Fireball NASA

Basic cleanup

```
In [3]: data = extracted["data"]
        df = pd.DataFrame(data)
        df.columns = extracted["fields"]
        df.drop_duplicates()
        # Convert numerical values to float
        df = df.astype({'energy': 'float', 'alt': 'float', 'impact-e': 'float', 'vel': '
        df = df.rename(columns={"date": "date", "energy": "energy", "alt": "altitude", "
        df.dropna(how='all')
        df.insert(1, "time", pd.to_datetime(df["date"]).dt.time)
        df["date"] = pd.to_datetime(df["date"]).dt.date
        df["year"] = pd.to_datetime(df["date"]).dt.year
        df["coordinates"] = "(" + df["lat"] + "o" + df["lat-dir"] + ","+ df["lon"] + "o"
        df.drop(columns=["lat", "lat-dir", "lon", "lon-dir"], inplace=True)
        # Set energy in GJ instead of 10**10
        df["energy"] = df["energy"] * 10
In [4]: display("Data types", df.dtypes)
        display("Data summary", df.describe())
       'Data types'
```

```
date
                  object
time
                 object
                 float64
energy
impact energy
                 float64
                 float64
altitude
                 float64
velocity
                  int32
year
coordinates
                object
dtype: object
'Data summary'
```

	energy	impact_energy	altitude	velocity	year
count	1022.000000	1022.000000	562.000000	329.000000	1022.000000
mean	710.892368	1.170409	36.646441	18.595441	2010.334638
std	11835.514644	14.019468	10.793371	6.153648	8.752532
min	20.000000	0.073000	14.000000	9.800000	1988.000000
25%	31.250000	0.110000	29.600000	14.400000	2003.000000
50%	60.000000	0.190000	35.200000	17.200000	2010.000000
75%	143.000000	0.420000	40.700000	21.100000	2018.000000
max	375000.000000	440.000000	74.300000	49.000000	2025.000000

Columns

• date: YYYY-MM-DD

• year: YYYY

• time: HH:MM:SS

energy: Gigajoule (1e+9j)impact_energy: kiloton

altitude: km velocity: km/s

Distributions

Energy (GJ) & Impact Energy (KT) - (Log scale)

```
In [5]: columns = ["energy", "impact_energy"]
labels = ["Energy (GJ)", "Impact Energy (KT)"]

for col, label in zip(columns, labels):
    plt.figure(figsize=[6, 4])
    plt.xlabel(label)
    sns.histplot(x=df[col], kde=True)
    plt.xscale("log")
    plt.show()
```


Year, Velocity (km/s), Altitude (km)

```
In [6]: columns = ["year", "altitude", "velocity"]
labels = ["Year", "Altitude (km)", "Velocity (km/s)"]
sns.set_theme(style="ticks")
for col, label in zip(columns, labels):
    plt.figure(figsize=[6, 4])
    plt.xlabel(label)
    plt.xticks(rotation=45)
    sns.histplot(x=df[col], kde=True)
    plt.show()
```


Correlation

