Math 445/845. Exam #2

- (1) Definitions/Theorem statements
 - (a) Define the **norm function** on $\mathbb{Z}[\sqrt{D}]$ for some positive integer D that is not a square.

The norm function on $\mathbb{Z}[\sqrt{D}]$ is the function $N:\mathbb{Z}[\sqrt{D}]\to\mathbb{Z}$ given by $N(a+b\sqrt{D})=a^2-b^2D$.

(b) Define a triangular number.

A triangular number is a natural number that counts the number of dots in a triangular array with base k for some k.

(c) State Lagrange's theorem (about elements of groups).

If G is a finite group, the order of an element of G divides the cardinality of G.

(d) State the **Dirichlet approximation theorem**.

For any irrational number α , there are infinitely many rational numbers $\frac{p_k}{q_k}$ such that $\left|\alpha - \frac{p_k}{q_k}\right| < \frac{1}{q_k^2}$.

(2) Computations.

(a) The picture below is part of the graph of an elliptic curve. Mark all points of order *at most* four in the depicted portion of the graph, and explain each.

The point A has order 2 since it has a vertical tangent line. The points B and C have order 3 because they are inflection points. The points D and E have order 4 since their tangent lines hit a point on the x-axis.

(b) (i) Compute the first two partial quotients (after the integer part) in the continued fraction of $\sqrt{11}$.

We compute

$$\sqrt{11} = 3 + (\sqrt{11} - 3) = 3 + \frac{1}{(\sqrt{11} - 3)^{-1}} = 3 + \frac{1}{(\frac{\sqrt{11} + 3}{2})} = 3 + \frac{1}{3 + \frac{\sqrt{11} - 3}{2}}$$
$$= 3 + \frac{1}{3 + \frac{1}{(\frac{2}{\sqrt{11} - 3})}} = 3 + \frac{1}{3 + \frac{1}{(\frac{2(\sqrt{11} + 3})})} = 3 + \frac{1}{3 + \frac{1}{6 + \cdot \cdot \cdot}}$$

(ii) Use your calculation from part (a) to give a rational approximation of $\sqrt{11}$. Using results from this class (and not using the decimal expansion from a calculator), what can you say about the accuracy of your approximation?

We get the convergent $3 + \frac{1}{3 + \frac{1}{6}} = \frac{63}{19}$. We know that $|\sqrt{11} - \frac{63}{19}| < \frac{1}{19^2}$.

(c) Give an expression for the general¹ integer solution of $x^2 - 11y^2 = 1$.

By trial and error (or using the convergents of $\sqrt{11}$), we can find the first solution (10,3). Then we know that every solution is given as $(\pm x_k, \pm y_k)$ for $k \geq 0$, where $x_k + y_k \sqrt{11} = (10 + 3\sqrt{11})^k$.

¹To find *one* solution, you can either use the general technique or trial and error.

(d) The equation $y^2 = x^3 + 44x + 25$ defines an elliptic curve. Two rational solutions to the equation are (0,5) and (2,11). Their reflections over the x-axis are also solutions. Find another rational solution besides these four.

The line between (0,5) and (2,11) is given by the equation y=3x+5. Substituting, we get

$$(3x+5)^2 = x^3 + 44x + 25$$
$$x^3 - 9x^2 + 14x = 0$$
$$x(x-2)(x-7) = 0$$

The roots x = 0, x = 2 are accounted for, so x = 7 yields the third point on the curve. We then get (7, 26) as another point on the curve.

- (3) Proofs.
 - (a) Consider the equation

$$(\dagger) x^2 - Dy^2 = 2$$

where D is some positive integer that is not a perfect square.

(i) Show that if the equation (†) has an integer solution $(x,y) = (a_0,b_0)$, then the equation (†) has infinitely many integer solutions $(x,y) = (a_k,b_k)$.

Observe that $N(a+b\sqrt{k})=2$ if and only if (a,b) is a solution to (\dagger) . We have show that there are infinitely many solutions (c_k,d_k) to Pell's equation $x^2+Dy^2=1$. Note that a solution (c_k,d_k) to Pell's equation has $N(c_k+d_k\sqrt{D})=1$. Then if we define (a_k,b_k) by the rule $a_k+b_k\sqrt{D}=(a_0+b_0\sqrt{D})(c_k+d_k\sqrt{D})$, we have $N(a_k+b_k\sqrt{D})=N(a_0+b_0\sqrt{D})N(c_k+d_k\sqrt{D})=2\cdot 1=2$, so (a_k,b_k) is a solution. These are distinct since $(a_k,b_k)\neq (a_j,b_j)$ implies $a_k+b_k\sqrt{D}=a_j+b_j\sqrt{D}$ implies $c_k+d_k\sqrt{D}=c_j+d_j\sqrt{D}$, which implies $(c_k,d_k)=(c_j,d_j)$.

(ii) Show that for D = 83, the equation (†) has no solution.

Suppose that (a, b) is a solution. Then $a^2 = 83b^2 + 2$. Going modulo 83, we have $a^2 \equiv 2 \pmod{83}$. But $\left(\frac{2}{83}\right) = -1$ by quadratic reciprocity, so no such a exists. This contradicts the existence of a solution.

- (b) Let \overline{E}_p be an elliptic curve over \mathbb{Z}_p given by the equation $y^2 = x^3 + [a]x + [b]$, where $p \geq 5$ is a prime. Suppose that $[c] \in \mathbb{Z}_p$ is a root of the polynomial $x^3 + [a]x + [b] = 0$.
 - (i) Find² a point of order 2 in \overline{E}_p .

Consider the point P=([c],[0]). This is on the curve, by construction. To compute the tangent line at P, we take $2y\frac{dy}{dx}=3x^2+[a]$; since y=[0], this is a line of vertical slope, so $2P=\infty$. This is then our point of order 2.

(ii) Use part (i) and the group structure to show that the equation $y^2 = x^3 + [a]x + [b]$ has an odd number of solutions in $\mathbb{Z}_p \times \mathbb{Z}_p$.

Since there is a point of order 2, we know that \overline{E}_5 has an even number of element by Lagrange's Theorem. Since $\overline{E}_5 = E_5 \cup \{\infty\}$, where E_5 is the solution set tot he equation, E_5 has an odd number of elements.

²You can use any characterization of points of order 2 that we have encountered in this class.

Bonus: Show that for $\varphi=\frac{1+\sqrt{5}}{2}$, there do *not* exist infinitely many rational numbers $\frac{p}{q}$ such that $\left|\varphi-\frac{p}{q}\right|<\frac{1}{q^3}$.

Note first that for q>2, we have $q^3>2q^2$, so $\left|\varphi-\frac{p}{q}\right|<\frac{1}{q^3}$ implies $\left|\varphi-\frac{p}{q}\right|<\frac{1}{2q^2}$, and we know that this implies that $\frac{p}{q}=\frac{p_k}{q_k}$ for some convergent $C_k=\frac{p_k}{q_k}$ (by a Theorem saying that good approximations are convergents). For $q\leq 2$, we can see that $\frac{1}{1}$ and $\frac{2}{1}$ are the only numbers that work, so it suffices to show that at most finitely many convergents satisfies the hypotheses.

From the continued fraction expansion $\varphi = [1; 1, 1, 1, 1, 1, 1, \dots]$ that we computed in class, we see that $C_k = \frac{f_{k+1}}{f_k}$ for the Fibonacci numbers f_k . We know that $C_{2n} < C_{2n+2} < \varphi < C_{2n+1} < C_{2n-1}$ for all n, so it suffices to show that $|C_{k+2} - C_k| > \frac{1}{f_k^3}$ for large enough k. After simplifying the left hand side is $\frac{|f_{k+2}f_k - f_{k+1}^2|}{f_k^3}$

After simplifying, the left hand side is $\frac{|f_{k+2}f_k-f_{k+1}^2|}{|f_kf_{k+2}|}$. We claim that $f_{k+2}f_k-f_{k+1}^2=(-1)^k$ for all k. We show the claim by induction on k. For k=0, we get $1\cdot 2-1^1=1$. For the induction step, assuming the equality holds for k, we have

$$f_{k+3}f_{k+1} - f_{k+2}^2 = (f_{k+2} + f_{k+1})f_{k+1} - (f_1 + f_0)^2 = f_{k+2}f_{k+1} - 2f_{k+1}f_k - f_k^2$$

$$= f_{k+1}^2 + f_k f_{k+1} - 2f_{k+1}f_k - f_k^2 = f_{k+1}^2 - f_{k+1}f_k - f_k^2$$

$$= f_{k+1}^2 - f_k f_{k+2} = -(-1)^k = (-1)^{k+1},$$

completing the proof of the claim. Thus, $|C_{k+2} - C_k| = \frac{1}{f_k f_{k+2}}$.

Now

$$f_{k+2} = f_{k+1} + f_k = 2f_k + f_{k-1} \le 3f_k,$$

so $\frac{1}{f_k^3} < \frac{1}{3f_k^2} \le \frac{1}{f_k f_{k+2}} = |C_{k+2} - C_k|$ for $f_k > 3$. This completes the proof.