Fig. 1. is a table showing the emission wavelength maximum (nm) of aequorin mutants with coelenterazine analogues.

Coelenterazine	Wild Type	Aequorin	uorin Aequorin Aequo		
Analogue	Aequorin	Mutant S	Mutant S	Mutant S	
		(Aeq3)	Ser5Cys (Aeq5)	Tyr132Ile	
CTZ i	472	491	491	487	
CTZ ip	472	470	454	453	
CTZ h	472	476	471	471	
CTZ hcp	472	476	448	465	
CTZ cp	472	470	456	457	
CTZ fcp	472	466	471	471	
CTZ f	472	490	473	471	
CTZ n	472	487			
CTZ native	472	474	471	471	

^{*} All values, except wild type aequorin, were calculated from the average of 3 trials (wild type with 2). All mutants were, except Aeq5 purified to >95% purity. CTZ analogues diluted to 100 micrograms/ml methanol.

■NTV Aeq CTZ i (472 nm) ■NTV Aeq CTZ hcp (472 nm) - Aeq3 CTZ hcp (448 nm) Aeq3 CTZ i (491 nm) Emission Spectra of Aeq3 and Native Aeq With CTZ i, hcp Emitted Wavelength (nm) FIG. 2 8LU (counts) 150000 100000 -500000

-CTZ native -CTZ hcp -CTZ fcp -CTZ f -CTZ cp -CTZ n -CTZ ip -CTZ i -CTZ h 725 Crude Aequorin 5 (Average of 2 Trials) With Coelenterazine (CTZ) Analogues 625 Emitted Wavelength (nm) 575 525 475 425 2000000 0 -500000 1500000 1000000 500000 RLU (counts)

-CTZ native — CTZ i — CTZ ip — CTZ hcp — CTZ hcp — CTZ cp — CTZ fcp — CTZ fcp 725 Aequorin Y132l Aequorin With Coelenterazine (CTZ) Analogues 625 Emitted Wavelength (nm) FIG. 5 525 475 425 -100000375 RLU (counts) 2400000 -1900000 000006 400000

Fig. 7. is a table showing the emission wavelength maximum (nm) of aequorin mutant Mutant S Y132I, Mutant S having a 3-fluoro-l-tyrosine aequorin or a 5-fluoro-l-tyrosine non-natural amino acid in position 132 in conjunction with coelenterazine analogues CTZ i, ip, n, h, hcp, cp, fcp, f and native CTZ.

Coelenterazine	Wild Type	Aequorin	uorin Aequorin Aequorin		
Analogue	Aequorin	Mutant S	Mutant S	Mutant S	
		Tyr132Ile	Tyr132	Tyr132	
			3-fluoro-l-tyr	5-fluoro-l-trp	
CTZ i	472	491	511	495	
CTZ ip	472	452	471		
CTZ n	472	491	500		
CTZ h	472	472	498	471	
CTZ hcp	472	452	471	468	
CTZ cp	472	457	471	471	
CTZ fcp	472	463	471		
CTZ f	472	472	500	497	
CTZ native	472	471	495	472	

Figure 8

Spectra of 3-Fluoro-L-Tyrosine

Figure 9

Spectra of 5-Fluoro-L- Tryptophan

Energy Transfer Study: Aequorin Mutants Fig. 10

Fig. 11: SEQ ID NO: 1 cDNA encoding wild type apoaequorin

- 1 aatgcaattc atctttgcat caaagaatta catcaaatct ctagttgatc aactaaattg
- 61 tctcgacaac aacaagcaaa c**atg**acaagc aaacaatact cagtcaagct tacatcagac
- 121 ttcgacaacc caagatggat tggacgacac aagcatatgt tcaatttcct tgatgtcaac
- 181 cacaatggaa aaatctctct tgacgagatg gtctacaagg catctgatat tgtcatcaat
- 241 aaccttggag caacacctga gcaagccaaa cgacacaaag atgctgtaga agccttcttc
- 301 ggaggagctg gaatgaaata tggtgtggaa actgattggc ctgcatatat tgaaggatgg
- 361 aaaaaattgg ctactgatga attggagaaa tacgccaaaa acgaaccaac gctcatccgt
- 421 atatggggtg atgctttgtt tgatatcgtt gacaaagatc aaaatggagc cattacactg
- 481 gatgaatgga aagcatacac caaagctgct ggtatcatcc aatcatcaga agattgcgag
- 541 gaaacattca gagtgtgcga tattgatgaa agtggacaac tcgatgttga tgagatgaca
- 601 agacaacatt taggattttg gtacaccatg gatcctgctt gcgaaaagct ctacqqtqqa
- 661 gctgtcccc**t aa**gaagctct acggtggtga tgcaccctgg gaagatgatg tgattttgaa
- 721 taaaacactg atgaattcaa tcaaaatttt ccaaattttt gaacgatttc aatcgtttgt
- 781 gttgattttt gtaattagga acagattaaa tcgaatgatt agttgtttt ttaatcaaca
 - 841 gaacttacaa atcqaaaaag t

Fig. 12: SEQ ID NO: 2 amino acid sequence for wild type apoaequorin

VKLTSDFDNP RWIGRHKHMF NFLDVNHNGK ISLDEMVYKA SDIVINNLGA TPEQAKRHKD AVEAFFGGAG MKYGVETDWP AYIEGWKKLA TDELEKYAKN EPTLIRIWGD ALFDIVDKDQ NGAITLDEWK AYTKAAGIIQ SSEDCEETFR VCDIDESGQL DVDEMTRQHL GFWYTMDPAC EKLYGGAVP

Fig. 13: SEQ ID NO: 3 cDNA encoding Mutant S apoaequorin

- 1 aatgcaattc atctttgcat caaagaatta catcaaatct ctagttgatc aactaaattg
- 61 tctcgacaac aacaagcaaa c**atg**acaagc aaacaatact cagtcaagct tacatcagac
- 121 ttcgacaacc caagatggat tggacgacac aagcatatgt tcaatttcct tgatgtcaac
- 181 cacaatggaa aaatctctct tgacgagatg gtctacaagg catctgatat tgtcatcaat
- 241 aaccttggag caacacctga gcaagccaaa cgacacaaag atgctgtaga agccttcttc
- 301 ggaggagctg gaatgaaata tggtgtggaa actgattggc ctgcatatat tgaaggatgg
- 361 aaaaaattgg ctactgatga attggagaaa tacgccaaaa acgaaccaac gctcatccgt
- 421 atatggggtg atgctttgtt tgatatcgtt gacaaagatc aaaatggagc cattacactg
- 481 gatgaatgga aagcatacac caaagctgct ggtatcatcc aatcatcaga agat**agc**qaq
- 541 gaaacattca gagtg**agc**ga tattgatgaa agtggacaac tcgatgttga tgagatgaca
- 601 agacaacatt taggattttg gtacaccatg gatcctgctaggaaaagct ctacggtgga
- 661 gctgtcccc**t aa**gaagctct acggtggtga tgcaccctgg gaagatgatg tgattttgaa
- 721 taaaacactg atgaattcaa tcaaaatttt ccaaattttt gaacgatttc aatcgtttgt
- 781 gttgattttt gtaattagga acagattaaa tcgaatgatt agttgtttt ttaatcaaca
 - 841 gaacttacaa atcgaaaaag t

Fig. 14: SEQ ID NO: 4 amino acid sequence for "Mutant S" apoaequorin

VKLTSDFDNP RWIGRHKHMF NFLDVNHNGK ISLDEMVYKA SDIVINNLGA TPEQAKRHKD AVEAFFGGAG MKYGVETDWP AYIEGWKKLA TDELEKYAKN EPTLIRIWGD ALFDIVDKDQ NGAITLDEWK AYTKAAGIIQ SSEDSEETFR VSDIDESGQL DVDEMTRQHL GFWYTMDPAS EKLYGGAVP

Fig. 15

Plasmid construct for the expression of the aequorin fusion protein and schematic representation of the fusion protein showing the HIV-1 protease cleavage site. B represents biotin and NA represents Neutravidin immobilized on the wells.

Fig. 16: Coelenterazine Analogs

Fig. 17. Non-natural amino acids

Non-natural Amino Acid Analogue	Representative Example	Effect
Fluoro-analogue	F OH NH ₂	Altered pK _a and H- bonding strength
	3-fluoro-L-tyrosine	
Amine-analogue	H ₂ N OH	Altered electrostatic charge and H-bonding strength
	p-amino-L-phenylalanine	
Alkyl-analogue	H ₃ CO NH ₂ OH	Altered H-bonding capability, increased bulkiness
	p-methoxy-L-phenylalanine	
Nitro-analogue	HO NH ₂ OH NH ₂ 2-nitro-L-tyrosine	Altered π- character, altered pK _a , altered H- bonding strength, and steric effects
Hydroxyl-analogue	HO NH ₂ OH	Altered pK _a , loss of π - π interactions
	2-amino-5-hydroxy-4-methyl pentanoic acid	

Fig. 18 SEQ ID NO: 5, Obelin cDNA sequence

- 1 acgatcgaac caaacaactc agctcacagc tactgaacaa ctcttgttgt gtacaatcaa
- 61 aatgtcttca aaatacgcag ttaaactcaa gactgacttt gataatccac gatggatcaa
- 121 aagacacaag cacatgtttg atttcctcga catcaatgga aatggaaaaa tcacctcga
- 181 tgaaattgtg tccaaggcat ctgatgacat atgtgccaag ctcgaagcca caccagaaca
- 241 aacaaaacgc catcaagttt gtgttgaagc tttctttaga ggatgtggaa tggaatatgg
- 301 taaagaaatt gccttcccac aattcctcga tggatggaaa caattggcga cttcagaact
- 361 caagaaatgg gcaagaaacg aacctactct cattcgtgaa tggggagatg ctgtctttga
- 421 tattttcgac aaagatggaa gtggtacaat cactttggac gaatggaaag cttatggaaa
- 481 aatctctggt atctctccat cacaagaaga ttgtgaagcg acatttcgac attgcgattt
- 541 ggacaacagt ggtgaccttg atgttgacga gatgacaaga caacatcttg gattctggta
- 601 cactttggac ccagaagctg atggtctcta tggcaacgga gttccctaag cttttttcg

661 aa

Fig. 19. SEQ ID NO: 6, Native Obelin Amino Acid Sequence

MSSKYAVKLK TDFDNPRWIK RHKHMFDFLD INGNGKITLD EIVSKASDDI CAKLEATPEQ TKRHQVCVEA FFRGCGMEYG KEIAFPQFLD GWKQLATSEL KKWARNEPTL IREWGDAVFD IFDKDGSGTI TLDEWKAYGK ISGISPSQED CEATFRHCDL DNSGDLDVDE MTRQHLGFWY TLDPEADGLY GNGVP

Fig. 20 Obelin mutants with Coelenerazine analogues.

	Coelenterazine Analogs Emission Max (nm)							
Obelin Mutant	i	ip	h	hcp	ср	fcp	f	ctz
C75S- C51S	521	478	503	478	472	497	503	491
C75S- C67S	505	471	500	471	471	487	504	491
C158S	506	472	497	478	472	475	497	491
C151S	497	471	490	471	471	474	493	491