Utilitarian Online Learning from Open-World Soft Sensing

I. PROOF OF THEOREM

To proof our theorem, we first introduce the triangle inequality for classification error [1], [2] which implies that $\epsilon (h_1, h_2) \leq \epsilon (h_1, h_3) + \epsilon (h_2, h_3)$. Then, we have:

$$\epsilon_{\mathbb{R}_{t+1}^{k}}(h) \leq \epsilon_{\mathbb{R}_{t+1}^{k}}(h^{*}) + \epsilon_{\mathbb{R}_{t+1}^{k}}(h, h^{*}),
= \epsilon_{\mathbb{R}_{t+1}^{k}}(h^{*}) + \epsilon_{\mathbb{R}_{t+1}^{k}}(h, h^{*})
+ \epsilon_{\mathbb{R}_{t}^{k}}(h, h^{*}) - \epsilon_{\mathbb{R}_{t}^{k}}(h, h^{*}),
\leq \epsilon_{\mathbb{R}_{t+1}^{k}}(h^{*}) + \epsilon_{\mathbb{R}_{t}^{k}}(h, h^{*})
+ \left| \epsilon_{\mathbb{R}_{t+1}^{k}}(h, h^{*}) - \epsilon_{\mathbb{R}_{t}^{k}}(h, h^{*}) \right|.$$
(1)

To proceed with the proof, we adapt the definition and inequality suggested by [3] as follows:

Definition 1. For a hypothesis space \mathcal{H} , the symmetric difference hypothesis space $\mathcal{H}\Delta\mathcal{H}$ is the set of hyperspheres

$$q \in \mathcal{H}\Delta\mathcal{H} \iff q(\mathbf{x}) = h(\mathbf{x}) \oplus h'(\mathbf{x})$$
 for some $h, h' \in \mathcal{H}$,

where \oplus is the XOR function, determining whether the outcomes of two functions h and h' are equal.

If the maximum discrepancy between two functions across two spaces is founded, then this value defines the H-divergence distance of two spaces as follows:

Lemma 1. For any hyperspheres $h, h' \in \mathcal{H}$,

$$\left| \epsilon_{\mathbb{R}_{t}^{k}} \left(h, h' \right) - \epsilon_{\mathbb{R}_{t+1}^{k}} \left(h, h' \right) \right| \leq \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}} \left(\mathbb{R}_{t+1}^{k}, \mathbb{R}_{t}^{k} \right).$$

So, by Lemma 1, we have:

$$\epsilon_{\mathbb{R}_{t+1}^{k}}(h) \leq \epsilon_{\mathbb{R}_{t+1}^{k}}(h^{*}) + \epsilon_{\mathbb{R}_{t}^{k}}(h, h^{*}) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{R}_{t+1}^{k}, \mathbb{R}_{t}^{k}),
\leq \epsilon_{\mathbb{R}_{t+1}^{k}}(h^{*}) + \epsilon_{\mathbb{R}_{t}^{k}}(h) + \epsilon_{\mathbb{R}_{t}^{k}}(h^{*})
+ \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{R}_{t+1}^{k}, \mathbb{R}_{t}^{k}),
= \epsilon_{\mathbb{R}_{t}^{k}}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathbb{R}_{t+1}^{k}, \mathbb{R}_{t}^{k}) + \gamma.$$
(2

With adapting Lemma 2 proposed by [3], the H-divergence distance between two spaces \mathbb{R}^k_{t+1} and \mathbb{R}^k_t can be estimated using a finite number of samples extracted separately from each space as follows:

Lemma 2. Let \mathcal{H} be a hypothesis space on data \mathcal{X} with VC dimension d. $|\mathbb{R}^k_t|$ and $|\mathbb{R}^k_{t+1}|$ are samples of size n from two spaces \mathbb{R}^k_t and \mathbb{R}^k_{t+1} respectively and $d_{\mathcal{H}}\left(|\mathbb{R}^k_t|, |\mathbb{R}^k_{t+1}|\right)$ is the

 \mathcal{H} -divergence between samples, then for any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$d_{\mathcal{H}}\left(\mathbb{R}_{t}^{k}, \mathbb{R}_{t+1}^{k}\right) \leq d_{\mathcal{H}}\left(\left|\mathbb{R}_{t}^{k}\right|, \left|\mathbb{R}_{t+1}^{k}\right|\right) + 4\sqrt{\frac{d\log(2n) + \log\left(\frac{2}{\delta}\right)}{n}}.$$

combining Lemma 2 with Eq. (2), we arrive at:

$$\epsilon_{\mathbb{R}_{t+1}^{k}}(h) \leq \epsilon_{\mathbb{R}_{t}^{k}}(h) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}} \left(|\mathbb{R}_{t}^{k}|, |\mathbb{R}_{t+1}^{k}| \right) + 4\sqrt{\frac{d\log(2n) + \log\left(\frac{2}{\delta}\right)}{4n}} + \gamma, \tag{3}$$

as desired.

REFERENCES

- S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," in *NeuIPS*, vol. 19. MIT Press, 2006
- [2] K. Crammer, M. Kearns, and J. Wortman, "Learning from multiple sources." *Journal of Machine Learning Research*, vol. 9, no. 8, 2008.
- [3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, "A theory of learning from different domains," *Machine learning*, vol. 79, pp. 151–175, 2010.