AA01 RAÍZES DE FUNÇÕES

MTM224 Ciências da Computação

Prof. Paulo F. C. Tilles

Departamento de Matemática

30 de setembro de 2024

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questão

Apresentação das soluções

Questão

A função polinomial P(x) possui cinco raízes reais distintas que formam uma partição $\{z_i\}_{i=1}^5$ no intervalo I, ou seja, as raízes são ordenadas na forma $z_1 < z_2 < z_3 < z_4 < z_5$, satisfazendo $f(z_i) = 0$ para i = 1, 2, 3, 4, 5.

- **A.** Determine a raíz z_1 utilizando o método da bissecção.
- **B.** Determine a raíz z_2 utilizando o método de Newton.
- C. Determine a raíz z_3 utilizando o método da secante.
- **D.** Determine a raíz z_4 utilizando o método da falsa posição.
- E. Determine a raíz z₅ utilizando o método de Horner.
- O polinômio P(x) e o seu respectivo intervalo I que cada aluno deve considerar estão discriminados na **TABELA I**.

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questão

Apresentação das soluções

Apresentação das soluções

Diretrizes

- 1. As soluções numéricas obtidas deverão ser apresentadas na forma de uma tabela, sendo que cada método exigirá uma tabela específica contendo informações de cada iteração, conforme realizado na apresentação do módulo (detalhes na próxima página).
- **2.** As raízes obtidas devem apresentar erro relativo menor do que 10^{-6} , e os valores apresentados nas tabelas devem ser dispostos com 10 dígitos significativos.
- **3.** A solução deve ser enviada por email na forma de um único arquivo no formato pdf, com páginas ordenadas e numeradas. Cada aluno deve nomear o seu arquivo conforme descrito na **TABELA II**.
- **4.** Caso a solução apresentada não esteja em conformidade com alguma destas diretrizes a nota será nula.

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questão

Apresentação das soluções

Apresentação das soluções

Dados exigidos em cada método

Método da bissecção: número k da iteração; extremidades à esquerda a_k e à direita b_k ; estimativa da raíz x_k ; valor da função nos pontos a_k , x_k e b_k ; erro relativo ER_k .

Método de Newton: número k da iteração; estimativa da raíz x_k ; valor da função $f(x_k)$; valor da derivada da função $f'(x_k)$; erro relativo ER_k .

Método da secante: número k da iteração; estimativa da raíz x_k ; valor da função $f(x_k)$; erro relativo ER_k .

Método da falsa posição: número k da iteração; extremidades à esquerda a_k e à direita b_k ; estimativa da raíz x_k ; valor da função $f(x_k)$; erro relativo ER_k .

Método de Horner: número k da iteração; coeficientes $b_{i,k}$, com i = 0, 2, ..., 5; coeficientes $c_{i,k}$, com i = 1, 2, ..., 5; estimativa da raíz x_k ; valor da função $f(x_k)$; erro relativo ER_k .

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questão

Apresentação das soluções

TABELA I PARTE 01/02			
ALAN BESSAUER LENCINA $I = \{-3, 6\}$	ALEXANDRE CHAGAS BRITES $I = \{9, 18\}$		
$P(x) = x^5 - 8.6123x^4 + 12.5162x^3 + 30.685x^2 - 49.9685x - 0.129933$	$P(x) = x^5 - 65.1389x^4 + 1680.13x^3 - 21445.5x^2 + 135429.x - 338397.$		
ANA LILIAN ALFONSO TOLEDO $I = \{-4, 3\}$	ANDERSON DALMOLIN CATTELAN I = {3, 11}		
$P(x) = x^5 + 2.74272x^4 - 8.27682x^3 - 18.2762x^2 + 17.0984x + 17.9638$	$P(x) = x^5 - 35.8395x^4 + 497.884x^3 - 3345.16x^2 + 10850.x - 13562.5$		
ARTHUR BOGACKI VERISSIMO I = {4, 13}	BIANCA SABRINA BUBLITZ I = {8, 16}		
$P(x) = x^5 - 40.7337x^4 + 647.67x^3 - 5005.15x^2 + 18695.9x - 26773.3$	$P(x) = x^5 - 60.3456x^4 + 1443.36x^3 - 17099.8x^2 + 100327.x - 233202.$		
BRUNO DOS SANTOS UMPIERRE $I = \{-2, 2\}$	BRUNO PERUSSATTO I = {9, 17}		
$P(x) = x^5 + 0.264976x^4 - 4.1399x^3 - 1.01249x^2 + 3.2858x + 1.14059$	P(x) = $x^5 - 66.3228x^4 + 1745.7x^3 - 22784.5x^2 + 147396.x - 377951.$		
CARLOS EDUARDO VELOZO CORREA $I = \{2, 6\}$	CELSO MAIA DA SILVA NETO I = $\{-4, 4\}$		
$P(x) = x^5 - 20.0253x^4 + 156.407x^3 - 595.207x^2 + 1103.49x - 797.472$	P $(x) = x^5 - 0.050294x^4 - 17.6569x^3 - 0.548912x^2 + 35.1123x + 9.3517$		
DAVI DE CASTRO MACHADO I = $\{7, 14\}$	DIEGO RIBEIRO CHAVES $I = \{-2, 5\}$		
$P(x) = x^5 - 53.0771x^4 + 1116.08x^3 - 11622.7x^2 + 59948.6x - 122533.$	$P(x) = x^5 - 8.26669x^4 + 16.0015x^3 + 7.24557x^2 - 17.2509x - 4.7915$		
DOUGLAS MAGALHAES SILVA $I = \{-4, 5\}$	ENZO HAHN VERONEZE $I = \{-5, 5\}$		
$P(x) = x^5 + 0.0471739x^4 - 20.8257x^3 - 14.5588x^2 + 49.8929x + 14.8938$	$P(x) = x^5 - 0.622435x^4 - 25.4572x^3 + 16.2531x^2 + 111.92x - 84.5267$		
FERNANDO KALIKOSQUE LAYDNER JUNIOR I = $\{1, 2\}$	FERNANDO MARINO MELCHIOR $I = \{-5, -1\}$		
$P(x) = x^5 - 7.56923x^4 + 22.6588x^3 - 33.5252x^2 + 24.5137x - 7.08701$	$P(x) = x^5 + 14.7263x^4 + 82.8493x^3 + 220.849x^2 + 276.142x + 127.762$		
GABRIEL ATARÃO DENARDI $I = \{3, 11\}$	GABRIEL DA SILVA FRANCA I = {1, 6}		
$P(x) = x^5 - 35.468x^4 + 485.079x^3 - 3182.07x^2 + 9936.97x - 11659.1$	$P(x) = x^5 - 16.7219x^4 + 106.044x^3 - 316.479x^2 + 438.687x - 220.415$		
GABRIEL PORTO DE FREITAS $I = \{10, 15\}$	GABRIEL SOUZA BAGGIO $I = \{-4, 6\}$		
$P(x) = x^5 - 61.9499x^4 + 1529.1x^3 - 18797.1x^2 + 115078.x - 280678.$	$P(x) = x^5 - 5.37238x^4 - 15.4917x^3 + 80.7872x^2 + 42.1103x - 186.003$		
GABRIEL STIEGEMEIER $I = \{-3, 3\}$	GUILHERME BRIZZI $I = \{10, 17\}$		
$P(x) = x^5 + 0.350224x^4 - 8.9672x^3 - 2.25573x^2 + 13.506x - 2.51012$	$P(x) = x^5 - 67.1743x^4 + 1794.09x^3 - 23805.8x^2 + 156873.x - 410517.$		
GUILHERME MENEGHETTI EINLOFT $I = \{-5, 4\}$	IGOR GUIMARAES $I = \{-7, -3\}$		
$P(x) = x^5 + 0.725616x^4 - 18.8815x^3 - 0.872976x^2 + 53.87x - 16.4925$	$P(x) = x^5 + 24.6161x^4 + 237.961x^3 + 1128.57x^2 + 2624.45x + 2392.72$		

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questac

Apresentação das soluções

TABELA I PARTE 02/02		
JAIME ANTONIO DANIEL FILHO I = $\{-10, -3\}$	JOAO PEDRO AZENHA RIGHI I = $\{-1, 9\}$	
$P(x) = x^5 + 32.2994x^4 + 407.148x^3 + 2500.89x^2 + 7478.64x + 8700.01$	$P(x) = x^5 - 20.7031x^4 + 149.043x^3 - 442.627x^2 + 478.849x - 61.6885$	
JOAO PEDRO DA SILVA MARQUES I = $\{1, 4\}$ $P(x) = x^5 - 12.1194x^4 + 57.0671x^3 - 129.973x^2 + 142.458x - 59.6987$	JOAO VITOR DA SILVA $ I = \{-1, 1\} $ $ P(x) = x^5 + 0.213536x^4 - 1.02836x^3 - 0.028414x^2 + 0.220122x - 0.022484 $	
LARISSA RODRIGUES SILVEIRA I = {4, 12}	LEANDRO BRUM DA SILVA LACORTE I = $\{-3, -1\}$	
$P(x) = x^5 - 38.2163x^4 + 569.776x^3 - 4129.96x^2 + 14507.6x - 19701.6$	P $(x) = x^5 + 9.89498x^4 + 37.9834x^3 + 70.5594x^2 + 63.3649x + 22.0008$	
LEANDRO O. GALBARINO DO NASCIMENTO $I = \{-3, 7\}$	LUCAS XAVIER PAIRE I = $\{-9, -5\}$	
$P(x) = x^5 - 12.0953x^4 + 33.6161x^3 + 55.4476x^2 - 260.915x + 119.827$	P $(x) = x^5 + 35.3346x^4 + 495.069x^3 + 3436.98x^2 + 11819.8x + 16104.6$	
LUIS FERNANDO DA CRUZ ANTUNES I = $\{-2, 2\}$	LUIS GUSTAVO WERLE TOZEVICH I = $\{5, 8\}$	
$P(x) = x^5 - 0.0443025x^4 - 3.378x^3 - 0.0955659x^2 + 2.04496x + 0.362577$	$P(x) = x^5 - 33.0515x^4 + 434.608x^3 - 2841.4x^2 + 9234.05x - 11930.3$	
LUIS HENRIQUE SILVEIRA POZZEBON I = $\{5, 15\}$	MATHIAS ECKERT RECKTENVALD I = $\{-2, 3\}$	
$P(x) = x^5 - 48.5357x^4 + 920.713x^3 - 8534.45x^2 + 38671.2x - 68566.3$	$P(x) = x^5 - 2.79201x^4 - 3.2732x^3 + 10.7548x^2 - 2.53959x - 2.41684$	
MIGUEL BRONDANI I = $\{-2, 5\}$ $P(x) = x^5 - 5.02484x^4 - 0.37027x^3 + 18.1579x^2 + 0.372153x - 4.59762$	MIGUEL MIRON SILVA $I = \{-10, -4\}$ $P(x) = x^4 + 36.1495x^4 + 516.068x^3 + 3633.23x^2 + 12600.2x + 17199.9$	
PEDRO DE ANDRADE SANTOS $I = \{2, 11\}$ $P(x) = x^5 - 31.9654x^4 + 393.354x^3 - 2313.87x^2 + 6465.46x - 6861.06$	RAFAELA DA ROSA SOARES $ I = \{-5, 4\} $ $ P(x) = x^5 + 1.20723x^4 - 14.3829x^2 - 13.7271x^2 + 29.3775x + 1.78553 $	
TOBIAS VIERO DE OLIVEIRA $I = \{-4, 6\}$	VIVIANE DILKIN ENDLER I = $\{10, 19\}$	
$P(x) = x^5 - 7.22984x^4 - 4.72769x^3 + 92.1905x^2 - 67.6756x - 84.3088$	$P(x) = x^5 - 73.6443x^4 + 2149.57x^3 - 31070.3x^2 + 222284.x - 629392.$	
WESLEY LOPES DE OLIVEIRA $I = \{-6, 1\}$ $P(x) = x^5 + 12.5983x^4 + 52.9974x^3 + 75.02x^2 - 7.68778x - 43.3257$		

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questão

Apresentação das soluções

TABELA II PARTE 01/02				
ALAN BESSAUER LENCINA	ALEXANDRE CHAGAS BRITES	ANA LILIAN ALFONSO TOLEDO		
MNC_AA01_AL01_ABL.pdf	MNC_AA01_AL02_ACB.pdf	MNC_AA01_AL03_ALAT.pdf		
ANDERSON DALMOLIN CATTELAN	ARTHUR BOGACKI VERISSIMO	BIANCA SABRINA BUBLITZ		
MNC_AA01_AL04_ADC.pdf	MNC_AA01_AL05_ABV.pdf	MNC_AA01_AL06_BSB.pdf		
BRUNO DOS SANTOS UMPIERRE	BRUNO PERUSSATTO	CARLOS EDUARDO VELOZO CORREA		
MNC_AA01_AL07_BSU.pdf	MNC_AA01_AL08_BP.pdf	MNC_AA01_AL09_CEVC.pdf		
CELSO MAIA DA SILVA NETO	DAVI DE CASTRO MACHADO	DIEGO RIBEIRO CHAVES		
MNC_AA01_AL10_CMSN.pdf	MNC_AA01_AL11_DCM.pdf	MNC_AA01_AL12_DRC.pdf		
DOUGLAS MAGALHAES SILVA	ENZO HAHN VERONEZE	FERNANDO KALIKOSQUE LAYDNER JUNIOF		
MNC_AA01_AL13_DMS.pdf	MNC_AA01_AL14_EHV.pdf	MNC_AA01_AL15_FKLJ.pdf		
FERNANDO MARINO MELCHIOR	GABRIEL ATARAO DENARDI	GABRIEL DA SILVA FRANCA		
MNC_AA01_AL16_FMM.pdf	MNC_AA01_AL17_GAD.pdf	MNC_AA01_AL18_GSF.pdf		
GABRIEL PORTO DE FREITAS	GABRIEL SOUZA BAGGIO	GABRIEL STIEGEMEIER		
MNC_AA01_AL19_GPF.pdf	MNC_AA01_AL20_GSB.pdf	MNC_AA01_AL21_GS.pdf		
GUILHERME BRIZZI	GUILHERME MENEGHETTI EINLOFT	IGOR GUIMARAES		
MNC_AA01_AL22_GB.pdf	MNC_AA01_AL23_GME.pdf	MNC_AA01_AL24_IG.pdf		
JAIME ANTONIO DANIEL FILHO	JOAO PEDRO AZENHA RIGHI	JOAO PEDRO DA SILVA MARQUES		
MNC_AA01_AL25_JADF.pdf	MNC_AA01_AL26_JPAR.pdf	MNC_AA01_AL27_JPSM.pdf		
JOAO VITOR DA SILVA	LARISSA RODRIGUES SILVEIRA	LEANDRO BRUM DA SILVA LACORTE		
MNC_AA01_AL28_JVS.pdf	MNC_AA01_AL29_LRS.pdf	MNC_AA01_AL30_LBSL.pdf		
LEANDRO O. GALBARINO DO NASCIMENTO	LUCAS XAVIER PAIRE	LUIS FERNANDO DA CRUZ ANTUNES		
MNC_AA01_AL31_LOGN.pdf	MNC_AA01_AL32_LXP.pdf	MNC_AA01_AL33_LFCA.pdf		

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questac

Apresentaçao das soluções

TABELA II PARTE 02/02			
LUIS GUSTAVO WERLE TOZEVICH	LUIS HENRIQUE SILVEIRA POZZEBON	MATHIAS ECKERT RECKTENVALD	
MNC_AA01_AL34_LGWT.pdf	MNC_AA01_AL35_LHSP.pdf	MNC_AA01_AL36_MER.pdf	
MIGUEL BRONDANI	MIGUEL MIRON SILVA	PEDRO DE ANDRADE SANTOS	
MNC_AA01_AL37_MB.pdf	MNC_AA01_AL38_MMS.pdf	MNC_AA01_AL39_PAS.pdf	
RAFAELA DA ROSA SOARES	TOBIAS VIERO DE OLIVEIRA	VIVIANE DILKIN ENDLER	
MNC_AA01_AL40_RRS.pdf	MNC_AA01_AL41_TVO.pdf	MNC_AA01_AL42_VDE.pdf	
WESLEY LOPES DE OLIVEIRA MNC_AA01_AL43_WLO.pdf			

AA01 RAÍZES DE FUNÇÕES

Prof. Paulo F. C. Tilles

Questa

Apresentação das soluções