

FCC Test Report

FOR:

Model Name: OMR-WAVE-UNIT

FCC ID: XZU9734

47 CFR Part 90M

TEST REPORT #: EMC_CETE4_012_90M_Rev1 DATE: 2010-02-22

Facility (BQTF)

FCC listed **A2LA Accredited**

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 ◆ Fax: + 1 (408) 586 6299 ◆ E-mail: info@cetecomusa.com ◆ http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Date of Report: 2010-02-22 Page 2 of 36

1 TABLE OF CONTENTS

1	TAE	BLE OF CONTENTS	2		
2	Assessment				
3	Adn	ninistrative Data			
	3.1	Identification of the Testing Laboratory Issuing the EMC Test Report			
	3.2	Identification of the Client			
	3.3	Identification of the Manufacturer			
4		tipment under Test (EUT)			
	4.1	Specification of the Equipment under Test			
	4.2	Identification of the Equipment Under Test (EUT)			
	4.3	Identification of Accessory equipment			
5		ject Of Investigation			
6	_	asurements			
U	6.1				
		Radiated Measurement Procedure			
	6.2 6.2.1	Maximum Peak Output Power			
	6.2.2 6.2.3	Zerot Conditions:	8		
	6.3	Test Result: Modulation Characteristics			
	6.4	Occupied Bandwidth			
	6.4.1				
	6.4.2				
	6.5	Transmit Spectrum Mask	21		
	6.6	Frequency Tolerance	24		
	6.6.1 6.6.2		24 24		
	6.7				
		Transmitter Spurious Emissions- Conducted Limits			
	6.7.2				
	6.8 6.8.1	Transmitter Spurious Emissions- Radiated Test Result:			
7	Test	Test Equipment and Ancillaries used for tests3.			
8		OCK DIAGRAMS			
9		Davisian History			
		Kevision fisiory50			

Test Report #:

EMC_CETE4_012_90M_Rev1

Date of Report:

2010-02-22

Page 3 of 36

2 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 90M of Title 47 of the Code of Federal Regulations.

Company	Description	Model #
KAPSCH TrafficCom AG	Wireless Radio	OMR-WAVE-UNIT

Responsible for Testing Laboratory:

Heiko Strehlow

2010-02-22	Compliance	(Director)	
Date	Section	Name	Signature

Responsible for the Report:

Marc Douat

2010-02-22	Compliance	(Test Lab Manager)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Date of Report: 2010-02-22 Page 4 of 36

3 Administrative Data

3.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Heiko Strehlow
Responsible Project Leader:	Marc Douat

3.2 Identification of the Client

Applicant's Name:	Kapsch TrafficCom AG
Street Address:	Am Europlatz 2
City/Zip Code	1120 Wien
Country	Austria
Contact Person:	Herbert Diemling
Phone No.	+43508117857
Fax:	+43508112209
e-mail:	herbert.diemling@kapsch.net

3.3 Identification of the Manufacturer

Manufacturer's Name:	Same as above
Manufacturers Address:	
City/Zip Code	
Country	

Date of Report: 2010-02-22 Page 5 of 36

4 Equipment under Test (EUT)

4.1 Specification of the Equipment under Test

Marketing Name:	OMR-WAVE-UNIT	
Model No:	OMR-WAVE-UNIT	
Product Type:	Wireless Radio	
Hardware Revision :	Rev201	
Software Revision:	1.0	
FCC-ID:	XZU9734	
Frequency:	5860 MHz – 5920 MHz	
Type(s) of Modulation:	OFDM	
Number of channels:	7	
Antenna Type:	Circularly Polarized	
Equipment Classification:	□Fixed □Vehicular ■Portable □Module	
Power Supply:	Powered by host	
Temperature Range:	-30°C to 55°C	

4.2 Identification of the Equipment Under Test (EUT)

EUT#	Serial Number	HW Version	SW Version
1	GZQ00708	Rev201	1.0

4.3 Identification of Accessory equipment

AE#	Туре	Manufacturer	Model	Serial Number
1	Host	Kapsch	Gotive H42TW	H4205686

Date of Report: 2010-02-22 Page 6 of 36

5 Subject Of Investigation

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 90M of Title 47 of the Code of Federal Regulations.

This test report is to support a request for new equipment authorization under the FCC ID XZU9734. All testing was performed on the product referred to in Section 3 as EUT.

Measurements in this report are made with the EUT transmitting with the lowest data rate, worst case.

Date of Report : 2010-02-22 Page 7 of 36

6 Measurements

6.1 Radiated Measurement Procedure

Ref: TIA-603C 2004 -2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Adjust the settings of the Digital RadioCommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation:
 - ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation:
 - EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channels.

Spectrum analyzer settings: RBW=VBW=3MHz

Date of Report: 2010-02-22 Page 8 of 36

6.2 Maximum Peak Output Power

6.2.1 Limits

EIRP: 20dBm, Class C

6.2.2 Test Conditions:

Tnom: 22°C; Vnom

6.2.3 Test Result:

Frequency (MHz)	Max Peak Output Power- Conducted (dBm)	Max Peak Output Power- EIRP (dBm)
5860	18.5	19.89
5870	18.9	19.37
5880	18.2	19.12
5890	18.2	18.73
5900	19.0	18.46
5910	18.8	18.82
5920	18.9	18.07
	Measurement Uncertainty: ±3dB	

RBW and VBW set to 10 MHz. Peak detector.

Date of Report: 2010-02-22 Page 9 of 36

5860 MHz

EIRP5850

RVS:CearWrite

RIVS/VaxHold

Date of Report: 2010-02-22 Page 10 of 36

5870 MHz

EIRP5850

RVSOearWite RVSNaxHold

Date of Report : 2010-02-22 Page 11 of 36

5880 MHz

EIRP5850

RVSOearWite RVSWaxHdd

Date of Report : 2010-02-22 Page 12 of 36

5890 MHz

EIRP5850

RVSOearWite RVSNaxHdd

Date of Report : 2010-02-22 Page 13 of 36

5900 MHz

EIRP5850

RVSOearWite RVSNaxHold

Date of Report : 2010-02-22 Page 14 of 36

5910 MHz

EIRP5850

Date of Report : 2010-02-22 Page 15 of 36

5920 MHz

EIRP5850

RVSOearWite RVSNaxHold

Date of Report : 2010-02-22 Page 16 of 36

6.3 Modulation Characteristics

The carrier signal is OFDM. The sub-carriers have the following data rates and modulations:

Data Rate (Mbit/s)	Modulation
3	BPSK
4.5	BPSK
6	QPSK
9	QPSK
12	16QAM
18	16QAM
24	64QAM
27	64QAM

Date of Report: 2010-02-22 Page 17 of 36

6.4 Occupied Bandwidth

2.1049, 90.209, 90.379, ASTM E2213

6.4.1 Test Result:

99% Occupied Bandwidth (MHz)				
Frequency (MHz)				
5860	5890	5920		
8.387	8.417	8.417		
Measurement Uncertainty: ±1 kHz				

03.DEC.2009 09:46:00

Date of Report : 2010-02-22 Page 18 of 36

6.4.2 Test Data/plots:

Date:

Date of Report : 2010-02-22 Page 19 of 36

Date: 03.DEC.2009 09:46:52

Date of Report : 2010-02-22 Page 20 of 36

Date: 03.DEC.2009 09:46:52

Date of Report : 2010-02-22 Page 21 of 36

6.5 Transmit Spectrum Mask

90.210, 90.379, ASTM 8.9.2

EUT is Class C equipment

Date: 02.DEC.2009 10:54:52

02.DEC.2009 11:04:59

Date:

Date of Report : 2010-02-22 Page 22 of 36

02.DEC.2009 11:00:26

Date:

Date of Report : 2010-02-22 Page 23 of 36

Date of Report: Page 24 of 36 2010-02-22

6.6 Frequency Tolerance FCC 2.1055, 90.213, 90.379, ASTM 8.9.4

6.6.1 Limits:

10 ppm

6.6.2 Results:

Expected Frequency (MHz)	Measured Frequency (MHz)	Frequency Error (kHz)	Frequency Error (ppm)
5860	5859.9979	-2.067	-0.3527
5870 5869.9979		-2.067	-0.3521
5880	5879.9978	-2.192	-0.3728
5890	5889.9981	-1.94	-0.3294
5900	5899.9979	-2.067	-0.3503
5910	5909.9971	-2.943	-0.4980
5920	5919.9978	-2.192	-0.3703

Temperature °C	Frequency (MHz)	Frequency Error (kHz)	Frequency Error (ppm)	
55	5889.9716	-28.357	-4.8144	
50 5889.9716		-28.357	-4.8144	
40 5889.9801		-19.852	-3.3705	
30	5889.9817	-18.349	-3.1153	
20	5889.9981	-1.94	-0.3294	
10	5890.0071	7.114	1.2078	
0	5890.0183	18.337	3.1132	
-10 5890.0258		25.752	4.3722	
-20	-20 5890.0187		3.1812	
-30	-30 5890.0007		0.1190	

Date of Report : 2010-02-22 Page 25 of 36

6.7 Transmitter Spurious Emissions- Conducted

6.7.1 Limits

-25 dBm

6.7.2 Test data/ plots:

Date: 03.DEC.2009 09:58:33

03.DEC.2009 10:02:08

Date:

Date of Report : 2010-02-22 Page 26 of 36

03.DEC.2009 10:04:50

Date:

Date of Report: 2010-02-22 Page 27 of 36

Date of Report : 2010-02-22 Page 28 of 36

6.8 Transmitter Spurious Emissions- Radiated

6.8.1 Test Result:

30-1

FCC 90 30-1GHz

Date of Report : 2010-02-22 Page 29 of 36

FCC 90 1-18GHz

Date of Report: 2010-02-22 Page 30 of 36

FCC 90 1-18GHz

Date of Report : 2010-02-22 Page 31 of 36

FCC 90 1-18GHz

Test Report #:

EMC_ CETE4_012_90M_Rev1

Date of Report: 2010-02-22

Page 32 of 36

FCC 90 18-40GHz

Horizontal and Vertical Polarizations, Worst case for all channels

Date of Report: 2010-02-22 Page 33 of 36

7 <u>Test Equipment and Ancillaries used for tests</u>

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2010	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	May 2010	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2010	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2010	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2010	1 year
06	Horn Antenna (1- 18GHz)	SAS- 200/571	AH Systems	325	June 2010	1 year
07	Horn Antenna (18-26.5GHz)	3160-09	EMCO	1240	June 2010	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2010	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2010	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2010	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2010	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2010	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	May 2010	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

Date of Report : 2010-02-22 Page 34 of 36

8 BLOCK DIAGRAMS

Test Report #:

EMC_ CETE4_012_90M_Rev1

Date of Report:

2010-02-22

Page 35 of 36

Date of Report: 2010-02-22 Page 36 of 36

9 Revision History

Date	Report Name	Changes to report	Report prepared by
2010-02-08	EMC_CETE4_012_90M	Original	Marc
2010-02-22	EMC_CETE4_012_90M_Rev1	Updated output power, added modulation characteristics	Marc