Counter

Praktikum Rangkaian Digital

Ilmu Komputer IPB

2020

Binary Counter

Counter 4-Bit

Counter 4-Bit (IC)

Test Counter 8-Bit

- Prinsip kerja binary counter adalah dengan memakai flip-flop untuk membagi frekuensi clock menjadi dua.
- Jika frekuensi clock 16 Hz, maka
 - ▶ frekuensi keluaran flip-flop pertama adalah 8 Hz
 - ▶ frekuensi keluaran flip-flop kedua adalah 4 Hz
 - ▶ frekuensi keluaran flip-flop ketiga adalah 2 Hz
 - dan seterusnya...

Decimal Counter

Decimal Counter

▶ Setiap nilai counter mencapai 1010, akan di-reset ke 0000

Decimal Counter (IC)

Test Decimal Counter 3-Digit

Implementasi

Clock Generator

fritzing

Counter 2-Bit

Counter 2-Bit

fritzing

Counter 4-Bit

Tugas

Kuis LMS

Ada dua jenis jam: mekanik dan elektronik.

Jam elektronik bekerja dengan menggunakan osilasi kristal *quartz* sebagai *clock* untuk menghitung waktu per detiknya. Temukan jawaban pertanyaan berikut di Wikipedia atau sumber lainnya.

- 1. Berapa frekuensi kristal quartz ini?
- 2. Berapa *flip-flop* yang dibutuhkan untuk menghasilkan keluaran frekuensi 1 Hz?

Simulasi dan Implementasi Counter

- Buat simulasi pada Logisim (gunakan templat di LMS):
 - counter 4-bit
 - test counter 8-bit
- Penilaian langsung pada saat praktikum oleh asprak