Вариант № 02 05.

2

3

	П1	П2	П3	П4	П5	П6	П7
П1			30		25		18
П2			17	12			
П3	30	17		23		34	15
П4		12	23			46	
П5	25						37
П6			34	46			18
П7	18		15		37	18	

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта А в пункт Д.

(№ 1610) Логическая функция F задаётся выражением ¬w ∧ (x ∧ ¬z V ¬x ∧ ¬y ∧ z).

?	?	?	?	F
0	0	0	1	1
0	0	1	1	1
1	0	0	0	1

На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

(№ 5119) В файле 3-78.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите на какую сумму было получено сметаны всех сортов в магазинах Заречного района за период с 5 по 7 июня включительно.

(№ 2832) (А.Г. Гильдин) Для кодирования букв А, Б, В, Г, Д, Е, Ж, З, И, использован неравномерный троичный код, удовлетворяющий условию Фано. Для буквы А используется кодовое слово 0; для буквы Б используется кодовое слово 10; для буквы В используется кодовое слово 11; для буквы Г используется кодовое слово 21; для буквы Д используется кодовое слово 22. Какова минимальная общая длина кодовых слов для букв Е, Ж, З, И?

5 (№ 1764) Автомат обрабатывает натуральное число N по следующему алгоритму:

- 1) Строится двоичная запись числа N.
- 2) Запись «переворачивается», то есть читается справа налево. Если при этом появляются ведущие нули, они отбрасываются.
- 3) Полученное число переводится в десятичную систему счисления и выводится на экран.

Какое наибольшее число, не превышающее 1000, после обработки автоматом даёт результат 23?

(№ 5944) Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению без рисования; Опустить хвост, означающая переход в режим рисования; Вперёд п (где п — целое число), вызывающая передвижение Черепахи на п единиц в том направлении, куда указывает её голова; Назад п (где п — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки.

Запись

6

Повтори k [Команда1 Команда2 ... КомандаS]

означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:

Повтори 2 [Вперёд 6 Направо 90 Вперёд 7 Направо 90]

Поднять хвост

Назад 2 Направо 90 Назад 3 Налево 90

Опустить хвост

Повтори 2 [Вперёд 5 Направо 90 Вперёд 6 Направо 90]

Выполняя этот алгоритм, Черепаха рисует одну за другой две фигуры. Определите, сколько точек с целочисленными координатами будут находиться внутри второй нарисованной фигуры, но не внутри первой. Точки на границах указанной области учитывать не следует.

- 7 (№ 187) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128×128 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 8 (№ 7086) (Е. Джобс) Леонид составляет слова перестановкой букв в слове ПРОБНИК. Известно, что любое слово должна начинаться и заканчиваться согласной буквой и не должно содержать двух подряд идущих гласных букв. Сколько слов может составить Леонид?
- 9 (№ 1991) Откройте файл электронной таблицы 9-0.xls, содержащей вещественные числа результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Найдите разность между максимальным и средним арифметическим значениями температуры в июне в первой половине дня (до 12:00 включительно). В ответе запишите только целую часть получившегося числа.
- 10 (№ 3866) С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «владелец» или «Владелец» (в любом числе и падеже) в тексте произведения А.С. Пушкина «Дубровский» (файл 10-106.docx). В ответе укажите только число.

- 11 (№ 281) При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 30 символов и содержащий только символы А, Б, В, Г, Д. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 50 паролей.
- 12 (№ 3387) (А.А. Имаев) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
```

2. нашлось (v)

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (888) ИЛИ нашлось (77)
ЕСЛИ нашлось (888)
ТО заменить (888, 8777)
ИНАЧЕ заменить (77,8)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 100 идущих подряд цифр 8? В ответе через запятую запишите количество цифр 7 в конечной строке.

- (№ 7042) *(М. Ишимов) В терминологии сетей ТСР/ІР маской сети называют двоичное число, которое показывает, какая часть ІР-адреса узла сети относится к адресу сети, а какая к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и маске сети. Сеть, в которой содержится узел с ІР-адресом 108.8.190.123, задана маской сети 255.255.А.0, где А некоторое допустимое для записи маски число. Определите минимальное значение А, для которого для всех ІР-адресов этой сети в двоичной записи ІР-адреса суммарное количество единиц в левых двух байтах не более суммарного количества единиц в правых двух байтах.
- 14 (№ 3689) (Б.С. Михлин) Число 437 записали в системах счисления с основаниями от 2 до 10 включительно. При каких основаниях сумма цифр этого числа является простым числом? В ответе укажите сумму всех подходящих оснований.
- **15** (№ 6474) На числовой прямой даны три отрезка: P = [13; 21], Q = [23; 35] и R = [28; 38]. Укажите наименьшую возможную длину такого отрезка A, что формула

```
(\neg((x \in Q) \to ((x \in P) \lor (x \in R)))) \to (\neg(x \in A) \to \neg(x \in Q))
```

тождественно истинна, то есть принимает значение 1 при любом значении переменной х?

(№ 2281) Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 3*n + 5, при n > 30

F(n) = 2*F(n+1) + F(n+4), при чётных n \le 30

F(n) = F(n+2) + 3*F(n+5), при нечётных n \le 30
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых значение F(n) содержит не менее двух значащих цифр 0 (в любых разрядах).

- 17 (№ 4538) В файле 17-205.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от −10 000 до 10 000 включительно. Определите количество пар, в которых хотя бы один из двух элементов заканчивается на 7, а их сумма делится на 12. В ответе запишите два числа: сначала количество найденных пар, а затем максимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 18 (№ 2702) (В.Н. Шубинкин) Исходные данные для Робота записаны в файле 18-1.xls в виде электронной таблицы прямоугольной формы. Число в каждой клетке обозначает количество монет, которые может взять Робот. Робот может двигаться только вверх и вправо. Робот может брать монеты только с тех клеток, где количество монет нечётно. Если количество монет чётно, то Робот не берёт в этой клетке ни одной монеты. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответе укажите два числа сначала максимальную сумму, затем минимальную.
 - (№ 3190) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в любую кучу один камень или увеличить количество камней в любой куче в четыре раза. Игра завершается в тот момент, когда общее количество камней в двух кучах становится не менее 125. Победителем считается игрок, сделавший последний ход. В начальный момент в первой куче было 7 камней, а во второй S камней, $1 \le S \le 117$. Ответьте на следующие вопросы:
 - **Bonpoc 1.** Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.
 - **Bonpoc 2.** Найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
 - Петя не может выиграть за один ход;
 - Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Найдите значение S, при котором одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. (№ 5691) (А. Кабанов) В файле 22-44.xls содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Если процесс В зависит от процесса А, то процесс В может начать выполнение не раньше, чем через 9 мс после завершения процесса А. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

19

20 21

22

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	1	1; 2
4	7	3

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 – через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2 и 9 мс ожидания, то есть, через 13 мс после старта. Он длится 1 мс и закончится через 13 + 1 = 14 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3 и 9 мс ожидания, то есть, через 23 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 23 + 7 = 30 мс.

- [(№ 5076) Исполнитель Калькулятор преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавь 1

23

26

- 2. Прибавь 3
- 3. Умножь на 2

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3, третья — умножает на 2. Программа для исполнителя — это последовательность команд. Сколько существует программ, которые преобразуют исходное число 2 в число 51, и при этом траектория вычислений содержит число 18 и не содержит число 33. Также программа не должна содержать двух команд «Умножь на 2» подряд.

- 24 (№ 3156) Текстовый файл 24-s2.txt состоит не более чем из 10⁶ заглавных латинских букв. Определите символ, который чаще всего встречается в файле сразу после буквы Х. В ответе запишите сначала этот символ, а потом сразу (без разделителя) сколько раз он встретился после буквы Х. Если таких символов несколько, нужно вывести тот, который стоит раньше в алфавите. Например, в тексте XBCXXBXDDD после буквы X два раза стоит В, по одному разу X и D. Для этого текста ответом будет В2.
- 25 (№ 6655) (Е. Джобс) Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:
 - символ «?» означает ровно одну произвольную цифру;
 - символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300425.

Найдите все числа, меньшие 10^{12} , соответствующие маске 123?4*5679 и делящиеся без остатка на 4013. В качестве ответа приведите все найденные числа в порядке возрастания, справа от каждого числа выведите результат его деления на 4013.

(№ 6285) В ходе эксперимента заряженные частицы попадают на чувствительный экран размером 100 000×100 000 точек. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда (целое число от 1 до 100 000) и номер позиции в ряду (целое число от 1 до 100 000). Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, — тёмной. Линией называют группу точек, расположенных в одном ряду подряд. Линия должна начинаться и заканчиваться светлыми точками, между которыми могут располагаться как светлые, так и тёмные точки, но тёмных точек может быть не более 10 подряд. По заданному протоколу нужно определить наибольшую длину одной линии и номер ряда, в котором это находится эта линия. Если таких рядов несколько, выберите максимальный номер подходящего ряда.

Входные данные представлены в файле <u>26-110.txt</u> следующим образом. В первой строке

записано число N — количество зафиксированных точек (натуральное число, не превышающее 1000000). Каждая из следующих N строк содержит 2 целых числа: номер ряда и номер позиции в ряду, куда попала частица.

Пример входного файла::

4 152 5

27

При этих данных линия максимальной длины находится в ряду 2, она включает светлые точки с позициями 5, 10 и 12, а также все тёмные точки между ними. Общая длина линии равна 8. Ответ: 8 2.

(№ 2710) (Е. Джобс) Дана последовательность N целых неотрицательных чисел. Необходимо определить количество пар положительных элементов этой последовательности, сумма которых четна, при этом между элементами пары есть хотя бы один ноль.

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке натуральное число N (1 < N < 10000) — количество чисел в последовательности. В следующих N строках записаны числа, входящие в последовательность, по одному в каждой строке.

Выходные данные: Программа должна вывести одно число – количество найденных пар. **Пример входного файла**:

Для указанных входных данных искомое количество пар равно 3.

В ответе укажите два числа: сначала искомое значение для файла А, затем для файла В.

Вариант построен по материалам сайта <u>kpolyakov.spb.ru</u>. © *К. Поляков*, 2024