Homework 1 - End-to-end Speech Recognition

學號: R08942085 系級: 電信丙 姓名: 陳芃彣

學號: R08942086 系級: 電信丙 姓名: 趙達軒

學號:R07942091 系級:電信丙 姓名:許博閔

學號: R08945002 系級: 生醫電資 姓名: 陳玠妏

1. (2%) Train a seq2seq attention-based ASR model. Paste the learning curve and alignment plot from tensorboard. Report the CER/WER of dev set and kaggle score of testing set.

Learning Curve:

Alignment plot:

CER/WER of dev set:

======== Result of r	esult/decode_	example_dev_outp	ut.csv ======
Statics	Truth	Prediction	Abs. Diff.
Avg. # of chars Avg. # of words	66.99 17.14	66.93 17.11	0.48 0.03
Error Rate (%) Mean	Std.	Min.	/Max.
Character 2.7174 Word 8.9494	2.56 7.69		/18.18 /50.00

Score of testing set:

Name	Submitted	Wait time	Execution time	Score
asr_v1.csv	just now	0 seconds	0 seconds	1.77600

2. (2%) Repeat 1. by training a joint CTC-attention ASR model (decoding with seq2seq decoder). Which model converges faster? Explain why.

Alignment plot:

CER/WER of dev set:

====== Res	ult of 3_	dev.csv =====			
Statics	1	Truth	Prediction	on Abs. Diff.	1
Avg. # of chars Avg. # of words		66.91 17.11	66.99 17.14	0.42 0.03	
Error Rate (%)	Mean	Std.	M ⁺	in./Max.	
Character Word	2.2535 7.6211	2.42 7.60		.00/20.00 .00/75.00	

Score of testing set:

alex_beam_process.csv 2 hours ago by r08942085

1.09600

在語音識別中,我們的數據集是音頻文件和其對應的文本,但通常音頻文件和文本很難再單詞的單位上對齊。因此需要在預處理操作時進行對齊,如果不使用對齊而直接訓練模型時,由於人的語速的不同,或者字符間距離的不同,會導致模型很難收斂。

CTC 引入了 blank,每個預測的分類對應的一整段語音中的一個 spike,其他不是 spike 的位置認為是 blank。對於一段語音,CTC 最後的輸出是 spike 的序列,並不關心每一個音素持續

了多長時間。

ASR 的過程是將一段語音資料輸入 40 個 filter bank ,變成 40 維的向量進去,然後出一個 label。假設,"你好" 這個音訊共有 200 個 filter bank 特徵幀。這 200 個特徵幀對應著 200 個輸出結果,就結果空間而言,共有音素數目^200 種可能。

而 CTC 認為,計算目標函式的時候,上例中的 200 filter bank 特徵,得到的 200 個模型的結果,每個小結果都對應著所有音素上的一個概率分佈。然後計算所有能對映成"內一"厂幺"結果的音素路徑的概率值,讓這個值越大越好就行了。

但是這樣一來,計算量就非常的大,指數級的計算量。CTC 就使用了類似 HMM 中的向前向後算法來計算。發現進行反向傳播的時候,每一幀 filter bank 對應的結果的導數,都可以利用前一時刻的兩個狀態的結果直接求到。這樣一來,整體計算量就急劇下降,因此更容易收斂。

3. (2%) Use the model in 2. to decode only in CTC (ctc_weight=1.0). Report the CER/WER of dev set and kaggle score of testing set. Which model performs better in 1. 2. 3.? Explain why.

CER/WER of dev set:

======== Result of	2_dev.csv =====	======		
Statics	Truth	Prediction	Abs. Diff.	1
Avg. # of chars Avg. # of words	66.73 17.07	66.99 17.14	0.70 0.07	
Error Rate (%) Mean	Std.	Min.	/Max.	
Character 2.984 Word 10.55		0.00 0.00	/25.00 /75.00	

Score of testing set:

2.csv 1.62800

a few seconds ago by r08942085

add submission details

jointly trained encoder + seqtoseg decoder 成績比較好(第2題)

因為純 CTC 解碼通過預測每個幀的輸出來識別語音,算法的實現基於假設每幀的解碼保持彼此獨立,因而缺乏解碼過程中前後語音特徵之間的聯繫,比較依賴語言模型的修正。

因此,混合 CTC 與 attention 共同訓練的 model 效果最佳,此 model 可透過 attention 機制學習到語音每一幀的相關性,也能藉由 CTC 目標函數幫助 attention model 更快收斂。訓練方法為將 CTC 的 loss 和基於 attention 的 cross entropy 用線性插值組合起來。但解碼時用我們只用了純 sequence 的方法便得到了很好的成績。

4. (2%) Train an external language model. Use it to help the model in 1. to decode. Report the CER/WER of dev set and kaggle score of testing set.

CER/WER of dev set:

======== Result of	4_dev.csv =====	======		
Statics	Truth	Prediction	Abs. Diff.	1
Avg. # of chars Avg. # of words	66.94 17.11	66.99 17.14	0.40 0.03	
Error Rate (%) Mean	Std.	Min.	/Max.	
Character			0/20.00 0/75.00	

Score of testing set:

4.csv9 minutes ago by r08942085

5. (2%) Try decoding the model in 4. with different beam size (e.g. 2, 5, 10, 20, 50). Which beam size is the best?

2 is the best

plus Im

beam size =2:

4.csv
9 minutes ago by r08942085
plus Im

beam size =5:

5_beam.csv just now by r08942085 plus Im beam_size=5

beam size =20:

20_beam.csv3 minutes ago by r08942085

add submission details

Bonus: (1%)