Subject: Engineering Mathematics Chapter: Differential Equation

DPP-04

Topic: Partial Differential Equations, 1D & 2D heat equation & Laplace equation, Cauchy's & Legendre's homogenous LDE, Variation of Parameters

- The general solution of $\frac{d^2y}{dx^2} \frac{dy}{dx} 2y = 10\cos x$ is
 - (a) $y = c_1 e^{-x} + c_2 e^{2x} 3 \cos x \sin x$
 - (b) $y = c_1 e^x + c_2 e^{2x} 3 \cos x$
 - (c) $y = c_1^{-x} + c_2 e^{2x} 3x + \sin x$
 - (d) $y = c_1 e^x + c_2 e^{-2x} 3 \cos x \sin x$
- The solution of the equation $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 4y = 0$ is
 - (a) $y = (c_1 + c_2 x)e^{2x}$
 - (b) $y = (c_1 + c_2 x)e^x$
 - (c) $y = (c_1 + c_2 x) \log x$
 - (d) $y = (c_1 + c_2 \log x)x^2$
- The solution of the equation

$$xp + 2y = pxy, \left(p = \frac{dy}{dx}\right)$$
 is

- (a) $xy^2 = Ae^y$
- (b) $xy^2 = Ae^x$
- (c) $x^2y = Ae^y$
- (d) $xy = Ae^y$
- If y = x is a solution of $x^2y'' + xy' y = 0$, then the second linearly independent solution of the above equation is
- (b) $\frac{1}{r^2}$
- (c) x^2
- The family of conic represented by the solution of the DE (4x + 3y + 1)dx + (3x + 2y + 1)dy = 0 is
 - (a) Circles
- (b) Parabolas

- (c) Hyperbolas
- (d) Ellipses
- Consider the following second-order differential equation:

$$y'' - 4y' + 3y = 2t - 3t^2$$

The particular solution of the differential equation is

- (a) $-2-2t-t^2$ (b) $-2t-t^2$ (c) $2t-3t^2$ (d) $-2-2t-3t^2$
- The differential equation $\frac{d^2y}{dx^2} + 16y = 0$ for y(x) with conditions

boundary $\left. \frac{dy}{dx} \right|_{x=0} = 1$ and $\left. \frac{dy}{dx} \right|_{x=\frac{\pi}{2}} = -1$ has

- (a) No solution
- (b) Exactly two solutions
- (c) Exactly one solution
- (d) Infinitely many solutions
- Consider the differential equation 3y''(x) + 27y(x) = 0with initial conditions y(0) = 0 and y'(0) = 2000. The value of y at x = 1 is _____.
- The general solution of the differential equation

$$\frac{d^4y}{dx^4} - 2\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

- (a) $y = (c_1 c_2 x)e^x + c_3 \cos x + c_4 \sin x$
- (b) $y = (c_1 + c_2 x)e^x c_3 \cos x + c_4 \sin x$
- (c) $y = (c_1 + c_2 x)e^x + c_3 \cos x + c_4 \sin x$
- (d) $y = (c_1 + c_2 x)e^x + c_3 \cos x c_4 \sin x$
- 10. The solution of the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 3e^{2x}, \text{ where, } y(0) = 0 \text{ and } y'(0) = -2$$

(a)
$$y = e^{-x} - e^{2x} + xe^{2x}$$

(b)
$$y = e^x - e^{-2x} - xe^{2x}$$

(c)
$$y = e^{-x} + e^{2x} + xe^{2x}$$

(d)
$$y = e^x - e^{-2x} + xe^{2x}$$

11. Consider the differential equation $\frac{dy}{dx} = (1 + y^2)x$. The general solution with constant c is

(a)
$$y = \tan \frac{x^2}{2} + \tan c$$

(b)
$$y = \tan^2\left(\frac{x}{2} + c\right)$$

(c)
$$y = \tan^2\left(\frac{x}{2}\right) + c$$

(d)
$$y = \tan\left(\frac{x^2}{2} + c\right)$$

12. The solution of $x \frac{dy}{dx} + y = x^4$ with the condition

$$y(1) = \frac{6}{5}$$
 is

(a)
$$y = \frac{x^4}{5} + \frac{1}{x}$$

(b)
$$y = \frac{4x^4}{5} + \frac{4}{5x}$$

(c)
$$y = \frac{x^4}{5} + 1$$

(d)
$$y = \frac{x^5}{5} + 1$$

- **13.** The integrating factor of the equation $(x^2y^3 + xy)\frac{dy}{dx} = 1$ is

 - (b) $e^{\frac{1}{2}y^2}$
 - (c) $e^{\frac{1}{2}x^2}$
- 14. The general integral of the partial differential equation $y^2p - xyq = x(z - 2y)$ is
 - (a) $\phi(x^2 + y^2, y^2 yz) = 0$
 - (b) $\phi(x^2 y^2, y^2 + yz) = 0$
 - (c) $\phi(xy, yz) = 0$
 - (d) $\phi(x + y, \ln x z) = 0$

15. Match each differential equation in Group I to its family of solution curves from Group II

Group I

Group II

A.
$$\frac{dy}{dx} = \frac{y}{x}$$

Circles

B.
$$\frac{dy}{dx} = -\frac{y}{x}$$
 2.

Straight lines

C.
$$\frac{dy}{dx} = \frac{x}{y}$$

Hyperbolas

D.
$$\frac{dy}{dx} = -\frac{x}{y}$$

- (a) A-2, B-3, C-3, D-1
- (b) A-1, B-3, C-2, D-1
- (c) A-2, B-1, C-3, D-3
- (d) A-3, B-2, C-1, D-2
- **16.** The one dimensional heat conduction partial differential equation $\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$ is
 - (a) parabolic
- (b) hyperbolic
- (c) elliptic
- (d) mixed
- 17. The partial differential equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} = 0 \text{ has}$$

- (a) degree 1 and order 2
- (b) degree 1 and order 1
- degree 1 and order 1
- (d) degree 2 and order 2
- **18.** The type of partial equation $\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + 3\frac{\partial^2 P}{\partial x dy} + 2\frac{\partial P}{\partial x} - \frac{\partial P}{\partial y} = 0$ is
 - (a) elliptic
- (b) parabolic
- (c) hyperbolic
- (d) none of these
- 19. The solution of the following partial differential equation $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$ is
 - (a) $\sin(3x y)$ (b) $3x^2 + y^2$ (c) $\sin(3x 3y)$ (d) $(3y^2 x^2)$

- **20.** The complete integral of $(z px qy)^3 = pq + 2(p^2 + q)^2$
 - (a) $z = ax + by + \sqrt[3]{pq + 2(p^2 + q)^2}$
 - (b) $z = ax + by + \sqrt[3]{ab + 2(a^2 + b)^2}$
 - (c) $z = ax + by + \sqrt[3]{ab} + \sqrt[3]{2(a^2 + b)^2}$

Answer Key

- 1. (a)
- 2. (d)
- 3. (c)
- 4. (a)
- **5.** (c)
- 6. (a)
- 7. (a)
- 8. (94.08)
- 9. (c)
- 10. (a)

- 11. (d)
- 12. (a)
- 13. (b)
- 14. (a)
- 15. (a)
- 16. (a)
- 17. (a)
- 18. (c)
- 19. (a)
- **20.** (b)

PW Mobile APP: https://smart.link/7wwosivoicgd4