Применяя тригонометрические подстановки $x = a \sin t$, $x = a \tan t$, $x = a \sin^2 t$ и т. п., найтн следующие интегралы (параметры положительны):

1778.
$$\int \frac{dx}{(1-x^2)^{3/2}}.$$
1779.
$$\int \frac{x^2dx}{\sqrt{x^2-2}}.$$
1780.
$$\int \sqrt{1-x^2} dx.$$
1781.
$$\int \frac{dx}{(x^2+a^2)^{3/2}}.$$
1782.
$$\int \sqrt{\frac{a+x}{a-x}} dx.$$
1783.
$$\int x \sqrt{\frac{x}{2a-a}} dx.$$
1784.
$$\int \frac{dx}{\sqrt{(x-a)(b-x)}}.$$
Указание. Применить подстановку $x-a=(b-a)\sin^2 t.$
1785.
$$\int \sqrt{(x-a)(b-x)} dx.$$

Применяя гиперболические подстановки $x = a \sinh t$, $x = a \cosh t$ и т. п., найти следующие интегралы (параметры положительны):

1786.
$$\int \sqrt{a^2 + x^2} \, dx.$$
1787.
$$\int \frac{x^3}{\sqrt{a^2 + x^2}} \, dx.$$
1788.
$$\int \sqrt{\frac{x - a}{x + a}} \, dx.$$
1789.
$$\int \frac{dx}{\sqrt{(x + a)(x + b)}} \, dx.$$
1790.
$$\int \sqrt{(x + a)(x + b)} \, dx.$$

Указание. Положить $x + a = (b-a) \sinh^2 t$.

Применяя метод интегрирования по частям, найти следующие интегралы:

1791.
$$\int \ln x \, dx$$
. 1792. $\int x^n \ln x \, dx \quad (n \neq -1)$.
1793. $\int \left(\frac{\ln x}{x}\right)^2 \, dx$. 1794. $\int \sqrt{x} \ln^2 x \, dx$.
1795. $\int x e^{-x} \, dx$. 1796. $\int x^2 e^{-2x} \, dx$.
1797. $\int x^2 e^{-x^2} \, dx$. 1798. $\int x \cos x \, dx$.