Projeto e Análise de Algoritmos Análise de Complexidade

Prof. Luiz Chaimowicz

AGENDA – Modulo 1

Data	Assunto	Capítulos
05/03	Algoritmos / Invariantes / Intro Análise de Complexidade	1,2
07/03	Não Haverá Aula	
12/03	Intro Análise de Complexidade / Notação Assintótica	3
14/03	Recursão / Eq. de Recorrência	4
19/03	Recursão / Eq. de Recorrência	4
21/03	Análise Probabilística	5
26/03	Algoritmos Randomizados (Intro) / Análise Amortizada	17
28/03	Prova 1 e Entrega da Lista 1	

O que é um Algoritmo?

Algorithm

An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output

[Cormen, Chapter 1]

Origem da Palavra

Abu Ja'Far Mohammed Ibn Musa al-Khowarizmi (780–850), astrônomo e matemático árabe. Era membro da "Casa da Sabedoria", uma academia de cientistas em Bagdá. O nome al-Khowarizmi significa da cidade de Khowarizmi, que agora é chamada Khiva e é parte do Uzbequistão. al-Khowarizmi escreveu livros de matemática, astronomia e geografia. A álgebra foi introduzida na Europa ocidental através de seus trabalhos. A palavra álgebra vem do árabe al-jabr, parte do título de seu livro Kitab al-jabr w'al muquabala. Esse livro foi traduzido para o latim e foi usado extensivamente. Seu livro sobre o uso dos numerais hindu descreve procedimentos para operações aritméticas usando esses numerais. Autores europeus usaram uma adaptação latina de seu nome, até finalmente chegar na palavra algoritmo para descrever a área da aritmética com numerais hindu.

Slide: Prof. Antônio Alfredo Loureiro

Algoritmos

 Presentes em todas as áreas da computação na resolução dos mais diversos tipos de problemas

 Permitem que problemas do mundo real possam ser trabalhados de forma estruturada e consequentemente possam ser resolvidos por um computador

Estrutura de Dados

 Uma estrutura de dados é uma forma de se armazenar e organizar os dados de um determinado problema de forma a facilitar o acesso e modificações por um algoritmo

 Diferentes estruturas de dados se aplicam a diferentes problemas e algoritmos

Abstração

Abstraction

Diferentes problemas podem usar a mesma abstração

Problema: Ordenação

Dado um conjunto de números inteiros ordená-los em ordem crescente

```
Input: A sequence of n numbers (a_1, a_2, \ldots, a_n).
```

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

Existem **vários algoritmos** para resolver esse problema

Escolha de Algoritmos

 Para escolher um algoritmo para um determinado problema, devemos considerar diversas características.

- Mas duas das principais são:
 - O algoritmo funciona?
 - O algoritmo é eficiente?

Exemplo: Insertion Sort

 Um dos algoritmos mais simples para se resolver o problema da ordenação

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

Exemplo: Insertion Sort

Em ritmo de dança romena...

AlgoRythmics: http://www.youtube.com/watch?v=ROalU379l3U

O *Insertion Sort* Funciona?

Loop Invariants

- Ajudam a entender / provar se um algoritmo é correto.
- De certa forma, similar a uma prova por indução

Loop Invariants

Define-se uma propriedade de interesse do algoritmo e verifica-se se ela é satisfeita

Inicialização: a propriedade é verdadeira antes do início da primeira iteração do loop

Manutenção: se a propriedade é satisfeita antes da iteração, ela permanece verdadeira após a iteração

Terminação: quando o loop termina, o invariante permite verificar se o algoritmo é correto

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1..j-1].

4  i = j-1

5  while i > 0 and A[i] > key

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = key
```

Ao início de cada iteração do **for** (linhas 1..8) o subvetor A[1..j-1] consiste dos elementos originais de A[1..j-1] mas de forma ordenada

```
INSERTION-SORT (A)

1 for j = 2 to A. length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1..j-1].

4  i = j-1

5  while i > 0 and A[i] > key

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = key
```

Inicialização: ao início do vetor, quando j=2, o subvetor A[1..j-1] contém apenas um elemento que está ordenado

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1..j-1].

4  i = j-1

5  while i > 0 and A[i] > key

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = key
```

Manutenção: o loop interno compara o elemento a[j] com os seu antecessores e os move até encontrar a posição de inserção do elemento. Com isso, o novo subvetor [1..j] fica ordenado.

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1..j-1].

4  i = j-1

5  while i > 0 and A[i] > key

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = key
```

Terminação: o loop termina quando j = n+1. Logo pelo invariante, o subvetor A[1..j-1], estará ordenado, ou seja:

A[1..n] estará ordenado

O Insertion Sort é Eficiente?

- Análise de algoritmos
 - Recursos necessários para a execução do algoritmo: tempo, memória, etc...

- Necessário um modelo computacional
 - Modelo abstrato do funcionamento do computador na resolução de algoritmos
 - Foca nas operações relevantes para a análise

Modelo Computacional

• RAM – Random Access Machine

- Um processador que executa uma ação por vez
- Memória que armazena os dados
- Operações básicas de custo constante
 - Acesso a memória
 - Testes condicionais
 - Operações aritméticas
 - Etc...

Análise de algoritmos

- Para analisar um algoritmo, vamos estudar os recursos necessários para a sua execução no modelo computacional escolhido
- Cada operação executada pelo processador, incluindo cálculos aritméticos lógicos e acesso a memória, implica num custo de tempo:
 - Função de complexidade de tempo.
- Cada operação e dado armazenado na memória, implica num custo de espaço:
 - Função de complexidade de espaço.

Análise de Algoritmos

 Função de Complexidade de Tempo: número de vezes que uma operação de interesse (ou todas as operações) é executada em função do tamanho de entrada n

 Requer o uso de matemática discreta: somatórios, combinações recorrências, etc...

Análise do Insertion Sort

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1 Operação sendo analisada

8 A[i+1] = key Comparação de elementos
```

```
Melhor Caso: f(n) = n-1 \longrightarrow \Theta(n) Pior Caso: f(n) = n(n-1)/2 \Theta(n^2) Caso Médio: análise de probabilidades
```

"Para Casa"

- Estudar Capítulos 1 e 2 do Cormen
- Resolver o seguinte exercício:
 - Implemente o **algoritmo da seleção** no qual um vetor é ordenado selecionado-se o menor elemento e trocando-o em A[1], o segundo menor e trocando-o com A[2], etc...
 - 1 O seu algoritmo funciona (use invariantes)?
 - 2 Qual a sua função de complexidade para o número de comparações e de trocas?

```
SELECTION-SORT (A)

n \leftarrow length[A]

for j \leftarrow 1 to n - 1

do smallest \leftarrow j

for i \leftarrow j + 1 to n

do if A[i] < A[smallest]

then smallest \leftarrow i

exchange A[j] \leftrightarrow A[smallest]
```

• **Invariante:** o vetor *A*[1..*j*-1] contém os *j*-1 menores elementos do vetor e esses se encontram ordenados

```
SELECTION-SORT (A)

n \leftarrow length[A]

for j \leftarrow 1 to n - 1

do smallest \leftarrow j

for i \leftarrow j + 1 to n

do if A[i] < A[smallest]

then smallest \leftarrow i

exchange A[j] \leftrightarrow A[smallest]
```

• Inicialização: *j*=1, logo o vetor tem 0 elementos o que satisfaz o invariante

```
SELECTION-SORT (A)

n \leftarrow length[A]

for j \leftarrow 1 to n - 1

do smallest \leftarrow j

for i \leftarrow j + 1 to n

do if A[i] < A[smallest]

then smallest \leftarrow i

exchange A[j] \leftrightarrow A[smallest]
```

• **Manutenção:** cada iteração do loop pesquisa o j-ésimo menor elemento e o coloca na posição j. Logo, ao final da iteração o subvetor a *A*[1..j] é acrescido de um elemento em sua ordem correta

```
SELECTION-SORT (A)

n \leftarrow length[A]

for j \leftarrow 1 to n-1

do smallest \leftarrow j

for i \leftarrow j+1 to n

do if A[i] < A[smallest]

then smallest \leftarrow i

exchange A[j] \leftrightarrow A[smallest]
```

- Terminação: ao final do loop, j = n e pelo invariante, todos os elementos A[1..n-1] estão ordenados. O elemento A[n] restante é o maior de todos e se encontra na sua posição.
- Logo, o algoritmo funciona!

```
SELECTION-SORT (A)

n \leftarrow length[A]

for j \leftarrow 1 to n-1

do smallest \leftarrow j

for i \leftarrow j+1 to n

do if A[i] < A[smallest]

Exchange A[j] \leftrightarrow A[smallest]

Troca de elementos
```

- Função de Complexidade número de comparações: f(n) = n(n-1)/2
- Função de Complexidade número de trocas:
 f(n) = n-1