Специальные главы линейной алгебры

Автор конспекта: Николай Колб

20 января 2025 г.

Глава 1

Евклидово и унитарное пространство

1.1 Билинейные формы и их свойства

Пусть V - Линейное пространство над вещественным полем $\mathbb R$

Определение 1.

Билинейной формой на V называется функция $f(x,y):V\times V\to\mathbb{R},$ для которой определены следующие свойства:

- 1. $\forall x, y, z \in V$ f(x + y, z) = f(x, z) + f(y, z)
- 2. $\forall \alpha \in \mathbb{R}, \forall x, y \in V$ $f(\alpha x, y) = \alpha f(x, y)$
- 3. $\forall x, y, z \in V$ f(x, y + z) = f(x, y) + f(x, z)
- 4. $\forall \beta \in \mathbb{R}, \forall x, y \in V$ $f(x, \beta y) = \beta f(x, y)$

Свойства билинейной формы:

• Матричный вид билинейной формы f в базисе E задается матрицей $A=(a_{ij}),$ где $a_{ij}=f(e_i,e_j).$

Тогда

$$f(x,y) = x^T A y$$

где x и y — вектор-столбцы координат x и y в базисе E.

 \bullet Билинейная форма f называется симметричной, если

$$f(u, v) = f(v, u) \quad \forall u, v \in V$$

• Билинейная форма f называется кососимметричной, если

$$f(u, v) = -f(v, u) \quad \forall u, v \in V$$

• Билинейная форма f называется невырожденной, если для любого ненулевого вектора $u \in V$ существует вектор $v \in V$ такой, что $f(u, v) \neq 0$.

Пусть V — векторное пространство над полем \mathbb{C} .

Определение 2.

Полуторолинейной формой на V называется функция $g: V \times V \to \mathbb{C}$, удовлетворяющая следующим свойствам:

- 1. $\forall x, y, z \in V$ g(x + y, z) = g(x, z) + g(y, z)
- 2. $\forall \alpha \in \mathbb{C} \ \forall x, y \in V \quad g(\alpha x, y) = \alpha g(x, y)$
- 3. $\forall x, y, z \in V$ g(x, y + z) = g(x, y) + g(x, z)
- 4. $\forall \mu \in \mathbb{C}, \ \forall x, y \in V \quad g(x, \mu y) = \overline{\mu}g(x, y)$
- 5. $g(x,y) = \sum_{i,j=1}^{n} g(e_i, e_j) \, \xi_i \, \overline{\nu_j}$

1.2 Определения евклидовых и унитарных пространств

Определение 3.

Евклидово пространство — это вещественное линейное пространство E, на котором задана симметричная положительно определенная билинейная форма $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$, обладающая следующими свойствами:

- 1. $\forall x, y \in E \quad \langle x, y \rangle = \langle y, x \rangle$
- 2. $\forall \alpha \in \mathbb{R} \quad \forall x, y \in E \quad \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- 3. $\forall x, y, z \in E \quad \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 4. $\forall x \in E \quad \langle x, x \rangle > 0 \quad (\langle x, x \rangle = 0 \iff x = 0)$

Из свойств (1, 2, 3) вытекает следствие: $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$

Таким образом, некоторое пространство E считается евклидовым, если и только если на нём определена скалярная симметричная билинейная форма, называемая **скалярным** произведением.

Примеры евклидовых пространств:

1. Пусть $E = \mathbb{R}^n$. Скалярное произведение в \mathbb{R}^n можно записать в виде:

$$\langle x, y \rangle = \sum_{i=1}^{n} \xi_i \mu_i$$

где
$$x=(\xi_1,\xi_2,\ldots,\xi_n)$$
 и $y=(\mu_1,\mu_2,\ldots,\mu_n)$ — векторы в \mathbb{R}^n

2. Пусть E — пространство непрерывных функций на отрезке [a,b]. Скалярное произведение можно определить как:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$

Определение 4.

Унитарное пространство — это комплексное линейное пространство U, на котором задана эрмитова положительно определенная полуторалинейная форма $\langle \cdot, \cdot \rangle : U \times U \to \mathbb{C}$, обладающая следующими свойствами:

1.
$$\forall x, y \in U \quad \langle x, y \rangle = \overline{\langle y, x \rangle}$$

2.
$$\forall \lambda \in \mathbb{C} \quad \forall x, y \in U \quad \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

3.
$$\forall x, y, z \in U \quad \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

4.
$$\forall x \in U \quad \langle x, x \rangle \in \mathbb{R} \quad \langle x, x \rangle \ge 0 \quad (\langle x, x \rangle = 0 \Longleftrightarrow x = 0)$$

Примеры унитарных пространств:

1. Пусть $U = \mathbb{C}^n$. Скалярное произведение в \mathbb{C}^n можно записать в виде:

3

$$\langle x, y \rangle = \sum_{i=1}^{n} \xi_i \overline{\mu_i}$$

где
$$x=(\xi_1,\xi_2,\ldots,\xi_n)$$
 и $y=(\mu_1,\mu_2,\ldots,\mu_n)$ — векторы в $\mathbb{C}^n.$

2. Пусть U — пространство непрерывных функций на отрезке [a,b] с комплексными значениями. Скалярное произведение можно определить как:

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx$$

Пусть V— Евклидово / Унитарное пространство.

Определение 5.

 $\|x\| = \sqrt{\langle x, x \rangle}$ - норма вектора $x \in V$

- $\bullet \|x\| > 0 \quad \longleftrightarrow \quad x \neq 0$
- $\bullet \|x\| = 0 \quad \longleftrightarrow \quad x = 0$

Примеры норм:

- \bullet Евклидова норма в \mathbb{R}^n : $||x|| = \sqrt{\xi_1^2 + \dots \xi_n^2} = \sqrt{\sum_{k=1}^n \xi_k^2}$
- Евклидова норма в \mathbb{C}^n : $||x|| = \sqrt{|\xi_1|^2 + \ldots + |\xi_n|^2}$

1.3 Неравенство Коши-Буняковского

Теорема 1. (Неравенство Коши-Буняковского).

Пусть K- это E или $U, \quad x,y \in K, \quad$ тогда $\|\langle x,y \rangle\| \leq \|x\| \cdot \|y\|$

Доказательство.

Для Евклидова пространства $E: \ \forall x,y \in E, \ \forall \alpha \in \mathbb{R}$

$$0 \leq \langle x - \alpha y, x - \alpha y \rangle = \langle x, x \rangle - \alpha \langle y, x \rangle - \alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle = \|x\|^2 - 2\alpha \langle x, y \rangle + \alpha^2 \|y\|^2 \geq 0$$

Это квадратный трёхчлен относительно α .

Для того чтобы оно выполнялось для всех α , дискриминант должен быть не положительным:

$$\frac{D}{4} = \langle x, y \rangle^2 - ||x||^2 ||y||^2 \le 0$$

$$\implies |\langle x, y \rangle| \le ||x|| ||y||$$

2. Для унитарного пространства U: $\forall x, y \in U, \forall \alpha, \beta \in \mathbb{C}$.

$$0 \leq \langle \alpha x + \beta y, \alpha x + \beta y \rangle = \alpha \overline{\alpha} \langle x, x \rangle + \alpha \overline{\beta} \langle x, y \rangle + \beta \overline{\alpha} \langle y, x \rangle + \beta \overline{\beta} \langle y, y \rangle =$$

$$= |\alpha|^2 \|x\|^2 + \alpha \overline{\beta} \langle x, y \rangle + \beta \overline{\alpha} \overline{\langle x, y \rangle} + |\beta|^2 \|y\|^2 \Longrightarrow$$

$$\alpha := \|y\|^2, \quad \beta := -\langle x, y \rangle$$

$$\implies \|y\|^4 \|x\|^2 - \|y\|^2 \langle x,y \rangle \overline{\langle x,y \rangle} - \|y\|^2 \langle x,y \rangle \overline{\langle x,y \rangle} \ + \ |\langle x,y \rangle|^2 \|y\|^2 \ =$$

$$= \|y\|^2 \left(\|y\|^2 \|x\|^2 - \langle x,y \rangle \overline{\langle x,y \rangle} - \langle x,y \rangle \overline{\langle x,y \rangle} + |\langle x,y \rangle|^2 \right) \\ = \|y\|^2 (\|x\|^2 \|y\|^2 - |\langle x,y \rangle|^2) \\ \geq 0$$

$$\bullet \ y \ \neq \ 0 \implies \|x\|^2 \ \|y\|^2 - |\langle x,y\rangle|^2 \ \geq \ 0 \implies |\langle x,y\rangle| \ \leq \ \|x\| \ \|y\|$$

•
$$y = 0 \Longrightarrow ||y|| = 0$$
, $\langle x, y \rangle = 0 \Longrightarrow |\langle x, y \rangle \le ||x|| ||y||$

5

1.4 Неравенство Минковского

Теорема 2. (Неравенство Минковского \triangle).

$$\forall x, y \in V \quad ||x + y|| \leq ||x|| + ||y||$$

Доказательство. 1. Для Евклидова пространства E: $\forall x, y \in E$

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

Используя неравенство Коши-Буняковского, получаем:

$$\langle x, y \rangle + \langle y, x \rangle \le 2 \cdot \frac{|\langle x, y \rangle| + |\langle y, x \rangle|}{2} \le 2 \cdot \frac{\|x\| \|y\| + \|y\| \|x\|}{2} = 2\|x\| \|y\|$$

Таким образом:

$$||x + y||^2 \le ||x||^2 + 2||x||||y|| + ||y||^2 = (||x|| + ||y||)^2$$

Извлекая квадратный корень из обеих частей, получаем:

$$||x + y|| \le ||x|| + ||y||$$

2. Для унитарного пространства U: $\forall x, y \in U$

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

Используя неравенство Коши-Буняковского, получаем:

$$||x||^2 + \overline{\langle x, y \rangle} + \langle x, y \rangle + ||y||^2 \le ||x||^2 + 2|\langle x, y \rangle| + ||y||^2 \le$$

$$\leq ||x||^2 + 2||x||||y|| + ||y||^2 = \langle ||x|| + ||y|| \rangle^2$$

Извлекая квадратный корень из обеих частей, получаем:

$$\|x+y\|\leq \|x\|+\|y\|$$

Примеры:

1.
$$\mathbb{R}^n$$
: $\langle x, y \rangle = \xi_1 \mu_1 + \ldots + \xi_n \mu_n \quad (\sum_{i=1}^n \xi_i \ \mu_i)^2 \le (\sum_{i=1}^n \xi_i^2) (\sum_{i=1}^n \mu_i^2)$

2.
$$\mathbb{C}^n$$
: $\langle x, y \rangle = \xi_1 \overline{\mu_1} + \ldots + \xi_n \overline{\mu_n} \quad (\sum_{i=1}^n \xi_i \overline{\mu_i}) \leq (\sum_{i=1}^n |\xi_i|^2) (\sum_{i=1}^n |\mu_i|^2)$

Определение 6.

Пусть \mathbb{V} — это E или U, и $\mathbb{E} = \{e_1, \dots, e_n\}$ — базис в \mathbb{V} .

Матрицей Грама называется матрица G, элементы которой определяются как:

$$G_{ij} = (\langle e_i, e_j \rangle),$$

где $\langle \cdot, \cdot \rangle$ обозначает скалярное произведение в \mathbb{V} .

Теорема 3. Теперь \mathbb{V} - это только E.

 $a_1, \ldots, a_k \in E, \quad G = (\langle a_i a_j \rangle)$

- 1. Если a_1, \ldots, a_k ЛНЗ, то |G| > 0
- 2. Если a_1, \ldots, a_k ЛЗ, то |G| = 0

Доказательство.

1. a_1, \ldots, a_k - JH3, $E_1 = \mathcal{L}(a_1, \ldots, a_k)$

$$\forall x, y \in E_1 \quad x = \xi_1 a_1 + \ldots + \xi_k a_k, \quad y = \mu_1 a_1 + \ldots + \mu_k a_k$$

$$\langle x,y \rangle = \sum\limits_{i,j=1}^k (a_i a_j) \xi_i \mu_j \Longrightarrow$$
 по критерию Сильвестра $|G|>0$

2. a_1, \ldots, a_k - ЛЗ $\implies \exists \alpha_1, \ldots, \alpha_k$ не все нули, такие что $\alpha_1 a_1 + \ldots + \alpha_k a_k = \mathbf{0}$

$$\Longrightarrow \begin{cases} \alpha_1 \langle a_1, a_1 \rangle + \dots + \alpha_k \langle a_k, a_1 \rangle = \mathbf{0} \\ \alpha_1 \langle a_1, a_2 \rangle + \dots + \alpha_k \langle a_k, a_2 \rangle = \mathbf{0} \\ \vdots \\ \alpha_1 \langle a_1, a_k \rangle + \dots + \alpha_k \langle a_k, a_k \rangle = \mathbf{0} \end{cases}$$

 \Longrightarrow Система имеет нетривиальное решение \Longrightarrow её определитель равен нулю, а это и есть |G|.

7

1.5 Ортонормированные базисы в E и U

 $\mathbb V$ - это E или V

Определение 7. $x \perp y$, если $\langle x, y \rangle = 0$

Определение 8. $\mathbb E$ - базис в $\mathbb V$. $\mathbb E$ - ОНБ, если $\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$

Теорема 4. Если $a_1,\dots,a_k\neq 0$ и $a_i\perp a_j,\ i\neq j,$ то это ЛНЗ система.

Доказательство.

От противного: Они ЛЗ \Longrightarrow $\exists \ \alpha_1,\ldots,\alpha_k$ не все 0, что:

$$(*) \alpha_1 a_1 + \ldots + \alpha_k a_k = 0$$

Умножаем на a_1

$$\implies \alpha_1 \langle a_1, a_1 \rangle + \alpha_2 \langle a_2, a_1 \rangle + \ldots + \alpha_k \langle a_k, a_1 \rangle = 0 \implies \alpha_1 = 0$$

умножаем (*) на a_2 и получаем, что $\alpha_2=0$

 \Longrightarrow все $\alpha_i = 0 \implies$ противоречие!

Теорема 5. (Ортогонализация по Шмидту)

Пусть \mathbb{V} - это E или V, тогда:

- 1. ОНБ существует
- 2. если $(f_1, \dots f_n)$ базис в \mathbb{V} , то ОНБ можно построить по формуле:

$$\begin{cases} g_1 = f_1, & e_1 = \frac{g_1}{\|g_1\|} \\ g_2 = f_2 - (f_2, e_1) \cdot e_1, & e_2 = \frac{g^2}{\|g_2\|} \\ \vdots & & & \\ g_n = f_n - (f_n, e_1) \cdot e_1 - (f_n, e_2) \cdot e_2 \dots - (f_n, e_{n-1}) \cdot e_{n-1}, & e_n = \frac{g_n}{\|g_n\|} \end{cases}$$

Лемма 1.

$$\forall k \in \{1, \dots, n\} \quad g_k \in \mathcal{L}(f_1, \dots f_k), \qquad g_k \neq 0$$

Доказательство. по индукции:

1.
$$k = 1$$
 $g_1 = f_1 \in \mathcal{L}(f_1), \quad f_1 \neq 0$

2.
$$k = m - 1$$
 – верно, $k = m$?

$$g_m = f_m - \langle f_m, e_1 \rangle e_1 - \ldots - \langle f_m, e_{m-1} \rangle e_{m-1} = f_m - \alpha_1 g_1 - \ldots - \alpha_{m-1} g_{m-1}$$

Так как все g_i линейно выражаются через f_1,\dots,f_{m-1}

$$\Longrightarrow f_m - \alpha_1 g_1 - \ldots - \alpha_{m-1} g_{m-1} = f_m - \beta_1 f_1 - \ldots \beta_{m-1} f_{m-1}$$

$$\Longrightarrow g_m \in \mathcal{L}(f_1, \ldots, f_m)$$

если
$$g_m = 0 \Longrightarrow f_m - \beta_1 f_1 - \ldots - \beta_{m-1} f_{m-1} = 0$$

Это нетривиальная линейная комбинация равная нулю \Longrightarrow противоречие, так как f_1,\ldots,f_m - базис линейной оболочки $\mathcal{L}(f_1,\ldots,f_m)$

9

Теперь вернёмся к доказательству Теоремы 5.

Доказательство. Осталось доказать, что все оставшиеся векторы попарно ортогональны. Докажем по индукции, что для всех $k \in \{1, \dots, n\}$ векторы e_1, e_2, \dots, e_k образуют ортогональную систему.

- 1. База индукции: k=1. По построению $e_1=\frac{g_1}{\|g_1\|}$, где $g_1=f_1$. Так как $\|e_1\|=1$, то e_1 единичный вектор.
- 2. Предположим, что для некоторого k=m-1 векторы e_1,e_2,\ldots,e_{m-1} образуют ортогональную систему.
- 3. Шаг индукции: k = m.

Покажем, что e_m ортогонален каждому из e_1, e_2, \dots, e_{m-1} .

Рассмотрим вектор g_m :

$$g_m = f_m - \sum_{i=1}^{m-1} \langle f_m, e_i \rangle e_i$$

По построению $e_m = \frac{g_m}{\|g_m\|}$.

Для любого $j \in \{1, 2, ..., m-1\}$ вычислим скалярное произведение $\langle e_m, e_j \rangle$:

$$\langle e_m, e_j \rangle = \left\langle \frac{g_m}{\|g_m\|}, e_j \right\rangle = \frac{1}{\|g_m\|} \langle g_m, e_j \rangle$$

Вычислим $\langle g_m, e_i \rangle$:

$$\langle g_m, e_j \rangle = \left\langle f_m - \sum_{i=1}^{m-1} \langle f_m, e_i \rangle e_i, e_j \right\rangle$$

Раскроем скалярное произведение:

$$\langle g_m, e_j \rangle = \langle f_m, e_j \rangle - \sum_{i=1}^{m-1} \langle f_m, e_i \rangle \langle e_i, e_j \rangle$$

По предположению индукции $e_1, e_2, \ldots, e_{m-1}$ ортогональны, поэтому $\langle e_i, e_j \rangle = 0$ для $i \neq j$.

Следовательно, $\langle g_m, e_j \rangle = \langle f_m, e_j \rangle - \langle f_m, e_j \rangle = 0$

Таким образом, $\langle e_m, e_j \rangle = \frac{1}{\|g_m\|} \cdot 0 = 0$. Это означает, что e_m ортогонален каждому из e_1, e_2, \dots, e_{m-1} .

Следовательно, векторы e_1, e_2, \ldots, e_m образуют ортогональную систему.

Таким образом, по индукции мы доказали, что векторы e_1, e_2, \ldots, e_n образуют ортогональную систему. А так как все векторы e_i нормированы ($\|e_i\|=1$), то система e_1, e_2, \ldots, e_n является ортонормированным базисом.

Определение 9.

Ортогональная матрица — это квадратная матрица A с вещественными элементами, удовлетворяющая условию:

$$A^T A = A A^T = E$$

Унитарная матрица — это квадратная матрица U с комплексными элементами, удовлетворяющая условию:

$$U^*U = UU^* = E$$

 $(U^*$ - транспонированная и комплексно-сопряженная матрица.)

Теорема 6.

- 1. Пусть $\mathbb{V}=E$ Евклидово пространство, $\mathcal{E}_1,\mathcal{E}_2$ ортонормированные базисы. T матрица перехода, тогда T ортогональная.
- 2. Пусть $\mathbb{V} = U$ Унитарное пространство, $\mathcal{E}_1, \mathcal{E}_2$ ортонормированные базисы. T матрица перехода, тогда T унитарная.

Доказательство.

1.
$$T = (t_{ij}), \quad \mathcal{E}' = \mathcal{E}T, \quad \mathcal{E} = \{e_1, \dots, e_n\}, \quad \mathcal{E}' = \{e'_1, \dots, e'_n\}$$

Для ортонормированного базиса \mathcal{E}' должно выполняться условие $\delta_{ij} = \langle e_i', e_j' \rangle$.

Выразим e_i' и e_j' через старый базис \mathcal{E} :

$$e'_i = \sum_{k=1}^n t_{ki} e_k, \quad e'_j = \sum_{m=1}^n t_{mj} e_m.$$

Тогда скалярное произведение $\langle e_i', e_j' \rangle$ можно записать как:

$$\delta_{ij} = \langle e'_i, e'_j \rangle = \left\langle \sum_{k=1}^n t_{ki} e_k, \sum_{m=1}^n t_{mj} e_m \right\rangle.$$

Используя свойства скалярного произведения, получим:

$$\delta_{ij} = \sum_{k=1}^{n} \sum_{m=1}^{n} t_{ki} t_{mj} \langle e_k, e_m \rangle.$$

Поскольку \mathcal{E} — ортонормированный базис, $\langle e_k, e_m \rangle = \delta_{km}$, и следовательно:

$$\delta_{ij} = \sum_{k=1}^{n} t_{ki} t_{kj}.$$

Это означает, что $T^TT=E$, где E — единичная матрица. Таким образом, матрица T ортогональна.

2.
$$T = (t_{ij}), \quad \mathcal{E}' = \mathcal{E}T, \quad \mathcal{E} = e_1, \dots, e_n, \ \mathcal{E}' = \{e'_1, \dots, e'_n\}$$

Для ортонормированного базиса \mathcal{E}' должно выполняться условие $\delta_{ij} = \langle e'_i, e'_j \rangle$.

Выразим e_i' и e_j' через старый базис \mathcal{E} :

$$e'_i = \sum_{k=1}^n t_{ki} e_k, \quad e'_j = \sum_{m=1}^n t_{mj} e_m.$$

Тогда скалярное произведение $\langle e_i', e_j' \rangle$ можно записать как:

$$\delta_{ij} = \langle e'_i, e'_j \rangle = \left\langle \sum_{k=1}^n t_{ki} e_k, \sum_{m=1}^n t_{mj} e_m \right\rangle.$$

Используя свойства скалярного произведения, получим:

$$\delta_{ij} = \sum_{k=1}^{n} \sum_{m=1}^{n} t_{ki} \overline{t_{mj}} \langle e_k, e_m \rangle.$$

Поскольку \mathcal{E} — ортонормированный базис, $\langle e_k, e_m \rangle = \delta_{km}$, и следовательно:

$$\delta_{ij} = \sum_{k=1}^{n} t_{ki} \overline{t_{kj}}.$$

Это означает, что $T^*T=E,$ где E- единичная матрица. Таким образом, матрица T унитарная.

1.6 Ортогональное дополнение подпространств

 $\mathbb V$ - это E или $U, \quad V_1, V_2 \subseteq \mathbb V$ - подпространства.

Определение 10.

Ортогональное дополнение подпространства.

 $V_1 \perp V_2$, если $\forall x \in V_1, \forall y \in V_2 \langle x, y \rangle = 0$

Теорема 7. $V_1 \perp V_2 \Longrightarrow V_1 \cap V_2 = \{0\}$

Доказательство.

пусть
$$z \in V_1 \cap V_2$$
 $z \in V_1$, $z \in V_2$, $\langle z, z \rangle = 0 \implies z = 0$

Определение 11. $\mathbb{V}_1\subseteq\mathbb{V}\Longrightarrow\mathbb{V}_1^\perp=\{z\in\mathbb{V}:\langle y,z\rangle=0\quad\forall y\in\mathbb{V}_1\}$

Теорема 8. \mathbb{V}_1^{\perp} — подпространство.

Доказательство.

1.
$$\vec{0} \in \mathbb{V}_1^{\perp} \Leftrightarrow \mathbb{V}_1^{\perp} \neq \vec{0}$$

2.
$$z_1, z_2 \in \mathbb{V}_1^{\perp}$$
 $x = \alpha z_1 + \beta z_2$, $\forall y \in \mathbb{V}$

$$\langle y, x \rangle = \langle y, \alpha z_1 + \beta z_2 \rangle = \overline{\alpha} \langle y, z_1 \rangle + \overline{\beta} \langle y, z_2 \rangle = 0. \implies x \in \mathbb{V}_1^{\perp}$$

Теорема 9.

$$\mathbb{V}_1, \mathbb{V}_1^{\perp} : \mathbb{E}_1 = \{e_1, \dots, e_n\}$$
 — ОНБ в \mathbb{V}_1 . Тогда $z \in \mathbb{V}_1^{\perp} \Longrightarrow \langle z, e_1 \rangle = \dots = \langle z, e_k \rangle = 0$

Доказательство.

⇒ Следует из определения

$$\langle z, e_1 \rangle = \dots \langle z, e_k \rangle = 0$$

$$\forall y \in \mathbb{V}_1: \ y = \alpha_1 e_1 + \ldots + \alpha_n e_n$$

$$\langle z, y \rangle = \langle z, \alpha_1 e_1 + \ldots + \alpha_n e_n \rangle = \overline{\alpha_1} \langle z, e_1 \rangle + \ldots + \overline{\alpha_n} \langle z, e_n \rangle = 0$$

1.7 Линейные, билинейные и полуторалинейные формы в Евклидовом пространстве

Пусть
$$f: \mathbb{V} \to E$$
 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

Лемма 2. (О скалярном произведении)

Пусть
$$\mathbb{V}$$
 — это E или U , $\forall y \in \mathbb{V}$ $\langle x_1, y \rangle = \langle x_2, y \rangle \implies x_1 = x_2$

Доказательство.

$$\forall y \quad \langle x_1, y \rangle = \langle x_2, y \rangle \implies \langle x_1 - x_2, y \rangle = 0$$
Пусть $y = x_1 - x_2 \implies \langle x_1 - x_2, x_1 - x_2 \rangle = 0 \implies x_1 - x_2 = 0 \implies x_1 = x_2$

Теорема 10. (Теорема Рисса о линейном функционале)

Пусть
$$\mathbb{V}-$$
 это $E,\quad f-$ это линейный функционал из $E^*\Longrightarrow \exists!\ h\in E: f(x)=\langle x,h\rangle$

Доказательство.

$$\mathcal{E} = \{e_1, \dots, e_n\} - \text{ OHB B } E, \quad x = \xi_1 e_1 + \dots + \xi_n e_n, \quad \forall x \in E$$

$$f(x) = \xi_1 f(e_1) + \dots + \xi_n f(e_n)$$

$$\mu_1 = f(e_1), \dots, \mu_n = f(e_n), \quad h = \mu_1 e_1 + \dots + \mu_n e_n$$

$$\implies \xi_1 \mu_1 + \dots + \xi_n \mu_n = \langle x, h \rangle$$

теперь покажем, что вектор h единственен. Пойдём от противного.

Пусть
$$\exists h_1, h_2 \in E \implies f(x) = \langle x, h_1 \rangle, \ f(x) = \langle x, h_2 \rangle \implies \langle x, h_1 \rangle = \langle x, h_2 \rangle \forall x \in E$$
 \implies По лемме $h_1 = h_2$

Теорема 11. (Теорема типа Рисса о представлении билинейной формы в евклидовом пространстве)

Пусть f(x,y) - билинейная форма в E

$$\implies \exists ! \ \phi \in \mathcal{L}(E, E) : f(x, y) = \langle x, \phi(y) \rangle$$

Доказательство.

1.

фиксируем
$$y \in E$$
, $f(x,y) \in E^*$

По теореме Рисса $\exists ! \ h_y : f(x,y) = \langle x, h_y \rangle$

$$\phi: E \to E: \ \phi(y) = h_y, \ y_1 \to h_{y_1}, \dots, y_n \to h_{y_n}$$

$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2) = \langle x, \phi(y_1) \rangle + \langle x, \phi(y_2) \rangle$$

так как
$$\phi(y_1+y_2)=\phi(y_1)+\phi(y_2) \implies f(x,\alpha y)=\alpha f(x,y)=\alpha \langle x,h_y\rangle=\alpha \langle x,\phi(y)\rangle$$

$$\langle x, \phi(\alpha y) \rangle \leftrightarrow \langle x, \alpha \phi(y) \rangle$$
. По лемме $(\alpha y) = \alpha \phi(y)$

$$\Longrightarrow \exists \phi \in \mathcal{L}(E, E) : f(x, y) = f(x, \phi(y))$$

2.

Докажем единственность
$$\phi$$
 от противного. Пусть
$$f(x,y) = \langle x, \phi_1(y) \rangle$$
 $\forall x \in E$

По лемме
$$\phi_1(y) = \phi_2(y) \implies \phi_1 = \phi_2$$

3.

если
$$\mathbb{V} = U$$
, то $g(x,y)$ — квадратичная форма

$$\implies \exists ! \ \phi \in \mathcal{L}(U,U) : g(x,y) = \langle x, \phi(y) \rangle \text{ if } \exists ! \ \psi \in \mathcal{L}(U,U) : \ g(x,y) = \langle \psi(x), y \rangle$$

Глава 2

Линейные операторы в E и U

2.1 Сопряжённые операторы

Пусть $\mathbb V$ - это E или $U,\ \phi\in\mathcal L(\mathbb V,\mathbb V)$

Определение 12.

 ϕ^* называется сопряжённым оператором к ϕ , если $\forall x,y \in \mathbb{V} \ \langle \phi(x),y \rangle = \langle x,\phi^*(y) \rangle$

Теорема 12. $\forall \phi \in \mathcal{L}(\mathbb{V}, \mathbb{V}) \quad \exists ! \ \phi^* : \phi^* \in \mathcal{L}(\mathbb{V}, \mathbb{V})$

Доказательство.

 $\langle \phi(x),y \rangle$ — полуторалинейная форма

По теореме Рисса $\langle \phi(x), y \rangle = \langle x, \psi(y) \rangle$

По определению $\psi=\phi^*\in\mathcal{L}(\mathbb{V},\mathbb{V}).$ Пусть есть 2 сопряжённых оператора ϕ_1^*,ϕ_2^*

$$\langle \phi(x), y \rangle = \langle x, \phi_1(y)^* \rangle, \quad \langle \phi(x), y \rangle = \langle x, \phi_2(y)^* \rangle$$

$$\Longrightarrow \langle x, \phi_1(y)^* \rangle = \langle x, \phi_2(y)^* \rangle$$
 (По лемме $\phi_1^* = \phi_2^*$)

Свойства ϕ^* :

1. $I^* = I$

2.
$$(\alpha \phi + \mu \psi)^* = \begin{cases} \alpha \phi^* + \mu \psi^* & \text{B } E \\ \overline{\alpha} \phi^* + \overline{\mu} \psi^* & \text{B } U \end{cases}$$

3.
$$(\phi^*)^* = \phi$$

4.
$$(\phi \psi)^* = \psi^* \phi^*$$

5. если
$$\exists \phi^{-1} \in \mathcal{L}(\mathbb{V}, \mathbb{V}), \text{ то } \exists (\phi^*)^{-1}, \ (\phi^*)^{-1} = (\phi^{-1})^*$$

6. если
$$\mathcal{E}$$
 — ОНБ, то $A_{\phi^*}^{\phi} = \begin{cases} A_{\phi}^{e^T} \text{ в } E \\ (A_{\phi}^e)^* \text{ в } U \end{cases}$

Доказательство.

1.

$$\langle Ix, y \rangle = \langle x, y \rangle = \langle x, Iy \rangle \Longrightarrow I^* = I$$

2.

Докажем для E:

$$\begin{split} \langle (\lambda \phi + \mu \psi)(x), y \rangle &= \langle \lambda \phi(x) + \mu \psi(x), y \rangle = \lambda \langle \phi(x), y \rangle + \mu \langle \psi(x), y \rangle = \\ &= \lambda \langle x, \phi(y)^* \rangle + \mu \langle x, \psi(y)^* \rangle = \langle x, \lambda \phi(y)^* \rangle + \langle x, \mu \psi(y)^* \rangle = \langle x, \lambda \phi(y)^* + \mu \psi(y)^* \rangle. \\ &\implies \text{По лемме } (\lambda \phi + \mu \psi)^* = \lambda \phi^* + \mu \psi^* \end{split}$$

3.

Докажем для U:

$$\langle \phi(x), y \rangle = \langle x, \phi(y)^* \rangle = \overline{\langle \phi(y)^*, x \rangle} = \overline{\langle y, (\phi(x)^*) \rangle} = \overline{\langle y, (\phi(x)^*) \rangle}$$

$$=\langle (\phi(x)^*)^*,y\rangle \implies \phi=(\phi^*)^*$$
 по лемме

4.

$$\langle \phi \psi(x), y \rangle = \langle \psi(x), \phi(y)^* \rangle = \langle x, (\phi \psi)^*(y) \rangle = \langle x, \psi^* \phi(y)^* \rangle$$

$$\implies$$
 по лемме $(\phi\psi)^* = \psi^*\phi^* \ \forall x \in \mathbb{V}$

5.

$$\exists \phi^{-1} : \phi^{-1}\phi = \phi\phi^{-1} = I$$

$$(\phi^{-1}\phi)^* = (\phi\phi^{-1})^* = I^* = I \implies \phi^*(\phi^{-1})^* = \phi^*\psi = (\phi^{-1})^*\phi^* = \psi\phi^* = I$$

$$\Longrightarrow \psi^* \psi = \psi \psi^* = I$$

- 6. Пусть \mathcal{E} ОНБ. Обозначим матрицу оператора ϕ в базисе \mathcal{E} как $A_{\phi}^{e}=(a_{ij})$, а матрицу оператора ϕ^{*} в том же базисе как $A_{\phi^{*}}^{e}=(b_{ij})$.
 - (a) Случай 1: Базис \mathcal{E} ОНБ в пространстве E.

В этом случае, матрица $A^e_{\phi^*}$ оператора ϕ^* в базисе $\mathcal E$ совпадает с транспонированной матрицей A^e_{ϕ} :

$$A_{\phi^*}^e = (A_{\phi}^e)^T$$

Это следует из определения сопряженного оператора в ортонормированном базисе.

(b) Случай 2: Базис \mathcal{E} — ОНБ в пространстве U.

В этом случае, матрица $A_{\phi^*}^e$ оператора ϕ^* в базисе \mathcal{E} совпадает с матрицей $(A_{\phi}^e)^*$:

$$A_{\phi^*}^e = (A_\phi^e)^*$$

Это также следует из определения сопряженного оператора в ортонормированном базисе, но с учетом комплексного сопряжения и транспонирования.

Определение 13.

 $\mathbb{V}_1\subseteq\mathbb{V},\quad \mathbb{V}_1$ — инвариантно относительно $\phi,$ если $\forall x\in\mathbb{V}_1\quad \phi(x)\in\mathbb{V}_1$

Если \mathbb{V}_1 инвариантно относительно ϕ , то \mathbb{V}_1 инвариантно относительно ϕ^* $\Longrightarrow 0 = \langle \phi(x), y \rangle = \langle x, \phi(y)^* \rangle \Longrightarrow \phi(y)^* \in \mathbb{V}_1$

Теорема 13.

Пусть $\mathbb E$ - произвольный базис, Γ - Матрица Грамма

$$\Longrightarrow A_{\phi^*}^{\mathbb{E}} = \Gamma^{-1}(A_{\phi}^{\mathbb{E}})^T$$
 Γ , если \mathbb{E} - ОНБ, то $A_{\phi^*}^{\mathbb{E}} = (A_{\phi}^{\mathbb{E}})^T$

Доказательство.

$$x = \xi_1 e_1 + \dots + \xi_n e_n, \quad y = \mu_1 e_1 + \dots + \mu_n e_n$$

$$\phi(x) = \xi_1' e_1 + \dots + \xi_n' e_n, \quad \phi^*(y) = \mu_1' e_1 + \dots + \mu_n' e_n$$

$$\langle \phi(x), y \rangle = \langle x, \phi^*(y) \rangle$$

данное равенство можно представить в виде:

$$(A_{\phi}^{\mathbb{E}} \xi)^{T} \Gamma \mu = \xi^{T} \Gamma A_{\phi^{*}}^{\mathbb{E}} \mu$$

$$\Longrightarrow (A_{\phi}^{\mathbb{E}})^{T} \Gamma = \Gamma A_{\phi^{*}}^{\mathbb{E}} \implies A_{\phi^{*}}^{\mathbb{E}} = \Gamma^{-1} (A_{\phi}^{\mathbb{E}})^{T} \Gamma$$

если ОНБ, то матрица Грамма Г
 равна единичной $\Longrightarrow A_{\phi^*}^{\mathbb{E}} = (A_\phi^{\mathbb{E}})^T$

2.2 Классы линейных операторов в E и U

E:

- 1. Оператор ϕ называется **нормальным**, если $\phi \phi^* = \phi^* \phi$.
 - Матрица A **нормальная**, если $A^TA = AA^T$
- 2. Оператор ϕ называется **самосопряжённым**, если $\phi^* = \phi$.
 - Матрица A **симметричная**, если $A^T = A$
- 3. Оператор ϕ называется **ортогональным**, если $\phi^* = \phi^{-1}$.
 - Матрица A **ортогональная**, если $A^T = A^{-1}$

U:

- 1. Оператор ϕ называется **нормальным**, если $\phi \phi^* = \phi^* \phi$.
 - Матрица A **нормальная**, если $A^*A = AA^*$
- 2. Оператор ϕ называется **эрмитовым**, если $\phi^* = \phi$.
 - Матрица A **эрмитова**, если $A^* = A$
- 3. Оператор ϕ называется **унитарным**, если $\phi^* = \phi^{-1}$.
 - Матрица A **унитарная**, если $A^* = A^{-1}$

2.3 Нормальные операторы в E

Утверждение 1.

Оператор ϕ - нормальный $\Longrightarrow \phi^*$ - нормальный

Доказательство.

$$\phi^* = \psi \Longrightarrow \phi \cdot \psi = \psi \cdot \phi \Longrightarrow (\phi \psi)^* = (\psi \phi)^*$$

$$\Longrightarrow \psi^* \cdot \phi^* = \phi^* \cdot \psi^* \Longrightarrow \psi^* \psi = \psi \psi^*$$

$$\Longrightarrow \psi = \phi^* - \text{Нормальный}$$

Свойства нормальных операторов:

- 1. $\langle \phi(x), \phi(y) \rangle = \langle \phi(x)^*, \phi(y)^* \rangle$
- 2. $\|\phi(x)\| = \|\phi^*(x)\|$
- 3. $(\phi \lambda I)$ нормальный оператор.
- 4. Пусть x собственный вектор для ϕ , соответствующий собственному числу λ , тогда x собственный вектор для ϕ^* , соответствующий λ .
- 5. Собственные вектора, соответствующие различным собственным числам нормального оператора, взаимно ортогональны.
- 6. Пусть e собственный вектор для ϕ , тогда $E = L(e) \oplus L(e)^{\perp}$, а подпространства L(e) и $L(e)^{\perp}$ инвариантны относительно ϕ и ϕ^* .
- 7. Если $\mathbb E$ ортонормированный базис (OHБ), то $A_\phi^\mathbb E$ нормальная матрица.
- 8. Если \mathbb{E} OHБ, то $A_\phi^\mathbb{E}$ соответствует нормальному оператору ϕ .

Доказательство.

1.
$$\langle \phi(x), \phi(y) \rangle = \langle x, \phi(\phi^*(y)) \rangle = \langle \phi^*(y), \phi^*(x) \rangle = \langle \phi^*(x), \phi^*(y) \rangle$$

2.
$$\|\phi(x)\| = \sqrt{\langle \phi(x), \phi(x) \rangle} = \sqrt{\langle \phi^*(x), \phi^*(x) \rangle} = \|\phi^*(x)\|.$$

3.
$$(\phi - \lambda I)(\phi - \lambda I)^* = (\phi - \lambda I)(\phi^* - \lambda I) = \phi \phi^* - \lambda \phi^* - \lambda \phi + \lambda^2 I.$$

$$(\phi - \lambda I)^*(\phi - \lambda I) = (\phi^* - \lambda I)(\phi - \lambda I) = \phi^* \phi - \lambda \phi - \lambda \phi^* + \lambda^2 I.$$
 Так как $\phi \phi^* = \phi^* \phi$, то $(\phi - \lambda I)$ — нормальный оператор.

4.

Пусть x — собственный вектор для ϕ , соответствующий λ . Тогда:

$$\phi(x) = \lambda x \implies (\phi - \lambda I)(x) = 0.$$

$$\|(\phi - \lambda I)(x)\| = 0 = \|(\phi - \lambda I)^*(x)\| \implies (\phi - \lambda I)^*(x) = 0 \implies \phi^*(x) = \lambda x.$$

5.

Пусть e_1 и e_2 — собственные вектора для ϕ , соответствующие λ_1 и λ_2 соответственно. Тогда:

$$\langle \phi(e_1), e_2 \rangle = \langle \lambda_1 e_1, e_2 \rangle = \lambda_1 \langle e_1, e_2 \rangle.$$

$$\langle e_1, \phi^*(e_2) \rangle = \langle e_1, \lambda_2 e_2 \rangle = \lambda_2 \langle e_1, e_2 \rangle.$$

Так как ϕ — нормальный, то $\lambda_1\langle e_1,e_2\rangle=\lambda_2\langle e_1,e_2\rangle\implies (\lambda_1-\lambda_2)\langle e_1,e_2\rangle=0.$

Если
$$\lambda_1 \neq \lambda_2$$
, то $\langle e_1, e_2 \rangle = 0 \implies e_1 \perp e_2$.

6.

Пусть e — собственный вектор для ϕ . Тогда:

$$E = L(e) \oplus L(e)^{\perp}$$
.

 $\phi(e) = \lambda e \in L(e) \implies L(e)$ инвариантно относительно ϕ .

 $\phi^*(e) = \lambda e \in L(e) \implies L(e)$ инвариантно относительно ϕ^* .

Следовательно, $L(e)^{\perp}$ инвариантно относительно ϕ и ϕ^* .

7.

Пусть \mathbb{E} — ОНБ. Тогда:

$$A_{\phi^*}^{\mathbb{E}} = (A_{\phi}^{\mathbb{E}})^T.$$

Так как ϕ — нормальный, то:

$$A_{\phi}^{\mathbb{E}}(A_{\phi}^{\mathbb{E}})^{T} = (A_{\phi}^{\mathbb{E}})^{T} A_{\phi}^{\mathbb{E}}.$$

Следовательно, $A_\phi^\mathbb{E}$ — нормальная матрица.

8.

Пусть \mathbb{E} — ОНБ. Тогда:

$$A_{\phi}^{\mathbb{E}}(A_{\phi}^{\mathbb{E}})^{T} = (A_{\phi}^{\mathbb{E}})^{T} A_{\phi}^{\mathbb{E}}.$$

Это эквивалентно $\phi\phi^* = \phi^*\phi \implies \phi$ — нормальный оператор.

2.4 Основные свойства самосопряжённого оператора

Утверждение 2.

1.

$$\phi\phi^* = \phi^*\phi = \phi\phi \Longrightarrow \phi$$
 — Нормальный оператор

(для самосопряжённых операторов верны 8 свойств нормальных операторов)

2. Пусть $\mathbb E$ - ОНБ и $\phi = \phi^* \Longrightarrow A_\phi^{\mathbb E} = (A_\phi^{\mathbb E})^T \Longrightarrow A_\phi^{\mathbb E}$ — симметрична

3. $\phi \text{ - самосопряжённый} \Longrightarrow \text{все корни характеристического многочлена } \mathbb{R}$

Доказательство. (третьего свойства)

От противного. λ_0 – корень $\Longrightarrow \lambda_0 = \alpha_0 + i\beta_0, \ \beta_0 \neq 0$

 $\Longrightarrow (A_{\phi}^{\mathbb{E}} - \lambda_0 E)\xi = 0, \quad \xi_0 = x_0 + iw_0 -$ нетривиальное решение.

$$\Longrightarrow (A_{\phi}^{\mathbb{E}} - (\alpha_0 + i\beta_0)E)(x_0 + iw_0) = 0 = \begin{cases} A_{\phi}^{\mathbb{E}} x_0 = \alpha_0 x_0 - \beta_0 w_0 \\ A_{\phi}^{\mathbb{E}} \dot{w}_0 = \alpha_0 \dot{w}_0 + \beta_0 x_0 \\ \downarrow & \downarrow \end{cases}$$

Пусть $u_0=x_0$ в базисе $\mathcal{E}, \quad v_0=w_0$ в базисе \mathcal{E}

$$\begin{cases} \phi(u_0) = x_0 \text{ B } \mathcal{E} \\ \phi(v_0) = \overset{\downarrow}{w_0} \text{ B } \mathcal{E} \end{cases}$$

$$\implies \langle \phi(u_0), v_0 \rangle = \alpha_0 \langle u_0, v_0 \rangle - \beta_0 ||v_0||^2 = \langle u_0, \phi(v_0) \rangle = \alpha_0 \langle u_0, v_0 \rangle + \beta_0 ||u_0||^2 \implies \beta_0 (||v_0||^2 + ||u_0||^2) = 0$$

$$\implies \beta_0 = 0$$
 или $(||v_0||^2 + ||u_0||^2) = 0$

Поскольку $\beta_0 \neq 0$, это приводит к противоречию, так как $||v_0||^2 + ||u_0||^2 \neq 0$ для $\xi_0 \neq 0$.

Следовательно, все корни характеристического многочлена должны быть действительными.

2.5 Спектральная теория для самосопряжённых операторов

Теорема 14.

 $\phi \in \mathcal{L}(E,E), \ \phi = \phi^*.$ Тогда в $E \ \exists$ ОНБ из собственных векторов оператора ϕ

Доказательство. По индукции по размерности.

- 1. База индукции $e_1 \neq 0$ базис в E. $||e_1|| = 1$, $\phi(e_1) = \lambda e_1$
- 2. | Шаг индукции | верно, тогда для n:

$$\lambda_1 \in \mathbb{R}, \ e_1 \sim \lambda_1, \ \|e_1\| = 1 \implies E = \mathcal{L}(e_1) \oplus \mathcal{L}^{\perp}(e_1).$$

так как $\phi = \phi^* \implies \phi$ — нормальный $\implies \mathcal{L}(e_1)$ и $\mathcal{L}^\perp(e_1)$ инвариантны относительно ϕ

Пусть
$$E_1 = \mathcal{L}^{\perp}(e_1) \Longrightarrow \dim(E_1) = n - 1, \ \phi_1 = \phi = \phi_1^* \in \mathcal{L}(E_1, E_1)$$

(рассматриваем ϕ_1 как ограничение на ϕ на подпространство E_1)

 \Longrightarrow по предположению индукции \exists ОНБ $\mathcal{E} = \{e_2, \cdots e_n\}$ из собственных векторов ϕ_1

 \implies так как $e_1\bot\{e_2,\cdots,e_n\}$ \implies $\mathcal{E}=\{e_1,,e_n\}$ — искомый базис

Утверждение 3.

 $A=A^T-\,$ симметричная матрица. Тогда $\exists T-\,$ ортогональная матрица:

$$\mathbf{T}^TAT=\Lambda=egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$
 причём $\lambda_1,\cdots,\lambda_n-$ с.ч. матрицы A

Доказательство. Пусть \mathcal{E} — ортонормированный базис (ОНБ), $\phi \in \mathcal{L}(E,E)$ и $A_{\phi}^{\mathcal{E}} = A$.

 $A_{\phi}^{\mathcal{E}} = (A_{\phi}^{\mathcal{E}})^T \iff \phi = \phi^* \iff \exists \mathcal{E}' - \text{OHB}$ из собственных векторов для $\phi : \overline{\mathcal{E}'} = \overline{\mathcal{E}} \cdot T$.

Было доказано, что T — ортогональная матрица перехода от базиса $\mathcal E$ к базису $\mathcal E'$:

$$T^{-1} = T^T \iff A^{\mathcal{E}'}_{\phi} = T^{-1} \cdot A^{\mathcal{E}}_{\phi} \cdot T = T^T \cdot A^{\mathcal{E}}_{\phi} \cdot T.$$

Так как ϕ — самосопряженный оператор, его матрица в базисе \mathcal{E}' диагональна с собственными значениями $\lambda_1, \lambda_2, \dots, \lambda_n$ на диагонали:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

2.6 Ортогональные операторы

Определение 14. Оператор ϕ ортогонален, если $\phi^*\phi = \phi\phi^* = I$

Свойства ортогональных операторов:

- 1. $\langle \phi(x), \phi(y) \rangle = \langle x, y \rangle$
- 2. $\|\phi(x)\| = \|x\|$
- 3. $\mathcal{E} = \{e_1, \dots, e_n\}$ OHB
- 4. Если оператор ортогональный, то его собственные числа равны $\lambda=\pm 1$ (если пространство унитарное, то $|\lambda|=1$)
- 5. $\mathcal{E}-\mathrm{OHE} \iff A_{\phi}^{\mathcal{E}}$ ортогональная матрица
- 6. Пусть A ортогональная матрица $\Longrightarrow \det(A) = \pm 1$
- 7. $\mathcal{E}' = \mathcal{E}T$, где \mathcal{E} и $\mathcal{E}' \mathrm{OHE} \iff T \mathrm{opтorohanbhag}$
- 8. Если $\mathcal{E}-$ ОНБ и T- ортогональная, то $\mathcal{E}'=\mathcal{E}T-$ ОНБ

Доказательство.

1.

$$\langle \phi(x), \phi(y) \rangle = \langle x, \phi^* \phi(y) \rangle = \langle x, Iy \rangle = \langle x, y \rangle$$

2.

$$\|\phi(x)\|^2 = \langle \phi(x), \phi(x) \rangle = \langle x, x \rangle = \|x\|^2$$

3.

$$\|\phi(e_i)\| = \|e_i\| = 1, \quad \langle \phi(e_i), \phi(e_j) \rangle = \langle e_i, e_j \rangle = 0, \text{ если } i \neq j \Rightarrow \{\phi(e_1), \dots, \phi(e_n)\} - \text{ОНБ}$$

4.

 λ — собственное число, соответствующее собственному вектору $e\Rightarrow\phi(e)=\lambda e$

$$\|\phi(e)\| = \|\lambda e\| = |\lambda| \|e\| \Rightarrow |\lambda| = 1 \Rightarrow \lambda = \pm 1$$

5.

6. $A - \text{ ортогональный} \Rightarrow AA^T = E, \quad \det(AA^T) = \det(A)^2 = \det(E) = 1$

7. Было доказано ранее

8.

$$\mathcal{E} = \{e_1, \dots, e_n\}, \ \mathcal{E}' = \{e'_1, \dots, e'_n\}$$

$$e'_i = \sum_{k=1}^n t_{ki} e_k, \ e'_j = \sum_{s=1}^n t_{sj} e_s$$

$$\langle e'_i, e'_j \rangle = \langle \sum_{k=1}^n t_{ki} e_k, \sum_{s=1}^n t_{sj} e_s \rangle = \sum_{k=1}^n \sum_{s=1}^n t_{ki} t_{sj} \langle e_k, e_s \rangle = \sum_{k=1}^n t_{ki} t_{kj} = \delta_{ij} \Rightarrow \mathcal{E}' - \text{OHB}$$

Лемма 3. (О клеточной диагональной матрице)

Пусть V — линейное пространство, $V = V_1 \oplus V_2$, $\phi \in \mathcal{L}(V,V)$, и $\mathcal{E} = \mathcal{E}_1 \cup \mathcal{E}_2$ — базис в V, где \mathcal{E}_1 — базис в V_2 .

Тогда матрица оператора ϕ в базисе \mathcal{E} имеет клеточно-диагональный вид:

$$A_{\phi}^{\mathcal{E}} = \begin{bmatrix} A_{\phi|V_1}^{\mathcal{E}_1} & 0\\ 0 & A_{\phi|V_2}^{\mathcal{E}_2} \end{bmatrix}$$

Доказательство.

Пусть $\dim(V_1) = k$ и $\dim(V_2) = n - k$. Базисы \mathcal{E}_1 и \mathcal{E}_2 определены как:

$$\mathcal{E}_1 = \{e_1, \dots, e_k\}, \quad \mathcal{E}_2 = \{e_{k+1}, \dots, e_n\}$$

Рассмотрим действие оператора ϕ на элементы базиса:

$$\begin{cases} \phi(e_1) = \alpha_{11}e_1 + \ldots + \alpha_{k1}e_k + 0e_{k+1} + \ldots + 0e_n \\ \vdots \\ \phi(e_k) = \alpha_{1k}e_1 + \ldots + \alpha_{kk}e_k + 0e_{k+1} + \ldots + 0e_n \\ \phi(e_{k+1}) = 0e_1 + \ldots + 0e_k + \alpha_{k+1,k+1}e_{k+1} + \ldots + \alpha_{nk+1}e_n \\ \vdots \\ \phi(e_n) = 0e_1 + \ldots + 0e_k + \alpha_{k+1,n}e_{k+1} + \ldots + \alpha_{nn}e_n \end{cases}$$

Таким образом, матрица оператора ϕ в базисе \mathcal{E} имеет клеточно-диагональный вид:

$$A_{\phi}^{\mathcal{E}} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1k} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{k1} & \cdots & \alpha_{kk} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \alpha_{k+1,k+1} & \cdots & \alpha_{nk+1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \alpha_{k+1,n} & \cdots & \alpha_{nn} \end{bmatrix} = A_{\phi}^{\mathcal{E}} = \begin{bmatrix} A_{\phi|V_1}^{\mathcal{E}_1} & 0 \\ 0 & A_{\phi|V_2}^{\mathcal{E}_2} \end{bmatrix}$$

Теорема 15. (О существовании канонического базиса для орт. оператора)

Пусть $\phi \in \mathcal{L}(E, E)$ — ортогональный оператор. Тогда существует ОНБ $\mathcal{E} = \{e_1, \dots, e_n\}$, в котором матрица оператора ϕ имеет вид:

$$A_{\phi}^{\mathcal{E}} = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_m \end{bmatrix}$$

где каждый блок J_i представляет собой либо:

- матрицу размера 1×1 : (1) или (-1)
- матрицу поворота размера 2×2 на угол θ : $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

2.7 Приведение квадратичной формы ортогонального оператора к нормальному виду.

Пусть f(x,x) = f(x,y) - полярная билинейная форма.

Тогда по теореме Рисса (2) : $f(x,y) = \langle x, \phi(y) \rangle, \ \phi \in \mathcal{L}(\mathbb{E}, \mathbb{E})$

Теорема 16.

Если форма f - симметрична, то $\phi = \phi^*$

Доказательство.

$$f(x,y) = \langle x, \phi(y) \rangle, \ f(y,x) = \langle y, \phi(x) \rangle = \langle \phi(x), y \rangle = \langle x, \phi^*(y) \rangle$$

$$\forall x : \langle x, \phi(y) \rangle = \langle x, \phi^*(y) \rangle \implies \phi(y) = \phi^*(y) \implies \forall y \quad \phi = \phi^*$$

Теорема 17. f(x,y) - билинейная форма, $\mathcal E$ - ОНБ. $\Longrightarrow A_f^{\mathcal E} = A_\phi^{\mathcal E}$.

Доказательство. $A_f^{\mathcal{E}} = (a_{ij}^*); \ A_{\phi}^{\mathcal{E}} = (\hat{a_{ij}})$

$$a_{ij}^* = f(e_i, e_j) = \langle e_i, \phi(e_j) \rangle = \langle e_i, \sum_{k=1}^n \hat{a_{kj}} e_k \rangle = \sum_{k=1}^n \hat{a_{kj}} \langle e_i, e_k \rangle = \hat{a_{ij}}$$

Теорема 18.

f(x,x) — квадратичная форма в \mathbb{E} . Тогда \exists ОНБ $\hat{\mathcal{E}}$, в котором:

$$A_f^{\hat{\mathcal{E}}} = \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

$$\implies f(x,x) = \lambda_1 \hat{e}_1^2 + \lambda_2 \hat{e}_2^2 + \dots + \lambda_n \hat{e}_n^2$$

Доказательство. $f(x,x) \sim f(x,y) \sim \phi, \quad \phi = \phi^*$

 \implies по спектральной теореме для ϕ \exists OHБ из собсственных векторов оператора ϕ .

$$\hat{\mathcal{E}} = \{\hat{e_1}, \dots, \hat{e_n}\}, \quad A_{\phi}^{\hat{\mathcal{E}}} = \Lambda \implies f(x, x) = \lambda_1 \hat{\xi_1}^2 + \dots + \lambda_n \hat{\xi_n}^2$$

Теорема 19. (Об одновременном приведении пары форм)

пусть V - Линейное пространство, на котором задана пара квадратичных форм f(x,x),g(x,x), при этом одна из них положительно определена : f(x,x)>0

Тогда в пространстве $V \exists \mathcal{E} = \{e_1, \dots, e_n\} : f(x, x) = \xi_1^2 + \dots + \xi_n^2, \ g(x, x) = \lambda_1 \xi_1^2 + \dots + \lambda_n \xi_n^2$

Доказательство. $f^*(x,y)$ полярна к f(x,x) и задаёт скалярное произведение $V \to E$.

Тогда по теореме 18 \exists ОНБ $\mathcal{E} = \{e_1, \dots, e_n\}$, где g имеет каконический вид $g(x,x) = \lambda_1 \xi_1^2 + \dots + \lambda_n \xi_n^2$, $f(x,x) = \xi_1^2 + \dots + \xi_n^2$

Теорема 20. (о нахождении канонического вида для формы g)

пусть заданы формы $f(x,x) > 0; g(x,x); \quad \mathcal{E}$ - исходный базис

$$\mathcal{E}' = \{e'_1, \dots, e'_n\}; \quad f(x, x) = (\xi'_1)^2 + \dots + (\xi'_n)^2, \quad g(x, x) = \lambda_1(\xi'_1)^2 + \dots + \lambda_n(\xi'_n)^2.$$

$$\Longrightarrow \lambda$$
 - корни уравнения $|A_g^{\mathcal{E}} - \lambda A_f^{\mathcal{E}}| = 0.$ $\Longrightarrow (A_g^{\mathcal{E}} - \lambda_i A_f^{\mathcal{E}})_{\downarrow}^x = 0$

Доказательство. $\mathcal{E}' = \{e'_1, \dots, e'_n\}, \quad A_f^{\mathcal{E}'} = E$

$$A_g^{\mathcal{E}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}, |A_g^{\mathcal{E}'} - \lambda E| = 0 \iff |A_g^{\mathcal{E}'} - \lambda A_f^{\mathcal{E}'}| = 0$$

$$A_f^{\mathcal{E}'} = T^T A_f^{\mathcal{E}} T; \ A_g^{\mathcal{E}'} = T^T A_g^{\mathcal{E}} T$$

$$\Longrightarrow |T^TA_g^{\mathcal{E}T} - \lambda T^TA_f^{\mathcal{E}} \ T| = 0 \implies |T^T(A_g^{\mathcal{E}} - \lambda A_f^{\mathcal{E}}) \ T| = 0$$

$$\Longrightarrow |T^T| \ (A_q^{\mathcal{E}} - \lambda A_f^{\mathcal{E}}) \ |T| = 0 \quad (|T| \neq 0) \ \Longrightarrow |A_q^{\mathcal{E}} - \lambda A_f^{\mathcal{E}}| = 0 \quad (|T^T| \neq 0)$$

 $e_i' = X$ в базисе \mathcal{E}, X' в базисе \mathcal{E}'

$$X_{\downarrow} = TX'_{\downarrow} : (A_g^{\mathcal{E}'} - \lambda_i E) X'_{\downarrow} = 0$$

$$(A_g^{\mathcal{E}'} - \lambda_i A_f^{\mathcal{E}'}) \underset{\downarrow}{X'} = 0 \iff (T^T A_g^{\mathcal{E}} T - \lambda_i T^T A_f^{\mathcal{E}} T) \underset{\downarrow}{X'} = T^T (A_g^{\mathcal{E}} - \lambda_i A_f^{\mathcal{E}}) T \underset{\downarrow}{X'} = 0$$

Глава 3

Жорданова форма матрицы

3.1 Многочлены для матриц линейных операторов

Пусть $\mathbb{V} = \mathbb{R}$, $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$

Определение 15.

Пусть P(t) — это многочлен вида:

$$P(t) = a_0 + a_1 t + \ldots + a_n t^n$$

Тогда $P(\phi)$ определяется как:

$$P(\phi) = a_0 I + a_1 \phi + a_2 \phi^2 + \ldots + a_n \phi^n$$

Многочлен P(t) называется аннулирующим для оператора ϕ , если $P(\phi) = 0$.

Определение 16.

Многочлен P(a) от матрицы A определяется как:

$$P(a) = a_0 E + a_1 A + a_2 A^2 + \ldots + a_n A^n$$

где a_0, a_1, \ldots, a_n — коэффициенты многочлена, а E — единичная матрица.

 $A \in M_n$, P(t) - многочлен, аннулирующий матрицу A, если P(A) = 0

Определение 17.

Минимальный многочлен для матрицы A_0 : $M_A(t)$

- $M_A(A) = 0$
- ullet Старший коэффициент при $t^k=1 \implies M_A(t)=t^k+\dots$
- ullet $M_A(t)$ имеет минимальную возможную степень

Минимальный многочлен для оператора ϕ **:** $M_{\phi}(t)$ (аналогичные свойства)

Теорема 21.

Пусть P(t) — аннулирующий многочлен для матрицы A, а $M_A(t)$ — минимальный многочлен. Тогда:

$$P(t) = q(t) \cdot M_A(t)$$

для некоторого многочлена q(t).

Доказательство. Докажем от противного. Предположим, что

$$P(t) = q(t) \cdot M_A(t) + r(t)$$
, где $\deg(r(t)) < \deg(M_A(t))$

Поскольку P(t) аннулирует A, имеем:

$$0 = P(A) = q(A) \cdot M_A(A) + r(A).$$

Так как $M_A(A) = 0 \implies 0 = r(A)$

Однако, это противоречит тому, что $\deg(r(t)) < \deg(M_A(t))$, поскольку $M_A(t)$ — минимальный многочлен. Следовательно, r(t) = 0, и

$$P(t) = q(t) \cdot M_A(t).$$

Теорема 22 (Гамильтона-Кэли).

Пусть $A \in M$, и $X_A(t)$ - характеристический многочлен матрицы A, т.е. $X_A(t) = \det(A - t \cdot E)$. Тогда $X_A(t)$ является аннулирующим многочленом для A, т.е. $X_A(A) = 0$.

Доказательство. Пусть $A \in M$ и $A - t \cdot E = (c_{ij})(t)$. Обозначим $B(t) = (b_{ij}(t))$, где $b_{ij}(t)$ - алгебраические дополнения элементов C_{ij} .

Тогда
$$b_{ij}(t) = b_{ij}^{(0)} + b_{ij}^{(1)}t + \ldots + b_{ij}^{(n-1)}t^{n-1}.$$

Следовательно,
$$B(t) = B^{(0)} + B^{(1)}t + \ldots + B^{(n-1)}t^{n-1}$$
, и $(A - t \cdot E)^{-1} = \frac{1}{\det(A - t \cdot E)} \cdot B(t)$.

Поскольку $B(t) = (A - t \cdot E)^{-1} \cdot X_A(t)$ для $t \neq \lambda_i$, где λ_i - корни характеристического уравнения, умножим на $(A - t \cdot E)$ справа:

$$B(t)(A - t \cdot E) = X_A(t)E$$

Это приводит к равенству многочленов:

$$(B^{(0)} + B^{(1)}t + \dots + B^{(n-1)}t^{n-1})(A - t \cdot E) = (\alpha_0 + \alpha_1 t + \dots + \alpha_n t^n)E$$

Убирая ограничение $t \neq \lambda_i$, получаем систему уравнений:

$$\begin{cases} B^{(0)}A = \alpha_0 E \\ B^{(1)}A - B^{(0)}E = \alpha_1 E \\ B^{(2)}A - B^{(1)}E = \alpha_2 E \end{cases}$$
$$\vdots$$
$$B^{(n)}A - B^{(n-1)}E = \alpha_n E$$

Таким образом, $0 = \alpha_0 E + \alpha_1 A + ... + \alpha_n A^n = X_A(A)$.

Следовательно, характеристический многочлен делится на минимальный, и все корни минимального многочлена вещественны.

3.2 Корневые подпространства

Пусть \mathbb{V} - Линейное пространство, $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$, все корни $X_{\phi}(t)$ вещественные.

Определение 18.

 $x_0 \neq 0$ - Корневой вектор, соответствующий λ_0 , если $\exists k \in \mathbb{N} : (\phi - \lambda_0 I)^k x_0 = 0$. k - высота корневого вектора x_0 , если $(\phi - \lambda_0 I)^k x_0 = 0$, но $(\phi - \lambda_0 I)^{k-1} x_0 \neq 0$. \Longrightarrow собственный вектор - частный случай корневого вектора с высотой 1.

Теорема 23 (О корневом подпространстве).

Пусть λ - собственное число оператора ϕ , тогда

$$\mathcal{L}_{(\alpha)} = \{$$
все корневые вектора $\sim \alpha \oplus 0 \}.$

 $\Longrightarrow \mathcal{L}_{(lpha)}$ является подпространством $\mathbb {V}$ и называется корневым подпространством.

Доказательство.

Поскольку $0 \in \mathcal{L}_{(\alpha)}$, то $\mathcal{L}_{(\alpha)} \neq \emptyset$. Пусть $x_1, x_2 \in \mathcal{L}_{(\alpha)}$ и $\xi, \mu \in \mathbb{R}$.

Рассмотрим $y = \xi x_1 + \mu x_2$. Тогда $y \in \mathcal{L}_{(\alpha)}$.

$$\Longrightarrow \exists k, s \in \mathbb{N} : (\phi - \alpha I)^k x_1 = 0$$
 и $(\phi - \alpha I)^s x_2 = 0$.

Пусть $m = \max(k, s)$. Тогда:

$$(\phi - \alpha I)^m y = (\phi - \alpha I)^m (\xi x_1 + \mu x_2) = \xi (\phi - \alpha I)^m x_1 + \mu (\phi - \alpha I)^m x_2 = 0.$$

Следовательно, $\mathcal{L}_{(\alpha)}$ является подпространством. Пусть $\mathbb{V}_1 \subseteq \mathbb{V}$ и $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$.

Тогда \mathbb{V}_1 инвариантно относительно ϕ , и $\mathcal{E}_1 = \{e_1, \dots, e_k\}$ можно дополнить до базиса \mathcal{E} .

Теорема 24 (О высоте корневого вектора).

 $dim(\mathcal{L}_{\alpha})=m,\ x\neq 0\in \mathcal{L}_{\alpha},\ k$ - тах высота корневого вектора $x.\implies k\leq m$

Доказательство. Рассмотрим ограничение оператора ϕ на корневое подпространство \mathcal{L}_{α} , обозначим его как $\phi_1 = \phi|_{\mathcal{L}_{\alpha}}$.

Поскольку \mathcal{L}_{α} — корневое подпространство, характеристический многочлен ϕ_1 имеет вид:

$$\phi_1(t) = (t - \alpha)^m.$$

Это означает, что минимальный многочлен $X_{\phi_1}(\lambda)$ оператора ϕ_1 также имеет вид:

$$X_{\phi_1}(\lambda) = (\lambda - \alpha)^m.$$

Таким образом, $\forall x \in \mathcal{L}_{\alpha}$ выполняется:

$$(\phi_1 - \alpha I)^m(x) = 0.$$

Пусть $x \neq 0$ — корневой вектор максимальной высоты k. Это означает, что:

$$(\phi_1 - \alpha I)^k(x) = 0,$$

 $\forall j < k$ выполняется:

$$(\phi_1 - \alpha I)^j(x) \neq 0.$$

Поскольку $X_{\phi_1}(\lambda) = (\lambda - \alpha)^m$ и $m = \dim(\mathcal{L}_{\alpha})$, максимальная высота корневого вектора x не может превышать m. Следовательно, $k \leq m$.

Таким образом, доказательство показывает, что высота корневого вектора ограничена размерностью корневого подпространства.

Теорема 25. (Об инвариантности корневого подпространства)

Пусть λ - собственное число оператора ϕ . $\Longrightarrow \mathcal{L}_{\lambda}$ инвариантно относительно ϕ

Доказательство. Рассмотрим вектор $x \in \mathcal{L}_{\lambda}$. По определению корневого подпространства, это означает, что существует такое натуральное число k, что:

$$(\phi - \lambda I)^k(x) = 0.$$

Нам нужно показать, что $\phi(x) \in \mathcal{L}_{\lambda}$, то есть:

$$(\phi - \lambda I)^k(\phi(x)) = 0.$$

Поскольку $(\phi - \lambda I)^k(x) = 0$, мы можем применить оператор ϕ к обеим частям этого уравнения:

$$\phi((\phi - \lambda I)^k(x)) = \phi(0) = 0.$$

Используя ассоциативность операторов, мы можем переписать это как:

$$(\phi - \lambda I)^k(\phi(x)) = 0.$$

Таким образом, $\phi(x) \in \mathcal{L}_{\lambda}$, что доказывает инвариантность корневого подпространства \mathcal{L}_{λ} относительно оператора ϕ .

Теорема 26 (О линейной независимости корневых векторов разной высоты).

Пусть $x_1, \ldots, x_m \in \mathcal{L}_{\lambda}$ и k_1, \ldots, k_m — их соответствующие высоты. Тогда векторы x_1, \ldots, x_m линейно независимы.

Доказательство (от противного). Предположим, что векторы x_1, \ldots, x_m ЛЗ.

Тогда существует нетривиальная линейная комбинация:

$$\lambda_1 x_1 + \ldots + \lambda_m x_m = 0, \quad (\exists j : \lambda_j \neq 0)$$

Применим оператор $(\phi - \lambda I)^{k_m - 1}$ к этой комбинации:

$$\lambda_1(\phi - \lambda I)^{k_m - 1} x_1 + \ldots + \lambda_{m-1}(\phi - \lambda I)^{k_m - 1} x_{m-1} + \lambda_m(\phi - \lambda I)^{k_m - 1} x_m = 0.$$

Поскольку $k_1, \ldots, k_{m-1} \le k_m - 1$, то:

$$\lambda_m(\phi - \lambda I)^{k_m - 1} x_m = 0 \implies \lambda_m = 0.$$

Аналогично, применяя оператор $(\phi - \lambda I)^{k_m-1}$ к оставшимся векторам, получаем, что $\lambda_{m-1} = 0, \dots, \lambda_1 = 0$. Это противоречит предположению о нетривиальности линейной комбинации.

Следовательно, векторы $x_1, ..., x_m$ ЛНЗ.

Теорема 27 (О разложении пространства в прямую сумму корневых подпространств).

Пусть $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ и все корни характеристического многочлена ϕ вещественные: $\lambda_1, \dots, \lambda_s$. Тогда пространство \mathbb{V} разлагается в прямую сумму корневых подпространств:

$$\mathbb{V} = \mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_s}$$
.

Доказательство.

Рассмотрим произвольный ненулевой вектор $x \in \mathbb{V}$. Пусть $m_x(t)$ — минимальный многочлен для x, который удовлетворяет следующим условиям:

- 1. $m_x(\phi)(x) = 0$.
- 2. $m_x(t)$ имеет старший коэффициент 1.
- 3. $m_x(t)$ минимальной возможной степени.

Известно, что $m_x(t)$ делит характеристический многочлен $m_{\phi}(t)$, и все его корни вещественные. Следовательно, $m_x(t)$ можно представить в виде:

$$m_x(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_r)^{k_r}$$

Мы утверждаем, что x можно разложить как $x = x_1 + \ldots + x_r$, где $x_i \in \mathcal{L}_{\lambda_i}$.

Докажем это утверждение методом математической индукции по r.

База индукции: r=1. В этом случае $m_x(t)=(t-\lambda_1)^{k_1}$, и, следовательно, $(\phi-\lambda_1 I)^{k_1}(x)=0$, что означает $x\in\mathcal{L}_{\lambda_1}$. Таким образом, $x=x+0+\ldots+0$.

Шаг индукции: Предположим, что утверждение верно для r-1. Рассмотрим случай r. Пусть

$$m_x(t) = f(t) \cdot q(t),$$

где
$$f(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_{r-1})^{k_{r-1}}$$
 и $g(t) = (t - \lambda_r)^{k_r}$.

По теореме из школьной алгебры существуют многочлены u(t) и v(t) такие, что

$$u(t) \cdot f(t) + v(t) \cdot q(t) = 1.$$

Применяя оператор ϕ , получаем:

$$u(\phi) \cdot f(\phi) + v(\phi) \cdot g(\phi) = I.$$

Следовательно,

$$x = u(\phi) \cdot f(\phi)(x) + v(\phi) \cdot q(\phi)(x) = x_1 + x_2$$

где
$$x_1 = u(\phi) \cdot f(\phi)(x)$$
 и $x_2 = v(\phi) \cdot g(\phi)(x)$.

Докажем, что x_1 и x_2 принадлежат соответствующим корневым подпространствам. Поскольку $g(\phi)(x_1)=0, m_{x_1}(t)$ делит g(t), и по предположению индукции x_1 можно разложить в сумму векторов из корневых подпространств.

Аналогично, $f(\phi)(x_2) = 0$, и $m_{x_2}(t)$ делит f(t), что также позволяет разложить x_2 в сумму векторов из корневых подпространств.

Таким образом, любой вектор $x \in \mathbb{V}$ можно разложить в сумму векторов из корневых подпространств, что доказывает, что $\mathbb{V} = \mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_s}$.

Доказательство. (Что сумма является прямой).

Докажем утверждение по индукции по количеству слагаемых в прямой сумме.

База индукции: Рассмотрим случай $\mathcal{L}_{\lambda} \oplus \mathcal{L}_{\beta}$. Предположим, что $\mathcal{L}_{\lambda} \cap \mathcal{L}_{\beta} = \{0\}$.

Пусть $x \neq 0$ и $x \in \mathcal{L}_{\lambda} \cap \mathcal{L}_{\beta}$. Тогда $x \in \mathcal{L}_{\lambda}$, следовательно, $(\phi - \lambda I)^k(x) = 0$.

Также $x \in \mathcal{L}_{\beta}$, следовательно, $(\phi - \beta I)^{s}(x) = 0$. Это означает, что $m_{x}(t)$ делит оба многочлена $(t - \lambda)^{k}$ и $(t - \beta)^{s}$. Поскольку $\lambda \neq \beta$, $m_{x}(t) = 1$, что противоречит предположению $x \neq 0$. Следовательно, x = 0.

Шаг индукции: Предположим, что для m подпространств $\mathcal{L}_{\lambda_1}, \ldots, \mathcal{L}_{\lambda_m}$ выполнено $\mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_m} \cap \mathcal{L}_{\lambda_{m+1}} = \{0\}.$

Пусть $x_{m+1} \neq 0$, $x_{m+1} \in \mathcal{L}_{\lambda_{m+1}}$, и $x_{m+1} \in \mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_m}$. Тогда $x_{m+1} = x_1 + \ldots + x_m$, где $x_i \in \mathcal{L}_{\lambda_i}$.

T.K.
$$(\phi - \lambda_{m+1}I)^{k_{m+1}}(x_{m+1}) = 0$$
, To $(\phi - \lambda_{m+1}I)^{k_{m+1}}(x_1) + \ldots + (\phi - \lambda_{m+1}I)^{k_{m+1}}(x_m) = 0$.

Это означает, что $y_1 + \ldots + y_m = 0$, где $y_i = (\phi - \lambda_{m+1} I)^{k_{m+1}} (x_i)$.

Поскольку сумма $\mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_m}$ прямая, то $y_i = 0$ для всех i. Следовательно, $x_i \in \mathcal{L}_{\lambda_i} \cap \mathcal{L}_{\lambda_{m+1}} = \{0\}$, что означает $x_i = 0$ для всех i.

Это противоречит предположению $x_{m+1} \neq 0$.

Таким образом, $z \in \mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_m} \oplus \mathcal{L}_{\lambda_{m+1}}$ представляется единственным образом

$$z = z_1 + \ldots + z_m + z_{m+1},$$

где $z_i \in \mathcal{L}_{\lambda_i}$. Следовательно, сумма $\mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_{m+1}}$ является прямой.

Следствие 1 (О ЛНЗ векторов из разных корневых подпространств).

Пусть $x_1 \in \mathcal{L}_{\alpha_1}, \dots, x_m \in \mathcal{L}_{\alpha_m}$ — ненулевые векторы из различных корневых подпространств (т.е. $\alpha_i \neq \alpha_j$ при $i \neq j$). Тогда система векторов $\{x_1, \dots, x_m\}$ линейно независима.

Доказательство. От противного:

Предположим, что система векторов $\{x_1, \ldots, x_m\}$ линейно зависима. Тогда существуют числа $\lambda_1, \ldots, \lambda_m$, не все равные нулю, такие что:

$$\lambda_1 x_1 + \ldots + \lambda_m x_m = 0$$

Заметим, что:

- $\lambda_1 x_1 \in \mathcal{L}_{\alpha_1}$ (т.к. корневое подпространство является линейным)
- :
- $\lambda_m x_m \in \mathcal{L}_{\alpha_m}$

По доказанной теореме, сумма корневых подпространств $\mathcal{L}_{\alpha_1} \oplus \ldots \oplus \mathcal{L}_{\alpha_m}$ является прямой.

Следовательно, нулевой вектор может быть представлен единственным образом как сумма векторов из этих подпространств, а именно:

$$0 = 0 + \ldots + 0$$

Таким образом:

$$\begin{cases} \lambda_1 x_1 = 0 \\ \vdots \\ \lambda_m x_m = 0 \end{cases}$$

Поскольку все $x_i \neq 0$ по условию, получаем:

$$\lambda_1 = \ldots = \lambda_m = 0$$

Это противоречит предположению о том, что не все λ_i равны нулю. Следовательно, система векторов $\{x_1,\ldots,x_m\}$ линейно независима.

Определение 19.

Жордановой клеткой порядка k с собственным числом λ называется квадратная матрица размера $k \times k$ вида:

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

Определение 20.

Жордановой формой матрицы А называется блочно-диагональная матрица вида:

$$J = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{k_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_s}(\lambda_s) \end{pmatrix}$$

где $J_{k_i}(\lambda_i)$ — жордановы клетки, соответствующие собственным числам λ_i .

Определение 21.

Пусть $\phi:V\to V$ — линейный оператор и $x\in V$. Циклическим подпространством $\{x\}_\phi$ называется наименьшее подпространство, содержащее вектор x и инвариантное относительно оператора ϕ .

Другими словами, если x — корневой вектор, соответствующий собственному числу λ_i , то:

$$\{x\}_{\phi} = \operatorname{span}\{x, \phi(x), \phi^{2}(x), \dots, \phi^{k-1}(x)\}\$$

где k - наименьшее натуральное число, при котором система векторов $x,\phi(x),\phi^2(x),\dots,\phi^k(x)$ становится линейно зависимой.

Теорема 28. Пусть $\phi:V\to V$ — линейный оператор, и $x\in V$ — корневой вектор, соответствующий собственному значению λ . Тогда циклическое подпространство $\{x\}_{\phi}$ существует.

Доказательство. Рассмотрим последовательность векторов:

$$x, \phi(x), \phi^2(x), \ldots, \phi^k(x),$$

где k — наименьшее натуральное число, при котором эта система становится линейно зависимой. Такое k существует, так как пространство V конечномерно.

Построим подпространство:

$${x}_{\phi} = \operatorname{span}{x, \phi(x), \phi^{2}(x), \dots, \phi^{k-1}(x)}.$$

1. Содержит *x*:

По построению, $x \in \{x\}_{\phi}$.

2. Инвариантность относительно ϕ :

Для любого вектора $v \in \{x\}_{\phi}$ его образ $\phi(v)$ также принадлежит $\{x\}_{\phi}$.

Действительно, если

$$v = \alpha_0 x + \alpha_1 \phi(x) + \dots + \alpha_{k-1} \phi^{k-1}(x),$$

то

$$\phi(v) = \alpha_0 \phi(x) + \alpha_1 \phi^2(x) + \dots + \alpha_{k-1} \phi^k(x).$$

Поскольку $\phi^k(x)$ линейно выражается через предыдущие векторы (так как система линейно зависима), $\phi(v) \in \{x\}_{\phi}$.

3. Минимальность:

Пусть W — любое подпространство, содержащее x и инвариантное относительно ϕ . Тогда:

• $x \in W$

- $\phi(x) \in W$ (так как W инвариантно)
- $\phi^2(x) \in W$
- :
- $\phi^{k-1}(x) \in W$

Следовательно, $\{x\}_{\phi} \subseteq W$.

Таким образом, $\{x\}_{\phi}$ — наименьшее подпространство, содержащее x и инвариантное относительно ϕ .

Теорема 29 (О базисе циклического подпространства).

Пусть x — корневой вектор высоты $k \sim$ собственному значению λ . Тогда векторы

$$\begin{cases} e_0 = x, \\ e_1 = \phi(x), \\ \vdots \\ e_{k-1} = \phi^{k-1}(x) \end{cases}$$

образуют базис в циклическом подпространстве $\{x\}_{\phi}$.

Доказательство. Рассмотрим корневой вектор $x = e_0$ высоты k. По определению корневого вектора:

$$(\phi - \lambda I)^k x = 0$$
, no $(\phi - \lambda I)^{k-1} x \neq 0$.

Определим векторы:

$$\begin{cases} e_1 = (\phi - \lambda I)x, \\ e_2 = (\phi - \lambda I)^2 x, \\ \vdots \\ e_{k-1} = (\phi - \lambda I)^{k-1} x. \end{cases}$$

Заметим, что:

- $e_0 = x$ имеет высоту k,
- $e_1 = (\phi \lambda I)x$ имеет высоту k 1,
- :
- $e_{k-1} = (\phi \lambda I)^{k-1} x$ имеет высоту 1.

Векторы $e_0, e_1, \ldots, e_{k-1}$ линейно независимы, так как они имеют разную высоту.

Пусть $y \in \{x\}_{\phi}$. Тогда y можно выразить как:

$$y = p(\phi)(x),$$

где p(t) — многочлен степени не выше k-1:

$$p(t) = \beta_0 + \beta_1(t - \lambda) + \ldots + \beta_{k-1}(t - \lambda)^{k-1}.$$

Подставляя ϕ вместо t, получаем:

$$y = \beta_0 x + \beta_1 (\phi - \lambda I) x + \ldots + \beta_{k-1} (\phi - \lambda I)^{k-1} x.$$

Это эквивалентно:

$$y = \beta_0 e_0 + \beta_1 e_1 + \ldots + \beta_{k-1} e_{k-1}.$$

Таким образом, мы показали, что векторы e_0, e_1, \dots, e_{k-1} линейно независимы и любой вектор $y \in \{x\}_{\phi}$ можно выразить как их линейную комбинацию:

Таким образом, $\{e_0, e_1, \dots, e_{k-1}\}$ образует базис в циклическом подпространстве $\{x\}_{\phi}$.

Рассмотрим двойственный базис $\epsilon^* = \{e_1^*, e_2^*, \dots, e_k^*\}$, который строится путём перестановки векторов $\{e_0, e_1, \dots, e_{k-1}\}$ в обратном порядке:

$$\begin{cases} e_1^* = e_{k-1}, \\ e_2^* = e_{k-2}, \\ \vdots \\ e_k^* = e_0. \end{cases}$$

Тогда:

$$\begin{cases} (\phi - \lambda I)e_1^* = (\phi - \lambda I)e_{k-1} = 0, \\ (\phi - \lambda I)e_2^* = (\phi - \lambda I)e_{k-2} = e_{k-1} = e_1^*, \\ \vdots \\ (\phi - \lambda I)e_k^* = (\phi - \lambda I)e_0 = e_1 = e_{k-1}^*. \end{cases}$$

Это означает, что ϵ^* — циклический базис (или жорданова цепочка) в $\{x\}_{\phi}$.

Теорема 30 (О существовании Жордановой формы матрицы).

Пусть U — инвариантное подпространство, состоящее из корневых векторов, соответствующих собственному значению λ .

Tогда U является прямой суммой циклических подпространств.

Теорема 31.

Пусть $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$. Если все корни характеристического уравнения действительные, то в пространстве \mathbb{V} существует базис \mathcal{E} , в котором матрица $A_{\mathcal{E}}^{\phi}$ имеет Жорданову форму.

Доказательство.

Пусть $\lambda_1, \ldots, \lambda_s$ — все собственные числа оператора ϕ , и по условию они вещественные. Рассмотрим разложение пространства $\mathbb V$ в прямую сумму корневых подпространств, соответствующих этим собственным значениям:

$$\mathbb{V} = \mathcal{L}_{\lambda_1} \oplus \ldots \oplus \mathcal{L}_{\lambda_s},$$

где \mathcal{L}_{λ_i} — корневое подпространство, соответствующее собственному значению λ_i .

По теореме 30 (о разложении корневого подпространства), каждое корневое подпространство \mathcal{L}_{λ_i} раскладывается в прямую сумму циклических подпространств:

$$\mathcal{L}_{\lambda_i} = \mathbb{V}_{i1} \oplus \ldots \oplus \mathbb{V}_{ik_i},$$

где \mathbb{V}_{ij} — циклическое подпространство, инвариантное относительно оператора ϕ .

В каждом циклическом подпространстве V_{ij} построим циклический базис \mathcal{E}^{ij} , следуя теореме о базисе циклического подпространства. Пусть V_{ij} порождается корневым вектором v_{ij} высоты m_{ij} . Тогда базис \mathcal{E}^{ij} имеет вид:

$$\mathcal{E}^{ij} = \left\{ v_{ij}, (\phi - \lambda_i I) v_{ij}, (\phi - \lambda_i I)^2 v_{ij}, \dots, (\phi - \lambda_i I)^{m_{ij} - 1} v_{ij} \right\}.$$

Рассмотрим действие оператора ϕ на элементы циклического базиса \mathcal{E}^{ij} :

$$\phi(v_{ij}) = \lambda_i v_{ij} + (\phi - \lambda_i I) v_{ij},$$

$$\phi((\phi - \lambda_i I) v_{ij}) = \lambda_i (\phi - \lambda_i I) v_{ij} + (\phi - \lambda_i I)^2 v_{ij},$$

$$\vdots$$

$$\phi((\phi - \lambda_i I)^{m_{ij} - 1} v_{ij}) = \lambda_i (\phi - \lambda_i I)^{m_{ij} - 1} v_{ij}.$$

Таким образом, матрица оператора ϕ в базисе \mathcal{E}^{ij} имеет вид жордановой клетки:

$$J_{ij} = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & \cdots & 0 & \lambda_i \end{pmatrix}.$$

Единички над диагональю в матрице J_{ij} возникают из-за того, как оператор ϕ действует на базисные векторы \mathcal{E}^{ij} . Рассмотрим подробнее:

Оператор ϕ переводит каждый базисный вектор в линейную комбинацию текущего и следующего вектора базиса. Например:

$$\phi(v_{ij}) = \lambda_i v_{ij} + (\phi - \lambda_i I) v_{ij}.$$

Здесь $\lambda_i v_{ij}$ соответствует диагональному элементу λ_i , а $(\phi - \lambda_i I)v_{ij}$ — следующему базисному вектору, что дает единичку над диагональю.

Объединяя базисы \mathcal{E}^{ij} для всех циклических подпространств, получаем базис всего пространства \mathbb{V} :

$$\mathcal{E} = \bigcup_{i=1}^{s} \bigcup_{j=1}^{k_i} \mathcal{E}^{ij}.$$

Поскольку подпространства \mathbb{V}_{ij} инвариантны и образуют прямую сумму, действие оператора ϕ на векторы из одного подпространства \mathbb{V}_{ij} не затрагивает векторы из других подпространств.

Таким образом, матрица оператора ϕ в базисе \mathcal{E} будет иметь блочно-диагональную структуру, где каждый блок соответствует действию ϕ на одно из циклических подпространств \mathbb{V}_{ij} . Каждый блок — это жорданова клетка J_{ij} , соответствующая подпространству \mathbb{V}_{ij} .

Итак, матрица $A_{\mathcal{E}}^{\phi}$ имеет вид:

$$A_{\mathcal{E}}^{\phi} = \begin{pmatrix} J_{11} & 0 & \cdots & 0 \\ 0 & J_{12} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{sk_s} \end{pmatrix},$$

где каждая J_{ij} — жорданова клетка, соответствующая циклическому подпространству \mathbb{V}_{ij} . Это и означает, что матрица $A_{\mathcal{E}}^{\phi}$ имеет Жорданову форму.

Следствие 2.

Размер жордановой клетки никогда не превышает алгебраическую кратность данного собственного числа λ_i

Теорема 32 (О единственности Жордановой формы).

Пусть $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ — линейный оператор, и все собственные значения λ_i оператора ϕ вещественные. Тогда Жорданова форма матрицы $A_{\mathcal{E}}^{\phi}$ определена однозначно с точностью до порядка расположения Жордановых клеток. Более того, количество Жордановых клеток одного и того же размера, соответствующих каждому собственному числу, является инвариантом оператора ϕ .

Доказательство. Рассмотрим собственное число λ оператора ϕ и его Жорданову форму J. Пусть:

$$S_1 =$$
 количество клеток размера 1×1 , $S_2 =$ количество клеток размера 2×2 , \vdots $S_p =$ количество клеток размера $p \times p$.

Нам нужно доказать, что числа S_1, S_2, \dots, S_p не зависят от выбора Жорданова базиса. Введем обозначения для рангов степеней оператора $\phi - \lambda I$:

$$r_1 = \operatorname{rang}(\phi - \lambda I) = \operatorname{rang}(J - \lambda E),$$

 $r_2 = \operatorname{rang}(\phi - \lambda I)^2 = \operatorname{rang}(J - \lambda E)^2,$
:

$$r_p = \operatorname{rang}(\phi - \lambda I)^p = \operatorname{rang}(J - \lambda E)^p$$
.

Заметим, что ранг оператора ϕ равен количеству линейно независимых столбцов в матрице $A_{\mathcal{E}}^{\phi}$. Это можно записать как:

$$rang(\phi) = \dim(\operatorname{Im}(\phi)).$$

Рассмотрим Жорданову клетку размера $k \times k$, соответствующую λ :

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{pmatrix} \xrightarrow{\text{Вычитаем } \lambda} J_k(\lambda) - \lambda E = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Ранг этой матрицы равен k-1, так как первые k-1 строк линейно независимы, а последняя строка нулевая. Таким образом, для каждой клетки размера $k \times k$:

$$\operatorname{rang}(J_k(\lambda) - \lambda E) = k - 1.$$

Отсюда следует, что размер клетки k выражается через ранг как:

$$k = \operatorname{rang}(J_k(\lambda) - \lambda E) + 1.$$

Если же вычесть λ из Жордановой клетки, соответствующей другому собственному числу, то матрица останется невырожденной, и её ранг не изменится.

Общий размер всех клеток равен:

$$n = \sum_{k=1}^{p} k \cdot S_k.$$

Подставляя выражение для k, получаем:

$$n = \sum_{k=1}^{p} (\operatorname{rang}(J_k(\lambda) - \lambda E) + 1) \cdot S_k.$$

Раскрывая сумму, имеем:

$$n = \sum_{k=1}^{p} \operatorname{rang}(J_k(\lambda) - \lambda E) \cdot S_k + \sum_{k=1}^{p} S_k.$$

Первая сумма равна r_1 , так как r_1 — это общий ранг оператора $\phi - \lambda I$. Вторая сумма — это общее количество клеток, соответствующих λ . Таким образом:

$$n = r_1 + S_1 + S_2 + \ldots + S_n$$
.

Теперь рассмотрим ранг $r_2 = \operatorname{rang}(J - \lambda E)^2$. Для Жордановой клетки размера $k \times k$:

$$(J_k(\lambda) - \lambda E)^2 = \begin{pmatrix} 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Рассмотрим разность рангов r_1-r_2 . Эта разность показывает, насколько уменьшился ранг при возведении оператора $\phi-\lambda I$ в квадрат. Эта разность связана с количеством Жордановых клеток.

Для каждой Жордановой клетки размера $k \times k$:

$$\operatorname{rang}(J_k(\lambda) - \lambda E) - \operatorname{rang}(J_k(\lambda) - \lambda E)^2 = \begin{cases} r_1 - r_2 = (k-1) - (k-2) = 1, & \text{если } k \ge 2, \\ 0, & \text{если } k = 1. \end{cases}$$

Следовательно, общая разность $r_1 - r_2$ равна количеству клеток размера $k \times k \ (k \ge 2)$:

$$r_1 - r_2 = S_2 + S_3 + \ldots + S_n$$

Аналогично, для разностей $r_{m-1} - r_m$ получаем:

$$r_{m-1} - r_m = S_m + S_{m+1} + \ldots + S_p$$
.

Таким образом, система уравнений принимает вид:

$$\begin{cases} n - r_1 = S_1 + S_2 + \dots + S_p, \\ r_1 - r_2 = S_2 + S_3 + \dots + S_p, \\ r_2 - r_3 = S_3 + S_4 + \dots + S_p, \\ \vdots \\ r_{p-1} - r_p = S_p. \end{cases}$$

Решим систему последовательно. Из последнего уравнения:

$$S_p = r_{p-1} - r_p.$$

Подставляя S_p в предпоследнее уравнение:

$$r_{p-2} - r_{p-1} = S_{p-1} + S_p = S_{p-1} + (r_{p-1} - r_p),$$

откуда:

$$S_{p-1} = r_{p-2} - 2r_{p-1} + r_p.$$

Продолжая аналогично, получаем общую формулу:

$$S_k = r_{k-1} - 2r_k + r_{k+1}$$
 для $k = 1, 2, \dots, p-1$,

где
$$r_0 = n$$
 и $r_{p+1} = 0$.

Поскольку ранги r_k не зависят от выбора базиса, числа S_k , выраженные через r_k , также не зависят от выбора базиса. Это доказывает, что количество Жордановых клеток каждого размера является инвариантом оператора ϕ .

Следствие 3. Пусть \mathcal{L}^{λ} — собственное подпространство линейного оператора ϕ , соответствующее собственному значению λ . Тогда:

$$\dim(\mathcal{L}^{\lambda}) = s(\lambda) = j(\lambda),$$

где:

- $s(\lambda)$ количество линейно независимых собственных векторов, соответствующих λ ;
- $j(\lambda)$ количество Жордановых клеток, соответствующих λ .

Доказательство. Рассмотрим оператор $\phi - \lambda I$, где I — тождественный оператор. Из классического курса линейной алгебры известно:

$$\dim(\ker(\phi - \lambda I)) + \dim(Im(\phi - \lambda I)) = n,$$

где n — размерность пространства.

Заметим, что:

- $\ker(\phi \lambda I)$ это собственное подпространство \mathcal{L}^{λ} , соответствующее λ .
- $\dim(\ker(\phi \lambda I)) = \dim(\mathcal{L}^{\lambda}).$
- $\dim(Im(\phi \lambda I)) = r_1$, где r_1 ранг оператора $\phi \lambda I$.

Таким образом, получаем:

$$\dim(\mathcal{L}^{\lambda}) + r_1 = n.$$

Пусть S_1, S_2, \ldots, S_p — количество Жордановых клеток размера $1 \times 1, 2 \times 2, \ldots, p \times p$ соответственно, соответствующих собственному значению λ . Тогда общее количество Жордановых клеток, соответствующих λ , равно:

$$j(\lambda) = S_1 + S_2 + \ldots + S_p.$$

Каждая Жорданова клетка размера $k \times k$ вносит ровно один линейно независимый собственный вектор. Поэтому количество линейно независимых собственных векторов, соответствующих λ , равно:

$$s(\lambda) = S_1 + S_2 + \ldots + S_p = j(\lambda).$$

С другой стороны, размерность собственного подпространства \mathcal{L}^{λ} также равна количеству линейно независимых собственных векторов, то есть:

$$\dim(\mathcal{L}^{\lambda}) = s(\lambda) = j(\lambda).$$

Теорема 33.

Пусть $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ — линейный оператор, все корни характеристического уравнения которого вещественные.

Если λ_0 — собственное число алгебраической кратности l_0 , то

$$\dim(\mathcal{L}_{\lambda_0}) = l_0,$$

где \mathcal{L}_{λ_0} — корневое подпространство, соответствующее λ_0 .

Доказательство. Рассмотрим корневое подпространство \mathcal{L}_{λ_0} , соответствующее собственному числу λ_0 .

Пусть J — жорданова форма оператора ϕ , состоящая из жордановых клеток, соответствующих собственным числам. Для собственного числа λ_0 обозначим:

- K_1 количество жордановых клеток размера 1×1 с λ_0 на диагонали,
- K_2 количество жордановых клеток размера 2×2 с λ_0 на диагонали,

• :

• K_s — количество жордановых клеток размера $s \times s$ с λ_0 на диагонали.

Тогда жорданова форма J может быть записана как блочно-диагональная матрица:

$$J = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_s \end{pmatrix}$$

где каждый блок J_i — жорданова клетка, соответствующая λ_0 .

Корневое подпространство \mathcal{L}_{λ_0} раскладывается в прямую сумму циклических подпространств, каждое из которых соответствует одной жордановой клетке.

Следовательно, размерность \mathcal{L}_{λ_0} равна сумме размеров всех жордановых клеток, соответствующих λ_0 :

$$\dim(\mathcal{L}_{\lambda_0}) = K_1 + 2K_2 + \ldots + sK_s.$$

Характеристический многочлен оператора ϕ имеет вид:

$$\chi_{\phi}(t) = \det(J - tE) = (\lambda_0 - t)^{K_1} (\lambda_0 - t)^{2K_2} \cdot \dots \cdot (\lambda_0 - t)^{sK_s} = (\lambda_0 - t)^{K_1 + 2K_2 + \dots + sK_s}$$

Алгебраическая кратность l_0 собственного числа λ_0 равна сумме размеров всех жордановых клеток, соответствующих λ_0 :

$$l_0 = K_1 + 2K_2 + \ldots + sK_s$$

Таким образом, мы получаем:

$$\dim(\mathcal{L}_{\lambda_0}) = l_0$$

что и требовалось доказать.

Теорема 34 (О минимальном многочлене для Жордановой матрицы).

Пусть J_{ϕ} — жорданова форма матрицы оператора ϕ , представленная в виде блочнодиагональной матрицы.

Тогда минимальный многочлен $m_{\phi}(t)$ оператора ϕ (или матрицы J_{ϕ}) равен наименьшему общему кратному (НОК) минимальных многочленов жордановых клеток J_1, J_2, \ldots, J_r :

$$m_{\phi}(t) = m_{J_{\phi}}(t) = \text{HOK}\{m_{J_1}(t), m_{J_2}(t), \dots, m_{J_r}(t)\}.$$

Если J_i — жорданова клетка размера $m \times m$, соответствующая собственному числу λ , то её минимальный многочлен имеет вид:

$$m_{J_i}(t) = (t - \lambda)^m$$
.

Кроме того, корневые высоты векторов, соответствующих этой жордановой клетке, равны $1,2,\ldots,m$.

Доказательство. Докажем, что минимальный многочлен $m_k(t)$ жордановой клетки K размера $m \times m$, соответствующей собственному числу λ , равен $(t - \lambda)^m$.

Рассмотрим жорданову клетку K размера $m \times m$:

$$K = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Покажем, что многочлен $(t - \lambda)^m$ аннулирует клетку K, то есть:

$$(K - \lambda I)^m = 0$$

Для этого рассмотрим действие $K-\lambda I$ на стандартные базисные векторы $e_1,e_2,\ldots,e_m,$ где e_i — вектор с единицей на i-й позиции и нулями на остальных.

Матрица $K - \lambda I$ имеет вид:

$$K - \lambda I = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Действие $K - \lambda I$ на базисные векторы:

$$(K - \lambda I)e_1 = 0$$
, $(K - \lambda I)e_2 = e_1$, $(K - \lambda I)e_3 = e_2$, ..., $(K - \lambda I)e_m = e_{m-1}$.

Таким образом, $K - \lambda I$ "сдвигает" каждый базисный вектор на одну позицию вверх, за исключением e_1 , который обнуляется.

Эта матрица является нильпотентной степени m, то есть $(K - \lambda I)^m = 0$, но $(K - \lambda I)^{m-1} \neq 0$. Следовательно, $(t - \lambda)^m$ — аннулирующий многочлен для K.

Покажем, что $(t-\lambda)^m$ является минимальным многочленом для K. Предположим, что существует многочлен $p(t) = (t-\lambda)^s$, где s < m, который также аннулирует K. Тогда:

$$(K - \lambda I)^s = 0.$$

Однако, как было показано выше, $(K-\lambda I)^{m-1}\neq 0$, и, следовательно, s не может быть меньше m. Таким образом, минимальный многочлен $m_k(t)$ равен $(t-\lambda)^m$.

Матрица $K - \lambda I$ действует на стандартные базисные векторы e_1, e_2, \dots, e_m следующим образом:

$$(K - \lambda I)e_1 = 0$$
, $(K - \lambda I)e_2 = e_1$, ..., $(K - \lambda I)e_m = e_{m-1}$.

Отсюда видно, что:

- Вектор e_1 имеет корневую высоту 1, так как $(K \lambda I)e_1 = 0$.
- Вектор e_2 имеет корневую высоту 2, так как $(K \lambda I)^2 e_2 = 0$, но $(K \lambda I) e_2 \neq 0$.
- _ :
- Вектор e_m имеет корневую высоту m, так как $(K \lambda I)^m e_m = 0$, но $(K \lambda I)^{m-1} e_m \neq 0$.

Таким образом, минимальный многочлен $m_K(t)$ равен $(t-\lambda)^m$, так как:

- $(t-\lambda)^m$ аннулирует K, то есть $(K-\lambda I)^m=0$.
- Никакой многочлен меньшей степени s < m не может аннулировать K, так как $(K \lambda I)^{m-1} e_m \neq 0$.

Теорема доказана.

Теорема 35. Пусть J — Жорданова форма матрицы оператора ϕ , и $\lambda_1, \lambda_2, \ldots, \lambda_s$ — её собственные числа. Обозначим через h_j максимальный размер Жордановой клетки, соответствующей собственному числу λ_j . Тогда минимальный многочлен $m_\phi(t)$ оператора ϕ имеет вид:

$$m_{\phi}(t) = (t - \lambda_1)^{h_1} \cdot (t - \lambda_2)^{h_2} \cdot \dots \cdot (t - \lambda_s)^{h_s}.$$

Доказательство. Минимальный многочлен $m_{\phi}(t)$ оператора ϕ совпадает с минимальным многочленом его Жордановой формы J. Жорданова форма J состоит из Жордановых клеток J_1, J_2, \ldots, J_r , каждая из которых соответствует одному из собственных чисел $\lambda_1, \lambda_2, \ldots, \lambda_s$.

Для каждой Жордановой клетки J_i , соответствующей собственному числу λ_j , минимальный многочлен равен $m_{J_i}(t)=(t-\lambda_j)^{k_i}$, где k_i — размер клетки J_i .

Следовательно, минимальный многочлен всей Жордановой формы J равен наименьшему общему кратному (HOK) минимальных многочленов всех Жордановых клеток:

$$m_{\phi}(t) = \text{HOK}\{m_{J_1}(t), m_{J_2}(t), \dots, m_{J_r}(t)\}.$$

Поскольку h_j — это максимальный размер Жордановой клетки, соответствующей собственному числу λ_j , то для каждого λ_j минимальный многочлен $m_\phi(t)$ должен содержать множитель $(t-\lambda_j)^{h_j}$. Таким образом:

$$m_{\phi}(t) = \text{HOK}\{(t - \lambda_1)^{h_1}, (t - \lambda_2)^{h_2}, \dots, (t - \lambda_s)^{h_s}\}.$$

Так как собственные числа $\lambda_1, \lambda_2, \dots, \lambda_s$ различны, многочлены $(t-\lambda_j)^{h_j}$ взаимно просты, а значит, что НОК многочленов $(t-\lambda_1)^{h_1}, (t-\lambda_2)^{h_2}, \dots, (t-\lambda_s)^{h_s}$ равно их произведению:

$$m_{\phi}(t) = (t - \lambda_1)^{h_1} \cdot (t - \lambda_2)^{h_2} \cdot \ldots \cdot (t - \lambda_s)^{h_s}.$$

Следствие 4.

Пусть $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ и все корни характеристического уравнения вещественные. Тогда существует базис из собственных векторов ϕ тогда и только тогда, когда все корни минимального многочлена не кратные.

Доказательство.

 \implies Предположим, что существует базис из собственных векторов оператора ϕ . Это означает, что каждое корневое подпространство имеет высоту 1, то есть все жордановы клетки имеют размер 1×1 . Минимальный многочлен $m_{\phi}(t)$ в этом случае имеет вид:

$$m_{\phi}(t) = (t - \lambda_1) \cdot \ldots \cdot (t - \lambda_n),$$

где $\lambda_1, \ldots, \lambda_n$ — собственные значения оператора ϕ . Таким образом, все корни минимального многочлена не кратные.

$$m_{\phi}(t) = (t - \lambda_1) \cdot \ldots \cdot (t - \lambda_n),$$

где $\lambda_1, \ldots, \lambda_n$ — различные собственные значения. Это означает, что все жордановы клетки имеют размер 1×1 , и, следовательно, все корневые подпространства имеют высоту 1. Таким образом, существует базис из собственных векторов оператора ϕ .

Глава 4

Функции от матриц

4.1 Вычисление многочленов от матриц с помощью Жордановой формы.

Пусть A — матрица оператора ϕ , все корни характеристического уравнения вещественные. Рассмотрим степень матрицы A:

$$A^s = \underbrace{A \cdot A \cdot \ldots \cdot A}_{s \text{ pas}}.$$

Теорема 36. Пусть T — матрица перехода от A к её Жордановой форме J, то есть

$$A = TJT^{-1}$$
.

Тогда для любого натурального числа s выполняется:

$$A^s = TJ^sT^{-1}.$$

Доказательство. Докажем теорему по индукции.

База индукции: Для s=1 утверждение очевидно, так как

$$A^1 = A = TJT^{-1}$$
.

Предположение индукции: Пусть для некоторого s=k утверждение верно, то есть

$$A^k = T J^k T^{-1}$$

Шаг индукции: Докажем, что утверждение верно для s = k + 1. Рассмотрим:

$$A^{k+1} = A^k \cdot A.$$

Подставим выражение для A^k из предположения индукции:

$$A^{k+1} = (TJ^kT^{-1}) \cdot A.$$

Заметим, что $A = TJT^{-1}$, поэтому:

$$A^{k+1} = (TJ^kT^{-1}) \cdot (TJT^{-1}).$$

Упростим выражение, учитывая, что $T^{-1}T = E$:

$$A^{k+1} = TJ^k(T^{-1}T)JT^{-1} = TJ^kEJT^{-1} = TJ^kJT^{-1}.$$

Поскольку $J^k J = J^{k+1}$, получаем:

$$A^{k+1} = TJ^{k+1}T^{-1}.$$

Таким образом, по индукции утверждение верно для любого натурального s.

Определение 22. Степень Жордановой формы.

Пусть J — Жорданова форма матрицы A, состоящая из Жордановых клеток J_1, J_2, \ldots, J_m . Тогда степень J^s определяется как блочно-диагональная матрица:

$$J^{s} = \begin{pmatrix} J_{1}^{s} & 0 & \cdots & 0 \\ 0 & J_{2}^{s} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{m}^{s} \end{pmatrix},$$

где каждая J_i^s — степень соответствующей Жордановой клетки.

Определение 23. Степень Жордановой клетки.

Пусть $J_k(\lambda)$ — Жорданова клетка размера $k \times k$, соответствующая собственному значению λ . Тогда её степень $J_k(\lambda)^s$ определяется как:

$$J_k(\lambda)^s = \begin{pmatrix} \lambda^s & s\lambda^{s-1} & \frac{s(s-1)}{2!}\lambda^{s-2} & \cdots & \frac{s(s-1)\cdots(s-(k-2))}{(k-1)!}\lambda^{s-k+1} \\ 0 & \lambda^s & s\lambda^{s-1} & \cdots & \frac{s(s-1)\cdots(s-(k-3))}{(k-2)!}\lambda^{s-k+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda^s & s\lambda^{s-1} \\ 0 & 0 & \cdots & 0 & \lambda^s \end{pmatrix},$$

где:

- На диагонали стоят элементы λ^s .
- На r-й наддиагонали $(r=1,2,\ldots,k-1)$ стоят элементы вида:

$$\frac{s(s-1)\cdots(s-r+1)}{r!}\lambda^{s-r}.$$

 \bullet Коэффициент $\frac{s(s-1)\cdots(s-r+1)}{r!}$ — это биномиальный коэффициент $C^r_s.$

Определение 24. Многочлен от матрицы.

Пусть P(t) — многочлен, а A — квадратная матрица, которая может быть приведена к Жордановой форме J с помощью матрицы перехода T.

Тогда **многочлен от матрицы** P(A) определяется как:

$$P(A) = T \cdot P(J) \cdot T^{-1},$$

где P(J) — блочно-диагональная матрица, состоящая из многочленов от Жордановых клеток J_1, J_2, \ldots, J_k :

$$P(J) = \begin{pmatrix} P(J_1) & 0 & \cdots & 0 \\ 0 & P(J_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P(J_k) \end{pmatrix}.$$

Здесь $P(J_i)$ — это многочлен от i-й Жордановой клетки J_i , который вычисляется по формуле:

$$P(J_i) = \begin{pmatrix} P(\lambda_i) & \frac{P'(\lambda_i)}{1!} & \frac{P''(\lambda_i)}{2!} & \cdots & \frac{P^{(m_i-1)}(\lambda_i)}{(m_i-1)!} \\ 0 & P(\lambda_i) & \frac{P'(\lambda_i)}{1!} & \cdots & \frac{P^{(m_i-2)}(\lambda_i)}{(m_i-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & P(\lambda_i) & \frac{P'(\lambda_i)}{1!} \\ 0 & 0 & \cdots & 0 & P(\lambda_i) \end{pmatrix},$$

где:

- λ_i собственное значение, соответствующее i-й Жордановой клетке J_i ,
- m_i размер i-й Жордановой клетки J_i ,
- $P^{(k)}(\lambda_i) k$ -я производная многочлена P(t), вычисленная в точке λ_i .

Определение 25. Равенство многочленов на спектре матрицы.

Пусть P(t) и Q(t) — многочлены, A — квадратная матрица с собственными значениями $\lambda_1,\lambda_2,\dots,\lambda_s$. Пусть h_j — максимальная размерность Жордановой клетки, соответствующей собственному значению λ_j .

Говорят, что многочлены P(t) и Q(t) равны на спектре матрицы A, если для каждого $j=1,2,\ldots,s$ выполняются следующие условия:

1. Значения многочленов совпадают в точке λ_i :

$$Q(\lambda_i) = P(\lambda_i).$$

2. Значения производных многочленов до порядка $h_j - 1$ включительно совпадают в точке λ_j :

$$Q^{(k)}(\lambda_j) = P^{(k)}(\lambda_j), \quad \forall k \in [1, 2, \dots, h_j - 1],$$

где $Q^{(k)}$ и $P^{(k)}-k$ -е производные многочленов Q(t) и P(t) соответственно.

4.2 Многочлен Лагранжа-Сильвестра.

Теорема 37. О существовании и единственности интерполяционного многочлена Лагранжа-Сильвестра.

Пусть f(t) — функция, определённая на спектре матрицы A. Тогда существует единственный многочлен $r_f(t)$, такой что:

1. Степень многочлена $r_f(t)$ строго меньше степени минимального многочлена матрицы $A\cdot$

$$\deg r_f(t) < \deg m_A(t),$$

где $m_A(t)$ — минимальный многочлен матрицы A.

2. Многочлен $r_f(t)$ совпадает с функцией f(t) на спектре матрицы A, то есть:

$$r_f(\lambda_j) = f(\lambda_j),$$
 для всех $j = 1, 2, \dots, s,$

и, если h_j — максимальная размерность Жордановой клетки, соответствующей собственному значению λ_j , то:

$$r_f^{(k)}(\lambda_j) = f^{(k)}(\lambda_j),$$
 для всех $k = 1, 2, \dots, h_j - 1.$

Тогда многочлен $r_f(t)$ называется **интерполяционным многочленом Лагранжа-**Сильвестра для функции f(t) на спектре матрицы A.

Доказательство.

Рассмотрим минимальный многочлен матрицы A:

$$m_A(t) = (t - \lambda_1)^{h_1} \cdot (t - \lambda_2)^{h_2} \cdot \dots \cdot (t - \lambda_s)^{h_s},$$

где $\lambda_1, \lambda_2, \dots, \lambda_s$ — различные собственные значения матрицы A, а h_j — максимальная размерность Жордановой клетки, соответствующей собственному значению λ_j . Степень минимального многочлена равна:

$$\deg m_A(t) = h_1 + h_2 + \ldots + h_s = h.$$

Построим интерполяционный многочлен $r_f(t)$, который удовлетворяет следующим условиям интерполяции:

- 1. $\deg r_f(t) < h$,
- 2. $r_f(\lambda_i) = f(\lambda_i)$ для всех j = 1, 2, ..., s,
- 3. $r_f^{(k)}(\lambda_j) = f^{(k)}(\lambda_j)$ для всех $k = 1, 2, \dots, h_j 1$.

Пусть $r_f(t)$ имеет вид:

$$r_f(t) = c_0 + c_1 t + c_2 t^2 + \ldots + c_{h-1} t^{h-1}.$$

Условия интерполяции приводят к системе линейных уравнений относительно коэффициентов $c_0, c_1, \ldots, c_{h-1}$. Для каждого собственного значения λ_j и каждого $k = 0, 1, \ldots, h_j - 1$ получаем уравнение:

$$r_f^{(k)}(\lambda_j) = f^{(k)}(\lambda_j).$$

Рассмотрим однородную систему, соответствующую условиям интерполяции:

$$r_f^{(k)}(\lambda_j)=0 \quad \forall j\in [1,2,\ldots,s]$$
 и $\forall k\in [0,1,\ldots,h_j-1].$

Пусть $\hat{P}(t)$ — многочлен, который удовлетворяет этой однородной системе. Тогда:

- На спектре матрицы A многочлен $\hat{P}(t)$ равен нулю, то есть $\hat{P}(\lambda_j) = 0$ и $\hat{P}^{(k)}(\lambda_j) = 0$ для всех j и k.
- Поскольку функция от матрицы A определяется значениями на её спектре, то $\hat{P}(A) = 0$. Таким образом, $\hat{P}(t)$ аннулирует матрицу A.
- Однако минимальный многочлен $m_A(t)$ также аннулирует матрицу A, причём он имеет минимальную степень среди всех таких многочленов.
- Так как $\deg \hat{P}(t) < \deg m_A(t)$, то $\hat{P}(t)$ не может быть ненулевым многочленом, аннулирующим A. Следовательно, $\hat{P}(t) = 0$.

Таким образом, однородная система имеет только тривиальное решение $\hat{P}(t) = 0$. Это означает, что соответствующая неоднородная система (с правыми частями $f^{(k)}(\lambda_j)$) имеет единственное решение. Следовательно, коэффициенты $c_0, c_1, \ldots, c_{h-1}$ определяются однозначно, и многочлен $r_f(t)$ существует и единственен.

Построение $r_f(t)$: Поскольку система имеет единственное решение, мы можем однозначно построить многочлен $r_f(t)$, удовлетворяющий всем условиям интерполяции. Этот многочлен называется **интерполяционным многочленом Лагранжа-Сильвестра** для функции f(t) на спектре матрицы A.

Теорема 38 (О виде многочлена Лагранжа-Сильвестра в случае простых корней).

Пусть $\lambda_1, \ldots, \lambda_n$ — собственные числа матрицы A, все различные.

Характеристический многочлен матрицы A имеет вид:

$$x_A(t) = (t - \lambda_1) \cdot (t - \lambda_2) \cdot \ldots \cdot (t - \lambda_n).$$

Тогда интерполяционный многочлен Лагранжа-Сильвестра $r_f(t)$ для функции f(t) на спектре матрицы A задаётся формулой:

$$r_f(t) = \sum_{j=1}^n f(\lambda_j) \cdot \frac{(t - \lambda_1) \cdot (t - \lambda_2) \cdot \dots \cdot (t - \lambda_n)}{(\lambda_j - \lambda_1) \cdot \dots \cdot (\lambda_j - \lambda_{j-1})(\lambda_j - \lambda_{j+1}) \cdot \dots \cdot (\lambda_j - \lambda_n)}.$$

Доказательство. Рассмотрим минимальный многочлен матрицы A:

$$m_A(t) = x_A(t) = (t - \lambda_1) \cdot (t - \lambda_2) \cdot \dots \cdot (t - \lambda_n).$$

Степень $m_A(t)$ равна n. По условию теоремы, степень интерполяционного многочлена $r_f(t)$ должна быть строго меньше n, то есть $\deg r_f(t) = n - 1 < n$.

Покажем, что $r_f(t)$ удовлетворяет условиям интерполяции. Для этого проверим, что $r_f(\lambda_i) = f(\lambda_i)$ для всех $i=1,2,\ldots,n$.

Для любого λ_i (i = 1, ..., n) выполняется:

$$r_f(\lambda_i) = \sum_{j=1, j \neq i}^n f(\lambda_j) \cdot \frac{(\lambda_i - \lambda_1) \cdot \dots \cdot (\lambda_i - \lambda_i) \cdot \dots \cdot (\lambda_i - \lambda_n)}{(\lambda_j - \lambda_1) \cdot \dots \cdot (\lambda_j - \lambda_{j-1}) (\lambda_j - \lambda_{j+1}) \cdot \dots \cdot (\lambda_j - \lambda_n)} + f(\lambda_i) \cdot \frac{(\lambda_i - \lambda_1) \cdot \dots \cdot (\lambda_i - \lambda_n)}{(\lambda_i - \lambda_1) \cdot \dots \cdot (\lambda_i - \lambda_n)}.$$

Заметим, что в первом слагаемом числитель обращается в ноль, так как $(\lambda_i - \lambda_i) = 0$, а второе слагаемое равно $f(\lambda_i)$. Таким образом, $r_f(\lambda_i) = f(\lambda_i)$.

Теперь рассмотрим вспомогательные многочлены:

$$\psi_j(t) = \frac{m_A(t)}{t - \lambda_j}.$$

Тогда интерполяционный многочлен можно записать в виде:

$$r_f(t) = \sum_{j=1}^n f(\lambda_j) \cdot \frac{\psi_j(t)}{\psi_j(\lambda_j)}.$$

Теорема 39 (О виде многочлена Лагранжа-Сильвестра в общем случае).

Пусть $m_A(t)$ — минимальный многочлен матрицы A, который имеет вид:

$$m_A(t) = (t - \lambda_1)^{h_1} \cdot (t - \lambda_2)^{h_2} \cdot \dots \cdot (t - \lambda_s)^{h_s}$$

где $\lambda_1, \lambda_2, \dots, \lambda_s$ — различные собственные значения матрицы A.

Определим вспомогательные многочлены $\psi_j(t)$ для каждого $j=1,2,\ldots,s$ следующим образом:

$$\psi_j(t) = \frac{m_A(t)}{(t - \lambda_j)^{h_j}}.$$

Тогда интерполяционный многочлен Лагранжа-Сильвестра $r_f(t)$ для функции f(t) на спектре матрицы A задаётся формулой:

$$r_{f}(t) = \sum_{j=1}^{s} \psi_{j}(t) \cdot \left[\left. \frac{f(t)}{\psi_{j}(t)} \right|_{t=\lambda_{j}} + \frac{1}{1!} \left(\frac{f(t)}{\psi_{j}(t)} \right)' \right|_{t=\lambda_{j}} \cdot (t-\lambda_{j}) + \dots + \frac{1}{(h_{j}-1)!} \left(\frac{f(t)}{\psi_{j}(t)} \right)^{(h_{j}-1)} \right|_{t=\lambda_{j}} \cdot (t-\lambda_{j})^{h_{j}-1} \right].$$

Доказательство.

Докажем, что многочлен $r_f(t)$ удовлетворяет условиям интерполяции на спектре матрицы Δ

Степень $r_f(t)$ меньше степени минимального многочлена $m_A(t)$, то есть $\deg r_f(t) < \deg m_A(t)$. Это означает, что дробь $\frac{r_f(t)}{m_A(t)}$ является правильной.

Поскольку $\frac{r_f(t)}{m_A(t)}$ — правильная дробь, её можно разложить на элементарные дроби:

$$\frac{r_f(t)}{m_A(t)} = \sum_{j=1}^s \left[\frac{\alpha_{j1}}{(t - \lambda_j)^{h_j}} + \frac{\alpha_{j2}}{(t - \lambda_j)^{h_j - 1}} + \dots + \frac{\alpha_{jh_j}}{t - \lambda_j} \right] \quad (*)$$

Заметим, что $m_A(t) = \psi_j(t) \cdot (t - \lambda_j)^{h_j}$. Подставим это в разложение (*):

$$\frac{r_f(t)}{\psi_j(t)} = (t - \lambda_j)^{h_j} \cdot \left[\frac{\alpha_{j1}}{(t - \lambda_j)^{h_j}} + \frac{\alpha_{j2}}{(t - \lambda_j)^{h_j - 1}} + \dots + \frac{\alpha_{jh_j}}{t - \lambda_j} \right] + (t - \lambda_j)^{h_j} \cdot \sum_{\substack{i=1\\i \neq j}}^s \left[\frac{\alpha_{i1}}{(t - \lambda_i)^{h_i}} + \dots + \frac{\alpha_{ih_i}}{t - \lambda_i} \right]$$

Упростим первое слагаемое:

$$\frac{r_f(t)}{\psi_j(t)} = \left[\alpha_{j1} + \alpha_{j2}(t - \lambda_j) + \alpha_{j3}(t - \lambda_j)^2 + \dots + \alpha_{jh_j}(t - \lambda_j)^{h_j - 1}\right] + (t - \lambda_j)^{h_j} \cdot \sum_{\substack{i=1\\i \neq j}}^s \left[\frac{\alpha_{i1}}{(t - \lambda_i)^{h_i}} + \frac{\alpha_{i2}}{(t - \lambda_i)^{h_i - 1}} + \dots + \frac{\alpha_{ih_i}}{t - \lambda_i}\right] \quad (**)$$

Обозначим второе слагаемое как $g_j(t)$.

Заметим, что $g_j(t)$ и её производные до порядка h_j-1 обращаются в ноль при $t=\lambda_j$:

$$\begin{cases}
g_j(\lambda_j) = 0, \\
g'_j(\lambda_j) = 0, \\
\vdots \\
g_j^{(h_j - 1)}(\lambda_j) = 0 \quad (* * *)
\end{cases}$$

Это означает, что $g_j(t)$ не влияет на интерполяцию в точке λ_j .

Подставим $t = \lambda_j$ в выражение (**):

$$\alpha_{j1} = \left. \frac{r_f(t)}{\psi_j(t)} \right|_{t=\lambda_j}.$$

Продифференцируем (**) по t и подставим $t = \lambda_j$:

$$\alpha_{j2} = \frac{1}{1!} \left. \left(\frac{r_f(t)}{\psi_j(t)} \right)' \right|_{t=\lambda_j}$$

Продолжая аналогично, получим:

$$\alpha_{jh_j} = \frac{1}{(h_j - 1)!} \left(\frac{r_f(t)}{\psi_j(t)} \right)^{(h_j - 1)} \bigg|_{t = \lambda_j}$$

Поскольку $r_f(t)$ совпадает с f(t) на спектре матрицы A, коэффициенты α_{jk} можно выразить через f(t):

$$\alpha_{j1} = \frac{f(t)}{\psi_j(t)}\Big|_{t=\lambda_j}, \quad \alpha_{j2} = \frac{1}{1!} \left(\frac{f(t)}{\psi_j(t)}\right)'\Big|_{t=\lambda_j}, \quad \dots, \quad \alpha_{jh_j} = \frac{1}{(h_j-1)!} \left(\frac{f(t)}{\psi_j(t)}\right)^{(h_j-1)}\Big|_{t=\lambda_j}$$

Подставим найденные коэффициенты α_{jk} в разложение (*):

$$\frac{r_f(t)}{m_A(t)} = \sum_{j=1}^s \left[\frac{\frac{f(t)}{\psi_j(t)}\Big|_{t=\lambda_j}}{(t-\lambda_j)^{h_j}} + \dots + \frac{\frac{1}{(h_j-1)!} \left(\frac{f(t)}{\psi_j(t)}\right)^{(h_j-1)}\Big|_{t=\lambda_j}}{t-\lambda_j} \right]$$

Умножив обе части на $m_A(t)$, получим:

$$r_f(t) = \sum_{j=1}^{s} \psi_j(t) \cdot \left[\frac{f(t)}{\psi_j(t)} \Big|_{t=\lambda_j} + \ldots + \frac{1}{(h_j-1)!} \left(\frac{f(t)}{\psi_j(t)} \right)^{(h_j-1)} \Big|_{t=\lambda_j} \cdot (t-\lambda_j)^{h_j-1} \right]$$

4.3 Представление функций от матриц с помощью степенных рядов

Определение 26 (Сходимость последовательности функций на спектре).

Последовательность функций $f_n(t)$ сходится к функции f(t) на спектре матрицы A, если $\forall i \in \{1, \ldots, s\}$ и $\forall k \in \{0, 1, \ldots, h_i - 1\}$ выполняется:

$$f_n^{(k)}(\lambda_i) \to f^{(k)}(\lambda_i)$$
 при $n \to \infty$,

где λ_i — собственные значения матрицы A, а h_i — размерность наибольшей жордановой клетки, соответствующей λ_i .

Определение 27 (Функция от матрицы в предельной форме).

Пусть $f_n(t)$ — последовательность функций, определённых на спектре матрицы A.

Тогда функция от матрицы f(A) определяется как предел:

$$f(A) = \lim_{n \to \infty} f_n(A),$$

если последовательность $f_n(t)$ сходится к функции f(t) на спектре матрицы A.

Определение 28 (Функция от матрицы через сходящийся ряд).

Пусть $\sum_{k=1}^{\infty} u_k(t) = S(t)$ — сходящийся ряд функций, определённых на спектре матрицы A. Обозначим частичные суммы ряда как:

$$\sigma_N(t) = \sum_{k=1}^N u_k(t).$$

Если последовательность частичных сумм $\sigma_N(t)$ сходится к S(t) на спектре матрицы A, то есть для всех собственных значений λ_i матрицы A и $\forall k=0,1,\ldots,h_i-1$ выполняется:

$$\sigma_N^{(k)}(\lambda_i) \to S^{(k)}(\lambda_i)$$
 при $N \to \infty$,

то функция от матрицы S(A) определяется как сумма ряда:

$$S(A) = \sum_{k=1}^{\infty} u_k(A).$$

Определение 29 (Функция от матрицы через ряд Тейлора).

Пусть f(t) — аналитическая функция в точке 0. Тогда эту функцию можно разложить в ряд Тейлора:

$$f(t) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} t^k,$$

который сходится на некотором интервале сходимости (-R, R).

Пусть $\lambda_1, \ldots, \lambda_s$ — спектр матрицы оператора ϕ , и пусть все λ_j принадлежат интервалу сходимости (-R, R). Тогда функция от матрицы f(A) определяется как сумма ряда:

$$f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k.$$

Сходимость на спектре означает, что для всех собственных значений λ_j матрицы A и для всех $k=0,1,\ldots,h_j-1$ (где h_j — размерность наибольшей жордановой клетки для λ_j) выполняется:

$$\left(\sum_{m=0}^N \frac{f^{(m)}(0)}{m!} A^m\right)^{(k)} (\lambda_j) \to f^{(k)}(\lambda_j) \quad \text{при } N \to \infty.$$

Определение 30 (Норма матрицы и сходимость по норме).

Пусть $A_{n\times n}=(a_{ij})$. Её норма (норма Фробениуса) определяется как:

$$||A||_2 = \sqrt{\sum_{i,j=1}^n a_{ij}^2}.$$

Последовательность матриц $\{A_n\}$ сходится по норме к матрице A, если

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} \quad \forall n \ge N(\varepsilon) : ||A - A_n||_2 < \varepsilon.$$

Определение 31 (Сходимость последовательности функций от матрицы по норме).

Пусть $f_n(t)$ и f(t) определены на спектре матрицы A.

Говорят, что последовательность $f_n(A)$ сходится к f(A) по норме (равномерно), если

$$||f_n(A) - f(A)|| \to 0$$
 при $n \to \infty$.

Глава 5

Элементы теории групп

«Математика — это искусство называть разные вещи одним и тем же именем.» — Анри Пуанкаре

Определение 32 (Группа).

Группой называется множество G, на котором задана бинарная операция $\circ: G \times G \to G$, удовлетворяющая следующим аксиомам:

1. **Ассоциативность**: $\forall a, b, c \in G$ выполняется

$$(a \circ b) \circ c = a \circ (b \circ c).$$

2. Существование нейтрального элемента: Существует элемент $e \in G$, называемый нейтральным элементом (или единицей), такой, что $\forall a \in G$ выполняется

$$e \circ a = a \circ e = a$$
.

3. Существование обратного элемента: $\forall a \in G$ существует элемент $a^{-1} \in G$, называемый обратным элементом к a, такой, что

$$a \circ a^{-1} = a^{-1} \circ a = e$$
.

Определение 33 (Абелева группа).

Группа G называется **абелевой** (или коммутативной), если для любых $a,b \in G$ выполняется

$$a \circ b = b \circ a$$
.

Примеры:

- Группа целых чисел по сложению $(\mathbb{Z}, +)$.
- Группа вещественных чисел по сложению $(\mathbb{R}, +)$.
- Группа ненулевых вещественных чисел по умножению ($\mathbb{R} \setminus \{0\}$, ·).

Примеры:

1. Группа целых чисел по сложению:

- Множество: \mathbb{Z}
- Операция: сложение +
- Нейтральный элемент: 0
- ullet Обратный элемент: для $a\in\mathbb{Z}$ обратный элемент это -a
- Свойства: a + b = b + a (абелева группа)

2. Группа биекций множества:

- ullet Множество: $\mathrm{Bij}(X)$ множество всех биекций $\phi:G o G$ множества X на себя.
- Операция: композиция отображений $\circ: \phi \circ \psi(x) = \phi(\psi(x))$
- Нейтральный элемент: тождественное отображение $\mathcal{I}(x) = x \quad \forall x \in X$
- Обратный элемент: обратное отображение ϕ^{-1}
- Свойства: $\phi \circ \psi \neq \psi \circ \phi$ в общем случае (неабелева группа, если |X| > 3)

3. Группа невырожденных матриц:

- Множество: $GL(n,\mathbb{R})$ множество всех квадратных матриц размера $n \times n$ с ненулевым определителем.
- Операция: матричное умножение ·
- ullet Нейтральный элемент: единичная матрица I
- Обратный элемент: для матрицы $A \in GL(n,\mathbb{R})$ обратный элемент это обратная матрица A^{-1}
- Свойства: $A \cdot B \neq B \cdot A$ в общем случае (неабелева группа при $n \geq 2$)

4. Группа движений $\operatorname{Isom}(\mathbb{R}^n)$:

• Множество: Isom(\mathbb{R}^n) — множество всех изометрий (движений) пространства \mathbb{R}^n , то есть биекций $\phi: \mathbb{R}^n \to \mathbb{R}^n$, сохраняющих расстояние:

$$||x_1 - x_2|| = ||\phi(x_1) - \phi(x_2)|| \quad \forall x_1, x_2 \in \mathbb{R}^n.$$

- Операция: композиция отображений $\circ: \phi \circ \psi(x) = \phi(\psi(x))$.
- Нейтральный элемент: тождественное отображение $\mathcal{I}_{\mathbb{R}^n}$, заданное как $\mathcal{I}_{\mathbb{R}^n}(x) = x$ $\forall x \in \mathbb{R}^n$.
- Обратный элемент: для изометрии $\phi \in \text{Isom}(\mathbb{R}^n)$ обратный элемент это обратное отображение ϕ^{-1} , которое также является изометрией.

Определение 34 (Подгруппа).

Пусть G — группа с операцией \circ . Подмножество $H \subset G$ называется **подгруппой** группы G, если:

- 1. H замкнуто относительно операции $\circ: \forall a, b \in H$ выполняется $a \circ b \in H$.
- 2. H содержит нейтральный элемент e группы $G: e \in H$.
- 3. H замкнуто относительно взятия обратного элемента: $\forall a \in H$ выполняется $a^{-1} \in H$.

5.1 Свойства группы

1. Единичный элемент единственен:

$$\exists!\,e\in G$$
 такой, что $\forall a\in G$ $a\circ e=e\circ a=a.$

Пусть e_1, e_2 — нейтральные элементы. Тогда $e_1 = e_1 \circ e_2 = e_2$.

2. Обратный элемент единственен:

$$\forall a \in G \quad \exists ! \, a^{-1} \in G \quad \text{такой, что} \quad a \circ a^{-1} = a^{-1} \circ a = e.$$

Пусть b, c — обратные к a. Тогда $b = b \circ e = b \circ (a \circ c) = (b \circ a) \circ c = e \circ c = c$.

3. Уравнения $a \circ x = c$ и $x \circ b = c$ имеют единственное решение:

$$\forall a,b,c \in G \quad \exists! \ x \in G \quad \text{такой, что} \quad a \circ x = c \quad \text{и} \quad x \circ b = c.$$

Для
$$a \circ x = c$$
: $x = a^{-1} \circ c$. Для $x \circ b = c$: $x = c \circ b^{-1}$.

4. Свойство сокращения:

$$\forall a, b, c \in G \quad a \circ b = a \circ c \iff b = c.$$

Если $a \circ b = a \circ c$, то b = c (умножаем слева на a^{-1}). Если $b \circ a = c \circ a$, то b = c (умножаем справа на a^{-1}).

5. Обратный элемент композиции:

$$\forall a, b \in G \quad (a \circ b)^{-1} = b^{-1} \circ a^{-1}.$$

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1} = a \circ e \circ a^{-1} = e.$$

Аналогично, $(b^{-1} \circ a^{-1}) \circ (a \circ b) = e$. Значит, $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.

Определение 35 (Изоморфизм групп). (G, \circ) и (H, *) - две группы.

Отображение $\phi: G \to H$ называется **изоморфизмом групп**, если:

- 1. ϕ является **биекцией** (взаимно однозначным отображением).
- 2. ϕ сохраняет групповую операцию, то есть для любых $a, b \in G$ выполняется:

$$\phi(a \circ b) = \phi(a) * \phi(b).$$

Если такой изоморфизм существует, группы G и H называются **изоморфными**, и обозначается это как $G\cong H$.

Смысл изоморфизма:

- Изоморфизм групп показывает, что две группы имеют одинаковую структуру, даже если их элементы и операции выглядят по-разному.
- Изоморфизм позволяет изучать группы абстрактно, не завися от конкретного представления их элементов и операций.

Свойства изоморфизма:

1. Нейтральный элемент переходит в нейтральный:

Если e_G — нейтральный элемент группы G, то $\phi(e_G) = e_H$.

2. Обратный элемент переходит в обратный:

Если
$$a \in G$$
 и a^{-1} — обратный к a , то $\phi(a^{-1}) = \phi(a)^{-1}$.

1. Нейтральный элемент переходит в нейтральный:

Пусть $\phi: G \to H$ — изоморфизм. Тогда для любого $a \in G$:

$$\phi(a) = \phi(a \circ e_G) = \phi(a) \circ \phi(e_G).$$

Умножая обе части на $\phi(a)^{-1}$, получаем:

$$\phi(a)^{-1} \circ \phi(a) \circ \phi(e_G) = \phi(a)^{-1} \circ \phi(a).$$

Упрощая, получаем:

$$e_H \circ \phi(e_G) = e_H \implies \phi(e_G) = e_H.$$

2. Обратный элемент переходит в обратный:

Рассмотрим $\phi(a \circ a^{-1}) = \phi(e_G) = e_H$.

C другой стороны, $\phi(a \circ a^{-1}) = \phi(a) \circ \phi(a^{-1})$.

Таким образом:

$$\phi(a) \circ \phi(a^{-1}) = e_H$$
, откуда $\phi(a^{-1}) = \phi(a)^{-1}$.

5.2 Циклические подгруппы

Определение 36 (Циклическая подгруппа).

Пусть G — группа, и $a \in G$ — произвольный элемент. **Циклической подгруппой**, порождённой элементом a, называется множество всех степеней элемента a:

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \},\$$

где:

- $a^0 = e$ (нейтральный элемент группы),
- $a^n = \underbrace{a \circ a \circ \cdots \circ a}_{n \text{ pas}}$ для n > 0,
- $a^{-n} = \underbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}_{n \text{ pas}}$ для n > 0.

Циклическая подгруппа $\langle a \rangle$ является наименьшей подгруппой группы G, содержащей **образующий** элемент a.

Определение 37 (Бесконечная и конечная циклические подгруппы).

Циклическая подгруппа $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$ может быть:

• **Бесконечной циклической подгруппой**, если все элементы a^n различны при различных n, то есть:

$$a^m \neq a^s \quad \forall m \neq s.$$

• Конечной циклической подгруппой, если существуют целые числа $m \neq s$ такие, что:

$$a^m = a^s$$
.

В этом случае, если m > s, то $a^{m-s} = e$, где e — нейтральный элемент группы.

Порядок элемента a — это наименьшее положительное целое число k, такое что:

$$a^k = e$$

Если такого k не существует, то порядок элемента a считается бесконечным.

Пример циклической подгруппы:

Рассмотрим группу корней n-й степени из единицы: $\langle \sqrt[n]{1} \rangle$

$$G=\{z\in\mathbb{C}\mid z^n=1\}.$$

Эти корни имеют вид:

$$z_k = e^{i\frac{2\pi k}{n}}, \quad k = 0, 1, 2, \dots, n - 1.$$

Группа G является циклической и порождается элементом:

$$a = e^{i\frac{2\pi}{n}}.$$

Циклическая подгруппа, порождённая элементом a, имеет вид:

$$\langle a \rangle = \{ a^k \mid k = 0, 1, 2, \dots, n-1 \} = \{ e^{i\frac{2\pi k}{n}} \mid k = 0, 1, 2, \dots, n-1 \}.$$

Элементы подгруппы:

$$\langle a \rangle = \left\{ 1, e^{i\frac{2\pi}{n}}, e^{i\frac{4\pi}{n}}, \dots, e^{i\frac{2\pi(n-1)}{n}} \right\}.$$

Рассмотрим случай n=6. Корни 6-й степени из единицы:

$$z_k = e^{i\frac{2\pi k}{6}}, \quad k = 0, 1, 2, 3, 4, 5.$$

Элементы подгруппы:

$$\langle a \rangle = \left\{1, e^{i\frac{\pi}{3}}, e^{i\frac{2\pi}{3}}, -1, e^{i\frac{4\pi}{3}}, e^{i\frac{5\pi}{3}}\right\}.$$

Теорема 40.

Пусть $G = \langle a \rangle$ — конечная циклическая группа порядка k, и e — нейтральный элемент группы. Тогда для любого целого числа n выполняется:

$$a^n = e \iff n$$
 кратен k .

Иными словами, $a^n=e$ тогда и только тогда, когда n=kd для некоторого целого числа d.

Доказательство.

 \leftarrow Пусть n = kd, где d — целое число. Тогда:

$$a^n = a^{kd} = (a^k)^d = e^d = e.$$

 \implies Пусть $a^n=e$. Предположим, что n не кратно k. Тогда, разделив n на k с остатком, получим:

$$n = kd + r$$
, где $0 < r < k$.

Подставим это в равенство $a^n = e$:

$$a^{n} = a^{kd+r} = a^{kd} \cdot a^{r} = (a^{k})^{d} \cdot a^{r} = e^{d} \cdot a^{r} = a^{r}.$$

Таким образом, $a^r = e$. Но 0 < r < k, что противоречит определению порядка k как наименьшего положительного числа, для которого $a^k = e$. Следовательно, наше предположение неверно, и n должно быть кратно k.

Теорема 41. Пусть $G = \langle a \rangle$ — циклическая подгруппа порядка k, где a — образующий элемент, а e — нейтральный элемент группы. Тогда множество

$$\{e, a, a^2, \dots, a^{k-1}\}$$

полностью исчерпывает все элементы подгруппы G. Иными словами, все элементы G имеют вид a^n , где $n=0,1,2,\ldots,k-1$, и все эти элементы различны.

Доказательство. Докажем, что все элементы подгруппы различны. Предположим, что существуют два совпадающих элемента: $a^m = a^s$, где 0 < m, s < k и m > s. Тогда:

$$a^m = a^s \implies a^{m-s} = e.$$

Поскольку 0 < m-s < k, это противоречит тому, что k — наименьшее положительное целое число, для которого $a^k = e$. Следовательно, все элементы $e, a, a^2, \ldots, a^{k-1}$ различны.

Теперь докажем, что других элементов в подгруппе нет. Рассмотрим произвольный элемент a^n , где n — целое число. Разделим n на k с остатком:

$$n = kd + r$$
, где $0 < r < k$.

Тогда:

$$a^{n} = a^{kd+r} = (a^{k})^{d} \cdot a^{r} = e^{d} \cdot a^{r} = a^{r}.$$

Таким образом, любой элемент a^n совпадает с одним из элементов $e, a, a^2, \dots, a^{k-1}$.

Теорема 42. Пусть $G = \langle a \rangle$ — бесконечная циклическая группа, порождённая элементом a. Тогда:

- 1. Элемент a^{-1} также является образующим группы G, то есть $\langle a^{-1} \rangle$.
- 2. Других образующих в группе G нет.

Доказательство.

Для любого целого числа n выполняется:

$$a^n = (a^{-1})^{-n}$$
.

Таким образом, любой элемент a^n может быть выражен через степень a^{-1} . Следовательно, a^{-1} также является образующим группы G, то есть $G = \langle a^{-1} \rangle$.

Предположим, что существует другой образующий элемент a^s , где $s \neq \pm 1$. Тогда a должен быть степенью a^s , то есть:

$$a = (a^s)^l = a^{sl},$$

где l — целое число. Поскольку группа G бесконечна, все степени элемента a различны. Следовательно:

$$a^{sl} = a \implies sl = 1.$$

Так как s и l — целые числа, это возможно только если s=1 или s=-1. Таким образом, единственными образующими группы G являются a и a^{-1} .

Теорема 43. Пусть $G = \langle a \rangle$ — конечная циклическая группа порядка k.

Тогда элемент a^s является образующим группы G (то есть $\langle a^s \rangle = G$) тогда и только тогда, когда числа s и k взаимно просты, то есть HOД(s,k)=1.

Доказательство.

 \implies Пусть a^s — образующий элемент группы G.

Предположим, что HOД(s, k) = d > 1. Тогда:

$$k = k_1 \cdot d$$
, $s = s_1 \cdot d$, где $k_1, s_1 \in \mathbb{Z}$.

Рассмотрим степень $(a^s)^{k_1}$:

$$(a^s)^{k_1} = (a^{s_1d})^{k_1} = (a^{k_1d})^{s_1} = a^{ks_1} = e^{s_1} = e.$$

Таким образом, $(a^s)^{k_1} = e$, где $0 < k_1 < k$. Это противоречит тому, что порядок a^s равен k, так как $k_1 < k$. Следовательно, HOД(s,k) = 1.

Пусть НОД(s,k) = 1. Тогда существуют целые числа u и v такие, что:

$$ku + sv = 1.$$

Рассмотрим элемент a:

$$a = a^{ku+sv} = a^{ku} \cdot a^{sv} = (a^k)^u \cdot (a^s)^v = e^u \cdot (a^s)^v = (a^s)^v.$$

Таким образом, a является степенью a^s , а значит, a^s порождает всю группу G, то есть $\langle a^s \rangle = G$.

5.3 Разбиение группы в смежные классы

Определение 38 (Разбиение группы на смежные классы).

Пусть G — группа, а H — её подгруппа. Для любого элемента $a \in G$ левый смежный класс подгруппы H по элементу a определяется как множество:

$$aH = \{a \circ h \mid h \in H\}.$$

Аналогично, **правый смежный класс** подгруппы H по элементу a определяется как множество:

$$Ha = \{h \circ a \mid h \in H\}.$$

Множество всех левых (или правых) смежных классов подгруппы H в группе G называется разбиением группы G на смежные классы по подгруппе H.

Свойства смежных классов: (определим для левых смежных классов, для правых аналогично)

- 1. $\forall a \in H \quad aH = H$
- $2. \ a \in aH \quad \forall a \in G$
- 3. $aH = bH \iff b^{-1} \circ a \in H$
- 4. Любые два левых смежных класса aH и bH либо совпадают, либо не пересекаются

Доказательство.

1. Пусть $a \in H$. Тогда:

$$aH = \{a \circ h \mid h \in H\}.$$

Поскольку H — подгруппа, для любого $h \in H$ элемент $a \circ h$ также принадлежит H. Следовательно, $aH \subseteq H$.

Обратно, для любого $h \in H$ элемент $h = a \circ (a^{-1} \circ h)$, где $a^{-1} \circ h \in H$ (так как H — подгруппа). Таким образом, $H \subseteq aH$.

2. Поскольку $e \in H$ (нейтральный элемент), то:

$$a = a \circ e \in aH$$
.

3. \implies Пусть aH = bH. Тогда существуют $h_1, h_2 \in H$ такие, что:

$$a \circ h_1 = b \circ h_2$$
.

"Умножаем" обе части равенства слева на b^{-1} :

$$b^{-1} \circ a \circ h_1 = h_2.$$

Теперь "домножаем" обе части на h_1^{-1} :

$$b^{-1} \circ a = h_2 \circ h_1^{-1}.$$

Поскольку H — подгруппа, $h_2 \circ h_1^{-1} \in H$. Следовательно, $b^{-1} \circ a \in H$.

 \leftarrow Пусть $b^{-1} \circ a \in H$. Тогда:

$$b^{-1} \circ aH = H$$
 (по свойству 1).

"Умножаем" обе части равенства слева на b:

$$aH = b \circ (b^{-1} \circ aH) = bH.$$

Таким образом, aH = bH.

4. Пусть aH и bH — два левых смежных класса. Если aH \cap $bH \neq \emptyset$, то $\exists x \in aH \cap bH$. Тогда:

$$x = a \circ h_1 = b \circ h_2$$
 для некоторых $h_1, h_2 \in H$.

Отсюда:

$$b^{-1} \circ a = h_2 \circ h_1^{-1} \in H.$$

По свойству 3, это означает, что aH=bH. Следовательно, если aH и bH пересекаются, то они совпадают.

Пример смежных классов:

1. Пусть $G = \mathbb{R}^2$ — группа векторов на плоскости с операцией сложения, H — подгруппа, состоящая из всех векторов, лежащих на прямой y = x:

$$H = \{(x, x) \mid x \in \mathbb{R}\}.$$

Тогда левые (и правые) смежные классы a+H — это параллельные прямые, смещённые на вектор a.

2. Пусть $G = \mathbb{C} \setminus \{0\}$ — группа ненулевых комплексных чисел с операцией умножения, H — подгруппа, состоящая из всех комплексных чисел, лежащих на единичной окружности:

$$H = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

Тогда левые (и правые) смежные классы z_0H — это окружности с центром в нуле и радиусом $|z_0|$.

Теорема 44. Пусть G — конечная группа порядка n, H — подгруппа порядка k. Пусть j — количество смежных классов группы G по подгруппе H. Тогда

$$n = k \cdot j$$
.

Доказательство. Пусть $h_1, h_2 \in H, g \in G$ —произвольный элемент группы G. Рассмотрим отображение:

$$\phi: H \to qH, \quad \phi(h) = q \circ h.$$

Покажем, что ϕ является биекцией.

1. Инъективность: Пусть $\phi(h_1) = \phi(h_2)$. Тогда:

$$g \circ h_1 = g \circ h_2$$
.

Умножим обе части равенства слева на g^{-1} :

$$g^{-1} \circ (g \circ h_1) = g^{-1} \circ (g \circ h_2) \implies (g^{-1} \circ g) \circ h_1 = (g^{-1} \circ g) \circ h_2.$$

Так как $g^{-1} \circ g = e$, то:

$$e \circ h_1 = e \circ h_2 \implies h_1 = h_2.$$

Таким образом, ϕ инъективно.

2. Сюръективность: Для любого элемента $y \in gH$ существует $h \in H$, такой что $y = g \circ h$. По определению ϕ , это означает, что $\phi(h) = y$. Следовательно, ϕ сюръективно.

Так как ϕ биективно, то |gH| = |H| = k. Аналогично, все смежные классы gH имеют одинаковое количество элементов k.

Поскольку группа G разбивается на j смежных классов, каждый из которых содержит k элементов, то общее количество элементов в группе G равно:

$$n = k \cdot j$$
.

Следствие 5. Теорема Лагранжа

Пусть G — конечная группа. Тогда порядок любой подгруппы $H \subseteq G$ является делителем порядка группы G. То есть, если |G| = n и |H| = k, то k делит n.

Следствие 6.

Если группа G конечна, то порядок любого элемента $g \in G$ является делителем порядка группы G.

Следствие 7. Если порядок конечной группы G является простым числом, то G является циклической группой.

Доказательство. Пусть |G| = p, где p — простое число. Рассмотрим произвольный элемент $g \in G$, отличный от нейтрального элемента e.

По следствию из теоремы Лагранжа, порядок элемента g делит порядок группы G. Так как p — простое число, то возможны только два случая:

- 1. Порядок элемента g равен 1. Но это возможно только если g=e, что противоречит выбору q.
- 2. Порядок элемента g равен p.

Таким образом, порядок элемента g равен p, и циклическая подгруппа $\langle g \rangle$, порождённая элементом g, содержит p элементов. Следовательно, $\langle g \rangle = G$, и группа G является циклической.

Определение 39 (Нормальный делитель).

Подгруппа H группы G называется **нормальным делителем**, если $\forall a \in G$ левые и правые смежные классы группы G по подгруппе H совпадают, то есть:

$$aH = Ha$$
.

Обозначение: $H \triangleleft G$.

Если группа G абелева, то **любая её подгруппа** H является нормальным делителем. Это следует из того, что в абелевой группе левые и правые смежные классы всегда совпадают:

$$aH = \{a \circ h \mid h \in H\} = \{h \circ a \mid h \in H\} = Ha.$$

Теорема 45. Пусть $H \triangleleft G$ — нормальный делитель группы G, и \circ — групповая операция. Тогда композиция смежных классов (aH) и (bH) определяется формулой:

$$(aH) \circ (bH) = (a \circ b)H.$$

Доказательство. Рассмотрим композицию смежных классов (aH) и (bH). Поскольку H — нормальный делитель, выполняется Hb = bH. Тогда:

$$(aH) \circ (bH) = a(Hb)H = a(bH)H = (a \circ b)(HH).$$

Так как H — подгруппа, то HH = H. Следовательно:

$$(a \circ b)(HH) = (a \circ b)H.$$

Таким образом, $(aH) \circ (bH) = (a \circ b)H$.

5.4 Гомоморфизм. Фактор-Группы

Определение 40 (Гомоморфизм). Пусть (G, \circ) — группа, а (X, \star) — множество X с бинарной операцией \star . Отображение $\phi: G \to X$ называется **гомоморфизмом**, если для любых элементов $a, b \in G$ выполняется:

$$\phi(a \circ b) = \phi(a) \star \phi(b).$$

Гомоморфизм — это более общее понятие, чем изоморфизм. В отличие от изоморфизма, гомоморфизм не требует биективности, но всегда сохраняет алгебраическую структуру. Гомоморфизм может быть:

- **Инъективным**, если разные элементы G переходят в разные элементы X.
- Сюръективным, если образ $\phi(G)$ совпадает с X.
- Биективным (изоморфизм), если он одновременно инъективен и сюръективен.

Определение 41 (Эндоморфизм). Пусть (G, \circ) — группа.

Отображение $\phi: G \to G$ называется **эндоморфизмом**, если:

1. ϕ является гомоморфизмом, то есть $\forall a, b \in G$ выполняется:

$$\phi(a \circ b) = \phi(a) \circ \phi(b);$$

2. ϕ отображает группу G в себя, то есть $\phi(G) \subseteq G$.

Теорема 46. Пусть G — группа, а X — множество с бинарной операцией \star . Если $\phi: G \to X$ — гомоморфизм, то X является группой относительно операции \star .

Доказательство. Чтобы доказать, что X — группа, проверим выполнение аксиом группы:

1. Ассоциативность: Для любых $x, y, z \in X$ существуют $a, b, c \in G$, такие что $x = \phi(a)$, $y = \phi(b), z = \phi(c)$. Тогда:

$$(x \star y) \star z = (\phi(a) \star \phi(b)) \star \phi(c) = \phi(a \circ b) \star \phi(c) = \phi((a \circ b) \circ c).$$

Аналогично:

$$x \star (y \star z) = \phi(a) \star (\phi(b) \star \phi(c)) = \phi(a) \star \phi(b \circ c) = \phi(a \circ (b \circ c)).$$

Поскольку G — группа, $(a \circ b) \circ c = a \circ (b \circ c)$, следовательно:

$$(x \star y) \star z = x \star (y \star z).$$

2. Нейтральный элемент: Пусть e_G — нейтральный элемент группы G. Положим $e_X = \phi(e_G)$. Тогда для любого $x \in X$, где $x = \phi(a)$, выполняется:

$$e_X \star x = \phi(e_G) \star \phi(a) = \phi(e_G \circ a) = \phi(a) = x.$$

Аналогично:

$$x \star e_X = \phi(a) \star \phi(e_G) = \phi(a \circ e_G) = \phi(a) = x.$$

Таким образом, e_X — нейтральный элемент в X.

3. Обратный элемент: Для любого $x \in X$, где $x = \phi(a)$, рассмотрим элемент $y = \phi(a^{-1})$, где a^{-1} — обратный к a в G. Тогда:

$$x \star y = \phi(a) \star \phi(a^{-1}) = \phi(a \circ a^{-1}) = \phi(e_G) = e_X.$$

Аналогично:

$$y \star x = \phi(a^{-1}) \star \phi(a) = \phi(a^{-1} \circ a) = \phi(e_G) = e_X.$$

Таким образом, y — обратный элемент к x в X.

Все аксиомы группы выполнены, следовательно, X — группа.

Определение 42 (Ядро гомоморфизма).

Пусть $\phi: G \to X$ — гомоморфизм. **Ядром** гомоморфизма ϕ называется множество всех элементов группы G, которые отображаются в нейтральный элемент e_X группы X. Формально:

$$\ker(\phi) = \{ g \in G \mid \phi(g) = e_X \}.$$

Теорема 47. Пусть $\phi: G \to X$ — гомоморфизм группы (G, \circ) в группу X с групповой операцией \star . Тогда ядро $\ker(\phi)$ является:

- 1. Подгруппой группы G.
- 2. Нормальным делителем группы G.

Доказательство. Докажем оба утверждения.

- 1. Ядро $\ker(\phi)$ подгруппа группы G: Проверим выполнение аксиом подгруппы:
 - Замыкание: Пусть $a, b \in \ker(\phi)$. Тогда:

$$\phi(a \circ b) = \phi(a) \star \phi(b) = e_X \star e_X = e_X.$$

Следовательно, $a \circ b \in \ker(\phi)$.

- Нейтральный элемент: Поскольку $\phi(e_G) = e_X$, то $e_G \in \ker(\phi)$.
- Обратный элемент: Пусть $a \in \ker(\phi)$. Тогда:

$$\phi(a^{-1}) = (\phi(a))^{-1} = e_X^{-1} = e_X.$$

Следовательно, $a^{-1} \in \ker(\phi)$.

Таким образом, $\ker(\phi)$ — подгруппа группы G.

2. Ядро $\ker(\phi)$ — нормальный делитель группы G: Покажем, что для любого $a \in G$ выполняется $a^{-1}\ker(\phi)a \subseteq \ker(\phi)$.

Рассмотрим произвольный элемент $h \in \ker(\phi)$ и произвольный элемент $a \in G$. Покажем, что $a^{-1} \circ h \circ a \in \ker(\phi)$. Применим гомоморфизм ϕ к этому элементу:

$$\phi(a^{-1} \circ h \circ a) = \phi(a^{-1}) \star \phi(h) \star \phi(a).$$

Поскольку $h \in \ker(\phi)$, то $\phi(h) = e_X$. Также, так как ϕ — гомоморфизм, выполняется $\phi(a^{-1}) = (\phi(a))^{-1}$. Подставляем:

$$\phi(a^{-1} \circ h \circ a) = (\phi(a))^{-1} \star e_X \star \phi(a) = (\phi(a))^{-1} \star \phi(a) = e_X.$$

Таким образом, $\phi(a^{-1} \circ h \circ a) = e_X$, что означает $a^{-1} \circ h \circ a \in \ker(\phi)$.

Мы показали, что для любого $a \in G$ и любого $h \in \ker(\phi)$ выполняется $a^{-1} \circ h \circ a \in \ker(\phi)$. Это означает, что:

$$a^{-1} \ker(\phi) a \subseteq \ker(\phi)$$
.

Теперь "домножим" обе части включения справа на а. Получим:

$$\ker(\phi)a \subseteq \ker(\phi)a$$
.

Теперь покажем обратное включение. Рассмотрим произвольный элемент $h \in \ker(\phi)$ и произвольный элемент $a \in G$. Покажем, что $a \circ h \circ a^{-1} \in \ker(\phi)$. Применим гомоморфизм ϕ к этому элементу:

$$\phi(a \circ h \circ a^{-1}) = \phi(a) \star \phi(h) \star \phi(a^{-1}).$$

Поскольку $h \in \ker(\phi)$, то $\phi(h) = e_X$. Также, так как ϕ — гомоморфизм, выполняется $\phi(a^{-1}) = (\phi(a))^{-1}$. Подставляем:

$$\phi(a \circ h \circ a^{-1}) = \phi(a) \star e_X \star (\phi(a))^{-1} = \phi(a) \star (\phi(a))^{-1} = e_X.$$

Таким образом, $\phi(a \circ h \circ a^{-1}) = e_X$, что означает $a \circ h \circ a^{-1} \in \ker(\phi)$.

Мы показали, что для любого $a \in G$ и любого $h \in \ker(\phi)$ выполняется $a \circ h \circ a^{-1} \in \ker(\phi)$. Это означает, что:

$$a \ker(\phi) a^{-1} \subseteq \ker(\phi).$$

Таким образом, мы получили два включения:

$$a^{-1} \ker(\phi) a \subseteq \ker(\phi)$$
 и $a \ker(\phi) a^{-1} \subseteq \ker(\phi)$.

Из этих включений следует, что:

$$a \ker(\phi) = \ker(\phi)a.$$

Это и есть определение нормального делителя.

Определение 43 (Фактор-группа).

Пусть G — группа, а $H \triangleleft G$ — её нормальный делитель. **Фактор-группой** группы G по подгруппе H называется множество всех смежных классов G по H с операцией, определённой следующим образом:

$$(aH) \circ (bH) = (a \circ b)H,$$

где $a, b \in G$, а \circ — групповая операция в G. Обозначение: G/H.

Теорема 48. Пусть G — циклическая группа, порождённая элементом q. Тогда:

- 1. Если G бесконечна, то $G \cong \mathbb{Z}$ (группа целых чисел с операцией сложения).
- 2. Если G конечна порядка n, то $G \cong \mathbb{Z}_n$ (группа целых чисел по модулю n с операцией сложения).

Доказательство. Докажем оба утверждения.

1. Случай бесконечной циклической группы: Пусть $G = \langle g \rangle$ — бесконечная циклическая группа. Поскольку G бесконечна, $\forall k_1, k_2 \in \mathbb{Z}$, если $k_1 \neq k_2$, то $g^{k_1} \neq g^{k_2}$. Построим отображение $\phi: G \to \mathbb{Z}$ по правилу:

$$\phi(g^k) = k.$$

Покажем, что ϕ — изоморфизм:

- Инъективность: Пусть $\exists g^{k_1}, g^{k_2} \in G$ такие, что $\phi(g^{k_1}) = \phi(g^{k_2})$. Тогда $k_1 = k_2$, откуда $g^{k_1} = g^{k_2}$. Следовательно, ϕ инъективен.
- Сюръективность: $\forall k \in \mathbb{Z} \, \exists g^k \in G$ такой, что $\phi(g^k) = k$. Следовательно, ϕ сюръективен.
- Сохранение операции: $\forall g^k, g^m \in G$ выполняется:

$$\phi(g^k \circ g^m) = \phi(g^{k+m}) = k + m = \phi(g^k) + \phi(g^m).$$

Таким образом, ϕ сохраняет операцию.

Поскольку ϕ является биекцией и сохраняет операцию, ϕ — изоморфизм, и $G \cong \mathbb{Z}$.

2. Случай конечной циклической группы: Пусть $G = \langle g \rangle$ — циклическая группа порядка n. Тогда $G = \{e, g, g^2, \dots, g^{n-1}\}$, и $g^n = e$. Построим отображение $\phi : G \to \mathbb{Z}/H_n$ по правилу:

$$\phi(g^r) = r + nq,$$

где $r=0,1,\ldots,n-1,$ а $q\in\mathbb{Z}$ — произвольное целое число. Покажем, что ϕ — изоморфизм:

- Сюръективность: $\forall r + nq \in \mathbb{Z}/H_n \ \exists g^r \in G$ такой, что $\phi(g^r) = r + nq$. Поскольку r пробегает значения от 0 до n-1, все смежные классы \mathbb{Z}/H_n покрываются. Следовательно, ϕ сюръективен.
- Инъективность: Пусть $g^{r_1}, g^{r_2} \in G$ такие, что $\phi(g^{r_1}) = \phi(g^{r_2})$. Тогда $r_1 + nq_1 = r_2 + nq_2$ для некоторых $q_1, q_2 \in \mathbb{Z}$. Это означает, что $r_1 - r_2 =$

 $n(q_2-q_1)$, то есть $r_1 \equiv r_2 \pmod{n}$ (разность r_1-r_2 делится на n). Поскольку $0 \le r_1, r_2 < n$, это возможно только если $r_1 = r_2$. Следовательно, $g^{r_1} = g^{r_2}$, и ϕ инъективен.

• Сохранение операции: $\forall g^k, g^m \in G$ выполняется:

$$\phi(g^k \circ g^m) = \phi(g^{k+m}) = (k+m) + nq = (k+nq_1) + (m+nq_2) = \phi(g^k) + \phi(g^m),$$

где $q = q_1 + q_2$. Таким образом, ϕ сохраняет операцию.

Поскольку ϕ является биекцией и сохраняет операцию, ϕ — изоморфизм, и $G \cong \mathbb{Z}/H_n$.

Лемма 4. Пусть G, X — группы, и $\phi: G \to X$ — гомоморфизм групп. Тогда $\forall g_1, g_2 \in G$ выполнено:

$$g_1 \ker \phi = g_2 \ker \phi \iff \phi(g_1) = \phi(g_2).$$

Доказательство.

 \Longrightarrow : Пусть $g_1 \ker \phi = g_2 \ker \phi$. Тогда:

$$g_1 \in g_2 \ker \phi$$
.

Это означает, что существует $h \in \ker \phi$ такой, что:

$$g_1 = g_2 \circ h$$
.

Применим гомоморфизм ϕ к обеим частям равенства:

$$\phi(g_1) = \phi(g_2 \circ h) = \phi(g_2) \circ \phi(h).$$

Поскольку $h \in \ker \phi$, то $\phi(h) = e_X$. Следовательно:

$$\phi(g_1) = \phi(g_2) \circ e_X = \phi(g_2).$$

Таким образом, $\phi(g_1) = \phi(g_2)$.

[Тусть $\phi(g_1) = \phi(g_2)$. Рассмотрим элемент $g_1^{-1} \circ g_2$. Применим к нему гомоморфизм ϕ :

$$\phi(g_1^{-1} \circ g_2) = \phi(g_1^{-1}) \circ \phi(g_2) = \phi(g_1)^{-1} \circ \phi(g_2).$$

Поскольку $\phi(g_1) = \phi(g_2)$, то:

$$\phi(g_1^{-1} \circ g_2) = \phi(g_1)^{-1} \circ \phi(g_1) = e_X.$$

Это означает, что $g_1^{-1} \circ g_2 \in \ker \phi$. Следовательно, существует $h \in \ker \phi$ такой, что:

$$g_1^{-1} \circ g_2 = h.$$

Умножим обе части равенства на g_1 :

$$g_2 = g_1 \circ h$$
.

Это означает, что $g_2 \in g_1 \ker \phi$. Поскольку g_2 также лежит в своём смежном классе $g_2 \ker \phi$, а смежные классы либо не пересекаются, либо совпадают, то:

$$g_1 \ker \phi = g_2 \ker \phi$$
.

Теорема 49 (Основная теорема о гомоморфизме).

Пусть $\phi: G \to X$ — гомоморфизм групп. Тогда образ $\phi(G)$ изоморфен факторгруппе $G/\ker(\phi)$, то есть:

$$\phi(G) \cong G/\ker(\phi)$$
.

Доказательство. Построим отображение $\psi: G/\ker(\phi) \to \phi(G)$ по правилу:

$$\psi(g \ker(\phi)) = \phi(g).$$

Покажем, что ψ — изоморфизм.

• Корректность и однозначность: Пусть $g_1 \ker(\phi) = g_2 \ker(\phi)$. Тогда по лемме о смежных классах:

$$\phi(q_1) = \phi(q_2).$$

Следовательно, $\psi(g_1 \ker(\phi)) = \psi(g_2 \ker(\phi))$, и отображение ψ корректно определено и однозначно.

• Инъективность: Пусть $\psi(g_1 \ker(\phi)) = \psi(g_2 \ker(\phi))$. Тогда:

$$\phi(g_1) = \phi(g_2).$$

По лемме о смежных классах это означает, что $g_1 \ker(\phi) = g_2 \ker(\phi)$. Следовательно, ψ инъективно.

ullet Сюръективность: Для любого $y \in \phi(G)$ существует $g \in G$ такой, что $\phi(g) = y$. Тогда:

$$\psi(q \ker(\phi)) = \phi(q) = y.$$

Следовательно, ψ сюръективно.

• Сохранение операции: Для любых $g_1 \ker(\phi), g_2 \ker(\phi) \in G/\ker(\phi)$ выполняется:

$$\psi((q_1 \ker(\phi)) \circ (q_2 \ker(\phi))) = \psi(q_1 q_2 \ker(\phi)) = \phi(q_1 q_2).$$

С другой стороны:

$$\psi(q_1 \ker(\phi)) \circ \psi(q_2 \ker(\phi)) = \phi(q_1) \circ \phi(q_2).$$

Поскольку ϕ — гомоморфизм, то:

$$\phi(g_1g_2) = \phi(g_1) \circ \phi(g_2).$$

Таким образом, ψ сохраняет операцию.

Отображение ψ является биективным гомоморфизмом, то есть изоморфизмом. Следовательно:

$$G/\ker(\phi) \cong \phi(G)$$

Теорема 50. Пусть G и X — конечные циклические группы, и $\phi: G \to X$ — гомоморфизм. Тогда порядок группы G равен произведению порядка группы X и порядка ядра $\ker(\phi)$, то есть:

$$|G| = |X| \cdot |\ker(\phi)|$$

Доказательство. Рассмотрим гомоморфизм $\phi: G \to X$. По основной теореме о гомоморфизме:

$$G/\ker(\phi) \cong \phi(G)$$
.

Отсюда следует, что порядок факторгруппы $G/\ker(\phi)$ равен порядку образа $\phi(G)$:

$$|G/\ker(\phi)| = |\phi(G)|.$$

С другой стороны, факторгруппа $G/\ker(\phi)$ состоит из смежных классов $g\ker(\phi)$, количество которых равно:

$$|G/\ker(\phi)| = \frac{|G|}{|\ker(\phi)|}.$$

Подставляя это в равенство, получаем:

$$\frac{|G|}{|\ker(\phi)|} = |\phi(G)|.$$

Отсюда:

$$|G| = |\phi(G)| \cdot |\ker(\phi)|.$$

5.5 Группы линейных преобразований

Определение 44. Пусть \mathbb{V} — конечномерное векторное пространство над полем \mathbb{F} , и $\mathcal{L}(\mathbb{V},\mathbb{V})$ — множество всех линейных операторов на \mathbb{V} . Пусть \mathcal{E} — фиксированный базис \mathbb{V}

Для линейных операторов $\phi_1, \phi_2 \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ определим операцию композиции:

$$\phi_1 \circ \phi_2 = \phi_1(\phi_2)$$

Матрица оператора $\phi_1 \circ \phi_2$ в базисе \mathcal{E} выражается как произведение матриц:

$$A_{\mathcal{E}}^{\phi_1 \circ \phi_2} = A_{\mathcal{E}}^{\phi_1} \cdot A_{\mathcal{E}}^{\phi_2}.$$

Потребуем, чтобы матрицы операторов были невырожденными (то есть их определитель отличен от нуля). Тогда каждый оператор ϕ является биекцией (изоморфизмом) на \mathbb{V} .

Множество всех таких невырожденных линейных операторов образует группу относительно операции композиции. Эта группа называется **группой линейных преобразований** и обозначается $GL(n, \mathbb{F})$, где $n = \dim(\mathbb{V})$, а \mathbb{F} — поле, над которым определено пространство \mathbb{V} .

Определение 45. Линейный оператор $\phi \in \mathcal{L}(\mathbb{V}, \mathbb{V})$ называется ортогональным, если его матрица A в любом ортонормированном базисе удовлетворяет условию:

$$A^T A = E$$
.

где A^T — транспонированная матрица, а E — единичная матрица. Множество всех таких операторов образует группу, которая называется **ортогональной группой** и обозначается O(n), где $n = \dim(\mathbb{V})$.

Теорема 51. Ортогональная группа O(n) является подгруппой GL(n).

Доказательство. Докажем, что O(n) удовлетворяет всем свойствам подгруппы, используя матричное представление операторов.

1. Замкнутость относительно композиции:

Пусть $\phi_1, \phi_2 \in O(n)$, и их матрицы в ОНБ $\mathcal E$ равны $A_e^{\phi_1}$ и $A_e^{\phi_2}$ соответственно. Тогда матрица композиции $\phi_1 \circ \phi_2$ равна $A_e^{\phi_1 \circ \phi_2} = A_e^{\phi_1} \cdot A_e^{\phi_2}$. Проверим, что $A_e^{\phi_1 \circ \phi_2}$ ортогональна:

$$(A_e^{\phi_1 \circ \phi_2})^{-1} = (A_e^{\phi_1} \cdot A_e^{\phi_2})^{-1} = (A_e^{\phi_2})^{-1} \cdot (A_e^{\phi_1})^{-1}.$$

С другой стороны, транспонирование произведения матриц дает:

$$(A_e^{\phi_1 \circ \phi_2})^T = (A_e^{\phi_1} \cdot A_e^{\phi_2})^T = (A_e^{\phi_2})^T \cdot (A_e^{\phi_1})^T.$$

Поскольку $\phi_1, \phi_2 \in O(n)$, их матрицы ортогональны, то есть $(A_e^{\phi_1})^T = (A_e^{\phi_1})^{-1}$ и $(A_e^{\phi_2})^T = (A_e^{\phi_2})^{-1}$. Подставляя, получаем:

$$(A_e^{\phi_1 \circ \phi_2})^T = (A_e^{\phi_2})^{-1} \cdot (A_e^{\phi_1})^{-1} = (A_e^{\phi_1 \circ \phi_2})^{-1}.$$

Таким образом, $A_e^{\phi_1 \circ \phi_2}$ ортогональна, и $\phi_1 \circ \phi_2 \in O(n)$.

2. Замкнутость относительно взятия обратного:

Пусть $\phi \in O(n)$, и его матрица в базисе $\mathcal E$ равна A_e^ϕ . Поскольку ϕ ортогонален, выполняется $(A_e^\phi)^T \cdot A_e^\phi = E$, откуда $(A_e^\phi)^{-1} = (A_e^\phi)^T$. Проверим, что ϕ^{-1} также ортогонален:

$$A_e^{\phi^{-1}} = (A_e^{\phi})^{-1}.$$

Транспонируем обе части:

$$(A_e^{\phi^{-1}})^T = ((A_e^{\phi})^{-1})^T = ((A_e^{\phi})^T)^T = A_e^{\phi}.$$

Учитывая, что A_e^{ϕ} ортогональна, получаем:

$$(A_e^{\phi^{-1}})^T \cdot A_e^{\phi^{-1}} = A_e^{\phi} \cdot (A_e^{\phi})^{-1} = E.$$

Следовательно, $\phi^{-1} \in O(n)$.

3. Непустота:

Тождественный оператор \mathcal{I} имеет матрицу E, которая удовлетворяет условию $E^TE = E$. Следовательно, $\mathcal{I} \in O(n)$.

Таким образом, O(n) — подгруппа GL(n).