COMP225: Algorithms and Data Structures

Graphs

Mark Dras

Mark.Dras@mq.edu.au

E6A380

Outline

- Definitions and examples
- Implementations
 - Matrices vs lists
- Searches and traversals
 - Depth-first
 - Breadth-first
- Code

A Graph

Definitions

- A simple graph G=(V,E) consists of
 - A set of vertices V
 - in previous graph, $V = \{a, b, c, d, e\}$
 - A set of edges E
 - often not explicitly labelled
 - can be referred to by a pair of the names of the vertices the edges connect
 - in previous graph,

```
E = \{ (a,b), (a,c), (b,c), (b,d), (c,e), (c,d), (d,e) \}
```

Only one edge between each pair of vertices

Uses

- Is one of the most general structures in computer science
- Can be used to represent physical arrangement of objects and links
 - telephone connections, road networks, routing problems
- Can be used for more abstract relations
 - friendship/acquaintance networks
- Can be used in seemingly unrelated CS applications
 - compression, games, programming language design ...
 - used heavily in AI, or areas where there's a solution space that needs to be searched

source: AARNet (http://www.aarnet.edu.au/engineering/aarnet3/)

source: AARNet

(http://www.aarnet.edu.au/engineering/networkdesign/sccn/)

Chart.svg)

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character/

Definitions

Degree

– a vertex v has degree d_v if there are d_v edges connecting v to some other node

Connectivity

- a graph is connected if there is a path from any vertex to any other
- otherwise it's disconnected

Definitions

Weights

- edges can have weights $w(v_1, v_2)$
- weight function written $w: E \rightarrow R$
- represent costs associated with traversing the edge
 - physical distance, monetary cost, ...
- problems are then, e.g.,
 - what's the shortest / least expensive distance from x to y, or path that covers all vertices
 - · what's the best graphical morph

•

Definitions

- The previous graph was undirected
 - that is, the edges connect node v_1 to v_2 and vice versa
- Can have directed graphs as well
 - each edge only connects v_1 to v_2 in one direction

Some Special Graphs

- Of graphs with m edges, n vertices:
- Trees
 - a tree is a graph with minimal edges given full connectivity: m = n 1
 - all tree stuff we've done is just a special case
 - difference between rooted trees and free trees
- Complete
 - every vertex is connected to every other: m = n * (n - 1) / 2
- Very often more edges than vertices

Outline

- Definitions and examples
- Implementations
 - Matrices vs lists
- Searches and traversals
 - Depth-first
 - Breadth-first
- Code

Graphs as ADTs

Operations (i.e. public members of a class Graph):

```
create an empty graph
destroy a graph
determine whether a graph is empty
determine the number of vertices
determine the number of edges
determine whether an edge exists between two vertices
insert a vertex
insert an edge between two given vertices
delete a vertex (plus associated edges)
delete the edge between two given vertices
retrieve a given vertex
determine the degree of a vertex v
retrieve the set of vertices adjacent to v
```

. . .

Graph Implementations

- Adjacency matrix
 - for *n* vertices, an *n* x *n* matrix *aMatrix*
 - unweighted:

```
aMatrix[i][j] = 1 if i and j are connected by an edge
aMatrix[i][j] = 0 otherwise
```

- weighted

```
aMatrix[i][j] = w(i,j) if i and j are connected by an
edge
aMatrix[i][j] = ∞ otherwise
```

A Graph and Its Matrix

	a (0)	b (1)	c (2)	d (3)	e (4)
a (0)	0	1	1	0	0
b (1)	1	0	1	1	0
c (2)	1	1	0	1	1
d (3)	0	1	1	0	1
e (4)	0	0	1	1	0

Graph Implementations

- Adjacency list
 - for n vertices, an n-length array of linked lists
- Unweighted
 - the list items are just vertex indices plus pointers
- Weighted
 - list items also include weights

A Graph and Its List

Exercise: Graph representation

Which Is Better?

- For time complexity, depends on purpose
 - determine whether there is an edge between v_i and v_j :?
 - find all vertices adjacent to v_i :?
- For space requirements, depends on graph

Converting Implementations

- How about if you wanted to convert one implementation to another
 - to convert an adjacency list to an adjacency matrix, you just traverse the list, and for each item add it to the matrix (an O(1) operation)
 - therefore, an O(E) operation (equal to the number of edges; can also write O(m))
 - what about the reverse?

Outline

- Definitions and examples
- Implementations
 - Matrices vs lists
- Searches and traversals
 - Depth-first
 - Breadth-first
- Code

Graph Traversals

- Difference between a search and a traversal
 - search usually refers to moving from vertex to vertex until a target is found
 - traversal refers to visiting every reachable vertex
- In a graph, not every vertex is reachable if the graph isn't connected
 - different from trees

Graph Traversals

- What they're for
 - they're a fundamental process underlying all the others
 - need to traverse graph to work out e.g. lowest cost telephone network connectivity, or best alignment of pixels
- Potential problem: loops

Definitions

- Path
 - a path is a sequence of edges from one vertex v_i to another v_j
- Cycle
 - a cycle is a path beginning and ending at the same vertex v_i
- In a traversal, want to avoid cycles

A Graph: Paths and Cycles

paths: a-b-d

c-e-d-b-a

е-с

...

cycles: a-b-c-a

a-c-e-d-b-a

...

Graph Traversal

- Need some way of marking whether nodes have been visited, to avoid looping
- Then, two choices about how to search outwards
 - depth-first: when a vertex v_i is encountered, explore its neighbours before exploring the vertices that were encountered at the same time as v_i
 - breadth-first: the reverse

Graph Traversal

- At most vertices, there's a choice of edges
 - a lot of graphs have some ordering on the vertices (e.g. numerical, alphabetical)
 - this is important in dynamic programming

Depth-First Traversal

```
depthFirstSearch()
  for all vertices v
     num(v) = 0;
  edges = null;
  i = 1:
  while there is a vertex v such that num(v) == 0
     DFS(v);
  output edges;
dfs (v)
  num(v) = i++; // mark v as visited
  for (all vertices u adjacent to v)
     if num(u) == 0 // u is unvisited
       attach edge(uv) to edges // mark (u,v) as a discovery edge
       dfs(u)
```

Depth-First Traversal

```
dfs ()
  for all vertices v
     num(v) = 0;
  edges = null;
  i = 1;
  s.createStack()
  while there is a vertex v such that num(v) == 0
     num(v) = i++; // mark v as visited
     s.push(v)
     // loop invariant: there is a path from vertex at bottom of stack to vertex at top of stack
     while (!s.isEmpty()) {
       u = s.top()
       if (no unvisited vertices adjacent to u)
                                         // backtrack
          s.pop()
       else {
          select an unvisited vertex w adjacent to vertex u on top of stack
          s.push(w)
          num(w) = i++; // mark w as visited
          attach edge(uw) to edges // mark (u,w) as discovery edge
  output edges
```

Example: Depth-First

depth-first traversal (starting from a):
a-b-d-e-c-f-g

Traversal in a Directed Graph

- Concepts are slightly different wrt undirected graphs—assume you have an edge (v_i, v_j) but not an edge (v_j, v_i)
 - $-v_i$ is a neighbour of v_i but not vice versa
 - $-v_i$ is adjacent to v_i but not vice versa
- Otherwise algorithms are the same

Example: Depth-First

depth-first traversal (starting from a, choosing next letter for outer while loop):

Exercise: DFT

Breadth-First Traversal

```
bfs ()
  for all vertices v
     num(v) = 0;
  edges = null;
  i = 1;
  q.createQueue();
  while there is a vertex v such that num(v) == 0
     num(v) = i++; // mark v as visited
     q.push(v);
     while (!q.isEmpty()) {
       v = q.pop()
       // loop invariant: there is a path from former front of queue to every vertex in queue
       for (all unvisited vertices u adjacent to v) {
           num(u) = i++; // mark u as visited
            attach edge(vu) to edges // mark (v,u) as discovery edge
           q.push(u)
  output edges
```

Example: Breadth-First

breadth-first traversal (starting from a): a-b-g-d-e-f-c

Exercise: BFT

Comparison

- For a graph G=(V,E), for both DFT and BFT there are O(V+E) algorithms for
 - the traversal itself
 - testing whether G is connected
 - computing a spanning tree for G, if G is connected
 - computing a cycle in G

Comparison

- Data structures
 - DFS uses stack (most recently added is first explored)
 - BFS uses queue (first added is first explored)
- BFS has no easy recursive version
 - consider trees
 - DF recursive is context-free

Outline

- Definitions and examples
- Implementations
 - Matrices vs lists
- Searches and traversals
 - Depth-first
 - Breadth-first
- Code

Code

Edge

represents edges as pairs of integers

VertexIDList

a representation of the adjacency list

Vertex

Graph

a structure containing vertices and edges, with basic operations

GraphApplic

extensions of basic operations

DF Traversal Code

```
public void depthFirstTraversalRec1(Integer v) {
// PRE: v is the id of a vertex in the graph
// POST: Prints out a depth-first traversal of a graph
//
           starting from v
           (for just the connected component containing v)
// Recursive version of DFT
  System.out.print(" " + v);
  getVertex(v).setMarked(); // get vertex object with id v,
                             // indicate visited by setting marked
  VertexIDList adjList = getVertex(v).getAdjs();
                    // get adjacency list representing <a href="mailto:neighbours">neighbours</a>
  Iterator<Integer> vIt = adjList.iterator();
  while (vIt.hasNext()) { // iterate over neighbours
    Integer nextVertex = vIt.next();
    if (!getVertex(nextVertex).isMarked())
                             // if neighbour hasn't been visited
      depthFirstTraversalRec1(nextVertex); // visit it
```

Detect Cycle Code

```
public boolean detectCycle() {
  return detectCycleAux(this.getFirstVertexID());
public boolean detectCycleAux(Integer v) {
// Only for undirected graphs
 getVertex(v).setMarked();
 VertexIDList adjList = getVertex(v).getAdjs();
  boolean foundCycle = false;
 Integer numAdjMarked = 0;
 Iterator<Integer> vIt = adjList.iterator();
 while (!foundCycle && vIt.hasNext()) {
    Integer nextVertex = vIt.next();
   if (!getVertex(nextVertex).isMarked())
      foundCycle = foundCycle || detectCycleAux(nextVertex);
   else
     numAdjMarked++;
 foundCycle = foundCycle || (numAdjMarked > 1);
  return foundCycle;
```