•Title: Stock Price Movement Prediction Using Machine Learning

•Subtitle: An End-to-End Data Science Project (EDA & Modeling)

Presented by: Misheck Kibunja

•Date: 23rd February 2025

Project Overview & Business Problem

•Overview:

- •This project develops a predictive model for stock price movements
- •by leveraging historical market data and technical indicators.

Business Problem:

•Investors struggle with predicting stock price changes due to market volatility and complex signals.

General Business Questions

- How have stock prices and trading volumes evolved over time?
- How do different technical indicators behave over time, and how do they correlate with stock price movements?
- Are there noticeable patterns in stock price movements before and after key technical signals?
- Which features (indicators, volume trends, price patterns) show the strongest relationship with stock price changes?

Business Questions Related to Modeling

- What is the best-performing machine learning model for stock price classification?
- How does model performance compare to a baseline (e.g., random guessing or simple moving average strategy)?
- What is the optimal time horizon (daily, weekly, monthly) for stock movement predictions?
- Can our model generalize across different stocks, or does it work best for specific sectors?
- How does our model's performance compare to traditional technical analysis strategies used by traders?
- What is the financial impact of using our model for trading decisions?

Data & Dataset Description

Dataset Source:

Historical stock data from Yahoo Finance.

•Data Coverage:

25 years of data for 20 diverse stocks across multiple sectors.

•Key Features:

Market data: Open, High, Low, Close, Adjusted Close, Volume.

Technical indicators: Moving Averages (EMA, MA), RSI, Bollinger Bands).

•Target Variable:

Binary indicator: 1 (upward movement) vs. 0 (downward movement).

Snapshot of the Dataset

	Date	Open	High	Low	Close	Volume	Ticker	Target	MA_50	MA_200	 BB_Mid	BB_Upper	BB_Lower	OBV	ATR_14	RSI_Siç
(1990- 10-15 00:00:00	0.202147	0.203920	0.188848	0.196828	201017600.0	AAPL	0	0.239980	0.267437	 0.208088	0.234434	0.181742	2.743238e+09	0.012458	
1	1990- 10-16 00:00:00	0.195055	0.195055	0.172003	0.177322	305233600.0	AAPL	1	0.237940	0.267015	 0.205118	0.231263	0.178972	2.438005e+09	0.013341	
2	1990- 10-17 00:00:00	0.179095	0.187962	0.177322	0.187962	309064000.0	AAPL	1	0.236113	0.266637	 0.202990	0.227293	0.178687	2.747069e+09	0.013148	
3	1990- 10-18 00:00:00	0.187962	0.203920	0.187962	0.202147	315000000.0	AAPL	1	0.234481	0.266325	 0.201881	0.224015	0.179748	3.062069e+09	0.013349	

Data Preprocessing & Feature Engineering

•Data Cleaning:

•Removed non-numeric columns (Date, Ticker) and handled missing values.

Feature Engineering:

- Calculated technical indicators such as EMA, RSI, and Bollinger Bands.
- •Created additional features like shifted closing prices (Close_Day_1, Close_Day_2, Close_Day_3).

•Feature Selection:

Applied Recursive Feature Elimination (RFE) to select the most predictive features.

•Train-Test Split:

•Data was split into training (80%) and testing (20%) sets with stratification.

Exploratory Data Analysis (EDA) Univariate Analysis

Distribution of closing Prices

Univariate Analysis Distribution of Trading Volume (Across All Stocks)

Analysis of the Distribution of Trading Volume

The histogram of trading volume across all stocks is right-skewed

This suggests that liquidity is concentrated in a handful of stocks.

The generally long right tail indicates that some stocks occasionally experience **large volume spikes**, possibly due to earnings reports, news events, or major institutional trades.

Bivariate Analysis Correlation Between Trading Volume and Stock Price

Multivariate Analysis

Modeling Approach – Overview of Techniques

•Models Explored:

- 1.Logistic Regression (baseline)
- 2. Decision Tree (basic unpruned and pruned versions)
- 3.Random Forest

•Key Steps:

- Data preprocessing and feature selection via RFE.
- Hyperparameter tuning using RandomizedSearchCV.
- •Evaluation using accuracy, confusion matrices, and classification reports.

•Class Imbalance:

•Some models incorporated class balancing techniques.

Modeling Results – Logistic Regression vs. Decision Tree vs. Random Forest

Modeling Results

Comparison with Previous Models:

Model	Test Accuracy	Precision (0/1)	Recall (0/1)	F1-Score (0/1)	Observations			
Logistic Regression	88.49%	0.88 / 0.89	0.88 / 0.89	0.88 / 0.89	Best overall performance, highly balanced model			
Basic Decision Tree (Unpruned)	93.06%	0.93 / 0.93	0.93 / 0.93	0.93 / 0.93	Likely overfitting, extremely high accuracy			
Pruned Decision Tree (No Class Balancing)	86.14%	0.85 / 0.87	0.87 / 0.85	0.86 / 0.86	Balanced performance, reduced overfitting			
Further Pruned Decision Tree (Class Balancing)	52.38%	0.54 / 0.52	0.30 / 0.75	0.38 / 0.61	Overcorrection of class imbalance led to poor accuracy			
Random Forest	74.59%	0.80 / 0.71	0.65 / 0.84	0.72 / 0.77	Improved over pruned trees, but still less effective than logist regression			

Brief Interpretation

- Logistic Regression:
- •Accuracy ~88.49%
- Balanced metrics across classes.
- Basic Decision Tree (Unpruned):
- Accuracy ~93.06% (but overfitting issues).
- Pruned Decision Tree (Without Class Balancing):
- •Accuracy ~86.14%
- Pruned Decision Tree with Class Balancing:
- Accuracy ~52.38% (underperforming due to imbalance overcorrection).
- •Random Forest:
- •Accuracy ~74.59%
- •Improved over some pruned trees but not as effective as logistic regression.

Final Model Selection & Comparison

•Best Model So Far:

•The basic logistic regression model, with an accuracy of ~88.49%, emerged as the best overall due to its strong generalization, balanced performance, and interpretability.

•Model Comparison:

- •Although the unpruned decision tree showed higher accuracy, its overfitting undermines reliability.
- •Pruned decision trees and random forest did not achieve competitive accuracy when adjusted for overfitting or class imbalance.

•Conclusion:

•Logistic regression offers the best trade-off between accuracy, robustness, and interpretability.

Future Work & Improvements

•Advanced Models:

•Experiment with ensemble methods like Gradient Boosting, XGBoost, or even deep learning approaches.

•Feature Engineering:

•Incorporate additional data such as news sentiment, macroeconomic indicators, and earnings reports.

•Time Horizon Optimization:

•Evaluate performance for different prediction intervals (daily, weekly, monthly).

•Backtesting:

•Quantify the financial impact through simulated trading strategies and risk analysis.

Conclusion

• This project demonstrates a complete end-to-end process for predicting stock price movements using machine learning.

 Our best model (logistic regression) outperforms traditional methods and provides a strong basis for further enhancements.