PRINTABLE VERSION

Quiz 5

You scored 88.89 out of 100

Question 1
Your answer is CORRECT.
An outline for a proof of an implication $P \Rightarrow Q$ is provided below:
$\text{Proposition.}\ P\Rightarrow Q$
$\frac{\text{Proof.}}{\text{Missing steps involving } \neg Q}$ and $\neg P$ and any previously established facts
Therefore $\neg P$. \square
What type of proof was described in the outline?
a) A proof by contradiction is described in this outline.
b) A direct proof is described in this outline.
c) A proof by contrapositive is described in this outline.
d) Wait a minute The proof described in this outline isn't a valid proof technique!
e) A proof by introspection is described in this outline.
Question 2
Your answer is CORRECT.
Suppose a mathematician wants to prove a statement of the form $\neg P \Rightarrow Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?
a) ○ Suppose ¬Q
$b)$ \bigcirc Suppose $\neg P \lor \neg Q$.
c) \odot Suppose $\neg P \land \neg Q$.
d) \bigcirc Suppose $\neg P \land Q$.
e) \bigcirc Suppose $\neg P$.
Question 3
Your answer is CORRECT.
Given two sets A and B one can prove $B \subseteq A$ by
a) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
b) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
c) \bigcirc First supposing $x \in A$, and then showing $x \in B$.
d) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
e) \odot First supposing $x \in B$, and then showing $x \in A$.
Question 4
Your answer is INCORRECT.
Given two sets A and B one can prove $A\subseteq B$ by
$a)$ \bigcirc First supposing $x \notin A$, and then showing $x \in B$.

b) \bigcirc First supposing $x \notin B$, and then showing $x \in A$. c) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$. **d)** \odot First supposing $x \notin A$, and then showing $x \notin B$. e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$. **Question 5** Your answer is CORRECT. A lovely little proof is presented below: Proposition. If the product of two integers is even, then at least one of the integers is even. Proof. Suppose $x, y \in \mathbb{Z}$ and xy is even, but that neither x nor y is even. This means x and y are both odd, and so x = 2n + 1 and y = 2m + 1 for integers n, m. It follows that xy = (2n+1)(2m+1) = 4nm + 2n + 2m + 1 = 2(2nm+n+m) + 1 which is odd since (2nm+n+m)Therefore xy is both even and odd. $\Rightarrow \Leftarrow$ Determine the type of proof used. a) A proof by contradiction was used. A proof by contrapositive was used. c) A direct proof was used. d) Wait a minute... This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points. e) A proof by indoctrination was used. **Ouestion 6** Your answer is CORRECT. A proposition and an attempt at its proof are presented below. Proposition. If 15 /a then 3 /a or 5 /a. Proof. (Contrapositive) (1) Suppose the conclusion is false. That is, suppose $\neg (3 \not | a \text{ or } 5 \not | a)$. (2) This means 5|a| and 3|a|, and we want to show 15|a|. (3) By definition of divides this means 5 = ma and 3 = na for some $m, n \in \mathbb{Z}$, and it also means we want to show 15 = ka for some $k \in \mathbb{Z}$. (4) Since 5 is prime and 5 = ma, it follows that a = 5 or a = 1. (5) Since 3 is prime and 3 = na, it follows that a = 3 or a = 1. (6) The only possibility is for a=1 and so we can use k=15 to conclude $15=ka=15\cdot 1$. \square Identify the mistake, if any, in this proof. a) There is a mistake in Line (4). 5 is not prime. **b)** There is a mistake in Line (6). The value of a could also be a = 0. c) \bigcirc There is a mistake in Line (2). The statement (3 /|a or 5 /|a) was not correctly negated. d) There is a mistake in Line (5). The statement 3 is not prime. e) There is a mistake in Line (3) where the definition of divides is incorrectly used.

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. x is a multiple of $3 \iff (x+1)(x+2)-2$ is also a multiple of 3.

Proof. There are two parts or cases to prove.

 $(\Rightarrow Direct)$

- (1) Suppose x = 3m for some $m \in \mathbb{Z}$.
- (2) Since 3 is prime this means x is a multiple of a prime.
- (3) It follows that $(x+1)(x+2) 2 = (x^2 + 3x + 2) 2 = x^2 + 3x = (3m)^2 + 3 \cdot 3m = 9m^2 + 9m = 3(3m^2 + 3m)$, which is a multiple of 3.

(

⇔ By Contradiction)

- (4) For a contradiction suppose (x+1)(x+2)-2 is multiple of 3, but that x is not a multiple of 3.
- (5) Multiplying out this expression and combining like terms tells us (x+1)(x+2)-2= $x^2 + 3x = 3b$ for some $b \in \mathbb{Z}$.
- (6) From this equation we find $x^2 = 3b 3x = 3(b x)$ and so x^2 is a multiple of 3.
- (7) Since x is not a multiple of 3, it follows that x^2 is not a multiple of 3.
- (8) Therefore x^2 is a multiple of 3 and x^2 is not a multiple of 3. $\Rightarrow \Leftarrow$

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only line (2) is not needed. All other lines are needed.
- b) All lines are needed.
- c) Only line (3) is not needed. All other lines are needed.
- d) Only line (4) is not needed. All other lines are needed.
- e) Only line (5) is not needed. All other lines are needed.

Question 8

Your answer is CORRECT.

Suppose we want to write a direct proof of the proposition below:

$$\forall a, b \in R, (a+b)^2 \le 2(a^2+b^2).$$

Which of the following statements or properties do we need to use when composing this proof?

- **b)** \bigcirc $(a+b)^2 = a^2 + b^2$
- c) \bigcirc Let $a, b \in Q$.
- **d)** \bigcirc a \cdot (a² + b²) = a³ + ab².

Ouestion 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true.

$$\forall n \in \mathbb{N}, \exists a \in \mathbb{N}, a \geq n.$$

Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) Onothing can describe an accurate proof strategy since this proposition is false.
- b) \bigcirc We would need to let $a \in N$ be an arbitrary natural number and *then* argue that there exists a natural number n that satisfies $a \ge n$.
- c) \odot We would need to let $n \in N$ be an arbitrary natural number and *then* argue that a natural number a satisfies $a \ge n$.