## ITCS 532:

### 4. Undecidable Problems

Rob Egrot

#### Undecidable Problems

- In the previous class we saw that there are undecidable problems.
- This was based on a cardinality argument.
- The set of formal languages for a finite alphabet is uncountable.
- But the set of Turing machines for this language is countable.
- Since every recursively enumerable language requires a TM to semidecide it, and no TM semidecides more than one language, there must be languages that are not r.e.
- So there are undecidable problems.
- But can we find an actual undecidable problem?

## The Halting Problem

- ▶ Given a Turing machine T and an input I, either T(I) halts or it runs forever.
- One must happen, and both cannot be true at the same time.
- So the question of whether a Turing machine T halts on input I is a decision problem whose instances are pairs (T, I).
- We know that we can encode pairs (T, I) of Turing machines and inputs over the alphabet  $\{0, 1\}$ .
- So, the question is, can we create a Turing machine that decides this problem?
- Is there a TM that takes as input code(T, I) and accepts if T(I) halts, and rejects if it does not (or if its input is not the code for a TM and an input)?

## If the Halting Problem were decidable...

▶ If a Turing machine *H* exists that can decide the halting problem then, for one thing, it would imply that r.e. languages are recursive.

► Why?

## Why is the Halting Problem undecidable

- ▶ How can we prove the Halting Problem is undecidable?
- ▶ We will look for a contradiction.
- So suppose H exists. I.e., suppose for any input J we have H(J) accepts if  $J = \mathbf{code}(T, I)$  for some Turing machine T and input I such that T(I) halts, and rejects otherwise.
- ▶ What are the consequences of this?

### Self Reference

- There are many logical paradoxes arising from 'self reference'.
- ► E.g. 'the set of all sets that don't contain themselves'.
- Can we use this here?
- Consider the machine H' such that H'(code(T)) accepts iff T(code(T)) halts, and rejects otherwise.
- Note that if H exists, then H' also exists, as we can run H(code(T, code(T))).
- ▶ What happens if we run H' on **code**(H')?
- ightharpoonup H' always halts, so  $H'(\mathbf{code}(H'))$  accepts. No problem here.

### A Variation

- $\triangleright$  Define a new machine H''.
- This machine is based on H' but it halts if T(code(T)) doesn't halt, and it loops forever if T(code(T)) halts.
- This modification is easy to make; it's like the one used to prove that recursive languages are recursively enumerable.

$$H''(\mathbf{code}(T)) = \begin{cases} Halt \text{ if } T(\mathbf{code}(T)) \text{ doesn't halt} \\ Loop \text{ forever if } T(\mathbf{code}(T)) \text{ halts} \end{cases}$$

In addition, H''(I) halts if I is not the coded form of a TM.

## Self Reference Again

- ▶ What happens when we run H'' on its own code.
- ▶ I.e. what is  $H''(\mathbf{code}(H''))$ ?
- According to the definition, H"(code(H")) halts if and only if H"(code(H")) doesn't halt.

$$H''(\mathbf{code}(H'')) = \begin{cases} Halt & \text{if } H''(\mathbf{code}(H'')) \text{ doesn't halt} \\ Loop & \text{forever if } H''(\mathbf{code}(H'')) \text{ halts} \end{cases}$$

► This is a clear contradiction, so we must conclude that H" cannot exist. But H" is a simple modification of H, so H cannot exist either. This gives us:

#### Theorem 1

The halting problem is undecidable.

# The Halting Problem is Semidecidable

- ► The Halting Problem is semidecidable.
- ► Why?
- As a consequence, the set of recursive languages is strictly contained in the set of *r.e.* languages.
- ▶ Because the formal language containing strings code(T, I) (in some alphabet) such that T(I) halts is r.e. but not recursive.

## Languages That Are Not R.E.

- ► The Halting problem is semidecidable but not decidable, so its associated language is r.e. but not recursive.
- ▶ We know from the countable vs uncountable argument that there are languages that are not r.e.
- Can we find an example?
- It turns out the answer is yes.
- First some facts about recursive and r.e. languages.

#### Theorem 2

If L is a recursive formal language then the complement language  $\bar{L}$  is also recursive.

- ▶ If L is recursive then there's a Turing machine T that accepts if  $I \in L$  and rejects if  $I \notin L$ .
- ▶ To get a machine that decides  $\bar{L}$  we just need to swap the 'accept' and 'reject' states of T.

#### Theorem 3

Let L be a formal language over a finite alphabet. If L is r.e. and the complement language  $\bar{L}$  is also r.e. then L is recursive.

- ▶ If there are machines  $T_1$  and  $T_2$  that semidecide L and  $\bar{L}$  respectively then we can construct a machine T to decide L as follows.
- ▶ Given input I we simulate  $T_1(I)$  and  $T_2(I)$ .
- ▶ Either  $I \in L$  or  $I \in \overline{L}$  so one of  $T_1(I)$  and  $T_2(I)$  will halt.
- ▶ If  $T_1(I)$  halts T accepts, if  $T_2(I)$  halts then T rejects.

#### Theorem 4

Let  $L_1$  and  $L_2$  be formal languages over a finite alphabet.

- 1. If  $L_1$  and  $L_2$  are recursive then  $L_1 \cup L_2$  and  $L_1 \cap L_2$  are recursive.
- 2. If  $L_1$  and  $L_2$  are r.e. then  $L_1 \cup L_2$  and  $L_1 \cap L_2$  are r.e.

- ▶ Let  $T_1$  and  $T_2$  be machines that decide  $L_1$  and  $L_2$  respectively.
- ▶ Simulating  $T_1$  and  $T_2$  on any input I.
- ▶ If either  $T_1(I)$  or  $T_2(I)$  accepts then  $I \in L_1 \cup L_2$ . On the other hand, if both reject then  $I \notin L_1 \cup L_2$ .
- ▶ If both accept then  $I \in L_1 \cap L_2$ , but if one rejects then  $I \notin L_1 \cap L_2$ .
- ▶ Similarly if  $T_1$  and  $T_2$  are machines that semidecide  $L_1$  and  $L_2$  then  $I \in L_1 \cup L_2$  if and only if either  $T_1(I)$  or  $T_2(I)$  halts, and  $I \in L_1 \cap L_2$  if and only if  $T_1(I)$  and  $T_2(I)$  both halt.

## Three languages

### Definition 5 (SA - 'self accepting')

SA is the language over  $\{0,1\}$  that contains the codes of all Turing machines T such that  $T(\mathbf{code}(T))$  halts.

### Definition 6 (NSA - 'not self accepting')

*NSA* is the language over  $\{0,1\}$  that contains the codes of all Turing machines T such that  $T(\mathbf{code}(T))$  does not halt.

### Definition 7 (NSA')

*NSA'* is *NSA* together with all the strings that are not codes for Turing machines. So  $NSA' = \overline{SA}$ .

### The Halting Problem and SA

- ► SA contains all the yes instances of the modified Halting Problem from earlier.
- ▶ We showed there is no TM that decides this problem.
- So SA is not recursive (but is r.e. as we can design a machine to semidecide it).
- ► So...

#### Theorem 8

NSA' is not r.e.

#### Proof.

Since SA is r.e., if NSA' is also r.e. then SA is recursive by theorem 3 (as  $NSA' = \overline{SA}$ ). But SA is not recursive, so NSA' cannot be r.e.

## Application to NSA

### Corollary 9

NSA is not r.e.

- ▶ By the definition of coding there is an algorithm that says whether a string *x* is or is not the coded form of a Turing machine.
- So if *NSA* was r.e. then we could combine this with the algorithm semideciding *NSA*:
  - 1. Check if input string x is the code of a Turing machine. If no then halt, if yes go to step 2.
  - 2. Run algorithm semideciding *NSA*. If this halts then halt, otherwise just keep going.
- ► This algorithm semidecides *NSA'*, which is a contradiction because we know *NSA'* is not r.e.

## A Direct Argument for NSA

We could also prove that *NSA* is not r.e. directly, using similar logic to what we used to show the halting problem is not decidable.

#### Theorem 10

NSA is not r.e. (without using the fact that the modified halting problem is undecidable).

- Suppose there is a machine M that semidecides NSA.
- ▶ So  $M(\mathbf{code}(T))$  halts if  $T(\mathbf{code}(T))$  does not halt, and runs forever if  $T(\mathbf{code}(T))$  halts.
- So by definition M(code(M)) halts if and only if M(code(M)) does not halt, which is a contradiction.

# Another Argument for NSA'

### Corollary 11

NSA' is not r.e.

#### Proof.

If NSA' were r.e. then we could use the following algorithm on input string x:

- 1. Run the algorithm that semidecides *NSA'*. If this halts then go to the next step.
- Run the algorithm that decides if x is the code of a Turing machine.
  - If x is the code of a Turing machine then it must not be self-accepting, as it's in NSA'.
  - This means it's in NSA, so we should halt.
  - ▶ If x is not the code of a Turing machine then we should instead go into an infinite loop.

This algorithm semidecides *NSA*, which would contradict the fact that *NSA* is not r.e.

## Another Argument for SA

We can also use previously proved results to show that SA is not recursive without referencing the halting problem.

#### Theorem 12

SA is not recursive.

#### Proof.

If SA is recursive then  $\overline{SA} = NSA'$  is recursive by theorem 2. This would contradict corollary 11.

## Back to the Halting Problem

- ▶ We have found two conceptually straightforward languages, one of which is recursive but not r.e. (SA), and the other which is not even r.e. (NSA).
- ▶ The arguments are perhaps easier to understand than the somewhat complicated definition of *H*″ used in the proof that the Halting problem is not recursive.
- ▶ In particular the proof that *NSA* is not r.e. from theorem 10 uses self-reference to get a contradiction in a much more direct way than the proof that the Halting problem is undecidable does.
- However, the Halting problem is independently interesting, and historically important, which is why we discuss it in some detail.

## The Empty Tape Halting Problem

- ▶ We know that the halting problem is undecidable.
- ► That is, there is no Turing machine H that can act on code(T, I) for another Turing machine T and accept if T(I) halts and reject if it does not.
- Consider the following decision problem.

### Definition 13 (empty tape halting problem)

Is there a Turing machine E that given  $\mathbf{code}(T)$  for another Turing machine T will accept if T halts on the empty string and will reject otherwise?

## Solving the Empty Tape Halting Problem

- Suppose this machine E exists.
- Consider a Turing machine T and an input I.
- Using T and I we design a new Turing machine  $T_I$  that does the following on input J.
  - 1.  $T_I$  erases input J from the tape.
  - 2.  $T_I$  simulates T on I.
- ▶ What happens if we run E on **code**( $T_I$ )?

```
E(\mathbf{code}(T_I)) accepts \iff T_I halts on empty input \iff T(I) halts.
```

 $E(\text{code}(T_I))$  rejects  $\iff$   $T_I$  does not halt on empty input  $\iff$  T(I) does not halt.

- ► This looks a lot like solving the halting problem, which we know is impossible.
- This can't happen so we will conclude that E should not exist.

#### Formal Version

- We want to formalize the argument we just made to show E can't exist.
- First, assume *E* solving the ETHP exists.
- Construct a TM H as follows:
- Given input code(T, I) the first thing H does is construct code(T<sub>I</sub>). This is complicated but it can be done.
- 2. *H* then simulates  $E(\mathbf{code}(T_I))$ .
- 3.  $H(\mathbf{code}(T, I))$  accepts  $\iff E(\mathbf{code}(T_I))$  accepts  $\iff T(I)$  halts, and rejects otherwise.
- → H is a well defined Turing machine, and H solves the halting problem.
- ► The only questionable step in the construction of H is the assumption that E exists.
- ▶ Since *H* cannot exist we conclude that *E* cannot exist either, and so the empty tape halting problem is also undecidable.

#### Reduction

This is an example of a general technique called *reduction*. The general strategy is as follows.

- 1. Start with a decision problem D whose decidability is not known, and a decision problem U that is known to be undecidable (e.g. the halting problem).
- 2. Show that instances  $I_U$  of U can be converted by an algorithm to instances  $I_D$  of D so that
  - ▶  $I_D$  is a yes instance of  $D \iff I_U$  is a yes instance of U.
  - ▶  $I_D$  is a no instance of  $D \iff I_U$  is a no instance of U.
- 3. If there is an algorithm for solving D then we could combine this with our instance converting algorithm to find an algorithm for solving U.
- 4. Since U is undecidable no algorithm for solving U exists, and we conclude that an algorithm for solving D cannot exist either.

# Ordering by Hardness

### Definition 14 (reducible)

A is reducible to B if there is an algorithm that converts instances  $I_A$  of A to instances  $I_B$  of B so that  $I_B$  is a yes instance of B if and only if  $I_A$  is a yes instance of A, and  $I_B$  is a no instance of B if and only if  $I_A$  is a no instance of A.

### Definition 15 $(A \leq B)$

Given decision problems A and B we write  $A \leq B$  if A is reducible to B.

- ▶ Informally we think of this as meaning that *B* is at least as hard as *A*.
- ▶ I.e. if we had a solution for B we could use it to solve A, but we wouldn't necessarily be able to use a solution for A to solve B.
- ▶ With U and D from the previous slide we would write  $U \leq D$ .

## A Hierarchy of Decision Problems

- ► This produces a kind of hierarchy of problems (and formal languages), ordered by their relative decidability.
- ▶ It turns out that all the decidable problems are grouped together at the bottom of this hierarchy.

#### Theorem 16

Let D be a decidable problem, and let A be any other decision problem with at least one yes instance and at least one no instance. Then D < A.

- $\triangleright$  Since D is decidable, given an instance  $I_D$  of D we can find out whether it is 'yes' or 'no' by running the decision algorithm for D.
- ▶ If I<sub>D</sub> is a 'yes' we convert it to a 'yes' of A, and if not we convert it to a 'no' of A.
- $\triangleright$  So D < A.



# Basic Properties of ≤

- ▶ The  $\leq$  relation for decision problems is reflexive (i.e.  $A \leq A$ ), and transitive (i.e.  $A \leq B$  and  $B \leq C \implies A \leq C$ ).
- ► Why?
- ► ≤ is not symmetric.
- ► Why?

# Halts for all Inputs (HAI)

- ▶ Suppose we have the code of a Turing machine *T*.
- Is there an algorithm that we can run on code(T) that tells us whether or not T(I) halts for all inputs I?
- ► The answer is no, and one of the exercises for this section is to prove this by reducing the Halting problem to this problem.
- ▶ I.e. to show that  $HP \leq HAI$ .

# Equivalence of Turing machines (ETM)

- ▶ Suppose we have the code for two Turing machines.
- Is there an algorithm we can use that will tell us if they do the same thing for all inputs (i.e. if  $T_1(I) = T_2(I)$  for all I)?
- ▶ It turns out the answer is no, and we can prove this using the reduction technique.
- We will show that HAI ≤ ETM.

### HAI < ETM

- An instance of HAI is just a Turing machine T, and T is a yes instance if and only if T(I) halts for all I.
- We want to use T to construct  $T_1$  and  $T_2$  so that T(I) halts for all I if and only if  $T_1(I) = T_2(I)$  for all I.
- ▶ We construct  $T_1$  so that it operates as follows:
  - 1.  $T_1(I)$  simulates T(I).
  - 2. If T(I) halts then  $T_1(I)$  erases the tape then writes a single '1' before halting.
- We construct  $T_2$  so that  $T_2(I)$  just writes a single '1' on the tape before halting for all I.
- ightharpoonup T is a yes instance of HAI if and only if T(I) halts for all I.
- ▶ This happens if and only if  $T_1(I)$  writes a single '1' for all I.
- ▶ But  $T_1(I) = 1$  for all I if and only if  $T_1(I) = T_2(I)$  for all I.
- So T is a 'yes' instance of HAI if and only if  $(T_1, T_2)$  is a yes instance of ETM.
- So HAI ≤ ETM and so ETM is undecidable.