SOS(Set of Sets)

Description

From the universal set $U = \{0,1,\dots,n-1\}$ we can construct subsets $S_i \subseteq U$ $(1 \le i \le q)$.

For example, with n = 3 and q = 8, we can have

$$S_{1} = \{\} = \emptyset$$

$$S_{2} = \{1\}$$

$$S_{3} = \{1\}$$

$$S_{4} = \{2\}$$

$$S_{5} = \{1,2\}$$

$$S_{6} = \{0\}$$

$$S_{7} = \{0\}$$

$$S_{8} = \{1\}$$

Let m_i be the count of exactly the same sets S_i , in $\{S_1, S_2, \dots, S_i\}$ up to and including the given set.

From the above sets we get

$$m_1 = 1$$

 $m_2 = 1$
 $m_3 = 2$
 $m_4 = 1$
 $m_5 = 1$
 $m_6 = 1$
 $m_7 = 2$
 $m_8 = 3$

From the given sets S_1, S_2, \dots, S_i , compute the values of m_1, m_2, \dots, m_q .

Input

Your program is to read from standard input. The size of universal set n and the number of sets q are given in the first line (1 \leq n \leq 17) (1 \leq q \leq 150,000), separated by space. Each of the next q lines contains information about set S_i . The size of S_i (i. e. $|S_i|$) is given as the first number of each line, followed by the elements of S_i separated by space. Every element is a member of $U = \{0,1,\cdots,n-1\}$ and the elements in each set S_i are given in an increasing order at all times.

Output

Your program is to write to standard output. Print the value of m_i on ith line.

Sample

Input	Output	
38	1	
0	1	
11	2	
11	1	
1 2	1	
212	1	
10	2	
10	3	
11		