ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий

Высшая школа программной инженерии

ЛАБОРАТОРНАЯ РАБОТА №2

Моделирование линейной САР с единичной ОС по дисциплине «Среды компьютерного моделирования»

Студент гр. 3530202/90202

А. М. Потапова

Руководитель Ст. преподаватель Ю. Б. Сениченков

Задание 13

Структурная схема САР приведена на рис. Е.32.

Рис. Е.32. Структурная схема САР

Передаточные функции САР:

$$\begin{split} W_1(s) = k_1; \ W_2(s) = \frac{k_2}{s}; \ W_3(s) = \frac{k_3}{T_3^2 s^2 + 2\beta_3 T_3 s + 1}; \ W_4(s) = k_4, \end{split}$$
 где $k_1 = 2; k_2 = 0,2; k_3 = 0,4; T_3 = 0,8$ с; $\beta_3 = 6; k_4 = 1$.

Выполните моделирование CAP в среде SimInTech при заданных входных воздействиях (рис. Е.33).

Рис. Е.33. Графики входных воздействий

Ответ: график переходного процесса показан на рис. Е.34.

Рис. Е.34. График переходного процесса САР

Решение

Структурная схема

Для W1 и W4 блок Math.Gain соответственно:

Для W2 блок-интегратор Continuous.Integrator:

Для W3 блок Second Order (аналог Oscillating Unit из AnyDinamics):

Для генерации функции на вход сумматора:

Сумматор:

Результат

Результат полученный в AnyDynamics:

