<u>construction</u> given a linear map $A: \mathbf{R}^n \to \mathbf{R}^m$, we construct a function $A^{\dagger}: \mathbf{R}^m \to \mathbf{R}^n$ as follows. given $b \in \mathbf{R}^m$ let $A^{\dagger}(b)$ be the vector $x \in \mathbf{R}^n$ of minimal norm amongst all vectors minimizing ||Ax - b||.

observations

for A is invertible we have $A^{\dagger} = A^{-1}$

for A an orthogonal projection we have $A^{\dagger} = A$

exercise if $x^* \in \mathbf{R}^n$ is any minimizer of ||Ax - b|| then $A^{\dagger}(b) = \operatorname{Proj}_{(\ker A)^{\perp}} x^*$. in particular, in order to find $A^{\dagger}(b)$ one must first find $p = \operatorname{Proj}_{\operatorname{img} A} b$, then take any preimage $Ax^* = p$, and finally get $A^{\dagger}(b) = \operatorname{Proj}_{(\ker A)^{\perp}} x^*$.

corollary A^{\dagger} is a linear map. in other words \cdot^{\dagger} is a function taking $m \times n$ matrices to $n \times m$ matrices.

<u>observation</u> we have $AA^{\dagger} = \operatorname{Proj}_{\operatorname{img}A}$ and $A^{\dagger}A = \operatorname{Proj}_{(\ker A)^{\perp}}$.

in particular, if the columns of A are linearly independent then $A^{\dagger}A = I$ and if the rows of A are linearly independent then $AA^{\dagger} = I$.

corollary we have

i.
$$AA^{\dagger}A = A$$

ii.
$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

iii. AA^{\dagger} and $A^{\dagger}A$ are symmetric

claim A^{\dagger} is characterized by the above three properties.

<u>proof</u> suppose $B \in \mathbf{R}^{n \times m}$ also satisfies these properties. we get $AB = AA^{\dagger}AB = (AA^{\dagger})^t(AB)^t = (A^{\dagger})^t(ABA)^t = AA^{\dagger}$ and similarly $BA = A^{\dagger}A$. finally $AB = AB = A^{\dagger}AB = A^{\dagger}AB = A^{\dagger}AB = A^{\dagger}AB$.

corollaries

 $\dot{}$ is an involution, namely $(A^{\dagger})^{\dagger} = A$

$$(\ker A)^{\perp} = \mathrm{img} A^t = \mathrm{img} A^{\dagger}$$

$$(A^{\dagger})^t = (A^t)^{\dagger}$$

if
$$A = \operatorname{diag}(d_i)$$
 then $A^{\dagger} = \operatorname{diag}(b_i)$ where $b_i = \begin{cases} 1/d_i & d_i \neq 0 \\ 0 & d_i = 0 \end{cases}$

if U is orthogonal then $(UA)^{\dagger} = A^{\dagger}U^{t}$

if V is orthogonal then $(AV)^{\dagger} = V^t A^{\dagger}$

conclusion

 $x = A^{\dagger}b$ is a minimizer for ||Ax - b||. we may easily compute A^{\dagger} via the SVD decomposition of A.