Universidade Federal de Alfenas

Instituto de Ciências Exatas Ciência da Computação

Relatório de Pesquisa Operacional Problema de Telecomunicações parte 3

Alunos:

Alexandre William Miya - RA: 2014.1.08.004 Gustavo Alves Miguel - RA: 2014.1.08.013

Professor:

Humberto César Brandão de Oliveira

Conteúdo

1	Apresentação	1
2	Descrição da Atividade	1
3	Modelos Matemáticos 3.1 Caso 1	1
	3.2 Caso 2	2
	3.3 Caso 3	3
4	Resultados	3
5	Considerações	3

1 Apresentação

As telecomunicações constituem um ramo da engenharia elétrica que contempla o projeto, a implantação, manutenção e controles de redes de sistemas de comunicações (satélites, redes telefonicas, televisivas, emissora de rádio, internet, entre outros). A principal finalidade das telecomunicações é suprir a necessidade humana de se comunicar à distância. É comum o prefixo tele ser omitido e, com isto, usar-se a palavra comunicações.

2 Descrição da Atividade

Temos a possibilidade de instalar pela cidade várias antenas fornecedoras para dar suporte aos nossos consumidores. O conjunto de todas as antenas candidatas é definido por F, sendo que cada antena candidata $f \in F$, possui:

- 1. $r_{\rm f}$: raio de cobertura;
- 2. $x_{\rm f}$: posição longitudinal de f;
- 3. y_f : posição latitudinal de f;
- 4. $l_{\rm f}$: limite de capacidade da largura de banda de f;
- 5. $c_{\rm f}$: custo de instalação de f;

Cada consumidor $c \in C$ possui:

- 1. d_c : demanda por largura de banda de c;
- 2. x_c : posição longitudinal de c;
- 3. y_c : posição latitudinal de c;

Nosso objetivo é reduzir o custo de instalação de antenas fornecedoras do serviço, atendendo toda a demanda de todos os consumidores.

Um consumidor c só pode ser atendido por um fornecedor f caso esteja dentro de seu raio $r_{\rm f}$ de atuação.

A necessidade de largura de banda d_c de um consumidor c pode ser atendida por mais de um fornecedor.

3 Modelos Matemáticos

Deste modo, temos a matriz bidimensional $y_{\rm fc}$ e temos um vetor booleano $x_{\rm f}$ que representa as antenas a serem instaladas.

3.1 Caso 1

A necessidade de largura de banda d_c de um consumidor c pode ser atendida por mais de um fornecedor.

Modelo matemático 1:

$$\operatorname{Min} \sum_{f \in F} c_{\mathbf{f}}.x_{\mathbf{f}}$$

Sujeito a:

$$\forall \ \mathbf{c} \in C, \ \sum_{f \in F} y_{\mathrm{fc}} = d_{\mathbf{c}} \ ,$$

$$\forall f \in F, \sum_{c \in C} y_{fc} \leq l_f$$

$$y_{fc} \in \mathbb{R}, f \in F, c \in C, y_{fc} = 0 \text{ se } \sqrt{(x_c - x_f)^2 + (y_c - y_f)^2} > r_f,$$

$$\forall$$
f
 $\in F,\,(M.x_{\mathrm{f}}) \geq \sum_{c \in C} y_{\mathrm{fc}}$, onde M
 tende ao infinito

3.2 Caso 2

Neste caso, temos as mesmas condições que o caso anterior, porém o modelo é fornecido pelo professor. Abaixo listamos as alterações em relação ao primeiro modelo.

Modelo matemático 2:

Inclusão de uma matriz booleana $a_{\rm fc}$ que representa as antenas que estão dentro do raio de cobertura de cada fornecedor.

$$\forall$$
f
 $\in F,\,\forall$ c
 $\in C,\,y_{\mathrm{fc}} \leq (M.a_{\mathrm{fc}}$, onde M tende ao infinito

3.3 Caso 3

A necessidade de largura de banda d_c de um consumidor c não pode ser atendida por mais de um fornecedor.

Deste modo, a matriz bidimensional $y_{\rm fc}$ é booleana.

$$\forall \mathbf{f} \in F, \sum_{c \in C} y_{\text{fc}}.d_{\mathbf{c}} \leq l_{\mathbf{f}},$$

$$\forall \mathbf{c} \in C, \sum_{f \in F} y_{\text{fc}} \geq 1,$$

4 Resultados

O experimento foi realizado em computador com processador i5 e 4Gb de memória RAM. A seguir é apresentado o resultado encontrado com a solução:

```
Total (root+branch&cut) = 0.91 sec. (270.27 ticks)
Valor min: 61.324230687100005
CONSTRUÍDO COM SUCESSO (tempo total: 2 segundos)
```

Figura 1: Resultado mínimo encontrado para o problema da telecomunicações, caso 1.

```
Total (root+branch&cut) = 0.75 sec. (268.29 ticks)

Valor min: 61.32423068709999

CONSTRUÍDO COM SUCESSO (tempo total: 3 segundos)
```

Figura 2: Resultado mínimo encontrado para o problema da telecomunicações, caso 2.

```
Total (root+branch&cut) = 8.25 sec. (3657.65 ticks)
Valor min: 61.3242306871
CONSTRUÍDO COM SUCESSO (tempo total: 10 segundos)
```

Figura 3: Resultado mínimo encontrado para o problema da telecomunicações, caso 3.

5 Considerações

Em um comparativo entre os modelos, a execução do caso 2 demonstrouse mais rápida que os outro modelos.