因此有
$$y \in [a, b]$$
。而 $x \wedge y = x \wedge ((\bar{x} \vee a) \wedge b)$ $(y = (\bar{x} \vee a) \wedge b)$ $(结合律)$ $(ੜ \wedge a) \wedge b$ $(z \wedge a) \wedge b$ $(z$

从而 $y \in [a, b]$ 是 x 在 [a, b] 中的补元。 这就证明了 [a, b] 是布尔代数。

由于当 $a \neq 0$ 时,有 $0 \notin [a,b]$,当 $b \neq 1$ 时,有 $1 \notin [a,b]$ 。因此,除非 a = 0, b = 1,(此时 [a,b] = B,是 B 的平凡子代数),否则 [a,b] 将不能包括 $\langle B, \wedge, \vee, ^-, 0, 1 \rangle$ 中所有的代数常元,从而不是 $\langle B, \wedge, \vee, ^-, 0, 1 \rangle$ 的子代数。

19.34

(1)

证明:对任意 $y \in B_2$,由于 φ 是双射,所以存在唯一的 $x \in B_1$,使得 $y = \varphi(x)$ 。若 $0 \prec y \preccurlyeq \varphi(a)$,则由教材定理 19.8 有 $0 \prec x \preccurlyeq a$ (这里 $0 \prec x$ 是因为由教材定理 19.24(1) 知, $\varphi(0) = 0$ 。而 $\varphi(x) \neq 0$,所以 $x \neq 0$ 。另一方面,由于 0 是全下界,所以有 $0 \preccurlyeq x$ 。综合就有 $0 \prec x$)。

由于 a 是原子, 所以 x = a, 从而 $y = \varphi(a)$ 。由 y 的任意性可知, $\varphi(a)$ 是原子。

(2)

证明:由第 (1) 小题结论可知,对任意两个布尔代数 B_1 与 B_2 ,若 $B_1 \cong B_2$,则 B_1 与 B_2 的原子数量相同。从而,由有限布尔代数的表示定理可知,要证原题,只需证:对任何 n 元集合 A,幂集代数 $\mathcal{P}(A)$ 有且仅有 n 个原子。

首先证明,对任何 $a \in A$, $\{a\} \in \mathcal{P}(A)$ 是原子。这是因为,对任何 $a \in A$, $B \in \mathcal{P}(A)$,若 $0 \prec B \preccurlyeq \{a\}$,则有 $B \neq 0 = \varnothing$,即存在 $x \in B$ 。而 $x \in B \subseteq \{a\}$,也即 $x \in \{a\}$ 。由 $\{a\}$ 的描述法 定义 $\{x \mid x = a\}$ 可知, $x \in \{a\} \Leftrightarrow x = a$ 。也即, $B = \{x\} = \{a\}$ 。这就证明了对所有 $a \in A$, $\{a\}$ 都是原子,从则 $\mathcal{P}(A)$ 中至少有 n 个原子。

反设 $\mathcal{P}(A)$ 中还有其它的原子 $C \notin \{\{x\} \mid x \in A\}$,则由于 $C \neq 0 = \varnothing$,所以存在 $x \in A$,使得 $x \in C$ 。从而 $0 \prec \{x\} \prec C$,而 $\{x\} \neq C$ (否则 $C = \{x\} \in \{\{x\} \mid x \in A\}$,矛盾),这与 C 是原子矛盾。这就证明了 $\mathcal{P}(A)$ 中有且仅有 n 个原子。

19.35

证明:

- (1) 由教材定理 19.24(1) 有 φ (0) = 0, 所以有 0 \in J .
- (2) 由 $0 \preccurlyeq x \preccurlyeq a$ 和教材定理 19.7 可知, $0 = \varphi(0) \preccurlyeq \varphi(x) \preccurlyeq \varphi(a) = 0$,从而有 $\varphi(x) = 0$,