實習九

雙載子接面電體交流小訊號放大電路 (一)

實習目的

- 1. 學習雙載子接面電晶體放大電路之交流小訊號基本特性。
- 藉由實驗過程,以瞭解共射極放大器之電壓放大、電流放大與功率放大等交流小訊號原理與測量方法。

相關知識

- ◆ 直流偏壓乃是用來提供電晶體電路工作時所需之電源,此種偏壓純粹是一種直流操作,其目的乃為建立電路之直流工作點,當交流訊號輸入時,會產生一個在工作點附近變化之電壓與電流,提供電晶體能適當的將交流訊號作完整而無失真之放大所需之能量。
- ◆ 本實習將討論雙載子接面電晶體 (BJT) 放大器之交流小訊號分析 (僅針對中類信號之交流訊號分析),首先討論 BJT 交流小訊號放大器原理與交流小訊號等效模型後,接著探討適合用作為中級之功率放大器,即共射極(CE) 放大器的小訊號交流特性,包括電流增益 (Current Gain)、電壓增益 (Voltage Gain)、輸入阻抗 (Input Impedance) 與輸出阻抗 (Output Impedance) 等之交流小訊號特性。

電晶體交流小訊號放大器原理

- ◆ 在電子電路中,具有放大功能之主動元件(如電晶體),往往能使輸出之能量大於輸入能量,此顯然 違背能量不滅定律,而能支持放大功能論點之原因,有直流偏壓供給這些主動元件,以提供對訊號放 大時所增加之能量。接著使用單級共射極固定偏壓放大器(如下圖所示)為例,以說明雙載子電晶體小 訊號放大原理。
- ◆ 當對電晶體施予適當直流偏壓後 (此偏壓必須使電 晶體操作於順向活性區),便可得到此電路之直流負 載線與工作點 (Q點),如下圖所示。

◆ 當於電晶體輸入端加上ν_s = V_m sin ωt 之輸入訊號時,則ν_s會通過C_B進入輸入端(基極),同時ν_s亦會產生輸入電流(基極電流) i_b,而i_b會以 Q 點為中心,沿著負載線作等量之變化,因電晶體操作於順向活性區,故輸入電流 i_b 經由電晶體之放大(i_c = β·i_b)後,所產生之輸出電流 i_c (集極電流)與

集-射極電壓 v_{ce} 亦隨之變化,此可由基極電流之變化量對 i_e 與 v_{ce} 之投影而得,如上圖所示。

◆ 觀察上圖可知,輸入電流(基極電流)之峰値 i_{bm}為 15 微安 (15μA), 而輸出電流(集極電流)之峰値 i_{cm} 為 1.5 毫安 (1.5mA), 很明顯的, 輸出電流比輸入電流增加了 100 倍,此代表電晶體具有放大交流訊號之功用。

- ◆ 觀察右圖可知,當基極電流i。增大時,集極電流 i。會隨之增大,導致電晶體集-射極電壓vce亦會 變大:反之,當基極電流i。變小時,集極電流i。亦 會隨之減時,導致電晶體集-射極電壓vce會隨 之變小。
- ▶ 由於不考慮直流訊號(將V_{cc}接地),導致集極電流(輸出電流) i_c之變化方向與基極電流(輸入電流)i_b相反(即i_c與i_b反相),且集一射極電壓(輸出電壓)v_{ce}之極性與輸入電壓v_s亦相反(即 v_s與 v_{ce} 反相)。

雙載子接面電晶體之混合 // 參數小訊號等效模型

- ◆ 另一種電晶體小訊號等效電路模型為混合 // 參數小訊號模型,由於此種小訊號模型之使用歷史較混合 // 參數小訊號等效模型久,且使用 // 參數來量測亦較 // 參數簡單正確,因此大多數之製造商在電晶體規格表中常以混合 // 參數列出,故本章主要採用混合 // 參數小訊號模型來對電晶體放大電路進行小訊號分析。
- ◆ 電晶體之混合 // 参數之小訊號模型,亦可用右圖之線

性雙埠網路來代表,則右圖之特性方程式可表示為

$$v_i = f(i_i, v_o)$$
 \mathbf{Q} $i_o = f(i_i, v_o)$

◆ 若以函數之觀點,可將上兩式可改寫為

$$v_i = h_i i_i + h_r v_o$$

$$i_o = h_f i_i + h_o v_o$$

◆ 若以向量分析之觀點,可將 $v_i = h_i i_i + h_r v_o$ 與 $i_o = h_f i_i + h_o v_o$ 改寫為

$$\begin{bmatrix} v_i \\ i_o \end{bmatrix} = \begin{bmatrix} h_i & h_r \\ h_f & h_o \end{bmatrix} \cdot \begin{bmatrix} i_i \\ v_o \end{bmatrix}$$

- 1. h_i 式定義當輸出短路時之輸入阻抗,即 $h_i = \frac{v_i}{i_i} | v_o \rightarrow 0$ 。
- 2. h_r 式定義當輸入開路時之逆向電壓增益,即 $h_r = \frac{v_i}{v_o} | i_i \rightarrow 0$ 。
- 3. h_f 式定義當輸出短路時之順向電流增益,即 $h_f = \frac{i_o}{i_i} | v_o \rightarrow 0$ 。
- 4. h_o 式定義當輸入開路時之輸出導納,即 $h_o = \frac{i_o}{v_o} | i_i \rightarrow 0$ 。

不同電晶體電路組態之 // 參數表示法

- ◆ 因電晶體之電路組態可分共射極 (CE) 組態、共基極 (CB) 組態與共集極 (CC) 組態等三種,因每一種電晶體電路組態之電氣特性皆不相同,故 // 參數亦不同,因此有不同之標示方法,一般之標示方法 為在 // 參數之下標加上該種組態之第一個英文字母來作區分。

h 参數	基本定義	CE	CC	СВ
h _i	輸出短路時之輸入阻抗	h _{ie}	h _{ic}	h _{ib}
h_r	輸入開路時之逆向電壓増益	h _{re}	h _{rc}	h_{rb}
h_f	輸出短路時之順向電流増益	h _{fe}	h _{fc}	h_{fb}
h _o	輸入開路時之輸出導納	h _{oe}	h _{oc}	h _{ob}

雙載子接面電晶體小訊號放大器之分析

- ◆ 一般而言,小訊號分析是指電子電路工作於中頻帶之分析,在此頻率範圍內之所有耦合電容與旁路電容等微法拉(µF)級電容之阻抗皆相當小,故可用短路來取代:而對極際電容與寄生電容等微微法拉(pF)級電容之阻抗會變得相對較大,故可用開路來取代。
- ◆ 因為電晶體放大器之小訊號分析,主要是討論放大器之交流特性,故在進行電晶體電路之小訊號分析時,可忽略直流電壓之影響,即假設直流電源等於零,並採用混合 // 參數小訊號模型來取代電晶體,以簡化電路分析之複雜度。
- ◆ 本實習將採用 BJT 混合 // 參數小訊號模型,針對這兩種共射極放大器作交流小訊號分析,以了解此兩種放大器之交流特性之差異。

共射極 (CE) 組態放大器之小訊號分析

- ◆ 第五章所討論之共射極組態直流偏壓電路,大致上可分為兩種,一種是無射極電阻之共射極放大電路,此種電路結構較為簡單;而另一種是加上射極電阻之電晶體放大電路,以提高偏壓之穩定性。
- ◆ 本節將採用混合 // 參數小訊號模型,針對這兩種 共射極電路組態作交流小訊號分析,以了解此兩 種放大器之交流特性的差異。
- ◆ 若將交流輸入訊號 v_s(t)經由耦合電容進入電晶體之基極,而輸出訊號則由集極取出,即可組成共基極(CB)放大器,如右圖所示。

無射極電阻之電晶體放大電路

◆ 在進行電晶體電路之交流小訊號分析時,所有耦合電容(C_B, C_C)與旁路電容(C_E)皆可以短路取代,故對下圖進行小訊號分析時,可視為無射極電阻之共射極放大電器(右下圖之射極電阻被旁路電容C_E短路而不存在)

無射極電阻之共射極放大器

- ◆ 若將交流輸入訊號 v_s 經由耦合電容進入電晶體 之基極,而輸出訊號則由集極取出,即可組成共 射極(CE)放大器,如右圖所示。
- ◆ 欲對共射極(CE)放大器作小訊號分析時,首先必 須將所有耦合電容與旁路電容短路,並移掉所有 之直流電源(因僅考慮交流效應,應將直流電源 接地)後,即可得到右上圖之交流等效電路, 如右下圖所示。

接著以共射極組態之混合 // 参數小訊號

模型來取代電晶體後,即可得此右上圖小訊號

等效電路,如右下圖,接著利用左上圖之等效

電路,以求出 $A_i \times A_v \times Z_i$ 與 Z_o 如下:

(a) 電流増益 A_i:

利用 KVL 於右下圖之輸出迴路可得

$$\boldsymbol{i}_c + \boldsymbol{h}_{fe} \cdot \boldsymbol{i}_b + \boldsymbol{h}_{oe} \cdot \boldsymbol{v}_o = \boldsymbol{i}_c + \boldsymbol{h}_{fe} \cdot \boldsymbol{i}_b + \boldsymbol{h}_{oe} \cdot \boldsymbol{i}_c \cdot \boldsymbol{Z}_L = 0$$

整理上式可得
$$A_i' = \frac{i_c}{i_b} = \frac{-h_{fe}}{1 + h_{oc} \cdot Z_L} \approx -h_{fe}$$

(若 $h_{oe} \rightarrow 0 \cdot h_{re} \rightarrow 0$)

利用右下圖可得電流增益
$$A_i = \frac{i_L}{i_s} = \frac{i_L}{i_c} \cdot \frac{i_c}{i_b} \cdot \frac{i_b}{i_s} = \frac{R_C}{R_L + R_C} \cdot A_i' \cdot \frac{R_B}{R_B + h_{ie}}$$
 \circ

其中
$$Z_L = R_c // R_L = \frac{R_c \cdot R_L}{R_c + R_L} \cdot R_B = R_1 // R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

(b) 電壓増益 A_v:

利用 KVL 於下圖之輸入 迴路可得 $v_i = h_{ie} \cdot i_b + h_{re} \cdot v_o = \left[h_{re} - \frac{h_{ie} \cdot (1 + h_{oe} \cdot Z_L)}{h_{fe} \cdot Z_L} \right] \cdot v_o$,其中

$$i_b = \frac{1 + h_{oe} \cdot Z_L}{-h_{fe}} \cdot i_c \cdot i_c = \frac{v_o}{Z_L} \not \bowtie Z_L = R_C // R_L \circ$$

整理上式可得

$$A'_{v} = \frac{v_{o}}{v_{i}} = \frac{-h_{fe} \cdot Z_{L}}{h_{ie} + (h_{ie} \cdot h_{oe} - h_{fe} \cdot h_{re}) \cdot Z_{L}}$$

$$\approx \frac{-h_{fe} \cdot Z_{L}}{h_{ie}}$$

(若
$$h_{oe} \rightarrow 0 \cdot h_{re} \rightarrow 0$$
)

利用右上圖可得共射極放大器之電壓增益 A_v 為 $A_v = \frac{v_o}{v_s} = \frac{v_o}{v_i} \cdot \frac{v_i}{v_s} = A_v' \cdot \frac{Z_i}{R_S + Z_i}$

其中
$$Z_i = R_B // h_{ie} = \frac{R_B \cdot h_{ie}}{R_B + h_{ie}}$$
 °

(c) 輸入阻抗 Z_i :

利用 KVL 於右下圖之輸入迴路可得

$$v_i = h_{ie} \cdot i_b + h_{re} \cdot v_o = h_{ie} \cdot i_b + h_{re} \cdot i_c \cdot Z_L = h_{ie} \cdot i_b + h_{re} \cdot A_i \cdot i_b \cdot Z_L = i_b \cdot (h_{ie} + h_{re} \cdot A_i \cdot Z_L)$$

整理上式可得

$$Z_i' = \frac{v_i}{i_b} = h_{ie} + h_{re} \cdot A_i' \cdot Z_L \approx h_{ie}$$

(**若** $h_{oe} \rightarrow 0 \cdot h_{re} \rightarrow 0$)

由右上圖可得放大器之輸入阻抗 Z_i 為

$$Z_i = R_B // Z_i' = \frac{R_B \cdot Z_i'}{R_B + Z_i'}$$

(d) **輸出阻抗** Z_o:

根據電路學之定義,令 $v_s=0$,並移去負 $v_s(0)$ $\sqrt{}$ 載 R_L ,並在輸出端加上 v_2 ,即可得 Z_o' 為

$$Z_o' = \frac{v_2}{i_2} \Big|_{v_1 = 0, R_L \to \infty}$$

利用上式之定義,可重繪右上圖之等效電路,如右下圖所示(不考慮 R_c 之效應)。

觀察右下圖之輸入與輸出迴路,可分別得電流 $i_1 = \frac{-h_{re} \cdot v_2}{R_s^2 + h_{ie}}$ 與

$$i_2 = h_{fe} \cdot i_1 + h_{oe} \cdot v_2 = h_{fe} \cdot \left(\frac{-h_{re} \cdot v_2}{R_s^{'} + h_{ie}} \right) + h_{oe} \cdot v_2 = \left(h_{oe} - \frac{h_{fe} \cdot h_{re}}{R_s^{'} + h_{ie}} \right) \cdot v_2$$
,整理右式,可得

利用右上圖可得輸出阻抗 $Z_o = Z'_o // R_c = R_c$ 。

具射極電阻之共射極放大器

◆ 一個具有射極電阻,且未加旁路電容之共射極組態放大電路,如右下圖所示。若將電晶體以簡化混合 // 參數小訊號模型來取代後,可得小訊號等效電路,如左下圖所示。

◆ 接著利用左上圖之等效電路,以求出此放大器之 A_i 、 A_v 、 Z_i 與 Z_o 如下:

(a) 電流増益 A_i:

$$A_i' = \frac{i_c}{i_b} = -h_{fe}$$

利用分流定律於右圖之輸入與輸出

迴路,可得

$$A_{i} = \frac{i_{L}}{i_{s}} = \frac{i_{L}}{i_{c}} \cdot \frac{i_{c}}{i_{b}} \cdot \frac{i_{b}}{i_{s}} = \frac{R_{C}}{R_{L} + R_{C}} \cdot (-h_{fe}) \cdot \frac{R_{B}}{R_{B} + h_{ie} + (1 + h_{fe}) \cdot R_{E}}$$

觀察上式可知,具射極電阻之共射極放大器之電流增益,明顯比無射極電阻之共射極放大器的電流增益小,且射極電阻 R_E 愈大,則電流增益會變得愈小。

(b) 電壓增益 A_v:

利用 KVL 於右圖之輸入迴路可得

$$\begin{aligned} v_i &= i_b \cdot h_{ie} + i_e \cdot R_E = i_b \cdot h_{ie} + (1 + h_{fe}) \cdot i_b \cdot R_E \\ &= [h_{ie} + (1 + h_{fe}) \cdot R_E] \cdot i_b \end{aligned}$$

其中
$$i_e = (1 + h_{fe}) \cdot i_b$$
°

再由右圖之輸出迴路可得 $v_o = -h_{fe} \cdot i_b \cdot (R_C // R_L)$,由以上之計算可得 A'_v 為

$$A'_{v} = \frac{v_{o}}{v_{i}} = \frac{-h_{fe} \cdot (R_{C} /\!/ R_{L})}{h_{ie} + (1 + h_{fe}) \cdot R_{E}}$$

觀察上式可知,具射極電阻之共射極放大器之電壓增益,明顯比無射極電阻之共射極放大器的電壓增益小,且射極電阻 R_E 愈大,則電壓增益會變得愈小。

利用右上圖可得放大器之電壓增益人,為

(其中
$$R_i = R_B I [h_{ie} + (1 + h_{fe}) \cdot R_E]$$
)

$$A_{v} = \frac{v_{o}}{v_{s}} = \frac{v_{o}}{v_{i}} \cdot \frac{v_{i}}{v_{s}} = A'_{v} \cdot \frac{R_{i}}{R_{S} + R_{i}}$$

(c) 輸入阻抗 Z_i :

利用 KVL 於右圖之輸入迴路可得

$$v_i = i_b \cdot h_{ie} + i_e \cdot R_E = i_b \cdot [h_{ie} + (1 + h_{fe}) \cdot R_E]$$

整理上式可得

$$Z'_{i} = \frac{v_{i}}{i_{b}} = h_{ie} + (1 + h_{fe}) \cdot R_{E}$$

其中 $v_i = i_b \cdot h_{ie} + (1 + h_{fe}) \cdot R_E$

利用右圖之輸入迴路,可得放大器之輸入阻抗 Z_i 為

$$Z_i = R_B I Z_i' = \frac{R_B \cdot Z_i'}{R_B + Z_i'} = \frac{9K \times 26.1K}{9K + 26.1K} = 6.7K\Omega$$

(d) **輸出阻抗** Z_o:

因相依電流源 $h_{fe} \cdot i_b$ 具有極高之阻抗,故放大器之輸出阻抗 Z_o 為

$$Z_o = \frac{v_o}{i_c} = R_c$$

實習步驟與結果

(一)無射極電阻之共射極放大器

表 9-1 無射極電阻之共射極放大器的直流電壓與電流 集極電阻 $(VR) = __305$ __Ω

測量項目	理論。値	測量値			
$I_C(mA)$	12.37	11.75			
$I_B(\mu A)$	51.5	49.7			
$I_E(mA)$	12.42	11.98			
$V_B(V)$	6	3.2			
$V_C(V)$	8.22	8.96			
$V_E(V)$	2.7	3			
$V_{CE}(V)$	5.52	6			
$\beta = \frac{I_C}{I_B}$	240	236			

表 9-2 無射極電阻之共射極放大器的交流電壓波形

表 9-3 無射極電阻之共射極放大器的電壓與電流增益

測量項目	理論値	測量値
$i_s(t) = \frac{v_s(t) - v_b(t)}{R_S}$	12 μΑ	9.8 μ4
$i_L(t) = \frac{v_o(t)}{R_L}$	0.67mA	0.56mA
$A_i = \frac{i_L(t)}{i_s(t)}$	63.5	57
$A_{v} = \frac{v_{o}(t)}{v_{s}(t)}$	17.2	14.3
$A_p = A_i \times A_v$	1092	815

表 9-4 無射極電阻之共射極放大器的電壓增益對頻率關係

頻率 f (Hz)	100	300	500	1K	5K	20K	50K	100K	500K	1M
$v_{s(p-p)}$	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
$v_{o(p-p)}$	3.24	5.16	5.52	5.72	5.92	5.92	5.72	5.2	2	1.02
$A_v = \frac{v_{o(p-p)}}{v_{s(p-p)}}$	8.1	12.9	13.8	14.3	14.8	14.8	14.3	13	5	2.55

(二)具射極電阻之共射極放大器

表 9-5 具射極電阻之共射極放大器的直流電壓與電流

集極電阻 (VR) = <u>286</u>Ω

測量項目	理論値	測量値			
$I_C(mA)$	12.37	11.77			
$I_B(\mu A)$	51.5 49.6				
$I_E(mA)$	12.42	11.93			
$V_B(V)$	6	3.25			
$V_C(V)$	8.22	9.05			
$V_E(V)$	2.7	3.01			
$V_{CE}(V)$	5.52	6			
$\beta = \frac{I_C}{I_B}$	240	237			

表 9-6 具射極電阻之共射極放大器的交流電壓波形

表 9-7 具射極電阻之共射極放大器的電壓與電流增益

測量項目	理論値	測量値			
$i_s(t) = \frac{v_s(t) - v_b(t)}{R_S}$	9.26 µ4	7.84 µ4			
$i_L(t) = \frac{v_o(t)}{R_L}$	82.3mA	70mA			
$A_i = \frac{i_L(t)}{i_s(t)}$	8.89	8.93			
$A_{v} = \frac{v_{o}(t)}{v_{s}(t)}$	2.2	1.8			
$A_p = A_i \times A_v$	19.6	16.1			

表 9-8 具射極電阻之共射極放大器的電壓增益對頻率關係

頻率 f (Hz)	100	300	500	1K	5K	20K	50K	100K	500K	1M
$v_{s(p-p)}$	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
$v_{o(p-p)}$	0.7	0.7	0.7	0.71	0.72	0.72	0.71	0.71	0.6	0.44
$A_v = \frac{v_{o(p-p)}}{v_{s(p-p)}}$	1.75	1.75	1.75	1.78	1.8	1.8	1.78	1.78	1.5	1.1

