

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

AN - 1993:496438 CAPLUS
DN - 119:96438

XP-002256332

TI - Method of producing opaque methacrylate block polymer
IN - Arzhakov, Sergej A.; Kabanov, Viktor A.; Sorokin, Aleksandr I.; Traskin, Petr M.; Arulin, Vyacheslav I.; Kucheryavaya, Valentina I.; Beshenova, Evgeniya P.

PA - Nii khimii tekhnologii polimerov im.akad.v.a.kargina s o zavodom, USSR
SO - U.S.S.R.
From: Izobreteniya 1992, (16), 117.

CODEN: URXXAF

DT - Patent

LA - Russian

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

PN - SU1730091 A 19920430 SU 1990-4857131 19900806
PR - SU 1990-4857131 19900806

AB - Me methacrylate undergoes block polymn. in the presence of a radical initiator and 10-40 parts (based on reactants) tris(methacryloyloxyethyl) borate, followed by treatment with H₂O (vapor) to degree of swelling 2-5%.

IT - 106946-70-7

RL: USES (Uses)
(opaque)

RN - 106946-70-7 CAPLUS

CN - 2-Propenoic acid, 2-methyl-, borylidynetrakis(oxy-2,1-ethanediyl) ester, polymer with methyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 42175-72-4

CMF C18 H27 B O9

H2C O

:

:

:

:

:

Me.....C ...CO...CH2.....CH2:O.

Me.....CC ...O ...CH2.....CH2:O ...B....O....CH2.....CH2:O

: :
:
:
:
CH2 O

Page 1-A

O CH2

: :

: :

....C....C....Me

Page 1-B

CM 2

CRN 80-62-6

CMF C5 H8 O2

H2C: O

: :

: :

: :

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1730091 A1

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(51) 5 C 08 F 120/14, 2/44, 6/26

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4857131/05

(22) 06.08.90

(46) 15.04.92. Бюл. № 16

(71) Научно-исследовательский институт химии и технологии полимеров им. акад. В. А. Карагина с опытным заводом

(72) С. А. Аржаков, В. А. Кабанов, А. И. Сорокин, П. М. Траскин, В. И. Арулин, В. И. Кучерявая и Е. П. Бешенова

(53) 678.764.32(088.8)

(56) Патент Великобритании № 1080549, кл. С 3Р, 1968.

Патент Японии № 16848/68, кл. 25Н 411.1.

Авторское свидетельство СССР № 371255, кл. С 08 L 27/06, 1973.

Авторское свидетельство СССР № 560891, кл. С 08 F 220/10, 1977.

Авторское свидетельство СССР № 912730, кл. С 08 F 2/44, 1981.

Патент Японии № 61-215610, кл. С 08 F 230/06, опублик., 1981.

2

(54) СПОСОБ ПОЛУЧЕНИЯ ЗАМУТНЕНИХ МАТЕРИАЛОВ

(57) Использование: оргстекло. Сущность способа заключается в том, что метилметакрилат полимеризуют в присутствии радикального инициатора и 10–40 мас.ч. от реакционной смеси три(метакрилоилоксизтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2–5%. Температура размягчения материала 125–140°C, прочность при разрыве 85–89 МПа, модуль упругости 5000–6000 МПа, относительное удлинение 4–7%. 1 табл.

Изобретение относится к химии полимеров, в частности к способу получения замутненных материалов на основе органических стекол, которые могут быть использованы как в светотехнической промышленности, так и в строительстве в качестве декоративных материалов.

Замутненные полимеры светотехнического назначения должны удовлетворять требованиям ГОСТа 9787-75, согласно которому существует 5 светотехнических групп стекла. Они должны хорошо формоваться и иметь достаточно высокий уровень физико-механических свойств: температура размягчения не ниже 125°C; прочность при разрыве не ниже 85 МПа; модуль упругости не ниже 5000 МПа.

Известны способы получения замутненных материалов, получаемых при введении в исходную реакционную систему на основе акрилатов неорганических соединений или совместно неорганических пигментов и полимеров.

Так при полимеризации метилметакрилата (MMA) в качестве замутнителя вводят окиси металлов (Al_2O_3 ; TiO_2 ; ZnO ; CaO) и ряд других неорганических соединений или MMA полимеризуют в присутствии сополимера этилена с винилацетатом и окиси титана.

Недостатки данных способов получения заключаются в трудностях приготовления однородных устойчивых к седиментации и коагуляции дисперсий указанных добавок в

(19) SU (11) 1730091 A1

мономере, а также в том, что получаемые таким образом материалы в значительной степени неоднородны как по светотехническим, так и физико-механическим характеристикам.

Известен способ получения замутненных материалов путем радикальной блочной полимеризации метилметакрилата в присутствии поливинилхлорида.

Недостатками указанного способа являются плохая формуемость получаемого замутненного материала, определяемая малым относительным удлинением (2-3%), и низкая теплостойкость ($T_{разм}=90-110^{\circ}\text{C}$).

Известен способ получения замутненных материалов путем сополимеризации форполимера MMA с 5-20 мас.% от массы мономера диакрилатов или диметакрилатов бисфенолов. При использовании известного способа увеличивается теплостойкость органических стекол ($T_{разм}=117-130^{\circ}\text{C}$).

Недостатки способа заключаются в сложности, обусловленной необходимостью выбора форполимера MMA различной конверсии, обеспечивающего получение частиц MMA необходимой степени дисперсности, низкой деформационной способности стекол (относительное удлинение 2-3%), затрудняющей, а часто делающей вообще невозможной их переработку (формование), и возможности получения светотехнического материала только 3-4 групп.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения замутненных материалов полимеризацией метилметакрилата в блоке в присутствии радикального инициатора и модифицирующей добавки, в качестве которого используют 0,15-10,0 мас.% от мономера олигодиметилсилоксана с кинематической вязкостью 25-100 сСт.

Способ позволяет получить замутненные материалы любой светотехнической группы, способные формоваться в изделия различной конфигурации.

Недостатками известного способа являются недостаточный уровень физико-механических свойств: теплостойкость составляет $117-120^{\circ}\text{C}$; прочность - 66-70 МПа; модуль упругости - 3000-3500 МПа и сложность процесса, заключающаяся в необходимости подбора олигодиметилсилоксанов с определенной кинематической вязкостью для получения материала различных светотехнических групп.

Цель изобретения - улучшение физико-механических свойств при сохранении фор-

муемости материала и упрощение процесса.

Поставленная цель достигается тем, что в способе получения замутненных материалов полимеризацией метилметакрилата в массе в присутствии радикального инициатора и модифицирующей добавки, в качестве модифицирующей добавки используют 10-40 мас.ч. от массы реакционной смеси трис-(метакрилоилоксиэтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2-5%.

Трис-(метакрилоилоксиэтил)бор известен в качестве мономера для получения нейтронопоглощающего прозрачного полимерного материала.

Способ осуществляют следующим образом.

Пример 1. К 70 мас.ч. метилметакрилата добавляют 30 мас.ч. трис-(метакрилоилоксиэтил)бора (ТБОМ) и 0,3 мас.ч. инициатора дициклогексилпероксидикарбоната (ЦПК). Реакционную смесь заливают в формы из силикатного стекла и проводят полимеризацию в водяной бане при 20°C до готовности. Дополимеризацию осуществляют в сушильном шкафу с воздушным обогревателем при 135°C в течение 1 ч. Поверхность полученного листа оргстекла обрабатывают водой до степени набухания 2%.

Степень набухания определяют путем взвешивания образца до и после набухания. Получают материал I-й светотехнической группы.

Пример 2. Готовят реакционную смесь, содержащую 60 мас.ч. MMA, 40 мас.ч. ТБОМ и 0,3 мас.ч. ЦПК. Полимеризацию проводят по примеру 1, обрабатывают поверхность стекла паром до степени набухания 2%. Получают материал II-й светотехнической группы.

Пример 3. Полимеризацию проводят по примеру 1, но используют 20 мас.ч. ТБОМ и 0,1 мас.ч. инициатора - азодинитрила изомасляной кислоты (АДН). Степень набухания стекла 4%. Получают материал IV-й светотехнической группы.

Пример 4. Полимеризацию проводят по примеру 1, но используют 25 мас.ч. ТБОМ и 0,15 мас.ч. АДН.

Полученное стекло обрабатывают паром до степени набухания 3%.

Получают материал IV-й светотехнической группы.

Пример 5. Полимеризацию проводят по примеру 1, но используют 10 мас.ч. ТБОМ и 0,2 мас.ч. ЦПК. Степень набухания 2%. Получают материал I-й светотехнической группы.

Пример 6. Полимеризацию проводят по примеру 5. Степень набухания 3%. Пол-

учают материал III-й светотехнической группы.

При мер 7. Полимеризацию проводят по примеру 5. Степень набухания 5%. Получают материал V-й светотехнической группы.

Свойства материалов, полученных по примерам 1-7 приведены в таблице.

Из таблицы видно, что предлагаемый способ по сравнению с прототипом позволяет получить замутненный формируемый материал с повышенным комплексом физико-механических свойств (теплостойкость выше на 5-20°C; прочность при разрыве больше на 17-19 МПа; модуль упругости выше на 2300-3300 МПа).

Кроме того, способ позволяет из одного и того же листа органического стекла путем изменения степени набухания получить замутненный материал любой светотехнической группы (примеры 5-7), что значительно упрощает процесс по сравнению с прототипом, по которому для получения различных светотехнических групп необходим подбор олигодиметилсилоксанов с различной кинематической вязкостью.

При использовании ТБОМ менее предложенного количества (пример 9) снижаются физико-механические свойства и материал не соответствует ГОСТу на светотехническое стекло, при увеличении его содержания (пример 10) получаемый материал не формуется.

При степени набухания меньше 2% (пример 11) материал не соответствует ГОСТу на светотехническое стекло, при степени набухания больше 5% (пример 12) появляются дефекты на поверхности стекла (коробление, сырье, рябь).

Ф о р м у л а из о б р е т е н и я

Способ получения замутненных материалов полимеризацией метилметакрилата в блоке в присутствии радикального инициатора и модифицирующей добавки, отличающийся тем, что, с целью улучшения физико-механических свойств материала и упрощения процесса, в качестве модифицирующей добавки используют 10-40 мас.ч. на 100 мас.ч. реакционной смеси трис-(метакрилоилоксиэтил)бора и полученный материал подвергают обработке водой или паром до степени набухания 2-5%.

30

35

40

45

50

55

Пример	Состав реакционной смеси, мас.ч.	Степень набухания, %	Физико-механические показатели		
			Температура размягчения, °C	Прочность при разрыве, МПа	Модуль упругости, МПа
1	ИМА ТБОН ЦПК	70 30 0,3	2	135	89 5000
2	ММА ТБОН ЦПК	60 40 0,3	2	140	85 6000
3	ММА ТБОН АДН	80 20 0,1	4	130	89 5500
4	ММА ТБОН АДН	75 25 0,15	3	133	86 5500
5	ММА ТБОН ЦПК	90 10 0,2	2	127	87 5000
6	ИМА ТБОН ЦПК	90 10 0,2	3	128	88 5000
7	ММА ТБОН ЦПК	90 10 0,2	5	125	87 5000
8	ММА Олигодиметилси- локсан	100 3-5	-	117-120 66-70	2700
9	ММА ТБОН ЦПК	92 8 0,1	2	118	80 3000
10	ММА ТБОН ЦПК	55 45 0,3	3	145	65 5500
11	ММА ТБОН ЦПК	90 10 0,2	1	128	86 4500
12	ММА ТБОН ЦПК	90 10 0,2	6	Дефекты поверхности стекла (коробление, сырье, раковьи)	

45

50

55

Продолжение таблицы

Пример	Физико-механические показатели			Светотехнические характеристики			Формуемость
	Относительное удлинение, %	Ударная вязкость, кДж/м ²	Степень рассеяния	Коэффициент пропускания	Коэффициент поглощения	Светотехническая группа	
1	5,0	14	0,13	0,75	0,07	I	Формуется
2	4,0	12	0,36	0,65	0,07	II	Формуется
3	5,0	14	0,45	0,55	0,06	III	Формуется
4	5,0	14	0,78	0,45	0,03	IV	Формуется
5	5,5	14	0,13	0,77	0,08	I	Формуется
6	5,5	18	0,45	0,55	0,07	III	Формуется
7	7,0	14	0,75	0,3	0,03	V	Формуется
	7,0	13	0,68	0,57	0,03	IV-V	Формуется
9	6,0	13	0,12	0,7	0,08	Не со-ответствует	
10	2,0	8	0,75	0,30	0,04	V	Не формируется
11	5,3	15	-	0,85	0,09	Не со-ответствует	
12	Дефекты поверхности стекла (коробление, сырье, рябь).						

Редактор А. Лежнина

Составитель В. Полякова
Техред М. Моргентал

Корректор Д. Сычева

Заказ 1486

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

