Boston University Questrom School of Business

MF793 – Fall 2021 Eric Jacquier

RANDOM WALK, STATIONARITY, TIME SERIES MODELS

- What is a *stationary* random variable?
- Are financial data stationary? What is a *Random Walk*?
- Does the distribution of stock prices exist? Does the distribution of stock returns exist?

Start from the conditional distribution of P_t having just observed P_{t-1} . That must exist! Under what conditions does an unconditional distribution exist?

- Stationary AR(1) model, AR(p), **Moving Average** MA(q), mixed models
- Estimation

Read: Bruce Hansen 16.1-16.4 Greene 20.2-20.3

1 Some Definitions

Strict stationarity

A time series $\{r_t\}$ is strictly stationary if the joint distribution of $(r_{t+1}, \cdots, r_{t+k})$ is identical to that of $(r_{l+1}, \cdots, r_{l+k})$ for all t, l and k.

- Strict stationarity: Strong requirement that the distribution of any $(r_{t+1}, \cdots, r_{t+k})$ is invariant to any time shift
- Implies invariance of all moments under time shifts.

Weak stationarity

A time series $\{r_t\}$ is weakly stationary if both the <u>mean</u> of r_t and the <u>covariance</u> between r_t and r_{t-k} are time-invariant.

$$E[r_t] = \mu$$
 and $Cov(r_t, r_{t-k}) = \gamma_K$ \forall **t and k**, γ : time series notation

We just introduced the *autocovariance function* γ_K . Note: $\gamma_0 \equiv \text{Cov}(r_t, r_t) = \sigma^2$

The autocorrelation function:
$$\rho_K = \frac{Cov(r_t, r_{t-k})}{\sigma_t \sigma_{t-k}} = \frac{\gamma_k}{\gamma_0}$$

Practical implications:

• For the past: Time plot of $\{r_t\}$ varies around a fixed level within a finite range.

 \bullet For the future: First 2 moments of future r_t are the same as in the past:

$$\mu = E[r_t]$$
 $\sigma^2 = E[(r_t - \mu)^2] = \gamma_0$

• Weak stationarity requires that second moments exist.

• We often assume weak stationarity of financial time series **returns**, and growth rates of economic series.

• Covariance is not a function of t, only of the lag k Cov(rt+l,t+l-k)

2 The Random Walk

The **levels** of financial series are **non stationary** (Random Walk).

They are also **bounded** (in general >0)

Stock price

Stock index level

Exchange rate

Nominal interest rates

Macroeconomic series: CPI, GNP, GDP, IP

• A random variable (like a stock price or index) price Pt follows a Random Walk if

$$P_{t+1} = \mu + P_t + \varepsilon_{t+1}, \qquad \varepsilon_t \sim (0, \sigma)$$

$$E_t(\varepsilon_{t+1} | P_t, \varepsilon_{t-1},) = 0$$

2A Existence of the Mean? (not!)

- E(P_{t+1} | P_t), the **conditional mean** always exists.
- Does E(P_t) exist? NO!

$$E_t(P_{t+1}|P_t) = \mu + P_t$$

one-period ahead conditional mean

$$E(P_{t+k} | P_t) = k \mu + P_t$$
 [1]

Definition: Unconditional Mean (moment)

The unconditional mean is the limit of the k-period ahead conditional mean as k goes to infinity

- $\lim_{k\to\infty} E(P_{t+k}|P_t)$? The unconditional mean of P_t does not exist
- What if μ =0? $E(P_{t+k}|P_t) = \frac{k \mu}{\mu} + P_t = P_t$... is a function of t. Violates weak stationarity

2B Existence of Variance?

• Var(P_t)? Only the conditional variance exists.

 $V(P_{t+1} \mid P_t) = V(\mu + P_t + \varepsilon_{t+1} \mid P_t) = \sigma^2$ one-period ahead conditional variance

$$V(P_{t+2} | P_t) = V(P_{t+1} + \varepsilon_{t+2} | P_t)$$

$$= V(P_{t+1} | P_t) + \sigma^2$$

$$= V(P_t + \varepsilon_{t+1} | P_t) + \sigma^2$$

$$= 2 \sigma^2$$

$$V(P_{t+k} \mid P_t) = k \sigma^2$$
 [2]

- A Random walk does not have unconditional moments
- We cannot estimate moments (means, variances) that do not exist!

Sample average and sample variance of a dataset of financial prices do not correspond to any existing true moment, they are meaningless.

2C Remedy: Simply first-difference the series

- Most financial series are >0 by definition, model error must be consistent with this.
- Differenced model: $\Delta P_t = (P_t P_{t-1}) = \mu + \varepsilon_t$,

Need to model ε_t to eliminate possibilities of $P_t < 0$ => cannot use unbounded shocks (e.g. normal): Distribution of ε_t must be a function of P_{t-1} to guarantee $P_t > 0$

- Bounded distributions are complicated: mean and variance interact
- Problem is more easily resolved in continuous time:

If P_{t-1} is very small, the variance of ϵ_t is made proportional to P_{t-1} to eliminate chances of $P_t < 0$ as in: $dP = \mu \ P \ dt + \sigma \ P \ dz$

This does not work in discrete time, still a chance of $P_t < 0$ over a fixed time interval.

• Remedy in discrete time: Normalize by taking the difference of logarithms

$$\text{Log } P_t = \mu + \text{Log } P_{t-1} + \varepsilon_t, \quad E(\varepsilon_t) = 0$$

$$Ln P_t / P_{t-1} = r_t = \mu + \varepsilon_t$$

r_t: the continuous (aka log-) return (or growth rate)

 $r_t = Log(1+R_t)$, in contrast with the conventional return $R_t = (P_t - P_{t-1}) / P_t$

Conclusions:

Log-difference is the preferred transformation

Most realistic assumption: r_t is normal, I.e. R_t is lognormal

• For small returns (high frequency) $Log(1+R_t) \approx R_t \approx r_t$

When do we get small returns when do we get big returns?

3 Random Walk and Market Efficiency

The Random walk is the simplest representation of market efficiency. (It is not the only one)

- Price form: $\operatorname{Ln} P_{t} = \mu + \operatorname{Ln} P_{t-1} + \varepsilon_{t} \qquad \operatorname{E}(\varepsilon_{t} \mid I_{t-1}) = 0$ [1]
 - Returns form: $r_t = \mu + \varepsilon_t$ $E(\varepsilon_t \mid I_{t-1}) = 0$
- $E(\varepsilon_t | I_{t-1}) = 0$ I_{t-1} : all information available at time t-1
- Three forms of efficiency:

Weak form $I_{t-1} = R_{t-1}$, R_{t-2} , R_{t-3} , etc... only past values of the series itself

Semi-strong form: I_{t-1} : all **publicly available** information Strong form: I_{t-1} : all public **and private** information

• Essentially: Returns are very hard to predict given past public information *Warning: More complex finance models may allow for returns predictability in efficient markets*

4 Crucial properties of a stationary series: the AR(1)

A stationary series does not need to be pure noise, it can have a predictable conditional mean.

The Stationary AutoRegressive model: AR(1)

$$Y_{t+1} = \alpha + \phi Y_t + \varepsilon_{t+1}$$
 $E(\varepsilon_t \mid Y_{t-k}, k>0) = 0$

4.1 Unconditional Mean of Y_t

Sloppy way: $E(Y_{t+1}) = \alpha + \phi E(Y_t) = \sum E(Y_t) = \alpha / (1-\phi)$... if it exists!

In fact, it exists only if $|\phi| < 1$, how do we know? By doing it the ...

Formal way:

$$E_{t}(Y_{t+2} | Y_{t}) = E_{t} (\alpha + \phi Y_{t+1} + \varepsilon_{t+2} | Y_{t})$$

$$= \alpha + \phi E_{t}(Y_{t+1} + \varepsilon_{t+2} | Y_{t}) = \alpha + \phi E_{t}(Y_{t+1} | Y_{t})$$

$$= \alpha + \phi E_{t}(\alpha + \phi Y_{t} + \varepsilon_{t+1} | Y_{t}) = \alpha (1 + \phi) + \phi^{2} Y_{t}$$
[1]

Note that in [1] we see the recursion: $E_t(Y_{t+k} | Y_t) = \alpha + \phi E_t(Y_{t+k-1} | Y_t)$

$$E_{t}(Y_{t+3} \mid Y_{t}) = \alpha + \phi E_{t}(Y_{t+2} \mid Y_{t}) = \alpha + \phi [\alpha (1+\phi) + \phi^{2} Y_{t}]$$

$$= \alpha (1 + \phi + \phi^{2}) + \phi^{3} Y_{t}$$

$$E_{t}(Y_{t+k} \mid Y_{t}) = \alpha \left(1 + \phi + \dots \phi^{k-1}\right) + \phi^{k} Y_{t}$$

$$= \alpha \frac{1 - \phi^{k}}{1 - \phi^{k}} + \phi^{k} Y_{t}$$
[1]

Unconditional Mean if it exists:

Is the limit of [1] as $k \to \infty$ Limit of series: $1+\phi + ... \phi^{k-1}$?

$$1+\phi + ... \phi^{k-1}$$
 what if $|\phi|=1$? $|\phi|>1$?

$$\lim_{k\to\infty} E_t(Y_{t+k} \mid Y_t) = \frac{\alpha}{1-\phi} \qquad \text{if } |\phi| < 1$$

4.2 Unconditional Variance of Y_t

Sloppy
$$V(Y_t) = \phi^2 V(Y_{t-1}) + \sigma^2_{\epsilon} = V(Y_t) = \sigma^2_{\epsilon} / (1 - \phi^2)$$
 ... if it exists!

Again, need $|\phi|$ < 1, but we don't see if from here

Serious: Compute k-period ahead conditional variance and take the limit

$$V_t(Y_{t+1} \mid Y_t) = V_t(\alpha + \phi Y_t + \varepsilon_{t+1} \mid Y_t) = \sigma^2 \varepsilon$$

$$V_{t}(Y_{t+2} \mid Y_{t}) = V_{t}(\alpha + \phi Y_{t+1} + \epsilon_{t+2} \mid Y_{t}) = \phi^{2} V_{t}(Y_{t+1} \mid Y_{t}) + \sigma^{2} \epsilon$$

$$= \sigma^{2} \epsilon (1 + \phi^{2})$$

$$V_{t}(Y_{t+k} \mid Y_{t}) = \sigma^{2} \epsilon (1 + \dots + \phi^{2})$$

$$\lim_{k\to\infty} V_t(Y_{t+k} \mid Y_t) = \sigma^2_{\varepsilon} / (1-\phi^2)$$

4.3 Autocovariance $Cov(Y_t, Y_{t-1})$

$$Cov(Y_{t}, Y_{t-1}) = Cov(\phi Y_{t-1} + \varepsilon_{t}, Y_{t-1}) = \phi Cov(Y_{t-1}, Y_{t-1}) + Cov(\varepsilon_{t}, Y_{t-1})$$
$$= \phi \sigma^{2}_{Y}$$

$$Cov(Y_t, Y_{t-2}) = Cov(\phi Y_{t-1} + \varepsilon_t, Y_{t-2}) = \phi Cov(Y_{t-1} + \varepsilon_t, Y_{t-2}) =$$

$$= \phi^2 \sigma^2_Y$$

$$Cov(Y_{t}, Y_{t-k}) = \phi Cov(Y_{t-1}, Y_{t-k}) = \phi^{2} Cov(Y_{t-2}, Y_{t-k})$$

$$= \phi^k \sigma^2 Y$$

4.4 Autocorrelation of the stationary AR(1)

$$\rho_{\mathbf{k}} = \text{Cov}(Y_t, Y_{t-k}) / \sigma_{Yt} \sigma_{Yt-k} = \phi^k \sigma^2_{Yt} / \sigma_{Yt} \sigma_{Yt-k} = \phi^k$$

Link with the R² of the autoregression

The simple regression $y = \alpha + x \beta + \epsilon \qquad E(\epsilon \mid x) = Cov(\epsilon, x) = 0$.. is a variance decomposition $\sigma^2_y = \beta^2 \sigma^2_x + \sigma^2_\epsilon$

$$\beta = \frac{cov(xy)}{var(x)} = \rho_{XY} \frac{\sigma_Y}{\sigma_X} \qquad \qquad \mathbf{R^2} = \frac{\beta^2 \sigma_X^2}{\sigma_Y^2} = \rho_{XY}^2$$

Autoregression (common in Finance for prediction): $R_t = \alpha + \beta R_{t-1} + \epsilon_t$

Returns are stationary, but may still be predictable: $0 < \beta < 1$

Conditionally $E(R_t | R_{t-1}) = \alpha + \beta R_{t-1}$ $V(R_t \mid R_{t-1}) = V(\varepsilon)$

Unconditionally: $E(R_t) = E(R_{t-1}) = E(R)$ $V(R_t) = V(R_{t-1}) = V(R)$

$$\beta = \rho_{R_t,R_{t-1}} \frac{\sigma_{Rt}}{\sigma_{Rt-1}} \equiv \rho_1$$
 The slope coefficient of an autoregression is the first order autocorrelation

5 Detecting random walk and non-stationarity

The S&P500 (!?) over 2 years.

• Can't use estimates of the mean and variance since they don't exist!

- Intuition is in $\rho_k = \phi^k$: The **A**uto**C**orrelation **F**unction (ACF) must die out if $|\phi| < 1$
- Plot the autocorrelation function vs. k (autocorrelogram)

Series price

• This S&P was a fake, just a pure log-random walk simulated as:

```
mu <- 0.10 /252
sig <- 0.15/sqrt(252)
lpt <- rep(0,504)  # Do two years, create log price vector
epst <- rnorm(504,0, 1)
lpt[1]<- log(2600)  # Starting value
for (i in 2:504) { lpt[i] <- lpt[i-1] + mu + sig*epst[i]}
price <- exp(lpt)
ts.plot(price, ylab="Price")
acf(price, lag.max=30)</pre>
```

• Contrast with the ACF of a stationary, <u>even strongly</u> autocorrelated, series:

• Same for more complex but stationary models ARMA:

Autocorrelations are more complex for the first few lags,

But they still die out very quickly after.

6 Generalization

6.1 The AR(p) model

AR(2): $R_t = \phi_0 + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$ $E(\epsilon_t | R_{t-k}, \forall k > 0) = 0$

Noise (shock) unrelated to past information

AR(p): $R_t = \phi_0 + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \dots + \phi_p R_{t-p} + \varepsilon_t$

Stationarity conditions less simple

AR(2), we can show that we need ϕ_1 and ϕ_2 to be in the triangle:

 $\phi_1 > -1$

 $\phi_2 < 1 + \phi_1$ $\phi_2 < 1 - \phi_1$

Autocorrelation function decays fast after lag p for a stationary AR(p)

The ACF of an AR(P) looks a bit like that of an AR(1), but not as simple as: $\rho_k = \phi^k$

All ARs, even AR(1)s have non-zero autocorrelation up to any lag.

[1]

ACF decays quickly but is never exactly zero.

How can we distinguish the ACF of an AR(1) from an AR(2), from and AR(3)?

Distinguishing AR(1) from an AR(p): the **Partial AutoCorrelation Function PACF**

 $\rho_k = \varphi^k \neq 0$ Autocorrelation decays fast but is not zero at low lags AR(1)

AR(2):
$$R_t = \phi_0 + \phi_1 R_{t-1} + \phi_2 R_{t-2} + \epsilon_t$$
 $E(\epsilon_t | R_{t-k}, k>0) = 0$

$$E(\varepsilon_t \mid R_{t-k}, k>0) = 0$$

 \Rightarrow $p_1 = \widehat{\phi_1}$ Regress R_t on R_{t-1} PACF: PACF₁:

PACF₂: Regress
$$R_t - p_1R_{t-1}$$
 on R_{t-2} => $p_2 = \widehat{\phi}_2$

PACF₃: Regress
$$R_{t} - p_{1}R_{t-1} - p_{2}R_{t-2}$$
 on $R_{t-3} = \hat{0}$

PACF estimates drop to zero past the AR lag. We plot the PACFs

In R: acf(mydata, type="partial") #

6.2 The moving average model (MA)

MA(1):
$$R_t = \mu + a_t + \theta_1 a_{t-1}$$
, $a_t \sim i.i.d N(0,\sigma_a)$

MA(q):
$$R_t = \mu + a_t + \theta_1 a_{t-1} + ... + \theta_q a_{t-q}$$

• ACF of the MA(q):

$$\begin{aligned} \text{Cov}(\mathbf{R_t}, \ \mathbf{R_{t-1}}) &= \text{Cov}(\mathbf{a_t} + \theta_1 \ \mathbf{a_{t-1}} + ... + \theta_q \ \mathbf{a_{t-q}}, \ \mathbf{a_{t-1}} + \theta_1 \ \mathbf{a_{t-2}} + ... + \theta_q \ \mathbf{a_{t-q}} + \theta_q \ \mathbf{a_{t-1-q}}) \\ \text{Cov}(\mathbf{R_t}, \ \mathbf{R_{t-q}}) &= \text{Cov}(\mathbf{a_t} + \theta_1 \ \mathbf{a_{t-1}} + ... + \theta_q \ \mathbf{a_{t-q}}, \ \mathbf{a_{t-q}} + \theta_1 \ \mathbf{a_{t-q-1}} + ... + \theta_q \ \mathbf{a_{t-q-q}}) \\ &= \theta_q \ \sigma^2_a \end{aligned}$$

$$\begin{aligned} \textbf{Cov}(\mathbf{R_t}, \ \mathbf{R_{t-q-1}}) &= \text{Cov}(\mathbf{a_t} + \theta_1 \ \mathbf{a_{t-1}} + ... + \theta_q \ \mathbf{a_{t-q}}, \ \mathbf{a_{t-q-1}} + \theta_1 \ \mathbf{a_{t-q-1-1}} + ... + \theta_1 \ \mathbf{a_{t-q-1}} + \theta_1 \ \mathbf{a_{t-q-1-1}} + ... + \theta_1 \ \mathbf{a_{t-q-1}} + \theta_1 \ \mathbf{a_{t-q-1-1}} + ... + \theta_1 \ \mathbf{a_{t-q-1-1-1}} + ... + \theta_1$$

The ACF of the MA(q) drops to exactly zero at lag q+1

• Moments of the MA(q)

$$E(R_t) = \mu$$
 $Var(R_t) = \sigma^2_a (1 + \theta_1^2 + ... + \theta_q^2)$

The MA is always covariance stationary

6.3 ARMA(p,q)

$$R_t = \mu + \phi_1 R_{t-1} + ... + \phi_p R_{t-p} + a_t + \theta_1 a_{t-1} + ... + \theta_q a_{t-q}$$

Parcimony:

Long lag in AR can be approximated by short lag MA, and vice-versa (no proof)

ARMA model with **small p,q** can be an effective modeling strategy

6.4 ARIMA(p,d,q)

I: integrated

d: Number of times needed to difference to obtain stationarity, typically d=1

Refers to the fact that we may want to difference the original series (price, index level, etc..) before applying an ARMA to it.

If you "pre-differenced" your series, for example, computed stock or index returns from price, you don't need this.

Example: GDP is non stationary, log-difference it and study GDP growth rate CPI is non stationary, log-difference it and study inflation

7 Estimation

7.1 Estimating ρ_k

• Estimator of ρ_1 : $E(\widehat{\rho_1}) \stackrel{\cdot}{\sim} \frac{-1}{T}$, $V(\widehat{\rho}_1) \stackrel{\cdot}{\sim} \frac{1}{T}$ $\widehat{\rho} \stackrel{\cdot}{\sim} N(\frac{-1}{T}, \frac{1}{T})$ under H_0 : $\rho = 0$ No proof Good for k≪T and T large

$$\hat{\rho} \sim N(\frac{-1}{T}, \frac{1}{T})$$
 under H₀: ρ =**0** No proof

 $\widehat{\rho}_i \stackrel{.}{\sim} N(\frac{-(T-i)}{T(T-1)}, \frac{T-i}{T(T-2)})$ under H₀: ρ_i =0 Slightly better approximation:

Testing a joint null H_0 : $\rho_1 = \rho_2 = ... = \rho_k = 0$

Box-Pierce:
$$\sum_{i=1}^{k} \frac{(\widehat{\rho}_i - 0)^2}{1/T} \stackrel{\cdot}{\sim} \chi^2(k)$$

The $\hat{\rho}_i$ s are not dependent from one another, \forall i \neq j

Box-Ljung: Similar but uses (T-i)/T(T-2) for variance

7.2 Estimating parameters of AR and MA.

- Estimating parameters of AR, MA, ARMA models require transformation (state space form), maximum or quasi-maximum likelihood methods
- Pure AR models can be estimated by OLS approximately in large samples.
- MA models require specific likelihood type and time series estimation techniques
- In R: packages tseries, command arima, straightforward, a bit like a regression output.