Higher Order Linear ODE: Existence and Uniqueness Results, Fundamental Solutions, Wronskian

Department of Mathematics
IIT Guwahati

Recall that all solutions of L(y) = g are given by

$$Ker(L) + y_P$$

where $L(y_P) = g$ is a particular solution.

Hence what we need to do is to find

- a basis $\{y_1, \ldots, y_n\}$ of $\operatorname{Ker}(L)$ and
- a particular solution y_P .

Then the general solution of L(y) = g is given by

$$y:=c_1y_1+\cdots+c_ny_n+y_P.$$

Definition: If $\{f_1,\ldots,f_n\}\subset C^n(I)$, then

$$W(f_1, \dots, f_n) := \begin{vmatrix} f_1 & \dots & f_n \\ f'_1 & \dots & f'_n \\ f_1^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

is called the Wronskian of f_1, \ldots, f_n on I.

Theorem: Let $y_1, y_2, \ldots, y_n \in C^n(I)$ be solutions of L(y) = 0, where

$$L(y) := a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y,$$

where $a_i:I\to\mathbb{R}$ are given functions, $a_i(x) \in C(I), i = 0, \ldots, n, \text{ and } a_n(x) \neq 0 \text{ on } I.$ If $W(y_1,\ldots,y_n)(x_0)\neq 0$ for some $x_0\in I$, then every solution y(x) of L(y) = 0 on I can be expressed in the form

$$y(x) = C_1 y_1(x) + \dots + C_n y_n(x),$$

where C_1, \ldots, C_n are constants.

Example: The functions $y_1 = e^{2x}$ and $y_2 = e^{-2x}$ are both solutions of y'' - 4y = 0 on $(-\infty, \infty)$. The Wronskian

$$W(y_1, y_2) = \begin{vmatrix} e^{2x} & e^{-2x} \\ 2e^{2x} & -2e^{-2x} \end{vmatrix} = -4 \neq 0.$$

The general solution is $y = c_1 e^{2x} + c_2 e^{-2x}$.

Theorem: (Abel's formula) Let y_1, \ldots, y_n be any n solutions to

$$Ly = y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = 0$$

on I, where $p_1, \ldots, p_n \in C(I)$. Then, for $x_0 \in I$, we have

$$W(y_1, \dots, y_n)(x) = W(y_1, \dots, y_n)(x_0) \exp\left(-\int_{x_0}^x p_1(t)dt\right)$$

for all $x \in I$.

Proof. Prove for n=2 (See Theorem 8 in Chapter 3 of Coddington's book).

Corollary: The Wronskian of solutions $W(y_1, \ldots, y_n)(x)$ is either identically zero or never zero on I.

Definition: A set of n linearly independent solutions of Ly=0 that spans $\mathrm{Ker}(L)$ are called fundamental solutions.

Fact: Let $y_1, y_2, \ldots, y_n \in C^n(I)$ be solutions of L(y) = 0 where $L(y)(x) = a_n(x)y^{(n)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x)$, $a_i \in C(I)$ and $a_n(x) \neq 0 \ \forall x \in I$. Then the following statements are equivalent:

- $\{y_1, y_2, \dots, y_n\}$ is a fundamental solution set on I.
- $\{y_1, y_2, \dots, y_n\}$ are linearly independent on I.
- $W(y_1, y_2, \dots, y_n)(x) \neq 0$ on I.

Proof. See Theorems 6 and 7 in Chapter 3 of Coddington's book.

Theorem: Let $y_p(x) \in C^n(I)$ be a particular solution to L(y)(x) = g(x) on I and let $\{y_1, y_2, \ldots, y_n\} \in C^n(I)$ be a fundamental solution set of L(y) = 0 on I. Then every solution of L(y) = g on I can be expressed in the form

$$y(x) = C_1 y_1(x) + \dots + C_n y_n(x) + y_p(x)$$

Example: Given that $y_p=x^2$ is a particular solution to $y''-y=2-x^2$ and $y_1(x)=e^x$ and $y_2(x)=e^{-x}$ are solution to y''-y=0. A general solution is

$$y(x) = C_1 e^x + C_2 e^{-x} + x^2.$$

Homogeneous linear equations with constant coefficients

Aim: To find a basis for Ker(L). That is, to find a set of fundamental solution to the homogeneous equation L(y)=0, where

$$L(y) := a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y$$

and $a_n \neq 0$, a_{n-1}, \ldots, a_0 are real constants. For $y = e^{rx}$, we find

$$L(e^{rx}) = a_n r^n e^{rx} + a_{n-1} r^{n-1} e^{rx} + \dots + a_0 e^{rx}$$

= $e^{rx} (a_n r^n + a_{n-1} r^{n-1} + \dots + a_0) = e^{rx} P(r),$

where $P(r) = a_n r^n + a_{n-1} r^{n-1} + \cdots + a_0$. Thus $L(e^{rx}) = 0$ provided r is a root of the auxiliary equation

$$P(r) = a_n r^n + a_{n-1} r^{n-1} + \dots + a_0 = 0.$$

Case I (Distinct real roots): Let r_1, \ldots, r_n be real and distinct roots. The n solutions are given by

$$y_1(x) = e^{r_1 x}, \ y_2(x) = e^{r_2 x}, \dots, y_n(x) = e^{r_n x}.$$

We need to show

$$c_1 e^{r_1 x} + \dots + c_n e^{r_n x} = 0 \Longrightarrow c_1 = c_2 = \dots = c_n = 0.$$

P(r) can be factored as

$$P(r) = a_n(r - r_1)(r - r_2) \cdots (r - r_n).$$

Writing the operator L as

$$L = P(D) = a_n(D - r_1) \cdots (D - r_n).$$

Now, construct the polynomial $P_k(r)$ by deleting the factor $(r-r_k)$ from P(r). Then

$$L_k := P_k(D) = a_n(D-r_1)\cdots(D-r_{k-1})(D-r_{k+1})\cdots(D-r_n).$$

By linearity

$$L_k(\sum_{i=1}^n c_i e^{r_i x}) = L_k(0) \Rightarrow c_1 L_k(e^{r_1 x}) + \dots + c_n L_k(e^{r_n x}) = 0.$$

Since $L_k=P_k(D)$, we find that $L_k(e^{rx})=e^{rx}P_k(r)$ for all r. Thus

$$\sum_{i=1}^{n} c_i e^{r_i x} P_k(r_i) = 0 \Longrightarrow c_k e^{r_k x} P_k(r_k) = 0,$$

as $P_k(r_i)=0$ for $i\neq k$. Since r_k is not a root of $P_k(r)$, then $P_k(r_k)\neq 0$. This yields $c_k=0$. As k is arbitrary, we have

$$c_1 = c_2 = \dots = c_n = 0.$$

Theorem: If P(r) = 0 has n distinct roots r_1, r_2, \ldots, r_n . Then the general solution of L(y) = 0 is

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \dots + C_n e^{r_n x},$$

where C_1, C_2, \ldots, C_n are arbitrary constants.

Example: Consider y'' - 3y' + 2y = 0. The auxiliary equation $P(r) = r^2 - 3r + 2 = 0$ has two roots $r_1 = 1$, $r_2 = 2$. The general solution is $y(x) = C_1 e^x + C_2 e^{2x}$..

Case II (Repeated roots): If r_1 is a root of multiplicity m. Then

$$P(r) = (r - r_1)^m \tilde{P}(r),$$

where $\tilde{P}(r) = a_n(r - r_{m+1}) \cdots (r - r_n)$ and $\tilde{P}(r_1) \neq 0$. Now

$$L(e^{rx}) = e^{rx}(r - r_1)^m \tilde{P}(r)$$

Setting $r=r_1$, we see that e^{r_1x} is a solution. To find other solutions, we note that $\frac{\partial^k}{\partial r^k}L(e^{rx})=\frac{\partial^k}{\partial r^k}[e^{rx}(r-r_1)^m\tilde{P}(r)].$ Now,

$$\frac{\partial^k}{\partial r^k} L(e^{rx})|_{r=r_1} = 0 \quad \text{if } k \le m-1.$$

$$\implies L\left[\frac{\partial^k}{\partial r^k}(e^{rx})|_{r=r_1}\right] = 0.$$

Thus,

$$\frac{\partial^k}{\partial r^k}(e^{rx})|_{r=r_1} = x^k e^{r_1 x}$$

will be a solution to L(y)=0 for $k=0,1,\ldots,m-1$. So, m distinct solutions are

$$e^{r_1x}$$
, xe^{r_1x} , ..., $x^{m-1}e^{r_1x}$.

Theorem: If P(r)=0 has the real root r_1 occurring m times and the remaining roots $r_{m+1},r_{m+2},\ldots,r_n$ are distinct, then the general solution of L(y)=0 is

$$y(x) = (C_1 + C_2 x + C_3 x^2 + \dots + C_m x^{m-1}) e^{r_1 x} + C_{m+1} e^{r_{m+1} x} + \dots + C_n e^{r_n x},$$

where C_1, C_2, \ldots, C_n are arbitrary constants.