Feuille d'exercice n° 01 : Trigonométrie et nombres imaginaires

Exercice 1 (\bigcirc) Résoudre dans $\mathbb R$ les équations suivantes :

1)
$$\sin x = \frac{1}{2}$$

3)
$$\cos x = -1$$

5)
$$\cos(4x) = -1$$

2)
$$\tan x = \sqrt{3}$$

4)
$$\sin(3x) = 1$$

6)
$$\sin(x)\cos(x) = \frac{1}{4}$$

Exercice 2 () Résoudre les équations suivantes :

1)
$$\tan(2x) = 1$$

4)
$$\sin(x + 3\pi/4) = \cos(x/4)$$

2)
$$\sin x + \cos x = \sqrt{\frac{3}{2}}$$

5)
$$\cos(x + \pi/6)\cos(x - \pi/6) = \frac{1}{2}$$

3)
$$\cos(5x) = \cos(2\pi/3 - x)$$

6)
$$\sin x + \sqrt{3}\cos x = 1$$

Exercice 3 (Résoudre l'équation $\sin(3x)\cos^3(x) + \sin^3(x)\cos(3x) = \frac{3}{4}$.

Exercice 4 Résoudre sur \mathbb{R} les inéquations suivantes :

1)
$$\tan x \geqslant 1$$

3)
$$2\sin^2 x \le 1$$

$$2) \cos\left(\frac{x}{3}\right) \leqslant \sin\left(\frac{x}{3}\right)$$

4)
$$\cos^2 x \geqslant \cos(2x)$$

Exercice 5 (\circlearrowleft) Pour quelles valeurs de m l'équation $\sqrt{3}\cos x - \sin x = m$ admet-elle des solutions? Les déterminer lorsque $m = \sqrt{2}$.

Exercice 6 On cherche à déterminer tous les réels t tels que $\cos t = \frac{1+\sqrt{5}}{4}$.

- 1) Démontrer qu'il existe une unique solution dans l'intervalle $]0, \pi/4[$. Dans la suite, on notera cette solution t_0 .
- 2) Calculer $\cos(2t_0)$, puis démontrer que $\cos(4t_0) = -\cos(t_0)$.
- 3) En déduire t_0 .
- 4) Résoudre l'équation.

Exercice 7 Soit $x, y \in]0, \pi/2[$ tels que $\tan x = \frac{1}{7}$ et $\tan y = 2$.

- 1) En utilisant tan(x+2y), calculer x+2y.
- 2) Calculer $\cos(2y)$.

Exercice 8 Résoudre $\cos^4 x + \sin^4 x = \frac{6 + \sqrt{3}}{8}$.

Exercice 9 () Écrire sous forme algébrique les nombres complexes suivants.

1)
$$\frac{1+2i}{3-4i}$$

3)
$$\frac{(1+i)^3}{(1-i)^2}$$

5)
$$\frac{1}{1+\frac{2}{1+\frac{1}{2}}}$$

2)
$$\frac{1}{(1+2i)^2}$$

4)
$$\frac{1+i}{3-i} + \frac{1-i}{3+i}$$

6)
$$(1 + (1 + (1 + 2i)^2)^{-1})$$

Exercice 10 Montrer que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, il existe $(m, n) \in \mathbb{Z}^2$ tel que

$$(a^2 + b^2)(c^2 + d^2) = m^2 + n^2.$$

Exercice 11 () Mettre sous forme algébrique les nombres complexes suivants.

1)
$$(\sqrt{3}-i)^{11}$$

2)
$$(-1+i)^{17}$$

3)
$$\left(1 + i\sqrt{3}\right)^{-42}$$

Exercice 12 Soit $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, $z = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$. Calculer Re z, Im z, |z|, arg z.

Exercice 13 Soient z_1 et z_2 deux complexes de module 1, tels que $1+z_1z_2\neq 0$. Montrer que

$$\frac{z_1+z_2}{1+z_1z_2} \in \mathbb{R}.$$

Exercice 14 Soit $a \in [0; 2\pi[$ et n un entier naturel. Déterminer le module et l'argument de $: (1+ie^{ia})^n$.

