Praktikum Atome, Moleküle, kondensierte Materie Versuch 401: Elektronische Übergänge in Atomen

Carlos Pascua*1 and Michael Vog
t†1

¹Uni Bonn

3. November 2024

Inhaltsverzeichnis

1	Zeeman-Effekt	1
2	Franck-Hertz-Versuch	2
	2.1 Aufbau	2
	2.2 Durchführung und Auswertung	2
	2.3 Einfluss der Temperatur T und der Gegenspannung U_2	5
3	Fazit	5

 $^{{\}rm *s87cpasc@uni\text{-}bonn.de}$

 $^{^\}dagger s65 mvogt@uni-bonn.de$

1 ZEEMAN-EFFEKT 1

Einleitung

In diesem Versuch wird die Energieaufspaltung von Energie-Niveaus in Cadmium durch den Zeeman-Effekt untersucht. Daraus wird das Bohrsche Magneton bestimmt sowie Eigenschaften des verwendeten Fabry-Perot-Etalons errechnet.

Anschließend wird das Franck-Hertz-Experiment durchgeführt, um die Energiedifferenz zwischen dem 6S- und 6P-Zustand von Quecksilber zu bestimmen.

1 Zeeman-Effekt

Im ersten Versuchsteil wird anhand einer Cadmiumlampe in einem Magnetfeld der Zeeman-Effekt auf die Zustände 1D_2 und 1P_1 untersucht. Der verwendete Aufbau ist in Abb. 1 gezeigt.

Abbildung 1: Versuchsaufbau Zeeman-Effekt [2]

2 Franck-Hertz-Versuch

Im folgenden Abschnitt wird das Franck-Hertz-Experiment durchgeführt und anschließend detailliert diskutiert. Anhand der durch das Cassy-Modul gemessenen Anodenstromkurven I_A wird die Energiedifferenz ΔE zwischen den Energieniveaus des Quecksilbers Hg, 6S und 6P, präzise bestimmt.

2.1 Aufbau

In einer Franck-Hertz-Röhre, die mit Quecksilbers gefüllt ist, befindet sich eine glühende Kathode mit einer Heisspannung U_H , die die Elektronen durch thermische Emmission freisetzt und in der Richtung einer positiv geladenen Anode beschleunigt. Die Beschleunigungsspannung U_B zwischen Kathode und Anode bestimmt die kinetische Energie der Elektronen, bevor sie auf die Quecksilberatome treffen.

Zwischen der Kathode und der Anode befindet sich ein Gitter, das in einigen Konstruktionen mit einem kleinen Gegenfeld ausgestattet ist, um Elektronen, die nach elastische nd inelastische Stößen ihre kinetische Energie verloren haben, daran zu hindern, die Anode zu erreichen. Der Anodenstrom I_A wird dann in Abhängigkeit von der Spannung U_B gemessen. Bei bestimmten Spannungswerten zeigt der Anodenstrom charakteristische Einbrüche, die auftreten, wenn die Elektronen genau die Energie erreichen, die nötig ist, um ein Quecksilberatom vom Grundzustand (6S) in einen angeregten Zustand (6P) zu heben. Durch diesen inelastischen Stoß verlieren die Elektronen ihre kinetische Energie und tragen dadurch nicht mehr zum Stromfluss bei.

Die Spannungsdifferenz zwischen aufeinanderfolgenden Strommaxima liefert die Energie ΔE , die den Übergang zwischen den 6S- und 6P-Niveaus beschreibt.

2.2 Durchführung und Auswertung

Zunächst wird die Energiedifferenz ΔE zwischen die Energieniveaus des Hg bestimmt. Dabei sollen die Breiten der Kurven bzw. die Peaks bestimmt werden. Dazu werden Gaußkurven an die Daten angepasst, die mithilfe des Programms Fityk gemacht werden.

Es ist zu beachten, dass bei den verschiedenen Messungen nicht dieselbe Anzahl an Peaks erfasst wurde. Daher wurden nur die erkennbaren Peaks analysiert und in die Tabellen aufgenommen.

Fityk Version 1.3.1

In Fityk werden Gauß-Fits durch Auswahl eines Datenbereichs und Anwendung einer Gaußfunktion als Mo-

dell durchgeführt. Die Gaußfunktion hat die Form

$$f(x) = a \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

wobei a die Amplitude, μ der Mittelwert (Zentrum des Peaks) und σ die Standardabweichung ist. Das Programm optimiert die Parameter a, μ und σ , sodass die Abweichung zwischen dem Modell und den Datenpunkten minimiert wird. Die Methode der kleinsten Quadrate wird oft verwendet, um den Fehlerausdruck

$$\sum_{i=1}^{N} (y_i - f(x_i))^2$$

zu minimieren, wobei y_i die gemessenen Datenpunkte und $f(x_i)$ die entsprechenden Werte der Gaußfunktion sind. Dadurch entsteht eine Gaußkurve, die die Daten im ausgewählten Bereich bestmöglich beschreibt.

Diskussion der Daten

Wie bereits erwähnt, wurde während des Experiments nicht dieselbe Anzahl von Peaks erfasst. Dies stellt jedoch kein Problem dar, da eine ausreichende Anzahl an Messwerten vorliegt. Zudem wurde in Fityk eine Hintergrundfunktion zu den Gauß-Fits hinzugefügt, sodass die Gesamtsumme der Gauß-Peaks eine bessere Übereinstimmung mit den im Experiment beobachteten Peaks aufweist. Unter Berücksichtigung der oben genannten Anpassungen und Messmethoden folgen nun die entsprechenden Graphen.

Abbildung 2: Die gemessene Beschleunigungsspannung U_B gegen Anodenspannung U_A bei verschiedene Gegenspannung T und fester Temperatur U_G

Nun sind auch die zugehörigen Tabellen aufgeführt.

Parameter	Wert	Fehler Δ
μ_1	31.1	± 0.0183
σ_1	1.26	± 0.0358
μ_2	26.1	± 0.0162
σ_2	1.08	± 0.0249
μ_3	21.2	± 0.024
σ_3	0.91	± 0.0298
μ_4	16.4	± 0.0365
σ_4	0.843	± 0.0522
μ_5	11.7	± 0.237
σ_5	0.669	± 0.306

Tabelle 1: Parameter bei $U_G=2.0V$ und $T=165^{\circ}C$

Parameter	Wert	Fehler Δ
μ_1	31.3	± 0.00925
σ_1	1.04	± 0.0129
μ_2	26.3	± 0.00979
σ_2	0.967	± 0.0151
μ_3	21.4	± 0.0133
σ_3	0.914	± 0.019
μ_4	16.6	± 0.0242
σ_4	0.885	± 0.0321
μ_5	11.9	± 0.0715
σ_5	0.884	± 0.0916

Tabelle 2: Parameter bei $U_G=2.7V$ und $T=165^{\circ}C$

Parameter	Wert	Fehler Δ
μ_1	36.7	± 0.00818
σ_1	1.19	± 0.00971
μ_2	31.6	± 0.0125
σ_2	1.02	± 0.0153
μ_3	26.5	± 0.0121
σ_3	0.95	± 0.0143
μ_4	21.6	± 0.0181
σ_4	0.871	± 0.0215
μ_5	16.7	± 0.0362
σ_5	0.846	± 0.0423

Parameter	Wert	Fehler Δ
μ_1	36.8	± 0.00835
σ_1	1.0	± 0.0123
μ_2	31.7	± 0.00744
σ_2	0.944	± 0.00934
μ_3	26.7	± 0.00927
σ_3	0.837	± 0.0111
μ_4	21.7	± 0.0151
σ_4	0.769	± 0.0178
μ_5	16.8	± 0.0313
σ_5	0.712	± 0.0371

Tabelle 4: Parameter bei $U_G=4.0V$ und $T=165^{\circ}C$

Abbildung 3: Die gemessene Beschleunigungsspannung U_B gegen Anodenspannung U_A verschiedenen Temperaturen T und Gegenspannung U_G

Parameter	Wert	Fehler Δ
μ_1	36.3	± 0.00915
σ_1	1.11	± 0.0139
μ_2	31.2	± 0.00858
σ_2	1.02	± 0.0136
μ_3	26.3	± 0.0105
σ_3	0.966	± 0.0152
μ_4	21.4	± 0.0148
σ_4	0.92	± 0.0205
μ_5	16.6	± 0.0277
σ_5	0.889	± 0.0364
μ_6	11.9	± 0.0832
σ_6	0.893	± 0.106

Tabelle 3: Parameter bei $U_G=3.4V$ und $T=165^{\circ}C$ Tabelle 5: Parameter bei $U_G=2.7V$ und $T=170^{\circ}C$

Parameter	Wert	Fehler
μ_1	36.3	± 0.128
σ_1	1.67	± 0.212
μ_2	30.8	± 0.734
σ_2	1.08	± 0.26
μ_3	26.3	± 0.0108
σ_3	0.929	± 0.0138
μ_4	21.5	± 0.0112
σ_4	0.981	± 0.0135
μ_5	16.8	± 0.0232
σ_5	1.00	± 0.0275

Tabelle 6: Parameter bei $U_G=2.7V$ und $T=175^{\circ}C$

Parameter	Wert	Fehler
μ_1	36.1	± 0.00659
σ_1	0.952	± 0.0118
μ_2	31.2	± 0.00694
σ_2	0.968	± 0.0108
μ_3	26.3	± 0.0095
σ_3	0.921	± 0.0152
μ_4	21.6	± 0.016
σ_4	0.893	± 0.0233
μ_5	16.8	± 0.0351
σ_5	0.911	± 0.0544

Tabelle 7: Parameter bei $U_G = 2.7V$ und $T = 180^{\circ}C$

Bestimmung der Δ Energiedifferenz

Um die Eindeutigkeit zu gewährleisten, bezeichnen wir die Peaks bzw. die Erwartungswerte mit U_B^i und fassen alle relevanten Informationen in einer Tabelle zusammen.

$U_B^1[V]$	$U_B^2[V]$	$U_B^3[V]$	$U_B^4[V]$	$U_B^5[V]$	$U_B^6[V]$
36.7	31.1	26.1	21.2	16.4	11.7
36.8	31.3	26.3	21.4	16.6	11.9
36.3	31.6	26.5	21.6	16.7	11.9
36.3	31.7	26.7	21.7	16.6	-
36.1	31.2	26.3	21.4	16.8	-
-	30.8	26.3	21.5	16.8	-
-	31.2	26.3	21.6	16.8	-

Tabelle 8: zugeordnete U_B^i

Der Fehler des Mittelwerts wird durch die folgende Formel und in der Tabelle dargestellt:

$$\Delta(U_B^i) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\delta U_{i,n}^B\right)^2}$$

Dabei ist N die Anzahl der Werte, die zur Berechnung des Mittelwerts beitragen.

$\delta U_B^1[{ m V}]$	$\delta U_B^2[{ m V}]$	$\delta U_B^3[{ m V}]$	$\delta U_B^4[V]$	$\delta U_B^5[{ m V}]$	$U_B^6[V]$
± 0.00818	± 0.0183	± 0.0162	± 0.024	± 0.0365	± 0.237
± 0.00835	± 0.00925	± 0.00979	± 0.0133	± 0.0242	± 0.0715
± 0.00915	± 0.0125	± 0.0121	± 0.0181	± 0.0362	± 0.0832
± 0.128	± 0.00744	± 0.00927	± 0.0151	± 0.0313	-
± 0.00659	± 0.00858	± 0.0105	± 0.0148	± 0.0277	-
-	± 0.734	± 0.0108	± 0.0112	± 0.0232	-
-	± 0.00694	± 0.0095	± 0.016	± 0.0351	-

Tabelle 9: zugeordnete δU_B^i

Im Folgenden sind die Mittelwerte der Beschleunigungsspannung sowie die entsprechenden Fehler dargestellt.

	Mittelwert [V]
U_B^1	36.3
U_B^2	31.2
U_B^3	26.3
U_B^4	21.6
U_B^5	16.6
U_B^6	11.8

Tabelle 10: Mittelwerte zu U_B^i

	Mittelwert [V]
δU_B^1	± 0.0504
δU_B^2	± 0.133
δU_B^3	± 0.0112
δU_B^4	± 0.0161
δU_B^5	± 0.0307
δU_B^6	± 0.131

Tabelle 11: Mittelwerte zu δU_B^i

Nun kann man aus den Diferenzen der benachbaren Peaks der Energiedifferenz ΔE bestimmt werden.

$$\Delta E = (4.9 \pm 0.0803)eV$$

Das Ergebnis unserer experimentellen Messungen ist äußerst erfreulich und stimmt vollständig mit dem erwarteten theoretischen Wert der Übergang zwischen $6^1S_o \rightarrow 6^3P_1$ überein. Wie man in der Abbildung sich anschauen kann.

3 FAZIT 5

Abbildung 4: Termschema des Quecksilbers

2.3 Einfluss der Temperatur T und der Gegenspannung U_2

Abbildung 5: Totaler Wirkungsquerschnitt $Q(\pi a_0^2)$ von H
g für Elektronenstoßanregung

3 Fazit

LITERATUR 6

Literatur

- [1] Physikalisches Praktikum Teil IV Versuchsbeschreibungen, Universität Bonn, Abruf 29.10.2024
- [2] Beobachtung des normalen Zeeman-Effekts in transversaler und longitudinaler Konfiguration, Leybold Didactic, Abruf 30.10.2024