

Temperature measurement and display using the MC68HC05B4 and the MC14489

By Jeff Wright,
Motorola Ltd., East Kilbride

INTRODUCTION

This application note is intended to show the basic building blocks of a temperature control system based on the MC68HC05Bx family of MCUs. Software routines in the application include look-up table interpolation, binary to BCD conversion, DegC to DegF conversion and the basis of a real time counter/clock. For temperature display the Multi-character LED display driver MC14489 is used, driven from the B4's SCI, resulting in simple hardware with a low component count. The temperature sensing element used here is a thermistor to allow easy interfacing to the A/D converter of the HC05B4, but the software principles shown would be the same for many other types of sensors. A software listing is included at the end of this application note.

TEMPERATURE MEASUREMENT

A pre-calibrated thermistor was chosen as the temperature sensing element. Its characteristic curve over the temperature range of -40 to 80 °C is shown in Figure 1. To get the best accuracy from the HC05B4's on-board A/D, the input signal should be scaled to use as much of the available VRH-VRL range as possible. Here VRH is connected to Vdd and VRL is tied to Vss. In this case, using the thermistor as potential divider with a 20kΩ resistor results in a signal range of approximately 0.3V to 4.7V over the -40 to 80 °C temperature range. The voltage across the thermistor (input to the A/D), plotted against temperature, is shown in Figure 2.

Figure 1. Thermistor resistance vs Temperature

Freescale Semiconductor, Inc.

Figure 2. A/D input voltage vs Temperature (inset: circuit used)

As can be seen from Figure 2, the response is non-linear and so a look-up table approach is the simplest way of obtaining the required accuracy. The thermistor characteristics are stored as a series of points in a table in ROM and a linear interpolation between adjacent points is used to obtain the temperature that corresponds to a given A/D reading. The number of points that must be stored depends on how non-linear the response is and the required accuracy of the result. In this case 16 points were chosen; in order to keep the software simple (and

therefore fast), they are spread at intervals of 16 through the A/D result range of 0-255. For each point (16, 32, 48 etc.), the voltage on the A/D input was calculated and the corresponding temperature was obtained from the graph of Figure 2. These points were then used to form the look-up table shown in Figure 3, resulting in a temperature range of -40 to 79 °C. Figure 4 shows the reconstructed response of the thermistor obtained by linear interpolation of the points in the look-up table.

A/D RESULT	A/D (volts)	TEMP (°C)	TEMP (°C 2s Compl)
0	0	-	-
16	0.31	79	4F
32	0.63	56	38
48	0.94	43	2B
64	1.26	34	22
80	1.57	27	1B
96	1.88	21	15
112	2.20	15	0F
128	2.51	10	0A
144	2.82	5	05
160	3.14	-1	FF
176	3.45	-6	FA
192	3.77	-11	F5
208	4.08	-18	EE
224	4.39	-26	E6
240	4.71	-40	D8
255	5.0	-	-

Figure 3. Interpolated A/D input voltage vs Temperature

Figure 4. Interpolated A/D input voltage vs Temperature

The temperature reading is updated every second; the software to accomplish this is relatively simple:

The timer is set to overflow every 125 mS with a 4.1934 MHz crystal. The timer overflow interrupt routine updates the real time counters TICKS, SECS, MINS & HRS and sets the flag bit SEC every time a second has elapsed.

The main program loop is executed every second (via the SEC flag bit) and after checking the metric/imperial selector switch the temperature is measured by the subroutine ADCONV. This routine starts by reading the thermistor selector switch and setting up the A/D control register accordingly. An A/D conversion is then carried out four times on the selected channel and the results accumulated in the accumulator and the temporary register TEMP. This result is then divided by 4 by rotating, to obtain the average A/D result. The averaging technique is employed to try and reduce the effect of noise on the A/D input. The number of conversions to average is determined by time constraints and the noise levels in the surrounding environment. The upper nibble of the result is then used to access the look-up table to obtain the 'base' temperature value. If the temperature limit is exceeded then the TLIMIT flag is set before exiting from the routine.

Temperature table entries are stored in 2's complement form so that the interpolation between positive and negative values will work successfully. The interpolation is carried out by obtaining the difference between the base value and the next in the table, multiplying this by the lower nibble of the A/D result and then dividing by 16. This result is then subtracted from the base value to obtain the real temperature in 2's complement °C which is stored in the register NEWTMP before exiting from the routine. The difference information is subtracted from the base value rather than added because the thermistor has a negative temperature co-efficient (NTC) so that an increase in the A/D result corresponds to a drop in temperature.

If the imperial mode is selected (°F) then the next stage before updating the display is to convert from °C to °F and this is carried out in the subroutine CTOF.

Converting from °C to °F is accomplished by multiplying by 1.8 and adding 32. First the sign of the temperature in °C is stored via the flag bit NEGNUM, then the maximum °F limit (53 °C) is checked before the magnitude is multiplied by 1.8 (multiply by 115 and divide by 64). Again, use is made of rotating to do the dividing, in order to increase execution speed. The sign of the result is then restored and 32 added to obtain the temperature in 2's complement °F.

TEMPERATURE DISPLAY

An MC14489 multi-character display driver was chosen for this purpose as it can be easily interfaced to a wide range of Motorola MCUs, requires almost no external components and has a character set that includes the degree symbol (°). The MC14489 can also be cascaded if the application was expanded to require a larger display. The MC14489 would normally be driven from an SPI on the MCU but here, since the the 68HC05B family does not have an SPI, use is made of the SCI clock output feature that is available on this family.

Before the temperature can be written to the display driver it has to be converted into the correct data format.

The first stage of this is to convert from 2's complement binary to BCD. This is carried out in the routine CONBCD which is called from SETDISP. The sign of the temperature is stored in the flag bit NEGNUM before SETDISP is called; then, after first checking if the TLIMIT flag is set, the temperature is converted to BCD in DEC0-2 by CONBCD. This is accomplished by rotating left the binary number followed immediately by a rotate left of the BCD result; this has the effect of multiplying the current BCD result by 2 and adding in the new binary bit at the same time. After each rotate the BCD registers are checked and adjusted for overflow (>\$09) before the bit counter contained in the index register is decremented. This process of rotate then adjust is continued until all the binary bits have been used; the BCD result will then be resident in the registers DEC0, 1 & 2.

The rest of the routine SETDISP is concerned with setting up the display registers DISP1, 2, 3 and the display control register DISPC. The MC14489 data format is msb first whereas the 68HC05B4 SCI transmits lsb first; this means that the bit order of the data stream has to be stored in reverse in the display registers. This can be confusing when trying to work out the codes that have to be stored in the B4 to generate a specific character.

Figures 5a and 5b show the 14489 data format and the corresponding bit positions in the B4 registers DISP1, 2, 3 & C. The sign of the temperature is restored and the numeric display registers are configured to display ‘–’ if the temperature limit has been exceeded before exiting from the SETDISP routine.

The main program loop then calls the subroutine DISPL which actually transmits the contents of the display registers to the MC14489 via the SCI. The MC14489 contains special Bit Grabber circuitry that allows either the internal display registers or the configuration register to be updated without address or steering bits so that updating the display involves a simple transmission of either 3 bytes for the display registers or 1 byte for the configuration register. Even for cascaded 14489s there is no need for address bits – see the MC14489 data sheet for more details.

The MC14489 can be clocked at up to 4 MHz at 5 volts so here the maximum transmit baud rate of the SCI is used – 131.072 KHz with a 4.19304 MHz crystal. The transmission of the display data only takes place if there has been a change in the data since the last time. If there has been a change, the 3 data registers are transmitted in turn starting with DISP3 and the OLD registers are updated ready for the change check next time round. After the last byte has gone, the SCI and 14489 are disabled before returning to the main loop.

The last subroutine called from the main program is the 14489 configuration update routine DISCON. This routine operates in a similar manner to DISPL, checking to see if there has been a change to the config. data before transmitting it.

This completes the operation of the program which now jumps back to the start of the main loop and waits for the SEC bit to be set again before repeating the temperature measurement and display sequence.

Figure 5a. MC14489 to MC68HC05B4 display register mapping

Figure 5b. MC14489 to MC68HC05B4 display register mapping

HARDWARE

As already mentioned, the use of the MC14489 results in a very low component count for the application; the hardware schematic can be seen in Figure 6. The only I/O pins required are for reading the option switches and for controlling the enable of the MC14489. Pull-downs are required on the clock and data pins as these become high impedance when the SCI is disabled. The LED displays are common cathode; a single external resistor is all that is required to set the brightness

level of the displays. In this case though, a light dependent resistor, R12 (ORP12), has been used to control the display brightness for a variety of background lighting conditions. The resistance of R12 decreases with increasing light and so R11 must be incorporated to ensure that the maximum source current spec. of the MC14489 is not exceeded in very bright lighting conditions. R13 ensures there is still enough drive current for the LEDs in dark conditions.

APPLICATION AREAS

As mentioned in the introduction, this application note is designed only to show some fundamental building blocks of a temperature control system based on the 68HC05Bx family of MCUs. Where possible, the software has been written in a modular fashion, so that the routines can easily be transported to another application and the binary to BCD routine could be expanded to handle larger numbers. The large number of I/O,

PWMs and timer functions unused show that the 68HC05B family has plenty of functionality left to perform other control functions. For example, in process control, fluid flow or speed sensors could be connected to the timer input capture pins, pressure sensors to the other A/D pins, a keypad to the I/O lines and the other I/O & PWMs used to perform output control functions.

Figure 6. Hardware schematic

Freescale Semiconductor, Inc.

```

1 ****
2 ****
3 ****
4 *%      68HC05B4  TEMPERATURE MEASUREMENT & DISPLAY %*
5 *%
6 *%
7 *% Jeff Wright, Motorola East Kilbride. Last Updated 22/02/90 %*
8 *%
9 *% This software was written by Motorola for demonstration %*
10 *% purposes only. Motorola does not assume any liability arising %*
11 *% out of the application or use of this software and does not %*
12 *% guarantee its functionality %*
13 *%
14 ****
15 ****
16
17
18 ***** I/O and INTERNAL registers definition *****
19 *
20 *
21 *      I/O registers
22 *
23 00000000 PORTA EQU    $00      port A.
24 00000001 PORTB EQU    $01      port B.
25 00000002 PORTC EQU    $02      port C.
26 00000003 PORTD EQU    $03      port D.
27 00000004 DDRA  EQU    $04      port A DDR.
28 00000005 DDRB  EQU    $05      port B DDR.
29 00000006 DDRC  EQU    $06      port C DDR.
30
31 *
32 *      A/D registers
33 *
34 00000008 ADDATA EQU    $08      A/D data register.
35 00000009 ADSTCT EQU    $09      A/D status and control register.
36 00000007 COCO   EQU    7       Conversion complete flag.
37
38 *
39 *
40 *
41 *      SCI registers
42 *
43 0000000d BAUD   EQU    $0D      SCI baud register.
44 0000000e SCCR1  EQU    $0E      SCI control register 1.
45 0000000f SCCR2  EQU    $0F      SCI control register 2.
46 00000010 SCRR   EQU    $10      SCI status register.
47 00000007 TDRE   EQU    7
48 00000006 TC     EQU    6
49 00000011 SCDAT  EQU    $11      SCI data register.
50
51 *
52 *      TIMER registers
53 *
54 00000012 TCR    EQU    $12      Timer control register.
55 00000005 TOIE   EQU    5       Timer overflow interrupt enable.
56 00000006 OCIE   EQU    6       Timer output compares interrupt enable.
57 00000007 ICIE   EQU    7       Timer input captures interrupt enable.
58
59 00000013 TSR    EQU    $13      Timer status register.
60 00000003 OCP2   EQU    3       Timer output compare 2 flag.
61 00000004 ICP2   EQU    4       Timer input capture 2 flag.
62 00000005 TOF    EQU    5       Timer overflow flag.
63 00000006 OCF1   EQU    6       Timer output compare 1 flag.
64 00000007 ICF1   EQU    7       Timer input capture 1 flag.

```

Freescale Semiconductor, Inc.

```

65
66 00000014      TIC1HI EQU    $14      Timer input capture register 1 (16-bit).
67 00000015      TIC1LO EQU    $15
68 00000016      TOC1HI EQU    $16      Timer output compare register 1 (16-bit).
69 00000016      TOC1LO EQU    $16
70 00000018      TIMHI   EQU    $18      Timer free running counter (16-bit).
71 00000019      TIMLO   EQU    $19
72 0000001a      TIMAHI  EQU    $1A      Timer alternate counter register (16-bit).
73 0000001b      TIMALO  EQU    $1B
74 0000001c      TIC2HI  EQU    $1C      Timer input capture register 2 (16-bit).
75 0000001d      TIC2LO  EQU    $1D
76 0000001e      TOC2HI  EQU    $1E      Timer output compare register 2 (16-bit).
77 0000001f      TOC2LO  EQU    $1F

78
79 *
80 *
81 *      MEMORY MAP DEFINITION
82 *
83 *
84 00000020      TEST    EQU    $20      TEST register
85 00000020      ROM0    EQU    $0020    Start address of ROM0.
86 00000050      RAM     EQU    $0050    Start address of RAM.
87 00000f00      UROM   EQU    $0F00    Start address of main user ROM.
88 *
89
90
91
92 ***** RAM ALLOCATION *****
93
94 SECTION.S .RAM,ADDR=$50
95
96
97 00000050      TICKS   RMB    1
98 00000051      SECS    RMB    1
99 00000052      MINS    RMB    1
100 00000053     HRS     RMB    1
101
102 00000054     FLAG    RMB    1
103 00000000     OVERFL  EQU    0
104 00000001     NEGNUM  EQU    1
105 00000002     TLIMIT  EQU    2
106 00000003     SEC     EQU    3
107
108 00000055     MODE    RMB    1
109 00000000     IMP     EQU    0
110
111 00000056     BIN0    RMB    1
112 00000057     DEC2    RMB    1
113 00000058     DEC1    RMB    1
114 00000059     DECO    RMB    1
115
116 0000005a     NEWTMP  RMB    1
117 0000005b     TEMP    RMB    1
118 0000005c     TEMP1   RMB    1
119 0000005d     TEMP2   RMB    1
120
121 0000005e     DISP1   RMB    1
122 0000005f     DISP2   RMB    1
123 00000060     DISP3   RMB    1
124 00000061     DISPC   RMB    1
125 00000062     OLDD1  RMB    1
126 00000063     OLDD2  RMB    1

```

Freescale Semiconductor, Inc.

```

127 00000064      OLDD3   RMB    1
128 00000065      OLDDC   RMB    1
129
130
131                      SECTION .PAGE0,ADDR=$020
132
133 00000020 004f382b221b150f ADTAB   FCB    $00,$4F,$38,$2B,$22,$1B,$15,$0F
134 00000028 0a05ffffaf5eee6d8 FCB    $0A,$05,$FF,$FA,$F5,$EE,$E6,$D8
135
136      ****
137      *
138      *      START OF CODE
139      *
140      ****
141
142                      SECTION .USRROM,ADDR=$F00
143
144 00000f00      RESET   EQU    *
145 00000f00  a600      LDA     #$0      Initialise Ports.
146 00000f02  b700      STA     PORTA
147 00000f04  b701      STA     PORTB
148 00000f06  b704      STA     DDRA
149 00000f08  b705      STA     DDRB
150 00000f0a  ae65      LDX     #OLDDC
151 00000f0c  f7       INIRAM  STA    ,X      Initialise all used RAM locations.
152 00000f0d  5a       DECX
153 00000f0e  a350      CPX     #RAM
154 00000f10  26fa      BNE     INIRAM
155
156 00000f12  a604      LDA     #$04
157 00000f14  b702      STA     PORTC
158 00000f16  a604      LDA     #$04      PC2 output high.
159 00000f18  b706      STA     DDRC
160
161 00000f1a  b613      TIMINT  LDA     TSR      clr any pending flags.
162 00000f1c  b619      LDA     TIMLO
163 00000f1e  a620      LDA     #$20      Enable timer overflow
164 00000f20  b712      STA     TCR      interrupt.
165 00000f22  9a       CLI
166
167      *----- START OF MAIN PROGRAM LOOP -----*
168
169 00000f23      MAINLUP EQU    *
170 00000f23  0754fd      BRCLR  SEC,FLAG,MAINLUP
171 00000f26  1754      BCLR   SEC,FLAG
172 00000f28  1155      BCLR   IMP,MODE      Check metric/imperial selector.
173 00000f2a  010202      BRCLR  0,PORTC,NOIMP  Check degC/degF switch.
174 00000f2d  1055      BSET   IMP,MODE
175 00000f2f  1354      NOIMP  BCLR   NEGNUM,FLAG      Clear sign indicator.
176 00000f31  cd0ffd      JSR    ADCONV      Go measure temperature
177 00000f34  015503      BRCLR  IMP,MODE,GOMETR  (in degC - 2s compl)
178 00000f37  cd0f4e      JSR    CTOF      Convert to degF.
179 00000f3a  b65a      GOMETR LDA    NEWTMP
180 00000f3c  2a03      BPL    GOMORE
181 00000f3e  40       NEGA
182 00000f3f  1254      BSET   NEGNUM,FLAG      Remember the sign of the number.
183 00000f41  b756      GOMORE STA    BINO      Store temperature for conv to BCD.
184 00000f43  cd0f78      GODISP JSR    SETDISP      Set-up display bytes.
185 00000f46  cd1085      JSR    DISPL      Update display if necessary.
186 00000f49  cd10ca      JSR    DISCON      Update 14489 config if necessary.
187 00000f4c  20d5      BRA    MAINLUP
188
189

```

Freescale Semiconductor, Inc.

```

190 *=====
191 *=
192 *=      CTOF          - Converts NEWTMP from degC to degF  =*
193 *=
194 *=====
195
196 00000f4e      CTOF    EQU    *
197 00000f4e b65a    LDA     NEWTMP
198 00000f50 2a05    BPL     NONEG
199 00000f52 1254    BSET    NEGNUM,FLAG   Remember if No is negative or not.
200 00000f54 40      NEGA
201 00000f55 2007    BRA     MUL1P8
202 00000f57 a135    NONEG   CMP     #53      Check for max degF limit of 127F.
203 00000f59 2503    BLO     MUL1P8
204 00000f5b 1454    BSET    TLIMIT,FLAG   Set limit and return if over range.
205 00000f5d 81      RTS
206
207 00000f5e ae73    MUL1P8 LDX     #115
208 00000f60 42      MUL
209 00000f61 56      RORX
210 00000f62 46      RORA
211 00000f63 56      RORX
212 00000f64 46      RORA
213 00000f65 56      RORX
214 00000f66 46      RORA
215 00000f67 56      RORX
216 00000f68 46      RORA
217 00000f69 56      RORX
218 00000f6a 46      RORA
219 00000f6b 56      RORX
220 00000f6c 46      RORA
221
222 00000f6d 035401  BRCLR  NEGNUM,FLAG,NONEG1
223 00000f70 40      NEGA
224 00000f71 1354    NONEG1 BCCLR  NEGNUM,FLAG   Return sign of number.
225 00000f73 ab20    ADD    #32      Add 32 to get degF.
226 00000f75 b75a    STA    NEWTMP
227 00000f77 81      RTS
228
229
230 *XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*
231 *X
232 *X      SETDISP      - Sets up display registers with BCD      X*
233 *X
234 *XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*
235
236 00000f78      SETDISP EQU    *
237 00000f78 04543e  BRSET   TLIMIT,FLAG,FORCE   If temp out of range, force to -
238 00000f7b ae08    LDX     #$8
239 00000f7d cd1052  JSR     CONBCD   Convert 8 bit binary to 3 digit BCD.
240 00000f80 ae04    LDX     #4
241 00000f82 4f      CLRA
242 00000f83 3458    LUPDIS1 LSR     DEC1      Shuffle bit order of digits to allow
243 00000f85 49      ROLA
244 00000f86 5a      DECX
245 00000f87 26fa    BNE     LUPDIS1
246 00000f89 be57    LDX     DEC2
247 00000f8b 2704    BEQ     TSTNEG
248 00000f8d aa80    ORA     #$80      If over 100deg, add the 100 digit.
249 00000f8f 2005    BRA     STD1
250 00000f91 035402  TSTNEG BRCLR  NEGNUM,FLAG,STD1
251 00000f94 aab0    ORA     #$B0      Add code for a - if temp is negaive.
252 00000f96 b75e    STD1   STA     DISPL   Store in 1st display register.

```

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

```

316
317
318
319
320      *^* ADCONV - A/D Conversion & Temperature table interpolation.*^*
321
322
323
324 00000ffd      ADCONV EQU   *
325 00000ffd 1554    BCLR   TLIMIT,FLAG
326 00000fff 3f5b    CLR    TEMP
327 00001001 020204  BRSET  1,PORTC,CONT1 Check Thermistor selector switch.
328 00001004 a621    LDA    #$21
329 00001006 2002    BRA    SETAD
330 00001008 a620    CONT1 LDA    #$20
331 0000100a b709    SETAD STA    ADSTCT Start first conversion.
332 0000100c ae04    LDX    #4    Init counter.
333 0000100e 4f      CLRA
334 0000100f 0f09fd  ADLUP1 BRCLR COCO,ADSTCT,ADLUP1 Wait for end of conversion.
335 00001012 bb08    ADD   ADDATA
336 00001014 2402    BCC   DECCX Convert 4 times and accumulate to help
337 00001016 3c5b    INC   TEMP eliminate noise.
338 00001018 5a      DECCX DECX
339 00001019 26f4    BNE   ADLUP1
340 0000101b 365b    ROR   TEMP
341 0000101d 46      RORA
342 0000101e 365b    ROR   TEMP Now divide by 4 to get average and
343 00001020 46      RORA
344 00001021 b75b    STA   TEMP store in TEMP.
345
346 00001023 44      TABL  LSRA
347 00001024 44      LSRA
348 00001025 44      LSRA Isolate upper 4 bits of result,
349 00001026 44      LSRA
350 00001027 97      TAX
351 00001028 e620    LDA   ADTAB,X and use them to access the look-up table
352 0000102a 2723    BEQ   TRANGE
353 0000102c ald8    CMP   #$D8 Check table entry limits.
354 0000102e 271f    BEQ   TRANGE
355 00001030 b75c    STA   TEMP1 Store "base" value.
356 00001032 5c      INCX
357 00001033 e020    SUB   ADTAB,X Get the diff between the base and next entry.
358 00001035 b75d    STA   TEMP2
359 00001037 b65b    LDA   TEMP
360 00001039 a40f    AND   #$0F Now get the lower 4 bits of the A/D result.
361 0000103b be5d    LDX   TEMP2
362 0000103d 42      MUL
363 0000103e 49      ROLA
364 0000103f 59      ROLX
365 00001040 49      ROLA Divide answer by 16 and leave in TEMP2.
366 00001041 59      ROLX
367 00001042 49      ROLA
368 00001043 59      ROLX
369 00001044 49      ROLA
370 00001045 59      ROLX
371 00001046 bf5d    STX   TEMP2
372 00001048 b65c    LDA   TEMP1 Retrieve base value,
373 0000104a b05d    SUB   TEMP2 subtract the difference value
374 0000104c b75a    STA   NEWTMP and store answer in NEWTMP.
375 0000104e 81      RTS
376 0000104f 1454    TRANGE BSET TLIMIT,FLAG
377 00001051 81      RTS
378

```

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

```

443 000010a8 b660      LDA     DISP3
444 000010aa b764      STA     OLDD3
445 000010ac b711      STA     SCDAT      Send first byte.
446 000010ae 0f10fd    DWAIT1  BRCLR   TDRE,SCSR,DWAIT1 Wait until it has been transferred
447 000010b1 b65f      LDA     DISP2      - then load second.
448 000010b3 b763      STA     OLDD2
449 000010b5 b711      STA     SCDAT
450 000010b7 0f10fd    DWAIT2  BRCLR   TDRE,SCSR,DWAIT2
451 000010ba b65e      LDA     DISP1
452 000010bc b762      STA     OLDD1
453 000010be b711      STA     SCDAT
454 000010c0 0d10fd    DWAIT3  BRCLR   TC,SCSR,DWAIT3 Wait until 3rd byte has actually gone
455 000010c3 a600      LDA     #$00
456 000010c5 b70f      STA     SCCR2      Dissable SCI transmissions,
457 000010c7 1402      BSET    2,PORTC   then disable 14489.
458 000010c9 81        RTS
459
460
461 *?????????????????????????????????????????????????????????????????????????????????????
462 *?                                         ???
463 *?      DISCON - Updates 14489 Config register via SCI ???
464 *?                                         ???
465 *?????????????????????????????????????????????????????????????????????????????????
466
467
468 000010ca          DISCON EQU      *
469 000010ca b661      LDA     DISPC      Only update config register if it has
470 000010cc b165      CMP     OLDDC      changed since last time.
471 000010ce 2601      BNE     UPDCON
472 000010d0 81        RTS
473
474 000010d1 a601      UPDCON LDA     #$01
475 000010d3 b70e      STA     SCCR1      Clock idle low, edge in mid data, last clk.
476 000010d5 4a        DECA
477 000010d6 b70d      STA     BAUD      131.072KHz baud with 4.19etc XTAL.
478 000010d8 a608      LDA     #$08
479 000010da b70f      STA     SCCR2      Transmit enabled.
480 000010dc 0d10fd    PREAM1 BRCLR   TC,SCSR,PREAM1 Wait for preamble to finish.
481 000010df 1502      DOCONF BCLR    2,PORTC   Enable transmission to 14489.
482 000010e1 b661      LDA     DISPC
483 000010e3 b765      STA     OLDDC
484 000010e5 b711      STA     SCDAT
485 000010e7 0f10fd    DWAIT4 BRCLR   TDRE,SCSR,DWAIT4 Wait until config byte has transferred.
486 000010ea a600      LDA     #$00
487 000010ec b70f      STA     SCCR2      Now disable SCI transmission.
488 000010ee 0d10fd    DWAIT5 BRCLR   TC,SCSR,DWAIT5 Wait until config byte has actually gone.
489 000010f1 1402      BSET    2,PORTC   Disable 14489 & return.
490 000010f3 81        RTS
491
492
493 ****
494 *                                         *
495 *      VECTOR ADDRESSES                  *
496 *                                         *
497 ****
498 SECTION .VECT,ADDR=$1FF2
499
500 00001ff2 0f00      SCIINT FDB     RESET
501 00001ff4 0fcf      TOVFLW FDB     TOVINT
502 00001ff6 0f00      TOCMP  FDB     RESET
503 00001ff8 0f00      TICAP  FDB     RESET
504 00001ffa 0f00      EXTINT FDB     RESET
505 00001ffc 0f00      SOFTI  FDB     RESET
506 00001ffe 0f00      POR    FDB     RESET

```

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Section synopsis

```

1 00000016 (      22) .RAM
2 00000010 (      16) .PAGE0
3 000001f4 (      500) .USROM
4 0000000e (      14) .VECT

```

Symbol table

.PAGE0	2 00000000	DISPC	1 00000061	LUPBCD	3 00001059	OLDD3	1 00000064	TEMP	1 0000005b
.RAM	1 00000000	DOCONF	3 000010df	LUPDIS1	3 00000f83	OLDDC	1 00000065	TEMP1	1 0000005c
.USROM	3 00000000	DWAIT1	3 000010ae	LUPDIS2	3 00000f9b	POR	4 00001ffe	TEMP2	1 0000005d
.VECT	4 00000000	DWAIT2	3 000010b7	MINS	1 00000052	PREAM	3 000010a3	TICAP	4 00001ff8
ADLUP1	3 0000100f	DWAIT3	3 000010c0	MODE	1 00000055	PREAM1	3 000010dc	TICKS	1 00000050
ADTAB	2 00000020	DWAIT4	3 000010e7	MUL1P8	3 00000f5e	SCIINT	4 00001ff2	TIMINT	3 00000f1a
BINO	1 00000056	DWAIT5	3 000010ee	NEWTMP	1 0000005a	SECS	1 00000051	TOCMP	4 00001ff6
CONT1	3 00001008	EXTINT	4 00001ffa	NOIMP	3 00000f2f	SETAD	3 0000100a	TOVFLW	4 00001ff4
DEC0	1 00000059	FLAG	1 00000054	NOINC	3 00000ffa	SOFTI	4 00001ffc	TOVINT	3 00000fcf
DEC1	1 00000058	FORCE	3 00000fb9	NONEG	3 00000f57	STD1	3 00000f96	TRANGE	3 0000104f
DEC2	1 00000057	GODISP	3 00000f43	NONEG1	3 00000f71	STD13	3 00000fc8	TSTD1	3 0000106b
DECCX	3 00001018	GOMETR	3 00000f3a	NOOVF	3 00000ffc	STDIS3	3 00000fac	TSTD2	3 00001075
DISP1	1 0000005e	GOMORE	3 00000f41	NOOVR	3 00001081	STDISC	3 00000fb6	TSTNEG	3 00000f91
DISP2	1 0000005f	HRS	1 00000053	OLDD1	1 00000062	TABL	3 00001023	UPDATE	3 00001098
DISP3	1 00000060	INIRAM	3 00000f0c	OLDD2	1 00000063	TEMP	1 0000005b		

Symbol cross-reference

.PAGE0	*131
.RAM	*94
.USROM	*142
.VECT	*498
ADLUP1	*334 334 339
ADTAB	*133 351 357
BINO	*111 183 392
CONT1	327 *330
DEC0	*114 255 387 393 396 399
DEC1	*113 242 388 394 400 401 404
DEC2	*112 246 266 389 395 405 406 410
DECCX	336 *338
DISP1	*121 252 272 424 451
DISP2	*122 260 274 427 447
DISP3	*123 264 278 430 443
DISPC	*124 269 280 469 482
DOCONF	*481
DWAIT1	*446 446
DWAIT2	*450 450
DWAIT3	*454 454
DWAIT4	*485 485
DWAIT5	*488 488
EXTINT	*504
FLAG	*102 170 171 175 182 199 204 222 224 237 250 298 325 376 411
FORCE	237 *271
GODISP	*184
GOMETR	177 *179
GOMORE	180 *183
HRS	*100 308 311
INIRAM	*151 154
LUPBCD	*392 413
LUPDIS1	*242 245
LUPDIS2	*255 258
MINS	*99 303 304 307
MODE	*108 172 174 177 262 276

Freescale Semiconductor, Inc.

MULLP8	201	203	*207				
NEWTMP	*116	179	197	226	374		
NOIMP	173	*175					
NOINC	295	301	306	310	*313		
NONEG	198	*202					
NONEG1	222	*224					
NOOVF	291	*314					
NOOVR	408	*412					
OLDD1	*125	425	452				
OLDD2	*126	428	448				
OLDD3	*127	431	444				
OLDDC	*128	150	470	483			
POR	*506						
PREAM	*441	441					
PREAM1	*480	480					
SCIINT	*500						
SECS	*98	297	299	302			
SETAD	329	*331					
SOFTI	*505						
STD1	249	250	*252				
STDI3	276	*278					
STDIS3	262	*264					
STDISC	267	*269					
TABL	*346						

Symbol cross-reference

TEMP	*117	326	337	340	342	344	359
TEMP1	*118	355	372				
TEMP2	*119	358	361	371	373		
TICAP	*503						
TICKS	*97	292	293	296			
TIMINT	*161						
TOCMP	*502						
TOVFLW	*501						
TOVINT	*291	501					
TRANGE	352	354	*376				
TSTD1	398	*401					
TSTD2	403	*406					
TSTNEG	247	*250					
UPDATE	426	429	432	*435			
UPDCON	471	*474					

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

