

Synchronous Serial Communication

Communication Protocols

Synchronous Serial Communication (I²C)

- Inter-Integrated Circuit (I²C)
 - A synchronous serial communication protocol
 - > Allows multiple slaves to communicate with one or more masters
 - Is used in short-distance communications
 - Uses two signal lines
 - **SCL**: Serial Clock which is always generated by the current master
 - SDA: Serial Data
 - Supports half-duplex communication
 - Speed: upto 3.4 mbps, typically 400 kbps
 - Drivers of the lines are open drain
 - They can only pull the signal line low
 - Pull-up resistors are required (1-10 k Ω)

- I2C supply voltage, typically ranging from 1.2 V to 5.5 V
- Flexibility in connecting devices with different voltage levels
 - Because the devices on the bus don't drive the signals high
 - > The pull-up resistors are connected to the lower voltage
 - E.g. a 5V master and a 3.3V slave (pull-up resistors should be connected to 3.3V)
 - If the voltage difference is too great, a level shifter is required
- For short distances, use 4.7 kΩ pull-up resistors and for long distances, or systems with lots of devices, use smaller resistors
- Note that slaves can disable the master clock

Synchronous Serial Communication (I²C - Message)

- A message has two types of frame:
 - > An address frame which is the unique address of the slave
 - I²C can support up to 112 slaves in the 7 bits and 1008 slaves in the 10 bits addressing
 - 16 addresses are reserved (1111 XXX and 0000 XXX)
 - > One or more data frames: 8-bit data messages passed from master to slave or vice versa.
- Every message is started with the Start Condition, then
 - Followed by the Address Frame, then
 - The **Read/Write** bit (1: read and 0: write) indicating the operation, then
 - The **NACK/ACK** bit (1: NACk, 0: ACK), then
 - The data frames followed by the NACK/ACK bit and
 - ➤ The Stop Condition
- The ACK is sent by the receiver for all frames (data or address)

Start Condition

- The master leaves SCL high and pulls SDA low.
 - This puts all slave devices on notice that a transmission is about to start.
- > If several masters want to take ownership of the bus in the same time
 - The one who pulls SDA low first, takes control of the bus
- It is possible to have repeated starts
 - Initiating a new communication sequence without losing control of the bus

- ◆ Data is placed on the SDA after SCL goes low, and is sampled after the SCL goes high
 - > All changes on data line is done during clock low, except **Start** and **Stop** Conditions
- The most significant bit (MSB) of every frame (address and data) is sent first
- ❖ The receiver after receiving every frame, acknowledges the frame by pulling the SDA low
- Stop condition
 - Once all the data frames have been sent, the master will generate a stop condition
 - Is a low to high transition on SDA after a low to high transition on SCL, with SCL remaining high.

Clock Stretching

It is used when the master's data rate will exceed the slave's ability to process the data.

Repeated Start Conditions

It is used when a master wants to exchange several messages without losing the control of the bus.

10-bit Addresses

- ♦ Note that 10-bit address devices can coexist with 7-bit address devices
 - ➤ The leading '11110' part of the address is not a part of any valid 7-bit addresses
- ❖ An I²C IO expander like MCP23008 can be used to expand the GPIOs

Synchronous Serial Communication (I²C)

Some useful links

- ➤ I2C Bus, Interface and Protocol
- Sparkfun I2C Tutorial
- ➤ How I2C Communication Works?
- Basics of the I2C Communication Protocol
- What is I2C, Basics for Beginners
- ➤ <u>I2C Protocol Tutorial | How I2C Protocol works</u>

