Contents

1	Fun	$\operatorname{actions}$	
	1.1	factor.ecm – ECM factorization	
		1.1.1 ecm – elliptic curve method	

Chapter 1

Functions

1.1 factor.ecm – ECM factorization

This module has curve type constants:

S: aka SUYAMA. Suyama's parameter selection strategy.

B: aka BERNSTEIN. Bernstein's parameter selection strategy.

A1: aka ASUNCION1. Asuncion's parameter selection strategy variant 1.

A2: aka ASUNCION2. ditto 2.

A3: aka ASUNCION3. ditto 3.

A4: aka ASUNCION4. ditto 4.

A5: aka ASUNCION5. ditto 5.

See J.S.Asuncion's master thesis [?] for details of each family.

1.1.1 ecm – elliptic curve method

```
\begin{array}{l} \mathbf{ecm(n:} \ integer, \ \mathbf{curve\_type:} \ \mathbf{curvetype} {=} \mathbf{A1,} \ \mathbf{incs:} \ integer {=} \mathbf{3,} \ \mathbf{trials:} \\ integer {=} \mathbf{20,} \ \mathbf{verbose:} \ bool {=} \mathbf{False}) \\ & \rightarrow integer \end{array}
```

Find a factor of n by elliptic curve method.

If it cannot find non-trivial factor of n, then it returns 1.

curve_type should be chosen from curvetype constants above.

The second optional argument incs specifies a number of changes of bounds. The function repeats factorization trials several times changing curves with a fixed bounds.

Optional argument ${\tt trials}$ can control how quickly move on to the next higher bounds.

verbose toggles verbosity.