

TD 4: INDUCTION, RECURSIVITÉ CORRIGÉ DE QUELQUES EXERCICES

1. Récursivité

Exercice 1. Donnez une définition récursive de l'ensemble des entiers positifs congrus à 3 modulo 7 ou congrus à 5 modulo 7.

$$a_0 = 3$$
; $a_1 = 5$; $a_{n+2} = a_n + 7$

Exercice 2. Donnez une définition récursive de l'ensemble des entiers positifs congrus à 3 modulo 5 et congrus à 4 modulo 7.

$$a_0 = 18$$
; $a_{n+1} = a_n + 35$

Exercice 3. Donnez une définition récursive de la suite a_n .

- 1. $a_n = 2n + 1$ Réponse : $a_0 = 1$; $a_{n+1} = a_n + 2$
- 2. $a_n = 3 2^n$ Réponse : $a_0 = 2$; $a_{n+1} = 2a_n 3$. Indication : Utiliser la suite $b_n = a_n 3$. 3. $a_n = 2^{2^n}$ Réponse : $a_0 = 2$; $a_{n+1} = a_n^2$ 4. $a_n = \frac{n^2 n + 2}{2}$ Réponse : $a_0 = 1$; $a_{n+1} = a_n + n$

Exercice 4. La fonction d'Ackermann est une fonction récursive à deux paramètres entiers définie par :

$$f(n,m) = \begin{cases} m+1 & Si \ n=0 \\ f(n-1,1) & Si \ n \ge 1 \ et \ m=0 \\ f(n-1,f(n,m-1)) & Si \ n \ge 1 \ et \ m \ge 1 \end{cases}$$

- 1. Calculer f(1,0), f(2,0), f(3,0) Réponse : f(1,0) = 2; f(2,0) = 3; f(3,0) = 5
- 2. Montrer que : $\forall k \in \mathbb{N}, f(1,k) = k+2$ Indication : Preuve par induction
- 3. Montrer que : $\forall k \in \mathbb{N}, f(2, k) = 2k + 3$ Indication : Preuve par induction
- 4. Montrer que : $\forall k \in \mathbb{N}, f(3, k) = 2^{k+3} 3$ Indication : Preuve par induction

Exercice 5. Pour tout réel x et pour tout entier positif non nul n on a :

$$S_n(x) = \sum_{k=1}^n \frac{x^k}{k}$$

En utilisant la notion d'itération, donner l'algorithme d'une fonction qui calcule $S_n(x)$.

2. Fermeture des relations

Exercise 6. Soit la relation \mathcal{R} définie sur l'ensemble $A = \{1, 2, 3, 4, 5\}$ par : $\{(1, 3), (3, 1), (3, 2), (3, 4), (4, 5)\}$.

- 1. Dessiner le graphe de la relation \mathcal{R} .
- 2. Donner la matrice de la relation \mathcal{R} .
- 3. Donner la fermeture réflexive de \mathcal{R} .
- 4. Donner la fermeture symétrique de \mathcal{R} .
- 5. Donner la fermeture transitive de \mathcal{R} .

Les graphes des fermetures réflexive, symétrique et transitive de la relation $\mathcal R$ sont respectivement :

Exercice 7. On considère les trois ensembles $A = \{2,3,4,6\}$, $B = \{a,b,c,d\}$, $C = \{0,3,5\}$ et deux relations $\mathcal{R} \subseteq A \times B$ et $\mathcal{S} \subseteq B \times C$ définies par : $\mathcal{R} = \{(4,a),(6,a),(6,b),(4,c),(6,c)\}$ et $\mathcal{S} = \{(a,0),(b,5),(c,5),(d,3)\}$

- 1. Donner la matrice de la relation $S \circ \mathcal{R}$.
- 2. Donner la relation $S \circ \mathcal{R}$ sous forme d'un ensemble de couples.

$$M_{\mathcal{S} \circ \mathcal{R}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } \mathcal{S} \circ \mathcal{R} = \{(4,0), (6,0), (6,5), (4,5)\}$$

Exercice 8. Soit la relation $\mathcal{R} \subseteq \mathbb{N} \times \mathbb{N}$ définie par : $\mathcal{R} = \{(a,b) \in \mathbb{N} \times \mathbb{N}, a \times b \leq a + b\}$.

- 1. Donner la relation $\mathcal{R} \circ \mathcal{R}$ sous forme d'un ensemble de couples.
- 2. En déduire que $\mathcal{R} \circ (\mathcal{R} \circ \mathcal{R}) = \mathcal{R} \circ \mathcal{R}$.

3. Exercices supplémentaires (livre de Rosen)

Exercices numéros 2, 4, 5, 8 (page 197) ; 35 (page 198) ; 18, 21 (page 205) ; 29 (page 214) ; 40 (page 215)