

Collaborative Filtering

Sebastian Schelter | Database Group, TU Berlin | Scalable Data Science: Systems and Methods

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Recommendation Mining

= help users find items they might like

<

MINIONS Trailer 2 German Deutsch (2015)

Up next

DIE PINGUINE AUS MADAGASCAR | Trailer & Filmclip [HD] by vipmagazin

BAYMAX - RIESIGES ROBOWABOHU | Trailer & Filmclips [HD]

2,810,764 views

DIE MINIONS Trailer & Filmclips Deutsch German (2015) by Moviepilot Trailer 13,958,055 views

Content-based Filtering

- recommendations based on content of the items
 - requires to categorize and define items and their attributes
 - requires extensive domain knowledge
 - hard to get right
 - rarely used in practice

Collaborative Filtering

- idea: the past predicts the future
 - → all recommendations are derived from historical data (the interactions we observed)
- main advantage: completely content agnostic
- very popular (e.g. used by Amazon, Google News, ...)
- users interact with items (books, videos, news, other users,...)
- interactions of each user towards a small subset of the items known (numeric or boolean)
- two types of interaction data
 - explicit feedback: users explicitly express their preferences (e.g., movie ratings),
 problems: rare + highly biased
 - implicit feedback: certain interactions with items interpreted as expression of preference (e.g., viewing a product page), problems: no negative feedback

Terminology

- algorithmic problems
 - rating prediction: estimate the preference of a user towards an item he/she does not know
 - item recommendation: Find the top items which a user might like best
- mathematical approach
 - create interaction matrix (from users to items) from observed interaction data
 - rating prediction: predict missing entries from patterns found in the observed entries
 - item recommendation: find top unknown items for a users from from patterns found in the observed entries

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Rating Prediction Example

Alice

Bob

Peter

5	1	4
?	2	3
4	3	2

Item-Based Collaborative Filtering

- algorithm
 - neighbourhood-based approach
 - works by computing an item similarity marix S
 from similarly rated items in the interaction matrix
 - estimates a user's preference towards an item
 by looking at his/her preferences towards similar items

highly scalable

- item similarities tend to be relatively static, can be precomputed offline periodically
- less items than users in most scenarios
- · looking at a small number of similar items is sufficient

- similarity of "The Matrix" and "Inception"
 - rating vector of "The Matrix": (5,-,4)
 - rating vector of "Inception": (4,5,2)
- pick a similarity measure to compute a similarity value between -1 and 1
- e.g., pearson-correlation of co-occurred ratings

5	4
?	3
4	2

$$corr(i,j) = \frac{\sum_{users\,u} (R_{u,i} - \overline{R}_i)(R_{u,j} - \overline{R}_j)}{\sqrt{\sum_{users\,u} (R_{u,i} - \overline{R}_i)^2} \sqrt{\sum_{users\,u} (R_{u,j} - \overline{R}_j)^2}}$$

5	4
?	3
4	2

$$corr(i,j) = \frac{\sum_{users\,u} (R_{u,i} - \overline{R}_i)(R_{u,j} - \overline{R}_j)}{\sqrt{\sum_{users\,u} (R_{u,i} - \overline{R}_i)^2} \sqrt{\sum_{users\,u} (R_{u,j} - \overline{R}_j)^2}}$$

5	4
?	5
4	2

$$corr\left(i,j\right) = \frac{\sum\limits_{users\,u} \left(R_{u,i} - \overline{R}_i\right) \left(R_{u,j} - \overline{R}_j\right)}{\sqrt{\sum\limits_{users\,u} \left(R_{u,i} - \overline{R}_i\right)^2} \sqrt{\sum\limits_{users\,u} \left(R_{u,j} - \overline{R}_j\right)^2}}$$

0.5	1
-0.5	-1

$$corr(i,j) = \frac{\sum_{users\,u} (R_{u,i} - \overline{R}_i)(R_{u,j} - \overline{R}_j)}{\sqrt{\sum_{users\,u} (R_{u,i} - \overline{R}_i)^2} \sqrt{\sum_{users\,u} (R_{u,j} - \overline{R}_j)^2}}$$

$$S_{\textit{TheMatrix}, \textit{Inception}} = \frac{0.5 * 1 + (-0.5) * (-1)}{\sqrt{0.5^2 + (-0.5)^2} \sqrt{1^2 + (-1)^2}} = 1$$

0.5	1
-0.5	-1

Item Similarity Matrix Example

-	-1	1
-1	-	-1
1	-1	-

Prediction Example

- estimate Bob's rating for "The Matrix"
 - · look at all items that
 - a) are similar to "The Matrix"
 - b) have been rated by Bob
 - → "Alien", "Inception"
 - estimate the unknown preference with a weighted sum

$$\hat{R}_{Bob,TheMatrix} = \frac{S_{TheMatrix,Alien} * R_{Bob,Alien} + S_{TheMatrix,Inception} * R_{Bob,Inception}}{|S_{TheMatrix,Alien}| + |S_{TheMatrix,Inception}|} = \frac{-1 * 2 + 1 * 3}{2} = 0.5$$

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Towards Scalable Item-Based Collaborative Filtering

- start with a simplified view: binary user item matrix R holds interactions between users and items
- → we look at co-occurrences only
- scaling of the item-based approach reduces to finding an efficient way to compute the item similarity matrix

$$S = R^T R$$

Parallelizing $S = R^TR$

standard approach of computing item cooccurrences requires random access
 to both users and items → not efficiently parallelizable on partitioned data

foreach item iforeach user u who interacted with iforeach item j that u also interacted with S_{ij} += 1

row outer product formulation of matrix multiplication is efficiently parallelizable on a row-partitioned A

$$S = R^{T} R = \sum_{u=1}^{|U|} R(u,:) R(u,:)^{T}$$

• mappers compute the outer products of rows of R, emit the results row-wise, reducers sum these up to form S

Parallel Similarity Computation

- real datasets not binary, algorithm computes dot products then,
 but we want to use a variety of similarity measures, e.g. Pearson correlation
- express similarity measures by 3 canonical functions
 - · preprocess adjusts an item rating vector

$$\hat{i} = preprocess(i)$$
 $\hat{j} = preprocess(j)$

• **norm** computes a single number from the adjusted vector

$$n_i = norm(\hat{i})$$
 $n_i = norm(\hat{j})$

• **similarity** computes the similarity of two vectors from their norms and their dot product $S_{ii} = similarity(\hat{i}^T\hat{j}, n_i, n_i)$

Example: Jaccard coefficient

· preprocess binarizes the interaction vectors

$$i = \begin{bmatrix} 3 \\ n/a \\ 5 \end{bmatrix} \qquad j = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix} \qquad \hat{i} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

· norm computes the number of users that interacted with each item

$$n_i = ||\hat{i}||_1 = 2$$
 $n_j = ||\hat{j}||_1 = 3$

• similarity computes the jaccard coefficient from the norms and the dot product of the vectors

$$jaccard(i,j) = \frac{|i \cap j|}{|i \cup j|} = \frac{\hat{i}^T \hat{j}}{n_i + n_j - \hat{i}^T \hat{j}} = \frac{2}{2 + 3 - 2} = \frac{2}{3}$$

Similarities with MapReduce – Pass 1

- data partitioned by items (row-partitioned R^T)
- invokes preprocess and norm for each item vector
- transposes input to form R

Similarities with MapReduce – Pass 2

- data partitioned by users (row-partitioned R)
- · computes dot products of columns
- loads norms and invokes similarity
- several optimizations possible (sparsification, exploit symmetry and thresholds)

Cost of the algorithm

- k-nearest neighbors is a problem with quadratic worst case complexity
- major cost in our algorithm is the communication in the second MapReduce pass:
 - for each user, we have to process the square of the number of her interactions

$$S = R^{T} R = \sum_{u=1}^{|U|} R(u,:) R(u,:)^{T}$$

 cost is dominated by the users with the highest number of interactions (the densest rows of R)

Distribution of the number of interactions per user

- distribution of number of interactions per user is usually heavy tailed
 - → small number of power users with an unproportionally high amount of interactions drastically increase the runtime

Selective down-sampling: the interaction-cut

- if a user has **more than p interactions**, only use a **random sample of size p** of his interactions
- saw **negligible effect on prediction quality** for moderate p

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Drawbacks of Neighborhood methods

- every co-rated item is looked at in isolation, say a movie was similar to "Lord of the Rings", do we want each part to of the trilogy to contribute as a single similar item?
- leaning towards quadratic complexity

Latent factor models

- idea: interactions are deeply influenced by a set of **factors** that are very **specific to the domain** (e.g., amount of action in movies, complexity of characters)
- these factors are in general **not obvious**, we might be able to think of some of them but it's hard to estimate their impact on the ratings
- the goal is to infer those so called latent factors from the rating data using mathematical techniques

Approach

users and items are characterized by latent factors, each user
 and item is mapped onto a joint latent feature space

 $u_i, m_j \in \mathbb{R}^f$

 each observed rating is approximated by the dot product of the user feature vector and the item feature vector

 $r_{ij} \approx u_i^T m_i$

- prediction of unknown ratings also uses this dot product
- squared error as a measure of loss

$$(r_{ij}-u_i^Tm_i)^2$$

Approach

- decomposition of the interaction matrix into the product of a user feature and an item feature matrix
 - row in U: vector of a user's affinity to the features
 - row in M: vector of an item's relation to the features
- closely related to Singular Value Decomposition which produces an optimal low-rank optimization of a matrix

R ≈ U

Understanding the decomposition

- properties of the decomposition
 - automatically ranks features by their "impact" on the ratings
 - features might not necessarily be intuitively understandable

Latent factor models

- problematic situation with explicit feedback data
 - the rating matrix is not only sparse, but partially defined
 - missing entries cannot be interpreted as 0 they are just unknown standard decomposition algorithms like Lanczos method for SVD are not applicable
- solution
 - decomposition has to be done using the observed parts of the matrix only
 - · find user and item feature matrices that minimize the squared error to the observed ratings
 - regularization added due to huge number of parameters in the model

$$argmin_{U,M} \sum_{r_{ii} \ observed} (r_{ij} - u_i^T \ m_j)^2 + \lambda (||u_i||^2 + ||m_j||^2)$$

Gradient Descent Methods

- learn model parameters p that minimize a differentiable error function E(p)
- idea: iteratively take steps into the negative direction of E's gradient

$$p^{(t+1)} = p^{(t)} - \eta \nabla E(p^{(t)})$$

- drawback: single parameter update requires a full pass through the dataset
- faster online version possible, if error function is comprised of a sum of error terms for independent observations $E(p) = \sum_{i} E_{i}(p)$
- Stochastic Gradient Descent (SGD)
 - update model parameters based on a single observation at a time

$$p^{(t+1)} = p^{(t)} - \eta \nabla E_i(p^{(t)})$$

Learning latent factor models with SGD

 error function comprised of a sum of error terms for independent observations

$$E = \frac{1}{2} \sum_{r_{ii} \text{ observed}} (r_{ij} - u_i^T m_j)^2 + \lambda (||u_i||^2 + ||m_j||^2)$$

error term for independent observation

$$E_{i} = \frac{1}{2} [(r_{ij} - u_{i}^{T} m_{j})^{2} + \lambda (||u_{i}||^{2} + ||m_{j}||^{2})]$$

partial derivatives

$$\frac{\partial E_{i}}{\partial u_{i}} = \frac{1}{2} [2(r_{ij} - u_{i}^{T} m_{j})(-m_{j}) + 2 \lambda u_{i}] = (r_{ij} - u_{i}^{T} m_{j})(-m_{j}) + \lambda u_{i}$$

$$\frac{\partial E_{i}}{\partial m_{i}} = \frac{1}{2} [2(r_{ij} - u_{i}^{T} m_{j})(-u_{i}) + 2 \lambda m_{j}] = (r_{ij} - u_{i}^{T} m_{j})(-u_{i}) + \lambda m_{j}$$

Algorithm for learning latent factor models with SGD

- · sample a random interaction from the interaction matrix
- compute the prediction error e_{ii}

$$e_{ij} = (r_{ij} - u_i^T m_j)$$

• update model parameters into the opposite direction of the gradient

$$u_{i} \leftarrow u_{i} - \eta [(r_{ij} - u_{i}^{T} m_{j})(-m_{j}) + \lambda u_{i}] = u_{i} + \eta (e_{ij} m_{j} - \lambda u_{i})$$

$$m_{j} \leftarrow m_{j} - \eta [(r_{ij} - u_{i}^{T} m_{j})(-u_{i}) + \lambda m_{j}] = m_{j} + \eta (e_{ij} u_{i} - \lambda m_{j})$$

- · repeat until convergence
- problem: algorithm inherently sequential in its standard formulation
- recent research shows massive parallelization potential (Hogwild!)

Learning latent factor models with Alternating Least Squares (ALS)

- ALS algorithm
 - (1) randomly initialize M
 - (2) fix *M*, solve for *U* by minimizing the objective function
 - (3) fix *U*, solve for *M* by minimizing the objective function
 - (4) repeat steps 2 and 3 until convergence

$$argmin_{U,M} \sum_{r_{ij} observed} (r_{ij} - u_i^T m_j)^2 + \lambda (||u_i||^2 + ||m_j||^2)$$

• each row u_i of U in step 2, as well as each row m_j of M in step 3 can be re-computed by solving a regularized linear least squares problem

Deriving the updates for ALS

how do we solve for u_i in step 2 ?

$$E_i = (r_{ij} - u_i^T m_j)^2 + \lambda (||u_i||^2 + ||m_j||^2)$$

$$\frac{\partial E_i}{\partial u_{ki}} = 0 \qquad \forall i, k$$

$$\sum_{i \in I_i} (u_i^T m_j - r_{ij}) + m_{kj} + \lambda u_{ki} = 0 \qquad \forall i, k$$

$$\sum_{i \in I} (m_{kj} m_j^T u_i) + \lambda u_{ki} = \sum_{i \in I} m_{kj} r_{ij} \qquad \forall i, k$$

$$(M_{I_i}M_{I_i}^T + \lambda E)u_i = M_{I_i}R^T(i,I_i) \qquad \forall i$$

$$u_i = (M_{I_i} M_{I_i}^T + \lambda E)^{-1} M_{I_i} R^T (i, I_i) \qquad \forall i$$

 I_i all items with which user i interacted

 M_{I_i} submatrix of M with columns $j \in I_i$

 $R(i, I_i)$ *i*-th row vector of M where columns $j \in I_i$ are taken

Algorithm for learning latent factor models with ALS

- randomly initialize M
- for all rows u_i of U do in parallel $u_i \leftarrow (M_{I_i} M_{I_i}^T + \lambda E)^{-1} M_{I_i} R^T (i, I_i)$
- for all rows m_j of M do in parallel $m_j \leftarrow (U_{I_i} U_{I_i}^T + \lambda E)^{-1} U_{I_i} R(j, I_j)$
- repeat until convergence
- massive parallelization potential

Scalability of ALS

- properties that allow for parallelization
 - all the feature vectors in one step can be re-computed independently of each other
 - only a small part of the data necessary to re-compute a feature vector
- easy to implement in parallel dataflow system
 - one re-computation step of the algorithm translates into a join followed by reduce operation

Incorporating rating biases

- problem: explicit feedback data is highly biased
 - some users tend to rate more extreme than others
 - some items tend to get higher ratings than others
- solution: explicitly model biases
 - the bias of a rating is modeled as a combination of the average rating μ , the user bias b_i and the item bias b_i

$$b_{ij} = \mu + b_i + b_j$$

rating bias is incorporated into prediction

$$\hat{r}_{ij} = \mu + b_i + b_j + u_i^T m_j$$

Handling implicit feedback data

- interaction data produced by implicit feedback is very different from what explicit feedback produces!
- e.g., counting the number of views of a product page in an online shop
- resulting interaction matrix
 - the whole matrix is defined (no missing entries),
 interactions that did not happen produce zero values
 - lack of negative feedback
 - but: little confidence in zero values (maybe users never had the chance to view these pages)
- using standard decomposition techniques like SVD would give us a decomposition that treats all entries equally, not applicable

Weighted Matrix Factorization

- model tailored towards implicit feedback data
- create binary preference matrix P
- each entry in this matrix is weighted by a confidence function c(i,j)
 - · zero values should get low confidence
 - values based on a lot of interactions should get high confidence

$$p_{ij}=1$$
 if $r_{ij}>0$
 $p_{ij}=0$ otherwise

$$c(i,j)=1+\alpha r_{ij}$$

- confidence is incorporated into the model
 - the factorization is biased towards more confident values

$$argmin_{U,M} \sum_{ij \in R} c(i,j) (p_{ij} - u_i^T m_j)^2 + \lambda (||u_i||^2 + ||m_j||^2)$$

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- Latent Factor Models
- Open Problems in Recommender Research
- Summary

Rating Prediction

- most research focuses on rating prediction, due to popularity of Netflix prize
- most real-world setting don't have explicit rating data, but implicit feedback!
- rating prediction treats all rated items as equally important
 - in real-world settings getting the top items right is crucial

Feedback Loops

- most research happens on static interaction datasets
- real recommenders have a feedback loop though
 - the recommendations they give influence the interaction data they will see in the future
- impossible to mimick this effect in an offline setting
- researching this effect requires real-world recommender system
- makes it hard to assess quality of a recommender in an offline setting with cross-validation

Privacy

Overview

- Recommendation Mining
- Neighborhood Methods
 - Scalable Computation with MapReduce
- · Latent Factor Models
- Open Problems in Recommender Research
- Summary

Summary

collaborative filtering

 past predicts the future: derive recommendations from patterns found in observed user-item interactions

neighborhood methods

- compute interaction similarity between users or items
- · simple, nearest neighbor-based approach
- detect local patterns rather than global patterns
- hard to scale due to quadratic nature of the problem

latent factor models

- project users and items onto joint latent feature space
- matrix factorizations, learnable with SGD and ALS
- many customizations (modeling biases, implicit feedback)
- detect global rather than local patterns

Further Reading

- Linden, G., Smith, B., & York, J. (2003). *Amazon. com recommendations: Item-to-item collaborative filtering*. Internet Computing, IEEE, 7(1), 76-80.
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). *Item-based collaborative filtering recommendation algorithms*. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
- Schelter, S., Boden, C., & Markl, V. (2012, September). Scalable similarity-based neighborhood methods with mapreduce. In Proceedings of the sixth ACM conference on Recommender systems (pp. 163-170). ACM.
- Koren, Y., Bell, R., & Volinsky, C. (2009). *Matrix factorization techniques for recommender systems*. Computer, (8), 30-37.