

Stroke Prediction Analysis

Ngoc Nguyen

DATA INFORMATION

• 12 variables with 5110 observations

May result in false accuracy at very high percentage of 0, which is healthy patients.

LOGISTIC REGRESSION

```
Call:
glm(formula = stroke ~ . - bmi, family = binomial, data = stroke_train)
Deviance Residuals:
             10 Median
-1.2359 -0.3260 -0.1657 -0.0910 3.4697
Coefficients:
                           Estimate Std. Error z value Pr(>|z|)
(Intercept)
                          -6.545e+00 7.754e-01 -8.441 < 2e-16 ***
                          4.368e-06 3.560e-06 1.227 0.21992
aenderMale
                          -3.293e-02 1.552e-01 -0.212 0.83202
aenderOther
                          -1.069e+01 1.455e+03 -0.007 0.99414
                          7.613e-02 6.240e-03 12.200 < 2e-16 ***
hypertension1
                          4.519e-01 1.790e-01 2.525 0.01157 *
heart disease1
                          2.802e-01 2.124e-01 1.320 0.18698
ever marriedYes
                          -2.661e-01 2.478e-01 -1.074 0.28286
work_typeGovt_job
                          -1.147e+00 8.422e-01 -1.362 0.17317
work_typeNever_worked
                          -1.062e+01 4.018e+02 -0.026 0.97891
work_typePrivate
                          -1.065e+00 8.232e-01 -1.293 0.19587
                          -1.403e+00 8.481e-01 -1.655 0.09794 .
work_typeSelf-employed
Residence_typeUrban
                          4.857e-02 1.515e-01 0.320 0.74860
                          3.539e-03 1.293e-03 2.736 0.00621 **
avg_glucose_level
smoking_statusnever smoked -1.883e-01 1.938e-01 -0.972 0.33111
                          2.171e-01 2.295e-01 0.946 0.34420
smoking_statussmokes
                          -1.747e-01 2.351e-01 -0.743 0.45761
smoking_statusUnknown
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1655.9 on 4087 degrees of freedom
Residual deviance: 1307.2 on 4071 degrees of freedom
ATC: 1341.2
Number of Fisher Scoring iterations: 14
```

logit(y) = -6.545+ 0.000004368
$$X_1$$
 - 0.03293 X_2 + ... +0.2171 X_{15} - 0.1747 X_{16}

- Run variable selection
- ⇒ Find the best model is **backward selection** model

new logit(y) =
$$-7.382350 + 0.069275X_1 + 0.457505X_2 + 0.341837X_3 + 0.003440X_4$$

IN SAMPLE PERFORMANCE

Cut-off probability: 0.2	Predicted	
Truth	0	1
0	3704	174
1	150	60

150 out of 210 stroke patients will pass the stroke detection

⇒ Not very good model

RESAMPLING DATA

Oversampling data using ROSE method

⇒ The data is now **balanced** with 4861 observations in each value

IN SAMPLE PERFORMANCE WITH BALANCED DATA

Cut-off probability: 0.2	Predicted	
Truth	0	1
0	1892	2012
1	179	3694

- AUC rises from **0.214** to **0.805**
- fewer false negatives the model catches more stroke, unhealthy patients

OUT-OF-SAMPLE PERFORMANCE

Cut-off probability: 0.2	Predicted	
Truth	0	1
0	472	485
1	41	947

947 out of **988** stroke, unhealthy patients are predicted correctly

73% of accuracy

DECISION TREE

Classification tree with **asymmetric cost**

Selected variables: "bmi", "avg_glucose_level", and "age"

Symmetric cost	Predicted	
Truth	0	1
0	3201	703
1	33	3840

Asymmetric cost	Predicted	
Truth	0	1
0	3170	734
1	0	3873

DECISION TREE: OUT-OF-SAMPLE PERFORMANCE

Asymmetric cost	Predicted	
Truth	0	1
0	735	219
1	0	991

AUC = 0.8905 88.7% of accuracy

Better model than the Logistic Regression

RANDOM FOREST

• In-sample performance with 80% training data

```
Call:
randomForest(formula = stroke ~ ., data = stroke_train1, ntree = 500)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

00B estimate of error rate: 0.6%

Confusion matrix:
0 1 class.error
0 3860 47 0.01202969
1 0 3870 0.00000000
```

Out-of-sample performance with 20% testing data

	Predicted	
Truth	0	1
0	944	10
1	0	991

99.5% of accuracy

KEY FINDINGS

- Random forest performs the best prediction model
- **Bmi, glucose level, and age** are the most influential stroke risk factors
- Genders, work types, residence types are not associated with stroke experience
- Balancing the data by applying oversampling or undersampling can improve the accuracy/avoid sending potential stroke patients home.

THANK YOU FOR LISTENING

Do you have any questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u>.