New Foundations is consistent

Sky Wilshaw

July 2023

Underlying theory

All of the definitions and theorems that follow have been machine-checked by Lean.

The construction described in this paper takes place in a dependent type theory with:

- a proof-irrelevant impredicative universe of propositions called Prop;
- predicative universes indexed by ω , called Type = Type 0 : Type 1 : ...;
- dependent function types $\prod_{(x:\alpha)} \beta$ for all types α, β , where we denote function application by juxtaposition;
- inductive types at each universe;
- quotient types, where we denote the quotient of a type α by the relation \sim by α/\sim , and denote quotient introduction $\alpha \to \alpha/\sim$ by $x \mapsto [x]$;
- a *definitional* reduction rule that if $f: \alpha \to \beta$ lifts to $g: \alpha / \sim \beta$, then g[x] = f[x].

We write Type u = Sort(u+1) and Prop = Sort 0 for conciseness. We stipulate the following axioms.

- propositional extensionality: that if $p \Leftrightarrow q$ then we have p = q;
- a form of the axiom of choice: a function for each type α that maps a proof that α is nonempty to some $x : \alpha$.

Lean's dependent type theory satisfies these constraints. It is known that such a type theory can be modelled in ZFC + {there are n inaccessible cardinals | $n < \omega$ } (see https://github.com/digama0/lean-type-theory/releases).

We model cardinals and ordinals as quotients over a universe of types. However, apart from this, we make no direct use of higher universes, so the proof can be expected to work with no inaccessible cardinal assumptions.

1 Definitions and results from mathlib

In this section, we state a number of well-known definitions and results from the community repository mathlib. The definitions are included so that the representations of types we use are clear.

1.1 Sets, groups, and supports

Definition 1.1. A *set* of a type α is a function $\alpha \to \text{Prop.}$ The type of sets of α is denoted Set α .

Definition 1.2. The *pointwise image* of a set s: Set α under a function f: $\alpha \to \beta$ is denoted $f''s = \{y : \beta \mid \exists x \in s, y = f \ x\}$. The *preimage* of a set t: Set β under f is denoted $f^{-1}'t = \{x : \alpha \mid f \ x \in t\}$.

Definition 1.3. The *symmetric difference* of two sets s,t: Set α is defined by $s \triangle t = (s \setminus t) \cup (t \setminus s)$.

Definition 1.4. A *group action* of G on α is a function $G \to \alpha \to \alpha$ denoted by such that for all x, y : G, $\alpha : \alpha$, we have $(x \cdot y) \cdot \alpha = x \cdot (y \cdot \alpha)$.

Definition 1.5. Let *G* be a group that acts on α and β . Let *s* be a set of α , and let $b : \beta$. We say that *s* supports *b* if for all $x \in G$, we have $x \cdot b = b$ whenever $x \cdot a = a$ for all $a \in S$.

Lemma 1.1. Let s: Set α support b: β under actions of G. Then for $x,y \in G$, $x \cdot b = y \cdot b$ whenever $x \cdot a = y \cdot a$ for all $a \in s$.

Proof. Apply the definition of a support to $y^{-1} \cdot x$.

1.2 Cardinals and ordinals

Definition 1.6. An *equivalence* between two types α and β , denoted $e: \alpha \simeq \beta$, is a pair of functions $f: \alpha \to \beta, g: \beta \to \alpha$ that are inverses of each other. Equivalences $e: \alpha \simeq \beta$ naturally coerce to their underlying function $f: \alpha \to \beta$. We use the syntax e^{-1} to denote the inverse equivalence $\beta \simeq \alpha$ constructed from g and f.

Remark. $(e^{-1})^{-1} = e$ holds definitionally.

Definition 1.7. The type of *permutations* of a type α is $\alpha \simeq \alpha$, denoted Perm α .

Definition 1.8. The type of *cardinals* is the quotient of Type by the equivalence relation \sim , where $\alpha \sim \beta$ if $\alpha \simeq \beta$ is nonempty. We denote the cardinal of a type by $\#\alpha = [\alpha]$.

Definition 1.9. Let $r: \alpha \to \alpha \to \mathsf{Prop}$ be a relation on α . We say that $x: \alpha$ is *r-accessible* if for all y with ry x, we have that y is *r-accessible*. A relation $r: \alpha \to \alpha \to \mathsf{Prop}$ is *well-founded* if every element is accessible.

Remark. This is a constructive form of well-foundedness that behaves very nicely in Lean's type system.

Theorem 1.2 (well-founded recursion). Let r be a well-founded relation on α . Let $C: \alpha \to \text{Sort } u$ be a motive for the recursion. Let h have type

$$\prod_{(x:\alpha)} \left(\prod_{(y:\alpha)} r \, y \, x \to C \, y \right) \to C \, x$$

Then we can construct C x for each $x : \alpha$.

Remark. More rigorously, well-founded recursion over *r* is a function of type

$$\prod_{(C:\alpha\to\mathsf{Sort}\;u)} \left[\left(\prod_{(x:\alpha)} \left(\prod_{(y:\alpha)} r \; y \; x \to C \; y \right) \to C \; x \right) \to \prod_{(x:\alpha)} C \; x \right]$$

Setting u = 0 gives well-founded induction. This result is obtained by recursion over accessibility, which is an inductive type.

Definition 1.10. A relation is a *well-order* if it is trichotomous, transitive, and well-founded.

Definition 1.11. Let α , β be endowed with relations r, s. An equivalence $e:\alpha\simeq\beta$ is an *order isomorphism* if for each $x,y:\alpha$, we have $s(ex)(ey)\Leftrightarrow rxy$.

Definition 1.12. The type of *ordinals* is the quotient of the type of well-ordered elements of Type by the equivalence relation \sim , where $\alpha \sim \beta$ if the type of order isomorphisms of α and β is nonempty.

Standard properties of cardinals and ordinals are assumed.

Definition 1.13. A *partial value* of a type α is a proposition p and a function $p \to \alpha$. That is, if h: p is a proof of p, then we can acquire a value $x: \alpha$. The type of such values is denoted Part α .

Definition 1.14. A *partial function* from α to β is a function from α to partial values of type β . The type of such values is denoted $\alpha \rightarrow \beta$.

We use standard function notation on partial functions.

Remark. By propositional extensionality, all empty partial values are equal, and all inhabited partial values with equal values are equal.

1.3 Quivers and paths

Definition 1.15. A *quiver* on a type α of vertices assigns to every pair $x, y : \alpha$ of vertices a type Hom(x, y) of arrows from x to y.

Definition 1.16. A *path* in a quiver between two vertices $x, y : \alpha$ is a finite list of vertices beginning with x and ending with y, connecting each pair of adjacent vertices a, b with an element of Hom(a, b). The type of such paths is written $x \rightsquigarrow y$. The empty path is written $\emptyset : x \rightsquigarrow x$. The *composition* of paths $p : x \rightsquigarrow y, q : y \rightsquigarrow z$ is denoted by $p \gg q : x \rightsquigarrow z$.

Remark. In mathlib, paths are defined as an inductive type. If there is exactly one morphism in a given hom-set Hom(a,b), it is denoted $a \to b$. We will implicitly convert morphisms e : Hom(a,b) to their *corresponding paths* $e : a \leadsto b$.

Definition 1.17. The *length* of a path is the number of arrows in that path, or exactly one less than the number of vertices in the list.

2 The base type (ConNF.BaseType)

We describe the base level of our construction, as well as all of the other objects that can be described outside the main induction.

2.1 Model parameters

Definition 2.1. A set of *model parameters* is

- a type λ endowed with a well-order;
- a type κ;
- a type μ endowed with a well-order,

such that

- (i) the order type of λ is a nonzero limit ordinal;
- (ii) the order type of μ is the initial ordinal corresponding to the cardinal $\#\mu$;
- (iii) $\#\mu$ is a strong limit cardinal;
- (iv) $\#\lambda < \#\kappa < \#\mu$;
- (v) the cofinality of the initial ordinal corresponding to $\#\mu$ is at least $\#\kappa$.

Lemma 2.1. There exists a set of model parameters.

Proof. Take $\lambda = \aleph_0, \kappa = \aleph_1, \mu = \beth_{\omega_1}$. These form a set of model parameters by standard properties of cardinals.

Every definition and theorem following this will implicitly assume a set of model parameters as an additional argument.

Lemma 2.2. (i) λ, κ, μ are infinite.

(ii) λ and μ have no maximal element.

Proof. Part (i). λ is a nonzero limit, hence is infinite; condition (iv) then guarantees the result for κ , μ . Part (ii). Initial ordinals have no maximal element.

Definition 2.2. The type of *type indices*, denoted λ^{\perp} , is λ together with a symbol denoted \perp . The order on λ^{\perp} places \perp below all elements of λ .

Lemma 2.3. $\#\lambda^{\perp} = \#\lambda$.

Proof. $\#\lambda^{\perp} = \#\lambda + 1$, and λ is infinite by lemma 2.2(i).

Lemma 2.4. The type indices are well-ordered.

Proof. They are clearly linearly ordered, and the relation < is well-founded. \Box

Lemma 2.5. For $x : \mu$, #{ $y \mid y < x$ } < # μ and #{ $y \mid y \le x$ } < # μ .

Proof. Definition 2.1 requires that the order type of μ is an initial ordinal, so we have $\#\{y \mid y < x\} < \#\mu$. Then $\#\{y \mid y \le x\} = \#\{y \mid y < x\} + \#\{x\} < \#\mu$ as $\#\mu$ is infinite by lemma 2.2(i).

2.2 Smallness

Definition 2.3. A set *s* of any type α is called *small* if $\#s < \#\kappa$.

Remark. Note that cardinals are defined on types and not sets: technically we mean that the cardinality of the subtype $\{x : \alpha \mid x \in s\}$ is less than $\#\kappa$.

Lemma 2.6. Let $f: \alpha \to \beta$ and $s, t: Set \alpha$. Then,

- (i) the empty set is small;
- (ii) singletons are small;
- (iii) if $s \subseteq t$ and t is small then s is small;
- (iv) if s, t are small then $s \cup t$ is small;
- (v) if s, t are small then $s \triangle t$ is small;
- (vi) if *s* is small then $s \triangle t$ is small if and only if *t* is small;
- (vii) if ι is a type with $\#\iota < \#\kappa$ and $g: \iota \to \mathsf{Set} \ \alpha$ with $g \ i$ small for each $i \in \iota$, then $\bigcup_{i:\iota} g \ i$ is small;
- (viii) if *s* is small then f''s is small;
 - (ix) if s: Set β is small and f is injective then f^{-1} 's is small;
 - (x) if t: Set β is small, f is injective, and $f''s \subseteq t$, then s is small;
 - (xi) if f is a partial function and s is small then f''s is small.

Proof. (i) $\#\{\} = 0 < \aleph_0 \le \#\kappa \text{ by lemma 2.2.}$

- (ii) $\#\{x\} = 1 < \aleph_0 \le \#\kappa$ by lemma 2.2.
- (iii) Follows from transitivity.
- (iv) $\aleph_0 \le \#\kappa$ so $\#\kappa$ is additively closed.

- (v) $s \triangle t \subseteq s \cup t$ so done by (iii).
- (vi) $s \triangle t \triangle s = t$ so done by applying (iv) twice.
- (vii) Follows since κ is regular by definition 2.1.
- (viii) The set f''s injects into s so $\#(f''s) \le \#s$.
- (ix) The set f^{-1} 's injects into s if f is injective.
- (x) Follows from (iii) and (ix), as $f^{-1}(f''s) = s$ for injective f.
- (xi) By (viii), the set of partial values of type β in the range of f is small, by treating f as a total function $\alpha \to \mathsf{Part}\ \beta$. The result then holds by applying (x) to the natural injection $\iota : \beta \to \mathsf{Part}\ \beta$.

Definition 2.4. Sets are *near* if their symmetric difference is small.

Lemma 2.7. Let $f: \alpha \to \beta$ and $s, t, u: Set \alpha$.

- (i) s is near s;
- (ii) if *s* is near *t* then *t* is near *s*;
- (iii) if s is near t and t is near u then s is near u;
- (iv) if s is near t then f''s is near f''t;
- (v) if *s* is small, then *s* is near *t* if and only if *t* is small;
- (vi) if s is near t and $\#\kappa \leq \#s$, then $\#\kappa \leq \#t$;
- (vii) if *s* is near *t* and $\#\kappa \leq \#s$, then $\#\kappa \leq \#(s \cap t)$.

Proof. (i) Follows from lemma 2.6(i).

- (ii) The symmetric difference is commutative.
- (iii) Follows from lemma 2.6(iii, iv) and the fact that $s \triangle u \subseteq (s \triangle t) \cup (t \triangle u)$.
- (iv) Follows from lemma 2.6(iii, viii) and the fact that $(f''s) \triangle (f''t) \subseteq f''(s \triangle t)$.
- (v) Follows from lemma 2.6(vi).
- (vi) Suppose not, so $\#t < \#\kappa$. Then as s is near t, s is small, contradicting the assumption.
- (vii) Suppose not, so $\#(s \cap t) < \#\kappa$. As s is near t, the set $(s \cup t) \setminus (s \cap t)$ is small. But

$$\#(s \cup t) \le \#((s \cup t) \setminus (s \cap t)) + \#(s \cap t)$$

Both summands on the right-hand side are less than $\#\kappa$, so $s \cup t$ must be small. But this contradicts the assumption that $\#\kappa \le \#s$.

2.3 Litters

Definition 2.5. A *litter* is a triple $L = \langle \nu, \beta, \gamma \rangle$ with $\nu : \mu, \beta : \lambda^{\perp}, \gamma : \lambda$, such that $\beta \neq \gamma$. The type of litters is denoted \mathcal{L} .

Lemma 2.8. $\#\mathcal{L} = \#\mu$.

Proof. Note that $\#(\mu \times \lambda^{\perp} \times \lambda) = \#\mu$ so $\#\mathcal{L} \leq \#\mu$. But $\#\mu \leq \#\mathcal{L}$ by considering the injection $\nu \mapsto \langle \nu, \perp, 0 \rangle$, so the result follows by antisymmetry.

2.4 Atoms

Definition 2.6. The type of *atoms* is $A = L \times \kappa$.

Lemma 2.9. $\#A = \#\mu$.

Proof. $\#\mathcal{L} = \#\mu$ by lemma 2.8, and $\#\aleph_0 \leq \#\kappa < \#\mu$ by definition 2.1.

Definition 2.7. The *litter set* of a litter L is the set of atoms with first projection equal to L, denoted A_L .

Lemma 2.10. (i) $\#A_L = \#\kappa$;

(ii) the litter sets are pairwise disjoint.

Proof. (i) Each litter set is naturally in bijection with κ .

(ii) If an atom a is in A_L and $A_{L'}$, then $\pi_1(a) = L$ and $\pi_1(a) = L'$ so L = L'.

2.5 Near-litters

Definition 2.8. A set of atoms *is a near-litter* to a given litter *L* if it is near the litter set of *L*.

Lemma 2.11. (i) A_L is a near-litter to L;

- (ii) if *s*, *t* are near-litters to *L* then *s* is near *t*;
- (iii) if *s* is a near-litter to *L*, $\#s = \#\kappa$;
- (iv) a set cannot be a near-litter to two different litters;
- (v) there are μ near-litters to a given litter.

Proof. (i) Direct from lemma 2.7(i).

(ii) Follows from lemma 2.7(iii).

(iii) We have

$$\#s \le \#(s \setminus \mathcal{A}_L) + \#(\mathcal{A}_L)$$

The first term is less than $\#\kappa$ by lemma 2.6(iii); the second is exactly $\#\kappa$ by lemma 2.10(i). Thus $\#s \le \#\kappa$. Suppose $\#s < \#\kappa$. Note that

$$\#\kappa = \#\mathcal{A}_L \le \#(\mathcal{A}_L \setminus s) + \#s$$

But $\#s < \#\kappa$ by assumption, and $\#(\mathcal{A}_L \setminus s) < \#\kappa$ by lemma 2.10(i). This gives a contradiction.

- (iv) First note that if \mathcal{A}_L is a near-litter to L', then L = L'. Suppose $L \neq L'$. Then $\mathcal{A}_L \subseteq \mathcal{A}_L \triangle \mathcal{A}_{L'}$. Hence the cardinality of $\mathcal{A}_L \triangle \mathcal{A}_{L'}$ is at least $\#\kappa$, contradicting nearness. For general sets, if s is a near-litter to L and L', we must have that \mathcal{A}_L is a near-litter to L', reducing to the original case.
- (v) We argue by antisymmetry. First, we show that the number of near-litters to L is at most $\#\mu$. Note that as $\#\mu$ is a strong limit cardinal, the type of sets (of atoms, say) of size less than the cofinality of $\#\mu$ also has cardinality $\#\mu$. But as the cofinality of $\#\mu$ is at least $\#\kappa$, it suffices to show an injection from the type of near-litters to L to the type of sets of atoms of size at most $\#\kappa$, which can be done by the natural coercion.

Conversely, we need an injection from \mathcal{A} to the type of near-litters to L. The map $a \mapsto \mathcal{A}_L \triangle \{a\}$ suffices.

Definition 2.9. A *near-litter* is a dependent pair $\langle L, s \rangle$, where L is a litter and s is a set of atoms that is a near-litter to L. We denote the type of near-litters by \mathcal{N} . We define a natural injective coercion from a near-litter to its second component; this is often used in extensionality arguments.

Remark. Retaining the data of which litter a given near-litter is near to allows us to get better definitional properties.

Definition 2.10. The first projection $\pi_1: \mathcal{N} \to \mathcal{L}$ is written with a superscript circle: $N \mapsto N^\circ$. The injection NL: $\mathcal{L} \to \mathcal{N}$ is defined by NL $L = \langle L, \mathcal{A}_L \rangle$, sending a litter to its associated near-litter.

Lemma 2.12. Let $N: \mathcal{N}$. Then $N \triangle \mathcal{A}_{N^{\circ}}$ is small.

Proof. Suppose $N = \langle L, s \rangle$. Then s is near to \mathcal{A}_L as required.

Lemma 2.13. $\#\mathcal{N} = \#\mu$.

Proof.

$$\begin{split} \#\mathcal{N} &= \# \sum_{(L:\mathcal{L})} \{s: \operatorname{Set} \mathcal{A} \mid s \operatorname{near} \mathcal{A}_L \} \\ &= \sum_{(L:\mathcal{L})} \# \{s: \operatorname{Set} \mathcal{A} \mid s \operatorname{near} \mathcal{A}_L \} \\ (\operatorname{lemma 2.11(v)}) &= \sum_{(L:\mathcal{L})} \#\mu \\ &= \#\mathcal{L} \cdot \#\mu \\ (\operatorname{lemma 2.8}) &= \#\mu \cdot \#\mu \\ (\operatorname{lemma 2.2}) &= \#\mu \end{split}$$

Lemma 2.14. Let $N: \mathcal{N}$. Then $\#N = \#\kappa$.

Proof. We argue by antisymmetry that

$$\#(N \triangle \mathcal{A}_{N^{\circ}} \triangle \mathcal{A}_{N^{\circ}}) = \#\kappa$$

First, we show that this is at most $\#\kappa$. By monotonicity it suffices to show that

$$\#((N \triangle \mathcal{A}_{N^{\circ}}) \cup \mathcal{A}_{N^{\circ}}) \leq \#\kappa$$

By lemma 2.12 and lemma 2.10(i), this holds.

Conversely, suppose $N \triangle \mathcal{A}_{N^{\circ}} \triangle \mathcal{A}_{N^{\circ}}$ is small. Then as $N \triangle \mathcal{A}_{N^{\circ}}$ is small, by lemma 2.6(vi) we must have that $\mathcal{A}_{N^{\circ}}$ is small, which is a contradiction.

Lemma 2.15. Let $N_1, N_2 : \mathcal{N}$. Then if $N_1^{\circ} = N_2^{\circ}$, their intersection $N_1 \cap N_2$ is nonempty.

Proof. First, note that N_1 is near N_2 , so $N_2 \setminus N_1$ is small. Suppose the intersection is empty, then $N_2 \setminus N_1 = N_2$. But then N_2 would be small, contradicting lemma 2.14.

2.6 Near-litter permutations

Definition 2.11. A *near-litter permutation* is a pair $\pi = \langle \pi^A, \pi^L \rangle$ where π^A : perm $\mathcal A$ and π^L : perm $\mathcal L$, such that if s is a near-litter to L, $\pi^{A''}s$ is a near-litter to $\pi^L L$. Thus a near-litter permutation induces a permutation of near-litters. The type of near-litter permutations is denoted $\mathcal P$.

We suppress the superscripts on near-litter permutations and use function application syntax for the action of a near-litter permutation on atoms, litters, and near-litters: for example, π^A $a=\pi$ a. Note that the action on litters is 'rough': we map litters to litters and not near-litters. If the precise image of a litter L under a permutation π is desired, it can be obtained using $\pi(NLL)$.

Lemma 2.16. If the atom permutations of two near-litter permutations agree, then the permutations are equal.

Proof. Let $L: \mathcal{L}$ and π, π' be near-litter permutations. The values of π (NL L) and π' (NL L) depend only on the atom maps in question. The result then follows from lemma 2.11(iv).

Lemma 2.17. The near-litter permutations form a group with identity id and operation •.

Lemma 2.18. Let π be a near-litter permutation and let N be a near-litter. Then, the following equality of sets holds.

$$\pi N = (\pi (\mathsf{NL} \, N^{\circ})) \triangle (\pi''(\mathcal{A}_{N^{\circ}} \triangle N))$$

Proof. After applying set extensionality, this proof becomes simple case checking.

3 Tangled structure

We now describe how the different levels of our structure are to be tangled together.

3.1 Extended type indices

Definition 3.1. We define a quiver structure on type indices. For α , β type indices, Hom(α , β) is the type $\beta < \alpha$. Thus, there is a morphism $\alpha \to \beta$ if and only if $\beta < \alpha$, and all such morphisms are equal by proof irrelevance.

Definition 3.2. A path from a type index to \bot is called an *extended (type) index*.

Lemma 3.1. (i) If $A: \alpha \rightsquigarrow \beta$ is a path of type indices, $\beta \leq \alpha$.

- (ii) If $A : \alpha \rightsquigarrow \alpha$, then A is the empty path.
- (iii) If $\alpha : \lambda$, then the extended index $A : \alpha \rightsquigarrow \bot$ has nonzero length.

Proof. (i) Induction on A.

- (ii) If *A* were nonempty, it would be of the form $B \gg h$ where $B: \alpha \rightsquigarrow \beta$ and $h: \beta \rightarrow \alpha$. By (i), $\beta \leq \alpha$, but *h* is the fact that $\alpha < \beta$, giving a contradiction.
- (iii) $\alpha \neq \bot$ so *A* is not the empty path.

Lemma 3.2. $0 \neq \#(\alpha \rightsquigarrow \bot) \leq \#\lambda$.

Proof. There is at least one extended index for each α : the nil path for $\alpha = \bot$ or the one-arrow path otherwise. For the other inequality, there is an injection from paths $\alpha \rightsquigarrow \bot$ to lists, so it suffices to show that the type of lists of type indices has cardinality at most $\#\lambda$. But $\aleph_0 \le \#\lambda$ by 2.2(i), so it suffices to show that $\#\lambda^{\bot} \le \#\lambda$, which is 2.3.

3.2 Pretangles

Omitted; currently unused.

3.3 Trees

Definition 3.3. Let α be a type index and τ be a type. Then the type of α -trees of τ is

$$\mathsf{Tree}_{\tau} \alpha = (\alpha \rightsquigarrow \bot) \rightarrow \tau$$

Definition 3.4. There is a natural equivalence $\mathsf{Tree}_{\tau} \perp \simeq \tau$ given by $a \mapsto a \varnothing$ and $a \mapsto (A \mapsto a)$.

Definition 3.5. Let τ have a group structure. Then we endow Tree $_{\tau}$ α with a group structure by defining

$$(a_1 \cdot a_2) A = a_1 A \cdot a_2 A$$

This makes the equivalence Tree_{τ} $\perp \simeq \tau$ into an isomorphism of groups.

Definition 3.6. The *derivative* functor maps paths of type indices $\alpha \rightsquigarrow \beta$ to functions $\mathsf{Tree}_{\tau} \ \alpha \to \mathsf{Tree}_{\tau} \ \beta$. Applying it to a path A and tree a gives the tree $B \mapsto a \ (A \gg B)$. The application of this functor to a path A and tree a is denoted using a subscript, so

$$a_A = (B \mapsto a (A \gg B))$$

Remark. This is a functor from the category of type indices where the morphisms are the decreasing paths (i.e. the category where morphisms are elements of $\alpha \rightsquigarrow \beta$ for $\alpha, \beta: \lambda^{\perp}$) to the category of all trees of a fixed type τ , where the morphisms are functions. The map of objects is simply $\alpha \mapsto \mathsf{Tree}_{\tau} \alpha$, or more concisely, just Tree_{τ} . If τ has a group structure, this map preserves multiplication. This means that we can treat this as a functor to the category of all trees on τ where the morphisms are group homomorphisms.

Lemma 3.3. The derivative map is a functor in the sense described above:

- (i) $a_{\emptyset} = a$;
- (ii) $(a_A)_B = a_{A \gg B}$;
- (iii) $(a_1 \cdot a_2)_A = a_{1A} \cdot a_{2A}$.

In addition, if $A: \alpha \rightsquigarrow \bot$, then a_A and aA are equal up to the equivalence in definition 3.4.

Proof. All of these results follow from the basic laws of quivers.

Definition 3.7. If τ has a group action on some type σ , we pull it back under the equivalence given in definition 3.4 to give Tree_{τ} \perp the same action on σ .

3.4 Structural permutations

Definition 3.8. For α a type index, an α -structural permutation is an α -tree of near-litter permutations. The type of α -structural permutations is denoted Str_{α} , so

$$\mathsf{Str}_{\alpha} = \mathsf{Tree}_{\mathcal{P}} \ \alpha = (\alpha \rightsquigarrow \bot) \to \mathcal{P}$$

3.5 Supports and support conditions

Definition 3.9. For α a type index, the type of α -support conditions is

$$(\alpha \rightsquigarrow \bot) \times (\mathcal{A} \oplus \mathcal{N})$$

That is, an α -support condition is an α -extended type index, together with an atom or near-litter.

Lemma 3.4. For each α , there are $\#\mu$ α -support conditions.

Proof. By lemma 2.9 and lemma 2.13, we must show that

$$\#(\alpha \rightsquigarrow \bot) \cdot (\#\mu + \#\mu) = \#\mu$$

This follows from standard properties of cardinals and lemma 3.2.

Definition 3.10. *α*-structural permutations π act on α -support conditions by mapping

$$\langle A, x \rangle \mapsto \langle A, \pi A x \rangle$$

where the action of a near-litter permutation on an element of $\mathcal{A} \oplus \mathcal{N}$ is defined in the natural way.

Definition 3.11. Let α be a type index, τ be a type, x: τ , and G be a group that acts on τ . A *support* for x under this action is a small set of α -support conditions that support x (in the sense of definition 1.5). An object is said to be *supported* if its type of supports is nonempty.

4 f-maps

We now describe the mechanism for creating the f-maps, and begin the main recursion.

4.1 Position functions

Definition 4.1. Let α , β be types. A *position function* on α taking values in β is an injection $\alpha \to \beta$. We denote all position functions by $n : \alpha \to \beta$.

Let α have a position function taking values in β , and suppose β has a relation <.

Definition 4.2. We then define the relation < on α by $x < y \Leftrightarrow n x < n y$.

Lemma 4.1. If β is well-ordered, then α is well-ordered.

Proof. Trichotomy and transitivity are clear. The inverse image of a well-founded relation is well-founded by induction on accessibility, completing the proof. \Box

4.2 Hypotheses

Definition 4.3. Let α be a type index. *Tangle data* at level α is

- a type τ_{α} of tangles;
- a type All_{α} of allowable permutations;
- a group structure on All_α;
- a group homomorphism $All_{\alpha} \to Str_{\alpha}$;
- a group action of ${\rm All}_{\alpha}$ on τ_{α} written by juxtaposition; and
- a function assigning to each t: τ_{α} a support for it under the action of All_{α} , called its *designated support*.

Definition 4.4. Let α be a type index with tangle data. We say that level α has *positioned tangles* if there is a position function on τ_{α} taking values in μ . The existence of this position function proves that there are at most $\#\mu$ tangles at level α .

Definition 4.5. Let α : λ be a proper type index with tangle data. We say that we have *typed objects* at level α if we have

- an injection typed $_{\alpha}^{a}: \mathcal{A} \to \tau_{\alpha}$ called the *typed atom* map; and
- an injection typed $_{\alpha}^{N}: \mathcal{N} \to \tau_{\alpha}$ called the *typed near-litter* map, that commutes with allowable permutations in the sense that for all $\rho: \mathrm{All}_{\alpha}, N: \mathcal{N}$, we have

$$\rho$$
 (typed^N _{α} N) = typed^N _{α} (ρ ($\alpha \to \bot$) N)

Definition 4.6. An assignment of *base positions* is a pair of position functions on \mathcal{A} and \mathcal{N} both taking values in μ , such that

- $a \in \mathcal{A}_L \implies n(NLL) < na;$
- $n (NL N^{\circ}) \leq n N$;
- $a \in N \triangle \mathcal{A}_{N^{\circ}} \implies n \ a < n \ N$;

• $n a \neq n N$.

Remark. At the moment, we define no coherence conditions between the position function, the typed objects, and the base positions data. Later, they will be tied together.

Definition 4.7. Tangle data at level $\alpha = \bot$ is defined as follows.

- $\tau_{\perp} = \mathcal{A}$;
- $All_1 = \mathcal{P}$;
- the homomorphism $All_{\perp} \rightarrow Str_{\perp}$ is given by definition 3.4;
- the designated support of an atom a : A is $\{\langle a, \emptyset \rangle\}$.

4.3 Construction

Lemma 4.2. Let α and β be types, and let α be well-ordered. Let $d: \alpha \to \text{Set } \beta$ assign to each $x: \alpha$ a set of *denied sets*. Suppose that for each $x: \alpha$, we have

$$\#\{y : \alpha \mid y < x\} + \#(d x) < \#\beta$$

Then there is an injective function $f: \alpha \to \beta$ with the property that for each $x: \alpha$, $f x \notin dx$.

Proof. For a given $x : \alpha$, if we have already constructed f y for y < x, we can pick a value for f x not in d x or equal to any f y, as

$$\#(f''\{y : \alpha \mid y < x\} \cup d \ x) \le \#(f''\{y : \alpha \mid y < x\}) + \#(d \ x)$$

$$\le \#\{y : \alpha \mid y < x\} + \#(d \ x)$$

$$< \#\beta$$

We have thus constructed $f: \alpha \to \beta$ satisfying the property that $f x \notin dx$. For injectivity, suppose $x \neq y : \alpha$. Then either x < y or y < x; assume the latter without loss of generality. The construction of f x was done under the constraint $f x \neq f z$ for each z < x, giving the result as required.

Let $\beta: \lambda^{\perp}$ and $\gamma: \lambda$ with $\beta \neq \gamma$. Let β and γ have tangle data and positioned tangles. Let γ have typed objects.

Definition 4.8. Construct the function $d: \tau_{\beta} \to \operatorname{Set} \mu$ by

$$v \in d \ t \Leftrightarrow (\exists N : \mathcal{N}, \ N^{\circ} = \langle v, \beta, \gamma \rangle \land n \ (\mathsf{typed}_{\gamma}^{N} \ N) \leq n \ t)$$

$$\lor (\beta = \bot \land n \ (\mathsf{typed}_{\gamma}^{N} \ (\mathsf{NL} \ \langle v, \bot, \gamma \rangle)) \leq n \ t)$$

Lemma 4.3. Let $t : \tau_{\beta}$. Then

(i)
$$\#\{t' : \tau_{\beta} \mid t' < t\} < \#\mu;$$

(ii)
$$\#\{t' : \tau_{\gamma} \mid n \ t' \le n \ t\} < \#\mu$$
.

Proof. Both proofs follow the same strategy. First, we use lemma 2.5 to reduce to showing that

$$\#\{t' : \tau_{\beta} \mid t' < t\} \le \#\{\nu : \mu \mid \nu < n t\}$$

and

$$\#\{t' : \tau_{\gamma} \mid n \ t' < n \ t\} \le \#\{\nu : \mu \mid \nu \le n \ t\}$$

These inequalities of cardinals can be easily shown by proving that the injection n has the correct codomain in each case.

Lemma 4.4. Let
$$t : \tau_{\beta}$$
. Then $\#\{t' : \tau_{\beta} \mid t' < t\} + \#(d \ t) < \#\mu$.

Proof. By lemma 4.3(i), it suffices to show $\#(d\ t) < \#\mu$. We show that there are less than μ positions that satisfy each of the two conditions in definition 4.8.

For the first condition, we must show that

$$\#\{\nu: \mu \mid \exists N: \mathcal{N}, N^{\circ} = \langle \nu, \beta, \gamma \rangle \land n \text{ (typed}_{\nu}^{N} N) \leq n t\} < \#\mu$$

By lemma 4.3(ii) it suffices to produce an injection

$$\{\nu : \mu \mid \exists N : \mathcal{N}, N^{\circ} = \langle \nu, \beta, \gamma \rangle \land n \text{ (typed}_{\nu}^{N} N) \leq n t\} \rightarrow \{t' : \tau_{\nu} \mid n t' \leq n t\}$$

This injection is given by mapping ν to typed $_{\gamma}^{N}$ N where N is chosen such that $N^{\circ} = \langle \nu, \beta, \gamma \rangle$ and n (typed $_{\gamma}^{N}$ N) $\leq n t$. It can be seen that this is an injection as the typed near-litter map is injective.

Now suppose $\beta = \bot$. For the second condition, it suffices by lemma 2.5 to produce an injection

$$\{\nu : \mu \mid n \text{ (typed}_{\nu}^{N} \text{ (NL } \langle \nu, \bot, \gamma \rangle)) \leq n t\} \rightarrow \{\nu : \mu \mid \nu \leq n t\}$$

In this case, we map ν to n (typed $_{\gamma}^{N}$ (NL $\langle \nu, \bot, \gamma \rangle$)). This is also injective, as required.

Definition 4.9. The *f*-map from β to γ is the function $f_{\beta,\gamma}$: $\tau_{\beta} \to \mathcal{L}$ defined by

$$f_{\beta,\gamma} t = \langle g t, \beta, \gamma \rangle$$

where g is chosen by applying lemma 4.2 to definition 4.8 and lemma 4.4.

Lemma 4.5. Suppose $f_{\beta,\gamma}$ $t = f_{\beta',\gamma'}$ t'. Then $\beta = \beta'$ and $\gamma = \gamma'$.

Proof. Apply the second and third projections to $f_{\beta,\gamma}$ t and $f_{\beta',\gamma'}$ t'.

Lemma 4.6. $f_{\beta,\gamma}$ is injective.

Proof. Follows from lemma 4.2.

Lemma 4.7. Let N be a near-litter with $N^{\circ} = f_{\beta,\gamma} t$. Then n t < n (typed $_{\gamma}^{N}N$). *Proof.* Follows from lemma 4.2 and the definition of definition 4.8. \Box **Lemma 4.8.** Let a be an atom. Then $n \ a < n$ (typed $_{\gamma}^{N}(\operatorname{NL}(f_{\perp,\gamma}a))$). *Proof.* Follows from lemma 4.2 and the definition of definition 4.8. \Box