

Angle-of-Arrival-Based Gesture Recognition Using Ultrasonic Multi-Frequency Signals

Authors: Hui Chen, Tarig Ballal, Mohamed Saad, Tareq Y. Al-Naffouri

Speaker: Hui Chen

University: King Abdullah University of Science and Technology (KAUST)

1 Introduction

- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

Human Gestures

A form of non-verbal communication:

- Conveying information
- Expressing emotions
- Language for disabled people

Human-machine Interactive Products

Camera

(Microsoft Kinect)

Lasers & IMU

(HTC Vive)

Accelerometer

(Synertial Glove)

Ultrasound

(Ellipticlabs)

IR cameras and infrared LEDs

(Leap Motion)

- 1 Introduction
- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

A Demo of Writing "KAUST"

Write 'K', 'A', 'U', 'S', 'T' continuously within a window.

A Demo of Writing "KAUST"

A Demo of Writing "KAUST"

Captured hand motion with proposed system

Start from blue to red

Extracted Segments

How it works?

Angle information → Classify

Proposed System

1 AOA estimation:

Ultrasonic signals are transmitted from the transmitter. AoA algorithm is used to obtain the angle information for each sample.

2 Classification:

Estimated angle data are processed and sent to classifier to recognition this gesture.

- 1 Introduction
- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

Signal Design

Measurements/Frame per second: 100 (Hz)

Signal Design

Measurements/Frame per second: 100 (Hz)

Pulse length = 1.6 ms

Far-field Model of AOA

Far-field Model of Horizontal Receivers

$$\sin\theta_{x} = \frac{d}{D} = \frac{\Delta\varphi}{2\pi f} \cdot \frac{c}{D}$$

Given:

 θ_x : Horizontal angle

d: difference of arrival

 $\Delta \varphi$: phase difference

F: frequency of current signal

C: Sound speed

D: Sensor distance

How to get:

Horizontal angle θ_x and vertical angle θ_y

Proposed Angle of Arrival Estimation Algorithm

1 Estimated phase difference $\hat{\psi}_{x,i}$ for carrier frequencies f_1, f_2, f_3 using cross power spectrum:

$$\hat{\psi}_{x,i} = \arg(Y_u(f_i) \cdot Y_v^*(f_i)) = \hat{\phi}_{x,i} - 2\pi N_{x,i}, \quad (1)$$

 $Y_u(f_i)$ is the DFT (Discrete Fourier Transform) of the received signals at sensor u;

 $(\cdot)^*$ indicates the complex conjugate operation;

 $\hat{\phi}_{x,i}$ is the real phase difference;

 $N_{x,i}$ is an integer which makes estimated phase difference $\hat{\psi}_{x,i}$ within $(-\pi, \pi]$;

2 Calculate real phase difference $\hat{\phi}_{x,i}$ for $\theta_x = \theta$ (eg: θ = -90°) for all the 3 frequencies:

$$\sin(\hat{\theta}_x) = \frac{d}{D} = \frac{\hat{\phi}_{x,i} c}{2\pi f_i D},\tag{2}$$

Proposed Angle of Arrival Estimation Algorithm

3 Obtain wrapped real phase difference $\tilde{\psi}_{x,i}$ from real phase difference $\hat{\phi}_{x,i}$;

$$\widetilde{\psi}_{x,i}(\theta) = \operatorname{wrap}(\widetilde{\phi}_{x,i}(\theta)) = \operatorname{wrap}\left(\frac{2\pi f_i D \sin(\theta)}{c}\right), \quad (3)$$

4 Calculate the error between estimated phase difference and at all frequencies (i = 1,2,3);

$$\sum_{\langle i \rangle} (|\hat{\psi}_{x,i} - \tilde{\psi}_{x,i}(\theta)|)$$

5 Repeat 2,3 for all the angles $\theta_x = -90:1:90$ and find the θ gives min error as the estimated angle.

$$\hat{\theta}_x = \arg\min_{\theta} \sum_{\langle i \rangle} (|\hat{\psi}_{x,i} - \tilde{\psi}_{x,i}(\theta)|), \tag{4}$$

AOA Estimation Summary

1 Estimated phase difference $\hat{\psi}_{x,i}$

$$\hat{\psi}_{x,i} = \arg(Y_u(f_i) \cdot Y_v^*(f_i)) = \hat{\phi}_{x,i} - 2\pi N_{x,i}$$

- 2 Calculate real phase difference $\hat{\phi}_{x,i}$ for $\theta = -90^{\circ} : 1 : 90$ at all the 3 frequencies:
- 3 Obtain wrapped real phase difference $ilde{\psi}_{x,i}$

$$\left| \tilde{\psi}_{x,i}(\theta) \right| = \operatorname{wrap}(\tilde{\phi}_{x,i}(\theta)) = \operatorname{wrap}\left(\frac{2\pi f_i D \sin(\theta)}{c}\right)$$

- 4 Obtain absolute error (difference) summation of $\hat{\psi}_{x,i}$ and $\tilde{\psi}_{x,i}$;
- 5 Find the θ gives min error as the estimated angle.

$$\hat{\theta}_x = \arg\min_{\theta} \sum_{\langle i \rangle} (|\hat{\psi}_{x,i} - \tilde{\psi}_{x,i}(\theta)|)$$

- 1 Introduction
- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

Classifiers

Proposed classifier	Benchmark Classifier
Redundant Dictionary Matching; (RD classifier)	Neural Network Model Trained by: (NN classifiers)
No training procedure;	Train the model with angle data
	 Train the model with constructed image
	 MNIST database

4 classifiers

A Demo of Angle vs. Time

Template Dictionary

Same applies for $3, 4, 5 \sim 9, 0$

Horizontal angle vector

+

Vertical angle vector

+

Normalize

Ξ

Template dictionary

Template Dictionary

Horizontal Vertical 0.1 -0.2 <u></u> -0.1

Redundant Dictionary

Users have different habits: Writing Speed → Shrink Slow delayed Slow Faster Delay → Shift Template dictionary Redundant Dictionary

Redundant Dictionary—One Example

Shrink sample = 20; Shift sample = 20;

200 samples \rightarrow 1 start point

180 samples \rightarrow 2 start points

...

100 samples \rightarrow 6 start points

Extend to 21 templates

Dictionary A_r : 400 by 210

RD Classifier—Classify

$$r = A_r^T g. (6)$$

r: vector of inner products;

 A_r : redundant dictionary matrix;

g: normalized angle information using linear interpolation to fit the size of the dictionary.

Fig. 9. An Example of Dictionary Matching for Gesture '8'

NN Classifier—Image Constructing

Grid into a 28 by 28 matrix

(a) Gesture '2'

(b) Binarized Image

NN Classifier—training data sets

Model: Stacked auto-encoder model from Matlab Neural Network Toolbox.

Training data sets:

1 Train the model with angle data; (1x400 vector)

2 Binarized MNIST database; (28x28 image)

3 Train the model with constructed images; (28x28 image)

MNIST database

- 1 Introduction
- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

System Setup

Handhold ultrasound transmitter

Perform gesture

Receiver array

Receiver Array

Power

Angle Accuracy Test Result

- Receiver is placed 1 m from the ground;
- Data is collected from 6 points with Vertical angle = 0
 (transmitter is the same height with the receiver)

Classifier Performance

Data collection:

10 volunteers

10 gestures

Repeated for 10 times

1000 gesture data set

Gesture Templates

Classifier Performance

Accuracy		
95.5%		
94.4%		
66.5%		
91.1%		

Result of Dictionary-based Classifier

TABLE II CONFUSION MATRIX OF DICTIONARY-BASED CLASSIFIER

Actual	Classified Gestures (95.5% of 1000 gestures)									
Gesture	'1'	'2'	'3'	'4'	'5'	'6'	'7'	'8'	'9'	'0'
'1'	96						3	1		
'2'	4	91					5			
'3'	5	1	91				3			
'4'				81		5		(9	5
'5'	3				95			1	\bigvee	
'6'						97				3
'7'	9						91			
'8'							1	99		
'9'					1		1		97	1
'0'						1				99

- 1 Introduction
- 2 Proposed Gesture Recognition System
- 3 Angle of Arrival Estimation
- 4 Gesture Classification
- 5 Experiments and Results
- 6 Summary and Future work

Summary

- 1 A prototype of gesture recognition system;
- 2 AOA algorithm to obtain 2D angle information from the gesture;
- 3 Training-free Redundant dictionary classifier;
- 4 95.5% accuracy.

Current & Future Work

1 Letter Recognition (√)

2 Hidden Markov Model Classifier (√)

3 Decision Tree (√)

4 Word Recognition

Recent Letter Classification Results

1 With decision tree

Redundant Dictionary: 96.09%
Neural network: 95.45%

Hidden Markov Model: 96.22%

2 Without decision tree

Redundant Dictionary: 89.39%Neural network: 94.29%

Hidden Markov Model: 95.45%

Thanks for your time

Speaker: Hui Chen

Email: hui.chen@kaust.edu.sa

Date: 2017-08-25