PRANAV GARG (PG26855) PROJECT

2024-07-24

Approach

Approach Followed in the Code

1. Data Import and Initial Exploration:

- Load the dataset and display its structure.
- Perform initial data exploration to understand the data characteristics.

2. Data Manipulation:

- Add a new column logLatestPrice by taking the logarithm of latestPrice.
- Derive the age of the house and categorize it into different age groups.

3. Binary Columns and Amenities:

- Convert binary columns (hasAssociation, hasGarage, hasSpa, hasView) to numeric.
- Create a new feature total amenities by summing up the binary columns.

4. Sale Date Features:

- Extract and convert sale date components into year, month, and day.
- Categorize the sale date into seasons (Winter, Spring, Summer, Fall).

5. Geospatial Features:

Perform clustering based on latitude and longitude to create a new feature crosscluster.

6. Calculating Correlations and Aggregating Amenities:

- Calculate correlations of various amenity features with the target variable logLatestPrice.
- Aggregate amenities with specified weights to create a new total amenities feature.

7. Handling Missing Values:

- Handle missing values by replacing them with -1 and dropping any remaining NA values.
- Convert categorical variables to factors.

8. Data Visualization:

Plot a correlation matrix to understand the relationships between different variables.

9. Feature Engineering:

 Define various formulas for the regression models, selecting different sets of features based on their correlation with the target variable.

10. Modeling:

- Split the data into training and test sets.
- Train and evaluate multiple models including Regression Tree, Pruned Tree, Bagging with Random Forest, Random Forest with different mtry values, XGBoost, BART, Ridge, and Lasso Regression.
- Calculate and compare the MSE and RMSE for each model to identify the best performer.

11. Model Comparison and Conclusion:

- Summarize the performance of different models.
- Provide insights and recommendations based on the model performance.

12. Applying the Best Model on the Holdout Set:

- Load and preprocess the holdout dataset similarly to the training dataset.
- Train the BART model using the training data.
- Make predictions on the holdout dataset using the trained BART model.
- Export the updated holdout dataset with the predicted latestPrice.

Summary:

The approach involves comprehensive data preprocessing, feature engineering, model training, and evaluation. It concludes with applying the best model (BART) on a holdout dataset to make predictions, ensuring that all preprocessing steps are consistently applied to both the training and holdout datasets.

Importing Libraries

Data Import and Initial Exploration

```
austin_data <- read.csv("austinhouses.csv")
names(austin_data)</pre>
```

```
"zipcode"
##
    [1] "streetAddress"
##
    [3] "description"
                                       "latitude"
    [5] "longitude"
                                       "garageSpaces"
##
    [7] "hasAssociation"
                                       "hasGarage"
##
##
    [9] "hasSpa"
                                       "hasView"
                                       "yearBuilt"
## [11] "homeType"
## [13] "latestPrice"
                                       "latest saledate"
                                       "latest saleyear"
## [15] "latest salemonth"
## [17] "numOfPhotos"
                                       "numOfAccessibilityFeatures"
## [19] "numOfAppliances"
                                       "numOfParkingFeatures"
## [21] "numOfPatioAndPorchFeatures"
                                      "numOfSecurityFeatures"
## [23] "numOfWaterfrontFeatures"
                                       "numOfWindowFeatures"
                                       "lotSizeSqFt"
## [25] "numOfCommunityFeatures"
## [27] "livingAreaSqFt"
                                       "avgSchoolDistance"
                                       "avgSchoolSize"
## [29] "avgSchoolRating"
                                       "numOfBathrooms"
## [31] "MedianStudentsPerTeacher"
## [33] "numOfBedrooms"
                                       "numOfStories"
```

```
glimpse((austin_data))
```

```
## Rows: 6,784
## Columns: 34
                              <chr> "14004 Chisos Trl", "14405 Laurinburg Dr", ...
## $ streetAddress
## $ zipcode
                              <int> 78717, 78717, 78725, 78725, 78726, 78726, 7...
## $ description
                              <chr> "COVETED, SPACIOUS 3 bed + OFFICE, 1story M...
## $ latitude
                              <dbl> 30.49564, 30.48878, 30.23315, 30.23824, 30...
                              <dbl> -97.79787, -97.79490, -97.58732, -97.57833,...
## $ longitude
## $ garageSpaces
                              <int> 0, 2, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0...
                              <lql> TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, ...
## $ hasAssociation
## $ hasGarage
                              <lgl> FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE...
## $ hasSpa
                              <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, F...
## $ hasView
                              <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FA...
                              <chr> "Single Family", "Single Family", "Single F...
## $ homeType
                              <int> 2008, 2013, 1999, 2012, 2004, 2005, 2000, 2...
## $ yearBuilt
## $ latestPrice
                              <dbl> 400.000, 549.900, 240.000, 200.000, 875.000...
                              <chr> "2020-01-10", "2018-03-13", "2020-12-31", "...
## $ latest saledate
## $ latest salemonth
                              <int> 1, 3, 12, 1, 11, 9, 6, 3, 3, 3, 1, 6, 2, 4,...
## $ latest saleyear
                              <int> 2020, 2018, 2020, 2018, 2020, 2019, 2019, 2...
## $ numOfPhotos
                              <int> 20, 69, 10, 33, 38, 37, 24, 26, 31, 8, 24, ...
<int> 3, 4, 4, 5, 8, 4, 4, 4, 7, 2, 6, 4, 3, 5, 3...
## $ numOfAppliances
## $ numOfParkingFeatures
                              <int> 2, 3, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2...
## $ numOfPatioAndPorchFeatures <int> 0, 0, 2, 0, 4, 1, 0, 0, 0, 2, 0, 1, 0, 1, 2...
## $ numOfSecurityFeatures
                              <int> 0, 0, 0, 0, 1, 3, 1, 0, 0, 2, 0, 4, 0, 1, 1...
## $ numOfWaterfrontFeatures
                              ## $ numOfWindowFeatures
                              <int> 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1...
## $ numOfCommunityFeatures
                              <dbl> 7666.0, 8494.0, 5183.0, 8145.0, 30056.4, 19...
## $ lotSizeSqFt
## $ livingAreaSqFt
                              <int> 2228, 3494, 1534, 1652, 3402, 3573, 2035, 1...
## $ avgSchoolDistance
                              <dbl> 1.900000, 3.300000, 1.800000, 1.966667, 2.0...
## $ avgSchoolRating
                              <dbl> 8.333333, 7.666667, 3.000000, 3.000000, 7.0...
## $ avgSchoolSize
                              <int> 1481, 1259, 1457, 1457, 1277, 1277, 1457, 1...
                              <int> 16, 14, 13, 13, 16, 16, 13, 13, 12, 15, 13,...
## $ MedianStudentsPerTeacher
## $ numOfBathrooms
                              <dbl> 2, 5, 3, 2, 4, 5, 3, 2, 3, 3, 3, 3, 2, 2, 2...
## $ numOfBedrooms
                              <int> 3, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3...
## $ numOfStories
                              <int> 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1...
```

Data Manipulation

Binary Columns and Amenities

```
# Convert binary columns to numeric and aggregate amenities
binary_columns <- c('hasAssociation', 'hasGarage', 'hasSpa', 'hasView')
austin_data[binary_columns] <- lapply(austin_data[binary_columns], as.numeric)

# Create a total_amenities feature
austin_data <- austin_data %>%
   mutate(total_amenities = rowSums(select(., all_of(binary_columns))))

# Ensure we retain the individual binary features
#austin_data <- austin_data %>%
# select(-hasAssociation, -hasSpa, -hasView, -hasGarage)
```

Sale Date Features

Geospatial Features

```
# Clustering based on latitude and longitude
set.seed(123)
coords <- austin_data %>% select(latitude, longitude)
clusters <- kmeans(coords, centers = 5)$cluster
austin_data <- austin_data %>% mutate(crossCluster = as.factor(clusters))
```

Calculating Correlations and Aggregating Amenities

```
numOfAppliances
## numOfAccessibilityFeatures
                  0.026152950
                                               0.046333333
##
##
         numOfParkingFeatures numOfPatioAndPorchFeatures
##
                  0.123709340
                                               0.147231535
        numOfSecurityFeatures
                                  numOfWaterfrontFeatures
##
##
                  0.110830708
                                               0.052710182
##
          numOfWindowFeatures
                                   numOfCommunityFeatures
                  0.116152259
                                              -0.002181723
##
```

```
weights <- c(numOfAccessibilityFeatures = 1, numOfAppliances = 2, numOfParkingFeatu
res = 1.5,
             numOfPatioAndPorchFeatures = 1, numOfSecurityFeatures = 1, numOfWaterf
rontFeatures = 2.5,
             numOfWindowFeatures = 1, numOfCommunityFeatures = 1.5)
austin_data <- austin_data %>%
 mutate(total amenities = numOfAccessibilityFeatures * weights["numOfAccessibility
Features" | +
                          numOfAppliances * weights["numOfAppliances"] +
                          numOfParkingFeatures * weights["numOfParkingFeatures"] +
                          numOfPatioAndPorchFeatures * weights["numOfPatioAndPorchF
eatures"]+
                          numOfSecurityFeatures * weights["numOfSecurityFeatures"]
                          numOfWaterfrontFeatures * weights["numOfWaterfrontFeature
s"] +
                          numOfWindowFeatures * weights["numOfWindowFeatures"] +
                          numOfCommunityFeatures * weights["numOfCommunityFeature
s"]) %>%
  select(-all_of(amenity_features))
```

Handling Missing Values

```
# Handling missing values
austin_data[is.na(austin_data)] <- -1
austin_data <- austin_data %>%
    drop_na()

# Convert categorical variables to factors
austin_data <- austin_data %>%
    mutate(
        zipcode = as.factor(zipcode),
        garageSpaces = factor(garageSpaces),
        homeType = factor(homeType)
) %>%
    select(-homeType) #removing Hometype becuase
# glimpse(austin_data)
head(austin_data)
```

##		zipcode	latitude	longitude	garageSpace	es hasAsso	ciation	hasGarage	hasSpa
##	1	78717	30.49564	-97.79787		0	1	0	0
##	2	78717	30.48878	-97.79490		2	1	1	0
##	3	78725	30.23315	-97.58732		2	0	1	0
##	4	78725	30.23824	-97.57833		2	1	1	0
##	5	78726	30.42646	-97.85929		2	1	1	0
##	6	78726	30.42596	-97.85841		0	1	0	0
##		hasView	latestPr	ice latest	_salemonth l	Latest_sal	eyear nu	mOfPhotos	lotSizeSqFt
##	1	0	40	0.0	1		2020	20	7666.0
##	2	0	54	9.9	3		2018	69	8494.0
##	3	0	24	0.0	12		2020	10	5183.0
##	4	0	20	0.0	1		2018	33	8145.0
##	5	1	87	5.0	11		2020	38	30056.4
##	6	0	83	0.0	9		2019	37	19166.4
##		livingAr	ceaSqFt a	vgSchoolDi	stance avgSc	choolRatin	ng avgSch	oolSize	
##	1		2228	1.	900000	8.33333	33	1481	
##	2		3494	3.	300000	7.66666	57	1259	
##	3		1534	1.	800000	3.00000	00	1457	
##	4		1652	1.	966667	3.00000	00	1457	
##	5		3402	2.	066667	7.00000	00	1277	
##	6		3573	2.	000000	7.00000	00	1277	
##		MedianSt	tudentsPe	rTeacher n	umOfBathroon	ns numOfBe	drooms n	numOfStorie	es
##	1			16		2	3		1
##	2			14		5	4		2
##	3			13		3	3		1
##	4			13		2	3		1
##	5			16		4	4		2
##	6			16		5	4		2
##		logLates	stPrice h	ouseAge pr	operty_age_c	category t	otal_ame	nities sa	leYear
##	1	5.	.991465	16		Moderate	_	9.0	2020
##	2	6.	309736	11	N	Moderate		12.5	2018
##	3	5.	480639	25	N	Moderate		13.0	2020
##	4	5.	298317	12	N	Moderate		13.0	2018
##	5	6.	774224	20	N	Moderate		24.0	2020
##	6		721426	19	N	Moderate		14.5	2019
##		saleMont	h season	crossClus	ter				
	1		1 Winter		2				
##			3 Spring		2				
## ##									
	2	1	l2 Winter		4				
##	2	1	l2 Winter 1 Winter		4 4				
## ##	2 3 4								

Data Visualization

Plot Correlation Matrix

```
# Plot correlation matrix
columns <- c(
    "zipcode" ,"latitude" , "longitude", "garageSpaces", "latest_salemonth" ,"latest_sa
leyear" ,"numOfPhotos", "lotSizeSqFt", "livingAreaSqFt" ,
    "numOfBathrooms" ,"numOfBedrooms", "numOfStories",
    "houseAge", "property_age_category", "total_amenities", "saleYear" ,"saleMonth", "sea
son", "crossCluster"
)
numeric_data <- austin_data %>% select_if(is.numeric)
cor_matrix <- cor(numeric_data, use = "complete.obs")
corrplot(cor_matrix, method = "circle")</pre>
```



```
## [1] "\nmelted_cor_matrix <- melt(cor_matrix)\nggplot(data = melted_cor_matrix, a es(x = Var1, y = Var2, fill = value)) +\n geom_tile() +\n scale_fill_gradient2(lo w = \"blue\", high = \"red\", mid = \"white\", \n midpoint = 0, limit = c(-1,1), space = \"Lab\", \n name=\"Correlation\") +\n theme_minimal() +\n theme(axis.text.x = element_text(angle = 45, vjust = 1, \n size = 15, hjust = 1)) +\n coord_fixed()\n"
```

```
formulaa = logLatestPrice ~ zipcode + latitude + longitude + garageSpaces + latest
_salemonth + latest_saleyear + numOfPhotos + lotSizeSqFt + livingAreaSqFt + avgScho
olDistance + avgSchoolRating + avgSchoolSize + MedianStudentsPerTeacher + numOfBath
rooms + numOfBedrooms + numOfStories + houseAge + property age category + total ame
nities + saleYear + saleMonth + season + crossCluster
# removing few features " avgSchoolDistance + avgSchoolRating + avgSchoolSize + Med
ianStudentsPerTeacher " as they have low correlation
formulaa2 = logLatestPrice ~ zipcode + latitude + longitude + garageSpaces + lates
t_salemonth + latest_saleyear + numOfPhotos + lotSizeSqFt + livingAreaSqFt + numOfB
athrooms + numOfBedrooms + numOfStories + houseAge + property_age_category + total_
amenities + saleYear + saleMonth + season + crossCluster
formulaa3 = logLatestPrice ~ zipcode + latitude + longitude + garageSpaces + lates
t_salemonth + latest_saleyear + numOfPhotos + lotSizeSqFt + livingAreaSqFt + avgSch
oolDistance + avgSchoolRating + avgSchoolSize + MedianStudentsPerTeacher + numOfBat
hrooms + numOfBedrooms + numOfStories + houseAge + property age category + total am
enities + saleYear + saleMonth + season + crossCluster + hasAssociation + hasGarage
+ hasSpa + hasView
```

Modeling

Split the Data into Training and Test Sets

```
# Split the data into training and test sets
train_ix = createDataPartition(austin_data$logLatestPrice, p = 0.8)
austin_train = austin_data[train_ix$Resample1,]
austin_test = austin_data[-train_ix$Resample1,]
```

Regression Tree

```
# Fit a regression tree
single_big_tree_model <- rpart(
   formulaa,
   data = austin_train,
   method = 'anova',
   control = rpart.control(minsplit = 2, cp = .0001)
)

# Plot the tree
plot(single_big_tree_model)</pre>
```



```
# Size of the big tree
nbig <- length(unique(single_big_tree_model$where))
cat('Size of Single Big Tree:', nbig, '\n')</pre>
```

```
## Size of Single Big Tree: 675
```

```
# Predict on test data
predictions <- predict(single_big_tree_model, newdata = austin_test)

# Calculate MSE
big_mse <- mean((austin_test$latestPrice - exp(predictions))^2)
cat('MSE for Single Big Tree:', big_mse, '\n')</pre>
```

```
## MSE for Single Big Tree: 107407.4
```

```
big_rmse <- sqrt(big_mse)
cat('RMSE for Single Big Tree:', big_rmse, '\n')</pre>
```

```
## RMSE for Single Big Tree: 327.7307
```

Pruning the Tree

```
# Cross-validation and pruning
plotcp(single_big_tree_model) # Cross validating on cp values
```

size of tree


```
bestcp <- single_big_tree_model$cptable[which.min(single_big_tree_model$cptable[, '
xerror']), 'CP']
cat('Best CP:', bestcp, '\n')</pre>
```

ср

```
## Best CP: 0.006316799
```

```
best_tree <- prune(single_big_tree_model, cp = bestcp)
rpart.plot(best_tree, type = 4, under = TRUE, faclen = 0, cex = 0.8, tweak = 0.5, b
ox.palette = "Blues", shadow.col = "gray", nn = TRUE)</pre>
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

```
## Warning: cex and tweak both specified, applying both
```



```
# Size of the pruned tree
nbest <- length(unique(best_tree$where))
cat('Size of Pruned Tree:', nbest, '\n')</pre>
```

```
## Size of Pruned Tree: 14
```

```
# Predict on test data
pruned_predictions <- predict(best_tree, newdata = austin_test)

# Calculate MSE
pruned_mse <- mean((austin_test$latestPrice - exp(pruned_predictions))^2)
cat('MSE for Pruned Tree:', pruned_mse, '\n')</pre>
```

```
## MSE for Pruned Tree: 91419.22
```

```
pruned_rmse <- sqrt(pruned_mse)
cat('RMSE for Pruned Tree:', pruned_rmse, '\n')</pre>
```

```
## RMSE for Pruned Tree: 302.3561
```

Bagging with Random Forest

```
# Bagging using random forest
bagging_rf <- randomForest(
  formulaa,
  data = austin_train, mtry = 21, importance = TRUE
)

# Predictions and MSE
log_predictions_bagging <- predict(bagging_rf, newdata = austin_test)
bagging_mse <- mean((austin_test$latestPrice - exp(log_predictions_bagging))^2)
cat('MSE for Bagging:', bagging_mse, '\n')</pre>
```

```
## MSE for Bagging: 67584.75
```

```
bagging_rmse <- sqrt(bagging_mse)
cat('RMSE for Bagging:', bagging_rmse, '\n')</pre>
```

```
## RMSE for Bagging: 259.9707
```

Variable Importance

```
# Importance of variables
importance(bagging_rf)
```

##		%IncMSE	IncNodePurity
##	zipcode	59.4579425	_
##	latitude	24.6539572	45.224360
##	longitude	30.8209534	51.406468
##	garageSpaces	2.6446217	12.528283
##	latest_salemonth	1.2854079	7.623377
##	latest_saleyear	14.2354807	8.278027
##	numOfPhotos	9.8484208	27.000095
##	lotSizeSqFt	26.6865223	45.894889
##	livingAreaSqFt	76.3805539	261.977618
##	avgSchoolDistance	18.8968927	25.031676
##	avgSchoolRating	8.3445745	12.642343
##	avgSchoolSize	12.0213910	12.754717
##	MedianStudentsPerTeacher	18.1496097	4.322041
##	numOfBathrooms	13.5975283	32.255386
##	numOfBedrooms	9.8494148	25.569572
##	numOfStories	5.2474289	3.277383
##	houseAge	27.6553167	37.505235
##	property_age_category	26.0046760	8.599090
##	total_amenities	7.5903165	25.168316
##	saleYear	18.7278942	8.354474
##	saleMonth	2.7773619	7.302067
##	season	-0.2600851	9.006943
##	crossCluster	12.8480675	4.590523

varImpPlot(bagging_rf)

bagging_rf

Random Forest

```
# Random forest with different mtry values
num_mtry_values <- c(4, 5, 6, 7, 8, 9)
rf_results <- matrix(NA, nrow = length(num_mtry_values), ncol = 3)
colnames(rf_results) <- c("num_mtry", "MSE", "RMSE")

for (index in 1:length(num_mtry_values)) {
   num_mtry <- num_mtry_values[index]
   rf_model <- randomForest(
    formulaa,
      data = austin_train, mtry = num_mtry, importance = TRUE
   )

log_predictions_rf <- predict(rf_model, newdata = austin_test)
   mse_rf <- mean((austin_test$latestPrice - exp(log_predictions_rf))^2)
   rf_results[index, ] <- c(num_mtry, mse_rf, sqrt(mse_rf))
   print("---")
}</pre>
```

```
## [1] "---"
## [1] "---"
## [1] "---"
## [1] "---"
## [1] "---"
```

```
results_df <- as.data.frame(rf_results)
colnames(results_df) <- c("num_mtry", "MSE", "RMSE")
print(results_df)</pre>
```

```
##
     num mtry
                   MSE
                           RMSE
## 1
            4 69843.56 264.2793
## 2
            5 68717.72 262.1406
## 3
            6 68337.80 261.4150
## 4
           7 69061.30 262.7952
## 5
            8 67067.45 258.9738
## 6
            9 67952.68 260.6774
```

```
# Train the final random forest model with the best mtry value
best_num_mtry <- results_df$num_mtry[which.min(results_df$MSE)]
best_rf_model <- randomForest(
   formulaa,
   data = austin_train, mtry = best_num_mtry, importance = TRUE
)

# Importance of variables
importance(best_rf_model)</pre>
```

##		%IncMSE	IncNodePurity
##	zipcode	61.363689	469.965024
##	latitude	22.343177	50.921862
##	longitude	28.406663	64.443371
##	garageSpaces	5.592409	14.625774
##	latest_salemonth	2.878822	11.688902
##	latest_saleyear	11.028780	10.412021
##	numOfPhotos	9.206919	30.621041
##	lotSizeSqFt	23.481677	58.458308
##	livingAreaSqFt	48.519019	248.742067
##	avgSchoolDistance	16.864988	29.226117
##	avgSchoolRating	20.850824	72.899016
##	avgSchoolSize	16.247135	27.286574
##	MedianStudentsPerTeacher	13.236078	32.987764
##	numOfBathrooms	19.794244	92.233671
##	numOfBedrooms	8.398072	25.748472
##	numOfStories	6.776281	6.937687
##	houseAge	22.431319	43.409426
##	property_age_category	15.583225	16.554140
##	total_amenities	5.519264	25.954282
##	saleYear	13.552263	9.914701
##	saleMonth	2.736114	11.264690
##	season	1.130483	9.346028
##	crossCluster	18.020215	25.974648

varImpPlot(best_rf_model)

best rf model

XGBoost Model

```
##
## Attaching package: 'xgboost'

## The following object is masked from 'package:dplyr':
##
## slice
```

```
f <- c(
  "zipcode" , "latitude" , "longitude", "garageSpaces", "latest salemonth" , "latest sa
leyear" ,"numOfPhotos","lotSizeSqFt","livingAreaSqFt" ,
  "numOfBathrooms" , "numOfBedrooms", "numOfStories",
  "houseAge", "property age category", "total amenities", "saleYear", "saleMonth", "sea
son", "crossCluster"
# Prepare training and test data
#x train <- as.data.frame(austin train[f])</pre>
x_train <- as.data.frame(austin_train[, -which(names(austin_train) %in% c("loglates
tPrice", "latestPrice"))])
y train <- austin train$logLatestPrice
x_test <- as.data.frame(austin_test[, -which(names(austin_test) %in% c("loglatestPr</pre>
ice", "latestPrice"))])
y_test <- austin_test$logLatestPrice</pre>
# Convert the data to matrix format for XGBoost
X_train_matrix <- model.matrix(~., data = x_train)[, -1]</pre>
X_test_matrix <- model.matrix(~., data = x_test)[, -1]</pre>
dtrain <- xgb.DMatrix(data = X_train_matrix, label = y_train)</pre>
dtest <- xgb.DMatrix(data = X test matrix, label = y test)</pre>
# Set parameters for XGBoost
params <- list(</pre>
  objective = "reg:squarederror",
  eta = 0.1,
 max depth = 6,
  subsample = 0.7,
  colsample by tree = 0.7
)
# Train the model
set.seed(42)
xgb_model <- xgb.train(params, dtrain, nrounds = 100)</pre>
# Make predictions on the test set
xgb_pred <- predict(xgb_model, dtest)</pre>
xgb pred exp <- exp(xgb pred)</pre>
# Calculate MSE and RMSE for XGBoost
xgb mse <- mean((exp(y test) - xgb pred exp)^2)</pre>
xgb_rmse <- sqrt(xgb_mse)</pre>
cat('MSE for XGBoost:', xgb_mse, '\n')
```

```
## MSE for XGBoost: 26151.38
```

```
cat('RMSE for XGBoost:', xgb_rmse, '\n')
```

```
## RMSE for XGBoost: 161.7139
```

Bayesian Additive Regression Trees (BART)

```
# Data Preparation for BART
X_train_matrix <- model.matrix(~., data = x_train)[, -1]
X_test_matrix <- model.matrix(~., data = x_test)[, -1]

# Fit the BART model
set.seed(42)
bart_model <- wbart(x.train = X_train_matrix, y.train = y_train, x.test = X_test_matrix)</pre>
```

```
## ****Into main of wbart
## ****Data:
## data:n,p,np: 5429, 85, 1355
## y1,yn: -0.061233, 0.721527
## x1,x[n*p]: 0.000000, 1.000000
## xp1,xp[np*p]: 0.000000, 0.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 1 ... 1
## ****burn and ndpost: 100, 1000
## ****Prior:beta,alpha,tau,nu,lambda: 2.000000,0.950000,0.121778,3.000000,0.00000
## ****sigma: 0.000000
## ****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,85,0
## ****nkeeptrain,nkeeptest,nkeeptestme,nkeeptreedraws: 1000,1000,1000,1000
## ****printevery: 100
## ****skiptr,skipte,skipteme,skiptreedraws: 1,1,1,1
##
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 19s
## check counts
## trcnt, tecnt, temecnt, treedrawscnt: 1000, 1000, 1000, 1000
```

```
# Predictions
pred <- bart_model$yhat.test.mean
yhat_bart <- exp(pred)

# Calculate MSE and RMSE for BART
y_test_exp <- exp(y_test)
bart_mse <- mean((y_test_exp - yhat_bart)^2)
bart_rmse <- sqrt(bart_mse)
cat('MSE for BART:', bart_mse, '\n')</pre>
```

```
## MSE for BART: 19995.7

cat('RMSE for BART:', bart_rmse, '\n')
```

```
file:///Users/pranvgarg/Documents/UT%20Austin/Classes/STA380%20...chine%20Learning/Assignments/Individual%20project/Untitled.html
```

```
## RMSE for BART: 141.4061
```

Ridge and Lasso Regression

```
library(glmnet)
## Loading required package: Matrix
## Attaching package: 'Matrix'
  The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-8
# Preparing data for Ridge and Lasso Regression
X_train <- model.matrix(formulaa3, data = austin_train)</pre>
y train <- austin train$logLatestPrice</pre>
X_test <- model.matrix(formulaa3, data = austin_test)</pre>
y_test <- austin_test$logLatestPrice</pre>
# Ridge Regression
ridge_model <- cv.glmnet(X_train, y_train, alpha = 0)</pre>
ridge pred <- predict(ridge model, s = ridge model$lambda.min, newx = X test)</pre>
# Transform predictions back to original scale
ridge pred exp <- exp(ridge pred)</pre>
# Calculate MSE and RMSE
ridge_mse <- mean((exp(y_test) - ridge_pred_exp)^2)</pre>
ridge_rmse <- sqrt(ridge_mse)</pre>
cat('MSE for Ridge Regression:', ridge_mse, '\n')
## MSE for Ridge Regression: 60583.55
cat('RMSE for Ridge Regression:', ridge_rmse, '\n')
```

RMSE for Ridge Regression: 246.1373

```
# Lasso Regression
lasso_model <- cv.glmnet(X_train, y_train, alpha = 1)
lasso_pred <- predict(lasso_model, s = lasso_model$lambda.min, newx = X_test)

# Transform predictions back to original scale
lasso_pred_exp <- exp(lasso_pred)

# Calculate MSE and RMSE
lasso_mse <- mean((exp(y_test) - lasso_pred_exp)^2)
lasso_rmse <- sqrt(lasso_mse)
cat('MSE for Lasso Regression:', lasso_mse, '\n')</pre>
```

```
## MSE for Lasso Regression: 57363.87

cat('RMSE for Lasso Regression:', lasso_rmse, '\n')
```

```
## RMSE for Lasso Regression: 239.5075
```

Model Comparison and Conclusion

Model Performance Summary

```
# Create a summary table of the model performances
model_performance <- data.frame(
    Model = c("Single Tree", "Pruned Tree", "Bagging", "Random Forest", "XGBoost", "B
ART", "Ridge Regression", "Lasso Regression"),
    MSE = c(big_mse, pruned_mse, bagging_mse, min(results_df$MSE), xgb_mse, bart_mse,
    ridge_mse, lasso_mse),
    RMSE = c(big_rmse, pruned_rmse, bagging_rmse, min(results_df$RMSE), xgb_rmse, bar
t_rmse, ridge_rmse, lasso_rmse)
)

# Print the summary table
print(model_performance)</pre>
```

```
##
                Model
                            MSE
                                    RMSE
         Single Tree 107407.38 327.7307
         Pruned Tree 91419.22 302.3561
              Bagging 67584.75 259.9707
## 3
## 4
        Random Forest 67067.45 258.9738
## 5
              XGBoost 26151.38 161.7139
## 6
                BART 19995.70 141.4061
## 7 Ridge Regression 60583.55 246.1373
## 8 Lasso Regression 57363.87 239.5075
```

```
# Plotting the model performances for visual comparison
library(ggplot2)
ggplot(model_performance, aes(x = Model, y = RMSE, fill = Model)) +
  geom_bar(stat = "identity") +
  theme_minimal() +
  labs(title = "Model Performance Comparison", y = "RMSE", x = "Model") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Conclusion

The various models applied to the Austin housing data have shown different levels of effectiveness. Below are the key insights from each model:

Inference:

- **Single Tree**: While simple and interpretable, this model had the highest RMSE, indicating the lowest predictive accuracy among the models tested.
- **Pruned Tree**: Slightly better than the single tree, but still resulted in high RMSE, showing that even after pruning, the decision tree struggled to capture the complexity of the data.
- **Bagging**: Improved performance by reducing variance, showcasing the benefits of ensemble methods. However, it still did not outperform the more sophisticated models.
- Random Forest: Demonstrated strong performance by effectively reducing overfitting and capturing

more complex patterns in the data. Fine-tuning mtry further enhanced its accuracy.

- **XGBoost**: Achieved a significant reduction in RMSE compared to Random Forest, highlighting the effectiveness of gradient boosting in handling various data complexities.
- **BART**: Outperformed all other models, achieving the lowest RMSE, indicating its superior ability to capture complex relationships in the data.
- **Ridge Regression**: While it managed multicollinearity, its performance was moderate, indicating that linear models with regularization might not fully capture the non-linear patterns in the data.
- Lasso Regression: Performed better than Ridge Regression by also performing feature selection, reducing RMSE compared to Ridge, but still not matching the performance of tree-based methods.

Overall, **BART** and **XGBoost** emerged as the top performers in this analysis, with **BART** having a slight edge in terms of RMSE. These models are well-suited for capturing complex, non-linear relationships in the data. Future efforts should focus on further tuning these models and exploring additional advanced techniques to enhance prediction accuracy. **Future Work**: - Further hyperparameter tuning for models like XGBoost and Random Forest. - Exploring more advanced feature engineering techniques. - Considering additional ensemble methods like stacking to further improve predictions.

Overall, Random Forest and XGBoost are the top performers in this analysis, with Random Forest having a slight edge in terms of MSE and RMSE.

Doing the teating on Austin Holdout set

```
library(BART)
library(dplyr)
# Load the holdout dataset
holdout data <- read.csv("austinhouses holdout.csv")</pre>
# Adding the logLatestPrice to the original df
holdout data <- holdout data %>%
  select(-streetAddress, -description) %>%
 mutate(logLatestPrice = log(latestPrice))
# Derive the age of the house
current_year <- year(Sys.Date())</pre>
holdout_data <- holdout_data %>%
 mutate(houseAge = current_year - yearBuilt,
         property_age_category = cut(houseAge,
                                      breaks = c(-Inf, 10, 30, 50, Inf),
                                      labels = c("New", "Moderate", "Old", "Very Ol
d")),
         property_age_category = as.factor(property_age_category)) %>%
  select(-yearBuilt)
### Binary Columns and Amenities
# Convert binary columns to numeric and aggregate amenities
# Convert binary columns to numeric
binary_columns <- c('hasAssociation', 'hasGarage', 'hasSpa', 'hasView')</pre>
```

```
holdout data[binary columns] <- lapply(holdout data[binary columns], as.numeric)
# Create a total amenities feature
holdout data <- holdout data %>%
  mutate(total_amenities = rowSums(select(., all_of(binary_columns))))
# Ensure we retain the individual binary features
### Sale Date Features
# Extract and convert sale date components
holdout data <- holdout data %>%
  mutate(saleDate = as.Date(latest_saledate, format = "%Y-%m-%d"),
         saleYear = year(latest_saledate),
         saleMonth = month(latest saledate),
         saleDay = day(latest_saledate)) %>%
  mutate(season = case when(
    saleMonth %in% c(12, 1, 2) ~ "Winter",
    saleMonth %in% c(3, 4, 5) ~ "Spring",
    saleMonth %in% c(6, 7, 8) \sim "Summer",
    saleMonth %in% c(9, 10, 11) ~ "Fall"
  mutate(season = factor(season, levels = c("Winter", "Spring", "Summer", "Fall")))
  select(-latest_saledate, -saleDay, -saleDate)
### Geospatial Features
# Clustering based on latitude and longitude
set.seed(123)
coords <- holdout data %>% select(latitude, longitude)
clusters <- kmeans(coords, centers = 5)$cluster</pre>
holdout_data <- holdout_data %>% mutate(crossCluster = as.factor(clusters))
### Calculating Correlations and Aggregating Amenities
# Calculate correlations and aggregate amenities with weights
amenity_features <- c("numOfAccessibilityFeatures", "numOfAppliances", "numOfParkin
gFeatures",
                      "numOfPatioAndPorchFeatures", "numOfSecurityFeatures", "numOf
WaterfrontFeatures",
                      "numOfWindowFeatures", "numOfCommunityFeatures")
weights <- c(numOfAccessibilityFeatures = 1, numOfAppliances = 2, numOfParkingFeatu
res = 1.5,
             numOfPatioAndPorchFeatures = 1, numOfSecurityFeatures = 1, numOfWaterf
rontFeatures = 2.5,
             numOfWindowFeatures = 1, numOfCommunityFeatures = 1.5)
holdout_data <- holdout_data %>%
  mutate(total_amenities = numOfAccessibilityFeatures * weights["numOfAccessibility
Features" | +
                          numOfAppliances * weights["numOfAppliances"] +
```

```
numOfParkingFeatures * weights["numOfParkingFeatures"] +
                          numOfPatioAndPorchFeatures * weights["numOfPatioAndPorchF
eatures"]+
                          numOfSecurityFeatures * weights["numOfSecurityFeatures"]
                          numOfWaterfrontFeatures * weights["numOfWaterfrontFeature
s"] +
                          numOfWindowFeatures * weights["numOfWindowFeatures"] +
                          numOfCommunityFeatures * weights["numOfCommunityFeature
s"]) %>%
  select(-all of(amenity features))
### Handling Missing Values
# Handling missing values
holdout data[is.na(holdout data)] <- -1</pre>
holdout_data <- holdout_data %>%
 drop_na()
# Convert categorical variables to factors
holdout data <- holdout data %>%
 mutate(
    zipcode = as.factor(zipcode),
    garageSpaces = factor(garageSpaces),
    homeType = factor(homeType)
  select(-homeType) #removing Hometype becuase
# glimpse(austin data)
head(holdout data)
```

##		zipcode l	atitude	longitude	garageSpa	ces h	asAssociatio	n hasGarage	hasSpa	
##	1	78749 3	0.20016	-97.85626		0	:	1 0	0	
##	2	78757 3	0.33993	-97.74895		0	(0	0	
##	3	78747 3	0.13613	-97.76612		1	-	1 1	0	
##	4	78748 3	0.15642	-97.81450		2	() 1	0	
##	5	78729 3	0.46093	-97.77524		0	(0	0	
##	6	78729 3	0.44455	-97.76396		2	() 1	0	
##		hasView l	atestPr	ice latest	_salemonth	late	st_saleyear ı	numOfPhotos	lotSize	SqFt
##	1	0		-1	8		2018	37		9888
##	2	0		-1	2		2019	35	1	0715
##	3	0		-1	3		2020	28		6359
##	4	0		-1	7		2020	63		5009
##	5	0		-1	2		2019	40		7230
##	6	0		-1	10		2018	58		6838
##		livingAre	aSqFt a	vgSchoolDis	stance avg	Schoo	lRating avgSo	choolSize		
##	1		2023	1.33	333333	6	.666667	1460		
##	2		1806	0.73	333333	6	.666667	1153		
##	3		2314	2.43	333333	5	.333333	1506		
##	4		1891	1.00	00000	3	.333333	1424		
##	5		2311	1.23	333333	5	.333333	1369		
##	6		2593	0.93	333333	5	.666667	1402		
##		MedianStu	dentsPe	rTeacher nu	umOfBathro	oms n	umOfBedrooms	numOfStori	es	
##	1			16		3	4		2	
##	2			16		2	3		1	
##	3			15		3	5		2	
##	4			14		3	4		2	
##	5			12		2	3		2	
##	6			12		3	4		2	
##		logLatest	Price h	ouseAge pro	operty_age	_cate	gory total_ar	nenities sa	leYear	
##	1		-1	25		Mode		11.5	2018	
##	2		-1	62		Very	Old	1.5	2019	
##	3		-1	9			New	9.0	2020	
##	4		-1	37			Old	21.0	2020	
##	5		-1	35			Old	7.0	2019	
##	6		-1	34			Old	10.5	2018	
##		saleMonth	season	crossClust	ter					
##	1	8	Summer		4					
##	2	2	Winter		1					
##			Spring		5					
			Summer		5					
##										
##	5	2	Winter		2					

```
# Prepare training and test data
x_train <- as.data.frame(austin_data[f])</pre>
#x train <- as.data.frame(austin data[, -which(names(austin data) %in% c("loglatest
Price", "latestPrice"))])
y train <- austin data$logLatestPrice
x_test <- as.data.frame(holdout_data[f])</pre>
#x test <- as.data.frame(holdout data[, -which(names(holdout data) %in% c("loglates</pre>
tPrice", "latestPrice"))])
y test <- holdout data$logLatestPrice</pre>
# Convert the data to matrix format for XGBoost
X_train_matrix <- model.matrix(~., data = x_train)[, -1]</pre>
X_test_matrix <- model.matrix(~., data = x_test)[, -1]</pre>
dtrain <- xgb.DMatrix(data = X train matrix, label = y train)</pre>
dtest <- xgb.DMatrix(data = X_test_matrix, label = y_test)</pre>
# Data Preparation for BART
X_train_matrix <- model.matrix(~., data = x_train)[, -1]</pre>
X_test_matrix <- model.matrix(~., data = x_test)[, -1]</pre>
# Fit the BART model
set.seed(42)
bart model <- wbart(x.train = X train matrix, y.train = y train, x.test = X test ma
trix)
```

```
## ****Into main of wbart
## ****Data:
## data:n,p,np: 6784, 76, 6785
## y1,yn: -0.062580, 0.720179
## x1,x[n*p]: 0.000000, 1.000000
## xp1,xp[np*p]: 0.000000, 0.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 1 ... 1
## ****burn and ndpost: 100, 1000
## ****Prior:beta,alpha,tau,nu,lambda: 2.000000,0.950000,0.130101,3.000000,0.01428
## ****sigma: 0.270834
## ****w (weights): 1.000000 ... 1.000000
## ****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,76,0
## ****nkeeptrain,nkeeptest,nkeeptestme,nkeeptreedraws: 1000,1000,1000,1000
## ****printevery: 100
## ****skiptr,skipte,skipteme,skiptreedraws: 1,1,1,1
##
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 27s
## check counts
## trcnt, tecnt, temecnt, treedrawscnt: 1000, 1000, 1000, 1000
```

```
# Predictions
pred <- bart_model$yhat.test.mean
holdout_data$latestPrice <- exp(pred)</pre>
```

```
# Export the updated holdout dataset
write.csv(holdout_data, "austinhouses_holdout_predictions.csv", row.names = FALSE)
```