Exercise 3 - Spatial Statistics

Amir Ahmed

January 2020

Problem 1: Markov RF

Assume that we have observed seismic data over a domain $D \in \mathbb{R}^2$. We want to identify the underlying lithology distribution over D, the underlying lithology of a point is either sand or shale, $\{1,0\}$ respectively.

The observations have been collected on a regular (75×75) grid L_d , with seismic data being $\{d(\mathbf{x}); \mathbf{x} \in L_d\}$. Where $d(\mathbf{x}) \in \mathbb{R}$.

We have observed the lithology distribution in a geologically comparable domain $D_c \in \mathbb{R}^2$. Assume that this was collected on a regular (66×66) grid L_{D_c} .

We assume that the underlying lithology distribution can be represented by a Mosaic RF $\{l(\mathbf{x}); \mathbf{x} \in L_D\}, l(\mathbf{x}) \in \{0, 1\}.$

Problem 1a)

We start by looking at L_d . Let the seismic data collection procedure follow the following likelihood model:

$$[d_i|\mathbf{l}] = \begin{cases} 0.02 + U_i & \text{if sand, } l_i = 0\\ 0.08 + U_i & \text{if shale, } l_i = 1 \end{cases}$$

 $i=1,2,\ldots,n$. With U_i being identically independently distributed $U_i\sim N(0,0.06^2)$. This would make each observation point d_i conditionally independent on l. That will say:

$$p(d_i|\mathbf{l}) = p(d_i|l_i) = \phi(d_i|\mu = 0.02 + 0.06l_i, \sigma^2 = 0.06^2)$$
(1)

Where ϕ is the pdf of the normal distribution. As all observations are independent we thus have:

$$p(\mathbf{d}|\mathbf{l}) = \prod_{i=1}^{n} p(d_i|l_i) = \prod_{i=1}^{n} \phi(d_i|\mu = 0.02 + 0.06l_i, \sigma^2 = 0.06^2)$$
 (2)

Figure 1: Display of seismic data L_D .

We display the observations from L_D as a map in Figure 1, there seems to be one large gathering where $d(\mathbf{x})$ takes on relatively large values, there also seems to be some smaller gatherings of large $d(\mathbf{x})$ in areas centered around the large one.

Problem 1b)