Hausaufgabe 4

Aufgabe 1

a) $M_1 = \{1 + (-1)^n \mid n \in \mathbb{N}\}$

Diese Menge besitzt sowohl Supremum als auch Infimum, da $(-1)^n$ für alle $n \in \mathbb{N}$ nur zwei Werte annehmen kann:

Proposition: Sei $n \in \mathbb{N}$. Dann ist $(-1)^n = 1$ falls n gerade, und $(-1)^n = -1$ für n ungerade: Beweis (direkt). Wir betrachten zwei Fälle:

Fall 1: n gerade. So gibt es ein $k \in \mathbb{N}$ mit n = 2k. Es folgt:

$$(-1)^n = (-1)^{2k} \stackrel{\text{4.16}}{=} ((-1)^2)^k = 1^k = 1$$

Fall 2: n ungerade. So gibt es ein $k \in \mathbb{N}_0$ mit n = 2k + 1. Es folgt:

$$(-1)^n = (-1)^{2k+1} \stackrel{\text{4.16}}{=} (-1)^{2k} \cdot (-1) \stackrel{\text{4.16}}{=} ((-1)^2)^k \cdot (-1) = 1^k \cdot (-1) = 1 \cdot (-1) = -1$$

Da jede natürliche Zahl entweder gerade oder ungerade ist, kann $(-1)^n$ für $n \in \mathbb{N}$ somit nur die Werte 1 und -1 annehmen. Daraus folgt, dass $M_1 = \{1 + (-1), 1 + 1\} = \{0, 2\}$.

Nach Definition 4.1 ist s=2 nun eine obere Schranke von M_1 , da $\forall m \in M_1 : s \geq m$ gilt.

Wir zeigen nun, dass s die kleinstmögliche obere Schranke von M_1 ist:

Sei $s' \in \mathbb{N}$ eine weitere obere Schranke von M_1 . Somit muss $s' \geq 2$ gelten, da $2 \in M_1$.

Für s' = 2 folgt s' = s. Für s' > 2 folgt s' > s

Somit ist jede beliebige andere obere Schranke von M_1 in \mathbb{N} entweder größer oder gleich s:

$$\forall s' \in \{x \in \mathbb{R} \mid \forall m \in M_1 \colon x \ge m\} \colon s' \ge s = 2$$

Nach Definition 4.3 ist s nun Supremum von M_1 . Außerdem ist $s \in M_1$. Es folgt nach 4.4, dass s = 2 Supremum und Maximum von M_1 ist:

$$\sup M_1 = \max M_1 = 2$$

Analog dazu gilt, dass 0 Infimum und Minimum von M_1 ist:

 $\forall m \in M_1 : 0 \le m$ gilt, also ist i = 0 eine untere Schranke von M_1 . Sei nun i' eine weiter untere Schranke von M_1 . Somit muss $i' \le 0$ gelten.

Für i' = 0 folgt i' = i. Für i' < 0 folgt i' < i. Also ist jede beliebige andere untere Schranke von M_1 kleiner oder gleich i:

$$\forall i' \in \{x \in \mathbb{R} \mid \forall m \in M_1 : x < m\} : i' < i = 0$$

Nach Definition 4.3 ist i nun Infimum von M_1 . Außerdem ist $i \in M_1$. Es folgt nach 4.4, dass i = 0 Infimum und Minimum von M_1 ist:

$$\inf M_1 = \min M_1 = 0$$

b)
$$M_2 = \{x \in \mathbb{R} \mid x^2 + x + 1 > 0\}$$

Durch quadratische Ergänzung lässt sich die Ungleichung wie folgt umformen:

$$x^{2} + x + 1 \ge 0 \quad \iff \quad \left(x^{2} + x + \frac{1}{4}\right) + \frac{3}{4} \ge 0$$

$$\iff \quad \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4} \ge 0$$

$$\iff \quad \left(x + \frac{1}{2}\right)^{2} \ge -\frac{3}{4}$$

$$\iff \quad \frac{4}{3} \cdot \left(x + \frac{1}{2}\right)^{2} \ge -1$$

Nach Satz 2.8 b4) gilt $\forall r \in \mathbb{R}, r \neq 0 \colon r^2 > 0$. Da für unsere Gleichung $x \in \mathbb{R}$ ist, folgt auch $\left(x + \frac{1}{2}\right) \in \mathbb{R}$. Hinzukommend gilt $\forall a, b \in \mathbb{R}, \ a > 0, b > 0 \colon a \cdot b > 0$. Unsere Ungleichung lässt sich in eben dieser Form schreiben:

$$q \cdot r > 0 \ge -1$$
 mit $q = \frac{4}{3} > 0$, $r = \left(x + \frac{1}{2}\right)^2 > 0$, $x \ne -\frac{1}{2}$, $q, r, x \in \mathbb{R}$

Wir betrachten zwei Fälle für $x \in \mathbb{R}$:

Fall 1: $x \neq -\frac{1}{2}$. Somit ist $\left(x + \frac{1}{2}\right) \neq 0$, Satz 2.8 b4 hält und es folgt nach oben stehendem Weg, dass

$$\forall x \in \mathbb{R}, \ x \neq -\frac{1}{2}: \ \frac{4}{3} \cdot \left(x + \frac{1}{2}\right)^2 > 0 \ge -1$$

Fall 2: $x = -\frac{1}{2}$. Es folgt:

$$\frac{4}{3} \cdot \left(x + \frac{1}{2}\right) = \frac{4}{3} \cdot \left(-\frac{1}{2} + \frac{1}{2}\right) = \frac{4}{3} \cdot 0 = 0 \ge -1$$

Damit ist die Ungleichung für alle $x \in \mathbb{R}$ erfüllt, da $M_2 = \mathbb{R}$. Da \mathbb{R} jedoch nicht beschränkt ist, kann $M_2 = \mathbb{R}$ weder Supremum noch Infimum besitzen.

c)
$$M_3 = \{x \in \mathbb{R} \mid x^2 < 9\}$$

Nach Satz 4.13 und analog zu Beispiel 4.9 existiert genau ein x > 0 mit $x^2 = 9$.

Für das Supremum s von M_3 kann wie in Beispiel 4.5 e) weder $s^2 > 9$ noch $s^2 < 9$ gelten: Wir führen den Beweis trotzdem einmal durch:

Fall 1: $s^2 < 9$. Somit ist $s \in M_3$. Nach Korollar 4.12 gibt es zu jedem $a, b \in \mathbb{R}$ ein $q \in \mathbb{Q} \subset \mathbb{R}$, sodass a < q < b gilt. Folglich gibt es ein $q \in \mathbb{R}$ mit $s < q < 3 = |\sqrt{9}|$. Nun folgt aus Satz 2.8 b4):

$$s < q < 3 \iff s^2 < q^2 < 9$$

Somit gibt es ein weiteres Element $q \in M_3$, welches größer als s ist. Also kann s im Fall $s^2 < 9$ keine obere Schranke von M_3 sein.

Fall 2: $s^2 > 9$. Für $h \in \mathbb{R}$, h > 0 ist

$$(s-h)^2=s^2-2sh+h^2>s^2-2sh$$
 also $(s-h)^2>9$, falls $s^2-2sh>9 \Longleftrightarrow h<\frac{s^2-9}{2s}$.
Mit $h_0:=\frac{s^2-9}{4s}$ gilt für $r:=s-h_0$ somit $(r< s) \land (r^2>9)$.

Daher lässt sich zu jedem s mit $s^2 > 9$ eine kleinere obere Schranke r finden.

Somit muss für das Supremum $s^2 = 9$ gelten. Da es nach Satz 4.13 nur eine positive Zahl $x \in \mathbb{R}$ mit $x^2 = 9$ gibt, gilt nun $s = |\sqrt{9}| = 3$. Da $3 \notin M_3$, existiert für M_3 kein Maximum.

Die Existenz des Infimums $i = -|\sqrt{9}| = -3$ ist analog zu beweisen und geht daraus hervor, dass

$$x < -3 \iff -x > 3 \iff x^2 > 9 \notin M_3$$

Analog zum Supremum Fall 1, gibt es durch Korollar 4.12 für i > -3 immer ein $q \in \mathbb{Q} \subset \mathbb{R}$ mit -3 < q < i, wodurch i keine untere Schranke von M_3 ist.

Weiterhin kann i < -3 ebenfalls nicht gelten, da sich analog zu Fall 2 vom Supremum dann eine größere untere Schranke $r \in \mathbb{Q}$ finden lässt:

$$r := i + \frac{9 - i^2}{4i}$$
 mit $(i < r) \land (r^2 > 9)$

Somit muss inf $M_3=-3$ gelten. Wieder gibt es kein Minimum, da $-3\notin M_3$.

d) $M_4 = \{2^{-m} + n^{-1} \mid m, n \in \mathbb{N}\}\$

Nach Korollar 2.9 d4) und Satz 2.8 b3) folgt für $n \in \mathbb{N}$:

$$1 \le n \stackrel{\text{2.9 d4}}{\Longrightarrow} 1^{-1} = 1 > n^{-1} \quad \text{und} \quad n > 0 \stackrel{\text{2.8 b3}}{\Longrightarrow} n^{-1} > 0$$

Somit folgt $1 \ge n^{-1} > 0$. Weiterhin für $m \in \mathbb{N}$:

$$2 \le 2^m \overset{2,9 \text{ d4}}{\iff} 2^{-1} \ge (2^m)^{-1} \overset{4.16}{=} 2^{-m} \quad \text{und} \quad 2^m > 0 \overset{2,8 \text{ b3}}{\iff} 2^{-m} > 0$$

Somit folgt $2^{-1} \ge 2^{-m} > 0$. Also nun:

$$0 < 2^{-m} + n^{-1} \le 1 + 2^{-1} \stackrel{4.16}{=} 1 + \frac{1}{2} = \frac{3}{2}$$

Also ist $s = \frac{3}{2}$ nach Definition das Supremum von M_4 . Denn:

- (S.1) Es gilt $\forall m \in M_4 : s \geq m$. Also ist $\frac{3}{2}$ eine obere Schranke.
- (S.2) Sei s' eine weiter obere Schranke von M_4 . Dann muss $s' \ge \frac{3}{2}$ gelten, da $\frac{3}{2} \in M_4$. Es folgt:

$$s' > \frac{3}{2} \implies s' > s \quad \text{und} \quad s' = \frac{3}{2} \implies s' = s$$

Also wäre s' immer größer oder gleich s, was s nach Definition zum Supremum macht.

Durch $s = \frac{3}{2} \in M_4$ gilt dann $s = \sup M_4 = \max M_4$.

Weiterhin ist i = 0 das Infimum von M_4 . Denn:

- (I.1) Es gilt $\forall m \in M_4: i \leq m$. Also ist 0 eine untere Schranke.
- (I.2) Sei i' eine weiter untere Schranke von M_4 . Es folgt für i' > 0 nach 4.12:

$$\exists a, b \in \mathbb{N} \colon i' > \frac{a}{b} \in \mathbb{Q} > 0$$

Durch $\forall n \in \mathbb{N} \colon 2^n > n$ folgt nach Korollar 2.9 d4) $\forall n \in \mathbb{N} \colon 2^{-n} < n^{-1}$.

Somit lassen sich einfach $m, n \in \mathbb{N}$ für ein $q \in \mathbb{Q}$ mit $q = \frac{a}{b}, a, b \in \mathbb{N}$ bestimmen, welche ein kleineres Element als q in M_4 darstellen. Zum Beispiel folgt mit m = b und $n = 4^b \in \mathbb{N}$:

$$\forall a, b \in \mathbb{N} : \frac{a}{b} > (2^{-m} + n^{-1}) \in M_4 = 2^{-b} + (4^b)^{-1} > 0$$

Somit gibt es zu jedem i' > 0 ein $q \in \mathbb{Q}$ mit i' > q > 0 und dazu wiederum ein $m \in M_4$ mit i' > q > m > 0. Also kann i' > 0 keine untere Schranke von M_4 sein.

Ist i' < 0, so gilt i' < i, also ist i' keine größere untere Schranke als i.

Somit ist $i = 0 = \inf M_4$ nach Definition des Infimums(4.3). M_4 hat kein Minimum, da $0 \notin M_4$.

Aufgabe 2

(i)
$$p = \sup A \iff (\forall a \in A : p \ge a) \land (\forall \epsilon \in \mathbb{R}, \epsilon > 0 : \exists x \in A : x > p - \epsilon)$$

Zuerst zeigen wir die Richtung " \Longrightarrow ".

Es folgt nach Definition des Supremums, dass p eine obere Schranke sein muss:

$$p = \sup A \implies \forall a \in A \colon p \ge a$$

Da \mathbb{Q} nach 4.12 dicht in \mathbb{R} ist, und $A \subset \mathbb{R}$, lässt sich zu jedem $\epsilon \in \mathbb{R}$, $\epsilon > 0$ ein $x \in \mathbb{Q} \subset \mathbb{R}$ finden, sodass $p > x > p - \epsilon$ gilt. Nach Beschränktheit von Teilmengen der reellen Zahlen folgt

$$A \subset \mathbb{R} \colon \forall a \in \mathbb{R} \colon \inf A \leq a \leq \sup A \implies a \in A$$

Wir unterscheiden nun zwei Fälle:

Fall 1: $p - \epsilon \ge \inf A$.

Nach Dichte von \mathbb{Q} in \mathbb{R} (4.12) lässt sich also ein $x \in \mathbb{Q}$ mit $p > x > p - \epsilon >$ inf A finden, also $p = \sup A > x >$ inf A. Daraus folgt $x \in A$, da auch $x \in \mathbb{Q}$ und $A \subset \mathbb{R}$ gelten.

Fall 2: $p - \epsilon < \inf A$.

Analog zu Fall 1 existiert ein $x \in \mathbb{Q}$ mit $p = \sup A > x > \inf A > p - \epsilon$. Daraus folgt wieder, dass $x \in A$, da $x \in \mathbb{Q}$ und $A \subset \mathbb{R}$.

Wir haben gezeigt, dass wenn $p = \sup A$ gilt, p eine obere Schranke von A ist und zu jedem $\epsilon > 0$ ein $x \in A$ mit $p > x > p - \epsilon$ existiert.

Nun zeigen wir die Richtung " \Leftarrow ".

Gegeben ist, dass p eine obere Schranke von A ist. Wir zeigen, dass p die kleinstmögliche obere Schranke von A ist, also $p = \sup A$: Sei p' eine weiter obere Schranke von A. Wir unterscheiden zwei Fälle:

Fall 1: $p' \geq p$. Dann ist p immernoch die kleinstmögliche obere Schranke von A.

Fall 2: p' < p. Es ist gegeben, dass zu jedem $\epsilon > 0$ ein $x \in A$ mit $x > p - \epsilon$ existiert. Durch p' < p folgt p - p' > 0. Sei nun also $\epsilon = p - p'$. Es folgt nach Gegebenheit, dass ein $x \in A$ mit $x > p - \epsilon = p - (p - p') = p'$ existiert. Somit kann p' keine obere Schranke von A sein.

Wir haben nun beide Richtungen der Äquivalenz gezeigt. Somit ist das zu Zeigende bewiesen: p ist genau dann das Supremum von A, wenn p eine obere Schranke von A ist und es zu jedem $\epsilon > 0$ ein $x \in A$ mit $x > p - \epsilon$ gibt.

(ii)
$$A \subset B \implies (\sup A \le \sup B) \land (\inf A \ge \inf B)$$

Wir zeigen zuerst $A \subset B \implies \sup A \leq \sup B$:

Beweis (Kontraposition). Wir nehmen an, es gelte sup $A > \sup B$. Da das Supremum die kleinste obere Schranke darstellt, folgt nun, dass mindestens ein Element in A größer als alle anderen in B ist. Das bedeutet aber wiederum, dass eben dieses Element nicht in B vertreten ist, also kann A keine Teilmenge von B sein:

$$\sup A > \sup B \implies \exists a \in A \colon \forall b \in B \colon a > b \implies \exists a \in A \colon a \notin B \implies A \not\subset B$$

Somit nach Prinzip der Kontraposition bewiesen:

$$(\sup A > \sup B \Longrightarrow A \not\subset B) \stackrel{\text{Kontrapos.}}{\Longleftrightarrow} (A \subset B \Longrightarrow \sup A \leq \sup B)$$

Nun zeigen wir analog dazu $A \subset B \implies \inf A \ge \inf B$:

Beweis (Kontraposition). Wir nehmen an, es gelte inf $A < \inf B$. Nach dem gleichen Prinzip wie zuvor folgt nun:

$$\inf A < \inf B \implies \exists a \in A \colon \forall b \in B \colon a < b \implies \exists a \in A \colon a \notin B \implies A \not\subset B$$

Somit ist wieder nach dem Prinzip der Kontraposition bewiesen:

$$(\inf A < \inf B \implies A \not\subset B) \stackrel{\text{Kontrapos.}}{\Longleftrightarrow} (A \subset B \implies \inf A \ge \inf B)$$

Also nun:

$$(A \subset B \implies \sup A \le \sup B) \land (A \subset B \implies \inf A \ge \inf B)$$

$$\iff (A \subset B \implies (\sup A \le \sup B) \land (\inf A \ge \sup B))$$

(iii)
$$\lambda \geq 0 \implies (\inf \lambda A = \lambda \inf A) \wedge (\sup \lambda A = \lambda \sup A)$$

Wir zeigen zuerst $\lambda \ge 0 \Longrightarrow \sup \lambda A = \lambda \sup A$: Für $\lambda = 0$ folgt:

$$\lambda \sup A = 0 \cdot \sup A = 0 = \sup \{0\} = \sup \{0 \cdot x \mid x \in A\} = \sup \lambda A$$

Für $\lambda > 0$ folgt:

$$s = \sup A \iff \forall a \in A \colon s \ge a$$

$$\iff \forall a \in A \colon \lambda s \ge \lambda a$$

$$\iff \forall a \in \lambda A \colon \lambda s \ge a$$

$$\iff \lambda s = \sup \lambda A$$

$$\iff \lambda \sup A = \sup \lambda A$$

In beiden Fällen folgt, dass sup $\lambda A = \lambda \sup A$.

Analog dazu lässt sich zeigen, dass $\lambda \geq 0 \implies \inf \lambda A = \lambda \inf A$. Wir unterscheiden zwei Fälle. **Fall 1:** $\lambda = 0$. Es folgt:

$$\lambda \inf A = 0 \cdot \inf A = 0 = \inf \{0\} = \inf \{0 \cdot x \mid x \in A\} = \inf \lambda A$$

Fall 2: $\lambda > 0$. Es folgt:

$$i = \inf A \iff \forall a \in A \colon i \le a$$
 $\iff \forall a \in A \colon \lambda i \le \lambda a$
 $\iff \forall a \in \lambda A \colon \lambda i \le a$
 $\iff \lambda i = \inf \lambda A$
 $\iff \lambda \inf A = \inf \lambda A$

In beiden Fällen folgt, dass inf $\lambda A = \lambda \inf A$ Wir haben nun gezeigt, dass $\lambda \geq 0 \Longrightarrow (\inf \lambda A = \lambda \inf A) \wedge (\sup \lambda A = \lambda \sup A)$

(iv)
$$\sup A + B = \sup A + \sup B$$

$$s = \sup A + \sup B \quad \Longleftrightarrow \quad \forall a \in A, \forall b \in B \colon s \ge a + b$$

$$\iff \forall x \in \{a + b \mid a \in A, b \in B\} \colon s \ge x$$

$$\iff \forall x \in A + B \colon s \ge x$$

Daraus folgt, dass sup $A + \sup B$ eine obere Schranke von A + B ist. Sei nun s' eine andere obere Schranke von A + B. Wir unterscheiden zwei Fälle:

Fall 1: s' > s. Es folgt, dass s immernoch die kleinste obere Schranke von A + B ist.

Fall 2: s' < s.

Dann exisitert ein $\epsilon > 0$ mit $s - \epsilon = s'$. Es folgt, dass $s' = (\sup A - \frac{\epsilon}{2}) + (\sup B - \frac{\epsilon}{2})$. Nach Nr 2 (i) folgt nun, dass ein $x \in A$ mit sup $A > x > \sup A - \frac{\epsilon}{2}$ und ein $y \in B$ mit sup $B > y > \sup B - \frac{\epsilon}{2}$ existiert. Also:

$$s' < (x+y) \in A+B$$

Folglich kann s' keine obere Schranke von A+B sein. Somit ist s die kleinstmögliche obere Schranke von A+B, das Supremum: sup $A+\sup B=\sup A+B$.

(v)
$$\sup_{x \in A} (f(x) + g(x)) \le \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$$

Wir definieren zur Leserlichkeit:

$$S_f := \sup_{x \in A} (f(x))$$
 $S_g := \sup_{x \in A} (g(x))$ $S_{f+g} := \sup_{x \in A} (f(x) + g(x))$

Der wesentlich Unterschied ist, dass f und g für S_{f+g} immer an dem gleichen $x \in A$ ausgewertet werden, während S_f und S_g unabhängig voneinander bestimmt werden.

Es seien $a, b \in A$ gegeben sodass $f(a) = S_f$ und $g(b) = S_g$. Wir unterscheiden zwei Fälle:

Fall 1: a = b

Es folgt, dass auch $g(a) = S_g$ ist. Somit ist das Supremum von f und g das Bild von a unter der jeweiligen Funktion. Es folgt:

$$\forall x \in A : f(a) + g(a) \ge f(x) + g(x) \implies S_f + S_g = S_{f+g}$$

Fall 2: $a \neq b$

Es folgt, dass $g(a) \leq S_q$ bzw. $f(b) \leq S_f$. Somit gilt:

$$g(a) \le S_g \implies f(a) + g(a) \le S_f + S_g \quad \text{und} \quad f(b) \le S_f \implies f(b) + g(b) \le S_f + S_g$$

oder generell:

$$\forall x \in A \colon f(x) + g(x) \le S_f + S_g \iff S_{f+g} \le S_f + S_g$$

Somit gilt für alle Fälle, dass $S_{f+g} \leq S_f + S_g$.

Aufgabe 3

Zu zeigen: $\sqrt{2} \notin \mathbb{Q}$

Beweis (indirekt). Wir nehmen an, dass $\sqrt{2} \in \mathbb{Q}$.

Also gibt es teilerfremde $a \in \mathbb{Z}, b \in \mathbb{N}$ (insbesondere sind nicht a und beide gerade) sodass gilt:

$$\frac{a}{b} = \sqrt{2} \iff \frac{a^2}{b^2} = 2 \iff a^2 = 2b^2$$

Daraus folgt, dass a^2 gerade ist.

Lemma Wenn a^2 gerade ist, so ist auch a gerade.

Beweis (Kontraposition). Wir nehmen an a ist ungerade. Somit gibt es ein $k \in \mathbb{Z}$ mit a = 2k+1.

$$a^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$$

Somit ist a^2 auch ungerade. Also ist a^2 nicht gerade wenn a nicht gerade ist. Es folgt:

$$(a \text{ ungerade} \implies a^2 \text{ ungerade}) \stackrel{\text{Kontrapos.}}{\Longleftrightarrow} (a^2 \text{ gerade} \implies a \text{ gerade})$$

Somit wissen wir nun, dass a auch gerade ist. Also gibt es ein $k \in \mathbb{Z}$ mit a = 2k und $a^2 = 4k^2$. Aus vorheriger Gleichung folgt:

$$a^2 = 2b^2 \iff 4k^2 = 2b^2 \iff 2k^2 = b^2$$

Somit ist b^2 gerade. Wir wissen aber nach dem Lemma, dass nun b ebenfalls gerade sein muss. Wir haben jedoch angenommen, dass a und b teilerfremd sind, insbesondere, dass nicht beide gerade sind. Somit ergibt sich ein Widerspruch (und man könnte dieses $\frac{a}{b}$ unendlich oft nach dem gleichen Schema kürzen). Somit muss unsere Annahme, dass $\sqrt{2} \in \mathbb{Q}$ falsch sein. Es folgt, das $\sqrt{2}$ irrational ist, also $\sqrt{2} \notin \mathbb{Q}$.

Aufgabe 4

Da $\mathbb Q$ dicht in $\mathbb R$ ist, gibt es für alle $x,y \in \mathbb R$ mit x < y ein $r \in \mathbb Q$ sodass x < r < y.

Aus r < y folgt weiterhin y - r > 0, also auch $\frac{y - r}{2} > 0$. Durch die archimedische Eigenschaft von \mathbb{N} in \mathbb{R} (Satz 4.10) existiert nun ein $n \in \mathbb{N}$ mit

$$n \cdot \frac{y-r}{2} > 1 \iff \frac{y-r}{2} > \frac{1}{n} \iff y > r + \frac{2}{n}$$

Durch x < r sowie $2 > \sqrt{2}$ (4.14 b) folgt dann:

$$y > r + \frac{2}{n} > r + \frac{\sqrt{2}}{n} > x$$

Somit gibt es ein $r \in \mathbb{Q}$ und $n \in \mathbb{N}$ für alle $x, y \in \mathbb{R}$ mit x < y sodass:

$$s = r + \frac{\sqrt{2}}{n} \in \mathbb{Q}^{\complement}, \quad x < s < y$$

Dies zeigt, dass die irrationalen Zahlen \mathbb{Q}^{\complement} dicht in \mathbb{R} sind.