Chapter 1

Review of linear algebra

- Linear functions and matrix-vector product
- Rank of a matrix and inversion
- Inner product
- Subspaces, basis, and dimension
- Eigenvalues and eigenvectors

1.1 Linear functions and matrix-vector product

Linear functions

Standard notation for a function f mapping a vector $x \in \mathbb{R}^n$ to a vector $y \in \mathbb{R}^m$ is

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 or $f: x \mapsto y$.

The value $y \in \mathbb{R}^m$ of f at $x \in \mathbb{R}^n$ is denoted by y = f(x). Note that f and f(x) are different objects—f is a function and f(x) is a vector. Therefore, the statement "the function f(x)" is semantically wrong, despite the fact that its meaning is intuitively clear and is commonly used.

A function f is usually specified by an analytic expression, e.g., $f(x) = x^2$, but it can be specified in other ways as well. For example, a function f can be defined by an algorithm that evaluates f for a given x or by a verbal description, e.g., "f(x) is the vector x rotated clockwise by α °". In system theory a function f is visualized by a box, called a *system*, that accepts as an *input* x and produces as an *output* y.

$$x \longrightarrow f \longrightarrow y$$

One can think of the system as a device or a signal processor that transforms energy or information. However, a system in system theory is an abstract object and is distinguished from a physical device.

By definition, f is a *linear function* if the following property holds:

$$f(\alpha x + \beta z) = \alpha f(x) + \beta f(z)$$
, for all $\alpha, \beta \in \mathbb{R}$ and $x, z \in \mathbb{R}^n$.

An equivalent definition is that f satisfies the homogeneity and superposition properties

- homogeneity: $f(\alpha x) = \alpha f(x)$, for all $\alpha \in \mathbb{R}$, and $x \in \mathbb{R}^n$,
- superposition: f(x+z) = f(x) + f(z), for all $x, z \in \mathbb{R}^n$.

Exercise problem 1. Show that rotation is a linear function.

П

Matrix-vector product

Partition a matrix $A \in \mathbb{R}^{m \times n}$ elementwise, column-wise, and row-wise, as follows

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & \\ a_1 & \cdots & a_n \\ & & & \end{vmatrix} = \begin{bmatrix} - & (a'_1)^\top & - \\ & \vdots \\ - & (a'_m)^\top & - \end{bmatrix}.$$

The matrix-vector product y = Ax can be written in three alternative ways corresponding to the three partitionings above

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{mj} x_j \end{bmatrix} = \sum_{j=1}^n a_j x_j = \begin{bmatrix} (a'_1)^\top x \\ \vdots \\ (a'_m)^\top x \end{bmatrix}.$$

For a given A, y = Ax defines a function $f: x \mapsto y$. Matrix-vector product, however, is more than an example of a linear function. It is the only example in the sense that any linear function admits a representation in the form of a matrix times vector.

Exercise problem 2. Prove that the function $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear if and only if there is a matrix $A \in \mathbb{R}^{m \times n}$, such that f(x) = Ax, for all $x \in \mathbb{R}^n$.

The matrix A is called a matrix representation of the function f, f(x) = Ax. Given a matrix representation A of a linear function f, the problem of evaluating the function y = f(x) at a given point x is a matrix–vector multiplication y = Ax problem.

Note 3. Formally one should make a distinction between a vector and a vector representation. A vector representation depends on the choice of basis and is therefore not unique. Similarly, a matrix representation of a linear function depends on the bases of the input space \mathbb{R}^n and the output space \mathbb{R}^m and is not unique, see (1.7) in Section 1.4.

Exercise problem 4. Explain how to find a matrix representation of a linear function f, if f can be evaluated at arbitrary points $x \in \mathbb{R}^n$. Apply the procedure to the rotation function in \mathbb{R}^n .

Example 5. A scalar linear function of a scalar argument

$$y = \tan(\alpha)x$$
, where $\alpha \in [0, 2\pi)$

is a line in the plain passing through the origin. Its matrix representation is the scalar $tan(\alpha)$. Conversely, any line in the plain passing though the origin is a linear function.

Example 6. A scalar valued linear function of a vector argument $f : \mathbb{R}^n \to \mathbb{R}$ is given by $f(x) = a^\top x$, where $a \in \mathbb{R}^n$. (The expression $a^\top x$, *i.e.*, row vector times column vector, is called inner product, see Section 1.3.)

Example 7. The identity function x = f(x), for all $x \in \mathbb{R}^n$, is a linear function represented by the $n \times n$ identity matrix

$$I_n := \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Consider a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$. Then for a given $x_0 \in \mathbb{R}^n$

$$y = f(x_0 + \widetilde{x}) \approx f(x_0) + A\widetilde{x}, \quad \text{where} \quad A = \left[a_{ij}\right] = \left[\left.\frac{\partial f_i}{\partial x_j}\right|_{x_0}\right].$$

 $(\partial f_i/\partial x_j)$ is the partial derivative of f_i with respect to x_j and the matrix A of the partial derivatives is called the Jacobian of f.) When the input deviation $\widetilde{x} = x - x_0$ is "small", the output deviation

$$\widetilde{y} := y - f(x_0) =: y - y_0$$

is approximately the linear function $\widetilde{y} = A\widetilde{x}$ of \widetilde{x} , called the linear approximation of f at x_0 .

1.2 Rank of a matrix and inversion

The set of vectors $\{a_1, \ldots, a_n\}$ is *linearly independent* if the only linear combination of these vectors that is equal to the zero vector is the trivial linear combination with all weights equal to zero, *i.e.*,

$$x_1a_1 + \cdots + x_na_n = 0$$
 \Longrightarrow $x_1 = \cdots = x_n = 0.$

Linear independence means that non of the vectors a_i , for i = 1, ..., n, can be expressed as a linear combination of the remaining vectors. Vice verse, in a linearly dependent set of vectors $\{a_1, ..., a_n\}$ at least one vector is equal to a linear combination of the others. This means that in a linearly dependent set of vectors, there is redundant information.

The rank rank(A) of the matrix $A \in \mathbb{R}^{m \times n}$ is the number of linearly independent columns (or rows) of A and zero if A is the zero matrix. Obviously,

$$0 \le \operatorname{rank}(A) \le \min(m, n)$$

The matrix A is

- *full row rank* if rank(A) = m,
- full column rank if rank(A) = n, and
- full rank if it is either full row rank or full column rank.

Full row and column rank of A turns out to be a necessary and sufficient condition for, respectively, existence of solution of the system Ax = y, for any given $y \in \mathbb{R}^m$, and uniqueness of a solution of Ax = y for any given $y \in \mathbb{R}^m$. (Existence of solution of Ax = y, does depend on both A and y. However, assuming that the system Ax = y is solvable, the uniqueness of a solution x depends only on x.)

Exercise problem 8. Prove that the matrix A being full row rank is equivalent to the system of equations Ax = y having a solution for $any y \in \mathbb{R}^m$.

Exercise problem 9. Prove that the matrix A being full column rank is equivalent to uniqueness of a solution x to the system y = Ax, where $y = A\bar{x}$ for some $\bar{x} \in \mathbb{R}^n$.

A system theoretic interpretation of A being full row rank is that the system defined by y = Ax has no redundant outputs, *i.e.*, none of the components of y can be inferred from the others. An interpretation of A being full column rank is that the there exists an inverse system, *i.e.*, a mechanism (which is also a system) to infer the the input from the output.

Next we consider the inversion problem: given $y \in \mathbb{R}^m$, find x, such that y = Ax. We distinguish three cases depending on the shape of the matrix A (square, more rows than columns, or more columns than rows) and in all cases we assume that A is full rank.

• If m = n = rank(A), then there exists a matrix A^{-1} , such that

$$AA^{-1} = A^{-1}A = I_m. (1.1)$$

Then for all $y \in \mathbb{R}^m$

$$y = \underbrace{(AA^{-1})}_{I_m} y = A\underbrace{(A^{-1}y)}_{x} = Ax.$$

In this case, the inversion problem is solvable and the solution is unique.

Exercise problem 10. Prove the fact that m = n = rank(A) implies existence of a matrix A^{-1} , such that (1.1).

Exercise problem 11. Find a matrix representation of a linear function f, from given values y_1, \ldots, y_n of f at given points x_1, \ldots, x_n . When is this problem solvable?

• If $m \ge n = \text{rank}(A)$, *i.e.*, A is full column rank, the inversion problem may have no solution. In such cases, an approximate solution may be desirable. The least-squares approximate solution minimizes the 2-norm

$$||e||_2 := \sqrt{e^\top e} = \sqrt{e_1^2 + \dots + e_n^2},$$
 (1.2)

of the approximation error (or residual)

$$e := y - Ax$$
.

The least-squares approximation problem is

minimize
$$||e||_2$$
 subject to $Ax = y + e$

and the solution is given by the famous formula

$$x_{ls} = (A^{\top}A)^{-1}A^{\top}y =: A_{ls}^{L}y.$$
 (1.3)

Note that x_{ls} is a linear function $A_{ls}^{L}y$ of y. It is called the least squares approximate solution of the system of equations Ax = y. If $y = A\bar{x}$, for some $\bar{x} \in \mathbb{R}^n$, x_{ls} is an exact solution, *i.e.*, $x_{ls} = \bar{x}$.

Note 12 (Left inverse). Any matrix A^{L} , satisfying the property $A^{L}A = I_{n}$ is called a *left inverse* of A. Left inverse of A exists if and only if A is full column rank. If m > n, the left inverse is nonunique. If m = n, the left inverse is unique and is equal to the inverse. The matrix A^{L}_{ls} is a left inverse of A. Moreover, it is the smallest left inverse, in the sense that it minimizes the Frobenius norm

$$||A^{L}||_{F} := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij}^{L})^{2}}$$

over all left inverses A^{L} of A.

Exercise problem 13. Prove that $A_{ls}^{L} = \arg\min_{A^{L}} \|A^{L}\|_{F}$ subject to $A^{L}A = I$.

• If $n \ge m = \text{rank}(A)$, *i.e.*, A is full row rank, the inversion problem has infinitely many solutions. The set of all solutions is

$$\{x \mid Ax = y\} = \{x_p + z \mid Az = 0\},$$
 where $Ax_p = y$,

i.e., x_p is a particular solution of Ax = y and z is a parameter describing the nonuniquness of the solution. The least-norm solution is

minimize
$$||x||_2$$
 subject to $Ax = y$.

It is given by the following closed form expression

$$x_{\text{ln}} = A^{\top} (AA^{\top})^{-1} y =: A_{\text{ln}}^{R} y.$$
 (1.4)

Note 14 (Right inverse). Any matrix A^R , satisfying the property $AA^R = I_m$ is called a *right inverse* of A. Right inverse of A exists if and only if A is full row rank. If m < n, the right inverse is nonunique. If m = n, the right inverse is unique and is equal to the inverse. The matrix A^R_{ln} is a right inverse of A. Moreover, it can be shown that it is the smallest right inverse, in the sense that it minimizes the Frobenius norm $||A^R||_F$ over all right inverses A^R of A.

Exercise problem 15. Prove that $A_{\ln}^{R} = \arg\min_{A^{R}} ||A^{R}||_{F}$ subject to $AA^{R} = I$.

Note 16 (Inversion problem in the singular case). If $A \in \mathbb{R}^{m \times n}$ is rank deficient (or almost rank deficient), the inversion problem is called *ill-posed* (or *ill-conditioned*). In this case, the inverse (assuming A is square) does not exist. Also the least-squares (1.3) (assuming m > n) and the least-norm (1.4) (assuming m < n) formulas make no sense (because the indicated inverses do not exist). A general solution to the inversion problem, which is independent of size and rank assumptions on A, is given by $\hat{x} = A^+ y$, what $A^+ \in \mathbb{R}^{n \times m}$ is the *pseudo-inverse* of A. A related approach for solving ill-posed and ill-conditioned inverse problems is *regularization*.

1.3 Inner product

The inner product $\langle a, b \rangle = \langle b, a \rangle$ of two vectors $a, b \in \mathbb{R}^m$ is defined by

$$\langle a,b \rangle := a^{\top}b = \sum_{i=1}^{m} a_i b_i.$$

The matrix–matrix product BA, where $B : \mathbb{R}^{p \times m}$ and $A : \mathbb{R}^{m \times n}$, can be viewed as a collection of pn inner products (between the rows of B and the columns of A)

$$BA = \begin{bmatrix} - & (b_1')^\top & - \\ & \vdots & \\ - & (b_p')^\top & - \end{bmatrix} \begin{bmatrix} | & & | \\ a_1 & \cdots & a_n \\ | & & | \end{bmatrix} = \begin{bmatrix} \langle b_1'a_1 \rangle & \cdots & \langle b_1', a_n \rangle \\ \vdots & & \vdots \\ \langle b_p', a_1 \rangle & \cdots & \langle b_p', a_n \rangle \end{bmatrix}.$$

The *Gram matrix* of the vectors a_1, \ldots, a_n is defined by

$$\begin{bmatrix} a_1^\top \\ \vdots \\ a_n^\top \end{bmatrix} \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = A^\top A.$$

The Gram matrix $H := A^{\top}A$ is symmetric, i.e., $H = H^{\top}$ and positive semidefinite, i.e., $x^{\top}Hx \ge 0$, for all $x \in \mathbb{R}^n$. A matrix H is called positive definite if $x^{\top}Hx > 0$, for all $x \in \mathbb{R}^m$.

Exercise problem 17. The Gram matrix $A^{T}A$ is positive definite if and only if A is full column rank.

The Cauchy-Schwarz inequality relates the inner product with the product of the 2-norms

$$\langle a, b \rangle < ||a|| ||b||. \tag{1.5}$$

Equality holds in (1.5) if and only if $b = \alpha a$, for some $\alpha \in \mathbb{R}$ or b = 0.

Exercise problem 18. Prove (1.5).

Exercise problem 19 (Optimization of a linear function over the unit ball). Show that the solution of the problem, given $a \in \mathbb{R}^n$,

maximize (over x)
$$a^{\top}x$$
 subject to $||x|| \le 1$

is $x_{\text{opt}} = a/||a||$.

The angle between the vectors $a, b \in \mathbb{R}^n$ is defined as

$$\angle(a,b) = \cos^{-1} \frac{a^{\top}b}{\|a\|\|b\|}.$$

- $a \neq 0$ and b are aligned if $b = \alpha a$, for some $\alpha \geq 0$ (in this case, $\angle(a,b) = 0$).
- $a \neq 0$ and b are opposite if $b = -\alpha a$, for some $\alpha \geq 0$ (in this case, $\angle(a,b) = \pi$).
- a and b are orthogonal, denoted $a \perp b$, if $a^{\top}b = 0$ (in this case, $\angle(a,b) = \pi/2$).

П

1.4 Subspace, basis, and dimension

The set $\mathscr{A} \subset \mathbb{R}^n$ is a *subspace* of a vector space \mathbb{R}^n if \mathscr{A} is a vector space itself, *i.e.*,

$$a,b \in \mathscr{A} \implies \alpha a + \beta b \in \mathscr{A}, \text{ for all } \alpha,\beta \in \mathbb{R}.$$

The set $\{a_1, \ldots, a_n\}$ is a *basis* for the subspace $\mathscr A$ if the following hold:

• a_1, \ldots, a_n span \mathcal{A} , i.e.,

$$\mathscr{A} = \operatorname{span}(a_1, \dots, a_n) := \{ x_1 a_1 + \dots + x_n a_n \mid x_1, \dots, x_n \in \mathbb{R} \} = \{ [a_1 \quad \dots \quad a_n] \mid x \mid x \in \mathbb{R}^n \}$$

• $\{a_1, \ldots, a_n\}$ is an independent set of vectors.

Exercise problem 20. The number of basis vectors does not depend on the choice of the basis

The number of basis vectors of a subspace is invariant of the choice of the basis and is called the *dimension* of the subspace. The dimension of \mathscr{A} is denoted by $\dim(\mathscr{A})$.

The *kernel* (also called *null space*) of the matrix $A \in \mathbb{R}^{m \times n}$ is the set of vectors mapped to zero by f(x) := Ax, *i.e.*,

$$\ker(A) := \{ x \in \mathbb{R}^n \mid Ax = 0 \}.$$

Adding a vector z in the kernel of A to a solution x_p of the system Ax = y produces another solution of the system, i.e., if $Ax_p = y$, then $y = A(x_p + z)$, for all $z \in \ker(A)$. From a parameter estimation point of view, $\ker(A)$ is the uncertainty in finding the parameter x, given the observation y. From a control point of view, $\ker(A)$ is the freedom in the control x that achieves the desired output y. If $\ker(A) = \{0\}$, the function f(x) := Ax is called *one-to-one*.

Exercise problem 21. Show that $ker(A) = \{0\}$ if and only if A is full column rank.

The image (also called column span or range) of the matrix $A^{m \times n}$ is the set of vectors that can be obtained as an output of the function f(x) := Ax, *i.e.*,

$$image(A) := \{ Ax \in \mathbb{R}^m \mid x \in \mathbb{R}^n \}.$$

Obviously, image(A) is the span of the columns of A. Alternatively, image(A) is the set of vectors y for which the system Ax = y has a solution. If image(A) = \mathbb{R}^m , the function f(x) := Ax is called *onto*.

Exercise problem 22. Show that image(A) = \mathbb{R}^m if and only if A is full row rank.

For a matrix $A \in \mathbb{R}^{m \times n}$, $\ker(A)$ is a subspace of \mathbb{R}^n and $\operatorname{image}(A)$ is a subspace of \mathbb{R}^n .

Exercise problem 23. Show that

$$\dim (\operatorname{image}(A)) = \operatorname{rank}(A) \quad \text{and} \quad \operatorname{col} \dim(A) - \dim (\ker(A)) = \operatorname{rank}(A). \tag{1.6}$$

A direct consequence of (1.6) is the so called preservation of dimensions theorem (in \mathbb{R}^n)

$$\dim (\ker(A)) + \dim (\operatorname{image}(A)) = \operatorname{coldim}(A).$$

Note that

$$\operatorname{rank}(A) = \dim \left(\operatorname{image}(A)\right) = \operatorname{rank}(A^{\top}) = \dim \left(\operatorname{image}(A^{\top})\right).$$

 $\operatorname{image}(A)$ is the span of the columns of A and $\operatorname{image}(A^{\top})$ is the span of the rows of A. The former is a subspace of \mathbb{R}^m and the latter is a subspace of \mathbb{R}^n , they are equal (to the rank of A). By defining the *left kernel* of A,

$$\operatorname{leftker}(A) := \{ y \in \mathbb{R}^m \mid y^{\top} A = 0 \},\$$

we have a preservation of dimensions theorem for \mathbb{R}^m

$$\dim \left(\operatorname{leftker}(A)\right) + \dim \left(\operatorname{image}(A^{\top})\right) = \operatorname{row} \dim(A).$$

The *standard basis* vectors in \mathbb{R}^n are the vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}.$$

Note that e_1, \ldots, e_n are the columns of the identity matrix I_n . The elements of a vector $x \in \mathbb{R}^n$ are the coordinates of x with respect to a basis understood from the context. The default basis is the standard basis e_1, \ldots, e_n . Suppose that a new bases is given by the columns t_1, \ldots, t_n of a matrix $T \in \mathbb{R}^{n \times n}$. Since $\{t_1, \ldots, t_n\}$ is a basis, the set is linearly independent. Therefore, the matrix T is nonsingular. Vice verse, any nonsingular matrix $T \in \mathbb{R}^{n \times n}$ defines a basis for \mathbb{R}^n . Let the coordinates of x in the basis T be $\widetilde{x}_1, \ldots, \widetilde{x}_n$. Then

$$x = \widetilde{x}_1 t_1 + \dots + \widetilde{x}_n t_n = T \widetilde{x} \implies \widetilde{x} = T^{-1} x,$$

i.e., the inverse matrix T^{-1} transforms the standard basis coordinates x into the T-basis coordinates \widetilde{x} .

Consider, now a linear operator $f: \mathbb{R}^n \to \mathbb{R}^n$ (*i.e.*, a function mapping from a space to the same space), given by f(x) = Ax, $A \in \mathbb{R}^{n \times n}$. The matrix A is a representation of f in a basis that is understood from the context. By default this is the standard basis. Changing the standard basis to a basis defined by the columns of a nonsingular matrix $T \in \mathbb{R}^{n \times n}$, the matrix representation of f changes to $T^{-1}AT$, *i.e.*,

$$\widetilde{y} = (T^{-1}AT)\widetilde{x}. (1.7)$$

The mapping $A \mapsto T^{-1}AT$, defined by T, is called a *similarity transformation* of A.

1.5 Eigenvalues and eigenvectors

The (complex) number $\lambda \in \mathbb{C}$ is an *eigenvalue* of the square matrix $A \in \mathbb{R}^{n \times n}$ if there is a (complex) nonzero vector $v \in \mathbb{C}^n$, called an *eigenvector* associated to λ , such that $Av = \lambda v$. Equivalently, λ is an eigenvalue of A if the matrix $\lambda I_n - A$ is singular. If (λ, v) is an eigenpair of A, the action of A on vectors in span(v) is equivalent to a scalar multiplication by λ .

The *characteristic polynomial* of *A* is

$$p_A(\lambda) := \det(\lambda I_n - A).$$

The degree of p_A , denoted $\deg(p_A)$, is equal to n and p is monic, i.e., the coefficient of the highest order term is one. Exercise problem 24. Prove that the scalar $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if λ is a root of p_A .

The *geometric multiplicity* of λ is the dimension of the kernel of $\lambda I_n - A$. The *algebraic multiplicity* of λ is the multiplicity of the root λ of p_A . A matrix that has an eigenvalue for which the geometric and algebraic multiplicities do not coincide is called *defective*.

Suppose that $\{v_1, \dots, v_n\}$ is a linearly independent set of eigenvectors of $A \in \mathbb{R}^{n \times n}$, *i.e.*,

$$Av_i = \lambda_i v_i$$
, for $i = 1, ..., n$.

Written in a matrix form, the above set of equations is

$$A\underbrace{\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}}_{V} = \underbrace{\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}}_{\Lambda}.$$

1.6. SUMMARY 13

The matrix V has as columns the eigenvectors and is nonsingular since by assumption $\{v_1, \dots, v_n\}$ is a linearly independent set. Then

$$AV = V\Lambda \implies V^{-1}AV = \Lambda.$$

i.e., we obtain a similarity transformation (defined by the matrix $T := V^{-1}$) that *diagonalizes A*. Conversely, if there is a nonsingular $V \in \mathbb{C}^{n \times n}$, such that

$$V^{-1}AV = \Lambda$$

then $Av_i = \lambda_i v_i$, for i = 1, ..., n, and therefore $\{v_1, ..., v_n\}$ is a linearly independent set of eigenvectors. The matrix $A \in \mathbb{R}^{n \times n}$ is *diagonalizable* if

- there is a nonsingular matrix T, such that TAT^{-1} is diagonal, or
- there is a set of n linearly independent eigenvectors of A.

The set of *defective* matrices corresponds to the set of matrices that are not diagonalizable. The eigenvalues of a matrix being distinct implies that the matrix is diagonalizable, however, the converse is not true (consider, for example, the the identity matrix). A prototypical example of a defective matrix is what is called the *Jordan block*

$$J_{\lambda} := egin{bmatrix} \lambda & 1 & & & & \ & \lambda & \ddots & & & \ & & \ddots & 1 & & \ & & & \lambda \end{bmatrix}.$$

A generalization of the eigenvalue decomposition $TAT^{-1} = \Lambda$ for defective matrices is the Jordan canonical form

$$TAT^{-1} = \operatorname{diag}(J_{\lambda_1}, \dots, J_{\lambda_k}),$$

where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of A.

Exercise problem 25. Show that the eigenvalues of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ are real and the eigenvectors can be chosen to form an orthonormal set, *i.e.*, be orthogonal to each other and have unit norm.

1.6 Summary

- f is linear if homogeneity and superposition holds, i.e., $f(\alpha x + \beta v) = \alpha f(x) + \beta f(v)$
- f is linear if and only if there is a matrix A, such that f(x) = Ax
- *image* (column span or range) of $A \in \mathbb{R}^{m \times n}$ is the set image $(A) := \{Ax \mid x \in \mathbb{R}^n\}$
- *kernel* (or null space) of $A \in \mathbb{R}^{m \times n}$ is the set $\ker(A) := \{x \in \mathbb{R}^m \mid Ax = 0\}$
- $\mathscr{A} \subset \mathbb{R}^n$ is a *subspace* if $\alpha a + \beta b \in \mathscr{A}$ for all $a, b \in \mathscr{A}$
- a basis of a subspace is a set of linearly independent vectors that span the subspace
- the dimension of a subspace is the number of basis vectors
- the image(A) and the ker(A) of any matrix A are subspaces
- the *rank* of A is the number of linearly independent rows (or columns)
- $\dim (\operatorname{image}(A)) = \operatorname{rank}(A)$ and $\operatorname{coldim}(A) \dim (\ker(A)) = \operatorname{rank}(A)$
- A is full row rank if rank(A) = row dim(A)