

Departamento de Estatística Universidade Federal de Juiz de Fora

DIC Desbalanceado

Professora Ângela

Experimentos Balanceados e Desbalanceados

- Um experimento balanceado é aquele no qual todos os tratamentos tem o mesmo número de repetições;
- Um experimento desbalanceado é aquele no qual o número de repetições varia entre os diferentes tratamentos.

Parcela Perdida

- O termo parcela perdida identifica uma parcela para a qual não foi possível obter uma observação:
 - No caso de experimentos agronômicos uma parcela pode ser perdida devido a pragas, mal tempo, entre outros;
 - Na medicina uma parcela perdida pode ser causada pelo fato de algum paciente faltar à consulta, ou um acidente no laboratório causar a destruição de unidades experimentais;
 - Normalmente, dados considerados como atípicos (devido á erro ou algo não identificável) são removidos do experimento e tratados como parcela perdida.

Experimento Desbalanceado ou Experimento com Parcelas Perdidas

- Quando um experimento balanceado perde parcelas, ele passa a ser tratado como um experimento desbalanceado;
- A técnica da ANOVA não se altera muito do caso balanceado para o desbalanceado;
- O maior cuidado deve ser na definição dos graus de liberdade:
 - Para cada parcela perdida deve-se eliminar um grau de liberdade do total, e por consequência, um grau de liberdade do resíduo.

Análise de um Experimento Inteiramente Casualizado com Parcelas Perdidas

- Os cálculos envolvidos em uma Análise da Variância para experimentos desbalanciados são muito semelhantes àqueles para experimentos balanceados;
- Primeiro deve-se especificar o modelo matemático:
 - $y_{ij} = m + t_i + e_{ij};$
 - Em que $i=1,2,\ldots,I$ identifica o tratamento e $j=1,2,\ldots,n_i$ representa o número de repetições relacionado ao tratamento i.

Esquema da ANOVA

Causa de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio		
Tratamentos	I-1	$\sum_{i} \frac{1}{n_i} T_i^2 - C$	$\frac{SQTrat}{I-1}$		
Resíduo	N-I	$\sum_{i,j} y_{ij}^2 - \sum_i \frac{1}{n_i} T_i^2$	SQRes N – I		
Total	N-1	$\sum_{i,j} y_{ij}^2 - C$			

Em que
$$N = \sum_i n_i$$

Coeficiente de Variação

- Toda a Análise da Variância deve ser seguida de seu Coeficiente de Variação:
- $V = \frac{s}{\bar{x}} 100\%$
- O CV fornece um indicativo da maneira como o experimento foi conduzido;
- Quanto menor for o CV, maior é a probabilidade de que o experimento tenha sido bem instalado e conduzido;
- Em caso de ANOVAs feitas com dados transformados, deve-se utilizar o CV relativo aos dados originais.

Exemplo

- Eu pertenço a um clube de golfe na minha vizinhança e divido o ano em três estações de golfe: verão (junho a setembro), inverno (novembro a março) e entre estações (outubro, abril e maio).
- Acredito que jogo melhor durante o verão e entre estações, e jogo pior no inverno. Os dados do meu jogo durante o ano passado estão na tabela abaixo.
- Conduza a ANOVA a análise dos resíduos, e caso as pressuposições sejam todas respeitadas, conduza a análise da variância, conclua e interprete.

Estação	Observações										Total
Verão	83	85	85	87	90	88	88	84	91	90	87 I
Entre	91	87	84	87	85	86	83				603
Inverno	94	91	87	85	87	91	92	86			713
Total											2187