HW1: Report

學號:R06942074 系級:電信所碩一姓名:李宇哲

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature的一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響

	RMSE (training) 10000 iteration	RMSE (public) 10000 iteration	RMSE(private) 10000 iteration
18種	5.955	7.81	5.47
PM2.5	6.20	7.47	5.64

從這裡可以發現:

兩個model都跑了10000個iteration,雖然18種的feature的training 的RMSE比較小,但是在testing dataset上沒有明顯的進步反而且在public退步,理論上162個feature應該要比9個feature還要好,但是會發生這樣的狀況可以推論這18種feature讓model提早收斂到local minimum,影響model的performance。再者,在162個feature提早達到很低的loss也可以推論增加的153個feature只會更容易讓model發生overfitting的現象。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

9 hours	RMSE (training) 10000 iteration	RMSE (public) 10000 iteration	RMSE(private) 10000 iteration
18種	5.955	7.81	5.47
PM2.5	6.20	7.47	5.64

5 hours	RMSE (training) 10000 iteration	RMSE (public) 10000 iteration	RMSE(private) 10000 iteration
18種	5.946	7.72778	5.37111
PM2.5	6.293	7.59792	5.80192

這裡可以發現,相較於9hour,5hours在feature減少後應該會比較差或者是一樣的performance像是PM2.5的狀況,但是18種feature在testing dataset有上升的趨勢只能說減少feature候在10000個iteration下比較不容易overfitting,這裡不能說明前5hours會比較好。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001 ,並作圖 training & testing

18種features:

PM2.5:

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^{N} (y^n - x^n \cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ ... \ x^N]^T$ 表示,所有訓練資料的標註以向量 $y = [y^1 \ y^2 \ ... \ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 X^TX 為 invertible)

 $\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$