Enseignant: Mr. J.ZAIDOUNI

Université Mohammed Premier, ENSA de Oujda 2023/2024

Module : Électronique numérique, Filière : GI3 & GE3

TD2 : Systèmes logiques combinatoires

Exercice 1:

- 1. Réaliser la fonction, en utilisant un multiplexeur 8 vers 1 $(MUX \, 8 \times 1)$ la logique suivante : $S(A,B,C) = \sum m(0,1,2,4,7)$.
- 2. Soit le schéma du circuit ci-dessous. Trouver la forme canonique (somme de min-termes) de la fonction F(A, B, C, D) de sortie de ce circuit.

Exercice 2:

Soit les cicruits logiques suivants :

- 1. Déduire le rôle du circuit 1. La sortie Y est égale à quoi si on applique à l'entrée adresse?
 - (a) le code binaire $(0101)_2$
 - (b) le code binaire $(1010)_2$
- 2. Déduire l'expression de la fonction F(D, C, B, A) du circuit 2 sous la forme canonique somme de min-termes. La fonction F est égale à quoi si on applique à l'entrée adresse?
 - (a) le code binaire $(010)_2$
 - (b) le code binaire $(101)_2$
- 3. Déduire le rôle du circuit 3. Les sorties D_i sont égales à quoi si on applique à l'entrée code $(1011)_2$ et si l'entrée d'activation \overline{E} ?
 - (a) $\overline{E} = 0$
 - (b) $\overline{E} = 1$
- 4. Compléter le chronogramme ci-dessous si on applique aux entrées informations du circuit 4 les valeurs $D_3D_2D_1D_0 = 1001$.

Exercice 3:

On coudrait réaliser un circuit logique qui permet de savoir si l'entrée A, codée sur 4 bits, est contient un nombre de 1 paire (sortie de parité paire P) ou impaire (sortie de parité impaire I). La sortie P=1 (I=1) Ssi le nombre de 1 dans le code binaire A est pair (impaire).

- 1. Déterminer les expressions logiques des deux sorties P et I en utilisant les tableaux de Karnaugh.
- 2. Dessiner le logigramme de ce circuit en utilisant des portes XORs.
- 3. Compléter le chronogramme ci-dessous.

Exercice 4:

Nous souhaitons commuter dans quatre directions $(D_1, D_2, D_3 \text{ et } D_4)$ des paquets identifiés par un code binaire I de huit bits $I = (I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0)_2$ où I_7 est le bit le plus significatif (MSB). Le signal D_0 est mis à 1 si aucune direction n'est choisie. La commutation, basée sur le code de chaque paquet, est effectuée comme suit :

- $-D_1 = 1 \text{ ssi } 32 \le I \le 63,$
- $-D_2 = 1 \text{ ssi } 64 \le I \le 127,$
- $-D_3 = 1 \text{ ssi } 128 \le I \le 159,$
- $-D_4 = 1 \text{ ssi } 192 \le I \le 255$
- 1. A partir de la table de vérité, déterminer les expressions booléennes des fonctions logiques des quatre directions $(D_1, D_2, D_3 \text{ et } D_4)$.
- 2. Déduire l'expression booléenne de la fonction D_0 .
- 3. Réaliser les cinq fonctions en utilisant un décodeur sur 3 bits et des portes OR.

Exercice 5 : Comparateur non-signé

On souhaite réaliser un comparateur de deux nombres entiers non-signés. Les entrées de ce circuit sont les 4 bits de chaque nombre $(A = (A_3A_2A_1A_0)_2)$ et $B = (B_3B_2B_1B_0)_2$ et trois entrées mutuellement exclusives S', E' et I' représentant le résultat de comparaison d'un étage précédent. Ses sorties sont S (Supérieur), E (Egal) et I (Inférieur). S = 1 Ssi A > B, E = 1 Ssi A = B et I = 1 Ssi A < B. Les sorties sont mutuellement exclusives. Pour réaliser ce circuit on met en cascade des comparateurs de 1 bit.

- 1. Donner la table de vérité et les expressions logiques des sorties d'un comparateur de 1 bit (version 1) (entrées : X et Y, sorties : S = (X > Y), E = (X = Y) et I = (X < Y).
- 2. Trouver les expressions logiques des sorties du comparateur de 1 bit (version 2). Ses entrées sont les bits de l'étage $(i): X_i$ et Y_i ; et le résultat de la comparaison de l'étage $(i-1): S_{i-1}, E_{i-1}$ et I_{i-1} . Ses sorties sont $: S_i, E_i$ et I_i . Le fonctionnement de ce circuit est comme suit :
 - $S_i = 1 \text{ Ssi } (X_i > Y_i) \text{ ou } [(X_i = Y_i) \text{ et } (S_{i-1} = 1)]$
 - $E_i = 1 \text{ Ssi } (X_i = Y_i) et (E_{i-1} = 1)$
 - $I_i = 1 \text{ Ssi } (X_i < Y_i) \text{ ou } [(X_i = Y_i) \text{ et } (I_{i-1} = 1)]$
- 3. Trouver les expressions logiques des sorties du comparateur de 4 bits et déduire sa réalisation en câblant des comparateurs de 1 bit (version 2) (dessiner le schéma bloc).
- 4. Déduire la réalisation d'un comparateur de 8 bits en utilisant des comparateurs de 4 bits (dessiner le schéma bloc).

Exercice 6: Analyse d'un circuit logique

Le schéma logique d'un circuit combinatoire est donné dans la figure ci-dessous. Il est implémenté à l'aide de deux multiplexeurs $MUX\ 2 \times 1$ et de portes logiques (NOT, NOR et XOR). Deux nombres entiers non signés codés sur 2 bits, $X=(X_1X_0)_2$ et $Y=(Y_1Y_0)_2$, sont appliqués aux entrées, et A, B et C désignent les sorties.

- 1. Déterminer l'équation logique pour chacune des trois sorties.
- 2. Déduire la fonction réalisée par ce circuit (donner des vrais noms aux trois sorties).

Exercice 7:

1. Soit un circuit logique qui a le schéma bloc suivant :

- (a) Donner la table la table vérité de ce circuit.
- (b) Quelle la fonction réalisée par ce circuit?
- 2. Soit un circuit logique combinatoire qui possède une entrée D de décalage à droite, une entrée G de décalage à gauche et une entrée B de bit d'insertion et quatre entrées représentant les bits d'un nombre binaire $X = (X_3 X_2 X_1 X_0)_2$. La sortie de ce circuit est le nombre binaire $S = (S_3 S_2 S_1 S_0)_2$. Le fonctionnement de ce circuit est comme suit :
 - lorsque les deux entrées D et G sont inactives l'entrée n'est pas décalée (sortie est la même que l'entrée).
 - lorsque l'entrée D(G) est active on aura un décalage à droite (à gauche) de l'entrée avec l'insertion de B au MSB (au LSB).
 - l'entrée D est prioritaire sur l'entrée G.
 - (a) Donner la table la table vérité de ce circuit et les expressions des sorties S_i .
 - (b) Déduire sa réalisation en utilisant des multiplexeurs $MUX 4 \times 1$ (dessiner le schéma bloc).

Exercice 8 : Additionneur BCD

- 1. Soit le circuit logique ci-dessous d'un additionneur BCD (Binaire Codé Décimal) de 4 bits. Ce circuit possède deux entrés A et B codées de 4 bits, une entrée C_{in} de la retenue d'entrée, une sortie S = A + B codée sur 4 bits et une sortie C_{out} de la retenue de sortie. Il est réalisé à partir d'un premier addionneur binaire (ADD 1) qui calcule la somme de A et B et un deuxième additionneur binaire de correction (ADD2). Les nombres A et B prennent des valeurs entre 0 et 9 en décimal (codage BCD). L'opération de correction est basée sur le résultat de la somme de ADD1 comme suit :
 - la somme est correcte. on n'ajoute rien à cette somme : si la somme en décimal est comprise entre 0 et 9 (entre $(0)_{16}$ et $(9)_{16}$),
 - la somme n'est pas correcte. Il faut ajouter 6 (rôle de ADD2 et du bloc combinatoire de correction). On a deux cas :
 - Si la somme en décimal est comprise entre 10 et 15 (entre (A) et $(F)_{16}$).
 - Si la somme en décimal est comprise entre 16 et 19 (entre $(10)_{16}$ et $(13)_{16}$).

Le résultat de la somme est codé en BCD sur cinq bits dont le MSB est la sortie C_{out} et $(S_3 S_2 S_1 S_0)$ sont les quatre bits les moins significatifs (c-à-d C_{out} concaténée avec S).

- (a) Donner la table de vérité du bloc combinatoire de correction.
- (b) Déterminer l'expression logique de la sortie F en utilisant le tableau de Karnaugh.
- (c) Vérifier les trois opérations : 3+6, 9+6 et 9+9 en donnant les valeurs de A, B, Z, C_4 , F, S, C_4' et C_{out} .
- 2. Réaliser un additionneur BCD de 8 bits en utilisant des additionneurs BCD de 4 bits (dessiner le schéma bloc). Puis, vérifier l'opération suivante : 99 + 99 en donnant les valeurs des sorties de chaque additionneur BCD.

Exercice 9: Unité arithmétique et logique

On souhaite réaliser une UAL (Unité arithmétique et Logique) de 4 bits. Ce circuit possède deux entrés A et B codées sur 4 bits, un code de sélection C codée sur 3 bits, une sortie S codée sur 4 bits et une sortie S codée sur 5 bits, une sortie S codée sur 6 bits et une sortie S codée sur 7 bits et une sortie S codée sur 8 bits, une sortie S codée sur 9 bits et une sortie S cod

Opérations arithmétiques					
	$C_{in} = 0$		$C_{in} = 1$		
$\operatorname{Code} C$	Opération	Sortie S	Opération	Sortie S	
000	NOT A	\overline{A}	-A	$\overline{A} + 1$	
001	ADD	A + B	ADD+1	A+B+1	
010	SUB1-1	$A + \overline{B}$	SUB1	$A + \overline{B} + 1$	
011	SUB2-1	$B + \overline{A}$	SUB2	$B + \overline{A} + 1$	

Opérations logiques					
	$(C_{in} = X)$				
$\operatorname{Code} C$	Opération	Sortie S			
100	COPY A	A			
101	NOT B	\overline{B}			
110	AND	AB			
111	OR	A+B			

Il faut noter que la soustraction est une addition : $X - Y = X + \overline{Y} + 1$;

- 1. Dessiner le schéma bloc de ce circuit en utilisant :
 - un additionneur de 4 bits.
 - trois multiplexeurs $MUX 4 \times 1$ de 4 bits.
 - un multiplexeur $MUX \ 2 \times 1$ de 4 bits.
 - des portes : inverseurs, ANDs et ORs.
- 2. Compéter les tableaux précédents en indiquant les valeurs de la sortie S (en binaire et en décimal) lorsqu'on applique les 2 deux nombres entiers signée : $A = (-5)_{10} = (...)_2$ et $B = (7)_{10} = (...)_2$ pour les différentes valeurs du code C et C_{in} .
- 3. Marquer des croix dans les cases où le résultat est faux (c-à-d le résultat est différent de celui qui est attendu).

Exercice 10:

La figure ci-dessous représente le schéma bloc d'un convertisseur DCB-Binaire (du Décimal Codé Binaire au code binaire). Le code d'entrée DCB est codé sur 8 bits $X = (X_7 X_6 X_5 X_4 X_3 X_2 X_1 X_0)_2$ et le code binaire de sortie est codé sur 7 bits $S = (S_6 S_5 S_4 S_3 S_2 S_1 S_0)_2$. Le code X est composé de deux chiffres DCB, le chiffre haut $X_H = (X_7 X_6 X_5 X_4)_2$ et le chiffre bas $X_B = (X_3 X_2 X_1 X_0)_2$.

- 1. On note $X_H = (X_7 X_6 X_5 X_4)_2$ le chiffre DCB des dizaines (chiffre haut) et $X_B = (X_3 X_2 X_1 X_0)_2$ le chiffre DCB des unités (chiffre bas) du code X. On demande de trouver une justification de ce schéma bloc en commençant par l'équation suivante : $S = X_H \times 10 + X_B$, puis en développant cette équation en binaire.
- 2. Vérifier votre justification du schéma bloc en travaillant sur l'exemple : $X = (01101001)_{BCD} = (69)_{10}$ (donner les différentes valeurs de Σ , Σ' et S).