

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIORSERTIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

WISKUNDE V2

2022

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 14 bladsye en 1 inligtingsblad.

INSTRUKSIES EN INLIGTING

Lees die volgende instruksies aandagtig deur voordat jy die vraestel beantwoord.

- 1. Hierdie vraestel bestaan uit 10 vrae.
- 2. Beantwoord AL die vrae in die SPESIALE ANTWOORDEBOEK wat verskaf word.
- 3. Dui ALLE berekeninge, diagramme, grafieke, ens. wat jy in die beantwoording van die vrae gebruik, duidelik aan.
- 4. Slegs antwoorde sal NIE noodwendig volpunte verdien NIE.
- 5. Jy kan 'n goedgekeurde wetenskaplike sakrekenaar gebruik (nieprogrammeerbaar en niegrafies), tensy anders vermeld.
- 6. Indien nodig, rond antwoorde tot TWEE desimale plekke af, tensy anders vermeld.
- 7. Diagramme is NIE noodwendig volgens skaal geteken NIE.
- 8. 'n Inligtingsblad met formules is aan die einde van die vraestel ingesluit.
- 9. Skryf netjies en leesbaar.

Die tabel hieronder toon die massa (in kg) van skooltasse van 80 leerders.

MASSA (in kg)	FREKWENSIE				
$5 < m \le 7$	6				
$7 < m \le 9$	18				
9 < m ≤ 11	21				
$11 < m \le 13$	19				
$13 < m \le 15$	11				
$15 < m \le 17$	4				
$17 < m \le 19$	1				

- 1.1 Skryf die modale klas van die data neer. (1)
- 1.2 Voltooi die kumulatiewefrekwensie-kolom in die tabel in die ANTWOORDEBOEK. (2)
- 1.3 Skets 'n kumulatiewefrekwensie-grafiek (ogief) vir die gegewe data op die rooster wat in die ANTWOORDEBOEK verskaf word. (3)
- 1.4 Gebruik die grafiek om die mediaanmassa vir hierdie data te bepaal. (2)
- Die internasionale riglyn vir die massa van 'n skooltas is dat dit nie 10% van 'n leerder se liggaammassa moet oorskry nie.
 - 1.5.1 Bereken die benaderde gemiddelde massa van die skooltasse. (2)
 - Daar is gevind dat die gemiddelde massa van hierdie groep leerders 80 kg is. Met verwysing na gemiddelde massa, voldoen hierdie skooltasse aan die internasionale riglyn? Motiveer jou antwoord.

 (2)

 [12]

Die tabel hieronder toon die grootte (in karaat) en die prys (in rand) van 10 diamante wat deur 'n diamanthandelaar verkoop is. Hierdie inligting word ook in die spreidiagram hieronder getoon. Die kleinstekwadrate-regressielyn is getrek.

Grootte, in karaat, van diamant (x)	0,1	0,15	0,2	0,2	0,3	0,35	0,4	0,45	0,45	0,55
Prys, in rand, van diamant (y)	4 000	6 000	6 500	8 400	9 000	10 000	13 440	15 120	16 800	18 480

- 2.1 Bepaal die vergelyking van die kleinstekwadrate-regressielyn vir die data.
- 2.2 As die handelaar 'n diamant verkoop het wat 0,25 karaat groot is, voorspel die verkoopprys van die diamant in rand. (2)
- 2.3 Bereken die gemiddelde prysverhoging per 0,05 karaat van die diamante. (2)
- Daar is later vasgestel dat die prys van die 0,35 karaat diamant verkeerd aangeteken is. Die korrekte prys is R11 500. Wanneer die datastel reggestel word, raak die korrelasie tussen die grootte en die prys van hierdie diamante sterker. Verduidelik die rede hiervoor deur na die gegewe spreidiagram te verwys.

(1) [**8**]

(3)

Wiskunde/V2

In die diagram is A(5; 3), B $\left(0; \frac{1}{2}\right)$, C en E(6; -4) die hoekpunte van 'n trapesium met BA || CE. D is die y-afsnit van CE en CD = DE.

3.1 Bereken die gradiënt van AB. (2)

3.2 Bepaal die vergelyking van CE in die vorm y = mx + c. (3)

3.3 Bereken die:

3.3.1 Koördinate van C (3)

3.3.2 Oppervlakte van vierhoek ABCD (4)

3.4 As punt K die refleksie van E in die y-as is:

3.4.1 Skryf die koördinate van K neer (2)

3.4.2 Bereken die:

(a) Omtrek van Δ KEC (4)

(b) Grootte van KĈE (3) [21]

In die diagram is die sirkel met middelpunt M(a; b) geskets. T en R(6; 0) is die x-afsnitte van die sirkel. 'n Raaklyn is aan die sirkel by K(5; 7) getrek.

4.1 M is 'n punt op die lyn y = x+1.

4.1.1 Skryf
$$b$$
 in terme van a . (1)

4.2 As (2; 3) die koördinate van M is, bereken die lengte van:

4.2.2 TR
$$(2)$$

- Bepaal die vergelyking van die raaklyn aan die sirkel by K. Skryf jou antwoord in die vorm y = mx + c. (5)
- 4.4 'n Horisontale lyn word as 'n raaklyn aan die sirkel M by die punt N(c; d) getrek, waar d < 0.
 - 4.4.1 Skryf die koördinate van N neer. (2)
 - 4.4.2 Bepaal die vergelyking van die sirkel met middelpunt N wat deur T gaan. Skryf jou antwoord in die vorm $(x-a)^2 + (y-b)^2 = r^2$.

(3) [**20**]

In die diagram hieronder is P(-7; 4) 'n punt in die Kartesiese vlak. R is 'n punt op die positiewe x-as sodanig dat stomphoek $P\hat{O}R = \theta$.

Bereken, sonder die gebruik van 'n sakrekenaar, die:

5.1.2 Waarde van:

(a)
$$\tan \theta$$
 (1)

(b)
$$\cos(\theta - 180^{\circ})$$
 (2)

Bepaal die algemene oplossing van:
$$\sin x \cos x + \sin x = 3\cos^2 x + 3\cos x$$
 (7)

5.3 Gegee die identiteit:
$$\frac{\sin 3x}{1 - \cos 3x} = \frac{1 + \cos 3x}{\sin 3x}$$

5.3.2 Bepaal die waardes van
$$x$$
, in die interval $x \in [0^{\circ}; 60^{\circ}]$, waarvoor die identiteit ongedefinieerd sal wees. (3)

Vereenvoudig, sonder die gebruik van 'n sakrekenaar, die volgende uitdrukking tot 'n enkele trigonometriese term:

$$\frac{\sin 10^{\circ}}{\cos 440^{\circ}} + \tan(360^{\circ} - \theta) \cdot \sin 2\theta \tag{6}$$

DBE/2022

- 6.2 Gegee: $\sin(60^{\circ} + 2x) + \sin(60^{\circ} 2x)$
 - 6.2.1 Bereken die waarde van k as $\sin(60^\circ + 2x) + \sin(60^\circ 2x) = k \cos 2x$. (3)
 - 6.2.2 As $\cos x = \sqrt{t}$, bepaal, **sonder die gebruik van 'n sakrekenaar**, die waarde van $\tan 60^{\circ} \left[\sin(60^{\circ} + 2x) + \sin(60^{\circ} 2x) \right]$ in terme van t. (3) [12]

In die diagram hieronder is die grafieke van $f(x) = \frac{1}{2}\cos x$ en $g(x) = \sin(x - 30^\circ)$ vir die interval $x \in [-90^\circ; 240^\circ]$ geskets. A en B is onderskeidelik die y-afsnitte van f en g.

7.1 Bepaal die lengte van AB.

(2)

7.2 Skryf die waardeversameling van 3f(x) + 2 neer.

(2)

7.3 Lees vanaf die grafieke 'n waarde van
$$x$$
 waarvoor $g(x) - f(x) = \frac{\sqrt{3}}{2}$. (2)

7.4 Vir watter waardes van x, in die interval $x \in [-90^{\circ}; 240^{\circ}]$, is:

7.4.1
$$f(x).g(x) > 0$$
 (2)

7.4.2
$$g'(x-5^{\circ}) > 0$$
 (2) [10]

FIGUUR I toon 'n oprit wat na die ingang van 'n gebou lei. B, C en D lê op dieselfde horisontale vlak. Die loodregte hoogte (AC) van die oprit is 0,5 m en die hoogtehoek vanaf B na A is 15°. Die ingang van die gebou (AE) is 0,915 m wyd.

8.1 Bereken die lengte van AB.

Figuur II toon die boaansig van die oprit. Die oppervlak van die bokant van die oprit word in drie driehoeke verdeel, soos in die diagram getoon.

Indien $B\hat{A}E = 120^{\circ}$, bereken die lengte van BE. (3)

8.3 Bereken die oppervlakte van $\triangle BFD$ as $B\widehat{F}D = 75^{\circ}$, BF = FD en $BF = \frac{5}{7}BE$. (3)

(2)

In die diagram is DEFG 'n koordevierhoek met DE || GF. DE word na R verleng. T is nog 'n punt op die sirkel. EG, FT en ET word getrek. $\hat{E}_4 = 72^{\circ}$ en $\hat{G}_1 = 16^{\circ}$.

Bepaal, met redes, die grootte van die volgende hoeke:

9.1.1
$$D\hat{G}F$$
 (2)

9.1.2
$$\hat{T}$$
 (2)

In die diagram sny die hoeklyne van parallelogram KLMN by P. NM is verleng na 9.2 S. R is 'n punt op KL en RS sny PL by T. NM : MS = 4 : 1, NL = 32 eenhede en TL = 12 eenhede.

Bepaal, met redes, die waarde van die verhouding NP: PT in 9.2.1 (4) eenvoudigste vorm.

(2) 9.2.2 Bewys, met redes, dat KM || RS.

As NM = 21 eenhede, bepaal, met redes, die lengte van RL. (4) 9.2.3 [16]

Blaai om asseblief Kopiereg voorbehou

10.1 In die diagram is $\triangle ABC$ en $\triangle DEF$ geskets sodanig dat $\hat{A} = \hat{D}$, $\hat{B} = \hat{E}$ en $\hat{C} = \hat{F}$.

Gebruik die diagram in die ANTWOORDEBOEK om die stelling te bewys wat beweer dat as twee driehoeke gelykhoekig is, dan is die ooreenstemmende sye in dieselfde verhouding, d.i. $\frac{AB}{DE} = \frac{AC}{DF}$. (6)

In die diagram is O die middelpunt van 'n sirkel wat deur A, B, C en D gaan. EC is 'n raaklyn aan die sirkel by C. Middellyn DB word verleng om die raaklyn EC by E te ontmoet. F is 'n punt op EC sodanig dat BF \perp EC. Radius CO word verleng om AD by G te halveer. BC en CD is getrek.

10.2.1 Bewys, met redes, dat:

(a)
$$FB \parallel CG$$

(b)
$$\Delta FCB \parallel \Delta CDB$$
 (5)

10.2.2 Gee 'n rede waarom
$$\hat{G}_1 = 90^\circ$$
. (1)

Bewys, met redes, dat
$$CD^2 = CG.DB.$$
 (5)

Bewys vervolgens dat
$$DB = CG + FB$$
. (5) [25]

TOTAAL: 150

INLIGTINGSBLAD

INLIGINGSBLAD

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_m = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC : \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \cos \alpha + \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \cos \alpha + \cos \alpha$$