

#### Crux Mathematicorum

#### **PROBLEM 4277**

proposed

by

Tran Quang Hung <sup>1</sup> (Vietnam) 2017

#### **VISION**

# Figure:



Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C,

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN),

Y le point d'intersection de (CP) et (BQ),

et X le milieu de [MN].

**Donné :** D, X et Y sont alignés <sup>2</sup>.

\_

connu sous le pseudonyme buratinogigle sur le site Art of Problem Solving (AoPS)

<sup>&</sup>lt;sup>2</sup> Crux Mathematicorum vol. 43, 8 (Oct. 2017); https://cms.math.ca/crux/

Milieu d'un segment, Les-Mathematiques.net; http://www.les-mathematiques.net/phorum/read.php?8,1534990

#### **Archives**

# 4277. Proposé par Tran Quang Hung.

Soit ABC un triangle dont le cercle inscrit (I) touche BC, CA et AB en D, E et F respectivement. De plus, M et N se trouvent sur EF de façon à ce que BM et CN sont perpendiculaires à BC. Aussi, DM et DN intersectent (I) de nouveau en P et Q. Enfin, BQ intersecte CP en R. Démontrer que DR bissecte MN.



Syan2 [Répondre par message privé]

Milieu d'un segment I y a trois jours Membre depuis ; il y a huit années Messages: 323

#### Bonsoir,

voici un joli exercice de géométrie élémentaire :

ABC triangle, on suppose que le cercle inscrit touche les côtés [AB], [BC] et [CA] aux points F, D et E respectivement. Les droites perpendiculaires à (BC), en B (resp. en C), coupent la droite (EF) en M (resp. N). Les droites (DM) et (DN) coupent, à nouveau, le cercle inscrit en P et Q respectivement. Les droites (CP) et (BQ) se coupent au point R. Enfin, les droites (DR) et (EF) se coupent en X. Question : montrer que X est le milieu de [MN].

Cordialement, Yan2



# Une photo



communiquée par le professeur Nguyen van Linh 3 (first one on the left) qui précise

Tran Quang Hung (3rd person from the left) is also a Vietnamese geometry teacher. He is working at High school for Gifted student (HSGS), Hanoi University of Science.

3

<sup>3</sup> https://nguyenvanlinh.wordpress.com/

#### VISUALISATION

## ÉTAPE 1

#### **VISION**



Traits: ABC un triangle,

et

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

N le point d'intersection de (EF) avec la perpendiculaire à (BC) en C,

Q le second point d'intersection de 1 avec (DN)

K le point d'intersection de (DE) et (FQ).

**Donné:** (IK) est perpendiculaire à (CN). <sup>4</sup>

## VISUALISATION



- D'après Philippe de La Hire "La réciprocité polaire" 5, en conséquence,
- K est le pôle de (CN);  $(IK) \perp (CN)$ .
- Conclusion: (IK) est perpendiculaire à (CN).

Ayme J.-L., Collinear, AoPS du 29/11/2016;

http://www.artofproblemsolving.com/community/c6h1346410\_collinear

Ayme J.-L., La réciprocité polaire, G.G.G., vol. 13; http://jl.ayme.pagesperso-orange.fr/

## Archive

Source: own ?



jayme

6135 posts

Nov 29, 2016, 2:13 pm

Dear Mathlinkers,

- ABC a triangle
  I) the incircle of ABC
- 3. DEF the contact triangle of ABC
  - 4. N the point of intersection of Ef with the perpendicular to BC at C 5. Q the second point of intersection of (I) with DN

  - 6. K the point of intersection of DE and FQ.

Prove: B, K and N are collinear.

Sincerely Jean-Louis

High School for Gifted Students (HSGS) Open Olympiad 2016, day 2

Problem proposed

by

Tran Quang Hung (Vietnam) 2016

## **VISION**

## Figure:



Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C,

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN)

et K, L les points d'intersection resp. de (DE) et (FQ), (DF) et (EP).

**Donné :** (KL) passe par I et est parallèle à (BC). <sup>6</sup>

#### **VISUALISATION**



• Scolie:

(BM) // CN).

http://www.artofproblemsolving.com/community/c6t48f6h1276894\_collinear\_points

<sup>&</sup>lt;sup>6</sup> Collinear points, AoPS du 23/07/2016;

- D'après Étape1, (1) (IK) // (BC)
  - (2) (BC) // (IL).
- Par transitivité du //, (IK) // (IL); d'après le postulat d'Euclide, (IK) = (IL).
- Conclusion : (KL) est parallèle à (BC).

High School for Gifted Students (HSGS) Open Olympiad 2016, day 2

Problem proposed

by

Tran Quang Hung (Vietnam) 2016

## **VISION**

## Figure:



Traits: ABC un triangle,

et

1 le cercle inscrit de ABC,

le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN).

**Donné :** (PQ) est parallèle à (BC).

#### **VISUALISATION**



• Notons *Td* la droite (BC) tangente à *1* en D,

K, L les points d'intersection resp. de (DE) et (FQ), (DF) et (EP).

Collinear points, AoPS du 23/07/2016;

http://www.artofproblemsolving.com/community/c6t48f6h1276894\_collinear\_points

• D'après Étape 2,

(KL) // (BC) i.e. à Td.

- D'après Aubert-Pascal "Pentagramma mysticum" appliqué à l'hexagone dégénéré cyclique FD *Td* EPQF,
- (KL) en est la pascale
- (2) (PQ) // Td.
- Conclusion: (PQ) est parallèle à (BC).

#### Archive

Source: Own, HSGS Open Olympiad 2016, day 2

buratinogigle

Jul 23, 2016, 6:02 am • 2 ·

Let ABC be a triangle with incircle (I) touches BC, CA, AB at D, E, F, reps. M, N lie on line EF such that BM and CN are perpendicular to BC, DM, DN cut (I) again at P, Q.

**(1)** 

a) Prove that  $PQ \parallel BC$ .

b) Let DE cuts FQ at K . DF cut EP at L . Prove that  $KL \parallel BC$  .

c) Prove that I,K,L are collinear.

## Scolies (1) le triangle DPQ est D-isocèle



- Notons *Td* la tangente à *1* en D.
- Nous avons :

- 1 est cercle circonscrit au triangle DPQ
- \* Td = (BC)
- Conclusion: *Td* étant parallèle à (PQ),
- le triangle DPQ est D-isocèle.
- (2) Deux triangles rectangles semblables



- Une chasse angulaire :
  - \* DPQ étant D-isocèle, <DPQ = <PQD
  - \* par "Angles alternes-internes", <DPQ = <MDB et <PQD = <CDN
  - \* par substitution, <MDB = <CDN.
- Conclusion : les triangles BDM, CDN étant resp. B, C-rectangle et ayant deux autres angles égaux, sont semblables.

L'auteur

# **VISION**

# Figure:



Traits: ABC un triangle,

et

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C

U, X les milieux resp de [DM], [MN].

**Donné :** (BX) est parallèle à (DN).

#### VISUALISATION



- Une chasse angulaire:
  - \* le triangle UBD étant U-isocèle, <DBU = <UDB
  - \* d'après Étape 3, scolie 2, <UDB = <CDN
  - \* par transitivité de =, <DBU = <CDN

\* par "Angles correspondants", (BU) // (DN).

- D'après Thalès "La droite des milieux" appliqué au triangle MDN, par transitivité du //, (BU) // (UX);
  d'après le postulat d'Euclide, en conséquence,
  D'après (DN) // (UX);
  (BU) // (UX);
  (BU) = (UX);
  B, U et X sont alignés.
- Conclusion : (BX) est parallèle à (DN).

# Scolies: (1) deux autres parallèles



- Notons U le milieu de [DM]
- Conclusion: mutatis mutandis, nous montrerions que (CX) est parallèle à (DM).

# (2) Deux parallèles remarquables



- Conclusion: d'après Thalès "La droite des milieux" appliqué au triangle DMN,
- (UV) est parallèle à (MN).
- (3) Un point remarquable sur (BD)



- les points d'intersection de (BC) resp. avec (MN), (UV). 8 Notons A\*, J
- Par culture géométrique, le quaterne (B, C, D, A\*) est harmonique.
- Conclusion: d'après Thalès "La droite des milieux" appliqué au triangle A\*DM, J est le milieu de [A\*D].
  - **(4)** Par culture géométrique 9,  $JB/JC = (DB/DC)^2$ .

A\* est le A-point de Nobbs de ABC Leboss2 C., Héméry C., *Géométrie Classe de Mathématiques*, Ed. Fernand Nathan (1961), n° **262**, p. 168

Crux Mathematicorum Problem 4277

proposed

by

Tran Quang Hung 10 (Vietnam) 2017

## **VISION**

### Figure:



Traits: ABC un triangle,

1 le cercle inscrit de ABC,

I le centre de 1,

DEF le triangle de contact de ABC,

M, N les points d'intersection de (EF) avec les perpendiculaires à (BC) resp. en B, C,

P, Q les seconds points d'intersection de 1 resp. avec (DM), (DN),

Y le point d'intersection de (CP) et (BQ),

et X le milieu de [MN].

**Donné :** D, X et Y sont alignés <sup>11</sup>.

## VISUALISATION COURTE

connu sous le pseudonyme buratinogigle sur le site Art of Problem Solving (AoPS)

<sup>11</sup> Crux Mathematicorum vol. 43, 8 (Oct. 2017); https://cms.math.ca/crux/

Milieu d'un segment, Les-Mathematiques.net; http://www.les-mathematiques.net/phorum/read.php?8,1534990



- D'après Étape 3, (PQ) // (BC).
- D'après Étape 4, (DQ) // (BX) et (DP) // (CX).
- Les triangles DPQ et XCB étant homothétiques sont perspectifs ; en conséquence, (DX), (PC) et (QB) concourent en Y.
- Conclusion : D, X et Y sont alignés.

#### **VISUALISATION LONGUE**



- Notons R, S les seconds points d'intersection de 1 resp. avec (BQ), (CP).
- D'après Étape 3, (PQ) // (BC).
- Le cercle 1, les points de base R et S, les moniennes naissantes (QRB) et (PSC), les parallèles (QP) et (BC), conduisent au théorème 0'' de Reim ; en conséquence, R, S, B et C sont cocycliques.
- Notons 2 ce cercle.



- Notons R', S' les points d'intersection resp. de (BQ) et (DP), (BP) et (DQ),
  - Td la tangente à 1 en D
  - et K le point d'intersection de (RS) et (BC).
- Scolie: Td = (BC).
- D'après Aubert-Pascal "Pentagramma mysticum" (KR'S') est la pascale de l'hexagone dégénéré cyclique *Td* PSRQD.



- Une chasse de rapports par application du théorème de Ménélaüs au triangle BYC et aux ménéliennes
  - \* (R'S'K),  $(R'Y/R'B) \cdot (KB.KC) \cdot (S'C/S'Y) = 1$

 $KB.KC = (R'B/R'Y) \cdot (S'Y/S'C)$ 

\* (R'DP),  $(R'Y/R'B) \cdot (DB/DC) \cdot (PC/PY) = 1$ 

 $R'B/R'Y = (DB/DC) \cdot (PC/PY)$ 

\*  $(S'DQ), (S'C/S'Y) \cdot (QY/QB) \cdot (DB/DC) = 1$ 

 $S'Y/S'C = (QY/QB) \cdot (DB/DC)$ 

\* d'après Thalès ''Rapports'',

PC/PY = QB/QY

\* par substitution,

 $KB.KC = (DB/DC)^2$ .



- Notons U, V les milieux resp de [DM], [DN].
- D'après Étape 4, scolie 4,

 $JB/JC = (DB/DC)^2$ ;

en conséquences,

- (1) K et J sont confondus
- (2) (UV), (R'S') et (BC) concourent en J.



 D'après Girard Desargues "Le théorème des deux triangles" 12 (BJC)étant l'arguésienne des triangles XUV et YR'S',

XUV et YR'S' sont D-perspectifs.

Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. 7, p. 40-44; http://jl.ayme.pagesperso-orange.fr/

• Conclusion: D, X et Y sont alignés.