Multiples de 3

Tu sais peut-être déjà que, pour qu'un nombre soit multiple de 3, il faut (et suffit) que la **somme des chiffres** de ce nombre soit aussi multiple de 3. Nous allons ici en faire la preuve!

Remarque:

On ne peut pas utiliser le critère de divisibilité par 3 tout au long de cette fiche, car c'est ce qu'on essaie de montrer!

1 Puissance de 10

- Calcule $10 1 = \dots$ Est-ce un multiple de 3?
- Fait de même pour $100 1 = \dots$ et $1000 1 = \dots$. <u>Peux-tu faire une hypothèse?</u>
- Essaie de prouver cette hypothèse (sans utiliser le critère de divisibilité par 3!).

Indice

On sait que $10\ 000 = 10 \times 1000$.

Donc, $10\ 000 - 1 = (1000 - 1) \times +$

Enfin, tu sais que (1000 - 1) est multiple de 3 : donc, que peux-tu dire de $10\ 000 - 1$? Fait de même pour $100\ 000 - 1$.

Notation

On note 10^k pour dire **un 10 suivi de k zéros**.

On sait maintenant que quel que soit k, $10^k - 1$ est un multiple de 3.

2 Nombres généraux

Prenons le nombre 2 000 000.

• D'après la section précédente, on peut dire que $1\ 000\ 000-1=3\times n$ (où n est un nombre que nous ne connaissons pas. En tout cas pas moi :)). Donc

$$1\ 000\ 000 = \dots \times n + \dots$$

Sachant cela, écrit

$$2\ 000\ 000 = 3 \times +$$

• De même, écrit

$$3\ 000\ 000 = 3 \times +$$

Que remarques-tu?

Prenons maintenant le nombre 5 000 010.

• On écrit $1\ 000\ 000 - 1 = 3 \times n$ et $10 - 1 = 3 \times m$. Donc

$$1\ 000\ 000 = \dots \times n + \dots$$
 et $10 = \dots \times m + \dots$

· Ainsi, on peut écrire

$$5\ 000\ 010 = 3 \times +$$

Conclus.