$ 5				17,111,115,
kel-F Polyvinyildene Flueride (RC+2525)		i.			6 0	8 0		acı	17,111,115 111,115

(a) Epoxy filler. (b) Prematic filler.

TABLE 12, COMPATIBILITY OF MATERIALS WITH BROWING INTELUORIDE (BYF)

	Г				Temper	it me,	F			
	-	_		1				N-10		1
Meterial	CI	1	2:411	C: 411	C; 455	Class	C: 844	C. 411	C' 345	Beferences
Merels.	Τ									
Aluminum	1		75	1	i		İ			į,
Por	1]	j]	}		7-5	82
Calumbian	1				1		ļ		75	32
Corpet Tin Bronze Aluminum Bronze Brass			4CC	**				75 75 75		17,211 2:1 2 17
Gold			'		1				75	211
Stee: #10 Steinless Stee: #10 Steinless Stee: #10 Steinless Stee: #10 Steinless Stee: #10 Stee:			26 0	480				\$0. \$0. \$0. \$0. \$0. \$0. \$0.		211,17 211 211 211 211 211
aliton*iron Lead			75		l			75		2;; 1'
Magnesium.	1 3	oc		690	Ì					62
No Lybdenia					1	l			75	e2
Nickel Mone: Incane.			75	i 3000				76) 76) 76)		17,211 17,211 211
Platinue	1			ļ					75	5:1
Tentalive	1		1		!				ני	211
Thortur	į			320	1					802
Titanium	i								۰,	82
Tungsten	í			1					75	82
Zirianio	ı			ļ				350	75	82,21:
honestara	İ			İ						4
Glass Storeware] .				75 75	211 211
Asbestos	!	ļ		!				75		211
S ç əd	1								75	241
Haveg 4), Sarin	1								75	211
Fiveroethane	1							3 00		42
Siltran Silpeur Kejas Tellan			1.						75	13

Trest . . Laugurthiftettathears bre-

				Tempers	ture . I	•			
		- 6	И			119			
Meterial	CLees	Class	Clees	Class	Cteou	Cless	Class	Cless	Informeds
		_	_						
Matala Aluminum, 1060					et.				111,115
BA1484 1100	160			1	85 86		l	}	111,115,219
Aluminum, 2014 (Welded)	80				165 165 163			1	117
Alusina, 2024 Alusina, 3003 Alusina, 5052	160 160		1	1	87) 63		1	1	111,115
	160		[1		1	210 117
Atuminum, 6061 (Welded) Aluminum, 7075	85		1		80 85	ĺ	1	1	111,115
Copper, ETP Copper, TAP	85				85 85		İ	1	171,115
Beryllium Copper, 25		Ì)	8*		1	1	111,115
Phosphus Bronza, 36 Aluminum Bronza, 85	82	ì	1	ì	85		1	1	11111111
Yallow Brees	87				85 65				111,115
1010 Steel .	85		Ì		B2	}			114,415
ICio Steel (posted atth			1		85				111,.13
1010 Steel (coated with Fosbord 27)		1	1	}	P5		1	ì	111,115
[Carbon Steel	160		ļ	1	85	1	}	1	111,115
403 Stainless Steel 430 Stainless Steel	166				"	ì		1	219
231 Stainless Steel	160	1	1		l	1	ł	1	213
202 Stainless Steel 302 Stainless Steel	160 160		1		l			1	219 219
304 Stainless Steel	160	Į.			85		1	1	111,115,219
310 Steinless Steel 314 Steinlese Steel	160	1	1	1	85		1	1	219
316 Etainless Steel 321 Stainless Steel	160	160		1		\	İ	1	1449
329 Stainless Steel 347 Stainless Steel	160	1	1		85	1	1	1	111,.15
347 Steinless Steel (Melded)	81		1		83	i		1	:17
410 Stainless Steel	85]	1		85		1	ĺ	117
(Meided) AM-35C (Belded)	80]	1	1	65	1	1	1	117
9H15-7No (RH950) PH15-7No (YH1050)	İ	1	}	1	85		ł	1	11111111
AM-35C (Belded) Selfs-78c (RH955) PHIS-78c (THI05c) PHIS-78c (Belded) Carpetter 20-CE	85		i		85	1	1		10,10
Lord	75	l ac	ł	ł	1		1	ĺ	219
Magnesium AZ318	\ \frac{1}{2}	8:		i	8:	1	Į.		111,11
Magnestum (#421A	}	1	ì		81	1]	1	111,115
Magnesium HK31A	:60	1		1	35		1		111,115,219
Mone:	80	85	1	ì	85	ì	1	1	111,115,219
Incore: incoicy	Į.	Ι.	1	i	85	1	1	į	111,115
Hesteliny B	1	160				1			219
Nickel ZEC (selded) more: 400 (Kelded)	85		1	1	85	ļ	1	1	117
Cupro-Hiczel, 30%	"	1		i	85	1	1	İ	111,115
Silver Solder Nickel Silver, 1895	70) ≎	1	1	82	i	Ì	Ì	111,115
Tin	75	60				1	1		219
Titarium-100A	95	ec ec	1		85	9	1		111,115,219
Titanium C-120AV	55	1		1	82	T	1	1	111,115,219
Orracic materials	١ _	330	1			1	1	1	i .
Teflon Kei-F	75	390	1]	1	i			62,111,115 62,111,115
Phenciic Resins Spoxy Resins	1	390	1	1	1	1	1	1	82 82
Saran Flyorosilicone Rubber	מד		1	1	1	1		1	82 82,219
(Iron Oxide Finler)	1	1			1	1			82
GRS Rubber Kel-F Electomer	1	390	1	1	1	1	1	1	92 92
Silicone Number (On Glass Cloth)		390	1		l		1	1	["
Polychiorotrifluoro- ethylene		393			1			1	e;
Oil or Grasse	İ	"		90 80	1				B2 B2
Colluinse Colluinse Acetate	1	1		80	1	1	1	1	82 82
Sthyl Colluinam Gum Arabic	1	1	1	l ec	1	t	[l	82
Melamine Formaldehyde Methyl Styrene				80 80 80	1				82
'aylon	1	1		80			1		82 82
Polyvinyi Culoride		1	1	1 86	l	ĺ		1	82 82
Polystyrene Polysethyl Methecsyle	ι	1	1	80	1		1	1	32
Polyecrylonitrile Polyethyl Pyrroliodon	1		1	80	1		1		02
Polyisobutylana Palyethylana	75	.]]	80	1	1		1	82,219
Ruton	"		1	90	1	1			95
Xylylene Glycci Polyether	1 _		1	80					82 910
Cotton Reyon	73) i		390	1	1	1	1	92,219 82,219
Plexigles Decres	75	·		390 390		1	1	1	82,219
Orlon		1	1	39C		1	1	1	82 82
Moel Silk		1		390				ł	82 82
Alkyl Resine		1	1	390	1	1	1	{	62
Alkyl Enemal Modified Physnolic Resid		i		390				1	82
5. licone Glase Cloth	.]	1	1	390	1	1	1	1	82 82
Vernished Glass Clath	1	1	1	390	ı	1	1	- 1	1 82

				îşêpa r	lutt	,			
			93				u le		
······································	(23.464)	Clock	Class	El otto	Close	Ctine ?	Ctoss -	Cipss	Bel erences
Butyl Buther with		П	1						
Carbon	ì	1	1	990	1	i	1	1 '	82 82
Maturel Bubber		1	I	290	l	i	i	ı	N2 A2
Frem Rubber		I	[320	l l	ŀ	Į.	l l	62
typeion Carbon Filled	ļ.	1	1	390	Į .	Į.	l	l	1 a2
Reoprene Carbon Filled	l	1	i i	390	l .	l	1	1	6.3
Menite Tape	l			390	i	l	Į.	l	82
Perfluorobutyl Acrysme	Į.	Į.	i	390	Į.	Į.	ł	1	82
(Carbon Filled)	l	1	1	390		ł	į.	l.	82
Rectational Mabber	l	1	1	370		1	ł	1	82
(Carbon #11) and)	1	İ	1	390	1	1	1	1	<u>a.</u>
Silicone Rubbez	Į.	1	1	390		i		l .	. A2
BoorMLX	1	1	1	1 396	1	Ī		i	42
Carnèuba Wex Lubricaci Greese	1	İ	i	390	Į.	İ		į	62
Silicone Stopce*	1	Į.	1	, ~~	Į.	1	Į.	Į.	1
Green ampro	75	1	į .	39C	1	1		1	82,219
Transformer Oil	1	1	!	390	1	1	1	1	8.2
Chinzinated Manhthailm	ı		1	390	1	1	1	1	62
Fluoroluba	ੀ ਲ	1	1	1 ***	1	1	1	1	62,219
Other Materials	\ ``	1	[Į.	1	1	1	į.	1
	Ī		1	390	1		1		82
Kaoline Clay	ł	1	1	396	ŀ	1	1		
Mercury Driesite (Indicating)	1	1	1	390	1	1	1	1	82 82
	ł	1	i	390	1	!		1	82
Macrite Borrd	1	1	Į.	390	1	Ļ	1	ļ	182
Craft Brazd	i _	1	1				1	1	82,219
Leether	73		1	390			1	ł	82
Milto Load Pipo Depo	1		1	390	1	!	1	1	82
Permatex Pipe Doge	t	Į.			!	Į.	l		162
Chamion Pipe Dope	1	1	Į.	390 390	1	i	1	1	82
Look Book Pipe Dope	1 _	1	ł	390	1	!	1	1	62,219
Peper	75	1		390	1	1	1	1	82
Plymood	1	1	1	340	1	1	1	1	82
U.un(ne	1	39C	1	ı	1	1	1	1	82
Activated Silice	1	390	1	ı	1		1	i	8.2
Sodium Materilicate	1 72		1	1	1	1	i	ì	P. 219
Graphii te	1 79	360	1	1	1	1	1	1	92
Gleee	1		1	1	1	1	1	1	82
Ascestos Paper	1	390	1	1		1	1	1	82
Transite Board	1 _		1		1	1	1	1	82,219
Cork	75	1 80		1	1	1	ī	1	A

(a) Ignites under imports but burning is not sustained.

TABLE 14. COMPATIBILITY OF MATERIALS WITH PURCHLORYS, FLUORIDE CONTACNING UP TO 19. MOISTURE

	ľ			: Pepera	ture, I				
		G,				119			1
Material	C1444	Cless 2	č.;			C: 494	21866	C: ***	References
	 	<u> </u>	-	•		-1	<u> </u>	-	201010101
<u>₩.\61.0</u>	1							į .	
Alusinum, LiCC		85	l	8. 8. 8. 50				l	115,214
Aluminum, 2024 Aluminum, 3003				-		1		l	210
Aluminus, 5052	i i	1	ì	1 %		· '		i i	219
Aluminum, 6061	1	ļ	l	75			!	Į	2:3
Соррет	ì	75	1	BK		65	ì	ì	115.2.1
Brace	l .	74		ec				l	213
Aluminum Bronze, BS	ŀ	85		,		82	۰	ŀ	115
Yellow Bress	1	1 10	٠,	. :		1	es.	1	ì
101C \$tee1	1	l	85(8			l	H*.	ļ.	1112
Carbon Steel 403 Steinless Steel	ì	1	1	75		1	85(1	4	219
201 Stainless Steel	l	I	l	20	ł	I	•,	ſ	1 2:0
202 Stainiess Steel	1	I	1	75	i	Ī	ì	1	3:0
302 Stainless Steel	I	876	l.	160	١,	l	l	l	219
304 Stainless Steel	1	850	ľ		85(4	7		1	115,219
310 Stainless Steel	75	و-	l	160	!	l	1	1	219
314 Stainless Steel 316 Stainless Steel	,,	85(i)	ı	85	l l	1	ł	115,219
321 Stainless Steel	75		!	1	٠,	I	l	1	2:0
347 Stainless Steel	1	1	85(4	•	l	8*	l	1	115,219
carpenter 20-Cb	85.4	•)	1	1	8.)	1	ŀ	115
Cartren D				1 5		1			2:9
Delchlor	1	1	1	-5	1	1	1	1	219
furiest 20	80		1	80	85			l	115,219
Curimet ?	75	ĺ	l	160	1	l .		i	219
Chlorimet 3	Į.	1	85	i		l	65	l I	115
Lead		*5	1	80				1	219
Mg AZ 31B		854	₽	75		85	į .	Į .	115,219
A-Michel Monel	1	85 75	97(4	90	1	81	l	1	115,219
Incomel	85(4	4	5		85	1 35	i	1	115
Incoloy	85	1	1	1	85]	1	1	1::5
MI -O-Mel	85	1	1	1	85	1	Į	Į.	115
Mestelloy A	1	1 .	i .	73	1	ı	I	1	2:9
Hastalloy B Mastalloy C (cast)	85	160	F	160	85	l	1	1	219
Hesteliny C (wrought)	160	85	1	1 '~		65	1	1	115.219
Mastellay D	1 .~	1 %	1	160	1	١ "	1	1	219
Illium G	85	1	1	1	85	1	1	1	116
Illisum M	60	1	Į.	1	85		Į.	1	1115
filium 98 filium Gel34	160	1	1		l l	85	1	1	213
11:10: 0:134 11:10: G-138	160	1	1	1	i	[I	1	219
Cupro-nickel. 3.1	1	85	1	1	1	85	i	Ì	11.5
Gelo	en	1	1	1		1	1	1	115
Pistino	85	ì	}	ì	85)	1	ì	115
St!ver	95	1	1	1	81	1	ı	1	115
Nickel Silver, 18%		1	85			l	82	1	415
Tantalue	160	1	1	1	1	1	1	1	2:9
tin		د٠		80	1			1	210
Titensum C-120AY	an.	1	1	160	1	1	85	1	115,2.9
Zinc	75	1	1	i	1	l	1	1	2:5
1	1 1		1	1		1	1	1	1

(a) P1t4.

ed nerde and eigner fell till bed eine auto

۰ ، سیسیالی				Tempe re	ture,	,			
		0				111	eld.		
Material	CLDGG	Cless	C1	Cless	Cless	Class	Cless	Cies	Interessa s
	·				<u>-</u>		-		
	= 7.	-		ļ-	85				115
lum: Num, 1060 Luminum, 1100		l	Į	[100		Į .		115
limira, 1100 (Woldes)	F3	ı	ł	1	85 85	i	1	1	119
luminus, 2014 (Melded) Luminus, 2024	82	1	1	1		İ		1 .	115
tumbre. 2003	ì	ł	1	1	80	1	1	1	115
*Amtum' abor	69	1	1	l	30	i	!		119
luminum, 6061 (Melded) Luminum, 7079	P-3	ł	i]	85	!	1		115
olumbium blumbium			1	1	1		1	65	111,115
opper, Tip		ł ·		i	65	1			115
opper, 190	ł		ł	ł) <u>es</u>	1	I	f :	115
ezyilim Copper, 25 hospher Bronze, 56			l	1	65 65		ı	1	113
juminum Bronze, 65			ı	1	85		1	1 :	113
allow Bress	ļ		Į.	l		(1	l '	115
ale Ress	1	İ	1	1	80	1	1		115
010 Steel 010 Steel (Costed with Footboad 40)	ł		ł	1	**		ţ	ļ ·	115
CIC Steel (Costed with	1	1	İ	1		1	1	į į	1
Postond 27) 03 Stainless Steel	i	1	1	1	65	ł	1		115
10 Stainless Steel	ì	1	1	1	-	ì	1	ì	,
(Welded)	85	1	1	1	85	1	ŀ		119
04 Stainisse Steel	1	1	1		20	1	ł	Į.	115
ijė Steiniese Steel MT Steiniese Steel	l	1	1	1	83		1	!	1 115
47 Stainiges Steel	l	1		ł	1		I	1	
(Selded)	85	!	1	1	65	1	1	}	119
Aipontor 20–Co HLS—Rub (MASSC)		1	ı	İ	85	1	1	1	115
HL 5-786 (THL090)	1	1	ŀ		85		1	1	115
HLS-Rio (DELOSC) HLS-Rio (Holded)	85	į .	1	1	-	1	į .	1	119
ga⊸350 (Welded)	80		İ		#5	1	1		119
lagnesium, AZ318	l		1	1	85	1	1	1	115
legrasius, MC31A Legrasius, MC21A	1	1	ì	}	85	ì	Í	1	112
lo Lybdenum	1	1	1	Ì		1	1	85	111,115
-mickel	1	1	1	1	85	1	1	1	115
tickel 200 (Welded)	85	1	1	}	85	1	ı	1	112
ionel	l	1	1	1	85	1	I	1	115
tonel 400 (Welded) (necnel	65	1	1	1	65	1	1	1	115
Inceley	1	1	1	1	87	1	1		115
itanium OwlZOAV	1	1	1	1	1	1	I	85	111,115
Microstale.		1	1	ļ		ŀ		1	1
Graphite, Spectroscopic								80	111,115
Teston	1	1	1	1	1	1	8 2	}	115
terion, Care filled	1	1			85	1		1	115
(6)-4	1	1	1	1	1	1	85	1	1115

				Temper	ture, i				
		- 0					uld		I
Myterial	Close	Cless	Cless	Cless	Ċless	Cless	C1 ***	Ç1 046	References
Briais.									
Blid Stepl Last Iron AlC Steinless Steel ASC Steinless Steel ASC Steinless Steel SOC Steinless Steel Burthite Durimet 2C	75 75 75		75 75 75						
Copper Sn Bronze Al Bronze Si Bronze Ped Brass Tellow Brass	おおかわかわ								
Awitickel Mone; Incore!			30 30 50						
Aluminum, 1100	l	ļ	75	į	ļ		l	ļ	1
Load Gold Flatinus Tentelus	23.03							İ	
Glass Stenemere	**			 					
Actor Actor	77			75					

TABLE 18. COMPATIBILITY OF MATERIALS WITH MONDO-LOROTRIFILIDMOMETHANZ $\{\infty \text{LF}_3\}$ (FRBON 13)(211)

_	L	_		leaper:	1474	<u>, </u>			!
		- 6	11			113	p. id		
Melerie;	Class	C1 ***	≎1888 3	Ciess	C; + + +	C:411	Ciess	C1411	hoforences
motale.						1	ļ		
Mild Steel 364 Stainless Steel 346 Stateless Steel Morthite Durimet 20	75 24 75 75	70	75						
Geld Platinum Tantaium	75 75								
Minduse) <u>Normetala</u>		70			1	ļ			
G)att Stonemare	1 7								

TABLE 16. COMPATIBILITY OF MATERIALS WITH SCIEC CIC $_3F_1v_2\ell_4^{(-8.3)}_2$

	L_			Temper	ture,				l
		Q.				111	uld.]
Materiel	21 0 0 0 1	Cless	C:445 3	Cless	Cl. 6 6 6	C; a s s 2	C1991	Class	References
Weisis					ĺ			Ï	
110#150#, 1100#0 110#150#, 2014-75 110#150#, 2024-7351	-109 -109 -109				-109 -109 -109	ļ		ļ	
Nigelrus, 2219-76 Nigelrus, 1456-8545 Nigelrus, 6061-76	-109				-109 -109				
Alusarrum, 7075-76 Alusarrum, 7079-76	-109 -109				-109 -109				
Solumbium	-109	1	1	1	-100	1	1	1]
Cufanloy 45 Copper Brees 1030	-159	Ì			-109 -109 -109			ļ	
30: Steinless Steel 316 Steinless Steel 34: Steinless Steel	-109				-109 -109 -109				!
ajg Steinless Steel Phj5-700 AM-350 AM-355	•100 •10 ·		Ì		-109 -109 -109		Ì		
Magnetius	-1	i	1	Ì	-109	1	ì	ì	Ì
Nickel 200 Monel 450 Thconel X Bené 41	-169 -169 -169				-109 -109 -109 -109				
Tental um	-109		•	1	-:09	l	ı	1	1
Titerius, ArlicaT Titerius, 6A1-4Y Teflon 10C FEP Teflon 8277FE	-109 -109		-109		-109 -109				
Flucroflex T Teslon Kel-# 5909 Elestomer Graphite AGGSP	-109	-103	-109				İ	-109	

TABLE 19. COMPATIBILITY OF MATERIALS WITH TRICHLOROMORPHURGETHANS(FREON $\pm 2)^{(211)}$

	7		_	Tempere	11	•			
	 	- 6		100011	1		puld .		}
Material	Class	Cl 855 2	C: 455	CIASS	2) ess ;	C: 900	Class 3	Clare	Buforomes.
#1418			[I	[l	l		[
Mild Steel Cest Iron	75					1			
304 Stainless Steel 316 Stainless Steel	75 25	ļ	i		ļ	ļ			ļ
Morth(to Durinot 20	75			ŀ			1	ĺ	
Copper Sirebionie	75		1	1		Ì		1]
A: Bronze Red Brass Yellow Brass	75 75 75		ĺ		ļ				
Aluminum, 1100	75			İ				İ	
Gold Pletinum Tantalum	70 70		1	ļ					ĺ
Hecostel e		{	1	{		1	1		Į.
Olosa Stoneware	15							1	

Sight applicabilities of the

.

	T			Temper:	tores	,			
	_	3	11				ria_		
- Cotorioi	Cless	Cless - 2-	Cless	Ciess	Class 1 :	Cleas.	Ciess -3 —	C1455	Héfejences'
Belalb							1	1	
diverse, 1160	392	1	1	1	1	i	1	1	135,211
Aluminum, ecol	75	ł	1	1	1	1	1	1	.25
Copeet	7:	I	242	1	1	1		1	134,21;
Sa Branze	75	1	1	i i	1	i	١	ì	211
Al Bronze	773	ł	f	1	1	1	ľ	1	2.1
S! Bronze		i i	1	ļ	ľ	l			2.1
Red brace	"	l	1	!	Į.	į .	l	1	2::
Yelfom Bress	15	ļ			ı	l	1	1	211
Mild Steel	392	i	1	1	1	1		1	125,211
Cast fron	75	Į.	l	1	l	Į .	l	l	2:1
X:-Resist	75	1		1	ł	i	i	1	211
! "- "	-5	1		1	!				134
410 Stainless Stee.	715	l .	1	1	;	1	1	1	211 211
435 Stalminss Stee.	73	ł	1	ì	ł		1	1	12
304 Statisters Steel	1 %	ł	t .	1	ł		ı	1	1311
316 Steinless Steel 4.30 Steel	1 4	1	ì	1	1		1	1	15%
Morthite	14	į.	i	1	1	1	l	1	2.7
Durinet 20		1	ì	ì	ì	1	ì	1	lati
	1	1	1	1	1	1		I	21.
A-Kirkel Monel	1 **	J	1	1	i	ł		1	150
Interest	73	1	i	1	1	i	1	1	1211
	1 -	Į	1	1	1		1		
Ge: d	75	ı	1	1	1	1	1	Ţ	2::
Flatinus Tantalun	1 13	1	1	1	1	{	1	}	1 iii
. 4 * 1 4 1 4 =	1 7			1			1	1	1
Magnestin		25.0	1	1	ı	1	1	1	135
Titanto Tita	1	1	1	1	1	ì	1	1	136
Titeatus, cartay	75		i	1	1	i	Ī	ı	:25
Sense tall	1		İ		1	1	1	1	
G: +++	1 -5	1	1	1	1		1	1	211
ateremere	1 .0	1	1	1)		1	1	2

(race 2). Compatibility of naturals with dismonotetrafilumoethane (coefy-coefy) (from 1:482) (198).

				Temper	ture,				l
			1				ì		
Material	Class	5	C: ***	Class	Class ;	C:415 2	C1441 3	Class	References
Wetsi.					Ĭ	I			
Alumini" Aluminum, 606:	248 70			592		Ì	<u> </u>	}	
Conter Brank	200 248	24R	142			l	l		
Steel 4(3C Steel 17-7Ph	248 75 75	248							
Magresium	77	1		Į	ļ	Į	į	[l
Titentum 75A Titentum, 6Ai-4V	1,1			ĺ					1

TABLE 22. COMPATIBILITY OF MATERIALS WITH HYDRACINE (NgAg)

	τ			Tempere	1.20,				l	
		G				110	uld		1	
Material	C: +++	C1999	Cigo	Ciar	Ciess	21951	C1 • • •	Cless	References	
Matala Lunnum, 1100	146				140		140		7,149,174,	
Laina, 2020					ac.	1	1€0	160	211,216 82 174	
luminum, 2014 luminum, 2017 luminum, 2024]				160		140	80	174 7,174,216 174,211	
lusinus, 3003 lusinus, 4043 lusinus, 5052	145				160		.~		174 7,174 174	
luminum, 5456 luminum, 6561 luminum, 6566	140	j			166	ļ	:60	73	7,170 174 7,174	
luminum, 7075 luminum, 405 luminum, 356		1	1	Ì	160	•		} "	149,174 174 174	
imainum, 716 Medmium		1	ì		140	1	٠.۵۰	arī	174	
Durvatum Platting	1	1	ì	1) XI	1	1	1	174	
itait itallite itallite 21					275		77	T:	147	
Copper Bress					86 80	80 140		140 140 87	7,174,216 7,174,216	
kronge kold		1	1		75	1	1	2.2	211	
Aure (ron Hild Steel								BC BC	7 7,149,211, 2,6	
1520 Steel 410 Stainless Steel	1			200	9C 20C	77		73	174 7,174 7	

TABLE SE. (Continued

		_		(ada)	tuto, I	2	_		
	Cless	C1344	11			110	Class	Clean	
Material	***	Class	Cless	Class	1	Cless	5	68	% ference - 7,174,210
436 Stainious stool 446 C Sunintess Stool 302 Stainios Stool 303 Stainiosa Stool					888	149		68 75	7 174,216
303 Stainless Steel 304 Steinless Steel 316 Steinless Steel 317 Steinless Steel 321 Steinless Steel 347 Stainless Steel Steinless W	340 200				8 8			160	7,174 7,174 174
32] Stainioso Steel 347 Stainiose Steel	140 800				140 200		190	•	174 7,174,216 7,174 149,174 176
117-1791	140				140 200 200 200 75 140 75 140 140			160	174 174 174
AB-STO AB-STO Box thi to	77				160		İ		174
Duribet 30	73		1		641 75		1		211 149,211,216 149,174
90Pb-10Sh Magnesium	1	{	77	}	75			77	7,174 174
Magnesium, AMIDGA Molytoenum	1		1	140	70			a c	7,149,174
Ki ek ei		ļ	ļ	140				140	7,140,174,
Electroless Miskel Monel	ì				65			64	7,149,174, 211,216 174 211,215 174
K-More: Income:	1		1	200 200	65 :40 200		140		174 7,149,:74
Inconel X Richrome Chromel A	:				80 80 80 125		14C	80	7,149,:74 21:, 216 149,174 149,174 149,174 2:1
Hamilioy C Silver Silver Solder			Ì		80		140	77	7,174,211 149,174
Tantalum	1			}				212	7,211
Tite Titenium, SAI-4V Titenium, AliOAT	140				80 160 (40		140		7 82 :74 7
Tungsten Zinc Zirconium					75	75		RT	7 7,174 211
Normatala lerion					140				7,149,174,
Kal-# Col-#-1 Kal-#-5					8 0			160 140 140	7,149,174, 211,216 7,82 174 174
KeimP-30C (15% Glass Filled) Polyethylene Saren		}			*			140 160 68	174 7,149 216
Lucits Epon		İ	Į.	1	ļ	B C	75 75	ļ	149
Mylon Tygon Priyvinyi Chiczide Priyvinyi Alcohol Vinylite							73	75	7,216
Cellulose Acetate						73	72	75 75	82 7 7 7
Ethyl Celiulose Lactoprene Phenilic		1			}	}	75	75	7
Pheniic Mylar, Type A Buna N Rubber Neoprene Rubbar National Rinhar						80 75 87 77	12C 75	38	174 81 174,216 7,211,216 2
Nature: Rubber Silfcone Rubber U.S. Rubber 17825 Buly: Rubber Composing 805-77						75.77		"	1."
U.S. Ruther M-20995 SMR					140 75	76767		:60	174 149 25 23
Ports but add ace				1		160	1		25
Nytropol Stiestic 167 Stiestic 15-63 Stittone DG-710 Corregei							77 200	140	174 143 82 174 174 174
haveg 61 Delanium					;40				174 174 174
Garlock Gasket VIC Andre C Carum 250 Dapor 35							201 75 75	;40	174 174 174 174
An-G-03					9:	1	75 140		7
Glass Graphics Graphicar 2 and 50 Asbestos					.48 .40 60	75	73 75	80	7,149,216 7,82,174 7,211,216

PABLE 25. COMPATIBILITY OF MATERIALS WITH UNSYMMETRICAL DIMETHYL HYDRATIME (HOM

Taken the second			_	îespe pi	ture,		-		
į.	Cless	6	1			110	uld Class	Class	1
Material		C1901	3	Class	1	Class	3	-	le (etences
Malala									
Aluminum, 1100 Aluminum, 1100-H14				1	180				274,296 7,02,227 92,227 174,296 174,296
Aluminum, 1260-Hid Aluminum, 1260-Hid					145		ļ	1	92,227
Alumathum, 2014	140		160		140	122	ļ	ł	174,296
Aluminum, 2C1? Aluminum, 2C24	14C 75	14C 16C		1	140 75 75	160		1	
Aluminum, 2024-11 Aluminum, 2024-11 '!rid'ted'					(45 95	ł	-	ł	174
(inidited)				1	1	l	ļ .	١.	Į.
Atuminum, 30-3	*	160	Į		145	160			174,296 92,227 92,227
Alleinum, 3004-H14 Aluminum, 3004-H34 Aluminum, 5004		l	1	1	145	Ţ			92,22
Alueinum, 5052	140			1	160			i	92,174,227, 296
Aluminum, 5052×634			İ		145			1	92,227 174
Aluminum, 5086 Aluminum, 5086-H34				1	145			1	7
Alle(nos, 5154-434 Alle(nos, 5456		٠,,		1	145		1	1	92,22
Aliminia, ACEL	145	38: 35;		ł	160	161 161	1	į .	1
Allernie, ACA, .** Allernie, 6083-16			1	Ì	145	1		1	1,02,22
Aluxinum, 7075	160	1	1	!	160	1	1	}	174,296
Aluminum, 7075-76 Aluminum, 43			1		145	1	1	ł	7, 37, 22
Albairon, 356	75	141	160	1	160	147		1	174,296 7,92,227 52,227 174,236 7,92,227 7,92,227 174, 236 7,42,227
Aluminum, 356-11 Aluminum, 3003 (Anostred Aluminum, 5052:961 fed	٠.	160	1		160 25 33	140 160 160		1	
Attention, SCT2: Mil fed to 3to	~4,	:11	i	1	1 3	1 ''		1	3.24
te 356: Ajuminum, 5052 Melded to 6061]	**	160		1	75	160		1	200
	İ	1		1		1		٠.	:74
Cadetum Plate		}	1	1	.45	1	1	1 "	92.227
Hermes Alley 25			!	1	145			1 %	
Scoper						l		1	2422
Bress.			İ		٠٠.	1	1.40	1 0	7,32,174, 24,,227 174,211,294 174,211
Bro ve Vilo Sivel		ł	1	{		ł		1	17.92.174
	75	160	1	1	85		1	1	7,92,174, 211,227,291 7,92,227
4130 Oronjum Steel 312 Stathless Steel	75	160	}	!	75	6.	1	ĺ	7,92,227 62
302 Stainless Steel 303 Stainless Steel	iac	Ì	1	1	:52	1	1	1	7,92,174,227 92,174,227,
	ł	ļ	1	1	1			!	1221
34 Stainless Steel	1.40		1	1	140			1	92, :74,227, 296
Dit Stainless Steel	140	ļ	1	1	140	Į.	į	Į	92, 174, 211,
Olt Statmless Steet	140		1		1.5			1	92, 174, 211, 227, 294 92, 174, 227, 296
		1					1	1	294
34" Stainless Steel	160				:40	1			32, 14,221, 236
410 Stainless Steel	:60	1	ì	1	160	İ	ì	1	39
4it Stairless Stee. 422 Stairless Steel					250			1	7,02,227
17-7PH	160	1	Į.		166	1	Į.	1	92,174,227
PH15-7Me A-286		ļ		1	51 65		i	1	234 32 7,02,174,22 7,02,227 92,174,227 7,32,174,22 92,222
Carpenter 20 Ah-355 CRT	1.00	ł	1		140	1		i	145
Managed in December 132	ļ	ì	1	1	-		1	Ì	62
Magnesium, AZ92F Magnesium, AZ318C Magnesium, AZ318	l	1	1	1	85 85 13X 13X	1			92,221 92,221 174
Magnesium, AZ3180 Magnesium, AZ318		!		1	1 32		ì	i	131
Magnestum, A761A Magnestum, A2910	1	1		1	1 13		1	1	
Magnesium, A292A		1		1	ix	l		1	
Magnesium, AZ92A Magnesium, ZK6CA Magnesium, AMICCA	140	1	1	1	130 130 140	1	1	1	174
Magricalus, Downets:	'	ļ			145				174
Psi yédenum				1	ì	84			174
Mickel	l		1	1	140	1	1	t	174,211,296
Mone: Income:	140			1	140			1	1/4,211
Hestelloy B			1	ĺ	145	1	ĺ	1	174,211,236 174,211 92,727 92,171,72
Mastelloy C Mastelloy F Mastelloy X		-		1	145	1		İ	92,227
	l	l	1	1	45	i			
Rang 4)			1		95	1		1	22"
Tentelum	140			1	140	1	1	1.	:74
Tin Fiete	!		-	1	1	1		1	2 30. 223
Titanion, Abb	1	1	1	1	130	1	1	1	1,32,221 114 1,92,221 1,92,114,23
	•	1	1	1	1		t	1	1 : 00 33*
Titanium, A55 Titanium, A11GAT Titanium, B120VCA Titanium, C12CAV	140	. 1	1	1	145	1			2 92 124 2

TABLE ED. (Continued)

				(supere	ture, I				
	C1009	Cless	Clats			Class	Class	Cless	
Meterial	1		,	-	1		3	4	References
<u>Hormataka</u>					ac				92
Alathon Bown II Rubber	1	1		כל			1	30 75	7 296
Acid Seal Rubber Butyl Rubber		1	75	: 90	140		25	130	89 , 174
Nome 8			ł		l			75	62 84
DC+152 Diseyrin		ĺ	1					CL 40	62 296
Fluetorubber Gerleck Red Rubber	1	1	t	1	1			75	24-
Hydropol V	ł	1		1	1	85	160		296
Hydropol * Res+r+a300		l	1	C140	1	87		cter	3.74
Tel-F-5500 Rel-F-3700	1	}	Ì	ļ				80	, e2
Maprine		Į .			1		1 .	9C 32	704
Pely FBA \$[licone Rubber	İ	ļ	ł	32				8C 32	\$2 296
Thirtol C 55935	Į .	l	Į .	19	1 :	95		12	i +
Vinylite Firestone C-432	l	1				85	ŀ	34	*
Parket 37-014 Precision 925-70				ł	i	85 85		1	1;
\$1111man 613=75		ļ	Į.	(Į l	85	i		1
Chicago Rambide 20316-		1	1	1	ł	l		95	7
70 \$111cana 2014	1	1	1					97	,
8_tyl 218 Bu1;1 325	1	1	1	1		75]	16C	23
Busy: 03t	 	1	ļ		ļ		1	75	23
Pseciator Butyl MESSI		i			l			:60	23
Po;ybutadiane	1	ľ	;	-	1		i	160	23
Hydropo: Hydar 2202	1		1		1	160			23
SS&R]	ì	1	1	ì	75	1	1	33
Nylon Folyvinyl Chitride	Ì		1		130	l		85	62 7
talvathy and]				RC.	İ	ł	160	295
Polyviny) acetate Teflor FEF, TFE	160				140	ļ	ļ	٠٠ ا	296 1,114,294
L-Lus wass.	1	1	1		מל	1	1	Ì	296 296
Phanelle Resin Rel-F 200-25			1	140	i	!		140	82
Rel-F 100-25 Rel-F Umplesticized Rel-E-1	140	1	1	İ	140		1	i ac	296 17a
Ke; -6-5	1				i .	i	i	.40	1.74
Nyle: Terite	1	-	j	İ	į	1	ł	75	1:4,236
Tygon	1		1	i	ĺ		!	75	82 62
Yistoner Isocyanate polyester	1	1	İ	1	1	1	1	95	29c
Isocyanate polyester Acrylonitrile Bute-	1		İ		1		l	?5	296
diene Copolymer PVS-PVD Copelymer	Į.	1	1			1		75	296
Butadiane-styrene Copolymer		1	1	1	ļ	Ì	1	75	296
PVC-PVA Copelymen		!	!		1	1		25	296 296
Caliblase Fratate Butvrate	1					İ	1	75	1
Polyfluorechiere -]	1	1	1	1	1	Ì	75	296
ethylene	1	1	1	1	1	l	1		ļ
Pelyviryl alcohol	1	1	1	1	[l	1	1.5	:,2%∟
Epon 815	1	Į.	1	1	ì	l	1	140	.74
Casum 200 Casum 325	1	1	1	ì	1	1	75	,,,	1.74
Capus 325 Capatron KL					1	1	140		174
Genetron KC Genetron (CCX=)R			1		1		145	140	174
Rashene N Ander C	1			l	1	l	22	i	
Garioce Gasset #900 Organic Polysviilde							140	7.	276
Stallyighthalate				1	~	1	1	75	296 296
Delentum Janus-Manyt., a Syc MY	.[1	1	1	75	1	140	İ	1.34
Capen 35	1	1	1	1	1	}	140	1.5	17A
Silestic IS-53 Class Pyrex	:60	1		1	160	1		1	82
fiberglas Polyester		1			.~		i	75	296
Binder Graphiter #9				i	140				174
Graphitar #50	1	1	1	1	1	<u>l</u>	140	<u> </u>	14

	_								
ne lue sur sier		- 6	18	1000171	ture, f	114	old		71. 77.
	Ci ess	Ct ess	Ctess		Č1 +**	Cless	Class 3	C1 444	
Material	-	*	-	\vdash		*	'' -	۲·	References
Manala		ŀ	1				ŀ		81 - 165 - 169
Aliminm, 1100 Aliminm, 1100-0				['	6C		,	l	31,165,169 80
Limina, 2014-T4	1,40	Į.	Į .	į .	160	l	l	l	50,165 50,165
Limina, 2014-76 Limina, 2014-76	160	١	l	i	l 1	60	i	ĺ	269
(Molded)	160	∞		1	160	٣	1	١	1 1
Towns State-43		1	l	ĺ		1	1	60	169
aluminum, 2014-76 (Extrusion)	160	l		l	160	1	l	l	00,169
Aluminum, 2014-76 (Extrusion Stressed	ł	ŀ				i			169
in an one math	{	1	1	ļ	60	1	1	1	1 1
Niminum, 2014-TE (Melded and Stressed		1	1		60				169
to 30,000 pet)	1	1	1	1	60	ł	ł	ŀ	50,169
(Herdes Anodize)	ļ	i	Į.	ļ		l	1		169
I (MARC) A ABORS 8.0)	160	į	Į	l	160	l	l	l	l l
Aluminum, 2014-76 (irid:te)	-	1	1	ł	60	l	1	1	30,169
Aluminum, 2014-76 (Alodine)		160	,	1		190			169
Aluminum, 2014-TE (Fluoride)	1	1	1	1	90	1	1	1	169
Alminm, 2024-To	160	1	1		160	1	1		169 50,165,169
Alminus, 2024-Te Alminus, 2219-T81 Alminus, 2219-T81	1	1	1	1	1	1	1	1	169
(Salded)	190	i i	1	1	150	1	1	1	189
Alusina, 9085-406	160	1		1	160	l		1	169
Aluminum, 3003-814 Aluminum, 9085-836 Aluminum, 9086-878 (melded)	1				:60 160		1		169
Aluminum, 5254+F Aluminum, 5456-Hir- Aluminum, 5456-Hir-	160	' [1	1	160	1	1	1	30,169
Alusinum, 3436-4124 (Helded)	1	1		1	60	Į.	Į.	1	169
Aluminum, 9496-K321	160	· [-		160	'l	Į	l	169
Aluminum, 5406-46221 (Stressed 30,000 pc: Aluminum, 5406-46321 (Welded))			1	60	١.			169
Aluminum, 5456-46321		اه	-	1	60	, [1		149
			1	Į.		Į.	1		l
tc 30,300 ps:)	- 6			1	64		1		169
Alusirum, 6061-76 Alusirum, 6061-76	16	۲	-	1	:60	1	}	- 1	50,165,169
(Halded)	ļ	Į.	Į.		160	1	1	-	169
Aluminum, CAL-TE (HOSO4 Anodize)	16	c		1	160	•	1		169
Aluminum, 6061-76 (4)cd:~e)	1 10		1	1	:54	:	1	-	169
Atuminum, 6066 Atuminum, 7075-76 Atuminum, 7075-76	16	0		-	160	3	- 1		169,169
Aluminum, 7075-76 (Stressed to 80% of	1	1	1	Ì	1	1]	1	Ì
Vield)				i	100	2	i	1	165,169
Aluminum, 356 Aluminum, 356—T6 Aluminum, Tene 50	1 16	ø١	1	1	164	1	i	-	190
Aluminum, Tene 50	1 16	×	-	- (:6			-{	169
Berylco 25	1 4	×	Ì	-	16	°l –	1	١,	0 155
Codsium Piete Chromium Piete	1	1	1	1		اه	1	`	1169
Stallite 25 Stallite 6K	1 1	≈	- {	1	i6	8	1	1	169
Stellite 21	i	<u>∞</u>			16		1		169 169
Copper Piete 718 Filler Braze of	1	1	1	1	1	1	1	- 1	Y
6061-76 Al		1			16	°		- [169
347 Stainless Steel		l			16	~		- 1	164
C-62 Breze (Mr-N1-Co)	'					. I		- 1	1,40
Steel	- 1		-			,	- 1	- {	169
Gold Plate	1,	∞	-	- 1	10	ve l	}	- [50,169
1020 Steel 4130 Steel					(50 S			55,169 169
303 Stainless Steel		60 60	- 1	}	1 :6	xe re	1	ĺ	3C,. 1,169
304 L Stainless Steel 204 L Stainless Steel (Melded)	1	- 1	1	- [14	∞	- }	- 1	169
316 Stainless Steel 32) Stainless Steel		60		- 1	1 10	6C 50	1	-	100,169
321 Steinless Steel	- 1 '	~	1	1	1	1	1		31,169
(Melded) 347 Stainless Steel	,	60	1	1		60 60	1	- 1	31,169,169 3C,165,169
347 Stainless Steel 347 Stainless Steel (Beided)		1	-		- } .	60	-	- }	169
410 Stainless Steel	- [:	160	- [Į.	;	60	Į	- [169
410 Stairless Steel (Welded)						6C	- [169
440C Statelines Steel	- ;	50	- 1	ı	16	90	Į	ļ	165,169
PHIS-75s: (Cond. A)		50 10	- [- L	16	sc	l	-	169
17-494 17-799 (Cond.) AM-350 SC7	1.	66 €			- 1 ::	× ×			155,169
AN=350 SCT AN=355 (Cond. H)		60 60	- }		16	x I		- }	165,169

		TABLE	34.	Contin	·*·()				
		- 6	4	e per	wee, I	Liq	u ld		2 1 125
Materiel	Class 1	C1444		Class	Cless		Cien	Class	No f a ponce t
		<u> </u>	<u> </u>					:50	159 31,50,105,167
		1					1	160	169
isroses 100-1 on AhlOOA, My isroses 1 100-100 on		1		160				160	169
AZ31C, Mg Heke'	160	l			160		l		165,169 165,169
n Span C Klyar	1	1	1	1	80 80 80		ĺ	1	9C,169
Mickel Electropiata		1		1	160	\	ļ	1	169
Plata Bliver Solder	1€0	1	1	1	€	100	1		50,165,16°
Easy Fin 45 Easy Fin Silver Braze of 347 Steinles	1	1	1	1	İ	100	1	-	
of 347 Steinless Steel Silver Plate	Į	1	į	1	16C 6C	Į	Į	Į	169
Tin Blate		İ			60	l		1	169
Pure Tin Solder of 303 Stainless Steel	l	ļ	l	ļ	190	Į		l	169
Titonium, Bi209CA	160		-	ļ.	160			-	50,165,169
Titanium, AllO-AT Titanium, Cl2CAV Titanium Carbid:	160	'l	1		160				160,167
(Nickel Binder) Tungeten Carbide	160			1	160	ì	1		169
Zine Flate		1			1		1	94	103
Plastica Teflon (TFE)					9∞	15		1	50,92,:65,
Tefion filled with					∞	1			50.169
Graphite Teflor filled with MoS Teflor filled with	2			1	60				30,164
Asbestos	1				6				20,169
Agmalon 7700 with Tefa Fibers	7	1	}	-	1		1	50	50,165,169
Armaion 77008 with Teflor Fibers			İ			}		•=	20,105,129
Fluorobestos filled with Asbestos	1			1	ه		ا	Ì	1/9 30,125
TFB-Felt 7550 Fluorogreen	1			-	9	ů,	"]	16	56,109
Tefion (FEP) Kei=P 300 Umpleaticis Kei=P 300 Annealed	4	ì	1	1	1		63	63	6 50,165,169 6 165,164 50,169
Kel-F 300 (15% Glass	1	1		1	١,	,	1		52
Pilled) Kel-P-300 (the !!!~d) Kel-F-800	ļ	1	-		,	÷[Ι,	72 92
Low Donalty . Diy-		1	1	1	١.	c			30,119
ethylene High=Deneity Poly=	1		1		1	~}	60	1 4	169
Meries 50 Polyethylen	•	-		1		.ol			50,169
Polyethylene 7028 Polyelefin, White		İ		1				-	169
Insulation Polyolefin, Black				}	7,	~]		160	1,4,
Insulation Polypropylans	1	ł	i	1	1 :	4c)	×	- 1	25,169
12-4-1 11	1	ì	1	1			1	1 1	90 :69 80 :69 90 :69
Zytel 63 Zytel ;0: Myler	ļ	Ţ	Į.		- ['	×c			so 501,169,165
Mylar A			-				73	60	92 56,169
Silicone-Glass Lamina Phenolic-Glass Lamina	1							- 1	60 50,165,169 60 10,165,169
Epoxy-Glass Laminate Polyester-Glass Laminate								- 1	60 169
Saten		- 1	Ì	- 1	1	1	j	ec-	50,163 40,56,149
Delrin Lexen							,xa		60 SC, 159 50, 169
Tedls: Kyne:		- {			-		ã		60 169 60 50,169
Plexiglat TR 39 Plexiglat IS	-	-	1	-		1	1	-	BC 164
Opelon 1219 N. clob 1220					- (60 169 60 169
Opelon 1444 Opelon 81222					-	-	-	- 1	60 167 60 169
Amespiete Typon		1				-	ļ	'	60 169 80 169 50 169
Rigid FVC		l						l	60 169
Apon VI Epon 626							1	,	60 169 30 1:43
Epol: 183 (#115 PMSA) BC 1469 Epoxy			}		İ		-		v. 1849
Hypelon 20 Phymolic Asbesics					1	1			80 169 60 169 60 169
F:20-05 Bilicone N-70C. Nemco X3160	-	-	-		- {			l l	61 169 60 169
Nermco X3160	-					∞	-		169
30000					'	ьс			PO 169
Depon 30 (Giers Pil) Depon 30 (Unfilled)	44)	1	L		\bot		75 75	\perp	92 92

The state of the s

ev emile sini				Tomic v	tare,	•			
	Ш	_ 0	4			Щ	uld		1
Meterial	Cless	Class	C1	Cless	Class	C1 911	Cless	Gi.	No finzence s
la http://						Ť	_	Ť	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chicago Rawhide-Sirvene						ł		ŀ	
9623 Dhicago Ramhida-S.rvena						1		145	92
9694 Chicago Rembide-Birvene		1				1	ł	145	92
9617								-	92
Chicago Ranhido-Elrumo 20316								85	92
Commerticut Hard Rubber								l	1
Company 3601 Brisy 035					80	75		80	92
Bnjay 218 Brijay 268					ĺ	140		160	92
Enjay 55:		ĺ					60	~	30,169 169
Enjay CR617 Firestone Rubber D=404						86		85	92
Firestone Rubber D=430 ; Firestone Rubber D=431								875. 865	92 92
Firestone Rubber D-432								86	2
Firestone Bubber D-406 Firestone Bubber D-405					i			140	85 85 85
Pirestone Bubber D-408 Pirestone Bubber D-409								145	92 92
Firestone Rubber D-410								145	92
Packer Appliance 07-016 Parrex Appliance 37-026						85 85			92 92
Plastice and Rubber Products 805-70		l							-
Plastics and Rubber								. 85	92
Products 805-90 Precision Rubber								85	92
Products 907-90 Precision Rubber	i							85	92
Products #25-70			- 1					85	92
Sti.lman SR 613-75 Stuner Rubber 95-55			i			80	190	85 85	92,169
ynthetic Bubber			- 1						1 2
Products 50X8605 ynthetic Bubber	- 1			- 1	i			85	92
Products 30223 hiokol C 42986-1			Į	Í		83		85	92
hioko I C 55935			ŀ			85		145	92 92 92 92
v Pont Neopzene (1158) iF. Goodrich Neopzene	- [- 1	I				130	92
CA:	j	ĺ		1	- 1	100	- 1		92
eoprene year 2202		- 1	- 1			- 1	€ 60	60	50,169 50,92,169
year 520-41-125-1 year 1043 Std. Bo. 1	}	ı		- 1	i			85 85	50,92,169 92 92
year 4001 year G41	i					-			92
Nessiguas 166 12				- 1		- 1		100 100 75	92 92 92
Femigum St. al-F 3790			- 1		- 1		- 1	72	97
a)-F 5500			- 1	l	- 1	j	Ì	70	92 92
luorubber 1F4 is rei	- 1		ŀ					60 60	92 50,92,169 50,92,169
ton A	j	- 1						₩	72,100,109
Iton A-2478 Iton A-44-11 A-35	1	1		- 1	- 1	Į	-	50	92 92
iten B tillman Fluorerubber		1	- 1			- 1	İ	60	165.169
X 821-A70		l		- 1	ı				50, 169 169
recision Rubber 18007, 18057	j			- 1	- 1		ł	180	169
y icqorby		- 1				140	ı	160	92
vzon #3603		- 1		ľ		145		73	92 92
eren Rubber eren Rubber 300 Uhaurel			- 1				- 1	75 100	92 92
tren Rubber 300 Dured	l		- 1		ľ		- 1	100	7 2
ow Silicone L8-63 ow Silicone DC-192	- 1		Ì				- 1	100	92 9 2
E. Witrile Silicone	- 1			- 1	- !		ŀ		92
.E. Hitrile *** che		- 1						- 1	
SETTO Ictiols Teflon = 4				- 1	ŀ		ŀ	130	92
\$111cone L9-63 200 823-70								85	22
Inca 805~70	- 1		- 1		- 1	ĺ	80	80]	165,169 165,169
racision Mabber 9367 recision 214-007-9			- [- 1	80	165,159 169
rectation Bubber 9297	- !	ı	- 1	- 1	_	- 1		80 I	165.169
IO X 359 urter 8480-7	1	J]		••			160	69 169
rker 8496-1	- 1				1	- 1	60	þ	69
rker 316-7- eren 1357	- 1		- 1	- 1			160		69 69
reer 7806-70			- 1		160			80 h	69 64
imula 120 (Resin Cured)			- [- [.~	- 1		ľ	
Oured) TRUIS 121 (Resin Cured)		- 1	- 1	1			160	ļ:	69
	1		- 1	- [- 1	160	þ	69 65,169
ushnet 504-849					- 1		160	[1	69
ushnet \$56-849 ushnet \$56-850 ushnet \$56-850	-	- 1	- 1	- 1		16C	160	l l	69 69
111man EX 904-90				- 1		ا ت	i	160 1	65.169
os dbar 56789~2307	- 1	- 1	- 1		- 1			60 [1	65,169 65,169
doka1 3000 St.			ł	İ	- 1			130 9	2
rlock 900 rlock 22	- 1			i	- 1	- 1		60 1	69
triastic 500 l	- 1			-	- 1	- 1		60 3	0,149
reo 8318-7 iprene 81136			- 1		- 1			60 1 100 9	69
iprane B1136 iprane B1137									

		TARL	7 M.	(Cooti	med)				
	313.			Temper	ture,	y ·			- 1 - T
1	Class	Class	Ciece	Ciesa		Lli	-14	I	1
Intertel	1	3	3	4.	1	Class	Clees 3	Class	References
Libricants and Stalasta]	80			169
CEMM Lube S No. 56-at LOX Sefe			1	1		80		ŀ	169
	1					80	ŀ		169
DG-11 Misroseal 100-1 (Dry		80	1		İ	80	1	ŀ	169
tube) Rockweil Nordetrom 147	1	İ		1	80	75			169 92
Rockwell Mordstrom 421	1					~		73	92 92
Record Nordstrom 901 Record Nordstrom 921	ļ						l	75 75 75	92
Rockwell Hordstrom 950 Hordcoses: DC-234-8		ļ.	1	1	1		BC BC	75	169 92
Velve Seel A Place Graphite	1		1	1	●0	•			1.49
DC-55 DC-R1 Vacuum		8C			Ĭ.,	ac so			169
Molykote Z	1	-	ŀ			_	İ	60	165,169
Kel-F 40 Kel-F 90		ŀ				77	ŀ	60 73 60 75 60	92,165,169
Kel-F 200 Drilabe 703	ł								92 165,169
Hayco-32 Electrofile 66-C	[l	Ī	l		∞	₩	169
Polyglycol Oile	i		•		į .	₩3		[:49
Mpieson L	i			ļ	ł	80	80	ı	169 92,169
Apiazon L SC 150 Pivorviube MS-600 Fluorolube Hg-1200				1		•∞	s c	1	169 169 9 2
Fluorelube Hg-1200	† ·			1		l		72	92 169
Pluorethene G Anderol L237 Cerum 200				1		1	_	80 75	92
la tro tobeter	ļ 1			1			75	מ	92 92 92 92 92 92
Lubriseal Horaq Stopcock Greese Rectorses 115	1					7≘		75	92
tectoresel 15 Silicons DC 11				l		1	75	75	92 92
Silicore DC 11 testry Lube 100					80 80				169
Beddy Lube 200 Mater Glass Graphite					80				169
Mater Glass Grept to Drylube Sealant Vydex A Teflon Tape	ŀ					80			169 169
Teflon Tape	İ				•>>				799
Patting Compounds PR 1422									
									169 1 69
Paraples P-43 Prosesi 793						1	į	60	169 169
Paraplex P=43 Prosest 793 Pairprene 5159 Crystal MMCF								60	169 50,169
Adhesiyes						1		•	~,,
Azmetrong A-6	:							60	169
07, 647 6T 424								88	169 50,169
Eyon 422 Epon 4–3					80				169 164
Correctes									
Temporel: 1500					60 60				20,169
Seugreisen: P-1 Saugreisen: 31 Beuezeisen: 47					60				20,167 20,169
Meuszelsen 47 Mockflux	1				75	1 1	73		169
Contings		<u> </u>		ĺ			- 1		1
Epoxy No. 1 Modified Spoxy No. 5			İ				- 1		169
Report No. 7 Report No. 9		i	ļ			1		60	169
Alipoxy No. 6809	1	- 1	Ī					6C	169
Alkyd No. 4 Polywrethene		ľ	Í	ļ			- 1	60 60	169
Acrylic Mitrocellulose Vinyl	i								169
Primer MIL-P-6889			- 1					60	167
Tygor K	- 1			i	- 1		1	160	169
CA 9747 Primer	i					1		160	69
Winy: Primer MIL-P-6889 Catase Type: K Copolymer P-2000 CA 9747 Primer Corrosite Clear 381 Proses 333 Markel DM-6 Aluminous								160	169
Markel DA-6	- 1	-			ı		80	ec ac	169
Granhi tan					- 1		ı	ac	160
Braphitar 14		- 1	ļ					140	1
Graphitar 39 Graphitar 84			l	- 1	80 80			160 lu	69
Braphiter 86		ŀ	1	1	150	ļ	- 1	ŀ	67
Arephitar 14 Arephitar 39 Drephitar 84 Arephitar 86 National Carbon CCP-72 Puration PSM			- 1	ł	160	ļ		13	69
Gast of and Packing	1		- 1	-		160			69
Material	-		- 1	- 1	- 1	-			
Victor KS-ACRS (with Terion)				- 1				- 1	_
Pelenium Pennyana		- [- 1	ı	75 75	- 1	75 9 75 9 75 9 75 9 75 9 75 9	2
Tarateck 900		- 1				130		75 9	2
Du Vezre 22 Heveg 30					- 1			75 6	2
Heveg 30 Naveg 41 Naveg 30 Mayeg 60 Melbestos (331			- 1	- 1	- 1			75 9 75 9 75 9	<u>i</u>
Mayog 60 Malbeston Chi	- 1					. JO		A C.	2
atosem mi					1	.00		. •	2

	T			lamps r	ture,	P			i
		G	14			Lie	a∵id]
Material	Class	C1 366 2	C1456 3	Class	Class	Clair	Class	Cless	References
So tals			-				•	,	
Alusinus, 1100-0 Alusinus, 5456-4321			ŀ		>66 >60		İ	l	ŀ
Aluminum, 7075-76 Aluminum, 356-76	>62		[>60			ļ	
NI-Spar-C		į .	l	ļ	ж			1	
Titanios, 5A:-4V	1		1		>ec	ł	j	İ	

Class Lot 2 Na	lerials	Ciass 4 Materials
Aluminum, 1100 Aluminum, 3552 Aluminum, 4043.	Incore: Low-Carbon Steel High-Mickel Steels Titentan Mittile Rubber Slitcone Rubber Teflon Garicck Packing Baseltte Mittile Cutte Grannite	Augment, 40 E Magnetium Lead — — — — — — — — — — — — — — — — — — —

TABLE 27. COMPATIBILITY OF METALS WITH 90 PERCENT HYDROGEN PEROXIDE

Aluminum Alloys	Stainless Steel Alloys	Nickel Alloys	Cobalt Alloys	Other Alloys	Other Pure Metals	Reference
		<u>Class</u>	1 Metals			
	Maximum per o	ent of active of	xygen loss (AO 66 C (150 F) -	L) by H2O2 in 1	week:	
	Minimum stabi at 212 F in	lity of H ₂ O ₂ as glass	fter test - 95%	stable in 24-h	our test	
	No other eite	ct on H2O2 or m	netal			
1060	None	None	None	None	Tantalum	35,36,37, 38,149,210
1100					Zirconium	35,36,132 149,210
1160						35,210
1260						35,210
7072						35,36,37,
B-356		Clas	s 2 Metals			38,210 35,36,38, 210
	Maximum ner o	ent of attive	ovvašn loss (AO	L) by H ₂ O ₂ in 1	. wa alaa	210
	at 30 C (70 Minimum stabi at 212 F in	o F) - 6.0%, at lity of H ₂ O ₂ as glass ect on H ₂ O ₂ ; s	66 C (150 F) = fter test = 90%	- 80% stable in 24-h	our test	
3003	Type 202		N	M		
4043	Type 302	None	None	None	Silicon Tin (cp)	35,36,210 35,36,149, 210
5052	Type 304					35,36,37, 38,149,210
5054	Type 304 ELC					35,210
5056	Type 309					35,210
5652 - 0	Type 310					35,36,210
5 254- 0	Type 316					35,36,37,
6061	Type 316 ELC					38,210 35,36,37,
3063	Type 317					38,210
6363	Type 318					35,210
150	Type 321					35,36,210
214E	Type 322					35,210 35,36,37,
	• •					38,210
214F	Type 347					35,36,210
356F	17-7PH, 37-45 R _c					35,36,37,
5052	17 70U 46 D					210
(anodized)	17 - 7PH, 45 R _C (buffed)					35,210
6061	17-7PH					25 212
(anodized)	(unhardened)					35,210
6061	Hasco-O-Seven					35,210
(HNO3 Pass.)						,
6061	Malin-Wilelabrite					35,36,210
(detergent wash)						
6061						25
(WFNA Pass.)	1					35

Table 27. (Continued)

Aluminum Alloys	Stainless Steel Alloys	Nickel Alloys	Cobalt Alloys	Other Alloys	Other Pure	Reference
		C12.5	. 2 Matella			
	Maximum ner ce		s 3 Metals	1011		
	Minimum stabil Bronzing and s	ity of H_2O_2 a	t oo C (150 F fter test — 1! no rusting o:	AOL) by ${\rm H}_2{\rm O}_2$ in 1 v) - 100% in 24 hour 5% after 30 C (76 F r other corrosion p	:9 =) +==+	
2024	329	Inconel X	None	H-975	Non e	35,37,38,
B214F A360 6061 (anodized) 2017	AM 350 17-7PH, 45 Rc 17-7PH, 45 Rc (electropolished)			Refractalloy 26 Refractalloy 70		210 35,210 35,210 35
(anodized)	17-4PH					35
2024 (anodized) 6061 (hard coat)	Carpenter 20 Durimet 20 AM 355 19-9DL 16-25-6 Proloy Type 302 porous wire Worthite					35,36,210 35,210 35,210 35,210 35 35,210
	1101 ciri 2 ce					35,210
		Class	4 Metals			
	Maximum per ce not specifie	nt of <mark>active</mark> o	exygen loss (A	NOL) by H_2O_2 in 1 w	eek -	
	Minimum stabil: Pitting or cor:	ity of H ₂ O ₂ af	ter test - no or after test	ot specified.		
2014	AM 350	Nickel	Cobalt	Mild steel	Copper	35,3 6,149, 210
2017	410	Inconel	Haynes 25	Be-bronze	Zinc	35,36,149, 210
70 75	416	Monel	Star "J"	Chromaloy H-3	Tungsten	35,149,206, 210
40E 218	420	Hastelloy	Haynes 3	Duriron	Titanium	35,36,210
355 F	430 431	"B" Hastelloy	Haynes 6 Haynes 12	(cast) Fanweld "O"	Sodium Magnesium	35,36,210 35,38,149,
A750	440	"C"	S-588	Ni-Resist	Beryllium	210 35,210
2024 (anodized)	446 Rigimesh J SS porous wire 300 series SS powder compact Type 302 powder compact Type 316 powder compact Type 302B powder compact Type 316 + Cb powder compact Utiloy 3	"D" Be-nickel Illium "G" Chlorimet		Dow metal JIA Dow metal MA Kennametal K-138 Kennametal K-3H Kennametal K-501 Kennametal K-501 Multimet N-155	Chromium Gold Iron Lead Manganese Mercury Molybdenum Platinum Silver	35,149,210 35,36,210 35,36,210 35,36,210 35,210 35,210 35,94,149, 210 35,210 35,36,210 35,210 35,210
	Utiloy 20 Utiloy H Utiloy NH Elgiloy					35,210 35,210 35,210 35,210

Material	Classification	Matérial	Classification
Plastics - Polyethylene and	la logena ted	Plastics - Polyvinylchloride	and Copolymers
Polyethylene Type		Vinylite VU 1930	3
Elucasian F Thioni	,	Vinylite VU 1940	3
Fluoroflex I-TP1001 Fluoroflex I-TP1000 (black)	1 2	·	
Fluran B-4100	3	<u> Plastics - Silicone Rubb</u>	er Compounds
Halgene	2		_
Hypaion S=2	4	Fluorosilicone LS-53	2
Hypalon Gasket	4	GE 407B-217-1 GE 1240	4 2
Hypalon V-54-B (gray)	4	GE 81223	2
Hypalon V-56-A (gray)	4	GE 12601	4
Hypaion V-163-4 (black)	4 3	GE 12602	
Hyplon "O" Ring (GRC 90-5) Irrathene 101 (irradiated polyethyle		GE 12650 (unpigmented)	3 2 3
Kel-F (unplasticized)	1	GE 12650 (pigmented red)	
Kel-F 800 (Lot 5649)	ī	GE 12670	4
Kel-F 820 (G4028)	2	GE 12670 (pigmented brown)	4
Kel-F 3700 gum	3	GE 15060 (pigmented)	3 3
50% Kel-F 3700-50% Kel F 800	2	GE 15080 GE X-7181	3
Kel-F 5500 (unpigmented)	2	Parkone White 467-1 O-ring	4
Kel-F 5500 gum Kel-F 5500-121	3 2	SE 450 (unpigmented)	2
Kel_F 5500-61	2	Silastic 152	3
50% Kel-F 5500-50% Kel-F 800	ī	Silastic 160	3 3 4
75% Kel-F 5500-25% Kel-F 800	_	Silastic 160 O-ring	4
Kel-F 0-Ring (CPD. 7761-70)	2	Silastic 161	3 3 2
Polyethylene	2	Silastic 181 Silastic 240	3
Rulon (Teflon Base)	2	Silastic 250	4
Teflon (white)	1 3	Silastic 261	
Viton A (411A4) (black)	3	Silastic 675	3
Plastics - Polyvinylchloride a	and Copolymers	Silestic 6-128	3 3 2 3 2
	110-110-1	Silastic 7-180	3
Alanol tubing	3	Silastic 9711	2 2
Boltron 6200 (gray)	2	Silastic HR-9711 Silastic 9711 welded with S-2200	2
Geon 118	4	Silastic S-2000-4-480	2 2
Geon 404 (yellow)	3 3	Silicone 407-B-217-1	3 2
Koroseal 116 Koroseal 117 (molded)	3	Silicone 407-B-437-1	2
Koroseal 700	2	Silicone HT 656	3 2
Lucoflex (translucent)	3	Silicone SR 5550	2
Lucoflex (white)	3	Silicone SR 5570 SR 5550	2 2
Marvinol 218-200	4	SR 5570	2
Marvinol 218-201	4	X-7181	3
Marvinol NG-3005 Marvinol NR-6010	4 4	Silicone Y-1749	2
Saran	2		
Saran Rubber Q-187	4	Rubbers and Plastics	- General
Transflex Tubing	4	Access to Division DA 10	4
Tygon B-20	3	Acrylon Rubber BA-12 Acrylon EA-5	4
Tygon B-32	3	Adiprene C	4
Tygon B-63	3	Bisilon No. 50	2
Tygon 8-71	3 3	Buna N	4
Tygon B-72 Tygon B-136	3	Butyl Rubber A 3405	4
Tygon S=22-1	4	Butyl Rubber SR-384	4
Tygon TL-103	4	Cycolac (natural color)	4
Tygon 2807	4	Garlock No. 5681 (Teflon-impregna Hysar PA 478-1-1 (black)	ted asbestos) 4
Tygon 3400	4	Haveg 41 (Asbestos filled phenoli	c) 4
Tygon 3603	4(2)	Haveg 60 (phenolic)	4
Tygon 3604A	2(a) 2(a)	Hysol 4-77C (clear)	4
Tygon 3604B Vinyl 79139	2(4)	Hysol 4-77D (amber)	4
Vinylite VG 1914	2	Hysol 4-77E	4
Vinylite VU 1940	2	Hysol 4-77F	4
Vinylite V5 1310	3	Hysol 4-78A (white)	4
Vinylite VU 1900	3	Hysol 4-78B (brown) Hysol 4-78C (amber)	4
Vinylite UE 1907	3	Hysol 4-78D (amber)	4
Vinylite VU 1920	3	Hysol 6000 B (amber)	4

Plastics - Laminates, Diaphragm Materials and Adhesives

Kralite

Nylon

Plexiglas

Melmac No. 1077 Mylar A Mylar B

Neoprene Pure Sum Neoprene SR 365-B

Phenol-Formaldehyde

Fairprene (Viton A) 5806 5807 5809

Kel-F 5160 Diaphragm

on aluminum

Armalon-Dacron Cloth Dac-2100 Dac-2101 Dac-2102

Polystyrene (Polyflex) Thickol EC-801-LP2 Thickol 3000 FA Thickol 3000 ST Thickol 1620 AH

Chemelic MI-411 (Teflon Fiberglas)

Kel-F-Dacron Diaphragm-VL-1101m4

Duroid 5600 (fiber-reinforced Teflon) Fairprene PS57-167 (Viton A, 116 Glass)

Fairprene PS57-168 (Viton A, Dacron)

Kel-F 5500 (gray) Diaphragm
Kel-F 5500 (gray) on Dacron diaphragm
Korda Flex (Teflon-coated glass fabric) Silastic DC-9711 on Dacron diaphragm Vinyl coated Fiberglas (gray-green) 9711 Silicone seal washer DC A 4094 adhesive (Dow Corning Silicate base)

9711 Silicone seal washer DC Chemloc 607 adhesive on aluminum

Al-Si-Mag, Porous Ceramic No. 393 Aluminum Oxide, Porous-RA-98 Armalon-Teflon Felt (impregnated)

Filtros C Stone (55 Micron)

Porous Kel-F (15-Micron Pore) Porous Porcelain (1.4 Micron) Porous Tefion (9-Micron Pore) Rigimesh J SS. Wire

Teflon Cloth-Repeat (25 Grade) Teflon Cloth (40 Grade) Teflon Felt (impregnated)

Sintered 300 Series SS Powder Compact Sintered 302 SS Powder Compact Sintered 316 SS Powder Compact Sintered 302B SS Powder Compact

Sintered 316 and Cb SS Powder Compact Teflon Cloth (25 Grade)

Glass Cloth G-206-C Poroloy-302SS Wire

Teflon Cloth T-2300 Teflon Cloth T-2305

Porous Materials

3

2(b)

3

2

2

3

Material	Classification	Impact Sensiti
lubricants		
Alkaterge C	4	Yes
Amino Silane Oil and Grease	4	Yes
Apiezon Hardwax W	4	
Arochlor 1221	4	Yes
Arochler 1232	4	Yes
Arochlor 1242	4	Yes
Arochior 1248 Arochior 1254	4	Yes
Bardahl	4	Yas
Carum 200	4	Yes Yes
Ceresin Nax	4	Yes
CFE-1	4	Yes
Dichloro-bis-tri-fluoromethyl benzene	3	No(c)
Dichlorohexafluorobutene	3	No(c)
Fluorolube FS	2	No(c)
Fluorolube FS plus 5% fluorolube light	grease 2	No(c)
Fluorolube heavy grease 10214 Fluorolube oil 10213	2	No(c)
Fluorolube S	2 2	No(c)
Fluorolube T	2	No(c)
Fluorolube Oil, S-30	2	No(c) No(d)
Fluorolube Grease, Hg=1200	2	No(a)
Fluorolube Grease, GR-660	ž	No (d)
Formulation		Yes
F-9	4	
0S-16	4	Yes
05-22	4	Yes
0S-23 0S-27	4	Yes
05-28	4	Yes
0S-30	4	Yes
OS-32	ě	Yes Yes
0S-3 3	4	Yes
05-34	4	Yes
QS-35	4	Yes
0S-37	4	Yes
CP=3898+2	4	Yes
Skydrol (uncotored)	4	Yeş
Halocarbon Oil 8-25 AV Halocarbon Grease, Series 25-10	2	No(c)
Halocarbon Hi-Temp Stopcock Grease	2	No(d)
Walocarbon Oil 10-21	2 2	No(d)
Malocarbon Oil 11-14	2	No(c)
Halocarbon Stopcock Grease	2	No(c) No(d)
dexachlorobutadiene	2 3	No(c)
fexachloropropylene	4	
hydraulic fluid RPM	4	Yes
†ydraulic Oil Houghton Safe 620 Cel⊸F Alkane	3	
(el-F Oil Cut No. 1	2	No(d)
Cel-F 011 No. 10	2	No.c)
(el-F No. 90 Grease	2	No(c)
indol HF (tricresyl phosphate)	2	No(c)
indol HFX	4	Yes
iqui-Moly Concentrate	4	Yes
.ubr:seal	4	Yes Yes
lineral Oil	4	Yes
eraffin	4	Yes
erfluorolube Grease PCD-759	2	No(c)
eriluorolube Oil FC-331	2	No(c)
FC-332	2	No(C)
FC-333 FC-334	2	No(c)
FC-335	2	No(c)
etrolatum	2	No(c)
olychicropentane (stabilized)	4	Yes
enex	4	Yes
ilicone XF 224	4	Yes Yes
ilicone Oil DC-7	4	Yes
DC-44	4	Yes
DC-200	4	Yes
DC-550 DC-701	4	Yes
DC-701 DC-703	4	Yes
DC-702 DC-710	4	Yes
licone Oil GE 2V3733	4	Yes
GE 51346	4	Yes
ectyl	4	Yes
1,2,2, tetrafluoroethyl dodecylether	4	Yes
ributyl Phosphata	•	Yes
	~	Y # 5
on Hydrolube U-d	4	

TABLE 28. (Continu	ea)
Material	Classification
Ceramics, Refractories, and	Miscellaneous
Agate (natural)	3
Agate (polished)	3
Al-Si-Mag (porcelain)	2 2
Alundum LA 116 Boron Nitride	4
Carboloy 44-A	4
Carboloy 55-A	4
Carboloy 78	4
Carboloy 999	4
Ceramic AB-2	2
Ceramic A1-200	2
Charcoal	4
Crystalor (Silicon Carbide)	4
Graphitar No. 30	4
Graphite P5A6 Silver impregnated	4
Graphite P-55 Copper impregnated Graphite P-59L Copper impregnated	
Graphite P-692	4
Karbate	4
Norbide	2
Synthetic Sapphire (polished)	1
Protective Coating) (C. C. C. C. C. C. C. C. C. C. C. C. C. C
(A. Recommended for Long-Time Cor	
sistance)	red and spress Re-
Teflon](e)
Kel-F	1 (e)
Kel-F on 1060 Aluminum	ī
Kel-F on 5254 Aluminum	ī
Kel-F on 5652 Aluminum	1
Glass-lining (Clear) Light-Gray	1
Glass-lining (Cobalt) Cobalt-Cold	ored Glass 1
(B. Recommended for Splash Resist	tance Service Only)
Tygon Paint 7286 TP-81-Clear	3(e)
Tygon Paint 71253 TP-107B	3(e)
Corrosite No. 521	$3(\tilde{e})$
Corrosite No. 551	3(e)
Corrosite No. 581	3(e)
Plastic Metal No. 22 Saran Rubber Q-1875	3(e)
Mv-Type No. 150	3(e)
Americat No. 1262	3(e) 3(-)
Heilex	3(e)
P-5, Copolymer	3(e)
Neolac Gray No. 8588	3(e) 3(e)
Steelcote Stainless Steel	3(e)
(C. Not Recommended for 90%	H ₂ O ₂ Service)
Geon Latex 31X	4(e)
Flexcoat No. 1 Black	4(e) 4(e)
Lithgow LC-600 (Gray)	4(e)
Americat Red	٠/ ٨١
Prufcoat Medium Gray	4(a)
Lithgow LC (600) (Brown)	4/01
Veloform F-10 CPP304	
Cordo Plastic Costing (E-1 Postn	
Cordo Plastic Costing (E-1 Resin Activator)	
Chromalloy	4(e)
Unichrome Drum Lining B-124-17	4 (e)
Ucilon, System E Coating	4(e) 4(e) 4(e)
EX63B Paint	4(e) 4(e)

Material	Formulation C.	assification	Impact Secaltive(f)
		. 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,
	Joint Sealing Co	no _{strate}	
"Althon" E	Polyethylene resin	1 (e)	Norminpact sensitive
Dispersite 1820-	Butyl rubber in alkaline pispersion	2(e)	Non-impact sensitive
Dixsee!	Teficn	;(e)	Nor-selfillive
Caicar CB Pipe Seat		4(+)	Impact mensitive
Orane Thread Lub.	Ovidizable Oil	4(*)	1 doubtful impent from 11 trials
Fel-Pro, C-5	Colicidal Copper	4(e)	Impact sensi- mive 1 of 4 trials
Graphite Paste	Graphite dispersion	4(e)	Non-impact sensitive
3cop (81we)		4(4)	Postrive
icep (Sliver)		4(e)	Pushtive
yi-Svai		4(e)	N.r-impact sensitive
Molybdenite Pipe Dope Permatex, Aviation For		4(+)	Not tested
A Gasket No. 3		4	Not tested
S-18 Lubricant	Skydrol + 30% tenton 34	4{e ;	Impact sensitive
ecora Cpd.		4(0)	Impact sensitive
Piastic Metal	No. 22-eluminum filli latex base. No. 3 S5 filler, latex b	33-	Impact sensitiva
Autland Pipe Dope	33 filler, levex o	4(c)	when met Sensitive 2 of 3 trials
skydrol	Mixture Skitrol (P-601) and tale	⇒(*)	Impact sensitive
(-F()-	Teflon- ster dispersion	4(e)	•• •••
Neco No-Gal.	No. 50 metallic zinc	4(e)	Impact sensitive
(=Pando		4(e)	Non-impact sensitive
(el-F Grøkse No. 90	Polychlorotrifiuoro- ethylece		Non-sensitive
Tin Plating Or Alumnum 6061	# C 2 m. #	4(0)	
Globe Thread Lubricant		4(e)	Not tessed
Metersea. No. 15		4	Not tested

- (a) Based on service experience.
- (b) After 24-hour screening at 66 C (150 F).
- (c) Non-impact sensitive to 1 kg at room temperature.
- (d) Non-impact sensitive to 3 kg at room temperature.
- (e) Tested at room temperature.
- (f) One-kg impact At room temperature,

Table 29. COMPATIBILITY OF MATERIALS WITH METHYLENE OF CORIDE $\{O_{i,j}c_{i,j}\}$

	1	Temperature, F								
		G.	15			1.14	P14			
Meterial	Class	C1466 2	3	Class	Class	C: 444 2	C: 8 s s 3	Ciess	References	
<u>Metals</u>										
1100 Albeinum	Į.	Į.	152	ļ	1		1"5	190	211	
Copper Sr Bronze Al Bronze Ss Bronze Red Brass Yellow Brass			125 125 125 125 125		100		4 3 4 4 5 5		2:: 2:: 2:: 2:: 2:: 2:: 2::	
Mild Steel Cast Iron Ni-Resist Si-Iron			125		:		3	[2:: 2:: 2:: 2:1	
41: Steinless Steel 430 Steinless Steel 304 Steinless Steel 316 Steinless Steel Morthite Durimet 20 Carpenter 20	175		2:2		333 377 377 300		75 75 75		2:1 2:1 2:- 2:- 2:: 2:: 2::	
a-Nicke: Monel Income: Hastelloy B Hastelley C Ni-O-he:			125 75		100	100	77 75		2:: 2:: 2:: :2:: :2 ⁷ ,:29,2:1 : ⁷ ,:28,2:: 2::	
Lead Gold Platinus Tantalus Silver							75		211 211 2 2 2.:	
Monme tal s]			ĺ		ļ				
Glass Stonewere	}		1		}		75	}	211 211	
Rubber	1			ĺ		ĺ		71.	2.:	
Asbestos	1	1	ł		75	1			211	
Graphite		1	<u> </u>	L	^3	L	L		211	

				Temper	atuze,	<u> </u>			
	Class	PM (T	Class				<u> ۱۱۲۲ عم</u> اما]
Material	1	2	3	Class	Ciass 1	Class	3	C1	Per exence s
Metala									
Aluminum 1066 Aluminum 1106	86 125	, ac	160 150	3000	166		ļ		82,
Aluminum 2014				1	1			ļ	18,29,95,181 193,211
Atlantina 2017		100	130 130	C26C	130		1		29,193
Riuminum 2004 Aluminum 2024, Anodized	83	•	150	czec	130	160	1	1	18,29,149,19 82
Niuminum 3003 Niuminum 3004		80	150		1		l	1	78 85 50
Aluminum 4043 Aluminum 3052	İ	80 80	160 160	>1.60	1	İ	Į	1	
Liumanum 6061		ão,	:60	160	160		}		29,192, 18,29,30,95, 149,179,189,
	l				İ				192
Aluminum 6063 Aluminum 7		8C 8C	160	>160	130				29 29,193
Aluminum Aluminum	-	80 60		150	i i				18.29 18
Ağuminum Ağuminum		96	9 G		1				18
iluminum "		80	130	190	130				18 18,29,149,189
301 Utain. 302 Steinles	80	,60 ;25	130	(2)2		122	160		29
SC3 Stairless Suesi	1	٠.		CLIX		130	160	1 1	18,195 18,192,193
304 Stainless Steel	125		130	156		130	160		18,192,193 18,29,58,143 179,193,2,1
304 ELC Steinless Steel 309 Steinless Steel	8G	120	130 122	140 160		,2¢	130		27,30 29
310 Stminless Steel 316 Stminless Steel	80 125		.22	165 1 3 5				[]	5,29 16,29,58,
316 ELC Stainless Steel	.E	l i		<:∞					149,211
318 Steinless Steel 321 Steinless Steel	gc .			160					29 29
322 Stairless Stee;	6K		;30	>100		:30	160		18,29,193 29
347 Stainless Steet	80	86	:30	>: x	~	:6:	160		.8,56,50,102, 189,192,193
Stainiess W 4.0 Stainiess Stes.	75 80		i	er: X			:30	1 1	149
	*			·^ i		- 1			18,29,16, 149,192,170,
614 Stainless Steel		ec:		C25 0	}				21. 18,149
616 Stainless Sheel 62 Stainless Stepi	i	BC	- 1	C250	ļ				
43% Statmiese Steni	90	130	- 1	:~^	- 1	:30			149 18,00,55, 193,21;
440 Stainless Steel 446 Stainless Steel		130	130	- 1		ì	130		,.,
krth.te	:22	125	- }	C250	- 1	ı		- 1	149,193
expenter 20	80	125	160	3rc	l				18,14+,2-1 58 12
leyee 20 turimet 20	80 125	125 125		cacc		- 1	- [t	2
7=7PH annealed 1900 F 7=7PH hardened		:20	:30	>130 C:30	ł	130	- 1		;2 ,93,2;;)C, 179 ,72,173
9-901 Lan	ĺĺ	1	136	₹136 2130	130	130	į		
tid Steel C2C Steel ast [ror		ĺ	74	200 120	ļ	-~		8	93,2 .8,29 .8,211 .8,211 .8,211
	75		- 1	êc	1	- 1	1	;3∞	8,2:
uriron i-Resist	- 1	7≘	30C	75	- 1		ļ		.9,21:
uriron i-Assist 13C nconel 111um G estelloy B		1	75	300	- 1				
llium G estelloy B estelloy G	:25	125	Ì	1751 1751			- 1		21 12 2.1
nstellov C Nickel	73	1	75 130	C300	ŀ		130	- 4	93,2;;
crei nyaz			.~	75	- 1	ĺ		1:	,
cpper		ł		75 A11			- 1		74. 1
n Bronze	ł		1	All All	ľ		- 1		
l Bronze eliom Bress			- 1	Ali				12	u.
	80	130		ć200	130	Ì		12	111
rromium tellite No. 1 tellite No. 6	80	•		320	٠,٠٠	- 1		l l	8, 93,149 8,149
eynee 25	•	150		ا 🗠		- 1			8,149
014	87	c25 c	300	- 1					8,149
iatinum	300	300	- 1	[- 1				41.
agnesium c.umbtum	75	- 1	- 1	A11	- 1		ĺ		?
intelum	3000	жe	- 1				:30	- 4	8,147,173, Hil
in In Beboit	80	25 0	275				-		8,149
		ļ	25C	30C	J			- 1:	8,:49
itanium 754	160	- 1	- 1		- 1		- 1	100 2	9,3.,173, :1,247,24;
Itanium Alloy ClidM Itanium Alloy 130A	130	130	85		- }		ŀ	130 2	:1,247,24; 9,242,24; 93
tantum A70	75	75 160			-			3	2
tantum A70 rconium rfntum md	75		- 1		- 1			幀	11,131
Increasies				:3C				130	93
AMAGAMAN Antoniara	300	ĺ						,	
CC4990 FB	300	1.		- 1	- 1	- 1	- 1	12	:: I

		Tep	IF 30.	'Centi	164.1						
		Temperature, F									
*******	Cies	CIASS		C1444		C	Cr.iiid Ciass	C1433	ł		
Material	1	2	3	-		3	3	117	References		
		1					1				
Embricants Standars Serve Ot. No.:) No.:: No.:: No.::: No.::: No.::: No.	1	75	l	212 212				ĺ	149 149 149		
Arocier 1254 Arocier 1242	1	l		333					49		
Dom Gothing Fiuld Crane No. 5	7%	İ	ł	25. 25.				1	149 149		
Camballoy] 		75					149 149		
Piastics	1 :								,		
Feflor Fesiar 30			ļ ,		73			מ	23 23		
Teslar 40 Hi Styrene Sheet								75	23 23		
Lexan Kraepan 11	Ì							adadadada	23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24		
bristrije Kylar	{				- 1			75	25 23		
kyte: WE 55℃	:			İ		- 1		75 75	23		
COPE 2145 byton AwhiV				- 1	- 1			75 73	23		
LD-234					ı			72	23		
Phenoi-Furfurals				75	1	- 1	- 1	ſ	222 222		
Urau-Formaldehydes				75					22.2 22.2		
Plaaties Perion Perion 30				70 70 70 70 70 70 70 70 70 70 70 70 70 7					222		
Epoxy Resine			l	75		1		Ì	202 222		
Gaseth Chapcunds		-	ļ	75			!	- 1.	222		
Inorganic Plastics		ļ	ĺ	75		- 1		į.	22.2 22.2		
Oppolymens Viryl Dibride Resirs Vinvildere Dipride	ļ	İ	7:		ł	- 1	i		221		
Vinvildere Objorice Resins			- 1	į			- 1	- 1	222		
Vinyi Pormut Resine		- 1	75	73				- 1:	222		
Vinvi Butyral Resina Vinyi Alcohol Resina	ı	- 1		75	- 1		- 1		222		
Privyiny: Carbozale Resirs	- 1	i	- 1	75	ļ	i	1];	222		
Livi Resins Miyester Resins	- 1	- 1	-	75 75		- [222		
Phlystrylic Ester Resins		ļ		75		- 1		ļ:	22.		
Methyl Methecrylic	- 1		İ	_ [- [1	- 1	1		
Restra Clystyrenes	1	ı		75 75 75		- 1	- 1		22		
Polvethylene Polytrifluorochiorom	- 1			72		- 1	- !	- 1	22		
ethylene Polytetrafluc roethyle ra		1	75					12	525		
iliiore		ľ	75	75	- [2	22		
Dialiyiphtheiste Modified Styrene				75 75	ĺ				22		
Cryloritrile Rubber Plorinated Rubber	- 1		70	75		ŀ		12	22		
Mard Rubber Protective Guatings			- 1	75					22		
for Metals							ļ	- [
iycar fycar 22:2	- [70		1		2	22 22		
Liken Nr. 40 septere	- 1		-	だたかたたれただちのち				2	22 22		
Clogard Brancite			1	75					22 22 22 22 22		
itumastic No. 50 pon YB-100				75]2	22		
bevelor B-196-10 beny				20				2	222		
lodified Epoxy Invlidenc Chiorida			ļ	8				2	22		
Invitene Chioride Invi Chioride Ison 400 XR61	75	ļ	i	71			- 1	2	22		
foreign Nucrime 190	75	_					Ì	[2	22		
78=2710 ai=#	70	75	- }					12	22 22		
efion	75					1		2	22		
EL Series A Tufcoat A	75	}	75				- [2	22		
Ankote Fluoro B Serva-Kote Fluorinax	75 75					ļ			22 22		
Coatings for Normataus		- {			-		1		ا ع		
sitcate Cemont el-F etcl 192-C				75	1			2 N N	22		
henoline 315	75	*5						123	22		
orocrete enkote Fluoro B erva-Kote Fluorinax	75 75	- 1	75				1	3 2 2	22		
inyl Mestic	75							2	n n		
AUI. TUU ARUA		- 1	- 1	- 1	1	•					

	ingersture, F								
1		0	14			ونن			!
hetoria)	C1 # 8 8	Cless	C1 056	C1495	Clees	C1000	C1 500 3	C: + 1 4	References
Matala									
Aluminum 1060 Aluminum 1085		1				130	183		249 81
Alimina 1100	l	ĺ		l	כז	85	160		29,147,211, 298
Atlanton 2014 Atlanton 2017			1		TIC	23	100	1	29,296 82
Aluminum 2017 Aluminum 2024 Aluminum 3003	1	ļ		1	110	כן מד	130	16C	29, 298 29,246,298
Aluminum 5052 Aluminum 6061	ŀ	}	}	<u> </u>	110	75 75	160 120	160	29,298 30,298
Aluminum 6061 (Welder) Aluminum 6063		i	ĺ		110	100 73	127	140	29,296
Alumina 1075 Alumina 43					110	מ		160 160	29,298
Aluminum 206 301 Stainjess Stoot		Ì		1	75			160	29
302 Stain, ees Steel	Ì	1	İ	1	n	70	85	120	140
304 Steinless Steel	ļ	l			75	\	120	C160	21,25,30, 56,149,248 29,30
304 SLC Stateloge Steel	Ì		1		"	120	140	""	150
(Welded) 309 Stainless Steel 310 Stainless Steel				ĺ	73		120	<160 C160	29.149.248
316 Stainless Steel	ĺ	1	1	1	75 75	Ì	85	120	29,149,248 29,56,149, 211
316 ELC Statniess Steel	1	Į.	l	1		75 75	l	<160 <160	29
321 Steinless Steel 322 Steinless Steel			1	1	73	773		(190 (130	29 29
347 Stainless Steel	1]]		Ì	2	150	120	149,246,298
(Melded)	1				75	120	140	75	29,58,149, 21;
410 Stateless Steel				ļ			l	Ï]
(Melded) 420 Stainless Steel			1			1	75	100 411	15C 82
430 Stairless Steel	ł	ľ	ŀ	Ì	1 75	[3*.		25,56,147, 211,246
446 Stainless Steel 446 Stainless Steel		ł	l	1	i .	}	in.	13C	82 149,248
Garpenter 20 SAE 1020	ĺ				75	73	l	125 75	29,;49,239
Mild Steel Cast Iron	ļ	1	}	1	}	}	1	All	149,211
inori-18	ł	Ì	}	1	}	,,,	}	샓	149,211 82
Simila Irans	1	1		l	מ	185	125	130	149,211 82 45.01
Incone: Nicke:	Ì	Ì		ì) "	j		AII.	.45,2;, 149,2;1 149
H1-Mo-Fe Alloys H1-Cu Alloys H1-S1 Alloys	İ		1	1				A11	82 82
Monel NI-O-Nei	1	1	ĺ	ì	70		160	A11 75	149,211
Copper Combi Allera	1	ł	l	ŀ	"			All	211
Other Copper Alloys Bronzes			İ				!	Ali	211 211
17-7PH Worthite	1	1	1	}	İ	ļ	125	:20	3C 2:1
Durimet 20 Stainless #	-	ļ				75	125	130	211 149
Haynes 25]	1]	1]	160]		29
Gold Lead	1	-	1	-	1	:75	1	4:1	21: 82
Soft Solder	1		1		ĺ	75			149
Pletina	!	ł		į	1	175			211
Silver Alloys Silver Solder				[A11 75	149
Tentalus	}	1				175			2)1
No Lybdanum					,			75	149
Titanism A70	i		1	}	160	160			29,211,240 39 39
Zirsenia		i	1	}	160	{			29,211
(Marries			1						
Tefion Fuzan Resins	1	1	}	{		ec I		A11	149 02
Phenolic Resirs Rubbers	[]	l				Aii	82 149
Kel-F Dispersion Gostin 3M-MFNA Sealer Ugilor System E	ŧ		Ì	1		75]	82 82
LEbor 470	ĺ	1	!				!	All Ali	82 82
Epon 47: Vinvi Mastic	l		!					A11 411 411	82 82
Profesat A	1	}						All	82 82
Stoneware R9A Lankote—KB		ĺ			73(a) 73(a)		l	"	82 82
Fluorline 100 Phenoline 315 Plus		l	1		P (2)			(82 82
L	L	L		L	لنسا				

	I	Temperature, F									
		G.					لاانج				
Material	Class	Cless	Cless 3	Ciebe	Closs	C1411	Cless 3	C1 #55	References		
Nevelon 8-400-10	1						1	411	B2		
Masobite Industrial	1	1	l	1	•	1	l	All	82		
Sevenon 84 Series	1	ì	ì)	1	1]	411	42		
Lankote Fluoro B	1	1	l	i	l .	ł	i	All	82		
Calicote M-605	į.	t t				l	l .	111	8.2		
ID 2710	i	ĺ	i	Į		i	Į	411	62		
Sarankote A-1098	I	1	i	Į.	l	I	1	Ali	8.2		
Profese t Standard	1	1	ı		1	1	ı	A21	82		
Pennselt Acid Proof Cament	1	1	ļ					A11	82		
Increants Hormateilies	ŀ	1			1	1	ı				
Concrete	Ì	Ì	1]	1	Ì	1	1 444	82		
Carbon	i	1		l	l	l	ļ	ALL	82		
Greph! to		1	1	l	ł	í	l	All	82		
Gless	l	1		l	300	183		1 .	211		
Parcolai n	t	i	į.	1	l	185	t t	1	62		
Chemical Stoneware	1	1	1	1	300C	185	1	1	211		
Ormanic Materials	l	Į.	ļ	l	l .	1		[]			
Koroteal	ĺ		ł		ı	ì	l	1 75	149		
Polyethylene	1			i	i	i	l	73	149		
Saren	i	1	1	i	i	ſ	i	72	149		
81148110-167,-180,-181	1	1	1	1	I	ł	1	75	149		
Tygon	1	1	i		1	i	1	75	149		
Vinylite	1	į	1	1	!	i i	1	73	149		
Gariock=230,=233	ļ	1	ł	Í	i	ı	1	75	149		
Graphitar-2,-50	1	ì	1	ì	1	ì	1	כד	149		
Silicone Lubricants	i	1	!	1	I	i	1	75	:49		
Dow Corning 710 Fluid	I	1	1	1	I	i i		73	149		

(a) Intermittent contact, such as apiliage.

TABLE 12. COMPATIBILITY OF MATERIALS WITH 80 TO 95 DEMINE MITRIC ACTO

Meteria: Mataid	C1 ***	Class	C1 864 3	£1494	C1.**	C to S	3 :0Q1	==	
Balais					CLASS			_	
				4	1	Class	3	Class	References
	1	,							
Aluminum 1060 Alifoum 1085		130 85	183						246 267
#1.2050an 1089 Di±ioun 1100	72	85	185	כדנ	\	85	140	14C 14D	211,221,287
Al-minum 3003	"	130	185		l	85	140	140	248,267
Aluminum 6061	l	85	185	ļ	l	60	140	146	246
304 Steiniese Steel	75	130	155	57.5	73	120	160	160	56,211,246, 267
309 Stainless Steel	l	130	160	!	ŀ	120	16C	166	248,287
315 Stainless Steel	۱	130	160		١	120	160	160	248,287
316 Stainless Steel 321 Stainless Steel	75	12C	:60 :25	16C 212	70	120	160	160	50,287
347 Stainless Steel	1 75	130	12	2.2	13		125	212	211,221 211,248
410 Stainless Steel	1		i '	N.	1	1	75	123	207
420 Steinless Steel	1	1	ĺ	1	1		1	1 41	62
430 Stainless Steel		130	72	12%	ļ		מ	120	56,211,248, 287
44c StalrLess Steel	(130	160	:€≎	l	120	160	160	248
Carpenter 20	T.	[.	212		- C-E	1	212		58
Mild Stuel Cast iron	1			All			i	A11 A11	211,257
Mi-Irons	1	}	1	ALL	1	1	1	ALS:	211,287
Cr-irons	1			Aii	1	ļ		AII.	267
Si-irons	212	ļ			212	185			211,297
Si-Ma Irons	į i	(l		ļ	180	ļ	(i	267
Nickel	i i	İ	:ac	A11	ì			AL.	2:1,287
Hests;luy B Hasts;loy C	75	ļ .	ţ	75	ļ			, ;	82 T
Copper	1 "	ı	1	A11	1			A11	211,22:,287
All Copper Alloys			i	۸				411	211,251,287
Co1s	212	185	ĺ		212	180		ļ ;	21:,221
L 64 d				A11				423	211,287
All Lead Alloys				All	1			All	267
Platinum	212	185		l .	212	185			211
Magnesium All Magnesium Alloys				A S				All	287 287
Stiver]]		ALL	1]		All	287
Z:rcontum	כל		l	i I				i	2:4
Tentalum	212	185			212	185			211
Titanjum	כד					İ			214
Cciambium	70	1 1			70				93
Microstale	1								
Glass	2:2	(212	[21.
Stunemare Rubber	212				212			_	211
Rubber Graph: te	1	1 1		7% 75	l .			מ	21: 21:

28

سنست بالمال									
1		- G	14	l'empere	Ture,		wid		1
Motorial	CI A SS	(1 sas	C1 866	Class 4	Class	Class		Cless	
	_								Beforence s
Aluminus 1000		!	. =		BC.	7 1			62
Aluminum, 1100	i				80		1		174,220
Aluminum, 1100 Aluminum, 1100-0 Aluminum, 2014-76 Aluminum, 2014-76	60		l		6C		ŀ		50,169 50,169
			[Ì	•c	1			50,169
Alustrum, 2014-16 [m,50] Anedize; Alustrum, 2014-16			}		55		ł		164
Atunious, 2014-16	ł				6 K		1		50,169
(Iridite) Aluminum, 2014-76	ъ	60			60	60			169
Molded Aluminum, 2014-16	l ~	60	ļ			60	ŀ		169
Spri welded		~				*	l		
Aluminum, 2014-76 Extruded					50				x:,169
Aluminum, 2014-T6 Extruston (Molded)					4€	1 :			169
Aluminum, 2014-76 Extrusion (Stressed					64				169
to 50,000 est		1 1	'	١.		İ		1	
Aiuminum, 2014 (Sen- fordize Hard Coat)		1				100			169
Aluminum, 2024 - C Aluminum, 2024 - C Aluminum, 2219 - TG	60 156				140	150			174,220 169
Alueirue, 2219-76	130				, ac	1170			169
(1ridite) Alusinum, 2319-781 Alusinum, 2319-791	u				60				50,169
Alustrum, 2219-791 - Molded					60				16.3
	190		,		; x				169
Accelone, SCG-H14 Aluminum, 4043 Aluminum, 5052 Aluminum, 5052-1 Aluminum, 5066-H04 Aluminum, 5066-H04 (Missed)					13%				174 82
Aluminum, 5052-0 Aluminum, 5066-R04					.oc	140			169
Alueirue, 5086-K34					165				12,169
Aluminum, SCHA-MAN Aluminum, SCHA-MAN	**				65				169
Man Colonia					et.				169
Alleinum, 5254.F Aluminum, 5456 Aluminum, 5456 H-24 Aluminum, 5456.H-24	65				65				164 174
Aluminue, 5456 H-24	~				**				50,169
(TRIDE) 5456-R24					A.			1	169
1 111110					*				:69
Alueinum, 5456+422; Aluminum, 5456+432;					45				×,.69
_ bed			ì		*		ì		:49
Atuninum, 1850.4523 (Stressed to 30,000	i				€′				:69
F 51.				l					
Aliminum, 5456+H321 (Weldes and Stressed				l	50	ĺ		. !	169
to 20,000 pai. Aliminim, 6061 Aluminum, 6061-To Aliminum, 6061-To Aliminum, 6061-To		1			:3"				
Aluminum, 606; -Te	:50	į			150				50.174.225 50,169
md: dec)		ì			65				169
Alunteum, foffist .(fidite)		ŀ	- (e:				.69
Atuminum, Adod Atuminum, 70% A	65 60	ì	ļ	- 1	65 60				169
Aluminum, 707240	120				.50		160		174,220 169 50,169
Alpainum, 1015-16					150	.∞			50,169 169
fordire Herd Coeti Alprimus, 707540		}	- [- 1		:00			1
l i≒_SC Anedite l					1		- 1		169
Atuminum, 356 Atuminum, 356 (M.SO	€C			ŀ	ec ec	100			174,245
Anodize) 2 4 A.uminum, 356 - Senfor-		ł			icc		- 1		i
dire mard Soat.					- 1			.	169
Aluminum, 356-76 Aluminum, Tens 50	65				65				160
Berylco 25		65	1			65			;69
Cadmium Cadmium Plate	1	- 1	!		1	1	ļ		109
Chromium Pinte	- 1		İ	i	∞ .				109,174
Maynes Stellite ; Maynes Stellite ;2		j			100		1		:69
Haynes Stellite ex Haynes Stellite 21					65		Ì		169,174
Havnes Stellite 25				ļ	55				169
Haynes Stelling 93 Sepret plate			Į	ł	ioc	ļ			169
Corcer	1	Br.	80 75	ec	- 1			1	169 88,174,2%C
Yellow Brass Red Brass	- 1	ļ	75	- 1	ļ				62
Al-Bronze SI-Bronze		- 1	75 75 75	- 1	- 1			1	82
Sn-Bronza	ł	ļ	75		- 1				174
Sold Gold Plate	İ	65		ļ	75 60	75			.49,2;.
52 Sold - 18 N)-Braze		63		İ	%	*5	1		; 64 (•)
Pure Iron Cast Iron	- 1	ſ	H	::286	*	ſ	1		949
Carter Stee!	ĺ	- 1	- 1		8:	ļ			15
Mild Steel War Steel					.4'	- 1			9 97,159
ASIN A-285 Grade C Rest Steat					165	- 1			169,174
	i	- 1		l		- 1			119 4 . 14

	—	 							
		6	11		ture,		uld _		1
Material	Class	Cless	Class	Cless	Closs	Cless	Class 3	Class	Pelezenses
410 Stainless Steel 410 Stainless Steel (Bolded)	65				150 . 63		, ,		169,174 169. =:
416 Stainless Steel 440C Stainless Steel	45		ŀ		65 100			Ì	169,174
302 Stainium Steel 303 Stainium Steel					100				169,245 169 169,174
304 Stainless Steel	65			C\$155	140				66,169,175, 220
3C4L Stainless Steel 3O4L Stainless Steel (Me)ded)		ļ			165 65	ļ			12,50,169 169
316 Stainless Steel 32: Stainless Steel 32: Stainless Steel	63				65 65		İ		169
{ Mar de-d \					65				50,169 169
34° Stainless Steel 347 Stainless steel (Molded)	65				65				50,159,174 169
A+286 (Annealed) A+286 (Aged)					100 60				\$0,169 \$0
AM-35C (Annested) AM-355 (Condition H)					190				169
17-4PH (Condition A) 17-4PH (HICCO) 17-7PH (THOSO)	40	:			100			Ì	169
12-7PH (RM990) PM15-7 Wo (Sondition #	64.				100 100 165				169,174 169
16-25-6 Leed					. ec	ac	80	ac.	12 174 174,220
No.) videnus Nacestus, 1004	,.	45		K2:12	64		_		5.8
Magnesium, 100A Magnesium, AZ3.C Magnesium, HMQ1A-TB	ès	65			80	65	;50		169,174 169,174 50,.69
A-hickel Nickel Clectroplate	60-				65			75	169,174
Electroless Mickel	65				100 VC				169,174
A-Nickel (Mejded) Income:	63				65			,,	169
Ment) K-Mone)	65				es			75	169,174
NI-Span-C Inconel K					Ψ,				.e9 : 4
Mastelloy Alloys Nilver					. ₹.				174 50,169
Platinum Silver					75	75		75	21: 174,2:1
Silver Fiate Silver Solder								50 60	169 50,169 169,245
Easy Fig 4t St: Fee 1900r, 15Ag.								ec ⊕c	160.245 245
Metco nerd Fecing Alloy W								10c	199
Metco Hard Facing Allow 120								10c	169
Metco Hard Facing Alloy 710 TE Spec Braze								100	169
TE Spec Braze M'croseal 190-1 on				.oe				& :00	245 169
Microses) 100-1 00 on				*5					169
A2310 Mg Microseal 100-1 en	:00				100			100	169
2014-76 A; 718 Braze 6061+76 A)					65				İ
Fure Tin Solder on					65				169
303 SS Eas, fic Praze on 347 SS					55				160
AMS 4775 Nicrobrese on					65				159
0-62 Braze (Mo-H1-Co: on 347 SS						100			169
fastalue	65		ł	<302£	75	i			88,169,174,
Tin Tin Frate					BC EC				211,220 174,226
					;e^;e	;			169
Titentum, 65A Titentum, 75A Titentum, 411CAT Titentum, 812CATA	e5(8	,	- 1	ļ	150 150 150 150 150 150 150 150 150 150	}			12,169,220 169,174
Titanium, Circay Titanium, Roiscam	:50(1		i		65}				50,169 169,174 169
Titanium, 6A1-4V Tungaten Carbide		j	ı						12,50
Zior		65]		65		ec.	169 174,220
Ziri Plate Zirioniu-						ı		15	220
Piantics				1	- 1			~	
Teflor Teflor TFE					75	60 S			× (69)
Tellon PEP			ļ		:6C	9C	Ì	64:	23,169 23,50,169
Teflor McS. Teflor Asbestos Teflor Filled With	-	ł			75	×.		j	50,169 50,169
G1 +64					96:		ļ		23,169
Teflor filled With CeF ₂					80			- 1	23,169
Terion (Silica Primed) TFE-Feit		ŀ			15		ļ	44	23 50,169
Armelon 7700 Armelon 7700B Fluorozestos		j		ļ	75 75 60	60 60			50,169 50,169
Fluorogreen	1	l			60				50,169 50,169

		T		-	Temps 2	n i sur-a				
	,, , , ,		G	H	17-7-12	I	' u	p-1d		1
	Meterial	C1 ***		Ciess			Cless	Class	C1001	
	Kei-F	 		-3	+∸	 -	├ -	13	75	heferences 30
	Kal-P 300 (umplest)-	1		1		1	Ι.	1	60	169
- 1	_cleed) Kal-F 300 (Annealed)	1	-		-	-	•			169
	Genetien GC Genetien GCX-38	l		1		65	BC		160	23,169
	Opnetzon 2E-25	l			i	65			I	169
	Trithene A Alcar 191	İ				67	80	1	73	23,169
	Polyethylene	1							773	169 23,50
ı	Polysthylens (los density)						8C		160	169
- 1	Polyethylene Thigh						₩		60	169
ı	denetty) Polystnylene (irra-						ŀ	60	66	
- [disted?							~	"	50,169
Ī	Raythene N (irradiated Polypropylane					65			65	169
- 1	Nylon						60		∞	50,169
- 1	Bytel 101 Cepren 391								65	50 23,169
Ĭ	My;47					ľ			ĒΣ	169
- 1	Saran Rynar		!						60 80	23,50,869
- 1	Delrin		Ì		1	8C			6C	169 50,169
- 1	Lexen Tedlar		ł		- 1	6.			80	5C,169
-	Merler 50	i			ł	٠ ا			75	50,169 50
-1	Hi Fer Special te		1	- 1		- 1	- 1		75	23
- 1	Kedapan II			i	- 1				l e l	23,169
ı	Hypelon 20 H+File		- 1	- 1		- 1	- 1		65 80	169
- [Epon 1031 (With PMGA)	ľ	- 1	- 1		ı			ec	:49
-1	Flexigles II	- 1					- 1		1 4	so
- 1	Piezigias CR-39 Piezigias 55	ľ			i	i	. !		75	20,169
- 1	Silicone Laminate			- 1					, ,	κ .
ı	Prenolic Lawinate Epoxy Laminate	- 1	i	- 1	- 1	1	80		7":	50,169 50,169
- 1	Followater Laminate	- 1	1	ł	ļ	İ			1 A.C	50,159 50,169
- !	Meltit taminate						- 1		8	96 · · ·
-1	Polyvinylchloride Ultren	- 1	- 1				BO		33	90 90,169
-	Opelon 1219 Opelon 1220		l		- 1	- 1	~	60	1 1	169
	Opation (4/4		-	!					60	69
	Opalon 81222 19 oplate		- 1		j		ſ		10	:69
1	Elastoners	- 1	1							16.
}	Peristantre 14 Etrys						- 1	65		es
1	lene Fropyvere Rubber)			- 1	i				- 1	
1	Formula 132 (Ethylene		- [6- 1	.59
ı	Propylene Rubber, X105		- 1		ľ	ı			1	İ
	E+612-2 E-622-1	- !		ļ	ļ				55	.09
	X-7000+12 to 7 and 9 to 11]			ĺ	Ì	- 1	- 1		- 25 J.	69
- 1								- 1	·' ["
	Pario 805+10 Pario 846-80	- 1							80 :	25
1 1	Parker 8496-7				ĺ					69 69
10	Parker XB+1235+10 [5]a, 268			- 1			1			69
	injay 55: 4ycan 2202			ļ				1	45	C ₁ 169 C ₁ 169
1:	Stillmen SR613+75	- 1							22 2	C.169
1 5	201 ava 50-av6. Sa 1					-	- 1		BC :	t9
1 ;	recision 1330X20 recision Formula 120 recision Formula 121	- 1		- 1			ı	- [75 1	69 69
];	recision Formula 121		ľ					- 1	67	69 69
6	Perker XV-1235-2			ı	ŀ	- 1	i	- 1	- 1	¢ŵ.
1 1	erker KB-1235-10	Ì	ı	- 1	- 1	- }			ec :	63
	rifiuerenitrose.	- 1				- 1		l		0,069
1	methane tetrafiuoro- ethylene (IFNM-IFE)				-	- 1				
	Ston A		- 1			- 1	1	1		:.:69
9	ttilman EXTTAN-1								ε :	69
	MOL X FBF-4 drRer V494-1	- 1	- 1	1	- 1	- 1	-		77 .	19
1 6	47842 ?"-545				- 1			ĺ	60 1	
l k	XBQ:-A70 el-F Elastomer								8C :	9
1 4	#1 -F-3700 #1 -F-5500		- 1	1	- 1	H	ı		75 X	.169
1	tiling- Dice-	Ì						1	60 16	9
	uore!		- 1		- 1	- 1	-		e5 36 ≪ 97	9
	5 53		i				- 1	H	9C 50	,169 ,169
N4	Itvesi Aubber		1		-			- 1	W 110	•
9	718-7							l	ο J X	,169
04	hriestic 500				İ			j	8< 15	9
54	(Silicone)			ļ					1.	(63),
G	riott 900			i		- 1		- 1	65 195	,:69
H.	paver 25				-				e 5	11.69
Fo	Gyvistrenez	Ì		ļ					75 50	- 1
1	140 1650 140 16400 140 16400	- 1					Ì		75 50	- 1
;, F.	ilec 16475 nton			1					75 9	
	Croptens	l_		\perp		_1	l	J	75 S0 75 S0	
							_			

		TN	'£ 33,	(Cent	imed)					
· · · · · · · · · · · · · · · · · · ·	F		61		eture,					_
Meterial	C1 = 90	Class	C1 000		Class	Class	Class	Clas	Ⅎ	
Lubricante	+,	├ ゜	-3	+	1	1.3	3		Reference	•
-BC 11 · · · - = -	-	6,-		= : -		6		1 .	164	
BC RT VAC RC 150	1	67				67	1		160	
Reyco-50 Greese Rel-F 90					63	1	1	60	169	i
FX 45	1			[ļ	60		67	169	
Molykote Z Drliube 703	1	l		[€€	0,			169	- [
Electrofilm 66-C Rayco-32 Grease				i	İ	1	6C	1	169	-
Malocarbon Greese Mordcoses: 1475 and	1					67 80		**	169	İ
#icroseal 100-1					٠.	".		1	169	
PD-188 LCX Safe					ec.		İ	5.	.69	-
Fiske Graphite Johns Manville No. 40	1 :				BLC		1	65	159	ł
Graphitar 2,14,39,50, and 86					e ·	i	İ	"	169	
Putebor P3N and P5N	1 1		i		6:		f		169	
Velve Seal A Apieron L	[ec ec	BC .		169	1
Fluorelube MG600 Fluoreethene G	1		- 1		9C 8G				169	1
Seajants and Potting Compounds		ŀ								
Reddy Lube 100 Reddy Lube 200	61		- 1	i	. 60 160			1	.69 .69	ı
Matergiass-Graphics Vydax A Omylube Sealant	^		٠	ļ	67	ļ	62		169	
Teflor Tape (Unsinter-				•	80 80				169	ı
29 1422 RT+ 20			ļ					K .	×, 19	ĺ
Epor #28 Faresjes 9-43			ĺ	- 1				883	50,169 50,169 50,169	
Fromes: 793 Fairprene 5:59		- 1		ı				35.5	SC,189 SC,189	
Crysts; N & CF CC Renoc:				I	5 0			25	×,,,69	l
Epon VIII		ŀ	-					1 33	M M M	
Epon 422 Epon 422		-		İ				13	W.	
Epen 1 31			ł	ļ					Į.	
EC (191 EC (194		- 1] :e	× × × × ×	l
Resince Scince Resince Sciol3 Reintair Fizo-t5				- 1	i	Ì		19	ŝ	l
Reinhold F120-55 US Priyments areas		!						15	9. 11	
<u>40:451ve4</u>		1	i		- 1					ı
Armstrong 4-6 EC 647		İ	ı			1		3.6.8	57,169 50,169	l
HT 424 3M-AF-10	-		-	- 1		ļ		60 60	50,169 [69	
4+3 Epch 422					ec			63	169 50,16v	
<u>Gerenica</u>						1		ľ		
Tempore.:				- 1	ŧ:	6 75 E		ļ	50,169 51,169 51,169	l
Seletelen 47		-			ľ	*:			50,.69 ;*4	
<u>Coatings</u> Rocafium				Ī						
Rettiad 1,2, and 3			i				٠,		169 169	
Aluminous Epakh No. 1							ļ	95): 67):	149 159	
Eport No. 5 Eport No. 7							ļ	40 10	19 19	
Epon No. 9 Epony 6809	- 1							10 1	 	
Modified Epoxy No. 5 Alkyd No. 4								*C	59 64	
Foirurathane Catalac Primer and			-	ĺ	- 1			67 1	69 69	
Finish on Steel Cetala: Improved							-	67 1	49	
Acrylic Mitrocellulose Vinyl Primer MIL-P-6889								60	69 69	
Typen r							-	25	69 69	
Co-Folimer F-2000 CA 9747 Primer Corrosite Clear 58;							İ	·5 .	tg ti	
Proseal 333 Marka: SAB, SA9, SA9		-			60			1 :	69 69	
Grayi	- 1		J	- 1		1	- 1	8, 1,	÷ P	

(a) Persical communication

(b) Titanium ignites under impact, but ignition does not apread

TABLE 24. COMPATIBILITY OF MATERIALS WITH MITROGEN TETROMINE CONTAINING PROM 0.2
TO 1.0 PROCEST MATER

	1			leage re	store,			1	
		- 6			1	Lie			
	Class	ctore	Class	Class	Ciess		Cies	C: ***	
Material	1	2	3	1	1	7	· .	-	References
Metale			1	1	1				
untour, 1060	1	ì	1	1	90		i	1 1	82
usinum, iloo-o	l .	1	ļ.	i	- 6C				sc
uminum, 2014-76		ì	F .	i i	60		i		50
u-lhum, 2024	ł	1	l l	i	140		l		62
relnus, žžio-tel	l	l	Ţ	Į.	80	أمدا	Į.		\$0 \$€
m1nm, 5052	Į.	i	1	4	130	140	103	1	12
-1	1	1	1	1	(~	13	165	1	12
uminum, 1086 (Melded)	1	ĺ	1	l	1 40	.,,	1 '6'	1	ii.
umlrum, 5456-424 umlnum, 5456-4321	1	1	1	1	1 2	1	1	1	50
uminum, 606;-75	1	1	ı	1	:36		Į	1	56
umarium, buey-se veitur, 2025-26	i	1	ì	i i	60	1	160		• • • • • • • • • • • • • • • • • • •
wairwa, ita-16	1	I	ı	i	80	ı	'''	1	3C
	l .	1	1	[1		Į.	1	86
per .	ł	ł	l	ł	1	80	t	i ac	82 82
) ow Brass	1	1	1	ł	l .	1	1	80	82
d Brass	i	į .	I	1	I	ľ	i	1 -	
2C Steel	l	l	l l	Į.	130	l	l	l	> ℃
rbon Stell ASTM-	1	i	1	1		l	I	1	١
AZBC, Grade C	1	t .	ļ	Į.	176	165		1	13
rbon Steel	I	!	1	1	1	80	170	1	82 82
1 Stee.	ı	1	1	f	30	40	ļ	[]	82
30 \$1661	1	ì	1	i	80	ì	1	i '	82
3 Statniess Stael 4 Statniess Steel	ı	I	l	1	140	i	l		82
a steiniett biee. 45 Steinies: Steel	1	1	ł	}	165	ł	i	1	12.50
Staining Steel	1	ŀ	Ì	1	130	i	l	1	872
C Stainless Steel	1	1	1	1	ac	1	1	1	8 2
286 (Annealed)	1	1	1	1	60	l	1	i .	50
19-70c	t	Į.	l	i	165	Į	l	l	1.2
	1	1	1	ı	60	ì	I	1	5C
-5;41° +C	}	1	1	1	١ ~	{	1	1	
•	1	1	I	1	1	80	I	I	92
tanios, Ta	1	1	1	1	100	1	1	1	;2
tantum, dajudy)	1	1	1	:65	1	ì	1	12,50
	1	1	ľ	I	1	1	J	ŧ	
Norma tal. s	1	1	ì	1)	}	1	1	1
licore Rubber	1	1	1	1	ı	ĺ	80	1	ee≥
1-F (unplesticized)		i	ı	1	1 :50	l	i i	1	82
ferfotreit 4-1	1	1	1	1	1	[I _	:60	82
10441	ţ	1	1	1	1	1	BC.	1	to:
1 yethy lene		i	1	ı	1	l	80	1	83
197	1	1	1	1	1	1	ec.	}	60
flan	1	1	i	1	150		1	1	82 82
gen	į.	Į.	i	1	l	₩0	Į.	l ec	
S. No. 20995	1	1	1		1	Ι.	1	_ • ∼	
apidia Mitorgiass	1	1	1	1		l ≉c	1	1	82

TABLE 39. COMPATESTATY OF MATERIALS WITH HITHOUGH TETROLISE CONTAINING 3-28 MICEA (12)

	Į .								
Meteriel		G	•••						
	Class	CIAN	C; •••	\$ 4 & 4 & 4	Ciess	2141	Class	Ci eee	References
<u>Metals</u> Aluminus, X 0 1-H34 Aluminum, X 0 6, Meldem						1	¥: %	12: 12:	
Carbon Steel, ASTM- A285, Grode C SC4L Steinless Steel PM15-7Mo					15 163 153	70	120		
Titanium, 75A Titanium, 6Al-AV			1		165 165	1			

table 50. Compatibility of Materials with Althomas Tetrocide -Lowing at 10 feet MM second $\pi_2^{-1}(12^{-N})$ and $\pi_1^{-1}(12^{N})$

	7	Temperature, F								
		- 5		., .,	77.4					
Meterial	21 #9# L	C. 366	21444	C1 4 5 6	21445	Si • 11	3	Ciass	References	
Metals Asuminum, 5000					**					
Carbon Steel, ASTN- A281, Grade C 3641 Stainjess Steel Pripe-No					8.2.2		<u> </u>			
No metals Mel-F Terion Roroseal Alathon FVC								90 90 90 90		
Johns-Manesille Servill Asbestos African Bium Asbestos Defion Impreonated Asbestos — Palmetto 1330					× ×			9.		

REFERENCES

- (1) Abramson, B. N., Brandwein, D. S., and Menes, H. C., "The "50,000-Pound Thrust Rocket Test...

 Stand at Lake Denmark, N. J.", Jet Propulsion, 24 (5), 291-296 (1954).
- (2) "Survey of Hezards of Handling Liquid Oxygen", Accident and Fire Prevention Information, AEC, Issue 76 (January 23, 1958).
- (3) "Compatibility of Six Selected Materials in Eight Propellants", Report M-1856, Aerojet-General Corporation, Materials Department.
- (4) "Ctorable Liquid Propellants Nitrogen/Aerozine 50", Report No. LRP 198, Second Edition, Aerojet-General Corporation, Sacramento, California (June, 1962).
- (5) Africano, A., "Specification (Tentative) Lubricant, Antiseize, and Sealing for Liquid Oxygen Systems", Report GM-676-9A, Space Technology Laboratories, Inc., Los Angeles, California (Revised October 10, 1958).
- (á) Africano, A., "General Guidance for the Preparation of Specifications for Fabrication, Assembly, and Operation of Components and Facilities Utilizing LOX and Associated Gases and Materials", Report GM-TM-178A, Space Technology Laboratories, Inc., Los Angeles, California (October 10, 1958).
- (7) Agricola, K. R., "The Usefulness of Materials Used in Booster Structures", paper presented at the Symposium, The Application and Properties of Materials Used in Aerospace Vehicle Design, sponsored by The Martin Company, Denver, Colorado, May 4-6, 1960.
- (8) Allen, S., "Liquid Oxygen as a Rocket Propellant", Journal of the British Interplanetary Society, 14 (3), 165-168 (1955).
- (9-11) Preliminary information and private communication from Allied Chemical Corporation, Hopewell, Virginia.
 - (12) Alley, C. W., Hayford, A. W., and Scott, H. F., Jr., "Nitrogen Tetroxide Corrosion Studies", Report No. TR-60-384 under Air Force Contract AF 23(616)-6568, Allied Chemical Corporation, Hopewell, Virginia (July, 1960).
 - (13) Alley, C. W., Hayford, A. W., and Scott, H. F., Jr., "Effect of Nitrogen Tetroxide on Metals and Plastics", Corrosion, <u>17</u> (10), 479t-484t (October, 1961).
 - (14) "Product Information Technical Bulletin TA-85413, Fluorine", Allied Chemical Corporation, Hopewell, Virginia (October, 1961).
 - (15) "Product Data Sheet PD-TB-85411, Liquid Fluorine Unloading Procedure", Allied Chemical Corporation, Hopewell, Virginia (July, 1958).
 - (16) "Product Information Technical Bulletin TC-85411, Handling Elemental Fluorine Gas in the Laboratory", Allied Chemical Corporation, Hopewell, Virginia (October, 1961).
 - (17) "Product Information Technical Bulletin TA-8532-3 Chlorine Trifluoride (CTF)", Allied Chemical Corporation, Hopewell, Virginie.

- (19) Ambrose, P. M., and Barrett, J. C., "Investigation of Accident Involving Titanium and Red Fuming Nitric Acid, Bureau of Mines Information Circular 7711, U. S. Department of the Interior (September, 1954).
- (26) Arbellot, L., "Behavior of Nickel and Its Alloys in the Presence of Halogens", Corrosion et Anticorrosion, 5 (4), 112-118 (April, 1957).
- (21) Ashmedd, M. R., "Static Seals for Missile Applications", Jet Propulsion, <u>25</u>, pp 331-333, 340, 346 (1955).
- (22) Austin, C. M., Rohrer, C. S., and Seifert, R. L., "Explosive Hazard of Aluminum-Liquid Oxygen Mixtures", Journal of Chemical Education, 36 (2), 54-57 (February, 1959).
- (23) Preliminary information, The Connecticut
 Hard Rubber Company, New Haven, Connecticut.
- (24) Baldrige, J. H., "The Resistance of Elastomers and Plastics to Rocket Propellants", Report No. WADC 57-472, The Connecticut Hard Rubber Company, New Haven, Connecticut (January, 1958).
- (25) Balis, E. W., "Behavior of Liquid Cxygen", Report No. 45783, General Electric Company, Schenectady, New York (June, 1946).
- (26) Baum, J. V., Goobich, B., and Trainer, T. M., "An Evaluation of High-Pressure Oxygen Systems", Final Technical Report ASD under Air Force Contract AF 33(616)-8267, Battelle Memorial Institute, Columbus, Ohio (August 3, 1962).
- (27) Beane, A., "Results of Impact Testing of Titanium with Liquid Oxygen", Report No. WADC TN 59-175, Wright Air Development Center, Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio, AD 232573 (April, 1959).
- (28) "Development and Standardization of Peroxide Handling Techniques and Devices", Report No. HR-24, Becco Chemical Division, Food Machinery and Chemical Corporation, Buffalo, New York (January, 1955).
- (29) Beck, F. H., Holzworth, M. L., and Fontana, M. G., "Materials for Handling Fuming Nitric Acid", Report No. AF TR 6519, Part I under Air Force Contract AF 33(038)=10381, The Ohio State University Research Foundation, Columbus, Ohio, AD 159418 (March, 1952).
- (30) Bergdorf, W. H., and Kinsey, E. J., Jr., "Investigation of Corrosion Inhibitors for Fuming Nitric Acid", Report No. WADC TR 57-302 under Air Force Contract AF 33(616)-3056, Wright Air Development Center, Materials Laboratory, Wright-Patterson Air Force Base, Ohio, AD 151116 (April, 1958).
- (31) Berman, L. D., "Compatibility of Materials With Storable Propellants", The Martin Company, Denver, Colorado, paper presented at the Fourth National SAMPE Symposium, Los Angeleε, California, November 13-15, 1962.

 $\phi_{ab} = \phi_{ab} + \phi$

(32) Bernard, M., "Inhibitors of Nitric Acid Corrosion of Steel and Light Alloys", Corrosion et Anticorrosion, 4 (4), 126-134 (April, 1956).

ANT THE

- (33) Binder, W. O., "Effect of Gold Work at Low Temperature on Austenitic 18-8", Metal Progress, 58 (2), 201-207 (August, 1950).
- (34) Birmingham, B. W., Brown, E. H., Class, C. R., and Schmidt, A. F., "Vessels for the Storage and Transport of Liquid Hydrogen", Paper 2757, Journal of Research of the National Bureau of Standards, <u>58</u> (5), 243-253 (May, 1957).
- (35) Bloom, R. J., Jr., Weeks, L. E., and Raleigh, C. W., "Materials of Construction for Equipment in Use with Hydrogen Peroxide", Bulletin of Technical Information, Bulletin No. 104, Becco Chemical Division, Food Machinery and Chemical Corporation, Buffalo, New York (1959 Edition).
- (35) Bloom, R. J., Jr., Nowak, J. H., Raleigh, C. W., and Weeks. L. E., "Hydrogen Peroxide and Materials of Construction", Corrosion, 16 (4), 164t-170t (April, 1960).
- (37) Bloom, R. J., Jr., Davis, N. S., and Levine, S. D., "Hydrogen Peroxide as a Propellant", Journal of the American Rocket Society, (BC), pp 3-17 (March, 1950).
- (38) Bloom, R. J., Jr., and Brunsvold, N. J., "Anhydrous Hydrogen Peroxide as a Propellant", Chemical Engineering Progress, <u>53</u> (11), 541-547 (November, 1957).
- (39) Romterger, H. B., "Titanium Corrosion and Inhibition in Fuming Nitric Acid", Corrosion, 13 (5), 287t-291t (May, 1957).
- (40) Booth, P., "The Halogen Fluorides", Chemical Reviews, 41, pp 421-439 (1947).
- (41) Bowers, T. K., "Naval Handling Manual", Report PR NCNGF-P 31, U. S. Naval Gun Factory, Washington, D. C. (January, 1953).
- (42) Boyd, W. K., "Summary of Present Information on Impact Sensitivity of Titanium When Exposed to Various Oxidizers", DMIC Memorandum 89, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (March 6, 1961).
- (43) Boyd, W. K., Campbell, J. E., Fink, F. W., Jackson, J. D., Miller, P. D., Rice, L. P., and Simmons, F. W., "The Evaluation of Effects of Very Low Temperatures on the Properties of Aircraft and Missile Metals and A Study of the Titanium-Liquid Oxygen Pyrophoric Reaction", Report under Air Force Contract AF 33(616) -6345, Battelle Memorial Institute, Columbus, Ohio (August 31, 1959).
- (44) Bradley, P., and Waite, G. C., "The Techniques of Welding Aluminum and Aluminum Alloy Vessels for Use with Concentrated Hydrogen Peroxide", Technical Note R.P.D.-157, Roval Aircraft Establishment, England (November, 1957).
- (45) Brennan, W. H., "Failure of Titanium Helium Bottle", Rocketdyne Letter 59RD9330, North American Aviation, Canoga Park, California.

- (46) Brown, E. H., Class, C. R., and Schmidt, A. F.,

 "Vessels for the Storage and Transport of
 Liquid Hydrogen", Report NBS-3529, National
 Bureau of Standards (April, 1955).
- (47- Preliminary information and private communica-50) tion, The Martin Company, Denver, Colorado.
- (51) Brown, J. A., "Effect of Propellants on Plastic Aersol Valve Components", Soap and Chemical Specialties, 36 (3), 87, 68, 91, 206, 207 (March, 1960).
- (52) Brown, P. E., Grabtree, J. M., and Dincan, J. F., "Corrosion of Copper by Elementary Fluorine", Report AERE-C/R-1241, Atomic Energy Research Establishment, England (April 27, 1953).
- (53) Butts, W. H., and Williams, M. F., "Vector II Tank Contamination", Engineering Report No. 128, Lockheed Aircraft Corporation, Missiles and Space Company, Sunnyvale, California (September 8, 1961).
- (54) Campbell, J. W., "Compatibility of Various Materials with Unsymmetrical Dimethylhydrazine", Report M544, Aerojet-General Materials Division.
- (55) "Nitrogen Perchlorate", Technical Bulletin G-1200, Callery Chemical Company, Callery, Pennsylvania (September 4, 1962).
- (56) "Pentaborane", Technical Bulletin CT-1300, Callery Chemical Company, Callery, Pennsylvania (October 1, 1961).
- (57) "Trialkyl Boranes", Technical Bulletin C-311, Callery Chemical Company, Pittsburgh, Pennsylvania (March 1, 1959).
- (58) "Corrosion Control", Report T.D. 113A, Carpenter Steel Company, Reading, Pennsylvania, (1960).
- (59) Cassidy, F. H.. "Materials for Use With Various Rocket Propellants", Report MA 158, Aerojet-General Corporation, Materials Division (July, 1953).
- (60) Cassidy, F. H., "Effect of Unsymmetrical Dimethylhydrazine and JP-X on Nylon, Type FM-10001", Report MA-263, Aarojet-General Corporation, Materials Division.
- (61) Cassidy, F. H., "Compatibility of Various Materials With Unsymmetrical Dimethylhydrazine", Report MA-255, Aerojet-General Corporation, Materials Division (August, 1954).
- (62) Cassidy, F. H., "Compatibility of O-Ring Materials for Use in Unsymmetrical Dimethylhydrazine JP-X", Report MA-252, Aerojet-General Corporation, Materials Division (June, 1954).
- (63) Cassidy, F. H., "Compatibility of Dimethylhydrazine with Usual Construction Materials", Report M-232, Aerojet-General Corporation, Materials Division.
- (64) Cawtherne, E. W., DMIC, memorandum to R. J. Runck, Director, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (October 15, 1959).

- (65) Chafey, J. E., Witzell, W. E., and Scheck, W. G., "Titanium-Oxygen Reactivity Study", Report AE-62-0674 under NASA Contract NAS 8-2664, General Dynamics/Astronautics, San Diego, California (July 2, 1962).
- (76) Christian, J. L., Chafey, J. E., Hurlich, A., Watson, J. F., and Witzell, W. E., "Compatibil ity of Metals and Cryogenic Liquids", Metal Progress, 83 (4), 100-103, 122, 124 (April, 1963).
- (67) Clark, A. M., "Tonnage Oxygen Process", Chemical and Process Engineering, 41 (6), 243-246 (June, 1950).
- (68) "Freon Technical Bulletin B-2", E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware (1962).
- (69) Clark, J. D., and Walsh, M. E., "The Corrosivity of Fuming Nitric Acid", Transactions of New York Academy of Science, 17, pp 279-288 (1955).
- (70) Clegg, J. W., and Peterseim, F. D., "Behavior of Commercial Hydrazine in Contact With Various Materials", Research Memo RM 504, Battelle Memorial Institute, Columbus, Ohio (August, 1950).
- (a) Clippinger, P. E., and Morris, G. J., "Impact Sensitivity of Organic Materials on Exposure to Liquid Oxygon", Airc. aft Engineering, 31, (365), 204, 205 (July, 1959).
- 72) Cole, L. G., "The Nitrogen Oxides as Focket-Fuel Oxidants Including the Theoretical Performances of Propellant Systems Employing Nitrogen Tetroxide", CIT-JPL Progress Report No. 9-23, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California (October, 1948).
- (73) Committee T-5B, "High Temperature Corrosion Data", Corrosion, 11 (5), 59-63 (May, 1955).
- (74) Coplen, H. L., "Large-Scale Production and Handling of Liquid Hydrogen", Journal of the American Rocket Society, 22, pp 309-322 (1952).
- (75) Davis, N. S., and Levine, S. D., "Storage and Handling of Hydrogen Peroxide", Final Report under Army Contract W18-108-CM-652, Army Chemical Center, Maryland.
- (76) Davis, N. S., and Keefe, J. H., "Concentrated Hydrogen Peroxide as 3 Propellant", Industrial and Engineering Chemistry, 48 (4), "45-748 (April, 1956).
- (77) Davis, N. S., and Bloom, R., Jr., "Newer Techniques in the Transfer of Hydrogen Peroxide at High Pressures", paper presented at the American Rocket Society Meeting (Decamber, 1954).
- (78) "Preliminary Data on the Reaction Sensitivity of Titanium and Oxygen", Technical Note, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (August 14, 1959).
- (79) Diamond, L. H., "Unsymmetrical Dimethylhydrazine", Chemical Engineering Progress, <u>57</u> (7), 87, 90, 92 (July, 1961).

- (81) "The Handling and Storage of Liquid Propellants", Office of the Director of Defense Research and Engineering, Washington 25, D. C. (January, 1963).
- (82) Boyd, Y. K., and White, E. L., "Compatibility of Rocket Propellants With Materials of Construction", Unreferenced data from DMIC Memorandum 65, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (September 15, 1960).
- (83) Preliminary information, Astropower, Inc., Newport Beach, California.
- (84) "Parlage for Profit", E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware (1956).
- (85) English, J. L., "Corresion by Nitric Acid", Corresion, 12 (6), 65-68 (1956).
- (86) Ericson, G. L., Boyd, W. K., and Miller, P. D., "Corrosion of Titanium and Titanium Alloys in Liquid and Gaseous Fluorine", Titanium Metallorgical Laboratory Memorandum 152, Battelle Memorial Institute, Columbus, Ohio (April 30, 1958).
- (87) EverNart, J. L., "Hafnium Metal--Its Properties and Future", Materials and Method, 35 (5), 95-97 (November, 1952).
- (68) Farber, M., Darnell, A. J., and Ehrenberg, D. M., "High Temperature Corrosion Rates of Several Metals With Nitric Oxide", Journal of the Electrochemical Society, 102 (9), 446-453 (1955).
- (89) Feiler, C. E., and Morrell, G., "Investigation of Effect of Fluoride on Corrosion of 25-O Aluminum and 347 Stainless Steel in Fuming Nitric Acid at 170 F", Report NACA RME53L17b, NASA-Lewis Research Center, Cleveland, Ohio (February, 1954).
- (90) Fink, F. W., and White, E. L., "Materials of Construction for Handling Fluorine", Battelle Memorial Institute, Columbus, Ohio, from the Proceedings of the Propellant Thermodynamics and Handling Conference, held at The Ohio State University, Columbus, Ohio, on July 20-21, 1959.
- (91) Fink, F. W., and White, E. L., "Corrosion Effects of Liquid Fluorine and Liquid Oxygen on Materials of Construction", Corrosion, <u>17</u> (2), 58t-60t (February, 1961).
- (92) "Compatibility of Materials With Dimazine", Food Machinery and Chemical Corporation, Princeton, New Jersey.
- (93) Francis, E. L., "Niobium Data Manual", English Report IGR-R/R-304, United Kingdom Atomic Energy Authority (October 16, 1958), and Amendment Sheets (April, 1961).

- (95) Fulmer, D., "Investigation of Fuming Nitric Acid Contaminants", Report No. 8002-981-006, Bell Aircraft Corporation, AD 156224 (October, 1957).
- (96) Fulmer, D., "Investigation of Fuming Nitric Acid Contaminants", Report No. 8002-981-007 Bell Aircraft Corporation (November, 1957).
- (97) Fulmer, D., "Investigation of Fuming Nitric Acid Contaminants", Report No. 8002-981-012, Bell Aircraft Corporation (April, 1958).
- (76) Gakle, P. S., and Grush, R. E., "Minutes of Symposium on Liquid Oxygen Contamination", Aerojet-General Corporation (April 28, 1959).
- (99) Gall, J. F., "Fluorine-Derived Chemicals as Liquid Propellants", Industrial and Engineering Chemistry, 49 (9), 1331-1332 (September, 1957).
- (100) Gall, J. F., "Recent Advances in Fluorine Chemistry and Technology", Journal of the American Rocket Society, 22, pp 95-103 (February, 1959).
- (101) Gelman, S. I., "Use of Rocket Oxidizers", Report TR-55219, General Electric Company, (August, 1947).
- (102) Geiger, R. A., Schuler, F. T., and Mowers, R. E., "Corrosion Considerations in Selection of Rocket Engine Materials", Corrosion, <u>16</u> (1), 20 (Jenuary, 1960).
- (103) Gibson, W. R., "Evaluation of Materials of Construction for Boron High Energy Production", Callery Chemical Company, paper presented at NACE Meeting in Chicago, Illinois (March 16-20, 1959).
- (104) Gilbert, L. L., and Funk, C. W., "Explosions of Titanium and Fuming Nitric Acid Mixtures", Metal Progress, 70 (5), 93-96 (November, 1956).
- (105) Gillig, F. J., "Effects of Concentrated Hydrogen Peroxide on Mechanical and Corrosion Properties of Structural Aluminum Alloys", Report No. KC-1164-M-11, Cornell Aeronautical Laboratories, Inc., Buffalo, New York (February, 1959).
- (106) Glocker, G., and Popov, A. J., "Observations on the Fluorination of Praseodymium and Neodymium Compounds", Journal of the American Chemical Society, 74 (5), 1357-1358 (March 5, 1952).
- (107) Goalwin, D. S., "Techniques for Transferring Uold Liquids", Refrigerating Engineering, 59 (3), 251-255 (1951).
- (108) Goldsohlag, L., and Brunsvold, N. J., "Effect of Coupling of Aluminum or Stainless Steel Alloys to Aluminum on Corrosion by 90% Hydrogen Peroxide", Report 91:49-4, Food Machinery and Chemical Corporation, Princeton, New Jersey (October, 1959).

- (109) Gordon, J. N., Jr., "Comments on the Corrosion of Stainless Steel in Liquid Ammonia Cleaning Solution", US ABC Report NP-6432, Mine Safety

 Appliance Company, Callery, Pennsylvania (August 20, 1953).
- (110) Grelecki, C. J., and Tannenbaum, S., "Survey of Current Storable Propellants", ARS Journal, 32, pp 1189-1195 (August, 1962).
- (111- Preliminary information and private communica-114) tion, Pennsalt Chemical Corporation, Wyndmoor, Pennsylvania.
- (115) Grigger, J. C., and Miller, H. C., "The Compatibility of Materials With Chlorine Trifluoride, Perchloryl Fluoride and Mixtures of These", Report TR 61-54 for WADD under Air Force Contract AF 33(616)-6796, Pennsalt Chemical Corporation, Wyndmoor, Pennsylvania (April, 1961).
- (116) Jrigger, J. C., and Miller, H. C, "The Compatibility of Materials With Chlorine Trifluoride, Perchloryl Fluoride and Their Mixtures", Materials Protection, 3 (9), 53-58 (September, 1964).
- (117- Preliminary information and private communica-119) tion, Pennsalt Chemical Corporation, Wyndmoor, Pennsylvania.
- (120) Gundzik, R. M., and Feiler, C. E., "Corrosion of Metals of Construction by Alternate Exposure to Liquid and Gaseous Fluorine", Report NACA TN=3333, NASA-Lewis Research Center, Cleveland, Ohio (December, 1954).
- (121) Haendler, H. M., Bartram, S. F., Becker, R. S., Bernard, W. J., and Bukata, S. W., "Reaction of Fluorine With Titanium, Zirconium and the Oxides of Titanium, Zirconium and Vanadium", Journal of the American Chemical Society, <u>76</u> (8), 2177-2178 (April 27, 1954).
- (122) Haendler, H. M., Bartram, S. F., Bernard, W. J., and Kippax, D., "Reaction of Fluorine With Tin", Journal of the American Chemical Society, 76 (8), 2179-2180 (1954).
- (123) Haendler, H. M., Towle, L. H., Bennet, E. F., and Patterson, W. L., "Reaction of Fluorine With Copper", Journal of the American Chemical Society, 76 (8), 2178-2179 (1954).
- (124) Halbedel, H. S., and Swinehart, C. F., "Final Summarv Report for Rocket Propellant Oxidizers" under Contract NOa(s)-10249(c), Laurel Research Laboratory, Harshaw Chemical Company, Cleveland, Ohio (April 25, 1950).
- (125) Hauser, R. L., and Peckham, H. M., "Compatibility of Materials With Liquid Oxygen", Report No. M-M-MI-58-66, The Martin Company, Denver, Colorado (November, 1958).
- (126) Hauser, R. L., Sykes, G. E., and Rumpel, W. F., "Mechanically Initiated Reaction of Organic Materials in Missile Oxidizers", ASD Technical Report 61-324 under Air Force Contract AF 33(616)-7271, The Martin Company, Denver, Colorado, (October, 1961).

- (127) "Corrosion Resistance of Haynes Alloys", Haynes Stellite Company, Kokomo, Indiana (November, 1958).
- (128) "Hastelloy, Corrosion-Resistant Alloys", Haynes Stellite Company, Kokomo, Indiana (May, 1957).
- (129) Heep, H., "Experiences With Hydrogen Peroxide at the Engineering Experiment Station", United States Navy Engineering Experiment Station, Annapolis, Maryland, paper presented at the Second Inter-Bureau Technical Committee on Guided Missile Propellants (November 4, 1949).
- (130) Henderson, P., "Storage and Handling of White Fuming Nitric Acid", Report CRL-372, Chemical and Radiological Labs, Army Chemical Center, Maryland (August, 1954).
- (131) Holt, C. W., and Turley, R. E., "Cell Apparatus Checks Resistivity of Nitrogen Tetroxide Propellant to Control Corrosion in Missiles", Corrosion, 17 (12), 26-27 (December, 1961).
- (132) Horst, R. L., "Aluminum", Chemical Engineering, 59 (5), 300, 302, 304, 308-310, 312-314 (May, 1952).
- (133) Horst, R. L., "Aluminum Versus Fuming Nitric Acids", Corrosion, 12 (10), 77 (October, 1956).
- (134) Huckel, W., "New Fluorine Compounds", Nachr. Akad, Wiss Gottinger, Math-Physik, Klasse, pp 36-37 (1946).
- (135) "Materials of Construction Data", Industrial and Engineering Chemistry, 42 (10), 2026-2076 (October, 1950).
- (136) Jackson, J. D., and Boyd, W. K., "Compatibility of Propellants 113 and 114B2 With Aerospace Structural Materials", DMIC Memorandum 151, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (April 27, 1962).
- (137) Jackson, J. D., Miller, P. D., and Boyd, W., K., "Reactivity of Titanium With Gaseous N₂O₄ Under Conditions of Tensile Rupture", DMIC Memorandum 173, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (August 1, 1963).
- (138) Jackson, J. D., Miller, P. D., Boyd, W. K., and Fink, F. W., "A Study of the Mechanism of the Titanium-Liquid Oxygen Explosive Reaction", ASD-Technical Report 61-479 under Air Force Contract AF 33(616)-7595, Battelle Memorial Institute, Columbus, Ohio (September, 1961).
- (139) Jackson, J. D., Miller, P. D., Boyd, W. K., and Fink, F. W., "A Study of the Titanium-Liquid Oxygen Pyrophoric Reaction", Report WADD-TR 60-258 under Air Force Contract AF 33(616)-6345, Battelle Memorial Institute, Columbus, Ohio (March, 1960).
- (140) Jackson, J. D., Boyd, W. K., Brisbane, A. W., and Miller, P. D., "The Reactivity of Titanium With Liquid and Gaseous Oxygen", paper presented at the 19th Annual Conference NACE, New York, New York, March 11-15, 1963, Materials Protection, 4 (1), 30-33 (January, 1965).

(141) Jackson, J. D., "Corrosion in Cryogenic Liquids", Cnemical Engineering Progress, 57 (4), 61-64 (April, 1961).

ang again and department of the state of the

- (142) Jackson, J. D., Boyd, W. K., and Miller, P. D., "Reactivity of Metals With Liquid and Gaseous Oxygen", DMIC Memorandum 163, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (January 15, 1963).
- (143) Jackson, R. B., "Corrosion of Metals and Alloys by Fluorine", Final Report under Air Force Contract AF 04(611)-3389, Allied Chemical Corporation, General Chemical Division, Hopewell, Virginia (March, 1960).
- (144) Johnston, D. H., "Handling and Storage of Concentrated H₂O₂", Report 3F(2)966707, United States Naval Engineering Experiment Station, Annapolis, Maryland (July, 1952).
- (145) Jones, R. L., Mikus, E. B., and Girton, L. D., "Properties of AM-355 for Use in Ultra-Light Weight Tankage for Storable Liquid Propellant Missile Systems", Report MRG 238, General Dynamics/Astronautics, San Diego, California (July 7, 1961).
- (146) Kates, L. W., "Rhenium Metal Its Properties and Future", Materials and Methods, <u>39</u> (3), 88-91 (March, 1954).
- (147) Katz, H. L., and Kline, H. A., "Storage Characteristics and Passivation of Experimental Aluminum Tanks for Use With 90% Hydrogen Peroxide", Report 4319-A, Philadelphia Naval Shipyard, Philadelphia, Pennsylvania, AD 215048L (April, 1959).
- (148) Keefe, J. H., and Raleigh, C. W., "Field Transportation of Concentrated Hydrogen Peroxide", Jet Propulsion, 27 (6), 663-665, 677, 737 (June, 1957).
- (149) "6000 Pound Thrust Jet Propulsion Unit; Part II, Materials Corrosion Data", Report SPD 121 under Air Force Contract AF W33(038)-ac-13916, M. W. Kellogg Company (March, 1948).
- (150) Kinsley, E. J., and King, E. J., "The Rate of Change of Corrosion and Physical Properties of Types 410, 347, 364, 364 ELC Stainless Steels and 61ST-6 Aluminum at Ambient Temperatures, 100, 120, 140, and 160 F", Report No. 56-987-081 under Contract W33-038-ac-14169, Bell Aircraft Corporation, Buffalo, New York (March, 1954).
- (151) Kit, B., and Evered, D. S., Rocket Propellant Handbook, Macmillan Company, New York, New York (1960).
- (152) Preliminary information, Air Products and Chemical Company, Allentown, Pennsylvania.
- (153) Preliminary information, Air Products and Chemical Company, Allentown, Pennsylvania.
- (154) Knight, C. A., Jr., "Monomethyl Hydrazine", Hydrocarbon Processing and Petroleum Refiner, 41 (2), 179-184 (February, 1962).

Honorous Barrack Mark as As an asset of the second (155) Knight, W. P., "Progress Report Number Six on Evaluation of Fuels for Gas Generator and Starter Motor for AJ-23-8 Rocket Engine", Report No. AC-101, Aerojet-General Corporation (January 1954)

=

- (156) Knight, W. P., "Progress Report Number Seven on Evaluation of Fuels for Gas Generator and Starter Motor for the AJ-23-8 Rocket Engine" Report No. AC-101, Aerojet-General Corporation, (March, 1954).
- (157) Knight, W. P., "Progress Report Number Five on Evaluation of Fuel for Gas Generator and Starter Motor for AJ-23-8 Rocket Engine", Report No. AC-101, Aerojet-General Corporation (October, 1953).
- (158) Kukin, I., and Rochow, E. G., "The Use of Chlorine Trifluoride as a Fluorinating Agent", Journal of the American Chemical Society, 74 (6), 1615-1616 (March 20, 1952).
- (159) Landau, R., "Corrosion by Fluorine and Fluorine Compounds", Corrosion, 8 (8), 283-288 (August, 1952).
- (160) Landau, R., and Rosen, R., "Industrial Handling of Fluorine", Industrial and Engineering Chemistry, 39 (3), 281-286 (March, 1947).
- (161) Lanier, L. F., "U. S. Atomic Energy Commission Reports on Elemental Fluorine", Report No. TID-3507, U. S. Atomic Energy Co. mission (May, 1957).
- (162) Lee, M. E., "General Information Concerning Fluorides", Report No. ORNL-1252, Oak Ridge National Laboratory, Oak Ridge, Tennessee (February, 1952).
- (163) Leech, H. R., "The Development of Fluorine Production", Research, 5, pp 108-115 (March, 1952).
- (164) Leonard, C. A., and Knight, W. P., "Summary Report on Projects Undertaken for the Nike Program", Report No. AC-211, Aerojet-General Corporation (September, 1954).
- (165) Lewis, S., and Cooper, J. P., "Materials Compatibility With Storable Propellants", Space/ Aeronautics R&D Technical Handbook C-18 to C-20 (1962-1963).
- (166) Preliminary information, Bell Aerosystems Company, Buffalo, New York.
- (167) Liberto, R. R., "Titan II Storable Propellant Handbook", Report TR 61-32 under Air Force Contract AF 04(611)-6079, Bell Aerosystems Company, Division of Bell Aerospace Corporation, Buffalo, New York (June, 1961).
- (168) Liberto, R. R., "Titan II Storable Propellant Handbook", Report No. AFBSD-TR-62-2, Revision A under Air Force Contract AF 04(694)-72, Bell Aerospace Company, Division of Bell Aerospace Corporation, Buffalo, New York (March, 1962).

- (169) Liberto, R. R., "Titán II Storable Propellant Handbook--Final Handbook--Revision B", Report No. AFBSD-TR-62-2, No. 8182-933004 under Air Force Contract AF 04(694)=72, Bell Aerospace-Company, Bell Aerospace Corporation, Buffalo, New York (March, 1963).
- (170) Liberto, R. R., "Storable Propellant Data for the Titan II Program", Fourth Progress Report, Status Report BSD-TDR-163-51 under Air Force Contract AF 04(694)-72, Bell Aerosystems Company, Division of Bell Aerospace Corporation Buffalo, New York (March, 1963).
- (171- Preliminary information and private communica-173) tion, Bell Aircraft Corporation, Buffalo, New
- (174) Liberto, R. R., "Research and Development on the Basic Design of Storable High-Energy Propeliant Systems and Components", Final Report TR 60-61 under Air Force Contract AF 33(616)-6689, Bell Aerosystems Company, Division of Bell Aerospace Corporation, Buffalo, New York (May 19, 1961).
- (175) Lingnau, Von. E., "Das Verhalten der Werkstoffe Gegenuber Fluor", Werkstoffe und Korrosion, $\underline{7}$ (11), 634-641 (November, 1956).
- (176) Littman, F. E., and Church, F. M., "Reactions of Titanium With Water and Aqueous Solutions", Final Report under Atomic Energy Commission Contract W-7045-ENG-26, Stanford Research Institute, Menlo Park, California (June 15, 1958).
- (177) Littman, F. E., and Church, F. M., "Reactions of Metals With Oxygen and Steam", Final Report ABCU-4092, Stanford Research Institute, Menlo Park, California (February 15, 1959).
- (178) Logan, S. E., "Static Seal for Low-Temperature Fluids", Jet Propulsion, 25 (7), 334-340 (July,
- (179) Long, S. A., Bergdorf, W. H., and Kinsley, E. J., "The Development of Corrosion Inhibitor for Fuming Nitric Acids", Bell Aircraft Corporation, Buffalo, New York, from the Proceedings of the Propellant Thermodynamics and Handling Conference, held at The Ohio State University, Columbus, Ohio, July 20-21, 1959.
- (180) Lucas, W. R., and Riehl, W. A., "An Instrument for the Determination of Impact Sensitivity of Materials in Contact With Liquid Oxygen", Report DSN-TR-2-58, Army Ballistic Missile Agency, Redstone Arsenal, Alabama (October 15, 1958).
- (181) Lyman, T., Metals Handbook, American Society for Metals, Cleveland, Ohio (1948).
- (182) Maloney, C. J., and Kidwell, A. S., "Effect of Potential Rocket Fuels and Oxidizors on Elastomers and Development of Elastomeric Compounds Suitable for Retention of These Materials", WADC 56-351, The Connecticut Hard Rubber Company, New Haven, Connecticut (November, 1956).

- (183) Mandell, B., "Effect of Hydrazine Hydrate on Plastic Materials", Work Report MA-21, ------Aerojet-General-Corporation (June, 1950).
- (184) Mandleberg, C. J., "Apparatus for Handling Fluorine in the Laboratory", Report AERE-c/ M-172, Atomic Energy Research Establishment, England (February, 1953).
- (185) "Chemical Safety Data Sheet SD-5, Nitric Acid", Manufacturing Chemists Association, 1825 Connecticut Avenue NW, Washington 9, D. C. (1947).
- (186) "Chemical Safety Data Sheet SD-53, Hydrogen Peroxide", Manufacturing Chemists Association, 1825 Connecticut Avenue NW, Washington 9, D. C. (1955).
- (187) "First Progress Report on the Effect of Concentrated Hydrogen Peroxide on Various Elastomers", Report No. 112-3, Mare Island Naval Shipyard, Rubber Laboratory, Vallejo, California (February 3, 1958).
- (188) Marine, G. L., "A Study of Three Candidate Protective Coatings for Use in the Storage and Handling of Fuming Nitric Acid", Memorandum Report, Army Chemical Center, Chemical and Radiological Laboratory, Maryland (February 1, 1955).
- (189) Mason, D. M., and Rittenhouse, J. B., "Mechanism of Inhibiting Effect of Hydrofluoric Acid in Fuming Nitric Acid on Liquid-Phase Corrosion of Aluminum and Steel Alloys", Corrosion, 14 (7), 345t-347t (July, 1958).
- (190) Mason, D. M., and Rittenhouse, J. B., "Study of Chemical Factors Affecting Corrosion of Carbon Steel AISI 1020 by Liquid-Phase Fuming Nitric Acid", Corrosion, <u>15</u> (5), 245t-250t (May, 1959).
- (191) Mason, R. W., and Staiti, J. J., "Study of the Corrosion of Metals in Fluorine", Report under Air Force Contract AF 04(611)-3380, Allied Chemical Corporation, General Chemical Division, Morristown, New Jersey (February 7, 1959).
- (192) Mason, D. M., Taylor, L. L., and Keller, H. F., "Storability of Fuming Nitric Acid", California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California (December 28, 1953).
- (193) Mason, D. M., Taylor, L. L., and Rittenhouse, J. B., "Inhibiting Effect of Hydrofluoric Acid in Fuming Nitric Acid on Liquid and Gas Phase Corrosion of Several Metals", Corrosion, 13 (12), 821t-827t (December, 1957).
- (194) McBride, R. H., "Metering of Hydrofluoric Acid and Fluorine" Report AECD-369C, E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware (1945).
- (195) McCamy, C. S., "Survey of Hazards of Handling Liquid Oxygen", Industrial and Engineering Chemistry, 49 (9), 81A-82A (September, 1957).
- (196) McDonough, J. M., Jackson, W. W., and Rubin, A., "Liquid Propellants Handbook - Compatibility of Materials With Various Liquid Propellants", Aerojet-General Corporation (April, 1959).

- (197) McNamee, J. P., "Natural and GR-S Rubber vs Corrosion", Chemical Engineering, <u>61</u> (8), 234-248 (August, 1954).
- (198) Messina, J., "Greases Nonreactive with Missile Fuels and Oxidizers", Frankford Arsenal, paper presented at Fourth National SAMPE Symposium, Los Angeles, California, November 13-15, 1962.
- (199) "Molybdenum", Metallwerk Plansee, Gesellschaft M.B.H., Reutte, Tirol.
- (200) Michaelsen, J. D., and Wall, L. A., "Further Studies on the Pyrolysis of Polytetrafluoroethylene in the Presence of Various Gases", Journal of Research of the National Bureau of Standards, <u>58</u> (6), 327-331 (June, 1957).
- (201) Miles, F. T., et al, "Progress Report of the Reactor Science and Engineering Department", Report BNL-176, Brookhaven Mational Laboratory, Long Island, New York (March 31, 1952).
- (202) Milford, R., "Engineering Design of Oak Ridge Fluoride Volatility Pilot Plant", Industrial and Engineering Chemistry, <u>50</u> (2), 187-191 (1958).
- (203) Millaway, E. E., and Covington, L. C., "Resistance of Titanium to Gaseous and Liquid Fluorine", Progress Report No. 3, Titanium Metals Corporation of America (March, 1959).
- (204) Mogerman, W. D., "Missiles and Metals, Part II", The International Nickel Company, Inc., New York, New York, Corrosion Reporter, <u>6</u> (2) (October, 1959).
- (205) Mowers, R. E., "How the New Propellants Affect Plastics and Elastomers", Materials in Design Engineering, <u>50</u> (3), 89-91 (September, 1959).
- (206) Mürau, P. C., "Dissolution of Tungsten by Hydrogen Peroxide", Analytical Chemistry, 33 (18), 1125-1126 (July, 1961).
- (207) Myers, W. R., and DeLong, W. B., "Fluorine Corrosion", Chemical Engineering Progress, 44 (5), 359-362 (1948).
- (208) Naistat, S. S. and Ryan, J. H., "Handling and Storage of High-Strength Hydrogen Peroxide", Chemical Engineering Progress, <u>57</u> (8), 76, 78-80 (August, 1961).
- (209) "Liquid Oxygen Data Sheet" D-283, National Safety Council, 425 North Michigan Avenue, Chicago 11, Illinois (1955).
- (210) "Field Handling of Concentrated Hydrogen Peroxide", U. S. Department of the Navy, Bureau of Aeronautics, AD 208977 (January 15, 1957).
- (211) Nelson, G. A., <u>Corrosion Data Survey</u>, Shell Development Company, <u>Emeryville</u>, <u>California</u> (1960).
- (212) Meumark, H. R., and Holloway, F. L., "Fluorine Tamed for Rockets", Missiles and Rockets, 2 (9), 97-100 (September, 1957).
- (213) Nielson, P., Jr., and Milligan, S., "Naval Loading Depot", Department of the Navy, Bureau of Naval Ordnance Report No. 543 (July, 1953).
- (214) Corrosion Data Sheets, Technical Service Bulletin No. 101, The Nooter Corporation, St. Louis, Missouri (1960).

38

- (216) Ordin. P. M., Miller, R. O., and Diehl, J. M., "Preliminary Investigation of Hydrazine as a Rocket Fuel", NACA Report No. E7H21, National Advisory Committee for Aeronautics, Washington, D. C. (May 24, 1948).
- (217) "Corrosion and Corrosion Protection of Metals". Pamphlet ORDP 20-311, Ordnance Materials Handbook, Ordnance Corp (July, 1957).
- (218) Orr, W. M., "Results of LOX-Lubricant Impact Sensitivity Cooperative Test Program No. 1. WADC Technical Note 58-344, Wright Air Development Division, Wright-Patterson Air Force Base, Ohio (November, 1958).
- (219) "Perchloryl Fluoride", Booklet DC-1819, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania (1957).
- (220) Preliminary information, Bell Aerospace Company, Buffalo, New York.
- (221) Perry, J. H., Chemical Engineers Handbook, 3rd Edition, McGraw-Hill Book Company, New York, New York (1950).
- (222) Phillips, J. D., "Coating Material Survey -Protection of Metals and Nonmetals from Nitric Acid", Report CWLR 2072, Army Chemical Center, Maryland (October, 1956).
- (223) Phillips, J. D., and LeCompte, S. W., "Evaluation of Candidate Coating Materials for the Protection of Metals and Nonmetals from Fuming Nitric Acid", Report CWLR-2210, Army Chemical Center, Maryland, AD 158706 (January, 1958).
- (224) Preliminary information, Astropower, Incorporated, Newport Beach, California.
- (225) Price, H. G., Jr., and Douglass, H. W., "Material Compatibility with Gaseous Fluorine", NACA-RM-E56K21. National Advisory Committee for Aeronautics, Washington, D. C. (January, 1957).
- (226) Price, H. G., Jr., and Douglass, H. W., "Monmetallic Material Compatibility With Fluorine", NACA-RM-E57G18, National Advisory Committee for Aeronautics, Washington, D. C. (October, 1957).
- (227) Raleigh, C. W., and Derr, P. F., "Compatibility of Materials With Unsymmetrical Dimethylhydrazine Rocket Fuel", Corrosion, 16 (10), 507t-511t (October, 1960).
- (228) Raleigh, C. W., and Derr, P. F., "Compatibility of Materials With Unsymmetrical Dimethylhydrazine Rocket Fuel", Food Machinery and Chemical Corporation, Westvaco Chlor-Alkali Division, preprint of paper presented at the Sixteenth Annual Conference, National Association of Corrosion Engineers, Dallas, Texas, March 14, 196C.
- (229) Reichert, J. S., and Pete, R. H., "Materials of Construction vs Hydrogen Peroxide", Chemical Engineering, <u>58</u> (10), 263, 265, 267 (October, 1951).

- (230) Rex, C. B., "Welding in the Fabrication or Repair of Pure Aluminum Naval Tanks for HoOo Service", U. S. Navel Torpedo Station ITM-133 (August, 1950).
- (231) Revnales, C. H., "Compatibility of Materials With Oxygen", Report D81-444, Douglas Aircraft Company, Inc., Long Beach, California (October 1, 1958).
- (232) Reynales, C. H., "Safety Aspects in the Design and Operation of Cxygen Systems", Engineering Paper No. 741, The Dow Chemical Company Meeting, Tulsa, Oklahoma, January 20-21, 1959.
- (233) Richards, H. T., and Hanson, M. P., "Influence of Fluorine Environments on the Mechanical Properties of Several Sheet Alloys", NASA TN D-1706, NASA-Lewis Research Center, Cleveland, Ohio (April, 1963).
- (234) Righl, W. A., and Curry, J. E., "A Peroxide-Resistant Coating for Steel", Report No. DSN-TR-1-59, Redstone Arsenal, Alabama (March 31, 1959).
- (235) Riehl, W. A., Key, C. F., and Gayle, J. B., "Reactivity of Titanium With Oxygen", MTP-P 8VEM-62-13, NASA-George C. Marshall Space Flight Center, Huntsville, Alabama (November 30, 1962).
- (236) Riehl, W. A., Key, C. F., and Gayle, J. B. "Reactivity of Titanium With Cxygen", NASA-George C. Marshall Space Flight Center, Huntsville, Alabama, paper presented to the Fourth Mational SAMPE Symposium, Los Angeles, California, November 13-15, 1962.
- (237) Riehl, W. A., "How To Pick Liquid Tank Materials", Missiles and Rockets, 5 (10), 35 (October 19, 1959).
- (238) Riehl, W. A., Perkins, H., Stokes, C. S., and Kirshenbaum, A. D., "Ozone Fluoride for Rocket Propulsion", American Rocket Society Journal, 32 (3), 384-387 (March, 1962).
- (239) Rittenhouse, J. B., and Mason, D. M., "Study of Chemical Factors Affecting Corrosion of Carbon Stee; AISI 1020 by Liquid-Phase Fuming Nitric Acid", Corrosion, 15 (5), 245t-250t (May, 1959).
- (240) Rittenhouse, J. B., Stolica, N. D., Vango, S. P., Whittick, J. S., and Mason, D. M., "Corrosion and Ignition of Titanium Alloys in Furing Nitric Acid", WADC-TR 56-414 under Air Force Contract AF 33(616)-3066, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California (February, 1957).
- (241) Pittenhouse, J. B., and Papp, C. A., "Inhibition of Titanium in Fuming Nitric Acid" Corrosion, 14 (6), 283t-284t (June, 1958).
- (242) Rittenhouse, J. B., "Corrosion Pyrophoricity and Stress-Corrosion Cracking of Titanium Alloys in Fuming Nitric Acid", digest of ASM Preprint No. 68, 1958, published in Metal Progress, 74 (4), 220, 226 (October, 1958).

- (243) Rogers, M. T., and Katz, J. K., "Fluorine-Exchange Reactions Between Hydrogen Fluoride and the Helogen Fluorides", Journal of the American Chemical Society, 74 (6), 1375-1377 (March 20, 1952).
- (244) Rogers, M. T., Speirs, J. L., and Panish, M. B., "The Chlorine Trifluoride-Hydrogen Fluoride System; Some Vapor Pressure and Conductance Measurements", Journal of Physical Chemistry, <u>61</u> (3), 366 (1957).
- (245) Rosenthal, F., "Resistance of Silver Solder-Stainless Steel 18-8 Combinations", Analysis Laboratory Report No. 58-1, California Institute of Technology, Pasadena, California (January 23, 1958).
- (246) Roth, E. M., Jr., and Shanley, E. S., "Stability of Pure Hydrogen Peroxide", Industrial and Engineering Chemistry, 45 (10), 2343-2349 (October, 1953).
- (247) Rudge, A. J., "Preparation, Properties, and Handling of Elementary Fluorine", Chemistry and Industry, 16 (4), 247-253 (April 16, 1949).
- (248) Sands, G. A., "Transportation and Storage of Strong Nitric Acid", Industrial and Engineering Chemistry, 40 (10), 1937-1945 (October, 1948).
- (249) Satterfield, C. N., and Schumb, W. C., "Status Report of the Hydrogen Peroxide Laboratories for Office of Naval Research", DSR 5-7576 (September 30, 1957).
- (250) Satterfield, C. N., Schumb, W. C., and Wentworth, R. L., Hydrogen Peroxide, ACS Menograph No. 128, American Chemical Society (1955).
- (251) Schmidt, H. W., "Reaction of Fluorine With Carbon as a Means of Fluorine Disposal", NACA-RM-E57E02, National Advisory Committee for Aeronautics, Washington, D. C. (July 18, 1957).
- (252) Schmidt, H. W., "Compatibility of Metals With Liquid Fluorine at High Pressures and Flow Velocities", NACA-RM-E58Dll, National Advisory Committee for Aeronautics, Washington, D. C., AD 162732 (1958).
- (253) Schmidt, H. W., and Rothenberg, E. A., "Some Problems in Using Fluorine in Rocket Systems", NASA-Lewis Research Conter, from the Proceedings of the Propellant Thermodynamics and Handling Conference, held at The Ohio State University, Columbus, Ohio, July 20-21, 1959.
- (254) Shultz, R. B., "Minutes of Meeting To Discuss Suitability of Type 316 Steel for Titan II Propellant Transfer Systems Components", WDFN/R. Shultz/2845 (August 17, 1960).
- (255) Schumaker, H. J., "The System Ozone-Oxygen and Its Behavior at Various Pressures and Temperatures", Anales. Assoc. Quim. Argentine, 41, pp 203-207 (1953)
- (256) Preliminary information, Allied Chemical Corporation, Hopewell, Virginia.

- (257) Scott, H. F., Jr., Alley, C. W., Gerry, H. T., and Hayford, A. W., "Impact Sensitivity of Metals (Titanium) Exposed to Liquid Nitrogen —Tetroxide", Th 61-175 under Air Force Contract AF 33(616)-7114, Allied Chemical Corporation Hopewell, Virginia (May, 1961).
- (258) Seals, W.. "Corrosion Rate Index of Titanium Alloys MST-821 in 90% H2O2 at 77 F and 160 F", Report No. EML-1038; Reaction Motors, Inc.
- (259) Schmidt, H. W., and Rothenberg, E. A., "Some Problems in Using Fluorine in Rocket Systems", NASA-Lewis Research Center, from the Proceedings of the Propellant Thermodynamics and Handling Conference, held at The Chio State University, Golumbus, Ohio, July 20-21, 1959.
- (260) Sidall, D. F., Hillier, E., Garling, R., and Gunther, M., "The Development of a Protective Coating Resistant to Nitric Acid and Hydrocarbons", WADC 54-527, U. S. Stoneware Company (June, 1956).
- (261) Siegmund, J. M., "Transportation-Transfer-Storage of Liquid Fluorine", Allied Chemical Corporation, General Chemical Division, Hopewell, Virginia, from the Proceedings of the Propellant Thermodynamics and Handling Conference, held at The Ohio State University, Columbus, Ohio, July 20-21, 1959.
- (262) Simpson, G. E., "Handling of Liquid Cxygen", Journal of the American Rocket Society, (80), pp 18-23 (March, 1950).
- (263- Preliminary information and private communica-265) tion, Air Products, Incorporated, Allentown, Pennsylvania.
- (266) Spicer, D. R., "Liquid Fluorine and Flox Immersion Tests of Alloys Under Static Stress", Laboratory Report No. MP 30,450, Douglas Aircraft Company, Inc., Santa Monica, California (March 3, 1964).
- (267) Spicer, D. R., "Static Immersion of Non-Metallic Materials in Gaseous Flox", Laboratory Report No. MP30,451, Douglas Aircraft Company, Inc., Santa Monica, California (March 23, 1964).
- (268) Steele, J. R., "Beryllium Corrosion", Materials Protection, <u>1</u> (7), 59-62 (July, 1962).
- (269) Stein, L., and Vogel, R. C., "The Behavior of Uranium, Thorium, and Other Selected Materials in Bromine Trifluoride, Bromine Pentafluoride, Chlorine Trifluoride, and Fluorine at Elevated Temperatures", Report ANL-5441, Argonne National Laboratory, Chicago, Illinois (May, 1955).
- (270) Stein, L., and Vogel, R. C., "Behavior of Uranium and Other Selected Materials in Fluorinating Reagents", Industrial and Engineering Chemistry, 48 (3), 418-421 (1956).
- (271) Stindler, M. J., and Vogel, R. C., "Corrosion of Materials in the Presence of Fluorine at Elevated Temperatures", Report ANL→5662, Argonne National Laboratory, Chicago, Illinois (January, 1957).

(272) Sterner, G. J., "Compatibility of Liquid Fluorine With Various Structural Metals and Carbon", Bi-Monthly Progress Report No. I under Air Force Contract AF 33(616)-6515, Air Products, Inc., Allentown, Pennsylvania (July, 1959).

i I.

1:

المراجعة المالية

- (273) Sterner, C. J., "Compatibility of Liquid Fluorine With Various Structural Metals and Carbon", Bi-Monthly Progress Report No. II under Air Force Contract AF 33(616)-6515, Air Products, Inc., Allentown, Pennsylvania (September, 1959).
- (274) Sterner, C. J., and Singleton, A. H., "Compatibility of Various Metals and Carbon With Liquid Fluorine", TR 60-436 under Air Force Contract AF 33(616)-6515, Air Products, Inc., Allentown, Pennsylvania (August, 1960).
- (275) Sterner, C. J., and Singleton, A. H., "The Compatibility of Various Metals With Liquid Fluorine", TR 60-819 under Air Force Contract AF 33(616)-6515, Air Products, Inc., Allentown, Pennsylvania (March, 1961).
- (276) Sterner, C. J., and Singleton, A. H., "Impact-Ignition Sensitivity of Titanium and Aluminum in Liquid Fluorine", Air Products, Inc., Allentown, Pennsylvania, paper presented at New York, March 13-17, 1961.
- (277- Preliminary information, Air Products, Inc., 278) Allentown, Pennsylvania.
- (279) Stormer, W. C., "Compatibility of Freon 114 Used in Mercury Support Equipment With Various Hose Materials, Aerospace Engineering, 20 (6), 28-29, 84 (June, 1961).
- (280) Streng, A. G., and Grosse, A. V., "Storing Gaseous Ozone Under Pressure", Industrial and Engineering Chemistry, <u>53</u> (5), 61A-64A (May, 1961).
- (281) Terlizzi, P. M., and Streim, H., "Liquid Propellant, Handling, Transfer and Storage Industrial and Engineering Chemistry, 48 (4), 774-777 (April, 1956).
- (282 Preliminary information, Astropower, Inc., 283) Newport Beach, California.
- (284) Tomlinson, E. M., "Materials Selection for Liquid Fuel and Oxidizer Services", Aerojet-General Corporation, Sacramento, California, paper presented at the Materials Symposium, Denver, Colorado, on May 4, 1960.
- (285) Tomlinson, E. M., "Materials Selector for Propellant Systems", Aircraft and Missiles, 4 (2), 24-27 (February, 1961).
- (286) Trevorrow, L. E., Fischer, J., and Steunenberg, R. K., "The Preparation and Properties of Vanadium Pentafluoride", Journal of the American Chamical Society, 29 (19), 5167-5168 (October 5, 1957).
- (287) Uhlig, H. H., The Corrosion Handbook, John Wiley and Sons, Inc., New York, New York (1948).

- (288) "Nitrogen Dioxide as an Oxidizer for Liquid Fuel Rockets", NAVORD Report 1021, Note 138, U. S. Naval Ordnance Test Station, China Lake, California (June, 1949).
- (289) Preliminary information, Aerojet-General Corporation, Azusa, California.
- (290) Vavalides, 5. P., Cable, R. E., Henderson, W. K., and Powell, C. A., "High-Capacity, Long-Life Fluorine Cell", Industrial and Engineering Chemistry, 50 (2), 178-180 (February, 1958).
- (291) Volz, H. A., "Handling and Hazards of Propellant Fuels", Industrial and Engineering Chemistry, 53 (3), 69A, 70A, 72A (March, 1961).
- (292) Wallner, R. L., and Williams, B. B., "Nitrogen Tetroxide Compatibility With Titanium Alloy 6Al-4V", North American Aviation, Inc., Downey, California, preprint of paper presented at NACE Western Conference, Disneyland Hotel, California, on September 25-27, 1963.
- (293) Walter, H., "Experience With the Application of Hydrogen Peroxide for Production of Power", Jet Propulsion, 24 (3), 166-169 (May-June, 1954).
- the National Association of Corrosion Engineers, (294) Ward, E. D., "Pentaborane Hundling and Safety Missile Industry Corrosion Symposium, Buffalo, Procedures", Paper No. 1638-61, American Rocket Society, New York, New York, paper presented at the Missile and Space Vericle Testing Conference, Los Angeles, California, on March 13-16, 1961.
 - (295) Weisman, M. H., "Elevated Temperature Stress Rupture and Fatique Properties of Inconel and Inconel X in Ammonia Atmosphere", ASME Paper 61-AV-21, presented at the Aviation Conference, Los Angeles, California, on March 12-16, 1961.
 - (296) "Storage and Handling of Unsymmetrical Dimethyl-Hydrazine", Third Edition, Sales Department, Westvaco Chlor-Alkali Division, Food Machinery Company, South Charleston, West Virginia.
 - (297) Whitaker, G. C., "Corrosion of Metals in Fluorine and Hydrofluoric Acid", Corrosion, 6 (9), 283-285 (September, 1950).
 - (298) Willging, J. F., Hirth, J. P., Beck, F. H., and Fontana, M. G., "Corrosion and Erosion of Some Metals and Alloys by Strong Nitric Acid", Corrosion, 11 (2), 71t-79t (February, 1955).
 - (299) Wray, K. L., and Hornig, D. F., "Dissociation Energy of Fluorine", Journal of Chemical Physics, 24 (6), 1271-1272 (June, 1956).
 - (300) Yee, T. B., "Effect of Inhibitors in Fuming Nitric Acid on Corrosion and Oxidation" Corrosion, 14 (2), 82t-84t (February, 1958).
 - (301) Yelton, E. B., "Applications of Plastics in Chemical Equipment", Chemical Engineering Progress, 44 (1), 89-92 (1948).
 - (302) Sax, N. I., <u>Dangerous Properties of Industrial</u> <u>Materials.</u> Second Edition, Reinhold Publishing Company, New York, New York (1963).

Summary of the Ninth Meeting of the Refractory Composites Working Group, March 3, 1965

galan sa kalang dan Berlina Panggalan sa kalang dan Pelanggalan Panggalan sa Pelanggalan

200

^{*} DMIC supply exhausted; copies may be ordered from CFSTI.