

By: Akansha Bhatia M00975443 | Salma Riaz M00982503 | Reia Menezes M00791121

Table of Contents

Introduction

Control System Design

Components Used

Simulation Setup

Demonstration

Future

Conclusion

Contribution Table

References

Introduction

- The increasing demand for automation in everyday environments has led to the growing use of collaborative robots in tasks that were once considered entirely human. These robots are currently being developed to help with repetitive, precise, or time-consuming tasks in both households and manufacturing environments.
- → Particularly, kitchens can offer a perfect environment for the use of robotic systems that can help with day to day cooking. The incorporation of robotics into everyday cooking tasks has the potential to completely alter how families prepare meals while maintaining the standard and appeal of home-cooked meals.
- → By reclaiming time, enhancing access for a wide range of users, and providing reliable, high-quality meals that meet dietary requirements and personal preferences, we hope to show not only the technical feasibility of kitchen automation but also its potential for transforming everyday cooking activities.

Problem Statement

- The need for automated kitchen solutions has increased significantly in today's fast-paced culture as a result of multiple causes.
- As the elderly population seeks independence in everyday tasks, upcoming generation lacking in basic cooking skills, time constraints seen among working professionals, and the growing interest in smart home technologies have all combined to provide an ideal environment for innovation in kitchen automation.

Control System Design

Core Control System

Device Driver Layer - Communicate With Hardware Middleware Layer - Communicate With Hardware & Software Functional Module Layer - Processing & Decision Making

User's Inputs

HTTPS - Larger Data Transfer Upon Request MQTT - Smaller Data Transfer Sent Continuously

User's Preferences

Stored on AWS Cloud Storage AES-256 Encryption - Secret Key Unique To Authorized User

Components Used: Hardware - Simulation

Electric Stove

UR10e Robot

Virtual Camera

Components Used: Software - Simulation

Simulation Setup

 The required software programs were thoughtfully selected, set up, and configured in order to execute a working simulation of the robotic cooking process.

 For a realistic depiction of the home kitchen cooking robot process, the preparation required setting up the virtual environment, installing the necessary tools, and defining key object placements.

Simulation Setup on Robodk

Challenges Faced

- The restricted features of the RoboDK free version license was one of the main obstacles faced during the project development.
- The inability to add two robots to the simulation was one of the advanced features that were limited since a full license was not available. This restriction had an effect on the original concept of placing 2 robots which would have increased productivity and efficiency.
- As an alternative to the problem, the simulation was designed using a single robotic arm, ensuring all necessary operations could still be executed within the constraints of the free version.

Implementation and Demonstration

GitHub Link:

https://github.com/reiamenezes2004/pde4435 coursework2 ris.git

YouTube Link:

https://youtu.be/Z9bfok9eZ-o

Conclusion

Control System

Overview o**Psish**&
Integrations
Details About Components

Simulation Setup

Creating Simulation & Setting It Up Challenges Faced

Demonstration

Showcasing RoboDk Simulation

Future Development

Cleaning Dishes

Pick & Place Utensils in Dishwasher Remove Once Cleaning Completed

Cleaning Tools

Special Compartment For Holding & Cleaning Tools
Placing Back On Tool Box

Contribution Table

PDE4435 - Coursework 2 - Contribution Sheet					
	Type of Work Done	Contribution By			
Sr. No.	Name	Akansha	Salma	Reia	
1	RoboDK SImulation				Key
2	Python GUI				Worked On
3	Report (IEEE format)				Did not work on
4	Powerpoint				Helped
5	Logbook				
6	Video Demonstration				
7	GitHub				

References

- Shao, L. *et al.* (2020) 'Design and implementation of real-time robot operating system based on freertos', *Journal of Physics: Conference Series*, 1449(1), p. 012115. doi:10.1088/1742-6596/1449/1/012115.
- Kewate, N. (2022) 'A review on AWS Cloud Computing Technology', *International Journal for Research in Applied Science and Engineering Technology*, 10(1), pp. 258–263. doi:10.22214/ijraset.2022.39802.
- Manthiramoorthy, C., Khan, K.M. and A, N.A. (2024) 'Comparing several encrypted cloud storage platforms', *International Journal of Mathematics, Statistics, and Computer Science*, 2, pp. 44–62. doi:10.59543/ijmscs.v2i.7971.
- Hong, S., Kang, J. and Kwon, S., 2023. Performance comparison of http, https, and mqtt for iot applications. *International journal of advanced smart convergence*, *12*(1), pp.9-17.
- Leitão, P.J., 2019. Development and simulation of an automatic tool changer for an ABB robot.
- Bellinger, C. and Lamarche-Cliche, L., 2023. Learning Visual Tracking and Reaching with Deep Reinforcement Learning on a UR10e Robotic Arm. arXiv preprint arXiv:2308.14652.
- Universal Robots, 2025. *UR10e collaborative robot*. [online] Available at: https://www.universal-robots.com/products/ur10e/ [Accessed 6 Apr. 2025].
- Hamdani, M.N.K., Sulistiyowati, I. and Ayuni, S.D., 2022. Automatic Stove Control System Based on the NodeMCU ESP8266
 Microcontroller. Journal of Electrical Technology UMY, 6(2), pp.103-111.

Thank you!