§3. Операция умножения вектора на число и её свойства

Определение 3.1. *Произведением* вектора \vec{a} на вещественное число λ называется вектор \vec{b} , определяемый следующими тремя условиями:

- 1) $|\vec{b}| = |\lambda| \cdot |\vec{a}|$;
- 2) вектор \vec{b} коллинеарен вектору \vec{a} ;
- 3) векторы \vec{a} и \vec{b} одинаково направлены, если $\lambda>0$, и противонаправлены, если $\lambda<0$.

Для введённой операции применяется обозначение: $\lambda \vec{a}$, т.е. $\vec{b} = \lambda \vec{a}$. При $\vec{a} = \vec{0}$ или $\lambda = 0$ из условия 1 следует $|\lambda \vec{a}| = 0$, т.е. $\lambda \vec{a} = \vec{0}$.

При $\lambda = \frac{1}{|\vec{a}|}$ получаем вектор $\vec{b} = \frac{\vec{a}}{|\vec{a}|} = \vec{a}_0 - \text{орт}$ вектора \vec{a} , при $\lambda = -1$ – противоположный вектор $(-\vec{a}) = (-1) \cdot \vec{a}$.

Теорема 3.1 (*свойство коллинеарных векторов*). Для того чтобы два ненулевых вектора \vec{a} и \vec{b} были коллинеарны, необходимо и достаточно, чтобы выполнялось равенство

$$\vec{b} = \lambda \vec{a} \tag{3.1}$$

при некотором вещественном λ .

►Пусть \vec{a} и \vec{b} коллинеарны. Положим $\lambda = \pm |\vec{b}|/|\vec{a}|$, причем выберем знак "+", если \vec{a} и \vec{b} сонаправлены ($\vec{a} \uparrow \uparrow \vec{b}$) и "–", если \vec{a} и \vec{b} противонаправлены ($\vec{a} \uparrow \downarrow \vec{b}$). Тогда $\vec{b} = \lambda \vec{a}$ по определению 3.1.

Предположим теперь, что равенство (3.1) справедливо для векторов \vec{a} и \vec{b} при некотором действительном λ . Тогда коллинеарность векторов \vec{a} и \vec{b} следует из определения 3.1.

Замечание 3.1. Число λ в равенстве (3.1) определяется единственным образом.

Свойства операции умножения вектора на число

- **1.** $1 \cdot \vec{a} = \vec{a}$;
- **2.** $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$ (свойство ассоциативности относительного скалярного множителя);
- **3.** $(\lambda + \mu)\vec{a} = \lambda\vec{a} + \mu\vec{a}$ (свойство дистрибутивности умножения вектора на сумму вещественных чисел);
- **4.** $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ (свойство дистрибутивности умножения вещественного числа на сумму векторов).
- ► Свойство 1 непосредственно следует из определения произведения вектора на число.

Свойство 2 очевидно, если $\lambda = 0$, или $\mu = 0$, или $\vec{a} = \vec{0}$. Поэтому его необходимо доказывать только при условии $\lambda \neq 0$, $\mu \neq 0$, $\vec{a} \neq \vec{0}$. Для доказательства заметим, что векторы $\lambda(\mu\vec{a})$ и $(\lambda\mu)\vec{a}$ коллинеарны и имеют одинаковую длину $|\lambda||\mu||\vec{a}|$ (определение 3.1). При этом они одинаково направлены с вектором \vec{a} , если числа λ

и μ имеют одинаковые знаки, и противонаправлены, если знаки λ и μ – разные. Итак, в любом случае $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$ по определению равных векторов (определение 1.2).

Доказательства свойств 3 и 4 приведены, например, в [3]. ◀

Замечание 3.2. Операции сложения векторов и умножения вектора на число называются линейными операциями над векторами.

Пример 3.1. Показать, что середины сторон произвольного четырехугольника являются вершинами параллелограмма.

Рис. 3.1. Иллюстрация к примеру 3.1

▶Обозначим середины сторон четырехугольника ABCD буквами E, F, G, H (рис. 3.1). Тогда для вектора \overrightarrow{EF} имеем равенство:

$$\overrightarrow{EF} = \overrightarrow{EB} + \overrightarrow{BF} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}).$$

Аналогично

$$\overrightarrow{HG} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{DC}) = -\frac{1}{2}(\overrightarrow{CD} + \overrightarrow{DA}).$$

Так как $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$, то, очевидно, $\overrightarrow{EF} - \overrightarrow{HG} = \overrightarrow{0}$, т.е. $\overrightarrow{EF} = \overrightarrow{HG}$. Последнее равенство означает равенство длин и параллельность двух

противолежащих сторон четырехугольника EFGH. Следовательно, как известно из планиметрии, он является параллелограммом. \blacktriangleleft