Dual High-Gain Operational Amplifier

Description

The 4558 integrated circuit is a dual high-gain operational amplifier internally compensated and constructed on a single silicon IC using an advanced epitaxial process.

Combining the features of the 741 with the close parameter matching and tracking of a dual device on a monolithic chip results in unique performance characteristics. Excellent channel separation allows the use of this dual device in dense single 741 operational amplifier applications. It is especially well suited for applications in differential-in, differential-out as well as in potentiometric amplifiers and where gain and phase matched channels are mandatory.

Features

- ◆ 2.5 MHz unity gain bandwidth
- Supply voltage ±22V for RM4558 and ±18V for RC/RV4558
- ♦ Short-circuit protection
- No frequency compensation required
- No latch-up
- Large common-mode and differential voltage ranges
- Low power consumption
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Connection Information

Ordering Information

Part Number	art Number Package		
RC4558M RC4558N	M N	0°C to +70°C 0°C to +70°C	
RM4558D RM4558D/883B RM4558T	דמם	-55°C to +125°C -55°C to +125°C -55°C to +125°C	

Notes:

/883B suffix denotes Mil-Std-883, Level B processing

N = 8-lead plastic DIP

D = 8-lead ceramic DIP

T = 8-lead metal can (TO-99)

M = 8-lead plastic SOIC

Absolute Maximum Ratings Supply Voltage

Supply voltage	
RM4558	±22V
RC4558	±18V
Input Voltage1	±15V
Differential Input Voltage	30V
Output Short Circuit Duration ² .	Indefinite
Operating Temperature Range	
RM4558	55°C to +125°C
RC4558	0°C to +70°C
	0°C to +70°C
Lead Soldering Temperature	
Lead Soldering Temperature (SO-8; 10 sec)	+260°C

Notes:

- For supply voltages less than -15V, the absolute maximum input voltage is equal to the supply voltage.
- Short circuit may be to ground on one op amp only. Rating applies to +75°C ambient temperature.

Thermal Characteristics

	8-Lead Small Outline	8-Lead Plastic DIP	8-Lead Ceramic DIP	8-Lead TO-99 Metal Can
Max. Junction Temp.	+125°C	+125°C	+175°C	+175°C
Max. P _D T _A <50°C	300 mW	468 mW	833 mW	658 mW
Therm. Res θ _{JC}	_	-	45°C/W	50°C/W
Therm. Res. θ _{JA}	240°C/W	160°C/W	150°C/W	190°C/W
For T _A >50°C Derate at	4.17 mW/°C	6.25 mW/°C	8.33 mW/°C	5.26 mW/°C

Matching Characteristics ($V_S = \pm 15V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	RM/RC4558 Typ	Units
Voltage Gain	R _L ≥ 2 kΩ	±1.0	dB
Input Bias Current	R _L ≥ 2 kΩ	±15	nA
Input Offset Current	R _L ≥ 2 kΩ	±7.5	nA

Electrical Characteristics

($V_S = \pm 15V$ and $T_A = +25$ °C unless otherwise specified)

		1	RM4558		RC4558				
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units	
Input Offset Voltage	R _S ≤10kΩ		1.0	5.0		2.0	6.0	mV	
Input Offset Current			5.0	200		5.0	200	nA	
Input Bias Current			40	500		40	500	nA	
Input Resistance		0.3	1.0		0.3	1.0		MΩ	
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	50	300		20	300		V/mV	
Output Voltage Swing	R _L ≥10kΩ	±12	±14		±12	±14		٧	
	R _L ≥2kΩ	±10	±13		±10	±13		٧	
Input Voltage Range		±12	±13		±12	±13		٧	
Common Mode Rejection Ratio	R _S ≤ 10kΩ	70	100		70	100		dB	
Power Supply Rejection Ratio	R _S ≤10kΩ	76	100		76	100		dB	
Power Consumption	R _L = ∞		100	170		100	170	mW	
Transient Response	V _{IN} = 20 mV								
Rise Time	$R_L = 2k\Omega$		0.3			0.3		μS	
Overshoot	C _L ≤ 100pF		35			35		%	
Slew Rate	R _L ≥2kΩ		0.8			0.8		V/µS	
Channel Separation	$F = 10kHz, R_S = 1k\Omega$		90			90		dB	
Unity Gain Bandwidth (Gain = 1)		2.5	3.0		2.0	3.0		MHz	

The following specifications apply for RM = -55°C \leq T_A \leq +125°C, RC = 0° \leq T_A \leq +70°C

Input Offset Voltage	R _S ≤10kΩ			6.0			7.5	mV
Input Offset Current								
RC4558				500			300	nA
Input bias Current								
RC4558				1500			800	nA
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10$	25			15			V/mV
Output Voltage Swing	R _L ≥2kΩ	±10			±10			٧
Power Consumption	R ₁ = ∞		120	200		120	200	mW

Typical Performance Characteristics

Input Bias Current vs. Temperature

Input Offset Current vs. Temperature

Input Common Mode Voltage Range vs. Supply Voltage

Open Loop Voltage Gain vs. Frequency

Open Loop Voltage Gain vs. Temperature

Power Consumption vs. Temperature

Output Voltage Swing vs. Supply Voltage

Output Voltage Swing vs. Load Resistance

Output Voltage Swing vs. Frequency

Quiescent Current vs. Supply Voltage

Transient Response Output Voltage vs. Time

Follower Large Signal Pulse Response Output Voltage vs. Time

Distortion vs. Frequency

Typical Applications

Voltage Follower

Power Amplifier

Comparator With Hysteresis

Squarewave Oscillator

Typical Applications (Continued)

DC Coupled 1kHz Low-Pass Active Filter

1kHz Bandpass Active Filter

AC Coupled Inverting Amplifier

Voltage Controlled Oscillator (VCO)

65-0237

Schematic Diagram

High-Gain Dual Operational Amplifier

Description

The 4559 integrated circuit is a high performance dual operational amplifier internally compensated and constructed on a single silicon chip using an advanced epitaxial process.

These amplifiers feature guaranteed AC performance which far exceeds that of the 741-type amplifiers. The specially designed low-noise input transistors allow the 4559 to be used in low-noise signal processing applications such as audio preamplifiers and signal conditioners.

The 4559 also has more output drive capability than 741-type amplifiers and can be used to drive a 600Ω load.

Features

- ♦ Unity gain bandwidth 4.0 MHz
- Slew rate 2.0 V/μS
- Low noise voltage 1.4 μV_{RMS}
- Supply voltage ±22V for RM4559 and ±18V for RC/RV4559
- ♦ No frequency compensation required
- ♦ No latch up
- Large common mode and differential voltage ranges
- ◆ Low power consumption
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Connection Information

Ordering Information

Part Number	Package	Operating Temperature Range
RC4559M	M	0°C to +70°C
RC4559N	N	0°C to +70°C
RC4559D	D	0°C to +70°C
RM4559D	D	-55°C to +125°C
RM4559D/883B	D	-55°C to +125°C
RM4559T	T	-55°C to +125°C
RM4559T/883B	T	-55°C to +125°C

Notes:

/883B suffix denotes Mil-Std-883, Level B processing

N = 8-lead plastic DIP

D = 8 lead ceramic DIP

T = 8-lead metal can (TO-99)

M = 8-lead plastic SOIC

Absolute Maximum Ratings

Supply Voltage	•
RM4559	+221/
RC4559	±18V
Input Voltage ¹	±15V
Differential Input Voltage	30V
Output Short Circuit Duration ²	Indefinite
Operating Temperature Range	
RM4559	-55°C to +125°C
RC4559	0°C to +70°C
Lead Soldering Temperature	
(SO-8; 10 sec)	+260°C
Lead Soldering Temperature	
(DIP, TO-99; 60 sec)	+300°C

Notes:

- For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
- Short circuit may be to ground on one op amp only. Rating applies to +75°C ambient temperature.

Thermal Characteristics

	8-Lead Small Outline			8-Lead TO-99 Metal Can
Max. Junction Temp.	+125°C	+125°C	+175°C	+175°C
Max. P _D T _A <50°C	300 mW	468 mW	833 mW	658 mW
Therm. Res θ _{Jc}	_		45°C/W	50°C/W
Therm. Res. θ _{JA}	240°C/W	160°C/W	150°C/W	190°C/W
For T _A >50°C Derate at	4.17 mW/°C	6.25 mW/°C	8.33 mW/°C	5.26 mW/°C

Matching Characteristics ($V_S = \pm 15V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	RM/RC4559 Typ	Units
Voltage Gain	$R_L \ge 2 k\Omega$	±1.0	dB
Input Bias Current		±15	nA
Input Offset Current		±7.5	nA

Electrical Characteristics

($V_S = \pm 15V$ and $T_A = +25$ °C unless otherwise specified)

			RM4559)	/RC4559			
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	R _S ≤10kΩ		1.0	5.0		2.0	6.0	mV
Input Offset Current			5.0	100		5.0	100	nA
Input Bias Current			40	250		40	250	nA
Input Resistance (Differential Mode)		0.3	1.0		0.3	1.0		MΩ
Large Signal Voltage Gain	R _L ≥2kΩ	50	300		20	300		V/mV
	$V_{OUT} = \pm 10V$							
	R _L ≥10kΩ	±12	±14		±12	±14		٧
Output Voltage Swing	R _L ≥2kΩ	±10	±13		±10	±13		V
	R _L ≥600Ω	±9.5	±10		±9.5	±10		٧
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \le 10k\Omega$	80	100		80	100		dB
Power Supply Rejection Ratio	R _S ≤ 10kΩ	82	100		82	100		dB
Supply Current	R _L = ∞		3.3	5.6		3.3	5.6	mA
Transient Response	V _{IN} = 20mV							
Rise Time	$R_L = 2k\Omega$		80			80		nS
Overshoot	C _L ≤ 100pF		35			35		%
Slew Rate		1.5	2.0		1.5	2.0		V/µS
Unity Gain Bandwidth		3.0	4.0		3.0	4.0		MHz
Power Bandwidth	$V_{OUT} = 20V_{p-p}$	24	32		24	32		kHz
Input Noise Voltage	F= 20Hz to 20kHz		1.4	2.0		1.4	2.0	μV _{RMS}
Input Noise Current	F= 20Hz to 20kHz		25			25		pA _{RMS}
Channel Separation	Gain = 100, F= 10kHz		90			90		dB
	$R_S = 1k\Omega$							

The following specifications apply for RM = -55°C \leq T_A \leq + 125°C, RC = 0°C \leq T_A \leq +70°C RM4559/RC4559

Input Offset Voltage	$R_S \leq 10k\Omega$			6.0			7.5	mV
Input Offset Current				300			200	nA
Input Bias Current				500			500	nA
Large Signal Voltage Gain	$R_L \ge 2k\Omega$ $V_{OUT} = \pm 10V$	25			15			V/mV
Output Voltage Swing	R _L ≥2kΩ	±10			±10			٧
Supply Current	R _L = ∞		4.0	6.6		4.0	6.6	mA

Linear

Typical Performance Characteristics

Input Bias Current vs. Temperature

Input Offset Current vs. Temperature

Input Common Mode Voltage Range vs. Supply Voltage

Open Loop Voltage Gain vs. Frequency

Open Loop Voltage Gain vs. Temperature

Power Consumption vs. Temperature

Output Voltage Swing vs. Supply Voltage

Output Voltage Swing vs. Load Resistance

Output Voltage Swing vs. Frequency

Quiescent Current vs. Supply Voltage

Transient Response Output Voltage vs. Time

Follower Large Signal Pulse Response
Output Voltage vs. Time

Input Noise Current Density vs. Frequency

Input Noise Voltage Density vs. Frequency

Channel Separation vs. Frequency

Total Harmonic Distortion vs. Output Voltage

Output Voltage Swing vs. Frequency

Total Harmonic Distortion vs. Frequency

Typical Applications

Stereo Tone Control

Typical Applications (Continued)

RIAA Preamplifier

Triangular-Wave Generator

Low Frequency Sine Wave Generator with Quadrature Output

Schematic Diagram

