

Differences between IPv4 and IPv6

■ IPv4 and IPv6 are internet protocol version 4 and internet protocol version 6, IP version 6 is the new version of Internet Protocol, which is way better than IP version 4 in terms of complexity and efficiency.

IPv4 vs IPv6

Why IPv6?

- Need for larger address space
 - IPv4 has 32-bit address field
- Support for new applications like real-time audio and video that require network guarantees in the network
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS
 - new "anycast" address: route to "best" of several replicated servers

- An anycast address is an address allocated to a set of interfaces that typically belong to different routers.
- When a packet is destined to an anycast address, it is delivered to the closest interface that has this anycast address, where the term "closest" is determined by the routing protocol.
- An anycast address must be assigned to a router not a host and cannot be used as a source address.
- Since anycast addresses are unicast addresses, when an interface is configured with an anycast address it must be explicitly configured on the router owning that interface.
- This is done because anycast addresses cannot be distinguished from any other unicast addresses.

IPv6 Rationale

- Larger address space
- Efficient address allocation
- Simpler header processing
- Autoconfiguration
- Support for QoS
- Support for security
- Header TCP Payload

IPv4 Address Space Exhaustion Currently, about 75% of the total IPv4 address space is either assigned or reserved.

IPv6: Benefits : Address length

- 32 bits in IPv4, 128 bits in IPv6
- **3**40282366920938463463374607431768211456 addresses
- restores end-to-end transparency
- New possibilities for applications (p2p, voip, ...)
- Static network assignments for every customer
- dynamic addresses still possible (privacy reasons)
- IPSec
- QoS capabilities

IPv6: new address format

IPv4:
32 bits, 4 x 8 bits, decimal notation, separated by '.'
{ examples: 203.178.141.194, 195.30.0.2, 10.0.0.1
IPv6:
{ 128 bits, 8 x 16 bits, hexadecimal notation, separated by '.'
{ leading zeroes can be left away ('.0123:0001' = '.123:1')
{ exactly one series of zeroes can be reduced to '..'
{ examples:
2001:200:0:8002:203:47ff:fea5:3085
2001:608::2
fe80::210:60ff:fe80:3a16

IPv4 Header Field	IPv6 Header Field
Version	Same field but with different version numbers.
Internet Header Length	Removed in IPv6. IPv6 does not include a Header Length field because the IPv6 header is always a fixed size of 40 bytes. Each extension header is either a fixed size or indicates its own size.
Type of Service	Replaced by the IPv6 Traffic Class field.
Total Length	Replaced by the IPv6 Payload Length field, which only indicates the size of the payload.
Identification Fragmentation Flags Fragment Offset	Removed in IPv6. Fragmentation information is not included in the IPv6 header. It is contained in a Fragment extension header.
Time to Live	Replaced by the IPv6 Hop Limit field.
Protocol	Replaced by the IPv6 Next Header field.
Header Checksum	Removed in IPv6. In IPv6, bit-level error detection for the entire IPv6 packet is performed by the link layer.
Source Address	The field is the same except that IPv6 addresses are 128 bits in length.
Destination Address	The field is the same except that IPv6 addresses are 128 bits in length.
Options	Removed in IPv6. IPv4 options are replaced by IPv6 extension headers

