IN THE CLAIMS:

Please cancel claims 15, 16, 24, 25, and 27-34 without prejudice, amend claims 1-14, 17-23, and 26 as follows:

1. (Currently amended) A compound of formula II:

II

or a pharmaceutically acceptable derivative or prodrug thereof, wherein;

Ring C is selected from a phenyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, or 1,2,4-triazinyl ring, wherein said Ring C has one or two ortho substituents independently selected from $-R^1$, any substitutable non-ortho carbon position on Ring C is independently substituted by $-R^5$, and two adjacent substituents on Ring C are optionally taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, said fused ring being optionally substituted by halo, oxo, or $-R^8$:

- R¹ is selected from -halo, -CN, -NO₂, T-V-R⁶, phenyl, 5-6 membered heteroaryl ring, 5-6 membered heterocyclyl ring, or C₁₋₆ aliphatic group, said phenyl, heteroaryl, and heterocyclyl rings each optionally substituted by up to three groups independently selected from halo, oxo, or -R⁸, said C₁₋₆ aliphatic group optionally substituted with halo, cyano, nitro, or oxygen, or R¹ and an adjacent substituent taken together with their intervening atoms form said ring fused to Ring C;
- R^x and R^y are independently selected from T-R³, or R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-8 membered ring having 0-3 ring heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo or T-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;

T is a valence bond or a C_{1-4} alkylidene chain;

- R² and R² are independently selected from -R, -T-W-R⁶, or R² and R² are taken together with their intervening atoms to form a fused, 5-8 membered, unsaturated or partially unsaturated, ring having 0-3 ring heteroatoms selected from nitrogen, oxygen, or sulfur, wherein each substitutable carbon on said fused ring formed by R² and R² is substituted by halo, oxo, -CN, -NO₂, -R⁷, or -V-R⁶, and any substitutable nitrogen on said ring formed by R² and R² is substituted by R⁴;
- R³ is selected from -R, -halo, -OR, -C(=O)R, -CO₂R, -COCOR, -COCH₂COR, -NO₂, -CN, -S(O)R, -S(O)₂R, -SR, -N(R⁴)₂, -CON(R⁷)₂, -SO₂N(R⁷)₂, -OC(=O)R, -N(R⁷)COR, -N(R⁷)CO₂(C₁₋₆ aliphatic), -N(R⁴)N(R⁴)₂, -C=NN(R⁴)₂, -C=N-OR, -N(R⁷)CON(R⁷)₂, -N(R⁷)SO₂N(R⁷)₂, -N(R⁴)SO₂R, or -OC(=O)N(R⁷)₂;
- each R is independently selected from hydrogen or an optionally substituted group selected from C₁₋₆ aliphatic, C₆₋₁₀ aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 5-10 ring atoms;
- each R^4 is independently selected from $-R^7$, $-COR^7$, $-CO_2$ (optionally substituted C_{1-6} aliphatic), $-CON(R^7)_2$, or $-SO_2R^7$, or two R^4 on the same nitrogen are taken together to form a 5-8 membered heterocyclyl or heteroaryl ring;
- each R⁵ is independently selected from -R, halo, -OR, -C(=O)R, -CO₂R, -COCOR, -NO₂, -CN, -S(O)R, -SO₂R, -SR, -N(R⁴)₂, -CON(R⁴)₂, -SO₂N(R⁴)₂, -OC(=O)R, -N(R⁴)COR, -N(R⁴)CO₂(optionally substituted C₁₋₆ aliphatic), -N(R⁴)N(R⁴)₂, -C=NN(R⁴)₂, -C=N-OR, -N(R⁴)CON(R⁴)₂, -N(R⁴)SO₂N(R⁴)₂, -N(R⁴)SO₂R, or -OC(=O)N(R⁴)₂, or R⁵ and an adjacent substituent taken together with their intervening atoms form said ring fused to Ring C;
- V is -O-, -S-, -SO-, $-SO_2$ -, $-N(R^6)SO_2$ -, $-SO_2N(R^6)$ -, $-N(R^6)$ -, -CO-, $-CO_2$ -, $-N(R^6)CO$ -, $-N(R^6)C(O)O$ -, $-N(R^6)CON(R^6)$ -, $-N(R^6)SO_2N(R^6)$ -, $-N(R^6)N(R^6)$ -, $-C(O)N(R^6)$ -, $-C(R^6)_2O$ -, $-C(R^6)_2S$ -, $-C(R^6)_2SO$ -, $-C(R^6)_2SO_2$ -, $-C(R^6)_2SO_2$ N(R^6)-, $-C(R^6)_2N(R^6)$ -, $-C(R^6)_2N(R^6)C(O)$ -, $-C(R^6)_2N(R^6)C(O)$ -, $-C(R^6)_2N(R^6)$ -, or $-C(R^6)_2N(R^6)CON(R^6)$ -;
- $$\begin{split} W \text{ is } -& C(R^6)_2 O\text{-, } -C(R^6)_2 S\text{-, } -C(R^6)_2 SO\text{-, } -C(R^6)_2 SO_2\text{-, } -C(R^6)_2 SO_2 N(R^6)\text{-, } -C(R^6)_2 N(R^6)\text{-, } -C(R^6)_2 N(R^6)\text{-, } -C(R^6)_2 N(R^6) CO\text{-, } \\ -& C(R^6)_2 N(R^6) C(O)O\text{-, } -C(R^6)\text{=}NN(R^6)\text{-, } -C(R^6)\text{=}N\text{-}O\text{-, } -C(R^6)_2 N(R^6)N(R^6)\text{-, } \\ -& C(R^6)_2 N(R^6) SO_2 N(R^6)\text{-, } -C(R^6)_2 N(R^6)CON(R^6)\text{-, } \text{or } -CON(R^6)\text{-; } \end{split}$$

each R⁶ is independently selected from hydrogen or an optionally substituted C_{1.4} aliphatic group, or two R⁶ groups on the same nitrogen atom are taken together with the nitrogen atom to form a 5-6 membered heterocyclyl or heteroaryl ring; each R⁷ is independently selected from hydrogen or an optionally substituted C_{1.6} aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring; and each R⁸ is independently selected from an optionally substituted C_{1.4} aliphatic group, -OR⁶, -SR⁶, -COR⁶, -SO₂R⁶, -N(R⁶)₂, -N(R⁶)N(R⁶)₂, -CN, -NO₂, -CON(R⁶)₂, or -CO₂R⁶.

- 2. (Currently amended) The compound according to claim 1, wherein said compound has one or more features selected from the group consisting of:
- (a) Ring C is a phenyl or pyridinyl ring, optionally substituted by $-R^5$, wherein when Ring C and two adjacent substituents thereon form a bicyclic ring system, the bicyclic ring system is selected from an optionally substituted naphthyl, quinolinyl or isoquinolinyl ring;
- (b) R^x is hydrogen or C_{1-4} aliphatic and R^y is $T-R^3$, or R^x and R^y are taken together with their intervening atoms to form an optionally substituted 5-7 membered unsaturated or partially unsaturated ring having 0-2 ring nitrogens;
- (c) R^1 is -halo, an optionally substituted C_{1-6} aliphatic group, phenyl, -COR⁶, -OR⁶, -CN, -SO₂R⁶, -SO₂NH₂, -N(R⁶)₂, -CO₂R⁶, -CONH₂, -NHCOR⁶, -OC(O)NH₂, or -NHSO₂R⁶; and
- (d) R^2 is hydrogen and R^2 is hydrogen or a substituted or unsubstituted group selected from aryl, heteroaryl, or a C_{1-6} aliphatic group, or R^2 and R^2 are taken together with their intervening atoms to form a substituted or unsubstituted benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring.
- 3. (Currently amended) The compound according to claim 2, wherein:
- (a) Ring C is a phenyl or pyridinyl ring, optionally substituted by $-R^5$, wherein when Ring C and two adjacent substituents thereon form a bicyclic ring system, the bicyclic ring system is selected from an optionally substituted naphthyl, quinolinyl or isoquinolinyl ring;

- (b) R^x is hydrogen or C₁₋₄ aliphatic and R^y is T-R³, or R^x and R^y are taken together with their intervening atoms to form an optionally substituted 5-7 membered unsaturated or partially unsaturated ring having 0-2 ring nitrogens;
- (c) R^1 is -halo, an optionally substituted C_{1-6} aliphatic group, phenyl, -COR⁶, -OR⁶, -CN, -SO₂R⁶, -SO₂NH₂, -N(R⁶)₂, -CO₂R⁶, -CONH₂, -NHCOR⁶, -OC(O)NH₂, or -NHSO₂R⁶; and
- (d) $R^{2'}$ is hydrogen and R^{2} is hydrogen or a substituted or unsubstituted group selected from aryl, heteroaryl, or a C_{1-6} aliphatic group, or R^{2} and $R^{2'}$ are taken together with their intervening atoms to form a substituted or unsubstituted benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring.
- 4. (Currently amended) The compound according to claim 2, wherein said compound has one or more features selected from the group consisting of:
- (a) Ring C is a phenyl or pyridinyl ring, optionally substituted by -R⁵, wherein when Ring C and two adjacent substituents thereon form a bicyclic ring system, the bicyclic ring system is selected from an optionally substituted naphthyl ring;
- (b) R^x is hydrogen or methyl and R^y is -R, $N(R^4)_2$, or -OR, or R^x and R^y are taken together with their intervening atoms to form a 5-7 membered unsaturated or partially unsaturated carbocyclo ring optionally substituted with -R, halo, -OR, -C(=O)R, -CO₂R, -COCOR, -NO₂, -CN, -S(O)R, -SO₂R, -SR, -N(R⁴)₂, -CON(R⁴)₂, -SO₂N(R⁴)₂, -OC(=O)R, -N(R⁴)COR, -N(R⁴)CO₂(optionally substituted C_{1-6} aliphatic), -N(R⁴)N(R⁴)₂, -C=NN(R⁴)₂, -C=N-OR, -N(R⁴)CON(R⁴)₂, -N(R⁴)SO₂N(R⁴)₂, -N(R⁴)SO₂R, or -OC(=O)N(R⁴)₂,;
- (c) R^1 is -halo, a C_{1-6} haloaliphatic group, a C_{1-6} aliphatic group, phenyl, or -CN;
- (d) $R^{2'}$ is hydrogen and R^{2} is hydrogen or a substituted or unsubstituted group selected from aryl, or a C_{1-6} aliphatic group, or R^{2} and $R^{2'}$ are taken together with their intervening atoms to form a substituted or unsubstituted benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring; and
- (e) each R^5 is independently selected from -halo, -CN, -NO₂, -N(R^4)₂, optionally substituted C_{1-6} aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R^4), -N(R^4)COR, -SO₂N(R^4)₂, and -N(R^4)SO₂R.
 - 5. (Currently amended) The compound according to claim 4, wherein:

- (a) Ring C is a phenyl or pyridinyl ring, optionally substituted by $-R^5$, wherein when Ring C and two adjacent substituents thereon form a bicyclic ring system, the bicyclic ring system is selected from an optionally substituted naphthyl ring;
- (b) R^x is hydrogen or methyl and R^y is -R, $N(R^4)_2$, or -OR, or R^x and R^y are taken together with their intervening atoms to form a 5-7 membered unsaturated or partially unsaturated carbocyclo ring optionally substituted with -R, halo, -OR, -C(=O)R, $-CO_2R$, -COCOR, $-NO_2$, -CN, -S(O)R, $-SO_2R$, -SR, $-N(R^4)_2$, $-CON(R^4)_2$, $-SO_2N(R^4)_2$, -OC(=O)R, $-N(R^4)COR$, $-N(R^4)CO_2$ (optionally substituted C_{1-6} aliphatic), $-N(R^4)N(R^4)_2$, $-C=NN(R^4)_2$, -C=N-OR, $-N(R^4)CON(R^4)_2$, $-N(R^4)SO_2N(R^4)_2$, $-N(R^4)SO_2R$, or $-OC(=O)N(R^4)_2$,;
- (c) R^1 is -halo, a C_{1-6} haloaliphatic group, a C_{1-6} aliphatic group, phenyl, or -CN;
- (d) $R^{2'}$ is hydrogen and R^{2} is hydrogen or a substituted or unsubstituted group selected from aryl, or a C_{1-6} aliphatic group, or R^{2} and $R^{2'}$ are taken together with their intervening atoms to form a substituted or unsubstituted benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring; and
- (e) each R^5 is independently selected from -halo, -CN, -NO₂, -N(R^4)₂, optionally substituted C_{1-6} aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R^4), -N(R^4)COR, -SO₂N(R^4)₂, and -N(R^4)SO₂R.
- 6. (Original) The compound according to claim 4, wherein said compound has one or more features selected from the group consisting of:
- (a) R^x is hydrogen or methyl and R^y is methyl, methoxymethyl, ethyl, cyclopropyl, isopropyl, t-butyl, alkyl- or an optionally substituted group selected from 2-pyridyl, 4-pyridyl, piperidinyl, or phenyl, or R^x and R^y are taken together with their intervening atoms to form a 6-membered unsaturated or partially unsaturated carbocyclo ring optionally substituted with -halo, -R, -OR, -COR, -CO₂R, -CON(R^4)₂, -CN, or -N(R^4)₂ wherein R is an optionally substituted C_{1-6} aliphatic group;
- (b) R¹ is -halo, a C₁₋₄ aliphatic group optionally substituted with halogen, or -CN;
- (c) R^2 and R^2 are taken together with their intervening atoms to form a benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring optionally substituted with -halo, -N(R^4)₂, -C₁₋₄ alkyl, -C₁₋₄ haloalkyl, -NO₂, -O(C₁₋₄ alkyl), -CO₂(C₁₋₄ alkyl), -SO₂NH₂, -OC(O)NH₂, -NH₂SO₂(C₁₋₄ alkyl), -NHC(O)(C₁₋₄ alkyl)

- alkyl), $-C(O)NH_2$, or $-CO(C_{1-4}$ alkyl), wherein the $(C_{1-4}$ alkyl) is a straight, branched, or cyclic alkyl group; and
- (d) each R⁵ is independently selected from -Cl, -F, -CN, -CF₃, -NH₂, -NH(C₁₋₄ aliphatic), -N(C₁₋₄ aliphatic)₂, -O(C₁₋₄ aliphatic), C₁₋₄ aliphatic, and -CO₂(C₁₋₄ aliphatic).
 - 7. (Original) The compound according to claim 6, wherein:
- (a) R^x is hydrogen or methyl and R^y is methyl, methoxymethyl, ethyl, cyclopropyl, isopropyl, t-butyl, alkyl- or an optionally substituted group selected from 2-pyridyl, 4-pyridyl, piperidinyl, or phenyl, or R^x and R^y are taken together with their intervening atoms to form a benzo ring or a partially unsaturated carbocyclo ring optionally substituted with -halo, -R, -OR, -COR, -CO₂R, -CON(R^4)₂, -CN, or -N(R^4)₂ wherein R is an optionally substituted C_{1-6} aliphatic group;
- (b) R¹ is -halo, a C₁₋₄ aliphatic group optionally substituted with halogen, or -CN;
- (c) R^2 and R^2 are taken together with their intervening atoms to form a benzo, pyrido, pyrimido or partially unsaturated 6-membered carbocyclo ring optionally substituted with -halo, -N(R^4)₂, -C₁₋₄ alkyl, -C₁₋₄ haloalkyl, -NO₂, -O(C₁₋₄ alkyl), -CO₂(C₁₋₄ alkyl), -CN, -SO₂(C₁₋₄ alkyl), -SO₂NH₂, -OC(O)NH₂, -NH₂SO₂(C₁₋₄ alkyl), -NHC(O)(C₁₋₄ alkyl), -C(O)NH₂, or -CO(C₁₋₄ alkyl), wherein the (C₁₋₄ alkyl) is a straight, branched, or cyclic alkyl group; and
- (d) each R^5 is independently selected from -Cl, -F, -CN, -CF₃, -NH₂, -NH(C₁₋₄ aliphatic), -N(C₁₋₄ aliphatic)₂, -O(C₁₋₄ aliphatic), C₁₋₄ aliphatic, and -CO₂(C₁₋₄ aliphatic).
- 8. (Original) The compound according to claim 7, wherein R^x and R^y are each methyl or R^x and R^y are taken together with the pyrimidine ring to form an optionally substituted ring selected from quinazoline or tetrahydroquinazoline, and R^2 and R^2 are taken together with the pyrazole ring to form an optionally substituted indazole ring.
- 9. (Currently amended) The compound according to claim 1, wherein said compound is selected from the following Table 1 compounds:

F NH NCI NE N	HN N N	F NH NN N
II-94	II-205	II-206
F NH NN N	CH ₃	HN N N
II-207	II-211	II-212
or II-213.		

- 10. (Currently amended) A composition comprising <u>an effective amount of a compound according to claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle a compound according—carrier.</u>
- 11. (Currently amended) The composition according to claim 10 further comprising a second therapeutic agent selected from a treatment for Alzheimer's Disease, a treatment for Parkinson's Disease, an agent for treating Multiple Sclerosis (MS), a treatment for asthma, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating stroke, an agent for treating cardiovascular disease, or an agent for treating diabetes.

12. (Original) A method of inhibiting GSK-3 or Aurora activity in a patient comprising the step of administering to said patient a therapeutically effective amount of the composition according to claim 10.

- 13. (Original) The method according to claim 12, wherein said method inhibits GSK3 activity in a patient.
- 14. (Original) A method of inhibiting GSK-3 or Aurora activity in a biological sample comprising contacting said biological with the compound according to claim 1.
 - 15. (Canceled).
 - 16. (Canceled).
- 17. (Currently amended) The method according to claim 15, wherein said disease is A method of treating diabetes in a patient in need thereof, said method comprising administering to said patient a composition according to claim 10.
- 18. (Currently amended) The method according to claim 15, wherein said disease is A method of treating Alzheimer's disease in a patient in need thereof, said method comprising administering to said patient a composition according to claim 10.
- 19. (Currently amended) The method according to claim 15, wherein said disease is A method of treating schizophrenia in a patient in need thereof, said method comprising administering to said patient a composition according to claim 10.
- 20. (Original) A method of enhancing glycogen synthesis in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 10.
- 21. (Original) A method of lowering blood levels of glucose in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 10.

- 22. (Original) A method of inhibiting the production of hyperphosphorylated Tau protein in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 10.
- 23. (Original) A method of inhibiting the phosphorylation of β -catenin in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 10.
 - 24. (Canceled).
 - 25. (Canceled).
- 26. (Currently amended) The method according to claim 24, wherein said disease is A method of treating a cancer in a patient in need thereof, comprising the step of administering to said patient a therapeutically effective amount of the composition according to claim 10, wherein said cancer is melanoma or is selected from colon, lung, stomach, or breast cancer.
 - 27. through 34. (Canceled).