# When LSH Breaks: Failure of Scaled Projections and Signed-Permutation Hashing in the $\ell_p$ -Sphere

## Heon Lee Manas Korimilli Christopher Jeong

Department of Computer Science
Brown University
Providence, RI 02912
{heon\_lee, manas\_korimilli, christopher\_jeong}@brown.edu

## **Abstract**

In this work, we explore two natural generalizations of the cross-polytope locality-sensitive hashing scheme of Andoni  $et\ al.$  [2] from the Euclidean sphere to arbitrary  $\ell_p$ -spheres: (1) a scaled-rotation approach that rotates points via random orthogonal matrices, reprojects them to the  $\ell_p$ -sphere, and quantizes to the dominant coordinate; and (2) a  $hyperoctahedral\ sampling$  approach that replaces the orthogonal group by the symmetry group of the  $\ell_p$ -sphere. We prove that both families fail for every  $p \neq 2$ : when p < 2 the scaled-rotation scheme allows arbitrarily close points to collide with vanishing probability, while for p > 2 it forces far-apart points to collide with probability above a threshold—so no nontrivial (r,cr)-sensitivity holds—and that the hyperoctahedral scheme induces exactly one partition (up to relabeling), making collision probabilities independent of distance. These negative results precisely delineate the limits of direct cross-polytope generalizations for  $\ell_p$ -spheres with  $p \neq 2$ , providing insights into the challenges of hashing techniques in the  $\ell_p$ -sphere.

#### 1 Introduction

Approximate nearest-neighbor (ANN) search is a technique in large-scale machine learning, data mining, and information retrieval. In high dimensions, *locality-sensitive hashing* (LSH) provides a powerful framework: one designs a family of hash functions so that "nearby" points collide with higher probability than "far apart" points, and then uses these collisions to achieve sublinear-time queries [6]. LSH is well understood for Hamming distance and the Euclidean ( $\ell_2$ ) norm: for angular distance on the unit sphere, the cross-polytope scheme of Andoni *et al.* [2] achieves the asymptotically optimal exponent

$$\rho \ = \ \frac{1}{2c^2-1},$$

matching known lower bounds [1]. Moreover, it is practical—empirical evaluations show substantial speedups over classic hyperplane-based hashes in real-world datasets. Given its strong theoretical guarantees and empirical performance on the Euclidean sphere, one might reasonably expect that simply swapping in an  $\ell_p$ -projection or replacing  $O(n,\mathbb{R})$  with the appropriate symmetry group for the general  $\ell_p$ -sphere would preserve locality-sensitive behavior. Surprisingly, as this paper shows, these most natural extensions break down completely for every  $p \neq 2$ , revealing deeper geometric barriers to non-Euclidean LSH.

In this work we investigate two *natural* attempts to extend the cross-polytope LSH from the Euclidean sphere  $\mathbb{S}_2^{n-1}$  to the general  $\ell_p$ -sphere  $\mathbb{S}_p^{n-1}$ :

1. **Scaled-rotation:** apply a random orthogonal matrix  $A \in O(n, \mathbb{R})$  to  $x \in \mathbb{S}_p^{n-1}$ , renormalize back to the  $\ell_p$ -sphere, and then quantize to the largest-coordinate corner of the  $\ell_1$  ball;

2. **Hyperoctahedral sampling:** replace  $O(n, \mathbb{R})$  by the symmetry group of  $\mathbb{S}_p^{n-1}$ , and quantize directly without any continuous reprojection.

Both approaches mirror the Euclidean construction, preserve the spirit of random mixing, and respect the natural symmetries of the  $\ell_p$  sphere. However, in contrast to the p=2 case, we prove that *neither* family can satisfy any nontrivial LSH sensitivity for  $any p \neq 2$ .

**Our contributions.** We establish three impossibility results:

- For p < 2, the scaled-rotation scheme fails to bring nearby points into collision with non-vanishing probability; in fact, one can exhibit pairs at arbitrarily small  $\ell_p$  distance whose collision probability tends to zero as the dimension grows.
- For p > 2, the same construction makes arbitrarily distant points collide with probability above a threshold —again precluding any valid (r, cr)-sensitivity trade-off.
- The hyperoctahedral scheme is even more degenerate: every signed-permutation map induces the same partition of  $\mathbb{S}_p^{n-1}$  (up to relabeling), so collision probabilities become independent of distance (either 0 or 1).

These impossibility results rule out only the most direct extensions of cross-polytope LSH to  $\ell_p$  spheres for  $p \neq 2$ , and leave open the prospect that more sophisticated or data-adaptive hashing schemes may still succeed in this setting.

**Paper organization.** In Section 2 we review LSH basics and the Euclidean cross-polytope construction. Section 3 defines the scaled-rotation and hyperoctahedral hash families on  $\mathbb{S}_p^{n-1}$ , and presents our counterexample constructions to prove the three impossibility theorems. We conclude in Section 4 with a discussion of open directions toward non-Euclidean LSH schemes.

## 2 Background and Related Work

**Locality-Sensitive Hashing (LSH).** Locality-sensitive hashing (LSH) circumvents the curse of dimensionality in nearest-neighbor search by trading off space for query time. For a metric space  $(\mathbb{R}^n, d)$  and parameters r > 0, c > 1, a hash family  $\mathcal{H}$  is  $(r, cr, p_1, p_2)$ -sensitive if for all  $x, y \in \mathbb{R}^n$ :

$$\mathbb{P}_{h \sim \mathcal{H}}(h(x) = h(y)) \geq p_1$$
 whenever  $d(x, y) \leq r$ ,  $\mathbb{P}_{h \sim \mathcal{H}}(h(x) = h(y)) \leq p_2$  whenever  $d(x, y) \geq cr$ ,

with  $p_1 > p_2$ . Such a family yields a data structure for (c, r)-ANN with sublinear query time [6]. Classic LSH constructions exist for Hamming space [6], Jaccard similarity [3], the Euclidean  $(\ell_2)$  norm [2], the cosine similarity and earthmover distance via the hyperplane LSH [4], and the  $\ell_p$  norm via p-stable projections [5].

**LSH for Cosine Similarity.** Charikar's *hyperplane LSH* [4] hashes by random sign of dot-products, giving collision probabilities tied to cosine similarity. More recent cosine similarity LSH schemes—most notably the *cross-polytope* family of Andoni *et al.* [2]—rotate points randomly and quantize to the nearest vertex of an  $\ell_1$ -sphere, achieving the asymptotically optimal exponent for angular distance. Multiprobe and fast-rotation variants further improve practical performance.

**Our contributions.** This work shows that two of the most *natural* extensions of Euclidean cross-polytope LSH to the  $\ell_p$  sphere *both fail* for every  $p \neq 2$ . We analyze:

- Scaled-rotation: randomly rotate any  $\ell_p$ -unit vector, project back to the  $\ell_p$  sphere, then quantize to the dominant coordinate.
- **Hyperoctahedral sampling:** replace continuous rotations by the finite signed-permutation group (the hyperoctahedral group) and quantize directly.

We prove that for p<2 the scaled-rotation scheme yields vanishing collision probability on arbitrarily close points, and for p>2 it forces distant points to collide with probability above a threshold; and that the hyperoctahedral scheme induces a single degenerate partition independent of distance. These negative results rule out only the simplest generalizations of cross-polytope hashing and leave open the search for more sophisticated or data-adaptive LSH constructions in non-Euclidean norms.



Figure 1: Unit  $\ell_p$ -spheres for  $p \in \{1, 1.5, 2, 3, 6, \infty\}$  in  $\mathbb{R}^2$ .

# 3 Generalized Cross-Polytope Hash Families

Let  $\mathbb{S}_p^{n-1}$  be the  $\ell_p$ -sphere in n-dimension. Examples of  $\mathbb{S}_p^1$  for varying values of p can be found in Figure 1. Andoni *et al.* [2] propose a cross-polytope LSH scheme on the Euclidean sphere  $\mathbb{S}_2^{n-1}$ . Given a random orthogonal matrix  $A \in O(n, \mathbb{R})$ , they define the hash function

$$h_A := \mu \circ r_A|_{\mathbb{S}_2^{n-1}} : \mathbb{S}_2^{n-1} \to \mathbb{S}_1^{n-1}$$

where  $r_A: \mathbb{R}^n \to \mathbb{R}^n$  applies A to the vector  $x \in \mathbb{R}^n$  and the quantizer  $\mu: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}_1^{n-1}$  is given by

$$\mu(y) = \operatorname{sgn}(y_j)e_j, \quad j = \underset{1 \le k \le n}{\operatorname{argmax}} |y_k|,$$

and  $e_j$  is the j-th standard basis vector. Then we have that

$$\mathcal{H} := \{ h_A : A \in O(n, \mathbb{R}) \}$$

defines a family of hash functions.

## **Intuition Behind** $h_A$

The process behind  $h_A$  can be understood in three simple steps:

- 1. Random Rotation: Multiplying by A "spins" the entire sphere. Nearby points stay close, but their coordinates get mixed up independently of the data.
- 2. Dominant Axis Selection: After rotation, inspect the resulting vector y = Ax. Identify which coordinate  $y_j$  has the largest absolute value. Geometrically, this finds the single axis along which the rotated point sticks out the most.
- 3. Snapping to a Corner: Record the sign of that dominant coordinate (positive or negative) and map y exactly to the corresponding corner of the cross-polytope, namely  $\pm e_j$ . Figure 2 shows such a cross-polytope for n=4. This collapses the continuous sphere onto the 2n vertices of the  $\ell_1$  unit sphere.

Two points with a small angle between them will, after the same random rotation, typically share both the index and sign of their dominant coordinate, and hence collide under  $h_A$ . Points far apart on the sphere are unlikely to do so. Repeating this with multiple independent A's yields the usual LSH guarantees: high collision probability for similar points, low for dissimilar.

## 3.1 Generalization to the $\ell_n$ -Sphere

To extend this to the  $\ell_p$ -sphere  $\mathbb{S}_p^{n-1}$  for  $p \neq 2$ , one can modify either the rotation or the quantization step in  $h_A = \mu \circ r_A$ :

1. Scaled Rotation. Apply  $A \in O(n, \mathbb{R})$  to  $x \in \mathbb{S}_p^{n-1}$ , then project back to the  $\ell_p$ -sphere via the scaling map

$$\pi_p(y) = \frac{y}{\|y\|_p},$$



Figure 2: Cross-polytope (i.e.  $\ell_1$ -sphere) for n=4, by Robert Webb (Stella software), Wikimedia Commons (CC BY-SA 3.0) commons.wikimedia.org/wiki/File:Schlegel\_wireframe\_16-cell.png.

and finally quantize with  $\mu$ :

$$\tilde{h}_A = \mu \circ \pi_p \circ r_A.$$

As we show in Proposition A.1,  $\pi_p$  is exactly the nearest-point projection onto  $\mathbb{S}_p^{n-1}$  in the  $\ell_p$  norm.

2. Hyperoctahedral Sampling. Replace the full orthogonal group by the symmetry group  $G_p$  of  $\mathbb{S}_p^{n-1}$  since the orthogonal group is the symmetry group of  $\mathbb{S}_2^{n-1}$ . Then

$$\bar{h}_A = \mu \circ r_A$$

for  $A \in G_p$ .

## 3.2 Scaled Hash Family

**Lemma 3.1.** For any  $p \ge 1$ ,

$$\mu \circ \pi_p = \mu.$$

*Proof.* It suffices to observe that scaling does not change the maximum absolute coordinate.  $\Box$ 

**Theorem 3.2.** Let  $p \in [1,2)$ . Then for any  $r \in (0,2)$ , there exists  $N \in \mathbb{N}$  such that for all  $n \geq N$  one can find  $x_1, \ldots, x_m \in \mathbb{S}_p^{n-1}$  with  $\|x_i - x_j\|_p \leq r$  but

$$\mathbb{P}_{A \sim \text{Uniform}(O(n,\mathbb{R}))} (\tilde{h}_A(x_i) = \tilde{h}_A(x_j)) \leq n^{-\frac{r^2}{4-r^2} + o(1)}$$

implying that

$$\mathbb{P}_{A \sim \text{Uniform}(O(n,\mathbb{R}))} (\tilde{h}_A(x_i) = \tilde{h}_A(x_j)) \to 0 \text{ as } n \to \infty.$$

In particular, no fixed  $p_1 > 0$  can serve as a lower bound on the collision probability for all such "nearby" pairs.

*Proof.* It suffices to find  $x,y\in\mathbb{S}_p^{n-1}$  such that  $\|x-y\|_p\leq r$  and  $\mathbb{P}_{A\sim U(O(n,\mathbb{R})}(\tilde{h}_A(x)=\tilde{h}_A(y))\leq n^{-\frac{r^2}{4-r^2}+o(1)}$ . Consider  $v:=\left(\frac{1}{\sqrt{n}},\ldots,\frac{1}{\sqrt{n}}\right)\in\mathbb{R}^n$  and  $a:=(\epsilon,-\epsilon,0,\ldots,0)\in\mathbb{R}^n$  for  $\epsilon>0$ . Then we know that

$$N_p := \|v - a\|_p = \|v + a\|_p = \left(\left|\frac{1}{n} - \epsilon\right|^p + \left|\frac{1}{n} + \epsilon\right|^p + \frac{n-2}{n^{p/2}}\right)^{1/p}.$$

Let

$$u_p^{\pm} := \frac{v \pm a}{N_p} \in \mathbb{S}_p^{n-1}.$$

Because 
$$u_p^+-u_p^-=\frac{v+a}{N_p}-\frac{v-a}{N_p}=\frac{2a}{N_p}=\frac{(2\epsilon,-2\epsilon,0,\dots,0)}{N_p},$$
 then

$$\|u_p^+ - u_p^-\|_p = \left\| \frac{2a}{N_p} \right\|_p = \frac{2^{(p+1)/p} \epsilon}{\left( \left| \frac{1}{\sqrt{n}} - \epsilon \right|^p + \left| \frac{1}{\sqrt{n}} + \epsilon \right|^p + \frac{n-2}{n^{p/2}} \right)^{1/p}}.$$

For p=2,

$$||u_2^+ - u_2^-||_2 = \left\| \frac{2a}{\sqrt{1 + 2\epsilon^2}} \right\|_2 = \frac{2\sqrt{2}\epsilon}{\sqrt{1 + 2\epsilon^2}}.$$

Given  $r \in (0,2)$  and n>1, with p<2. We want to show there exists  $\epsilon$  such that  $\|u_p^+-u_p^-\|_p \le r$  and  $\|u_2^+-u_2^-\|_2 > r$ . By continuity of  $f_p(\epsilon):=\|u_p^+-u_p^-\|_p$  and because  $f_p(\epsilon) < f_2(\epsilon)$ , we know that there exists some  $\epsilon>0$  such that  $\|u_p^+-u_p^-\|_p \le r$  and  $\|u_2^+-u_2^-\|_2 > r$ .

By Lemma 3.1, we know that  $\tilde{h}_A = \mu \circ \pi_p \circ r_A = \mu \circ r_A = h_A$ . Then applying Theorem 1 of [2] on cross-polytope LSH gives

$$\mathbb{P}_{A \sim U(O(n,\mathbb{R}))} (\tilde{h}_A(u_p^+) = \tilde{h}_A(u_p^-)) = \mathbb{P} (\mu(Au_2^+) = \mu(Au_2^-)) \le n^{-\frac{r^2}{4-r^2} + o(1)}.$$

Since  $r \in (0,2)$  is a fixed constant, the exponent  $\frac{r^2}{4-r^2}$  is positive, then

$$\Pr(\tilde{h}_A(u_p^+) = \tilde{h}_A(u_p^-)) \le n^{-\frac{r^2}{4-r^2} + o(1)} \longrightarrow 0 \quad (n \to \infty).$$

Thus, no lower bound  $p_1>0$  can hold for all such "nearby" pairs, and the scaled-rotation scheme fails to be (r,cr)-sensitive on  $S_p^{n-1}$  when p<2.

**Theorem 3.3.** Let  $p \in (2, \infty]$ . Then for any  $r \in (0, 2)$  and any c > 1, there exists  $N \in \mathbb{N}$  such that for all  $n \geq N$  one can find  $x_1, \ldots, x_m \in \mathbb{S}_p^{n-1}$  with  $\|x_i - x_j\|_p \geq cr$  but

$$\mathbb{P}_{A \sim \text{Uniform}(O(n,\mathbb{R}))} \left( \tilde{h}_A(x_i) = \tilde{h}_A(x_j) \right) \geq 1 - n^{-\frac{r^2}{4-r^2} + o(1)},$$

implying that

$$\mathbb{P}_{A \sim \text{Uniform}(O(n,\mathbb{R}))}(\tilde{h}_A(x_i) = \tilde{h}_A(x_i)) \to 1 \text{ as } n \to \infty.$$

Hence, no fixed  $p_2 < 1$  can serve as an upper bound on the collision probability for all such "far apart" pairs.

*Proof.* The theorem follows with the same construction as Theorem 3.2, with the difference being to use the lower bound in the cross-polytope LSH instead.  $\Box$ 

As a corollary of Theorems 3.2 and 3.3, we can informally state that there are no good scaled hash families for  $p \neq 2$ .

**Corollary 3.4.** Let  $p \ge 1$  with  $p \ne 2$ . Then the "scaled-rotation" hash family

$$\tilde{\mathcal{H}} = \left\{ \tilde{h}_A = \mu \circ \pi_p \circ r_A : A \in O(n, \mathbb{R}) \right\}$$

on the  $\ell_p$ -sphere  $\mathbb{S}_p^{\,n-1}$  cannot be  $(r,cr,p_1,p_2)$ -sensitive for any fixed constants  $p_1,p_2\in(0,1)$ :

• If p < 2, then for every  $r \in (0,2)$  there is no choice of  $p_1 > 0$  such that

$$\mathbb{P}_A \left( \tilde{h}_A(x) = \tilde{h}_A(y) \right) \ge p_1 \quad \text{whenever } \|x - y\|_p \le r.$$

• If p > 2, then for every  $r \in (0,2)$  and every c > 1 there is no choice of  $p_2 < 1$  such that

$$\mathbb{P}_A(\tilde{h}_A(x) = \tilde{h}_A(y)) \le p_2$$
 whenever  $||x - y||_p \ge c r$ .

In other words, no nontrivial LSH guarantees can hold for the scaled-rotation scheme on  $\mathbb{S}_p^{n-1}$  unless p=2.

#### 3.3 Hyperoctahedral Hash Family

In this section, we formally define our signed-permutation hashing scheme for points on the  $\ell_p$ -sphere.

We wish to construct a hash family  $\bar{\mathcal{H}}$  with the locality-sensitive property: points that are closer in  $\ell_p$  should have a higher probability of colliding under the hash.

#### 3.3.1 Group Actions

**Definition 3.5.** (Group Action) Given a group (G, \*) and a set S, a **group action** of G on S is a function  $\cdot : G \times S \to S$ , denoted by  $g \cdot s$  for  $g \in G$  and  $s \in S$ , that satisfies the following two properties:

- 1. for the identity element  $e \in G$ ,  $e \cdot s = s$  for all  $s \in S$ .
- 2. for any  $g, h \in G$  and  $s \in S$ ,  $(g * h) \cdot s = g \cdot (h \cdot s)$ .

**Definition 3.6.** (Transitive Group Action) Let G be a group acting on a set S. The action of G on S is said to be **transitive** if for every pair of elements  $s_1, s_2 \in S$ , there exists at least one element  $g \in G$  such that  $g \cdot s_1 = s_2$ .

## 3.3.2 Hyperoctahedral Group Review

The hyperoctahedral group  $B_n$  consists of all signed permutations. In this way,  $B_n$  can be viewed as a subgroup of the orthogonal group  $O(n,\mathbb{R})$ . Matrices naturally act on  $\mathbb{R}^n$  by left multiplication, so there is a well-defined group action of  $B_n$  of  $\mathbb{R}^n$ . We are interested in  $B_n$  because it is the group of symmetries of the  $\ell_p$ -sphere for  $p \neq 2$ .

Each element A of  $B_n$  can be decomposed as A=SP where S and P are signature and permutation matrices, respectively. Because there are  $2^n$  signature matrices, n! permutation matrices, and  $(S_1,P_1)\neq (S_2,P_2)$  implies  $S_1P_1\neq S_2P_2$ , there are  $|B_n|=2^n\cdot n!$  possible such transformations. Because  $B_n$  is finite (unlike  $O(d,\mathbb{R})$ ), then  $B_n$  is not transitive. In fact, this lack of a continuous transformation, which is exhibited for the symmetries of the Euclidean sphere, will be why a hash family scheme using the symmetries of the  $\ell_p$ -sphere for  $p\neq 2$  will fail.

#### 3.3.3 Theoretical Analysis

In this section, we show that the signed-permutation hash family fails to exhibit the locality-sensitive property under the  $\ell_1$ -norm. Specifically, we prove that we can construct arbitrarily bad examples.

In Section 3, we constructed the hash function using the hyperoctahedral group. Specifically, for any  $A \in B_n$ , we defined

$$\bar{h}_A := \mu \circ r_A.$$

**Lemma 3.7.** Let  $A_1, A_2 \in B_n$  be any two signed-permutation matrices, and set

$$R := A_2 A_1^{-1} \in B_n.$$

Then,

$$\bar{h}_{A_2} = R \circ \bar{h}_{A_1}$$
.

In particular, up to a relabeling of the 2n output buckets by the signed-permutation R, the two hash functions coincide.

*Proof.* Recall that for any  $A \in B_n$  and any  $y \in \mathbb{R}^n$ , one has

$$\mu(Ay) = A\mu(y),$$

because A merely permutes and possibly flips the signs of the coordinates, and the quantizer  $\mu$  picks out the coordinate of largest absolute value together with its sign. Concretely, if  $\mu(y) = \operatorname{sgn}(y_j)e_j$  with  $j = \operatorname{argmax}_k |y_k|$ , then

$$(Ay)_i = s_i y_{\pi(i)}, \text{ so } \arg\max_i |(Ay)_i| = \pi^{-1}(j),$$

and hence

$$\mu(Ay) = \operatorname{sgn}((Ay)_{\pi^{-1}(j)}) e_{\pi^{-1}(j)} = s_{\pi^{-1}(j)} \operatorname{sgn}(y_j) e_{\pi^{-1}(j)} = A(\operatorname{sgn}(y_j)e_j) = A\mu(y).$$

It follows that for any  $x \in S_n^{n-1}$ ,

$$\bar{h}_{A_2}(x) = \mu(A_2 x) = \mu(R A_1 x) = R \mu(A_1 x) = R(\bar{h}_{A_1}(x)),$$

as desired.

Applying Lemma 3.7 to any  $A, I \in B_n$  where I is the identity matrix, then

$$\bar{h}_A = \bar{h}_I = \mu \circ r_I \equiv \mu.$$

In other words, the symmetry fails to apply any meaningful transformation.

#### Theorem 3.8. Let

$$\bar{\mathcal{H}} = \{\bar{h}_A : A \in B_n\}$$

be the hash family generated by the hyperoctahedral group on  $S_p^{n-1}$  (any  $p \neq 2$ ). Then  $\bar{\mathcal{H}}$  induces exactly one partition of the sphere: namely, the one given by  $\bar{h}_I(x) = \mu(x)$ . In particular, for any two points x, y and any choice of A,

$$\bar{h}_A(x) = \bar{h}_A(y) \iff \mu(x) = \mu(y),$$

so the collision probability  $\Pr_{A \sim \text{Uniform}(B_n)}[\bar{h}_A(x) = \bar{h}_A(y)]$  is either 0 or 1, independent of the distance  $\|x - y\|_p$ . Consequently,  $\mathcal{H}$  cannot be locality-sensitive under the  $\ell_p$ -metric for any  $p \neq 2$ .

*Proof.* By Lemma 3.7, all  $\bar{h}_A$  induce the same partition, namely that of  $\bar{h}_I = \mu$ . Hence for every fixed pair (x, y),

$$\Pr_{A \sim B_n} \left[ \bar{h}_A(x) = \bar{h}_A(y) \right] = \begin{cases} 1, & \mu(x) = \mu(y), \\ 0, & \mu(x) \neq \mu(y). \end{cases}$$

But on  $S_p^{n-1}$  one can always find arbitrarily close points x,y with  $\mu(x) \neq \mu(y)$  (or arbitrarily far points with  $\mu(x) = \mu(y)$ ), so no nontrivial  $(r,cr,p_1,p_2)$ -sensitivity can hold.

#### 4 Conclusion and Future Work

In this paper, we have shown that two of the most *direct* attempts to generalize the Euclidean cross-polytope LSH to arbitrary  $\ell_p$ -spheres  $(p \neq 2)$ —namely, (i) the *scaled-rotation* scheme and (ii) the *hyperoctahedral sampling* scheme—both fail to achieve any nontrivial (r, cr)-sensitivity. For p < 2, the scaled-rotation family can drive the collision probability of arbitrarily close points to zero, and for p > 2 it forces distant points to collide with overwhelming probability; while the hyperoctahedral family induces exactly one partition (up to relabeling), so collision events become independent of distance. These negative results demonstrate that any successful LSH for  $p \neq 2$  must depart from these symmetry-based constructions.

Looking ahead, several promising avenues remain open:

- Partial or adaptive quantization. Rather than snapping to a single dominant coordinate, might multi-coordinate or hierarchical quantizers yield genuine sensitivity on  $\ell_p$  spheres?
- Alternative group actions. Beyond orthogonal or signed-permutation groups, are there other natural transformations of  $\mathbb{R}^n$  whose induced partitions respect  $\ell_p$  geometry in a locality-sensitive way?

We hope that this work—by clarifying which paths are *not* viable—will help focus future efforts on more nuanced, data-adaptive, or hybrid approaches to similarity search beyond the Euclidean realm. Understanding and harnessing the geometry of non-Euclidean norms remains an exciting challenge for both theory and practice.

## References

- [1] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive hashing. *Symposium on Discrete Algorithms (SODA)*, pages 1018–1028, 2014.
- [2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and optimal locality-sensitive hashing for angular distance. *Proceedings of the 29th International Conference on Neural Information Processing Systems*, pages 1225-1233, 2015.
- [3] Andrei Z. Broder. On the resemblance and containment of documents. *Proceedings of the Compression and Complexity of Sequences (SEQUENCES)*, pages 21–29, 1997.

- [4] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. *Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC)*, pages 380–388, 2002.
- [5] Mayank Datar, Nicole Immorlica, Piotr Indyk, and Vahab Mirrokni. Locality-sensitive hashing scheme based on *p*-stable distributions. *Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG)*, pages 253–262, 2004.
- [6] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. *Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC)*, pages 604–613, 1998.

# A Appendix

**Proposition A.1.** Let  $x \in \mathbb{R}^n \setminus \{0\}$  and p > 1. Consider the problem

$$\min_{y \in \mathbb{R}^n} \|y - x\|_p \quad \text{s.t.} \quad \|y\|_p = 1.$$

Then the unique solution is obtained by

$$y^* = \frac{x}{\|x\|_p}.$$

*Proof.* Let y be any feasible point, so  $||y||_p = 1$ . By the triangle inequality,

$$||x||_p = ||(x-y) + y||_p \le ||x-y||_p + ||y||_p = ||x-y||_p + 1,$$

which rearranges to

$$||x - y||_p \ge ||x||_p - 1.$$

On the other hand, swapping x and y gives  $||y - x||_p \ge 1 - ||x||_p$ , so altogether

$$||y - x||_p \ge |||x||_p - 1|.$$

This implies that no feasible y can achieve a smaller objective value than  $|||x||_p - 1|$ .

Next, let

$$x = ||x||_p \hat{x}$$
, where  $\hat{x} = \frac{x}{||x||_p}$ ,

so that  $\|\hat{x}\|_p = 1$ . Then

$$\left\| \hat{x} - x \right\|_p = \left\| \hat{x} - \|x\|_p \, \hat{x} \right\|_p = \left| \, 1 - \|x\|_p \right| \, \|\hat{x}\|_p = \left| \, \|x\|_p - 1 \right|.$$

Hence  $y = \hat{x}$  attains the lower bound, implying its optimality.

Finally, if p > 1, the function  $y \mapsto \|y - x\|_p$  is strictly convex, so the minimizer is unique.