TFY4155/FY1003 Elektr. & magnetisme

Veiledning: Fredag 23. jan. ifølge nettsider. Innlevering: Mandag 26. jan. kl. 14:00

Lever øvinger i bokser utenfor R1.

I elmag bruker vi symbolet τ for volum siden symbolet V er reservert for elektrisk potensial.

Oppgave 1. Overflateladningstetthet på ladet metalloverflate.

Det største elektriske feltet som kan opprettholdes i luft er ca. 3 MV/m (V/m = N/C). Høyere verdier gir coronautladning (overslag). Vi har vist i forelesningene at ei metallkule vil ha all nettoladning samlet på overflata, og at det elektriske feltet ved overflata er $E = \sigma/\epsilon_0$, der σ er overflateladningstettheten.

- a) Hva er den største overflateladningstetthet ei metalloverflate kan holde?
- b) Hva er den minste radius ei metallkule kan ha for å holde på en ladning 1,0 C?
- c) Et typisk metall består av atomer i et kubisk gitter med avstand 0,30 nm mellom naboatomer. Hva er midlere antall atomer per m^2 overflate?
- d) La overflateladningen i a) befinne seg på metallet definert i c). Anta at ladningen er fordelt kun i det ytterste atomlaget på overflata. Hvor stor andel av atomene i dette laget har fått ett ekstra elektron?

Oppgave 2. Ladning på leder.

Figuren viser et snitt gjennom ei elektrisk ledende kule med et hulrom inni. Kula er elektrisk nøytral, hulrommet er sfærisk men ikke konsentrisk med metallkula. I hulrommet er det plassert en punktladning q, punktladningen ligger ikke i sentrum av verken hulrommet eller kula.

Hvordan vil (fri) ladning i lederen være fordelt når systemet er i elektrostatisk likevekt?

Skisser feltlinjer for det elektrostatiske feltet \vec{E} . Finn uttrykk for \vec{E} utenfor kula.

Ingen regning er påkrevd i denne oppgaven, bare elektrostatiske betraktninger med bruk av regler for feltlinjer og E-felt på overflata og inni metaller.

Oppgave 3. Sfærisk ladningsfordeling.

En sfærisk symmetrisk ladningsfordeling har en ladningstetthet $\rho(r)$ gitt ved:

$$\rho(r) = \begin{cases} \alpha & \text{for } r \in [0, R/2) \\ 2\alpha(1 - r/R) & \text{for } r \in [R/2, R) \\ 0 & \text{for } r \in [R, \infty) \end{cases}$$

Den totale ladningen for denne fordelingen er Q = 900 nC, radius til den sfærisk symmetriske ladningsfordelingen er R = 90,0 mm, og α er konstant med enhet Cm⁻³.

- a) Bestem α gitt ved Q og R. (Du må integrere $\rho d\tau$ over kulevolumet.) Finn også den numeriske verdien.
- b) Bestem det elektriske feltet som funksjon av avstanden fra sentrum av ladningsfordelingen for alle de tre områder av r. TIPS: Gauss' lov.
- c) Sjekk spesielt kontinuitet av det elektriske feltet i grensene mellom områdene. Hva er numerisk verdi av E på overflata av kula?

d) Lag en skisse av $E(r)$, bruk gjerne Matlab. '	Velg $\frac{r}{R}$ som x -akse og	$g \frac{E(r/R)}{kQ/R^2}$ som y-akse. Skiss	er også $\frac{\rho(r/R)}{\alpha}$ i
samme grafen. Disse valg gir dimensjonsløse stø	ørrelser på begge aksen	ne, som er gunstig for plot, s	spesielt i Matlab.

e) Hvor stor andel av totalladningen befinner seg i området $r \leq R/2$?

Oppgave 4. Molekylære dipoler.

 $Ammoniakk, NH_3, er \ en \ elektrisk \ dipol, \ bortrifluorid, BF_3, \ er \ det \ ikke. \ N \ og \ F \ er \ elektronegative \ (trekker \ elektroner$ til seg) mens H og B er elektropositive. Bruk disse opplysningene til å finne ut (kvalitativt) hvordan disse to molekylene ser ut. Kontroller svaret ditt via internett eller andre kilder.

 $Ut valgte\ fasits var:$

¹a) $27\,\mu\text{C/m}^2$, 1b) En av disse tre: 1,4 mm, 13,2 cm eller 55 m, 1c) $11\cdot 10^{18}\,\text{m}^{-2}$ 1d) $1,5\cdot 10^{-5}$. 3a) $\frac{8}{5\pi R^3}Q=0,629\,\text{mC/m}^3$, 3c) $1,00\,\text{MN/C}$, 3e) 4/15.