Annales Corrigés

Annale 1: sur le cours Dispositifs MOS

On considère un transistor MOS a canal N réalisé sur du Silicium de type P. l'oxyde de grille est du SiO2 et la grille du Polysilicium. Les caractéristiques sont les suivantes :

Epaisseur de l'oxyde de grille : $e_{ox} = 6.10^{-6} \text{ cm} (60 \text{nm})$

Permittivité diélectrique : $\varepsilon_{ox} = 3,45.10^{-13} \text{ F} / \text{cm}$

Longueur de grille : $L = 6\mu m$ Largeur de grille : $b = 100 \mu m$

Travail de sortie de la grille : $W_G = 4,22 \text{ eV}$

Dopage du substrat: $N_A = 10^{16} \text{ cm}^{-3}$

Mobilité des trous dans le substrat : $\mu_p = 500 \text{ cm}^2/\text{V.s}$

Permittivité du Silicium : $\epsilon_{Si} = 10^{-12} \text{ F} / \text{cm}$

Largeur de la bande interdite du Si : $E_g = 1,12 \text{ eV}$

Affinité électronique du Si : $\chi = 4eV$

Concentration intrinsèque du Si à 300K : $n_i = 10^{10}$ cm⁻³

Tension thermodynamique : U_T = kT/q = 26mV et kT # 20meV à 300K

Charge de l'électron : $q = 1,6.10^{-19}$ C

Rappels:

- Travail de sortie d'un semi-conducteur de type P: W $_{SC} = \chi + E_g/2 + kT \ln N_A/n_i$
- Capacité de déplétion par unité de surface (F/cm 2) : C _{dep} = ϵ _{SC} / W _{dep}

$$avec: W_{dep} = \sqrt{\frac{2\epsilon}{qN_{A}}} \Phi_{dep}$$

<u>I-Etude du substrat (notions issues du chapitre Transistor MOS et du cours sur les semiconducteurs</u>

1- Calculer la conductivité et la résistivité du substrat.

2- Donner l'expression permettant de localiser le niveau de Fermi E_F dans la bande interdite par rapport à la référence E_{Fi} (état intrinseque, supposé au centre de la bande interdite). Calculer en eV l'écart E_{Fi}-E_{F.} (cf cours sur le T MOS).

II Etude de la Grille MOS

- 1) Calculer la tension de seuil idéale V_{T0} de la structure., faire le schéma.
- 2) Pour $V_{GS} = V_{T0}$, calculer la largeur W_{dep} de la zone dépeuplée qui se forme
- 3) Calculer, en F/cm² les capacités Cox et C dep puis la capacité globale C G
- 4) On note V_{FB1} la tension de bande plate induite par la différence de travaux de sortie entre la grille et le Silicium. Calculer cette tension et en déduire la tension de seuil V_{T1} qui en résulte.
- 5) La tension de seuil réellement mesurée sur le dispositif vaut : V_{T2} = 0,7V. Quelle est la cause de l'écart entre V_{T1} et V_{T2} ? En déduire la charge d'interface Q_{SS} en C/cm^2 .

III-Caractéristiques courant – tension

On utilisera les expressions les plus simples du courant de drain I_D.

La tension de seuil vaut V_T =0,7V et la tension appliquée à la grille (source à 0V) V_{GS} = 5V . Le facteur de conduction noté $K = \mu_n \ C_{ox} \, vaut$: $K = 2.10^{-5} \ A / V^2$

- 1) **On applique une très faible tension de drain.** Donner l'expression de la résistance R_{ON} du composant et calculer sa valeur numérique.
- 2) On se place maintenant à $V_{DS} = V_{Dsat}$

Donner la caractéristique de transfert I_D (V_{GS}) et calculer la transconductance dynamique g_m.

Corrigé

I- Etude du substrat :

1) La conductivité : Elle est donnée par la concentration en atomes dopants (SC extrinsèque, cf cours de semiconducteurs).

$$\sigma_{\text{subs}}$$
 = q N $_{\text{A}}\,\mu_{\text{p}}$ # 0,8 Ω cm

2) La concentration de dopants est le nombre de porteurs dans le substrat :

On a donc d'après l'équation de Boltzmann simplifiée à 300K, le niveau de Fermi se trouvant sous le centre de la bande interdite dans un SC de type P :

$$p = N_A = n_i \cdot e^{(E_{Fi} - E_F)/kT}$$
 et donc $E_{Fi} - E_{F} = kT Ln (N_A/n_i) \# 0,36 eV$ avec $kT \# 20 meV$

3) Le travail de sorti:

D'après la relation de l'énoncé (voir cours sur la tension de seul du MOS)

$$W_{SC} = \chi + E_g/2 + kT \ln N_A/n_i \# 4,92 \text{ eV}$$

II-Etude de la grille MOS

1- La tension de seuil théorique ou idéale V_{T0} Le schéma est sur la figure p8 du cours : on a $V_{T0} = \Phi_{dep} + V_{ox}$

$$\Phi_{\text{dep}} = 2U_{\text{T}} \ln \frac{N_{\text{A}}}{n_{\text{i}}} > 0 \text{ (canal N)}$$

soit içi 0,72 V

$$V_{_{ox}} = \frac{Q_{_{dep}}}{C_{_{ox}}} = \frac{1}{C_{_{ox}}} \sqrt{2q\epsilon_{_{Si}}N_{_{A}}\Phi_{_{dep}}} = \gamma\sqrt{\Phi_{_{dep}}} \quad > 0$$

Soit 0,83V

La tension de seuil idéale (à 300K) est donc fixée par les deux paramètres fondamentaux que sont l'épaisseur du diélectrique de grille et le dopage de substrat :

Rappelons que cette valeur est bien plus élevée que la tension de seuil relevée sur les caractéristiques électriques des composants réels.

2- On se place à $V_{GS} = V_{T0}$: La charge d'espace sous la grille, est à sa valeur maximale car elle ne se développe qu'entre 0 et V_{T0}. Dès que la couche inversée

$$W_{depmax} = \sqrt{\frac{2\epsilon}{qN_A}}\Phi_{dep}$$
 (n_s=N_{subs}), la charge d'espace verticale est calée.

Soit W _{depmax} # 3.10^{-5} cm = 0.3um

3- Capacité de la structure MOS

La capacité C_G comme vue en cours comporte etre la grille et le substrat, deux composantes:

La capacité de l'oxyde de grille en série avec la capacité de la charge d'espace (C_{depl}).

En considérant une structure de 1cm² (pour simplifier les calculs et par hypothèse dans l'énoncé) on a :

 $1/C_G = 1/C_{ox} + 1/C_{depl.}$, la capacité minimale correspond à la tension de seuil (voir TD)

On a : $C_{ox} = \varepsilon_{ox}/e_{ox} # 5,75.10^{-8} \text{ F/cm}^2 \text{ soit } 57,5 \text{ nF/cm}^2 \text{ (nommée } C_{max} \text{ en pratique)}$

 $C_{\text{depl}} = \varepsilon_{\text{Si}} / W_{\text{depl}} # 2.10^{-13} \text{ F/cm}^2$, on obtient un rapport des deux capacités important d'autant plus que le diélectrique de grille est mince.

On trouve donc la valeur min proche de C depl.: Cmin # 0, 13 pf / cm²

La tension de grille associée est la tension de seuil V_{T0} dans notre exercice.

4- Tension de bande plate: VFB

Comme vu dans le cours, le phénomène de déplétion peut être provoqué, sans aucune tension appliquée, ce qui réduit la tension de seuil théorique calculée précédemment.(cf TD sur le T MOS NMOS)

La tension de bande VFB1 est directement reliée la valeur en eV de la différence des travaux de sortie déjà calculée : d'après le cours

La tension de seuil corrigée vaut alors : V_{T1} = V_{T0} + V_{FB1} = 1,55-0,7

$$V_{T1} = 0.85 V$$

5- La tension de seuil réelle mesurée vaut : V_{T2} = 0,7V

Comme indiqué dans le cours (p 7 et 8), la tension de bande plate peut être complétée par la contribution de charges positives d'ions dans le diélectrique , donnant lieu à des charges négatives (mobiles). Ces charges viennent s'ajouter à la charge du semi conducteur (voir TD).

Ainsi la différente entre V_{T2} et V_{T1} donne V_{FB2} (V_{FB}= V_{FB1}+ V_{FB2})

Donc : V_{T2} - V_{T1} = 0,7 - 0,85 soit V_{FB2} = - 0,15V du aux charges d'interface Qss.

soit $V_{FB2} = Qss/C_{ox}$ avec $C_{ox} = 5,75.10^{-8}$ F/cm² déjà calculée au II.3.

Qss = $-0.15x5.75.10^{-8}$ # $8.62.10^{-9}$ C/cm²

III-Caractéristique statique courant-tension

On utilisera les expression simplifiées (p 3 du cours)niveau 1 de SPICE)

- 1) La tension de drain est très faible : le terme $(V_{DS})^2/2$ est négligé. On est alors en régime ohmique et donc : $I_D \# K \ b/L \ (V_{GS}-V_T)V_{DS}$ La résistance R_{ON} se défini par le rapport V_{DS}/I_D : $R_{ON} \# 700 \ Ohms$
- 2) La tension de drain vaut $V_{DS} = V_{Dsat}$, soit par définition $V_{Dsat} = V_{GS} V_T = 4.3V$ On obtient donc l'équation parabolique ordinaire :

$$I_D \# K b / 2L (V_{GS}-V_T)^2$$

En régime de petits signaux (fréquentiel), la transconductance est la dérivée de

l'intensité : $g_m = d I_{Dsat} / dV_{GS}$ pour V_{DS} fixé (à 4,3V içi)

 $g_{\rm m} = 1,43 \text{ mS}$

Annale 2 : Sur le cours Dispositifs Bipolaires

Thème 1 : Transistor bipolaire NPN :

Un transistor NPN présente les caractéristiques V_{BE} (log I_c) et V_{BE} (log I_B) reportées sur la figure 1. La jonction collecteur base est en court circuit (V_{BC} = 0). Les caractéristiques sont :

$$I_C = 8.10^{-18} e^{VBE/UT}$$

$$I_B = 10^{-19} \, e^{VBE/UT}$$

Figure 1 : Caractéristiques statiques du transistor

Caractéristiques du dispositif :

Aire : A =10 - 6 cm ²	Emetteur (N)	Base (P)
Dopage (cm-3)	$N_E = 5.10^{19}$	N _B à déterminer
Epaisseur (cm)	$W_E = 3.10^{-5}$	$W_B = 3.10^{-5}$
Constante de diffusion	D pE = 1	D _n = 10
(cm2/s)		

Autres données:

Concentration intrinsèque du Si : n_i = 10 ¹⁰ cm⁻³

Permittivité : $\varepsilon = 10^{-12}$ F/cm

Tension thermodynamique : $U_T = 26 \text{ mV}$ Charge élémentaire : $q = 1.6.10^{-19} \text{ C}$

Rappel du cours : expression de l'efficacité d'injection émetteur/base:

 $= \frac{Dn}{DpE} \frac{WE}{WB} \frac{NE}{NB}$

On polarise le transistor de telle sorte que : V BE = 0,7 V et V BC = 0.

- 1.a) A partir des relevés de la figure 1, donner les valeurs de I_C , I_B et la valeur du gain en courant β du transistor.
- 1.b) A partir de l'expression de J_{sn} (voir cours), établir l'expression du dopage de la base N _B et calculer sa valeur en relevant la valeur de I_{sn} sur la figure 1(tenir compte de l'aire A).
- 2.a) Calculer l'efficacité d'injection de la jonction émetteur base.
- 2.b) Connaissant le gain β , en déduire la valeur du facteur de transport dans la base $\delta_{\rm B}$.
- 3.a) Calculer le temps de transit dans la base τ_B et la durée de vie des électrons τ_{nB}
- 3.b) Calculer la transconductance dynamique g_m pour le point de fonctionnement considéré en 1.a
- 3.c) Calculer la capacité de stockage C_{sn} des électrons dans la base
- 3.d) Calculer le facteur de mérite F_T théorique (maximum) du transistor ce dernier étant supposé donné par g_m et τ_{B} .

Indiquer comment augmenter sa valeur sans modifier la structure.

Corrigé

Thème 1 : Transistor bipolaire NPN

1.a) A partir du relevé des caractéristiques statiques aux bas niveaux (GUMMEL PLOTS), en se plaçant à $V_{BE} = 0.7 \text{ V}$ on lit :

$$I_c = 2.10^{-6} A = 2uA$$

 $I_B = 2.10^{-8} A = 20nA$
 $B = 100$

- 1.b) D'après le cours, l'expression de $J_{sn}\!\!=\!\!qni$ 2 D_n/N_BW_B conduit à : N_B = qni 2 $D_n/$ J_{sn} W_B # 7.10^{17} cm $^{-3}$
- 2.a) L'efficacité d'injection de la diode D1 (Émetteur/base) vaut selon la relation de l'énoncé : γ #745
- 2.b) Le gain valant 100, en écrivant son expression en fonction des deux paramètres $\sqrt{et} \delta$, le facteur de transport dans la base s'écrit: $1/\sqrt{\delta} = 1/\beta 1/\sqrt{\gamma}$ soit $\delta #115$. Ce dernier conditionne la valeur du gain étant $<\sqrt{\gamma}$
- 3.a) Le temps de transit est donné par la relation du cours : τ_B W_B $^2/2$ D_n = 4,5.10 $^{-11}$ s soit 45 ps Connaissant le facteur de transport et sa définition δ = durée de vie/temps de transit, on en déduit :

$$\tau_{\rm nB} = \tau_{\rm B}$$
. $\delta = 5,2$. 10^{-9} s = 5,2 ns

3.b) La transconductance en petits signaux est donnée par I_c, soit:

$$g_m = I_c/U_T = 2.10^{-6}/26.10^{-3} \# 3.85.10^{-5} S$$

- 3.c) la capacité de stockage dans la Cs s'écrit : $C_{s(B)} = g_{m}.\tau_{B} = 1,73.10^{-15}~F$
- 3.d) Le facteur de mérite F_T d supposé seulement fonction g_m et τ_B s'écrit :1/ $2\pi F_T$ (théo.) = τ_B d'où

F_T (Théo) = 1/2 $\pi\tau$ B # 3,54 GHz

Remarque, le fonctionnement en Gummel plot (CC base collecteur) ne conduirait pas à cette valeur car l'intensité Ic est trop faible (cf TD)