Email: sohamc@cmi.ac.in

Course: Parallel Algorithms and Complexity Date: August 16, 2023

Problem 1

 $ITERADD_{poly(\log n),n} \in AC^0$ where $ITERADD_{poly(\log n),n}$ is problem of adding polylog many n-bit numbers.

Solution: We already know $ITERADD_{\log n,n} \in AC^0$. So we will use this in order to show

$$ITERADD_{poly(\log),n} \in AC^0$$

Number of bits after adding k many n-bit numbers is $\log k + n$ bits. We will solve it with a tree like circuit with depth k.

Suppose we are given $\log^k n$ many n-bit numbers. Let the numbers are $a_1, \ldots, a_{\log^k n}$. Now we group the numbers where each group contains $\log n$ many numbers. So there will be total $\log^{k-1} n$ many groups. In each group we will add the $\log n$ many n-bit numbers which we know we can do in AC^0 . Now from each group we get numbers with $\log \log n + n = O(n)$ bits.

Now from these $\log^{k-1} n$ many O(n) bits numbers we again form groups where each group contains $\log n$ many numbers. So we will have $\log^{k-2} n$ many groups. Again in each group we add the $\log n$ many n bit numbers which we can do in AC^0 . The numbers we get from each group has $\log \log n + O(n) = O(n)$ bits.

We continue this and notice each time the power of the log is reducing by 1. So we have to do this process k times. And then we will have 1 number which is the addition of all the $\log^k n$ many n-bit numbers. In i-th step we use the AC^0 circuit for adding $\log n$ many n-bit numbers and get $\log^{i-1} n$ numbers where each number has $\log \log n + O(n) = O(n)$ many bits.

Since each step is using a AC^0 circuit parallely $\log^{i-1} n$ many times and there are total k many such iterations. So the total circuit will have constant depth and polynomial size. Hence $ITERADD_{poly(\log n),n} \in AC^0$

Problem 2

Defintiion 1: It is the class of constant depth polynomial size circuits with AND, OR, NOT, MAJORITY gates.

Defintiion 2: It is the class of constant depth polynomial size circuits with NOT, MAJORITY gates.

Equivalence of The two Definitions of TC^0

Solution: If we can construct the AND and OR gate with MAJORITY gate in constant depth and polynomial size then we can say these two definitions are equivalent.

Now if a_0, \ldots, a_{n-1} are n bits. Then

$$\bigwedge_{i=0}^{n-1} a_i = MAJORITY\left(a_0, \dots, a_{n-1}, \underbrace{0, 0, \dots, 0}_{n-1 \text{ times}}\right)$$

Similarly

$$\bigvee_{i=0}^{n-1} a_i = MAJORITY\left(a_0, \dots, a_{n-1}, \underbrace{1, 1, \dots, 1}_{n-1 \text{ times}}\right)$$

Now the AND and OR gate both can be replaced with O(1) depth O(n) size subcircuits using only MAJORITY gates in a circuit and still the total depth of the circuit will be constant and size is polynomial. Hence the two definitions are equivalent.