The Lovasz Local Lemma

1 Proof of the Lemma

Recall we defined a **dependency graph** G on events (\mathcal{E}_i) as follows: Let

$$T_i := \{ \mathcal{E}_i \mid (\mathcal{E}_i, \mathcal{E}_i) \notin G \}.$$

Then \mathcal{E}_j is mutually independent of T_j . In other words, non-edges guarantee independence and edges capture possible dependence. Notice that the complete graph is a dependency graph which gives trivial bounds; we want *sparse* dependency graphs.

Theorem 1. [Lovasz Local Lemma]. Let G be a dependency graph on (\mathcal{E}_i) . Assume that there exists x_i with $i \in [n]$ and

$$\Pr[\mathcal{E}_i] \le x_i \prod_{(i,j) \in E} (1 - x_j)$$

for all i. Then

$$\Pr[\bigcap_{i} \bar{\mathcal{E}}_{i}] \ge \prod_{i} (1 - x_{i}).$$

Conceptually, the x_i are upper bounds on the probability of \mathcal{E}_i subject to some conditioning on limited independence.

Corollary 2. Let (\mathcal{E}_i) be events with $\Pr[\mathcal{E}_i] \leq p$ for all i, and each \mathcal{E}_i be mutually independent of all except at most d other events. If

$$p \le \frac{1}{e(d+1)}$$

then $\Pr[\bigcap_i \bar{\mathcal{E}}_i] > 0$. In contrast, if we were using the union bound, we would need $p \leq 1/n$. So we get a factor d instead of a factor n.

Proof. (of the corollary). The (\mathcal{E}_i) are events with $\Pr[\mathcal{E}_i] \leq p$. Set $x_i = \frac{1}{d+1}$ for all i. Then

$$x_i \prod_{(i,j)\in E} (1-x_j) = \frac{1}{d+1} \prod_{(i,j)\in E} (1-\frac{1}{d+1})$$

$$\geq \frac{1}{d+1} (1-\frac{1}{d+1})^d$$

$$\geq \frac{1}{e(d+1)}$$

$$\geq p$$

$$\geq \Pr[\mathcal{E}_i].$$

So the x_i satisfy the hypothesis of the Lovasz Local Lemma, and we get

$$\Pr[\bigcap_{i} \bar{\mathcal{E}}_{i}] \ge \prod (1 - \frac{1}{d+1}) > 0.$$

Proof. (of the LLL). We are interested in

$$\Pr[\bigcap_{i} \bar{\mathcal{E}}_{i}] = \Pr[\bar{\mathcal{E}}_{1}] \cdot \Pr[\bar{\mathcal{E}}_{2} \mid \bar{\mathcal{E}}_{1}] \cdot \Pr[\bar{\mathcal{E}}_{2} \mid \bar{\mathcal{E}}_{1} \cap \bar{\mathcal{E}}_{2}] \cdot \cdots \cdot \Pr[\bar{\mathcal{E}}_{n} \mid \bigcap_{i < n} \bar{\mathcal{E}}_{i}]$$

$$= \prod_{j=1}^{n} (1 - \Pr[\mathcal{E}_{j} \mid \bigcap_{i < j} \bar{\mathcal{E}}_{i}]).$$

We will show that $\Pr[\mathcal{E}_j \mid \bigcap_{i \in S} \bar{\mathcal{E}}_i] \leq x_j$ for all j and all sets S of indices. Then, applying this with $S = \{i : i < j\}$ we obtain

$$\Pr[\bigcap_{j} \bar{\mathcal{E}}_{j}] \ge \prod_{j=1}^{n} (1 - x_{j}).$$

We will prove this (general) inequality by induction on |S|. The base case is |S| = 0. Here, we have $\Pr[\mathcal{E}_j] \leq x_j \prod_{(j,i)\in E} (1-x_i) \leq x_j$.

For the induction step, fix some j and write $S = S_1 \cup S_2$ where S_1 are the neighbors of j in G and S_2 are the non-neighbors. Thus

$$\Pr[\mathcal{E}_{j} \mid \bigcap_{i \in S} \bar{\mathcal{E}}_{i}] = \frac{\Pr[\mathcal{E}_{j} \cap \bigcap_{i \in S} \bar{\mathcal{E}}_{i}]}{\Pr[\bigcap_{i \in S} \bar{\mathcal{E}}_{i}]} \\
= \frac{\Pr[\mathcal{E}_{j} \cap \bigcap_{i \in S_{1}} \bar{\mathcal{E}}_{i} \cap \bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]}{\Pr[\bigcap_{i \in S_{1}} \bar{\mathcal{E}}_{i} \cap \bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]} \\
= \frac{\Pr[\mathcal{E}_{j} \cap \bigcap_{i \in S_{1}} \bar{\mathcal{E}}_{i} \cap \bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}] \cdot \Pr[\bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]}{\Pr[\bigcap_{i \in S_{1}} \bar{\mathcal{E}}_{i} \mid \bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}] \cdot \Pr[\bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]} \\
= \frac{\Pr[\mathcal{E}_{j} \cap \bigcap_{i \in S_{1}} \bar{\mathcal{E}}_{i} \mid \bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]}{\Pr[\bigcap_{i \in S_{2}} \bar{\mathcal{E}}_{i}]}.$$
(1)

Bounding the numerator,

$$\Pr[\mathcal{E}_j \cap \bigcap_{i \in S_1} \bar{\mathcal{E}}_i \mid \bigcap_{i \in S_2} \bar{\mathcal{E}}_i] \le \Pr[\mathcal{E}_j \mid \bigcap_{i \in S_2} \bar{\mathcal{E}}_i] = \Pr[\mathcal{E}_j]$$

by independence of \mathcal{E}_j from non-neighbors. And

$$\Pr[\mathcal{E}_j] \le x_j \prod_{i:(j,i)\in E} (1 - x_i).$$

If $S_1 = \emptyset$ then the denominator is equal to 1. Otherwise, write $S_1 = \{k_1, k_2, \dots, k_r\}$ for r > 0. Then

$$\Pr\left[\bigcap_{i \in S_1} \bar{\mathcal{E}}_i \mid \bigcap_{i \in S_2} \bar{\mathcal{E}}_i\right] = \prod_{\ell=1}^r \Pr\left[\bar{\mathcal{E}}_{k_\ell} \mid \bigcap_{i \in S_2} \bar{\mathcal{E}}_i \cap \bigcap_{p=1}^{\ell-1} \mathcal{E}_{k_p}^-\right].$$

Applying the induction hypothesis to $S_2 \cup \{k_1, \dots, k_{\ell-1}\}$, whose size is at most |S| - 1, this is at least

$$\prod_{\ell=1}^r (1 - x_{k_\ell}).$$

Because all k_{ℓ} are neighbors of j, this is at least

$$\prod_{i:(j,i)\in E} (1-x_i).$$

Thus, fraction (1) is at most x_i .

2 Application to k-SAT

Corollary 3. (of the LLL). Let Φ be a k-SAT formula such that each variable occurs in fewer than $\frac{2^k}{ek} = \Theta(\frac{2^k}{k})$ clauses. Then, Φ is satisfiable.

Proof. Set each x_i to true *i.i.d.* with probability 1/2. Each clause C_j is satisfied with probability $1-2^{-k}$. Let \mathcal{E}_j be the bad event that C_j is not satisfied. So $\Pr[\mathcal{E}_j] \leq 2^{-k}$.

Note \mathcal{E}_j is mutually independent of all \mathcal{E}_i except possibly those with which C_j shares one or more variables. And, C_j shares a variable with fewer than $k(\frac{2^k}{ek}-1)$ other clauses. This is at most $\frac{2^k}{e}-1$. So $d+1<\frac{2^k}{e}$ in the dependency graph, and $p=2^{-k}\leq \frac{1}{e(d+1)}$ as needed.

Thus, $\Pr[\bigcap \bar{\mathcal{E}}_i] > 0$ by the corollary of the LLL.

3 Constructive LLL (Moser-Tardos)

3.1 Motivation

Note that the corollary in the previous section is entirely non-constructive – it doesn't tell you how to find the assignment efficiently. Beck's algorithm does, but it needs stronger assumptions. And, we would like a constructive version of the LLL beyond just k-SAT.

To make this meaningful, we need to find a point ω in the sample space Ω such that $\omega \in \bigcap \bar{\mathcal{E}}_i$. To state this cleanly, we need some assumptions about the structure of Ω and \mathcal{E}_i .

Assume there is a finite set $\mathcal{P} = \{P_i\}$ of **independent** random variables (not necessarily binary), and for each i there is an efficient procedure for sampling P_i . We are explicitly given a bipartite graph between events \mathcal{E}_j and variables P_i such that \mathcal{E}_j is mutually independent of all variables it does not have an edge to. Write $L(\mathcal{E}_j)$ for the P_i that \mathcal{E}_j has an edge to. For the dependency graph, $(\mathcal{E}_i, \mathcal{E}_j)$ exists only if $L(\mathcal{E}_i) \cap L(\mathcal{E}_j) \neq \emptyset$.

The Moser-Tardos Algorithm is quite simple: For each $P \in \mathcal{P}$, let y_P be a random draw of P (independent of all $y_{P'}$). While there is some \mathcal{E}_j that is true under \boldsymbol{y} , re-draw all $P \in L(\mathcal{E}_j)$.

Theorem 4. (Moser-Tardos 2009). Assume that there exists x_i with

$$\Pr[\mathcal{E}_i] \le x_i \prod_{(i,j) \in E} (1 - x_j)$$

for all i. Then this algorithm finds an assignment y satisfying $\bigcap \bar{\mathcal{E}}_j$ and uses at most

$$\sum_{j} \frac{x_j}{1 - x_j}$$

iterations in expectation. More specifically, each \mathcal{E}_j is resampled at most $\frac{x_j}{1-x_j}$ times in expectation.

Note 5. The convergence is guaranteed by the non-constructive LLL because with some probability we keep guessing correctly; the interesting part is the fast convergence.

To gain some more intuition, consider the case where the dependency graph is empty. For event \mathcal{E}_j , the number of resamples needed is geometrically distributed with parameter $\Pr[\bar{\mathcal{E}}_i]$. So the expectation is

$$\begin{split} \frac{1}{\Pr[\bar{\mathcal{E}}_j]} - 1 &= \frac{1}{1 - \Pr[\mathcal{E}_j]} - \frac{1 - \Pr[\mathcal{E}_j]}{1 - \Pr[\mathcal{E}_j]} \\ &= \frac{\Pr[\mathcal{E}_j]}{1 - \Pr[\mathcal{E}_j]}. \end{split}$$

In the empty graph we can set $x_j = \Pr[\mathcal{E}_j]$, so the total number of resamples in expectation is at most $\frac{x_j}{1-x_j}$

3.2 Execution Logs and Witness Trees

The **execution log** C has C(t) the event that \mathcal{E}_j is resampled in step t. Resampling was necessary because \mathcal{E}_j was true under \mathbf{y}_t . In the independent case, this was because the previous time we sampled $L(\mathcal{E}_j)$, we made \mathcal{E}_j true). In the general case this is more subtle because resampling one or more \mathcal{E}_i with $(j,i) \in E$ may together have made \mathcal{E}_j true.

We want a structure keeping track of the "blame" for resampling. We define a witness tree T_t for time t as follows: The root of T_t is labeled $\lambda(r) = \mathcal{E}_j$. We iterate through $t' = t - 1, t - 2, \ldots$ and consider the event $\mathcal{E}_i = C(t')$ that happened at t' in C.

In the first case, there is no edge $(i',i) \in E$ for any $\mathcal{E}_{i'}$ that is (so far) a label in T_t . Then, \mathcal{E}_i cannot have caused any of the resampling in T_t , so we skip \mathcal{E}_i .

In the second case, there is a node $v \in T_t$ with label $\lambda(v) = \mathcal{E}_{i'}$ such that $(i', i) \in E$. Choose the deepest such v (breaking ties arbitrarily), create a new node u with $\lambda(u) = \mathcal{E}_i$, and make it a child of v.