We claim:

1

2

4

5

6

7

8

9

A method for determining crystallization conditions for a material, the method comprising:

taking a plurality of different crystallization samples in an enclosed microvolume, the plurality of crystallization samples comprising a material to be crystallized and crystallization conditions which vary among the plurality of crystallization samples;

allowing crystals of the material to form in plurality of crystallization samples; and

identifying which of the plurality of crystallization samples form crystals

- 1 2. The method according to claim 1 wherein the material to be crystallized is 2 a macromolecule.
- 1 3. The method according to claim 1 wherein the material to be crystallized is a 2 protein.
- 1 4. The method according to claim 1 wherein the material to be crystallized is a 2 macromolecule with a molecular weight of at least 500 daltons.
- 1 5. A method according to claim 1 wherein the material to be crystallized is
- 2 selected from the group consisting of viruses, proteins, peptides, nucleosides,
- 3 nucleotides, ribonucleic acids, de exyribonucleic acids.

6. A method according to claim 1 wherein the material to be crystallized is selected from the group consisting of viruses, proteins, peptides, nucleosides, nucleotides, ribonucleic acids, deoxyribonucleic acids.

1 2. A method according to claim 1 wherein the enclosed microvolume is a lumen.

1	A method according to claim 1 wherein the enclosed microvolume is a		
2	lumen with a cross sectional diameter of less than 2.5 mm.		
	્		
1	9. A method according to claim 1 wherein the enclosed microvolume is a		
2	lumen with a cross sectional diameter of less than 1 mm.		
	C		
1	10. A method according to claim 1 wherein the enclosed microvolume is a		
2	lumen with a cross sectional diameter of less than 500 microns.		
1	A method according to claim 1 wherein the enclosed microvolume is a		
2 microchamber.			
	0		
1	A method according to claim 1 wherein the enclosed microvolume is at		
2	least partially enclosed within a substrate which comprises other enclosed		
3	microvolumes which also comprise crystallization samples.		
	4		
1	A method according to claim 1 wherein the enclosed microvolume is at		
2	least partially enclosed within a card shaped substrate.		
1	14. A method according to claim 1, the method further comprising performing		
2	a spectroscopic analysis on a crystal formed within a microvolume within the		
> 3	microvolume.		
•			
1	15. A method according to claim 14, wherein the spectroscopic analysis is		
2	selected from the group consisting of Raman, UV/VIS, IR or x-ray spectroscopy.		
	,,		
1	16. A method according to claim 14, wherein the spectroscopic analysis is x-		
2	ray spectroscopy.		
1	17.—A method according to claim 1, wherein the microvolume is enclosed		
\searrow_2	within a material defining the microvolume such that in a volume of the		
3	microvolume and the material defining the microvolume that an x-ray beam used		

H:\PRIVATE\H&D\SYRRX\708\PATAPP-JUNE 8.DOC

5

for x-ray spectroscopy of a crystal will traverse in the process of performing x-ray spectroscopy on a crystal within the microvolume, the volume of the microvolume

- 6 contains at least as many electrons as the sum of the electrons contained in the
- 7 volume of the material defining the microvolume that the x-ray beam will traverse.
- 1 18. A method according to claim 1, wherein the microvolume is enclosed
- 2 within a material defining the microvolume such that in a volume of the
- 3 microvolume and the material defining the microvolume that an x-ray beam used
- 4 for x-ray spectroscopy of a crystal will traverse in the process of performing x-ray
- 5 spectroscopy on a crystal within the microvolume, the volume of the microvolume
- 6 contains at least three times as many electrons as the sum of the electrons
- 7 contained in the volume of the material defining the microvolume that the x-ray
- 8 beam will traverse.
- 1 19. A method according to claim 1, wherein the microvolume is enclosed
- 2 within a material defining the micro volume such that in a volume of the
- 3 microvolume and the material defining the microvolume that an x-ray beam used
- 4 for x-ray spectroscopy of a crystal will traverse in the process of performing x-ray
- 5 spectroscopy on a crystal within the microvolume, the volume of the microvolume
- 6 contains at least five times as many electrons as the sum of the electrons contained
- 7 in the volume of the material defining the microvolume that the x-ray beam will
- 8 traverse.
- 1 20. A method according to claim 1, wherein the microvolume is enclosed
- 2 within a material defining the microvolume such that in a volume of the
- 3 microvolume and the material defining the microvolume that an x-ray beam used
- 4 for x-ray spectroscopy of a crystal will traverse in the process of performing x-ray
- 5 spectroscopy on a crystal within the microvolume, the volume of the microvolume
- 6 contains at least ten times as many electrons as the sum of the electrons contained
- 7 in the volume of the material defining the microvolume that the x-ray beam will
- 8 traverse.
- 1 21. A method according to claim 1, wherein material defining the microvolume
- 2 comprises a groove designed to reduce a number of electrons that an x-ray beam
- 3 used for x-ray spectroscopy of a crystal will traverse in the process of performing
- 4 x-ray spectroscopy on a crystal within the microvolume.

- 1 22. A method according to claim 1, wherein the method further comprises
- 2 delivering the plurality of different erystallization samples to the enclosed
- 3 microvolume.

17

- A method according to claim 1, wherein the method further comprises 1 *28*.
- 2 forming the plurality of different crystallization samples within the enclosed
- 3 microvolume.

- 24. A method according to claim 1, wherein one or more dividers is positioned between the crystallization samples to separate the crystallization samples within the enclosed microvolume.
- 1 25. A method according to claim 1, wherein the divider is formed of an
- 2 . impermeable material.

- A method according to claim 25, wherein the impermeable material is an 26. impermeable liquid
- A method according to claim 25, wherein the impermeable material is an 1 27.
- 2 impermeable solid.

- A method according to claim 25, wherein the divider is formed of a permeable material.
- 1 29. A method according to claim 25, wherein the divider is formed of a
- 2 semipermeable material.

1

- A method according to claim 29, wherein the semipermeable material is a
- 2 gas.

1

- A method according to claim 29, wherein the semipermeable material is a
- 2 liquid.

H:\PRIVATE\H&D\SYRRX\708\PATAPP-JUNE 8.DOC

	٠		
1	26	A method according to claim 29, wherein the semipermeable material is a	
2	gel.		
1	33.	A method according to claim 25, wherein the divider forms an interface	
2	selecte	ed from the group consisting of liquid/liquid, liquid/ gas interface, liquid/	
3	solid a	and liquid/ sol-gel interface.	
)	34.	A method according to claim 25, wherein the divider is selected from the	
2	group	consisting of a membrane, gel, frit, and matrix	
. 1	35.	A method according to claim 25, wherein the divider functions to modulate	
2	diffusi	on characteristics between adjacent crystallization samples.	
1	36.	A method according to claim 25, wherein the divider is formed of a	
2	semip	ermeable material which allows diffusion between adjacent crystallization	
3	sampl	es.	
	_		
1	31.	A method for determining crystallization conditions for a material, the	
2	metho	d comprising:	
3		taking a plurality of different crystallization samples in a plurality of	
4	enclos	enclosed microvolumes, each microvolume comprising one or more crystallization	
5	sampl	samples, the crystallization samples comprising a material to be crystallized and	
6	crysta	crystallization conditions which vary among the plurality of crystallization	
7	sample	samples;	
8		allowing crystals of the material to form in plurality of crystallization	
9	sample	es; and	
10		identifying which of the plurality of crystallization samples form crystals.	

aclos