Vowels

 $Count the number of vowels \ (a,e,i,o,u,y) \ in \ a \ ``word". \ Include both \ uppercase \ and \ lowercase \ vowels \ in \ your \ count.$

Input:

A sequence of alphabetic characters (no spaces), with length at most 10,000.		
Output:		
The number of vowels.		
Example Input 1:	Example Input 2:	
ObjectOriented	XKCD	
Example Output 1:	Example Output 2:	
6	0	

Password

Evample Input 2:

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Write a password-protection program. The password is correcthorsebattery staple, and it is case-sensitive.

Input:

Input is the user's attempted password, which consists of alphabetic characters (100 or fewer).

Output

Evample Input 1:

Output CORRECT if the user's attempted password is correct; output INCORRECT if it is not.

Example input 1.	Example input 2.
CorrectHorseBatteryStaple	correcthorsebatterystaple
Example Output 1:	Example Output 2:
INCORRECT	CORRECT