Bike Share Demand Forecast

November 19, 2019

```
[]: # ----- Step 1a: Define and categorize the problem statement
   # The problem statement is to "Predict the daily bike rental count based on the
    →environmental and seasonal settings"
    # This is clearly a 'Supervised machine learning regression problem' to predict \Box
    \rightarrowa number based on the input features.
    # ----- Step 1a ends here -----
[1]: # -----Step 1b: Import all the required libraries -----
    #---- for data transformations----
       #install.packages("lubridate")
       library(lubridate)
    #--- for EDA Visualizations -----
       #install.packages("corrplot")
       library(corrplot)
       #install.packages("ggplot2")
       library(ggplot2)
       #install.packages("GGally")
       library("GGally")
       #install.packages("qqExtra")
       library(ggExtra)
    #---- for model building----
       library(caret)
       #install.packages("Metrics")
       library(Metrics)
       #install.packages("randomForest")
       library(randomForest)
     ----- Step 1b ends here
```

Attaching package: lubridate

```
date
   corrplot 0.84 loaded
   Registered S3 method overwritten by 'GGally':
    method from
           ggplot2
     +.gg
   Loading required package: lattice
   Attaching package: Metrics
   The following objects are masked from package:caret:
      precision, recall
   randomForest 4.6-14
   Type rfNews() to see new features/changes/bug fixes.
   Attaching package: randomForest
   The following object is masked from package:ggplot2:
      margin
[3]: # ----- Step 2: Gather the data -----
     # Data is provided as .csv file and already split into Test and Train.
     # The training set is comprised of the first 19 days of each month, while the
    \rightarrow test set is the 20th to the end of the month.
     # Let's import the data
       bike= read.csv("/Users/snehashrungarpawar/Documents/Master in Data Science/
    →DPA/Project/Data/train.csv", header=TRUE)
       bike_test = read.csv("/Users/snehashrungarpawar/Documents/Master in Data_
    →Science/DPA/Project/Data/test.csv", header=TRUE)
    # ----- Step 2 ends here -----
[]: # ------ Step 3: Data Preparation -----
     # 3a. Analyze Attributes: Check properties of data
     # 3b. Complete Data Perform missing value analysis and Impute if needed
     # 3c. Correct Data: Check for any invalid data points
     # 3d. Create Derived Attributes - Feature Extraction
     # 3e. Convert - Converting data to proper formats
[4]: # 3a. Analyze Attributes: Check properties of data
         dim(bike)
```

The following object is masked from package:base:

```
str(bike)
head(bike, 10)

# 3a → Inference:
#i. The dataset has 10,886 observations (n=10886) and 12 columns of type int, num and factor.
#ii. Season, Holiday, Working day and weather are categorical variables.
#ii. temp, atemp, humidity, windspeed, casual, registered and count are
continuous numerical variables.
```

1. 10886 2. 12

```
'data.frame': 10886 obs. of 12 variables:
$ datetime : Factor w/ 10886 levels "2011-01-01 00:00:00",...: 1 2 3 4 5 6 7 8
9 10 ...
$ season
          : int 111111111...
$ holiday : int 0000000000...
$ workingday: int  0 0 0 0 0 0 0 0 0 ...
$ weather : int 1 1 1 1 1 2 1 1 1 1 ...
$ temp
           : num 9.84 9.02 9.02 9.84 9.84 ...
           : num 14.4 13.6 13.6 14.4 14.4 ...
$ atemp
$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...
$ windspeed : num  0 0 0 0 0 ...
$ casual
           : int 3853002118...
$ registered: int 13 32 27 10 1 1 0 2 7 6 ...
$ count
         : int 16 40 32 13 1 1 2 3 8 14 ...
```

datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed
2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000
2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000
2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000
2011-01-01 05:00:00	1	0	0	2	9.84	12.880	75	6.0032
2011-01-01 06:00:00	1	0	0	1	9.02	13.635	80	0.0000
2011-01-01 07:00:00	1	0	0	1	8.20	12.880	86	0.0000
2011-01-01 08:00:00	1	0	0	1	9.84	14.395	<i>7</i> 5	0.0000
2011-01-01 09:00:00	1	0	0	1	13.12	17.425	76	0.0000

```
[5]: # 3b. Complete Data Perform missing value analysis and Impute if needed

table(is.na(bike))

# 3b → Inference: There are no null values in the dataset. If it had, then

⇔either the rows/columns had to be

# dropped or the null values be imputed based on the % of null values
```

FALSE 130632

```
[]: # 3c. Correct Data: Check for any invalid data points
        # From above observations data doesnot seem to have any invalid datatypes u
     \rightarrow to be handled.
        # Let's check for the outliers in EDA step
[6]: # 3d. Create Derived Attributes - Feature Extraction
          # Lets extract 'date', 'month', 'weekday' and 'year' from 'datetime' columnu
     →as we will be needing it for analysis
          bike$date=as.Date(substr(bike$datetime,1,10))
          bike$year = as.factor(year(bike$datetime))
          bike$month = as.factor(month(bike$datetime))
          bike$hour = as.factor(hour(bike$datetime))
          bike$wkday = as.factor(wday(bike$datetime))
          bike_test$date=as.Date(substr(bike_test$datetime,1,10))
          bike_test$year = as.factor(year(bike_test$datetime))
          bike test$month = as.factor(month(bike test$datetime))
          bike_test$hour = as.factor(hour(bike_test$datetime))
          bike_test$wkday = as.factor(wday(bike_test$datetime))
          # Drop datetime as we have extracted all the above needed information \Box
     \rightarrow from it
          bike = bike[-c(1)]
          bike_test = bike_test[-c(1)]
          head(bike, 5)
          head(bike_test, 5)
      # 3d -> Inference: There are no null values in the dataset. If it had, then
     →either the rows/columns had to be
                        #dropped or the null values be imputed based on the % of
     \rightarrownull values.
```

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	reg	istered	
	1	0	0	1	9.84	14.395	81	0	3	13		
	1	0	0	1	9.02	13.635	80	0	8	32		
	1	0	0	1	9.02	13.635	80	0	5	27		
	1	0	0	1	9.84	14.395	75	0	3	10		
	1	0	0	1	9.84	14.395	75	0	0	1		
	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	date		year	1
	season 1	holiday 0	workingday 1	weather 1	temp 10.66	atemp 11.365	humidity 56	windspeed 26.0027	date 2011-01	-20	year 2011	1
	season 1 1	holiday 0 0	workingday 1 1	weather 1 1		I		1			,	
-	season 1 1 1	holiday 0 0 0	workingday 1 1 1	weather 1 1 1	10.66	11.365	56	26.0027	2011-01	-20	2011	
-	season 1 1 1 1	holiday 0 0 0 0	workingday 1 1 1 1	weather 1 1 1 1 1	10.66 10.66	11.365 13.635	56 56	26.0027 0.0000	2011-01 2011-01	-20 -20	2011 2011	
	season 1 1 1 1 1 1 1	holiday 0 0 0 0 0 0 0	workingday 1 1 1 1 1	weather 1 1 1 1 1 1 1	10.66 10.66 10.66	11.365 13.635 13.635	56 56 56	26.0027 0.0000 0.0000	2011-01 2011-01 2011-01	-20 -20 -20	2011 2011 2011	

[7]: # 3e. Convert - Converting data to proper formats

```
'data.frame': 10886 obs. of 16 variables:
           : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
$ season
            : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$ holiday
$ workingday: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
           : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 2 1 1 1 1 ...
$ weather
            : num 9.84 9.02 9.02 9.84 9.84 ...
$ temp
            : num 14.4 13.6 13.6 14.4 14.4 ...
$ atemp
$ humidity : int 81 80 80 75 75 75 80 86 75 76 ...
$ windspeed : num  0  0  0  0  0  ...
$ casual
          : int 3853002118...
$ registered: int 13 32 27 10 1 1 0 2 7 6 ...
$ count
          : int 16 40 32 13 1 1 2 3 8 14 ...
$ date
           : Date, format: "2011-01-01" "2011-01-01" ...
           : Factor w/ 2 levels "2011", "2012": 1 1 1 1 1 1 1 1 1 1 ...
$ year
$ month
          : Factor w/ 12 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 1 1 1 1 ...
            : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
$ hour
            : Factor w/ 7 levels "1", "2", "3", "4", ...: 7 7 7 7 7 7 7 7 7 7 ...
$ wkday
'data.frame': 6493 obs. of 13 variables:
$ season
            : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 1 1 1 1 1 1 1 ...
$ holiday
          : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$ workingday: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
\ weather \ : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 2 ...
$ temp
            : num 10.7 10.7 10.7 10.7 10.7 ...
$ atemp
            : num 11.4 13.6 13.6 12.9 12.9 ...
$ humidity : int 56 56 56 56 56 60 60 55 55 52 ...
$ windspeed : num 26 0 0 11 11 ...
            : Date, format: "2011-01-20" "2011-01-20" ...
$ date
$ year
            : Factor w/ 2 levels "2011", "2012": 1 1 1 1 1 1 1 1 1 1 ...
            : Factor w/ 12 levels "1", "2", "3", "4", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ month
            : Factor w/ 24 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
$ hour
            : Factor w/ 7 levels "1", "2", "3", "4", ...: 5 5 5 5 5 5 5 5 5 5 5 ...
$ wkdav
```

```
[]: # ----- Step 4: Exploratory Data Analysis -----
        # 4a. Outlier Analysis
        # 4a(1). Visualize continuos variables wrt target variable
        # 4a(2). Visualize categorical variables wrt target variable
[]: # 4b. Correlation Analysis
    # ----- Explore Continuous Variables-----
        # 4b(1). Explore continous features
            # i. Check distribution of target variable
            # ii. Explore correlation between independent continuous variables with \square
     \rightarrow target variable
            # iii. Plot heatmap for correlation matrix (to check for \Box
     \rightarrow multicolinearity)
            \# iv. Visualize the relationship among all continuous variables using
     \rightarrow pairplots
            # v. Explore relationship between independent continuous variables and
     →dependent variables using Joint Plot
[8]: # 4b(1) i. Check distribution of target variable
              hist(bike$count)
              plot(bike$count)
       # Inference: Target variable "count" is almost normally distributed.
```

Histogram of bike\$count


```
[9]: # 4b(1) ii. Explore correlation between independent continuous variables with

→target variable

plot(bike$temp,bike$count)

plot(bike$atemp,bike$count)

plot(bike$windspeed,bike$count)

plot(bike$humidity,bike$count)
```



```
[10]: # 4b(1) iii. Plot heatmap for correlation matrix (to check for → multicolinearity)

corr <- as.data.frame(lapply(bike[c(6:12)], as.numeric))

corrplot(cor(corr), method = "color", type='lower')

# Inference:

# i. temp and atemp are highly correlated, we would need to drop one of → them to remove multicolinearity.

# ii. We can also drop Registered and Casual from our analysis as → Counts are categorized as Registered and Casual

# and we will be predicting "Count" variable only.
```



```
[11]: # 4b(1) iv. Visualize the relationship among all continuous variables using

→pairplots

ggpairs(bike[c(5:8, 11)], lower=list(continuous=wrap("smooth",

→colour="orange")) )
```



```
[15]: # 4b(1) v. Explore relationship between independent continuous variables and dependent variables using Joint Plot

# 1. temp vs Count
plot_center = ggplot(bike, aes(x=temp,y=count)) + dependent colour="blue") + geom_point(colour="blue") + geom_smooth(method="lm", colour="grey")
ggMarginal(plot_center, type="densigram", colour="blue")
# Inference: temp has good correlation with count.
```



```
[16]: # 4b(1).v.2. atemp vs Count

plot_center = ggplot(bike, aes(x=atemp,y=count)) +

⇒geom_point(colour="red") + geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="red")

# Inference: atemp has good correlation with count.
```



```
[17]: # 4b(1).v.3. humidity vs Count

plot_center = ggplot(bike, aes(x=humidity,y=count)) +___

geom_point(colour="green") + geom_smooth(method="lm") +__

geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="green")

# Inference: Humidity has low correlation with count.
```



```
[18]: # 4b(1).v.4. windspeed vs Count

plot_center = ggplot(bike, aes(x=windspeed,y=count)) +___

—geom_point(colour="orange") + geom_smooth(method="lm", colour="grey")

ggMarginal(plot_center, type="densigram", colour="orange")
```


[]: # 4b(1) Inferences Summary - Analysis of continous variables
1. Target variable 'count' is almost normally distributed.
2. From correlation with dependent variable "count", we can see that
□ → 'casual', 'registered' are very

highly correlated to cnt. Needs to be dropped from the dataset.
3. 'humidity' has low correlation with 'count'. For now, lets keep it.
4. atemp and temp has good correlation with 'count'
5. From heatmap, we can see that atemp and temp are highly correlated.
→ So we need to drop 1 to remove multicollinearity.

6. Since, as seen from jointplot, p(atemp) < p(temp), we can drop
□ → 'temp' and retain 'atemp' in the dataset.

```
[]: # ----- Explore Catogorical Variables-----
         # 4b(2) Explore categorical features
               # i. Check distribution of categorical variables
               \# ii. Check how individual categorical features affects the target \sqcup
      \rightarrow variable
               # iii. Explore trends over time
 []: # 4c. Drop some variables from the dataset based on the analysis so far
             # drop temp, casual, registered and date
            bike_subset = bike[-c(5,9:10, 12)]
            head(bike_subset,5)
 []: #---- Step 4: Exploratory Data Analysis ENDS Here-----
     # Final observations:
     #1.) 'casual' and 'registered' needs to be dropped from the dataset
     #2.) 'atemp' and 'temp' are very strongly correlated . Drop 'atemp' from the _{f L}
     →dataset (since it has higher p-value
             #than 'temp')
     #3.) 'date' does not seem to have any affect on count of bikes, it can be
     \rightarrow dropped from the dataset
     #-----
 []: #-----Part 5 : Model Builing starts here -----
         # 5a. Split data into test and train set
         # 5b. Linear Regression
         # 5c. Random Forest
         # 5d. Gradient Boosting
[19]: # 5a. Split data into test and train set
             sample_size = floor(0.8 * nrow(bike))
             set.seed(1)
             train_index = sample(nrow(bike), size = sample_size)
            train <- bike[train_index, ]</pre>
            test <- bike[-train_index, ]</pre>
[22]: # 5b. Linear Regression
             # Fit Linear Model
            train_subset = train[-c(5,9:10, 12)]
            test\_subset = test[-c(5,9:10, 12)]
             lm_fit = lm(count ~ ., data = train_subset)
            summary(lm_fit)
             # Choosing the best model by AIC in a Stepwise Algorithm
             # The step() function iteratively removes insignificant features from
      \rightarrow the model.
             step(lm_fit)
             summary(lm_fit)
```

```
# Calculate Train RMSLE
        y_act_train <- abs(train_subset$count)</pre>
        y_pred_train <- abs(predict(lm_fit, train_subset))</pre>
        lm_train_RMSLE = rmsle(y_act_train, y_pred_train)
        # Calculate Test RMSLE
        y act test <- abs(test subset$count)</pre>
        y_pred_test <- abs(predict(lm_fit, test_subset))</pre>
        lm_test_RMSLE = rmsle(y_act_test, y_pred_test)
        # Save the results
        lm_results = predict(lm_fit, bike_test)
        hist(lm results)
Call:
lm(formula = count ~ ., data = train_subset)
Residuals:
   Min
                                    Max
             1Q Median
                             3Q
-354.13 -61.80
                 -6.72
                          51.10 432.28
Coefficients: (4 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -88.06071
                          9.41903 -9.349 < 2e-16 ***
season2
              76.02615
                          7.50253 10.133 < 2e-16 ***
season3
              85.24449
                         7.28896 11.695 < 2e-16 ***
                          5.62763 13.478 < 2e-16 ***
season4
              75.84881
holiday1
              15.21998
                         7.81590 1.947 0.05153 .
                                    4.048 5.21e-05 ***
workingday1
              16.46915 4.06865
                          2.67532 -4.554 5.33e-06 ***
weather2
             -12.18425
weather3
             -69.93783
                          4.47891 -15.615 < 2e-16 ***
weather4
            -178.26616 100.80800 -1.768 0.07703 .
atemp
               4.15523
                          0.27807 14.943 < 2e-16 ***
                          0.07847 -10.091 < 2e-16 ***
humidity
             -0.79181
                          0.14426 -2.557 0.01056 *
windspeed
              -0.36893
year2012
              87.60396
                          2.18764 40.045 < 2e-16 ***
                                    2.038 0.04155 *
month2
              10.99388
                          5.39353
month3
              31.14268
                          5.73979
                                    5.426 5.93e-08 ***
month4
             -23.36018
                          5.81874 -4.015 6.00e-05 ***
month5
               8.92497
                          5.39782
                                    1.653 0.09828 .
month6
                    NΑ
                               NΑ
                                       NA
                                                NA
             -33.47592
                          5.52279 -6.061 1.41e-09 ***
month7
                          5.38767 -4.156 3.27e-05 ***
month8
             -22.39220
month9
                    NΑ
                               NA
                                       NΑ
                                                NA
month10
              24.88559
                          5.68662
                                    4.376 1.22e-05 ***
month11
               2.20392
                          5.35091
                                    0.412 0.68044
                                       NA
month12
                    NA
                               NA
                                                NA
```

```
hour1
            -11.56700
                         7.48918 -1.544 0.12250
hour2
            -24.20057
                         7.45303 -3.247 0.00117 **
hour3
            -37.65763
                         7.55672 -4.983 6.37e-07 ***
hour4
            -38.36125
                         7.44394 -5.153 2.62e-07 ***
hour5
            -23.58264
                         7.47710 -3.154 0.00162 **
                                   4.902 9.68e-07 ***
hour6
             36.34707
                         7.41526
hour7
            170.36551
                         7.39766 23.030 < 2e-16 ***
hour8
            311.27579
                         7.44319 41.820 < 2e-16 ***
hour9
                         7.38386 22.300 < 2e-16 ***
            164.66110
hour10
            114.20073
                         7.46609 15.296 < 2e-16 ***
hour11
            141.94037
                         7.50231 18.920 < 2e-16 ***
                         7.56096 23.690 < 2e-16 ***
hour12
            179.11916
hour13
                         7.65620
                                  23.297 < 2e-16 ***
            178.36299
                         7.63461 21.464 < 2e-16 ***
hour14
            163.86705
hour15
            170.24754
                         7.57631 22.471 < 2e-16 ***
hour16
                         7.60976 30.665 < 2e-16 ***
            233.35385
hour17
            389.19729
                         7.65071 50.871 < 2e-16 ***
hour18
            361.87509
                         7.57348 47.782 < 2e-16 ***
hour19
                         7.42580 33.225 < 2e-16 ***
            246.72022
hour20
            164.41265
                         7.51298 21.884 < 2e-16 ***
                         7.44445 15.367 < 2e-16 ***
hour21
            114.40167
                         7.45131 10.159 < 2e-16 ***
hour22
             75.69491
hour23
             37.52871
                         7.37358 5.090 3.66e-07 ***
wkday2
            -12.53471
                         4.16922 -3.006 0.00265 **
wkday3
             -9.06690
                         4.11349 -2.204 0.02754 *
wkday4
             -5.40134
                         4.11238 -1.313 0.18907
             -3.99999
                         4.07558 -0.981 0.32640
wkday5
wkday6
                   NA
                              NA
                                      NA
                                               NA
                         3.99635
                                   4.143 3.46e-05 ***
wkday7
             16.55806
___
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 100.5 on 8659 degrees of freedom Multiple R-squared: 0.6934, Adjusted R-squared: 0.6917 F-statistic: 408 on 48 and 8659 DF, p-value: < 2.2e-16

Start: AIC=80337.58
count ~ season + holiday + workingday + weather + atemp + humidity +
 windspeed + year + month + hour + wkday

Step: AIC=80337.58
count ~ season + holiday + weather + atemp + humidity + windspeed +
 year + month + hour + wkday

Step: AIC=80337.58

count ~ holiday + weather + atemp + humidity + windspeed + year +
 month + hour + wkday

		Df	Sum of Sq	RSS	AIC
-	holiday	1	330	87440395	80336
<1	none>			87440065	80338
-	windspeed	1	66045	87506111	80342
-	wkday	6	287513	87727579	80354
-	humidity	1	1028198	88468263	80437
-	atemp	1	2254957	89695022	80557
-	weather	3	2485536	89925602	80576
-	month	11	5549955	92990020	80851
-	year	1	16193442	103633507	81815
-	hour	23	102266438	189706503	87036

Step: AIC=80335.61

count ~ weather + atemp + humidity + windspeed + year + month +
hour + wkday

	Df	Sum of Sq	RSS	AIC
<none></none>			87440395	80336
- windspeed	1	66045	87506441	80340
- wkday	6	291781	87732176	80353
- humidity	1	1028605	88469000	80435
- atemp	1	2254678	89695074	80555
- weather	3	2485209	89925605	80574
- month	11	5553725	92994121	80850
- year	1	16193145	103633541	81813
- hour	23	102271521	189711917	87034

Call:

lm(formula = count ~ weather + atemp + humidity + windspeed +
 year + month + hour + wkday, data = train_subset)

Coefficients:

(Intercept)	weather2	weather3	weather4	atemp	humidity
-88.1022	-12.1887	-69.9304	-178.0143	4.1544	-0.7919
windspeed	year2012	month2	month3	month4	month5
-0.3689	87.6027	11.0857	31.2433	52.7041	85.0598
month6	month7	month8	month9	month10	month11
76.1375	51.8193	62.9666	85.2886	100.7816	78.0935
month12	hour1	hour2	hour3	hour4	hour5
75.9544	-11.5714	-24.1994	-37.6623	-38.3622	-23.5839
hour6	hour7	hour8	hour9	hour10	hour11
36.3411	170.3596	311.2796	164.6600	114.2076	141.9441
hour12	hour13	hour14	hour15	hour16	hour17
179.1188	178.3688	163.8666	170.2423	233.3501	389.2004

hour23	hour22	hour21	hour20	hour19	hour18
37.5286	75.6880	114.4089	164.4022	246.7257	361.8761
wkday7	wkday6	wkday5	wkday4	wkday3	wkday2
16.5561	16.4273	12.4676	11.0473	7.4038	3.7447

Call:

lm(formula = count ~ ., data = train_subset)

Residuals:

Min 1Q Median 3Q Max -354.13 -61.80 -6.72 51.10 432.28

Coefficients: (4 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) 9.41903 -9.349 < 2e-16 *** (Intercept) -88.06071 season2 76.02615 7.50253 < 2e-16 *** 10.133 season3 85.24449 7.28896 11.695 < 2e-16 *** season4 75.84881 5.62763 13.478 < 2e-16 *** holiday1 15.21998 7.81590 1.947 0.05153 . workingday1 4.06865 4.048 5.21e-05 *** 16.46915 2.67532 -4.554 5.33e-06 *** weather2 -12.18425weather3 -69.93783 4.47891 -15.615 < 2e-16 *** weather4 -178.26616 100.80800 -1.768 0.07703 . atemp 4.15523 0.27807 14.943 < 2e-16 *** humidity -0.791810.07847 -10.091 < 2e-16 *** windspeed -0.36893 0.14426 -2.5570.01056 * year2012 87.60396 2.18764 40.045 < 2e-16 *** 5.39353 2.038 0.04155 * month2 10.99388 5.426 5.93e-08 *** month3 31.14268 5.73979 month4 -23.360185.81874 -4.015 6.00e-05 *** 8.92497 5.39782 1.653 0.09828 . month5 month6 NΑ NANΑ NA month7 -33.47592 5.52279 -6.061 1.41e-09 *** -22.39220 5.38767 -4.156 3.27e-05 *** month8 month9 NA NA NΑ NΑ month10 24.88559 5.68662 4.376 1.22e-05 *** month11 2.20392 5.35091 0.412 0.68044 month12 NANANANA0.12250 hour1 -11.56700 7.48918 -1.544hour2 -24.200577.45303 -3.2470.00117 ** hour3 -37.657637.55672 -4.983 6.37e-07 *** hour4 -38.36125 7.44394 -5.153 2.62e-07 *** hour5 -23.58264 7.47710 -3.154 0.00162 ** hour6 36.34707 7.41526 4.902 9.68e-07 *** 23.030 < 2e-16 *** hour7 170.36551 7.39766 311.27579 7.44319 41.820 < 2e-16 *** hour8

```
hour9
            164.66110
                         7.38386 22.300 < 2e-16 ***
hour10
                         7.46609 15.296 < 2e-16 ***
            114.20073
hour11
            141.94037
                         7.50231 18.920 < 2e-16 ***
hour12
            179.11916
                         7.56096 23.690 < 2e-16 ***
                         7.65620 23.297 < 2e-16 ***
hour13
            178.36299
hour14
                         7.63461 21.464 < 2e-16 ***
            163.86705
hour15
            170.24754
                         7.57631 22.471 < 2e-16 ***
hour16
            233.35385
                         7.60976 30.665 < 2e-16 ***
hour17
                         7.65071 50.871 < 2e-16 ***
            389.19729
                         7.57348 47.782 < 2e-16 ***
hour18
            361.87509
                         7.42580 33.225 < 2e-16 ***
hour19
            246.72022
                         7.51298 21.884 < 2e-16 ***
hour20
            164.41265
                         7.44445 15.367 < 2e-16 ***
hour21
            114.40167
                         7.45131 10.159 < 2e-16 ***
hour22
             75.69491
hour23
             37.52871
                         7.37358
                                 5.090 3.66e-07 ***
wkday2
            -12.53471
                         4.16922 -3.006 0.00265 **
wkday3
             -9.06690
                         4.11349 -2.204 0.02754 *
wkday4
             -5.40134
                         4.11238 -1.313 0.18907
wkday5
             -3.99999
                         4.07558 -0.981 0.32640
wkday6
                                     NΑ
                   NA
                              NA
                                              NΑ
wkday7
             16.55806
                         3.99635
                                   4.143 3.46e-05 ***
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 100.5 on 8659 degrees of freedom Multiple R-squared: 0.6934, Adjusted R-squared: 0.6917 F-statistic: 408 on 48 and 8659 DF, p-value: < 2.2e-16

Warning message in predict.lm(lm_fit, test_subset): prediction from a rank-deficient fit may be misleadingWarning message in predict.lm(lm_fit, bike_test):

Histogram of Im_results


```
# Predict Registered Counts

RegisteredData <- subset(train, select = -c(count, casual, date))

RegisteredFit <- randomForest(registered ~ ., data=RegisteredData, untree=Ntree, mtry=Mtry,

importance=myImportance)

[25]: varImpPlot(CasualFit)

varImpPlot(RegisteredFit)

#Inference - Casual Fit: season, holiday, windspeed and weather are notued in the significant here.

#Inference - Registered Fit: season, holiday, windspeed and temp are notued in the significant here.
```

CasualFit

RegisteredFit


```
[26]: casualFitFinal <- randomForest(casual ~ hour + year + humidity + month + temp + datemp + workingday + wkday,

data=CasualData, ntree=Ntree,

mtry=Mtry,importance=myImportance)

RegisteredFitFinal <- randomForest(registered ~ hour + year + month + weather + workingday + humidity + atemp

+ wkday, data=RegisteredData,

ntree=Ntree, mtry=Mtry,importance=myImportance)

[46]: # Prediction on train data

# Prediction on train data - casual users

PredTrainCasual = round(predict(CasualFit, train),0)

PredTrainCasualFinal = round(predict(casualFitFinal, train),0)
```

```
# Prediction on train data - Registered users
                 PredTrainRegistered = round(predict(RegisteredFit, train),0)
                 PredTrainRegisteredFinal = round(predict(RegisteredFitFinal, ____
      →train),0)
                 # Sum up Casual and Registered to get Total Count
                 PredTrainCount = PredTrainCasual+PredTrainRegistered
                 PredTrainCountFinal = PredTrainCasualFinal+PredTrainRegisteredFinal
                 # Calculate Train RMSLE
                 rf_train_rmsle_full = rmsle(train$count, PredTrainCount)
                 rf_train_rmsle2_reduced = rmsle(train$count, PredTrainCountFinal)
             # Prediction on test data
                 # Prediction on test data - casual users
                 PredTestCasual = round(predict(CasualFit, test),0)
                 PredTestCasualFinal = round(predict(casualFitFinal, test),0)
                 # Prediction on test data - registered users
                 PredTestRegistered = round(predict(RegisteredFit, test),0)
                 PredTestRegisteredFinal = round(predict(RegisteredFitFinal, test),0)
                 # Sum up Casual and Registered to get Total Count
                 PredTestCount = PredTestCasual+PredTestRegistered
                 PredTestCountFinal = PredTestCasualFinal+PredTestRegisteredFinal
                 # Calculate Train RMSLE
                 rf_test_rmsle_full = rmsle(test$count, PredTestCount)
                 rf_test_rmsle2_reduced = rmsle(test$count, PredTestCountFinal)
[42]: cat("Training RMSLE - Linear Regression: ", lm_train_RMSLE)
     cat("\nTraining RMSLE - Random Forest (Full Model): ", rf_train_rmsle_full)
     cat("\nTraining RMSLE - Random Forest (Reduced Model): : ", 
     →rf_train_rmsle2_reduced)
     cat("\n\nTest RMSLE - Linear Regression: ", lm_test_RMSLE)
     cat("\nTest RMSLE - Random Forest (Full Model): ", rf_test_rmsle_full)
     cat("\nTest RMSLE - Random Forest (Reduced Model): ", rf_test_rmsle2_reduced)
    Training RMSLE - Linear Regression: 1.031166
    Training RMSLE - Random Forest (Full Model): 0.2706077
    Training RMSLE - Random Forest (Reduced Model): : 0.2091858
    Test RMSLE - Linear Regression: 0.9982687
    Test RMSLE - Random Forest (Full Model): 0.4446371
```

```
[50]: # Save the RF results

#rf_test_casual = round(predict(casualFitFinal, bike_test),0)

#rf_test_registered = round(predict(RegisteredFitFinal, bike_test),)

#rf_results = rf_test_casual + rf_test_registered

hist(bike$count, main="Training Data")

hist(lm_results, main="Linear Regression Fit")

hist(rf_results, main="Random Forest Fit")

# Inference: The distribution of predicted count looks similar to that

→of train data.
```

Training Data

Linear Regression Fit

Random Forest Fit

Training Data

Linear Regression Fit

Random Forest Fit

[]: