

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/56140

H04L 12/00

(43) International Publication Date:

10 December 1998 (10.12.98)

(21) International Application Number:

PCT/GB98/01651

(22) International Filing Date:

5 June 1998 (05.06.98)

(30) Priority Data:

97/5022

6 June 1997 (06.06.97)

ZA

(71) Applicant (for all designated States except US): SALBU RE-SEARCH AND DEVELOPMENT (PROPRIETARY) LIM-ITED [ZA/ZA]; Portion 86-87 of Farm Doomkloof, Pretoria 0002 (ZA).

(71) Applicant (for IS only): TOMLINSON, Kerry, John [GB/GB]; 79 Hove Park Road, Hove, East Sussex BN3 6LL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LARSEN, Mark, Sievert [ZA/ZA]; 22 Darlington Road, Lynnwood Manor, Pretoria 0081 (ZA). LARSEN, James, David [ZA/ZA]; Portion 86-87 of Farm Doomkloof, Pretoria 0002 (ZA).

(74) Agent: TOMLINSON, Kerry, John; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF OPERATION OF A MULTI-STATION NETWORK

(57) Abstract

The invention provides a method of operating a communication network. The network comprises numerous stations, each of which can transmit and receive data in order to transmit messages from originating stations to destination stations opportunistically via intermediate stations. Each station selects one of a number of possible calling channels to transmit probe signals to other stations. The probe signals contain data identifying the station in question and include details of its connectivity to other stations. Other stations receiving the probe signals respond directly or indirectly, thereby indicating both to the probing station and other stations their availability as destination or intermediate stations. The probing station evaluates the direct or indirect responses to identify other stations with which it can communicate optimally. For example, the stations may monitor the cumulative power required to reach another station, thereby defining a power gradient to the other stations, with stations selecting a route through the network which optimises the power gradient. Thus, data throughput through the network is maximised with minimum interference and contention between stations.

(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-507343 (P2002-507343A)

(43)公表日 平成14年3月5日(2002.3.5)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
H04L	12/56		H04B	7/24	Α
H04B	7/15		H04L	11/20	1 0 2 D
	7/24		H 0 4 B	7/15	Z

審查請求 未請求 予備審查請求 有 (全 71 頁) 特願平11-501870 (71)出願人 サルブ リサーチ アンド デベロップメ (21)出願番号 平成10年6月5日(1998.6.5) ント (プロプリエタリー) リミテッド (86) (22)出願日 南アフリカ共和国 0002 プレトリア ボ (85)翻訳文提出日 平成11年12月6日(1999.12.6) (86)国際出願番号 PCT/GB98/01651 ーション 86-87 オブ ファーム ドー ンクルーフ (87) 国際公開番号 WO98/56140 (87) 国際公開日 平成10年12月10日(1998.12.10) (72)発明者 ラーセン, マーク, シーベルト (31)優先権主張番号 97/5022 南アフリカ共和国 0081 プレトリア リ ンウッド マナー ダーリントン ロード (32) 優先日 平成9年6月6日(1997.6.6) (33)優先権主張国 南アフリカ (ZA) 22 (74)代理人 弁理士 秋元 輝雄

最終頁に続く

(54) 【発明の名称】 複数ネットワークの動作方法

(57) 【要約】

本発明は、通信ネットワークを動作させる方法を提供す る。このネットワークは、多数の局を備え、発信局から 宛先局へ中間局を経由して適宜にメッセージを送信する ために、各局はデータ送信及び受信可能である。各局 は、多数の可能な呼出チャネルの1つを選択して、プロ ープ信号を他の局へ送信する。プロープ信号は、問題の 局を識別するデータを有し、また他の局との接続性の詳 脚を含んでいる。プローブ信号を受信した他の局は直接 または間接的に応答し、これにより探索する局と他の局 の双方に、宛先局または中継局としてのそれらの利用可 能性を示すことができる。探索する局は、それが最適に 通信できる他の局を識別するために、直接または間接的 な応答を評価する。例えば、前記局は、もう1つの局に 到達するに必要な累積電力をモニタし、これにより他の 局に対する電力勾配を、ネットワーク内で電力勾配を最 適化するルートを選択しながら規定する。このようにし て、ネットワークを経由するデータ処理性能は、局間の 妨害と競合を最小化しながら、最大化される。

【特許請求の範囲】

- 1. それぞれがデータ送信及び受信可能な複数の局を備える通信ネットワークを、前記ネットワークが発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できるように動作させる方法であって、
 - a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルを選択し、
- e)選択された呼出チャネル上で各局からのプローブ信号を送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先局または中継局としての利用可能性を示すために、直接または間接的に応答し、そして
- f) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する

ことを特徴とする方法。

- 2. 前記特定局から前記プローブ信号を受信する前記他の局は、前記特定局と それらとの間の通信の品質を示すデータを含むように自局のプローブ信号をそれ ぞれ修正し、前記特定局は、それが局間に不当な競合または妨害を起こすことな く、ネットワーク内の所望の数の他の局と最適通信できるように、その送信の少 なくとも1つのパラメータを変更するために前記データに応答する請求項1の方 法。
- 3. 前記特定局からの前記プローブ信号は、前記特定局が宛先局または中間局として利用可能であると検出している他の局を識別するデータを含む請求項1または2の方法。
- 4. 前記プローブ信号は、前記特定局と他の識別された各局との間の通信の品

質を示すデータを更に含む請求項3の方法。

5. 前記プローブ信号は、全てのまたは複数の他の局をアドレス指定したブロードキャスト・プローブ信号である請求項4の方法。

- 6. 前記プローブ信号は、そのアドレス・プローブ信号を送信する局が通信希望する少なくとも1つの他の局をアドレス指定したアドレス・プローブ信号を追加的に含む請求項5の方法。
- 7. 前記アドレス・プローブ信号は、前記ブロードキャスト・プローブ信号より頻繁に送信される請求項6の方法。
- 8. 前記アドレス・プローブ信号は、前記アドレス・プローブ信号を受信した 局によってそれが通信する他の局の選択に使用されるために、前記特定局と他の 識別された各局との間の通信の品質を示すデータの年齢に相当する年齢情報を含 む請求項6または7の方法。
- 9. 前記プローブ信号は、前記プローブ信号を受信した局によってそれが通信する他の局の選択に使用されるために、識別された各局と通信可能な他の識別された局に対し、前記識別された各局が到達するに必要な累積送信電力に相当する電力勾配情報を含む請求項3~8のいずれかの方法。
- 10. 発信局から宛先局へ追跡信号を送信し、前記追跡信号は、前記宛先への 複数の回線を追跡し、これにより前記ネットワークの局によって前記発信局から 前記宛先局へのデータ送信用ルートの選択に使用可能な電力勾配情報を生成する 請求項9の方法。
- 11. 発信局から宛先局へ勾配メッセージを送信し、前記勾配メッセージは、 最適なルートを経由して前記発信局から前記宛先局へデータを送信するに必要な

累積送信電力に相当するデータを含む請求項10の方法。

- 12. 前記ネットワークを経由してルート付けされた全てのメッセージは、前記メッセージが前記ネットワークを経由してそのルート上をそれぞれの局に到達するに必要な累積送信電力に相当する電力勾配情報を含む請求項3~11のいずれかの方法。
- 13. 前記特定局からプローブ信号を受信する局は、回答信号を送信することによって前記特定局に応答し、前記特定局は、異なる局から受信した回答信号の数を所定の値と比較し、回答信号の数が第2の値に対応しない場合は、前記特定局によって受信された回答信号の数が前記所定の値に対応するまで、その送信の

少なくとも1つのパラメータを変更する請求項1の方法。

- 14. 第1の呼出チャネルを除く各呼出チャネルが前の呼出チャネルより高いデータレートを有する複数の呼出チャネルを規定し、そして回答信号の数が前記所定の値に対応しない場合は前記第2の所定の基準に従って、前記前の呼出チャネルから異なるデータレートを有する異なる呼出チャネルを選択する請求項13の方法。
- 15. 前記第1の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、前記呼出チャネルは、利用可能な最高のチャネルデータレートおよび/または利用可能な最低のチャネル送信電力に従って選択される請求項14の方法。
- 16. 前記第2の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、異なる呼出チャネルデータレートは、漸次的に低いチャネルデータレートおよび/または漸次的に高いチャネル送信電力を有するように選択される請求項14または15の方法。
- 17. 回答信号と比較された前記所定の値は、局間に不当な競合または妨害を起こすことなく、特定局が前記ネットワーク中の所望数の他の局と最適通信可能にするために、特定局に対する中間局または宛先局として適用可能な所望数の隣接局に対応するように計算される請求項13~16のいずれかの方法。
- 18. 第1のデータチャネルを除く各データチャネルが前のデータチャネルより高いデータレートを有する複数のデータチャネルを規定し、各データチャネルは、隣接局の利用可能性を決定した後に、選択されたデータチャネル上で隣接局にデータを送信する請求項1~17のいずれかの方法。
- 19. 前記データチャネルはそれぞれの呼出チャネルに対応し、1つのデータチャネルは、選択された呼出チャネルに対応するデータの送信用に選択される請求項18の方法。
- 20. 複数のデータチャネルが1つの呼出チャネルに対応し、前記データチャネルは、前記局によって、および活動していないと検出されているデータチャネルを選択するデータの送信を希望する局によって活動用にモニタされ、これによ

り局間のデータチャネルの使用が最適化される請求項18の方法。

- 21. 各局によって前記呼出チャネル上を送信されるプローブ信号は、選択されたデータチャネル上で他の局が特定局と通信可能とするために、その後活動しているものとしてフラグ付けされる選択されたデータチャネルに移動するために前記プローブ信号を送信する特定局の意図を示す情報を含む請求項20の方法。
- 22. プローブ信号は他の局との接続を確立することを試みる局によって規則的に送信され、他の局はランダムな数のプローブ信号に対応する前記プローブ信号を受信し、前記ランダムな数は送信されるプローブ信号の数以下である請求項1~21のいずれかの方法。
- 23. 各局においてプローブタイマによってプローブ信号の送信インタバルを 制御し、前記プローブタイマは、連続するプローブ信号間の、プローブ信号の期 間より長いインタバルを規定し、そして連続するプローブ信号の間に応答信号を 送信する請求項22の方法。
- 24. 各局において、その局が送信するデータを有しているか否かに従って、前記連続するプローブ信号間の前記インタバルを変更し、前記プローブタイマは、前記局が送信するデータを有しているときは連続するプローブ信号間に第1の相対的に短いインタバルを規定し、また前記局が送信するデータを有していないときは連続するプローブ信号間に第2の相対的に長いインタバルを規定する請求項23の方法。
- 25. 指定された重要な局は、それらを識別するデータを含んだプローブ信号を送信し、これらのプローブ信号を順番に受信した他の局は、それら自身のプローブ信号を、前記重要な局を識別するデータを含むように修正し、前記重要な局から離れた遠方の局でも前記データを獲得できるようする請求項1~24のいずれかの方法。
- 26. 前記指定された重要な局は、ゲートウエイ局、許可当局の局および時々刻々の発信局及び宛先局を含む請求項25の方法。
- 27. 選択された局に対して更新されたソフトウエアをアップロードすることによって、前記局の動作用に更新されたソフトウエアを分配し、そして他の各局

が完全に更新されたソフトウエアを有するまで、他の局に対して前記更新された ソフトウエアの一部を分配する請求項1~26のいずれかの方法。

- 28. 前記更新されたソフトウエアは、複数の受信された更新ブロックから前 記更新されたソフトウエアを組立可能とするために、バージョンデータおよびブロック番号データを含んだ更新ブロックで分配される請求項27の方法。
- 29. 少なくとも1つの前記更新されたソフトウエアは、前記更新されたソフトウエアが使用されなければならない日付と時刻を示すタイミングデータを含む 請求項28の方法。
- 30. それぞれがデータ送信及び受信可能な複数の局を備え、発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できる通信ネットワークであって、前記局のそれぞれは、
 - a) 少なくとも1つの呼出チャネルを規定し、
- e) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルを選択し、
- f) 選択された呼出チャネル上で各局からのプローブ信号を送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先または中継局としての利用可能性を示すために、直接または間接的に応答し、そして
- g) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する

ために使用されることを特徴とする通信ネットワーク。

【発明の詳細な説明】

複数ネットワークの動作方法

発明の背景

この発明は、複数局通信ネットワークの動作方法およびこの方法を使用する ネットワークに関する。

国際特許出願第WO96/19887号は、ネットワーク中のそれぞれの局が、適宜の手法でメッセージデータを中継するための中間局を使用して、他の局にメッセージを送信できる通信方式を記述している。

いくつかの可能な中間局の中から選択された1つを経由してネットワークに 新規メッセージを送信する適切な位置にあるために、または同様の手法で前進す るメッセージを中継するために、各局はいつでもいくつかの他の局と連絡できる 状態になければならない。

この種のネットワークの動作を最適化するためには、個別の局の相互作用は 、データ処理能力を最低の送信電力で最大化しながら局間の競合または妨害を最 小化するための所定の基準に従って規制されなければならない。

本発明の1つの目的は、ネットワークの動作を最適化するために局間の結合性を規制する、複数通信ネットワークを動作させる方法を提供するものである。

発明の要約

本発明によれば、それぞれがデータ送信及び受信可能な複数の局を備える通信ネットワークを、前記ネットワークが発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できるように動作させる方法であって、

- a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局において、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルを選択し、
- c) 選択された呼出チャネル上で各局からのプローブ信号を送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの

宛先局または中継局としての利用可能性を示すために、直接または間接的に応答 し、そして d) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価することを特徴とする方法が提供される。

前記特定局から前記プローブ信号を受信する前記他の局は、前記特定局とそれらとの間の通信の品質を示すデータを含むように自局のプローブ信号をそれぞれ修正し、前記特定局は、それが局間に不当な競合または妨害を起こすことなく、ネットワーク内の所望の数の他の局と最適通信できるように、その送信の少なくとも1つのパラメータを変更するために前記データに応答することができる。

前記特定局からの前記プローブ信号は、前記特定局が宛先局または中間局と して利用可能であると検出している他の局を識別するデータを含むことができる

前記プローブ信号は、前記特定局と他の識別された各局との間の通信の品質 を示すデータを更に含むことができる。

前記プローブ信号は、全てのまたは複数の他の局をアドレス指定したブロー ドキャスト・プローブ信号であることができる。

前記プローブ信号は、そのアドレス・プローブ信号を送信する局が通信希望 する少なくとも1つの他の局をアドレス指定したアドレス・プローブ信号を追加 的に含むことができる。

前記アドレス・プローブ信号は、好ましくは前記ブロードキャスト・プロー ブ信号より頻繁に送信される。

前記アドレス・プローブ信号は、典型的には、前記アドレス・プローブ信号を受信した局によってそれが通信する他の局の選択に使用されるために、前記特定局と他の識別された各局との間の通信の品質を示すデータの年齢に相当する年齢情報を含む。

前記プローブ信号は、前記プローブ信号を受信した局によってそれが通信する他の局の選択に使用されるために、識別された各局と通信可能な他の識別された局に対し、前記識別された各局が到達するに必要な累積送信電力に相当する電力の配情報を含むことができる。

発信局から宛先局へ追跡信号を送信し、前記追跡信号は、前記宛先への複数の回線を追跡し、これにより前記ネットワークの局によって前記発信局から前記宛先局へのデータ送信用ルートの選択に使用可能な電力勾配情報を生成することができる。

発信局から宛先局へ勾配メッセージを送信し、前記勾配メッセージは、最適なルートを経由して前記発信局から前記宛先局へデータを送信するに必要な累積送信電力に相当するデータを含むことができる。

前記ネットワークを経由してルート付けされた全てのメッセージは、前記メッセージが前記ネットワークを経由してそのルート上をそれぞれの局に到達するに必要な累積送信電力に相当する電力勾配情報を含むことができる。

前記特定局からプローブ信号を受信する局は、回答信号を送信することによって前記特定局に応答し、前記特定局は、異なる局から受信した回答信号の数を所定の値と比較し、回答信号の数が第2の値に対応しない場合は、前記特定局によって受信された回答信号の数が前記所定の値に対応するまで、その送信の少なくとも1つのパラメータを変更することができる。

第1の呼出チャネルを除く各呼出チャネルが前の呼出チャネルより高いデータレートを有する複数の呼出チャネルを規定し、そして回答信号の数が前記所定の値に対応しない場合は前記第2の所定の基準に従って、前記前の呼出チャネルから異なるデータレートを有する異なる呼出チャネルを選択することができる。

前記第1の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、前記呼出チャネルは、利用可能な最高のチャネルデータレートおよび/または利用可能な最低のチャネル送信電力に従って選択されることができる。

前記第2の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、異なる呼出チャネルデータレートは、漸次的に低いチャネルデータレートおよび/または漸次的に高いチャネル送信電力を有するように 選択されることができる。

回答信号と比較された前記所定の値は、好ましくは、局間に不当な競合また は妨害を起こすことなく、特定局が前記ネットワーク中の所望数の他の局と最適 通信可能にするために、特定局に対する中間局または宛先局として適用可能な所 望数の隣接局に対応するように計算される。

この方法は、第1のデータチャネルを除く各データチャネルが前のデータチャネルより高いデータレートを有する複数のデータチャネルを規定し、各データチャネルは、隣接局の利用可能性を決定した後に、選択されたデータチャネル上で隣接局にデータを送信することができる。

前記データチャネルはそれぞれの呼出チャネルに対応し、1つのデータチャネルは、選択された呼出チャネルに対応するデータの送信用に選択されることができる。

この方法の1つのバージョンとして、複数のデータチャネルが1つの呼出チャネルに対応し、前記データチャネルは、前記局によって、および活動していないと検出されているデータチャネルを選択するデータの送信を希望する局によって活動用にモニタされ、これにより局間のデータチャネルの使用が最適化される

各局によって前記呼出チャネル上を送信されるプローブ信号は、選択された データチャネル上で他の局が特定局と通信可能とするために、その後活動してい るものとしてフラグ付けされる、選択されたデータチャネルに移動するために前 記プローブ信号を送信する特定局の意図を示す情報を含む。

プローブ信号は他の局との接続を確立することを試みる局によって規則的に 送信され、他の局はランダムな数のプローブ信号に対応する前記プローブ信号を 受信し、前記ランダムな数は送信されるプローブ信号の数以下であることができ る。

この方法は、好ましくは、各局においてプローブタイマによってプローブ信号の送信インタバルを制御し、前記プローブタイマは、連続するプローブ信号間の、プローブ信号の期間より長いインタバルを規定し、そして連続するプローブ信号の間に応答信号を送信する。

各局において、その局が送信するデータを有しているか否かに従って、前記 連続するプローブ信号間の前記インタバルを変更し、前記プローブタイマは、前 記局が送信するデータを有しているときは連続するプローブ信号間に第1の相対 的に短いインタバルを規定し、また前記局が送信するデータを有していないとき

は連続するプローブ信号間に第2の相対的に長いインタバルを規定することができる。

指定された重要な局は、それらを識別するデータを含んだプローブ信号を送信し、これらのプローブ信号を順番に受信した他の局は、それら自身のプローブ信号を、前記重要な局を識別するデータを含むように修正し、前記重要な局から離れた遠方の局でも前記データを獲得できるようにすることができる。

前記指定された重要な局は、ゲートウエイ局、許可当局の局および時々刻々の発信局及び宛先局を含むことができる。

好ましくは、選択された局に対して更新されたソフトウエアをアップロードすることによって、前記局の動作用に更新されたソフトウエアを分配し、そして他の各局が完全に更新されたソフトウエアを有するまで、他の局に対して前記更新されたソフトウエアの一部を分配する。

前記更新されたソフトウエアは、複数の受信された更新ブロックから前記更 新されたソフトウエアを組立可能とするために、バージョンデータおよびブロッ ク番号データを含んだ更新ブロックで分配されることができる。

好ましくは、少なくとも1つの前記更新されたソフトウエアは、前記更新されたソフトウエアが使用されなければならない日付と時刻を示すタイミングデータを含む。

本発明は、それぞれがデータ送信及び受信可能な複数の局を備え、発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できる通信ネットワークであって、前記局のそれぞれは、

- a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルを選択し、
- c)選択された呼出チャネル上で各局からのプローブ信号を送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先局または中継局としての利用可能性を示すために、直接または間接的に応答

し、そして

d) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ

信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価するために使用されることを特徴とする通信ネットワーク に拡張される。

図面の簡単な説明

図1は、発信局が宛先局に対して複数の中間局を経由して如何にデータを送信できるかを示す複数局通信ネットワークの模式図である。

図 2 は、本発明のチャネル適用の動作および探索方法を示すフローチャート である。

図3は、本発明のソフトウエア更新機構を示すフローチャートである。

図4-7は、本発明の実行に適したハードウエアのブロック図である。

実施例の説明

図1に模式的に示されたネットワークは、それぞれが域内の他の局とデータ送信および受信可能な送受信機を有した複数の局を備える。この種の通信ネットワークは、国際特許出願第WO96/19887号に記載されており、参照によってここにその内容が組み入れられる。

上述した特許出願はパケット無線ネットワークを記述しているが、本発明は 、ネットワーク内のユーザ局が中間局を経由して互いに通信できる他のネットワークに適用可能であることは明らかである。

上記種類のネットワークは、ネットワークの使用に対して費用請求される加入者をユーザとして商業的に使用できる。この代わりに、この種のネットワークは、警察や軍隊のような警備当局によっても使用できる。これらの応用は、例としてのみ与えられる。

図1において、発信局Aは5つの「近くの」局Bと通信可能であり、そして中間局B, IおよびMを経由して宛先局Cにデータを送信している。

ネットワークの効率を最大化するために、各局は、それがメッセージを送信 または受信する場合に通信可能な多数の「隣接」局を有することが望ましい。一 方で、特定局が選択された隣接局にデータ送信している場合、その送信が他の局

に与える妨害が最小となることが望ましい。そうでなければ、結果として生ずる 局間の競合が、ネットワーク内のデータ処理性能の量を減少させてしまう。

本発明は、上記したことを念頭におき、各局が多数の近隣局との間で、いつでも、最高の可能なデータレートで、しかも最低の可能な送信電力で、データを送信したり受信できるように、その動作を調整し、他の局との間の妨害を低減することを求める。

上述した種類の通信ネットワークは、同じ組のチャネル上で通信しようとする多数の局を備える。このチャネルは、異なる周波数、異なる媒体、異なるコード(例えば、異なる拡散コード)、異なるアンテナ、異なるタイムスロット、またはこれらの組み合わせを有するように規定される。チャネルの再使用を最適化するために、本発明は、局に対して、限られた数の中間隣接局、典型的には5つの隣接局を維持するように努める。

1つの局は、その送信周波数を変更し、コード (PNシーケンス)を変更し、そのデータレートを増加し、そしてその送信電力を低下することによって、隣接局の数を制限できる。全ての局は、予め規定された呼出チャネルに集合し、そこでプローブ信号を使用して、通信する他の局を見つける。他の1つの局が見つかり、そしてどちらかの局が送信するデータを有していると、それらはその後、使用されていないデータチャネルに移動する。

多数の局が近接して存在する場合、それらは高いデータレートおよび低い送信電力の使用を終了する。局は、低いデータレートの呼出チャネルを時折チェックし、より高いデータレートを使用できない遠方の局を助ける。同様にして、より低いデータレートの呼出チャネル上にいる局は、高いデータレート局の可能なクラスタを見つけるために、その局の現在のデータレートより高い全てのデータレートを時折チェックする。

図2のフローチャートは、特定局で動作する、本発明のいくつかの異なるチャネル適応タイマを示している。このフロー図は、タイマのそれぞれが逐次チェックされることを示している。しかしながら、それらは全てが同時にチェックさ

れる独立したプロセスまたはイベントであってもよい。以下の章では、異なるチャネルとそれに関連したタイマとが説明される。

呼出チャネル上の探索

各局は、規則的なインタバル(プローブタイマによって決定される)でプローブ信号を送信する。他の局は、そのプローブを受信すると、そのプローブにランダムに回答する。ランダムな回答は、典型的には受信された1~4プローブに対して1回答である。換言すると、プローブ信号を受信した他の局は、ランダムな数のプローブ信号に応答する。このランダムな数は、送信されたプローブ信号の数と等しいかそれより小さい。このことは、近接している他の局との競合を防止する。

プローブタイマによって設定されたプローブ間の時間は、受信された1~4 プローブ毎に、他の局に応答するために使用される。プローブ間の時間はプロー ブの期間より長いので、回答する局は、データをも含んだ小さなデータパケット で応答できる。しかしながら、応答パケットの最大長は、通常のプローブタイマ インタバルよりは長くない。

各局は、他の局との衝突を回避するために、プローブタイマをランダムに、 プローブ信号送信の間で僅かに変更する。他の1つの局の送信を受信開始した局 は、プローブタイマに新規なインタバルをリロードする。

1つの局が送信するデータを有しているときは、それが使用しているデータレートに比例したインタバルでプローブを送信する(プローブタイマ1)。しかしながら、局が送信するデータを有しない場合は、データを有するときの典型的には5倍の長さのインタバルを使用する(プローブタイマ2)。このことは、送信するデータを有する局に、より多くの通信するための機会を許容する。他の局は送信が検出される毎にそれらのプローブタイマをリセットするので、送信するデータを有しないことを探索することはない。それ故、どの局も通常のインタバルの少なくとも5倍後にプローブを封殺する。送信するデータを有する局は、送信するデータを有しない局の5倍頻繁にプローブを送信する。データのない局は、他の局のプローブを受信する毎に、プローブタイマをリセットする。データのない

局は長いインタバルを使用しているので、送信するための機会を持たない。それ 故、データのない局は、最後に送信したときがプローブタイマ2のインタバルよ

り古くなければ(古ければそれ自身のプローブタイマをプローブタイマ1のインタバルにリセットする)、他の局を受信する毎に、プローブタイマをリセットする。データを有する局はまた、プローブタイマ1に相当するインタバルを使用している。それ故、データのない局はプローブを送出する機会を獲得する。それは、プローブを送出した後に、プローブタイマ2の時間インタバルを使用する状態に戻る。

データのない局によって送出されたプローブは、全ての局に対しアドレス指定される(ブロードキャスト・プローブ)。それ故、どの局でも応答できる。しかしながら、局が送信するデータを有する場合は、それ自身のブロードキャストプローブを、データを送信すべき局をアドレス指定したプローブに変更する(アドレス・プローブ)。このアドレス・プローブは、局がデータを有する全てのIDを逐次通過する。アドレス・プローブによってアドレス指定された局だけが応答することができる。他の局は応答しないので、アドレス指定された局は常に迅速に応答する。

呼出チャネル適応

最初にスイッチオンすると、局は最低の送信電力と最高のデータレートで探索を開始する(最高呼出チャネル)。このことは、近接している他の局への妨害を回避する。

異なる局がプローブに回答する毎に、回答した局は隣接局としてカウントされる。必要な数の隣接局が所定の時間インタバル(適応タイマによって設定される)内に一致しない場合は、その局はそれ自身の送信電力を10dB増加させる。その局は、必要な数の隣接局を達成するまで、それ自身のプローブ送信電力を増加し続ける。必要な数の隣接局に到達する前に、その局が最大送信電力に達した場合は、次のデータレートに低下させる(前の呼出チャネル)が、最大送信電力には留まる。その局は、必要な数の隣接局に到達するまで、それ自身のデータレートを低下させる。その局が必要な数の隣接局に到達できない場合は、最低デ

ータレートおよび最大送信電力を維持する。

その局が異なる呼出チャネルに移動する毎に、それは適応タイマをリセット

する。その局はまた、それ自身のプローブ送信電力を変更する毎に適応タイマを リセットする。

移動局のネットワークでは、局は常に移動し、そのように隣接局の数は常に変化している。隣接局の数が必要な数を超えた場合、局はそのデータレートを増加し始める(次の呼出チャネル)。その局は、もはや必要な数の隣接局を越えなくなるまで、そのデータレートを増加する。その局が最大データレートに達した場合は、それが最小送信電力に達するか、もはや必要な数の隣接局を越えなくなるまで、それ自身のプローブ送信電力を10dB低下させる。

局は、そのデータレートを変更する毎に、異なる呼出チャネルに移動する。 このことは、より低いデータレートがより高いデータレートと干渉することを回 避する。

データチャネル

1つの局は、呼出チャネル上で他の1つの局に応答するとき、それ自身のデータパケットの長さをプローブタイマ・インタバルに制限する。このことは、他の局がその回答を探索することを回避する。回答している局が、小さなパケットに適合するより多くの送信データを有している場合は、そのパケットのヘッダ内に、他の局が特定のデータチャネルに移動しなければならないことを示す。

各呼出チャネルに対して規定された多数のデータチャネルが存在しうる。変化を要求している局は、利用可能なデータチャネルの1つをランダムに選択する。他の局がその要求を受信したときは、そのデータチャネルに直ちに変更し、そこで、いずれか一方が送信するデータがなくなるまで、またはデータチャネル上に留まるための最大時間(データタイマによって設定される)が満了するまで、2つの局は通信を継続する。

局がデータチャネルを変更するときは、データタイマをロードする。その局は、データタイマが許す限り長くそのデータチャネルに留まる。データタイマが満了すると、その局は呼出チャネルに復帰して探索を再開する。

チェックチャネル

次の呼出チャネルだけを有する最低のデータレートの呼出チャネルと、前の呼出チャネルだけを有する最高のデータレートの呼出チャネルとを除いて、各呼出チャネルに対して前および次の呼出チャネルは存在する。ある領域中の隣接局の数が増加すると、局はより高いデータレートの呼出チャネルに移動する。しかしながら、その領域から遠い局はそれほど多くの隣接局を有しないので、低いデータレートの呼出チャネル上に留まる。局が連絡し続けるためには、その局は前及び次の呼出チャネルを規則的なインタバルでチェックしなければならない。

局が最初に呼出チャネルに到達すると、チェックタイマがセットされる。このチェックタイマの期間は、各呼出チャネルのデータレートに比例する(チェックタイマ1)。このチェックタイマが満了すると、局は先ず、それが現在チェックしているか、またはそれが依然としてチェックしなければならないかを決定する。その局がチェックしている場合には、それがチェックしていた呼出チャネルから次の呼出チャネルに降下する。しかしながら、その局がチェックしていない場合には、最高の呼出チャネルにジャンプする。このチャネルは現在のチェックチャネルになる。局がチェックチャネルに到達すると、チェックタイマをリセットする。このチェックタイマ(チェックタイマ2)の期間は、呼出チャネルに到達するときに使用されたものより遙かに短いインタバルである。このチェックタイマが満了すると、局は次の呼出チャネルに移動する。これで新チェックチャネルになる。

局は、最初の呼出チャネルに到達するまで、その手法で継続する。この時点で、その局は呼出チャネルを1つ下のチャネルに落とす。前の呼出チャネルがない場合は、その局はチェックを終了して、チェックタイマをより長い値にリセットする(チェックタイマ2)。呼出チャネルがあった場合は、その局は通常のチェック動作を繰り返す。この最後のチェックの後に、その局は元の呼出チャネルに復帰する。

このことは、1つの局が、現在の呼出チャネルより1チャネル上の、および 現在の呼出チャネルより1チャネル下の、全ての呼出チャネルを周期的にチェッ クすることを意味する。上のチャネルは典型的には現在のチャネルの10倍高速 のレートで動作しているため、それらをチェックするには短い時間ですむ。しか

しながら、現在のチャネルより下の呼出チャネルをチェックするには時間がかかるので、この理由から、1レベル下のものだけをチェックする。

呼出チャネルをチェックすることは、局が異なる呼出チャネルとコンタクトすることを可能にするだけではない。それはまた、局をより低い呼出チャネルに保ち、より多くの隣接局を見て、それらがより高い呼出チャネルに移動することを可能にする。

タイマ倍率係数

各呼出チャネルのデータレートは、典型的には前の呼出チャネルに比べて1 0倍高い。呼出チャネルのデータレートから、全てのタイマの期間が倍率係数を 使用して計算できる。係数の絶対値は以下に与えられるが、これらの値は例示さ れているだけであって、全く意義深く変化させうるものである点に留意されたい 。加えて、正しい値は、ネットワークのトラフィック負荷と局の数が変化するに つれて動的に変化されうる。

タイマ	借率係	8kレート例
プローブタイマ1:	1 0 x プローブパケット期間	3 0 0 m s
	(T x キュー内のデータ)	
プローブタイマ2:	5 x プローブタイマ 1	1 5 0 0 m s
	(Txキュー内にはデータなし)
適 応 タイマ:	100xプローブタイマ1	3 0 0 0 0 m s
データ タイマ:	5 x プローブタイマ 1	1 5 0 0 m s
チェックタイマ1:	30xプローブタイマ1	9 0 0 0 m s
	(現在チェックしていない)	
チェックタイマ2:	2 x プローブタイマ 1	6 0 m s
	(現在のチェックチャネルの)	(80kチェック)

チャネル使用上の追加点

以下の強制/選択は典型的には、本発明の方法を使用するネットワークにお

いて実行される。

* 1つの局は、現在のチャネルのデータレートより低いデータレートでは 決して通信しないが、バンド幅が許すならば、より高いデータレートでは通信す る。

* 1つの局は、受信S/Nが必要なレベル以下に低下している他の1つの 局とは決して通信しない。しかしながら、復帰するための前のチャネルがない場 合は、それは応答する。例えば、1つの局が80kbpsのチャネル上にいる場 合、受信S/Nが悪い局には応答しない。このことは、他の局が8kbpsに復 帰することを強制する。しかしながら、既に8kbpsにいて、復帰する他のチャネルがない場合は、それは応答する。

* チャネルを切り替えるときは、1つの局は、そのプローブ信号が他の局からの送信と衝突しないように、探索前のプローブタイマの期間は常に待機しなければならない。

* 1つの局に応答するときは、応答パケットを破壊する隠れたターミナルを防止するために、パケットの長さは常にプローブタイマ遅延より短くなければならない。局Aが呼出チャネル上で局Bからのプローブに応答するときは、時間で計測された応答パケットの長さは、プローブタイマ1のインタバルより短い。このことは、第3の局Cが応答パケット上に送信することを防止する。このことは、局Aと局Cは交信できるが、局Bと局Cが交信できないときに起こりうる。局Cは、局Aがプローブを送信することを検出したときに、局Cのプローブインタバルをリセットする。局Cは局Bを受信できないので、局Bが応答したときに、局C自身のプローブインタバルをリセットする。したがって、局Cは、プローブタイマが満了した後に、プローブを送出する。局Cからのプローブは、それがプローブタイマより長い場合は、局Bからの応答パケットと混交する。しかしながら、応答パケットが短い場合は、それは局Cがプローブを送出する前に、混交することなく、局Aに到達する。

* 1つの局が、プローブタイマのインタバル内に送信できるよりも多くの 送信するデータを有している場合、その局はできるだけのものを送信し、そして 他の局にデータチャネルの変更を要求する。それ故、2つの局は3より多い「オ ーバー」(例えば、連続する回答送信)と呼出チャネル上で通信すべきではない。 例えば、局1のT x プローブ>局2のT x データ>局1のT x データ (局1のT x T x T x T x T y T x T x T y T x T y T x T y T x T y T x T y T y T x T y T y T x T y T y T y T y T x T y

* プローブタイマのインタバルは常に同じではなく、付加的にランダムな変化(典型的にはインタバルタイマの50%)を有する。このことは、多数の局が各時点で全て同時に送信し、これにより互いに受信し合うことを防止する。例えば、8kbpsでプローブタイマ(Txキューにデータがある)は典型的に30から450msの間で変化する。

* 1つの局が送信するデータを有しないときは、それは5つの隣接局を獲得しようとする。しかしながら、その局がデータを有するときは、より多く(典型的には15)の隣接局を獲得することを選択する。その局はより高速のレートで探索し、それ故更に多くの隣接局を獲得しようとしていることに留意すべきである。その局がより多くの隣接局を獲得しない場合は、それはそれ自身の送信電力を増加する。トラフィック負荷の重いネットワークでは、必要な隣接局の数が増加されず、過剰な競合を生じさせることに留意すべきである。

* 局は、データチャネルに移動する他の局のトラックを保持できる。このことは、どのデータが利用可能であるかの指示を与える。

* データチャネルをスキャンして背景雑音の良好なクリアなデータチャネルを見つけるために、第2の受信機が使用できる。

* 1つの局が探索するときは、そのプローブ信号データパケットのヘッダ中に、それがどのデータチャネルをクリアにモニタしているかを示す情報を与える。他の1つの局が応答し、そしてデータチャネルの変更を希望するときは、前記1つの局は、それ自身の情報を他の1つの局の情報と組み合わせて、どのデータチャネルが使用されるかについて、よりよい選択をする。

* 1つの局がデータを送出するときは、それは探索用に使用する電力より高い電力レベルを使用してはならない。例えば、1つの局が必要数の隣接局を獲得するために0dBmで探索するときは、遠方にある他の局を妨害してしまう電力、例えば30dBmで応答してはならない。(データの送信に使用される電力

プローブ電力を超える量は、ネットワーク全体に設定されたパラメータとなる)

* 雑音とトラフィックは、複数の受信機を使用して同時に複数の呼出チャネル及びデータチャネル上でモニタされうる。

* プローブパケット及びデータパケットは、複数の送信機を使用して同時に複数の呼出チャネル及びデータチャネル上に送信できる。

* このネットワークは、データレート毎に1より多い呼出チャネルと、データレート毎に多数のデータチャネルを有することがある。

変形方法1

第1の変形例では、本発明は2タイプのプローブ信号を使用する。第1タイプのプローブ信号は、特定局が検出できる最良の局のリストを含んだブロードキャストプローブである。リスト中の局の数は、典型的には10のオーダーである。リスト中には、各局に関連して、探索局が如何に良くリスト中の局を受信できるかを示す数がある。他の1つの数は、リスト中の局が如何に良く探索局を受信できるかを示している(これは他の局のブロードキャストプローブから集められる)。このようにして第3の局は、探索局が如何に良くリスト中の局を受信できるか、そしてリスト中の局が如何に良く探索局を受信できるかを即時に知ることになる。

この構成は、プローブに応答する必要性を消去する。なぜならば、1つの局は、プローブ中のそれ自身のIDを受信するときに、探索局がそれを受信できること、および如何に良く受信できるかを知るためである。その局がそれ自身のプローブを送出するとき、そのプローブは現在受信中の局のIDを含んでいる。他の局はそれ自身のIDを受信し、ループを閉じる。それ故、プローブを送出することによって、他の局に近接したどの局でも、どの局を受信できるか、そして如何に良く受信できるかを知ることができる。それはまた、他のプローブをモニタすることによって、探索局がどの他の局を受信できるのか、そして如何に良く受信できるのかを知ることができる。この情報は、隣接局の数を設定することに使

用される。

各局からの各ブロードキャストプローブは、その局が検出した局の全てのリストを含んでいる。プローブを受信できる局の全ては、それらをリスト中に見い

だすので、プローブを送出する局は、頻繁にそのようにする必要はない。上記第 1 の実施例で説明した探索方法では、1 つの局は、他の局がその局を受信できることを知るために、他のそれぞれの局からの応答を得る必要があった。全ての隣接局は、それらがリストに現れるので、探索局が隣接局を受信できることを知ることになる。隣接局が順番にブロードキャストプローブを送出するとき、他の全ての局は、それらがリストに現れる場合は、受信されていたことを知ることになる。

この実施例の第2タイプのプローブ信号は、アドレスプローブである。第2の局へ、またはそれを経由して、送信するデータを有する局は、アドレスプローブを、遙かに高い繰り返しレートのブロードキャストプローブの間に挿入する。これらのアドレスプローブは、アドレス指定された局に応答するよう強制する。このようにして、送信するデータを有するときは、その局は短いアドレスプローブを高速のインタバルで送信し、必要とする局と接続する機会を増加させる。アドレス指定された局は、探索局に送信するデータが有ることを知る。そうでなければ、探索局はその局をアドレス指定していない。アドレス指定された局は、それからデータチャネルに移動することを選択し、そこで2つの局はデータを転送する。

1つの局が、プローブリスト中にそれ自身のIDを見いださず、しかもその リストが満たされていない場合は、その局は、問題の局に戻るに必要な電力レベ ルでプローブを送る局にランダムに応答する。 (このことは、低い電力レベルで 探索している遠方の局が、隣接局を全く有しない状態になることを防止する。)

どの局からのアドレスプローブでも、その局がアドレス指定した局に送信するための、その局がデータを受信した局のリストを含んでいる。そのリスト上の各局IDに対して、問題のデータが如何に古いものであるかを示す数がある。かくして、プローブを受信する他のどの局も、それがデータのソース(オリジン)

に戻るルートを有することを知り、またそのソースに到達するのに如何に長くか かったかを知ることになる。この情報は、その後のルーティングに使用できる。

1つの局が、同じオリジンIDであるが異なるメッセージ遅延時間でアドレスプローブを送る2つの異なる局を受信する場合は、それはどちらが短いか、従

ってより好ましいルートかを決定することができる。これはオリジンIDに向かう勾配を提供する。1つの局がオリジンIDに到達することを希望するとき、その局はセグメントをルート付けするためにこの情報を使用する。条件が変わった場合は、その局は問題のセグメントを動的に再ルート付けする。

1つの局は、他の1つの局に戻るのに必要な電力を常に知っている。それ故、その1つの局は、そのプローブが全ての隣接局で受信されるように、使用する電力を知っている。例えば、1つの局が5つの隣接局を達成しようとしている場合、それは最近接の5つの隣接局の全てに到達するに必要な電力で探索する。上述した第1の探索方法では、局は、必要数の隣接局になるまで、その電力を単調に10dBステップで増加させた。しかしながら、それは10dBステップを使用しているため、必要数の隣接局を越えてしまうことがある。その場合、その局はその電力を10dB低下させ、それから必要数以下に低下させた。ここで起ころうとしていることは、その局が、更に10dB低下すると、必要数の隣接局を失うことを知る点である。その代わりに、その局は、それが必要数の隣接局に到達できるように、それが探索しなければならない電力で動作し、そして仮に必要数を超過しても、この電力以下にはならないようになる。ここで、必要な電力は、条件が変化するにつれて、常に変化していることに留意されるべきである。

1つの局は、最小数の直接及び間接的な隣接局を保持するように努める。例えば、それが1つの直接的な隣接局と少なくとも5つの間接及び直接的な隣接局とを保持するように努めている場合、その局は直接的な隣接局に到達するに必要な電力で動作する。この1つの直接的な隣接局を経由して他の4つの隣接局に到達できる場合、その局は5つの間接及び直接的な隣接局を達成したことになる。そうでなければ、その局は、必要数未満のものを有しない限り、2つの直接的な隣接局と7つの間接的な隣接局を含むより高い電力を使用する。

どの局における部分的なデモンストレーション処理でも、前方誤り訂正を含んでいる。前方誤り訂正器は、パケットの受信中に回復不能な誤りを検出した場合は、誤りが発生したことをメインコードに通知する。メインコードはパケットの受信を中断できる。このことは、1つの局が、廃棄されたパケットの受信に拘束されることを防止する。それはまた、他の1つのパケットを受信している局を

他の1つの局から迅速に支援することを可能にする。この種の問題のネットワークでは時折、1つの局が他の1つの局より高いレベルで送信し、パケットを駄目にすることがある。受信中の局は、廃棄されたパケットを検出し、受信を中断し、そしてより強い信号の受信を開始することが可能である。

変形方法2

本発明の第2の変形例では、第1の変形方法と同様の方法が使用される。しかしながら、ルーティング用にメッセージセグメントが検出されてからの時間を使用する代わりに、この方法は、ルーティングに組み合わされた、または累積的な送信電力を使用する。組み合わされた必要な送信電力は、オリジンから宛先への各中間局が次の局に到達するのに必要とされる電力である。各中間局はまた、典型的には3dBである、所定のホップ係数を加える。このホップ係数は、逆ルーティングを防止するために加えられる。

このバージョンの方法では、1つの局は規則的なインタバルでブロードキャストプローブを送信する。このブロードキャストプローブは、現在の局が検出した他の局、またはビジー・イン・トラフィック (Busy in Traffic)というフラグのセットを有する局のリストを含んでいる。1つの局は、現在メッセージデータを送信中かまたはメッセージデータを受信中である場合、トラフィックがビジーと見なされる。リスト中の各局に対して、その局に到達するに必要な組み合わせ送信電力と、局のタイプやステータス、例えば、ゲートウエイ、許可当局/ネットワークオペレータ(下記参照)、ビジー・イン・トラフィック等を示す多くのフラグがまた含まれている。これらのフラグはルーティングを強化するために使用される。

リストの第1の部分は、直接的な隣接局、即ち現在の隣接局がそれ自身の受

特表2002-507343

信機で検出している局のIDを含んでいる。リスト中に含まれている必要な送信電力は、現在の局がそれらの局に直接到達するために使用される電力である。リストの第2の部分は、ゲートウエイ局やビジー・イン・トラフィック等のフラグのセットを有するどの局をも含んでいる。リストのこの部分に含まれている必要な送信電力は、現在の局を経由して間接的にこれらの局に到達するために必要な

最小組み合わせ送信電力である。中間局を経由して直接的な隣接局の1つに到達するに必要な組み合わせまたは合計送信電力を、必要な直接送信電力より小さくすることは可能である。このことは、典型的には同一の宛先局に対して直接ルートと代替ルートとがあって、その代替ルートが少ない組み合わせ(累積)電力を使用するときに発生する。

図1を参照すると、局Iが局MとLの両方を検出する場合、局Iは両方の局に必要な1つの(直接)送信電力を有している。しかしながら、局Iが局Mのプローブを検出する場合は、局Iは局L用のリストを見る。局Iはその後、局Lにとって必要な組み合わせ電力(局M経由)と同様に、局Lにとって必要な直接電力を有するようになる。局M経由の局Lに必要な組み合わせまたは累積電力を、局Lに必要な直接電力より小さくすることは可能である。

1つの局は、他の局のプローブを検出するたびに、他の局に戻るために必要な電力を計算する。1つの局は、その局が検出した各局に必要なこの直接送信電力をストアする。1つの局はまた、他の局のプローブに含まれているリストを見る。このリストから、遠方の局がリストに含まれている局に到達するに必要な電力が判明する。ローカル局は、ローカル局が遠方の局に到達するに必要な電力に、遠方の局がリスト中の局に到達するに必要な線形電力を加える。ローカル局は、それからこの数に追加的なホップ係数を加える。この新しい合計は、現在の局がそれ自身のプローブ中で他の局に通告する組み合わせ電力となる。

ローカル局は最初に、それが遠方の局に到達するに必要な直接電力をdBm からワットに変換する。ローカル局は次に、遠方の局がそのリスト中の局に到達するに必要な直接電力をdBmからワットに変換する。ローカル局はそれから、2つの数を加えてワット表示された新しい数を得る。この新しい数は、それから

dBmに逆変換される。このとき、ホップ係数が加えられる。ホップ係数に対す る典型的な値は3dBである。この新たな合計数はそれから、ローカル局が遠方 の局のリストで通告された局に到達するに必要な組み合わせ電力に加えられる。

呼出チャネルのデータレートから、全てのタイマの期間が以下に与えられる が、これらの値は例としてのみ与えられているにすぎず、全く意義深く変更され うるものである点に留意させるべきである。加えて、ネットワークのトラフィッ

ク負荷や局数の変化につれて、正しい値は動的に変更されるものである。

タイマ

倍率係数

値

80kレート例

プローブタイマ = PrbF x MaxTxDur

=1 x X

= 247 ms

(Tェキュー満)

プロープタイマ = PrbE x PrbF x MaxTxDur =10 x 1 x X

(Txキュー空)

チャネル適応

インタバル

= Adpt x MaxTxDur

 $=5 \times X$

= 1235 ms

インクリメントに

必要なTx電力 = TxInc x MaxTxDur

=5 x X

= 1235 ms

データチャネル期間= Data x MaxTxDur

 $=5 \times X$

= 1235 ms

ここで、MaxTxDur=最大パケットサイズ期間+送受信往復+送信遅延=X=247. 1msである。

最大パケットサイズは、1023バイトに設定されている。最大パケットサ イズが増加される場合は、全てのタイマの長さは増加する。最大パケットサイズ を増加する効果は、与えられた期間のプローブの数を減少させ、データのネット ワーク上の伝播遅延を順番に増加させる隣接する局の接続性を緩やかに低下させ ることにある。一方、最大パケットサイズが減少させられる場合は、これはプロ ーブの間に呼出チャネル上で送信できるデータの量を減少させる。このことはま た、データのネットワーク上の伝播遅延を増加させる。呼出チャネル上で送信で きるデータの量に重み付けすることによって、与えられた期間のプローブの数に 対する、正しい最大パケットサイズが決定できる。

1 つの局が、最大パケットサイズに適合するよりも多くのデータを有してい

る場合、他の局にデータチャネル上に移動することを要求する。 2 つの局は、それらが同じデータチャネル上に留まる限り、より多くのデータを相互に送信可能になる。 2 つの局は、送信するデータまたは「データチャネル期間」を有している限り、どちらが先にきても、そこに留まる。 1 つの局がデータチャネルに移動

し、そこで他の局を見つけることができない場合は、その局は呼出チャネルに戻る。

そのようなネットワーク内の局は、典型的には移動しており、そしてそれらが遠くへ移動するにつれて、域外に出てしまうこともある。ローカル局はそれ故、宛先局に到達するに必要な電力を増加する必要があり、そして最終的にはもはやその近傍にいない宛先局をリストから除去する。2つの局間の回線損失は、特にレーリー・フェージングに起因して迅速に変化する。1つの局は、他の1つの局に送信するたびに、最適電力で送信しなければならない。1つの局は、他の送信を受信するたびに、必要な電力を決定することができる。典型的には、2つの局が互いにデータを送信していてビジーのとき、それらは毎秒多くの送信「オーバー」を有する。その都度、それらは他の局に到達するに必要な電力を再計算する。それらの電力変化は、典型的にはレーリー・フェージングの周期に追従する

このことは各送信に必要な電力を最適化するには良く機能する。しかしながら、それはルーティングの問題を引き起こす。それは、各フェージングの度に、代替ルートが一時的に良く見えてしまうからである。1つの局はそれ故、2つの必要とされる直接送信電力の値を維持しなければならない。1つの値は、各送信用に、送信に必要な電力を設定するために使用される。第2の値は、ルーティング用に使用される。この第2の値は、レーリー・フェージングに関連した速い回線損失変化には追従しないが、域内に出入りする局に関連した変化に追従する、より減衰された効果を有する。プローブ信号中のリストで通告されるのは通常、第2の値であることが予測される。

この減衰された電力要求は、リスト中のどの局にも到達するに必要な電力の 増加率を緩やかにすることによって達成される。ネットワーク内の全ての局も同 じレートで必要電力を増加させる。その増加率は、呼出チャネル上の送信データレートに直結する。新たなプローブが検出される毎に、ローカル局は、新たに計算された電力がそれ自身のリストに有している必要電力より小さいかを決定する。それが小さい場合、ローカル局は、自身のリストに有している必要電力を減少させる。ローカル局は、電力を1ステップでは減少させず、局を検出する毎に小さなステップでそれを減少させ、レーリー・フェージングの影響を減衰させる。(下

記参照。)

1つの局がもはや特定の局からプローブを検出しない場合は、その局に到達するに必要な電力を増加し続ける。必要な電力は、最終的に、ローカル局がそのリストから他の局を除外するプリセットされた最大値に達する。この値は典型的には125dBmである。この時点で、1つの局は、他の局に直接または間接的に到達するに必要な電力のリストを有している。遠方の局のリストされた各局には、その遠方の局を経由する必要な組み合わせ電力を示すエントリがある。図1を参照すると、局Iは局L,M,N,B用に必要な直接または間接的な電力のリストがある。局Iは、後4局によって検出される、即ち局A,G,H,J,L,M,N,O用の間接的なリストを有する。局L,M,Nは、それらが共通の隣接局であるため、直接および間接の両方のリストに現れる。局Iが局Mに対するデータをルート付けすることを希望する場合は、局Mへ直接、または局LまたはNを経由した送信のいずれかを選択することができる。局Iは、どちらのルートの電力要求が最低かを決定し、その回線を局Mへのメッセージセグメントのルーティング用に使用する。

このときに、局 I は、局 O への直接ルートを有しないが、局 O との通信を希望しないならば、そのようなルートは必要としない。しかし、局 O と局 A のトラフィックがビジーである場合は、局 O からのセグメントおよび局 O へのセグメントは局 I を経由して通過する。このケースでは、局 I はこれら通過するセグメントを検出する。各セグメントヘッダは、セグメントのオリジンに戻るに必要な組み合わせ電力を示している。局 M が最初に局 O からのを受信したときは、局 M は

そのセグメントを局Iへ通過させる前に、セグメントへッダ中に直接必要電力を配置する。

局 I が局Mからのセグメントを受信したときは、局 I は局Mに到達するに必要な電力を局Oからのセグメントヘッダ中に追加する。局 I はまた、この値にポップ係数を追加する。このセグメントは局 I から局Mを経由して局Oに到達するに必要な組み合わせ電力を含むことになる。この手法は、セグメントが局Aに到達するまで各ホップで繰り返される。

各局に対する必要な電力から、ネットワーク内のどの局も、ネットワーク内

の他の局の方向に必要な電力勾配を有することになる。1つの局は、メッセージ セグメントを、単純に最小必要電力の方向にルート付けする。

オリジン局Aが最初に宛先局Oと通信することを希望するときは、いずれの局もビジー・イン・トラフィックではないので、勾配はない。勾配を生成するためには、オリジン局Aは、宛先局O用の特別なチェーサ(Chaser)メッセージを送出する。このメッセージは、オリジン局Aを必要な電力勾配上に移動させることによって、オリジン局Aからルート付けされる。このメッセージは、各局において2分割され、そして2つの異なる方向にルート付けされる。それ故このメッセージは、局Aから遠ざかる方向のネットワークに溢れる。

チェーサメッセージは、宛先局Oに向かう勾配を有した局に到達すると、宛 先に向けてルート付けされる。それが宛先局Oに到達すると、局OはETE(エ ンド・ツー・エンド確認)局Aに返送する。このETEメッセージは、チェーサ メッセージが勾配を生成したために、メッセージを局Aに戻る勾配を自動的に有 することになる。ETEはチェーサメッセージより高い優先度を有し、それ故に ネットワーク内をより高速に移動する。どの局がETEを受信したときでも、そ の局はETEをオリジンに戻すようにルート付し、またそれをチェーサメッセー ジが送られたパスに沿ってルート付けする。これはチェーサメッセージの氾濫防 止に使用される。ここで、チェーサメッセージは非常に小さく、また短い寿命(t ime-to-live)を有している点に留意すべきである。従って、仮にチェーサメッセ ージがネットワーク全体に氾濫しても、ネットワークの処理性能に与える影響は 最小のものである。

局Aが最初にチェーサメッセージを送出したときは、それはまたそれ自身をビジー・イン・トラフィックにフラグ付けする。局Aはこのフラグセットをチェーサメッセージの期間保持する。局Aのプローブを検出した他の局はどれでも、そのフラグがセットされていることを見て、局Aをそれら自身のプローブ用リスト中に含める。リスト中にビジー・イン・トラフィックのフラグがセットされた他の1つの局を局Aと共に検出した他の局はどれでも、局Aがビジー・イン・トラフィックのフラグがセットされたものであることも通告する。局Aは、新しいメッセージを送信する毎に、それ自身のイン・トラフィック・タイマを、それが

送信しているメッセージの寿命と同じにリセットする。局Aがメッセージの送信を停止した場合は、イン・トラフィック・フラグは最終的に時間切れし、もはやセットされない。

1つの局は、それ以前より良くなるように必要電力を更新する毎に、そのプローブリスト中に他の1つの局を配置だけする。即ち、1つの局が1つの隣接局を検出した場合、または他の1つの局のリスト中に含まれる局を検出した場合、その1つの局は、問題の局への必要送信電力がその内部リスト中に存在する値より良いかを決定する。それが良い場合は、必要電力をその内部リスト中で変更し、またその局を次のプローブリストに含める。このことはプローブリストを小さく保つことを助ける。

局Aがビジー・イン・トラフィックのフラグセットを有しくなった場合、それはもはや他の局のリストには含まれない。他の局は、局Aに到達するに必要な送信電力を緩やかに増加する。そして局Aはもはやトラフィック内にないので、他の局は更新された値をそれ以上受信しない。他の局が局Aに到達するに必要な送信電力は、最終的には、局Aをリストから除外する必要のあるプリセット値に達する。

ビジー・イン・トラフィック・フラグのほかにも、多数の他のフラグがある 。典型的には、ネットワーク内の他の局がどれでも時々刻々と通信する必要のあ る重要な局を識別するためのものである。ゲートウエイフラグは、他の1つのサ

・特表2002-507343

ービス、例えばインターネットへのアクセスに対するゲートウエイとして使用される重要な局の識別に使用される。1つの局がインターネットへのゲートウエイを有する場合、それはインターネット・ゲートウエイであることを示すフラグセットを有する。1つの隣接局は、ゲートウエイ局へのよりよい必要電力を検出する毎に、ゲートウエイフラグをセットして、その電力をリストに含める。この隣接局のリスト中のゲートウエイ局を検出した他の局はどれでも、それ自身のリストにもゲートウエイ局を含める。このゲートウエイ局のリストはネットワークを通して伝播する。最終的に全ての局はそれらのリスト中にゲートウエイ局を持つ。それ故、インターネットにアクセスする必要のあるどの局も、それらのインターネットデータをどこへルート付けしなければならないかを知ることになる。

ネットワーク中には1より多いインターネット・ゲートウエイが存在することもある。1つの局は1つのゲートウエイしか必要としない。それ故、1つの局は1つのインターネット・ゲートウエイだけをそのリスト中に配置する。その局は常に最小の必要送信電力を有するものを選択する。このことの効果は、局が常に最近接のゲートウエイに対してよりよい電力勾配を有し、また典型的には最近接のゲートウエイだけをリストしていることである。最近接のゲートウエイが利用不能になると、局は自動的にそのゲートウエイを廃棄する。これは、他のゲートウエイが良く見える点まで電力要求が増加しているためである。

ゲートウエイフラグが使用されると同様に、許可当局のような他の多くのフラグも使用される。許可当局(またはネットワーク・オペレータ)は、ネットワーク内の保護に使用される権威の許可を維持し発行するネットワーク内の局である。ネットワーク内の全ての局は、他の局から受信したデータおよび他の局へ送信するデータを証明及び暗号化するために、私的及び公共キーセットを使用する。インターネット・ゲートウエイのように、どの局も1つの許可当局へのルートを知る必要だけがある。

許可当局は、PCT特許出願第PCT/GB98/00392中に記載されたネットワーク・オペレータに相当する。ここに、その内容を参照によって組み入れる。

宛先局は、オリジン局からメッセージを受信すると、そのメッセージの元の 寿命の半分で満了するタイマ(勾配タイマ)を開始する。その寿命は、1つのメ ッセージが有効な時間の量である。この新しい勾配タイマは、それ故、受信され たメッセージが満了するより前に期限がくる。同じオリジン局から新しいメッセ ージが受信された場合、勾配タイマは新しい値をリセットする。これは、特定の オリジン局からメッセージが到来している限り勾配タイマは満了しないことを意 味する。

特定のオリジン局からメッセージが到来しなくなったら、勾配タイマは満了する。このタイマが満了すると、勾配メッセージがオリジン局に送られる。このメッセージは、勾配メッセージを送る局へ戻るのに必要な組み合わせ電力を含んでいるので、必要送信電力勾配は、オリジン局へ戻る宛先局(メッセージが元々

送られる局)からリフレッシュされる。

勾配メッセージの目的は、データメッセージがオリジン局から到来することを停止したときに、新鮮な勾配が形成されることを確実にすることにある。このメッセージは、それ以上のメッセージがないか、または勾配が無効になったかのいずれかのために、到来することを停止する。このことは、多数の移動局が同時に移動するか、または同時に同調するか同調から外れることによって生ずる。典型的にはネットワークは勾配メッセージを必要としない。これは、勾配がそれ自身をトラフィック中の2局間で動的に訂正するからである。これはフェールセーフ機構として追加される。

勾配メッセージが送られることを防止するために、1つの局から送られる最後のメッセージにフラグが追加されうる。即ち、オリジン局は、宛先局にそれ以上のメッセージが後続しないことを知らせる。宛先局は勾配メッセージが必要ないことを知ることになる。

ここで、複数の局は、それらが送るメッセージと共にルーティング情報を送 らない点に留意されるべきである。複数の局はまた、それらの間では、ルーティ ング情報を送信しない。しかしながら、それらは、必要電力情報や、どの局がト ラフィック中か、またはゲートウエイであるか等についての情報を送信する。ネ

特表2002-507343

ットワーク中の各局は、それ自身の送信キューを作成する責任がある。1つの局はいつでも、1つの送信キューから他の1つへ向かうメッセージフラグメントを動的に再ルート付けする。1つの局は、その隣接局のそれぞれに対する個別の送信キューを維持する。各局におけるルーティングは、他のどの局におけるルーティングにでも再訂正される。1つの局におけるルーティングは、純粋に必要送信電力情報とルーティング・ステータス・フラグとに基づいている。必要送信電力とステータス・フラグはいつでも変化することができるので、メッセージのルーティングもいつでも変化することができる。1つの局はそれが有する現在の情報に適宜基づいたメッセージをルーティングする。それ故、特定のメッセージに対しては現在のルートより良く見える新たなルーティングの機会が起こった場合、その局はそのメッセージを動的に再ルーティングする。

必要送信電力の変化は、ネットワーク内の各局に対するルーティング勾配の

変化となって現れる。どの時点でも、特定局に対する必要送信電力勾配は、1つのメッセージに対して最良のルートを指示する。1つの局は、宛先局に対して常に、チェーサメッセージを除くメッセージ(オリジン局勾配では上り方向にルート付けされ、そして同時に宛先局勾配では下り方向にルート付けされる)を下り方向にルーティングする。

上述したように、1つの局は、隣接局の1つを検出する毎に、その局に到達するに必要な送信電力を計算する。ローカル局は、隣接局に対する新しい必要送信電力が、それまでストアしていた必要送信電力値より小さい場合は、それまでストアしていた値を減少させる。しかしながら、ローカル局は、1つの大きなステップではなく、隣接局を受信するたびに、小さなステップで新しい値に減少させる。

従って、ローカル局が「頻繁に」隣接局を受信すればするほど、必要送信電力値はより低くなる。ローカル局が他の局を暫くの間受信しない場合は、必要送信電力値は、最終的にローカル局がその内部リストから隣接局を除外するレベルに到達するまで、規則的なインタバルで増加し始める。

1つの隣接局は、他の局のために多くのデータを中継している場合、データ

チャネル上で多くの時間を費やすが、呼出チャネル上ではさほど多くの時間を使わない。その結果、その周りの隣接局は、その局を非常に頻繁に受信することはない。そして、この局に到達するに必要な送信電力はそれ自体で高い。このことは、隣接局にデータ用の代替ルートを適宜選択させることになる。データは現在代替ルートを経由して進んでいるため、多くのデータを送っている局は、送るべきデータをさほど有しない。それ故、この方法は、その局がどの程度の頻度で受信できるかに基づいて、トラフィック負荷を隣接局間で動的に発散または分布している。必要送信電力勾配は、トラフィックの高密集領域から遠ざかり、そして低密集領域に向かうように常に移動する。必要送信電力勾配は、自動的にルーティングおよびトラフィック流の密集を等しくする。

1つの隣接局は、他の1つの局を頻繁に且つ「長い」期間受信する場合、その局に向って好ましい必要送信電力勾配を有している。しかしながら、その局が他の局を頻繁ではあるが、短い期間しか受信しない場合は、それは平均的な必要

送信電力勾配を有している。その期間が長ければ長いほど、その勾配はよくなる。それ故、1つの局は、それが頻繁且つ長期間受信する局に向かって良好な勾配を有する傾向にある。

1つの局が1つの他の局を頻繁に且つ長期間受信する場合でも、受信される 送信が「強く」ないケースでは、その1つの他の局が遠方にあることもある。必 要送信電力は、その1つの他の局への回線損失から計算される。受信信号が弱け れば弱いほど、回線損失は大きく、そしてより多くの送信電力が必要となる。必 要送信電力が大きければ大きいほど、必要送信電力勾配は大きくなる。1つの局 は、必要送信電力の低い領域に向かってルート付けするので、より近くの他の局 に向かってルート付けする傾向にある。

1つの局がより強く他の1つの局を受信するほど、必要送信電力勾配は良くなる。勾配は、遠方の局の背景雑音を考慮した必要送信電力に基づいているので、低い背景雑音を有する局に向かうことが好ましい。高いローカル干渉を有する局は、高い背景雑音を有する。1つの局は、それが強く受信できる局(且つ低い背景雑音を有する)に向かったよりよい必要送信電力勾配を有することになる。

データのルーティングは、それ故、高い背景雑音の領域を回避する。

ここで説明されているルーティング方法は、緩急双方のレーリー・フェージングを扱う。緩やかなレーリー・フェージングの場合は、1つの局は他の1つの局を、2局間の回線損失が低いときは、頻繁に、長く、そして強く受信する。このことは、回線損失の低い期間にその局を経由する良好なルートを生じることになる。フェージングが悪化し始めた場合は、必要送信電力勾配が急峻になるため、回線損失は悪化し、そのルートは悪く見え始める。必要送信電力はそれ以前にストアされていた値より大きくなり、その値は更新されない。しかしながら、必要送信電力は規則的なインタバルでインクリメントされるので、それは自動的に悪化する(緩やかに)。それ故、ルーティングは、緩やかなレーリー・フェージングに動的に追従する。

速いレーリー・フェージングの場合は、1つの局は他の1つの局を、頻繁に 、しかし短いバーストで受信する。このことは、平均的な必要送信電力勾配を生 じることになる。この勾配は、緩やかなインクリメントによって、そして必要送 信

電力が小さなステップで減少されるという事実によって、減衰される。このことは、1つの局は速いレーリー・フェージングには追従しないが、平均としての効果を含むことを意味する。それ故、遠方に3つの局があって、1つが移動中であり、1つがレーリーの谷にあり、他の1つがレーリーのピークにある場合、その谷にある局は悪い必要送信電力勾配を有し、ピークにある局は良い必要送信電力勾配を有し、そして移動中の局は平均的な勾配を有する。これらは、3つの局の適宜な利用可能性と同等である。即ち、谷にある局は悪いルートを提供し、到達するのに多くの電力を必要とする。ピークにある局は良いルートを提供し、到達するのに少しの電力しか要しない。移動中の局は、ある時は少ない電力を、そして他のときはより多い電力を必要とし、そのようにして平均的なルートを提供する。

ルーティングに必要な送信電力勾配は、速いレーリー・フェージング期間に 局が使用する平均電力を考慮する。ルーティングが速いレーリー・フェージング の影響を平均化するとしても、局は実際にデータパケットを送信するときは、依然として動的にその送信電力を変化させている点に留意されるべきである。従って、局がデータパケットを送信するときに使用する実際の送信電力は、速いレーリー・フェージング曲線に適合する。1つの局は、実際の送信に使用するに必要な独立した送信電力(ルーティングに使用するに必要な送信電力と同様に減衰されない)を保持する。

必要送信電力勾配は、データメッセージが流れている限り絶えず最適化され、改善される。オリジン局からのデータメッセージは、データメッセージが流れているルートに沿ってどの局からもオリジン局へ戻る新鮮な勾配を維持する。宛先局から戻るETE(エンド・ツー・エンド確認)メッセージは、宛先局へ戻る新鮮な勾配を維持する。ルート上のどの局も、宛先局とオリジン局の双方がトラフィック中でビジーであることを通告している。どの局のどの隣接局もまた順番に、それら2局がトラフィック中であること等を通告している。それ故、そのルートに沿って、またそのルートのサイドに沿って絶えず直接最適化する勾配がある。勾配に沿って新しいメッセージが流れる都度、その勾配は再度最適化される。そのルートに直接沿ったどの局でも、不活性になり、遠ざかり、またはトラフィッ

ク負荷が与えられると、その勾配は自動的にこの局の周囲で最適化される。

データメッセージの非常に普及した宛先、例えばGPSベースの車両追跡センタの場合は、多数のメッセージが宛先局に流れ、逆にGPS位置更新を追跡センタに送る全ての異なる車両に向けて多数のETEメッセージが全ての方向に流れる。このことは、この特別な中央局が非常に最適化され、広く拡散した勾配をネットワーク中に有することを意味する。新しい車両は、その追跡装置を最初に電源オンにしたとき、または長いオフの期間の後に、チェーサメッセージを送る必要性を無視して、即時に中央局へのルートを有する。この中央局は、常に最適化されたルートを有することが知られているので、それはまた勾配メッセージを送出する必要がない。

ソフトウエア更新

ネットワーク内のソフトウエアの更新を促進するために、隣接局の直接情報を使用する機構が提供される。新しいソフトウエア更新が利用可能になったときは、それはネットワーク内のどの局のハードドライブにもロードされる。このソフトウエア更新は、その後この局からその直接的な隣接局へブロック単位で送られる。直接的な隣接局はそれを、ネットワーク全体が更新されるまで、順番にそれらの隣接局へ送る。ソフトウエア更新プロトコルのフロー図が図3に示されている。

第1の局がそのハードドライブ上に更新を有しているときは、ユーザによって、そのプローブ中で新しい更新を通告開始することを、その局に告げるためのコマンドが発行される。直接的な隣接局は、そのプローブを検出すると、新しい更新を通知する。隣接局はそれから、第1の局からのソフトウエア更新メッセージを要求する。この局は、第1の更新ブロックを送出する。直接的な隣接局は、その更新ブロックを受信すると、次のブロックを要求するまでしばらく待機する。それが待機する理由は、ネットワーク全体がソフトウエア更新メッセージで目詰まりすることを防止するためである。

隣接局は、全てのブロックを有するまで、第1の局からの更新ブロックの要求を保持する。前記隣接局は、新たなブロックを受信する都度、それ自身のプロ

ーブ中でどのバージョンおよびブロック番号を有しているかを通告開始する。前記隣接局はそれから、更新全体を有する前であっても、他の隣接局に更新を送信開始することが可能になる。このことは、ソフトウエア更新用のバケツリレー効果を開始させる。他の隣接局の1つは前記隣接局がするよりも速く更新を得ることが可能である。他の隣接局が第1の局より前記隣接局に近い(送信電力で)場合、前記隣接局は、代わりに、より近い隣接局からの更新を要求開始することさえできる。

1つの局は常により近い隣接局からの更新を要求する。このことは、1つの 局が移動局である場合に、それが異なる局からその都度更新を要求することを意 味する。ソフトウエア更新ブロックのサイズは、1つの局が移動局である場合に 、それがネットワーク内でその後ろに長いメッセージラグを有しないように、小 さく作られている。

1つの局は、その隣接局が完全な更新を有しないか、または全く更新を有しない領域を移動する場合、ソフトウエア更新がネットワークに沿ってその1つの局をキャッチアップするまで待機する。その局は、更新が以前より更に進んだ領域に戻る場合は、その局が中断したところから継続する。

ソフトウエア更新の第1の部分は、何時更新が実行されなければならないかの情報を含む。これは、その局が更新を取り込み、現存するソフトウエアと置き換える日時である。そのときが到来するまで、その局は更新を単に保持している。その局は、その運転バージョンを更新した後は、その更新を、より新しいバージョンが到着するまで、保持する。このことは、その局がその更新を、ソフトウエア更新期間中にオフするどの局にでも送ることを可能にする。

どのIDがその更新を管理すべきかを含むことも可能である。このことは、新しいバージョンのソフトウエアをテストするために、ネットワークの部分的更新を可能にする。更新はネットワーク内の全ての局に送られるが、いくつかの局だけが更新を実行する。更新が滑らかに働く場合は、特別な更新ブロックがそのソフトウエア更新の最後に付け加えられる。その局は、付加される新しいブロックが存在することを検出することになる。新しいブロックを受信したときは、そのブロックを新しいソフトウエア更新用にチェックする。このことは、他の局が

新しいソフトウエア更新全体を送出することなしに、更新されることを可能にする。

以下に、説明注解を伴う、本発明の方法及びシステムで使用されるプローブ 及びデータパケットを規定した表を示す。

プローブ及びデータパケットのフォーマット

変 数	ピット長	可 能
Preamble	64	モデムシーケンス(101010101010 etc)
Sync1	8	
Sync2	8	ザイログロックに使用される第2同期文字
Sync3	8	ソフトでチェックされる第3同期文字
Packet Size	16	Sunc3 から最終 CRC までのパケットのサ
		イズ
Size Check	8	パケットサイズチェック= パケットサイズ
		MSB XOR LSB
Protocol Version	8	
Packet Type	8	パケットタイプ
		(例えば、プロープ、データ、キー等).
Sending ID	32	,
Receiving ID	32	
Packet Number	16	
Adp Tx Power	8	
Adp Tx Path Loss	8	送信局で測定された回線損失 (dB)
Adp Tx Activity	. 4	
Adp Tx Antenna		送信局の現在のアンテナ構成
Adp Tx Bkg RSSI-1		送信局 RSSI (dBm)-> 現在のモデム-1
Adp Tx Bkg RSSI	8	送信局 RSSI (dBm)-> 現在のモデム
Adp Tx Bkg RSSI+1	8	
Adp Tx Spike Noise	8	A THE STATE OF THE
Adp Rx Activity		受信局に必要なアクティビティレベル
Adp Rx Channel		受信局に必要な送信及び受信チャネル
Header CRC	16	ヘッダデータ用の16ピットCRC
Neigh Routing Flags	8	- - - - - - - - - -
		- ゲートウエイ、ビット2-許可当局
Neighbour Data Size	16	
		= 3 + 4(更新) +IDs*6
Neigh Soft Update	32	
·		ブロック番号(16)
Neighbour Data	X	Neigh*(32(ID)+8(送信電力要求)+4
		(モデム要求)+4(フラグ)
Packet Data	X	
CRC	32	
	_	CRC

Preamble:

これは、1 と 0 を交互に繰り返すモデムのトレーニングシーケンスである。 Sync1-Sync3:

有効パッケージの開始を検出するために使用される3つの同期文字がある。 Packet Size:

Sunc3から上のパケットの合計サイズであり、最終CRCバイト含んでいる。探索チャネル上で許容される最大パケットサイズは、検索レートによって決定

される。即ち、検索チャネル上のプローブの間のスペースより長い(時間で計測して)パケットを送ることはない。データチャネル上で許容される最大パケットサイズは、1つの局がデータチャネル上にデータを維持することを許容される時間の量によって決定される。

Size Check:

これは、無効な長さのパケットの受信を回避するためのパケットサイズ変数 をチェックすることに使用される。

Protocol Version:

これは、どのプロトコルバージョンが使用されているかをチェックすることに使用される。ソフトウエアがこのバージョンをサポートできない場合は、このパケットは無視される。

Packet Type:

これは、送られているパケットのタイプを規定する。最上位ビット(MSB)がセットされている場合、現在のパケットに他の1つのパケットが直接追従す

Receiving ID:

る。

これは、そこへパケットをアドレス指定した局のIDである。

Sending ID:

これは、現在パケットを送信中の局のIDである。

Packet Number:

送信される各パケットは、新しい逐次番号を与えられる。この番号はプロト コルによってはどのような方法でも使用されない。これはシステムエンジニアに

情報を与えるためだけに存在する。局がリセットされる毎に、パケット番号はランダムな数から開始する。これは、古いパケットと混乱することを防止する。

Adp Tx Power:

送信局の現在の電力は、-80dBmから+70dBmまでの範囲内で、絶対電力(dBm) として与えられている。(フィールドは-128dBmから+127dBmまでの値を許容する)

Tx Path Loss:

これは、送信局で測定された回線損失である。回線損失=受信局の前の送信の(遠方送信電力-ローカルRSSI)。値0は、送信局のRSSIが安定化されたことを示すために使用される。回線損失は、次回受信局が送信局に送信するために、受信局において訂正係数として使用される。

Adp Tx Activity:

これは、送信局のアクティビティのレベルであり、アクティビティ=ワット *時間/(帯域幅*成功率)時間平均で測定される。

Adp Tx. Antenna:

これは、送信局で使用されている現在のアンテナ構成を示す。 2 5 5 通りの可能な構成のそれぞれが完全なアンテナ方式、即ち T x および R x を記述する。

Adp Tx Bkg RSSI:

これは、送信局における現在送信中のモデムに対する現在の背景RSSIであり、-255から-1dBmまでの値を許容する。この値は、RSSIの絶対値として送信される。受信局はこの値に-1を乗じて正しい値(dBm)を得る。値0は、このチャネルが利用可能ではないか、または0dBm以上であることを示すために使用される。0dBmの値は、適応目的には使用できない。

Adp Tx Bkg RSSI-1:

前のモデムを除いて、上記と同じ。

Adp Tx Bkg RSSI+1:

次のモデムを除いて、上記と同じ。

Tx Spike Noise:

- 下位3ビットはスパイク周波数(Hz)用、0=なし,1,5,10,50

100, &>500、そして次の5ビットはスパイク振幅(dB)用。

Adp Rx Activity:

1 つの局が高いアクティビティを有し、他の局に干渉している場合、他の局 ほこのフィールドを使用して、アクティブな局にそのアクティビティレベルをド ロップするように強制する。多数の局がアクティビティをドロップすることを要求した場合は、干渉している局は応答してアクティビティをドロップする。そのようなドロップを要求する局がない場合は、アクティブな局はそのアクティビティレベルを増加することを緩やかに開始する。このようにして、1つの局が非常に遠方の領域にある場合、それは自身のアクティビティレベルを増加して接続性を生成するように努める。その局が非常にビジーな領域にある場合は、他の局がそのアクティビティをより低いレベルに保つことになる。

本発明の好ましい実施例では、1つの局は常に5つの隣接局を維持するように努め、他の局がその1つの局に対してそのアクティビティを下げるように要求する必要がないようにする。しかしながら、この特徴は、局がそれらの電力を低減できないか、あるいはそれらのデータレートを更に増加して、それらがあまりにも多くの他の局と干渉するケースに対して提供される。

Adp Rx Channel:

255の予め規定されたチャネルを許容する。これらのチャネルは、ネットワーク全体に設定される。各チャネルは、それに関連した探索レートを有することになる(それはターンオフされ、データチャネルにされることがある)。各チャネルはまた、それに関連した最小データレートを有する。チャネルは、規定されたTxおよびTx周波数を有する。チャネルはまた、他の媒体、例えばサテライト、デジネット、ISDN等として規定されうる。

1つの送信局は、探索チャネルに許容されたパケットサイズに適合するより も多くのデータを受信局に送信するときは、他の1つの局にデータチャネルに移 動することを要求する(即ち、探索が不可能な場合)。

Header CRC:

これは、ヘッダデータ用の16ビットのチェックである。これは、ヘッダ中 の全バイトの合計である。それはパケットCRCがフェイルしているかだけをチ

ェックされる。これは、どの局がそのパケットを送信しているかを決定する手段 として提供される。パケットCRCがフェイルし、またヘッダCRCがパスした 場合は、ヘッダCRCが非常に強力な誤り検出の手段ではないのであるから、ヘ ッダ中のデータは注意して使用されるべきである。

以下に与えられる隣接ルーティングフィールドは、ヘッダCRCがパスする まで使用されないので、ヘッダCRCには含まれていない。このことは、そのル ーティングを誤りにくくする。

Neigh Routing Flags:

これらのフラグは、ルーティングを強化するために使用される。それらは現 在の局に関する追加情報を提供する。現在規定されているビットは:

ビット0-現在の局がビジー・イン・トラフィックである場合にセット。

ビット1-現在の局がインターネットゲートウエイである場合にセット。

ビット2-現在の局が許可当局である場合にセット。

ビット3ー予備

他の1つのバイト(8ビット)は、より多くのフラグが必要な場合に加えられる。

Neighbour Data Size:

ルーティングデータのサイズである。これは、隣接ルーティングフラグとルーティングデータサイズを含む(即ち3バイト)。他の4バイトは、隣接ソフト更新フィールドが含まれる場合に追加される。追加的な6バイトは、隣接データセクションに含まれる各隣接局用に加えられる。隣接ソフト更新は、隣接データが含まれる場合に、含まれる。

Neigh Soft Update:

これは、現在の局で利用可能な更新ソフトウエアの現在のバージョン(フィールドの上位16ビット)と、利用可能な現在のブロック番号(フィールドの下位16ビット)である。

Neighbour Data:

これは、現在の局がそこ向けのルーティングデータを有する隣接局のリスト である。現在の局は、保有するデータより良く更新されたルーティングデータを

受信する毎に、それ自身のデータを更新し、その局を次のプローブ中に含める。 データセクションは、リスト中の各局用に4つのサブフィールドを有する。 Station ID: 隣接局のIDを有する32ビットフィールド。

Tx Power Req: 現在の局から局 I Dに到達するに必要な組み合わせまたは直接送信電力を示す8ビットフィールド。

Modem Req: 現在の局が宛先局に到達するに必要なモデム。

Flags: 宛先局用の追加ルーティング情報を与えるフラグ。ビット0ーイン・トラフィック、ビット1ーゲートウエイ、ビット3ー許可当局、ビット4ー直接隣接局。最終ビットは、リスト中の局が現在の局の直接隣接局であることを示す。

Packet Data:

これは、パケットのデータである。これは、1以上のセグメントで構成されている。セグメントはどのようなタイプでも、そして発信または宛先用の如何なるIDを有していてもよい。

CRC:

これは、パケット全体用の32ビットCRCチェックである。このCRCがフェイルしていたら、パケットデータは破棄されるが、ヘッダCRCがパスしている場合は、ヘッダデータは依然として救援される。

メッセージセグメントのフォーマット

	置	ピット長	説 明
Segment Type	0	4	セグメントタイプ メッセージフラグメント = 0x00
Segment Type Acked	4	4	確認されたセグメントタイプ (確認タイプセグメントで使用さ れる)
Destination ID	8	32	メッセージフラグメントの宛先 ID
Origin ID	40	32	メッセージフラグメントのオリジ ン ID
Messagè Number	72	14	送信/確認されたメッセージの数 1->16 383
Message Submission Number	86	2	メッセージ再提出番号 0·>3
Message Size	88	16	メッセージ中の合計パイト 0->65 535(+1)
Fragment Start	104	12	送られたフラグメント開始番号 0->4 095
Fragment End	116	12	送られたフラグメント終了番号 0->4 095
Fragment Priority	128	8	256 レベル (0->255,0= 最高優先度)
Fragment Time To Die	136	24	ミリ秒で 0·>16 777 215 (4.66 時間)
Fragment Time Of Creation	160	24	ミリ秒で 0->16 777 215 (4.66 時間)
Tx Power Req for Origin ID	184	8	オリジンIDに到達するに必要な 送信電力
Tx Modem Req for Origin ID	192	8	オリジンIDに到達するに必要な 送信モデム
Segment Data	200	X	セグメントの残りが含むメッセー ジフラグメント

Segment Type:

これは、送信中のセグメントタイプを示す。オリジン局から宛先局へ送られ、そして中間局から中間局へと中継される。

Seg Msg:メッセージデータを含むセグメント。オリジン局から宛先局へ送られ、そして中間局から中間局へと中継される。

Seg Ack: Seg Msgを確認するために使用される。Seg Msgを受信した中

間局から他の中間局へと送られる。

Seg ETE:宛先IDがSeg Msgを受信したときに、宛先局からオリジン局

へ送られる。そして中間局から中間局へと中継される。

Seg ETE-Ack: Seg ETEを確認するために使用される。Seg ETEを受信した中間局から他の中間局へと送られる。

Segment Type Acked:

現在の局で確認されたセグメントのタイプを示すために使用される。

Destination ID:

現在のセグメントに対する宛先ID。

Origin ID:

現在のセグメントに対するオリジンID

Message Number:

送信/確認されたメッセージの数。

Message Submission Number:

宛先IDからETEが受信されない場合、オリジンIDによって特定のインタバルの後に再提出されるメッセージ。このフィールドは、現在の再提出番号を示す。

Message Size:

メッセージ中の合計バイトを示す。

Fragment Start:

どのフラグメント開始番号が送られたかを示す。メッセージはそれぞれ16 バイトのフラグメントに分解される。

Fragment End:

送られたフラグメント終了番号を示す。

Fragment Priority:

フラグメントの優先度を示す。

Fragment Time-To-Die:

フラグメントの相対的有効期限を示す。これはフラグメントが有効でなくなるまでの残りのミリ秒である。どの中間局もこの値を減少させる責任がある。典

型的には、1つの局はこれを絶対時間に変換し、またそれを送信直前に相対時間

に逆変換する。このことは、全局の全ての時計が同期する必要性を除去する。 Fragment Time-Of-Creation:

これは、フラグメントが生まれた最初のミリ秒の数である。この数は、変化しない。これは、フラグメントがオリジン局から到達するのにどれくらい時間を要したかを決定するために、宛先局と中継局で使用される。

Tx Power Req for Origin ID:

これは、現在セグメントを送信中の局からオリジンIDに到達するに必要な組み合わせ送信電力である。

Tx Modem Req for Origin ID:

これは、現在セグメントを送信中の局からオリジンIDに到達するために、 中継局で使用される最低のモデム数である。

Segment Data:

これは、実際のメッセージフラグメントを含む。

ハードウエアの説明

図4,5,6及び7は、本発明の方法及びシステムを実施するために使用される基本的なハードウエアを示している。これらの図は、上述した国際PCT特許出願第WO96/19887の図8,9,10および11に対応している。以下の説明は、特に本発明に関連するハードウエアの動作の特徴に関係する。

その送信する「決定」に基づいて、メインプロセッサ149は、使用される電力レベルデータレートとパケット期間を決定し、そしてこのパケットをシリアルコントローラ131に送り、同時に周辺インターフェース147を通して送信/受信スイッチ103を送信モード側に切り替え、適当な遅延の後に送信機を切り替える。ザイログチップ131は、ブロック128及び130中のPNシーケンスエンコーダを経由して、そのパケットデータを、選択されたデータレートに依存して、適当なヘッダとCRCチェックと共に送出する。

メインプロセッサ149は、情報の1フィールドとして、データパケット中 にそれが使用している送信電力に対応するデータを埋め込む。これは電力制御P

ICブロック132に送られるのと同じ送信電力である。それは、電力制御回路

141を駆動するために使用される。それは利得制御及びローパスフィルタ143を制御する。このブロックは、ドライバ144及び142を制御するために、 電力増幅器145からのフィードバックを使用する。

・ 検出及び利得フィードバック法は、電力制御回路141からの指示に基づいて、合理的に精密な電力レベルが誘導されることを可能にする。

電力増幅器をオンにする前に、送信周波数はシンセサイザ138によって選択され、その後はドライバブロック141を介して電力増幅器145が指示され、またその増幅器はオンされる。

電力増幅器 1 4 5 によって与えられる最小電力レベル以下の電力レベルが必要な場合は、スイッチド・アテネータ・ブロック 1 0 2 は、追加的に 4 0 d B までの減衰量を与えるために、スイッチされる。それ故、プロセッサは、組み合わせアテネータとして、一4 0 d B mから + 5 0 d B m までの範囲の出力電力レベルを提供するように、電力増幅器に指示できる。この増幅器がスイッチオンされるときに、プロセッサは正方向及び逆方向電力に関する低電力検出回路 1 0 1 から情報を得る。この情報は、A/Dコンバータ 1 4 6 を介して送られ、そして送信される電力をモニタするために、メインプロセッサ 1 4 9 によって使用される。この情報はそれから、要求されたレベルとの比較から実際に生成された正方向及び逆方向電力に関する情報を提供するために、ダイナミック R AM 1 5 0 にストアされる。

出力送信電力の量は、送信電力制御ループ(ブロック145,144,14 2 および143)とスイッチド・アテネータ・ブロック102の効率によって影響される。加えて、アンテナ100の不整合はまた反射及び進行電力に変化をもたらす。実際に出力される相対電力は、プロセッサによってRAM中にストアされ、実際に出力される電力レベルに対する要求されたレベルを与えるテーブルを提供する。これは、プロセッサが、メッセージまたはプローブ信号内で、将来の送信に与える情報中のより精確な電力レベルフィールドを使用することを可能にするために使用されうる。電力レベルは、-40 d B m から +50 d B m の範囲で変動するので、送信される10 d B ずつ離れた10の異なる電力レベルは有効

に存在する。それ故、プロセッサによってストアされたそのテーブルは、これら 10の電力レベルを、要求された電力レベルおよびこの範囲内の実際の電力レベ ルと共に保有する。

ネットワーク内の他のどの局でも、この送信をそれ自身のアンテナ100を介して受信する。受信された信号は、低電力検出回路101と初期には0dBに設定されているスイッチド・アテネータ102を通過する。受信された信号は、それから、帯域外の干渉を除去する2MHzのバンドパスフィルタ104を通過し、更にプリアンプ105に入力する。プリアンプ105はその信号がミキサ106で10.7MHzのIF信号に落とされる前に増幅する。IF信号は、バンドパスフィルタ107でフィルタされ、そしてIF増幅器108で増幅され、更にブロック109,110,111および112でフィルタおよび増幅される。

最終フィルタリングはブロック114及び115で行われる。このステージでは、信号はブロック116で狭帯域RSSI機能を使用して測定される。その出力はメインプロセッサを経由して入力送信の信号強度を決定するために使用される。このことは、必要に応じてプロセッサが電力制御PIC回路132に追加的な受信機減衰を40dBまでスイッチするように要求することを可能とする。追加的な減衰のスイッチングは、信号がブロック116のNE615の測定範囲を超えている場合にのみ必要である。そうでなければ、アテネータは0dB減衰のままにされ、小さい信号を受信するために受信機のフル感度が利用可能となるようにする。入力送信は、2つの帯域幅、即ち8kHzと80kHzで同時に測定される。80kHzの帯域幅は、150kHzのセラミックフィルタ109の後の10.7MHzのIF信号をタップオフし、そして150kHzのセラミックフィルタ121とNE604IC120を使用することによって測定される。これはまた、インターフェースを介してメインプロセッサ149によって受信されるRSSI出力を有する。

広帯域及び狭帯域のRSSIは、A/Dコンバータ146を介して測定され、その出力データはメインプロセッサ149に送られる。このメインプロセッサはルックアップテーブルを有し、そしてA/Dコンバータから情報を取り込み、前の校正されたデータから受信信号強度を求める。このデータはdBmで、典型

には一140dBmから0dBmの範囲で校正されている。この情報は、典型的には校正信号ジェネレータの出力を使用し、これを受信機の入力に注入し、種々の信号強度レベルをダイアルし、キーボードを介してプロセッサにどの電力レベルで注入されているかを指示することによって生成される。この情報はそれからスタティックRAMまたはフラッシュRAM150に恒久的にストアされる。

従って、受信局は、どの入力送信の電力レベルでも精確に記録できる。受信局は入力送信のアドレスと、その埋め込まれた送信電力を読む。これらを比較することによって、例えば、+40dBmの送信電力レベルが受信機で-90dBmとして測定され、それは回線損失130dBを計算することに使用される。回線損失は0dBから最大190dB(+50-(-140)=190)まで変化する。測定できる最小回線損失は、送信局の送信電力に依存し、そして最大信号は受信局で測定できる。この設計による最大受信信号はアンテナ部分100で0dBmであるから、0dBの回線損失が測定でき、0dBm以下の送信電力を提供する。そうでなければ、例えば、50dBmの送信電力において、測定できる最大回線損失は50dBである。これは、スイッチド・アテネータ内に追加ステップを加えるか、受信機中に異なる構成を使用することによって改善できる。スイッチド・アテネータが完全にスイッチされ、且つA/DコンバータがRSSIが最高レベルにあることを示した場合は、受信するプロセッサは、送信に関連するデータに「ペグされた」旨のタグをつける。このことは、回線損失が測定可能なものより低いことを意味する。

受信中のプロセッサは、継続的に背景信号と干渉を測定し、いずれのデータレートのモデムでも何も送信が検出されないことを提供する。そして、雑音と干渉をdBmでモニタ及び測定し、スタティックRAMにストアされる平均値を生成する。送信が検出されると、S/N比を求めるために、最近の雑音測定値と比較される。各送信では、送信に先行してピックアップされた背景雑音は、もう1つのフィールドとして送信電力と共に、送信メッセージまたはプローブ内で通告される。ネットワーク内の他の局は、送信から回線損失だけでなく、遠方局のそ

の送信直前の基底雑音をもピックアップし、求めることができる。受信局は、回 線損失を知っていて、遠方局の基底雑音を有しているので、如何なる送信電力で

遠方局の所望のS/N比を達成できるかを知っている。

必要なS/N比は、典型的にはモデムの性能とパケット期間および成功の確率に基づいた特徴とに基づいている。この必要なS/N比は、プロセッサによってデータベースにストアされ、そして種々の宛先への送信の成功に基づいて、継続的に更新される。例えば、1つの局が送信をピックアップし、回線損失が100 d Bであり、遠方局が宣言した基底雑音-120 d Bを有していると計算した場合、たとえば毎秒8キロビットで20 d Bに対して必要なS/N比に適合するためには、それは-20 d B mの電力レベルで送信する。この必要なS/N比は、毎秒80キロビットに対しては異なる。それは、15 k H z と比較した場合により広い帯域幅となる150 k H z では基底雑音がより高くなるためであり、また毎秒80キロビットのモデムは毎秒8キロビットのモデムとは異なるためである。

従って、受信局は、例えば帯域幅中の宣言された基底雑音が-110dBmで、回線損失が依然として100dBmを必要なS/N比が、例えば、15dBmを必要とする。この送信を受信する局は、発信局に対して応答するために使用する電力レベルがどれだけかを知ることになる。

1つの局は、以上概略を説明した手法を通して、隣接局に到達するに必要な送信電力を決定することができる。それは、この必要送信電力を、そのプローブ中に配置する隣接局のリスト中に含める。

【図1】

【図2】

____2 送信電力. 最小に設定 呼出チャネルへ変更 ブローブタイマ開始 適応タイマ開始 チェックタイマ遅延開始 ブローブ タイマ 開始 -(e A 呼出チャネル 最高に設定 送出キューにデータあり、 または、 タイマ×5の間送伝 なれてないか? 受信中または、送信中? プローラ タイマ 満て? チェックタイ 期間開始 ブローブ タイマ × 5 開始 プローブを 8 ープタイプ 切捨 选倡 次チャネルが 呼出チャネルに 規定されたか? 要求された 際接局は 超過したか 呼出チャネル 適比タイ 満了? 次チャネルに設定 データ タイマ 満了? 送信電力を10d8低下 (最小に速していなければ) 呼出チャネル へ変更 プローブタイマ開始 要求された 隣接局は (^ 達成されたか? 送信電力を 10dB 増加 適応タイマ 開始 最大電力? 前チャネルが ・呼出チャネルに ・規定されたか? サエック中 次の最大チャネル に変更 () 呼出チャネル ナー ョーン 次チャネルに設定 現チャネルの 南チャネルに 変更 限チャネルの 約テャネル >呼出チャネル 呼出チャネルの 前チャネル上かまたは 前チャネルは 対定されていないか 呼出チャネルに変更 チェックタイマ 遅延開始 プローブタイマ開始 呼出チャネルの 前チャネルに 変更

_===3

【図4】

【図5】

【図6】

【図7】

【手続補正書】特許法第184条の8第1項

【提出日】平成11年7月20日(1999.7.20)

【補正内容】

請求の範囲

- 1. それぞれがデータ送信及び受信可能な複数の局を備える通信ネットワークを、前記ネットワークが発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できるように動作させる方法であって、
 - a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルをインタバルにおいて選択し、
- e)選択された呼出チャネル上で各局からのプローブ信号をインタバルにおいて送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先局または中継局としての利用可能性を示すために、直接または間接的に応答し、そして
- f) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する
- ことを特徴とする方法。
- 2. 前記特定局から前記プローブ信号を受信する前記他の局は、前記特定局と それらとの間の通信の品質を示すデータを含むように自局のプローブ信号をそれ ぞれ修正し、前記特定局は、それが局間に不当な競合または妨害を起こすことな く、ネットワーク内の所望の数の他の局と最適通信できるように、その送信の少 なくとも1つのパラメータを変更するために前記データに応答する請求項1の方 法。
- 30. それぞれがデータ送信及び受信可能な複数の局を備え、発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できる通信ネットワークであって、前記局のそれぞれは、
 - a) 少なくとも1つの呼出チャネルを規定し、
 - e) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信す

るための呼出チャネルをインタバルにおいて選択し、

- f)選択された呼出チャネル上で各局からのプローブ信号をインタバルにおいて送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先または中継局としての利用可能性を示すために、直接または間接的に応答し、そして
- g) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する

ために使用されることを特徴とする通信ネットワーク。

【手続補正書】

【提出日】平成12年1月20日(2000.1.20)

【補正内容】

請求の範囲

- 1. それぞれがデータ送信及び受信可能な複数の局を備える通信ネットワークを、前記ネットワークが発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できるように動作させる方法であって、
 - a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルをインタバルにおいて選択し、
- c) 選択された呼出チャネル上で各局からのプローブ信号をインタバルにおいて送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前記特定局にそれらの宛先局または中継局としての利用可能性を示すために、直接または間接的に応答し、そして
- d) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する
- ことを特徴とする方法。
- 2. 前記特定局から前記プローブ信号を受信する前記他の局は、前記特定局と

それらとの間の通信の品質を示すデータを含むように自局のプローブ信号をそれ ぞれ修正し、前記特定局は、それが局間に不当な競合または妨害を起こすことな く、ネットワーク内の所望の数の他の局と最適通信できるように、その送信の少 なくとも1つのパラメータを変更するために前記データに応答する請求項1の方 法。

- 3. 前記特定局からの前記プローブ信号は、前記特定局が宛先局または中間局として利用可能であると検出している他の局を識別するデータを含む請求項1または2の方法。
- 4. 前記プローブ信号は、前記特定局と他の識別された各局との間の通信の品質を示すデータを更に含む請求項3の方法。
- 5. 前記プローブ信号は、全てのまたは複数の他の局をアドレス指定したブロードキャスト・プローブ信号である請求項4の方法。
- 6. 前記プローブ信号は、そのアドレス・プローブ信号を送信する局が通信希望する少なくとも1つの他の局をアドレス指定したアドレス・プローブ信号

を追加的に含む請求項5の方法。

- 7. 前記アドレス・プローブ信号は、前記ブロードキャスト・プローブ信号より頻繁に送信される請求項6の方法。
- 8. 前記アドレス・プローブ信号は、前記アドレス・プローブ信号を受信した 局によってそれが通信する他の局の選択に使用されるために、前記特定局と他の 識別された各局との間の通信の品質を示すデータの年齢に相当する年齢情報を含 む請求項6または7の方法。
- 9. 前記プローブ信号は、前記プローブ信号を受信した局によってそれが通信する他の局の選択に使用されるために、識別された各局と通信可能な他の識別された局に対し、前記識別された各局が到達するに必要な累積送信電力に相当する電力勾配情報を含む請求項3~8のいずれかの方法。
- 10. 発信局から宛先局へ追跡信号を送信し、前記追跡信号は、前記宛先への複数の回線を追跡し、これにより前記ネットワークの局によって前記発信局から前記宛先局へのデータ送信用ルートの選択に使用可能な電力勾配情報を生成する

請求項9の方法。

- 11. 発信局から宛先局へ勾配メッセージを送信し、前記勾配メッセージは、 最適なルートを経由して前記発信局から前記宛先局へデータを送信するに必要な 累積送信電力に相当するデータを含む請求項10の方法。
- 12. 前記ネットワークを経由してルート付けされた全てのメッセージは、前記メッセージが前記ネットワークを経由してそのルート上をそれぞれの局に到達するに必要な累積送信電力に相当する電力勾配情報を含む請求項3~11のいずれかの方法。
- 13. 前記特定局からプローブ信号を受信する局は、回答信号を送信することによって前記特定局に応答し、前記特定局は、異なる局から受信した回答信号の数を所定の値と比較し、回答信号の数が第2の値に対応しない場合は、前記特定局によって受信された回答信号の数が前記所定の値に対応するまで、その送信の少なくとも1つのパラメータを変更する請求項1の方法。
- 14. 第1の呼出チャネルを除く各呼出チャネルが前の呼出チャネルより高

いデータレートを有する複数の呼出チャネルを規定し、そして回答信号の数が前 記所定の値に対応しない場合は前記第2の所定の基準に従って、前記前の呼出チャネルから異なるデータレートを有する異なる呼出チャネルを選択する請求項1 3の方法。

- 15. 前記第1の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、前記呼出チャネルは、利用可能な最高のチャネルデータレートおよび/または利用可能な最低のチャネル送信電力に従って選択される請求項14の方法。
- 16. 前記第2の所定の基準は、呼出チャネルデータレートおよび/または呼出チャネル送信電力を含み、異なる呼出チャネルデータレートは、漸次的に低いチャネルデータレートおよび/または漸次的に高いチャネル送信電力を有するように選択される請求項14または15の方法。
- 17. 回答信号と比較された前記所定の値は、局間に不当な競合または妨害を起こすことなく、特定局が前記ネットワーク中の所望数の他の局と最適通信可能

にするために、特定局に対する中間局または宛先局として適用可能な所望数の隣接局に対応するように計算される請求項13~16のいずれかの方法。

- 18. 第1のデータチャネルを除く各データチャネルが前のデータチャネルより高いデータレートを有する複数のデータチャネルを規定し、各データチャネルは、隣接局の利用可能性を決定した後に、選択されたデータチャネル上で隣接局にデータを送信する請求項1~17のいずれかの方法。
- 19. 前記データチャネルはそれぞれの呼出チャネルに対応し、1つのデータチャネルは、選択された呼出チャネルに対応するデータの送信用に選択される請求項18の方法。
- 20. 複数のデータチャネルが1つの呼出チャネルに対応し、前記データチャネルは、前記局によって、および活動していないと検出されているデータチャネルを選択するデータの送信を希望する局によって活動用にモニタされ、これにより局間のデータチャネルの使用が最適化される請求項18の方法。
- 21. 各局によって前記呼出チャネル上を送信されるプローブ信号は、選択されたデータチャネル上で他の局が特定局と通信可能とするために、その後活

動しているものとしてフラグ付けされる選択されたデータチャネルに移動するために前記プローブ信号を送信する特定局の意図を示す情報を含む請求項20の方法。

- 22. プローブ信号は他の局との接続を確立することを試みる局によって規則的に送信され、他の局はランダムな数のプローブ信号に対応する前記プローブ信号を受信し、前記ランダムな数は送信されるプローブ信号の数以下である請求項1~21のいずれかの方法。
- 23. 各局においてプローブタイマによってプローブ信号の送信インタバルを 制御し、前記プローブタイマは、連続するプローブ信号間の、プローブ信号の期 間より長いインタバルを規定し、そして連続するプローブ信号の間に応答信号を 送信する請求項22の方法。
- 24. 各局において、その局が送信するデータを有しているか否かに従って、 前記連続するプローブ信号間の前記インタバルを変更し、前記プローブタイマは

- 、前記局が送信するデータを有しているときは連続するプローブ信号間に第1の 相対的に短いインタバルを規定し、また前記局が送信するデータを有していない ときは連続するプローブ信号間に第2の相対的に長いインタバルを規定する請求 項23の方法。
- 25. 指定された重要な局は、それらを識別するデータを含んだプローブ信号を送信し、これらのプローブ信号を順番に受信した他の局は、それら自身のプローブ信号を、前記重要な局を識別するデータを含むように修正し、前記重要な局から離れた遠方の局でも前記データを獲得できるようにする請求項1~24のいずれかの方法。
- 26. 前記指定された重要な局は、ゲートウエイ局、許可当局の局および時々 刻々の発信局及び宛先局を含む請求項25の方法。
- 27. 選択された局に対して更新されたソフトウエアをアップロードすることによって、前記局の動作用に更新されたソフトウエアを分配し、そして他の各局が完全に更新されたソフトウエアを有するまで、他の局に対して前記更新されたソフトウエアの一部を分配する請求項1~26のいずれかの方法。
- 28. 前記更新されたソフトウエアは、複数の受信された更新ブロックから

前記更新されたソフトウエアを組立可能とするために、バージョンデータおよび ブロック番号データを含んだ更新ブロックで分配される請求項27の方法。

- 29. 少なくとも1つの前記更新されたソフトウエアは、前記更新されたソフトウエアが使用されなければならない日付と時刻を示すタイミングデータを含む 請求項28の方法。
- 30. それぞれがデータ送信及び受信可能な複数の局を備え、発信局からのデータを少なくとも1つの中間局を経由して宛先局へ送信できる通信ネットワークであって、前記局のそれぞれは、
 - a) 少なくとも1つの呼出チャネルを規定し、
- b) 各局では、第1の所定の基準に従って、他の局にプローブ信号を送信するための呼出チャネルをインタバルにおいて選択し、
 - c)選択された呼出チャネル上で各局からのプローブ信号をインタバルにお

いて送信し、特定局からの前記プローブ信号を受信する他の局は、それにより前 記特定局にそれらの宛先または中継局としての利用可能性を示すために、直接ま たは間接的に応答し、そして

d) 前記特定局が最適に通信できる他の局を識別するために、前記プローブ 信号に対する他の局の前記直接または間接応答を、前記特定局において第2の所 定の基準に従って評価する

ために使用されることを特徴とする通信ネットワーク。

【国際調査報告】

Form PCT/ISA/210 (second sheet) (July 1992)

	INTERNATIONAL SEARCH R	EPORT	
		Inter vial	Application No
		PCT/GB	98/01651
A. CLASS	IFICATION OF SUBJECT MATTER H04L12/56		
According t	o International Patent Classification (IPC) or to both retional classifica	ation and IPC	
	SEARCHED Commerciation searched (classification system tollowed by classification		
IPC 6	H04L	റെ ജന്യായു	
Cocurnenta	tion searched other than minimum documentation to the extent that s	left ett in bebylgni era stremucob frau	ts searched .
Electronia d	ata base consulted during the international search (name of data base)	se and, where practical, search terms	used)
	<u> </u>		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category 3	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
A	US 5 485 578 A (SWEAZEY PAUL) 16 January 1996 see claims		1,30
A	US 4 864 563 A (PAVEY CHARLES F 5 September 1989 		1,5,6,8, 25,30
Α	see column 7, line 10 - line 28 DUBE R ET AL: "SIGNAL STABILITY-		2,3,9-13
	ADAPTIVE ROUTING (SSA) FOR AD HOO NETWORKS" IEEE PERSONAL COMMUNICATIONS,	: MOBILE	2,5,3
	vol. 4, no. 1, February 1997, pag XP000679252 see abstract see page 38, left-hand column, li		
	line 60		
	- 	-/	
س	her documents are halled in the continuation of box C.	Potent family members are fi	sted in arnex.
	tegories of clied documents;	"T" later document published after the or phonty date and not in confect	International fling date
consider of	ent defining the general state of the art which is not lead to be of particular relevance document but published on or after the international	cited to understand the principle invention "X" document of perticular relevance;	or theory underlying the
wuich	int which may throw doubte an priority claum(s) or is died to establish the publication date of another	cannot be considered novel or ea involve an inventive step when the "V" document of particular relevances;	nnot be considered to e document is taken alone
O" docum	n or other special mason (as specified) ant referring to an oral disclosure, use, exhabition or means	cannot be considered to involve a document is combined with one of ments, such complication being o	n inventive step when the r more other such doou-
P" doeum:	ent published prior to the Intermittional filling date but nan the priority date disimed	in the art. "5." document member of the same pa	
Cate of the	actual completion of the international search	Date of mailing of the infernations	l search raport
1	1 December 1998	05.01.99	
Name and	making exclass of the ISA European Patent Office, P.B. 5818 Patentinan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tsl. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Perez Perez, J	

INTERNATIONAL SEARCH REPORT

triter nat Application No
PCT/G8 98/01651

		PCT/GB 98/01651
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Calogory -	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No
A	US 5 430 729 A (RAHNEMA MOE) 4 July 1995 see column 5, line 35 - line 56 see column 11, line 24 - line 47	14-18
A	ALBANESE A ET AL: "A ROUTING STRATEGY FOR INTERCONNECTING HIGH-SPEED METROPOLITAN AREANETWORKS1" COMPUTER COMMUNICATION TECHNOLOGIES FOR THE 90'S, TEL AVIV, OCT. 30 - NOV, 3, 1988, no. CONF. 9, 30 October 1988, pages 303-309, XP000077391 RAVIV J SEE paragraph 6.2 see paragraph 6.3 see paragraph 6.5	22-24
A	WO 89 05551 A (NETWORK EQUIPMENT TECH) 15 June 1989 see claim 1	27-29
		· w

INTERNATIONAL SEARCH REPORT

Int...ational application No. PCT/GB 98/01651

Box / Observations where certain claims were found unsearchable (Continuation of item 1 of first sho	eet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following	reasons:
t. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to an extent that no meaningful international Search can be carried out, specifically:	such
Claims Nos.: Decause they are dependent claims and are not drafted in accordance with the accordance and third sentences of Rule.	6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This international Searching Authority tound multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pa of any additional fee.	y men t
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Recovers only those claims for which fees were paid, specifically claims Nos.:	port ·
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	ort és
Remark on Protest X The additional search fees were accompanied by the applicant. No protest accompanied the payment of additional search fees	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

International Application No. PCT/GB 98/01651

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-26,30

Method of operating a communications network comprising the transmission of probe signals to discover the availability of other stations in the network as destination or intermediate stations

2. Claims: 1,27-29

Method of operating a communication network comprising a method of distribution of updated software for the operation of the stations.

INTERNATIONAL SEARCH REPORT

formation on patent family members

Inter Inal Application No PCT/GB 98/01651

Patent document cited in search report	Patent document Publication ed in search report date			Patent family member(s)		Publication oate
US 5485578	A	16-01-1996	NONE			
US 4864563	A	05-09-1989	NONE			
US 5430729	A	04-07-1995	CA	2142152	Α	05-10-1995
			CN	1115529	Α	24-01-1996
			DE	19505905	A	05-10-1995
			FR	2718314	Α	06-10-1995
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GB	2288296	A,B	11~10-1995
WO 8905551 A	Α	15-06-1989	us	4847830	A	11-07-1989
			ΑT	120919		15-04-1995
			AU	2824089		05-07-1989
			CA	1307350		08-09-1992
			DE	3853539	_	11-05-1995
			DE	3853539		14-12-1995
			EP	0396589		14-11-1990
		-	JP	3502742	τ	20-06-1991

Form PCT/ISA/210 (patient family annex) (Ady 1992)