

Programmable Forwarding

Nick McKeown

Professor of Electrical Engineering and Computer Science

Today, it takes 4 years to add a new feature to a switch ASIC.

And that's the fast-path for urgent features!

When you need an upgrade

- 1. A switch vendor can't just send a software upgrade
- 2. It takes years to add new features
- 3. By then, you've figured out a kludge to work around it
- 4. Your network gets more complicated, more brittle.
- 5. Eventually, when the upgrade is available, it either
 - No longer solves your problem, or
 - You need a fork-lift upgrade, at huge expense.

Network systems are built "bottom-up"

Fixed-function switch

Network systems will be programmed "top-down"

"This is precisely how you must process packets"

Why aren't all network systems built this way?

"Programmable switches are 10-100x slower than fixed-function switches. They cost more and consume more power."

Conventional wisdom in networking

This is changing...

Performance:

At 6.5Tb/s Tofino is the fastest switch chip in the world.

Cost and power:

Same as fixed-function chips.

Easy to program:

Programmers learn to write P4 programs in less than a day.

Why is programmability happening now?

Domain Specific Processors

Domain Specific Processors

Fixed-Function Switch

Same architecture for 20 years

Features and table-sizes are baked in at design time

All stages are identical – makes PISA a good "compiler target"


```
table int_table {
  reads {
    ip.protocol;
  }
  actions {
    export_queue_latency;
  }
}
```


P4 program example: Parsing Headers

P4 program example

```
IPv4
                 Ethernet
                                                                    ACL
                                                  IPv6
     table ipv4 lpm
             reads {
                            control ingress
              ipv4.dstAddr
                                    apply(12);
              actions
                                    apply(my encap);
              set next hop;
                                    if (valid(ipv4) {
              drop;
                                            apply(ipv4 lpm);
                                    } else
                                            apply(ipv6 lpm);
                                    apply(acl);
action set_next_hop(nhop_ig
        modify field(metadata.nhop ipv4 addr, nhop ipv4 addr);
        modify field(standard metadata.egress port, port);
        add to field(ipv4.ttl, -1);
```

Protocols and table complexity 20 years ago

An example: Telemetry

The network should answer these questions

- 1 "Which path did my packet take?"
- 2 "Which rules did my packet follow?"
- (3) "How long did it queue at each switch?"
- (4) "Who did it share the queues with?"

INT (in P4) can answer all four questions for the first time. At full line rate. Without generating any additional packets!

Thank you.