

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA Eng. Civil e Eng. de Produção

CÁLCULO NUMÉRICO - CIVL0092/PROD0013 - 2017.2

TRABALHO 8

Desenvolva os algoritmos e implemente os programas no MATLAB/OCTAVE/Scilab/etc. para resolver os exercícios abaixo. <u>NÃO USE</u> as funções próprias do MATLAB/OCTAVE/Scilab/etc. relacionadas com diferenciação numérica e resolução de equações diferenciais.

Exercício 1 Considere a seguinte tabela de dados:

<i>X</i>	0,25	0,4	0,55	0,7	0,85
f(x)	2,415	2,637	2,907	3,193	3,381

utilize as fórmulas apropriadas (máxima precisão possível) para aproximar f'(0,7), f''(0,7) e $f^{(3)}(0,7)$. Indicar em cada caso a fórmula empregada.

Exercício 2 Use os métodos de *Euler*, de *Heun* (com 10 iterações) e do *Ponto médio* para integrar numericamente a equação,

$$\frac{dy}{dx} = -x^3 + 4x^2 - 10x + 3,5$$

de x = 0.0 a x = 3.0 com um tamanho de passo de 0.5. A condição inicial em x = 0 é y = 1. Plotar os resultados obtidos com a solução exata.

Exercício 3 Repetir o exercício 2 considerando passos de h = 0.25 e 0.10. Comparar e plotar os resultados.

Exercício 4 Complete as tabelas empregando as fórmulas de diferença dividida finita

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA Eng. Civil e Eng. de Produção

progressiva, regressiva e centrada.

5.a)
$$f(x) = \cos(x^2)$$

х	f(x)	f'(x)	f''(x)	Erro 1	Erro 2
0,5					
0,6					
0,7					

5.b)
$$g(x) = e^x - 3x^3 + 7x$$

Х	g(x)	g'(x)	g''(x)	Erro 1	Erro 2
0,0					
0,2					
0,4					

Nas colunas *Erro 1* e *Erro 2*, estimar com base no valor verdadeiro o erro relativo nas derivadas primeira e segunda. Indicar em cada caso a fórmula empregada.

O trabalho deverá ser realizado em grupos de **2 alunos**, não deve superar as **12 páginas** e o formato do mesmo deve seguir o modelo dado no site:

http://www.amcaonline.org.ar/twiki/bin/view/AMCA/AmcaStyle

A nota do trabalho levará em conta: (a) desenvolvimento do tema, (b) apresentação escrita do trabalho e (c) implementações computacionais. O trabalho e os programas implementados por devem remitido por e-mail em formato digital (*.pdf) bonogustavo@gmail.com com o assunto "T8_CN_EC/EP_NomeAluno1_ NomeAluno2". A versão impressa deverá ser entregue unicamente no horário da disciplina de Cálculo 0 Numérico. trabalho formato digital deve identificado em ser como T8_CN_NomeAluno1_NomeAluno2.pdf. e não deve superar os 1,50 MB.

O PRAZO DE ENTREGA do trabalho e apresentação é no dia 29 de Novembro de 2017.