Diabetic prediction system

January 15, 2024

```
[1]:
       #DIABETIC PREDICTION SYSTEM
[2]: #importing the libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
[3]: data=pd.read_csv("diabetes.csv")
     data.head()
[3]:
        Pregnancies
                     Glucose
                             BloodPressure SkinThickness
                                                             Insulin
                                                                        BMI
                  6
                         148
                                          72
                                                                       33.6
     1
                  1
                          85
                                          66
                                                         29
                                                                    0
                                                                       26.6
                                                                       23.3
     2
                  8
                         183
                                          64
                                                          0
                                                                    0
     3
                  1
                          89
                                          66
                                                         23
                                                                   94
                                                                       28.1
     4
                  0
                         137
                                                                      43.1
                                          40
                                                         35
                                                                  168
        DiabetesPedigreeFunction
                                        Outcome
                                  Age
     0
                           0.627
                                    50
                                              1
                           0.351
                                    31
                                              0
     1
     2
                           0.672
                                    32
                                              1
     3
                           0.167
                                    21
                                              0
                           2.288
                                    33
                                              1
[4]: # information about the dataset
     data.shape
[4]: (768, 9)
[5]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 768 entries, 0 to 767
    Data columns (total 9 columns):
         Column
                                    Non-Null Count
                                                     Dtype
                                    _____
         Pregnancies
                                    768 non-null
                                                     int64
```

1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

[6]: data.dtypes

[6]: Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 ${\tt DiabetesPedigreeFunction}$ float64 Age int64 Outcome int64

dtype: object

[7]: data.describe().T

[7]:		count	mean	std	min	25%	\
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	
	BMI	768.0	31.992578	7.884160	0.000	27.30000	
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	
	Age	768.0	33.240885	11.760232	21.000	24.00000	
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	

	50%	75%	max
Pregnancies	3.0000	6.00000	17.00
Glucose	117.0000	140.25000	199.00
BloodPressure	72.0000	80.00000	122.00
SkinThickness	23.0000	32.00000	99.00
Insulin	30.5000	127.25000	846.00
BMI	32.0000	36.60000	67.10
DiabetesPedigreeFunction	0.3725	0.62625	2.42
Age	29.0000	41.00000	81.00
Outcome	0.0000	1.00000	1.00

[8]: # Finding null values data.isnull().sum()

```
[8]: Pregnancies
                                   0
                                   0
     Glucose
     BloodPressure
                                   0
     SkinThickness
                                   0
     Insulin
     BMI
                                   0
     DiabetesPedigreeFunction
                                   0
     Age
                                   0
     Outcome
                                   0
     dtype: int64
```

[9]: # visualization of the null values using heat map
sns.heatmap(data.isnull(), cmap="Greens")
no null values present in the dataset

[9]: <AxesSubplot: >

[10]: # Correlation matrix correlation=data.corr() print(correlation)

	Pregnanci		Glucos			
Pregnancies	1.000000		0.12945	0.141282	-0.081672	
Glucose	0.1294	59	1.00000	0.152590	0.057328	
BloodPressure	0.1412	82	0.15259	1.000000	0.207371	
SkinThickness	-0.0816	72	0.05732	0.207371	1.000000	
Insulin	-0.0735	35	0.33135	0.088933	0.436783	
BMI	0.0176	83	0.22107	71 0.281805	0.392573	
${\tt DiabetesPedigreeFunction}$	-0.0335	23	0.13733	0.041265	0.183928	
Age	0.5443	41	0.26351	0.239528	-0.113970	
Outcome	0.2218	98	0.46658	0.065068	0.074752	
	Insulin			DiabetesPedigreeF		
Pregnancies	-0.073535		017683		.033523	
Glucose	0.331357		221071		. 137337	
BloodPressure	0.088933		281805		.041265	
SkinThickness	0.436783		392573		. 183928	
Insulin	1.000000		197859		.185071	
BMI	0.197859	1.	000000	C	. 140647	
${\tt DiabetesPedigreeFunction}$	0.185071	0.	140647		.000000	
Age	-0.042163	0.	036242	C	.033561	
Outcome	0.130548	0.	292695	C	.173844	
	Age		utcome			
Pregnancies	0.544341		221898			
Glucose	0.263514	0.	466581			
BloodPressure	0.239528	0.	065068			
SkinThickness	-0.113970	0.	074752			
Insulin	-0.042163	0.	130548			
BMI	0.036242	0.	292695			
DiabetesPedigreeFunction	0.033561	0.	173844			
Age	1.000000	0.	238356			
Outcome	0.238356	1.	000000			

[11] sns.heatmap(data.corr(), cmap="pink")

[11]: <AxesSubplot: >


```
[12]: # creating histogram distribution in all levels
data.hist(figsize=(18, 10), grid=False, color='#ADD8E6')
plt.suptitle("Histogram Distribution levels", size=30)
plt.show()
```

Histogram Distribution levels


```
[13]: # Importing the libraries for prediction
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings("ignore")
```

```
[14]: x=data.drop("Outcome", axis=1)
y=data["Outcome"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

```
[15]: # In X all the independent variables are stored # In Y the predictor variable("OUTCOME") is stored.
```

[]:

```
[16]: # Training the model
    training_model=LogisticRegression()
    training_model.fit(x_train,y_train)
```

[16]: LogisticRegression()

[17]: # Fitting the X train and y train data into the variable called model

[18]:	<pre># prediction making prediction=training_model.predict(x_test) print(prediction)</pre>			
	[0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0			
[19]:]: accuracy=accuracy_score(prediction,y_test) print(accuracy)			
	0.7857142857142857			
[]:	# The accuracy of the model is then calculated and determined			
[]:				
r 1.				