Chapter 5 Some Discrete Probability Distributions

Binomial: Two possible outcomes from each trial.

<u>Binomial Distribution:</u> $b(x; n, p) = \binom{n}{x} p^x q^{n-x}$ x: num of successes. n: num of indep. trials. p: prob. of success. q: prob. of failure. $\mu = np$, $\sigma^2 = npq$

<u>Multinomial</u>: $f(x_1, x_2, ...x_k; p_1, p_2, ...p_k, n) = \binom{n}{x_1, x_2 ... x_k} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$. $n = \sum_{i=1}^{k} x_i$, and $\sum_{i=1}^{k} p_i = 1$ Hypergeometric: Choosing successful items.

<u>Hypergeometric</u> Distribution: $h(x; N, n, k) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$. max(0, n - 1)(N-k)) $\leq x \leq min(n,k)$. x: num of successes. N: num of items. n: num of selection. k: num of total successes. $\mu = \frac{nk}{N}$, $\sigma^2 = \frac{N-n}{N-1} n \frac{k}{N} (1 - \frac{k}{N})$

Estimating Hypergeometric using Binomial: If n is small compared to $N: (n/N) \le 0.05.$

Chapter 6 Some Continuous Probability Distributions

Equal Probability throughout interval. Uniform Distribution:

 $\overline{f(x;A,B)} = \frac{1}{B-A} \text{ if } A \leq x \leq B, \text{ 0 otherwise. } \mu = \frac{A+B}{2}, \ \sigma^2 = \frac{(B-A)^2}{12}.$ Normal Distribution: Bell curve. $n(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.$ x: select time. μ : mean. σ : standard deviation.

Standard Normal: A normal distribution where mean is 0 and variance is 1. $Z = \frac{X - \mu}{2}$

Estimating Binomial with Normal: For large n. $P(X \leq x) \approx P(Z \leq x)$

Gamma Function: $\Gamma(n) = (n-1)!$. $\Gamma(1) = 1$. $\Gamma(1/2) = \sqrt{\pi}$.

 $f(x; \alpha, \beta) =$ Gamma Distribution: Wait time, reliability.

<u>Multivariate:</u> $f(x_1, x_2, ...x_k; a_1, a_2, ...a_k, N, n) = \frac{\binom{a_1}{x_1}\binom{a_2}{x_2}...\binom{a_k}{x_k}}{\binom{n}{x_k}}.$ n = $\sum_{i=1}^{k} x_i, N = \sum_{i=1}^{k} a_i.$

Negative Binomial Distribution: Prob. the kth success will happen by the xth trial. $b^*(x;k,p) = {x-1 \choose k-1} p^k q^{x-k}$. x: trial number. k: success number. p: prob. success. q: prob. failure.

Geometric Distribution: Prob. the xth trial is the first success. $g(x;p) = pq^{x-1}$. x: trial number. p: prob. success. q: prob. failure. $\mu = \frac{1}{p}$. $\sigma^2 = \frac{1-p}{p^2}$.

Poisson Distribution: Prob. something happens x times in t time. $p(x; \lambda t) = \frac{e^{-\lambda t}(\lambda t)^x}{x!}$. x: num of times. λ : average number of outcomes per time period. t: time interval. newline

 $\tfrac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}},\,x>0. \text{ or } 0 \text{ otherwise. } \mu=\alpha\beta,\,\sigma^2=\alpha\beta^2.$ Exponential Distribution: Special case of Gamma where $\alpha = 1$. $f(x;\beta) = \frac{1}{\beta}e^{-\frac{x}{\beta}}$ where x > 0. 0 elsewhere. β : mean time between failures. α : number of events. $\mu = \beta$, $\sigma^2 = \beta^2$.

<u>Chi-Squared Distribution:</u> Special case of Gamma where $\alpha = v/2$ and

Chi-squared Distribution: Special case of Gamma where $\alpha = v/2$ and $\beta = 2$. $f(x;v) = \frac{1}{2^{v/2}\Gamma(v/2)}x^{v/2-1}e^{-x/2}$, x > 0. 0 elsewhere. v: degrees of freedom. $\mu = v$, $\sigma^2 = 2v$.

Beta Function: $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$, $\alpha, \beta > 0$.

Beta Distribution: $f(x) = \frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, 0 < x < 1. 0 elsewhere. $\mu = \frac{\alpha}{\alpha+\beta}$, $\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.

Chapter 8 Fundamental Sampling Distributions and Data Descriptions Chapter 9 One- and Two-Sample Estimation Problems