2019 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	В	D	A	C	В	C	C	D	В	D

II dalis

11	1365 Eur (arba 1365).
12	75 Eur (arba 75).
13	4,5 (arba $4\frac{1}{2}$, arba $\frac{9}{2}$).
14.1	40° (arba 40).
14.2	30.
15.1	720 (arba 6!).
15.2	240.
16	$x \in (3;5)$ (arba 3 < x < 5, arba (3,5)).
17	$\log 7$ (arba $\log_{10} 7$, arba $\frac{\log_a 7}{\log_a 10}$, arba
	$\frac{\log_a 7}{\log_a 5 + \log_a 2}, \text{ kai } a > 0, a \neq 1, \text{ arba } \frac{\log_5 7}{\log_5 2 + 1}, \text{ arba}$
	$\frac{\log_2 7}{\log_2 5 + 1}).$
18	$a \in (2; +\infty) \cup \{0\}$ (arba $a = 0$, arba $a > 2$).
19.1	−5 .
19.2	-36.

 $^{^{\}scriptsize{\textcircled{\scriptsize{0}}}}$ Nacionalinis egzaminų centras, 2019 m.

III dalis

Pastaba.

III dalyje pateiktas atsakymas be sprendimo vertinamas 0 taškų.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		7	
20.1		1	
	$f(30^\circ) = 5\sin 30^\circ - \cos 60^\circ + 1 = \frac{5}{2} - \frac{1}{2} + 1 = 3.$	1	Už teisingą
	$f(30) = 3\sin 30 - \cos 60 + 1 = \frac{+1}{2} = 3.$		atsakymą.
	<i>Ats.</i> : 3.		
20.2		2	
	$f(x) = 5\sin x - \cos(2x) + 1 =$		Už teisingą $cos(2x)$
	$= 5\sin x - \cos^2 x + \sin^2 x + 1,$	1	formulės pritaikymą.
	arba		
	$f(x) = 5\sin x - \cos(2x) + 1 =$		
	$= 5\sin x - 1 + 2\sin^2 x + 1,$		
	$= 5\sin x - 1 + \sin^2 x + \sin^2 x + 1 =$	1	Už gautą teisingą
	$= 5\sin x + 2\sin^2 x = 2\sin x(\sin x + 2.5),$		sandaugą.
	arba		
	$= 5\sin x + 2\sin^2 x = 2\sin x(\sin x + 2,5).$		

Pastabos

Atvirkštinis įrodymo būdas.

$$2\sin x(\sin x + 2,5) = 2\sin^2 x + 5\sin x = 2\frac{1-\cos 2x}{2} + 5\sin x = 1-\cos 2x + 5\sin x.$$

Už šį sprendimą skiriami 2 taškai.

• Suvedant j lygtj.

Sudarome lygtį ir keliame klausimą, kokiems *x* ji galioja.

$$1-\cos 2x + 5\sin x = 2\sin x(\sin x + 2.5),$$

$$1 - \cos 2x + 5\sin x - 2\sin^2 x - 5\sin x = 0, \qquad 1 - \cos 2x - 2\sin^2 x = 0, \quad 0 = 0.$$

Paskutinė, todėl ir pirma, lygtys galioja visiems realiems skaičiams.

Už šį sprendimą skiriami 2 taškai.

20.3		3	
	$2\sin x(\sin x + 2,5) = 0,$	2	Po 1 tašką už
	$2\sin x = 0$ arba $\sin x + 2.5 = 0$,		kiekvieną teisingai
	$x = 180^{\circ} \cdot k, (k \in \mathbb{Z}), \sin x = -2.5,$		išspręstą lygtį.
	(arba $x = \pi k, (k \in \mathbb{Z})$), Sprendinių nėra.		
	$x = -180^{\circ}; 0^{\circ}; 180^{\circ}.$	1	Už teisingą
	(arba $x = -\pi; 0; \pi$).		atsakymą.
	Ats.: $x = -180^{\circ}$; 0°; 180° (arba $x = \pi k, k = -1$; 0; 1, arba		
	$x = -\pi; 0; \pi).$		

Pastaba

Jei vietoje $x = \pi k$ parašyta $x = (-1)^k \cdot 0 + \pi k$, už šį atsakymą skiriamas pirmasis taškas.

2019 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

20.4		1	
	$f(-x) = 5\sin(-x) - \cos(-2x) + 1 =$ $= -5\sin x - \cos(2x) + 1 \neq f(x),$ $f(-x) = -(5\sin x + \cos(2x) - 1) \neq -f(x),$	1	Už teisingą pagrindimą, kad funkcija yra nei lyginė, nei nelyginė.
	arba $f(-x) = 2\sin(-x)(\sin(-x) + 2.5) = -2\sin x(-\sin x + 2.5) =$ $= 2\sin x(\sin x - 2.5) \neq f(x).$ $f(-x) = -(2\sin x(-\sin x + 2.5)) \neq -f(x).$ Todėl funkcija yra nei lyginė, nei nelyginė.		

Užd.	I. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINII Sprendimas ir atsakymas	Taškai	KCIJA Pagrindinė sesija Vertinimas
21		11	, , , , , , , , , , , , , , , , , , , ,
21.1		2	
	$f(x) = -x^2 + x + 6$ $D \qquad O \qquad E \qquad x$		
	$-x^2 + x + 6 = 0,$	1	Už teisingai pasirinktą sprendimo būdą (teisingai sudarytą lygtį).
	$D = 25,$ $x_{1,2} = \frac{-1 \pm 5}{-2} = \begin{bmatrix} 3 \\ -2 \text{ (netenkina sąlygos)}. \end{bmatrix}$	1	Už gautą teisingą atsakymą.
	Ats.: $x = 3$.		
21.2		1	**************************************
	f'(x) = -2x + 1.	1	Už teisingą
	Ats.: -2x+1.		atsakymą.
21.3		2	TTV . * *
	$f'(x_A) = tg135^\circ = -1,$ $-2x_A + 1 = -1,$ $x_A = 1,$	1	Už teisingą pagrindimą, kad $x = 1$.
	y = f(1) = -1 + 1 + 6 = 6.	1	Už teisingą pagrindimą, kad $y = 6$.
21.4		2	
	I būdas $k = \text{tg } 135^{\circ} = -1, \text{todėl}$ y = -x + b,	1	Už pasirinktą teisingą sprendimo būdą.
	A(1; 6), 6 = -1 + b, b = 7. Ats.: y = -x + 7.	1	Už gautą teisingą atsakymą.
	II būdas y = f(1) + f'(1)(x-1).	1	Už pasirinktą teisingą sprendimo būdą.
	y = 6 + (-1)(x - 1). y = -x + 7.	1	Už gautą teisingą atsakymą.
	Ats.: $y = -x + 7$.		

	A. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINI	MO INSTRU	UKCIJA Pagrindinė sesija
21.5		4	
	$f(x) = -x^2 + x + 6$ $D \qquad E \qquad 135^\circ$		
	I būdas $S_{\triangle OBC} = \frac{1}{2}OB \cdot OC = \frac{7 \cdot 7}{2} = \frac{49}{2} = 24,5,$	1	Už teisingai apskaičiuotą trikampio <i>OBC</i> plotą.
	$S_1 = \int_0^3 (-x^2 + x + 6) dx =$	1	Už teisingą figūros, apribotos parabole ir ašimis, kai $x \in [0;3]$, ploto išreiškimą apibrėžtiniu integralu.
	$= \left(-\frac{x^3}{3} + \frac{x^2}{2} + 6x\right)\Big _0^3 =$	1	Už teisingą pirmykštę funkciją.
	$= \frac{27}{2} = 13,5,$ $S_{\text{figūros}} = 24,5 - 13,5 = 11.$ $Ats.: 11.$	1	Už gautą teisingą atsakymą.
	II būdas $S = \int_0^7 (-x+7)dx - \int_0^3 (-x^2 + x + 6)dx =$	2	Po vieną tašką už teisingą figūrų, apribotų parabole ir tiese, plotų išreiškimą apibrėžtiniais integralais.
	$ \left = \left(-\frac{x^2}{2} + 7x \right) \right _0^7 - \left(-\frac{x^3}{3} + \frac{x^2}{2} + 6x \right) \right _0^3 = $	1	Už teisingą pirmykštę funkciją.
	= 24,5 - 13,5 = 11. Ats.: 11.	1	Už gautą teisingą atsakymą.

2019 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

III būdas	2	Po vieną tašką už
$\int_{0}^{3} ((-x+7) - (-x^{2} + x + 6))dx + \int_{3}^{7} (-x+7)dx =$ $= \int_{0}^{3} (x^{2} - 2x + 1)dx + \int_{3}^{7} (-x+7)dx =$		teisingą figūrų, apribotų parabole ir tiese, plotų išreiškimą
0 3		apibrėžtiniais integralais.
$= \left(\frac{x^3}{3} - x^2 + x\right) \Big _0^3 + \left(-\frac{x^2}{2} + 7x\right) \Big _3^7$	1	Už teisingą pirmykštę funkciją.
$= \frac{27}{3} - 9 + 3 + \left(-\frac{49}{2} + 49 + \frac{9}{2} - 21\right) = 11.$	1	Už gautą teisingą atsakymą.
Ats.: 11.		

Pastaba

Sprendimas
$$S = \int_0^7 (-x + 7 - (-x^2 + x + 6)) dx = \int_0^7 (x^2 - 2x + 1) dx = \left(\frac{x^3}{3} - x^2 + x\right) \Big|_0^7 = 72\frac{1}{3}$$

vertinamas 2 taškais.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		3	
	A_1 B_1 C_1	1	Už teisingai apskaičiuotą prizmės pagrindo plotą.
	$A \longrightarrow B$		
	$V = S_{ m pagrindo} \cdot H,$		
	$28\sqrt{3} = 7 \cdot S_{\Delta ABC},$ $S_{\Delta ABC} = 4\sqrt{3},$		
	$S_{\Delta ABC} = 4\sqrt{3}$		
	$\frac{a^2\sqrt{3}}{4} = 4\sqrt{3} \text{ (arba } \frac{1}{2}a \cdot a \cdot \sin 60^\circ = 4\sqrt{3} \text{)},$	1	Už sudarytą teisingą lygtį prizmės pagrindo kraštinės ilgiui apskaičiuoti.
	$a^2 = 16,$ $a = 4.$	1	Už gautą teisingą atsakymą.
	a = 4. Ats.: 4.		
<u> </u>	Als.: 4.		

Pastaba

Tegul |AC| = x, tada $S_{\text{pagrindo}} = 0.5x^2 \frac{\sqrt{3}}{2}$ (pirmas taškas – už apskaičiuotą pagrindo plotą),

 $7x^2 \frac{\sqrt{3}}{4} = 28\sqrt{3}$ (antras taškas – už teisingai sudarytą lygtį), x = 4 (trečias taškas – už teisingai išspręstą lygtį).

2019 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		3	
23.1		1	
	$AB = h\sqrt{3}.$ $Ats.: AB = h\sqrt{3}.$	1	Už teisingą atsakymą.
23.2		2	
	Pagal kosinusų teoremą: $105^{2} = h^{2} + (h\sqrt{3})^{2} - 2 \cdot h \cdot h\sqrt{3} \cdot \cos 150^{\circ},$	1	Už teisingai pasirinktą sprendimo būdą (pvz., pritaikytą kosinusų teoremą).
	$105^2 = 7h^2$, $h = 15\sqrt{7}$ (arba $h = \sqrt{1575}$). Ats.: $15\sqrt{7}$ (arba $\sqrt{1575}$).	1	Už gautą teisingą atsakymą.

î	MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINI		
Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		5	
24.1		1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Už teisingą atsakymą.
	$\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM} = \frac{1}{2}\vec{a} - \vec{b}.$ $Ats.: \frac{1}{2}\vec{a} - \vec{b}.$		
24.2		2	
	I būdas $\Delta ANM \sim \Delta CNB \text{ (pagal du kampus), tai } \frac{BC}{AM} = \frac{BN}{NM} = \frac{2}{1},$	1	Už teisingą pagrindimą, kad $BN: NM = 2:1$.
	$\overrightarrow{BN} = \frac{2}{3} \overrightarrow{BM} = \frac{1}{3} \vec{a} - \frac{2}{3} \vec{b}.$ $Ats.: \frac{1}{3} \vec{a} - \frac{2}{3} \vec{b}.$	1	Už gautą teisingą atsakymą.
	II būdas Nubrėžkime atkarpą <i>BD</i> . Taškas <i>N</i> yra Δ <i>ABD</i> pusiaukraštinių susikirtimo taškas, todėl $\frac{BN}{NM} = \frac{2}{1}$.	1	Už teisingą pagrindimą, kad $BN: NM = 2:1$.
	$\overrightarrow{BN} = \frac{2}{3}\overrightarrow{BM} = \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$ $Ats.: \frac{1}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}.$	1	Už gautą teisingą atsakymą.
	3 3		
24.3.1	$A \longrightarrow M \longrightarrow D$	1	Už teisingą pagrindimą, kad vektoriai kolinearūs.
	I būdas		
	$\overrightarrow{BK} = \overrightarrow{BN} + \overrightarrow{NK} = \frac{1}{4} \overrightarrow{BK} + \overrightarrow{NK} \Longrightarrow$		
	$\Rightarrow \overrightarrow{NK} = \frac{3}{4}\overrightarrow{BK} \Rightarrow \overrightarrow{NK} \parallel \overrightarrow{BK}.$		
	II būdas $\overrightarrow{BK} = 4\overrightarrow{BN} \implies \text{taškai } B, K \text{ ir } N \text{ yra vienoje tiesėje } \implies \overrightarrow{BK} \parallel \overrightarrow{NK}.$	1	Už teisingą pagrindimą, kad vektoriai kolinearūs.
	Arba $\overrightarrow{BK} = 4\overrightarrow{BN} \Rightarrow \overrightarrow{NK}$ ir \overrightarrow{BK} yra vienoje tiesėje $\Rightarrow \overrightarrow{NK} \parallel \overrightarrow{BK}$.		

2019 W1.	MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UZDUOTIES VERTININ	IO INSTRU	KCIJA Pagrindinė sesija
24.3.2		1	
	$\overrightarrow{NK} = \frac{3}{4} \overrightarrow{BK} \Rightarrow \overrightarrow{NK} = \frac{3}{4} \overrightarrow{BK} = \frac{3}{4} \cdot 8 = 6.$ Arba $\overrightarrow{BK} = 4 \overrightarrow{BN} \Rightarrow \overrightarrow{BN} : \overrightarrow{NK} = 1 : 3 \Rightarrow \overrightarrow{NK} = \frac{3}{4} \overrightarrow{BK} = 6.$	1	Už gautą teisingą atsakymą.
	Ats.: 6.		
Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25	V	4	
	$b-a=10-a-b \Rightarrow b=5,$ (arba $b = \frac{a+10-a}{2} = 5$),	1	Už teisingai sudarytą lygtį.
	$\frac{b+4}{a+1} = \frac{29-a}{b+4} ,$	1	Už teisingai pritaikytą geometrinės progresijos apibrėžtį.
	$\frac{9}{a+1} = \frac{29-a}{9},$ $(a+1)(29-a) = 81,$ $29a-a^2 + 29-a = 81,$ $-a^2 + 28a - 52 = 0,$ $a^2 - 28a + 52 = 0,$	1	Už gautą teisingą kvadratinę lygtį.
	a=2 arba $a=26$ (netenkina sąlygos). Ats.: $a=2$, $b=5$.	1	Už gautą teisingą atsakymą.

Pastabos

• $\begin{cases} b-a=10-a-b, \\ \frac{b+4}{a+1} = \frac{29-a}{b+4}. \text{ Už pirmąją lygtį – pirmas taškas. Už antrąją lygtį – antras taškas.} \end{cases}$

Už ekvivalentų pertvarkymą iki $\begin{cases} b=5, \\ a^2-28a+52=0, \end{cases}$ trečias taškas. Už teisingą atsakymą a = 2, b = 5 – ketvirtas taškas.

Už lygčių sistemą $\begin{cases} a_1 = a, \\ a_1 + d = b, \end{cases}$ skiriamas pirmas taškas. Jis skiriamas tik už tokią

lygčių sistemą, t. y. būtina, kad kairioji pusė būtų užrašyta tik per du naujus nežinomuosius: a_1 ir d.

Už lygčių sistemą $\begin{cases} b_1=a+1,\\ b_1q=b+4,\\ b_1q^2=29-a \end{cases}$ skiriamas antras taškas. Būtina, kad papildomų naujų nežinomųjų

būtų tik du, t. y. b_1 ir q.

Už teisingą a ir b apskaičiavimą skiriami trečias ir ketvirtas taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		5	
	Skaičius $ab+c$ yra lyginis, kai: įvykis A – "sandauga ab yra nelyginė ir skaičius c – nelyginis" (t. y. a , b ir c – visi nelyginiai skaičiai); įvykis B – "sandauga ab yra lyginė ir skaičius c – lyginis" (t. y. bent vienas iš skaičių a ir b – lyginis taip pat c – lyginis skaičius).	1	Už teisingai išvardytą bent vieną atvejį, kada skaičius ab+c yra lyginis.
	Tikimybė, kad a , b ir c – visi nelyginiai skaičiai, yra $\mathbf{P}(A) = \left(\frac{50}{99}\right)^3 \text{ (arba } \mathbf{P}(A) = \frac{125000}{970299}\text{)}.$	1	Už teisingai apskaičiuotą įvykio <i>A</i> tikimybę.
	Įvykis C – bent vienas iš skaičių a ir b – lyginis, $\mathbf{P}(C) = 1 - \mathbf{P}(\overline{C}) = 1 - \left(\frac{50}{99}\right)^2 = 1 - \frac{2500}{9801} = \frac{7301}{9801},$ arba	1	Už teisingai apskaičiuotą tikimybę, kad bent vienas iš skaičių <i>a</i> ir <i>b</i> yra lyginis.
	$\mathbf{P}(C) = \frac{49}{99} \cdot \frac{50}{99} \cdot 2 + \left(\frac{49}{99}\right)^2 = \frac{4900}{9801} + \frac{2401}{9801} = \frac{7301}{9801},$		
	$\mathbf{P}(B) = \mathbf{P}(C) \cdot \frac{49}{99} = \frac{7301}{9801} \cdot \frac{49}{99} = \frac{357749}{970299},$	1	Už teisingai apskaičiuotą įvykio <i>B</i> tikimybę.
	todėl tikimybė, kad $ab+c$ yra lyginis skaičius, yra: $\frac{125000}{970299} + \frac{357749}{970299} = \frac{482749}{970299}.$ $Ats.: \frac{482749}{970299}.$	1	Už gautą teisingą atsakymą.

Pastabos

• Pažymėkime įvykius: a_1 – pirmojo ištraukto rutulio numeris yra lyginis, a_n – pirmojo ištraukto rutulio numeris yra nelyginis, analogiškai b_1 ir b_n – antrojo rutulio numeriai yra lyginis ir nelyginis, c_1 ir c_n trečiojo rutulio numeriai yra lyginis ir nelyginis.

Tada $\mathbf{P}(L = \text{skaičius } ab + c \text{ yra lyginis}) = \mathbf{P}(a_n b_n c_n \cup a_l b_n c_l \cup a_l b_l c_l \cup a_n b_l c_l) = \mathbf{P}(a_n b_n c_n) + \mathbf{P}(a_l b_n c_l) + \mathbf{P}(a_l b_l c_l) + \mathbf{P}(a_n b_l c_l)$, nes šie įvykiai yra poromis nesutaikomi.

 $\mathbf{P}(L) = \mathbf{P}(a_n)\mathbf{P}(b_n)\mathbf{P}(c_n) + \mathbf{P}(a_1)\mathbf{P}(b_n)\mathbf{P}(c_1) + \mathbf{P}(a_1)\mathbf{P}(b_1)\mathbf{P}(c_1) + \mathbf{P}(a_n)\mathbf{P}(b_1)\mathbf{P}(c_1)$, nes rutulių traukimas yra nepriklausomas vienas nuo kito.

$$\mathbf{P}(L) = \frac{50}{99} \cdot \frac{50}{99} \cdot \frac{50}{99} + \frac{49}{99} \cdot \frac{50}{99} \cdot \frac{49}{99} + \frac{49}{99} \cdot \frac{49}{99} \cdot \frac{49}{99} + \frac{50}{99} \cdot \frac{49}{99} \cdot \frac{49}{99} = \frac{482749}{970299}.$$

Taškas skiriamas už bent vieną palankų atvejį: $a_nb_nc_n$, $a_lb_nc_l$, $a_lb_lc_l$ arba $a_nb_lc_l$. Pirmas taškas skiriamas už išvardytą bent vieną atvejį, kai skaičius ab+c yra lyginis, t. y. $a_nb_nc_n$, $a_lb_nc_l$, $a_lb_lc_l$ arba $a_nb_lc_l$. Už bent vieną iš keturių šių atvejų teisingai apskaičiuotų tikimybių skiriamas antras taškas, už visas keturias teisingai apskaičiuotas tikimybes skiriamas trečias taškas, už teisingą sumą, t. y. $\mathbf{P}(L)$ – ketvirtas taškas, o už įvykio L apibrėžimą – penktas taškas.

Trumpiau: už $\mathbf{P}(L) = \frac{50}{99} \cdot \frac{50}{99} \cdot \frac{50}{99} \cdot \frac{49}{99} \cdot \frac{50}{99} \cdot \frac{49}{99} \cdot \frac{49}$

Sprendimas, remiantis klasikiniu tikimybės apibrėžimu.

2019 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Visų bandymo baigčių skaičius $n = 99.99.99 = 99^3 = 970299$. Už šį skaičių skiriamas pirmas taškas.

(a, b, c) Ivykiui palankių baigčių skaičius

(N, N, N) 50.50.50=125000,

(N, L, L) 50.49.49=120050,

(L, N, L) 49.50.49 = 120050

(L, L, L) $49 \cdot 49 \cdot 49 = 117649$.

Už bent vieną teisingą iš šių keturių skaičių skiriamas antras taškas, už visus keturis teisingai išvardytus ir apskaičiuotus skaičius skiriamas trečias taškas.

Ivykiui L (suma ab + c yra lyginė) palankių baigčių skaičius

$$m = 50^3 + 2 \cdot 50 \cdot 49^2 + 49^3 = 482749.$$

Įvykio *L* tikimybė $\mathbf{P}(L) = \frac{m}{n} = \frac{482749}{970299}$

Už teisingą tikimybę $\mathbf{P}(L)$ skiriamas ketvirtas taškas. Už L apibrėžimą skiriamas penktas taškas.