Векторы. Лекция 8

Понятие векторного пространства. Размерность и базис векторного пространства

Типы векторных пространств:

Векторное пространство V_1 — множество векторов, коллинеарных некоторой прямой (множество векторов, лежащих на прямой).

Bекторное пространство V_2 — множество векторов, компланарных заданной плоскости (множество векторов, лежащих на заданной плоскости).

Векторное пространство V_3 – множество векторов пространства.

Определение. Число n называется размерностью векторного пространства V, если в пространстве V можно найти n линейно независимых векторов, а всякие n+1 векторы линейно зависимы.

- 1. Векторное пространство V_1 является одномерным, так как, , всякие два коллинеарные вектора линейно зависимы, и в то же время всякий ненулевой вектор образует линейно независимую систему.
- 2. Векторное пространство V_2 является двумерным, так как, всякие два неколлинеарные вектора линейно независимы, а всякие три компланарные вектора уже линейно зависимы.
- 3. Векторное пространство V_3 является трехмерным, так как, всякие три некомпланарные вектора линейно независимы, а всякие четыре вектора, линейно зависимы.

Определение. Система n линейно независимых векторов $\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}$ векторного пространства $\mathbf{V_n}$, если для всякого вектора $\mathbf{x} \in V_n \mathbf{x}$ найдутся такие числа $x_1, x_2, ..., x_n$, что имеет место равенство

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$$

Теорема. В векторном пространстве V_n размерности n существует базис из n векторов. Более того, всякая система из n линейно независимых векторов образует базис пространства.

Теорема. Коэффициенты разложения вектора по базису определяются единственным образом.

Рассмотрим на примере V_{3.}

Доказательство (от противного). Пусть, для вектора **х** существуют два различных разложения по базису, то есть

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n,$$
 $\mathbf{x} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n.$

где $x_i \neq y_i$ хотя бы для одного *i*, тогда имеем

$$\mathbf{x} - \mathbf{x} = (x_1 - y_1)\mathbf{e}_1 + (x_2 - y_2)\mathbf{e}_2 + ... + (x_n - y_n)\mathbf{e}_n = \mathbf{0}.$$

Т.к. $x_i - y_i \neq 0$, то векторы $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ линейно зависимы, что противоречит их определению как базисных векторов.

Определение. Коэффициенты разложения вектора по базису называются координатами вектора относительно данного базиса.

$$\mathbf{x} = (x_1, x_2, ..., x_n).$$

Теорема. Линейные операции над векторами сводятся к операциям над их координатами.

Рассмотрим на примере V_{3.}

Дано:
$$\mathbf{a} = (x_1, x_2, ..., x_n), \quad \mathbf{b} = (y_1, y_2, ..., y_n), \quad \mathbf{c} = (z_1, z_2, ..., z_n), \quad \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$$

Доказать, что $z_i = \lambda x_i + \mu y_i$.

Доказательство:

$$\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b} = \lambda (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) + \mu (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) =$$

$$= (\lambda x_1 + \mu y_1) \mathbf{e}_1 + (\lambda x_2 + \mu y_2) \mathbf{e}_2 + (\lambda x_3 + \mu y_3) \mathbf{e}_3 \text{ то есть } z_i = \lambda x_i + \mu y_i.$$

Условие коллинеарности двух векторов

Теорема. Два ненулевых вектора х и у коллинеарны тогда и только тогда, когда их координаты относительно данного базиса пропорциональны.

Дано:

$$\mathbf{a} = (x_1, x_2, ..., x_n), \mathbf{b} = (y_1, y_2, ..., y_n),$$

Доказать, что
$$\mathbf{a} \parallel \mathbf{b} \Leftrightarrow \frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3}$$
.

Необходимость.

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + ... + x_n \mathbf{e}_n,$$
 $\mathbf{b} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + ... + y_n \mathbf{e}_n.$

Если **a** и **b** коллинераны, то $\exists \alpha$, $\mathbf{a} = \alpha \mathbf{b}$, то есть

$$a=x_1\mathbf{e}_1+x_2\mathbf{e}_2+...+x_n\mathbf{e}_n=\alpha\big(y_1\mathbf{e}_1+y_2\mathbf{e}_2+...+y_n\mathbf{e}_n\big). \ \text{Откуда}\ \ y_i=\alpha x_i. \ \text{или}$$

$$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=\frac{1}{\alpha}.$$

Достаточность.

Пусть выполняется условие $\frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3} = k$, тогда $x_i = ky_i$

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n = k y_1 \mathbf{e}_1 + k y_2 \mathbf{e}_2 + \dots + k y_n \mathbf{e}_n = k (y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n) = k \mathbf{b}$$

Следовательно, $\mathbf{a} \parallel \mathbf{b}$.

Аффинные и декартовы координаты точки

Аффинные и декартовы координаты точки на прямой

Определение. $А \phi \phi$ инной системой координат на прямой называется совокупность точки O и базисного вектора \mathbf{e} .

Точка O называется началом системы координат, а сама прямая l с заданным базисным вектором e называется координатной осью.

Определение. *Аффинной координатой точки* относительно аффинной системы координат называется координата её радиус-вектора относительно базиса.

Аффинные и декартовы координаты точки на плоскости

Определение. Аффинной системой координат на плоскости называется совокупность точки O — начала системы координат и базиса e_1 , e_2 .

Определение. Аффинными координатами точки плоскости относительно аффинной системы координат называются координаты её радиус-вектора относительно базиса.

Точку M , имеющую координаты x_1, x_2 , будем обозначать в дальнейшем как $M(x_1, x_2)$, а саму систему координат как $R = \{O, \mathbf{e}_1, \mathbf{e}_2\}$.

В случае, когда $|\mathbf{e}_1| = |\mathbf{e}_2| = 1$, $\mathbf{e}_1 \perp \mathbf{e}_2$, базис называется **декартовым**, а система координат $R = \{O, \mathbf{i}, \mathbf{j}\}$ — декартовой.

Определение. Декартовыми координатами точки относительно декартовой системы координат называются координаты её радиус-вектора относительно декартова базиса.

Скалярное произведение векторов

Определение. Углом между векторами а и b называется наименьший угол ф на который нужно повернуть один из векторов, для того чтобы их направления совпали.

Определение. *Скалярным произведением векторов* **a** и **b** называется **скалярная** величина $(\mathbf{a}, \mathbf{b}) = |\mathbf{a}| \cdot |\mathbf{b}| \cos \mathbf{a} \cdot \mathbf{b}$

Свойства скалярного произведения:

- 1. Скалярное произведение коммутативно: (a,b)=(b,a);
- 2. Постоянный множитель можно выносить за знак скалярного произведения: $(\lambda \mathbf{a}, \mathbf{b}) = \lambda(\mathbf{a}, \mathbf{b})$;
- 3. Скалярное произведение дистрибутивно относительно сложения векторов: $(\mathbf{a} + \mathbf{c}, \mathbf{b}) = (\mathbf{a}, \mathbf{b}) + (\mathbf{c}, \mathbf{b})$;
- 4. Условие перпендикулярности: если $\mathbf{a} \perp \mathbf{b}$ то $(\mathbf{a}, \mathbf{b}) = 0$.

ķΑ

Выражение скалярного произведения через координаты

Пусть задан декартов базис e_1, e_2, e_3 и векторы a и b:

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3,$$
 $\mathbf{b} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + y_3 \mathbf{e}_3.$

Рассмотрим скалярное произведение

$$(\mathbf{a}, \mathbf{b}) = (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + y_3 \mathbf{e}_3) =$$

$$= x_1 y_1 (\mathbf{e}_1, \mathbf{e}_1) + x_1 y_2 (\mathbf{e}_1, \mathbf{e}_2) + x_1 y_3 (\mathbf{e}_3, \mathbf{e}_3) + x_2 y_2 (\mathbf{e}_2, \mathbf{e}_2) + x_2 y_3 (\mathbf{e}_2, \mathbf{e}_2) + x_3 y_3 (\mathbf{e}_3, \mathbf{e}_3) =$$

$$= x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Так как
$$(\mathbf{e}_i, \mathbf{e}_j) = \begin{cases} 1, & ecnu \ i = j; \\ 0, & ecnu \ i \neq j. \end{cases}$$

Выражение длины вектора через его координаты: $|\mathbf{a}| = \sqrt{{x_1}^2 + {x_2}^2 + {x_3}^2}$

Выражение косинуса угла между векторами:

$$\cos \mathbf{a} \cdot \mathbf{b} = \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{a}| \cdot |\mathbf{b}|} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$

2

Спасибо за внимание