KEX-20

KEX-23 E

ARC TUNER COMPONENT CAR STEREO CASSETTE DECK WITH AM/FM ELECTRONIC TUNER ARC TUNER COMPONENT CAR STEREO CASSETTE DECK WITH LW/MW/FM ELECTRONIC TUNER

SERVICE MANUAL

General

Subject:

For Cassette Mechanism, refer to the Service Manual of unit number CX-100A/H

SPECIFICATIONS

General	
Power source	Signal-to-noise ratio 60 dB Capture ratio 1,5 dB Selectivity 70 dB (± 400 kHz) Image rejection 45 dB
Maximum output level More than 200mV	IF rejection
Output impedance	Distortion
Dimensions (W×H×D)	0.5% (at 60 dB, 1 kHz, stereo) Frequency response
Nose size (W \times H \times D)	Muting level
Weight	Stereo separation
vveight	Stored department, 111111111111111111111111111111111111
Tape player	MW (AM) tuner
Tape Compact cassette tape (C-30 ~ C-90)	Frequency range
Tape speed $4.76 \text{ cm/sec.} (+0.19 \text{ cm/sec.} -0.05 \text{ cm/sec.})$	Sensitivity30μV
Fast forward time Within 120 sec. for C-60	Selectivity
Rewind time Within 120 sec. for C-60	Local/distant switch effect 14 dB attenuation
Wow & flutter No more than 0.13% (WRMS)	Max. input signal (distortion 5%)
Frequency response	1144 - (VCTV 00) \
Cross talk More than 46 dB	LW tuner (KEX-23 only)
Signal-to-noise ratio Dolby NR IN: more than 60 dB	Frequency range
Dolby NR OUT: more than 52 dB	Sensitivity
	Selectivity
FM tuner	Max, input signal (distortion 5%)
Frequency range	
Usable sensitivity	Note:
50 dB quieting sensitivity 17.5 dBf (2.9 μ V/150 Ω , mono) 39.8 dBf (38 μ V/150 Ω , stereo)	Specifications and the disign subject to possible modification without notice due to improvements.

CONTENTS

1.	PAF	RTS LOCATION1
2.	CIR	CUIT DESCRIPTION1
3.	AD.	JUSTMENT
3	.1	FM IF Adjustment
3	.2	IF/MPX Adjustment9
3	.3	Auto Level Adjustment9
3	.4	FM Tracking Adjustment
3	.5	AM IF Adjustment (KEX-20)
3	.6	AM Tracking Adjustment (KEX-20)12
3	.7	MW/LW IF Adjustment (KEX-23)
3	8.8	MW/LW Tracking Adjustment (KEX-23)14
3	.9	Dolby NR Law Adjustment
3	.10	Dolby NR Level Adjustment
4.	sc	HEMATIC CIRCUIT DIAGRAM (KEX-20)
5.	СО	NNECTION DIAGRAM (KEX-20)
6.	sc	HEMATIC CIRCUIT DIAGRAM (KEX-23)
7.	СО	NNECTION DIAGRAM (KEX-23)31
8.	CA	BINET EXPLODED VIEW35
9.	СН	ASSIS EXPLODED VIEW
		CKING METHOD38
1.	РΑ	RTS LIST39

^{*}The word "Dolby" and 🕮 are trademarks of Dolby Laboratories.

1. PARTS LOCATION

The photo shows the model KEX-23.

2. CIRCUIT DESCRIPTION

Audio Level Diagram

• Digitally Controlled Preset Tuner

This digitally controlled circuit with frequency presetting systems consists of a voltage synthesizing circuit incorporating varactor diodes (varactors), and is designed to generate varactor control voltage, memorize tuning frequency, and digitally indicate the tuned frequency.

Turn the tuning knob left or right to feed tuning pulses to LSI (PD1002) so that the contents of the internal counter may be either reduced or increased. The output of the counter is converted through the D/A converter into DC voltage which is applied to the varactor. The tuning frequ-

ency rises or falls depending on the direction the tuning knob is turned, permitting selection of the desired stations.

To preset the tuned station, simultaneously push the station selector button and the memory button. The frequency of the selected station is thereby stored in the RAM (Random Access Memory), and pushing only the selector button will recall the frequency stored in memory to again tune the preset station.

The frequency tuned is displayed by an array of 32 LEDs. This readout is completely electronic.

Fig. 3

• Control LSI (PD 1002)

The block diagram of LSI PD1002 is shown in Fig. 4 The essential function here is represented by the 11 bit up/down counter, the output of each bit being connected to a D/A converter in order to generate a DC voltage corresponding to the contents of the counter. The contents of this counter is variable by means of applying externally generated tuning pulses so that the desired voltage output level can be obtained. Each bit, moreover, is connected with the RAM (Random Access Memory) so that the output voltage of the tuned frequency can be stored in order that station presetting can be performed. This process is via digital signals. And, of course, this stored information can be recalled instantly to the counter to allow tuning of the memorized preset station frequency.

Because semiconductor memories are volatile—that is. memory disappears with removal of supply voltage -voltage must continue to the memory portions of the orc uit even with power OFF. The CMOS PD1002, however, requires extremely low levels of power: with the oscillator not in operation power consumption is only several tens μW; with the oscillator in operation the power consumption is 20mW. Therefore, with the oscillator not in operation, connection of the PD1002 poses no problem to Car batteries. In other words, with the enable terminal at low levels there is no oscillation, and the terminal is designed to be at low levels with the power supply switch set to OFF.

Fig. 5

Tuning Pulse Generator

This device (basic operating principles are shown in Fig. 6) generates up/down pulses and clock pulse by turning the tuning knob. The direction the disc is turned deter-

mines whether up or down pulses are generated See Fig. 7). These pulses determine the contents of the □□/down counter.

Fig. 7

AM Tuner

The KEX-20 tuner is distinguished from the conven tional u tuning type counterpart by the antenna input circuit. The varactor tuner of the KEX-20 is equipped with an RF Buffer in the first stage. The reason for this arrangement is the car antenna, the equivalent circuit as shown in Fig. 8. The 15 pF represents an equivalent capacitance of the antenna bar section, and the 65 pF equivalent capacitance of the cable connected to the antenna. The μ tuning type tuner is designed to make use of the combined capacitances of 15 pF and 65 pF, and 80 pF as part of the tuned circuit which requires an inductance that allows covering the entire AM band from 520 kHz to 1630 kHz with the total capacitance of 150 pF. Therefore, the capacitance variation ratio is $(1630 \div 520)^2 = 9.83$. The voltage to be applied to the varactor is in the range 1.4V to 8.4V. The standard SVC-303 provides a capacitance of 417 pF for 1.4 V and 24.48 pF for 8.4 V, and the variation ratio being 18.24. This means the band ranging from 520 kHz to 1630 kHz can be adequately covered.

The varactor, however, if used in the input circuit, will result in a capacitance variation ratio of (417 + 80) \div (24.48 + 80) = 4.76 with the addition of 80 pF making up the equivalent antenna circuit and allowing no more than half the required band to be covered. This is the reason an RF buffer amplifier is required to eliminate the 80 pF loading capacitance.

The varactor tuner has yet another advantage. The μ tuning type tuner requires adjustment of sensitivity when tuning in a weak signal around 1 MHz in order to prevent tracking error due to the difference in capacitance in the antenna cable. The varactor tuner eliminates this problem.

Q1 (2SK49) directly connected to the antenna is most vulnerable to surging, and D1 (ITT73N) is placed between the input terminal and ground to absorb it. ITT73N is rated at 1A per second. The input section of the FM tuner connected in parallel to the antenna input terminal incorporates a discharge element with a firing potential of less than 2 kV.

Fig. 8

Oscillator Circuit

Fig. 9 shows the tuning voltage supply circuit and the varactor temperature compensating circuit. Adjusted for the dispersion properties of the varactor, the working voltage is made variable so as to permit adjustment of the band to be covered. E1 is a tuning variable power supply, E2 is a stabilized power supply of 8.8 V, and R1 is a resistor for the filter incorporated in the output section of the control IC (PD1002). The control IC is driven via the same voltage as E2 so that the maximum voltage of E1 is 8.8 V. and the maximum voltage to be applied to the varactor cathode, regardless of the volume position, is 8.8 V. The minimum voltage with E1 at 0 V is determined by the values of E2, R1, R2, and VR1; and the minimum voltage is designed to be 1.8 V with the standard varactor.

The anode side of the varactor is equipped with a temperature compensating circuit which is composed of varistors and resistors. The anode electric potential is 0.4 V. and the voltage to be applied to either end of the varactor is 1.4 V to 8.4 V. The capacitance compensating voltage to match the change in the temperature of the varactor varies with the working voltage from 1.1 mV/°C. The voltage variation of the varister MV-1 is -2mV/°C, and the anode side of the varister, will lead to overcompensation. Therefore, the variation in voltage of the varactor is divided through resistors R4 and R5 to provide a voltage change of some -1.3 mV/°C R3, a biasing resistor for the varister, is designed to supply 3 mA.

LW/MW Tuner

An LW/MW tuner should be able to tune the two bands (MW: 515 - 1.630kHz; LW: 145 - 295kHz). Therefore, the LW/MW tuner has two different types of applied voltages for the variable capacitor, high frequency circuits, and oscillator circuits which should be switched for MW and LW. For the applied voltages of the variable capacitor, the independent volumes for MW and LW are mounted on this tuner for adjusting the applied voltages, and the voltages to be applied are changed with a mechanical switch. For the high frequency circuits, the coil for MW is connected to that for LW in a series. While the MW is being tuned, the coil for LW is shortcircuited; while the LW is being tuned, the high frequency circuits are changed with a switch diode so that both the coils for MW and LW may be worked as the tuning coil for LW. For the oscillator circuits, independent oscillator circuits for MW and LW are incorporated in the tuner and are changed with a switch diode.

Fig. 9

• Tape Selector Circuit

There are many types of cassette tapes: normal tapes, chrome tapes and the more recent metal tapes. Trends in tapes are toward an improved signal-to-noise ratio and an extended dynamic range, and even with car stereos, it has become necessary to cater to both chrome tapes and metal tapes.

When a metal or chrome tape is played back on a deck designed for normal tapes, the recording equalizer time constant is recorded not at 120μ s but at 70μ s, and so the sound appears higher than it actually is.

To compensate for this, a tape selector is provided to select between the normal tape position and the chrome tape position by switching the playback equalizer time constant between $120\mu s$ and $70\mu s$.

When this switch is set to the normal tape position (tape selector is OFF), the output level falls as the frequency rises from about 50 Hz (3180 μ s) at -6 dB/oct, and when the frequency rises above the 1.3 kHz (120 μ s) level, the level becomes constant—this is the NAB curve (Fig. 10). Usually, when playing back a normal tape, the frequency response is flat. But when a chrome tape or a metal tape is played back with this switch at the normal position, the high frequency range response rises several dB.

When the switch is set to the chrome tape position (tape selector is ON), the low-frequency range response is the same as that for the normal position but the level drops around a frequency of about 2.3 kHz (70μ s) at -6 dB/oct, and once the frequency exceeds this value, the level becomes constant. When a chrome tape or a metal tape is played back, the frequency response becomes flat. When playing back a normal tape in the chrome position, the high frequency range response falls several dB.

Fig. 10

• Dolby NR Circuit

Dolby NR is a method of reducing tape hiss, particularly the noise heard in the high-frequency region, and its circuit improves the signal-to-noise ratio by about 10dB. The Dolby NR circuit works as a flat amplifier during AM or FM reception and during ordinary tape playback, and it provides the Dolby NR effect when the Dolby NR switch is set to the IN position during the playback of a tape which has been recorded using the Dolby NR system.

In the case of the left channel, the signal which has passed through the D1, D3 or D5 signal selector diode passes through the 19kHz high cut filter and is amplified by Q3. The Dolby NR circuit employs IC1(HA11226) which is provided in both the left and the right channels.

When the Dolby NR switch is set to the OUT position, + IB is applied as bias to the base of Q5 and Q5 goes to 0F F. Since this prevents the signal from entering the highpass filter of the Dolby NR circuit, this circuit functions as an Ordinary flat amplifier.

When the Dolby NR switch is set to the IN position, +B is not supplied to Q5 and Q5 goes to ON. The high-passfilter of the Dolby NR circuit is therefore connected to the output terminals and the Dolby NR effect is provided.

Noise Suppressor

The input signal containing the pulsive noise as illustrated in Waveform-1 is first impedance-converted by the buffer amplifier, then coupled to the gate circuit via the low-pass filter.

Meanwhile, the high-pass filter filters out only the pulsive noise component from the input signal and feeds the noise component to the noise detector where it is amplified and rectified. (See Waveform-2)

To cope with weak-signal noise, the noise detector is supported with the AGC (Automatic Gain Control) circuit. The noise component from the noise detector output is waveform-shaped by the mono-stable multivibrator (See Wave-

form-3). The output from the mono-stable multivibrator then couples to the gate circuit as a control-pulse array which is used to cut out only the pulsive noise component from the audio signal.

The memory provided at where holds the audiosg hal level constant while the gate circuit is "closed".

The 19 kHz pilot-hold circuit serves to prevent stree pilot-signal intermission.

The audio signal then sustains high-frequency-phase compensation to compensate for the phase shift due to the low-pass filter, then is coupled to the output terminal.

Fig. 12

3.1 FM IF ADJUSTMENT

Connection Diagram

Fig. 13

To Adjust

- 1. Add input signal of zero from SSG and adjust T2 so that the pointer of center meter (use one graduated for over 200µA) will come to the center.
- 2. Add output signal of 98 MHz 60 dB from SSG, multisignal of modulated frequency 1 kHz of stereo modulator and tune to 98 MHz on the dial (the pointer of the center meter is at the center).
- 3. Adjust T1 (FM Front End Unit) so that separated signal will be minimal in its distortion factor.
- 4. Adjust FM IF by repeating the above procedure, steps 1, 2 and 3.

3.2 IF/MPX ADJUSTMENT

- 1. Shown in Fig. 13.
- 2. Select the band selector switch to stereo position.
- 3. Obtain non-modulation signal by setting SSG output at 60 dB (μV) 98 MHz. Adjust VR2 so that the frequency counter indicates 19 kHz ±30 Hz.
- Obtain stereo modulation signal by setting SSG output at 60 dB (µV). Adjust VR3 to secure maximum separa-

3.3 AUTO LEVEL ADJUSTMENT

- 1. Shown in Fig. 13.
- 2. Select the band selector switch to ARC position.
- 3. Set SSG at 98 MHz and tune using the tuning knob.
- 4. As SSG output gradually drops from 60 dB (μV) to low level, and SSG output reduced to 35 ± 2 dB (μ V), turn VR4 carefully and set it where stereo indicator is turned off.

Pointer Position	Adjustment point	Note
Minimum -	L3	87.0 MHz can be received
Maximum	TC3	108.6MHz can be received
hat broadcast can be re	eceived at the frequency	between 87.0 MHz and
hat broadcast can be re	L1, L2	Maximum output
	Minimum · Maximum	Minimum L3 Maximum TC3

In case of KEX-23

SSG Frequency	Pointer Position	Adjustment Point	Note	
1. 87.0 MHz (400 Hz, 100% modulation), output level 8 dB (μ V)	Minimum	L3	87.0 MHz can be received	
 105.0 MHz (400 Hz, 100% modulation), output level 8 dB (μV) 	Maximum	TC3	105.0 MHz can be received	
3. Repeat items (1) and (2) alternately so that broadcast can be received at the frequency between 87.0 MHz ar 105.0 MHz.				
10010				
 90 MHz (400 Hz, 100% modulation), output level 5 dB (μV) 	Tuned position	L1, L2	Maximum output	
4. 90 MHz (400 Hz, 100% modulation),	Tuned position Tuned position	L1, L2 TC1, TC2	Maximum output Maximum output	

3.5 AM IF ADJUSTMENT (KEX-20)

Connection Diagram

*Set the stereo unit for operation before making the adjustments.

Fig. 15

• To Adjust

- 2. Tune to a nearby, 1,600 kHz station.
- Turn the cores of T3 and T4, and adjust so that U-curve will be at maximum amplitude and best symmetry.

3.6 AM TRACKING ADJUSTMENT (KEX-20)

• Connection Diagram

*Set the stereo unit for operation before making the adjustments.

NOTICE:

Select C1 so that total capacity of 80pF is attained from the direction of the receiver jack.

Z: Output impedance of the S.S.G.

Fig. 16

To Adjust

SSG Frequency	Pointer Position	Adjustment Point	Note
 1,630 kHz (400 Hz, 30% modulation), output level 30 dB (μV) 	Maximum	Т5	1,630 kHz can be received
 515 kHz (400 Hz, 30% modulation), output level 30 dB (μV) 	Minimum	VR1	515 kHz can be received
 600 kHz (400 Hz, 30% modulation), output level 30 dB (μV) 	Tune to 600 kHz	T1, T2	mV meter at maximum
 1,400 kHz (400 Hz, 30% modulation), output level 30 dB (μV) 	Tune to 1,400 kHz	TC1, TC2	mV meter at maximum

3.7 MW/LW IF ADJUSTMENT (KEX-23)

Connection Diagram

*Set the stereo unit for operation before making the adjustments.

Fig. 17

• To Adjust

- 1. Set Generator Scope as follows: Frequency centering on sweep.......455 kHz input level 0.3Vp-p/cm
- 2. Tune to a nearby 1,600 kHz station of MW.
- 3. Turn the cores of T5 and T6, and adjust so that U-curve will be at maximum amplitude and best symmetry.

3.8 MW/LW TRACKING ADJUSTMENT (KEX-23)

• Connection Diagram

*Set the stereo unit for operation before making the adjustments.

To Adjust

In case of MW (Select the band selector switch to MW)

SSG Frequency	Pointer Position	Adjustment	Note
 1,630 kHz (400 Hz, 30% modulation), output level 30 dB (μV) 	Maximum	Т7	1,630 kHz can be received
515 kHz (400 Hz, 30% modulation), output level 30 dB (μV)	Minimum	VR1	515 kHz can be received
600 kHz (400 Hz, 30% modulation), output level 30 dB (μV)	Tune to 600 kHz	T1, T4	mV meter maximum
4. 1,400 kHz (400 Hz, 30% modulation), output level 30 dB (μV)	Tune to 1,400 kHz	TC1, TC2	mV meter maximum

In case of LW (Select the band selector switch to LW)

SSG Frequency	Pointer Position	Adjustment	Note
 295 kHz (400 Hz, 30% modulation), output level 35 dB (μV) 	Maximum	Т8	295 kHz can b€ received
 145 kHz (400 Hz, 30% modulation), output level 35 dB (μV) 	Minimum	VR2	145 kHz can b€ received
3. 215 kHz (400 Hz, 30% modulation), output level 35 dB (μV)	Tune to 215 kHz	T2, T3	mV meter maximum

.....

3.9 DOLBY NR LAW ADJUSTMENT

• Connection Diagram

*Set the stereo unit for operation before making the adjustments.

To Adjust

- Load a cassette tape and set the unit to the playback mode.
- Set the Dolby NR switch to OUT and apply a 5kHz input frequency signal from the oscillator. Adjust the attenuator so that mV meter pointer deflects to 58.7mV (-22.4dBs).
- Now set the Dolby NR switch to IN and adjust VR1 so that mV meter pointer deflects to 23.4mV (-30.4dBs).

3.10 DOLBY NR LEVEL ADJUSTMENT

Connection Diagram

*Set the stereo unit for operation before making the adjustments.

To Adjust

 Play back the CT-150 (400Hz-200nwb/m) test tape and adjust VR1 (Lch) and VR2 (Rch) so that the mV meter pointer deflects to 775mV (0dBs).

• IC's and Transistors

4 5 L OUT R OUT Noise Detector AGC Circuit

7. CONNECTION DIAGRAM (KEX-23) 5 6 FM FRONT END UNIT ANTENNA CONNECTOR D6,7,9: SVC303YAK-22~25 CONTROL UNIT (CWE-340) Q1: 25K49-H2 Q2: 25A786-Q or 25A826-R Q3: 25C535-B Q6: 25K19-Y AM TUNER UNIT (CWE-316) DISPLAY UNIT (CXX-068) 4 5 6 1

10. PACKING METHOD

11. PARTS LIST

NOTE:

When ordering resistors, first convert resistance values into code form as shown in the following examples.

When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J = 5%, and K = 10%). 561 RD1/4PS 561 J

56×10¹ 473 RD1/4PS 4 7 3 J 47×10³ $47k\Omega$ OR5 RN2H OR5 K 0.5Ω 010 RS1P 010 K 1Ω

When there are 3 effective digits (such as in high precision metal film resistors). Ex. 2

Control Unit (CWE-340)

MISCELLANEOUS

RESISTORS

Part No.	Symbol & D	escription	Part No.	Symbol & Desc	ription
		eramic Filter)	RD1/8VS□□□J	R1-R4, R7, R8,	R11-R16
CWW-014		rathe (ne)		R18-R22, R24,	R25, R30-R35
LA1230P	IC2			R39-R70, R75-I	R77, R82-R93
LA2101	IC3		RD1/8PS□□□J	R6, R10, R17	
LA3350P	IC4		RD1/2PS□□□J	R78	
PST-506	IC5		101/2100000		
PD4003	IC6		CCN-060	R23	22kΩ 4.7kΩ
PD1002	IC7		CCN-052	R71, R72, R81	
2SA473-0	Q1		CCN-036	R73, R74	22kΩ
	Q2, Q5		CCN-034	R80	1.2 k Ω
2SC1583	Q3				
2SA952	ŲS		VACANT	R5, R9, R26-R R79	29, R36-R38
2SA798	Q4			1170	
2SC828	Q6				
1S1555 or	D1, D2, D4	-D7, D14			
1S2076					
	D3		CAPACITORS		
VACANT	50		D M.	Symbol & Des	scription
MV-1	D8-D10, D	15	Part No.	_ Syllibor & Doc	, on parent
XZ-062	D11		CKDYF473Z25	C1-C4, C6, C9	•
YZ-074A	D12, D13			C5	
CTF-016	L1	Ferri-Inductor, 15μΗ	CCDSL101K50	C7, C12	
CTF-039	L2	Ferri-Inductor, $2.7\mu H$	VACANT	C8	
C11-033			CCDRH101J50	C10, C17, C22	CE4 CE8
OTC 106	L3	Coil, 330µH	CSZAR47M35	C10, C17, C22	2, 604, 600
CTC-106	L4	Coil, 680µH		050 000	1
CTC-094	T1	Coil	CSZA010M25	C11, C53, C6	l
CTC-108		Coil	CEA330M10L	C13	
CTC-109	T2	_	CQMA473K50	C14	
CWW-026	CR1	$470\Omega/0.01\mu$ F	CQSA152J50	C15	
			CSZAR22M35	C16	
CWW-031	CR2	10kΩ/0.01μF			
CWW-047	CR3	100kΩ/0.01μF	CSZAR33M35	C18	
CWW-032	CR4	$22k\Omega/0.01\mu$ F	CQMA223J50	C19, C20	
CCP-051	VR1	Volume, 680Ω (B)	CEA101M10L		9, C56, C60, C64
C92-618	VR2	Semi-fixed, $4.7k\Omega$ (B)	CEATOTIVITOL	C66, C68	-,
302 010			0074004405	C23	
CCP-094	VR3	Semi-fixed, $2.2k\Omega$ (B)	CSZA0R1M35	C23	
CCP-104	VR4	Volume, 4.7kΩ (B)		C24 C25	
-	S1	Switch	CQMA183K50	C24, C25	
CSG-122	\$2, \$3	Switch	VACANT	C26	
CSG-121	32, 33	OWITOIT	CEA330M16L	C27	
			CSZA100M10	C28, C29	
			VACANT	C30	

Parts whose parts numbers are omitted are subject to being not supplied.

PARTS LIST IN THE PROPERTY OF THE PROPERTY OF

Part No.	Symbol & Description	
CEA100M16L	C31	
CKDSA271J50	C33-C36	
CCDSL050D50	C37	
CQMA103K50	C38	
CQMA152J50	C40	
CKDSA681J50	C41, C42	
CQMA122K50	C43	
CKDSA680J50	C44	
CQMA682J50	C45	
CKDSA561J50	C46, C47	
CKDSA102J50	C48	
CCDCH080D50	C49	
CSZA2R2M16	C50, C52	
CSZA4R7M16	C51	
VACANT	C55	
CKDYF103Z25	C57, C63, C67	
CSZA100M16	C59	
CEA220M16L	C62	
VACANT	C65	

AM Tuner Unit (CWE-315) (KEX-20)

MISCELLANEOUS

Part No.	Symbol & Description		
2SK49-H2	Q1		
2SA786-Q or	Q2		
2SA826-R			
2SC535-B	Ω3		
2SC460-B	Q4, Q5		
2SK19-Y	Q6		
ITT73N	D1		
1S2222	D2. D3		
1S1555	D4, D9, D10		
SVC303YAK	*D5~D7		
MV-1	D8		
CTB-068	L1	Coil, 10µH	
VACANT	L2		
CTH-049 or	L3	Coil	
CTH-057		Coil, 18μH	
CTB-070	L4	Coil, 220µH	
T24-030	L ⁴	Ferri-Inductor, 100µH	
CTB-081	L6	Coil, 2.2µH	
CTB-078	T1	Coil	
CTB-078	T2	Coil	
C1B-0/3	12	COII	
CTE-037	T3	IF Transformer	
CTB-075	T4	Çoil	
CTB-080	T5	Coil	
C43-607	TC1, TC2	Ceramic Trimmer	
CCP-063	VR1	Volume, 68kΩ (B)	
CCX-006	G1	Lightning Piece	

RESISTORS

Part No.	Symbol & Description	
RD1/8VS□□□J	R1-R3, R9-R27, R30 R33-R40	
RD1/8PS□□□J CCN-054	R28 R41 27kΩ	
VACANT	R4-R8, R29, R31, R32	

CAPACITORS

Part No.	Symbol & Description	
CCDSL150K500L CKDYB471K50 CSZA4R7M10 CKDYB121K50 CKDBC473M25	C1 C2, C5, C26 C3 C4 C6, C13, C16, C18	
CQMA223J50 CKDYD103M50 CEA330P10 CKDYF103Z25 CQMA103M50	C7-C11, C33, C34 C12 C14 C15, C17 C19	
CQMA273K50 CSZAR22M35 VACANT CCH-028 CEA470P10	C20 C21 C22 C23 220µF/10V C24	
CSZA100M10 CKDYB222K50 CCDVK330J50 CCDWK100F50 CCDCH050D50 or	C25 C27 C28 C29 *C30	
CCDCH060D50 or CCDCH070F50 or CCDCH080F50 CCDPH271J50L CCDPH151J50L	C31 C32	

Caution:
Diodes *D5-D7 and Capacitor *C30 used mutually in the following assembly.

D5-D7	C30
SVC303YAK-25	CCDCH050D50
SVC303YAK-24	CCDCH060D50
SVC303YAK-23	CCDCH070F50
SVC303YAK-22	CCDCH080F50

AM Tuner Unit (CWE-316) (KEX-23)

MISCELLANEO	1	Л	115	c	E	L	LΑ	N	Е	o	U	S
-------------	---	---	-----	---	---	---	----	---	---	---	---	---

Part No.	Symbol & Description		
2SK49-H2	Q 1		
2SA786-Q or	Q2		
2SA826-R			
2S C535-B	Q 3		
2SC460-B	Q4, Q5	•	
2SK19-Y	Q6		
ITT73N	D1		
1S2222	D2, D3, D5	, D8, D11-D13	
1S1555	D4, D10, D	14, D15	
SVC303YAK	*D6, D7, D	9	
MV-1	D16		
CTB-068	L1	Coil, 10μH	
CTB-069	L2	Coil, 56mH	
CTB-070	L3	Coil, 220μH	
CTB-071	L4	Coil, 1mH	
T24-030	L5	Ferri-Inductor, 100μH	
CTB-081	L6	Coil	
CTB-072	T1	Coil	
CTB-073	T2	Coil	
CTB-074	T3, T4	Coil	
CTE-037	T5	IF Transformer	
CTB-075	T6	Coil	
CTB-080	T7	Coil	
CTB-077	T8	Coil	
CCG-030	TC1, TC2	Ceramic Trimmer, 20pF	
CCP-081	VR1	Volume, 100kΩ (B)	
CCP-078	VR2	Volume, $\dot{2}$ 2k Ω (B)	
CCX-006	G1	Lightning Piece	

CAPACITORS

Part No.	Symbol & Description		
CCDSL150K500L	C1		
CKDYB222K50	C2, C35, C36		
CSZA4R7M10	C3		
CKDYB471K50	C4		
CKDYB121K50	C5		
CKDBC473M25 CQMA333K50 VACANT CKDYD103M50	C6, C13, C18, C20 C7, C8, C10-C12, C27, C33 C34 C9 C14		
CSZA220M10	C15		
CSZA100M10	C16		
CKDYF103Z25	C17, C19		
CEA470P6.3	C21		
CQMA103M50	C22		
CQMA223K50	C23		
CSZAR22M35	C24		
CCDPH271J50L	C25		
CCDPH151J50L	C26		
CCDCH020C50 or	*C28		
CCDCH030C50 or CCDCH040C50 or CCDCH050C50 CCDPH090D50 CCDXK270J50	C29 C30		
CCDXK090D50	C31		
CCDPH680J50	C32		
CCH-028	C37 220µF/10V		

RESISTORS

Part No.	Symbol & Description		
RD1/8VS□□□J	R1, R2,	R5-R28, R30-R40	
CCN-054	R3	$27k\Omega$	
CCN-055	R4	8.2 k Ω	
RD1/8PS□□□J	R29		

Caution:Diodes *D6, D7, D9 and capacitor *C28 used mutually in the following assembly.

D6, D7, D9	C28	
SVC303YAK-25	CCDCH020C50	
SVC303YAK-24	CCDCH030C50	
SVC303YAK-23	CCDCH040C50	
SVC303YAK-22	CCDCH050C50	

FM Front End Unit (CWB-061) (KEX-20) (CWB-062) (KEX-23)

MISCELLANEOUS

Part No.	Symbol & I	Symbol & Description		
SD306PA	Q1			
2SC1674	Q2			
2SC1675-M	C3			
ITT310PC, PD	D1-D3 (KE)	K-20)		
ITT310PB	D1-D3 (KE)	K-23)		
1S2790	D4			
MV-11	D5, D6			
CTC-107	L1	Coil		
CTC-092	L2	Coil		
CTC-093	L3	Coil		
CTF-015	L4	Ferri-Inductor, 0.82µH		
CTC-043	T1	IF Transformer		
CCG-038	TC1-TC3	Ceramic Trimmer		
CTX-022		Beaded Core		
CCX-001	CR1	1kΩ/2200pF		

RESISTORS

Symbol & E	Description
R1, R7, R16 R2, R6, R8,	6 68kΩ/1/10W R11-R15
R3, R10	
R4	33kΩ/1/10W
R5	10kΩ/1/10W
R9	560kΩ
R17	47kΩ
R18	82kΩ (KEX-20)
R18	68kΩ (KEX-23)
R19	3.3kΩ
	R1, R7, R16 R2, R6, R8, R3, R10 R4 R5 R9 R17 R18 R18

CAPACITORS

Part No.	Symbol & Description	_
CKDYA222K50 CCDSL330J50 CKDYF103Z25 CKDYF223Z25 CCDCH030D50	C1, C6, C15, C19 C2 C3, C4, C14, C22, C23 C5, C13 C7	
CCDSH030D50 CGB010K500 CKDYB271K50 CCDCH100F50 CSZA010M25	C8 C9 C10 C11 C12	
CCDSH330J50 CCDTH100J50 CCDTH120J50 CCDRH100F50 CCDTH030D50	C16 C17 (KEX-20) C17 (KEX-23) C18 C20	
CCDTH050D50	C21	

Control Amp Unit (CWG-071)

MISCELLANEOUS

NOTICE:

With Q1 through Q4, Q9 and Q10, Q5 and Q6, and with Q11 and Q12, use identical units for both channels and units of the same rank.

When LAP-502 is used with IC2, delete D15 and short circuit the

Part No.	Symbol & Description		
HA11226 LAP-501 or LAP-502	IC1 IC2		
2SC1740LN-R, S or 2SC945L-P, K	Q1-Q4, Q	9, Q10	
2SA826LN-R, S or 2SA733-P, K	Q5, Q6, C	111, Q12	
2SK30A	Q7, Q8		
2SC1815-GR	Q13		
1S2076	D1-D6, D9-D15, D17, D18		
1N34A	D7, D8		
ITT73N	D16		
W03A,B,C	D19		
CTH-035	L1	Coil, 10μH	
T24-030	L2	Ferri-Inductor, 100mH	
C92-626	VR1	Semi-fixed, 10kg(B)	
RESISTORS			
Part No.	Symbol 8	Description	
RD1/8VS□□□J RD1/4VS□□□J VACANT	R1-R36, R38-R54, R56 R37 R55		

CAPACITORS

Part No.	Symbol & Description		
CKDYB101K50 CQMA102J50 CQMA682J50 CSZA010M25	C1, C2 C3, C4 C5, C6 C7, C8, C33, C34, C36, C37 C40, C41, C50		
CEA221M10L CSZA2R2M16 CEA471M16L CEA470M10L CSZA0R1M35 CSZAR33M35 CQMA104J50 CQMA472J50 CQMA472J50 CQMA153J50 CEA470M16L	C9 C10, C11, C31, C32, C43, C44 C12 C13 C14-C17 C18, C19, C24 C25 C20, C21 C22, C23 C26-C29 C30, C47		
VACANT CSZA4R7M25 CEA101M16L CEA100M16L CEA221M16L	C35 C38, C39 C42, C45 C46, C49 C48		

Volume Unit (CWG-072)

MISCELLANEOUS

Part No.	Symbol 8	Description
2S C828 CCS-223	Q101 VR1	Volume/Switch $20k\Omega$ (A) \times 2, $20k\Omega$ (B) $50k\Omega$ (W)
CCS-223	S1	Volume/Switch

RESISTORS

Part No.	Symbol & Description			
RD1/8VS 🗆 🗆 🗆 J CCN-031 CCN-065	R101-R103, R106, R107, R110, R111 R104, R105 $1k\Omega$ R108, R109 $1.5k\Omega$			

CAPACITORS

Part No.	Symbol & Description	
CSZAOR1M35 CQMA562J50 CQMA333J50 CSZAR33M35 CQMA683J50	C101 C102, C103 C104, C105 C106, C107 C108, C109	
CSZA100M16	C110	

Pre Amp Unit (CWF-070)

MISCELLANEOUS

NOTICE:

As for the Q1 and Q2, use the same ones and the same rank for both channels.

Part No.	Symbol & Description
MB3106 2SC1740LN-Q, R or 2SC732 TM-GR 1S1555 or 1S2076	IC1 Q1, Q2 D1
C92-627	VR1, VR2 Volume, 47kΩ(B)
RESISTORS	
Part No.	Symbol & Description
RD1/8VS□□□J	R1-R24

CAPACITORS

Part No.	Symbol & Description		
CKDYB821K50L	C1, C2		
CSZA2R2M16	C3, C4, C9, C10		
CEA470M10L	C5, C6		
CQMA103J50	C7, C8		
CQMA153J50	C11, C12		
CEA101M10	C13		

Display Unit (CXX-068)

Part No.	Symbol &	Symbol & Description			
TLG-102 TLR-102 LN43SYP	D1 D2 D3, D5 D4	LED Array			
CEL-080	IL1	Lamp, 8V 60mA			
CSG-134	S1	Switch			

Tuning Unit

Part No.	Symbol & Description			
1S1555 or 1S2076	D102 (K	EX-23)		
CSG-140	S1	Switch		
CWM-040	Generat	or Unit		

Switch P.W. Board

Part No.	Symbol 8	Description	
ITT73N	D201, D2	02	
CCN-067	R201	180Ω	
CSL-023	S1	Switch	

Dolby NR Switch Unit

		Symbol & Description			
₹1	1.5k Ω				
31	Switch				

Motor P.W. Board

Part No.	Symbol	& Description	
CEA471M16L T63-618	C1 L1	Coil	

Miscellaneous Parts List

Chassis Key No.

Part No.		Symbol	& Description	Key No.	Part No.	Description
1S1555	0.5	D101 (K	EX-20)	1.	B10-810-A	BM2.6×5
	or	אווטוע	EX-201	2.	B21-679	Insulating Bush
1S2076	т.	D102		3.	2SA473-O	Transistor
VACAN		D102		4.	CNM-352	Insulating Plate
SEL-303		R94	Ω	5.	C/11/1-302	Heat Sink
CCN-05	Ö	N34	042	5.		Hour onk
CCL-08	8	C1	Feed through Capacitor	6.	CSG-122	Switch
CSZA10	00M10	C30		7.	CSG-121	Switch
CSN-06	60	S1	Switch	8.		Insulator
E21-007	,	FU1	Fuse, 0.5A	9.	CWE-340	Control Unit
CPB-05	0	HD1	Head	10.		Connector
CXM-06	31	М	Motor	11.		Connector
O/tivi ot		•••		12.		Connector
				13.	CWB-061	FM Front End Unit (KEX-20)
					CWB-062	FM Front End Unit (KEX-23)
				14.		Pre Amp Unit
Cabinet				15.	CKS-060	Plug
			Described	15. 16.	CN 3-000	Insulator
(ey No.	Part No.		Description	16. 17.		Bracket
	0115 105		0	17. 18.	B06-111-A	PSA2.6×6
1.	CNB-493		Case	19.	B10-861-A	BM3×4
2.	B10-861-A		BM3×4	19.	D10-001-A	BIVIS X 4
3.	CAC-282		Button	20		Holder
4.	CAC-283		Button	20.	CD11 026	Antenna Cable
5.	CAC-285		Button	21.	CDH-036	Insulator
			_33007	22.	CNIM E40	
6.	CAC-270		Button	23.	CNM-540	Insulator
7.	CNE-230		Holder	24.	CWE-315	AM Tuner Unit (KEX-20)
8.	CBH-398		Spring		0)4/5 040	AAA T
9.	CAT-080		Door		CWE-316	AM Tuner Unit (KEX-23)
10.	CXX-065		Grille Unit (KEX-20)	25.	CND-801	Clamper
				26.	B10-216-A	PM2.6×16
	CXX-066		Grille Unit (KEX-23)	27.	CDE-527	Connector
11.	B10-810-A		BM2.6×5	28.	CWM-040	Generator Unit
12.	CBH-399		Spring			
13.	CAC-269		Button	29.		Insulator
14.	CAA-268		Knob	30.	B10-209-A	PM2.6×4
				31.		Holder
15.	CNV-769		Washer	32.	CSG-140	Switch
16.			Panel	33.		Chassis
17.	CND-646		$FW10ø \times 1t$			
18.	CBN-016		$N10ø \times 3t$	34.	CND-646	$FW10\dot{\varphi} \times 1t$
19.	CAA-298		Knob	35.	CNE-416	Guide
				36.	CBN-016	N10ø × 3t.
20.	CAA-297		Knob	37.	CNP-753	P.W. Board
21.	CAA-313		Knob	38.		Holder
				39.	CNW-040	Spacer
				40.	SEL-303E	LED
				41.	B10-612-A	CM2.6×8
				42.	CSG-100	Switch
				43.		Cover
				4.4		Holder
				44.		Holder
				45.		P.W. Board
				46.	01410 070	Insulator
				47.	CWG-072	Volume Unit
				48.		Guide

Key No.	Part No.	No. Description		Method	
49.	CCS-223	Volume/Switch	Key No.	Part No.	Description
50.		Switch P.W. Board	1	CRD-070	Owner's Manual (KEX-20)
51.		Connector	1.		Owner's Manual (KEX-20)
52.	CSL-023	Switch		CRD-071	
53.	B10-809-A	BM2.6×4		CRD-072	Owner's Manual (KEX-23)
007				CRD-073	Owner's Manual (KEX-23)
54.		Holder	2.	CEA-253	Holder Kit
55.		Lever			
56.		Holder	2-1.	B10-875-A	BM4×6
57.	CCL-088	Feed through Capacitor	2-2.	B20-038-A	$OTW10ø \times 1.8t$
58.	CNE-528	Clamper	3.	CHB-175	Styrofoam (1 set pair)
50.	0112 020		4.	E36-622	Polyethylene Bag
59.		Connector	5.	CEA-314	Knob Kit
60.		Connector			
61.		Connector	5-1.	CAA-313	Knob
		Connector	5-2.	CAA-297	Knob
62.		LED Array	5-3.	CAA-298	Knob
63.		LLD Allay	6.	CEA-300	Accessory Kit
	TI D 100	LED	6-1.	CNC-975	Strap
64.	TLR-102	Switch			
65.	CSG-134		6-2.	CDE-437	Cord
66.		Connector	6-3.	CNV-769	Washer
67.	B08-204-A	Screw, M2×6	6-4.	CEA-215	Screw Kit
68.		Spacer	6-4-1.	CBA-028	Screw for Strap
			6-4-2-	B70-055-A	$WN40 \times 4.5t$
69.	LN43SYP	LED	0 12	5,0 000 / .	
70.	TLG-102	LED	6-4-3	B20-013-A	SW4ø×1t
71.	CEL-080	Lamp, 8V 60mA	6-4-4	B90-065-A	PSB5×16
72.		Holder	6-4-5	B70-056-A	WN5ø×5.3t
73.		Cover	6-4-6.	CND-646	FW10ø×1t
			6-4-7.	CBN-016	N10ø×3t
74.	CXX-068	Display Unit	U- 1- 7.	0014-010	1100 700
75.		Connector	7.	CEA-312	Panel (KEX-20)
76.	CDE-458	Cord	7.	CEA-312 CEA-313	Panel (KEX-23)
77.	E21-007	Fuse, 0.5A	0		Carton (KEX-20)
78.	CDE-634	Cord	8.	CHB-577	Carton (KEX-20)
				CHB-579	Carton (NEA-23)
79.	CDE-636	Connector			
80.	CDE-633	Connector			
81.	CWG-071	Control Amp Unit			

PIONEER ELECTRONIC CORPORATION

4-1, Meguro 1 chome, Meguro-ku, TOKYO, 153, JAPAN PIONEER ELECTRONICS OF AMERICA 1925 E, Dominguez St. Long Beach, Calif. 90810 PIONEER ELECTRONIC (EUROPE) N.V. Luithagen-Haven 9, 2030 Antwerp, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY. LTD.

178-184 Boundary Road, Braeside, Victoria 3195, Australia

<79G02E01S>

©JULY 1979

<CRT-184-0> Printed in Japan