

Dr. rer. nat. Johannes Riesterer

Umwandlung von Bildern

- Viele Verfahren der Signalverarbeitung haben ihren Ursprung in der Analysis. Um diese anwenden zu können, müssen diskrete Daten in kontinuierliche Daten umgewandelt werden.
- Auf der anderen Seite kann ein Computer nur diskrete Daten verarbeitet. Kontinuierliche Signale (zum Beispiel von Sensoren) müssen daher in diskrete Daten umgewandelt werden.

Für ein eindimensionales, diskretes Bild $U:[1,\ldots,N]\to R$ bezeichne $U_j:=U(j)$.

Stückweise konstante Interpolation

Definiere
$$\phi^0(x) := 1_{[-\frac{1}{2},\frac{1}{2})}(x) := \begin{cases} 1, & \text{for } -\frac{1}{2} \le x < \frac{1}{2}, \\ 0 & \text{else} \end{cases}$$

$$\phi^0_j(x) := \phi^0(x-j) \text{ und } u(x) := \sum_{j=1}^N U_j \phi^0_j(x)$$

Höherdimensionale stückweise Interpolation

Für ein 2-dimensionales, diskretes Bild

$$U: [1, \ldots, N] \times [1, \ldots, M] \rightarrow R$$
 definiere

$$U: [1, \dots, N] \times [1, \dots, M] \to R$$
 definiere $u(x, y) := \sum_{i=1}^N \sum_{j=1}^M U_{i,j} \cdot \phi_i(x) \cdot \phi_j(y)$ und analog für

n-dimensonale Bilder....

Abtastung

Für ein kontinuierliches Bild $u: I^n \to R$ erhält man durch gewichtete Mittelungen $U_i := \int_{I^n} \phi(x-x_i)u(x)dx$ ein diskretes Bild.

Integration

Faltung

$$(f*g)(x) := \int_{\mathbb{R}^n} f(y-x) \cdot g(y) \ dy \tag{1}$$

Beispiel 1

Link: Box

Beispiel 2

Link: Gauß

Diskrete Faltung

Diskrete Faltung

Für zwei diskrete Funktionen $U:[1,\ldots,N]\to R$ und $H:[1,\ldots,N]\to R$ mit stückweisen konstanten Interpolation $u(x):=\sum_{l=1}^N U_l\phi_j^0(x)$ und $h(x):=\sum_{m=1}^N H_m\phi_m^0(x)$ ergibt die Faltung

$$(h*u)(k) = \int u(y)h(k-y) dy$$

$$= \int \sum_{l=1}^{N} U_l \phi^0(y-l) \sum_{m=1}^{N} H_m \phi^0(k-y-m)$$

$$= \sum_{l=1}^{N} \sum_{m=1}^{N} U_l H_m \int \phi^0(y-l) \phi^0(k-y-m) dy$$

Diskrete Faltung

Diskrete Faltung

Da für das Integral

$$\int \phi^0(y-l)\phi^0(k-y-m) \ dy = \begin{cases} 1 \text{ falls } m=k-l \\ 0 \text{ sonst} \end{cases}$$

gilt, folgt die Darstellung

$$(u*h)(k) = \sum_{l} U_{l}H_{k-l}$$

Kanten

Kanten sind durch schnelle Änderungen des Farbwertes gekennzeichnet. Sie sind damit Extremstellen der ersten Ableitung.

Intensität und Gradient entlang eines Bildschnittes

Figure: Quelle: ai.stanford.edu

Gradientenbasierte Kantenerkennung

Bei der Detektion von Kanten mit Hilfe des Gradienten ist Rauschen ein Problem, da sich hier ebenfalls der Farbwert schnell ändert.

Figure: Quelle: Wikipedia

Gradientenbasierte Kantenerkennung

Idee: Wende einen Filter an, der das Rauschen reduziert und bilde dann den Gradienten. Bilde also den Gradienten

$$\frac{\partial (u*f)(x)}{\partial x}$$

wobei f ein Faltungskern ist.

Ableitung von Faltungen

Es gilt

$$\frac{\partial (u*f)(x)}{\partial x} = (u*f')(x)$$

Gradientenbasierte Kantenerkennung

Welcher Filter ist gut geeignet?

Kantenerkennung nach Canny

Es gibt Kanten auf unterschiedlichen Skalen ("grobe Kanten" und "feine Kanten"). Wähle daher einen parameterabhängigen Faltungskern f_{σ} . Zu einem Originalbild u_0 bekommen wir eine ganze Klasse von Bildern

$$u(x,\sigma)=u_0*f_\sigma(x).$$

Kantenerkennung nach Canny

Die Stellen der Kanten soll sich bei wachsendem σ nicht verändern und ebenso sollen auch keine Kanten hinzukommen. Deswegen soll in einem Kantenpunkt x_0 von u_0 gelten:

$$\frac{\partial^2}{\partial x^2} > 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) > 0$$
$$\frac{\partial^2}{\partial x^2} = 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) = 0$$
$$\frac{\partial^2}{\partial x^2} < 0 \Rightarrow \frac{\partial}{\partial \sigma} u(x_0, \sigma) < 0$$

Kantenerkennung nach Canny

Für einen allgemeinen Punkt soll daher gelten:

$$\frac{\partial^2}{\partial x^2}u(x,\sigma) = \frac{\partial}{\partial \sigma}u(x,\sigma)$$
$$u(x,0) = u_0(x)$$

Kantenerkennung nach Canny

Diese partielle Differentialgleichung hat die eindeutige Lösung

$$u(x,\sigma)=(u_0*G^{\sqrt{2\sigma}})(x)$$

wobei $G^{\sqrt{2\sigma}}$ der Gaußfilter ist.

Kantenerkennung nach Canny

Die Kantenerkennung nach Canny faltet ein gegebenes Bild u zuerst mit einem Gaußkernel G^{σ} . Danach wird der Betrag der Ableitung und seine Richtung berechnet:

$$p(x) = ||\nabla(u * G^{\sigma})(x)||$$

$$= \sqrt{\left(\frac{\partial}{\partial x_1}(u * G^{\sigma})(x)\right)^2 + \left(\frac{\partial}{\partial x_2}(u * G^{\sigma})(x)\right)^2}$$

$$\theta(x) = \angle\nabla(u * G^{\sigma})(x) = \arctan\left(\frac{\frac{\partial}{\partial x_2}(u * G^{\sigma})(x)}{\frac{\partial}{\partial x_1}(u * G^{\sigma})(x)}\right)$$

Kantenerkennung nach Canny

Als Kanten werden lokale Maxima von p(x) in Richtung $(\sin \theta(x), \cos \theta(x))$

Kanten als lokale Maxima in Kantenrichtung

Figure: Quelle: towardsdatascience.com

Kantenschärfen mit Laplace

Durch die Operation $u - \tau \triangle u$ werden die Kanten hervorgehoben.

Kanten als lokale Maxima in Kantenrichtung

Figure: Quelle:OpenCV

Figure: Quelle: Stackoverflow