An ODE Model of Root Zonation in A. Thaliana Mutants

Riley Wheadon

University of British Columbia

November 20th, 2024

Acknowledgements

- Dr. Eric Cytrynbaum (Supervisor)
- Dr. Geoffrey Wasteneys (Experimental Collaborator)
- NSERC USRA Program

Root Zonation

Figure: Zonation of the root apical meristem in A. thaliana.

Signalling Network

Figure: Hormone interactions observed in A. thaliana roots.

brinCLASPpro Mutant

clasp-1 Mutant

Abridged Signalling Network

Figure: Simplified signalling network used in the model.

Intracellular Model

Since the intracellular signalling within the cell occurs faster than cell growth and division, we assume it is in a quasi-steady state.

$$0 = \frac{dC}{dt} = (c_0 - c_1 R_B) - c_2 C$$
$$0 = \frac{dR_T}{dt} = (r_0 + r_1 C) - r_2 R_T$$
$$R_B = f(B, R_T, K_d)$$

Extracellular Model

Shown below are the equations for cell growth (dL/dt) and division (dD/dt). When D=1, the cell divides into two cells with D=0.

$$\frac{dD}{dt} = (1 + \delta_0 C) \left(1 - \frac{L^n}{\delta_1^n + L^n} \right)$$

$$\frac{dL}{dt} = (\gamma_0 + \gamma_1 R_B) L$$

Initial Results

Figure: The model failed to differentiate cell lengths in the root apical meristem of the *brinCLASPpro* mutant from the wild type.

Explaining the brinCLASPpro Mutant

Idea: Inhibit division in the *brinCLASPpro* mutant relative to the wild type in order to increase cell length. We hypothesize this is caused by an excess of CLASP.

Explaining the brinCLASPpro Mutant

Idea: Inhibit division in the *brinCLASPpro* mutant relative to the wild type in order to increase cell length. We hypothesize this is caused by an excess of CLASP.

To implement this change, we modify the division equation:

$$\frac{dD}{dt} = (\sigma_0 + \sigma_1 C - C^2) \left(1 - \frac{L^n}{\delta_1^n + L^n} \right)$$

Updated Results (1/2)

Figure: The updated model correctly differentiates cell lengths in the *brinCLASPpro* mutant from the wild type.

Updated Results (2/2)

The updated model accurately explains the mutant phenotypes:

Mutant	Length	Division Zone Size	Divisions
Wild Type	43 692µm	456.5µm	324
brinCLASPpro	28 352μm	275.0μm	213
clasp-1	19 241μm	234.5µm	142

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the *brinCLASP pro* mutant.

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the *brinCLASP pro* mutant.

Next Steps:

- Integrating this work with intracellular microtubule models.
- Modelling the effects of CLASP on auxin signalling.

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the *brinCLASP pro* mutant.

Next Steps:

- Integrating this work with intracellular microtubule models.
- Modelling the effects of CLASP on auxin signalling.

Thanks for listening. Any questions?