

Course Specialist Year 12 Test Two 2022

Student name:	Teacher name:
Task type:	Response
Time allowed for this task:40 mins	
Number of questions:	6
Materials required:	Upto 3 Calculators with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	41 marks
Task weighting:	_10%
Formula sheet provided: Yes	
Note: All part questions worth more than 2 marks require working to obtain full marks.	

Q1 (2, 3 & 3= 8 marks)

Consider the functions $f(x) = \sqrt{x-2}$ and $g(x) = \frac{1}{x}$

- a) Determine the natural domains of $\,^f \, \& \, g \,$.
- b) Does $f \circ g(x)$ exist over the natural domain of g? Explain.

c) State the rule and largest possible domain for $g \circ f(x)$ and its corresponding range.

Q2 (2, 4, 1 & 3 = 10 marks)

The function h(x) is defined below for $x \le 2$.

a) Sketch the inverse function $h^{-1}(x)$ on the axes above.

Q2 continued

b) Determine the rule for $h^{-1}(x)$ and its domain showing **full working**.

- c) Determine $h \circ h^{-1}(x)$.
- d) Determine the exact coordinates (if any) for where $h(x) = h^{-1}(x)$.

Q3 (2 & 3 = 5 marks)

Consider the function y = f(x) which is plotted below.

a) Sketch y = f(-|x|)

 $y = \frac{1}{|f(x)|}$ b) Sketch

Q4 (4 marks)

$$r_{\rm A} = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}, r_{\rm B} = \begin{pmatrix} 11 \\ 15 \\ -9 \end{pmatrix}$$
 Consider two moving objects A & B such that at $t=0$ seconds metres and

Consider two moving objects A & B such that at
$$t = 0$$
 seconds $v_A = \begin{bmatrix} 2 \\ 8 \\ -12 \end{bmatrix}$, $v_B = \begin{bmatrix} 4 \\ -5 \\ 10 \end{bmatrix}$ metres and metres per second. Determine the closet approach using **vector** methods.

Q5 (6 marks)

$$\begin{vmatrix} r - \begin{pmatrix} 1 \\ -5 \\ \alpha \end{pmatrix} \end{vmatrix} = 7$$
 with α a constant and the line
$$r = \begin{pmatrix} 4 \\ -9 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}$$
.

Consider a sphere Determine all possible real values of α such that:

- (i) (ii) the line meets the sphere at two pints.
- the line is a tangent to the sphere.
- (iii) the line misses the sphere completely.

Q6 (2, 3 & 3 = 8 marks)

Consider the plane Ω given by 2x - 3y + 5z = 11.

a) The point $^{A(5,-8,3)}$ is on a plane parallel to Ω . Determine the cartesian equation of this

b) Determine the distance between these two planes. Show full reasoning.

$$r_{A} = \begin{pmatrix} 2 \\ -9 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix} \qquad r_{B} = \begin{pmatrix} 3 \\ 11 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 10 \\ -8 \\ 5 \end{pmatrix}$$
 nsider the lines and the self-action of the self-action and the self-action of the self-action and the self-action of the self-acti

c) Consider the lines between these lines. Mathematics Department

Perth Modern

Extra working space