

POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI

KIERUNEK STUDIÓW INFORMATYKA

MATERIAŁY DO ZAJĘĆ LABORATORYJNYCH

Algorytmy analizy numerycznej

Autor: dr Edyta Łukasik

Lublin, 2020

INFORMACJA O PRZEDMIOCIE

Cele przedmiotu:

- Cel 1. Zapoznanie studentów z metodami analizy numerycznej i ich zastosowaniami do rozwiązywania zagadnień obliczeniowych
- Cel 2. Nabycie przez studentów umiejętności zapisywania i implementacji algorytmów analizy numerycznej
- Cel 3. Zapoznanie studentów z metodami analizy i testowania poznanych algorytmów oraz formułowaniem wniosków

Efekty kształcenia w zakresie umiejętności:

- Efekt 1. Student potrafi stosować podstawowe pojęcia analizy numerycznej i posługiwać się algorytmami analizy numerycznej
- Efekt 2. Student potrafi analizować algorytmy numeryczne i ocenić ich przydatność do rozwiązania postawionego zadania inżynierskiego
- Efekt 3. Student umie zaprojektować algorytm realizujący wybraną metodę numeryczną, zaimplementować go i sprawdzić na konkretnym przykładzie rachunkowym

Literatura do zajęć:

Literatura podstawowa

- 1. Aho A., V., Ullman I. D., Projektowanie i analiza algorytmów. Helion, Gliwice 2003
- 2. Fortuna Z., Macukow B., Wasowski J., Metody numeryczne, WNT, 2008
- 3. Kincaid D., Cheney W., Analiza numeryczna. WNT, Warszawa 2006
- 4. Pańczyk B., Łukasik E., Sikora J., Guziak T., Metody numeryczne w przykładach, Wyd. Politechniki Lubelskiej, Lublin 2012

Literatura uzupełniająca

- 1. Björck A., Dahlquist G., Metody numeryczne. PWN, Warszawa 1983
- 2. Jankowscy J. i M., Przegląd metod i algorytmów numerycznych. WNT, Warszawa 1991
- 3. Stoer J., Wstep do metod numerycznych. PWN, Warszawa 1979
- 4. Wąsowski J., Ćwiczenia laboratoryjne z metod numerycznych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002

Metody i kryteria oceny:

Oceny cząstkowe:

- o zaliczenie pisemne z laboratorium (dwa kolokwia);
- o samodzielne wykonanie zadań na laboratoriach.

Ocena końcowa - zaliczenie przedmiotu:

- o średnia arytmetyczna z obu kolokwiów nie niższa niż 3,0;
- o ewentualne dodatkowe wymagania prowadzącego zajęcia.

Plan zajęć laboratoryjnych:

Lab1.	Numeryczna reprezentacja liczb. Implementacja algorytmów niestabilnych				
	i numerycznie poprawnych, porównanie dokładności. Analiza błędu				
	wytworzonego, przykłady.				
Lab2.	Schemat Hornera, operacje na wielomianach. Uogólniony schemat Hornera.				
Lab3.	Interpolacja wielomianowa. Wzór interpolacyjny Lagrange'a.				
Lab4.	Wzór interpolacyjny Newtona.				
Lab5.	Wzór iteracyjny Neville'a. Interpolacja Hermita.				
Lab6.	Aproksymacja. Metoda najmniejszych kwadratów. Układy Czebyszewa.				
Lab7.	Całkowanie numeryczne. Kwadratury interpolacyjne. Kwadratury Newtona-				
	Cotesa.				
Lab8.	Kwadratury Gaussa.				
Lab9.	Kolokwium 1				
Lab10	Metody rozwiązywania układów równań liniowych. Metoda eliminacji Gaussa.				
	Metody rozkładu macierzy oparte na eliminacji Gaussa.				
Lab11.	Metoda Choleskiego rozkładu A=LL* macierzy dodatnio określonych. Metoda				
	Choleskiego bez pierwiastków kwadratowych.				
Lab12.	Metoda ortogonalizacji Householdera. Metoda Householdera numerycznego				
	rozwiązywania metody najmniejszych kwadratów. Rozwiązywanie				
	nadokreślonych układów równań.				
Lab13.	Metody rozwiązywania równań nieliniowych i ich układów. Metoda bisekcji.				
	Metoda siecznych, metoda regula falsi. Metoda Newtona. Wielowymiarowa				
	metoda Newtona.				
Lab14.	Metoda Eulera i jej modyfikacje dla równań różniczkowych dodatnich.				
Lab15.	Kolokwium 2				

Wymagania odnośnie programów pisanych na laboratoriach:

- o pobranie danych oraz każda z implementowanych metod powinna być w oddzielnej funkcji;
- o wyniki powinny być drukowane na ekran w programie głównym;
- o dla każdej metody powinny być sprawdzone założenia jej realizacji.

LABORATORIUM 1. NUMERYCZNA REPREZENTACJA LICZB. IMPLEMENTACJA ALGORYTMÓW NIESTABILNYCH I NUMERYCZNIE POPRAWNYCH, PORÓWNANIE DOKŁADNOŚCI. ANALIZA BŁEDU WYTWORZONEGO.

Cel laboratorium:

Zapoznanie studentów z reprezentacją liczb, poprawnością numeryczną algorytmów i błędami wynikającymi z reprezentacji.

Zakres tematyczny zajęć:

- numeryczna reprezentacja liczb rzeczywistych;
- implementacja algorytmów niestabilnych i numerycznie poprawnych;
- analiza błędu wytworzonego.

Pytania kontrolne:

- 1. Jakie są możliwe reprezentacje liczb rzeczywistych?
- 2. Kiedy algorytm jest numerycznie stabilny?
- 3. Jakie są rodzaje błędów?

Na początek trochę teorii...

Liczbę całkowitą, w reprezentacji stałopozycyjnej, przedstawia się za pomocą rozwinięcia dwójkowego i przeznaczona jest na nią stałą liczba bitów:

$$l = s \sum_{i=0}^{n-1} c_i 2^i,$$

gdzie:

 $s - znak liczby \{-1,1\}$

$$c_{n-1} \neq 0$$
 dla $l \neq 0$ oraz $c_i \in \{0,1\}$ dla $i = n - 2, n - 3, ..., 0$.

Reprezentacja zmiennopozycyjna – w niej wyróżnia się mantysę (m) i cechę (c):

$$l = s \cdot 2^c \cdot m$$

gdzie:

 $s - znak liczby \{-1,1\}$

c – liczba całkowita zwana cechą liczby zapisywana na (d-t) bitach

 $m \in [\frac{1}{2}; 1)$ – liczba rzeczywista zwana mantysą zapisywana na t bitach.

Przykład 1.1. Reprezentacja liczb

Znaleźć zapis liczby dziesiętnej 234,13₍₁₀₎ w systemie dwójkowym z dokładnością do 8 cyfr po przecinku.

Rozwiązanie:

Skoro zaokrąglenie ma być do 10 cyfr, to:

1) daną liczbę należy pomnożyć przez 2⁸

$$234.13*2^8 = 234.13*256=59937.28$$

2) zaokrąglić ją w dół do liczby całkowitej

59 937

3) przeliczyć na system dwójkowy

```
59 937 div 2 = 29 968 r. 1
29\ 968\ div\ 2 = 14\ 984\ r.\ 0
14\ 984\ div\ 2 = 7\ 492\ r.\ 0
 7 492 \text{ div } 2 = 3 746 \text{ r. } 0
 3746 \, \text{div } 2 = 1873 \, \text{r.} \, 0
 1 873 div 2 =
                      936 r. 1
   936 \text{ div } 2 = 468 \text{ r. } 0
   468 div 2 =
                       234 r. 0
   234 \text{ div } 2 = 117 \text{ r. } 0
   117 \text{ div } 2 =
                      58 r. 1
     58 \text{ div } 2 = 29 \text{ r. } 0
                       14 r. 1
     29 div 2 =
                       7 r. 0
     14 div 2 =
      7 \text{ div } 2 =
                         3 r. 1
       3 \text{ div } 2 =
                         1 r. 1
       1 div 2 =
                         0 r. 1
```

Liczba całkowita 59937 w zapisie dwójkowym ma postać:

$$59937_{(10)} = 1110101000100001_{(2)}$$

Należy teraz rozdzielić przecinkiem 8 ostatnich cyfr, bo z taką dokładnością miały być wykonane obliczenia:

$$234,13_{(10)} = 11101010,00100001_{(2)}$$

Odp. Liczba 234,13 $_{(10)}$ w systemie dwójkowym z dokładnością do 8 cyfr ma postać 11101010,00100001 $_{(2)}$.

Przykład 1.2.

Należy przetestować, jaka jest wartość wyrażenia logicznego (a+b==a), gdzie a i b są zmiennymi typu rzeczywistego i wynoszą a=0.567343e+23, b=0.123819e+4?

Rozwiązanie:

W celu sprawdzenia, ile w rzeczywistości zajmuje określony typ danych dla danego kompilatora, wystarczy skorzystać z funkcji *sizeof*, której użycie pokazano na listingu 1.1.

Listing 1.1. Rozmiar typu zmiennych

```
cout<< "zmienna typu float zajmuje: ";
cout<<sizeof(float);
cout<< "zmienna typu double zajmuje: ";
cout<<sizeof(double);</pre>
```

Przykład 1.3.

Należy przetestować, ile razy zostanie wykonana pętla z listingu 1.2, gdy s jest zmienną typu rzeczywistego?

Listing 1.2. Petla nieskończona

```
s = 0;
podczas, gdy (s!=100) wykonuj
s += 0.01;
wydrukuj wartość zmiennej s na ekran
```

Zadanie 1.1. Reprezentacja liczb - implementacja

Napisać program, który przelicza liczbę całkowitą daną w zapisie dziesiętnym na zapis w systemie pozycyjnym o podanej podstawie.

Zadanie 1.2. Równanie kwadratowe

Napisać program, który oblicza pierwiastki równania kwadratowego $ax^2 + bx + c = 0$ dwiema podanymi poniżej metodami:

a) "klasycznymi" wzorami:

$$\Delta = b^2 - 4ac$$
, $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$, $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$;

b) korzystając ze wzorów:

$$x_1 = \frac{-b}{2a} + sign\left(\frac{-b}{2a}\right) \cdot \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}, \quad x_2 = \frac{c}{a \cdot x_1}.$$

Symbol sign(t) – oznacza znak liczby t:

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

$$sign(t) = \begin{cases} 1, & gdy \ t > 0 \\ 0, & gdy \ t = 0 \\ -1, & gdy \ t < 0 \end{cases}$$

Przetestować napisany program, jeśli zmienne *a, b, c* są zmiennymi typu: *float / double* o wartościach:

- a) a=1.000000009; b=2.000000001; c=1.000000001;
- b) a=1e-16; b=10; c=1.

LABORATORIUM 2. SCHEMAT HORNERA, OPERACJE NA WIELOMIANACH. UOGÓLNIONY SCHEMAT HORNERA.

Cel laboratorium:

Zapoznanie studentów ze schematem Hornera oraz jego implementacja.

Zakres tematyczny zajęć:

- reprezentacja wielomianu;
- algorytm Hornera;
- uogólniony algorytm Hornera;
- implementacja algorytmu Hornera.

Pytania kontrolne:

- 1. Do czego służy algorytm Hornera?
- 2. Jaka jest złożoność algorytmu Hornera?
- 3. Jak policzyć wartość pochodnej wielomianu w danym punkcie?

Na początek trochę teorii...

Niech wielomian $w_n(x)$ stopnia $n \ge 1$ ma postać:

$$w_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^0$$

Liczby $a_0, a_1, a_2, ..., a_n$ są współczynnikami rzeczywistymi wielomianu $w_n(x)$ stojącymi odpowiednio przy potęgach n, n-1, n-2, ..., 0.

Reprezentacja wielomianu polega na przechowywaniu w tablicy jego współczynników, gdzie A[i] oznacza wartość współczynnika stojącego przy x^{n-i} dla i=0,1,2,...,n. Wielomian stopnia n posiada (n+1) współczynników.

Schemat Hornera służy do obliczenia wartości wielomianu w danym punkcie.

Wartość wielomianu w punkcie p można oczywiście obliczyć realizując poszczególne potęgi i wymnażając przez współczynniki wielomianu, ale jest tańsza metoda – mianowicie:

$$w_n(p) = (...((a_0p + a_1)p + a_2)p + ... + a_n)p$$

Poniżej na listingu 2.1 przedstawiony jest pseudo-kod algorytmu Hornera.

Listing 2.1. Algorytm Hornera

```
wynik = A[0]
i=1;
podczas, gdy (i<=n) wykonuj
    wynik = wynik*p + A[i]
    i=i+1</pre>
```


W zmiennej wynik jest wartość wielomianu w_n w punkcie p.

Parametry wejściowe dla tego algorytmu to:

- n stopień wielomianu;
- A[0..n] tablica zawierająca (n+1) współczynników wielomianu;
- p punkt (liczba rzeczywista), w którym liczona jest wartość wielomianu.

Parametry wyjściowe dla tego algorytmu to:

• wynik – wartość wielomianu w punkcie p czyli $w_n(p)$.

Tak zapisana realizacja algorytmu Hornera ma koszt n mnożeń i n dodawań czyli 2n operacji.

Możliwe jest także obliczenie współczynników wielomianu $v_{n-1}(x)$ powstałego przy dzieleniu wielomianu przez dwumian:

$$w_n(x) = (x - p)v_{n-1}(x) + b_n$$

gdzie:

$$v_{n-1}(x) = b_0 x^{n-1} + b_1 x^{n-2} + b_2 x^{n-3} \dots + b_{n-1} x^0$$

zgodnie z formułą:

$$b_0 = a_0$$
,

$$b_i = a_i + b_{i-1}p.$$

Jeżeli ten schemat zostanie powtórzony n razy, wtedy otrzymuje się unormowane pochodne w podanym punkcie czyli wektor:

$$\left[\frac{w^{(n)}(p)}{n!}, \frac{w^{(n-1)}(p)}{(n-1)!}, \frac{w^{(n-2)}(p)}{(n-2)!}, \dots, \frac{w'(p)}{1!}, \frac{w(p)}{0!}\right]$$

Przykład 2.1. Schemat Hornera

Obliczyć wartość wielomianu:

$$w_4(x) = 2x^4 + 3x^2 - 5x + 2$$

w punkcie (-1).

Rozwiazanie:

Wartość w punkcie (-1) oblicza się następująco:

$$w_4(-1) = (((2*(-1)+0)*(-1)+3)*(-1)-5)*(-1)+2$$

$$= (((-2)*(-1)+3)*(-1)-5)*(-1)+2 = (5*(-1)-5)*(-1)+2$$

$$= (-10)*(-1)+2=12$$

Dane wejściowe dla przykładu 2.1 to:

- n=4
- A = [2, 0, 3, -5, 2]
- p = -1

Tabela 1.1 zawiera wartości powstałe w trakcie realizacji algorytmu (tabelka egzekucji) z listingu 2.1 realizowanego dla danych z przykładu 2.1 zgodnie ze wzorami:

$$wynik = a_0$$

$$wynik = a_i + wynik \cdot p$$

Tabela 1.1. Realizacja schematu Hornera

р	wynik	n	i	A[i]
-1	2	4		2
	2*(1)+0 = -2		1	0
	-2*(-1)+3=5		2	3
	5*(-1)-5 = -10		3	-5
	-10*(-1)+2=12		4	2

Odp. Wartość wielomianu w punkcie (-1) wynosi w(-1)=12.

Przykład 2.2. Dzielenie wielomianu przez dwumian

Obliczyć wartość współczynników wielomianu powstałego po podzieleniu w(x) przez dwumian (x-3) dla:

$$w(x) = 5x^3 + 2x^2 - 3x + 7.$$

Rozwiązanie:

Oznaczenie dla wielomianu stopnia n=3:

$$w_3(x) = (x-3)v_2(x) + b_3,$$

gdzie:

$$v_2(x) = b_0 x^2 + b_1 x + b_2$$
.

Wiadomo, że $b_3 = w_3(3)$.

Obliczenia mają postać:

$$b_0 = a_0 = 5,$$

 $b_1 = a_1 + b_0 p = 2 + 5 \cdot 3 = 17,$
 $b_2 = a_2 + b_1 p = -3 + 17 \cdot 3 = 48,$

$$b_3 = a_3 + b_2 p = 7 + 48 \cdot 3 = 151,$$

Zatem współczynniki szukanego wielomianu to b_0 , b_1 i b_2 , bo wielomian ten jest stopnia 2-go.

$$v_2(x) = b_0 x^2 + b_1 x + b_2 = 5x^2 + 17x + 48.$$

Odp. Wielomian powstały po podzieleniu w(x) przez dwumian (x-3)ma postać:

$$v_2(x) = 5x^2 + 17x + 48.$$

Przykład 2.3. Uogólniony schemat Hornera

Obliczyć wartość wszystkich pochodnych wielomianu w(x) w punkcie x=2:

$$w_4(x) = -3x^4 + x^2 - 2x + 4.$$

Rozwiązanie:

Obliczenia z przykładu 2.2. należy powtórzyć n razy, dla n=4, bo taki jest stopień wielomianu w(x).

$$a = [-3, 0, 1, -2, 4], a_0 = -3.$$

Dla i=0:

$$a_1 = a_1 + a_0 p = 0 + (-3) \cdot 2 = -6,$$

 $a_2 = a_2 + a_1 p = 1 + (-6) \cdot 2 = -11,$
 $a_3 = a_3 + a_2 p = -2 + (-11) \cdot 2 = -24,$
 $a_4 = a_4 + a_3 p = 4 + (-24) \cdot 2 = -44.$

Dla i=1:

$$a_1 = a_1 + a_0 p = -6 + (-3) \cdot 2 = -12,$$

 $a_2 = a_2 + a_1 p = -11 + (-12) \cdot 2 = -35,$
 $a_3 = a_3 + a_2 p = -24 + (-35) \cdot 2 = 46.$

Dla i=2:

$$a_1 = a_1 + a_0 p = -12 + (-3) \cdot 2 = -18,$$

 $a_2 = a_2 + a_1 p = -35 + (-18) \cdot 2 = -71,$

Dla i=3:

$$a_1 = a_1 + a_0 p = -18 + (-3) \cdot 2 = -24.$$

Obliczone wartości to:

$$[-3, -24, -71, 46, -44],$$

które są odpowiednio równe:

$$\left[\frac{w^{(4)}(2)}{4!}, \frac{w^{(3)}(2)}{3!}, \frac{w^{(2)}(2)}{2!}, \frac{w'(p2)}{1!}, \frac{w(2)}{0!}\right].$$

Zatem:

$$w(2) = -44 \cdot 0! = -44,$$

$$w'(2) = 46 \cdot 1! = 46,$$

$$w^{(2)}(2) = -71 \cdot 2! = -142,$$

$$w^{(3)}(2) = -24 \cdot 3! = -144,$$

$$w^{(4)}(2) = -3 \cdot 4! = -72.$$

Odp. Pochodne tego wielomianu w podanym punkcie mają wartości:

$$w'(2) = 46, w^{(2)}(2) = -142, w^{(3)}(2) = -144, w^{(4)}(2) = -72.$$

Zadanie 2.1. Implementacja schematu Hornera

Napisać program, w którym obliczona zostanie wartość wielomianu w podanym punkcie i wartości wszystkich jego pochodnych w tym punkcie z użyciem schematu Hornera. Należy pobrać od użytkownika:

- stopień wielomianu;
- współczynniki wielomianu;
- punkt, w którym liczona będzie wartość wielomianu.

LABORATORIUM 3. INTERPOLACJA WIELOMIANOWA. WZÓR INTERPOLACYJNY LAGRANGE'A.

Cel laboratorium:

Zapoznanie studentów z interpolacją wielomianową Lagrange'a.

Zakres tematyczny zajęć:

- interpolacja wielomianowa;
- interpolacja Lagrange'a.

Pytania kontrolne:

- 1. Do czego służy interpolacja?
- 2. Co to jest interpolacja wielomianowa?
- 3. Jakie są założenia w interpolacji wielomianowej?
- 4. Jaki jest wzór na wielomian interpolacyjny Lagrange'a?

Na początek trochę teorii...

Interpolacją nazywa się postępowanie, które prowadzi do znalezienia wartości funkcji f(x) w dowolnym punkcie przedziału $[x_0, x_n]$ na podstawie znanych wartości tej funkcji w punktach $x_0, x_1, ..., x_n$. Zwykle nie jest znany wzór analityczny funkcji f(x).

Punkty x_0 , x_1 , ..., x_n nazywa się *węzłami interpolacji*; muszą one być różne między sobą i ułożone w porządku rosnącym: $x_0 < x_1 < ... < x_n$.

Funkcji interpolującej poszukuje się zwykle w pewnej określonej postaci. W przypadku interpolacji wielomianowej zakłada się, że jest to wielomian algebraiczny stopnia *n* postaci:

$$W_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

Wielomian $W_n(x)$ jest wielomianem interpolacyjnym, jeżeli spełnia on warunki interpolacji:

$$W_n(x_i) = y_i$$
 dla $i = 0, 1, 2, ..., n$.

Wzór na wielomian interpolacyjny Lagrange'a oparty na węzłach x_0 , x_1 , ..., x_n ma postać:

$$W_n(x) = \sum_{i=0}^n f_i \cdot l_i(x) = f_0 \cdot l_0(x) + f_1 \cdot l_1(x) + f_2 \cdot l_2(x) + \dots + f_n \cdot l_n(x)$$

gdzie $l_i(x)$ dla i=0, 1, 2, ..., n są to wielomiany fundamentalne Lagrange'a, które oblicza się ze wzoru:

$$l_i(x) = \prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{x - x_k}{x_i - x_k} = \frac{x - x_0}{x_i - x_0} \cdot \frac{x - x_1}{x_i - x_1} \cdot \dots \cdot \frac{x - x_{k-1}}{x_i - x_{k-1}} \cdot \frac{x - x_{k+1}}{x_i - x_{k+1}} \cdot \dots \cdot \frac{x - x_n}{x_i - x_n}$$

Wielomian ten jest wielomianem stopnia co najwyżej n i jest jednoznacznym rozwiązaniem zadania interpolacyjnego.

Przykład 3.1. Interpolacja Lagrange'a

Obliczyć (wyznaczyć) wielomian interpolacyjny Lagrange'a, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 3.1.

Tabela 3.1. Dane do przykładu 3.1

x_i	-2	0	1	2	3
f_{i}	-240	24	18	-16	-60

Rozwiązanie:

Należy najpierw ustalić wartość n oznaczającą indeks najwyższego węzła – jest to n=4.

Teraz wypisane zostaną kolejno węzły w tym zadaniu:

$$x_0 = -2$$

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 2$$

$$x_4 = 3$$

Założenie dotyczące ich wartości jest spełnione, ponieważ węzły te są między sobą różne.

Najpierw zostaną policzone wielomiany fundamentalne Lagrange'a.

Dla i=0 liczony jest pierwszy wielomian fundamentalny:

$$l_0(x) = \prod_{\substack{k=0 \ k \neq 0}}^4 \frac{x - x_k}{x_0 - x_k} = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} \cdot \frac{x - x_3}{x_0 - x_3} \cdot \frac{x - x_4}{x_0 - x_4}$$

Teraz należy podstawić wartości odpowiednich węzłów:

$$l_0(x) = \frac{x-0}{-2-0} \cdot \frac{x-1}{-2-1} \cdot \frac{x-2}{-2-2} \cdot \frac{x-3}{-2-3} =$$

$$= \frac{1}{(-2) \cdot (-3) \cdot (-4) \cdot (-5)} (x)(x-1)(x-2)(x-3) =$$

$$= \frac{1}{120} (x)(x-1)(x-2)(x-3) = \frac{1}{120} (x^2 - x)(x^2 - 5x + 6) =$$

$$= \frac{1}{120} (x^4 - 5x^3 + 6x^2 - x^3 + 5x^2 - 6x) = \frac{1}{120} (x^4 - 6x^3 + 11x^2 - 6x)$$

Kolejny liczony jest dla i=1:

$$l_1(x) = \prod_{\substack{k=0\\k\neq 1}}^4 \frac{x - x_k}{x_1 - x_k} = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} \cdot \frac{x - x_3}{x_1 - x_3} \cdot \frac{x - x_4}{x_1 - x_4}$$

$$l_{1}(x) = \frac{x - (-2)}{0 - (-2)} \cdot \frac{x - 1}{0 - 1} \cdot \frac{x - 2}{0 - 2} \cdot \frac{x - 3}{0 - 3} =$$

$$= \frac{1}{(2) \cdot (-1) \cdot (-2) \cdot (-3)} (x + 2)(x - 1)(x - 2)(x - 3) =$$

$$= -\frac{1}{12} (x + 2)(x - 1)(x - 2)(x - 3) = -\frac{1}{12} (x^{2} - 4)(x^{2} - 4x + 3) =$$

$$= -\frac{1}{12} (x^{4} - 4x^{3} + 3x^{2} - 4x^{2} + 16x - 12)$$

$$= -\frac{1}{12} (x^{4} - 4x^{3} - x^{2} + 16x - 12)$$

Kolejny liczony jest dla i=2:

$$l_2(x) = \prod_{\substack{k=0\\k\neq 2}}^4 \frac{x - x_k}{x_2 - x_k} = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} \cdot \frac{x - x_3}{x_2 - x_3} \cdot \frac{x - x_4}{x_2 - x_4}$$

$$l_{2}(x) = \frac{x - (-2)}{1 - (-2)} \cdot \frac{x - 0}{1 - 0} \cdot \frac{x - 2}{1 - 2} \cdot \frac{x - 3}{1 - 3} =$$

$$= \frac{1}{(3) \cdot (1) \cdot (-1) \cdot (-2)} (x + 2)(x)(x - 2)(x - 3) =$$

$$= \frac{1}{6} (x + 2)(x)(x - 2)(x - 3) = \frac{1}{6} (x^{2} - 4)(x^{2} - 3x) =$$

$$= \frac{1}{6} (x^{4} - 3x^{3} - 4x^{2} + 12x)$$

Kolejny liczony jest dla i=3:

$$l_3(x) = \prod_{\substack{k=0\\k\neq 3}}^4 \frac{x - x_k}{x_3 - x_k} = \frac{x - x_0}{x_3 - x_0} \cdot \frac{x - x_1}{x_3 - x_1} \cdot \frac{x - x_2}{x_3 - x_2} \cdot \frac{x - x_4}{x_3 - x_4}$$

$$l_3(x) = \frac{x - (-2)}{2 - (-2)} \cdot \frac{x - 0}{2 - 0} \cdot \frac{x - 1}{2 - 1} \cdot \frac{x - 3}{2 - 3} = \frac{1}{(4) \cdot (2) \cdot (1) \cdot (-1)} (x + 2)(x)(x - 1)(x - 3)$$

$$= -\frac{1}{8} (x + 2)(x)(x - 1)(x - 3) = -\frac{1}{8} (x^2 + 2x)(x^2 - 4x + 3) =$$

$$= -\frac{1}{8} (x^4 - 4x^3 + 3x^2 + 2x^3 - 8x^2 + 6x) = -\frac{1}{8} (x^4 - 2x^3 - 5x^2 + 6x)$$

Kolejny liczony jest dla i=4:

$$l_4(x) = \prod_{\substack{k=0\\k\neq 4}}^4 \frac{x - x_k}{x_4 - x_k} = \frac{x - x_0}{x_4 - x_0} \cdot \frac{x - x_1}{x_4 - x_1} \cdot \frac{x - x_2}{x_4 - x_2} \cdot \frac{x - x_3}{x_4 - x_3}$$

$$l_4(x) = \frac{x - (-2)}{3 - (-2)} \cdot \frac{x - 0}{3 - 0} \cdot \frac{x - 1}{3 - 1} \cdot \frac{x - 2}{3 - 2} = \frac{1}{(5) \cdot (3) \cdot (2) \cdot (1)} (x + 2)(x)(x - 1)(x - 2) =$$

$$= \frac{1}{30} (x + 2)(x)(x - 1)(x - 2) = \frac{1}{30} (x^2 - 4)(x^2 - x) =$$

$$= \frac{1}{30} (x^4 - x^3 - 4x^2 + 4x)$$

Teraz zostanie obliczony wielomian interpolacyjny Lagrange'a ze wzoru dla n=4:

$$W_4(x) = \sum_{i=0}^4 f_i \cdot l_i(x) = f_0 \cdot l_0(x) + f_1 \cdot l_1(x) + f_2 \cdot l_2(x) + f_3 \cdot l_3(x) + f_4 \cdot l_4(x)$$

Obliczenia:

$$W_4(x) = -240 \cdot \frac{1}{120} (x^4 - 6x^3 + 11x^2 - 6x) + 24 \left(-\frac{1}{12} \right) (x^4 - 4x^3 - x^2 + 16x - 12)$$

$$+ 18 \cdot \frac{1}{6} (x^4 - 3x^3 - 4x^2 + 12x) - 16 \cdot \left(-\frac{1}{8} \right) (x^4 - 2x^3 - 5x^2 + 6x) - 60$$

$$\cdot \frac{1}{30} (x^4 - x^3 - 4x^2 + 4x)$$

$$W_4(x) = -2x^4 + 12x^3 - 22x^2 + 12x - 2x^4 + 8x^3 + 2x^2 - 32x + 24 + 3x^4 - 9x^3 - 12x^2 + 36x + 2x^4 - 4x^3 - 10x^2 + 12x - 2x^4 + 2x^3 + 8x^2 - 8x$$

Odp. Zatem wielomian interpolacyjny Lagrange'a dla podanych danych ma postać:

$$W_4(x) = -x^4 + 9x^3 - 34x^2 + 20x + 24.$$

Przykład 3.2. Interpolacja Lagrange'a

Dla danych z przykładu 3.1 obliczyć przybliżoną wartość funkcji f(x) w punktach: x=1 oraz x=-5.

Rozwiazanie:

Używając tego wielomianu można teraz interpolować tylko wartości funkcji f(x) w punktach należacych do przedziału [-2,3].

Ponieważ $1 \in [-2,3]$, to przybliżona wartość funkcji f w punkcie 1 równa się wartości wielomianu interpolacyjnego Lagrange'a w tym punkcie $W_3(1)$:

$$f(1) \approx W_4(1) = -1^4 + 9 \cdot 1^3 - 34 \cdot 1^2 + 20 \cdot 1 + 24 = 18$$

Ponieważ $-5 \notin [-2,3]$, to nie da się obliczyć przybliżonej wartość funkcji f w punkcie -5 otrzymanym wielomianem interpolacyjnym Lagrange'a.

Zadanie 3.1. Implementacja: wielomianu interpolacyjnego Lagrange'a w podanym punkcie

Napisać program, w którym obliczona zostanie przybliżona wartość funkcji w podanym punkcie przy użyciu interpolacji wielomianowej Langrange'a. Należy pobrać od użytkownika:

- liczbę węzłów;
- wartości wezłów;
- wartości funkcji w tych węzłach;
- punkt *p*.

Najpierw trzeba sprawdzić założenia interpolacji. Jeżeli są one spełnione, należy wyświetlić **przybliżoną wartość funkcji, której wartości w danych węzłach są podane, w podanym punkcie** *p*. W przeciwnym razie należy wyświetlić odpowiedni komunikat dla użytkownika mówiący o niespełnionym założeniu interpolacyjnym.

Zadanie 3.2.* Implementacja: wielomianu interpolacyjnego Lagrange'a

Napisać program, w którym wyznaczony zostanie wielomian interpolacyjny Langrange'a. Należy pobrać od użytkownika:

- liczbę węzłów;
- wartości węzłów;
- wartości funkcji w tych węzłach.

Następnie, jeżeli spełnione są założenia interpolacji, należy wyświetlić **wzór otrzymanego wielomianu interpolacyjnego Lagrange'a**. W przeciwnym razie należy wyświetlić odpowiedni komunikat dla użytkownika mówiący o niespełnionym założeniu interpolacyjnym.

Zadania samosprawdzające dla studenta

Zadanie 3.3.

Obliczyć (wyznaczyć) wielomian interpolacyjny Lagrange'a, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 3.2.

Tabela 3.2. Dane do zadania 3.3

x_i	-4	-2	0	3	5
f_i	1008	420	-240	-420	63 0

Odp.
$$W_3(x) = 9x^3 + 45x^2 - 276x - 240$$

Zadanie 3.4.

Obliczyć (wyznaczyć) wielomian interpolacyjny Lagrange'a, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 3.3.

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

Tabela 3.3. Dane do zadania 3.4

x_i	-5	-3	-1	2	5
f_i	1120	-160	-144	-630	2880

Odp.
$$W_4(x) = 6x^4 + 14x^3 - 60x^2 - 174x - 250$$

LABORATORIUM 4. WZÓR INTERPOLACYJNY NEWTONA.

Cel laboratorium:

Zapoznanie studentów z interpolacją wielomianową Newtona.

Zakres tematyczny zajęć:

- ilorazy różnicowe;
- interpolacja Newtona.

Pytania kontrolne:

- 1. Jak oblicza się ilorazy różnicowe?
- 2. Jaki jest wzór na wielomian interpolacyjny Newtona?

Na początek trochę teorii...

Kolejną metodą służącą do wyznaczenia wielomianu interpolacyjnego jest metoda Newtona. Założenia w tej metodzie są identyczne, jak przy interpolacji Lagrange'a, czyli:

- 1) węzły interpolacji muszą być między sobą różne;
- 2) punkt, w którym chce się interpolować wartość funkcji, musi należeć do przedziału wyznaczonego przez węzły interpolacji.

Wzór na wielomian interpolacyjny Newtona oparty na węzłach x_0 , x_1 , ..., x_n , które spełniają nierówność $x_0 < x_1 < x_2 < \cdots < x_n$, ma postać:

$$W_n(x) = \sum_{i=0}^n [f[x_0, ..., x_i] \cdot \prod_{k=0}^{i-1} (x - x_i)]$$

We wzorze (4.1) symbol $f[x_i, ..., x_{i+k}]$ oznacza **iloraz różnicowy** funkcji f oparty na węzłach $x_i, x_{i+1}, x_{i+2}, ..., x_{i+k}$ dla k>0. Iloraz różnicowy rozparty na jednym węźle jest równy wartości funkcji w tym węźle:

$$f[x_i] = f_i$$

Dla większej liczb węzłów iloraz różnicowy oparty na (k+1) węzłach definiuje się rekurencyjnie z użyciem ilorazów różnicowych opartych na (k) węzłach zgodnie ze wzorem:

$$f[x_i,x_{i+1},\dots,x_{i+k}] = \frac{f[x_{i+1},\dots,x_{i+k}] - f[x_i,\dots,x_{i+k-1}]}{x_{i+k} - x_i}$$

Rozpisują ostatni wzór otrzymuje się następujące wzory dla ustalonej liczby węzłów:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} dla i = 0, 1, 2, ..., n - 1$$

$$f[x_i,x_{i+1},x_{i+2}] = \frac{f[x_{i+1},x_{i+2}] - f[x_i,x_{i+1}]}{x_{i+2} - x_i} \quad dla \; i = 0,1,2,\dots,n-2$$

$$f[x_i,x_{i+1},x_{i+2},x_{i+3}] = \frac{f[x_{i+1},x_{i+2},x_{i+3}] - f[x_i,x_{i+1},x_{i+2}]}{x_{i+3} - x_i} \quad dla \ i = 0,1,2,\dots,n-3$$

itd. dla każdej większej liczby węzłów.

W celu obliczenia wszystkich ilorazów różnicowych dla danych wartości węzłów i wartości funkcji w tych węzłach, tworzy się tablicę ilorazów różnicowych. Wzór na ich obliczenie dla 4 węzłów czyli n=3 pokazano w tabeli 4.1.

Tabela 4.1. Obliczanie tablicy ilorazów różnicowych – przykład dla 4 węzłów

x_i	f_i	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, \dots, x_{i+3}]$
x_0	fo			
x_1	f_I	$\frac{f_1 - f_0}{x_1 - x_0}$		
x_2	f_2	$\frac{f_2 - f_1}{x_2 - x_1}$	$f[x_1, x_2] - f[x_0, x_1] - x_2 - x_0$	
x_3	f_3	$\frac{f_3 - f_2}{x_3 - x_2}$	$\frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$\frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$

Pierwsze dwie kolumny w tej tabeli są to wstawione dane, które zawsze są w zadaniu. Warto zauważyć, że w celu obliczenia każdej kolejnej kolumny w tej tabeli używa się tylko kolumny o jeden wcześniejszej i kolumny pierwszej zawierającej wartości węzłów. Dla (n+1) węzłów należy obliczyć n kolumn, z wyłączeniem dwóch pierwszych (których wartości należy tylko uzupełnić danymi).

Do obliczenia wielomianu interpolacyjnego Newtona będą potrzebne ilorazy różnicowe zaczynające się od węzła x_0 czyli jest to pierwszy iloraz w każdej kolumnie (idąc od

pierwszego wiersza – umieszczony na niebieskim tle). Ich ułożenie w tablicy ilorazów różnicowych pokazano w tablicy 4.2.

Tabela 4.2. Tablica ilorazów różnicowych – przykład dla 4 węzłów

x_i	f_i	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, \dots, x_{i+3}]$
x_0	f_0			
x_1	f_{I}	$f[x_0, x_1]$		
x_2	f_2	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
<i>x</i> ₃	f3	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$

Jeżeli tablica ilorazów różnicowych zostanie policzona, kolejnym krokiem jest obliczenie wielomianu interpolacyjnego. Na podstawie wzoru, dla n=3, ma on postać:

$$W_3(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_3)$$

Szczegóły implementacji interpolacji Newtona:

Ilorazy różnicowe oblicza się w tablicy dwuwymiarowej, jednak ostatecznie do obliczenia wielomianu potrzebne są tylko te ilorazy różnicowe, które zaczynają się od węzła x_0 . W tabeli 4.2 widoczne jest, iż elementy te leżą jako pierwsze w każdej kolumnie. Każda kolumna ma o jeden element mniej niż poprzednia kolumna.

Poniżej na listingu 4.1 przedstawiony jest pseudo-kod obliczenia wektora ilorazów różnicowych (nazwa zmiennej: IR) zawierającego ilorazy różnicowe postaci:

$$IR[i] = f[x_0, ..., x_i]$$
dla $i = 0, 1, 2, ..., n$.

Listing 2.1. Algorytm obliczania ilorazów różnicowych

```
i=0
podczas, gdy (i<=n) wykonuj
    IR[i]=f[i]
k=1
podczas, gdy (k<=n) wykonuj
    i=n
    podczas, gdy (i>=k) wykonuj
        IR[i]=(IR[i]-IR[i-1])/(X[i]-X[i-k])
        i=i-1
    k=k+1
```


Przykład 4.1. Interpolacja Newtona

Obliczyć (wyznaczyć) wielomian interpolacyjny Newtona, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 4.3.

Tabela 4.3. Dane do przykładu 4.1

χ_i	-4	-2	0	1	3
f_i	-1	-7	-21	-1	573

Rozwiazanie:

Należy najpierw ustalić wartość n oznaczającą indeks najwyższego węzła – jest to n=4.

Teraz obliczone zostaną kolejno wartości ilorazów różnicowych – najpierw te wyznaczone przez dwa węzły:

$$f[x_0, x_1] = f[-4, -2] = \frac{f[-2] - f[-4]}{-2 - (-4)} = \frac{-7 - (-1)}{2} = -3$$

$$f[x_1, x_2] = f[-2, 0] = \frac{f[0] - f[-2]}{0 - (-2)} = \frac{-21 - (-7)}{2} = -7$$

$$f[x_2, x_3] = f[0, 1] = \frac{f[1] - f[0]}{1 - 0} = \frac{-1 - (-21)}{1} = 20$$

$$f[x_3, x_4] = f[1, 3] = \frac{f[3] - f[1]}{3 - 1} = \frac{573 - (-1)}{2} = 287$$

Następnie należy policzyć wartości ilorazów różnicowych wyznaczonych przez trzy węzły:

$$f[x_0, x_1, x_2] = f[-4, -2, 0] = \frac{f[-2, 0] - f[-4, -2]}{0 - (-4)} = \frac{-7 - (-3)}{4} = -1$$

$$f[x_1, x_2, x_3] = f[-2, 0, 1] = \frac{f[0, 1] - f[-2, 0]}{1 - (-2)} = \frac{20 - (-7)}{3} = 9$$

$$f[x_2, x_3, x_4] = f[0, 1, 3] = \frac{f[1, 3] - f[0, 1]}{3 - 0} = \frac{287 - 20}{3} = 89$$

Kolejno wyznaczone będą ilorazy różnicowe dla czterech węzłów:

$$f[x_0, x_1, x_2, x_3] = f[-4, -2, 0, 1] = \frac{f[-2, 0, 1] - f[-4, -2, 0]}{1 - (-4)} = \frac{9 - (-1)}{5} = 2$$

$$f[x_1, x_2, x_3, x_4] = f[-2, 0, 1, 3] = \frac{f[0, 1, 3] - f[-2, 0, 1]}{3 - (-2)} = \frac{89 - 9}{5} = 16$$

Ostatni wyznaczony iloraz różnicowy jest dla pięciu węzłów:

$$f[x_0, x_1, x_2, x_3, x_4] = f[-4, -2, 0, 1, 3] = \frac{f[-2, 0, 1, 3] - f[-4, -2, 0, 1]}{3 - (-4)} = \frac{16 - 2}{7} = 2$$

Wszystkie obliczone ilorazu różnicowe zostały umieszczone w tabeli 4.2.

Tabela 4.2. Tablica ilorazów różnicowych – przykład dla 4 węzłów

x_i	f_i	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, \dots, x_{i+3}]$	$f[x_i, \dots, x_{i+4}]$
-4	-1				
-2	-7	-3			
0	-21	-7	-1		
1	-1	20	9	2	
3	573	287	89	16	2

Po obliczeniu ilorazów różnicowych należy obliczyć wielomian interpolacyjny Newtona:

$$W_4(x) = -1 + (-3)(x - (-4) + (-1)(x - (-4))(x - (-2)) + 2(x - (-4)(x - (-2))(x - 0) + 2(x - (-4)(x - (-2))(x - 0)(x - 1)$$

Obliczając to otrzyma się:

$$W_4(x) = -1 - 3x - 12 - (x^2 + 6x + 8) + 2(x^3 + 6x^2 + 8x) + 2(x^3 + 6x^2 + 8x)(x - 1)$$

$$= -13 - 3x - x^2 - 6x - 8 + 2x^3 + 12x^2 + 16x + 2x^4 - 2x^3 + 12x^3$$

$$- 12x^2 + 16x^2 - 16x = 2x^4 + 12x^3 + 15x^2 - 9x - 21$$

Odp. Wielomian interpolacyjny Newtona dla podanych danych ma postać:

$$W_4(x) = 2x^4 + 12x^3 + 15x^2 - 9x - 21.$$

Przykład 4.2. Interpolacja Newtona

Dla danych z przykładu 4.1 obliczyć przybliżoną wartość funkcji f(x) w punktach: x=-3, x=1 oraz x=15.

Rozwiązanie:

Używając wielomianu interpolacyjnego Newtona obliczonego w przykładzie 4.1 można interpolować tylko wartości funkcji f(x) w punktach należących do przedziału [-4,3].

Ponieważ $-3 \in [-4,3]$, to przybliżona wartość funkcji f w punkcie x = -3 równa się wartości wielomianu interpolacyjnego Newtona w tym punkcie $W_4(-3)$:

$$f(-3) \approx W_4(-3) = -2 \cdot (-3)^4 + 12 \cdot (-3)^3 + 15 \cdot (-3)^2 - 9 \cdot (-3) - 21 = -345$$

Ponieważ $1 \in [-4,3]$, to przybliżona wartość funkcji f w punkcie x = 1 równa się wartości wielomianu interpolacyjnego Newtona w tym punkcie. Warto jednak zauważyć, iż x = 1 jest węzłem interpolacji, więc znana jest dla niego wartość funkcji i wynosi ona -1.

Ponieważ $15 \notin [-4,3]$, to nie da się obliczyć przybliżonej wartość funkcji f w punkcie x=15 otrzymanym wielomianem interpolacyjnym Newtona.

Zadanie 4.1. Implementacja: wielomianu interpolacyjnego Newtona w podanym punkcie

Napisać program, w którym obliczona zostanie przybliżona wartość funkcji w podanym punkcie przy użyciu interpolacji wielomianowej Newtona. Należy pobrać od użytkownika:

- liczbę węzłów;
- wartości węzłów;
- wartości funkcji w tych węzłach;
- punkt p.

Najpierw trzeba sprawdzić założenia interpolacji. Jeżeli są one spełnione, należy wyświetlić **przybliżoną wartość funkcji, której wartości w danych węzłach są podane, w podanym punkcie** *p*. W przeciwnym razie należy wyświetlić odpowiedni komunikat dla użytkownika mówiący o niespełnionym założeniu interpolacyjnym

Zadania samosprawdzające dla studenta

Zadanie 4.2

Obliczyć (wyznaczyć) wielomian interpolacyjny Newtona, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 4.3.

Tabela 4.3. Dane do zadania 4.2

χ_i	-4	-2	0	3	5
f_i	1008	420	-240	-420	63 0

$$\underline{\text{Odp.}}\,W_3(x) = 9x^3 + 45x^2 - 276x - 240$$

Zadanie 4.3

Obliczyć (wyznaczyć) wielomian interpolacyjny Newtona, który w podanych punktach (x_i) przyjmuje podane wartości (f_i) – tabela 4.4.

Tabela 4.4. Dane do zadania 4.3

χ_i	-5	-4	-4	-2	1
f_i	10	14	23	27	35

Odp. Nie jest spełnione założenie interpolacji: węzły nie są różne między sobą!

Zadanie 4.4

Obliczyć wartość wielomianu interpolacyjnego Newtona w punkcie x=-10, dla danych węzłów (x_i) i wartości funkcji (f_i) podanych w tabeli 4.5.

Tabela 4.5. Dane do zadania 4.4

x_i	-1	1	4	12	21
f_i	-30	10	31	-3	5

Odp. Nie jest spełnione założenie interpolacji: w podanym punkcie x = -10 nie można interpolować funkcji, ponieważ nie należy on do przedziału interpolacji [-1,21].

LABORATORIUM 5. WZÓR ITERACYJNY NEVILLE'A. INTERPOLACJA HERMITA.

Cel laboratorium:

Zapoznanie studentów z interpolacją wielomianową Neville'a oraz interpolacją Hermita.

Zakres tematyczny zajęć:

- algorytm Neville'a;
- interpolacja Hermita.

Pytania kontrolne:

- 1. Co można obliczyć stosując algorytm Neville'a?
- 2. Co to znaczy krotność węzła w interpolacji?
- 3. Jaki jest wzór na wielomian interpolacyjny Hermite'a?

Na początek trochę teorii...

Kolejną metodą służącą do wyznaczenia wartości wielomianu interpolacyjnego w podanym punkcie jest *algorytm Neville'a*. Dla danych (x_i, f_i) dla i=0,1,...,n, gdzie węzły interpolacji są różne między sobą, niech $p \in P_n$ oznacza wielomian stopnia nie wyższego niż k, spełniającego warunki interpolacji:

$$p(x_i) = f_i$$
 dla $i = 0,1,2,...,n$

Wzór Neville'a, dzięki któremu można obliczyć wartość wielomianu interpolacyjnego w podanym punkcie, ma postać:

$$p_{j,k}(x) = \frac{(x-x_j)p_{j+1,k-1}(x) - (x-x_{j+k})p_{j,k-1}(x)}{x_{j+k}-x_j}$$

gdzie:

$$j = 0, 1, 2, ..., n-1$$

 $k = 1, 2, 3, ..., n$

$$p(x) = p_{0,n}(x).$$

W celu obliczenia szukanej wartości należy obliczyć *tablicę wielomianów cząstkowych Neville'a* postaci jak w tabeli 5.1. Wartościami drugiej kolumny w tabeli 5.1 są wartości funkcji, gdyż:

$$p_{i,0}(x) = f(x_i)$$

Tabela 5.1. Tablica wielomianów cząstkowych w algorytmie Neville'a

x_0	$p_{0,0}(x)$	 $p_{0,n-1}(x)$	$p_{0,n}(x)$
x_1	$p_{1,0}(x)$	 $p_{1,n}(x)$	
:	:		
x_n	$p_{n,0}(x)$		

Przykład 5.1. Interpolacja Neville'a

Dla danych z tabeli 5.2 obliczyć przybliżoną wartość funkcji w punkcie: x=1.

Tabela 5.2. Dane do przykładu 5.1

x_i	-3	-1	0	2	4
f_i	-17	9	17	23	25

Rozwiązanie:

Dla n=4 należy obliczyć wartości umieszczone w tabeli 5.3.

Tabela 5.3. Wielomiany cząstkowe wymagane do obliczenia w przykładzie 5.1

-3	-17	$p_{0,1}(1)$	$p_{0,2}(1)$	$p_{0,3}(1)$	$p_{0,4}(1)$
-1	9	$p_{1,1}(1)$	$p_{1,2}(1)$	$p_{1,3}(1)$	
0	17	$p_{2,1}(1)$	p _{2,2} (1)		
2	23	$p_{3,1}(1)$			
4	25				

Obliczenia mają postać:

$$p_{0,1}(1) = \frac{(1 - x_0)p_{1,0}(x1) - (1 - x_1)p_{0,0}(1)}{x_1 - x_0} = \frac{(1 - (-3) \cdot 9 - (1 - (-1) \cdot (-17)}{-1 - (-3)} = 35$$

$$p_{1,1}(x) = \frac{(1-x_1)p_{2,0}(x1) - (1-x_2)p_{1,0}(1)}{x_2 - x_1} = \frac{\left(1 - (-1)\right) \cdot 17 - (1-0) \cdot 9}{0 - (-1)} = 25$$

$$p_{2,1}(x) = \frac{(1-x_2)p_{3,0}(1) - (1-x_3)p_{2,0}(1)}{x_3 - x_2} = \frac{(1-0)\cdot 23 - (1-2)\cdot 17}{2-0} = 20$$

$$p_{3,1}(x) = \frac{(1-x_j)p_{4,0}(1) - (1-x_4)p_{3,0}(1)}{x_4 - x_3} = \frac{(1-2)\cdot 25 - (1-4)\cdot 23}{4-2} = 47$$

Teraz następuje liczenie kolejnej kolumny:

$$p_{0,2}(x) = \frac{(1-x_j)p_{1,1}(1) - (1-x_2)p_{0,1}(1)}{x_2 - x_0} = \frac{(1-(-3))\cdot 25 - (1-0)\cdot 35}{0 - (-3)} = \frac{65}{3}$$

$$p_{1,2}(1) = \frac{(1-x_2)p_{2,1}(1) - (1-x_3)p_{1,1}(1)}{x_3 - x_1} = \frac{(1-0)\cdot 20 - (1-2)\cdot 25}{2 - (-1)} = \frac{5}{3}$$

$$p_{2,2}(1) = \frac{(1-0)\cdot 47 - (1-4)\cdot 20}{4-0} = \frac{13}{4}$$

Teraz następuje liczenie przedostatniej kolumny:

$$p_{0,3}(1) = \frac{(1-x_0)p_{1,2}(1) - (1-x_3)p_{0,2}(1)}{x_3 - x_0} = \frac{\left(1 - (-3)\right) \cdot \frac{5}{3} - (1-2) \cdot \frac{65}{3}}{2 - (-3)} = \frac{17}{3}$$

$$p_{1,3}(1) = \frac{(1-x_1)p_{2,2}(1) - (1-x_4)p_{1,2}(1)}{x_4 - x_1} = \frac{\left(1 - (-1)\right) \cdot \frac{13}{4} - (1-4) \cdot \frac{5}{3}}{4 - (-1)} = \frac{79}{30}$$

Ostatnia wartość w tabeli:

$$p_{0,4}(1) = \frac{(1-x_0)p_{1,3}(1) - (1-x_4)p_{0,3}(1)}{x_4 - x_0} = \frac{\left(1 - (-3)\right) \cdot \frac{79}{30} - (1-4) \cdot \frac{17}{3}}{4 - (-3)} = \frac{571}{105}$$

Po wykonaniu obliczeń uzupełnioną wartościami tabelę 5.3 pokazano w tabeli 5.4.

Wartość w ostatniej kolumnie w tabeli 5.4 jest przybliżoną wartością funkcji w punkcie x=1.

-3	-17	35	$\frac{65}{3}$	$\frac{17}{3}$	571 105
-1	9	25	$\frac{5}{3}$	$\frac{79}{30}$	
0	17	20	$\frac{13}{4}$		
2	23	47			
4	25				

Tabela 5.4. Obliczone wielomiany cząstkowe w przykładzie 5.1

Odp: Przybliżoną wartość funkcji w punkcie 1 obliczona algorytmem Neville'a wynosi $f(1) \approx \frac{571}{105} = 5\frac{46}{105}$.

W *interpolacji Hermite'a* występują *węzły wielokrotne* tzn. z każdym węzłem związana jest jego krotność, czyli dane są:

- 1) różne między sobą węzły: $x_0 < x_1 < x_2 < \cdots < x_n$;
- 2) krotności tych węzłów: $k_0, k_1, k_2, ..., k_n$, gdzie $k_i \ge 1$ dla i = 0,1,2,...,n;
- 3) wartości funkcji w każdym węźle;
- 4) wartości kolejnych pochodnych funkcji w węźle tyle wartości kolejnych pochodnych, ile wynosi jego (*krotność-1*).

Jeżeli krotność węzła x_i wynosi k_i to muszą być dane wartości funkcji i wszystkich jej pochodnych w tym punkcie aż do pochodnej stopnia $(k_i - 1)$, czyli:

$$f(x_i), f'(x_i), \dots, f^{(k_i-1)}(x_i).$$

W tej interpolacji, podobnie jak w interpolacji Newtona, używa się ilorazów różnicowych. Iloraz różnicowy dla (k+1) takich samych węzłów x_i obliczany jest ze wzoru:

$$f[x_i, x_i, ..., x_i] = \frac{f^k(x_i)}{k!}$$

Ilorazy różnicowe dla nie wszystkich identycznych węzłów obliczane są ze wzoru takiego, jak w interpolacji Newtona:

$$f[x_i, x_{i+1}, ..., x_{i+k}] = \frac{f[x_{i+1}, ..., x_{i+k}] - f[x_i, ..., x_{i+k-1}]}{x_{i+k} - x_i}, \ gdy \ x_i \neq x_{i+k}$$

Należy zbudować tablicę ilorazów różnicowych dla węzłów ułożonych razem z ich wielokrotnościami.

W tablicy 5.5. pokazana jest przykładowa tablica ilorazów różnicowych dla danych:

x₀ o krotności k₀=2

x₁ o krotności k₀=3

x₂ o krotności k₀=1

czyli dane są wartości:

$$f(x_0), f'(x_0),$$

 $f(x_1), f'(x_1), f''(x_1),$
 $f(x_2).$

Ponieważ węzeł x_0 ma krotność k_0 =2 to musi być dana zarówno wartość funkcji w tym punkcie, jak i wartość pierwszej pochodnej funkcji w tym punkcie. Analogicznie dla pozostałych węzłów.

Tabela 5.5. Tablica ilorazów różnicowych dla węzłów wielokrotnych

x_i	f_i	$f[x_i, x_{i+1}]$	$f[x_i, \dots, x_{i+2}]$	$f[x_i, \dots, x_{i+3}]$	$f[x_i, \dots, x_{i+4}]$	$f[x_i, \dots, x_{i+5}]$
x_0	f_0					
x_0	f_0	$f[x_0, x_0] = f'(x_0)$				
x_1	f_{I}	$f[x_0, x_1]$	$f[x_0, x_0, x_1]$			
x_1	f_{I}	$f[x_1, x_1] = f'(x_1)$	$f[x_0, x_1, x_1]$	$f[x_0, x_0, x_1, x_1]$		
					$f[x_0, x_0, x_1, x_{1,}x_1]$	
x_2	f_2	$f[x_1, x_2]$	$f[x_1, x_1, x_2]$	$f[x_1, x_1, x_1, x_2]$	$f[x_0, x_1, x_1, x_1, x_2]$	$f[x_0, x_0, x_1, x_1, x_{1,} x_2]$

Po obliczeniu tablicy ilorazów różnicowych, kolejnym krokiem jest obliczenie wielomianu interpolacyjnego Hermite'a ze wzoru analogicznego do wzoru Newtona, ale należy uwzględnić w nim wielokrotności węzłów. Dla powyższego przykładu wielomian ten będzie miał postać:

$$W(x) = f[x_0] + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_1](x - x_0)(x - x_0) + f[x_0x_0, x_1, x_1](x - x_0)(x - x_0)(x - x_1) + f[x_0x_0, x_1, x_1, x_1](x - x_0)(x - x_0)(x - x_1)(x - x_1) + f[x_0x_0, x_1, x_1, x_1, x_2](x - x_0)(x - x_0)(x - x_1)(x - x_1)$$

Po obliczeniu otrzyma się wielomian stopnia co najwyżej 5-tego.

Przykład 5.2. Interpolacja Hermite'a

Dla danych z tabeli 5.6 obliczyć wielomian interpolacyjny Hermite'a oraz obliczyć przybliżoną wartość funkcji w punkcie x=1 stosując ten wielomian.

Tabela 5.6. Dane do przykładu 5.2

x_i	-2	4	6
f_i	-5	1	9
$f_i{'}$	2	7	-
$f_i^{\prime\prime}$	6	-	-

Rozwiązanie:

Obliczenia należy rozpocząć od ilorazów różnicowych.

$$f[-2,-2] = f'(-2) = 4$$

$$f[-2,-2] = f'(-2) = 4$$

$$f[-2,4] = \frac{f[4] - f[-2]}{4 - (-2)} = \frac{1 - (-5)}{6} = 1$$

$$f[4,4] = f'(4) = 7$$

$$f[6] - f[4] = 9 - 1$$

$$f[4,6] = \frac{f[6] - f[4]}{6 - 4} = \frac{9 - 1}{2} = 4$$

$$f[-2, -2, -2] = \frac{f''(-2)}{2!} = \frac{6}{2} = 3$$

$$f[-2, -2, 4] = \frac{f[-2, 4] - f[-2, -2]}{4 - (-2)} = \frac{1 - 4}{6} = -0,5$$

$$f[-2,4,4] = \frac{f[4,4] - f[-2,4]}{4 - (-2)} = \frac{7 - 1}{6} = 1$$

$$f[4,4,6] = \frac{f[4,6] - f[4,4]}{6 - 4} = \frac{4 - 7}{2} = -1,5$$

$$f[-2, -2, -2, 4] = \frac{f[-2, -2, 4] - f[-2, -2, -2]}{4 - (-2)} = \frac{-0, 5 - 3}{6} = -\frac{3, 5}{6} = -\frac{7}{12}$$

$$f[-2, -2, 4, 4] = \frac{f[-2, 4, 4] - f[-2, -2, 4]}{4 - (-2)} = \frac{1 - (-0, 5)}{6} = \frac{1, 5}{6} = \frac{3}{12}$$

$$f[-2, 4, 4, 6] = \frac{f[4, 4, 6] - f[-2, 4, 4]}{6 - (-2)} = \frac{-1, 5 - 1}{8} = -\frac{2, 5}{8} = -\frac{5}{16}$$

$$f[-2, -2, -2, 4, 4] = \frac{f[-2, -2, 4, 4] - f[-2, -2, -2, 4]}{4 - (-2)} = \frac{\frac{3}{12} - (-\frac{7}{12})}{6} = \frac{\frac{5}{6}}{6} = \frac{5}{36}$$

$$f[-2, -2, 4, 4, 6] = \frac{f[-2, 4, 4, 6] - f[-2, -2, 4, 4]}{6 - (-2)} = \frac{-\frac{5}{16} - \frac{3}{12}}{8} = \frac{-\frac{15}{48} - \frac{12}{48}}{8} = -\frac{27}{48 \cdot 8} = -\frac{9}{128}$$

$$f[-2, -2, -2, 4, 4, 6] = \frac{f[-2, -2, 4, 4, 6] - f[-2, -2, -2, 4, 4]}{6 - (-2)} = \frac{-\frac{3}{128} - \frac{5}{36}}{8} = \frac{-\frac{187}{1152}}{8}$$
$$= -\frac{187}{9216}$$

Tabela 5.7. Tablica ilorazów różnicowych dla danych z przykładu 5.2

x_i	f_i	$f[x_i, x_{i+1}]$	$f[x_i, \dots, x_{i+2}]$	$f[x_i, \dots, x_{i+3}]$	$f[x_i, \dots, x_{i+4}]$	$f[x_i, \dots, x_{i+5}]$
-2	2					
-2	4	4				
-2	6	4	3			
4	1	1	-0.5	$-\frac{7}{12}$		
4	7	7	1	3 12	<u>5</u> 36	
6	9	4	-1,5	$-\frac{5}{16}$	$-\frac{9}{128}$	$-\frac{187}{9216}$

Teraz należy zbudować wielomian interpolacyjny Hermite'a:

$$W(x) = 2 + 4(x - (-2)) + 3(x - (-2))^{2} - \frac{7}{12}(x - (-2))^{3} + \frac{5}{36}(x - (-2))^{3}(x - 4)$$
$$-\frac{187}{9216}(x - (-2))^{3}(x - 4)^{2}$$

Wartość tego wielomianu w punkcie 1 należy obliczyć wstawiając jako argument wartość 1.

$$W(1) = 2 + 4(1 - (-2)) + 3(1 - (-2))^{2} - \frac{7}{12}(1 - (-2))^{3} + \frac{5}{36}(1 - (-2))^{3}(1 - 4) - \frac{187}{9216}(1 - (-2))^{3}(1 - 4)^{2} = 2 + 12 + 27 - \frac{7}{12} \cdot 27 + \frac{5}{36} \cdot 27 \cdot (-3) - \frac{187}{9216} \cdot 27 \cdot 9 = 41 - \frac{63}{4} - \frac{45}{4} - \frac{5049}{1024} = 41 - 27 - \frac{5049}{1024} = 14 - 4\frac{953}{1024} = 9\frac{71}{1024}$$

Odp. Przybliżona wartość funkcji w punkcie x=1 obliczona wielomianem interpolacyjnym Hermite'a wynosi $9\frac{71}{1024}$.

Zadanie 5.1. Implementacja: algorytm Neville'a w podanym punkcie

Napisać program, w którym obliczona zostanie przybliżona wartość funkcji f według algorytmu Neville'a. Należy pobrać od użytkownika:

- liczbę węzłów;
- wartości węzłów;
- wartości funkcji w tych węzłach;
- punkt p.

Następnie, jeżeli spełnione są założenia interpolacji, należy wyświetlić **przybliżoną wartość tej funkcji w podanym punkcie** *p*. W przeciwnym razie należy wyświetlić odpowiedni komunikat dla użytkownika mówiący o niespełnionym założeniu interpolacyjnym.

Zadania samosprawdzające dla studenta

Zadanie 5.2.

Obliczyć tablicę wielomianów cząstkowych i f(2) algorytmem Neville'a dla danych podanych w tabeli 5.8.

Tabela 5.8. Dane do zadania 5.2

χ_i	0	1	3
f_i	1	3	2

$$\underline{\text{Odp.}}\,W(2) = \frac{10}{3}$$

Zadanie 5.3.

Obliczyć (wyznaczyć) wielomian interpolacyjny Hermite'a, który w podanych punktach (x_i) o podanych krotnościach (k_i) przyjmuje podane wartości (f_i) – tabela 5.9.

Tabela 5.9. Dane do zadania 5.3

x_i	0	1
k_i	4	3
f_i	5	11
$f_i{'}$	-1	40
$f_i^{\prime\prime}$	4	216
$f_i^{\prime\prime\prime}$	-30	-

Odp.
$$W_6(x) = 5 - x + 4x^2 - 5x^3 + 10x^4 + 12x^4(x-1) + 13x^4(x-1)^2$$

LABORATORIUM 6. APROKSYMACJA. METODA NAJMNIEJSZYCH KWADRATÓW. UKŁADY CZEBYSZEWA.

Cel laboratorium:

Zapoznanie studentów z metodą najmniejszych kwadratów.

Zakres tematyczny zajęć:

- metoda najmniejszych kwadratów;
- układy Czebyszewa.

Pytania kontrolne:

- 1. Co to jest aproksymacja i do czego służy?
- 2. Jaką funkcję minimalizujemy w metodzie najmniejszych kwadratów?
- 3. Co to są układy Czebyszewa?

Na początek trochę teorii...

Aproksymacja to procedura zastąpienia funkcji (zwanej **funkcja aproksymowana**) inną funkcją (zwaną **funkcja aproksymująca**) w taki sposób, aby funkcje te "niewiele" się różniły w sensie określonej normy. Aproksymacja może być:

- ciągła, jeżeli funkcja określona jest w całym przedziale, w którym dokonujemy aproksymacji;
- dyskretna, gdy funkcja określona jest wyłącznie na skończonym zbiorze punktów zwanych węzłami.

Celem aproksymacji jest wyznaczenie funkcji ciągłej, która będzie przebiegała w pobliżu danych punktów lub przez niektóre z nich. Wzór funkcji aproksymującej jest znany i zależy od wskazanych parametrów. Należy też wybrać metodę mierzenia błędu, czyli normę, w której będzie obliczany błąd. Minimalizując błąd aproksymacji wyznaczone będą parametry funkcji aproksymującej.

W **aproksymacji dyskretnej** dane są węzły oraz wartości funkcji aproksymowanej w tych węzłach:

$$(x_i, f_i), i = 0, 1, ..., n$$

Dwie najczęściej stosowane normy błędu, odniesione do funkcji aproksymującej danej dyskretnie, to:

• norma L_2 (Euklidesowa) dana wzorem

$$\delta^2 = \sum_{i=0}^{n} (f_i - g(x_i))^2$$

• norma L_{∞} (maksimum)

$$\delta = \max_{i=0,1,\dots,n} (f_i - g(x_i))$$

Aproksymacja z użyciem normy Euklidesowej to aproksymacja w sensie metody najmniejszych kwadratów. Natomiast z użyciem normy maksimum to aproksymacja jednostajna w sensie Czebyszewa.

Przedmiotem laboratorium będzie aproksymacja dyskretna polegająca na znalezieniu funkcji aproksymującej będącej liniową kombinacją funkcji bazowych $g_i(x)$, j = 0,1,...,k postaci:

$$g(x) = \sum_{j=0}^{k} a_j g_j(x)$$

i minimalizacji błędu obliczonego przy użyciu normy euklidesowej. Zbudowana zostanie w tym celu funkcja:

$$F(a_0,...,a_k) = \sum_{i=0}^n [f_i - g(x_i)]^2$$

Jako funkcje bazowe przyjęte zostaną jednomiany:

$$g_i(x) = x^j$$

Wtedy funkcja F ma postać:

$$F(a_0,...,a_k) = \sum_{i=0}^n \left[f_i - \sum_{j=0}^k a_j (x_i)^j \right]^2$$

Należy wyznaczyć taki wektor $\hat{a} = (\hat{a_0}, \dots, \hat{a_k})$, aby

$$F(\hat{a_0},\ldots,\hat{a_k}) = \min_{a_0,\ldots,a_k \in \mathbb{R}} F(a_0,\ldots,a_k)$$

Warunkiem koniecznym istnienia takiego minimum jest zerowanie się wszystkich pochodnych cząstkowych:

$$\frac{\partial F(\hat{a})}{\partial a_i} = 0 \quad dla \quad j = 0, 1, \dots, k$$

Rozwiązaniem jest układ (k+1) równań z (k+1) niewiadomymi postaci:

$$\sum_{i=0}^{k} a_i \left[\sum_{i=0}^{n} (x_i)^{i+j} \right] = \sum_{i=0}^{n} f_i g_i(x_i) \quad dla \quad i = 0, \dots, k$$

Układ ten w zapisie ma postać:

$$\begin{cases} a_0(n+1) + a_1 \sum_{i=0}^n (x_i) + \dots + a_k \sum_{i=0}^n (x_i)^k = \sum_{i=0}^n f_i(x_i)^0 \\ \vdots \\ a_0 \sum_{i=0}^n (x_i)^k + a_1 \sum_{i=0}^n (x_i)^{k+1} + \dots + a_k \sum_{i=0}^n (x_i)^{2k} = \sum_{i=0}^n f_i(x_i)^k \end{cases}$$

Najczęściej używaną funkcją aproksymującą jest funkcja liniowa:

$$g(x) = a_0 + a_1 x$$

Wtedy układ, który należy rozwiązać, jest układem dwóch równań z dwiema niewiadomymi, którymi są parametry funkcji g(x) czyli a_0 i a_1 :

$$\begin{cases} a_0(n+1) + a_1 \sum_{i=0}^n (x_i) = \sum_{i=0}^n f_i \\ a_0 \sum_{i=0}^n (x_i) + a_1 \sum_{i=0}^n (x_i)^2 = \sum_{i=0}^n f_i x_i \end{cases}$$

Jeżeli jest taka możliwość, warto sprowadzić funkcję aproksymującą do postaci liniowej. Przykładowe przekształcenia, jakie trzeba wykonać w zależności od postaci funkcji:

- dla funkcji $g(x) = a_0 + a_1 \sqrt{x}$ podstawienie $\bar{x} = \sqrt{x}$
- dla funkcji $g(x) = a_0 + a_1 x^2$ podstawienie $\bar{x} = x^2$
- dla funkcji $g(x) = a_0 + a_1 \frac{1}{x}$ podstawienie $\bar{x} = \frac{1}{x}$

wtedy otrzymuje się funkcję liniową $g(\bar{x}) = a_0 + a_1 \cdot \bar{x}$.

Dla funkcji o bardziej skomplikowanej postaci $g(x) = a_0 \cdot x^{a_1}$ najpierw obustronnie należy zlogarytmować:

$$\ln(f) = \ln(a_0 \cdot x^{a_1}).$$

A następnie korzystając ze wzorów na działania na logarytmach otrzymuje się:

$$\ln(f) = \ln(a_0) + a_1 \cdot \ln(x).$$

Wtedy należy wykonać podstawienia:

$$\bar{f} = \ln(f)$$
 or az $\bar{x} = \ln(x)$.

I otrzymuje się funkcję:

$$g(\bar{x}) = \overline{a_0} + a_1 \cdot \bar{x}.$$

Przykład 6.1. Metoda najmniejszych kwadratów

Dla danych z tabeli 6.1 obliczyć współczynniki funkcji liniowej, która najlepiej aproksymuje podane dane w sensie metody najmniejszych kwadratów.

Tabela 6.1. Dane do przykładu 6.1

x_i	1	3	4	6	8
f_i	-4	-8	-10	-14	-18

Rozwiązanie:

Wartość n=4. Należy wyznaczyć współczynniki funkcji liniowej postaci $g(x) = a_0 + a_1 x$. Układ równań ma postać:

$$\begin{cases} a_0(4+1) + a_1 \sum_{i=0}^{4} (x_i) = \sum_{i=0}^{4} f_i \\ a_0 \sum_{i=0}^{4} (x_i) + a_1 \sum_{i=0}^{4} (x_i)^2 = \sum_{i=0}^{4} f_i x_i \end{cases}$$

Niewiadomymi są w nim a_0 i a_1 .

Najpierw należy obliczyć poszczególne sumy:

$$\sum_{i=0}^{4} x_i = x_0 + x_1 + x_2 + x_3 + x_4 = 1 + 3 + 4 + 6 + 8 = 22$$

$$\sum_{i=0}^{4} f_i = f_0 + f_1 + f_2 + f_3 + f_4 = -4 + (-8) + (-10) + (-14) + (-18) = -54$$

$$\sum_{i=0}^{4} (x_i)^2 = x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1 + 9 + 16 + 36 + 64 = 126$$

$$\sum_{i=0}^{4} f_i x_i = f_0 \cdot x_0 + f_1 \cdot x_1 + f_2 \cdot x_2 + f_3 \cdot x_3 + f_4 \cdot x_4$$

$$= -4 \cdot 1 + (-8) \cdot 3 + (-10) \cdot 4 + (-14) \cdot 6 + (-18) \cdot 9 = -296$$

Otrzymuje się układ liniowy z dwiema niewiadomymi:

$$\begin{cases} 5a_0 + 22a_1 = -54 \\ 22a_0 + 126a_1 = -296 \end{cases}$$

Układ ten zostanie rozwiązany metodą wyznaczników:

$$W = \begin{vmatrix} 5 & 22 \\ 22 & 126 \end{vmatrix} = 5 \cdot 126 - 22 \cdot 22 = 146$$

$$W_{a0} = \begin{vmatrix} -54 & 22 \\ -296 & 126 \end{vmatrix} = -54 \cdot 126 - (-296) \cdot 22 = 292$$

$$W_{a1} = \begin{vmatrix} 5 & -54 \\ 22 & -296 \end{vmatrix} = 5 \cdot (-296) - 22 \cdot (-54) = -292$$

Stad:

$$a_0 = \frac{W_{a0}}{W} = \frac{292}{146} = 2$$

$$a_1 = \frac{W_{a1}}{W} = \frac{-292}{146} = -2$$

Odp. Funkcja aproksymująca ma postać g(x) = 2 - 2x.

Przykład 6.2. Metoda najmniejszych kwadratów z przekształceniem danych wejściowych

Dla danych z tabeli 6.2 obliczyć współczynniki funkcji $g(x) = a\sqrt{x} + b$, która najlepiej aproksymuje podane dane w sensie metody najmniejszych kwadratów.

Tabela 6.2. Dane do przykładu 6.2

x_i	1	4	16	25	49	81	100
f_i	3	4	6	7	9	11	12

Rozwiązanie:

Wartość n=6. Funkcja aproksymująca nie jest funkcją liniową, ale poprzez proste podstawienie można ją do takiej sprowadzić. Należy dokonać podstawienia:

$$\overline{x_i} = \sqrt{x_i}$$
 dla $i = 0,1,2,...,6$

Wtedy będzie ona miała postać:

$$a(\bar{x}) = a\bar{x} + b$$

W tabeli 6.3 zawarte sa przeliczone wezły, zgodnie z wykonanym podstawieniem.

Tabela 6.3. Zamiana zmiennych w Przykładzie 6.2

x_i	1	4	16	25	49	81	100
$\overline{x_i}$	1	2	4	5	7	9	10

Teraz już funkcja aproksymująca jest funkcją liniową i do wyznaczenia jej współczynników stosujemy układ (6.12). Należy tylko pamiętać, iż teraz zamiast zmiennej x trzeba brać zmienną \bar{x} . Nazwy zmiennych a i b to odpowiednio a_1 i a_0 .

Układ ma wtedy postać:

$$\begin{cases} a_0(6+1) + a_1 \sum_{i=0}^{6} (\overline{x_i}) = \sum_{i=0}^{6} f_i \\ a_0 \sum_{i=0}^{6} (\overline{x_i}) + a_1 \sum_{i=0}^{6} (\overline{x_i})^2 = \sum_{i=0}^{6} f_i \overline{x_i} \end{cases}$$

Najpierw należy obliczyć poszczególne sumy:

$$\sum_{i=0}^{6} \overline{x_i} = 1 + 2 + 4 + 5 + 7 + 9 + 10 = 38$$

$$\sum_{i=0}^{6} f_i = 3 + 4 + 6 + 7 + 9 + 11 + 12 = 52$$

$$\sum_{i=0}^{6} (\overline{x_i})^2 = 1 + 4 + 16 + 25 + 49 + 81 + 100 = 276$$

$$\sum_{i=0}^{6} f_i \overline{x_i} = 3 \cdot 1 + 4 \cdot 2 + 6 \cdot 4 + 7 \cdot 5 + 9 \cdot 7 + 11 \cdot 9 + 12 \cdot 10 = 352$$

Następnie należy rozwiązać układ postaci:

$$\begin{cases} 7a_0 + 38a_1 = 52 \\ 38a_0 + 276a_1 = 352 \end{cases}$$

Rozwiązując powyższy układ równań metodą wyznaczników, analogicznie jak w przykładzie 6.1 otrzymuje się rozwiązanie:

$$a_0 = \frac{W_{a0}}{W} = \frac{976}{488} = 2$$
$$a_1 = \frac{W_{a1}}{W} = \frac{488}{488} = 1$$

<u>Odp.</u> Funkcja aproksymująca ma postać $g(x) = \sqrt{x} + 2$.

Zadanie 6.1. Implementacja metody najmniejszych kwadratów

Napisać program, w którym zostaną obliczone współczynniki funkcji wskazanej przez użytkownika, która najlepiej aproksymuje w sensie najmniejszych kwadratów podane dane. Należy pobrać od użytkownika:

- liczbę węzłów;
- wartości węzłów;
- wartości funkcji w tych węzłach.

Użytkownika wybiera jedną z funkcji aproksymujących postaci:

•
$$g(x) = ax + b$$
;

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

- $g(x) = b \cdot a^x$.

Zadania samosprawdzające dla studenta

Zadanie 6.2

Dla danych z tabeli 6.4 obliczyć współczynniki funkcji $g(x) = \frac{a}{x} + b$, która najlepiej aproksymuje podane dane w sensie metody najmniejszych kwadratów.

Tabela 6.4. Dane do zadania 6.2

x_i	1	1/3	1/5	1/6	1/7
f_i	4	8	12	14	16

<u>Odp.</u> Funkcja aproksymująca ma postać $g(x) = \frac{2}{x} + 2$.

Zadanie 6.3

Dla danych z tabeli 6.5 obliczyć współczynniki funkcji $g(x) = b \cdot a^x$, która najlepiej aproksymuje podane dane w sensie metody najmniejszych kwadratów.

Tabela 6.5. Dane do zadania 6.3

Ī	χ_i	1	2	3	5	7
	f_i	1	e^3	e^6	e ¹²	e ¹⁸

Odp. Funkcja aproksymująca ma postać $g(x) = e^{-3} \cdot e^{3x}$.

LABORATORIUM 7. CAŁKOWANIE NUMERYCZNE. KWADRATURY INTERPOLACYJNE. KWADRATURY NEWTONA-COTESA.

Cel laboratorium:

Zapoznanie studentów z kwadraturami interpolacyjnymi Newtona-Cotesa.

Zakres tematyczny zajęć:

- kwadratura interpolacyjna;
- wzór złożony trapezów;
- wzór złożony Simpsona.

Pytania kontrolne:

- 1. W jaki sposób obliczamy numerycznie przybliżoną wartość całki?
- 2. Co to jest kwadratura interpolacyjna?
- 3. Jakie warunki spełniają kwadratury Newtona-Cotesa?
- 4. Jakie są wzory realizujące całkowanie numeryczne z użyciem kwadratur Newtona-Cotesa?

Na początek trochę teorii...

Problem: należy obliczyć przybliżoną wartość całki:

$$I(f) = \int_{a}^{b} f(x) dx$$

gdzie $-\infty < a \le b < +\infty$ oraz f(x) należy do pewnej klasy F funkcji rzeczywistych, jest ona określona i całkowalna w sensie Riemanna na przedziale [a,b].

Kwadratura nazywa się funkcjonały liniowe $Q: F \rightarrow R$ postaci:

$$K_n(f) = \sum_{i=0}^n A_i \cdot f(x_i)$$

gdzie A_i są współczynnikami kwadratury, a $x_i \in [a, b]$ to węzły kwadratury.

Wartość całki będzie przybliżana za pomocą kwadratury interpolacyjnej:

$$\int_{a}^{b} f(x)dx \approx K_{n}(f)$$

Niech P_n oznacza zbiór wszystkich wielomianów stopnia nie wyższego niż n.

Kwadratura $K_n(f)$ jest **dokładna** na P_n jeżeli dla każdego $p \in P_n$ zachodzi:

$$\int_{a}^{b} p(x)dx = K_{n}(p)$$

W celu sprawdzenia warunku (7.4) dla każdego wielomianu wystarczy sprawdzić dla wielomianów bazowych czyli jednomianów postaci: $1, x, x^2, ..., x^n$.

Kwadratura jest interpolacyjna wtedy i tylko wtedy, gdy jest dokładna na P_n .

W **kwadraturach Newtona-Cotesa** występują węzły równoodległe. Jeżeli jest m+1 węzłów czyli przedział [a,b] jest podzielony na m podprzedziałów, wtedy wyznaczane są one ze wzorów:

$$h=rac{b-a}{m}, \quad h-{
m jest}$$
 to krok całkowania
$$x_0=a,$$

$$x_{i+1}=a+i\cdot h=x_i+h \quad dla \quad i=0,1,...,m-1$$

Geometryczna interpretacja I(f) to pole powierzchni pomiędzy wykresem funkcji f(x) a osią OX. Obszar leżący nad osią OX ma wartość dodatnią, a obszar leżący pod osią OX ma wartość ujemną.

Metoda trapezów polega na przybliżeniu obszaru ograniczonego wykresem funkcji przez trapezy prostokątne o wysokości równej długości kroku całkowania (h) i o podstawach równych wartościom funkcji w punktach węzłowych na brzegu każdego podprzedziału.

Wzór złożony trapezów ma postać:

$$T(f) = h \left[\frac{1}{2} f_0 + f_1 + f_2 + \dots + f_{m-1} + \frac{1}{2} f_m \right]$$

Metoda parabol polega na przybliżeniu pola pod krzywą polami figur płaskich zbudowanych w następujący sposób: podobnie jak dla trapezów podstawą jest podprzedział całkowania, bokami są wartości funkcji całkowanej w punktach brzegowych podprzedziału, a czwarty bok jest opisany parabolą rozpiętą na trzech wartościach funkcji całkowanej: w punkcie będącym środkiem podprzedziału całkowania oraz jego punktach brzegowych.

Wzór złożony Simpsona (wzór parabol) przy założeniu, że m jest liczbą parzystą, ma postać:

$$S(f) = \frac{h}{3} [f_0 + 4(f_1 + f_3 + \dots + f_{m-1}) + 2(f_2 + f_4 + \dots + f_{m-2}) + f_m]$$

We wzorach:

$$f_i = f(x_i)$$
 dla $i = 0,1,2,...,m$.

Przykład 7.1. Kwadratura interpolacyjna

Obliczyć współczynniki kwadratury interpolacyjnej:

$$K_1(f) = A_0 f\left(\frac{1}{2}\right) + A_1 f\left(\frac{2}{3}\right)$$

która będzie numerycznie przybliżać wartość całki $\int_0^1 f(x)dx$.

Korzystając z tej kwadratury obliczyć przybliżoną wartość całki $\int_0^1 \frac{1}{1+x} dx$.

Rozwiazanie:

Skoro jest to kwadratura K_1 to oznacza, iż n=1.

Kwadratura jest interpolacyjna \Leftrightarrow jest dokładna na P_1 . Ma ona wiec być dokładna dla wielomianów bazowych w P_1 czyli dla: I, x.

Węzły tej kwadratury są to: $\frac{1}{2}$ i $\frac{2}{3}$. Należy wyznaczyć jej współczynniki: A_0 i A_1 .

Trzeba stworzyć układ równań spełniający równania:

$$\int_0^1 p(x)dx = K_1(p)$$

Pierwsze równanie dla $p(x) \equiv 1$. Zostanie policzona wartość lewej strony i prawej strony tego równania.

$$L = \int_0^1 1 dx = 1 - 0 = 1$$

$$P = A_0 \cdot 1 + A_1 \cdot 1 = A_0 + A_1$$

Teraz analogiczne obliczenia dla p(x) = x.

$$L = \int_0^1 x dx = \frac{1}{2} 1^2 - \frac{1}{2} 0^2 = \frac{1}{2}$$

$$P = A_0 \cdot \frac{1}{2} + A_1 \cdot \frac{2}{3}$$

Teraz należy rozwiązać układ równań:

$$\begin{cases} A_0 + A_1 = 1 \\ A_0 \cdot \frac{1}{2} + A_1 \cdot \frac{2}{3} = \frac{1}{2} \end{cases}$$

Czyli:

$$\begin{cases} A_1 = 1 - A_0 \\ A_0 \cdot \frac{1}{2} + (1 - A_0) \cdot \frac{2}{3} = \frac{1}{2} \end{cases}$$

Stad:

$$A_0 = 1, A_1 = 0$$

Kwadratura ma więc postać: $K_1(f) = 1 \cdot f\left(\frac{1}{2}\right) + 0 \cdot f\left(\frac{2}{3}\right) = f\left(\frac{1}{2}\right)$.

Druga część zadania polega na obliczeniu całki przy użyciu tej kwadratury.

W podanej całce funkcja f(x) ma wzór: $f(x) = \frac{1}{1+x}$, węzeł kwadratury jest jeden równy: $\frac{1}{2}$.

$$\int_0^1 \frac{1}{1+x} dx \approx K_1(f) = \frac{1}{1+\frac{1}{2}} = \frac{2}{3}$$

Odp. Kwadratura interpolacyjna ma współczynniki $A_0=1, A_1=0$, a przybliżona wartość całki obliczona tą kwadraturą wynosi $\frac{2}{3}$.

Przykład 7.2. Wzór złożony trapezów

Obliczyć przybliżoną wartość $\ln(7)$, korzystając z faktu, że: $\ln(t) = \int_1^t \frac{1}{x} dx$, stosując wzór złożony trapezów dla 6 podprzedziałów.

Rozwiązanie:

Należy zatem obliczyć przybliżoną wartość całki $\int_{1}^{7} \frac{1}{x} dx$.

Dane w zadaniu są:

m=6, a=1, b=7,
$$f(x) = \frac{1}{x}$$

więc krok:

$$h = \frac{b-a}{m} = \frac{7-1}{6} = 1.$$

W tabeli 7.1 obliczone zostaną węzły i wartości funkcji w tych węzłach.

Tabela 7.1. Węzły i wartości funkcji w tych węzłach do zadania 7.2

i	x_i	$f_i = f(x_i)$
0	1	1
1	1+1=2	$\frac{1}{2}$
2	2+1=3	$\frac{1}{3}$
3	3+1=4	$\frac{1}{4}$
4	4+1=5	$\frac{1}{5}$
5	5+1=6	$\frac{1}{6}$
6	6+1=7	$\frac{1}{7}$

Teraz policzona zostanie wartość całki ze wzoru złożonego trapezów:

$$T_6 = h\left(\frac{1}{2}f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + \frac{1}{2}f_6\right) = 1\left(\frac{1}{2}\cdot 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{2}\cdot \frac{1}{7}\right)$$

Po wykonaniu obliczeń $T_6 = 2,02143$.

Wynik dokładny to ln(7)=1,9459, więc błąd wynosi 0.0755. Przy zwiększeniu liczby podprzedziałów, na które dzielony jest przedział całkowania wynik będzie dokładniejszy.

Odp. Przybliżona wartość całki wynosi 2,02143.

Przykład 7.3. Wzór złożony Simpsona

Obliczyć przybliżoną wartość całki $\int_0^{2\pi} \cos^4 x dx$ stosując wzór złożony Simpsona dla 8 podprzedziałów.

Rozwiązanie:

Dane w zadaniu są: m=8, a=0, b= 2π , $f(x) = cos^4x$.

Zmienna m jest liczbą parzystą, więc można użyć wzoru Simpsona.

Krok:

$$h = \frac{b-a}{m} = \frac{2\pi-0}{8} = \frac{\pi}{4}$$
.

W tabeli 7.2 obliczone zostaną węzły i wartości funkcji w tych węzłach.

Tabela 7.2. Węzły i wartości funkcji w tych węzłach do zadania 7.3

i	x_i	$f_i = f(x_i)$
0	0	1
1	$0 + \frac{\pi}{4} = \frac{\pi}{4}$	$\frac{1}{4}$
2	$\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$	0
3	$\frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$	$\frac{1}{4}$
4	$\frac{3\pi}{4} + \frac{\pi}{4} = \pi$	1
5	$\pi + \frac{\pi}{4} = \frac{5\pi}{4}$	$\frac{1}{4}$
6	$\frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$	0
7	$\frac{3\pi}{2} + \frac{\pi}{4} = \frac{7\pi}{4}$	$\frac{1}{4}$

$$8 \quad \frac{7\pi}{4} + \frac{\pi}{4} = 2\pi \qquad 1$$

Teraz wartość całki zostanie policzona ze wzoru złożonego Simpsona dla m=8:

$$S(f) = \frac{h}{3} [f_0 + 4(f_1 + f_3 + f_5 + f_7) + 2(f_2 + f_4 + f_6) + f_8]$$

$$S(f) = \frac{\pi}{4 \cdot 3} \left[1 + 4 \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \right) + 2(0 + 1 + 0) + 1 \right] = \frac{\pi}{12} \cdot 8 = \frac{2}{3}\pi$$

Odp. Przybliżona wartość całki wynosi $\frac{2}{3}\pi$.

Zadanie 7.1. Implementacja kwadratur Newtona-Cotesa

Napisać program, w którym zostanie obliczona przybliżona wartość całki:

1)
$$\int_0^{2\pi} \sin^2 x + 2 \, dx$$

2)
$$\int_0^2 e^x \cdot 2x^3 \, dx$$

stosując:

- 1) wzór złożony trapezów;
- 2) wzór złożony Simpsona.

Użytkownik:

- wybiera całkę (opcja: 1/2), którą chce obliczyć;
- wybiera wzór (metodę: T/S), którym chce ją obliczyć;
- podaje liczbę podprzedziałów (m>1).

.

LABORATORIUM 8. KWADRATURY GAUSSA.

Cel laboratorium:

Zapoznanie studentów z kwadraturami Gaussa stosowanymi w całkowaniu numerycznym.

Zakres tematyczny zajęć:

- kwadratura Gaussa;
- wielomiany ortogonalne.

Pytania kontrolne:

- 1. Co to jest kwadratura Gaussa?
- 2. Jakie warunki spełniają węzły i współczynniki kwadratury Gaussa?
- 3. Co to jest ciąg wielomianów ortogonalnych?
- 4. Jakie znasz kwadratury Gaussa oparte o węzły będące zerami wielomianów ortogonalnych?

Na początek trochę teorii...

Do obliczenia jest całka

$$I = \int_{a}^{b} \omega(x) f(x) dx$$

gdzie $\omega(x)$ jest to funkcja wagowa dodatnia na przedziale [a,b].

Ciąg wielomianów P_0 , P_1 , P_2 , ..., P_n jest ciągiem **wielomianów ortogonalnych** na [a, b] z funkcją $\omega(x)$, jeżeli zachodzi:

$$(P_i, P_j) = \int_a^b \omega(x) P_i(x) P_j(x) dx = 0 \quad dla \quad i \neq j$$

Kwadratury Gaussa oparte na (n+1) węzłach są dokładne dla wielomianów $p \in P_{2n+1}$.

Kwadratury te mają maksymalny rząd (2n+2), jeżeli są one kwadraturami interpolacyjnymi, których węzły są pierwiastkami (n+1)-ego wielomianu ortogonalnego na [a,b] z wagą ω .

Współczynniki kwadratury Gaussa oblicza się zgodnie ze wzorem:

$$A_i = \frac{a_{n+1}}{a_n} \cdot \frac{\|P_n\|^2}{P'_{n+1}(x_i)P_n(x_i)}, \quad i = 0, 1, 2, \dots, n$$

gdzie:

- a_i oznacza współczynnik przy najwyższej potędze wielomianu ortogonalnego P_i ,
- punkty x_i dla i = 0, 1, ..., n oznaczają pierwiastki wielomianu P_{n+1} .

Wielomiany Legendre'a

$$[a,b]=[-1,1], \quad \omega(x)=1$$

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_n(x) = \frac{2n-1}{n}xP_{n-1}(x) - \frac{n-1}{n}P_{n-2}(x)$, $n = 2, 3, 4, ...$

$$||P_n||^2 = \frac{2}{2n+1}$$

Wielomiany Czebyszewa

[a,b]=[-1,1],
$$\omega(x) = \frac{1}{\sqrt{1-x^2}}$$

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$, $n = 2, 3, 4, ...$

$$||T_n||^2 = \begin{cases} \pi, & n = 0\\ \frac{\pi}{2}, & n \neq 0 \end{cases}$$

Wielomiany Hermite'a

$$[a,b] = (-\infty,\infty), \ \omega(x) = e^{-x^2}$$

$$H_0(x) = 1$$
, $H_1(x) = x$, $H_n(x) = 2xH_{n-1}(x) - (2n-2)H_{n-2}(x)$, $n = 2, 3, 4, ...$

$$||H_n||^2 = 2^n n! \sqrt{\pi}$$

Wielomiany Laguerre'a

$$[a,b] = (0,\infty), \ \omega(x) = e^{-x}$$

$$L_0(x) = 1, \quad L_1(x) = x - 1,$$

$$L_n(x) = (x - 2n - 1)L_{n-1}(x) - n^2L_{n-2}(x), \quad n = 2, 3, 4, ...$$

$$||L_n||^2 = n! \Gamma(n+1)$$

W tabelach 8.1-8.4 zestawiono wartości pierwiastków wielomianów ortogonalnych przedstawionych powyżej dla wybranych stopni tych wielomianów (oznaczenie w tabeli n) oraz wartości współczynników kwadratur Gaussa opartych na tych wielomianach. Wyliczone pierwiastki są węzłami omawianych kwadratur.

Kwadratura Gauss-Legendre'a ma postać:

$$\int_{-1}^{1} f(x)dx = \sum_{j=0}^{n} H_{j}f(x_{j})$$

Tabela 8.1. Pierwiastki wielomianów ortogonalnych Legendre'a

n	Pierwiastki wielomianu P_{n+1}	Współczynniki kwadratury <i>H</i> _j
1	$x_1 = -x_0 = 0,577350$	$H_0=H_1=1$
2	$x_2 = -x_0 = 0,774597$	$H_0=H_2=5/9$
	$x_1 = 0$	$H_1=8/9$
3	$x_3 = -x_0 = 0.861136$	$H_0 = H_3 = 0.347855$
	$x_2 = -x_1 = 0.339981$	$H_1 = H_2 = 0,652145$
4	$x_4 = -x_0 = 0,906180$	$H_0 = H_4 = 0,236927$
	$x_3 = -x_1 = 0,538469$	$H_1 = H_3 = 0,478629$
	$x_2 = 0$	$H_2 = 0.568889$

Kwadratura Gauss-Hermite'a ma postać:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{j=0}^{n} H_j f(x_j)$$

Tabela 8.2. Pierwiastki wielomianów ortogonalnych Hermite'a

n	Pierwiastki wielomianu P_{n+1}	Współczynniki kwadratury H_j
1	$x_1 = -x_0 = 0,707107$	$H_0 = H_1 = 0.886227$
2	$x_2 = -x_0 = 1,224745$	$H_0 = H_2 = 0.295409$
	$x_1 = 0$	$H_1 = 1,181636$
3	$x_3 = -x_0 = 1,650680$	$H_0 = H_3 = 0.081313$
	$x_2 = -x_1 = 0,524648$	$H_1 = H_2 = 0.804914$
4	$x_4 = -x_0 = 2,020183$	$H_0 = H_4 = 0.019953$
	$x_3 = -x_1 = 0.958572$	$H_1 = H_3 = 0.393619$
	$x_2 = 0$	$H_2 = 0.945309$

Kwadratura Gauss-Czebyszewa ma postać:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx = \sum_{j=0}^{n} H_j f(x_j)$$

Tabela 8.3. Pierwiastki wielomianów ortogonalnych Czebyszewa

Pierwiastki wielomianu P_{n+1}	Współczynniki kwadratury <i>H_j</i>
$x_j = \cos \frac{(2j+1)\pi}{2(n+1)}$ dla $j=0,1,,n$	$H_j = \frac{\pi}{n+1}$ dla $j=0,1,,n$

Kwadratura Gauss-Laguerre'a ma postać:

$$\int_{0}^{\infty} e^{-x} f(x) dx = \sum_{j=0}^{n} H_{j} f(x_{j})$$

Tabela 8.4. Pierwiastki wielomianów ortogonalnych Laguerre'a

n	Pierwiastki wielomianu P_{n+1}	Współczynniki kwadratury <i>H</i> _j
1	$x_0 = 0.585786$	$H_0 = 0.853553$
	$x_1 = 3,414214$	$H_1 = 0.146447$
2	$x_0 = 0.415775$	$H_0 = 0.711093$
	$x_1 = 2,294280$	$H_1 = 0.278515$
	$x_2 = 6,289945$	$H_2 = 0.010389$
3	$x_0 = 0.322548$	$H_0 = 0,603154$
	$x_1 = 1,745761$	$H_1 = 0.357419$
	$x_2 = 4,536620$	$H_2 = 0.038888$
	$x_3 = 9,395071$	$H_3 = 0.000539$
4	$x_0 = 0.263560$	$H_0 = 0.521756$
	$x_1 = 1,413403$	$H_1 = 0.398667$
	$x_2 = 3,596426$	$H_2 = 0.075942$
	$x_3 = 7,085810$	$H_3 = 0.003612$
	$x_4 = 12,640801$	$H_4 = 0,000023$

Przykład 8.1. Wielomiany ortogonalne

Wyznaczyć ciąg wielomianów ortogonalnych dla n=2 z funkcją wagową $\omega(x)=x^2-1$ na przedziale [a,b]=[-1,1].

Rozwiązanie:

Należy wyznaczyć ciąg wielomianów P₀, P₁ i P₂ postaci:

$$P_0 = 1$$
,

$$P_1 = x + a$$
,

$$P_2 = x^2 + bx + c$$

Wielomiany te, aby były ortogonalne, muszą spełniać trzy poniższe równania:

$$(P_0, P_1) = \int_a^b \omega(x) P_0(x) P_1(x) dx = 0$$

$$(P_0, P_2) = \int_a^b \omega(x) P_0(x) P_2(x) dx = 0$$

$$(P_1, P_2) = \int_a^b \omega(x) P_1(x) P_2(x) dx = 0$$

Teraz będą policzone lewe strony tych równań.

Pierwsze równanie:

$$(P_0, P_1) = \int_{-1}^{1} (x^2 - 1)1(x + a) dx = \int_{-1}^{1} x^3 + ax^2 - x - a dx$$

$$= \frac{1}{4} (1^4 - (-1)^4) + \frac{1}{3} a (1^3 - (-1)^3) - \frac{1}{2} (1^2 - (-1)^2) - a (1 - (-1))$$

$$= \frac{2}{3} a - 2a = -\frac{4}{3} a$$

Teraz należy tą wartość przyrównać do zera:

$$-\frac{4}{3} a = 0 \text{ stad } a = 0.$$

Drugie równanie:

$$(P_0, P_2) = \int_{-1}^{1} (x^2 - 1)1(x^2 + bx + c) dx = \int_{-1}^{1} x^4 + bx^3 + cx^2 - x^2 - bx - c dx$$

$$= \frac{1}{5} (1^5 - (-1)^5) + \frac{1}{4} b(1^4 - (-1)^4) + \frac{1}{3} (c - 1)(1^3 - (-1)^3)$$

$$- \frac{1}{2} b(1^2 - (-1)^2) - c(1 - (-1)) = \frac{2}{5} + \frac{2}{3} (c - 1) - 2c = -\frac{4}{15} - \frac{4}{3} c$$

Teraz należy ta wartość przyrównać do zera:

$$-\frac{4}{15} - \frac{4}{3}c = 0$$
 stad $c = -\frac{1}{5}$.

Trzecie równanie zostanie zapisane z użyciem powyższych informacji, czyli dla wielomianów:

$$P_0 = 1$$
,

$$P_1 = x$$
,

$$P_2 = x^2 + bx - \frac{1}{5}.$$

$$(P_1, P_2) = \int_{-1}^{1} (x^2 - 1)(x) \left(x^2 + bx - \frac{1}{5} \right) dx = \int_{-1}^{1} (x^3 - x) \left(x^2 + bx - \frac{1}{5} \right) dx$$

$$= \int_{-1}^{1} x^5 + bx^4 - \frac{1}{5}x^3 - x^3 - bx^2 - \frac{1}{5}x dx$$

$$= \frac{1}{6} (1^6 - (-1)^6) + \frac{1}{5}b(1^5 - (-1)^5) - \frac{6}{20} (1^4 - (-1)^4) - \frac{1}{3}b(1^3 - (-1)^3)$$

$$- \frac{1}{10} (1^2 - (-1)^2) = \frac{2}{5}b - \frac{2}{3}b = -\frac{4}{15}b$$

Teraz należy ta wartość przyrównać do zera:

$$-\frac{4}{15}b = 0$$
 stąd $b = 0$.

Odp. Ciąg wielomianów ortogonalnych na przedziale [a,b]=[-1,1] z funkcją wagową $\omega(x)=x^2-1$ ma postać:

$$P_0 = 1$$
,

$$P_1 = x$$
,

$$P_2 = x^2 - \frac{1}{5}.$$

Przykład 8.2. Kwadratura Gaussa

Wyznaczyć kwadraturę Gaussa mającą dwa węzły służącą do obliczenia całki:

$$\int_{-1}^{1} f(x)(x^2 - 1) dx$$

Rozwiązanie:

W rozważanej całce przedział całkowania oraz funkcja wagowa są takie same, jak w przykładzie 8.1. Dlatego też nie trzeba od nowa liczyć ciągu wielomianów ortogonalnych, tylko można skorzystać z tych wyliczonych w przykładzie 8.1.

Należy więc obliczyć pierwiastki wielomianu P₂:

$$x^2 - \frac{1}{5} = 0$$

Stąd:

$$x_1 = -\sqrt{\frac{1}{5}}, \quad x_2 = \sqrt{\frac{1}{5}}$$

Teraz należy obliczyć współczynniki kwadratury:

$$A_0 = \frac{a_2}{a_1} \cdot \frac{\|P_1\|^2}{P'_2(x_0)P_1(x_0)}$$

$$A_1 = \frac{a_2}{a_1} \cdot \frac{\|P_1\|^2}{P'_2(x_1)P_1(x_1)}$$

Wielomiany ortogonalne mają postać:

$$P_0 = 1$$
, $P_1 = x$, $P_2 = x^2 - \frac{1}{5}$.

Najpierw obliczona będzie norma P_1 i pochodna wielomianu P_2 :

$$||P_1||^2 = (P_1, P_1) = \int_{-1}^{1} (x^2 - 1) \cdot x \cdot x \, dx = \int_{-1}^{1} x^4 - x^2 \, dx = \frac{1}{5} (1^5 - (-1)^5) - \frac{1}{3} (1^3 - (-1)^3) = \frac{2}{5} - \frac{2}{3} = -\frac{4}{15},$$

$$P'_{2}(x) = 2x$$
.

Następnie współczynniki kwadratury zostaną obliczone:

$$A_0 = \frac{1}{1} \cdot \frac{-\frac{4}{15}}{2 \cdot \left(-\sqrt{\frac{1}{5}}\right) \cdot \left(-\sqrt{\frac{1}{5}}\right)} = -\frac{4}{15} \cdot \frac{5}{2} = -\frac{2}{3},$$

$$A_1 = \frac{1}{1} \cdot \frac{-\frac{4}{15}}{2 \cdot \left(\sqrt{\frac{1}{5}}\right) \cdot \left(\sqrt{\frac{1}{5}}\right)} = -\frac{4}{15} \cdot \frac{5}{2} = -\frac{2}{3}.$$

Odp. Kwadratura dla zadanej całki ma postać:

$$Q = \sum_{i=0}^{1} A_i f(x_i) = -\frac{2}{3} f\left(-\sqrt{\frac{1}{5}}\right) - \frac{2}{3} f\left(\sqrt{\frac{1}{5}}\right)$$

Przykład 8.3. Kwadratura Gaussa-Czebyszewa

Wyznaczyć kwadraturę Gaussa-Czebyszewa, mającą dwa węzły, służącą do obliczenia całki:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} (x^4 e^{2x}) dx$$

Przy jej użyciu wyznaczyć przybliżoną wartość tej całki.

Rozwiązanie:

Przedział całkowania i funkcja wagowa są odpowiednie do kwadratury Gaussa-Czebyszewa. Funkcja $f(x) = x^4 e^{2x}$.

Najpierw obliczone będą pierwiastki wielomianu P_{n+1} dla n=1:

$$x_1 = \cos\frac{(2\cdot 1 - 1)\pi}{2\cdot 2} = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

$$x_2 = \cos\frac{(2\cdot 2 - 1)\pi}{2\cdot 2} = \cos\frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$

Kolejno współczynniki:

$$H_1 = H_2 = \frac{\pi}{2}$$

Ostatecznie kwadratura ma postać:

$$Q = \sum_{i=1}^{2} H_i f(x_i) = \frac{\pi}{2} f\left(\frac{\sqrt{2}}{2}\right) + \frac{\pi}{2} f\left(-\frac{\sqrt{2}}{2}\right)$$

$$Q = \frac{\pi}{2} \left(\frac{\sqrt{2}}{2}\right)^4 e^{\sqrt{2}} + \frac{\pi}{2} \left(-\frac{\sqrt{2}}{2}\right)^4 e^{-\sqrt{2}} = \frac{\pi}{8} e^{\sqrt{2}} + \frac{\pi}{8} e^{-\sqrt{2}} = 0,8009$$

Odp. Kwadratura Gaussa-Czebyszewa ma postać:

$$Q = \frac{\pi}{2} f\left(-\frac{\sqrt{2}}{2}\right) + \frac{\pi}{2} f\left(\frac{\sqrt{2}}{2}\right)$$

Przybliżona wartość całki obliczona przy użyciu tej kwadratury wynosi 0,8009.

Zadanie 8.1. Implementacja kwadratur Gaussa

Napisać program, w którym zostanie obliczona przybliżona wartość całek z użyciem właściwych kwadratur Gaussa:

a)
$$\int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} dx$$
 Gauss-Chebyshev dla $n=3$

b)
$$\int_{-1}^{1} \frac{dx}{\sqrt{1+x^2}} dx$$
 Gauss-Legendre dla $n=4$

c)
$$\int_0^\infty e^{-2x} \frac{\sin x}{x} dx$$
 Gauss-Laguerre dla $n=3$

d)
$$\int_{-\infty}^{\infty} e^{-x^2} \cos x dx$$
 Gauss-Hermite dla $n=4$

Wskazówka: w programie należy użyć wartości podanych w tabelach 8.1-8.4 pierwiastków wielomianów ortogonalnych dla wybranych stopni wielomianów oraz współczynniki kwadratur odpowiadających tym wielomianom.

LABORATORIUM 9. KOLOKWIUM 1.

Cel laboratorium:

Sprawdzenie wiedzy i umiejętności studentów.

Zakres tematyczny zajęć:

- laboratorium 1;
- laboratorium 2;
- laboratorium 3;
- laboratorium 4;
- laboratorium 5;
- laboratorium 6;
- laboratorium 7;
- laboratorium 8.

Zaliczenie: od 51%.

LABORATORIUM 10. METODY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH. METODA ELIMINACJI GAUSSA. METODY ROZKŁADU MACIERZY OPARTE NA ELIMINACJI GAUSSA.

Cel laboratorium:

Zapoznanie studentów z metodą eliminacji Gaussa służącą do rozwiązywania liniowych układów równań.

Zakres tematyczny zajęć:

- liniowy układ równań;
- eliminacja Gaussa.

Pytania kontrolne:

- 1. Jak rozwiązać układ równań liniowych rozmiaru większego niż 3?
- 2. Kiedy układ można rozwiązać metodą eliminacji Gaussa?
- 3. Jak wygląda jeden krok metody eliminacji Gaussa?

Na początek trochę teorii...

Należy rozwiązać układ równań liniowych:

$$Ax = b$$

gdzie:

$$A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n \times 1},$$

 $x \in \mathbb{R}^{n \times 1}$ - wektor niewiadomych.

Metoda eliminacji Gaussa służy do przekształcenia macierzy kwadratowej $A \in \mathbb{R}^{n \times n}$ do postaci górnie trójkątnej.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \Rightarrow A^{(n-1)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn}^{(n-1)} \end{bmatrix}$$

Przekształceń dokonuje się na macierzy rozszerzonej o wektor wyrazów wolnych:

$$[A \mid b] \Rightarrow [A^{(n-1)} \mid b^{(n-1)}].$$

Należy wykonać (n-1) kroków.

1 krok

Jeżeli $a_{11} \neq 0$, wtedy zerowane są elementy pierwszej kolumny leżące pod główną przekątną czyli te w wierszach 2, 3, ..., n. Obliczane są współczynniki:

$$p_2 = \frac{a_{21}}{a_{11}}, \quad p_3 = \frac{a_{31}}{a_{11}}, \quad \dots, \quad p_n = \frac{a_{n1}}{a_{11}},$$

a następnie dokonywane są przekształcenia kolejnych wierszy układu:

$$wiersz_i = wiersz_i - p_i \cdot wiersz_1$$
,

gdzie:

wiersz i oznacza i-ty wiersz macierzy [A|b] dla i = 2, 3, ..., n.

Po 1 kroku powstaje macierz postaci:

$$A^{(1)} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix},$$

oraz wektor wyrazów wolnych postaci:

$$b^{(1)} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ \dots \\ b_n^{(1)} \end{bmatrix}.$$

<u>Ogólnie k-ty krok</u> (dla k=2,3,...,n-1) Jeżeli $a_{kk}^{(k-1)} \neq 0$, wtedy zerowane są elementy k-tej kolumny leżące pod główną przekątną czyli te w wierszach k+1, k+2, ..., n. Obliczane są współczynniki:

$$p_{k+1} = \frac{a_{k+1,k}^{(k-1)}}{a_{\nu_k}^{(k-1)}}, \quad p_{k+2} = \frac{a_{k+2,k}^{(k-1)}}{a_{\nu_k}^{(k-1)}}, \quad \dots, \quad p_n = \frac{a_{nk}^{(k-1)}}{a_{\nu_k}^{(k-1)}},$$

a następnie dokonywane są przekształcenia kolejnych wierszy układu:

$$wiersz_i = wiersz_i - p_i \cdot wiersz_k$$
,

gdzie:

wiersz i oznacza i-ty wiersz macierzy [A|b] dla i = k+1, k+2, ..., n.

Po *k-tym* kroku powstaje macierz postaci:

$$A^{(k)} = \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & & a_{1n} \\ 0 & \ddots & \vdots & & & \vdots \\ \vdots & \ddots & a_{kk}^{(k-1)} & a_{k,k+1}^{(k-1)} & \cdots & a_{kn}^{(k-1)} \\ 0 & \cdots & 0 & a_{k+1,k+1}^{(k)} & \cdots & a_{k+1,n}^{(k)} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{n+1}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix},$$

oraz wektor wyrazów wolnych postaci:

$$b^{(k)} = \begin{bmatrix} b_1 \\ b_2^{(1)} \\ \dots \\ b_k^{(k-1)} \\ \dots \\ b_n^{(k-1)} \end{bmatrix}$$

Po (n-1) krokach eliminacji Gaussa (wykonanych czyli w każdym kroku był spełniony warunek $a_{kk}^{(k-1)} \neq 0$) i jeżeli $a_{nn}^{(n-1)} \neq 0$ należy wykonać *postępowanie odwrotne*:

$$\chi_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}},$$

$$x_k = \frac{b_k^{(n-1)} - \sum_{j=k+1}^n (x_j \cdot a_{kj}^{(n-1)})}{a_{kk}^{(n-1)}} \quad \text{dla} \quad k = n\text{-}1, \, n\text{-}2, \, \dots, \, 1.$$

Jeżeli zdarzyło się, że w którymś kroku element na głównej przekątnej $a_{\mathbf{k}\mathbf{k}}^{(k-1)}=0,$ wtedy postepowanie Gaussa nie może zostać wykonane.

Istnieją także modyfikacje tej podstawowej metody eliminacji Gauss polegające na wyborze elementu maksymalnego. Poniżej krótki ich opis.

Metoda eliminacji Gauss z wyborem elementu maksymalnego w wierszu: w k-tym kroku element maksymalny wybierany jest z k-tego wiersza macierzy $A^{(k-1)}$, a dokładnie z elementów $a_{kk}^{(k-1)}$, $a_{k,k+1}^{(k-1)}$,..., $a_{kn}^{(k-1)}$ (elementy wcześniejsze, tj. leżące na lewo w tym wierszu, są zerami). Zatem

$$a_{ks} = \max_{k \le s \le n} |a_{ks}|$$

 $a_{ks} = \max_{k \le s \le n} |a_{ks}|$ Jeżeli $k \ne s$, wtedy należy zamienić wiersz numer k z wierszem numer s wraz z wyrazami wolnymi.

Metoda eliminacji Gauss z wyborem elementu maksymalnego w kolumnie (w k-tym kroku element maksymalny wybieramy z elementów leżących nie wyżej niż przekątna w k-tej kolumnie macierzy $A^{(k-1)}$, tj. z elementów $a_{\rm kk}^{(k-1)}$, $a_{k+1,k}^{(k-1)}$. Zatem

$$a_{rk} = \max_{k \le r \le n} |a_{rk}|$$

Jeżeli $k \neq r$, wtedy należy zamienić kolumnę numer k z kolumną numer r.

Pełny wybór elementu maksymalnego polega na wyborze elementu maksymalnego co do wartości bezwzględnej z podmacierzy:

$$a_{rs} = \max_{\substack{k \le r \le n \\ k \le s \le n}} |a_{rs}|$$

Jeżeli $k \neq s$, wtedy należy zamienić wiersz numer k z wierszem numer s wraz z wyrazami wolnymi. Jeżeli $k \neq r$, wtedy należy zamienić kolumnę numer k z kolumną numer r.

I dalej w każdej z tych metod postępujemy już jak w eliminacji bez wyboru elementu maksymalnego.

Jeżeli w jednym z kroków metody element na głównej przekątnej będzie równy zero, wtedy metodę należy przerwać. Jeżeli sytuacja taka zaistnieje w metodzie Gaussa z pełnym wyborem elementu maksymalnego oznacza to, że macierz A jest osobliwa i nie istnieje dokładnie jedno rozwiązanie układu.

Przykład 10.1. Eliminacja Gaussa

Rozwiązać poniżysz układ równań liniowych metoda eliminacji Gaussa (podstawową):

$$x_1 + x_2 - 3x_4 = 1$$

$$x_1 + 4x_2 - x_3 - 4x_4 = -2$$

$$0.5x_1 + 0.5x_2 - 3x_3 - 5.5x_4 = 1.5$$

$$1.5x_1 + 3x_2 - 5x_3 - 9x_4 = -0.5$$

Rozwiązanie:

Macierz współczynników powiększona o wektor wyrazów wolnych:

$$[A|b] = \begin{bmatrix} 1 & 1 & 0 & -3 & 1 \\ 1 & 4 & -1 & -4 & -2 \\ 0.5 & 0.5 & -3 & -5.5 & 1.5 \\ 1.5 & 3 & -5 & -9 & -0.5 \end{bmatrix}$$

Krok nr 1: $a_{11} = 1 \neq 0$ jest wykonalny.

Współczynnik dla wiersza numer 2 wynosi: $p_2 = \frac{a_{21}}{a_{11}} = \frac{1}{1} = 1$.

Nowe wartości elementów w wierszu numer 2 należy obliczyć:

$$a_{21} = a_{21} - p_2 \cdot a_{11} = 1 - 1 \cdot 1 = 0$$

$$a_{22} = a_{22} - p_2 \cdot a_{12} = 4 - 1 \cdot 1 = 3$$

$$a_{23} = a_{23} - p_2 \cdot a_{13} = -1 - 1 \cdot 0 = -1$$

$$a_{24} = a_{24} - p_2 \cdot a_{14} = -4 - 1 \cdot (-3) = -1$$

$$b_2 = b_2 - p_2 \cdot b_1 = -2 - 1 \cdot 1 = -3$$

Współczynnik dla wiersza numer 3 wynosi: $p_3 = \frac{a_{31}}{a_{11}} = \frac{0.5}{1} = 0.5$.

Nowe wartości elementów w wierszu numer 3 należy obliczyć:

$$a_{31} = a_{31} - p_3 \cdot a_{11} = 0.5 - 0.5 \cdot 1 = 0$$

$$a_{32} = a_{32} - p_3 \cdot a_{12} = 0.5 - 0.5 \cdot 1 = 0$$

$$a_{33} = a_{33} - p_3 \cdot a_{13} = -3 - 0.5 \cdot 0 = -3$$

$$a_{34} = a_{34} - p_3 \cdot a_{14} = -5.5 - 0.5 \cdot (-3) = -4$$

$$b_3 = b_3 - p_3 \cdot b_1 = 1,5 - 0,5 \cdot 1 = 1$$

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{41}}{a_{11}} = \frac{1,5}{1} = 1,5.$

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{41} = a_{41} - p_4 \cdot a_{11} = 1,5 - 1,5 \cdot 1 = 0$$

$$a_{42} = a_{42} - p_4 \cdot a_{12} = 3 - 1.5 \cdot 1 = 1.5$$

$$a_{43} = a_{43} - p_4 \cdot a_{13} = -5 - 1,5 \cdot 0 = -5$$

$$a_{44} = a_{44} - p_4 \cdot a_{14} = -9 - 1.5 \cdot (-3) = -4.5$$

$$b_4 = b_4 - p_4 \cdot b_1 = -0.5 - 1.5 \cdot 1 = -2$$

Koniec kroku nr 1. Macierz ma postać:

$$[A^{(1)}|b^{(1)}] = \begin{bmatrix} 1 & 1 & 0 & -3 & 1\\ 0 & 3 & -1 & -1 & -3\\ 0 & 0 & -3 & -4 & 1\\ 0 & 1.5 & -5 & -4.5 & -2 \end{bmatrix}$$

Krok nr 2: $a_{22} = 3 \neq 0$ jest wykonalny.

Współczynnik dla wiersza numer 3 wynosi: $p_2 = \frac{a_{32}}{a_{22}} = \frac{0}{3} = 0$. Oznacza to, iż wartości elementów w wierszu numer 3 nie zmienią się.

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{42}}{a_{22}} = \frac{1,5}{3} = 0,5$.

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{42} = a_{42} - p_4 \cdot a_{22} = 1,5 - 0,5 \cdot 3 = 0$$

$$a_{43} = a_{43} - p_4 \cdot a_{23} = -5 - 0.5 \cdot (-1) = -4.5$$

$$a_{44} = a_{44} - p_4 \cdot a_{24} = -4.5 - 0.5 \cdot (-1) = -4$$

$$b_4 = b_4 - p_4 \cdot b_2 = -2 - 0.5 \cdot (-3) = -0.5$$

Koniec kroku nr 2. Macierz ma postać:

$$[A^{(2)}|b^{(2)}] = \begin{bmatrix} 1 & 1 & 0 & -3 & 1\\ 0 & 3 & -1 & -1 & -3\\ 0 & 0 & -3 & -4 & 1\\ 0 & 0 & -4,5 & -4 & -0,5 \end{bmatrix}$$

Krok nr 3: $a_{33} = -3 \neq 0$ jest wykonalny.

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{43}}{a_{33}} = \frac{-4,5}{-3} = 1,5.$

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{43} = a_{43} - p_4 \cdot a_{33} = -4.5 - 1.5 \cdot (-3) = 0$$

 $a_{44} = a_{44} - p_4 \cdot a_{34} = -4 - 1.5 \cdot (-4) = 2$

$$b_4 = b_4 - p_4 \cdot b_3 = -0.5 - 1.5 \cdot 1 = -2$$

Koniec kroku nr 3. Macierz ma postać:

$$[A^{(3)}|b^{(3)}] = \begin{bmatrix} 1 & 1 & 0 & -3 & 1 \\ 0 & 3 & -1 & -1 & -3 \\ 0 & 0 & -3 & -4 & 1 \\ 0 & 0 & 0 & 2 & -2 \end{bmatrix}$$

Koniec eliminacji Gaussa. Ponieważ $a_{44} = 2 \neq 0$ więc postępowanie odwrotne jest wykonalne. Liczymy wektor rozwiązań od ostatniego wiersza:

$$x_4 = \frac{b_4}{a_{44}} = \frac{-2}{2} = -1$$

$$x_3 = \frac{b_3 - a_{34} \cdot x_4}{a_{33}} = \frac{1 - (-4) \cdot (-1)}{-3} = \frac{-3}{-3} = 1$$

$$x_2 = \frac{b_2 - a_{24} \cdot x_4 - a_{23} \cdot x_3}{a_{22}} = \frac{-3 - (-1) \cdot (-1) - (-1) \cdot 1}{3} = \frac{-3}{3} = -1$$

$$x_1 = \frac{b_1 - a_{14} \cdot x_4 - a_{13} \cdot x_3 - a_{12} \cdot x_2}{a_{11}} = \frac{1 - (-3) \cdot (-1) - 0 \cdot 1 - 1 \cdot (-1)}{1} = -1$$

 $\underline{\mathrm{Odp}}$. Rozwiązaniem układu równań jest wektor $x = [-1, -1, 1, -1]^T$.

Przykład 10.2. Eliminacja Gaussa

Rozwiązać poniżysz układ równań liniowych metoda eliminacji Gaussa z pełnym wyborem elementu maksymalnego:

$$2,25x_1 - 2,5x_2 + 4x_3 - 5,25x_4 = -1$$

$$-3x_1 - 7,5x_2 + 6,5x_3 = 17$$

$$-6,25x_1 - 12,5x_2 + 0,25x_3 + 5,25x_4 = 24,25$$

$$9x_1 + 10x_2 + 7x_3 - 21x_4 = -33$$

Rozwiązanie:

Macierz współczynników powiększona o wektor wyrazów wolnych:

$$[A|b] = \begin{bmatrix} 2,25 & -2,5 & 4 & -5,25 & -1 \\ -3 & -7,5 & 6,5 & 0 & 17 \\ -6,25 & -12,5 & 0,25 & 5,25 & 24,25 \\ 9 & 10 & 7 & -21 & -33 \end{bmatrix}$$

Krok nr 1:

Z macierzy głównej należy znaleźć element maksymalny co do modułu:

$$a_{44} = \max_{\substack{1 \le i \le 4 \\ 1 \le j \le 4}} |a_{ij}|$$

Należy więc dokonać zamiany:

- wiersz 1 z wierszem 4;
- kolumna 1 z kolumna 4.

Po zamianie wierszy macierz ma pos

$$[A|b] = \begin{bmatrix} 9 & 10 & 7 & -21 & -33 \\ -3 & -7.5 & 6.5 & 0 & 17 \\ -6.25 & -12.5 & 0.25 & 5.25 & 24.25 \\ 2.25 & -2.5 & 4 & -5.25 & -1 \end{bmatrix}$$

Po zamianie kolumn macierz ma postać:

$$[A|b] = \begin{bmatrix} -21 & 10 & 7 & 9 & -33 \\ 0 & -7.5 & 6.5 & -3 & 17 \\ 5.25 & -12.5 & 0.25 & -6.25 & 24.25 \\ -5.25 & -2.5 & 4 & 2.25 & -1 \end{bmatrix}$$

 $a_{11} = -21 \neq 0$ więc krok 1 jest wykonalny.

Współczynnik dla wiersza numer 2 wynosi: $p_2 = \frac{a_{21}}{a_{11}} = \frac{0}{-21} = 0$. Oznacza to, iż wartości elementów w wierszu numer 2 nie zmienią się.

Współczynnik dla wiersza numer 3 wynosi: $p_3 = \frac{a_{31}}{a_{11}} = \frac{5,25}{-21} = -0,25$.

Nowe wartości elementów w wierszu numer 3 należy obliczyć:

$$a_{31} = a_{31} - p_3 \cdot a_{11} = 5,25 - (-0,25) \cdot (-21) = 0$$

 $a_{32} = a_{32} - p_3 \cdot a_{12} = -12,5 - (-0,25) \cdot 10 = -10$
 $a_{33} = a_{33} - p_3 \cdot a_{13} = 0,25 - (-0,25) \cdot 7 = 2$

$$u_{33} - u_{33} - p_3 \cdot u_{13} = 0.25 - (-0.25) \cdot 7 = 2$$

$$a_{34} = a_{34} - p_3 \cdot a_{14} = -6.25 - (-0.25) \cdot 9 = -4$$

$$b_3 = b_3 - p_3 \cdot b_1 = 24,25 - (-0,25) \cdot (-33) = 16$$

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{41}}{a_{11}} = \frac{-5,25}{-21} = 0,25$.

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{41} = a_{41} - p_4 \cdot a_{11} = -5,25 - 0,25 \cdot (-21) = 0$$

 $a_{42} = a_{42} - p_4 \cdot a_{12} = -2,5 - 0,25 \cdot 10 = -5$

$$a_{43} = a_{43} - p_4 \cdot a_{13} = 4 - 0.25 \cdot 7 = 2.25$$

$$a_{44} = a_{44} - p_4 \cdot a_{14} = 2,25 - 0,25 \cdot 9 = 0$$

$$b_4 = b_4 - p_4 \cdot b_1 = -1 - 0.25 \cdot (-33) = 7.25$$

Koniec kroku nr 1. Macierz ma postać:

$$[A^{(1)}|b^{(1)}] = \begin{bmatrix} -21 & 10 & 7 & 9 & -33\\ 0 & -7.5 & 6.5 & -3 & 17\\ 0 & -10 & 2 & -4 & 16\\ 0 & -5 & 2.25 & 0 & 7.25 \end{bmatrix}$$

Krok nr 2:

Z macierzy głównej należy znaleźć element maksymalny co do modułu:

$$a_{32} = \max_{\substack{2 \le i \le 4 \\ 2 \le j \le 4}} |a_{ij}|$$

Należy więc dokonać zamiany:

• wiersz 2 z wierszem 3.

Ponieważ element maksymalny znaleziony stoi w tej samej kolumnie, co numer kroku metody, to nie zachodzi zamiana kolumn.

Po zamianie wierszy macierz ma postać

$$[A^{(1)}|b^{(1)}] = \begin{bmatrix} -21 & 10 & 7 & 9 & -33 \\ 0 & -10 & 2 & -4 & 16 \\ 0 & -7.5 & 6.5 & -3 & 17 \\ 0 & -5 & 2.25 & 0 & 7.25 \end{bmatrix}$$

 $a_{22} = -10 \neq 0$ więc krok 2 jest wykonalny.

Współczynnik dla wiersza numer 3 wynosi: $p_3 = \frac{a_{32}}{a_{22}} = \frac{-7.5}{-10} = 0.75$.

Nowe wartości elementów w wierszu numer 3 należy obliczyć:

$$a_{32} = a_{32} - p_3 \cdot a_{22} = -7.5 - (0.75) \cdot (-10) = 0$$

$$a_{33} = a_{33} - p_3 \cdot a_{23} = 6.5 - (0.75) \cdot 2 = 5$$

$$a_{34} = a_{34} - p_3 \cdot a_{24} = -3 - (0.75) \cdot (-4) = 0$$

$$b_3 = b_3 - p_3 \cdot b_2 = 17 - (0.75) \cdot 16 = 5$$

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{42}}{a_{22}} = \frac{-5}{-10} = 0,5.$

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{42} = a_{42} - p_4 \cdot a_{22} = -5 - 0.5 \cdot (-10) = 0$$

$$a_{43} = a_{43} - p_4 \cdot a_{23} = 2,25 - 0,5 \cdot 2 = 1,25$$

$$a_{44} = a_{44} - p_4 \cdot a_{24} = 0 - 0.5 \cdot (-4) = 2$$

$$b_4 = b_4 - p_4 \cdot b_2 = 7,25 - 0,5 \cdot 16 = -0,75$$

Koniec kroku nr 2. Macierz ma postać:

$$[A^{(2)}|b^{(2)}] = \begin{bmatrix} -21 & 10 & 7 & 9 & -33 \\ 0 & -10 & 2 & -4 & 16 \\ 0 & 0 & 5 & 0 & 5 \\ 0 & 0 & 1,25 & 2 & -0,75 \end{bmatrix}$$

Krok nr 3:

Z macierzy głównej należy znaleźć element maksymalny co do modułu:

$$a_{33} = \max_{\substack{3 \le i \le 4 \\ 3 \le j \le 4}} |a_{ij}|$$

Ponieważ element maksymalny znaleziony stoi na pozycji (3,3) więc w tym samym wierszu i w tej samej kolumnie, co numer kroku metody, to nie zachodzi żadna zamiana.

Współczynnik dla wiersza numer 4 wynosi: $p_4 = \frac{a_{43}}{a_{33}} = \frac{1,25}{5} = 0,25$.

Nowe wartości elementów w wierszu numer 4 należy obliczyć:

$$a_{43} = a_{43} - p_4 \cdot a_{33} = 1,25 - 0,25 \cdot 5 = 0$$

$$a_{44} = a_{44} - p_4 \cdot a_{34} = 2 - 0.25 \cdot 0 = 2$$

$$b_4 = b_4 - p_4 \cdot b_3 = -0.75 - 0.25 \cdot 5 = -2$$

Koniec kroku nr 3. Macierz ma postać:

$$[A^{(3)}|b^{(3)}] = \begin{bmatrix} -21 & 10 & 7 & 9 & -33 \\ 0 & -10 & 2 & -4 & 16 \\ 0 & 0 & 5 & 0 & 5 \\ 0 & 0 & 0 & 2 & -2 \end{bmatrix}$$

Koniec eliminacji Gaussa. Ponieważ $a_{44}=2\neq 0$ więc postępowanie odwrotne jest wykonalne.

Liczymy wektor rozwiązań od ostatniego wiersza:

$$x_4 = \frac{b_4}{a_{44}} = \frac{-2}{2} = -1$$

$$x_3 = \frac{b_3 - a_{34} \cdot x_4}{a_{33}} = \frac{5 - 0 \cdot (-1)}{5} = 1$$

$$x_2 = \frac{b_2 - a_{24} \cdot x_4 - a_{23} \cdot x_3}{a_{22}} = \frac{16 - (-4) \cdot (-1) - 2 \cdot 1}{-10} = \frac{10}{-10} = -1$$

$$x_1 = \frac{b_1 - a_{14} \cdot x_4 - a_{13} \cdot x_3 - a_{12} \cdot x_2}{a_{11}} = \frac{-33 - 9 \cdot (-1) - 7 \cdot 1 - 10 \cdot (-1)}{-21} = 1$$

Ponieważ w metodzie następowała zamiana kolumn, to każda zamiana kolumn powoduje zamianę zmiennych w wektorze rozwiązań.

Zamienione zostały kolumna 1 z 4 dlatego też należy zamienić x_1 z x_4 w wektorze x.

Odp. Rozwiązaniem układu równań jest wektor $x = [-1, -1, 1, 1]^T$.

Zadanie 10.1. Implementacja metody eliminacji Gaussa

Napisać <u>program</u> realizujący rozwiązywanie układu równań liniowych metodami eliminacji Gaussa:

- 1) podstawową (bez wyboru elementu maksymalnego);
- 2) z wyborem elementu maksymalnego w kolumnie;
- 3) z pełnym wyborem elementu maksymalnego.

Program powinien zawierać po jednym przykładzie danych wejściowych zdefiniowanych dla każdej z metod.

Funkcjonalności programu:

- użytkownik wybiera numer metody;
- użytkownik wybiera, czy sam podaje dane wejściowe, czy testuje program dla danych zawartych w programie.

Wskazówka:

Przed wykonaniem każdego kroku należy sprawdzić, czy $|a_{ii}| \le \varepsilon$, gdzie np. $\varepsilon = 1e - 7$, co odpowiada sprawdzeniu w algorytmie, czy element na głównej przekątnej nie jest równy zero.

Zadania samosprawdzające dla studenta

Zadanie 10.2

Rozwiązać poniżysz układ równań liniowych metoda eliminacji Gaussa (podstawową) i obliczyć wyniki używając napisanego programu:

$$x_1 + 2x_2 - x_3 + 2x_4 = 0$$

$$x_1 - 2x_3 + 4x_4 = 4$$

$$-3x_2 + 1,5x_3 + 7x_4 = 0$$

$$-x_2 + x_3 + 6x_4 = -1$$

<u>Rozwiązanie</u>: $x = [0, -1, -2, 0]^T$

Zadanie 10.3

Rozwiązać poniżysz układ równań liniowych metoda eliminacji Gaussa a wyborem elementu maksymalnego i obliczyć wyniki używając napisanego programu:

$$14x_1 - 13x_2 + 3x_3 - 16x_4 - 42x_5 = -37$$

$$3,5x_1 - 18x_2 + 13x_3 - 23,75x_4 - 21x_5 = -5,5$$

$$3,5x_1 + 3x_2 - 5,25x_3 + 9,25x_4 + 10,5x_5 = 12,5$$

$$2x_1 + 14,5x_2 - 10,5x_3 + 18,5x_4 + 21x_5 = 23,5$$

$$1,5x_1 + 6,75x_2 - 9,25x_3 + 17x_4 - 10,5x_5 = -45,25$$

<u>Rozwiązanie</u>: $x = [2,1,0,-2,2]^T$

LABORATORIUM 11. METODA CHOLESKIEGO ROZKŁADU A=LL* MACIERZY DODATNIO OKREŚLONYCH. METODA CHOLESKIEGO BEZ PIERWIASTKÓW KWADRATOWYCH.

Cel laboratorium:

Zapoznanie studentów z rozkładem Choleskiego i jego zastosowaniem do rozwiązywania liniowych układów o macierzy dodatnio określonej .

Zakres tematyczny zajęć:

- liniowe układy równań o macierzy głównej dodatnio określonej;
- rozkład Choleskiego macierzy;
- rozwiązanie układu równań przy użyciu rozkładu Choleskiego.

Pytania kontrolne:

- 1. Co to jest macierz dodatnio określona?
- 2. Jak oblicza się macierze trójkatne w rozkładzie Choleskiego?
- 3. Jak rozwiązać układ równań liniowych mając rozkład Choleskiego dla jego macierzy głównej?

Na początek trochę teorii...

Jeżeli A jest macierzą symetryczną dodatnio określoną, to rozkłada się ona jednoznacznie na czynniki trójkątne

$$A = LL^{T}$$
.

gdzie:

L jest macierzą trójkątną dolną postaci:

$$L = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}$$

taką, że $l_{ii} > 0$ dla i = 1,2,...,n.

Elementy macierzy L powstałej w rozkładzie Choleskiego macierzy A wyrażają się wzorami:

$$l_{ss} = \sqrt{a_{ss} - \sum_{j=1}^{s-1} l_{sj}^2}$$
 dla $s = 1, 2, ..., n$

$$l_{is} = (a_{is} - \sum_{j=1}^{s-1} l_{ij} l_{sj}) / l_{ss}$$
 dla $i = s + 1, s + 2, ..., n$.

Macierz L oblicza się kolumnami.

Rozwiązanie układu równań liniowych postaci:

$$Ax = b$$

przy wykorzystaniu rozkładu Choleskiego sprowadza się do rozwiązania dwóch układów równań liniowych o macierzach trójkątnych:

$$Ly = b$$

$$L^T x = y$$
.

Pierwszy z układów jest układem, którego macierz główna L jest trójkątna dolna, natomiast drugi układ ma macierz główną L^T trójkątną górną. Rozwiązanie każdego z nich otrzymuje się analogiczne do postępowania odwrotnego w metodzie eliminacji Gaussa.

Macierz A jest hermitowska jeśli $A = A^*$, gdzie $A^* = (\bar{A})^T$ jest macierzą sprzężoną i transponowaną do macierzy A.

Dowolną (rzeczywistą oraz zespoloną) macierz hermitowską, dodatnio określoną można rozłożyć na czynniki trójkątne:

$$A = LL^*$$

gdzie $L^* = (\overline{L})^T$, a elementy macierzy L obliczane są ze wzoru:

$$l_{\rm ss} = \sqrt{a_{\rm ss} - \sum_{j=1}^{s-1} |l_{\rm sj}|^2}$$
 dla $s = 1, 2, ..., n$

$$l_{is} = (a_{is} - \sum_{j=1}^{s-1} l_{ij} \overline{l_{ij}}) / l_{ss}$$
 dla $i = s + 1, s + 2, ..., n$.

Każda macierz hermitowska, dodatnio określona A może być przedstawiona w postaci

$$A = MDM^*$$

gdzie:

- M jest macierzą trójkątną dolną z jedynkami na głównej przekątnej;
- D jest macierza diagonalną z elementami dodatnimi na głównej przekatnej;
- $\bullet \quad M^* = (\overline{M})^T.$

Elementy macierzy $D = diag(d_1, d_2, ..., d_n)$ postaci

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_n \end{bmatrix}$$

spełniają wzory:

$$d_s = a_{ss} - \sum_{k=1}^{s-1} d_k |m_{sk}|^2$$
 dla s=1,2,...,n

Elementy macierzy M postaci:

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \mathbf{m}_{21} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \mathbf{m}_{n1} & \dots & \mathbf{m}_{n,n-1} & 1 \end{bmatrix}$$

spełniają wzory:

$$m_{is} = (a_{is} - \sum_{k=1}^{s-1} d_k m_{ik} \overline{m}_{sk})/d_s$$

Obliczanie należy zrealizować kolumnami: $d_1, m_{21}, ..., m_{n1}, d_2, m_{32}, ..., m_{n2}$, itd. Rozwiązanie układu:

$$Ax = b$$

sprowadza się do rozwiązania dwóch układów równań liniowych o macierzach trójkątnych:

$$My = b$$

$$M^T x = D^{-1} y$$

gdzie:

$$D = diag\left(\frac{1}{d_1}, \frac{1}{d_2}, \dots, \frac{1}{d_n}\right)$$

Przykład 11.1. Rozkład Choleskiego

Rozwiązać poniżysz układ równań liniowych z użyciem rozkładu Choleskiego:

$$9x_1 - 9x_2 - 6x_3 + 9x_4 = -24$$

$$-9x_1 + 13x_2 + 10x_3 - 11x_4 = 30$$

$$-6x_1 + 10x_2 + 17x_3 - 5x_4 = 28$$

$$9x_1 - 11x_2 - 5x_3 + 15x_4 = -29$$

Rozwiązanie:

Najpierw obliczony zostanie rozkład macierzy A:

$$A = \begin{bmatrix} 9 & -9 & -6 & 9 \\ -9 & 13 & 10 & -11 \\ -6 & 10 & 17 & -5 \\ 9 & -11 & -5 & 15 \end{bmatrix}$$

Obliczana jest pierwsza kolumna macierzy L:

$$l_{11} = \sqrt{a_{11} - \sum_{j=1}^{-1} l_{1j}^2} = \sqrt{a_{11}} = \sqrt{9} = 3$$

$$l_{21} = \left(a_{21} - \sum_{j=1}^{0} l_{2j} l_{1j}\right) / l_{11} = \frac{a_{21}}{l_{11}} = \frac{-9}{3} = -3$$

$$l_{31} = \left(a_{31} - \sum_{j=1}^{0} l_{3j} l_{1j}\right) / l_{11} = \frac{a_{31}}{l_{11}} = \frac{-6}{3} = -2$$

$$l_{41} = \left(a_{41} - \sum_{j=1}^{0} l_{2j} l_{1j}\right) / l_{11} = \frac{a_{41}}{l_{11}} = \frac{9}{3} = 3$$

Kolejna obliczana jest druga kolumna macierzy L począwszy od elementu na głównej przekątnej:

$$l_{22} = \sqrt{a_{22} - \sum_{j=1}^{1} l_{2j}^{2}} = \sqrt{a_{22} - l_{21}^{2}} = \sqrt{13 - (-3)^{2}} = 2$$

$$l_{32} = \left(a_{32} - \sum_{j=1}^{1} l_{3j} l_{2j}\right) / l_{22} = \frac{a_{32} - l_{31} l_{21}}{l_{22}} = \frac{10 - (-2)(-3)}{2} = 2$$

$$l_{42} = \left(a_{42} - \sum_{j=1}^{1} l_{4j} l_{2j}\right) / l_{22} = \frac{a_{42} - l_{41} l_{21}}{l_{11}} = \frac{-11 - 3(-3)}{2} = -1$$

Następnie obliczana jest trzecia kolumna macierzy L począwszy od elementu na głównej przekątnej:

$$l_{33} = \sqrt{a_{33} - \sum_{j=1}^{2} l_{3j}^{2}} = \sqrt{a_{33} - (l_{31}^{2} + l_{32}^{2})} = \sqrt{17 - (-2)^{2} - 2^{2}} = 3$$

$$l_{43} = \left(a_{43} - \sum_{j=1}^{2} l_{4j} l_{3j}\right) / l_{33} = \frac{a_{43} - (l_{41} l_{31} + l_{42} l_{32})}{l_{22}} = \frac{-5 - 3 \cdot (-2) - (-1) \cdot 2}{3}$$

$$= 1$$

Na koniec ostatnia kolumna, a właściwie jeden element leżący na przekątnej, jest obliczany:

$$l_{44} = \sqrt{a_{44} - \sum_{j=1}^{3} l_{4j}^2} = \sqrt{a_{44} - (l_{41}^2 + l_{42}^2 + l_{43}^2)} = \sqrt{15 - 3^2 - (-1)^2 - 1^2} = 2$$

Macierz L ma postać:

$$L = \begin{bmatrix} 3 & 0 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ -2 & 2 & 3 & 0 \\ 3 & -1 & 1 & 2 \end{bmatrix}$$

Pierwszy układ, który należy rozwiązać to:

$$Ly = b$$

Ponieważ macierz L jest wymiaru 4×4 dlatego wektor y ma wymiar 4.

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ -2 & 2 & 3 & 0 \\ 3 & -1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} -24 \\ 30 \\ 28 \\ -29 \end{bmatrix}$$

Rozwiązując ten układ od pierwszego równania, otrzymuje się wektor:

$$y_1 = \frac{-24}{3} = -8$$

$$y_2 = \frac{30 - (-3) \cdot (-8)}{2} = 3$$

$$y_3 = \frac{28 - (-2) \cdot (-8) - 2 \cdot 3}{3} = 2$$

$$y_4 = \frac{-29 - 3 \cdot (-8) - (-1) \cdot 3 - 1 \cdot 2}{2} = -2$$

Następnie należy rozwiązać układ:

$$L^T x = y$$

postaci:

$$\begin{bmatrix} 3 & -3 & -2 & 3 \\ 0 & 2 & 2 & -1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -8 \\ 3 \\ 2 \\ -2 \end{bmatrix}$$

Rozwiązuje się ten układ od pierwszego równania, dokładnie tak, jak postępowanie odwrotne w metodzie Gaussa, otrzymuje się wektor:

$$x_4 = \frac{-2}{2} = -1$$

$$x_3 = \frac{2 - 1 \cdot (-1)}{3} = 1$$

$$x_2 = \frac{3 - 2 \cdot 1 - (-1) \cdot (-1)}{2} = 0$$

$$x_1 = \frac{-8 - (-3) \cdot 0 - (-2) \cdot 1 - 3 \cdot (-1)}{3} = -1$$

czyli:

$$x = \begin{bmatrix} -1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Odp: Rozwiązaniem układu równań jest wektor $x = [-1, 0, 1, -1]^T$.

Przykład 11.2 Rozkład Choleskiego bez pierwiastków kwadratowych

Rozwiązać poniżysz układ równań liniowych z użyciem rozkładu $A = MDM^*$:

$$1x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + 8x_2 + 10x_3 = 3$$
$$3x_1 + 10x_2 + 22x_3 = 7$$

Rozwiązanie:

Obliczenia:

$$d_1 = a_{11} = 1$$

$$m_{21} = \frac{a_{21}}{d_1} = 2, \ m_{31} = \frac{a_{31}}{d_1} = 3$$

$$d_2 = a_{22} - d_1 |m_{21}|^2 = 8 - 1 \cdot 2^2 = 4$$

$$m_{32} = \frac{(a_{32} - d_1 m_{31} m_{21})}{d_2} = \frac{10 - 1 \cdot 3 \cdot 2}{4} = 1$$

$$d_3 = a_{33} - (d_1 |m_{31}|^2 + d_2 |m_{32}|^2) = 22 - 1 \cdot 3^2 - 4 \cdot 1^2 = 9$$

Otrzymano macierze:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

Teraz należy rozwiązać dwa układy równań:

1)
$$My = b$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}.$$

Stąd:

$$y = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}.$$

2)
$$M^T x = D^{-1} y$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \operatorname{czyli} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{4} \\ \frac{1}{3} \end{bmatrix}$$

Stad

$$x = \begin{bmatrix} \frac{1}{6} \\ -\frac{1}{12} \\ \frac{1}{3} \end{bmatrix}.$$

Odp. Rozwiązaniem układu równań jest wektor $x = \left[\frac{1}{6}, -\frac{1}{12}, \frac{1}{3}\right]^T$.

Zadanie 11.1

Napisać program obliczający rozwiązanie układu równań liniowych o kwadratowej, symetrycznej i dodatnio określonej macierzy głównej układu metodą rozkładu Choleskiego.

Wyodrębnić funkcje, które obliczają:

- macierz trójkątną dolną L powstałą w tym rozkładzie (parametry wejściowe: wymiar macierzy i macierz A, parametry wyjściowe: macierz L);
- rozwiązanie układu o macierzy trójkątnej dolnej (parametry wejściowe: wymiar i macierz L oraz wektor wyrazów wolnych b, parametry wyjściowe: wektor y);
- rozwiązanie układu o macierzy trójkątnej górnej (parametry wejściowe: wymiar i macierz L oraz wektor wyrazów wolnych y, parametry wyjściowe: wektor x).

Uwagi:

Nie należy tworzyć macierzy $\mathbf{L}^{\mathbf{T}}$ tylko wypełnić w macierzy L elementy leżące nad przekątną tak, aby była to macierz symetryczna.

Zadania samosprawdzające dla studenta

Zadanie 11.2

Rozwiązać poniżysz układ równań liniowych metoda rozkładu Choleskiego i porównać wyniki otrzymane z napisanym programem:

$$4x_1 + 6x_2 - 4x_3 - 6x_4 = 2$$

$$6x_1 + 25x_2 + 6x_3 - 17x_4 = -13$$

$$-4x_1 + 6x_2 + 14x_3 + x_4 = -14$$

$$-6x_1 - 17x_2 + x_3 + 23x_4 = 5$$

<u>Rozwiązanie</u>: $x = [2, -1, 0, 0]^T$

LABORATORIUM 12. METODA ORTOGONALIZACJI HOUSEHOLDERA. METODA HOUSEHOLDERA NUMERYCZNEGO ROZWIĄZYWANIA METODY NAJMNIEJSZYCH KWADRATÓW. ROZWIĄZYWANIE NADOKREŚLONYCH UKŁADÓW RÓWNAŃ.

Cel laboratorium:

Zapoznanie studentów z metodą Householdera.

Zakres tematyczny zajęć:

- własności metody Householdera;
- metoda Householdera jako metoda najmniejszych kwadratów;
- użycie metody Householdera do rozwiązywania nadokreślonych układów równań liniowych.

Pytania kontrolne:

- 1. Jakie cechy ma przekształcenie Householdera?
- 2. Jak rozwiązuje się nadokreślony układ równań?

Na początek trochę teorii...

Przekształcenie Householdera P przeprowadza wektor \vec{a} na kierunek wektora $\vec{e_1}$.

$$a = [a_1, a_2, ..., a_n]^T, e_1 = [e, 0, ..., 0]^T.$$

Macierz tego przekształcenia jest ortogonalna, tzn. spełnia równania:

$$P = P^T = P^{-1}$$

Jest ono izometria tj. nie zmienia długości wektora:

$$||Pa|| = ||a||.$$

Obliczenia realizuje się zgodne ze wzorami:

$$\|\vec{a}\| = \sqrt{\sum_{i=1}^{n} (a_i)^2}$$
 – norma wektora a

$$\vec{u} = \begin{bmatrix} a_1 + sing(a_1) \cdot ||\vec{a}|| \\ a_2 \\ \vdots \\ a_n \end{bmatrix} - \text{wektor } u$$

$$\beta = \frac{1}{\|\vec{a}\| \cdot (\|\vec{a}\| + |a_1|)} - \text{wsp\'olczynnik } \beta$$

W wyniku przekształcenia wektora otrzymuje wektor:

$$Pa = te_1$$
,

gdzie:

$$t = -sign(a_1)||a||$$

Macierz przekształcenia Householdera oblicza się następująco:

$$P = I - \beta u u^T$$

gdzie I jest macierzą jednostkową, czyli zawiera jedynki na przekątnej, a poza nią same zera.

Wyznaczanie rozkładu macierzy nieosobliwej A na A = UR, gdzie U jest macierzą unitarną, a R jest macierzą nieosobliwą górnie trójkątną.

Konstrukcja ciągu macierzy P_k stopnia (n-k+1) w kolejnych krokach metody Householdera dla k=1,2,...,n-1 i dla wektora $a=\left[a_{k,k}^{(k-1)},a_{k+1,k}^{(k-1)},...,a_{n,k}^{(k-1)}\right]$:

Najpierw tworzona jest macierz \tilde{P}_k stopnia (n-k+1):

$$\widetilde{P_k} = I_k - \beta_k u^{(k)} (u^{(k)})^T$$

a następnie macierz P_k stopnia (n):

$$P_k = \begin{bmatrix} I_{k-1} & 0 \\ 0 & \tilde{P}_k \end{bmatrix}$$

gdzie I_k jest macierzą jednostkową stopnia k.

Przykład 12.1. Metoda ortogonalizacji Householdera

Wyznaczyć wektor $a = [-2,1,2]^T$ po przeprowadzeniu go przez przekształcenie Householdera.

Rozwiązanie:

$$\|\vec{a}\| = \sqrt{\sum_{i=1}^3 (a_i)^2} = \sqrt{(-2)^2 + 1^2 + 2^2} = 3$$

$$sign(a_1) = -1$$

$$t = -sign(a_1)||a|| = -(-1) \cdot 3 = 3$$

Po wykonaniu przekształcenia Householdera powstaje wektor:

$$Pa = te_1 = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

Odp. Wektor a zostaje przeprowadzony na wektor $[3, 0, 0]^T$.

Przykład 12.2. Metoda ortogonalizacji Householdera

Wyznaczyć macierz Householdera w pierwszym kroku dla układu równań:

$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ x_1 + 3x_2 - x_3 = 3 \\ x_1 - 1x_2 + 5x_3 = 2 \end{cases}$$

Rozwiązanie:

Pierwszy krok wykonuje się dla pierwszej kolumny macierzy głównej układu równań:

$$a = [1,1,1]^T$$
, $\|\vec{a}\| = \sqrt{\sum_{i=1}^3 (a_i)^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

$$\vec{u} = \begin{bmatrix} a_1 + sign(a_1) \cdot ||\vec{a}|| \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{3} \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2,732 \\ 1 \\ 1 \end{bmatrix}$$

$$\beta = \frac{1}{\|\vec{a}\| \cdot (\|\vec{a}\| + |a_1|)} = \frac{1}{\sqrt{3}(\sqrt{3} + 1)} = \frac{1}{3 + \sqrt{3}} \cdot \frac{3 - \sqrt{3}}{3 - \sqrt{3}} = \frac{3 - \sqrt{3}}{6} \approx 0,211$$

$$P_{1} = I - \beta u u^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 0.211 \begin{bmatrix} 2.732 \\ 1 \\ 1 \end{bmatrix} [2.732 \quad 1 \quad 1] =$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 0.211 \begin{bmatrix} 7.464 & 2.732 & 2.732 \\ 2.732 & 1 & 1 \\ 2.732 & 1 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} -34.374 & -12.948 & -12.948 \\ -12.948 & -3.739 & -4.739 \\ -12.948 & -4.739 & -3.739 \end{bmatrix}$$

Przykład 12.3. Rozkład macierzy

Wyznaczyć rozkład macierz A=UR otrzymany w metodzie Householdera:

$$A = \begin{bmatrix} 2 & -4 & 1 \\ 2 & -6 & 5 \\ 1 & -1 & 3 \end{bmatrix}$$

Rozwiązanie:

$$a = [2,2,1]^{T}, \quad \|\vec{a}\| = \sqrt{\sum_{i=1}^{3} (a_{i})^{2}} = \sqrt{2^{2} + 2^{2} + 1^{2}} = \sqrt{9} = 3$$

$$\vec{u} = \begin{bmatrix} a_{1} + sign(a_{1}) \cdot \|\vec{a}\| \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} 2 + (1) \cdot 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$$

$$\beta = \frac{1}{\|\vec{a}\| \cdot (\|\vec{a}\| + |a_{1}|)} = \frac{1}{3(3+2)} = \frac{1}{15}$$

$$P_{1} = I - \beta u u^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{15} \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} [5 \quad 2 \quad 1] = \begin{bmatrix} -\frac{10}{15} & -\frac{10}{15} & -\frac{5}{15} \\ -\frac{10}{15} & \frac{11}{15} & -\frac{2}{15} \\ -\frac{5}{15} & -\frac{2}{15} & \frac{14}{15} \end{bmatrix}$$

Wtedy:

$$A_{1} = P_{1}A = \begin{bmatrix} -\frac{10}{15} & -\frac{10}{15} & -\frac{5}{15} \\ -\frac{10}{15} & \frac{11}{15} & -\frac{2}{15} \\ -\frac{5}{15} & -\frac{2}{15} & \frac{14}{15} \end{bmatrix} \cdot \begin{bmatrix} 2 & -4 & 1 \\ 2 & -6 & 5 \\ 1 & -1 & 3 \end{bmatrix} = \begin{bmatrix} -\frac{41}{15} & \frac{105}{15} & -\frac{75}{15} \\ 0 & -\frac{24}{15} & \frac{39}{15} \\ 0 & \frac{18}{15} & \frac{27}{15} \end{bmatrix}$$

Teraz drugi krok metody:

$$a = \left[-\frac{24}{15}, \frac{18}{15} \right]^{T}, \ \|\vec{a}\| = \sqrt{\sum_{i=1}^{2} (a_{i})^{2}} = \sqrt{\left(-\frac{24}{15} \right)^{2} + \left(\frac{18}{15} \right)^{2}} = \frac{\sqrt{900}}{15} = 2$$

$$\vec{u} = \begin{bmatrix} a_{1} + sign(a_{1}) \cdot \|\vec{a}\| \\ a_{2} \end{bmatrix} = \begin{bmatrix} -\frac{54}{15} \\ \frac{18}{15} \end{bmatrix}$$

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

$$\beta = \frac{1}{\|\vec{a}\| \cdot (\|\vec{a}\| + |a_1|)} = \frac{1}{2\left(2 + \frac{24}{15}\right)} = \frac{15}{108}$$

$$\widetilde{P_2} = I - \beta u u^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{15}{108} \begin{bmatrix} -\frac{54}{15} \\ \frac{18}{15} \end{bmatrix} \cdot \begin{bmatrix} -\frac{54}{15} & \frac{18}{15} \end{bmatrix}$$

Macierz $P_2 \in R^{3\times3}$ ma postać:

$$P_2 = \begin{bmatrix} 1 & 0 \\ 0 & \widetilde{P_2} \end{bmatrix}$$

Dalej należy policzyć:

$$A_2 = P_2 A_1$$

Wtedy:

$$R = A_2 \text{ oraz } U = P_1 P_2.$$

Zadanie 12.1

Napisać program, który przekształca zadany wektor a na kierunek wektora e_1 stosując przekształcenie Householdera. Użytkownik podaje wymiar wektora i jego współrzędne.

LABORATORIUM 13. METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH I ICH UKŁADÓW. METODA BISEKCJI. METODA SIECZNYCH, METODA REGULA FALSI. METODA NEWTONA. WIELOWYMIAROWA METODA NEWTONA.

Cel laboratorium:

Zapoznanie studentów z metodami rozwiązywania nieliniowych równań i układów równań.

Zakres tematyczny zajęć:

- metoda bisekcji;
- metoda siecznych;
- metoda regula falsi;
- metoda Newtona.

Pytania kontrolne:

- 1. Kiedy można użyć metody bisekcji do znalezienia pierwiastka równania nieliniowego?
- 2. Jakie są założenia przy metodzie Newtona?
- 3. Jaka jest szybkości zbieżności omawianych metod?

Na początek trochę teorii...

Należy znaleźć rozwiązanie równania nieliniowego f(x) = 0, $f: R \to R$.

Metoda bisekcji

Założenia metody:

- 1) f jest funkcją ciągła na przedziale [a, b];
- 2) $f(a) \cdot f(b) < 0$.

Opis metody:

- 1. Wyznacza się środek przedziału [a, b]: $s = \frac{a+b}{2}$
- 2. Jeżeli $|f(s)| < \varepsilon$, wtedy koniec algorytmu,
 - a w przeciwnym razie:
 - a. Jeżeli $f(a) \cdot f(s) < 0$ wtedy b = s (do dalszych obliczeń należy wziąć przedział [a,s])
 - b. w przeciwnym przypadku a = s (do dalszych obliczeń należy wziąć przedział [s,b])

4. Jeżeli nie jest spełnione kryterium stopu, należy przejść się do punktu 1

Kryteria stopu metody:

 $|b-a| < \delta$, gdzie δ jest zadaną dokładnością dla odległości punktów; $|f(x)| < \varepsilon$, gdzie ε jest zadaną dokładnością dla wartości funkcji.

Metoda siecznych

Założenia metody:

- 1) f jest funkcją ciągła;
- 2) dane są dwa punkty x_0 , x_1 stanowiące przybliżenie rozwiązania.

Kolejne przybliżenia rozwiązania wyliczane są ze wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}) dla k = 1, 2, 3, ...$$

Kryteria stopu metody:

 $|f(x_k)| < \varepsilon$, gdzie ε jest zadaną dokładnością dla wartości funkcji; $k < Max_k$, gdzie Max_k jest maksymalną liczbą iteracji.

Metoda regula falsi

Założenia metody:

- 1) f jest funkcją ciągła na przedziale [a, b]
- 2) $f(a) \cdot f(b) < 0$.

Kolejne przybliżenia rozwiązania wyliczane są ze wzoru:

1.
$$x_{k+1} = a - \frac{f(a)}{f(a) - f(b)}(a - b)$$
 dla $k = 0, 1, 2, ...$

- 2. Jeżeli $|f(x_{k+1})| < \varepsilon$, wtedy koniec algorytmu,
 - a w przeciwnym razie:
 - a. Jeżeli $f(a) \cdot f(x_{k+1}) < 0$ wtedy $b = x_{k+1}$
 - b. W przeciwnym przypadku $a = x_{k+1}$
- 5. Jeżeli nie jest spełnione kryterium stopu, należy przejść się do punktu 1

Kryteria stopu metody:

 $|f(x_k)| < \varepsilon$, gdzie ε jest zadaną dokładnością dla wartości funkcji;

 $k < Max_k$, gdzie Max_k jest maksymalną liczbą iteracji.

Metoda Newtona (stycznych)

Założenia metody:

- 1) f jest funkcją w otoczeniu rozwiązania;
- 2) danych jest punkt startowy x_0 ;
- 3) pochodna funkcji jest różna od zera w pobliżu rozwiązania.

Kolejne przybliżenia rozwiązania wyliczane są ze wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 dla $k = 0, 1, 2, ...$

Kryteria stopu metody:

 $|f(x_k)| < \varepsilon$, gdzie ε jest zadaną dokładnością dla wartości funkcji;

 $k < Max_k$, gdzie Max_k jest maksymalną liczbą iteracji.

Przykład 13.1. Metoda bisekcji

Wyznaczyć trzy kroki metody bisekcji dla znalezienia rozwiązanie równania:

$$x^3 + x^2 - 3x - 3 = 0$$

w przedziale [1,2].

Rozwiązanie:

$$[a, b] = [1, 2]$$

Sprawdzenie założenia, że na końcach przedziału funkcja ma przeciwne znaki:

$$f(a) = f(1) = 1^3 + 1^2 - 3 \cdot 1 - 3 = -4$$

$$f(b) = f(2) = 2^3 + 2^2 - 3 \cdot 2 - 3 = 3$$

Jest spełnione, bo $f(1) \cdot f(2) < 0$.

Krok 1:

$$s = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2}$$

$$f(s) = f(1,5) = \left(\frac{3}{2}\right)^3 + \left(\frac{3}{2}\right)^2 - 3 \cdot \frac{3}{2} - 3 = \frac{27}{8} + \frac{9}{4} - 7,5 = \frac{27}{8} + \frac{18}{8} - \frac{60}{8} = -\frac{15}{8}$$

Ponieważ
$$f(\frac{3}{2}) \cdot f(2) < 0$$
, to $[a, b] = [\frac{3}{2}, 2]$

Krok 2:

$$s = \frac{a+b}{2} = \frac{\frac{3}{2}+2}{2} = \frac{7}{4}$$

$$f(s) = f\left(\frac{7}{4}\right) = \left(\frac{7}{4}\right)^3 + \left(\frac{7}{4}\right)^2 - 3 \cdot \frac{7}{4} - 3 = 0,172$$

Ponieważ $f\left(\frac{3}{2}\right) \cdot f\left(\frac{7}{4}\right) < 0$, to $[a, b] = \left[\frac{3}{2}, \frac{7}{4}\right]$.

Krok 3:

$$s = \frac{a+b}{2} = \frac{\frac{3}{2} + \frac{7}{4}}{2} = \frac{13}{8}$$

$$f(s) = f\left(\frac{13}{8}\right) = \left(\frac{13}{8}\right)^3 + \left(\frac{13}{8}\right)^2 - 3 \cdot \frac{13}{8} - 3 = -0.943$$

Ponieważ
$$f\left(\frac{13}{8}\right) \cdot f\left(\frac{7}{4}\right) < 0$$
, to $[a, b] = \left[\frac{13}{8}, \frac{7}{4}\right]$.

Odp. Rozwiązaniem przybliżonym jest

$$x^* = \frac{a+b}{2} = \frac{\frac{13}{8} + \frac{7}{4}}{2} = \frac{27}{16}$$
 z dokładnością $\varepsilon = |f(x^*)| = |f(\frac{27}{16})| = 0,41$

Przykład 13.2. Metoda regula falsi

Wyznaczyć trzy kroki metody regula falsi dla znalezienia rozwiązanie równania:

$$3x - 1 - \cos(x) = 0$$

w przedziale [0,25;0,75].

Rozwiązanie:

$$[a, b] = [0,25;0,75]$$

$$f(a) = -1,2189, f(b) = 0,5183$$

Krok 1:

$$x_1 = 0.25 - \frac{f(0.25)}{f(0.25) - f(0.75)}(0.25 - 0.75) = 0.600822$$

$$f(x_1) = f(0,600822) = -0,002241$$

$$[a, b] = [0,25;0,600822]$$

<u>Krok 2</u>:

$$x_2 = 0.25 - \frac{f(0.25)}{f(0.25) - f(0.600822)}(0.25 - 0.600822) = 0.607391$$

$$f(x_2) = f(0.607391) = 0.001034$$

$$[a, b] = [0,600822; 0,607391]$$

Krok 3:

$$x_3 = 0,600822 - \frac{f(0,600822)}{f(0,600822) - f(0,607391)}(0,600822 - 0,607391) =$$

$$f(x_3) = f(0.607101) = -7.5e - 07$$

Odp. Po wykonaniu 3 kroków otrzymuje się pierwiastek x = 0,607101, który został obliczony z dokładnością 10^{-6} .

Przykład 13.3. Metoda Newtona

Wyznaczyć rozwiązanie równania: $\sin(x) - \frac{x}{2} = 0$ metodą Newtona dla $x_0=1,2$ z dokładnością do 10^{-3} . W ilu krokach została ono wyznaczone?

Rozwiązanie:

Funkcja f(x) jest dana w zadaniu:

$$f(x) = \sin(x) - \frac{x}{2}$$

Jej pochodną należy policzyć:

$$f'(x) = \cos(x) - \frac{1}{2}$$

Kolejne przybliżenia pierwiastka obliczone metodą Newtona:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1,2 - \frac{\sin(1,2) - \frac{1,2}{2}}{\cos(1,2) - \frac{1}{2}} = 3,61233$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3,61233 - \frac{\sin(3,61233) - \frac{3,61233}{2}}{\cos(3,61233) - \frac{1}{2}} = 1,98808$$

Wyniki dla pierwszych pięciu iteracji pokazano w tabeli 13.1.

Tabela 13.1 Wyniki dla przykładu 13.3

k	x_k	$f(x_k)$
1	3,612334	-2,25971
2	1,98808	-0,07985
3	1,899879	-0,0036
4	1,895505	-9,1e-06
5	1,895494	-5,8e-11

Na podstawie wartości funkcji w kolejnych przybliżeniach rozwiązania zadanego równania (kolumna ostatnia w tabeli 13.1) widać, iż kryterium stopu dla $\varepsilon = 10^{-3}$ spełnia punkt x_4 .

Odp. Przybliżoną wartością pierwiastka jest x=1,895505.

Zadanie 13.1

Napisać program realizujący obliczanie rozwiązania równania:

$$x^3 - 71 = 0$$

metodami: bisekcji oraz Newtona.

W metodzie bisekcji przyjąć przedział [a,b]=[3,4].

Jako punkt startowy w metodzie Newtona przyjąć punkt $x_0=4$.

Dokładności obliczeń podaje użytkownik.

Jako wynik, o ile spełnione są założenia metod, program powinien wyświetlać:

- wartość obliczonego pierwiastka,
- wartość funkcji w tym punkci,
- liczbę wykonanych iteracji.

Zadania samosprawdzające dla studenta

Zadanie 13.2

Wyznaczyć najmniejszy dodatni pierwiastek równania:

$$x^4 + 5x^2 - 3x - 15 = 0$$

metoda bisekcji z dokładnościa do $\varepsilon = 0.05$.

Odp. Przedział [0, 2], x=1,734375, k=6 iteracji.

Zadanie 13.3

Wyznaczyć pierwiastek równania:

$$e^x - 5x - 3 = 0$$

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

metoda Newtona z dokładnością do $\epsilon=0,01$ dla punktu startowego 2. Odp. x=2,84672, k=6 iteracji.

LABORATORIUM 14. METODA EULERA I JEJ MODYFIKACJE DLA RÓWNAŃ RÓŻNICZKOWYCH DODATNICH.

Cel laboratorium:

Zapoznanie studentów z metodami dla równań różniczkowych cząstkowych.

Zakres tematyczny zajęć:

- metoda Eulera;
- metoda zmodyfikowana Eulera;
- metoda ulepszona Eulera.

Pytania kontrolne:

- 1. Jak jest idea metody Eulera?
- 2. Co jest wynikiem metody Eulera?
- 3. Czy zawsze znana jest liczba kroków, które należy wykonać w metodzie Eulera?
- 4. Czy krok obliczeń ma wpływ na ich dokładność?

Na początek trochę teorii...

Dane jest równanie różniczkowe z warunkiem początkowym:

$$\begin{cases} y' = f(x, y(x)) \\ y(a) = y_a \end{cases}$$

Należy obliczyć wartość funkcji y(x) w zadanym punkcie b, b>a czyli y(b) = ?

Przedział [a, b] jest dzielony na n równych części:

$$x_0 = a$$
, $x_{i+1} = x_i + h$, $dla \ i = 0,1,2,...,n-1$

oraz

$$h = \frac{b-a}{n}$$
.

Metody różnicowe obliczające przybliżone wartości rozwiązania to:

metoda Eulera

$$y_{i+1} = y_i + hf(x_i, y_i)$$

metoda Heuna (metoda ulepszona Eulera)

$$y_{i+1} = y_i + \frac{1}{2}h(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i)))$$

metoda zmodyfikowana Eulera

$$y_{i+1} = y_i + hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hf(x_i, y_i))$$

Przykład 14.1. Metoda Eulera

Wyznaczyć rozwiązanie równania:

$$y' = \frac{y^2}{x+1}$$

z warunkiem początkowym y(0) = 3 metodą Eulera w punkcie 1 dla n=5.

Rozwiązanie:

$$f(x, y(x)) = \frac{y^2}{x+1}$$

$$a = 0, \ y_a = 3, \ b = 1$$

$$h = \frac{b-a}{n} = \frac{1-0}{5} = \frac{1}{5}$$

Należy wykonać obliczenia dla i=0,1,2,3,4

$$y_{1} = y_{0} + hf(x_{0}, y_{0}) = 3 + \frac{1}{5}f(0,3) = 3 + \frac{1}{5} \cdot \frac{3^{2}}{0+1} = 4.8$$

$$x_{1} = x_{0} + h = 0 + \frac{1}{5} = \frac{1}{5}$$

$$y_{2} = y_{1} + hf(x_{1}, y_{1}) = 4.8 + \frac{1}{5}f\left(\frac{1}{5}, 4.8\right) = 4.8 + \frac{1}{5} \cdot \frac{(4.8)^{2}}{\frac{1}{5} + 1} = 8.64$$

$$x_{2} = x_{1} + h = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}$$

$$y_{3} = y_{2} + hf(x_{2}, y_{2}) = 8.64 + \frac{1}{5}f(0.4; 8.64) = 8.64 + \frac{1}{5} \cdot \frac{8.64^{2}}{0.4 + 1} = 19.30423$$

$$x_{3} = x_{2} + h = \frac{2}{5} + \frac{1}{5} = \frac{3}{5}$$

$$y_{4} = y_{3} + hf(x_{3}, y_{3}) = 19.30423 + \frac{1}{5}f(0.6; 19.30423) = 19.30423 + \frac{1}{5} \cdot \frac{19.30423^{2}}{0.6 + 1} = 65.88588$$

$$x_{4} = x_{3} + h = \frac{3}{5} + \frac{1}{5} = \frac{4}{5}$$

$$y_5 = y_4 + hf(x_4, y_4) = 65,88588 + \frac{1}{5}f(0.8; 65,88588) =$$

= $65,88588 + \frac{1}{5} \cdot \frac{65,885883^2}{0.8 + 1} = 548,2136$

$$x_5 = x_4 + h = \frac{4}{5} + \frac{1}{5} = 1$$

Zatem:

$$y_5 \approx f(x_5) = f(1)$$

Odp. Przybliżona wartość $f(1) \approx 548,2136$.

Przykład 14.2. Metoda Heuna

Wyznaczyć rozwiązanie równania: $y' = \frac{y}{x^2}$ z warunkiem początkowym y(1) = 2 metodą Heuna w punkcie 1,5 dla n=2.

Rozwiązanie:

$$f(x, y(x)) = \frac{y}{x^2}$$

$$a = 1, \ y_a = 2, \ b = 1,5$$

$$h = \frac{b-a}{n} = \frac{1,5-1}{2} = \frac{0,5}{2} = 0,25$$

Należy wykonać obliczenia dla i=0,1:

$$y_1 = y_0 + \frac{1}{2}h(f(x_0, y_0) + f(x_0 + h, y_0 + hf(x_0, y_0)))$$

$$f(x_0, y_0) = f(1; 2) = \frac{2}{1^2} = 2$$

$$y_1 = 2 + \frac{1}{2}0,25(2 + f(1 + 0,25; 2 + 0,25 \cdot 2)) = 2 + 0,125 \cdot (2 + f(1,25; 2,5)) = 2 + 0,125 \cdot (2 + \frac{2,5}{1,25^2}) = 2,45$$

$$x_1 = x_0 + h = 1 + 0.25 = 1.25$$

 $y_2 = y_1 + \frac{1}{2}h(f(x_1, y_1) + f(x_1 + h, y_1 + hf(x_1, y_1)))$

$$f(x_1, y_1) = f(1,25; 2,2) = \frac{2,2}{1,25^2} = 1,408$$

$$y_2 = 2,45 + \frac{1}{2}0,25(1,408 + f(1,5; 2,45 + 0,25 \cdot 1,408)) =$$

$$= 2,45 + 0,125 \cdot (1,408 + f(1,5; 2,802))$$

$$= 2,45 + 0,125 \cdot (1,408 + \frac{2,802}{1,5^2}) = 2,78167$$

$$x_2 = x_1 + h = 1,25 + 0,25 = 1,5$$

Zatem:

$$y_2 \approx f(x_2) = f(1,5)$$

Odp. Przybliżona wartość $f(1,5) \approx 2,78167$.

Przykład 14.3. Metoda zmodyfikowana Eulera

Wyznaczyć rozwiązanie równania: y' = 2xy z warunkiem początkowym y(0) = 1 metodą Eulera w punkcie 0,5 dla n=2.

Rozwiązanie:

$$f(x, y(x)) = 2xy$$

 $a = 0, y_a = 3, b = 1$
 $h = \frac{b-a}{n} = \frac{0.5-0}{2} = \frac{0.5}{2} = 0.25$

Należy wykonać obliczenia dla i=0,1:

$$y_1 = y_0 + hf\left(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}hf(x_0, y_0)\right)$$

$$= 1 + 0.25f\left(0 + \frac{1}{2}0.25; 1 + \frac{1}{2}0.25f(0; 1)\right)$$

$$= 1 + 0.25f(0.125; 1 + 0.125 \cdot 2 \cdot 0 \cdot 1) = 1 + 0.25f(0.125; 1)$$

$$= 1 + 0.125 \cdot 2 \cdot 0.125 \cdot 1 = 1.03125$$

$$x_1 = x_0 + h = 0 + 0.25 = 0.25$$

Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga

$$y_2 = y_1 + hf\left(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}hf(x_1, y_1)\right)$$

$$= 1,03125$$

$$+ 0,25f\left(0,25 + \frac{1}{2}0,25; 1,03125 + \frac{1}{2}0,25f(0,25; 1,03125)\right)$$

$$= 1,03125 + 0,25f(0,375; 1,095703) = 1,236694$$

$$x_2 = x_1 + h = 0.25 + 0.25 = 0.5$$

Zatem:

$$y_2 \approx f(x_2) = f(1)$$

Odp. Przybliżona wartość $f(0,5) \approx 1,236694$.

Zadanie 14.1

Napisać program realizujący obliczanie rozwiązania równania różniczkowego:

$$y' = xy^2$$
 z warunkiem początkowym $y(0) = 0.5$

metodami: Eulera oraz Heuna. Liczbę podprzedziałów *n* oraz punkt, w którym obliczana będzie wartość funkcji, podaje użytkownik.

Zadania samosprawdzające dla studenta

Zadanie 14.2

Wyznaczyć rozwiązanie równania: y' = 2xy z warunkiem początkowym y(0) = 1:

- a) metoda Eulera w punkcie 1 dla n=4;
- b) metoda Heuna w punkcie 1 dla n=4;
- c) metodą ulepszoną Eulera w punkcie 1,5 dla n=6.

LABORATORIUM 15. KOLOKWIUM 2.

Cel laboratorium:

Sprawdzenie umiejętności studentów.

Zakres tematyczny zajęć:

- laboratorium 10;
- laboratorium 11;
- laboratorium 12;
- laboratorium 13;
- laboratorium 14.

Zaliczenie: od 51%.

Materiały zostały opracowane w ramach projektu "Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga", umowa nr **POWR.03.05.00-00-Z060/18-00**w ramach Programu Operacyjnego Wiedza Edukacja Rozwój 2014-2020

współfinansowanego ze środków Europejskiego Funduszu Społecznego

