Relazione Natalizia

Francesco Angelo Fabiano Antonacci

December 19, 2024

1 Ricostruzione numerica di forme d'onda

1.1 Forme d'onda quadre

Un'onda quadra alternata dispari con ampiezza picco-picco unitaria e fase nulla è descitta dalla seguente serie inifinita a Eq.(1).

Figure 1: A sinistra ricostruzione numerica dell'onda quadra Eq.(1) su due periodi con cento punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

$$x(t) = \sum_{k=1,3,5}^{\infty} \frac{2}{k\pi} \sin(k\omega t)$$
 (1)

In $\operatorname{Fig}(1)$ e $\operatorname{Fig}(2)$ sono mostrate due ricostruzioni numeriche dell'onda quadra. All'aumentare dei termini N della serie diminuisce la distranza tra onda analitica e serie di seni.

Si osserva che nel caso di Fig(1), la quale ha una risoluzione peggiore, la deformazione dell'onda quadra assomiglia a quanto visto nelle esperienze pratiche di laboratorio con l'oscilloscopio quando si usa il generatore di funzioni a frequenze sufficientemente alte: forse questo rivela qualcosa sul funzionamento del generatore di funzioni.

Figure 2: A sinistra ricostruzione numerica dell'onda quadra Eq.(1) su due periodi con centomila punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

Si osserva che la presenza di lati obliqui nei transienti è conseguenza di un sottocampionamento della mia ricostruzione, questo comporta che non c'è miglioramento all'aumentare dei termini della serie. I residui nei punti iniziali e i transienti non si annullano mai: in corrispondenza di ognuno di questi punti si trovano dei picchi.

1.2 Forme d'onda triangolari

Un'onda triangolare alternata pari con ampiezza picco-picco unitaria e fase nulla è descitta dalla dall' Eq.(2).

$$x(t) = \sum_{k=1,3.5...}^{\infty} \left(\frac{2}{k\pi}\right)^2 \cos(k\omega t) \tag{2}$$

Figure 3: A sinistra ricostruzione numerica dell'onda triangolare Eq.(2) su due periodi con centomila punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

Similmente a quanto accade per l'onda quadra, anche in questo caso, nei punti in cui la derivata è discontinua e nei punti al bordo non c'è convergenza come si può vedere dai grafici dei residui in Fig.(3) e Fig.(4). Anche solo qualitativamente si osserva a entrambe le risolizioni che la convergenza all'onda analitica è più rapida dell'onda quadra, una migliore discussione di ciò avverrà in Sez.(1.3).

Figure 4: A sinistra ricostruzione numerica dell'onda triangolare Eq.(2)su due periodi con cento punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

Per quanto riguarda l'utilizzo di diverse risoluzioni nei grafici, l'impiego di una risoluzione minore comporta problemi nella convergenza solo nei punti iniziali e non nei punti di transiente, l'impiego di una risoluzione maggiore fa osservare dei picchi nei residui in prossimità dei transienti. Chiaramente non mettere i punti di picco tra i punti che vengono campionati comporta una deformazione della forma d'onda graficata che non viene osservata nei residui. Considerazione azzardata: questo accade perché "moralmente" se prima la mancata convergenza in certi punti era un problema "puntuale", in quanto nel caso dell'onda quadra la funzione è discontinua, ora la causa del problema è "locale", in quanto la discontinuità della forma d'onda analitica si ha nella derivata prima.

1.3 Verifica di convergenza della serie

La serie di Fourier delle rispettive onde dovrebbe convergere integralmente alle funzioni analitiche. La velocità di convergenza rispetto al numero di iterazioni è diversa per le forme d'onda come si può vedere in Fig.(5).

Tuttavia nel caso dell'onda quadra si osserva un comportamento inaspettato:

quando il campionamento avviene su numero sufficientemente piccolo di periodi, non c'è più convergenza integrale tra la funzione semplice definita sugli intervalli dalla serie di Fourier:con ogni probabilità questo è dovuto al transiente che non è adeguatamente approssimato. Inoltre,per entrambe le onde compiono delle oscillazioni dei residui che si smorzano nella coda all'aumentare delle iterazioni come si può vedere in Fig.(6).

Figure 5: Nella figura simulazione numerica sono stati usati cento milioni di campionamenti presi tra due periodi.

Figure 6: Nella figura simulazione numerica sono stati usati 100 campionamenti presi tra due periodi.

1.4 Treni di impulsi

Un treno di impulsi pari con ampiezza picco-picco unitaria e fase nulla è descitta dalla dall' Eq.(3).

$$x(t) = \sum_{k=1,3,5...}^{\infty} \left(\frac{2}{k\pi}\right) \sin(k\pi\delta) \sin(k\omega t)$$
 (3)

Come si può vedere in Fig.(7) e in Fig.(8) si possono fare le stesse identiche osservazioni fatte in Sez(1.1).

Figure 7: A sinistra ricostruzione numerica dell'onda triangolare Eq.(3)su due periodi con cento punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

Figure 8: A sinistra ricostruzione numerica dell'onda triangolare Eq.(3)su due periodi con centomila punti. A destra residui tra onda analitica e la ricostruzione. N è il numero a cui è stata troncata la serie.

2 Filtro passa basso e filtro passa alto

Un filtro passa basso di frequenza di taglio f_T , che riceve un segnale di frequenza angolare ω , lo riscala di un fattore G e lo sfasa di un angolo ϕ come dato da Eq.(4).

$$f = \frac{\omega}{2\pi}, \quad G(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_T}\right)^2}}, \quad \phi = \arctan\left(\frac{-f}{f_T}\right)$$
 (4)

Un filtro passa alto di frequenza di taglio f_T , che riceve un segnale di frequenza angolare ω , lo riscala di un fattore G e lo sfasa di un angolo ϕ come dato da Eq.(5).

$$f = \frac{\omega}{2\pi}, \quad G(f) = \frac{1}{\sqrt{1 + \left(\frac{f_T}{f}\right)^2}}, \quad \phi = \arctan\left(\frac{f_T}{f}\right)$$
 (5)

Dunque le equazioni per le onde passanti per ciascuno dei filtri si trovano moltiplicando ciascun termine della sommatoria per il rispettivo $G\left(k\omega,f_{T}\right)$ e

sommando il termine $\phi\left(k\omega,f_{T}\right)$ all'interno della sinusoide o cosinusoide.

2.1 Onda quadra

Riporto la forma d'onda della cosinusoide integrata in .

Figure 9:

- 2.2 Onda triangolare
- 2.3 Treno di impulsi
- 3 Filtro passa banda
- 4 Best fit dei dati acquisiti con Arduino
- 4.1 Onda quadra
- 4.2 Onda a pinna di squalo
- 4.3 Onda sinusoidale
- 4.4 Onda triangolare
- 5 Simulazione numerica dei grafici guadagno vs frequenza
- 5.1 Integratore con forma d'onda quadra in ingresso
- 5.1.1 Contestualizzazione dei risultati sperimentali
- 5.2 Integratore con forma d'onda triangolare in ingresso
- 5.2.1 Contestualizzazione dei risultati sperimentali
- 6 Simulazioni facoltative
- 6.1 Derivatore con forma d'onda a scelta in ingresso
- 6.2 Distorsione di una forma d'onda quadra osservata con accoppiamento AC
- 6.3 Forma d'onda quadra con duty cycle variabile e filtro passa-basso
- 6.3.1 Effetti del filtro passa-basso su un treno di impulsi
- 6.4 Altre simulazioni e confronti con dati sperimentali