Fine-grained image captioning

Team members: Ting-Chih Chen, Xiao Guo, and Yi Lu

Introduction of the problem

- Traditional Image-to-text fails to capture:
 - Details and attributes
 - Relationship between objects
- Challenges:
 - Precise object and attribution recognition
 - Language generation

Johnson, Justin, Andrej Karpathy, and Li Fei-Fei. "Densecap: Fully convolutional localization networks for dense captioning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Image Sentence Captioning

A man in uniform riding a brown horse.

Image Paragraph Captioning

A brown horse walking on the road. A man wearing a uniform and a hat. He is riding the horse. There are some trees in the distance.

Zha, Zheng-Jun, et al. "Context-aware visual policy network for fine-grained image captioning." IEEE transactions on pattern analysis and machine intelligence 44.2 (2019): 710-722.

Related work

- Current research limitations: Indistinguishable captioning consists of most used words
- "Knowing when to look: Adaptive attention via a visual sentinel for image captioning." by Lu et al. 2017
 - Resnet for image encoder and LSTM for language model.
- "Neural baby talk." Same group, 2018.
 - filling slots in a sentence template using the detected visual objects.
- Fine Grained: "Densecap: Fully convolutional localization networks for dense captioning" by Johnson et al. 2016
 - CNN + novel Dense Localization layer + RNN to generate label sequences.
- "Context-aware visual policy network for fine-grained image captioning" by Zha, Zheng-Jun, et al. 2019
 - Consider previous and current visual attention as context.

Dataset

Flicker 30K

- A popular benchmark
- It contains 31,783 images collected from Flickr.
- Capture people engaged in everyday activities and events.
- Each image has 5 descriptive captions provided by human annotators.

MS COCO

- The dataset consists of 328K images.
- Easily recognizable by 4-year-old kid.
- Variety of annotations.
- Versatile for object detection, captioning, stuff image segmentation and others.

Methodology - LAVIS

- BLIP model trained by LAVIS for image captioning tasks on the MSCOCO dataset
- BLIP uses ViT for image recognition.
- ViT split images into patches and flatten these patches to create lower-dimensional embeddings
- Afterwards it passes these embeddings to the transformer with **positional embeddings** for further processing

Methodology - LAVIS

- For better captioning texts, BLIP uses CapFilt (caption filtering)
- Due to the high cost of labeling large scale dataset, noise in captioning is unavoidable.
- BLIP introduces a captioner to produce captions, and a filter to remove noisy image-text pairs

Methodology - ExpansionNet_v2

- ExpansionNet_v2 has a SOTA in MSCOCO 2014
- ExpansionNet_v2 changes the sequence length, dynamically or statically converts sequence input into sequences of different lengths
- Swin Transformer builds hierarchical feature maps by merging image patches and has linear computation complexity because self-attention only focuses on the local windows
- Swin Transformer is good for image classification and dense recognition tasks

Methodology - ExpansionNet_v2

- Forward expansion(Encoder)
- Backward expansion(Decoder)
- This model is not limited by the length of the input
- The red one is designed to preserve the autoregressive property
- The blue one can be operated in both bidirectional processing and decoding stage

Figure 2: ExpansionNet v2 architecture.

Results & Performance

E: A sail boat is sitting in the ocean.

L: A sailboat in the middle of the ocean

E: A group of men walking down a city street.

L: A person holding a key to the eiffel tower'

E: A crowd of people standing in front of a tower

L: A person holding a key to the eiffel tower

Results & Performance

	BLeU-1	BLeU-2	BLeU-3	BLeU-4	Spice	Meteor	Rouge	Cider
Expansion Net_v2	0.6776	0.4848	0.3303	0.2236	0.1499	0.2192	0.4606	0.3834
Lavis	0.6386	0.4302	0.2922	0.1966	0.1565	0.2201	0.3887	0.4290

Table 1. Comparison of two model over different evaluation metrics

Conclusion(Analysis)

- Backbone: Swin transformer > ViT
- BLIP have caption filtering to denoise generated captions
- Future work:
 - How to know the captioning is fine-grained or not (new metric)
 - Continue working on improving the architecture of the ExpansionNet_v2
 - Investigate other works that strives to provide more attributes of the images

Thanks & Questions?