第八章 群和环

第十节 子群及其证明 (3)

设<G,★>是群,S是G的非空子集,如果对任意 $a,b \in S$,均有 $a \star b^{-1} \in S$,则 <S,★>是 <G,★>的子群。

S是非空子集	V
★在S上封闭	?
幺元在S中	?
S中每个元素均可逆	?

定理: 设<G,★>是群,S是G的非空子集,如果对任意 a,b∈S, 均有a★b-1∈S,则<S,★>是<G,★>的子群。

证明: (1)先证幺元 e∈S

任取 a∈S, 由已知得 a \star a⁻¹∈S, 而 a★a-1=e,即 e∈S。

(2)再证S中任意元素均可逆 任意 b∈S, 都 有 b-1∈S

任取 b∈S, 由(1)知 e∈S, 再由已知得 e★b-1∈S, 而 e★b-1= b-1, 即 b-1∈S

定理: 设<G,★>是群,S是G的非空子集,如果对任意 a,b∈S, 均有a★b-1∈S,则<S,★>是<G,★>的子群。

证明: (3)最后证明 <S,★> 的封闭性 ←

任意 a,b∈S, 都有 a★b ∈S

任取 a,b∈S, 由(2)知 b⁻¹∈S, 由已知得 a★(b-1)-1∈S, 即得 a★b∈S <

— 任意 b∈S, 都有 $(b^{-1})^{-1}=b$

综上, <S,★> 是 <G,★> 的子群。

练习:已知< $H_1, \star >$ 和< $H_2, \star >$ 是群< $G, \star >$ 的子群,求证
< $H_1 \cap H_2, \star >$ 是< $H_1, \star > \wedge <$ H₂, $\star >$ 和< $G, \star >$ 的子群。

使用 定义证明 使用 定理证明

定理: 设 <G,★> 是群, S 是G的非空子集, 如果任意 a,b∈S, 有a★b-1∈S, 则 <S,★> 是 <G,★>的子群。

H₁∩H₂是H₁、H₂及G的非空子集

?

任意a,b∈H₁∩H₂, a★b⁻¹∈H₁∩H₂

?

练习: 已知<H₁,★>和<H₂,★> 是群<G,★>的子群, 求证 <H₁∩H₂,★> 是<H₁,★>、<H₂,★>和<G,★>的子群。

证明: (1) 先证明 H₁∩H₂ 是 H₁、H₂及 G 的非空子集

显然 $H_1 \cap H_2 \subseteq H_1$, $H_1 \cap H_2 \subseteq H_2$, $H_1 \cap H_2 \subseteq G$; 因为<H₁,★>和<H₂,★> 是群<G,★> 的子群,所以幺 元 e∈H₁ 并且 e∈H₂, 于是 $e \in H_1 \cap H_2$, 即 $H_1 \cap H_2 \neq \Phi$, 所以 H₁∩H₂ 是 H₁、H₂及 G 的非空子集。

练习:已知 $<H_1, \star>$ 和 $<H_2, \star>$ 是群<G, $\star>$ 的子群,求证 $<H_1\cap H_2, \star>$ 是<H₁ $, \star>$ 、<H₂, $\star>$ 和<G, $\star>$ 的子群。

证明:

(2) 再证明对任意 $a,b \in H_1 \cap H_2$, $a \star b^{-1} \in H_1 \cap H_2$

因为 $a,b \in H_1 \cap H_2$,所以 $a,b \in H_1 \oplus H_2$; 又因为 $<H_1, *>$ 和 $<H_2, *>$ 是群<G, *>的子群,所以 b^- 1 \in H_1 , $b^{-1} \in H_2$;再由封闭性知 $a * b^{-1} \in H_1$, $a * b^{-1} \in H_2$,即有 $a * b^{-1} \in H_1 \cap H_2$

综上 <H₁∩H₂,★>是<H₁,★>,<H₂,★>和<G,★>的子群。

四. 如何求解证明问题

将题中所给的已知条件 与定义、定理做比较, 确定缺少的要素。

第十节 结束