Appello di Ingegneria Info	rmatica del 4.2.2020: Compito A	(AULA 13 SBAI – CONTI – 2 ORE)
Nome	Cognome	Matricola

Don	nanda 1	[2+3 punti]
1.2 D	Enunciare il teorema di Fermat; Dire se la funzione $f(x) = x^2 - 5x + 6 $ soddisfa le ipotesi nei punti $x_0 = 2$ ed x_1 noltre se tale funzione verifica la tesi.	$=\frac{5}{2}$. Dire
Risp	osta	
(i)		
Don	nanda 2	[2+3 punti]
(i)	Dare la definizione di grafico per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$;	
(ii)	Trovare punti interni, esterni, di frontiera del dominio di $f(x,y) = \sqrt{x}y^2 e g(x,y)$	$y) = \frac{1}{x^2 - y^2}$
Riso	luzione	
(i)		
(ii)_		

Con $D = [1,2]x[1,2]$ sia $f: D \to \mathbb{R}$ la funzione $f(x,y) = \int_x^y \arctan(t^2) dt$ allora:
a. il gradiente di f esiste in tutti i punti di D;
b. in $D \frac{\partial^2 f}{\partial y \partial x}$ è diverso da $\frac{\partial^2 f}{\partial x \partial y}$;
c. in D non esiste $\frac{\partial f}{\partial y}$;
d. nessuna delle precedenti.
Risoluzione (giustificare la risposta)
Esercizio 2 [3 punti]
Sia $(a_n)_{n\in\mathbb{N}}$ la successione dei numeri di Fibonacci 1,1,2,3,5,8,13,21,34,, allora la successione $(b_n)_{n\in\mathbb{N}}$ data da $(b_n)\coloneqq a_{a_n}$ è
a. limitata;
b. 1,1,1,2,5,11,;
c. 1,1,1,3,5,9,;
d. nessuna delle precedenti.
Risoluzione (giustificare la risposta)
·
·
·
Esercizio 3 [3 punti]
Sia $z = \frac{1}{3} \sum_{k=1}^{5} 2^k e^{ik\frac{\pi}{2}}$ allora
a. $z = i$;
b. $Re(z) = -8iz$
c. $ z = 28$
d. $Re(z) = 4$
Risoluzione (giustificare la risposta)
·

[3 punti]

Esercizio 1

Calcolare il seguente lin	nite	
	$\lim_{x \to 0^{-}} \frac{ x^{3} \cos(x) + (e^{x} - 1)\arctan(x\log x)}{x^{2} \tan(x^{2})}$	(x+1)
Risoluzione		
Esercizio 5		[4 punti]
Determinare le soluzior	ni del seguente problema di Cauchy	
	$f(x,y) = \begin{cases} y' = y \frac{\cos(x)}{1 + \sin^2(x)} \\ y(0) = e \end{cases}$	
Risoluzione		

[4 punti]

Esercizio 4

ınti]
(1

Trovare i punti di massimo o di minimo relativo della funzione	

f(x,y) = xy(2y - x + 2)	

e determinare il massimo e il minimo assoluto della $f(x,y)$ nel triangolo di vertici (0,0 (0,-1).	0), (2,0),