Завдання для самостійної роботи з ${\rm PM}\Phi$

Зміст

1. Канонічний вид лінійного рівняння другого поряд з двома незалежними змінними	цка 3
2. Задачі $arphi ipix$ ле для рівняння $arphi an$ ла ca	7
3. Крайова задача для рівняння теплопроводності	11
4. Крайова задача для рівняння коливань струни	14

MA-19-1: варіанти 01-02;

 Π А-19-1: варіанти 03 – 24;

ПА-19-2: варіанти 25-47.

1. Канонічний вид лінійного рівняння другого порядка з двома незалежними змінними

Для однорідного лінійного рівняння з частинними похідними другого порядка

$$a_{11} \frac{\partial^2 u}{\partial x \partial x} + 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y \partial y} + a_1 \frac{\partial u}{\partial x} + a_2 \frac{\partial u}{\partial y} + a_{\star} u = g,$$

де коефіцієнти $a_{11}, a_{12}, a_{22}, a_1, a_2, a_{\star}$ та права частина g суть відомі функції декартових ортогональних координат x, y на площині, знайти області, в яких рівняння зберігає тип, та привести рівняння до канонічного виду в кожній такій області.

1.
$$\frac{\partial^2 u}{\partial x \partial x} - 4 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} + 5 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 2 u = 0$$

2.
$$x^{2} \frac{\partial^{2} u}{\partial x \partial x} + 6x \frac{\partial^{2} u}{\partial x \partial y} + 2 \frac{\partial^{2} u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial y} + 3 u = 0$$

3.
$$\frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} - 7 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 3 u = 0$$

4.
$$x \frac{\partial^2 u}{\partial x \partial x} + y \frac{\partial^2 u}{\partial u \partial y} + 2 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} + 6 u = 0$$

5.
$$x \frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial y} + 8 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} - 4 u = 0$$

6.
$$\frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} - x \frac{\partial^2 u}{\partial y \partial y} + 8 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} - 2 u = 0$$

7.
$$x^{2} \frac{\partial^{2} u}{\partial x \partial x} - 8xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y \partial y} + 6 \frac{\partial u}{\partial x} - 8 \frac{\partial u}{\partial y} + 2 u = 0$$

8.
$$\frac{\partial^2 u}{\partial x \partial x} + y \frac{\partial^2 u}{\partial x \partial y} - xy^2 \frac{\partial^2 u}{\partial y \partial y} - 3 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} - 5 u = 0$$

9.
$$\operatorname{sign} y \frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} + \operatorname{sign} x \frac{\partial^2 u}{\partial y \partial y} + 3 \frac{\partial u}{\partial x} - 5 \frac{\partial u}{\partial y} + 7 u = 0$$

10.
$$y \frac{\partial^2 u}{\partial x \partial x} - 2y \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial u \partial y} - 7 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + 3 u = 0$$

11.
$$x \frac{\partial^2 u}{\partial x \partial x} - 4x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial x} + 3 u = 0$$

12.
$$\frac{\partial^2 u}{\partial x \partial x} + 8y \frac{\partial^2 u}{\partial x \partial y} - y^2 \frac{\partial^2 u}{\partial y \partial y} - 2 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} - 7 u = 0$$

13.
$$\frac{\partial^2 u}{\partial x \partial x} - 2\cos x \frac{\partial^2 u}{\partial x \partial y} + (4 - \sin^2 x) \frac{\partial^2 u}{\partial y \partial y} + 2\frac{\partial u}{\partial x} - 9\frac{\partial u}{\partial y} + 3u = 0$$

14.
$$x^2 \frac{\partial^2 u}{\partial x \partial x} - 4xy \frac{\partial^2 u}{\partial x \partial y} - 5y^2 \frac{\partial^2 u}{\partial y \partial y} - 5 \frac{\partial u}{\partial x} - 7 \frac{\partial u}{\partial y} + 2u = 0$$

15.
$$x^2 \frac{\partial^2 u}{\partial x \partial x} + 2x \frac{\partial^2 u}{\partial x \partial y} - 3 \frac{\partial^2 u}{\partial y \partial y} - 3 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} - 3 u = 0$$

16.
$$3x \frac{\partial^2 u}{\partial x \partial x} + 3y \frac{\partial^2 u}{\partial y \partial y} - 6 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} + 4u = 0$$

17.
$$2\frac{\partial^2 u}{\partial x \partial x} + 4y\frac{\partial^2 u}{\partial x \partial y} - 6y^2\frac{\partial^2 u}{\partial u \partial y} + 7\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} + 7u = 0$$

18.
$$\operatorname{sign} x \frac{\partial^2 u}{\partial x \partial x} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} - 3 u = 0$$

19.
$$2xy \frac{\partial^2 u}{\partial x \partial x} + 6x \frac{\partial^2 u}{\partial x \partial y} + \frac{2x}{y} \frac{\partial^2 u}{\partial u \partial y} - 4 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} + 3 u = 0$$

$$20. \ \ 2\frac{\partial^2 u}{\partial x \partial x} - 6y \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} + 5 u = 0$$

$$21. \ \ 2y\frac{\partial^2 u}{\partial x \partial x} + 3\frac{\partial^2 u}{\partial x \partial y} - \frac{2}{y}\frac{\partial^2 u}{\partial y \partial y} + 3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} - 3u = 0$$

22.
$$2x \frac{\partial^2 u}{\partial x \partial x} - 8x \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} + 3 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} - 5 u = 0$$

23.
$$2x \frac{\partial^2 u}{\partial x \partial x} + 2y \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} + 2 u = 0$$

$$24. \quad -\frac{x}{4} \frac{\partial^2 u}{\partial x \partial x} - 2y \frac{\partial^2 u}{\partial x \partial y} + \frac{y^2}{x} \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} - 7 \frac{\partial u}{\partial y} - 6 u = 0$$

25.
$$-xy\frac{\partial^2 u}{\partial x \partial x} + y\frac{\partial^2 u}{\partial y \partial y} - 3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} - 5u = 0$$

26.
$$\frac{\partial^2 u}{\partial x \partial x} + y \frac{\partial^2 u}{\partial x \partial y} - xy^2 \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} - 3 \frac{\partial u}{\partial y} - 4 u = 0$$

27.
$$\frac{\partial^2 u}{\partial x \partial x} + 4y \frac{\partial^2 u}{\partial x \partial y} + 3y^2 \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} - 3u = 0$$

28.
$$x \frac{\partial^2 u}{\partial x \partial x} - 2x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y \partial y} + 2y \frac{\partial u}{\partial x} = 0$$

$$29. \ \frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y \partial y} + 2y \frac{\partial u}{\partial x} - 3x \frac{\partial u}{\partial y} = 0$$

30.
$$\frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} - x \frac{\partial^2 u}{\partial y \partial y} + y \frac{\partial u}{\partial x} + 5x \frac{\partial u}{\partial y} = 0$$

31.
$$y \frac{\partial^2 u}{\partial x \partial x} + 6 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial y} + 2x \frac{\partial u}{\partial x} + 2xy \frac{\partial u}{\partial y} = 0$$

32.
$$\cos y \frac{\partial^2 u}{\partial x \partial x} - 2 \frac{\partial^2 u}{\partial x \partial y} + \cos y \frac{\partial^2 u}{\partial y \partial y} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

33.
$$x^2 \frac{\partial^2 u}{\partial x \partial x} - 8xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

$$34. \ \frac{\partial^2 u}{\partial x \partial x} + 2y \frac{\partial^2 u}{\partial x \partial y} - xy^2 \frac{\partial^2 u}{\partial y \partial y} - 3 \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$$

35.
$$\frac{1}{x^2} \frac{\partial^2 u}{\partial x \partial x} + 2 \frac{y}{x} \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

36.
$$\operatorname{sign} y \frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} + \operatorname{sign} x \frac{\partial^2 u}{\partial y \partial y} + 3 \frac{\partial u}{\partial x} - 5 \frac{\partial u}{\partial y} = 0$$

37.
$$x^2 \frac{\partial^2 u}{\partial x \partial x} + 2 \frac{x}{y} \frac{\partial^2 u}{\partial x \partial y} + \frac{1}{y^2} \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

38.
$$x \frac{\partial^2 u}{\partial x \partial x} - 4x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y \partial y} + 2y \frac{\partial u}{\partial x} + 4x \frac{\partial u}{\partial y} = 0$$

$$39. \ \frac{\partial^2 u}{\partial x \partial x} + 8y \frac{\partial^2 u}{\partial x \partial y} - y^2 \frac{\partial^2 u}{\partial y \partial y} - 2x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$

40.
$$x^2 \frac{\partial^2 u}{\partial x \partial x} - 4xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} - \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

41.
$$\sin y \frac{\partial^2 u}{\partial x \partial x} + 2 \frac{\partial^2 u}{\partial x \partial y} + \sin y \frac{\partial^2 u}{\partial y \partial y} - 6 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

42.
$$2\frac{\partial^2 u}{\partial x \partial x} + 4y \frac{\partial^2 u}{\partial x \partial y} - 6y^2 \frac{\partial^2 u}{\partial y \partial y} + 7x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$$

43.
$$\operatorname{sign} x \frac{\partial^2 u}{\partial x \partial x} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} + xy \frac{\partial u}{\partial y} = 0$$

44.
$$2xy \frac{\partial^2 u}{\partial x \partial x} + 6x \frac{\partial^2 u}{\partial x \partial y} + \frac{2x}{y} \frac{\partial^2 u}{\partial y \partial y} - 4 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

45.
$$2\frac{\partial^2 u}{\partial x \partial x} - 6y \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y \partial y} + \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} = 0$$

46.
$$2y \frac{\partial^2 u}{\partial x \partial x} + 3 \frac{\partial^2 u}{\partial x \partial y} - \frac{2}{y} \frac{\partial^2 u}{\partial y \partial y} + x \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$$

47.
$$\frac{\partial^2 u}{\partial x \partial x} + 4y \frac{\partial^2 u}{\partial x \partial y} + 3y^2 \frac{\partial^2 u}{\partial y \partial y} + xy \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$

48.
$$\sin^2 y \frac{\partial^2 u}{\partial x \partial x} - 2 \operatorname{tg} y \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial y} + 2 \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

$$49. \ \ -\frac{x}{4}\frac{\partial^2 u}{\partial x \partial x} - 2y\frac{\partial^2 u}{\partial x \partial y} + \frac{y^2}{x}\frac{\partial^2 u}{\partial y \partial y} - 7\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

$$50. -\sin y \, \frac{\partial^2 u}{\partial x \partial x} + 2\cos y \, \frac{\partial^2 u}{\partial x \partial y} + \sin y \, \frac{\partial^2 u}{\partial y \partial y} - 2\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 0$$

2. Задачі Діріхле для рівняння Лапласа

1. Розв'язати внутрішню задачу Діріхле для рівняння Лапласа

$$\begin{cases} \Delta u(x,y) = 0, & (x,y) \in \mathcal{D} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 < c^2 \right\}, \\ u(x,y) = g(x,y), & (x,y) \in \mathcal{S} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 = c^2 \right\}, \end{cases}$$

з умовами на колі, згідно табл. 2.1, 2.2, 2.3. Розв'язки подати в полярній та декартовій системах координат. Обгрунтувати розв'язки, для чого показати, що вони задовільняють: 1) рівнянню *Лапласа* в декартовій та полярній системах координат; 2) умови на колі в декартовій системі координат.

2. Розв'язати зовнішню задачу Діріхле для рівняння Лапласа

$$\begin{cases} \Delta u(x,y) = 0, & (x,y) \in \mathcal{D} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 > c^2 \right\}, \\ u(x,y) = g(x,y), & (x,y) \in \mathcal{S} = \left\{ (x,y) \mid (x-x_0)^2 + (y-y_0)^2 = c^2 \right\}, \end{cases}$$

з умовами на колі, згідно табл. 2.1, 2.2, 2.3. Розв'язки подати в полярній та декартовій системах координат. Обгрунтувати розв'язки, для чого показати, що вони задовільняють: 1) рівнянню *Лапласа* в полярній системі координат; 2) умови на колі в декартовій системі координат.

Для умов на колі в табл. 2.1, 2.2, 2.3 прийняті такі позначення

$$\begin{cases} g_2(x,y) = g_1(x,y) + \delta g_2(x,y) , \\ g_3(x,y) = g_2(x,y) + \delta g_3(x,y) , \\ g_4(x,y) = g_3(x,y) + \delta g_4(x,y) . \end{cases}$$

Табл. 2.1. Варіанти умов на колі 01-16

№	$g_1(x,y)$	$\delta g_2(x,y)$	$\delta g_3(x,y)$	$\delta g_4(x,y)$	\mathcal{D}
01	x^2	$x^3 + y^3 + x^2y + xy^2$	x^4	x^5	$x^{2} + y^{2} + x + 3y - \frac{3}{2} = 0$
02	y^2	$x^3 + y^3 + x^2y + xy^2$	y^4	y^5	$x^2 + y^2 + x + 5y - \frac{5}{2} = 0$
03	xy	$x^3 + y^3 + x^2y + xy^2$	x^3y	x^4y	$x^{2} + y^{2} + 3x - 2y - \frac{3}{4} = 0$
04	$x^2 + x$	$x^3 + y^3 + x^2y$	xy^3	xy^4	$x^{2} + y^{2} - 3x - 3y + \frac{1}{2} = 0$
05	$y^2 + x$	$x^3 + y^3 + xy^2$	x^2y^2	x^3y^2	$x^{2} + y^{2} + 3x + 4y + \frac{9}{4} = 0$
06	xy + x	$x^3 + x^2y + xy^2$	x^4	x^2y^3	$x^{2} + y^{2} - 4x + y + \frac{1}{4} = 0$
07	$x^2 + y$	$y^3 + x^2y + xy^2$	y^4	x^5	$x^{2} + y^{2} + 5x - 3y + \frac{9}{2} = 0$
08	$y^2 + y$	$x^3 + y^3 + x^2y$	x^3y	y^5	$x^2 + y^2 - x - 2y - 1 = 0$
09	xy + y	$x^3 + y^3 + xy^2$	xy^3	x^4y	$x^2 + y^2 + x + 6y + 7 = 0$
10	$x^2 + xy$	$x^3 + x^2y + xy^2$	x^2y^2	xy^4	$x^2 + y^2 - 2x + 3y + 1 = 0$
11	$y^2 + xy$	$y^3 + x^2y + xy^2$	x^4	x^3y^2	$x^2 + y^2 + 2x - 5y + 5 = 0$
12	$x^2 + y^2$	$x^3 + y^3 + x^2y$	y^4	x^2y^3	$x^2 + y^2 - 3x - 4y + 4 = 0$
13	$x^2 + x + y$	$x^3 + y^3$	x^3y	x^5	$x^2 + y^2 + 4x + y + 2 = 0$
14	$y^2 + x + y$	$x^3 + x^2y$	xy^3	y^5	$x^2 + y^2 - 5x + 4y + 8 = 0$
15	xy + x + y	$x^3y + xy^2$	x^2y^2	x^4y	$x^{2} + y^{2} - 2x - 5y - \frac{7}{4} = 0$
16	$x^2 + xy + x$	$x^3 + x^2y$	x^4	xy^4	$x^{2} + y^{2} + x - 6y + \frac{1}{4} = 0$

Табл. 2.2. Варіанти умов на колі $17 - 32\,$

Nº	$g_1(x,y)$	$\delta g_2(x,y)$	$\delta g_3(x,y)$	$\delta g_4(x,y)$	\mathcal{D}
17	$y^2 + xy + x$	$y^3 + xy^2$	y^4	x^3y^2	$x^{2} + y^{2} + 3x + 6y + \frac{9}{4} = 0$
18	$x^2 + y^2 + x$	$x^2y + xy^2$	x^3y	x^2y^3	$x^{2} + y^{2} - 4x + 5y + \frac{5}{4} = 0$
19	$x^2 + xy + y$	$x^3 + y^3$	xy^3	x^5	$x^{2} + y^{2} + 5x - y - \frac{5}{2} = 0$
20	$y^2 + xy + y$	$x^3 + x^2y$	x^2y^2	y^5	$x^{2} + y^{2} - 5x - 3y - \frac{1}{2} = 0$
21	$x^2 + y^2 + y$	$x^3 + xy^2$	x^4	x^4y	$x^{2} + y^{2} + 5x + 5y + \frac{7}{2} = 0$
22	$x^2 + y^2 + xy$	$x^2y + xy^2$	y^4	xy^4	$x^2 + y^2 - x + 2y + 1 = 0$
23	$x^2 + xy + x + y$	y^3	x^3y	x^3y^2	$x^2 + y^2 + x - 4y + 4 = 0$
24	$y^2 + xy + x + y$	x^3	xy^3	x^2y^3	$x^2 + y^2 - 2x - 3y + 3 = 0$
25	$x^2 + y^2 + x + y$	x^2y	x^2y^2	x^5	$x^2 + y^2 + 3x + 4y + 6 = 0$
26	x^2	$x^3 + x^2y + xy^2$	x^4	xy^4	$x^2 + y^2 - 4x + 5y + 10 = 0$
27	y^2	$y^3 + x^2y + xy^2$	y^4	x^3y^2	$x^2 + y^2 + 5x - 2y + 7 = 0$
28	xy	$x^3 + y^3 + x^2y$	x^3y	x^2y^3	$x^2 + y^2 - x - 6y + 9 = 0$
29	$x^2 + x$	$x^3 + y^3 + xy^2$	xy^3	$\left x^5 \right $	$x^2 + y^2 + x + 3y - \frac{3}{2} = 0$
30	$y^2 + x$	$x^3 + x^2y + xy^2$	x^2y^2	$\bigg y^5$	$x^2 + y^2 + x + 5y - \frac{5}{2} = 0$
31	xy + x	$y^3 + x^2y + xy^2$	x^4	x^4y	$x^{2} + y^{2} + 3x - 2y - \frac{3}{4} = 0$
32	$x^2 + y$	$x^3 + y^3 + x^2y$	y^4	xy^4	$x^2 + y^2 - 3x - 3y + \frac{1}{2} = 0$

Табл. 2.3. Варіанти умов на колі $33\!-\!49$

Nº	$g_1(x,y)$	$\delta g_2(x,y)$	$\delta g_3(x,y)$	$\delta g_4(x,y)$	\mathcal{D}
33	$y^2 + y$	$x^3 + y^3$	x^3y	xy^4	$x^{2} + y^{2} + 3x + 4y + \frac{9}{4} = 0$
34	xy + y	$x^3 + x^2y$	xy^3	x^3y^2	$x^{2} + y^{2} - 4x + y + \frac{1}{4} = 0$
35	$x^2 + xy$	$x^3y + xy^2$	x^2y^2	x^2y^3	$x^{2} + y^{2} + 5x - 3y + \frac{9}{2} = 0$
36	$y^2 + xy$	$x^3 + x^2y$	x^4	x^5	$x^2 + y^2 - x - 2y - 1 = 0$
37	$x^2 + y^2$	$y^3 + xy^2$	y^4	y^5	$x^2 + y^2 + x + 6y + 7 = 0$
38	$x^2 + x + y$	$x^2y + xy^2$	x^3y	x^4y	$x^2 + y^2 - 2x + 3y + 1 = 0$
39	$y^2 + x + y$	$x^3 + y^3$	xy^3	xy^4	$x^2 + y^2 + 2x - 5y + 5 = 0$
40	xy + x + y	$x^3 + x^2y$	x^2y^2	x^3y^2	$x^2 + y^2 - 3x - 4y + 4 = 0$
41	$x^2 + xy + x$	$x^3 + xy^2$	x^4	x^2y^3	$x^2 + y^2 + 4x + y + 2 = 0$
42	$y^2 + xy + x$	$x^2y + xy^2$	y^4	x^5	$x^2 + y^2 - 5x + 4y + 8 = 0$
43	$x^2 + y^2 + x$	y^3	x^3y	y^5	$x^2 + y^2 - 2x - 5y - \frac{7}{4} = 0$
44	$x^2 + xy + y$	x^3	xy^3	x^4y	$x^2 + y^2 + x - 6y + \frac{1}{4} = 0$
45	$y^2 + xy + y$	x^2y	x^2y^2	xy^4	$x^{2} + y^{2} + 3x + 6y + \frac{9}{4} = 0$
46	$x^2 + y^2 + y$	$x^3 + x^2y + xy^2$	x^4	x^3y^2	$x^{2} + y^{2} - 4x + 5y + \frac{5}{4} = 0$
47	$x^2 + y^2 + xy$	$y^3 + x^2y + xy^2$	$igg y^4$	x^2y^3	$x^{2} + y^{2} + 5x - y - \frac{5}{2} = 0$
48	$x^2 + xy + x + y$	$x^3 + y^3 + x^2y$	x^3y	x^5	$x^{2} + y^{2} - 5x - 3y - \frac{1}{2} = 0$
49	$y^2 + xy + x + y$	$x^3 + y^3 + xy^2$	xy^3	xy^4	$x^2 + y^2 + 5x + 5y + \frac{7}{2} = 0$

3. Крайова задача для рівняння теплопроводності

Розв'язати крайову задачу

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = a^2 \frac{\partial^2 u(t,x)}{\partial x^2} + g(t,x) \,, & \quad 0 < x < \ell \,, \quad 0 < t \leqslant T \,, \\ u(0,x) = u_0(x) \,, & \quad 0 \leqslant x \leqslant \ell \,, \\ u(t,0) = \psi_1(t) \\ u(t,\ell) = \psi_2(t) \end{cases}, \qquad \qquad 0 \leqslant t \leqslant T \,,$$

де g(t,x) = 0, початкова умова є такою

$$u_0(x) = \begin{cases} 0, & x \in [0, x_1], \\ h_1 \frac{x - x_1}{x_2 - x_1}, & x \in [x_1, x_2], \\ h_1 + (h_2 - h_1) \frac{x - x_2}{x_3 - x_2}, & x \in [x_2, x_3], \\ h_2 \frac{x_4 - x}{x_4 - x_3}, & x \in [x_3, x_4], \\ 0, & x \in [x_4, \ell], \end{cases}$$

а функції $\psi_1(t),\ \psi_2(t)$ та значення параметрів $a,\ \ell,\ x_{1-4},\ h_{1,2}$ наведені в табл. 3.1 та 3.2, де позначено $\tau=t/T.$

Табл. 3.1. Варіанти 1–25

№	a	ℓ	x_1	x_2	x_3	x_4	h_1	h_2	$\psi_1(t)$	$\psi_2(t)$	T
1	2	5	2	3	4	5	+1	-1	τ	$\sin(1\pi\tau)$	8
2	4	7	2	3	5	6	+3	+1	$\tau + 2\tau^2$	$ au^2$	9
3	1	5	2	3	4	5	-1	+1	au	2τ	7
4	3	6	1	3	4	6	-2	-1	$\tau \exp(1\tau)$	au	8
5	2	5	1	2	3	5	+2	0	$ au^2$	$\sin(1\pi\tau)$	6
6	3	7	2	3	4	6	-2	-2	$\tau^2 + 3\tau$	$2\tau^2$	8
7	1	5	1	2	3	4	+3	+1	$\tau^2 + 2\tau$	au	5
8	2	6	0	1	2	3	0	+2	τ^2	$\tau \exp(1\tau)$	7
9	4	6	1	2	3	4	+2	+3	$\sin(1\pi\tau)$	$2\sin\left(1\pi\tau\right)$	9
10	3	7	2	4	5	6	+3	-1	$\sin(1\pi\tau)$	$ au^2$	7
11	2	6	2	4	5	6	+1	+3	τ	$\sin\left(1\pi\tau\right)$	6
12	1	8	0	2	4	7	-1	+3	$\tau \exp(1\tau)$	$\sin\left(1\pi\tau\right)$	8
13	2	9	0	1	3	7	+1	+3	$\sin(1\pi\tau)$	$\tau \exp{(1\tau)}$	5
14	3	9	2	3	6	7	-3	+1	$\tau \exp(1\tau)$	$ au^2$	6
15	2	5	2	3	4	5	+1	-1	$\tau \exp(1\tau)$	au	8
16	4	7	2	3	5	6	+3	+1	$\tau \exp(1\tau)$	$2\tau \exp\left(1\tau\right)$	9
17	1	5	2	3	4	5	-1	+1	2τ	$\sin\left(1\pi\tau\right)$	7
18	3	6	1	3	4	6	-2	-1	$ au^2$	$\tau + 5\tau^2$	8
19	2	5	1	2	3	5	+2	0	$4\tau - 2\tau^2$	au	6
20	3	7	2	3	4	6	-2	-2	$\tau \exp(1\tau)$	2τ	8
21	1	5	1	2	3	4	+3	+1	4τ	$\sin\left(1\pi\tau\right)$	5
22	2	6	0	1	2	3	0	+2	$2\tau - \tau^2$	$3\tau^2$	7
23	4	6	0	2	3	4	+3	+3	τ	$\tau + 2\tau^2$	9
24	3	7	2	4	5	7	+3	0	$\tau \exp(1\tau)$	4τ	7
25	2	6	2	4	5	6	+1	+3	au	$\sin\left(2\pi\tau\right)$	6

Табл. 3.2. Варіанти 26–50

Nº	a	ℓ	x_1	x_2	x_3	x_4	h_1	h_2	$\psi_1(t)$	$\psi_2(t)$	T
26	2	5	2	3	4	5	+1	-1	$\tau \exp(2\tau)$	τ	8
27	4	7	2	3	5	7	+3	0	τ^2	$\sin(2\pi\tau)$	9
28	1	5	2	3	4	5	-1	+1	τ^2	$\tau \exp(2\tau)$	7
29	3	6	1	3	4	6	-2	-1	$\sin(4\pi\tau)$	$\sin(2\pi\tau)$	8
30	2	6	1	2	3	5	-2	+1	$\sin(2\pi\tau)$	$ au^2$	6
31	3	6	1	2	3	5	-2	+1	τ	$\sin(3\pi\tau)$	8
32	1	6	1	3	4	5	+1	-2	$\sin(2\pi\tau)$	$\tau \exp(2\tau)$	5
33	2	6	1	2	4	5	-3	+1	$\tau \exp(3\tau)$	$\sin(2\pi\tau)$	7
34	4	6	0	2	4	6	-3	0	τ^2	$\tau \exp(4\tau)$	9
35	3	6	2	3	4	5	-2	+1	$\tau \exp(5\tau)$	$\mid au$	7
36	2	6	2	4	5	6	+3	0	$\tau \exp{(1\tau)}$	$\tau \exp(2\tau)$	6
37	1	6	0	2	4	5	0	+2	$2\tau^2$	$\sin(7\pi\tau)$	8
38	2	6	2	3	4	6	+1	+1	$\tau \exp\left(2\tau\right)$	2τ	5
39	3	7	0	2	5	6	+2	-1	3τ	$\sin(5\pi\tau)$	6
40	2	7	1	2	4	6	-3	+2	$\tau \exp(4\tau)$	τ^2	8
41	4	7	1	3	4	5	-2	+2	τ	$\sin(3\pi\tau)$	9
42	1	7	0	1	2	3	-3	+3	$\tau \exp(3\tau)$	τ	7
43	2	7	1	3	5	6	-1	+1	τ^2	$\sin(2\pi\tau)$	8
44	4	7	0	3	5	7	0	+2	τ^2	$\tau \exp(3\tau)$	9
45	1	7	1	4	5	6	+3	+1	$\sin(2\pi\tau)$	$\sin(4\pi\tau)$	7
46	3	7	1	4	5	7	+2	+1	$\sin(3\pi\tau)$	τ^2	8
47	2	7	1	3	6	7	+1	+3	$\mid \tau \mid$	$\sin(5\pi\tau)$	6
48	3	7	2	3	6	7	-2	-3	$\sin(3\pi\tau)$	$\tau \exp(3\tau)$	8
49	1	7	2	4	5	5	-1	-3	$\tau \exp(3\tau)$	$\sin\left(7\pi\tau\right)$	5
50	2	7	2	4	6	7	-3	-2	$ au^2$	$\tau \exp(2\tau)$	7

4. Крайова задача для рівняння коливань струни

Розв'язати крайову задачу

$$\begin{cases} \frac{\partial^2 u(t,x)}{\partial t^2} = a^2 \frac{\partial^2 u(t,x)}{\partial x^2} + g(t,x), & 0 < x < \ell, & 0 < t \leqslant T, \\ u(0,x) = u_0(x) \\ \frac{\partial u(0,x)}{\partial t} = u_1(x) \end{cases}, & 0 < x < \ell, & 0 < t \leqslant T. \end{cases}$$

$$u(t,0) = \psi_1(t) \\ u(t,\ell) = \psi_2(t) \end{cases}, \qquad 0 \leqslant t \leqslant T.$$

де $g(t,x)=0,\,u_1(x)\equiv 0,\,$ а функції $u_0(x),\,\psi_1(t),\,\psi_2(t)$ та значення параметрів $a,\,\ell,\,x_{1-4},\,h_{1,2}$ суть такі ж самі, як в крайовій задачі для рівняння теплопроводності.