

RR051-15-105885-3-A Ed. 0

Certification Radio test report

According to the standard: CFR 47 FCC PART 15

Equipment under test:

VAGINAL THERMOMETER FOR CALVING

DETECTION TVi

FCC ID: 2AGBG-2X000184

Company: MEDRIA TECHNOLOGIES

DISTRIBUTION: Mr GOUJON (Company: MEDRIA TECHNOLOGIES)

Number of pages: 50 with 9 appendixes

Ed.	Date	Modified	Written	by	Technical Verificati Quality Approv	
		pages	Name	Visa	Name	Visa
0	10-DEC-2015	Creation	S. LOUIS		T. LEDRESSEUR	
				SIL		

Duplication of this test report is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.

TESTED BY:

DESIGNATION OF PRODUCT	:	VAGINAL THERMOMETER FOR CALVING DETECTION
Serial number (S/N):		TVi0801U
Reference / model (P/N):		TVi
Software version:		V1.07
MANUFACTURER:		MEDRIA TECHNOLOGIES
COMPANY SUBMITTING THE	PRODUCT:	
Company:		MEDRIA TECHNOLOGIES
Address:		PARC D'ACTIVITE DE LA GAULTIERE 35220 CHATEAUBOURG FRANCE
Responsible:		Mr GOUJON
Person present during the tes	sts:	Mr PAVAGEAU
DATES OF TEST:		From 03-DEC-2015 to 08-DEC-2015
TESTING LOCATION:	21 rue de la F 49610 Juigne France FCC Accredite	

S. LOUIS

CONTENTS

TITLE	PAGE
1. INTRODUCTION	4
2. PRODUCT DESCRIPTION	4
3. NORMATIVE REFERENCE	5
4. TEST METHODOLOGY	5
5. TEST EQUIPMENT CALIBRATION DATES	6
6. TESTS AND CONCLUSIONS	7
7. RADIATED EMISSION LIMITS	11
8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS.	13
9. MAXIMUM PEAK OUTPUT POWER	14
10. INTENTIONAL RADIATOR	16
11. PEAK POWER DENSITY	19
APPENDIX 1: Photos of the equipment under test	
APPENDIX 2: Test set up	
APPENDIX 3: Test equipment list	
APPENDIX 4: 99% bandwidth	
APPENDIX 5: 6 dB bandwidth	
APPENDIX 6: 20 dB bandwidth	
APPENDIX 7: Band edge	
APPENDIX 8: Number of hopping channels	

1. INTRODUCTION

This document presents the result of RADIO test carried out on the following equipment: <u>Vaginal</u> <u>thermometer for calving detection TVi</u>, in accordance with normative reference.

The device under test integrates a multifrequencies wireless transceiver LoRa.

The LoRa protocol integrated on the product is a hybrid system, that's why it was tested following FCC part 15.247 (f)

2. PRODUCT DESCRIPTION

Class: B

Utilization: The product is destined to be used on a professional environment, but it was

tested for respect the class B limit. Tele transmission

Antenna type and gain: Integral antenna; 0dBi

Power adjusted by software: 8

Operating frequency range: from 902.3MHz to 914.9MHz

Number of channels: 64

Channel spacing: 200 KHz

Modulation: LoRa

Power source: 3.6Vdc

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.

3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2015) Radio Frequency Devices

ANSI C63.4 2009

Methods of measurement of Radio-Noise

Emissions from low-voltage Electrical and Electronic Equipment in the Range

of 9 kHz to 40 GHz.

ANSI C63.10 2009

Testing Unlicensed Wireless Devices.

558074 D01 DTS v03r03 Guidance for Performing Compliance on Digital Transmission

Systems Operating under §15.247

4. TEST METHODOLOGY

Radio performance tests procedures given in CFR 47 part 15:

Subpart A –General

Paragraph 19: labelling requirements Paragraph 21: information to user

Subpart B – Unintentional Radiators

Paragraph 105: information to the user Paragraph 109: Radiated emission limits

Subpart C - Intentional Radiators

Paragraph 203: Antenna requirement

Paragraph 205: Restricted bands of operation

Paragraph 209: Radiated emission limits; general requirements

Paragraph 215: Additional provisions to the general radiated emission limitations

Paragraph 247: Operation within the bands 902-928 MHZ, 2400-2483.5 MHz and 5725-5850

 MHz

5. TEST EQUIPMENT CALIBRATION DATES

Equipment	Model	Туре	Last verification	Next verification	Validity
0000	BAT-EMC	Software	1	1	1
1406	EMCO 6502	Loop antenna	27/01/2015	27/01/2017	27/03/2017
1922	Microwave DB C020180F- 4B1	Low-noise amplifier	08/11/2015	08/11/2016	08/01/2017
4088	R&S FSP40	Spectrum Analyzer	29/10/2015	29/10/2017	29/12/2017
6609	HPM11630	High pass filter	24/02/2014	24/02/2016	24/04/2016
8511	HP 8447D	Low noise preamplifier	08/10/2015	08/10/2016	08/12/2016
8526	Schwarzbeck VHBB 9124	Biconical antenna	12/06/2012	12/06/2016	12/08/2016
8535	EMCO 3115	Antenna	29/10/2012	29/10/2016	29/12/2016
8543	Schwarzbeck UHALP 9108A	Log periodic antenna	12/06/2012	12/06/2016	12/08/2016
8593	SIDT Cage 2	Anechoic chamber	1	/	/
8676	ISOTECH IDM106N	Multimeter	21/05/2015	21/05/2017	21/07/2017
8707	R&S ESI7	Test receiver	11/12/2014	11/12/2016	11/02/2017
8732	Emitech	OATS	23/08/2013	23/08/2016	23/10/2016
8749	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8750	La Crosse Technology WS- 9232	Meteo station	03/09/2014	03/09/2016	03/11/2016
8783	EMCO 3147	Log periodic antenna	24/09/2013	24/09/2017	24/11/2017
8864	Champ libre Juigné. V3.4	Software	1	1	1
8893	Emitech	Outside room Hors cage	1	1	1
8896	ACQUISYS GPS8	Satellite synchronized frequency standard	I	1	1
1	GPIB SHOT	Software	1	1	1

6. TESTS AND CONCLUSIONS

6.1 general (subpart A)

Test	Description of test	Res	specte	d criter	ia?	Comment
procedure		Yes	No	NAp	NAs	
FCC Part 15.19	LABELLING REQUIREMENTS				X	See certification documents
FCC Part 15.21	INFORMATION TO USER				Χ	See certification documents

NAp: Not Applicable NAs: Not Asked

LABEL SHALL CONTAIN

The label shall be located in a conspicuous location on the device

The label shall not be a stick-on, paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase

§15.19: (can be placed in the user manual if the product is too small)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

USER NOTICE SHALL CONTAIN

The user notice, not provided during tests, shall include the following informations:

§15.21:

Any changes or modifications to this equipment not expressly approved by MEDRIA TECHNOLOGIES may cause, harmful interference and void the FCC authorization to operate this equipment

6.2 unintentional radiator (subpart B)

Test	Description of test		specte	Comment		
procedure		Yes	No	NAp	NAs	
FCC Part 15.105	INFORMATION TO THE USER				Х	See certification documents Note
FCC Part 15.107	CONDUCTED LIMITS			Χ		
FCC Part 15.109	RADIATED EMISSION LIMITS	X				
FCC Part 15.111	ANTENNA POWER CONDUCTED LIMITS FOR RECEIVER			X		

NAp: Not Applicable

NAs: Not Asked

USER NOTICE SHALL CONTAIN

The user notice, not provided during tests, shall include the following informations:

§ 15.105:

NOTE:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

6.3 intentional radiator (subpart C)

Test	Description of test		espect	Comment		
procedure		Yes	No	NAp	NAs	
FCC Dort 15 202	ANTENNA REQUIREMENT	X				Note 1
FCC Part 15.203	ANTENNA REQUIREMENT	^				Note 1
FCC Part 15.205	RESTRICTED BANDS OF OPERATION	Χ				
FCC Part 15.207	CONDUCTED LIMITS			Х		
FCC Part 15.209	RADIATED EMISSION LIMITS; general requirements	X				Note 2
FCC part 15.215	ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS					
	(a) Alternative to general radiated emission limits	Χ				
	(b) Unwanted emissions outside of §15.247 frequency bands	Х				Note 3
	(c) 20 dB bandwidth and band-edge compliance	Х				
FCC Part 15.247	OPERATION WITHIN THE BANDS 902-928 MHZ, 2400-2483.5 MHz and 5725-5850 MHz					
	(a) (1) Hopping systems			Χ		
	(a) (2) Digital modulation techniques			Χ		
	(b) Maximum peak output power	Χ				Note 4
	(c) Operation with directional antenna gains > 6 dBi	\		Χ		
	(d) Intentional radiator	X				
	(e) Peak power spectral density	X				
	(f) Hybrid system	Х				Note 5 Note 6
	(g) Frequency hopping requirements			Х		
	(h) Frequency hopping intelligence			Χ		
	(i) RF exposure compliance	X				Note 7

NAp: Not Applicable

NAs: Not Asked

Note 1: Integral antenna.

Note 2: See FCC part 15.247 (d).

Note 3: See FCC part 15.209. Unwanted emissions levels are all below the fundamental emission field strength level.

Note 4: Conducted measurement is not possible (integral antenna), so we used the radiated method in open field.

Note 5: The frequency hopping system uses 64 channels (see appendix 8).

Each frequency is used equally on the average time by the transmitter.

The timing by channel is 123ms (see appendix 7).

During 64 channels \times 0.4 s = 25.6 s, any channel is used 1 time, then 1 x 123 ms = 123 ms, thus the average time of occupancy on any channel is less than 400 ms within a period of 0.4 seconds multiplied by the number of hopping channels employed, in normal operating mode.

Number	Observation	Maximal	Number of burst	average time of	Limits
of	period	Duration of	repetition during	occupancy on	
channels	(0.4s * Nbr of channel)	each burst	observation period	any channel	
	(s)	(ms)		(s)	(s)
64	25.6	123	1	0.123	0.4

Note 6: The maximum 99% bandwidth of the equipment is 124.81 kHz (see appendix 4).

RF EXPOSURE:

Note 7:

Maximum measured power = $90.4 \text{ dB}\mu\text{V/m} = 3.65 \text{ mW}$ With $P = (\text{Exd})^2 / (30x\text{Gp})$ with d = 3m and Gp = 1

In accordance with KDB 447498 D01 General RF Exposure Guidance v05r02 $PSD = EIRP/(4*\pi^*R^2)=3.65/(4*\pi^*(20 \text{ cm})^2)=0.000726 \text{ mW/cm}^2$ (limit= 0.6 mW/cm²).

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.

To declare, or not, the compliance with the specifications, it was not explicitly taken into account of uncertainty associated with the results

7. RADIATED EMISSION LIMITS

Standard: FCC Part 15

Test procedure: paragraph 109

Limit class: Class B

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 30 MHz to 5GHz (5th harmonic of the highest frequency used).

Detection mode: Quasi-peak (F < 1 GHz) Average (F > 1 GHz)

Bandwidth: 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment is blocked on low, middle then high channel in reception mode.

RR051-15-105885-3-A Ed. 0

Results:

Ambient temperature (°C): 21.5 Relative humidity (%): 45

Power source: Lithium battery 3.6Vdc fully charged

Not any spurious has been detected.

Test conclusion:

RESPECTED STANDARD

8. ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS

Standard: FCC Part 15

Test procedure: Paragraph 15.215

Test set up:

Test realized in near field. All field strength measurements are correlated with the radiated maximum peak output power

Test operating condition of the equipment:

The equipment under test is blocked in continuous transmission mode, modulated by internal data signal, at the highest output power level which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.7 Relative humidity (%): 44

Power source: Lithium battery 3.6Vdc fully charged

Lower Band Edge: from 900MHz to 902MHz Upper Band Edge: from 928MHz to 930MHz

Sample N° 1:

Fundamental frequency (MHz)	Field Strength Level of fundamental (dBµV/m)	Detector (Peak or Average)	Frequency of maximum Band- edges Emission (MHz)	Delta Marker (dB)*	Calculated Max Out-of-Band Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
902.3	89.4	Р	901.96	47.68	41.83	69.4	27.57
914.8	90.4	Р	928.10	44.91	45.49	70.4	24.91

^{*} Marker-Delta method

99% bandwidth curves are given in appendix 4; band-edge curves are given in appendix 7.

Test conclusion:

RESPECTED STANDARD

9. MAXIMUM PEAK OUTPUT POWER

Standard: FCC Part 15

Test procedure: paragraph 15.247 (b)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Distance of antenna: 10 meters

Antenna height: 1 to 4 meters

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.7 Relative humidity (%): 46

Power source: Lithium battery 3.6Vdc fully charged

Sample N° 1 Low Channel 902.3MHz

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage: 3.6V	89.5	0.00297	1

Polarization of test antenna: Vertical (height: 400 cm)
Position of equipment: See appendix 2 (azimuth: 0 degree)

Sample N° 1 Central Channel 908.7MHz

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage: 3.6V	88.5	0.00236	1

Polarization of test antenna: Vertical (height: 400 cm)
Position of equipment: See appendix 2 (azimuth: 38 degrees)

Sample N° 1 High Channel 914.9MHz

	Electro-magnetic field (dBµV/m):	Conducted power * (W)	Limit (W)
Nominal supply voltage: 3.6V	90.4	0.00365	1

Polarization of test antenna: Vertical (height: 215 cm)

Position of equipment: See appendix 2 (azimuth: 204 degrees)

* $P = (E \times d)^2 / (30 \times Gp)$ with d = 10 m and Gp = 1

Antenna gain: 0 dBi

Test conclusion:

RESPECTED STANDARD

10. INTENTIONAL RADIATOR

Standard: FCC Part 15

Test procedure: paragraph 15.205, paragraph 15.209, paragraph 15.247 (d)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The measure is realized on open area test site under 1 GHz and in anechoic chamber above 1 GHz.

When the system is tested in an open area test site (OATS), the EUT is placed on a rotating table, 0.8m from a ground plane.

When the system is tested in anechoic chamber, the EUT is placed on a rotating table, 1.5m from a ground plane.

Zero degree azimuths correspond to the front of the device under test.

See photos in appendix 2.

Frequency range: From 9 kHz to 10GHz (10th harmonic of the highest fundamental frequency).

Detection mode: Quasi-peak (F < 1 GHz) Peak / Average (F > 1 GHz)

Bandwidth: 200Hz (9 kHz < F < 150kHz)

9 kHz (150 kHz < F < 30MHz) 120 kHz (30 MHz < F < 1 GHz) 100 kHz / 1 MHz (F > 1 GHz)

Distance of antenna: 10 meters (in open area test site) / 3 meters (in anechoic room)

Antenna height: 1 to 4 meters (in open area test site) / 1.5 meter (in anechoic room)

Antenna polarization: vertical and horizontal (only the highest level is recorded)

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 19.6 Relative humidity (%): 48

Power source: Lithium battery 3.6Vdc fully charged

Sample N° 1 Low Channel

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)	, , ,	
	Peak					, , ,		
	Av: Average							
1805	Р	150	259	100	Н	52.5	80.8	28.3
2707*	Р	150	346	1000	V	46.9	74	27.1
3609*	Р	150	0	1000	V	53.6**	74	20.4
3609*	Av	150	0	1000	V	51.2	74	22.8
4511.5*	Р	150	0	1000	V	48.4**	74	25.6
5414*	Р	150	258	1000	Н	47.9**	74	26.1
6316	Р	150	0	100	V	45.8	80.8	35.0
7218	Р	150	342	100	V	46.7	80.8	34.1
8120.8*	Р	150	317	1000	V	52.8**	74	21.2
9022.4*	Р	150	0	1000	V	53.9**	74	20.1
9022.4*	Av	150	0	1000	V	43	54	11.0

Sample N° 1 Central Channel

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)	, , ,	
	Peak					, , ,		
	Av: Average							
1817.5	Р	150	273	100	Н	52.9	80.8	27.9
2726*	Р	150	0	1000	V	46.8**	74	27.2
3634.5*	Р	150	320	1000	V	54.7	74	19.3
3634.5*	Av	150	320	1000	V	52.4	54	1.6
4544*	Р	150	0	1000	V	47.7**	74	26.3
6360.8	Р	150	0	100	Н	45.3	80.8	35.5
7269.6*	Р	150	0	1000	Н	52.6**	74	21.4
8178*	Р	150	0	1000	Н	54.2	74	19.8
8178*	Av	150	0	1000	Н	47.9	54	6.1
9087.2*	Р	150	0	1000	Н	54.4	74	19.6
9087.2*	Av	150	0	1000	Н	46.5	54	7.5

Sample N° 1 High Channel

FREQUENCIES	Detector	Antenna	Azimuth	Resolution	Polarization	Field	Limits	Margin
(MHz)	P: Peak	height	(degree)	bandwidth	H: Horizontal	strength	(dBµV/m)	(dB)
	QP: Quasi-	(cm)		(kHz)	V: Vertical	(dBµV/m)	, , ,	
	Peak					, , ,		
	Av: Average							
1830	Р	150	252	100	Н	52.1	80.8	28.7
2745*	Р	150	0	1000	V	47.3**	74	26.7
3660*	Р	150	0	1000	V	53.4**	74	20.6
4575*	Р	150	0	1000	V	47.2**	74	26.8
6404.4	Р	150	0	100	Н	44.6	80.8	36.2
7318.2*	Р	150	0	1000	V	50.8**	74	23.2
8234.4*	Р	150	0	1000	Н	54.5	74	19.5
8234.4*	Av	150	0	1000	Н	48.3	54	5.7
9148.8*	Р	150	0	1000	Н	56.3	74	17.7
9148.8*	Av	150	0	1000	Н	51.5	54	2.5

^{*} restricted bands of operation in 15.205

<u>Note</u>: any spurious which has more than 20 dB of margin compared to the applicable limit is not necessarily reported.

Applicable limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The highest level recorded in a 100 kHz bandwidth is 100.8 dBµV/m on high channel.

So the applicable limit is 80.8 dBµV/m.

In addition, radiated emissions which fall in the restricted band, as defined in section 15.205 (a), must also comply with the radiated emission limits specified in section 15.209 (a) (see section 15.205 (c)).

Test conclusion:

RESPECTED STANDARD

^{**} the peak level is lower than the average limit (54 dB μ V/m).

11. PEAK POWER DENSITY

Standard: FCC Part 15

Test procedure: paragraph 15.247 (e)

Test set up:

First an exploratory radiated measurement was performed. During this phase the product is oriented in three orthogonal planes.

Then the final measurement is realized with the product on the most critical orientation.

The system is tested in an open area test site (OATS). The EUT is placed on a rotating table, 0.8m from a ground plane. Zero degree azimuths correspond to the front of the device under test.

The measurement of the electro-magnetic field is realized; with a resolution bandwidth adjusted at 3 kHz and video bandwidth at 10 kHz

The measuring distance between the equipment and the test antenna is 10 m. The test antenna has been oriented in two polarizations (Vertical and Horizontal) and raised and lowered from 1m to 4m above the ground level. Only the highest level of each measurement is reported.

We used the same method of the peak output power measurement, but the equipment under test power level is recorded with the spectrum analyzer.

Resolution bandwidth: 3 kHz Video bandwidth: 10 kHz

Equipment under test operating condition:

The equipment under test is blocked in continuous modulated transmission mode, at the highest output power level at which the transmitter is intended to operate.

Results:

Ambient temperature (°C): 21.7 Relative humidity (%): 46

Power source: Lithium battery 3.6Vdc fully charged

Sample N° 1 Low Channel

	Peak power density at frequency: 902.3 MHz
Normal test conditions	+4.23 dBm
Limits	+8 dBm

Sample N° 1 Central Channel

	Peak power density at frequency: 908.7 MHz
Normal test conditions	+3.13 dBm
Limits	+8 dBm

Sample N° 1 High Channel

	Peak power density at frequency: 914.9 MHz
Normal test conditions	+4.73 dBm
Limits	+8 dBm

Test conclusion:

RESPECTED STANDARD

□□□ End of report, 9 appendixes to be forwarded □□□

APPENDIX 1: Photos of the equipment under test

APPENDIX 2: Test set up

EUT in anechoic chamber

Page 22 out of 50

OATS

Page 23 out of 50

APPENDIX 3: Test equipment list

Radiated emission limits

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
High pass filter HPM11630	Hewlett Packard	6609
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Additional provisions to the general radiated emission limitations

TYPE	MANUFACTURER	EMITECH NUMBER
Outside room Hors cage	Emitech	8893
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8750
Software	GPIBShot V2.4	-

Maximum peak output power

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver ESI7	Rohde & Schwarz	8707
Log periodic antenna 3147	EMCO	8783
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8749
Software	Champ libre Juigné. V3.4	8864
Software	BAT-EMC V3.6.0.32	0000

Intentional radiator

TYPE	MANUFACTURER	EMITECH NUMBER
Anechoic Chamber	EMITECH	8593
Satellite synchronized frequency standard	ACQUISYS	8896
GPS8		
Spectrum Analyzer FSP40	Rohde & Schwarz	4088
Loop antenna 6502	EMCO	1406
Biconical antenna VHBB 9124	Schwarzbeck	8526
Log periodic antenna UHALP 9108A	Schwarzbeck	8543
Antenna 3115	EMCO	8535
Low-noise amplifier 8447D	Hewlett Packard	8511
Low-noise amplifier C020180F-4B1	Microwave DB	1922
High pass filter HPM11630	Hewlett Packard	6609
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8750
Software	BAT-EMC V3.6.0.32	0000

Peak power density

TYPE	MANUFACTURER	EMITECH NUMBER
Open test site	EMITECH	8732
Satellite synchronized frequency standard GPS8	ACQUISYS	8896
Test receiver ESI7	Rohde & Schwarz	8707
Log periodic antenna 3147	EMCO	8783
Multimeter IDM106N	ISOTECH	8676
Meteo station WS-9232	La Crosse Technology	8749
Software	Champ libre Juigné. V3.4	8864
Software	BAT-EMC V3.6.0.32	0000

APPENDIX 4: 99% bandwidth

Low channel

Date: 7.DEC.2015 15:43:34

Central Channel

Date: 7.DEC.2015 15:46:35

High Channel

Date: 7.DEC.2015 15:49:23

APPENDIX 5: 6dB bandwidth

Low channel

Date: 7.DEC.2015 15:53:38

Central channel

Date: 7.DEC.2015 15:54:49

High channel

OBW = 268.9 kHz

APPENDIX 6: 20dB bandwidth

Low channel

Date: 7.DEC.2015 15:53:11

Central channel

Date: 7.DEC.2015 15:55:22

High channel

Date: 7.DEC.2015 15:51:17

APPENDIX 7: Band edge

Low channel – with hopping off mode

Date: 7.DEC.2015 14:14:56

High channel with hopping off mode

Date: 7.DEC.2015 14:17:49

Low channel with hopping on mode

Date: 7.DEC.2015 15:01:39

High channel with hopping on mode

Date: 7.DEC.2015 14:28:03

APPENDIX 8: Number of hopping channels

First group of 8 channels centred at 903 MHz

Date: 7.DEC.2015 16:25:57

Second group of 8 channels centred at 904.6 MHz

Date: 7.DEC.2015 16:32:42

Third group of 8 channels centred at 906.2 MHz

Date: 7.DEC.2015 16:38:35

Fourth group of 8 channels centred at 907.8 MHz

Date: 7.DEC.2015 16:45:43

Fifth group of 8 channels centred at 909.4 MHz

Date: 7.DEC.2015 16:50:46

Sixth group of 8 channels centred at 911 MHz

Date: 7.DEC.2015 16:57:28

Seventh group of 8 channels centred at 912.6 MHz

Date: 7.DEC.2015 17:02:00

Eighth group of 8 channels centred at 914.2 MHz

Date: 7.DEC.2015 17:06:38

APPENDIX 9: Time of occupancy on any frequency

Low channel

Date: 7.DEC.2015 15:10:37

Date: 7.DEC.2015 15:32:23

Central Channel

Date: 7.DEC.2015 15:12:38

Date: 7.DEC.2015 15:32:02

High Channel

Date: 7.DEC.2015 15:13:59

Date: 7.DEC.2015 15:33:34