Homework 7

Recall the homework guidelines for this course.

In this homework set, for integers $0 \le k \le n$, we define the set $B_{n,k}$ to be the set of subsets of $\{1,\ldots,n\}$ containing k elements (so $B_{n,k} \subseteq \mathscr{P}(\{1,\ldots,n\})$). For example,

$$B_{4,2} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\} \subseteq \mathscr{P}(\{1,2,3,4\}).$$

- 1. Let's do some examples first.
 - (a) Compute $B_{4,k}$ for all $k \in \{0, 1, 2, 3, 4\}$.
 - (b) Give bijective functions from $B_{4,0}$ to $B_{4,4}$ and from $B_{4,1}$ to $B_{4,3}$. Do not forget to explain why they are bijective functions.
 - (c) Compute $B_{5,k}$ for all $k \in \{0, 1, 2, 3, 4, 5\}$.
 - (d) Give bijective functions from $B_{5,0}$ to $B_{5,5}$, from $B_{5,1}$ to $B_{5,4}$, and from $B_{5,2}$ to $B_{5,3}$. Do not forget to explain why they are bijective functions.
- 2. Now we can generalize the examples.
 - (a) Given any positive integers n and k with $k \leq n$, give a bijective function between $B_{n,k}$ and $B_{n,n-k}$. That is, define the function and prove that it is bijective. *Hint: use the complement of the subset*.
 - (b) Prove that $|B_{n,k}| = |B_{n,n-k}|$ for any $0 \le k \le n$.
- 3. Another interesting property of $|B_{n,k}|$: for $k \geq 1$, prove that $|B_{n,k}| = |B_{n-1,k}| + |B_{n-1,k-1}|$.
- 4. Now let's compute all of the possible values.
 - (a) Show that for all $n \geq 0$, we have $|B_{n,0}| = |B_{n,n}| = 1$.
 - (b) Fill out the following triangle:

Hint: the triangle should look familiar.

(c) How would you use what you have learned to compute $|B_{100,30}|$ without writing the set explicitly? This asks for an explanation of a procedure and **not** a number.

Homework 7

5. Now we will find an identity that relates $|\mathscr{P}(\{1,\ldots,n\})|$ with the sum

$$|B_{n,0}| + |B_{n,1}| + \cdots + |B_{n,n-1}| + |B_{n,n}|.$$

- (a) Show that if $A \in \mathcal{P}(\{1,\ldots,n\})$, then A belongs to $B_{n,k}$ for a unique $k \in \{0,\ldots,n\}$.
- (b) Conclude that $|\mathscr{P}(\{1,\ldots,n\})| = |B_{n,0}| + |B_{n,1}| + \cdots + |B_{n,n-1}| + |B_{n,n}|$.
- 6. Now let's find a different pattern
 - (a) Compute the sum of all entries in each row from the completed triangle in Problem 4. What pattern do you observe?
 - (b) How many elements does $\mathscr{P}(\{1,2,\ldots,n\})$ have? Justify your answer using the fact that each element of $\{1,2,\ldots,n\}$ can either be included in a subset or not.
 - (c) Prove that

$$2^{n} = |B_{n,0}| + |B_{n,1}| + \dots + |B_{n,n-1}| + |B_{n,n}|.$$

¹Note that this is the sum of the rows of the triangle.