Machine Learning — Repeat Exam

1	2	3	4	5	6	7	8	9	10	11	\sum
4	5	6	4	6	5	4	7	4	2	7	54

Do not write anything above this line

Name:
Student ID: Signature:

- Only write on the sheets given to you by supervisors. If you need more paper, ask the supervisors.
- Pages 16-18 can be used as scratch paper.
- All sheets (including scratch paper) have to be returned at the end.
- Do not unstaple the sheets!
- Wherever answer boxes are provided, please write your answers in them.
- Please write your student ID (Matrikelnummer) on every sheet you hand in.
- Only use a black or a blue pen (no pencils, red or green pens!).
- You are allowed to use your A4 sheet of handwritten notes (two sides). No other materials (e.g. books, cell phones, calculators) are allowed!
- Exam duration 120 minutes.
- This exam consists of 18 pages, 11 problems. You can earn 54 points.

Probability distributions

For your reference, we provide the following probability distribution.

• Univariate normal distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Bernoulli distribution

Bern
$$(x|\theta) = \theta^x (1-\theta)^{(1-x)}$$

Decision Trees

Problem 1 [(2+2)=4 points] Assume you want to build a decision tree. Your data set consists of N samples, each with k features $(k \leq N)$.

,	f the features are binary, what is the maximum possible number of leaf nodes and the maximum
d	lepth of your decision tree?
	f the features are continuous, what is the maximum possible number of leaf nodes and the naximum depth of your decision tree?

Regression

Problem 2 [(1+4)=5 points] We want to perform regression on a dataset consisting of N samples $\boldsymbol{x}_i \in \mathbb{R}^D$ with corresponding targets $y_i \in \mathbb{R}$ (represented compactly as $\boldsymbol{X} \in \mathbb{R}^{N \times D}$ and $\boldsymbol{y} \in \mathbb{R}^N$).

Assume that we have fitted an L_2 -regularized linear regression model and obtained the optimal weight vector $\boldsymbol{w}^* \in \mathbb{R}^D$ as

$$\boldsymbol{w}^* = \operatorname*{arg\,min}_{\boldsymbol{w}} \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \boldsymbol{w}^T \boldsymbol{w}$$

Note that there is no bias term.

Now, assume that we obtained a new data matrix X_{new} by scaling all samples by the same positive factor $a \in (0, \infty)$. That is, $X_{new} = aX$ (and respectively $x_i^{new} = ax_i$).

Student ID:

a)	Find the weight vector w_{new} that will produce the same predictions on X_{new} as w^* produces on X .
b)	Find the regularization factor $\lambda_{new} \in \mathbb{R}$, such that the solution \boldsymbol{w}_{new}^* of the new L_2 -regularized linear regression problem
	$oldsymbol{w}^*_{new} = rg\min_{oldsymbol{w}} rac{1}{2} \sum_{i=1}^N (oldsymbol{w}^T oldsymbol{x}_i^{new} - y_i)^2 + rac{\lambda_{new}}{2} oldsymbol{w}^T oldsymbol{w}$
	will produce the same predictions on X_{new} as w^* produces on X .
	Provide a mathematical justification for your answer.

Classification

Problem 3 [(1+2+3)=6 points] We would like to perform binary classification on multivariate binary data. That is, the data points $x_i \in \{0,1\}^D$ are binary vectors of length D, and each sample belongs to one of two classes $y_i \in \{1,2\}$.

Consider the following generative classification model. We place a categorical prior on y

$$p(y=1) = \pi_1$$
 $p(y=2) = \pi_2$.

The class-conditional distributions are products of independent Bernoulli distributions

$$p(\boldsymbol{x} \mid y = 1, \boldsymbol{\alpha}) = \prod_{j=1}^{D} \operatorname{Bern}(x_j \mid \alpha_j),$$

$$p(\boldsymbol{x} \mid y = 2, \boldsymbol{\beta}) = \prod_{j=1}^{D} \operatorname{Bern}(x_j \mid \beta_j),$$

where $\alpha \in [0,1]^D$ and $\beta \in [0,1]^D$ are the respective parameter vectors for both classes. That is, each component x_j is distributed as $x_j \sim \text{Bern}(\alpha_j)$ if y = 1 or $x_j \sim \text{Bern}(\beta_j)$ if y = 2.

a)	Write	down	the	${\it expression}$	for	the	$\operatorname{posterior}$	distribution	p(y)	$ x, \alpha $	$,oldsymbol{eta},oldsymbol{\pi}$	۲).
----	-------	-----------------------	-----	--------------------	-----	-----	----------------------------	--------------	------	---------------	----------------------------------	-----

b)	Assume that I	$D=3, \boldsymbol{\alpha}$	=[1/3,1/3,	$^{3/4}$], $\beta =$	=[2/3,1/2,1]	$/2], \pi_1 =$	$1/3$ and π_2 =	= 2/3.
----	---------------	-----------------------------	------------	-----------------------	--------------	----------------	---------------------	--------

Write down a data point $x_1 \in \{0, 1\}^3$ that will be classified as class 1 by our model. Additionally, compute the posterior probability $p(y = 1 \mid x_1, \alpha, \beta, \pi)$.

c) Consider the case when D=2, $\pi_1=\pi_2=1/2$, and $\boldsymbol{\alpha}\in[0,1]^2$ and $\boldsymbol{\beta}\in[0,1]^2$ are known and fixed. Show that the resulting classification rule can be represented as a linear function of \boldsymbol{x} . That is, find $\boldsymbol{w}\in\mathbb{R}^2$ and $b\in\mathbb{R}$, such that

$$\{ \boldsymbol{x} \in \{0,1\}^2 : \boldsymbol{w}^T \boldsymbol{x} + b > 0 \} = \{ \boldsymbol{x} \in \{0,1\}^2 : p(y=1 \mid \boldsymbol{x}) > p(y=2 \mid \boldsymbol{x}) \}$$

Machine Learning — Winter Term 2018/19 — Module IN2064	Repeat Exam · Page !
 Problem 4 [(4)=4 points] Prove or disprove whether the following oper where X is a finite set, define a valid kernel. a) k(A, B) = A × B , where A × B = {(a, b) : a ∈ A, b ∈ B} denotes the denotes the cardinality of set S, i.e. the number of elements in S. 	
Student ID:	

b) k	(A, I)	B) =	$A \cap$	$\cap B$

c)
$$k(A,B) = |A \cup B|$$

Optimization

Problem 5 [(1+3+2)=6 points] Let f be the following <u>convex</u> function on \mathbb{R}^2 :

$$f(x_1, x_2) = e^{x_1 + x_2} - 5 \cdot \log(x_2)$$

a) Consider the following shaded region S in \mathbb{R}^2 . Is this region convex? Why?

b) Find the <u>maximizer</u> (x_1^*, x_2^*) of f over the shaded region S. For your computations, you can pick values from the following table. Justify your answer.

$e^{4.5} = 90.017$	$e^{5.0} = 148.41$	$e^{5.5} = 244.69$	$e^{6.5} = 665.14$
$e^{7.0} = 1096.63$	$e^{7.5} = 1808.04$	$e^{8.0} = 2980.95$	$e^{8.5} = 4914.76$
$e^{9.0} = 8103.08$	$e^{9.5} = 13359.726$	$e^{10.0} = 22026.46$	$e^{10.5} = 36315.50$
$\log(1.0) = 0$	$\log(2.5) = 0.9162$	$\log(3.0) = 1.0986$	$\log(3.5) = 1.2527$
$\log(4.0) = 1.3862$	$\log(4.5) = 1.5040$	$\log(5.0) = 1.6094$	$\log(6.0) = 1.7917$

c) Assume that we are given an algorithm $ConvOpt(f, \mathcal{X})$ that takes as input a convex function f and any <u>convex</u> region \mathcal{X} , and returns the <u>minimum</u> of f over \mathcal{X} .

Using the ConvOpt algorithm, how would you find the global $\underline{\text{minimum}}$ of f over the shaded region S?

SVM

Problem 6 [(5)=5 points] Given the data points

$$\boldsymbol{x}_1 = (1, 1, 0, 1)^T$$
 $\boldsymbol{x}_2 = (1, 1, 1, 0)^T$ $\boldsymbol{x}_3 = (0, 1, 1, 1)^T$ $\boldsymbol{x}_4 = (0, 0, 1, 1)^T$

Prove or disprove whether the following combinations of labels y and dual variables α are the optimal solutions of a soft-margin SVM with C = 1.

- a) $\mathbf{y} = (-1, -1, 1, 1)^T$, $\boldsymbol{\alpha} = (0.6, 0.6, 1, 0)^T$
- b) $\mathbf{y} = (-1, -1, 1, 1)^T$, $\boldsymbol{\alpha} = (\frac{2}{3}, \frac{2}{3}, \frac{4}{3}, 0)^T$
- c) $\mathbf{y} = (-1, 1, -1, 1)^T$, $\boldsymbol{\alpha} = (1, 1, 1, 1)^T$

Student ID:

Deep Learning

Student ID:

Problem 7 [(2+2)=4 points] You are trying to solve a regression task and you want to choose between two approaches:

- 1. A simple linear regression model.
- 2. A feed forward neural network $f_{\mathbf{W}}(\mathbf{x})$ with L hidden layers, where each hidden layer $l \in \{1, ..., L\}$ has a weight matrix $\mathbf{W}_l \in \mathbb{R}^{D \times D}$ and a ReLU activation function. The output layer has a weight matrix $\mathbf{W}_{L+1} \in \mathbb{R}^{D \times 1}$ and no activation function.

In both models, there are no bias terms.

Your dataset \mathcal{D} contains data points with nonnegative features x_i and the target y_i is continuous:

$$\mathcal{D} = \{oldsymbol{x}_i, y_i\}_{i=1}^N, \qquad oldsymbol{x}_i \in \mathbb{R}_{\geq 0}^D, \qquad y_i \in \mathbb{R}$$

Let $\boldsymbol{w}_{LS}^* \in \mathbb{R}^D$ be the optimal weights for the linear regression model corresponding to a global minimum of the following least squares optimization problem:

$$\boldsymbol{w}_{LS}^* = \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^D} \mathcal{L}_{LS}(\boldsymbol{w}) = \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^D} \frac{1}{2} \sum_{i=1}^N (\boldsymbol{w}^T \boldsymbol{x}_i - y_i)^2$$

Let $W_{NN}^* = \{W_1^*, \dots, W_{L+1}^*\}$ be the optimal weights for the neural network corresponding to a global minimum of the following optimization problem:

$$\boldsymbol{W}_{NN}^* = \operatorname*{arg\,min}_{\boldsymbol{W}} \mathcal{L}_{NN}(\boldsymbol{W}) = \operatorname*{arg\,min}_{\boldsymbol{W}} \frac{1}{2} \sum_{i=1}^{N} (f_{\boldsymbol{W}}(\boldsymbol{x}_i) - y_i)^2$$

a)	Assume that the optimal W_{NN}^* you obtain are non-negative.
	What will be the relation $(<, \leq, =, \geq, >)$ between the neural network loss $\mathcal{L}_{NN}(\boldsymbol{W}_{NN}^*)$ and the
	linear regression loss $\mathcal{L}_{LS}(\boldsymbol{w}_{LS}^*)$? Provide a mathematical argument to justify your answer.

b) In contrast to (a), now assume that the optimal weights \boldsymbol{w}_{LS}^* you obtain are non-negative. What will be the relation $(<, \leq, =, \geq, >)$ between the linear regression loss $\mathcal{L}_{LS}(\boldsymbol{w}_{LS}^*)$ and the neural network loss $\mathcal{L}_{NN}(\boldsymbol{W}_{NN}^*)$? Provide a mathematical argument to justify your answer.
Dimensionality Reduction
Problem 8 [(3+2+2)=7 points] You are given $N=4$ data points: $\{x_i\}_{i=1}^4, x_i \in \mathbb{R}^3$, represented with the matrix $X \in \mathbb{R}^{4\times 3}$.
$m{X} = egin{bmatrix} 4 & 3 & 2 \ 2 & 1 & -2 \ 4 & -1 & 2 \ -2 & 1 & 2 \end{bmatrix}$
Hint: In this task the results of all (final and intermediate) computations happen to be integers.
a) Perform principal component analysis (PCA) of the data X , i.e. find the principal components and their associated variances in the transformed coordinate system. Show your work.

b) Project the data to two dimensions, i.e. write down the transformed data matrix $m{Y} \in \mathbb{R}^{4 \times 2}$

using the top-2 principal components you computed in (a). What fraction of variance of X is preserved by Y ?
c) Let $x_5 \in \mathbb{R}^3$ be a new data point. Specify the vector x_5 such that performing PCA on the dat including the new data point $\{x_i\}_{i=1}^5$ leads to exactly the same principal components as in (a
Ungtoning

Clustering

Problem 9 [(4)=4 points] Let μ_1, \ldots, μ_K be the centroids computed by the K-means algorithm. Prove that the set \mathcal{X}_j of all points in \mathbb{R}^D assigned during inference to the cluster j is a convex set.

 $\mathcal{X}_j := \{ oldsymbol{x} \in \mathbb{R}^D : oldsymbol{x} \text{ would be assigned to centroid } oldsymbol{\mu}_j \text{ by } K\text{-means} \}$

Hint: start by thinking about the case with K = 2.

Repeat Exam	· Page 12		Machine Learning	— WS2018/19 –	– Module IN2064
Student ID:					

Problem 10 [(2)=2 points] Given three 1-dimensional Gaussian distributions $\mathcal{N}(\mu_i, \sigma_i^2)$ with parameters

$$\mu_1 = 1,$$
 $\mu_2 = -1,$ $\mu_3 = 0,$ $\sigma_1 = 1,$ $\sigma_2 = 0.5,$ $\sigma_3 = 2.5$

and three different vectors of mixing coefficients π defining categorical cluster priors.

Match the value of π in each row of the following table with one of the probability density functions

$$p(x) = \sum_{i=1}^{3} \pi_i \mathcal{N}(x \mid \mu_i, \Sigma_i)$$

of the resulting GMM showed below. Fill in the last column of the table, no argumentation required.

	π_1	π_2	π_3	PDF (a, b or c)
case 1	0.111	0.444	0.444	
case 2	0.444	0.111	0.444	
case 3	0.444	0.444	0.111	

Variational Inference

Problem 11 [(3+1+1+2)=7 points] Consider the following latent variable probabilistic model

$$p(z) = \mathcal{N}(z \mid 0, 1)$$

$$p(x \mid z) = \mathcal{N}(x \mid z, 1)$$

We want to approximate the posterior distribution $p(z \mid x)$ using the following variational family

$$Q = \{ \mathcal{N}(z \mid \mu, 1) \text{ for } \mu \in \mathbb{R} \}$$

that includes all normal distributions with unit variance.

Questions (a), (b), (c) and (d) are all concerning this setup.

Hint: Variance of $p(z \mid x)$ is equal to 0.5.

a)	Write down the closed-form	expression	for	ELBO	$\mathcal{L}(q)$	and	simplify	it.	You can	ignore	all	$th\epsilon$
	terms constant in μ .											

b) Find the optimal variational distribution $q^* \in \mathcal{Q}$ that maximizes the ELBO

$$q^* = \operatorname*{arg\,max}_{q \in \mathcal{Q}} \mathcal{L}(q)$$

i.e. find the mean μ^* of the optimal variational distribution q^* .

Student ID:

	Assume that the optimal q^* (i.e., the optimal μ^*) from question (b) is given. Which of the following statements is true?
	$(1) \mathbb{KL}(q(z \mid \mu^*) \parallel p(z \mid x)) < 0$
	(2) $\mathbb{KL}(q(z \mid \mu^*) \parallel p(z \mid x)) = 0$
	(3) $\mathbb{KL}(q(z \mid \mu^*) \parallel p(z \mid x)) > 0$
	Justify your answer.
,	For each of the conditions (1), (2), (3) from question (c) above, provide a <u>parametric</u> variational family Q_i , such that the optimal q_i^* from each family would fulfill the respective condition or explain why it's impossible.
	That is, provide \mathcal{Q}_1 , such that for $q_1^* = \arg\max_{q \in \mathcal{Q}_1} \mathcal{L}(q)$ we have $\mathbb{KL}(q_1^*(z) \parallel p(z \mid x)) < 0$, for $q_2^* = \arg\max_{q \in \mathcal{Q}_2} \mathcal{L}(q)$ we have $\mathbb{KL}(q_2^*(z) \parallel p(z \mid x)) = 0$, and for $q_3^* = \arg\max_{q \in \mathcal{Q}_3} \mathcal{L}(q)$ we have $\mathbb{KL}(q_3^*(z) \parallel p(z \mid x)) > 0$.

