Lab 2

Madiba Hudson-Quansah

Part 1

Question 1

Draw the truth table for the above logical equations for a full adder.

Solution:

а	b	cin	$(a \oplus b) \oplus cin$	$a \cdot b + b \cdot \sin + a \cdot \sin$
0	0	0	0	0
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1
1	1	0	0	1
1	0	0	1	0
0	1	0	1	1

Part 2

Question 2

Compute the additions for the following as 2-bit additions. Indicate their Sum and Carry (overflow).

1. 00 + 11

2. 10 + 01

3. 11 + 11

4. 01 + 11

Solution:

1.

$$\begin{array}{c|cccc}
 & 0 & 0 \\
 + & 1 & 1 \\
\hline
 & 1 & 1
\end{array}$$

Carry: 0

2.

$$\begin{array}{cccc} & 1 & 0 \\ + & 0 & 1 \\ \hline & 1 & 1 \end{array}$$

Carry: 0

3.

$$\begin{array}{cccc} & 1 & 1 \\ + & 1 & 1 \\ \hline & 1 & 0 \end{array}$$

Carry: 1

4.

$$\begin{array}{c|cccc} & 0 & 1 \\ + & 1 & 1 \\ \hline & 0 & 0 \\ \end{array}$$

Carry: 1

Part 3

Question 3

Compute the arithmetic for the following as 2-bit subtractions using the 2's complement approach. Indicate their Sum and Carry (overflow).

- 1. 00 11
- 2. 10 01
- 3. 11 11
- 4. 01 11

Solution:

1.

$$\begin{array}{r}
0 & 0 \\
- & 1 & 1 \\
\hline
0 & 0 \\
+ & 0 & 1 \\
\hline
0 & 1
\end{array}$$
Carry: 0

- .

2.

Two's Complement

Two's Complement

Carry: 1

3.

$$\begin{array}{cccc} & 1 & 1 \\ - & 1 & 1 \\ \hline & 1 & 1 \\ + & 0 & 1 \\ \hline & 0 & 0 \\ \end{array}$$

Two's Complement

Carry: 1

4.

$$\begin{array}{c|cccc}
 & 0 & 1 \\
 & - & 1 & 1 \\
\hline
 & 0 & 1 \\
 & + & 0 & 1 \\
\hline
 & 1 & 0
\end{array}$$

Carry: 0

Two's Complement

Part 4

Question 4

Compute the additions for the following as 8-bit additions. Indicate their Sum and Carry.

- 1. 1010110 + 110100
- 2. 11001011 + 1011010

3. 110001 + 11100100

4. 1010001 + 11001

Solution:

1.

Carry: 0

2.

Carry: 1

3.

Carry: 1

4.

Carry: 0

Part 5

Question 5

Compute the arithmetic for the following as 8-bit subtractions using the 2's complement approach. Indicate their Sum and Carry.

1. FF – E6

2. A5 - 6F

3. F2 - D7

4. 110001 - 11100100

5. 1010001 - 11001

Solution:

1.

Two's Complement

Carry: 1

2.

$$\begin{array}{c|cccc}
 & A & 5 \\
 & - & 6 & F \\
\hline
 & 3 & 6
\end{array}$$

Carry: 1

3.

$$\begin{array}{c|ccccc} & F & 2 \\ - & D & 7 \\ \hline & 1 & B \end{array}$$

Carry: 1

4.

Two's Complement

Carry: 0

Carry: 1

5.

Two's Complement

Part 6

Question 6

How does the digital logic of a full adder circuit differ from that of a half adder?

Solution: A full adder includes a carry-in bit, but a half adder does not.

Question 7

What role does the XOR gate play in the implementation of a full adder circuit?

Solution: The XOR gate is used to calculate the sum component of the full adder using the formula $(a \oplus b) \oplus \text{cin.}$

Question 8

How does the carry-out bit in a full adder circuit influence subsequent addition operations?

Solution: The carry-out bit is used as the carry-in bit for the next full adder in a series of full adders. This allows for the addition of numbers with more than one bit, pushing the carry bit to the next full adder in the series.

Question 9

Can a full adder circuit be used to perform subtraction? If so, how?

Solution: Yes. To do this the two's complement of the subtrahend is calculated and added to the minuend. This complement can be done by inverting the bits and adding 1 to the least significant bit, which can be done using a NOT gate or an XOR for conditional inversion.

Question 10

What is the significance of the XOR and AND gates in a subtractor circuit?

Solution: In a purely subtractor circuit, the XOR gate is used to calculate the difference between the minuend and the subtrahend and the AND gate is used to calculate the borrow bit.