ANÁLISE QUANTITATIVA DE GRÃOS DE ARROZ

Ferreira, Alex Naves¹, Martins, Ana Carolina Faria¹, Cardoso, Felipe Pereira¹, Miranda, Rafael Novais¹, Martins, Vinicius Samuel¹

¹Departamento de Biologia, Universidade Federal de Lavras, Lavras-MG, CEP 37.200-000, Brasil

Resumo

O arroz, Oryza sativa L., pertence à família das gramíneas, taxonomicamente denominado de Poaceae. É uma das culturas anuais de maior importância social e econômica no Brasil. Através do melhoramento genético é possível obter grãos com características favoráveis. Neste contexto, o objetivo deste trabalho foi avaliar vinte diferentes linhagens quanto as dimensões de largura, comprimento, área e razão. As avalições foram realizadas utilizando imagens obtidas utilizando o equipamento Groundeye e processamento de imagens via Pycharm. Através da mensuração da largura e comprimento foi possível observar que todos os grãos possuem morfologia longa, típica preferência do consumidor. Além disso foi possível observar uma correlação positiva entre área de grãos e peso de 1000 grãos, o que viabiliza a seleção indireta utilizando a área.

Palavras-chave: Oryza sativa, processamento de imagem,

1. INTRODUÇÂO

O arroz pertente a família Poaceae (gramíneas) e ao gênero Oryza, a espécie *Oryza sativa* L. é a mais cultivada no Brasil entre as vinte espécies existente (JULIANO, 1993). É uma das culturas anuais de maior importância social e econômica no Brasil, visto que, juntamente com o feijão, é o principal componente da dieta diária dos brasileiros (WALTER; MARCHEZAN; AVILA, 2008). O arroz possui carboidratos, proteínas, lipídios, vitaminas (B1, B2 e B3) e minerais, entretanto a quantidade de nutrientes e minerais presente no grão e influenciados por fatores como qualidade do solo, fertilizantes, condições climáticas, beneficiamento/processamento, armazenamento, entre outros (CONAB, 2015).

O grande consumo populacional por esse alimento fez com que o arroz seja constantemente objeto de diversos estudos (MAIONE; BARBOSA, 2019). Ele é um dos

principais cereais consumidos e produzidos no mundo, caracterizando-se como principal alimento para mais de 50% da população mundial. A sua importância é destacada, consequentemente, em países em desenvolvimento, tais como o Brasil, desempenhando papel estratégico em níveis econômico e social (FAO, 2018)

O aumento exponencial na população mundial, consequentemente, também na demanda por alimentos, fez com que a produção de arroz mundial aumentasse. Esse acréscimo na produção mundial de arroz, foi de 285 milhões de toneladas em 1961 para 741 milhões de toneladas em 2016 (FAO, 2018). Ele é tradicionalmente, um dos produtos alimentícios mais consumidos no Brasil, sendo o seu consumo anual estimado em 12,07 milhões de toneladas, na safra 17/18 e seu consumo per capita é de 34,5 kg por ano (CONAB, 2017; FAO, 2015).

Analises de imagem do arroz tem sido amplamente realizada na literatura recente com o auxílio de análises multivariadas de dados e técnicas de fenotipagem por imagem. Ambos os processos oferecem métodos poderosos capazes de realizar análises estatísticas e análises de imagem sobre dados e imagens de arroz.

Neste trabalho, o objeto foi avaliar vinte diferentes linhagens quanto as dimensões de largura, comprimento, área e razão. Para isto utilizamos o utilitário Python Software Foundation License, para realizarmos a avaliação das imagens gerados pelo equipamento GroundEye [®].

2. MATERIAL E MÉTODOS

2.1 Origem das linhagens

Neste trabalho foram utilizadas 20 linhagens de VCU de arroz (Tabela 1) com três repetições obtidas da safra 2018/2019. Os grãos estão depositados na Universidade Federal de Lavras, Departamento de Agronomia (DAG).

Tabela 1: Linhagens de arroz oriundas do VCU.

Tratamento	Linhagem	Tratamento	Linhagem
1	CMG F6 LAM 20-2	11	CMG ERF 85-15
2	CMG ERF 85-14	12	CMG ERF 85-3
3	BRS Esmeralda	13	CMG F6 LAV 1-7
4	CMG ERF 221-16	14	CMG ERF 85-4
5	CMG 2119	15	CMG ERF 222-1
6	BRSMG Caçula	16	CMG ERF 46-1
7	CMG ERF 85-6	17	CMG ERF 221-19
8	CMG ERF 81-2	18	CMG ERF 221-29
9	CMG ERF 81-6	19	CMG ERF 85-13
10	CMG 2085	20	Multilinha

2.2 Morfologia dos grãos

A dimensão do grão de arroz foi obtida a partir de análise de imagens. Foi feita uma subamostra de 100 grãos oriundos de cada parcela e em seguida realizadas as análises. A captura das imagens dos grãos foi efetuada utilizando o equipamento Groundeye, o qual foi desenvolvido pela Tbit Tecnologia e Sistemas. Os grãos foram dispostos em a bandeja de vidro do equipamento sem nenhuma posição definida e posteriormente as imagens foram capturadas por câmeras de alta resolução situadas no interior do equipamento. As configurações do Groundeye foram processadas para calibração da cor do fundo, luminosidade, e dimensões do grão. Após este processo, foram realizadas as análises biométricas dos grãos, nas quais foram obtidos os valores de comprimento e largura dos grãos. Os grãos foram classificados de acordo com os padrões definidos.

Os grãos foram classificados de acordo com os padrões definidos por Brasil (2012): longo-fino ($C \ge 6$ mm; $L \le 2,17$ mm; C/L > 2,75), longo ($C \ge 6$ mm), médio (C < 6 e ≥ 5 mm) e curto (C < 5mm).

2.3 Processamento das imagens

Foram utilizados computador tipo laptop e os softwares Pyton e Pycharm bem como as bibliotecas *opencv*, *numpy*, *pandas e Scikit-image*. A aquisição das imagens foi feita em RGB, no entanto ao se carregar as imagens no programa com o pacote *opencv* o

sistema de cor da imagem era altera para BGR, devido a este problema as imagens as imagens tiveram que ser transformadas novamente para RGB. Com a imagem em RBG foi realizado a segmentação do sistema de cor nos três canais (R, G, B), posteriormente foi realizado o *thresholding* (Figura 1), para esta tarefa foi utilizado o método do limiar de Otsu automático. Na técnica de Otsu foi utilizado o canal R onde foi aplicado o filtro bilateral (proporciona uma pequena perda de foco/nitidez da imagem em relação a imagem original). Ao final se obteve uma imagem segmentada (imagem com o fundo preto e os grãos colorido) e uma binária (imagem banca e preta).

Na próxima etapa foi utilizado o reconhecimento dos contornos dos grãos para identifica os contornos de cada objeto (grão) que está na imagem. Com os dados dos contornos foi utilizado o pacote *Scikit-image* para obter dos dados de eixo maior, eixo menor, área, razão e número de grãos, estes dados foram salvos em uma tabela utilizando o pacote *pandas*.

O que está descrito a cima foi aplicado em todas as imagens, aquelas imagens onde o programa não rodou foi realizado modificações no script precisamente alterando os canais, além do sistema de cor RGB foi utilizado o Lab e YCrCb destes sistemas de cor foi aplicado o canal que melhor se adaptou a imagem.

2.4 Análise de correlação entre a área e peso de grãos.

O peso de 1000 grãos das linhagens foi obtido usando a balança de precisão Bel 0,01g, 2200g S2202H. A partir dos dados de peso foi realizado uma análise de variância para que se pudesse inferir sobre a correlação entre peso dos grãos e a área. A área foi obtida utilizando as fotos em que a metodologia foi descrita no item anterior.

3. RESULTADOS E DISCUSSÃO

A limiarização da imagem pelo método de OTSU propiciou bons resultados, oferecendo boa obtenção de contorno entre os grãos amostrados (Figura 1). Diante disso, foi possível a obtenção das características referentes a cada grão, como: largura, comprimento e a área (Tabela 2).

Figura 1: Segmentação da imagem com seus respectivos contornos.

Tabela 2: Média da largura, comprimento, razão, área e peso dos grãos de arroz para cada linhagem.

Tratamento	Largura	Comprimento	Razão	Área	MMG (g)
1	8.57	23.84	2.81	128.9	24.27
2	9.59	24.95	2.64	153.36	30.65
3	8.15	24.13	3.02	122.13	23.64
4	8.21	25.89	3.17	136.84	28.24
5	7.99	22.92	3	112.67	23.12
6	8.07	24.18	3.06	126.01	27.05
7	10.2	27.56	3.13	132.66	28.79
8	9.83	24.9	2.88	126.03	28.25
9	8.38	24.64	2.97	130.56	26.96
10	8.76	26.34	3.11	140.4	29.98
11	8.68	27	3.21	142.58	31.16
12	8.62	27.17	3.23	144.14	31.01
13	7.29	24.94	3.44	116.52	24.32
14	8.12	25.76	3.19	135.48	28.18
15	8.50	22.46	2.67	118.98	22.26
16	7.74	24.15	3.20	112.85	24.12
17	9.03	27.45	3.18	143.83	31.59
18	8.40	26.43	3.31	127.12	27.43
19	8.47	23.75	2.84	126.35	26.71
20	8.68	25.87	3.10	132.79	28.39

É possível observar que as características área do grão e massa de mil grãos (MMG) seguem uma tendência linear positiva, esse resultado poderia tornar viável a seleção indireta da MMG por análise de imagem, o que seria mais simples e eficiente

(FIGURA 2). Para ambas características, os genótipos CMG ERF 221-19, CMG ERF 85-14, CMG ERF 85-15 e CMG ERF 85-3 foram promissores.

Figura 2: Gráfico de dispersão das médias dos genótipos para as características massa de mil grãos (MMG) e área do grão.

Todos os grãos foram classificados como longos de acordo com os padrões estabelecidos por Brasil (2012), visto que todos possuem o comprimento maior que 6mm. Tal fato pode ser explicado pela seleção de linhagens com morfologia longa dos grãos, já que este tipo de morfologia é mais consumido pela população.

3.1 Análise de correlação entre a área e peso de grãos.

Houve uma correlação positiva entre a massa de 1000 grãos e a área (estimada por meio dos softwares Pyton e Pycharm). Foram observados correlação genotípica em sentido favorável (r = 0.94) de alta magnitude entre as variáveis área e peso de 1000 grãos (Anexo). Pode-se inferir, que à medida que aumenta à área dos grãos ocorre incremento na massa de 1000 grãos. Há evidencias, que ao realizar a seleção de linhagens por imagem (seleção indireta) com maior área dos grãos, ocorre incremento em massa de 1000 grãos.

A vantagem ao praticar seleção indireta é obter ganhos genéticos em caracteres de difícil mensuração ou que apresentam herdabilidade baixa. O caráter massa de 1000 grãos apresenta herdabilidade de alta magnitude de acordo com saída do programa genes em anexo. Contudo, o mesmo caráter é controlado por muitos genes e apresenta de média a alta dificuldade de obtenção dos dados, sendo uma prática onerosa e trabalhosa. Ao realizar seleção indireta, o melhorista aumenta suas chances de obter sucesso. Isto é, alcançar em menor tempo a melhor linhagem ou cultivar.

4. CONCLUSÕES

É possível obter métricas do formato de grãos de arroz utilizando análise de imagens. Portanto, é verificado diferença significativas entre as linhagens em relação ao caráter área de grãos. Desta forma, a análise de imagens é uma ferramenta poderosa que nos auxilia na prática de seleção indireta para selecionar linhagens com maior massa de mil grãos.

5. REFERÊNCIAS

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 02, de 6 de fevereiro de 2012.Disponível em: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=918108049. Acesso em: 22 nov. 2017

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. A cultura do arroz. Brasília: Conab, p. 180, 2015. Disponível em: http://www.conab.gov.br. Acesso em: 01/08/2020.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). OECD-FAO Agricultural Outlook 2015-2024. Paris: OECD-FAO: 2015. 143 p.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). OECD-FAO Agricultural Outlook 2015-2024. Paris: OECD-FAO: 2018. 101 p.

JULIANO, B. O. Rice in human nutrition. Rome. FAO, 1993. Disponível em: http://www.fao.org/docrep/t0567e/T0567E00.htm#Contents. Acesso em: 30 agosto. 2020.

MAIONE, Camila; BARBOSA, Rommel Melgaço. Aplicações recentes de métodos de análise multivariada de dados na autenticação de arroz e os parâmetros mais analisados: Uma revisão. Revisões críticas em ciência alimentar e nutrição, v. 59, n. 12, pág. 1868-1879, 2019.

WALTER, M., MARCHEZAN, E., AVILA, L. A. Arroz: composição e características nutricionais. Ciência Rural, Santa Maria, v.38, n.4, p. 1184-1192, 2008.

ANEXO A

	Programa GENES	_	ANOVA EM BLOCOS AO ACAS
C:\Users\Cliente	Arquivo \Documents\GitHub	de visao computacional	dado Vinicius\Trabalho
Final\dados corre		, · _ o a o _ o o p a o a o _ o a _	
	Número de varia		2
	Número de genó	_	20
	Número de repe	ciçoes	3 08-31-2020
	ANÁLISE	DA VARIÁVEL => AREA	
		Correlação entre bl	ocos
Blocos		Covariância	Correlação
1 x 2		121.187128	.914507
1 x 3		118.41138	.92901
2 ж 3		104.989439	. 936454
Média		114.862649	.926657
Probabilidade(%)	SQ	QM	
BLOCOS 2	8.17143	4.085715	
TRATAMENTOS 19	6740.112024	354.742738	34.9335 .0*
andings an	385.882027	10.15479	
RESIDUO 38			
	7134.165481		
FOTAL 59	7134.165481	CV (%)	2.44726
FOTAL 59		CV(%) MÁXIMO	2. 44 726 153.75
FOTAL 59 MÉDIA MÍNIMO	130.213297		153.75
FOTAL 59 MÉDIA MÍNIMO	130.213297 101.5 11.483408	MÁXIMO	153.75 9.896197
TOTAL 59 MÉDIA MÍNIMO DMS-Tukey(1%)	130.213297 101.5 11.483408 Estin	MÁXIMO DMS-Tukey(5%)	153.75 9.896197 s
FOTAL 59 MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍ	130.213297 101.5 11.483408 Estin	MÁXIMO DMS-Tukey(5%)	153.75 9.896197 s 118.247579 3.38493
FOTAL 59 MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIENT VARIÂNCIA GENOTÍI	130.213297 101.5 11.483408 Estin	MÁXIMO DMS-Tukey(5%) nativas de Parâmetro	153.75 9.896197 s 118.247579 3.38493 114.862649
FOTAL 59 MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIEN VARIÂNCIA GENOTÍI HERDABILIDADE (US	130.213297 101.5 11.483408 Estin PICA (média) TAL (média) PICA (média) S: média da famíl:	MÁXIMO DMS-Tukey(5%) mativas de Parâmetro	153.75 9.896197 s 118.247579 3.38493 114.862649 97.1374
MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIEN VARIÂNCIA GENOTÍI HERDABILIDADE (US	130.213297 101.5 11.483408 Estin	MÁXIMO DMS-Tukey(5%) mativas de Parâmetro ia) - % la)- %	153.75 9.896197 s 118.247579 3.38493 114.862649
MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIEN VARIÂNCIA GENOTÍI HERDABILIDADE (US CORRELAÇÃO INTRAC COEFICIENTE DE VI RAZÃO CVg/CVe	130.213297 101.5 11.483408 Estin PICA (média) TAL (média) PICA (média) S: média da famíl: CLASSE (US: parce: ARIAÇÃO GENÉTICO	MÁXIMO DMS-Tukey(5%) mativas de Parâmetro ia) - % la)- %	153.75 9.896197 s 118.247579 3.38493 114.862649 97.1374 91.8773
MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIEN VARIÂNCIA GENOTÍI HERDABILIDADE (US CORRELAÇÃO INTRAC COEFICIENTE DE VI	130.213297 101.5 11.483408 Estin PICA (média) TAL (média) PICA (média) S: média da famíl: CLASSE (US: parce: ARIAÇÃO GENÉTICO	MÁXIMO DMS-Tukey(5%) mativas de Parâmetro ia) - % la)- %	153.75 9.896197 s 118.247579 3.38493 114.862649 97.1374 91.8773 8.2306
TOTAL 59 MÉDIA MÍNIMO DMS-Tukey(1%) VARIÂNCIA FENOTÍI VARIÂNCIA AMBIEN VARIÂNCIA GENOTÍI HERDABILIDADE (USCORRELAÇÃO INTRAC	130.213297 101.5 11.483408 Estin PICA (média) TAL (média) PICA (média) S: média da famíl: CLASSE (US: parce: ARIAÇÃO GENÉTICO	MÁXIMO DMS-Tukey(5%) mativas de Parâmetro ia) - % la)- %	153.75 9.896197 s 118.247579 3.38493 114.862649 97.1374 91.8773 8.2306 3.3632 .9856

Blocos Covariância Correlação

1 x 2		8.281921	. 97089	
1 x 3		7.790768	. 95867	
2 x 3		7.255021	.941749	
Média		7.775904	.957103	
_	ANÁLISE DE VA	riância da Variável =	=> MMG	
FV GL Probabilidade(%)	SQ	QΜ		E
BLOCOS 2	4.32052	2.16026		
TRATAMENTOS 19	450.170563	23.693188	64.8306	.0**
RESÍDUO 38	13.8876	.365463		
TOTAL 59	468.3787			
MÉDIA	27.374417	G7. (9.)	2.208396	
MÉDIA MÍNIMO	27.374417	CV(%) MÁXIMO	31.8375	
DMS-Tukey(1%)	2.178498	DMS-Tukey (5%)	1.877391	
CORRELAÇÃO INTRA COEFICIENTE DE V	S: média da famíl CLASSE (US: parce ARIAÇÃO GENÉTICO	la)- %	98.4575 95.511 10.1866	
RAZÃO CVg/CVe r = (1- 1/F)^0.5			4.6127 .9923	
	COVA	RIÂNCIAS FENOTÍPICAS		
118.247579 28.07 28.075309 7.8977				
	COVA	RIÂNCIAS GENOTÍPICAS		
114.862649 28.03 28.036706 7.7759				
	COVA	RIÂNCIAS RESIDUAIS		
10.15479 .115807 .115807 .365463				
	CORR	ELAÇÕES FENOTÍPICAS		
19187				

^{1. .9187} .9187 1.

	CORRELAÇÕES GENOTÍPICAS
	CORRELAÇÕES RESIDUAIS
	MÉDIAS DAS VARIÁVEIS
24.7667	
30.9917	
23.9792	
28.0625	
23.1042	
27.4333 26.7083	
	30.9917 23.9792 28.0625