Пример. Вычислим интеграл

$$I = \int_0^{\pi} 4x^3 dx = x^4 \Big|_0^{\pi} = \pi^4 = 97,409091.$$

Используя 2-х точечную квадратуру Гаусса-Лежандра, мы получим численный ответ

$$I \approx I_G = \frac{(\pi - 0)}{2} \left[4 \left(\frac{\pi + 0}{2} - \frac{\pi - 0}{2\sqrt{3}} \right)^3 + 4 \left(\frac{\pi + 0}{2} + \frac{\pi - 0}{2\sqrt{3}} \right)^3 \right] = 97,409091.$$

Результат получается таким же, как и аналитический ответ, с точностью 6 значащих цифр всего за два вычисления функции! (Это не всегда так, к сожалению, см. упражнения к разделу) \square

Таблица 2.2: Весовые коэффициенты и значения аргумента.

Число точек n	Весовые	Значения	Погрешность
в квадратуре	коэффициенты	аргумента	аппроксимации
2	$w_0 = 1,0000000000$	$x_0 = -0,577350269$	$\sim f^{(4)}(x)$
	$w_1 = 1,0000000000$	$x_1 = +0,577350269$	
3	$w_0 = 0,555555556$	$x_0 = -0,774596669$	$\sim f^{(6)}(x)$
	$w_1 = 0,888888889$	$x_1 = +0,0000000000$	
	$w_2 = 0,555555556$	$x_2 = +0,774596669$	
4	$w_0 = 0,347854845$	$x_0 = -0,861136312$	$\sim f^{(8)}(x)$
	$w_1 = 0,652145155$	$x_1 = -0,339981044$	
	$w_2 = 0,652145155$	$x_2 = +0,339981044$	
	$w_3 = 0,347854845$	$x_3 = +0,861136312$	
5	$w_0 = 0,236926885$	$x_0 = -0,906179846$	$\sim f^{(10)}(x)$
	$w_1 = 0,478628670$	$x_1 = -0,538469310$	
	$w_2 = 0,568888889$	$x_2 = +0,0000000000$	
	$w_3 = 0,478628670$	$x_3 = +0,538469310$	
	$w_4 = 0,236926885$	$x_4 = +0,906179846$	
6	$w_0 = 0,171324492$	$x_0 = -0,932469514$	$\sim f^{(12)}(x)$
	$w_1 = 0,360761573$	$x_1 = -0,661209386$	
	$w_2 = 0,467913935$	$x_2 = -0,238619186$	
	$w_3 = 0,467913935$	$x_3 = +0,238619186$	
	$w_4 = 0,360761573$	$x_4 = +0,661209386$	
	$w_5 = 0,171324492$	$x_5 = +0,932469514$	