Lack-of-fit F-test

STAT 401A - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

October 6, 2013

Testing Composite hypotheses

Comparing two models

- *H*₀ : (reduced)
- *H*₁ : (full)

Do the following

- 1. Calculate extra sum of squares.
- 2. Calculate extra degrees of freedom
- 3. Calculate

$$\text{F-statistic} = \frac{\text{Extra sum of squares} \; / \; \text{Extra degrees of freedom}}{\hat{\sigma}_{\textit{full}}^2}$$

- 4. Compare this to an F-distribution with
 - numerator degrees of freedom = extra degrees of freedom
 - \bullet denominator degrees of freedom = degrees of freedom in estimating $\hat{\sigma}^2_{\textit{full}}$

Simple Linear Regression

Two models:

ANOVA: $Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$ (full) Regression: $Y_{ii} \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$ (reduced)

Regression: $Y_{ij} \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$ (reduced

- Regression model is reduced:
 - ANOVA has I parameters for the mean
 - Regression has 2 parameters for the mean
 - $\bullet \ \mu_i = \beta_0 + \beta_1 X_i$
- Small pvalues indicate a lack-of-fit, i.e. the reduced model is not adequate.
- Lack-of-fit F-test requires multiple observations at a few X_i values.

Telomere length

Telomere length

SAS code

```
DATA t;
INFILE 'telomeres.csv' DSD FIRSTOBS=2;
INPUT years length;
PROC REG DATA=t;
MODEL length = years / CLB LACKFIT;
RUN;
```

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Lack of Fit	9	0.18223	0.02025	0.69	0.7093
Pure Error	28	0.81810	0.02922		
Corrected Total	38	1 22810			

Indicates no evidence for a lack of fit, i.e. regression seems adequate.

Summary

- Lack-of-fit F-test tests the assumption of linearity
- Needs multiple observations at various explanatory variable values
- Small pvalue indicates a lack-of-fit, i.e. means are not linear
 - Transform response, e.g. log
 - Transform explanatory variable
 - Add other explanatory variables