Betriebssysteme und Software

Fachbegriff Betriebssystem

Ein Betriebssystem ist eine grundlegende Systemsoftware, die als Vermittler zwischen der Hardware und den Anwendungsprogrammen eines Computers fungiert.

Es verwaltet Ressourcen, steuert Abläufe und stellt dem Benutzer sowie Anwendungen eine einheitliche Umgebung zur Verfügung.

Ohne Betriebssystem wäre keine Interaktion mit einem Computer möglich.

Hauptaufgaben eines Betriebssystems

AUFGABE	BESCHREIBUNG
PROZESSVERWALTUNG	Starten, Beenden, Steuern und Koordinieren von
	Programmen (Prozessen)
SPEICHERVERWALTUNG	Zuweisung und Freigabe von RAM, Schutz vor Überlappung
DATEISYSTEMVERWALTUNG	Organisation, Zugriff und Schutz von Dateien und Ordnern
GERÄTEVERWALTUNG	Steuerung von Ein-/Ausgabegeräten (Drucker,
	Festplatte, Tastatur etc.)
BENUTZERVERWALTUNG	An- und Abmeldung, Rechte und Rollenverteilung
NETZWERKVERWALTUNG	Kommunikation mit anderen Systemen über LAN/WAN
BENUTZEROBERFLÄCHE (UI)	Grafische oder textbasierte Interaktion mit dem Anwender

Arten von Betriebssystemen

TYP	BESCHREIBUNG	BEISPIELE
DESKTOP-BETRIEBSSYSTEME	Für PCs, Laptops, Workstations	Windows 10/11, macOS, Linux Ubuntu
SERVER-BETRIEBSSYSTEME	Für Serverdienste und Netzwerke	Windows Server, Red Hat, Debian
MOBILE BETRIEBSSYSTEME	Für Smartphones und Tablets	Android, iOS
ECHTZEITBETRIEBSSYSTEME (RTOS)	Für zeitkritische Aufgaben z. B. in Maschinensteuerung	VxWorks, FreeRTOS
EMBEDDED OS	In Geräten mit spezieller Funktion (Router, Kameras)	OpenWRT, eCos, Embedded Linux

Beispiele für Betriebssysteme und deren Merkmale

BETRIEBSSYSTEM	MERKMALE & BESONDERHEITEN
WINDOWS	Weit verbreitet, benutzerfreundlich, große Hardwarekompatibilität
LINUX (UBUNTU, DEBIAN)	Open Source, modular, viele Varianten (Distributionen)
MACOS	Apple-exklusiv, hohe Integration mit Hardware und Software
ANDROID	Linux-basiert, für mobile Geräte optimiert
WINDOWS SERVER	Verwaltung von Netzwerken, Benutzer, Domänen, Gruppenrichtlinien

Sicherheitsfunktionen eines modernen OS

FUNKTION	AUFGABE
BENUTZERRECHTEVERWALTUNG	Schutz sensibler Daten durch Rollen und Gruppen
DATEIBERECHTIGUNGEN (NTFS, EXT4)	Kontrolle von Lesen/Schreiben/Löschen
FIREWALL/NETZWERKSCHUTZ	Schutz vor unerlaubten Verbindungen
UPDATES & PATCHES	Behebung von Sicherheitslücken
VERSCHLÜSSELUNG (BITLOCKER, LUKS)	Schutz von Daten bei Diebstahl

Kenntnis der am Markt führend verbreiteten Betriebssysteme

Desktop-/Notebook-Betriebssysteme (weltweit)

BETRIEBSSYSTEM	MARKTANTEIL (CA.)	HAUPTZIELGRUPPE
WINDOWS (10,11)	~68%	Unternehmen, Behörden, Privat
MACOS	~19%	Kreativbereich, Bildung, Apple-Nutzer
LINUX	~3%	Technik-affine Nutzer, Entwickler
ANDERE	~10%	z.B. Chrome OS, BSD

Mobile Betriebssysteme

BETRIEBSSYSTEM	MARKTANTEIL (CA.)	PLATTFORM
ANDROID	~70%	Samsung, Xiaomi, Google, u.a.
IOS (APPLE)	~29%	iPhones
SONSTIGE	~1%	HarmonyOS, KaiOS, etc.

Server-Betriebssysteme (professioneller Einsatz)

BETRIEBSSYSTEM	VERBREITUNG (TENDENZ)	VERWENDUNGSZWECK
LINUX (UBUNTU, DEBIAN, RED HAT, SUSE)	~75% (Webserver, Cloud, DevOps)	Webserver, Container, Virtualisierung
WINDOWS SERVER	~20%	Active Directory, Exchange, Fileserver
UNIX/FREEBSD	~5%	Spezialsysteme, Netzwerkappliances

Gründe für die Marktführerschaft der jeweiligen Systeme

BETRIEBSSYSTEM	WARUM VERBREITET?
WINDOWS	Breite Hardwareunterstützung, Office-Standard, Active Directory, Benutzerfreundlich
MACOS	Optimiert für Apple-Hardware, hohe Stabilität, Design-Vorteile
LINUX	Kostenlos, Open Source, stabil, für Server & Entwickler ideal
ANDROID	Offen, auf günstigen Geräten verfügbar, viele Hersteller
IOS	Sicherheitsvorteile, Benutzererlebnis, Apple-Ökosystem

Kenntnisse über Desktop-Betriebssysteme

Desktop-Betriebssysteme sind Systemsoftware-Plattformen, die auf Endbenutzer-Geräten wie PCs, Laptops und Workstations laufen.

Sie stellen die Schnittstelle zwischen Benutzer, Hardware und Anwendungen bereit und ermöglichen die tägliche Nutzung eines Computers.

<u>Sie unterscheiden sich von Server- oder Mobilbetriebssystemen durch ihre grafische</u>

<u>Benutzeroberfläche, den Fokus auf Produktivität und Benutzerfreundlichkeit sowie die Integration von Desktop-Apps.</u>

Marktführende Desktop-Betriebssysteme (Stand 2024)

BETRIEBSSYSTEM	VERBREITUNG (CA.)	ZIELGRUPPE
MICROSOFT WINDOWS 10/11	~68 %	Unternehmen, Privatanwender, Schulen
APPLE MACOS	~19 %	Kreative, Designer, Bildungsbereich
LINUX (UBUNTU, MINT, FEDORA)	~3–5 %	Entwickler, Techniker, Datenschutzbewusste
CHROME OS	~1–2 %	Schulen, Cloud-orientierte Nutzer

Grundfunktionen eines Desktop-Betriebssystems

BEREICH	BESCHREIBUNG
BENUTZEROBERFLÄCHE (GUI)	Fenster, Desktop, Maus, Taskleiste, Explorer/Finder
TREIBERVERWALTUNG	Kommunikation mit Druckern, Grafik-, Sound- und Netzwerkkarten
SPEICHERVERWALTUNG	RAM-Zuteilung, Auslagerungsdatei, Multitasking
DATEISYSTEM	NTFS, APFS, ext4 – Organisation von Dateien und Ordnern
SICHERHEITSFUNKTIONEN	Benutzerkontensteuerung (UAC), Antivirenschnittstelle, Verschlüsselung
SOFTWAREUNTERSTÜTZUNG	Installation von Programmen, Updateverwaltung, Paketmanager (Linux)

Unterschiede zwischen führenden Desktop-Systemen

MERKMAL	WINDOWS	MACOS	LINUX (UBUNTU)
HERSTELLER	Microsoft	Apple	Open Source
			Community
DATEISYSTEM	NTFS	APFS	ext4
GUI	Explorer, Taskleiste	Finder, Dock	GNOME/KDE etc.
SOFTWAREBASIS	.exe/.msi	.app	.deb/.rpm/.AppImage
NUTZERFREUNDLICHKEIT	Sehr benutzerfreundlich	Hoch, sehr	Variiert je nach
		einheitlich	Distribution
SICHERHEIT	Gut (UAC, Defender, Updates)	Sehr gut (SIP,	Exzellent, aber
	Upuates)	Gatekeeper)	komplexer

Wichtige Zusatzkenntnisse

BEREICH	EMPFOHLENE KENNTNISSE
REMOTE-UNTERSTÜTZUNG	RDP, VNC, TeamViewer, Quick Assist
VIRTUALISIERUNG	Nutzung von Hyper-V, VirtualBox, VMware Workstation
DATENSICHERUNG	Benutzerprofile sichern, OneDrive, Time Machine
BARRIEREFREIHEIT	Sprachausgabe, Bildschirmvergrößerung, Tastaturanpassung

Fachbegriff Firmware

Firmware ist eine spezialisierte Software, die fest im Speicher von Hardwarekomponenten integriert ist und diese grundlegend steuert und betreibt.

Sie stellt die Schnittstelle zwischen Hardware und höherer Software (z. B. Betriebssystem) dar und läuft unabhängig von Benutzeranwendungen.

Firmware ist also "Software in der Hardware", die meist beim Start des Geräts aktiv wird.

Merkmale von Firmware

MERKMAL	BESCHREIBUNG
GERÄTENAH	Arbeitet direkt auf Hardware-Ebene
NICHT FLÜCHTIG GESPEICHERT	Meist in ROM, EEPROM oder Flash-Speicher
SELBSTSTARTEND	Wird beim Einschalten eines Geräts automatisch geladen
UPDATEFÄHIG	Oft aktualisierbar zur Behebung von Fehlern oder Verbesserung
NICHT BENUTZERGESTEUERT	Kein Zugriff im normalen Betrieb ohne Spezialsoftware

Beispiele für Firmware im Alltag

GERÄT	TYPISCHE FIRMWARE-FUNKTION	
MAINBOARD	BIOS/UEFI steuert Bootvorgang und Hardwareinitialisierung	
DRUCKER	Druckbefehle interpretieren, Mechanik steuern	
ROUTER	Netzwerkprotokolle, Firewall, Benutzerverwaltung	
SSD / FESTPLATTE	Speicherzugriff, Wear-Leveling, Fehlerkorrektur	
SMARTPHONES	Basisbetrieb von Kamera, Modem, Touchscreen	
USB-STICKS / MICROCONTROLLER	Steuerlogik, Kommunikation mit PC	

Firmware vs. Treiber vs. Betriebssystem

BEGRIFF	EBENE	FUNKTION
FIRMWARE	Im Gerät selbst	Steuert Grundfunktionen der Hardware
TREIBER	Betriebssystemebene	Vermittelt zwischen OS und Hardware
BETRIEBSSYSTEM	Anwender-Ebene	Gesamtsteuerung von System & Anwendungen

Firmware-Update – warum und wie?

GRUND FÜR UPDATE	RISIKO BEI FEHLER
FEHLERBEHEBUNG (BUGFIXES)	Gerätefehler, Instabilität
SICHERHEITSLÜCKEN SCHLIEßEN	Angriffsflächen für Malware
NEUE FUNKTIONEN AKTIVIEREN	z. B. WLAN-Kanäle, USB-Bootfähigkeit
FEHLER BEIM UPDATE	Gerät kann unbrauchbar ("gebrickt") werden

<u>Updates erfolgen über Tools des Herstellers oder z. B. BIOS/UEFI-Menüs.</u>

Fachbegriffe Systemprogramm, Anwendungsprogramm

Grundlegende Unterscheidung

BEGRIFF	KURZDEFINITION	
SYSTEMPROGRAMM	Programme, die das Betriebssystem unterstützen und mit	
	der Hardware interagieren	
ANWENDUNGSPROGRAMM	Programme, die bestimmte Benutzeraufgaben erfüllen und vom Benutzer aktiv genutzt werden	

<u>Systemprogramme ermöglichen den Betrieb des Computers, Anwendungsprogramme lösen konkrete</u> <u>Aufgaben des Benutzers.</u>

Typische Beispiele Systemprogramm

Ein Systemprogramm ist ein Softwarebestandteil, der zwischen Betriebssystem und Hardware bzw. zwischen Betriebssystem und Anwendungsprogrammen arbeitet.

SYSTEMPROGRAMM	FUNKTION
TREIBER (DRIVER)	Vermittelt zwischen OS und Hardware (z. B. Drucker, Grafikkarte)
DATEISYSTEM-TOOLS	z. B. chkdsk, defrag, fsck – prüfen und reparieren Speicher
SHELLS / TERMINALS	Eingabeschnittstellen zur Systemsteuerung (cmd, Bash, PowerShell)
SYSTEMDIENSTE (DAEMONS)	Hintergrundprozesse wie Update- oder Druckdienste
BIOS/UEFI-INTERFACE	Systemstart und grundlegende Hardwareinitialisierung

Typische Beispiele Anwenderprogramm

Ein Anwendungsprogramm (Applikation) ist eine Software, die eine konkrete Funktion für den Benutzer bereitstellt, z. B. Textverarbeitung, Tabellenkalkulation oder Bildbearbeitung.

ANWENDUNGSPROGRAMM	FUNKTION
MICROSOFT WORD	Textverarbeitung
EXCEL, LIBREOFFICE CALC	Tabellenkalkulation
WEBBROWSER (Z. B. CHROME)	Anzeige und Nutzung von Internetinhalten
E-MAIL-CLIENTS (OUTLOOK, THUNDERBIRD)	Versenden und Empfangen von E-Mails
GRAFIKPROGRAMME (Z. B. GIMP, PHOTOSHOP)	Bildbearbeitung
BRANCHENSOFTWARE	Buchhaltung, Warenwirtschaft, CAD etc.

Vergleich: Systemprogramm vs. Anwendungsprogramm

MERKMAL	SYSTEMPROGRAMM	ANWENDUNGSPROGRAMM
NUTZERINTERAKTION	Selten oder indirekt	Direkt durch den Benutzer
AUFGABE	Systembetrieb, Ressourcensteuerung	Benutzeraufgaben und Datenverarbeitung
ABHÄNGIGKEIT VOM SYSTEM	Eng an Hardware & OS gebunden	Funktioniert nur durch Systemunterstützung
BEISPIEL	Druckertreiber, Bash, Systemdienst	Word, Browser, E-Mail- Programm

Fachbegriff Multitasking-Betriebssystem

Ein Multitasking-Betriebssystem ist ein Betriebssystem, das mehrere Programme (Prozesse) gleichzeitig ausführen kann – scheinbar parallel, auch wenn nur ein einzelner Prozessor vorhanden ist.

Das System wechselt dabei sehr schnell zwischen den Prozessen (Task-Switching), sodass für den Benutzer der Eindruck von Gleichzeitigkeit entsteht.

Multitasking ist heute Standardfunktion moderner Betriebssysteme wie Windows, Linux oder macOS.

Hauptmerkmale eines Multitasking-Systems

MERKMAL	BESCHREIBUNG
GLEICHZEITIGE PROGRAMMAUSFÜHRUNG	Mehrere Anwendungen können gleichzeitig aktiv sein
TASK-SWITCHING	Der Prozessor wechselt blitzschnell zwischen Aufgaben (in Millisekunden)
RESSOURCENVERWALTUNG	CPU, Arbeitsspeicher, I/O werden auf Prozesse aufgeteilt
PROZESS- UND THREAD-MANAGEMENT	Jeder Task wird als Prozess/Thread mit eigenem Kontext verwaltet
PRIORITÄTSSTEUERUNG	Prozesse erhalten Prioritäten – wichtigere Prozesse bekommen mehr CPU-Zeit

Multitasking-Arten

TYP	BESCHREIBUNG	BEISPIEL
KOOPERATIVES MULTITASKING	Prozesse geben selbstständig CPU-	Frühe Windows-Versionen
	Zeit frei	(Win 3.x)
PRÄEMPTIVES MULTITASKING	Betriebssystem unterbricht Prozesse automatisch nach Zeitscheiben	Windows NT, Linux, macOS, Android
ECHTZEIT-MULTITASKING (RTOS)	Multitasking mit garantierten Reaktionszeiten	Steuerungen, Medizin, Automotive

Beispiele im Alltag

BEISPIEL	PARALLEL LAUFENDE PROZESSE
BÜRO-PC	E-Mail-Client, Browser, Word, Spotify gleichzeitig offen
SERVER	Datenbank, Webserver, Monitoring, Backup parallel
SMARTPHONE	Musik läuft im Hintergrund, Nutzer surft, Apps laden Daten

Vorteile und Herausforderungen

VORTEILE	HERAUSFORDERUNGEN
EFFIZIENTE RESSOURCENNUTZUNG	Höhere Komplexität bei Prozessverwaltung
REAKTIONSSCHNELLES SYSTEM	Fehler in einem Prozess können andere beeinträchtigen
BESSERE BENUTZERERFAHRUNG	Synchronisationsprobleme bei Threads möglich
VORAUSSETZUNG FÜR MODERNE ANWENDUNGEN	Höherer Speicherverbrauch durch Parallelität

Fachbegriffe Single-User-System, Multi-User-System

Es geht dabei nicht nur um die Hardware, sondern um die Fähigkeit des Betriebssystems, mehrere Benutzerkonten parallel oder unabhängig zu verwalten.

BEGRIFF	KURZBESCHREIBUNG
SINGLE-USER-SYSTEM	Betriebssystem, das gleichzeitig nur einem
	Benutzer die Nutzung ermöglicht
MULTI-USER-SYSTEM	Betriebssystem, das mehreren Benutzern
	gleichzeitig oder nacheinander Zugriff erlaubt

Merkmale im Vergleich

MERKMAL	SINGLE-USER-SYSTEM	MULTI-USER-SYSTEM
BENUTZER GLEICHZEITIG	Nur eine aktive	Mehrere Benutzer können
	Benutzersitzung	gleichzeitig arbeiten
SYSTEMRESSOURCEN	Nur ein Benutzer nutzt CPU,	Ressourcen werden zwischen
	Speicher, Drucker etc.	mehreren Benutzern aufgeteilt
BENUTZERVERWALTUNG	Minimal (vielleicht 1–2	Vollständiges System mit Rollen,
	Accounts)	Profilen, Rechten
ZUGRIFFSRECHTE	Einfach – z. B. Administrator +	Feingranular: Gruppen,
	Standardnutzer	Berechtigungen, Home-Verzeichnisse
NETZWERKFÄHIGKEIT	Eingeschränkt oder lokal	Netzfähig, Terminal- und
		Remotezugriffe möglich

Beispiele

SYSTEM ODER GERÄT	TYP	ERKLÄRUNG
WINDOWS 10 HOME	Single-User	Nur eine aktive Benutzersitzung, keine Terminaldienste
WINDOWS SERVER MIT RDS	Multi-User	Mehrere Nutzer per Remote Desktop gleichzeitig
MACOS	Single-User (Basis), Multi- User (intern)	Mehrere Konten, aber nicht parallel via Netzwerk
LINUX-SERVER (UBUNTU, CENTOS)	Multi-User	Vollwertige Benutzerverwaltung und Terminalzugänge
SMARTPHONE (ANDROID/IOS)	Single-User	Ein Benutzer, selten Benutzerwechsel möglich
UNIX-SYSTEME	Multi-User	Designprinzip seit den 1970er Jahren

Kenntnis der Windows Command-Line (inkl. einfacher Befehle)

Die Windows Command-Line (CMD) ist eine textbasierte Benutzerschnittstelle, mit der Systembefehle manuell eingegeben werden können.

Sie basiert auf dem alten MS-DOS-Eingabesystem, ist aber in Windows modernisiert verfügbar.

Sie dient zur Systemdiagnose, Dateiverwaltung, Netzwerkprüfung und Automatisierung.

Starten der Eingabeaufforderung

- Startmenü → "cmd" eingeben
- Rechtsklick → "Als Administrator ausführen" für Systembefehle
- Alternativ: Win + R → cmd oder powershell

Aufbau eines Befehls

Befehl [Option] [Pfad/Datei/Parameter]

Beispiel:

net use Z: \\srv\daten /user:admin /password:123456 /persistent:yes

Wichtige Grundbefehle (nach Kategorien)

Datei- und Ordnerverwaltung

BEFEHL	FUNKTION	BEISPIEL
dir	Zeigt Verzeichnisinhalt	dir C:\
cd / chdir	Verzeichnis wechseln	cd Dokumente
md / mkdir	Neuen Ordner erstellen	mkdir Projekte
del	Datei löschen	del test.txt
сору	Datei kopieren	copy daten.txt D:\Backup
хсору	Dateien/Ordner mit Struktur kopieren	xcopy C:\Projekte D:\Sicherung /E
move	Dateien oder Ordner verschieben	move test.txt D:\Archiv
rmdir / rd	Ordner löschen (leer)	rmdir temp

Netzwerk- und Verbindungsbefehle

BEFEHL	FUNKTION	BEISPIEL
ping	Erreichbarkeit eines Hosts prüfen	ping google.de
ipconfig	IP-Konfiguration anzeigen	ipconfig /all
netstat	Zeigt aktive Verbindungen	netstat -an
nslookup	DNS-Auflösung prüfen	nslookup openai.com
tracert	Paketweg zum Ziel anzeigen (Routenanalyse)	tracert heise.de

System- und Benutzerbefehle

BEFEHL	FUNKTION	BEISPIEL
tasklist	Zeigt laufende Prozesse	tasklist
taskkill	Beendet einen Prozess	taskkill /IM notepad.exe
shutdown	Fährt den PC herunter oder startet neu	shutdown /r /t 0
whoami	Zeigt aktuellen Benutzer	whoami
cls	Löscht den Bildschirm der Eingabeaufforderung	cls
echo	Gibt Text aus oder schaltet Echo ein/aus	echo Hallo Welt!

Weitere nützliche Funktionen

FUNKTION	BESCHREIBUNG
TAB-TASTE	Autovervollständigung von Pfaden/Namen
↑/↓	Vorherige Befehle durchsuchen
>/>>	Ausgabe umleiten in Datei (> überschreibt, >> hängt an)
•	`(Pipe)

Rechte & Administrator-Modus

Einige Befehle erfordern erhöhte Rechte (z. B. net user, format, sfc).

→ Immer CMD als Administrator starten, wenn Systemänderungen erfolgen sollen.

Vergleich zu PowerShell

MERKMAL	CMD	POWERSHELL
SYNTAX	Einfach, DOS-ähnlich	Objektorientiert, .NET-basiert
KOMPLEXITÄT	Grundlegende Funktionen	Skripting und Systemautomation
EMPFOHLEN FÜR	Einfache Aufgaben, Legacy	Moderne Administration, Automatisierung

Kenntnis über die PowerShell (inkl. einfacher Befehle)

Die PowerShell ist eine moderne, objektorientierte Befehlszeilen- und Skriptsprache von Microsoft zur Systemverwaltung und -automatisierung.

Im Gegensatz zur klassischen CMD verarbeitet PowerShell Objekte statt reinen Text, wodurch komplexe Aufgaben deutlich effizienter und strukturierter ausgeführt werden können.

<u>PowerShell ist Standard auf Windows-Systemen und inzwischen auch plattformübergreifend (Linux, macOS) als PowerShell Core verfügbar.</u>

Merkmale der PowerShell

MERKMAL	BESCHREIBUNG
OBJEKTORIENTIERT	Gibt keine Textstrings, sondern komplette Objekte zurück (inkl. Eigenschaften)
SKRIPTINGFÄHIG	Automatisierbar mit .ps1-Skripten
PIPELINES UNTERSTÜTZT	Befehle lassen sich miteinander kombinieren
ZUGRIFFSRECHTE STEUERBAR	Mit ExecutionPolicy regelbar – z. B. Skriptausführung erlauben/verhindern
REMOTEVERWALTUNG	Zugriff auf entfernte Systeme mit Enter-PSSession

Syntax: Befehle in Verb-Nomen-Form

- Get-Command
- Get-Process
- Set-Date
- Remove-Item

Einheitliche Struktur:

 $\mbox{Verb-Nomen} \rightarrow \mbox{z. B. Get-Process, Set-Service, Remove-Item}$

Wichtige einfache PowerShell-Befehle

Datei- und Verzeichnisverwaltung

BEFEHL	BESCHREIBUNG
GET-CHILDITEM	Listet Dateien und Ordner auf (Is, dir)
SET-LOCATION	Wechselt das Verzeichnis (cd)
NEW-ITEM	Erstellt Datei oder Ordner
COPY-ITEM	Kopiert Dateien/Ordner
MOVE-ITEM	Verschiebt Dateien/Ordner
REMOVE-ITEM	Löscht Dateien/Ordner

System- und Benutzerinfos

BEFEHL	BESCHREIBUNG
GET-PROCESS	Zeigt laufende Prozesse
STOP-PROCESS	Beendet einen Prozess
GET-SERVICE	Listet Windows-Dienste
START-SERVICE / STOP-SERVICE	Startet oder stoppt einen Dienst
GET-EVENTLOG	Liest Ereignisanzeige
GET-DATE	Gibt aktuelles Datum und Uhrzeit zurück

Netzwerk und Systemdiagnose

BEFEHL	FUNKTION
TEST-CONNECTION	Ping-Äquivalent
GET-NETIPADDRESS	IP-Adresse anzeigen (Win10/11)
GET-NETADAPTER	Netzwerkschnittstellen anzeigen
RESOLVE-DNSNAME	DNS-Abfragen (wie nslookup)
GET-COMPUTERINFO	Systeminformationen im Detail

Pipeline-Beispiel

PowerShell kann Ausgaben direkt an andere Befehle weitergeben:

Get-Process | Where-Object {\$_.CPU -gt 100}

Zeigt Prozesse mit CPU-Nutzung über 100s.

Rechte & Skriptsteuerung

• Skriptausführung erfordert passende Execution Policy:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

• .ps1-Dateien ausführen:

.\skript.ps1

Vorteile gegenüber CMD

FEATURE	CMD	POWERSHELL
OBJEKTORIENTIERUNG	Nur Text	Vollständige Objekte
MODULARITÄT	Eingeschränkt	Module importierbar (Import-Module)
REMOTE-MANAGEMENT	Kaum möglich	Umfangreich (WinRM, SSH)
AUTOMATISIERUNG	Eingeschränkt	Professionelle Skripte möglich

Kenntnisse über grafische Oberflächen unter Linux

Eine grafische Benutzeroberfläche (GUI) unter Linux wird durch ein sogenanntes Desktop Environment (DE) bereitgestellt.

Diese besteht aus mehreren Komponenten, die Fensterverwaltung, Menüs, Icons, Panels, Dateimanager, Systemeinstellungen und oft auch eigene Apps enthalten.

Im Gegensatz zu Windows/macOS gibt es unter Linux nicht nur eine einzige Oberfläche, sondern mehrere vollständig austauschbare Alternativen.

Wichtige Desktop-Umgebungen unter Linux

DESKTOP-UMGEBUNG	MERKMALE & EIGENSCHAFTEN	GEEIGNET FÜR
GNOME	Modern, minimalistisch, standardmäßig in Ubuntu und Fedora	Einsteiger, Unternehmen
KDE PLASMA	Sehr anpassbar, elegant, funktionsreich, Windows-ähnlich	Power-User, Umsteiger von Windows
XFCE	Leichtgewichtig, ressourcenschonend, klassisch	Ältere Rechner, Low-End- Hardware
LXQT / LXDE	Extrem leicht, für sehr alte Systeme oder Embedded	Raspberry Pi, Mini-PCs
CINNAMON	Benutzerfreundlich, traditionell, aus Linux Mint	Windows-Umsteiger, Mint- Nutzer
MATE	Fortführung von GNOME 2, klassisch strukturiert	Stabilität, Retro-Look
DEEPIN	Sehr moderne, visuell ansprechende Oberfläche aus China	Design-orientierte Nutzer
PANTHEON	Elegant, macOS-ähnlich (elementary OS)	Minimalismus, Designästhetik

Technische Komponenten eines Linux-GUIs

Komponente	Funktion
Display-Server	Vermittelt zwischen Betriebssystem & Grafiktreiber
- X11 (Xorg)	Klassischer Standard
- Wayland	Moderner, sicherer, schneller – ersetzt X11 zunehmend
Fenstermanager	Steuerung von Fenstern, Titelleisten, Rahmen etc.
- Mutter, KWin, Openbox	Je nach DE unterschiedlich
Toolkit	Bibliotheken für GUI-Elemente
- GTK (GNOME, Xfce)	- Qt (KDE, LXQt)

Vergleich beliebter Linux-Oberflächen

MERKMAL	GNOME	KDE PLASMA	XFCE	CINNAMON
ОРТІК	Modern	Hochgradig anpassbar	Klassisch	Windows- ähnlich
RESSOURCEN- VERBRAUCH	Mittel	Mittel-hoch	Gering	Mittel
KONFIGURATION	Wenig Optionen	Sehr viele	Einfach	Mittel
TOUCHSCREEN- SUPPORT	Gut	Sehr gut	Eingeschränkt	Gut
ZIELGRUPPE	Einsteiger	Fortgeschrittene	Low-End- Hardware	Windows- Umsteiger

Wichtige Befehle zur GUI-Verwaltung unter Linux

ZWECK	BEFEHL / TOOL
GUI NEU STARTEN (X11)	sudo systemctl restart gdm/lightdm/sddm
GUI WECHSELN	Auswahl im Login-Manager (z. B. GDM, SDDM)
DESKTOP-PAKET INSTALLIEREN	sudo apt install gnome-shell (oder kde-plasma-desktop, etc.)
TERMINAL STARTEN AUS GUI	Strg + Alt + T
GUI DEAKTIVIEREN (NUR KONSOLE)	sudo systemctl set-default multi-user.target

Fachbegriff Dateisystem

Ein Dateisystem ist eine Softwarestruktur, die es einem Betriebssystem ermöglicht, Daten auf einem Speichermedium (z. B. Festplatte, SSD, USB-Stick) zu organisieren, zu speichern, zu verwalten und wiederzufinden.

Es regelt wie Daten in Dateien gespeichert werden und wie diese Dateien in Ordnern (Verzeichnissen) angeordnet sind.

Ohne ein Dateisystem kann ein Computer keine Dateien speichern oder lesen – das Medium wäre nutzlos.

Hauptaufgaben eines Dateisystems

AUFGABE	BESCHREIBUNG
SPEICHERORGANISATION	Verteilung von Datenblöcken auf der Festplatte/SSD
VERZEICHNISSTRUKTUR	Hierarchische Ordnerstruktur zur Sortierung von Dateien
VERWALTUNG VON DATEIATTRIBUTEN	z. B. Erstellungsdatum, Berechtigungen, Größe
SPEICHERFREIGABE	Löschen und Freigeben von Speicherplatz
FEHLERBEHANDLUNG & KONSISTENZ	Schutz vor Datenverlust bei Stromausfall, Systemabsturz

Gängige Dateisysteme im Überblick

DATEISYSTEM	PLATTFORM	EIGENSCHAFTEN
FAT32	Windows / Geräte	Kompatibel, aber limitiert (max. 4 GB/Datei)
exFAT	Windows / macOS	Für USB-Sticks, SD-Karten – ohne 4- GB-Limit
NTFS	Windows	Standard bei Windows – mit Rechten, Verschlüsselung
HFS+ / APFS	MacOS	Apple-Systeme – APFS ist aktueller und schneller
ext4	Linux	Stabil, Journaling, weit verbreitet in Linux-Distributionen
BTRFS / ZFS	Linux / Unix	Modern, mit Snapshots, Checksummen, Skalierbarkeit

Dateisystemstruktur – Aufbau

```
Root (/) oder Laufwerk (C:\)

— Ordner (Verzeichnisse)

| — Datei1.txt

| — Datei2.jpg

— Weitere Ordner

— Unterordner

— Datei3.docx
```

<u>Jedes Dateisystem hat eine eigene Wurzelstruktur (Root) und unterstützt ggf. Zugriffsrechte, Zeitzähler, Verschlüsselung etc.</u>

Eigenschaften eines Dateisystems

EIGENSCHAFT	BEDEUTUNG
BLOCKGRÖßE	Kleinste speicherbare Einheit (z. B. 4 KB)
MAX. DATEIGRÖßE	Begrenzung durch Format (z. B. 4 GB bei FAT32)
JOURNALING	Schutz vor Datenverlust durch Protokollierung
KOMPATIBILITÄT	Unterstützt verschiedene OS (z. B. exFAT für Windows/macOS)
ZUGRIFFSRECHTE	Steuerung von Lesen/Schreiben/Ausführen (z. B. NTFS, ext4)
VERSCHLÜSSELUNG	Datensicherheit bei Diebstahl

Auswahl des richtigen Dateisystems – abhängig von:

ANWENDUNGSFALL	EMPFEHLUNG
USB-STICK MIT WINDOWS/MACOS	exFAT
INTERNER SPEICHER WINDOWS-PC	NTFS
LINUX-SERVER	ext4 oder Btrfs
BACKUP-LÖSUNG MIT SNAPSHOTS	ZFS oder Btrfs
ALTE GERÄTE / KOMPATIBILITÄT	FAT32 (eingeschränkt)