Лабораторная работа № 7 Минимизация функции многих переменных методом градиента с дроблением шага

Цель работы: изучить метод градиента с дроблением шага для решения задачи минимизации функции многих переменных и получить практические навыки его применения.

Задания к работе:

- 1. Найти точные значения координат точки минимума и минимальное значение функции $y = f(x_1, x_2)$ для функции соответствующего варианта задания, используя необходимые и достаточные условия локального минимума.
- 2. Выполнить вручную вычисление приближенного значения точки минимума целевой функции методом градиента с дроблением шага, начиная с произвольно выбранного начального приближения M_0 (x_{10} , x_{20}). Точность решения ε =0,01. Вручную подробно достаточно выполнить первый шаг метода градиента с дроблением шага. Параметры метода выбрать самостоятельно.
- 3. Реализовать логическую функцию для нахождения приближенного значения точки локального минимума и минимального значения целевой функции $y = f(x_1, x_2)$ методом градиента с дроблением шага.

Входными данными для логической функции являются:

- целевая функция $y = f(x_1, x_2)$;
- градиент целевой функции $grad\ (f(x_1,x_2));$
- начальное приближение $M_0(x_{10}, x_{20})$ к точке локального минимума;
- точность решения ε ;
- ограничение на максимальное число итераций n;
- параметры метода градиента с дроблением шага α , β , γ .

Функция возвращает значение «истина», если приближенное решение с заданной точностью получено за число итераций, не превышающее n, и «ложь» — в противном случае.

Результат работы программы: приближенное значение точки локального минимума и минимальное значение целевой функции $y = f(x_1, x_2)$ с заданной точностью, количество выполненных итераций.

Предусмотреть возможность сохранения пошаговых результатов реализации метода градиента с дроблением шага в файл.

Содержание отчета:

- 1. Титульный лист.
- 2. Цель работы. Вариант задания.
- 3. Текст заданий к работе.
- 4. Выполнение заданий соответствующего варианта вручную полностью. Вычисление градиента заданной функции. Определение стационарных точек функции. Составление и анализ матрицы Гессе. Точное значение координат точки

локального минимума и минимального значения функции.

Выбор параметров метода градиента с дроблением шага α , β , γ и начального приближения M_0 к точке локального минимума функции. Вычисление значения функции в точке M_0 .

Составление в методе градиента с дроблением шага неравенства и определение значения i_0 , при котором оно выполниться впервые. Вычисление первого приближения M_1 к точке локального минимума функции.

Вычисление значения функции в точке M_1 . Проверка условия остановки.

- 5. Текст программы, включающий необходимые комментарии и спецификации подпрограмм.
 - 6. Результаты работы программы.

Варианты заданий

№	Функция $y = f(x_1, x_2)$
1	$f(x_1, x_2) = x_1^3 + 8x_2^3 - 6x_1x_2 + 1$
2	$f(x_1,x_2) = e^{x^1}(x_1 + x_2^2) + 5$
3	$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 - 3x_1 - 6x_2$
4	$f(x_1,x_2) = x_1^2 + x_2^2 + 4(x_2 - x_1)$
5.	$f(x_1,x_2) = x_1^2 + x_2^2 + x_1x_2 + x_1 - x_2 + 1$
6	$f(x_1, x_2) = x_1^3 + x_2^2 - 6x_1x_2 - 39x_1 + 18x_2 + 20$
7	$f(x_1,x_2) = (x_1-3)^2 + (x_2-2)^2 + (x_1-x_2-4)^2$
8	$f(x_1, x_2) = 2x_1^2 + x_2^3 - 4x_1 - 3x_2 + 6$
9	$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 - 3x_1 - 6x_2$
10	$f(x_1,x_2) = x_1^2 + x_2^2 + 4x_1x_2 - 2x_1 - 2x_2 + 8$
11	$f(x_1,x_2) = 2x_1^3 - x_1x_2^2 + 5x_1^2 + x_2^2$
12	$f(x_1,x_2) = 2x_1^2 + x_2^2 + 4(x_2-x_1) + 6$
13	$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 - 3x_1 - 6x_2$
14	$f(x_1, x_2) = 8x_1^2 + 2x_2^2 + 4x_1x_2 + 4x_1 - 4x_2$
15	$f(x_1, x_2) = x_1 x_2 + 50/x_1 + 20/x_2$
16	$f(x_1,x_2) = x_1^2 + 2x_2^2 + 2(x_1+x_2) + 5$
17	$f(x_1,x_2) = x_1^2 + x_2^2 - 2\ln x_1 - 18\ln x_2$
18	$f(x_1, x_2) = x_1^2 + x_2^2 - 15x_1x_2$

19	$f(x_1,x_2) = (x_1^2 + x_2^2)^{2/3} - 4$
20	$f(x_1,x_2) = x_1^2 + 2x_2^2 + 4x_1x_2 - x_1 - 2x_2 + 6$
21	$f(x_1,x_2) = x_1^4 - 2x_1^2 + 5x_2^2 - 2x_1^2 x_2 - 2x_2 + 2$
22	$f(x_1,x_2) = x_1^4 - 2x_1^2 + 5x_2^2 - 2x_1^2x_2 - 2x_2 + 2$
23	$f(x_1,x_2) = x_1^4 + 2x_2^2 - 2x_1^2x_2 - 2x_2 + 1$
24	$f(x_1,x_2) = x_1^4 + 2x_2^2 - 2x_1^2x_2 - 2x_2 + 1$
25	$f(x_1,x_2) = x_1^2 + 3x_2^3 + 4x_1 - 6x_2 + 7$

Контрольные вопросы:

- 1. Определение точки локального минимума функции m переменных.
- 2. Определение точки глобального минимума функции *т* переменных.
- 3. Понятие окрестности точки в *m*-мерном пространстве.
- 4. Понятие поверхности уровня для целевой функции.
- 5. Определение градиента функции *т* переменных
- 6. Условие локального минимума функции *т* переменных.
- 7. Метод градиента с дроблением шага: параметры, формула вычисления приближенного значения минимума функции, правило остановки.