BUAN 6312.004

Applied Econometrics and Time Series Analysis Spring 2019

Research Question

Do shall-issues law reduce crime or not?

Mentored By

Dr. Moran Blueshtein

Prepared By

Pavan Sai Krishna Gorantla

Nishant Mathew

Vishal Taneja

Aarya

Contents

1.	Abstr	act	3
2.	Data	Description	. 4
	2.1.	Trends in Violent Crimes	. 5
	2.2.	Trends in Robberies	. 6
	2.3.	Trends in Murders	. 7
	2.4.	States with Shall Law	. 8
	2.5.	Skewness	10
	2.6.	Correlation	11
3.	Regre	ession Models	12
	3.1.	Violent Crime Rate	12
	3.2.	Robbery Rate	17
	3.3.	Murder Rate	22
4.	Mode	els Interpretation	27
	4.1.	Conclusions	27
	4.2.	Limitations	27
5.	Refer	ences	28

1. Abstract

The impact of guns on crime in America has triggered lot of public debate. Many strongly believe that state laws enabling citizens to carry concealed handguns had reduced crime. According to this view, gun control laws take away guns from law-abiding citizens, while would-be criminals ignore those leaving potential victims defenseless. Following this view, National Rifle Association (NRA) and many politicians across country advance the cause of greater freedom to carry guns.

As a result, many states in United States have passed **right-to-carry laws** (aka **shall-issue laws**). A shall-issue law is one that requires the governments to issue permits for carrying concealed handgun to any applicant who meets the necessary criteria. These criteria are:

- a) Applicant must be an adult
- b) Applicant must not have a significant criminal record
- c) Applicant must not have a history of any mental illness
- d) Applicant must successfully complete a course in firearms safety training (if required)

If these criteria are met, the granting authority has no discretion in the awarding of the licenses, and there is no requirement for the applicant to demonstrate "good cause".

In this study, we focus on the effects of shall-issue laws using historical data of 51 states followed over a period of 23 years. We run various models to interpret the trends showing the variation in crime rates before and after the introduction of the shall-law along with the effects of other factors like income, population, proportion of population that is white, black and young males. From the results we can infer that there is no significant effect of shall-issue law on crime rates.

2. Data Description

We have balanced panel data available for 51 US states (including the District of Columbia), from 1977 to 1999 having data about violent crime rate (vio), robbery rate (rob), murder rate (mur), shall (shall-law indicator), incarceration rate (incarc_rate), per capita income (avginc), population (pop), population density (density), proportion of male youth aged 10 to 29 (pm1029), proportion of white adults aged 10 to 64 (pw1064), proportion of black adults aged 10 to 64 (pb1064). Following are the details of all variables available for 51 US states from 1977 to 1999.

Variable	Definition
vio	violent crime rate (incidents per 100,000 members of the population)
rob	robbery rate (incidents per 100,000 members of the population)
mur	murder rate (incidents per 100,000 members of the population)
shall	= 1 if the state has a shall-carry law in effect in that year
Siluii	= 0 otherwise
incare rate	incarceration rate in the state in the previous year (sentenced
incarc_rate	prisoners per 100,000 residents; value for the previous year)
density	population per square mile of land area, divided by 1000
avginc	real per capita personal income in the state, in thousands of dollars
рор	state population, in millions of people
pm1029	percent of state population that is male, ages 10 to 29
pw1064	percent of state population that is white, ages 10 to 64
pb1064	percent of state population that is black, ages 10 to 64
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	Year (1977-1999)

2.1. Trends in Violent Crimes

Violent Crime Rate for 51 States: State 11 has highest number of incidents and seems as outlier

Graph 2.1.1 - Violent Crime Rate for 51 States (Violent Crime Incidents per 100,000 Members of Population v/s Years)

Violent Crime Rate for 23 Years: State 11 has highest number of incidents and seems as outlier

Graph 2.1.2 - Violent Crime Rate for 23 Years (Violent Crime Incidents per 100,000 Members of Population v/s States)

2.2. Trends in Robberies

Robbery Rate for 51 States: State 11 has highest number of incidents and seems as an outlier

Graph 2.2.1 - Robbery Rate for 51 States (Robbery Incidents per 100,000 Members of Population v/s Years)

Robbery Rate for 23 Years: State 11 has highest number of incidents and seems as an outlier

Graph 2.2.2 - Robbery Rate for 23 Years (Robbery Incidents per 100,000 Members of Population v/s States)

2.3. Trends in Murders

Murder Rate for 51 States: State 11 has highest number of incidents and seems as an outlier

Graph 2.3.1 - Murder Rate for 51 States (Murder Incidents per 100,000 Members of Population v/s Years)

Murder Rate for 23 Years: State 11 has highest number of incidents and seems as an outlier

Graph 2.3.2 - Murder Rate for 23 Years (Murder Incidents per 100,000 Members of Population v/s States)

2.4. States with Shall Law

Number of States with Shall Law: 22 states do not have shall-law in entire observation period

Graph 2.4.1 - Shall Law States (Number of States v/s Start Year of Shall Law)

Violent Crime Rate in Shall Law States: Early shall-law adopting states have less violent crimes

Graph 2.4.2 - Average Violent Crime Rate in States with Shall Law and without Shall Law

Robbery Rate in Shall Law States: Early shall-law adopting states have less robbery incidents

Graph 2.4.3 - Average Robbery Rate in States with Shall Law and without Shall Law

Murder Rate in Shall Law States: Early shall-law adopting states have less murder incidents

Graph 2.4.4 - Average Murder Rate in States with Shall Law and without Shall Law

2.5. Skewness

All 3 dependent variables (Violent Crime Rate, Robbery Rate and Murder Rate) are highly skewed due to outlier state 11, and hence it is better to use their logarithmic values to reduce skewness.

Graph 2.5.1 - Frequency Distribution of Violent Crime Rate (skewness = 2.54) and its Natural Logarithm (skewness = -0.43)

Graph 2.5.2 - Frequency Distribution of Robbery Rate (skewness = 3.88) and its Natural Logarithm (skewness = -0.52)

Graph 2.5.2 - Frequency Distribution of Murder Rate (skewness = 5.79) and its Natural Logarithm (skewness = -0.14)

2.6. Correlation

Following is correlation plot among independent variables and dependent variables logarithms. Grey color box indicates a positive correlation and Red color box indicates a negative correlation.

Graph 2.6 - Correlation between all Independent Variables and Logarithms of Dependent Variables

Violent Crime Rate, Robbery Rate and Murder Rate are highly correlated as we expect in general. The variables *density*, *pb1064*, *pw1064* and *incarc_rate* have moderate correlation with others. From the above correlation matrix, we can see that the variables *pb1064* and *pw1064* have very high negative correlation with each other as expected since both variables are complementary. The remaining variables *pm1029*, *pop* and *avginc* do not have significant correlation with others.

3. Regression Models

3.1. Violent Crime Rate

Linear Regression:

We start with a normal linear regression without any corrections for the robust standard errors

. reg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029

Source	SS	df	MS	Number of obs	=	1,173
3600 808-1923 8150 605 761	:60M254	52050		F(8, 1164)	=	188.41
Model	275.712977	8	34.4641221	Prob > F	=	0.0000
Residual	212.918581	1,164	.182919743	R-squared	=	0.5643
93		15		Adj R-squared	=	0.5613
Total	488.631558	1,172	.416921125	Root MSE	=	.42769

lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
1.shall	3683869	.0325674	-11.31	0.000	4322844	3044895
incarc_rate	.0016126	.0001072	15.05	0.000	.0014024	.0018229
avginc	.0012051	.0077802	0.15	0.877	0140597	.01647
density	.0266885	.013168	2.03	0.043	.0008527	.0525242
pop	.0427098	.0025588	16.69	0.000	.0376894	.0477303
pb1064	.0808526	.0166514	4.86	0.000	.0481825	.1135227
pw1064	.0312005	.0083776	3.72	0.000	.0147636	.0476374
pm1029	.0088709	.0107737	0.82	0.410	0122671	.0300089
_cons	2.981738	.5433938	5.49	0.000	1.915598	4.047879

. estat imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(43) = 454.02Prob > chi2 = 0.0000

White test revealed that residuals are heteroskedastic, hence we estimate robust standard errors

. reg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(robust)

		Robust				
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	3683869	.0347879	-10.59	0.000	436641	3001329
incarc_rate	.0016126	.0001807	8.92	0.000	.0012581	.0019672
avginc	.0012051	.0072778	0.17	0.869	013074	.0154842
density	.0266885	.0143494	1.86	0.063	0014651	.054842
gog	.0427098	.0031466	13.57	0.000	.0365361	.0488836
pb1064	.0808526	.0199924	4.04	0.000	.0416274	.1200778
pw1064	.0312005	.0097271	3.21	0.001	.012116	.0502851
pm1029	.0088709	.0120604	0.74	0.462	0147917	.0325334
_cons	2.981738	.6090198	4.90	0.000	1.786839	4.176638

Pooled OLS (with robust errors):

Pooled OLS with robust standard errors for heteroskedasticity and auto correlation within states

. reg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(cluster stateid)

Linear regression Number of obs = 1,173

egression	Number of obs	=	1,173
	F(8, 50)	=	62.13
	Prob > F	=0	0.0000
	R-squared	=:	0.5643
	Root MSE	= 1	42769

(Std. Err. adjusted for 51 clusters in stateid)

		Robust				
lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	3683869	.113937	-3.23	0.002	5972361	1395378
incarc rate	.0016126	.0005999	2.69	0.010	.0004076	.0028177
avginc	.0012051	.0240808	0.05	0.960	0471626	.0495728
density	.0266885	.0414909	0.64	0.523	0566485	.1100255
pop	.0427098	.011729	3.64	0.001	.0191515	.0662681
pb1064	.0808526	.0713875	1.13	0.263	0625334	.2242386
pw1064	.0312005	.03409	0.92	0.364	0372713	.0996723
pm1029	.0088709	.0340964	0.26	0.796	0596137	.0773554
_cons	2.981738	2.166513	1.38	0.175	-1.369831	7.333307

Model Interpretations:

- → According to linear and pooled models, all variables except *shall* account for raising crimes
- → States with shall-law in effect have 36.84% less violent crimes than states without shall-law
- → In pooled model, variables with 1% significance are shall, incarceration rate and population

Fixed Effects (without robust errors):

. xtreg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, fe

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.2178	min =	23
between = 0.0033	avg =	23.0
overall = 0.0001	max =	23
	F(8,1114) =	38.77
corr(u_i, Xb) = -0.3687	Prob > F =	0.0000

lnvio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
1.shall	0461415	.0188668	-2.45	0.015	08316	009123		
incarc rate	000071	.0000936	-0.76	0.448	0002547	.0001126		
avginc	0092037	.0059083	-1.56	0.120	0207963	.0023889		
density	1722901	.0850362	-2.03	0.043	3391392	0054409		
pop	.0115247	.0087239	1.32	0.187	0055924	.0286417		
pb1064	.1042804	.0177564	5.87	0.000	.0694407	.1391201		
pw1064	.0408611	.0050745	8.05	0.000	.0309044	.0508177		
pm1029	0502725	.0064037	-7.85	0.000	0628373	0377078		
_cons	3.866017	.3847716	10.05	0.000	3.111058	4.620975		
sigma u	.68024951							
sigma e	.16072287							
rho	.94712779	(fraction of variance due to u i)						

F test that all $u_i=0$: F(50, 1114) = 142.57

Prob > F = 0.0000

Random Effects (without robust errors):

. xtreg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, re Random-effects GLS regression Number of obs = 1,173 Group variable: stateid Number of groups = R-sq: Obs per group: within = 0.204423 min = between = 0.4908 23.0 avq = overall = 0.4591max = 23 Wald chi2(8) = 337.19 $corr(u_i, X) = 0$ (assumed) Prob > chi2 = 0.0000 lnvio Coef. [95% Conf. Interval] Std. Err. z P> | z | -3.65 1.shall -.069609 .0190835 0.000 -.107012 -.032206 .0001888 .0000687 2.75 0.006 .0000541 .0003235 incarc rate .0058749 -.0105112 -1.790.074 -.0220258 .0010034 avginc density .0661588 .037363 1.77 0.077 -.0070713 .1393889 .0063498 .0101301 pop .0225755 3.56 0.000 .035021 pb1064 .0806394 .1327649 .1067022 .0132976 8.02 0.000 pw1064 .0400716 .0050987 7.86 0.000 .0300783 .050065 -.0256789 pm1029 -.0375292 .0060462 -6.21 0.000 -.0493794 3.525463 .3874011 9.10 0.000 2.766171 4.284755 _cons .33790775 sigma_u sigma_e .16072287 .81550462 (fraction of variance due to u_i)

Huasman Test:

. hausman fe_vio re_vio

rho

51	Nation .	cients ——		2002 C
1	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe_vio	re_vio	Difference	S.E.
1.shall	0461415	069609	.0234675	
incarc rate	000071	.0001888	0002598	.0000635
avginc	0092037	0105112	.0013075	.0006269
density	1722901	.0661588	2384489	.0763882
pop	.0115247	.0225755	0110508	.0059821
pb1064	.1042804	.1067022	0024217	.011767
pw1064	.0408611	.0400716	.0007895	•
pm1029	0502725	0375292	0127434	.0021099

b = consistent under Ho and Ha; obtained from xtreq B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

```
chi2(8) = (b-B)'[(V b-V B)^{(-1)}](b-B)
                  31.86
Prob>chi2 =
                 0.0001
(V b-V B is not positive definite)
```

Model Interpretations:

- From above test, we say that estimates of fixed and random effects are significantly different
- → Both Fixed/Random effects indicate that shall-law reduces violent crimes with 5% significance

Entity Fixed Effects (with robust errors):

. xtreg lnvio i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, fe cluster(stateid)

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.2178	min =	23
between = 0.0033	avg =	23.0
overall = 0.0001	max =	23
	F(8,50) =	34.10
$corr(u_i, Xb) = -0.3687$	Prob > F =	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

lnvio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	0461415	.0417616	-1.10	0.275	1300223	.0377392
incarc rate	000071	.0002504	-0.28	0.778	0005739	.0004318
avginc	0092037	.0129649	-0.71	0.481	0352445	.01683
density	1722901	.1376129	-1.25	0.216	4486936	.104113
pop	.0115247	.014224	0.81	0.422	0170452	.040094
pb1064	.1042804	.0326849	3.19	0.002	.0386308	.169930
pw1064	.0408611	.0134585	3.04	0.004	.0138289	.0678932
pm1029	0502725	.0206949	-2.43	0.019	0918394	008705
_cons	3.866017	.7701057	5.02	0.000	2.319214	5.412819
sigma u	.68024951					
sigma e	.16072287					
rho	.94712779	(fraction	of varia	nce due t	o u i)	

Entity Fixed and Time Fixed Effects (with robust errors):

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.4180	min =	23
between = 0.0419	avg =	23.0
overall = 0.0009	man =	23
	F(30,50) =	56.86
corr(u_i, Nb) = -0.2929	Prob > F =	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

lnvio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval;
1.shall	0279935	.0407168	-0.69	0.495	1097757	.0537886
incarc rate	.000076	.0002079	0.37	0.716	0003416	.0004938
avginc	.0009587	.0164931	0.06	0.954	0321688	.034086
density	091555	.1238622	-0.74	0.463	3403396	.157229
pop	0047544	.0152294	-0.31	0.756	0353436	.025834
pb1064	.0291862	.0495407	0.59	0.558	0703192	.128691
pw1064	.0092501	.0237564	0.39	0.699	0384659	.056966
pm1029	.0733254	.0524733	1.40	0.168	0320704	.178721
year						
78	.0585261	.0161556	3.62	0.001	.0260767	.090975
7.9	.1639486	.0244579	6.70	0.000	.1148233	.213073
80	.2170759	.0334184	6.50	0.000	.1499531	.284198
81	.2172551	.0391956	5.54	0.000	.1385284	.295981
8.2	.1946328	.0465743	4.18	0.000	.1010856	.2881
8.3	.158645	.0593845	2.67	0.010	.0393676	.277922
84	.1929883	.0770021	2.51	0.015	.0383251	.347651
8.5	.2444764	.0922217	2.65	0.011	.0592438	.429709
8.6	.3240904	.1089181	2.98	0.004	.1053219	.542858
87	.324365	.1249881	2.60	0.012	.073319	.575411
8.8	.3867412	.1397074	2.77	0.008	.1061305	.667351
8.9	.4422143	.1535358	2.88	0.006	.1338286	.750599
90	.5430478	.1960859	2.77	0.008	.1491976	.93689
91	.5959456	.2040685	2.92	0.005	.1860618	1.00582
92	.6275171	.2170306	2.89	0.006	.1915982	1.06343
93	6497414	.2246177	2.89	0.006	.1985834	1.10089
94	.6354187	.2332437	2.72	0.009	.1669349	1.10390
9.5	6276831	.2423607	2.59	0.013	.1408874	1.11447
96	.5713423	.2534067	2.25	0.029	.06236	1.08032
97	.5501153	.2613516	2.10	0.040	.0251751	1.07505
98	.4932904	.2746546	1.80	0.079	0583697	1.0449
99	.4328776	.2862197	1.51	0.137	1420117	1.00776
_cons	3.765525	1.152108	3.27	0.002	1.451448	6.07960
sigma u	.6663043					
sigma e	.1400264					
rho	.95770338	(fraction	of varia	nce due t	o u i)	

Time Fixed Effects Significance:

```
. testparm i.year
(1)
      78.year = 0
(2)
      79.year = 0
(3)
      80.year = 0
      81.year = 0
(4)
      82.year = 0
(5)
      83.year = 0
(6)
(7)
      84.year = 0
(8)
      85.year = 0
(9)
      86.year = 0
      87.year = 0
(10)
      88.year = 0
(11)
      89.year = 0
(12)
(13)
      90.year = 0
      91.year = 0
(14)
(15)
      92.year = 0
(16)
      93.year = 0
      94.year = 0
(17)
     95.year = 0
(18)
(19)
     96.year = 0
(20)
     97.year = 0
(21)
      98.year = 0
(22) 99. year = 0
               50) =
                       21.62
      F( 22,
           Prob > F =
                          0.0000
```

Random Effects (with robust errors):

```
. xtreg lnvio i.shall incarc rate avginc density pop pb1064 pw1064 pm1029, re cluster(stateid)
Random-effects GLS regression
                                             Number of obs
                                                                    1,173
Group variable: stateid
                                             Number of groups =
R-sq:
                                             Obs per group:
    within = 0.2044
                                                          min =
                                                                       23
    between = 0.4908
                                                           avg =
                                                                      23.0
    overall = 0.4591
                                                          max =
                                             Wald chi2(8)
                                                                    167.14
corr(u_i, X) = 0 (assumed)
                                             Prob > chi2
                                                                    0.0000
                             (Std. Err. adjusted for 51 clusters in stateid)
                           Robust
      lnvio
                  Coef. Std. Err.
                                           P> | z |
                                                      [95% Conf. Interval]
              -.069609 .038845 -1.79 0.073 -.1457438
    1.shall
               .0001888
                          .0001877
                                      1.01
                                             0.314
                                                     -.0001791
                                                                  .0005567
incarc rate
                          .0117802
                                     -0.89
     avginc
               -.0105112
                                            0.372
                                                     -.0335999
                                                                  .0125775
               .0661588
                         .0437925
    density
                                     1.51
                                             0.131
                                                      -.0196729
                                                                  .1519905
                                      1.94
                                                     -.0002323
               .0225755
                          .0116369
                                             0.052
        pop
     pb1064
               .1067022
                         .0270973
                                      3.94
                                             0.000
                                                      .0535924
                                                                  .1598119
                         .0127282
     pw1064
               .0400716
                                                      .0151248
                                      3.15
                                             0.002
                                                                  .0650184
     pm1029
               -.0375292
                          .0180436
                                    -2.08
                                             0.038
                                                      -.072894
                                                                 -.0021643
      _cons
               3.525463
                         .7786851
                                     4.53 0.000
                                                     1.999268 5.051658
               .33790775
    sigma_u
    sigma_e
               .16072287
               .81550462
                          (fraction of variance due to u_i)
```

Model Interpretations:

- → The joint significance test in Time Fixed model shows that at least one estimate is significant
- → After obtaining robust errors, both models estimates for shall-law became insignificant at 5%

3.2. Robbery Rate

Linear Regression:

We start with a normal linear regression without any corrections for the robust standard errors

. reg lnrob i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029

Source	SS	df	MS	Numb	er of obs	= 9	1,173
				F(8,	1164)	=	214.83
Model	636.767797	8	79.5959747	7 Prob	> F	=	0.0000
Residual	431.265325	1,164	.370502857	R-sq	uared	=	0.5962
NOCOSTORIO MICHIELDO	WAS TRAINED DISTRACT ENVI	Standardonada	and and an arrangement of the country	- Adj	R-squared	=	0.5934
Total	1068.03312	1,172	.91129106	Root	MSE	=	.60869
lnrob	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
1.shall	5288202	.0463499	-11.41	0.000	6197	59	4378815
incarc rate	.0010057	.0001525	6.59	0.000	.00070	65	.0013049
avginc	.0407325	.0110728	3.68	0.000	.01900	76	.0624574
density	.0905048	.0187407	4.83	0.000	.05373	53	.1272742
pop	.0778176	.0036417	21.37	0.000	.07067	26	.0849627
pb1064	.1021881	.0236982	4.31	0.000	.05569	21	.1486841
pw1064	.0275209	.011923	2.31	0.021	.00412	79	.0509138
pm1029	.0272565	.0153331	1.78	0.076	00282	71	.05734

1.17

0.243

-.6131918

2.421468

. estat imtest, white

cons

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(43) = 468.81
Prob > chi2 = 0.0000

.9041383 .7733572

White test revealed that residuals are heteroskedastic, hence we estimate robust standard errors

. reg lnrob i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(robust)

30000		Robust				
lnrob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	5288202	.0510021	-10.37	0.000	6288865	4287539
incarc rate	.0010057	.0001869	5.38	0.000	.0006391	.0013724
avginc	.0407325	.0092722	4.39	0.000	.0225404	.0589246
density	.0905048	.0153545	5.89	0.000	.0603792	.1206303
pop	.0778176	.0054853	14.19	0.000	.0670554	.0885799
pb1064	.1021881	.0265948	3.84	0.000	.0500091	.1543672
pw1064	.0275209	.0135419	2.03	0.042	.0009515	.0540902
pm1029	.0272565	.0149995	1.82	0.069	0021726	.0566856
_cons	.9041383	.8893029	1.02	0.310	8406777	2.648954

Pooled OLS (with robust errors):

Pooled OLS with robust standard errors for heteroskedasticity and auto correlation within states

. reg lnrob i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(cluster stateid)

Linear regression	Number of obs	=	1,173
The second secon	F(8, 50)	=	27.22
	Prob > F	=	0.0000
	R-squared	=	0.5962
	Root MSE	=	.60869

(Std. Err. adjusted for 51 clusters in stateid)

		Robust				
lnrob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	5288202	.1608765	-3.29	0.002	8519501	2056903
incarc rate	.0010057	.0006401	1.57	0.122	0002799	.0022914
avginc	.0407325	.0281568	1.45	0.154	015822	.097287
density	.0905048	.0459796	1.97	0.055	001848	.1828576
pop	.0778176	.0225194	3.46	0.001	.0325862	.1230491
pb1064	.1021881	.0894076	1.14	0.259	0773923	.2817686
pw1064	.0275209	.0450088	0.61	0.544	062882	.1179237
pm1029	.0272565	.0417254	0.65	0.517	0565515	.1110645
cons	.9041383	3.0615	0.30	0.769	-5.245065	7.053341

Model Interpretations:

- → According to linear & pooled models, all variables except *shall* account for more robberies
- → States with shall-law in effect have 52.88% less robberies than the states without shall-law
- → In the pooled model, variables with 1% significance are only *shall* and *population* variables

Fixed Effects (without robust errors):

R-sq:	Obs	per	group:

within = 0.0366	min =		23
between = 0.0531	avg =	9	23.0
overall = 0.0521	max =	2	23

$$F(8,1114) = 5.29$$

 $corr(u_i, Xb) = -0.0859$ $Prob > F$ = 0.0000

lnrob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	0078189	.0252557	-0.31	0.757	0573731	.0417352
incarc rate	0000763	.0001253	-0.61	0.542	0003222	.0001695
avginc	0175195	.007909	-2.22	0.027	0330377	0020012
density	1860917	.1138322	-1.63	0.102	4094413	.037258
pop	.0163332	.0116781	1.40	0.162	0065803	.0392466
pb1064	.1115421	.0237693	4.69	0.000	.0649045	.1581796
pw1064	.0271807	.0067929	4.00	0.000	.0138525	.040509
pm1029	.0111817	.0085722	1.30	0.192	0056378	.0280012
_cons	2.445723	.5150678	4.75	0.000	1.435111	3.456335
sigma_u	. 9174441					
sigma e	.21514885					
rho	.94787229	(fraction	of varian	nce due t	o u i)	

F test that all $u_i=0$: F(50, 1114) = 164.06

Prob > F = 0.0000

Random Effects (without robust errors):

. xtreg lnrob i.shall incarc rate avginc density pop pb1064 pw1064 pm1029, re

Random-effects GLS regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.0269	min =	23
between = 0.5183	avg =	23.0
overall = 0.4910	max =	23
	Wald chi2(8) =	99.59
corr(u_i, X) = 0 (assumed)	Prob > chi2 =	0.0000

lnrob	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
1.shall	0411192	.0255899	-1.61	0.108	0912745	.0090362
incarc rate	.0001735	.0000931	1.86	0.062	-9.02e-06	.000356
avginc	0152975	.0078914	-1.94	0.053	0307643	.0001693
density	.0997518	.0527672	1.89	0.059	0036699	.2031735
pop	.0405861	.0087624	4.63	0.000	.0234121	.05776
pb1064	.1074485	.0181757	5.91	0.000	.0718247	.1430723
pw1064	.0282639	.0068389	4.13	0.000	.0148598	.041668
pm1029	.0252997	.0081299	3.11	0.002	.0093654	.041234
_cons	1.8759	.52089	3.60	0.000	.8549742	2.896826
sigma u	.48469008					
sigma e	.21514885					
rho	.83539542	(fraction	of varia	nce due t	oui)	

Huasman Test:

. hausman fe_rob re_rob

	Coeffi			
	(b) fe_rob	(B) re_rob	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
1.shall	0078189	0411192	.0333002	
incarc rate	0000763	.0001735	0002498	.0000838
avginc	0175195	0152975	002222	.0005277
density	1860917	.0997518	2858435	.1008633
pop	.0163332	.0405861	0242529	.00772
pb1064	.1115421	.1074485	.0040936	.0153173
pw1064	.0271807	.0282639	0010832	
pm1029	.0111817	.0252997	014118	.002718

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

```
chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 26.94
Prob>chi2 = 0.0007
(V_b-V_B is not positive definite)
```

Model Interpretations:

- → From above test, we say that estimates of fixed and random effects are significantly different
- → Both Fixed/Random effects indicate shall-law reduce robberies but its estimate is insignificant

Entity Fixed Effects (with robust errors):

. xtreg lnrob i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, fe cluster(stateid)

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.0366	min =	23
between = 0.0531	avg =	23.0
overall = 0.0521	max =	23
	F(8,50) =	2.86
$corr(u_i, Xb) = -0.0859$	Prob > F =	0.0108

(Std. Err. adjusted for 51 clusters in stateid)

		Robust				
lnrob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	0078189	.0551653	-0.14	0.888	1186217	.1029838
incarc rate	0000763	.000321	-0.24	0.813	0007211	.0005685
avginc	0175195	.0220352	-0.80	0.430	0617784	.0267395
density	1860917	.1663413	-1.12	0.269	520198	.148014
pop	.0163332	.0275874	0.59	0.556	0390778	.071744
pb1064	.1115421	.0511546	2.18	0.034	.008795	.214289
pw1064	.0271807	.0164344	1.65	0.104	0058286	.060190
pm1029	.0111817	.0290976	0.38	0.702	0472626	.069626
_cons	2.445723	1.012584	2.42	0.019	.4118887	4.479557
sigma u	.9174441					
sigma e	.21514885					
rho	.94787229	(fraction	of varia	nce due t	oui)	

Entity Fixed and Time Fixed Effects (with robust errors):

	-	-
Fixed-effects (within) regression	Number of obs =	1,173
Group variable; stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.2359	min =	23
between = 0.1358	avg =	23.0
overall = 0.1362	max =	23
	F(30,50) =	40.77
corr(u_i, Kb) = 0.1441	Prob > F =	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

lnrob	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval
1.shall	.0268298	.0521753	0.51	0.609	0779673	.131626
incarc rate	.0000314	.0003477	0.09	0.928	000667	.000729
avgino	.0143569	.0247676		0.565	0353903	.06410
density	0447449	.1982135	-0.23	0.822	4428684	.353378
pop	.0000164	.0259374	0.00	0.999	0520805	.052113
pb1064	.0141078	.0840609	0.17	0.867	1547335	.182949
pw1064	0128322	.0327626	-0.39	0.697	0786379	.052973
pm1029	.1046049	.072997	1.43	0.158	0420138	.251223
year						
7.8	.0328497	.0216897	1.51	0.136	0107154	.076414
7.9	.1375917	.032117	4.28	0.000	.0730828	.202100
80	.243408	.045464	5.35	0.000	.1520908	.334725
81	.2737088	.0508793	5.38	0.000	.1715147	.37590
8.2	.21599	.0644109	3.35	0.002	.0866168	.345363
8.3	.1208158	.0867066	1.39	0.170	0533395	.294971
8.4	.078831	.1064308	0.74	0.462	1349416	292603
8.5	.1131495	.1272629	0.89	0.378	1424655	.368764
86	.1895678	.1521449	1.25	0.219	1160242	.495159
87	.1572151	.1688872	0.93	0.356	1820049	.49643
8.8	.1927596	.1878849	1.03	0.310	1846184	.570137
8.9	.2487313	.2140573	1.16	0.251	1812154	.678678
90	.3509806	.2668617	1.32	0.194	185027	.886988
91	.4668537	.2791767	1.67	0.101	0938891	1.02759
92	.4633221	.2951262	1.57	0.123	1294562	1.056
93	.4796983	.3082342	1.56	0.126	1394084	1.09880
94	.4943754	.3234124	1.53	0.133	1552175	1.14396
9.5	.4940171	.3338462	1.48	0.145	1765328	1.16456
96	.4341625	.3504351	1.24	0.221	2697072	1.13803
97	.3652393	.3581743	1.02	0.313	354175	1.08465
98	.2677144	.3690383	0.73	0.472	4735208	1.0089
99	.1894683	.3845414	0.49	0.624	5829059	.961842
_cons	3.27912	1.676644	1.96	0.056	088518	6.64675
sigma_u	.88484023					
sigma e	.19352746					
rho	.95434775	(fraction	of varia	nce due t	oui)	

Time Fixed Effects Significance:

```
. testparm i.year
 (1)
      78.year = 0
      79.year = 0
(2)
      80.year = 0
 (3)
 (4)
      81.year = 0
      82.year = 0
 (5)
 (6)
      83.year = 0
(7)
      84.year = 0
     85.year = 0
 (8)
 (9)
      86.year = 0
(10)
      87.year = 0
 (11)
      88.year = 0
      89.year = 0
(12)
      90.year = 0
(13)
      91.year = 0
 (14)
      92.year = 0
(15)
 (16)
      93.year = 0
(17)
      94.year = 0
      95.year = 0
(18)
(19)
      96.year = 0
      97.year = 0
(20)
 (21)
      98.year = 0
(22) 99. year = 0
              50) = 25.86
      F( 22,
           Prob > F =
                       0.0000
```

Random Effects (with robust errors):

```
. xtreg lnrob i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, re cluster(stateid)
                                                                     1.173
Random-effects GLS regression
                                              Number of obs
Group variable: stateid
                                              Number of groups =
                                                                         51
R-sq:
                                              Obs per group:
    within = 0.0269
                                                           min =
                                                                         23
                                                                       23.0
    between = 0.5183
                                                            avg =
    overall = 0.4910
                                                           max =
                                              Wald chi2(8)
                                                                      83.85
corr(u_i, X) = 0 (assumed)
                                              Prob > chi2
                                                                     0.0000
                              (Std. Err. adjusted for 51 clusters in stateid)
                            Robust
      lnrob
                   Coef.
                           Std. Err.
                                              P> | z |
                                                       [95% Conf. Interval]
               -.0411192
                           .0529293
                                     -0.78
                                              0.437
                                                       -.1448586
                                                                   .0626203
     1.shall
                           .0002507
 incarc_rate
                .0001735
                                      0.69
                                              0.489
                                                      -.0003179
                                                                   .0006649
     avginc
               -.0152975
                          .0199351
                                                                   .0237747
                                    -0.77
                                              0.443
                                                     -.0543697
                .0997518
                           .0479974
                                       2.08
                                                       .0056786
    density
                                              0.038
                                                                   .1938251
                .0405861
                          .0244303
                                       1.66
                                              0.097
                                                       -.0072964
                                                                   .0884686
        pop
                .1074485
      pb1064
                           .0337729
                                      3.18
                                              0.001
                                                       .0412548
                                                                   .1736422
                                      1.74
     pw1064
                .0282639
                           .0162546
                                              0.082
                                                       -.0035945
                                                                   .0601223
                                                                    .0761483
                .0252997
                           .0259436
                                                       -.0255489
     pm1029
                                              0.329
       _cons
                  1.8759
                          1.025224
                                       1.83
                                              0.067
                                                       -.1335014
                                                                   3.885301
               .48469008
     sigma_u
               .21514885
     sigma_e
               .83539542
                          (fraction of variance due to u_i)
```

Model Interpretations:

rho

- The joint significance test in Time Fixed model shows that at least one estimate is significant
- → After obtaining robust errors, both models estimates for shall-law became insignificant at 5%

3.3. Murder Rate

Linear Regression:

We start with a normal linear regression without any corrections for the robust standard errors

. reg lnmur i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029

Source	SS	df	MS	Number of obs	=	1,173
				F(8, 1164)	=	223.66
Model	351.342396	8	43.9177995	Prob > F	=	0.0000
Residual	228.559518	1,164	.196356974	R-squared	=	0.6059
5 000 00 4 March 2000 0000		. 0.7522.555555		Adj R-squared	=	0.6032
Total	579.901914	1,172	.494796855	Root MSE	=	.44312

lnmur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	3131735	.0337424	-9.28	0.000	3793763	2469707
incarc rate	.002097	.000111	18.89	0.000	.0018791	.0023148
avginc	0772578	.0080609	-9.58	0.000	0930733	0614422
density	.0396669	.0136431	2.91	0.004	.012899	.0664348
pop	.0416175	.0026511	15.70	0.000	.0364159	.0468191
pb1064	.1307641	.0172521	7.58	0.000	.0969153	.1646128
pw1064	.0470796	.0086798	5.42	0.000	.0300497	.0641094
pm1029	.0655308	.0111624	5.87	0.000	.0436301	.0874314
cons	-2.485593	.5629989	-4.41	0.000	-3.5902	-1.380987

. estat imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2 (43) = 317.00Prob > chi2 = 0.0000

White test revealed that residuals are heteroskedastic, hence we estimate robust standard errors

. reg lnmur i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(robust)

Linear regression	Number of obs	=	1,173
	F(8, 1164)	=	176.49
	Prob > F	=	0.0000
	R-squared	=:	0.6059
	Root MSE	=	.44312

		Robust				
lnmur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	3131735	.0357019	-8.77	0.000	3832208	2431262
incarc rate	.002097	.0001544	13.58	0.000	.0017941	.0023999
avginc	0772578	.0087513	-8.83	0.000	0944278	0600878
density	.0396669	.0117541	3.37	0.001	.0166054	.0627284
gog	.0416175	.0035077	11.86	0.000	.0347355	.0484995
pb1064	.1307641	.018782	6.96	0.000	.0939137	.1676145
pw1064	.0470796	.0090873	5.18	0.000	.0292502	.0649089
pm1029	.0655308	.0136782	4.79	0.000	.0386941	.0923674
_cons	-2.485593	.6149912	-4.04	0.000	-3.692209	-1.278978

Pooled OLS (with robust errors):

Pooled OLS with robust standard errors for heteroskedasticity and auto correlation within states

. reg lnmur i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, vce(cluster stateid)

Linear regression	Number of obs	=	1,173
	F(8, 50)	=	138.04
	Prob > F	=	0.0000
	R-squared	=	0.6059
	Root MSE		.44312

(Std. Err. adjusted for 51 clusters in stateid)

		Robust				
lnmur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	3131735	.0990416	-3.16	0.003	5121045	1142425
incarc rate	.002097	.0004603	4.56	0.000	.0011723	.0030216
avginc	0772578	.027044	-2.86	0.006	1315773	0229382
density	.0396669	.039893	0.99	0.325	0404606	.1197944
pop	.0416175	.011926	3.49	0.001	.0176633	.0655717
pb1064	.1307641	.0611915	2.14	0.038	.0078573	.2536709
pw1064	.0470796	.0285914	1.65	0.106	0103479	.104507
pm1029	.0655308	.0361641	1.81	0.076	007107	.1381685
_cons	-2.485593	1.992083	-1.25	0.218	-6.486809	1.515622

Model Interpretations:

- → According to linear & pooled models, all variables except shall & avginc increase murders
- → States with shall-law in effect have 31.32% less murders than the states without shall-law
- → In pooled model, all the variables except density, pw1064 & pm1029 are significant at 5%

Fixed Effects (without robust errors):

. xtreg lnmur i.shall incarc rate avginc density pop pb1064 pw1064 pm1029, fe 1,173 Fixed-effects (within) regression Number of obs Group variable: stateid Number of groups = 51 R-sq: Obs per group: within = 0.1528min = 23 between = 0.2221 avg = 23.0 overall = 0.1846 max = 23 F(8,1114) = 4 25.12 corr(u i, Xb) = -0.89610.0000 Prob > F =3

Interval	[95% Conf.	P> t	t	Std. Err.	Coef.	lnmur
0102704	1113495	0.018	-2.36	.0257579	06081	1.shall
0001093	0006107	0.005	-2.82	.0001278	00036	incarc rate
.0401382	.0084846	0.003	3.01	.0080663	.0243114	avginc
442922	898504	0.000	-5.78	.1160957	6707132	density
0023363	0490745	0.031	-2.16	.0119103	0257054	pop
.0782658	0168641	0.206	1.27	.0242419	.0307009	pb1064
.023924	003262	0.136	1.49	.006928	.0103313	pw1064
.0563923	.0220844	0.000	4.49	.0087427	.0392384	pm1029
1.49071	5706989	0.381	0.88	.5253095	.4600088	_cons
					1.36035	siqma u
					.21942693	sigma e
	oui)	ice due t	of variar	(fraction o	.97464151	rho

F test that all $u_i=0$: F(50, 1114) = 72.66

Prob > F = 0.0000

Random Effects (without robust errors):

. xtreg lnmur i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, re

Random-effects	GLS regress	ion		Number o	of obs	=	1,173
Group variable		Number o	of groups	s =	51		
R-sq:		Obs per	group:				
within =	= 0.0813				m:	in =	23
between =	0.4921				a	vg =	23.0
overall =	0.4381				ma	ax =	23
				Wald chi	12(8)	=8	169.92
corr(u_i, X)	= 0 (assume	d)		Prob > d	chi2	=	0.0000
lnmur	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
1.shall	1153705	.0268844	-4.29	0.000	1680	629	062678
incarc rate	.0004438	.0000925	4.80	0.000	.0002	625	.000625
avginc	.0093982	.0081589	1.15	0.249	0065	929	.0253893
density	.0163429	.0381659	0.43	0.669	0584	609	.0911467
pop	.0029126	.0072821	0.40	0.689	01	136	.0171851
pb1064	.0512656	.0168244	3.05	0.002	.0182	903	.0842409
pw1064	.0069318	.0071688	0.97	0.334	00713	188	.0209824
pm1029	.0734716	.0084037	8.74	0.000	.05700	007	.0899426
_cons	3301384	.536504	-0.62	0.538	-1.381	667	.7213902
sigma_u	.30755149						£3
sigma_e	.21942693						
rho	.66267693	(fraction	of varia	nce due to	oui)		

Huasman Test:

. hausman fe_mur re_mur

	Coeffi	cients			
	(b) fe_mur	(B) re_mur	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.	
1.shall	06081	1153705	.0545605	ma maki	
incarc rate	00036	.0004438	0008037	.0000882	
avginc	.0243114	.0093982	.0149132	•	
density	6707132	.0163429	6870561	.1096429	
pop	0257054	.0029126	0286179	.0094248	
pb1064	.0307009	.0512656	0205648	.017453	
pw1064	.0103313	.0069318	.0033995		
pm1029	.0392384	.0734716	0342333	.0024109	

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

Model Interpretations:

- → From above test, we say that estimates of fixed and random effects are significantly different
- → Both Fixed/Random effects indicate that shall-law reduces murder rates with 5% significance

Entity Fixed Effects (with robust errors):

. xtreg lnmur i.shall incarc_rate avginc density pop pb1064 pw1064 pm1029, fe cluster(stateid)

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.1528	min =	23
between = 0.2221	avg =	23.0
overall = 0.1846	max =	23
	F(8,50) =	156.39
corr(u i, Xb) = -0.8961	Prob > F =	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

lnmur	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
1.shall	06081	.0369632	-1.65	0.106	1350527	.0134327
incarc rate	00036	.0004231	-0.85	0.399	0012099	.0004899
avginc	.0243114	.0156779	1.55	0.127	0071786	.0558013
density	6707132	.3957745	-1.69	0.096	-1.46565	.1242232
pop	0257054	.0203457	-1.26	0.212	0665709	.0151602
pb1064	.0307009	.0781245	0.39	0.696	1262169	.1876186
pw1064	.0103313	.0128776	0.80	0.426	0155341	.0361967
pm1029	.0392384	.0215964	1.82	0.075	0041394	.0826161
_cons	.4600088	.8425884	0.55	0.588	-1.23238	2.152397
sigma u	1.36035					
sigma e	.21942693					
rho	.97464151	(fraction	of varia	nce due t	oui)	

Entity Fixed and Time Fixed Effects (with robust errors):

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-sq:	Obs per group:	
within = 0.2905	min =	23
between = 0.1945	avg =	23.0
overall = 0.1413	max =	23
	F(30,50) =	81.49
corr(u_i, Xb) = -0.8336	Prob > F =	0.0000

(Std. Err. adjusted for 51 clusters in stateid)

lnmur	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval
1.shall	0149524	.0382403	-0.39	0.697	0917603	.061855
incarc rate	0001164	.0003631	-0.32	0.750	0008457	.000612
avgino	.0566492	.0165554	3.42	0.001	.0233967	.089901
density	5442635	.3192203	-1.70	0.094	-1.185436	.096909
pop	0320769	.0209819	-1.53	0.133	0742202	010066
pb1064	.0219833	.0758151	0.29	0.773	1302958	.174262
pw1064	0004893	.0201044	-0.02	0.981	0408701	.039891
pm1029	.0691941	.0417945	1.66	0.104	0147526	.153140
year						
78	0007195	.0322722	-0.02	0.982	0655401	.064101
7.9	.0592481	.0311141	1.90	0.063	0032465	.121742
8.0	.0901814	.041058	2.20	0.033	.0077139	.172648
81	.1021543	.0510636	2.00	0.051	00041	.204718
82	.0224098	.0581861	0.39	0.702	0944604	.139279
8.3	0314385	.0640621	-0.49	0.626	1601111	.097234
84	1359192	.071662	-1.90	0.064	2798565	.008018
8.5	0866144	.0856965	-1.01	0.317	2587409	.085512
8.6	0122752	.0927286	-0.13	0.895	1985262	.173975
8.7	0290338	.0999408	-0.29	0.773	2297707	.171703
8.8	0174594	.1196893	-0.15	0.885	2578626	.222943
8.9	0145617	.1321034	-0.11	0.913	2798993	.250775
9.0	.059998	.1649718	0.36	0.718	2713577	.391353
91	.1053071	.1754909	0.60	0.551	2471767	.457790
9.2	.0681002	.1828352	0.37	0.711	2991352	.435335
93	.1544297	.1898113	0.81	0.420	2268176	.53567
94	.0442648	.1971908	0.22	0.823	3518047	.440334
9.5	.0556601	.1989082	0.28	0.781	3438588	.45517
9.6	015709	.2125365	-0.07	0.941	4426011	411183
97	1221824	.2186706	-0.56	0.579	5613952	.317030
9.8	1863381	.2332966	-0.80	0.428	6549281	.282251
9 9	2554286	.2420434	-1.06	0.296	741587	.230729
_cons	.1882653	1.056771	0.18	0.859	-1.934322	2.31085
sigma u	1.1362086					
sigma e	.20281999					
rho	.96911961	(fraction	of varia	nce due t	oui)	

Time Fixed Effects Significance:

```
. testparm i.year
(1)
      78.year = 0
 (2)
     79.year = 0
 (3) 80.year = 0
      81.year = 0
 (4)
 (5)
      82.year = 0
 (6)
      83.year = 0
 (7)
     84.year = 0
 (8) 85.year = 0
 (9) 86.year = 0
 (10) 87. year = 0
 (11)
     88.year = 0
 (12)
      89.year = 0
      90.year = 0
 (13)
 (14)
      91.year = 0
     92.year = 0
 (15)
 (16) 93.year = 0
 (17) 94. year = 0
 (18) 95.year = 0
 (19) 96.year = 0
 (20) 97.year = 0
 (21)
      98.year = 0
 (22) 99.year = 0
              50) =
                      19.61
      F( 22,
           Prob > F =
                        0.0000
```

Random Effects (with robust errors):

```
. xtreg lnmur i.shall incarc rate avginc density pop pb1064 pw1064 pm1029, re cluster(stateid)
Random-effects GLS regression
                                             Number of obs
                                                                     1,173
Group variable: stateid
                                             Number of groups =
R-sq:
                                             Obs per group:
    within = 0.0813
                                                          min =
                                                                        23
    between = 0.4921
                                                           avg =
                                                                      23.0
    overall = 0.4381
                                                          max =
                                                                        23
                                             Wald chi2(8)
                                                                    277.18
corr(u_i, X) = 0 (assumed)
                                             Prob > chi2
                                                                    0.0000
                             (Std. Err. adjusted for 51 clusters in stateid)
                           Robust
                  Coef. Std. Err.
      lnmur
                                            P> | z |
                                                      [95% Conf. Interval]
              -.1153705
                           .039896
                                      -2.89
                                            0.004
                                                      -.1935652
    1.shall
                                                                  .0013051
               .0004438
                         .0004395
                                      1.01
                                            0.313
                                                      -.0004176
incarc rate
                                            0.529
     avginc
                .0093982 .0149265
                                       0.63
                                                      -.0198572
                                                                  .0386535
                                                                  .1493971
    density
                .0163429
                            .067886
                                       0.24
                                             0.810
                                                      -.1167113
                         .0114322
               .0029126
                                       0.25
                                            0.799
                                                      -.0194941
                                                                  .0253193
       pop
     pb1064
                .0512656
                          .0376346
                                      1.36
                                             0.173
                                                      -.0224967
                                                                   .125028
                         .0123563
                                      0.56 0.575
     pw1064
                .0069318
                                                     -.0172861
                                                                  .0311497
                .0734716
                         .0229191
                                      3.21
                                             0.001
                                                       .0285511
     pm1029
                                                                  .1183922
               -.3301384
                          .7279221
                                      -0.45
                                             0.650
                                                       -1.75684
                                                                 1.096563
      cons
```

Model Interpretations:

sigma_u

sigma_e rho .30755149

.66267693

→ The joint significance test in Time Fixed model shows that at least one estimate is significant

(fraction of variance due to u i)

→ After obtaining robust errors, fixed effects estimates for shall-law became insignificant at 5%

4. Models Interpretation

4.1. Conclusions

Pooled OLS: According to Pooled OLS, states with shall-law in effect have 37% less crime rate, 53% less robbery rate and 31% less murder rate when compared to states without shall-law. Pooled OLS model does not account for entity fixed effects or time fixed effects and treats panel data as cross-sectional data. Hence, pooled regression model is not the best model. Estimated coefficients of *shall* variable in pooling models shows a large and significant effect on violent crime rate, murder rate and robbery rate. However, we cannot rely on this model and these effects disappear in fixed effects models as it accounts for the variations within states and time.

Fixed Effects: According to both Fixed Effects models (Entity Fixed and Entity-Time Fixed), the estimates for shall variable are insignificant and does not give enough evidence that shall-law has significant effect on violent crime rate, robbery rate and murder rate. When compared to Pooled OLS model, Fixed Effects is more reliable as it accounts for the variations within states and time. However, fixed effects model has certain limitations when we do not capture all important variables that vary across states and could have significant impact on the crime rates. An example for such variables could be the strength of police force in a state or arrest probability.

Random Effects: According to the Random Effects model, the estimates for shall variable are insignificant and does not give enough evidence that shall-law has significant effect on violent crime rate and robbery rate. But estimates for shall-law has a significant effect on murder rate. With Hausman tests, we rejected null hypothesis and concluded that fixed and random effects estimates are significantly different and random effects estimates are inconsistent & inefficient. But the Fixed Effects model estimates are consistent but not efficient which could be corrected. Hence, its better to rely on the Fixed Effects model when compared to the Random Effects model.

4.2. Limitations

Omitted Variable Bias: There could be omitted variables in the regression that vary between states and time. Effects of these variables cannot be captured by Fixed Effects regression model. For example, variable like police force density could lead to a decrease in crime rates and omitting such variables could introduce bias into the regression which cannot be dealt by the Fixed Effects.

Simultaneous Causality Bias: Including variables like incarceration rate into the model has the potential of introducing simultaneous causality bias. Increase in incarceration rate could lead to a decline of violent crime rate, robbery rate and murder rate. However, high increase in these crime rates could make authorities to tighten the laws and focus on increasing incarceration rate. Crime and Incarceration rates affect each other and could lead to a simultaneous causality bias.

5. References

https://cran.r-project.org/web/packages/plm/vignettes/plmPackage.html

https://stats.idre.ucla.edu/stata/examples/eacspd/econometric-analysis-of-cross-section-and-panel-data-by-jeffrey-m-wooldridgechapter-10-basic-linear-unobserved-effects-panel-data-models/