RAW_Data Link

Data Dictionary

Column Name	Description
Item_Identifier	Unique product code for each item.
Item_Weight	Weight of the item (in kg).
Item_Fat_Content	Indicates the fat level of the item (Low Fat, Regular).
Item_Visibility	Percentage visibility of an item in a store.
Item_Type	Category to which an item belongs (e.g., Dairy, Snacks).
Item_MRP	Maximum Retail Price of the item.
Outlet_Identifier	Unique code for each outlet.
Outlet_Establishment_Year	Year the outlet was established.
Outlet_Size	Size of the outlet (Small, Medium, High).
Outlet_Location_Type	Type of city (Tier 1, Tier 2, Tier 3).
Outlet_Type	Type of store (Supermarket Type1, Type2, etc.).
Item_Outlet_Sales	Total sales of the item in the outlet (target variable).

Data Cleaning Recommendations

Based on the data review, here are the cleaning steps required to ensure the dataset is ready for analysis and visualization in the dashboard:

COUNTBLANK() in EXCEL

A B C D E F G H I J K L

Item_Identifier V Item_Weight V Item_Fat_Content V Item_Visibility V Item_Type V Item_MRP V Outlet_Identifier V Outlet_Establishment_Year V Outlet_Size V Outlet_Location_Type V Outlet_Type V Item_Outlet_Sales V Outlet_Size V Outlet_Location_Type V Outlet_Type V Item_Outlet_Sales V Outlet_Size V Outlet_S

Select *
From [BlinkIT Grocery Project]

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sale
1	FDA15	9.3	Low Fat	0.016047301	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.138
2	DRC01	5.92	Regular	0.019278216	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228
3	FDN15	17.5	Low Fat	0.016760075	Meat	141.618	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.27
4	FDX07	19.2	Regular	0	Fruits and Vegetables	182.095	OUT010	1998	NULL	Tier 3	Grocery Store	732.38
5	NCD19	8.93	Low Fat	0	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052
6	FDP36	10.395	Regular	0	Baking Goods	51.4008	OUT018	2009	Medium	Tier 3	Supermarket Type2	556.6088
7	FDO10	13.65	Regular	0.012741089	Snack Foods	57.6588	OUT013	1987	High	Tier 3	Supermarket Type1	343.5528
3	FDP10	NULL	Low Fat	0.127469857	Snack Foods	107.7622	OUT027	1985	Medium	Tier 3	Supermarket Type3	4022.7636
9	FDH17	16.2	Regular	0.016687114	Frozen Foods	96.9726	OUT045	2002	NULL	Tier 2	Supermarket Type1	1076.5986
10	FDU28	19.2	Regular	0.09444959	Frozen Foods	187.8214	OUT017	2007	NULL	Tier 2	Supermarket Type1	4710.535
11	FDY07	11.8	Low Fat	0	Fruits and Vegetables	45.5402	OUT049	1999	Medium	Tier 1	Supermarket Type1	1516.0266
12	FDA03	18.5	Regular	0.045463773	Dairy	144.1102	OUT046	1997	Small	Tier 1	Supermarket Type1	2187.153
13	FDX32	15.1	Regular	0.1000135	Fruits and Vegetables	145.4786	OUT049	1999	Medium	Tier 1	Supermarket Type1	1589.2646
4	FDS46	17.6	Regular	0.047257328	Snack Foods	119.6782	OUT046	1997	Small	Tier 1	Supermarket Type1	2145.2076
5	FDF32	16.35	Low Fat	0.0680243	Fruits and Vegetables	196.4426	OUT013	1987	High	Tier 3	Supermarket Type1	1977.426
6	FDP49	9	Regular	0.069088961	Breakfast	56.3614	OUT046	1997	Small	Tier 1	Supermarket Type1	1547.3192
7	NCB/12	11 0	Low Fot	0.000506051	Hoalth and Hygions	115 2/02	OLITA19	2000	Modium	Tior 2	Suparmarket Type?	1601 0000

--Duplicate Table with Structure and Data
SELECT *
INTO blinkit_grocery_cpy
FROM [BlinkIT Grocery Project];

Task:

1. Handle Missing Values

Item_Weight:

Action:

SELECT

COUNT(*) AS Total Rows,

SUM(CASE WHEN Item_Weight IS NULL THEN 1 ELSE 0 END) AS Missing_Item_Weight,

SUM(CASE WHEN Outlet_Size IS NULL THEN 1 ELSE 0 END) AS Missing_Outlet_Size

FROM

blinkit_grocery_cpy;

Results Messages

	Total_Rows	Missing_Item_Weight	Missing_Outlet_Size
1	8523	1463	2410

--- Create a Temporary Table with Average Weights:

SELECT

Item_Identifier,

AVG(Item_Weight) AS Avg_Item_Weight

INTO Temp_Item_Weights

FROM blinkit_grocery_cpy

WHERE Item_Weight IS NOT NULL

GROUP BY Item_Identifier;

--- Update Missing Item_Weight Values Using a JOIN

UPDATE blinkit_grocery_cpy

SET blinkit_grocery_cpy.ltem_Weight = t.Avg_ltem_Weight

FROM blinkit_grocery_cpy

JOIN Temp_Item_Weights t

ON blinkit grocery cpy. Item Identifier = t. Item Identifier

WHERE blinkit_grocery_cpy.Item_Weight IS NULL;

Check NULL

-- Find the overall mode

SELECT TOP 1 Item_Weight, COUNT(*) AS Frequency

FROM blinkit_grocery_cpy

WHERE Item_Weight IS NOT NULL

GROUP BY Item_Weight

ORDER BY Frequency DESC; Result 12.15 Frequent 103

-- Update missing weights

UPDATE blinkit_grocery_cpy

SET Item Weight = 12.15

WHERE Item_Weight IS NULL;

Total_Rows Missing_Item_Weight Missing_Outlet_Size 1 8523 0 2410	Results Messages						
				Missing_Outlet_Size			
	1	8523	0	2410			

Outlet_Size:

Action: Impute missing values based on Outlet_Type and Outlet_Location_Type, as these attributes likely correlate with outlet size.

---Check how Outlet_Size relates to Outlet_Type and Outlet_Location_Type

SELECT

Outlet_Type,

Outlet_Location_Type,

Outlet_Size,

COUNT(*) AS Frequency

FROM blinkit_grocery_cpy

GROUP BY Outlet_Type, Outlet_Location_Type, Outlet_Size

ORDER BY Outlet_Type, Outlet_Location_Type, Frequency DESC;

	Outlet_Type	Outlet_Location_Type	Outlet_Size	Frequency
1	Grocery Store	Tier 1	Small	528
2	Grocery Store	Tier 3	NULL	555
3	Supermarket Type1	Tier 1	Medium	930
4	Supermarket Type1	Tier 1	Small	930
5	Supermarket Type1	Tier 2	NULL	1855
6	Supermarket Type1	Tier 2	Small	930
7	Supermarket Type1	Tier 3	High	932
8	Supermarket Type2	Tier 3	Medium	928
9	Supermarket Type3	Tier 3	Medium	935

```
---Find the most frequent Outlet_Size for each combination of Outlet_Location_Type and Outlet_Type
WITH ModeSize AS (
 SELECT
   Outlet_Location_Type,
   Outlet_Type,
   Outlet_Size,
   COUNT(*) AS Frequency,
   ROW_NUMBER() OVER (PARTITION BY Outlet_Location_Type, Outlet_Type ORDER BY COUNT(*) DESC) AS Rank
 FROM blinkit_grocery_cpy
 WHERE Outlet_Size IS NOT NULL
 GROUP BY Outlet_Location_Type, Outlet_Type, Outlet_Size
SELECT
 Outlet_Location_Type,
 Outlet_Type,
 Outlet_Size AS ImputedSize
FROM ModeSize
WHERE Rank = 1;
 Results Messages
                                   Outlet_Type
        Outlet_Location_Type
                                                             ImputedSize
         Tier 1
                                    Grocery Store
 1
                                                             Small
 2
         Tier 1
                                    Supermarket Type1
                                                             Small
                                    Supermarket Type1
 3
         Tier 2
                                                             Small
 4
                                    Supermarket Type1
         Tier 3
                                                             High
 5
                                    Supermarket Type2 | Medium
         Tier 3
 6
         Tier 3
                                    Supermarket Type3 | Medium
```

```
---Create a Temporary Table to Store the Modes
```

```
CREATE TABLE #ModeSize (
  Outlet_Location_Type NVARCHAR(50),
  Outlet_Type NVARCHAR(50),
  ImputedSize NVARCHAR(50)
);
-- Insert mode values into the temporary table
INSERT INTO #ModeSize (Outlet_Location_Type, Outlet_Type, ImputedSize)
SELECT
  Outlet_Location_Type,
  Outlet_Type,
  Outlet_Size AS ImputedSize
FROM (
  SELECT
    Outlet_Location_Type,
    Outlet_Type,
    Outlet_Size,
    COUNT(*) AS Frequency,
    ROW_NUMBER() OVER (PARTITION BY Outlet_Location_Type, Outlet_Type ORDER BY COUNT(*) DESC) AS Rank
  FROM blinkit_grocery_cpy
  WHERE Outlet_Size IS NOT NULL
  GROUP BY Outlet_Location_Type, Outlet_Type, Outlet_Size
) AS RankedData
WHERE Rank = 1;
select *
```

select *

from #ModeSize

∭ F	Results		
	Outlet_Location_Type	Outlet_Type	ImputedSize
1	Tier 1	Grocery Store	Small
2	Tier 1	Supermarket Type1	Small
3	Tier 2	Supermarket Type1	Small
4	Tier 3	Supermarket Type1	High
5	Tier 3	Supermarket Type2	Medium
6	Tier 3	Supermarket Type3	Medium

-- Update the Outlet_Size column based on the mode stored in the temporary table

UPDATE blinkit_grocery_cpy
SET Outlet_Size = (
 SELECT ImputedSize

FROM #ModeSize

 $WHERE\ \#ModeSize.Outlet_Location_Type = blinkit_grocery_cpy.Outlet_Location_Type$

AND #ModeSize.Outlet_Type = blinkit_grocery_cpy.Outlet_Type

WHERE Outlet_Size IS NULL;

--Verify Null Values After Update

SELECT

Outlet_Size,

SUM(CASE WHEN Outlet_Size IS NULL THEN 1 ELSE 0 END) AS NullCount

FROM blinkit_grocery_cpy

GROUP BY Outlet_Size

---Manually Update Remaining NULL Values: Use an UPDATE statement to fill in the remaining NULL values with the most appropriate value based on the business context or overall dataset trends.

UPDATE blinkit_grocery_cpy

SET Outlet_Size = 'Small' -- Replace 'Small' with the desired value

WHERE Outlet_Type = 'Grocery Store'

AND Outlet_Location_Type = 'Tier 3'

AND Outlet_Size IS NULL;

2. Standardize Categorical Data

Item_Fat_Content:

Inconsistent labeling (Low Fat, low fat, LF).

Action: Standardize values to Low Fat and Regular.

---Steps to Standardize Item_Fat_Content(Low Fat,Regular)

SELECT DISTINCT Item_Fat_Content, COUNT(*) AS Frequency FROM blinkit_grocery_cpy

GROUP BY Item_Fat_Content;

UPDATE blinkit_grocery_cpy

SET Item_Fat_Content = CASE

WHEN Item_Fat_Content IN ('low fat', 'LF') THEN 'Low Fat' WHEN Item_Fat_Content IN ('reg', 'Regular') THEN 'Regular' ELSE Item_Fat_Content

END;

Results Messages					
	Item_Fat_Content	Frequency			
1	Low Fat	5517			
2	Regular	3006			

3. Remove Outliers

Item_Visibility:

Minimum visibility is 0, which is likely unrealistic.

Action:

---Calculate Mean of Non-Zero

SELECT COUNT(*) AS ZeroCount

FROM blinkit_grocery_cpy

WHERE Item_Visibility = 0;

ZeroCount

1 526

SELECT AVG(Item_Visibility) AS MeanVisibility

FROM blinkit_grocery_cpy

WHERE Item_Visibility > 0;

■ Messages

Msg 8117, Level 16, State 1, Line 140 Operand data type nvarchar is invalid for avg operator.

SELECT COLUMN_NAME, DATA_TYPE

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_NAME = 'blinkit_grocery_cpy' AND COLUMN_NAME = 'Item_Visibility';

ALTER TABLE blinkit_grocery_cpy

ALTER COLUMN Item_Visibility FLOAT;

Repeat Step

UPDATE blinkit_grocery_cpy

SET Item_Visibility = 0.0704818408547522

WHERE Item_Visibility = 0;

4. Create Derived Fields

Add calculated fields for meaningful analysis:

Outlet_Age: Calculate the age of each outlet using the current year (e.g., 2024 - Outlet_Establishment_Year). Action:

--- Derived Fields

-- Add Outlet_Age Column

ALTER TABLE blinkit_grocery_cpy

ADD Outlet_Age INT;

Select Outlet_Age

From blinkit_grocery_cpy

-- Calculate Outlet_Age

UPDATE blinkit_grocery_cpy

SET Outlet_Age = YEAR(GETDATE()) - Outlet_Establishment_Year;

	Outlet_Age
1	26
2	16
3	26
4	27

Sales_Per_Item: Divide Item_Outlet_Sales by Item_MRP to calculate relative performance.

-- Add Sales_Per_Item column

ALTER TABLE blinkit_grocery_cpy

ADD Sales_Per_Item FLOAT;

-- Calculate Sales_Per_Item

UPDATE blinkit_grocery_cpy

SET Sales_Per_Item = Item_Outlet_Sales / Item_MRP;

---Verify the Update

Select Sales_Per_Item

From blinkit_grocery_cpy

5. Normalize Numerical Data

Item MRP:

Wide range of values; consider creating price tiers (e.g., Low, Medium, High).

Action:

---Derived Fields

ALTER TABLE blinkit_grocery_cpy

ADD Price_Tier NVARCHAR(20);

--- Calculate Quartiles

---First, create variables or temporary values for Q1 and Q3 using PERCENTILE_CONT.

-- Step 1: Declare Variables

DECLARE @Q1 FLOAT, @Q3 FLOAT;

-- Calculate and assign Quartiles to variables

SELECT

@Q1 = PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY Item_MRP) OVER (), @Q3 = PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY Item_MRP) OVER ()

FROM blinkit_grocery_cpy;

-- Verify the values of Q1 and Q3

SELECT @Q1 AS FirstQuartile, @Q3 AS ThirdQuartile;

-- Step 2: Update Price_Tier

UPDATE blinkit_grocery_cpy

SET Price_Tier = CASE

WHEN Item_MRP <= @Q1 THEN 'Low'

WHEN Item_MRP > @Q1 AND Item_MRP <= @Q3 THEN 'Medium'

ELSE 'High'

END;

-- Step 3: Update verification

SELECT Item_MRP, Price_Tier FROM blinkit_grocery_cpy;

	Item_MRP	Price_Tier
1	249.8092	High
2	48.2692	Low
3	141.618	Medium
4	182.095	Medium
5	53.8614	Low

7. Add Descriptive Labels

---Add Descriptive Labels Using CASE

ALTER TABLE blinkit_grocery_cpy

ADD Outlet_Type_Description NVARCHAR(50);

UPDATE blinkit_grocery_cpy

SET Outlet_Type_Description = CASE

WHEN Outlet_Type = 'Grocery Store' THEN 'Small Local Grocery Store'

WHEN Outlet_Type = 'Supermarket Type1' THEN 'Supermarket Type 1'
WHEN Outlet_Type = 'Supermarket Type2' THEN 'Supermarket Type 2'

WHEN Outlet_Type = 'Supermarket Type3' THEN 'Supermarket Type 3'

ELSE 'Unknown'

END;

---Verify the Update

SELECT Outlet_Type, Outlet_Type_Description, COUNT(*) AS Frequency FROM blinkit_grocery_cpy

GROUP BY Outlet_Type, Outlet_Type_Description;

₩ F	Results 📑 Messag	es	
	Outlet_Type	Outlet_Type_Description	Frequency
1	Grocery Store	Small Local Grocery Store	1083
2	Supermarket Type1	Supermarket Type 1	5577
3	Supermarket Type2	Supermarket Type 2	928
4	Supermarket Type3	Supermarket Type 3	935

---Repeat for Other Categorical Columns

ALTER TABLE blinkit grocery cpy

ADD Outlet_Location_Description NVARCHAR(50);

UPDATE blinkit_grocery_cpy
SET Outlet_Location_Description = CASE
WHEN Outlet_Location_Type = 'Tier 1' THEN 'Urban Area'
WHEN Outlet_Location_Type = 'Tier 2' THEN 'Suburban Area'
WHEN Outlet_Location_Type = 'Tier 3' THEN 'Rural Area'
ELSE 'Unknown'
END;

---Verify the Update

SELECT Outlet_Type,Outlet_Location_Type,Outlet_Location_Description, COUNT(*) AS Frequency FROM blinkit_grocery_cpy

GROUP BY Outlet_Type, Outlet_Location_Type, Outlet_Location_Description;

	Results Messages						
	Outlet_Type	Outlet_Location_Type	Outlet_Location_Description	Frequency			
1	Supermarket Type1	Tier 2	Suburban Area	2785			
2	Grocery Store	Tier 3	Rural Area	555			
3	Supermarket Type1	Tier 1	Urban Area	1860			
4	Supermarket Type1	Tier 3	Rural Area	932			
5	Grocery Store	Tier 1	Urban Area	528			
6	Supermarket Type2	Tier 3	Rural Area	928			
7	Supermarket Type3	Tier 3	Rural Area	935			

8. Verify Unique Identifiers

Item_Identifier:

Ensure each Item_Identifier is unique and not reused inappropriately.

Action: Investigate and clean if inconsistencies are found.

---Check for Duplicates

SELECT

Item_Identifier,
COUNT(*) AS Frequency
FROM blinkit_grocery_cpy
GROUP BY Item_Identifier

	AVING COUNT(*) > 1; Results Messages					
	Item_Identifier	Frequency				
614	FDV44	6				
615	NCK18	7				
616	FDG16	6				
617	FDN31	4				
618	FDA31	4				
619	FDU26	7				
620	NCJ30	9				
621	FDR14	5				
622	FDW34	7				
623	DR.J13 ate Duplicates	6				

SELECT *

FROM blinkit_grocery_cpy
WHERE Item_Identifier IN (
 SELECT Item_Identifier
 FROM blinkit_grocery_cpy
 GROUP BY Item_Identifier
 HAVING COUNT(*) > 1

ORDER BY Item_Identifier;

Item_Identif	er Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales	Outlet_Age	Sales_Per_Item	Price_Tier	Outlet_Type_Description	Outlet_Location_Descriptio
DRA12	11.6000003814697	Low Fat	0.0411775037646294	Soft Drinks	140.315399169922	OUT017	2007	Small	Tier 2	Supermarket Type1	2552.67724609375	18	18.1924240760094	Medium	Supermarket Type 1	Suburban Area
DRA12	11.6000003814697	Low Fat	0.0704818408547522	Soft Drinks	141.61540222168	OUT045	2002	Small	Tier 2	Supermarket Type1	3829.01586914063	23	27.0381315102069	Medium	Supermarket Type 1	Suburban Area
DRA12	11.6000003814697	Low Fat	0.0409118235111237	Soft Drinks	142.315399169922	OUT013	1987	High	Tier 3	Supermarket Type1	2552.67724609375	38	17.9367606104656	Medium	Supermarket Type 1	Rural Area
DRA12	11.6000003814697	Low Fat	0.0704818408547522	Soft Drinks	141.915405273438	OUT035	2004	Small	Tier 2	Supermarket Type1	992.707824707031	21	6.99506739803418	Medium	Supermarket Type 1	Suburban Area
DRA12	11.6000003814697	Low Fat	0.041112694889307	Soft Drinks	142.015396118164	OUT018	2009	Medium	Tier 3	Supermarket Type2	850.892395019531	16	5.99155034086266	Medium	Supermarket Type 2	Rural Area
DRA12	11.6000003814697	Low Fat	0.0685350373387337	Soft Drinks	143.015396118164	OUT010	1998	Small	Tier 3	Grocery Store	283.630798339844	27	1.98321863266734	Medium	Small Local Grocery Store	Rural Area
DRA24	19.3500003814697	Regular	0.0398950092494488	Soft Drinks	162.486801147461	OUT013	1987	High	Tier 3	Supermarket Type1	4422.24365234375	38	27.2160176772171	Medium	Supermarket Type 1	Rural Area
DRA24	19.3500003814697	Regular	0.0399903133511543	Soft Drinks	165.086807250977	OUT049	1999	Medium	Tier 1	Supermarket Type1	982.720825195313	26	5.95275201913204	Medium	Supermarket Type 1	Urban Area

SELECT

Item_Identifier,
MAX(Item_Weight) AS Item_Weight,
MAX(Item_MRP) AS Item_MRP
FROM blinkit_grocery_cpy
GROUP BY Item_Identifier;

Results Messages

		Jougus	
	ltem_ldentifier	ltem_Weight	ltem_MRP
1	FDH19	19.35	175.4738
2	FDX20	7.365	228.372
3	NCO07	9.06	213.756
4	FDH20	16.1	98.441
5	NCP53	14.75	238.6906
6	FDX32	15 1	146 2786

9. Handle Data Type Consistency Ensure all columns have appropriate data types:

---Verify Current Data Types

SELECT COLUMN_NAME, DATA_TYPE FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'blinkit_grocery_cpy';

Results Messages				
	COLUMN_NAME	DATA_TYPE		
1	ltem_ldentifier	nvarchar		
2	ltem_Weight	float		
3	Item_Fat_Content	nvarchar		
4	Item_Visibility	float		
5	ltem_Type	nvarchar		
6	ltem_MRP	float		
7	Outlet_Identifier	nvarchar		
8	Outlet_Establishment_Year	int		
9	Outlet_Size	nvarchar		
10	Outlet_Location_Type	nvarchar		
11	Outlet_Type	nvarchar		
12	Item_Outlet_Sales	float		
13	Outlet_Age	int		
14	Price_Tier	nvarchar		
15	Sales_Per_Item	float		

---Convert Outlet_Establishment_Year to Categorical

ALTER TABLE blinkit_grocery_cpy
ALTER COLUMN Outlet_Establishment_Year NVARCHAR(10);

F	Results Messages			
	COLUMN_NAME	DATA_TYPE		
1	ltem_ldentifier	nvarchar		
2	ltem_Weight	float		
3	Item_Fat_Content	nvarchar		
4	Item_Visibility	float		
5	ltem_Type	nvarchar		
6	ltem_MRP	float		
7	Outlet_Identifier	nvarchar		
8	Outlet_Establishment_Year	nvarchar		
9	Outlet_Size	nvarchar		
10	Outlet_Location_Type	nvarchar		
11	Outlet_Type	nvarchar		
12	Item_Outlet_Sales	float		
13	Outlet_Age	int		
14	Price_Tier	nvarchar		
15	Sales_Per_Item	float		

---Add column to store the Outlet Age Category

SELECT

MIN(Outlet_Age) AS Lowest_Age, MAX(Outlet_Age) AS Highest_Age FROM blinkit_grocery_cpy;

ALTER TABLE blinkit_grocery_cpy ADD Outlet_Age_Category NVARCHAR(20);

DECLARE @CurrentYear INT = YEAR(GETDATE());

UPDATE blinkit_grocery_cpy SET Outlet_Age_Category = CASE WHEN (@CurrentYear - Outlet_Establishment_Year) <= 25 THEN 'New' WHEN (@CurrentYear - Outlet_Establishment_Year) BETWEEN 26 AND 35 THEN 'Moderate' ELSE 'Old' END;

---Verify the Update

SELECT Outlet_Establishment_Year,

Outlet_Age,

Outlet_Age_Category

FROM blinkit_grocery_cpy

	R BY Outlet_Age; esults		
	Outlet_Establishment_Year	Outlet_Age	Outlet_Age_Category
1	2009	16	New
2	2009	16	New
3	2009	16	New
4	2009	16	New
5	2009	16	New
6 _{Clic}	2009 k to select the whole re 2009	16	New
7	2009 to select the whole re	16	New
8	2009	16	New
9	2009	16	New
10	2009	16	New
11	2009	16	New

Ensure Item_Visibility, Item_Weight, and Item_MRP are numerical for calculations.

-----Validate Data Consistency

SELECT

SUM(CASE WHEN Item_Visibility IS NULL THEN 1 ELSE 0 END) AS Null_Item_Visibility, SUM(CASE WHEN Item_Weight IS NULL THEN 1 ELSE 0 END) AS Null_Item_Weight, SUM(CASE WHEN Item_MRP IS NULL THEN 1 ELSE 0 END) AS Null_Item_MRP

Data Dictionary (After Cleaning)

Column Name	Description
Item_Identifier	Unique identifier for each item in the dataset.
Item_Weight	Weight of the product (in kilograms), rounded to two decimal places.
Item_Fat_Content	Indicates the fat content of the item (e.g., Low Fat, Regular).
Item_Visibility	The percentage of total display area allocated to this item in a store.
Item_Type	Categorical variable specifying the broad category of the item (e.g., Dairy, Snacks).
Item_MRP	Maximum Retail Price (MRP) of the item in the store.
Outlet_Identifier	Unique identifier for each outlet/store.
Outlet_Establishment_Year	The year in which the outlet was established.
Outlet_Size	Categorical variable specifying the size of the outlet (e.g., Small, Medium, Large).
Outlet_Location_Type	Specifies the type of location where the outlet is situated (e.g., Tier 1, Tier 2).
Outlet_Type	The category of the outlet (e.g., Grocery Store, Supermarket).
Item_Outlet_Sales	Sales of the item in the particular outlet.
Outlet_Age	Calculated age of the outlet, derived from 2023 – Outlet_Establishment_Year.
Price_Tier	Categorical variable dividing items into price ranges (e.g., Low, Medium, High).
Sales_Per_Item	Average sales per item, calculated as Item_Outlet_Sales / Item_Weight.
Outlet_Age_Category	Categorizes Outlet_Age into groups (e.g., "Low", "Moderate" "High").
Outlet_Type_Description	Detailed description of the outlet type
Outlet_Location_Description	Description of the outlet location type (e.g., "Tier 1 Urban Area").

Download: SQL Query

Download: Clean Data

If you have any further questions or would like to explore opportunities to work together, please don't hesitate to reach out to me.

THANK YOU