Proposition 1. Let \mathbb{F}_q be a finite field of size q. Let $\mathrm{Gr}_{\mathbb{F}_q}(k,n)$ be the space of (k-1)dimensional projective hyperplanes in $\mathbb{P}_{\mathbb{F}_q}^{n-1}$. Then $\#\mathrm{Gr}_{\mathbb{F}_q}(k,n) = \prod_{i=1}^k \frac{q^{n+1-i}-1}{q^i-1}$.

Proof. First consider Gr(1,n). This is the set of points in $\mathbb{P}_{\mathbb{F}_q}^{n-1}$. The number of points can be calculated as $\frac{q^{n+1-1}-1}{q^1-1}=\frac{q^n-1}{q-1}$. Thus the proposition holds for the case k=1.

Now consider Gr(k,n). We will show $\#Gr(k,n) = \#Gr(k-1,n)\frac{q^{n+1-k}-1}{q^k-1}$. We want to form a (k-1)-dimensional hyperplane by grabbing a (k-2)-dimensional hyperplane and a point not on the plane we grabbed, and then correct for any overcounting. There are $\#\operatorname{Gr}(k-1,n)$ many (k-2)-dimensional hyperplanes. Given any hyperplane, there are $\frac{q^n-1}{q-1}-\frac{q^{k-1}-1}{q-1}=\frac{q^n-q^{k-1}}{q-1}=q^{k-1}\frac{q^{n+1-k}-1}{q-1}$ points not on that hyperplane. Multiplying $q^{k-1}\frac{q^{n+1-k}-1}{q-1}$ and $\#\operatorname{Gr}(k-1,n)$ gives us the number of (k-1)-dimensional

hyperplanes there are with some factor of overcounting. To correct for this, we need to divide by a factor given by how many (k-2)-dimensional hyperplanes there are in $\mathbb{P}^{k-1}_{\mathbb{F}_q}$, multiplied by how many points in $\mathbb{P}^{k-1}_{\mathbb{F}_q}$ not contained on the given hyperplane.

By duality, there are as many (k-2)-dimensional hyperplanes in $\mathbb{P}^{k-1}_{\mathbb{F}_q}$ as there are points in $\mathbb{P}_{\mathbb{F}_q}^{k-1}$. Indeed, $\operatorname{Gr}(k-1,k) \cong \operatorname{Gr}(1,k)$. Thus there are $\frac{q^k-1}{q-1}$ many (k-2)-dimensional hyperplanes in $\mathbb{P}^{k-1}_{\mathbb{F}_q}$. Now there are $\frac{q^k-1}{q-1} - \frac{q^{k-1}-1}{q-1} = \frac{q^k-q^{k-1}}{q-1} = q^{k-1}$ points in $\mathbb{P}^{k-1}_{\mathbb{F}_q}$ not contained in a given (k-2)-dimensional hyperplane. Thus the factor of overcounting is $q^{k-1}\frac{q^k-1}{q-1}.$ Diving gives us

 $\#\operatorname{Gr}(k,n) = \frac{\#\operatorname{Gr}(k-1,n)q^{k-1}\frac{q^{n+1-k}-1}{q-1}}{q^{k-1}\frac{q^k-1}{q^k-1}} = \#\operatorname{Gr}(k-1,n)\frac{q^{n+1-k}-1}{q^k-1}.$

Because we know the explicit formula for $\#Gr(1,n) = \frac{q^n-1}{q-1}$, we finally get $\#Gr_{\mathbb{F}_q}(k,n) =$

 $\prod_{i=1}^{k} \frac{q^{n+1-i}-1}{a^i-1}$, and so the proposition holds.

Example 1. There are $\frac{(2^6-1)(2^5-1)(2^4-1)}{(2-1)(2^2-1)(2^3-1)} = 1395$ planes in $\mathbb{P}^5_{\mathbb{Z}/2\mathbb{Z}}$.