The group G is isomorphic to the group labelled by [120, 5] in the Small Groups library. Ordinary character table of $G \cong SL(2,5)$:

	1a	2a	4a	3a	6a	5a	10a	5b	10b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	3	3	-1	0	0	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$
χ_3	3	3	-1	0	0	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$
χ_4	4	4	0	1	1	-1	-1	-1	-1
χ_5	5	5	1	-1	-1	0	0	0	0
χ_6	2	-2	0	-1	1	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_7	2	-2	0	-1	1	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_8	4	-4	0	1	-1	-1	1	-1	1
χ_9	6	-6	0	0	0	1	-1	1	-1

Trivial source character table of $G \cong SL(2,5)$ at p = 3:

Normalisers N_i	N_1								N_2	$\sqrt{2}$	
p-subgroups of G up to conjugacy in G	P_1										
Representatives $n_j \in N_i$	1a $5a$	5b	4a	10a	2a	10b	1a	4a	2a	4b	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6 1	1	2	1	6	1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	-1	$-E(5) - E(5)^4$	3	$-E(5)^2 - E(5)^3$	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	$3 -E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	-1	$-E(5)^2 - E(5)^3$	3	$-E(5) - E(5)^4$	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9 -1	-1	1	-1	9	-1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	6 $2*E(5) + E(5)^2 + E(5)^3 + 2*E(5)^4$	$E(5) + 2 * E(5)^2 + 2 * E(5)^3 + E(5)^4$	0	$-2 * E(5) - E(5)^2 - E(5)^3 - 2 * E(5)^3$	4 -6	$-E(5) - 2 * E(5)^2 - 2 * E(5)^3 - E(5)^4$	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	6 $E(5) + 2 * E(5)^2 + 2 * E(5)^3 + E(5)^4$	$2 * E(5) + E(5)^{2} + E(5)^{3} + 2 * E(5)^{4}$	0	$-E(5) - 2 * E(5)^2 - 2 * E(5)^3 - E(5)^3$	4 -6	$-2 * E(5) - E(5)^2 - E(5)^3 - 2 * E(5)^4$	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6 1	1	0	-1	-6	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1 1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4 -1	-1	0	-1	4	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	4 -1	-1	0	1	-4	1	1	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	4 -1	-1	0	1	-4	1	1	-E(4)	-1	E(4)	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 7, 4)(2, 5, 6)(3, 16, 14)(8, 15, 13)(9, 20, 12)(10, 11, 19)(17, 23, 22)(18, 21, 24)]) \cong C3$

 $N_1 = Group([(1,2,5,4)(3,6,8,7)(9,13,11,14)(10,15,12,16)(17,19,18,20)(21,24,23,22),(1,3,2)(4,5,8)(6,9,10)(7,11,12)(13,16,17)(14,15,18)(19,21,22)(20,23,24)]) \cong SL(2,5)$ $N_2 = Group([(1,7,4)(2,5,6)(3,16,14)(8,15,13)(9,20,12)(10,11,19)(17,23,22)(18,21,24),(1,2,7,5,4,6)(3,13,16,8,14,15)(9,10,20,11,12,19)(17,24,23,18,22,21),(1,17,5,18)(2,21,4,23)(3,9,8,11)(6,24,7,22)(10,16,12,15)(13,19,14,20)]) \cong C3: C4$