formulas for discrete-time LTI signals and systems

name	formula
area under impulse	$\sum_{n} \delta(n) = 1$
multiplication by impulse	$f(n) \delta(n) = f(0) \delta(n)$
by shifted impulse	$f(n) \delta(n - n_o) = f(n_o) \delta(n - n_o)$
convolution	$f(n) * g(n) = \sum_{k} f(k) g(n - k)$
\dots with an impulse	$f(n)*\delta(n)=f(n)$
\dots with a shifted impulse	$f(n) * \delta(n - n_o) = f(n - n_o)$
transfer function	$H(z) = \sum_{n} h(n) z^{-n}$
frequency response	$H^f(\omega) = \sum_n h(n) e^{-j\omega n}$
their connection	$H^f(\omega) = H(e^{j\omega})$ provided unit circle $\subset ROC$

formulas for continuous-time LTI signals and systems

name	formula
area under impulse	$\int \delta(t) dt = 1$
multiplication by impulse	$f(t) \delta(t) = f(0) \delta(t)$
by shifted impulse	$f(t) \delta(t - t_o) = f(t_o) \delta(t - t_o)$
convolution	$f(t) * g(t) = \int f(\tau) g(t - \tau) d\tau$
with an impulse	$f(t)*\delta(t)=f(t)$
with a shifted impulse	$f(t) * \delta(t - t_o) = f(t - t_o)$
transfer function	$H(s) = \int h(t) e^{-st} dt$
frequency response	$H^f(\omega) = \int h(t) e^{-j\omega t} dt$
their connection	$H^f(\omega) = H(j\omega)$ provided $j\omega$ -axis \subset ROC

$useful\ formulas$

name	formula
Euler's formula	$e^{j\theta} = \cos(\theta) + j\sin(\theta)$
for cosine	$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$
for sine	$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$
sinc function	$\operatorname{sinc}(\theta) := \frac{\sin(\pi \theta)}{\pi \theta}$

${\bf Z}$ -transform transform pairs

x(n)	X(z)	ROC
x(n)	$\sum_{n} x(n) z^{-n} \text{(def.)}$	
$\delta(n)$	1	all z
u(n)	$\frac{z}{z-1}$	z > 1
$a^n u(n)$	$\frac{z}{z-a}$	z > a
$-a^n u(-n-1)$	$\frac{z}{z-a}$	z < a
$\cos(\omega_o n) u(n)$	$\frac{z^2 - \cos(\omega_o) z}{z^2 - 2 \cos(\omega_o) z + 1}$	z > 1
$\sin(\omega_o n) u(n)$	$\frac{\sin(\omega_o)z}{z^2-2\cos(\omega_o)z+1}$	z > 1
$a^n \cos(\omega_o n) u(n)$	$\frac{z^2 - a\cos(\omega_o) z}{z^2 - 2a\cos(\omega_o) z + a^2}$	z > a
$a^n \sin(\omega_o n) u(n)$	$\frac{a\sin(\omega_o)z}{z^2 - 2a\cos(\omega_o)z + a^2}$	z > a

Z-transform transform properties

x(n)	X(z)
a x(n) + b g(n)	aX(z) + bG(z)
$x(n-n_o)$	$z^{-n_o} X(z)$
x(n) * f(n)	X(z) F(z)

selected Laplace transform pairs

x(t)	X(s)	ROC
x(t)	$\int x(t) e^{-st} dt (\text{def.})$	
$\delta(t)$	1	all s
u(t)	$\frac{1}{s}$	$\operatorname{Re}(s) > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}(s) > -a$
$\cos(\omega_o t) u(t)$	$\frac{s}{s^2 + \omega_o^2}$	$\operatorname{Re}(s) > 0$
$\sin(\omega_o t) u(t)$	$\frac{\omega_o}{s^2 + \omega_o^2}$	$\operatorname{Re}(s) > 0$
$e^{-at}\cos(\omega_o t)u(t)$	$\frac{s+a}{(s+a)^2 + \omega_o^2}$	$\operatorname{Re}(s) > -a$
$e^{-at}\sin(\omega_o t)u(t)$	$\frac{\omega_o}{(s+a)^2 + \omega_o^2}$	$\operatorname{Re}(s) > -a$

Note: a is assumed real.

Laplace transform properties

$\overline{x(t)}$	X(s)
	(-)
a x(t) + b g(t)	aX(s) + bG(s)
x(t) * g(t)	X(s) G(s)
$\frac{dx(t)}{dt}$	s X(s)
$x(t-t_o)$	$e^{-s t_o} X(s)$

Fourier series

If x(t) is periodic with period T then

$$x(t) = \sum c(k) e^{jk \omega_o t}$$

where

$$\omega_o = \frac{2\,\pi}{T}$$

and

$$c(k) = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\omega_o t} dt$$

selected Fourier transform pairs

x(t)	$X^f(\omega)$
x(t)	$\int x(t) e^{-j\omega t} dt (\text{def.})$
$\frac{1}{2\pi} \int X^f(\omega) \mathrm{e}^{\mathrm{j}\omega t} d\omega$	$X^f(\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi \delta(\omega) + \frac{1}{\mathrm{j}\omega}$
$\mathrm{e}^{\mathrm{j}\omega_o t}$	$2 \pi \delta(\omega - \omega_o)$
$\cos(\omega_o t)$	$\pi \delta(\omega + \omega_o) + \pi \delta(\omega - \omega_o)$
$\sin(\omega_o t)$	$j\pi \delta(\omega + \omega_o) - j\pi \delta(\omega - \omega_o)$
$\frac{\omega_o}{\pi}$ sinc $\left(\frac{\omega_o}{\pi}t\right)$	ideal LPF cut-off frequency ω_o
symmetric pulse $ \mbox{width } T, \mbox{ height } 1 $	$\frac{2}{\omega} \sin \left(\frac{T}{2} \omega \right)$
impulse train	impulse train $ period, height $

Fourier transform properties

x(t)	$X^f(\omega)$
a x(t) + b g(t)	$a X^f(\omega) + b G^f(\omega)$
x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
x(t) * g(t)	$X^f(\omega) G^f(\omega)$
x(t) g(t)	$\frac{1}{2\pi} X^f(\omega) * G^f(\omega)$
$x(t-t_o)$	$e^{-jt_o\omega} X^f(\omega)$
$x(t) e^{\mathrm{j}\omega_o t}$	$X^f(\omega-\omega_o)$
$x(t)\cos(\omega_o t)$	$0.5 X^f(\omega + \omega_o) + 0.5 X^f(\omega - \omega_o)$
$x(t) \sin(\omega_o t)$	$j 0.5 X^f(\omega + \omega_o) - j 0.5 X^f(\omega - \omega_o)$
$\frac{dx(t)}{dt}$	$\mathrm{j}\omegaX^f(\omega)$