Dosage par étalonnage conductimétrique d'un sérum physiologique

Référence : Mathieu RUFFENACH, Theirry CARIAT, Valérie MORA et al. Physique Chimie, Terminale S enseignementspécifique.Bordas,2012 p.471

Leçons potentielles: 6

Produits:

Nom	Formule brute	Masse molaire (g.mol ⁻¹)	Densité	Température	Sécurité
Chlorure de sodium	NaCl (solide)	58,44	-	-	-
Chlorure de sodium	NaCl (2.10 ⁻² M)	58,44	-	-	-
Sérum physiologique 9%	NaCl (58,44	-	-	-
Eau	H ₂ O	18	1	T _{eb} = 100°C	-

Matériels:

Préparation de la solution mère (si pas disponible) :

- Fiole jaugée de 100 mL
- Balance
- Sabot de pesée
- Spatule
- Pipette pasteur en plastique

Préparation de la gamme étalon :

- 5 fioles jaugées de 50 mL (ou rincer entre chaque dilution)
- Procéder soit à l'aide d'une burette (comme protocole) ou avec pipettes jaugées (plus précises) de 5mL, 10 mL, 15 mL, 20 mL, 25 mL
- Pipettes pasteur en plastique
- Béchers pour stocker

Tracé de la courbe d'étalonnage :

- Conductimètre
- Papier absorbant

Préparation de la solution de concentration inconnue :

- On utilise un flacon de 5 mL concentré à 0.9%
- Fiole jaugée de 100 mL
- Pipette pasteur

Protocole:

Préparation de la solution mère :

On veut une solution de NaCl à 2.10⁻² mol/L (donc soit on l'a et on est heureux)

Sinon : on procède par dissolution de NaCl (solide)

Peser $m = cVM = 1,16.10^{-1} g$ et procéder à la dissolution

Préparation de la gamme étalon :

On prépare 5 solutions filles par dilution dans fioles jaugées de 50 mL.

2.								
Solution étalon	S1	S2	S3	S4	S5			
Volume solution à verser (mL)	5.0	10.0	15.0	20.0	25.0			
Concentration (mol/L)	2.10 ⁻³	4.10 ⁻³	6.10 ⁻³	8.10 ⁻³	1.10-2			

Tracé de la courbe d'étalonnage

Pour chaque solution, mesurer la conductivité de la solution

Préparation de la solution de concentration inconnue

Pour se faire on réalise une dilution par 20 du flacon de sérum physiologique.

- Verser le flacon dans une fiole jaugée
- Ajuster avec de l'eau distillée jusqu'au trait de jauge
- Agiter

Résultats attendus :

Pour une solution diluée 20 fois, on attend une concentration molaire de :

$$c = \frac{1}{20} \times \frac{9}{58,44} = 7,7.10^{-3} \, mol/L$$