Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version April 23th 2020

Today's schedule

- Evaluating Performance: Model Selection
 - Randomness in our data
 - Model Complexity
 - Sample size
 - Bias Variance Tradeoff
- Reducing Model complexity: Regularization
- Computing expected error
 - Training Validation Test set
 - K-fold cross validation

Let's get to know each other...

Breakout room

You

Another student

Name

Location

Department

Year

Have you discovered a new recipe / delivery restaurant?

3 mins

Chat/Audio/Video

Recap last class: Supervised Learning

"Learn by example"

Motivation of today's class

Experience

Data Exploration Prediction Models

Performance Analysis

Task

Model Assessment and Selection

Performance Analysis Introduction to Statistical Learning

Chapter 5.1: Cross Validation

Chapter 6: Regularization

Elements Statistical Learning

Chapter 7.1-7.3: Bias vs Variance

Chapter 7.10: Cross Validation

Chapter 3.4: Regularization

Randomness: Seen and unseen data are different

Randomness: Seen and unseen data are different

Randomness: Seen and unseen data are different

Collecting the samples

Collecting the samples

Collecting the samples

Choosing a model

I) How the data is: $Y = f(X) + \varepsilon$

2) We suppose $\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$

We compute the model using our observations

The model is random!

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose $\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$

With a different set of observations we get a different model

The model is random!

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose $\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$

The model is random!

2) We suppose $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$

Prediction error: Unseen data

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose model: $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$
- 2) We predict new data: $Y \approx \hat{f}(X)$

How accurate is this prediction?

Prediction error: Unseen data

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose model: $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$
- 2) We predict new data: $Y \approx \hat{f}(X)$

How accurate is this prediction?

Is it the same as measuring y?

Sources of error: Irreducible error

- I) How the data is: $Y = f(X) + \varepsilon$

Sources of error: Bias

I) How the data is: $Y = f(X) + \varepsilon$

- 2) We suppose model: $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$
- 2) We predict new data: $Y \approx f(X)$

Sources of error: Variance

1) How the data is: $Y = f(X) + \varepsilon$ 2) We suppose model: $\widehat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$ 2) We predict new data: $Y \approx \widehat{f}(X)$

Prediction error explained

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose model: $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$
- 2) We predict new data: $Y \approx \hat{f}(X)$

$$E\left[\left(Y-\hat{f}(x)\right)^{2}\right]=$$

$$E[Y - f(x)]^2 + (f(x) - E[\hat{f}(x)])^2 + E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Irreducible error

Bias²

Prediction error explained: Linear Regression

- I) How the data is: $Y = f(X) + \varepsilon$
- 2) We suppose model: $\hat{f}(X) = \widehat{\beta_0} + \widehat{\beta_1}X$
- 2) We predict new data: $Y \approx \hat{f}(X)$

Best linear approximation of f

Bias and model complexity

Bias and model complexity

Variance and model complexity

Model complexity

Variance and model complexity

Variance and sample size

Variance and sample size

Expected prediction error: More samples

Expected prediction error: More samples

Expected prediction error: More samples

Bias vs Variance: What to keep in mind

- I) Error depends on:
 - I) Bias: How well we fit the underlined model (decreases with complexity)
 - 2) Variance: Variability from the sampled data (increases with complexity)
- 2) More complex models reduce prediction error **only** if there are enough samples

Why is reducing # parameters useful?

2) Interpretability

$$y = 3x_1 + 2$$

VS.

$$y = 3x_1^2 + x_2x_3 + 10\log(x_4)$$

How do we reduce # parameters for regression?

1) Subset selection

For each k

Select the best set of k features (smallest residual)

2) Principal Components

For each k

Create regression using the kth principal components

3) Regularization

Add constraints

$$\min_{\beta} \|X\beta - Y\|_2^2 + \lambda L(\beta)$$

$$\min_{\beta} L(f(X), Y)$$

$$\min_{\beta} L(f(X), Y)$$

$$\min_{\beta} L(f(X), Y)$$

$$\min_{\beta} L(f(X), Y)$$

$$\min_{\beta} L(f(X), Y)$$

Optimization = descent algorithm direction

Gradient descent
Stochastic gradient descent
Coordinate descent
Newton's method

 $\min_{\beta} L(f(X), Y)$

Difficult to solve

 $\min_{\beta} L(f(X), Y)$

The most used regularizations

Ridge regression (l₂ regularization)

$$\min_{\beta} ||X\beta - Y||_{2}^{2} + \lambda \sum_{j=1}^{p} \beta_{p}^{2}$$

Lasso regression (I_I regularization)

$$\min_{\beta} ||X\beta - Y||_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{p}|$$

"Everyone is important"

"Only some are important"

Intuition of regularizations

$$\min_{X_1, X_2} 4X_1 + 3X_2$$

Ridge regression

(l₂ regularization)

$$X_1^2 + X_2^2 \le 1$$

Lasso regression

(I₁ regularization)

$$|X_1| + |X_2| \le 1$$

[&]quot;Everyone is important"

Intuition of regularizations

$$\min_{X_1, X_2} 4X_1 + 3X_2$$

Ridge regression

(l₂ regularization)

$$X_1^2 + X_2^2 \le 1$$

Lasso regression

(I₁ regularization)

$$|X_1| + |X_2| \le 1$$

Solution

$$X_1 = -\frac{4}{5}, X_2 = -\frac{3}{5}$$

"Everyone is important"

$$X_1 = -1, X_2 = 0$$

"Only some are important"

SPARSITY

Intuition of regularizations

$$\min_{\beta} ||X\beta - Y||_{2}^{2} + \lambda \sum_{j=1}^{p} \beta_{p}^{2}$$

Ridge regression

(Normal prior)

FIGURE 6.11, ISL (8th printing 2017)

"Everyone is important"

 $\min_{\beta} ||X\beta - Y||_2^2 + \lambda$ Lasso regression

(Laplace prior)

"Only some are important"

SPARSITY

When to use regularizations
$$\min_{\beta} ||X\beta - Y||_2^2 + \lambda \sum_{j=1}^p \beta_p^2$$

Ridge regression

All of coefficients have around equal contribution

$$\min_{\beta} ||X\beta - Y||_{2}^{2} + \lambda \sum_{j=1}^{p} |\beta_{p}|$$

Lasso regression

Only some coefficients are non zero

To choose: λ = Model complexity

How to pick model complexity?

We need to generalize to **unseen** data

Your data

We need to generalize to **unseen** data

Your data Train **Validation** Test Fit the models **Model selection:** Model choosing assessment: Prediction error hyperparameters (k,λ) , models of final model

We need to generalize to unseen data

We need to generalize to unseen data

Challenge: what if we don't have enough data

More data → Less variance → Better prediction error

Challenge: what if we don't have enough data

More data → Less variance → Better prediction error

Challenge: what if we don't have enough data

More data → Less variance → Better prediction error

Train	Train	Train	Validation	Train	$Err_4 = \sum_{i \in S_4} \left(y^{(i)} - \widehat{f}_4 \left(x^{(i)} \right) \right)^2$
Train	Train	Validation	Train	Train	$Err_3 = \sum_{i \in S_3} \left(y^{(i)} - \widehat{f}_3 \left(x^{(i)} \right) \right)^2$
Train	Validation	Train	Train	Train	$Err_2 = \sum_{i \in S_2} \left(y^{(i)} - \widehat{f}_2 \left(x^{(i)} \right) \right)^2$
Validation	Train	Train	Train	Train	$Err_1 = \sum_{i \in S_1} \left(y^{(i)} - \widehat{f}_1 \left(x^{(i)} \right) \right)^2$

$$Err = \frac{1}{5}(Err_1 + Err_2 + Err_3 + Err_4 + Err_5)$$

Average of the errors reduces the variation of the prediction error

Better than just having a fixed train and validation set

K-fold Cross validation: How large k?

Leave-one-out (LOOCV)
$$K = N$$

High variance!
We are averaging over N models
But all highly correlated

Small K = 5 or 10

Less Overlap!

We are averaging over less models that are **less correlated**

Bonus: Less computationally expensive

K-fold Cross validation: Important Note

Once we have **selected the best** model / hyperparameter looking at the smallest error in **cross validation**

We train the selected model using train + validation data and we evaluate test error

We cannot change the model any more!

Today's recap

