Fall 2020
Slide Set 12
Instructor: Galan Moody
TA: Kamyar Parto

Particles faster than light?

Sub-atomic particles called neutrinos may be able to travel faster than light, a speed previously thought impossible to exceed

1st correct answer in chat = +2 quiz points:

How is this possible? Is Einstein wrong? If so, why? If not, why?

Previously

- 2nd-order Parallel RLC
- Toda
 - 2nd-order Series RLC
 - Examples

<u>Important Items:</u>

- HW #5 due Today, 12/3
- Lab #5 due Tomorrow
- ESCI questionnaire
- HW #6 posted, due 12/10
- Lab #6 posted, due 12/11

Quiz Last Time

Q1: True or False: An RC circuit with the output voltage measured across the capacitor is an example of a low-pass filter.

Q2: True of False: An RL circuit with the output voltage measured across the inductor is an example of a low-pass filter.

Q3: Pick the correct transfer function for the gain showed in the plot below:

$$\mathsf{C} = \frac{(1+j\omega)}{\left(1+\frac{j\omega}{10}\right)\left(1+\frac{j\omega}{100}\right)}$$

b)
$$(1 + \frac{j\omega}{10})(1 + \frac{j\omega}{100})$$

$$\mathsf{C}\big) \quad \frac{j\omega}{\Big(1 + \frac{j\omega}{10}\Big)\Big(1 + \frac{j\omega}{1000}\Big)}$$

d)
$$\frac{j\omega}{\left(1+\frac{j\omega}{10}\right)\left(1+\frac{j\omega}{100}\right)}$$

Quiz Time!

Q1: True or False: If the quality factor of an RLC circuit, Q= $\omega/2\alpha$ > 0.5, then the circuit response (e.g. voltage across capacitor) will oscillate.

Q2: True or False: An underdamped RLC circuit oscillates with a resonant frequency $\omega_0 = 1/\sqrt{RLC}$ and has a transfer function that looks the same as a low-pass filter.

Q3: Pick the correct transfer function for the gain showed in the plot below:

- a) $(j\omega)^2$
- b) $(j\omega)^4$
- c) $(1 + j\omega/10)^2$
- d) $(1 + j\omega/10)^4$

Review: Parallel RLC Filters

$$H(j\omega) = \frac{V_c}{I} = Z = \frac{1}{\frac{1}{R} + j\left(\omega_{\circ}C - \frac{1}{\omega_{\circ}L}\right)}$$

Value of
$$H(j\omega)$$
 at $\omega_{\circ} = \frac{1}{\sqrt{LC}}$?

$$\omega_{\circ}C - \frac{1}{\omega_{\circ}L} = 0 \rightarrow H(j\omega_{\circ}) = R$$

Cut-off frequencies and Bandwidth

$$\omega_{cut} = \pm \frac{G}{2C} + \sqrt{(\frac{G}{2C})^2 + \frac{1}{LC}} \rightarrow \mathsf{Bandwidth} = \frac{G}{C} = \frac{1}{RC} = 2\alpha = \frac{\omega_o}{Q}$$

Next: Series RLC Circuit

What we will learn:

- Depending on where the output is taken, the series and parallel RLC resonant circuits can be used as filters of various types.
- The higher the Q factor of the circuit, the higher the selectivity.

General Steps for 2nd-Order Resonant Filter Analysis

- Sketch the approximate frequency response, using Bode plots or asymptotes. Be careful to clarify units on the plots;
- ② Determine the filter type from approximate sketch (lowpass, highpass, bandpass, bandstop);
- 3 If resonant bandpass or bandstop \rightarrow Calculate the exact gain at resonance frequency and add in the "peak" in sketch (this might not be the exact value of the peak);
- Oetermine filter bandwidth.

Let's apply these steps to the series RLC circuit with different outputs

Complex Amplitude of the Current

$$I = \frac{V_i}{R + Ls + 1/Cs}$$

$$= \frac{(s/L)V_i}{s^2 + sR/L + 1/LC}$$

$$= \frac{(s/L)V_i}{s^2 + 2\alpha s + \omega_0^2}$$

$$\omega_{\circ} = \sqrt{1/LC}, \quad \alpha = \frac{R}{2L}$$

We will assume the second order term has complex roots, e.g., $R=1\Omega, L=1\mu H, C=1\mu F \rightarrow \omega_{\circ}=10^6 rad/s, \alpha=5\times 10^5 s, Q=1$

Output #1: Resistor Voltage

$$V_r = IR = \frac{\frac{sR}{L}V_i}{s^2 + 2\alpha s + \omega_o^2}$$

$$H_r(s) = \frac{V_r}{V_i} = \frac{\frac{sR}{L}}{s^2 + 2\alpha s + \omega_o^2} = \frac{2\alpha s}{s^2 + 2\alpha s + \omega_o^2}$$

Let's Follow Our General Set of Rules

$$H(s) = \frac{V_r}{V_i} = \frac{2\alpha s}{s^2 + 2\alpha s + \omega_0^2}$$

- Sketch the approximate frequency response, using Bode plots or asymptotes. Be careful to clarify units on the plots;
- ② Determine the filter type from approximate sketch (lowpass, highpass, bandpass, bandstop);
- Calculate the exact gain at resonance frequency and add in the "peak" in sketch;

$$|H(j\omega_{\circ})| = 1 \ (0 \ dB)$$

• Calculate $Q = \frac{\omega_0}{2\alpha}$ and filter bandwidth (by calculating cut off freqs).

$$Q = \frac{\omega_{\circ}L}{R}$$
, Bandwidth = $2\alpha = 10^6$ rad

Output #1: Resistor Voltage

For plots:

$$R = 1\Omega, L = 1\mu H, C = 1\mu F \to \omega_{\circ} = 10^{6} rad/s, \alpha = 5 \times 10^{5} s, Q = 1$$

Output #1: Resistor Voltage

Notice that the maximum gain is always equal to 1

Output #2: Capacitor Voltage

$$V_c = \frac{I}{sC} = \frac{\frac{1}{LC}V_i}{s^2 + 2\alpha s + \omega_o^2}$$

$$H_c(s) = \frac{V_c}{V_i} = \frac{\frac{1}{LC}}{s^2 + 2\alpha s + \omega_o^2} = \frac{\omega_o^2}{s^2 + 2\alpha s + \omega_o^2}$$

Let's Follow Our General Set of Rules

$$H(s) = \frac{V_r}{V_i} = \frac{\omega_o^2}{s^2 + 2\alpha s + \omega_o^2}$$

- Sketch the approximate frequency response, using Bode plots or asymptotes. Be careful to clarify units on the plots;
- ② Determine the filter type from approximate sketch (lowpass, highpass, bandpass, bandstop);
- 3 If bandpass or bandstop \rightarrow Calculate the exact gain at resonance frequency and add in the "peak" in sketch;

$$|H(j\omega_{\circ})| = \frac{\omega_{\circ}^{2}}{2\alpha\omega_{\circ}} = Q \quad (20\log Q \ dB)$$

Oalculate filter bandwidth (by calculating cut off freqs).

Bandwidth
$$\approx \omega_{\circ}$$

5 Exact BW? Solve $|H(j\omega_c)| = \frac{1}{\sqrt{2}}|H(j0)| = \frac{1}{\sqrt{2}}$

The Gain at Resonance Frequency

Let's look at the gain:

High Q circuits are not useful low-pass filters (as they produce voltages that are significantly higher than the input when $\omega \approx \omega_{\circ}$)

Need a good low-pass filter? Choose Q=1

The Gain at Resonance Frequency

Compare the peak gain between the two cases (V_r as output vs. V_c as output)

$$v_i(t) = V_i \cos(\omega t)$$
 \longrightarrow $H(j\omega)$ \longrightarrow $v_o(t) = |H(j\omega)|V_i \cos(\omega t + \angle H(j\omega))$

Example: Need To Be Careful About Resonance!

Let's find the magnitude of v_c at $\omega=\omega_\circ=\frac{1}{\sqrt{LC}}=62.017$ krad/s

$$V_c(j\omega) = \frac{I}{j\omega C} = V_i \frac{1}{R + j(L\omega - 1/C\omega)} \frac{1}{j\omega C}$$

$$|V_c(j\omega_\circ)| = \frac{1V}{R} \frac{1}{\omega_\circ C} = Q \times 1V = 24.80V$$

At the resonance frequency:

The amplitude of v_C in response to a 1V input is 24.8069 V

Output #3: Inductor Voltage

$$V_L = IsL = \frac{s^2 V_i}{s^2 + 2\alpha s + \omega_o^2}$$

$$H_L(s) = \frac{V_L}{V_i} = \frac{s^2}{s^2 + 2\alpha s + \omega_o^2}$$

Output #3: Inductor Voltage

$$H_L(s) = \frac{V_L}{V_i} = \frac{s^2}{s^2 + 2\alpha s + \omega_0^2}$$

Need a good high pass filter? Select Q=1

Output #4: Inductor & Capacitor Voltage

$$V_n = I(sL + \frac{1}{sC}) = \frac{(s^2 + \frac{1}{LC})V_i}{s^2 + 2\alpha s + \omega_o^2}$$
$$H_n(s) = \frac{V_n}{V_i} = \frac{(s^2 + \frac{1}{LC})}{s^2 + 2\alpha s + \omega_o^2}$$

Output #4: Inductor & Capacitor Voltage

$$H_n(s) = \frac{V_n}{V_i} = \frac{(s^2 + \omega_0^2)}{s^2 + 2\alpha s + \omega_0^2}$$

Recap: All Different Filter Types Using Same Circuit

We can repeat the same steps for a general resonant filter (not parallel or series)

$$H(j\omega) = \frac{V_o}{V_i} = \frac{R||\frac{1}{Cj\omega}|}{R||\frac{1}{Cj\omega} + j\omega L|} = \frac{R}{s^2RLC + sL + R}, \quad s = j\omega$$

Assume the second order term has complex roots

Step 1: What does the frequency response look like? (asymptotes or Bode)

Step 2: What type of filter is this?

Step 3: Calculate the peak (no need to do this for lowpass or highpass)

Step 4: Calculate the bandwidth \rightarrow approximate or exact

$$|H(j\omega)| = \frac{R}{\sqrt{(R - \omega^2 R L C)^2 + \omega^2 L^2}}$$

At cut-off ω_c :

$$|H(j\omega_c)| = \frac{R}{\sqrt{(R-\omega_c^2RLC)^2 + \omega_c^2L^2}} = \frac{1}{\sqrt{2}}(\mathrm{DC\ gain}) = \frac{1}{\sqrt{2}}$$

$$2 = (1 - \omega_c^2 LC)^2 + \left(\frac{\omega_c L}{R}\right)^2 \qquad [\text{quadratic in } \omega_c^2]$$

 $\mathsf{Bandwidth} = \omega_c$

Study the response of the following circuit given:

$$L = 1mH, C = 10\mu F, R = 1\Omega$$

Desired system function (Z denotes input impedance):

$$H(s) = \frac{I_z}{V_z} = \frac{1}{Z} = \frac{s^2 + s\frac{R}{L} + \frac{1}{LC}}{\frac{s}{C} + \frac{R}{LC}}$$

Let's check whether the second order term has complex roots:

$$Q = \frac{2\alpha}{\omega_{\rm o}} = 10 > 0.5 \rightarrow {\rm resonant}$$

Step 1: What does the frequency response look like? (Derived using asymptotes in example 14.5 or Bode plot in section 14.4)

Step 2: What type of filter is this?

Step 3: Calculate the peak (no need to do this for lowpass or highpass)

$$|H(j\omega_{\circ})| \approx 0.01$$

Summary

- RLC filters are very versatile, with many different configurations for designing low pass, high pass, band pass, and band stop filters.
- Remember the filter analysis/design steps!
 - Sketch the approximate frequency response, using Bode plots or asymptotes. Be careful to clarify units on the plots;
 - ② Determine the filter type from approximate sketch (lowpass, highpass, bandpass, bandstop);
 - ③ If resonant bandpass or bandstop → Calculate the exact gain at resonance frequency and add in the "peak" in sketch (this might not be the exact value of the peak);
 - Determine filter bandwidth.

Let's apply these steps to the series RLC circuit with different outputs

- Last HW and Lab (#6) due next week. Finals week after.
- Next week: Review on Tuesday, practice problems/examples Thursday