Generative Modeling by Estimating Gradients of the Data Distribution

Yang Song, Stefano Ermon

David Zimmerer Medical Image Analysis (#MIA-san-mia) DKFZ

GANs

GANs VAEs

GANs VAEs Flows

GANS VAES Flows ...

"New" Idea:

Generative Modeling by Estimating Gradients of the Data Distribution

"New" Idea: Generative Modeling by Estimating Gradients of the Data Distribution

Instead of learning the data distribution directly....

"New" Idea: Generative Modeling by Estimating Gradients of the Data Distribution

...we learn the gradients of the data distribution

"New" Idea: Generative Modeling by Estimating Gradients of the Data Distribution

 $ightarrow
abla_{\mathbf{x}} \log p(\mathbf{x})$ i.e. the Gradient of the Data Distribution a.k.a score

 $ightarrow
abla_{\mathbf{x}} \log p(\mathbf{x})$ i.e. the Gradient of the Data Distribution a.k.a score

Score matching^[1]:

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

 $ightarrow
abla_{\mathbf{x}} \log p(\mathbf{x})$ i.e. the Gradient of the Data Distribution a.k.a score

Score matching^[1]:

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

equivalent up to a constant to:

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

 $ightarrow
abla_{\mathbf{x}} \log p(\mathbf{x})$ i.e. the Gradient of the Data Distribution a.k.a score

Score matching^[1]:

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

equivalent up to a constant to:

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

→ So what's new?

Trivial Implementation (on MNIST)

Trivial Implementation (on MNIST)

Trivial Implementation (on MNIST)

1. No Support (everywhere)

No Support (everywhere)
 i.e. p(x) not defined and thus gradient not defined

- No Support (everywhere)
 i.e. p(x) not defined and thus gradient not defined
 - → Solution: Add Gaussian Noise

- No Support (everywhere)
 i.e. p(x) not defined and thus gradient not defined
 - → Solution: Add Gaussian Noise

2. Inaccurate score estimation in low density regions

- No Support (everywhere)
 i.e. p(x) not defined and thus gradient not defined
 - → Solution: Add Gaussian Noise

2. Inaccurate score estimation in low density regions

- No Support (everywhere)
 i.e. p(x) not defined and thus gradient not defined
 - → Solution: Add Gaussian Noise

2. Inaccurate score estimation in low density regions

→ Solution add noise at different magnitudes

(large noise: filling low density regions, small noise: fine-adjustments in high density regions)

Follow the scores

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} s_{\theta}(\tilde{\mathbf{x}}_t)$$

 $\mathbf{z}_{t} \sim \mathcal{N}(0, I)$ $\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_{t} + \frac{\epsilon}{2} s_{\theta}(\tilde{\mathbf{x}}_{t}) + \sqrt{\epsilon} \mathbf{z}_{t}$

Langevin dynamics

How to sample:

 $s_{\theta}(\mathbf{x})$

Follow the scores

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} s_{\theta}(\tilde{\mathbf{x}}_t)$$

Follow noisy scores: Langevin dynamics

$$\mathbf{z}_{t} \sim \mathcal{N}(0, I)$$

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_{t} + \frac{\epsilon}{2} s_{\theta}(\tilde{\mathbf{x}}_{t}) + \sqrt{\epsilon} \mathbf{z}_{t}$$

Approach

Approach

Results

Results: Qualitative

Results: Qualitative

Results: Quantitative

Model	Inception	FID
CIFAR-10 Uncondition	nal	
PixelCNN [59]	4.60	65.93
PixelIQN [42]	5.29	49.46
EBM [12]	6.02	40.58
WGAN-GP [18]	$7.86 \pm .07$	36.4
MoLM [45]	$7.90 \pm .10$	18.9
SNGAN [36]	$8.22 \pm .05$	21.7
ProgressiveGAN [25]	$8.80 \pm .05$	-
NCSN (Ours)	$8.87 \pm .12$	25.32
CIFAR-10 Conditiona	ıl	
EBM [12]	8.30	37.9
SNGAN [36]	$8.60 \pm .08$	25.5
BigGAN [6]	9.22	14.73

→ NeurIPS 2019 - Reproducibility Challenge^[2]

 \rightarrow NeurIPS 2019 - Reproducibility Challenge^[2]

Reproducible?

 \rightarrow NeurIPS 2019 - Reproducibility Challenge^[2]

Reproducible?

→ NeurIPS 2019 - Reproducibility Challenge^[2]

Reproducible?

Hyper-parameter insensitive?

→ NeurIPS 2019 - Reproducibility Challenge^[2]

Reproducible?

Hyper-parameter insensitive?

The End

