The gamma rhythms

Instructor: Mark Kramer

Today

Models of the gamma rhythms

30-80 Hz

functions

- cell-assembly formation / synchronization

[Womelsdorf et al. "Modulation of Neuronal Interactions Through Neuronal Synchronization." Science, 2007]
[Fernández-Ruiz et al., "Gamma Rhythm Communication between Entorhinal Cortex and Dentate Gyrus Neuronal Assemblies.", Science, 2021]
[Canolty et al., "High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex.", Science, 2006]

- memory

[Lisman & Idiart. "Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles." Science, 1995] [Lundqvist et al., "Gamma and Beta Bursts Underlie Working Memory." Neuron, 2016]

- plasticity

[Hadler et al, "Gamma Oscillation Plasticity Is Mediated via Parvalbumin Interneurons." Science Advances, 2024]

Mechanisms (via experimental models)

apply drugs (e.g., carbachol to increase excitability)

Facts

Block GABA_A

→ eliminate gamma

Block AMPA

→ eliminate gamma

involves ex & inh cells + synaptic interactions

Mechanisms (via experimental models)

More Facts

- rhythm frequency depends on GABA_A kinetics (e.g., modulate with sedatives to alter period)
- pyramidal (ex) cells can fire sparsely
- basket (inh) cells fire on most cycles

Normal

[Whittington et al., Inhibition-Based Rhythms, Int J Psychophysiol, 2000]

Mechanisms (via experimental models)

pyramidal (ex) cells don't spike

Interneuron Interneuron 100 ms

pyramidal (ex) cells sometimes spike Excitatory neuron

Models

Three types

Interneuron Network Gamma

Interneuron Network Gamma

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

<u>Model</u>

1 cell

Load with standard HH currents

$$\frac{dV}{dt} = I_{Na} + I_K + I_L + I_{inj}$$

To mimic (1) make I_{ini} large \rightarrow depolarize neuron \rightarrow fast spiking

Interneuron Network Gamma

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

To mimic (1)

make I_{inj} large \rightarrow depolarize neuron \rightarrow fast spiking

$$\underline{\mathsf{Ex.}}\ \mathsf{I}_{\mathsf{inj}} = 30$$

- Q. What sets the timescale of spiking?
- A. Dynamics of intrinsic currents (Na, K)

Interneuron Network Gamma

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

To mimic (2)

add an inhibitory synapse

autapse (presynaptic neuron = postsynaptic neuron)

Q. Realistic?

$$\frac{dV}{dt} = I_{Na} + I_K + I_L + I_{inj} + I_{synapse}$$

Interneuron Network Gamma

$$\frac{dV}{dt} = I_{Na} + I_K + I_L + I_{inj} + I_{synapse}$$

Synaptic current

$$I_{synapse} = g_I s_I (E_I - V)$$

maximal conductance neuron voltage inh. synapse gate equilibrium voltage for inh. synapse (-80 mV)

Experimental observations

- (1) Excitation (driven cells)
- (2) $GABA_A$ critical
- (3) Altering GABA_A kinetics changes frequency

Synaptic gate dynamics

$$\frac{ds_I}{dt} = \alpha_I[V](1-s_I) - \beta_I[V]s_I$$
 forward rate fxn backward rate fxn

$$\beta_I[V] = \beta_I = \frac{1}{\tau_d}$$

constant

decay time $\approx 10 \text{ ms}$

Interneuron Network Gamma

$$\frac{ds_I}{dt} = \alpha_I[V](1 - s_I) - \beta_I[V]s_I$$

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

Q. What happens?

- $\alpha_I[V] \rightarrow 2$
- $s_I \rightarrow 1$ (open)

• Chlorine (Cl $^{-}$) flows in \rightarrow hyperpolarize cell (push to -80 mV)

Note: $[Cl^-]_{out} >> [Cl^-]_{in}$

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

Interneuron Network Gamma

Model

$$\begin{split} C \; \frac{dV}{dt} &= I_{\mathrm{input}}(t) - \bar{g}_{\mathrm{K}} n^4 (V - V_{\mathrm{K}}) - \bar{g}_{\mathrm{Na}} m^3 h(V - V_{\mathrm{Na}}) - \bar{g}_{\mathrm{L}} (V - V_{\mathrm{L}}) \boxed{-g_I \, s_I (V - E_I)} \\ \frac{dn}{dt} &= -\frac{n - n_{\infty}(V)}{\tau_n(V)} \\ \frac{dm}{dt} &= -\frac{m - m_{\infty}(V)}{\tau_m(V)} \\ \frac{dh}{dt} &= -\frac{h - h_{\infty}(V)}{\tau_h(V)} \end{split}$$

$$\frac{ds_I}{dt} = \alpha_I[V](1 - s_I) - \beta_I[V]s_I$$

5 variables5 differential equations

Interneuron Network Gamma

Experimental observations

- (1) Excitation (driven cells)
- (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency

Q. How does it work?

Python

Pyramidal Interneuron Network Gamma

Using ING

Experimental observations

- (1) Excitation (driven cells)
- ✓ (2) GABA_A critical
- (3) Altering GABA_A kinetics changes frequency
- X (4) AMPA critical

New model

+ include excitatory (pyramidal) cell

Idea: cells collaborate to produce gamma

Connect cells with synapses

Build the model: HH + synapses

Include synapses

Synaptic current

$$\frac{dV_I}{dt} = I_{Na} + I_K + I_L + I_{inj} + I_{synapse P \to I}$$

I-cell voltage

Synaptic gate dynamics

$$= g_P s_P (E_P - V_I)$$

$$\frac{ds_P}{dt} = \alpha_P [V_P] (1 - s_P) - \beta_P [V_P] s_P$$

forward rate fxn, **pre-synaptic** V

 $\beta_P[V_P] = \beta_P = \frac{1}{\tau_d}$ constant

decay time $\approx 2 \text{ ms}$

backward rate fxn

$$I_{synapse\,P o I} = g_P\,s_P\,(E_P-V_I)$$

maximal conductance ex. synapse gate post-synaptic cell

equilibrium voltage for ex. synapse (0 mV)

Note: faster than inh. synapse

Include synapses

$$\frac{dV_I}{dt} = I_{Na} + I_K + I_L + I_{inj} + I_{synapse P \to I}$$

$$\frac{ds_P}{dt} = \alpha_P[V_P](1 - s_P) - \beta_P[V_P]s_P$$

Q. What happens?

- P-cell spikes $(V_P > 0)$
- $\alpha_P[V_P] \rightarrow 5$
- $s_P \rightarrow 1$ (open)

charge (Na⁺) flows in → depolarize I-cell (push to 0 mV)
 Note: [Na⁺]_{out} >> [Na⁺]_{in}

Include synapses

$$\frac{dV_P}{dt} = I_{Na} + I_K + I_L + I_{inj} + I_{synapse I \to P}$$

P-cell voltage

Synaptic gate dynamics

$$I_{synapse\,I
ightarrow P} = g_I\,s_I\,(E_I - V_P)$$

maximal conductance P-cell voltage post-synaptic cell equilibrium voltage for inh. synapse (-80 mV)

$$\frac{ds_I}{dt} = \alpha_I[V_I](1 - s_I) - \beta_I[V_I]s_I$$

forward rate fxn, **pre-synaptic** V backward rate fxn

$$\beta_I[V] = \beta_I = \frac{1}{\tau_d}$$

constant

decay time $\approx 10 \text{ ms}$

Put it all together

10 variables

inh. synaptic input

$$\frac{dV_{P}}{dt} = I_{Na} + I_{K} + I_{\ell} + I_{inj,F} + g_{I} S_{I}(E_{I} - V_{P})$$

$$\frac{dm_{D}}{dt} = \frac{dh_{P}}{dt} = \frac{dh_{P}}{dt} = A_{P} V_{P} (I - S_{P}) - \beta_{P} [V_{P}] S_{P} \quad (ex. gate dynamics).$$

$$\frac{dV_{I}}{dt} = I_{Na} + I_{K} + I_{\ell} + I_{inj,I} + g_{P} S_{P} (E_{P} - V_{I})$$

$$\frac{dm_{I}}{dt} = \frac{dm_{I}}{dt} = \frac{dh_{I}}{dt} = A_{I} [V_{I}](I - S_{I}) - \beta_{I} [V_{I}] S_{I} \quad (inh. gate dynamics)$$

$$\frac{dS_{I}}{dt} = A_{I} [V_{I}](I - S_{I}) - \beta_{I} [V_{I}] S_{I} \quad (inh. gate dynamics)$$

Q. How does this generate a gamma rhythm?

Assume P-cell has I_{ini,P} big enough to spike repeatedly in isolation

t=0 P-cell spikes \rightarrow excitation to I-cell \rightarrow I-cell spikes

t≈0 I-cell spikes \rightarrow inhibition to P-cell

t=25 P-cell recovers → P-cell spikes

Repeat ...

Q. Consistent with experimental observations?

Experimental observations

- ? (1) Excitation (driven cells)
- ? (2) GABA_A critical
- ? (3) Altering GABA_A kinetics changes frequency
- ? (4) AMPA critical

Python Homework

Sparse Pyramidal Interneuron Network Gamma

Idea: update the PING model to include a population of P&I cells.

Ex. 80 P cells & 20 I cells

Each a HH model

P1

P2

P3

$$C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{I}} C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{K}} C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{K}} n^{4}(V - V_{\text{K}}) - \bar{g}_{\text{Na}} m^{3}h(V - V_{\text{Na}}) - \bar{g}_{\text{L}}(V - V_{\text{L}})$$

$$\frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_{n}(V)} \qquad \frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_{n}(V)} \qquad \frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_{n}(V)}$$

$$\frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_{m}(V)} \qquad \frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_{m}(V)}$$

$$\frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_{h}(V)} \qquad \frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_{h}(V)}$$

$$\frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_{h}(V)}$$

400 differential equations

Connect with synapses

Each P \rightarrow all I (with ex. synapses)

Each I \rightarrow all P (with inh. synapses)

Then (for P1)

$$C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{\tiny K}} n^4 (V - V_{\text{\tiny K}}) - \bar{g}_{\text{\tiny Na}} m^3 h(V - V_{\text{\tiny Na}}) - \bar{g}_{\text{\tiny L}}(V - V_{\text{\tiny L}}) \\ + I_{syn \, I1 \rightarrow P1} + I_{syn \, I2 \rightarrow P1} + \dots \\ \frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_n(V)} \\ \frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_m(V)} \\ \frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_h(V)} \\ \frac{ds_{I1}}{dt} = \dots, \frac{ds_{I2}}{dt} = \dots, \frac{ds_{I3}}{dt} = \dots$$

Q. How will the model work?

Idea:

- Give P cells enough depolarizing input to spike at high rate in isolation.
- Include noise in dynamics.

P-cell spikes.

Time between spikes varies due to noise.

Make synapses strong

Note: a different P-cell can spike on each cycle

Plot V for a P-cell

Each P-cell fires sparsely ... "sparse PING" Match experimental observation

Cost: more complexity.