Relatório Projeto 2 AED 2021/2022

Nome: Hugo Sobral de Barros Nº Estudante: 2020234332

PL (inscrição): 3 Login no Mooshak: 2020234332

Registar os tempos computacionais das 3 soluções. Os tamanhos das arrays (N) devem ser: 25000, 50000, 75000, 100000, 125000. Só deve ser contabilizado o tempo do algoritmo. Exclui-se o tempo de leitura do input e de impressão dos resultados. Devem apresentar e discutir as regressões para as 3 soluções, incluindo também o coeficiente de determinação/regressão (r quadrado).

Tabela para as 3 soluções

NºElementos	Α	В	С
25000	3.7770	0.0030	0.0040
50000	14.9940	0.0060	0.0080
75000	33.3070	0.0100	0.0120
100000	56.5320	0.0140	0.0160
125000	86.6315	0.0180	0.0230

Gráfico para a solução A

Gráfico para a solução B

Gráfico para a solução C

Análise dos resultados tendo em conta as regressões obtidas e como estas se comparam com as complexidades teóricas:

Sabendo que a complexidade teórica do problema A é de $O(n^2)$, fazendo uma análise empírica conseguimos ver a reflexão disso perante o gráfico para a solução A.

A complexidade teórica do problema B é de O(nlogn). Sendo visível no gráfico um fraco desvio para o valor 50000, o que é normal devido à linguagem Python.

Quanto ao problema C, a complexidade teórica é de O(n). Como no problema anterior, existe um pequeno desvio num ponto, isto devido a um possível throtling do CPU a quando da execução.

Em geral, foram obtidos excelentes valores para R quadrado, havendo um valor muito bom para a solução A.