(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-268410

(43)公開日 平成5年(1993)10月15日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ					技術表示箇所
H 0 4 N	1/028	Α	9070-5C		•	•	-	•	
		С	9070-5C						
	5/335	F							
		TI							

	, 	審査請求 未請求 請求項の数 2(全 7 頁)					
(21)出願番号	特願平4-93385	(71)出願人 000002185 ソニー株式会社					
(22)出願日	平成 4年(1992) 3月19日	東京都品川区北品川 6 丁目 7 番35号					
		(72)発明者 真城 康人 東京都品川区北品川 6 丁目 7 番35号 ソニ 一株式会社内					
		(72)発明者 佐藤 真木 東京都品川区北品川 6 丁目 7 番35号 ソニ ー株式会社内					
		(74)代理人 弁理士 船橋 国則					

(54) 【発明の名称】 リニアセンサ

(57)【要約】

【目的】 出力信号を連続的に読みだそうとするとき、 各ライン間の無効信号期間を最小にできるとともに、最 短蓄積時間もセンサ部からの信号電荷の読出し時間と同 程度まで小さくできるリニアセンサを提供する。

【構成】 センサ列1,~1, に対しHCCD2,~2 ,の反対側にドレイン用拡散領域41~4,を、さらに センサ列 1、 ~ 1 、とドレイン用拡散領域 4 、 ~ 4 、の 間に転送ゲート5、~5、をそれぞれ設け、センサ列1 、~1,の各画素に蓄積された不要電荷をドレイン用拡 散領域4、~4、にそれぞれ掃き捨てる横型シャッター 構造を各ライン毎に採るとともに、シフトゲート3,~ 3,及び転送ゲート5,~5,の各駆動タイミングを各 ライン間で独立に設定可能とし、露出時間を各ライン間 で任意に設定できるようにする。

10

1

【特許請求の範囲】

【請求項1】 水平方向に1次元に配列された所定数の 画素からなる複数のセンサ列と、

前記複数のセンサ列に対応して設けられて信号電荷を水平方向に転送する複数の水平転送レジスタと、

前記複数のセンサ列の各画素に蓄積された信号電荷を前 記複数の水平転送レジスタにそれぞれ転送する複数のシ フトゲートと

前記複数のセンサ列に対し前記複数の水平転送レジスタと反対側に設けられた複数のドレイン用拡散領域と、前記複数のセンサ列の各画素に蓄積された不要電荷を前記複数のドレイン用拡散領域にそれぞれ掃き捨てる複数の転送ゲートとからなる複数ラインの構造を同一基板上に有するとともに、

前記シフトゲート及び前記転送ゲートの各駆動タイミングを複数ライン間で独立に設定可能な駆動回路を備えた ととを特徴とするリニアセンサ。

【請求項2】 前記複数ラインは3ラインであり、 前記3ラインの各センサ列は3原色の各色にそれぞれ対 応していることを特徴とする請求項1記載のリニアセン 20 サ、

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はリニアセンサに関し、特に、いわゆる横型シャッター機能を有するリニアセンサに関する。

[0002]

【従来の技術】リニアセンサとしては、カラーイメージスキャナやデジタルカラー複写機等の画像情報入力部で用いられている複数ライン、例えば3ラインをオンチッ 30プしたリニアセンサが周知である。この3ラインのリニアセンサでは、各ラインの出力信号を1箇所から導出した方が、信号処理系を簡略化する上で、各ライン毎に3箇所から出力信号を導出するよりも有利である。

【0003】図5に、3ラインの各出力信号を1箇所から導出するようにしたリニアセンサの従来例を示す。同図において、3本のアナログシフトレジスタ2、~2、の出力側には、各ライン毎に切替えスイッチSW1~SW3が配置されており、これら切替えスイッチSW1~SW3が順番に切替え制御されることにより、各ライン40の信号が順次導出されるようになっている。図6に、2相の転送クロックφ1、φ2、各シフトゲート3、~3、の読出しパルスφrog1~φrog3及び出力信号Voutのタイミング関係を示す。なお、期間t

1.1、は、各ライン毎の信号電荷の蓄積時間である。 【0004】

【発明が解決しようとする課題】上述した従来の3ライの信号電荷の読出し時間で決まるため小さくできる。ま ンのリニアセンサでは、アナログシフトレジスタ2、~た、各ラインのシフトゲート及び転送ゲートの各駆動タ 2、の転送クロックφ1、φ2を共通にした場合は、出イミングを複数ライン間で独立に設定することにより、 力信号を連続的に読みだそうとするとき、センサ部に蓄50 露出時間(光信号電荷の蓄積時間)を各ライン毎に設定

積された不要電荷を掃き捨てるには、アナログシフトレジスタ2、~2、を使わざるをえないため、光信号電荷の蓄積時間を短くしようとすると、転送クロックφ1、φ2による高速転送が必要になる。そうすると、その不要電荷の掃き捨て期間は信号出力ができず、ライン間の無効信号期間となり、この無効信号期間に光信号電荷の蓄積時間と不要電荷の転送時間が必要であった。換言すれば、その光信号電荷蓄積時間 t;n、と不要電荷転送時間が、各ライン間の無効信号期間になってしまう。

【0005】また、転送クロック ϕ 1、 ϕ 2の高速転送時のクロック周波数により、最短蓄積時間が決まってしまうため、センサ列1、 \sim 1、の画素数が多いと最短蓄積時間が大きくなり、広範囲の光量に対応できなくなる。例えば、各ラインのセンサ列1、 \sim 1、が1000画素からなるリニアセンサの場合、高速転送を10MH2で行ったとしても、不要電荷転送に100 μ secの転送時間が必要になり、最短蓄積時間も100 μ sec 程度と大きくなる。

【0006】本発明は、上述した点に鑑みてなされたものであり、出力信号を連続的に読みだそうとするとき、各ライン間の無効信号期間を最小にできるとともに、最短蓄積時間もセンサ部からの信号電荷の読出し時間と同程度まで小さくできるリニアセンサを提供することを目的とする。

[0007]

【課題を解決するための手段】本発明によるリニアセンサは、水平方向に1次元に配列された所定数の画素からなる複数のセンサ列と、この複数のセンサ列に対応して設けられて信号電荷を水平方向に転送する複数の水平転送レジスタと、複数のセンサ列の各画素に蓄積された信号電荷を複数の水平転送レジスタにそれぞれ転送する複数のシフトゲートと、複数のセンサ列に対し複数の水平転送レジスタと反対側に設けられた複数のドレイン用拡散領域と、複数のセンサ列の各画素に蓄積された不要電荷を複数のドレイン用拡散領域にそれぞれ掃き捨てる複数の転送ゲートとからなる複数ラインの構造を同一基板上に有するとともに、シフトゲート及び転送ゲートの各駆動タイミングを複数ライン間で独立に設定可能な駆動回路を備えた構成となっている。

[0008]

【作用】複数ライン分を同一基板上に有し、各ラインの水平転送レジスタを全ラインとも共通駆動とし、その基板からの最終出力を1箇所から導出する構造のリニアセンサにおいて、いわゆる横型シャッター構造を各ライン毎に設けることにより、各ライン間の無効信号期間を最小することができ、さらに最短蓄積時間もセンサ部からの信号電荷の読出し時間で決まるため小さくできる。また、各ラインのシフトゲート及び転送ゲートの各駆動タイミングを複数ライン間で独立に設定することにより、窓出時間(米信号電荷の萎積時間)を名ライン気に設定

することができるとともに、3ラインのリニアセンサの場合は、各ラインの各々を三原色(R, G, B)の各色に対応させることで、R, G, Bの各フィルタの感度差を補正できる。

[0009]

【実施例】以下、本発明の実施例を図面に基づいて詳細に説明する。図1は、本発明の一実施例を示す構成図であり、カラーイメージスキャナやデジタルカラー複写機等の画像情報入力部に用いられる3ラインのリニアセンサに適用した場合を示す。図において、水平方向(H方 10向)に1次元に配列された所定数の画素からなり、垂直方向(V方向)に3ライン分だけ並べられたセンサ列1、~1、と、信号電荷をH方向に転送するCCD(Charge Coupled Device)からなるアナログシフトレジスタ(以下、HCCDと称する)2、~2、と、センサ列1、~1、の各画素に蓄積された信号電荷をHCCD2、~2、にそれぞれ転送するシフトゲート3、~3、とにより、3ラインのリニアセンサの基本構造が構成されている。

【0010】本発明においては、この基本構造に加えて、センサ列1、 \sim 1,に対しHCCD2、 \sim 2,の反対側にドレイン用拡散領域4、 \sim 4,が設けられ、さらにセンサ列1、 \sim 1,とドレイン用拡散領域4、 \sim 4,との間に、センサ列1、 \sim 1,の各画素に蓄積された不要電荷をドレイン用拡散領域4、 \sim 4,にそれぞれ掃き捨てる転送ゲート5、 \sim 5,が設けられている。以上の構成により、本発明によるリニアセンサは、横型シャッター機能付きリニアセンサを3ライン分同一基板上に有する構造となっている。

【0011】HCCD2、~2、においてそれぞれ転送された信号電荷は、HCCD2、~2、の出力側に設けられた例えばフローティング・ディフュージョン・アンプ構成の電荷/電圧変換部6、~6、によって電圧に変換(あるいは、リセット)される。各ラインの出力信号は、切替えスイッチSW1~SW3のスイッチング制御によって各ライン毎に連続的に読み出され、アンプ7を介して1箇所から信号出力Voutとして導出される。

【0012】HCCD2、~2、、シフトゲート3、~3、及び転送ゲート5、~5、を駆動するために、タイミングジェネレータ(図示せず)を含む駆動回路8が設けられている。との駆動回路8は、3ラインのHCCD2、~2、に対しては全ラインとも共通に複数相(本例では、2相)の転送クロックφ1、φ2を、3ラインのシフトゲート3、~3、に対しては読出しゲートバルスφroq1~φroq3を、3ラインの転送ゲート5、~5、に対しては転送ゲートパルスφs1~φs3をそれぞれ供給する。また、ドレイン用拡散領域4、~4、には、DCバイアスVsdが印加されている。

【0013】図1におけるX - Y矢視断面を図2に示 図4の出力Vout の波形から明かなように、各ラインす。本例では、N型シリコン基板11及びPウェル12 50 の無効信号期間をほぼ0にすることが可能となる。ま

の構造を採っており、センサ部13は感度の向上と暗電流の低減を図るため、NPフォトダイオードにP・型領域による正孔蓄積構造を有している。このセンサ部13に隣接してN・型領域からなるシフトゲート3、が形成され、その上方には、読出しゲートバルスφrog1が印加されるゲート電極14が絶縁膜(図示せず)を介して配されている。また、シフトゲート3、隣接してN型領域からなるHCCD2、が形成され、その上方には、転送ゲートバルスφs1が印加される転送電極15が絶縁膜を介して配されている。

【0014】一方、センサ部13に対し、シフトゲート3、と反対側にはN型領域からなる転送ゲート5、が形成され、その上方には、転送ゲートバルスゆs1が印加されるゲート電極16が絶縁膜を介して配されている。さらに、この転送ゲート5、には、N領域からなるドレイン用拡散領域4、が形成されており、このドレイン用拡散領域4、には、DCバイアスVsdが印加されている。

【0015】次に、上記構成の3ラインのリニアセンサの動作につき、図3のポテンシャル図及び図4のタイミングチャートを参照しつつ説明する。なお、図3のポテンシャル図は、図4のタイミングチャートの時刻 t, t, での図2の断面構造に対応したポテンシャルを示している。先ず、時刻 t, で不要電荷を掃き捨てるために、転送ゲートバルスφ51が発生し、転送ゲート5, の電位が高レベルになると、転送ゲート5, 下のポテンシャルが図3に実線で示す如く深くなるため、センサ部13に蓄積された電荷は、図3に実線で示す如くドレイン用拡散領域4,へ転送される。

【0016】次に、時刻t,になると、転送ゲート5,下のポテンシャルが図3に点線で示す如く浅くなる一方、読出しゲートパルスφrog1が発生し、シフトゲート3,の電位が高くなり、シフトゲート3,下のポテンシャルが図3に点線で示す如く深くなるため、センサ部13に蓄積された光信号電荷は、図3に点線で示す如くHCCD2,に転送される。

【0017】 CCで、光信号電荷の蓄積時間 tint は、転送クロックφ1、φ2の周波数や各ラインの画素数に依存せず、転送ゲートバルスφ51の立下がりから読出しゲートバルスφroq1の立下がりまでの時間になる。また、最短蓄積時間に関しては、読出しゲートバルスφroq1のバルス幅、即ちセンサ部13からの光信号電荷の読出し時間と同程度まで小さくできる。

【0018】上述したように、各ライン毎に横型シャッタ機能を持たせたことにより、各ラインの出力信号を連続して読みだそうとするとき、各ライン毎にシャッター機能によって不要電荷を掃き捨てることができるため、従来のような高速転送クロックが不要になるとともに、図4の出力Voutの波形から明かなように、各ライン間の無効信号期間をほぼ0にすることが可能となる。ま

た、転送ゲートパルス ϕ s1 \sim ϕ s3の低レベル (Vs – Lo)を調整することにより、センサ部13でのオーバー フローレベルをコントロールすることも可能となる。

【0019】さらには、シフトゲート3、~3、及び転 送ゲート5、~5、に対し、読出しゲートパルスørog1 ~φ rog3及び転送ゲートパルスφ s1~φ s3をそれぞれ個 別に供給し、それぞれ駆動タイミングを各ライン間で独 立に設定できるようにしたととにより、光信号電荷の蓄 積時間 t int 、即ち露出時間を各ライン毎に任意に設定 できることにより、各センサ列1、~1,の各々を三原 色(R,G,B)の各色に対応させた3ラインのカラー リニアセンサに適用した場合には、R, G, Bの各色フ ィルタの感度差を補正できるととにもなる。

【0020】なお、上記実施例においては、HCCD2 1~2, の各出力側に電荷/電圧検出部6, ~6,を設 け、切替えスイッチSW1~SW3によるスイッチング 制御によって各出力信号を導出する構成のものに適用し た場合について説明したが、出力部の構成はこれに限定 されるものではなく、例えば、HCCD2, ~2, の転 20 送による信号電荷を垂直方向に転送するVCCDをHC CD2,~2,の出力側に設け、とのVCCDの出力側 に単一の電荷/電圧変換部を設けて1箇所から出力信号 を導出する構成のものにも適用可能である。

【0021】また、上記実施例では、読出しゲートパル ス ϕ rog1 \sim ϕ rog3及び転送ゲートバルス ϕ s1 \sim ϕ s3を外 部の駆動回路8から供給する構成としたが、読出しゲー トパルス及び転送ゲートパルスをそれぞれ 1 個だけ外部 から供給し、内部の論理回路等によって3ライン分の各 ゲートパルス ϕ rog1 \sim ϕ rog3, ϕ s1 \sim ϕ s3を得るように 30 しても良い。

[0022]

【発明の効果】以上説明したように、本発明によれば、 複数ライン分を同一基板上に有し、各ラインの水平転送 レジスタを全ラインとも共通駆動とし、その基板からの 最終出力を1箇所から導出する構造のリニアセンサにお* *いて、横型シャッター構造を各ライン毎に設けるように 構成したことにより、センサ部に蓄積された不要電荷を 掃き捨てるのに水平転送レジスタを使う必要がないた め、各ライン間の無効信号期間を最小することができる とともに、最短蓄積時間もセンサ部からの信号電荷の読 出し時間と同程度まで小さくできる効果がある。

【0023】さらには、各ラインのシフトゲート及び転 送ゲートの各駆動タイミングを複数ライン間で独立に設 定するようにしたので、露出時間を各ライン毎に設定す するととができる。また、露出時間を各ライン毎に設定 10 るととができ、またとれに伴い3ラインのリニアセンサ の場合にあっては、各ラインの各々をR、G、Bの各色 に対応させることで、各フィルタの感度差を補正できる 効果もある。

【図面の簡単な説明】

【図1】3ラインのリニアセンサに適用した本発明の一 実施例を示す構成図である。

【図2】図1におけるX - Y矢視断面図である。

【図3】図2の断面構造に対応したポテンシャル図であ る。

【図4】本発明の動作説明のためのタイミングチャート である。

【図5】従来例を示す構成図である。

【図6】従来例の動作説明のためのタイミングチャート である。

【符号の説明】

 $1, \sim 1,$ センサ列

 $2, \sim 2,$ CCDアナログシフトレジスタ (HCC

D)

 $3, \sim 3,$ シフトゲート

 $4, \sim 4,$ ドレイン用拡散領域

 $5, \sim 5,$ 転送ゲート

6 電荷/電圧変換部

8 駆動回路

11 N型シリコン基板

13 センサ部

15 転送電極

【図2】

1ラインの X-Y 矢視断面図

[図3]

ポテンシャル 四

【図1】

【図4】

[図5]

従来例を示す構成図

【図6】

従来がこほるタイミングチャート

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第3区分

【発行日】平成11年(1999)11月30日

【公開番号】特開平5-268410

【公開日】平成5年(1993)10月15日

【年通号数】公開特許公報5-2685

【出願番号】特願平4-93385

【国際特許分類第6版】

H04N 1/028

5/335

(FI)

HO4N 1/028

F

5/335

【手続補正書】

【提出日】平成11年3月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 リニアセンサ及びその駆動方法

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 水平方向に1次元に配列された所定数の 画素からなる複数のセンサ列と、

前記複数のセンサ列に対応して設けられて信号電荷を水 平方向に転送する複数の水平転送レジスタと、

前記複数のセンサ列の各画素に蓄積された信号電荷を前 記複数の水平転送レジスタにそれぞれ転送する複数のシ フトゲートと、

前記複数のセンサ列に対し前記複数の水平転送レジスタ と反対側に設けられた複数のドレイン用拡散領域と、

前記複数のセンサ列の各画素に蓄積された不要電荷を前 記複数のドレイン用拡散領域にそれぞれ掃き捨てる複数 の転送ゲートとからなる複数ラインの構造を同一基板上 に有するとともに、

前記シフトゲート及び前記転送ゲートの各駆動タイミン グを複数ライン間で独立に設定可能な駆動回路を備えた ととを特徴とするリニアセンサ。

【請求項2】 水平方向に1次元に配列された所定数の

画素からなる複数のセンサ列と、前記複数のセンサ列に 対応して設けられて信号電荷を水平方向に転送する複数 の水平転送レジスタと、前記複数のセンサ列の各画素に 蓄積された信号電荷を前記複数の水平転送レジスタにそ れぞれ転送する複数のシフトゲートと、前記複数のセン サ列に対し前記複数の水平転送レジスタと反対側に設け られた複数のドレイン用拡散領域と、前記複数のセンサ 列の各画素に蓄積された不要電荷を前記複数のドレイン 用拡散領域にそれぞれ掃き捨てる複数の転送ゲートとか らなる複数ラインの構造のリニアセンサにおいて、 前記シフトゲート及び前記転送ゲートの各駆動タイミン グを複数ライン間で独立に設定して駆動することを特徴 とするリニアセンサ。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0001

【補正方法】変更

【補正内容】

[0001]

【産業上の利用分野】本発明はリニアセンサ及びその駆 動方法に関し、特に、いわゆる横型シャッター機能を有 するリニアセンサ及びその駆動方法に関する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0006

【補正方法】変更

【補正内容】

【0006】本発明は、上述した点に鑑みてなされたも のであり、出力信号を連続的に読みだそうとするとき、

各ライン間の無効信号期間を最小にできるとともに、最

短蓄積時間もセンサ部からの信号電荷の読出し時間と同程度まで小さくできるリニアセンサ<u>及びその駆動方法</u>を 提供することを目的とする。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0007

【補正方法】変更

【補正内容】

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明では、水平方向に1次元に配列された所定数 の画素からなる複数のセンサ列と、この複数のセンサ列 に対応して設けられて信号電荷を水平方向に転送する複数の水平転送レジスタと、複数のセンサ列の各画素に蓄積された信号電荷を複数の水平転送レジスタにそれぞれ転送する複数のシフトゲートと、複数のセンサ列に対し複数の水平転送レジスタと反対側に設けられた複数のドレイン用拡散領域と、複数のセンサ列の各画素に蓄積された不要電荷を複数のドレイン用拡散領域にそれぞれ掃き捨てる複数の転送ゲートとからなる複数ラインの構造を同一基板上に有するとともに、シフトゲート及び転送ゲートの各駆動タイミングを複数ライン間で独立に設定して駆動するようにしている。