

Mini Workshop on High Performance Computing in Science and Engineering

Taller

Conociendo la Computación Cuántica

Noviembre de 2022

Agenda del taller

¿Qué onda con la Computación Cuántica?

Conozcamos sobre esta área, sus aplicaciones y retos

01

03

Manipulemos al qubit

Manipularemos al qubit con el uso de los principales operadores

La unidad básica: el Qubit

Definiremos a la unidad básica en la computación cuántica y de qué se conforma

02

04

Circuitos Cuánticos

Pongamos a trabajar los qubits y las compuertas

¿Qué onda con la Computación Cuántica?

Conozcamos sobre esta área, sus aplicaciones y retos

La Mecánica Cuántica

También llamada Física Cuántica, permite describir el comportamiento de los objetos extremadamente pequeños (átomos, electrones, protones y más).

Desafortunadamente, las teóricas de la Física Clásica no siempre cumplen en el terreno de la cuántica

¿Qué puede pasar en el mundo cuántico?

Superposición

Los objetos pueden estar en múltiples estados

Tunneling

Los objetos pueden pasar a través de barreras físicas

Teletransportación

La información puede trasladarse de un lugar a otro de forma instantánea

Algunas de las principales propiedades en Computación Cuántica

Interferencia

Entrelazamiento

Con estas propiedades se incrementan las ventajas computacionales de las computadoras cuánticas frente a las clásicas, dando solución a varios problemas que la tecnología actual no ha podido resolver.

Ley de Moore

Gordon Moore, cofundador de Intel, predijo hace 50 años que se podrían duplicar la cantidad de transistores en los procesadores cada 2 años.

Fuente: https://www.lemmingatwork.com/inversiones/criptomonedas/ley-de-moore/

Ley de Moore

Esto representa que el transistor debe ser cada vez más pequeño, pudiendo ser de hasta 1nm actualmente.

Fuente: https://hardzone.es/noticias/procesadores/tsmc-1-nm-transistores/

El problema con la Ley de Moore

"En términos de tamaño [de transistores] puede verse que nos aproximamos al tamaño de los átomos, lo cual es una barrera fundamental, pero pasarán dos o tres generaciones antes de que lleguemos tan lejos; si bien eso es lo más lejos que conseguiremos llegar jamás. Tenemos por delante otros 10 ó 20 años antes de que alcancemos un límite fundamental".

Gordon Moore

La revolución cuántica

1a Revolución

Surge en el siglo XX cuando los científicos empezaron a tratar de describir de forma más exacta al universo llegando a describir a la física en menor escala.

La revolución cuántica

2a Revolución

Se enfoca en desarrollar nuevas tecnologías que permitan controlar sistemas cuánticos de manera individual

Ventajas de la Computación Cuántica sobre la Clásica

Optimización

Aquellos problemas que requieren de mucha búsqueda o testeo

Encriptación

Problemas que requieren seguridad de encriptación

Naturalización

Aquellos problemas que involucran simulación de sistemas de mecánica cuántica

Áreas de Aplicación

Finanzas

Biología

Aeroespacial

Ciberseguridad

Química

Robótica y ML

02 La unidad básica: el Qubit

Definiremos a la unidad básica en la computación cuántica y de qué se conforma

¿Cómo se constituye la computación clásica?

Aplicaciones

Algoritmos clásicos y protocolos

Circuitos Clásicos

Compuertas clásicas

Bits clásicos

ют	D- >0-		ES	
MD	g-D-œ	p-D-∞	8-D-8	a-D-a
IAND	80-00-	B-Do-	B-Do-	130-Do-
OR E		80-Deu	0 ————————————————————————————————————	S
IOR B		00- 00-	E	B- D-
OR ®		2 0 m	0- O-	8-D-8

0	1
0	1

¿Cómo se constituye la computación cuántica?

Aplicaciones

Algoritmos cuánticos y protocolos

Circuitos Cuánticos

Compuertas Cuánticas

Qubits

Circuitos cuánticas

Secuencia o combinación de compuertas cuánticas.

La construcción de un chip cuántico es bastante compleja más no imposible.

Compuertas cuánticas

Si lo que se desea es manipular los qubits, se puede hacer uso de los operadores o compuertas cuánticas.

Existe una variedad de ellas que nos permite cambiarlas según se adapte al algoritmo.

Quantum Bits - "QUBITS"

Un **qubit** es la unidad fundamental de información de una computadora cuántica.

Pueden tener una combinación de 2 estados (en contraste con el bit clásico definido solamente como 0 o 1)

Quantum Bits - "QUBITS"

Un **qubit** se puede estar en el estado O ó 1, como un bit clásico O como la combinación de estos estados, mejor conocido como superposición:

Quantum Bits - "QUBITS"

Un **qubit** puede tener las propiedades de una onda o una partícula. Una superposición se puede visualizar como la combinación de las ondas que representan el estado O y 1

¡Manos a la práctica!

Representación del Qubit

 $|0\rangle$ $|1\rangle$

10)

Notación de Ket

Esfera de Bloch

Representación de Ket

Cualquier estado puede ser representado como una **combinación lineal** de |0> y |1>, las cuales son consideradas como las **bases computacionales**.

Si un estado está en superposición se puede escribir como:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \qquad |\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Donde α y β son **números complejos** escritos de la forma z=x+iy, donde $i=\sqrt{-1}$

La probabilidad del qubit

Cuando un qubit esté en superposición, por ejemplo en las bases computacionales, y se haga una medición, no se sabrá donde está exactamente.

Para determinar la probabilidad, se puede calcular como:

$$|\alpha|^2 + |\beta|^2 = 1$$
 La probabilidad del qubit en el estado |0>

De hecho, las probabilidades deben de sumar 1 para saber que nuestro estado se encuentra normalizado

Representación de Esfera de Bloch

Se puede representar a la Esfera de Bloch como un sistema coordenado (x, y, z).

¡Manos a la práctica!

03 Manipulando al Qubit

Manipularemos al qubit con el uso de las principales compuertas

Compuertas cuánticas

Si lo que se desea es manipular los qubits, se puede hacer uso de los operadores o compuertas cuánticas.

Principalmente permiten rotar la Esfera de Bloch y adaptarla a la medición deseada.

Compuertas Cuánticos

Compuerta X

Nos da como resultado lo opuesto a lo que se tiene en la entrada, es decir, hace una rotación de 180° sobre el eje

Χ.

Compuerta H

La Compuerta Hadamard, permite tener un estado de superposición igual entre |0> y |1>.

Bases |-> y |+>

Cuando se trata de una superposición de las bases computacionales, es posible describirlas con uso de las bases |+> y |->, definidas como:

$$\ket{+}=rac{\ket{0}+\ket{1}}{\sqrt{2}}$$

Fuente: https://www.quantum-inspire.com/kbase/gubit-basis-states/

¡Manos a la práctica!

¿Cómo sabemos qué hace el qubit?

Las mediciones nos permiten extraer la información del sistema.

Una vez que se hace la medición, el estado colapsa hacia el estado |1> ó |0>.

¿Cómo se registra la medición?

Las mediciones están dadas en los estados clásicos, por lo que se necesita registrar el resultado en de manera clásica en bits.

¿Qué pasa con la compuerta Hadamard?

Se encuentra en un estado de superposición entre el estado |0> y |1> de manera **equitativa**.

Cuando se mide, el estado colapsa con una posibilidad de 50% al estado |0> y 50% |1>, por lo que el resultado es completamente aleatorio.

¡Manos a la práctica!

Compuertas Cuánticos

Compuerta Z

Realiza una rotación de 180° sobre el eje Z

El cambio de signo se refiere al cambio de fase.

¡Manos a la práctica!

04 Circuitos cuánticos

Pongamos a trabajar los qubits y las compuertas

Circuitos Cuánticos

Muchos de los algoritmos y protocolos operan usando múltiples qubits, no solamente 1.

Cada uno de los qubit involucrados se puede ver afectado por compuertas que permiten resolver el algoritmo

Circuitos Cuánticos

Una de las principales ventajas es la posibilidad de ir operando los qubits de manera paralela a otros en el mismo circuito.

Compuerta multiqubit: CX

También conocida como CNOT, es una compuerta de 2 qubit.

Inp	out	Output	
Control bit	Target bit	Control bit	Target bit
0>	0>	0>	0>
0>	1)	0	1)
1>	0>	1>	1)
1>	1>	1>	0>

Superposición + CX = Entrelazamiento

¡Manos a la práctica!

Fuentes de Consulta

- Carrel, M., Garrison, D. & Dukatz, C. (2017). *Quantum Computing: From Theoretical to Tangible*. Accenture. https://accntu.re/3TxsQHi
- Committed to improving the state of the world (2020). Global Future Council on Quantum Computing Frequently Asked Questions. Wold economic forum. https://bit.ly/3MEg6fK
- Coyle, B., Henderson, Chan, J. Kumar, N., Paini, M. & Kashefi, E. (2021). Quantum versus classical generative modeling in finance. Quantum Sci. Technol 6(2021). https://bit.ly/3Da5GBv
- IBM (s/f). Learn Quantum Computation using Qiskit. Qiskit IBM. https://qiskit.org/textbook/preface.html
- McMahon, D. (2008). Quantum Computing Explained. (1a Ed). Wiley-IEEE Computer Society Pr. ISBN-10: 0470096993
- Qubit x Qubit (2022). Introduction to Quantum Computing. Qubit x Qubit. https://www.qubitbyqubit.org/

¡Gracias!

¿Tienes alguna duda?

Luis Andrade landradeg2022@cic.ipn.mx @Luis1827 - Telegram

