Session 9 - Microcontroller logic gates

Created	@February 22, 2022 2:14 PM
Class	Embeded Systems
• Туре	
Materials	
✓ Reviewed	

Number System

- · Way of representing numbers
- Types:

Decimal	Base 10	Number Range 0-9
Binary	2	0,1
Octal	8	0-7
Hexadecimal	16	0-9, A to F

NOT Gate (Inverter)

- Purpose: To perform negation on all bits
- Symbol: ~
- Logic Diagram:

• Truth Table:

Input	Output
0	1
1	0

AND Gate

- Purpose: To RESET particular bit/s
- Symbol: &
- Logic Diagram:

b

• Truth Table:

Α	В	Y = A&B
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

- Purpose: To SET particular bit/s
- Symbol: |
- Logic Diagram:

• Truth Table:

Masking:

What are Ports?

ATmega 2560 is a 100 pin micro-controller

- 86 pins can be used as Input/Output pins
- Pins are grouped together and are called as Ports

ATmega 2560 has ten 8-bit Ports

Port x; x = A to F and H, J, K, L

ATmega 2560 has one 6-bit Port

· Port G

Each Port has three associated registers with it:

- DDRx x = A to H and J, K, L
- PORTx x = A to H and J, K, L
- PINx x = A to H and J, K, L

these are used for accessing the bortpin

Need for masking

- · AVR is not bit addressable. It is only bit accessible.
- · No 'address' to a specific bit.
- Sometimes we need to change the state of one or more pins of the port keeping the rest of the pins unchanged.

NOT operator

Shift Operators

• Whichever bit you want to set only there you are putting a 1, other than that the others are zero, as the value will remain the same

the simple name to check the above equation

Example of Masking with Shift Operator

To set pin/s:

In general, statement can be written as:

Register name j= (1 << pin no)

For setting multiple bits at once the statement can be written as:

Register name j= ((1 << pin no1) j (1 << pin no2))

Example

Example of Masking with Shift Operator

Resetting

oregister_name &= 0xFB;

oxFB can also be written as
$$\sim (1 << 2)$$

In general, statement can be written as:

Register_name & = $\sim (1 << pin_no)$

For resetting multiple bits at once the statement can be written as:

Register_name &= $\sim ((1 << pin_no1) | (1 << pin_no2))$

To Reset pin/s:

In general, statement can be written as:

Register name & = ~ (1 << pin no)

For resetting multiple bits at once the statement can be written as:

Register name &= ~ ((1 << pin no1) | (1 << pin no2))

EOR Operator

Purpose: To TOGGLE particular bit

Symbol: ^

Truth Table:

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

For one bit : Register name ^= (1<<pin no)

_