20CYS111 Digital Signal Processing

Signals: Classification and Properties

Dr. J. Aravinth (Mentor)

Continuous-Time Vs. Discrete-Time Signals

A **continuous-time** signal x(t) is defined for all time t, $-\infty < t < \infty$.

In contrast, to specify a **discrete-time** signal, we write $x[n] = x(nT_s)$, $n = 0, \pm 1, \pm 2, ...$, where T_s is the **sampling** interval.

Sampling of a continuous-time signal provides a discrete-time signal; but, some signals are naturally generated in discrete-time.

Continuous-Valued Vs. Discrete-Valued Signals

How to discretize the value of a signal?

• **Quantization:** Converts a continuous-valued signal into a discrete-valued signal.

Analog Vs. Digital Signals

A continuous-time and continuous-valued signal is called an **analog** signal.

Analog Vs. Digital Signals

Sampling of an analog signal provides a discrete-time and continuous-valued signal.

Analog Vs. Digital Signals

Quantization of an analog signal provides a continuous-time and discrete-valued signal.

A discrete-time and discrete-valued signal is called a **digital** signal.

Real Vs. Complex Signals

A **real** signal takes real number values.

A **complex** signal takes complex number values.

• A complex signal can also be viewed as to be taking **two- dimensional vector values**.

There are signals that take **multi-dimensional vector** values.

• Examples??

Deterministic Vs. Random Signals

A **deterministic** signal is a known function of time.

• **Example:** (i) $f(\theta) = sin(\theta)$, (ii) g(x) = log(x), etc.

A **random signal** takes random (unpredicted) values and can only be described **statistically**.

• **Example:** The random **noise** in electronic and communication systems. https://www.youtube.com/watch? v=CCnCMHNyny8 (https://www.youtube.com/watch? v=CCnCMHNyny8)

Even Vs. Odd Signals

A signal x(t) or x[n] is said to be an **even** signal if

$$\begin{bmatrix} x(-t) = x(t) \\ x[-n] = x[n] \end{bmatrix}.$$

Thus, an even signal is **symmetric** about the vertical axis at the time origin.

Even Vs. Odd Signals

A signal x(t) or x[n] is said to be an **odd** signal if

$$x(-t) = -x(t)$$
$$x[-n] = -x[n]$$

Thus, an odd signal is **antisymmetric** about the vertical axis at the time origin.

Even Vs. Odd Signals

It is possible for a signal to be neither even nor odd.

Any signal x(t) can be decomposed into an **even part** and an **odd part** as

$$x(t) = x_e(t) + x_o(t)$$

where the even part and odd part are given by

$$x_e(t) = \frac{x(t) + x(-t)}{2}$$
 and $x_o(t) = \frac{x(t) - x(-t)}{2}$

A similar result holds for any discrete-time signal x[n].

Conjugate Symmetry

For complex-valued signals, we may talk about **conjugate symmetry** instead of symmetry or anti-symmetry.

- Let x(t) denote a complex-valued signal, i.e., x(t) = a(t) + jb(t).
- Let $x^*(t)$ denote the **complex conjugate** of x(t), i.e., $x^*(t) = a(t) jb(t)$.

A complex-valued signal x(t) is said to be **conjugate symmetric** if

$$x(-t) = x^*(t).$$

A complex-valued signal is conjugate symmetric if and only if (i) its real part is even, and (ii) imaginary part is odd.

Periodic Vs. Nonperiodic/Aperiodic Signals (Continuous-Time)

A continuous-time signal x(t) is said to be **periodic with period** T if there is a positive nonzero value T such that

$$x(t+T) = x(t)$$
, for all t

What is the period of the signal shown above?

Periodic Vs. Nonperiodic/Aperiodic Signals (Continuous-Time)

If x(t) is periodic with a period T, then it is also periodic with periods 2T, 3T, 4T, ...

The **frequency** f corresponding to a period T is defined by f = 1/T, measured in hertz (Hz) or cycles per second.

The **angular frequency** ω corresponding to a period T is defined by $\omega = 2\pi/T$, measured in radians per second.

The minimum value T_0 of the period for which a signal x(t) is periodic is called the **fundamental period** of that signal, and its reciprocal $f_0 = 1/T_0$ is called the **fundamental frequecy**.

Periodic Vs. Nonperiodic/Aperiodic Signals (Continuous-Time)

A continuous-time signal x(t) is said to be **aperiodic** or **nonperiodic** if it is not periodic, that is, if there is no positive nonzero value of T such that

$$x(t+T) = x(t)$$
, for all t .

The foregoing definition of periodicity is undefined for a constant or DC signal. We will study about the frequency of a DC signal in a later lecture.

Periodic Vs. Nonperiodic/Aperiodic Signals (Discrete-Time)

A discrete-time signal x[n] is said to be **periodic with period** N if there is a positive integer N such that

$$x[n+N] = x[n],$$
 for all n

Periodic Vs. Nonperiodic/Aperiodic Signals (Discrete-Time)

If x[n] is periodic with a period N, then it is also periodic with mN where m is any positive integer.

The discrete (angular) frequency Ω corresponding to the period N is defined by $\Omega=2\pi/N$, measured in radians per sample, or simply, in radians.

The smallest period N_0 of a periodic signal x[n] is called its **fundamental period**, and the **fundamental (angular) frequency** is given by $\Omega_0 = 2\pi/N_0$.

In electrical/electronic systems, a signal x(t) often represents a voltage v(t) or current i(t).

When a voltage v(t) or current i(t) is applied through a resistor of R ohm, the **instantaneous power** P(t) dissipated in the resistor is $v^2(t)/R$ or $i^2(t)R$.

• In both the cases, the instantaneous power P(t) is **proportional** to the square of the signal.

In signal analysis, we take R = 1 ohm to eliminate the dependence on the resistance.

• Then, the instantaneous power $P_x(t)$ corresponding to a signal x(t) is **equal** to the square of the signal, that is, we write

$$P_x(t) = x^2(t)$$

The **total energy** of the signal x(t) is then given by

$$E_x = \int_{-\infty}^{\infty} P_x(t)dt = \int_{-\infty}^{\infty} x^2(t)dt = \lim_{T \to \infty} \int_{-T/2}^{T/2} x^2(t)dt.$$

The **time-averaged power** or simply **average power** of the signal x(t) is given by

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} P_{x}(t)dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^{2}(t)dt.$$

The square root of the average power P_x is called the **root mean** square (rms) value of the signal x(t).

For discrete-time signals, we replace the integrals with summations.

The **total energy** of the signal x[n] is defined by

$$E_x = \sum_{n=-\infty}^{\infty} x^2[n]$$

The **average power** of the signal x[n] is defined by

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x^{2}[n].$$

For periodic signals, the calculation of average power simplifies as follows:

• For a periodic continuous-time signal x(t) with fundamental period T_0 , we have

$$P_x = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x^2(t) dt.$$

ullet For a periodic discrete-time signal x[n] with fundamental period N_0 , we have

$$P_x = \frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x^2[n].$$

A signal x(t) or x[n] is called an **energy signal** if its total energy E_x satisfies

$$0 < E_x < \infty.$$

• For an energy signal, the average power $P_x = 0$.

A signal x(t) or x[n] is called a **power signal** if its average power P_x satisfies

$$0 < P_x < \infty$$

• For a power signal, the total energy $E_x = \infty$.

The energy and power classification of signals is **multually exclusive**, that is, a signal cannot be both an energy signal as well as a power signal.

Periodic signals and random signals are usually viewed as power signals.

A signal that is both deterministic and aperiodic is an energy signal.

For complex valued signals, we must replace $x^2(t)$ with $|x(t)|^2$ and $x^2[n]$ with $|x[n]|^2$, respectively, where $|\cdot|$ denotes the modulus of the complex number.

References:

[1] Simon Haykin and Barry Van Veen, Signals and Systems, Second Edition, John Wiley and Sons, 2003.

[2] Lecture Notes by Richard Baraniuk. https://www.di.univr.it/documenti/Occorrenzalns/matdid/matdid018094.pdf https://www.di.univr.it/documenti/Occorrenzalns/matdid/matdid018094.pdf)