Note: there might be some mistakes in the text. Ask me if you are confused by some sentence or you can not get the right answer.

Assignment 1

Suppose E(X) = 2, Var(X) = 9, E(Y) = 0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find: (a) Corr(X + Y, X - Y).

Assignment 2

Let $\{w_t\}$ be a zero mean white noise process. Suppose that the observed process is $x_t = w_t + \theta w_{t-1}$, where θ is either 3 or 1/3.

- (a) Find the autocorrelation function for $\{xt\}$ both when $\theta = 3$ and when $\theta = 1/3$.
- (b) You should have discovered that the time series is stationary regardless of the value of θ and that the autocorrelation functions are the same for $\theta = 3$ and $\theta = 1/3$. For simplicity, suppose that the process mean is known to be zero and the variance of y_t is known to be 1. You observe the series $\{y_t\}$ for t = 1, 2, ..., n and suppose that you can produce good estimates of the autocorrelations ρ_k . Do you think that you could determine which value θ is correct (3 or 1/3) based on the estimate of ρ_k ? Why or why not?

Assignment 3

Let $\{xt\}$ be a zero-mean, unit-variance stationary process with autocorrelation function ρ_h . Suppose that μ_t is a nonconstant function and that σ_t is a positive-valued nonconstant function. The observed series is formed as $yt = \mu t + \sigma tXt$.

- (a) Find the mean and covariance function for the $\{y_t\}$ process.
- (b) Show that the autocorrelation function for the $\{y_t\}$ process depends only on the time lag. Is the $\{y_t\}$ process stationary?
- (c) Is it possible to have a time series with a constant mean and with $Corr(y_t, y_{t+h})$ free of t but with $\{y_t\}$ not stationary?

Assignment 4

Suppose that x is a random variable with zero mean. Define a time series by $y_t = (-1)^t x$

- (a) Find the mean function for $\{y_t\}$.
- **(b)** Find the autocovariance function for $\{y_t\}$.
- (c) Is $\{y_t\}$ stationary?

Assignment 5

Suppose $x_t = \mu + w_t + w_{t-1}$. Find $var(\bar{x})$. Note any unusual results. In particular, compare your answer to what would have been obtained if $x_t = \mu + w_t$.

Assignment 6

Calculate and sketch the autocorrelation function for MA(2) model with $\theta_1 = 0.5$. and $\theta_2 = 0.4$

Assignment 7

Describe the important characteristics of the autocorrelation function for the following models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (e) ARMA(1,1).

Assignment 8

Suppose that $\{x_t\}$ is an AR(1) process with $-1 < \phi < +1$.

(a) Find the autocovariance function for $y_t = \nabla x_t = x_t - x_{t-1}$ in terms of ϕ and σ_w^2

(b) In particular, show that $var(y_t) = \frac{2\sigma_w^2}{1+\phi}$

Assignment 9

For each of the following ARMA models, find the roots of the AR and MA polynomials, identify the values of p and q for which they are ARMA(p,q) (be careful of parameter redundancy), determine whether they are causal, and determine whether they are invertible. In each case, $w_t \sim wn(0,1)$.

a) $x_t - 3x_{t-1} = w_t - -2w_{t-1} - 8w_{t-2}$

b)
$$x_t - 2x_{t-1} + 2x_{t-2} = w_t - \frac{8}{9}w_{t-1}$$

c)
$$x_t - 4x_{t-2} = w_t - w_{t-1} + 0.5w_{t-2}$$

d)
$$x_t - \frac{9}{4}x_{t-1} - \frac{9}{4}x_{t-2} = w_t$$

Assignment 10

For the following models, compute the first four coefficients $\,\psi_0,...\psi_3$ in the causal linear process representation $x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}$

a)
$$x_t - 2x_{t-1} + 2x_{t-2} = w_t - \frac{8}{9}w_{t-1}$$

a)
$$x_t - 2x_{t-1} + 2x_{t-2} = w_t - \frac{8}{9}w_{t-1}$$

b) $x_t - \frac{9}{4}x_{t-1} - \frac{9}{4}x_{t-2} = w_t - 3w_{t-1} + \frac{1}{9}w_{t-2} - \frac{1}{3}w_{t-3}$

Answers:

Assignment 1

Approximately 0.39

Assignment 2

$$\gamma(0) = 1, \gamma(1) = 0.3, \gamma(h) = 0$$
 otherwise

Assignment 3

a)
$$Ex_t = \mu_t, \gamma = \sigma_t \sigma_{t+h} \rho_h$$

b) Not necessarily stationary

c) yes

Assignment 4

- a) 0
- b) $(-1)^h \sigma_x^2$
- c) Yes

Assignment 5

$$var(\bar{x}) = \frac{2(2n-1)}{n^2} \sigma_W^2$$

Assignment 6

$$\rho_1\approx 0.5, \rho_2\approx 0.28, \rho_i=0, i>2$$

Assignment 8

a)
$$-\frac{1-\phi}{1+\phi}\phi^{h-1}\sigma_w^2$$

Assignment 9

- a) p=1,q=2, neither causial or invertible
- b) p=2,q=1, invertible, but not causial
- c) p=2,q=2, invertible, but not causial
- d) p=2, q=0, invertible, not causial

Assignment 10

$$a)1, -0.5, -0.5, 0$$