Конспекты по проге 1 семестр

Содержание

1	Вве	дение
	1.1	Алгоритм
	1.2	Асимптотики
	1.3	Структура данных, абстрактный тип данных (интерфейс)
	1.4	Массив
2	Баз	овые структуры данных
	2.1	Динамический массив
	2.2	Односвязный и двусвязный список
	2.3	Стек
	2.4	Очередь
	2.5	Дек
	2.6	Двоичная куча. АТД Очередь с приоритетом
	2.7	Амортизационный анализ
	2.8	Персистентный стек
_	~	
3	_	тировки и порядковые статистики
	3.1	Задача сортировки, устойчивость, локальность
	3.2	Квадратичные сортировки
	3.3	Сортировка слиянием
	3.4	Сортировка с помощью кучи
	3.5	Слияние отсортированных массивов с помощью кучи
	3.6	Нижняя оценка времени работы для сортировок сравнением
	3.7	Быстрая сортировка
	3.8	k порядковая статистика
	3.9	Сортировка подсчётом
	3.10	Блочная сортировка
	3.11	Поразрядная сортировка
	3.12	Бинарная быстрая сортировка
		Мастер-теорема

1 Введение

1.1 Алгоритм

Определение Алгоритм — это формально описанная вычислительная процедура, получающая исходные данные (input), называемые также входом алгоритма или его аргументом, и выдающая результат вычисления на выход (output). Алгоритм определяет функцию (отображение):

$$F\colon X\to Y\tag{1}$$

X - входные данные, Y - выходные

Примеры

Вычисление числа Фибоначчи

Или же через перемножение матриц за O(log(n))

$$(F_0 F_1) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n = (F_n F_{n+1})$$

Проверка числа на простоту

Перебор до \sqrt{n} Решето Эратосфена

Быстрое возведение в степень

1.2 Асимптотики

f ограничена сверху функцией g асимптотически

$$f(x) \in O(g(x)) \Leftrightarrow \exists (C > 0)(\forall x) \colon ||f(x)|| \le C||g(x)||$$

f ограничена снизу функцией g асимптотически

$$f(x) \in \Omega(g(x)) \Leftrightarrow \exists (C > 0)(\forall x) \colon ||f(x)|| \ge C||g(x)||$$

f ограничена сверху и снизу функцией g асимптотически

$$f(x) \in \Theta(g(x)) \Leftrightarrow \exists (C > 0), (C' > 0)(\forall x) : C||g(x)|| \le ||f(x)|| \le C'||g(x)||$$

g доминирует над f асимптотически

$$f(x) \in o(g(x)) \Leftrightarrow \forall (C > 0)(\forall x) \colon ||f(x)|| < C||g(x)||$$

f доминирует над g асимптотически

$$f(x) \in \omega(g(x)) \Leftrightarrow \forall (C > 0)(\forall x) \colon ||f(x)|| > C||g(x)||$$

f эквивалентна g асимптотически при $n o n_0$

$$f(n) \sim g(n) \Leftrightarrow \lim_{n \to n_0} \frac{f(n)}{g(n)} = 1$$

Примеры
$$O(1) = O(2)$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n) \subset g(n) \Rightarrow O(f(n) + g(n)) = O(g(n))$$

1.3 Структура данных, абстрактный тип данных (интерфейс)

Определение Структура данных - программная единица, позволяющая хранить и обрабатывать данные. Для взаимодействия предоставляет интерфейс.

Примеры
int a[n];
std::pair<int, int>

Абстрактный тип данных (АТД) - тип данных, который скрывает внутреннюю реализацию, но предоставляет весь интерфейс для работы с данными, а также возможность создавать элементы этого типа. Абстрактный тип данных реализуется с помощью структуры данных.

Пример Стек, реализованный через массив Стек - АТД, массив - структуры данных

1.4 Массив

Определение Массив - структура данных, хранящая набор значений (элементов), которые идентифицируются по индексу или набору индексов.

Динамический массив - массив, размер которого может изменяться во время выполнения программы.

Линейный поиск - поиск по массиву за O(n) В отсортированном массиве поиск возможен за $O(\log(n))$ с помощью бинарного поиска

2 Базовые структуры данных

2.1 Динамический массив

- +: random access operator
- -: нельзя удалить/вставить в середину за O(1)

2.2 Односвязный и двусвязный список

- +: удаление и вставка в любое место
- -: поиск/последовательный доступ дорог

Односвязный список имеет ссылку только на следующий узел.

Двусвязный список имеет ссылку на следующий и предыдущий узлы.

Операции со списками:

Поиск элемента (O(n))

Вставка - смена указателей (O(1))

Удаление - смена указателей (O(1))

Объединение (при условии, что храним указатель на последний элемент) - смена указателей (O(1))

2.3 Стек

Сертификат - Last In First Out

Операции:

Добавление в конец (O(1))

Удаление с конца (O(1))

Можно реализовать с помощью:

Динамического массива

Списка

Для хранения в массиве можно использовать указатель на последний элемент и сдвигать его в зависимости от операции.

Чтобы поддерживать минимум в стеке, достаточно хранить не элемент, а пару вида: значение элемента, минимальный элемент в стеке на момент вставки нашего элемента.

2.4 Очередь

Сертификат - First In First Out

Операции:

Добавление в конец

Удаление из начала

Можно реализовать с помощью:

Динамического массива

Списка

Двух стеков

Циклическая очередь в массиве

Реализация циклической очереди в массиве основана на хранении двух указателей: на первый элемент в очереди и на последний. Тогда удаление/вставка элементов будет связана со сдвигом указателя на первый/последний элемент по формуле newPtr = (ptr + 1)%size

Хранение очереди в списке

Для реализации на односвязном списке достаточно хранить указатель на первый и последний элемент, удаление/вставка производятся сменой указателей.

Представление очереди в виде двух стеков

Для реализации очереди на двух стеках достаточно вставлять элементы в один стек, а забирать из другого. В случае, если второй стек пуст, перемещать все элементы из первого во второй.

Время извлечения элемента

Для операции push возьмём 3 монеты: для самого push'a, резерв на pop из первого стека и резерв на pop из второго. Тогда учётная стоимость pop'a из второго стека будет равна 0, т.к. можно использовать оставшиеся монеты. Таким образом, каждая операция за O(1)

Поддержка минимума в очереди

Для поддержки минимума необходимо поддерживать минимум в каждом из стеков, тогда минимум в очереди - меньший минимум стеков.

2.5 Дек

Список элементов, в котором можно вставлять и удалять элементы с конца и начала.

Операции:

Вставка в конец
Извлечение из конца
Вставка в начало
Извлечение из начала

Можно реализовать с помощью:

Динамический массива

Двусвязного списка

Хранение дека в массиве

Хранение аналогично очереди, только указатели могут сдвигаться как вперёд, так и назад (newPtr = (ptr - 1)%size)

Хранение дека в списке

Храним аналогично очереди, но используем двусвязный список.

2.6 Двоичная куча. АТД Очередь с приоритетом

Определение Двоичное подвешенное дерево, которое удовлетворяет свойствам:

Значение в вершине $\leq (\geq$ для максимума в корне) значению в потомке На i-ом слое 2^i вершин (кроме, возможно, последнего). Глубина кучи $\log n$ Последний слой заполняется слева направо

Удобно хранить бинарную кучу в массиве:

$$a[0]$$
 - корень $a[i] o (a[2i+1], a[2i+2])$ - потомки

Операции Вставка за $O(\log n)$:

Вставляем в свободное место

 Рекурсивно поднимаем элемент, если он меньше (больше) родителя (sift Up) Удаление за $O(\log n)$:

Удаляем минимум

Вставляем последний элемент в корень

Рекурсивно меняем элемент с минимальным (максимальным) потомком (siftDown)

Очередь с приоритетом - абстрактный тип данных, который поддерживает следующие операции:

push - добавить в очередь элемент с определенным приоритетом
рор - удалить из очереди элемент с наивысшим приоритетом
top - посмотреть элемент с наивысшим приоритетом (необязательная операция)

2.7 Амортизационный анализ

Определение - метод подсчёта времени, требуемого для выполнения последовательности операций над структурой данных. При этом время усредняется по всем выполняемым операциям, и анализируется средняя производительность операций в худшем случае.

Средняя амортизационная стоимость

$$x = \frac{\sum_{i=0}^{n} t_i}{n}$$

 t_i - время выполнения i-ой операции

Амортизированное (учетное) время добавления элемента в динамический массив Стоимость операции add(item)

Для каждой операции add(item), для которой не требуется расширение массива, будем использовать три монетки: одна для самой вставки, две в резерв. Одну из резерва положим к вставленному элементу с индексом i, а вторую к элементу с индексом $i-\frac{n}{2}$, где n - размер массива

Когда массив заполнится, у каждого элемента будет одна монетка в резерве, которую мы сможем использовать для копирования в новый массив размером 2n

Метод потенциалов Пусть Ф - потенциал

 Φ_0 - изначальное значение

 Φ_i - состояние после $i\text{-}\mathrm{o}\Breve{u}$ операции

Тогда стоимость i-й операции $a_i = t_i + \Phi_i - \Phi_{i-1}$

Пусть n - количество операций, m - размер структуры данных, тогда a = O(f(n, m)), если:

$$\forall i \colon a_i = O(f(n, m))$$
$$\forall i \colon \Phi_i = O(n(f(n, m)))$$

Доказательство

$$a = \frac{\sum_{i=1}^{n} t_i}{n} = \frac{\sum_{i=1}^{n} a_i + \sum_{i=0}^{n-1} \Phi_i - \sum_{i=1}^{n} \Phi_i}{n} = \frac{n \cdot O(f(n,m)) + \Phi_0 - \Phi_n}{n} = O(f(n,m))$$

Метод бух. учёта Пусть операция стоит некоторое число монет.

Тогда для каждой операции мы можем взять монет с запасом, чтобы хватило на следующие возможные операции (пример с динамическим массивом)

Если монет хватило на все операции, то наше предположение о стоимости каждой операции (то, что мы взяли с запасом) верно

(Излагаю в неформальном стиле)

2.8 Персистентный стек

Стек, который хранит все свои состояния Операции:

Вставка: $push(i,x) \to j$, где i - конкретное состояние, x - элемент, который нужно вставить, j - новое состояние после вставки. При вставке создаётся новое состояние стека, где хранится вставленный элемент и ссылка на состяюние, в которое его вставили.

Удаление: $pop(i) \to j$. При удалении i - ого состояния идём с "родителю"i-ого состояния и подцепляем его копию к "деду"i-ого состояния.

В итоге имеем доступ к любой версии стека за O(1) времени и O(n) памяти. Можно реализовать с помощью:

Массива Списка

3 Сортировки и порядковые статистики

3.1 Задача сортировки, устойчивость, локальность

Coming soon

3.2 Квадратичные сортировки

 $Coming\ soon$

3.3 Сортировка слиянием

Coming soon

3.4 Сортировка с помощью кучи

Coming soon

3.5 Слияние отсортированных массивов с помощью кучи

Coming soon

3.6 Нижняя оценка времени работы для сортировок сравнением

Coming soon

3.7 Быстрая сортировка

Принцип Есть массив a[0...n-1] и некоторый подмассив a[l..r]

Разделим a[l...r] на две части по опорному элементу q: a[l...q] и a[q+1...r] так что каждый элемент a[l...q] меньше или равен a[q], который не превышает любой элемент подмассива a[q+1...r]

Подмассивы a[l...q] и a[q+q...r] сортируются с помощью рекурсивного вызова быстрой сортировки

Схема Ломуто

```
Выбираем q=a[r] q=a[r]; i=l; i=l; for (int j=l; j< r-1, j++) \{ if (a[j]< q) \{ swap (a[i], a[j]); i++; \} \} swap (a[i], a[r];
```

Схема Хоара

```
\begin{array}{l} q = A \big[ \big( \, r \, + \, l \, \big) \, / \, 2 \big] \, ; \\ i = \, l \, ; \\ j = \, r \, ; \\ while \ (i <= j) \, \{ \\ while \ (a [\, i \, ] \, < \, q) \, \{ \\ i + + ; \\ \} \\ \end{array}
\begin{array}{l} while \ (a [\, j \, ] \, > \, q) \, \{ \\ j - - ; \\ \} \\ if \ (i >= j) \, \{ \\ break \, ; \\ \} \\ swap (a [\, i \, ] \, , \, a [\, j \, ]) \, ; \\ i + + ; \\ j - - ; \\ \} \end{array}
```

Свойства

- Локальная
- Недетерминированная
- Неустойчивая

Асимптотика Дерево рекурсий

Худший случай: $T(n) = T(n-1) + \Theta(n)$ (закинули один элемент от partitional)

$$T(n) = \sum_{k=1}^{n} \Theta(k) = \Theta(\sum_{k=1}^{n} k) = \Theta(n^2)$$

Среднее время работы $O(n \log n)$

Доказательство Пусть X - суммарное количество операций сравнения с опорным элементом. Рассмотрим массив $[z_0...z_n]$, пусть $z_{ij} = [z_i...z_j]$

Опорный элемент дальше не участвует в сравнении ⇒ сравнение каждой пары ≤ 1 раза

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

где $X_{ij}=1$, если произошло сравнение z_i и z_j , иначе 0 Применим мат. ожидание к каждой части

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr(z_i, z_j)$$

где $Pr(z_i,z_j)$ - вероятность того, что z_i сравнивается с z_j

Пусть все элементы различны

x - опорный $\Rightarrow (\forall z_i, z_j \colon z_i < x < z_j \Rightarrow z_i \text{ и } z_j \text{ не будут сравниваться})$

Если z_i - опорный, то он сравнивается с каждым элементом z_{ij} кроме себя

Значит z_i и z_j будут сравниваться, когда первым в z_{ij} будет выбран один из них

 $X_{ij}=1\Leftrightarrow z_i$ - опорный или z_j - опорный

$$Pr(z_i, z_j) = Pr(z_i) + Pr(z_j) = \frac{1}{j - i + 1} + \frac{1}{j - i + 1} = \frac{2}{j - i + 1}$$

где $Pr(z_i)$ - вероятность того, что первым элементом был z_i , а $Pr(z_j)$ - вероятность того, что первым был z_i , тогда

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Пусть k = j - i, тогда

$$E[X] = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n)$$

Улучшения быстрой сортировки

- Выбор медианы из первого, среднего и последнего элементов и отсечение рекурсии меньших подмассивов (с помощью сортировок вставками)
- Разделение на три части (применяют, если много одинаковых элементов)

3.8 k порядковая статистика

В чём суть: пусть дан массив А длиной N и пусть дано число К. Задача в том, чтобы найти в этом массиве K-ое по величине число, т.е. K-ую порядковую статистику

Алгоритм Пусть опорный элемент имеет индекс т

Если $k == m \Rightarrow$ успех

Если $k < m \Rightarrow$ ищем k-ую статистику в левой части

Если $k>m\Rightarrow$ ищем (k - m - 1)-ую статистику в правой части

Асимптотика Функция partition при поиске в массиве размера n делает не более n-1 сравнений

Проведём оценку сверху, будем считать, что каждый раз выбирается большая половина

$$T(n) \leq \frac{1}{/n} \sum_{k=1}^{n} (T(\max(k-1; n-k) + n - 1) = n - 1 + \frac{1}{/n} \sum_{k=1}^{n} (T(\max(k-1; n-k)) = n - 1 + \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} T(k)) = n - 1 + \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} T(k) = n - 1 +$$

Пусть каждый раз массив делится в определенном соотношении, т.е. $\exists cT(k) \leq ck \forall k < n$ Тогда верно:

$$T(n) = n - 1 + \frac{2}{/n} \sum_{k=\lceil n/2 \rceil}^{n-1} ck$$

Здесь короче оценка с neerc, её надо разжевать и вставить сюда

3.9 Сортировка подсчётом

Пусть у нас
 п целых чисел в диапазоне от 0 до kОбычно применяют, если
 n много больше k

Алгоритм Заводим массив A[k]

Проходим по нашему изначальному массиву и инкрементируем A[i], если встретили i - ое число

В случае целых чисел просто будем сдвигать число при записи в массив, и сдвигать обратно при доступе к элементу

Также можно сортировьть по ключам сложные объекты

Предварительно подсчитывает количества элементов с различными ключами и разделяем результирующий массив на соответствующие блоки (длины которых как раз и равны значениям вспомогательного массива, который мы получили

Затем при повторном проходе исходного массива каждый элемент копируется в специальнго отведенный его ключу блок

Асимптотика O(n+k)

3.10 Блочная сортировка

Суть сортировки Блочная сортирвка применяется при равномерном распределении входных данных

Т.е. мы разбиваем вхдные данные на *п* блоков. Внутри блока же сортируем удобным образом (либо той же блочной сортировкой). Сортировка работает только в том случае, если разбиение на блоки производится таким образом, чтобы элементы каждого следующего блока были больше предыдущего

Где же применяем? Эту сортировку стоит применять в случае, если данные распределены равномерно, т.е. велика вероятность того, что числа редко повторяются (например, последовательность случайных чисел)

3.11 Поразрядная сортировка

Общий смысл Сначала сравниваем крайний разряд, группируем элементы по значению разряда

Потом сравниваем числа по следующему разряду (сравниваем внутри группы)

Перед сортировкой необходимо привести все данные к единому количеству "разрядов"

MSD Сравниваем, начиная со старшего разряда

Добавляем "пустые"элементы (когда приводим к одинаковому количеству разрядов) в конец Подходит для строк

LSD Сравниваем, начиная с младшего разряда

Добавляем "пустые"элементы (когда приводим к одинаковому количеству разрядов) в начало

Подходит для чисел

Но необходима устойчивая сортировка каждого разряда

Пример

$$\begin{pmatrix} 32[9] \\ 45[6] \\ 43[7] \end{pmatrix} \rightarrow \begin{pmatrix} 32[9] \\ 43[7] \\ 45[6] \end{pmatrix} \rightarrow \begin{pmatrix} 32[9] \\ 43[7] \\ 45[6] \end{pmatrix} \rightarrow \begin{pmatrix} 3[2]9 \\ 4[3]7 \\ 4[5]6 \end{pmatrix} \rightarrow \begin{pmatrix} [3]29 \\ [4]37 \\ [4]56 \end{pmatrix}$$

Асимптотика LSD Пусть m - количество разрядом

n - количество чисел

k - количество значений каждого разряда (10 для чисел)

T(n) - время работы устойчивой сортировки

Тогда сложность O(m(n+k)), если устойчивая сортировка имеет сложность O(n+k) (сортировка подсчётом, например)

MSD для строк По первому символу разделяем строки в кучи

Каждую кучу делим аналогично

Когда куча достигла размера 1 - элемент на месте

Асимптотика MSD Пусть значения разрядов меньше b, а количество разрядок - k Если "делим хорошо" (разбиваем на разные кучки), асимптотика $\Omega(n\log_b n)$ Если "делим плохо" (например, возможна ситуация строк BBBA и BBBC), асимптотика O(nk)

3.12 Бинарная быстрая сортировка

Аналог MSD сортировки для строк, но алфавит состоит только из 0 и 1

3.13 Мастер-теорема

О чём? Мастер теорема позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов.

Формулировка Пусть $a \ge 1$ и b > 1 - константы, f(n) - функция, T(n) определено на множестве неотрицательных целых чисел как:

$$T(n) = a * T(\frac{n}{b}) + f(n)$$

, где n - размер задачи

а - количество подзадач в рекурсии

n/b - размер каждой подзадачи

f(n) - оценка сложности работы вне рекурсии

Пример для merge-sort

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

где f(n) - затраты на слияние (n)

Зачем это нужно? В зависимости от нашей функции f(n):

$$f(n) = O(n^c), c < \log_b a)$$
 тогда получаем $T(n) = \Theta(n^{\log ba})$

Пример

$$f(n) = \Theta(n^c \log^k n), c = \log_b a$$
 тогда получаем $T(n) = \Theta(n^c \log^{k+1} n)$

Пример

$$f(n) = \Omega(n^c), c > \log_b a$$

Доказательство Рассмотрим дерево рекурсии и частный случай $n=b^k$ где i - уровень рекурсии, тогда на i - ом уровне получим суммарное количество операций $a^i f(\frac{n}{b^i})$

Тогда

$$T(n) = \sum_{i=0}^{\log_b n} a^i f(\frac{n}{b^i}) + O(n^{\log_b a})$$

 $O(n^{\log_b a})$ - для последнего уровня рекурсии

Доказательство для А

$$T(n) = \sum_{i=0}^{\log_b n} a^i f(\frac{n}{b^i}) + O(n^{\log_b a}) \ge \sum_{i=0}^{\log_b n} a^i (\frac{n}{b^i})^{\log_b a - \epsilon} + O(n^{\log_b a})$$

Тогда

$$\sum_{i=0}^{\log_b n} a^i (\frac{n}{b^i})^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n} a^i b^{-i \log_b a} b^{i\epsilon} = n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n} a^{-i \log_b a} b^{i\epsilon} = n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n} a^{-i \log_b a} b^{-i \log_b a} b^{i\epsilon} = n^{\log_b a} b^{-i \log_b a} b^{-i \log_$$

Дописать надо