太极图形课

第09讲 Fluid Simulation 01: The Particle-based Methods

Where are we?

Procedural Animation

Deformable Simulation

Rendering

Fluid Simulation

Fluid simulation

Forecast

Design

VFX Game

Animation

Code of the day

- Code: https://github.com/taichiCourse01/taichi_sph
- Code courtesy of @erizmr

Outline today

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible (WC) assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

Incompressible fluid dynamics

Compressible and incompressible fluids

Compressible shock wave

Incompressible smoke

Incompressible liquid

Laws of physics for incompressible fluids

$$f = f_{ext}$$

Laws of motion for incompressible fluids

Incompressible Navier-Stokes equation

$$ma = f_{ext} + f_{pres} + f_{visc}$$

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

The spatial derivative operators in 3D

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

- Gradient $\nabla : \mathbb{R}^1 \to \mathbb{R}^3$
 - $grad s = \nabla s = \left[\frac{\partial s}{\partial x}, \frac{\partial s}{\partial y}, \frac{\partial s}{\partial z}\right]^T$
- Divergence $\nabla : \mathbb{R}^3 \to \mathbb{R}^1$

•
$$div \ v = \nabla \cdot v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

- Curl $\nabla \times : \mathbb{R}^3 \to \mathbb{R}^3$
 - $curl\ v = \nabla \times v = \left[\frac{\partial v_z}{\partial y} \frac{\partial v_y}{\partial z}, \frac{\partial v_z}{\partial x} \frac{\partial v_x}{\partial z}, \frac{\partial v_y}{\partial x} \frac{\partial v_x}{\partial y}\right]^T$
- Laplace $\Delta = \nabla^2 = \nabla \cdot \nabla : \mathbb{R}^n \to \mathbb{R}^n$
 - $laplace \ s = div \ (grad \ s) = \nabla^2 s = \frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2}$

Incompressible Navier-Stokes equation

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

 ρ : mass-density

 $\frac{D(\cdot)}{Dt}$: material derivative

g: gravity $(g = [0, -9.8, 0]^T \text{ in 3D})$

p: pressure, $p = k(\rho - \rho_0)$

 μ : shear modulus (dynamics visc.), $\nu = \frac{\mu}{\rho_0}$: kinematic viscosity

 ∇ : vector differential operator ($\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]^T$ in 3D)

$$abla^2 = \Delta$$
: Laplace operator, $\Delta f = \nabla \cdot \nabla f \ (\Delta f = \frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f + \frac{\partial^2}{\partial z^2} f \text{ in 3D})$

The ma in f = ma

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

This is simply "mass" times "acceleration" divided by "volume"

External force term

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Gravitational force divided by "volume"

Viscosity term

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

$$\nabla^2 = \Delta: \text{ Laplace operator (or diffusion operator)}$$

$$\nabla^2: \text{ takes a scalar/vector, returns a scalar/vector}$$

$$\nabla^2 f = \frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f + \frac{\partial^2}{\partial z^2} f \text{ in 3D}$$

Still remember the diffusion problem?

$$\bullet \frac{\partial T}{\partial t} = \kappa \nabla^2 T$$

Viscosity term

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Viscosity term

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

$$\mu$$

 μ : some fluids are more viscous than others

Pressure term

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

$$\nabla \cdot gradient operator$$

$$\nabla \cdot takes a scalar, returns a vector$$

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

Pressure term: fluids do not want to change volume

Pressure term

$$\begin{array}{c}
Dv \\
\rho \stackrel{\frown}{=} pg - \nabla p + \mu \nabla^2 v \\
\nabla \cdot v = 0 \\
\nabla : \text{ gradient operator} \\
\nabla : \text{ takes a scalar, returns a vector}
\end{array}$$

Pressure term: fluids do not want to change volume

Divergence free condition

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

$$\nabla \cdot : \text{ divergence operator } \nabla \cdot : \text{ takes a vector, returns a scalar } \nabla \cdot : \text{ takes a vector, returns a vector.}$$

$$\nabla \cdot v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$

Divergence free condition

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0 \iff \frac{D\rho}{Dt} = (v \cdot \nabla)\rho = 0$$

Divergence $(\nabla \cdot v)$ free: outbound flow equals to inbound flow The mass conserving condition

Divergence free condition

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0 \quad \leftarrow \text{The incompressibility assumption goes here!}$$

Divergence ($\nabla \cdot v$) free: outbound flow equals to inbound flow The mass conserving condition

Incompressible Navier-Stokes equation

$$ho \, rac{D v}{D t} =
ho g -
abla p + \mu
abla^2 v ext{ } ext{ ← The momentum equation}$$
 $abla v = 0 ext{ } ext{ ← The mass conserving cond}$

←The mass conserving condition

Integrate incompressible Navier-Stokes equation?

Temporal discretization

Incompressible Navier-Stokes equation

$$ho \, rac{D v}{D t} =
ho g - rac{1}{V p} + \mu V^2 v \;$$
 \leftarrow The momentum equation

$$\nabla \cdot \nu = 0$$

←The mass conserving condition

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

• The divergence free condition $\nabla \cdot v = 0$ comes to the rescue:

•
$$\nabla \cdot v = 0 \iff \frac{D\rho}{Dt} = 0$$

- Integrate the incompressible Navier-Stokes equation in steps:
 - Step 1: input v_n , output $v_{n+0.5}$

•
$$\rho \frac{Dv}{Dt} = \rho g + \mu \nabla^2 v$$

- Step 2: input $v_{n+0.5}$, output v_{n+1}
 - $\rho \frac{Dv}{Dt} = -\nabla p$
 - $\nabla \cdot v = 0$

This integration method is sometime referred as "Operator splitting" or "Advection-Projection" in different contexts

Full time integration

- Given x_n , v_n :
 - Step 1: Advection / external and viscosity force integration
 - Solve: $dv = g + \nu \nabla^2 v_n$
 - Update: $v_{n+0.5} = v_n + \Delta t \ dv$
 - Step 2: Projection / pressure solver
 - Solve: $\frac{dv}{dv} = -\frac{1}{\rho} \nabla \left(k(\rho \rho_0) \right)$ and $\frac{D\rho}{Dt} = \nabla \cdot (v_{n+0.5} + dv) = 0$
 - Update: $v_{n+1} = v_{n+0.5} + \Delta t \, dv$
 - Step 3: Update position
 - Update: $x_{n+1} = x_n + \Delta t \ v_{n+1}$
 - Return x_{n+1} , v_{n+1}

The weakly compressible assumption

• Storing the density ρ as an individual variable that advect with the velocity field:

$$\frac{Dv}{Dt} = g - \frac{1}{\rho}\nabla p + v\nabla^2 v$$

$$\frac{\nabla \cdot v = 0}{\nabla v}$$

Integrate with the weakly compressible assumption

$$\frac{Dv}{Dt} = g - \frac{1}{\rho}\nabla p + v\nabla^2 v$$

- Given x_n , v_n :
 - Step 1: Advection / external and viscosity force integration
 - Solve: $dv = g + \nu \nabla^2 v_n$
 - Update: $v_{n+0.5} = v_n + \Delta t \ dv$
 - Step 2: Projection / pressure solver
 - Solve: $\frac{dv}{dv} = -\frac{1}{\rho} \nabla (k(\rho \rho_0))$
 - Update: $v_{n+1} = v_{n+0.5} + \Delta t \, dv$
 - Step 3: Update position
 - Update: $x_{n+1} = x_n + \Delta t \ v_{n+1}$
 - Return x_{n+1} , v_{n+1}

This is nothing but *Symplectic Euler* integration.

Spatial discretization (Lagrangian view)

Previously in this course (mesh-based simulation)

Today in this course (mesh-free simulation)

Fluid can be discretized using particles as well

[The Big Bang Theory]

Fluid can be discretized using particles as well

[www.dive-solutions.de]

Fluid -> Particles

What do we store in a particle?

Fluid dynamics with particles (weakly compressible)

Continuous view:

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Discrete view (using particles):

$$\frac{dv_i}{dt} = g - \frac{1}{\rho} \nabla p(x_i) + \nu \nabla^2 v(x_i) \quad , \text{ where } \nu = \frac{\mu}{\rho_0}$$

Time integration (Symplectic Euler):

 a_i

- for i in particles:
 - $v_i = v_i + \Delta t \ a_i$
- for i in particles:
 - $x_i = x_i + \Delta t \ v_i$

Fluid dynamics with particles (weakly compressible)

Continuous view:

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

Discrete view (using particles):

$$\frac{dv_i}{dt} = g - \frac{1}{\rho} \nabla p(x_i) + \nu \nabla^2 v(x_i) \quad , \text{ where } v = \frac{\mu}{\rho_0}$$

 a_i

Time integration (Symplectic Euler):

- for i in particles:
 - $v_i = v_i + \Delta t \ a_i$
- for i in particles:
 - $x_i = x_i + \Delta t \ v_i$

How to evaluate a function? $\rho(x_i) \nabla p(x_i) \nabla^2 v(x_i)$

Imaging a magic probe...

A trivial identity with Dirac delta

$$f(r) = \int_{-\infty}^{\infty} f(r')\delta(r - r')dr'$$

$$f(r) = \int_{-\infty}^{\infty} f(r')\delta(r - r')dr'$$

$$\delta(r) = \begin{cases} +\infty, & \text{if } r = 0 \\ 0, & \text{otherwise} \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(r)dr = 1$$

Let us widen the Dirac delta

$$f(r) pprox \int f(r')W(r-r',h)dr'$$
 , where $\lim_{h\to 0} W(r,h) = \delta(r)$

W(r,h): kernel function

- Sum to unity: $\int W(r,h)dr = 1$
- Symmetric: W(r,h) = W(-r,h)
- Compact support: W(r,h) = 0 if |r| > h

A trivial kernel function

$$f(r) pprox \int f(r') W(r-r',h) dr'$$
 , where $\lim_{h o 0} W(r,h) = \delta(r)$

$$W(r,h) = \begin{cases} \frac{1}{2h}, & \text{if } |r| < h \\ 0, & \text{otherwise} \end{cases}$$

W(r,h)

Finite probes: from integration to summation

W(r,h)

A smoother kernel function

$$f(r) \approx \sum_{j} V_{j} f(r_{j}) W(r - r_{j}, h)$$

Smooth W(r, h): "we trust the closer probes better"

A smoother kernel function

$$f(r) \approx \sum_{j} V_{j} f(r_{j}) W(r - r_{j}, h)$$

with
$$q = \frac{1}{h} ||r||$$
, $\sigma_1 = \frac{4}{3h}$, $\sigma_2 = \frac{40}{7\pi h^2}$, $\sigma_3 = \frac{8}{\pi h^3}$

A smoother kernel function

$$W(r,h) = \sigma_d \begin{cases} 6(q^3 - q^2) + 1 & for \ 0 \le q \le \frac{1}{2} \\ 2(1 - q)^3 & for \frac{1}{2} \le q \le 1 \\ 0 & otherwise \end{cases}$$

with
$$q = \frac{1}{h} ||r||$$
, $\sigma_1 = \frac{4}{3h}$, $\sigma_2 = \frac{40}{7\pi h^2}$, $\sigma_3 = \frac{8}{\pi h^3}$

A Smoothed particle

$$f(r) \approx \sum_{j} V_{j} f(r_{j}) W(r - r_{j}, h)$$

W(r,h)

Smoothed particle hydrodynamics (SPH)

Smoothed particle hydrodynamics: theory and application to non-spherical stars [Gingold and Monaghan 1977][Link]

A smoothed particle in 2D

Intrinsic quantities:

- *h*: support radius
- \tilde{h} : particle radius -> V: particle volume

Time varying quantities:

- ρ : density
- *v*: velocity
- *x*: position

What do we store in a smoothed particle?

Evaluate 2D fields using the smoothed particles

$$f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) W(r - r_{j}, h)$$

$$f(r_1)$$

$$\approx \frac{m_2}{\rho_2} f(r_2) W(r_1 - r_2, h)$$

$$+ \frac{m_3}{\rho_3} f(r_3) W(r_1 - r_3, h)$$

$$+ \frac{m_4}{\rho_4} f(r_4) W(r_1 - r_4, h)$$

Smoothed particle hydrodynamics (SPH)

SPH discretization:

•
$$f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) W(r - r_{j}, h)$$

• SPH spatial derivatives:

•
$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h)$$

•
$$\nabla \cdot \mathbf{F}(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} \mathbf{F}(r_{j}) \cdot \nabla W(r - r_{j}, h)$$

•
$$\nabla \times \mathbf{F}(r) \approx -\sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \times \nabla W(r - r_{j}, h)$$

•
$$\nabla^2 f(r) \approx \sum_j \frac{m_j}{\rho_j} f(r_j) \nabla^2 W(r - r_j, h)$$

•
$$f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) W(r - r_{j}, h)$$

•
$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h)$$

- Let $f(r) \equiv 1$, we have:
 - $1 \approx \sum_{j} \frac{m_{j}}{\rho_{i}} W(r r_{j}, h)$
 - $0 \approx \sum_{j} \frac{m_{j}}{\rho_{j}} \nabla W(r r_{j}, h)$

- Since $f(r) \equiv f(r) * 1$, we have:
 - $\nabla f(r) = \nabla f(r) * 1 + f(r) * \nabla 1$
 - Or equivalently: $\nabla f(r) = \nabla f(r) f(r) * \nabla 1$

- Since $f(r) \equiv f(r) * 1$, we have:
 - $\nabla f(r) = \nabla f(r) * 1 + f(r) * \nabla 1$
 - Or equivalently: $\nabla f(r) = \nabla f(r) f(r) * \nabla 1$

$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h)$$

- Since $f(r) \equiv f(r) * 1$, we have:
 - $\nabla f(r) = \nabla f(r) * 1 + f(r) * \nabla 1$
 - Or equivalently: $\nabla f(r) = \nabla f(r) f(r) * \nabla 1$

•
$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h) - f(r) \sum_{j} \frac{m_{j}}{\rho_{j}} \nabla W(r - r_{j}, h)$$

- Since $f(r) \equiv f(r) * 1$, we have:
 - $\nabla f(r) = \nabla f(r) * 1 + f(r) * \nabla 1$
 - Or equivalently: $\nabla f(r) = \nabla f(r) f(r) * \nabla 1$

•
$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h) - f(r) \sum_{j} \frac{m_{j}}{\rho_{j}} \nabla W(r - r_{j}, h)$$

•
$$\nabla f(r) \approx \sum_{j} m_{j} \frac{f(r_{j}) - f(r)}{\rho_{j}} \nabla W(r - r_{j}, h)$$

The anti-symmetric form

- Since $f(r) \equiv f(r) * 1$, we have:
 - $\nabla f(r) = \nabla f(r) * 1 + f(r) * \nabla 1$
 - Or equivalently: $\nabla f(r) = \nabla f(r) f(r) * \nabla 1$
- $\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r r_{j}, h) f(r) \sum_{k}^{3}$
- $\nabla f(r) \approx \sum_{j} m_{j} \frac{f(r_{j}) f(r)}{\rho_{j}} \nabla W(r r_{j}, h)$

The anti-symmetric form

A more general case:

•
$$\nabla (f(r)\rho^n) = \nabla f(r) * \rho^n + f(r) * n\rho^{n-1}\nabla \rho$$

•
$$\Rightarrow \nabla f(r) = \frac{1}{\rho^n} (\nabla (f(r) * \rho^n) - f(r) * n * \rho^{n-1} \nabla \rho)$$

A more general case:

•
$$\nabla (f(r)\rho^n) = \nabla f(r) * \rho^n + f(r) * n\rho^{n-1}\nabla \rho$$

•
$$\Rightarrow \nabla f(r) = \frac{1}{\rho^n} (\nabla (f(r) * \rho^n) - f(r) * n * \rho^{n-1} \nabla \rho)$$

$$\nabla f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) \nabla W(r - r_{j}, h)$$

A more general case:

•
$$\nabla (f(r)\rho^n) = \nabla f(r) * \rho^n + f(r) * n\rho^{n-1}\nabla \rho$$

•
$$\Rightarrow \nabla f(r) = \frac{1}{\rho^n} (\nabla (f(r) * \rho^n) - f(r) * n * \rho^{n-1} \nabla \rho)$$

•
$$\nabla f(r) \approx \frac{1}{\rho^n} \left(\sum_j \frac{m_j}{\rho_j} f(r_j) \rho_j^n \nabla W(r - r_j, h) - n \rho^{n-1} f(r) \sum_j \frac{m_j}{\rho_j} \rho_j \nabla W(r - r_j, h) \right)$$

• A more general case:

•
$$\nabla (f(r)\rho^n) = \nabla f(r) * \rho^n + f(r) * n\rho^{n-1}\nabla \rho$$

•
$$\Rightarrow \nabla f(r) = \frac{1}{\rho^n} (\nabla (f(r) * \rho^n) - f(r) * n * \rho^{n-1} \nabla \rho)$$

•
$$\nabla f(r) \approx \frac{1}{\rho^n} \left(\sum_j \frac{m_j}{\rho_j} f(r_j) \rho_j^n \nabla W(r - r_j, h) - n \rho^{n-1} f(r) \sum_j \frac{m_j}{\rho_j} \rho_j \nabla W(r - r_j, h) \right)$$

•
$$\nabla f(r) \approx \sum_{j} m_{j} \left(\frac{f(r_{j})\rho_{j}^{n-1}}{\rho^{n}} - \frac{nf(r)}{\rho} \right) \nabla W(r - r_{j}, h)$$

•
$$\nabla f(r) \approx \sum_{j} m_{j} \left(\frac{f(r_{j})\rho_{j}^{n-1}}{\rho^{n}} - \frac{nf(r)}{\rho} \right) \nabla W(r - r_{j}, h)$$

- When n=-1
 - Type equation here.

•
$$\nabla f(r) \approx \rho \sum_{j} m_{j} \left(\frac{f(r_{j})}{\rho_{j}^{2}} + \frac{f(r)}{\rho^{2}} \right) \nabla W(r - r_{j}, h)$$

The symmetric form

Smoothed particle hydrodynamics (SPH)

$$f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) W(r - r_{j}, h)$$

• Approximate a function f(r) using finite probes $f(r_j)$

• The degree of freedom (r) goes inside the kernel functions

• Anti-sym: $\nabla f(r) \approx \sum_{j} m_{j} \frac{f(r_{j}) - f(r)}{\rho_{j}} \nabla W(r - r_{j}, h)$

• Sym: $\nabla f(r) \approx \rho \sum_{j} m_{j} \left(\frac{f(r_{j})}{\rho_{j}^{2}} + \frac{f(r)}{\rho^{2}} \right) \nabla W(r - r_{j}, h)$

Quiz: which one is the smoothed particle in SPH?

The bigger circle?

or

The smaller circle?

Intrinsic quantities:

- *h*: support radius
- $ilde{h}$: particle radius -> V: particle volume

Time varying quantities:

- ρ : density
- v: velocity
- *x*: position

Implementation details (WCSPH)

Simulation pipeline

- for i in particles:
 - Search for neighbors j
- for i in particles:
 - Sample the velocity/density field using SPH
 - Compute force/acceleration using Navier-Stokes equation
- for i in particles:
 - Update velocity using acceleration
 - Update position using velocity

Find a particle of interest (i) and its neighbors (j) within its support radius h

Compute the acceleration for particle (i)

- for i in particles:
 - Step 1: Evaluate density

•
$$\rho_i = \sum_j \frac{m_j}{\rho_j} \rho_j W(r_i - r_j, h) = \sum_j m_j W_{ij}$$

Step 2: Evaluate viscosity

•
$$\nu \nabla^2 v_i = \nu \sum_j m_j \frac{v_j - v_i}{\rho_j} \nabla^2 W_{ij}$$

• Step 3: Evaluate pressure gradient

•
$$-\frac{1}{\rho_i}\nabla p_i = -\frac{\rho_i}{\rho_i}\sum_j m_j\left(\frac{p_j}{\rho_j^2} + \frac{p_i}{\rho_i^2}\right)\nabla W_{ij}$$
, where $p = k(\rho_j - \rho_0)$

•
$$\frac{dv_i}{dt} = g - \frac{1}{\rho_i} \nabla p_i + \nu \nabla^2 v_i$$

Time integration (Symplectic Euler)

- for i in particles:
 - $v_i = v_i + \Delta t * \frac{dv_i}{dt}$
 - $x_i = x_i + \Delta t * v_i$

Boundary conditions

fluid

Problems of boundaries

- Not enough samples within the supporting radius
 - Density: ↓
 - $\rho_i = \sum_j m_j W_{ij}$

Free surface

- Problem:
 - Density ↓ Pressure ↓
 - Generate outward pressure

Free surface

- Problem:
 - Density ↓ Pressure ↓
 - Generate outward pressure
- Solution:
 - Clamp the negative pressure (everywhere)
 - $p = \max(0, k(\rho \rho_0))$

Solid boundary

- Problem:
 - Density ↓ Pressure ↓
 - Fluid leakage (due to outbound velocity)

Solid boundary

- Problem:
 - Density ↓ Pressure ↓
 - Fluid leakage (due to outbound velocity)
- $p = \max(0, k(\rho \rho_0))$
- Solution 1 for leakage:
 - Reflect the outbound velocity when close to boundary

Solid boundary

- Problem:
 - Density ↓ Pressure ↓
 - Fluid leakage (due to outbound velocity)
- $p = \max(0, k(\rho \rho_0))$
- Solution 2 for leakage:
 - Pad a layer of solid particles underneath the boundaries
 - $\rho_{solid} = \rho_0$
 - $v_{solid} = 0$

Neighbor search

• Naïve search methods takes $\mathcal{O}(n^2)$ time

Neighbor search

• Naïve search methods takes $\mathcal{O}(n^2)$ time

- A background grid can help
 - Common grid size = h (the support radius in SPH)
 - Each neighbor search takes 9 grids in 2D and 27 grids in 3D

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption

- Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

$$\rho \frac{Dv}{Dt} = \rho g - \nabla p + \mu \nabla^2 v$$

$$\nabla \cdot v = 0$$

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

$$\rho \frac{Dv}{Dt} = \rho g + \mu \nabla^2 v$$

$$\rho \frac{Dv}{Dt} = -\nabla p$$

$$\nabla \cdot v = 0$$

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

$$f(r) \approx \sum_{j} \frac{m_{j}}{\rho_{j}} f(r_{j}) W(r - r_{j}, h)$$

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

- Incompressible fluid dynamics
 - Incompressible Navier–Stokes equations
- Time discretization
 - Operator splitting
 - Integration with the weakly compressible assumption
- Spatial discretization
 - Smoothed particle hydrodynamics (SPH)
- Implementation details (WCSPH)
 - Simulation Pipeline
 - Boundary conditions
 - Neighbor search

Further readings

- Smoothed Particle Hydrodynamics [Monaghan 2005][Link]
- Smoothed particle hydrodynamics and magnetohydrodynamics [Price 2012][Link][Preprint]
- Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids [Eurographics Tutorial, 2019][Link][Code]

Next week

Homework

Homework Today

- Download the repo (taichi_sph):
 - https://github.com/taichiCourse01/taichi_sph
- Try:
 - Designing your own scene
 - Implementing a particle based boundary handling
 - Changing the dense grid in the codebase to a sparse grid [03讲]

Candidate projects for your final

- Candidate topics:
 - Try advanced pressure (Poisson) solvers: IISPH/PCISPH/DFSPH [Chapter 4]
 - Put a statue/kinematically-controlled fan into your pond (One way coupling)
 - Throw a rubber duck into your pond (Two way coupling)
 - Render your fluid using your own path tracer (You may want a marching cube/square to construct the water surface)

- Both 2D and 3D projects are great!
 - As long as your pictures look great ☺

Final project

- 死线: 2022年1月3日
- 要求:
 - 使用作业模板
 - 需要有设计文档, 如果有参照代码也需要标明
- 题材:
 - 任何使用Taichi完成的内容(图形学更佳)
 - 可以参考每节图形课后给出的大作业选题灵感 [参考第07,09,10讲]
 - 鼓励实现任意图形学论文/图形学课程内容
- 形式:
 - 使用 GitHub/Gitee提交并邀请tgc01@taichi.graphics加入你的代码仓
 - 允许三人以下合作,记得管理多人合作的git commits
- 奖励:
 - 太极图形课第一季结业证书一份+神秘Taichi礼物一份

Excellent homework assignments

Gifts for the gifted

- Use **Template** for your homework
- Next check Dec. 14, 2021

Questions?

本次答疑: 12/02 ←作业分享也在这里

下次直播: 12/07

直播回放: Bilibili 搜索「太极图形」

主页&课件: https://github.com/taichiCourse01

主页&课件(backup): https://docs.taichi.graphics/tgc01