

Assignment 1-C TurtleBot3 Open-Loop Control

GROUP 1

Chinmay Vilas Samak

Tanmay Vilas Samak

GitHub Repository

Overview

Circle

- Move robot in circle with specified constant twist command
- Radius of circle determined by ratio of linear and angular velocities (kinematic formulation)
- Wait (delay) 4 seconds for simulation to initialize properly
- Simulate for robot's one complete traversal around the circle (kinematic formulation)

Square

- Move robot in square with specified constant twist command
- Side length of square specified as a constant parameter (2.0 m) in script
- Wait (delay) 4 seconds for simulation to initialize properly
- Simulate for robot's one complete traversal around the square (kinematic formulation)
- Speed variation hypothesis: as speed increases, trajectory profile will deviate further from ideal

Implementation

- Circle | argument defaults: lin vel = 0.1, ang vel = 0.1
 - Launch Gazebo with empty world from turtlebot3 gazebo package
 - Launch circle node from assignment 1c package
 - Launch rviz2 from rviz2 package and load configuration file from assignment_1c package
- Square | argument defaults: lin_vel = 0.1, ang_vel = 0.1
 - Launch Gazebo with empty_world from turtlebot3_gazebo package
 - o Launch square_node from assignment_1c package
 - Launch rviz2 from rviz2 package and load configuration file from assignment 1c package
- Move | argument defaults: maneuver = circle, lin_vel = 0.1, ang_vel = 0.1
 - Launch Gazebo with empty_world from turtlebot3_gazebo package
 - Launch circle_node or square_node from assignment_1c package depending on maneuver argument
 - Launch rviz2 from rviz2 package and load configuration file from assignment 1c package

Dependencies

- ROS2 Foxy Fitzroy on <u>Ubuntu 20.04 Focal Fossa</u>
- TurtleBot3 Packages Included with the assignment repository
- TurtleBot3 Simulations Packages Included with the assignment repository
- TurtleBot3 Messages Package Included with the assignment repository
- <u>TurtleBot3 Dynamixel SDK Packages</u> Included with the assignment repository

Source: <u>Ubuntu</u>

Source: ROS2 GitHub

Source: ROS2 Docs

Source: <u>GazeboSim</u>

Source: ROBOTIS Inc.

Build Instructions

- Make a directory ROS2 ws to act as your ROS2 workspace.
- Clone the <u>assignment repository</u>.
- Move assignment 1c directory to src of your ROS2 WS.
- [Optional] Remove the unnecessary files.
- Build the packages.
- O Source the setup.bash file of your ROS2 WS.
- NOTE: <u>Detailed instructions</u> are available in <u>README.md</u> file of the <u>assignment repository</u>.

```
Build:

1. Make a directory ROS2_WS to act as your ROS2 workspace.

$ mkdir -p ~/ROS2_WS/src/

2. Clone this repository:

$ git clone https://github.com/Tinker-Twins/Autonomy-Science-And-Systems.git

3. Move assignment_1c directory with required ROS2 packages to the source space (src) of your ROS2_WS.

$ mv ~/Autonomy-Science-And-Systems/Assignment\ 1-C/assignment_1c/ ~/ROS2_WS/src/

4. [Optional] Remove the unnecessary files.

$ sudo rm -r Autonomy-Science-And-Systems

5. Build the packages.

$ cd ~/ROS2_WS
$ colcon build

6. Source the setup.bash file of your ROS2_WS.

$ echo "source ~/ROS2_WS/install/setup.bash" >> ~/.bashrc
$ source ~/.Bashrc
```

Source: Tinker Twins GitHub

Execution Instructions

Circle

- Launch circle.launch.py file from assignment 1c package
- Provide arguments for lin_vel and ang_vel (float)

Square

- Launch square.launch.py file from assignment 1c package
- Provide arguments for lin_vel and ang_vel (float)

Move

- Launch move.launch.py file from assignment_1c package
- Provide argument for maneuver (string)
- Provide arguments for lin_vel and ang_vel (float)
- NOTE: Detailed instructions are available

in **README.md** file of the <u>assignment repository</u>.

Execute:

1. Open-Loop Circle (twist commands specified by the user):

\$ ros2 launch assignment_1c circle.launch.py lin_vel:=0.15 ang_vel:=0.15

2. Open-Loop Square (twist commands specified by the user):

\$ ros2 launch assignment_1c square.launch.py lin_vel:=0.15 ang_vel:=0.15

3. Open-Loop Move (square or circle maneuver with twist commands specified by the user):

\$ ros2 launch assignment_1c move.launch.py maneuver:=circle lin_vel:=0.15 ang_vel:=0.15
\$ ros2 launch assignment_1c move.launch.py maneuver:=square lin_vel:=0.15 ang_vel:=0.15

Source: Tinker Twins GitHub

Results

Analysis

Parameter/Metric	Slow Circle	Slow Square	Medium Circle	Medium Square	Fast Circle	Fast Square
Resemblance to ideal trajectory	Very High	Low	High	Medium	Medium	Extremely Low
Kinematic behavior	Very High	High	High	Medium	Medium	Very Low
Time for 1 complete traversal	High	Very High	Medium	Medium	Very Low	Low

- **Note 1:** The analysis presented above is qualitative.

 Although a detailed quantitative analysis can be accomplished, it was beyond the scope of this assignment.
- **Note 2:** The physical TurtleBot3 has a maximum travel speed of 0.22 m/s and maximum rotational speed of 2.84 rad/s. The simulated TurtleBot3 was operated at higher limits to analyze the effect of simulation dynamics on the performance of the open-loop controllers designed.
- **Note 3:** Deployment videos as well as pictures are available in README.md file as well as in the media directory of the assignment repository.

Source: Tinker Twins GitHub

February 9, 2023

Thank You!