Experiment 1

Amplitude Modulation (AM) and Demodulation

Communications Lab

Submission date:

11th November 2020

Submission by

S U Swakath 180020036

Course Instrutor

Prof. Naveen M B

Contents

- 1) Introduction
- 2) Plots
 - a) Conventional AM
 - b) DSB-SC
 - c) SSB-SC
- 3) Observations

Introduction

In this lab experiment, Conventional AM, DSB-SC and SSB-SC modulation and demodulation schemes are demonstrated using MATLAB.

For observations in all the modulations scheme, the message signal is take to be

Message Signal =
$$5 * \sin(2\pi * 400 * t) + 5 * \cos(2\pi * 200 * t)$$

That is sum of two different sinusoids of frequencies 400 Hz and 200 Hz is as message signal.

The carrier wave frequency (f_c) for all the modulation scheme is taken to be 1000Hz.

Plots

10

Conventional AM

The following plots are for Conventional AM:

Message signal (Time domain)

Modulated signal (Conventional AM)

DSB-SC
The following plots are for DSB-SC:

.....

SSB-SC
The following plots are for SSB-SC:

Observations

- In all the schemes we have used a 4th order Butterworth filter for low pass filtering, since the filter is a non-ideal filter it introduces a phase shift in the final demodulated signal.
- Since we have taken a non- ideal low pass filter with cutoff frequency 1000Hz (fc), we tend to observe some small frequency components even after 1000Hz in our demodulated signal.
- Due to the transient behavior of the filter in the initial few cycles, our demodulated signal is erroneous in first few cycles.
- Coherent demodulation is highly sensitive to frequency shifts due to noise, hence it does not give appreciable results when noise is included. (Plot shown below for SSB-SC demodulated

signal with SNR = 10dB). We can clearly observe that the shape of the message signal is retained in the demodulated signal but the amplitude is erroneous. This is because

Received Signal = $m(t) \cos(2\pi f_c t + \theta_r)$

Where θ_r is introduced due to noise.

Performing Coherent detection:

Demodulated signal = $m(t) \cos(2\pi f_c t + \theta_r) \cos(2\pi f_c t)$

Where θ_r is time varying.

Hence the final demodulated signal will be

 $m(t)\cos(\theta_r(t))$

This is the reason the amplitude of the demodulated signal is erroneous.

