CLAIMS

5

10

- 1. A meltable ink which is solid at room temperature and liquid at a higher temperature, which ink is suitable for use in an indirect printing process, in which printing process the ink is transferred, by the use of an inkjet printhead, in the form of individual ink drops to a transfer element, whereafter the ink is transferred to a receiving material by bringing the transfer element into contact with said receiving material under pressure, said ink having a composition such that it is pressure-transferable at a temperature between a bottom limit and a top limit, wherein the ink has a deformation energy of less than 20 x 10⁵ Pa.s at a temperature equal to the top limit.
- 2. A meltable ink according to claim 1, wherein the ink has a deformation energy less than 10×10^5 Pa.s at a temperature equal to the top limit.
- 3. A meltable ink according to claim 2, wherein the ink has a deformation energy smaller than 2×10^5 Pa.s at a temperature equal to the top limit.
 - 4. A meltable ink according to claim 1, 2 or 3, wherein the ink contains a semicrystalline binder and a crystalline thickener.

20

30

- 5. A meltable ink according to claim 1, 2 or 3, wherein the ink contains a binder, an amorphously solidifying softener and a crystalline thickener.
- 6. A meltable ink according to claim 1, 2 or 3, wherein the ink contains a crystalline-solidifying softener, a crystalline thickener and optionally a binder.
 - 7. A method of selecting a meltable ink which is solid at room temperature, suitable for use in an indirect printing process, in which printing process the ink is transferred, by the use of an inkjet printhead, to a transfer element, whereafter the ink is transferred under pressure from the transfer element to a receiving material, which ink has a composition such that said ink is pressure-transferable at a temperature between a bottom limit and a top limit, the method comprising:
 - determining whether the ink is pressure-transferable,
- determining the top limit if the ink is pressure-transferable,

wherein the method further comprises:

- measuring the deformation energy of the ink at the said top limit, and
- 5 selecting the ink if the deformation energy is less than 20×10^5 Pa.s.
 - 8. A method according to claim 7, wherein the ink is selected if the deformation energy is 10×10^5 Pa.s.
- 9. A method according to claim 8, wherein the ink is selected if the deformation energy is less than 2×10^5 Pa.s.