1 \maltese Expand the following functions about the given center x_0 You can type this up using LaTeX or other word processor.

1.
$$f(x) = \sin 2x$$
 and $x_0 = 0$
= $2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + O(x^7)$

2.
$$f(x) = \ln 2x$$
 and $x_0 = 1$
= $\ln 2 + x - 1 - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + O((x-1)^5)$

3.
$$f(x) = e^{2x}$$
 and $x_0 = 1$
= $e^2 + e^2(x - 1)$

4.
$$f(x) = 3x^2 - 2x + 5$$
 and $x_0 = 0$
= $3x^2 - 2x + 5$

5.
$$f(x) = 3x^2 - 2x + 5$$
 and $x_0 = 1$
= $6 + 4(x - 1) + 3(x - 1)^2$

6.
$$f(x) = (3x^2 - 2x + 5)^{-1}$$
 and $x_0 = 1$
= $\frac{1}{6} - \frac{1}{9}x - 1 - \frac{1}{108}(x - 1)^2 + \frac{5}{81}(x - 1)^3 + O((x - 1)^4)$

7.
$$f(x) = \cosh x - 3$$
 and $x_0 = 1$
= $\frac{e^2 + 1}{2e} - 3 + \frac{e^2 - 1}{2e}(x - 1) + \frac{e^2 - 1}{4e}(x - 1)^2 + \frac{e^2 - 1}{12e}(x - 1)^3 + O((x - 1)^4)$

8.
$$f(x)$$
 and $x_0 = a$
 $f(a) + f'(a)(x - a) + f''(a)\frac{(x-a)^2}{2} + f'''(a)\frac{(x-a)^3}{6} + O(x^5)$

9.
$$f(a)$$
 and $x_0 = x$
$$f(x) + f'(x)(a - x) + f''(x)\frac{(a - x)^2}{2} + f'''(x)\frac{(a - x)^3}{6} + O(x^5)$$

10.
$$f(a+h)$$
 and $x_0 = a$
 $f(a+h) + f'(a+h)(x-a-h) + f''(a+h)\frac{(x-a-h)^2}{2} + f'''(a+h)\frac{(x-a-h)^3}{6}$

1.
$$\int_{\frac{-x}{2}} x \sin 2x \, dx \text{ (by parts)}$$
$$\frac{-x}{2} \cos 2x + \frac{1}{4} \sin 2x + C$$

2.
$$\int xe^{x^2} dx$$
 (by substitution)
= $\frac{1}{2}e^{x^2} + C$

3.
$$\int xe^x dx \text{ (by parts)}$$
$$= xe^x - e^x$$

4.
$$\int e^{x^2} dx$$
 (by integrand in a Taylor series)= $1 + x^2 + \frac{1}{2}x^4\mathcal{O}(x^6)$
 $x + \frac{x^3}{3} + \frac{x^5}{10} + C + \mathcal{O}(x^7)$

5.
$$\int x\sqrt{1+x} \, dx$$
$$= \frac{2}{15}(1+x)^{\frac{3}{2}}(-2+3x) + C$$

6.
$$\int \sec \theta \, d\theta = \ln (\sec \theta + \tan \theta) + C$$

7.
$$\int \sec^2 \theta \, d\theta = 2 \frac{\sin \theta}{\cos \theta} + C$$

8.
$$\int \operatorname{sech}^{2}(\theta) = \int \frac{1}{\cosh^{2}(\theta)} d\theta$$
$$= \frac{\sinh \theta}{\cosh \theta} + C$$

9.
$$\int \frac{x^2 + 2}{7 - x^2} dx = -x + \frac{9\sqrt{7}}{7} \arctan\left(\frac{x\sqrt{7}}{7}\right) + c$$

10.
$$\int \frac{1}{ap - bp^2} dp$$
$$= \frac{\ln|p|}{a} - \frac{\ln|bp - a|}{a}$$

1.
$$\frac{dx}{dt} = 3x \text{ and } x(0) = 1$$
$$x = 3xt + 1$$

2.
$$\frac{dx}{dt} = 3tx$$
 and $x(0) = 4$
 $x = 4e^{\frac{3}{2}t^2}$

3.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 4$
 $x = \frac{1}{.003 - .247e^{-t}} = \frac{e^t}{.003e^t - .247}$

4.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 400$
 $x = \frac{e^t}{.003e^t - .0005}$

1.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 4$

2.
$$\frac{dx}{dt} = 1x - .003x^2$$
 and $x(0) = 400$

