

Game Theory: Distributed Selfish Load Balancing on Networks

Filip Moons
3th Bachelor of Mathematics
Promotor: Prof. Dr. Ann Nowé
Presentation Bachelor Thesis I

Thursday 21 February, 2013

Content

- ► Introduction
- Load Balancing Games
 - ► Strategic Games: Mixed NE
 - ► Congestion Games: Pure NE + Mixed NE
 - ► Load Balancing Games: : Pure NE + Mixed NE
- Price of Anarchy
- Coordination mechanisms

A strategic game $\langle N, (A_i), \succeq_i \rangle$ consists of:

- ▶ a finite set N (the set of players),
- ▶ for each player $i \in N$ a nonempty set A_i (the **set of actions** available to player i),
- ▶ for each player $i \in N$ a preference relation \succeq_i on $A = \times_{i \in N} A_i$ (the **preference relation** of player i).

Remark

The preference relation \succeq_i of player i in a strategic game can be represented by a payoff function or utility function $u_i:A\to\mathbb{R}$,

VINCERE

Pure and mixed strategy profiles

Pure strategy profile

$$a = (a_1, ..., a_n) \in A, a_i \in A_i$$

Mixed strategy profile

$$\alpha = (\alpha_i)_{i \in \mathbb{N}} \in \Delta(A), \alpha_i(a_i) = \mathbb{P}[A_i = a_i]$$

Now,

$$\mathbb{P}[\alpha = a] = \prod_{i \in \mathcal{N}} \alpha_i(a_i)$$

The expected pay off for player i under a mixed strategy profile α :

$$U_i(\alpha) = \sum_{a \in A} \left(\prod_{j \in N} \alpha_j(a_j) \right) u_i(a)$$

Load Balancing Games 0000000

Nash equilibria

Pure Nash equilibrum

A pure strategy profile $a^* \in A$ is a **pure Nash Equilibrum** if for each player $i \in N$:

$$u_i(a_{-i}^*, a_i^*)) \ge u_i(a_{-i}^*, a_i) \quad \forall a_i \in A_i$$

Mixed Nash equilibrum

A mixed strategy profile α^* is a **mixed Nash Equilibrum** if for each player $i \in N$:

$$U_i(\alpha_{-i}^*, \alpha_i^*)) \geq U_i(\alpha_{-i}^*, \alpha_i) \quad \forall \alpha_i$$

Load Balancing Games

Theorem

Every finite strategic game has a mixed Nash equilibrum.

Lemma: Brouwer fixed point theorem

Let X be a **non-empty**, convex and compact set. If $f: X \to X$ is continuous, then there must exist $x \in X$ such that f(x) = x.

Proof.

 $\Delta(A_i)$ is the set of mixed strategy profiles of a player i. Note that $(\alpha_i(a_1),...,\alpha_i(a_k))$ with $a_i \in A_i$ (the pure actions of player i are the elements in $\Delta(A_i)$.

Theorem of Nash

Theorem

Every finite strategic game has a mixed Nash equilibrum.

Lemma: Brouwer fixed point theorem

Let X be a **non-empty**, convex and compact set. If $f: X \to X$ is continuous, then there must exist $x \in X$ such that f(x) = x.

Proof.

 $\Delta(A_i)$ is the set of mixed strategy profiles of a player i. Note that $(\alpha_i(a_1),...,\alpha_i(a_k))$ with $a_j \in A_i$ (the pure actions of player i are the elements in $\Delta(A_i)$.

▶ The set $\Delta(A_i)$ is **non-empty** by definition of a strategic game.

Load Balancing Games 0000000

Theorem of Nash

Lemma: Brouwer fixed point theorem

Let X be a non-empty, **convex** and compact set. If $f: X \to X$ is continuous, then there must exist $x \in X$ such that f(x) = x.

Proof.

▶ To proof that the set $\Delta(A_i)$ is **convex**, take $\vec{x} = (\alpha_i^{x}(a_1), ..., \alpha_i^{x}(a_k))$ and $\vec{y} = (\alpha_i^{y}(a_1), ..., \alpha_i^{y}(a_k))$ then $\vec{z} = \theta \vec{x} + (1 - \theta) \vec{y}$ for some $\theta \in [0, 1]$ is in $\Delta(A_i)$ because \vec{z} is also a mixed strategy for player i (the sum of the components of \vec{z} is 1).

Load Balancing Games

Theorem of Nash

Lemma: Brouwer fixed point theorem

Let X be a non-empty, convex and **compact** set. If $f: X \to X$ is continuous, then there must exist $x \in X$ such that f(x) = x.

Proof.

The **compactness** in \mathbb{R}^k can be shown by proving that the set is closed and bounded. The set is bounded because $0 \le \alpha_i(a_j) \le 1$. To proof closeness in \mathbb{R}^k , we'll proof that the limit of every convergent sequence in $\Delta(A_i)$ is an element of $\Delta(A_i)$. Consider a convergent sequence in $\Delta(A_i)$: $((\alpha_i^n(a_1), ..., \alpha_i^n(a_k))_n \to (\alpha_i^*(a_1), ..., \alpha_i^*(a_k))$.

Theorem of Nash

Lemma: Brouwer fixed point theorem

Let X be a non-empty, convex and **compact** set. If $f: X \to X$ is continuous, then there must exist $x \in X$ such that f(x) = x.

Proof.

$$\sum_{j=1}^k \alpha_i^*(a_j) = \sum_{j=1}^k \lim_{n \to \infty} \alpha_i^n(a_j) = \lim_{n \to \infty} \sum_{j=1}^k \alpha_i^n(a_j) = \lim_{n \to \infty} 1 = 1$$

This means that $(\alpha_i^*(a_1), ..., \alpha_i^*(a_k))$ is also a mixed strategy for player i, but by definition of $\Delta(A_i)$, this limit belongs to $\Delta(A_i)$.

Congestion Model

Definition

A **congestion model** $(N, M, (A_i)_{i \in N}, (c_j)_{j \in M})$ is defined as follows:

- ▶ a finite set N of **players**. Each player i has a **weight** (or demand) $w_i \in \mathbb{N}$,
- ▶ a finite set *M* of **facilities**.
- For $i \in N$, A_i denotes the set of **strategies** of player i, where each $a_i \in A_i$ is a non-empty **subset of the facilities**,
- ▶ For $j \in M$, c_j is a **cost function** $\mathbb{N} \to \mathbb{R}$, $c_j(k)$ denotes the cost related to the use of facility j under a certain load k;

Congestion Games

Definition: Congestion model as strategic game

- ► a finite set N of players,
- ▶ for each player $i \in N$, there is a nonempty set of **strategies** A_i
- \triangleright The preference relation \succ_i for each player i is defined by a **payoff function** $u_i:A\to\mathbb{R}$. For any $a\in A$ and for any $j \in M$, let $\ell_i(a)$ be the expected load on facility j, assuming a is the current pure strategy profile, so $\ell_i(a) = \sum_{i \in [n]} w_i$. i∈a;

Then the payoff function for player *i* becomes:

$$u_i(a) = \sum_{j \in a_i} c_j(\ell_j(a)).$$

Congestion Games

Theorem of Rosenthal

Theorem

Every congestion game has a pure Nash equilibrium.

Load balancing games

Definition

A **load balancing game** is congestion game based on a congestion model with:

- ▶ a finite set N of **tasks** (each task i has a weight w_i),
- ▶ for each player $i \in N$, there is a nonempty set of **machines** A_i with $A_i \subset M$. The elements of A_i are the possible machines on which task i can be executed.
- ▶ the preference relation \succeq_i for each client i is defined by a **payoff function** $u_i: A \to \mathbb{R}$. For any $a \in A$ and for any $j \in M$, let $\ell_j(a)$ be the expected load on machine j, assuming a is the current pure strategy profile $(\ell_j(a) = \sum_{i \in [n]} w_i)$.

Then the payoff function for task i becomes: $u_i(a) = c_{a_i}(\ell_{a_i}(a))$.

Lineair cost functions

Payoff function:
$$u_i(a) = c_{a_i}(\ell_{a_i}(a))$$

Take:
$$c_j(k) = \frac{k}{s_i}$$
, s_j : speed of machine j .

Pure strategies

The payoff function:

$$u_i(a) = c_{a_i}(\ell_{a_i}(a)) = \frac{\ell_{a_i}(a)}{s_{a_i}}, a \in A$$

The makespan:

$$cost(a) = \max_{j \in [m]} c_j(\ell_j(a)) = \max_{j \in [m]} \frac{\ell_j(a)}{s_j}$$

0000

Lineair cost functions

Payoff function:
$$u_i(a) = c_{a_i}(\ell_{a_i}(a))$$

Take:
$$c_j(k) = \frac{k}{s_i}$$
, s_j : speed of machine j .

Mixed strategies

The **expected payoff function**:

$$U_i^j(\alpha) = \frac{w_i + \sum_{k \neq i} w_k \alpha_k(j)}{s_j}$$

The makespan:

$$cost(\alpha) = \mathbb{E}[cost(a)] = \mathbb{E}\left[\max_{j \in [m]} \frac{\ell_j(a)}{s_i}\right]$$

Load balancing games

A very easy example

- $ightharpoonup cost(a_{opt}) = max(3,3) = 3$
- $ightharpoonup cost(a_2) = max(4,4) = 4$

Definition

Definition

$$PoA(G) = \max_{\alpha \in Nash(G)} \frac{cost(\alpha)}{cost(a_{opt})}$$

A very easy example

 $PoA(G) = \frac{4}{3} = 1.33$

Bachmann-Landau notations

Definition: Big Oh

Big Oh is the set of all functions f that are bounded above by gasymptotically (up to constant factor).

$$O(g(n)) = \{f | \exists c, n_0 \ge 0 : \forall n \ge n_0 : 0 \le f(n) \le cg(n)\}$$

Definition: Asymptotical equality

Let f and g real functions, then f is asymptotically equal to g

$$\Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1. \text{ Notation: } f \sim g.$$

Lemma

$$\forall m \in \mathbb{R} : \Gamma^{-1}(m) \in O\left(\frac{\log m}{\log \log m}\right).$$

Proof.

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t$$
, $\Gamma^{-1}(m) = k$, then $k!$ is the greatest factorial smaller or equal to m . Because $m \sim k!$ and $k! \sim k^k$ we get: $\Rightarrow m \sim k^k$

$$\Rightarrow \log m \sim k \log(k)$$

$$\Rightarrow k \sim \frac{\log m}{\log(k)}$$

$$\Rightarrow k \sim \frac{\log m}{\log(\frac{\log m}{\log(k)})}$$

PoA in Pure Nash equilibria on uniformly related machines

Lemma

$$\forall m \in \mathbb{R} : \Gamma^{-1}(m) \in O\left(\frac{\log m}{\log \log m}\right).$$

Proof.

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t$$
, $\Gamma^{-1}(m) = k$, then $k!$ is the greatest factorial smaller or equal to m . Because $m \sim k!$ and $k! \sim k^k$ we get: $\Rightarrow m \sim k^k$

$$\Rightarrow \log m \sim k \log(k)$$
$$\Rightarrow k \sim \frac{\log m}{\log(k)}$$

$$\Rightarrow k \sim \frac{\log m}{\log(\frac{\log m}{\log(k)})}$$

PoA in Pure Nash equilibria on uniformly related machines

Lemma

$$\forall m \in \mathbb{R} : \Gamma^{-1}(m) \in O\left(\frac{\log m}{\log \log m}\right).$$

Proof.

$$\Rightarrow k \sim \frac{\log m}{\log \log m - \log \log(k)}$$

Because m > k:

$$\Rightarrow k \sim \frac{\log m}{\log \log m}$$

So that
$$\Gamma^{-1}(m) \in O\left(\frac{\log m}{\log\log m}\right)$$

VINCERE

Summary

	Identical	Uniformly related
Pure NE	$2 - \frac{2}{m+1}$	$\Theta\left(\frac{\log m}{\log\log m}\right)$
Mixed NE	$\Theta\left(\frac{\log m}{\log\log m}\right)$	$\Theta\left(\frac{\log m}{\log\log\log m}\right)$

Coordination Mechanisms

- ► Shortest first
- Longest first
- Random order
- Round Robin

Theorem

Under a longest-first policy, PoA for uniformly related machines is

$$\leq 2 - \frac{2}{m+1}$$
.

Theorem

Under a shortest-first policy, PoA for uniformly related machines is $\Theta(\log m)$

Coordination Mechanisms

Taxation

Definition: Tax function

 $\delta: M \times \mathbb{R} \to \mathbb{R}$

- ▶ B. Vöcking, Selfish Load Balancing, Chapter 20 in Algorithmic Game Theory, Cambridge University Press, December 2007.
- ▶ d J. Osborne and A. Rubinstein, A course in Game Theory. The MIT Press, 1994.
- ▶ S. Mannor, Advancded Topics in Systems, Learning and Control, Lecture 3: Lecture 3: Mixed Actions, Nash and Correlated Equilibria, Technicon, November 2008.
- ▶ E. Colebunders, *Analyse II*, Vrije Universiteit Brussel, 2011.
- ► C. Witteveen, Intreerede: De Prijs van de Onafhankelijkheid, TU Delft 2007.
- ▶ Y. Mansour, Lecture 6: Congestion and potential games, Computational Learning Theory, University of Tel Aviv. 200
- ▶ Jason R. Marden, Lecture 12: Game Theory Course. University of Colorado.
- ▶ T. Harks, M. Klimm, R. H. Möhring, Characterizing the Existence of Potential Functions in Weighted Congestion Games, February 2011

- ▶ R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory, 2:6567, 1973
- ▶ K. Etessami, Algorithmic Game Theory Lecture 16 Best response dynamics and pure Nash Equilibria, University of Edingburgh, 2007.
- ▶ I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, *Improving* the Efficiency of Load Balancing Games through Taxes, University of Patras, 2008.
- S. Suri, C. D. Tóth, Y. Zhou. Selfish Load Balancing and Atomic Congestion Games, University of California, 2004.
- ▶ W. De Meuter. Algoritmen en Datastructuren I, Vrije NUERSITEIT Universiteit Brussel, 2011.
- K.G. Binmore. Mathematical Analysis: A Straightforward Approach, Cambridge University Press, 1977.
- Galambos, János, Simonelli. Bonferroni-Type Inequalities with VINCERE Applications, Probability and Its Applications,