

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Statistics 3 (WST03/01)

Question Number Scheme						
1. (a)	[In QP: 33, 15, 23] 29, 34, 39, 06, 31, 13, 42	M1A1				
		(2)				
(b)	This will give 4 girls with numbers 15, 23, 06, 13	B1				
	This will give 6 boys with numbers 33, 29, 34, 39, 31, 42	B1				
		(2)				
(c)	Since the highest number is 42	M1				
	therefore may miss <u>older players</u>	A1				
		(2)				
		[6 marks]				
	Notes					
(a)	M1 for 7 numbers (at least 4 correct in any order)					
	(Condone repeats but only count once towards the "4") e.g. <u>29</u> , 33, <u>34</u> , <u>39</u> , 15, 29, <u>31</u>					
	The 33 and 15 are repeats of those in QP and 29 is a repeat but all will count for the "7"					
	This will score M1 as there are 4 of the correct numbers listed: 29, 34, 39 and 31					
	A1 for all 7 correct with no repeats					
(b) 1 st B1 for showing the 4 girls in sample (No ft for incorrect random numbers) 2 nd B1 for showing the 6 boys in the sample (No ft for incorrect random numbers)						
(c)	(c) M1 for mention of highest number of 42 (or ft their highest number as long as < 60)					
A1 for stating that this means older players may be missing from the sample						
	This can be awarded if their highest number is stated for M1 and is ≤ 42					

Question Number				S	Schen	1e							Marks
	Student	\overline{A}	В	C	D	Е	F	G	Н	I	J	K	
2. (a)	Objects rank	9	6	8	2	1	10	7	3	5	4	11	M1
2. ()	Maths rank	11	4	5	1	2	9	3	7	8	6	10	M1
(b)	Critical value (<i>n</i> = 11 5% one-tail) is 0.5364 (Significant result so) there is evidence to support the teacher's belief or there is evidence of a positive correlation between short term memory and mathematical ability (o.e.) or evidence that students with strong maths ability also have good short term memory (o.e.) Data shows positive correlation but does not necessarily imply that enhanced							M1 dM1; A1 (5) B1 B1 (3)					
(c)	short term memory <u>causes</u> increase in mathematical ability.								(1) [9 marks]				
()	1 st 3 #1 0				Not					111		1\	
(a)	1^{st} M1 for attempt to rank one row with at least 5 correct (could be reversed) 2^{nd} M1 for both rows ranked with at least 5 correct in each row (one or both reversed) 3^{rd} M1 for an attempt at $\sum d^2$ ft their values and at least 5 correct 4^{th} dM1 (dep on at least one M1) for use of their $\sum d^2$ in a correct formula A1 for 0.7 or exact equivalent								versed)				
(b)	1 st B1 for both hypotheses in terms of ρ or ρ_s [If $r_s < 0$ in (a) allow $H_1: \rho < 0$] 2 nd B1 for critical value of 0.5364 (sign compatible with r_s) [If $r_s < 0$ in (a) need -0.5364] Allow 0.6182 if 1 st B0 for $H_1: \rho \neq 0$ 3 rd B1 for correct conclusion in context. Penalise contradictory comments e.g. "not significant so supports teacher's belief" [No ft]												
(c)	B1 for a comment that states that correlation does <u>not</u> imply <u>causation</u> Need to see "cause" or "causation" clearly mentioned.												

Question Number	Scheme	Marks			
3. (a)	All expected frequencies are $(88 \div 4) = 22$	B1			
. ,	Degrees of freedom = 3, so critical value $\chi_3^2(5\%) = 7.815$	B1, B1ft			
	(Not significant so) insufficient evidence to suggest <u>not</u> uniformly distributed	B1			
		(4)			
(b)	e.g. H ₀ : School is independent of club chosen H ₁ : Club chosen depends on which school a student is from	B1			
(c)	$\frac{28 \times 17}{88} = 5.409$ awrt 5.41	(1) B1			
(d)	Expected frequency for Music and School $C = 4.77 < 5$ (Allow $\frac{105}{22}$ for 4.77)	(1) B1			
(u)	So combine Music column with another column giving 3x3 table so 4 df	B1			
(e)	Critical value $\chi_4^2(5\%) = 9.488$	(2) B1			
	[Not significant so] insufficient evidence of an association between school and choice of club	B1			
		(2) [10 marks]			
	Notes Ignore values of any test statistics calculated in (a) or (e)				
(a)	1 st B1 for 22 2 nd B1 for degrees of freedom = 3 (can be implied by sight of 7.815 as cv) 3 rd B1ft for 7.815 (or better - cal: 7.814727910 or correct 5% cv for their d 4 th B1 for comment suggesting uniform distribution is a suitable model. Must follow from comparing 6.09 with their cv. Do not allow contradictory statements e.g. "significant" so uniform dis-	·			
(b)	B1 for both hypotheses with some context ("club" and "school" mentioned at Use of "independence" or "association"	least once)			
(c)	B1 for a correct expression or awrt 5.41 (allow $\frac{119}{22}$)				
(d)	1 st B1 for identifying that Music & School C has E_i that is < 5 (a value to 2 sf should be seen, may be in (c), but must state this E_i < 5 as well) 2 nd B1 for pooling music with another column leading to 3x3 table and 4 degrees of freedom Must clearly state the pooling and evidence for 4 df e.g. allow $(3-1)\times(4-1-1)$				
	[NB pooling with Art gives 4.3987, with Sports 4.3247, with Comput	ers 7.2879]			
(e)	1 st B1 for 9.488 (or awrt 9.488) 2 nd B1 for a correct, not significant, conclusion mentioning <u>school</u> and <u>clubs</u>				

Question Number	Scheme	Marks				
4. (a)	Use of $\overline{x} \pm z \times \frac{18}{\sqrt{25}}$; $z = 2.3263$ (or better)	M1;B1				
	= (44.0253, 60.7746) awrt (44.0, 60.8)	A1, A1 (4)				
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \mathbf{H}_1: \boldsymbol{\mu}_B > \boldsymbol{\mu}_A$	B1 (4)				
	$z = (\pm) \frac{57.8 - 52.4}{18\sqrt{\frac{1}{25} + \frac{1}{30}}}$	M1dM1				
	= (+) 1.1078 awrt $(+) 1.11$ 5% one-tail critical value is 1.6449 (or <i>p</i> -value = 0.13396 i.e. awrt 0.134)	A1 B1				
	(not sig') so insufficient evidence (in these data) to support newspaper's claim	A1				
	$\overline{x} - \mu$	(6)				
(c)	Require $\frac{\overline{x} - \mu}{\frac{18}{\sqrt{n}}} > z$ where $z = -1.6449$ (o.e.)	M1				
	$\mu < 52.4 + 1.64(49) \times \frac{18}{5}$ or $\mu < 57.8 + 1.64(49) \times \frac{18}{\sqrt{30}}$	A1				
	i.e. $\mu < 58.3216$ and $\mu < 63.2056$	M1 A1				
	So $\mu = 58.3$	(4)				
	Natas	[14 marks]				
(a)	Notes M1 for use of correct expression with 18, 25 and $1 < z < 3$ (Ignore \overline{x} for this ma	nrk)				
	B1 for $z = 2.3263$ or better (calc: 2.32634787) 1 st A1 for awrt 44.0 (ans only of 44.02or awrt 44.03 scores M1B1 implied) 2 nd A1 for awrt 60.8 (ans only of 60.77 or awrt 60.77 scores M1B1 implied)					
(b)	1 st B1 for both hypotheses in terms of μ s (If using μ_1 etc they must define which 1 st M1 for a correct denominator (18 needn't be outside square root) [4.87(44 2 nd dM1 for a correct expression for test statistic					
	1 st A1 for awrt (±) 1.11 2 nd B1 for critical value of 1.6449 or better (If B0 in (a) for 2.33 allow 1.64 or 1 [Allow <i>p</i> -value of awrt 0.134 and condone awrt 0.866 if compared with 0					
	2 nd A1 Correct contextual conclusion, ft comparing their "1.11" with 1.64 (or the must be not significant and mention "claim" or "score in town <i>A</i> " and "score in to					
(c)	1 st M1 for a correct starting <u>inequality</u> with any z such that $ z > 1$ (Allow \ge)					
	1 st A1 for either correct inequality for μ , allow $z = 1.64$ or better 2 nd M1 for both cases of $\overline{x} + z \frac{18}{\sqrt{n}}$ ($z > 1$) can allow "=" or inequality, may be in 0	CI				
	2 nd A1 (dep on both Ms) for sight of both awrt 58.3 and awrt 63.2 and selecting awrt 58.3					

Question Number	Scheme							
5. (a)	H_0 : $N(6,0.75^2)$ is a suitable model for the length of fallen pine cones							
	H_1 : N(6,0.75 ²) is NOT a suitable model for the lengths of the pine cones							
	e.g. E_i : $5 \le x < 5.5 = 80 \times P(5 \le X < 5.5) = 80 \times P(-\frac{4}{3} \le Z < -\frac{2}{3}) [= 12.77 \sim 12.90]$ M1 A1							
	or E_i : $6 \le x < 6.5 = 80 \times P(0 \le Z < \frac{2}{3})$ [= 19.80~19.89]							
	E_i : 5.5 $\leq x < 6 = 19.80 \sim 19.89$ or $x \geq 6.5 = 40 - 19.80$ or $x \geq 6.5 = 40 \sim 19.80$							
	$x < 5$ $5 \le x < 5.5$ $5.5 \le x < 6$ $6 \le x < 6.5$ $x \ge 6.5$							
	E_i 7.30~7.43 12.77~12.90 19.80~19.89 19.80~19.89 20.11~20.20 $\frac{(O-E)^2}{E}$ 0.23~0.28 0.093~0.12 0.84~0.90 1.87~1.95 5.08~5.16	A1						
	$\sum \frac{(O_i - E_i)^2}{E_i} \text{ or } \sum \frac{O_i^2}{E_i} - 80 = 8.308 ; \text{ answer in } [8.15 \sim 8.4]$							
	$v = 5 - 1 = 4 \implies; \chi_4^2(10\%) = 7.779$	B1; B1ft						
	(significant result so) the data do not support Chrystal's belief	A1ft (10)						
(b)	$\hat{\mu} = \frac{464}{80} = \underline{5.8} \text{ (cm)}; s^2 = \frac{2722.59 - 80 \times "5.8^2"}{79}$	B1; M1						
	80 79 $s^2 = 0.39734 \text{ awrt } \underline{0.397} \text{ (cm}^2)$	A1						
	s – 0.39/34 awit <u>0.39/</u> (cm)	$\begin{vmatrix} A_1 \\ (3) \end{vmatrix}$						
(c)	$v = 5 - 3 = 2$; so $\chi_2^2(10\%) = 4.605$	B1; B1ft						
	(Not sig') so a normal distribution is a plausible model for length of pine cones	B1ft						
(d)	$P(X > 7 \mid \mu = 5.8 \text{ and } s = \sigma = 0.63035) = P\left(Z > \frac{7 - "5.8"}{\sqrt{0.397}}\right) = P(Z > 1.90)$ M1							
	` ' '	A1 (2)						
	$= \underline{0.028} \sim 0.029$							
	Notes							
(a)	1^{st} B1 for both hypotheses. Must include the model and mention "length(s)" and 1^{st} M1 for correct use of normal to find E_i for one cell	"cones"						
	1 st A1 for a middle value e.g. awrt 12.77~12.90 inclusive (12.77 is from tables, 1	2.90 calc)						
	2^{nd} M1 for use of symmetry to get E_i for $5.5 \leqslant x < 6$ (same as $6 \leqslant x < 6.5$) or $x \geqslant 6$.							
	2 nd A1 for a correct set of expected frequencies (all awrt in given ranges)							
	3 rd dM1 (dep on 1 st M1) for a correct attempt to find test statisticat least one co 3 rd A1 for answer in the range 8.15-8.4 (inclusive)	rreci term						
	2^{nd} B1 for degrees of freedom = 4							
	3 rd B1ft for a correct 10% critical value using their degrees of freedom							
	4^{th} A1ft dep on M3 and cv = awrt 7.78 for contextual conclusion: length, cones, N (μ , σ r or Chry	ot needed) /stal's belief						
(b)	B1 for 5.8	Star 5 oction						
	M1 for a correct expression (ft their mean)							
	A1 for awrt 0.397 (Condone $\frac{3139}{7900}$)							
(c)	$1^{st} B1$ for degrees of freedom = 2							
	2 nd B1ft for a correct cv (different from their part (a)) ft their df							
	3 rd B1ft for a correct conclusion in context ft cv ("length" and "cones") Ignore an	ny μ or σ						
(d)	M1 for standardising with 7, their 5.8 (\neq 6) and their s.d. from (b). Ignore any \times	<80						
, ,	A1 for a correct proportion of 0.028 or 0.029 . (ISW if correct ans followed by \times							

Question Number	Scheme	Marks
6. (a)	Let $D = Y - R$ then $E(D) = -3$; $Var(D) = 0.8^2 + 1.5^2$ or 1.7^2 or 2.89	B1, M1
	$P(D > 0) = P\left(Z > \frac{03}{1.7}\right) \text{ or } P(Z > 1.7647)$	M1
	= 0.03880655 or $1 - 0.9608 = 0.0392$ awrt 0.039	A1 (4)
(b)	$(R_1 + R_2 + R_3) \sim N\left(45, \sqrt{3 \times 1.5^2}^2\right)$; $4Y \sim N\left(48, \sqrt{4^2 \times 0.8^2}^2\right)$	(4) M1A1A1
	$L = 4Y - (R_1 + R_2 + R_3) \implies L \sim N(3, \sqrt{16.99}^2)$	M1A1
	$P(L>0) = P(Z > \frac{0-3}{\sqrt{16.99}})$ or $P(Z>0-0.7278)$ [use 0 – 0.73 in tables]	dM1
	= awrt	A1 (7)
(c)	E(X) = 780 gives $15a + 12b = 780$ [Var(X) =] $1.5^2 \times a^2 + 0.8^2 \times b^2$	(7) M1A1 M1
	Sub for a: $Var(X) = 2.25(52 - 0.8b)^2 + 0.64 \times b^2$ or $2.08b^2 - 187.2b + 6084$	M1
	$\frac{d}{db}[Var(X)] = 0 \implies 4.16b - 187.2 = 0$	M1
	So $a = 52 - 0.8 \times 45 = 52 - 36$ $\underline{a = 16}$	A1 A1
		(7) [18 marks]
	Notes	
(a)	B1 for $E(D) = -3$ (or +3 if using $R - Y$) and 1^{st} M1 for $Var(D) = 0$ 2^{nd} M1 for attempt at $P(D > 0)$ must standardise with their -3 and their 1.7 are for awrt 0.039	
(b)	1 st M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or 4Y	
	1 st A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2 nd A1 for $4Y \sim N(48, \sqrt{6.75}^2)$	(10.24°)
	2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc)	, , , , , , , , , , , , , , , , , , , ,
	Must have L with mean of ± 3 and $\sigma_L^2 = \text{``6.75''} + \text{``10.24''} = (4.1218$ 3^{rd} A1 for a correct mean and variance. Sight of N(± 3 , 16.99) scores 1^{st} 5 ma	
	3^{rd} dM1 (dep on 2^{nd} M1) for attempting a prob (\rightarrow ans > 0.5) using $\mu_L = \pm 3$ at	
	4 th A1 for awrt 0.767 (Calc: 0.7666384 or tables 0.7673)	
(c)	1 st M1 for an attempt to use $E(X) = 780$ must see a linear equation in a and b us 1 st A1 for 15 a + 12 b = 780 a.e. a.g. 5 a + 4 b = 260 are a + 0.8 b = 52 at a	sing 780
	1 st A1 for $15a + 12b = 780$ o.e. e.g. $5a + 4b = 260$ or $a + 0.8b = 52$ etc 2^{nd} M1 for an attempt to find an expression for $\text{Var}(X)$ (condone a and b wrong	g way around)
	3^{rd} M1 for forming a quadratic expression for $Var(X)$ in terms of a or b only (M0 for 4^{th} M1 suitable method for finding min (e.g. differentiation, or completing squares)	$= k, k \neq 0$) are or calc)
	e.g. $\frac{13}{4} (a^2 - 32a + 832) [3^{rd} M1]$ then $k [(a-16)^2 + m]$ would score 4 th M	
	2^{nd} A1 for $b = 45$ or $a = 16$ Correct answers should be accompanied	