Intercepts of the Quadratic Given a quadratic $q(r) = a r^2 + b r + c$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

 $\triangle = 144 > 0$

Example 2.

Case1: △>0 $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the r-intercepts of multiplicity 1.

$$q(0) = c$$
 computes the single q-intercept.
Example 1.
$$q(r) = -r^2 - 6r + 27$$
 compute its discriminant \triangle :

 $r_{1,2} = -9,3$ q(0) = 27 q-intercept.

 $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single r-intercept of multiplicity 2.

 $q(r) = -2 r^2 + 32 r - 128$ compute its discriminant \triangle : $r_{1,2}=8,8$

q(0) = -128 q-intercept. -10 -5 r-intercept 1,2 q-intercept -200 -400-600 Case3: △<0 $\sqrt{\,{ t b}^2\,_-\,4\,}$ ac has no value in Real Numbers. Therefore there are no r-intercepts.

 $q(r) = -9 r^2 + 180 r - 1000$ compute its discriminant \triangle : $\triangle = -3600 < 0$ q(0) = -1000 q-intercept.

However there is a q-intercept.

Example 3.