CHARACTER TABLES FOR C_n POINT GROUPS

Character table for C₂ point group

	E	$\mathbf{C_2}$	Linear Functions, Rotations	Quadratic	
A	1	1	z, R_z	x^2, y^2, z^2, xy	
В	1	-1	x, y, R_x, R_y	yz, xz	

Character table for C₃ point group

	E	C ₃	$(C_3)^2$	Linear Functions, Rotations	Quadratic
A	1	1	1	z, R _z	x^2+y^2, z^2
E	1	e	e^*	$x+iy; R_x+iR_y$	$(x^2-y^2, xy) (yz,$
	1	e*	e	$x-iy; R_x-iR_y$	xz)

 $e = \exp(2\pi i/3)$

Character table for C_4 point group

	E	C ₄	C ₂	(C ₄) ³	Linear Functions, Rotations	Quadratic
A	1	1	1	1	z, R _z	x^2+y^2, z^2
В	1	-1	1	-1		x^2-y^2 , xy
E	1	i	-1	-i	$x+iy; R_x+iR_y$	
ı.	1	-i	-1	i	$x+iy$; R_x+iR_y $x-iy$; R_x-iR_y	(yz, xz)

Character table for C_5 point group

	E	C ₅	$(C_5)^2$	$(C_5)^3$	$(C_5)^4$	Linear Functions, Rotations	Quadratic
A	1	1	1	1	1	z, R _z	x^2+y^2, z^2
$\mathbf{E_1}$	1	e	e^2	e^{2*}	e*	$x+iy$, R_x+iR_y	
L-1	1	e*	e^{2*}	e^2	e	x -iy, R_x -i R_y	(yz, xz)
$\mathbf{E_2}$	1	e^2	e*	e	e^{2*}		
L 2	1	e^{2*}	e	e*	e^2		(x^2-y^2, xy)

 $e = \exp(2\pi i/5)$

Character table for C_6 point group

	E	C ₆	C ₃	C_2	$(C_3)^2$	$(C_6)^5$	Linear Functions, Rotations	Quadratic
A	1	1	1	1	1	1	z, R _z	x^2+y^2, z^2
В	1	-1	1	-1	1	-1		
$\mathbf{E_1}$	1	e	-e*	-1	-e	e*	x+iy; R _x +iR _y	
	1	e*	-e	-1	-e*	e	x-iy; R _x -iR _y	(xz, yz)
$\mathbf{E_2}$	1	-e*	-e	1	-e*	-e		
£2	1	-e	-e*	1	-e	-e*		(x^2-y^2, xy)

 $e = \exp(\pi i/3)$