DAY 4

THEOREM: Prove that the lengths of tangents drawn from an external point to a circle are equal.

Given: A circle with centre O and PA and PB are two tangents drawn from point P.

To Prove: - PA = PB

Construction Join OP, OA and OB

Proof:- Now In right angled \triangle OAP and \triangle OBP, we've

$$OA = OB$$
 (Equal Radii)
 $\angle OAP = \angle OBP = 90^{\circ}$
 $OP = OP$ (Common)
 $\therefore \triangle OAP \cong \triangle OBP$
 $\therefore PA = PB$ [C.P.C.T.]

ALITER METHOD:-

This theorem can be proved by Pythagoras theorem.

In
$$\triangle OAP$$
, we've $OP^2 = OA^2 + AP^2$
 $\Rightarrow OA^2 = OP^2 - AP^2 \dots \dots \dots i)$
and In $\triangle OBP$, we've $OP^2 = OB^2 + BP^2$
 $\Rightarrow OB^2 = OP^2 - BP^2 \dots \dots \dots \dots \dots ii)$
Since $OA = OB$ (Equal Radii) $\Rightarrow OA^2 = OB^2$
 $\Rightarrow OP^2 - AP^2 = OP^2 - BP^2$ [From i) & ii)]
 $\Rightarrow AP^2 = BP^2$ or $AP = BP$

RESULT: Centre of the circle lies on the bisector of the angle between the two tangents.

Since In above theorem $\triangle OAP \cong \triangle OBP$ $\therefore \angle OPA = \angle OPB$ [CPCT] Hence the proof

1. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80° , then determine $\angle POA$. [Ex 10.2, Q 3]

Sol:-
$$\angle APO = \angle BPO = \frac{1}{2} \angle APB = \frac{1}{2} \times 80^{0} = 40^{0}$$

In rt. $\angle d \Delta PAO$, we've $\angle PAO = 90^{0}$
 $\Rightarrow \angle POA + \angle APO + 90^{0} = 180^{0}$
 $\Rightarrow \angle POA + 40^{0} + 90^{0} = 180^{0}$
 $\Rightarrow \angle POA = 180^{0} - 130^{0} = 50^{0}$

2. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that

$$AB + CD = AD + BC$$
Sol: - LHS: AB + CD
$$= (AP + PB) + (CR + RD)$$

$$\{ AP = AS, BP = BQ, CR = CQ, RD = DS \}$$

$$\{ Tangents from external point are equal \}$$

$$= AS + BQ + CQ + DS$$

$$= (AS + DS) + (BQ + CQ) = AD + BC$$

[Ex 10.2, Q 8]

3. Prove that the parallelogram circumscribing a circle is rhombus.

[Ex 10.2, Q 11]

Sol:- Result of above example can be used directly.

$$AB + CD = AD + BC \dots \dots i)$$

Since ABCD is ||gm (given)
 $\therefore AB = CD$ and $AD = BC \dots \dots ii)$
From i) & ii), we've
 $AB + AB = AD + AD \implies 2AB = 2AD \implies AB = AD$
i.e. Two adjacent sides of a || gm are equal.
Hence ABCD is a rhombus

come-become-educated

