

BUDGET SALES ANALYSIS

VINAY KUMAR M

1. Problem Statement:

Our "Domain Sale" process is structured to help potential buyers purchase the domain they want immediately without the hassle of contacting the seller directly.

A seller lists a domain for sale at a specific price in our Marketplace. An interested buyer sees this domain for sale and decides to buy it.

2. Objectives:

- The collection includes records for sales orders, customer information, product information, and geographical data.
- In order to deduce important metrics and patterns in the dataset, this project will use the provided data to perform ETL and data analysis.
- Additionally, several visualizations and reports are created to represent significant linkages.

3. Benefits

- Help in making wiser business decisions.
- Aid in customer satisfaction and trend monitoring, which can serve current consumers and attract new ones.
- Greater client base understanding is provided.
- Facilitates seamless resource management flow.

4. Data attributes

CustomerKey	HouseOwnerFlag
FullName	NumberCarsOwned
Birthdate	DateFirstPurchase
Maritalstatus	CommuteDistance
Gender	Customer
YearlyIncome	
TotalChildren	
NumberChildren AtHome	
Education	
Occupation	

Product		
ProductKey	ListPrice	
ProductName	DaysToManufacture	
Subcategory	ProductLine	
Category	ModelName	
ProductDescription	StartDate	

ProductKey	OrderDate
CustomerKey	ShipDate
PromotionKey	SalesAmount
SalesTerritoryKey	OrderQuantity
SalesOrderNumber	Sales
SalesOrderLineNumber	
UnitPrice	
TotalProductCost	
TaxAmt	

Territory
SalesTerritoryKey
Region
Country
Group

Dataset information

- **CustomerKey:** Primary key for customer dataset
- **Birthdate:** Birthdate of the customer
- MaritalStatus: M- Married / S Single
- **Gender:** M Male / F Female
- TotalChildren: Total number of children
- NumberChildrenAtHome: Number of children staying along with their parents
- **Education:** Education qualification
- Occupation: Present occupation
- HouseOwnerFlag: 1- Owns house / 0- Doesn't have a permanent address
- NumberCarsOwned: Number of cars owned by the customer
- **DateFirstPurchase:** First date of order by the customer
- **ProductKey:** Primary Key for the product dataset
- **ProductName:** Product name with colour of the product
- **Subcategory:** Sub category name of the product
- **Category:** Category name of the product
- **ListPrice:** Sale price of the product

- DaysToManufacture: Days to manufacture the product after receiving the order
- **ProductLine:** Product line name
- ModelName: Model name of the product
- **ProductDescription:** more details about the product
- **SalesTerritoryKey:** Primary Key of the Territory dataset
- **Region:** Region name of the order
- **Country:** Country name of the order
- OrderDate: Date of the order received
- **ShipDate:** Date when the order left the factory for export
- SalesOrderNumber: Invoice number of the order
- OrderQuantity: Number of quantities ordered for a product
- **UnitPrice:** Per unit sale price of the product
- TotalProductCost: Cost of the product
- SalesAmount: Total sales price of the product
- TaxAmt: Tax collected for the product sold

5. Architecture

- **1. Collect Raw Data** This step involves extracting the data from different sources relevant to the problem statement or obtaining data from the client.
- **2. Data Wrangling** Contains following steps gathering data, assessing data, handling missing data and adding columns.
- **3. Exploring Data –** Once the data is loaded and pre-processed, we preform data analysis using python libraries and Business Intelligence tools like Power BI.
- **4. Data Modelling** Data Modelling is one of the features used to connect multiple data sources in BI tool using a relationship.

A relationship defines how data sources are connected with each other and you can create interesting data visualizations on multiple data sources.

5. Deployment - The prepared visualizations are deployed on the powerbi.microsoft.com site. Where they will be available publicly

6. Insights

- Sales Dashboard
- Profit Analysis Dashboard
- ❖ Variance Analysis Dashboard
- Customer Analysis Dashboard

Sales Dashboard

2014 2015 2016

\$17.26M Cost

> 31.65M TotalSales

Profit Analysis Dashboard

12.05M

Total Profit

41.12%

Profit Margin %

29.31M

Revenue

91K

Total Orders

LastName	Revenue	Profit Margin %	Profit margin contribution %	LAST YEAR REVENUE	Cost
Xu	3,09,520.15	40.70%	1.05%	1,35,404.63	\$1,
Martinez	3,05,853.26	40.80%	1.04%	1,39,623.95	\$1,81,057.
Gonzalez	3,01,610.67	40.90%	1.02%	1,27,043.01	\$1,78,241.0
Diaz	3,00,529.42	41.36%	1.03%	1,22,557.00	\$1,
Sanchez	2,98,984.63	41.44%	1.03%	1,28,652.85	\$1,75,093.9
Hernandez	2,97,215.60	41.18%	1.02%	1,13,554.35	\$1,74,834.
Garcia	2,86,485.33	40.84%	0.97%	1,31,233.24	\$1,69,481.
Torres	2,68,057.16	40.93%	0.91%	1,10,435.83	\$1,58,336.2
Perez	2,68,040.11	41.10%	0.91%	1,18,999.96	\$1,57,867.
Total	2,93,07,836.59	41.12%	100.00%	1,28,34,218.54	\$1,72,55,31

Variance Analysis Dashboard

2014 2015 2016

12.44M

Variance

0.74

Variance %

Sales by Category & Variance to Target

Product Sales & Variance to target

Category	Sales	Target sales	Variance	Variance %
☐ Accessories	6,67,015.32	687607	-20,591.68	-0.03
Bike Racks	36,960.00	36861	99.00	0.00
Bike Stands	37,842.00	38757	-915.00	-0.02
Bottles and Cages	55,030.81	57369	-2,338.19	-0.04
Cleaners	6,868.80	6465	403.80	0.06
Fenders	44,267.72	43670	597.72	0.01
Helmets	2,15,923.29	221905	-5,981.71	-0.03
Hydration Packs	38,822.94	39803	-980.06	-0.02
Tires and Tubes	2,31,299.76	242777	-11,477.24	-0.05
□ Bikes	2,83,18,144.65	15848226	1,24,69,918.65	0.79
Mountain Bikes	99,52,759.56	6534364	34,18,395.56	0.52
Road Bikes	1,45,20,584.04	5257897	92,62,687.04	1.76
Touring Bikes	38,44,801.05	4055965	-2,11,163.95	-0.05
☐ Clothing	3,22,676.62	333741	-11,064.38	-0.03
Caps	18,834.05	20371	-1,536.95	-0.08
Gloves	33,379.87	33965	-585.13	-0.02
Jerseys	1,65,066.21	170938	-5,871.79	-0.03
Shorts	67,050.42	68453	-1,402.58	-0.02
Socks	4,881.57	5449	-567.43	-0.10
Vests	33,464.50	34565	-1,100.50	-0.03
Total	2,93,07,836.59	16869574	1,24,38,262.59	0.74

Customer Analysis Dashboard

2014 2015 2016

Average Spend Customers Customers Retained %

Customer Retention

7. Key Performance Indicator

- Sales trend line
- Cost trend line
- Average unit cost and price
- Revenue generated by Subcategory
- ❖ Sales by Product Line
- ❖ Revenue contribution by region
- Profit contribution by region
- Profit % by region
- Profit % by region
- Current year profit margin vs difference in last year's profit margin

- ❖Total orders
- ❖Total revenue
- ❖ Variance to target comparison by category
- ❖ Variance by month line chart
- Customer retention line chart
- Monthly spending trend
- Average monthly spend distribution

8. Conclusion

- The year 2016 saw an exponential surge in sales.
- •High quantity of products is ordered from Australia.
- Major Profit is contributed by the Bike Category.
- Client retention in 2014 was subpar
- •2016 brought about a slight improvement in retention.
- Average Monthly spend by customers is below \$100.

Q&A

- Q1) What's the source of data?
- > The Dataset was taken from Unified Mentor's Provided Project Description Document.
- Q2) What was the type of data?
- > The data was the combination of numerical and Categorical values.
- Q 3) What's the complete flow you followed in this Project?
- > Refer Architecture for better Understandings
- Q4) What techniques were you using for data?
- > Removing unwanted attributes
- ➤ Visualizing relation of independent variables with each other
- ➤ Cleaning data by removing column with missing values
- ➤ Converting Numerical data into Categorical values