ELEMENTARY GRAPH ALGORITHMS

Analysis of Algorithm

Punjab University College of Information Technology (PUCIT)
University of the Punjab, Lahore, Pakistan.

Credit

 These notes contain material from Chapter 22 of Cormen, Leiserson, Rivest, and Stein (3rd Edition).

Lecture notes of Prof. Constantinos Daskalakis of MIT.

Graph Representation

- Adjacency list and adjacency matrix may use to represent a graph G(V, E); where V and E represents vertices and edges respectively
- A graph could be directed or undirected
- Sparse Graph: number of edges (E) are minimal (|E| is much less than |V2|)
- Dense Graph: number of edges (E) are close to maximum possible edges minimal (|E| is close to |V²|)

Undirected Graph

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Directed Graph

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Cycle in an Undirected Graph

A cycle in an undirected graph is a path $\langle v_0, v_1, ..., v_k \rangle$ so that:

- 1. k >= 3
- 2. $V_0 = V_k$
- 3. $v_1,..., v_k$ are distinct or they contain a simple cycle

Graphs in Action

Breadth-First Search (BFS)

- One of the simplest algorithm for searching a graph
- Given a graph G = (V, E) and a distinguished source vertex s, breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from s
- It computes the distance (smallest number of edges) from
 s to each reachable vertex

Breadth-First Search (Cont.)

Algorithm


```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
         u.d = \infty
         u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
     Q = \emptyset
    ENQUEUE(Q, s)
10
    while Q \neq \emptyset
11
         u = \text{Dequeue}(Q)
         for each v \in G.Adj[u]
12
             if v.color == WHITE
13
                  v.color = GRAY
14
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
18
         u.color = BLACK
```

Breadth-First Search (Cont.) Analysis

Enqueuing and dequeuing take O(1)

- Total time devoted to queue operations take O(V)
- Total time scanning adjacency lists is O(E)
- Total running time of the BFS procedure is O(V +E)

Breadth-First Search (Cont.)

Shortest Path

- •The procedure BFS builds a breadth-first tree as it searches the graph
- •Shortest-path from **s** to **v** as the minimum number of edges in any path from vertex **s** to vertex **v**;

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v
```

Depth-first Search (DFS)

- Depth-first search explores edges out of the most recently discovered vertex that still has unexplored edges leaving it.
- Once all of v's edges have been explored, the search "backtracks" to explore edges leaving the vertex from which was discovered.
- This process continues until we have discovered all the vertices that are reachable from the original source vertex.

DFS(G)

```
for each vertex u \in G.V
       u.color = WHITE
       u.\pi = NIL
   time = 0
   for each vertex u \in G.V
       if u.color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
    time = time + 1
   u.d = time
   u.color = GRAY
```

for each $v \in G.Adj[u]$

u.color = BLACK

time = time + 1

u.f = time

if v.color == WHITE

DFS-VISIT (G, ν)

 $\nu.\pi = u$

- •DFS is O(V) exclusive of DFS-VIST •DFS-VISIT is O(E)
- •The running time of DFS is therefore O(V+E)

Tradeoffs

- Solving Rubik's cube?
 - BFS gives shortest solution
- Robot exploring a building?
 - Robot can trace out the exploration path
 - Just drops markers behind
- Only difference is "next vertex" choice
 - BFS uses a queue
 - DFS uses a stack (recursion)

Topological Sort

A **topological sort** of a dag G(V,E) is a linear ordering of all its vertices such that if G contains an edge (u,v) then u appears before v in the ordering.

Topological Sort (Cont.)

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^T
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

(a)

