# TC1002S Herramientas computacionales: el arte de la analítica

This is a notebook with all your work for the final evidence of this course

### Niveles de dominio a demostrar con la evidencia

#### SING0202A

Interpreta interacciones entre variables relevantes en un problema, como base para la construcción de modelos bivariados basados en datos de un fenómeno investigado que le permita reproducir la respuesta del mismo. Es capaz de construir modelos bivariados que expliquen el comportamiento de un fenómeno.

### Student information

- Name: Iker Borja Rios
- ID: A01637972
- My carreer: ITC

## Importing libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
```

#### PART 1

# Use your assigned dataset

#### A1 Load data

```
# Define where you are running the code: colab or local
RunInColab
                  = True
                            # (False: no | True: yes)
# If running in colab:
if RunInColab:
    # Mount your google drive in google colab
    from google.colab import drive
    drive.mount('/content/drive')
    # Find location
    #!pwd
    #!ls
    #!ls "/content/drive/My Drive/Colab Notebooks/MachineLearningWithPython/"
    # Define path del proyecto
                   = "/content/drive/My Drive/Colab Notebooks/NotebooksProfessor"
    # Define path del proyecto
    Ruta
# url string that hosts our .csv file
url = Ruta + "/A01637972_X.csv"
# Read the .csv file and store it as a pandas Data Frame
df = pd.read_csv(url)
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

## A2 Data managment

Print the first 7 rows

df.head(7)

|       | Unname       | d:<br>0 | x1         | x2          | х3          | х4            | x5         | х6         | х7            |      |
|-------|--------------|---------|------------|-------------|-------------|---------------|------------|------------|---------------|------|
| _     | 0            | 0       | 2.785038   | -0.320253   | -0.366829   | 5.489520      | 0.589037   | -11.627570 | -5.194364     | 10.  |
|       | 1            | 1       | 1.512058   | -2.787632   | -4.509219   | 3.012480      | 2.089651   | -10.785743 | -3.284605     | 5.   |
|       | 2            | 2       | -6.791266  | 2.265681    | 0.173605    | 3.318990      | -4.902140  | 1.059345   | 6.573512      | 8.   |
|       | 3            | 3       | 1.473462   | -1.301713   | -3.486627   | 7.179560      | -0.288922  | -10.038305 | -7.998483     | 4.   |
|       | 4            | 4       | 0.897142   | 0.066026    | -2.561047   | 7.156621      | 2.912814   | -12.696372 | -8.889818     | 9.   |
|       | 5            | 5       | 0.575540   | 7.738205    | 4.555532    | 9.184514      | 3.660133   | 7.006963   | 0.444127      | -8.  |
|       | 6            | 6       | -0.644227  | 3.046310    | -11.089312  | 6.724682      | -0.042115  | -0.013711  | -1.609492     | -2.  |
| Pasos | s siguientes | s: [    | Generar có | digo con df | <b>◯</b> Ve | er gráficos r | ecomendado | s New i    | nteractive sh | neet |

Print the last 4 rows

#### df.tail(4)

|     | Unnamed: | x1        | x2        | х3        | x4        | x5        | хб         | х7        |   |
|-----|----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|---|
| 684 | 684      | 4.485890  | -0.039411 | -1.934012 | 6.487421  | -0.906070 | -14.807169 | -7.917795 | _ |
| 685 | 685      | -3.195834 | 5.120192  | 4.269957  | 11.082383 | 0.331762  | 7.270322   | 3.399509  | - |
| 686 | 686      | -4.962794 | 3.358656  | -8.345166 | -0.635303 | -7.994467 | 2.674455   | 4.409376  |   |
| 687 | 687      | 4.042040  | -1.441539 | -4.966627 | 9.078894  | 6.333406  | -9.660980  | -6.995774 |   |

How many rows and columns are in your data?

Use the shape method

df.shape

(688, 12)

Print the name of all columns

Use the columns method

print(df.columns)

What is the data type in each column

Use the dtypes method

df.dtypes



What is the meaning of rows and columns?

- # Your responses here
- # 1) La columna Sin nombre: 0 parece servir como índice o identificador de fila.
- # 2) Los valores numéricos, que pueden representar características o variables en un conjunto de datos (de una simulación o un entorno exper
- # 3) Los valores que nos ofrecen, a excepción de la columna 0, son flotantes.

#...

Print a statistical summary of your columns

### df.describe()



 $\ensuremath{\mathtt{\#}}$  1) What is the minumum and maximum values of each variable

#df.max()

df.min()

|            | 0          |
|------------|------------|
| unnamed: 0 | 0.000000   |
| x1         | -11.775726 |
| x2         | -6.143589  |
| х3         | -12.642436 |
| x4         | -3.578235  |
| х5         | -9.409284  |
| х6         | -14.807169 |
| x7         | -10.644848 |
| x8         | -13.873049 |
| х9         | -15.844362 |
| x10        | -11.556889 |
| cluster    | 0.000000   |

dtype: float64

# 2) What is the mean and standar deviation of each variable df.mean() df.std()



dtype: float64

# 3) What the 25%, 50% and 75% represent? df.quantile(0.25)

df.quantile(0.5)

df.quantile(0.75)

|            | 0.75       |
|------------|------------|
| unnamed: 0 | 515.250000 |
| x1         | 3.358323   |
| x2         | 4.441846   |
| х3         | 0.541884   |
| x4         | 6.872078   |
| x5         | 3.097808   |
| x6         | 5.083720   |
| x7         | 1.707453   |
| x8         | 6.788140   |
| x9         | 4.690047   |
| x10        | 6.125021   |
| cluster    | 2.000000   |
|            |            |

dtype: float64

Rename the columns using the same name with capital letters

df.columns = [x.upper() for x in df.columns]
df

|   | UNNAMED          | :        | X1    | Х2        | Х3        | X4        | Х5        | Х6         | Х7        | Х8        | Х9         | X10       | X11       |    |
|---|------------------|----------|-------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|----|
|   | 0                | 0 2.78   | 85038 | -0.320253 | -0.366829 | 5.489520  | 0.589037  | -11.627570 | -5.194364 | 10.221068 | -10.330072 | 6.425405  | 0.335253  |    |
|   | 1                | 1 1.5    | 12058 | -2.787632 | -4.509219 | 3.012480  | 2.089651  | -10.785743 | -3.284605 | 5.555869  | -5.119256  | 6.116187  | -0.524283 | +/ |
|   | 2                | 2 -6.79  | 91266 | 2.265681  | 0.173605  | 3.318990  | -4.902140 | 1.059345   | 6.573512  | 8.931859  | -0.911567  | 7.811470  | 4.544058  |    |
|   | 3                | 3 1.47   | 73462 | -1.301713 | -3.486627 | 7.179560  | -0.288922 | -10.038305 | -7.998483 | 4.292517  | -9.015017  | 8.299924  | -2.282707 |    |
|   | 4                | 4 0.89   | 97142 | 0.066026  | -2.561047 | 7.156621  | 2.912814  | -12.696372 | -8.889818 | 9.609494  | -15.232169 | 5.411228  | -0.657676 |    |
|   |                  |          |       |           |           |           |           |            |           |           |            |           |           |    |
|   | <b>683</b> 683   | 3 -10.40 | 08806 | 5.830878  | -6.951139 | -0.778323 | -6.302301 | 4.111784   | 4.652592  | 6.520621  | -2.838583  | 8.315989  | 1.632904  |    |
|   | <b>684</b> 68    | 4.48     | 85890 | -0.039411 | -1.934012 | 6.487421  | -0.906070 | -14.807169 | -7.917795 | 9.482359  | -6.547273  | 5.686055  | -3.531208 |    |
|   | <b>685</b> 68    | 5 -3.19  | 95834 | 5.120192  | 4.269957  | 11.082383 | 0.331762  | 7.270322   | 3.399509  | -7.838998 | 2.456319   | -5.032645 | -9.714281 |    |
|   | <b>686</b> 68    | 6 -4.96  | 62794 | 3.358656  | -8.345166 | -0.635303 | -7.994467 | 2.674455   | 4.409376  | 8.770110  | 0.063100   | 6.748839  | 4.594317  |    |
|   | <b>687</b> 68    | 7 4.04   | 42040 | -1.441539 | -4.966627 | 9.078894  | 6.333406  | -9.660980  | -6.995774 | 7.279895  | -13.650498 | 5.505477  | -1.103193 |    |
| 6 | 88 rows × 12 col | umns     |       |           |           |           |           |            |           |           |            |           |           |    |

New interactive sheet

Rename the columns to their original names

Pasos siguientes:

df.columns = [x.lower() for x in df.columns]
df

Generar código con df

Ver gráficos recomendados

|   | unn        | amed:    | <b>x1</b>  | x2        | х3        | x4        | x5        | х6         | x7        | x8        | х9         | x10       | x11       |     |
|---|------------|----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|-----|
| - | 0          | 0        | 2.785038   | -0.320253 | -0.366829 | 5.489520  | 0.589037  | -11.627570 | -5.194364 | 10.221068 | -10.330072 | 6.425405  | 0.335253  | 11. |
|   | 1          | 1        | 1.512058   | -2.787632 | -4.509219 | 3.012480  | 2.089651  | -10.785743 | -3.284605 | 5.555869  | -5.119256  | 6.116187  | -0.524283 | 1   |
|   | 2          | 2        | -6.791266  | 2.265681  | 0.173605  | 3.318990  | -4.902140 | 1.059345   | 6.573512  | 8.931859  | -0.911567  | 7.811470  | 4.544058  |     |
|   | 3          | 3        | 1.473462   | -1.301713 | -3.486627 | 7.179560  | -0.288922 | -10.038305 | -7.998483 | 4.292517  | -9.015017  | 8.299924  | -2.282707 |     |
|   | 4          | 4        | 0.897142   | 0.066026  | -2.561047 | 7.156621  | 2.912814  | -12.696372 | -8.889818 | 9.609494  | -15.232169 | 5.411228  | -0.657676 |     |
|   |            |          |            |           |           |           |           |            |           |           |            |           |           |     |
|   | 683        | 683      | -10.408806 | 5.830878  | -6.951139 | -0.778323 | -6.302301 | 4.111784   | 4.652592  | 6.520621  | -2.838583  | 8.315989  | 1.632904  |     |
|   | 684        | 684      | 4.485890   | -0.039411 | -1.934012 | 6.487421  | -0.906070 | -14.807169 | -7.917795 | 9.482359  | -6.547273  | 5.686055  | -3.531208 |     |
|   | 685        | 685      | -3.195834  | 5.120192  | 4.269957  | 11.082383 | 0.331762  | 7.270322   | 3.399509  | -7.838998 | 2.456319   | -5.032645 | -9.714281 |     |
|   | 686        | 686      | -4.962794  | 3.358656  | -8.345166 | -0.635303 | -7.994467 | 2.674455   | 4.409376  | 8.770110  | 0.063100   | 6.748839  | 4.594317  |     |
|   | 687        | 687      | 4.042040   | -1.441539 | -4.966627 | 9.078894  | 6.333406  | -9.660980  | -6.995774 | 7.279895  | -13.650498 | 5.505477  | -1.103193 |     |
|   | 688 rows × | 12 colun | nns        |           |           |           |           |            |           |           |            |           |           |     |

Pasos siguientes:

Generar código con df

Ver gráficos recomendados

New interactive sheet

Use two different alternatives to get one of the columns

# Alternative 1: Using dot notation df.x1



dtype: float64

# Alternative 2: Using bracket notation df['x1']

|        | x1              |
|--------|-----------------|
| 0      | 2.785038        |
| 1      | 1.512058        |
| 2      | -6.791266       |
| 3      | 1.473462        |
| 4      | 0.897142        |
|        |                 |
| 683    | -10.408806      |
| 684    | 4.485890        |
| 685    | -3.195834       |
| 686    | -4.962794       |
| 687    | 4.042040        |
| 688 rd | ows × 1 columns |
| dtype  | : float64       |

Get a slice of your data set: second and thrid columns and rows from 62 to 72

#### df.iloc[62:73,1:3]



For the second and thrid columns, calculate the number of null and not null values and verify that their sum equals the total number of rows

df.iloc[:,1:3].isnull().sum()



dtype: int64

Discard the last column

|       | unnamed: 0     | x1         | x2        | х3        | x4        | x5        | х6         | x7        | x8        | x9         | x10       |    |
|-------|----------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|----|
| 0     | 0              | 2.785038   | -0.320253 | -0.366829 | 5.489520  | 0.589037  | -11.627570 | -5.194364 | 10.221068 | -10.330072 | 6.425405  | 11 |
| 1     | 1              | 1.512058   | -2.787632 | -4.509219 | 3.012480  | 2.089651  | -10.785743 | -3.284605 | 5.555869  | -5.119256  | 6.116187  | +/ |
| 2     | 2              | -6.791266  | 2.265681  | 0.173605  | 3.318990  | -4.902140 | 1.059345   | 6.573512  | 8.931859  | -0.911567  | 7.811470  |    |
| 3     | 3              | 1.473462   | -1.301713 | -3.486627 | 7.179560  | -0.288922 | -10.038305 | -7.998483 | 4.292517  | -9.015017  | 8.299924  |    |
| 4     | 4              | 0.897142   | 0.066026  | -2.561047 | 7.156621  | 2.912814  | -12.696372 | -8.889818 | 9.609494  | -15.232169 | 5.411228  |    |
|       |                |            |           |           |           |           |            |           |           |            |           |    |
| 683   | 683            | -10.408806 | 5.830878  | -6.951139 | -0.778323 | -6.302301 | 4.111784   | 4.652592  | 6.520621  | -2.838583  | 8.315989  |    |
| 684   | 684            | 4.485890   | -0.039411 | -1.934012 | 6.487421  | -0.906070 | -14.807169 | -7.917795 | 9.482359  | -6.547273  | 5.686055  |    |
| 685   | 685            | -3.195834  | 5.120192  | 4.269957  | 11.082383 | 0.331762  | 7.270322   | 3.399509  | -7.838998 | 2.456319   | -5.032645 |    |
| 686   | 686            | -4.962794  | 3.358656  | -8.345166 | -0.635303 | -7.994467 | 2.674455   | 4.409376  | 8.770110  | 0.063100   | 6.748839  |    |
| 687   | 687            | 4.042040   | -1.441539 | -4.966627 | 9.078894  | 6.333406  | -9.660980  | -6.995774 | 7.279895  | -13.650498 | 5.505477  |    |
| 688 r | ows × 11 colum | ins        |           |           |           |           |            |           |           |            |           |    |

Pasos siguientes:

Generar código con df



New interactive sheet

#### Questions

Based on the previos results, provide a description of yout dataset

Your response:

## A3 Data visualization

Plot in the same figure the histogram of two variables

```
plt.figure(figsize=(12, 6))
plt.hist(df['x1'], bins=20, alpha=0.5, label='x1')
plt.hist(df['x2'], bins=20, alpha=0.5, label='x2')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram of x1 and x2')
plt.legend()
plt.show()
```



Based on these plots, provide a description of your data:

Your response here:

Plot in the same figure the boxplot of two variables

```
plt.figure(figsize=(12, 6))
sns.boxplot(data=df[['x1', 'x2']])
plt.xlabel('Variable')
plt.ylabel('Value')
plt.title('Boxplot of x1 and x2')
plt.show()
```



Plot the scatter plot of two variables

```
sns.scatterplot(data=df, x='x1', y='x2')
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('Scatter plot of x1 and x2')
plt.show()
```



#### Questions

Based on the previos plots, provide a description of yout dataset

Your response:

#### A4 Kmeans

Do Kmeans clustering assuming a number of clusters accorging to your scatter plot

```
# prompt: Do Kmeans clustering assuming a number of clusters accorging to the scatter plot
import matplotlib.pyplot as plt
# Assuming you want to cluster based on 'x1' and 'x2'
X = df[['x1', 'x2']]
# Determine the number of clusters from your scatter plot (replace 'n_clusters' with your chosen value)
kmeans = KMeans(n_clusters=2, random_state=0)
# Fit the model to your data
kmeans.fit(X)
# Get the cluster labels for each data point
df['cluster'] = kmeans.labels_
# Visualize the clusters
sns.scatterplot(data=df, x='x1', y='x2', hue='cluster')
plt.title('KMeans Clustering')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10)



Add to your dataset a column with the estimated cluster to each data point

$$\label{eq:df_def} \begin{split} df[\text{'cluster'}] &= \text{kmeans.fit\_predict}(df[[\text{'x1', 'x2'}]]) \\ df \end{split}$$

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10)

| 0<br>1<br>2<br>3<br>4 | 2.785038<br>1.512058<br>-6.791266<br>1.473462<br>0.897142 | -0.320253<br>-2.787632<br>2.265681<br>-1.301713 | -0.366829<br>-4.509219<br>0.173605<br>-3.486627                            | 5.489520<br>3.012480<br>3.318990<br>7.179560                                                                                                                            | 0.589037<br>2.089651<br>-4.902140                                                       | -11.627570<br>-10.785743<br>1.059345                                                                                                                                                                                                                                 | -5.194364<br>-3.284605<br>6.573512                                                                                                                                                                                                                                                                                 | 10.221068 5.555869                                                                                                                                                                                                                                                                                                                                               | -10.330072<br>-5.119256                                                                                                                                                                                                                                                | 6.425405<br>6.116187                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                     | -6.791266<br>1.473462                                     | 2.265681                                        | 0.173605                                                                   | 3.318990                                                                                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                  | -5.119256                                                                                                                                                                                                                                                              | 6.116187                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                     | 1.473462                                                  | -1.301713                                       |                                                                            |                                                                                                                                                                         | -4.902140                                                                               | 1.059345                                                                                                                                                                                                                                                             | 6 573512                                                                                                                                                                                                                                                                                                           | 0.004050                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                           |                                                 | -3.486627                                                                  | 7 170560                                                                                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                      | 0.070012                                                                                                                                                                                                                                                                                                           | 8.931859                                                                                                                                                                                                                                                                                                                                                         | -0.911567                                                                                                                                                                                                                                                              | 7.811470                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                     | 0.897142                                                  |                                                 |                                                                            | 7.179560                                                                                                                                                                | -0.288922                                                                               | -10.038305                                                                                                                                                                                                                                                           | -7.998483                                                                                                                                                                                                                                                                                                          | 4.292517                                                                                                                                                                                                                                                                                                                                                         | -9.015017                                                                                                                                                                                                                                                              | 8.299924                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 0.007.1.2                                                 | 0.066026                                        | -2.561047                                                                  | 7.156621                                                                                                                                                                | 2.912814                                                                                | -12.696372                                                                                                                                                                                                                                                           | -8.889818                                                                                                                                                                                                                                                                                                          | 9.609494                                                                                                                                                                                                                                                                                                                                                         | -15.232169                                                                                                                                                                                                                                                             | 5.411228                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                                                           |                                                 |                                                                            |                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 683                   | -10.408806                                                | 5.830878                                        | -6.951139                                                                  | -0.778323                                                                                                                                                               | -6.302301                                                                               | 4.111784                                                                                                                                                                                                                                                             | 4.652592                                                                                                                                                                                                                                                                                                           | 6.520621                                                                                                                                                                                                                                                                                                                                                         | -2.838583                                                                                                                                                                                                                                                              | 8.315989                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 684                   | 4.485890                                                  | -0.039411                                       | -1.934012                                                                  | 6.487421                                                                                                                                                                | -0.906070                                                                               | -14.807169                                                                                                                                                                                                                                                           | -7.917795                                                                                                                                                                                                                                                                                                          | 9.482359                                                                                                                                                                                                                                                                                                                                                         | -6.547273                                                                                                                                                                                                                                                              | 5.686055                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 685                   | -3.195834                                                 | 5.120192                                        | 4.269957                                                                   | 11.082383                                                                                                                                                               | 0.331762                                                                                | 7.270322                                                                                                                                                                                                                                                             | 3.399509                                                                                                                                                                                                                                                                                                           | -7.838998                                                                                                                                                                                                                                                                                                                                                        | 2.456319                                                                                                                                                                                                                                                               | -5.032645                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 686                   | -4.962794                                                 | 3.358656                                        | -8.345166                                                                  | -0.635303                                                                                                                                                               | -7.994467                                                                               | 2.674455                                                                                                                                                                                                                                                             | 4.409376                                                                                                                                                                                                                                                                                                           | 8.770110                                                                                                                                                                                                                                                                                                                                                         | 0.063100                                                                                                                                                                                                                                                               | 6.748839                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 007                   | 4.042040                                                  | -1.441539                                       | -4.966627                                                                  | 9.078894                                                                                                                                                                | 6.333406                                                                                | -9.660980                                                                                                                                                                                                                                                            | -6.995774                                                                                                                                                                                                                                                                                                          | 7.279895                                                                                                                                                                                                                                                                                                                                                         | -13.650498                                                                                                                                                                                                                                                             | 5.505477                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 685                                                       | 685 -3.195834<br>686 -4.962794<br>687 4.042040  | 685 -3.195834 5.120192<br>686 -4.962794 3.358656<br>687 4.042040 -1.441539 | 685       -3.195834       5.120192       4.269957         686       -4.962794       3.358656       -8.345166         687       4.042040       -1.441539       -4.966627 | 685 -3.195834 5.120192 4.269957 11.082383<br>686 -4.962794 3.358656 -8.345166 -0.635303 | 685       -3.195834       5.120192       4.269957       11.082383       0.331762         686       -4.962794       3.358656       -8.345166       -0.635303       -7.994467         687       4.042040       -1.441539       -4.966627       9.078894       6.333406 | 685       -3.195834       5.120192       4.269957       11.082383       0.331762       7.270322         686       -4.962794       3.358656       -8.345166       -0.635303       -7.994467       2.674455         687       4.042040       -1.441539       -4.966627       9.078894       6.333406       -9.660980 | 685       -3.195834       5.120192       4.269957       11.082383       0.331762       7.270322       3.399509         686       -4.962794       3.358656       -8.345166       -0.635303       -7.994467       2.674455       4.409376         687       4.042040       -1.441539       -4.966627       9.078894       6.333406       -9.660980       -6.995774 | 685       -3.195834       5.120192       4.269957       11.082383       0.331762       7.270322       3.399509       -7.838998         686       -4.962794       3.358656       -8.345166       -0.635303       -7.994467       2.674455       4.409376       8.770110 | 685 -3.195834 5.120192 4.269957 11.082383 0.331762 7.270322 3.399509 -7.838998 2.456319<br>686 -4.962794 3.358656 -8.345166 -0.635303 -7.994467 2.674455 4.409376 8.770110 0.063100 | 685       -3.195834       5.120192       4.269957       11.082383       0.331762       7.270322       3.399509       -7.838998       2.456319       -5.032645         686       -4.962794       3.358656       -8.345166       -0.635303       -7.994467       2.674455       4.409376       8.770110       0.063100       6.748839         687       4.042040       -1.441539       -4.966627       9.078894       6.333406       -9.660980       -6.995774       7.279895       -13.650498       5.505477 |

Pasos siguientes: Generar código con df Ver gráficos recomendados New interactive sheet

Print the number associated to each cluster

df['cluster'].value\_counts()

cluster 1 361 0 327

dtype: int64

Print the centroids

Print the intertia metric

kmeans.inertia\_

9804.165695586235

Plot a scatter plot of your data using different color for each cluster. Also plot the centroids

```
plt.figure(figsize=(12, 6))
sns.scatterplot(data=df, x='x1', y='x2', hue='cluster', palette='Set1')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker='X', color='black', s=200)
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('Scatter plot of x1 and x2 with KMeans clusters and centroids')
plt.show()
```



#### Questions

Provides a detailed description of your results

Your response:

## A5 Elbow plot

Compute the Elbow plot

```
inertia = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, random_state=42)
    kmeans.fit(df[['x1', 'x2']])
    inertia.append(kmeans.inertia_)

plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```

🧇 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super(). check params vs input(X, default n init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super(). check params vs input(X, default n init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super(). check params vs input(X, default n init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10) /usr/local/lib/python3.10/dist-packages/sklearn/cluster/\_kmeans.py:1416: FutureWarning: The default value of `n\_init` will change from 1 super().\_check\_params\_vs\_input(X, default\_n\_init=10)

#### Elbow Method



No se ha podido establecer conexión con el servicio reCAPTCHA. Comprueba tu conexión a Internet y vuelve a cargar la página para ver otro reCAPTCHA.