

Forecasting: principles and practice

Rob J Hyndman

1.4 Exponential smoothing

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

##Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease

Trend methods

##Holt's linear trend

Component form Forecast $\hat{y}_{t+h|t} = \ell_t + hb_t$ Level $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$,

Trend methods

##Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level
$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

Trend $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$,

- Two smoothing parameters α and β^* (0 < α , β^* < 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- **b**_t slope: weighted average of $(\ell_t \ell_{t-1})$ and **b**_{t-1} current and previous estimate of slope

Trend methods

##Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level
$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

Trend $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$,

- Two smoothing parameters α and β^* (0 < α , β^* < 1).
- ℓ_t level: weighted average between y_t one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- **b**_t slope: weighted average of $(\ell_t \ell_{t-1})$ and **b**_{t-1} current and previous estimate of slope

Taxonomy of exponential smoothing methods

```
Trend ##Exponential smoothing methods
                                                                                                                                M
                                                     \hat{y}_{t+h|t} = \ell_t + s_{t-m+h_m^+}
          \hat{y}_{t+h|t} = \ell_t
   N
          \ell_t = \alpha v_t + (1 - \alpha)\ell_{t-1}
                                                     \ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_t-Seasonal Component
                                                     s_t = \gamma (y_t - \ell_{t-1}) + (1 - \gamma) s_{t-m}
          \hat{y}_{t+h|t} = \ell_t + hb_t Trend
          e_t = \alpha y_t + (\textbf{Component})

e_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}
                                                     s_t = \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}
          \begin{array}{l} \ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ t = \beta^*(\ell_t (AdditiV_e))b_{t-1} \end{array}
                                                                                                       s_t = \gamma (y_t/(\ell_{t-1} - \phi b_{t-1})) + (1
                     (Additive damped)
                                                                                                 (A_d,A)
           (N,N):
                                Simple exponential smoothing
           (A,N):
                                Holt's linear method
           (A_d,N):
                                Additive damped trend method
```

Additive Holt-Winters' method

(A,A):