Алгебра. Глава 2. Целые числа

Д. В. Карпов

Алгебра. Глава 2. Целые числа

Д. В. Карпов

Университет ИТМО

2023

Определение

Пусть $a,b\in\mathbb{Z}$, $b\neq 0$. Тогда a делится на b (обозначение: $a\stackrel{.}{\cdot}b$) или, что то же самое, b делит a (обозначение: $b\mid a$), если a=bc, где $c\in\mathbb{Z}$. Если $a\stackrel{.}{\cdot}b$, то b- делитель a.

Свойство 1

Если a b и b c, то a c.

Доказательство. Тогда a=kb и b=nc, где $k,n\in\mathbb{Z}$, откуда следует a=knc.

Свойство 2

Пусть $a,b \ \dot{} \ d$, $a \ x,y \in \mathbb{Z}$. Тогда $ax+by \ \dot{} \ d$.

Доказательство. Тогда a=kd и b=nd, где $k,n\in\mathbb{Z}$, откуда следует ax+by=(kx+ny)d.

Свойство 3

Пусть $a,d\in\mathbb{N}$, $a\stackrel{.}{.}d$. Тогда $a\geq d$.

Доказательство. Тогда a=kd, где $k\in\mathbb{N}$, откуда следует $a=kd\geq d$.

Теорема 1

Пусть $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Тогда существуют единственные такие $q,r \in \mathbb{Z}$, что $0 \le r < b$ и a = bq + r.

- ullet Число r называется *остатком* от деления a на b.
- Доказательство. \exists . Пусть q такое целое число, что $bq \leq a < b(q+1)$, а r=a-bq. Тогда $0 \leq r < b$ (вычтем из всех трех частей первого неравенства bq).
- ! Пусть $a = bq_1 + r_1 = bq_2 + r_2$, причем $0 \le r_1 < b$ и $0 \le r_2 < b$.
- ullet НУО $r_1 > r_2$. Тогда $0 < r_1 r_2 < b$.
- ullet С другой стороны, $r_1-r_2=b(q_2-q_1)\geq b$. Противоречие.

Пусть $a_1, \ldots, a_n \in \mathbb{Z}$. Обозначим через $OD(a_1, \ldots, a_n)$ множество всех общих делителей этих чисел, а через (a_1, \ldots, a_n) — их НОД (наибольший из общих делителей).

Свойство 1

Если $b \in \mathbb{N}$. a : b, то $\mathrm{OD}(a,b)$ — это все делители b и (a, b) = b.

Доказательство. • Если d — общий делитель a и b, то d делитель b.

 \bullet Если d — делитель b, то a : d по свойству 1 делимости. Значит, d — общий делитель a и b.

Свойство 2

Пусть $a, b, c, k \in \mathbb{Z}$, c = a + kb. Тогда OD(a, b) = OD(c, b), aследовательно, u(a, b) = (c, b).

Доказательство. • Пусть $d \in \mathrm{OD}(a,b)$. Тогда $c \cdot d$, а значит, $d \in \mathrm{OD}(c, b)$.

 \bullet Наоборот, если $d \in \mathrm{OD}(c,b)$, то $a=c-kb \cdot d$, а значит, $d \in \mathrm{OD}(a, b)$. 4 C > 4 A > 4 E > 4 E > E > 4 C C

ullet Пусть $a,b\in\mathbb{N}$, a>b. Каждая строка алгоритма — деление с остатком.

- 1) $a = bq_1 + r_1, \quad 0 \le r_1 < b;$
- 2) $b = r_1q_2 + r_2$, $0 \le r_2 < r_1$;
- 3) $r_1 = r_2 q_3 + r_3$, $0 \le r_3 < r_2$;

٠.

n)
$$r_{n-2} = r_{n-1}q_n + r_n$$
, $0 \le r_n < r_{n-1}$;
 $(n+1)$ $r_{n-1} = r_nq_{n+1}$.

ullet Так как $b>r_1>r_2>\dots$ и все эти числа неотрицательны, алгоритм обязательно закончит работу.

Теорема 2

$$(a,b)=r_n$$
, a $\mathrm{OD}(a,b)$ — это все делители (a,b) .

Доказательство. • По свойству 2 НОД $\mathrm{OD}(a,b) = \mathrm{OD}(b,r_1) = \mathrm{OD}(r_1,r_2) = \cdots = \mathrm{OD}(r_{n-1},r_n)$, а это по свойству 1 НОДа — все делители r_n .

 \bullet Тогда (a,b) — наибольший из делителей r_n , а это r_n .

Пусть $a, b, m, d \in \mathbb{N}$. Тогда:

- 1) (am, bm) = m(a, b).
- 2) Если $d \in \mathrm{OD}(a,b)$, то $(\frac{a}{d},\frac{b}{d})=\frac{(a,b)}{d}$.

Доказательство. • НУО a > b.

- 1) Рассмотрим первую строку алгоритма Евклида для am и bm: $am = bm \cdot q_1 + r_1m$, $0 \le r_1m < bm$.
- \bullet Неполное частное не меняется, а остаток умножается на m.
- Так будет и со следующими строчками, в результате получится столько же строк, сколько в алгоритме Евклида для a и b, а НОД последний ненулевой остаток умножится на m.
- 2) Рассмотрим первую строку алгоритма Евклида для $\frac{a}{d}$ и $\frac{b}{d}$: $\frac{a}{d}=\frac{b}{d}\cdot q_1+\frac{r_1}{d},\quad 0\leq \frac{r_1}{d}<\frac{b}{d}.$
- Неполное частное не меняется, а остаток мы делим на d (в результате он остается целым).
- Так будет и со следующими строчками, в результате получится столько же строк, сколько в алгоритме Евклида для a и b, а НОД последний ненулевой остаток разделится на d.

Теорема 4

Пусть $a,b\in\mathbb{Z}$. Тогда существуют такие $x,y\in\mathbb{Z}$, что (a,b)=ax+by.

• Это называется линейным представлением НОДа.

Доказательство. • Так как делители у чисел a и -a одни и те же, (a,b)=(a,-b). Поэтому, можно считать, что $a,b\in\mathbb{N}$.

- НУО $a \geq b$. Воспользуемся алгоритмом Евклида и соответствующими обозначениями, дополним их: пусть $r_0 = b$ и $r_{-1} = a$.
- Докажем, что существует представление $(a,b)=x_kr_k+y_kr_{k-1}$ для всех $k=\{n,\dots,0\}$ (где $(a,b)=r_n$) индукцией с обратным ходом. При k=0 получим утверждение теоремы.
- ullet База k=n очевидна: $(a,b)=1\cdot r_n+0\cdot r_{n-1}$.
- ullet Переход k o k 1. Из алгоритма Евклида мы знаем, что $r_k = r_{k-2} r_{k-1} q_k$. Подставим:

$$(a,b) = x_k r_k + y_k r_{k-1} = x_k (r_{k-2} - r_{k-1} q_k) + y_k r_{k-1} = (-x_k q_k + y_k) r_{k-1} + x_k r_{k-2}.$$

Д.В.Карпов

Теорема 5

Пусть
$$n \geq 2$$
, $a_1, \ldots, a_n \in \mathbb{Z}$. Положим $m_2 = (a_1, a_2)$, $m_3 = (m_2, a_3), \ldots, m_n = (m_{n-1}, a_n)$. Тогда $m_n = (a_1, \ldots, a_n)$, а $\mathrm{OD}(a_1, \ldots, a_n)$ — это все делители m_n .

Доказательство. • Индукцией по k докажем, что $\mathrm{OD}(a_1,\dots,a_k)$ — все делители m_k .

- База k = 2 доказана в Теореме 2.
- ullet Переход k o k+1. $\mathrm{OD}(a_1,\dots,a_k,a_{k+1})$ это все числа из $\mathrm{OD}(a_1,\dots,a_k)$, являющиеся делителями a_{k+1} .
- ullet Так как $\mathrm{OD}(a_1,\dots,a_k)$ это все делители m_k , получаем, что $\mathrm{OD}(a_1,\dots,a_k,a_{k+1})=\mathrm{OD}(m_k,a_{k+1})$, а это все делители $m_{k+1}=(m_k,a_{k+1})$ по Теореме 2.
- ullet Итак, утверждение доказано и $\mathrm{OD}(a_1,\ldots,a_n)$ это все делители m_n . Теперь понятно, что $m_n=(a_1,\ldots,a_n)$.

Для $a_1, \ldots, a_n \in \mathbb{Z}$ существует линейное представление НОД, то есть, такие $x_1, \ldots, x_n \in \mathbb{Z}$, что $(a_1, \ldots, a_n) = x_1 a_1 + \ldots x_n a_n$.

Доказательство. • Докажем индукцией по k, что существует линейное представление $m_k=(a_1,\ldots,a_k)$. База k=2 доказана в Теореме 4.

• Переход $k \to k+1$. По Теореме 5 и индукционному предположению,

$$m_{k+1} = (a_1, \dots, a_k, a_{k+1}) = (m_k, a_{k+1}) = ym_k + x_{k+1}a_{k+1} = y(x'_1a_1 + \dots + x'_ka_k) + x_{k+1}a_{k+1} = (yx'_1)a_1 + \dots (yx'_k)a_k + x_{k+1}a_{k+1}.$$

Все коэффициенты yx_1', \ldots, yx_k' , очевидно, целые.

Определение

- ullet Числа $a_1,\ldots,a_n\in\mathbb{Z}$ называются взаимно простыми, если $(a_1,\ldots,a_n)=1.$
- Если любые два из a_1, \dots, a_n взаимно просты, эти числа называются попарно взаимно простыми.

Свойство 1

Если $a_1,\ldots,a_n\in\mathbb{Z}$ попарно взаимно просты, то они взаимно просты.

Доказательство. Если
$$(a_1, \ldots, a_n) = d > 1$$
, то $(a_1, a_2) \stackrel{.}{\cdot} d$, а значит, $(a_1, a_2) > 1$.

Свойство 2

Если $a,b,c\in\mathbb{Z}$ и (a,b)=1, то (ac,b)=(c,b).

Доказательство. • Пусть d = (c, b) и f = (ac, b).

- ullet Из $c \ \dot{} \ d$ следует, что $ac \ \dot{} \ d$. Значит, $d \in \mathrm{OD}(ac,b)$ и по Теореме 2 $f \ \dot{} \ d$.
- ullet Из $b \in f$ следует, что $bc \in f$. Значит, $f \in \mathrm{OD}(ac,bc)$.
- По Теоремам 3 и 2, c = c(a, b) = (ac, bc) : f.
- ullet Следовательно, $f\in \mathrm{OD}(c,b)$ и по Теореме 2 $d\stackrel{.}{\cdot} f$.
- ullet Из $d,f\in\mathbb{N},\;d\stackrel{\cdot}{\cdot}f$ и $f\stackrel{\cdot}{\cdot}d$ следует, что d=f.

Свойство 3

Если $a,b,c\in\mathbb{Z}$, (a,b)=1 и $ac\mathrel{\dot{!}}b$, то $c\mathrel{\dot{!}}b$.

Доказательство. По Свойству 2 (c,b)=(ac,b)=b (последнее верно так как $ac \ b$). Следовательно, $c \ b$. \Box

Свойство 4

Пусть $a_1,\ldots,a_n,b_1,\ldots,b_m\in\mathbb{Z}$, причем $(a_i,b_j)=1$ для всех $i\in\{1,\ldots,n\}$ и $j\in\{1,\ldots,m\}$. Тогда $(a_1\ldots a_n,\ b_1\ldots b_m)=1.$

Доказательство. ullet Докажем, что $(a_1 \dots a_k, b_j) = 1$ для всех $j \in \{1, \dots, m\}$ и $k \in \{1, \dots, n\}$ индукцией по k.

База k=1: дано в условии.

Переход $k \to k+1$: $(a_1 \dots a_k a_{k+1}, b_j) = (a_1 \dots a_k, b_j) = 1$ по свойству 2 (так как $(a_{k+1}, b_j) = 1$).

ullet Пусть $A=a_1\dots a_n$. Докажем, что $(A,b_1\dots b_k)=1$ для всех $k\in\{1,\dots,m\}$ индукцией по k.

База k=1: доказано выше.

Переход $k \to k+1$: $(A, b_1 \dots b_k b_{k+1}) = (A, b_1 \dots b_k) = 1$ по свойству 2 (так как $(A, b_{k+1}) = 1$).

Определение

- Натуральное число, имеющее ровно два натуральных делителя, называется простым.
- Натуральное число, имеющее более двух натуральных делителей, называется составным.
- ullet Множество всех простых чисел обозначается ${\mathbb P}.$
- ullet Если $p\in\mathbb{P}$, то натуральные делители числа p это 1 и p.
- $1 \notin \mathbb{P}$. Любое натуральное число, большее 1 простое или составное.

Определение

Пусть $a\in\mathbb{N}$. Собственный делитель числа a — это любой его делитель, отличный от 1.

Свойство 1

Если $a\in\mathbb{N}$ — составное, то существует разложение a=bc, где $b,c\in\mathbb{N}$, a>b,c>1.

Доказательство. • Составное число a имеет собственный делитель b < a. Тогда a = bc, где $c \in \mathbb{N}$. Очевидно, 1 < c < a.

Свойство 2

Пусть $a \in \mathbb{N}$, $a \neq 1$, $a \neq 1$ минимальный собственный делитель а. Тогда $d \in \mathbb{P}$.

Доказательство. • По определению, d > 1.

- Предположим, что d составное. По свойству 1 тогда d = bc, где d > b > 1.
- ullet Из $a \cdot d$ и $d \cdot b$ следует, что $a \cdot b$. Значит, b < d собственный делитель a, противоречие с выбором d.

Теорема 6

Простых чисел бесконечно много.

Доказательство. • Предположим противное, пусть $\mathbb{P} = \{p_1, \ldots, p_n\}.$

- \bullet Пусть $m = p_1 \dots p_n + 1$, а q наименьший собственный делитель m.
- По свойству 2 тогда $q \in \mathbb{P}$. Значит, $q = p_i$ для некоторого $i \in \{1, \ldots, n\}$
- ullet Так как $m-1 \ \dot{p}_i, \ (m,p_i) = (1,p_i) = 1$ (по свойству 2 НОДа). Значит, $m \not\mid p_i$, противоречие. 4 ロ ト 4 同 ト 4 三 ト 4 三 ・ 9 Q P

Свойство 3

Пусть $a\in\mathbb{Z}$, $p\in\mathbb{P}$. Тогда либо $a\stackrel{\cdot}{,}$ p, либо (a,p)=1.

Доказательство. ullet Так как $d=(a,p)\in\mathbb{N}$ и $p\in d$, то d=1 или d=p.

ullet Во втором случае (a,p)=p, следовательно, $a\stackrel{\cdot}{\cdot} p$.

Свойство 4

Пусть $a_1,\ldots,a_n\in\mathbb{Z}$ и $p\in\mathbb{P}$ таковы, что $a_1\ldots a_n$ p. Тогда существует такое $i\in\{1,\ldots,n\}$, что $a_i\stackrel{\cdot}{\cdot} p.$

Доказательство. • Предположим противное, пусть $a_i \not p$ для всех $i \in \{1, \ldots, n\}$. По Свойству 3 тогда $(a_i, p) = 1$.

• По Свойству 4 взаимно простых чисел, тогда и $(a_1 \dots a_n, \ p) = 1$. Значит, $a_1 \dots a_n \ / \ p$. Противоречие.

Теорема 7

Любое натуральное число a>1 раскладывается в произведение простых чисел. Такое разложение единственно с точностью до порядка сомножителей.

Доказательство. \exists . Индукция. База $n \in \mathbb{P}$ очевидна: подходит разложение a=a.

Переход. • Пусть a — составное, а для всех меньших чисел теорема доказана.

- ullet Тогда a=bc, где 1 < b, c < a. Следовательно, $b=p_1\dots p_n$ и $c=q_1\dots q_m$.
- ullet Тогда $a=p_1\dots p_nq_1\dots q_m$ искомое разложение.

! Предположим противное, пусть $a=p_1\dots p_n=q_1\dots q_m$ — два разложения a в произведение простых, причем a — наименьшее натуральное число, для которого разложение в произведение простых неединственно.

- ullet Из $a=p_1\dots p_n \ \dot{} \ q_1$ следует, что $p_i \ \dot{} \ q_1$ для некоторого $i\in\{1,\dots,n\}.$ НУО i=1.
- ullet Из $p_1,q_1\in \mathbb{P}$ и $p_1
 otin q_1$ следует, что $p_1=q_1$ (единственным делителем простого p_1 , большим 1, является само p_1).
- Тогда $a' = \frac{a}{p_1} = p_2 \dots p_n = q_2 \dots q_m$. Но разложение a' в произведение простых единственно с точностью до порядка сомножителей, откуда следует, что разложение a тоже единственно с точностью до порядка сомножителей.

Определение

Каноническое разложение — это преставление натурального числа в виде $n=p_1^{k_1}\dots p_s^{k_s}$, где $p_1,\dots,p_s\in\mathbb{P}$ различны.

Определение

Для $n\in\mathbb{N}$ обозначим через d(n) количество натуральных делителей n.

Пусть $n = p_1^{k_1} \dots p_s^{k_s}$ — каноническое разложение. Тогда выполнены следующие утверждения.

- 1) n : d, если и только если $d = p_1^{\ell_1} \dots p_s^{\ell_s}$, где $0 < \ell_i < k_i$ для всех $i \in \{1, ..., s\}$.
- 2) $d(n) = (k_1 + 1) \dots (k_s + 1)$.

Доказательство. 1) \Leftarrow . Очевидно.

- \Rightarrow . Если $n \cdot d$, то d не может иметь простых делителей, кроме p_1, \ldots, p_s . Следовательно, $d = p_1^{\ell_1} \ldots p_s^{\ell_s}$.
- Если $\ell_i > k_i$ для какого-то $i \in \{1, ..., s\}$, то очевидно, что *n / d*.
- **2)** Показатель степени простого числа p_i в каноническом разложении делителя $d \mid n$ можно выбрать $k_i + 1$ способами $(0, 1, ..., k_i)$.
- Перемножаем количества вариантов для p_1, \ldots, p_s и получаем доказываемую формулу.

Пусть $a_1,\dots,a_m\in\mathbb{N}$, $p_1,\dots,p_s\in\mathbb{P}$ причем $a_i=p_1^{k_{i,1}}\dots p_s^{k_{i,s}}$ для всех $i\in\{1,\dots,m\}$ (некоторые из показателей могут быть равны 0). Тогда

$$(a_1,\ldots,a_m)=p_1^{\min(k_{1,1},\ldots,k_{m,1})}\ldots p_s^{\min(k_{1,s},\ldots,k_{m,s})}.$$

Доказательство. ullet По теореме 8, $d \mid a_t$, если и только если $d = p_1^{\ell_1} \dots p_s^{\ell_s}$, где $\ell_j \leq k_{t,j}$ для всех $j \in \{1,\dots,s\}$.

- Следовательно, $d\in \mathrm{OD}(a_1,\ldots,a_m)$, если и только если $d=p_1^{\ell_1}\ldots p_s^{\ell_s}$, где $\ell_i\leq \min(k_{1,i},\ldots,k_{s,i})$ для всех $i\in\{1,\ldots,s\}.$
- Теперь понятно, что наибольший элемент в $\mathrm{OD}(a_1,\ldots,a_m)$ вычисляется в точности по формуле из условия.

- lacktriangledown ax + by = c (*), где $a,b,c \in \mathbb{Z}$ константы, а $x,y \in \mathbb{Z}$ неизвестные.
- ightharpoonup Если $c \not : (a,b)$, то, очевидно, (*) не имеет решений.
- lack Иначе, пусть a=da', b=db', c=dc'. Разделим (*) на (a,b), и получим a'x+b'y=c', где (a',b')=1.
- ▶ По Теореме 4, существует линейное представление НОДа: $a'x_0 + b'y_0 = 1 \stackrel{c'}{\Leftrightarrow} a'(x_0c') + b'(y_0c') = c'$.

Решения (*) представляются в виде $x = x_0c' + tb'$, $v = v_0 c' - ta'$. где $t \in \mathbb{Z}$.

Доказательство.

Пусть мы нашли подходящую пару (x_0, y_0) для линейного представления a'x + b'y = 1. Тогда (x_0c', y_0c') – пара. удовлетворяющая a'x + b'y = c'. Отсюда можно записать: $a'x + b'y = c' = a'(x_0c') + b'(y_0c')$ (подставили (x_0c', y_0c)) Перегруппируем: $a'(x - x_0c') = b'(y_0c' - y)$ (**). Так как (a',b')=1, а ЛЧ $\vdots a'$, то остаётся единственный вариант – $y_0c'-y \stackrel{.}{:} a' \Leftrightarrow y_0c'-y=a't \Leftrightarrow y=y_0c'-ta' (t \in \mathbb{Z}).$ Подставив в (**), получим: $a'(x-x_0c')=tb'a' \stackrel{a'\neq 0}{\Longleftrightarrow}$ $x-x_0c'=tb'\Leftrightarrow x=x_0c+tb'$

Д. В. Карпов

ullet Пусть $m\in\mathbb{N}$, тогда нетрудно проверить, что $m\mathbb{Z}=\{mx\,:\,x\in\mathbb{Z}\}$ — идеал в \mathbb{Z} .

Теорема 11

Пусть I — идеал в \mathbb{Z} . Тогда I $= m\mathbb{Z}$, где $m \in \mathbb{N}_0$.

Доказательство. \bullet Если $I = \{0\}$, то подходит m = 0. Далее $I \neq \{0\}$.

- Пусть $a\in I$, $a\neq 0$. Тогда и $-a\in I$. Одно из чисел a и -a натуральное. Таким образом, $I'=I\cap \mathbb{N}\neq \varnothing$.
- ullet Тогда существует минимальный элемент в I', обозначим его m. Докажем, что $I=m\mathbb{Z}$.
- ullet Предположим противное, пусть $b \in I$, $b \not \mid m$. Тогда b = mq + r, где 0 < r < m (теорема о делении с остатком).
- ullet Так как $b,m\in I$, имеем $r=b-mq\in I$. Тогда $r\in I'$. Противоречие с минимальностью m.

Теорема 12

Пусть $a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}$. Тогда существует линейное представление (a_1, \ldots, a_n) , а $\mathrm{OD}(a_1, \ldots, a_n)$ состоит из всех делителей (a_1, \ldots, a_n) .

Доказательство. ullet Пусть $I = \langle \{a_1, \dots, a_n\} \rangle$. Этот идеал состоит из линейных комбинаций чисел a_1, \dots, a_n .

- ullet Очевидно, $I
 eq \{0\}$. Тогда по Теореме 11 существует такое $d \in \mathbb{N}$, что $I = d\mathbb{Z}$ состоит из кратных d.
- ullet Так как $a_1,\ldots,a_n\in I$, все они делятся на d, значит, $d\in \mathrm{OD}(a_1,\ldots,a_n).$
- ullet С другой стороны, $d\in I$, а значит, $d=x_1a_1+\cdots+x_na_n$, где $x_1,\ldots,x_n\in\mathbb{Z}$.
- ullet Значит, для любого $f\in \mathrm{OD}(a_1,\ldots,a_n)$ мы имеем $d\stackrel{\cdot}{:} f$.
- Так как d > 0, d наибольший элемент в $OD(a_1, \ldots, a_n)$, то есть, $d = (a_1, \ldots, a_n)$.

Определение

Пусть $m\in\mathbb{N}$; $a,b\in\mathbb{Z}$. Будем говорить, что a сравнимо с b по модулю m, если $a-b\stackrel{.}{\cdot}m$. Обозначения: $a\equiv_m b$ или $a\equiv b\pmod{m}$.

Лемма 1

Пусть $m \in \mathbb{N}$; $a,b \in \mathbb{Z}$. Следующие утверждения равносильны.

 $1^{\circ} \ a \equiv b \pmod{m}$.

 $2^{\circ} a - b : m.$

 3° а и b имеют одинаковые остатки от деления на m.

 $4^{\circ} \ a \equiv b \pmod{m\mathbb{Z}}$.

Доказательство. $1^{\circ} \iff 2^{\circ}$ по определению сравнения.

 $2^{\circ}\iff 3^{\circ}$ очевидно.

 $2^{\circ}\iff 4^{\circ}$ по определению главного идеала $m\mathbb{Z}.$

Если $a \equiv_m a'$ и $b \equiv_m b'$, $a \times, y \in \mathbb{Z}$, то $ax + by \equiv_m a'x + b'y$.

Доказательство.
$$ax + by - (a'x + b'y) = x(a - a') + y(b - b')$$
 m .

Свойство 2

Если $a \equiv_m a'$ и $b \equiv_m b'$, то $ab \equiv_m a'b'$.

Доказательство.
$$ab - a'b' = (ab - a'b) + (a'b - a'b') = (a - a')b + a'(b - b') \vdots m.$$

Свойство 3

Если $a \equiv_m b$ и $n \in \mathbb{N}$, то $a^n \equiv_m b^n$.

Доказательство. • Индукция по n. База n=1 очевидна.

• Переход $n \to n+1$. Так как $a^n \equiv_m b^n$ (по индукционному предположению) и $a \equiv_m b$, по свойству 2 имеем $a^{n+1} = a^n \cdot a \equiv_m b^n \cdot b = b^{n+1}$.

Свойство 4

Eсли (a,m)=1 и $ab\equiv_m ac$, то $b\equiv_m c$.

Доказательство. $ab \equiv_m ac \Rightarrow a(b-c) : m \Rightarrow b-c : m$ $\Rightarrow b \equiv_m c$ (по Свойству 3 взаимно простых чисел можно сократить на a).

• \equiv_m — отношение эквивалентности, так как это частный случай сравнения по модулю идеала (впрочем, можно несложно проверить напрямую).

Определение

Bычет по модулю m — это класс эквивалентности по \equiv_m .

- Перечислим тривиальные следствия Леммы 1.
- ullet Каждый вычет по модулю m имеет вид $a+m\mathbb{Z}$ для некоторого $a\in\mathbb{Z}.$
- В каждом вычете все числа имеют одинаковый остаток от деления на m, а числа из разных вычетов имеют разные остатки.
- ullet Существует ровно m вычетов по модулю m.

Определение

Числа $a_1,\ldots,a_m\in\mathbb{Z}$ — образуют полную систему вычетов по модулю m (сокращенно: ПСВ \pmod{m}), если каждый вычет по модулю m содержит ровно одно из них.

Доказательство. \Rightarrow очевидно следует из определения. \Leftarrow . Если есть m чисел, и никакие два из них не сравнимы по модулю m, то в каждом вычете по модулю m ровно одно из них.

Теорема 13

Пусть
$$a_1,\ldots,a_m-\Pi CB\pmod m$$
, $k,b\in\mathbb Z$, причем $(k,m)=1$. Тогда $ka_1+b,\ldots,ka_m+b-\Pi CB\pmod m$.

Доказательство. • Достаточно проверить критерий из Леммы 2.

- Пусть $ka_i + b \equiv_m ka_j + b \iff k(a_i a_j) \ \vdots \ m.$
- Так как (k, m) = 1, это означает, что $a_i a_i : m \iff a_i \equiv_m a_i$, что не так.

- ullet Если $a\equiv_m b$, то $a-b\ \dot{}$ m и по свойству 2 НОД мы имеем (a,m)=(b,m).
- ullet Таким образом, для каждого вычета $\overline{a}=a+m\mathbb{Z}$ корректно определен НОД $(\overline{a},m):=(a,m).$

Определение

- 1) Вычет \overline{a} по модулю m называется взаимно простым с модулем m, если $(\overline{a},m)=1$.
- 2) Для $m \in \mathbb{N}$ функция Эйлера $\varphi(m)$ количество чисел от 1 до m, взаимно простых с m.
- !!! $\varphi(1) = 1$.
- Существует ровно $\varphi(m)$ вычетов по модулю m, взаимно простых с m.

Определение

Числа $a_1, \ldots, a_{\varphi(m)}$ образуют приведенную систему вычетов по модулю m, (сокращенно: $\Pi pCB \pmod{m}$), если каждый вычет по модулю m, взаимно простой с m, содержит ровно одно из них.

Лемма 3

 $a_1,\dots,a_{arphi(m)}\in\mathbb{Z}-\Pi pCB\pmod{m}$, если и только если все эти числа взаимно просты с m и никакие два из них не сравнимы по модулю m.

Доказательство. \Rightarrow очевидно следует из определения. \Leftarrow . Есть $\varphi(m)$ чисел, и никакие два из них не сравнимы по модулю m, а также есть ровно $\varphi(m)$ вычетов в ПрСВ (взаимно простых с m). Значит, в каждом вычете из ПрСВ ровно одно из этих чисел.

Теорема 14

Пусть $a_1,\ldots,a_{\varphi(m)}-$ ПрСВ $\pmod{m},\ k\in\mathbb{Z}$, причем (k,m)=1. Тогда $ka_1,\ldots,ka_{\varphi(m)}-$ ПрСВ $\pmod{m}.$

Доказательство. • Достаточно проверить критерий из Леммы 3.

- ullet Так как (k,m)=1 и $(a_i,m)=1$, то $(ka_i,m)=1$ (для всех $i\in\{1,\ldots,arphi(m)\}).$
- ullet Если $ka_i \equiv_m ka_j$, то $a_i \equiv_m a_j$ по Свойству 4 сравнений, что не так.

Теорема Эйлера

Теорема 15 (Эйлера)

Пусть $m \in \mathbb{N}, a \in \mathbb{Z}, (a,m) = 1$. Тогда $a^{\varphi(m)} \equiv 1 \pmod{m}$

Доказательство.

- ▶ Пусть $r_1, \ldots, r_{\varphi(m)}$ ПрСВ (mod m).
- ▶ По Теореме 14 $ar_1, \ldots, ar_{\varphi(m)}$ ПрСВ (mod m).
- Перемножив элементы этих 2-х ПрСВ, мы получим, что они сравнимы \pmod{m} , потому что в каждой $\varphi(m)$ чисел, и для каждого из первой найдётся какое-то сравнимое \pmod{m} из второй. Пусть $R = r_1 \dots r_{\varphi(m)}$
- lacktriangle Тогда $a^{arphi(m)}R\equiv R\pmod{m}.$ Так как $orall i:(r_i,m)=1$, то на R можно сократить: $\boxed{a^{arphi(m)}\equiv 1\pmod{m}}$

Corollary 1 (Малая теорема Ферма)

Пусть $a \in \mathbb{Z}, p \in \mathbb{P}, (a, p) = 1$. Тогда $a^{p-1} \equiv 1 \pmod{p}$.

Лемма 4

Функция Эйлера мультипликативна, то есть, если $a,b\in\mathbb{N}$ взаимно просты, то $\varphi(ab)=\varphi(a)\varphi(b)$.

Доказательство. • Запишем числа от 1 до ab в таблицу $a \times b$ так, что в первой строке — числа от 1 до a, во второй — от a+1 до 2a, итд, в b строке — числа от (b-1)a+1 до ba.

- Все числа в i столбце принадлежат одному вычету $\bar{i}=i+a\mathbb{Z}$ по модулю a. Эти числа взаимно просты с a, если и только если (i,a)=1.
- Вычеркнем все столбцы с номерами i, не взаимно простыми с a. Останутся ровно $\varphi(a)$ столбцов.
- Все числа, взаимно простые с ab, должны быть взаимно простыми и с a, они лежат в оставшихся $\varphi(a)$ столбцах.
- Рассмотрим оставшийся столбец, пусть числа в нем имеют вид $j, a+j, \ldots, (b-1)a+j$. Эти числа образуют ПСВ (mod b) в силу теоремы 13 (так как получены из ПСВ $0,1,\ldots,b-1$ умножением на a, взаимно простое с b и прибавлением j: $0 \to j, 1 \to a+j, \ldots, b-1 \to (b-1)a+j$).

- Значит, среди чисел j, a+j, ..., (b-1)a+j ровно $\varphi(b)$ взаимно простых с b. Остальные числа точно не взаимно просты с ab, вычеркнем их.
- Оставшиеся $\varphi(a)\varphi(b)$ чисел взаимно просты и с a, и с b, а значит, взаимно просты с ab. Значит, осталось ровно $\varphi(ab)$ чисел (все числа от 1 до ab, взаимно простые с ab).

Лемма 5

Если $p \in \mathbb{P}$, $n \in \mathbb{N}$, то $\varphi(p^n) = p^n - p^{n-1}$.

Доказательство. • Посчитаем количество чисел от 1 до p^n , не взаимно простых с p^n .

- ullet Пусть $(a,p^n)=d>1$. Так как $p^n \ \dot{b} \ d$, должно быть $d \ \dot{b} \ p$.
- Следовательно, числа от 1 до p^n , не взаимно простые с p^n это в точности числа от 1 до p^n , кратные p. Их количество равно $\frac{p^n}{p}=p^{n-1}$.

Если $n \in \mathbb{N}$ имеет каноническое разложение $n = p_1^{k_1} \dots p_m^{k_m}$, то

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_m}\right).$$

Доказательство. • Докажем индукцией по количеству простых делителей s, что $\varphi(p_1^{k_1} \dots p_s^{k_s}) = \prod_{i=1}^s \varphi(p_i^{k_i}).$

- \bullet База для s = 1 очевидна.
- Переход $s \to s+1$. Так как $(p_1^{k_1} \dots p_s^{k_s}, p_{s+1}^{k_{s+1}}) = 1$, по Лемме 4 и индукционному предположению имеем

$$\varphi(p_1^{k_1} \dots p_s^{k_s} \cdot p_{s+1}^{k_{s+1}}) = \varphi(p_1^{k_1} \dots p_s^{k_s}) \cdot \varphi(p_{s+1}^{k_{s+1}}) = \left(\prod_{i=1}^s \varphi(p_i^{k_i})\right) \cdot \varphi(p_{s+1}^{k_{s+1}}) = \prod_{i=1}^{s+1} \varphi(p_i^{k_i}).$$

Следовательно,

$$\varphi(n) = \prod_{i=1}^{m} \varphi(p_i^{k_i}) = \prod_{i=1}^{m} (p_i^{k_i} - p_i^{k_i} - p_i^{k_i}) = \prod_{i=1}^{m} p_i^{k_i} \left(1 - \frac{1}{p_i}\right) = n \cdot \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right).$$

Сумма функции Эйлера по делителям числа

Теорема 17

Для любого
$$n \in \mathbb{N}: \sum_{d \mid n} \varphi(d) = n$$

Доказательство.

- **▶** Запишем в ряд дроби: $\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}$, приведём их к несократимому виду.
- ▶ Тогда множество знаменателей все делители числа n.
- ▶ Легко видеть, что для знаменателя q всего существует $\varphi(q)$ дробей (потому что дробь несократима).
- А всего выписано n дробей. Значит, просуммировав по всем q (то есть, по делителям n), получим:

$$\sum \varphi(d) = n$$
, \square

Д.В.Карпов

Кольцо вычетов

ullet Вычеты по модулю $m\in \mathbb{Z}$ — они же вычеты по модулю идеала $m\mathbb{Z}$ — образуют *кольцо вычетов* $\mathbb{Z}_m:=\mathbb{Z}/m\mathbb{Z}.$

Лемма 6

Обратимые элементы \mathbb{Z}_m — это в точности вычеты из Π pCB (mod m).

Доказательство. • Если $\overline{a}\in\mathbb{Z}_m$ обратим, то существует такой $\overline{b}\in\mathbb{Z}_m$, что $\overline{a}\overline{b}=\overline{1}\iff ab\equiv_m 1$. Тогда (ab,m)=1, а значит и (a,m)=1.

- Наоборот, пусть (a, m) = 1. По Теореме 13 тогда $0, a, 2a, \ldots, (m-1)a \Pi CB \pmod{m}$. Значит, $\exists b: ab \equiv_m 1 \Rightarrow \overline{ab} = \overline{1}$.
- Если вычет \overline{a} обратим, то обратный вычет $(\overline{a})^{-1}$ единственен (это доказано в общем случае для кольца ранее, а в данном случае следует из доказательства Леммы 6).

Теорема 18

Если $p \in \mathbb{P}$, то \mathbb{Z}_p — поле.

Доказательство. Так как все некратные p числа взаимно просты с p, ПрСВ \pmod{p} — это все ненулевые вычеты. Тогда по Лемме 6, все ненулевые элементы \mathbb{Z}_p обратимы.

- ullet Пусть $a\in\mathbb{Z}$, $m\in\mathbb{N}$, причем (a,m)=1. Как найти обратный вычет a^{-1} ?
- ullet Пусть r остаток от деления a на m. Тогда $0 \leq r < m$.
- ullet Если r=0, то (a,m)>1 и обратного вычета не существует.
- ullet Если r > 0, то с помощью алгоритма Евклида ищем d = (r, m) = (a, m).
- ullet Если d>1, то обратного вычета не существует.
- Если d=1, то при помощи (выполненного ранее) алгоритма Евклида ищем линейное представление НОД: 1=ax+my.
- ullet Тогда $ax\equiv 1\pmod m$, а значит, $(\overline{a})^{-1}=\overline{x}$ в \mathbb{Z}_m .

Линейное сравнение с одним неизвестным

• Пусть $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$. Нужно решить (относительно x) сравнение

$$ax \equiv b \pmod{m}$$
. (*)

- Пусть d = (a, m). Если $b \not | d$, то очевидно, (*) решений не имеет.
- \bullet Если b : d, то пусть a = a'd, b = b'd, m = m'd. Тогда

$$(*) \iff ax-b \ \vdots \ m \iff a'x-b' \ \vdots \ m' \iff a'x \equiv b' \pmod{m'}.$$

$$(**)$$

- \bullet Так как (a', m') = 1, существует обратный вычет $(\overline{a'})^{-1}$ в $\mathbb{Z}_{m'}$.
- \bullet Пусть $s \in (\overline{a'})^{-1}$. Тогда $x \equiv b's \pmod{m'}$ решение сравнения (**), а значит, и исходного сравнения (*).

Лемма 7

Пусть m_1, \dots, m_k — попарно взаимно простые натуральные числа, $m=m_1\dots m_k$. Пусть $b\in \mathbb{Z}$ таково, что $b\stackrel{\cdot}{\cdot} m_1, \dots, b\stackrel{\cdot}{\cdot} m_k$. Тогда $b\stackrel{\cdot}{\cdot} m$.

Доказательство. Пусть $n_\ell=m_1\dots m_\ell$. Докажем индукцией по ℓ , что $b \ | \ n_\ell$.

ullet База $\ell=1$ очевидна.

Переход $\ell \to \ell+1$. ullet По индукционному предположению $b=\mathit{cn}_\ell$, где $c\in\mathbb{Z}$.

- ullet Так как $cn_\ell=b\ \dot{\ }m_{\ell+1}$ и $(n_\ell,m_{\ell+1})=1$, по Свойству 3 взаимно простых чисел имеем $c\ \dot{\ }m_{\ell+1}.$
- ullet Тогда $c=dm_{\ell+1}$ и $b=dm_{\ell+1}n_{\ell}=dn_{\ell+1}.$

Пусть m_1, \ldots, m_k – попарно взаимно простые натуральные числа, $m=m_1\ldots m_k; a_1,\ldots, a_k\in\mathbb{Z}$. Тогда существует единственное такое $a\in\{0,1,\ldots,m-1\}$, удовлетворяющее системе сравнений.

Доказательство.

Рассмотрим отображение $f: \mathbb{Z}_m \mapsto \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$, которое задано формулой $f(x) = (r_1, \dots, r_i, \dots, r_m)$. Здесь $r_i = a - q m_i, 0 \leqslant r_i < m_i$. Докажем, что отображение f - qинъекция: пусть это не так, тогда для $x \neq y$: f(x) = f(y), значит для любого $m_i : x \equiv r_i, y \equiv r_i \Rightarrow x - y \equiv 0 \pmod{m_i}$. Но тогда $x - y : m_i, i \in \{1, 2, ..., k\} \Rightarrow x - y : m$. Но $x \neq y, 0 \leqslant x, y \leqslant m-1 \Rightarrow 0 < |x-y| \leqslant m-1$, противоречие. Докажем, что это биекция: в \mathbb{Z}_m всего m элементов, как и в $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ (по правилу умножения). Значит, f – биекция, и каждой системе сравнений сопоставляется ровно одно решение.

Д. В. Карпов

- Пусть m_1, \ldots, m_k попарно взаимно простые натуральные числа, $m = m_1 \ldots m_k$, $a_1, \ldots, a_k \in \mathbb{Z}$.
- ullet Мы ищем такое a, что $a\equiv_{m_1}a_1,\,\ldots,\,a\equiv_{m_k}a_k$ (*).
- Будет использоваться алгоритм поиска обратного вычета, описанный выше.

Алгоритм 1.

• Пусть $m_i' = \frac{m_1 \dots m_k}{m_i}$. Тогда $(m_i', m_i) = 1$. $b_i \in \{0, 1, \dots, m_i - 1\}$ — такое число, что $b_i \cdot m_i' \equiv 1 \pmod{m_i}$ (мы найдем b_i с помощью алгоритма поиска обратного вычета).

Утверждение

 $a = a_1 b_1 m_1' + a_2 b_2 m_2' + \dots + a_k b_k m_k'$ — решение (*).

Доказательство. Так как $m_j' \ \vdots \ m_i$ при всех $j \neq i$, для любого $i \in \{1, \dots, k\}$

- $a \equiv a_i b_i m_i' \equiv a_i \pmod{m_i}$. • Как сказано выше, все решения системы (*) — это в
- точности числа, сравнимые с *а* по модулю *m*.

 Поделив *а* на *m* с остатком, мы найдем решение системы
- ullet годелив а на m с остатком, мы наидем решение системы среди чисел $0,1,\ldots,m-1$.

$$x_s \equiv_{m_1} a_1, \ldots, x_s \equiv_{m_s} a_s.$$

• База s = 1 очевидна: подойдет $x_1 = a_1$.

Переход
$$s \to s+1$$
. • Пусть $n_s = m_1 \dots m_s$.

Будем искать решение в виде $x_{s+1} = x_s + c_s n_s$.

- Тогда $x_{s+1} x_s$: m_i для всех $i \in \{1, ..., s\}$, поэтому, x_{s+1} удовлетворяет первым s сравнениям.
- Подберем c_s так, чтобы $x_{s+1} \equiv a_{s+1} \pmod{m_{s+1}}$:

$$\begin{array}{l} x_s + c_s n_s \equiv a_{s+1} \pmod{m_{s+1}} \iff c_s n_s \equiv a_{s+1} - x_s \\ \pmod{m_{s+1}} \iff c_s \equiv (a_{s+1} - x_s) \cdot (n_s)^{-1} \pmod{m_{s+1}}. \end{array}$$

- Так как $(n_s, m_{s+1}) = 1$, обратный вычет $(n_s)^{-1}$ существует и может быть найден с помощью описанного выше алгоритма.
- Второй алгоритм решения КТО на первый взгляд сложнее, чем первый, но требует применения k-1 алгоритмов поиска обратного вычета (а не k): мы не ищем обратный вычет по модулю m_1 .
- Поэтому, целесообразно нумеровать модули так, чтобы m_1 оказался самым большим. 4 D > 4 A > 4 E > 4 E > 9 Q P

Формула обращения Мёбиуса

Определение

Функция Мёбиуса $\mu(n) :=$ $\begin{cases} 1, & \text{если } n=1, \\ (-1)^k, & \text{если } n=p_1\dots p_k - \text{произведение различных простых чисел,} \\ 0, & \text{если } n \text{ делится на квадрат простого числа.} \end{cases}$

Лемма 8

Пусть
$$m,d\in\mathbb{N},\ m\in d.$$
 Тогда $\sum\limits_{d\mid n\mid m}\mu(\frac{m}{n})=\left\{egin{array}{ll} 1,& m=d,\\ 0,& m>d. \end{array}
ight.$ (суммирование ведется по всем $n,$ кратным d и делящим m).

Доказательство. • Пусть $k := \frac{m}{d} = p_1^{t_1} \dots p_r^{t_r}$ — каноническое разложение. Тогда

$$\sum_{d \mid n \mid m} \mu(\frac{m}{n}) = \sum_{s \mid p_1 \dots p_r} \mu(s) = \sum_{\ell=0}^r C_r^{\ell} (-1)^{\ell} = (1-1)^r$$

(так как ненулевое значение μ достигается только на произведениях различных простых).

• Наша сумма равна 0 во всех случаях, кроме r=0 (а это в точности $k = 1 \iff m = d$). В последнем случае сумма равна 1. 4 D > 4 A > 4 B > 4 B > B = QQQ

Теорема 20 (ФОМ)

Пусть
$$f,g:\mathbb{N}\mapsto$$
, причём $g(n)=\sum\limits_{d\mid n}f(d)$ (сумма по делителям функции f). Тогда $f(n)=\sum\limits_{d\mid n}\left(\mu(\frac{n}{d})g(d)\right)$.

Доказательство.

$$\sum_{d|n} \left(\mu \left(\frac{n}{d} \right) f(d) \right) = \sum_{d|n} \left(\mu \left(\frac{n}{d} \right) \cdot \sum_{d'|d} g(d') \right)$$

Перегруппируем слагаемые: сначала будем суммировать по d' $(d' \mid d \mid n \Rightarrow d' \mid n)$, но тогда для каждого слагаемого этой суммы нужно закреплять $d: d' \mid d \mid n$.

$$\sum_{d|n} \left(\mu\left(\frac{n}{d}\right) \cdot \sum_{d'|d} g(d') \right) = \sum_{d'|n} \left(g(d') \cdot \sum_{d'|d|n} \mu\left(\frac{n}{d}\right) \right)$$

Почти каждое слагаемое суммы равно 0, т. к. по Лемме 8 внутренняя сумма равна 0 всегда, кроме случая d'=n, но тогда подставим d'=n:

$$\sum_{\substack{d'|n\\ a'}} \left(g(d') \cdot \sum_{\substack{d'|d|n}} \mu\left(\frac{n}{d}\right) \right) = g(n) \sum_{\substack{n|d|n}} \mu\left(\frac{n}{d}\right) = g(n)\mu(1) = g(n), \square$$

Сумма по делителям функции Эйлера

Альтернативное доказательство

- ▶ Предположим, что $\sum\limits_{d\mid n} \varphi(d) = n$.
- lacktriangle Мы уже знаем, что при $n=p_1^{lpha_1}\dots p_k^{lpha_k}$ значение функции Эйлера равно $arphi(n)=n\left(1-rac{1}{
 ho_1}
 ight)\left(1-rac{1}{
 ho_2}
 ight)\dots\left(1-rac{1}{
 ho_k}
 ight).$
- lacktriangle Значит, по ранее выведенной ФОМ достаточно показать, что $arphi(n) = \sum\limits_{d|n} \left(\mu\left(rac{n}{d}
 ight) \cdot \sum\limits_{d'|d} arphi(d')
 ight).$
- При $d = p_{i_1} \dots p_{i_t}$ мы имеем $\mu(d) = (-1)^t, \mu(1) = 1$, в остальных случаях $\mu(d) = 0$. Поэтому, после технической работы слева равенство будет очевидно:

$$n\left(1-\sum_{1\leqslant i\leqslant s}\frac{1}{p_i}+\sum_{1\leqslant i_1< i_2\leqslant s}\frac{1}{p_{i_1}p_{i_2}}-\ldots\right)\stackrel{?}{=}n\left(1-\frac{1}{p_1}\right)\ldots\left(1-\frac{1}{p_k}\right)$$

Пусть $n = p_1^{k_1} \dots p_s^{k_s}$ — каноническое разложение числа n. Тогда $\varphi(n) = n(1 - \frac{1}{n}) \dots (1 - \frac{1}{n})$.

Доказательство. ullet По Теореме 16, $\sum_{d\in\mathbb{N}.\ d\mid m} \varphi(d)=m.$

- По Формуле обращения Мёбиуса,
- $\varphi(n) = \sum_{d \in \mathbb{N}, d \mid n} \mu(d) \cdot \frac{n}{d}.$
- Напомним, что при $d=p_{i_1}\dots p_{i_t}$ мы имеем $\mu(d)=(-1)^t$ (здесь i_1,\dots,i_t различные индексы), $\mu(1)=1$, а в остальных случаях $\mu(d)=0$. Поэтому,

$$\varphi(n) = n - \sum_{1 \le i \le s} \frac{n}{\rho_i} + \sum_{1 \le i_1 < i_2 \le s} \frac{n}{\rho_{i_1} \rho_{i_2}} - \sum_{1 \le i_1 < i_2 < i_3 \le s} \frac{n}{\rho_{i_1} \rho_{i_2} \rho_{i_3}} + \dots = n \left(1 - \sum_{1 \le i \le s} \frac{1}{\rho_i} + \sum_{1 \le i_1 < i_2 \le s} \frac{1}{\rho_{i_1} \rho_{i_2}} - \sum_{1 \le i_1 < i_2 < i_3 \le s} \frac{1}{\rho_{i_1} \rho_{i_2} \rho_{i_3}} + \dots \right) = n \left(1 - \frac{1}{\rho_1} \right) \left(1 - \frac{1}{\rho_2} \right) \dots \left(1 - \frac{1}{\rho_s} \right). \quad \Box$$

Теорема 22

Пусть
$$K$$
 — поле, $f,g:\mathbb{N} o K\setminus\{0\}$, причем $f(m)=\prod\limits_{d\mid m}g(d).$

Тогда
$$g(m) = \prod_{n \mid m} f(n)^{\mu(\frac{m}{n})}.$$

Доказательство.

$$\prod_{n \mid m} f(n)^{\mu(\frac{m}{n})} = \prod_{n \mid m} \left(\prod_{d \mid n} g(d) \right)^{\mu(\frac{m}{n})} = \prod_{d \mid m} g(d)^{\sum_{d \mid n \mid m} \mu(\frac{m}{n})} = g(m)$$

по Лемме 8.

Теорема 23

Пусть $f: \mathbb{N} \to -$ мультипликативная функция, $g(n) = \sum\limits_{d \mid n} f(d)$. Тогда g — мультипликативная функция.

Доказательство. ullet Пусть $a,b\in\mathbb{N}$, (a,b)=1.

- ullet $a=p_1^{k_1}\dots p_s^{k_s}$ и $b=q_1^{\ell_1}\dots q_t^{\ell_t}$ канонические разложения.
- Так как (a,b)=1, все эти простые различны и $ab=p_1^{k_1}\dots p_s^{k_s}q_1^{\ell_1}\dots q_t^{\ell_t}$ каноническое разложение.
- По Теореме 8, $d \mid ab \iff d = p_1^{k_1'} \dots p_s^{k_s'} q_1^{\ell_1'} \dots q_t^{\ell_t'}$, где $0 \le k_i' \le k_i$ для всех $i \in \{1, \dots, s\}$ и $0 \le \ell_j' \le \ell_j$ для всех $j \in \{1, \dots, t\}$.
- Следовательно, $d = d_a d_b$, где $d_a \mid a$ и $d_b \mid b$, причем $(d_a, d_b) = 1$ и такое представление единственно:

$$d_a=p_1^{k_1'}\dots p_s^{k_s'}$$
 u $d_b=q_1^{\ell_1'}\dots q_t^{\ell_t'}$.

• Таким образом,

$$g(ab) = \sum_{d \mid ab} f(d) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a d_b) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a) f(d_b) = \left(\sum_{d_a \mid a} f(d_a)\right) \left(\sum_{d_b \mid b} f(d_b)\right) = g(a)g(b).$$

Для $n \in \mathbb{N}$ $\sigma(n)$ — сумма натуральных делителей n.

Теорема 24

Если
$$n=p_1^{k_1}\dots p_s^{k_s}$$
, то $\sigma(n)=rac{p_1^{k_1+1}-1}{p_1-1}\dots rac{p_s^{k_s+1}-1}{p_s-1}$.

Доказательство. \bullet Пусть $n_r = p_1^{k_1} \dots p_r^{k_r}$.

• Докажем индукцией по r, что $\sigma(n_r) = \frac{p_1^{k_1+1}-1}{p_1-1} \dots \frac{p_r^{k_r+1}-1}{p_r-1}$.

База для r=1: делители $p_1^{k_1}$ — это $1,\ p_1,\ \dots,\ p_1^{k_1}$ и по формуле суммы геометрической прогрессии их сумма равна $\frac{p_1^{k_1+1}-1}{p_1-1}$.

Переход $r \to r+1$. Так как $(n_r, p_{r+1}^{k_{r+1}}) = 1$, а по Теореме 23 функция $\sigma(n) = \sum_{d \mid n} d$ мультипликативна,

$$\sigma(n_{r+1}) = \sigma(n_r p_{r+1}^{k_{r+1}}) = \sigma(n_r) \sigma(p_{r+1}^{k_{r+1}}) = \left(\frac{p_1^{k_1+1} - 1}{p_1 - 1} \dots \frac{p_r^{k_r+1} - 1}{p_r - 1}\right) \frac{p_{r+1}^{k_{r+1}+1} - 1}{p_{r+1} - 1}.$$

Пусть $n \in \mathbb{N}$. Число $\varepsilon \in \mathbb{C}$ такое, что $\varepsilon^n = 1$, но $\varepsilon^k \neq 1$ при натуральных k < n называется первообразным корнем из 1степени *п*.

• Пусть $\varepsilon_0, \dots, \varepsilon_{n-1}$ — все корни степени n из 1, $\varepsilon_k = (\cos(\frac{2\pi k}{\pi}), \sin(\frac{2\pi k}{\pi})).$

Теорема 25

- 1) Существует в точности $\varphi(n)$ первообразных корней степени п из 1, это в точности такие корни ε_{i} , что (j, n) = 1.
- 2) Если ε_j первообразный корень степени п из 1, то ε_i , ε_i^2 , ..., ε_i^n — все корни степени n из 1.

Доказательство. • По формуле Муавра, $\arg(\varepsilon_i^k) = \frac{2\pi kj}{n}$. Разберем два случая.

Случай 1:
$$(j, n) = d > 1$$
.

- \bullet Тогда $m = \frac{n}{d} \in \mathbb{N}$, m < n и $y = \frac{1}{d} \in \mathbb{Z}$.
- \bullet Следовательно, $\arg(\varepsilon_i^m) = \frac{2\pi m dy}{m d} = 2\pi y$ и $\varepsilon_i^m = 1$. Это означает, что ε_i не является первообразным корнем из 1степени *n*.

2. Целые числа.

Д.В. Карпов

Случай 2: (j, n) = 1.

- \bullet Тогда аргументы $\varepsilon_j, \varepsilon_j^2, \dots, \varepsilon_j^{n-1}, \varepsilon_j^n$ это $\frac{2\pi j}{n}, \dots, \frac{2\pi n j}{n}$.
- По Теореме 13, числа j, 2j, ..., nj ПСВ (mod n). Значит, среди их остатков от деления на n каждый встречается ровно один раз.
- ullet Тогда $rac{2\pi \cdot j}{n}$, $rac{2\pi \cdot 2j}{n}$, ..., $rac{2\pi \cdot nj}{n}$ это в точности такие аргументы, как $rac{2\pi}{n}$, $rac{4\pi}{n}$, ..., $rac{2n\pi}{n}$ (напомним, что аргумент не меняется при прибавлении 2π).
- Это означает, что $\varepsilon_j, \varepsilon_j^2, \dots, \varepsilon_j^{n-1}, \varepsilon_j^n$ это в точности $\varepsilon_0, \dots, \varepsilon_{n-1}$ все корни степени n из 1.
- Понятно, что $\varepsilon_j^n=1$, значит, в меньших степенях ε_j не равен 1, то есть, это первообразный корень степени n из 1.