- 2.14 For each $n \in \mathbb{Z}_+$, let $B_n = \{n, n+1, n+2, \ldots\}$, and consider the collection $\mathcal{B} = \{B_n | n \in \mathbb{Z}_+\}$
 - (a) Show that \mathcal{B} is a basis for a topology on \mathbb{Z}_+
 - (b) Show that the topology on X generated by \mathcal{B} is not Hausdorff.
 - (c) Show that the sequence (2,4,6,8,...) converges to every point in \mathbb{Z}_+ with the topology generated by \mathcal{B}
 - (d) Prove that every injective sequence converges to every point in \mathbb{Z}_+ with the topology generated by \mathcal{B}
- 2.15 Determine the set of limit points of [0,1] in the finite complement topology on \mathbb{R}
- 2.17 (a) Let $\mathcal{B} = \{[a,b) \subset \mathbb{R} | a,b \in \mathbb{Q} \text{ and } a < b\}$. Show that \mathcal{B} is a basis for a topology on \mathbb{R} . The resulting topology is called the rational lower limit topology and is denoted \mathbb{R}_{rl}
 - (b) Determine the closures of $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in \mathbb{R}_l and in \mathbb{R}_{rl}
- 2.21 Determine the set of limit points of the set

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \in \mathbb{R}^2 | 0 < x \le 1 \right\}$$

as a subset of \mathbb{R}^2 in the standard topology. (The closure of S in the plane is known as the topologist's sine curve.

- 2.27 Determine $\partial([0,1])$ in \mathbb{R} with the finite complement topology. Justify your result.
- 2.28 Prove Theorem 2.15 : Let A be a subset of a topological space X.
 - (a) ∂A is closed.
 - (b) $\partial A = \operatorname{Cl}(A) \cap \operatorname{Cl}(X A)$
 - (c) $\partial A \cap \operatorname{In} t(A) = \emptyset$
 - (d) $\partial A \cup Int(A) = Cl(A)$
 - (e) $\partial A \subset A$ if and only if A is closed.
 - (f) $\partial A \cap A = \emptyset$ if and only if A is open.
 - (g) $\partial A = \emptyset$ if and only if A is both open and closed.