

Lecture
Organic Computing II
Summer term 2019

Chapter 6: Learning

Lecturer: Anthony Stein, M.Sc.

Agenda

Content

- Motivation
- Extended Classifier System
- XCS-O/C
- Artificial Neural Networks
- Conclusion and further readings

Goals

Students should be able to:

- Explain what machine learning is and why it is needed in organic systems.
- Compare basic concepts such as supervised vs. reinforcement learning or exploration vs. exploitation.
- Outline an XCS and explain the main loop with all components.
- Discuss the necessary modifications to XCS for OC.
- Explain basic Feed-Forward ANNs and how backpropagation works

Agenda

- Motivation
- Extended Classifier System
- XCS-O/C
- Artificial Neural Networks
- Conclusion and further readings

Learning in organic systems

Complex learning tasks:

- Sparse and imbalanced data
 - E.g. due to non-uniform distributions and class imbalances
- Non-stationary environments
 - May exhibit severe changes in the target concepts.
 - Also called concept drift.
- Necessity of exploration boundaries
 - Unrestricted or unknown feature spaces
 - Continuous or large discrete action spaces
 - Legal constraints
 - → Trial-and-error must be avoided!
- Complexity of underlying problem space
 - Functions mapping inputs to certain outputs regarding are complex.
 - E.g. due to their dimensionality, continuity, obliqueness and curvature.
- Knowledge and expected behaviour must be represented in a human comprehensible manner (e.g. as rules).

Motivation

- Machine learning techniques seem to be a promising approach for continuous self-improvement in Organic Computing systems.
 - → How can computers be programmed so that problem solving capabilities are built up by specifying "what is to be done" rather than "how to do it"? (Holland, 1975).
- Major issues:
 - How can the system react to unforeseen situations?
 - How can the system automatically improve its performance (if possible) at runtime?
 - How can knowledge (and expected behaviour) be encoded in a human comprehensible manner?
 - Overall: flexible and autonomous reaction to changes of the environments and/or the system itself are desirable.

Motivation (2)

- Machine learning is used when:
 - human expertise does not exist (navigating on Mars)
 - humans are unable to explain their expertise (speech recognition)
 - solution changes in time (routing on a computer network)
 - solution needs to be adapted to particular cases (user biometrics)
 - human learning is not feasible (map protein sequences to secondary structures)
 - **–** ...
- The slides for the introduction part to Machine Learning are mainly based on the book:

Definition of learning (2)

Common definition:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Example:

- consider a program that learns playing checker
- task T: play checker
- performance measure P: percentage of the games won
- experience E: play against itself

The inductive learning problem

- consider a given set of examples (training set)
- make accurate predictions about future examples (validation set)
- with the goal of predicting concrete values for unknown feature sets,
 the learning problem can be mapped to learning a function

f(X) = Y, whereas X is an input example and Y the desired output

Supervised Learning

error = (target output – actual system output)

Supervised vs. unsupervised inductive learning

- Supervised learning means that the training set of (X, Y) is provided (by a ``supervisor'' or ``teacher'')
- Unsupervised learning means only the input data X and feedback on the prediction performance are provided
- Example supervised learning: Face recognition
 - x: Bitmap picture of person's face
 - f(x): Name of the person
- Example unsupervised learning: Customer segmentation
 - x: Customer's buying habits, address, age,...
 - f(x): Customer class

Expected learning results

Supervised learning

- Prediction of future cases:
 Use the learned model (or *hypothesis*) to predict the output for future input
- Knowledge extraction: The hypothesis is easy to understand
- 3. Compression:
 The hypothesis is simpler than the data it explains
- 4. Outlier detection: Exceptions that are not covered by the hypothesis (e.g. fraud)

Unsupervised learning

- Clustering of data
- 2. Density estimation of data
 - → gain insights into the organisation of data

Reinforcement Learning

training information = evaluation ("rewards" / "penalties")

Goal: achieve as much reward as possible!

- Act "successfully" in the environment
- Implication: maximise the sequence of rewards R_t

Reinforcement Learning

What is Reinforcement Learning?

- German: "Bestärkendes Lernen"
- Learning from interaction
- Goal-oriented learning
- Learning by/from/during interaction with an external environment
- Learning "what to do" (how to map situations to actions) to maximise a numeric reward

Reinforcement learning

- Learning based on feedback
 - feedback tells the system how well it performs (not what it should be doing)
 - no supervised output; but a delayed "reward"

Aspects:

- credit assignment problem
- game playing
- robot in a maze
- multiple agents, partial observability, ...

This is exactly what we will have to cope with in most OC applications!

Recap: Layer 1 Controller

Observer/Controller

- Controller has to learn from feedback.
- Basic concept: rule-based system
- Learning is done by "book-keeping" attributes, i.e. evaluation parameters.
- These are modified depending on the observed success.

Example: 'Woods' scenario / Maze

- Example of an Animat problem
- Basis: rectangular toroidal regular (n x m)-grid
- Each grid cell may contain a tree
 (t), food (F), or it may be empty.
- Food and trees fixed per instance
- Animat/agent/robot is initially randomly placed on empty cell.
- Walks around, looking for food
- In each step, agent can go to one of the eight neighboring cells (empty and food cells only).

Woods1: optimal average number of steps to reach food: 1.7 steps (Bull & Hurst, "ZCS redux")

Woods1

Example: 'Woods' and the underlying problem

- Question: Can we build an agent that can efficiently find food "in the Woods" without global knowledge?
- One idea to build such an agent:
 - Suppose the agent can "see" the eight surrounding cells.
 - Based upon this perception, it has to decide where to go next.
 - Reward is paid once the food is found.

Agent model

- The complete agent
 - Chronologically situated
 - Constant learning and planning
 - Affects the environment
 - Environment is stochastic and uncertain

Elements of Reinforcement Learning

Elements

- Policy: What to do in a particular situation?
- Reward: What is good or bad behaviour (experience)?
- Value: What is a good action due to the expected reward?
- Model: What follows from the actions? What is the impact?

Exploration:

A process of visiting entirely new regions of a search space.

VS.

Exploitation:

A process of visiting regions of a search space based on previously visited points (neighbourhood).

To be successful, a search algorithm needs to find a good balance between exploration and exploitation.

- Exploration is important in early stages:
 - seek good patterns
 - spread out through the search space
 - avoid local optima
- Exploitation is important in later stages:
 - exploit good patterns
 - focus on good areas of the search space
 - refine to global optimum

Exploration vs. exploitation (2)

The Exploration / Exploitation Problem: Formalisation

- Suppose values are estimated: $Q_t(a) \approx Q^*(a)$; estimation of action values
- The greedy-action for time *t* is:

$$a_t^* = \arg \max_a Q_t(a)$$

 $a_t = a_t^* \Rightarrow exploitation$
 $a_t \neq a_t^* \Rightarrow exploration$

- Insights:
 - You cannot explore all the time, but also not exploit all the time.
 - Exploration should never be stopped, but it should be reduced.

Agenda

- Motivation
- Extended Classifier System
- XCS-O/C
- Artificial Neural Networks
- Conclusion and further readings

Names to remember in LCS research

- Initial Learning Classifier System (LCS) was introduced by John H. Holland in 1975.
- He was (and still is) interested in complex adaptive systems.
- How can computers be programmed so that problemsolving capabilities are built up by specifying "what is to be done" rather than "how to do it"? (Holland, 1975)
- An important development in LCS was done by Stewart W. Wilson in 1995.
- Based on the initial approach by Holland, Wilson proposed a simplified and more efficient classifier system called Extended Classifier System (XCS).
- XCS is today one of the most studied classifier systems.
- Many extensions have been proposed.

Initial approach by Holland

- Initially system
 - Holland designed a first system in 1978.
 - System is called CS1.
- System contains
 - Set of classifiers (condition/action)-pairs
 - → Not called "rule" since they compete (classifier is a "may rule")!
 - Input interface to receive state from the environment
 - Output interface to apply actions to the environment
 - Internal message list as an internal "workspace" for I/O
 - Evolutionary process (genetic algorithm) to generate new classifiers

The Extended Classifier System (XCS) by Wilson

- XCS is a rule-based (online) learning system.
- It can be used for pure classification as well as for regression problems.
- It is a derivative of the overall class of Learning Classifier Systems (LCS), initially proposed by Holland in 1978 (CS-1)
- Wilson in 1994 simplified Hollands CS-1 to the so-called Zeroth-Classifier System (ZCS).
- In 1995 Wilson presented the Extended Classifier System (XCS).
- Initially designed for binary problems, Wilson further extended XCS toward the ability to cope with real-valued inputs (XCSR) in 2001.

Why `Classifier' system?

- XCS stores rules (termed `classifiers') in a limited set of max. N
 classifiers called population [P].
- A single classifier cl is comprised of:
 - A condition C that defines a subspace of the input space X
 - An action a that determines a reaction executed on the environment (e.g. `0' and `1' for `turn left' or `turn right')
 - A predicted payoff scalar p which is an estimate of the expected reward when the action a of this classifier is selected for execution
 - An absolute error of the payoff prediction ϵ
 - A measure of accuracy termed fitness F which is some sort of inverse function of ϵ
 - Some more so-called `book-keeping' parameters (e.g. experience)

One cycle through XCS

A single iteration through the main loop

- 1. At each timestep t, XCS retrieves a situation $\sigma(t)$ from the observed environment.
- 2. XCS scans [P] for matching classifiers and builds a so-called match set [M].
- 3. Among all matching classifiers, the 'prediction array' PA calculates the most promising action a.
- 4. All classifiers from [M] with the selected action a, from another subset [A] called the action set.
- 5. The selected action a_{exec} is actualised on the environment which in turn delivers a so-called payoff or reward r.
- 6. r is used to updated and refine all classifiers in [A], since these particular classifiers advocated the same action as the one executed.

Why such a triple ranking by p, ε , and F?

- What is the difference of a classifier's strength and its accuracy?
 - Strength = predicted payoff p
 - Accuracy = Fitness (inverse of prediction error ϵ)
- Is a classifier predicting a high payoff also an accurate one?
 - When a classifier predicts a high payoff, this does not necessarily mean that its prediction is correct!
- Is it beneficial to know low performing (regarding p) but highly accurate (F) classifiers?
 - Yes, indeed!
 - The system has an indicator which action delivers low payoff, and thus will decide more likely against this action.

Wilson's "Generalisation Hypothesis"

- Wilson hypothesised that XCS constructs classifiers that are maximally general and accurate at the same time.
- Thus, XCS attempts to construct a map/approximation of the underlying payoff-landscape, that is $X \times A \rightarrow P$, by means of single classifiers:
 - X is the input space (possible input)
 - A is the action space (possible outputs)
 - P is the payoff space (possible rewards)
- This map/approximation shall be:
 - Complete, in the sense that the entire payoff landscape is covered.
 - Compact, in terms of the # physical classifiers (macro-classifiers).
 - Accurate, since the system error shall be as minimal as possible (of course).
 - Maximally general, since the shape of a classifier (determined by its condition) shall be large enough to cover the environmental niche within X but specific enough to remain accurate.

Wilson's "Generalisation Hypothesis" (2)

- The separation of strength and accuracy combined with the incorporated `niche' genetic algorithm exerts evolutionary pressure toward the aforementioned properties.
- The GA favours accurate (high fitness) classifiers within the environmental niche.
- Thus, accurate classifiers are more likely to reproduce and will eventually take over the environmental niche.

XCS' algorithmic structure

XCS' three main components

- Performance component
 - Matching, Payoff Prediction, Action Selection
- Reinforcement component
 - Attribute update, deferred credit assignment
- Discovery component
 - Covering of non-explored niches, refinement of poorly explored niches

XCS' algorithmic structure (2)

XCS' algorithmic structure (2)

Matching

- At each time step t XCS retrieves a binary string on length n
- This string is denoted as $\sigma(t) \in \{0,1\}^n$
- Example for n = 6 and t = 1: $\sigma(1) = 011001$
- Each classifier maintains a condition or schema C.
- The conditions are encoded ternary, i.e. $C \in \{0,1,\#\}^n$.
- The # symbol serves as wildcard or `don't care' operator.
- Examples of conditions: (is matching $\sigma(1)$?)
 - 0#1001 (yes)
 - #01001 (no)
 - 011##1 (yes)

Matching is the process of scanning the entire population [P] for classifiers with a condition that fits the situation $\sigma(t)$

XCS' algorithmic structure (3)

The system prediction

• The system prediction P(a) is a fitness-weighted sum of predictions of all classifiers advocating action a

$$P(a) = \frac{\sum_{cl \in [M]|cl.a=a} cl.F * cl.p}{\sum_{cl \in [M]|cl.a=a} cl.F}$$

- Especially at this place, the separation of strength and accuracy plays a major role!
- For each possible action $a \in A$ there exists one entry within the PA.
 - → There may be several classifiers supporting the same action.

XCS' algorithmic structure (4)

Update rules:

- $\epsilon_j = \epsilon_j + \beta(|P p_j| \epsilon_j)$
- $\bullet \quad p_j = p_j + \beta (P p_j)$

•
$$F_j = F_j + \beta (k'_j - F_j), \ k'_j = \frac{k_j}{\sum_{cl_i \in [A]} cl_i \cdot k}, \ k_j = \alpha \left(\frac{\epsilon_j}{\epsilon_0}\right)^{-v}$$

- β is the learning rate (typically set to 0.2)
- α (often set to 0.1) and ν (usually set to 5) control how strong accuracy decreases when the error is higher than ϵ_0
- ϵ_0 defines the targeted error level of the system
- In single-step problems: P is set to the reward r_{imm}
- Classifier attributes are updated by means of the modified delta rule (Widrow-Hoff delta rule) in combination with the moyenne adaptiv modifee (MAM) technique.

XCS' algorithmic structure (5)

Covering

- Covering is the process of generating a novel classifier that matches the current input whenever:
 - Match set [M] is empty (i.e. no matching cl in [P]).
 - [M] is poor, i.e. average fitness below a certain threshold.
 - [M] contains less then θ_{mna} distinct actions.
- The condition of the covered classifier cl_{cov} is set to the current input.
- Additionally, each bit is replaced by a # (for generalisation purposes) with probability $P_{\#}$.
- Values for p, ϵ and F are set to predefined initial values (typically 10.0, 0.0 and 0.01).

XCS' algorithmic structure (6)

Genetic Algorithm:

- One of the most essential part of XCS is the incorporated niche Genetic Algorithm (GA).
- It is triggered when the average time of all classifiers in [A] since the last GA invocation is greater than θ_{GA} (often set to 50).
- The GA selects two parents from [A] with a probability proportional to their fitness values (roulette-wheel selection).
 - The higher a classifier's fitness, the higher the selection chance.
- The selected parents are copied to generate two offspring classifiers cl_{off} .

XCS' algorithmic structure (7)

Genetic operators

- The conditions of both cl_{off} are crossed (crossover operator):
 - One-point crossover: Each offspring classifier's condition is split at a certain point and switched with the other offspring classifier.
 - n-point crossover: more than one point is determined for switching.
 - Uniform crossover: Each value is switched with probability $P_{\chi}=0.8$.
- Afterward, each bit is flipped with probability $P_{\mu} = 0.04$ to one of the other allowed alleles, that is $\{0,1,\#\}$.

One-point crossover:

XCS' algorithmic structure (9)

Mutation:

Credit assignment: single- vs. multi-step problems

Credit assignment

- r may or may not be retrieved in each step.
- Update of classifier attributes is performed on the action set of the previous time step t-1 ($[A]_{-1}$).
- The maximum system prediction P(a) from the PA is discounted by a factor γ (usually $\gamma = 0.95$).
- Additionally, the reward from the previous time-step is added in (may be 0).
- This delay allows to retrieve "information from the future".

Distinguish:

- In single-step environments $P = r_{imm}$.
- In multi-step problems $P = r_{t-1} + \gamma * \max P(a)$.

Single- vs. multi-step problems

Real-world problems

- E.g.: traffic control
- There is no 'end' of the process!
- Hence: there is no reward!
- However, we can handle the control problem as single-step problem.
 - Activate XCS in discrete cycles.
 - Perform observation and adaptation loop.
 - Use utility function: (i) to estimate success, (ii) to analyse conditions.
- For the remainder of this lecture, we only consider single-step problems with immediate reward.