Кирикова (Ольга Викторовна?) (Экология и промышленная безопасность Э9)
Безопасность ЖД.
(два посещения лаб + рейтинги(два). Есть автоматы)
Лит-ра:
Безопасность жизнедеятельности под редакцией Белова.
Охрана труда в машиностроении под редакцией Белова (удобнее для подготовки).
Раздел в дипломе:
Связан с вопросами эргономики.
Расчет системы вентиляции в помещении.(как вариант)
Вводная часть.
Мы все живем в биосфере. А в последнее время она превратилась в техносферу (преобразованная человеком в результате его деятельности биосфера).
Причины возникновения техносферы:
- резкое увеличение численности населения. (урбанизация населения)
- бурный рост энергетики
- рост количества автотранспорта
- рост вложений в вооружение
- рост вложений в вооружение -
- рост вложений в вооружение - Экологические болезни: последствия атомных бомбежек в Японии, смога в Лондоне.

R<1e-6 – приемлемый уровень риска.

1e-6<R<1e-3 – переходная зона риска

R>1e-3 – неприемлемый риск

Некоторые определения.

(травмо-)Опасные факторы – такой вид факторов, которые (при кратковременном воздействии) влекут за собой резкое ухудшение состояния здоровья вплоть до травм.

Вредный фактор – фактор длительное воздействие которого ведет к ухудшению здоровья вплоть до профессионального заболевания.

Травмоопасные факторы должны быть ликвидированы.

Гигиеническая классификация труда. (по наличию вредных и опасных факторов).

- 1. Физические вредные и опасные факторы (шум, излучения..)
- 2. Химические ВиОФ
- 3. Биологические ВиОФ (грибки, вирусы, споры)
- 4. Психофизиологические

Классы условий труда (по той же классификации).

Безопасные:

- 1. Оптимальные
- 2. Допустимые

Вредные(3):

- 3.1 1-ой степени превышения (обратимые изменения)
- 3.2 2-ой степени превышения (??
- 3.3 3-ой степени превышения (выраженные изменения функциональные или органические)
- 3.4 4-ой степени превышения (возможны заболевания вплоть до профессиональных)

Травмоопасные(4) (в течение смены человек может получить острое профессиональное заболевание либо травму)

Лекция 2 (18.02.2010)

Производственный травматизм.

Причины:

- Санитарно-гигиенические (Зашумленность - может не услышать важный сигнал и тд) - 5%

- Материально-технические (нету денег на покупку защитного устройства, средств индивидуальной защиты) 40%
- Организационные (ставят работника недостаточной квалификации) 54%
- Субъективные причины (шалости, болезни) 1%

Виды травм:

- микротравмы до трех дней
- легкие травмы до 7 дней
- средней тяжести до 30 дней
- тяжелые до 6 месяцев
- особо тяжелые с уходом на инвалидность.
- групповые

Признаки производственных травм:

- Время и место происшествия (на предприятии в рабочее время)
- Травмы полученные в командировке и по пути туда и обратно
- По пути на работу и с работы на транспорте предприятия (даже если на личной машине, если в договоре указано, что личная машина используется в производственных целях)
- Наличие вины предприятия
- При действиях работников в пользу предприятия

Признаки травм не связанных с производством:

- Причина несчастного случая на территории предприятия в рабочее время опьянение
- Болезненной состояние (человек перенес операцию, пришел на работу, его заставили таскать тяжести разошелся шов)

- Уголовные действия
- Самоубийства

Чьи травмы считаются производственными:

- Наличие трудового договора (возмещение ущерба от травм предусматривается автоматически)
 - Договор подряда (пункт о возмещении ущерба от травм должен быть прописан явно)

Какие документы оформляются.

Акт по форме H-1 в 2(3) экземплярах. (предприятию в статистику, пострадавшему и страхователю, если застрахован). Хранится 40 лет (если появятся заболевания связанные с этой травмой — возможна повышенная пенсия).

Кто входит в комиссию, которая расследует несчастный случай и составляет этот акт:

- Руководитель
- Ответственный за охрану труда
- Профорг (представитель профбюро)

Методы анализа производственного травматизма.

1. Статистический.

Кч=N/Р*1000 - коэффициент частоты

Кт=D/N – коэффициент тяжести; D-число дней нетрудоспособности суммарное

Кпп=Кч*Кт=D/Р*1000 – коэффициент производственных потерь.

Достоинства – легко считать.

Недостатки – не дает никаких рекомендаций, не выявляет причины травматизма.

2. Топографический.

По мере того как происходят несчастные случаи, на карту предприятия наносятся отметки. Если есть концентрация в опр. Месте – делаем выводы.

3. Групповой.

Кч и Кт считают по группам (м/ж. по возрасту и тд)

4. Монографический.

Создается специальная расширенная комиссия и рассматривает необычный несчастный случай.

Недостаток – дорогой метод.

Достоинство – дает рекомендации.

5. Экономический.

Считаются экономические потери на травматизм. Считаю коэффициенты за год и экономические потери за год.

Э=П+Празрушение оборудования+Псоциальные выплаты и тд

6. Метод А, В, С.

K=D/100

К<4 – ежемесячные проверки

К=4-5 - еженедельные проверки

К=5-16 - ежедневно

Ответственность за охрану труда.

Директор – отвечает за все. Делегирует основные Функции по охране труда главному инженеру. Тот делегирует свои функции начальникам подразделений.

Отдел охраны труда проверяет работу главного инженера и начальников подразделений вплоть до закрытия.

Виды ответственности:

- 1. Дисциплинарная (выговор, замечание)
- 2. Административная (штраф)
- 3. Материальная (депремирование)
- 4. Уголовная

Обязанности администрации.

- 1. Создание ОТ (охраны труда)
- 2. Обеспечение контроля по охране труда (составить инструкции, проверить их знание)

3. Выдача средств индивидуальной защиты

Виды контроля.

- 1. Текущий.
- 2. Целевая проверка (после жалоб)
- 3. Комплексная проверка (после несчастного случая)
- 4. Аттестация рабочих мест, с составлением паспорта (раз в 5 лет)

Лекция 3 (19.02.2010)

Защита от шума.

Шум относится к энергетическим загрязнениям окр. среды.

Хар-ки шума (звука): Р – давление, J [Вт/м/м]интенсивность переноса энергии, частота f

$$J = \frac{P^2}{C * \rho_0}$$

 $C_0 = 344 \text{ m/c}$

 $C * \rho_0$ – волновое сопротивление среды

 $C_0 * \rho_0$ — волновое сопротивление воздуха

$$L_P=10\lg\left(rac{P^2}{p_0^2}
ight)=20\lg\left(rac{P}{p_0}
ight); \qquad L_J=\lg\left(rac{J}{J_0}
ight) \quad ext{-} \quad ext{относительные величины (уровни?)}$$

$$J_0 = 10^{-12} \frac{BT}{M^2}$$

$$P_0 = 3 * 10^{-6} \Pi a$$

Шкалу частот также сжали и поделили на октавы. $(f_2/f_1=2; f_{cp}=sqrt(f_2*f_1));$

Инфразвук <31,5 Гц

(31,5, 20кГц) – слышимый шум

(31,5, 250) – низкие частоты

(250, 1000) - средние частоты

(1000, 20000) – высокие частоты

>20кГц - ультразвук

(20кГц, 100кГц) – Воздушный ультразвук

>100кГц – контактный ультразвук

Спектр шума – отношение уровней звукового давления (или интенсивности) в зависимости от частоты.

(Рис2.1 – дискретный спектр) Например шум станка.

(Рис2.2 – сплошной спектр) такой шум – широкополосный

(Рис. 2.3 – совмещенный спектр)

Временные характеристики шумов.

Как соотносятся уровни звуковых интенсивностей и звуковых давлений.

$$J = \frac{P^2}{\rho c}$$

$$10\lg\left(\frac{J}{J_0}\right) = L_P + 10\lg\left(\frac{\rho_0 c_0}{\rho c}\right)$$

Если исследуем в воздухе, то $ho=
ho_0$, ${
m c}={
m c}_0=>L_I=L_P$

Правило сложения уровней.

$$J_{\Sigma}=J_1+J_2+\cdots+J_n$$

Делим обе части на I_0 и берем логарифм.

$$L_{J\Sigma} = 10 \lg \left(\frac{J_1}{J_0} + \frac{J_2}{J_0} + \dots + \frac{J_n}{J_0} \right)$$

$$\frac{J_i}{J_0} = 10^{\frac{L_1}{10}}$$

$$L_{J\Sigma} = 10 \lg \left(10^{\frac{L_1}{10}} + 10^{\frac{L_2}{10}} + \dots + 10^{\frac{L_n}{10}} \right)$$

Если источники шума одинаковые ($J_1=J_2=\cdots=J_n$), тогда $L_{J_{\Sigma}}=L_1+10{
m lg}\;(n)$

Lp, Дб	Р, Па	Источник шума
160	2000	Ракета носитель на старте
120	20	штамповка
60	0.02	Речь
20	0.0002	шепот
80	0.2	автомобиль

Воздействие шума на организм человека.

Нормирование шума.

Существует два метода нормирования шума.

1. В уровнях звукового давления. (Lp, дБ)

(Рис. 2.6 – допустимые спектры)

(Рис. 2.7 - проверка помещения)

2. Уровнем звука. (Lзв дБА)

Уровень звука — интегральное значение уровней звукового давления с учетом коррекции на низких и высоких частотах.

Lдопустимая звука=предельный спкектр₍₁₀₀₀₎+5дБА

Нормирование переменных шумов.

Нормируются только уровнем звука.

Определют Lэквивалентная (дБА)— уровень постоянного широкополосного шума, который оказывает такое же воздействие, как данный непостоянный шум.

За 30 минут делают 360 замеров.

$$L_{ exttt{ЭКВ}} = 1 - \lg \left(0.01 \sum_{i=1}^n f_i 10^{0.1 L_i} \right)$$
, дБА

Лекция 4 (25.02.2010)

Шумовые характеристики машин.

W =J*S (интенсивность на площадь)Вт – звуковая мощность.

Но от абсолютных значений перешли к уровням

Lw=10lg(W/W₀), дБ

W0=1e-12Вт

ПН=10IgФ, дБ Ф= J_i/J_{cp} — показатель направленности

Определение шумовых характеристик машин методом свободного звукового поля.

$$L_{P_i}=L_{J_i}$$

$$\frac{W}{W_0} = \frac{JS}{J_0 S_0} = > L_w = L_J + 10 \lg (S/S_0)$$

$$L_{J_{\text{cp}}} = \frac{\sum L_i}{n}$$

Акустический расчет.

Основная формула акустического расчета для открытого пространства.

Цели расчета:

- 1. Определение Lp= L
- 2. Определение $\Delta L_{
 m Heofx} = L_{
 m допуст} \ L_{
 m paccчетh}$
- 3. Разработка рекомендаций по снижению

$$J_{\rm PT} = \frac{W\Phi}{SK} = > \ L_J = L_W + 10 \lg(\Phi) - 10 \lg(2\pi) - 10 \lg(R^2) - 10 \lg k$$

$$k=\Delta L_{\beta}=\beta f/1000$$

f, Гц	63	125	250	500	1000	2000	4000	8000
β, дБ/км		0.7	1.5	3	6	12	24	48

Методы защиты от шума в открытом пространстве.

- 1. Борьба в источнике (уменьшение Lw)
- 2. 10lgΦ
- 3. Увеличение расстояния (r)
- 4. 10lgk тоже увеличение расстояния

Основная формула акустического расчета для помещения.

Методы защиты

- 1. Уменьшение мощности
- 2. Использование фактора направленности
- 3. Акустическая обработка помещения (увеличение В)

Борьба в источнике.

Шумы бывают:

- 1. Механические (вибрации)
- 2. Аэродинамические (истечение из сопел)

3. Электромагнитные (как работает трансформатор? (трется обмотка))

Акустическая обработка помещения.

Звукоизоляция.

Лекция 5(4.03.2010)

Защита от ультразвука(20 кГц и больше).

Нормирование ультразвука.

Методы защиты от воздушного ультразвука:

- 1. Борьба в источнике
- 2. Дистанционное управление (выводим человека из зоны работы источника)
- 3. Экранирование (плотными материалами с покрытием полимером)
- 4. Перевод оборудования на более высокие частоты

Методы защиты от контактного ультразвука:

- 1. Борьба в источнике
- 2. Отключение оборудования на время контакта
- 3. Средства индивидуальной защиты

Защита от инфразвука (1-20 Гц)

Нормирование

Методы защиты

- 2. перевод оборудования на более высокие частоты
- 3. Борьба в источнике.

Примеры задач.

Задача 1. Надо ли снижать уровень звуковой мощности источника, который равен Lw=86Дб на частотах 63 Гц, 1000 Гц и 8000 Гц, если расчетная точка находится на расстоянии R=2м и в ней действуют прямое и отраженное поле, которые равны(In=Ioтp). Нормируется ПСN75. Диаграмма направленности круговая (Ф=1)

Задача 2. В производственном помещении коэффициент поглощения (реверберации) alpha=0.2. Потолок и стены обработали звукопоглощающими плитами. Стало alpha=0.92/

Соответствуют ли нормам звук после облицовки (нормирования по ПСN85), если до облицовки уровень звука был Lзв1=0.712

$$112 = \log 70 \log \frac{82}{18}, \qquad 8 = \frac{F+1}{1-1}$$

$$112 = 10 \log \frac{F+12}{1-1} (1-1) = 10 \log \frac{1}{1-1} (1-1) = 10 \log 10 = 10 \sin 10$$

$$114 = 92 - 10 = 82 \sin 10$$

Задача 3.

Сложение двух разных уровней звука.

$$L_1 > L_2$$

$$L_1 + L_2 = L_1 + \Delta L$$

$L_1 - L_2$	0	1	2	3	4	5	6	7	8	9	10
ΔL	3	2.5	2	1.8	1.5	1.2	1	0.8	0.6	0.5	0.4

Защита от производственных вибраций.

На производстве встречаются различные вибрации: механические(есть неуравновешенные силы), параметрические (внутри машин изменяются параметры среды), кинематические (при движении машин по неровностям).

Величины описывающие вибрацию: амплитуда (A) скорость (v). Ускорение (a), частота (f) и круговая частота (w=2pif). Энергия поглощаемая средой (в частности человеком) определяется квадратом виброскорости v^*v .

Ощущение человека dM=a*dR/R0 => ввели децибелы

$$v \to Lv = 20 \lg(v/v0) \quad v0 = 5e - 8 \text{ m.c}$$

$$A \rightarrow LA = 20 \lg(A/A0)$$
 $A0 = 1e - 12 m$

$$a \rightarrow La = 20 \lg(a/a0) a0 = 3e - 4 m/c/c$$

Также изучают в спектрах. Спектры могут быть дискретные(гармонические колебания), сплошные (случайный колебательный процесс) и смешанные (иногда получают искусственно).

Также как и в звуке идет разделение на октавы.

f < 11Гц – особо низкие вибрации

11..30 – низкие

30..250 - среднечастотные

f>250 - высокочастотные вибрации

Воздействие вибраций на организм человека.

Вибрация может иметь локальное воздействие (только на руки или ноги) (от дрели, штурвала самолета). Может иметь общее (на сидящего человека(шофер). Действует на желудочно-кишечный тракт)

Нормирование вибрации.

Нормируются как абсолютные величины (амплитуда, виброскорость и ускорение в зависимости от частоты), так и уровни амплитуды, виброскорости и ускорения в зависимости от частоты.

<пропустил лекцию 6(5.03.2010)>

Акустический расчет

основная формула акустического расчета

Цели:

- определение уровней звукового давления (L_p = L_i)
- определение dL_необх = L_допуст L_расчетное
- разработка рекомендаций

Ірасчетной точки = $W * \Phi / (S * k)$ логарифмируем

Основная формула расчета для акустического пространства:

$$L_i = L_w + 10 lg(\Phi) - 10 lg(2*PI) - 10 lg(r^2) - 10 lg(K)$$

 L_r1 -невелика L_r2 = 10 lg ($r2^2 / r1^2$) = 20lg2 = 6 дБ

при удалении от источника в двое звук затухает на 6 дБ (от 50 м)

до r1 < 50 звук не затухает

f 63 125 250 далее линейно

beta[дБ/км] 0 0,7 1,5

Методы защиты от шума:

- уменьшение L_w

```
- 10 lg(Ф)
- увеличение r (после 50)
- 10 lg(K)
```

Основная формула акустического расчета для помещений.

r > 2N; стены покрыты определенным материалом (F*alpha - приведенная поверхность поглощения (alpha - коэффициент реверберации alpha = I_поглощенной/I_падающей))

$$B = F*alpha / (1 - alpha); F*alpha = A$$

alpha:

0,98 - 0,99 для спец покрытий

0,3 - 0,4 обычно

0,01 - 0,02 для зеркал

Если близко к источнику, то І_прямое > І_отраженного (у стен наоборот)

$$L_i = 10 lg(W/W_0) + 10 lg(\Phi/S + 4/B) - dL_кожуха(экрана) // если есть экран$$
 $L_i = L_w + 10 lg(\Phi/(2*Pl*r^2) + 4/B) - dL_кожуха(экрана) // 2*Pl*r^2 - минимум$

Методы защиты:

- уменьшение L_w
- Ф
- увеличение В

Методы защиты от шума. Виды шумов: - механические - аэродинамические - электромагнитные Аэродинамические: 1) L $p \sim c*v^8*D^2 // D$ - диаметр 2) применение глушителей: а) активные (абсорбционные). Шум в "тепло" за счет пористых материалов стен. dL = 20-30 дБ на всех частотах. Недостаток - потеря мощности. б) реактивные. Внутри трубы ответвления размером в четверть волнового рассогласования (чтобы на выходе была противофаза). Глушит дискретные частоты. резонатор Гирбольца: omega_0 = sqrt(q/m)в) активно-реактивные. Ответвления с пористым материалом. Преимущество расширенная полоса частот. Аэродинамические шумы при обтекании предметов. L_p ~ c*v^8*D_эквив^2 // D_эквив - диаметр эквивалентный Электромагнитные: Применение специальных сплавов для изготовления обмоток, плотная намотка обмотки. Акустическая обработка помещения. Покрытия: - активное (на стену клеится покрытие) $dL = 10 \lg(B \ 2 / B \ 1) = 10 \lg(F \ 2*alpha \ 2 / B \ 1)$ F_1*alpha_1)

штучные поглотители (свисает с потолка. мебель тоже хороший поглотитель) dL = 10

 $lg((B_2+B_{T}) / B_1)$

- активно-реактивное (дополнительный слой под покрытием). дополнительное снижение шума на высоких частотах. Эффективность по той же формуле.

Иногда покрывают еще решеткой (сеткой) для большего поглощения.

Применяемые покрытия:

- шунгезит
- минеральная вата
- капроновое волокно

Использование фактора направленности.

При ярконаправленных шумах правильно расположив расчетную точку можно найти наилучшую точку. dL = 10-15 дБ

Звукоизоляция. Применение звукоизолирующих материалов.

Пути проникновения:

- 1) воздушные
- щели. Избавление: Отсутствие щелей.
- экраны. dL_кожуха = 20 * lg(m * f) 47,5 эмпирическая (только небольшие завалы на 200 и 300 Гц).

т - масса 1 м^2 пола

2) конструкционные шумы (от пола по воздуху). Для избавления:должно быть отсутствие соединений с кожухом.

Защита от ультразвука

(> 20 кГц)

Воздушный и контактный оказывает разное воздействие.

Контактный может вызвать потерю чувствительности, порезы.

Воздушный - кровеносная и нервная система.

Нормирование ультразвука.
$L_p = f(f, \Gamma u)$
v_max <= 1,6*10^(-1) m/c
I < 0,1 Bt/cm^2
Методы защиты.
От воздушного
1) борьба в источнике
2) дистанционное управление (вывести человека из зоны источника)
3) экранирование
4) перевод оборудования на более высокие частоты, если это возможно
От контактного (значительно более биологически активен)
1) борьба с источником
2) выключение приборов
3) средства индивидуальной защиты
Защита от инфразвука
(1 - 20 Гц)
Методы защиты.
1) Плиты с холстом, набитые пористым материалом.
2) Перевод на более высокие частоты
3) Борьба в источнике
Задача.

Надо ли снижать уровень звуковой мощности источника (86 дБ) на частотах равных а) 63 Гц; б) 1000 Гц; в) 8000 Гц;

R расчетной точки = 2 метра действие прямое и отраженное поле. ПС №75. Фактор направленности = 1 (диаграмма направленности круговая)

$$L_P = L_I + 10 \ lg(\Phi) - 10 \ lg(2*PI) - 10 \ lg(R) - 10 \ lg(K)$$
 10 $lg(K) = 0$, т.к. всего 2 метра, а надо 50 минимум 10 $lg(\Phi) = 0$ $L_P = L_W - 1 - lg(2*PI) - 10 \ lg(R)$

Т. к. І прямое = І отраженное, тогда L полное = L Прямое + $10 \lg(2) = 72 + 3 = 75 \, \text{дБ}$.

ПС №75 (график -- гипербола) -- на 1000 Гц - 75 дБ.

- а) можно
- б) на границе нормы

L P = 86 - 3 - 5 - 6 = 72

в) превышение

Задача.

В производственном помещении (alpha_cp1 = 0,2 реверберация, поглощение). В целях снижения шума потолок и стены облицовали плитами => alpha_cp2=0,712. Определить соответствует ли норме уровень звука в помещении, если до облицовки L_зв1 = 92 дБА. L зв2 - ?

```
B = F * alpha/(1 - alpha)

deltaL = 10 lg(B2/B1)

deltaL = 10 lg( (F*alpha_2/(1-alpha_2))) / (F*alpha_2/(1-alpha_2))) = 10 lg( (alpha_2 * (1 - alpha_1)) / (alpha_1 * (1 - alpha_2))) = 10 lg10 = 10 дБ.
```

```
L = 92 - 10 = 82 дБА
```

Если было бы отражение, то L_полное = L + 10lg(2) = 82 + 3 = 85 дБА

L_допустимое = ПС + 5 = 90 дБА

Задача.

Источники шума в одной комнате: 80, 80, 83, 86, 89. L_суммарное_звука?

 $L_{cymm} = L_{1} + 10 \lg(2)$

L_суммарное_звука = 91 дБ

////

 $L1+L2 = L_1 + deltaL$

 L_1-L_2 0 1 2 3 4 5 6 7 8 9 10

deltaL 3 2,5 2 1,8 1,5 1,2 1 0,8 0,6 0,5 0,4

Защита от производственных вибраций.

- 1) механические
- 2) кинематические

Величины, описывающие вибрацию

A, M

v, m/c

a, m/c^2

f, Гц

omega = 2*PI*f рад/с

v^2 ~ энергия

a^2

 $d M_{4} = a * dR/R_{0}$

 $M = a (ln(R) - ln(R_0)), [непер]$

M = 10 lg(R/R0) дБ, т. к. (a = 10)

перешли от v к L v = $20 \lg(v/v \ 0)$ дБ v 0 = $5*10^{(-8)}$ м/c

 $L_a = 20 lg(a/a_0) дБ^2$ $a_0 = 3*10^(-4) м/c^2$

L A = 20 lg(A/A 0) дБ $A 0 = 10^{-12} m$

Также как и у шума есть дискретные спектры, сплошные и смешанные. Частотный спектр также разбит на октавы.

f < 1 Гц - особо низкие вибрации

f = 11 - 30 Гц - низкие

f = 30 - 250 Гц - среднечастотные

f > 250 Гц - высокочастотные

Воздействие вибраций на организм человека.

Может иметь только локальное воздействие. Последствия -- артриты, потеря чувствительности.

Общая идет либо с ног либо с кресла.

Нормирование вибраций.

Нормируются A, м - f, Гц; v, м/с - f, Гц; a, м/с^2 - f, Гц

 $v_{donyctumas_t} = v_{donyctumas_npu_nonhom_paбoчem_dhe} * sqrt(480/t); t <= 10 мин для общей вибрации, t <= 30 мин для локальной вибрации;$

Лекция 11.03.10

Защита от электромагнитного излучения.

Защита от радиочастотного диапазона излучений.

0 - 3 сверх... поля

3 - 3*10^12 радиочастотный диапазон

3*10^12 - 3.8*10^14 - ИК

3.8*10^14 - 7.8*10^14 - видимое

7.8*10^14 - 10^16 - ультрафиолетовое

10^16 - 10^19 - рентген

10^19 - 10^21 - гамма

> 10^21 космические лучи

Величины, характеризующие магнитное поле.

S = E x H - вектор Умова - Пойнтинга

E[B/M], H[A/M], I[BT/M]

E = H * W, где W - волновое сопротивление среды

W = sqrt(Mu_0 * Mu_t / (Epsilon_0 * Epsilon_t))

 $W_0 = sqrt(Epsilon_0 * Mu_0) = 377 Om$

// картинка волна падает на экран, изменяем интенсивности на расстоянии r от экрана $E_r = E_0 * exp(-k*r)$ $H_r = H_0 * exp(-k*r)$ k - коэффициент затухания в материале экрана r, при котором E и H уменьшаются в е раз называется глубиной проникновения э/м волны в материал экрана $E_r/E_0=e$ $10 \lg(E_r / E_0) = 10 \lg(k*e*r)$ r = 1/k $I_r / I_0 = 2*k*e*r$ r = 1/2*kІ-ая зона Френеля $R = lambda / 2*PI W_E = W_0 * lambda / (2*PI*R), W_H = W_0 * (2*PI*R / lambda)$ II-ая зона Френеля lambda / 2*PI < R < 2*PI*lambda III-ая зона излучения (Фраунгофера) R = 2*PI*lambdaДля проводящих сред: $W_0 = \operatorname{sqrt}(Mu_0 * \operatorname{omega} / \operatorname{sigma})$

Для направленного излучения:

I зона: R < D^2 / 4*lambda

II зона: D^2 / 4*lambda < R < D^2 / lambda

III зона: R > D^2 / lambda

Влияние э/м волн на человека.

При f < 10МГц в теле однородно индуцируется ток. (В этом диапазоне E более влиятельна) Более опасен СВЧ диапазон.

Нормирование э/м поля.

1. 30 КГц - 300 МГц - E, H - прибором; ЭЭ_E = E^2 * T, T[час], ЭЭ_H = H^2 * T, T[час]

// ЭЭ - Энергетическая экспозиция

2. 300 МГц - 300 ГГц (СВЧ диапазон) ЭЭ_ППЭ(I) <= 2 [$B\tau^* \text{ч/м^2}$], ППЭ = K * 2 / T, [$B\tau/\text{м^2}$]

ППЭ - плотность потока энергии

ППЭ допустимая без средств индивидуальной защиты <= 10 Вт/м^2

K = 1 для постоянного облучения, = 10 для сканирующих антенн, = 12 при облучении узкими полосками

3. 50 Гц - E_max <= 25 В/м

E = 50 / (T + 2) => T = 50 / E - 2 - время пребывания в часах.

Гипербола: (0; 25), (8; 5)

Нормирование постоянного магнитного поля.

t, мин общее локальное

H[kA/M] H[kA/M]

0 - 10 24 40

11 - 60 16 24

61 - 480 8 12

~50 Гц от ЛЭП

Внутри

E <= 0,5 кВ/м

на территории сада огорода

E <= 1 κB/м

на территории без постоянного проживания Е <= 5 кВ/м

Методы защиты от э/м полей:

$$\Pi\Pi \ni = P * G / (4*PI*R^2)$$

P - мощность, G - коэффициент направленности антенны

 $\Pi\Pi \ni = K * 2 / T$

- 1) уменьшение Р
- 2) уменьшение G
- 3) увеличение R
- 4) уменьшение Т
- 5) экранирование
- 6) средства индивидуальной защиты

График -- гипербола (конец на 8 ч).

10 Вт/ч для t <= 12 минут (1/5 часа)

Радиопоглощающие материалы.

Не являются экранирующими. Совместно с экраном.

- 1. Широкополосный РПМ.
- 2. Узкополосный РПМ.

Защита от ионизирующих излучений.

- 1. Корпускулярные
- а) непосредственно ионизирующие (Alpha, Beta, p)

б) косвенно ионизирующие (n)

2. Электромагнитные

Рентген 10^17 - 10^19

Гамма 10^19 - 10^21

Космические лучи f > 10^21 Гц

Быстрый

A 1 A-3 4

$$X + n_0 -> X + He + j$$

Z 0 Z-2 2

A 1 A

$$X + n_0 -> X + n_0 + j$$

Z 0 Z

A 1 A+3

$$X + n_0 -> X + j$$

Z 0 Z

Взаимодействие физиологическое с тканью.

Фотоэлектрическое поглощение.

hV -> e

Некогерентное рассеивание.

hV -> hV(под углом) + e

f > 10^21 Гц

hV -> e

Дозы ионизирующих излучений.

Наименование величины Единица СИ Единица в радиологии Соотношение между ними

Доза экспозиционная

(только для воздуха) Кл / кг Рентген (P) 1 P = $2,58 * 10^{(-4)}$ Кл/кг

D эксп = dQ/dm

Поглощенная доза

D_погл = dE / dm Грей (Гр) Рад 1 Гр = 100 Рад

/*

 $W_R = 1 (Re, j)$

 $W_R = 20 (n_0)$

 $W_R = 10$ (Alpha)

W_t - коэффициент учитывающий ущербность органов

печень - 0,05

костный мозг - 0,12

*/

Доза эквивалентная

 D_{-} эквив = D_{-} (погл) * W_{-} R Зиверт Бэр 1 3в = 100 Бэр

Доза эффективная

n

 $D_{9} = Summ(D_{8} = 100 Б)$ 1 3в = 100 Б

1

Лекция от 01.04.2010.

145 л - в 10.00 2.04.10

Нормирование параметров микроклимата.

Оптимальные параметры теплоклимата -- тепловой комфорт.

Допустимые параметры -- не выходит за пределы допустимых.

Защита от тепловых излучений.

Параметрическое давление, температура, влажность, скорость воздуха.

lambda < 1.5 мкм - лучи Фокта (приникают глубоко внутрь и быстро нагревают участки органов)

lambda = 1.5 мкм

lambda > 3 * 10 мкм колящие лучи (помутнение хрусталика)

Выделение пота

При покое

1,6 г/мин (при 16 градусах)

9 (42 градусах)

При работе

8.8 г/мин (обыкновенная работа)

21 г/мин (тяжелая работа)

Максимальная температура жизнедеятельности - 43 градуса, минимальная - 16.

Нормирование теплового излучения.
Е [Вт/м^2] - интенсивность
E < 140 BT/M^2
E > 140 вт/м^2 (только со средствами индивидуальной защиты)
E = f(s) S - облучаемая поверхность тела
s < 25% тела => E < 100 Вт/м^2 для лучей Фокта
s ~ 25% - 50% => E < 70 Bt/m^2
s > 50% => E < 35 Bt/m^2
Средства защиты от лучистого тепла.
1) борьба с источником
2) теплоизоляция источника (по нормам: все тела в рабочей зона нагреты не более чем до 50 градусов)
- многослойная
- оберточная
- насыпная
- и т. д.
3) экранирование (многослойные экраны). Экраны делятся на:
- отражающие (металл)
- поглощающие (бетон, кирпич)
- отводящие (теплосъемный материал, например, вода)
n = (E_до - E_после)/E_до
Защита от лазерного излучения.
Опасности:
от лазера

1) высокое напряжение
2) э/м излучение
3) э/м излучение вокруг лазерного луча (в зависимости от диапазона)
от мишени:
4) аэрозоли (испарения, брызги металлов, окиси полимеров)
5) отраженное лазерное излучение
6) лазерная плазма
от мишени и от лазера:
7) шум
8) продукты радиолиза воздуха
9) вибрации
10) ионизация воздуха
Физические величины, описывающие свойства лазера и лазерное излучение:
E [Bт/м^2] - энергетическая облученность (экспозиция). Зависит от: lambda, t.
Н [Дж/м^2] - энергетическая освещенность. Зависит от: lambda, t.
W, [Вт] - мощность в пучке. Определяет класс лазера.
Опасные длины волн:
4 класса лазера:
1) Безопасные (мощности не даются т. к. это зависит от длин волн)
2) Опасно только прямое излучение и только для глаз. Диффузно отраженное от поверхности безопасно
3) Прямой опасен для глаз и кожи, опасно отраженное в 10 см от поверхности отражения

4) Мощные, опасны как прямое так и отраженное излучение на любом расстоянии.

для глаз и для кожи.

1 2 3 4

Прямое на матовую - + + +

Диффузно отраженное

на матовую поверхность - - + +

Повышенное напряжение +/-+ + +

Запыленность,

загазованность - - +/- +

Шум, вибрация - - -/+ +

Повышенная яркость - - +/- +

света

ИИ - - - +

Химические вредные - - +/- +

факторы

Диапазоны длин волн

0.2 - 0.4 мкм (УФ) - воздействует глаза, кожу.

0.4 - 0.75, 0.75 - 1,4 мкм катаракта, ожог сетчатки.

Хрусталик быстро повреждается при 0.32 - 0.39 мкм. Нормирование лазерного излучения. Основные нормирующие величины: E, H, W. По их величине назначается класс индивидуальной защиты, учитывая длину излучения. Методы защиты: 1) Защита органов зрения: защитные очки. Есть, и те которые защищают и от отраженного диффузного. 2) Дистанционное управление. 3) Лечебно-профилактические осмотры. Видимое излучение. 780 - 380 нм. ИК (380 - 480 нм) Видимый (780 - 380) УФ (380 - 10 нм). Основные светотехнические величины. - количественные 1) лучистый поток (Л, Вт) 2) световой поток (F, Лм) - часть лучистого потока, воспринимаемая глазом как свет. 3) E - совещенность (E = dF/dS, Лк) 4) сила света I = dF/dOmega [Кд] (Omega - телесный угол)

5) яркость L = dI/(dS*cos(alpha)) [Кд/м^2] (alpha - угол отклонения от перпендикуляра к поверхности)

- качественные

р > 0.4 светлый

1) $KOHTPACT R = |(L_{\phi} - L_{o})/L_{o}|$

для диффузный
$$R = |(p_{\phi} - p_{o})/p_{o}|$$

R > 0.5 большой

- 2) видимость V = R_действительный / R_пороговый
- 3) показатель ослепленности P = (V1/V2 1) * 1000

Лекция.

02.04.2010

P = (V1/V2 - 1) * 1000; - коэффициент ослепленности

V1 - видимость при экранировании источников света

V2 - видимость при наличии источников света

К_п = E_max - E_min/(2*E_cp) * 100%; - коэффициент пульсации

Виды производственного освещения:
По типу:
- естественное
1) боковое
2) верхнее
3) комбинированное
- искусственное
1) общее
2) комбинированное (общее (от 10%) + местное)
По назначению:
- рабочее
- охранное
- аварийное
- эритенное
Требования:
1) соответствие нормам
2) рациональная направленность (чтобы заметить дефекты, например)
3) рациональный выбор источников света
Светильники и их характеристики.
Назначения арматуры светильника:
- перераспределение светового потока
- защита органов зрения от блеских источников света в поле зрения (угол между краем

светильника и горизонтом > 30 градусов)

- защита от разрушения источников света

etha = F_c / F_{источника света} * 100%; - кпд светильника

F/W; - световая отдача от лампы

Источники света:

- лампы накаливания. Срок службы 0.5к часов. Световая отдача до 14-15 Лм/Ватт
- галогенные лампы (световая отдача значительно больше). Сейчас внутри (газы в колбе CH2Br2 и CH3Br2). Срок службы 1.5к часов. Световая отдача до 19 Лм/Ватт
- люменисцентные лампы. Инертные газы с парами металлов. Недостатки: Раньше использовались пары ртути, иногда и сейчас. Время до разгорания ~ 10 мин. Срок службы 10к 15к часов. Световая отдача до 150 Лм/Ватт. Обычно раньше из-за того, что выходит дроссель из строя.
- светодиодные. Срок службы до 50к часов. Световая отдача больше чем у люменисцентных.

Нормирование искусственного освещения.

Основная нормативная величина - Е, [Лк]. Зависит от:

- 1) Разряда точности работы
- 2) Контраста
- 3) р_фона
- 4) Системы освещения (на комбинированных больше Е)
- 5) Вид источника света (на энергосберегающие больше Е)

Дополнительные величины:

К п~10-20%

L < 2.5к Кд/м^2

Р ~ 20-80 единиц

Расчет искусственного освещения.

Цель расчета: определение потребной мощности осветительной установки для того чтобы создать нормативную освещенность.

СаНПиН 2.2.2/2.4.1340-03 mhts.ru - "все нормативные документы для программистов"

- 1. Выбор типа лампы
- 2. Выбор типа системы освещения
- 3. Определяемся с Е норм, К п
- 4. Распределяем светильники по потолку. Подсчет n = S / I^2; I расстояние между лампами, S площадь
- 5. $F_{\pi} = E_{\pi} * S * k * z / (etha * n); световой поток от лампы$
- 6. Подбираем лампу Р 1л
- 7. Считаем суммарную мощность.

//250-300 Лк для работы с бумагами.

Нормирование естественного освещения.

t = 6, 9, 12 ч.

Е вн, Е снаружи - параболы ветвями вниз, максимум около t = 12 ч.

е = Е вн / Е снаружи * 100%; - КЕО (коэффициент естественной освещенности)

Для бокового освещения нормируется e_min (e_min => величина окна в строящемся здании).

Для комбинированного нормируется е_ср.

KEO = e * m * n; - с учетом направления (m - сторона света в которую смотрит окно (1.1 - 1.3), n - световой пояс (1.1 - 1.3))

- CuOx и пр. - ОЗ (в приземном слое почти нет) - всякие аэрозоли пар, газ воздух твердые частицы или жидкие частицы + воздух = аэрозоль Аэрозоли: - пыль 1) крупной дисперсности (> 50 микрон) 2) средней частицы (10 - 50 микрон) 3) мелкодисперсные (< 10 микрон) - дым (твердые частицы (< 1 микрон)) - туман (жидкие частицы (< 10 микрон) + воздух) Деление веществ на группы по направленности: - общетоксического действия [О] - ядораздражающие [P] (I, Br, пары кислот) - фибурагенные (кремниевая пыль) воздействие на легкие - канцерогенного действия [К] - аллергического действия [A] (постепенное действие Ni, Cu..) - мутагенного действия [М] - тератогенные [К] (воздействие на плод) Комбинированное действие ядов. В - воздействие, Д - действие

1) Независимое действие (SiO2, Cu)

2) однонаправленного действия (СО, СхНу, С2Н5ОН)

$$A + A = B + B = B$$

Требования: C1/ПДК1 + C2/ПДК2 + ... + Cn/ПДКn <= 1

3) одно вещество усиливает действие другого (синергизм)

4) одно вещество уменьшает действие другого

Пути поступления организм:

- ингаляционный (до 80% веществ попадает таким образом). Опасно так как печень и почки фильтруют уже после поступления в кровь.
- через кожу (очень мало и редко 3-5%)

Пути выведения:

- непосредственный (вдох => выдох)
- через желудочно-кишечный тракт
- депонирование (выход после откладывание в костях) (Pb, Hg, Mg, Mn, P)

Группы ядов:

- промышленные яды
- ядохимикаты (пестициды)
- лекарственные средства
- бытовая химия

- растительные яды
- боевые вещества (зарин)

Нормирование токсических веществ.

I. В рабоче зоне нормируется ПДК [мг/м^3].

ПДК - такая максимальная концентрация, которая, воздействуя 40 лет ежедневно по 8 часов, (41 час в неделю) не вызовет изменения состояния здоровья у настоящего живущего поколения.

Все вещества делятся на 4 класса опасности:

1 класс ПДК < $0.1 \,\text{мг/м}^3$ - чрезвычайно опасные (Pb, Be)

2 класс ПДК ~ (0.1 - 1) мг/м^3 - высокоопасные (CI)

3 класс ПДК < 10 мг/м^3 - умеренно опасные (кремниевая пыль)

4 класс ПДК > 10 мг/м 3 - малоопасные (спирты)

II. В окружающей среде нормируется 2 величины.

ПДК_среднесуточная - такая максимальная концентрация, которая, воздействуя постоянно или периодически 40 лет ежедневно по 8 часов, (41 час в неделю) не вызовет изменения состояния здоровья у настоящего и будущих живущего поколения, определяемая современными метода медицинского обследования.

ПДК_{максимально разовая} (ограничивает рефлекторное действие на организм).

ПДК {максимально разовая} > ПДК среднесуточная для большинства веществ.

Если ПДК_{максимально разовая} < ПДК_среднесуточная, то ПДК_{максимально разовая} = ПДК_среднесуточная. (рефлекторное действие начинается раньше чем отравляющее).

Для веществ вновь синтезированных назначается ОБУВ (ориентировочный безопасный уровень вещества) [$M\Gamma/M^3$]. Это делается на полгода (за это время узнают его ПДК).

Пути оздоровления воздухорабочей зоны и окружающей среды.

1)
2) локализация выбросов его очистка и возврат (3-4 класс опасности)
3) локализация в месте их образование и рассеивание в атмосферу
4) очистка технологических газов и рассеивание их в атмосфере
5)
Требования к системе вентиляции.
1) L_вытяжки = L_притока (приблизительно)
2) Вентиляция не должна создавать шума
3) Подача воздуха в чистую зону, вытяжка из грязной (большинство грязных веществ легкие)
4) Вентиляция не должна создавать сквозняков
Виды систем вентиляции:
1) механическая
а) общая
- приточная
- вытяжная
- приточно-вытяжная
б) местная
- приточная
- вытяжная
в) комбинированная
- общая и местная

Схема в старых лекциях и условие (стр. 10). Там же условие поступления воздуха.

Общие системы вентиляции.

Расчет общих и местных систем вентиляции.

1.

L_притока, L_вытяжки

С притока <= 0.3 ПДК

С_вытяжки = ПДК (как минимум)

L притока * С притока + С = L вытяжки * С вытяжки

Учитывая соотношения выше:

L вытяжки = C/(0.7 * ПДК)

2. Q [Дж/час] - тепло поступает в помещение

 $L_{\rm Bытяжки} = Q / (p_{\rm притока} * K_{\rm притока} * (t_{\rm Bытяжки} - t_{\rm притока})) ; - K_{\rm притока} - t_{\rm притока}$

3. G_влаги [г/час] - поступает влага

 $L_вытяжки = G_влаги / (р_притока * (d_вытяжки - d_притока))$

Если несколько веществ, то считают потребный воздухообмен отдельно для каждого и берут наибольший.

Если в воздух выделяются вещества направленного действия - то суммируется от каждого.

С 1, С 2, С 3 - однонаправленный

 L_1B , L_2B , L_3B L_8 ытяжки = $L_1B + L_2B + L_3B$

Потом определяются с воздуховодами (размеры, углы).

Дальше находят сечение.

```
L_B = v * s * 3600

v = 8 - 10 \text{ m/c}

s = L_B / (v * 3600)
```

deltaP = Summ_i_n(deltaPi) + Summ_i_n(deltaPi_местное)

на mhts.ru сборники типовых расчетов по охране труда для факультета П, АМ. Лекция от 08.04.2010.

Местные системы вентиляции.

Приточные системы вентиляции:

1) воздушное душирование $E = 350 \ BT/m^2$ - воздушное душирование $E > 110 \ BT/m^2$ - водно-воздушное душирование

THC = 0.3 * Т_мокрого + 0.7 * Т_шарового; - температурная нагрузка среды

- 2) тепловые затворы (п_открытия > 10 раз/час, то обязателен тепловой затвор)
- 3) воздушные оазисы (аэрозольные)

Местные вытяжные системы вентиляции.

$$L_B = v * S * 3600 [m^3/ч];$$
 - потребный воздухообмен
//v = 1.5 и 2 (1 и 2 классы опасности соответственно)
//v = 0.5 и 1.5 (3 и 4 классы опасности соответственно)

Виды местных систем вентиляции:
1) панель Бережковского
2) вытяжной шкаф
3) бытовые отсосы
Системы кондиционирования.
Общего и местного кондиционирования.
Местные бывают полного (следят за всеми параметрами) и неполного
кондиционирования (следят в основном только за температурой, иногда за влажностью)
Естественная вентиляция.
Бывает 2-х видов:
1) инфильтрация (нерассчитываемая вентиляция)
2) аэрация (рассчитываемая вентиляция) применяется в цехах. Она рассчитывается исходя из теплового (зимой эффективен) и ветрового напора (летом эффективен).
Тепловой напор:
Воздух в цехе с середины высоты идет к полу, а затем к крыше (незадуваемый фонарь). deltaP = g*h*(p_снаружи - p_внутри). //Только за счет разности плотности.
Ветровой напор:
Воздух в цехе с низу цеха идет к крыше, а затем к крыше (незадуваемый фонарь). deltaP = c_aэрации*v_2/2*p.
Дефлектор.
Системы очистки воздуха.
Показатели аппаратов:
1) КПД = с_вх - с_вых/с_вх (0.98-0.99)
КПД_сумм = 1 - (1-КПД_сумм1)*(1-КПД_сумм2)*(1-КПД_сумм3)*

2) Коэффициент проскока = 1 - КПД = с_вых/с_вх
3) Потеря давления deltaP = P_вх - P_вых = лsi * v * p / 2
4) Время работы между 2-мя регенерациями tau_регенерации от deltaP_нач до deltaP_конца -> max
5) Тонкость очистки (от аэрозолей). Минимальный размер частиц, улавливающихся фильтром.
- номинальная (d_частиц на 90% очищаются фильтром)
- абсолютная (d_частиц на 100% очищаются фильтром)
- среднемерная (d_min на 50% очищаются фильтром)
Виды методов очистки:
1) сухая
2) мокрая
3) электрическая
4) фильтрацией
5) физико-химическая очистка (абсорбция, адсорбция, хемосорбция, каталитическое дожигание)
1-4 - от аэрозолей
5 - от паров газов
Аппараты сухой очистки.
20-30 микрон.
Пылеуловитель (жалюзи)
кпд∼0.8
Аппараты мокрой очистки.
3 типа осаждения:

1) частиц на каплях (скрубберы)
2) внутри пузырей в вводе (барбатажно-пенные)
3) на поверхности жидкости (мокрые циклоны)
1) воздух снизу вверх через пористую насадку и потом смачивается каплями воды. КПД 0.95-0.97
d_частиц 10-20 микрон
2) воздух снизу вверх через пористую насадку и потом смачивается водой (образуется слой воды над пористой насадкой). очень большая поверхность осаждения. КПД \sim 0.98-0.99. Но возможен срыв пленки воды если большой поток воздуха.
d_частиц 10-20 микрон
Лекция от 16.04.2010.
Электрозащита.
Электрозащитные средства.
Электрозащитные средства. 1) изолирующие
1) изолирующие
1) изолирующие - основные (рассчитано обычно на U = 380 B)
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи изолирующие рукоятки
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи изолирующие рукоятки дополнительные (все что увеличивает сопротивление)
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи изолирующие рукоятки дополнительные (все что увеличивает сопротивление) коврики
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи изолирующие рукоятки дополнительные (все что увеличивает сопротивление) коврики резиновые рукавицы
 изолирующие основные (рассчитано обычно на U = 380 B) диэлектрические перчатки изолирующие клещи изолирующие рукоятки дополнительные (все что увеличивает сопротивление) коврики резиновые рукавицы обувь изолирующая, но не выдерживающее напряжение

применяются сигнализации о том с какими проводами имеем дело.
Фазы (А-С):
А (красный)
В (зеленый)
С (желтый)
Н (белый - изолированный нейтральный, черный - изолированный нейтральный)
Используются блокировочные устройства (отключает участок сети)
Защита от статического электричества.
Нормирование.
При работе целый рабочий день.
E_{1 час} = 60 кВ/м
E_{доп} = 60 / sqrt(t) кВ/м
Санитарными нормами тоже нормируется, но цифры лектор нам не рассказал.
Зашита идет 2-мя путями.
1) уменьшение генерации
- применение материалов от которых не накапливается статика.

Трибоэлектрический ряд.

Эпилцеллюлоза - казеин - эбонит - ацетилцеллюлоза - стекло - металлы - полистирол - полиэтилен - фторопласт

- увеличение влажности среды
- уменьшение скорости (производительности)
- очистка жидкостей (чтобы уменьшить трение о трубопровод)
- 2) ликвидация зарядов
 - заземление (R_з < 100 Oм)
 - увеличение электропроводности материалов (амины, и др. присадки)
 - повышение электропроводности окружающей среды
 - применение нейтрализаторов (используют ЭМИ, alpha-излучение)

Кактусы - индукционные нейтрализаторы.

Молниезащита.

Есть 3 категории молниезащиты.

Виды Молниезащиты:

- одиночно-стержневой
- двукратно-стержневая
- многократный стержневой
- тросовая

зона А - 97.5%

зона В - 95%

h - высота громоотвода

h_0 - высота защитного конуса

r_0 - радиус защитного конуса

Зона А:

$$h_0 = 0.92*h$$

$$r 0 = 1.5*h$$

Зона В:

$$r_0 = 1.5*(h - h_x) / 0.92$$

Очистка сточных вод.

Очистка промышленных сточных вод.

Категории сточных вод:

- 1) чистые сточные воды (50 80%)
- 2) сточные воды, загрязненные маслами и твердыми веществами
- 3) сточные воды, загрязненные кислотами, щелочами, солями металлов и др. растворенными веществами
- 4) концентрированные сточные воды (смазочно-охлаждающая жидкость, воды загрязненные эмульсиями)
- 5) с пылью из аппаратов очистки воздуха
- 6) поверхностные сточные воды (большое количество токсичных примесей), бытовые сточные воды

Схемы водоснабжения промышленного предприятия.

- 1) прямоточные (вода забирается из озера насосом -> фильтр -> техпроцесс -> очистка -> слив) неэкономичная схема
- 2) прямоточные с последовательным циклом (вода забирается из озера насосом -> фильтр -> техпроцесс -> ... -> техпроцесс -> слив)
- 3) оборотные система водоснабжения (вода забирается из озера насосом -> фильтр -> техпроцесс -> ... -> техпроцесс -> очистка -> техпроцесс) Иногда слив.

Нормирование качества воды в водоемах.

Виды водоемов:

- 1) питьевого и культурно-бытового водоснабжения.
- вид и концентрация веществ (частиц)
- минеральный состав
- количество, состав и геометрические размеры плавающих примесей. (пресные 7-10 мг/л)
- запах
- привкус, окраска
- pH = log(alpha_H(H+)) для разбавленных вод alpha = 1 для нейтральных вод (OH)- + H+ = 10^13.34 ph = 6.67 - нейтральная ph < 6.67 - кислая

ph > 6.67 - щелочная

- биологическая потребность в кислороде (БПК) БПК_5 = 30 мг/л за 5 дней окислить все биологические примеси
- химическая потребность в кислороде (ХПК) ХПК_5 = 20 мг/л за 30 дней все окислить токсичных примесей
- концентрация примесей
- вид и концентрация болезнетворных бактерий
- температура

Кратность разбавления (n).

С_сброса <= С_{до сброса} + n*С_ПДК

Сбор данных для анализа:

- если река - через 1 км после сброса анализ

- если озеро - через 1 км по радиусу Лекция от 22.04.2010. Очистка сточных вод. Методы похожи на методы очистки воздуха. Как правило вода имеет комплексное загрязнение. Очистка сточных вод. 1) механическая (первая ступень) - нефтепродукты - твердые частицы различной тонкости 2) физико-химическая очистка (от растворенных веществ) (вторая ступень) - нейтрализация - сорбция (адсорбция) - экстратация - выпаривание - электрохимические методы очистки (Cr, цианиды, металлы и пр.) 3) биологическая очистка (третья ступень) - от органических примесей -> 1 -> 2 -> 3

Иногда если сильно загрязнено, то очищают от чего-либо конкретного, а потом очищают от всего остального.

Аппараты механической очистки.

- аэрируемая эскалофка (воздух забирает мелкие частицы, а крупные опускаются вниз + наверху скребковый механизм) (d_частиц = 20 - 30 микрон). Это предварительная очистка

- циклон (воздух подается сверху, а внизу вода на очистку. Сверху выходит очищенная вода, а частицы опускаются вниз под действием силы тяжести с небольшим количеством воды.)
- обычные решетки (решетка + скребок на решетках или ножи на решетках)
- фильтры
- а) насыпные (песок от нефтепродуктов и аэрозолей). Псевдосжиженные слои лучше (когда песок, например, насыпан не полностью в фильтрующий элемент) (d_частиц = 10 20 микрон, хорошие фильтры могут даже < 10 микрон)
 - б) микрофильры (d_частиц < 10 микрон даже до 1-2 микрон). Но снижают давление.

Очистка от нефтепродуктов.

- сбор сверху, отстаивание
- флотация
- а) напорная (из емкости подается вода с нефтью на очистку. По пути добавляется сжатый воздух. Далее поступает в сатуратор (большой сифон), там вода обогащается углекислотой. Потом смесь подается в ванную через пористые насадки, в которой нефть интенсивно всплывает на поверхность. Там она собирается скребками. Дальше можно подавать на фильтр для более тщательной фильтрации. Фильтры: песок, даламит, полиуретан (очень хорошо регенерируется)).
 - б) пенная
 - в) химическая
 - г) электрическая

Очистка сточных вод.

- а) физико-химическая
- Сорбция (вода поступает в ванну. Там частицы адсорбента, в ванной специальная мешалка (имперелер). Далее поступает в отстойник, адсорбент подается назад. Вода идет на следующую ступень очистки. c = (Q_c0 m_aдсорбента) / Q; концентрация загрязняющих веществ после очистки.)
- Ионитные смолы (1-ая стадия [K]H + Fe+ -> [K]Fe + H+ (можно с любым металлом) [K] катеонитный скелет

- Осаждение. Используется известковый молоточек (CaO).

- Экстратация. Фенолы очень трудно извлечь из воды. 2 жидкости разных плотностей, в одной из них фенолы растворяются лучше (она используется для очистки), в другой хуже. И при пропускании одного через другое во второй жидкости растворяется больше фенола. Используется 4-х хлористый водород.
- б) биологическая
 - сверху подается вода

2-ую часть лекции не писал.