รายวิชา 09131201 ระเบียบวิธีเชิงตัวเลขทางด้านคอมพิวเตอร์ (Numerical Methods for Computers) บทที่ 2 รากของสมการ (Root Finding)

ผศ.ดร.วงศ์วิศรุต เชื่องสตุ่ง และ ดร.รัฐพรหม พรหมคำ

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

July 14, 2024

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

Table of Contents

- 🕦 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)

Table of Contents

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

บทนำ

การศึกษาทางวิทยาศาสตร์และวิศวกรรมศาสตร์ มักจะพบปัญหาที่เกิดขึ้นบ่อยคือ การหาราก (Roots of equation) ของสมการในรูปแบบ

$$f(x) = 0$$

พิจารณาฟังก์ชันหนึ่งตัวแปร y=f(x) การหารากของสมการ หรือคำตอบ (ผล เฉลย) ของสมการ คือค่าของ x ที่ทำให้ y=f(x)=0 เช่น สมการของฟังก์ $f(x)=ax^2+bx+c=0$ โดยที่ a,b และ c เป็นค่าคงที่ ดังนั้น รากของสมการนี้คือ

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ตัวอย่างที่ 2.1

จงหารากของสมการ $f(x) = x^2 + x - 2 = 0$

รูปที่ 1: กราฟของสมการ $f(x) = x^2 + x - 2 = 0$

ีบทน้ำ

สำหรับระเบียบวิธีการหาค่ารากของสมการ สามารถแบ่งประเภทเป็น 2 ประเภทดังนี้

- ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)
- ระเบียบวิธีแบบเปิด (Open method)

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)

ระเบียบวิธีแบบกำหนดขอบเขตเป็นวิธีที่รู้ว่า คำต[้]อบจะต้องอยู[®]ในช่วงใดช่วงหนึ่งของ ค่า x จึงทำการกำหนดค่าเริ่มต้นสองค่า คร่อมรากใดรากหนึ่งของสมการ ซึ่งจะเป็น ขอบเขตของช่วงที่จะหารากของสมการ วิธีแบบกำหนดขอบเขต จะกล่าวถึงในหัวข้อ นี้คือ

- ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2 ระเบียบวิธีการวางตัวผิดที่ (False position method)

ระเบียบวิธีแบบเปิด (Open method)

ระเบียบวิธีแบบเปิด (Open method)

การหาค่ารากของวิธีนี้ต้อง กำหนดค่าเดาเริ่มต้นในการคำนวณ 1 ค่าหรือ มากกว่า 1 ค่า โดยไม่จำเป็นต้องคร่อมรากใดรากหนึ่งของสมการ วิธีแบบเปิด จะกล่าวถึงใน หัวข้อนี้คือ

- 🐧 ระเบียบวิธีทำซ้ำด้วยจุดตรึง (Fixed Point Iteration Method)
- ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 🔞 ระเบียบวิธีเซแคนต์ (Secant Method)

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีเชิงกราฟเป็นวิธีอย่างง่ายในการหาค่าประมาณของรากของสมการ f(x)=0 โดยการเขียนกราฟของฟังก์ชันและจะสังเกตเห็นว่า กราฟของฟังก์ชันตัด กับแกน x ที่จุดใด จุดนั้น คือ **รากของสมการ (Roots of equation)** นั่นคือ จุด x ที่ทำให้ f(x)=0 แสดงได้ดังรูป 2

รูปที่ 2: กราฟของฟังก์ชันที่มีรากของสมการ 1 ราก

รากของสมการอาจจะมีได้มากกว่าหนึ่งค่า แสดงได้ดังรูป 3

รูปที่ 3: กราฟของฟังก์ชันที่มีรากของสมการหลายราก

ตัวอย่างที่ 2.2

จงหารากของสมการต่อไปนี้

$$f(x) = \frac{668.06}{x} (1 - e^{-0.20.146843x}) - 40 \tag{2.1}$$

ในช่วง [4,20] โดยระเบียบวิธีเชิงกราฟ

ระเบียบวิธีเชิงกราฟ $(\overline{\mathrm{Graphical}\ \mathrm{Method}})$

วิธีทำ แทนค่า x ที่อยู่ช่วง [4,20] ในสมการที่ (2.1) จะได้ผลลัพธ์ดังตารางที่ 1

x	f(x)		
4	34.190		
8	17.712		
12	6.114		
16	-2.230		
20	-8.368		

ตาราง 1: แสดงการประมาณค่ารากของสมการ
$$f(x)=rac{668.06}{x}(1-e^{-0.20.146843x})-40$$

รูปที่ 4: กราฟแสดงการประมาณค่ารากของสมการได้เท่ากับ 14.75

จากตารางที่ (2.1) และรูปที่ (4) พบว่า เส้นโค้ง f(x) ตัดแกน x ระหว่าง 12 และ 16 (เครื่องหมายของฟังก์ชันต่างกัน) ดังนั้น รากของสมการมีค่าเท่ากับ 14.75

ตัวอย่างที่ 2.3

จงหารากของสมการ $\sin(10x)+\cos(3x)=0$ ในช่วง [0,5] โดยระเบียบวิธีเชิง กราฟ (Graphical Method)

วิธีทำ จากสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [0,5] สามารถเขียนกราฟได้ดัง รูปที่ 5 ซึ่งพบว่า มีรากของสมการหลายรากที่อยู่ในช่วง [0,5] ถ้าพิจารณาช่วง [3,5] จะได้รากของสมการซึ่งแสดงได้ดังรูปที่ 6 และพิจาณาช่วง [4.2,4.3] จะได้รากของ สมการซึ่งแสดงได้ดังรูปที่ 7

รูปที่ 5: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [0,5]

รูปที่ 6: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [3,5] (ตัวอย่างที่ 2.3)

รูปที่ 7: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [3,5] (ตัวอย่างที่ 2.3)

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

• วิธีแบ่งครึ่งช่วง (Bisection method) เป็นวิธีหาค่ารากของสมการทั้งเชิง เส้น และไม่เชิงเส้น ซึ่งวิธีแบ่งครึ่งช่วงนี้เป็นวิธีที่รู้ว่า คำตอบจะต้องอยู่ในช่วงใด ช่วงหนึ่งของค่า x จึงทำการกำหนดค่าเริ่มต้นสองค่า โดยคร่อมรากใดรากหนึ่ง ของสมการ แล้วทำการแบ่งครึ่งช่วงเพื่อหารากของสมการ ซึ่งจะต้องเลือกช่วงที่ ค่าฟังก์ชันมีเครื่องหมายตรงข้ามกันเสมอ

• กำหนดให้ f(x) เป็นฟังก์ชันต่อเนื่องในช่วง x_l ถึง x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u)<0$ แล้วจะมีค่าราก ของสมการอย่างน้อยที่สุด 1 ค่า อยู่ระหว่าง x_l ถึง x_u แสดงดังรูปที่ 8

รูปที่ 8: ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)

ขั้นตอนวิธีของระเบียบวิธีการแบ่งครึ่งช่วง

- 🐧 เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u) < 0$
- $oldsymbol{2}$ ประมาณค่ารากของสมการ x_r โดย

$$x_r = \frac{x_l + x_u}{2}$$

- 🔞 ตรวจสอบเงื่อนไข ต่อไปนี้
 - ถ้า $f(x_l)f(x_r)<0$ แล้ว รากอยู่ในช่วง (x_l,x_r) ดังนั้น กำหนดให้ $x_u=x_r$ และกลับไปยังขั้นตอนที่ 2
 - ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และกลับไปยังขั้นตอนที่ 2
 - ullet ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการคำนวณ

กำหนดให้ x_0, x_1, x_2, \dots มีค่าเท่ากับ x_r ในแต่ละรอบของการทำซ้ำ จะเห็นได้ว่า ค่า ของ x_r ในแต่ละรอบจะเลื่อนเข้าใกล้รากของสมการ แสดงดังรูปที่ 9

รูปที่ 9: การหาคำตอบของสมการ f(x) ด้วยระเบียบวิธีการแบ่งครึ่งช่วง

ในปัญหาทางปฏิบัติ ค่ารากของสมการที่ได้จากการคำนวณอาจจะไม่ใช่คำตอบที่แท้ จริง (exact) จึงไม่สอดคล้องกับเงื่อนไข $f(x_l)f(x_r)=0$ ในกรณีเช่นนี้ เราจำเป็น ต้องนำค่าคลาดเคลื่อน (ε) มาเป็นเกณฑ์ตรวจสอบว่า รากของสมการที่ได้ลู่เข้าสู่คำ ตอบที่แท้จริงหรือไม่ โดยพิจารณาร้อยละของค่าคลาดเคลื่อนเปรียบเทียบกับค่า ประมาณ : ε_a ซึ่งนิยามดังนี้

$$\varepsilon_a = \frac{|x_r^{\text{New}} - x_r^{\text{Old}}|}{|x_r^{\text{New}}|} \times 100\%$$
(2.2)

ตัวอย่างที่ 2.4

จงหารากของสมการ $x^5+x^3+x^2-1=0$ ในช่วง [0,1] โดยระเบียบวิธีการแบ่ง ครึ่งช่วง (Bisection method) เมื่อร้อยละของค่าคลาดเคลื่อนเปรียบเทียบกับค่า ประมาณต้องน้อยกว่า 0.1%

i	x_l	x_u	x_r	$arepsilon_a$
1	0.0000000000	1.00000000000	0.5000000000	
2	0.5000000000	1.00000000000	0.7500000000	33.3333333333
3	0.50000000000	0.7500000000	0.6250000000	20.00000000000
4	0.6250000000	0.7500000000	0.6875000000	9.0909090909
5	0.6875000000	0.7500000000	0.7187500000	4.3478260870
6	0.6875000000	0.7187500000	0.7031250000	2.222222222
7	0.6875000000	0.7031250000	0.6953125000	1.1235955056
8	0.6953125000	0.7031250000	0.6992187500	0.5586592179
9	0.6992187500	0.7031250000	0.7011718750	0.2785515320
10	0.6992187500	0.7011718750	0.7001953125	0.1394700139
11	0.6992187500	0.7001953125	0.6997070312	0.0697836778

ตาราง 2: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.4 ด้วยระเบียบวิธีแบ่งครึ่ง ช่วง

รูปที่ 10: กราฟของฟังก์ชัน $f(x)=x^5+x^3+x^2-1$

ตัวอย่างที่ 2.5

จงหารากของสมการ $x^2+3x-9=0$ ในช่วง [-1,7] โดยระเบียบวิธีการแบ่งครึ่ง ช่วง (Bisection method) กำหนดร้อยละของค่าคลาดเคลื่อนเปรียบเทียบกับค่า ประมาณต้องน้อยกว่า 5%

วิธีทำ กำหนดให้ $f(x)=x^2+3x-9$ โดยใช้กระบวนการระเบียบวิธีการแบ่งครึ่ง ช่วง แสดงค่าของ $x_l,\,x_u$ และ x_r ได้ดังตารางที่ 3 พร้อมทั้งกราฟของฟังก์ชัน $f(x)=x^2+3x-9$ แสดงได้ดังรูปที่ 11 ดังนั้นรากของสมการ คือ 1.5625000000

i	x_l	x_u	x_r	$arepsilon_a$
1	-1.0000000000	7.00000000000	3.00000000000	
2	-1.0000000000	3.0000000000	1.00000000000	200.00000000000
3	1.0000000000	3.0000000000	2.00000000000	50.00000000000
4	1.0000000000	2.00000000000	1.50000000000	33.333333333
5	1.5000000000	2.00000000000	1.7500000000	14.2857142857
6	1.5000000000	1.7500000000	1.6250000000	7.6923076923
7	1.5000000000	1.6250000000	1.5625000000	4.0000000000

ตาราง 3: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.5 ด้วยระเบียบวิธีแบ่งครึ่ง ช่วง

รูปที่ 11: กราฟของฟังก์ชัน $f(x)=x^2+3x-9$

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีการวางตัวผิดที่ (False position method) จะคำนวณรากของ สมการจากความสัมพันธ์ทางเรขาคณิตของรูปสามเหลี่ยมที่เกิดขึ้นจากการลากเส้น ตรงเชื่อมระหว่างจุด $(x_l,f(x_l))$ และ $(x_u,f(x_u))$ กับแกน x แทนการแบ่งครึ่งช่วง ปิด [a,b] ดังรปที่ 12

รูปที่ 12: False position method

พิจารณาจากรูปที่ 12 และใช้กฎของสามเหลี่ยมคล้าย จะได้

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u} \tag{2.3}$$

ดังนั้น สูตรการหาค่ารากของระเบียบวิธีการวางตัวผิดที่ คือ

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$
 (2.4)

ขั้นตอนวิธีของระเบียบวิธีการวางตัวผิดที่ (False position method)

- \bullet เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u) < 0$
- $oldsymbol{arphi}$ ประมาณค่ารากของสมการ x_r โดย

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- 🔞 ตรวจสอบเงื่อนไข ต่อไปนี้
 - ถ้า $f(x_l)f(x_r)<0$ แล้ว รากอยู่ในช่วง (x_l,x_r) ดังนั้น กำหนดให้ $x_u=x_r$ และกลับไปยังขั้นตอนที่ 2
 - o ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และกลับไปยังขั้นตอนที่ 2
 - $oldsymbol{0}$ ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการคำนวณ

ตัวอย่างที่ $2.6\,$

จงหารากของสมการ $x^5+x^3+x^2-1=0$ ในช่วง [0,1] โดยระเบียบวิธีการ วางตัวผิดที่ (False position method) กำหนดร้อยละของค่าคลาดเคลื่อนเปรียบ เทียบกับค่าประมาณต้องน้อยกว่า 0.1%

i	x_l	x_u	x_r	$arepsilon_a$
1	0.0000000000	1.0000000000	0.3333333333	
2	0.3333333333	1.00000000000	0.5317919075	37.3188405797
3	0.5317919075	1.0000000000	0.6290354316	15.4591489095
4	0.6290354316	1.0000000000	0.6712659174	6.2911708683
5	0.6712659174	1.0000000000	0.6884979332	2.5028420491
6	0.6884979332	1.00000000000	0.6953367364	0.9835239343
7	0.6953367364	1.00000000000	0.6980198915	0.3843952188
8	0.6980198915	1.00000000000	0.6990678088	0.1499020904
9	0.6990678088	1.0000000000	0.6994763428	0.0584057023

ตาราง 4: แสดงการคำนวณหาค่ารากสมการในตัวอย่างที่ 2.6 ด้วยระเบียบวิธีการวางตัวผิดที่ (False position method)

ตัวอย่างที่ 2.7

จงหารากของสมการ $x^2+3x-9=0$ ในช่วง [-1,5] โดยระเบียบวิธีการวางตัวผิด ที่ กำหนดค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณต้องน้อยกว่า 5%

กำหนดให้ $f(x)=x^2+3x-9$ โดยใช้กระบวนการระเบียบวิธีการวางตัวผิดที่ แสดง ค่าของ $x_l\ x_u$ และ x_r ได้ดังตารางที่ 5 ดังนั้นรากของสมการ คือ 1.8376686475

i	x_l	x_u	x_r	$arepsilon_a$
1	-1.00000000000	5.00000000000	0.5714285714	
2	0.5714285714	5.00000000000	1.3833333333	58.6919104991
3	1.3833333333	5.00000000000	1.6962699822	18.4485165794
4	1.6962699822	5.00000000000	1.8028943030	5.9140638789
5	1.8028943030	5.0000000000	1.8376686475	1.8923076540

_______ ตาราง 5: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.7 ด้วยระเบียบวิธีการวางตัว ผิดที่

ข้อสังเกต 2.1

จากตัวอย่าง 2.5 และ ตัวอย่าง 2.7 พบว่า ระเบียบวิธีการวางตัวผิดที่ลู่เข้าหารากของ สมการได้เร็วกว่าระเบียบวิธีการแบ่งครึ่งช่วง เมื่อเทียบจำนวนรอบของการทำซ้ำ โดยที่ค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณต้องน้อยกว่า 5% ($\varepsilon_a < 5\%$)

ถึงแม้ว่าระเบียบวิธีการวางตัวผิดที่ดูเหมือนจะเป็นวิธีแบบกำหนดขอบเขตที่ลู่เข้าหา รากของสมการได้รวดเร็ว แต่ก็มีบางกรณีที่วิธีนี้ก็ทำงานได้ไม่ดี ซึ่งมีบางกรณีที่ ระเบียบวิธีการแบ่งครึ่งช่วงให้ผลลัพธ์ที่ดีกว่า ดังตัวอย่างต่อไปนี้

์ ตัวอย่างที่ 2.8

จงหารากของสมการ $f(x)=x^{10}-1$ ในช่วง [0,1.3] โดยระเบียบวิธีการแบ่งครึ่ง ช่วง และระเบียบวิธีการวางตัวผิดที่

- กำหนดให้ $f(x)=x^{10}-1$ โดยใช้ระเบียบวิธีการแบ่งครึ่งช่วง จะได้ผลลัพธ์ดัง ตารางที่ 6 และระเบียบวิธีการวางตัวผิดที่ จะได้ผลลัพธ์ดังตารางที่ 7
- จากตารางที่ 6 พบว่า เมื่อทำซ้ำรอบที่ 5 ค่า ε_a มีค่าเท่ากับ 0.468750~% ใน ขณะที่ระเบียบวิธีการวางตัวผิดที่ เมื่อทำซ้ำรอบที่ 5 ค่า ε_a มีค่าเท่ากับ 52.741685 ซึ่งแสดงดังตารางที่ 7
- ดังนั้นจะเห็นได้ว่า ระเบียบวิธีการแบ่งครึ่งช่วงลู่เข้าหารากของสมการได้เร็วกว่า ระเบียบวิธีการวางตัวผิดที่

i	x_l	x_u	x_r	ε_a	$arepsilon_t$
0	0.000000	1.300000	0.650000	100.000000	35.000000
1	0.650000	1.300000	0.975000	33.333333	2.500000
2	0.975000	1.300000	1.137500	14.285714	13.750000
3	0.975000	1.137500	1.056250	7.692308	5.625000
4	0.975000	1.056250	1.015625	4.000000	1.562500
5	0.975000	1.015625	0.995313	2.040816	0.468750

ตาราง 6: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.8 ด้วยระเบียบวิธีการแบ่ง ครึ่งช่วง (Bisection method)

i	x_l	x_u	x_r	ε_a	$arepsilon_t$
0	0.000000	1.300000	0.094300	100.000000	90.570040
1	0.094300	1.300000	0.181759	48.118299	81.824113
2	0.181759	1.300000	0.262874	30.857040	73.712599
3	0.262874	1.300000	0.338105	22.250800	66.189490
4	0.338105	1.300000	0.407878	17.106298	59.212208
5	0.407878	1.300000	0.472583	13.691820	52.741685

ตาราง 7: แสดงการคำนวณหาค่ารากสมการในตัวอย่างที่ 2.8 ด้วยระเบียบวิธีการวางตัวผิดที่ (False position method)

รูปที่ 13: แสดงการลู่เข้าสู่ค่ารากของามการของระเบียบวิธีการวางตัวผิดที่ (False position method) ของตัวอย่างที่ 2.8

แบบฝึกหัด 2.1

- จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีแบ่งครึ่งช่วง เมื่อร้อยละของค่า คลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนดทศนิยม 3 ตำแหน่ง
 - $x^2 4x + 9 = 0$
 - $x^3 + x^2 1 = 0$
 - $5x \log_{10} x 6 = 0$
 - $x^2 + x \cos x = 0$
- จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีวางผิดที่ เมื่อร้อยละของค่า คลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนดทศนิยม 3 ตำแหน่ง
 - $x^3 + x^2 + x + 7 = 0$
 - $x^3 x 4 = 0$
 - $x = 3x^{-x}$
 - **1** $x \tan x + 1 = 0$
- 💿 จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่ารากของสมการ
- จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่ารากของสมการ

เฉลยแบบฝึกหัด

- **1 2**.706
 - **a** 0.755
 - **3** 2.741
 - **a** 0.550
- **a** 2.105
 - **2** 1.796
 - **3** 1.0499
 - **a** 2.798

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

การหาคำตอบของสมการ f(x)=0 โดยระเบียบวิธีทำซ้ำแบบจุดตรึงอย่างง่ายนี้ อันดับแรกจะต้องแปลง สมการดังกล่าวให้อยู่ในรูป

$$x = g(x) (2.5)$$

โดยมีสมบัติว่า สำหรับค่า x ใดๆ ถ้า x=g(x) แล้วจะต้องได้ว่า f(x)=0 ตัวอย่างเช่น

$$x^3 + x^2 - 2 = 0$$

สามารถเขียนได้หลายรูปแบบ เช่น

$$x = \sqrt{\frac{2}{1+x}}, \quad x = \sqrt{2-x^3}, \quad x = (2-x^2)^{1/3}$$

ซึ่งสามารถหาค่ารากของสมการได้

กำหนดให้ x_0 เป็นค่ารากโดยประมาณของสมการ 2.5 แล้วแทนค่า x_0 ในสมการ 2.5 จะได้การประมาณค่าครั้งที่ 1 ดังนี้

$$x_1 = g(x_0)$$

ในทำนองเดียวกันกับสมการข้างต้น จะได้

$$x_2 = g(x_1), x_3 = g(x_2), ..., x_{i+1} = g(x_i)$$

เมื่อ $i = 1, 2, 3, \dots$

รูปแบบทั่วไปของระเบียบวิธีทำซ้ำแบบจุดตรึง คือ

$$x_{i+1} = g(x_i) (2.6)$$

สำหรับ i=1,2,3,...

และค่าคลาดเคลื่อน จะพิจารณาจาก

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

โดยที่ $|arepsilon_a|<arepsilon_s$

ขั้นตอนระเบียบวิธีทำซ้ำแบบจุดตรึง

- 🕚 แปลงสมการ f(x)=0 ให้อยู่ในรูป x=g(x)
- $oldsymbol{2}$ เลือกค่าเริ่มต้น x_0
- $oldsymbol{3}$ คำนวณหาค่า $x_{i+1} = g(x_i)$
- 🗿 นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|arepsilon_a|<arepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|arepsilon_a|<arepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

ตัวอย่างที่ 2.9

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบวิธีทำซ้ำแบบจุดตรึ่งอย่างง่าย (Simple Fixed-point Iteration Method) ต้องการความถูกต้องอย่างน้อยที่สุด ในตำแหน่งที่ 3 และกำหนดให้ค่าเริ่มต้น $x_0=0$ (ค่าจริง =0.56714329)

i	x_i	ε_a	$arepsilon_t$
0	0	-	100.00000000
1	1.00000000	100.00000000	76.32228356
2	0.36787944	171.82818285	35.13465686
3	0.69220063	46.85363946	22.05039533
4	0.50047350	38.30914659	11.75536952
5	0.60624354	17.44678968	6.89424450
:	:	:	:
12	0.56641473	0.35556841	0.12846081
13	0.56755664	0.20119652	0.07288234
14	0.56690891	0.11425564	0.04132608
15	0.56727623	0.06475157	0.02344067
16	0.56706790	0.03673877	0.01329322

ตาราง 8: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำแบบจุดตรึงของ ตัวอย่างที่ 2.9

รูปที่ 14: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำแบบจุดตรึงของ ตัวอย่างที่ 2 9

รูปที่ 15: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำ แบบจดตรึงของตัวอย่างที่ 2.9

รูปที่ 16: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำ แบบจดตรึงของตัวอย่างที่ 2.9

<u>ข้อ</u>สังเกต 2.2

- ระเบียบวิธีทำซ้ำแบบจุดตรึงเป็นการจัดสมการให้อยู่ในรูป x=g(x) โดยทั่วไป สามารถจัดรูปสมการ x=g(x) ได้หลายรูปแบบ เช่น กำหนดให้ $f(x)=x^2-4x+6$ จัดรูปจะได้ $x=\frac{x^2+6}{4}$ หรือ $x=\sqrt{4x-6}$ จะเห็น ได้ว่า g(x) มีหลายฟังก์ชัน
- ซึ่งจะทราบได้อย่างไรว่าจะเลือกฟังก์ชันใดในการหาค่ารากของสมการด้วยวิธีทำ ซ้ำอย่างง่ายที่จะให้ค่าผลลัพธ์ลู่เข้า ดังนั้น จำเป็นต้องพิจารณาเงื่อนไขที่จะให้ค่า ผลลัพธ์ลู่เข้าสู่รากของสมการ โดยเงื่อนไขดังกล่าวคือ |g'(x)| < 1
- ดังนั้น จะสามารถเลือกฟังก์ชันใดก็ได้ที่จะให้ค่าผลลัพธ์ลู่เข้าเสมอ เมื่อ |g'(x)| < 1

4□ > 4□ > 4□ > 4□ > □ ● 900

ตัวอย่างที่ 2.10

จากตัวอย่างที่ 2.9 นั่นคือ $g(x)=e^{-x}$ จะได้

$$g'(x) = -e^{-x}$$

สำหรับ
$$x \in [0,1]$$
 จะได้ $|g'(x)| < 1$

ดังนั้น $g(x)=e^{-x}$ สำหรับ $x\in[0,1]$ ให้ค่าผลลัพธ์ลู่เข้าเสมอ

สำหรับการหาคำตอบของสมการ f(x)=0 โดยระเบียบวิธีเชิงกราฟสองเส้นนี้ อันดับแรกจะต้องแปลง สมการดังกล่าวให้อยู่ในรูป

$$f_1(x) = f_2(x)$$

ดังนั้นในการพิจารณากราฟจะมี 2 สมการ คือ

$$y_1 = f_1(x)$$
 และ $y_2 = f_2(x)$

โดยการสร้างกราฟของฟังก์ชัน y_1 และ y_2 ซึ่งอาศัยหลักการที่กราฟของฟังก์ชันสอง ฟังก์ชันตัดกัน ตรงบริเวณจุดตัดกันของกราฟ คือ ค่ารากของสมการ ซึ่งเราจะเรียกวิธี นี้ว่า วิธีเชิงกราฟสองเส้น (The Two-Curve Graphical Method)

์ ตัวอย่างที่ 2.11

จงหารากของสมการ $e^{-x}-x=0$ โดยใช้วิธีเชิงกราฟสองเส้น

x	$f_1(x)$	$f_2(x)$
0	0	1.00000000
0.2	0.2	0.81873075
0.4	0.4	0.67032005
0.6	0.6	0.54881164
0.8	0.8	0.44932896
1	1	0.36787944

ตาราง 9: แสดงค่าจากการคำนวณด้วยวิธีเชิงกราฟสองเส้นของตัวอย่างที่ 2.9

รูปที่ 17: กราฟแสดงการหาค่ารากของสมการ $e^{-x}-x=0$

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีนี้จะกำหนดค่าเริ่มต้นเพียงค่าเดียวเพื่อที่จะหาค่ารากของสมการ นั่นคือ ถ้า x_i เป็นค่าเริ่มต้นของการประมาณค่ารากของสมการ แล้วสมการเส้นสัมผัสที่จุด $(x_i,f(x_i))$ จะตัดแกน x ที่จุด x_{i+1} โดยจุดดังกล่าวจะเป็นการประมาณค่ารากของ สมการที่ถูกปรับปรุงให้ดีขึ้นจากจุดเดิม ดังรูปที่ 18

รูปที่ 18: กราฟแสดงการประมาณค่ารากของสมการโดยอาศัยความชั้น

จากรูปที่ 18 พิจารณาความชั้น ของฟังก์ชั้นที่จุด $(x_i,f(x_i))$ จะได้

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

เพราะฉะนั้น รูปแบบทั่วไปคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{2.7}$$

ซึ่งสมการ (2.7) เรียกว่า **สูตรนิวตันราฟสัน (Newton-Raphson formula)**

ระเบียบวิธีนิวตันราฟสัน ($\overline{ ext{Newton Raphson Method}}$

ขั้นตอนระเบียบวิธีนิวตันราฟสัน

- $oldsymbol{0}$ หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก f(x)=0
- $oldsymbol{2}$ เลือกค่าเริ่มต้น x_0
- $oldsymbol{3}$ คำนวณหาค่า $x_{i+1} = x_i rac{f(x_i)}{f'(x_i)}$
- 🐧 นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

์ ตัวอย่างที่ 2.12

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) ต้องการความถูกต้องอย่างน้อยที่สุดในตำแหน่งที่ 3 และ กำหนดให้ค่าเริ่มต้น $x_0=0$ (ค่าจริง = 0.56714329)

i	x_i	$arepsilon_a$	$arepsilon_t$
0	0	-	100.00000000
1	0.50000000	100.00000000	11.83885822
2	0.56631100	11.70929098	0.14675071
3	0.56714317	0.14672871	0.00002203
4	0.56714329	0.00002211	0.00000007

ตาราง 10: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสันของ ตัวอย่างที่ 2.12

รูปที่ 19: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสันของตัวอย่าง ที่ 2.12

รูปที่ 20: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตัน ราฟสันของตัวอย่างที่ 2.12

รูปที่ 21: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตัน ราฟสับของตัวอย่างที่ 2.12

์ ตัวอย่างที่ 2.13

จงหารากของสมการ $e^x\sin(x)-1=0$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) กำหนดให้ค่าเริ่มต้น $x_0=0.5$ และต้องการความถูกต้องอย่าง น้อยที่สุดในตำแหน่งที่ 3

i	x_i	ε_a
1	0.59366571	15.77751665
2	0.58854847	0.86946781
3	0.58853274	0.00267138

ตาราง 11: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสันของ ตัวอย่างที่ 2.13

รูปที่ 22: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสันของตัวอย่าง ที่ 2 13

รูปที่ 23: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตัน ราฟสันของตัวอย่างที่ 2.13

แบบฝึกหัด 2.2

- 💿 จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีจุดตรึงอย่างง่าย เมื่อร้อยละ ของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนดทศนิยม 4ตำแหน่ง
 - $e^x = 3x$ 2 $x = \frac{1}{(x+1)^2}$ 3 $1 + x^2 = x^3$

 - $x \sin x = 0.5$
- จงหาค่ารากุของสุมการต่อไปนี้ โดยใช้ระเบียบวิธีนิวตันราฟสัน เมื่อร้อยละของ ค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนดทศนิยม 3 ตำแหน่ง
 - $x^{\sin 2} 4 = 0$
 - $e^x = 4x$
 - $x^3 5x + 3 = 0$
- 🔞 จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่ารากของสมการ
- จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพสอนเพื่อหาค่ารากของสมการ

เฉลยแบบฝึกหัด

- **1** 0.6190
 - **a** 0.4656
 - **3** 1.4660
 - **a** 1.4970
- **a** 4.5932
 - **2** 0.3574
 - $x_0 = 0.5, x_1 = 0.6470, x_2 = 0.65656, \dots$

Outline

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

จากระเบียบวิธีนิวตันราฟสัน นั่นคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (2.8)

จะเห็นได้ว่า ระเบียบวิธีนิวตันราฟสันต้องมีการหาอนุพันธ์ของฟังก์ชัน ซึ่งในบาง ฟังก์ชันมีรูปแบบที่ซับซ้อนและหาอนุพันธ์ได้ลำบาก ทำให้การหาค่ารากของสมการ จะยุ่งยากมากขึ้น เพื่อหลีกเลี่ยงปัญหาดังกล่าว ระเบียบวิธีเซแคนต์ (Secant Method) จะแทนค่า $f'(x_i)$ ในสมการ (2.8) โดยการประมาณค่าที่สามารถ คำนวณได้ง่ายขึ้น

เนื่องจาก อนุพันธ์ของฟังก์ชันนิยามโดย

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

สำหรับ h มีค่าน้อยมากๆ จะได้

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

โดยเฉพาะอย่างยิ่ง ถ้า $x=x_i$ และ $h=x_{i-1}-x_i$ จะได้

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$
 (2.9)

แทนค่า (2.9) ใน (2.8) จะได้

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
(2.10)

ซึ่งสมการ (2.10) เรียกว่า **สูตรเซแคนต์ (Secant formula)**

รูปที่ 24: กราฟแสดงการประมาณค่ารากของสมการโดยระเบียบวิธีเซแคนต์

ขั้นตอนระเบียบวิธีเซแคนต์ (Secant Method)

- $oldsymbol{0}$ หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก f(x)=0
- $oldsymbol{2}$ เลือกค่าเริ่มต้น x_0
- \bullet คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)(x_{i-1} x_i)}{f(x_{i-1}) f(x_i)}$
- lacktriangle นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|arepsilon_a|<arepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|arepsilon_a|<arepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

ตัวอย่างที่ 2.14

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบระเบียบวิธีเซแคนต์ (Secant Method) กำหนดให้ $\varepsilon_s=0.05\%$ และค่าเริ่มต้น $x_{-1}=0$ และ $x_0=1$ (ค่าจริง =0.56714329)

i	x_i	ε_a	$arepsilon_t$
1	0.61269984	63.21205588	8.03263436
2	0.56383839	8.66586039	0.58272766
3	0.56717036	0.58747239	0.00477277
4	0.56714331	0.00476984	0.00000293

ตาราง 12: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของตัวอย่างที่ 2.14

รูปที่ 25: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของตัวอย่างที่ 2.14

รูปที่ 26: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธี เซแคนต์ของตัวอย่างที่ 2.14

รูปที่ 27: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซำ้ด้วยระเบียบวิธี เซแคนต์ของตัวอย่างที่ 2.14

Comparison of Convergence of the Secant and False-Position Techniques

์ ตัวอย่างที่ 2.15

จงหารากของสมการ $f(x)=\ln x$ โดยระเบียบวิธีเซแคนต์ และระเบียบวิธีวางตัวผิด ที่ กำหนดให้ค่าเริ่มต้น $x_l=x_{l-1}=0.5$ และ $x_u=x_i=5$

วิธีทำ กำหนดให้ $f(x) = \ln x = 0$ $x_l = x_{l-1} = 0.5$ และ $x_u = x_i = 5$ โดยใช้ระเบียบวิธีเซแคนต์ และระเบียบวิธีวางตัวผิดที่ สามารถหาค่ารากของสมการ ได้ดังตารางที่ 13 และ 14 จะเห็นได้ว่า เมื่อใช้ระเบียบวิธีวางตัวผิดที่ในการประมาณ ค่ารากของสมการจะลู่เข้าสู่คำตอบ ส่วนการคำนวณโดยใช้ระเบียบวิธีเซแคนต์จะลู่ ออกจากคำตอบ

Comparison of Convergence of the Secant and False-Position Techniques

i	x_i	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	1.85463498	0.61768790	85.46349805
2	1.21630782	0.19581989	21.63078185
3	1.05852096	0.05687262	5.85209625
4	1.01616935	0.01604002	1.61693498
5	1.00449491	0.00448483	0.44949065

Comparison of Convergence of the Secant and False-Position Techniques

i	x_i	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	1.85463498	169.59482877	85.46349805
2	-0.10438079	-1876.79718477	110.43807924

ตาราง 14: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของตัวอย่างที่ 2.15

รูปที่ 28: การเปรียบเทียบร้อยละค่าคลาดเคลื่อนสัมพัทธ์ (ϵ_t) ของทุกระเบียบวิธี เพื่อหาค่า รากของ $f(x)=e^{-x}-x$

<ロト 4回 > 4 三 > 4 三 > 1 三 り へ 〇

แบบฝึกหัด 2.3

- จงหาค่ารากของสมการ $x^{2.2}=69$ ที่อยู่ในช่วง [5,8] โดยใช้ระเบียบวิธี เซแคนต์ เมื่อร้อยละของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05%
- 💿 จงหาค่ารากของฟังก์ชัน $f(x) = \cos x x$ โดยใช้ระเบียบวิธีเซแคนต์ กำหนด ค่าเริ่มต้น $x_{-1} = 0.5$ และ $x_0 = \pi/4$ เมื่อค่าคลาดเคลื่อนสัมบูรณ์ต้องน้อย กว่า 0.00000004
- 🚳 จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่ารากของสมการ
- 🐠 จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่ารากของสมการ

เฉลยแบบฝึกหัด

- **1** 6.85236.
- **2** 0.73908518