Лабораторная работа 3.2.2 РЕЗОНАНС НАПРЯЖЕНИЙ В ПОСЛЕДОВАТЕЛЬНОМ КОНТУРЕ

Гарина Ольга

3 ноября 2020 г.

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудночастотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры..

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

Рисунок 1 – Схема экспериментального стенда

Напряжение на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245.

Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлектронных цепях. Известно, что в реальных конденсаторах и, особенно, в катушках индуктивности происходят необратимые потери энергии, обусловленные различными причинами. Потери в элементах контура зависят как от частоты, так и от амплитуды тока (напряжения), температуры и ряда других факторов, например, от вида диэлектрика конденсатора, сердечника катушки и т.д. От перечисленных факторов в общем случае зависят и основные параметры контура: индуктивность L, ёмкость C и суммарное активное сопротивление R_{sum} .

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_r \geqslant 1,3$. В общем случае каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. При-

нимается, что эти величины сосредоточены в отдельных элементах схемы, образующих с индуктивностью L замкнутую колебательную цепь с собственной резонансной частотой

$$f_r = \frac{1}{2}\pi\sqrt{LC_L}.$$

Вследствие влияния ёмкости ${\rm C}L$ при измерении на частоте f определяется не истинная индуктивность ${\rm L},$ а эффективное значение индуктивности

$$L_{eff} = \frac{L}{1 - f^2/f_r^2},$$

которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего контура выполняется неравенство $f << f_r$, так что в эквивалентной схеме контура на рис. 1 индуктивность представлена своим истинным значением L и активным сопротивлением \mathbf{R}_L .

Полипропиленовые конденсаторы, входящие в комплект магазина ёмкостей C_n ($n=1,2,\ldots 7$), в рабочем диапазоне частот имеют пренебрежимо малые собственные индуктивности и относительно малые активные потери. Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с ёмкостью C последовательной эквивалентной схемой, показанной на рис. 2a.

Рисунок 2 – Последовательная эквивалентная схема конденсатора с потерями

На этой схеме R_S — так называемое эквивалентное последовательное сопротивление (ЭПС), обусловленное, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Потери в конденсаторе принято характеризовать величиной $tg\delta$, обычно приводимой в документации к изделию. Из рисунка 2 и закона Ома при этом получаем выражение для ЭПС на циклической частоте $\omega = 2\pi f$ в виде

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} t g \delta. \tag{1}$$

В колебательный контур нашей установки входит постоянный резистор R (см. рис. 1), снижающий его добротность. Это сделано для упрощения процедур получения и обработки резонансных кривых. Таким образом, суммарное

активное сопротивление контура принимается равным

$$R_{sum} = R + R_L + R_S. (2)$$

По формулам

$$L = \frac{1}{\omega^2 C}$$

$$Q = \frac{U_C}{E}$$

$$\rho = \sqrt{\frac{C}{L}}$$

$$R_{sum} = \frac{\rho}{Q}$$

$$R_{Smax} = \rho \cdot 10^{-3}$$

$$I = \frac{E}{R_{sum}}$$

была составлена таблица

Cn,нФ	f0n,кГц	Uc,B	E,B	L,мкГн	Q	rho,Ом	Rsum, OM	Rsmax, Or	RL,OM	I,MA
25	32,5	3,86	0,2	960,2	19,3	195,98	10,15	0,1960	6,51	0,020
33,2	28,5	5,06	0,2	940,3	25,3	168,29	6,65	0,1683	3,03	0,030
47,5	23,9	4,33	0,2	934,5	21,7	140,26	6,48	0,1403	2,89	0,031
57,2	21,5	5,67	0,2	959,0	28,4	129,48	4,57	0,1295	0,99	0,044
67,4	19,83	5,2	0,2	956,7	26,0	119,14	4,58	0,1191	1,01	0,044
82,1	17,96	4,85	0,2	957,5	24,3	107,99	4,45	0,1080	0,90	0,045
99,6	16,42	4,18	0,2	944,2	20,9	97,37	4,66	0,0974	1,11	0,043
Среднее значение				950,3	23,7	136,93	5,94	0,1369	2,35	0,037
Среднекв отклонение ср значения				3,9	1,2	13,14	0,79	0,0131	0,78	0,004
Случайная погрешность				1,5	1,2	0,26	0,30	0,0003	0,12	0,003

Рисунок 3 – Таблица полученных значений

По данным, полученным в ходе эксперимента (см Приложение 3.2.2), были построены АЧХ и ФЧХ.

Ширина резонансных кривых на высоте $\sqrt{2}$ в АЧХ для контуров 2 и 4 составила

$$\Delta f_2 = 1.15 \pm 0.18$$
 к Γ ц $\Delta f_4 = 0.75 \pm 0.13$ к Γ ц

Тогда по формуле

$$Q = \frac{f_0}{\Delta f}$$

$$Q_2 = 24.8 \pm 3.1$$

$$Q_4 = 28.7 \pm 4.8$$
(3)

Полученные значения незначительно отличаются от полученных теоретически в таблице на рис. 3.

Так как на графике на рис.6 нет отрицательных значений на оси ординат, ровно как и не определено значение при $\mathbf{x}=0$, то посчитать добротность вторым способом не предоставляется возможным.

1 Вывод

Мы смогли исследовать резонанс напряжений в последовательном колебательном контуре. Мы смогли пронаблюдать зависимость резонансной частоты колебаний контура от ёмкости С в цепи. Также мы смогли вычислить основные характеристики контура.

Рисунок 4 – АЧХ для контуров 2 и 4

Рисунок 5 — Приведенная АЧХ для 2 и 4 контуров

Рисунок 6 – Φ ЧХ для 2 и 4 контуров

Рисунок 7 — Векторная диаграмма

2 Литература

1. Лабораторный практикум по общей физике: Учебное пособие в трех томах. Т. 2. Электричество и магнетизм. 2-е изд., перераб и дополн. / Никулин М.Г., Попов П.В, Нозик А.А. и др.; Под ред. А.В. Максимычева, М.Г. Никулина. – М.: МФТИ, 2019. – 370 с

Рисунок 8 – График зависимости $\mathrm{R}_L(\nu_{0n})$