Inferential Exploratory Data Analysis

Stephen Sani April 4, 2016

1. Loading the data

The ToothGrowt data was loaded

```
data("ToothGrowth")
```

2. Summarizing and analysing the data

The first six rows of the data was viewed

```
head(ToothGrowth)
```

```
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0 VC 0.5
```

The summary of the ToothGrowth data was obtained

summary(ToothGrowth)

```
##
        len
                   supp
                               dose
##
         : 4.20 OJ:30
                                 :0.500
  Min.
                         Min.
  1st Qu.:13.07
                   VC:30
                          1st Qu.:0.500
  Median :19.25
                          Median :1.000
   Mean
          :18.81
                          Mean
                                 :1.167
##
   3rd Qu.:25.27
                          3rd Qu.:2.000
## Max.
          :33.90
                          Max.
                               :2.000
```

The structure of the data was obtained

str(ToothGrowth)

The distribution of the data was plotted by supp and dose variables

3. Confidence interval

(a.) Confidence interval for the two "supp" levels

The dataframe was subset by the two "supp" levels "OJ" and "VC"

```
supp1<-ToothGrowth[ToothGrowth$supp=="OJ", "len"]
supp2<-ToothGrowth[ToothGrowth$supp=="VC", "len"]</pre>
```

Confidence interval for the test statistic was obtained for H(null)=0

```
t.test(supp1, supp2, paired = FALSE, var.equal = FALSE)$conf
```

```
## [1] -0.1710156 7.5710156
## attr(,"conf.level")
## [1] 0.95
```

Since the interval includes 0, we fail to reject the Null hypothesis

(b.) Confidence interval for combinations of dose levels

The data frame was subset by the dose levels

```
x1<-ToothGrowth[ToothGrowth$dose=="0.5", "len"]
x2<-ToothGrowth[ToothGrowth$dose=="1", "len"]
x3<-ToothGrowth[ToothGrowth$dose=="2", "len"]</pre>
```

Confidence interval for the test statistic between "0.5" and "1" was obtained for H(null)=0

```
t.test(x1, x2, paired = FALSE, var.equal = FALSE)$conf
```

```
## [1] -11.983781 -6.276219
## attr(,"conf.level")
## [1] 0.95
```

Since the interval does not include 0, We reject the null hypothesis

Confidence interval for the test statistic between "0.5" and "2" was obtained for H(null)=0

```
t.test(x1, x3, paired = FALSE, var.equal = FALSE)$conf
```

```
## [1] -18.15617 -12.83383
## attr(,"conf.level")
## [1] 0.95
```

Since the interval does not include 0, We reject the null hypothesis

Confidence interval for the test statistic between "1" and "2" was obtained for H(null)=0

```
t.test(x2, x3, paired = FALSE, var.equal = FALSE)$conf
```

```
## [1] -8.996481 -3.733519
## attr(,"conf.level")
## [1] 0.95
```

Since the interval does not include 0, We reject the null hypothesis