Calcolatori Elettronici (12AGA)

Esame del 5.7.2022

Traccia di soluzioni per parte 2

Si consideri un processore connesso ad una memoria da 64KB e dotato di una cache direct mapped da 32 linee, ciascuna da 16 byte. Assumendo che inizialmente le 32 linee contengano i primi 32 blocchi di memoria (quindi la linea 0 contiene il blocco 0, la linea 1 il blocco 1, e così via), si determini quali dei seguenti 12 accessi in memoria da parte del processore provocano un hit (H), e quali un miss (M), completando la tabella seguente.

Indirizzo	Blocco (riportarlo anche in forma binaria)	Numero di linea	н/м
0100 0000 0011 0011			
1010 1000 1000 0011			
0000 0000 0101 0100			
0000 1000 1001 1000			
0000 0100 0111 1010			
0000 0100 0010 0101			
0101 0000 1111 0110			
0000 1000 1001 1111			
0000 0000 1000 1100			
0000 0011 0011 0100			
0000 0011 0011 0110			
1010 1000 1000 0110			

Indirizzo	Blocco (riportarlo anche in forma binaria)	Numero di linea	н/м
0100 0000 0011 0011	0100 0000 0011 = 1024+2+1	3	M
1010 1000 1000 0011	1010 1000 1000 =2048+512+128+8	8	M
0000 0000 0101 0100	0000 0000 0101=4+1	5	Н
0000 1000 1001 1000	0000 1000 1001=128+8+1	9	M
0000 0100 0111 1010	0000 0100 0111=64+4+2+1	7	M
0000 0100 0010 0101	0000 0100 0010=128+2=130	2	M
0101 0000 1111 0110	0101 0000 1111=1024+256+8+4+2+1	15	M
0000 1000 1001 1111	0000 1000 1001=128+8+1	9	Н
0000 0000 1000 1100	0000 0000 1000=16	8	M
0000 0011 0011 0100	0000 0011 0011=32+16++2+1	19	M
0000 0011 0011 0110	0000 0011 0011=32+16++2+1	19	Н
1010 1000 1000 0110	1010 1000 1000=2048+512+128+8	8	М

Dato il diagramma degli stati della macchina di Moore rappresentata figura, progettare il relativo circuito minimo a due livelli. E' necessario arrivare alla rappresentazione delle funzioni delle uscite e degli stati futuri senza disegnare il circuito.

B/0

C/0

Inp	S0	S1	F0	F1	Out
0	0	0	0	0	0
1	0	0	0	1	0
0	0	1	0	0	0
1	0	1	1	0	0
0	1	0	1	1	0
1	1	0	1	0	0
0	1	1	0	0	1
1	1	1	0	1	1

Si assume la seguente codifica degli stati

- A: 00
- B: 01
- C: 10
- D: 11

Funzione Out

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0	0	0	1	0
I = 1	0	0	1	0

Funzione F0

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0	0	0	0	1
I = 1	0	1	0	1

Funzione F1

OUT	S0-S1 = 00	S0-S1 = 01	S0-S1 = 11	S0-S1 = 10
I = 0	0	0	0	1
I = 1	1	0	1	0