Ejercicio 2

Consigna

Sea $T:\mathbb{R}^3\to\mathbb{R}^2$ tal que T(x,y,z)=(3x+2y-4z,x-5y+3z). Hallar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

- 1. \mathcal{B} y \mathcal{A} son las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 respectivamente
- 2. $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}$ y \mathcal{A} es la base canónica de \mathbb{R}^2
- 3. $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}$ y $\mathcal{A} = \{(1,3), (2,5)\}$

Resolución (parte 1)

- $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$
- $\mathcal{A} = \{(1,0),(0,1)\}$

Ahora hallemos los transformados de \mathcal{B} :

- T(1,0,0) = (3,1)
- T(0,1,0) = (2,5)
- T(0,0,1) = (-4,3)

Observemos que $coord_{\mathcal{A}}(v)=v$ para todo v si \mathcal{A} es canónica. Esto es observable trivialmente, por lo que en este ejemplo nos estaríamos salteando el paso de obtener las coordenadas de los transformados de \mathcal{B} .

En conclusión:

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} 3 & 2 & -4 \\ 1 & 5 & 3 \end{pmatrix}$$

Resolución (parte 2)

- $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}$
- $\mathcal{A} = \{(1,0),(0,1)\}$

Ahora hallemos los transformados de \mathcal{B} :

- T(1,1,1) = (1,-1)
- T(1,1,0) = (5,-4)
- T(1,0,0) = (3,1)

Tenemos la misma situación que el ejercicio anterior, ya que la base de llegada que tenemos es canónica, entonces:

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} 1 & 5 & 3 \\ 1 & -4 & 1 \end{pmatrix}$$

Resolución (parte 3)

- $\mathcal{B} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$
- $\mathcal{A} = \{(1,3), (2,5)\}$

La primer parte ya la hicimos en el anterior ejercicio:

- T(1,1,1) = (1,-1)
- T(1,1,0) = (5,-4)
- T(1,0,0) = (3,1)

En cambio ahora si tenemos que hallar las coordenadas, porque \mathcal{A} ya no es canónica:

$$\bullet \ coord_{\mathcal{A}}(T(1,1,1)) = coord_{\mathcal{A}}(1,-1)$$

Básicamente lo que tengo que hallar es los valores de x_1, x_2 que cumplan lo siguiente:

$$x_1(1,3) + x_2(2,5) = (1,-1)$$

Esto está dado por el siguiente sistema:

De esto obtengo que $x_2=4$, y sustituyendo en la primer ecuación obtengo que $x_1=-7$.

Ahora tengo que hacer esto para los demás vectores transformados de \mathcal{B} :

- $coord_{\mathcal{A}}(T(1,1,0)) = coord_{\mathcal{A}}(5,-4) = (-33,19)$
- $coord_{\mathcal{A}}(T(1,0,0)) = coord_{\mathcal{A}}(3,1) = (-13,8)$

En conclusión:

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} -7 & -33 & -13 \\ 4 & 19 & 8 \end{pmatrix}$$

Observación

Siempre verificar las cuentas, preferentemente escribiendo el sistema para cada coordenada que se tiene que calcular, porque ahí nacen los errores