Example: Consider the language L of strings, defined over $\Sigma = \{a, b\}$, **starting with b.** The language L may be expressed by RE b(a + b)*, may be accepted by the following FA .

Example:

Consider the language L of strings, defined over $\Sigma = \{a, b\}$, **ending in a. T**he language L may be expressed by RE

$$(a+b)^*a$$

This language may be accepted by the following FA

There may be another FA corresponding to the given language.

Note

It may be noted that corresponding to a given language there may be more than one FA accepting that language, but for a given FA there is a unique language accepted by that FA.

Note

- \mathbb{H} It is to be noted that given the languages L_1 and L_2 , where
- L_1 = The language of strings, defined over $\Sigma = \{a, b\}$, **beginning with a**
- L_2 = The language of strings, defined over $\Sigma = \{a, b\}$, **not beginning with b**
- The Λ does not belong to L_1 while it does belong to L_2 . This fact may be depicted by the corresponding transition diagrams of L_1 and L_2 .

FA₁ Corresponding to L₁

The language L₁ may be expressed by the regular expression a(a + b)*

FA₂ Corresponding to L₂

pprox The language L₂ may be expressed by the regular expression a $(a + b)^* + \Lambda$

****** Consider the Language L of Strings of **length two or more**, defined over $\Sigma = \{a, b\}$, **beginning with and ending in same letters.**

The language L may be expressed by the following regular expression

$$a (a + b)^* a + b (a + b)^* b$$

It is to be noted that if the condition on the length of string is not imposed in the above language then the strings a and b will then belong to the language.

This language L may be accepted by the following FA

Task

 \mathbb{H} Build an FA accepting the Language L of Strings, defined over $\Sigma = \{a, b\}$, beginning with and ending in same letters.

TASK

Build an FA for the language L of strings, defined over $\Sigma = \{a, b\}$, of odd length.

Solution: The language L may be expressed by RE (a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b)
This language may be accepted by the following FA

Solution continued

Task

 \mathbb{H} Build an FA accepting the Language L of Strings, defined over $\Sigma = \{a, b\}$, beginning with and ending in same letters.

Solution: The language L may be expressed by the following regular expression

$$(a+b)+a(a + b)^*a + b(a + b)^*b$$

This language L may be accepted by the following FA

Solution continued

Consider the Language L of Strings , defined over $\Sigma = \{a, b\}$, **beginning with and ending in different letters.**

The language L may be expressed by the following regular expression

$$a (a + b)^* b + b (a + b)^* a$$

This language may be accepted by the following FA

 \Re Consider the Language L , defined over $\Sigma = \{a, b\}$ of **all strings including** Λ , The language L may be accepted by the following FA

*The language L may also be accepted by the following FA

#The language L may be expressed by the following regular expression

$$(a + b)^*$$

#Consider the Language L, defined over Σ = {a, b} of **all non empty strings**. The language L may be accepted by the following FA

The above language may be expressed by the following regular expression $(a + b)^+$

 \mathbb{X} Consider the following FA, defined over $\Sigma = \{a, b\}$

It is to be noted that the above FA **does not** accept any string. Even it does not accept the null string. As there is no path starting from initial state and ending in final state.

Equivalent FAs

It is to be noted that two FAs are said to be equivalent, if they accept the same language, as shown in the following FAs.

Equivalent FAs Continued ...

Note (Equivalent FAs)

**FA₁ has already been discussed, while in FA₂, there is no final state and in FA₃, there is a final state but FA₃ is disconnected as the states 2 and 3 are disconnected.

It may also be noted that the language of strings accepted by FA₁, FA₂ and FA₃ is denoted by the empty set *i.e.*

{ } OR Ø

Consider the Language L of strings , defined over $\Sigma = \{a, b\}$, **containing** double a.

The language L may be expressed by the following regular expression

 $(a+b)^*$ (aa) $(a+b)^*$.

This language may be accepted by the following FA

Consider the language L of strings, defined over Σ ={0, 1}, **having double 0's or double 1's,** The language L may be expressed by the regular expression $(0+1)^*(00+11)(0+1)^*$ This language may be accepted by the following FA

Consider the language L of strings, defined over $\Sigma=\{a, b\}$, having triple a's or triple b's. The language L may be expressed by RE

$$(a+b)^*$$
 (aaa + bbb) $(a+b)^*$

This language may be accepted by the following FA

