$q=2\pi/\theta$, the units of q in our Fig. 13 is rad⁻¹. For example, when $\theta=100$ arcmin = 0.029 rad, q=216.7 rad⁻¹.

From the EQ. 35, k = q/r and at z = 6 we have $r \approx 8400$ Mpc, so k = 0.026 Mpc⁻¹. From Fig. 13, at k = 0.026 Mpc⁻¹ the $k^3/(2\pi^2)P_{3D}(k) \approx 2.2 \times 10^4$ (Jy/sr)². So $P_{3D} = 2.5 \times 10^{10}$ (Jy/sr)²Mpc³.

Since for $\delta\nu_0 = 1$ GHz and $\nu_0 = 271.5$ GHz, $\delta r \approx 11$ Mpc at z = 6, we get $P_{\rm 2D} = 32$ (Jy/sr)²sr from EQ. 35, and $q^2/(2\pi)P_{\rm 2D} = 2.4 \times 10^5$ (Jy/sr)². This is consistent with the Fig. 12.

The 2D power spectrum DO depends on the projected thickness along the line-of-sight, because when you stack the thin slices together, the small-scale fluctuations along the line-of-sight would cancel out each other somewhat, leaving only the fluctuations larger than the thickness at the radial direction.

EQ. 35 is just a very simple approximation, to get the accurate 2D power spectrum, a formula like EQ. 10 in Loeb & Zaldarriaga (2004) is much better.