9. Obične diferencijalne jednačine, problem početne vrednosti

Naći i nacrtati rešenje problema početne vrednosti nad intervalom $[0, 2\pi]$:

$$f'(x) = \cos x$$

$$f(0) = 0$$

rešenje: $f(x) = \sin x$

Naći i nacrtati rešenje problema početne vrednosti nad intervalom $[0, 2\pi]$:

$$f''(x) = -\sin x$$

$$f(0) = 0$$

$$f'(0) = 1$$

rešenje: $f(x) = \sin x$

Naći i nacrtati rešenje problema početne vrednosti nad intervalom $[0, 4\pi]$:

$$f''(x) = -f(x) + x + 2$$

$$f(0) = 4$$
$$f'(0) = 2$$

rešenje: $f(x) = 2\cos x + \sin x + x + 2$

Naći i nacrtati rešenje problema početne vrednosti nad intervalom $[0, 4\pi]$:

$$f^{(4)}(x) + 13f''(x) + 36f(x) = 0$$

$$f(0) = 0$$

$$f'(0) = -3$$

$$f''(0) = 5$$

$$f(0) = 0$$

$$f'(0) = -3$$

$$f''(0) = 5$$

$$f'''(0) = -3$$

rešenje: $f(x) = \cos 2x - 3\sin 2x - \cos 3x + \sin 3x$

5. Ako na telo mase 1kg, koje je u trenutku 0s imalo položaj 0m i brzinu $0\frac{m}{s}$, deluje konstantna sila od 10N, naći položaj tela nakon 10s.

$$\frac{d^2s(t)}{dt^2} = \frac{F}{m}$$
$$s''(t) = \frac{F}{m} = \frac{10}{1} = 10$$

$$s(0) = 0$$

 $s'(0) = v(0) = 0$

rešenje: s(10) = 500m

Neka se u posudu cilindričnog oblika poluprečnika 3cm uliva voda po zakonitosti:

$$h'(t) = -\sin 2t + 0.2h$$

$$V = r^2 \pi h$$

1

- a) Ukoliko je u trenutku $t_0=5.5s$ nivo vode bio $h(t_0)=2cm$, koja količina vode **će se uliti** u posudu do trenutka $t_1=10s$?
- b) Ukoliko je u trenutku $t_0=2s$ nivo vode bio $h(t_0)=8cm$, u kom trenutku t_1 će nivo vode biti $h(t_1)=16cm$?

rešenje:

- a) $V_2 V_1 = 92.8188cm^3$
- b) $t_1 = 5.2958s$