TRAVIS AARON HOPPE

Curriculum Vitæ travis.hoppe@gmail.com

PhD Physics (775) 287-4033

professional experience

2016 - Feb. 2020

Senior Data Scientist / Portfolio Analyst

- Developed analytic tools to process the text of NIH grants and publications using distributional embeddings (e.g. word2vec).
- Analyzed grant and publication portfolios, evaluating metrics such as clinical impact, technological impact, and award rates to build quantitative comparisons between various populations.
- Architected and productionized machine learning models for classification, regression, outlier detection, and language modeling. Maintained several open-source tools used internationally.
- Designed and validated an interagency government blockchain to detect grant duplication with minimal shared data.
- Restored historical texts from books and PDFs into actionable data.

2014-2016

Postdoctoral Fellowship at National Institutes of Health

- Researched novel integration schemes for molecular dynamics simulations. Developed protein models for tertiary structure prediction from primary sequence.
- Worked in collaboration with experimentalists to test and validate models.

2011-2014

Postdoctoral Fellowship at National Institutes of Health

- Developed multi-scale theoretical and computational models to study protein folding, structure, and protein-protein. Derived hard-sphere models to account for crowding in biomolecular simulations and potentials to model anisotropic charge distributions.
- Managed large-scale parallel projects (1000+ cores) to simulate the cellular environment.

2005-2011

Teaching Assistant (Drexel)

- Organized, taught, and ran 22 undergraduate courses.
- Restructured the entire computational component for physics majors by transitioning from FORTRAN to Python.

skills

- Machine learning and Natural Language Processing: Tensorflow, pyTorch, Keras, Convolutional Neural Networks (CNN), Generative Adversarial Networks (GANs), Transformers (BERT), word2vec.
- **Programming and Database**: Python, C++, JavaScript, SQL, NoSQL (MongoDB, Elasticsearch).
- **Project management**: Small team leader for analysis and code design.

education

2011 Doctor of Philosophy, Physics

Drexel University

On the Role of Entropy in the Protein Folding Process, Thesis.

2008 Master of Science, Physics

Drexel University

2005 Bachelor of Science, Physics

Bachelor of Science, Mathematics

University of Nevada

publications

Policy

- Topic Choice Contributes to Lower Rate of NIH Awards to African-American/Black Scientists, Travis Hoppe, Aviva Litovitz, Kristine Willis, Rebecca Meseroll, Matthew Perkins, B. Ian Hutchins, Alison Davis, Michael Lauer, Hannah Valantine, James Anderson, & George Santangelo, Science Advances.
- The NIH Open Citation Collection: A public access, broad coverage resource, Ian Hutchins, Kirk Baker, Matthew Davis, Mario Diwersy, Ehsanul Haque, Robert Harriman, Travis Hoppe, Stephen Leicht, Payam Meyer, George Santangelo, PLoS Biology.
- Additional support for RCR: A validated article-level measure of scientific influence, Ian Hutchins, Travis Hoppe, Rebecca Meseroll, James Anderson, & George Santangelo, PLoS Biology.

Protein-Protein Interaction

- Non-specific Interactions Between Macromolecular Solutes in Concentrated Solution: Physico-Chemical Manifestations and Biochemical Consequences, Travis Hoppe & Allen Minton, Frontiers in Molecular Biosciences.
- Incorporation of Hard and Soft Protein-Protein Interactions into Models for Crowding Effects in Binary and Ternary Protein Mixtures, Travis Hoppe & Allen Minton, Journal of the Physical Chemistry B.
- Dependence of Internal Friction on Folding Mechanism, Wenwei Zheng, David De Sancho, Travis Hoppe & Robert B. Best, Journal of the American Chemical Society.
- An equilibrium model for the combined effect of macromolecular crowding and surface adsorption on the formation of linear protein fibrils, *Travis Hoppe, Allen Minton*, Biophysical Journal.
- A simplified representation of anisotropic charge distributions in proteins, *Travis Hoppe*, Journal of Chemical Physics.
- Singular Value Decomposition of the Radial Distribution Function for Hard Sphere and Square Well Potentials, *Travis Hoppe*, PLoS ONE.

Protein Folding with Implicit Crowders: A Study of Conformational States Using the Wang-Landau Method, Travis Hoppe, Jian-Min Yuan, Journal of Physical Chemistry B.

Protein Topology & Graph theory

- Integer sequence discovery from small graphs, *Travis Hoppe, Anna Petrone*, Discrete Applied Mathematics.
- Entropic flows, crowding effects, and stability of asymmetric proteins, Travis Hoppe, Jian-Min Yuan, Physical Review E.

Experimental Modeling

- Programmable Nanoscaffolds that Control Ligand Display to a G-Protein Coupled-Receptor in Membranes allow Dissection of Multivalent Effects, Andrew Dix, Daniel Appella, Travis Hoppe, et al., Journal of the American Chemical Society.
- Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids, Chao Zhao, Daniel Appella, Travis Hoppe, et al., Nature Communications.
- The importance of EBIT data for Z-pinch plasma diagnostics, A S Safronova, Travis Hoppe, et al., Canadian Journal of Physics.
- Spectroscopic and Imaging Study of Combined W and Mo-pinches at 1 MA-pinch Generators, Alla Safronova, Travis Hoppe, et al., IEEE Transactions on Plasma Science.

awards

2017 Office of the Director's Honor Award

Outstanding support for the Grants Support Index & Next Generation Research Initiative Analytical Team

2014 Top Presentation Award

Institution-wide recognition during the NIDDK Annual Conference.

2010 Research Assistant Grant

Competitive grant from Drexel Physics Department on the basis of outstanding research and teaching.

2010 Student Research Achievement Award (SRAA)

Top poster at the Biophysical Society 2010 meeting.

2009 Department Research Award (Senior Division)

Given by the Drexel Physics Department, this award recognized a high proficiency in both original research and synthesis of results into publications.

2008 Department Research Award (Junior Division)

Restricted to the first two years of study, the junior division award was awarded for early achievements in research.

2007 Teaching Assistant of the Year

Recognition by Drexel University as the top Teaching Assistant in the College of Arts and Sciences.

conferences

teaching (Drexel)

2016	Biophysical Society: Los Angeles Poster: Coevolutionary signal enhancement
2015	Biophysical Society: Baltimore Seminar: Mean-field lattice-model IDPs, Binding Affinity & Specificity
2014	Advances in Enhanced Sampling Algorithms: Telluride Seminar: Topological considerations in the Wang-Landau algorithm
2013	Biophysical Society: Philadelphia Seminar: Coarse-grained Electrostatic Models for Protein Solutions
2010	Biophysical Society: San Francisco Poster: Wang-Landau Density of States in Crowded Protein Environments
2009	Drexel University Libraries' Communication Symposium: The Hidden Costs of Scholarly Communication Invited Panel Member
2009	Biophysical Society: Boston Poster: Exhaustive Properties of Simple Lattice Peptides
2011	PHYS 305, Computational Physics II*
2010	PHYS 304, Computational Physics I* PHYS 160, Introduction to Scientific Computing* PHYS 305, Computational Physics II*
2009	PHYS 304, Computational Physics I* PHYS 160, Introduction to Scientific Computing* DSP 099, Dragon Summer Program: Remedial Mathematics PHYS 100, Preparation for Engineering Studies PHYS 305, Computational Physics II*
2008	PHYS 304, Computational Physics I* PHYS 102, Fundamentals of Physics II* PHYS 115, Contemporary Physics III* PHYS 114, Contemporary Physics II*
2007	PHYS 113, Contemporary Physics I* PHYS 102, Fundamentals of Physics II, Lab PHYS 115, Contemporary Physics III* PHYS 114, Contemporary Physics II*
2006	PHYS 113, Contemporary Physics I* TDEC 101, Fundamentals of Physics I, Lab TDEC 103, Fundamentals of Physics III* TDEC 102, Fundamentals of Physics II*
2005	TDEC 101, Fundamentals of Physics I*

^{*}Developed new curricula and modernized the Computational Physics, Contemporary Physics and Introduction to Scientific Computing courses at Drexel.