PRÁCTICA 4_4 EJERCICIOS CON ARRAYS BIDIMENSIONALES II

- 1. Programa que dibuje un cuadrado mágico de orden impar introducido por el usuario. Un cuadrado mágico es aquel en el que sin repetir ningún número, todas las filas, columnas y las dos diagonales suman lo mismo.
- 2. Programa que cargue desde teclado una tabla de enteros de dimensión 3x4. El programa mostrará la fila en la que la suma de sus elementos sea mayor.
- 3. Programa que decida si una matriz cuadrada es mágica, en caso de no serlo listar la suma de cada una de las filas y columnas, así como de sus diagonales.

Ejemplo:

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Una matriz mágica es aquella en que la suma de cada una de sus filas, columnas y diagonales tienen el mismo valor.

4.-Escribir un programa que realice la multiplicación de dos matrices de orden 3.

$$A \cdot B = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & 2 \cdot 0 + 0 \cdot 2 + 1 \cdot 1 & 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 \\ 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 & 3 \cdot 0 + 0 \cdot 2 + 0 \cdot 1 & 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 \\ 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 & 5 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 & 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{pmatrix}$$

5.-Se captura una matriz de 3 x 3 por teclado. Calcular su determinante.

$$\begin{split} \det\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = \\ &= \left(a_{1,1} \cdot a_{2,2} \cdot a_{3,3} + a_{1,2} \cdot a_{2,3} \cdot a_{3,1} + a_{2,1} \cdot a_{3,2} \cdot a_{1,3} \right) - \\ &- \left(a_{1,3} \cdot a_{2,2} \cdot a_{3,1} + a_{1,2} \cdot a_{2,1} \cdot a_{3,3} + a_{2,3} \cdot a_{3,2} \cdot a_{1,1} \right) \end{split}$$

6.-Inventario para una red de almacenes. Tenemos un inventario de m piezas distribuidas por n almacenes, expresado mediante una matriz de m x n, y un vector de costes de m elementos con los precios de las piezas.

Hacer un programa que calcule:

- Valor total general
- Valor total de una pieza en todos los almacenes
- Valor total de todas las piezas por almacén y valor de cada pieza por almacén.

Ej: Para m= 3 y n=2 la tabla es:

,01		00,1
D' 1	D' 0	D' 0
Pieza I	Pieza 2	Pieza 3
	, ,	Pieza 1 Pieza 2

Costes 9.61 23 86.4

	Pieza 1	Pieza 2	Pieza 3
Almacén 1	31	42	64
Almacén 2	50	101	194

7.-Deseamos realizar un programa de cambio de divisas. Para ello debemos almacenar en una tabla, los valores de equivalencia en euros. Son los siguientes:

Dólar 0,82 euros.
Libra esterlina, 1,072 euros.
Yen, 0,0075 euros.
Dirham, 0.084 euros.
Euros 1 euros

100 Dolares a Libras

Primer paso...: 100*0.82= 82 euros Segundo paso.: 82/1.072 = 76.5 libras

100*0.82/1.072

Vector nombre de monedas

Dólar	Libra	Yen	Dirham	Euros					
Vactor Equi	volonojo								
Vector Equivalencia:									
0.82	1.072	0.0075	0.084	1					

Capturamos por teclado la cantidad monetaria de la divisa correspondiente y la pasamos a la divisa que se nos indique.

En un primer paso se pedirá: ¿Qué moneda tienes? y Cantidad

En un segundo paso se pedirá: ¿Qué moneda quieres? Y se mostrará la cantidad resultante.

8.-La persona de administración de la ferretería TUERCA S.A., pasa al ordenador los albaranes de los 5 empleados de la empresa. Estos empleados se dedican a la venta y realizan un albarán por cada venta realizada, donde aparece la fecha, nº de vendedor e importe de la venta.

Nos piden:

- la venta total de cada vendedor.

- la venta media de cada vendedor (total importe entre número de ventas)
- la venta total de la empresa.
- la venta media de la ferretería.

9.-Tenemos un nuevo sistema de numeración de base 13. Donde los símbolos que utilizamos son los siguientes:

Símbolo	+	-	*	/	=	?	/	!	ં	\$	(@	#
Valor	0	1	2	3	4	5	6	7	8	9	10	11	12

Deseamos convertir un nº en decimal a este nuevo sistema de numeración y viceversa.

Convertir de base 10 a base 13 especial

Convertir base 13 a base 10

$$/=+ \rightarrow 3$$
 4 0 base 13 pasar a base 10
 $/=+ \rightarrow 0*13^0 + 4*13^1 + 3*13^2 =$

Binario a Decimal: 1 1 0 1
$$\rightarrow$$
 1*2^0+0*2^1+1*2^2+1*2^3=13 10 $2^3 2^2 2^1 2^0$