Chapitre 1

EMISSION ET PROPAGATION DE LA LUMIERE

I LA VITESSE DE PROPAGATION DE LA LUMIERE

1- Propagation de la lumière

		Oeil
Source de lumière	Rayon lumineux	<u> </u>
	C I	$\overline{}$
S	Sens de propagation	7

Dans	le	vide	et	dans	tou	ıt	milie	eu	transp	aren	t	et
homog	gène	(don	t la	cons	stitut	ion	est	la	même	en	to	ut
point	di	u n	iiliei	ı),	la	lu	mièr	e	se	pro	pa	ge
									(pro	paga	atio	on
)					

Dans un milieu, la lumière ne peut pas se propager.

2- La vitesse de la lumière

La vitesse de la lumière dans le vide, notée c, a pour valeur dans le vide:

Remarque: la vitesse de la lumière dans l'air se propage pratiquement à la même vitesse que dans le vide.

Relation à connaître par cœur (indique les unités):

$$c = v$$
 (lumière) =
$$\frac{distance parcourue par la lumière}{durée du parcours}$$

II QUELQUES DEFINITIONS

1- Qu'est-ce qu'un spectre ? Un spectre est la figure obtenue par	d'une lumière en ses radiations monochromatiques.
Le spectre du visible contient une infinité de lumières (800 nm).	colorées s'étendant du (400 nm) jusqu'au
2- La dispersion	
3- Lumière monochromatique et lumière polychromat	ique
Une lumière monochromatique est une lumière composé	Seradiation.
Exemple: la lumière émise par le laser.	
Une lumière polychromatique est une lumière composée	de radiations
B	Voici 3 spectres provenant de la décomposition de lumières émises par des sources lumineuses. Laquelle ou lesquelles sont monochromatiques ?

4- Longueur d'onde

Chaque radiation est **caractérisée** par sa longueur d'onde notée λ qui s'exprime en mètre. En pratique, on utilise souvent le **nanomètre**. L'œil humain n'est sensible qu'aux radiations de longueurs d'onde comprises entre et

- 1- Donne approximativement le domaine de longueur d'onde associé au vert :
- 2- Classe par ordre croissant de longueur d'onde les couleurs du spectre de la lumière blanche.

.....

3- Donne les couleurs des radiations dont les longueurs d'onde sont 460 nm et 0,510 µm.

.....

III LES SPECTRES D'EMISSION

1- Définition

Un spectre d'émission est un spectre obtenu par la lumière directement émise par une source lumineuse.

2- Les spectres d'émission continus d'origine thermique

a) <u>Définition</u>: Le spectre de la lumière émise par un corps (comme une lampe à incandescence) porte le nom de **spectre d'origine thermique**.

b) Propriétés

••••••

- Les spectres d'origine thermique sont des spectres
- Plus la température d'un corps chauffé est importante, plus son spectre (d'origine thermique) s'enrichit dans

3- Les spectres d'émission de raies

Hg	400.00	500.00	600.00 Senguetos d'orodo Ibaaj	206:00	006 NO
Na	40.00	500 00	603 33 Language Protein Pour	200-00	(00 m
Ne	400 00	500.00	900.00	200.00	000.00

Qu'observes-tu?	
Conclus:	