BIOSYSTEMS II: NEUROSCIENCES 2015 Spring Semester

Lecture 35

Kechen Zhang

4/22/2015

Example of Broad Tuning Curve: Motor Cortical Neuron in Reaching Task

Broad tuning curve and noisy nature of neuronal spikes imply that a neuron does not carry very precise information about an encoded variable (direction of movement)

Example of population coding: Auditory nerve tuning curves (threshold-frequency curves)

Example of population coding: Receptive fields for somatosensory cortical neurons

Overlapping receptive fields on the hand of a monkey.

Example of population coding: Tuning curves of the cones in the retina

Example of population coding: Receptive fields of visual cortical neurons

Population Coding

Two competing factors:

- Broader tuning function always decreases the information carried by a single neuron.
- Broader tuning function also implies that more neurons are activated at the same time so that the total information carried by the whole population increases.

How to read out information from a neuronal population Example: population vector method

Cosine Tuning Curve

For reaching direction given by vector \mathbf{r} or angle θ , the firing rate above baseline for neuron i is

$$a_i = \mathbf{p}_i \cdot \mathbf{r} = |\mathbf{p}_i| |\mathbf{r}| \cos(\theta - \theta_i)$$

where vector \mathbf{p}_{i} and angle θ_{i} describe its preferred direction.

Population Vector

Population vector is defined by

$$\mathbf{v} = \sum_{i} a_{i} \mathbf{p}_{i}$$

It is a linear combination of the preferred directions weighted by the activity of each neuron.

Population Vector Recovers True Reaching Direction

Red arrow: population vector Black arrow: reaching direction

Each line segment indicates the preferred direction of a neuron weighted by activity above baseline

Population Vector Works in Three Dimensions

Population vector recovers the true reaching direction in 3D

Principle of Population Vector

Population vector always recovers the true reaching direction:

$$\mathbf{v} = \mathbf{r}$$

if and only if

$$\sum_{i} \mathbf{p}_{i} \mathbf{p}_{i}^{T} = \mathbf{I}$$

where **I** is the identity matrix, and the preferred direction \mathbf{p}_i is taken as a column vector with T indicating transpose.

This is because
$$\mathbf{v} = \sum_{i} \mathbf{p}_{i} a_{i} = \sum_{i} \mathbf{p}_{i} (\mathbf{p}_{i}^{T} \mathbf{r}) = \left(\sum_{i} \mathbf{p}_{i} \mathbf{p}_{i}^{T}\right) \mathbf{r}$$

where the 1st step is a definition and the 2nd step is by cosine tuning.

A special case that satisfies the identity matrix condition is a population of uniformly distributed preferred directions, which is roughly true in the motor cortex.

Mental rotation Same or different? Reaction time for "same" pairs (sec.) Reaction time increases linearly with rotation angle 20 60 100 140 180 Angle of rotation (in degrees)

Video Hand-position reconstruction by population vector (A. Schwartz)

Spikes from a single neuron in a behaving monkey

Drawing in circle: Head-position reconstruction by population vector

Video Robotic arm controlled by population vector based on motor cortical activities (A. Schwartz)

Robotic Arm

Monkey Arm

Tuning functions other than cosine

Population vector is equivalent to finding the peak in the linear combination of cosine functions weighted by activity a_i of each neuron:

$$\sum_{i} a_{i} \cos(\theta - \theta_{i})$$

More generally, if the tuning curve (or basis function) is a function Φ_i other than the cosine, we write

$$\sum_{i} a_{i} \Phi_{i}(\theta)$$

The counterpart of the population vector algorithm for recovering the true variable is to find the peak of the above function.

Maximum likelihood method for parameter estimation

Maximum likelihood finds parameter that maximizes the probability of the data:

Example: least square method for estimating linear model y = a x + bOutput data $\{y_1, \dots y_n\}$ contain independent Gaussian noise

$$P(\{y_1, \dots, y_n\} | \{a, b\}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - (ax_i + b))^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - (ax_i + b))^2}{2\sigma^2}\right)$$

$$E = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Probabilistic framework: Maximum-likelihood

A more general method is the maximum-likelihood method based on probability theory. The response of neuron *i* is stochastic when the same stimulus is repeated. Consider a Gaussian noise model:

$$p(a_i | \theta) = A \exp\left(-\left|a_i - \Phi_i(\theta)\right|^2 / 2\sigma^2\right)$$

Assuming the activities of different neurons are statistically independent, we have

$$p(a_1, a_2, \dots, a_N | \theta) = \prod_{i=1}^{N} p(a_i | \theta) = \prod_{i=1}^{N} A \exp(-|a_i - \Phi_i(\theta)|^2 / 2\sigma^2)$$

The most likely direction θ is the one that maximizes this probability (maximum-likelihood).

This is equivalent to maximizing
$$-\sum_{i=1}^{N} \left| a_i - \Phi_i(\theta) \right|^2 = 2\sum_{i=1}^{N} a_i \Phi_i(\theta) - \sum_{i=1}^{N} a_i^2 - \sum_{i=1}^{N} \Phi_i(\theta)^2$$

which in turn is equivalent to maximizing $\sum_{i=1}^{N} a_i \Phi_i(\theta)$ when the last term is a constant independent of θ (approximately true for uniform distributions of tuning curves).

Bayesian method vs maximum likelihood

Consider joint probability of neural response r and stimulus s (or any variable):

$$P(r,s) = P(r \mid s)P(s) = P(s \mid r)P(r)$$

Bayes rule for inferring stimulus from the response:

$$P(s \mid r) = \frac{P(r \mid s)P(s)}{P(r)}$$

where P(s) is prior distribution of stimulus, P(s|r) is the posterior distribution of stimulus given the stimulus, and P(r|s) describes the neural response distribution.

How to "decode" the stimulus from neural response r?

Most likely stimulus =
$$\underset{s}{\operatorname{arg \, max}} P(s \mid r) = \underset{s}{\operatorname{arg \, max}} P(r \mid s) P(s)$$

Comparison with maximum-likelihood:

Most likely stimulus =
$$\underset{s}{\operatorname{arg\,max}} P(r \mid s)$$

This is equivalent to the Bayesian method if P(s) = const (all stimuli are equally likely)

Videos

Position decoding from place cell population