Detecting Oriented Text in Natural Images by Linking Segments

论文阅读

网络大致结构

网络结构就是 SSD 的结构都是在不同的 6 个特征层进行预测操作

网络的 input 和 output:

首先是输入,因为网络全部采用卷积结构,所有对输入图片大小没有要求,可以是任意大小和任意长宽比,这点比较好理解。这里假定输入图片大小为 Wi×Hi。

然后是输出,输出为 segments 和 links。segments 可以理解为是一个一个的小框,这些小框类似于 SSD 中的 default boxes,它们不一定一个框能框一个字,可能就框一个字的一部分。一个 segment 用公式 $b=(x_b,y_b,w_b,h_b,\theta_b)$ 表示,其中 x_b,y_b 表示 segment 的中心, w_b,h_b 表示 segment 的宽和高, θ_b 表示该 segment 的旋转角。links 就是将 segments 连接起来,意思就是就是两个框是不是同一个文本的一个概率值。

Segment 的检测方法

因为提取出 6 层 feature map,每层都需要输出 segments,segments 的表示方法为 b=(xb,yb,wb,hb, θ b)。检测一个 segment 那么网络需要输出 segment 的置信度和 segment 相对于 default boxes 的五个回归偏移量。文章中是 7 个 channel,前两个通道是 soft-max 之后 segment 的置信度,后五个是偏移量和角度。

对于第 L 层的 feature map(W_I,H_I)来说,一个点在 feature map 上的坐标为(x,y),对应原图是坐标为(x_a,y_a)的点,那一个 default box 的中心坐标为(x_a,y_a),由下面的式子表示:

$$x_a = \frac{w_I}{w_l}(x+0.5); \quad y_a = \frac{h_I}{h_l}(y+0.5)$$

网络会预测出 segment 相对于对应位置的 default box 的五个偏移量 $(\Delta x_s, \Delta y_s, \Delta w_s, \Delta h_s, \Delta \theta_s)$, 和上面 default box 的中心坐标 (x_a, y_a)

 $x_s = a_l \Delta x_s + x_a$

 $y_s = a_l \Delta y_s + y_a$

 $w_s = a_l exp(\Delta w_s)$

 $h_s = a_l exp(\Delta h_s)$

 $\theta = \Lambda \theta$

 $a_l = \gamma \frac{w_l}{w_l}$,这里 $\gamma = 1.5$

link 的检测方法

(1) 层内的 Link 的检测

一个 link 连接着相邻两个 segment,表示他们是属于同一个字或者在同一框中。 link 的作用不仅是将相邻的 segment 连接起来,还可以区分邻近的 segment 但是不属于同行或者同一个标定框。

检测 link 使用的 feature map 与检测 segment 使用的是同一 feature map,所以对于同一层 feature map 来说,一个 segment 有其他 8 个相邻的 segment,那 links 就是每个 feature map 经过卷积后输出 16 个通道,每两个通道表示 segment 与邻近的一个 segment 的 link。

(2) 跨层的 Link 检测

Cross-Layer Link 连接的是相邻两层 feature map 产生的 segments,比如,1-th 层(即 conv4_3)的 feature map 和 2-th 层(即 conv7)的 feature map 产生的 segments 通过 Cross-Layer Link 连接。

这个网络有个重要的属性方便我们进行 Cross-Layer Link 连接,就是我们提取出来的 6 个 feature map 中,上一层的大小是下一层的四倍(长宽各两倍)。但是值得注意的是,只有 feature map 是偶数的时候才满足这个属性,所以在实际操作中,输入图像的长宽大小都要缩放到 128 的整数倍。例如,一张 1000×800 的图片,首先会先缩放到 1024×768 大小。

由于上层的 feature map 为下一层的四倍,那相当于一个 segment 与另一层的四个 segment 相邻。这时除 1-th 的 feature map 外,其他五个 feature map 每个经过卷积后都要输出 8 个通道,每两个通道表示一个 Cross-Layer Link。

那么每层 feature map 的输出

经过上述介绍,每层 feature map 提取出来后,还要经过卷积出来,最后输出的 有 segments 的信息也有 links 的信息,一共有 31 个 channel

但是第一层也就是 con4_3 层 f,eature map 的输出少 Cross-Layer Link。

利用 links 将 segments 连接

将 segments 看作结点,links 看作边,下面算法的输入是 segments 和 links 构成的一张图,每个文本框看作一个连通分量。

Algorithm 1 Combining Segments

- 1: **Input:** $\mathcal{B} = \{s^{(i)}\}_{i=1}^{|\mathcal{B}|}$ is a set of segments connected by links, where $s^{(i)} = (x_s^{(i)}, y_s^{(i)}, w_s^{(i)}, h_s^{(i)}, \theta_s^{(i)})$.
- 2: Find the average angle $\theta_b := \frac{1}{|\mathcal{B}|} \sum_{\mathcal{B}} \theta_s^{(i)}$.
- 3: For a straight line $(\tan \theta_b)x + b$, find the b that minimizes the sum of distances to all segment centers $(x_s^{(i)}, y_s^{(i)})$.
- 4: Find the perpendicular projections of all segment centers onto the straight line.
- 5: From the projected points, find the two with the longest distance. Denote them by (x_p, y_p) and (x_q, y_q) .
- 6: $x_b := \frac{1}{2}(x_p + x_q)$
- 7: $y_b := \frac{1}{2}(y_p + y_q)$
- 8: $w_b := \sqrt{(x_p x_q)^2 + (y_p y_q)^2} + \frac{1}{2}(w_p + w_q)$
- 9: $h_b := \frac{1}{|\mathcal{B}|} \sum_{\mathcal{B}} h_s^{(i)}$
- 10: $b := (x_b, y_b, w_b, h_b, \theta_b)$
- 11: **Output:** b is the combined bounding box.

- 1. 将连接后的所有结果作为输入,将连接在一起的。 segments 当作是一个小的集合,称为 B。
- 2. 将 B 集合中所有 segment 的旋转角求平均值作。 为文本框的旋转角称为 θ_b
- 3. 将旋转角求 tanθ_b作为斜率,这样就可以得到一。系列的平行线,求得 B 集合中所有 segment 的。中心点到直线距离的和最小的那条直线。
- 4. 将 B 集合中所有 segment 的中心点垂直投影到 3 步骤。 中找到的直线上。
- 5. 在投影中找到距离最远的两个点称为(xp,yp)和(xq,yq)。
- 6. 上述两点的均值作为框的中心点,宽为上述两点的距。 离,高为B集合中所有 segment 的高的均值。。

segments 和 links 标签的生成

在求 segments 和 links 的标签前先确定与其对应的 default box 的标签值。

- 1) the center of the box is inside the word bounding box;
- 2) the ratio between the box size a_l and the word height h satisfies:

$$\max(\frac{a_l}{h}, \frac{h}{a_l}) \le 1.5 \tag{9}$$

原生数据只是给了四边形的四个点。

只要 default box 的中心点在标定的文本框内,还有两个框高的比例满足上述关系,就认为这个 default box 为正样本。

接下来计算位置偏移量和角度的标签值

1.选择一个正样本的 default box,如图中蓝框所示,其中的蓝点是 default box 的中心点

- 2.将文本框顺时针旋转为θ,使其成为水平框
- 3.在得到的水平框能截取 default box 大小的区域(长为 default box 的长,高仍为文本框的高)
- 4.根据截取后的水平框,沿着其中心点逆时针旋转θ角

这时候 w_s,h_s,x_s,y_s,θ_s 就知道了

 $x_s = a_i \Delta x_s + x_a$

 $y_s = a_l \Delta y_s + y_a$

 $w_s = a_l exp(\Delta w_s)$

 $h_s = a_l exp(\Delta h_s)$

 $\theta = \Delta \theta_s$

link (包括 within-layer link 和 cross-layer link) 的标签值,满足下面两个条件:

- 1. link 连接的两个 default box 都为正样本
- 2. 两个 default box 属于同一个文本框

损失函数的定义

损失函数定义如下式所示:

$$L(\mathbf{y}_s, \mathbf{c}_s, \mathbf{y}_l, \mathbf{c}_l, \hat{\mathbf{s}}, \mathbf{s}) = \frac{1}{N_s} L_{\text{conf}}(\mathbf{y}_s, \mathbf{c}_s) + \lambda_1 \frac{1}{N_s} L_{\text{loc}}(\hat{\mathbf{s}}, \mathbf{s}) + \lambda_2 \frac{1}{N_l} L_{\text{conf}}(\mathbf{y}_l, \mathbf{c}_l)$$

 \mathbf{y}_s , \mathbf{c}_s 分别表示 segment 的标签值和预测值, $\hat{\mathbf{s}}$, \mathbf{s} 分别表示偏移量的预测值和标签值, \mathbf{y}_l , \mathbf{c}_l 分别表示 link 的预测值和标签值。 \mathbf{N}_s 为图像中所有正样本的 default boxes 的个数。 \mathbf{N}_l 为图像中所有正样本的 links 的个数。 $\mathbf{\lambda}_1$ 和 $\mathbf{\lambda}_2$ 作者都设为 $\mathbf{1}$ 。