Deep Generative Models

Lecture 7

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

- More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.
- Too powerful $p(\mathbf{x}|\mathbf{z}, \theta)$ could lead to posterior collapse: $q(\mathbf{z}|\mathbf{x})$ will not carry any information about \mathbf{x} and close to prior $p(\mathbf{z})$.

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables.
- ► Local statistics are captured by limited receptive field autoregressive model.

Recap of previous lecture

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ makes the model expressive, but posterior collapse is possible.
- ► PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

KL annealing

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot \mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Start training with $\beta=$ 0, increase it until $\beta=$ 1 during training.

Free bits

Ensure the use of less than λ bits of information:

$$\mathcal{L}(q, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, \mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))).$$

This results in $KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \geq \lambda$.

Recap of previous lecture

VAE objective

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}
ightarrow \max_{q,oldsymbol{ heta}}$$

IWAE objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, \dots, \mathsf{z}_{\mathcal{K}} \sim q(\mathsf{z}|\mathsf{x})} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{p(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x})}
ight)
ightarrow \max_{q, oldsymbol{ heta}}.$$

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta) \ge \mathcal{L}(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\theta) = \lim_{K \to \infty} \mathcal{L}_K(q,\theta)$ if $\frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Theorem

- 1. $\log p(\mathbf{x}|\boldsymbol{\theta}) \geq \mathcal{L}_K(q,\boldsymbol{\theta}) \geq \mathcal{L}_M(q,\boldsymbol{\theta})$, for $K \geq M$;
- 2. $\log p(\mathbf{x}|\theta) = \lim_{K \to \infty} \mathcal{L}_K(q,\theta)$ if $\frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 1.

$$\mathcal{L}_{K}(q, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) =$$

$$= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \mathbb{E}_{k_{1}, \dots, k_{M}} \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{M}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) \geq$$

$$\geq \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \mathbb{E}_{k_{1}, \dots, k_{M}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{m}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) =$$

$$= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{M}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{m} | \boldsymbol{\theta})}{q(\mathbf{z}_{m} | \mathbf{x})} \right) = \mathcal{L}_{M}(q, \boldsymbol{\theta})$$

$$\frac{\mathbf{a}_{1} + \dots + \mathbf{a}_{K}}{\mathbf{a}_{K}} = \mathbb{E}_{k_{1}, \dots, k_{M}} \frac{\mathbf{a}_{k_{1}} + \dots + \mathbf{a}_{k_{M}}}{\mathbf{a}_{K}}, \quad k_{1}, \dots, k_{M} \sim U[1, K]$$

Burda Y., Grosse R., Salakhutdinov R. Importance Weighted Autoencoders, 2015

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 2.

Consider r.v. $\xi_K = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$.

If summands are bounded, then (from the strong law of large numbers)

$$\xi_K \xrightarrow[K \to \infty]{a.s.} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} = p(\mathbf{x}|\theta).$$

Hence $\mathcal{L}_K(q, \theta) = \mathbb{E} \log \xi_K$ converges to $\log p(\mathbf{x}|\theta)$ as $K \to \infty$.

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}_{\mathcal{K}}(q,oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta})$$

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}; \ \mathcal{L}_K(q, oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_1, ..., \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathbf{x}, \mathbf{z}_k|oldsymbol{ heta})}{q(\mathbf{z}_k|\mathbf{x})}
ight). \end{aligned}$$

- $\blacktriangleright \mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$
- $\blacktriangleright \ \mathcal{L}_{\infty}(q, \theta) = \log p(\mathbf{x}|\theta).$
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \log p(\mathbf{x}|\theta)$?
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \mathcal{L}_{\mathcal{K}}(q, \theta)$?

Theorem

 $\mathcal{L}(q^*, heta) = \mathcal{L}_{\mathcal{K}}(q, heta)$ for the following variational distribution

$$q^*(\mathbf{z}|\mathbf{x}) = \mathbb{E}_{\mathbf{z}_2,...,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}),$$

where

$$q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}) = \frac{\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}}{\frac{1}{K}\sum_{k=1}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}}q(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{z})}{\frac{1}{K}\left(\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})} + \sum_{k=2}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}\right)}.$$

IWAE posterior

True posterior

Cremer C., Morris Q., Duvenaud D. Reinterpreting Importance-Weighted Autoencoders, 2017

Objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x}, oldsymbol{\phi})}
ight)
ightarrow \max_{oldsymbol{\phi}, oldsymbol{ heta}}.$$

Gradient

$$\Delta_{\mathcal{K}} =
abla_{oldsymbol{ heta}, oldsymbol{\phi}} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{p(\mathbf{x}, \mathbf{z}_k | oldsymbol{ heta})}{q(\mathbf{z}_k | \mathbf{x}, oldsymbol{\phi})}
ight), \quad \mathbf{z}_k \sim q(\mathbf{z} | \mathbf{x}, oldsymbol{\phi}).$$

Theorem

$$\mathsf{SNR}_{\mathcal{K}} = rac{\mathbb{E}[\Delta_{\mathcal{K}}]}{\sigma(\Delta_{\mathcal{K}})}; \quad \mathsf{SNR}_{\mathcal{K}}(oldsymbol{ heta}) = O(\sqrt{\mathcal{K}}); \quad \mathsf{SNR}_{\mathcal{K}}(\phi) = O\left(\sqrt{rac{1}{\mathcal{K}}}
ight).$$

Hence, increasing K vanishes gradient signal of inference network $q(\mathbf{z}|\mathbf{x}, \phi)$.

Rainforth T. et al. Tighter variational bounds are not necessarily better, 2018

Theorem

$$\mathsf{SNR}_{K} = \frac{\mathbb{E}[\Delta_{K}]}{\sigma(\Delta_{K})}; \quad \mathsf{SNR}_{K}(\boldsymbol{\theta}) = O(\sqrt{K}); \quad \mathsf{SNR}_{K}(\boldsymbol{\phi}) = O\left(\sqrt{\frac{1}{K}}\right).$$

- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- Gradient signal becomes really small, training is complicated.
- IWAE is very popular technique as a quality measure for VAE models.

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

ELBO interpretations

$$egin{aligned} \log p(\mathbf{x}|oldsymbol{ heta}) &= \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}). \ & \mathcal{L}(oldsymbol{\phi},oldsymbol{ heta}) &= \int q(\mathbf{z}|\mathbf{x},oldsymbol{\phi}) \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})} d\mathbf{z}. \end{aligned}$$

Evidence minus posterior KL

$$\mathcal{L}(\phi, \theta) = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \theta)).$$

Average reconstruction loss with regularizer (prior KL)

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right]$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})).$$

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\theta) = \frac{1}{n}\sum_{i=1}^{n}\left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}],$$

- $\mathbf{q}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i) \mathbf{aggregated}$ posterior distribution.
- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- First term pushes q(z) towards the prior p(z).
- Second term reduces the amount of information about x stored in z.

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}].$$

Proof

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})} d\mathbf{z} =
= \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q(\mathbf{z})} d\mathbf{z} = \int \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z} +
+ \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i})}{q(\mathbf{z})} d\mathbf{z} = KL(q(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||q(\mathbf{z}))$$

Without proof:

$$\mathbb{I}_q[\mathsf{x},\mathsf{z}] = \frac{1}{n} \sum_{i=1}^n \mathsf{KL}(q(\mathsf{z}|\mathsf{x}_i)||q(\mathsf{z})) \in [0,\log n].$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q(\mathbf{z})||p(\mathbf{z}))}_{\text{Reconstruction loss}} \underbrace{\text{MI}}_{\text{Marginal KL}}$$

Prior distribution p(z) is only in the last term.

Optimal VAE prior

$$KL(q(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior $p(\mathbf{z})$ is the aggregated posterior $q(\mathbf{z})$.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

Optimal VAE prior

How to choose the optimal p(z)?

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- ▶ $p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i) \Rightarrow$ overfitting and highly expensive.

Non learnable prior $p(\mathbf{z})$ Learnable prior $p(\mathbf{z}|\lambda)$

Learnable VAE prior

Optimal prior

$$KL(q(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

Mixture of Gaussians

$$p(\mathbf{z}|\boldsymbol{\lambda}) = \sum_{k=1}^{K} w_k \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2), \quad \boldsymbol{\lambda} = \{w_k, \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k\}_{k=1}^{K}.$$

Variational Mixture of posteriors (VampPrior)

$$p(\mathbf{z}|\lambda) = \frac{1}{K} \sum_{k=1}^{K} q(\mathbf{z}|\mathbf{u}_k),$$

where $\lambda = \{u_1, \dots, u_K\}$ are trainable pseudo-inputs.

- Multimodal ⇒ prevents over-regularization;.
- ▶ $K \ll n \Rightarrow$ prevents from potential overfitting + less expensive to train.

VampPrior

- Do we really need the multimodal prior?
- ▶ Is it beneficial to couple the prior with the variational posterior or the MoG prior is enough?

Results

Top row: generated images by PixelHVAE + VampPrior for chosen pseudo-input in the left top corner.

Bottom row: pseudo-inputs for different datasets.

Flows-based VAE prior

Flow model in latent space

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\epsilon) + \log \det \left| \frac{d\epsilon}{d\mathbf{z}} \right| = \log p(\epsilon) + \log \det \left| \frac{\partial f(\mathbf{z}, \boldsymbol{\lambda})}{\partial \mathbf{z}} \right|$$

$$\mathbf{z} = g(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) = f^{-1}(\boldsymbol{\epsilon}, \boldsymbol{\lambda})$$

- RealNVP flow.
- Autoregressive flow (MAF).

Why it is not a good idea to use IAF for VAE prior?

ELBO with flow-based VAE prior

$$\begin{split} \mathcal{L}(\phi, \theta) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\boldsymbol{\lambda}) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(f(\mathbf{z}, \boldsymbol{\lambda})) + \log \left| \det \frac{\partial f(\mathbf{z}, \boldsymbol{\lambda})}{\partial \mathbf{z}} \right| \right)}_{\text{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \end{split}$$

VAE limitations

Poor variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Variational posterior

ELBO

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

- In E-step of EM-algorithm we wish $KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta))=0.$ (In this case the lower bound is tight $\log p(\mathbf{x}|\theta)=\mathcal{L}(q,\theta)$).
- Normal variational distribution $q(\mathbf{z}|\mathbf{x},\phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathbf{x}))$ is poor (e.g. has only one mode).
- ► Flows models convert a simple base distribution to a complex one using invertible transformation with simple Jacobian. How to use flows in VAE posterior?

Summary

- ► The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.
- ► The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior.
- ► VampPrior proposes to use a variational mixture of posteriors as the prior to approximate the aggregated posterior.
- We could use flow-based prior in VAE (moreover, autoregressive) as well as flow-based posterior (next lecture).