

2009 - 2010 学年第一学期

考试统一用答题册

题号	 _	 四	五.	六	七	八	总分
成绩							
阅卷人							

考试课程_		复变函数与积分变换 A					
班	级_	学号					
姓	名_						

2010年1月13日

1

(试题共5页)

一、判断对邻	措(每题2分	, 共10分)	•			
1. 如果 z 不	是实数,则a	$rg\bar{z} = -argz$ ()			
2. 设 f(z)	和 g(z) 均为雪	隆函数,则 $5f(z)+i$	g(z)也是整函数。()		
3. 微积分中	的求导公式、	洛必达法则、积分	中值定理等均可推广到	到复变函数。()		
4. 存在在原	原点解析,在-	$\frac{1}{n}$ 处取值为 $1,0,\frac{1}{3},0$	$\frac{1}{5}$,…的函数。()		
5. 若∞是8	函数 f(z) 的 🗖	可去奇点,则 $f(z)$ 在	[∞ 处的留数为 0。()		
	(每题 3 分,与 程所表示的平	÷ 24 分) 面点集中,为有界区	域的是()			
(A)	$\left \frac{z-1}{z+1}\right >2$		(B) $ z+3 - z-3 >$	• 4		
(C) 1	$< \operatorname{Re} z < 2,$	$\operatorname{Im} z = 0 \tag{D}$	$z\bar{z} + a\bar{z} + \bar{a}z + a\bar{a} -$	$-c>0\ (c>0)$		
2. 假设点 2	z_0 是函数 $f(z)$)的奇点,则函数 f ((z)在点 z ₀ 处()		
	不可导 不连续	(B) 不解析 (D) 以上答				
3. 设 C 为	椭圆 x² + 4y	$c^2 = 1$,则积分 $\int_C \frac{1}{z}$ d	1z = ()			
(A) 2	2 <i>π</i> i	(B) π	(C) 0	(D) $-2\pi i$		
4. 设 <i>c</i> 为ī	E向圆周 z =	$1 , \int_C \left \frac{dz}{z} \right = ($)			
(A) 2	$2\pi i$	(B) 2π	(C) −2 π i	(D) -2 π		
5. 如果 z_0 为 $f(z)$ 的 n 级极点,则 z_0 为 $f'(z)$ 的()级极点						
(A) n		(B) $-n$	(C) $n-1$	(D) $n+1$		
6. Res[-	$\frac{1}{z\sin z}, z=0$]= ()				
(A)	2πi	(B) 2 π	(C) 0	(D) $-2\pi i$		
7. 设 f(t)的傅立叶变	换为 $F(ω)$,则 $f($	at + b)(a,b为实数且	Aa > 0) 的傅立叶变换为		
()					

(A)
$$\frac{1}{a}e^{i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (B) $\frac{1}{a}e^{i\frac{b}{a}\omega}F(\frac{\omega}{a})$

(B)
$$\frac{1}{a}e^{i\frac{b}{a}\omega}F(\frac{\omega}{a})$$

(C)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$

(C)
$$\frac{1}{a}e^{-i\frac{b}{a^2}\omega}F(\frac{\omega}{a})$$
 (D) $\frac{1}{a}e^{-i\frac{b}{a}\omega}F(\frac{\omega}{a})$

8. 函数
$$\frac{s^2}{(s+1)^2+1}$$
 的拉普拉斯逆变换为 ()

(A)
$$\delta(t) - 2e^{-t} \cos t$$

(A)
$$\delta(t) - 2e^{-t}\cos t$$
 (B) $\delta(t) - 2\cos t - 2\sin t$

(C)
$$\delta(t) - 2e^{-t} \sin t$$
 (D) $\frac{i-1}{2}e^{it}$

$$(\mathbf{D})\frac{i-1}{2}e^{it}$$

1.
$$\exists z = \frac{\cos(\frac{5}{6}\pi) + i\sin(\frac{5}{6}\pi)}{\cos(\frac{1}{3}\pi) + i\sin(\frac{1}{3}\pi)}$$
 时, $z^{-2009} + z^{2357} + z^{-256} + z^{74}$ 的值等于______.

$$\lim_{z\to 2+3i} \oint_{c} \frac{e^{\zeta}}{\xi-z} d\xi = \underline{\qquad}$$

四、 $(8\, \mathcal{G})$ 计算积分 $\int_C \frac{1}{(z^2+a^2)^2} dz$,其中C 为不经过 $z=\pm ai$ 的简单正向闭曲线.

五、
$$(8 分)$$
 将 $f(z) = \frac{1}{(z+i)(z-2)}$ 在适当的圆环域内展成以 2 为心的幂级数。

六、(10 分)计算函数 $f(t) = \begin{cases} t, & |t| \leq 1 \\ 0, & 其他 \end{cases}$ 的傅立叶变换,并求积分

$$\int_{0}^{+\infty} \left(\frac{\sin \omega}{\omega^2} - \frac{\cos \omega}{\omega}\right) \sin \omega t d\omega \text{ in } dt$$