

 1º TVC - GABARITO
 1ª chamada
 DATA: 29/09/2014
 VALOR: 1/3 DO TOTAL

 DISCIPLINA: ÁLGEBRA LINEAR - Turmas especiais D e E
 PROFESSOR: GRIGORI CHAPIRO

 ALUNO(A):
 Nº DE MATRÍCULA:

Esta prova contém quarto questões. A prova deve ser feita **sem consulta** a qualquer material. **Não é permitido** usar **calculadoras**. A resolução das questões pode ser feita a lápis. Questões sem desenvolvimento não serão corrigidas.

Questão 1: Mostre que os seguintes subconjuntos de \mathbb{R}^4 são subespaços vetoriais:

- (a) $W = \{(x, y, z, w) \in \mathbb{R}^4, x + 2y = 0, 2z w = 0\}.$
- (b) $U = \{(x, y, z, w) \in \mathbb{R}^4, x + 2y + 3w = 0\}$

Solução: Para que um subconjunto seja subespaço é necessário que ele cumpra três condições: vetor nulo tem que estar neste subconjunto, a soma de quaisquer dois elementos deste conjunto tem que estar dentro do conjunto e o produto por escalar de qualquer elemento deste conjunto tem que estar dentro do mesmo conjunto.

- (a) $W = \{(x, y, z, w) \in \mathbb{R}^4, x + 2y = 0, 2z w = 0\} = \{(-2y, y, z, 2z) \in \mathbb{R}^4, y, z \in \mathbb{R}\}$
- Vetor nulo $(0,0,0,0) \in W$, pois $0+2\cdot 0=0$ e $2\cdot 0-0=0$.
- \bullet Sejam (-2y,y,z,2z) e (-2a,a,b,2b) elementos de W . Note que
- $(-2y, y, z, 2z) + (-2a, a, b, 2b) = (-2(y+a), y+a, z+b, 2(z+b)) \in W.$
- ullet Sejam $lpha\in\mathbb{R}$ e $(-2a,a,b,2b)\in W$. Note que $lpha(-2a,a,b,2b)=(-2(lpha a),(lpha a),(lpha b),2(lpha b))\in W$.
- (b) $U = \{(x, y, z, w) \in \mathbb{R}^4, \ x + 2y + 3w = 0\} = \{(-2y 3w, y, z, w) \in \mathbb{R}^4, \ y, z, w \in \mathbb{R}\}$
- Vetor nulo $(0,0,0,0) \in U$, pois $0 + 2 \cdot 0 + 3 \cdot 0 = 0$.
- Sejam (-2y-3w,y,z,w) e (-2a-3c,a,b,c) elementos de U. Note que $(-2y-3w,y,z,w)+(-2a-3c,a,b,c)=(-2(y+a)-3(w+c),y+a,z+b,w+c)\in U$.
- Sejam $\alpha \in \mathbb{R}$ e $(-2a-3c,a,b,c) \in U$. Note que $\alpha(-2a-3c,a,b,c) = (-2(\alpha a)-3(\alpha c),(\alpha a),(\alpha b),(\alpha c)) \in U$.

Pontuação: Explicação 5 pts. (a) 10 pts. (b) 10 pts.

Questão 2: Determinar dimensão e uma base para cada um dos seguintes espaços vetoriais.

- (a) $W = \{(x, y, z) \in \mathbb{R}^3, x = 2y\};$
- (b) $U = \{(x, y, z) \in \mathbb{R}^3, \ x = 2y z, \ x = z\}.$

Solução: Para que um conjunto seja base de um subespaço vetorial ele tem que gerar este subespaço e ser linearmente independente (LI). A dimensão de um subespaço vetorial é o numero de vetores numa base.

- (a) $W=\{(x,y,z)\in\mathbb{R}^3,\ x=2y\}=\{(2y,y,z)\in\mathbb{R}^3,\ x,y\in\mathbb{R}\}$. Portanto o conjunto $\beta=\{(2,1,0),\ (0,0,1)\}$ gera W. Como β apenas contém dois vetores, para verificar que ele é LI basta notar que os dois não saõ multiplo um do outro. Portanto β é base de W e $\dim(W)=2$.
- (b) Note que se x=2y-z e x=z, logo x=y=z. Portanto $U=\{(x,x,x)\in\mathbb{R}^3,\ x\in\mathbb{R}\}$. O conjunto $\beta=\{(1,1,1)\}$ gera W. Como β contém apenas um vetor, β é Ll. Portanto β é base de U e $\dim(U)=1$.

Pontuação: Explicação 5 pts. (a) dimensão 5 pts, base 5 pts. (b) dimensão 5 pts, base 5 pts.

Questão 3: Em relação ao produto interno usual determinar uma base ortonormal do seguinte subespaço vetorial de \mathbb{R}^3 : $S = \{(x, y, z) \in \mathbb{R}^3, \ x + y - z = 0\}.$

Solução: Primeiramente obtemos base de S. $S=\{(x,y,z)\in\mathbb{R}^3,\;x+y-z=0\}=\{(x,y,x+y)\in\mathbb{R}^3,\;x,y\in\mathbb{R}\}.$ Portanto o conjunto $\beta=\{v_1=(1,0,1),v_2=(0,1,1)\}$ gera S. Como β apenas contém dois vetores, para verificar que ele é Ll basta notar que os dois não saõ multiplo um do outro. Portanto β é base de S. Para construir base ortogonal usamos o processo de Gram-Schmidt. Chamamos $u_1=v_1=(1,0,1)$ e

$$u_2 = (0,1,1) - \frac{\langle ((1,0,1),(0,1,1)) \rangle}{||(1,0,1)||} (1,0,1) = (0,1,1) - \frac{1}{\sqrt{2}} (1,0,1) = \left(\frac{-1}{\sqrt{2}},1,\frac{1}{\sqrt{2}}\right).$$

Para construir base ortonormal precesamos apenas dividir os vetores da nova base pela sua norma.

$$w_1 = \frac{u_1}{||u_1||} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \quad w_2 = \frac{u_2}{||u_2||} = \left(\frac{-1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right).$$

Pontuação: Encontrar a base 5 pts. Base ortogonal 10 pts. Base ortonormal 10 pts.

Questão 4: Dadas duas bases de \mathbb{R}^3 com produto interno usual: $\alpha = \{(1, -1, 0), (-1, -1, 0), (0, 0, 1)\}$ e $\beta = \{(1, 0, -1), (0, 2, 0), (1, 0, 1)\}$:

- (a) Prove que α e β são bases ortogonais.
- (b) Encontre a matriz mudança de base de α para β .

Solução: Como a dimensão de \mathbb{R}^3 é 3 para verificar que α e β são bases basta verificar que são LI. Podemos fazer isso via determinante, por exemplo.

$$\det \begin{bmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = -2 \neq 0, \qquad \det \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix} = 4 \neq 0,$$

Portanto α e β são bases. Para verificar que são ortogonais basta fazer os produtos internos de todos os vetores:

$$<(1,-1,0),(-1,-1,0)>=0$$

$$<(1,-1,0),(0,0,1)>=0$$

$$<(0,0,1),(-1,-1,0)>=0$$

Portanto α é ortogonal.

$$<(1,0,-1),(0,2,0)>=0$$

$$<(1,0,-1),(1,0,1)>=0$$

$$<(0,2,0),(1,0,1)>=0$$

Portanto β é ortogonal.

Pontuação: (a) Base 15 pts. Ortogonal 10 pts. OBS: Quem notou que se um conjunto é ortogonal ele é LI, considerei questão completa. (b) ANULADA.