Chapitre 3

Dérivation des fonctions

1/ Généralités

a) Limite en 0

- Définition .

Soit f une fonction définie sur un intervalle I contenant 0 et $L \in \mathbb{R}$.

On dit que f(x) tend vers L quand x tend vers 0 si on peut rendre f(x) aussi proche de L que l'on veut pour x suffisamment proche de zéro. On note : $\lim_{x\to 0} hf(x) = L$

 $\begin{aligned} &Exemple: \lim_{x\to 0} xx^2 = 0 & \lim_{x\to 0} xx + 1 = 1 & \lim_{x\to 0} x\sqrt{x} + x - 2 = -2... \\ &D\acute{e}terminer\ la\ limite\ en\ 0\ de\ \frac{x^2 - 2x}{3x}. \end{aligned}$

Pour tout $x \neq 0$, $\frac{x^2 - 2x}{3x} = \frac{x - 2}{3}$ donc $\lim_{x \to 0} x \frac{x^2 - 2x}{3x} = -\frac{2}{3}$.

b) Nombre dérivé

Soit f une fonction définie sur un intervalle I. Soit $a \in I$ et $h \neq 0$ tel que $a + h \in I$.

On appelle taux de variation de f entre a et h le réel $\frac{f(a+h)-f(a)}{h}$.

On dit que f est dérivable en a si, lorsque h tend vers 0, le taux de variation de f entre a et h tend vers un réel L autrement dit si $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = L$.

Ce réel L est appelé nombre dérivé de f and f and f and f and f and f are f and f and f are f and f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are f and f are f and f are f are f are f are f are f and f are f are f are f are f are f and f are f are f are f are f and f are f are f and f are f are

Ce réel L est appelé nombre dérivé de f en a et se note f'(a).

Exemple: Démontrer que la fonction $f: x \longmapsto x^2$ est dérivable en 2 et calculer f'(2).

Démontrer que la fonction
$$g: x \longmapsto \sqrt{x}$$
 n'est pas dérivable en 0.

Pour tout $h \neq 0$, $\frac{f(2+h)-f(2)}{h} = \frac{(2+h)^2-4}{h} = \frac{h^2+4h}{h} = h+4$

Ainsi $\lim_{x\to 0} h \frac{f(2+h)-f(2)}{h} = 4$.

f est donc dérivable en 2 et $f'(2) = 4$.

Pour tout $h \neq 0$, $\frac{g(0+h) - g(0)}{h} = \frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}}$.

Or, $\frac{1}{\sqrt{h}}$ n'a pas de limite finie lorsque h tend vers 0 donc g n'est pas dérivable en 0.

c) Interprétation graphique

Propriété.

Soit f une fonction définie sur I et C_f sa représentation graphique dans un repère. Soit $a \in I$.

Si f est dérivable en a alors f'(a) est le coefficient directeur de la tangente à C_f au point A(a; f(a)). L'équation de cette tangente est alors : y = f'(a)(x - a) + f(a).

Illustration : Soit $A(a; f(a)) \in C_f$.

Soit $h \neq 0$ et $M(a+h; f(a+h)) \in C_f$.

Le quotient $\frac{f(a+h)-f(a)}{h}$ représente le coefficient directeur de la droite (AM). Lorsque h tend vers 0, M se rapproche de A et la droite (AM) tend à se confondre avec la tangente à C_f en A.

- Démonstration

Soit T la tangente à la courbe au point A. Son coefficient directeur est f'(a) donc l'équation réduite de T est de la forme y = f'(a)x + b.

 $A \in T$ donc f(a) = f'(a)a + b donc b = f(a) - af'(a).

L'équation de T est donc y = f'(a)x + f(a) - af'(a) soit y = f'(a)(x - a) + f(a).

d) Approximation affine

Propriété.

Soit f une fonction définie sur I et dérivable en $a \in I$.

- Il existe une fonction φ telle que pour tout réel h avec $a+h \in I$:

$$f(a+h) = f(a) + hf'(a) + h\varphi(h)$$
 et $\lim_{x \to 0} h\varphi(h) = 0$

– La fonction $h \longmapsto f(a) + hf'(a)$ est une approximation affine de f pour h proche de 0

Démonstration

Pour
$$h \neq 0$$
, on pose $\varphi(h) = \frac{f(a+h) - f(a)}{h} - f'(a)$.

f est dérivable en a donc lorsque h tend vers 0, $\varphi(h)$ tend vers f'(a) - f'(a) = 0. De plus, $h\varphi(h) = f(a+h) - f(a) + hf'(a)$ soit $f(a+h) = f(a) + hf'(a) + h\varphi(h)$

2/ Calculs de dérivées

a) Fonction dérivée

- Définition

Soit f une fonction défine sur un intervalle I.

- Si, pour tout x de I, f est dérivable en x, on dit que f est dérivable sur I.
- La fonction définie sur I par $x \mapsto f'(x)$ est appelée fonction dérivée de f. Cette fonction est notée f'.

b) Dérivées usuelles

Fonctions constantes

- Propriété -

Si f est la fonction définie sur \mathbb{R} par : f(x) = k alors f est dérivable sur \mathbb{R} et pour tout réel x : f'(x) = 0.

- Démonstration

Pour tout réel a et $h \neq 0$,

$$\frac{f(a+h) - f(a)}{h} = \frac{k-k}{h} = 0$$

f est donc dérivable en a et f'(a) = 0.

Fonctions affines

Propriété -

Si f est la fonction définie sur \mathbb{R} par : f(x) = mx + p alors f est dérivable sur \mathbb{R} et pour tout réel x : f'(x) = m.

 \cdot Démonstration

Pour tout réel a et $h \neq 0$,

$$\frac{f(a+h)-f(a)}{h} = \frac{m(a+h)+p-ma-p}{h} = \frac{mh}{h} = m$$

f est donc dérivable en a et f'(a) = m

Fonction carré

- Propriété -

Si f est la fonction définie sur $\mathbb R$ par : $f(x) = x^2$ alors f est dérivable sur $\mathbb R$ et pour tout réel x : f'(x) = 2x.

- Démonstration

Pour tout réel a et $h \neq 0$,

$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{2ah + h^2}{h} = 2a + h$$

De plus, 2a + h tend vers 2a lorsque h tend vers 0. f est donc dérivable en a et f'(a) = 2a.

Fonctions puissances

– Propriété –

Soit n un entier tel que $n \ge 1$.

Si f est la fonction définie sur \mathbb{R} par : $f(x) = x^n$ alors f est dérivable sur \mathbb{R} et pour tout réel x : $f'(x) = nx^{n-1}$.

Résultat admis.

Fonction inverse

Propriété -

Si f est la fonction définie sur $]-\infty;0[\ \cup\]0;+\infty[$ par : $f(x)=\frac{1}{x}$ alors f est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$ et pour tout $x\neq 0$: $f'(x)=-\frac{1}{x^2}$

- Démonstration

Pour tout réel $a \neq 0$ et $h \neq 0$,

$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{a - (a+h)}{ha(a+h)} = \frac{-1}{a(a+h)}$$

Or $\frac{-1}{a(a+h)}$ tend vers $-\frac{1}{a^2}$ lorsque h tend vers 0.

f est donc dérivable en a et $f'(a) = -\frac{1}{a^2}$

Fonction racine carrée

Propriété

Si f est la fonction définie sur $[0; +\infty[$ par : $f(x) = \sqrt{x}$ alors f est dérivable sur $]0; +\infty[$ et pour tout réel x > 0 : $f'(x) = \frac{1}{2\sqrt{x}}$.

- Démonstration

Pour tout réel a > 0 et $h \neq 0$ tel que a + h > 0,

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{a+h}-\sqrt{a}}{h} = \frac{(\sqrt{a+h}-\sqrt{a})(\sqrt{a+h}+\sqrt{a})}{h(\sqrt{a+h}+\sqrt{a})}$$
$$= \frac{a+h-a}{h(\sqrt{a+h}+\sqrt{a})} = \frac{1}{\sqrt{a+h}+\sqrt{a}}$$

Or, lorsque h tend vers 0, $\frac{1}{\sqrt{a+h}+\sqrt{a}}$ tend vers $\frac{1}{2\sqrt{a}}$ f est donc dérivable en a et $f'(a)=\frac{1}{2\sqrt{a}}$

Fonctions trigonométriques

_ Propriété ____

Les fonctions sinus et cosinus sont dérivables sur $\mathbb R$ et pour tout réel x :

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$

Résultat admis.

c) Opérations sur les fonctions et dérivées

u et v désignent deux fonctions dérivables sur un intervalle I et λ un réel.

- Propriété -

La fonction u + v est dérivable sur I et (u + v)' = u' + v'. La fonction λu est dérivable sur I et $(\lambda u)' = \lambda u'$.

- Démonstration

Pour tout $a \in I$ et $h \neq 0$ tel que $a + h \in I$:

$$\frac{(u+v)(a+h) - (u+v)(a)}{h} = \frac{u(a+h) + v(a+h) - u(a) - v(a)}{h}$$
$$= \frac{u(a+h) - u(a)}{h} + \frac{v(a+h) - v(a)}{h}$$

dont la limite est u'(a) + v'(a) lorsque h tend vers 0.

$$\frac{(\lambda u)(a+h) - (\lambda u)(a)}{h} = \frac{\lambda u(a+h) - \lambda u(a)}{h} = \lambda \frac{u(a+h) - u(a)}{h}$$

dont la limite est $\lambda u'(a)$ lorsque h tend vers 0.

Exemple: Calculer la dérivée de la fonction f définie sur]0; $+\infty[$ par $f(x)=3x^2+\frac{1}{3x}-5\sqrt{x}+2$ f est dérivable sur]0; $+\infty[$ car elle est la somme de fonctions dérivables sur]0; $+\infty[$ et, pour tout $x\in]0$; $+\infty[$, $f'(x)=3\times 2x+\frac{1}{3}\times\left(-\frac{1}{x^2}\right)-5\times\frac{1}{2\sqrt{x}}$ ainsi:

$$f'(x) = 6x - \frac{1}{3x^2} - \frac{5}{2\sqrt{x}}$$

- Propriété -

La fonction uv est dérivable sur I et La fonction u^2 est dérivable sur I et (uv)' = u'v + uv'. $(u^2)' = 2uu'.$

- Démonstration

Pour tout $a \in I$ et $h \neq 0$ tel que $a + h \in I$:

$$\frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u(a+h)v(a+h) - u(a)v(a+h) + u(a)v(a+h) - u(a)v(a)}{h}$$

$$= \underbrace{\frac{u(a+h) - u(a)}{h}}_{\text{tend vers } u'(a)} \times v(a+h) + \underbrace{\frac{v(a+h) - v(a)}{h}}_{\text{tend vers } v'(a)} \times u(a)$$

dont la limite est u'(a)v(a) + v'(a)u(a) lorsque h tend vers 0. Ainsi uv est dérivable et (uv)' = u'v + uv'.

Exemple : Calculer la dérivée de la fonction f définie sur \mathbb{R} par $f(x) = (x^2 + 1)(x^5 + 2)$ f(x) = u(x)v(x) avec $u(x) = x^2 + 1$ et $v(x) = x^5 + 2$. f est donc dérivable sur \mathbb{R} en tant que produit de fonctions dérivables sur \mathbb{R} et

$$f'(x) = 2x(x^5 + 2) + 5x^4(x^2 + 1)$$

- Propriété —

Si v ne s'annule pas sur I

La fonction $\frac{1}{v}$ est dérivable sur I et

La fonction $\frac{u}{v}$ est dérivable sur I et

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

- Démonstration

Pour tout $a \in I$ et $h \neq 0$ tel que $a + h \in I$:

$$\frac{\frac{1}{v(a+h)} - \frac{1}{v(a)}}{h} = \frac{v(a) - v(a+h)}{hv(a+h)v(a)} = -\frac{v(a+h) - v(a)}{h} \times \frac{1}{v(a)v(a+h)}$$

dont la limite est $-v'(a) \times \frac{1}{(v(a))^2}$ lorsque h tend vers 0.

Ainsi $\frac{1}{v}$ est dérivable et $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$

De plus

$$\left(\frac{u}{v}\right)' = \left(u \times \frac{1}{v}\right)' = u' \times \frac{1}{v} + u \times \left(-\frac{v'}{v^2}\right) = \frac{u'v - uv'}{v^2}$$

Exemple : Déterminer la dérivée de la fonction f définie $sur \]2 \ ; \ +\infty [par \ f(x) = \frac{3}{2x-4} \ et \ de \ la fonction <math>g$ définie $sur \ \mathbb{R} \ par \ g(x) = \frac{3x+5}{2x^2+1}$

Pour tout $x \in]2$; $+\infty[$, $f(x) = \lambda \times \frac{1}{u(x)}$ avec $\lambda = 3$ et u(x) = 2x - 4.

f est donc dérivable sur]2; $+\infty$ [et $f(x) = 3 \times \left(-\frac{2}{(2x-4)^2}\right) = \frac{-6}{(2x-4)^2}$.

Pour tout réel x, $g(x) = \frac{u(x)}{v(x)}$ avec u(x) = 3x + 5 et $v(x) = 2x^2 + 1$. g est donc dérivable sur $\mathbb R$ et

$$g(x) = \frac{3(2x^2 + 1) - 4x(3x + 5)}{(2x^2 + 1)^2} = \frac{-6x^2 - 20x + 3}{(2x^2 + 1)^2}$$

_ Propriété _

Soit f une fonction définie et dérivable sur un intervalle J et u une fonction définie et dérivable sur un intervalle I telle que, pour tout x de I, $u(x) \in J$.

La fonction $f \circ u$ est dérivable et, pour tout réel x de I:

$$(f \circ u)'(x) = u'(x) \times f'(u(x))$$

Exemple: Calculer la dérivée de la fonction g définie sur \mathbb{R} par $g(x) = \cos\left(2x + \frac{\pi}{3}\right)$. Pour tout réel x, $g(x) = f \circ u(x)$ avec $u(x) = 2x + \frac{\pi}{3}$ et $f(x) = \cos(x)$. g est donc dérivable sur \mathbb{R} et $g'(x) = -2\sin\left(2x + \frac{\pi}{3}\right)$

3/ Applications de la dérivation

a) Dérivée et variations

– Propriété -

Soit f une fonction dérivable sur un intervalle I.

- f est croissante sur I si et seulement si pour tout x de I, $f'(x) \ge 0$.
- -f est constante sur I si et seulement si pour tout x de I, f'(x) = 0.
- f est décroissante sur I si et seulement si pour tout x de I, $f'(x) \leq 0$.

Propriété admise.

Remarques: On utilise souvent les résultats suivants.

- Si, pour tout x de I, f'(x) > 0 alors f est strictement croissante sur I.
- Si, pour tout x de I, f'(x) < 0 alors f est strictement décroissante sur I.

Exemple: Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 2x$.

f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 + 2 > 0$.

La fonction f est donc strictement croissante sur \mathbb{R} .

b) Extremum local

Propriété _

Soit f une fonction définie sur un intervalle I et $x_0 \in I$.

On dit que $f(x_0)$ est un maximum local (respectivement minimum local) de f si l'on peut trouver un intervalle ouvert J inclus dans I et contenant x_0 tel que pour tout $x \in J$, $f(x) \leq f(x_0)$ (respectivement $f(x) \geq f(x_0)$).

Exemple : Une fonction est représentée ci-contre.

 $Son\ minimum\ est\ -2$

Son maximum est 2.

-1 et -2 sont des minimums locaux

1 et 2 sont des maximums locaux.

– Propriété -

Soit f une fonction dérivable sur un intervalle I et $x_0 \in I$.

Si $f(x_0)$ est un extremum local de f alors $f'(x_0) = 0$.

Remarque : La réciproque de cette propriété est fausse.

- Propriété -

Soit f une fonction dérivable sur un intervalle I et $x_0 \in I$.

Si f' s'annule en changeant de signe en x_0 alors $f(x_0)$ est un extremum local de f.