第十三單元 正弦與餘弦定理

(甲)三角形的面積

三角形的面積公式:

國中 \triangle ABC 面積= $\frac{1}{2}$ ×底×高,以底與高的長度表示面積但是當 \overline{BC} 邊上的『高』不容易求出來的時候(如有障礙物),我們可以利用三角函數邊角的關係

式間接求出高,於是 \triangle ABC的面積= $\frac{1}{2}$ $\times a \times b \sin$ C

事實上圖中,∠C是銳角,當∠C是直角或是鈍角時 △ABC,

 $\overline{\text{BC}}$ 邊上的高仍然是 $b \times \sin C$... $\triangle ABC$ 面積= $\frac{1}{2} \times a \times b \sin C$

同理由對稱性得 \triangle ABC 的面積 \triangle 式= $\frac{1}{2}$ ×a×b×sinC= $\frac{1}{2}$ ×b×c×sinA= $\frac{1}{2}$ ×c×a×sinB 結論:

△面積記憶法⇒利用三角函數定義,由 $\triangle = \frac{1}{2}$ ×底×高,導出兩邊夾角求面積,即 $\triangle = \frac{1}{2}$

 $\times a \times b \times \sin C = \frac{1}{2} \times b \times c \times \sin A = \frac{1}{2} \times c \times a \times \sin B$ (兩邊夾一角)

[**例題1**] 四邊形 ABCD, 設 θ 為對角線 \overline{AC} 與 \overline{BD} 的一個交角,

求證:此四邊形的面積為 $\frac{1}{2}$ \overline{AC} · \overline{BD} · $\sin\theta$ 。

(練習1) 設 $\triangle ABC$ 為直角三角形,ACEF 是以 \overline{AC} 為一邊

向外作出的正方形,BCDG 是以 \overline{BC} 為一邊向外作出的正方形,若AC=5、AB=4、BC=3,試求(a) $cos(\angle DCE)$ (b) ΔDCE 的面積。

Ans : $(a)^{\frac{-3}{5}}$ (b)6

(練習3) 利用三角形的面積公式證明:

設 P 為 ΔABC 上 \overline{BC} 或其延長線上的點,

- (1)若直線 AP 為 \angle A 的內角平分線,則 $\frac{BP}{PC} = \frac{BA}{AC}$ 。
- (2)若直線 AP 為 \angle A 的外角平分線,則 $\frac{BP}{PC}$ $\frac{BA}{AC}$ 。

(乙)正弦定理

國中幾何曾經學過「大邊對大角」這個性質,但這個性質只說角大則邊大,邊大則角大,這種說法似乎只是一種對於邊角關係的「定性描述」,那麼邊角之間有沒有「定量的描述」呢?我們用以下的定理來回答這個問題:

正弦定理:

ΕΔABC 中,以 a,b,c 表示 $\angle A$, $\angle B$, $\angle C$ 之對邊長度,

則 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,其中 R 為 ΔABC 外接圓的半徑。

證明:

由前面三角形的面積公式: $S_{\Delta ABC} = \frac{1}{2} \times a \times b \times sinC = \frac{1}{2} \times b \times c \times sinA = \frac{1}{2} \times c \times a \times sinB$

等號兩邊同除
$$abc$$
,可得 $\frac{\sin C}{c} = \frac{\sin B}{b} = \frac{\sin A}{a} \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 。

但是 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 等於多少呢?我們由以下的證明來說明:

我們將 Δ ABC 分成直角、銳角、鈍角三種情形來討論,如下圖所示:

(1)當∠A=90°

$$(1)$$
 $\angle A=90^{\circ}$ $\Rightarrow \frac{a}{\sin 90^{\circ}} = a=\overline{BC}=$ 外接圓直徑= $2R$ $\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

(2)∠A 為銳角:

過 B 做圓 O 的直徑 \overline{BD} ,因為 $\angle A$ 與 $\angle D$ 對同弧(\overrightarrow{BC}),因此 $\angle A$ = $\angle D$ 。

考慮直角三角形 BCD,由銳角三角形的定義可知 $\frac{BC}{BD}$ =sinD=sinA

$$\Rightarrow \frac{a}{\sin A} = BD =$$
外接圓直徑= $2R \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

(3)∠A 為鈍角:

過 B 做圓 O 的直徑BD, 因為∠A+∠D=180°, 所以 sin∠D=sin(180°-∠A)=sinA

考慮直角三角形 BCD,由銳角三角形的定義可知 $\frac{BC}{BD}$ =sinD=sinA

$$\Rightarrow \frac{a}{\sin A} = BD =$$
外接圓直徑= $2R \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ 。

結論:正弦定理與邊角變換:

(a) $a : b : c = \sin A : \sin B : \sin C \circ$

(b) 邊化角: $a=2R \cdot \sin A$, $b=2R \cdot \sin B$, $c=2R \cdot \sin C$ 。

(c)角化邊: $\sin A = \frac{a}{2R}$, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ 。

[**例題2**] 如下圖,請證明: $\frac{a}{\sin A}$ = 2R (R 為 Δ ABC 外接圓的半徑)

[**例題**3] 設圓內接四邊形 ABCD 中∠CAD=30°,∠ACB=45°, CD=2,則AB=____。
Ans: 2√2

- (練習4)利用三角形的面積公式與正弦定理,證明: ΔABC 的面積為 $\frac{abc}{4R}$ 。
- (練習5) Δ ABC 中 ,a,b,c 分別代表 \angle A, \angle B, \angle C 之對邊長度:
 - (1)若(b+c):(c+a):(a+b)=5:6:7, 試求 sinA:sinB:sinC。
 - (2)若∠B=55°,∠C=65°, a=10公分,試求外接圓半徑。

Ans: $(1)4:3:2 (2)\frac{10\cdot\sqrt{3}}{3}$ 公分

(練習6)在下列各條件下,求△ABC的外接圓半徑 R。

$$(1)\angle B=70^{\circ}$$
, $\angle C=80^{\circ}$, $a=3$ $(2)b=2$, $cosB=\frac{\sqrt{3}}{2}$ Ans: $(1)R=3(2)R=2$

(練習7)以 a,b,c 分別表示 \triangle ABC 之三邊 $\overline{BC},\overline{CA},\overline{AB}$ 的長,試在下列各條件下,

求 $\sin A$: $\sin B$: $\sin C$ \circ (已知 $\sin 75$ °= $\frac{\sqrt{6}+\sqrt{2}}{4}$)

- $(1)\angle A=30^{\circ}, \angle B=45^{\circ}$
- $(2)\angle A: \angle B: \angle C=3:4:5$
- (4)(a+b): (b+c): (c+a)=5: 6: 7

Ans:

 $(1)2: 2\sqrt{2}: \sqrt{6}+\sqrt{2}$ $(2)2\sqrt{2}: 2\sqrt{3}: \sqrt{6}+\sqrt{2}$ (3)3: 5: 7 (4)3: 2: 4

(丙)餘弦定理

直角三角形中的寶藏是畢氏定理。即在直角 \triangle ABC中,若夾角 \angle C=90°則知兩鄰邊a,b,可由畢氏定理 $c^2=a^2+b^2$ 求出對邊 c;對於一般的三角形,如果夾角給定,但不一定是直角,如何求第三邊的長呢?餘弦定理就代替了直角三角形特有的畢氏定理。

(1)從畢氏定理到餘弦定理:

畢氏定理第一個證明是《幾何原本》所記載的,《幾何原本》中證明了正方形 ABDE 的面積等於正方形 ACFG 與正方形 BCHI 的面積和,這個證明出現在第一卷命題 47,它證明的要點如下:

(1°)證明△BCD≅△BIA,

 (2°) 證明矩形 BDLK 面積 = Δ BCD 面積 \times 2,正方形 BCHI 面積 = Δ BIA 面積 \times 2, 因此矩形 BDLK 面積 = 正方形 BCHI 面積。 同理可以證明矩形 AELK 面積 = 正方形 AGFC 面積,

將《幾何原本》中的證明推廣成一般的三角形, 延續這個精神可以得出一般三角形類似的邊角關係。 如右上圖,可以得出:

 c^2 =②+③ =(①+②)+(①+③) -2×① = b^2 + a^2 -2ab·cosC [討論]:

如圖,∠C 為鈍角,請問上述的結果會成立嗎?

(2)餘弦定理的證明:

例子: 設ΔABC 中, \angle A=30°, \overline{AB} =6, \overline{AC} =7, 請求出 \overline{BC} =?

[解法]:

作高BD,AD=6·cos30°,BD=6·sin30°⇒CD=7-6·cos30°

在ΔBDC 中,∠BDC=90°

$$\Rightarrow \overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2$$

$$\Rightarrow \overline{BC}^{2} = (6 \cdot \sin 30^{\circ})^{2} + (7 - 6 \cdot \cos 30^{\circ})^{2}$$

$$= 6^{2} (\sin^{2} 30^{\circ}) + 7^{2} - 2 \times 6 \times 7 \times \cos 30^{\circ} + 6^{2} (\cos^{2} 30^{\circ})$$

$$= 6^{2} (\sin^{2} 30^{\circ} + \cos^{2} 30^{\circ}) + 7^{2} - 2 \times 6 \times 7 \times \cos 30^{\circ}$$

 $=6^2+7^2-2\times6\times7\times\cos30^\circ$

上例的解法,對於ZA為鈍角或直角時都會成立,我們將其寫成底下的定理。

餘弦定理:

在ΔABC 中,若 a,b,c 為 \angle A, \angle B, \angle C 之對邊長,則

$$a^2=b^2+c^2-2bc\cdot\cos A$$

$$b^2=a^2+c^2-2ac\cdot\cos B$$

$$c^2=a^2+b^2-2ab\cdot\cos C$$

證明:在ΔABC中,依∠A為銳角、直角、鈍角三種情形來說明:

設 C 點對 AB 邊或其延長線的垂足點為 D

(1)∠A 為銳角

(3) ∠A 為鈍角

 $\because \cos A > 0$

 $\because \cos A = 0$

 $\therefore \overline{BD} = \overline{AB} - \overline{AD} = c - b \cdot \cos A$

 $\therefore \overline{BD} = \overline{AB} = c - b \cdot coA$ $\therefore \overline{BD} = \overline{AB} + \overline{AD} = c + |b \cdot cosA|$

 $=c-b\cdot\cos A$

由以上的討論可知:不論 $\angle A$ 為銳角、直角、鈍角均可得 $\overline{BD}=c-b\cdot\cos A$ 。

又因為 $a^2 = \overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2$

 $=(c-b\cdot\cos A)^2+(b\cdot\sin A)^2=c^2-2bc\cdot\cos A+b^2\cdot\cos^2 A+b^2\cdot\sin^2 A=c^2+b^2-2bc\cdot\cos A$ 故 $a^2=b^2+c^2-2bc\cdot\cos A$,同理可證 $b^2=a^2+c^2-2ac\cdot\cos B$, $c^2=a^2+b^2-2ab\cdot\cos C$ 。

結論:

(a)由餘弦定理,可知
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 , $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

(b)從(a)可知
$$\angle A=90^{\circ} \Leftrightarrow a^2=b^2+c^2$$
 $\angle A<90^{\circ} \Leftrightarrow a^2< b^2+c^2$ $\angle A>90^{\circ} \Leftrightarrow a^2>b^2+c^2$

[**例題4**] 在
$$\Delta$$
ABC 中已知 \sin A: \sin B: \sin C= 4:5:7,则求 \cos C = ? \sin C=? Ans : $\frac{-1}{5}$ 、 $\frac{2\sqrt{6}}{5}$

(練習8)
$$\Delta$$
ABC 中,若 $(a+b+c)(a+b-c)=3ab$,則 \angle C=____。 Ans: 60°

(練習9)設 a,b,c 為 Δ ABC 的三邊長且滿足 $(a-2b+c)^2+(3a+b-2c)^2=0$,若 θ 為 Δ ABC 的最大內角,求 $\cos\theta=$ ____。 Ans: $\frac{-1}{2}$

(丁)正餘弦定理的應用

- (1)三角形的邊角關係:
- (a)三角形的全等性質有 SSS、SAS、AAS、ASA、斜股性質,我們可以利用正 餘弦定理來解出唯一的三角形。
- (b)SSA 型的討論: \triangle ABC 中,若已知 a,b 及 \angle A

[想法]:設 $\overline{AC}=b$,利用尺規在 $\angle A$ 的邊 \overrightarrow{AX} 上做出 B 點使得 $\overline{BC}=a$ 。想要找出 另一個頂點 B,則圓規打開的半徑大小 a,一定要比頂點 C 到 \overrightarrow{AX} 的 距離大才有交點。

 (1°) \angle A 為銳角時,頂點 C 到 \overrightarrow{AX} 的距離 $h=b \cdot \sin A \circ$

a<h 時,找不到 B 點 ⇒無解。(如圖一)

a=h 時,找到唯一一點 B ⇒恰有一解 (如圖二)

h < a < b 時,有兩個 B 點 ⇒有兩解 (如圖三)

b ≤ a 時,找到唯一一點 B ⇒ 恰有一解 (如圖四)

 (2°) $\angle A$ 為鈍角時,頂點 \mathbb{C} 到 \overline{AX} 的距離=b

 $a \le b$ 時,找不到 B 點 ⇒無解。(如圖五) a > b 時,找到唯一一點 B ⇒恰有一解 (如圖六)

[例題5] 已知 $\triangle ABC$ 中, \overline{AC} =15, \overline{AB} =15 $\sqrt{3}$, $\angle B$ =30°, $\|\angle A$ =? \overline{BC} =? Ans: $\angle A$ =90°, \overline{BC} =30; $\angle A$ =30°, \overline{BC} =15

[例題6] $\triangle ABC$ 中, $\angle A=45^{\circ}$, $\angle B=60^{\circ}$, $\overline{BC}=7$,求 \overline{AB} 及 \overline{AC} 之長。 $(\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4})$ Ans: $\overline{AB} = \frac{7}{2}(\sqrt{3}+1)$, $\overline{AC} = \frac{7}{2}\sqrt{6}$ (練習10) 由下列條件解 $\triangle ABC$,何者恰有一解?(A) $\angle A = 40^{\circ}$, $\angle B = 60^{\circ}$, $\angle C = 80^{\circ}$ (B) a = 2, b = 4, c = 6 (C) a = 1, b = 2, $\angle A = 30^{\circ}$ (D) a = 1, b = 3, $\angle A = 30^{\circ}$ (E) a = 1, b = 4, $\angle C = 40^{\circ}$ 。 Ans: (C)(E)

(練習11) $\triangle ABC$ 中,設 c=8, $\angle A=105^{\circ}$, $\angle B=45^{\circ}$,求 b=? Ans: $8\sqrt{2}$

(2)求三角形的面積:

(a)Heron 公式

設ΔABC 中,a,b,c 分別為 \angle A, \angle B, \angle C 之對邊長, \diamondsuit s= $\frac{a+b+c}{2}$,

$$\exists \exists S_{ABC} = \sqrt{s(s-a)(s-b)(s-c)} \circ$$

[證明]:

由餘弦定理,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$S_{ABC} = \frac{1}{2}ac \cdot \sin B = \frac{1}{2}ac \cdot \sqrt{1 - \cos^2 B} = \frac{1}{2}ac \sqrt{1 - (\frac{a^2 + c^2 - b^2}{2ac})^2} = \frac{1}{2}ac \cdot \frac{1}{2ac} \cdot \sqrt{(2ac)^2 - (a^2 + c^2 - b^2)^2}$$

$$= \frac{1}{4} \sqrt{[(a+c)^2 - b^2][b^2 - (a-c)]^2} = \frac{1}{4} \sqrt{(a+c+b)(a+c-b)(b+a-c)(b-a+c)}$$

$$= \frac{1}{4} \sqrt{(2s)(2s-2b)(2s-2c)(2s-2a)} = \sqrt{s(s-a)(s-b)(s-c)}$$

(r 為三角形 ABC 內切圓的半徑)

[證明]

- 三角形 ABC 的面積
- $=\Delta ABI+\Delta BCI+\Delta CAI$

$$=\frac{1}{2}c \cdot r + \frac{1}{2}a \cdot r + \frac{1}{2}b \cdot r = \frac{1}{2}(a+b+c) \cdot r = r \cdot s$$

$$\Delta$$
ABC 的面積= $\frac{1}{2}$ 底×高
$$= \frac{1}{2} bc \sin A(\frac{1}{2} \text{ 兩邊乘積×夾角的正弦值})$$

$$= \sqrt{s(s-a)(s-b)(s-c)} s=$$
周長之半
$$= \frac{abc}{4R} (R 為三角形 ABC 外接圓的半徑)$$

$$= r \cdot s \quad (r 為三角形 ABC 內切圓的半徑)$$

結論:

(a)已知三邊: $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ (Heron 公式)

(b)已知二邊與夾角: $\Delta ABC = \frac{1}{2}ab \cdot \sin C = \frac{1}{2}bc \cdot \sin A = \frac{1}{2}ca \cdot \sin B$

 $(\frac{1}{2}$ 兩邊乘積×夾角的正弦值)

- (c)已知內切圓半徑 $r: \Delta ABC=rs$ 。
- (d)已知外接圓半徑 $R: \Delta ABC = \frac{abc}{4R}$ 。
- (e)任意凸多邊形面積= $\frac{1}{2} \cdot l \cdot m \cdot \sin \theta$ (l,m 為對角線長, θ 表示兩對角線之一夾角)

(練習12)已知ΔABC 之三邊長分別為 4,6,8,則

- (1)ΔABC 的面積=?(2)邊長 6 所對應的高=?
- (3)ΔABC的內切圓半徑=?(4)ΔABC的外接圓半徑=?

Ans:
$$(1)3\sqrt{15}$$
 $(2)\sqrt{15}$ $(3)\frac{\sqrt{15}}{3}$ $(4)\frac{16\sqrt{15}}{15}$

- (練習13) 有一凸多邊形 ABCD,若 \overline{AB} =2, \overline{BC} =6, \overline{CD} =4, \overline{BD} =6, $\angle ABD$ =30°,則 此四邊形的面積=? Ans:3+8 $\sqrt{2}$
 - (3)三角形或多邊形的邊角計算:

正弦與餘弦定理是處理三角形或多邊形的邊角計算的重要工具,許多問題都會用到這兩個重要的結果,接下來利用一些實例來處理這兩個定理的應用:

[例題7] 三角形的中線定理

三角形 ABC 中, D 為 BC 之中點,試證: $\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AD}^2 + \overline{BD}^2)$ 。

[例題8] 斯圖爾特(Stewart)定理

設 E Δ ABC 中 \overline{AB} 上的點,

 $\text{MI}\overline{AC^2} \cdot \overline{EB} + \overline{BC^2} \cdot \overline{AE} = \overline{CE^2} \cdot \overline{AB} + \overline{AE} \cdot \overline{EB} \cdot \overline{AB} \circ$

[**例題9**] 已知圓內接四邊形 ABCD 的各邊長為 \overline{AB} =1, \overline{BC} =2, \overline{CD} =3, \overline{AD} =4,

則(1)AC =? (2)sin ∠ABC=? (3)ABCD的面積

Ans:
$$(1)\sqrt{\frac{55}{7}}$$
 $(2)\frac{2\sqrt{6}}{7}$ $(3)2\sqrt{6}$

[**例題10**] 圓內接四邊形 ABCD 中,AB=5,BC=12,AC=13,∠A=120°,

則
$$\overline{BD}$$
=? Ans: $\frac{13\sqrt{3}}{2}$

[例題11] $\triangle ABC$ 中, $\angle A$ 之內角平分線交 \overline{BC} 於 D, \overline{AB} =3, \overline{AC} =6, $\angle A$ =120°,

則 \overline{AD} =____。 \overline{CD} =___。 Ans: 2; $2\sqrt{7}$

(練習14) 證明:平行四邊形 ABCD中,對角線平方和=四個邊的平方和。

(練習15) 如右圖,試求 \overline{AD} =? Ans: $\frac{\sqrt{79}}{2}$

- (練習16) 設 \overline{AM} 為 ΔABC 上 \overline{BC} 的中線, 證明: $\overline{AM}^2 = \frac{1}{4}(b^2 + c^2 + 2bc \cos A)$ 。
- (練習17) 如右圖, △ABC中, ĀB =6,ĀC=10,∠BAC=120°, ∠BAD=30°, \bigcirc Ans : $\frac{30\sqrt{3}}{13}$
- (練習18) ΔABC 中若滿足以下條件則其形狀為何? (1)2cosBsinA=sinC (2) $a \cdot \cos A - b \cdot \cos B + c \cdot \cos C = 0$ Ans:(1)等腰三角形 (2)直角三角形

綜合練習

(1) 嘌呤是構成人體基因的重要物質,它的化學結構式主要是由一個正五邊形與一個正六邊形構成(令它們的邊長均為1)的平面圖形,如下圖所示:

是回答下列各小題:

- (a)∠BAC、∠ABC、∠ACB的度數。
- (b)請指出ΔABC 的外接圓半徑與圓心。
- (c)將ΔABC 的邊長用正弦來表示。
- (d)利用餘弦定理證明:

 $\sin^2 54^\circ + \sin^2 66^\circ - \sin 54^\circ \sin 66^\circ = \frac{3}{4}^\circ$

- (2) $\triangle ABC$ 中,設 a=3,b=4, $\tan A=\frac{3}{4}$,求 c=?
- (3) 如圖,設每一小格皆為正方形,求 $\cos\theta$ =?

- (4) 設ΔABC 之三高為 h_a =6, h_b =4, h_c =3, 則求最小內角之餘弦為______;最小邊長=_____。
- (5) 郊外有甲,乙,丙三家,兩兩相距 70,80,90 公尺,今計畫公設一井, \mathbf{c} 井到三家必須等距,則此距離為______公尺。
- (6) 在ΔABC 中,M 為BC邊之中點,若AB=3,AC=5,且∠BAC=120°, 則 tan∠BAM=_____。(2007 學科)
- (7) 在ΔABC 中,D 為BC 邊上一點且AD平分∠BAC。已知BD=5;DC=7,且∠ABC=60°
 - (a)試求 sin∠ACB 之值。(b)試求 sin∠BAC 之值。(c)試求AB邊之長。(2012 指定甲)
- (8) 圓內接四邊形 ABCD,ĀB=5,∠ADC=105°,∠DCB=90°,∠ABD=60°, 求對角線BD、ĀC的長度。

(10) 已知 $\triangle ABC$ 三邊長分別為 $\overline{AB}=7$, $\overline{BC}=5$, $\overline{AC}=3$, 延長 \overline{BC} 至 D,如右圖所示,使得 $\overline{CD}=2$,則 $\overline{AD}=?$

- (11) 設 $\angle BAC = 60^{\circ}$,P 為其內部一點且 $\overline{AP} = 10$,又 P 對於 \overline{AB} 、 \overline{AC} 的對稱點分別為 Q、R,則 $\overline{QR} = ?$
- (12) \triangle ABC 中滿足 $a \cos A = b \cos B$,請問此三角形之形狀為何?
- (13) 在 $\triangle ABC 中 , \angle ABC=75^{\circ} , \angle ABD=30^{\circ} , \overline{AB}=1 , \overline{BC}=\sqrt{2} , 則\overline{BD}=?$
- (14) $\triangle ABC$ 中, $\angle A=60^{\circ}$, $\overline{AB}=15$, $\overline{AC}=24$,則 $\angle A$ 的外角平分線 \overline{AD} 長為多少?
- (15) 在 Δ ABC 中, \overline{AB} =10, \overline{AC} =9, \cos \angle BAC= $\frac{3}{8}$ 。設點 P、Q 分別在邊 AB、AC 上使 得 Δ APQ 之面積為 Δ ABC 面積之一半,則 \overline{PQ} 之最小可能值為____。 (化成最簡分數) (2009 學科能力測驗)

進階問題

(16) 如圖, $\overline{OA}=a$, $\overline{OB}=b$, $\overline{OC}=c$, $\angle AOC=\angle BOC=30^{\circ}$, 試證 $\frac{1}{a}+\frac{1}{b}=\frac{\sqrt{3}}{c}$ 。

(17)(張角定理)

設 $A \times B \times C$ 順次分別是平面內一點 P 所引的三條射線 $PA \times PB \times PC$ 上點,線段 $AB \times AC$ 對點 P 的張角分別為 $\alpha \times \beta$,且 $\alpha + \beta < 180^{\circ}$,則 $A \times B \times C$ 三點共線的

充要條件是: $\frac{\sin(\alpha+\beta)}{PC} = \frac{\sin\alpha}{PB} + \frac{\sin\beta}{PA}$ 。

- (18) 在ΔABC 中,若 a,b,c 分別代表ΔABC 的三邊長 \overline{BC} 、 \overline{CA} 、 \overline{AB} 之長。 (1)試證: $a=b\cdot\cos C+c\cdot\cos B$, $b=a\cdot\cos C+c\cdot\cos B$, $c=a\cos B+b\cos A$
 - (2)利用(1)去證明: $a^2=b^2+c^2-2bc\cos A$ 。
- (19) ΔABC 中,周長為 20, $\angle A=60^{\circ}$,外接圓的半徑為 $R=\frac{7\sqrt{3}}{3}$ 則求各邊的邊長 a,b,c,又三角形的內切圓半徑為何?

- (20) 設 \triangle ABC 之三邊長為 $\sqrt{3}$ x, y, 且邊長 $\sqrt{3}$ 之對角為 60° , 試求 x+y 的範圍。
- (21) 設凸四邊形 ABCD 之對角線 AC=p,BD=q,兩對角線之交角為 θ 。 (a)試證:凸四邊形 ABCD 之面積 $=\frac{1}{2}$ pq $\sin\theta$ (b)若 AC+BD=10,則凸四邊形 ABCD 面積之最大值為何?
- (22) Δ ABC 中,設 a=2,b=1 (a)當 Δ ABC 面積最大時,求 c。(b)當 \angle B 最大時,求 c。

(23) 設 ABCD 為半圓內接四邊形, $\overline{\text{AD}}$ 為直徑長為 d,若 $\overline{\text{AB}}=a$, $\overline{\text{BC}}=b$, $\overline{\text{CD}}=c$,試 證明:d 為方程式 $x^3-(a^2+b^2+c^2)x-2abc=0$ 的一根。

(25) 如圖,設 Δ ABC 之內切圓半徑為 r,外接圓半徑為 R, 內切圓切三邊於 P,Q,R,則 $\frac{\Delta PQR的面積}{\Delta ABC的面積}$ 之值為何?

- (26) 設圓內接四邊形 ABCD 四邊之長分別為 $\overline{AB}=a$, $\overline{BC}=b$, $\overline{CD}=c$, $\overline{AD}=d$,試證: $(a)\overline{AC}^2 = \frac{(ac+bd)(ad+bc)}{ab+cd} \circ (b)\overline{BD}^2 = \frac{(ac+bd)(ab+cd)}{ad+bc} (c)\overline{AC} \cdot \overline{BD} = ac+bd \circ$
- (27) 已知三角形 ABC 的邊 \overline{AB} =9, \overline{AC} =8, $\angle A$ =40°,在 \overline{AB} 上取一點 D,在 \overline{AC} 上 取一點 E 而 \overline{DE} 把 $\triangle ABC$ 的面積等分為二,試問:若要求 \overline{DE} 之長度最短, \overline{AD} 及 \overline{AE} 之值應為何?

綜合練習解答

- (1) (a) \angle BAC=66° \ \angle ABC=54° \ \angle ACB=60°
 - (b)O 為ΔABC 的外接圓圓心,半徑=1
 - (c) \overline{BC} =2sin66° \overline{AC} =2sin54° \overline{AB} =2sin60°= $\sqrt{3}$
 - (d)利用AB²=AC²+BC²-2AC·BCcos∠ACB,即可得證。
- (2) $5 \, \text{$\frac{7}{5}$}$
- (3) $\frac{2}{\sqrt{85}}$
- (4) $\frac{7}{8}$; $\frac{16 \cdot \sqrt{15}}{15}$
- $(5) \frac{65}{6}$
- (6) $21\sqrt{5}$
- (7) (a) $\frac{5\sqrt{3}}{14}$ (b) $\frac{4\sqrt{3}}{7}$ (c) $\frac{15}{2}$
- (8) $5\sqrt{3}$
- (9) $\overline{BD} = 10 \cdot \overline{AC} = \frac{5(\sqrt{6} + \sqrt{2})}{2}$
- (10) 14
- (11) $\sqrt{7}$
- (12) 10√3 [提示∠QAR=120°]
- (13) 等腰或直角三角形[提示:利用 $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, $\cos B = \frac{a^2 + c^2 b^2}{2ac}$ 代入 $a \cos A = b \cos B$,化簡可得 $(a^2 b^2)(c^2 a^2 b^2) = 0$]
- (14) $\frac{\sqrt{3}+1}{3}$
- (15) 40
- (16) $\frac{15}{2}$

因為 $\triangle APQ$ 與 $\triangle ABC$ 共用一個 $\angle A$,這兩個三角形的面積比為其共角夾邊的 乘 積 比 ,即 欲 使 $\triangle APQ$ 之 面 積 為 $\triangle ABC$ 面 積 之 一 半 ,則 須 $\overline{AP} \times \overline{AQ} = \frac{1}{2}\overline{AB} \times \overline{AC} = 45$ 。

假設 $x = \overline{AP}$, $y = \overline{AQ}$, $t = \overline{PQ}$ 。 $\triangle APQ$ 中 , $t^2 = x^2 + y^2 - 2xy \cos A$ 。 因為 $x^2 + y^2 \ge 2xy = 90$,所以 , $t^2 \ge 90 - \frac{135}{4} = \frac{225}{4} \Rightarrow t \ge \frac{15}{2}$ 。

- (17) [提示:考慮 $\triangle AOB = \triangle AOC + \triangle BOC$,再利用三角形的面積公式,即可得證]
- (18) 提示:ΔABP 的面積=ΔACP 面積+ΔCBP 面積提示:
- (19) 略

- (21) $\sqrt{3} < x + y \le 2\sqrt{3}$ [提示:根據餘弦定理= $x^2 + y^2 xy = (x + y)^2 3xy$ $\Rightarrow (x + y)^2 = 3(xy + 1)$,因為 $xy = x^2 + y^2 3 \ge 2xy 3 \Rightarrow xy \le 3 \Rightarrow (x + y)^2 = 3(xy + 1) \le 12$]
- (22) (b) $\frac{50}{4}$ [提示:利用 $pq \le \frac{1}{4} (p+q)^2$]
- (23) (a) $\sqrt{5}$ (b) $\sqrt{3}$ (提示: (b) $\cos B = \frac{c^2 + 3}{2c} = \frac{1}{2}(c + \frac{3}{c}) \ge \frac{\sqrt{3}}{2}$)
- (24) [提示: $\overline{AC}^2=a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D$,因為 $\angle ACD=90^\circ$, $\cos D=\frac{c}{d}$,代入前面的式子化簡即可得證]
- (25) [提示:如(24)題圖,只需證明AR=s-a即可]
- (26) $\frac{r}{2R}$

[提示:如(24)題圖,ΔPQR=ΔRQI+ΔRPI+ΔPQI = $\frac{1}{2}r^2\sin(180^\circ - A) + \frac{1}{2}r^2\sin(180^\circ - B) + \frac{1}{2}r^2\sin(180^\circ - C) = \frac{1}{2}r^2(\sin A + \sin B + \sin C) = \frac{1}{4R}r^2(a + b + c) = \frac{r^2s}{2R}$,ΔABC=rs]

- (27) [提示:利用 $\overline{AC}^2=a^2+b^2-2ab\cos B=c^2+d^2-2cd\cos D$,而且 $\angle B+\angle D=180^\circ$]
- (28) $\overline{AD} = \overline{AE} = 6$ [提示: 設 $\overline{AD} = x$, $\overline{AE} = y$, $\Delta ADE = \frac{1}{2}xy\sin 40^{\circ} = \frac{1}{2}$ $\Delta ABC = \frac{1}{2}(\frac{1}{2}xy\sin 40^{\circ})$ $\Rightarrow xy = 36$ $\Rightarrow x$

 $\overline{\mathrm{DE}}^2 = x^2 + y^2 - 2xy\cos 40^\circ \ge 2xy - 2xy\cos 40^\circ = 72(1-\cos 40^\circ)$ 等號成立時, $x = y = 6^\circ$]