PHYS11 CH8: Understanding Momentum

From Everyday Motion to Conservation Laws

Mr. Gullo

Think About This...

Opening Scenario

Why is it harder to stop...

- A heavy truck moving slowly, or
- A light car moving quickly?
- This question introduces us to the concept of momentum
- By the end of this lesson, you'll understand exactly why both situations are challenging!

Learning Objectives

By the end of this lesson, you will be able to:

- Explain momentum using everyday examples
- Calculate the momentum of moving objects
- Describe how force and time relate to changing momentum
- Apply conservation of momentum to real situations
- Analyze different types of collisions

Understanding Momentum: The Basics

Momentum: A Measure of Motion

Think of momentum as an object's "motion strength"

- Like a moving bowling ball vs. a moving ping pong ball
- Two factors determine momentum:
 - How much stuff is moving (mass)
 - How fast it's moving (velocity)
- More mass OR more velocity = more momentum

Key Point

Momentum combines MASS and VELOCITY into a single measure of motion

The Mathematics of Momentum

Definition

Momentum $(\vec{p}) = \text{mass} \times \text{velocity}$

$$\vec{p} = m\vec{v}$$

Units:

- Mass (kg)
- Velocity (m/s)
- Momentum (kgm/s)

Remember:

- Momentum is a vector
- Direction matters!
- Same direction as velocity

Momentum in Real Life

Sports Examples

- Football player running (large mass, moderate velocity)
- Baseball pitch (small mass, high velocity)
- Ice skater gliding (medium mass, low velocity)

Transportation Examples

- Heavy truck at highway speed
- Bicycle commuter
- High-speed train

Example: Understanding Momentum (I Do)

Problem

A 75 kg football player runs at 8 m/s. Calculate their momentum.

Example: Understanding Momentum (I Do)

Problem

A 75 kg football player runs at 8 m/s. Calculate their momentum.

Step-by-Step Solution

- 1. Identify what we know:
 - Mass (m) = 75 kg
 - Velocity (v) = 8 m/s

Example: Understanding Momentum (I Do)

Problem

A 75 kg football player runs at 8 m/s. Calculate their momentum.

Step-by-Step Solution

- 1. Identify what we know:
 - Mass (m) = 75 kg
 - Velocity (v) = 8 m/s
- 2. Apply the momentum formula:

$$\vec{p} = m\vec{v} = (75 \text{ kg})(8 \text{ m/s}) = 600 \text{ kgm/s}$$

Let's Try Together (We Do)

Problem

A 0.145 kg baseball is thrown at 40 m/s. Calculate:

- The ball's momentum
- Compare it to the football player's momentum

Let's Try Together (We Do)

Problem

A 0.145 kg baseball is thrown at 40 m/s. Calculate:

- The ball's momentum
- Compare it to the football player's momentum

Solution Steps

1. Calculate baseball momentum:

$$\vec{p} = (0.145 \text{ kg})(40 \text{ m/s}) = 5.8 \text{ kgm/s}$$

- 2. Compare:
 - Baseball: 5.8 kgm/s
 - Football player: 600 kgm/s

Mr. Gullo

Changing Momentum: Understanding Impulse

Key Concept: Impulse

 $Impulse = Force \times Time = Change in Momentum$

$$F\Delta t = \Delta p$$

- Same effect can be achieved by:
 - Large force for short time
 - Small force for long time
- Examples:
 - Catching a baseball (extend arms to increase time)
 - Car airbags (increase collision time)
 - Karate board break (large force, very short time)

The Big Idea

In an isolated system (no external forces), total momentum stays constant

The Big Idea

In an isolated system (no external forces), total momentum stays constant

Before Collision

- Object 1 momentum
- Object 2 momentum
- Total = $p_1 + p_2$

The Big Idea

In an isolated system (no external forces), total momentum stays constant

Before Collision

- Object 1 momentum
- Object 2 momentum
- Total = $p_1 + p_2$

After Collision

- Object 1 new momentum
- Object 2 new momentum
- Total = $p'_1 + p'_2$

The Big Idea

In an isolated system (no external forces), total momentum stays constant

Before Collision

- Object 1 momentum
- Object 2 momentum
- Total = $p_1 + p_2$

After Collision

- Object 1 new momentum
- Object 2 new momentum
- Total = $p'_1 + p'_2$

Key Equation

$$p_1 + p_2 = p_1' + p_2'$$

Understanding Collisions

Elastic Collisions

- Objects bounce apart
- Kinetic energy preserved
- Example: Pool balls
- Perfect elasticity rare

Inelastic Collisions

- Objects stick together
- Energy converted to heat/sound
- Example: Car crashes
- More common in real life

Understanding Collisions

Elastic Collisions

- Objects bounce apart
- Kinetic energy preserved
- Example: Pool balls
- Perfect elasticity rare

Inelastic Collisions

- Objects stick together
- Energy converted to heat/sound
- Example: Car crashes
- More common in real life

Remember

Momentum is conserved in BOTH types of collisions!

Your Turn! (You Do)

Challenge Problem

A 1200 kg car moving at 15 m/s collides with a stationary 800 kg car. They stick together. What is their final velocity?

Hints

- This is an inelastic collision (they stick together)
- Use conservation of momentum
- Remember: $mass_1v_1 + mass_2v_2 = (mass_1 + mass_2)v_{final}$

Your Turn! (You Do)

Challenge Problem

A 1200 kg car moving at 15 m/s collides with a stationary 800 kg car. They stick together. What is their final velocity?

Hints

- This is an inelastic collision (they stick together)
- Use conservation of momentum
- Remember: $\mathsf{mass}_1\mathsf{v}_1 + \mathsf{mass}_2\mathsf{v}_2 = (\mathsf{mass}_1 + \mathsf{mass}_2)\mathsf{v}_{\mathsf{final}}$

Solution Framework

$$(1200)(15) + (800)(0) = (1200 + 800)v_{\mathsf{final}}$$

Mr. Gullo

Momentum in the Real World

Safety Applications

- Vehicle crumple zones
- Sports padding and helmets
- Playground surface materials

Engineering Applications

- Rocket propulsion
- Impact testing
- Vehicle design

Key Takeaways

Main Concepts

- Momentum = mass × velocity
- Impulse changes momentum
- Momentum is conserved in isolated systems
- Collisions can be elastic or inelastic

Why This Matters

Understanding momentum helps us:

- Design safer vehicles
- Improve sports equipment
- Predict motion in collisions
- Solve real-world problems

Questions to Consider

Think About

- Why do heavy vehicles need longer to stop?
- How do martial artists break boards?
- Why do catchers "give" with the ball?
- How do airbags protect us?

Next Steps

- Practice with example problems
- Connect concepts to daily life
- Observe momentum in action