CÀLCUL INTEGRAL PROBLEMES

Grau en Matemàtiques

Esta colección de problemas es una adaptación de las utilizada en cursos anteriores en la misma asignatura, Càlcul Integral (FME), que a su vez estaba fuertemente basada en las listas de Problemes d'Anàlisi Vectorial (ETSETB, 2002-2010). La lista de problemas se complementa con la colección de Problemas resueltos que aparecen al final de cada capítulo de los Apuntes de la Asignatura y con la colección de Problemas de exámenes de cursos anteriores. Todo el material está a disposición del alumnado de la asignatura en la plataforma docente ATENEA. Portada: Curva, Superficie y Bóveda de Viviani. Imagen obtenida en Wikipedia

SERIES

NUMÈRIQUES

Problema 1. Sumeu les sèries telescòpiques

(a)
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}$$

(a)
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}$$
, (b) $\sum_{k=0}^{\infty} (-1)^k \frac{2k+3}{(k+1)(k+2)}$.

Problema 2. Comproveu que les sèries següents tenen caràcter telescòpic i calculeu-ne la suma.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{(4k-1)(4k+3)}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k+12}{k^3+5k^2+6k}$$

Problema 3. S'anomena sèrie telescòpica generalitzada una sèrie de la forma $\sum a_n$ on $a_n = b_n - b_{n+m}$, essent (b_n) una successió i m un enter positiu.

- (a) Proveu que si la successió (b_n) és convergent, llavors la sèrie telescòpica $\sum a_n$ és convergent. Quant val la seva suma?
- (b) Donar un exemple on la sèrie telescòpica $\sum a_n$ és convergent però la successió (b_n) no convergeix.
- (c) Calculeu la suma $\sum_{n=0}^{\infty} \frac{1}{n(n+m)}$ y expliciteu aquests valors per m=1,2,3.

Problema 4. Sigui (a_n) la successió de Fibonacci, definida per $a_0=0,\,a_1=1$ y por $a_n=a_{n-1}+a_{n-2},\ n\geq 2$. Sabem que $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\frac{1+\sqrt{5}}{2}$. Sigui $b_k=a_{2k+1}$. Estudieu la convergència de la sèrie $\sum_{i=1}^{\infty} \frac{1}{b_k}$. (El valor $\phi = \frac{1+\sqrt{5}}{2}$ se denomina razón aúrea)

Problema 5. Estudieu la convergència de les sèries numèriques següents:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$
,

(c)
$$\sum_{n=0}^{\infty} \frac{1}{n+2^n}$$
,

(a)
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$
, (c) $\sum_{n=0}^{\infty} \frac{1}{n + 2^n}$, (e) $\sum_{n=1}^{\infty} \log\left(1 + \frac{2}{n}\right)$,

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$
,

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}},$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$
, (d) $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$, (f) $\sum_{n=0}^{\infty} \frac{n}{1+\sqrt{n}} \left(1-\cos\left(\frac{\pi}{n}\right)\right)$.

Problema 6. Estudieu la convergència de les sèries numèriques següents:

(a)
$$\sum_{n=1}^{\infty} (\arctan(n))^n$$
, (b) $\sum_{n=0}^{\infty} \frac{3^n}{n!}$, (c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

Problema 7. Estudieu el caràcter de les sèries següents:

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(\log(2))^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1+\frac{1}{n}}}$.

Problema 8. Sigui (a_n) una successió de termes positius.

- (i) Proveu que la sèrie $\sum_{n=0}^{\infty} \frac{a_n}{1 + n^2 a_n}$ és convergent.
- (ii) Proveu que, si $\sum a_n$ és convergent, aleshores $\sum a_n^2$ és convergent. És aixó cert si la successió no és de termes positius?

Problema 9. Determineu el caràcter de la sèrie $\sum_{n=0}^{\infty} \frac{2}{\alpha^n + \alpha^{-n}}$ en funció del paràmetre real $\alpha \neq 0$.

Problema 10. Determineu el caràcter de la sèrie $\sum_{n=1}^{\infty} \frac{2^n \operatorname{sen}^{2n}(\alpha)}{n^{\beta}}$ segons el valor dels paràmetres $\alpha, \beta \in \mathbb{R}$.

Problema 11. Estudieu el caràcter de les sèries següents en funció del valor del paràmetre real α :

(a)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{k^{\alpha}},$$
 (b)
$$\sum_{k=2}^{\infty} \left(\log \left(\frac{k+1}{k-1} \right) \right)^{\alpha}.$$

Problema 12. Considereu les sèries de termes positius $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$, i la sèrie diferència $a_1 - b_1 + \cdots + a_n - b_n + \cdots$ Indiqueu si és certa alguna de les afirmacions següents:

- (a) Si la sèrie diferència es convergent, aleshores ho són $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$.
- (b) Si $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ són convergents, aleshores la sèrie diferència es absolutament convergent.
- (c) Si $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ són divergents, aleshores la sèrie diferència també ho és.

Problema 13. Apliqueu el criteri de condensació per estudiar la convergència de las sèries:

(a)
$$\sum_{k=2}^{\infty} \frac{1}{k \log(k)},$$
 (b)
$$\sum_{k=2}^{\infty} \frac{1}{k \log(k) \log(\log(k))}.$$

Problema 14. Si a, b > 0, estudiar la convergència de la sèrie

$$\sum_{n=0}^{\infty} \frac{a(a+1)(a+2)\cdots(a+n)}{b(b+1)(b+2)\cdots(b+n)}.$$

Problema 15. Para cada $a \geq 0$, estudieu la convèrgencia de la sèrie

$$\sum_{n=1}^{\infty} \frac{a^n}{(n+1)!} \prod_{k=0}^{n} (3k+1).$$

Problema 16. Si a > 0, determineu el caràcter de la sèrie $\sum_{n=2}^{\infty} \prod_{k=2}^{n} (a - \sqrt[k]{a})$

Problema 17. Estudieu la convergència de la sèrie

$$\sum_{n=1}^{\infty} \frac{n! \, e^{\alpha \, n}}{(n+1)\cdots 2n}$$

en funció del paràmetre $\alpha \in \mathbb{R}$.

Problema 18. (El criteri logarítmic). Sigui (a_n) una successió de termes estrictament positius. Suposem que existeix $\lim_{n\to\infty} \frac{\log\left(\frac{1}{a_n}\right)}{\log(n)} = L \in [0, +\infty]$. Proveu que si L > 1 aleshores $\sum a_n$ és convergent, i si L < 1 aleshores $\sum a_n$ és divergent.

Problema 19. Se anomena sèrie de Bertrand la sèrie

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} (\log(n))^{\beta}}, \quad \alpha, \beta \in \mathbb{R}.$$

Proveu que la sèrie és convergent si $\alpha > 1$ o $\alpha = 1$ i $\beta > 1$, i és divergent en cas contrari.

Problema 20. Apliqueu el criteri de la integral a les sèries següents:

(a)
$$\sum_{k=2}^{\infty} \frac{\log(k)}{k}$$
, (b) $\sum_{k=2}^{\infty} \frac{\log(k)}{k^2}$.

(El carácter de estas series ya ha sido estudiado en el Problema 3 de la sección de problemas resueltos en los apuntes).

Problema 21. Estudieu la convèrgencia de la sèrie $\sum_{n=1}^{\infty} \frac{\arctan(n)}{\pi^2(1+n^2)^{\alpha}}$ en funció del paràmetre real α . Proveu que $\frac{3}{32} \leq \sum_{n=1}^{\infty} \frac{\arctan(n)}{\pi^2(1+n^2)} \leq \frac{3}{32} + \frac{1}{8\pi}$.

Problema 22. Siguin (a_n) i (b_n) dues successions de termes estrictament positius. Se suposa que, a partir d'un n_0 , es compleix que $\frac{b_{n+1}}{b_n} \leq \frac{a_{n+1}}{a_n}$. Proveu que, si $\sum a_n$ és convergent, aleshores $\sum b_n$ també és convergent.

(Proveu per inducció que
$$\frac{b_{n_0+1}+\cdots+b_N}{b_{n_0}} \leq \frac{a_{n_0+1}+\cdots+a_N}{a_{n_0}}$$
 per a tota $N>n_0$.)

Problema 23. Estudieu la convergència de les sèries numèriques següents:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$$
, (c) $\sum_{n=0}^{\infty} \sin\left(\frac{\pi}{3}n\right)$, (e) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1 + n} \sin\left(\frac{n}{1 + n^2}\right)$, (b) $\sum_{n=2}^{\infty} \frac{\log(n)}{n}$, (d) $\sum_{n=0}^{\infty} \frac{\arctan(n)}{n^3 + 1}$, (f) $\sum_{n=2}^{\infty} \frac{1}{\left(\log(n)\right)^{\log(n)}}$.

Problema 24. Estudieu el caràcter de les sèries següents en funció del valor del paràmetre real α :

(a)
$$\sum_{k=1}^{\infty} \frac{\sin(k\alpha)}{k^2},$$
 (c)
$$\sum_{k=2}^{\infty} \frac{1}{\left(\log(k)\right)^{\alpha \log(k)}},$$
 (b)
$$\sum_{k=2}^{\infty} k^{\alpha} \left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}}\right),$$
 (d)
$$\sum_{k=2}^{\infty} \left(1 + \frac{\alpha}{k}\right)^{-k \log(k)}.$$

Problema 25. Estudieu el caràcter de la sèrie $\sum_{k=1}^{\infty} \frac{1}{1^{\alpha} + 2^{\alpha} + \dots + k^{\alpha}}$ en funció del valor del paràmetre enter α .

NTEGRALS IMPRÒPIES

Problema 1. Determineu, a partir de la definició, quines de les integrals impròpies següents són convergents i, si és el cas, doneu-ne el valor.

(a)
$$\int_{1}^{+\infty} \frac{dx}{1+x},$$

(a)
$$\int_{1}^{+\infty} \frac{dx}{1+x}$$
, (e) $\int_{0}^{1} \log\left(\frac{1}{x}\right) dx$,

(i)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}$$
,

(b)
$$\int_0^{+\infty} e^{-x} dx$$
, (f) $\int_0^1 \frac{dx}{\sqrt{1-x}}$,

$$(f) \int_0^1 \frac{dx}{\sqrt{1-x}},$$

(j)
$$\int_{3}^{5} \frac{dx}{x^2 - 7x + 10}$$

(c)
$$\int_{1}^{+\infty} \frac{dx}{x^4}$$

(c)
$$\int_{1}^{+\infty} \frac{dx}{x^4}$$
, (g) $\int_{0}^{\frac{\pi}{2}} \tan(x) dx$,

(j)
$$\int_{3}^{5} \frac{dx}{x^{2} - 7x + 10},$$
(k)
$$\int_{6}^{+\infty} \frac{dx}{x^{2} - 7x + 10},$$

(d)
$$\int_{1}^{+\infty} \frac{dx}{1+x^2}$$

(d)
$$\int_{1}^{+\infty} \frac{dx}{1+x^2}$$
, (h) $\int_{0}^{+\infty} \left(\frac{\pi}{2} - \arctan(x)\right) dx$.

Problema 2. Estudieu la convergència de les integrals impròpies següents:

(a)
$$\int_{1}^{+\infty} \frac{dx}{x + \sin(x)}$$
, (c) $\int_{0}^{+\infty} \frac{x \, dx}{\sqrt{1 + x^4}}$, (e) $\int_{1}^{+\infty} \frac{dx}{x^2 + \sqrt{x}}$

(c)
$$\int_0^{+\infty} \frac{x \, dx}{\sqrt{1+x^4}},$$

(e)
$$\int_{1}^{+\infty} \frac{dx}{x^2 + \sqrt{x}}$$

(b)
$$\int_{2}^{+\infty} \frac{(3+2x^2)^{\frac{1}{7}}}{(x^3-1)^{\frac{1}{5}}} dx$$
, (d) $\int_{0}^{+\infty} \frac{dx}{\sqrt{1+x^3}}$, (f) $\int_{0}^{\pi} \frac{dx}{\sin(x)}$.

$$(d) \int_0^{+\infty} \frac{dx}{\sqrt{1+x^3}},$$

(f)
$$\int_0^{\pi} \frac{dx}{\sin(x)}$$

Problema 3. Determineu el caracter de les integrals impròpies següents en funció del paràmetre real α .

(a)
$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{1+|x|^{\alpha}}},$$
 (b)
$$\int_{0}^{+\infty} \frac{\sqrt{x^{\alpha}}}{x^{3}+x} dx,$$
 (c)
$$\int_{0}^{+\infty} \frac{x^{\alpha}}{1+x} dx.$$

(b)
$$\int_0^{+\infty} \frac{\sqrt{x^{\alpha}}}{x^3 + x} \, dx,$$

(c)
$$\int_0^{+\infty} \frac{x^{\alpha}}{1+x} dx$$

Problema 4. Estudieu la integral impròpia $\int_{-\infty}^{+\infty} \frac{dx}{(x-a)^2+b^2}$ (b>0) i, si és el cas, calculeu-la.

Problema 5. Sigui a > 0. Estudieu la convergència i calculeu les integrals impròpies

(a)
$$\int_0^{+\infty} e^{-ax} \cos(bx) dx,$$
 (b)
$$\int_0^{+\infty} e^{-ax} \sin(bx) dx$$

(b)
$$\int_0^{+\infty} e^{-ax} \sin(bx) dx$$

Problema 6. Apliqueu el criteri de Dirichlet a l'estudi de la convergència de les integrals següents, on $\alpha > 0$.

5

(a)
$$\int_0^{+\infty} \frac{x \sin(\alpha x)}{1 + x^2} dx,$$

(b)
$$\int_0^{+\infty} \frac{e^{\sin(x)}\sin(2x)}{x^{\alpha}} dx.$$

Problema 7. Calculeu les integrals impròpies següents, per als valors de λ que les fan convergents.

(a)
$$\int_{2}^{+\infty} \left(\frac{\lambda x}{x^2 + 1} - \frac{1}{2x + 1} \right) dx$$
, (b) $\int_{1}^{+\infty} \left(\frac{x}{2x^2 + 1} - \frac{\lambda}{2x + 1} \right) dx$

Problema 8. Trobeu els valors de a i b que fan $\int_{1}^{+\infty} \left(\frac{2x^2 + ax + b}{x(2x + b)} - 1 \right) dx = 1.$

Problema 9. Sigui $\lambda > 0$. Estudieu la convergència i calculeu, si és el cas, les integrals impròpies:

(a)
$$\int_a^{+\infty} e^{-\lambda x} dx$$
, (b) $\int_a^{+\infty} x e^{-\lambda x} dx$, (c) $\int_a^{+\infty} x^2 e^{-\lambda x} dx$, (d) $\int_a^{+\infty} P(x) e^{-\lambda x} dx$

on P és un polinomi de grau d.

Problema 10. Demostreu que les integrals impròpies

$$\int_0^{\frac{\pi}{2}} \log\left(\sin(x)\right) dx \quad i \quad \int_0^{\frac{\pi}{2}} \log\left(\cos(x)\right) dx,$$

són convergents i tenen el mateix valor. Calculeu-lo. (Considereu la suma de les dues integrals.)

Problema 11. Expresseu en termes de la funció Γ les integrals següents:

(a)
$$\int_0^{+\infty} t^2 e^{-t^2} dt$$
,
(b) $\int_0^{+\infty} t^{\alpha} e^{-st} dt$, $(\alpha > -1, s > 0)$
(c) $\int_0^1 x^3 (\log(x))^2 dx$,
(d) $\int_0^1 \frac{dx}{\sqrt{-\log(x)}}$.

Problema 12. Per a quins valors de $\alpha \in \mathbb{R}$ és convergent la integral impròpia

$$\int_0^{+\infty} \frac{\left(e^{-t^2} - e^{-\alpha t^2}\right)}{t} dt ?$$

Problema 13. Sean p(x), q(x) dos funciones polinómicas de grados d+1 i d+2 respectivamente y tales que q(x) > 0 para todo $x \in \mathbb{R}$.

- (i) Demostrar que d es par.
- (ii) Demostrar que $p(x) = \alpha q'(x) + Q(x)$, donde $\alpha \in \mathbb{R}^*$ y Q es un polinomio de grado menor o igual a d.
- (iii) Demostrar $\int_{-\infty}^{+\infty} \frac{Q(x)}{q(x)} dx$ es absolutamente convergente y además,

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{p(x)}{q(x)} dx = \int_{-\infty}^{+\infty} \frac{Q(x)}{q(x)} dx.$$

PROBLEMES

INTEGRACIÓ

$\mathbf{A} \mathbb{R}^n$

Problema 1. Dar un ejemplo de función $f: \mathbb{R} \longrightarrow \mathbb{R}$ igual c.s. a una función continua pero que no es continua c.s. Encontrar también un ejemplo de función $f: \mathbb{R} \longrightarrow \mathbb{R}$ continua c.s. pero que puede ser igual c.s. a una función continua.

Problema 2. Si $A \subset \mathbb{R}^n$ tiene medida nula, ¿es cierto que \bar{A} tiene medida nula?

Problema 3. Se define la función de Thomae como $f: [0,1] \longrightarrow \mathbb{R}$, dada por

$$f(x) = \begin{cases} 1, & \text{si } x = 0 \text{ ó } x = 1, \\ \frac{1}{q}, & \text{si } x \in \mathbb{Q}, \ x = \frac{p}{q}, \ q > 0 \text{ y mcd}(p, q) = 1, \\ 0, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

- (a) Hallar el conjunto de puntos de discontinuidad de f.
- (b) Demostrar que $f \in \mathcal{R}([0,1])$ y hallar $\int_0^1 f$.
- (c) Consideremos $\phi \colon [0,1] \longrightarrow \mathbb{R}$ definida como $\phi(0) = 0$ y $\phi(x) = 1$ si $0 < x \le 1$. Demostrar que $\phi \circ f \notin \mathcal{R}([0,1])$.
- (d) Para cada $n \in \mathbb{N}^*$, consideremos $\psi_n \colon [0,1] \longrightarrow \mathbb{R}$ definida como $\psi_n(x) = nx$ si $0 \le x \le \frac{1}{n}$ y $\psi_n(x) = 1$ si $\frac{1}{n} < x \le 1$. Demostrar que $\psi_n \circ f \in \mathscr{R}([0,1])$.

Problema 4. Digueu quins dels conjunts següents són de **mesura nul·la** o de **contingut** nul.

- (a) $\{(x,0): x \in [0,1]\} \subset \mathbb{R}^2$.
- (b) $\{(x,0) : x \in \mathbb{R}\} \subset \mathbb{R}^2$.
- (c) $\{(x, x^2) : x \in [0, 1]\} \subset \mathbb{R}^2$.
- (d) $\{(0,y): y \in [0,1] \cup \mathbb{Q}\} \subset \mathbb{R}^2$.
- (e) $\{(x,0): x \in \mathbb{Q}\} \subset \mathbb{R}^2$.
- (f) $\{(x,y):x\in[0,1],\,y\in[0,1]\cup\mathbb{Q}\}\subset\mathbb{R}^2$.
- (g) $\{(x,y): y = \sin(x), x \in \mathbb{R}\} \subset \mathbb{R}^2$.

(h)
$$\{(x,y): 0 < x < 1, 0 < y < 1\} \subset \mathbb{R}^2$$
.

Problema 5. Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función monótona.

(a) Si
$$x_1, \ldots, x_m \in [a, b]$$
, demostrar que $\sum_{j=1}^m \omega(f, x_j) \leq |f(b) - f(a)|$.

- (b) Demostrar que para cada $m \in \mathbb{N}^*$, el conjunto $\left\{x \in [a,b] : \omega(f,x) > \frac{1}{m}\right\}$ es finito.
- (c) Demostrar que el conjunto de puntos de discontinuidad de f es numerable.
- (d) ¿Se satisface que $f \in \mathcal{R}([a,b])$?

Problema 6. Considereu la funció $f:[0,1]\times[0,1]\longrightarrow\mathbb{R}$ definida per

$$f(x,y) = \begin{cases} 1, & \text{si } x \in \mathbb{Q}, \\ 2y, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Estudieu l'existència de les integrals

$$\int \int_{[0,1]\times[0,1]} f, \qquad \int_0^1 dx \int_0^1 f(x,y) dy, \qquad \int_0^1 dy \int_0^1 f(x,y) dx.$$

Problema 7. Sigui $A=\left\{\left(\frac{p}{2^n},\frac{q}{2^n}\right):n\geq 0,\,p,\,q\text{ imparells},1\leq p,q\leq 2^n\right\}$, i sigui χ_A la seva funció característica.

- (a) Calculeu les integrals iterades de χ_A sobre el quadrat $[0,1] \times [0,1]$.
- (b) Estudieu si χ_A és integrable Riemann sobre el mateix quadrat.

Problema 8. Calculeu les integrals de les funcions següents sobre els rectangles indicats:

(a)
$$f(x,y) = x|y|$$
; $R = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, -1 \le y \le 3\}$.

(b)
$$f(x, y, z) = x^2 + y^2 + z^2$$
; $R = \{(x, y, z) \in \mathbb{R}^3 : -1 \le x, y, z \le 1\}$.

Problema 9. Calculeu les integrals de les funcions següents sobre les regions indicades:

(a)
$$f(x,y) = x - y$$
; $R = \{(x,y) \in \mathbb{R}^2 : x + y < 1, x > 0, y > 0\}$.

(b)
$$f(x,y) = 1$$
; $R = \{(x,y) \in \mathbb{R}^2 : x^2 \le y \le x\}$

(c)
$$f(x,y) = 1$$
; $R = \{(x,y) \in \mathbb{R}^2 : x + y \ge 1, x^2 + y^2 \le 1\}$.

Problema 10. Calculeu l'integral de les funcions $f(x,y) = |\cos(x+y)|$ i $g(x,y) = \cos(x+y)$ sobre el quadrat $[0,\pi] \times [0,\pi]$.

Problema 11. Considereu la funció definida en $D = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$ per

$$f(x,y) = \begin{cases} a, & \text{si } y < \sin(x), \\ b, & \text{si } y = \sin(x), \\ c, & \text{si } y > \sin(x). \end{cases}$$

on $a,b,c\in\mathbb{R}$. Quin és el conjunt de punts de discontinuïtat de f? És f integrable? Calculeu

$$\int \int_D f(x,y) dx dy.$$

Problema 12. Obteniu la probabilitat que l'equació $ax^2 + bx + c = 0$, els coeficients de la qual s'escullen a l'atzar en l'interval [0,1], tingui arrels reals. Més generalment, si $\ell_1, \ell_2, \ell_3 > 0$ determinar la probabilitat que l'equació tingui arrels reals quan a es tria a l'atzar en l'interval $[0, \ell_1]$, b es tria a l'atzar en l'interval $[0, \ell_2]$ i c es tria a l'atzar en l'interval $[0, \ell_3]$.

Problema 13. Si $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, 0 \le z \le 3\}$ i f es contínua en A, rescriviu $\int_A f(x, y, z) dx dy dz$ integrant primer respecte a x, després respecte a y, i després respecte a z.

Problema 14. Reexpresseu les integrals dobles següents canviant l'ordre d'integració:

(a)
$$\int_0^4 dx \int_{3x^2}^{12x} f(x,y)dy$$
, (b) $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y)dx$.

Problema 15. Si 0 < a < b, aplicando el Teorema de Fubini a la integral $\int_{[0,1]\times[a,b]} x^y dx dy$, hallar el valor

$$\int_0^1 \frac{x^b - x^a}{\log(x)} \, dx$$

Problema 16. Si 1 < a y consideramos el conjunto elemental

$$R = \left\{ 1 \le x \le a, \ \sqrt[5]{x} \le y \le \sqrt{x} \right\} \cup \left\{ a \le x \le a^{\frac{5}{2}}, \ \sqrt[5]{x} \le y \le \sqrt{a} \right\},$$

hallar el valor

$$\int_{R} e^{xy^{-2}} dy dx$$

Problema 17. Calculeu la integral de la funció $f(x,y) = x^2 + y^2$ sobre la regió definida per les desigualtats $|x| \le |y| \le 2$.

Problema 18. Usar el cambio de variables x = u - v, y = 2u - v para evaluar

$$\int \int_{P} xy \, dx dy$$

donde P es el paralelogramo comprendido entre las rectas

$$y = 2x$$
, $y = 2x - 2$, $y = x$, $y = x + 1$.

Problema 19. Calculeu les integrals $\int_A f$ indicades. (Utilitzeu canvis de variables apropiats.)

(a)
$$f(x,y) = 1$$
; $A = \{(x,y) \in \mathbb{R}^2 : (x+y)^2 + (2x-y+1)^2 \le 1\}$.

(b)
$$f(x,y) = x^2 + y^2$$
; $A = \{(x,y) \in \mathbb{R}^2 : \alpha \le x^2 - y^2 \le \beta, \gamma \le xy \le \delta\}$, essent $0 < \alpha < \beta, 0 < \gamma < \delta$ constants donades.

(c)
$$f(x,y) = e^{\frac{x-y}{x+y}}$$
; $A = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, 1 < x+y < 2\}$.

Problema 20. Calculeu les integrals $\int_A f$ indicades:

(a)
$$f(x,y) = x^2 + y^2$$
; $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 - 2ax \le 0\}$.

- (b) $f(x, y, z) = z^2$, A la regió comuna a les esferes $x^2 + y^2 + z^2 \le R^2$ i $x^2 + y^2 + z^2 \le 2Rz$, on R > 0.
- (c) $f(x, y, z) = \sqrt{x^2 + y^2}$, donde $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1, x^2 + y^2 < z^2, z > 0\}.$

Problema 21. Expresseu en coordenades polars la integral $\int \int_A f(x,y) dx dy$ on A és el domini limitat per les rectes y = x, y = -x i y = 1.

Problema 22. Sigui A la regió plana definida en coordenades polars per $\phi_1 < \phi < \phi_2$, $r < R(\phi)$, on R és una funció positiva.

- (a) Proveu que la seva àrea es pot calcular amb la integral $\frac{1}{2} \int_{\phi_1}^{\phi_2} R(\phi)^2 d\phi$.
- (b) Calculeu l'àrea tancada per la cardioide: $r = a(1 + \cos(\phi))$.
- (c) Calculeu l'àrea tancada per la lemniscata: $r^2 = a^2 \cos(2\phi)$.
- (d) Calculeu l'àrea tancada per un pètal de la rosa: $r = a \sin(\phi)$ (essent a > 0).

Problema 23. Calculeu l'àrea de les regions definides per les designaltats indicades:

(a)
$$a \le \frac{y}{x} \le b$$
, $\alpha \le \frac{y}{x^2} \le \beta$, amb $0 < a < b$, $0 < \alpha < \beta$.

(b)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} \le a^{\frac{2}{3}}$$
, amb $a > 0$ (astroide.)

Problema 24. Considereu el recinte $S = S_1 \cup S_2$, on S_1 és el recinte limitat per les rectes y = 0, y = x, x = 1, x = 2, i S_2 és el recinte limitat, en el primer quadrant, per les rectes y = x, y = 3x i les circumferències $x^2 + y^2 = 2$, $x^2 + y^2 = 8$. Calculeu $\int \int_S (x^2 + y^2) dx dy$.

Problema 25. Calculeu l'integral $\int \int_D \sqrt{xy} dx dy$ on D és la regió limitada per xy = 1, xy = 2, $y^2 = x$ i $y^2 = 2x$.

Problema 26. Sigui $D \subset \mathbb{R}^2$ un conjunt mesurable Jordan, simètric respecte a l'eix OX (és a dir, si $(x,y) \in D$, també $(x,-y) \in D$.)

[©] CÀLCUL INTEGRAL, GRAU EN MATEMÀTIQUES, FME. Curs 2019-20

- (a) Raoneu que podeu escriure $D=D_1\cup D_2$, on D_1 és dins el semiplà superior i $D_2=\varphi(D_1)$, essent $\varphi(x,y)=(x,-y)$ la simetria respecte a l'eix OX. Són disjunts D_1 i D_2 ?
- (b) Sigui $f \colon D \longrightarrow \mathbb{R}$ integrable Riemann. Proveu que si f es parella respecte a y (és a dir, f(x, -y) = f(x, y)) llavors $\int_D f = 2 \int_{D_1} f$, i si f es imparella respecte a y (és a dir, f(x, -y) = -f(x, y)) llavors $\int_D f = 0$.

(Apliqueu el teorema del canvi de variables amb φ per a calcular $\int_{D_2} f$.)

Problema 27. Calculeu:

- (a) L'àrea tancada per l'el·lipse de semieixos a > 0 i b > 0.
- (b) El volum tancat per l'el·lipsoide de semieixos a > 0, b > 0 i c > 0.

Problema 28. Si $\alpha \geq 0$ y $\beta, \gamma, k > 0$, hallar $\int_s (x^2 + y^2)^{\alpha} dx dy dz$, donde S es el sólido limitado por el plano $\{z = \gamma\}$ y la superficie $x^2 + y^2 = kz^{\beta}$.

Problema 29. Sigui A un sòlid de revolució obtingut fent girar la regió $B \subset \{(x,y,z) \in \mathbb{R}^3 : x > 0, y = 0\}$ al voltant de l'eix OZ.

- (a) Proveu que el seu volum es pot calcular amb la integral $2\pi \int \int_{B} x dx dz$.
- (b) Supusem que B és la regió simple descrita per $z_1 < z < z_2$, f(z) < x < g(z). Proveu que el volum de revolució és $\pi \int_{z_1}^{z_2} (g(z)^2 f(z)^2) dz$.
- (c) Calculeu el volum d'un con circular recte de radi a>0 i alçada h>0.
- (d) Calculeu el volum tancat pel tor de revolució de generatriu $(x-a)^2 + z^2 = b^2$ (on 0 < b < a.)

Problema 30. Sigui D el recinte determinat per $x^2 + y^2 \le 8$, $0 \le y \le 2$, i sigui $I = \int \int_D y dx dy$.

- (a) Expresseu I aplicant el teorema de Fubini, en els dos ordres possibles, en coordenades cartesianes.
- (b) Expresseu I en coordenades polars.
- (c) Calculeu el valor de I.
- (d) Sense fer més càlculs, raoneu quins són els valors de les integrals

$$\int \int_D x dx dy, \qquad \int \int_D (x+y) dx dy, \qquad \int \int_D xy dx dy.$$

Problema 31. Sigui $A \subset \mathbb{R}^3$ un conjunt mesurable Jordan, tal que cadascuna de les seves seccions horitzontals $A_c = A \cup \{z = c\}$ és mesurable Jordan (en el pla z = c).

(a) Supusem que $A \subset R \times [z_1, z_2]$, amb $R \subset \mathbb{R}^2$ un cert rectangle compacte. Proveu que $\mathsf{vol}(A) = \int_{z_1}^{z_2} \mathsf{area}(A_z) dz$.

(Useu el teorema de Fubini, $\int_A 1 = \int_{z_1}^{z_2} \int \int_R \chi_{\scriptscriptstyle A}(x,y,z) dx dy$, on $\chi_{\scriptscriptstyle A}$ és la funció característica de A.

- (b) Proveu el **Principi** de Cavalieri: Si A i B tenen les seccions horitzontals amb mateixes àrees, llavors vol(A) = vol(B).
- (c) Sense fer cap càlcul, proveu que per h > 0, el cilindre recte

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le h\}$$

i el cilindre oblic

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + (y - z)^2 \le 1, \ 0 \le z \le h\}$$

tenen mateix volum.

Problema 32. Siguin Ω la regió de l'espai definida per $z \ge \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2$, i Γ la definida per $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1$. Determineu el valor de $\lambda > 0$ que fa que siguin iguals els volums dels fragments de Ω i Γ compresos entre els plans z = 0 i $z = \lambda$.

Problema 33. Considereu el paraboloide d'equació $z=a-x^2-y^2$ i el pla $z=\lambda a$, on $0<\lambda<1$. Sigui $\mathbf{v}(A)$ el volum del paraboloide comprès entre el seu vèrtex i el pla, i $\mathbf{v}(B)$ el volum comprès entre el pla donat i el pla XY. Determineu λ per tal que se satisfaci que $\mathbf{v}(A)=k\mathbf{v}(B),\ k>0$.

Problema 34. Consideremos los números reales $\alpha, \beta, a, b, c \in \mathbb{R}$, tales que $\beta > 0$, c > 0 y 0 < a < b. Hallar el valor de la integral

$$\int_{R} xy^{\beta} z \left(x^{2} + y^{2} + z^{2}\right)^{\alpha} dx dy dz,$$

donde

$$R = \left\{ (x, y, z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0, \ x^2 + y^2 \le c^2 z^2, \ a^2 \le x^2 + y^2 + z^2 \le b^2 \right\}.$$

Problema 35. Calculeu les integrals impròpies $\int_A f$ indicades.

(a)
$$f(x,y) = xe^{-y}$$
; $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, y \ge 0\}$.

(b)
$$f(x,y) = \frac{1}{\sqrt{x^2 - y}}$$
; $A = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 1, \ 0 \le y < x^2\}$.

[©] CÀLCUL INTEGRAL, GRAU EN MATEMÀTIQUES, FME. Curs 2019-20

Problema 36. Considereu el recinte

$$A = \left\{ (x, y) \in \mathbb{R}^2 : x > 0, \ y > 0, \ \left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q \le 1 \right\}$$

i la funció $f(x,y)=x^{\alpha-1}y^{\beta-1},$ on $a,b,p,q,\alpha,\beta>0.$ Demostreu la **Fórmula de Dirichlet** bidimensional:

$$\int_{A} f = \frac{a^{\alpha}b^{\beta}}{pq} \frac{\Gamma\left(\frac{\alpha}{p}\right)\Gamma\left(\frac{\beta}{q}\right)}{\Gamma\left(\frac{\alpha}{p} + \frac{\beta}{q} + 1\right)}.$$

Indicació: Feu el canvi $u = \left(\frac{x}{a}\right)^p$, $v = \left(\frac{y}{b}\right)^q$, apliqueu la definició de la funció Beta i la seva expressió en termes de la funció Γ

Observació: Per a α o β menors que 1, la fórmula de Dirichlet calcula una integral impròpia.

Problema 37. Calculeu l'àrea S_n del recinte limitat, en el primer quadrant, pels eixos coordenats i la corba $x^{\frac{2}{n}} + y^{\frac{2}{n}} = a^{\frac{2}{n}}$, on a > 0 i $n \in \mathbb{N}^*$.

(Expresseu el resultat segons la paritat de n.)

Problema 38. Fijados $c_1, \ldots, c_n \in \mathbb{R}$ y $a_1, \ldots, a_n > 0$ consideramos la aplicación $T: (0, +\infty) \times \left(0, \frac{\pi}{2}\right)^{n-2} \times (0, 2\pi) \longrightarrow \mathbb{R}^n$, definida como $T(r, \varphi_1, \ldots, \varphi_n) = (x_1, \ldots, x_n)$ donde

$$x_{1} = c_{1} + a_{1}r \operatorname{sen}(\varphi_{1})\operatorname{cos}(\varphi_{2})$$

$$x_{2} = c_{2} + a_{2}r \operatorname{sen}(\varphi_{1}) \operatorname{sen}(\varphi_{2})\operatorname{cos}(\varphi_{3})$$

$$x_{3} = c_{3} + a_{3}r \operatorname{sen}(\varphi_{1}) \operatorname{sen}(\varphi_{2}) \operatorname{sen}(\varphi_{3})\operatorname{cos}(\varphi_{4})$$

$$\vdots$$

$$x_{n-2} = c_{n-2} + a_{n-2}r \operatorname{sen}(\varphi_{1}) \operatorname{sen}(\varphi_{2}) \cdots \operatorname{sen}(\varphi_{n-2})\operatorname{cos}(\varphi_{n-1})$$

$$x_{n-1} = c_{n-1} + a_{n-1}r \operatorname{sen}(\varphi_{1}) \operatorname{sen}(\varphi_{2}) \cdots \operatorname{sen}(\varphi_{n-2}) \operatorname{sen}(\varphi_{n-1})$$

$$x_{n} = c_{n} + a_{n}r \operatorname{cos}(\varphi_{1}).$$

Demostrar que T es un cambio de variable y hallar el volumen del elipsoide n-dimensional de centro c y semiejes a_1, \ldots, a_n ,

$$E = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \frac{(x_1 - c_1)^2}{a_1^2} + \dots + \frac{(x_n - c_n)^2}{a_n^2} \le 1 \right\}.$$

Problema 39. Considéresen $n \in \mathbb{N}^*$, $T: (0,1)^n \longrightarrow \mathbb{R}^n$ definida como

$$T(u_1, u_2, \dots, u_{n-1}, u_n) = (u_1(1 - u_2), u_1u_2(1 - u_3), \dots, u_1u_2 \cdots u_{n-1}(1 - u_n), u_1u_2 \cdots u_n)$$

$$y \Delta_n = T((0, 1)^n).$$

- (i) Demostrar que $\sum_{i=j}^{n} x_i = \prod_{i=1}^{j} u_i$ y concluir que T es un cambio de variable.
- (ii) Demostrar que el jacobiano de T es $J_T(u_1, ..., u_n) = u_1^{n-1} u_2^{n-2} \cdots u_{n-2}^2 u_{n-1}$.

(iii) Demostrar que
$$\Delta_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_j > 0, \ j = 1, \dots, n \ y \ \sum_{j=1}^n x_j < 1 \}.$$

(iv) Hallar $v(\Delta_n)$, el volumen de Δ_n .

(v) Si
$$\alpha_i \ge 0$$
, $i = 0, ..., n$, y $f(x_1, ..., x_n) = \left(1 - \sum_{i=1}^n x_i\right)^{\alpha_0} \prod_{i=1}^n x_i^{\alpha_i}$, calcular

$$\int_{\Delta_n} f(x_1, \dots, x_n) dx_1 \cdots dx_n.$$

Particularizar la expresión obtenida al caso en el que $\alpha_i \in \mathbb{N}$, i = 0, n.

Problema 40. Consideremos $n \in \mathbb{N}^*$, a > 0, $r = \sqrt{x_1^2 + \dots + x_n^2}$ y la bola cerrada $B(a) = \{x \in \mathbb{R}^n : r(x) \leq a\}$. Demostrar que el potencial logarítmo $\log\left(\frac{1}{r}\right)$ y los potenciales de Riesz $\frac{1}{r^{\alpha}}$ con $0 < \alpha < n$ tienen integral convergente en B(a) y hallar su valor

Problema 41. En un sòlid pla S de densitat uniforme, área $\mathsf{a}(S)$ i massa m, les coordenades del seu centre de masses $(x_{\rm cm}, y_{\rm cm})$ estan determinades per les expressions

$$x_{\mathrm{cm}} = \frac{1}{\mathsf{a}(S)} \int_S x dx dy \quad \mathsf{e} \quad y_{\mathrm{cm}} = \frac{1}{\mathsf{a}(S)} \int_S y dx dy,$$

Considereu el sòlid pla de densitat uniforme limitat per la cardioide d'equació

$$r = a(1 + \cos(\phi))$$

en coordenades polars. Calculeu-ne el centre de massa.

Problema 42. En un sòlid pla S de densitat uniforme i massa m, el moment d'inèrcia de S respecte d'un eix E està determinat per l'expressi

$$I=m\int_{S}r^{2}(x,y)dxdy$$
, on $r(x,y)$ és la distància del punt $(x,y)\in S$ a l'eix E .

Considereu el sòlid pla de densidat uniforme i massa m limitat per la **lemniscata** d'equació $r^2 = a^2 \cos(2\phi)$ en coordenades polars. Calculeu-ne el moment d'inèrcia respecte a un eix perpendicular al pla i que passa per l'origen.

PROBLEMES

INTEGRALS DE LÍNIA I DE SUPERFÍCIE

Problema 1. Calculeu la llargada de les corbes següents:

- (a) Hèlix: $c(t) = (a\cos(t), a\sin(t), bt), 0 < t < 4\pi$
- (b) Arc de Cicloide: $x = R(t \sin(t)), y = R(1 \cos(t)), 0 < t < 2\pi$.
- (c) Astroide o hipocicloide de quatre puntes: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. (El canvi $u = \left(\frac{x}{a}\right)^{\frac{1}{3}}$, $v = \left(\frac{y}{a}\right)^{\frac{1}{3}}$ us en pot inspirar una parametrització).

Problema 2. Obteniu les fórmules que permeten calcular la llargada d'una corba plana en els supòsits indicats:

- (a) Corba en forma explícita, y = f(x), $x_1 < x < x_2$, on $f \in \mathcal{C}^1([x_1, x_2])$.
- (b) Corba en coordenades polars, $r = f(\phi), \phi_1 < \phi < \phi_2$.

Problema 3. Calculeu la llargada de les corbes expressades en coordenades polars següents:

- (a) Cardioide: $r = a(1 + \cos(\phi)), 0 < \phi < 2\pi$.
- (b) Espiral logarítmica: $r = e^{-\phi}$, $0 < \phi < +\infty$.

Problema 4. Calculeu la llargada de l'espiral $\alpha(t) = \left(t\cos\left(\frac{2\pi}{t}\right), t\sin\left(\frac{2\pi}{t}\right)\right)$, amb 0 < t < 1.

Problema 5. Calculeu les integrals de línia següents:

(a)
$$\int_C \sqrt{a^2 - y^2} d\mathbf{\ell}$$
, on C és la corba $x^2 + y^2 = a^2$, $y > 0$.

(b)
$$\int_C \frac{d\boldsymbol{\ell}}{\sqrt{x^2 + y^2 + z^2}}$$
, on C és la corba $x^2 + y^2 = R^2$, $z = d$.

Problema 6. Calculeu les integrals de línia $\int_C \mathbf{F} \cdot d\boldsymbol{\ell}$ següents:

(a)
$$\int_{(R,0)}^{-R,0} x dy$$
 al llarg de la corba $x^2 + y^2 = R^2$, $y > 0$.

(b)
$$\int_{(1,1)}^{-1,1} ((x^2 - 2xy)dx + (y^2 - 2xy)dy)$$
, al llarg de la paràbola $y = x^2$.

- (c) $\int_{(1,0,0)}^{(2,1,2)} \mathbf{F} \cdot d\mathbf{\ell}$ al llarg del segment que uneix ambdós punts, on el camp \mathbf{F} ès $\mathbf{F}(x,y,z) = \left(\frac{1}{x-y}, \frac{1}{y-x}, z\right)$.
- (d) $\mathbf{F}(x, y, z) = (x + y, y + z, z + x)$, C és l'arc de la paràbola $x = z^2$, y = 0, des de (1, 0, -1) fins (1, 0, 1).
- (e) $\mathbf{F}(x,y,z) = (x^3 + y, y^2 + z, x + y + z)$, C és la circumferència $x^2 + y^2 = 3$, z = 0, orientada en el pla XY en sentit positiu.

Problema 7. Calculeu l'àrea de les superfícies següents:

(a) Con
$$\frac{x^2 + y^2}{a^2} = \frac{z^2}{h^2}$$
, $0 < z < h$.

- (b) Esfera de radi a.
- (c) El tros de l'esfera $x^2 + y^2 + z^2 2az = 0$ (on $a \ge 0$) contingut dins el paraboloide $2z = x^2 + y^2$.
- (d) El fragment del con d'equació $x^2 + y^2 = z^2$ limitat pels plans z = 0 i y + 2z = 1.

Problema 8. Integreu les funcions següents sobre les superfícies indicades:

- (a) $f(x,y,z)=(x^2+y^2)z$, sobre l'hemisferi superior de l'esfera de radi a centrada en l'origen. essent a>0.
- (b) f(x, y, z) = x, sobre el cilindre definit per $x^2 + y^2 = a^2$, amb 0 < z < 1.

Problema 9. Sigui S la superfície de revolució obtinguda fent girar la corba generatriu $C \subset \{(x,y,z): x>0, y=0\}$ al voltant de l'eix OZ.

- (a) (Teorema de Guldin) Si x=a(t), z=c(t) $(t_1 < t < t_2)$ és una parametrització injectiva i regular de C, proveu que l'àrea de S és $2\pi \int_{t_1}^{t_2} a(t) \sqrt{a'(t)^2 + c'(t)^2} \, dt$
- (b) Apliqueu-ho a calcular l'àrea del tor de revolució de generatriu $(x-R)^2+z^2=r^2$.

Problema 10. Calculeu les integrals de superfície $\int_{S} \mathbf{F} \cdot d\mathbf{S}$ indicades:

- (a) $\mathbf{F}(x, y, z) = (y, -x, 1)$, sobre la superfície parametritzada per la funció $g(t, \theta) = (t\cos(\theta), t\sin(\theta), \theta)$, amb 0 < t < 1 i $0 < \theta < 2\pi$.
- (b) $\mathbf{F}(x,y,z)=(x+y+z,y+z,z)$ a través de la frontera del cub $0\leq x,y,z\leq 2,$ orientada vers l'exterior.

- (c) $\mathbf{F}(x,y,z) = (x+y,y-x,z)$, a través de la superfície $S = \{z = 4 x^2 y^2, z \ge 0\}$ orientada amb el vector normal *cap amunt*.
- (d) $\mathbf{F}(x,y,z)=(0,0,z^2)$ a través de la superfície cònica $C=\left\{(z-1)^2=x^2+y^2,\ 0\leq z\leq 1\right\}$, tancada amb el pla $\{z=0\}$, orientada cap a l'exterior
- (e) $\mathbf{F}(x,y,z) = (x,y,\frac{1}{3})$, a través de l'hemisferi $S = \{(x,y,z): x^2+y^2+z^2=1,\ z>0\}$, orientat amb el vector normal $cap\ amunt$.
- (f) $\mathbf{F}(x,y,z) = (x,y,z)$, a través de la superfície $S = \{(x,y,z) : \frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1, \ z > 0\}$, orientada amb el vector normal $cap\ amunt$.
- (g) $\mathbf{F}(x,y,z) = (x,0,0)$, sobre el fragment de l'esfera de centre l'origen i radi 1 contingut dins el semicon $\{x^2 + y^2 = z^2, z > 0\}$, orientat segons el vector normal en sentit radial.
- (h) $\mathbf{F}(x,y,z) = (x,y^2,z)$, sobre la frontera de la regió tancada pel pla x+y+z=1 i els plans coordenats, orientada vers l'exterior.

Problema 11. Calculeu les integrals de línia següents:

- (a) $\oint_C (x^2 + y^2) d\boldsymbol{\ell}$, on C és la circumferència de centre (0,0) i radi R.
- (b) $\int_C (xy+z^2)d\mathbf{\ell}$, on C és l'arc d'hèlix $x=\cos(t),\ y=\sin(t),\ z=t$ comprès entre (1,0,0) i $(-1,0,\pi)$.

Problema 12. Calculeu les integrals de línia dels camps vectorials donats al llarg de les corbes orientades indicades:

- (a) $\mathbf{F}(x,y,z) = (2xy,3z,5zy)$ al llarg de la corba parametritzada $\gamma(t) = (t+1,t^3-1,t^2)$ des de (0,-2,1) fins (2,0,1).
- (b) $\mathbf{F}(x,y,z) = (x,y,xz-y)$, sobre el segment que va des de (0,0,0) fins (1,2,4).
- (c) $\mathbf{F}(x,y,z) = \left(\frac{x+y}{x^2+y^2}, \frac{y-x}{x^2+y^2}\right)$, al llarg de la circumferència $x^2+y^2=a^2$ recorreguda positivament.
- (d) $\mathbf{F}(x, y, z) = (3xy, -y^2, e^z)$, al llarg de la corba d'equacions $\{z = 0, y = 2x^2\}$, des de (0, 0, 0) fins (1, 2, 0).
- (e) $\oint_C (ydx + zdy + xdz)$, on C és la circumferència de radi 2 centrada en $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ i situada en el pla x + y + z = 1, recorreguda en el sentit de les busques del rellotge vista des de l'origen.
- (f) $\int_{(2,1,\frac{\pi}{2})}^{(2,1,\pi)} \left(\sin^2(z) dx + x \sin(2z) dz \right)$ al llarg de la recta que uneix ambdós punts.

Problema 13. Proveu que la integral de línia $\int_C \left(\frac{dx}{yz} + \frac{dy}{xz} + \frac{dz}{xy}\right)$ al llarg de qualsevol corba situada sobre un octant d'una esfera centrada a l'origen i de radi arbitrari val zero.

Problema 14. Una tanca circular, centrada a l'origen i de radi 1, té alçada h(x, y) = |x| + |y|. Calculeu-ne l'àrea.

Problema 15. Calculeu el centre de massa del sòlid pla

$$S = \{(x, y, z) : x + y + z = 1, \ x \ge 0, \ y \ge 0, \ z \ge 0\}$$

(amb densitat distribuïda uniformement).

Problema 16. Calculeu el centre de massa de la regió de l'esfera $\{x^2 + y^2 + z^2 = r^2\}$ compresa entre els plans z = a i z = b, amb $|a|, |b| \le r$ (amb densitat distribuïda uniformement).

Problema 17. Calculeu el flux dels camps vectorials següents a través de les superfícies orientades indicades:

- (a) $\mathbf{F}(x,y,z) = (x^2,y^2,z^2)$ a través de la superfície definida per g(t,u) = (t+u,t-u,t), amb 0 < t < 2 i 1 < u < 3.
- (b) $\mathbf{F}(x,y,z) = \frac{1}{\sqrt{x^2+y^2}}(y,-y,1)$, a través del paraboloide $z=1-x^2-y^2$, on 0 < z < 1, orientat amb el vector normal $cap\ amunt$.
- (c) $\mathbf{F}(x,y,z) = \frac{1}{\sqrt{x^2+y^2}}(y,-y,1)$, a través de la meitat inferior de l'esfera de radi 1 centrada a l'origen i orientada amb el vector normal cap avall.
- (d) $\mathbf{F}(x, y, z) = y\mathbf{i} + z\mathbf{j} + x\mathbf{k}$, a través de la superfície de la piràmide limitada pels plans x = 0, y = 0, z = 0, x + y + z = a, a > 0.
- (e) $\mathbf{F}(x,y,z)=(4xz,-y^2,yz)$, a través de la frontera del cub $0\leq x,y,z\leq 1$.
- (f) $\mathbf{F}(x,y,z) = (x-y,x-y,5z^3)$, a través de la superfície esfèrica $x^2+y^2+z^2=1$, orientada cap a fora.
- (g) $\mathbf{F}(x,y,z) = (y,-y^2z,yz^2-x^2)$, a través de la superfície $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, z > 0, orientada cap a fora.
- (h) $\mathbf{F}(x,y,z) = (z-y,x-z,z-x)$, a través de la superfície $x^2+y^2+z^2=9,\,1< z<2,$ orientada en sentit radial positiu.
- (i) $\mathbf{F}(x,y,z) = (x+z,z-y,1)$, a través de la porció superfície cònica $\frac{x^2}{2} + \frac{y^2}{3} = z^2$, compresa entre els plans z=0 i z=1, orientada en direcció positiva.

Problema 18. Siguin $\mathbf{F} = (2, -3, 1)$, i S un cercle de radi a, situat en un pla P. Doneu l'equació dels plans P per als quals el flux de \mathbf{F} a través de S es màxim.

PROBLEMES

TEOREMES INTEGRALS

DE L'ANÀLISI VECTORIAL

Problema 1. Si u, v son campos escalares y f, g campos vectoriales, demostrar las siguientes identidades:

(a)
$$\nabla(uv) = u\nabla(v) + v\nabla(u)$$
.

(b)
$$\operatorname{div}(u\mathsf{f}) = u\operatorname{div}(\mathsf{f}) + \langle \nabla u, \mathsf{f} \rangle$$
.

(c)
$$\operatorname{rot}(u\mathsf{f}) = u \operatorname{rot}(\mathsf{f}) + \nabla(u) \times \mathsf{f}$$
.

(d)
$$\operatorname{div}(f \times g) = \langle g, \operatorname{rot}(f) \rangle - \langle f, \operatorname{rot}(g) \rangle$$
.

(e)
$$\operatorname{rot}(\operatorname{rot}(f) = \nabla(\operatorname{div}(f)) - \Delta(f)$$
.

(f)
$$\operatorname{rot}(f \times g) = \operatorname{fdiv}(g) - \operatorname{gdiv}(f) + (g \cdot \nabla)f - (f \cdot \nabla)g$$
, donde

$$(\mathsf{f}\cdot
abla)\mathsf{g} = \Big(\langle\mathsf{f},
abla g_1
angle, \langle\mathsf{f},
abla g_2
angle, \langle\mathsf{f},
abla g_3
angle\Big)$$

Problema 2. Si r és el camp radial de \mathbb{R}^3 , calculeu el rotacional dels camps vectorials $a \times r$ i $\langle a, r \rangle \cdot b$ on $a, b \in \mathbb{R}^3$ són vectors constants.

Problema 3. Si f i g són camps escalars de classe $\mathcal{C}^2(\mathbb{R}^3)$, què val div $(\nabla f \times \nabla g)$?

Problema 4. Un fluid gira al voltant de l'eix OZ amb velocitat angular $\omega(x,y,z)$.

- (a) Calculeu el seu camp de velocitats $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$, on $\boldsymbol{\omega} = (0,0,\omega)$.
- (b) Calculeu el rotacional de ${\sf v}.$
- (c) En el cas que ω només depengui de la distància ρ a l'eix OZ, esbrineu quan ${\sf v}$ ès irrotacional.

Problema 5. Estudieu si els camps vectorials següents admeten funció potencial. En cas afirmatiu, calculeu-la.

(a)
$$f(x,y) = (xy,1)$$
.

(b)
$$f(x,y) = (y,x)$$
.

(c)
$$f(x,y) = (x+2y, 2x+y^3)$$
.

(d)
$$f(x,y) = (x^2 - 3xy, x^2 - x^3 + y).$$

(e)
$$f(x,y) = (e^{x-y}(1+x+y), e^{x-y}(1-x-y)).$$

(f)
$$f(x,y) = \left(\frac{2x}{x^2 + y}, \frac{1}{y + x^2}\right)$$
.

Problema 6. Comproveu que la integral de línia

$$\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz)dx + (3y^2 + xz)dy + (3z^2 + xy)dz$$

no depèn del camí, i calculeu-la.

Problema 7. Donada la relació $\nabla \times \mathsf{f} = (x(y^2+z^2), y(x^2+z^2) - z(x^2+y^2+az^2)),$ determineu a.

Problema 8. Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

Problema 9. Demostreu que el camp vectorial

$$f(x, y, z) = (y - z)i + (z - x)j + (x - y)k$$

és solenoïdal, i obteniu un camp vectorial g tal que f = rot g.

Problema 10. Sigui φ una funció de classe \mathcal{C}^1 en un obert simplement connex D, i f un camp vectorial conservatiu de classe \mathcal{C}^1 en D. Proveu que el camp vectorial φ f és conservatiu sii $\nabla \varphi$ i f són en cada punt proporcionals.

Problema 11. Comproveu que els camps vectorials següents són conservatius, i calculeune potencials escalars.

(a)
$$f = \frac{r}{r}$$
.

(b)
$$f = \frac{r}{r^2}$$
.

(c)
$$f = r^{\alpha} r$$
, $\alpha \neq -2$.

(d)
$$f(x, y, z) = (2xy + z^3, x^2, 3xz^2)$$
.

(e)
$$f(x, y, z) = (y^2z, 2xyz, xy^2 - 1)$$
.

Problema 12. Sigui el camp vectorial $f = \frac{r}{r^{\frac{3}{2}}}$ definit a $\mathbb{R}^3 \setminus \{(0,0,0)\}$.

- (a) Proveu que no existeix un camp vectorial g tal que f = rotg.
- (b) Proveu que $f = \nabla(u)$, per a cert camp escalar u; trobeu-lo.

Problema 13. Trobeu P(x, y, z) per tal que rot(P, (x - z)y, 0) = (y, z, x).

Problema 14. Comproveu que les integrals de línia següents són independents del camí, i calculeu-les.

(a)
$$\int_C x dx + y dy$$
, al llarg de la corba $y = \varphi(x)$ des de $x = 0$ fins $x = 2\pi$.

(b)
$$\int_{(x_1,y_1)}^{(x_2,y_2)} \varphi(x)dx + \psi(y)dy$$
.

(c)
$$\int_{(1.0)}^{(2.2)} \frac{4x(y^2+1)dx - 4x^2ydy}{(x^2+y^2+1)^2}.$$

Problema 15. Calculeu les integrals de línia següents, aplicant el Teorema de Green:

- (a) $\oint (x^2ydx xy^2dy)$ sobre la **circumferència** $x^2 + y^2 = R^2$ (orientada positivament).
- (b) $\oint_C \frac{(x+2y)dx+ydy}{(x+y)^2}$ on C és la **circumferència** de radi 1, centrada en (2,0).
- (c) $\oint_C (y^2 dx + x dy)$ al llarg del quadrat de vèrtexs (0,0), (2,0), (2,2) i (0,2).
- (d) $\oint_C ((x^3-3y)dx+(x+\sin(y))dy)$ on C és el triangle de vèrtexs (0,0), (1,0) i (0,2).
- (e) $\oint_C (-x^2ydx + xy^2dy)$ essent C la corba definida por $x^2 + y^2 = 1$, y > 0, orientada des de (1,0) fins a (-1,0).

Problema 16. Sigui f=(P,Q) un camp vectorial al pla
. Sigui $C\subset\mathbb{R}^2$ una corba de Jordan i R la regió que tanca.

- (a) Com ha de ser f
 per tal d'assegurar que \oint_C f $d\boldsymbol{\ell}$ sigui l'àrea de
 R?
- (b) Comproveu que $f = \frac{1}{2}(-y, x)$ ho satisfà.
- (c) Apliqueu-ho a calcular l'àrea tancada per l'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Problema 17. Sigui $U \subset \mathbb{R}^2$ un obert del pla, i f un camp vectorial de classe \mathcal{C}^1 en U. Sigui $D \subset U$ una regió amb vora $\partial D = C$. Proveu el **Teorema de la divergència en el pla**:

$$\int_{C} \langle \mathsf{f}, \mathsf{n} \rangle \, d\ell = \int_{D} \operatorname{div}(\mathsf{f}) \, dx dy$$

on n és el vector normal unitari exterior a D.

(Si $\mathsf{f}=(P,Q),$ considereu el camp vectorial $\mathsf{g}=(-Q,P),$ i apliqueu-hi el teorema de Green.)

(El primer membre s'anomena flux de F a través de C.)

Problema 18. Comproveu que les integrals de línia següents són independents del camí que uneix els punts inicial i final, i calculeu-les.

(a)
$$\int_C f d\boldsymbol{\ell}$$
, amb $f = (e^{y^2}\cos(x), 2ye^{y^2}\sin(x))$, i $C = \{(x, y) : y = \sin(x)\}$ des de $(0, 0)$ fins $(\pi, 0)$.

(b)
$$\int_C \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$$
, on C és el quart d'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ situat en el primer quadrant, i orientat des de $(a, 0)$ fins $(0, b)$, $(a, b > 0)$.

Problema 19. Sigui el camp vectorial $f(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$.

- (a) Calcular la integral de f al llarg de la circumferència $x^2 + y^2 = r^2$, orientada positivament.
- (b) Sigui C una corba tancada simple que no deixa l'origen en el seu interior. Proveu que $\oint_C f d\mathbf{\ell} = 0$.
- (c) Sigui C una corba tancada simple (orientada positivament) que conté l'origen en el seu interior. Proveu que el valor $\oint_C f d\boldsymbol{\ell}$ és independent de la corba considerada. Quin és aquest valor?
- (d) Verifiqueu que el camp vectorial f compleix $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Admet funció potencial en el seu domini de definició? Per qué?
- (e) Sigui $U=(0,1)\times(0,1)$. Comproveu que la integral $\oint_{\partial U} f d\boldsymbol{\ell}$ no es pot calcular mitjançant la fórmula de Green. per qué?

Problema 20. Siguin

$$D = \{(x,y) : x^2 + y^2 < 16, \ (x+2)^2 + y^2 > 1, \ (x-1)^2 + y^2 > 1\},\$$

 $\mathsf{f} = (f_1, f_2)$ un camp vectorial de classe C^1 amb domini D, i $C \subset D$ una corba tancada simple, orientada positivament. Quants valors diferents pot valdre $\oint_C \mathsf{f} d\boldsymbol{\ell}$ (segons l'elecció de C) en els casos següents?

(a) si f és el gradient d'un camp escalar en D.

(b) Si
$$\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$$
.

Problema 21. Calculeu les integrals de línia següents, aplicant el teorema de Green:

(a)
$$\oint_C (y^2 \cos x - 2e^y) dx + (2y \sin x - 2xe^y) dy$$
, on C ès la corba d'equació $x^2 + y^2 = \pi$ (orientada positivament).

- (b) $\oint_C (2xe^{x^2-y^2}-4y)dx (2ye^{x^2-y^2}-4x)dy$, on C ès la circumferència $2x^2+2y^2-3x+5y=0$.
- (c) $\oint_C f d\boldsymbol{\ell}$, amb $f = (y \cos x \cos y, -x + \sin x \sin y)$ al llarg de la circumferència $x^2 + y^2 2x + 2y = 0$.
- (d) $\oint_C f d\boldsymbol{\ell}$, amb $f = (xy + x^2y, \frac{x^2}{2} + e^y \operatorname{sen} y)$ al llarg de la circumferència $x^2 + y^2 = 1$.
- (e) $\oint_C (x^2 + y^2) dx + x(1 + 2y) dy$, essent C la corba orientada definida per la parametrització $x = a(t \sin t), y = a(1 \cos t), 0 < t < 2\pi$ (cicloide).

Problema 22. Considereu el camp vectorial

$$f(x,y) = (\sqrt{x^2 + y^2}, y [xy + \log(x + \sqrt{x^2 + y^2})]).$$

- (a) Raoneu si s'hi pot aplicar el teorema de Green en el rectangle $R = [1, 4] \times [0, 2]$.
- (b) Calculeu la circulació de f al llarg de la vora de R.

Problema 23. Determineu l'àrea del domini comprès entre l'eix OX i l'arc de cicloide definit per la parametrització $x = R(t - \sin t), y = R(1 - \cos t),$ amb $0 \le t \le 2\pi$.

Problema 24. Calculeu la circulació dels camps vectorials següents al llarg de les corbes orientades indicades, utilitzant el teorema de Kelvin-Stokes:

- (a) $f(x,y,z)=(x^2y^3,1,z)$, C circumferència $\{x^2+y^2=R^2,\ z=0\}$, recorreguda en el sentit positiu.
- (b) f(x, y, z) = (y, -2z, x), C el·lipse intersecció del cilindre $x^2 + y^2 = R^2$ i el pla $\{x = z\}$, recorreguda de manera que la seva projecció sobre el pla XY sigui positiva.
- (e) f(x, y, z) = (yz, -x, 2y), C el **triangle** de vèrtexs (1, 0, 0), (0, 1, 0) i (0, 0, 1), orientat en aquest sentit.

Problema 25. Verifiqueu el teorema de Kelvin-Stokes per a la superfície helicoïdal definida per la parametrització $\sigma(u,v) = \left(u\cos(v),u\sin(v),v\right),\ (u,v)\in[0,1]\times\left[0,\frac{\pi}{2}\right]$, i el camp vectorial donat per f(x,y,z)=(xz,yx,zy).

Problema 26. Calculeu el flux del rotacional del camp vectorial f = (y, xz, xyz) a través de la superfície $x^2 + y^2 + z^2 = 1$, $z \ge 0$, orientada amb el vector normal *cap amunt*.

Problema 27. Sigui el camp vectorial g(x, y, z) = (-x, -y, 2z).

- (a) Existeix algun camp q tal que rot(q) = g? En cas afirmatiu, determineune algun.
 - © CÀLCUL INTEGRAL, GRAU EN MATEMÀTIQUES, FME. Curs 2019-20

(b) Calculeu
$$\int \int_S \mathbf{g} d\mathbf{S}$$
, essent
$$S = \{(x,y,z): (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2, \ z>c\},$$

semiesfera orientada en la direcció radial.

Problema 28. Calculeu la circulació dels camps vectorials següents al llarg de les corbes indicades, utilitzant el teorema de Kelvin-Stokes:

- (a) f(x, y, z) = (3xz + yz, 3xz 3zy, 2xy), C, corba tancada obtinguda intersecant el pla 2x + 2y z = 2 amb la frontera del cub $Q = [0, 1]^3$, recorreguda en el sentit que va de (1, 0, 0) a (0, 1, 0).
- (b) f(x, y, z) = (x + y, y + z, z + x), C, el.lipse intersecció del cilindre $x^2 + y^2 = 3$ amb el pla 2x + 2y + z = 0, recorreguda de manera que la seva projecció al pla XY es recorri positivament.
- (c) f(x, y, z) = (y, z, x), C, corba intersecció de les dues superfícies x + y = 2, $x^2 + y^2 + z^2 = 2(x + y)$, recorreguda de manera que, vista des de l'origen, el sentit ès el de les busques del rellotge.
- (d) f(x,y,z) = (x-y+z,y-z+x,z-x+y), C, corba intersecció de $x^2+y^2+z^2=1$ amb 2x+2y+z=0, orientada de manera que la seva projecció sobre el pla XY sigui recorreguda en sentit positiu.

Problema 29. Siguin $f = (ye^{xy}, xe^{xy} + a(x-z), -ax)$ i C la corba intersecció de x+y+z=1 amb $x^2+y^2=1$. Calculeu a per tal que la circulació de f al llarg de C valgui π .

Problema 30. Siguin u i v camps escalars de classe C^1 en un conjunt obert $D \subset \mathbb{R}^3$, i $C \subset D$ una corba tancada orientada. Obteniu $\oint_C (u\nabla v + v\nabla u)d\boldsymbol{\ell}$.

Problema 31. Obteniu $\int \int_S \langle \operatorname{rot}(\mathsf{f}),\mathsf{n} \rangle d\boldsymbol{S}$, essent $\mathsf{f} = (x-z,x^3+yz,-3xy^2)$ i S la superfície $z=2-\sqrt{x^2+y^2},\ 0< z<2$ orientada amb el vector normal $cap\ amunt.$

Problema 32. Siguin f un camp amb rotacional (1,2,3) i C la corba intersecció de $x^2 + y^2 = 1$ amb x + y + z = 1 recorreguda de manera que, en projectar sobre el pla XY, doni sentit positiu. Determineu $\int_C f d\boldsymbol{\ell}$.

Problema 33. Sigui f un camp vectorial de classe C^1 normal a una superfície regular S. Proveu que rot(f) és tangent a S. (Apliqueu el teorema de Kelvin-Stokes.)

Problema 34. Calculeu els fluxos dels camps vectorials següents a través de les superfícies orientades donades, utilizant el teorema de Gauss-Ostrogradskiĭ:

(a)
$$f(x,y,z) = (xy,y^2,z^2)$$
, S la vora del cub $(0,1)^3$.

(b) $\mathsf{f}(x,y,z) = (x^2y,xy^2,xyz),\,S,$ la vora de la regió

$$V = \{(x, y, z) : x^2 + y^2 + z < a^2, \ x, y, z > 0\}$$

on a > 0 és una constant.

Problema 35. Siguin a, b, c > 0 constants. Considereu les funcions

$$\varphi(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \text{ i } g(x,y,z) = \frac{x}{a} + \frac{y}{b} + \frac{z}{c}.$$

Aplicant el teorema de Gauss-Ostrogradskiĭ, calculeu el flux del camp grad φ a través de la superfície $S = \{(x, y, z) : g(x, y, z) = 1, x > 0, y > 0, z > 0\}$ orientada segons el vector normal $cap\ avall$.

Problema 36. Calculeu els fluxos dels camps vectorials a través de les superfícies orientades donades, utilizant el teorema de Gauss-Ostrogradskiĭ:

- (a) f(x, y, z) = (yz, xz, xy), S, la vora del cub |x| < 1, |y| < 1, |z| < 1.
- (b) $f(x, y, z) = (x^2, y^2, z^2)$, S, la mateixa.
- (c) f(x, y, z) = (x y, y z, x y), S, la mateixa.

Problema 37. Sigui U una regió de \mathbb{R}^3 que no contingui l'origen, i sigui S la vora de U. Expresseu $\int \int_S r^{\alpha} \, r \, d\mathbf{S}$ com una integral en la regió U. Què s'obté si $\alpha = 0$?

Problema 38. Calculeu $\int \int_S \operatorname{rot}(\mathsf{f}) d\mathbf{S}$, on $\mathsf{f}(x,y,z) = (-y,x^2,z^3)$ i S és la superfície que limita la regió $x^2 + y^2 + z^2 \le 1$, $\frac{1}{2} \le z \le 1$.

Problema 39. Siguin el camp vectorial $f = (ye, x\cos z, x\cos y - b)$ i S la superfície $x^2 + y^2 + z^2 - 2az = 1$, z > 0, on a > 0. Determineu b per tal que el flux radial positiu a través de S sigui π , independentment de a.

Problema 40. Donat el camp vectorial $f = (y+z^2-x, z^2+y-x, \frac{\sqrt{2}}{3}az)$ i les superfícies $S_1 = \{(z-2)^2 = x^2 + y^2, 0 < z < 2\}$, i $S_2 = \{x^2 + y^2 < 4, z = 0\}$, trobeu el valor de a per tal que els fluxos cap amunt de f a través d'ambdues superfícies coincideixin.

Problema 41. Proveu que el flux d'un camp constant a través d'una superfície tancada S és nul. Proveu també que si a és un vector fixat, llavors $\int \int_S \cos(\mathbf{n}, \mathbf{a}) dS = 0$.

Problema 42. Un camp escalar f(x,y,z) satisfà $||\nabla f||^2 = 4f$, $\nabla \cdot (f\nabla f) = 10f$. Calculeu $\int \int_S \frac{\partial f}{\partial \mathbf{n}} \, dS$ essent S l'esfera unitat centrada a l'origen i $\frac{\partial f}{\partial \mathbf{n}}$ la derivada direccional de f segons el vector normal unitari exterior a S.

Problema 43. Suposem que els camps escalars f i g satisfan les equacions $\nabla^2 g = 0$ $g\nabla^2 f = x + y$ i $\nabla \cdot (g\nabla f) = x + y + z$. Calculeu la integral de superfície $f\frac{\partial g}{\partial \mathsf{n}}\,dS$, essent S l'el·lipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ i $\frac{\partial g}{\partial \mathsf{n}}$ la derivada direccional segons el vector normal exterior a S.

Problema 44. Sigui V una regió de l'espai, i $S = \partial V$ la seva vora.

(a) Aplicant el teorema de Gauss–Ostrogradskiĭ a $\int \int_S \phi \nabla \phi dS$ obteniu l'expressió

$$\int\int\int_{V}||\nabla\phi||^{2}dV=-\int\int\int\int_{V}\phi\Delta\phi dV+\int\int_{S}\phi\frac{\partial\phi}{\partial\mathbf{n}}dS,$$

essent $\frac{\partial}{\partial \mathbf{n}}$ la derivada direccional segons el vector normal unitari exterior a S.

(b) Demostreu que si ϕ_1 i ϕ_2 són dues solucions del **problema de Neumann**

$$\nabla^2 \phi = h \text{ en } V, \quad \frac{\partial \phi}{\partial \mathbf{n}} = g \text{ en } S$$

cal $\phi_1 - \phi_2 = \text{const.}$ (Considereu $\psi = \phi_1 - \phi_2$.)

(c) Demostreu que un camp vectorial f definit en una regió V queda determinat pel seu rotacional i la seva divergència en V, i el seu component normal en $S = \partial V$. (Considereu $\mathbf{g} = \mathbf{f}_1 - \mathbf{f}_2$ amb \mathbf{f}_1 i \mathbf{f}_2 dos camps amb mateixa divergència i rotacional en V, i mateix component normal en S.)

Problema 45. Demostreu que, a fi que el problema de Neumann

$$\Delta u = f \text{ en } \Omega, \quad \frac{\partial u}{\partial \mathbf{n}} = g \text{ en } \Gamma = \partial \Omega$$

tingui una solució, és necessari que $\int_{\Omega} f dV = \int_{\Gamma} g dS$.

(Apliqueu el teorema de Gauss–Ostrogradskiĭ a $\int_{\Gamma} \langle \nabla u, \mathbf{n} \rangle dS.$)

Problema 46. Es consideren coordenades esfèriques (r, θ, ϕ) , $(r^2 = x^2 + y^2 + z^2, z = r\cos\phi)$. Sigui u una solució del problema $\nabla^2 u = u$ si r < 1, i $\frac{\partial u}{\partial r} = \sin\theta$ si r = 1. Obteniu $\int \int \int_{r < 1} u \, dV$.

Problema 47. De la mateixa manera que en el pla dues semirectes que parteixen d'un punt defineixen un angle, en l'espai podem definir **angle sòlid** com una regió formada per semirectes que parteixen d'un origen O. La mesura d'aquest angle és l'àrea de la superfície obtinguda tallant amb l'esfera S de centre O i radi 1.

- (a) Vist des de l'origen, quant val l'angle sòlid de tot l'espai? I el d'un octant?
- (b) Sigui M una superfície regular que no conté O i tal que cada semirecta amb origen O talla M com a molt en un sol punt. Sigui $\Omega(M)$ el conjunt d'aquestes semirectes que tallen M; s'anomena angle sòlid de vèrtex O subtendit per M.

 Proveu que la seva mesura es pot calcular amb la integral de superfície $\int_{M} \frac{\mathsf{r}}{r^3} dS$ (Sigui M_a la projecció de M sobre l'esfera de centre O i radi a, amb a > 0 prou petit,

i sigui U la regió cònica compresa entre M_a i M. Utilitzeu el **teorema de Gauss-Ostrogradski**ĭ en U per a provar que la integral de superfície anterior coincideix amb $\frac{1}{a^2} \int_{M_a} dS$, i noteu que aquesta quantitat no depèn del radi a triat.)

(c) Calculeu la mesura de l'angle sòlid, amb vèrtex a l'origen, subtendit per la superfície esfèrica $x^2+y^2+z^2=a^2,\ z>a\cos\alpha.$

Problema 48. Un camp escalar f(x,y,z) satisfà $||\nabla f||^2 = 4f$, $\nabla \cdot (f\nabla f) = 10f$. Calculeu $\int \int_S \frac{\partial f}{\partial \mathbf{n}} \, dS$ essent S l'esfera unitat centrada a l'origen i $\frac{\partial f}{\partial \mathbf{n}}$ la derivada direccional de f segons el vector normal unitari exterior a S.

PROBLEMES

FORMES DIFERENCIALS

I TEOREMA DE STOKES

Problema 1. A \mathbb{R}^3 considered les formes differencials $\alpha = xdx - ydy$, $\beta = zdx + xdz$ i $\gamma = zdy$. Calculed $\alpha \wedge \beta$, $\alpha \wedge \beta \wedge \gamma$, $d\alpha$, $d\beta$, $d\gamma$ i $d(\alpha \wedge \beta)$.

Problema 2. A \mathbb{R}^n sigui $r = \sqrt{x_1^2 + \dots + x_n^2}$ la distància euclidiana a l'origen, i considereu la 1-forma diferencial $\theta = x_1 dx_1 + \dots + x_n dx_n$.

- (a) Calculeu dr i dh(r) (on h ès una funció diferenciable d'una variable) i dr^{α} , expressant el resultat en termes de θ .
- (b) Calculeu $d\theta$ i $d(r^{\alpha}\theta)$.

Problema 3. Considereu l'aplicació $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $F(u,v) = (u^2 - v^2, 2uv)$. Calculeu els pull-backs següents: $F^*(x^2 + y^2)$, $F^*(dx)$, $F^*(dy)$, $F^*(dx \wedge dy)$, $F^*(-ydx + xdy)$

Problema 4. Calculeu la integral de la 1-forma diferencial $\omega = (x - y)(dx + dy)$ sobre la línia poligonal de \mathbb{R}^2 definida pels vèrtexs

$$(1,0) \longrightarrow (0,1) \longrightarrow (-1,0) \longrightarrow (0,-1) \longrightarrow (1,0).$$

Problema 5. A \mathbb{R}^3 sigui $\omega = -(y+z)dx + \cos(xyz)dy + (x+y)dz$. Sigui S el mig el.lipsoide definit per $\frac{x^2}{4} + \frac{y^2}{36} + \frac{z^2}{9} = 1$, y > 0, orientat amb el vector normal cap enfora respecte a l'el.lipsoide complet.

- (a) Calculeu $\int_S d\omega$ aplicant directament el teorema de Stokes.
- (b) Sigui T la superfície plana definida per $\frac{x^2}{4} + \frac{z^2}{9} < 1$, y = 0, orientada amb el vector normal (0, 1, 0) en cada punt. Calculeu $\int_T d\omega$ a partir de la definició de la integral d'una forma diferencial.
- (c) Expliqueu per qué $\int_S d\omega = \int_T d\omega$.

Problema 6. Es considera la 2-forma

$$\omega = z(x^2 + y^2)dx \wedge dy + y(x^2 + z^2)dx \wedge dz + x(z^2 - y^2)dy \wedge dz.$$

Calculeu $\int_S \omega$, on S és el conjunt definit per $x^2 + y^2 + z^2 = 1$, $0 < z < \frac{1}{\sqrt{2}}$, orientat amb el vector normal $cap\ enfora$ de l'esfera.

Problema 7. Considereu l'esfera unitat $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Digueu quins d'aquests camps vectorials de \mathbb{R}^3 hi són tangents.

- (a) F(x, y, z) = (-y, x, 0).
- (b) F(x, y, z) = (x, y, z).
- (c) F(x, y, z) = (y, x, 0).
- (d) F(x, y, z) = (yz, xz, -2xy).

Problema 8. Considereu l'esfera unitat S parametritzada amb coordenades esfèriques:

$$\sigma(u,v) = (\cos u \cos v, \sin u \cos v, \sin v), \quad u \in [0,2\pi], \quad v \in [0,\pi].$$

Siguin T_u , T_v els vectors tangents de la parametrització.

- (a) Sigui $\omega_1 = -xzdx yzdy + (x^2 + y^2)dz$. Calculeu $\omega_1(T_u)$ i $\omega_1(T_v)$. Interpreteu el resultat.
- (b) Sigui $\omega_2 = \omega_1 + xdx + ydy + zdz$. Proveu que si X és un camp vectorial en \mathbb{R}^3 tangent a S en tot punt aleshores, per a tot $p \in S$, $\omega_2(p)(X) = \omega_1(p)(X)$. Interpreteu el resultat.
- (c) Considereu f, g i h els següents camps vectorials en \mathbb{R}^3 : f(x,y,z)=(-y,x,0), g(x,y,z)=(yz,xz,-2xy) i $h(x,y,z)=(-xz,-yz,x^2+y^2)$. Comproveu que $(dx \land dy \land dz)(f,g,h)=0$, i expliqueu el resultat.

Problema 9. Calculeu l'expressió en coordenades de $df \wedge dg$, essent

$$f(x, y, z) = \ln\left(1 + \sqrt{x^2 + y^2 + z^2}\right), \quad g(x, y, z) = \sin\left(\sqrt{x^2 + y^2 + z^2}\right).$$

Problema 10. A \mathbb{R}^6 considereu $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + dx_5 \wedge dx_6$. Calculeu $\omega \wedge \omega \wedge \omega$.

Problema 11. Considereu l'espaitemps ordinari \mathbb{R}^4 amb coordenades cartesianes (t, x, y, z), i les formes diferencials

$$A = \varphi dt - A_1 dx - A_2 dy - A_3 dz,$$

$$F = E_1 dt \wedge dx + E_2 dt \wedge dy + E_3 dt \wedge dz$$

$$- B_1 dy \wedge dz - B_2 dz \wedge dx - B_3 dx \wedge dy.$$

(a) Utilitzant l'operador ∇ en el mateix sentit que en el càlcul vectorial de \mathbb{R}^3 , proveu que la relació F=dA equival a

$$\mathsf{E} = -\nabla \varphi - \frac{\partial \mathsf{A}}{\partial t}, \ \ \mathsf{B} = \nabla \times \mathsf{A}.$$

(b) Semblantment, proveu que dF = 0 equival a

$$\nabla \times \mathsf{E} = -\frac{\partial \mathsf{B}}{\partial t}, \ \nabla \cdot \mathsf{B} = 0.$$

Problema 12. A $\mathbb{R}^4 \setminus \{(0,0,0,0)\}$ considereu la funció $r = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$, el camp vectorial radial

$$\Delta = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} + x_4 \frac{\partial}{\partial x_4},$$

la 3-forma diferencial

$$\Sigma = x_1 dx_2 \wedge dx_3 \wedge dx_4 - x_2 dx_1 \wedge dx_3 \wedge dx_4 - x_3 dx_1 \wedge dx_4 \wedge dx_2 - x_4 dx_1 \wedge dx_2 \wedge dx_3$$

i la forma de volum

$$\Omega = dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4.$$

- (a) Comproveu que $d\Sigma = 4\Omega$
- (b) Comprove que $\frac{1}{r} dr \wedge \Sigma = \Omega$.
- (c) Comprove que $i_{\Delta}\Omega = \Sigma$.

Problema 13. Recordem que una forma diferencial θ es diu tancada si $d\theta = 0$, i es diu exacta si existeix una altra forma diferencial ω tal que $d\omega = \theta$.

- (a) Demostreu que el producte exterior de dues formes tancades és una forma tancada.
- (b) Demostreu que el producte exterior d'una forma exacta per una forma tancada és una altra forma exacta.
- (c) Demostreu que si ω és una 1-forma diferencial i f una funció enlloc nul.la tals que $f\omega$ és tancada, aleshores $\omega \wedge d\omega = 0$.
- (d) Doneu un exemple d'una forma diferencial ω tal que $\omega \wedge d\omega \neq 0$
- (e) Si ω és una forma diferencial de grau parell, proveu que $\omega \wedge d\omega$ es tancada.

Problema 14. Considereu l'aplicació $L(\omega) = \omega \wedge d\omega$. És cert que $L^2(\omega) = 0$? I és cert que $dL(\omega) = L(d\omega)$?

Problema 15. Considereu l'aplicació $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ donada per F(u, v) = (uv, 1). Calculeu $F^*(dx)$, $F^*(dy)$, $F^*(ydx)$, $F^*(dx \wedge dy)$.

Problema 16. Calculeu $\int_D (x^2 + y^2 + z^2)^{\frac{\alpha}{2}} dx \wedge dy \wedge dz$, on $\alpha \geq 0$ i D és la mitja bola definida per $x^2 + y^2 + z^2 < R^2$, z > 0.

Problema 17. Donada la 2-forma

$$\omega = \left(\frac{x}{r^3} + a\right) dy \wedge dz + \left(\frac{y}{r^3} + b\right) dz \wedge dx + \left(\frac{z}{r^3} + c\right) dx \wedge dy,$$

amb a, b, c constants, calculeu $\int_S \omega$, on S és una esfera de radi R i centre l'origen orientada amb el vector normal $cap\ enfora$.