Exercie

4 novembre 2020

Exercice

Soient
$$X=\{a,b\}$$
 et les langages L_1 et L_2 définis par :
$$L_1=\{w\in X^*, \exists n\in\mathbb{N}, w=a^nb^n\}$$

$$L_2=\{w\in X^*, w=\varepsilon \ ou \ \exists u\in L_2, w=a.u.b\}$$

Montrer que $L_1 = L_2$.

Corrigé

 L_1 est le langage défini par tous les mots de la forme $a^n b^n$:

- Pour n = 0, $a^n b^n = a^0 b^0 = \varepsilon \varepsilon = \varepsilon$
- Pour n = 1, $a^n b^n = a^1 b^1 = ab$
- Pour n = 2, $a^n b^n = a^2 b^2 = aabb$
- ...

Corrigé

L₂ est un langage défini de manière récursive :

- $\varepsilon \in L_2$,
- si $u \in L_2$ alors $a.u.b \in L_2$, comme $\varepsilon \in L_2$, $a.\varepsilon.b = ab \in L_2$,
- $ab \in L_2 \Rightarrow a.(ab).b = aabb \in L_2$,
- $aabb \in L_2 \Rightarrow a.(aabb).b = aaabbb \in L_2$,
- ...

Corrigé

- On constate que les langages L₁ et L₂ sont identiques, nous allons maintenant le démontrer,
- L_1 et L_2 sont par ailleurs infinis, alors nous allons démontrer que $L_1 = L_2$ par double-inclusion :
 - $L_1 \subset L_2$,
 - $\bullet \ L_2 \subset L_1.$

- Pour démontrer que $L_1 \subset L_2$, il suffit de démontrer que :
 - $\forall w \in L_1, w \in L_2$,
 - Il suffit de démontrer que $\forall n \in \mathbb{N}, a^n b^n \in L_2$,
 - Par récurrence.

- Pour n = 0, $a^n b^n = \varepsilon \varepsilon = \varepsilon \in L_2$,
- Pour $n \ge 0$, supposons que $a^n b^n \in L_2$ et montrons que $a^{n+1} b^{n+1} \in L_2$,
- $a^nb^n \in L_2 \Rightarrow a.(a^nb^n).b \in L_2$ car si $u \in L_2$, $a.u.b \in L_2$,
- $\bullet \Rightarrow (a.a^n).(b^n.b) \in L_2 \Rightarrow a^{n+1}.b^{n+1} \in L_2$
- Conclusion : $\forall n \in \mathbb{N}, a^n b^n \in L_2$,
- $\bullet \Rightarrow \forall w \in L_1, w \in L_2$,
- $L_1 \subset L_2$.

- Par récurrence,
- On commence par classer les mots de L₂ par ordre croissant de leurs longueurs,
- Pour tout langage infini, on peut classer ses éléments selon ce critère,
- Le(s) mot(s) ayant la longueur la plus petite dans le langage est classé à l'ordre 0,
- Le(s) mot(s) suivants sont d'ordre 1,
- Le(s) mot(s) suivants sont d'ordre 2,
- ...

- Nous allons démontrer que le(s) mots de L_2 classé(s) à l'ordre n est un élément de L_1 et ce $\forall n \in \mathbb{N}$,
- n ne représente par la longueur de $w \in L_2$ mais l'ordre de w dans L_2 selon le critère de classement choisi (la longueur),
- Pour L_2 , l'ordre 0 correspond au plus petit mot de L_2 , soit ε
- L'ordre 1 correspond au mot suivant, soit ab, remarquons que la longueur est 2 et pas 1, il n'y a aucun mot de longueur 1 dans L₂,
- L'ordre 2 correspond au mot suivant, soit aabb, la longueur est 4,
- . . .

- Nous allons démontrer par récurrence que $\forall n \in \mathbb{N}, \ \forall w \in L_2, w$ est d'ordre $n, \ w \in L_1$,
- Pour n=0 ($w=\varepsilon$), $w=\varepsilon=\varepsilon\varepsilon=a^0b^0\in L_1$ car a^0b^0 est la de la forme a^mb^m ,

- Pour $n \ge 0$ supposons que $\forall v \in L_2$ tel que v est d'ordre n, $v \in L_1$ et montrons que $\forall w \in L_2$ tel que w est d'ordre n+1, $w \in L_1$,
- Nous pouvons aussi démontrer que $\forall n \geq 0$, $\forall w \in L_2$ tel que w est d'ordre n+1, $w \in L_1$ en supposant que $\forall v \in L_2$ tel que v est d'ordre n, $v \in L_1$,
- Nous pouvons aussi démontrer que $\forall n \geq 0$, $\forall w \in L_2$ tel que w est d'ordre n+1, $w \in L_1$ en supposant que $\forall v \in L_2$ tel que v est d'ordre $\leq n$, $v \in L_1$,

- $n \ge 0$, soit $w \in L_2$, w est d'ordre n + 1,
- $w \in L_2$ et w est d'ordre $n + 1 \neq 0 \Rightarrow w \neq \varepsilon$,
- $w \in L_2$ et $w \neq \varepsilon \Rightarrow \exists u \in L_2, w = a.u.b$,

- $|w| = |a.u.b| = |a| + |u| + |b| = 1 + |u| + 1 \Rightarrow |u| < |w|$,
- $u \in L_2$ et |u| < |w| alors l'ordre de u est inférieur à l'ordre de w,
- Nous pouvons alors appliquer l'hypothèse de récurrence sur u, c'est-à-dire u ∈ L₁,
- $u \in L_1 \Rightarrow \exists m \in \mathbb{N}, u = a^m b^m$,
- $w = a.u.b = a.(a^mb^m).b = (a.a^m).(b^m.b) = a^{m+1}b^{m+1} \Rightarrow w \in L_1.$

- Conclusion : $\forall w \in L_2, w \in L_1 \Rightarrow L_2 \subset L_1$,
- $L_1 \subset L_2$ et $L_2 \subset L_1$ alors $L_1 = L_2$.