Suites récurrentes : application des accroissements finis

1 Rappels : convergence des suites récurrentes

Théorème 1 (du point fixe)

Soit $f: I \to \mathbb{R}$ une fonction et (u_n) une suite vérifiant la relation $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

- On suppose que la fonction f est continue sur I.
 - la suite (u_n) converge et sa limite ℓ appartient à I.
- ▶ Alors la limite ℓ de (u_n) est un point fixe de f, soit l'équation $f(\ell) = \ell$.

Remarque : pas un critère de convergence

Cette propriété ne montre pas la convergence (sous réserve de convergence, elle aide à trouver ℓ).

Théorème 2 (de convergence par majoration de l'erreur)

Soit (u_n) une suite et $\ell \in \mathbb{R}$ un réel

- ▶ On suppose que → l'on a une inégalité de la forme $\forall n \in \mathbb{N}, |u_n \ell| \leq \epsilon_n$
 - pour une suite $(\epsilon_n) \to 0$.
- ▶ Alors → la suite (u_n) converge
 - $\lim(u_n) = \ell.$

Démonstration: On a $\forall n \in \mathbb{N}, |u_n - \ell| \leq \epsilon_n$, soit:

 $\forall n \in \mathbb{N}, \ \ell - \epsilon_n \leqslant u_n \leqslant \ell + \epsilon_n.$

Par le critère de convergence par encadrement (th. « des gendarmes »), on a donc $\lim(u_n) = \ell$.

Vocabulaire : vitesse de convergence

- 1. On dit que la suite (ϵ_n) est une estimation de l'erreur de ℓ par u_n
- 2. Supposons de plus (ϵ_n) géométrique, $(soit \ \forall n \in \mathbb{N}, \ \epsilon_n = \epsilon_0 \ q^n, \ où \ 0 < q < 1)$ alors on dit que la **vitesse de convergence** de (u_n) vers ℓ est $(au \ moins)$ géométrique de raison q.

Dans chaque diagramme, combien de valeurs de la suite parvient-on à distinguer avant qu'elles soient trop proches de la limite?

FIGURE 1 – Convergences géométriques de raison q=95% (g.), q=70% (m.) et q=30% (d.)

2 Accroissements finis et convergence géométrique

Théorème 3 (Inégalité des accroissements finis)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

• On suppose que pour $k \geqslant 0$ fixé,

$$\forall x \in I, |f'(x)| \leq k$$

• Alors pour $a, b \in I$, on a

$$|f(b) - f(a)| \leqslant k |b - a|.$$

Interprétation graphique

La courbe de f reste dans le cône laissé blanc et n'entre pas dans la zone colorée.

2.1 En pratique : plan-type d'étude

- 1. Montrer que toutes les valeurs de la suite sont dans un certain intervalle $J \subseteq I$.
- **2.** Trouver un point fixe ℓ de f $(\ell \in J, résolu explicitement ou avec le théorème de la bijection).$
- **3.** Obtenir sur J, une majoration, avec 0 < k < 1, de la forme

$$\forall x \in J, |f'(x)| \leq k$$

- **4.** Appliquer les accroissements finis entre u_n et ℓ : $\forall n \in \mathbb{N}, \quad \underbrace{|f(u_n) f(\ell)|}_{=|u_{n+1}-\ell|} \leqslant k |u_n \ell|$
- **5.** Par récurrence, on obtient donc l'encadrement de l'erreur : $\forall n \in \mathbb{N}, |u_n \ell| \leq \underbrace{k^n |u_0 \ell|}$.

approxAlpha.sce

2.2 Approximation du point fixe par calcul de (u_n)

estim. géom. de l'erreur

```
// CONSTANTES : les données du problème
                              // premier terme de u_n
  ESTIM_ERREUR_INIT = %e - 1 // majorant de l'erreur initiale
  RAISON_ESTIM_ERREUR = 1/2 // constante des accroissements finis
  PRECISION = 10^{(-3)}
                             // précision souhaitée sur la limite
  function y = f(x)
                              // fonction itérée
    y = 2 - \log(x)/2
  endfunction
  // initialisation
                                   // de la suite
  u = U0
  estimErreur = ESTIM_ERREUR_INIT // de l'estimation de l'erreur
  // la boucle
  while (estimErreur > PRECISION)
    u = f(u)
                                                      // terme suivant de la suite
    estimErreur = estimErreur * RAISON ESTIM ERREUR // de l'estimation de l'erreur
  end
18
19
  // affichage du résultat
  disp("approximation de alpha à 10^(-3) près :")
```

// retourne 1.7268515 // vérif : disp(f(u)) proche