IN THE CLAIMS

Please amend the claims as follows:

Claims 1-43 (Cancelled).

44. (Previously Presented) A method of lowering the surface tension or the interface tension of water of a cosmetic composition comprising at least one cosmetic or dermatological adjuvant, the method comprising adding a polymer comprising water-soluble units and units with an LCST, the units with an LCST having in water a demixing temperature of from 5 to 40 °C at a concentration of 1% by mass in water and wherein the water-soluble units are different than the units with an LCST, to water in an amount sufficient to lower the surface tension or the interface tension of water, wherein the polymer comprises an oligomer or copolymer of water-soluble units, wherein the polymer is water-soluble in the entire range of 5 to 80°C at a concentration of at least 10 g/l wherein the units with an LCST are-one or more of the following polymers:

polyethers; polyvinyl methyl ethers; polymeric N-substituted acrylamide derivatives; copolymers of N-isopropylacrylamide or of N -ethylacrylaide and a vinyl monomer corresponding to formula (I):

wherein:

R is from H, -CH₃, -C₂H₅ or -C₃H₇, and

X is:

OR' alkyl oxides wherein R' is a linear or branched, saturated or unsaturated hydrocarbon radical containing from 1 to 6 carbon atoms, optionally substituted with at least one halogen atom; a sulphonic group, a sulphate group, a phosphate group; a hydroxyl group; a primary amine; a secondary amine; a tertiary amine; or a quaternary amine group of the formula $N^+R_1R_2R_3$ wherein R_1 , R_2 and R_3 are, independently, a linear or branched, saturated or unsaturated hydrocarbon radical containing 1 to 6 carbon atoms, with the proviso that the sum of the carbon atoms of $R' + R_1 + R_2 + R_3$ does not exceed 7; and

-NH₂, -NHR₄ and -NR₄R₅ groups in which R₄ and R₅ are, independently of each other, linear or branched, saturated or unsaturated hydrocarbon radicals containing 1 to 6 carbon atoms, with the proviso that the total number of carbon atoms in R₄ + R₅ does not exceed 7, the said R₄ and R₅ optionally being substituted with a halogen atom (iodine, bromine, chlorine or fluorine); a hydroxyl (-OH); sulphonic (-SO₃), sulphate (-SO₄); phosphate (-PO₄H₂); primary amine (-NH₂); secondary amine (-NHR₁), tertiary amine (-NR₁R₂) and/or quaternary amine (-N⁺R₁R₂R₃) group with R₁, R₂ and R₃ being, independently of each other, a linear or branched, saturated or unsaturated hydrocarbon radical containing 1 to 6 carbon atoms, with the proviso that the sum of the carbon atoms of R₄ + R₅ + R₁ + R₂ + R₃ does not exceed 7;

copolymers of N-isopropylacrylamide or of N -ethylacrylaide and a monomer selected from the group consisting of maleic anhydride, itaconic acid, vinylpyrrolidone, styrene and its derivatives, dimethyldiallylammonium chloride, vinylacetamide, vinyl ethers and vinyl acetate derivatives; or

polyvinylcaprolactam; copolymers of vinylcaprolactam and a vinyl monomer corresponding to formula (I).

45. (Previously Presented) The method as claimed in claim 44, in which the lowering of the surface tension or of the interface tension of water is at least 15 mN/m for a concentration of polymer in water of 0.1% by mass in the temperature range from 5 to 80 °C.

46. (Previously Presented) The method as claimed in claim 44, in which the lowering of the surface tension or of the interface tension of water is of at least 20 mN/m for a concentration of polymer in water of 0.1% by mass when the temperature is higher than the demixing temperature of the units with an LCST at this concentration.

Claims 47-103 (Cancelled).

104. (Previously Presented) The method as claimed in Claim 44, wherein the polymer is in the form of a block polymer comprising water-soluble units alternating with units with an LCST, or in the form of a grafted polymer whose backbone is formed from water-soluble units and which bears grafts consisting of units with an LCST or a grafted polymer whose backbone is formed from units with an LCST and which bears grafts consisting of water-soluble units.

Claims 105-109 (Cancelled).

110. (Previously Presented) The method as claimed in Claim 44, wherein the water-soluble units are obtained by free-radical polymerization of at least one monomer selected from the group consisting of:

(meth)acrylic acid;

vinyl monomers of formula (I) below:

$$H_2C = CR$$
 (I)

wherein:

R is from H, -CH₃, -C₂H₅ or -C₃H₇, and X is:

OR' alkyl oxides wherein R' is a linear or branched, saturated or unsaturated hydrocarbon radical containing from 1 to 6 carbon atoms, optionally substituted with at least one halogen atom; a sulphonic group, a sulphate group, a phosphate group; a hydroxyl group; a primary amine; a secondary amine; a tertiary amine; or a quaternary amine group of the formula $N^+R_1R_2R_3$ wherein R_1 , R_2 and R_3 are, independently, a linear or branched, saturated or unsaturated hydrocarbon radical containing 1 to 6 carbon atoms, with the proviso that the sum of the carbon atoms of $R' + R_1 + R_2 + R_3$ does not exceed 7; and

-NH₂, -NHR₄ and -NR₄R₅ groups in which R₄ and R₅ are, independently of each other, linear or branched, saturated or unsaturated hydrocarbon radicals containing 1 to 6 carbon atoms, with the proviso that the total number of carbon atoms in R₄ + R₅ does not exceed 7, the said R₄ and R₅ optionally being substituted with a halogen atom (iodine, bromine, chlorine or fluorine); a hydroxyl (-OH); sulphonic (-SO₃⁻), sulphate (-SO₄⁻); phosphate (-PO₄H₂); primary amine (-NH₂); secondary amine (-NHR₁), tertiary amine (-NR₁R₂) and/or quaternary amine (-N⁺R₁R₂R₃) group with

 R_1 , R_2 and R_3 being, independently of each other, a linear or branched, saturated or unsaturated hydrocarbon radical containing 1 to 6 carbon atoms, with the proviso that the sum of the carbon atoms of $R_4 + R_5 + R_1 + R_2 + R_3$ does not exceed 7;

maleic anhydride;

itaconic acid;

vinyl alcohol of formula CH₂=CHOH;

vinyl acetate of formula CH₂=CH-OCOCH₃;

N-vinyllactams such as N-vinylpyrrolidone, N-vinylcaprolactam and N-butyrolactam; $\mbox{vinyl ethers of formula CH$_2$=$CHOR$_6$ in which R_6 is a linear or branched, }$

saturated or unsaturated hydrocarbon radical containing from 1 to 6 carbon

atoms;

water-soluble styrene derivatives, especially styrene sulphonate;

dimethyldiallylammonium chloride; and vinylacetamide.

Claims 111-115 (Cancelled).

116. (Previously Presented) The method as claimed in Claim 44, wherein the water-soluble units have a molar mass ranging from 1000 g/mol to 5 000 000 g/mol when they constitute the water-soluble backbone of a grafted polymer, or a molar mass ranging from 500 g/mol to 100 000 g/mol when they constitute one block of a multiblock polymer or when they constitute the grafts of a grafted polymer.

Claims 117-124 (Cancelled).

125. (Previously Presented) The method as claimed in Claim 44, wherein the molar mass of the units with an LCST is from 500 to 5300 g/mol.

126. (Previously Presented) The method as claimed in Claim 125, wherein the molar mass of the units with an LCST is from 1500 to 4000 g/mol.

Claims 127-130 (Cancelled).

131. (Previously Presented) The method as claimed in Claim 44, wherein the units with an LCST comprise

a polyvinylcaprolactam;

a copolymer of vinylcaprolactam and of a vinyl monomer corresponding to formula

(I):

$$H_2C = CR$$
 CO
 X
(I)

wherein:

R is from H, $-CH_3$, $-C_2H_5$ or $-C_3H_7$, and

X is:

OR' alkyl oxides wherein R' is a linear or branched, saturated or unsaturated hydrocarbon radical containing from 1 to 6 carbon atoms, optionally substituted with at least one halogen atom; a sulphonic group, a sulphate group, a phosphate group; a hydroxyl group; a primary amine; a secondary amine; a tertiary amine; or a quaternary amine group of the formula N⁺R₁R₂R₃ wherein R₁, R₂ and R₃ are,

independently, a linear or branched, saturated or unsaturated hydrocarbon radical containing 1 to 6 carbon atoms, with the proviso that the sum of the carbon atoms of $R' + R_1 + R_2 + R_3$ does not exceed 7; or

a monomer selected from the group consisting of maleic anhydride, itaconic acid, vinylpyrrolidone, styrene; styrene derivatives, dimethyldiallylammonium chloride, vinylacetamide, vinyl alcohol, vinyl acetate, vinyl ethers, and vinyl acetate derivatives.

Claims 132-133 (Cancelled).

134. (Previously Presented) The method as claimed in Claim 44, wherein the proportion by mass of the units with an LCST is from 5 to 70% relative to the polymer.

135. (Previously Presented) The method as claimed in Claim 134, wherein the proportion by mass of the units with an LCST is from 20 to 65% relative to the polymer.

136. (Previously Presented) The method as claimed in Claim 134, wherein the proportion by mass of the units with an LCST is from 30 to 60% relative to the polymer.

Claims 137-142 (Cancelled).

143. (Previously Presented) The method as claimed in Claim 44, wherein the concentration by mass of the polymer in the aqueous phase is less than or equal to 5%.

Application No. 10/069,983 Reply to the Official Action of July 15, 2008

144. (Previously Presented) The method as claimed in Claim 143, wherein the concentration by mass of the polymer in the aqueous phase is from 0.01% to 5%.

Claims 145-148 (Cancelled).