Recurrent Neural Network Based Language Model + Character-Aware Neural Language Model

Statistical Language Model : Language domain에 제한적이다. (몇가지 가정을 전제로 한다!)
N-gram statistic model(가장 널리 쓰이는 모델)조차도 가정이 쪼금 필요하다.

여태까지 등장한 model들은 특정 training data에서만 잘 동작하고, 복잡하며, N-gram에 비해 tiny improvement만 있었다 + 잘 쓰지도 않는다

Bengio's Model (Feedforward Neural Network with **fixed length** context)

-> 5~10번째 전의 단어들만으로 다음 단어를 판단한다

-> context가 가변적이지 못하다!

RNN을 써보자! RNN Language Model

$$x(t) = w(t) + s(t-1)$$

$$s_j(t) = f\left(\sum_i x_i(t)u_{ji}\right)$$

$$y_k(t) = g\left(\sum_j s_j(t)v_{kj}\right)$$

where f(z) is sigmoid activation function:

$$f(z) = \frac{1}{1 + e^{-z}}$$

and g(z) is softmax function:

$$g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$$

$$\operatorname{error}(t) = \operatorname{desired}(t) - y(t)$$

x – input layer (1-of-N encoding vector)

s – hidden layer (or context or state)

y – output layer

w – word vector

(1)

(4)

(6)

(2) w의 size — vocabulary size(3만~20만) s의 size — 30~500

③ (data 크기에 영향을 받는다)

Weight – standard backpropagation

Parameter의 개수가 줄어듬

(FNN – layer/hidden size, context-length RNN – hidden layer size 하나만!)

> Hidden layer가 컸는데도 Overtrain이 잘 안됨!(띠용)

$$x(t) = w(t) + s(t-1)$$

$$s_j(t) = f\left(\sum_i x_i(t)u_{ji}\right)$$

$$y_k(t) = g\left(\sum_j s_j(t)v_{kj}\right)$$

where f(z) is sigmoid activation function:

$$f(z) = \frac{1}{1 + e^{-z}}$$

and g(z) is softmax function:

$$g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$$

$$\operatorname{error}(t) = \operatorname{desired}(t) - y(t)$$

Statistical Model에서는 test data에서의 model update를 하지 않았다 (사람이름 등등에서 문제 발생!)

- -> Dynamic model
- Long term memory가 전체 synapse 안에 상주한다
- (test pharse에서도 학습이 된다!)
- Traning phase에서는 매 epoch마다 update Dynamic model은 test data를 이용해 1번만!
- 전혀 Optimal하지 않음 근데 효과가 좋음;

Word-probabilities

$$P(w_i(t+1)|w(t), s(t-1)) = \begin{cases} \frac{y_{rare}(t)}{C_{rare}} & \text{if } w_i(t+1) \text{ is rare,} \\ y_i(t) & \text{otherwise} \end{cases}$$
(7)

Special Rare Token! -training data의 단어들 사이에서 rare한 단어들을 하나의 special rare token으로 merge

(rare의 기준은 threshold)

Optimization(성능을 올려보자)

 C_{rare} : threshold를 못 넘은 단어의 개수

모든 rare 단어들의 확률은 Uniform distribution 그래서 잘됨?

Table 1: Performance of models on WSJ DEV set when increasing size of training data.

Model	# words	PPL	WER
KN5 LM	200K	336	16.4
KN5 LM + RNN 90/2	200K	271	15.4
KN5 LM	1M	287	15.1
KN5 LM + RNN 90/2	1M	225	14.0
KN5 LM	6.4M	221	13.5
KN5 LM + RNN 250/5	6.4M	156	11.7

Table 2: Comparison of various configurations of RNN LMs and combinations with backoff models while using 6.4M words in training data (WSJ DEV).

		PPL	WER		
Model	RNN RNN+KN		RNN	RNN+KN	
KN5 - baseline	-	221	-	13.5	
RNN 60/20	229	186	13.2	12.6	
RNN 90/10	202	173	12.8	12.2	
RNN 250/5	173	155	12.3	11.7	
RNN 250/2	176	156	12.0	11.9	
RNN 400/10	171	152	12.5	12.1	
3xRNN static	151	143	11.6	11.3	
3xRNN dynamic	128	121	11.3	11.1	

ㅇㅇ 잘됨

(PPL – perplexity (낮을수록좋다)

WER – Word Error Rate)

KN(Kneser-Ney smoothed n-gram)

Data의 수가 더 적었음에도 기존 모델보다 성능이 더 좋더라!

특수한 가정이 필요하지 않아서 쉽게 적용할 수 있다!

Voca 사이즈가 클수록 성능이 좋아진다!

짱짱

But!

Word-embedding(대표적으론 One-hot vector)에는 단어 정보가 담기지 않아요!

- -> 빈도수가 적은 단어에 대한 PPL이 높아짐(성능 떡락)
- -> 형태소가 많은 언어에서 특히 문제!

Character-Aware Neural Language Model

선요약 후설명

charCNN을 통한 subword information 학습을 시도해보았다!

그랬더니 parameter가 더 적어도 다른 모델보다 더 좋더라!

짱짱

Character-Level CNN

단어(char)로 이루어진 word를 CNN에 넣는다! (word = sequence of character)

filter의 개수는 보통 [100,1000] 사이

filtering 자체가 n-gram의 역할을 한다

결과물을 max-over-time pooling

-> Word embedding같은 효과!

Highway Network

※Residual Network(ResNet) 모든 layer를 거치지 않고 일부 layer만을 거치는 방법

Model interaction에 사용 (원래는 MLP를 써봤는데 구리더라!)

$$\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H \mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$$

$$\mathbf{t} = \sigma(\mathbf{W}_T \mathbf{y} + \mathbf{b}_T)$$
(8)

t = transform gate / (1-t) = carry gate

- -> LSTM의 memory cell과 비슷하지 않은감?
- -> 특정 dimension을 다음 network에 그대로 carry하는 역할을 한다

요긴 그냥 특별할것없는 LSTM

Language Model이니까 당연히 RNN보단 LSTM

$$\Pr(w_{t+1} = j | w_{1:t}) = \frac{\exp(\mathbf{h}_t \cdot \mathbf{p}^j + q^j)}{\sum_{j' \in \mathcal{V}} \exp(\mathbf{h}_t \cdot \mathbf{p}^{j'} + q^{j'})}$$
(3)

Negative log-likelihood를 최소하는 방향으로 학습

$$NLL = -\sum_{t=1}^{T} \log \Pr(w_t | w_{1:t-1})$$
 (4)

그래서 잘됨?

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	7 m
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	$52 \mathrm{m}$

English Penn Treebank

		Small	Large
CNN	$egin{array}{c} d \\ w \\ h \\ f \end{array}$	$\begin{array}{c} 15 \\ [1,2,3,4,5,6] \\ [25 \cdot w] \\ \text{tanh} \end{array}$	$\begin{array}{c} 15 \\ [1,2,3,4,5,6,7] \\ [\min\{200,50\cdot w\}] \\ \text{tanh} \end{array}$
Highway	$rac{l}{g}$	1 ReLU	2 ReLU
LSTM	$l \\ m$	2 300	2 650

d = dimensionality of character embedding

w = filter width

h = number of filter matrix

f, g = 비선형 function

I = number of layers

m = number of hidden units

ㅇㅇ 잘됨

PPL - perplexity (낮을수록좋다)

KN(Kneser-Ney smoothed n-gram)

Word-level model들의 OOV들은 unknown token으로 replace되었음에도 우리꺼가 parameter 수(Size) 대비 성능이 쩐다!

	In Vocabulary				Out-of-Vocabulary			
	while	his	you	richard	trading	computer-aided	misin formed	loooook
	although	your	conservatives	jonathan	advertised	_	_	_
LSTM-Word	letting	her	we	robert	advertising	_	_	_
LSTWI-WOIG	though	my	guys	neil	turnover	_	_	_
1	minute	their	i	nancy	turnover	_	_	_
	chile	this	your	hard	heading	computer-guided	informed	look
LSTM-Char	whole	hhs	young	rich	training	computerized	performed	cook
(before highway)	meanwhile	is	four	richer	reading	disk-drive	transformed	looks
	white	has	youth	richter	leading	computer	inform	shook
	meanwhile	hhs	we	eduard	trade	computer-guided	informed	look
LSTM-Char	whole	this	your	gerard	training	computer-driven	performed	looks
(after highway)	though	their	doug	edward	traded	computerized	outperformed	looked
	nevertheless	your	i	carl	trader	computer	transformed	looking

Word embedding 학습도 잘하더라! OOV word도 학습하더라! 짱짱 charCNN을 쓰면 접두사/접미사/하이픈을 더 잘 구분한다

Corpus가 커질수록 성능도 더 좋아지더라

word embedding이랑 같이 쓰니까 성능이 더 안좋아지더라...? (POS tagging이랑 NER이랑 같이쓴거는 성능 좋던데..?) -> 우리쪽에선 쓸데없나봄

charCNN layer를 공유하다보니 GPU 사용효율성이 증가하더라

