

任务4 渠道类型分析

数据预处理

- 去除空值
- · 去除无意义的值
 - 去除性别为"无法区分"
 - 去除终端类型为 '0'
 - 去除客户类型不为'公共客户'的类型
 - 去除渠道类型描述为'其他类型的'
- · 数据整理——调整格式与赋值
- 首先对数据表中的数字字符数据进行格式转换,转换为整数或浮点数类型;
- 将文本变量进行编码

如性别编码为{ '男' : 1 , '女' : 0} , 终端 类型编码{ '2G' :1, '3G' :2, '4G' :3}等。

• 去除'产品分类'变量

Baseline 选择

- · 以全部预测为'社会渠道'为baseline
- 准确度为 54%

```
#baseline 1: 全部预测为社会渠道
acc=trial2.groupby(['channel'])['用户ID'].count()[0]/len(trial2)
#0.5424743072720177
print('全部预测为社会渠道:acc=',acc)
```

全部预测为社会渠道:acc= 0.5424743072720177

逻辑回归

- 初始模型
- 全部为默认参数

confusion matrix:
 preds 0 1
actual
0 857 378
1 499 573
accuracy= 0.6198526224534027
precision= 0.6939271255060728
recall= 0.6320058997050148

・ 优化方法1:数据变换

• 将数据标准化处理

- ・ 优化方法2:特征选择
- 通过RFECV进行特征降维

accuracy= 0.6337234503684439 precision= 0.6866396761133603 recall= 0.6493108728943339

KNN

- 初始模型
- K的初始值设置为3

• 拟合结果较差,对模型进行优化

KNN

- 优化方法1:数据变换
- 考虑三种方式:
 - 不做变换
 - 标准化处理
 - 按最值区间缩放
- 最终选择将特征按照最值区间缩放 ,

发现模型准确度有显著提升

```
X_train, X_test, y_train, y_test =
    train_test_split(data, target, test_size=0.3, random_state=50)
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
v pred=knn.predict(X test)
print('original accuracy= ',accuracy_score(y_test, y_pred))
s = StandardScaler()
s data = s.fit transform(data)
X_train, X_test, y_train, y_test =
    train_test_split(s_data, target, test_size=0.3, random_state=100)
knn.fit(X_train,y_train)
y pred=knn.predict(X test)
print('Standard accuracy= ',accuracy score(y test, y pred))
mm = MinMaxScaler()
m data = mm.fit transform(data)
X train, X test, y train, y test =
    train_test_split(m_data, target, test_size=0.3, random_state=100)
knn.fit(X train,y train)
y pred=knn.predict(X test)
print('MinMax accuracy= ',accuracy score(y test, y pred))
original accuracy= 0.5370611183355006
Standard accuracy= 0.6168183788469874
```

MinMax accuracy= | 0.6302557433896836

KNN

- ・ 优化方法2: 参数优化
- 通过学习曲线,寻找最优参数 k
- 得到最优参数 k = 18

best k = 18

KNN

- 最优模型
- 准确度为 66%
- 查准率为 80%
- 查全率为 64%

随机森林

- 初始模型
- 所有参数皆为默认值

```
confusion matrix:
  preds     0      1
actual
0      1009     269
1      436     593
accuracy= 0.694408322496749
precision= 0.7895148669796557
recall= 0.6982698961937717
cross_val_score= 0.7063878174512862
obb= 0.6966542750929368
```

• 拟合效果较KNN更好

随机森林

- ・ 优化方法: 超参优化
- 由于数据变换,对于随机森林模型的准确度提升不大,所以不考虑对数据进行变换
- 采用方法:
- 利用cross_val_score完成 K折交叉验证
- 优化参数1: n_estimators(森林中树的 数量)
- 通过学习曲线 , 寻找最优 cross_val_score

271 0.690515612718949

随机森林

- ・ 优化方法: 超参优化
- 优化参数2: n_ features(特征的数量)
- ・ 优化参数3: max_depth (树的最大 深度)
- 采用方法:
- 通过网格搜索寻找最优

```
cross_val_score
```

```
param grid = {'max features' : np.arange(1,17,1)}
#一般根据数据大小进行尝试,像该数据集 可从1-10 或1-20开始
rf = RandomForestClassifier(n_estimators=n_est,random_state=50,n_jobs=-1
GS = GridSearchCV(rf,param grid,cv=5)
GS.fit(data,target)
max_f=GS.best_params_['max_features']
print(GS.best_params_)
print(GS.best score )
{'max_features': 12}
0.7009244022393445
param_grid = {'max_depth' : np.arange(1,30,1)}
#一般根据数据大小进行尝试,像该数据集 可从1-10 或1-20开始
rf = RandomForestClassifier(n_estimators=n_est,max_features=max_f,random
GS = GridSearchCV(rf,param grid,cv=5)
GS.fit(data,target)
max_d=GS.best_params_['max_depth']
print(GS.best params )
print(GS.best score )
{'max depth': 13}
```

0.7074272834875838

随机森林

- 最优模型
- 将搜索到的最优参数带入模型
- 准确度为 71%
- 查准率为 80%
- 查全率为 71%

```
confusion matrix:
  preds     0     1
actual
0     1025    253
1     419    610
accuracy= 0.7087126137841352
precision= 0.8020344287949922
recall= 0.7098337950138505
cross_val_score= 0.7063878174512862
obb= 0.6966542750929368
```


随机森林

- 最优模型
- 将搜索到的最优参数带入模型
- 准确度为 71%
- 查准率为 80%
- 查全率为 71%

```
confusion matrix:
  preds     0      1
actual
0      1025     253
1      419     610
accuracy= 0.7087126137841352
precision= 0.8020344287949922
recall= 0.7098337950138505
cross_val_score= 0.7063878174512862
obb= 0.6966542750929368
```

・ ROC曲线:

随机森林

- 最优模型
- 将搜索到的最优参数带入模型
- 准确度为 71%
- 查准率为 80%
- 查全率为 71%

```
confusion matrix:
  preds     0     1
actual
0     1025    253
1     419    610
accuracy= 0.7087126137841352
precision= 0.8020344287949922
recall= 0.7098337950138505
cross_val_score= 0.7063878174512862
obb= 0.6966542750929368
```

· 特征重要性排序:

1)	性别
2)	年龄
3)	归属地
4)	在网时长
5)	换机频率
6)	终端类型
7)	最近使用操作系统偏好
8)	上网流量使用
9)	漫游流量使用
10)	总收入
11)	增值收入
12)	流量收入
13)	短信收入
14)	彩信收入
15)	语音收入
16)	是否欠费
17)	产品大类

0.146783 0.138733 0.089952 0.079088 0.076729 0.070941 0.070757 0.059099 0.057437 0.051996 0.051297 0.042586 0.037483 0.010720 0.008336 0.006476

0.001588